AIND - Planning Lab Analysis

This document intends to make an analysis in order to fully complete AIND Planning Lab. The problem described is an Air Cargo Transport System. Three planning problems are being analysed at this report.

Optimal plans for the problems

Air Cargo Problem 1

Problem	Optimal plan (length=6)		
Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK) ∧ Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO)) Goal(At(C1, JFK) ∧ At(C2, SFO))	1. Load(C1, P1, SFO) 2. Load(C2, P2, JFK) 3. Fly(P2, JFK, SFO) 4. Unload(C2, P2, SFO) 5. Fly(P1, SFO, JFK) 6. Unload(C1, P1, JFK)		

Air Cargo Problem 2

Problem	Optimal plan (length=9)	
Init(At(C1, SFO) \(\times At(C2, JFK) \(\times At(C3, ATL) \) \(\times At(P1, SFO) \(\times At(P2, JFK) \(\times At(P3, ATL) \) \(\times Cargo(C1) \(\times Cargo(C2) \(\times Cargo(C3) \) \(\times Plane(P1) \(\times Plane(P2) \(\times Plane(P3) \) \(\times Airport(JFK) \(\times Airport(SFO) \(\times Airport(ATL)) \) \(Goal(At(C1, JFK) \(\times At(C2, SFO) \(\times At(C3, SFO)) \)	1. Load(C1, P1, SFO) 2. Load(C2, P2, JFK) 3. Load(C3, P3, ATL) 4. Fly(P2, JFK, SFO) 5. Unload(C2, P2, SFO) 6. Fly(P1, SFO, JFK) 7. Unload(C1, P1, JFK) 8. Fly(P3, ATL, SFO) 9. Unload(C3, P3, SFO)	

Problem	Optimal plan (length=12)	
Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(C3, ATL) ∧ At(C4, ORD)	1. Load(C2, P2, JFK) 2. Fly(P2, JFK, ORD) 3. Load(C4, P2, ORD) 4. Fly(P2, ORD, SFO) 5. Load(C1, P1, SFO) 6. Fly(P1, SFO, ATL)	

Airport(ORD))	7. Load(C3, P1, ATL)
Goal(At(C1, JFK) \wedge At(C3, JFK) \wedge At(C2, SFO) \wedge At(C4,	8. Fly(P1, ATL, JFK)
SFO))	9. Unload(C1, P1, JFK)
	10 Unload(C2, P2, SFO)
	11. Unload(C3, P1, JFK)
	12. Unload(C4, P2, SFO)

Search methods data and analysis

Method	Expansions	Goal Tests	New Nodes	Plan Length	Time elapsed in seconds		
	Non-heuristic search						
breadth_first_s earch	43	56	180	6	0.0583		
breadth_first_tr ee_search	1458	1459	5960	6	1.520		
depth_first_gra ph_search	21	22	84	20	0.022		
depth_limited_ search	101	271	414	50	0.154		
uniform_cost_s earch	55	57	224	6	0.073		
	Heuristic search						
astar_search h_1	55	57	224	6	0.07898197392 93307		
astar_search h_ignore_preco nditions	41	43	170	6	0.08492878801 189363		
astar_search h_pg_levelsum	11	13	50	6	3.08339868998 155		

Air Cargo Problem 1

- Depth search methods performed worse than others because it generated the longest plan to reach the goal
- Breadth first search reached the goal in less time than all others
- But heuristic methods expanded fewer nodes but it took more time to run.
- Uniform_cost_search found almost was as good as breadth_first_search

Method	Expansions	Goal Tests	New Nodes	Plan Length	Time elapsed in seconds	
Non-heuristic search						
breadth_first_s earch	3343	4609	30509	9	19.28120	
breadth_first_tr ee_search	It tooks more than 3 minutes					
depth_first_gra ph_search	624	625	5602	619	4.861831	
depth_limited_ search	It tooks more than 3 minutes					
uniform_cost_s earch	4853	4855	44041	9	61.6059727550 0186	
	Heuristic search					
astar_search h_1	4853	4855	44041	9	61.3754911669 53	
astar_search h_ignore_preco nditions	1506	1508	13820	9	20.8070232629 54317	
astar_search h_pg_levelsum	86	88	841	9	321.502643055 0497	

Air Cargo Problem 2

- Again depth search methods had a bad performance. They reach the goal, but with a length of 619 and depth_limited_search didn't reach the end because it took more than 3 minutes
- A* search with ignore preconditions had an interesting performance. It took only 1.52 seconds more than breadth_first_search but it expanded only 1506 nodes (1837 less than breadth_first_search)
- A* search levelsum expanded 86 nodes but it took 321.502 seconds to run (301 seconds more than h_ignore_preconditions
- Uniform_cost_search found an optimal plan, but it took 41 seconds more than h_ignore_preconditions

···· curgo i rosiemo						
Method	Expansions	Goal Tests	New Nodes	Plan Length	Time elapsed in seconds	
Non-heuristic search						
breadth_first_s earch	14663	18098	129631	12	132.755	
breadth_first_tr ee_search	It took more than 5 minutes					
depth_first_gra ph_search	408	409	3364	392	2.39021	
depth_limited_ search	It took more than 3 minutes					
uniform_cost_s earch	18151	18153	159038	12	445.728	
Heuristic search						
astar_search h_1	18151	18153	159038	12	504.194183463 9292	
astar_search	5118	5120	45650	12	130.619217872	

h_ignore_preco nditions					96887
astar_search h_pg_levelsum	404	406	3718	12	2100.56615856 19673

- As expected, depth search methods had a bad performance. Since, our search tree is large, depth search it's not guaranteed to find a solution. This was presented in this <u>video</u>.
- BFS and UCS finds a solution eventually, but if the search tree is large, they'll take a while.
- A* search with ignore preconditions was the best in here. It took 130 seconds (2 seconds less than breadth_first_search) and it only expanded 5118 nodes (9545 less than breadth_first_search)
- Uniform_cost_search found a plan again, but it took 315 seconds more than A*search and it expanded 18151 nodes (13033 more nodes). It's not a good option when the problem becomes more complex
- A* search with level sum expanded fewer nodes, but it's expensive computationally, taking more time to compute
- We can conclude that, as the problem gets more complex, A* search with ignore preconditions performs better than any other non-heuristic search method
- As A* uses an heuristic function, it reduces the number of nodes to expanded. It can find an optimal solution depending on the heuristic function that's being used.