

SC95F8767/8766/8765/8763/8762

高速 1T 8051 内核 Flash MCU ,8 Kbytes SRAM ,128 Kbytes Flash,0~4 Kbytes LDROM,6 Kbytes 独立 EEPROM,31 通道可低功耗高灵敏度触控电路,12 位 ADC,14 路 16 位 PWM,5 个定时器,乘除法器,UART,6 路 USCI,CRC 校验模块,模拟比较器

1 总体描述

SC95F8767/8766/8765/8763/8762 (以下简称 SC95F876X) 是一系列增强型的高速 1T 8051 内核工业级集成触控按键功能的 Flash 微控制器,指令系统完全兼容传统 8051 产品系列。

SC95F876X 具有超高速 1T 8051 CPU 内核,运行频率高达 32MHz,在相同工作频率下,其执行速度约为其它 1T8051 的 2 倍; IC 内部集成硬件乘除法器、硬件 CRC 及双 DPTR 数据指针,用来加速数据运算及移动的速度。硬件乘除法器、硬件 CRC 不占用 CPU 周期,运算由硬件实现,速度比软件实现速度更快;双 DPTR 数据指针,可用来加速数据存储及移动。

SC95F876X 系列具有高性能和可靠性,具有宽工作电压 2.0V~5.5V,超宽工作温度-40℃~105℃,并具备良好的 ESD 性能及 EFT 抗干扰能力。采用业界领先的 eFlash 制程, Flash 写入>10 万次,常温下可保存 100 年。

SC95F876X 系列内建低功耗 WDT 看门狗定时器,有 4 级可选电压 LVR 低电压复位功能及系统时钟监控功能,具备运行和掉电模式下的低功耗能力。正常工作模式:5V下典型约 6mA@32M。

SC95F876X 系列还集成有超级丰富的硬件资源:内置 31 路高灵敏度隔空电容触控电路、128 Kbytes Flash ROM、SRAM:内部 256 bytes+外部 8 Kbytes+ PWM&LCD 80 bytes、6 Kbytes EEPROM、最多 46 个 GP I/O (部分可分级控制)、16 个 IO 可外部中断、5 个 16 位定时器、共 14 路 16bit PWM:8 路带死区互补的多功能 PWM,6 路由 Timer 输出的 PWM、1 个 UART,6 个 UART/SPI/IIC 三选一通信口 USCI、内置 LCD/LED 硬件驱动、内部±2%高精度高频 32/16/8/4MHz 振荡器和±4%精度低频 32kHz 振荡器、可外接 32.768kHz 晶体振荡器、1 个模拟比较器、17 路 12 位高精度 ADC。

SC95F876X 开发调试非常方便,具有 ISP(In System Programing)、ICP(In Circuit Programing)和 IAP(In Application Programing)功能。允许芯片在线或带电的情况下,直接在电路板上对程序存储器进行调试及升级。

SC95F876X 具有非常优异的抗干扰性能和性能极好的触控按键性能,非常适合应用于各种使用场合的触控按键和主控控制,如大小智能家电和智能家居、物联网、无线通讯、游戏机等工业控制和消费应用领域。

Page 1 of 144 V0.4

2 主要功能

工作条件:

工作电压: 2.0V~5.5V工作温度: -40 ~ +105℃

EMS

ESD

■ HBM: MIL-STD-883J Class 3A

■ MM: JEDEC EIA/JESD22-A115 Class C

■ CDM: ANSI/ESDA/JEDEC JS-002-2018 Class C3

EFT

■ EN61000-4-4 Level 4

村装类型

20 PIN: SOP20 / TSSOP20

• 28 PIN: SOP28 / TSSOP28

• 32 PIN: LQFP32 (7X7) / QFN32 (5X5)

• 44 PIN: LQFP44 (10X10)

48 PIN: LQFP48 (7X7) / QFN48 (7X7)

CPU

- 超高速 1T 8051 内核, 指令集全兼容 8051, 执行速度约为 其它 1T 8051 的 2 倍
- 双数据指针(DPTRs)

Flash ROM:

- 128 Kbytes Flash ROM
- 可重复写入 10 万次
- 可通过 Code Option 设置项将 APROM 区域可 IAP 操作的范围设为 0K/1K/2K/全部 APROM

LDROM

- 用于存放用户的 BootLoader 引导代码(boot code)
- 可通过 Code Option 设置项将 LDROM 设为 0K/1K/2K/4K

EEPROM

- 独立的 6K bytes EEPROM
- 10万次写入,常温下100年以上保存寿命

SRAM

- 256 bytes 片内直接存取 RAM
- 额外 8 Kbytes 片内间接存取 RAM
- 80 bytes PWM&LCD 专用 RAM

烧写和仿真:

● 2线 JTAG 烧写和仿真接口

系统时钟(fsys):

- 内建高频 32MHz 振荡器(f_{HRC})
 - IC 工作的系统时钟,可通过编程器选择设定为: 32/16/8/4MHz@2.0~5.5V
 - 频率误差: 跨越 (2.0V~5.5V) 及 (-40 ~ 85°C) 应用环境, 不超过 ±1%
 - 频率误差: 跨越 (2.0V~5.5V) 及 (-40 ~ 105℃) 应用环境, 不超过 ±2%
 - 可通过 32.768kHz 外接晶振进行自动校准,校准后 HRC 精度可无限接近外接 32.768kHz 晶振的精度

内置低频晶体振荡器电路:

● 可外接 32.768kHz 振荡器,作为 Base Timer 时钟源,可唤 醒 STOP

内建低频 32kHz LRC 振荡器:

- 可作为 Base Timer 及 WDT 的时钟源,可唤醒 STOP
- 频率误差: 跨越 (4.0 ~ 5.5V) 及 (-20 ~ 85℃) 应用环境, 经

寄存器修正后频率误差不超过 ±4%

低电压复位(LVR):

- 复位电压有 4 级可选:分别是: 4.3V、3.7V、2.9V、1.9V
- 缺省值为用户烧写 Code Option 所选值

中断 (INT):

- Timer0~Timer4 , INT0~2 , ADC , PWM , UART , USCI0~5 , Base Timer , TK , CMP 共 20 个中断源
- 外部中断有3个中断向量,共16个中断口,全部可设上升沿、下降沿、双沿中断
- 两级中断优先级可设

数字外围:

- GPIO 最大 46 个双向可独立控制的 I/O 口
 - 可独立设定上拉电阻
 - P0~P3L(P3.0/1/2/3)口源驱动能力分四级控制
 - 全部 IO 具有大灌电流驱动能力(50mA)
- 内置 WDT,可选时钟分频比
- 5 个定时器 Timer0、Timer1、Time2、Timer3 和 Timer4
 - Time2、Timer3 和 Timer4 可实现 Capture 功能
 - Time2、Timer3 和 Timer4 可各提供两路常规 PWM
- 6路16位常规PWM
 - 由 Timer2、Timer3 和 Timer4 各提供两路
- 8 路 16 位多功能 PWM
 - 共用周期、占空比单独可调
 - 帯死区、可互补 PWM 输出
- 1 个独立 UART 通信口
- 6 个 UART/SPI/IIC 三选一通讯口 USCI
 - 其中,当 USCIO 被设置为 SPIO 时,其信号口所对应管脚的驱动能力将增强
- 内建 CRC 校验模块
- 集成 16 ×16 位硬件乘除法器 (MDU)

LCD/LED 驱动器:

- LCD/LED 二选一,共用寄存器和 IO 口
- 8 X 24、6 X 26、5 X 27、或 4 X 28 段 LED 驱动
- LED segment 口源驱动能力分四级控制
- 8 X 24、6 X 26、5 X 27、或 4 X 28 段 LCD 驱动

模拟外围:

- 31 路高灵敏度触控电路
 - 可适应隔空按键触控、接近感应等对灵敏度要求较高的触控应用
 - 具有很强的抗干扰性,可通过 10V 动态 CS 测试
 - 支持自电容和互电容模式
 - 支持低功耗模式
 - 全套开发支持: 高灵活触控软件库, 智能化调试软件

● 17 路 12 位±2LSB ADC

- 内建基准的 2.048V 、1.024V 和 2.4V 参考电压
- ADC 的参考电压有 4 种选择,分别是 V_{DD} 以及内部 2.048V、1.024V或 2.4V
- 内部一路 ADC 可直接测量 V_{DD} 电压
- 可设 ADC 转换完成中断

● 1个模拟比较器

- 四路输入一路参考电压输入
- 比较电压 16 级可选(V_{DD}分压)

省电模式:

- IDLE Mode,可由任何中断唤醒
- STOP Mode,由 INT0~2、BaseTimer、TK和CMP唤醒

Page 2 of 144 V0.4 http://www.socmcu.com

95 系列产品命名规则

名称	SC	95	F	8	7	6	7	Х	Р	48	R
序号	1	2	3	4	(5)	6	7	8	9	10	(11)

序号	含义
1	Sinone Chip 缩写
2	产品系列名称
3	产品类型(F: Flash MCU)
4	系列号: 7: GP 系列, 8: TK 系列
(5)	ROM Size: 1为2K,2为4K,3为8K,4为16K,5为32K,6为64K,7为128K
6	子系列编号: 0~9, A~Z
7	引脚数: 0: 8pin, 1: 16pin,2: 20pin,3: 28pin,5: 32pin,6: 44pin,7: 48pin,8:
	64pin, 9: 100pin
8	版本号: (缺省、B、C、D)
9	封装形式: (D: DIP; M: SOP; X: TSSOP; F: QFP; P: LQFP; Q: QFN; K: SKDIP)
(10)	引脚数
11)	包装方式: (U: 管装; R: 盘装; T: 卷带)

订购信息

产品编号	封装	包装
SC95F8762M20U	SOP20	管装
SC95F8762X20U	TSSOP20	管装
SC95F8763M28U	SOP28	管装
SC95F8763X28U	TSSOP28	管装
SC95F8765P32R	LQFP32(7X7)	盘装
SC95F8765Q32R	QFN32(5X5)	盘装
SC95F8766P44R	LQFP44(10X10)	盘装
SC95F8767P48R	LQFP48(7X7)	盘装
SC95F8767Q48R	QFN48(7X7)	盘装

Page 3 of 144 V0.4

显量

1 总体描述	1
2 主要功能	2
95 系列产品命名规则	3
订购信息	3
目录	4
3 管脚定义	9
3.1 管脚配置	9
3.2 管脚定义	13
4 内部方框图	17
5 FLASH ROM 和 SRAM	18
5.1 APROM 和 LDROM	
5.2 6K bytes 独立 EEPROM	
5.3 96 bits Unique ID 区域 5.3.1 Unique ID 读取 C 语言例程	
5.4 User ID 区域	22
5.5 编程 5.5.1 JTAG 专用模式 5.5.2 常规模式(JTAG 专用口无效)	22
5.6 In Application Programming (IAP) 5.6.1 IAP 操作相关寄存器 5.6.2 IAP 操作流程 5.6.3 IAP 操作 C 语言例程 5.6.4 IAP 操作注意事项	
5.7 BootLoader 5.7.1 BootLoader 模式操作相关寄存器	
5.8 安全加密	30
5.9 Customer Option 区域(用户烧写设置) 5.9.1 Option 相关 SFR 操作说明	

5.10 SRAM	34
5.10.1 内部 256 bytes SRAM	34
5.10.2 外部 8 Kbytes SRAM	35
5.10.3 外部 80 bytes PWM&LCD/LED SRAM	35
6 特殊功能寄存器(SFR)	36
6.1 SFR 映像	36
6.2 SFR 说明	37
6.2.1 特殊功能寄存器	
6.2.2 PWM0 占空比调节寄存器(读/写)	
6.2.3 PWM2~4 占空比调节寄存器(读/写)	
6.2.4 LCD/LED 显示 RAM 配置(读/写)	
6.2.5 8051 CPU 内核常用特殊功能寄存器介绍	41
7 电源、复位和时钟	43
7.1 电源电路	
7.2 上电复位过程	43
7.2.1 复位阶段	
7.2.2 调入信息阶段	
7.2.3 正常操作阶段	43
7.3 复位方式	43
7.3.1 外部 RST 复位	
7.3.2 低电压复位 LVR	
7.3.3 上电复位 POR	
7.3.4 看门狗复位 WDT	44
7.3.5 软件复位	45
7.3.6 复位初始状态	46
7.4 高频系统时钟电路	46
7.5 低频振荡器及低频时钟定时器	48
7.6 STOP 模式和 IDLE 模式	50
8 中央处理单元 CPU 及指令系统	51
8.1 CPU	51
4445	F4
8.2 寻址方式 8.2.1 立即寻址	
8.2.2 直接寻址	
8.2.3 间接寻址	
8.2.4 寄存器寻址	
8.2.5 相对寻址	
8.2.6 变址寻址 8.2.7 位寻址	
C	01
9 INTERRUPT 中断	52

9.1 中断源、向量	52
9.2 中断结构图	54
9.3 中断优先级	55
9.4 中断处理流程	55
9.5 中断相关 SFR 寄存器	55
40 CYTLE TIME DO TIME DA	
10 定时器 TIMER0 、TIMER1	
10.1 T0 和 T1 相关特殊功能寄存器	60
10.2 T0 工作模式	62
10.3 T1 工作模式	64
11 定时器 TIMER2/3/4	66
11.1 T2/3/4 相关特殊功能寄存器	
11.2 定时器 Timer2	
11.3 定时器 Timer3	
11.4 定时器 Timer4	69
11.5 Timer2/3/4 工作模式 11.5.1 Timer2/3/4 工作模式说明	
12 常规脉冲宽度调制计数器 PWM2/3/4	75
12.1 PWM2/3/4 相关寄存器	75
12.2 PWM2/3/4 占空比变化特性	77
12.3 PWM2/3/4 周期变化特性	77
13 多功能脉冲宽度调制计数器 PWM0	70
13.1 PWM0 结构框图	78
13.2 PWM0 通用配置寄存器	79
13.2.1 PWM0 通用配置寄存器 13.2.2 PWM0 故障检测功能设置	
13.3 PWM0 独立模式	
13.3.1 PWM0 独立模式框图	
13.3.2 PWM0 独立模式占空比配置	
13.4 PWM0 互补模式 13.4.1 PWM0 互补模式框图	84
The second secon	

13.4.2 PWM 互补模式占空比配置	85
13.4.3 PWM0 互补模式死区时间设置	85
13.4.4 PWM0 死区输出波形	85
13.5 PWM0 波形及用法	86
14 GP I/O	88
14.1 GPIO 结构图	88
14.2 I/O 端口相关寄存器	89
15 LCD/LED 显示驱动	93
15.1 LCD/LED 显示驱动相关寄存器	
15.2 LCD/LED 显示 RAM 配置	95
15.3 LCD 波形	96
15.3.1 1/3Bias LCD 波形	96
15.3.2 1/4Bias LCD 波形	
15.4 LED 波形	98
15.5 LCD/LED 例程	99
15.5.1 LCD 配置例程	
15.5.2 LED 配置例程	99
16 UART0	100
16.1 串口通信的波特率	101
17 SPI/TWI/UART 三选一通用串行接口 USCI	102
17.1 SPI	103
17.1.1 SPI 操作相关寄存器	104
17.1.2 信号描述	
17.1.3 工作模式	
17.1.4 传送形式 17.1.5 出错检测	
17.1.5 山钼型侧	100
17.2 TWI	
17.2.1 信号描述	
17.2.2 从机工作模式	
17.2.3 从机模式操作步骤	
17.2.4 主机工作模式 17.2.5 主机模式操作步骤	
17.3 UART	115
18 模数转换 ADC	117
18.1 ADC 相关寄存器	117

	18.2 ADC 转换步骤	119
19	模拟比较器	120
	19.1 模拟比较器结构框图	120
20	高灵敏度触控电路	122
	20.1 触控电路的耗电模式	122
21	CRC 模块	123
	21.1 CRC 校验操作相关寄存器	123
22	乘除法器	125
23	电气特性	126
	23.1 极限参数	126
	23.2 推荐工作条件	
	23.3 Flash ROM 参数	
	23.4 直流电气特性	
	23.5 交流电气特性	128
	23.6 ADC 电气特性	
	23.7 模拟比较器电气特性	129
24	应用电路	130
25	封装信息	131
26	规格更改记录	143
声	明	_144

3 管脚定义

3.1 管脚配置

特别说明: SC95F876X的TK9/TK11与TK调试通信口复用,若需使用TK调试功能,请尽量避免使用TK9/TK11!

SC95F8767 管脚配置图 适用于 LQFP48、QFN48 封装

SC95F8766 管脚配置图 适用于 LQFP44 封装

SC95F8765 管脚配置图 适用于 LQFP32 及 QFN32 封装

TK30/S26/USRX0/INT06/P0.6		28 P0.5/INT05/USTX0/S25/TK29
CMOD/S27/INT07/P0.7	2	27 P0.4/INT04/USCK0/S24/TK28
vss 🗆	3	26 P2.7/USRX3/S19/TK23
VDD	4	25 P2.6/USTX3/S18/TK22
FLT/USRX2/P4.5	5	24 P2.5/USCK3/S17/TK21
CMPR/USTX2/P4.4	6	23 P2.4/S16/T3/PWM30/TK20
AIN15/CMP3/PWM04/USCK2/INT13/P4.3	7	22 P2.3/INT23/AIN7/S15/T2/PWM20/TK19
AIN14/CMP2/PWM05/INT12/P4.2	8	21 P2.2/INT22/AIN6/S14/T2EX/PWM21/TK18
AIN13/CMP1/PWM06/INT11/P4.1	9	20 P2.1/INT21/TX0/AIN5/S13/TK17
AIN12/CMP0/PWM07/INT10/P4.0	10	19 P2.0/INT20/RX0/AIN4/S12/TK16
TK4/C3/S0/P3.3	11	18 P1.3/USTX1/S7/TK11/tDIO
TK5/C2/S1/P3.2	12	17 P1.2/USCK1/S6/TK10
TK6/C1/S2/P3.1	13	16 P1.1/USRX1/S5/TK9/tCK
TK7/C0/S3/P3.0	14	15 P1.0/S4/T3EX/PWM31/TK8

SC95F8763 管脚配置图 适用于 SOP28 及 TSSOP28 封装

SC95F8762 管脚配置图 适用于 SOP20 及 TSSOP20 封装

3.2 管脚定义

脚位数					Andre Har the ort.) 1 m-1	He 3/(4/A 1/_
48	44	32	28	20	· 管脚名称	类型	功能说明
1	1	-	•	-	P0.2/T0/S22/USTX5/TK26	I/O	P0.2: GPIO P0.2 T0: 计数器 0 外部输入 S22: LCD/LED SEG22 USTX5: USCI5 的 MOSI/SDA/TX TK26: TK 的通道 26
2	2	-	•	-	P0.3/T1/S23/USRX5/TK27	I/O	P0.3: GPIO P0.3 T1: 计数器 1 外部输入 S23: LCD/LED SEG23 USRX5: USCI5 的 MISO/RX TK27: TK 的通道 27
3	3	1	27	18	P0.4/INT04/USCK0/S24/TK28	I/O	P0.4: GPIO P0.4 INT04: 外部中断 0 的输入 4 USCK0: USCIO 的 SCK S24: LCD/LED SEG24 TK28: TK 的通道 28
4	4	2	28	19	P0.5/INT05/USTX0/S25/TK29	I/O	P0.5: GPIO P0.5 INT05: 外部中断 0 的输入 5 USTX0: USCIO 的 MOSI/SDA/TX S25: LCD/LED SEG25 TK29: TK 的通道 29
5	5	3	1	20	P0.6/INT06/USRX0/S26/TK30	I/O	P0.6: GPIO P0.6 INT06: 外部中断 0 的输入 6 USRX0: USCIO 的 MISO/RX S26: LCD/LED SEG26 TK30: TK 的通道 30
6	6	4	2	1	P0.7/INT07/S27/CMOD	I/O	P0.7: GPIO P0.7 INT07: 外部中断 0 的输入 7 S27: LCD/LED SEG27 CMOD: Touch Key 触控外接电容
7	7	5	3	2	VSS	Power	接地
8	8	6		-	P5.0/PWM00/OSCI	I/O	P5.0: GPIO P5.0 PWM00: PWM00 输出口 OSCI: 32k 振荡器的输入脚
9	9	7	-	-	P5.1/PWM01/OSCO	I/O	P5.1: GPIO P5.1 PWM01: PWM01 输出口 OSCO: 32k 振荡器的输出脚
10	10	8		-	P5.2/PWM02/RST	I/O	P5.2: GPIO P5.2 PWM02: PWM02 输出口 RST: 复位管脚
11	11	9	-	-	P5.3/PWM03	I/O	P5.3: GPIO P5.3 PWM03: PWM03 输出口
12	-	-	-	-	P5.4/T4EX/PWM41	I/O	P5.4: GPIO P5.4 T4EX: 定时器 4 外部捕获信号输入 PWM41: PWM41 输出口
13	-	-	-	-	P5.5/USCK4/T4/PWM40	I/O	P5.5: GPIO P5.5 USCK4: USCI4 的 SCK T4: 计数器 4 外部输入 PWM40: PWM40 输出口

44					D4.7/IJOTV4	1/0	P4.7: GPIO P4.7
14	-	-	-	-	P4.7/USTX4	I/O	USTX4: USCI4的
							MOSI/SDA/TX
15	-	-	-	_	P4.6/USRX4	I/O	P4.6: GPIO P4.6
10	40	40			<u> </u>	_	USRX4: USCI4的MISO/RX
16	12	10	4	3	VDD	Power	电源
			_		-		P4.5: GPIO P4.5
17	13	11	5	-	P4.5/USRX2/FLT	I/O	USRX2: USCI2的MISO/RX
							FLT: PWM1 故障检测输入脚
							P4.4: GPIO P4.4 USTX2: USCI2 的
18	14	12	6	_	P4.4/USTX2/CMPR	I/O	
							MOSI/SDA/TX CMPR: 比较器参考电压输入
							P4.3: GPIO P4.3
							INT13: 外部中断 1 的输入 3
					D 4 0 (INIT 4 0 (I IO O I/O / D) 4 (INIT 4 0 4 / O NAD		USCK2: USCI2 的 SCK
19	15	13	7	4	P4.3/INT13/USCK2/PWM04/CMP 3/AIN15	I/O	PWM04: PWM04 输出口
					3/AIN15		CMP3: 模拟比较器输入通道 3
							CMP3. 模拟比较器制入通道 3
							AIN15: ADC 输入通过 15 P4.2: GPIO P4.2
							P4.2: GPIO P4.2 INT12: 外部中断 1 的输入 2
	40		•	_	D4 0/INIT40/DWM405/044D0/AINI44	1/0	PWM05: PWM05 输出口
20	16	14	8	5	P4.2/INT12/PWM05/CMP2/AIN14	1/0	PWIVIOS. PWIVIOS 棚田口
							AIN14: ADC 输入通道 14 P4.1: GPIO P4.1
							P4.1: GPIO P4.1 INT11: 外部中断 1 的输入 1
24	47	45	•	_	DA 4/INITA4/DIA/MOC/CMD4/AINIA2	1/0	INTIL. 外部中國 的棚入
21	17	15	9	6	P4.1/INT11/PWM06/CMP1/AIN13	I/O	CMP1: 模拟比较器输入通道 1
							CMP1. 模拟比较希葡八进度
							P4.0: GPIO P4.0
							INT10: 外部中断 1 的输入 0
22	18	16	10	7	P4.0/INT10/PWM07/CMP0/AIN12	I/O	PWM07: PWM07 输出口
22	10	10	10	′	F4.0/INTTO/FVVIMO//CIVIFO/AINTZ	1/0	CMP0: 模拟比较器输入通道 0
							AIN12: ADC 输入通道 12
							P3.7: GPIO P3.7
					// 4 ·		AIN11: ADC 输入通道 11
23	19	-	-	-	P3.7/AIN11/C7/TK0	I/O	C7: LCD/LED common 输出 7
							TK0: TK 的通道 0
							P3.6: GPIO P3.6
							AIN10: ADC 输入通道 10
24	20	-	-	-	P3.6/AIN10/C6/TK1	I/O	C6: LCD/LED common 输出 6
							TK1: TK 的通道 1
							P3.5: GPIO P3.5
					DO FANIO OF THE	1/0	AIN9: ADC 输入通道 9
25	21			-	P3.5/AIN9/C5/TK2	I/O	C5: LCD/LED common 输出 5
							TK2: TK 的通道 2
							P3.4: GPIO P3.4
00					D2 4/AINIQ/C4/T//2	1/0	AIN8: ADC 输入通道 8
26	22	-	-	-	P3.4/AIN8/C4/TK3	I/O	C4: LCD/LED common 输出 4
							TK3: TK 的通道 3
							P3.3: GPIO P3.3
27	23	17	11	8	B2 2/S0/C2/TV4	I/O	S0: LCD/LED SEG0
21	23	''	11	0	P3.3/S0/C3/TK4	"0	C3: LCD/LED common 输出 3
							TK4: TK 的通道 4
28	24	18	12	9	P3.2/S1/C2/TK5	I/O	P3.2: GPIO P3.2
20	4	10	14	3	1 0.210 11021 1110	","	S1: LCD/LED SEG1

							C2: LCD/LED common 输出 2 TK5: TK 的通道 5
29	25	19	13	10	P3.1/S2/C1/TK6	I/O	P3.1: GPIO P3.1 S2: LCD/LED SEG2 C1: LCD/LED common 输出 1 TK6: TK 的通道 6
30	26	20	14	11	P3.0/S3/C0/TK7	I/O	P3.0: GPIO P3.0 S3: LCD/LED SEG3 C0: LCD/LED common 输出 0 TK7: TK 的通道 7
31	27	21	15	-	P1.0/S4/T3EX/PWM31/TK8	I/O	P1.0: GPIO P1.0 S4: LCD/LED SEG4 T3EX: 定时器 3 外部捕获信号输入 PWM31: PWM31 输出口 TK8: TK 的通道 8
32	28	22	16	12	P1.1/USRX1/S5/TK9/tCK	I/O	P1.1: GPIO P1.1 USRX1: USCI1 的 MISO/RX S5: LCD/LED SEG5 TK9: TK 的通道 9,若需使用 TK 调试功能,请尽量避免使用此 TK 通道! tCK: 烧录和仿真口时钟线
33	29	23	17	-	P1.2/USCK1/S6/TK10	I/O	P1.2: GPIO P1.2 USCK1: USCI1 的 SCK S6: LCD/LED SEG6 TK10: TK的通道 10
34	30	24	18	13	P1.3/USTX1/S7/TK11/tDIO	I/O	P1.3: GPIO P1.3 USTX1: USCI1 的 MOSI/SDA/TX S7: LCD/LED SEG7 TK11: TK 的通道 11,若需使用 TK 调试功能,请尽量避免使用 此 TK 通道! tDIO: 烧录和仿真口数据线
35	31	-	4	-	P1.4/INT14/AIN0/S8/TK12	I/O	P1.4: GPIO P1.4 INT14: 外部中断 1 的输入 4 AIN0: ADC 输入通道 0 S8: LCD/LED SEG8 TK12: TK 的通道 12
36	32	-		-	P1.5/INT15/AIN1/S9/TK13	I/O	P1.5: GPIO P1.5 INT15: 外部中断 1 的输入 5 AIN1: ADC 输入通道 1 S9: LCD/LED SEG9 TK13: TK 的通道 13
37	33	-	-	-	P1.6/INT16/AIN2/S10/TK14	I/O	P1.6: GPIO P1.6 INT16: 外部中断 1 的输入 6 AIN2: ADC 输入通道 2 S10: LCD/LED SEG10 TK14: TK 的通道 14
38	34	-	-	-	P1.7/INT17/AIN3/S11/TK15	I/O	P1.7: GPIO P1.7 INT17: 外部中断 1 的输入 7 AIN3: ADC 输入通道 3 S11: LCD/LED SEG11 TK15: TK 的通道 15
39	35	25	19	14	P2.0/INT20/RX0/AIN4/S12/TK16	I/O	P2.0: GPIO P2.0

V0.4 V0.4

	1	l		I	T		11 June 1 June 1 June 1 June 1
							INT20: 外部中断 2 的输入 0
							RX0: UARTO 接收口之一
							AIN4: ADC 输入通道 4
							S12: LCD/LED SEG12
							TK16: TK 的通道 16
							P2.1: GPIO P2.1
							INT21: 外部中断 2 的输入 1
40	36	26	20	15	P2.1/INT21/TX0/AIN5/S13/TK17	I/O	TX0: UARTO 发送口之一
							AIN5: ADC 输入通道 5 S13: LCD/LED SEG13
							TK17: TK 的通道 17
							P2.2: GPIO P2.2
							INT22: 外部中断 2 的输入 2
							AIN6: ADC 输入通道 6
					P2.2/INT22/AIN6/S14/T2EX/PWM		S14: LCD/LED SEG14
41	37	27	21	16	21/TK18	I/O	T2EX: 定时器 2 外部捕获信号输
							\\ \rm 1 \text{ \text{\rm 1 \text{\rm
							PWM21: PWM21 输出口
							TK18: TK 的通道 18
							P2.3: GPIO P2.3
					. 1		INT23: 外部中断 2 的输入 3
							AIN7: ADC 输入通道 7
42	38	28	22	17	P2.3/INT23/AIN7/S15/T2/PWM20/ TK19	I/O	S15: LCD/LED SEG15
							T2: 计数器 2 外部输入
							PWM20: PWM20 输出口
							TK19: TK 的通道 19
							P2.4: GPIO P2.4
						1	S16: LCD/LED SEG16
43	39	29	23	-	P2.4/S16/T3/PWM30/TK20	I/O	T3: 计数器 3 外部输入
							PWM30: PWM30 输出口
						-	TK20: TK 的通道 20
							P2.5: GPIO P2.5 S17: LCD/LED SEG17
44	40	30	24	-	P2.5/S17/USCK3/TK21	I/O	USCK3: USCI3的 SCK
							TK21: TK 的通道 21
						1	P2.6: GPIO P2.6
							S18: LCD/LED SEG18
45	41	31	25	_	P2.6/S18/USTX3/TK22	I/O	USTX3: USCI3的
					. 1.5/010/001/0/11/22	"	MOSI/SDA/TX
							TK22: TK 的通道 22
							P2.7: GPIO P2.7
46	42	32	26		P2.7/S19/USRX3/TK23	I/O	S19: LCD/LED SEG19
40	42	32	∠0	-	F2.1/319/U3KA3/1K23	1/0	USRX3: USCI3的 MISO/RX
							TK23: TK 的通道 23
			,				P0.0: GPIO P0.0
47	43	-	-	- P0.0/S	P0.0/S20/TK24	I/O	S20: LCD/LED SEG20
							TK24: TK 的通道 24
							P0.1: GPIO P0.1
48	44	-	-	-	P0.1/S21/USCK5/TK25	I/O	S21: LCD/LED SEG21
							USCK5: USCI5 的 SCK
]						TK25: TK 的通道 25

Page 16 of 144 http://www.socmcu.com

4 内部方框图

SC95F876X BLOCK DIAGRAM

5 Flash ROM 和 SRAM

SC95F876X 的 Flash ROM 分为五个区域: APROM / LDROM / EEPROM / User ID / Unique ID, 结构如下 图所示:

5.1 APROM 和 LDROM

APROM 和 LDROM 是通过 LDSIZE[1:0]将 ROM 划分的硬件上独立的两块,由 IAPADE 寄存器设定的拓展地 址"00"和"03"来区分,可通过赛元提供的专用烧写器 SC LINK PRO 来进行编程及擦除:

- APROM 区域拓展地址为"00",区域最大为 128K bytes,支持 IAP (In Application Programming),可通过 Customer Option 项设置其允许 IAP 操作的范围为 0K / 1K / 2K 或 整个 APROM 区域;
 - LDROM 区域拓展地址为"03",区域大小 0~4K bytes 可选,不允许对 LDROM 进行 IAP 操作。

SC95F876X 有 128 Kbytes 的 Flash ROM, 地址为(00)00000H~(00)1FFFFH, 括号里的"00"为拓展地址,由 IAPADE 寄存器设定。可通过赛元提供的专用 ICP 烧写器(SC LINK PRO)来进行编程及擦除。此 128 Kbytes Flash ROM 特性如下:

- 分为 256 个扇区(sector),每个 sector 为 512 bytes;
- 可反复写入 10 万次;
- 25℃环境下数据可保存 100 年以上;
- ICP 模式下支持查空(BLANK)、编程(PROGRAM)、校验(VERIFY)、擦除(ERASE)和读取 (READ) 功能, 其中 READ 功能仅对未开启安全加密功能的 IC 有效;
 - 安全加密:可选择是否开启 APROM(即 128 Kbytes Flash ROM)和 LDROM 安全加密功能;
 - 支持 IAP (In Application Programming)。

Page 18 of 144 V0.4 http://www.socmcu.com

SC95F876X 的 128 Kbytes Flash ROM 分为 4 个 Bank, 结构如下:

LDROM 和 IAP 操作区域定义如下:

SC95F876X Flash ROM 的 4 个 Bank 之间的切换可通过 ROMBNK 寄存器实现:

ROMBNK (DFH) 程序 Bank 切换寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	DATABN	DATABN	-	-	ROMBN	ROMBN
			K1	K0			K1	K0
读/写	-	ı	读/写	读/写	-	-	读/写	读/写
上电初始值	Х	Х	0	1	Х	x	0	1

位编号	位符号	说明
5~4	DATABNK [1:0]	目标数据地址 Bank 切换位,控制 ROM 高 32K 地址目标 MOVC 和 IAP 指向
		的区域:
		00: MOVC 和 IAP 烧写都针对 Bank0,此时 IAP 寻址范围只是 32K
		01: MOVC 和 IAP 烧写都针对 Bank0 和 Bank1
		10: MOVC 和 IAP 烧写都针对 Bank0 和 Bank2
		11: MOVC 和 IAP 烧写都针对 Bank0 和 Bank3
		注意:该控制位仅在 IAPADE=0x00 时有效
1~0	ROMBANK[1:0]	取指操作 Bank 切换位:
		00: 指令之于 Bank0;
		01:指令之于 Bank0 和 Bank1;
		10:指令之于 Bank0 和 Bank2;
		11: 指令之于 Bank0 和 Bank3;
7~6,3~2	-	保留

SC95F876X 最大寻址区间为 64 Kbytes,即两个 Bank,其中 Bank0 固定(中断向量等在 bank0,防止跳转 后打乱), BANK1-3 可切换。Bank1~3 跳转方式为:用户程序中关闭中断→跳转至 Bank0 (切换 Bank 的代码存 放在 Bank 0) →修改 ROMBNK

5.1.1 Flash ROM 的扇区 (Sector)

SC95F876X 有 128 Kbytes 的 Flash ROM 分为 256 个扇区(sector),每个 sector 为 512 bytes,烧录时目 标地址所属的 Sector 都会被烧写器强制擦除,再写入数据;用户写操作时,必须先擦除,再写入数据。

SC95F876X 128 Kbytes Flash ROM Sector 分区示意

5.2 6K bytes 独立 EEPROM

6K bytes 独立 EEPROM 区域地址为(02)000H~17FFH, 其中"(02)"为拓展地址, 由 IAPADE 寄存器设 定。独立 EEPROM 可反复写入 10 万次,常温下数据保存时间为 100 年以上。独立 EEPROM 支持查空、编程、

Page 20 of 144 V0.4

校验、擦除和读取功能。

EEPROM 共有 12 个扇区(sector),每个 sector 为 512 bytes:

SC95F876X EEPROM Sector 分区示意

注意: EEPROM 擦写次数为10万次,用户擦写不要超过 EEPROM 的额定烧写次数,否则会出现异常!

