Problema 1

A figura mostra a curva de dispersão para um certo meio

- Para que frequência(s) angular(es) ω é que a velocidade de fase e a velocidade de grupo são iguais?
- Que frequência angular permite transmitir um pulso à maior velocidade possivel? Qual o valor desta velocidade
- Qual é a resposta do meio se o excitar a $\omega = \omega_0 = 1 \times 10^{-4} s^{-1}$?

Problema 2

A flutuação da densidade de cargas num plasma, $\rho(x,t)$, satisfaz a seguinte equação das ondas

$$\frac{\partial^2 \rho}{\partial t^2} = c^2 \frac{\partial^2 \rho}{\partial x^2} - \omega_p^2 \rho \,, \tag{1}$$

onde c é a velocidade da luz e ω_p é um parametro fixo conhecido como a frequência de plasma.

- Encontre relação de dispersão $\omega(k)$ para ondas progressivas da forma $\rho(x,t)=Ae^{-i(\omega t-kx)}$
- Encontre a relação inversa $k(\omega)$. Esboce um gráfico de $k(\omega)$, da velocidade de fase e da velocidade de grupo.
- O que acontece para $\omega < \omega_p$?

Problema 3

Considere duas cordas de densidade de massa $\mu_1 = \mu$ e $\mu_2 = \mu/2$ e tensões $T_1 = T$ e $T_2 = T/2$ ligadas por um anel sem massa em x=0. O anel pode-se mover ao longo de uma vara sem atrito. A corda à esquerda do anel pode ser tomada como infinita e a corda à direita do anel está fixa a uma parede em x = L. Inicialmente, um pulso triangular de largura L/4 move-se ao longo da corda 1 da esquerda para a direita. Em t = 0, a frente do pulso está em x = -7L/8 como ilustrado na Figura.

- Obtenha equações de onda em ambos os lados do anel e especifique as condições fronteira em x = 0.
- Espera ondas refletidas em x = 0 e x = L? A onda refletida tem a mesma fase que a onda incidente em x = 0 e x = L?
- Assuma que o pulso incidente é da forma $f_1(x,t) = f_1(x/v_1 t)$. Encontre a forma do pulso transmitido e refletido em x = 0 e x = L. Considere apenas tempos $t \le 2L\sqrt{\frac{\mu}{T}}$.
- Faça um esboço da deformação da corda em $t=L^{\mu}_{T}$ e $t=2L^{\mu}_{T}$.

Problema 4

Uma onda $\psi(x,t)$ a propagar-se em torno de um buraco negro em rotação interage com o seu potencial gravítico. A equação das ondas a que obedece é dada por

$$\frac{\partial^2 \psi}{\partial x^2} - \frac{\partial^2 \psi}{\partial t^2} + V(\omega, x) \psi = 0, \qquad (2)$$

onde $V(\omega, x)$ representa o potencial gravítico sentido por uma onda de frequência ω . O buraco negro está em $x \to x_+$ e um observador na Terra está em $x \to +\infty$.

• Reescreva a equação das ondas no domínio das frequências fazendo $\psi(x,t)=e^{-i\omega t}\psi(x,\omega)$ e obtenha

$$\frac{\partial^2 \psi}{\partial x^2} + \tilde{V}(\omega, x) \psi = 0.$$
 (3)

A forma específica de $\tilde{V}\left(\omega,x\right)$ é algo complicada mas o seu comportamento assimptotico é dado

$$\tilde{V} \sim \omega^2, x \to +\infty$$
 (4)

$$\tilde{V} \sim (\omega - m\Omega_H)^2, x \to x_+$$
 (5)

onde m é um numero natural e Ω_H é a frequência angular com que o buraco negro gira.

- Descreva o comportamento assimptótico (em $x \to +\infty$ e $x \to x_+$) da solução ψ que corresponde a uma onda incidente de frequência ω a partir de $+\infty$.
- Mostre que a quantidade $W=\psi \frac{\partial \psi^*}{\partial x}-\psi^* \frac{\partial \psi}{\partial x}$ é constante em x e calcule-a explicitamente.
- Sabendo que "nada pode sair de um buraco negro", calcule o coeficiente de reflexão de uma onda incidente a partir de +∞ em função do coeficiente de transmissão. Interprete o resultado.