数学模型的建立、比较和应用 苏州中学 邵铮

关键字: 数学模型 算法 母函数

【摘要】

数学模型是解决实际问题的一种基本工具。将实际问题抽象成一个数学模型,运用数学工具进行求解,并将结果应用于具有相同特征的一类问题中,是解决问题的一种基本的途径。本文首先介绍了数学模型的一些性质,然后建立了三种不同的数学模型来求解一个问题,将三种数学模型相互比较,得出数学模型抽象性与高效性之间的关系,再将数学模型推广应用于另两个问题的求解,得出数学模型抽象性与可推广性之间的关系,最后总结全文,揭示出有关数学模型的一些普遍规律。

一、引论

实际问题往往是纷繁而复杂的,而其中的规律也是隐藏着的,要想直接用计算机来求解实际问题往往有一定的困难。计算机擅长的是解决数学问题。因此,我们有必要将实际问题抽象成数学模型,然后再用计算机来对数学模型进行求解。

与实际问题相比,数学模型有以下几个性质:

抽象性:数学模型是实际问题的一种抽象,它去除了实际问题中与问题的求解无关的部分,简明地体现了问题的本质。这一点是下面两个性质的基础。

高效性:数学模型中各个量之间的关系更为清晰,容易从中找到规律,从而提高求解的效率。由于这一点是由数学模型的抽象性决定的,因此数学模型的抽象化程度对数学模型效率的高低有重要的影响,这一点将在第二部分中详细阐述。

可推广性:数学模型可以推广到具有相同性质的一类问题中。换句话说,解决了一个数学模型就解决了一类实际问题。这里的"相同性质"是指相同的本质,表面看似毫不相干的问题可能有着相同的本质。由于这一点也是由数学模型的抽象性决定的,因此数学模型的抽象化程度对数学模型的推广范围也有重要的影响,这一点将在第三部分中详细阐述。

二、数学模型的建立和比较

由于考虑问题的角度不同,面对同一个实际问题,可能建立起各种各样的数 学模型。在各种数学模型中,我们要寻找的是效率高的模型。模型的效率同模型 的抽象化程度有关,下面从一个实例中来分析它们之间的具体关系。

【多边形分割问题】将一个凸 n 边形用 n-3 条互不相交的对角线分割为 n-2

个三角形, 求分割方案的总数.

如:n=5 时,有以下几种分割方案:

这道题可用以下几种方法来求解:

<1>. 搜索法:

这种方法的思路是将各种分割方案全都列举出来。

显然,一组 n-3 条互不相交的对角线对应于一种分割方案,因此可把问题看 作是求不同的对角线组的数目。

将 n 边形的 n 个顶点按顺时针方向编号为 1、2、3·····n,则一条对角线可表 示为一个数对(a1, a2), a1, a2 分别表示对角线两端顶点的序号, a1<a2, a1 为 对角线的始端, a2 为末端。

对角线在对角线组中的顺序是无关紧要的,因此,一个对角线组是一个集合, 它的元素是对角线。

判断两条对角线是否相交是一个必须解决的问题。设两条对角线分别为 (a1, a2)与(b1, b2),若把表示对角线的数对看作开区间,那么两条对角线不相交 的充要条件是两个区间有包含关系或他们的交集为空集。

于是,我们建立起解决本问题的第一个数学模型:

已知: n 的值,

一个集合由(n-3)个不同的开区间(i,j)组成,

 $i \in \{1..n-2\}, j \in \{i+2..n\}, (i \neq 1)$ 或($j \neq n$)

同一个集合中任两个不同的开区间(i1,j1),(i2,j2)满足:

 $((i1,j1)\cap(i2,j2)=空集)$ 或((i1,j1)包含(i2,j2))或((i2,j2)包含(i1,j1))

求:不同的集合的个数

搜索时,先考虑以顶点1为始端的对角线,可以不连任何对角线(图一中A), 也可以连(1,3)(图一中B),或连(1,4)(图一中C),或同时连(1,3)(1,4)(图一 中 D)。对于每一种情况,再考虑以顶点 2 为始端的对角线,依此类推。当得到 n-3条互不相交的对角线时,便找到了一种方案(参见图一)。

