Imperial College London



Antoine Cully & Marek Rei & Josiah Wang

# Course plan

|        |         | Lecture                                  | Lecturer |  |
|--------|---------|------------------------------------------|----------|--|
| \<br>V | Week 2  | Introduction to ML                       | Josiah   |  |
|        | >Week 3 | Instance-based Learning + Decision Trees | Antoine  |  |
|        | Week 4  | Machine Learning Evaluation              | Marek    |  |
|        | Week 5  | Artificial Neural Networks I             | Marek    |  |
|        | Week 6  | Artificial Neural Networks II            | Marek    |  |
|        | Week 7  | Unsupervised Learning                    | Antoine  |  |
|        | Week 8  | Genetic Algorithms                       | Antoine  |  |



#### **Decision Trees**



# Classification: Lazy vs. Eager Learning

#### **Lazy Learner**

Stores the training examples and postpones generalising beyond these data until an explicit request is made at test time.



#### k Nearest Neighbours

#### **Eager Learner**

Constructs a general, explicit description of the target function based on the provided training examples.



**Decision Trees** 

# Today's lecture

## Classification with Instance-based Learning

- k Nearest Neighbours (k-NN) classifier
- Distance weighted k-NN
- *k*-NN regression (quick intro)

#### Classification with Decision Trees

- Intuitions & Motivations
- Information Entropy/Information Gain
- Algorithm
- Worked Example
- Random forests & regression trees (quick intro)

# Today's lecture

- 6 videos:
  - This short intro
  - Classification with Instance-based Learning
  - Classification with Decision Trees
  - How to select the 'optimal' split rule?
  - Worked example for constructing decision tree
  - Summary and other considerations with decision tree

7

To be continued...

(Classification with Instance-based Learning)

Classification with Instance-based Learning (k-Nearest Neighbours)

# Instance-based Learning





It's crazy how much my gut opinion of a movie/song is swayed by what other people say, regardless of how I felt coming out of the theater.

Instance-based Learning: instead of performing explicit generalization, compares new problem instances with instances seen in training, which have been stored in memory.

https://xkcd.com/185/ https://www.explainxkcd.com/wiki/index.php/185: Wikifriends

## Instance-based Learning

# Nearest Neighbour classifier

 Classify a test instance to the class label of the nearest training instance (according to some distance metric) Non-parametric models assume that the data distribution cannot be defined in terms of such a finite set of parameters.



 Question: What is the problem with using just one nearest neighbour?

# k-Nearest Neighbours (k-NN) classifier

- One nearest neighbour
  - Sensitive to noise
  - Overfit training data

Solution: Use <u>k</u> nearest neighbours



• *k* is usually an odd number for binary classification (why?)

Ensure the final vote will always have a decision

# k-Nearest Neighbours (k-NN) classifier

- Increasing k will make the classifier:
  - have a smoother decision boundary (higher bias)
  - less sensitive to training data (lower variance)

Smaller k: Overfitting Larger k: Underfitting

How to choose k? Use a validation dataset (Lecture 3)



Figures from: https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/

## k-NN classifier: Distance Metrics

## Manhattan distance ( $L^{1}$ -norm)

$$d(x^{(i)},x^{(q)}) = \sum_{k=1}^{K} |x_k^{(i)} - x_k^{(q)}|$$



Only for continuous variable

#### Euclidean distance (L2-norm)

$$d(x^{(i)}, x^{(q)}) = \sqrt{\sum_{k=1}^{K} (x_k^{(i)} - x_k^{(q)})^2}$$



Absolute value from all features
For continuous variable

#### Chebyshev distance ( $L^{\infty}$ -norm)

$$d(x^{(i)},x^{(q)}) = \max_{k=1}^K |x_k^{(i)} - x_k^{(q)}|$$



Others: Mahalanobis distance, Hamming distance, etc.

# Distance weighted *k*-NN

 Should we really trust neighbours who are further away more than those close by?



