الوحدة 2

ثنائي القطب RL Le dipole RL

I) الوشيعة bobine

الوشيعة تتائي قطب يتكون من سلك موصل ملفوف حول اسطوانة عازلة . نرمز للوشيعة ب : حيث r مقاومة الوشيعة و L ثابتة تميز الوشيعة و تسمى معامل تحريض الوشيعة وحدتها الهانري Henry و نرمز لها ب

2 - التوتر بين مربطى الوشيعة

1.2 - نشاط تجريبي

ننجز الدارة الكهربائية الممثلة جانبه ، و التي تحتوي على مولد GBF ذي الترددات المنخفضة وشيعة معامل تحريضها L=16m و مقاومتها و موصل أومى مقاومته R قابلة للضبط فضبط المولد GBF ليزود الدارة بتوتر مثلثي على تردد $R=8~\Omega$ و نضبط المقاومة Rعلى القيمة N=125Hz

نعاين على شاشة راسم التذبذب التوترين u_R و $u_L + u_R$ و أنظر الشكل أسفله الحساسية الأفقية: 2ms/div ، الحساسية الرأسية بالنسبة للمدخلين (1) و(2): 0,2V/div أ - أوجد في المجال[T, 0] تعبير شدة التيار i

ب - أوجد في المجال [0, T] قيمة التوتر u

. ح المجال المجال لا يستنتج بالمجال يستنتج - أوجد في نفس المجال .

i= - u_R/R إذن $u_R=$ - R.i أ - حسب قانون أوم فإن

i = -(q.t + b)/R إذن $u_R = a.t + b$ [0,T/2] و عن المجال

i=-12,5.t مدينا b=0 و $a=\frac{\Delta u_R}{\Delta t}=\frac{2.0,2V}{2.2ms}=100V.s^{-1}$ مدينا

i = -(a'.t + b')/R إذن $u_R = a'.t + b'$ [T/2,T] في المجال

$$a'=$$
 - $a=$ - $100 V.s^{-1}$ و $0.2=$ - $100.4.10^{-3}+b'$ این $0.6V=$ $0.6V=$ نستنتج $0.6V=$ نستنتج $0.6V=$ این $0.6V=$ $0.6V=$ نستنج $0.6V=$ $0.075=$

u = 0.2 V [T/2,T] في المجال u = -0.2 V [0,T/2] في المجال

 $L\frac{di}{dt} = 16.10^{-3}.(-12.5) = -0.2V$ [0,T/2] قي المجال

 $L\frac{di}{dt} = 16.10^{-3}.12,5 = 0,2V$ [T/2,T] _- في المجال

 $u_L=u-u_R=L.di/dt-(-Ri)=Ldi/dt+ri$ فإن $u=u_L+u_R$ و بما أن $u=L\frac{di}{dt}$ و بما أن $u=L\frac{di}{dt}$

 $rac{ ext{u}_{ ext{L}}= ext{r.i}+ ext{L.}rac{ ext{di}}{ ext{dt}}}{ ext{dt}}$ نستنتج أن التوتر بين مربطي الوشيعة

3.2 ـ ملحوظة

- عندما يكون التيار مستمر $\mathrm{i}=\mathrm{i}$ فإن $\mathrm{u}_\mathrm{L}=\mathrm{r.I}$ تتصرف الوشيعة كموصل أومي مقاومته r .

عندما يتغير التيار ، مثلا أتناء غلق أو فتح الدارة فإن $u_L = r.i + L \ .di/dt = r.i - e$. التوتر الناتج $e = - \ Ldi/dt$

II) استجابة ثنائى القطب RL لرتبة توتر Réponse d'un dipôle RL à un échelon de tension

ثنائي القطب RL هو تجميع على التوالي لموصل أومي مقاومته r و وشيعة معامل تحريضها L و مقاومته r .

2 - الدراسة التجريبية

1.2 - نشاط تجريبي

ننجز الدارة الكهربائية الممثلة جانبه و التي تحتوي على وشيعة مقاومتها $r=10\Omega$ و معامل تحريضها L قابل للضبط و موصل أومي مقاومته r قابلة للضبط و مولد يغذي الدارة بتوتر مستمر قوته الكهر محركة E قابلة للضبط ثم قاطع تيار K

نستعمل صمام ثنائي لتفادي حدوث شرارة كهربائية عند فتح قاطع التيار K.