图一

在考虑以顶点 i 为始端的对角线时,有以下几条规则必须遵循:

- 1. 与原有对角线相交的对角线不得选取。
- 2. 当 $i \ge 3$ 时,若顶点 i-1 为始端的对角线一条都未连,则对角线(i-2,i)必须是已经连的。
- 3. 对角线的末端顶点序号必须大于 i。否则, 顶点 i 将成为对角线的末端, 另一个顶点 j(j<i)成为对角线的始端, 这条对角线已在考虑以顶点 j 为始端的对角线时考虑过了, 再考虑将引起重复。

按照以上三条规则,即可得到如图一的搜索树(图中打√的叶结点为不同的分割方案)。

搜索法的数学模型较为复杂,用它可以求出具体方案,但它的抽象化程度不高,导致了求解时的低效率。为了使用上面的规则 2 来提高效率,求解过程还是从多边形及其对角线本身来考虑的,数学模型的作用仅体现在判断对角线是否相交上。用该方法编制的程序在 n 稍大时速度就很慢。(n=12 时已需运行时间 16.2 秒 (486DX2/80),测试结果见附表一。)

<2>. 递推法:

上一种方法的数学模型中有很多与问题的要求无关的内容(如对角线的表示、对角线组的表示、每种具体方案)。在递推法建立的数学模型中,我们只考虑凸n边形的分割方案总数。

设 k 边形的分割方案总数为 Ak, 于是得到 A 数列: A3, A4, A5...

考虑 n 边形的分割方案总数 An。任取 n 边形的一条边,不妨取边 (n-1, n),若在某一种分割方案中,边 (n-1, n)属于三角形 (i, n-1, n),那么就将分割方案归入

第 i 类,如图二所示。

设第 i 类方案总数为 Bi,则

$$A_n = \sum_{i=1}^{n-2} B_i \qquad \textcircled{1}$$

计算 Bi 可用如下方法:

对于第 i 类的方案,原 n 边形已被分割为一个 i+1 边形与一个 (n-i) 边形,下面的工作分为两步,第一步是将 i+1 边形分割为三角形,有 A_{i+1} 种方案,第二步是将 (n-i) 边形分割为三角形,有 A_{n-i} 种方案。为了表达的方便,令 $A_{2}=1$,于是有

$$B_i = A_{i+1} * A_{n-i}$$
 2

将②代入①得:

$$A_n = \sum_{i=1}^{n-2} (A_{i+1} * A_{n-i}) = \sum_{i=2}^{n-1} (A_i * A_{n+1-i})$$
 3

于是,问题的数学模型即为:

已知: n 的值及数列 A2,A3,A4 ······,

该数列满足:

 $A_2=1$

$$A_{j} = \sum_{i=2}^{j-1} (A_{i} * A_{j+1-i}), j > 2$$

求: An

利用这个模型, 我们即可很方便地依次求出 A3, A4... An。

递推法的数学模型比搜索法的简明,抽象化程度更高,效率也高得多。用递推法编制的程序已能应付中等数据,在 n<100 时不超过一秒。但当 n 很大时仍然很慢,n=250 时需 18.7 秒 (486DX2/80),测试结果见附表一。

<3>. 母函数法:

上一种方法的数学模型中已去除了很多与问题的要求无关的内容,但同时,问题只要求 An, 而上述方法却将 A3~An 都求出了。能否不求 A3~An-1 而直接由 n 求出 An 呢?下面用母函数这种数学模型来解决这个问题。

将 A2, A3, A4······作为幂级数的系数, 令

$$Y(x) = \sum_{i=0}^{+\infty} A_i * x^i = A_2 * x^2 + A_3 * x^3 + \dots$$

如果能解出 Y(x), 那么也就求出了 An.

