A-LEVEL INORGANIC CHEMISTRY PRACTICAL

PHYSICAL APPEARANCE.

Colour of substance	Deduction
Purple	MnO_4^- i. e Mn^{2+}
Violet	Cr^{3+}
Black	$CuO_{(s)}FeO.NiO_{(s)}$ or C_oO hence Cu^{2+} , Fe^{2+} , $Ni^{2+}Co^{2+}$
White	Al^{3+} , Zn^{2+} , Pb^{2+} , Ca^{2+} , Mg^{2+} , Ba^{2+} , NH_4^+ , Sn^{2+} , Sn^{4+}
Blue	Cu^{2+}
Green	Fe^{2+} , Cu^{2+} , Ni^{2+} , Cr^{3+}
Yellow or orange	CrO_4^{2-} or $Cr_2O_7^{2-}$ i.e $Cr^{3+}/PbO_{(s)}$ i.e Pb^{2+}
Deep pink or Red	Co ²⁺
Pale pink	Mn^{2+}

Colour and deduction of different solution.

Colour of solution	Deduction
Colourless	Zn^{2+} , Pb^{2+} , Al^{3+} , Ca^{2+} , Mg^{2+} , Ba^{2+} , NH_4^+ , Sn^{2+}
Green	Fe^{2+} , Cu^{2+} , Ni^{2+} , Cr^{3+}
Brown	Fe^{3+}
Blue	Cu^{2+}
Yellow/ Orange	Cr^{6+} either CrO_4^{2-} or $Cr_2O_7^{2-}$
Deep pink/ Red	Co ²⁺
Purple	Mn^{2+} from MnO_4^-
Very pale pink	Mn^{2+}

Change of colour during heating.

Colour before	Colour change after	Deduction
heating	heating	
Blue crystalline solid	Black residue	$CuO_{(s)}$ hence Cu^{2+}
Blue crystalline solid	White residue	Hydrated Cu^{2+} turns to anhydrous Cu^{2+}
White crystalline	Yellow residue when hot	
/powdered solid.	turns white on cooling.	$ZnO_{(s)}$ formed hence Zn^{2+}
Green	Black residue	
crystalline/powdered solid.		$CuO_{(s)}$ formed hence Cu^{2+}
		$NiO_{(s)}$ formed hence Ni^{2+}
Pale green crystalline solid.	Brown residue	$Fe_2O_{3(s)}$ formed hence Fe^{3+}
Deep pink	Blue and then black on very strong heating.	Hydrated Co^{2+} turns to anhydrous Co^{2+} then to $CoO_{(s)}$
Very pale pink crystalline/ powdered solid	Black residue	$MnO_{2(s)}$ formed hence Mn^{2+} oxidized to Mn^{2+}
White crystalline/ powdered solid.	Brown residue when hot, turns yellow on cooling.	$PbO_{(s)}$ formed hence Pb^{2+}
White crystalline /powdered solid.	White residue	Al_2O_3 , $MgO_{(s)}$, CaO , BaO formed hence Mg^{2+} , Ca^{2+} , Ba^{2+}

Solubility.

Soluble salts	Insoluble salts
All nitrates	All carbonates other than those of sodium, potassium and ammonium
All ethanoates/ Alcetates	ion. All oxalates except of Na^+, K^+, NH_4^+
All hydrogen carbonates	All phosphates except of Na^+, K^+, NH_4^+

All potassium, sodium and ammonium salts.

All nitrites, except silver nitrite which is sparingly soluble.

All common halides

All common sulphates

NB. Calcium and silver sulphates are sparingly soluble.

All sulphites

All chromates

NB. Calcium chromate is sparing soluble.

Halide of Pb^{2+} , Ag^+ , Ca^+

Sulphates of Pb^2 and Ba^{2+}

Sulphites of Pb^{2+} , Ba^{2+} and Ca^{2+} Hypochlorites of Pb^{2+} and Ag^{+}

Chromates of Pb^{2+} , Ba^{2+} , Ag^{+}

NB. Calcium chromate is sparingly soluble.

Calcium sulphate and silver sulphate are sparingly soluble.

