EE 538: Analog Circuits for Sensor Systems

Autumn 2020

Instructor: Jason Silver

Announcements

- Solution to Assignment 1 posted on JupyterHub
- Assignment 2 due Sunday, October 18 at midnight
 - Jupyter Notebook (.ipyb) submission on Canvas
 - For LTspice problems, include image (e.g. screen capture) of schematic(s)

Week 3

- Art of Electronics (AoE) Chapters 3, 4
- Microelectronics (Sedra/Smith) Chapter 5, 6

Overview

- Last time...
 - BJT physics
 - Ebers Moll BJT model
 - Small-signal BJT model
 - Common-emitter amplifier
- Today...
 - Common-emitter amplifier, cont.
 - Emitter-follower
 - Field-effect transistor
 - Small-signal FET model
 - FET-based circuits

Words of wisdom

"A good understanding of transistors is very important, even if most of your circuits are made from ICs, because you need to understand the input and output properties of the IC in order to connect it to the rest of your circuit and to the outside world."

- from The Art of Electronics

Common-emitter, revisited

- ullet In the small-signal model, V_{CC} (and any other DC voltage) becomes a "virtual" or "AC" ground
- r_o appears in parallel with R_C , resulting in a slightly modified expression for the gain:

$$|v_{out} = -g_m v_{in} \cdot r_o||R_C
ightarrow A_v = rac{v_{out}}{v_{in}} = -g_m \cdot r_o||R_C|$$

ullet However, r_o is typically much larger than R_C , allowing the common approximation

$$A_v = rac{v_{out}}{v_{in}} pprox -g_m \cdot R_C$$

Load capacitance

Common-emitter frequency response

```
In [5]: | # DC operating point
        I C0 = 1e-3
        V T = 26e-3
        V A = 100
        # small-signal parameters
         g_m = I_C0/V_T
        r o = V A/I C0
        # design values
         R C = 2e3
        C L = 100e-9
         R_eq = R_C*r_o/(R_C+r_o)
         gain_ac = signal.TransferFunction([-g_m*R_eq], [R_eq*C_L, 1])
         w, mag, phase = gain_ac.bode()
        f = w/2/np.pi
         plot_logxy2(f, mag, f, phase, 'Frequency [Hz]', 'Magnitude [dB]',
                    'Frequency [Hz]', 'Phase [deg]')
```

Temperature dependence

- Analog circuits must be designed to function over a wide range of temperatures to ensure robustness
- Some example temperature ranges:
 - lacktriangle Commercial temperature range: $0^{\circ}C$ to $60^{\circ}C$
 - ullet Industrial temperature range: $-40^{\circ}C$ to $85^{\circ}C$
 - lacktriangle Military temperature range: $-40^{\circ}C$ to $125^{\circ}C$
- Both I_S and V_T exhibit temperature dependence, resulting in different values of I_C, g_m , and voltage gain at different temperatures:

$$A_v = -g_m \cdot R_C = rac{1}{V_T} I_S(T) e^{rac{V_{BE}}{V_T}} R_C$$

- This will be a problem it prevents our circuit from meeting specifications over the target temperature range
- Let's take a look at a SPICE simulation of gain versus temperature for a commonemitter amplifier

Common-emitter gain versus temperature

```
In [6]: temp, reals, imags = read_ltspice_ac('Av_vs_temp.csv')
    gain = np.sqrt(np.asarray(reals)**2 + np.asarray(imags)**2)
    plot_xy(temp, gain, 'Temperature [C]','$A_v [V/V]$')
```


- What a disaster! Even over the commercial temperature range, our voltage gain varies by several orders of magnitude, and the circuit becomes unusable (i.e. it does not provide gain) at high temperatures
- How can we ensure a more robust design?

Addition of bias resistor $R_{\mbox{\footnotesize E}}$

• If we make the assumption that V_{BE} is constant (say, 600mV), we can set the base voltage V_{B0} to produce a collector current that is approximately constant:

$$I_{C0}=rac{V_{E0}}{R_E}pproxrac{V_{B0}-0.6\dot{V}}{R_E}$$

- ullet V_{BE0} acts as a "battery," while R_E is used as a current source in conjuction with the resulting emitter voltage V_{E0}
- ullet We determine the bias voltage V_{B0} as

$$V_{B0}=I_{C0}\cdot R_E+0.6V$$

Effect of R_E on gain

- ullet R_E acts to stabilize the emitter voltage v_e
- ullet As v_{in} begins to increase, the current through R_E , and thus the voltage v_e , also starts increasing
- However, the increase in v_e results in a decrease in v_{be} , which counteracts the increase in v_{in}
- ullet This is a form of negative feedback, which causes v_e to "follow" v_{in}
- ullet The result is a weaker dependence of the gain on the *temperature-dependent* value of g_m

