# CATARACT CREEK DAM

### Manual for Operation and Maintenance

STATE DOCUMENTS COLLECTION

MY 2 4 2001

MONTANA STATE LIBRARY 1515 E. 6th AVE. HELENA, MONTANA 59620

State Water Projects Bureau
Water Resources Division
Department of Natural Resources and Conservation
48 North Last Chance Gulch
P. O. Box 202301
Helena, MT 59620-2301

Initial Publication May 1995 Revised May 2001



# CATARACT CREEK DAM

## Manual for Operation and Maintenance

State Water Projects Bureau
Water Resources Division
Department of Natural Resources and Conservation
48 North Last Chance Gulch
P. O. Box 202301
Helena, MT 59620-2301

Initial Publication May 1995 Revised May 2001



#### TABLE OF CONTENTS

|                                          | Page |
|------------------------------------------|------|
| OVERVIEW                                 |      |
| General Location Map (Figure 1)          |      |
| Project Area Map (Figure 2)              | 4    |
| Dam General Layout Map (Figure 3)        | 5    |
| STATISTICAL INFORMATION                  | 7    |
| OPERATING PROCEDURES                     | 11   |
| Method and Schedule of Operation         |      |
| Safe Drawdown                            |      |
| Limits of Appurtenances                  |      |
| Dam Operator                             |      |
| Storage Determination                    |      |
| Weather Monitoring                       | 14   |
| Interaction with Other Dams              |      |
| Emergency                                | 15   |
| INSPECTION AND MONITORING                | 17   |
| Structural Features Inspection           | 17   |
| Riprap Inspection                        |      |
| Seepage Monitoring                       |      |
| MAINTENANCE                              | 21   |
| Routine Maintenance                      | 21   |
| Annual Maintenance                       | 22   |
| Record Keeping                           | 22   |
| REFERENCES                               | 25   |
| APPENDICES                               | 27   |
| A. RATING CURVES AND TABLES              | A1   |
| Table 1. SLOPE/ELEVATION/STORAGE TABLE   | A2   |
| Table 2. TOTAL STORAGE TABLE             | . A4 |
| Table 3. SPILLWAY RATING CURVE AND TABLE | . A6 |
| B. INSPECTION REPORT FORM                | B1   |
| C. SEEPAGE DATA                          | C1   |
| D. O&M MANUAL DISTRIBUTION LIST          | D1   |
| E. PROJECT DRAWINGS                      | E1   |

i

ii 2001

#### **OVERVIEW**

Cataract Creek Dam is located in Madison County, about 2 miles southwest (upstream) from the community of Pony and 8 miles southwest of the Town of Harrison (see Figure 1). The reservoir is fed by Cataract Creek, which originates 2.3 miles southwest of Cataract Creek Dam at Mason Lake (see Figure 2). Figure 3 provides a general layout of the dam, spillway and outlet works.

The dam is owned by the Montana Department of Natural Resources and Conservation (DNRC) and is managed by the State Water Projects Bureau (SWPB) of the DNRC. The Cataract Water Users Association (herein called the "association") operates and maintains the dam.

The earthfill dam was completed in 1959. Cataract Creek Dam is 80 feet high and 775 feet long. The dam's outlet works consist of a square dry tower (5.5 by 5.3 feet) with two 30-inch diameter gate valves. The upstream valve is used for emergency shutoff, while the downstream valve is the operating valve. The operating valve is operated by a handle located at the top of the tower. The emergency valve is operated by a hand wheel located at the bottom of the tower. The maximum capacity of the outlet works is 160 cubic feet per second (cfs).

The spillway is located in the right abutment and consists of earthen channel, a concrete drop structure and an earthen exit channel to Cataract Creek. The spillway drop structure has a bottom width of 20 feet, side slopes of 1v to 1.5h and are 5 feet high, sides and bottom are 6 inches thick, and a jointed 6 inch diameter concrete drain pipe is on each side of the 20 feet wide

bottom. When the spillway spills, the water has eroded a large cut where the channel drops into Cataract Creek. The maximum capacity of the spillway is 1,250 cfs.

The reservoir has a normal capacity of 1,478 acre-feet at the spillway crest and a maximum capacity at the dam crest of 1,800 acre-feet. Water from the reservoir is delivered to association members via Cataract Creek and North Willow Creek to their diversions on North Willow Creek. Water from the reservoir is primarily used for irrigation water supply. The reservoir is also used for water-based recreation.





