# **Building your Recurrent Neural Network - Step by** Step

Welcome to Course 5's first assignment! In this assignment, you will implement your first Recurrent Neural Network in numpy.

Recurrent Neural Networks (RNN) are very effective for Natural Language Processing and other sequence tasks because they have "memory". They can read inputs  $x^{\langle t \rangle}$  (such as words) one at a time, and remember some information/context through the hidden layer activations that get passed from one time-step to the next. This allows a uni-directional RNN to take information from the past to process later inputs. A bidirection RNN can take context from both the past and the future.

#### **Notation:**

- Superscript [l] denotes an object associated with the  $l^{th}$  layer.
  - Example:  $a^{[4]}$  is the  $4^{th}$  layer activation.  $W^{[5]}$  and  $b^{[5]}$  are the  $5^{th}$  layer parameters.
- Superscript (i) denotes an object associated with the  $i^{th}$  example.
  - Example:  $x^{(i)}$  is the  $i^{th}$  training example input.
- Superscript  $\langle t \rangle$  denotes an object at the  $t^{th}$  time-step.
  - Example:  $x^{\langle t \rangle}$  is the input x at the  $t^{th}$  time-step.  $x^{(i)\langle t \rangle}$  is the input at the  $t^{th}$  timestep of
- Lowerscript i denotes the  $i^{th}$  entry of a vector.
  - Example:  $a_i^{[l]}$  denotes the  $i^{th}$  entry of the activations in layer l.

We assume that you are already familiar with numpy and/or have completed the previous courses of the specialization. Let's get started!

Let's first import all the packages that you will need during this assignment.

```
In [14]: import numpy as np
         from rnn utils import *
```

# 1 - Forward propagation for the basic Recurrent Neural **Network**

Later this week, you will generate music using an RNN. The basic RNN that you will implement has the structure below. In this example,  $T_x = T_y$ .



Figure 1: Basic RNN model

Here's how you can implement an RNN:

#### Steps:

- 1. Implement the calculations needed for one time-step of the RNN.
- 2. Implement a loop over  $T_x$  time-steps in order to process all the inputs, one at a time.

Let's go!

# 1.1 - RNN cell

A Recurrent neural network can be seen as the repetition of a single cell. You are first going to implement the computations for a single time-step. The following figure describes the operations for a single time-step of an RNN cell.



**Figure 2**: Basic RNN cell. Takes as input  $x^{\langle t \rangle}$  (current input) and  $a^{\langle t-1 \rangle}$  (previous hidden state Typesetting math: containing information from the past), and outputs  $a^{\langle t \rangle}$  which is given to the next RNN cell and also

### used to predict $v^{\langle t \rangle}$

Exercise: Implement the RNN-cell described in Figure (2).

#### Instructions:

Typesetting math: 100%

- 1. Compute the hidden state with tanh activation:  $a^{\langle t \rangle} = \tanh(W_{aa}a^{\langle t-1 \rangle} + W_{ax}x^{\langle t \rangle} + b_a)$ .
- 2. Using your new hidden state  $a^{\langle t \rangle}$ , compute the prediction  $\hat{y}^{\langle t \rangle} = softmax(W_{ya}a^{\langle t \rangle} + b_y)$ . We provided you a function: softmax.
- 3. Store  $(a^{\langle t \rangle}, a^{\langle t-1 \rangle}, x^{\langle t \rangle}, parameters)$  in cache
- 4. Return  $a^{\langle t \rangle}$  ,  $v^{\langle t \rangle}$  and cache

We will vectorize over m examples. Thus,  $x^{\langle t \rangle}$  will have dimension  $(n_x, m)$ , and  $a^{\langle t \rangle}$  will have dimension  $(n_a, m)$ .

```
In [15]: # GRADED FUNCTION: rnn cell forward
         def rnn cell forward(xt, a prev, parameters):
             Implements a single forward step of the RNN-cell as described in Figure
             Arguments:
             xt -- your input data at timestep "t", numpy array of shape (n_x, m).
             a prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
             parameters -- python dictionary containing:
                                 Wax -- Weight matrix multiplying the input, numpy as
                                 Waa -- Weight matrix multiplying the hidden state, I
                                 Wya -- Weight matrix relating the hidden-state to the
                                 ba -- Bias, numpy array of shape (n a, 1)
                                 by -- Bias relating the hidden-state to the output,
             Returns:
             a next -- next hidden state, of shape (n a, m)
             yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
             cache -- tuple of values needed for the backward pass, contains (a next
             # Retrieve parameters from "parameters"
             Wax = parameters["Wax"]
             Waa = parameters["Waa"]
             Wya = parameters["Wya"]
             ba = parameters["ba"]
             by = parameters["by"]
             ### START CODE HERE ### (≈2 lines)
             # compute next activation state using the formula given above
             a next = np.tanh(np.dot(Waa, a prev) + np.dot(Wax, xt) + ba)
             # compute output of the current cell using the formula given above
             yt pred = softmax(np.dot(Wya, a next) + by)
             ### END CODE HERE ###
             # store values you need for backward propagation in cache
             cache = (a_next, a_prev, xt, parameters)
             return a next, yt pred, cache
```

```
In [16]:
         np.random.seed(1)
         xt = np.random.randn(3,10)
         a_prev = np.random.randn(5,10)
         Waa = np.random.randn(5,5)
         Wax = np.random.randn(5,3)
         Wya = np.random.randn(2,5)
         ba = np.random.randn(5,1)
         by = np.random.randn(2,1)
         parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by}
         a_next, yt_pred, cache = rnn_cell_forward(xt, a_prev, parameters)
         print("a_next[4] = ", a_next[4])
         print("a_next.shape = ", a_next.shape)
         print("yt_pred[1] =", yt_pred[1])
         print("yt_pred.shape = ", yt_pred.shape)
         a \text{ next}[4] = [0.59584544 \ 0.18141802 \ 0.61311866 \ 0.99808218 \ 0.85016201
         0.99980978
          -0.18887155 0.99815551 0.6531151
                                                0.828720371
         a_next.shape = (5, 10)
         yt pred[1] = [ 0.9888161
                                   0.01682021 0.21140899 0.36817467 0.98988387
         0.88945212
           0.36920224 0.9966312
                                    0.9982559
                                                0.17746526]
         yt_pred.shape = (2, 10)
```

```
[ 0.59584544 0.18141802 0.61311866 0.99808218 0.85016201 0.99980978 -0.18887155
   a_next[4]:
                                                                        0.99815551 0.6531151 0.82872037]
                                                                                                    (5, 10)
a_next.shape:
               [ 0.9888161 0.01682021 0.21140899 0.36817467 0.98988387 0.88945212 0.36920224 0.9966312
        vt[1]:
                                                                                    0.9982559 0.17746526]
                                                                                                    (2, 10)
    yt.shape:
```

# 1.2 - RNN forward pass

You can see an RNN as the repetition of the cell you've just built. If your input sequence of data is carried over 10 time steps, then you will copy the RNN cell 10 times. Each cell takes as input the hidden state from the previous cell  $(a^{(t-1)})$  and the current time-step's input data  $(x^{(t)})$ . It outputs a hidden state  $(a^{\langle t \rangle})$  and a prediction  $(y^{\langle t \rangle})$  for this time-step.



