Sections 43957-43958

a) 0%

b) 49.84%

Midterm Examination #2

Sel	ect the Bi	EST response	for the questic	on. Point val	ues: multiple choice 3	pt; true/fa	alse 1 pt		
1.	Of the following intermolecular forces dipole-dipole (D-D), hydrogen bonding (H-B), London Dispersion Forces (LDF), which choice shows the order of strength of interaction? (LDF > H-B means LDF is stronger than H-B)								
a	LDF>F	I-B > D-D	b) H-B > D)-D > LDF	c) H-B > LDF > D-D	d)	D-D > H-B > LDF		
	to be the	-	lfur used in th	ne experim	ent. What units shou	ld the nu			
3.	Which of the following represents a change in enthalpy in a substance that is being is being boiled?						it is being is being		
a	$\Delta H_{ m vap}$		b) ΔH_{sub}		c) ΔH_{fus}	d) $\Delta H_{\rm m}$	nelt		
4.	Which of these types of matter will have a definite volume and a definite shape?						shape?		
a	gas (b) liquid	c) solid	d) London	Dispersion Force	e) choi	ices (a) and (b))		
5.	Assume specific heat capacity of cadmium (Cd) is 0.250 J/(g °C). A 10.0 g piece of cadmium metal is heated from 20°C to 50°C. How many joules of heat energy were transferred to the metal?								
a	400 J		b) 225 J		c) 75.0 J	d) 0.63	35 J		
6.	What is	the best cho	ice for what is	s TRUE abo	ut the characteristic	s of a Typ	oe II ion?		
b c	 a) it is a positively charged metal cation b) it is an element that can ionize to more than one charge state (for example, it can be +1, +2, +3, and even -1, -2, etc) c) the element's name in a compound requires the use of a roman numeral (the Stock system) d) all the above 								
7.	7. In drawing a Lewis structure for the carbonate (NO ₃) ⁻ ion, you have placed the octet around the three oxygen (O) atoms, but you see the central carbon (N) atom has only six electrons (3 bonding pairs) to the oxygen atoms. You have no electrons remaining to add in your inventory. What step do you need to do?								
b c d	 a) Nothing: your Lewis structure is ready and complete b) Add a hydrogen atom to the molecule c) A lone pair from one of the oxygen (O) atoms will have to be used to create a double bond with the central nitrogen (N) d) Use Avogadro's Number at an earlier step e) The noble gas argon (Ar) must provide a single electron to complete this structure 								
8.	What is	the molar ma	ass of MgSO ₄	·7 H₂O?					
a	120.38	g/mol	b) 126.112 g	/mol	c) 246.5 g/mol		d) 18.016 g/mol		
9.	What is	the mass pe	rcentage of w	ater in the	hydrate MgSO ₄ ·7 H ₂ 0)?			

c) 51.16%

d) 100%

			Γ.::	_ii _ o• 7			
The Lewis	structure is	shown for N	IO ₂ -ion L'	_n=o:] <u>N</u>	lext three	questions rela	ite to it.
10. What a	are the total	number of v	alence elect	rons for the m	nolecule?		
a) 6	b) 10	c) 12	d) 18	e) 24			
11. Each a	tom in the m	nolecule sho	ould have an	octet of elect	trons. How	many electror	ıs is that?
a) 2	b) 4	e) 8	d) 10	e) 12			
12. Which	of the follow	ving stateme	ents is FALSE	about the Le	wis structı	ure	
•		_	•	trons in the n	nolecule		
•	nolecule has entral atom	-		ding (lone) pa	irs of elect	rons	
•		_		nding (lone) ¡			
	` '					onbonding (lo	ne) pair of
				molecular g			
a) bent	b) trigonal		, -	l pyramidal	•	hedral	
			y little differe o form in any		electronega	ativity values. \	What kind of
a) ionic		b) metallic	c) (n	onpolar) cov	alent	d) polar coval	ent
		•			-	d H ₂ O as ice a ıle iodine (I ₂) fo	
a) ionic	b) c	ovalent net	work	c) metallic	d) r	nolecular	
16. Water	is at 1°C. Wh	nat is its tem	perature on	the Kelvin sca	ale?		
a) 0 K		b) 100 K	(c) 274 K	d) 2	298 K	
	atoms like c d will they fo		luorine have	the largest di	fferences i	n electronegat	ivity, what kind
a) ionic	b) meta	ıllic (c) covalent	d) polar co	valent	e) covalent-io	nic
	-	•	nd is there if s Avogadro's		of molecul	es or atoms or	particles of
a) 1 mo	l b) 2	mol	c) 10 mol	d) 20	0 mol	e) 100 i	mol
19. What _I		done in a la	boratory if th	e goal is to ge	et the emp	irical formula	of an unknowr
a) chec	king viscosit d) heatin	y g curve ana	b) elementa lysis	-	c) b g curve an	ooiling point de alysis	termination
struct	ure giving the	em a permai		ositive charg		n which the mo	olecules have a and a partial
a) hydro	gen bonding -d) dipole	-	•	n dispersion f e) entha		c) covalent-io alency	nic

21.	What is	the correct	name for Fe 2	O₃ , noting t	that Fe is	a Type II m	netal cation?	
a)	tin(IV)	sulfide	b) iron(l) ox	ide	c) iron(III) oxide	d) iron oxid	е
22.	Which r	nolecular fo	rmula correc	ctly shows t	he comp	ound dinit	rogen tetrachl	oride?
a)	NCl	b) l	N_2Cl_2	c)	N_4Cl_2		d) N ₂ Cl ₄	
23.	There a	re 6.022 × 10) ²³ atoms of ϵ	element ca	lcium (Ca	a). How ma	ny grams of cal	cium are there?
a)	6.022	× 10 ²³ g	b) 6.65 g	c) 40.08 g		d) 241.3	g	
24.	Which c	of these elen	nents is a Gr	oup 2 elem	ent?			
a)	Na	b) Ca	c) Mg	d) both (b) and (c)	e) all eler	ments (a), (b), (c	c) are Group 2
25.	What ch	naracteristic	s are true ab	out the H ₂ 0) molecu	le?		
b) c)	The dit	fference in e lecular geor	atom has thr lectronegativnetry is desc ar polarity (no	vity betwee ribed as tri	n O and I gonal pla	H atoms er	nables hydroger	n bonding
	1 mol of	f sodium and b) false	d 1 mole of p	otassium a	re equal	numbers o	of Na and K aton	ns
	Kinetic true	energy is an b) false	energy dete	rmined by r	motion or	velocity o	f a mass	
		, .	pairs of elect sion (VSEPR)		ing mole	cular geom	netry is explaine	ed by Valence Shell
	The bur	ning of gaso b) false	line is an end	dothermic p	orocess			
		les of H₂ mo b) false	lecules is 6.0)22 x 10 ²³ m	nolecules	of H ₂		
	Berylliu true	m has a mol b) false	ar mass of 9.	.012 g/mol				
	There a	re more mol b) false	ecules in 0.5	0 mol of C0	O₂ than in	0.50 mol (of SO ₂	
	A formu true	ı la unit is a d b) false	dimension of	f mass and	its units	are in gram	ns (g)	
		Dispersion lecular force b) false		ribe a temp	orary, ins	tantaneou	s induced dipol	le as
	Cesium true	chloride is a b) false	an ionic com	pound with	the form	ıula Cs₂Cl		