Halides of Pb^{2+} are insoluble in cold water but sparingly soluble in warm water.

Sodium hydroxide solution.

Observation	Deduction
White precipitate soluble in excess to form a	Zn^{2+} , Al^{3+} , Pb^{2+} , Sn^{2+}
colourless solution.	
White precipitate insoluble in excess.	$Ca^{2+}, Mg^{2+}, Ba^{2+}$
Blue precipitate insoluble in excess	Cu^{2+}
Green precipitate insoluble in excess	Ni^{2+}
Dirty green precipitate insoluble in excess.	Fe^{2+}
Orange solution turns yellow	$Cr_2O_7^{2-}$ turns to CrO_4^{2-}
Blue precipitate insoluble in excess, turns pink	CO ²⁺
on standing, turns brown on further standing in	
air.	
Green precipitate soluble in excess to form a	Cr^{3+}
green solution.	
Dirty white precipitate insoluble in excess turns	Mn^{2+}
brown on standing in air.	
Brown precipitate insoluble in excess	Fe^{3+}
No observable change in the cold, but on	$NH_{(3)(s)}$ evolved
warming, a colourless, pungent, chocking gas	NH_4^+ confimed present
that turns moist red litmus paper blue and	
forms dense white fumes with concentrated	
hydrochloric acid.	

Ammonia hydroxide solution.

Observation	Deduction
White precipitate soluble in excess to	Zn^{2+}
form a colourless solution.	
White precipitate insoluble in excess.	Pb^{2+} , Al^{3+} , Sn^{2+} , Mg^{2+} , Ba^{2+}
Blue precipitate insoluble in excess.	Co^{2+}
Green precipitate insoluble in excess.	Cr^{3+}
Green precipitate soluble in excess to	Ni^{2+}
form a blue solution	
Dirty green precipitate insoluble in	Fe^{2+}
excess.	
Brown precipitate insoluble in excess.	Fe^{3+}
Blue precipitate soluble in excess to	Cu^{2+}
form a deep blue solution.	
Blue solution.	
No observable change	Ca^+, NH_4^+

Sodium hydrogen carbonate solution.

Test	Observation	Deduction
To the test solution, add	White precipitate and	
excess sodium hydrogen	effervescence of a	Ca^{2+} present.
carbonate solution.	colourless gas that turns	
	moist litmus paper red	
	and forms a white	
	precipitate with calcium	
	hydroxide solution.	
To the test solution, add	No observable change in	
excess sodium hydrogen	the cold, but on heating,	Mg^{2+} present.
carbonate solution and	a white precipitate is	
heat.	formed and bubbles of a	
	colourless gas that turns	
	moist blue litmus paper	
	red and forms a white	
	precipitate with calcium	
	hydroxide solution.	

Disodium hydrogen phosphate.

Test procedure	Observation	Deduction
To test solution, add	White precipitate soluble	Zn^{2+} confirmed present
solid ammonium	in excess dilute	
chloride followed by 3-4	ammonia solution.	

drops of disodium	White precipitate	Mg^{2+} present
hydrogen phosphate	insoluble in excess dilute	
solution and then dilute	ammonia solution.	
ammonia solution drop		
wise until in excess.		

Potassium iodide solution.

Test	Observation	Deduction
To the test solution, add	Yellow precipitate is	Pb ²⁺ present
2-3 drops of potassium	formed.	
iodide solution.		
To the test solution, add	Yellow precipitate	Pb^{2+} confirmed present.
potassium iodide	soluble in excess forming	
solution drop-wise until	a colourless solution.	
in excess.		

Dilute hydrochloric acid.

Observation	Deduction
White precipitate dissolves on	Pb ²⁺ present
warming precipitate re-appears on	
cooling.	

Dilute sulphuric acid

Test	Observation	Deduction
To test solution, add 2-3	White precipitate	Pb^{2+} , Ba^{2+} , Ca^{2+}
drops of dilute sulphuric		
acid.		

Potassium hexacyanoferrate (III) solution.

Test	Observation	Deduction
To test solution, add 2-3	Dark blue precipitate	Fe^{2+} confimed
drops of potassium	forms	
hexacyannoferate (III)	Brown precipitate forms	Ni ²⁺ confirmed
solution.		

