MR - Trabajo

11/12/2024

Regresión Lineal Múltiple

• Antes de empezar, cargamos los datos OzonoLA.rda

```
load("Datos/OzonoLA.rda")
attach(OzonoLA)
```

1. Análisis descriptivo

Para el análisis descriptivo de las variables podemos comenzar con una visión general de las variables mediante las funciones str() y summary().

```
str(OzonoLA)
```

```
'data.frame':
                    203 obs. of 13 variables:
##
   $ Mes
                        1111111111...
                 : int
##
   $ DiaMes
                 : int
                        5 6 7 8 9 12 13 14 15 16 ...
##
                        1 2 3 4 5 1 2 3 4 5 ...
   $ DiaSemana : int
                        5.34 5.77 3.69 3.89 5.76 6.39 4.73 4.35 3.94 7 ...
##
   $ Ozono
                 : num
##
   $ Pres Alt
                 : int
                        5760 5720 5790 5790 5700 5720 5760 5780 5830 5870 ...
                        3 4 6 3 3 3 6 6 3 2 ...
  $ Vel Viento : int
                        51 69 19 25 73 44 33 19 19 19 ...
##
   $ Humedad
                 : int
##
   $ T_Sandburg : int
                        54 35 45 55 41 51 51 54 58 61 ...
##
   $ T_ElMonte : num
                        45.3 49.6 46.4 52.7 48 ...
   $ Inv_Alt_b
                 : int
                        1450 1568 2631 554 2083 111 492 5000 1249 5000 ...
##
                        25 15 -33 -28 23 9 -44 -44 -53 -67 ...
   $ Grad_Pres
                 : int
   $ Inv_T_b
                 : num
                        57 53.8 54.1 64.8 52.5 ...
                        60 60 100 250 120 150 40 200 250 200 ...
   $ Visibilidad: int
```

La salida de str() nos dice que los datos constan de 203 observaciones de 13 variables:

- Mes: Número del mes en el que se hicieron las observaciones (Entero)
- DiaMes: Número del día del mes en el que se hicieron las observaciones (Entero)
- DíaSemana: Número del día de la semana en el que se hicieron las observaciones (Entero)
- Ozono: Nivel de Ozono medido (Numérica)
- Pres_Alt: Altura en metros a la que se alcanza una presion de 500 milibares (Entero)
- Vel_Viento: Velocidad del viento en millas por hora en el Aeropuerto Internacional de Los Angeles (Entero)
- Humedad: Humedad en porcentaje en LAX (Entero)
- T_Sandburg: Temperatura (F) en Sandburg, CA (Entero)

- T_ElMonte: Temperatura (F) en El Monte, CA (Numérica)
- Inv_ALt_b: Inversion de la altura base (en pies) en LAX (Entero)
- Grand_Pres: Gradiente de presion de LAX a Daggett, CA (Entero)
- Inv_T_b: Inversion de la temperatura base (F) en LAX (Numérica)
- Visibilidad: Visibilidad (millas) evaluada en LAX (Entero)

