Problem A

Recurrences

Input: standard inputOutput: standard output

Consider recurrent functions of the following form:

```
f(n) = a_1 f(n - 1) + a_2 f(n - 2) + a_3 f(n - 3) + ... + a_d f(n - d), for n > d.
a_1, a_2, ..., a_d - arbitrary constants.
```

A famous example is the Fibonacci sequence, defined as: f(1) = 1, f(2) = 1, f(n) = f(n - 1) + f(n - 2). Here d = 2, $a_1 = 1$, $a_2 = 1$.

Every such function is completely described by specifying d (which is called the order of recurrence), values of d coefficients: a_1 , a_2 , ..., a_l , and values of f(1), f(2), ..., f(d). You'll be given these numbers, and two integers n and m. Your program's job is to compute f(n) modulo m.

Input

Input file contains several test cases. Each test case begins with three integers: d, n, m, followed by two sets of d non-negative integers. The first set contains coefficients: a_1 , a_2 , ..., a_d . The second set gives values of f(1), f(2), ..., f(d).

You can assume that: $1 \le d \le 15$, $1 \le n \le 2^{11} - 1$, $1 \le m \le 46340$. All numbers in the input will fit in signed 32-bit integer.

Input is terminated by line containing three zeroes instead of d, n, m. Two consecutive test cases are separated by a blank line.

Output

For each test case, print the value of $f(n) \pmod{m}$ on a separate line. It must be a non-negative integer, less than m.

Sample Input

Output for Sample Input

1 1 100	1
2	55
1	423
2 10 100	
1 1	
1 1	
3 2147483647 12345	
12345678 0 12345	
1 2 3	
1 L J	
0 0 0	
0 0 0	

Problem setter: Max Furlong

Special Thanks: Derek Kisman, EPS.