Dimethyl glyoxime solution.

Observation	Deduction
Red precipitate/ pink	Ni^{2+}
precipitate forms	
F	Red precipitate/ pink

Ammonium thiocyanate solution/ potassium thiocyanate solution.

Test	Observation	Deduction
To test solution, add 2-3	Red solution forms	Fe^{3+}
drops of ammonium		
thiocyanate solution.		

Ammonium oxalate solution.

Test	Observation	Deduction
To the test solution, add	White precipitate soluble	Ba^{2+} or Ca^{2+}
ammonium oxalate	in ethanoic acid on	
solution followed by	warming.	
ethanoic acid.		
To the test solution, add	White precipitate soluble	Ba^{2+} confirmed present.
ammonium oxalate	in ethanoic acid on	
solution, followed by	warming.	
ethanoic acid and warm.		
To the test solution add	White precipitate soluble	Ba^{2+} or Ca^{2+}
ammonium oxalate	in the acid.	
solution followed by		
dilute hydrochloric acid.		

Potassium chromate (VI) solution.

Test	Observation	Deduction
To the test solution, add	Yellow precipitate	Pb^{2+} confirmed present
2-3 drops of potassium	soluble in excess dilute	
chromate (VI) solution	sodium hydroxide	
followed by dilute	solution forming a yellow	
sodium hydroxide	solution.	
solution until in excess.		
	Yellow precipitate	Ba^{2+} confirmed present
	insoluble in excess dilute	_

	sodium hydroxide	
	solution.	
To the test solution, add	Yellow precipitate	Pb ²⁺ confirmed present
2-3 drops of potassium	insoluble in dilute	
chromate (VI) solution	hydrochloric acid	
followed by dilute		
hydrochloric acid.		
To test solution, add 2-3	Yellow precipitate	Ba^{2+} confirmed present
drops of potassium	soluble in dilute	_
chromate (VI) solution	hydrochloric acid,	
followed by dilute	precipitate re-appears on	
hydrochloric acid.	addition of dilute	
	sulphuric acid.	

Concentrated sulphuric acid.

Test	Observation	Deduction
To unknown solid, add	Blue solid turns white	Hydrated Cu^{2+} salt turns
2-3 drops of		anhydrous Cu^{2+} salt.
concentrated sulphuric	Pink solid turns blue	Hydrated <i>CO</i> ²⁺ salt turns
acid and warm gently.		to anhydrous salt

Concentrated hydrochloric acid.

Test	Observation	Deduction
To test solution, add	Yellow solution forms	Cu^{2+} confirmed
concentrated	Blue solution forms	Co ²⁺ confirmed
hydrochloric acid drop		
wise until in excess		
	White precipitate forms	Pb^{2+} confirmed
	that dissolves in excess	
	to form a yellow solution.	
To test solution, add	Blue solution forms in	CO^{2+} confirmed
1cm ³ of concentrated	upper layer and purple	
hydrochloric acid,	solution in lower layer.	
followed by a spatula		
endful of solid		
ammonium thiocyanate		
then 1cm ³ of amylalcohol		
(pentanol) and then		
skake.		

Concentrated nitric acid

Test	Observation	Deduction
To test solution, add 3-4	Pale green solution turns	Fe^{2+} confirmed
drops of concentrated	brown on standing	
nitric acid and warm		
To test solution, add 3-4	Pale pink solution turns	Mn^{2+} confirmed
drops of concentrated	to purple solution	
nitric acid followed by a	warming	
spatula endful of sodium		
bismathate/ lead (IV)		
oxide and then warm.		

Sodium carbonate solution.