Small-signal voltage gain

$$i_b << g_m \cdot v_{be} \ v_e pprox g_m \cdot (v_{in} - v_e) R_E$$

$$egin{align} v_e &pprox rac{g_m R_E}{1+g_m R_E} v_{in} \ rac{v_{out}}{v_{in}} &pprox -rac{g_m}{1+g_m R_E} \cdot R_C pprox \left[-rac{R_C}{R_E}
ight] \end{aligned}$$

Resulting gain versus temperature

```
In [7]: temp, reals, imags = read_ltspice_ac('Av_vs_temp_degen.csv')
    gain = np.sqrt(np.asarray(reals)**2 + np.asarray(imags)**2)
    plot_xy(temp, gain, 'Temperature [C]', '$A_v [V/V]$')
```


- The use of negative feedback has reduced the gain variation to about 2%!
- ullet The tradeoff is that the gain is much lower than without R_E
- As we will see this is typical of negative feedback systems, which employ large *open-loop* gain to achieve a more precise (but lower) *closed-loop* gain

Input bias network

$$V_{B0} = rac{R_{B2}}{R_{B2} + R_{B1}} \cdot V_{CC} \ R_{in} = R_{B1} || R_{B2}$$

$$f_{3dB,HP} = rac{1}{2\pi(R_{bias}||r_{in})C_{AC}}$$

- To employ a DC bias for the common-emitter amplifier, we can use a resistor divider combined with AC coupling for the signal
- Note that the use of AC coupling prevents the passage of DC signals from input to output
- The highpass corner frequency of the bias network depends on the bias resistor values, C_{AC} , and the input resistance of the amplifier
- ullet To minimize loading, the equivalent input resistance should be much larger than the source resistance R_S
- The input resistance of the amplifier now comprises the parallel combination of R_{B1} , R_{B2} , and the resistance looking into the base of the transistor

Common-emitter output loading

$$egin{aligned} rac{v_{out}}{v_{in}} &pprox -g_m \cdot R_C || R_L \ v_{out} &= -g_m R_C \cdot rac{R_L}{R_L + R_C} \cdot v_{in} \ R_L >> R_C \end{aligned}$$

- The high gain of the common-emitter amplifier makes it (and related structures) the typical means of achieving gain in operational amplifiers
- ullet However, R_L should be much greater than R_C to minimize loading and maintain the desired gain value
- It is not always possible to guarantee the input resistance of the following stage will be large enough (e.g. when driving a speaker, the effect resistance is less than 100 Ω)
- We need some means of "buffering" the output resistance of the gain stage from the low input resistance of other circuit blocks

Emitter follower

• To estimate the DC operating point, we can assume a constant V_{BE} (say, 600mV):

$$I_{C0} = rac{V_E}{R_E} = rac{V_B - V_{BE}}{R_E} = rac{V_B - 0.6V}{R_E}$$

• As with the degenerated emitter-follower, v_e follows v_{in} , such that

$$v_{out} pprox v_{in}$$

hence the name, "emitter-follower"

- The *emitter-follower* does not provide gain (that is, the gain is ideally 1), but provides a high input impedance and low output impedance
- This makes the emitter-follower well-suited for buffering gain stages against circuits with low input impedance
- ullet Note that the DC level of V_{out} is approximately 600mV lower than that of V_{in}

Emitter follower output resistance

$$egin{aligned} i_t &= v_t \left(g_m + rac{1}{R_E} + rac{1}{r_\pi}
ight) \ r_{out} &= rac{v_t}{i_t} = rac{1}{g_m}||R_E||r_\pi \ rac{1}{g_m} << R_E, r_\pi \end{aligned}$$

$$ightarrow \overline{r_{out} pprox rac{1}{g_m}}$$

- "Looking into" the output of the emitter-follower, we see an effective resistance of $\frac{1}{g_m}$
- ullet The output resistance of the emitter-follower can be controlled (reduced) by increasing the bias current, which lowers the transconductance g_m
- Due to its low output resistance, the emitter-follower is typically used as an output stage for operational amplifiers

Lecture 3 - Field effect transistors

MOS transistor

$$I_d = f(V_{gs}, V_{ds})$$

- MOSFET: Metal-Oxide-Semiconductor Field Effect Transistor
- n-type transistors (NMOS) consist of p-doped bulk, n-doped source/drain, polysilicon gate, and SiO_2 insulating layer
- ullet For NMOS transistors, drain current I_d is controlled by the gate-source voltage V_{gs} , similar to the $V_{be}-I_c$ relationship in an npn BJT
- $\bullet\,$ The influence of V_{ds} on I_d is a "second-order" effect, similar to the Early effect in BJTs