summary(OzonoLA)

```
##
         Mes
                           DiaMes
                                         DiaSemana
                                                             Ozono
                                                                             Pres_Alt
##
                              : 1.0
                                       Min.
                                               :1.000
    Min.
            : 1.000
                      Min.
                                                        Min.
                                                                : 0.72
                                                                         Min.
                                                                                 :5320
##
    1st Qu.: 3.000
                      1st Qu.: 9.0
                                       1st Qu.:2.000
                                                        1st Qu.: 4.77
                                                                          1st Qu.:5690
##
    Median : 6.000
                      Median:15.0
                                       Median :3.000
                                                        Median : 8.90
                                                                          Median:5760
##
    Mean
            : 6.522
                              :15.7
                                               :3.005
                                                                :11.37
                                                                                 :5746
                      Mean
                                       Mean
                                                        Mean
                                                                          Mean
##
    3rd Qu.:10.000
                      3rd Qu.:23.0
                                       3rd Qu.:4.000
                                                        3rd Qu.:16.07
                                                                          3rd Qu.:5830
##
    Max.
            :12.000
                              :31.0
                                               :5.000
                                                                :37.98
                                                                                 :5950
                      Max.
                                       Max.
                                                        Max.
                                                                          Max.
##
      Vel_Viento
                          Humedad
                                                            T_ElMonte
                                          T_Sandburg
    Min.
            : 0.000
                      Min.
                              :19.00
                                        Min.
                                                :25.00
                                                         Min.
                                                                 :27.68
##
    1st Qu.: 3.000
                      1st Qu.:46.00
                                        1st Qu.:51.50
                                                         1st Qu.:49.64
    Median : 5.000
##
                      Median :64.00
                                        Median :61.00
                                                         Median :56.48
##
            : 4.867
                                                :61.11
                                                                 :56.54
    Mean
                      Mean
                              :57.61
                                        Mean
                                                         Mean
##
    3rd Qu.: 6.000
                      3rd Qu.:73.00
                                        3rd Qu.:71.00
                                                         3rd Qu.:66.20
##
    Max.
            :11.000
                      Max.
                              :93.00
                                        Max.
                                                :93.00
                                                         Max.
                                                                 :82.58
##
      Inv_Alt_b
                      Grad Pres
                                          Inv_T_b
                                                         Visibilidad
##
    Min.
            : 111
                    Min.
                            :-69.00
                                       Min.
                                               :27.50
                                                        Min.
                                                                : 0.0
##
    1st Qu.: 869
                    1st Qu.:-14.00
                                       1st Qu.:51.26
                                                        1st Qu.: 60.0
                    Median : 18.00
##
    Median:2083
                                       Median :60.98
                                                        Median:100.0
##
            :2602
    Mean
                    Mean
                            : 14.43
                                       Mean
                                               :60.69
                                                        Mean
                                                                :122.2
##
    3rd Qu.:5000
                    3rd Qu.: 43.00
                                       3rd Qu.:70.88
                                                        3rd Qu.:150.0
                    Max.
##
    Max.
            :5000
                            :107.00
                                       Max.
                                               :90.68
                                                        Max.
                                                                :350.0
```

Ahora realizaremos un análisis descriptivo de cada variable:

Análisis descriptivo de la variable Mes:

[1] 1.671129

```
summary(Mes)
##
      Min. 1st Qu.
                     Median
                                 Mean 3rd Qu.
                                                  Max.
     1.000
              3.000
                       6.000
                                       10.000
                                                12.000
                                6.522
Desviación típica y rango intercuartílico:
sd(Mes)
## [1] 3.594998
IQR(Mes)
## [1] 7
Evaluamos la asimetría y kurtoisis
library(moments)
skewness(Mes, na.rm = FALSE)
## [1] 0.03220505
kurtosis(Mes, na.rm = FALSE)
```

Podemos ver que al ser el coeficiente de asimetría cercano a 0 que puede ser una variable simética y al ser el coeficiente de Kurtosis menor que tres, las colas de la variable comparadas con una normal son más ligeras.

Vemos si hay registros atípicos

```
boxplot.stats(Mes)$out
```

integer(0)

Como podemos ver no existe ningún registro atípico

Análisis descriptivo de la variable DiaMes:

[1] 14

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 3.000 6.000 6.522 10.000 12.000

Desviación típica y rango intercuartílico:

sd(DiaMes)

## [1] 8.569537

IQR(DiaMes)
```

Evaluamos la asimetría y kurtoisis

```
library(moments)
skewness(DiaMes, na.rm = FALSE)

## [1] 0.0395616
kurtosis(DiaMes, na.rm = FALSE)
```

```
## [1] 1.868548
```

Podemos ver que al ser el coeficiente de asimetría cercano a 0 que puede ser una variable simética y al ser el coeficiente de Kurtosis menor que tres, las colas de la variable comparadas con una normal son más ligeras.

Vemos si hay registros atípicos

```
boxplot.stats(DiaMes)$out
```

integer(0)

Como podemos ver no existe ningún registro atípico

Análisis descriptivo de la variable DiaSemana:

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 2.000 3.000 3.005 4.000 5.000
```

Desviación típica y rango intercuartílico:

```
sd(DiaSemana)
```

```
## [1] 1.401899

IQR(DiaSemana)
```

```
## [1] 2
```

Evaluamos la asimetría y kurtoisis

```
library(moments)
skewness(DiaSemana, na.rm = FALSE)

## [1] 0.04527053
kurtosis(DiaSemana, na.rm = FALSE)
```

```
## [1] 1.731687
```

Podemos ver que al ser el coeficiente de asimetría cercano a 0 que puede ser una variable simética y al ser el coeficiente de Kurtosis menor que tres, las colas de la variable comparadas con una normal son más ligeras.