. E=10V و E=0.2H و E=0.0 على القيم E=0.2

الحسوب يمكن أن يمثل الدالة i=f(t) التي تمثل بدلالة الزمن شدة التيار الذي يجتاز الدارة $i=u_R/r^{\circ}$. $i=u_R/r^{\circ}$

• إقامة التيار

. $au = \frac{L}{R}$ و قارنها مع القيمة النظرية وألى محدد بطريقتين مختلفتين ثابتة الزمن au لثنائي القطب القطب المحدد بطريقتين مختلفتين ثابتة الزمن au

 $m{t} > 5. au$ يصبح $m{t} > 5. au$ النظام الدائم عندما يصبح

$$\mathbf{I} = \frac{\mathbf{E}}{\mathbf{R}}$$
 بين أن شدة التيار في النظام الدائم - \mathbf{E}

 $I = rac{E}{R}$ لا تصبح شدة التيار مباشرة عند غلق الدارة تساوي - لمادا لا تصبح

• انقطاع التيار

أ - حدد بطريقتين مختلفتين ثابتة الزمن au و قارنها مع au.

ب ـ حدد على منحنى انقطاع التيار النظام الانتقالي و النظام الدائم .

ج – لماذا لا تنعدم شدة التيار مباشرة بعد فتح الدارة .

• تأثير R و L

أ - ماذا يحدث عندما نغير قيمة المقاومة R ؟

ب - ماذا تلاحظ عند نغير معامل التحريض L للوشيعة ؟

2.2 - استثمار

، إقامة التيار

أ - القيمة النظرية لثابتة الزمن $au=\frac{L}{R}=\frac{0.2}{20}=10$ تتطابق مع القيمة النظرية لثابتة الزمن au=10

i=E/R طريقة المماس للمنحنى عند t=0 . t=0 هي أفصول نقطة تتقاطع المماس مع المقارب - طريقة المماس للمنحنى عند

. أ با مريقة au au . أن المدة الزمنية اللازمة ليصبح au . au . أن المدة الزمنية اللازمة ليصبح

au - نحصل مبيانيا على النظام الدائم عندما يكون $t > 50 {
m ms}$ أي عندما يكون t > 5. au .

E = (r+r').I ج ـ في النظام الدائم تشتغل الوشيعة كموصل أومي مقاومته r' إذن حسب قانون أوم و قانون إضافية التوترات

. $I = \frac{E}{R}$ إذن

ج ـ لا تصبح شدة التيار مباشرة عند غلق الدارة تساوي $rac{E}{R}$ لأن الوشيعة تقاوم التغيير الحاصل لشدة التيار أثناء غلق الدارة .

• انقطاع التيار

i = 0.37 E/R أ ـ نحدد ثابتة الزمن بطريقة المماس للمنحنى عند لحظة انقطاع التيار أو عندما يصبح

ب ـ أنظر الشكل

ج ـ لا تنعدم شدة التيار مباشرة بعد فتح الدارة لأن الوشيعة تقاوم التغيير الحاصل لشدة التيار أثناء فتح الدارة .

تأثیر R و L

أ ـ كل زيادة في قيمة R تؤدي إلى الحصول على النظام الدائم في مدة زمنية و جيزة و نعلل هذا بواسطة $\tau = L/R$ الذي تنقص قيمته عند رفع قيمة R .

ب عند عند au كل زيادة في قيمة L تؤدي إلى الحصول على النظام الدائم في مدة زمنية طويلة و نعلل هذا بواسطة au الذي تزداد قيمته عند رفع قيمة L .

3 - الدراسة النظرية

1.3 - إقامة التيار

أ ـ المعادلة التفاضلية

. t=0 عند اللحظة K عند اللحظة و نعتبر التركيب جانبه .

E=r.i+L.di/dt+r'.i اي $E=u_L+u_R$ اي E=r.i+L.di/dt+r'.i

L.di/dt + R.i = E و بالتالية نحصل على المعادلة التفاضلية التي تحققها شدة التيار

$$R = r + r'$$
 مع $\frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}$

ب ـ حل المعادلة التفاضلية

 $i = ae^{\alpha t} + b$ نكتب حل المعادلة التفاضلية على الشكل

0.5

0,63 E/R

0,37 E/R

50

100

t (ms)

نعوض في المعادلة التفاضلية و نحصل على $\frac{\mathrm{di}}{\mathrm{dt}} = \mathrm{a}\alpha\mathrm{e}^{\alpha\mathrm{t}}$

$$b=\frac{E}{R}\text{ is }\alpha=-\frac{R}{L}=-\frac{1}{\tau}\text{ if }(a\alpha+\frac{aR}{L})e^{\alpha t}+\frac{Rb}{L}=\frac{E}{L}\text{ is }a\alpha e^{\alpha t}+R/L.(ae^{\alpha t}+b)=E/L$$

a= - b= - E/R و منه فإن $i=ae^0+b=0$ عند الشروط البدئية 0 و t=0 عند الشروط البدئية

