Московский авиационный институт (национальный исследовательский университет)

Рабочая тетрадь

по начертательной геометрии

Студент:	
_	
Группа:	
1 5	
Преподаватель:	

Общие положения

Рабочая тетрадь по начертательной геометрии предназначена для студентов (бакалавров, специалистов и магистров) всех факультетов. Материал данной рабочей тетради скомпонован по блочному принципу и предназначен для самостоятельной работы. Максимальное количество блоков равно десяти. Каждый студент в зависимости от количества часов, выделенных в семестровом плане на изучение предмета, обязан изучить определённое количество блоков (последнее определяется программой курса). Знания теоретического материала и решение задач, включённых в блок, контролируются преподавателем на семинарских занятиях и оцениваются по пятибалльной системе. Студент, не освоивший материал конкретного блока, направляется на дополнительные занятия. В конце семестрового периода по результатам изучения всех блоков выставляется средняя оценка. Знания студента, не сдавшего хотя бы один блок, не оцениваются, и до ликвидации задолженности этот студент не допускается ни к зачёту, ни к экзамену. Преподаватель, выставивший среднюю оценку учащемуся, имеет право, с согласия студента, засчитать её как зачётную или экзаменационную.

1 Предисловие

Задачи данного учебного пособия составлены в соответствии с программой курса начертательной геометрии. Преподаватель, ведущий практические занятия в группе студентов, имеет право уменьшить или увеличить количество решаемых задач. Теоретический материал, изложенный в тетради, является базой для подготовки студентов к решению задач.

Решение каждой задачи состоит из двух этапов:

- 1. пространственное (стереометрическое) решение, при котором определяется последовательность действий для получения искомого геометрического ответа;
- 2. выполнение составленного плана решения задачи на чертеже с учётом закономерностей метода проекций начертательной геометрии. Решение пространственной задачи с помощью плоскостного (планиметрического) чертежа является главным в начертательной геометрии.

Для успешного решения задач студенту необходимы твёрдые знания основных теорем элементарной геометрии — планиметрии и стереометрии.

В данной рабочей тетради все чертежи должны быть выполнены максимально аккуратно и точно, с соблюдением всех требований **Государственных стандартов ЕСКД** по оформлению чертежа (типы линий, шрифт и т. п.)

Все построения (вспомогательные линии, линии связи) следует выполнять тонкими линиями простым карандашом. Результаты решения задач рекомендуется обводить основной линией чертежа.

Все заданные и получаемые элементы чертежа необходимо обозначать следующим образом:

- **точки** прописными буквами латинского алфавита A, B, C, D, ..., или арабскими цифрами 1, 2, 3, 4, ... (для вспомогательных построений);
- **прямые** строчными буквами латинского алфавита a, b, c, d, ...;
- **прямые уровня** горизонталь h, фронталь f, профильная прямая p;
 - **поверхности** прописными буквами греческого алфавита Γ , Δ , Θ , Λ , Σ , **и плоскости** Φ , Ψ , Ω , ...;
 - **углы** строчными буквами греческого алфавита α , β , γ , δ , ϕ , ...;
 - **плоскости** прописной буквой греческого алфавита Π (пи) с соответствующим нижним индексом: Π_1 горизонтальная, Π_2 фронтальная, Π_3 профильная плоскости проекций;
- **дополнительные** прописной буквой греческого алфавита Π (пи) с соответствующим нижним индексом Π_4 , Π_5 , ...; **проекций**
 - **точек, линий и** поверхностей и дий, на которую спроецирован объект. Так, проекции точ-ки A, прямой a и плоскости Γ соответственно надо обозначать: на плоскости $\Pi_1 A_1$, a_1 , Γ_1 , на плоскости $\Pi_2 A_2$, a_2 , Γ_2 , на плоскости $\Pi_3 A_3$, a_3 , Γ_3 ;
 - ≡ проекции двух элементов совпадают: $A_2 ≡ B_2$;
 - \in точка (элемент множества) принадлежит геометрической фигуре (множеству): $A \in m, B \in \Sigma;$
 - \cap пересечение множеств: a \cap Δ , b \cap c;
 - \cup объединение множеств: [AB] \cup [BC] ломаная ABC;

2 Свойства ортогонального проецирования

- 1. Проекция точки всегда точка.
- 2. Проекция прямой в общем случае прямая.
- 3. Если прямая параллельна направлению проецирования, то она проецируется в точку. Такая проекция прямой обладает собирательным свойством: все точки прямой проецируются в одну точку.
- 4. Проекция точки, принадлежащей некоторой прямой, принадлежит проекции этой прямой.
- 5. Точка пересечения прямых проецируется в точки пересечения проекций этих прямых, как принадлежащая им обеим, согласно предыдущему свойству.

- 6. Проекция прямой, принадлежащей какой-либо поверхности, принадлежит проекции этой поверхности. В свою очередь, проекция точки, лежащей на поверхности, принадлежит проекции хотя бы одной прямой этой поверхности.
- 7. Параллельные прямые пространства проецируются в параллельные.
- 8. Если плоская фигура принадлежит плоскости, параллельной плоскости проекций, то проекция этой фигуры конгруэнтна (равна) самой фигуре.
- 9. Проекция точки на отрезке делит проекцию отрезка в том же отношении, в каком точка делит отрезок.

Комплексный чертёж точки, прямой,

плоскости

Три взаимно перпендикулярных плоскости Π_1 , Π_2 , Π_3 делят пространство на восемь частей — октантов.