**Figure 3**: Basic RNN. The input sequence  $x=(x^{\langle 1 \rangle}, x^{\langle 2 \rangle}, \dots, x^{\langle T_x \rangle})$  is carried over  $T_x$  time steps. The network outputs  $y=(y^{\langle 1 \rangle}, y^{\langle 2 \rangle}, \dots, y^{\langle T_x \rangle})$ .

Exercise: Code the forward propagation of the RNN described in Figure (3).

#### Instructions:

- 1. Create a vector of zeros (a) that will store all the hidden states computed by the RNN.
- 2. Initialize the "next" hidden state as  $a_0$  (initial hidden state).
- 3. Start looping over each time step, your incremental index is t:
  - Update the "next" hidden state and the cache by running rnn\_cell\_forward
  - Store the "next" hidden state in *a* (*t*<sup>th</sup> position)
  - · Store the prediction in y
  - · Add the cache to the list of caches
- 4. Return a, y and caches

```
In [17]: # GRADED FUNCTION: rnn forward
         def rnn_forward(x, a0, parameters):
             Implement the forward propagation of the recurrent neural network descri
             Arguments:
             x -- Input data for every time-step, of shape (n x, m, T x).
             a0 -- Initial hidden state, of shape (n_a, m)
             parameters -- python dictionary containing:
                                 Waa -- Weight matrix multiplying the hidden state, 1
                                 Wax -- Weight matrix multiplying the input, numpy as
                                 Wya -- Weight matrix relating the hidden-state to the
                                 ba -- Bias numpy array of shape (n_a, 1)
                                 by -- Bias relating the hidden-state to the output,
             Returns:
             a -- Hidden states for every time-step, numpy array of shape (n a, m, T
             y pred -- Predictions for every time-step, numpy array of shape (n_y, m
             caches -- tuple of values needed for the backward pass, contains (list
             # Initialize "caches" which will contain the list of all caches
             caches = []
             # Retrieve dimensions from shapes of x and parameters["Wya"]
             n x, m, T x = x.shape
             n_y, n_a = parameters["Wya"].shape
             ### START CODE HERE ###
             # initialize "a" and "y" with zeros (≈2 lines)
             a = np.zeros((n_a, m, T_x))
             y pred = np.zeros((n_y, m, T_x))
             # Initialize a next (≈1 line)
             a next = a0
             # loop over all time-steps
             for t in range(T x):
                 # Update next hidden state, compute the prediction, get the cache (
                 a next, yt pred, cache = rnn cell forward(x[:,:,t], a next, paramete
                 # Save the value of the new "next" hidden state in a (≈1 line)
                 a[:,:,t] = a_next
                 # Save the value of the prediction in y (≈1 line)
                 y pred[:,:,t] = yt pred
                 # Append "cache" to "caches" (≈1 line)
                 caches.append(cache)
             ### END CODE HERE ###
             # store values needed for backward propagation in cache
             caches = (caches, x)
             return a, y pred, caches
```

```
In [18]: np.random.seed(1)
         x = np.random.randn(3,10,4)
         a0 = np.random.randn(5,10)
         Waa = np.random.randn(5,5)
         Wax = np.random.randn(5,3)
         Wya = np.random.randn(2,5)
         ba = np.random.randn(5,1)
         by = np.random.randn(2,1)
         parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by}
         a, y_pred, caches = rnn_forward(x, a0, parameters)
         print("a[4][1] = ", a[4][1])
         print("a.shape = ", a.shape)
         print("y_pred[1][3] =", y_pred[1][3])
         print("y_pred.shape = ", y_pred.shape)
         print("caches[1][1][3] =", caches[1][1][3])
         print("len(caches) = ", len(caches))
         a[4][1] = [-0.99999375 \quad 0.77911235 \quad -0.99861469 \quad -0.99833267]
```

```
a.shape = (5, 10, 4)
y_pred[1][3] = [ 0.79560373  0.86224861  0.11118257  0.81515947]
y_pred.shape = (2, 10, 4)
caches[1][1][3] = [-1.1425182 -0.34934272 -0.20889423 0.58662319]
len(caches) = 2
```

```
a[4][1]: [-0.99999375 0.77911235 -0.99861469 -0.99833267]
                                                          (5, 10, 4)
      a.shape:
                  [ 0.79560373 0.86224861 0.11118257 0.81515947]
       y[1][3]:
                                                          (2, 10, 4)
      y.shape:
                 [-1.1425182 -0.34934272 -0.20889423 0.58662319]
cache[1][1][3]:
   len(cache):
```

Congratulations! You've successfully built the forward propagation of a recurrent neural network from scratch. This will work well enough for some applications, but it suffers from vanishing gradient problems. So it works best when each output  $y^{\langle t \rangle}$  can be estimated using mainly "local" context (meaning information from inputs  $x^{\langle t' \rangle}$  where t' is not too far from t).

In the next part, you will build a more complex LSTM model, which is better at addressing vanishing gradients. The LSTM will be better able to remember a piece of information and keep it saved for many timesteps.

# 2 - Long Short-Term Memory (LSTM) network

This following figure shows the operations of an LSTM-cell.



**Figure 4**: LSTM-cell. This tracks and updates a "cell state" or memory variable  $c^{\langle t \rangle}$  at every timestep, which can be different from  $a^{\langle t \rangle}$ .

Similar to the RNN example above, you will start by implementing the LSTM cell for a single timestep. Then you can iteratively call it from inside a for-loop to have it process an input with  $T_x$  timesteps.

# About the gates

#### - Forget gate

For the sake of this illustration, let's assume we are reading words in a piece of text, and want use an LSTM to keep track of grammatical structures, such as whether the subject is singular or plural. If the subject changes from a singular word to a plural word, we need to find a way to get rid of our previously stored memory value of the singular/plural state. In an LSTM, the forget gate let's us do this:

$$\Gamma_f^{\langle t \rangle} = \sigma(W_f[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_f) \tag{1}$$

Here,  $W_f$  are weights that govern the forget gate's behavior. We concatenate  $[a^{\langle t-1 \rangle}, x^{\langle t \rangle}]$  and multiply by  $W_f$ . The equation above results in a vector  $\Gamma_f^{\langle t \rangle}$  with values between 0 and 1. This forget gate vector will be multiplied element-wise by the previous cell state  $c^{\langle t-1 \rangle}$  . So if one of the values of  $\Gamma_f^{\langle t \rangle}$  is 0 (or close to 0) then it means that the LSTM should remove that piece of information (e.g. the singular subject) in the corresponding component of  $c^{(t-1)}$ . If one of the values is 1, then it will keep the information.