为了求 Y(x), 我们来看一下 Y(x)² 的值:

于是得出了由 n 直接求出 An 的数学模型:

已知:
$$n$$
 的值,
$$A_n = \frac{C_{2n-4}^{n-2}}{n-1} \qquad ⑦$$

求: An

求解时用公式⑦可直接计算 An。

在三个数学模型中,这一个表达最为简洁,抽象化程度最高。用它来求解的效率也最高。n=1000时不超过1秒,n=5000时也仅需14.7秒(486DX2/80),测试结果见附表一与附表二。

搜索法作为一种最基本的方法,建立在一个较为复杂的数学模型之上,它的特点是可以求出每一种分割方法,但用这种方法来求方案总数显然针对性不强,因此效率很低。递推法是建立在数列这个数学模型之上的,由于去除了很多不必要的因素,效率大为提高,对于 n<=300 时有较好的效果。利用母函数这种数学模型求解,是对递推法的一种数学优化,得出了更为简洁的结论,当 n>300 时充分显示出其优势。

从以上的分析中可以得出这样的结论:数学模型的抽象化程度越高,它的效率越高。这个结论很容易理解,因为抽象化程度越高,数学模型中与问题无关的成分就越少,于是效率也就越高。相反的,若抽象化程度不够高,则数学模型中含有较多的与问题无关的成分,那么,效率也就要低一些。

三、数学模型的推广和应用

数学模型具有可推广性。

数学模型是建立在问题本质的基础上的,而不是建立在问题的表面现象上的。因此,虽然两个问题表面毫无关系,只要它们有相同的本质,就可以用相同的数学模型求解。然而,要看到两个问题有相同的本质并不是一件容易的事。这需要我们抛开问题的表面现象,仔细地比较分析,在问题之间建立对应关系。

数学模型的可推广性与数学模型的抽象化程度有着密切的关系。为解决同一 个问题而建立起的不同的数学模型可能具有不同的可推广性。

下面将由母函数建立起的数学模型应用于另一些问题的求解。

【M的计数问题】求具有n个结点的二叉树的数目。

设具有 k 个结点的的二叉树的数目为 Dk,则

- * 当 k=0 时,是一棵空树,只有一种。
- * 当 k>0 时,二叉树可分为根结点、具有 i 个结点的左子树与具有 k-1-i 个结点的右子树。于是具有 k 个结点的二叉树的数目等于具有 i 个结点的二叉树的数目与具有 k-1-i 个结点的二叉树的数目的乘积。

将以上的分析写成公式,就是:

$$D_o = 1$$

$$D_k = \sum_{i=0}^{k-1} (D_i * D_{k-1-i})$$

比较上文中A数列与这里的D数列可知 $D_n = A_{n+2}$,于是将上文中的数学模型(⑦式)稍加变换,即得:

$$D_n = \frac{C_{2n}^n}{n+1}$$
 \otimes

至此,我们已将这个问题用上面的数学模型解决了。这个问题与[多边形分割问题]具有相同的本质,即它们计数的规律是一致的,因此,它们可用相同的数学模型求解。

为了将这种数学模型进一步推广,我们再将上一个问题分析一下:将每棵二叉树的 n 个结点一一编号,使每棵二叉树的前序序列都是 1,2,3···,n。由于前序序列与中序序列可唯一确定一棵二叉树,所以每棵二叉树的中序序列与其它的二叉树都是不同的。(一旦相同,那么这两棵二叉树就是同一棵二叉树了。)

另外,对于一棵前序序列确定的二叉树,它的中序序列可以由前序序列进栈 与出栈生成。于是该数学模型又可直接用于下面问题的求解。

【火车进出栈问题】一列火车 n 节车厢, 依次编号为 1, 2, 3, …, n。每节车厢 有两种运动方式, 进栈与出栈, 问 n 节车厢出栈的可能排列方式有多少种。

将这个问题与上一个问题比较一下: 列车原始的排列状态(1, 2, 3, …, n)正是二叉树的前序序列; 列车车厢的进栈与出栈对应于二叉树结点的进栈与出栈; 列车出栈后的排列状态正是二叉树的中序序列。

将两道题对应起来看,不难发现,列车出栈后的可能排列方式的数目就是二 叉树的中序序列的数目,也就是二叉树的数目。

设 n 节车厢的排列方式有 En 种,则

$$E_n = \frac{C_{2n}^n}{n+1}$$
 (9)