Figure 2. Cataract Project Map



Figure 3. Cataract Dam General Layout

#### STATISTICAL INFORMATION

#### 1. General

a. Owner Montana Department of

Natural Resources and

Conservation (DNRC)

b. Operator Cataract Water Users

Association

c. Location Section 23, Township 2

South, Range 3 West (dam

location)

d. Latitude 45.64°

Longitude 111.94°

e. County—State Madison--Montana

f. Watershed Location Cataract Creek, from Mason

Lake; tributary of North

Willow Creek

g. Drainage Area 6.1 square miles

#### 2. Principal Elevations (feet above mean sea level)

a. Maximum Dam Crest 6.360.0 feet

b. Normal Full Pool 6,353.0 feet

c. Spillway Crest 6,353.0 feet

d. Outlet Works Invert 6,293.0 feet

(from drawings)

e. Toe of Dam 6,280.0 feet

#### 3. Reservoir

a. Length of Maximum Pool 0.36 miles

(approximate)

b. Surface Area at 45 acres

(at normal full pool)

4. Storage

a. Maximum Storage 1,800 acre-feet

(pool at dam crest)

b. Active Storage 1,478 acre-feet

(pool at spillway crest)

c. Maximum Surcharge 322 acre-feet

(from spillway crest to dam crest)

5. Hydrology

a. Probable Maximum 10,200 cfs (8,450 acre-feet)

Flood (PMF)

b. 500-yr Flood 225 cfs

c. 100-year Flood 160 cfs

6. Embankment

a. Type Earthfill

b. Hydraulic Height 80 feet

c. Crest Length 775 feet

d. Crest Width 20 feet

e. Downstream Slope 1v on 2.0h

f. Upstream Slope 1v on 3.0h

7. Outlet Works

a. Size 30-inch, horseshoe-shaped,

reinforced concrete

b. Length 390 feet

c. Control Two 30-inch diameter gate

valves in series. The

upstream valve is operated from the bottom of a 5.5 by 5.3 feet square dry tower. The downstream valve is operated

from the top of the tower.

d. Capacity (pool at dam crest)

160 cfs

e. Trashrack

Yes

#### 8. Spillway

a. Location

b. Type

Right Abutment

Controlled, unlined, open channel with a concrete drop

structure

c. Width (bottom)

d. Length

20 feet720 feet

e. Capacity (pool at dam crest)

1,250 cfs

#### **OPERATING PROCEDURES**

The Cataract Water Users Association manages Cataract Creek Reservoir to provide an adequate supply of irrigation water to meet contracts with water users without exceeding safe storage and flow levels.

#### METHOD AND SCHEDULE OF OPERATION

Water stored in the reservoir supplements the flow of North Willow Creek during the irrigation season. The association strives to impound the maximum amount of water below the spillway crest prior to the irrigation season. The reservoir level has reached the spillway crest only twice and generally peaks in late-May or June. Water from the reservoir supplements irrigation flows for a month or more after the reservoir reaches its highest level. Naturally, the actual dates vary depending on each year's climatological and hydrological conditions.

Water from the reservoir is normally discharged via the seepage which exits downstream of the embankment (see Seepage Monitoring section). The timing of these "natural" releases generally suits the needs of the contract holders. Typically, the dam operator only uses the outlet works to allow stored water from Mason Lake to pass through Cataract Dam.

**Maximum Winter Storage:** The maximum reservoir elevation for winter storage is 6,345.0 feet with 1,139 acre-feet of storage. This winter maximum helps prevent damage to the riprap and embankment from wind-driven waves and ice.

**Minimum Winter Storage:** The minimum reservoir elevation for winter storage is 6,303.0 feet with 54 acre-feet of storage. This winter minimum helps prevent ice damage to the inlet structure for the outlet works.

#### SAFE DRAWDOWN

Because the stability of Cataract Creek Dam has not been thoroughly investigated, SWPB recommends that drawdown rates not exceed one foot per day.

#### LIMITATIONS OF APPURENANCES

The appurtenances at the dam are the embankment, outlet works, and spillway. The capacity of the outlet works is 160 cfs at the maximum dam crest elevation. The maximum opening is 30 inches for both gates. This is measured from the top of the gate stem to the top of the pedestal. In addition, the spillway will discharge 1,250 cfs when the reservoir water is at the dam crest. A rating table for the spillway is in Appendix A.

#### DAM OPERATOR

The association has not hired a dam operator. In this manual, the term "dam operator" refers to the court-appointed water commissioner for North Willow Creek.

The association and the dam operator are responsible for the daily operation of the dam and reservoir. While the dam operator performs summer operations of Cataract Creek Dam, all of the members of the association operate the dam during the rest of the year.

The dam operator is generally authorized to operate the reservoir to meet the court's admeasurement of water and the association's goals of supplying water while maintaining safe storage and flow levels. The dam operator's specific responsibilities are to:

- 1. Distribute water as directed by the court.
- 2. Operate the mechanical features of the outlet works.
- 3 Coordinate filling the reservoir and releasing water.
- 4. Notify the SWPB of unusual occurrences such as vandalism, impending floods, excessive seepage, or problems with the outlet.
- 5. Notify the association of the need for certain routine maintenance tasks.
- 6. Monitor weather conditions.
- 7. Monitor seepage.

Typically, the out-going dam operator and the association train a new dam operator. The dam operator's training focuses on the mechanical operation of the gates, storage level observation, measurement of the rate of water releases, and record keeping. The gates are operated manually with a hand crank or handwheel. The outlet works are intended to be used for controlling the release of irrigation water and not for providing emergency relief.

