Virtualizace paměti, stránkovací a nahrazovací algoritmy

Z FITwiki

Obsah

- 1 Organizace paměti
 - 1.1 Organizace LAP
 - 1.1.1 Jeden úsek paměti
 - 1.1.2 Společný adresový prostor
 - 1.1.3 Oddělené adresové prostory
 - 1.2 Mapování LAP na FAP
 - 1.2.1 Úseky pevné velikosti
 - 1.2.2 Úseky proměnné velikosti
 - 1.2.3 Segmentace
 - 1.2.4 Stránkování
 - 1.2.5 Segmentace se stránkováním
- 2 Stránkování
 - 2.1 Virtualizace a výpadek stránek
 - 2.1.1 Stránkovací algoritmus
 - 2.2 Nahrazovací algoritmy
 - 2.2.1 Nahrazovací algoritmy s pevným počtem rámců
 - 2.2.2 Nahrazovací algoritmy s proměnným počtem rámců

Organizace paměti

Fyzický adresový prostor (FAP)

adresace paměti přímým přístupem, pohled na paměť z pohledu procesoru

Logický adresový prostor (LAP)

paměť z pohledu procesu, která se liší od fyzického přístupu k paměti

Virtualizace

při běhu procesu nemusí být celý obsah adresového prostoru trvale v paměti (některé úseky logické paměti mohou být např. swapovány na disku)

Organizace LAP

Jeden úsek paměti

- LAP=FAP
- jen jeden program v paměti
- OS má přidělenu část zbytek jednomu programu (MS-DOS)
- Monoprogramování bez ochrany paměti

Společný adresový prostor

- všechny programy mají společný adresový prostor mapovaný na fyzickou paměť, pouze jsou zavedeny na jiná místa.
- je potřeba dynamická relokace (při zavedení programu se adresy do paměti změní podle místa zavedení)
- ale jednoduchá správa a přidělování paměti.
- Ochrana paměti není implicitní (programy mohou i do paměti jiných programů), lze řešit:

- mezní registry
- chráněný režim OS (programy mají ale omezený LAP).

Oddělené adresové prostory

- každý program má k dispozici celý LAP, každý LAP mapován někam do FAP
- ochrana oddělením při mapování
- ale mapování složitější (podpora hardware převod adres v každé instrukci)
- Adresový prostor jádra
 - a) oddělený LAP jádra (volání jádra musí přepočítat adresy),
 - b) sdílený s procesem volajícím jádro (horní část LAP rezervovaná pro jádro, v uživ režimu nepřístupná)

Mapování LAP na FAP

Úseky pevné velikosti

- FAP dělěn na úseky pevné velikosti
- Programy pevnou velikost
- Programy jsou mapovány do vhodných volných úseků
 - Fronty procesů čekajících na úsek
 - Společné fronta přidělen nejmenší postačující volný úsek

Interní fragmentace

nevyužitá část přiděleného úseku)

Odkládání (swapping)

pozastavený proces může být dočasně odložen do odkládacího prostoru aby se úsek uvolnil

Úseky proměnné velikosti

- mění velikost úseků dynamicky dle požadavků
 - (spojování sousedních volných nebo dělení při zavedení programu)

Externí fragmentace

volná paměť není souvislá

Strategie přidělování úseků

- First fit první dostačující
- Next fit první dostačující za místem posledního přidělení
- Best fit nejmenší dostačující
- Worst fit největší volný (menší ext. fragmentace, ale fragmentuje největší úseky)

Alokace úseků o velikosti 2ⁿ

- používá malloc()
- přiděluje nejmenší postačující úsek o velikosti 2ⁿ
- seznamy volných úseků jednotlivých velikostí přiděluje se první na seznamu
- pokud není dostupný volný úsek alokuje se blok K nových úseků

Buddy systém

- Linux systémová paměť
- alokace úseků o velikosti 2ⁿ + spojování úseků
- pokud není volný úsek větší úsek se rozdělí na poloviny
- při uvolnění se sousední bloky spojují

Segmentace

■ LAP rozdělen do segmentů - úseků proměnné velikosti: kódový, datový a zásobník

- logická adresa se skládá ze jména segmentu a posunu (offsetu) v něm
- Tabulka segmentů obsahuje pro každý segment bázi a limit (kde začíná a jak je velký) (tabulka pro každý proces nebo globální)
- umožňuje ochranu segmentů (zabraňuje programu zapisovat do kódového segmentu)
- namísto 1 spojitého bloku paměti jsou programu přidělovány jednotlivé segmenty zmírňuje externí fragmentaci, ta ale přetrvává