于是,我们又用相同的数学模型解决了这个问题。

将数学模型推广到[树的计数问题]时,我们只是比较了相似的递推公式,可以说是一种简单的推广。而推广到[火车进出栈问题]时,则是从[树的计数问题]出发,将两个问题对应起来看,进行了很多逻辑分析,相比之下要复杂一些。事实上,很多数学模型的推广应用都需要进行仔细的分析。

从一个问题[多边形分割问题]出发建立起的数学模型 $X_n = \frac{C_{2n}^n}{n+1}$,公式中已完全略去了分割的具体内容,只留下了问题的本质: 计数。由于公式表达了计数方

法的实质内涵($X_0 = 0$; $X_k = \sum_{i=0}^{k-1} (X_i * X_{k-1-i})$),于是就给了它进一步广泛应用于一类问题求解(外延)的可能。

再考虑一下[多边形分割问题]中搜索法的数学模型。在这两个问题中,搜索法的数学模型显然是不适用的。它包含着多边形的每一种具体的分割方案,没有很好的体现问题计数的本质,因此影响了这种数学模型的可推广性。在这两个问题中,没有相应的概念对应于多边形的分割方案,于是,搜索法的数学模型便对这两个问题无能为力了。而数列与母函数两种方法的数学模型仍能应用于这两个问题。这正是由于后两种方法的数学模型更加抽象,所以更有利于它们的推广。

四、总结

以上三个实例充分说明了数学模型的高效性、可推广性以及它们与抽象性之间的关系。

数学模型具有高效性。从实际问题中建立起来的数学模型可以去除无关的内容,关系清晰,有利于效率的提高。

数学模型具有可推广性。从实际问题中建立求解的数学模型,一个数学模型 建立后,往往能将其应用于一类实际问题中。乍一看[分割多边形]与[火车进出栈] 没有什么联系,但通过对模型的理解可以发现两个问题有着密切的内在联系:它 们是可以用相同的数学模型来求解的。

数学模型的高效性与其抽象性是紧密联系的。数学模型越是抽象,它的效率 也就越高。数学模型的可推广性与其抽象性也是紧密联系的。数学模型越是抽象, 它也就越容易被广泛应用。

【附件】

附表一:按以上三种数学模型设计的程序的运行时间的比较

n	运行时间(秒)(486/80)			结果
	搜索法	递推法	母函数法	
5	0.0	0.0	0.0	5
8	0.1	0.0	0.0	132
10	0.6	0.0	0.0	1430
11	3.2	0.0	0.0	4862
12	16.8	0.0	0.0	16796
20		0.0	0.0	477638700
30		0.1	0.0	263747951750360
40		0.1	0.0	176733862787006701400
50		0.1	0.0	131327898242169365477991900
70		0.3	0.0	86218923998960285726185640663701108500
100		0.8	0.0	5774335806960135778218770060804285633402073162475661100 0
150		3.1	0.0	3959313147057001992888490018878757680451363792611793474 9025519709205419589642069387800
200		8.3	0.1	3249701714469247204061030419891100129328703540371004596 9725655314584740305629299507691330189130411971857871567 302000
250		18.7	0.1	2942109465114274900932013291224718543203864499126811120 3317168783696949400211003928295831546272022257999617419

数学模型的建立、比较和应用

			625465614367577576739594354716172000
300	37.1	0.1	2833615951128645491952141298699350894649246764901164418
			2088598624691519032559650708037365499927532029654393447
			0696213221877124543336783231045268972258070292241625633
			99190436400

