## 565РУЗА, 565РУЗВ, 565РУЗГ, К565РУЗА, К565РУЗБ, К565РУЗВ, К565РУЗГ, КР565РУЗА

Микросхемы представляют собой динамическое оперативное запоминающее устройство емкостью 16 кбит (16к х 1) со схемами управления. Содержат 68955 (по некоторым источникам 41372) интегральных элементов. Корпус типа 201.16-1 (по некоторым источникам – 201.16-17, 201A.16-2), масса не более 1,5 г и 238.16-1, масса не более 2 г.

Коды маркировки наносятся на любом свободном месте поля маркировки микросхемы:

1 точка — группа А; 2 точки — группа Б; 3 точки — группа В. Микросхемы группы Г маркируются без точки.



## Назначение выводов

1 — напряжение питания (—U $\Pi_3$ ); 2 — вход информационный DI; 3 — вход сигнала "запись" W/R; 4 — вход сигнала выборки строки RAS; 5 — вход адресный A0; 6 — вход адресный A2; 7 — вход адресный A1; 8 — напряжение питания (U $\Pi_1$ ); 9 — напряжение питания (U $\Pi_2$ ); 10 — вход адресный A5; 11 — вход адресный A4; 12 — вход адресный A3; 13 — вход адресный A6; 14 — выход информационный D0; 15 — вход сигнала "выбор адреса столбца" CAS; 16 — общий.

## Электрические параметры

| <i>5</i> ,10                                    | ектрические парам       |  |
|-------------------------------------------------|-------------------------|--|
| Номинальное напряжение питания:                 |                         |  |
| $\mathrm{U}\pi_1$                               | $12 \text{ B} \pm 5\%$  |  |
| $\mathrm{U} \pi_2$                              | $5 \mathrm{~B} \pm 5\%$ |  |
| $U\pi_3$                                        | $-5 \text{ B} \pm 5 \%$ |  |
| Выходное напряжение низкого уровня              | < 0,4 B                 |  |
| Выходное напряжение высокого уровня             | > 2,4 B                 |  |
| Ток потребления:                                |                         |  |
| от источника питания Un <sub>1</sub>            | < 2  MKA                |  |
| от источника питания Uп2                        | -7+7 мкА                |  |
| от источника питания Uп3                        |                         |  |
| 565РУЗА, 565РУЗВ, 565РУЗІ                       | < 100 мкA               |  |
| остальные типы                                  | < 50 мкА                |  |
| Динамический ток потребления:                   |                         |  |
| от источника питания Uп1                        | < 35  MA                |  |
| от источника питания Uп3                        | < 300  MA               |  |
| Ток утечки низкого и высокого уровней на вх     | оде -7+7 мкА            |  |
| Выходной ток низкого и высокого уровней         |                         |  |
| в состоянии "выключено"                         | -7+7 мкА                |  |
| Потребляемая мощность в режиме обращения        |                         |  |
| Потребляемая мощность в режиме хранения         | 40 мВт                  |  |
| Время выборки относительно сигнала CAS:         |                         |  |
| 565PY3A                                         | < 300 нс                |  |
| 565РУЗВ                                         | < 250 нс                |  |
| 565РУЗГ, К565РУЗА, КР565РУЗА, К565РУЗБ < 200 нс |                         |  |
| К565РУЗВ                                        | < 165 нс                |  |
| К565РУ3Г                                        | < 135 нс                |  |
| Период регенерации                              | > 2 mc                  |  |
| Время сохранения сигнала выходной информ        | ации                    |  |
| после сигнала CAS:                              |                         |  |
| К565РУЗА, К565РУЗБ, КР565РУЗА                   | > 80 HC                 |  |
| К565РУЗВ                                        | > 100 HC                |  |
| К565РУ3Г                                        | > 50 HC                 |  |
| Время цикла:                                    |                         |  |
| К565РУЗА, К565РУЗБ, КР565РУЗА                   | > 510 HC                |  |
| К565РУЗВ                                        | > 410 HC                |  |
| К565РУ3Г                                        | > 370 нс                |  |
|                                                 |                         |  |

Емкость входная адресных входов  $<6~\text{п}\Phi$  Емкость входа сигналов "запись", "выборка строки", "выбор адреса столбцов"  $<10~\text{п}\Phi$  Емкость выходная  $<7~\text{п}\Phi$ 

## Предельно допустимые режимы эксплуатации

Напряжение питания:

 $\begin{array}{ccc} U\pi_1 & & & 11,4...12,6 \ B \\ U\pi_2 & & 4,6...5,5 \ B \\ U\pi_3 & & -5,25...-4,75 \ B \end{array}$ 

Входное напряжение низкого уровня:

К565РУЗА, К565РУЗБ, КР565РУЗА -0.8...+0.6 B К565РУЗВ, К565РУЗГ -0.8...+0.8 B Входное напряжение высокого уровня 2,4...6,5 B Максимальный входной ток низкого уровня 4 мА Максимальный выходной ток высокого уровня 4 мА Максимальная емкость нагрузки 110 пФ Температура окружающей среды -10...+70 °C Срок сохраняемости (565РУЗА, 565РУЗВ, 565РУЗГ) 25 лет Минимальная наработка (565РУЗА, 565РУЗВ, 565РУЗГ) 100 000 ч

При обращении к микросхеме для записи информации необходимо подать, как показано на рис.a, код адреса строк A0...A6 и одновременно с ним или с некоторой (не нормируемой) задержкой сигнал RAS, затем с задержкой на время удержания адреса строк относительно сигнала RAS  $t_{H(RAS-A)}$  на эти же выводы поступает код адреса столбцов A7...A13 и с задержкой на время  $t_{SU(A-CAS)}$  подается сигнал CAS.

