Измерение модуля Юнга методом акустического резонанса

Панферов Андрей 2019-10-21 Зависимость частоты от номера резонансного пика для трех измеряемых стержней занесем в Таблицу 1:

Таблица 1: Резонансные частоты стержней

	n	1	2	3	4	5	6	7	1/2
Медь	f , к Γ ц	3.244	6.460	9.738	12.979	16.208	19.446	22.718	1.622
Сталь	f , к Γ ц	4.122	8.262	12.373	16.505	20.617	24.733	28.837	
Дюраль	f , к Γ ц	4.253	8.521	12.763	17.026	21.260	25.496	29.724	

Построим графики зависимости $f(\mathbf{n})$:

Из графика методом наименьших квадратов получаем:

Таблица 2: Скорости звука в стержнях

	f_1 , к Γ ц	δf_1 , к Γ ц	$c_{ m c_T},~{ m M/c}$	$\delta c_{ m c_{ m T}},{ m m/c}$
Медь	3.245	$3 \cdot 10^{-3}$	3894	33
Сталь	4.119	$2 \cdot 10^{-3}$	4943	35
Дюраль	4.245	$3 \cdot 10^{-3}$	5094	36

Измерим линейные размеры и массу образцов из меди, стали и дюраля. Данные занесем в таблицу 2. Вычислим плотность материалов.

	т, г	h, мм	2г, мм	ρ , kg/m ³	$\delta \rho$, κг/м ³
Медь	41.370	41.5	11.95	$8.89 \cdot 10^{3}$	$3 \cdot 10^{1}$
Сталь	35.206	40.0	11.99	$7.80 \cdot 10^3$	$3 \cdot 10^{1}$
Дюраль	9.201	30.0	11.84	$2.79 \cdot 10^{3}$	$1.1 \cdot 10^{1}$

Таблица 3: Параметры образцов

Измерим среднее значение диаметров стрежней d=2R:

Таблица 4: Диаметры исследуемых стержней (в мм)

Медь	11.96	11.95	11.96	11.96	11.96	11.95	11.96	11.96
Сталь	11.72	12.11	12.04	11.94	12.33	11.86	12.10	11.87
Дюраль	11.72	11.73	11.74	11.75	11.76	11.75	11.75	11.76

Как мы видим, $R/\lambda \approx R/L \approx 10^{-2}$, что сравнимо с приборной погрешностью измерений

Финальные результаты

Вычислим и занесем в Таблицу 5 модули Юнга материалов:

	Е, ГПа	$\delta E, \Gamma \Pi a$	$E_{{\scriptscriptstyle { m T}}6},\Gamma\Pi{ m a}$	$ E_{\text{T}6} - E , \Gamma \Pi a$
Медь	135	3	110	25
Сталь	191	3	?	?
Дюраль	72	1.1	74	2

Таблица 5: Модули Юнга

$$E = c_{\text{ct}}^2 \cdot \rho$$
$$\delta E = \sqrt{4(\frac{\delta c_{\text{ct}}}{c_{\text{ct}}})^2 + (\frac{\delta \rho}{\rho})^2}$$

Вывод: метод акустического резонанса является точным и надежным методом измерения модуля Юнга металлов.

Задание 12*

Как мывидим, модуляция на частоте $f_1/2$ вызывает колебания на частоте f_1

Задание 13*

U_{in} , дел	\mathbf{U}_{out} , дел	f , к Γ ц	f , к Γ ц
4.0	2.0	4.2490	4.2542
4.0	2.4	4.2498	4.2538
4.0	2.8	4.2504	4.2536
4.0	3.2	4.2506	4.2534
4.0	3.6	4.2508	4.2 3 3 2
4.0	4.0	4.2510	4.25 90
4.0	4.4	4.2512	4.2529
4.0	4.8	4.2512	4.2528
4.0	5.2	4.2515	4.2527
4.0	5.6	4.2515	4.2526
4.0	6.0	4.2516	4.2525
4.0	6.4	4.2518	4.2523
4.0	6.8	4.2521	4.25

Таблица 6: АЧХ

$$\delta f = (0.015 \pm 2)$$
 к Γ ц

$$f = (4.2521 \pm 0.0002)$$
 к Γ ц

$$\sigma = \frac{f}{\delta f} = (2.8 \pm 0.4) \cdot 10^3$$