附表二:母函数法在大数据下的运行时间与结果

		附表二:母函数法在大数据卜的运行时间与结果
n	运行时	结果
	间	
	(秒,486/80)	
500	0.2	33921614812585475334363286760428341518066713710519482246463222890220389484
		96166601639408765893556171082850730432307258421940116521369412511180867674
		33831117255251093952216676752181549754039254079009518747834466367785846259
1000	0.6	69536221341025202009861761506606387807458519527863423617862710486790680000
1000	0.6	12826591231203293899924189078645638820890320523189718506100713336586596917 65063650897139226963638433013116953018320642351981875889124159470833343280
		05005050897159220905058455015110955018520042551981875889124159470855545280 15864565893550987852108368101709312590228295938009433241620526247192140999
		56116275115808631507401802669967546028248855981978874762839261386373344807
		65160463004590372133777681615368106466120718442527784572428185999328099100
		85516200019191596126573215746216258241717105949596945086725752677939963074
		41933004226246178589728251897174289368225550536194953921643630397454492990
		44574026427298505696059662600019407610860955183614906034111141142038679557
		60000
5000	14.7	19905339832928463251666735064542780033892729043055532801808728231002712118
		76734085661320525800982391106168982281996605880011739654359813542758695597
		92778429614014690786606171171528320083045044671489924972047501523334246813
		87245738408957397390338114207845815084568665148437280856840230967715381553
		57865596755677654398271755290553728036099183628752965320662495987063081218 95633339730969725161266875649077021947002631530501156605401466085759753635
		29153692218249926313524921858319785702196735344867807463504348872703806682
		76557335753276871786347768612211133866915304199873699266973452113841368846
		23921590225108813107833859413755075491924954296242363596594466667144667335
		87718312466406881420407038563387766299777666596542552681593789751044519117
		36990086945769021035259522823770948943057400745943601902801641100388276960
		35585915387351199097375301331556293580890493918098622380755233389268052169
		33129970680691440105112827804459129710748612740519928346396310561216451805
		16533443241763461820322685891901250005766673255334183011114708195338121209
		88010445061003160557018172554817337108394059108173915553582173798764687565
		21829985817456662836784051933862876336442379104782160425463668803378393982 39555205412965010863073403341689820527195143227554240769318197214550404929
		76792101947671393514768860471507412891459327520118017269678687774997203146
		88862911165999548592301937072723328901057052436143506735132885611033291722
		43184327475890245902422379591116933541402407304673289273956454592243290522
		47990854644972024029972827331377313107196086221062765018820283368195569645
		48549688683732435397553570938429083111251874432091140686683008816625997915
		38502970558610311959605119059285721310792265335734974618605961113788698323
		44698856089798444316515490995417460293855758521378065967497215232211273431
		35867182891487011568951711326856798704310038096674186956424692388366951410
		84658775900119665937226717903862379727919631656239883098441287324447074205
		28465376060417840530884098880455141863912466417603259284284944592326316163 09597601726856079967431552494414587401845403416372467040622320018510892266
		50716732821068117296304334142247077033558814482032810656613007364273147899
		35878982943581444410274031000848491803374826291423417733120231899859224453
		91014019546665700263830349608832536195648751981624029939353157525782759785
		27638007420272235699836321668787827569604597992145402860459286867814341553
		85008768086213261980678561187332233776048566494655353336640115101214280138
		09253621167461643010574515280289659464539972118062862177079566215629850386
		78355768449118075262217561378974164882591433135421096327093683365937426849
		14689724272085005469649013886496227350825749224468817049862561891845929191
		78448768329320131803124374833760877058196194803111496823543186375259372960
		89982305588050631890322060001728960148182457730920457465399070572366773805
		40322691698615959422148103261747037158149571993059785169566955518997933288

2416754183716357001209090944294741473972997610488038219507132437063465054808258284329237819893018092810058281353800000

