3	determining whether a sum of the short-term averaged energy and a factor is greater					
4	than the long-term averaged energy; and					
5	determining that the current audio frame represents silence if the sum is less than the					
6	long-term averaged energy, without necessitating a determination of the peak-to-mean					
7	likelihood ratio.					
1	4. The method of claim 3, upon determining that the sum is greater than the					
2	long-term averaged energy and before determining the peak-to-mean likelihood ratio, the					
3	method further comprises:					
4	determining whether a difference between the long-term averaged energy and the					
5	short-term averaged energy is less than a predetermined threshold;					
6	determining that the current audio frame represents voice if the difference is greater					
7	than the predetermined threshold; and					
8	continuing by determining the peak-to-mean likelihood ratio if the difference is less					
9	than the predetermined threshold.					
1	5. The method of claim 2, wherein the determining of the short-term averaged					
2	energy comprises:					
3	determining an energy, in decibels, of the current audio frame;					
4	determining a short-term averaged energy for a prior audio frame; and					
5	conducting a weighted average of the energy of the current audio frame and the shor					
6	term averaged energy for the prior audio frame.					
1	6. (Twice Amended) A method for enhancing voice activity detection					
2	comprising:					
3	determining a peak-to-mean likelihood ratio, the determining a peak-to-mean					

003239.P010 App. No. 09/134,272

likelihood ratio comprises

-2-

5 calculating an averaged peak-to-mean ratio for the current audio frame, 6 determining a maximum averaged peak-to-mean ratio, 7 determining a minimum averaged peak-to-mean ratio, determining a difference between the maximum averaged peak-to-mean ratio 8 9 and the averaged peak-to-mean ratio for the current audio frame, 10 determining a difference between the maximum averaged peak-to-mean ratio 11 and the minimum averaged peak-to-mean ratio, and conducting a ratio, a denominator of the ratio being the difference between the 12 13 maximum averaged peak-to-mean ratio and the minimum averaged peak-to-mean ratio, the numerator being the difference between the maximum averaged peak-to-14 15 mean ratio and the averaged peak-to-mean ratio; and 16 comparing the peak-to-mean likelihood ratio to a selected threshold to determine 17 whether a current audio frame represents a voice signal.

7. (Cancelled)

1

1

2

3

4

5

1

2

3

4

5

- 8. (Amended) The communication module of claim 12, wherein the voice activity detector, when executed, controls the processing unit to determine whether a sum of the short-term averaged energy and a predetermined factor is greater than the long-term averaged energy, and to signal that the current audio frame represents silence if the sum is less than the long-term averaged energy.
- 9. The communication module of claim 8, wherein the voice activity detector, when executed, controls the processing unit to determine whether a difference between the long-term averaged energy and the short-term averaged energy is less than a predetermined threshold, and to signal that the current audio frame represents voice if the difference is greater than the predetermined threshold.

-3-

WWS/crr Filed: 8/14/98

10.	(Cancelled)
10.	(Carrocirea)

11. (Amended) The communication module of claim 9, wherein the voice activity
detector, when executed, controls the processing unit to determine a peak-to-mean ratio by (i)
sampling an analog signal a predetermined number of times to produce a plurality of sampled
signals each having a sampled value, (ii) determining a maximum value of the plurality of
sampled signals, and (iii) conducting a ratio between an absolute value of the maximum
value and a summation of the sampled values for the plurality of sampled signals.

- 12. (Twice Amended) A communication module comprising:
- 2 a substrate;

- a processing unit placed on the substrate; and
- a memory coupled to the processing unit, the memory to contain a voice activity

 detector which, when executed, controls the processing unit to

determine a peak-to-mean likelihood ratio for the current audio frame by (i) monitoring a maximum averaged peak-to-mean ratio and a minimum averaged peak-to-mean ratio, (ii) determining a first result being a difference between the maximum averaged peak-to-mean ratio and the averaged peak-to-mean ratio for the current audio frame, (iii) determining a second result being a difference between the maximum averaged peak-to-mean ratio and the minimum averaged peak-to-mean ratio, and (iv) conducting a ratio between the first result as a numerator and the second result as a denominator; and

compare the peak-to-mean likelihood ration to a selected threshold to determine whether the current audio frame represents a voice signal.

