# Class08

Alexander Liu (PID: 69026918)

```
candy_file <- "candy-data.csv"

candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

|              | choco | olate | fruity   | ${\tt caramel}$ | peanut | tyalmondy | nougat  | crispedi | ricewafer |
|--------------|-------|-------|----------|-----------------|--------|-----------|---------|----------|-----------|
| 100 Grand    |       | 1     | 0        | 1               |        | 0         | (       | )        | 1         |
| 3 Musketeers |       | 1     | 0        | 0               |        | 0         | 1       | -        | 0         |
| One dime     |       | 0     | 0        | 0               |        | 0         | C       | )        | 0         |
| One quarter  |       | 0     | 0        | 0               |        | 0         | C       | )        | 0         |
| Air Heads    |       | 0     | 1        | 0               |        | 0         | C       | )        | 0         |
| Almond Joy   |       | 1     | 0        | 0               |        | 1         | (       | )        | 0         |
|              | hard  | bar j | pluribus | sugarpe         | ercent | priceper  | cent wi | npercent |           |
| 100 Grand    | 0     | 1     | C        | )               | 0.732  | 0         | .860    | 66.97173 |           |
| 3 Musketeers | 0     | 1     | C        | )               | 0.604  | 0         | .511    | 67.60294 |           |
| One dime     | 0     | 0     | C        | )               | 0.011  | 0         | .116    | 32.26109 |           |
| One quarter  | 0     | 0     | C        | )               | 0.011  | 0         | .511    | 46.11650 |           |
| Air Heads    | 0     | 0     | C        | )               | 0.906  | 0         | .511    | 52.34146 |           |
| Almond Joy   | 0     | 1     | C        | )               | 0.465  | 0         | .767    | 50.34755 |           |

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

85 types.

Q2. How many fruity candy types are in the dataset?

```
sum(candy$fruity == 1)
[1] 38
38 types.
Q3. What is your favorite candy in the dataset and what is it's winpercent value?
  candy["100 Grand",]$winpercent
[1] 66.97173
My favorite is 100 Grand. Its winpercent is 66.97173
Q4. What is the winpercent value for "Kit Kat"?
  candy["Kit Kat",]$winpercent
[1] 76.7686
Kit Kat's winpercent is 76.7686.
Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?
  candy["Tootsie Roll Snack Bars",]$winpercent
[1] 49.6535
Tootsie Roll Snack Bars's winpercent is 49.6535.
```

library("skimr")
skim(candy)

Table 1: Data summary

| Name              | candy |
|-------------------|-------|
| Number of rows    | 85    |
| Number of columns | 12    |

| Column type frequency: |      |
|------------------------|------|
| numeric                | 12   |
| Group variables        | None |

### Variable type: numeric

| skim_variable n_ | _missingcomp | olete_ra | atmenean | $\operatorname{sd}$ | p0    | p25   | p50   | p75   | p100  | hist |
|------------------|--------------|----------|----------|---------------------|-------|-------|-------|-------|-------|------|
| chocolate        | 0            | 1        | 0.44     | 0.50                | 0.00  | 0.00  | 0.00  | 1.00  | 1.00  |      |
| fruity           | 0            | 1        | 0.45     | 0.50                | 0.00  | 0.00  | 0.00  | 1.00  | 1.00  |      |
| caramel          | 0            | 1        | 0.16     | 0.37                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| peanutyalmondy   | 0            | 1        | 0.16     | 0.37                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| nougat           | 0            | 1        | 0.08     | 0.28                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| crispedricewafer | 0            | 1        | 0.08     | 0.28                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| hard             | 0            | 1        | 0.18     | 0.38                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| bar              | 0            | 1        | 0.25     | 0.43                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| pluribus         | 0            | 1        | 0.52     | 0.50                | 0.00  | 0.00  | 1.00  | 1.00  | 1.00  |      |
| sugarpercent     | 0            | 1        | 0.48     | 0.28                | 0.01  | 0.22  | 0.47  | 0.73  | 0.99  |      |
| pricepercent     | 0            | 1        | 0.47     | 0.29                | 0.01  | 0.26  | 0.47  | 0.65  | 0.98  |      |
| winpercent       | 0            | 1        | 50.32    | 14.71               | 22.45 | 39.14 | 47.83 | 59.86 | 84.18 |      |

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

winpercent.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

"1" indicates that the variable is chocolate, whereas "0" indicates not.

Q8. Plot a histogram of winpercent values

hist(candy\$winpercent)

# Histogram of candy\$winpercent



Q9. Is the distribution of winpercent values symmetrical? According to the histogram, not.

Q10. Is the center of the distribution above or below 50%?