Рассмотрим первый октант. Он представлен на рис. 1.1. Π_1 — горизонтальная, Π_2 — фронтальная и Π_3 — профильная плоскости проекций. Оси X, Y, Z являются осями проекций (осями координат). Осям присваивают индексы плоскостей, по ним пересекающихся: X_{12} , Y_{13} , Z_{23} . Для получения плоского комплексного чертежа (он может быть двухкартинным или трёхкартинным) плоскость Π_1 поворачивают вокруг оси X, а плоскость Π_3 — вокруг оси Z до совмещения с плоскостью Π_2 . Ось Y_{13} раздваивается на Y_1 , уходящую вниз вместе с Π_1 , и на Y_3 , уходящую вправо вместе с Π_3 .

Рис. 1.1 Трёхкартинный комплексный чертёж

Комплексный чертёж точки

Точку A, расположенную в пространстве первого октанта, проецируем ортогонально на каждую из плоскостей проекций (рис. 1.1):

 A_1 — горизонтальная, A_2 — фронтальная, A_3 — профильная проекции точки A .

 AA_1 — высота точки A (координата Z), AA_2 — глубина точки A (координата Y), AA_3 — широта точки A (координата X).

На комплексном чертеже прямые A_1A_2 и A_2A_3 связывают соответствующие проекции и передают координаты X и Z. Они называются вертикальной и горизонтальной линиями связи. Для графической трансляции координаты Y используют ломаную линию связи, которая преломляется под прямым углом на постоянной прямой чертежа k_0 , проведённой под углом 45° к оси Y (рис. 1.2).

Комплексный чертёж прямой

Прямая линия бесконечна. Две точки прямой определяют её положение в пространстве. Положение прямой можно задать также одной точкой и направлением (рис. 1.3).

Рис. 1.2 Комплексный чертёж точки

Рис. 1.3 Комплексный чертёж прямой

Комплексный чертёж плоскости

Плоскость в пространстве определяется тремя точками, не лежащими на одной прямой — $\Sigma(A,B,C)$. Ту же плоскость можно задать точкой и прямой — $\Sigma(a,C)$, двумя пересекающимися прямыми — $\Sigma(a\cap b)$, двумя параллельными прямыми — $\Sigma(a\parallel b)$. Наиболее наглядно задание плоскости представляется тремя точками, соединёнными отрезками прямых, то есть треугольником. На комплексном чертеже любая плоскость может быть задана проекциями элементов, определяющих её положение в пространстве (рис. 1.4). В ходе решения задачи иногда приходится переходить от одного задания плоскости к другому.

1.1 Контрольные вопросы

- 1. В чём состоит метод проецирования?
- 2. Почему чертежи называются проекционными?
- 3. Перечислите свойства ортогонального проецирования.
- 4. Какой проекционный чертёж является обратимым?
- 5. Как образуется эпюр Монжа? Дайте определение комплексного чертежа.
- 6. Как образуется трёхкартинный комплексный чертёж?
- 7. Что представляет собой постоянная прямая чертежа k_0 ?

Рис. 1.4 Комплексный чертёж плоскости

- 8. Что на комплексном чертеже является характерным признаком параллельности прямых в пространстве?
- 9. Что на комплексном чертеже является характерным признаком пересекающихся в пространстве прямых?
- 10. Что на комплексном чертеже является характерным признаком скрещивающихся в пространстве прямых?
- 11. Перечислите варианты взаимного положения точки и прямой.

1.2 Задачи

1. Построить комплексный чертёж точек A(70,20,0) и B(20,40,30). Обозначить высоту и глубину точек. Через точки A и B провести прямую $a(a_1,a_2)$ и представить её положение в пространстве.

2. Определить положение точек A, B, C, D, E относительно прямой l. Ответ записать в таблице.

Точка	Положение относительно <i>l</i>
A	
В	
С	
D	
Е	

3. На комплексном чертеже задать плоскости общего положения:

4. Определить взаимное положение двух прямых.

Прямые и плоскости частного положения

Рис. 2.1 Прямые уровня

Рис. 2.2 Проецирующие прямые

Прямые и плоскости, перпендикулярные или параллельные плоскостям проекций, называются соответственно прямыми и плоскостями *частного положения*, в отличие от прямых и плоскостей общего положения, которые наклонены к плоскостям проекций.

Прямые и плоскости, параллельные какой-либо плоскости проекций, называются прямыми и плоскостями *уровня*.

Прямые и плоскости, перпендикулярные какой–либо плоскости проекций, называются проецирующими.

Рис. 2.3 Плоскости уровня

Рис. 2.4 Проецирующие плоскости

2.1 Контрольные вопросы

- 1. Что такое горизонталь? Как расположены её проекции? Основные свойства горизонтали.
- 2. Что такое фронталь? Как расположены её проекции? Основные свойства фронтали.
- 3. Что такое профильная прямая? Как расположены её проекции? Основные свойства профильной прямой.
- 4. Какая прямая называется прямой общего положения?
- 5. Как отображается ориентация проецирующей прямой в названии?
- 6. Свойства проецирующей прямой.
- 7. Что такое конкурирующие точки?
- 8. Перечислите названия плоскостей в зависимости от их положения по отношению к плоскостям проекций.
- 9. Какая плоскость называется плоскостью общего положения?