5.3 96 bits Unique ID 区域

SC95F876X 提供了一个独立的 Unique ID 区域,出厂前会预烧一个 96 bits 的唯一码,用以确保该芯片的唯一性。用户获得序列号的唯一方式是通过 IAP 指令读取相对地址(01)0260H~(01)026BH 来获取。地址(01)0260H~(01)026BH 括号里的"01"表示拓展地址,由 IAPADE 寄存器设定。具体操作方法如下:

IAPADE (F4H) IAP 写入扩展地址寄存器(读/写)

	* * * * * * * * * * * * * * * * * * * *							
位编号	7	6	5	4	3	2	1	0
符号				IAPADI	ER[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	. 0	0	0	0	0

位编号	位符号	说明
7~0	IAPADER[7:0]	IAP 扩展地址:
		0x00: MOVC 和 IAP 烧写都针对 APROM 进行
		0x01:针对 Unique ID 区域进行读操作,不可进行写操作
	*	0x02: MOVC 和 IAP 烧写都针对独立 EEPROM 进行
		0x03: 仅在 LDROM 程序操作时生效。此时允许运行在 LDROM 区域的程序对 LDROM 程序区进行 MOVC 操作。注意:对 LDROM 的操作权限仅开放了 MOVC 操作,禁止对 LDROM 进行 IAP 操作,否则将导致不可预测的异常! 其它:保留

5.3.1 Unique ID 读取 C 语言例程

#include "intrins.h"

unsigned char UniqueID [12];//存放 UniqueID

unsigned char code * POINT =0x0260;

unsigned char i;

EA = 0: //关闭总中断

IAPADE = 0X01; //拓展地址 0x01, 选择 Unique ID 区域

for(i=0;i<12;i++)

{

UniqueID [i]= *(POINT+i); //读取 UniqueID 的值

}

IAPADE = 0X00; //拓展地址 0x00, 返回 Code 区域

EA = 1; //开启总中断

5.4 User ID 区域

User ID 区域,扩展地址为(01),出厂时写入用户定制 ID,用户可对其进行读操作,但禁止对 User ID 区域进行写操作。

5.5 编程

SC95F876X的 Flash ROM 通过 tDIO、tCK、VDD、VSS来进行编程,具体连接关系如下:

ICP 模式 Flash Writer 编程连接示意图

tDIO、tCK 是 2 线 JTAG 烧写和仿真的信号线,用户在烧录时可通过 Code Option 项配置这两端口的模式: JTAG 专用模式和常规模式(JTAG 专用口无效)。

5.5.1 JTAG 专用模式

tDIO、tCK 为烧写仿真专用口,与之复用的其它功能不可用。此模式一般用于在线调试阶段,方便用户仿真 Page 22 of 144 V0.4

调试; JTAG 专用模式生效后,芯片无需重新上下电即可直接进入烧录或仿真模式。

5.5.2 常规模式(JTAG 专用口无效)

JTAG 功能不可用,与之复用的其它功能可正常使用。此模式可防止烧录口占用 MCU 管脚,方便用户最大化 利用 MCU 资源。

注意: 当 JTAG 专用口无效的配置设定成功后,芯片必须彻底下电再重新上电后才能进入烧录或仿真模式, 这样就会影响到带电模式下的烧录和仿真。赛元建议用户在量产烧录时选择 JTAG 专用口无效的配置,在研发调 试阶段选择 JTAG 模式。

相关 Customer Option 寄存器如下:

OP CTM1 (C2H@FFH) Code Option 寄存器 1(读/写)

21 = 2 1 11 (2 1 1 1) 2 2 1 1 1 (2 1 1 1) 4 1 1 (2 1 1 1) 4 1 1 (2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
位编号	7	6	5	4	3	2	1	0	
符号	VREF	S[1:0]	OP_BL	DISJTG	IAPS	S[1:0]	LDSIZ	'E[1:0]	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	只	读	
上电初始值	n	n	n	n	n	n	n	n	

位编号	位符号	说明
4	DISJTG	IO/JTAG 口切换控制
		0: JTAG 模式使能,P1.1、P1.3 只能作为 tCK/tDIO 使用。研发调试阶段推荐设置。
		1: 常规模式(Normal),JTAG 功能无效。量产烧录阶段推荐设置。

5.6 In Application Programming (IAP)

SC95F876X的 APROM中的 IAP 区域(0K、1K、2K或所有 APROM 范围可选)及 6K bytes EEPROM 内都 可进行 IAP(Application Programming)操作,用户可以通过 IAP 操作实现远程程序更新,也可以通过 IAP 读操 作获取 Unique ID 区域或 User ID 区域信息。进行 IAP 写数据操作前,用户必须对目标地址所属的 Sector 进行扇 区擦除操作,一个 Sector 为 512 bytes, Flash ROM 从(00)0000H~(00)1FFFFH 共分为 256 个 Sector, 括号里的 "00"为拓展地址,由 IAPADE 寄存器设定:

SC95F876X 128 Kbytes Flash ROM Sector 分区示意

注意:

IAP 的擦/写过程中,CPU 保持程序计数器,IAP 擦/写完成后,程序计数器才继续执行之后的指令;

Page 23 of 144 V0.4 http://www.socmcu.com

- 2. APROM 区域内的 IAP 操作有一定的风险,需要用户在软件中做相应的安全处理措施,如果操作不当可能会造成用户程序被改写!除非用户必需此功能(比如用于远程程序更新等),不建议用户使用;
- 3. EEPROM 擦写次数为 10 万次,用户擦写不要超过 EEPROM 的额定烧写次数,否则会出现异常!

用户可以通过 Customer Option 在编程时选择 APROM 的 IAP 区域范围,也可以通过 IAPS 控制位在程序中设定 APROM 的 IAP 区域,相关寄存器如下:

OP_CTM1 (C2H@FFH) Code Option 寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	VREF		OP_BL	DISJTG	IAPS	S[1:0]	LDSIZ	ZE[1:0]
读/写	读/写	读/写	读/写	读/写	读/写	读/写	N. P.	读
上电初始值	n	n	n	n	n	n	n	n

位编号	位符号	说明				
3~2	IAPS[1:0]	IAP 空间范围选择				
		00:全部 Flash ROM 均不允许 IAP 操作				
		01: 最后 1K Flash ROM 允许 IAP 操作				
		10: 最后 2K Flash ROM 允许 IAP 操作				
		11: 全部 Flash ROM 允许 IAP 操作				
		注意:				
		 BootLoader 模式下以上设置项无效,BootLoader 程序可对整个 APROM 区域进行 IAP 操作。 LDROM 在任何情况下都不允许 IAP 操作 				

Page 24 of 144 V0.4

5.6.1 IAP 操作相关寄存器

IAP 操作相关寄存器说明:

1x11 141/c4 11 ttt 201/11											
符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
IAPKEY	F1H	数据保护寄存器	y据保护寄存器 IAPKEY[7:0]								0000000b
IAPADL	F2H	IAP写入地址低位寄存器 IAPADR[7:0]						0000000b			
IAPADH	F3H	IAP 写入地址高位寄存器		IAPADR[15:8]				0000000b			
IAPADE	F4H	IAP 写入扩展地址寄存器		IAPADER[7:0]				0000000b			
IAPDAT	F5H	IAP 数据寄存器		IAPDAT[7:0]				0000000b			
IAPCTL	F6H	IAP 控制寄存器	BTLD	-	SERASE	PRG	-	-	CME	0[1:0]	0x00xx00b

IAPKEY (F1H) 数据保护寄存器(读/写)

	224411 PT-W - 4	,, , . ,						
位编号	7	6	5	4	3	2	1	0
符号	IAPKEY[7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPKEY[7:0]	打开 IAP 功能及操作时限设置 写入一个大于等于 0x40 的值 n, 代表:
		1. 打开 IAP 功能;
		2. n 个系统时钟后如果接收不到 IAP 写入命令,则 IAP 功能被重新 关闭。

IAPADL (F2H) IAP 写入地址低位寄存器(读/写)

· · · · · · · · · · · · · · · · · · ·	17 17 17 17	TE MATERIAL IN H	1(10/17)					
位编号	7	6	5	4	3	2	1	0
符号	IAPADR[7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPADR[7:0]	IAP 写入地址的低 8 位

IAPADH (F3H) IAP 写入地址高位寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号				IAPAD	R[15:8]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPADR[15:8]	IAP 写入地址的高 8 位

Page 25 of 144 V0.4

IAPADE (F4H) IAP 写入扩展地址寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号				IAPADI	ER[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPADER[7:0]	IAP 扩展地址:
		0x00: MOVC 和 IAP 烧写都针对 Code 进行
		0x01: 针对 Unique ID 区域进行读操作,不可进行写操作
		0x02: MOVC 和 IAP 烧写都针对独立 EEPROM 进行
		0x03: 仅在 LDROM 程序操作时生效。此时允许运行在 LDROM 区域的程序对 LDROM 程序区进行 MOVC 操作。 注意:对 LDROM 的操作权限仅开放了MOVC 操作,禁止对 LDROM 进行 IAP 操作,否则将导致不可预测的异常!
		其它: 保留

IAPDAT (F5H) IAP 数据寄存器(读/写)

17 (1 D7 (1 O11)	71 XX 4/1 FQ							
位编号	7	6	5	4	3	2	1	0
符号				IAPDA	AT[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	读写	说明
7~0	IAPDAT[7:0]	读/写	IAP写入的数据

IAPCTL (F6H) IAP 控制寄存器(读/写)

		14 101 (124: 47)		7				
位编号	7	6	5	4	3	2	1	0
符号	BTLD	-	SERASE	PRG	-	-	CMD	[1:0]
读/写	读/写	-	读/写	读/写	-	-	读/写	读/写
上电初始值	0	Х	0	0	Х	Х	0	0

5.6.2 IAP 操作流程

SC95F876X的 IAP 操作流程请参照《SC95FXX6X_SC95FXX1XB IAP 操作库资料包》。

5.6.3 IAP 操作 C 语言例程

以下例程共用的头文件如下:

#include "intrins.h"

unsigned int IAP_Add;

unsigned char IAP_Data;

unsigned char code * POINT =0x0000;

V0.4 Page 26 of 144 http://www.socmcu.com

IAP 操作: 读数据

EA = 0: //关闭总中断

IAPADE = 0X00; //拓展地址为 0x00,选择 Flash ROM

IAP_Data = *(POINT+IAP_Add); //读取 IAP_Add 的值到 IAP_Data

//开启总中断 EA = 1;

IAP 操作:擦写

用户如需进行 IAP 擦写操作,请参照《SC95FXX6X SC95FXX1XB IAP 操作库资料包》。

5.6.4 IAP 操作注意事项

- IAP 写数据操作前,用户必须对目标地址所属的 Sector 进行扇区擦除操作
- 2. APROM 区域内的 IAP 操作有一定的风险,需要用户在软件中做相应的安全处理措施,如果操作不 当可能会造成用户程序被改写!除非用户必需此功能(比如用于远程程序更新等),不建议用户使用。
- 3. 编程 IC 时,若通过 Code Option 选择了"APROM 区域禁止 IAP 操作",则 IAPADE[7:0]=0x00 时 (选择 APROM 区), IAP 不可操作,即数据无法写入,仅可通过 MOVC 指令读取数据。
- 4. 当 IAPADE 不为 0x00 时,MOVC 和写入针对的为非 APROM 区域,此时如果有中断产生,且中断 内有 MOVC 操作,会造成 MOVC 的结果错误,导致程序运行异常。为避免这种情况的发生,在 IAP 操作时,如果 IAPADE 不为 0x00,操作前务必要关闭总中断(EA=0),操作完成后设置 IAPADE =0X00 再打开总中断(EA=1)。
- 5. IAP的擦/写过程中,CPU保持程序计数器,IAP擦/写完成后,程序计数器才继续执行之后的指令;
- 6. EEPROM 擦写次数为 10 万次,用户擦写不要超过 EEPROM 的额定烧写次数,否则会出现异常!

5.7 BootLoader

LDROM 用来存放 IC 的 BootLoader 引导代码(boot code)。LDROM 在 ICP 模式下支持查空(BLANK)、 编程(PROGRAM)、校验(VERIFY)、擦除(ERASE)和读取(READ)功能,用户也可以通过烧写器将自 己开发的引导代码下载到 LDROM 中。

用户可以通过 LDROM 实现 ISP(In System Programing)功能: ISP 执行时,IC 运行的是 LDROM 区的引 导代码,引导代码执行时会通过串口接收新的程序代码,再将接收到的代码通过 IAP 命令编程到用户代码区域。 整个过程不需要将芯片从系统板上拆下来,也不需要烧写器。

LDROM 地址范围有四种:

- (03)0000H~(03)0000H(无LDROM)
- (03)0000H~(03)03FFH (1K)
- (03)0000H~(03)07FFH (2K)
- (03)0000H~(03)0FFFH (4K)

其中:上述地址括号里的"03"表示拓展地址,由 LDSIZE[1:0]设定。

5.7.1 BootLoader 模式操作相关寄存器

Page 27 of 144 V0.4

OP_CTM1 (C2H@FFH) Code Option 寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	VREF	S[1:0]	OP_BL	DISJTG	1/	S[1:0]	LDSIZE[1:0]	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	只	读
上电初始值	n	n	n	n	n	n	n	n

位编号	位符号	说	яВ					
5	OP_BL	νι	7)					
ŭ	V52	程序运行区域控制位						
		0: 芯片复位后进入 APROM						
		1: 芯片复位后进入 LDROM;						
		① APROM 的 MOVC 及 IAP 操作	乍限制如下:					
		操作	能否操作					
		对 LDROM MOVC	х					
		对 APROM MOVC						
		对 LDROM IAP	×					
		对 APROM IAP	V					
		② LDROM 的 MOVC 及 IAP 操作	乍限制如下:					
		操作	能否操作					
		对 LDROM MOVC	V					
		对 APROM MOVC	$\sqrt{}$					
		对 LDROM IAP	×					
		对整个 APROM IAP,不受 IAPRANGE 限制	$\sqrt{}$					
1~0	LDSIZE[1:0]	LDROM 空间范围选择						
		00: 无 LDROM,APROM 地址为 (00000H~1FFFFH					
		01: Flash ROM 最后 1K APROM [00000H~1FBFFH	区域为 LDROM,APROM 地址为					
		10: Flash ROM 最后 2K APROM 区域为 LDROM,APROM 地址为 00000H~1F7FFH						
		11: Flash ROM 最后 4K APROM [00000H~1EFFFH	区域为 LDROM,APROM 地址为					
		注意: LDROM 在任何情况下都不	允许 IAP 操作					

IAPKEY (F1H) 数据保护寄存器(读/写)

	>> V V V I V I V V V V V V V V V V V V V	14 141 (121 47						
位编号	7	6	5	4	3	2	1	0
符号				IAPKE	Y[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPKEY[7:0]	打开 IAP 功能及操作时限设置

Page 28 of 144 V0.4 http://www.socmcu.com

写入一个大于等于 0x40 的值 n, 代表:
1. 打开 IAP 功能;
2. n 个系统时钟后如果接收不到 IAP 写入命令,则 IAP 功能被重新关闭。

IAPADL (F2H) IAP 写入地址低位寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号				IAPAD	R[7:0]		,	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明		
7~0	IAPADR[7:0]	IAP 写入地址的低 8 位		

IAPADH (F3H) IAP 写入地址高位寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号				IAPAD	R[15:8]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号		说明
7~0	IAPADR[15:8]	IAP 写入地址的高 8 位	

IAPADE (F4H) IAP 写入扩展地址寄存器(读/写)

· · · · · · · · · · · · · · · · · · ·	4/ +4/ .	/K*B*E 70 13 H	H (100 - 11)					
位编号	7	6	5	4	3	2	1	0
符号				IAPADI	ER[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPADER[7:0]	IAP 扩展地址:
		0x00: MOVC 和 IAP 烧写都针对 APROM 进行
		0x01: 针对 Unique ID 区域进行读操作,不可进行写操作
		0x02: MOVC 和 IAP 烧写都针对独立 EEPROM 进行
		0x03: 仅在 LDROM 程序操作时生效。此时允许运行在 LDROM 区域的程序对 LDROM 程序区进行 MOVC 操作。注意:对 LDROM 的操作权限仅开放了 MOVC 操作,禁止对 LDROM 进行 IAP 操作,否则将导致不可预测的异常! 其它:保留

IAPDAT (F5H) IAP 数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号				IAPDA	AT[7:0]			

Page 29 of 144 V0.4

读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	IAPDAT[7:0]	IAP 写入的数据

IAPCTL (F6H) IAP 控制寄存器(读/写)

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
位编号	7	6	5	4	3	2	1	0
符号	BTLD	-	SERASE	PRG	-	-	CME	[0:1]
读/写	读/写	-	读/写	读/写	-	-	读/写	读/写
上电初始值	0	Х	0	0	Х	х	0	0

PCON (87h) 电源管理控制寄存器(只写、*不可读*)

(- , -		. 4 14 111 () . 4	. , , , ,					
位编号	7	6	5	4	3	2	1	0
符号	SMOD	-	-	-	RST	-	STOP	IDL
读/写	只写	-	-	-	只写	- (只写	只写
上电初始值	0	Х	Х	Х	n	Х	0	0

位编号	位符号	说明
3	RST	软件 reset 控制位:
		写状态:
		0:程序正常运行;
		1: 此位被写"1"后 CPU 立刻 reset

Bootloader 操作注意事项:

- 1. 对 Code 区进行写数据操作前,用户必须对目标地址所属的 Sector 进行扇区擦除操作;
- 2. 具体操作方法参考赛元提供的说明文档《赛元硬件 Boot loader 功能实现应用指南》。

5.8 安全加密

用户可通过烧录上位机界面的"加密"设置项选择是否开启 SC95F876X 的 ROM 安全加密功能:

- 关闭安全加密功能后,用户可以通过烧写器读取 APROM(即 128 Kbytes Flash ROM)和 LDROM 的数据,方便开发调试;
- 开启安全加密功能,APROM 及 LDROM 的数据将无法被外界读出。当用户通过烧写器对一颗已开 启了加密功能的 SC95F876X 执行烧录改写操作时,无论改写的目标是 APROM 或 LDROM,烧写 器均会先会强制擦除 APROM 和 LDROM,再执行写入操作。推荐用户在量产烧录时选择开启安全 加密功能;
- 3. 解除安全加密的唯一方式是关闭安全加密功能,并执行编程操作;
- 安全加密不影响 IAP 功能;

具体操作方法见烧录工具使用手册,安全加密及读取章节。

Page 30 of 144 V0.4

5.9 Customer Option 区域(用户烧写设置)

符号	OPINX 地址	说明	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
OP_CTM0	C1H@FF H	Code Option 寄存器 0	ENWDT	ENXTL	SCLK[1:0]		DISRST DISLVR		LVRS[1:0]			
OP_CTM1	C2H@FF H	Code Option 寄存器 1	VRE	FS[1:0]	OP_BL	DISJTG	IAPS[1:0	0]	LDSIZE[1:0]			
OP_HRC R	83H@FF H	系统时 钟改变 寄存器		OP_HRCR[7:0]								

IFB 地址	符号	读写	说	明
, _ , _	13 3	<u> </u>	WDT 开关	,,
OP_CTM0[7]	ENWDT	读/写	0: WDT 无效	
ooo[.]		2.	1: WDT 有效(但 IC 在执行 IAP 过程中 WDT	停止计数)
			外部 32k 晶振选择开关	
OP_CTM0[6]	ENXTL	读/写	0: 外部 32k 晶振关闭, P5.0、P5.1 有效;	
		-50.	1: 外部 32k 晶振打开,P5.0、P5.1 无效。	
			系统时钟频率选择:	
			00: 系统时钟频率为高频振荡器频率除以 1;	
OP_CTM0[5~4]	SCLKS[1:0]	读/写	01: 系统时钟频率为高频振荡器频率除以 2;	
			10: 系统时钟频率为高频振荡器频率除以 4;	
			11: 系统时钟频率为高频振荡器频率除以8。	
			IO/RST 复位切换控制	×
OP_CTM0[3]	DISRST	只读	0: P5.2 当复位脚使用	
			1: P5.2 当正常的 I/O 管脚使用	
			LVR 开关	
OP_CTM0[2]	DISLVR	读/写	0: LVR 有效	
			1: LVR 无效	
			LVR 电压选择控制	
			11: 4.3 V 复位	
OP_CTM0[1~0]	LVRS [1:0]	读/写	10: 3.7V 复位	
			01: 2.9V 复位	
			00: 1.9V 复位	
			参考电压选择	
		\d. (F)	00: 设定 ADC 的 VREF 为 VDD;	
OP_CTM1[7~6]	VREFS[1:0]	读/写	01: 设定 ADC 的 VREF 为 内部准确的 2.048V	
			10: 设定 ADC 的 VREF 为 内部准确的 1.024V	/;
			11: 设定 ADC 的 VREF 为 内部准确的 2.4V;	
			程序运行区域控制位	
			在厅 运行 区域定则证	
			0: 芯片复位后进入 APROM	
			, , , , , , , , , , , , , , , , , , ,	
			1: 芯片复位后进入 LDROM;	
			APROM 的 MOVC 及 IAP 操作限制如下:	
			操作	能否操作
OD CTM4[E]	OD DI	读/写	对 LDROM MOVC	X
OP_CTM1[5]	OP_BL) 以/与	对 APROM MOVC	
			对 LDROM IAP	×
			对 APROM IAP	$\sqrt{}$
				·
			LDROM的 MOVC及IAP操作限制如下:	
			操作	能否操作
			对 LDROM MOVC	√ · · · · · · · · · · · · · · · · · · ·
			对 APROM MOVC	$\sqrt{}$
			对 LDROM IAP	×
			对整个 APROM IAP,不受 IAPRANGE 限	$\sqrt{}$
			制	
Page 31 of 144			•	V0.4

Page 31 of 144 V0.4

OP_CTM1[4]	DISJTG	读/写	IO/JTAG 口切换控制 0: JTAG 模式使能,P1.1、P1.3 只能作为 tCK/tDIO 使用 1: 常规模式(Normal),JTAG 功能无效
OP_CTM1[3~2]	IAPS[1:0]	读/写	IAP 空间范围选择 00: 全部 Flash ROM 均不允许 IAP 操作 01: 最后 1K Flash ROM 允许 IAP 操作 10: 最后 2K Flash ROM 允许 IAP 操作 11: 全部 Flash ROM 允许 IAP 操作 注意: 1. BootLoader 模式下以上设置项无效,BootLoader 程序可对整个 APROM 区域进行 IAP 操作。 2. LDROM 在任何情况下都不允许 IAP 操作
OP_CTM1[1:0]	LDSIZE[1:0]	只读	LDROM 空间范围选择 00: 无 LDROM,APROM 地址为 00000H~1FFFFH 01: Flash ROM 最后 1K APROM 区域为 LDROM,APROM 地址为 00000H~1FBFFH 10: Flash ROM 最后 2K APROM 区域为 LDROM,APROM 地址为 00000H~1F7FFH 11: Flash ROM 最后 4K APROM 区域为 LDROM,APROM 地址为 00000H~1EFFFH 注意: LDROM 在任何情况下都不允许 IAP 操作
OP_HRCR	OP_HRCR[7:0]	读/写	HRC 频率改变寄存器 用户可通过修改此寄存器的值实现高频振荡器频率 fHRC的改变,进而改变 IC 的系统时钟频率 fsys: 1. OP_HRCR[7:0]上电后的初始值 OP_HRCR[s]是一个固定值,以确保 fHRC为32MHz,每颗 IC 的 OP_HRCR[s]都可能会有差异 2. 初始值为 OP_HRCR[s] 时 IC 的系统时钟频率 fsys 可通过 Option 项设置为准确的 32/16/8/4MHz,OP_HRCR [7:0]每改变 1 则 fsys 频率改变约 0.18% OP_HRCR [7:0]和 fsys 输出频率的关系如下: OP_HRCR [7:0]值 fsys 实际输出频率(32M 为例) OP_HRCR [8]-1 32000*(1-0.18%*n)kHz OP_HRCR [s]-2 32000*(1-0.18%*1) = 31 884.8kHz OP_HRCR [s]-1 32000*(1-0.18%*1) = 31 942.4kHz OP_HRCR [s]-1 32000*(1+0.18%*1) = 32 057.6kHz OP_HRCR [s]+1 32000*(1+0.18%*1) = 32 115.2kHz OP_HRCR [s]+1 32000*(1+0.18%*1) = 32 115.2kHz OP_HRCR [s]+1 32000*(1+0.18%*n)kHz 注意: 1. IC 每次上电后 OP_HRCR[7:0]的值都是高频振荡器频率 fHRC 最接近 32MHz 的值;用户在每次上电后修正 HRC 的值以让 IC 的系统时钟频率 fsys 工作在用户需要的频率; 2. 为保证 IC 工作可靠,IC 最高工作频率尽量勿超过 32MHz 的 10%即 35.2MHz; 3. 请用户确认 HRC 频率的改变不会影响其它功能。

Page 32 of 144 V0.4

5.9.1 Option 相关 SFR 操作说明

Option 相关 SFR 的读写操作由 OPINX 和 OPREG 两个寄存器进行控制,各 Option SFR 的具体位置由 OPINX 确定,各 Option SFR 的写入值由 OPREG 确定:

符号	地址	说明		上电初始值
OPINX	FEH	Option 指针	OPINX[7:0]	0000000b
OPREG	FFH	Option 寄存器	OPREG[7:0]	nnnnnnnb

操作 Option 相关 SFR 时 OPINX 寄存器存放相关 OPTION 寄存器的地址, OPREG 寄存器存放对应的值。 例如: 要将 ENWDT (OP_CTM0.7)置 1,具体操作方法如下:

C语言例程:

OPINX = 0xC1;//将 OP_CTM0 的地址写入 OPINX 寄存器

OPREG \mid = 0x80; //对 OP_CTM0.7 置 1

汇编例程:

MOV OPINX,#C1H ;将 OP_CTM0 的地址写入 OPINX 寄存器

;对 OP_CTM0.7 置 1 ORL OPREG,#80H

注意:禁止向 OPINX 寄存器写入 Code Option 区域 SFR 地址之外的数值!否则会造成系统运行异常!

Page 33 of 144 V0.4

5.10 **SRAM**

SC95F876X的 SRAM 结构如下:

SC95F876X 单片机的 SRAM,分为内部 256 bytes RAM、外部 8192 bytes RAM 和 80 bytes 的 PWM&LCD RAM。内部 RAM 的地址范围为 00H~FFH,其中高 128 bytes(地址 80H~FFH)只能间接寻址,低 128 bytes(地址 00H~7FH)可直接寻址也可间接寻址。

特殊功能寄存器 SFR 的地址也是 80H~FFH。但 SFR 同内部高 128 bytes SRAM 的区别是: SFR 寄存器是直接寻址,而内部高 128 bytes SRAM 只能是间接寻址。

外部 RAM 的地址为 0000H~1FFFH, 但需通过 MOVX 指令来寻址。

5.10.1 内部 256 bytes SRAM

内部低 128 bytes SRAM 区可分为三部分: ①工作寄存器组 0~3,地址 00H~1FH,程序状态字寄存器 PSW 中的 RS0、RS1 组合决定了当前使用的工作寄存器组,使用工作寄存器组 0~3 可加快运算的速度;②位寻址区 20H~2FH,此区域用户可以用作普通 RAM 也可用作按位寻址 RAM;按位寻址时,位的地址为 00H~7FH,(此地址按位编地址,不同于通用 SRAM 按字节编地址),程序中可由指令区分;③用户 RAM 和堆栈区,SC95F876X 复位过后,8 位的堆栈指针指向堆栈区,用户一般会在初始化程序时设置初值,建议设置在E0H~FFH的单元区间。

内部 256 bytes RAM 结构图

内部低 128 bytes RAM 结构如下:

2FH	78	79	7A	7B	7C	7D	7E	7F		
2EH	70	71	72	73	74	75	76	77		
2DH	68	69	6A	6B	6C	6D	6E	6F	,,,,	
2CH	60	61	62	63	64	65	66	67		
2BH	58	59	5A	5B	5C	5D	5E	5F		
2AH	50	51	52	53	54	55	56	57		
29H	48	49	4A	4B	4C	4D	4E	4F		
28H	40	41	42	43	44	45	46	47	-	
27H	38	39	3A	3B	3C	3D	3E	3F	*	
26H	30	31	32	33	34	35	36	37		
25H	28	29	2A	2B	2C	2D	2E	2F	-	
24H	20	21	22	23	24	25	26	27		
23H	18	19	1A	1B	1C	1D	1E	1F		
22H	10	11	12	13	14	15	16	17		
21H 20H	08	09	0A 02	0B 03	0C 04	0D 05	0E 06	0F 07	•	
ZUH	00	UI	UZ	US	04	05	06	07		
										1

SRAM 结构图

5.10.2 外部 8 Kbytes SRAM

可通过 MOVX @DPTR, A 来访问外部 8192 bytes RAM; 也可以使用 MOVX A, @Ri 或 MOVX @Ri, A 配合 EXADH 寄存器来访问外部 8192 bytes RAM: EXADH 寄存器存放外部 SRAM 的高位地址, Ri 寄存器存放外部 SRAM 的低 8 位地址。

EXADH (F7H) 外部 SRAM 操作地址高位(读/写)

位编号	7	6	5	4	3	2	1	0			
符号	-	-	-	EXADH [4:0]							
读/写	-	-	-	读/写	读/写	读/写	读/写	读/写			
上电初始值	Х	Х	Х	0	0	0	0	0			

位编号	位符号	说明
4~0	EXADH [4:0]	外部 SRAM 操作地址的高位
7~5	-	保留

5.10.3 外部 80 bytes PWM&LCD/LED SRAM

RAM 地址的 2000H~204FH 作为 80 bytes 的 PWM&LCD/LED SRAM ,其中:

- 1. PWM 占空比调节寄存器占用 2034H~204FH,可读写。
- 2. LCD/LED 显示 RAM 占用 2000H~201BH,可读写。

6 特殊功能寄存器(SFR)

6.1 SFR 映像

SC95F876X 系列有一些特殊功能寄存器,我们称为 SFR。这些 SFR 寄存器的地址位于 80H~FFH,有些可 以位寻址,有些不能位寻址。能够进行位寻址操作的寄存器的地址末位数都是"0"或"8",这些寄存器在需要改变单 个位的数值时非常方便。所有的 SFR 特殊功能寄存器都必须使用直接寻址方式寻址。

SC95F876X的特殊功能寄存器名称及地址如下表:

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
F8h	=	=	=	BTMCON	CRCINX	CRCREG	OPINX	OPREG
F0h	В	IAPKEY	IAPADL	IAPADH	IAPADE	IAPDAT	IAPCTL	EXADH
E8h	=	EXA0	EXA1	EXA2	EXA3	EXBL	EXBH	OPERCON
E0h	ACC	=	=	=	=	-	-	-
D8h	P5	P5CON	P5PH	=	USXINX	-	-	ROMBNK
D0h	PSW	PWMCFG	PWMCON0	PWMCON1	PWMPDL	PWMPDH	PWMDFR	PWMFLT
C8h	TXCON	TXMOD	RCAPXL	RCAPXH	TLX	THX	TXINX	WDTCON
C0h	P4	P4CON	P4PH	=	USXCON0	USXCON1	USXCON2	USXCON3
B8h	IP	IP1	IP2	INT0R	INT1F	INT1R	INT2F	INT2R
B0h	P3	P3CON	P3PH	P3VO	INT0F	ADCCFG2	CMPCFG	CMPCON
A8h	IE	IE1	IE2	ADCCFG0	ADCCFG1	ADCCON	ADCVL	ADCVH
A0h	P2	P2CON	P2PH	P2VO	US1CON0	US1CON1	US1CON2	US1CON3
98h	SCON	SBUF	P0CON	P0PH	P0VO	US0CON1	US0CON2	US0CON3
90h	P1	P1CON	P1PH	DDRCON	P1VO	US0CON0	IOHCON0	IOHCON1
88h	TCON	TMOD	TL0	TL1	TH0	TH1	TMCON	OTCON
80h	P0	SP	DPL	DPH	DPL1	DPH1	DPS	PCON
	可位寻址				不可位寻址			

说明: SFR 寄存器中空的部分代表没有此寄存器 RAM,不建议用户使用。

V0.4 Page 36 of 144 http://www.socmcu.com

6.2 SFR 说明

6.2.1 特殊功能寄存器

特殊功能寄存器 SFR 的具体解释说明如下:

符号	地址	说明	7	6	5	4	3	2	1	0	上电初始值
P0	80H	P0 口数据寄存器	P07	P06	P05	P04	P03	P02	P01	P00	0000000b
SP	81H	堆栈指针				SF	P[7:0]				00000111b
DPL	82H	DPTR 数据指针低位				DP	L[7:0]				0000000b
DPH	83H	DPTR 数据指针高位				DP	H[7:0]				0000000b
DPL1	84H	DPTR1 数据指针低位				DPI	L1[7:0]				0000000b
DPH1	85H	DPTR1 数据指针高位				DPI	H1[7:0]				0000000b
DPS	86H	DPTR 选择寄存器	ID1	ID0	TSL	AU1	AU0	-	,-	SEL	00000xx0b
PCON	87H	电源管理控制寄存器	SMOD	-	-	-	RST	-	STOP	IDL	0xxx0x00b
TCON	88H	定时器控制寄存器	TF1	TR1	TF0	TR0	IE1	-	IE0	-	00000x0xb
TMOD	89H	定时器工作模式寄存器	-	C/T1	M11	M01	-	C/T0	M10	M00	x000x000b
TL0	8AH	定时器0低8位				TL	0[7:0]				0000000b
TL1	8BH	定时器 1 低 8 位				TL	1[7:0]				0000000b
TH0	8CH	定时器 0 高 8 位				TH	0[7:0]				0000000b
TH1	8DH	定时器 1 高 8 位				TH	1[7:0]				0000000b
TMCON	8EH	定时器频率控制寄存器	USMD	X[1:0]	-	-	-	-	T1FD	T0FD	00xxxx00b
OTCON	8FH	输出控制寄存器	USME	1[1:0]	USME	00[1:0]	VOIR	S[1:0]	SCS	BIAS	0000000b
P1	90H	P1 口数据寄存器	P17	P16	P15	P14	P13	P12	P11	P10	0000000b
P1CON	91H	P1 口输入/输出控制寄存器	P1C7	P1C6	P1C5	P1C4	P1C3	P1C2	P1C1	P1C0	0000000b
P1PH	92H	P1 口上拉电阻控制寄存器	P1H7	P1H6	P1H5	P1H4	P1H3	P1H2	P1H1	P1H0	00000000b
DDRCON	93H	显示驱动控制寄存器	DDRON	DMOD	DUT	Y[1:0]		VLC	D[3:0]		0000000b
P1VO	94H	P1 口显示驱动输出寄存器	P17VO	P16VO	P15VO	P14VO	P13VO	P12VO	P11VO	P10VO	0000000b
US0CON0	95H	USCI0 控制寄存器 0		US0CON0[7:0]					0000000b		
IOHCON0	96H	IOH 设置寄存器 0	P1H	[1:0]	P1L	[1:0]	P0H	[1:0]	P0L[1:0]	0000000b
IOHCON1	97H	IOH 设置寄存器 1	-	-	P3L	[1:0]	P2H	[1:0]	P2L[1:0]	xx000000b
SCON	98H	串口控制寄存器	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	0000000b
SBUF	99H	串口数据缓存寄存器				SBU	JF[7:0]				0000000b
P0CON	9AH	P0 口输入/输出控制寄存器	P0C7	P0C6	P0C5	P0C4	P0C3	P0C2	P0C1	P0C0	00000000b
P0PH	9BH	P0 口上拉电阻控制寄存器	P0H7	P0H6	P0H5	P0H4	P0H3	P0H2	P0H1	P0H0	0000000b
P0VO	9CH	P0 口显示驱动输出寄存器	P07VO	P06VO	P05VO	P04VO	P03VO	P02VO	P01VO	P00VO	0000000b
US0CON1	9DH	USCI0 控制寄存器 1				US0C	ON1[7:0]				0000000b
US0CON2	9EH	USCI0 控制寄存器 2				US0C	ON2[7:0]				0000000b
US0CON3	9FH	USCI0 控制寄存器 3				US0C	ON3[7:0]				0000000b
P2	A0H	P2 口数据寄存器	P27	P26	P25	P24	P23	P22	P21	P20	0000000b
P2CON	A1H	P2 口输入/输出控制寄存器	P2C7	P2C6	P2C5	P2C4	P2C3	P2C2	P2C1	P2C0	0000000b
P2PH	A2H	P2 口上拉电阻控制寄存器	P2H7	P2H6	P2H5	P2H4	P2H3	P2H2	P2H1	P2H0	0000000b
P2VO	АЗН	P2 口显示驱动输出寄存器	P27VO	P26VO	P25VO	P24VO	P23VO	P22VO	P21VO	P20VO	0000000b
US1CON0	A4H	USCI1 控制寄存器 0				US1C	ON0[7:0]				0000000b
US1CON1	A5H	USCI1 控制寄存器 1				US1C	ON1[7:0]				0000000b
US1CON2	A6H	USCI1 控制寄存器 2				US1C	ON2[7:0]				0000000b
US1CON3	A7H	USCI1 控制寄存器 3				US1C	ON3[7:0]				0000000b
IE	A8H	中断使能寄存器	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0	0000000b
IE1	A9H	中断使能寄存器 1	ET4	ET3	ECMP	ETK	EINT2	EBTM	EPWM	EUSCI0	0000000b
IE2	AAH	中断使能寄存器 2	-	-	-	EUSCI5	EUSCI4	EUSCI3	EUSCI2	EUSCI1	xxx00000b
ADCCFG0	ABH	ADC 设置寄存器 0	EAIN7	EAIN6	EAIN5	EAIN4	EAIN3	EAIN2	EAIN1	EAIN0	0000000b
ADCCFG1	ACH	ADC 设置寄存器 1	EAIN15	EAIN14	EAIN13	EAIN12	EAIN11	EAIN10	EAIN9	EAIN8	0000000b
ADCCON	ADH	ADC 控制寄存器	ADCEN	ADCS	EOC/ ADCIF			ADCIS[4:0)]		0000000b
ADCVL	AEH	ADC 结果寄存器		ADC	V[3:0]	•	-	-	-	-	1111xxxxb
ADCVH	AFH	ADC 结果寄存器				ADC	V[11:4]		•	•	11111111b
P3	ВОН	P3 口数据寄存器	P37	P36	P35	P34	P33	P32	P31	P30	0000000b
P3CON	B1H	P3 口输入/输出控制寄存器	P3C7	P3C6	P3C5	P3C4	P3C3	P3C2	P3C1	P3C0	0000000b
P3PH	B2H	P3 口上拉电阻控制寄存器	P3H7	P3H6	P3H5	P3H4	P3H3	P3H2	P3H1	P3H0	0000000b

Page 37 of 144 V0.4 http://www.socmcu.com

符号	地址	说明	7	6	5	4	3	2	1	0	上电初始值
P3VO	взн	P3 口显示驱动输出寄存器	P37VO	P36VO	P35VO	P34VO	P33VO	P32VO	P31VO	P30VO	0000000b
INT0F	В4Н	INTO 下降沿中断控制寄存器	INT0F7	INT0F6	INT0F5	INT0F4	-	-	-	-	0000xxxxb
ADCCFG2	В5Н	ADC 设置寄存器 2	-	-	-		LOWSP[2:0]	1	-	-	xxx000xxb
CMPCFG	В6Н	模拟比较器设置寄存器	-	-	-	CMPP	CMPI	M[1:0]	CMPIS	[1:0]	xxx00000b
CMPCON	В7Н	模拟比较器控制寄存器	CMPEN	CMPIF	CMPSTA	-		CMF	PRF[3:0]	-	000x0000b
IP	В8Н	中断优先级控制寄存器	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0	x0000000b
IP1	В9Н	中断优先级控制寄存器 1	IPT4	IPT3	IPCMP	IPTK	IPINT2	IPBTM	IPPWM	IPUSCI0	0000000b
IP2	ВАН	中断优先级控制寄存器 2	-	-	-	IPUSCI5	IPUSCI4	IPUSCI3	IPUSCI2	IPUSCI1	xxx00000b
INT0R	ввн	INT0 上升沿中断控制寄存器	INT0R7	INT0R6	INT0R5	INT0R4	-	-	-	- ^	0000xxxxb
INT1F	всн	INT1 下降沿中断控制寄存器	INT1F7	INT1F6	INT1F5	INT1F4	INT1F3	INT1F2	INT1F1	INT1F0	0000000b
INT1R	BDH	INT1 上升沿中断控制寄存器	INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	0000000b
INT2F	BEH	INT2 下降沿中断控制寄存器	-	-	-	-	INT2F3	INT2F2	INT2F1	INT2F0	xxxx0000b
INT2R	BFH	INT2 上升沿中断控制寄存器	-	-	-	-	INT2R3	INT2R2	INT2R1	INT2R0	xxxx0000b
P4	СОН	P4 口数据寄存器	P47	P46	P45	P44	P43	P42	P41	P40	0000000b
P4CON	C1H	P4 口输入/输出控制寄存器	P4C7	P4C6	P4C5	P4C4	P4C3	P4C2	P4C1	P4C0	0000000b
P4PH	C2H	P4 口上拉电阻控制寄存器	P4H7	P4H6	P4H5	P4H4	P4H3	P4H2	P4H1	P4H0	0000000b
USXCON0	C4H	USCI2/3/4/5 控制寄存器 0		I		USXC	ON0[7:0]				0000000b
USXCON1	C5H	USCI2/3/4/5 控制寄存器 1					ON1[7:0]				0000000b
USXCON2	C6H	USCI2/3/4/5 控制寄存器 2					ON2[7:0]	7 /			0000000b
USXCON3	С7Н	USCI2/3/4/5 控制寄存器 3					ON3[7:0]				0000000b
TXCON	C8H	定时器 2/3/4 控制寄存器	TFX	EXFX	RCLKX	TCLKX	EXENX	TRX	C/TX	CP/RLX	0000000b
TXMOD	С9Н	定时器 2/3/4 工作模式寄存	TXFD	-	EPWMN1	EPWMN0	INVN1	INVN0	TXOE	DCXEN	0x000000b
		器									
RCAPXL	CAH	定时器 2/3/4 重载低 8 位		ı		RCAI	PXL[7:0]				0000000b
RCAPXH	СВН	定时器 2/3/4 重载高 8 位		RCAPXH[7:0]					0000000b		
TLX	ССН	定时器 2/3/4 低 8 位	TLX[7:0]						0000000b		
THX	CDH	定时器 2/3/4 高 8 位				TH	X[7:0]		0000000b		
TXINX	CEH	定时器控制寄存器指针	1	-	-	-	-	TXINX[2:0]			xxxxx010b
WDTCON	CFH	WDT 控制寄存器	-	-	-	CLRWDT	-		WDTCKS[2:0]		xxx0x000b
PSW	D0H	程序状态字寄存器	CY	AC	F0	RS1	RS0	OV	F1	Р	0000000b
PWMCFG	D1H	PWM0 设置寄存器	INV7	INV6	INV5	INV4	INV3	INV2	INV1	INV0	x0000000b
PWMCON0	D2H	PWM0 控制寄存器 0	ENPWM	PWMIF	PWMC	CK[1:0]	-	-	PWMM	D[1:0]	0000000b
PWMCON1	D3H	PWM0 控制寄存器 1	ENPWM7	ENPWM6	ENPWM5	ENPWM4	ENPWM3	ENPWM2	ENPWM1	ENPWM0	0000000b
PWMPDL	D4H	PWM0 周期寄存器低 8 位				PWM	PDL[7:0]				0000000b
PWMPDH	D5H	PWM0 周期寄存器高 8 位			7	PWMI	PDH[7:0]				00000000b
PWMDFR	D6H	PWM0 死区设置寄存器		PDF	1[3:0]			PDI	R1[3:0]		0000000b
PWMFLT	D7H	PWM0 故障检测设置寄存器	FLTEN1	FLTSTA1	FLTMD1	FLTLV1	-	-	FLTDT	1[1:0]	0000xx00b
P5	D8H	P5 口数据寄存器	-	-	P55	P54	P53	P52	P51	P50	xx000000b
P5CON	D9H	P5 口输入/输出控制寄存器	-	-	P5C5	P5C4	P5C3	P5C2	P5C1	P5C0	xx000000b
P5PH	DAH	P5 口上拉电阻控制寄存器	-	-	P5H5	P5H4	P5H3	P5H2	P5H1	P5H0	xx000000b
USXINX	DCH	USCI2/3/4/5 控制寄存器指针	-	-	-	-	-		USCIX[2:0]		xxxxx000b
ROMBNK	DFH	程序 Bank 切换寄存器	i	-	DATABNK	DATABNK	-	-	ROMBNK1	ROMBNK0	xx01xx01
					1	0					
ACC	E0H	累加器				AC	C[7:0]				0000000b
EXA0	E9H	扩展累加器 0				EX	A[7:0]				0000000b
EXA1	EAH	扩展累加器 1				EXA	A[15:8]				0000000b
EXA2	EBH	扩展累加器 2				EXA	[23:16]				0000000b
EXA3	ECH	扩展累加器 3	EXA[31:24]						0000000b		
EXBL	EDH	扩展 B 寄存器 L	EXB [7:0]						0000000b		
EXBH	EEH	扩展 B 寄存器 H		ı	1	EXE	3 [15:8]	T	1	,	0000000b
OPERCON	EFH	运算控制寄存器	OPERS	MD	-	-	-	-	CRCRST	CRCSTA	00xxxx00b
В	F0H	B寄存器				В	[7:0]				0000000b
IAPKEY	F1H	IAP 保护寄存器				IAPK	EY[7:0]				0000000b
IAPADL	F2H	IAP写入地址低位寄存器				IAPA	DR[7:0]				0000000b
IAPADH	F3H	IAP写入地址高位寄存器				IAPAI	DR[15:8]				0000000b
IAPADE	F4H	IAP 写入扩展地址寄存器				IAPAI	DER[7:0]				0000000b
IAPDAT	F5H	IAP 数据寄存器		r		IAPDAT[7:0]			0000000b		
IAPCTL	F6H	IAP 控制寄存器	BTLD	-	SERASE	PRG	-	-	CMD	1:0]	0x00xx00b
EXADH	F7H	外部 SRAM 操作地址高位	-	-	-			EXADH [4:	0]		xxx00000b

符号	地址	说明	7	6	5	4	3	2	1	0	上电初始值
BTMCON	FBH	低频定时器控制寄存器	ENBTM	ENBTM BTMIF BTMFS[3:0]				00xx000b			
CRCINX	FCH	CRC 指针		CRCINX[7:0]					0000000b		
CRCREG	FDH	CRC 寄存器		CRCREG[7:0]						nnnnnnnb	
OPINX	FEH	Option 指针		OPINX[7:0]					0000000b		
OPREG	FFH	Option 寄存器	OPREG[7:0]						nnnnnnnb		

6.2.2 PWM0 占空比调节寄存器(读/写)

地址	7	6	5	4	3	2	1	0	上电初始值	
2040H		PDT00[15:8]								
2041H				PDTC	0[7:0]				0000000b	
2042H				PDT0	1[15:8]				0000000b	
2043H				PDTC	1[7:0]				0000000b	
2044H				PDT0:	2[15:8]				0000000b	
2045H				PDTC	2[7:0]				0000000b	
2046H				PDT0:	3[15:8]				0000000b	
2047H				PDTC	3[7:0]				0000000b	
2048H				PDT0	4[15:8]				0000000b	
2049H				PDTC)4[7:0]				0000000b	
204AH				PDT0	5[15:8]				0000000b	
204BH				PDTC	05[7:0]				0000000b	
204CH		PDT06[15:8]								
204DH		PDT06[7:0]								
204EH				PDT0	7[15:8]				0000000b	
204FH				PDTC	7[7:0]				0000000b	

6.2.3 PWM2~4 占空比调节寄存器(读/写)

地址	7	6	5	4	3	2	1	0	上电初始值	
2034H		PDT20[15:8]								
2035H				PDT	20[7:0]				0000000b	
2036H				PDT2	21[15:8]				0000000b	
2037H				PDT	21[7:0]				0000000b	
2038H				PDT3	30[15:8]				0000000b	
2039H				PDT	30[7:0]				0000000b	
203AH				PDT3	31[15:8]				0000000b	
203BH				PDT	31[7:0]				0000000b	
203CH				PDT4	10[15:8]				0000000b	
203DH				PDT	40[7:0]				0000000b	
203EH		Ť		PDT4	11[15:8]				0000000b	
203FH				PDT	41[7:0]	<u>'</u>			00000000b	

6.2.4 LCD/LED 显示 RAM 配置(读/写)

地址	7	6	5	4	3	2	1	0
	COM7	СОМ6	COM5	COM4	COM3	COM2	COM1	COM0
2000H	SEG0							
2001H	SEG1							
2002H	SEG2							
2003H	SEG3							
2004H	SEG4							

Page 39 of 144 V0.4

地址	7	6	5	4	3	2	1	0
	COM7	СОМ6	COM5	COM4	СОМЗ	COM2	COM1	COM0
2005H	SEG5							
2006H	SEG6							
2007H	SEG7							
2008H	SEG8							
2009H	SEG9							
200AH	SEG10							
200BH	SEG11							
200CH	SEG12							
200DH	SEG13							
200EH	SEG14							
200FH	SEG15							
2010H	SEG16							
2011H	SEG17							
2012H	SEG18							
2013H	SEG19							
2014H	SEG20							
2015H	SEG21							
2016H	SEG22							
2017H	SEG23							
2018H	SEG24							
2019H	SEG25							
201AH	SEG26							
201BH	SEG27							

Page 40 of 144

6.2.5 8051 CPU 内核常用特殊功能寄存器介绍

程序计数器 PC

程序计数器 PC 不属于 SFR 寄存器。PC 有 16 位,是用来控制指令执行顺序的寄存器。单片机上电或者复位 后,PC 值为 0000H,也即是说单片机程序从 0000H 地址开始执行程序。

累加器 ACC (E0H)

累加器 ACC 是 8051 内核单片机的最常用的寄存器之一,指令系统中采用 A 作为助记符。常用来存放参加计 算或者逻辑运算的操作数及结果。

B 寄存器 (F0H)

B 寄存器在乘除法运算中必须与累加器 A 配合使用。乘法指令 MUL A, B 把累加器 A 和寄存器 B 中的 8 位无 符号数相乘,所得的 16 位乘积的低位字节放在 A中,高位字节放在 B中。除法指令 DIV A,B是用 A除以 B,整 数商放在 A 中, 余数放在 B 中。寄存器 B 还可以作为通用的暂存寄存器使用。

堆栈指针 SP (81H)

堆栈指针是一个 8 位的专用寄存器,它指示出堆栈顶部在通用 RAM 中的位置。单片机复位后,SP 初始值为 07H, 即堆栈会从 08H 开始向上增加。08H~1FH 为工作寄存器组 1~3。

PSW (D0H) 程序状态字寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	CY	AC	F0	RS1	RS0	OV	F1	Р
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号			说明			
7	CY	标志位					
		1: 加法运	章最高位	有进位,或者减法运算最高位有借位时			
		0: 加法运	章最高位	无进位,或者减法运算最高位无借位时			
6	AC	进位辅助	标志位(声	J在 BCD 码加减法运算时方便调整)			
		1: 加法运	算时在 bi	t3 位有进位,或减法运算在 bit3 位有借位时			
		0: 无借位	7、进位				
5	F0	用户标志	立				
4~3	RS1、RS0	工作寄存	器组选择位	<u></u> ጀ:			
		RS1	RS0	当前使用的工作寄存器组 0~3			
		0	0	组 0 (00H~07H)			
		0	1	组 1 (08H~0FH)			
		1	0	组 2 (10H~17H)			
		1	1	组 3 (18H~1FH)			
2	OV	溢出标志	立				
1	F1	F1 标志					
		用户自定义标志					
0	Р	奇偶标志位。此标志位为累加器 ACC 中 1 的个数的奇偶值。					
		1: ACC 中 1 的个数为奇数					
		0: ACC	中1的个数	汝 为偶数(包括 0 个)			

SC95F876X 有两个数据指针 DPTR0 和 DPTR1,数据指针 DPTR0/DPTR1 是 16 位的专用寄存器,由低 8 位 DPL/DPL1 和高 8 位 DPH/DPH1 组成。DPTR0/DPTR1 是可以直接进行 16 位操作的寄存器,也可以分别对 DPL 和 DPH 按字节进行操作,数据指针 DPTR0/DPTR1 的选择和工作状态由数据指针选择寄存器 DPS 进行设定。

DPS (86H) 数据指针选择寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ID1	ID0	TSL	AU1	AU0	-	-	SEL

Page 41 of 144 V0.4

读/写	读/写	读/写	读/写	读/写	读/写	-	-	读/写
上电初始值	0	0	0	0	0	х	Х	0

位编号	位符号	说明
7	ID1	DPTR1 加减控制位
		0: 当 AU1=1 时,每当 MOVC/MOVX @DPTR 执行后,当前 DPTR1 自动加 1
		1: 当 AU1=1 时,每当 MOVC/MOVX @DPTR 执行后,当前 DPTR1 自动减 1
6	ID0	DPTR0 加减控制位
		0: 当 AU0=1 时,每当 MOVC/MOVX @DPTR 执行后,当前 DPTR0 自动加 1
		1: 当 AU0=1 时,每当 MOVC/MOVX @DPTR 执行后,当前 DPTR0 自动减 1
5	TSL	SEL 翻转控制位
		0: 每当 MOVC/MOVX @DPTR 执行后, DPS.0 (SEL) 不翻转
		1: 每当 MOVC/MOVX @DPTR 执行后, DPS.0 (SEL) 翻转一次
4	AU1	DPTR1 自动加减控制位
		0: 无
	•	1: 每当 MOVC/MOVX @ DPTR 执行后, 当前 DPTR1 自加或自减 1(依赖 ID1)
3	AU0	DPTR0 自动加减控制位
		0: 无
		1: 每当 MOVC/MOVX @DPTR 执行后,当前 DPTR0 自加或自减 1(依赖 ID0)
0	SEL	DPTR0、DPTR1 选择位
		0: MOVC/MOVX @DPTR 对象为 DPTR0
		1: MOVC/MOVX @DPTR 对象为 DPTR1
2~1	-	保留

Page 42 of 144

7 电源、复位和时钟

7.1 电源电路

SC95F876X 电源核心包括了 BG、LDO、POR、LVR 等电路,可实现在 2.0~5.5V 范围内可靠工作。此外,IC 内建了一个经调校过的精准 2.048V 、1.024V 和 2.4V 电压, 可用作 ADC 内部参考电压。用户可在 18 模数转换 ADC 查找具体设置内容。

7.2 上电复位过程

SC95F876X上电后,在客户端软件执行前,会经过以下的过程:

- 复位阶段
- 调入信息阶段
- 正常操作阶段

7.2.1 复位阶段

是指 SC95F876X 会一直处于复位的情况,直到供应给 SC95F876X 的电压高过某一电压,内部才开始有效的 Clock。复位阶段的时间长短和外部电源的上升速度有关,外部电源达到内建 POR 电压后,复位阶段才会完成。

7.2.2 调入信息阶段

在 SC95F876X 内部有一个预热计数器。在复位阶段期间,此预热计数器一直被清为 0,直到电压过了 POR 电压后,内部 RC 振荡器开始起振,该预热计数器开始计数。当内部的预热计数器计数到一定数目后,每隔一定数量个 HRC clock 就会从 Flash ROM 中的 IFB(包含 Code Option)读出一个 byte 数据存放到内部系统寄存器中。直到预热完成后,该复位信号才会结束。

7.2.3 正常操作阶段

结束调入信息阶段后,SC95F876X 开始从 Flash 中读取指令代码即进入正常操作阶段。这时的 LVR 电压值是用户写入 Code Option 的设置值。

7.3 复位方式

SC95F876X 有 5 种复位方式, 前四种为硬件复位:

- 1. 外部 RST 复位
- 2. 低电压复位 LVR
- 3. 上电复位 POR
- 4. 看门狗 WDT 复位
- 5. 软件复位

SC95F876X的复位部分电路结构图如下:

SC95F876X 复位电路图

Page 43 of 144 V0.4 http://www.socmcu.com

复位后的启动区域:

- 外部 RST 复位、低电压复位 LVR、上电复位 POR、看门狗 WDT 这四种硬件复位后,芯片从用户 OP BL设定的启动区域(APROM/LDROM)启动。
- 2. 软件复位后,芯片根据 BTLD(IAPCTL.7)设定的启动区域(APROM/LDROM)启动。

SC95F876X 复位后启动区域切换示意图

7.3.1 外部 RST 复位

外部 RST 复位就是从外部 RST 给 SC95F876X 一定宽度的复位脉冲信号,来实现 SC95F876X 的复位。 用户在烧录程序前可通过烧录上位机软件配置 Customer Option 项将 P5.2/RST 管脚配置为 RST(复位脚)使用。

7.3.2 低电压复位 LVR

SC95F876X 内建了一个低电压复位电路。而复位的门限电压有 4 种选择: 4.3V、3.7V、2.9V、1.9V,缺省值是用户写入的 Option 值。当 VDD 电压小于低电压复位的门限电压,且持续时间大于 T_{LVR} 时,会产生复位。其中, T_{LVR} 是 LVR 的消抖时间,约 30μ s。

OP_CTM0 (C1H@FFH) Customer Option 寄存器 0(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENWDT	ENXTL	SCLKS[1:0]		DISRST	DISLVR	LVRS[1:0]	
读/写	读/写	读/写	读/写		只读	读/写	读/	写
上电初始值	n	n	n		n	n	n	1

位编号	位符号	读写	说明
2	DISLVR	读/写	LVR 使能设置
			0: LVR 正常使用
			1: LVR 无效
1~0	LVRS [1:0]	读/写	LVR 电压选择控制
			11: 4.3 V 复位
			10: 3.7 V 复位
			01: 2.9 V 复位
			00: 1.9 V 复位

7.3.3 上电复位 POR

SC95F876X 内部有上电复位电路,当电源电压 VDD 达到 POR 复位电压时,系统自动复位。

7.3.4 看门狗复位 WDT

SC95F876X 有一个 WDT, 其时钟源为内部的 32kHz 振荡器。用户可以通过编程器的 Code Option 选择是否开启看门狗复位功能。

OP_CTM0 (C1H@FFH) Customer Option 寄存器 0(读/写)

位编号 7 6	5 4 3	2 1	0
---------	-------	-----	---

Page 44 of 144 V0.4 http://www.socmcu.com

符号	ENWDT	ENXTL	SCLKS[1:0]	DISRST	DISLVR	LVRS[1:0]
读/写	读/写	读/写	读/写	只读	读/写	读/写
上电初始值	n	n	n	n	n	n

位编号 位符号 说明	
7 ENWDT WDT 开关(此位由系统将用户 Code Option 所设的值调入) 1: WDT 开始工作 0: WDT 关闭	

WDTCON (CFH) 看门狗控制寄存器(读/写)

	,							
位编号	7	6	5	4	3	2	1	0
符号	-	-	-	CLRWDT	1	V	VDTCKS[2:0)]
读/写	-	-	-	读/写	-		读/写	
上电初始值	Х	Х	Х	0	Х	0	0	0

位编号	位符号		说明						
4	CLRWDT	WDT 清"0"位(写 1 有效)							
		1: WDT 计数器从 0 开始计数							
		此位由系统硬件自动置 0							
2~0	WDTCKS [2:0]	看门狗时钟选择							
		WDTCKS[2:0]	WDT 溢出时间						
		000	500ms						
		001	250ms						
		010	125ms						
		011	62.5ms						
		100	31.5ms						
		101	15.75ms						
		110	7.88ms						
		111	3.94ms						
7~5,3	-	保留							

7.3.5 软件复位

PCON (87h) 电源管理控制寄存器(只写、*不可读*)

位编号	7	6	5	4	3	2	1	0
符号	SMOD		-	-	RST	-	STOP	IDL
读/写	只写	-	-	-	只写	-	只写	只写
上电初始值	0	х	Х	Х	n	Х	0	0

位编号	位符号	说明
3	RST	软件复位控制位: 写状态: 0:程序正常运行; 1:此位被写"1"后 CPU 立刻复位

Page 45 of 144 V0.4

7.3.6 复位初始状态

当 SC95F876X 处于复位状态时,多数寄存器会回到其初始状态。看门狗 WDT 处于关闭的状态。程序计 数器 PC 初始值为 0000h,堆栈指针 SP 初始值为 07h。"热启动"的 Reset(如 WDT、LVR、软件复位等)不 会影响到 SRAM, SRAM 值始终是复位前的值。SRAM 内容的丢失会发生在电源电压低到 RAM 无法保存为 止。

SFR 寄存器的上电复位初始值, 详情请见 6.2.1 特殊功能器章节。

7.4 高频系统时钟电路

SC95F876X 内建了一个振荡频率可调的高精度 HRC。HRC 出厂时被精确地调校至 32MHz@5 V/25℃,用户 可以通过编程器的 Code Option 将系统时钟设置为 32/16/8/4MHz 使用。此 HRC 受工作的环境温度和工作电压影 响会有一定的漂移:

- 跨越 (2.0V~5.5V) 及 (-40~85℃) 应用环境, 不超过 ±1%;
- 跨越 (2.0V~5.5V) 及 (-40 ~ 105℃) 应用环境, 不超过 ±2%。

HRC 可以通过外接 32.768kHz 晶振进行自动校准,校准后 HRC 精度可无限接近外接 32.768kHz 晶振的精度。 用户使用时只需外接 32.768kHz 晶振, 烧录 Option 中设置使能外部 32.768kHz 晶振功能, IC 上电后就自动 开启 HRC 自校准功能。

注意:

- PWM 和触控电路的时钟源固定为 fHRC = 32MHz。
- 外部 32.768kHz 晶振功能开启后,HRC 自校准功能会同步启动。此时,若外部 32.768kHz 晶振未 2. 连接或连接异常,HRC 校准值将出现不可预料的偏差,导致 HRC 频率值异常。

SC95F876X 内部时钟关系

OP_CTM0 (C1h@FFH) Customer Option 寄存器 0(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENWDT	ENXTL	SCLKS[1:0]		DISRST	DISLVR	LVRS[1:0]	
读/写	读/写	读/写	读/写		只读	读/写	读	/写
上电初始值	n	n	n		n	n	ľ	ı

位编号	位符号	读写	说明
5~4	SCLKS[1:0]	读/写	系统时钟频率选择:

Page 46 of 144 V0.4

00: 系统时钟频率为高频振荡器频率除以 1;	
01: 系统时钟频率为高频振荡器频率除以 2; 10: 系统时钟频率为高频振荡器频率除以 4;	
11: 系统时钟频率为高频振荡器频率除以 8。	

注意: SC95F876X 有一个特殊的功能: 用户可修改 SFR 的值实现 HRC 频率在一定范围的调整。用户可以 通过配置 OP_HRCR 寄存器实现。HRC 可以通过外接 32.768kHz 晶振进行自动校准,因此用户如果使用了 32.768kHz 外接晶振功能,HRC 的频率就会始终被校正到 32MHz,此时调整 OP_HRCR 无法改变 HRC 频率。

OP HRCR (83h@FFH) 系统时钟改变寄存器(读/写)

	_ ,,,,	70.411.772	* 14 mm (12 t + 7)					
位编号	7	6	5	4	3	2	1	0
符号		OP_HRCR[7:0]						
读/写		读/写						
上电初始值	n	n	n	n	n	n	n	n

位编号	位符号		说明			
7~0	OP_HRCR[7:0]	HRC 频率改变寄存器				
		用户可通过修改此寄存器 变 IC 的系统时钟频率 fs:	器的值实现高频振荡器频率 fHRC 的改变,进而改			
		OP_HRCR[7:0]上电后的初始值 OP_HRCR[s]是一个固定值,以确保 fhrc 为 32MHz,每颗 IC 的 OP_HRCR[s]都可能会有差异。 初始值为 OP_HRCR[s] 时 IC 的系统时钟频率 fsvs 可通过 Option 项设置为准确的 32/16/8/4MHz,OP_HRCR [7:0]每改变 1 则 fsvs 频率改变约 0.18%。				
		OP_HRCR [7:0]和 HRC	输出频率的关系如下:			
		OP_HRCR [7:0]值	fsys实际输出频率(32M 为例)			
		OP_HRCR [s]-n	32000*(1-0.18%*n)kHz			
		OP_HRCR [s]-2	32000*(1-0.18%*2) = 31 884.8kHz			
		OP_HRCR [s]-1	32000*(1-0.18%*1) = 31 942.4kHz			
		OP_HRCR [s]	32000kHz			
		OP_HRCR [s]+1	32000*(1+0.18%*1) = 32 057.6kHz			
		OP_HRCR [s]+2	32000*(1+0.18%*2) = 32 115.2kHz			
		OP_HRCR [s]+n	32000*(1+0.18%*n)kHz			
		注意:				
			RCR[7:0]的值都是 HRC 工作在最接近			
			用户可借助 EEPROM 在每次上电后修正			
		HRC 的值以让 HRC 工作				
			IC 最高工作频率请勿超过 32MHz 的 10%,			
		即 35.2MHz; 3 请用户确认 HRC 频源	室的改变不会影响其它功能。			
		J. 阴川/ 洲州八 IINU ///	产的以又不安置并互为比。			

Page 47 of 144 V0.4

7.5 低频振荡器及低频时钟定时器

SC95F876X 内建一个频率为 32kHz 的 RC 及 32.768kHz 晶体振荡电路,都可作为低频时钟定时器 Base Timer 的时钟源。该振荡器直接连接一个 Base Timer,可以把 CPU 从 STOP mode 唤醒,并且产生中断。

BTMCON (FBH) 低频定时器控制寄存器(读/写)

	() 100000 + 1004=14.4 14 100/000 +/									
位编号	7	6	5	4	3	2	1	0		
符号	ENBTM	BTMIF	-	-		BTMF	S[3:0]			
读/写	读/写	读/写	-	-	读/写					
上电初始值	0	0	х	х	0	0	0	0		

位编号	位符号	说明
7	ENBTM	低频 Base Timer 启动控制
		0: Base Timer 及其时钟源不启动
		1: Base Timer 及其时钟源启动
6	BTMIF	Base Timer 中断申请标志
		当 CPU 接受 Base Timer 的中断后,此标志位会被硬件自动清除。
3~0	BTMFS[3:0]	低频时钟中断频率选择
		0000:每 15.625ms 产生一个中断
		0001:每 31.25ms 产生一个中断
		0010: 每 62.5ms 产生一个中断
		0011:每 125ms 产生一个中断
		0100:每 0.25 s 产生一个 中断
		0101:每 0.5 s 产生一个 中断
		0110:每 1.0 s 产生一个 中断
		0111: 每 2.0 s 产生一个 中断
		1000: 每 4.0 s 产生一个 中断
		1001: 每 8.0 s 产生一个 中断
		1010: 每 16.0 s 产生一个 中断
		1011: 每 32.0 s 产生一个 中断
		1100~1111: 保留
5~4	-	保留

OP CTM0 (C1H@FFH) Customer Option 寄存器 0(读/写)

<u> </u>	21 _ 51 mg (6 11 51 m) 6 mg (6 mg 6 mg 7 mg 6 mg 7 mg 6 mg 7 mg 7 mg								
位编号	7	6	5	4	3	2	1	0	
符号	ENWDT	ENXTL	SCLKS[1:0]		DISRST	DISLVR	LVRS[1:0]		
读/写	读/写	读/写	读/写		只读	读/写	读	/写	
上电初始值	n	n	ľ	1	n	n	1	n	

位编号	位符号	说明
6	ENXTL	外部 32.768kHz 晶振选择开关
		0:外部 32.768kHz 晶振关闭,P5.0、P5.1 有效,内部 LRC 有效;
		1:外部 32.768kHz 晶振打开,P5.0、P5.1 无效,内部 LRC 无效。

注意: HRC 可以通过外接 32.768kHz 晶振进行自动校准,因此用户如果使用了 32.768kHz 外接晶振功 能,HRC 的频率就会始终被校正到 32MHz,此时调整 OP_HRCR 无法改变 HRC 频率。

P5.0/P5.1 外接 32.768kHz 振荡器作为 BaseTimer 使用的接法电路如下:

Page 48 of 144 V0.4

32.768kHz 外部晶振连接图

Base Timer 内外部振荡选择关系图如下:

Base Timer 结构图

7.6 STOP 模式和 IDLE 模式

SC95F876X 提供了一个特殊功能寄存器 PCON,配置该寄存器的 bit0 和 bit1 可控制 MCU 进入不同的工作模式。

对 PCON.1 写入 1,内部的高频系统时钟就会停止,进到 STOP 模式,达到省电功能。在 STOP 模式下,用户可以通过外部中断 INT0~2、Base Timer、TK 以及 CMP 中断把 SC95F876X 唤醒,也可以通过外部复位将STOP唤醒。

对 PCON.0 写入 1,程序停止运行,进入 IDLE 模式,但外部设备及时钟继续运行,进入 IDLE 模式前所有 CPU 状态都被保存。IDLE 模式可由任何中断唤醒。

PCON (87H) 电源管理控制寄存器(只写、*不可读*)

1 0011 (0111)		E-12) HH (1 PH	1 1 1 1 1 1 1 1 1	<u>'</u>			_	
位编号	7	6	5	4	3	2	1	0
符号	SMOD	-	-	-	RST	-	STOP	IDL
读/写	只写	-	-	-	只写	-	只写	只写
上电初始值	0	Х	х	х	n	X	0	0

位编号	位符号	说明
1	STOP	STOP 模式控制 0: 正常操作模式
		1: 节能模式, 高频振荡器停止工作, 低频振荡器及 WDT 可根据设定 选择工作与否。
0	IDL	IDLE 模式控制 0: 正常操作模式 1: 节能模式,程序停止运行,但外部设备及时钟继续运行,进入 IDLE 模式前所有 CPU 状态都被保存。

注意:配置 MCU 进入 STOP 或 IDLE 模式时,对 PCON 寄存器进行配置操作的语句后面要加上 8 个 NOP 指令,不能直接跟其它指令,否则在唤醒后无法正常执行后续的指令!