- Update gate
Typesetting math: 100%

Once we forget that the subject being discussed is singular, we need to find a way to update it to reflect that the new subject is now plural. Here is the formula for the update gate:

$$\Gamma_{\mu}^{\langle t \rangle} = \sigma(W_{\mu}[a^{\langle t-1 \rangle}, x^{\{t\}}] + b_{\mu}) \tag{2}$$

Similar to the forget gate, here  $\Gamma_u^{\langle t \rangle}$  is again a vector of values between 0 and 1. This will be multiplied element-wise with  $\tilde{c}^{\langle t \rangle}$  , in order to compute  $c^{\langle t \rangle}$  .

#### - Updating the cell

To update the new subject we need to create a new vector of numbers that we can add to our previous cell state. The equation we use is:

$$\tilde{c}^{\langle t \rangle} = \tanh(W_c[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_c) \tag{3}$$

Finally, the new cell state is:

$$c^{\langle t \rangle} = \Gamma_f^{\langle t \rangle} * c^{\langle t-1 \rangle} + \Gamma_u^{\langle t \rangle} * \tilde{c}^{\langle t \rangle} \tag{4}$$

#### - Output gate

To decide which outputs we will use, we will use the following two formulas:

$$\Gamma_o^{\langle t \rangle} = \sigma(W_o[a^{\langle t-1 \rangle}, x^{\langle t \rangle}] + b_o)$$

$$a^{\langle t \rangle} = \Gamma_o^{\langle t \rangle} * \tanh(c^{\langle t \rangle})$$
(5)
(6)

$$a^{\langle t \rangle} = \Gamma_o^{\langle t \rangle} * \tanh(c^{\langle t \rangle}) \tag{6}$$

Where in equation 5 you decide what to output using a sigmoid function and in equation 6 you multiply that by the tanh of the previous state.

### 2.1 - LSTM cell

**Exercise**: Implement the LSTM cell described in the Figure (4).

### Instructions:

- 1. Concatenate \$a^{\langle t-1 \rangle}\$ and \$x^{\langle t \rangle}\$ in a single matrix: \$concat = \begin{bmatrix} a^{\langle t-1 \rangle} \\ x^{\langle t \rangle} \end{bmatrix}\$
- 2. Compute all the formulas 1-6. You can use sigmoid() (provided) and np.tanh().
- Compute the prediction \$y^{\langle t \rangle}\$. You can use softmax() (provided).

```
In [21]: # GRADED FUNCTION: 1stm cell forward
         def lstm cell_forward(xt, a_prev, c_prev, parameters):
              Implement a single forward step of the LSTM-cell as described in Figure
              Arguments:
              xt -- your input data at timestep "t", numpy array of shape (n x, m).
              a prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
              c_prev -- Memory state at timestep "t-1", numpy array of shape (n_a, m)
              parameters -- python dictionary containing:
                                  Wf -- Weight matrix of the forget gate, numpy array
                                  bf -- Bias of the forget gate, numpy array of shape
                                  Wi -- Weight matrix of the update gate, numpy array
                                  bi -- Bias of the update gate, numpy array of shape
                                  Wc -- Weight matrix of the first "tanh", numpy array
                                  bc -- Bias of the first "tanh", numpy array of share
                                  Wo -- Weight matrix of the output gate, numpy array
                                  bo -- Bias of the output gate, numpy array of shape
                                  Wy -- Weight matrix relating the hidden-state to the
                                  by -- Bias relating the hidden-state to the output,
              Returns:
              a_next -- next hidden state, of shape (n_a, m)
              c next -- next memory state, of shape (n a, m)
              yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
              cache -- tuple of values needed for the backward pass, contains (a next
              Note: ft/it/ot stand for the forget/update/output gates, cct stands for
                   c stands for the memory value
              .....
              # Retrieve parameters from "parameters"
              Wf = parameters["Wf"]
              bf = parameters["bf"]
              Wi = parameters["Wi"]
              bi = parameters["bi"]
              Wc = parameters["Wc"]
              bc = parameters["bc"]
              Wo = parameters["Wo"]
              bo = parameters["bo"]
              Wy = parameters["Wy"]
              by = parameters["by"]
              # Retrieve dimensions from shapes of xt and Wy
              n x, m = xt.shape
              n_y, n_a = Wy.shape
              ### START CODE HERE ###
              # Concatenate a_prev and xt (≈3 lines)
              concat = np.zeros((n_a + n_x, m))
              concat[: n_a, :] = a prev
              concat[n_a :, :] = xt
              # Compute values for ft, it, cct, c next, ot, a next using the formulas
Typesetting math: 100% ft = sigmoid(np.dot(Wf, concat) + bf)
              it = sigmoid(np.dot(Wi, concat) + bi)
```

```
cct = np.tanh(np.dot(Wc, concat) + bc)
c_next = ft * c_prev + it * cct
ot = sigmoid(np.dot(Wo, concat) + bo)
a_next = ot * np.tanh(c_next)
# Compute prediction of the LSTM cell (≈1 line)
yt_pred = softmax(np.dot(Wy, a_next) + by)
### END CODE HERE ###
# store values needed for backward propagation in cache
cache = (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters
return a_next, c_next, yt_pred, cache
```

```
In [22]: np.random.seed(1)
         xt = np.random.randn(3,10)
         a prev = np.random.randn(5,10)
         c_prev = np.random.randn(5,10)
         Wf = np.random.randn(5, 5+3)
         bf = np.random.randn(5,1)
         Wi = np.random.randn(5, 5+3)
         bi = np.random.randn(5,1)
         Wo = np.random.randn(5, 5+3)
         bo = np.random.randn(5,1)
         Wc = np.random.randn(5, 5+3)
         bc = np.random.randn(5,1)
         Wy = np.random.randn(2,5)
         by = np.random.randn(2,1)
         parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "k
         a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters
         print("a_next[4] = ", a_next[4])
         print("a_next.shape = ", c_next.shape)
         print("c_next[2] = ", c_next[2])
         print("c_next.shape = ", c_next.shape)
         print("yt[1] =", yt[1])
         print("yt.shape = ", yt.shape)
         print("cache[1][3] =", cache[1][3])
         print("len(cache) = ", len(cache))
         a next[4] = [-0.66408471 0.0036921]
                                                 0.02088357 0.22834167 -0.85575339
         0.00138482
           0.76566531 0.34631421 - 0.00215674 0.438272751
         a_next.shape = (5, 10)
         c next[2] = [ 0.63267805   1.00570849   0.35504474 ]
                                                             0.20690913 -1.64566718
         0.11832942
           0.76449811 - 0.0981561 - 0.74348425 - 0.268109321
         c next.shape = (5, 10)
         yt[1] = [0.79913913 \ 0.15986619 \ 0.22412122 \ 0.15606108 \ 0.97057211 \ 0.3
         1146381
           0.00943007 0.12666353 0.39380172 0.07828381]
         yt.shape = (2, 10)
         cache[1][3] = [-0.16263996 \ 1.03729328 \ 0.72938082 \ -0.54101719 \ 0.0275207
         4 -0.30821874
           0.07651101 - 1.03752894 1.41219977 - 0.376474221
         len(cache) = 10
```

