Analysis of Flight Delays and

Cancellations

TEAM 3

Team members: Jialin Liu Quan Nguyen Varun Kaza

Project Proposal & Motivation

- Delays and cancellations in flights disrupt schedules and incur significant costs. This analysis aims to understand these issues and provide actionable insights.
- The weather plays a an important role in commercial travel.

Data Source

Types of Analysis

Exploring Flight Patterns and Insights into Weather Impacts

Data Range: 01/01/2022-07/31/2024

Tracking the count of Arrival and Departure times Tracking Air time and Distance Tracking Cancellation and Delays Cancellation and Delay Reasons

Specific Insights and Deeper Weather Analysis

Data Range: 01/01/2022-07/01/2024

10 busiest domestic airports

Tracking Summary statistics by location and time

Tracking the occurrence of extreme weather conditions

such as Thunder, Fog, and Snow

Exploring Weather Data

	Location	Thunder_Count	Avg_Precipitation	Total_Precipitation
0	Orlando International	258	0.386899	99.82
1	Hartsfield-Jackson Atlanta International	159	0.486604	77.37
2	Dallas/Fort Worth International	150	0.521000	78.15
3	Denver International	140	0.133000	18.62
4	Charlotte Douglas International	125	0.432560	54.07
5	Chicago O'Hare International	109	0.380642	41.49
6	Ronald Reagan Washington National	104	0.359327	37.37
7	Newark Liberty International	96	0.401458	38.54
8	LaGuardia	91	0.554505	50.46
9	Logan International	56	0.446786	25.02

Challenge of Integrating Weather Data

- Integrating weather data posed challenges due to:
- 1. Data granularity mismatches.
- 2. Missing timestamps for specific flight records.
- 3. Different formats in datasets.

Exploring Flight Patterns

Deeper Weather Analysis

Machine Learning

- Purpose: Predicting Flight Cancellations
- Random Forest Classifier
- Feature Engineering:
 - Weather Severity Score: simple score combining precipitation, snow, and wind speed
 - Adverse Weather Flag: binary feature that flags days with weather events like thunderstorms and fog.
 - O Departure Hour

Model Performance

Baseline Model:

o AUC: 0.5

Precision: 0.97

Improved Model:

AUC (Area Under Curve): 0.704

Precision: 0.968

o Recall: 0.722

F1 Score: 0.820

Recommendations

 Airlines can use the predictions to proactively manage resources

 Strong influence of weather conditions, we recommend leveraging real-time weather data to feed into the model

Summary and Conclusion

- Key takeaways:
- 1. Weather is Not the most important factor in delays, however, it does for cancellations.
- 2. Machine learning models provide actionable insights.
- 3. Recommendations aim to minimize disruptions.

Thank You!