例如:设置 MCU 进入 STOP 模式:

C语言例程:

#include"intrins.h"

PCON |= 0x02; //PCON 的 bit1 STOP 位写 1,配置 MCU 进入 STOP 模式

nop(); //至少需要 8 个_nop_()

nop();

nop();

nop();

nop();

nop();

nop();

nop();

.

汇编例程:

ORL PCON.#02H ; PCON 的 bit1 STOP 位写 1, 配置 MCU 进入 STOP 模式

NOP ; 至少需要 8 个 NOP

NOP

NOP

NOP

NOP

NOP

NOP NOP

.....

Page 50 of 144 V0.4

8 中央处理单元 CPU 及指令系统

8.1 CPU

SC95F876X 所用的 CPU 是一个超高速的 1T 标准 8051 内核, 其指令完全兼容传统 8051 内核单片机。

8.2 寻址方式

SC95F876X 的 1T 8051 CPU 指令的寻址方式有: ①立即寻址②直接寻址③间接寻址④寄存器寻址⑤相对寻址⑥变址寻址⑦位寻址

8.2.1 立即寻址

立即寻址也称为立即数寻址,它是在指令操作数中直接给出参加运算的操作数,指令举例如下: MOV A,#50H (这条指令是将立即数 50H 送到累加器 A 中)

8.2.2 直接寻址

在直接寻址方式中,指令操作数域给出的是参加运算操作数的地址。直接寻址方式只能用来表示特殊功能寄存器、内部数据寄存器和位地址空间。其中特殊功能寄存器和位地址空间只能用直接寻址方式访问。举例如下:

ANL 50H, #91H (表示 50H 单元中的数与立即数 91H 相"与",结果存放在 50H 单元中。其中 50H 为直接地址,表示内部数据寄存器 RAM 中的一个单元。)

8.2.3 间接寻址

间接寻址采用 R0 或 R1 前添加"@"符号来表示。假设 R1 中的数据是 40H,内部数据存储器 40H 单元的数据 为 55H,则指令为

MOV A, @R1 (把数据 55H 传送至累加器 A)。

8.2.4 寄存器寻址

寄存器寻址是对选定的工作寄存器 R7~R0、累加器 A、通用寄存器 B、地址寄存器和进位 C 中的数进行操作。其中寄存器 R7~R0 由指令码的低 3 位表示,ACC、B、DPTR 及进位位 C 隐含在指令码中。因此,寄存器寻址也包含一种隐含寻址方式。寄存器工作区的选择由程序状态字寄存器 PSW 中的 RS1、RS0 来决定。指令操作数指定的寄存器均指当前工作区的寄存器。

INC R0 是指 (R0) +1→R0

8.2.5 相对寻址

相对寻址是将程序计数器 PC 中的当前值与指令第二字节给出的数相加,其结果作为转移指令的转移地址。转移地址也成为转移目的地址,PC 中的当前值成为基地址,指令第二字节给出的数成为偏移量。由于目的地址是相对于 PC 中的基地址而言,所以这种寻址方式成为相对寻址。偏移量为带符号的数,所能表示的范围为+127~-128.这种寻址方式主要用于转移指令。

JC \$+50H

表示若进位位 C 为 0,则程序计数器 PC 中的内容不改变,即不转移。若进位位 C 为 1,则以 PC 中的当前值及基地址,加上偏移量 50H 后所得到的结果作为该转移指令的目的地址。

8.2.6 变址寻址

在变址寻址方式中,指令操作数制定一个存放变址基址的变址寄存器。变址寻址时,偏移量与变址基值相加, 其结果作为操作数的地址。变址寄存器有程序计数器 PC 和地址寄存器 DPTR。

MOVC A, @A+DPTR

表示累加器 A 为偏移量寄存器,其内容与地址寄存器 DPTR 中的内容相加,其结果作为操作数的地址,取出该单元中的数送入累加器 A 中。

8.2.7 位寻址

位寻址是指对一些可进行位操作的内部数据存储器 RAM 和特殊功能寄存器进行位操作时的寻址方式。在进行位操作时,借助于进位位 C 作为位操作累加器,指令操作数直接给出该位的地址,然后根据操作码的性质对该位进行位操作。位地址与字节直接寻址中的字节地址编码方式完全一样,主要由操作指令的性质加以区分,使用时应特别注意。

Page 51 of 144 V0.4

MOV C, 20H (将地址为 20H 的位操作寄存器值送入进位位 C中。)

9 INTERRUPT 中断

SC95F876X 单片机提供 20 个中断源: Timer0~4, INT0~2, ADC, PWM, UART, USCI0~5, Base Timer, TK, CMP。这 20 个中断源分为 2 个中断优先级,并可以单独分别设置为高优先级或者低优先级。三个外部中断可以分别设定其中每个中断源的触发条件为上升、下降或上下沿,每个中断分别有独立的优先级设置位、中断标志、中断向量和使能位,总的中断使能位 EA 可以实现所有中断的打开或者关闭。

9.1 中断源、向量

SC95F876X的中断源、中断向量、及相关控制位列表如下:

中断源	中断发生 时间	中断标志	中断使能 控制	中断优先权 控制	中断向量	查询优先级	中断号 (C51)	标志清除 方式	能否唤醒 STOP
INT0	外部中断 0 条件符合	IE0	EINT0	IPINT0	0003H	1 (高)	0	H/W Auto	能
Timer0	Timer0 溢 出	TF0	ET0	IPT0	000BH	2	1	H/W Auto	不能
INT1	外部中断 1 条件符合	IE1	EINT1	IPINT1	0013H	3	2	H/W Auto	能
Timer1	Timer1 溢 出	TF1	ET1	IPT1	001BH	4	3	H/W Auto	不能
UART	接收或发送 完成	RI/TI	EUART	IPUART	0023H	5	4	必须用户 清除	不能
Timer2	Timer2 溢 出	TFX	ET2	IPT2	002BH	6	5	必须用户 清除	不能
ADC	ADC 转换 完成	ADCIF	EADC	IPADC	0033H	7	6	必须用户 清除	不能
USCI0	接收或发送 完成	SPIF0/TWIF 0	EUSCI0	IPSPI	003BH	8	7	必须用户 清除	不能
PWM	PWM 溢出	PWMIF	EPWM	IPPWM	0043H	9	8	必须用户 清除	不能
BTM	Base timer 溢出	BTMIF	EBTM	IPBTM	004BH	10	9	H/W Auto	能
INT2	外部中断 2 条件符合		EINT2	IPINT2	0053H	11	10	-	能
TK	Touch Key 计数器溢出	TKIF	ETK	IPTK	005BH	12	11	H/W Auto	能
CMP	比较器中断 条件符合	CMPIF	ECMP	IPCMP	0063H	13	12	必须用户 清除	能
Timer3	Timer3 溢 出	TFX	ET3	IPT3	006BH	14	13	必须用户 清除	不能
Timer4	Timer4 溢 出	TFX	ET4	IPT4	0073H	15	14	必须用户 清除	不能
USCI1	接收或发送 完成	SPIF1/TWIF 1	EUSCI1	IPSPI1	007BH	16	15	必须用户 清除	不能
USCI2	接收或发送 完成	SPIF2/TWIF 2	EUSCI2	IPSPI2	0083H	17	16	必须用户 清除	不能
USCI3	接收或发送 完成	SPIF3/TWIF 3	EUSCI3	IPSPI3	008BH	18	17	必须用户 清除	不能
USCI4	接收或发送 完成	SPIF4/TWIF 4	EUSCI4	IPSPI4	0093H	19	18	必须用户 清除	不能

Page 52 of 144 V0.4

USCI5	接收或发送	SPIF5/TWIF	EUSCI5	IPSPI5	009BH	20	19	必须用户	不能
	完成	5						清除	

在 EA=1 及各中断使能控制为 1 的情况下,各中断发生情况如下:

定时器中断: Timer0 和 Timer1 溢出时会产生中断并将中断标志 TF0 和 TF1 置为"1",当单片机执行该定时器中断时,中断标志 TF0 和 TF1 会被硬件自动清"0"。Timer2~4 溢出时会产生中断并将各自的中断标志置为"1",在Timer2~4 的中断发生后,硬件并不会自动清除其相应的中断标志位,必须由使用者的软件负责清除。

UART 中断: 当 UARTO 接收或发送一帧数据完成时 RI 或 TI 位会被硬件自动置"1", UART 中断产生。在 UART 中断发生后,硬件并不会自动清除 RI/TI 位,此 bit 必须由使用者的软件负责清除。

ADC 中断: ADC 中断的发生时间为 ADC 转换完成时,其中断标志就是 ADC 转换结束标志 EOC/ADCIF(ADCCON.5)。当使用者设定 ADCS 开始转换后,EOC 会被硬件自动清除为 "0";当转换完成后,EOC 会被硬件自动置为 "1"。使用者在 ADC 中断发生之后,进入中断服务程序时,必须用软件去清除它。

USCI 中断: 当 USCI 接收或发送一帧数据完成时 SPIF/TWIF 位会被硬件自动置"1",USCI 中断产生。当单片机执行该 USCI 中断时,中断标志 SPIF/TWIF 必须由使用者的软件负责清除。

PWM 中断: 当 PWM 计数器溢出时(也就是说:数到超过 PWMPD 时),此位会被硬件自动设定成 1。如果此时 IE1[1] (EPWM) 也是被设定成 1,PWM 的中断产生。在 PWM 中断发生后,硬件并不会自动清除此位,此位必须由使用者的软件负责清除。

外部中断 INT0~2: 当外部中断口有中断条件发生时,外部中断就发生了。其中 INT0 和 INT1 会产生中断标志为 IEO/IE1,用户不需要处理,硬件会自动清除。INT0 有四个外部中断源,INT1 有八个外部中断源,INT2 有四个外部中断源,用户可以根据需要设成上沿、下沿或者双沿中断,可通过设置 SFR (INTxF 和 INTxR)来实现。用户可通过 IP 寄存器来设置每个中断的优先级级别。外部中断 INT0~2 还可以唤醒单片机的 STOP。

Page 53 of 144 V0.4

9.2 中断结构图

SC95F876X的中断结构如下图所示:

SC95F876X 中断结构和向量

9.3 中断优先级

SC95F876X 单片机的中断具有两个中断优先级,这些中断源的请求可编程为高优先级中断或者低优先级中 断,即可实现两级中断服务程序的嵌套。一个正在执行的低优先级中断能被高优先级中断请求所中断,但不能被 另一个同一优先级的中断请求所中断,一直执行到结束,遇到返回指令 RETI, 返回主程序后再执行一条指令才能 响应新的中断请求。

也就是说:

- ① 低优先级中断可被高优先级中断请求所中断,反之不能;
- ② 任何一种中断,在响应过程中,不能被同一优先级的中断请求所中断。

中断查询顺序: SC95F876X单片机的同一优先级中断,如果同时来几个中断,则中断响应的优先顺序同 C51 中的中断查询号相同,即查询号小的会优先响应,查询号大的会慢响应。

9.4 中断处理流程

当一个中断产生并且被 CPU 响应,则主程序运行被中断,将执行下述操作

- ① 当前正在执行的指令执行完;
- ② PC 值被压入堆栈,保护现场;
- ③ 中断向量地址载入程序计数器 PC:
- 4 执行相应的中断服务程序;
- ⑤ 中断服务程序结束并 RETI:
- (6) 将 PC 值退栈,并返回执行中断前的程序。

在此过程中,系统不会立即执行其它同一优先级的中断,但会保留所发生的中断请求,在当前中断处理结束 后,转去执行新的中断请求。

9.5 中断相关 SFR 寄存器

IE (A8H) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	EA	中断使能的总控制
		0: 关闭所有的中断
		1: 打开所有的中断
6	EADC	ADC 中断使能控制
		0: 关闭 ADC 中断
		1: 允许 ADC 转换完成时产生中断
5	ET2	Timer2 中断使能控制
		0: 关闭 Timer2 中断
		1: 允许 Timer2 中断
4	EUART	UART 中断使能控制
		0: 关闭 UART 中断
		1: 允许 UART 中断
3	ET1	Timer1 中断使能控制
		0: 关闭 Timer1 中断
		1: 允许 Timer1 中断
2	EINT1	外部中断 1 使能控制
		0: 关闭 INT1 中断

Page 55 of 144 V0.4

		1: 打开 INT1 中断
1	ET0	Timer0 中断使能控制
		0: 关闭 TIMER0 中断
		1: 允许 TIMERO 中断
0	EINT0	外部中断 0 使能控制
		0: 关闭 INT0 中断
		1: 打开 INTO 中断

IP (B8H) 中断优先级控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明
6	IPADC	ADC 中断优先权选择
		0: ADC 中断优先权为低
		1: ADC 中断优先权为高
5	IPT2	Timer2 中断优先权选择
		0: Timer2 中断优先权为低
		1: Timer2 中断优先权为高
4	IPUART	UART中断优先权选择
		0: UART 中断优先权为低
		1: UART 中断优先权为高
3	IPT1	Timer1 中断优先权选择
		0: Timer1 中断优先权为低
		1: Timer1 中断优先权为高
2	IPINT1	INT1 计数器中断优先权选择
		0: INT1 中断优先权为低
		1: INT1 中断优先权为高
1	IPT0	Timer0 中断优先权选择
		0: Timer0 中断优先权为低
		1: Timer0 中断优先权为高
0	IPINT0	INTO 计数器中断优先权选择
		0: INTO 中断优先权为低
		1: INTO 中断优先权为高
7	-	保留

IE1 (A9H) 中断使能寄存器 1(读/写)

	1 24142 14 14 1411	191: 47						
位编号	7	6	5	4	3	2	1	0
符号	ET4	ET3	ECMP	ETK	EINT2	EBTM	EPWM	EUSCI0
读/写	读写	读写	读写	读写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	ET4	Timer4 中断使能控制
		0: 关闭 Timer4 中断
		1: 允许 Timer4 中断
6	ET3	Timer3 中断使能控制
		0: 关闭 Timer3 中断

Page 56 of 144 V0.4

		1: 允许 Timer3 中断
5	ECMP	模拟比较器中断使能控制
		0: 关闭模拟比较器中断
		1: 打开模拟比较器中断
4	ETK	Touch Key 中断使能控制
		0: 关闭 Touch Key 中断
		1: 打开 Touch Key 中断
3	EINT2	外部中断 2 使能控制
		0: 关闭 INT2 中断
		1: 打开 INT2 中断
2	EBTM	Base Timer 中断使能控制
		0: 关闭 Base Timer 中断
		1: 允许 Base Timer 中断
1	EPWM	PWM 中断使能控制
		0: 关闭 PWM 中断
		1: 允许 PWM 计数溢出时产生中断
0	EUSCI0	三合一串口 USCIO 中断使能控制
		0: 关闭串口中断
		1: 允许串口中断

IP1 (B9H) 中断优先级控制寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	IPT4	IPT3	IPCMP	IPTK	IPINT2	IPBTM	IPPWM	IPUSCI0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	IPT4	Timer4 中断优先权选择
		0: Timer4 中断优先权为低
		1: Timer4 中断优先权为高
6	IPT3	Timer3 中断优先权选择
		0: Timer3 中断优先权为低
		1: Timer3 中断优先权为高
5	IPCMP	模拟比较器中断优先权选择
		0: 模拟比较器中断优先权为低
		1:模拟比较器中断优先权为高
4	IPTK	Touch Key 中断优先权选择
		0: Touch Key 中断优先权为低
		1: Touch Key 中断优先权为高
3	IPINT2	INT2 计数器中断优先权选择
		0: INT2 中断优先权为低
		1: INT2 中断优先权为高
2	IPBTM	Base Timer 中断优先权选择
		0: Base Timer 中断优先权为低
		1: Base Timer 中断优先权为高
1	IPPWM	PWM 中断使能选择
		0: PWM 中断优先权为低
		1: PWM 中断优先权为高
0	IPUSCI0	三合一串口 USCIO 中断优先权选择
		0: USCI0 中断优先权为低
		1: USCI0 中断优先权为高

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	EUSCI5	EUSCI4	EUSCI3	EUSCI2	EUSCI1
读/写	-	-	-	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	0	0	0	0	0

位编号	位符号	说明
4	EUSCI5	三合一串口 USCI5 中断使能控制
		0: 关闭串口中断
		1: 允许串口中断
3	EUSCI4	三合一串口 USCI4 中断使能控制
		0: 关闭串口中断
		1: 允许串口中断
2	EUSCI3	三合一串口 USCI3 中断使能控制
		0: 关闭串口中断
		1: 允许串口中断
1	EUSCI2	三合一串口 USCI2 中断使能控制
		0: 关闭串口中断
		1: 允许串口中断
0	EUSCI1	三合一串口 USCI1 中断使能控制
		0: 关闭串口中断
		1: 允许串口中断
7~5	-	保留

IP2 (BAH) 中断优先级控制寄存器 2(读/写)

	, , , , , , , , , , , , , , , , , , , ,	-4 14 NN (37-	* /					
位编号	7	6	5	4	3	2	1	0
符号	-	-	-	IPUSCI5	IPUSCI4	IPUSCI3	IPUSCI2	IPUSCI1
读/写	-	-	- 1	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	0	0	0	0	0

位编号	位符号	说明
4	IPUSCI5	三合一串口 USCI5 中断优先权选择
		0: USCI5 中断优先权为低
		1: USCI5 中断优先权为高
3	IPUSCI4	三合一串口 USCI4 中断优先权选择
		0: USCI4 中断优先权为低
		1: USCI4 中断优先权为高
2	IPUSCI3	三合一串口 USCI3 中断优先权选择
		0: USCI3 中断优先权为低
		1: USCI3 中断优先权为高
1	IPUSCI2	三合一串口 USCI2 中断优先权选择
		0: USCI2 中断优先权为低
		1: USCI2 中断优先权为高
0	IPUSCI1	三合一串口 USCI1 中断优先权选择
		0: USCI1 中断优先权为低
		1: USCI1 中断优先权为高
7~5	-	保留

TCON (88H) 定时器控制寄存器(读写)

10011 (0011) 1	TH 1 TH 1 TT 141 F4	11 m(&						
位编号	7	6	5	4	3	2	1	0
符号	TF1	TR1	TF0	TR0	IE1	-	IE0	-
读/写	读/写	读/写	读/写	读/写	读/写	-	读/写	-
上电初始值	0	0	0	0	0	Х	0	Х

Page 58 of 144 V0.4

位编号	位符号	说明
3	IE1	INT1 溢出中断请求标志。INT1 产生溢出,发生中断时,硬件将 IE1 置
		为"1",申请中断,CPU 响应时,硬件清"0"。
1	IE0	INTO 溢出中断请求标志。INTO 产生溢出,发生中断时,硬件将 IEO 置
		为"1",申请中断,CPU 响应时,硬件清"0"。
2,0	-	保留

INTOF (B4H) INTO 下降沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	INT0F7	INT0F6	INT0F5	INT0F4	-	-	-	-
读/写	读/写	读/写	读/写	读/写	-	-	-	-
上电初始值	0	0	0	0	Х	Х	Х	х

位编号	位符号		说明
7~4	INT0Fn (n=7~4)	INTO 下降沿中断控制 0:INTOn 下降沿中断关闭 1:INTOn 下降沿中断使能	
3~0	-	保留	

INTOR (BBH) INTO 上升沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	INT0R7	INT0R6	INT0R5	INT0R4		-	-	-
读/写	读/写	读/写	读/写	读/写	-	-	-	-
上电初始值	0	0	0	0	Х	Х	Х	Х

位编号	位符号	说明
7~4	INT0Rn (n=7~4)	INTO 上升沿中断控制 0:INTOn 上升沿中断关闭 1: INTOn 上升沿中断使能
3~0	-	保留

INT1F (BCH) INT1 下降沿中断控制寄存器(读/写)

(= 011)		1	HH (15/11 4)					
位编号	7	6	5	4	3	2	1	0
符号	INT1F7	INT1F6	INT1F5	INT1F4	INT1F3	INT1F2	INT1F1	INT1F0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	INT1Fn (n=7~0)	INT1 下降沿中断控制 0: INT1n 下降沿中断关闭 1: INT1n 下降沿中断使能

INT1R (BDH) INT1 上升沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	INT1R7	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	INT1Rn (n=7~0)	INT1 上升沿中断控制 0: INT1n 上升沿中断关闭

Page 59 of 144 V0.4

1	INIT1n	上升沿中断使能
	1131 1 111	

INT2F (BEH) INT2 下降沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	INT2F3	INT2F2	INT2F1	INT2F0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	0	0	0	0

位编号	位符号	说明	
3~0	INT2Fn (n=3~0)	INT2 下降沿中断控制 0: INT2n 下降沿中断关闭 1: INT2n 下降沿中断使能	
7~4	-	保留	

INT2R (BFH) INT2 上升沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	INT2R3	INT2R2	INT2R1	INT2R0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	0	0	0	0

位编号	位符号	说明
3~0	INT2Rn (n=3~0)	INT2 上升沿中断控制 0: INT2n 上升沿中断关闭 1: INT2n 上升沿中断使能
7~4	-	保留

10 定时器 TIMER0、TIMER1

SC95F876X 单片机内部的 Timer0 和 Timer1 是两个 16 位定时器/计数器,它们具有计数方式和定时方式两种工作模式。特殊功能寄存器 TMOD 中有一个控制位 C/Tx 来选择 T0 和 T1 是定时器还是计数器。它们本质上都是一个加法计数器,只是计数的来源不同。定时器的来源为系统时钟或者其分频时钟,但计数器的来源为外部管脚的输入脉冲。只有在 TRx=1 的时候,T0 和 T1 才会被打开计数。

计数器模式下,P0.2/T0 和 P0.3/T1 管脚上的每一个脉冲,T0 和 T1 的计数值分别增加 1。

定时器模式下,可通过特殊功能寄存器 TMCON 来选择 T0 和 T1 的计数来源是 fsys/12 或 fsys (fsys 为分频后的系统时钟)。

定时器/计数器 T0 有 4 种工作模式,定时器/计数器 T1 有 3 种工作模式(模式三不存在):

- ① 模式 0: 13 位定时器/计数器模式
- ② 模式 1: 16 位定时器/计数器模式
- ③ 模式 2: 8位自动重载模式
- 4 模式 3: 两个 8 位定时器/计数器模式

在上述模式中,T0和T1的模式0、1、2都相同,模式3不同。

10.1 T0 和 T1 相关特殊功能寄存器

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
TCON	88H	定时器控制寄存器	TF1	TR1	TF0	TR0	IE1	-	IE0	-	00000x0xb
TMOD	89H	定时器工作模式寄存器	-	C/T1	M11	M01	-	C/T0	M10	M00	x000x000b
TL0	8AH	定时器 0 低 8 位		TL0[7:0]					0000000b		
TL1	8BH	定时器 1 低 8 位				TL1	[7:0]				0000000b
TH0	8CH	定时器 0 高 8 位		TH0[7:0]				0000000b			
TH1	8DH	定时器 1 高 8 位				TH1	[7:0]				0000000b

Page 60 of 144

TMCON	8EH	定时器频率控制寄存器	USMDX[1:0]	-	-	-	-	T1FD	T0FD	00xxxx00b

各寄存器的解释说明如下:

TCON (88H) 定时器控制寄存器(读/写)

								
位编号	7	6	5	4	3	2	1	0
符号	TF1	TR1	TF0	TR0	IE1	-	IE0	-
读/写	读/写	读/写	读/写	读/写	读/写	-	读/写	-
上电初始值	0	0	0	0	0	Х	0	Х

位编号	位符号	说明
7	TF1	T1 溢出中断请求标志。T1 产生溢出,发生中断时,硬件将 TF1 置为
		"1",申请中断,CPU 响应时,硬件清"0"。
6	TR1	定时器 T1 的运行控制位。此位由软件置 1 和清 0。当 TR1=1 时,允许
		T1 开始计数。TR1=0 时禁止 T1 计数。
5	TF0	T0 溢出中断请求标志。T0 产生溢出,发生中断时,硬件将 TF0 置为
		"1",申请中断,CPU 响应时,硬件清"0"。
4	TR0	定时器 T0 的运行控制位。此位由软件置位和清 0。当 TR0=1 时,允许
		T0 开始计数。TR0=0 时禁止 T0 计数。
2,0	-	保留

TMOD (89H) 定时器工作模式寄存器(读/写)

111102 (0011)		3 H = 1 DC (3 1) H (X) 3)									
位编号	7	6	5	4	3	2	1	0			
符号	-	C/T1	M11	M01	-	C/T0	M10	M00			
读/写	-	读/写	读/写	读/写	-	读/写	读/写	读/写			
上电初始值	Х	0	0	0	Х	0	0	0			
		T	1		ТО						

位编号	位符号	说明
6	C/T1	TMOD[6]控制定时器 1
		0: 定时器, T1 计数来源于 fsys 分频
		1: 计数器, T1 计数来源于外部管脚 T1/P0.3
5~4	M11,M01	定时器/计数器 1 模式选择
		00: 13 位定时器/计数器, TL1 高 3 位无效
		01: 16 位定时器/计数器,TL1 和 TH1 全有效
		10: 8位自动重载定时器,溢出时将 TH1 存放的值自动重装入 TL1
		11: 定时器/计数器 1 无效(停止计数)
2	C/T0	TMOD[2]控制定时器 0
		0: 定时器,T0 计数来源于 fsys 分频
		1: 计数器,T0 计数来源于外部管脚 T0/P0.2
1~0	M10,M00	定时器/计数器 0 模式选择
		00: 13 位定时器/计数器, TL0 高 3 位无效
		01: 16 位定时器/计数器,TL0 和 TH0 全有效
		10: 8位自动重载定时器,溢出时将 TH0 存放的值自动重装入 TL0
		11: 定时器 0 此时作为双 8 位定时器/计数器。TLO 作为一个 8 位定时器
		/计数器,通过标准定时器 0 的控制位控制; TH0 仅作为一个 8 位定时
		器,由定时器1的控制位控制。
7,3	-	保留

TMOD 寄存器中 TMOD[0]~TMOD[2]是设置 T0 的工作模式; TMOD[4]~TMOD[6]是设置 T1 的工作模式。 定时器和计数器 Tx 功能由特殊功能寄存器 TMOD 的控制位 C/Tx 来选择,M0x 和 M1x 都是用来选择 Tx 的工

Page 61 of 144 V0.4

作模式。TRx 作为 T0 和 T1 的开关控制,只有 TRx=1 时 T0 和 T1 才打开。

TMCON (8EH) 定时器频率控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	USMDX[1:0]		-	-	-	-	T1FD	T0FD
读/写	读/写	读/写	-	-	-	-	读/写	读/写
上电初始值	0	0	Х	Х	Х	х	0	0

位编号	位符号		说明	
1	T1FD	T1 输入频率选择控制		
		0: T1 频率源自于 fsys/12		
		1: T1 频率源自于 fsys		
0	T0FD	T0 输入频率选择控制		
		0: T0 频率源自于 fsys/12		
		1: T0 频率源自于 f _{sys}		

IE (A8H) 中断使能寄存器(读/写)

	_ (*****) 	> + 14 PH / 4	/ 						
ı	位编号	7	6	5	4	3	2	1	0
Ī	符号	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
ſ	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
Ī	上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
3	ET1	Timer1 中断使能控制
		0: 关闭 Timer1 中断
		1: 允许 Timer1 中断
1	ET0	Timer0 中断使能控制
		0: 关闭 Timer0 中断
		1: 允许 Timer0 中断

IP (B8H) 中断优先级控制寄存器(读/写)

	, = , = .,, -, -, -, -, -, -, -, -, -, -, -, -, -							
位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
读/写		读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	х	0	0	0	0	0	0	0

位编号	位符号	说明
3	IPT1	Timer1 中断优先权
		0:设定 Timer 1 的中断优先权是 "低"
		1:设定 Timer 1 的中断优先权是 "高"
1	IPT0	Timer0 中断优先权
		0:设定 Timer 0 的中断优先权是 "低"
		1:设定 Timer 0 的中断优先权是 "高"

10.2 T0 工作模式

通过对寄存器 TMOD 中的 M10、M00(TMOD[1]、TMOD[0])的设置,定时器/计数器 0 可实现 4 种不同的工作模式。

工作模式 0:13 位计数器/定时器

THO 寄存器存放 13 位计数器/定时器的高 8 位(TH0.7~TH0.0), TLO 存放低 5 位(TL0.4~TL0.0)。TLO 的高三

Page 62 of 144 V0.4 http://www.socmcu.com

位(TL0.7~TL0.5)是不确定值,读取时应被忽略掉。当 13 位定时器/计数器递增溢出时,系统会将定时器溢出标志 TF0 置 1。如果定时器 0 中断被允许,将会产生一个中断。

C/T0 位选择计数器/定时器的时钟输入源。如果 C/T0=1,定时器 0 输入脚 T0(P0.2)的电平从高到低的变化,会使定时器 0 数据寄存器加 1。如果 C/T0=0,选择系统时钟的分频为定时器 0 的时钟源。

当 TR0 置 1 打开定时器 T0。TR0 置 1 并不强行复位定时器,意味着如果 TR0 置 1,定时器寄存器将从上次 TR0 清 0 时的值开始计数。所以,在允许定时器之前,应该设定定时器寄存器的初始值。

当作为定时器应用时,可配置 TOFD 来选择时钟源的分频比例。

定时器/计数器工作模式 0: 13 位定时器/计数器

工作模式 1:16 位计数器/定时器

除了使用 16 位(TL0 的 8 位数据全部有效)计数器/定时器之外,模式 1 和模式 0 的运行方式相同。打开和配置计数器/定时器方式也相同。

定时器/计数器工作模式 0: 16 位定时器/计数器

工作模式 2:8 位自动重载计数器/定时器

在工作模式 2 中, 定时器 0 是 8 位自动重载计数器/定时器。TL0 存放计数值,TH0 存放重载值。当在 TL0 中的计数器溢出至 0x00 时, 定时器溢出标志 TF0 被置 1, 寄存器 TH0 的值被重载入寄存器 TL0 中。如果定时器中断使能,当 TF0 置 1 时将产生一个中断,但在 TH0 中的重载值不会改变。在允许定时器正确计数开始之前,TL0 必须初始化为所需要的值。

除了自动重载功能外,工作模式 2 中的计数器/定时器的使能和配置方式同模式 0 和 1 是相同的。 当作为定时器应用时,可配置寄存器 TMCON.0(T0FD)来选择定时器时钟源被系统时钟 fsys 分频的比例。

Page 63 of 144 V0.4 http://www.socmcu.com

定时器/计数器工作模式 2: 自动重载的 8 位定时器/计数器

工作模式 3: 两个 8 位计数器/定时器(仅限于定时器 0)

在工作模式 3 中, 定时器 0 用作两个独立的 8 位计数器/定时器, 分别由 TL0 和 TH0 控制。TL0 通过定时器 0 的控制位(在 TCON 中)和状态位(在 TMOD 中): TR0、C/T0、TF0 控制。定时器 0 可通过 T0 的 TMOD.2(C/T0) 来选择是定时器模式还是计数器模式。

TH0 通过定时器 1 的控制 TCON 来设置相关的控制,但 TH0 仅被限定为定时器模式,无法通过 TMOD.2(C/T0)来设定为计数器模式。TH0 由定时器控制位 TR1 的控制使能,需设定 TR1=1。当发生溢出及产 生中断时, TF1 会置 1, 并按 T1 发生中断来进行相应的处理。

在 T0 被设为工作模式 3 时,TH0 定时器占用了 T1 的中断资源及 TCON 中寄存器,T1 的 16 位计数器会停 止计数,相当于"TR1=0"。当采用 TH0 定时器工作时,需设置 TR1=1。

10.3 T1 工作模式

通过对寄存器 TMOD 中的 M11、M01(TMOD[5]、TMOD[4])的设置,定时器/计数器 1 可实现 3 种不同的工作 模式。

工作模式 0:13 位计数器/定时器。

TH1 寄存器存放 13 位计数器/定时器的高 8 位(TH1.7~TH1.0); TL1 存放低 5 位(TL1.4~TL1.0)。TL1 的高三 位(TL1.7~TL1.5)是不确定值,读取时应被忽略掉。当 13 位定时器计数器递增溢出时,系统会将定时器溢出标志 TF1 置 1。如果定时器 1 中断被允许,将会产生一个中断。C/T1 位选择计数器/定时器的时钟源。

如果 C/T1=1, 定时器 1 输入脚 T1(P0.3)的电平从高到低的变化, 会使定时器 1 数据寄存器加 1。如果 C/T1=0, 选择系统时钟的分频为定时器 1 的时钟源。

TR1 置 1 打开定时器。TR1 置 1 并不强行复位定时器, 意味着如果 TR1 置 1, 定时器寄存器将从上次 TR1 清 0时的值开始计数。所以,在允许定时器之前,应该设定定时器寄存器的初始值。

当作为定时器应用时,可配置 T1FD 来选择时钟源的分频比例。

定时器/计数器工作模式 0: 13 位定时器/计数器

工作模式 1: 16 位计数器/定时器

除了使用 16 位(TL1 的 8 位数据全部有效)计数器/定时器之外,模式 1 和模式 0 的运行方式相同。打开和配置 计数器/定时器方式也相同。

定时器/计数器工作模式 0: 16 位定时器/计数器

工作模式 2:8 位自动重载计数器/定时器

在工作模式 2 中, 定时器 1 是 8 位自动重载计数器/定时器。TL1 存放计数值,TH1 存放重载值。当在 TL1 中的计数器溢出至 0x00 时,定时器溢出标志 TF1 被置 1,寄存器 TH1 的值被重载入寄存器 TL1 中。如果定时