Test	Observation	Deduction
To test solution, add	White precipitate insoluble in	$Zn^{2+}, Pb^{2+}, Sn^{2+}, Mg^{2+}, Ca^{2+}, Ba^{2+}$
sodium carbonate		Zh ,Fb ,Sh ,My ,Ca ,Ba
	White precipitate in calculate in	Al^{3+}
solution drop wise until	White precipitate insoluble in	Al
in excess.	excess with effervescence of a	
•	colourless gas that turns	
	moist blue litmus paper red	
	and forms a white precipitate	
	with calcium hydroxide	
	solution	
	Pink violet precipitate	Co ²⁺
	insoluble in excess	
	No observable change	NH_4^+
	Green precipitate insoluble in	Ni^{2+}
	excess	
	Dirty white precipitate	Mn^{2+}
	insoluble in excess, turns	
	brown on standing in air.	
	Green/ blue precipitate	Cu^{2+}
	insoluble in excess.	
	Dirty green precipitate	Fe^{2+}
	insoluble in excess	
	Brown precipitate insoluble in	Fe^{3+}
	excess with effervescence of a	
	colourless gas which turns	
	moist blue litmus paper red	
	and forms a white precipitate	
	with calcium hydroxide	
	solution.	
	อบเนนบน.	

Action of lead(II) nitrate solution (or lead (II) acetate solution)

Test	Observation	Deduction
To test solution,	White precipitate	SO_4^{2-} , SO_3^{2-} , Cl^- , Br^- , $C_2O_4^{2-}CO_3^{2-}$, PO_4^{3-} , ClO_4^-
add lead (II)	Yellow precipitate	I^-, CrO_4^{2-}
nitrate solution		-
To test solution,	White precipitate	Cl ⁻
add lead (II)	soluble on warming	
nitrate solution	to form a colourless	
and warm.	solution, precipitate	
	re-appears on	
	cooling.	2 2
	White precipitate	SO_4^{2-}, SO_3^{2-}
	insoluble on	
m	warming	222 21 2
To test solution,	White precipitate	SO_4^{2-} , Cl^- , Br^-
add lead (II)	insoluble in the	
nitrate solution,	acid.	
followed by		
dilute nitric acid	White produitate	CO2- CI- D
To test solution,	White precipitate insoluble in the acid	SO_4^{2-} , Cl^- , Br^-
add lead (II) nitrate solution,	insoluble in the acid	
followed by		
dilute nitric acid.		
To the test	White precipitate	
solution, add	soluble in the acid	$CO_{2(g)}$ evolved
lead(II) nitrate	with effervescence of	002(g) evolved
solution,	a colourless gas	CO ₃ ²⁻ Present
followed by	which turns moist	
dilute nitric acid	blue litmus paper	
	red and forms white	
	precipitate with	
	calcium hydroxide	
	solution.	
To test solution,	White precipitate	$SO_3^{2-}, C_2O_4^{2-}, PO_4^{3-}$
add lead (II)	soluble in the acid	
nitrate solution,	without	
followed by	effervescence.	
dilute nitric acid.		

Action of Barium nitrate solution.

Test	Observation	Deduction
To test solution, add	Yellow precipitate is	CrO_4^{2-} confirmed present
Barium nitrate solution.	formed.	
To test solution, add	White precipitate,	SO_4^{2-} confirmed present
Barium nitrate solution	insoluble in the acid	
followed by dilute nitric	White precipitate soluble	$SO_3^{2-}, C_2O_4^{2-}, PO_4^{3-}$
acid.	in dilute nitric acid	
	without effervescence	
	White precipitate soluble	$CO_{2(g)}$ given off
	in the acid with	
	effervescence of a	CO_3^{2-} present
	colourless gas which	
	turns moist blue litmus	
	paper red and forms a	
	white precipitate with	
	calcium hydroxide	
	solution.	2 2 2
	Yellow precipitate which	CrO_4^{2-}
	dissolves in the acid to	
	form an orange solution.	al- a o²-
	No observable change	$Cl^{-}, S_2O_3^{2-}$
To test solution, add	White precipitate	SO_3^{2-} Confirmed present.
dilute nitric acid	insoluble in the acid	
solution, followed by		
Barium nitrate solution.		

Action of magnesium sulphate/ magnesium nitrate / magnesium chloride solution.

Test	Observation	Deduction
To test solution, add magnesium sulphate solution	White precipitate	CO_3^{2-} present
	No observable change	<i>HCO</i> [−] ₃ present

Action of silver nitrate solution and excess ammonia solution.

