Accelerating the backbone of Artificial Intelligence

Marie Skłodowska Curie ESR Universitat Politècnica de València

Work of Matrix Multiplication on AMD Versal

Cache hierarchy

SIMD Compute accelerations

Approximating computing: precision scaling

Proposed memory architecture

Multi-AIE matrix multiplications

Practical

#AIE	Instruction Cycles			Performance/tile
tiles	Copy C_r	Arithmetic	Total	(in MACs/cycle)
1	40	4,110	$3,694.1\cdot 10^3$	31.5
2	58	4,110	$1,916.0\cdot 10^3$	31.4
4	63	4,110	$958.1 \cdot 10^3$	31.3
8	84	4,110	$498.9 \cdot 10^3$	31.2
16	157	4,110	$275.3\cdot10^3$	30.7
32	282	4,110	$162.9\cdot10^3$	29.8

Table 2: Distribution of execution time (in cycles) and performance of the parallel design for GEMM when varying the number of AIE tiles between 1 and 32, for a problem of fixed **dimension** $(m_c, n_c, k_c) = (256, 256, 2, 048)$.

Figure 8: Simplified visualization of proposed work using a roofline model with UINT8 based 8 by 8 micro-kernel of single AIE.

Text

80

Poste

Memory bound analyse