EE613 - Nonlinear regression - Exercises - Nov. 11, 2015

The main folder contains four examples demo_LWR01.m, demo_GMR01.m, demo_GMR_polyFit01.m and demo_GPR01.m. These codes can be run either from Matlab or from GNU Octave. First run the examples, visualize the results and try to change the parameters.

Exercise 1: Locally weighted regression Vs Gaussian mixture regression

- Modify demo_LWR01.m and demo_GMR_polyFit01.m so that it loads the dataset contained in data/1.mat, corresponding to 2D movement recordings to draw the digit "1".
- Set the parameters nbStates=2 and nbVarIn=1 in demo_LWR01.m and demo_GMR_polyFit01.m.
- Run the two examples and observe the results. Can you explain the difference?

Exercise 2: Sampling of prior and posterior distributions in a Gaussian process

The source code demo_GPR01.m provides an example of Gaussian process regression with a radial basis function kernel. The hyperparameters Θ_1^{GP} , Θ_2^{GP} and Θ_3^{GP} are respectively related to the scale of the output, scale of the input, and expected noise on the observed outputs.

- After making a copy of demo_GPR01.m, replace the dataset $\{x,y\}$ with four datapoints of 2 dimensions (1D input and 1D output), uniformly spread in the input dimension and random in the output dimension, as the red datapoints in the figure above. Define a list of new inputs x^* as 100 datapoints uniformly spread in the input dimension within the same range as the red points.
- By using the covariance matrix $K(x^*, x^*)$ of the Gaussian process, generate stochastic samples from the prior distribution $y^* \sim \mathcal{N}(\mu(x^*), K(x^*, x^*))$, by considering $\mu(x^*) = 0$.
- Generate stochastic samples from the posterior distribution $y^*|y \sim \mathcal{N}(\mu^*, \Sigma^*)$ of the Gaussian process, by considering $\mu(x) = \mu(x^*) = 0$.
- Test this generation procedure with different hyperparameters. An example with $\Theta_1^{\text{GP}} = 1$, $\Theta_2^{\text{GP}} = 0.1$ and $\Theta_3^{\text{GP}} = 0.01$ is given in the figure above.

Exercise 3: Gaussian process regression with periodic kernels

Based on the code of *Exercise 2*, replace the radial basis function

$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \Theta_1^{\mathrm{GP}} \exp \left(-\frac{1}{\Theta_2^{\mathrm{GP}}} |\boldsymbol{x}_i - \boldsymbol{x}_j|^2 \right) + \Theta_3^{\mathrm{GP}} \delta_{i,j}$$

with the periodic kernel function

$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \Theta_1^{^{\mathrm{GP}}} \exp\left(-rac{1}{\Theta_2^{^{\mathrm{GP}}}} \sin^2(\Theta_4^{^{\mathrm{GP}}}|\boldsymbol{x}_i - \boldsymbol{x}_j|)\right) + \Theta_3^{^{\mathrm{GP}}} \delta_{i,j}.$$

• What do you observe when you retrieve new datapoints outside the range of the input data?