CSSSA 2011 – Santa Fe

Herd Privacy on Social Networking Sites David Masad

George Mason University

Herd Privacy

Facebook privacy settings

Twitter Account Settings

Tweet Privacy Protect my tweets

Only let people whom I approve follow my tweets.

If this is checked, your future tweets will not be available publicly. Tweets posted previously may still be publicly visible in some places.

Herd Privacy

- Users expose information on their friends' pages:
 - Comments
 - Photographs
 - The friendships themselves
- Average ~140 friends² up to 19,600 friends-of-friends.
- "Share with friends of friends"

Users' privacy depends in part on their friends' privacy.

Herd Privacy

This is already intuitively understood – sometimes...

Source: http://www.lamebook.com/smokin-dopes/

Source: http://failbook.failblog.org/2011/09/21/funny-facebook-fails-classic-medical-reasons//

Purpose of the Model

Real data difficult to obtain.

Support intuitive understanding with formal analysis.

• Estimate magnitude of effect.

(Demonstrate modeling approach to SNS)

Model Description - Overview

 Random network of Users / User Pages, connected by mutual Friendships.

Users expose personal information on Friend's pages.

- Each user's page is shared with either:
 - Friends only
 - Friends of Friends

Measure maximum possible information exposed.

Model Description - Assumptions

Mutual Friendships.

- Random subset of Friends are 'close friends'
 - Information only exposed on close friends' pages.

Only 2 privacy options.

- Personal information treated abstractly:
 - [0,1] *proportion* of personal information exposed.
 - All users expose information uniformly.

Model Description - Overview

SNS represented by an undirected graph:

- Nodes: Users / User Pages
- Edges: Friendships

User Model:

- Exposure vector b: Information on self and others exposed.
- Knowledge vector k: What information on other users can the user access?
- Privacy: 0 (Closed) or 1 (Open).
 - Chosen randomly with fixed probability.

Model Description

Model Description

Model Description

Model Description - Exposure

 $b_{j,i}$ – The information on user i exposed on user j's page.

 $b_{i,i}$ – The information user i exposes on i's page. Constant for all users.

When i and j are close friends:

$$b_{j,i} = \frac{1 - b_{i,i}}{number of \ i's \ close \ friends}$$

Otherwise:
$$b_{j,i} = 0$$

Model Description - Knowledge

 $k_{j,i}$ – The total of user i's personal information that user j has access to.

$$k_{j,i} = \sum_{n=1}^{N} b_{n,i} \cdot v_{j,n}$$

 $\mathbf{v}_{j,n}$ – visibility

 $\mathbf{v}_{j,n} = 1$ if either:

- j and n are friends
- j is a friend-of-a-friend of n AND n's privacy is Open.

User i's Exposure is mean of $k_{j,i}$ across all j.

Model Parameters

- # of Nodes: 1,000
- Graph generators
 - Watts-Strogatz (Cluster-heavy)
 - Holme-Kim (Scale-free + clustering)
- Base edge count: 144
- Fraction of close friends: 0.15
- $b_{i,i} = 0.6$

Parameter sweep over Privacy Mix.

Results – Mean Exposure

Results – Mean Exposure

 Users' own privacy settings have a stronger effect than other users' settings.

 As the proportion of users with Open privacy settings increase, the exposure of all users increases.

Results – Individual Exposure

	Graph Type	
	Watts-Strogatz Holme-Kim	
(Intercept)	-0.383**	-0.124**
$\Pr(\text{Open})$	0.002	0.012*
Open Privacy	0.514**	0.458**
Fraction of Friends w/ Open Privacy	0.340**	0.266**
Closeness	0.977**	0.680**
R^2	0.99	0.98

^{* –} significant at 5% level; ** – significant at 0.1% level

Results – Individual Exposure

	Graph Type		
	Watts-Strogatz Holme-Kim		
(Intercept)	-0.383**	-0.124**	
$\Pr(\text{Open})$	0.002	0.012*	
Open Privacy	0.514**	0.458**	
Friends w/ Open Privacy	0.340**	0.266**	
Closeness	0.977**	0.680**	
R^2	0.99	0.98	

- Exposure is affected strongly by Friends with open privacy settings.
- Overall network
 Openness is not separately significant.

 Position within the network is important.

Results - Discussion

Besides their own page settings, user privacy is significantly affected by:

- Friends' privacy settings.
- Position within the network.

Users have little/no ability to assess or control these factors.

Results - Discussion

Besides their own page settings, user privacy is significantly affected by:

- Friends' privacy settings.
- Position within the network.

<u>Users have little/no ability to assess or control these factors.</u>

Results - Discussion

Friends' Privacy Settings:

- Generally unknown.
- May change with no notice.
- Friends may add additional friends.

Position within the network:

- Nearly impossible for users to determine.
- Centrality higher among both popular and boundary-spanning users.

Both factors may exacerbate effects of broad changes to SNS policy.

CSSSA 2011 – Santa Fe

Questions / Comments?