PHYS20672 Complex Variables and Vector Spaces: Examples 3

Some of these examples are copied from the exercises in the notes, but have been included here for completeness.

- 1. Show that the columns of a unitary matrix are orthogonal.
- 2. Consider the two-dimensional inner-product space \mathbb{C}^2 . This space has an orthonormal bases $\{e_1, e_2\}$. We can use this basis to construct a new basis $\{e_+, e_-\}$, such that $e_{\pm} = \frac{1}{\sqrt{2}} (e_1 \pm e_2)$.
 - (a) Show that $\{e_+, e_-\}$ is an orthonormal basis for \mathbb{C}^2 .
 - (b) Write the vector $\psi = \alpha e_1 + \beta e_2$ in the $\{e_+, e_-\}$ basis.
 - (c) Consider another vector $\phi = \delta e_+ + \gamma e_-$. Show that the inner product

$$\langle \phi, \psi \rangle = \frac{1}{\sqrt{2}} \left(\bar{\delta}(\alpha + \beta) + \bar{\gamma}(\alpha - \beta) \right),$$
 (1)

is the same in both the $\{e_1, e_2\}$ and $\{e_+, e_-\}$ basis sets.

- (d) Show that any inner product is left invariant by a change of basis.
- (e) Write steps a-d above in braket notation.
- 3. The vector space \mathbb{C}^2 has an orthonormal basis $\{e_1, e_2\}$. The Pauli operators $\hat{\sigma}_x$, $\hat{\sigma}_y$ and $\hat{\sigma}_z$ have the following matrix representations with respect to $\{e_1, e_2\}$:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \text{ and } \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}.$$
 (2)

Find the eigenvalues and eigenvectors for each of the Pauli operators.

4. a) Consider the operator \hat{A} in \mathbb{C}^3 with matrix representation in the Cartesian basis given by

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}. \tag{3}$$

Find the eigenvalues and eigenvectors of this operator. Can you find a basis that diagonalises this operator?

b) Repeat this for the operator \hat{B} with matrix representation

$$\mathbf{B} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}. \tag{4}$$

5. A unitary operator \hat{U} which satisfies $\hat{U}\hat{U}^{\dagger} = \hat{1}$, has eigenvalue equation,

$$\hat{U}\boldsymbol{u}_{i} = \lambda_{i}\boldsymbol{u}_{i}. \tag{5}$$

Prove that these eigenvalues and eigenvectors satisfy the the following conditions,

- (i) $|\lambda_j| = 1$, with $\lambda_j = e^{i\theta_j}$ where $\theta_j \in \mathbb{R}$.
- (ii) If $\lambda_j \neq \lambda_k$ then $\langle \boldsymbol{u}_j, \boldsymbol{u}_k \rangle = 0$.
- (iii) The eigenvectors of the \hat{U} can be chosen to be an orthonormal basis for V_N .