Reactive and Proactive Measures for Adversarial Defense

Ashwath Shetty, Pankhuri Vanjani, Shreyash Arya

Problem Statement

Proactive

Alter the underlying architecture or learning procedure

E.g. by adding more layers, ensemble/adversarial training or changing the loss/activation functions

Reactive

Modify the inputs during testing time, using image transformations to counter the effect of adversarial perturbation

Our Approach

Proactive Defense (PCL)

Enforcing Class Separation in Feature Space provides additional adversarial robustness.

Source: https://github.com/aamir-mustafa/pcl-adversarial-defense

$$\mathcal{L}_{\text{CE}}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{r} -\log \frac{\exp \left(\boldsymbol{w}_{y_i}^T \boldsymbol{f}_i + \boldsymbol{b}_{y_i}\right)}{\sum_{j=1}^{k} \exp \left(\boldsymbol{w}_j^T \boldsymbol{f}_i + \boldsymbol{b}_j\right)}$$

Standard Cross Entropy Loss

 f_i : penultimate layer outputs w_{yi} : ground truth class label w_j , b_j are the weights and biases for the j^{th} output neuron.

$$\mathcal{L}_{ ext{PC}}(oldsymbol{x},oldsymbol{y}) = \sum_i igg\{ ig\| oldsymbol{f}_i - oldsymbol{w}_{y_i}^c ig\|_2^2 - rac{1}{k-1} \sum_{j
eq y_i} \Bigl(ig\| oldsymbol{f}_i - oldsymbol{w}_j^c ig\|_2^2 igw + ig\| oldsymbol{w}_{y_i}^c - oldsymbol{w}_j^c ig\|_2^2 \Bigr) \Bigr\}$$

Prototype conformity loss

Minimize Intra-Class
Distance

f_i: penultimate layer outputs

w_{vi}: ground truth class label for ith example

w_i^c: Cluster centre for class j

 \boldsymbol{w}_j , \boldsymbol{b}_j : weights and biases for the j^{th} output neuron.

$$\mathcal{L}_{ ext{PC}}(oldsymbol{x},oldsymbol{y}) = \sum_i igg\{ig\|oldsymbol{f}_i - oldsymbol{w}_{y_i}^cig\|_2^2 - rac{1}{k-1} \sum_{j
eq y_i} ig(ig\|oldsymbol{f}_i - oldsymbol{w}_j^cig\|_2^2 ig) + ig\|oldsymbol{w}_{y_i}^c - oldsymbol{w}_j^cig\|_2^2ig)ig\}$$

Prototype conformity loss

Maximize Intra-Class
Distance

f_i: penultimate layer outputs

w_{vi}: ground truth class label for ith example

w_i^c: Cluster centre for class j

 w_j , b_j : weights and biases for the j^{th} output neuron.

$$\mathcal{L}_{\text{CE}}(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{r} -\log \frac{\exp \left(\boldsymbol{w}_{y_i}^T \boldsymbol{f}_i + \boldsymbol{b}_{y_i}\right)}{\sum_{j=1}^{k} \exp \left(\boldsymbol{w}_j^T \boldsymbol{f}_i + \boldsymbol{b}_j\right)}$$

$$\mathcal{L}_{ ext{PC}}(oldsymbol{x},oldsymbol{y}) = \sum_i igg\{ ig\| oldsymbol{f}_i - oldsymbol{w}_{y_i}^c ig\|_2^2 - rac{1}{k-1} \sum_{j
eq y_i} igg(ig\| oldsymbol{f}_i - oldsymbol{w}_j^c ig\|_2^2 igg) + ig\| oldsymbol{w}_{y_i}^c - oldsymbol{w}_j^c ig\|_2^2 igg) igg\}$$

PCL Training Loss function:

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{y}) = \mathcal{L}_{\mathrm{CE}}(\boldsymbol{x},\boldsymbol{y}) + \mathcal{L}_{\mathrm{PC}}(\boldsymbol{x},\boldsymbol{y})$$