The dam operator is normally available daily to observe the dam, admeasure irrigation water, and perform operating functions daily during the filling and irrigation season. A landowner adjacent to the dam is on-site regularly tending his stock and reports any problems to the association president who typically visits the dam monthly. While communication among the dam operator, the association, and the SWPB usually takes place by telephone, radio communication may be established during emergencies or unusual occurrences, so that the dam operator or the association can speak directly with county authorities and

communicate indirectly with the SWPB (see Cataract Creek Dam Emergency Action Plan).

#### STORAGE DETERMINATION

Storage in the reservoir and the elevation of the reservoir surface are determined by taking a slope measurement. Measure in feet from the rebar pin, located north of the spillway drop structure below the dam crest near the large rocks, to the water surface. The elevation of the reservoir surface and the storage can then be found using the Slope-Elevation-Storage Table in Appendix A.

#### WEATHER MONITORING

The association and the dam operator monitor weather conditions through local weather forecasts and the National Weather Service.

If severe flooding is anticipated, the NWS Great Falls Office (406-453-2081 or 406-453-4561) should be contacted for information about the storm, such as the estimated storm intensity and duration, runoff duration (above base flow), and total flood volume of the storm in the Cataract Creek drainage.

#### **INTERACTION WITH OTHER DAMS**

Except for irrigation diversion dams, Willow Creek Dam is the next dam downstream from Cataract Creek Dam. The safety of Willow Creek Dam is not effected by the normal operation of Cataract Creek Dam.

#### **EMERGENCY**

If it appears that Cataract Creek Dam is about to breach, or during emergency operations, the dam operator will initiate the Cataract Creek Dam Emergency Action Plan.

During am emergency, the association will notify the operator of Willow Creek Dam (Barry McLane 406-285-3689) to observe the inflows into Willow Creek Reservoir and implement the Willow Creek Dam Emergency Action Plan, if necessary.

#### **INSPECTION AND MONITORING**

The SWPB conducts annual inspections of the dam. Appendix B includes an example of a SWPB inspection report form. In addition to annual inspections, SWPB personnel will inspect the dam and reservoir during and after heavy runoff, severe rainstorms, and windstorms; during high storage periods; and after an earthquake. The embankment is not monitored by instrumentation.

#### STRUCTURAL FEATURES INSPECTION

Structural features include the control tower, outlet works, and spillway drop structure (Figure 3). The SWPB will inspect these structures annually as part of its inspection program. Items to be checked or noted include, but are not limited to:

- 1. Outlet Works
  - a. Any differential settlement or movement resulting in cracking of the conduit
  - b. Erosion of the seals or concrete by cavitation immediately downstream of the gates
  - c. Major seepage of water into the conduit
  - d. Major deterioration of exposed concrete due to freeze/thaw cycles or sulfate reactions
  - e. Operation of both gates through a full cycle
  - f. Free, unobstructed operation of the air vent
  - g. Corrosion of any metal
  - h. Proper lubrication and cleaning of the pedestals
- 2. Control Tower and Cover
  - a. Any damage or vandalism

#### 3. Spillway

- a. Deterioration of concrete
- b. Separation or movement of joints
- c. Cracking or displacement of the concrete floor or sidewalls
- d. Blockage of the approach or exit channel

#### 4. Embankment

- a. Erosion gullies in the dam or dam abutments
- b. Damage from burrowing animals or vegetation
- c. Displacement or loss of rip-rap protection
- d. Displacement of fill, sink hole's, slumps etc.
- e. Any seepage

#### RIPRAP INSPECTION

The riprap along the faces of the dam should be at least 30 inches thick (the original placement depth). Immediately after the occurrence of high water, the riprap will be inspected and additional riprap added if needed.

#### **SEEPAGE MONITORING**

No seepage has been observed along the immediate downstream toe of the dam. However, seepage does occur at different locations in the wide, relatively flat reach of Cataract Creek immediately below the dam. As you move downstream of the dam, net seepage increases substantially, and eventually shows as streamflow. Based on measurements and observations made in 1997, the location of where the seepage exits downstream of the dam is directly related to the height of the reservoir pool. The higher the reservoir level, the closer to the downstream dam embankment the seepage exits. The closest the seepage has been observed to the downstream dam toe is about 65 feet below the

outlet structure. Appendix C contains a table of the data collected in 1997.

Based on the 1997 measurements, the flow in Cataract Creek below the dam is seepage from the dam, although its flow path is not well understood. It is likely a majority of the seepage losses originates from within the reservoir itself. A portion of the borrow materials for construction of the dam were obtained from the reservoir area. It is possible that seepage paths were uncovered during borrow material excavation. Active sinkholes around the reservoir rim, discovered during the 1997 and 1998 annual inspections, support this conclusion.

The seepage flow (quantity and turbidity) is monitored at a Parshall Flume approximately ½ mile downstream from the dam. The flow is always clear, and no unexplained increases in flow have occurred.

Two shallow hand driven monitoring wells were installed in the fall of 1996 below the toe of the dam. One is located to the left of the outlet, while the other is located to the left and approximately 100 feet downstream of the outlet. These monitoring wells extend only 5 to 10 feet deep.