Vemos si hay registros atípicos

```
boxplot.stats(DiaSemana)$out
```

integer(0)

Como podemos ver no existe ningún registro atípico

Análisis descriptivo de la variable Ozono:

```
summary(Ozono)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.72 4.77 8.90 11.37 16.07 37.98
```

Desviación típica y rango intercuartílico:

sd(Ozono)

```
## [1] 8.192652
```

IQR(Ozono)

[1] 11.305

Evaluamos la asimetría y kurtoisis

```
library(moments)
skewness(Ozono, na.rm = FALSE)
```

[1] 0.9652702

```
kurtosis(Ozono, na.rm = FALSE)
```

[1] 3.089498

Podemos ver que al ser el coeficiente de asimetría cercano a 0 que puede ser una variable simética y al ser el coeficiente de Kurtosis es próximo a tres, las colas de la variable son similares a las de una normal

Vemos si hay registros atípicos

```
boxplot.stats(Ozono)$out
```

[1] 33.04 34.39 37.98

Como podemos ver existen 4 registros atípicos

```
par(mfrow=c(1,2))
hist(Ozono, breaks=5,freq=FALSE, main = "", xlab="Ozono",
    cex.lab=1.4, ylab = "Densidad Ozono", col = "lightblue")
curve( dnorm(x,mean=mean(Ozono),sd=sd(Ozono)),
    col="magenta", lwd=3, add=TRUE)
boxplot(Ozono, main = "", xlab="Ozono",
    cex.lab=1.4, border = "blue", col= "lightblue", pch="+",
    horizontal = TRUE, cex=3)
```


Análisis descriptivo de la variable Pres_Alt:

[1] 4.198772

```
summary(Pres_Alt)
##
      Min. 1st Qu.
                     Median
                                Mean 3rd Qu.
                                                 Max.
##
      5320
               5690
                       5760
                                5746
                                         5830
                                                 5950
Desviación típica y rango intercuartílico:
sd(Pres_Alt)
## [1] 113.0277
IQR(Pres_Alt)
## [1] 140
Evaluamos la asimetría y kurtoisis
library(moments)
skewness(Pres_Alt, na.rm = FALSE)
## [1] -0.9499496
kurtosis(Pres_Alt, na.rm = FALSE)
```

Podemos ver que al ser el coeficiente de asimetría cercano a 0 que puede ser una variable simética y al ser el coeficiente de Kurtosis es mayor a tres, las colas de la variable son más grandes que las de una normal.

Vemos si hay registros atípicos

```
boxplot.stats(Pres_Alt)$out
```

[1] 5410 5350 5470 5320 5440

Como podemos ver existen 5 registros atípicos

Análisis descriptivo de la variable Vel_Viento:

[1] 3

```
summary(Vel_Viento)
##
      Min. 1st Qu.
                     Median
                                 Mean 3rd Qu.
                                                  Max.
     0.000
              3.000
                       5.000
                                4.867
                                        6.000
                                               11.000
Desviación típica y rango intercuartílico:
sd(Vel_Viento)
## [1] 2.105402
IQR(Vel_Viento)
```

Evaluamos la asimetría y kurtoisis

```
library(moments)
skewness(Vel_Viento, na.rm = FALSE)

## [1] 0.09612047
kurtosis(Vel_Viento, na.rm = FALSE)
```

```
## [1] 3.378636
```

Podemos ver que al ser el coeficiente de asimetría cercano a 0 que puede ser una variable simética y al ser el coeficiente de Kurtosis es próximo a tres, las colas de la variable son similares a las de una normal.

Vemos si hay registros atípicos

```
boxplot.stats(Vel_Viento)$out
```

```
## [1] 11 11
```

Como podemos ver existen 2 registros atípicos

```
par(mfrow=c(1,2))
hist(Vel_Viento, breaks=5,freq=FALSE, main = "", xlab="Vel_Viento",
    cex.lab=1.4, ylab = "Densidad Vel_Viento", col = "lightblue")
curve( dnorm(x,mean=mean(Vel_Viento),sd=sd(Vel_Viento)),
    col="magenta", lwd=3, add=TRUE)
boxplot(Vel_Viento, main = "", xlab="Vel_Viento",
    cex.lab=1.4, border = "blue", col= "lightblue", pch="+",
    horizontal = TRUE, cex=3)
```


Análisis descriptivo de la variable Humedad:

```
summary(Humedad)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 19.00 46.00 64.00 57.61 73.00 93.00
```

Desviación típica y rango intercuartílico:

```
sd(Humedad)
```

```
## [1] 20.84766
```

```
IQR(Humedad)
```

```
## [1] 27
```

Evaluamos la asimetría y kurtoisis

```
library(moments)
skewness(Humedad, na.rm = FALSE)
```

```
## [1] -0.6935066
```

```
kurtosis(Humedad, na.rm = FALSE)
```

```
## [1] 2.307891
```

Podemos ver que al ser el coeficiente de asimetría cercano a 0 que puede ser una variable simética y al ser el coeficiente de Kurtosis es próximo a tres, las colas de la variable son similares a las de una normal.