2.2 Задачи

1. Через точку A провести горизонтально–проецирующую прямую $a(a_1, a_2)$, фронтально–проецирующую прямую $b(b_1, b_2)$, профильно–проецирующую прямую $c(c_1, c_2)$.

2. Через точку A провести горизонталь h под углом 45° к Π_2 и фронталь f под углом 30° к Π_1 .

3. Через точку A провести горизонталь h и фронталь f, пересекающие прямую l.

4. Через точку A провести горизонтально–проецирующую плоскость Σ под углом 30° к Π_2 , фронтально–проецирующую плоскость Δ под углом 45° к Π_1 , а также горизонтальную и фронтальную плоскости уровня Θ и Ψ .

5. Через прямую l провести горизонтально–проецирующую плоскость Σ и фронтально–проецирующую плоскость Δ .

6. Через точку A провести плоскости уровня: горизонтальную Σ , фронтальную Δ и профильную Γ .

7. Через прямые $l \perp \Pi_2$ и $m \perp \Pi_1$ провести всевозможные плоскости частного положения.

Позиционные задачи

Под *позиционными* задачами понимаются задачи на определение взаимного положения различных геометрических фигур. К ним относятся задачи на взаимную принадлежность и на пересечение.

Задачи на взаимную принадлежность

Точка принадлежит прямой, если проекции точки принадлежат одноимённым проекциям прямой: $A \in a \iff A_1 \in a_1, A_2 \in a_2$ (рис. ??).

Прямая лежит в плоскости, если две любые её точки принадлежат этой плоскости: $l \subset \Sigma(A, B, C) \iff l \cap AB = 1, \ l \cap AC = 2$ (рис. ??).

Точка принадлежит плоскости, если она принадлежит какой-либо прямой, лежащей в этой плоскости: $M \in \Sigma(A, B, C) \iff M \in l, \ l \subset \Sigma(A, B, C)$ (рис. ??).

Задачи на пересечение

Пересечение прямой общего положения с проецирующей плоскостью

Построим точку $K(K_1,K_2)=l(l_1,l_2)\cap\Sigma(\Sigma_2)$ (рис. ??) и определим видимость участков прямой l. Полупрямая, находящаяся выше плоскости Σ , будет видимой на Π_1 .

Пересечение проецирующей прямой с плоскостью общего положения

Построим точку $K(K_1, K_2) = l(l_1, l_2) \cap \Lambda(A, B, C), l \perp \Pi_1$ (рис. ??):

- $l_1 \equiv K_1$;
- строим недостающую проекцию K_2 точки K:
 - проводим прямую $a(a_1)$, проходящую через точку $K(K_1)$ и лежащую в плоскости Λ ;
 - строим a_2 , учитывая, что $a \subset \Lambda$;
 - получаем $K_2 = a_2 \cap l_2$;
- видимость прямой l определяем способом конкурирующих точек.

Пересечение проецирующей плоскости с плоскостью общего положения

Построим прямую $l(l_1, l_2) = \Delta(\Delta_2) \cap \Psi(A, B, C)$ (рис. ??):

- $l_2 \equiv \Delta_2$;
- строим l_1 , учитывая, что $l \subset \Psi$;

Пересечение прямой общего положения с плоскостью общего положения (первая основная позиционная задача)

Построим точку $K(K_1, K_2) = l(l_1, l_2) \cap \Theta(A, B, C)$ и определим видимость прямой l (рис. ??):

- через прямую l проводим вспомогательную проецирующую плоскость, например фронтально–проецирующую плоскость $\Delta(\Delta_2)$;
- строим прямую $m(m_1, m_2) = \Delta \cap \Theta$;
- отмечаем $K_1 = m_1 \cap l_1$, затем $K_2 \in l_2$;
- видимость прямой l определяем способом конкурирующих точек. Конкурирующими называются точки, расположенные на одном проецирующем луче. При виде сверху на Π_1 видимой будет та точка, высота которой больше. При виде спереди на Π_2 видимой будет та точка, глубина которой больше.

Пересечение двух плоскостей общего положения (вторая основная позиционная задача)

Построим прямую $l(l_1, l_2)$ пересечения двух плоскостей $\Phi(a \cap b)$ и $\Omega(c \parallel d)$ общего положения (рис. ??):

- проводим вспомогательную проецирующую плоскость $\Delta(\Delta_2)$;
- строим две прямые $m = \Phi \cap \Delta$ и $n = \Omega \cap \Delta$;
- отмечаем точку $A = m \cap n$;
- проводим ещё одну вспомогательную проецирующую плоскость Ξ (лучше, если $\Xi \parallel \Delta$);
- строим две прямые $q = \Phi \cap \Xi$ и $r = \Omega \cap \Xi$;
- отмечаем точку $B = q \cap r$;
- получаем искомую прямую l(A, B).

Параллельность прямой и плоскости

Прямая параллельная плоскости, если она параллельна какой-либо прямой, лежащей в этой плоскости: $l \parallel m \subset \Sigma \Longrightarrow l \parallel \Sigma$ (рис. ??).

Параллельность двух плоскостей

Плоскости параллельны, если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости: $a \cap b, \ m \cap n, \ a \parallel m, \ b \parallel n \Longrightarrow \Theta(a \cap b) \parallel \Phi(m \cap n)$ (рис. ??).