Current flow in an NMOS transistor

- ullet Inversion layer forms as minority carriers (electrons) are drawn from the p-type substrate to interface due to the vertical electric field formed by V_{gs}
- Threshold voltage (V_{th}) defined as the V_{gs} value at which the minority carrier (electrons) concentration equals that of the majority carriers (holes)
- ullet Electrons move from source to drain in the presence of a *lateral* electric field formed by V_{ds}

Square-law MOSFET model

$$I_{d} = rac{1}{2} \mu C_{ox} rac{W}{L} \left(V_{gs} - V_{th}
ight)^{2} \ I_{g} = 0 \quad I_{s} = I_{d} \ V_{gs} = V_{th} + \sqrt{rac{2 \cdot I_{d}}{\mu C_{ox} \left(rac{W}{L}
ight)}}$$

MOSFET I-V relationship

ullet Let's define a function that uses the square-law model to calculate I_d for an arbitrary V_{gs} :

ullet Let's plot I_d versus V_{gs}

```
In [9]: V_gs = np.linspace(0.7,1,num=300)
    I_d = nmos_iv(V_gs, 1000, 1)
    plot_xy(V_gs, 1e3*I_d, '$V_{gs}$ [V]', '$I_d$ [mA]')
```


- $\bullet~$ The I_d versus V_{gs} curve is less steep than the I_c versus V_{be} for the BJT (quadratic versus exponential)
- ullet This results in a lower value of g_m for a given DC current

Small-signal transconductance

• As with with the BJT, we can calculate the transconductance g_m using the derivative of I_d with respect to V_{qs} :

$$g_m = rac{\partial}{\partial V_{gs}}igg[rac{1}{2}\mu C_{ox}rac{W}{L}(V_{gs}-V_{th})^2igg] = \mu C_{ox}rac{W}{L}(V_{gs}-V_{th})$$

• Similar to the BJT, g_m depends linearly on the DC collector current for a constant value of $V_{qs}-V_{th}$:

$$g_m = \mu C_{ox} rac{W}{L} (V_{gs} - V_{th}) = rac{2 \cdot I_d}{V_{gs} - V_{th}}$$

• The quantity $V_{gs}-V_{th}$, often referred to as the *overdrive voltage*, can be controlled by adjusting W and L for a given current (i.e. by controlling current density)

Transconductance versus square law

```
In [11]: V_gs = np.linspace(0.7,1,num=300)
    V_GS1 = 0.9
    V_gs_range = np.linspace(V_GS1-0.05, V_GS1+0.05, 10)
    plot_gm(V_gs, 1000, 1, V_GS1, V_gs_range)
```


Channel-length modulation

- ullet Current flow in a MOSFET results is due to the lateral electric field applied over a distance L, a device parameter
- As with the BJT, the MOSFET drain current exhibits a small dependence on V_{ds} , partially due to the modulation of channel length (ΔL) as a function of the electric field near the drain implant region
- This dependence is captured by a linear parameter λ , typically called the "channel-length modulation coefficient"
- The resulting drain current expression becomes

$$I_d = rac{1}{2} \mu C_{ox} rac{W}{L} (V_{gs} - V_{th})^2 \cdot (1 + \lambda V_{ds})$$

Finite output resistance

ullet The MOSFET drain current exhibits a *linear* dependence on V_{ds} for $V_{ds} > V_{gs} - V_{th}$

```
In [19]: import pandas as pd
    I_d = pd.read_csv('Id_Vds.csv', sep='\t')
    plot_xy(I_d['v1'], 1e3*I_d['Id(M1)'], '$V_{ds}$ [V]', '$I_d$ [mA]')
```


ullet For $V_{ds} < V_{gs} - V_{th}$, the MOSFET is said to be in *triode*, the region of operation used when the MOSFET operates a switch

MOS small-signal model (DC)

$$g_m = rac{2 \cdot I_{D0}}{V_{GS0} - V_{th}} \ r_o = rac{1}{\lambda I_{D0}}$$

Common-source amplifier

$$A_v = rac{v_{out}}{v_{in}} = -g_m \cdot (R_D || r_o)$$

- Like the common-emitter for the BJT, the common-source amplifier is considered a "high-gain" structure
- The high input impedance of the FET makes the common-source structure useful for high-impedance sensors
- At higher frequencies, the MOSFET oxide capacitance lowers the input impedance and limits its high-frequency performance
- ullet The maximum frequency at which a device can act as a gain element is called the transit frequency, often denoted by f_t

BJTs versus FETs

BJTs

- Advantages:
 - Low noise, high accuracy (e.g. g_m), and power efficiency
- Disadvantanges
 - Low input impedance, non-zero base current
- Primary applications:
 - Low-noise amplifiers, power amplifiers, opamps

FETs

- Advantages:
 - Low power (digital), high impedance, great switches
- Disadvantages:
 - Noisy, lots of variability, many non-ideal effects
- Primary applications:
 - Digital circuits (CMOS), power switches, opamps (JFETs)