[-0.66408471 0.0036921 0.02088357 0.22834167 -0.85575339 0.00138482 0.76566531 a\_next[4]: 0.34631421 -0.00215674 0.43827275] (5, 10)a\_next.shape: [ 0.63267805 1.00570849 0.35504474 0.20690913 -1.64566718 0.11832942 0.76449811 c\_next[2]: -0.0981561 -0.74348425 -0.26810932] c\_next.shape: (5, 10)

[0.79913913 0.15986619 0.22412122 0.15606108 0.97057211 0.31146381 0.00943007 yt[1]: 0.12666353 0.39380172 0.07828381] Typesetting math: 100%

(2, 10)yt.shape:

[-0.16263996 1.03729328 0.72938082 -0.54101719 0.02752074 -0.30821874 0.07651101 cache[1][3]: -1.03752894 1.41219977 -0.37647422]

10 len(cache):

## 2.2 - Forward pass for LSTM

Now that you have implemented one step of an LSTM, you can now iterate this over this using a forloop to process a sequence of \$T\_x\$ inputs.



Figure 5: LSTM over multiple time-steps.

**Exercise:** Implement lstm\_forward() to run an LSTM over \$T\_x\$ time-steps.

**Note**: \$c^{\langle 0 \rangle}\$ is initialized with zeros.

```
In [24]: # GRADED FUNCTION: 1stm forward
                   def lstm_forward(x, a0, parameters):
                           Implement the forward propagation of the recurrent neural network using
                           Arguments:
                           x -- Input data for every time-step, of shape (n x, m, T x).
                           a0 -- Initial hidden state, of shape (n_a, m)
                           parameters -- python dictionary containing:
                                                                    Wf -- Weight matrix of the forget gate, numpy array
                                                                    bf -- Bias of the forget gate, numpy array of shape
                                                                    Wi -- Weight matrix of the update gate, numpy array
                                                                    bi -- Bias of the update gate, numpy array of shape
                                                                    Wc -- Weight matrix of the first "tanh", numpy array
                                                                    bc -- Bias of the first "tanh", numpy array of shape
                                                                    Wo -- Weight matrix of the output gate, numpy array
                                                                    bo -- Bias of the output gate, numpy array of shape
                                                                    Wy -- Weight matrix relating the hidden-state to the
                                                                    by -- Bias relating the hidden-state to the output,
                           Returns:
                           a -- Hidden states for every time-step, numpy array of shape (n_a, m, T
                           y -- Predictions for every time-step, numpy array of shape (n_y, m, T_x
                           caches -- tuple of values needed for the backward pass, contains (list of
                           # Initialize "caches", which will track the list of all the caches
                           caches = []
                           ### START CODE HERE ###
                            # Retrieve dimensions from shapes of x and parameters['Wy'] (~2 lines)
                           n x, m, T x = x.shape
                           n_y, n_a = parameters["Wy"].shape
                           # initialize "a", "c" and "y" with zeros (\approx3 lines)
                           a = np.zeros((n_a, m, T_x))
                           c = np.zeros((n_a, m, T_x))
                           y = np.zeros((n_y, m, T_x))
                           # Initialize a next and c next (≈2 lines)
                           a next = a0
                           c next = np.zeros(a next.shape)
                           # loop over all time-steps
                           for t in range(T x):
                                    # Update next hidden state, next memory state, compute the predictive
                                   a_next, c_next, yt, cache = lstm_cell_forward(x[:,:,t], a_next, c_next, c_next
                                   # Save the value of the new "next" hidden state in a (≈1 line)
                                    a[:,:,t] = a next
                                   # Save the value of the prediction in y (≈1 line)
                                   y[:,:,t] = yt
                                    # Save the value of the next cell state (≈1 line)
                                    c[:,:,t] = c next
                                    # Append the cache into caches (≈1 line)
Typesetting math: 100%
                                   caches.append(cache)
```

```
### END CODE HERE ###
# store values needed for backward propagation in cache
caches = (caches, x)
return a, y, c, caches
```

```
In [25]: np.random.seed(1)
         x = np.random.randn(3,10,7)
         a0 = np.random.randn(5,10)
         Wf = np.random.randn(5, 5+3)
         bf = np.random.randn(5,1)
         Wi = np.random.randn(5, 5+3)
         bi = np.random.randn(5,1)
         Wo = np.random.randn(5, 5+3)
         bo = np.random.randn(5,1)
         Wc = np.random.randn(5, 5+3)
         bc = np.random.randn(5,1)
         Wy = np.random.randn(2,5)
         by = np.random.randn(2,1)
         parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "k
         a, y, c, caches = lstm_forward(x, a0, parameters)
         print("a[4][3][6] = ", a[4][3][6])
         print("a.shape = ", a.shape)
         print("y[1][4][3] =", y[1][4][3])
         print("y.shape = ", y.shape)
         print("caches[1][1[1]] =", caches[1][1][1])
         print("c[1][2][1]", c[1][2][1])
         print("len(caches) = ", len(caches))
         a[4][3][6] = 0.172117767533
         a.shape = (5, 10, 7)
         y[1][4][3] = 0.95087346185
```

```
y.shape = (2, 10, 7)
caches[1][1][1] = [0.82797464 0.23009474 0.76201118 -0.22232814 -0.200]
75807 0.18656139
  0.41005165]
c[1][2][1] -0.855544916718
len(caches) = 2
```

```
0.172117767533
                        a[4][3][6] =
                        a.shape =
                                                                                                                  (5, 10, 7)
                                                                                                            0.95087346185
                        y[1][4][3] =
                                                                                                                  (2, 10, 7)
                         y.shape =
                 caches[1][1][1] = [0.82797464 0.23009474 0.76201118 -0.22232814 -0.20075807 0.18656139 0.41005165]
                                                                                                          -0.855544916718
                        c[1][2][1] =
                                                                                                                         2
Typesetting math: 100% len(caches) =
```

Congratulations! You have now implemented the forward passes for the basic RNN and the LSTM. When using a deep learning framework, implementing the forward pass is sufficient to build systems that achieve great performance.

The rest of this notebook is optional, and will not be graded.