3.1 Контрольные вопросы

- 1. Какие задачи называются позиционными?
- 2. В каких случаях точка принадлежит прямой; плоскости?
- 3. Когда прямая принадлежит плоскости?
- 4. Как решается первая основная позиционная задача?
- 5. Как определить на чертеже видимость точек и прямых?
- 6. В чём заключается способ плоскостей-посредников?
- 7. Как решается вторая основная позиционная задача?
- 8. Сформулируйте условие параллельности прямой и плоскости.
- 9. Как построить плоскость, параллельную заданной?

3.2 Задачи

- 1. Определить, лежит ли прямая a в плоскости Θ в следующих случаях:
- 2. Достроить недостающие проекции прямой l и точки M при условии их принадлежности плоскости $\Lambda(A,B,C)$.
- 3. Достроить горизонтальную проекцию **плоского** пятиугольника *ABCDE*.
- 4. Построить горизонталь h и фронталь f, принадлежащие плоскости $\Xi(A, B, C)$.
- 5. С помощью новых линий уровня построить в плоскости $\Phi(h \cap f)$ отрезок AB, разно-имённые концы которого заданы.
- 6. Построить точку $K = m \cap \Delta$ и определить видимость прямой m.
- 7. Через точку N провести прямую n, пересекающую скрещивающиеся прямые a и b.
- 8. Определить проекции прямой q как результат пересечения
- 9. Определить положение прямой r относительно плоскости Δ .
- 10. Через точку R провести плоскость, параллельную прямым s и t.
- 11. Через точку S провести плоскость, параллельную плоскости Ψ .
- 12. Достроить проекции прямой u, параллельной плоскости Ω .
- 13. Через точку T провести прямую v, параллельную плоскости Σ .

Метрические задачи

Метрическими называются задачи, связанные с определением расстояний и углов между геометрическими фигурами.

Определение натуральной величины отрезка прямой способом прямоугольного треугольника

Натуральной величиной отрезка AB является гипотенуза прямоугольного треугольника $A\tilde{B}B$, у которого один катет равен горизонтальной проекции отрезка: $A\tilde{B}=A_1B_1$, а другой — разности высот концов отрезка: $\delta Z=B\tilde{B}=BB_1-AA_1$.

Рассмотрим комплексный чертёж. Пусть отрезок AB задан проекциями A_1B_1 и A_2B_2 . Построим прямоугольный треугольник $A_1B_1\bar{B}$ по катетам A_1B_1 и $B_1\bar{B}=\delta Z_{AB}$. Треугольник $A_1B_1\bar{B}$ равен треугольнику $A\bar{B}B$. Гипотенуза $A_1\bar{B}$ — натуральная величина отрезка AB. Полученный угол α определяет величину наклона отрезка AB к плоскости Π_1 .

Аналогично определяется натуральная величина отрезка по его фронтальной проекции и разности глубин его концов.

Ортогональная проекция прямого угла

Теорема. Прямой угол, одна сторона которого параллельна плоскости проекций, а другая не перпендикулярна ей, проецируется в прямой угол.

Следствие. Если одна из сторон прямого угла является горизонталью, то прямой угол проецируется без искажения на Π_1 ; если фронталью — на Π_2 ; если профильной прямой — на Π_3 .

Теорема верна как для пересекающихся прямых, так и для скрещивающихся. Углом между скрещивающимися прямыми называется угол, образованный двумя пересекающимися прямыми, параллельными скрещивающимся.

Перпендикулярность прямой и плоскости

Теорема. Если прямая l перпендикулярна плоскости Θ , то горизонтальная проекция прямой l перпендикулярна горизонтальной проекции горизонтали $(l_1 \perp h_1)$, а фронтальная проекция — фронтальной проекции фронтали $(l_2 \perp f_2)$ плоскости Θ :

$$l \perp \Theta(h \cap f) \iff l_1 \perp h_1, l_2 \perp h_2.$$

Перпендикулярность плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Через точку можно провести сколь угодно много плоскостей, перпендикулярных другой плоскости; через прямую — только одну.

$$a_1 \perp h_1, a_2 \perp f_2 \Longrightarrow \Lambda(h \cap f) \perp \Gamma(a \cap b)$$

Линии наибольшего наклона

Линии наибольшего наклона данной плоскости к плоскости проекций — прямые, лежащие в плоскости и составляющие с плоскостями проекций наибольшие углы.

Теорема. Прямые, лежащие в плоскости и перпендикулярные линиям уровня этой плоскости, являются линиями наибольшего наклона.

 $AH \perp h$ — линия наибольшего наклона плоскости $\Psi(A,B,C)$ к плоскости Π_1 , $\alpha = \angle(\Psi,\Pi_1)$;

 $KF \perp f$ — линия наибольшего наклона плоскости $\Omega(K,L,M)$ к плоскости Π_2 , $\beta = \angle(\Omega,\Pi_2)$.

4.1 Контрольные вопросы

- 1. Какие задачи называются метрическими?
- 2. Как можно определить углы наклона прямой к плоскостям проекций?
- 3. В чём состоит способ прямоугольного треугольника?
- 4. В каком случае прямой угол проецируется в прямой?
- 5. Как определить угол между скрещивающимися прямыми?
- 6. Когда две плоскости взаимно перпендикулярны?
- 7. Что такое линии наибольшего наклона?
- 8. Как определить угол наклона плоскости к плоскостям проекций?