Reactive Defense (Transformations)

Probabilistic

Original Image Geometric & Image Filter

15 20 25 30 5 10 15 20 25 30

Affine

Color Space

Grayscale

Experimental Settings

• Dataset: CIFAR-10

Model Architecture: Resnet 20

• Baselines: Softmax (L_{ce}) training, PCL (L_{ce}+L_{pcl}) training

• Epsilon values of attacks: 8/255 and 16/255

Black box attack examples: Madry Labs¹

Results: Discrete Cosine Transform (DCT)

Transformations	Clean Accuracy	Black Box Accuracy eps=8/255	Black Box Accuracy eps=16/255
Baseline			
Softmax (Lce)	90.13	9.06	3.110
PCL (Lce+Lpcl)	89.69	12.24	3.970
Fourier domain			
DCT + Softmax (Lce)	81.540	61.88	45.75
DCT+PCL	80.990	64.600	48.74

Color Space

GreyScale+ Softmax (Lce)	88.85	9.510	5.29
GreyScale+PCL	88.050	11.59	6.29
HSV+ Softmax (Lce)	90.68	27.820	16.99
HSV+PCL	90.450	28.940	17.24
YCrCb + Softmax (Lce)	90.800	8.740	4.54
YCrCb + PCL	90.410	9.110	4.05

- (DCT) + PCL Training outperforms the baseline and other transformations on black box attack examples
 - Transform significantly alters image -> weakens black box attack
- Drop in clean accuracy
 - Image compression -> Loss of Information

Trade-off due to image alteration!!

Results: Color space transform

Transformations	Clean Accuracy	Black Box Accuracy eps=8/255	Black Box Accuracy eps=16/255	
Baseline				
Softmax (Lce)	90.13	9.06	3.110	
PCL (Lce+Lpcl)	89.69	12.24	3.970	
Fourier domain				
DCT + Softmax (Lce)	81.540	61.88	45.75	
DCT+PCL	80.990	64.600	48.74	

88.85	9.510	5.29
88.050	11.59	6.29
90.68	27.820	16.99
90.450	28.940	17.24
90.800	8.740	4.54
90.410	9.110	4.05
	88.050 90.68 90.450 90.800	88.050 11.59 90.68 27.820 90.450 28.940 90.800 8.740

- HSV color space gives a significant boost
 - Adversarial examples -> more perceptible

Results: Color space transform

Transformations	Clean Accuracy	Black Box Accuracy eps=8/255	Black Box Accuracy eps=16/255	
Baseline				
Softmax (Lce)	90.13	9.06	3.110	
PCL (Lce+Lpcl)	89.69	12.24	3.970	
Fourier domain				
DCT + Softmax (Lce)	81.540	61.88	45.75	
DCT+PCL	80.990	64.600	48.74	

88.85	9.510	5.29
88.050	11.59	6.29
90.68	27.820	16.99
90.450	28.940	17.24
90.800	8.740	4.54
90.410	9.110	4.05
	88.050 90.68 90.450 90.800	88.050 11.59 90.68 27.820 90.450 28.940 90.800 8.740

- HSV color space gives a significant boost
 - Adversarial examples -> more perceptible
- No effect of YCrCb and Grayscale
 - Spatial alignment of image features

Results: Affine transform

Transformations	Clean Accuracy	Black Box Accuracy eps=8/255	Black Box Accuracy eps=16/255
Baseline			
Softmax (Lce)	90.13	9.06	3.110
PCL (Lce+Lpcl)	89.69	12.24	3.970
Geometric			
Affine+ Softmax (Lce)	88.63	48.170	27.660
Affine+PCL	88.650	50.570	29.22
Pixel Dropout			
Dropout(5%)+ Softmax (Lce)	90.68	35.100	16.520
Dropout(5%)+ PCL	89.930	35.400	17.95
Blur			
Gaussian Blur + Softmax (Lce)	84.640	28.390	13.31
Gaussian Blur+ PCL	84.330	27.130	14.56