Page 64 of 144 V0.4

器中断使能,当 TF1 置 1 时将产生一个中断,但在 TH1 中的重载值不会改变。在允许定时器正确计数开始之 前,TL1必须初始化为所需要的值。

除了自动重载功能外,工作模式2中的计数器/定时器的使能和配置方式同方式0和1是相同的。 当作为定时器应用时,可配置寄存器 TMCON.1(T1FD)来选择定时器时钟源被系统时钟 fsys 分频的比例。

定时器/计数器工作模式 2: 自动重载的 8 位定时器/计数器

Page 65 of 144 http://www.socmcu.com

11 定时器 Timer2/3/4

SC95F876X 单片机内部的 Timer2/3/4 是三个独立的 Timer, 其中 Timer2 有 4 种工作模式, Timer3 和 Timer4 有 3 种工作模式。

Timer2/3/4 的控制寄存器共用同一组地址(C8H-CDH),用户可通过 TXINX[2:0]将 TimerX 寄存器组 (TXCON / TXMOD / RCAPXL / RCAPXH / TLX / THX)指向 Timer2/3/4,从而实现一组寄存器配置三个独立 Timer 的功能。

注意: 只有在 TXINX[2:0]配置成功后 TimerX 寄存器组才会指向用户指定的 Timer2/3/4,此时操作 TimeX 寄存器组才是对相应 Timer 的有效操作。

11.1 T2/3/4 相关特殊功能寄存器

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
TXINX	CEH	定时器 2/3/4 控制寄存器指针	-	-	-	-	-	Т	XINX[2:0	0]	xxxxx010b
TXCON	C8H	定时器 2/3/4 控制寄存器	TFX	EXFX	RCLKX	TCLKX	EXENX	TRX	C/TX	CP/RLX	00000000b
TXMOD	C9H	定时器 2/3/4 工作模式寄存器	TXFD	-	EPWM	EPWM	INVN1	INVN0	TXOE	DCXEN	0xxxxx00b
					N1	N0					
RCAPXL	CAH	定时器 2/3/4 重载低 8 位				RCAF	PXL[7:0]				0000000b
RCAPXH	СВН	定时器 2/3/4 重载高 8 位				RCAF	PXH[7:0]				0000000b
TLX	CCH	定时器 2/3/4 低 8 位				TL	X[7:0]				0000000b
THX	CDH	定时器 2/3/4 高 8 位				TH	X[7:0]				0000000b
TMCON	8EH	定时器频率控制寄存器	USMI	DX[1:0]	-	-	-	-	T1FD	T0FD	00xxxx00b

TXINX (CEH) 定时器 2/3/4 控制寄存器指针(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-		-	-	-		TXINX[2:0]	
读/写	-	-	-	-	-	读/写	读/写	读/写
上电初始值	Х	х	Х	Х	Х	0	1	0

位编号	位符号	说明
2~0	TXINX[2:0]	定时器 2/3/4 控制寄存器指针 010: TimerX 寄存器组: TXCON / TXMOD / RCAPXL / RCAPXH / TLX / THX 指向 T2 011: TimerX 寄存器组指向 T3 100: TimerX 寄存器组指向 T4 其他: 保留
7~3	-	保留

11.2 定时器 Timer2

SC95F876X 单片机内部的 Timer2 具有计数方式和定时方式两种工作模式。特殊功能寄存器 TXCON 中有一个控制位 C/TX 来选择 T2 是定时器还是计数器。它们本质上都是一个加法计数器,只是计数的来源不同。定时器的来源为系统时钟或者其分频时钟,但计数器的来源为外部管脚的输入脉冲。TRX 是 T2/T3/T4 在定时器/计数器模式计数的开关控制,只有在 TRX=1 的时候,T2 才会被打开计数。

计数器模式下,T2管脚上的每一个脉冲,T2的计数值分别增加1。

定时器模式下,可通过特殊功能寄存器 TXMOD.7(TXFD)来选择 T2 的计数来源是 fsys/12 或 fsys。

定时器/计数器 T2 有 4 种工作模式:

- ① 模式 0: 16 位捕获模式
- ② 模式 1: 16 位自动重载定时器模式
- ③ 模式 2: 波特率发生器模式
- ④ 模式 3: 可编程时钟输出模式

TXINX[2:0] = 010, TimerX 寄存器组指向 Timer2, 各寄存器的解释说明如下:

Page 66 of 144 V0.4 http://www.socmcu.com

TXCON (C8H) 定时器 2 控制寄存器(读/写) (TXINX[2:0] = 010)

位编号	7	6	5	4	3	2	1	0
符号	TFX	EXFX	RCLKX	TCLKX	EXENX	TRX	C/TX	CP/RLX
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	TFX	定时器 2 溢出标志位
		0: 无溢出(必须由软件清 0)
		1: 溢出(如果 RCLK = 0 和 TCLK = 0,由硬件设 1)
6	EXFX	T2EX 引脚外部事件输入(下降沿)被检测到的标志位
		0: 无外部事件输入(必须由软件清 0)
		1: 检测到外部输入(如果 EXENX = 1,由硬件设 1)
5	RCLKX	UARTO 接收时钟控制位
		0: 定时器 1 产生接收波特率
		1: 定时器 2 产生接收波特率
4	TCLKX	UARTO 发送时钟控制位
		0: 定时器 1 产生发送波特率
		1: 定时器 2 产生发送波特率
3	EXENX	T2EX 引脚上的外部事件输入(下降沿)用作重载/捕获触发器允许/禁止控
		制:
		0: 忽略 T2EX 引脚上的事件
		1: 当定时器 2 不做为 UARTO 时钟时,检测到 T2EX 引脚上一个下降
		沿,产生一个捕获或重载
2	TRX	定时器 2 开始/停止控制位
		0: 停止定时器 2/停止 PWM2 计数器
		1: 开始定时器 2/开启 PWM2 计数器
1	C/TX	定时器 2 定时器/计数器方式选定位
		0: 定时器方式, T2 引脚用作 I/O 端口
		1: 计数器方式
0	CP/RLX	捕获/重载方式选定位
		0: 16 位带重载功能的定时器/计数器
		1: 16 位带捕获功能的定时器/计数器, TXEX 为定时器 2 外部捕获信号
		输入口

TXMOD (C9H) 定时器 2 工作模式寄存器(读/写) (TXINX[2:0] = 010)

位编号	7	6	5	4	3	2	1	0
符号	TXFD	-	EPWM21	EPWM20	INV21	INV20	TXOE	DCXEN
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	Х	0	0	0	0	0	0

位编号	位符号	说明
7	TXFD	T2 输入频率选择控制
		0: T2 频率源自于 f _{SYS} /12
		1: T2 频率源自于 fsys
1	TXOE	定时器 2 输出允许位
		0:设置 T2 作为时钟输入或 I/O 端口
		1:设置 T2 作为时钟输出
0	DCXEN	递减计数允许位
		0: 禁止定时器 2 作为递增/递减计数器,定时器 2 仅作为递增计数器
		1: 允许定时器 2 作为递增/递减计数器, T2EX 用来选择计数方向。
6	-	保留

Page 67 of 144 V0.4 http://www.socmcu.com

IE (A8H) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
5	ET2	Timer2 中断使能控制
		0: 关闭 Timer2 中断
		1: 允许 Timer2 中断

IP (B8H) 中断优先级控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明
5	IPT2	Timer2 中断优先权
		0:设定 Timer2 的中断优先权是"低"
		1:设定 Timer2 的中断优先权是"高"

11.3 定时器 Timer3

SC95F876X 单片机内部的 Timer3 作为定时器本质上都是一个加法计数器,定时器的时钟来源为系统时钟或者其分频时钟。TRX 是 T3 计数的开关控制,只有在 TRX=1 的时候,T3 才会被打开计数。

定时器模式下,可通过特殊功能寄存器 TXMOD.7(TXFD)来选择 T3 的计数来源是 fsys/12 或 fsys。

TXINX[2:0] = 011, TimerX 寄存器组指向 Timer3, 各寄存器的解释说明如下:

TXCON (C8H) 定时器 3 控制寄存器(读/写) (TXINX[2:0] = 011)

位编号	7	6	5	4	3	2	1	0
符号	TFX	EXFX	-	-	EXENX	TRX	C/TX	CP/RLX
读/写	读/写	读/写	-	-	读/写	读/写	读/写	读/写
上电初始值	0	0	Х	х	0	0	0	0

位编号	位符号	说明
7	TFX	定时器 3 溢出标志位
		0: 无溢出(必须由软件清 0)
		1: 溢出(由硬件设 1)
6	EXFX	T3EX 引脚外部事件输入(下降沿)被检测到的标志位
		0: 无外部事件输入(必须由软件清 0)
		1: 检测到外部输入(如果 EXENX = 1,由硬件设 1)
3	EXENX	T3EX 引脚上的外部事件输入(下降沿)用作重载/捕获触发器允许/禁止控
		制:
		0: 忽略 T3EX 引脚上的事件
		1: 检测到 T3EX 引脚上一个下降沿,产生一个捕获或重载
2	TRX	定时器 3 开始/停止控制位
		0: 停止定时器 3/停止 PWM3 计数器
		1: 开始定时器 3/开启 PWM3 计数器
1	C/TX	定时器 3 定时器/计数器方式选定位
		0: 定时器方式,T3 引脚用作 I/O 端口
		1: 计数器方式

Page 68 of 144 V0.4 http://www.socmcu.com

0	CP/RLX	捕获/重载方式选定位 0: 16 位带重载功能的定时器/计数器 1: 16 位带捕获功能的定时器/计数器, TXEX 为定时器 3 外部捕获信号输入口
5~4	-	保留

TXMOD (C9H) 定时器 3 工作模式寄存器(读/写) (TXINX[2:0] = 011)

位编号	7	6	5	4	3	2	1	0
符号	TXFD	-	EPWM31	EPWM30	INV31	INV30	TXOE	DCXEN
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	Х	0	0	0	0	0	0

位编号	位符号	说明
7	TXFD	T3 输入频率选择控制
		0: T3 频率源自于 fsys/12
		1: T3 频率源自于 fsys
1	TXOE	定时器 3 输出允许位
		0:设置 T3 作为时钟输入或 I/O 端口
		1: 设置 T3 作为时钟输出
0	DCXEN	递减计数允许位
		0:禁止定时器 3 作为递增/递减计数器,定时器 3 仅作为递增计数器
		1: 允许定时器 3 作为递增/递减计数器, T3EX 用来选择计数方向。
6	-	保留

IE1 (A9H) 中断使能寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ET4	ET3	ECMP	ETK	EINT2	EBTM	EPWM	EUSCI0
读/写	读写	读写	读写	读写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
6	ET3	Timer3 中断使能控制
		0: 关闭 Timer3 中断
		1: 允许 Timer3 中断

IP1 (B9H) 中断优先级控制寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	IPT4	IPT3	IPCMP	IPTK	IPINT2	IPBTM	IPPWM	IPUSCI0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
6	IPT3	Timer3 中断优先权选择
		0: Timer3 中断优先权为低
		1: Timer3 中断优先权为高

11.4 定时器 Timer4

SC95F876X 单片机内部的 Timer4 作为定时器本质上都是一个加法计数器,定时器的时钟来源为系统时钟或者其分频时钟。TRX 是 T4 计数的开关控制,只有在 TRX=1 的时候,T4 才会被打开计数。

定时器模式下,可通过特殊功能寄存器 TXMOD.7(TXFD)来选择 T4 的计数来源是 fsys/12 或 fsys。

Page 69 of 144 V0.4

TXINX[2:0] = 100, TimerX 寄存器组指向 Timer4, 各寄存器的解释说明如下:

TXCON (C8H) 定时器 4 控制寄存器(读/写) (TXINX[2:0] = 100)

位编号	7	6	5	4	3	2	1	0
符号	TFX	EXFX	-	-	EXENX	TRX	C/TX	CP/RLX
读/写	读/写	读/写	-	-	读/写	读/写	读/写	读/写
上电初始值	0	0	Х	Х	0	0	0	0

位编号	位符号	说明
7	TFX	定时器 4 溢出标志位
		0: 无溢出(必须由软件清 0)
		1: 溢出(由硬件设 1)
6	EXFX	T4EX 引脚外部事件输入(下降沿)被检测到的标志位
		0: 无外部事件输入(必须由软件清 0)
		1: 检测到外部输入(如果 EXENX = 1,由硬件设 1)
3	EXENX	T4EX 引脚上的外部事件输入(下降沿)用作重载/捕获触发器允许/禁止控
		制:
		0: 忽略 T4EX 引脚上的事件
		1: 检测到 T4EX 引脚上一个下降沿,产生一个捕获或重载
2	TRX	定时器 4 开始/停止控制位
		0: 停止定时器 4/停止 PWM4 计数器
		1: 开始定时器 4/开启 PWM4 计数器
1	C/TX	定时器 4 定时器/计数器方式选定位
		0: 定时器方式, T4 引脚用作 I/O 端口
		1: 计数器方式
0	CP/RLX	捕获/重载方式选定位
		0: 16 位带重载功能的定时器/计数器
		1: 16 位带捕获功能的定时器/计数器, TXEX 为定时器 4 外部捕获信号
		输入口
5~4	-	保留

TXMOD (C9H) 定时器 4 工作模式寄存器(读/写) (TXINX[2:0] = 100)

位编号	7	6	5	4	3	2	1	0
符号	TXFD	-	EPWM41	EPWM40	INV41	INV40	TXOE	DCXEN
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	Х	0	0	0	0	0	0

位编号	位符号	说明
7	TXFD	T4 输入频率选择控制
		0: T4 频率源自于 f _{SYS} /12
		1: T4 频率源自于 fsys
1	TXOE	定时器 4 输出允许位
		0:设置 T4 作为时钟输入或 I/O 端口
		1: 设置 T4 作为时钟输出
0	DCXEN	递减计数允许位
		0: 禁止定时器 4 作为递增/递减计数器,定时器 4 仅作为递增计数器
		1: 允许定时器 4 作为递增/递减计数器, T4EX 用来选择计数方向。
6	-	保留

IE1 (A9H) 中断使能寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ET4	ET3	ECMP	ETK	EINT2	EBTM	EPWM	EUSCI0
读/写	读写	读写	读写	读写	读/写	读/写	读/写	读/写

Page 70 of 144

上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	ET4	Timer4 中断使能控制
		0: 关闭 Timer4 中断
		1: 允许 Timer4 中断

IP1 (B9H) 中断优先级控制寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	IPT4	IPT3	IPCMP	IPTK	IPINT2	IPBTM	IPPWM	IPUSCI0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	IPT4	Timer4 中断优先权选择
		0: Timer4 中断优先权为低
		1: Timer4 中断优先权为高

11.5 Timer2/3/4 工作模式

定时器 Timer2/3/4 的工作模式如下:

① 模式 0: 16 位捕获

② 模式 1: 16 位自动重载定时器

(3) 模式 2: 波特率发生器,仅 Timer2 支持该模式

4) 模式 3: 可编程时钟输出

(5) 模式 4: PWM 输出模式

以上工作模式与配置方式如下表:

						•		
C/TX	TXOE	DCXEN	TRX	CP/RLX	EXENX	工作模式		
Х	0	Х	1	1	1	模式 0	16 位捕获	
Х	0	0	1	0	0		16 位自动重载定时/计数器,普通自动重载	
Х	0	0	1	0	1	模式1	16 位自动重载定时/计数器,带 TnEX 触发重载	
Х	0	1	1	0	Х		16 位自动重载定时/计数器,递增或递减重载	
Х	0	Х	1	Х	Х	模式2	UARTO 波特率发生器,仅 Timer2 支持该模式	
0	1	Х	1	Х	Х	模式3	可编程时钟输出	
Х	X	Х	0	Х	1	Х	定时器停止, TnEX(n=2~4)通路仍旧允许设置捕获/重载 产生中断	

11.5.1 Timer2/3/4 工作模式说明

工作模式 0:16 位捕获

配置 CP/RLX =1, 将定时器 n (n=2~4)设置为 16 位捕获模式。

在捕获方式中, TXCON的 EXENX 位有两个选项:

如果 EXENX = 0, 定时器 n 作为 16 位定时器或计数器, 如果 ETn 被允许的话, 定时器 n 能设置 TFX 溢出产 生一个中断。

如果 EXENX = 1, 定时器 n 执行相同操作, 但是在外部输入 TnEX 上的下降沿也能引起在 THX 和 TLX 中的 当前值分别被捕获到 RCAPXH 和 RCAPXL 中,此外,在 TnEX 上的下降沿也能引起在 TXCON 中的 EXFX 被设 置。如果 ETn 被允许, EXFX 位也像 TFX 一样也产生一个中断。

Page 71 of 144 V0.4 http://www.socmcu.com

模式 0: 16 位捕获

工作模式 1:16 位自动重载定时器

在 16 位自动重载方式下,定時器 n (n=2~4)可以被选为递增计数或递减计数。这个功能通过 TnMOD 中的 DCEN 位(递减计数允许)选择。系统复位后, DCEN 位复位值为 0, 定时器 n 默认递增计数。当 DCEN 置 1 时, 定时器 n 递增计数或递减计数取决于 TnEX 引脚上的电平。

当 DCEN = 0,通过在 TXCON 中的 EXENX 位选择两个选项。

如果 EXENX = 0, 定时器 n 递增到 0xFFFFH, 在溢出后置起 TFX 位, 同时定时器自动将用户软件写好的寄 存器 RCAPXH 和 RCAPXL 的 16 位值装入 THX 和 TLX 寄存器。

如果 EXENX = 1, 溢出或在外部输入 TnEX 上的下降沿都能触发一个 16 位重载。TnEX 上有下降沿产生时, EXFX 位置起。如果 ETn 被使能, TFX 和 EXFX 位都能产生一个中断。

模式 1: 16 位自动重载 DCEN = 0

设置 DCEN 位允许定时器 n 递增计数或递减计数。当 DCEN = 1 时, TnEX 引脚控制计数的方向, 而 EXENX 控制无效。

TnEX 置 1 可使定时器 n 递增计数。定时器向 0xFFFFH 溢出,然后设置 TFX 位。溢出也能分别引起 RCAPXH 和 RCAPXL上的 16 位值重载入定时器寄存器。

TnEX 置 0 可使定时器 n 递减计数。当 THX 和 TLX 的值等于 RCAPXH 和 RCAPXL 的值时,定时器溢出。置 起 TFX 位,同时 0xFFFFH 重载入定时器寄存器。

无论定时器 n 溢出与否,EXFX 位都被用作结果的第 17 位。在此工作方式下,EXFX 不作为中断标志。

Page 72 of 144 V0.4

模式 1: 16 位自动重载 DCEN = 1

工作模式 2: 波特率发生器, 仅 Timer2 支持

通设置 TXCON 寄存器中的 TCLK 和/或 RCLK 选择定时器 2 作为波特率发生器。接收器和发送器的波特率可以不同。如果定时器 2 作为接收器或发送器,则定时器 1 相应的作为另一种的波特率发生器

设置 TXCON 寄存器中的 TCLK 和/或 RCLK 使定时器 2 进入波特率发生器方式,该方式与自动重载方式相似 定时器 2 的溢出会使 RCAPXH 和 RCAPXL 寄存器中的值重载入定时器 2 计数,但不会产生中断

如果 EXENX 被置 1,在 T2EX 脚上的下降沿会置起 EXFX,但不会引起重载。因此当定时器 2 作为波特率发送器时,T2EX 可作为一个额外的外部中断

在 UARTO 方式 1 和 3 中的波特率由定时器 2 的溢出率根据下列方程式决定:

BaudRate =
$$\frac{\text{fsys}}{\text{[RCAPXH,RCAPXL]}}$$
; (注意: [RCAPXH,RCAPXL] 必须大于 0x0010)

定时器 2 作为波特率发生器的原理图如下:

模式 2: 波特率发生器

工作模式 3: 可编程时钟输出

在这种方式中,定时器 n $(n=2\sim4)$ 可以编程为输出 50%的占空比时钟周期: 当 $C/\overline{Tn}=0$; TnOE=1,使能定时器 n 作为时钟发生器

在这种方式中, Tn 输出占空比为 50%的时钟

Colck Out Frequency =
$$\frac{\text{fn}}{(65536-[\text{RCAPXH,RCAPXL}])\times 4}$$
;

其中, fn 为定时器 n 时钟频率:

$$fn = \frac{fsys}{12}$$
; TXFD = 0

Page 73 of 144 V0.4

TXFD = 1fn = fsys;

定时器 n 溢出不产生中断, Tn 端口作时钟输出。

模式 3: 可编程时钟输出

注意:

- 1. TFX 和 EXFX 都能引起定时器 n (n=2~4)的中断请求,两者有相同的向量地址;
- 2. 当事件发生时或其它任何时间都能由软件设置 TFX 和 EXFX 为 1,只有软件以及硬件复位才能使之清 0;
- 3. 当 EA = 1 且 ETn = 1 时,设置 TFX 或 EXFX 为 1 能引起定时器 n 中断;
- 4. 当定时器 2 作为波特率发生器时,写入 THX/TLX 或 RCAPXH/RCAPXL 会影响波特率的准确性,引起通 信出错。

Page 74 of 144 V0.4

12 常规脉冲宽度调制计数器 PWM2/3/4

SC95F876X 最多提供 14 路 PWM, 这 14 路 PWM 分为两类:

- 1. 多功能 PWM: 共 8 路, 只有一组, 即 PWM0, 输出信号口为: PWM00~07;
- 2. 常规 PWM: 共 6 路, 分为三组: PWM2、PWM3、PWM4。注意: 这三组 PWM 的周期寄存器分别与 Timer2, Timer3, Timer4 的 TLX 和 THX 共用,因此一旦用户使用了 PWM2、PWM3、PWM4 资源, 就不能再更改 Timer2, Timer3, Timer4 的定时/计数值, 否则会导致 PWM 周期输出异常!

12.1 PWM2/3/4 相关寄存器

PWM2/3/4 相关寄存器如下:

TXINX (CEH) 定时器 2/3/4 控制寄存器指针(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-		TXINX[2:0]	
读/写	-	-	-	-	-	读/写	读/写	读/写
上电初始值	х	х	х	х	х	0	1	0

位编号	位符号	说明
2~0	TXINX[2:0]	定时器 2/3/4 控制寄存器指针 010: TimerX 寄存器组: TXCON / TXMOD / RCAPXL / RCAPXH / TLX / THX 指向 PWM2 011: TimerX 寄存器组指向 PWM3 100: TimerX 寄存器组指向 PWM4 其他: 保留
7~3	-	保留

TXCON (C8H) 定时器 n 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	TFX	EXFX	RCLKX	TCLKX	EXENX	TRX	C/TX	CP/RLX
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
2	TRX	定时器 n 开始/停止控制位
		0: 停止定时器 n/停止 PWMn 计数器
		1: 开始定时器 n/开启 PWMn 计数器

当 EPWMn0 或 EPWMn1 置 1 时 Timer 即可开启 PWM 模式,此时 Tn 和 TnEX(n=2~4)无效,PWMxy (x=2~4, y=0~1) 可输出 PWM 波形。

TXMOD (C9H) 定时器 n 工作模式寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	TXFD	-	EPWMn1	EPWMn0	INVn1	INVn0	TXOE	DCXEN
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	Х	0	0	0	0	0	0

位编号	位符号	说明
5	ENPWMn1	PWMn1 波形输出选择
		0: PWMn1 输出被关闭
		1: PWMn1 所在的 I/O 作为 PWM 波形输出口
4	ENPWMn0	PWMn0 波形输出选择

Page 75 of 144 V0.4

		0: PWMn0 输出被关闭
		1: PWMn0 所在的 I/O 作为 PWM 波形输出口
3	INVn1	PWMn1 波形输出反向控制
		1: PWMn1 波形输出反向
		0: PWMn1 波形输出不反向
2	INVn0	PWMn0 波形输出反向控制
		1: PWMn0 波形输出反向
		0: PWMn0 波形输出不反向

THX 和 TLX 计数器从 0 开始向上计数,当计数值与占空比设置项 PDTxy [15:0]的值匹配时 PWM 输出波形切换高低电平,接着 THX 和 TLX 计数器继续向上计数到自动重载值 PWMPDX,然后重新从 0 开始计数并生成计数上溢事件,一个 PWM 周期结束。如果定时器中断已使能,此时会产生定时中断。

Timer 输出的 PWM 周期 TPWM 计算公式如下:

$$Tpwm = \frac{PWMPDX[15:0] + 1}{fsvs}$$

占空比 duty 计算公式:

$$duty = \frac{PDTxy [15:0]}{PWMPDX[15:0] + 1}$$

PWM 周期通过以下寄存器设定:

RCAPXH (CBH)

PWMn 周期寄存器高 8 位(读/写)

注意: PWM2/3/4 的周期寄存器与 Timer2, Timer3, Timer4 复用, 因此, 用户一旦使用了 PWM2、PWM3、PWM4 资源, 就不能再更改 Timer2, Timer3, Timer4 的定时/计数值, 否则会导致 PWM 周期输出异常!

> (41)	70 1 HO14 ~~			Hayena		12 12	7.4794 104 0017	1 114 .
位编号	7	6	5	4	3	2	1	0
符号				PWMPD	DHX[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

RCAPXL (CAH)

PWMn 周期寄存器低 8 位(读/写) (TXINX[2:0] = 010)

注意: PWM2/3/4 的周期寄存器与 Timer2, Timer3, Timer4 复用,因此,用户一旦使用了 PWM2、PWM3、PWM4 资源,就不能再更改 Timer2, Timer3, Timer4 的定时/计数值,否则会导致 PWM 周期输出异常!

位编号	7	6	5	4	3	2	1	0
符号				PWMP	DLX[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	PWMPDX[15:0]	PWMn 周期设置 此数值代表 PWMn 的输出波形的 (周期 – 1); 也就是说 PWMn 输出的周期值为 (PWMPDX[15:0] + 1) * PWM 时钟;

PWM 的 duty 通过以下寄存器设定:

PWM2~4 占空比调节寄存器(读/写)

F VV IVIZ~4		1917年(安/	⊸)						
地址	7	6	5	4	3	2	1	0	上电初始值
2034H				PDT2	0[15:8]				0000000b
2035H				PDT2	20[7:0]				0000000b
2036H				PDT2	1[15:8]				0000000b
2037H				PDT2	21[7:0]				0000000b
2038H				PDT3	0[15:8]				0000000b
2039H		PDT30[7:0]							
203AH		PDT31[15:8]							
203BH				PDT3	31[7:0]				00000000b

Page 76 of 144 V0.4

203CH	PDT40[15:8]	0000000b
203DH	PDT40[7:0]	0000000b
203EH	PDT41[15:8]	0000000b
203FH	PDT41[7:0]	0000000b

位编号	位符号	说明
7~0	PDTxy[15:0]	PWMxy波形占空比长度设置
	(x=2~4, y=0~1)	PWMxy 的波形的高电平宽度 为:
		(PDTxy[15:0] + 1)个 PWM 时钟

12.2 PWM2/3/4 占空比变化特性

当 PWM2/3/4 输出波形时,若需改变占空比,可通过改变高电平设置寄存器 PDTxy(x=2~4, y=0~1)的值 实现。但需要注意:更改 PDTxy 的值,占空比不会立即改变,而是等待本周期结束,在下个周期改变。

12.3 PWM2/3/4 周期变化特性

当 PWM2/3/4 输出波形时,若需改变周期,可通过改变周期设置寄存器组 TLX 和 THX 的值实现。更改周期 寄存器的值,PWM输出周期变化情况如下:

定义当前周期计数值为 Tn,写入周期寄存器时,定时器计到的值为 Tm,待更新的周期计数值为 Tx,则: Tm≤Tx: 周期按照Tx实时改变;

Tm > Tx: 此时周期变化会分为两个阶段。第一个阶段,写入周期寄存器之后,周期计数器会从当前计数值 累加至溢出清零。第二个阶段,周期按照 Tx 改变。

Page 77 of 144 V0.4

13 多功能脉冲宽度调制计数器 PWM0

SC95F876X 提供 14 路 PWM, 这 14 路 PWM 分为两类:

- 1. 多功能 PWM: PWM0, 共8路: PWM00~07:
- 2. 常规 PWM: 共 6 路,分为三组: PWM2、PWM3、PWM4。注意:这三组 PWM 的周期寄存器分别与 Timer2, Timer3, Timer4 的 TLX 和 THX 共用,因此一旦用户使用了 PWM2、PWM3、PWM4 资源, 就不能再更改 Timer2, Timer3, Timer4 的定时/计数值, 否则会导致 PWM 周期输出异常!

SC95F876X 的 PWM0 具有的功能如下:

- 16 位 PWM 精度;
- 输出波形可反向;
- 3. 类型:可设为中心对齐型或边沿对齐型;
- 4. 模式:可设为独立模式或互补模式:
 - a) 独立模式下,8路PWM周期相同,但每一路PWM输出波形的占空比单独可设置;
 - b) 互补模式下可同时输出四组互补、带死区的 PWM 波形:
- 5. 提供 1 个 PWM 溢出的中断;
- 支持故障检测机制。

SC95F876X的PWM可支持周期及占空比的调整,寄存器PWMCFG、PWMCON0和PWMCON1控制PWM 的状态及周期,各路 PWM 的打开及输出波形占空比可单独调整。

13.1 PWM0 结构框图

SC95F876X PWM 结构框图

Page 78 of 144 V0.4

13.2 PWM0 通用配置寄存器

13.2.1 PWM0 通用配置寄存器

用户可以通过配置 PWMMD[1:0]将 SC95F876X 的 PWM 输出模式设为独立模式或互补模式。独立模式下 8 BWM 周期相同,但每一路 PWM 输出波形的占空比单独可设置。互补模式下可同时输出四组互补、带死区的 PWM 波形。

SC95F876X 的 PWM 类型分为边沿对齐型和中心对齐型:

边沿对齐型:

PWM 计数器从 0 开始向上计数,当计数值与占空比设置项 PDT0x [15:0]的值匹配时 PWM 输出波形切换高低电平,接着 PWM 计数器继续向上计数直至与周期设置项 PWMPD[15:0] +1 的值匹配(一个 PWM 周期结束),PWM 计数器清零,如果 PWM 中断已使能,此时会产生 PWM 中断。PWM 输出波形为左边沿对齐方式。

边沿对齐型周期 TPWM 计算公式:

边沿对齐型占空比 duty 计算公式:

$$duty = \frac{PDT0x [15:0]}{PWMPD[15:0] + 1}$$

边沿对齐波形图如下:

边沿对齐的 PWM

中心对齐型:

PWM 计数器从 0 开始向上计数,当计数值与占空比设置项 PDT0x [15:0]的值匹配时 PWM 输出波形切换高低电平,接着 PWM 计数器继续向上计数,当计数值与周期设置项 PWMPD[15:0] +1 的值匹配时(即 PWM 周期的中点)自动开始向下计数,当计数值与 PDT0x [15:0]的值再次匹配时 PWM 输出波形再次切换高低电平,接着 PWM 计数器继续向下计数直至溢出(一个 PWM 周期结束),如果 PWM 中断已使能,此时会产生 PWM 中断。

中心对齐型周期 TPWM 计算公式:

$$Tpwm = 2 * \frac{PWMPD[15:0] + 1}{PWM 时钟频率}$$

中心对齐型占空比 duty 计算公式:

 $duty = \frac{PDT0x [15:0]}{PWMPD[15:0] + 1}$

中心对齐波形图如下:

中心对齐的 PWM

以上模式及类型可通过 PWMCON0 寄存器设置:

PWMCON0 (D2H) PWM 控制寄存器 0(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENPWM	PWMIF	PWMCK[1:0]		-	-	PWMN	/ID[1:0]
读/写	读/写	读/写	读/写	读/写	-	-	读/写	读/写
上电初始值	0	0	0	0	x	Х	0	0

位编号	位符号	说明
7	ENPWM	PWM 模块开关控制(Enable PWM)
		1: 允许 Clock 进到 PWM 单元,PWM 处于工作状态,PWM 输出口的
		状态由寄存器 ENPWMx 控制(x=0~7)
		0: PWM 单元停止工作, PWM 计数器清零,全部 PWM 输出口设置为
		GPIO 状态
6	PWMIF	PWM 中断请求标志位(PWM Interrupt Flag)
		当 PWM 计数器溢出时(也就是说: 数到超过 PWMPD 时), 此位会被硬
		件自动设定成 1。如果此时 IE1[1] (EPWM) 也是被设定成 1, PWM 的
		中断产生。在 PWM 中断发生后,硬件并不会自动清除此位,此位必
		须由使用者的软件负责清除。
5~4	PWMCK[1:0]	PWM 时钟档位选择(PWM Clock Source Selector)
		00: fhrc
		01: f _{HRC} /2
		10: fhrc/4
		11: f _{HRC} /8
		注意: PWM 的时钟源频率固定为 fhrc = 32MHz
1~0	PWMMD[1:0]	PWM工作模式设置
		Ox: 独立模式

Page 80 of 144 V0.4

		1x: 互补模式 x0: 边沿对齐模式 x1: 中心对齐模式
3~2	-	保留

PWMCFG (D1H) PWM 设置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	INV7	INV6	INV5	INV4	INV3	INV2	INV1	INV0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
6	INVx	PWMx波形输出反向控制
	(x=0~7)	1: PWMx 波形输出反向
		0: PWMx 波形输出不反向

PWMCON1 (D3H) PWM 控制寄存器 1 (读/写)

	11										
位编号	7	6	5	4	3	2	1	0			
符号	EPWM7	EPWM6	EPWM5	EPWM4	EPWM3	EPWM2	EPWM1	EPWM0			
读/写											
上电初始值	0	0	0	0	0	0	0	0			

位编号	位符号	说明
7~0	ENPWM x	PWMx 波形输出选择
	(x=0~7)	0: PWMx 输出被关闭并作为 GPIO 口 ¹
		1: 当 ENPWM=1 时,PWMx 所在的 I/O 作为波形输出口

注:

1. 如果 ENPWM 置 1,PWM 模块被打开,但 ENPWMx=0,PWM 输出被关闭并作为 GPIO 口。此时 PWM 模块 可以作为一个 16 位 Timer 使用,此时 EPWM(IE1.1)被置 1,PWM 仍然会产生中断。

PWMPDL (D4H) 周期寄存器低 8 位(读/写)

位编号	7	6	5	4	3	2	1	0		
符号		PWMPDL[7:0]								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	0	0	0	0	0	0	0	0		

PWMPDH (D5H) 周期寄存器高 8 位(读/写)

位编号	7	6	5	4	3	2	1	0	
符号		PWMPDH[7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

位编号	位符号	说明
7~0	PWMPD[15:0]	PWM 共用的周期设置 此数值代表 PWM 输出波形的 (周期 – 1); 也就是说 PWM 输出的周期值 为 (PWMPD[15:0] + 1) * PWM 时钟;

