	HOMEWORK 7
1.	XERnxp, HERnxh (2c from HW5)
	(i) $H^{T} = H$
	(ii) HH = H
	(iii) im(H) = im(x)
	@ show that His orth proj mactrix:
	for $V \in \mathbb{R}^n$, $(V - HV)^T (HV) = 0$ and $HV = \underset{V \in Im(x)}{argmin} V - U _2^2$
	We first show that (v-Hv) (Hv) = 0:
	$(v-Hv)^{T}(Hv) = (v^{T}v^{T}H^{T})(Hv)$
	= vTHV-VTHTHV = VTHV - VTHV =0 (i, ii)
	Furthermore, Hv= aigmin 11V-41/2:
	(write v-u= H(v-u) +Q(v-u))
	$ V-y _2^2 = V-HV+HV-y _2^2$
	= 11 (V-HV) + (HV - 4) 12°
·	=[(v-Hv)+(Hv-U)] [(v-Hv)+(Hv-U)]
	= (v-Hv) T(v-Hv) + (v-Hv) T (Hv-y) + (Hv-y) T(v-Hv)
	+ (HV-U) T(HV-U) (A)
	$O(V-HV)^{T}(V-HV) = 11V-HV112^{2}$
	@ (v-Hv) T (Hv-u) = vTHV - VTU -VTHTHV +VTHTY
	= vTHv -vTy - VTHV + VTy = 0
	$ (HV-u)^{T}(v-HV) = v^{T}HV - v^{T}HHV - u^{T}V + u^{T}HV $
	$= v^{T}Hv - v^{T}Hv - u^{T}v + u^{T}v = 0$
	(HV-4) T(HV-4) = HV-4 2
	$50, V-U _2^2 = 0 + 3^0 + 3^0 + 4$
	$ S0 V-u _2 = 0 + 0 + 0 + 0 + 0$ $= V-HV _2^2 + HV-u _2^2 \ge V-HV _2^2$
	making HV the closest in im(x) to v.
· · · · · · · · · · · · · · · · · · ·	10004
	vex+page

```
1, continued
6 show that for H properties, it is unique. If
 Pernis another most in such that
 (i) P^{T} = P , (ii) PP = P, (iii) im(P) = im(x), H = P
 P (projection mouth) projects onto W for
    yew, where Py=y and
    yew, where Py=0
 Py is then a linear combination of the
 columns of P (ie, W= col(P))
 Say y = y_1 + y_2, with y_1 \in W and y_2 \in W^{\perp}

Py = P(y_1 + y_2) = Py_1 + Py_2 = Py_1 + 0 = y_1
So, the projection of P onto Wis unique
we also know that, under (i), P=P
(symmetric) and from (ii), PP=P (idempotent)
Also, rank (P) = +r(P) = n because PERnxh
For Y= XB+6, E(Y) = XB and Y=y is an
observation
Px is the projection onto col(x), and if
 X has full rank, Px = H
Since from (iii) im (P) = im(x), P=H
 and Px = hort morth x \rightarrow x(x^Tx)^T x^T
@ Define H= XX+, show. H is hat matrix of x
using properties 1-4 of Moore-Penrose pseudoinverse
H=XX+
=(\times\times^{+})^{\top}
             by O
  =(X^{+})^{T}X^{T}
= \begin{bmatrix} (x^Tx)^T x^T \end{bmatrix} X^T \qquad \text{by } \textcircled{3}
= x [(x^Tx)^T] X^T \qquad \text{by } \textcircled{9}
 - = \times (\times^{\top} \times)^{+} \times^{\top}
and for invertible (xTX), (XTX)+=(XTX)+
\Rightarrow = X(X^TX)^{-1}X^T = H, hat matrix of X
```

```
2. Y=XB+E, XERnxp is non-random, fill-rank and
    BER is unknown. Prove Gauss-Markov Theorem.
     E(\epsilon)=0, var(\epsilon)=\sigma^2I_n
         var(β) = var(β) +M, M is symmetric &pso
    B is BLUE. Proof when X is not full-rankis
      almost the same as below.
   @ what is obsestimator for B? what is its
     variance and host matrix H?
    To find the OLS estimator, we take
             Y=XB+E, solve for E:
           F= Y-XB
     We want to minimize ETE:
        min \in TE = (Y - XB)^T(Y - XB)
   Simplify: ETE = (T-BTXT) (Y-XB)
= YTY - YTXB-BTXTY+BTXTXB
                        = Y^{T}Y - 2\beta^{T}X^{T}Y + \beta^{T}X^{T}X\beta
       Derive unt \beta:
\frac{\partial(e^{T}e)}{\partial\beta} = -2X^{T}Y + 2X^{T}X\beta
       Setto Zevo, solve for B
              0 = -2 \times TY + 2 \times T \times \hat{\beta}
         > 2xTy = 2xTx B
             x^{T}y = x^{T}x\hat{\beta}
\hat{\beta} = (x^{T}x)^{-1} \times Ty
   var(\hat{\beta}) = var(\beta + (x^Tx)^{-1} x^T \epsilon)
            = Var \left[ (xTx)^{-1} XTe \right] = E \left[ (xTx)^{-1} XTe e^{T} X(xTx)^{-1} \right]
             = (x^T x)^{-1} x \mathbb{E} (\epsilon \epsilon^T) \times (x^T x)^{-1}
             = (\times^{\tau} \times)^{-1} \times^{\tau} \sigma^{2} I_{n} \times (\times^{\tau} \times)^{-1}
             = \sigma^2 (x^T x)^{-1}
   \hat{Y} = \times \hat{\beta} \rightarrow \hat{Y} = \times (\times^T \times)^{-1} \times^T Y = HY
          so Nort mouthing H = X(X^TX)^{-1}X^T
```

