	COMPUTER SCI		DEPARTMENT OF COMPUTER SCIENCE ENGINEERING	
Program Name: B. Tech		Assignment Type: Lab		Academic Year: 2025-26
Course Coordinator Name		Dr.Vairachilai Shenbagavel		
Instructor(s) Name		Srinivas Komakula		
Course Code	23CA201SE402	Course Title	Explainable AI (P)	
Year/Sem	III/V	Regulation	R24	
Date and Day of Assignment	28-07-2025	Time(s)	09:00AM -05:00PM	
Duration	2 Hours	Applicable to Batches	23CSBTB39	

Assignment Number: 01

Q. No.	Question	Expected Time to complete
1	Clean Ride – Car Wash Service	

Context:

Clean Ride distributes flyers in local areas to promote their eco-friendly service.

Flyers Distributed (x in	Cars Washed
100s)	(y)
1	12
2	22
3	29
1	14
2	24

Objective:

Analyze the effect of flyer distribution on the number of cars washed for CleanRide by performing Linear Regression and interpreting SHAP values.

Requirements:

- 1. Perform Linear Regression Analysis
 - Use the given dataset where:
 - Independent Variable (x): Flyers Distributed (in 100s)
 - **Dependent Variable (y):** Cars Washed
- 2. Calculate the Baseline Value
 - o Compute the **mean of all cars washed (y values)**.
- 3. Calculate SHAP Values
 - o For each record, calculate the difference between the **predicted value** and the **baseline**.
 - This difference is the **SHAP value**, attributed to the number of flyers distributed.
- 4. Compute Final Prediction
 - o Use the **linear regression model** to calculate predicted car washes for each flyer count.
 - Confirm that:
 Final Prediction=Baseline+SHAP Value\text{Final Prediction} = \text{Baseline} + \text{SHAP Value} Final Prediction=Baseline+SHAP Value
- 5. Interpret the Results
 - o Explain how the number of flyers influenced each predicted car wash count.
 - o Compare the predicted value to the actual value for each row.
 - o Identify **under prediction** or **over prediction**, and provide reasoning.

Deliverables:

A notebook or document containing:

- Linear regression implementation with coefficients
- Baseline (mean of y)
- Table of SHAP values and predictions
- Explanation of how each input influenced the prediction
- Comparison of predicted vs actual values, with over/under prediction notes
- Summary analysis covering:
 - Accuracy of the model
 - o Trend analysis
 - o SHAP interpretation insights

Q. No.	Question	Expected Time to complete
2	GreenCharge – EV Charging Station Usage Prediction using Multiple Linear Regression and SHAP Analysis	

Objective:

Measure how the number of chargers and peak hour usage influence the number of charging sessions using Multiple Linear Regression and interpret the results using SHAP value analysis.

Given Dataset:

Chargers (x ₁)	Peak Hour (1/0) (x ₂)	Session s (y)
5	1	80
3	0	40
4	1	70
2	0	30
5	0	60

Tasks:

1. Perform Multiple Linear Regression Analysis

- Use Chargers and Peak Hour as independent variables
- Use Sessions as the dependent variable

2. Calculate the Baseline Value

Compute the mean of all session values

3. Calculate SHAP Values

- o Calculate SHAP Value
- o Distribute SHAP contributions between Chargers and Peak Hour based on model coefficients

4. Compute Final Prediction for Each Record

- Use the regression equation
- Verify: Prediction = Baseline + SHAP (Chargers) + SHAP (Peak Hour)

5. Interpret the Results

- o For each entry, explain how Chargers and Peak Hour contributed to the prediction
 - o Compare predicted vs actual sessions
- o Mention if the model overpredicted or underpredicted and suggest potential reasons

Q. N	lo.	Question	Expected Time to complete
3	3	Regression with Diabetes Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and SHAP value analysis.

Tasks

1. Perform Multiple Linear Regression Analysis

- Use all available features from the Diabetes dataset as independent variables.
- Fit a Multiple Linear Regression model to predict disease progression.
- 2. Calculate the Baseline Value
 - Compute the **mean** of the target variable (disease progression scores) from the training data.
 - This will serve as the **baseline prediction**.
- 3. Calculate SHAP Values
 - Apply SHAP to compute **feature contributions** to each prediction.
 - Use model coefficients to proportionally attribute the difference from the baseline to each feature.
- 4. Compute Final Prediction for Each Record
 - For every test record, verify that:

Prediction = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For each patient record:
 - o Explain how each feature contributed to the predicted disease progression.
 - o Compare the **predicted value** vs the **actual observed value**.
 - o Comment on whether the model **overpredicted or underpredicted** and **why**, based on SHAP values.

Q. No.	Question	Expected Time to complete
4	Regression with Student Performance Dataset	

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
 - Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as independent variables.
 - Fit a regression model to predict the **final exam score**.
- 2. Calculate the Baseline Value
 - Compute the **mean of the final exam scores** from the training set.
 - This serves as the **baseline prediction** (expected value).
- 3. Calculate SHAP Values
 - Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
 - Distribute the prediction deviation from the baseline among the features.
- 4. Compute Final Prediction for Each Record
 - For each student record, confirm:

Predicted Score = Baseline + SHAP(Feature₁) + SHAP(Feature₂) + ... + SHAP(Feature_n)

- 5. Interpret the Results
 - For every prediction:
 - o Explain how different features (e.g., study time, failures, health) impacted the exam score.
 - o Compare predicted score to actual score.
 - o Comment on overprediction or underprediction and possible reasons behind it.