Vemos si hay registros atípicos

```
boxplot.stats(Humedad)$out
```

integer(0)

Como podemos ver no existen registros atípicos

Análisis descriptivo de la variable T_Sandburg:

```
summary(T_Sandburg)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 25.00 51.50 61.00 61.11 71.00 93.00
```

Desviación típica y rango intercuartílico:

sd(T_Sandburg)

[1] 14.20647

IQR(T_Sandburg)

[1] 19.5

Evaluamos la asimetría y kurtoisis

```
library(moments)
skewness(T_Sandburg, na.rm = FALSE)
```

[1] 0.006212875

kurtosis(T_Sandburg, na.rm = FALSE)

[1] 2.510297

Podemos ver que al ser el coeficiente de asimetría cercano a 0 que puede ser una variable simética y al ser el coeficiente de Kurtosis es próximo a tres, las colas de la variable son similares a las de una normal.

Vemos si hay registros atípicos

```
boxplot.stats(T_Sandburg)$out
```

integer(0)

Como podemos ver no existen registros atípicos

• ANÁLISIS DESCRIPTIVO VARIABLE 'T_ElMonte'

```
summary(T_ElMonte)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 27.68 49.64 56.48 56.54 66.20 82.58
```

Desviación típica y rango intercuartílico:

```
sd(T_ElMonte)
```

[1] 11.74267

IQR(T_ElMonte)

[1] 16.56

Evaluamos la asimetría y kurtoisis

```
library(moments)
skewness(T_ElMonte, na.rm = FALSE)
```

```
## [1] -0.1025587
```

kurtosis(T_ElMonte, na.rm = FALSE)

[1] 2.486231

Podemos ver que al ser el coeficiente de asimetría cercano a 0 que puede ser una variable simética y al ser el coeficiente de Kurtosis es próximo a tres, las colas de la variable son similares a las de una normal.

Vemos si hay registros atípicos

```
boxplot.stats(T_ElMonte)$out
```

numeric(0)

Como podemos ver no existen registros atípicos

Análisis descriptivo de la variable Inv_Alt_b:

[1] 4131

```
summary(Inv_Alt_b)
##
      Min. 1st Qu.
                      Median
                                 Mean 3rd Qu.
                                                   Max.
##
       111
                869
                        2083
                                 2602
                                          5000
                                                   5000
Desviación típica y rango intercuartílico:
sd(Inv_Alt_b)
## [1] 1859.889
IQR(Inv_Alt_b)
```

Evaluamos la asimetría y kurtoisis

```
library(moments)
skewness(Inv_Alt_b, na.rm = FALSE)

## [1] 0.2355015
kurtosis(Inv_Alt_b, na.rm = FALSE)
```

```
## [1] 1.374057
```

Podemos ver que al ser el coeficiente de asimetría cercano a 0 que puede ser una variable simética y al ser el coeficiente de Kurtosis es menor a tres, las colas de la variable son más ligeras a las de una normal.

Vemos si hay registros atípicos

```
boxplot.stats(Inv_Alt_b)$out
```

integer(0)

Como podemos ver no existen registros atípicos

Análisis descriptivo de la variable Grad_Pres:

```
summary(Grad_Pres)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -69.00 -14.00 18.00 14.43 43.00 107.00
```

Desviación típica y rango intercuartílico:

```
sd(Grad_Pres)
## [1] 36.3172
IQR(Grad_Pres)
## [1] 57
```

Evaluamos la asimetría y kurtoisis

```
library(moments)
skewness(Grad_Pres, na.rm = FALSE)
```

```
## [1] -0.131977
kurtosis(Grad_Pres, na.rm = FALSE)
```

```
## [1] 2.316879
```

Podemos ver que al ser el coeficiente de asimetría cercano a 0 que puede ser una variable simética y al ser el coeficiente de Kurtosis es menor a tres, las colas de la variable son más ligeras a las de una normal.