# Distance weighted *k*-NN

- Should we really trust neighbours who are further away more than those close by?
- Refine k-NN by assigning a weight w<sup>(i)</sup> to each neighbour based on how close they are to the test query instance (closer -> higher weight)
- Sum the weights per class in neighbourhood, assign to class with largest sum





# Distance weighted k-NN



 Any measure favouring the votes of nearby neighbours will work

Inverse of distance

$$w^{(i)} = rac{1}{d(x^{(i)}, x^{(q)})}$$

Gaussian distribution

$$w^{(i)} = rac{1}{\sqrt{2\pi}} ext{exp}(-rac{d(x^{(i)}, x^{(q)})^2}{2})$$



# Distance weighted *k*-NN: Remarks

- The value of k is of minor importance in distance weighted k-NN. Distant examples will have small weights and won't greatly affect classification
- If k=N (size of training set): global method.
   Otherwise, it's a local method

 Robust to noisy training data: Classification is based on a weighted combination of all k nearest neighbours, effectively smoothing out the impact of isolated noise The importance of K is reduced

Ignore noises (i.e., that are very much further away)

## k-NN classifier: Discussion

- k-NN is simple yet powerful
- ... but might be slow for large datasets
- Speed up search: k-d trees, localitysensitive hash, etc.

## k-NN classifier: Discussion

- The curse of dimensionality (revisited)
  - k-NN relies on distance metrics, which may not work well if using all features in high dimensional spaces
  - If many features are irrelevant, instances belonging to the same class may be far from each other
  - Solution: Weight each feature differently, or perform feature selection/extraction





# *k*-nearest neighbours for regression

- k-NN regression
  - Compute the <u>mean value</u> across *k* nearest neighbours



Locally weighted regression

- Distance-weighted k-NN for regression
- Compute the weighted mean value across k nearest neighbours



Points that are far away will have less impact to the mean value. So it is smoothed out in this case.

# To be continued... (Classification with Decision Trees)

# Classification with Decision Trees

## **Decision Trees**



PROTIP: IF YOU EVER NEED TO DEFEAT ME, JUST GIVE ME TWO VERY SIMILAR OPTIONS AND UNLIMITED INTERNET ACCESS.



https://xkcd.com/1801/ https://www.explainxkcd.com/wiki/index.php/1801: Decision Paralysis

# Classification: Lazy vs. Eager Learning

#### **Lazy Learner**

Stores the training examples and postpones generalising beyond these data until an explicit request is made at test time.



#### k Nearest Neighbours

#### **Eager Learner**

Constructs a general, explicit description of the target function based on the provided training examples.



**Decision Trees** 

## Classification: Linear vs. Non-linear



#### How to best divide the dataset?



## Choose this division.





## A linear classifier.





## Still some mistakes.





## Maybe divide again on left partition?





## Maybe divide again on left partition?





## Partition the left partition.



## A more fine-grained tree.



## Partition further?





## Partition further?



## The last two partitions are now "pure".













## Decision Boundary for decision trees



### Perform prediction.





### **Decision Tree learning**

- Decision Tree learning (or construction/induction) is a method for approximating discrete
   classification functions by means of a tree-based representation
- A decision tree can be represented as a set of ifthen rules
- Decision Tree learning algorithms employ topdown greedy search through the space of possible solutions
- Algorithms: ID3, C4.5, CART

## Decision Tree learning: General algorithm

- 1. Search for an 'optimal' splitting rule on training data
- 2. Split your dataset according to your chosen splitting rule
- 3. Repeat 1. and 2. on each new splitted subset

To be continued... (How to select the 'optimal' split rule?)

How to select the 'optimal' split rule?