Stránkování

- dělí FAP na rámce stejné velikosti
- dělí LAP na stránky stejné velikosti
- velikost rámce = velikost stránky (obvykle 1kB až 16kB)
- Tabulka stránek pak určuje mapování stránek na rámce
- logická adresa číslo stránky a offset
- Zamezuje externí fragmentaci (v LAP), interní fragmentace max o velikosti velikost stránky/2
- Ochrana musí být na úrovni stránek

Segmentace se stránkováním

segmenty jsou stránkovány

Stránkování

Tabulka stránek

- zobrazuje LAP na FAP
- pro každé číslo stránky obsahuje číslo rámce ve kterém je stránka umístěna

Obsah tabulky stránek (i386)

- číslo rámce,
- flagy zápisu, systémové stránky, označení dirty (stránka byla modifikována) a přítomnosti v paměti, ...

Inverzní tabulka stránek

- indexuje podle rámců ne podle stránek
- mnohem jednodušší tabulka a malá režie, ale hledání je komplikované a sdílení paměti ještě více
- PowerPC, HP PA RISC

Rychlost stránkování

překlad LAP a FAP se musí uskutečnit při každé instrukci adresující paměť (5-10ns asi 10% z času přístupu do paměti)

Translation Look-Aside Buffer (TLB)

- je vyrovnávací paměť v HW pro překlad adres
- poslední/nejčastjší překlady adres jsou uloženy v rychlé (SRAM) asociativní paměti (přístup je zredukován z 50ns na 5ns)
- Čím větší úspěšnost TLB, tím rychlejší průměrný přístup.
- Při přepnutí kontextu se TLB vyprázdní (u SPARC ne, přidává položkám i číslo procesu)

Velikost tabulky stránek

pro 32bit adresu 1MB tabulka stránek

Víceúrovňová organizace stránek

- adresa stránky se dělí na indexy jednotlivých tabulek, položky tabulek pak vybírají bázi následující tabulky
- (tj. tabulka tabulek stránek)
- Intel 2 úrovně (Page Directory a Page Table)
- AMD64 4 úrovně

Virtualizace a výpadek stránek

Výpadek stránky

pokud požadované stránka není v paměti (díky virtualizaci)

výpadek stránky výrazně zpomaluje ->je nutné minimalizovat počet výpadků

Zpracování výpadku stránky

- 1. Výběr volného rámce
- 2. Pokud není žádný rámec volný, výběr stránky, která bude odstraněna nahrazovací algoritmy
- 3. Zavedení požadované stránky a nastavení tabulky stránek
- 4. Restart instrukce, která způsobila výpadek

Stránkovací algoritmus

udává, kdy a kolik stránek se zavede z disku do paměti, které rámce se jim přiřadí a případně, které stránky mají být z paměti odstraněny.

Snaha minimalizovat výpadky (nahrazením nepoužívaných apod.).

1) Výběr zaváděných stránek

- Kdy:
 - prefetchingem (dopředu)
 - zavádění na žádost (při výpadku)
- Počet zaváděných stránek:
 - celý LAP (neefektivní)
 - jediná stránka (neefektivní)
 - stránky a okolí (předvídá přístup na sousední stránky)

2) Umísťování stránek

nemá vliv na výpadky, ale na rychlost odkládání (souvislý kus se odloží rychleji).

3) Nahrazovací algoritmy

- S pevným počtem stránek v paměti
 - OPT Optimální hypotetický, odstraňuje stránku která bude nejdéle nepoužita (čte budoucnost)

- LRU Last Recently Used odstraňuje nejdéle nepoužitou stránku
- NRU Not Recently Used odstraňuje v poslední době nepoužitou stránku (1-bitová aproximace LRU)
- FIFO odstraňuje nedříve zavedenou stránku
- LIFO odstraňuje nejpozději zavedenou stránku
- S proměnným počtem stránek v paměti
 - VMIN Optimální hypotetický, v paměti se drží stránky které budou použité v zadaném časovém intervalu v budoucnosti
 - WS Working Set v paměti se drží stránky použité v zadaném časovém intervalu pracovní množina stránek (nepraktické nutno často aktualizovat)
 - Page Fault Frequency
 - pokud stránky vypadávají častěji než je velikost pracovní množiny, pracovní množinu zvětší
 - pokud je interval mezi výpadky větší, jsou odebrány všechny stránky nepoužité od posledního výpadku - zmenšování pracovní množiny

Swapping = Odkládání stránek

je umisťování vyřazených stránek na disk do swapu (swap se nemusí použít, ale pak nelze stránky vyřadit a dojde paměť).