	2, continued
	6) $\tilde{\beta} = ATY$, linear inbiased estimator for B,
	AERMP Show that ATX= Inffind var(B).
	B is a linear un biased estimate for B
	which would mean
	$E(\tilde{\beta}) = \beta$
	ATX=I needs to be true then, because
	$E(\tilde{\beta}) = E(ATY) = E(ATXB) = B$
	I
	So, ATX = I
	AND IN THE REPORT OF THE PARTY
	$Var(\tilde{\beta}) = Var(ATY)$
	= AT var(Y)(AT) = AT var(Y) A
	$= A^{T} \sigma^2 I A = (\sigma^2 \cdot A^{T} A)$
	O B is OLS estimator, show that
	$Var(\hat{\beta}) = Var(\hat{\beta}) + M$
-	where Mis symmetry, PSD
-	we know $var(\hat{\beta}) = \sigma^2 A^T A = var(\hat{\beta}) + M$
	$var(\beta) = \sigma^2 A^T A = \sigma^2 (A^T H A + A^T (I - H) A)$
	$= \sigma^{2}((X^{T}X)^{-1} + A^{T}(I-H)A)$
	becomes ols var(B)
	so $M = \sigma^2 (A^T (I - H) A)$ which is PSD.
	AT(I-H)A is quadratic form
-	and because (I-H) is symmetric (previous HW)
1	AT(I-H)A is PSD making
	M PSD and symmetric,
	$Var(\hat{\beta}) = Var(\hat{\beta}) + M$
	The second of th

```
2, continued

 For q∈RP, show that © implies
 Var(qTβ) ≥ Var(qTβ)

 var(9 TB) is smaller because in the nature
     ej OLS, ue minimize à
 Var(qT\tilde{\beta}) = q^{T}Var(\tilde{\beta})q
= q^{T}(Var(\tilde{\beta}) + M)q
           =9 T Var (B) 9 + 9 TMg
                                    from O, Mis PSD
  and since 9TMg 70,
                Var(qTβ) ≥ Var(qTβ)
Q = X\beta + e, E(e) = 0, Var(e) = \sigma^2 \Sigma
Z is known, invertible matrix
 R is invertible \rightarrow \Sigma = RR^{T}
(i) \tilde{Y} = R^{-1}Y, \tilde{X} = R^{-1}X
Find E(y), var(y)
   If Y= XB+E, Ÿ=XB+E
       SO R-1Y = R-1 XB+ == R-1 (XB+ ==)
making 1 = xB+ + == E
Since Y = x\beta + \epsilon, \tilde{\epsilon} = R^{-1}\epsilon

E(\tilde{Y}) = E(R^{-1}X\beta + R^{-1}\epsilon) = R^{-1}E(x\beta) + R^{-1}E(\epsilon) = R^{-1}x\beta

Var(\tilde{Y}) = Var(R^{-1}Y) = R^{-1}Var(Y)(R^{-1})^{T}

= R^{-1}\sigma^{2}\sum(R^{-1})^{T}

= R^{-1}\sigma^{2}(RR^{T})(R^{T})^{-1}
    = R - 02 RR T (RT)-1
      = 02 R-1 R RT (RT)-1 = (0-2)
```