```
median(candy$winpercent)
```

[1] 47.82975

Below 50%.

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
chocolate <- candy[candy$chocolate == 1, "winpercent"]
fruity <- candy[candy$fruity == 1, "winpercent"]
mean(chocolate)</pre>
```

[1] 60.92153

```
mean(fruity)
```

[1] 44.11974

```
Higher.
Q12. Is this difference statistically significant?
  t.test(chocolate, fruity)
    Welch Two Sample t-test
data: chocolate and fruity
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 11.44563 22.15795
sample estimates:
mean of x mean of y
 60.92153 44.11974
Yes.
Q13. What are the five least liked candy types in this set?
  library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
  row.names.data.frame(head(candy[order(candy$winpercent),], n=5))
[1] "Nik L Nip"
                          "Boston Baked Beans" "Chiclets"
[4] "Super Bubble"
                          "Jawbusters"
```

```
row.names.data.frame(candy %>% arrange(winpercent) %>% head(5))
[1] "Nik L Nip"
                           "Boston Baked Beans" "Chiclets"
[4] "Super Bubble"
                           "Jawbusters"
"Nik L Nip", "Boston Baked Beans", "Chiclets", "Super Bubble", and "Jawbusters".
Q14. What are the top 5 all time favorite candy types out of this set?
  row.names.data.frame(tail(candy[order(candy$winpercent),], n=5))
                                  "Kit Kat"
[1] "Snickers"
[3] "Twix"
                                  "Reese's Miniatures"
[5] "Reese's Peanut Butter cup"
  row.names.data.frame(candy %>% arrange(winpercent) %>% tail(5))
[1] "Snickers"
                                  "Kit Kat"
[3] "Twix"
                                  "Reese's Miniatures"
[5] "Reese's Peanut Butter cup"
"Snickers", "Kit Kat", "Twix", "Reese's Miniatures", and "Reese's Peanut Butter cup".
Q15. Make a first barplot of candy ranking based on winpercent values.
  library(ggplot2)
  ggplot(candy) +
    aes(winpercent, rownames(candy)) +
     geom_bar(stat = "identity")
```



Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```



```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols)
```



• Q17. What is the worst ranked chocolate candy?

#### "Nik L Nip"

• Q18. What is the best ranked fruity candy?

"Reese's Peanut Butter cup"

```
# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3.3, max.overlaps = 50)
```



Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

I calculated the cost efficiency (winpercent/pricepercent)

```
candy$bang <- candy$winpercent/candy$pricepercent
ord <- order(candy$bang, decreasing = TRUE)
head( candy[ord,c(11,12,13)], n=5 )</pre>
```

|                      | pricepercent | winpercent | bang      |
|----------------------|--------------|------------|-----------|
| Tootsie Roll Midgies | 0.011        | 45.73675   | 4157.8862 |
| Pixie Sticks         | 0.023        | 37.72234   | 1640.1016 |
| Fruit Chews          | 0.034        | 43.08892   | 1267.3212 |
| Dum Dums             | 0.034        | 39.46056   | 1160.6045 |
| Strawberry bon bons  | 0.058        | 34.57899   | 596.1895  |

<sup>&</sup>quot;Tootsie Roll Midgies".

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
tail( candy[ord,c(11,12,13)], n=5 )</pre>
```

|                      | pricepercent | winpercent | bang      |
|----------------------|--------------|------------|-----------|
| Strawberry bon bons  | 0.058        | 34.57899   | 596.1895  |
| Dum Dums             | 0.034        | 39.46056   | 1160.6045 |
| Fruit Chews          | 0.034        | 43.08892   | 1267.3212 |
| Pixie Sticks         | 0.023        | 37.72234   | 1640.1016 |
| Tootsie Roll Midgies | 0.011        | 45.73675   | 4157.8862 |

#### "Nik L Nip".

Q21. Make a barplot again with geom\_col() this time using pricepercent and then improve this step by step, first ordering the x-axis by value and finally making a so called "dot chat" or "lollipop" chart by swapping geom\_col() for geom\_point() + geom\_segment().

```
ggplot(candy) +
  aes(pricepercent, reorder(rownames(candy),pricepercent)) +
  geom_col()
```





library(corrplot)

corrplot 0.92 loaded

cij <- cor(candy)
corrplot(cij)</pre>



Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)? chocolate vs fruity, and pluribus vs bar

Q23. Similarly, what two variables are most positively correlated? chocolate vs bar, and chocolate vs winpercent

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

#### Importance of components:

```
PC1
                                 PC2
                                          PC3
                                                 PC4
                                                         PC5
                                                                 PC6
                                                                          PC7
Standard deviation
                       2.0938 1.2127 1.13054 1.0787 0.98027 0.93656 0.81530
Proportion of Variance 0.3372 0.1131 0.09832 0.0895 0.07392 0.06747 0.05113
Cumulative Proportion
                       0.3372\ 0.4503\ 0.54866\ 0.6382\ 0.71208\ 0.77956\ 0.83069
                           PC8
                                    PC9
                                           PC10
                                                   PC11
                                                           PC12
                                                                   PC13
Standard deviation
                       0.78462 0.68466 0.66328 0.57829 0.43128 0.39534
Proportion of Variance 0.04736 0.03606 0.03384 0.02572 0.01431 0.01202
Cumulative Proportion 0.87804 0.91410 0.94794 0.97367 0.98798 1.00000
```

```
plot(pca$x[,"PC1"], pca$x[,"PC2"])
```



plot(pca\$x[,1:2], col=my\_cols, pch=16)



```
# Make a new data-frame with our PCA results and candy data
my_data <- cbind(candy, pca$x[,1:3])

p <- ggplot(my_data) +
    aes(x=PC1, y=PC2,
        size=winpercent/100,
        text=rownames(my_data),
        label=rownames(my_data)) +
    geom_point(col=my_cols)</pre>
```



# library(ggrepel)

## Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown



Data from 538

#### library(plotly)

```
Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':
    last_plot

The following object is masked from 'package:stats':
    filter

The following object is masked from 'package:graphics':
    layout

ggplotly(p)
```

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```



Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

fruity, hard, and pluribus. Many candies which have these characteristics can be found at the positive side of the PC1-PC2 plot.