【程序】

```
1.多边形分割问题 搜索法 (sousuo.pas)
{$A+,B-,D-,E-,F-,G+,I-,L-,N-,O-,P-,Q-,R-,S-,T-,V+,X+,Y-}
{$M 16384,0,655360}
Program SouSuo;
Const
  Max=30;
Type
  TPara=record l,r:integer;end; {区间类型}
Var
   method:Longint; {方案总数}
   Para:array[1..Max]of TPara; {区间组}
   n:integer;
   time:Longint;
Function M(a,b:integer):integer;{高精度整数类型}
begin if a < b then m:=b else m:=a;end;
Procedure Make; {搜索多边形的所有分割方案}
Var i,j:integer;
    sp,lp1,lp2:integer;
  Function Connect:boolean; {判断新加入区间组的区间是否与原有的区间有冲
突}
  var i,j,k:integer;b1,b2:boolean;
  begin
    j:=para[sp].l;k:=para[sp].r;
    Connect:=true;
    for i:=1 to sp-1 do
      begin
        if (j=para[i].l)or(j=para[i].r) then continue;
        if (k=para[i].l)or(k=para[i].r) then continue;
        if ((j>para[i].l)and(j<para[i].r))xor</pre>
            ((k>para[i].l)and(k<para[i].r))
           then exit;
      end;
    Connect:=false;
```

```
end;
Function PreFalse:boolean; {检验是否有其它的冲突}
var i:integer;j,k:integer;
begin
  prefalse:=false;j:=para[sp].l;
  if j \le 2 then exit;
  for i:=1 to sp do
     if (para[i].l=j-1)or(para[i].r=j-1) then exit;
  k:=j;j:=k-2;
  for i:=1 to sp do
     if (para[i].l=j)and(para[i].r=k) then exit;
  PreFalse:=true;
end;
Function Pop:boolean; forward;
Function Push:boolean; {入栈}
begin
  inc(sp);
  Para[sp].l:=lp1;Para[sp].r:=lp2;
  Push:=((lp1=1)and(lp2=n))or(lp1>n)or(lp2>n)or connect;
  if prefalse then
     begin Push:=true;pop;exit;end;
  inc(lp2);
  if lp2>n then
     begin inc(lp1);lp2:=lp1+2;end;
end;
Function Pop:boolean; {出栈}
begin
  if sp=0 then
     begin dec(sp);pop:=false;exit;end;
  lp1:=Para[sp].1;lp2:=para[sp].r;dec(sp);
  inc(lp2);
  if lp2>n then
     begin inc(lp1);lp2:=lp1+2;end;
  Pop:=(lp1>n)or(lp2>n);
```

```
end;
begin
  sp:=0; {栈顶指针置 0}
  lp1:=1;lp2:=3;
  method:=0;
  while (sp>=0) do
  begin
    if Push then while pop do;
    if sp=n-3 then {获得了一种方案}
      begin
        method:=method+1;
        while pop do;
      end;
  end;
  writeln('Total: ',method);
end;
var i:integer;s:string;
BEGIN
  write('Input N: ');
  readln(n);{输入多边形边数}
  time:=MemL[$40:$6c];
  if n<3 then writeln('Total: 0')
    else if n=3 then writeln('Total: 1')
    else MAKE; {搜索多边形的所有分割方案}
  writeln('Time: ',(Meml[$40:$6c]-time)/18.2:5:1);
    {输出所用的时间}
END.
2.多边形分割问题 递推法 (ditui.pas)
{$A+,B-,D-,E-,F-,G+,I-,L-,N+,O-,P-,Q-,R-,S-,T-,V+,X+,Y-}
{$M 16384,0,655360}
Program DiTui;
Const
     Len=100;Max=300;
Type
    Th=array[-1..Len+1]of integer;{高精度整数类型}
Var
```

```
method:array[1..Max]of Th; {i 边形分割方案总数为 method[i]}
   n:integer; {要求的多边形的边数}
   time:Longint;
Function M(a,b:integer):integer; {取最大值}
begin if a < b then m:=b else m:=a;end;
Procedure Add(var a:Th;b:Th); {a:=a+b;a,b 为高精度整数类型}
var i,j:integer;
begin
  j := 0;
  a[-1]:=m(a[-1],b[-1]);
  for i:=0 to a[-1] do
    begin inc(j,a[i]+b[i]);
           a[i]:=j mod 10000; {每位 integer 存 4 位十进制数}
