Übungsblatt 4.

Name	${f Aufgabe}$	1	2	3	4	\sum
	$\overline{ m Punkte}$					
Übungsgruppe (Name des Tutors)						

Abgabetermin: Montag, 27.11.2023, 14:00 Uhr.

Bitte verwenden Sie bei Abgabe in Papierform diese Seite als Deckblatt und tragen Sie oben Ihren Namen und Ihre Übungsgruppe ein. Bitte heften Sie die Blätter zusammen.

Aufgabe 1 (10 Punkte).

- (i) Für $n, m \in \mathbb{N}_{>0}$ mit n > m zeige man, dass für jede Abbildung $f : \{1, \ldots, n\} \longrightarrow \{1, \ldots, m\}$ zwei verschiedene Zahlen $k_1, k_2 \in \{1, \ldots, n\}$ existieren so, dass $f(k_1) = f(k_2)$.
- (ii) Sei a_1, \ldots, a_n eine Anordnung der Zahlen $1, \ldots, n$ und n sei ungerade. Zeigen Sie mit Hilfe von (i), dass das Produkt $(a_1 1) \cdot \ldots \cdot (a_n n)$ gerade ist.

Aufgabe 2 (10 Punkte). In der Fußball-Bundesliga spielen 18 Mannschaften, davon seien A, B und C drei beliebige, paarweise verschiedene Mannschaften.

- (i) Wie viele mögliche Tabellenkonstellationen gibt es?
- (ii) Wie viele verschiedene Besetzungen der ersten sechs Plätze sind möglich?
- (iii) Angenommen wir wissen, dass A ist eine der letzten drei Mannschaften ist und B vor C liegt. Wie viele mögliche Konstellationen erfüllen dies?
- (iv) Geben Sie Bedingungen an Mannschaften und deren Plazierungen an, sodass es genau $6! \cdot 12!$ Konstellationen gibt, welche diesen Bedingungen genügen.

Aufgabe 3 (10 Punkte). Eine Klausur wird von 250 Studierenden geschrieben. Wie viele mögliche Verteilungen gibt es, wenn

- die Noten 1,0 und 4,0 je 10-mal vergeben werden,
- die Noten 1, 3 und 3, 7 je 15-mal vergeben werden,
- die Noten 1,7 und 3,3 je 25-mal vergeben werden,
- die Noten 2,0 und 3,0 je 35-mal vergeben werden und
- die Noten 2,3 und 2,7 je 40-mal vergeben werden?

Aufgabe 4 (10 Punkte). Wir betrachten ein Schachbrett mit 64 quadratischen Feldern, angeordnet als 8 × 8 Quadrat, und die 16 schwarzen Figuren (8 Bauern, jeweils 2 Springer, Läufer und Türme, eine Dame und ein König). Jede Figur wird nun auf einem der 64 Feldern platziert.

- Wie viele verschiedene Möglichkeiten gibt es, die 16 Figuren auf die ersten beiden Reihen des Schachbretts zu stellen?
- Wie viele verschiedene Möglichkeiten gibt es, die Figuren auf dem gesamten Schachbrett zu verteilen?