A concrete toe drain extends along the toe of the dam downstream of the cutoff trench. The drain exits along the downstream toe in the right groin approximately 10 feet above the outlet wing walls. In 1997, the drain flow varied from 0 to 67 gpm, depending on the height of the reservoir pool. The drain is measured by a bucket and stopwatch.

The seepage flow, drain flow, and monitoring wells will be recorded by the SWPB during annual inspections. The areas of

seepage will be observed and monitored by the dam operator during regular visits.

#### **MAINTENANCE**

The association is responsible for routine maintenance of the project. In addition the SWPB may identify items that need maintenance or repair during the annual inspection.

#### **ROUTINE MAINTENANCE**

To protect the dam and keep it in good working order, the dam operator during regular visits to the dam will watch for and identify any potential maintenance requirements. As soon as a need is identified, the dam operator and the association needs to schedule and perform the routine maintenance.

Items that may occasionally need attention include, but are not limited to:

- 1. Lubrication and cleaning of gate-operating mechanisms.
- 2. Debris or silt restricting the spillway inlet or outlet works. Accumulated debris that could effect the operation of these appurtenances will be removed at once, with all debris removed at least annually.
- 3. Erosion gullies on embankment. Development of erosion gullies will be checked immediately. Gullies will be filled, compacted, and seeded. Particular attention will be paid to the abutment contact areas and the downstream face where four-wheel-drive or motorcycle tracks may become a problem.
- 4. Rodent damage. The rodents will be removed or destroyed, and any burrows holes should be filled immediately.
- 5. *Upstream slope riprap*. Reservoir riprap normally will be observed annually, but may occasionally need repairs because of high water or wave action.
- 6. Vegetative cover on downstream slope. Good vegetative cover will be maintained, but large brush and trees will be removed from the downstream slope and the spillway

channel.

- 7. Noxious weeds. Weeds on and around the dam should be sprayed on at least an annual basis.
- 8. Clean spillway and outlet structure wall tops. Spillway and outlet structure wall tops should be clear of any dirt, rocks, grass, brush, and any overhanging vegetation or trees.
- 9. Repair joints and seal cracks in the spillway

#### ANNUAL MAINTENANCE

The SWPB conducts annual inspections of Cataract Creek
Dam and Reservoir. During these inspections, any items requiring
maintenance will be identified and recorded. Items that need
annual maintenance include the spillway, outlet works, gates,
riprap, roads, and gate house. Other routine items needing
immediate attention, such as the need to remove trees and brush,
will also be noted.

After the inspection, the SWPB sends the association a Dam Safety Inspection Report and a Maintenance Schedule Report. The reports identify items that need maintenance and provide a schedule of when the maintenance tasks need to be completed. The association is responsible for performing the maintenance items within the times specified.

The dam operator or association members may perform the maintenance tasks. However, major repairs will likely be to handled by a contractor. The SWPB may assist in contracting for repairs and may supervise the repair work.

#### **RECORD KEEPING**

The SWPB maintains records, including photographs, of all inspections and maintenance requirements. These records also include seepage monitoring observations. Anyone who wants to

review these records may do so in the SWPB's office at the Department of Natural Resources and Conservation in Helena.

The dam operator will keep records of the reservoir elevation, seepage observations or measurements, and any unusual conditions. These records may be reviewed at the dam operator's house.

#### REFERENCES

- CH2M Hill. April 1980. *Phase 1 Inspection Report, National Dam Safety Program, Cataract Creek Dam, Pony, Montana, Madison County, MT-5.* Prepared for the State of Montana (DNRC) under the U.S. Army Corps of Engineers National Dam Safety Program.
- Omang, R.J. July 1992. Analysis of the Magnitude and Frequency of Floods and the Peak-Flow Gaging Network in Montana. Water-Resources Investigations Report 92-4048. U.S. Geological Survey.
- Reich, George; President, Cataract Creek Water Users Association. December 1993 and March 1994.
- Personal telephone communication with Jim Beck, Regional Office Engineer, MT Water Resources Division, DNRC, Helena.

### **APPENDICES**

# APPENDIX A RATING CURVES AND TABLES

A1 2001

## TABLE 1. SLOPE- ELEVATION-STORAGE TABLE CATARACT CREEK RESERVOIR

Pins installed and elevations established in 1996.

Storage values based on 1959 original hand surveys of the reservoir.

The 0+00 pin is located north of the spillway drop structure below the dam crest near the large rocks.

