

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE CIENCIAS

Práctica No. 0

Computación Distribuida

Profesor

Mauricio Riva Palacio Orozco

Ayudantes

Alan Alexis Martínez López Yael Antonio Calzada Martín

Resultados del ejecutable

Número de nodos	Tiempo de primera ejecución	Tiempo de segunda ejecución	Tiempo de tercera ejecución
1	319100 ms	313581 ms	331619 ms
2	295714 ms	$306733~\mathrm{ms}$	281635 ms
3	295393 ms	$297703~\mathrm{ms}$	313636 ms
4	292762 ms	$288012~\mathrm{ms}$	300133 ms
6	286828 ms	288414 ms	$298721~\mathrm{ms}$
8	298989 ms	$293188~\mathrm{ms}$	287997 ms
10	413811 ms	390277 ms	427566 ms
12	506065 ms	516371 ms	405573 ms
15	548148 ms	$471123~\mathrm{ms}$	534077 ms
20	588623 ms	609268 ms	624246 ms

Table 1: Resultados obtenidos: 1 $^{\,\,1}$

Número de nodos	Tiempo de primera ejecución	Tiempo de segunda ejecución	Tiempo de tercera ejecución
1	506196 ms	480081 ms	493399 ms
2	382852 ms	381603 ms	$389044~\mathrm{ms}$
3	370685 ms	$361672~\mathrm{ms}$	370453 ms
4	361672 ms	377239 ms	406371 ms
6	441291 ms	457613 ms	467692 ms
8	508943 ms	$492427~\mathrm{ms}$	497954 ms
10	583343 ms	584911 ms	544694 ms
12	612409 ms	$609728~\mathrm{ms}$	630929 ms
15	689702 ms	$695179~\mathrm{ms}$	$706427~\mathrm{ms}$
20	855298 ms	874303 ms	857465 ms

Table 2: Resultados obtenidos: 2 2

¹1. Distro Endeavour OS, más info: nproc -all, output: 16
²2: Distro Ubuntu, más info: nproc -all, output: 4
³3. Distro Ubuntu, más info: nproc -all, output: 8

Número de nodos	Tiempo de primera ejecución	Tiempo de segunda ejecución	Tiempo de tercera ejecución
1	451159 ms	$401879~\mathrm{ms}$	421990 ms
2	357833 ms	367666 ms	337383 ms
3	355437 ms	346538 ms	347404 ms
4	356263 ms	$340479~\mathrm{ms}$	339899 ms
6	433517 ms	410577 ms	428069 ms
8	470635 ms	$426747~\mathrm{ms}$	454978 ms
10	488058 ms	483652 ms	492719 ms
12	519021 ms	549711 ms	501823 ms
15	558319 ms	$581823~\mathrm{ms}$	608190 ms
20	708915 ms	677945 ms	732338 ms

Table 3: Resultados obtenidos: 3

3

Explicación:¿Por qué algunas ejecuciones tardan más o tardan menos?

- 1: A mi parecer el envio de mensajes del MPI puede ver la comunicación entre mensajes retrasada por diversos procesos corriendo en segundo plano, también en la explicación de la clase (ayudantía) cuando se nos mencionó acerca de los procesos que son llevados a cabo por acción del procesador y de las condiciones de competencia, respecto a eso se nos dijo a grandes rasgos que si usas más procesos de los núcleos que hay (suponiendo que 8 núcleos es un estándar), algunos procesos se tienen que empezar a turnar (porque se ejecuta uno a la vez) y eso causa que tarde mucho más.
- 2: Yo pienso que las variaciones en el tiempo al momento de la ejecución se deben principalmente a la forma en la que MPI reparte el trabajo a los distintos procesos y a la carga que tiene el sistema en cada momento. Entre mas procesos tengamos el tiempo puede llegar a disminuir ya que el trabajo se divide, aunque puede aumentar si excedemos los limites de nuestro equipo. Las diferencias que hay a la hora de ejecutarse con los mismos procesos pueden deberse a procesos en segundo plano o a recursos compartidos de mi sistema operativo en ese momento.
- 3: Por lo que entiendo, que hace MPI es distribuir las tareas o procesos (que en este caso son sumas), entre una cantidad de nodos que se especifican al ejecutar el algoritmo. Así, cada nodo se encarga de una parte de la suma y luego envía su resultado como un mensaje a otro nodo, de manera que el trabajo se reparte. El objetivo debería ser reducir el tiempo de ejecución, aunque en mis pruebas ocurrió lo contrario: conforme aumentaba la cantidad de nodos, también aumentaba el tiempo que tardaban en realizar la suma. Supongo que esto pasa por varias razones relacionadas con el ambiente en el que se realizaron las pruebas: tenía abierto el navegador web, influyen el tipo de procesador, la cantidad de memoria RAM y el sistema operativo, entre otros factores. Pero también se debe a que, mientras más nodos haya, más mensajes deben enviarse y mayor es la coordinación y sincronización necesaria entre procesos.