

Η Μ₁ με είσοδο <Μ,w> θέτει Μ'=Μ, w'=w και

α=τελική κατάσταση του Μ. Έπειτα περνάει την

είσοδο <Μ',w',q> στη μηχανή Μ2

κατάσταση h, με είσοδο w,

Αν η Μο απαντήσει ΟΧΙ. τότε η Μ δεν περνάει από την τελική

κατάσταση h. με είσοδο w.

τότε η Μ περνάει από την τελική

άρα η Μ τερματίζει με είσοδο w,

θέτουμε τη Μ1 να απαντήσει ΝΑΙ.

άρα η Μ δεν τερματίζει με είσοδο w,

L₁. Άτοπο. Άρα η L₂ δεν είναι αποφασίσιμη

θέτουμε τη Μ1 να απαντήσει ΟΧΙ. Κατασκευάσαμε μια Μ.Τ. που αποφασίζει την

1. Αν η Μ2 απαντήσει ΝΑΙ.

Περιγραφή του

standard

μετασχηματισμού

YES στο ερώτημα του αγνωστού

YES στο ερώτημα του γνωστού

ΝΟ στο ερώτημα του αγνωστού

ΝΟ στο ερώτημα του γνωστού

Μ1 - Μηχανή για το γνωσ

Μηχανή για το αγνωστο

<M.w>

<M',w',q'>

Απόδειξη του Θεωρήματος:

Δείχνουμε ότι η Η είναι αποδεκτή γλώσσα κατασκευάζοντας μία μηχανή Turing M' η οποία ημι-αποφασίζει την Η ως εξής. Η Μ΄ με είσοδο <Μ,w> λειτουργεί όπως η καθολική μηχανή Turing U, δηλαδή προσομοιώνει την λειτουργία της μηχανής Truing M με είσοδο w.

Είναι προφανές ότι:

- Αν η Μ με είσοδο w τερματίζει, τότε θέτουμε την Μ' να τερματίζει.
- Αν η Μ με είσοδο w κρεμάει, μπορούμε να το «πιάσουμε» (π.χ. θέτοντας έναν ειδικο χαρακτήρα στο αριστερό άκρο της ταινίας της Μ και αν διαβαστεί αυτός ο χαρακτήρας, τότε η Μ΄ θα πέφτει σε ατέρμονα βρόχο).
- Αν η Μ με είσοδο w δεν τερματίζει, τότε και η Μ' δεν τερματίζει.

Συνεπώς η Μ΄ ημι-αποφασίζει την Η, άρα η Η είναι αποδεκτή γλώσσα.

ΑΠΟΛΕΙΞΕΙΣ ΑΠΑΡΙΘΜΗΣΙΜΟΤΗΤΑΣ

ΑΠΟΦΑΣΙΣΙΜΕΣ κ ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

ΚΛΕΙΣΤΟΤΗΤΕΣ ΑΠΟΦΑΣΙΣΙΜΩΝ

ΑΠΟΦΑΣΙΣΙΜΕΣ κ ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Μία γλώσσα θα λέγεται **λεξικογραφικά Turing**-Απαριθμήσιμη αν και μόνο αν διαθέτει λεξικογραφικό Turing-Απαριθμητή

Μία γλώσσα είναι **λεξικογραφικά Turing**-

Αποφασίσιμη νλώσσα

Μ.Τ. που αποφασίζει

Απαριθμήσιμη αν και μόνο αν είναι Turing-

Ορισμός:

Λεξικογραφικός Turing Απαριθμητής είναι μία Μ.Τ. που εκτυπώνει μία-μία τις συμβολοσειρές της γλώσσας με λεξικογραφική σειρά

- Μία γλώσσα θα λέγεται **Turing-Απαριθμήσιμη** αν και μόνο αν διαθέτει Turing-Απαριθμητή
- Turing Απαριθμητής είναι μία Μ.Τ. που και πάλι εκτυπώνει όλες τις συμβολοσειρές της νλώσσας:
 - Οστόσο τις εκτυπώνει με τυχαία σειρά και πιθανώς με επαναλήψεις
- Όμως αν μια συμβολοσειρα ανήκει στην γλώσσα, τότε εγγυημένα σε κάποιο βήμα εκτύπωσης αυτή θα εκτυπωθεί!

Θεώρημα:

Μία γλώσσα είναι Turing-Απαριθμήσιμη αν και μόνο αν είναι Turing-Αποδεκτή γλώσσα

Η Γλώσσα L={Μ | |L(M)|>3} είναι απαριθμήσιμή

Δοθείσης μιας μηχανής Turing M, μπορούμε να κατασκευάσουμε μια μηχανή Turing M' η οποία με τη διαδικασία της χελιδονοούρας απαριθμεί τις λέξεις της L(M). Συγκεκριμένα χρησιμοποιεί τη λεξικογραφική σειρά του αλφαβήτου της Μ και συγκεκριμένα: Επαναλαμβάνει σε φάσεις:

- Στην 1η φάση παράνει την πρώτη συμβολοσειρά του Σ*
- Στην 2η φάση παράγει τις 2 πρώτες συμβολοσειρές του Σ*

M.T.