| DISTANCE   | ELEVATION | STORAGE   | ПТ | DISTANCE   | ELEVATION | STORAGE   |
|------------|-----------|-----------|----|------------|-----------|-----------|
| feet       | feet      | acre-feet |    | feet       | feet      | acre-feet |
| Top Pin #1 | 6351.54   | 1387      |    | 36         | 6343.20   | 1070      |
| 0          | 6351.09   | 1376      | ш  | 37         | 6343.05   | 1064      |
| 1          | 6350.76   | 1367      |    | 38         | 6342.91   | 1058      |
| 2          | 6350.44   | 1359      |    | 39         | 6342.76   | 1053      |
| 3          | 6350.11   | 1350      |    | 40         | 6342.61   | 1047      |
| 4          | 6349.79   | 1338      | ш  | 41         | 6342.49   | 1043      |
| 5          | 6349.46   | 1324      |    | 42         | 6342.37   | 1038      |
| 6          | 6349.32   | 1319      |    | 43         | 6342.26   | 1034      |
| 7          | 6349.08   | 1308      |    | 44         | 6342.14   | 1030      |
| 8          | 6348.85   | 1299      | ш  | .45        | 6342.02   | 1025      |
| 9          | 6348.61   | 1289      |    | 46         | 6341.94   | 1022      |
| 10         | 6348.37   | 1279      |    | 47         | 6341.85   | 1018      |
| 11         | 6348.16   | 1270      |    | 48         | 6341.77   | 1015      |
| 12         | 6347.95   | 1262      |    | 49         | 6341.68   | 1011      |
| 13         | 6347.75   | 1254      |    | 50         | 6341.60   | 1008      |
| 14         | 6347.54   | 1245      |    | 51         | 6341.56   | 1006      |
| 15         | 6347.33   | 1236      |    | 52         | 6341.51   | 1004      |
| 16         | 6347.15   | 1228      |    | 53         | 6341.47   | 1003      |
| 17         | 6346.98   | 1221      |    | 54         | 6341.42   | 1002      |
| 18         | 6346.80   | 1214      |    | 55         | 6341.38   | 1000      |
| 19         | 6346.63   | 1207      |    | 56         | 6341.34   | 999       |
| 20         | 6346.45   | 1199      |    | 57         | 6341.30   | 997       |
| 21         | 6346.22   | 1190      |    | 58         | 6341.25   | 995       |
| 22         | 6345.99   | 1181      | ш  | 59         | 6341.21   | 993       |
| 23         | 6345.77   | 1172      |    | 60         | 6341.17   | 992       |
| 24         | 6345.54   | 1162      |    | 61         | 6341.01   | 985       |
| 25         | 6345.31   | 1152      |    | 62         | 6340.86   | 979       |
| 26         | 6345.09   | 1143      |    | 63         | 6340.70   | 974       |
| 27         | 6344.87   | 1134      |    | 64         | 6340.55   | 968       |
| 28         | 6344.66   | 1126      |    | Top Pin #2 | 6340.86   | 979       |
| 29         | 6344.44   | 1118      |    | 65         | 6340.39   | 962       |
| 30         | 6344.22   | 1110      |    | 66         | 6340.00   | 947       |
| 31         | 6344.05   | 1103      |    | 67         | 6339.60   | 933       |
| 32         | 6343.87   | 1096      |    | 68         | 6339.21   | 919       |
| 33         | 6343.70   | 1089      |    | 69         | 6338.81   | 905       |
| 34         | 6343.52   | 1083      |    | 70         | 6338.42   | 892       |
| 35         | 6343.34   | 1076      |    |            |           |           |
|            |           |           |    |            |           |           |
| DISTANCE   | ELEVATION | STORAGE   |    | DISTANCE   | ELEVATION | STORAGE   |

TABLE 1. SLOPE- ELEVATION-STORAGE TABLE (continued)
CATARACT CREEK RESERVOIR

| DISTANCE   | ELEVATION | STORAGE   |
|------------|-----------|-----------|
| feet       | feet      | acre-feet |
| 71         | 6338.13   | 882       |
| 72         | 6337.84   | 872       |
| 73         | 6337.55   | 862       |
| 74         | 6337.26   | 851       |
| 75         | 6336.97   | 841       |
| 76         | 6336.64   | 830       |
| 77         | 6336.31   | 818       |
| 78         | 6335.97   | 806       |
| 79         | 6335.64   | 795       |
| 80         | 6335.31   | 783       |
| 81         | 6335.16   | 779       |
| 82         | 6335.01   | 772       |
| 83         | 6334.86   | 768       |
| 84         | 6334.71   | 762       |
| 85         | 6334.56   | 758       |
| 86         | 6334.40   | 753       |
| 87         | 6334.25   | 748       |
| 88         | 6334.10   | 743       |
| 89         |           |           |
|            | 6333.95   | 739       |
| 90         | 6333.80   | 734       |
| 91         | 6333.41   | 721       |
| 92         | 6333.02   | 709       |
| 93         | 6332.64   | 696       |
| 94         | 6332.25   | 684       |
| 95         | 6331.86   | 672       |
| 96         | 6331.43   | 658       |
| 97         | 6330.99   | 644       |
| 98         | 6330.56   | 630       |
| 99         | 6330.12   | 616       |
| 100        | 6329.69   | 603       |
| 101        | 6329.26   | 591       |
| 102        | 6328.82   | 578       |
| 103        | 6328.39   | 566       |
| 104        | 6327.95   | 553       |
| 105        | 6327.52   | 540       |
| 106        | 6327.08   | 526       |
| 107        | 6326.65   | 514       |
| 108        | 6326.22   | 502       |
| 109<br>110 | 6325.78   | 488       |
| 111        | 6325.35   | 477       |
| 112        | 6324.91   | 463       |
| 113        | 6324.48   | 452       |
| 114        | 6324.05   | 442       |
|            | 6323.61   | 430       |
| 115        | 6323.18   | 419       |
| 115.8      | 6322.83   | 410       |
|            |           |           |
|            |           |           |
|            |           |           |

| leet leet acre-leet | DISTANCE |      | STORAGE   |
|---------------------|----------|------|-----------|
|                     | feet     | feet | acre-feet |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     | <b></b>  |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     | 1        |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |
|                     |          |      |           |