K моменту подачи кода адреса столбцов на вход D1 подводят записываемый бит информации, который сигналом WR/RD при наличии CAS=0 фиксируется на входном триггере-защелке. Сигнал записи может быть подан уровнем или импульсом длительностью  $t_{W(WR)}$ . Если этот сигнал подан уровнем, то фиксацию входных данных триггер-защелка производит по отрицательному перепаду сигнала CAS при наличии сигнала CAS в активном состоянии. По окончании записи должна быть выдержана пауза между сигналами CAS для восстановления состояния внутренних цепей микросхемы. Длительность интервала восстановления определена параметром CAS

В режиме считывания (рис.**б**) порядок следования адресных и управляющих сигналов аналогичен рассмотренному, но при наличии сигнала считывания WR/RD=1. Время появления выходного сигнала можно отсчитывать от момента поступления сигналов адреса — время выборки адреса  $t_{A(A)}$  либо от момента поступления сигнала RAS — время выборки сигнала RAS  $t_{A(RAS)}$ , либо от момента поступления сигнала CAS — время выборки сигнала CAS  $t_{A(CAS)}$ . Названные параметры связаны соотношением  $t_{A(RAS)} = t_{A(CAS)} + t_{SU(RAS-CAS)}$ .

Для оценки быстродействия микросхемы памяти в расчет необходимо принимать время цикла записи (считывания)  $t_{\rm CYW},\,t_{\rm CYR}.$ 

Микросхемы динамических ОЗУ характеризуются набором временных параметров, регламентирующих длительности импульсных сигналов, интервалы между ними, взаимный сдвиг во времени. Перечень параметров включает десятки наименований. В таблице приведены основные из них:

| Параметр, нс          | К565РУЗА, Б | К565РУЗВ | К565РУ3Г |
|-----------------------|-------------|----------|----------|
| $t_{CY}$              | 510         | 410      | 370      |
| $t_{\rm CY(RMW)}$     | 670         | 520      | 420      |
| t* <sub>CY</sub>      | 370         | 275      | 225      |
| $t_{W(RAS)}$          | 300         | 250      | 200      |
| $t_{REC(RAS)}$        | 200         | 150      | 120      |
| $t_{W(CAS)}$          | 220         | 165      | 135      |
| $t_{SU(RAS-CAS)}$     | 100         | 85       | 65       |
| $t_{H(RAS-A)}$        | 60          | 45       | 25       |
| $t_{H(CAS-A)}$        | 100         | 75       | 55       |
| $t_{W(WR)}$           | 120         | 75       | 55       |
| $t_{H(CAS-DI)}$       | 100         | 75       | 55       |
| t* <sub>W(CAS)</sub>  | 140         | 100      | 80       |
| $t_{A(CAS)}$          | 200         | 165      | 135      |
| T <sub>REF</sub> , мс | 2           | 2        | 2        |



Для обеспечения надежного сохранения записанной в накопителе информации предусмотрен режим принудительной регенерации, которой подвергается каждый элемент памяти в интервале времени, определяемом параметром  $T_{REF}$ . Регенерация выполняется автоматически для всех элементов памяти выбранной строки при каждом обращении к накопителю для записи или считывания информации. Поскольку обращение к разным строкам происходит с различными интервалами времени, рассчитывать только на автоматическую регенерацию нельзя, что и обусловливает необходимость организации специального режима принудительной регенерации.

Цикл регенерации состоит из m обращений к матрице, где m — число строк, перебором адресов строк с помощью внешнего счетчика циклов обращений. Обращение к накопителю для регенерации может быть организовано по любому из режимов: записи, считывания, считывания—модификации—записи, а также по специальным режимам регенерации: либо «сигналом RAS», либо «CAS — перед — RAS».

При организации принудительной регенерации наиболее целесообразным и удобным для реализации является режим регенерации сигналом RAS. Временные диаграммы для этого режима представлены на рис.в.

Регенерация осуществляется путем перебора адресов строк с сопровождением каждого адреса сигналом RAS при пассивном состоянии сигнала CAS=1. В этом режиме регенерации микросхема потребляет наименьшую мощность.

При эксплуатации микросхем следует учитывать требования к последовательности включения и выключения источников питания: первым подключают напряжение —5 В, а отключают его последним. Это требование обусловлено опасностью теплового пробоя между подложкой и МДП-структурами в области изолирующих электронно-дырочных переходов. Указанное напряжение подается на подложку (кристалл), и если его не подключить первым, то под воздействием, даже кратковременным, напряжений двух других источников 5 и 12 В может произойти в кристалле тепловой пробой. Порядок включения и выключения других напряжений питания может быть любым.

Полезно помнить также о чувствительности микросхем к воздействию статического электричества, предельное значение которого не превышает 30 В.

После включения питания нормальный режим функционирования устанавливается через восемь рабочих циклов.