### Intuitively:

Want partitioned datasets that are more 'pure' (as a whole) than the original dataset

## Selecting the optimal splitting rule

- Several metrics exist:
  - Information gain: Used in ID3, C4.5
    - Quantifies the reduction of information entropy
  - Gini impurity: Used in CART
    - If I randomly pick a point, and randomly classify it to a label according to the class label distribution, what is the probability of me getting the label incorrect?
  - Variance reduction: Used in CART
    - Mainly used for regression trees where the target variable is continuous



# **Information Entropy**

### Information Entropy



- How to best to encode information a sender wants to transmit?
- Data compression

Claude Shannon (1916-2001) *"Father of Information Theory"* 

## Information Entropy

- Entropy is a measure of the <u>uncertainty</u> of a random variable
- It can also be seen as the average/ expected amount of information required to fully define a random state (or variable)



#### I stored my key in one of these two boxes...





How much information do you need to be fully certain of the key's location?

"Is it in the left box?"

One bit: 0 or 1

2 states = 1 bit



How many bits?

Two bits: 00, 01, 10, 11

2 states = 1 bit 4 states = 2 bits



$$2^{1} = 2$$
 states = 1 bit

$$2^2$$
 = 4 states = 2 bits

$$2^3$$
 = 8 states = 3 bits

$$2^B = K$$
 states =  $B$  bits



$$2^B = K$$
 states  $B = log_2(K)$ 

the amount of information required to fully determine the state of a random variable is

$$I(x) = \log_2(K)$$

$$2^{1}$$
 = 2 states = 1 bit

$$2^2 = 4$$
 states = 2 bits

$$2^3 = 8$$
 states = 3 bits

$$2^B = K$$
 states =  $B$  bits



$$I(x) = \log_2(K)$$

#### Probabilistic point of view:

$$P(x) = 1/K$$
  $K = 1/P(x)$   
 $I(x) = log_2(1/P(x)) = -log_2(P(x))$ 

$$I(x=box_1) = I(x=box_2) = I(x=box_3) = I(x=box_4) = -log_2(0.25)$$
  
= 2 bits

What if you knew that I (almost) always store my key in box 1?



- You can almost be certain that it is in box 1! Telling you this does not give you a lot of new information (low entropy)...
- ...but telling you that it's in one of the other boxes represents a very important (or surprising) information (high entropy)!

What if you knew that I (almost) always store my key in box 1?



$$I(x=box_1) = -log_2(0.97) = 0.0439 \text{ bits}$$
  
 $I(x=box_2) = -log_2(0.01) = 6.6439 \text{ bits}$   
 $I(x=box_3) = -log_2(0.01) = 6.6439 \text{ bits}$ 

 $I(x=box_{d}) = -log_{2}(0.01) = 6.6439 \text{ bits}$ 

### How much information on average?



- 97% of the time, you will not need much information
- Entropy is defined as the average amount of information:

$$H(X) = -\sum_k^K P(x_k) \log_2(P(x_k))$$

In most cases(i.e., 97% time), only small amount of information is needed to determine the exact location of the box

$$H(X) = -0.97 \times log_2(0.97) - 0.01 \times log_2(0.01) - 0.01 \times log_2(0.01) - 0.01 \times log_2(0.01) = 0.2419 \, bits$$

### Continuous Entropy

- For a probability density function f(x), we can define the continuous entropy, as an analogy of Shanon's definition:  $H(X) = -\int_x f(x) \log_2(f(x))$ 
  - This analogy is imperfect (it can have negative values) but is still often used in Deep Learning.
  - The probability density function is often unknown, but can be approximated with density estimation algorithms for instance.