Vemos si hay registros atípicos

```
boxplot.stats(Grad_Pres)$out
```

integer(0)

Como podemos ver no existen registros atípicos

```
par(mfrow=c(1,2))
hist(Grad_Pres, breaks=5,freq=FALSE, main = "", xlab="Grad_Pres",
    cex.lab=1.4, ylab = "Densidad Grad_Pres", col = "lightblue")
curve( dnorm(x,mean=mean(Grad_Pres),sd=sd(Grad_Pres)),
    col="magenta", lwd=3, add=TRUE)
boxplot(Grad_Pres, main = "", xlab="Grad_Pres",
    cex.lab=1.4, border = "blue", col= "lightblue", pch="+",
    horizontal = TRUE, cex=3)
```


Análisis descriptivo de la variable Inv_T_b:

```
summary(Inv_T_b)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 27.50 51.26 60.98 60.69 70.88 90.68
```

Desviación típica y rango intercuartílico:

```
sd(Inv_T_b)
```

```
## [1] 14.12473
```

IQR(Inv_T_b)

[1] 19.62

Evaluamos la asimetría y kurtoisis

```
library(moments)
skewness(Inv_T_b, na.rm = FALSE)
```

```
## [1] -0.1886259
```

```
kurtosis(Inv_T_b, na.rm = FALSE)
```

[1] 2.354789

Podemos ver que al ser el coeficiente de asimetría cercano a 0 que puede ser una variable simética y al ser el coeficiente de Kurtosis es menor a tres, las colas de la variable son más ligeras a las de una normal.

Vemos si hay registros atípicos

```
boxplot.stats(Inv_T_b)$out
```

numeric(0)

Como podemos ver no existen registros atípicos

Análisis descriptivo de la variable Visibilidad:

[1] 2.903426

```
summary(Visibilidad)
##
      Min. 1st Qu. Median
                                Mean 3rd Qu.
                                                 Max.
              60.0
##
       0.0
                      100.0
                               122.2
                                       150.0
                                                350.0
Desviación típica y rango intercuartílico:
sd(Visibilidad)
## [1] 81.17132
IQR(Visibilidad)
## [1] 90
Evaluamos la asimetría y kurtoisis
library(moments)
skewness(Visibilidad, na.rm = FALSE)
## [1] 0.8067613
kurtosis(Visibilidad, na.rm = FALSE)
```

Podemos ver que al ser el coeficiente de asimetría cercano a 0 que puede ser una variable simética y al ser el coeficiente de Kurtosis próximo a tres, las colas de la variable son próximas a las de una normal.

Vemos si hay registros atípicos

```
boxplot.stats(Visibilidad)$out
```

Como podemos ver no existen registros atípicos

2. Análisis de correlación

• Correlaciones simples bivariantes(análisis gráfico y numérico):

	0 25	0 25		0 30		0 8		30 90		0 5000		30 90	
Mes	0.03	-0.01	0.04	0.34	-0.23	-0.03	0.24	0.31	0.05	-0.22	0.24	-0.17	7
0	DiaMes	0.00	0.08	0.16	-0.05	-0.06	0.16	0.12	-0.08	-0.11	0.13	-0.06	
		asema	-0.04	-0.02	-0.04	-0.04	-0.03	-0.02	0.08	0.03	-0.05	0.00	_
。			Ozono	0.60	0.08	0.48	0.77	0.76	-0.55	0.17	0.72	-0.48	
	-			res Al	-0.23	0.04	0.81	0.90	-0.51	-0.25	0.86	-0.34	300
。	(ei vien	0.30	0.04	-0.07	0.13	0.37	-0.13	0.05	Ŋ
		H			100	umega	0.33	0.21	-0.25	0.62	0.19	-0.46	20
30	-						Sangou	0.91	-0.52	0.12	0.84	-0.41	
	-							EIVON	-0.58	-0.12	0.93	-0.44	30
。		{ [] }		• • • • • • • • • • • • • • • • • • •					AIT.	0.11	-0.78	0.40	
	-									Tag Pre	-0.21	-0.12	-20
္က	<u> </u>				[]						nv_	-0.44	
					{• `							isibilida	0
2 10		1 4	5	300		20		30 80		-50		0 300	