4.2 Задачи

- 1. Определить натуральную величину отрезков AB и CD способом прямоугольного треугольника, используя
- 2. Достроить недостающие проекции прямого угла, образованного пересекающимися прямыми m и n.
- 3. Из точки A опустить перпендикуляр на горизонталь h и фронталь f и определить его длину.
- 4. Через точку E провести горизонталь h и фронталь f, перпендикулярные прямой l.
- 5. Построить проекции ромба ABCD, если даны диагональ и проекция A_1 точки A.
- 6. Через точку T провести прямую r, перпендикулярную данной плоскости:
- 7. Определить расстояние от точки S до плоскости $\Delta(A, B, C)$.
- 8. Построить точку N, симметричную точке M относительно плоскости $\Gamma(A, B, C)$.
- 9. Через точку Q провести плоскость Σ , перпендикулярную данной прямой:
- 10. Определить расстояние от точки R до прямой t.
- 11. Построить геометрическое место точек, равноудалённых от точек U и V.

- 12. На прямой v найти точку, равноудалённую от точек U и W.
- 13. Из точки A построить перпендикуляр к плоскости $\Theta(A,B,C)$ длиной 40 мм.
- 14. Используя линии наибольшего наклона, определить угол наклона плоскости $\Lambda(Q,R,S)$:
- 15. Через прямую $n(n_1, n_2)$ провести перпендикулярную плоскость Ξ :
- 16. Построить горизонтальную проекцию **равнобедренного** треугольника *RST*, основанием которого служит отрезок $RS \parallel \Pi_1$.

Способы преобразования комплексного чертежа

Решение позиционных и метрических задач значительно упрощается, если геометрические объекты занимают частное положение относительно плоскостей проекций. В связи с этим в курсе начертательной геометрии большое внимание уделяется преобразованиям комплексного чертежа.

Способ замены плоскостей проекций

Данный способ состоит в переходе от данной системы, в которой заданы проекции объекта, к новой системе взаимно перпендикулярных плоскостей.

Замена одной плоскости проекций

Пусть точка $A(A_1,A_2)$ определена в системе плоскостей проекций (Π_1,Π_2) (рис. ??). Введём новую плоскость проекций $\Pi_4 \perp \Pi_1$, и спроецируем на неё точку A. Теперь точка $A(A_1,A_4)$ определена в новой системе плоскостей проекций (Π_1,Π_4), причём её высота остаётся неизменной: $AA_1 = A_2A_{12} = A_4A_{14}$.

Новая система плоскостей проекций представляет собой две взаимно перпендикулярные плоскости, одна из которых взята из старой системы, а вторая выбирается так, чтобы проекция объекта на неё давала наилучшее представление нём для получения решения.

Замена двух плоскостей проекций

Продолжим процесс замены плоскостей проекций. Перейдём от системы (Π_1 , Π_4) к новой системе (Π_4 , Π_5), заменив плоскость проекций Π_1 на Π_5 (рис. ??). При этом нужно руководствоваться следующими правилами:

- новые линии связи перпендикулярны к новой оси;
- расстояния новых проекций точек от новой оси равны расстояниям заменяемых проекций от предыдущей оси.

Основные задачи, решаемые способом замены плоскостей проекций

Задача 1. Преобразовать прямую $l(l_1, l_2)$ общего положения (рис. ??) в линию уровня в новой системе плоскостей проекций.

Решение. Пусть мы хотим, чтобы прямая l в новой системе плоскостей проекций была фронталью. Для этого плоскость Π_2 заменим на плоскость $\Pi_4 \parallel l$. Таким образом, в новой системе (Π_1, Π_4) прямая l является фронталью.

Задача 2. Преобразовать прямую $m(m_1, m_2)$ общего положения (рис. ??) в проецирующую прямую в новой системе плоскостей проекций.

Решение. Прямую общего положения нельзя одной заменой плоскости проекций преобразовать в проецирующую. Поэтому сначала нужно преобразовать прямую m в линию уровня $m(m_1, m_4)$, а затем заменой второй плоскости проекций — в проецирующую прямую $m(m_4, m_5)$.

Задача 3. Преобразовать плоскость $\Xi(A,B,C)$ общего положения (рис. ??) в проецирующую плоскость в новой системе плоскостей проекций.

Решение. Пусть мы хотим, чтобы плоскость Ξ в новой системе плоскостей проекций была фронтально–проецирующей. Построим горизонталь $h \subset \Xi$ и и заменим плоскость Π_2 на плоскость Π_4 . Таким образом, в новой системе (Π_1, Π_4) плоскость Ξ является фронтально–проецирующей.

Задача 4. Преобразовать фронтально–проецирующую плоскость $\Xi(A,B,C)$ (рис. ??) в плоскость уровня в новой системе плоскостей проекций.

Решение. Заменим плоскость Π_1 на плоскость $\Pi_5 \parallel \Xi$. Таким образом, в новой системе (Π_4, Π_5) плоскость Ξ является горизонтальной.

Способ плоскопараллельного движения

 Π лоскопараллельным движением фигуры в пространстве называется такое её перемещение, при котором все точки фигуры перемещаются в параллельных плоскостях. Если фигура совершает плоскопараллельное движение относительно плоскости Π_1 , то фронтальные проекции её точек перемещаются по прямым, перпендикулярным линиям связи, а горизонтальная проекция фигуры не изменяет своей величины.

