Parseo y Generación de Código -2^{do} semestre 2018 Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Primer parcial

Nota: este parcial es a libro abierto. Se permite tener cualquier material manuscrito o impreso, pero no se permite el uso de dispositivos electrónicos. El parcial se califica con una nota numérica de 1 a 10. Se requiere ≥ 4 en ambos parciales para aprobar la materia. Para promocionar se requiere nota ≥ 6 en ambos parciales y promedio ≥ 7 .

Ejercicio 1. Dada la gramática $G = (\{E, B\}, \{id, case, of, \leadsto, (,)\}, \mathcal{P}, E)$ con el siguiente conjunto de producciones:

- a. Demostrar que G es ambigua.
- b. Decidir si G es LL(1).

Ejercicio 2. En el alfabeto $\Sigma = \{a, \bullet, <, >\}$, considerar el lenguaje:

$$L = \{ <>, < a >, < a \bullet a >, < a \bullet a >, < a \bullet a >, \dots \}$$

Más precisamente, L es el lenguaje denotado por la expresión regular $<> |<(a \bullet)^*a>$. Dar una gramática LL(1) que genere el lenguaje L. Construir la tabla LL(1) y mostrar que no hay conflictos.

Ejercicio 3. Considerar la gramática $G = (\{S, A, B\}, \{c, d\}, \mathcal{P}, S)$ con el siguiente conjunto de producciones:

La gramática G no es SLR. Mostrar que se puede eliminar exactamente una de las dos producciones del símbolo A para obtener una gramática modificada G' que sí es SLR. Indicar cuál de las dos producciones debe eliminarse (¿la producción $A \to c$, o la producción $A \to cd$?). Construir la tabla SLR de la gramática modificada G' y mostrar que no hay conflictos.

Ejercicio 4. En el alfabeto $\Sigma = \{a, b\}$, sean:

- L_1 el lenguaje denotado por la expresión regular b^*ab^* .
- \blacksquare L_2 el lenguaje denotado por la expresión regular $(a|ba^*b)^*.$

Dar una expresión regular que denote el lenguaje $L_1 \cap L_2$.

Ejercicio 5. Considerar la siguiente tabla SLR para una gramática con símbolo inicial E:

	$\mid E$	$\mid T \mid$	and	p	()	\$
0	1	2		s(3)	s(4)		
1							accept
2			s (5)			$E \to T$	$E \to T$
3			$T \to \mathbf{p}$			$T \to \mathbf{p}$	$T \to \mathbf{p}$
4	6	2		s(3)	s(4)		
5	7	2		s(4)	s(4)		
6						s(8)	
7						E o T and E	E ightarrow T and E
8			$T \rightarrow (E)$			$T \rightarrow (E)$	$T \rightarrow (E)$

- a. Mostrar la evolución de la entrada y la pila al analizar la cadena " \mathbf{p} and (\mathbf{p})" usando la tabla SLR de arriba. El estado inicial del autómata es el estado 0.
- b. Reconstruir la derivación más a la derecha que se obtiene.