13. (Twice Amended) A machine readable medium having embodied thereon a computer program for processing by a machine, the computer program comprising:

3	a first routine for determining a normalized peak-to-mean likelihood ratio including
4	(i) a denominator having a value substantially equal to a difference between a maximum
5	averaged peak-to-mean ratio and a minimum averaged peak-to-mean ratio and (ii) a
6	numerator having a value substantially equal to a difference between the maximum averaged
7	peak-to-mean ratio and the averaged peak-to-mean ratio; and
8	a second routine for comparing the peak-to-mean likelihood ratio to a selected
9	threshold to determine whether an audio frame being transmitted represents a voice signal.
1 2	14. The machine readable medium of claim 13, wherein the computer program further comprising:
3	a third routine for determining a short-term averaged energy for the audio frame, the
4	third routine being executed before the first and second routines; and
5	a fourth routine for determining a long-term averaged energy for the audio frame, the
5	fourth routine being executed before the first and second routines.
1	15. The machine readable medium of claim 14, wherein the computer program further comprising:
3	a fifth routine for determining whether a sum of the short-term averaged energy and a
4	predetermined factor is greater than the long-term averaged energy, the fifth routine being
5	executed before the first and second routines; and
5	a sixth routine for determining whether a difference between the long-term averaged
7	energy and the short-term averaged energy is less than a predetermined threshold, the sixth
8	routine being executed after determining that the sum is greater than the long-term averaged

8

9

-5-

energy and before execution of the first and second routines.

1	16. The machine readable medium of claim 15, wherein the fifth routine						
2	determining that the current audio frame represents silence if the sum is less than the long-						
3	term averaged energy.						
1	17. The machine readable medium of claim 15, wherein the sixth routine						
2	determining that the current audio frame represents voice if the difference is greater than the						
3	predetermined threshold.						
1	18. (Cancelled)						
1	20. A method for enhancing voice activity detection comprising:						
2	determining a peak-to-mean likelihood ratio including (i) a denominator having a						
3	value substantially equal to a difference between a maximum averaged peak-to-mean ratio						
4	and a minimum averaged peak-to-mean ratio and (ii) a numerator having a value						
5	substantially equal to a difference between the maximum averaged peak-to-mean ratio and						
6	the averaged peak-to-mean ratio; and						
7	comparing the peak-to-mean likelihood ratio to a selected threshold to determine						
8	whether a current audio frame represents a voice signal.						
1	The method of claim 20, wherein prior to determining the peak-to-mean						
2	21. The method of claim 20, wherein prior to determining the peak-to-mean likelihood ratio, the method further comprises:						
2 3	determining a short-term averaged energy for the current audio frame; and						
3	determining a short-term averaged energy for the current audio frame, and						
4	determining a long-term averaged energy for the current audio frame.						
1	22. The method of claim 21, wherein after determining the short-term averaged						
2	energy and the long-term averaged energy, the method further comprises:						
3	determining whether a sum of the short-term averaged energy and a factor is greater						
4	than the long-term averaged energy; and						

003239.P010 App. No. 09/134,272

-6-

5 determining that the current audio frame represents silence if the sum is less than the 6 long-term averaged energy, without necessitating a determination of the peak-to-mean 7 likelihood ratio. 1 23. The method of claim 22, upon determining that the sum is greater than the 2 long-term averaged energy and before determining the peak-to-mean likelihood ratio, the 3 method further comprises: 4 determining whether a difference between the long-term averaged energy and the 5 short-term averaged energy is less than a predetermined threshold; 6 determining that the current audio frame represents voice if the difference is greater 7 than the predetermined threshold; and 8 continuing by determining the peak-to-mean likelihood ratio if the difference is less 9 than the predetermined threshold. 24. 1 The method of claim 21, wherein the determining of the short-term averaged 2 energy comprises: 3 determining an energy, in decibels, of the current audio frame; 4 determining a short-term averaged energy for a prior audio frame; and

conducting a weighted average of the energy of the current audio frame and the short-

-7-

003239.P010 App. No. 09/134,272

term averaged energy for the prior audio frame.

5

6

WWS/crr Filed: 8/14/98