Test	Observation	Deduction
To the test solution, add	White precipitate	<i>Cl</i> [−] confirmed present
a few drops of silver	soluble in excess	_
nitrate solution followed	ammonia solution	

by ammonia solution	forming a colourless	
drop wise until in	solution.	
excess.	Yellow precipitate	<i>I</i> -
	insoluble in excess	
	ammonia solution.	
	Pale yellow precipitate	Br-
	dissolves with difficulty	
	in excess ammonia	
	solution.	
	White precipitate	$C_2O_4^{2-}, CO_3^{2-}$
	soluble in excess	
	ammonia solution.	
	White precipitate	SO_3^{2-}
	insoluble in excess	
	ammonia solution.	
	Red precipitate soluble	CrO_4^{2-}
	in excess ammonia	
	solution to form a	
	yellow solution.	
	No observable change	SO_4^{2-}

Action of silver nitrate solution with dilute nitric acid.

Test	Observation	Deduction
To the test solution, add	White precipitate	<i>Cl</i> [−] confirmed present
a few drops of silver	insoluble in the acid	
nitrate solution followed	Yellow precipitate	Br ⁻
by dilute nitric acid.	insoluble in the acid.	
	Yellow precipitate	<i>I</i> -
	insoluble in the acid	
	Pale yellow precipitate	PO_4^{3-}
	soluble in the acid	-
	without effervescence.	
	White precipitate soluble	$C_2 O_4^{2-}$
	in the acid without	
	effervescence.	
	Red precipitate soluble	CrO_4^{2-}
	in the acid with no	_
	effervescence to form an	
	orange solution.	
	No observable change	SO_4^{2-}
	White precipitate	$CO_{2(g)}$ evolves

	dissolves in the acid with	
	effervescence of a	CO_3^{2-} present
	colourless gas which	
	turns moist blue litmus	
	red and forms a white	
	precipitate with calcium	
	hydroxide solution.	
To the test solution, add	White precipitate is	<i>Cl</i> [−] confirmed present
dilute nitric acid followed	formed	
by a few drops of silver	Yellow precipitate is	<i>I</i> -
nitrate solution.	formed	
	Pale yellow precipitate	Br-
	No observable change	SO_4^{2-}

With potassium manganate (VII) solution

Test	Observation	Deduction
To the test solution,	Purple solution turns	$SO_3^{2-}, S_2O_3^{2-}, NO_2^-, Cl^-, Br^-, I^-$
add acidified	colourless	
potassium manganate		
(VII) solution.		
To the test solution,	Purple solution turns	$C_2O_4^{2-}$ confirmed present
add acidified	colourless on heating	
potassium manganite		
(VII) solution and heat.		

Trichloromethane (chloroform)

Test	Observation	Deduction
To the test solution, add	Orange solution in the	Br^- confirmed present
a little bleaching powder.	organic layer	
(add 1cm ³ of a solution	Purple solution in the	<i>I</i> [−] confirmed present
of a bleaching agent)	organic layer	_
followed by 1cm ³ of		
dilute nitric acid and		
then 1cm ³ of chloroform		
and shake gently.		

Devardas's Alloy

Test	Observation	Deduction
To the test solution, add	Colourless , pungent,	$NH_{3(s)}$ evolved
Devarda's alloy followed	chocking gas, turns	
by excess dilute sodium	moist red litmus paper	NO_3^- confirmed present
hydroxide solution and	blue and forms dense	
boil.	white fumes with	
	concentrated	
	hydrochloric acid	

N.B Incase Devarda's Alloy is not available, either zinc or aluminium powder with sodium hydroxide solution and warmed.

Test	Observation	Deduction
To test solution, add zinc		$NH_{3(g)}$ evolved
or aluminium powder	chocking gas which	
followed by excess dilute	turns moist red litmus	NO_3^- confirmed present
sodium hydroxide	paper blue and forms	3
solution and warm.	dense white fumes with	
	concentrated	
	hydrochloric acid.	

Dilute hydrochloric acid.