Основные задачи, решаемые способом плоскопараллельного движения

Задача 1. Преобразовать прямую n(D, E) общего положения (рис. ??) в линию уровня (фронталь), используя плоскопараллельное движение относительно плоскости Π_1 . *Решение*. Устанавливаем прямую n в положение фронтали ($\bar{n}_1 \parallel OX_{12}$). Фронтальную проекцию получаем на пересечении линий связи новой горизонтальной проекции с плоскостями Σ^D и Σ^E , в которых перемещаются соответственно точки D и E.

Задача 2. Преобразовать линию уровня (фронталь) $\bar{n}(\bar{D},\bar{E})$ (рис. ??) в проецирующую (горизонтально–проецирующую), используя плоскопараллельное движение относительно плоскости Π_2 .

Решение. Устанавливаем прямую \bar{n} в горизонтально–проецирующее положение ($\bar{n}_2 \perp OX_{12}$). Горизонтальную проекцию получаем на пересечении линии связи новой фронтальной проекции с плоскостью Δ , в которой перемещаются точки \bar{D} и \bar{E} .

Задача 3. Преобразовать плоскость $\Theta(T, U, V)$ общего положения (рис. ??) в проецирующую (фронтально–проецирующую), используя плоскопараллельное движение относительно плоскости Π_1 .

Решение. Построим горизонталь $h(h_1,h_2)$ ⊂ Θ и переместим плоскость Θ до положения, когда её горизонталь займёт фронтально–проецирующее положение ($\bar{h}_1 \perp OX_{12}$). Так как горизонталь \bar{h} стала фронтально–проецирующей, то и плоскость $\bar{\Theta}$ оказывается фронтально–проецирующей.

Задача 4. Преобразовать проецирующую плоскость $\bar{\Theta}(\bar{T},\bar{U},\bar{V})$ (рис. ??) в плоскость уровня (горизонтального уровня), используя плоскопараллельное движение относительно плоскости Π_2 .

Решение. Устанавливаем плоскость $\bar{\Theta}$ в горизонтальное положение ($\bar{\Theta}_2 \parallel OX_{12}$). Горизонтальная проекция $\bar{\Theta}_1$ будет давать натуральную величину плоскости $\bar{\Theta}$.

Способ вращения вокруг проецирующей оси

Способ вращения вокруг проецирующей оси является частным случаем плоскопараллельного движения, при котором все точки фигуры движутся в плоскостях, параллельных плоскости проекций. Центры окружностей принадлежат проецирующей оси; величины радиусов равны расстоянию от вращаемых точек до оси.

Основные задачи, решаемые способом вращения вокруг проецирующей оси

Задача 1. Повернуть прямую q(A, B) общего положения (рис. ??) вокруг горизонтально–проецирующей оси i до положения фронтали.

Решение. Повернём горизонтальные проекции точек A и B по дугам окружностей соответственно радиусов i_1A_1 и i_1B_1 так, чтобы прямая q стала фронталью ($\bar{A}_1\bar{B}_1\parallel OX_{12}$). Фронтальную проекцию получаем на пересечении линий связи новой горизонтальной проекции \bar{q}_1 с плоскостями $\Sigma^A\left(\Sigma_2^A\right)$ и $\Sigma^B\left(\Sigma_2^B\right)$, в которых перемещаются соответственно точки A и B.

Задача 2. Повернуть фронталь $\bar{q}(\bar{A},\bar{B})$ (рис. ??) вокруг фронтально–проецирующей оси j до положения горизонтально–проецирующей прямой.

Решение. Повернём фронтальные проекции точек \bar{A} и \bar{B} по дугам окружностей соответственно радиусов $j_2\bar{A}_2$ и $j_2\bar{B}_2$ так, чтобы прямая \bar{q} стала горизонтально–проецирующей ($\bar{A}_2\bar{B}_2\perp OX_{12}$). Тогда горизонтальная проекция \bar{q}_1 изобразится в виде точки.

Задача 3. Повернуть плоскость $\Psi(L,M,N)$ общего положения (рис. ??) вокруг горизонтально–проецирующей оси i до положения фронтально–проецирующей плоскости.

Решение. Чтобы плоскость Ψ стала фронтально–проецирующей, нужно повернуть горизонталь $h \subset \Psi$ до фронтально–проецирующего положения (предыдущая задача).

Задача 4. Повернуть фронтально–проецирующую плоскость $\bar{\Psi}(\bar{L},\bar{M},\bar{N})$ (рис. ??) вокруг фронтально–проецирующей оси j до горизонтального положения.

Решение. Сводится к решению первой задачи. Отметим только, что горизонтальная проекция $\bar{\Psi}_1$ будет давать натуральную величину плоскости $\bar{\Psi}$.

Способ вращения вокруг линии уровня (совмещение)

Способ вращения вокруг линии уровня используют для определения натуральных величин элементов плоских фигур в тех случаях, когда данную плоскую фигуру можно совместить с плоскостью уровня.

Рассмотрим сначала вращение точки W вокруг горизонтали h до совпадения её с горизонтальной плоскостью $\Sigma(\Sigma_2)\supset h$ (рис. ??). Точка W поворачивается в горизонтально–проецирующей плоскости $\Lambda(\Lambda_1)\perp h$. Центр вращения — точка $O=\Lambda\cap h$. Величина радиуса R^A определяется способом прямоугольного треугольника.

Усложним задачу. Определим натуральную величину треугольника STU (рис. ??) с помощью его вращения вокруг горизонтали h. Допустим, мы провели горизонталь через точку S. Тогда для получения натуральной величины треугольника STU достаточно повернуть только точки T и U, дважды выполнив алгоритм, описанный в предыдущей задаче.