How to use ENTROPY to select the 'optimal' split rule?



$$P(\bigcirc) = 11/20$$
  
 $P(\bigcirc) = 9/20$   
 $H(\bigcirc) = -11/20 * log_2(11/20) - 9/20 * log_2(9/20)$   
 $H(\bigcirc) = 0.9928$ 



Information Gain

certainty gained from the parent state to the child state

### Information Gain

 Information Gain is the difference between the initial entropy and the (weighted) average entropy of the produced subsets.

$$egin{aligned} IG(dataset, subsets) &= H(dataset) - \sum_{S \in subsets} rac{|S|}{|dataset|} H(S) \ |dataset| &= \sum_{S \in subsets} |S| \end{aligned}$$

• For a binary tree,

$$IG(dataset, subsets) = H(dataset) - \left( rac{|S_{left}|}{|dataset|} H(S_{left}) + rac{|S_{right}|}{|dataset|} H(S_{right}) 
ight) \ |dataset| = |S_{left}| + |S_{right}|$$

Select split rule that maximises IG(dataset, subsets)

### Different types of inputs

- Ordered values (e.g. real values)
  - attribute and split point (weight < 60)</li>
  - for each feature, sort its values, and consider only split points that are between two examples with different class labels



rain

#### Categorical/symbolic values

 search for the most informative feature and then create as many branches as there are different values for this feature

| erer | nt            |          |             |          |
|------|---------------|----------|-------------|----------|
|      | PlayTennis(d) | outlook  | temperature | humidity |
| 1    | 0             | sunny    | hot         | high     |
| 2    | 0             | sunny    | hot         | high     |
|      |               |          |             |          |
| 13   | 1             | overcast | hot         | normal   |
| 14   | 0             | rain     | mild        | high     |

sunnv

outlook

overcast

To be continued...
(Worked example for constructing decision tree)

Worked example for constructing decision tree (categorical attributes)

|    | PlayTennis(d) | outlook  | temperature | humidity | wind   |
|----|---------------|----------|-------------|----------|--------|
| 1  | 0             | sunny    | hot         | high     | weak   |
| 2  | 0             | sunny    | hot         | high     | strong |
| 3  | 1             | overcast | hot         | high     | weak   |
| 4  | 1             | rain     | mild        | high     | weak   |
| 5  | 1             | rain     | cool        | normal   | weak   |
| 6  | 0             | rain     | cool        | normal   | strong |
| 7  | 1             | overcast | cool        | normal   | strong |
| 8  | 0             | sunny    | mild        | high     | weak   |
| 9  | 1             | sunny    | cool        | normal   | weak   |
| 10 | 1             | rain     | mild        | normal   | weak   |
| 11 | 1             | sunny    | mild        | normal   | strong |
| 12 | 1             | overcast | mild        | high     | strong |
| 13 | 1             | overcast | hot         | normal   | weak   |
| 14 | 0             | rain     | mild        | high     | strong |

Which attribute to select as split rule?

|    | PlayTennis(d) | outlook  |
|----|---------------|----------|
| 1  | 0             | sunny    |
| 2  | 0             | sunny    |
| 3  | 1             | overcast |
| 4  | 1             | rain     |
| 5  | 1             | rain     |
| 6  | 0             | rain     |
| 7  | 1             | overcast |
| 8  | 0             | sunny    |
| 9  | 1             | sunny    |
| 10 | 1             | rain     |
| 11 | 1             | sunny    |
| 12 | 1             | overcast |
| 13 | 1             | overcast |
| 14 | 0             | rain     |
|    |               |          |

- Which attribute to select as split rule?
- First need to compute:
  - *IG(D, outlook)*
  - *IG(D, temperature)*
  - IG(D, humidity) IG(D, wind)
  - $\circ$  10(D, wind)
- ... select the attribute with the highest Information Gain.



