ITM426, Final Exam, 2020 Fall

Solution and Grading

 $\bullet\,$ ITM 426 Engineering Mathematics 2020 F

• Justification is necessary unless stated otherwise.

out proper sanity check and 2) correct your mistake by doing so.

• Dec 11, 2020		
• Duration: 120 minutes		
• 5 Questions		
\bullet Weighting of 30 $\%$		
• Name:		
• Student ID:		
• E-mail:	@seoultech.ac.kr	
• Write legibly.		
• In on-line exam, start every problem in a new page.		

• Partial points are given only sparingly for the most problems because you are expected to 1) carry

1	30
2	20
3	20
4	10
5	30
Total	110

#1. Let
$$\mathbf{u}_1 = (1 \ 1 \ 1)$$
, $\mathbf{u}_2 = (-1 \ 0 \ 1)$, $\mathbf{y} = (3 \ 5 \ 10)$, and $W = Span\{\mathbf{u}_1, \mathbf{u}_2\}$.

- (a) Find a unit vector in the direction of the vector y.[10pt]
- (b) Find a vector $\hat{\mathbf{y}}$, which is the orthogonal projection of \mathbf{y} onto W.[10pt]
- (c) Explain the relationship between $\mathbf{y} \hat{\mathbf{y}}$ and \mathbf{u}_1 . If possible, express the relationship in a mathematical expression. [10pt]

```
Difficulty: Easy Amount of work: 15 % Suggested answer: (a) \frac{1}{\sqrt{3^2+5^2+10^2}}(3 5 10) (b) \frac{18}{3}(1 1 1) + \frac{7}{2}(-1 0 1) = (2.5 6 9.5) (c) (y - \hat{\mathbf{y}}) \circ \mathbf{u}_1=0
```

#2. From an experiment, four observations of two variables are collected: (1,2),(2,6),(3,4), and (4,8), answer the following.

- (a) Set up a normal equation for a linear regression. [10pt]
- (b) Solve the normal equation, and draw the regression line and the four points in a 2D plane. [10pt]

Difficulty: Medium Amount of work: 25 % Suggested answer:

Let
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$
 and $b = \begin{bmatrix} 2 \\ 6 \\ 4 \\ 8 \end{bmatrix}$, then normal equation is $A^T A \mathbf{x} = A^T \mathbf{b}$. It leads to $\mathbf{x} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 1 \\ 8/5 \end{bmatrix}$

#3. We have a matrix A of the following:

$$A = \left[\begin{array}{cc} 3 & 9 \\ 9 & 35 \end{array} \right]$$

(a) Show that A is positive definite¹.[10pt]

¹ Following may or may not help: a quadratic equation of $ax^2 + bx + c = 0$ has a solution $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

(b) Perform a Cholesky decomposition.[10pt]

Difficulty: Medium Amount of work: 20 % Suggested answer:

- (a) A characteristic equation is $\lambda^2 38\lambda + 24 = 0$, and the two roots are both positive numbers. This proves the pd.
- proves the pd. (b) $A = LL^t$, where $L = \begin{bmatrix} \sqrt{3} & 0 \\ 3\sqrt{3} & 2\sqrt{2} \end{bmatrix}$

#4. Suppose $A\mathbf{x} = \mathbf{0}$ has a solution $\mathbf{x} = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^t$ and $A\mathbf{x} = \mathbf{b}$ has a solution $\mathbf{x} = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^t$. Is $\mathbf{x} = \begin{bmatrix} 3 & 5 & -1 \end{bmatrix}^t$ a solution to $A\mathbf{x} = \mathbf{b}$ as well? Write True or False, and explain your reasoning. [10pt]

 $\textbf{Difficulty} \colon \operatorname{Easy}$

Amount of work: 10 %

Suggested answer:

True.
$$A \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix} = A \cdot 2 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + A \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \mathbf{0} + \mathbf{b} = \mathbf{b}.$$

#5. From an experiment, three observations of two variables are collected: (1,6),(2,5), and (3,4), answer the following.

(a) Construct a sample covariance matrix.[10pt]

Using the sample covariance matrix above, perform a principal component analysis. In case you are unsure of your answer to the problem (a), then you may propose a legit 2×2 covariance matrix and proceed with it.

(b) Find the two principal components. ${\tt [10pt]}$

- (c) How much variance each principal component explain? [10pt]
- (d) Any comment on your result regarding (c)? [Bonus 5pt]

Difficulty: Medium-Hard Amount of work: 30 %

Suggested answer:

(a)
$$X = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \end{bmatrix}$$
, $M = \begin{bmatrix} 2 & 2 & 2 \\ 5 & 5 & 5 \end{bmatrix}$, $S = (X - M)(X - M)^t/(3 - 1) = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$.

(b) (c) eigenvalues: 2, 0; eigenvectors: $(1 - 1)$ and $(1 1)$; principal components: $\frac{1}{\sqrt{2}}(1 - 1)$ and $\frac{1}{\sqrt{2}}(1 1)$.

Each principal component explains 100% and 0%, respectively.

(d) All observations fall into a single line, thus a single vector (principal component) can explain all variations.

blank

Write your name before detaching this page.	Your Name:
---	------------