

B4. Calculus Bổ sung cho bài giảng

2019

Nội dung bổ sung

- 1. Đạo hàm và tích phân
- 2. Gradient Descent

1. Đạo hàm và tích phân

□ Dãy số (sequence)

$$f: N \to R$$

$$x_n = f(n)$$

$$\{x_n\}_n \equiv \{x_n\} \equiv x_1, x_2, x_3, \dots, x_n, \dots$$

☐ Giới hạn của dãy số (hội tụ)

$$\lim_{n \to \infty} x_n = a \qquad x_n \to a, n \to \infty$$

$$\forall (\varepsilon > 0), \exists n_0 : \forall n \ge n_0 : |x_n - a| < \varepsilon$$

B4. Calculus

Bổ sung thêm cho bài giảng

49

1. Đạo hàm và tích phân (tt.)

- ☐ Một số tính chất cơ bản của giới hạn
 - Mọi dãy hội tụ đều có giới hạn duy nhất
 - Mọi dãy hội tụ đều bị chặn
 - Giả sử: $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$. Ta có:

$$(i)\lim_{n\to\infty}(x_n+y_n)=a+b$$

$$(ii)\lim_{n\to\infty}(c+x_n)=c+a$$

$$(iii) \lim_{n \to \infty} (c.x_n) = c.a$$

$$(iv)\lim_{n\to\infty}(x_n.y_n)=a.b$$

$$(v)\lim_{n\to\infty}\left(\frac{x_n}{y_n}\right) = \frac{a}{b}, y_n \neq 0, b \neq 0$$

1. Đạo hàm và tích phân (tt.)

- ☐ Giới hạn của hàm số
 - A là *lân cận* của $x_0 \in \mathbb{R}$: $\exists (\delta > 0): (x_0 \delta, x_0 + \delta) \subset A$
 - Hàm số y = f(x) xác định trên lân cận A của x_0

$$\lim_{x \to x_0} f(x) = L \qquad f(x) \to L, x \to x_0$$

$$\forall (\varepsilon > 0), \exists (\delta > 0) :$$

$$\forall |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon$$

 \Box Giả sử f(x) xác định trên A. Hàm f(x) liên tục tại $x_0 \in A$:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

$$\forall (\varepsilon > 0), \exists (\delta > 0) :$$

$$\forall |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

• Hàm f(x) liên tục trên A nếu f(x) liên tục tại mọi $x \in A$

B4. Calculus

Bổ sung thêm cho bài giảng

1. Đạo hàm và tích phân (tt.)

- ☐ Một số tính chất cơ bản của đạo hàm
 - Nếu f có đạo hàm tại x₀ thì f liên tục tại x₀
 - Giả sử f(x), g(x) có đạo hàm tại x. Ta có:

(i)
$$(a.f + b.g)'(x) = a.f'(x) + b.g'(x)$$

(ii)
$$(f.g)'(x) = f'(x).g(x) + g'(x).f(x)$$

(iii)
$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x).g(x) - g'(x).f(x)}{g^2(x)}$$

(iv)
$$(f \circ g)'(x) = f'(g(x)).g'(x)$$

1. Đạo hàm và tích phân (tt.)

☐ Đạo hàm của một số hàm sơ cấp

1)
$$f(x) = a$$

1)
$$f(x) = a$$
 $\Rightarrow f'(x) = 0$

9)
$$f(x) = \sin(x) \implies f'(x) = \cos(x)$$

10)
$$f(x) = \cos(x) \implies f'(x) = -\sin(x)$$

2)
$$f(x) = x$$

2)
$$f(x) = x$$
 $\Rightarrow f'(x) = 1$

3)
$$f(x) = x^{\alpha}, \alpha \in R \setminus \{-1\} \implies f'(x) = \alpha.x^{(\alpha-1)}$$

$$\Rightarrow f'(x) = \alpha x^{(\alpha)}$$

$$4) \quad f(x) = \frac{1}{x^2}$$

4)
$$f(x) = \frac{1}{x}$$
 $\Rightarrow f'(x) = \frac{-1}{x^2}$

5)
$$f(x) = a^x, a > 0$$

5)
$$f(x) = a^x, a > 0$$
 $\Rightarrow f'(x) = \frac{1}{x \cdot \ln(a)}$

6)
$$f(x) = e^{x}$$

6)
$$f(x) = e^x$$
 $\Rightarrow f'(x) = e^x$

7)
$$f(x) = \log_a(x), a > 0$$
 \Rightarrow $f'(x) = a^x \cdot \ln(a)$

$$\Rightarrow f'(x) = a^x . \ln(a)$$

$$8) \quad f(x) = \ln(x)$$

8)
$$f(x) = \ln(x)$$
 $\Rightarrow f'(x) = \frac{1}{x}$

B4. Calculus

Bổ sung thêm cho bài giảng

1. Đạo hàm và tích phân (tt.)