- Στην 3η φάση παράγει τις 3 πρώτες συμβολοσειρές του Σ*
- Στην η-οστή φάση προσομοιώνουμε την Μ κατά η βήματα στις η πρώτες συμβολοσειρές.

εκτυπωτης

Λεξικογραφικός Απαριθμητής

Κάθε συμβολοσειρά με την οποία η Μ τερματίζει, τυπώνεται και προχωράμε στην επόμενη φάση. Τρέχουμε την Μ΄ και αν σε κάποια φάση οι λέξεις που απαριθμήσει γίνουν 4, τερματίζει. Αλλιώς δεν τερματίζει. Κατασκευάσαμε Μ.Τ. η οποία ημιαποφασίζει την L άρα αυτή είναι αποδεκτή, άρα και απαριθμήσιμη.

ΚΛΕΙΣΤΟΤΗΤΕΣ ΑΠΟΔΕΚΤΩΝ

ΑΠΟΦΑΣΙΣΙΜΕΣ κ ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

Κλειστότητα των Αποδεκτών Γλωσσών στην Ένωση

Κατασκευάζουμε μία μηχανή Turing, έστω Μ΄ η οποία με είσοδο w λειτουρνεί ως εξής:

Εκτελεί **εναλλάξ** τις M_1 και M_2 , δηλαδή τρέχει εναλλάξ ένα βήμα στην M_1 , ένα βήμα στην Μ, κ.ο.κ. Εάν σε κάποιο βήμα μία από τις δύο τερματίσει, τότε θέτουμε την Μ' να τερματίσει.

Κλειστότητα των Αποδεκτών Γλωσσών στην Τομή

Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

1) Τρέχει την Μ₁ με είσοδο w.

Αν η M_1 δεν τερματίσει (άρα η w δεν ανήκει στην L_1), τότε και η M' δεν τερματίζει (όπως θα όφειλε, αφού n w δεν ανήκει στην $L_1 \cap L_2$) Αν η M_1 τερματίσει (άρα η w ανήκει στην L_1), τότε και η M' προχωρά στο επόμενο βήμα.

2) Τρέχει την Μ₂ με είσοδο w.

Αν η M_2 δεν τερματίσει (άρα η w δεν ανήκει στην L_2), τότε και η M' δεν τερματίζει (όπως θα όφειλε, αφού η w δεν ανήκει στην $L_1 \cap L_2$) Αν η M_2 τερματίσει (άρα η w ανήκει στην L_2), τότε και η M' τερματίζει.

Κλειστότητα των Αποδεκτών Γλωσσών στην Παράθεση Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουρνεί ως εξής:

- Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαγωρισμούς της συμβολοσειράς w στην παράθεση δύο συμβολοσειρών w₁ και w₂ (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως w₁w₂.)
- Για κάθε διαχωρισμό εξετάζεται παράλληλα αν η συμβολοσειρά w ανήκει στην παράθεση ως εξής:
 - Για τον πρώτο διαχωρισμό: Τρέχει ένα βήμα στην Μ με είσοδο w₁ ένα βήμα της M₂ με είσοδο w₂.
 - Για τον δεύτερο διαχωρισμό: Τρέχει ένα βήμα στην Μ1 με είσοδο w, ένα βήμα της Μ, με είσοδο w.
 - Για τον τελευταίο διαχωρισμό: Τρέχει ένα βήμα στην Μ, με είσοδο w, ένα βήμα της Μ, με είσοδο w.
- Αν σε κάποιο βήμα τερματίσουν οι δύο μηχανές που εξετάζουν έναν διαχωρισμό, τότε η Μ' τερματίζει.

Κλειστότητα των Αποδεκτών Γλωσσών στο **Αστέρι Kleene**

Κατασκευάζουμε μία μηχανή Turing, έστω Μ΄ η οποία με είσοδο w λειτουργεί ως εξής:

- Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση 1..|w| συμβολοσειρών (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως $w_1w_2...w_k$ με k=1,2,...|w|)
- Για κάθε διαχωρισμό εξετάζεται παράλληλα αν η συμβολοσειρά w ανήκει στο αστέρι Kleene:
 - Για τον πρώτο διαχωρισμό, έστω w₁w₂...w_i: Τρέχει ένα βήμα στην Μ με είσοδο w₁, ένα βήμα της Μ με είσοδο w₂,..., ένα βήμα της Μ με είσοδο w.
 - Για τον τελευταίο διαχωρισμό w,w,...w,: Τρέχει ένα βήμα στην Μ, με είσοδο w, ένα βήμα της Μ, με είσοδο w,..., ένα βήμα της Μ με
- Αν σε κάποιο βήμα τερματίσουν όλες οι μηχανές που εξετάζουν έναν διαχωρισμό, τότε η Μ' τερματίζει.

