UNIDADE CURRICULAR: Arquitetura de Computadores

CÓDIGO: 21010

DOCENTE: Gracinda Carvalho, José Coelho

NOME: Paulo Jorge Martins Nicolau

N.º DE ESTUDANTE: 1800465

CURSO: Licenciatura em Engenharia Informática

DATA DE ENTREGA: 20 de Janeiro de 2020

TRABALHO / RESOLUÇÃO:

Para realizar o trabalho foi utilizado a versão online do simulador de P3, disponibilizado na plataforma de e-learning, de modo a testar o código realizado.

Alínea A:

Para esta alínea pretendia-se criar um programa que permita calcular a distância de Manhattan do espaço vazio até à posição final num puzzle com 15 peças (vetor de tamanho 16).

Para este programa decidi separar o código em duas secções, sendo que na primeira secção iria procurar a posição no vetor onde se encontrava o espaço vazio (peça 16), e a segunda secção iria com base nessa posição realizar o calculo da distância de Manhattan.

Na procura da posição do espaço vazio, vai-se atribuir o primeiro valor do vetor a um registo, e vai-se percorrendo as posições de memória do vetor verificando se o valor dessa posição é maior que a do registo, trocando em caso afirmativo. No final é guardado numa posição de memoria o valor da posição.

Foi reservado na posição seguinte ao vetor, um espaço vazio (com valor 0) que vai servir para indicar que o vetor chegou ao final.

Tendo em conta que o vetor possui 16 posições de tamanho, a posição final, num quadrado com tamanho 4, será (4,4). Já a posição inicial do espaço vazio pode variar assim foi necessário utilizar as seguintes formulas para calcular o ponto num espaço bidimensional a partir da posição encontrada na secção inicial do programa.

Para obter a posição do espaço vazio no vetor:

Posição Vetor = Posição Memoria Maior Numero do Vetor - Posição Memoria Inicio do Vetor Para converter essa posição, numa posição de uma matriz 4×4 : Posição Linha é o quociente da divisão $\frac{Posição Vetor}{Tamanho Linha}$, onde neste caso, Tamanho Linha = 4 e Posição Coluna é o resto da divisão $\frac{Posição Vetor}{Tamanho Linha}$, fazendo em seguida as seguintes correções:

- No caso de Posição Coluna = 0 → Posição Coluna = 4
- No caso de Posição Coluna ≠0 → Posição Linha = Posição Linha +1

Após obter a coordenada bidimensional calcula-se o valor da distância de Manhattan através da formula:

Distancia = (Linha Posição Final – Linha Espaço Vazio) + (Coluna Posição Final – Coluna Espaço Vazio)

Alínea B:

Para esta alínea era pedido um programa que permita calcular as inversões do vetor. Para realizar essa tarefa, foram utilizados dois registos, que vão servir de índice, de forma a criar dois ciclos , um interno e outro externo, e ao percorrer o ciclo interno vai-se verificando se o valor no registo do índice interno é menor do que o valor do registo do índice externo, e caso seja vai ser incrementado o valor de um registo que serve de contador.

Alínea C:

Nesta alínea pretende-se verificar se o puzzle que é fornecido é um puzzle que pode ser resolvido. Para isso, utilizei o código desenvolvido anteriormente, para obter a distancia de Manhattan e o total de inversões, e depois, a secção de código novo vai copiar o valor dos registos R1 e R2 para outros registos, e depois vai adicionar os valores desses registos para obter a soma. Em seguida, avalia a paridade do valor da soma indicando no caso de ser ímpar 1 ou par 0 no registo R3.

Segue-se os testes realizados, com os exemplos fornecidos:

Nome	Resolúvel	Ciclos de Relógio	Instruções
Exemplo Efólio	Sim	15015	1658
Exemplo 4.1	Não	15041	1660
Exemplo 4.2	Não	15021	1672
Exemplo 4.3	Sim	15047	1678

Nome	Resolúvel	Ciclos de Relógio	Instruções
Exemplo 4.4	Sim	15050	1678
Exemplo 4.5	Não	15067	1687

Alínea D:

Esta alínea consistia na mesma tarefa que a alínea C, no entanto possibilitando que fosse possível avaliar puzzles de outros tamanhos. Para isso, foi reservado em memória, antes do vetor um espaço com o valor do tamanho das linhas/colunas da matriz do puzzle.

Ao longo do código, foi substituído todas as instruções onde se avaliava o tamanho como sendo 4 para ler o valor desse espaço de memória.

Segue-se os testes realizados, com os exemplos fornecidos:

Nome	Dimensão	Resolúvel	Ciclos de Relógio	Instruções
Exemplo 3.1	3	Sim	5598	641
Exemplo 3.2	3	Não	5593	627
Exemplo 3.3	3	Sim	5617	640
Exemplo 3.4	3	Não	5589	614
Exemplo 3.5	3	Sim	5621	626
Exemplo 4.1	4	Não	15047	1660
Exemplo 4.2	4	Não	15027	1672
Exemplo 4.3	4	Sim	15053	1678
Exemplo 4.4	4	Sim	15056	1678
Exemplo 4.5	4	Não	15076	1687

Nome	Dimensão	Resolúvel	Ciclos de Relógio	Instruções
Exemplo 5.1	5	Sim	36856	4160
Exemplo 5.2	5	Não	36880	4182
Exemplo 5.3	5	Não	36872	4192
Exemplo 5.4	5	Não	36868	4180
Exemplo 5.5	5	Não	36824	4144
Exemplo 7.1	7	Não	128703	14616
Exemplo 7.2	7	Não	128744	14658
Exemplo 7.3	7	Sim	128531	14455
Exemplo 7.4	7	Sim	128618	14555
Exemplo 7.5	7	Não	128624	14552
Exemplo 10.1	10	Sim	509139	57660
Exemplo 10.2	10	Sim	509248	57784
Exemplo 10.3	10	Sim	508932	57472
Exemplo 10.4	10	Sim	509450	57974
Exemplo 10.5	10	Não	509578	58128
Exemplo Efólio	4	Sim	15021	1658

Como é possível verificar, pelos resultados dos testes da alínea C e da alínea D, o numero de instruções percorridas e o resultado de resolúvel é idêntico nos dois códigos. Unicamente se nota um ligeiro aumento no numero de ciclos de relógio, derivado das

alterações realizadas, por estar no inicio do programa D a alocar memória, e depois ler essa posição de memória ao logo do programa