Programming Design In-class PracticesSelection and Repetition

Ling-Chieh Kung

Department of Information Management National Taiwan University

Problem 1: age for legal marriage

- Before 2011, in Taiwan the age for legal marriage depends on one's gender:
 - Men: 18.
 - Women: 16.
- Please let a user enter her/his gender and age and then determine whether she/he is legal for marriage.
 - To make the problem easier, let's assume that the gender may only be male or female.
 - (It is good that the age now does not depend on gender!)

Problem 1: age for legal marriage

- Input:
 - A binary value $g \in \{0,1\}$ and a positive integer a. g and a are separated by a white space.
 - -g is 1 if the user is a man; g is 0 if the user is a woman. a is her/his age.
 - $a \le 200.$
- Output:
 - "Yes" if the user is legal for marriage or "No" otherwise.
- Sample input/output:

Input:
1 18

Input:
1 17

Output:
Yes

Input:
Output:
Yes

Void

Output:
Yes

Problem 1: age for legal marriage

- Would you complete the program without using any logical operator?
- Would you complete the program without using any nested selection?

Problem 2: Converging to 1?

- Consider the following process:
 - You are given a positive integer.
 - If it is odd, multiply it by 3 and then add it by 1.
 - If it is even, divide it by 2.
 - Repeat until it becomes 1.
- Will it becomes 1 eventually?
- Write a program to test this!
 - Print out all the values we obtain during the process.

Problem 2: Converging to 1?

- Input:
 - A positive integer a.
 - $-a \le 1000000$.
- Output:
 - All values we obtain during the process.
 - Two consecutive values should be separated by a white space.
- Sample input/output:

1 1	3	23	
Output: 4 2 1	Output: 10 5 16 8 4 2 1	Output: 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1	

Problem 3: Monopoly pricing

- We sell a product to a small town.
- The demand of this product is q = a bp:
 - a is the base demand.
 - b measures the price sensitivity of the product.
 - p is the unit price to be determined.
- Let *c* be the unit production cost.
- Given a, b, and c, how to solve

$$\max_{p} (a - bp)(p - c)$$

to find an optimal (profit-maximizing) integer price p^* ?

- If multiple prices all result in the maximized profit, we consider the lowest price as the optimal one.

Problem 3: Monopoly pricing

- Input:
 - Three positive integers a, b, and c in a row.
 - Two consecutive values are separated by one white space.
 - All three values are no greater than 10000; a > bc.
- Output:
 - The optimal integer price, a white space, and then the maximized profit.
- Sample input/output:

Input:

10 1 2

Output:

6 16

Input:

1000 15 50

Output:

58 1040

Input:

10000 1000 5

Output:

7 6000

Problem 4: Safe locations

- On a two-dimensional plane, there are $6 \times 6 = 36$ grid points within the square whose vertices are (0,0), (5,0), (0,5), and (5,5).
- We are given the locations of 3 snippers (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) .
 - $x_i \in \{0, 1, ..., 5\}, y_i \in \{0, 1, ..., 5\}.$
- A location (x, y) is considered dangerous if its relationship with any one of the three snippers satisfies one of the following:
 - On the same horizontal line: $y = y_i$ for any $i \in \{1, 2, 3\}$.
 - On the same vertical line: $x = x_i$ for any $i \in \{1, 2, 3\}$.
 - On the same diagonal line: $|x x_i| = |y y_i|$ for any $i \in \{1, 2, 3\}$.
- A location is safe if it is not dangerous. Find all safe locations.
- Hint: Use the function **abs()** in **<cmath>**.

Problem 4: safe locations

• Input:

- Six integers x_1 , y_1 , x_2 , y_2 , x_3 , and y_3 in a row.
- Two consecutive values are separated by one white space.
- All three values are within 0 and 5.

• Output:

- All the safe locations (x, y).
- To print out a location, print out x, then a white space, then y.
- If there are multiple safe locations, print out each one in a new line.
- If two locations are both safe, print out the one with the smaller x first; if their x values are the same, print out the one with the smaller y.

Problem 4: safe locations

• Sample input/output:

Input:

0 0 0 1 0 2

Output:

1 4

1 5

2 5

4 3

5 3

5 4

Input:

0 0 1 2 3 5

Output:

4 1

4 3

5 1

5 4

Input:

1 1 3 4 5 2

Output:

0 3

0 5

4 0