IE1 (A9H) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ET4	ET3	ECMP	ETK	EINT2	EBTM	EPWM	EUSCI0
读/写	读/写	读/写	读写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

Page 81 of 144 V0.4

位编号	位符号	说明
1	EPWM	PWM 中断使能控制
		0: 关闭 PWM 中断
		1: 允许 PWM 计数器溢出时产生中断

IP1 (B9H) 中断优先权寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	IPT4	IPT3	IPCMP	IPTK	IPINT2	IPBTM	IPPWM	IPUSCI0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
1		PWM 中断优先权选择 0: 设定 PWM 的中断优先级是 "低" 1: 设定 PWM 的中断优先级是 "高"

13.2.2 PWM0 故障检测功能设置

故障检测功能常应用于电机系统的防护。当故障检测功能开启,FLTEN1 (PWMFLT.7)置 1,故障检测信号输入脚(FLT) 生效。当 FLT 管脚的信号满足故障条件,标志位 FLTSTA1 通过硬件置 1, PWM 输出停止,PWM 计数器仍保持计数,PWM 中断不受影响。故障检测模式分为锁存模式和立即模式;立即模式下,当 FLT 管脚上的故障信号满足失能条件,标志位 FLTSTA1 通过硬件清零,直到 PWM 计数器归零后 PWM 恢复输出;锁存模式下,当 FLT 管脚上的故障信号满足失能条件,标志位 FLTSTA1 状态保持不变,用户可通过软件清零,FLTSTA1 状态一旦清零,PWM 计数器恢复计数,直到 PWM 计数器归零后 PWM 恢复输出。故障检测模式分为锁存模式和立即模式具体配置方式如下:

PWMFLT (D7H) PWM 故障检测设置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	FLTEN1	FLTSTA1	FLTMD1	FLTLV1	-	-	FLTD	Γ1[1:0]
读/写	读/写	读写	读/写	读/写	-	-	读/写	读/写
上电初始值	0	0	0	0	Х	Х	0	0

位编号	位符号	说明
7	FLTEN1	PWM 故障检测功能控制位
		0: 故障检测功能关闭
		1: 故障检测功能开启
6	FLTSTA1	PWM 故障检测状态标志位
		0: PWM 处于正常输出状态;
		1: 故障检测有效,PWM输出处于高阻状态,如果处于锁存模式,此位
		可软件清 0
5	FLTMD1	PWM 故障检测模式设置位
		0: 锁存模式,当故障输入有效时,FLTSTA1 被置"1",PWM 停止输
		出,当故障输入无效时 FLTSTA1 状态不变
		1: 立即模式: 当故障输入有效时, FLTSTA1 被置"1", PWM 停止输
		出,当故障输入无效时 FLTSTA1 状态立刻被清零,PWM 波形将在
		PWM 计数器计数到 0 时恢复输出
4	FLTLV1	PWM 故障检测电平选择位
		0: 故障检测低电平有效
		1: 故障检测高电平有效
1~0	FLTDT1[1:0]	PWM 故障检测输入信号滤波时间设置
		00: 滤波时间为 0
		01: 滤波时间为 1us
		10: 滤波时间为 4us

Page 82 of 144 V0.4

		11: 滤波时间为 16us
3~2	•	保留

13.3 PWM0 独立模式

独立模式下(PWMMD.1=0),8 路 PWM 通道的占空比均可独立设置。用户配置好 PWM 的输出状态及周期,再通过配置相应 PWM 通道的占空比寄存器即可按固定占空比输出 PWM 波形。

13.3.1 PWM0 独立模式框图

SC95F876X PWM 独立模式框图

Page 83 of 144

13.3.2 PWM0 独立模式占空比配置

PWM0 占空比调节寄存器 PDT0x (读/写)

	1 1 - 4 11 Hr (57 - 4)
2040H	PDT00[15:8]
2041H	PDT00[7:0]
2042H	PDT01[15:8]
2043H	PDT01[7:0]
2044H	PDT02[15:8]
2045H	PDT02[7:0]
2046H	PDT03[15:8]
2047H	PDT03[7:0]
2048H	PDT04[15:8]
2049H	PDT04[7:0]
204AH	PDT05[15:8]
204BH	PDT05[7:0]
204CH	PDT06[15:8]
204DH	PDT06[7:0]
204EH	PDT07[15:8]
204FH	PDT07[7:0]

位编号	位符号	说明
7~0	PDT0x [15:0]	PWM0x 波形占空比长度设置
	(x=0~7)	PWM0x 的波形的高电平宽度 是 (PDT0x [15:0])个 PWM 时钟

13.4 PWM0 互补模式

13.4.1 PWM0 互补模式框图

SC95F876X PWM 互补模式框图

Page 84 of 144 V0.4

13.4.2 PWM 互补模式占空比配置

互补模式下(PWMMD[1:0] = 1x), PWM00/PWM01, PWM02/PWM03, PWM04/PWM05 和 PWM06/PWM07 分为四组,分别通过 PDT00[15:0]、PDT02[15:0]、PDT04[15:0]和 PDT06[15:0]调节占空比;

互补模式下寄存器 PDT01[15:0]、PDT03[15:0]、PDT05 [15:0]和 PDT07[15:0]无效。

PWM0 占空比调节寄存器 PDT0x(读/写)

H =(-	2. 47	
2040H	PDT00[15:8]	
2041H	PDT00[7:0]	
2042H	PDT01[15:8]	
2043H	PDT01[7:0]	
2044H	PDT02[15:8]	
2045H	PDT02[7:0]	
2046H	PDT03[15:8]	
2047H	PDT03[7:0]	
2048H	PDT04[15:8]	
2049H	PDT04[7:0]	
204AH	PDT05[15:8]	
204BH	PDT05[7:0]	
204CH	PDT06[15:8]	
204DH	PDT06[7:0]	
204EH	PDT07[15:8]	
204FH	PDT07[7:0]	·

位编号	位符号	说明
7~0	PDT0x [15:0] (x=0~7)	PWM0x 和 PWM0y, y=x+1 口 PWM 波形占空比长度设置 Px 和 Py 管脚上的 PWM 波形的高电平宽度是 (PDT0x [15:0])个 PWM 时钟

注:

1. 如果 ENPWM 置 1, PWM 模块被打开,但 ENPWMx=0,PWM 输出被关闭并作为 GPIO 口。此时 PWM 模块 可以作为一个 16 位 Timer 使用,此时 EPWM(IE1.1)被置 1,PWM 仍然会产生中断。

13.4.3 PWM0 互补模式死区时间设置

当 SC95F876X 的 PWM0 工作在互补模式时,死区控制模块能够防止互补输出的两路 PWM 信号有效时区的 互相交叠,以保证实际应用中 PWM 信号驱动的一对互补功率开关管不会同时导通。

PWMDFR (D6H) PWM0 死区时间设置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号		PDF	[3:0]			PDR	[3:0]	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~4	PDF[3:0]	互补模式:
		PWM 下降沿死区时间= 4*PDF[3:0] / f _{HRC}
3~0	PDR[3:0]	互补模式:
		PWM 上升沿死区时间= 4*PDR[3:0] / f _{HRC}

13.4.4 PWM0 死区输出波形

下图是以 PWM00 和 PWM01 在互补模式下的死区时间调整波形图,为了便于区分,PWM01 已反向 (INV1=1) 。

Page 85 of 144 V0.4 http://www.socmcu.com

PWM0 死区输出波形

13.5 PWM0 波形及用法

各 SFR 参数改变对 PWM0 波形影响如下所述:

1 占空比变化特性

当 PWMOn 输出波形时,若需改变占空比,可通过改变高电平设置寄存器(PDT0x)的值实现。但需要注意:更改 PDT0x 的值,占空比不会立即改变,而是等待 PWM 计数器计数到 0 或向上计数至与周期设置项 PWMPD[15:0] +1 的值匹配时改变。

② 周期变化特性

当 PWM 输出波形时,若需改变周期,可通过改变周期设置寄存器 PWMPD 的值实现。更改 PWMPD 的值, 周期不会立即改变, 而是等待 PWM 计数器计数到 0 或向上计数至与周期设置项 PWMPD[15:0] +1 的值匹配时改 变,参考上图所示。

③ 周期和占空比的关系

周期与占空比关系图

周期和占空比的关系如上图所示。该结果的前提是 PWM 输出反向控制(INVx, x=0~7)初始为 0, 若需得到相 反结果,可置 INVx 为 1。

Page 87 of 144 V0.4

14 GP I/O

SC95F876X 提供了最多 46 个可控制的双向 GPIO 端口,输入输出控制寄存器用来控制各端口的输入输出状 态, 当端口作为输入时, 每个 I/O 端口带有由 PxPHy 控制的内部上拉电阻。此 46 个 IO 同其他功能复用, 其中 P3 可以通过设置输出 1/4V_{DD} 或 1/3V_{DD} 的电压,可用来作为 LCD 显示的 COM 驱动。I/O 端口在输入或输出状态下, 从端口数据寄存器里读到的都是端口的实际状态值。

注意:未使用及封装未引出的 IO 口均要设置为强推挽输出模式。

14.1 GPIO 结构图

强推挽输出模式

强推挽输出模式下,能够提供持续的大电流驱动:

- 除 P04/P05/P06 之外的 IO 驱动能力为:大于 10mA 的输出高,大于 50mA 的输出低。
- P04/P05/P06 驱动能可达到: 大于 20mA 的输出高,大于 50mA 的输出低。 强推挽输出模式的端口结构示意图如下:

强推挽输出模式

带上拉的输入模式

带上拉的输入模式下,输入口上恒定接一个上拉电阻,仅当输入口上电平被拉低时,才会检测到低电平信号。 带上拉的输入模式的端口结构示意图如下:

带上拉的输入模式

高阻输入模式(Input only)

高阻输入模式的端口结构示意图如下所示:

Page 88 of 144 V0.4

高阻输入模式

14.2 I/O 端口相关寄存器

P0CON (9AH) P0 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P0C7	P0C6	P0C5	P0C4	P0C3	P0C2	P0C1	P0C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P0PH (9BH) P0 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0		
符号	P0H7	P0H6	P0H5	P0H4	P0H3	P0H2	P0H1	P0H0		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	0	0	0	0	0	0	0	0		

P1CON (91H) P1 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P1C7	P1C6	P1C5	P1C4	P1C3	P1C2	P1C1	P1C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P1PH (92H) P1 口上拉电阻控制寄存器(读/写)

1- 1	- 1 - 1	-4	1.34. 47					
位编号	7	6	5	4	3	2	1	0
符号	P1H7	P1H6	P1H5	P1H4	P1H3	P1H2	P1H1	P1H0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P2CON (A1H) P2 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P2C7	P2C6	P2C5	P2C4	P2C3	P2C2	P2C1	P2C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P2PH (A2H) P2 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P2H7	P2H6	P2H5	P2H4	P2H3	P2H2	P2H1	P2H0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P3CON (B1H) P3 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P3C7	P3C6	P3C5	P3C4	P3C3	P3C2	P3C1	P3C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

Page 89 of 144 V0.4

P3PH (B2H) P3 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P3H7	P3H6	P3H5	P3H4	P3H3	P3H2	P3H1	P3H0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P4CON (C1H) P4 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P4C7	P4C6	P4C5	P4C4	P4C3	P4C2	P4C1	P4C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P4PH (C2H) P4 口上拉电阻控制寄存器(读/写)

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
位编号	7	6	5	4	3	2	1	0	
符号	P4H7	P4H6	P4H5	P4H4	P4H3	P4H2	P4H1	P4H0	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

P5CON (D9H) P5 口输入/输出控制寄存器(读/写)

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \									
位编号	7	6	5	4	3	2	1	0		
符号	-	-	P5C5	P5C4	P5C3	P5C2	P5C1	P5C0		
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	х	х	0	0	0	0	0	0		

P5PH (DAH) P5 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0		
符号	-	-	P5H5	P5H4	P5H3	P5H2	P5H1	P5H0		
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	х	X	0	0	0	0	0	0		

位编号	位符号	说明
7~0	PxCy	Px 口输入输出控制:
	(x=0~4, y=0~7	0: Pxy 为输入模式(上电初始值)
	x=5, y=0~5)	1: Pxy 为强推挽输出模式
7~0	PxHy	Px 口上拉电阻设置,仅在 PxCy=0 时有效:
	(x=0~4, y=0~7	0: Pxy 为高阻输入模式(上电初始值),上拉电阻关闭;
	x=5, y=0~5)	1: Pxy 上拉电阻打开

P0 (80H) P0 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P1 (90H) P1 口数据寄存器(读/写)

(,	· >>< AH -4 11 HH /	(// / / / / / / / / / / / / / / / / / 						
位编号	7	6	5	4	3	2	1	0
符号	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

Page 90 of 144 V0.4

P2 (A0H) P2 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P3 (B0H) P3 口数据寄存器(读/写)

		(,						
位编号	7	6	5	4	3	2	1	0
符号	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P4 (C0H) P4 口数据寄存器(读/写)

	221411 4 14 141	1						
位编号	7	6	5	4	3	2	1	0
符号	P4.7	P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P5 (D8H) P5 口数据寄存器(读/写)

		\'						
位编号	7	6	5	4	3	2	1	0
符号	-	-	P5.5	P5.4	P5.3	P5.2	P5.1	P5.0
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	х	х	0	0	0	0	0	0

位编号	位符号	说明
7~0	P0.x	P0 口锁存寄存器数据
	(x=0~7)	
7~0	P1.x	P1 口锁存寄存器数据
	(x=0~7)	
7~0	P2.x	P2 口锁存寄存器数据
	(x=0~7)	
7~0	P3.x	P3 口锁存寄存器数据
	(x=0~7)	
7~0	P4.x	P4 口锁存寄存器数据
	(x=0~7)	
5~0	P5.x	P5 口锁存寄存器数据
	(x=0~5)	

IOHCON0 (96H) IOH 设置寄存器 0(读/写)

		177	• /					
位编号	7	6	5	4	3	2	1	0
符号	P1H	[1:0]	P1L	[1:0]	P0H	[1:0]	P0L	[1:0]
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~6	P1H[1:0]	P1 高四位 IOH 设置 O0: 设置 P1 高四位 IOH 等级 0 (最大); O1: 设置 P1 高四位 IOH 等级 1; 10: 设置 P1 高四位 IOH 等级 2; 11: 设置 P1 高四位 IOH 等级 3 (最小);
5~4	P1L[1:0]	P1 低四位 IOH 设置

Page 91 of 144 V0.4

		00:设置 P1 低四位 IOH 等级 0 (最大);
		01:设置 P1 低四位 IOH 等级 1;
		10: 设置 P1 低四位 IOH 等级 2;
		11: 设置 P1 低四位 IOH 等级 3 (最小);
3~2	P0H[1:0]	P0 高四位 IOH 设置
		00:设置 P0 高四位 IOH 等级 0 (最大);
		01: 设置 P0 高四位 IOH 等级 1;
		10: 设置 P0 高四位 IOH 等级 2;
		11: 设置 P0 高四位 IOH 等级 3 (最小);
1~0	P0L[1:0]	P0 低四位 IOH 设置
		00:设置 P0 低四位 IOH 等级 0 (最大);
		01: 设置 P0 低四位 IOH 等级 1;
		10: 设置 P0 低四位 IOH 等级 2;
		11: 设置 P0 低四位 IOH 等级 3 (最小);

IOHCON1 (97H) IOH 设置寄存器 1(读/写)

101100111 (011	7	4 14 19 - / 12/1-	- 7/					
位编号	7	6	5	4	3	2	1	0
符号	-	-	P3L[1:0]		P2H[1:0]		P2L[1:0]	
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	Х	0	0	0	0	0	0

位编号	位符号	说明
5~4	P3L[1:0]	P3 低四位 IOH 设置
		00: 设置 P3 低四位 IOH 等级 0 (最大);
		01: 设置 P3 低四位 IOH 等级 1;
		10: 设置 P3 低四位 IOH 等级 2;
		11: 设置 P3 低四位 IOH 等级 3 (最小);
3~2	P2H[1:0]	P2 高四位 IOH 设置
		00: 设置 P2 高四位 IOH 等级 0 (最大);
		01: 设置 P2 高四位 IOH 等级 1;
		10: 设置 P2 高四位 IOH 等级 2;
		11: 设置 P2 高四位 IOH 等级 3 (最小);
1~0	P2L[1:0]	P2 低四位 IOH 设置
		00: 设置 P2 低四位 IOH 等级 0 (最大);
		01: 设置 P2 低四位 IOH 等级 1;
		10: 设置 P2 低四位 IOH 等级 2;
		11:设置 P2 低四位 IOH 等级 3(最小);
7~6	-	保留

Page 92 of 144 V0.4

15 LCD/LED 显示驱动

SC95F876X 内部集成了硬件的 LCD/LED 显示驱动电路,可方便用户实现 LCD 和 LED 的显示驱动。其主要 特点如下:

- 1. LCD 和 LED 显示驱动二选一;
- 2. LCD 和 LED 显示驱动共用相关 IO 口和寄存器。

LCD 显示驱动功能如下:

- 1. 4种显示驱动模式可选: 8 X 24、6 X 26、5 X 27、或 4X 28 段;
- 2. 2种偏置方式可选: 1/4 Bias 和 1/3 Bias;
- 3. COM 口驱动能力 4 级可选;
- 4. 显示驱动电路可选择内建 32kHz LRC 或外部 32.768kHz 振荡器作为时钟源, 帧频约为 64Hz。

注意: 当用户所使用 LCD 屏的驱动帧频不是 64Hz 时,建议联系赛元技术人员,咨询解决方案。

LED 显示驱动功能如下:

- 1. 4种显示驱动模式可选: 8 X 24、6 X 26、5 X 27、或 4X 28 段;
- 2. SEG 口驱动能力 4 级可选;
- 显示驱动电路可选择内建 32kHz LRC 或外部 32.768kHz 振荡器作为时钟源, 帧频约为 64Hz。

15.1 LCD/LED 显示驱动相关寄存器

DDRCON (93H) 显示驱动控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	DDRON	DMOD	DUT	Y[1:0]		VLC	D[3:0]	
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明					
7	DDRON	LCD/LED 显示驱动使能控制					
		0: 显示驱动扫描关闭					
		1 : 显示驱动扫描打开					
6	DMOD	LCD/LED 显示驱动模式					
		0: LCD 模式;					
		1: LED 模式					
5~4	DUTY[1:0]	LCD/LED 显示占空比控制					
		00: 1/8 占空比,S4~S27 为 segment,C0~C7 为 common;					
		01: 1/6 占空比,S2~S27 为 segment,C2~C7 为 common;					
		10: 1/5 占空比,S1~S27 为 segment,C3~C7 为 common;					
		11: 1/4 占空比, S0~S27为 segment, C4~C7为 common, 或 S4~S27					
		为 segment,C0~C3 为 common					
3~0	VLCD[3:0]	LCD 电压调节					
		VLCD=V _{DD} *(17+VLCD[3:0])/32					

P0VO (9CH) P0 口显示驱动输出寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P07VO	P06VO	P05VO	P04VO	P03VO	P02VO	P01VO	P00VO
读/写								
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	P0nVO	打开 P0n 口显示驱动输出

Page 93 of 144 V0.4 http://www.socmcu.com

	0: 关闭 P0n 口的显示驱动输出功能
	1: 打开 P0n 口的显示驱动输出功能

P1VO (94H) P1 口显示驱动输出寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P17VO	P16VO	P15VO	P14VO	P13VO	P12VO	P11VO	P10VO
读/写								
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明	
7~0	P1nVO	打开 P1n 口显示驱动输出	
		0: 关闭 P1n 口的显示驱动输出功能	
		1: 打开 P1n 口的显示驱动输出功能	

P2VO (A3H) P2 口显示驱动输出寄存器(读/写)

		4 144 14 14 VU	121 17					
位编号	7	6	5	4	3	2	1	0
符号	P27VO	P26VO	P25VO	P24VO	P23VO	P22VO	P21VO	P20VO
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	P2nVO	打开 P2n 口显示驱动输出
		0: 关闭 P2n 口的显示驱动输出功能
		1: 打开 P2n 口的显示驱动输出功能

P3VO (B3H) P3 口显示驱动输出寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P37VO	P36VO	P35VO	P34VO	P33VO	P32VO	P31VO	P30VO
读/写								
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	P3nVO	打开 P3n 口显示驱动输出
		0: 关闭 P3n 口的显示驱动输出功能
		1: 打开 P3n 口的显示驱动输出功能

OTCON (8FH) 输出控制寄存器(读/写)

	位编号	7	6	5	4	3	2	1	0
Ī	符号	USMD1[1:0]		USME	00[1:0]	VOIRS[1:0]		SCS	BIAS
Ī	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
Ī	上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明							
3~2	VOIRS[1:0]	LCD 电压输出口分压电阻选择(根据 LCD 屏大小选择适合的驱动)							
		00:设定内部分压电阻总电阻值为 100kΩ							
		01:设定内部分压电阻总电阻值为 200kΩ							
		10: 设定内部分压电阻总电阻值为 400kΩ							
		11:设定内部分压电阻总电阻值为 800kΩ							
		每次 Common 切换时,前 1/16 时间固定选择 100k 电阻,后 15/16 时间							
		切换到 VORIS 选择的电阻值							
1	SCS	LCD/LED Segment/Common 复用管脚选择							

Page 94 of 144 V0.4

		0: 当设定为 1/4 占空比时,S0~S27 为 segment,C4~C7 为 common 1: 当设定为 1/4 占空比时,S4~S27 为 segment,C0~C3 为 common
0	BIAS	LCD 显示驱动偏置电压设置:
		0: 1/4 偏置电压;
		1: 1/3 偏置电压

15.2 LCD/LED 显示 RAM 配置

地址	7	6	5	4	3	2	1	0
	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0
2000H	SEG0							
2001H	SEG1							
2002H	SEG2							
2003H	SEG3							
2004H	SEG4							
2005H	SEG5							
2006H	SEG6							
2007H	SEG7							
2008H	SEG8							
2009H	SEG9							
200AH	SEG10							
200BH	SEG11							
200CH	SEG12							
200DH	SEG13							
200EH	SEG14							
200FH	SEG15							
2010H	SEG16							
2011H	SEG17							
2012H	SEG18							
2013H	SEG19							
2014H	SEG20							
2015H	SEG21							
2016H	SEG22							
2017H	SEG23							
2018H	SEG24							
2019H	SEG25							
201AH	SEG26							
201BH	SEG27							

Page 95 of 144 V0.4

15.3 LCD 波形

15.3.1 1/3Bias LCD 波形

1/3 Bias LCD 选通和非选通电压

1/3 Bias LCD 应用中 COM 和 SEG 的波形图

15.3.2 1/4Bias LCD 波形

1/4 Bias LCD 选通和非选通电压

1/4 Bias LCD 应用中 COM 和 SEG 的波形图

15.4 LED 波形

LED 应用中 COM 和 SEG 的波形图

15.5 LCD/LED 例程

15.5.1 LCD 配置例程

unsigned char xdata LCDRAM[30] _at_ 0x2000; unsigned char lcd_addr; unsigned char lcd_data;

DDRCON |= 0x00; //0: LCD 模式 1: LED 模式

//1/4 偏置电压; S4~S27 为 segment, C0~C3 为 common

LCDRAM[lcd_addr] = lcd_data; //向 LCD RAM 写入待显示的值

15.5.2 LED 配置例程

unsigned char xdata LEDRAM[30] _at_ 0x2000; unsigned char led_addr; unsigned char led_data;

DDRCON |= 0x4F; //0: LCD 模式 1: LED 模式

//LED 模式; 1/8 占空比

//S4~S27 为 segment, C0~C7 为 common;

DDRCON |= 0x80; //显示驱动扫描打开

IOHCON0 = 0xC0; //设置 P1 高四位 IOH 等级 3 (最小), 其它管脚 IOH 等级 0 (最大)

IOHCON1 = 0x00;

 P0VO = 0xFF;
 // 打开 P0 口的显示驱动输出功能

 P1VO = 0xFF;
 // 打开 P1 口的显示驱动输出功能

 P2VO = 0xFF;
 // 打开 P2 口的显示驱动输出功能

 P3VO = 0xFF;
 // 打开 P3 口的显示驱动输出功能

OTCON = 0x00;

LCDRAM[led_addr] = led_data; //向 LED RAM 写入待显示的值

Page 99 of 144 V0.4 http://www.socmcu.com

16 UARTO

SC95F876X支持一个全双工的串行口,可方便用于同其它器件或者设备的连接,例如Wifi模块电路或其它UART通信接口的驱动芯片等。UART0的功能及特性如下:

- 1. 三种通讯模式可选:模式 0、模式 1 和模式 3;
- 2. 可选择定时器 1 或定时器 2 作为波特率发生器;
- 3. 发送和接收完成可产生中断 RI/TI,该中断标志需要软件清除。

SCON (98H) 串口控制寄存器(读/写)

位编号	位编号 7 6		5	4	3	2	1	0
符号	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~6	SM0~1	串行通信模式控制位 00:模式 0,8 位半双工同步通信模式,在 RX 引脚上收发串行数据。 TX 引脚用作发送移位时钟。每帧收发 8 位,低位先接收或发送; 01:模式 1,10 位全双工异步通信,由 1 个起始位,8 个数据位和 1 个停止位组成,通信波特率可变;
		10: 保留: 11: 模式 3,11 位全双工异步通信,由 1 个起始位,8 个数据位,一个可编程的第 9 位和 1 个停止位组成,通信波特率可变。
5	SM2	串行通信模式控制位 2,此控制位只对模式 3 有效 0:每收到一个完整的数据帧就置位 RI 产生中断请求; 1:收到一个完整的数据帧时,只有当 RB8=1 时才会置位 RI 产生中断请求。 波特率倍率设置位,仅在模式 0 (SM0~1 = 00)有效: 0:串行端口在系统时钟的 1/12 下运行 1:串行端口在系统时钟的 1/4 下运行
4	REN	接收允许控制位 0: 不允许接收数据; 1: 允许接收数据。
3	TB8	只对模式3有效,为发送数据的第9位
2	RB8	只对模式3有效,为接收数据的第9位
1	TI	发送中断标志位
0	RI	接收中断标志位

SBUF (99H) 串口数据缓存寄存器(读/写)

位编号	7	6	5	4	3	2	1	0		
符号		SBUF[7:0]								
读/写	读/写 读/写 读/写 读/写 读/写				读/写	读/写	读/写			
上电初始值	0	0	0	0	0	0	0	0		

位编号	位符号	说明
7~0	SBUF[7:0]	申口数据缓存寄存器 SBUF 包含两个寄存器:一个发送移位寄存器和一个接收锁存器,写入SBUF 的数据将送至发送移位寄存器,并启动发送流程,读 SBUF 将返回接收锁存器中的内容。

Page 100 of 144 V0.4

PCON (87H) 电源管理控制寄存器(只写、*不可读*)

位编号	7	6	5	4	3	2	1	0
符号	SMOD	-	-	-	RST	-	STOP	IDL
读/写	只写	-	-	-	只写	-	只写	只写
上电初始值	0	Х	Х	Х	n	Х	0	0

位编号	位符号	说明
7	SMOD	■ 当 SM0~1 = 01 (UARTO 模式 1) 或 SM0~1 = 11 (UARTO 模式
		3),波特率倍率设置位:
		0: 串行端口在系统时钟的 1 分频下运行
		1: 串行端口在系统时钟的 16 分频下运行

16.1 串口通信的波特率

方式 0 中,波特率可编程为系统时钟的 1/12 或 1/4:

- 1. SM2=0, 串行端口在系统时钟的 1/12 下运行;
- 2. SM2=1, 串行端口在系统时钟的 1/4 下运行。

在方式 1 和方式 3 中,串行端口时钟源可编程为系统时钟的 1 分频或 16 分频,由 SMOD(PCON.7)位决定。当 SMOD 为 0 时,串行端口在系统时钟的 1 分频下运行。当 SMOD 为 1 时,串行端口在系统时钟的 16 分频下运行。串行端口时钟源确定后,再由定时器 1 或定时器 2 设置波特率的溢出率:

● 当 TCLK(TXCON.4)和 RCLK(TXCON.5)位为均为 0,则定时器 1 为波特率发生器方式,UART0 的波特率溢出率由[TH1,TL1]设定。公式如下,注意:当定时器 1 作为波特率发生器,定时器 1 必须停止计数,即 TR1=0:

SMOD = 0: BaudRate =
$$\frac{\text{fsys}}{\text{[TH1,TL1]}}$$
; (注意: [TH1,7]

■ SMOD = 1: BaudRate =
$$\frac{1}{16} * \frac{\text{fsys}}{[\text{TH1,TL1}]}$$
;

● 当 TCLK(TXCON.4)或 RCLK(TXCON.5)其中任何一位为 1,则定时器 2 为波特率发生器方式,UART0的波特率溢出率由[RCAP2H、RCAP2L]设定,公式如下:

■ SMOD = 0: BaudRate =
$$\frac{\text{fsys}}{[\text{RCAP2H,RCAP2L}]}$$
; (注意: [RCAP2H,RCAP2L] 必须大于 0x0010)

SMOD = 1: BaudRate =
$$\frac{1}{16} * \frac{\text{fsys}}{[\text{RCAP2H,RCAP2L}]}$$

Page 101 of 144 V0.4

17 SPI/TWI/UART 三选一通用串行接口 USCI

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
US0CON0	95H	USCI0 控制寄存器 0		US0C			N0[7:0]				0000000b
US0CON1	9DH	USCI0 控制寄存器 1		US0CON1[7:0]					0000000b		
US0CON2	9EH	USCI0 控制寄存器 2		US0CON2[7:0]					0000000b		
US0CON3	9FH	USCI0 控制寄存器 3				US0CC	N3[7:0]				0000000b
US1CON0	A4H	USCI1 控制寄存器 0		US1CON0[7:0]			0000000b				
US1CON1	A5H	USCI1 控制寄存器 1		US1CON1[7:0]					0000000b		
US1CON2	A6H	USCI1 控制寄存器 2		US1CON2[7:0]				0000000b			
US1CON3	A7H	USCI1 控制寄存器 3				US1CC	N3[7:0]				0000000b
USXCON0	C4H	USCI2/3/4/5 控制寄存器 0				USXCC	N0[7:0]				0000000b
USXCON1	C5H	USCI2/3/4/5 控制寄存器 1				USXCC	N1[7:0]				0000000b
USXCON2	C6H	USCI2/3/4/5 控制寄存器 2				USXCC	N2[7:0]				0000000b
USXCON3	C7H	USCI2/3/4/5 控制寄存器 3				USXCC	N3[7:0]				00000000b
USXINX	DCH	USCI2/3/4/5 控制寄存器指针	-		-	-	-		USCIX[2:0]		xxxxx000b
TMCON	8EH	定时器频率控制寄存器	USMD	X[1:0]	-	-	1	-	T1FD	T0FD	00xxxx00b
OTCON	8FH	输出控制寄存器	USME	USMD1[1:0]			BIAS	00000000ь			

SC95F876X 内部集成了 6 个三选一通用串行接口电路(简称 USCI),可方便 MCU 与不同接口的器件或者 设备的连接。用户可通过配置寄存器 OTCON 的 USMD1[1:0]、USMD0[1:0] , 或 TMCON 的 USMDX[1:0]位将 USCIO~5接口配置为 SPI、TWI 和 UART 中任意一种通信模式。其特点如下:

- 1. USCIO 被设置为 SPIO 的时候相应的输出驱动能力增强,其他模式下跟普通 IO 特性一致。
- 2. SPI 模式可配置为主模式或从属模式中的一种,具备 8 位或 16 位传输模式
- 3. TWI 模式通信可配置为主模式或从属模式
- 4. UART 模式可工作在模式 0(8位半双工同步通信)、模式 1(10位全双工异步通信)和模式 3(11位 全双工异步通信)
- 5. USCI0/1/2/3/4/5 均为独立的 USCI 接口,需要注意的是: USCI2/3/4/5 的控制寄存器共用同一组地址 (C4H-C7H),用户可通过 USXINX[2:0]将 USCIX 寄存器组(USXCON0~3)指向 USCI2/3/4/5,从而实 现一组寄存器配置三个独立 USCI 接口的功能。

注意: 只有在 USXINX[2:0]配置成功后 USCIX 寄存器组才会指向用户指定的 USCI2/3/4/5, 此时操作 USCIX 寄存器组才是对相应 USCI 接口的有效操作。

具体配置方式如下:

USXINX (DCH) USCI2/3/4/5 控制寄存器指针(读/写)

位编号	7	6	5	4	3	2 1		0
符号	-	-	-	-	-	USCIX[2:0]		
读/写	-	-	-	-	-	读/写 读/写		读/写
上电初始值	X	х	Х	х	х	0	1	0

位编号	位符号	说明
2~0	USCIX[2:0]	USCI2/3/4/5 控制寄存器指针 010: USCIX 寄存器组(USXCON0~3 及 USMDX)指向 USCI2 011: USCIX 寄存器组指向 USCI3 100: USCIX 寄存器组指向 USCI4 101: USCIX 寄存器组指向 USCI5 其他: 保留
5~3	-	保留

OTCON (8FH) 输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	USMD1[1:0]		USMD0[1:0]		VOIRS[1:0]		SCS	BIAS
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

Page 102 of 144 V0 4

位编号	位符号	说明						
7~6	USMD1[1:0]	USCI1 通信模式控制位						
		00: USCI1 关闭						
		01: USCI1 设置为 SPI 通信模式;						
		10: USCI1 设置为 TWI 通信模式;						
		11: USCI1 设置为 UART 通信模式;						
5~4	USMD0[1:0]	USCIO 通信模式控制位						
		00: 保留						
		01: USCI0 设置为 SPI 通信模式;						
		10: USCI0 设置为 TWI 通信模式;						
		11: USCIO 设置为 UART 通信模式;						

TMCON (8EH) 定时器频率控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	USMDX[1:0]		-	-	-	-	T1FD	T0FD
读/写	读/写	读/写	-	-	-	-	读/写	读/写
上电初始值	0	0	х	Х	Х	X	0	0

以 始日	<i>除物</i> 口	万	TH AK			
位编号	位符号	条件	功能			
			USCI2 通信模式控制位			
			00: USCI2 关闭			
		USCIX = 010	01: USCI2 设置为 SPI 通信模式;			
			10: USCI2 设置为 TWI 通信模式;			
			11: USCI2 设置为 UART 通信模式;			
			USCI3 通信模式控制位			
			00: USCI3 关闭			
	USMDX[1:0]	USCIX = 011	01: USCI3 设置为 SPI 通信模式;			
			10: USCI3 设置为 TWI 通信模式;			
7.0			11: USCI3 设置为 UART 通信模式;			
7~6			USCI4 通信模式控制位			
			00: USCI4 关闭			
		USCIX = 100	01: USCI4 设置为 SPI 通信模式;			
			10: USCI4 设置为 TWI 通信模式;			
			11: USCI4 设置为 UART 通信模式;			
			USCI5 通信模式控制位			
			00: USCI5 关闭			
		USCIX = 101	01: USCI5 设置为 SPI 通信模式;			
			10: USCI5 设置为 TWI 通信模式;			
			11: USCI5 设置为 UART 通信模式;			