|    |               |             | $\nearrow D$                                                                                           |
|----|---------------|-------------|--------------------------------------------------------------------------------------------------------|
|    | PlayTennis(d) | temperature | hot temperature cool                                                                                   |
| 1  | 0             | hot         | mild                                                                                                   |
| 2  | 0             | hot         |                                                                                                        |
| 3  | 1             | hot         | $H(D) = -\frac{9}{14} \times log_2(\frac{9}{14}) - \frac{5}{14} \times log_2(\frac{5}{14}) = 0.940$    |
| 4  | 1             | mild        |                                                                                                        |
| 5  | 1             | cool        | $H(D_{hot}) = -rac{2}{4}	imes log_2(rac{2}{4}) - rac{2}{4}	imes log_2(rac{2}{4}) = 1$              |
| 6  | 0             | cool        | $H(D_{mild}) = -rac{4}{6}	imes log_2(rac{4}{6}) - rac{2}{6}	imes log_2(rac{2}{6}) = 0.91$          |
| 7  | 1             | cool        | $H(D_{cool}) = -\frac{3}{4} \times log_2(\frac{3}{4}) - \frac{1}{4} \times log_2(\frac{1}{4}) = 0.811$ |
| 8  | 0             | mild        | 4 32(4)                                                                                                |
| 9  | 1             | cool        | IG(D, temp.)                                                                                           |
| 10 | 1             | mild        | $=H(D)-\left(rac{4}{14}H(D_{hot})+rac{6}{14}H(D_{mild})+rac{4}{14}H(D_{cool}) ight)$                |
| 11 | 1             | mild        | $=0.940-\left(rac{4}{14}	imes1+rac{6}{14}	imes0.918+rac{4}{14}	imes0.811 ight)$                     |
| 12 | 1             | mild        | = 0.940 - 0.911                                                                                        |
| 13 | 1             | hot         | = 0.029                                                                                                |
| 14 | 0             | mild        |                                                                                                        |

$$\begin{split} &IG(D,outlook)\\ &= H(D) - \left(\frac{5}{14}H(D_{surrous}) + \frac{4}{14}H(D_{covercust}) + \frac{5}{14}H(D_{rain})\right) \\ &= 0.940 - \left(\frac{5}{14} \times 0.971 + \frac{4}{14} \times 0 + \frac{5}{14} \times 0.971\right) \\ &= 0.246 \end{split} \qquad \text{outlook}$$

$$IG(D, temperature)$$
  
=  $H(D) = (\frac{4}{2}H(D))$ 

$$egin{aligned} &= H(D) - \left(rac{4}{14}H(D_{hot}) + rac{6}{14}H(D_{mild}) + rac{4}{14}H(D_{cool})
ight) \ &= 0.940 - \left(rac{4}{14} imes 1 + rac{6}{14} imes 0.918 + rac{4}{14} imes 0.811
ight) \end{aligned}$$

$$= 0.029$$

$$= H(D) - \left(\frac{7}{14}H(D_{high}) + \frac{7}{14}H(D_{normal})\right)$$
  
= 0.940 -  $\left(\frac{7}{14} \times 0.985 + \frac{7}{14} \times 0.591\right)$   
= 0.151

 $=H(D)-\left(rac{8}{14}H(D_{weak})+rac{6}{14}H(D_{strong})
ight)$ 

$$= 0.940 - \left(\frac{8}{14} \times 0.811 + \frac{6}{14} \times 1\right)$$

$$= 0.048$$

temperature cool mild

weak

wind strong













$$H(D_1) = -\frac{2}{5} \times log_2(\frac{2}{5}) - \frac{3}{5} \times log_2(\frac{3}{5}) = 0.971$$

$$= H(D_1) - \left(\frac{2}{5}H(D_{1,hot}) + \frac{2}{5}H(D_{1,mild}) + \frac{1}{5}H(D_{1,mol})\right)$$
  
=  $0.971 - \left(\frac{2}{5} \times 0 + \frac{2}{5} \times 1 + \frac{1}{5} \times 0\right)$   
=  $0.571$ 

 $IG(D_1, temperature)$ 

$$IG(D_1, humidity)$$
  $IG(D_1, wind)$   $= H(D_1) - \left(\frac{3}{5}H(D_{1,high}) + \frac{2}{5}H(D_{1,normal})\right)$   $= H(D_1) - \left(\frac{3}{5}H(D_{1,weak}) + \frac{2}{5}H(D_{1,strong})\right)$   $= 0.971 - \left(\frac{3}{5} \times 0 + \frac{2}{5} \times 0\right)$   $= 0.971 - \left(\frac{3}{5} \times 0.918 + \frac{2}{5} \times 1\right)$   $= 0.020$ 