# 3 - Backpropagation in recurrent neural networks (OPTIONAL / UNGRADED)

In modern deep learning frameworks, you only have to implement the forward pass, and the framework takes care of the backward pass, so most deep learning engineers do not need to bother with the details of the backward pass. If however you are an expert in calculus and want to see the details of backprop in RNNs, you can work through this optional portion of the notebook.

When in an earlier course you implemented a simple (fully connected) neural network, you used backpropagation to compute the derivatives with respect to the cost to update the parameters. Similarly, in recurrent neural networks you can to calculate the derivatives with respect to the cost in order to update the parameters. The backprop equations are quite complicated and we did not derive them in lecture. However, we will briefly present them below.

### 3.1 - Basic RNN backward pass

We will start by computing the backward pass for the basic RNN-cell.



Figure 6: RNN-cell's backward pass. Just like in a fully-connected neural network, the derivative of the cost function \$J\$ backpropagates through the RNN by following the chain-rule from calculus. The chain-rule is also used to calculate \$(\frac{\partial J}{\partial W\_{ax}},\frac{\partial J}{\partial W\_{aa}},\frac{\partial J}{\partial b})\$ to update the parameters \$(W\_{ax}, W\_{aa}, b\_a)\$.

Deriving the one step backward functions:

To compute the rnn cell backward you need to compute the following equations. It is a good exercise to derive them by hand.

The derivative of \$\tanh\$ is \$1-\tanh(x)^2\$. You can find the complete proof here (https://www.wyzant.com/resources/lessons/math/calculus/derivative\_proofs/tanx). Note that: \$  $\text{$\operatorname{sech}(x)^2 = 1 - \operatorname{tanh}(x)^2$}$ 

Similarly for \$\frac{ \partial a^{\langle t \rangle} } {\partial W\_{ax}}, \frac{ \partial a^{\langle t \rangle} } \tanh(u)^2)du\$.

The final two equations also follow same rule and are derived using the \$\tanh\$ derivative. Note that the arrangement is done in a way to get the same dimensions to match.

```
In [ ]:
        def rnn_cell_backward(da_next, cache):
            Implements the backward pass for the RNN-cell (single time-step).
            Arguments:
            da next -- Gradient of loss with respect to next hidden state
            cache -- python dictionary containing useful values (output of rnn_cell
            Returns:
            gradients -- python dictionary containing:
                                 dx -- Gradients of input data, of shape (n x, m)
                                 da prev -- Gradients of previous hidden state, of sl
                                 dWax -- Gradients of input-to-hidden weights, of sha
                                 dWaa -- Gradients of hidden-to-hidden weights, of sl
                                 dba -- Gradients of bias vector, of shape (n_a, 1)
            .....
            # Retrieve values from cache
             (a next, a prev, xt, parameters) = cache
            # Retrieve values from parameters
            Wax = parameters["Wax"]
            Waa = parameters["Waa"]
            Wya = parameters["Wya"]
            ba = parameters["ba"]
            by = parameters["by"]
            ### START CODE HERE ###
            # compute the gradient of tanh with respect to a next (~1 line)
            dtanh = None
            # compute the gradient of the loss with respect to Wax (pprox 2 lines)
            dxt = None
            dWax = None
            # compute the gradient with respect to Waa (≈2 lines)
            da prev = None
            dWaa = None
            # compute the gradient with respect to b (≈1 line)
            dba = None
            ### END CODE HERE ###
            # Store the gradients in a python dictionary
            gradients = {"dxt": dxt, "da prev": da prev, "dWax": dWax, "dWaa": dWaa
            return gradients
```

```
In [ ]: np.random.seed(1)
        xt = np.random.randn(3,10)
        a_prev = np.random.randn(5,10)
        Wax = np.random.randn(5,3)
        Waa = np.random.randn(5,5)
        Wya = np.random.randn(2,5)
        b = np.random.randn(5,1)
        by = np.random.randn(2,1)
        parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by}
        a next, yt, cache = rnn_cell_forward(xt, a prev, parameters)
        da_next = np.random.randn(5,10)
        gradients = rnn_cell_backward(da_next, cache)
        print("gradients[\"dxt\"][1][2] =", gradients["dxt"][1][2])
        print("gradients[\"dxt\"].shape =", gradients["dxt"].shape)
        print("gradients[\"da_prev\"][2][3] =", gradients["da_prev"][2][3])
        print("gradients[\"da_prev\"].shape =", gradients["da_prev"].shape)
        print("gradients[\"dWax\"][3][1] =", gradients["dWax"][3][1])
        print("gradients[\"dWax\"].shape =", gradients["dWax"].shape)
        print("gradients[\"dWaa\"][1][2] =", gradients["dWaa"][1][2])
        print("gradients[\"dWaa\"].shape =", gradients["dWaa"].shape)
        print("gradients[\"dba\"][4] =", gradients["dba"][4])
        print("gradients[\"dba\"].shape =", gradients["dba"].shape)
```

```
gradients["dxt"][1][2] = -0.460564103059
                                         (3, 10)
    gradients["dxt"].shape =
 gradients["da_prev"][2][3] = 0.0842968653807
gradients["da_prev"].shape =
                                         (5, 10)
                               0.393081873922
   gradients["dWax"][3][1] =
  gradients["dWax"].shape =
                                           (5, 3)
                                -0.28483955787
   gradients["dWaa"][1][2] =
  gradients["dWaa"].shape =
                                           (5, 5)
        gradients["dba"][4] =
                                  [ 0.80517166]
    gradients["dba"].shape =
                                           (5, 1)
```

#### Backward pass through the RNN

Computing the gradients of the cost with respect to \$a^{\langle t \rangle}\$ at every time-step \$t\$ is useful because it is what helps the gradient backpropagate to the previous RNN-cell. To do so, you need to iterate through all the time steps starting at the end, and at each step, you increment the overall \$db\_a\$, \$dW\_{aa}\$, \$dW\_{ax}\$ and you store \$dx\$.