5.1 Контрольные вопросы

- 1. С какой целью применяются преобразования комплексного чертежа?
- 2. В чём состоит различие способов замены плоскостей проекций и плоскопараллельного перемещения?
- 3. Как формулируются четыре основные задачи преобразования?
- 4. Сформулируйте основное правило замены плоскостей проекций.
- 5. Что общего у способов преобразования чертежа плоскопараллельным перемещением и вращением вокруг проецирующей прямой?
- 6. Опишите способ вращения вокруг прямой уровня.

5.2 Задачи

- 1. Построить проекции точки A в новой системе плоскостей проекций.
- 2. Преобразовать прямую в проецирующую.
- 3. Определить натуральную величину отрезка *BC* прямой a и углы наклона его к плоскостям проекций Π_1 и Π_2 .
- 4. Определить расстояние от точки D до прямой b.
- 5. Определить расстояние между двумя параллельными прямыми c и d, если $E \in c$.
- 6. Определить натуральную величину двугранного угла $\zeta \equiv KLMN$.
- 7. Определить натуральную величину общего перпендикуляра e двух скрещивающихся прямых.

- 8. Определить натуральную величину угла $\eta \equiv \angle(k, l)$.
- 9. Определить натуральные величины углов наклона плоскости $\Theta(h \cap f)$ к плоскостям проекций Π_1 и Π_2 соответственно.
- 10. Определить натуральную величину треугольника STU и расстояние r от точки Q до его плоскости.
- 11. Определить натуральную величину треугольника *QRS* способом вращения вокруг линии уровня.
- 12. Повернуть точку V на угол 120°:
- 13. Повернуть прямую m вокруг горизонтально–проецирующей оси i до положения линии уровня.
- 14. Повернуть точку W вокруг оси k до совмещения с плоскостью Λ .

Кривые линии

Кривой линией называется траектория движущейся точки.

Если все точки плоской кривой принадлежат некоторой плоскости, то кривую называют *плоской*; в противном случае — *пространственной*.

Если уравнение кривой в декартовой системе координат может быть представлено в виде f(x, y) = 0, где f(x, y) — целый многочлен от x и y, то кривую называют алгебраической; в противном случае — mрансцендентной.

С геометрической точки зрения *порядком* кривой называется число точек пересечения её с прямой (для плоской кривой) или с плоскостью (для пространственной кривой).

Касательной t в точке M плоской кривой l называется предельное положение секущей MM', когда точка M', оставаясь на линии l, стремится к точке M. Если кривая не имеет разрыва в точке M и касательные слева и справа от неё совпадают, то точка M называется обыкновенной.

Обводом называют кривую, составленную из дуг различных кривых, состыкованных между собой. Если в точках соединения составляющие обвода имеют общую касательную, то обвод называется обводом первого порядка гладкости. При плавном изменении второй производной (то есть радиуса кривизны) на всех участках обвода и на стыках получаем обвод второго порядка гладкости. Если дугами составной кривой являются алгебраические многочлены, то такая кривая называется сплайном.

6.1 Контрольные вопросы

- 1. Определение кривой линии. Плоские и пространственные кривые.
- 2. Алгебраические и трансцендентные кривые.
- 3. Порядок кривой.
- 4. Касательная к кривой.
- 5. Обводы. Сплайны.

6.2 Задачи

- 1. Определить построением, является ли заданная кривая $a(a_1, a_2)$ плоской.
- 2. Построить недостающие проекции точек $A(A_1)$ и $B(B_2)$, принадлежащих пространственной кривой $c(c_1, c_2)$.
- 3. Построить вторую проекцию окружности $d(d_1)$ с радиусом 25 мм и центром $O(O_1, O_2)$, если она расположена в проецирующей плоскости:
- 4. Построить проекции окружности $e \subset \Omega(h \cap f)$ с радиусом 35 мм и центром $O(O_1, O_2)$. Построить точку $A \in e$, если диаметр CD окружности лежит на фронтали f.

Поверхности

Поверхность — это непрерывное двупараметрическое (двумерное) множество точек.

Поверхность на комплексном чертеже задаётся такими элементами, как оси вращения, очерковые линии, центр (сферы), меридианы и т. д. Поверхность считается заданной, если для любой точки пространства можно выяснить, принадлежит ли она поверхности. При решении задач следует руководствоваться правилом: точка принадлежит поверхности, если она принадлежит линии, расположенной на этой поверхности.

Поверхности вращения

Линейчатые поверхности

7.1 Контрольные вопросы

- 1. Какие существуют способы задания поверхностей?
- 2. Как задаётся кинематическая поверхность?
- 3. Как определить, принадлежит ли точка поверхности?
- 4. Что такое параллели и меридианы поверхности вращения?
- 5. Как образуется поверхность Каталана?
- 6. Что такое винтовая поверхность и как она задаётся?
- 7. Назовите развёртывающиеся линейчатые поверхности.