H L₁ είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω M_1 Η L₂ είναι Αποδεκτή Γλώσσα, άρα υπάρχει μία μηχανη Turing που την ημι-αποφασίζει έστω Μ₂

Κλειστότητα των Αποφασισίμων Γλωσσών στην Ένωση Κατασκευάζουμε μία μηχανή Turing, έστω Μ' η οποία με είσοδο w λειτουργεί ως εξής:

1) Τρέχει την Μ, με είσοδο w. Αν η Μ, απαντήσει ΝΑΙ, τότε η Μ' απαντά ΝΑΙ και τερματίζει. Αν η M_1 απαντήσει ΌΧΙ προχωράει στο βήμα 2: 2) Τρέχει την Μ, με είσοδο w. Αν η η Μ, απαντήσει ΝΑΙ, τότε η Μ΄ απαντά ΝΑΙ και τερματίζει. Αν η Μ2 απαντήσει ΌΧΙ τότε απαντά ΌΧΙ και

Κλειστότητα των Αποφασισίμων Γλωσσών στην Τομή

Κατασκευάζουμε μία μηχανή Turing, έστω Μ΄ η οποία με είσοδο w λειτουργεί ως εξής:

- 1) Τρέχει την Μ₁ με είσοδο w. Αν η Μ₂ απαντήσει ΟΧΙ, τότε η Μ΄ απαντά ΟΧΙ και τερματίζει. Αν η Μ, απαντήσει ΝΑΙ προχωρά στο βήμα 2: 2) Τρέχει την Μο με είσοδο w. Αν n n M2 απαντήσει ΟΧΙ, τότε n M' απαντά ΟΧΙ και τερματίζει. Αν η Μ2 απαντήσει ΝΑΙ τότε η Μ' απαντά ΝΑΙ και
- τερματίζει. Κλειστότητα των Αποφασισίμων Γλωσσών στην Παράθεση

Κατασκευάζουμε μία μηχανή Turing, έστω Μ΄ η οποία με είσοδο w λειτουργεί ως εξής:

- Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση δύο συμβολοσειρών w, και w, (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως w₁w₂.)
- Για κάθε δυνατό διαχωρισμό: Τρέχει την M_1 με είσοδο w_1 και την Μ, με είσοδο w,. Αν και οι δύο μηχανές απαντήσουν ΝΑΙ, τότε η Μ' τερματίζει απαντώντας ΝΑΙ

Αν όλοι οι δυνατοί διαχωρισμοί απαντηθούν ΌΧΙ, τότε και η Μ' τερματίζει απαντώντας ΌΧΙ.

Κλειστότητα των Αποφασισίμων Γλωσσών στο

Συμπλήρωμα

Η L είναι Αποφασίσιμη Γλώσσα, άρα υπάρχει μία μηχανη Turing που την αποφασίζει έστω Μ

Κατασκευάζουμε μία μηχανή Turing, έστω Μ΄ η οποία με είσοδο w λειτουργεί ως εξής:

- 1) Τρέχει την M με είσοδο w.
 - Αν η Μ απαντήσει ΟΧΙ, τότε η Μ' απαντά ΝΑΙ και
 - Αν η Μ απαντήσει ΟΧΙ, τότε η Μ' απαντάει ΌΧΙ και τερματίζει.

Κλειστότητα των Αποφασισίμων Γλωσσών στο Αστέρι

Κατασκευάζουμε μία μηχανή Turing, έστω Μ΄ η οποία με είσοδο w λειτουργεί ως εξής:

- Πρώτα μία μηχανή Turing διαχωριστής D παράγει όλους τους δυνατούς διαχωρισμούς της συμβολοσειράς w στην παράθεση 1.. | w | συμβολοσειρών (δηλαδή όλους τους δυνατούς διαχωρισμούς της w ως $w_1w_2...w_k$ με k=1,2....|w|)
- Για κάθε δυνατό διαχωρισμό: Τρέχει την Μ διαδοχικά με εισόδους $w_1, w_2, ..., w_k$. Αν η Μ απαντήσει NAI για όλες τις συμβολοσειρές τότε η Μ' τερματίζει απαντώντας ΝΑΙ. Αν όλοι οι δυνατοί διαχωρισμοί απαντηθούν ΌΧΙ, τότε και η Μ΄ τερματίζει απαντώντας ΌΧΙ.