#### Instructions:

Implement the rnn\_backward function. Initialize the return variables with zeros first and then loop through all the time steps while calling the rnn\_cell\_backward at each time timestep, update the other variables accordingly.

```
In [ ]:
        def rnn_backward(da, caches):
            Implement the backward pass for a RNN over an entire sequence of input
            Arguments:
            da -- Upstream gradients of all hidden states, of shape (n a, m, T x)
            caches -- tuple containing information from the forward pass (rnn_forward
            Returns:
            gradients -- python dictionary containing:
                                 dx -- Gradient w.r.t. the input data, numpy-array of
                                 da0 -- Gradient w.r.t the initial hidden state, num
                                 dWax -- Gradient w.r.t the input's weight matrix, nu
                                 dWaa -- Gradient w.r.t the hidden state's weight mat
                                 dba -- Gradient w.r.t the bias, of shape (n a, 1)
            .....
            ### START CODE HERE ###
            # Retrieve values from the first cache (t=1) of caches (≈2 lines)
             (caches, x) = None
             (a1, a0, x1, parameters) = None
            # Retrieve dimensions from da's and x1's shapes (≈2 lines)
            n a, m, T x = None
            n_x, m = None
            # initialize the gradients with the right sizes (≈6 lines)
            dx = None
            dWax = None
            dWaa = None
            dba = None
            da0 = None
            da_prevt = None
            # Loop through all the time steps
            for t in reversed(range(None)):
                # Compute gradients at time step t. Choose wisely the "da next" and
                gradients = None
                # Retrieve derivatives from gradients (≈ 1 line)
                dxt, da prevt, dWaxt, dWaat, dbat = gradients["dxt"], gradients["da
                # Increment global derivatives w.r.t parameters by adding their der
                dx[:, :, t] = None
                dWax += None
                dWaa += None
                dba += None
            # Set da0 to the gradient of a which has been backpropagated through al.
            da0 = None
            ### END CODE HERE ###
            # Store the gradients in a python dictionary
            gradients = {"dx": dx, "da0": da0, "dWax": dWax, "dWaa": dWaa, "dba": dba
            return gradients
```

```
In [ ]: np.random.seed(1)
        x = np.random.randn(3,10,4)
        a0 = np.random.randn(5,10)
        Wax = np.random.randn(5,3)
        Waa = np.random.randn(5,5)
        Wya = np.random.randn(2,5)
        ba = np.random.randn(5,1)
        by = np.random.randn(2,1)
        parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by}
        a, y, caches = rnn_forward(x, a0, parameters)
        da = np.random.randn(5, 10, 4)
        gradients = rnn_backward(da, caches)
        print("gradients[\"dx\"][1][2] =", gradients["dx"][1][2])
        print("gradients[\"dx\"].shape =", gradients["dx"].shape)
        print("gradients[\"da0\"][2][3] =", gradients["da0"][2][3])
        print("gradients[\"da0\"].shape =", gradients["da0"].shape)
        print("gradients[\"dWax\"][3][1] =", gradients["dWax"][3][1])
        print("gradients[\"dWax\"].shape =", gradients["dWax"].shape)
        print("gradients[\"dWaa\"][1][2] =", gradients["dWaa"][1][2])
        print("gradients[\"dWaa\"].shape =", gradients["dWaa"].shape)
        print("gradients[\"dba\"][4] =", gradients["dba"][4])
        print("gradients[\"dba\"].shape =", gradients["dba"].shape)
```

```
gradients["dx"][1][2] = [-2.07101689 -0.59255627 0.02466855 0.01483317]
                                                                      (3, 10, 4)
   gradients["dx"].shape =
                                                              -0.314942375127
   gradients["da0"][2][3] =
 gradients["da0"].shape =
                                                                        (5, 10)
                                                                11.2641044965
 gradients["dWax"][3][1] =
gradients["dWax"].shape =
                                                                          (5, 3)
                                                               2.30333312658
 gradients["dWaa"][1][2] =
gradients["dWaa"].shape =
                                                                          (5, 5)
                                                                 [-0.74747722]
      gradients["dba"][4] =
                                                                          (5, 1)
 gradients["dba"].shape =
```

# 3.2 - LSTM backward pass

### 3.2.1 One Step backward

The LSTM backward pass is slighltly more complicated than the forward one. We have provided you with all the equations for the LSTM backward pass below. (If you enjoy calculus exercises feel free to try deriving these from scratch yourself.)

\$\$d \Gamma\_o^{\langle t \rangle} = da\_{next}\*\tanh(c\_{next}) \* \Gamma\_o^{\langle t \rangle}\*(1-\Gamma\_o^{\langle t \rangle})\tag{7}\$\$

\$\$d\tilde c^{\langle t \rangle} = dc\_{next}\*\Gamma\_u^{\langle t \rangle}+ \Gamma\_o^{\langle t \rangle\ (1-\tanh(c\_{next})^2) \* i\_t \* da\_{next} \* \tilde c^{\langle t \rangle\} \* (1-\tanh(\tilde c)^2) \tag{8}\$\$

\$\$d\Gamma\_u^{\langle t \rangle} = dc\_{next}\*\tilde c^{\langle t \rangle} + \Gamma\_o^{\langle t \rangle\} (1-\tanh(c\_{next})^2) \* \tilde c^{\langle t \rangle\} \* da\_{next}\*\Gamma\_u^{\langle t \rangle\}\* (1-\Gamma\_u^{\langle t \rangle})\tag{9}\$\$

\$\$d\Gamma\_f^{\langle t \rangle} = dc\_{next}\*\tilde c\_{prev} + \Gamma\_o^{\langle t \rangle} (1-\tanh(c\_{next})^2) \* c\_{prev} \* da\_{next}\*\Gamma\_f^{\langle t \rangle}\*(1-\Gamma\_f^{\langle t \rangle})\tag{10}\$\$

### 3.2.3 parameter derivatives

\$\$ dW\_f = d\Gamma\_f^{\langle t \rangle} \* \begin{pmatrix} a\_{prev} \\ x\_t\end{pmatrix}^T \tag{11} \$\$ \$\$ dW\_u = d\Gamma\_u^{\langle t \rangle} \* \begin{pmatrix} a\_{prev} \\ x\_t\end{pmatrix}^T  $\tan\{12\}$  \$\$ \$\$ dW\_c = d\tilde c^{\langle t \rangle} \* \begin{pmatrix} a\_{prev} \\ x\_t \end{pmatrix}^T \tag{13} \$\$ \$\$ dW\_o = d\Gamma\_o^{\langle t \rangle} \* \begin{pmatrix} a\_{prev} \\  $x_t\end{pmatrix}^T \ag{14}$$ 

To calculate \$db\_f, db\_u, db\_c, db\_o\$ you just need to sum across the horizontal (axis= 1) axis on \$d\Gamma\_f^{\langle t \rangle}, d\Gamma\_u^{\langle t \rangle}, d\tilde c^{\langle t \rangle}, d\Gamma\_o^{\langle t \rangle}\$ respectively. Note that you should have the keep dims = True option.

Finally, you will compute the derivative with respect to the previous hidden state, previous memory state, and input.

\$\$ da\_{prev} = W\_f^T\*d\Gamma\_f^{\langle t \rangle} + W\_u^T \* d\Gamma\_u^{\langle t \rangle}+  $W_c^T * d\tilde{c} = t \cdot c^T * d\tilde{c} + W_o^T * d\tilde$ weights for equations 13 are the first n\_a, (i.e. \$W\_f = W\_f[:n\_a,:]\$ etc...)