Блок №8 Обобщённые позиционные задачи

Блок №9 Развёртка поверхностей

Блок №10 Аксонометрические проекции

Расчётно-графические работы (РГР)

Общие требования

- 1. Каждый студент получает отдельный вариант задания, номер которого остаётся постоянным при выполнении всех работ.
- 2. Выполненную работу нужно сдать преподавателю в установленные им сроки.
- 3. Все работы нужно выполнять простым карандашом. Линии, относящиеся к условию задачи, следует проводить карандашами с жёсткостью **2B**, **B** и HB, толщиной S. Вспомогательные линии карандашами с жёсткостью H и 2H, толщиной $S_{/3}-S_{/4}$.
- 4. Работы нужно выполнять в масштабе **1:1** на листе формата **А3**, написав условие задачи и исходные данные своего варианта.
- 5. Условие задачи и буквенные обозначения на чертеже следует выполнять стандартным шрифтом 5, прямым или наклонным.
- 6. На чертеже необходимо сохранять или специально показывать такие построения, которые дают возможность проверить правильность решения задачи и проконтролировать точность графических построений.
- 7. Для проекций характерных точек (вершины, опорные точки и т. д.) фигуры, а также промежуточных точек искомой кривой нужно проводить линии связи.
- 8. Эллипсы на чертеже должны строиться только по осям.
- 9. По окончании всех работ необходимо сброшюровать чертежи вместе с заполненным титульным листом.

Порядок сдачи работ

- 1. Для того чтобы преподаватель зачёл и подписал работу, необходимо:
 - а. правильно решить задачу;
 - б. аккуратно и с соблюдением стандартов ЕСКД и настоящих указаний оформить решение;
 - в. уметь подробно рассказать, как решается задача;
 - г. обосновать рациональность выбранного способа решения;
 - д. ответить на контрольные вопросы, относящиеся к данному заданию.
- 2. Если студент не сдал работу в установленный срок, то для допуска к зачёту ему необходимо специальное разрешение. Иначе студент к зачёту или экзамену не допускается.
- 3. Подписанные преподавателем работы студент должен сохранить до зачёта или экзамена, и затем предъявить экзаменатору.

PΓ**P** №1

Для выполнения задания необходимо изучить следующие разделы курса:

- 1. образование комплексного чертежа;
- 2. позиционные задачи;
- 3. условия видимости на комплексном чертеже;
- 4. свойства ортогонального проецирования прямого угла;
- 5. условия перпендикулярности прямой и плоскости на комплексном чертеже;
- 6. определение натуральной величины отрезка способом прямоугольного треугольника.

Задача. Построить проекции и определить натуральную величину высоты SD пирамиды и угла наклона ребра AS к основанию ABC.

Задание нужно решать без преобразования комплексного чертежа. Варианты приведены в табл. 11.1. Образец выполнения приведён на рис. ??.

PΓ**P** №2

Для выполнения задания необходимо изучить блок №5 «Способы преобразования комплексного чертежа» (с. 22).

Задача. Способом замены плоскостей проекций определить натуральные величины высоты SD пирамиды SABC и основания ABC.

Варианты приведены в табл. 11.1. Образец выполнения приведён на рис. ??.

PΓ**P** №3

Для выполнения задания необходимо изучить следующие разделы курса:

NG - on		S			A			В			С	
№ вар.	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
1	30	20	130	110	60	30	60	140	70	0	100	10
2	15	10	90	110	20	50	60	110	80	10	80	0
3	40	90	0	120	110	120	90	15	0	20	0	60
4	10	20	115	130	0	50	90	100	100	40	80	0
5	50	110	120	130	20	80	70	110	10	30	40	40
6	30	80	20	130	110	110	90	0	40	10	0	80
7	15	0	105	140	30	60	90	110	85	40	80	0
8	40	20	110	120	60	30	70	120	70	20	90	10
9	90	120	30	130	90	90	90	20	0	30	50	50
10	45	120	85	115	60	70	20	10	50	60	80	0
11	35	15	100	130	0	40	80	110	80	30	80	25
12	85	0	100	110	100	80	60	30	0	10	40	50
13	35	120	120	120	70	90	20	15	60	60	85	20
14	45	95	105	120	75	80	20	20	70	80	100	30
15	30	0	100	110	0	40	60	100	70	10	70	20
16	20	90	10	120	100	90	80	0	30	0	0	70
17	50	20	100	130	50	40	80	130	70	30	80	20
18	0	115	10	125	90	95	90	20	0	25	20	70
19	0	10	100	120	0	60	70	90	90	20	70	0
20	95	5	100	115	95	85	70	35	10	15	35	50
21	40	120	115	120	60	85	20	25	50	70	80	15
22	25	110	20	110	90	120	60	0	20	0	0	60
23	25	0	90	105	25	55	60	115	90	30	70	0
24	70	110	95	110	30	60	50	110	0	10	70	40
25	30	30	110	120	0	70	60	95	110	30	30	0
26	20	115	105	95	70	60	0	0	45	45	85	0
27	20	100	0	110	100	90	70	20	10	20	15	50
28	45	100	90	115	30	85	70	100	20	0	50	60
29	25	0	95	110	0	45	70	90	80	25	40	10
30	35	100	100	120	65	65	10	0	40	70	75	20

Таблица 11.1 Варианты к РГР №1 и №2

Содержание

Блок №1	Комплексный чертёж точки, прямой, плоскости	6
Блок №2	Прямые и плоскости частного положения	11
Блок №3	Позиционные задачи	16
Блок №4	Метрические задачи	19
Блок №5	Способы преобразования комплексного чертежа	22
Блок №6	Кривые линии	27
Блок №7	Поверхности	28
Блок №8	Обобщённые позиционные задачи	29
Блок №9	Развёртка поверхностей	30
Блок №10	Аксонометрические проекции	31
Блок №11	Расчётно-графические работы (РГР)	32