 $i = \frac{E}{D}(1 - e^{-\frac{1}{\tau}})$ شدة التيار المار في ثنائي القطب RL ، أثناء إقامة التيار المار في ثنائي القطب

 $u_L = r.i + L\frac{di}{dt} = r\frac{E}{R}(1 - e^{-\frac{t}{\tau}}) + L\frac{E}{R}.\frac{1}{\tau}e^{-\frac{t}{\tau}} = Ee^{-\frac{t}{\tau}} + \frac{r.E}{R}(1 - e^{-\frac{t}{\tau}})$ التوتر بين مربطي الوشيعة

التوتر u_L غير متصل

2.3 ـ انقطاع التيار

نستعمل صمام ثنائي ذي وصلة لتفادي الشرارات التاتجة أثناء فتح الدارة و يكون التوتر بين مربطى الصمام الثنائي منعدما .

نطبق قانون إضافية التوترات $u_L+u_R=0$ أي $u_L+u_R=0$ أي v.i+L.di/dt+r'.i=0 و v.i+L.di/dt+Ri=0 و بالتالية نحصل على المعادلة التفاضلية التي تحققها شدة التيار

$$R = r + r' \approx \frac{\frac{di}{dt} + \frac{R}{L}i = 0$$

ب ـ حل المعادلة التفاضلية $i=ae^{\alpha t}+b$ الشكل $i=ae^{\alpha t}+b$

نعوض في المعادلة التفاضلية و نحصل على $\frac{di}{dt} = a\alpha e^{\alpha t}$

$$b=0$$
 و $\alpha=-rac{R}{L}=-rac{1}{ au}$ اِذَن $lpha=rac{R}{L}=0$ و $lpha=-rac{R}{L}=0$ و $lpha=-rac{R}{L}=0$ و $lpha=-rac{R}{L}=0$

a=E/R و منه فإن $i=ae^0=E/R$ عند الشروط البدئية t=0 و منه فإن

 $au=rac{L}{R}$ مع $extbf{i}=rac{E}{R}e^{-rac{1}{\tau}}$ مع i = $rac{E}{R}e^{-rac{1}{\tau}}$ مع

 $u_{L} = r.i + L\frac{di}{dt} = r\frac{E}{R}e^{-\frac{t}{\tau}} + L\frac{E}{R}.(\frac{-1}{\tau})e^{-\frac{t}{\tau}} = E(\frac{r}{R}-1).e^{-\frac{t}{\tau}}$ التوتر بين مربطي الوشيعة

التوتر u_L غير متصل **III) <u>الطاقة المخزونة في الوشيعة</u> 1 - تعبير الطاقة المخزونة في الوشيعة**

 $\mathcal{P}=(r.i+L\frac{di}{dt}).i=r.i^2+rac{d(rac{1}{2}L.i^2)}{dt}=\mathcal{P}_{_{th}}+\mathcal{P}_{_{_{m}}}:$ القدرة الكهربائية المكتسبة من طرف الوشيعة هي

 $d(\frac{1}{2} \text{L.i}^2)$ لدينا $\mathscr{P}_{th} = \frac{d(\frac{1}{2} \text{L.i}^2)}{dt}$ القدرة المبددة في الوشيعة بواسطة مفعول جول و $\mathscr{P}_{th} = r.i^2$ القدرة المخزونة في الوشيعة و تسمى القدرة

المغنطيسية. ولدينا $\mathcal{P}_{m}=rac{dE_{m}}{dt}$ و منه نستنتج الطاقة المخزونة في الوشيعة $E_{m}=rac{1}{2}$ و تسمى الطاقة المغنطيسية .

نعتبر التركيب الكهربائي جانبه فعندما نغلق قاطع التياريمر تيار كهربائي في الوشيعة و يمنع الصمام الثنائي المستقطب في المنحى المعاكس مرور التيار الكهربائي في دارة المحرك فلا يشتغل . و عند فتح الدارة يمر تيار كهربائي في دارة المحرك الوشيعة فيشتغل المحرك . نستنتج أن الوشيعة تختزن طاقة كهربائي و هذه الطاقة تكون مهمة كلما كان معامل التحريض كبيرا أو كلما كانت شدت التيار كبيرة