           j:=j div 10000;
    end;
  if j<>0 then
    begin inc(a[-1]);a[a[-1]]:=j;end;
end;
Procedure Mul(a,b:Th;var c:Th); {c:=a*b;a,b,c 为高精度整数类型}
var i,j:integer;k:Longint;
begin
  fillchar(c,sizeof(Th),0);
  for i:=0 to a[-1] do
    begin
       k = 0;
       for j:=0 to b[-1] do
         if i+j \le Len then
         begin
           inc(k,longint(a[i])*b[j]+c[i+j]);
           c[i+j]:=k \mod 10000;
           k:=k div 10000;
         end;
       inc(c[i+b[-1]+1],k);
    end;
  c[-1]:=a[-1]+b[-1];
```

```
if c[c[-1]+1] <> 0 then inc(c[-1]);
end;
Procedure OutHigh(a:Th); {输出高精度整数}
var s:string[4];i,j:integer;
begin
  write('Total: ');
  j:=a[-1];write(a[j]);
  for i:=j-1 downto 0 do
    begin
       str(a[i],s); while s[0] < \# 4 do s:='0'+s;
       write(s);
    end;
  writeln;
end;
Procedure Make; {递推计算多边形分割总数}
var i,j:integer;a:Th;
begin
  fillchar(method,sizeof(method),0);
  method[2,0]:=1;
  method[3,0]:=1;
  fillchar(a,sizeof(a),0);
  for i:=4 to N do
    for j:=1 to i-2 do
    begin
       mul(method[j+1],method[i-j],a);
       Add(method[i],a);
    end;
  OutHigh(method[n]);
end;
var i:integer;s:string;
BEGIN
  write('Input N: ');
  readln(n); {输入多边形边数}
  time:=MemL[$40:$6c];
  if n<3 then writeln('Total: 0')
    else MAKE;{递推计算多边形分割总数}
```

```
writeln('Time: ',(Meml[$40:$6c]-time)/18.2:5:1);
    {输出所用的时间}
END.
3.多边形分割问题 母函数法 见 muhanshu.Pas
{$A+,B-,D-,E-,F-,G+,I-,L-,N+,O-,P-,Q-,R-,S-,T-,V+,X+,Y-}
{$M 16384,0,655360}
Program MuHanShu;
Const
     Len=1400;Max=6000;
Type
    Th=array[0..Len+1]of integer;{高精度整数类型 1,按位存储}
    Ty=array[0..Max]of integer;{高精度整数类型 2,按因数存储}
Var
   fi,fo:text;fin,fon:string;
   n:integer;
   time:Longint;
Procedure Mul(var a:Th;b:integer); {a:=a*b;a 为高精度整数类型 1}
Var i:integer;k:Longint;
begin
  k=0;
  for i:=1 to a[0] do
    begin
      k:=k+a[i]*longint(b);
      a[i]:=k \mod 10000;
      k:=k div 10000;
    end;
  if k<>0 then
    begin inc(a[0]);a[a[0]]:=k;end;
end;
Function MaxPublic(a,b:integer):integer; {a,b 的最大公因数}
var i:integer;
begin
  repeat
    a := a \mod b;
    if a=0 then break;
```

```
b:=b mod a;
  until b=0;
  MaxPublic:=a+b;
end;
Procedure Divide(var k:Ty;h:integer);{k:=k div h;k 为高精度整数类型 2}
Var i,j:integer;
begin
  for i:=1 to k[0] do
    if k[i] \mod h = 0 then
        begin k[i]:=k[i] div h;
                if k[i]=1 then begin k[i]:=k[k[0]];dec(k[0]);end;
                exit;
        end:
  for i:=k[0] downto 1 do
    if MaxPublic(k[i],h)>1 then
      begin
        j:=MaxPublic(k[i],h);
        h:=h \operatorname{div} j;k[i]:=k[i] \operatorname{div} j;
        if k[i]=1 then begin k[i]:=k[k[0]]; dec(k[0]); end;
        if h=1 then exit;
      end;
end:
Procedure translate(k:Ty;var a:Th);{a:=k;a 为高精度整数类型 1,k 为高精度整数类
型 2}
Var i:integer;
begin
  a[1]:=1;a[0]:=1;
  for i:=1 to k[0] do mul(a,k[i]);
end;
Procedure Make;{按公式计算多边形分割总数}