20, continued; Y=XB+E, F(E)=O, Var(E)=02
(ii) Find BLUE for B under new Y in terms of
X, Y, E (generalized least squares)
If Z = RRT, Z-1 = (RRT)-1 = /RT)-1 R-1
and $\Sigma^{T} = (RRT)^{T} = (RT)^{T}R^{T} = RRT (\Sigma^{T} = \Sigma)$
and $(\Sigma^{-1})^{-1} = (\Sigma^{-1})^{-1} = (R^{-1})^{-1} R^{-1} = \Sigma^{-1}$
$\hat{\beta}_{ols}$ minimizes the function $f(\hat{\beta})$
$\lambda(\hat{\beta}) = (\hat{Y} - \hat{X}\beta)^{T}(\hat{Y} - \hat{X}\beta)$
derive, set to zero, solve for B
we get
$\beta_{gls} = (\ddot{X}\ddot{X})^{-1}\ddot{X}\ddot{Y}$
$=((R^{-1}X)^{T}R^{-1}X)^{-1}(R^{-1}X)^{T}R^{-1}Y$
$= (X^{T}(R^{T})^{-1}R^{-1}X)^{-1}X^{T}(R^{T})^{-1}R^{-1}Y$
$= (X^{T}(RR^{T})^{-1}X)^{-1}X^{T}(RR^{T})^{-1}Y$
$= (X^T \Sigma^{-1} X)^{-1} X^T \Sigma^{-1} Y$
X is full rank because X is full rank,
50 Âgis is BLUE
50 βgis is BLUE
50 βg1s is BLUE
50 βg1s is BLUE
50 βgis is BLUE
50 βgis is BLUE
50 βgis is BLUE
50 βgls is BLUE
50 βgls is BLUE
50 Âgis is BLUE
50 Âgis is BLUE
50 βgis is BLUE

STAT 2131 HW7 - Problems 3, 4

Problem 3: KNNL 6.10

Data is from problem 6.9:

Y = total labor hours X1 = number of cases shipped

X2 = indirect costs of total labor hours as a percentage

X3 = qualitative predictor called holiday; 1 if week has a holiday, 0 otherwise

(a) Fit regression model (6.5) to the data for three predictor variables. State the estimated regression function. How are bl, b2, and b3 interpreted here?

```
model1 = lm(Y ~ X1 + X2 + X3, data = grocery)
summary(model1)
```

```
##
## Call:
## lm(formula = Y ~ X1 + X2 + X3, data = grocery)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
##
  -264.05 -110.73 -22.52
                            79.29
                                   295.75
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
               4.150e+03 1.956e+02 21.220
## (Intercept)
                                             < 2e-16 ***
               7.871e-04
                          3.646e-04
                                      2.159
                                              0.0359 *
## X1
## X2
               -1.317e+01
                          2.309e+01
                                     -0.570
                                              0.5712
## X3
               6.236e+02 6.264e+01
                                      9.954 2.94e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 143.3 on 48 degrees of freedom
## Multiple R-squared: 0.6883, Adjusted R-squared: 0.6689
## F-statistic: 35.34 on 3 and 48 DF, p-value: 3.316e-12
```

As seen in the R output, the regression function can be written as:

```
Y = 4,150 + .0000787X1 - 13.17X2 + 623.6X3
```

For every increase in cases shipped (X1), total labor hours increases by .0000787; for every increase in indirect cost of labor hours by one percentage point, total labor hours decreases by 13.17; and for a week with a holiday, total labor hours increases by 623.6.

(c) Plot the residuals against Y, X1, X2, X3, and X1X2 on separate graphs. Also prepare a normal probability plot. Interpret the plots and summarize your findings.

Model Residuals


```
plot(grocery$X1, model1.res, xlab = "X1", ylab = "Residuals",
    main = "Model Residuals", pch = 20, col = 3)
```

Model Residuals


```
plot(grocery$X2, model1.res, xlab = "X2", ylab = "Residuals",
    main = "Model Residuals", pch = 20, col = 4)
```

Model Residuals


```
plot(grocery$X3, model1.res, xlab = "X3", ylab = "Residuals",
    main = "Model Residuals", pch = 20, col = 5)
```

Model Residuals


```
plot(grocery$X1*grocery$X2, model1.res, xlab = "X1*X2", ylab = "Residuals",
    main = "Model Residuals", pch = 20, col = 6)
```

Model Residuals

The first plot shows that the residuals of the model and the response variable Y are highly correlated, save for a few points outside of the linear trend. This would indicate that the model we put together is not a great fit, since the variation in Y is explained largely by the residuals rather than by the independent variables. The rest of the residual plots show no association (barring the X3 plot, which is not as easy to tell from just looking). The interaction plot between X1 and X2 additionally shows no association. The normal qq-plot shows that the residuals do follow a normal trend, which may make us feel a bit better about the model.