☐ Tích phân xác định

Nội dung bổ sung

- 1. Đạo hàm và tích phân
- 2. Gradient Descent

B4. Calculus

Bổ sung thêm cho bài giảng

55

2. Gradient Descent

- ☐ Hồi quy tuyến tính (linear regression)
 - tên khác: linear fitting, linear least square

☐ Hồi quy tuyến tính (linear regression)

B4. Calculus

Bổ sung thêm cho bài giảng

57

2. Gradient Descent (tt.)

- ☐ Thuật toán Gradient Descent
 - local/global minimum (maximum): $f'(x_0) = 0$
 - vòng lặp tìm optimal point x* tiến gần đến x₀ (local minimum)

$$f'(x^{(t)}) > 0$$
: $x^{(t)}$ ở bên PHẢI của $x_0 \Rightarrow$ cần lùi sang TRÁI (A)

$$f'(x^{(t)}) < 0$$
: $x^{(t)}$ ở bên TRÁI của $x_0 \Rightarrow$ cần tiến sang PHẢI (B)

Tóm lai: $x^{(t)}$ cần di chuyển NGƯ C DẤU với đạo hàm $\rightarrow x_0$

$$x^{(t+1)} = x^{(t)} - \rho \cdot f'(x^{(t)})$$
$$\theta^{(t+1)} = \theta^{(t)} - \rho \cdot \frac{\partial f(\theta^{(t)})}{\partial \theta^{(t)}}$$

 ρ > 0: *learning rate* (tốc độ học)

- ☐ Môt số hàm mất mát (loss function)
 - Regression loss

Mean square error/Quadratic loss/L2 loss: $MSE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$

 $MAE = \frac{1}{m} \sum_{i=1}^{m} |y_i - \hat{y}_i|$ Mean absolute error/L1 loss:

 $MBE = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)$ Mean bias error:

Classification loss

Hinge loss/Multi class SVM loss, Cross entropy loss, ...

B4. Calculus

Bổ sung thêm cho bài giảng

2. Gradient Descent (tt.)

☐ Sử dụng ma trận giả nghịch đảo

Training set: $T = \{t^{(i)}\}_{i=1}^m, t^{(i)} = \langle x^{(i)}, y^{(i)} \rangle$

input
$$x^{(i)} \in \mathbb{R}^n$$
 output $y^{(i)} = y_i \in \mathbb{R}$

$$X = \begin{pmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(m)} \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix} \quad Y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

$$Y = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \end{pmatrix}$$

$$\begin{array}{ll} \text{Dặt:} & x = (x_1, \cdots, x_n) \in R^n, \, \hat{y} = f(x) = \sum_{j=1}^n w_j x_j + w_0 \\ \\ w^T = (w_1, \cdots, w_n, w_0) \in R^{(n+1)} \\ & \hat{x} = (x_1, \cdots, x_n, |x_0|) \in R^{(n+1)}, \, x_0 = 1, \, \hat{y} = \hat{x}.w \\ & \hat{x}_i = (x^{(i)}, 1) \in R^{(n+1)}, \, y_i = y^{(i)}, \, \forall i = 1, m \\ \end{array}$$

60

☐ Sử dung ma trân giả nghịch đảo

Training set:

$$\hat{X} = \begin{pmatrix} \hat{x}_1 \\ \vdots \\ \hat{x}_m \end{pmatrix} = \begin{pmatrix} x_{11} & \dots & x_{1n} & 1 \\ \vdots & \ddots & \vdots & \vdots \\ x_{m1} & \dots & x_{mn} & 1 \end{pmatrix}, Y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

Tìm vecto cột: $w = (w_1, \dots, w_n, w_0)^T$ sao cho $\hat{y} = \hat{x}.w \approx \hat{y}$ tốt nhất