TABLE 2. TOTAL STORAGE CAPACITY IN ACRE-FEET CATARACT CREEK RESERVOIR

| Elevation | 0.0 | 0.1 | 0.2  | 0.3  | 0.4 | 0.5 | 0.6 | 0.7 | 0.8  | 0.9  |
|-----------|-----|-----|------|------|-----|-----|-----|-----|------|------|
| 6280      | 0.0 | 0.0 | 0.0  | 0.0  | 0.0 | 0.0 | 0.0 | 0.0 | 0.0  | 0.0  |
| 6281      | 0.0 | 0.0 | 0.0  | 0.1  | 0.1 | 0.1 | 0.1 | 0.1 | 0.1  | 0.1  |
| 6282      | 0.1 | 0.1 | 0.1  | 0.1  | 0.1 | 0.1 | 0.1 | 0.1 | 0.1  | 0.1  |
| 6283      | 0.1 | 0.1 | 0.1  | 0.1  | 0.1 | 0.1 | 0.1 | 0.1 | 0.2  | 0.2  |
| 6284      | 0.2 | 0.2 | 0.2  | 0.2  | 0.2 | 0.2 | 0.2 | 0.2 | 0.2  | 0.2  |
| 6285      | 0.2 | 0.2 | 0.2  | 0.3  | 0.3 | 0.3 | 0.3 | 0.3 | 0.4  | 0.4  |
| 6286      | 0.4 | 0.4 | 0.4  | 0.4  | 0.4 | 0.5 | 0.5 | 0.5 | 0.5  | 0.5  |
| 6287      | 0.5 | 0.5 | 0.5  | 0.6  | 0.6 | 0.6 | 0.6 | 0.6 | 0.7  | 0.7  |
| 6288      | 0.7 | 0.7 | 0.7  | 0.7  | 0.7 | 0.8 | 0.8 | 0.8 | 0.8  | 0.8  |
| 6289      | 0.8 | 0.8 | 0.8  | 0.9  | 0.9 | 0.9 | 0.9 | 0.9 | 1.0  | 1.0  |
| 6290      | 1.0 | 1.1 | 1.2  | 1.3  | 1.4 | 1.5 | 1.6 | 1.7 | 1.8  | 1.9  |
| 6291      | 2.0 | 2.1 | 2.2  | 2.3  | 2.4 | 2.5 | 2.6 | 2.7 | 2.8  | 2.9  |
| 6292      | 3.0 | 3.1 | 3.2  | 3.3  | 3.4 | 3.5 | 3.6 | 3.7 | 3.8  | 3.9  |
| 6293      | 4.0 | 4.1 | 4.2  | 4.3  | 4.4 | 4.5 | 4.6 | 4.7 | 4.8  | 4.9  |
| 6294      | 5.0 | 5.1 | 5.2  | 5.3  | 5.4 | 5.5 | 5.6 | 5.7 | 5.8  | 5.9  |
| 6295      | 6.0 | 6.5 | 7.0  | 7.5  | 8.0 | 8.5 | 9.0 | 9.5 | 10.0 | 10.5 |
| 6296      | 11  | 11  | 12   | 12   | 13  | 13  | 13  | 14  | 14   | 15   |
| 6297      | 15  | 16  | 16   | 17   | 17  | 18  | 18  | 19  | 19   | 20   |
| 6298      | 20  | 20  | 21   | 21   | 22  | 22  | 22  | 23  | 23   | 24   |
| 6299      | 24  | 25  | 25   | 26   | 26  | 27  | 27  | 28  | 28   | 29   |
| 6300      | 29  | 30  | 31   | 31   | 32  | 33  | 34  | 35  | 35   | 36   |
| 6301      | 37  | 38  | 39   | 39   | 40  | 41  | 42  | 43  | 43   | 44   |
| 6302      | 45  | 46  | 47   | 48   | 49  | 50  | 50  | 51  | 52   | 53   |
| 6303      | 54  | 55  | 56   | 56   | 57  | 58  | 59  | 60  | 60   | 61   |
| 6304      | 62  | 63  | 64   | 64   | 65  | 66  | 67  | 68  | 68   | 69   |
| 6305      | 70  | 71  | 73   | 74   | 75  | 77  | 78  | 79  | 80   | 82   |
| 6306      | 83  | 84  | 86   | 87   | 89  | 90  | 91  | 93  | 94   | 96   |
| 6307      | 97  | 98  | 100  | 101  | 102 | 104 | 105 | 106 | 107  | 109  |
| 6308      | 110 | 111 | 113  | 114  | 116 | 117 | 118 | 120 | 121  | 123  |
| 6309      | 124 | 125 | 127  | 128  | 129 | 131 | 132 | 133 | 134  | 136  |
| 6310      | 137 | 139 | 141  | 142  | 144 | 146 | 148 | 150 | 151  | 153  |
| 6311      | 155 | 157 | 159  | 160  | 162 | 164 | 166 | 168 | 169  | 171  |
| 6312      | 173 | 175 | 176  | 178  | 180 | 182 | 183 | 185 | 187  | 188  |
| 6313      | 190 | 192 | 194  | 195  | 197 | 199 | 201 | 203 | 204  | 206  |
| 6314      | 208 | 210 | 212  | 213  | 215 | 217 | 219 | 221 | 222  | 224  |
| 6315      | 226 | 228 | 230  | 233  | 235 | 237 | 239 | 241 | 244  | 246  |
| 6316      | 248 | 250 | 252  | 255  | 257 | 259 | 261 | 263 | 266  | 268  |
| 6317      | 270 | 272 | 274  | 277  | 279 | 281 | 283 | 285 | 288  | 290  |
| 6318      | 292 | 294 | 296  | 299  | 301 | 303 | 305 | 307 | 310  | 312  |
| 6319      | 314 | 316 | 318  | 321  | 323 | 325 | 327 | 329 | 332  | 334  |
| 6320      | 336 | 339 | 341  | 344  | 346 | 349 | 352 | 354 | 357  | 359  |
| 6321      | 362 | 365 | 367  | 370  | 372 | 375 | 378 | 380 | 383  | 385  |
| 6322      | 388 | 391 | 393  | 396  | 398 | 401 | 404 | 406 | 409  | 411  |
| 6323      | 414 | 417 | 419  | 422  | 424 | 427 | 430 | 432 | 435  | 437  |
| 6324      | 440 | 443 | 445  | 448  | 450 | 453 | 456 | 458 | 461  | 463  |
| 6325      | 466 | 469 | 472  | 475  | 478 | 481 | 483 | 486 | 489  | 492  |
| 0020      | .00 | 100 | T1 = | 77.5 | 710 | 101 | 700 | 700 | 400  | 702  |