Thrashing

je stav, kdy počet výpadků překračuje přípustnou mez, většinu výkonu spotřebuje režie stránek (nejen algoritmus, ale i I/O swapu).

Nahrazovací algoritmy

Nahrazovací algoritmus

určuje, které stránky vyřadit z paměti, snaha o minimalizaci následných výpadků. Problém je, že nezná následující sled stránek, takže pouze odhaduje z minulosti.

Klasifikace

- Dle rozsahu:
 - Lokální vyřazuje pouze stránky procesu, který nyní chce stránku zavést
 - Globální nerozlišuje stránky podle procesu
- Podle počtu rámců:
 - Pevný počet rámců počet stránek v paměti zůstává stejný
 - **Proměnný počet rámců** počet stránek v paměti se mění

Princip lokality

- **Prostorová lokalita** je vysoká pravděpodobnost, že následující adresa bude směřovat do stejné nebo sousední stránky (sekvenční kód, struktury a pole, proměnné jsou u sebe).
- Časová lokalita při běhu programu se některé proměnné používají opakovaně (cykly, funkční proměnné)
- Neplatí-li princip lokality (optimalizace kódu a dat), sebelepší používaný algoritmus nebude fungovat.

Nahrazovací algoritmy s pevným počtem rámců

Optimální algoritmus

- Vybírá stránku, která bude nejdéle nepoužívána.
- Vyžaduje znalost budoucnosti (není reálný).
- Minimální možný počet výpadků stránek.

LRU (Least Recently Used)

- Vybírá stránku, která byla nejdéle nepoužita.
- Aproximuje optimální algoritmus díky lokalitě odkazů
- Implementace
 - ukládán čas posledního přístupu
 - zásobník, při použití přesun nahoru, vyhazuje se nejspodnější.

NRU (Not Recently Used)

- Aproximuje LRU jedním bitem.
- Při zavedení a použití je bit nastaven.
- Bit je nulován po uplynutí intervalu.

LFU (Least Frequently Used)

- Odstraněna nejméně používaná stránka.
- Může ale nahradit i právě použitou stránku.
- V případě rovnosti použije LRU.

FIFO

- Odstraní stránku, která byla nejdéle v paměti.
- Mohla tam být proto, že je neustále používána.
- Dochází k Beladyho anomálii (počet výpadků může růst s počet uchovávaných stránek v paměti)

LIFO

- Odstraní stránku, která je v paměni nejkratší dobu.
- Dojde do stavu, kdy se pouze vyhazuje poslední stránka a ostatní zůstávají.

Clock

- Cyklický seznam stránek s jednobitovým příznakem použití
- Ukazatel na aktuální pozici.
- Při hledání se testuje příznak použití
 - Je-li nastaven, vynuluje se a posune ukazatel.
 - Pokud není nastaven, stránka se použije (a posune se ukazatel).

Second Chance (NRU)

- Založen na Clock, ale má kromě příznaku použití i příznak modifikace.
- Není-li bit užití nastaven a je nastaven zápisový, stránka se pouze zapíše na disk, bit se vynuluje a posune se ukazatel.

Nahrazovací algoritmy s proměnným počtem rámců

VMIN

- Udržuje pouze stránky, které budou potřeba
- Optimální nerealizovatelný algoritmus (znalost budoucnosti)

WS (Working Set)

- V paměti je pouze pracovní množina stránek, tedy stránky, které byly použity v daném intervalu.
- Složitá implementace, při každém odkazu stránky (nejen výpadku) se musí aktualizovat.
- Princip klouzavého okna

Page Fault Frequency

- Volí velikost pracovní množiny podle frekvence výpadků.
- Při vysoké frekvenci výpadků je možné přidat další prvek množiny.
- Při nízké frekvenci se odeberou všechny stránky nepoužité od posledního výpadku.

Citováno z "http://wiki.fituska.eu/index.php?

title=Virtualizace_pam%C4%9Bti,_str%C3%A1nkovac%C3%AD_a_nahrazovac%C3%AD_algoritmy&oldid=13235"Kategorie: Státnice 2011 | Pokročilé operační systémy

Stránka byla naposledy editována 1. 6. 2016 v 08:04.