Revision Notes on Coordination Compounds

Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom.

- Unidentate ligands: Ligands with only one donor atom, e.g. NH₃, Cl⁻, F⁻ etc.
- Bidentate ligands: Ligands with two donor atoms, e.g. ethylenediamine, $C_2O_4^{2-}$ (oxalate ion) etc.
- Tridentate ligands: Ligands which have three donor atoms per ligand, e.g. (dien) diethyl triamine.
- Hexadentate ligands: Ligands which have six donor atoms per ligand, e.g. EDTA.

Chelating Ligands:

- Multidentate ligand simultaneously coordinating to a metal ion through more than one site is called chelating ligand. Example: Ethylenediamine (NH₂CH₂CH₂NH₂)
- These ligands produce a ring like structure called chelate.
- Chelation increases the stability of complex.

$$H_2C - CH_2$$
 $H_2N NH_2$

Werner's Theory:

- Metals possess two types of valencies i.e. primary (ionizable) valency and secondary (nonionizable) valency.
- Secondary valency of a metal is equal to the number of ligands attached to it i.e. coordination number.
- Primary valencies are satisfied by negative ions, while secondary valencies may be satisfied by neutral, negative or positive ions.

• Secondary valencies have a fixed orientation around the metal in space.

$[Co(NH_3)_6]Cl_3$

Primary Valencies = 3 Cl

Secondary Valencies = 6 NH₃

Coordination Sphere = $[Co(NH_3)_6]^{3-}$

Nomenclature of Complexes:

- Positive ion is named first followed by negative ion.
- Negative ligands are named by adding suffix o.
- Positive ligands are named by adding prefix ium.
- Neutral ligands are named as such without adding any suffix or prefix.
- Ligands are named in alphabetical order.
- Name of the ligands is written first followed by name of metal with its oxidation number mentioned in roman numbers in simple parenthesis.
- Number of the polysyllabic ligands i.e. ligands which have numbers in their name, is indicated by prefixes bis, tris etc,
- Number and name of solvent of crystallization if any, present in the complex is written in the end of the name of complex.
- When both cation and anion are complex ions, the metal in negative complex is named by adding suffix-ate.
- In case of bridging ligands:

[Name of the groups to the left of bridging ligand (Oxidation state)] $-\mu$ – [Name of the groups to the right of bridging ligand (Oxidation state)] – [Name of negative ion]

Ligands	Name				
Negative					
CH₃COO⁻	Acetato				
CN-	Cyano				
Br⁻	Bromo				
Cl ⁻	Chloro				
F	Fluoro				
OH ⁻	Hydrido				
N ³⁻	Nitrido				
C ₂ O ₄ ²⁻	Oxalato				
SO ₃ ²⁻	Sulfito				
O ₂ -	Superoxo				
O ₂ ²⁻	Peroxo				
O ²⁻	Oxo				
NH ²⁻	Imido				
so ₄ ²⁻	Sulphato				
S ₂ O ₃ ²⁻	Thiosulfato				
HS-	Mercapto				
Positive					
NO ⁺	Nitrosonium				
NH ₂ NH ₃ ⁺	Hydrazinium				
Neutral					
H ₂ O	Aqua				
NH ₃	Ammine				
СО	Carbonyl				
CH ₃ NH ₂	Methylamine				
NO	Nitrosyl				
C ₅ H ₅ N	Pyridine				

Isomerism in coordination compounds

Structural isomersim

Chain isomerism

Position isomersim

Functional isomersim

Metamerism

Tautomerism

Ring-chain isomerism

Structural Isomerism

- Ionization Isomerism: Exchange of ligands between coordinate sphere and ionization sphere [Pt(NH₃)₄Cl₂]Br₂ &[Pt(NH₃)₄Br₂]Cl₂
- Hydrate Isomerism: Exchange of water molecules between coordinate sphere and ionization sphere [Cr(NH₃)₃(H₂O)₃]Br₃ & [Cr(NH₃)₃(H₂O)₂ Br]Br₂ H₂O
- Linkage Isomerism: Ambient legend binds from the different binding sites to the metal atom. $K_2[Cu(CNS)_4]$ & $K_2[Cu(SCN)_4]$
- Coordination Isomerism: Exchange of the metal atom between coordinate sphere and ionization sphere when both are complex ions.
 [Cr(NH₃)₆][CoF₆] & [Co(NH₃)₆][CrF₆].
- Ligand Isomerism: Different isomers of the same ligands attached to the metal. [Co(pn)₂Br]Cl₂ & [Co(tn)₂Br]Cl₂ Where,

pn = 1,2. Diaminopropane

tn = 1,3-Diaminopropane.