A4 2001

TABLE 2. TOTAL STORAGE CAPACITY IN ACRE-FEET (continued)
CATARACT CREEK RESERVOIR

| Elevation | 0.0  | 0.1  | 0.2  | 0.3  | 0.4  | 0.5  | 0.6  | 0.7  | 0.8  | 0.9  |
|-----------|------|------|------|------|------|------|------|------|------|------|
| 6326      | 495  | 498  | 501  | 504  | 507  | 510  | 512  | 515  | 518  | 521  |
| 6327      | 524  | 527  | 530  | 533  | 536  | 539  | 542  | 545  | 548  | 551  |
| 6328      | 554  | 557  | 560  | 563  | 566  | 569  | 571  | 574  | 577  | 580  |
| 6329      | 583  | 586  | 589  | 592  | 595  | 598  | 600  | 603  | 606  | 609  |
| 6330      | 612  | 615  | 618  | 622  | 625  | 628  | 631  | 634  | 638  | 641  |
| 6331      | 644  | 647  | 650  | 654  | 657  | 660  | 663  | 666  | 670  | 673  |
| 6332      | 676  | 679  | 682  | 686  | 689  | 692  | 695  | 698  | 702  | 705  |
| 6333      | 708  | 711  | 714  | 718  | 721  | 724  | 727  | 730  | 734  | 737  |
| 6334      | 740  | 743  | 746  | 750  | 753  | 756  | 759  | 762  | 766  | 769  |
| 6335      | 772  | 776  | 779  | 783  | 786  | 790  | 793  | 797  | 800  | 804  |
| 6336      | 807  | 811  | 814  | 818  | 821  | 825  | 828  | 832  | 835  | 839  |
| 6337      | 842  | 846  | 849  | 853  | 856  | 860  | 863  | 867  | 870  | 874  |
| 6338      | 877  | 881  | 884  | 888  | 891  | 895  | 898  | 902  | 905  | 909  |
| 6339      | 912  | 916  | 919  | 923  | 926  | 930  | 933  | 937  | 940  | 944  |
| 6340      | 947  | 951  | 955  | 958  | 962  | 966  | 970  | 974  | 977  | 981  |
| 6341      | 985  | 989  | 993  | 997  | 1001 | 1005 | 1008 | 1012 | 1016 | 1020 |
| 6342      | 1024 | 1028 | 1032 | 1035 | 1039 | 1043 | 1047 | 1051 | 1054 | 1058 |
| 6343      | 1062 | 1066 | 1070 | 1074 | 1078 | 1082 | 1085 | 1089 | 1093 | 1097 |
| 6344      | 1101 | 1105 | 1109 | 1112 | 1116 | 1120 | 1124 | 1128 | 1131 | 1135 |
| 6345      | 1139 | 1143 | 1147 | 1152 | 1156 | 1160 | 1164 | 1168 | 1173 | 1177 |
| 6346      | 1181 | 1185 | 1189 | 1193 | 1197 | 1202 | 1206 | 1210 | 1214 | 1218 |
| 6347      | 1222 | 1226 | 1230 | 1235 | 1239 | 1243 | 1247 | 1251 | 1256 | 1260 |
| 6348      | 1264 | 1268 | 1272 | 1276 | 1280 | 1285 | 1289 | 1293 | 1297 | 1301 |
| 6349      | 1305 | 1309 | 1313 | 1318 | 1322 | 1326 | 1330 | 1334 | 1339 | 1343 |
| 6350      | 1347 | 1350 | 1352 | 1355 | 1357 | 1360 | 1363 | 1365 | 1368 | 1370 |
| 6351      | 1373 | 1376 | 1378 | 1381 | 1383 | 1386 | 1389 | 1391 | 1394 | 1396 |
| 6352      | 1399 | 1402 | 1404 | 1407 | 1410 | 1413 | 1415 | 1418 | 1421 | 1423 |
| 6353      | 1426 | 1429 | 1431 | 1434 | 1436 | 1439 | 1442 | 1444 | 1447 | 1449 |
| 6354      | 1452 | 1455 | 1457 | 1460 | 1462 | 1465 | 1468 | 1470 | 1473 | 1475 |
| 6355      | 1478 | 1484 | 1491 | 1497 | 1504 | 1510 | 1516 | 1523 | 1529 | 1536 |
| 6356      | 1542 | 1549 | 1555 | 1562 | 1568 | 1575 | 1581 | 1588 | 1594 | 1601 |
| 6357      | 1607 | 1613 | 1620 | 1626 | 1633 | 1639 | 1645 | 1652 | 1658 | 1665 |
| 6358      | 1671 | 1678 | 1684 | 1691 | 1697 | 1704 | 1710 | 1717 | 1723 | 1730 |
| 6359      | 1736 | 1742 | 1749 | 1755 | 1762 | 1768 | 1774 | 1781 | 1787 | 1794 |
| 6360      | 1800 |      |      |      |      |      |      |      |      |      |