- Affine transformation (fixed)-> demonstrates a significant boost
 - Spatial dis-alignment of important features in between trained and black-box model

Results: Dropout

Transformations	Clean Accuracy	Black Box Accuracy eps=8/255	Black Box Accuracy eps=16/255		
Baseline					
Softmax (Lce)	90.13	9.06	3.110		
PCL (Lce+Lpcl)	89.69	12.24	3.970		
Geometric	Geometric				
Affine+ Softmax (Lce)	88.63	48.170	27.660		
Affine+PCL	88.650	50.570	29.22		
Pixel Dropout					
Dropout(5%)+ Softmax (Lce)	90.68	35.100	16.520		
Dropout(5%)+ PCL	89.930	35.400	17.95		
Blur					
Gaussian Blur + Softmax (Lce)	84.640	28.390	13.31		
Gaussian Blur+ PCL	84.330	27.130	14.56		

- Dropout: Some improvement in black box accuracy!!
 - network cannot over-rely on a particular pixel for classification

Results: Gaussian Blur

Transformations	Clean Accuracy	Black Box Accuracy eps=8/255	Black Box Accuracy eps=16/255
Baseline			
Softmax (Lce)	90.13	9.06	3.110
PCL (Lce+Lpcl)	89.69	12.24	3.970
Geometric			
Affine+ Softmax (Lce)	88.63	48.170	27.660
Affine+PCL	88.650	50.570	29.22
Pixel Dropout			
Dropout(5%)+ Softmax (Lce)	90.68	35.100	16.520
Dropout(5%)+ PCL	89.930	35.400	17.95
Blur			
Gaussian Blur + Softmax (Lce)	84.640	28.390	13.31
Gaussian Blur+ PCL	84.330	27.130	14.56

- Gaussian Blurring: 3x Improvement in black box accuracy
 - Blurring affects the weights learnt by the network
 - Distributes importance around nearby pixels

Class Feature Map from Penultimate Layer

75 Gasses
50 0
25 0
-25 3
-25 5 6
7 8
9 9 -75 -50 -25 0 25 50 75 100

Softmax Training

PCL Training

- Better separation with PCL training as compared to Softmax training (in all cases)
- With PCL: 1-3 % increase in bbox accuracy (in all cases)

Class Feature Map from Penultimate Layer

PCL Training

Feature plots of cat, dog and deer class overlapping the most

Potential cause of misclassification after adversarial attacks!

Summary and Improvements

- Training with transformation in general gave an additional boost in black box accuracy.
- Tranforms like DCT which significantly alters the image gave us the best result.
- Training with PCL loss improved feature clusters and gave 1-3% improvement
- Feature Positions seemed not to have a major contribution (supplementary slides)

Summary and Improvements

- Training with transformation in general gave an additional boost in black box accuracy.
- Tranforms like DCT which significantly alters the image gave us the best result.
- Training with PCL loss improved feature clusters and gave 1-3% improvement
- Feature Positions seemed not to have a major contribution (supplementary slides)

- Effect with adversarial training
- Analysis on individual class accuracy
- Adaptive Attack on System

Thank you!

References

- Aamir Mustafa, Salman Khan, Munawar Hayat, Roland Goecke, Jianbing Shen, and Ling Shao. Adversarial defense by restricting the hidden space of deep neural networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3385–3394, 2019. 1, 2, 3
- https://github.com/MadryLab/cifar10 challenge

Supplementary Material

How positions of features in a plot would affect adversarial robustness?

- Initially we thought networks which learnt different feature mappings would be more robust.
- But this turns out not to be the case
- For example, the grayscale transform, significantly moves the position of class 9,7, but still shows no improvement in robustness