\$\$ dc\_{prev} = dc\_{next}\Gamma\_f^{\langle t \rangle} + \Gamma\_o^{\langle t \rangle} \* (1-\tanh(c\_{next})^2)\*\Gamma\_f^{\langle t \rangle}\*da\_{next} \tag{16}\$\$ \$\$ dx^{\langle t \rangle} =  $\label{lem:w_f^T*dGamma_f^{langle t langle} + W_u^T * dGamma_u^{langle t langle} + W_c^T * dUilde} \\$ c\_t + W\_o^T \* d\Gamma\_o^{\langle t \rangle}\tag{17} \$\$ where the weights for equation 15 are from  $n_a$  to the end, (i.e.  $W_f = W_{f_a}...$ ) etc...)

Exercise: Implement 1stm cell backward by implementing equations \$7-17\$ below. Good luck! :)

```
In [ ]:
        def lstm_cell_backward(da_next, dc_next, cache):
            Implement the backward pass for the LSTM-cell (single time-step).
            Arguments:
            da next -- Gradients of next hidden state, of shape (n a, m)
            dc_next -- Gradients of next cell state, of shape (n_a, m)
            cache -- cache storing information from the forward pass
            Returns:
            gradients -- python dictionary containing:
                                 dxt -- Gradient of input data at time-step t, of she
                                 da prev -- Gradient w.r.t. the previous hidden state
                                 dc prev -- Gradient w.r.t. the previous memory state
                                 dWf -- Gradient w.r.t. the weight matrix of the fore
                                 dWi -- Gradient w.r.t. the weight matrix of the update
                                 dWc -- Gradient w.r.t. the weight matrix of the memo
                                 dWo -- Gradient w.r.t. the weight matrix of the out
                                 dbf -- Gradient w.r.t. biases of the forget gate, of
                                 dbi -- Gradient w.r.t. biases of the update gate, of
                                 dbc -- Gradient w.r.t. biases of the memory gate, of
                                 dbo -- Gradient w.r.t. biases of the output gate, or
             .....
            # Retrieve information from "cache"
             (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) = cacl
            ### START CODE HERE ###
            # Retrieve dimensions from xt's and a next's shape (~2 lines)
            n \times m = None
            n a, m = None
            # Compute gates related derivatives, you can find their values can be for
            dot = None
            dcct = None
            dit = None
            dft = None
            # Code equations (7) to (10) (≈4 lines)
            dit = None
            dft = None
            dot = None
            dcct = None
            # Compute parameters related derivatives. Use equations (11)-(14) (pprox 8 1)
            dWf = None
            dWi = None
            dWc = None
            dWo = None
            dbf = None
            dbi = None
            dbc = None
            dbo = None
            # Compute derivatives w.r.t previous hidden state, previous memory state
```

```
Typesetting math: 100% da prev = None
                 dc prev = None
```

```
dxt = None
### END CODE HERE ###
# Save gradients in dictionary
gradients = {"dxt": dxt, "da prev": da prev, "dc prev": dc prev, "dWf":
            "dWc": dWc, "dbc": dbc, "dWo": dWo, "dbo": dbo}
return gradients
```

```
In [ ]: np.random.seed(1)
        xt = np.random.randn(3,10)
        a_prev = np.random.randn(5,10)
        c_prev = np.random.randn(5,10)
        Wf = np.random.randn(5, 5+3)
        bf = np.random.randn(5,1)
        Wi = np.random.randn(5, 5+3)
        bi = np.random.randn(5,1)
        Wo = np.random.randn(5, 5+3)
        bo = np.random.randn(5,1)
        Wc = np.random.randn(5, 5+3)
        bc = np.random.randn(5,1)
        Wy = np.random.randn(2,5)
        by = np.random.randn(2,1)
        parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "k
        a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters
        da_next = np.random.randn(5,10)
        dc_next = np.random.randn(5,10)
        gradients = lstm_cell_backward(da_next, dc_next, cache)
        print("gradients[\"dxt\"][1][2] =", gradients["dxt"][1][2])
        print("gradients[\"dxt\"].shape =", gradients["dxt"].shape)
        print("gradients[\"da_prev\"][2][3] =", gradients["da_prev"][2][3])
        print("gradients[\"da_prev\"].shape =", gradients["da_prev"].shape)
        print("gradients[\"dc_prev\"][2][3] =", gradients["dc_prev"][2][3])
        print("gradients[\"dc_prev\"].shape =", gradients["dc_prev"].shape)
        print("gradients[\"dWf\"][3][1] =", gradients["dWf"][3][1])
        print("gradients[\"dWf\"].shape =", gradients["dWf"].shape)
        print("gradients[\"dWi\"][1][2] =", gradients["dWi"][1][2])
        print("gradients[\"dWi\"].shape =", gradients["dWi"].shape)
        print("gradients[\"dWc\"][3][1] =", gradients["dWc"][3][1])
print("gradients[\"dWc\"].shape =", gradients["dWc"].shape)
        print("gradients[\"dWo\"][1][2] =", gradients["dWo"][1][2])
        print("gradients[\"dWo\"].shape =", gradients["dWo"].shape)
        print("gradients[\"dbf\"][4] =", gradients["dbf"][4])
        print("gradients[\"dbf\"].shape =", gradients["dbf"].shape)
        print("gradients[\"dbi\"][4] =", gradients["dbi"][4])
        print("gradients[\"dbi\"].shape =", gradients["dbi"].shape)
        print("gradients[\"dbc\"][4] =", gradients["dbc"][4])
        print("gradients[\"dbc\"].shape =", gradients["dbc"].shape)
        print("gradients[\"dbo\"][4] =", gradients["dbo"][4])
        print("gradients[\"dbo\"].shape =", gradients["dbo"].shape)
```

3.23055911511 gradients["dxt"][1][2] = gradients["dxt"].shape = (3, 10)-0.0639621419711 gradients["da\_prev"][2][3] = (5, 10)gradients["da\_prev"].shape = gradients["dc\_prev"][2][3] = 0.797522038797 (5, 10)gradients["dc\_prev"].shape = -0.147954838164 gradients["dWf"][3][1] = (5, 8)gradients["dWf"].shape = 1.05749805523 gradients["dWi"][1][2] = (5, 8)gradients["dWi"].shape = 2.30456216369 gradients["dWc"][3][1] = gradients["dWc"].shape = (5, 8)0.331311595289 gradients["dWo"][1][2] = (5, 8)gradients["dWo"].shape = [0.18864637] gradients["dbf"][4] = (5, 1)gradients["dbf"].shape = [-0.40142491] gradients["dbi"][4] = (5, 1)gradients["dbi"].shape = [ 0.25587763] gradients["dbc"][4] = (5, 1)gradients["dbc"].shape = gradients["dbo"][4] = [0.13893342] gradients["dbo"].shape = (5, 1)

# 3.3 Backward pass through the LSTM RNN

This part is very similar to the rnn backward function you implemented above. You will first create variables of the same dimension as your return variables. You will then iterate over all the time steps starting from the end and call the one step function you implemented for LSTM at each iteration. You will then update the parameters by summing them individually. Finally return a dictionary with the new gradients.

