105061254 林士平 邏輯設計實驗報告 Lab9

1.

(1) Design specification:

A. Inputs and outputs(表一):

Inputs	rst, clk				
Outputs	[6:0]segs, [3:0]ssd_ctl, point				
Inouts	PS2_DATA, PS2_CLK				
↑表一:In	↑表一:Inputs and outputs of 1				

B. Block diagram(function table)(圖一):

↑圖一: The block diagram of 1

(2) Design implementation:

A. Logic diagram(function table)(圖二):

↑圖二: logic diagram of 1

B. I/O pin assignment(表二):

1/0	clk	rst	ssd_ctl[3]	ssd_ctl[2]	ssd_ctl[1]	ssd_ctl[0]	segs[6]
LOC	W5	V17	W4	V4	U4	U2	W7
1/0	segs[5]	segs[4]	segs[3]	segs[2]	segs[1]	segs[0]	point
LOC	W6	U8	V8	U5	V5	U7	V7
1/0	PS2_CLK	PS2_DATA					
LOC	C17	B17					

↑表二:I/O pin assignment of 1

C.功能與做法說明:

本題內容為當按下鍵盤上 0/1/2/3/4/5/6/7/8/9 按鍵時(我用右邊九宮格的數字鍵),以及鍵盤上的 a/s/m 按鍵時,七段顯示器會顯示相對應的數字及符號,當按下 enter 鍵時,七段顯示器會清空。

本題最重要的模組為 decoder,輸入為來自 KeyboardDecoder 模組的 last_change。 last_change 代表最後一次按下的按鍵,由 last_change 來判斷現在七段顯示器應該顯示的數值:當 last_change = 0~9 按鍵時,七段顯示器顯示 0~9;當 last_change = a/s/m 按鍵時,七段顯示器分別顯示 A/-/X(my own defined A/S/M pattern);當按下 enter 鍵後,七段顯示器會清空;當按下上述按鍵以外的按鍵時,七段顯示器不會改變。

最後將 decoder decode 出來的值送到顯示模組顯示。

2

(1) Design specification:

A. Inputs and outputs(表三):

Inputs	rst, clk				
Outputs	[6:0]segs, [3:0]ssd_ctl, point				
Inouts	PS2_DATA, PS2_CLK				
↑表三:In	↑表三:Inputs and outputs of 2				

B. Block diagram(function table)(圖三):

↑圖三: The block diagram of 2

(2) Design implementation:

A. Logic diagram(function table)(圖四):

↑圖四: logic diagram of 2

B. I/O pin assignment(表四):

	, , ,								
1/0	clk	rst	ssd_ctl[3]	ssd_ctl[2]	ssd_ctl[1]	ssd_ctl[0]	segs[6]		
LOC	W5	V17	W4	V4	U4	U2	W7		
I/O	segs[5]	segs[4]	segs[3]	segs[2]	segs[1]	segs[0]	point		
LOC	W6	U8	V8	U5	V5	U7	V7		
I/O	PS2_CLK	PS2_DATA							
LOC	C17	B17							
↑表四:I/O pin assignment of 2									

| 衣四・I/O pin assignment of 2

C.功能與做法說明:

本題為製作一個 single digit 的 decimal adder,使用方法如下:當輸入第一個數字後,七段顯示器會顯示第一個數字在最左側,接著按 a(表示+),便可輸入第二個數字;當輸入第二個數字後,七段顯示器會顯示第二個數字在左邊數來第二個,接著按 enter,便會顯示結果在七段顯示器右側兩位。如果想要重新開始只要再輸入數字即可。

本題最重要的模組為 decoder 和 fsm,decoder 和第一題相同,將由 KeyboardDecoder 模組得到的 last_change 訊號做 decode,得到相對應的 output,將其輸入 fsm 作為控制訊號。fsm 模組為實現計算機的功能,總共有 5 個 state,state transition diagram 如下頁圖五所示,在 state0 七段顯示器不顯示;在 state1 七段顯示器顯示輸入的第一個數字;在 state2 七段顯示器維持顯示輸入的第一個數字;在 state3 七段顯示器顯示輸入的第二個數字與第一個數字;最後在 state4 七段顯示器顯示輸入的第一個數字和第二個數字,以及計算結果。

↑圖五: state transition diagram of 2

3

(1) Design specification:

A. Inputs and outputs(表五):

Inputs	rst, clk					
Outputs	[6:0]segs, [3:0]ssd_ctl, point, [3:0]operator, [3:0]state					
Inouts	PS2_DATA, PS2_CLK					
↑表五:In	↑表五:Inputs and outputs of 3					

B. Block diagram(function table)(圖六):

↑圖六:The block diagram of 3

(2) Design implementation:

A. Logic diagram(function table)(圖七):

↑圖七: logic diagram of 3

B. I/O pin assignment(表六):

1/0	clk	rst	ssd_ctl[3]	ssd_ctl[2]	ssd_ctl[1]	ssd_ctl[0]	segs[6]
LOC	W5	V17	W4	V4	U4	U2	W7
1/0	segs[5]	segs[4]	segs[3]	segs[2]	segs[1]	segs[0]	point
LOC	W6	U8	V8	U5	V5	U7	V7
1/0	PS2_CLK	PS2_DATA	operator[3]	operator[2]	operator[1]	operator[0]	state[3]
LOC	C17	B17	L1	P1	N3	Р3	V19
1/0	state[2]	state[1]	state[0]				
LOC	U19	E19	U16				
↑表六: I/O pin assignment of 3							

C.功能與做法說明:

本題為製作一個支援加/減/乘功能的兩位數計算機。使用說明如下:當輸入第一個數字的十位後,七段顯示器會顯示第一個數字的十位在最左側,接著按 enter,便可輸入第一個數字的個位;當輸入第一個數字的個位後,七段顯示器會顯示第一個數字的個位在左邊數來第二個,接著按下想要做的運算(加 -> a;減 -> s;乘 -> m),便可輸入第二個數字的十位;當輸入第二個數字的十位後,七段顯示器會顯示第二數字的十位在最左邊數來第三個,接著按 enter,便可輸入第二個數字的個位;當輸入第二個數字的個位後,七段顯示器便會顯示第二個數字的個位在最左邊數來第四個。最後按下 enter,七段顯示器便會顯示最後的結果。

本題最重要的模組為 decoder 和 fsm,decoder 和第一題相同,將由 KeyboardDecoder 模組得到的 last_change 訊號做 decode,得到相對應的 output,將其輸入 fsm 作為控制訊號。fsm 模組為實現計算機的功能,總共有 8 個 state,state transition diagram 如下頁圖八所示,和第二題最不同的一點是為了要能夠區分出按兩次 enter 與按一次 enter,中間必須加一個 buffer state,來判斷是否有放開鍵盤(利用 key down 做判斷)。

 \uparrow 圖八:state transition diagram of 3

4.

(1) Design specification:

A. Inputs and outputs(表七):

Inputs	rst, clk					
Outputs	[6:0]segs, [3:0]ssd_ctl, point, [1:0]state, capital					
Inouts	PS2_DATA, PS2_CLK					
↑表七:In	↑表七:Inputs and outputs of 4					

B. Block diagram(function table)(圖九):

↑圖九:The block diagram of 4

(2) Design implementation:

A. Logic diagram(function table)(圖十):

↑ 圖十: logic diagram of 4

B. I/O pin assignment(表八):

I/O	clk	rst	ssd_ctl[3]	ssd_ctl[2]	ssd_ctl[1]	ssd_ctl[0]	segs[6]
LOC	W5	V17	W4	V4	U4	U2	W7
I/O	segs[5]	segs[4]	segs[3]	segs[2]	segs[1]	segs[0]	point
LOC	W6	U8	V8	U5	V5	U7	V7
I/O	PS2_CLK	PS2_DATA	state[1]	state[0]	capital		
LOC	C17	B17	E19	U16	L1		
↑表八:I/O pin assignment of 4							

C.功能與做法說明:

本題為實現複合按鍵功能:當 caps lock 沒有亮時(小寫),為小寫模式,在此模式下輸入英文字母七段顯示器會顯示對應的小寫英文字母 ASCII code;如果同時按 shift +英文字母,七段顯示器則是會顯示對應的大寫英文字母 ASCII code。相反的,當 caps lock 亮時(大寫),為大寫模式,在此模式下輸入英文字母七段顯示器會顯示對應的大寫英文字母 ASCII code;如果同時按 shift +英文字母,七段顯示器則是會顯示對應的小寫英文字母 ASCII code。

本題的重點在 fsm 和 MUX,decoder 和前面相同就不再重述。fsm 總共有四個:小寫 state、大寫 state 和兩個 buffer state,其中:小寫 state 的 capital = 1'b0、大寫 state 的 capital = 1'b1,buffer state 則是用來區分是按了 caps lock 兩次或一次(判斷是否有放開鍵盤)。MUX 則是輸入 capital、digit 和 key_down 來判斷是在 capital = 1'b0 或 capital = 1'b1 的情況下,以及是否有按 shift,由此來決定七段顯示器應該顯示的值。

5. Discussion

本次的 Lab 重點為學會如何使用由 sample code 得到的訊號(last_change, key_valid 和 key_down),來達到我們想要的功能。最常使用的工具是 finite state machine。

這次 Lab 我遇到的困難是無法分辨同個按鍵是按兩下還是只按一下(因為兩種狀況下 last_change 是相同的),後來才想到可以利用 key_down 來判斷是不是有放開鍵盤,以此來判斷是按了兩下還是一下。

6. Conclusion

本次的 Lab 我學會了另一個 FPGA 板的外接功能:利用 keyboard 輸入。為我的期末專題增加了一些可以用的元素。