Regular Reinforcement Learning

Taylor Dohmen, Mateo Perez, Fabio Somenzi, & Ashutosh Trivedi January 16, 2025

University of Colorado Boulder

Reinforcement Learning - A Brief Review

The generic RL feedback loop.*

^{*}Figure credit to Sutton and Barto (Reinforcement learning - an introduction).

Inspiration — Regular Model Checking (RMC)

Infinite (non-stochastic) systems are modeled such that

- states are expressed with regular languages,
- state transitions are expressed as rational transductions.

An RMC Example — Token Passing

automaton for initial language $I = t n^*$

transducer T passes token 1 index right

transducer T⁺ moves the token rightwards by an arbitrary number of positions

$$T^+(I) = n^* t n^*$$

Reachable Language

Regular Markov Decision Processes (RMDPs)

RMDP Example — A Variation on Token Passing

3 actions are available to the agent:

- (a) Each odd-index with a token passes it right.
 Each even-index with a token passes it right & generates itself a new token.
- (b) Each even-index with a token passes it right. Each odd-index with a token passes it right & generates itself a new token.
- (c) Mimics action (a) with probability p and mimics action (b) with probability 1-p

reward at
$$L = \begin{cases} 0 & \text{if } L \subseteq n^*tn^* \\ -1 & \text{otherwise} \end{cases}$$

Values of Arbitrary RMDPs

Theorem: General Undecidability

Whether a given RMDP satisfies any fixed non-trivial property is undecidable.

Corollary: Non-Computable Values

Given an arbitrary RMDP, optimal values are not computable with respect to any fixed objective/payoff function.

[†]in the sense of Rice's theorem

Discounted Values of Computable RMDPs

An RMDP is called computable if the probabilities and rewards associated to each transition are computable.

Theorem: Approximability of Discounted Values

For any discount factor $\lambda \in [0,1)$ and any tolerance $\epsilon > 0$, it is possible to compute an ϵ -approximation of the λ -discounted value from any state of a computable RMDP.

Theorem: PAC-Learnability of Discounted Values

For any discount factor $\lambda \in [0,1)$, the λ -discounted value from any state of a computable RMDP is PAC-learnable.

Regular Reinforcement Learning (RRL) in Finitary RMDPs

An RMDP is finitary if either

- it has finitely many states, or
- it has finitely many distinct classes of reward-equivalent states.

Two states (languages) L_1 and L_2 are reward-equivalent, $L_1 \sim L_2$, iff

- (1) rewards are equal at L_1 and L_2 , and
- (2) $\theta(L_1) \sim \theta(L_2)$ for every transduction θ .

Q-learning for Finitary RMDPs

$$Q_{n+1}([L_n]_{\sim}, a_n) := (1 - \alpha_n)Q_n([L_n]_{\sim}, a_n) + \alpha_n \left(r_n + \lambda \max_{a \in A} Q_n([L_{n+1}]_{\sim}, a)\right)$$

Automata for reward-equivalence classes from the token passing RMDP.

recognizes
$$\bigcup n^{2k}tn^*$$

recognizes
$$\bigcup_{n} n^{2k+1} t n^*$$

Deep Reinforcement Learning

Traditionally, a policy π is approximated by a neural network N.

Symbolic Deep Reinforcement Learning

Can the deep RL approach be adapted around symbolic representation of states as formal languages?

Deep Regular Reinforcement Learning

For any $b \in \mathbb{N}$, each $w \in \{0, ..., b-1\}^*$ encodes an element of [0,1] as

$$w_b = \sum_{k=1}^{|w|} \frac{w(k)}{b^k}.$$

translate right by 1/2

reflect about y = 1/2

Transducers implementing rigid transformations on the unit square.

Can an RL agent effectively solve tangram-style puzzles modeled as RMDPs?

Further Experimental Studies

Questions?

Sutton, Richard S. and Andrew G. Barto. **Reinforcement learning - an introduction.** Adaptive computation and machine learning. MIT

Press, 1998. ISBN: 978-0-262-19398-6. URL:

https://www.worldcat.org/oclc/37293240.