Hàm mất mát (*loss function*):
$$L(w) = \frac{1}{2m} \sum_{i=1}^{m} (y_i - \hat{x}_i w)^2$$

Tìm optimal point: $w^* = \arg\min L(w)$

Tim optimal point:

B4. Calculus

Bổ sung thêm cho bài giảng

61

2. Gradient Descent (tt.)

☐ Sử dung ma trân giả nghịch đảo

Hàm mất mát (*loss function*):
$$L(w) = \frac{1}{2m} \sum_{i=1}^{m} (y_i - \hat{x}_i w)^2$$

Tim optimal point:

$$w^* = \arg\min_{w} L(w)$$

Xét:

$$\hat{X} = \begin{pmatrix} \hat{x}_1 \\ \vdots \\ \hat{x}_m \end{pmatrix} = \begin{pmatrix} x_{11} & \dots & x_{1n} & 1 \\ \vdots & \ddots & \vdots & \vdots \\ x_{m1} & \dots & x_{mn} & 1 \end{pmatrix} \qquad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}$$

☐ Sử dụng ma trận giả nghịch đảo

$$L(w) = \frac{1}{2m} \sum_{i=1}^{m} (y_i - \hat{x}_i w)^2 \qquad m = |T|$$

• Đạo hàm riêng của L theo wi

$$L(\mathbf{W}_{i}) = (y_{i} - \hat{x}_{i}w)^{2} = (y_{i} - \sum_{j=0}^{n} \hat{x}_{j}w_{j})^{2} = (y_{i} - (\hat{x}_{i}w_{i} + \sum_{j\neq i} \hat{x}_{j}w_{j}))^{2} =$$

$$= (y_{i} - (\hat{x}_{i}w_{i} + C_{i}))^{2} = y_{i}^{2} - 2y_{i}(\hat{x}_{i}w_{i} + C_{i}) + (\hat{x}_{i}w_{i} + C_{i})^{2} =$$

$$= y_{i}^{2} - 2y_{i}\hat{x}_{i}w_{i} - 2y_{i}C_{i} + \hat{x}_{i}^{2}w_{i}^{2} + 2\hat{x}_{i}w_{i}C_{i} + C_{i}^{2} =$$

$$= -2y_{i}\hat{x}_{i}w_{i} + \hat{x}_{i}^{2}w_{i}^{2} + 2\hat{x}_{i}w_{i}C_{i} + D_{i}$$

B4. Calculus

Bổ sung thêm cho bài giảng

63

2. Gradient Descent (tt.)

- □ Sử dụng ma trận giả nghịch đảo
 - Đạo hàm riêng của L theo w_i

$$L(w_i) = -2y_i \hat{x}_i w_i + \hat{x}_i^2 w_i^2 + 2\hat{x}_i w_i C_i + D_i$$

$$\frac{\partial L(w_i)}{\partial w_i} = -2y_i \hat{x}_i + 2\hat{x}_i^2 w_i + 2\hat{x}_i C_i = 2\hat{x}_i \cdot (\sum_{j=0}^n \hat{x}_j w_j - y_i)$$

$$\frac{\partial L(w)}{\partial w} = \begin{pmatrix} \frac{\partial L(w)}{\partial w_1} \\ \frac{\partial L(w)}{\partial w_2} \\ \vdots \\ \frac{\partial L(w)}{\partial w_n} \end{pmatrix} = \frac{1}{m} \hat{X}^T (\hat{X}.w - Y)$$

64

☐ Sử dụng ma trận giả nghịch đảo

$$\frac{\partial L(w)}{\partial w} = \frac{1}{m} \hat{X}^T (\hat{X}.w - Y) = 0$$

Giải hệ phương trình, tìm w:

$$\underbrace{\hat{X}^{T}.\hat{X}}_{\mathbf{A}}.w = \underbrace{\hat{X}^{T}.Y}_{\mathbf{B}}$$

- Nếu $\hat{X}^T.\hat{X}$ khả nghịch: $w = (\hat{X}^T.\hat{X})^{-1}.\hat{X}^T.Y$
- Nếu $\hat{X}^T.\hat{X}$ KHÔNG khả nghịch: $w = (\hat{X}^T.\hat{X})^{\dagger}.\hat{X}^T.Y$

B4. Calculus

Bổ sung thêm cho bài giảng

Tài liệu tham khảo

Vũ Hữu Tiệp, Machine Learning cơ bản, 2018