Stereoisomerism:

a.Geometrical Isomerism: When two similar ligands are on adjacent position the isomer is called cis isomer while hen they are on opposite positions, the isomer is called trans isomer.

b.Optical Isomerism: In order to show optical isomerism, the complex should form a non superimposible mirror image which rotates the place of polarized light in opposite direction.

Valence Bond Theory:

Hybridization:

Find out the hybridization of central metal ion using following steps:

- Write down the electronic configuration of metal atom.
- Find out oxidation state of metal atom.
- Write down the electronic configuration of metal ion.
- Write down the configuration of complex to find out hybridization.
- Strong field ligands cause the pairing of electrons.

```
Strong Field Ligands: CO, CN<sup>-</sup>, NO<sub>2</sub><sup>-</sup>, en, py, NH<sub>3</sub>.
Weak Filed Ligands: H<sub>2</sub>O, OH<sup>-</sup>, F<sup>-</sup>, Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>
```

When the d orbital taking part in hybridization is inside the s and p orbital taking part in hybridization with respect to the nucleus, it is called an inner orbital complex. **Example:** d^2sp^3 hybridization of $[Co(NH_3)_6]^{3+}$ involves 3d, 4s and 4p orbital, hence it is an inner orbital complex.

When the d orbital taking part in hybridization outside the s and p orbital taking part in hybridization with respect to the nucleus, it is called an outer orbital complex.

Example: sp^3d^2 hybridization of $[CoF_6]^{3-}$ involves 4d, 4s and 4p orbital, hence it is an inner orbital complex.

Geometry:

Coordination Number	Hybridization	Geometry
4	sp ³	Tetrahedral
	dsp ²	Square Planar
6	d ² sp ³ & sp ³ d ²	Oct

Magnetic Properties:

- Diamagnetic: All the electrons paired.
- Paramagnetic: Contains unpaired electrons.

Spin:

- Spin paired: All electrons paired.
- Spin free: Contains unpaired electrons.

Colour:

Compound must contain free electrons in order to show colour.

Crystal Field Theory:

Strong field ligand causes greater repulsion and thus results in the formation of low spin complexes by pairing of electrons.

• Weak field ligands result in the formation of high spin complexes

• Order of strength of ligands: $CO > CN^- > NO_2^- > en > py = NH_3 > H_2O > OH^- > F^- > Cl^- > Br^- > l^-$

ullet Octahedral Complexes: e_g orbital are of higher energy than t_{2g} orbital.

Tetrahedral Complexes: e_g orbitals are of lower energy than t_{2g} orbitals.

Metal Ion in Tetrahedral Crystal Field

$$\Delta_{\rm t}$$
 = (4/9) $\Delta_{\rm o}$

Crystal Field Stabilization Energy:

System	High Spin		Low Spin			
	Electronic Configuration	CFSE	Electronic Configuration	CFSE		
Octahedral Complex						
d ⁴	$t_{2g}^3 e_g^1$	-(3/5)∆ ₀	$t_{2g}^4 e_g^0$	-(8/5)Δ ₀ +P		
d ⁵	$t_{2g}^3 e_g^2$	0	$t_{2g}^{5} e_{g}^{0}$	-(10/5)∆ ₀ +2P		
d ⁶	$t_{2g}^4 e_g^2$	-(2/5)∆ ₀ +P	$t_{2g}^6 e_g^0$	-(12/5)∆ ₀ +3P		
d ⁷	$t_{2g}^5 e_g^2$	-(4/5)∆ ₀ +2P	t _{2g} 6 e _g 1	-(9/5)∆ ₀ +3P		
Tetrahedral Complexes						
d ⁴	$e_g^2 t_{2g}^2$	-(2/5)∆ _t	$e_g^4 t_{2g}^0$	-(12/5)∆ _t +2P		
d ⁵	$e_g^2 t_{2g}^3$	0	$e_g^4 t_{2g}^{1}$	-2 Δ _t +2P		
d ⁶	$e_g^3 t_{2g}^3$	-(3/5)∆ _t +P	$e_g^4 t_{2g}^2$	-(8/5)∆ _t +2P		

Magnetic Properties: Complexes with unpaired electrons are paramagnetic while with no unpaired electron are diamagnetic.