Test	observation	Deduction
To the unknown solid,	Effervescence of a	$CO_{2(g)}$ evolved
add 2cm ³ of dilute	colourless gas which	
hydrochloric acid	turns moist blue litmus	CO_3^{2-} (or HCO_3^{-})
	paper red and forms	
	white precipitate with	
	calcium hydroxide	
	solution.	
	No observable change at	$SO_{2(g)}$ evolved
	room temperature, but	
	on warming there is	SO_3^{2-} present
(In case the solution is	evolution of a colourless,	
warmed	pungent gas which turns	
	moist blue litmus paper	
	red and bleaches it, and	
	turns acidified	
	potassium	

	dichromate(VI) solution from orange to green.	
To the test solution, add 2cm ³ of dilute hydrochloric acid and warm.	Yellow precipitate, on warming, there is evolution of a colourless pungent gas which turns moist blue litmus paper	$S_{(s)}$ precipitated $SO_{2(g)}$ evolved
	red and bleaches it, and turns acidified potassium dichromate (VI) solution from orange to green.	$S_2O_3^{2-}$ confirmed present

Neutral Iron (III) chloride solution

Test	Observation	Deduction
To test solution, add	Red colouration is	CH_3COO^- confirmed
neutral Iron (III) chloride	formed.	present
solution.		
To the test solution, add	Brown precipitate	CH_3COO^- confirmed
neutral Iron (III) chloride		present
solution and boil.		

Ethanol Esterification

Test	Observation	Deduction
To the test solution, add	Sweet, fruity smell	Esterification reaction
1cm ³ of Ethanol followed		<i>CH</i> ₃ <i>COO</i> [−] confirmed
by 3 to 5 drops of		present
concentrated sulphuric		
acid and warm. Pour the		
product in a test tube		
containing water.		

Dilute sulphuric acid.

Test	Observation	Deduction
To test solution, add	Yellow solution turns	CrO_4^{2-} confirmed present
dilute sulphuric acid	orange and then to an	
followed by hydrogen	intense blue solution	
peroxide solution.	which quickly fades,	
	leaving behind a green	
	solution.	

To cold test solution, add	Dark brown complex is	NO_2^- confirmed present
iron (II) sulphate	formed	
solution followed by		
dilute sulphuric acid		

Dilute nitric acid

Test	Observation	Deduction
To test solution, add	Greenish yellow gas	<i>ClO</i> ⁻ confirmed present
dilute nitric acid	which turns moist blue	
	litmus paper red and	
	bleaches it	

Gases and their deductions.

Observation	Deduction
Colourless condensate, turns anhydrous copper (II) sulphate from white to blue and blue chloride paper to pink.	Water of crystallization hence hydrated salt.
Brown vapour, turns moist blue litmus paper red and bleaches it.	$Br_{2\ (g)}$ evolved hence Br^- suspected
Purple vaour, turns moist blue litmus paper red, sublimes to form a black solid	$I_{2(g)}$ evolved I^- suspected present
White fumes with a sweet smell, form a yellow precipitate with 2, 4-dinitropheny I hydrazine solution.	$CH_3COCH_{3(g)}$ evolved CH_3COO^- suspected present
Misty fumes with a chocking smell, turns moist blue litmus paper red and form dense white fumes with concentrated ammonia solution. And greenish yellow gas turns moist	$HCl_{(g)}$ evolved $Cl_{2(g)}$
blue litmus paper red and bleaches it.	07
Colourless gas turns moist blue litmus paper red and forms a white precipitate with calcium hydroxide solution.	$CO_{2(g)}$ evolved CO_3^{2-} , HCO_3^{-} , $C_2O_4^{2-}$, CH_3COO^{-} suspected present
Brown vapour, turns moist blue litmus paper red and bleaches it.	$Br_{2(g)}$ evolved Br^- suspected present
White fumes which turn moist blue litmus paper red and form white precipitate with barium nitrate	$SO_{3(g)}$ evolved SO_4^{2-} suspected present

solution.	
Brown fumes with a pungent smell	$NO_{2(g)}$ evolved
and turn moist blue litmus paper red	NO_3^- suspected present
with a cracking sound.	
Colourless, pungent, chocking gas,	$NH_{3(g)}$ evolved
turns moist red litmus paper blue and	NH ₄ suspected present
forms dense white fumes with	
concentrated hydrochloric acid.	