Instructions: Implement the lstm\_backward function. Create a for loop starting from \$T\_x\$ and going backward. For each step call lstm\_cell\_backward and update the your old gradients by adding the new gradients to them. Note that dxt is not updated but is stored.

```
In [ ]: def lstm_backward(da, caches):
              .....
              Implement the backward pass for the RNN with LSTM-cell (over a whole see
              Arguments:
              da -- Gradients w.r.t the hidden states, numpy-array of shape (n_a, m, 5
              caches -- cache storing information from the forward pass (1stm forward
              Returns:
              gradients -- python dictionary containing:
                                   dx -- Gradient of inputs, of shape (n_x, m, T_x)
                                   da0 -- Gradient w.r.t. the previous hidden state, no
                                   dWf -- Gradient w.r.t. the weight matrix of the fore
                                   dWi -- Gradient w.r.t. the weight matrix of the update
                                   dWc -- Gradient w.r.t. the weight matrix of the memory
                                   dWo -- Gradient w.r.t. the weight matrix of the save
                                   dbf -- Gradient w.r.t. biases of the forget gate, of
                                   dbi -- Gradient w.r.t. biases of the update gate, of
                                   dbc -- Gradient w.r.t. biases of the memory gate, of
                                   dbo -- Gradient w.r.t. biases of the save gate, of s
              .....
              # Retrieve values from the first cache (t=1) of caches.
              (caches, x) = caches
              (a1, c1, a0, c0, f1, i1, cc1, o1, x1, parameters) = caches[0]
              ### START CODE HERE ###
              # Retrieve dimensions from da's and x1's shapes (≈2 lines)
              n a, m, T x = None
              n x, m = None
              # initialize the gradients with the right sizes (≈12 lines)
              dx = None
              da0 = None
              da prevt = None
              dc prevt = None
              dWf = None
              dWi = None
              dWc = None
              dWo = None
              dbf = None
              dbi = None
              dbc = None
              dbo = None
              # loop back over the whole sequence
              for t in reversed(range(None)):
                  # Compute all gradients using 1stm cell backward
                  gradients = None
                  # Store or add the gradient to the parameters' previous step's grad
                  dx[:,:,t] = None
                  dWf = None
                  dWi = None
                  dWc = None
Typesetting math: 100%
                  dWo = None
                  dbf = None
```

```
dbi = None
    dbc = None
    dbo = None
# Set the first activation's gradient to the backpropagated gradient da
da0 = None
### END CODE HERE ###
# Store the gradients in a python dictionary
gradients = {"dx": dx, "da0": da0, "dWf": dWf, "dbf": dbf, "dWi": dWi, "dW
            "dWc": dWc, "dbc": dbc, "dWo": dWo, "dbo": dbo}
return gradients
```

```
In [ ]: np.random.seed(1)
        x = np.random.randn(3,10,7)
        a0 = np.random.randn(5,10)
        Wf = np.random.randn(5, 5+3)
        bf = np.random.randn(5,1)
        Wi = np.random.randn(5, 5+3)
        bi = np.random.randn(5,1)
        Wo = np.random.randn(5, 5+3)
        bo = np.random.randn(5,1)
        Wc = np.random.randn(5, 5+3)
        bc = np.random.randn(5,1)
        parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "l
        a, y, c, caches = lstm forward(x, a0, parameters)
        da = np.random.randn(5, 10, 4)
        gradients = lstm_backward(da, caches)
        print("gradients[\"dx\"][1][2] =", gradients["dx"][1][2])
        print("gradients[\"dx\"].shape =", gradients["dx"].shape)
        print("gradients[\"da0\"][2][3] =", gradients["da0"][2][3])
        print("gradients[\"da0\"].shape =", gradients["da0"].shape)
        print("gradients[\"dWf\"][3][1] =", gradients["dWf"][3][1])
        print("gradients[\"dWf\"].shape =", gradients["dWf"].shape)
        print("gradients[\"dWi\"][1][2] =", gradients["dWi"][1][2])
        print("gradients[\"dWi\"].shape =", gradients["dWi"].shape)
        print("gradients[\"dWc\"][3][1] =", gradients["dWc"][3][1])
        print("gradients[\"dWc\"].shape =", gradients["dWc"].shape)
        print("gradients[\"dWo\"][1][2] =", gradients["dWo"][1][2])
        print("gradients[\"dWo\"].shape =", gradients["dWo"].shape)
        print("gradients[\"dbf\"][4] =", gradients["dbf"][4])
        print("gradients[\"dbf\"].shape =", gradients["dbf"].shape)
        print("gradients[\"dbi\"][4] =", gradients["dbi"][4])
        print("gradients[\"dbi\"].shape =", gradients["dbi"].shape)
        print("gradients[\"dbc\"][4] =", gradients["dbc"][4])
        print("gradients[\"dbc\"].shape =", gradients["dbc"].shape)
        print("gradients[\"dbo\"][4] =", gradients["dbo"][4])
        print("gradients[\"dbo\"].shape =", gradients["dbo"].shape)
```

| gradients["dx"][1][2] =  | [-0.00173313 0.08287442 -0.30545663 -0.43281115] |
|--------------------------|--------------------------------------------------|
| gradients["dx"].shape =  | (3, 10, 4)                                       |
| gradients["da0"][2][3] = | -0.095911501954                                  |
| gradients["da0"].shape = | (5, 10)                                          |
| gradients["dWf"][3][1] = | -0.0698198561274                                 |
| gradients["dWf"].shape = | (5, 8)                                           |
| gradients["dWi"][1][2] = | 0.102371820249                                   |
| gradients["dWi"].shape = | (5, 8)                                           |
| gradients["dWc"][3][1] = | -0.0624983794927                                 |
| gradients["dWc"].shape = | (5, 8)                                           |
| gradients["dWo"][1][2] = | 0.0484389131444                                  |
| gradients["dWo"].shape = | (5, 8)                                           |
| gradients["dbf"][4] =    | [-0.0565788]                                     |
| gradients["dbf"].shape = | (5, 1)                                           |
| gradients["dbi"][4] =    | [-0.06997391]                                    |
| gradients["dbi"].shape = | (5, 1)                                           |
| gradients["dbc"][4] =    | [-0.27441821]                                    |
| gradients["dbc"].shape = | (5, 1)                                           |
| gradients["dbo"][4] =    | [ 0.16532821]                                    |
| gradients["dbo"].shape = | (5, 1)                                           |

# Congratulations!

Congratulations on completing this assignment. You now understand how recurrent neural networks work!

Let's go on to the next exercise, where you'll use an RNN to build a character-level language model.