cor(OzonoLA)

```
##
                       Mes
                                 DiaMes
                                            DiaSemana
                                                            Ozono
                                                                     Pres_Alt
## Mes
               1.00000000
                            0.029780944 -6.406562e-03
                                                       0.04417525
                                                                   0.33793183
                            1.000000000 3.418381e-03
                                                       0.08364060
## DiaMes
               0.029780944
                                                                   0.15808064
## DiaSemana
               -0.006406562
                            0.003418381
                                        1.000000e+00 -0.03750993 -0.02206218
                            0.083640605 -3.750993e-02
                                                      1.00000000
## Ozono
               0.044175248
                                                                   0.59612683
## Pres_Alt
               0.337931827
                            0.158080640 -2.206218e-02
                                                       0.59612683
                                                                   1.00000000
## Vel_Viento
              -0.226893006 -0.046090839 -3.667633e-02
                                                       0.08179858 -0.23161673
## Humedad
              -0.034727288 -0.064739863 -3.855381e-02
                                                       0.47947091
                                                                   0.03869121
## T_Sandburg
               0.80633038
## T ElMonte
                            0.117127229 -2.481044e-02 0.76001956
               0.314323892
               0.045305170 -0.082352709
                                        7.998485e-02 -0.55196217 -0.50891157
## Inv_Alt_b
## Grad Pres
               -0.218837079 -0.111239793
                                        3.418479e-02 0.17391799 -0.24549047
## Inv T b
               0.236540625   0.127530054   -5.365959e-02   0.71756186
                                                                   0.85642134
## Visibilidad -0.167796386 -0.057896954 -8.572216e-06 -0.47629112 -0.34272720
##
                              Humedad T_Sandburg
               Vel_Viento
                                                    T_ElMonte
                                                                Inv_Alt_b
                                       0.23544507
## Mes
              -0.22689301 -0.03472729
                                                   0.31432389
                                                               0.04530517
              -0.04609084 -0.06473986
                                       0.15715636
## DiaMes
                                                  0.11712723 -0.08235271
## DiaSemana
              -0.03667633 -0.03855381 -0.03035349 -0.02481044 0.07998485
## Ozono
               0.08179858
                           0.47947091
                                       0.77335204
                                                  0.76001956 -0.55196217
              -0.23161673
                           0.03869121
## Pres_Alt
                                       0.80633038
                                                  0.89689385 -0.50891157
## Vel_Viento
               1.00000000
                           0.30356343
                                       0.04122208 -0.06983510 0.12834881
## Humedad
                                       0.33132296
               0.30356343
                           1.00000000
                                                   0.21158607 -0.24703914
## T_Sandburg
               0.04122208
                           0.33132296
                                       1.00000000
                                                   0.91396229 -0.51539621
## T_ElMonte
              -0.06983510 0.21158607
                                       0.91396229
                                                   1.00000000 -0.57965832
## Inv Alt b
               0.12834881 - 0.24703914 - 0.51539621 - 0.57965832
## Grad_Pres
               0.37328762 0.62433536
                                       0.11765666 -0.12091597 0.11350236
## Inv T b
              -0.12959891 0.19101936
                                       0.84310310 0.93080989 -0.78286145
## Visibilidad 0.04534341 -0.45750232 -0.41038641 -0.43897902 0.39669789
##
                Grad_Pres
                              Inv_T_b
                                        Visibilidad
```

```
## Mes
             ## DiaMes
## DiaSemana
              0.03418479 -0.05365959 -8.572216e-06
## Ozono
              0.17391799
                        0.71756186 -4.762911e-01
## Pres Alt
             -0.24549047
                        0.85642134 -3.427272e-01
## Vel Viento
             0.37328762 -0.12959891 4.534341e-02
## Humedad
              0.62433536  0.19101936  -4.575023e-01
## T Sandburg
              0.11765666
                        0.84310310 -4.103864e-01
## T ElMonte
             -0.12091597
                        0.93080989 -4.389790e-01
## Inv_Alt_b
              0.11350236 -0.78286145 3.966979e-01
## Grad_Pres
              1.00000000 -0.20663872 -1.200549e-01
## Inv_T_b
             -0.20663872 1.00000000 -4.377177e-01
## Visibilidad -0.12005488 -0.43771768 1.000000e+00
```

• Correlaciones parciales:

partial.r(OzonoLA)

```
##
                                DiaMes
                                          DiaSemana
                                                            Ozono
                                                                     Pres_Alt
                1.000000000 -0.01473632 -0.029646884 -0.239632308 -0.008364478
## Mes
## DiaMes
               -0.014736319
                            1.00000000 0.017131467
                                                     0.023224469
                                                                  0.074079502
## DiaSemana
                            0.01713147 1.000000000 -0.015463849 -0.014083279
               -0.029646884
## Ozono
               -0.239632308
                            0.02322447 -0.015463849
                                                     1.00000000 -0.134822542
               -0.008364478
                                                                 1.000000000
## Pres_Alt
                            0.07407950 -0.014083279 -0.134822542
## Vel Viento
                            0.01519492 -0.052672027 -0.040039195 -0.292700944
              -0.192898039
## Humedad
               0.160860221 -0.03992322 -0.050358261
                                                     0.262774072 -0.095321178
## T Sandburg
                            0.20842819 -0.037515653
               0.008578204
                                                     0.141155532
                                                                  0.108888567
## T ElMonte
                0.131026789 -0.12847809
                                       0.050717722 0.312487718
                                                                  0.344311253
## Inv Alt b
               0.230043843 -0.02868566
                                        0.036820690 -0.111064127
                                                                  0.120880379
## Grad Pres
                                        0.068684046 0.001780773 -0.044096421
               -0.127208517 -0.13665426
## Inv_T_b
               0.048692150 -0.02999001 -0.008230412 -0.076866881
                                                                  0.140848869
## Visibilidad -0.108506988 -0.06279200 -0.037003418 -0.074160846
                                                                 0.014979648
               Vel_Viento
##
                                        T_Sandburg
                                                      T_ElMonte
                              Humedad
                                                                 Inv_Alt_b
## Mes
               -0.19289804 0.16086022
                                       0.008578204 0.13102679
                                                                0.23004384
## DiaMes
               0.01519492 -0.03992322
                                       0.208428191 -0.12847809 -0.02868566
## DiaSemana
              -0.05267203 -0.05035826 -0.037515653
                                                    0.05071772
                                                                0.03682069
## Ozono
               -0.04003920 0.26277407
                                       0.141155532
                                                    0.31248772 -0.11106413
## Pres_Alt
               -0.29270094 -0.09532118
                                       0.108888567
                                                    0.34431125
                                                                0.12088038
## Vel Viento
              1.00000000 0.15651029
                                       0.089387359
                                                    0.11902520
                                                                0.11170466
## Humedad
               0.15651029 1.00000000 -0.044727403 -0.04353431 -0.05762633
## T_Sandburg
               0.08938736 -0.04472740
                                       1.000000000
                                                    0.35489823
                                                                0.18928541
## T ElMonte
                0.11902520 -0.04353431
                                       0.354898232
                                                    1.00000000
                                                                0.39942102
## Inv_Alt_b
               0.11170466 -0.05762633
                                       0.189285412
                                                   0.39942102
                                                                1.00000000
## Grad Pres
                0.05542912 0.50554293
                                       0.498084949 -0.05195235 -0.15571589
## Inv T b
                0.01217894
                           0.06712657
                                       ## Visibilidad 0.11148387 -0.32142715 0.085393863 -0.12200008 0.09905698
##
                 Grad Pres
                                Inv T b Visibilidad
## Mes
               -0.127208517
                            0.048692150 -0.10850699
               -0.136654263 -0.029990011 -0.06279200
## DiaMes
## DiaSemana
               0.068684046 -0.008230412 -0.03700342
## Ozono
               0.001780773 -0.076866881 -0.07416085
                            0.140848869
## Pres_Alt
               -0.044096421
                                         0.01497965
## Vel_Viento
               0.055429122
                            0.012178940
                                         0.11148387
## Humedad
               0.505542925
                            0.067126570 -0.32142715
## T_Sandburg
               0.498084949
                            0.229456614 0.08539386
```

3. Modelo matemático

$$\mathbb{E}(\vec{Y}|\boldsymbol{X}) = \beta_0 + \sum_{i=1}^n \beta_i X_{ij}$$
(1)

```
ajuste <- lm(Ozono~., data=OzonoLA)
ajuste
##
## Call:
## lm(formula = Ozono ~ ., data = OzonoLA)
##
## Coefficients:
##
   (Intercept)
                         Mes
                                   DiaMes
                                              DiaSemana
                                                             Pres_Alt
                                                                        Vel_Viento
                                                           -0.0133495
                                                                        -0.0959961
##
    55.4279486
                 -0.3431326
                                0.0120308
                                             -0.0473689
                                                            Grad_Pres
##
       Humedad
                 T_Sandburg
                                T_ElMonte
                                              Inv_Alt_b
                                                                            Inv_T_b
     0.0880372
                  0.1366231
                                0.5597690
                                             -0.0006176
                                                            0.0003624
                                                                        -0.1244500
##
## Visibilidad
   -0.0049469
```

Regresión Logística

• Antes de empezar, cargamos los datos Oro.rda

```
load("Datos/Oro.rda")
attach(Oro)
explicativas.oro <- Oro[,1:3]  # Almacenamos las explicativas
respuesta.oro <- Proximidad  # Almacenamos la variable de respuesta</pre>
```