 $IG(D_1, humidity) = 0.971$ 

|                                                              |    | PlayTennis(d) | outlook  | temperature | humidity | wind   |
|--------------------------------------------------------------|----|---------------|----------|-------------|----------|--------|
|                                                              | 1  | 0             | sunny    | hot         | high     | weak   |
|                                                              | 2  | 0             | sunny    | hot         | high     | strong |
|                                                              | 8  | 0             | sunny    | mild        | high     | weak   |
|                                                              | 9  | 1             | sunny    | cool        | normal   | weak   |
|                                                              | 11 | 1             | sunny    | mild        | normal   | strong |
| Γ                                                            | 3  | 1             | overcast | hot         | high     | weak   |
|                                                              | 7  | 1             | overcast | cool        | normal   | strong |
|                                                              | 12 | 1             | overcast | mild        | high     | strong |
| L                                                            | 13 | 1             | overcast | hot         | normal   | weak   |
|                                                              | 4  | 1             | rain     | mild        | high     | weak   |
|                                                              | 5  | 1             | rain     | cool        | normal   | weak   |
| $\left(\begin{array}{c} \boldsymbol{D}_3 \end{array}\right)$ | 6  | 0             | rain     | cool        | normal   | strong |
|                                                              | 10 | 1             | rain     | mild        | normal   | weak   |
| L                                                            | 14 | 0             | rain     | mild        | high     | strong |





| $D_2$ |    | PlayTennis(d) | outlook | temperature | humidity | wind   |
|-------|----|---------------|---------|-------------|----------|--------|
|       | 4  | 1             | rain    | mild        | high     | weak   |
|       | 5  | 1             | rain    | cool        | normal   | weak   |
|       | 6  | 0             | rain    | cool        | normal   | strong |
|       | 10 | 1             | rain    | mild        | normal   | weak   |
|       | 14 | 0             | rain    | mild        | high     | strong |

$$H(D_2) = -\frac{3}{5} \times log_2(\frac{3}{5}) - \frac{2}{5} \times log_2(\frac{2}{5}) = 0.971$$

$$IG(D_2, temperature)$$

$$= H(D_2) - \left(\frac{1}{5}H(D_{2,hot}) + \frac{3}{5}H(D_{2,mild}) + \frac{2}{5}H(D_{2,cool})\right)$$

$$= 0.971 - \left(0 + \frac{3}{5} \times 0.918 + \frac{2}{5} \times 1\right)$$

= 0.020

$$\begin{array}{ll} IG(D_2,humidity) & IG(D_2,wind) \\ = H(D_2) - \left(\frac{2}{5}H(D_{2,high}) + \frac{3}{5}H(D_{2,normal})\right) & = H(D_2) - \left(\frac{3}{5}H(D_{2,meak}) + \frac{2}{5}H(D_{2,strong})\right) \\ = 0.971 - \left(\frac{2}{5} \times 1 + \frac{3}{5} \times 0.918\right) & = 0.971 - \left(\frac{3}{5} \times 0 + \frac{2}{5} \times 0\right) \\ = 0.020 & = 0.971 \end{array}$$



$$egin{aligned} IG(D_2, wind) \ &= H(D_2) - \left( rac{3}{5} H(D_{2, weak}) + rac{2}{5} H(D_{2, strong}) 
ight) \ &= 0.971 - \left( rac{3}{5} imes 0 + rac{2}{5} imes 0 
ight) \ &= 0.971 \end{aligned}$$