注意:

一个 USCI 接口可以通过 USMD 设置为不同的通信模式,这些通信模式均有对应的操作寄存器组。不同通信 模式的控制寄存器组共用了同一组映射地址,但各组之间的操作相互独立,设置其中一种通信模式下的控制寄存 器,不会影响到其它通信模式下的寄存器组里的值。

例如:

- 设置 USMD0 = 01, USCI0 为 SPI 通信接口,在此模式下设置 US0CON0 (95H) = 0x80H;
- 接着设置 USMD0 =11, USCI0 为 UART 通信接口,在此模式下设置 USOCON0 (95H) = 0x0FH;
- 再设置 USMD0 = 01, USCI0 再设置回 SPI 通信接口, 在此模式下读取 US0CON0 (95H), 应为 0x80H;
- 再设置 USMD0 =11, USCI0 再设置回 UART 通信接口,在此模式下读取 US0CON0 (95H),应为 0x0FH。

17.1 SPI

USMDn[1:0] = 01, n=0~5, 三选一串行接口 USCI 配置为 SPI 接口:

● USTXn 作为 MOSI 信号

Page 103 of 144 V0.4 http://www.socmcu.com

- USRXn 作为 MISO 信号
- USCKn 作为 CLK 信号

串行外部设备接口(简称 SPI)是一种高速串行通信接口,允许 MCU 与外围设备(包括其它 MCU)进行全双工,同步串行通信。

其中 USCIO 的 SPI 接口具有 16 位 8 级 FIFO 缓存,发送接收独立,即用户可以实现:

- 连续向 SPI 发送缓存(USOCON2、USOCON3)写入 8 个或 8 个以内的 16 位发送数据,SPI 发送的时候,最先写入的数据也最先被发送。当用户写入 FIFO 的数据被发送完成,发送缓存器空标志 TXE 置 1;若 FIFO 的数据已满,则写入冲突标志位 WCOL 置位,用户无法向 FIFO 写入数据,直至 FIFO 内的数据被发送出去、FIFO 不满,用户才能写入数据。当 FIFO 内的数据全部发送完毕才置起中断标志 SPIF。
- 连续从 SPI 接收缓存(US0CON2、US0CON3) 读取 8 个或 8 个以内的 16 位接收数据,最先接收到的数据也最先被读取到。
- 另外,当 USCIO 被设置为 SPIO 时,其信号口所对应管脚的驱动能力将增强。

对比BIT位	USCI1~5 的 SPI	USCI0 的 SPI
TXE	发送缓冲器为空,则置1	写入 FIFO 的数据发完,则置 1
WCOL	当一帧正在发送时,再写入会置 1,且写不进	写满 FIFO 后会置 1, FIFO 再写写不进
SPIF	发送完成,中断标志置起	FIFO 内的数据全部发送完毕才置起中断标志

17.1.1 SPI 操作相关寄存器

US0CON0 (95H) SPI0 控制寄存器(读/写) US1CON0 (A4H) SPI1 控制寄存器(读/写) USXCON0 (C4H) SPI2~5 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SPEN	-	MSTR	CPOL	СРНА	SPR2	SPR1	SPR0
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	Х	0	0	0	0	0	0

位编号	位符号	说明				
7	SPEN	SPI 使能控制				
		0: 关闭 SPI				
		1: 打开 SPI				
5	MSTR	SPI 主从选择				
		0: SPI 为从设备				
		1: SPI 为主设备				
4	CPOL	时钟极性控制位				
		0: SCK 在空闲状态下为低电平				
		1: SCK 在空闲状态下为高电平				
3	СРНА	时钟相位控制位				
		0: SCK 周期的第一沿采集数据				
		1: SCK 周期的第二沿采集数据				
2~0	SPR[2:0]	SPI时钟速率选择位				
		000: fsys				
		001: fsys/2				
		010: f _{SYS} /4				
		011: fsys/8				
		100: fsys/16				
		101: fsys/32				
		110: fsys/64				

Page 104 of 144 V0.4

		111: fsys/128
1	-	保留

US0CON1 (9DH) SPI0 状态寄存器(读/写) US1CON1 (A5H) SPI1 状态寄存器(读/写) USXCON1 (C5H) SPI2~5 状态寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SPIF	WCOL	-	-	TXE	DORD	SPMD	TBIE
读/写	读/写	读/写	-	-	读/写	读/写	读/写	读/写
上电初始值	0	0	Х	х	0	0	0	0

位编号	位符号	说明
7	SPIF	SPI 数据传送标志位
		0: 由软件清 0
		1:表明己完成数据传输,由硬件置 1
6	WCOL	写入冲突标志位
		0: 由软件清 0, 表明已处理写入冲突
		1:由硬件置 1,表明检测到一个冲突
3	TXE	发送缓存器空标志
		0: 发送缓存器不空
		1: 发送缓存器空,必须由软件清零,此时用户可以往 FIFO 写入待发送
		数据。
2	DORD	传送方向选择位
		0: MSB 优先发送
		1: LSB 优先发送
1	SPMD	SPI 传输模式选择:
		0:8位模式
		1: 16 位模式
0	TBIE	发送缓存器中断允许控制位:
		0: TXE=1 时,不允许产生中断
		1: TXE=1 时,将产生 SPI 中断
5~4	-	保留

US0CON2 (9EH) SPI0 数据寄存器低字节(读/写) US1CON2 (A6H) SPI1 数据寄存器低字节(读/写) USXCON2 (C6H) SPI2~5 数据寄存器低字节(读/写)

00/100112 (00	, 6 6)	2/4H -4 11 HH IV	4.3 1.(82, 3)						
位编号	7	6	5	4	3	2	1	0	
符号		SPDL[7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

位编号	位符号	说明
7~0	SPDL[7:0]	SPI 数据缓存寄存器低字节(8/16 位模式)
		写入数据寄存器 SPD 的数据低字节
		读取数据寄存器 SPD 的数据低字节

US0CON3 (9FH) SPI0 数据寄存器高字节(读/写) US1CON3 (A7H) SPI1 数据寄存器高字节(读/写) USXCON3 (C7H) SPI2~5 数据寄存器高字节(读/写)

位编号	7	6	5	4	3	2	1	0
符号		SPDH[7:0]						

Page 105 of 144 V0.4

读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	SPDH[7:0]	SPI 数据缓存寄存器高字节(仅用于 16 位模式)
		写入数据寄存器 SPD 的数据高字节
		读取数据寄存器 SPD 的数据高字节
		注意: SPI 设置为 16 位模式时,必须先写入高字节,后写入低字节,低
		字节写入后立刻开始发送

17.1.2 信号描述

主输出从输入(MOSI):

该路信号连接主设备和一个从设备。数据通过 MOSI 从主设备串行传送到从设备,主设备输出,从设备输入。

主输入从输出(MISO):

该路信号连接从设备和主设备。数据通过 MISO 从从设备串行传送到主设备,从设备输出,主设备输入。当 SPI 配置为从设备并未被选中,从设备的 MISO 引脚处于高阻状态。

SPI 串行时钟(SCK):

SCK 信号用作控制 MOSI 和 MISO 线上输入输出数据的同步移动。每8时钟周期线上传送一个字节。如果从 设备未被选中, SCK 信号被此从设备忽略。

17.1.3 工作模式

SPI 可配置为主模式或从属模式中的一种。SPI 模块的配置和初始化通过设置 SPI 控制寄存器 USnCON0 (n=0~5) 和 SPI 状态寄存器 USnCON1 来完成。配置完成后,通过设置 SPI 数据寄存器 USnCON2, USnCON3(以下简称 SPD)来完成数据传送。

在 SPI 通讯期间,数据同步地被串行的移进移出。串行时钟线(SCK)使两条串行数据线(MOSI 和 MISO)上数 据的移动和采样保持同步。如果从设备没有被选中,则不能参与SPI总线上的活动。

当 SPI 主设备通过 MOSI 线传送数据到从设备时,从设备通过 MISO 线发送数据到主设备作为响应,这就实 现了在同一时钟下数据发送和接收的同步全双工传输。发送移位寄存器和接收移位寄存器使用相同的特殊功能器 地址,对 SPI 数据寄存器 SPD 进行写操作将写入发送移位寄存器,对 SPD 进行读操作将获得接收移位寄存器的 数据。

有些设备的SPI接口会引出SS脚(从设备选择引脚,低有效),与SC95F876X的SPI通信时, SPI总线上其 它设备的SS脚的连接方式需根据不同的通信模式进行连接。下表列出了SC95F876X的SPI不同通信模式下,SPI 总线上其它设备SS脚的连接方式:

SC95F876X SPI	SPI 总线上其它设备	模式	从机的 SS (从设备选择引脚)
主模式	从模式	一主一从	拉低
		一主多从	SC95F876X 引出多根 I/O,分别接至从
			机的 SS 脚。在数据传送之前,从设备
			的 SS 引脚必须被置低
从模式	主模式	一主一从	拉高

主模式

模式启动:

SPI 主设备控制 SPI 总线上所有数据传送的启动。当 SPI 控制寄存器 USnCON0 中的 MSTR 位置 1 时,SPI 在主模式下运行, 只有一个主设备可以启动传送。

发送:

在 SPI 主模式下,对 SPD 进行以下操作:在 8 位模式下写一个字节数据到 SPDL 或在 16 位模式下先将高字 节写入 SPDH,再将低字节写入 SPDL,数据将会写入发送移位缓冲器。如果发送移位寄存器已经存在一个 数据,那么主 SPI 产生一个 WCOL 信号以表明写入太快。但是在发送移位寄存器中的数据不会受到影响, 发送也不会中断。另外如果发送移位寄存器不为空,那么主设备立即按照 SCK 上的 SPI 时钟频率串行地移 出发送移位寄存器中的数据到 MOSI 线上。当传送完毕,SPI 状态寄存器 USnCON1 中的 SPIF 位被置 1。 如果 SPI 中断被允许,当 SPIF 位置 1 时,也会产生一个中断。

Page 106 of 144 V₀ 4

● 接收.

当主设备通过 MOSI 线传送数据给从设备时,相对应的从设备同时也通过 MISO 线将其发送移位寄存器的内容传送给主设备的接收移位寄存器,实现全双工操作。因此,SPIF 标志位置 1 即表示传送完成也表示接收数据完毕。从设备接收的数据按照 MSB 或 LSB 优先的传送方向存入主设备的接收移位寄存器。当一个字节的数据完全被移入接收寄存器时, 处理器可以通过读 SPD 获得该数据。

从模式

● 模式启动:

当 SPI 控制寄存器 USnCON0 寄存器中的 MSTR 位清 0, SPI 在从模式下运行。

● 发送与接收:

从属模式下,按照主设备控制的 SCK 信号,数据通过 MOSI 引脚移入,MISO 引脚移出。一个位计数器记录 SCK 的边沿数,当接收移位寄存器移入 8 位数据(一个字节)同时发送移位寄存器移出 8 位数据(一个字节),SPIF 标志位被置 1。数据可以通过读取 SPD 寄存器获得。如果 SPI 中断被允许,当 SPIF 置 1 时,也会产生一个中断。此时接收移位寄存器保持原有数据并且 SPIF 位置 1,这样 SPI 从设备将不会接收任何数据直到 SPIF 清 0。SPI 从设备必须在主设备开始一次新的数据传送之前将要传送的数据写入发送移位寄存器。如果在开始发送之前未写入数据,从设备将传送"0x00"字节给主设备。如果写 SPD 操作发生在传送过程中,那么 SPI 从设备的 WCOL 标志位置 1,即如果传送移位寄存器已经含有数据,SPI 从设备的 WCOL 位置 1,表示写 SPD 冲突。但是移位寄存器的数据不受影响,传送也不会被中断。

17.1.4 传送形式

通过软件设置 SPI 控制寄存器 USnCON0 的 CPOL 位和 CPHA 位,用户可以选择 SPI 时钟极性和相位的四种组合方式。CPOL 位定义时钟的极性,即空闲时的电平状态,它对 SPI 传输格式影响不大。CPHA 位定义时钟的相位,即定义允许数据采样移位的时钟边沿。在主从通讯的两个设备中,时钟极性相位的设置应一致。

当 CPHA = 0, SCK 的第一个沿捕获数据,从设备必须在 SCK 的第一个沿之前将数据准备好。

CPHA = 0 数据传输图

当 CPHA = 1, 主设备在 SCK 的第一个沿将数据输出到 MOSI 线上,从设备把 SCK 的第一个沿作为开始发送信号,SCK 的第二沿开始捕获数据,因此用户必须在第一个 SCK 的两个沿内完成写 SPD 的操作。这种数据传输形式是一个主设备一个从设备之间通信的首选形式。

Page 107 of 144 V0.4

CPHA = 1 数据传输图

17.1.5 出错检测

在发送数据序列期间写入 SPD 会引起写冲突,SPI 状态寄存器 USnCON1 中的 WCOL 位置 1。WCOL 位置 1 不会引起中断,发送也不会中止。WCOL 位需由软件清 0。

17.2 TWI

USMDn[1:0] = 10, n=0~5 三选一串行接口 USCI 配置为 TWI 接口:

- USTXn 作为 SDA 信号
- USCKn 作为 CLK 信号

SC95F876X 在 TWI 通信时可根据应用需要设定为主机或从机模式。

US0CON0 (95H) TWI0 控制寄存器 0(读/写) US1CON0 (A4H) TWI1 控制寄存器 0(读/写) USXCON0 (C4H) TWI2~5 控制寄存器 0(读/写)

位编号	7	6	5	4	3	2	1	0
符号	TWEN	TWIF	MSTR	GCA	AA	;	STATE[2:0]	
读/写	读/写	读/写	读	读	读/写	读	读	读
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明			
7	TWEN	TWI 使能控制			
		0. 关闭 TWI			
		1.打开 TWI			
6	TWIF	TWI中断标志位			
		1. 由软件清零			
		2. 在下列条件下,中断标志位由硬件置 1:			
		1) 主机模式:			
		① 发送启动信号			
		② 发送完地址帧			
		③ 接收或发送完数据帧			
		2) 从机模式:			
		① 第一帧地址匹配成功			
		② 成功接收或发送8位数据			
		③ 接收到重复起始条件			

V0.4 V0.4

		<u> </u>
		④ 从机收到停止信号
5	MSTR	主从标志位
		0: 从模式
		1: 主模式
		说明:
		1. 当 TWI 接口向总线发出起始条件后,会自动切换为主模式,同时硬
		件将该位置位;
		2. 当总线上检测到一个停止条件时,硬件清除该位。
4	GCA	通用地址响应标志位
		0: 非响应通用地址
		1: 当 GC 置 1,同时通用地址匹配时该位由硬件置 1,并自动清零
3	AA	应答使能位
		0:无应答,返回 UACK(应答位为高电平)
		1: 在接收到一个匹配的地址或数据后返回一个应答 ACK
2~0	STATE[2:0]	状态机状态标志位
		从机模式:
		000: 从机处于空闲状态,等待 TWEN 置 1, 检测 TWI 启动信号。当从
		机接收到停止条件后跳转到此状态
		001: 从机正在接收第一帧地址和读写位(第8位为读写位,1为读,0
		为写)。从机接收到起始条件后会跳转到此状态
		010: 从机接收数据状态
		011: 从机发送数据状态
		100: 在从机发送数据状态中,当主机回 UACK 时跳转到此状态,等待
		重新启动信号或停止信号。
		101: 从机处于发送状态时,将 AA 写 0 会进入此状态,等待重新启动信
		号或停止信号。
		110: 从机的地址与主机发送的地址不匹配会跳转到此状态,等待新的
		起始条件或停止条件。
		- 大机模字
		主机模式: 000: 状态机为空闲状态
		001: 主机发送起始条件或主机正在发送从设备地址 010: 主机发送数据
		010: 主机反迭数据
		100: 主机发送停止条件或接收到从机的 UACK 信号

US0CON1 (9DH) TWI0 控制寄存器 1(读/写) US1CON1 (A5H) TWI1 控制寄存器 1(读/写) USXCON1 (C5H) TWI2~5 控制寄存器 1(读/写)

		4-14-4 14 55	101 41					
位编号	7	6	5	4	3	2	1	0
符号	TXnE/R XnE	STRETCH	STA	STO	TWCK[3:0]			
读/写	只读	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	TXnE/RXnE	发送/接收完成标志位
		以下情况,TXnE/RXnE 被置 1
		主机模式:
		① 主机发送地址帧(写),且收到从机的 ACK
		② 主机发送完数据,且接收到从机 ACK
		③ 主机接收到数据,且主机回从机 ACK

Page 109 of 144 V0.4

		从机模式:
		① 从机接收地址帧(读),且和从机地址(TWA)匹配
		② 从机接收到数据,且从机回主机 ACK
		③ 从机发送完数据,且接收到主机 ACK(AA=1)
		对 TWIDAT 进行读写操作会清除此标志位。
6	STRETCH	允许时钟延长(从模式)
		0: 禁止时钟延长
		1: 允许时钟延长, 主机需要支持时钟延长功能
	07.1	说明: 在数据传输完成之后,且 ACK 为 0,此时时钟延长发生
5	STA	起始位
		置"1"产生起始条件,TWI 将切换为主机模式
		软件可以设置或清除该位,或当起始条件发出后,由硬件清除。
4	STO	主机模式停止位
		主机模式下置"1",在当前字节传输或起始条件发出后产生停止条件
		软件可以设置或清除该位,或当检测到停止条件时,由硬件清除。
3~0	TWCK[3:0]	主机模式下 TWI 的通信速率设定:
		0000: f _{SYS} /1024
		0001: f _{SYS} /512
		0010: fsys/256
		0011: f _{SYS} /128
		0100: f _{SYS} /64
		0101: fsys/32
		0110: f _{sys} /16
		其它: 保留
		注意:
		1. 从机模式下设定无效。时钟频率最高为 400kHz;
		2. TWI 的时钟源跟随系统时钟 fsys
7	-	保留

US0CON2 (9EH) TWI0 地址寄存器(读/写) US1CON2 (A6H) TWI1 地址寄存器(读/写) USXCON2 (C6H) TWI2~5 地址寄存器(读/写)

位编号	7	6	5	4	3	2	1	0	
符号		TWA[6:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

位编号	位符号	说明
7~1	TWA[6:0]	TWI 地址寄存器 TWA[6:0]不能写为全 0,00H 为通用地址寻址专用。主机模式下设定无效
0	GC	TWI 通用地址使能

US0CON3 (9FH) TWI0 数据缓存寄存器(读/写) US1CON3 (A7H) TWI1 数据缓存寄存器(读/写) USXCON3 (C7H) TWI2~5 数据缓存寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号		TWDAT[7:0]						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

Page 110 of 144 V0.4

位编号	位符号	说明
7~0	TWDAT[7:0]	TWI数据缓存寄存器

17.2.1 信号描述

TWI 时钟信号线 (SCL)

该时钟信号由主机发出,连接到所有的从机。每9个时钟周期传送一个字节数据。前8个周期作数据的传送,最后一个时钟作为接收方应答时钟。空闲时应为高电平,由 SCL 线上的上拉电阻拉高。

TWI 数据信号线(SDA)

SDA 是双向信号线,空闲时应为高电平,由 SDA 线上的上拉电阻拉高。

17.2.2 从机工作模式

● 模式启动:

当 TWI 使能标志位打开(TWEN = 1),同时接收到主机发送的启动信号时,模式启动。

从机从空闲模式(STATE[2:0] = 000)进入接收第一帧地址(STATE[2:0] = 001)状态,等待主机的第一帧数据。第一帧数据由主机发送,包括了 7 位地址位和 1 位读写位,TWI 总线上所有从机都会收到主机的第一帧数据。主机发送完第一帧数据后释放 SDA 信号线。若主机所发地址与某一从机自身地址寄存器中的值相同,说明该从机被选中,被选中的从机会判断接总线上的第 8 位,即数据读写位(=1,读命令; =0,写命令),然后占用 SDA 信号线,在 SCL 的第 9 个时钟周期给主机一个低电平的应答信号,之后会释放总线。从机被选中后,会根据读写位的不同而进入不同的状态:

● 非通用地址响应,从机接收模式:

如果第一帧接收到的读写位是写(0),则从机进入到从机接收状态(STATE[2:0] = 010)等待接收主机 发送的数据。主机每发送 8 位,都要释放总线,等待第 9 个周期从机的应答信号。

- 1. 如果从机的应答信号是低电平,主机的通信可以有以下三种方式:
 - 1) 继续发送数据;
 - 2) 重新发送启动信号(start),此时从机重新进入接收第一帧地址(STATE[2:0] = 001)状态;
 - 3) 发送停止信号,表示本次传输结束,从机回到空闲状态,等待主机下一次的启动信号。

2. 如果从机应答的是高电平(在接收过程中,从机寄存器中的 AA 值改写为 0),表示当前字节传输完以后,从机会主动结束本次传输,回到空闲状态(STATE[2:0] = 000),不再接收主机发送的数据。

Page 111 of 144 V0.4

非通用地址响应,从机发送模式:

如果第一帧接收到的读写位是读(1),则从机会占用总线,向主机发送数据。每发送8位数据,从机释 放总线,等待主机的应答:

如果主机应答的是低电平,则从机继续发送数据。在发送过程中,如果从机寄存器中的 AA 值被改 写为 0,则传输完当前字节从机会主动结束传输并释放总线,等待主机的停止信号或重新启动信号 (STATE[2:0] = 101) .

如果主机应答的是高电平,则从机 STATE[2:0] = 100,等待主机的停止信号或重新启动信号。

通用地址的响应:

GC=1 时,此时通用地址允许使用。从机进入到接收第一帧地址(STATE[2:0] = 001)状态,接收的第一 帧数据中的地址位数据为 0x00, 此时所有从机响应主机。主机发送的读写位是必须是写(0), 所有从机接 收后进入接收数据(STATE[2:0] = 010)状态。主机每发送8个数据释放一次SDA线,并读取SDA线上的

如果有从机应答,则主机的通信可以有以下三种方式:

继续发送数据; 1)

Page 112 of 144 http://www.socmcu.com

- 2) 重新启动;
- 3) 发送停止信号,结束本次通讯。

2. 如果无从机应答,则 SDA 为空闲状态。

注意:在一主多从模式下使用通用地址时,主机发送的读写位不能为读(1)状态,否则除发送数据的设备, 总线上其它设备均会响应。

17.2.3 从机模式操作步骤

- 1. 配置 USMDn[1:0],选择 TWI 模式;
- 2. 配置 TWIn 控制寄存器 USnCON0 和 USnCON1;
- 3. 配置 TWI 地址寄存器 USnCON2;
- 4. 如果从机接收数据,则等待 USnCON0 中的中断标志位 TWIF 置 1。从机每接收到 8 位数据,TWIF 会被置 1。中断标志位 TWIF 需手动清零;
- 如果从机发送数据,则要将待发送的数据写进 TWDAT 中,TWI 会自动将数据发送出去。每发送 8 位,中断标志位 TWIF 就会被置 1。

17.2.4 主机工作模式

● 模式启动:

当 TWI 接口向总线发出起始条件后,会自动切换为主模式,同时硬件将 MSTR 位置 1。主机状态位 STATE[2:0]从 000 切换到 001,同时中断条件 TWIF 被置 1。

● TWI 主机发送模式:

主机发送模式下,主机发送的第一帧数据包括了 7 位地址位(被选中的从机地址)和 1 位读写位(=0,写命令),TWI 总线上所有从机都会收到主机的第一帧数据。主机发送完第一帧数据后释放 SDA 信号线。被选中的从机在 SCL 的第 9 个时钟周期给主机一个应答信号,之后会释放总线并进入到从机接收状态等待接收主机发送的数据。主机每发送 8 位,都要释放总线,等待第 9 个周期从机的应答信号。

1. 如果从机应答低电平,主机可以继续发送数据。也可以重新发送启动信号:

Page 113 of 144 V0.4

2. 如果从机应答高电平,表示当前字节传输完以后,从机会主动结束本次传输,不再接收主机发送的数据,主机 STATE[2:0]从发送数据状态 010 切换为 100:

● TWI 主机接收模式:

主机发送模式下,主机发送的第一帧数据包括了包括了 7 位地址位(被选中的从机地址)和 1 位读写位(=1,读命令),TWI 总线上所有从机都会收到主机的第一帧数据。主机发送完第一帧数据后释放 SDA 信号线。被选中的从机在 SCL 的第 9 个时钟周期给主机一个应答信号,之后会占用总线,向主机发送数据。每发送 8 位数据,从机释放总线,等待主机的应答。主机接收到从机地址匹配成功后的应答信号 ACK,并开始接收从机数据(STATE=011):

- 1. 若主机应答位使能(AA=1),则每接收到一 BYTE 数据,主机回复应答信号 ACK,TWIF 被置位;
- 在接收最后一 byte 数据前,若应答使能位关闭(AA=0),则主机接收完最后一 byte 数据后回复 UACK,然后主机可发送停止信号。

主机接收模式下,主动释放总线方式如下:

Page 114 of 144 V0.4

17.2.5 主机模式操作步骤

- 配置 USMDn[1:0],选择 TWI 模式;
- 配置 TWIn 控制寄存器 USnCONO: TWEN = 1, 使能 TWI
- 配置 TWIn 控制寄存器 USnCON1:配置 TWI 通信速率(TWCK[3:0]),将起始位 STA 置"1" 3.
- 配置 TWIn 地址寄存器 USnCON3:将"从机地址+读写位"写入 TWDAT,总线上发出地址帧
- 如果主机接收数据,则等待 USnCON0 中的中断标志位 TWIF 置 1。主机每接收到 8 位数据,中断标志 位会被置 1。中断标志位需手动清零;
- 如果主机发送数据,则要将待发送的数据写进 TWDAT 中,TWI 会自动将数据发送出去。每发送 8 位, 中断标志位 TWIF 就会被置 1。
- 数据接收发送完成,主机可发送停止条件(STO=1),主机状态切换为 000。或发送重复起始信号,开 始新一轮的数据传输。

注意: 主机产生 stop 之后主机的 TWIF 不会置位!

17.3 UART

USMDn[1:0] = 11, n=0~5三选一串行接口USCI配置为UART接口。可方便用于同其它器件或者设备的连 接,例如Wifi模块电路或其它UART通信接口的驱动芯片等。其功能及特性如下:

- 1. 三种通讯模式可选:模式0、模式1和模式3;
- 2. 独立波特率发生器;
- 3. 发送和接收完成可产生中断RI/TI,该中断标志需要软件清除,清除方式为"写1清零";
- 4. 可实现全双工通信

USCI配置为 UART 接口时:

- USTXn 作为 TX 信号
- USRXn 作为 RX 信号

US0CON0 (95H) 串口 1 控制寄存器(读/写)

US1CON0 (A4H) 串口 2 控制寄存器(读/写)

USXCON0 (C4H) 串口 3~6 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/	读/
							写1清零	写1清零
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~6	SM0~1	串行通信模式控制位 00:模式 0,8 位半双工同步通信模式,在 RX 引脚上收发串行数据。 TX 引脚用作发送移位时钟。每帧收发 8 位,低位先接收或发送;

Page 115 of 144 V0.4

		01:模式 1,10 位全双工异步通信,由 1 个起始位,8 个数据位和 1 个停止位组成,通信波特率可变;10:保留;11:模式 3,11 位全双工异步通信,由 1 个起始位,8 个数据位,一个可编程的第 9 位和 1 个停止位组成,通信波特率可变。
5	SM2	串行通信模式控制位 2,此控制位只对模式 3 有效 0:每收到一个完整的数据帧就置位 RI 产生中断请求; 1:收到一个完整的数据帧时,只有当 RB8=1 时才会置位 RI 产生中断请求。 波特率倍率设置位,仅在模式 0 (SM0~1 = 00)有效: 0:串行端口在系统时钟的 1/12 下运行 1:串行端口在系统时钟的 1/4 下运行
4	REN	接收允许控制位 0: 不允许接收数据; 1: 允许接收数据。
3	TB8	只对模式3有效,为发送数据的第9位
2	RB8	只对模式3有效,为接收数据的第9位
1	TI	发送中断标志位
0	RI	接收中断标志位

US0CON1 (9DH) 串口 1 波特率控制寄存器低位(读/写) US1CON1 (A5H) 串口 2 波特率控制寄存器低位(读/写)

USXCON1 (C5H) 串口 3~6 波特率控制寄存器低位(读/写)

位编号	7	6	5	4	3	2	1	0
符号	BAUD1L [7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

US0CON2 (9EH) 串口 1 波特率控制寄存器高位(读/写) US1CON2 (A6H) 串口 2 波特率控制寄存器高位(读/写) USXCON2 (C6H) 串口 3~6 波特率控制寄存器高位(读/写)

位编号	7	6	5	4	3	2	1	0
符号		BAUD1H [7:0]						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位符号	说明
BAUD1 [15:0]	USCI 串口波特率控制
	$BaudRate = \frac{fsys}{-}$
	$BaudRate = \frac{13y3}{[BAUD1H, BAUD1L]}$
	注意:[BAUD1H,BAUD1L] 必须大于 0x0010
	1 1 4 4

US0CON3 (9FH) 串口 1 数据缓存寄存器(读/写) US1CON3 (A7H) 串口 2 数据缓存寄存器(读/写) USXCON3 (C7H) 串口 3~6 数据缓存寄存器(读/写)

00000110 (0)	,	200 11 -00 IV	11 HH (127 - 17)					
位编号	7	6	5	4	3	2	1	0
符号	SBUF1[7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0
位编号	位名	守号	说明					
7~0	SBUF	1[7:0]	串口数据缓存寄存器					

Page 116 of 144 V0.4

	SBUF1 包含两个寄存器: 一个发送移位寄存器和一个接收锁存器, 写
	入 SBUF1 的数据将送至发送移位寄存器,并启动发送流程,读 SBUF1
	将返回接收锁存器中的内容。

18 模数转换 ADC

SC95F876X 集成有 17 路 12 位高精度 1M 高速 ADC,外部的 16 路 ADC 和 IO 口的其它功能复用,内部的一路可接至 1/4 V_{DD} ,配合内部 2.048V 、1.024V 或 2.4V 参考电压用于测量 VDD 电压。1MHz 超高速采样时钟,采样到完成转换的总时间低至 2 μ s。

SC95F876X的 ADC 参考电压可以有 4 种选择:

- ① VDD 管脚(即直接是内部的 VDD);
- ② 内部 Regulator 输出的参考电压精准的 2.048V。
- ③ 内部 Regulator 输出的参考电压精准的 1.024V。
- ④ 内部 Regulator 输出的参考电压精准的 2.4V。

18.1 ADC 相关寄存器

ADCCON (ADH) ADC 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ADCEN	ADCS	EOC/ADCIF		1	ADCIS[4:0]		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	n

位编号	位符号	说明
7	ADCEN	启动 ADC 的电源
		0: 关闭 ADC 模块电源
		1: 开启 ADC 模块电源
6	ADCS	ADC 开始触发控制(ADC Start)
		对此 bit 写 "1", 开始做一次 ADC 的转换, 即该位只是 ADC 转换的触发
		信号。此位只可写入 1 有效。
		注意:对 ADCS 写"1"后,到中断标志 EOC/ADCIF 置起前不要对
		ADCCON 寄存器进行写操作
5	EOC /ADCIF	转换完成/ADC 中断请求标志(End Of Conversion / ADC Interrupt Flag)
		0: 转换尚未完成
		1: ADC 转换完成。需用户软件清除
		ADC 转换完成标志 EOC: 当使用者设定 ADCS 开始转换后, 此位会被硬
		件自动清除为 0; 当转换完成后,此位会被硬件自动置为 1;
		ADC 中断请求标志 ADCIF:
		此位同时也当作是 ADC 中断的中断请求标志,如果用户使能 ADC 中断, 那么在 ADC 的 中断 发生后,用户必须用软件清除此位。
4~0	ADCIS[4:0]	ADC 输入通道选择(ADC Input Selector)
		00000: 选用 AINO 为 ADC 的输入
		00001: 选用 AIN1 为 ADC 的输入
		00010: 选用 AIN2 为 ADC 的输入
		00011: 选用 AIN3 为 ADC 的输入
		00100: 选用 AIN4 为 ADC 的输入
		00101:选用 AIN5 为 ADC 的输入
		00110: 选用 AIN6 为 ADC 的输入
		00111: 选用 AIN7 为 ADC 的输入
		01000: 选用 AIN8 为 ADC 的输入
		01001: 选用 AIN9 为 ADC 的输入
		01010: 选用 AIN10 为 ADC 的输入

V0.4 V0.4

01011: 选用 AIN11 为 ADC 的输入
01100: 选用 AIN12 为 ADC 的输入
01101: 选用 AIN13 为 ADC 的输入
01110: 选用 AIN14 为 ADC 的输入
01111: 选用 AIN15 为 ADC 的输入
10000~11110: 保留
11111: ADC 输入为 1/4 VDD, 可用于测量电源电压

ADCCFG2 (B5H) ADC 设置寄存器 2(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-		LOWSP[2:0]		-	-
读/写	-	-	-	读/写	读/写	读/写	•	-
上电初始值	х	х	х	0	0	0	x	х

位编号	位符号	说明
4~2	LOWSP[2:0]	ADC 采样周期数选择: 100: 采样时间为 3 个系统时钟,(约 100ns @fsys = 32MHz) 101: 采样时间约 6 个系统时钟,(约 200ns @fsys = 32MHz) 110: 采样时间约 16 个系统时钟,(约 500ns @fsys = 32MHz) 111: 采样时间约 32 个系统时钟,(约 1000ns @fsys = 32MHz) 其它: 保留 说明: ADC 从采样到完成转换的总时间 TADC= 采样时间 + 转换时间 其中,ADC 转换时间固定为 950ns
7~5, 1~0	-	保留

ADCCFG0 (ABH) ADC 设置寄存器 0(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EAIN7	EAIN6	EAIN5	EAIN4	EAIN3	EAIN2	EAIN1	EAIN0
读/写								
上电初始值	0	0	0	0	0	0	0	0

ADCCFG1 (ACH) ADC 设置寄存器 1(读/写)

		_ , ,, ,,, ,,,	* * * /					
位编号	7	6	5	4	3	2	1	0
符号	EAIN15	EAIN14	EAIN13	EAIN12	EAIN11	EAIN10	EAIN9	EAIN8
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
0	EAINx	ADC 端口设置寄存器
	(x=0~15)	0: 设定 AINx 为 IO 口
		1:设定 AINx 为 ADC 输入,并自动将上拉电阻移除。

