1

Assignment 6

Gaureesha Kajampady - EP20BTECH11005

Download latex-tikz codes from

https://github.com/gaureeshk/assignment6_2/blob/main/assignment6.tex

1 Problem

gov/stats/2018/STATISTICS-PAPER-2 , Q.58 Let X_1 and X_2 be i.i.d random variables with poisson. Then (X_1+2X_2) is not sufficient because

- 1) $Pr(X_1 = 1, X_2 = 1 | T = 3)$ depends on λ
- 2) $X_1 + 2X_2$ is poisson
- 3) $X_1 + 2X_2$ is not poisson
- 4) $Pr(X_1 = 1, X_2 = 1 | T = 3)$ is Poisson with parameter one

Where $T = (X_1 + 2X_2)$

2 Solution

Definition 1. Statistic: A statistic is a function $T = r(X_1, X_2, ..., X_n)$ of the random sample $X_1, X_2, ..., X_n$.

Definition 2. Sufficient Statistics: A statistic t = T(X) is sufficient for θ if the conditional probability distribution of data X, given the statistic t = T(X), doesn't depend on the parameter θ .

1) We know T=3 when (X_1, X_2) have values (1,1)

and (3,0)

$$\Pr(X_1 = 1, X_2 = 1 | T = 3)$$

$$= \frac{\Pr(X_1 = 1, X_2 = 1 \cap T = 3)}{\Pr(T = 3)}$$

$$= \frac{\Pr(X_1 = 1, X_2 = 1)}{\Pr(X_1 = 1, X_2 = 1) + \Pr(X_1 = 3, X_2 = 0)}$$

$$=\frac{e^{-2\lambda}\lambda^2}{e^{-2\lambda}\lambda^2+\frac{e^{-3\lambda}\lambda^3}{6}}$$

$$=\frac{6}{6+\lambda} \neq \frac{e^{-1}1^{\lambda}}{\lambda!}$$
 (2.0.1)

Hence $Pr(X_1 = 1, X_2 = 1 | T = 3)$ depends on λ but is not poisson with parameter 1. \implies option 4 is incorrect and option 1 is correct.

2)

Lemma 2.1. Suppose that X_1 and X_2 are i.i.d poisson random variables with parameter λ , $T = X_1 + 2X_2$ does not follow poisson distribution.

Proof. Let $\Phi_{X_1}(\omega)$, $\Phi_{2X_2}(\omega)$ and $\Phi_T(\omega)$ be the characteristic functions of probability density function of random variables X_1 , $2X_2$ and T respectively.

$$\Phi_{X_1}(\omega) = \operatorname{E}(e^{i\omega X_1})$$

$$= \sum_{x=0}^{\infty} \operatorname{Pr}(X_1 = x) e^{i\omega x}$$

$$= \sum_{x=0}^{\infty} \frac{e^{i\omega x - \lambda} \lambda^x}{x!}$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(e^{i\omega} \lambda)^x}{x!}$$

$$= e^{\lambda(e^{i\omega} - 1)} \quad (2.0.2)$$

Similarly,

$$\Phi_{2X_{2}}(\omega) = \operatorname{E}(e^{i\omega 2X_{2}})$$

$$= \sum_{x=0}^{\infty} \operatorname{Pr}\left(X_{2} = \frac{x}{2}\right) e^{i\omega x}$$

$$= \sum_{x=0,2,4,\dots}^{\infty} \frac{e^{i\omega x - \lambda} \lambda^{\frac{x}{2}}}{\left(\frac{x}{2}\right)!}$$

$$= e^{-\lambda} \sum_{\frac{x}{2} = 0,1,2,\dots}^{\infty} \frac{(e^{2i\omega} \lambda)^{\frac{x}{2}}}{\left(\frac{x}{2}\right)!}$$

$$= e^{\lambda(e^{2i\omega} - 1)}$$
(2.0.3)

$$\Phi_T(\omega) = \Phi_{X_1}(\omega) \times \Phi_{2X_2}(\omega) \tag{2.0.4}$$

$$=e^{\lambda(e^{i\omega}+e^{2i\omega}-2)} \tag{2.0.5}$$

$$\neq e^{\mu(e^{i\omega}-1)} \tag{2.0.6}$$

Hence the characteristic function of T $(\Phi_T(\omega))$ is not in the form of the characteristic function of a poisson random variable (for any value of the parameter μ).

Hence using lemma 2.1, $T = X_1 + 2X_2$ is not poisson.

⇒ option 2 is incorrect, option 3 is correct Hence options 1 and 3 are correct.