1. Análisis descriptivo

Para el análisis descriptivo de las variables podemos comenzar con una visión general de las variables mediante las funciones str() y summary().

```
## 'data.frame': 64 obs. of 4 variables:
## $ As : num 6.77 15.03 6.43 0.1 0.1 ...
## $ Sb : num 3.08 6.15 2.35 0.3 0.3 9.62 0.51 3.71 4.32 0.8 ...
## $ Corredor : int 1 1 1 0 0 1 0 1 0 0 ...
## $ Proximidad: int 1 1 1 0 0 1 0 1 0 0 ...
```

La salida de str() nos dice que los datos constan de 64 observaciones de 4 variables:

- As: Nivel de concentración de arsénico en la muestra de agua. (numérica)
- Sb: Nivel de concentración de antimonio en la muestra de agua. (numérica)
- Corredor: Variable binaria indicando si la zona muestreada está (1) o no está (0) en alguno de los corredores delimitados por las lineas sobre el mapa. (categórica)

Más la variable de respuesta Proximidad, que toma los valores 1 o 0 según que el depósito esté próximo o esté muy lejano al lugar.

summary(Oro)

```
##
                            Sb
                                          Corredor
                                                        Proximidad
          As
##
    Min.
           : 0.100
                     Min.
                             : 0.100
                                       Min.
                                               :0.0
                                                      Min.
                                                             :0.0000
##
    1st Qu.: 0.400
                     1st Qu.: 0.300
                                       1st Qu.:0.0
                                                      1st Qu.:0.0000
   Median : 1.235
                     Median : 0.650
                                       Median:0.5
                                                      Median :0.0000
##
##
   Mean
           : 4.645
                     Mean
                             : 2.039
                                       Mean
                                              :0.5
                                                      Mean
                                                             :0.4375
    3rd Qu.: 5.905
                     3rd Qu.: 2.487
                                                      3rd Qu.:1.0000
##
                                       3rd Qu.:1.0
##
    Max.
           :41.480
                     Max.
                             :18.200
                                       Max.
                                               :1.0
                                                      Max.
                                                             :1.0000
plot(explicativas.oro, pch=18,
     main="Representación por parejas de las explicativas")
```

Representación por parejas de las explicativas

main="Diagrama de cajas de las explicativas")

Diagrama de cajas de las explicativas

Concentración de Arsénico

Concentración de Antimonio

Histograma de la variable Corredor

2. Modelo matemático

Dado que la variable de respuesta, Proximidad, es binaria (0 o 1), deberemos de elegir un modelo que tenga esto en cuenta. En nuestro caso hemos elegido una transformación del modelo lineal, definida por la distribución logística de la ecuación 2

$$F(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}} \tag{2}$$

Por tanto, nuestro modelo logístico quedaría de la forma

$$\mathbb{E}(Y|\vec{X}_i) = p_i = \mathbb{P}(Y = 1|\vec{X}_i) = \frac{1}{1 + e^{-\eta}}$$
(3)

tal que $\eta = \vec{\beta}^t \vec{X_i}$. Además,

$$1 - p_i = \mathbb{P}(Y = 0 | \vec{X}_i) = 1 - \frac{1}{1 + e^{-\eta}} = \frac{e^{-\eta}}{1 + e^{-\eta}}$$
(4)

3. Interpretación del modelo

Para una mejor interpretación del modelo, podemos definir el \mathbf{odds}_i de manera que

$$odds_{i} = odds(Y|\vec{X}_{i}) = \frac{p_{i}}{1 - p_{i}} = e^{\eta} = e^{\vec{\beta}^{t}\vec{X}_{i}} = e^{\beta_{0}}e^{\beta_{1}X_{i1}} \cdots e^{\beta_{k}X_{ik}} = e^{\beta_{0}}\prod_{j=1}^{k}e^{\beta_{j}X_{ij}}, \quad 1 \leq i \leq n$$
 (5)

Este es un modelo multiplicativo, en el cual e^{β_0} es la respuesta cuando $\vec{X_i} = \vec{0}$, mientras que e^{β_j} , para $1 \le j \le k$, es el incremento multiplicativo $(e^{\beta_j})^l$ en el odds para algún incremento l en X_j

También podemos expresar el modelo aplicando logaritmos a la ecuación 5, de manera que

$$\ln(\frac{p_i}{1-p_i}) = \eta = \vec{\beta}^t \vec{X}_i \tag{6}$$

Los cuales denominaremos como \mathbf{logit}_i . Estos logits son interpretables mucho más fácilmente, aunque debido a que

4. Inferencia

5. Bondad del ajuste