OP_CTM1 (C2H@FFH) Customer Option 寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	VREFS[1:0]		OP_BL	DISJTG	IAPS	3[1:0]		Œ[1:0]
读/写	读/写	读/写	读/写	读/写	读/写	读/写	只	读
上电初始值	n	n	n	n	n	n	n	n

	位编号	位符号	说明
Ī	7~6	VREFS[1:0]	参考电压选择(初始值从 Code Option 调入,用户可修改设置)

Page 118 of 144 V0.4

00:设定 ADC 的 VREF 为 VDD;
01: 设定 ADC 的 VREF 为内部准确的 2.048V;
10: 设定 ADC 的 VREF 为内部准确的 1.024V;
11: 设定 ADC 的 VREF 为内部准确的 2.4V 。

ADCVL (AEH) ADC 转换数值寄存器(低位)(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ADCV[3:0]				-	-	-	-
读/写	读/写	读/写	读/写	读/写	-	-	-	-
上电初始值	1	1	1	1	Х	x	Х	x

ADCVH (AFH) ADC 转换数值寄存器(高位)(读/写)

位编号	7	6	5	4	3	2	1	0
符号		ADCV[11:4]						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	1	1	1	1	1	1	1	1

位编号	位符号	说明
11~4	ADCV[11:4]	ADC 转换值的高 8 位数值
3~0	ADCV[3:0]	ADC 转换值的低 4 位数值

IE (A8H) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
6	EADC	ADC 中断使能控制
		0: 不允许 EOC/ADCIF 产生中断
		1: 允许 EOC/ADCIF 产生 中断

IP (B8H) 中断优先级控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明
6	IPADC	ADC 中断优先权选择
		0:设定 ADC 的中断优先级是"低"
		1: 设定 ADC 的中断优先级是 "高"

18.2 ADC 转换步骤

用户实际进行 ADC 转换所需要的操作步骤如下:

- ① 设定 ADC 输入管脚; (设定 AINx 对应的位为 ADC 输入,通常 ADC 管脚会预先固定);
- ② 设定 ADC 参考电压 Vref,设定 ADC 转换所用的频率;
- ③ 开启 ADC 模块电源;
- ④ 选择 ADC 输入通道; (设置 ADCIS 位,选择 ADC 输入通道);

Page 119 of 144

- ⑤ 启动 ADCS, 转换开始;
- (6) 等待 EOC/ADCIF=1,如果 ADC 中断使能,则 ADC 中断会产生,用户需要软件清 0 EOC/ADCIF 标志;
- ⑦ 从 ADCVH、ADCVL 获得 12 位数据, 先高位后低位, 一次转换完成;
- (8) 如不换输入通道,则重复 5~7 的步骤,进行下一次转换。

注意:在设定 IE[6](EADC)前,使用者最好用软件先清除 EOC/ADCIF,并且在 ADC 中断服务程序执行完时,也清除该 EOC/ADCIF,以避免不断的产生 ADC 中断。

19 模拟比较器

SC95F876X 内建一个模拟比较器(CMP), CMP 中断可唤醒 STOP 模式。可用于报警器电路、电源电压监测电路、过零检测电路等。

此比较器具有四个模拟信号正输入端: CMP0~3,可通过 CMPIS [1:0]切换选择。负输入端电压可通过 CMPRF[3:0]切换为 CMPR 脚上的外部电压或内部的 16 档比较电压中的一种。

通过 CMPIM[1:0]可以方便的设定比较器的中断模式,当 CMPIM[1:0]所设定的中断条件发生时比较器中断标志 CMPIF 会被置 1,该中断标志需要软件清除。

19.1 模拟比较器结构框图

模拟比较器结构框图

CMPCON (B7H) 模拟比较器控制寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	CMPEN	CMPIF	CMPSTA	-		CMPF	RF[3:0]	
读/写	读/写	读/写	读/写	-	读/写	读/写	读/写	读/写
上电初始值	0	0	0	Х	0	0	0	0

位编号	位符号	说明
7	CMPEN	模拟比较器使能控制位
		0: 关闭模拟比较器;
		1: 使能模拟比较器
6	CMPIF	模拟比较器中断标志位
		0: 比较器中断未被触发;
		1: 当比较器满足中断触发条件时,此位会被硬件自动设定成 1。如果此
		时 IE1[5] (ECMP) 也是被设定成 1, 比较器中断产生 。在比较器中断发
		生后, 硬件并不会自动清除此位, 此位必须由使用者的软件负责清除。

Page 120 of 144 V0.4

5	CMPSTA	模拟比较器输出状态
o o	Sim OTA	0: 比较器正端电压小于负端电压
		1: 比较器正端电压大于负端电压
3~0	CMPRF[3:0]	模拟比较器负端比较电压选择:
3~0	CIVIFICE 3.0]	
		0000: 选用 CMPR 为模拟比较器的比较电压;
		0001: 选用 1/16Vpp 为模拟比较器的比较电压;
		0010: 选用 2/16Vpp 为模拟比较器的比较电压;
		0011: 选用 3/16Vpp 为模拟比较器的比较电压;
		0100: 选用 4/16Vpp 为模拟比较器的比较电压;
		0101: 选用 5/16V _{DD} 为模拟比较器的比较电压;
		0110: 选用 6/16Vpp 为模拟比较器的比较电压;
		0111 : 选用 7/16V DD 为模拟比较器的比较电压;
		1000: 选用 8/16V _{DD} 为模拟比较器的比较电压;
		1001: 选用 9/16Vpp 为模拟比较器的比较电压;
		1010: 选用 10/16V _{DD} 为模拟比较器的比较电压;
		1011: 选用 11/16V _{DD} 为模拟比较器的比较电压;
		1100: 选用 12/16Vpp 为模拟比较器的比较电压;
		1101: 选用 13/16Vpp 为模拟比较器的比较电压;
		1110: 选用 14/16V _{DD} 为模拟比较器的比较电压;
		1111: 选用 15/16Vpp 为模拟比较器的比较电压;
4	-	保留

CMPCFG (B6H) 模拟比较器设置寄存器 (读/写)

位编号	7	6	5 4 3 2		3 2		1 0		
符号	-	-	-	CMPP	CMPIM[1:0]		CMPI	CMPIS[1:0]	
读/写	-	-		读/写	读/写	读/写 读/写		读/写	
上电初始值	Х	Х	X	0	0	0	0	0	

位编号	位符号	说明
4	СМРР	模拟比较器正端输入选择:
		0:模拟比较器正端的输入为 CMP0~3 之一为,由 CMPIS[1:0]设定
		1:模拟比较器正端的输入为内部 1.5V 基准电压
3~2	CMPIM[1:0]	模拟比较器中断模式选择:
		00: 不产生中断
		01:上升沿中断: IN+从小于 IN- 到大于 IN- 后会产生中断;
		10:下降沿中断: IN+从大于 IN- 到小于 IN- 后会产生中断;
		11:双沿中断: IN+从小于 IN- 到大于 IN- , 或 IN+从大于 IN- 到小于 IN-
		后均会产生中断;
1~0	CMPIS[1:0]	模拟比较器正端输入通道选择,CMPP 为 1 时,此位无效:
		00:选用 CMP0 为模拟比较器正端的输入;
		01:选用 CMP1 为模拟比较器正端的输入;
		10:选用 CMP2 为模拟比较器正端的输入;
		11: 选用 CMP3 为模拟比较器正端的输入;
7~5	-	保留

Page 121 of 144 V0.4

20 高灵敏度触控电路

SC95F876X 内建一个 31 通道的高灵敏度触控电路, 其特点如下:

- 1. 高灵敏度模式可适应隔空按键触控、接近感应等对灵敏度要求较高的触控应用
- 2. 支持自互电容模式
- 3. 可实现 31 路触控按键及衍生功能
- 4. 高灵活度开发软件库支持,低开发难度
- 5. 自动化调试软件支持,智能化开发
- 6. 触控模块可以在 MCU STOP 模式下进入低功耗模式工作

20.1 触控电路的耗电模式

SC95F876X 允许在 STOP Mode 开启触控扫描功能:这样的方式可以降低 MCU 的整体功耗从而满足有低功耗需求的触控应用。

用户可以理解为 SC95F876X 的触控电路具有两种耗电模式:

- 1. 普通运行模式
- 2. 低功耗运行模式

两种耗电模式的定义如下:

说明	普通运行模式	低功耗运行模式
CPU	RUN (Normal mode)	Stop (STOP Mode)
触控电路	RUN	RUN

注意:用户通过使用赛元提供的触控按键库文件(可从赛元官网下载获取),可快速简单实现所需的触控功能。

Page 122 of 144 V0.4

21 CRC 模块

SC95F876X 内建了 1 个硬件 CRC 模块, CRC 执行计算过程中, CPU 保持程序计数器, CRC 计算完成后, 程序计数器才继续执行之后的指令。

该模块有两种计算模式:

硬件 CRC 模式一:对指定数据进行 CRC 运算处理:

将需要进行 CRC 计算的数据写入 CRC 数据寄存器 CRCREG, 当需要读取 CRC 计算结果时, 再从 CRCDRn(n = 0~3)读出。

单独一个 byte 计算 CRC 需要 8 个系统时钟,即 0.25μs@32MHz。

硬件 CRC 模式二:对 APROM 进行 CRC 运算处理:

可用来实时生成 APROM(即 128 Kbytes Flash ROM)的 32位 CRC 值,该值和理论值比较,可监测程序区 的内容是否正确。CRC 理论值不需要用户计算,烧录软件会根据载入的代码及 Code 区域设置项自动完成计算并 在烧录时通过烧写器将 4 bytes 的 CRC32 计算结果写入 CRC 结果存储区,具体操作方法见烧录工具使用手册。

对 128 Kbytes APROM 计算 CRC 需要约 32.6ms@32MHz。

SC95F876X 的硬件 CRC 参数模型:

CRC 算法名称	CRC-32/MPEG-2
多项式公式	$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$
数据宽度	32bit
初始值	0xFFFFFFF
结果异或值	0x00000000
输入值反转	false
输出值反转	false
LSB/MSB	MSB

CRC 使用注意事项:

- 1. CRCDRn 写入数据和读出不是同一数据;
- 硬件计算所得的 CRC 值是整个程序区数据(注意,这里不包括 IAP 区域!) 的 32 位 CRC 校验值。若 地址单元中有用户上次操作后的残留值,会导致 CRC 值与理论值不符。因此,建议用户对整片 Flash ROM 进行擦除后再烧录代码以保证 CRC 值与理论值一致;
- 硬件 CRC 计算范围不包含 IAP 区域;
- 4. 用户如需进行 CRC 运算操作,请参照《SC95FXX6X SC95FXX1XB CRC 操作库资料包》。

21.1 CRC 校验操作相关寄存器

OPERCON (EFH) 运算控制寄存器(读写)

位编号	7	6	5	4	3	2	1	0
符号	OPERS	MD	-	-	-	-	CRCRST	CRCSTA
读/写	读/写	读/写	-	-	-	-	读/写	读/写
上电初始值	0	0	Х	Х	Х	Х	0	0

位编号	位符号	说明
1	CRCRST	CRCDR 寄存器复位(Q31~Q0)
		对此 bit 写 "1",即可将 CRCDR 复位为全 1
0	CRCSTA	CRC 硬件计算启动位
		对此 bit 写 "1",开始做一次 Check sum 计算。此位只可写入 1 有效。

CRC的数据寄存器 CRCDRn(n = 0~3)的读写操作由 CRCINX和 CRCREG 两个寄存器进行控制,各 CRCDRn 的具体位置由 CRCINX 确定,如下表所示:

符号	地址	说明		上电初始值
CRCINX	FCH	CRC 指针	CRCINX[7:0]	0000000b
CRCREG	FDH	CRC 寄存器	CRCREG[7:0]	nnnnnnnb

Page 123 of 144 V0.4

符号	地址	说明	7	6	5	4	3	2	1	0
CRCDR3	03H@FDH	CRC 数据寄存器 3	Q31	Q30	Q29	Q28	Q27	Q26	Q25	Q24
CRCDR2	02H@FDH	CRC 数据寄存器 2	Q23	Q22	Q21	Q20	Q19	Q18	Q17	Q16
CRCDR1	01H@FDH	CRC 数据寄存器 1	Q15	Q14	Q13	Q12	Q11	Q10	Q9	Q8
CRCDR0	00H@FDH	CRC 数据寄存器 0	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0

CRCDRn(n = 0~3)的 bit 位相关描述如下:

311321111(11	ս~3)ըն Եռ բողը								
编号位	符号位	说明							
Bit31~0	Qx (x = 0~31)	硬件 CRC 模式一:对指定数据进行 CRC 运算处理: 1. 首先必须写 CRCRST,将 CRCDR 复位为全 1 2. 当 CRCREG 被写入时,硬件自动计算 CRC 结果,并继续存放于 CRCDR 内 3. 当需要时,即时读出 CRC 计算结果 硬件 CRC 模式二:对 APROM 进行 CRC 运算处理: 1. 由 CRCSTA 启动,此时 CPU 自动进入 IDLE 2. 自动复位 CRCDR 为全 1:							
		① IAPS[1:0]=00 (Flash ROM 最后 0K 可 IAP): 0000H~最后 0K之前② IAPS[1:0]=01 (Flash ROM 最后 1K 可 IAP): 0000H~最后 1K之前③ IAPS[1:0]=10 (Flash ROM 最后 2K 可 IAP): 0000H~最后 2K之前④ IAPS[1:0]=11 (Flash ROM 全部可 IAP): 全部 Flash ROM3. 结束后 CPU 自动退出 IDLE,即可读取 CRC 计算结果注意: 写入数据和读出不是同一数据。							

操作 CRC 相关 SFR 时 CRCINX 寄存器存放相关 CRCREG 寄存器的地址,CRCREG 寄存器存放对应的值。 读 CRCREG 前需要先设定 CRCINX 再读取,每读完一次,CRCINX 自动加 1(0~3 循环)。

硬件 CRC 校验操作例程

用户如需进行 CRC 运算操作,请参照《SC95FXX6X_SC95FXX1XB CRC 操作库资料包》。

注意:禁止向 CRCINX 寄存器写入 CRC 寄存器地址之外的数值!否则会造成系统运行异常!

Page 124 of 144 V0.4

22 乘除法器

SC95F876X 提供了 1 个 16 位的乘除法器,由扩展累加器 EXA0~EXA3、扩展 B 寄存器 EXB 和运算控制寄存 器 OPERCON 组成。可取代软件进行 16 位×16 位乘法运算和 32 位/16 位除法运算。

SC95F876X 的硬件乘除法器不占用 CPU 周期,运算由硬件实现,速度比软件实现的乘除法速度快几十倍, 可取代软件进行 16 位×16 位乘法运算和 32 位/16 位除法运算并提高程序运行效率。

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
EXA0	E9H	扩展累加器 0		EXA [7:0]							
EXA1	EAH	扩展累加器 1				EXA	[15:8]				0000000b
EXA2	EBH	扩展累加器 2				EXA [23:16]				0000000b
EXA3	ECH	扩展累加器3				EXA [31:24]				0000000b
EXBL	EDH	扩展B寄存器L				EXB	[7:0]				0000000b
EXBH	EEH	扩展B寄存器H		EXB [15:8]							0000000b
OPERCON	EFH	运算控制寄存器	OPERS	DPERS MD CRCRST CRCSTA							00xxxx00b

OPERCON (EFH) 运算控制寄存器(读/写)

	位编号	7	6	5	4	3	2	1	0
	符号	OPERS	MD	-	-	-	-/ /	CRCRST	CRCSTA
	读/写	读/写	读/写	-	-	-	-	读/写	读/写
	上电初始值	0	0	Х	Х	Х	х	0	0

位编号	位符号			说明				
7	OPERS	乘除法器运算开始的	触发控制(Or	perater Start)			
		对此 bit 写 "1", 开	始做一次乘除	法计算,即记	亥位只是乘除?	法器开始计算		
		的触发信号, 当该位	的触发信号,当该位为零这说明计算已完成。此位只可写入1有效。					
6	MD	乘除法选择						
		0:乘法运算,被乘数和乘数的写入、乘积的读取如下:						
		字节	字节3	字节 2	字节 1	字节 0		
		运算数	于11.2	于日乙	于日日	子口0		
		被乘数 16bit	-	-	EXA1	EXA0		
		乘数 16bit	-	-	EXBH	EXBL		
		乘积 32bit	EXA3	EXA2	EXA1	EXA0		
						_		
		1:除法运算,被除	数和除数的写	 	数的读取如下	:		
		字节	字节 3	字节 2	字节 1	字节 0		
		运算数	1 14 0	1 14 2	1 14 1	1 14 0		
		被除数 32bit	EXA3	EXA2	EXA1	EXA0		
		除数 16bit - EXBH EXBL						
		商 32bit	EXA3	EXA2	EXA1	EXA0		
		余数 16bit	-	-	EXBH	EXBL		

注意:

- 在执行运算操作过程中,禁止对 EXA 和 EXB 数据寄存器执行读或写动作。
- 乘除法器运算转换所需时间为 16/fsys。

Page 125 of 144 V0.4

23 电气特性

23.1 极限参数

符号	参数	最小值	最大值	UNIT
VDD/VSS	直流供电电压	-0.3	5.5	V
Voltage ON any Pin	任一管脚输入/输出电压	-0.3	V _{DD} +0.3	V
TA	工作环境温度	-40	105	$^{\circ}\mathbb{C}$
T _{STG}	储存温度	-55	125	$^{\circ}$
I _{VDD}	流过 VDD 的电流值	-	200	mA
Ivss	流过 VSS 的电流值	-	200	mA

23.2 推荐工作条件

符号	参数	最小值	最大值	UNIT	系统时钟频率
V_{DD}	工作电压	2.0	5.5	V	32MHz
T _A	工作环境温度	-40	105	\mathbb{C}	

23.3 Flash ROM 参数

符号	参数	最小值	典型值	最大值	UNIT	条件
Nend	擦写次数	100,000	-	-	Cycles	
T _{DR}	数据保存时间	100	-	-	Years	T _A = +25℃
T _{S-Erase}	单个 Sector 擦除时间	-	5	-	ms	T _A = +25℃
T _{Erase}	全擦时间	30	-	40	ms	T _A = +25°C
Twrite	单个 byte 写入时间	-	150	-	μs	T _A = +25°C

23.4 直流电气特性

(V_{DD} = 5V, T_A = +25℃, 除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件
电流						
l _{op1}	工作电流	-	6	-	mΑ	f _{SYS} =32MHz
I _{op2}	工作电流	-	3.8	-	mA	f _{SYS} =16MHz
I _{op3}	工作电流	•	2.4	-	mΑ	f _{SYS} =8MHz
l _{op4}	工作电流	•	1.7	-	mΑ	f _{SYS} =4MHz
I _{pd1}	待机电流	-	2.2	-	μΑ	
	(Power Down 模式)					
I _{IDL1}	待机电流	-	2.2	-	mΑ	f _{SYS} =32MHz
	(IDLE 模式)					
Івтм	Base Timer 工作电流	-	1.3	3	μΑ	BTMFS[3:0]=
						1000
						每 4.0 s 产生一个
						中断
lwdт	WDT 电流	-	1.3	3	μΑ	WDTCKS[2:0]=
						000
						WDT 溢出时间
						500ms
I _{TK1}	高灵敏度 Touch key 工作	-	0.8	1.2	mA	
	电流					

V0.4 V0.4

IO 口特性						
V _{IH1}	输入高电压	$0.7V_{DD}$	-	V _{DD} +0.3	V	GPIO
V_{IL1}	输入低电压	-0.3	-	$0.3V_{DD}$	V	
V _{IH2}	输入高电压	0.8V _{DD}	-	V_{DD}	V	施密特触发输入:
V _{IL2}	输入低电压	-0.2	-	0.2V _{DD}	V	RST tCK / tDIO UARTO 输入 RXO USCI 信号输入口 INT0~2 PWM 故障检 FLT Timer 时钟输入口 Timer 捕获口
I _{OL1}	输出低电流	-	27	-	mA	V _{Pin} =0.4V
l _{OL2}	输出低电流	-	50	-	mA	V _{Pin} =0.8V
Iohspi0a	SPI0 信号口: USCK0(P04) USTX0(P05) USRX0(P06) 输出高电流@ V _{Pin} =4.3V	-	21	-	mA	仅适用于 SPIO 数据传输时
Іон1	驱动能力固定 IO 组:	-	10	-	mA	Pxyz=0,I _{OH} 等级 0
	P3H ¹					Pxyz=1,Ion等级 1
	P4					Pxyz=2,I _{OH} 等级 2
	P5 输出高电流@ V _{Pin} =4.3V					Pxyz=3,Iон 等级 3
І он2	驱动能力可分级 IO 组:	-	10	-	mA	Pxyz=0,Ioн等级 0
	P0	-	7	-	mA	Pxyz=1,I _{OH} 等级 1
	P1	-	5	-	mA	Pxyz=2,I _{OH} 等级 2
	P2		2.5	-	mA	Pxyz=3,I _{OH} 等级 3
	P3L ¹ 输出高电流@ V _{Pin} =4.3V					
Іонѕріов	SPI0 信号口: USCK0(P04) USTX0(P05) USRX0(P06) 输出高电流@ V _{Pin} =4.7V	-	8	-	mA	仅适用于 SPI0 数 据传输时
Іонз	驱动能力固定 IO 组: P3H ¹ P4 P5 输出高电流@ V _{Pin} =4.7V	-	4	-	mA	Pxyz=0,Iон等级 0 Pxyz=1,Iон等级 1 Pxyz=2,Iон等级 2 Pxyz=3,Iон等级 3
І он4	驱动能力可分级 IO 组:	-	4	-	mA	Pxyz=0,Ioн等级 0
	P0	-	3	-	mA	Pxyz=1,I _{OH} 等级 1
	P1	-	2	-	mA	Pxyz=2,I _{OH} 等级 2
	P2	-	1	-	mA	Pxyz=3,Ioн等级 3
	P3L ¹ 输出高电流@ V _{Pin} =4.7V					
R _{PH1}	上拉电阻	_	30	-	kΩ	

注:

1. H和L字母的含义:

● H:端口高四位;

● L: 端口低四位。

(V_{DD} = 3.3V, T_A = +25℃, 除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件
电流						

V0.4 V0.4

I _{op5}	工作电流	-	6	-	mA	fsys=32MHz
I _{op6}	工作电流	-	3.8	-	mA	f _{SYS} =16MHz
I _{op7}	工作电流	-	2.4	-	mA	f _{SYS} =8MHz
I _{op8}	工作电流		1.7	-	mA	fsys=4MHz
I _{pd2}	待机电流	-	2.2	-	μΑ	
	(Power Down 模式)					
I _{IDL2}	待机电流	-	2.2	-	mA	fsys=32MHz
	(IDLE 模式)					
I _{TK2}	高灵敏度 Touch key 工作	-	0.7	1.0	mA	
	电流					
IO 口特性			•	•		
V _{IH3}	输入高电压	0.7V _{DD}	-	V _{DD} +0.3	V	
V _{IL3}	输入低电压	-0.3	-	0.3V _{DD}	V	
V _{IH4}	输入高电压	0.8V _{DD}	-	V_{DD}	V	施密特触发输入:
V _{IL4}	输入低电压	-0.2	-	0.2V _{DD}	V	RST
						tCK / tDIO
						UARTO 输入 RX0
						USCI 信号输入口 INT0~2
						PWM 故障检 FLT
						Timer 时钟输入口
						Timer 捕获口
I _{OL3}	输出低电流	-	22		mA	V _{Pin} =0.4V
I _{OL4}	输出低电流	-	35	-	mA	V _{Pin} =0.8V
Іонѕрюс	SPI0 信号口:		7	-	mA	仅适用于 SPI0 数
	USCK0 (P04)					据传输时
	USTX0 (P05)					
	USRX0 (P06)					
	输出高电流@ V _{Pin} =3.0V					
I _{OH5}	驱动能力固定 IO 组:	-	3	-	mA	Pxyz=0,I _{OH} 等级 0
	P3H ¹					Pxyz=1,Ioн等级 1
	P4					Pxyz=2,I _{OH} 等级 2
	P5					Pxyz=3,Ion等级 3
	输出高电流@ V _{Pin} =3.0V					-
Іон6	驱动能力可分级 IO 组:	-	3	-	mA	Pxyz=0,Ioн等级 0
	PO	-	2	-	mA	Pxyz=1,I _{OH} 等级 1
	P1 P2	-	1.5	-	mA	Pxyz=2,Ioн等级 2
	P3L ¹	-	0.8	-	mA	Pxyz=3,I _{OH} 等级 3
	输出高电流@ V _{Pin} =3.0V					
R _{PH2}	上拉电阻	-	55	-	kΩ	
	-,,	1	1	1		1

注:

1. H和 L字母的含义:

● H:端口高四位;

● L:端口低四位。

23.5 交流电气特性

(V_{DD} = 2.0V ~ 5.5V, T_A = 25℃, 除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件
Tosc	外接 32k 振荡器起振时间	-	-	1	S	外接 32k 晶振
T _{POR}	Power On Reset 时间	-	15	-	ms	
T _{PDW}	Power Down 模式唤醒时	-	65	130	μs	
	间					

Page 128 of 144 V0.4

T _{Reset}	复位脉冲宽度	18	-	-	μs	低电平有效
T _{LVR}	LVR 消抖时间	-	30	-	μs	
f _{HRC1}	RC 振荡稳定性	31.68	32	32.32	MHz	V _{DD} =2.0~5.5V
						T _A =-40~85 ℃
f _{HRC2}	RC 振荡稳定性	31.36	32	32.64	MHz	V _{DD} =2.0~5.5V
						T _A =-40~105 ℃

23.6 ADC 电气特性

(T_A = 25℃,除非另有说明)

(1A = 25 C,	陈非为有说明)					
符号	参数	最小值	典型值	最大值	单位	测试条件
V _{AD1}	供电电压 1	2.7	5.0	5.5	V	Vref = 2.048V
V_{AD2}	供电电压 2	2.0	5.0	5.5	V	Vref = 1.024V
						或
						Vref = V _{DD}
V _{AD3}	供电电压 3	2.7	5.0	5.5	V	Vref = 2.4V
V _{REF1}	内部基准 2.048V	2.033	2.048	2.063	V	$V_{DD} = 2.7 \sim 5.5 V$
V _{REF2}	内部基准 1.024V	1.004	1.024	1.044	>	$V_{DD} = 2.0 \sim 5.5 V$
V_{REF3}	内部基准 2.4V	2.37	2.40	2.45	V	$V_{DD} = 2.7 \sim 5.5 V$
N _R	精度	-	12	-	bit	$GND \leq V_{AIN} \leq V_{DD}$
V _{AIN}	ADC 输入电压	GND	-	V_{DD}	V	
R _{AIN}	ADC 输入电阻	1	-		MΩ	V _{IN} =5V
I _{ADC1}	ADC 转换电流 1	-	-	2	mA	ADC 模块打开
						V _{DD} =5V
I _{ADC2}	ADC 转换电流 2	-	-	1.8	mA	ADC 模块打开
						V _{DD} =3.3V
DNL	微分非线性误差		-	±3	LSB	
INL	积分非线性误差	-	-	±3	LSB	
Ez	偏移量误差	-	±3	-	LSB	VDD=5V VREF=5V
E _F	满刻度误差	-	±1	-	LSB	- VREF≡SV
E _{AD}	总绝对误差	-	±3	-	LSB	1
T _{ADC1}	ADC 转换时间 1	-	1.1	1.4	μs	fsys=32MHz
						LOWSP[2:0] = 100
T _{ADC2}	ADC 转换时间 2	\ \ \ -	1.2	1.5	μs	fsys=32MHz
						LOWSP[2:0] = 101
T _{ADC3}	ADC 转换时间 3	-	1.5	1.9	μs	fsys=32MHz
						LOWSP[2:0] = 110
T_{ADC4}	ADC 转换时间 4	-	2.0	2.6	μs	f _{SYS} =32MHz
						LOWSP[2:0] = 111

23.7 模拟比较器电气特性

(V_{DD} =5V, T_A = 25℃, 除非另有说明)

(1DD - 01) IV - 10 0) W 11 24 14 26 24								
符号	参数	最小值	典型值	最大值	单位	测试条件		
V _{СМ}	输入电压范围	0	•	V_{DD}	V			
Vos	偏移电压	-	10	30	mV			
V _{HYS}	比较电压回差	-	40	ı	mV			
Ісмр	比较器转换电流	-		100	μA	V _{DD} =5V		
ТсмР	响应时间	-	-	2	μs			

Page 129 of 144 V0.4

24 应用电路

Page 130 of 144 V0.4

25 封装信息

SC95F8762M20U

SOP20L(300mil) 外形尺寸 单位:毫米

符号		mm(毫米)	
17.5	最小	正常	最大
Α	2.40	2.56	2.65
A1	0.100	0.200	0.300
A2	2.240	2.340	2.440
b	0.35		0.47
C	0.25		0.31
D	12.60	12.80	13.00
E	7.30	7.50	7.70
HE	10.100	10.300	10.500
е	1.27(BSC)		
L	0.700	0.850	1.000
LE	1.30	1.40	1.50
θ	0°	-	8°

Page 131 of 144 http://www.socmcu.com

SC95F8762X20U

TSSOP20L 外形尺寸 单位:毫米

符号	mm(毫米)		
	最小	正常	最大
Α	-	-	1.200
A1	0.050	-	0.150
A 2	0.800	-	1.050
b	0.190	-	0.300
С	0.090	-	0.200
D	6.400	-	6.600
E	6.20	-	6.60
e1	4.300	-	4.500
е		0.65(BSC)	
L	-	-	1.00
θ	0°	-	8°
Н	0.05	-	0.15

Page 132 of 144 V0.4

SC95F8763M28U

SOP28L(300mil)外形尺寸 单位: 毫米

符号	mm(毫米)		
机克	最小	标准	最大
Α	2.40	2.56	2.65
A 1	0.100	0.200	0.300
A 2	2.240	2.340	2.440
b	0.39		0.48
С	0.254(BSC)		
D	17.80	18.00	18.20
Е	7.30	7.50	7.70
HE	10.100	10.300	10.500
е		1.270(BSC)	
L	0.7	0.85	1.0
LÉ	1.3	1.4	1.5
θ	0°	-	8°

Page 133 of 144 V0.4

SC95F8763X28U

TSSOP28L 外形尺寸

单位:毫米

符号	mm(毫米)		
初五	最小	正常	最大
Α	-	-	1.200
A1	0.050	-	0.150
A 2	0.800	-	1.050
b	0.190	-	0.300
С	0.090	-	0.200
D	9.600	-	9.800
Е	6.250	-	6.550
e1	4.300	-	4.500
e		0.65(BSC)	
L	-	-	1.0
θ	0°	-	8°
Н	0.05	-	0.25

Page 134 of 144 http://www.socmcu.com

SC95F8765Q32R

QFN32 (5X5)外形尺寸 单位: 毫米

符号	mm(毫米)		
गुन	最小	正常	最大
Α	0.70	0.75	0.80
A1	i i	0.02	0.05
b	0.18	0.25	0.30
D	4.90	5.00	5.10
Е	4.90	5.00	5.10
е	0.5 BSC		
k		0.4 REF	
D1	3.30	3.45	3.60
E1	3.30	3.45	3.60
L	0.30	0.40	0.50

Page 135 of 144 V0.4

SC95F8765P32R

		<u> </u>	
佐旦	mm(毫米)		
符号	最小	标准	最大
Α	1.45	1.55	1.65
A1	0.01		0.21
A2	1.30	1.4	1.5
A3		0.254	
b	0.30	0.35	0.41
b1	0.31	0.37	0.43
С	0.12	0.13	0.14
D1	6.85	6.95	7.05
D2	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.85	6.95	7.05
E2	6.90	7.00	7.10
е		0.8	
L	0.43		0.75
L1	0.90	1.0	1.10
R	0.1		0.25

Page 136 of 144 V0.4

R1	0.1		
θ	0°		10°
θ1	0°		
у			0.1
Z		0.70	

SC95F8766P44R

LQFP44 (10X10)外形尺寸 单位: 毫米

		Y Y	
か.旦.		mm(毫米)	
符号	最小	标准	最大
Α	1.45	1.55	1.65
A1	0.015		0.21
A2	1.3	1.4	1.5
A3		0.254	
b	0.25	0.30	0.36
b1	0.26	0.32	0.38
С	0.12	0.13	0.14
D1	9.85	9.95	10.05
D2	9.90	10.00	10.10
Е	11.80	12.00	12.20
E1	9.85	9.95	10.05
E2	9.90	10.00	10.10
е		8.0	
L	0.42		0.75
L1	0.95	1.0	1.15
R	0.08		0.25
R1	0.08		
θ	0°		10°

Page 138 of 144 V0.4

θ1	0°		
у			0.1
Z		1.0	

Page 139 of 144

N37

N48

N1

SC95F8767Q48R

₩ □	mm(毫米)		
符号	最小	标准	最大
Α	0.70	0.75	0.80
A1	0	0.02	0.05
b	0.18	0.25	0.30
D	6.90	7.00	7.10
D2	5.10	5.30	5.50
е		0.50 BSC.	
k	0.50		
E	6.90	7.00	7.10
E2	5.10	5.30	5.50
L	0.35	0.40	0.45

Page 140 of 144

SC95F8767P48R

LQFP48 (7X7)外形尺寸

单位: 毫米

符号		mm(毫米)	
117.2	最小	标准	最大
Α	1.45	1.55	1.65
A1	0.01		0.21
A2	1.3	1.4	1.5
A3		0.254	
b	0.15	0.20	0.25
b1	0.16	0.22	0.28
С	0.12		0.17
D1	6.85	6.95	7.05
D2	6.90	7.00	7.10
Е	8.8	9.00	9.20
E1	6.85	6.95	7.05
E2	6.9	7.00	7.10
е		0.5	
L	0.43		0.75
L1	0.90	1.0	1.10
R	0.1		0.25

Page 141 of 144 V0.4

R1	0.1		-
θ	0°		10°
θ1	0°		
у			0.1
Z		0.75	

Page 142 of 144 V0.4

26 规格更改记录

版本	记录	日期
V0.4	修改 CRC 章节描述	2023年04月11日
V0.3	 修正 GPIO 章节强推挽输出模式电路图 删除前 256bytes 禁止 MOVC 相关描述 更新 QFN48、QFN32 封装尺寸信息表 公司名称更改为深圳市赛元微电子股份有限公司 	2022年09月20日
V0.2	 优化调整 ESD、EFT 等级描述方式 新增 LVR 消抖时间的相关描述 	2022年03月07日
V0.1	初版	2021年06月23日

Page 143 of 144 V0.4

声明

深圳市赛元微电子股份有限公司(以下简称赛元)保留随时对赛元产品、文档或服务进行变更、更正、增强、修改和改进的权利,恕不另行通知。赛元认为提供的信息是准确可信的。本文档信息于 2021 年 06 月开始使用。在实际进行生产设计时,请参阅各产品最新的数据手册等相关资料。