7.4 (b) Test whether X2 can be dropped from the regression model given that X1 and X3 are retained. Use the F test statistic and alpha = .05. State the alternatives, decision rule, and conclusion. What is the P-value of the test?

Ho: B2 = 0 (can be dropped, no effect on response)

Ha: B2 != 0 (should be kept in the model, effect on response)

```
alpha = .05
```

Decision rule: compare model diagnostics, F statistic

```
linearHypothesis(model1, c("X2 = 0"))
```

```
## Linear hypothesis test
## Hypothesis:
## X2 = 0
##
## Model 1: restricted model
## Model 2: Y ~ X1 + X2 + X3
##
     Res.Df
               RSS Df Sum of Sq
                                      F Pr(>F)
## 1
         49 992204
         48 985530
## 2
                          6674.6 0.3251 0.5712
                    1
```

Conclusion: From the hypothesis function we can see that the p-value for testing X2 = 0 is .57, the F-statistic is .3251, and the SSR for B2 is 6674.6. With alpha = 0.05 we fail to reject the Ho, and conclude that we can drop X2 from the model.

Problem 4: KNNL 6.16

Data is from problem 6.15:

Y = patient satisfaction

X1 = patient's age in years

X2 =severity of illness, index

X3 = anxiety level, index

(a) Test whether there is a regression relation; use alpha = .10. State the alternatives, decision rule, and conclusion. What does your test imply about B1, B2, and B3? What is the P-value of the test?

Ho: There is no relationship between the explanatory variables and the dependent variable.

Ha: There is some relationship between one or more of the explantory variables and the dependent variable. alpha = .10

Decision rule: look for p-value of less than .10 to determine significance of relationship.

```
model2 = lm(Y ~ X1 + X2 + X3, data = patient)
summary(model2)
```

```
##
## Call:
## lm(formula = Y ~ X1 + X2 + X3, data = patient)
##
## Residuals:
##
                  1Q
                       Median
                                     3Q
## -18.3524 -6.4230
                       0.5196
                                 8.3715
                                        17.1601
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 158.4913
                            18.1259
                                      8.744 5.26e-11 ***
                                     -5.315 3.81e-06 ***
## X1
                -1.1416
                             0.2148
                                    -0.898
## X2
                -0.4420
                             0.4920
                                              0.3741
```

```
## X3     -13.4702     7.0997     -1.897     0.0647 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.06 on 42 degrees of freedom
## Multiple R-squared: 0.6822, Adjusted R-squared: 0.6595
## F-statistic: 30.05 on 3 and 42 DF, p-value: 1.542e-10
```

Conclusion: There are two significant predictors in the model, X1 and X3, that show a relationship with the dependent variable. With 90% confidence, patient's age (in years) and anxiety level (as an index) are significant predictors for patient satisfaction, severity of illness (as an index) is not, with a model p-value of about 0.000.

(b) Obtain joint interval estimates of B1, B2, and B3, using a 90 percent family confidence coefficient. Interpret your results.

```
confint(model2, level = 1 - 0.10/(2*3))
```

```
## 0.833 % 99.167 %
## (Intercept) 113.291314 203.6911891
## X1 -1.677249 -0.6059751
## X2 -1.668803 0.7847947
## X3 -31.174356 4.2340294
```

The confidence intervals around the estimates of the betas somewhat confirm what the model diagnostics show. Since 0 is included in the interval for X2 and X3, we cannot say they are significant predictors. However, since 0 does not fall in the interval for X1, we can say that there is evidence of X1 being a significant predictor for Y.

(c) Calculate the coefficient of multiple determination. What does it indicate here?

```
summary(model2)$r.squared
```

```
## [1] 0.6821943
```

The multiple coefficient of determination, or the R^2, tells us how much of the variation in Y is explained by the independent variables in the model. For this model, about 68% of the variation in patient satisfaction is explain by patient's age (in years) and anxiety level (on an index). We saw earlier that severity of illness (on an index) does not assist in explaining this variation.