| $D_2$ |    |               |         |             |          |        |
|-------|----|---------------|---------|-------------|----------|--------|
|       |    | PlayTennis(d) | outlook | temperature | humidity | wind   |
|       | 4  | 1             | rain    | mild        | high     | weak   |
|       | 5  | 1             | rain    | cool        | normal   | weak   |
|       | 6  | 0             | rain    | cool        | normal   | strong |
|       | 10 | 1             | rain    | mild        | normal   | weak   |
|       | 14 | 0             | rain    | mild        | high     | strong |





|     |    | PlayTennis(d) | outlook | temperature | humidity | wind   |
|-----|----|---------------|---------|-------------|----------|--------|
| - 🗔 | 4  | 1             | rain    | mild        | high     | weak   |
|     | 5  | 1             | rain    | cool        | normal   | weak   |
| _ 1 | 10 | 1             | rain    | mild        | normal   | weak   |
| -   | 6  | 0             | rain    | cool        | normal   | strong |
| _ 1 | 14 | 0             | rain    | mild        | high     | strong |

To be continued...
(Summary and other considerations with decision tree)

# Summary and other considerations with decision tree

#### Summary...

#### Algorithm: Decision Tree induction

- 1. Search for an 'optimal' splitting rule on training data
- 2. Split your dataset according to your chosen splitting rule
- 3. Repeat 1. and 2. on each new splitted subset

#### **Information Gain**

$$IG(dataset, subsets) = H(dataset) - \sum_{S \in subsets} rac{|S|}{|dataset|} H(S)$$

#### Categorical vs. Real-valued attributes





#### **Decision Trees: Overfitting**

Like many ML algorithms, decision trees can **overfit** 



## **Decision Trees: Overfitting**

# Like many ML algorithms, decision trees can **overfit**





High variance

High bias

## **Decision Trees: Overfitting**

# Like many ML algorithms, decision trees can **overfit**



Ockham's razor: Simpler hypotheses are generally better than the complex ones

## Decision Trees: Dealing with overfitting

- More on overfitting next week!
- For decision trees:
  - Early stopping
    - max depth, min examples ...



Decision Trees: Dealing with overfitting

- More on overfitting next week!
- For decision trees:
  - Early stopping
    - max depth, min examples ...



Pruned better than unpruned?



1. Go through each internal node that are connected only to leaf nodes.



- Go through each internal node that are connected only to leaf nodes.
- 2. Turn each into a leaf node (with majority class label)



- Go through each internal node that are connected only to leaf nodes.
- 2. Turn each into a leaf node (with majority class label)
- 3. Evaluate pruned tree on validation set. Prune if accuracy higher than unpruned.



Validation accuracy pruned > validation accuracy old?

- 1. Go through each internal node that are connected only to leaf nodes.
- 2. Turn each into a leaf node (with majority class label).
- 3. Evaluate pruned tree on validation set. Prune if accuracy higher than unpruned.
- 4. Repeat until all such nodes have been tested.



#### **Random Forests**





- Many decision trees voting on the class label
- Each tree generated with random sample of training set (bagging) and random subset of features



For those interested to learn more about random forests:

- <a href="https://community.alteryx.com/t5/Alteryx-Designer-Knowledge-Base/Seeing-the-Forest-for-the-Trees-An-Introduction-to-Random-Forest/ta-p/158062">https://community.alteryx.com/t5/Alteryx-Designer-Knowledge-Base/Seeing-the-Forest-for-the-Trees-An-Introduction-to-Random-Forest/ta-p/158062</a> (above images are taken from here)
- https://victorzhou.com/blog/intro-to-random-forests/

#### Regression Trees

- Decision trees can also be used for regression (*regression trees*)
- Instead of a class label, each leaf node now predicts a real-valued number
  - Use training examples at leaf node to estimate the output value (e.g. value that minimise min squared error) or learn some linear function of some subset of the numerical features
- Use a different metric for splitting
  - Variance reduction

# k Nearest Neighbours

#### **Decision Trees**



See you next week!