Var i,j:integer;k:Ty;a:Th;s:string[4];
begin
  k[0]:=n-2;
  for i:=1 to n-2 do k[i]:=(2*n-3-i);
  for i:=n-2 downto 2 do divide(k,i);
```

```
divide(k,n-1);
  translate(k,a);
  write('Total: ');
  j:=a[0];write(a[j]);
  for i:=j-1 downto 1 do
    begin
      str(a[i],s); while s[0] < \#4 do s:='0'+s;
      write(s);
    end;
  writeln;
end;
var i:integer;s:string;
BEGIN
  write('Input N(<=',Max,'): ');
  readln(n); {输入多边形边数}
  time:=MemL[$40:$6c];
  if n<3 then writeln('Total: 0')
    else MAKE; {按公式计算多边形分割总数}
  writeln('Time: ',(Meml[$40:$6c]-time)/18.2:5:1);
    {输出所用的时间}
END.
4.树的计数问题、火车进出栈问题 (tuiguang.pas)
{$A+,B-,D-,E-,F-,G+,I-,L-,N+,O-,P-,Q-,R-,S-,T-,V+,X+,Y-}
{$M 16384,0,655360}
Program TuiGuang;
Const
     Len=1400;Max=5002;
Type
    Th=array[0..Len+1]of integer;{高精度整数类型 1,按位存储}
    Ty=array[0..Max]of integer;{高精度整数类型 2,按因数存储}
Var
   fi,fo:text;fin,fon:string;
   n:integer;
   time:Longint;
```

```
Procedure Mul(var a:Th;b:integer); {a:=a*b;a 为高精度整数类型 1}
Var i:integer;k:Longint;
begin
  k=0;
  for i:=1 to a[0] do
     begin
       k:=k+a[i]*longint(b);
       a[i]:=k mod 10000;
       k:=k div 10000;
     end;
  if k <> 0 then
     begin inc(a[0]);a[a[0]]:=k;end;
end;
Function MaxPublic(a,b:integer):integer; {a,b 的最大公因数}
var i:integer;
begin
  repeat
     a := a \mod b;
     if a=0 then break;
    b:=b mod a;
  until b=0;
  MaxPublic:=a+b;
end;
Procedure Divide(var k:Ty;h:integer);{k:=k div h;k 为高精度整数类型 2}
Var i,j:integer;
begin
  for i:=1 to k[0] do
     if k[i] \mod h = 0 then
        begin k[i]:=k[i] div h;
               if k[i]=1 then begin k[i]:=k[k[0]]; dec(k[0]); end;
               exit;
        end;
  for i:=k[0] downto 1 do
     if MaxPublic(k[i],h)>1 then
      begin
```

```
j:=MaxPublic(k[i],h);
         h:=h \operatorname{div} j;k[i]:=k[i] \operatorname{div} j;
         if k[i]=1 then begin k[i]:=k[k[0]]; dec(k[0]); end;
         if h=1 then exit;
      end;
end;
Procedure translate(k:Ty;var a:Th);{a:=k;a 为高精度整数类型 1,k 为高精度整数类
型 2}
Var i:integer;
begin
  a[1]:=1;a[0]:=1;
  for i:=1 to k[0] do mul(a,k[i]);
end;
Procedure Make;{按公式计算}
Var i,j:integer;k:Ty;a:Th;s:string[4];
begin
  k[0]:=n-2;
  for i:=1 to n-2 do k[i]:=(2*n-3-i);
  for i:=n-2 downto 2 do divide(k,i);
  divide(k,n-1);
  translate(k,a);
  write('Total: ');
  j:=a[0];write(a[j]);
  for i:=j-1 downto 1 do
     begin
       str(a[i],s); while s[0] < \#4 do s:='0'+s;
       write(s);
     end;
  writeln;
end;
var i:integer;s:string;
BEGIN
  write('Input N(<=',Max-2,'): ');
```

```
readln(n); {输入 N}
inc(n,2);
time:=MemL[$40:$6c];
MAKE; {按公式计算}
writeln('Time: ',(Meml[$40:$6c]-time)/18.2:5:1);
{输出所用的时间}
END.
```

【参考书目】

《信息学奥林匹克》1998.1-2 中国计算机学会普及工作委员会、TSINGHUA UNIVERSITY ACM STUDENT CHAPTER 主办,第87页、第93-94页:

《数据结构》(第二版),严蔚敏、吴伟民编著,清华大学出版社 1992 年 6 月,第 150-154 页;

《中学生数学建模读本》, 孔凡海编著, 江苏教育出版社 1998年1月。