NOTE: Storage table based on 1959 original hand surveys of the reservoir.

Spillway crest Elevation 6,353 feet Storage 1,478 acre-feet Dam Crest Elevation 6,360 feet Storage 1,800 acre-feet

A5 2001

TABLE 3. SPILLWAY DISCHARGE
CATARACT CREEK RESERVOIR

| Depth Over |           |           |
|------------|-----------|-----------|
| Crest      | Elevation | Discharge |
| (feet)     | (feet)    | (cfs)     |
| 0.0        | 6,353.0   | 0         |
| 1.0        | 6,354.0   | 40        |
| 2.0        | 6,355.0   | 130       |
| 3.0        | 6,356.0   | 275       |
| 4.1        | 6,357.1   | 500       |
| 5.0        | 6,358.0   | 690       |
| 6.2        | 6,359.2   | 1,000     |
| 7.0        | 6,360.0   | 1,250     |
|            |           |           |



Note: Data from the Corps of Engineers Phase 1 Inspection Report (1980).

A6 2001

# APPENDIX B INSPECTION REPORT FORM

B1 2001

## DEPARTMENT OF NATURAL RESOURCES AND CONSERVATION DAM SAFETY INSPECTION REPORT

|                                                                     | PECTED                         |                        |
|---------------------------------------------------------------------|--------------------------------|------------------------|
| INVENTORY NO<br>HAZARD CATEGORY<br>TYPE OF DAM                      |                                |                        |
| YEAR BUILT                                                          |                                | EA                     |
| Reservoir Storage Status                                            |                                |                        |
| Wate                                                                | er Surface Elevation<br>(feet) | Storage<br>(acre-feet) |
| At time of inspection At spillway crest At min. dam crest elevation |                                |                        |

|      | -   |    |         |
|------|-----|----|---------|
| ITEM | YES | NO | REMARKS |

### 1. EMBANKMENT

| A. Crest Height= Length=    | Width= |  |
|-----------------------------|--------|--|
| (1) Any visual settlements? |        |  |
| (2) Any misalignments?      |        |  |
| (3) Any cracking?           |        |  |
| (4) Any traffic damage?     |        |  |
| (5) Other?                  |        |  |

B2 2001

| ITEM                                                                       | YES    | NO | REMARKS |
|----------------------------------------------------------------------------|--------|----|---------|
| 1. EMBANKMENT (continued)                                                  |        |    |         |
| B. Upstream Face Slope=                                                    |        |    |         |
| (1) Any erosion?                                                           |        |    |         |
| (2) Any longitudinal cracks?                                               |        |    |         |
| (3) Any transverse cracks?                                                 |        |    |         |
| (4) Is riprap protection adequate?                                         |        |    |         |
| (5) Any stone deterioration?                                               |        |    |         |
| (6) Any visual settlement, slumps,<br>sloughing, depressions or<br>bulges? |        |    |         |
| (7) Adequate grass cover?                                                  |        |    |         |
| (8) Debris on the dam face?                                                |        |    |         |
| (9) Other?                                                                 |        |    |         |
| C. Downstream FaceSlope=                                                   |        |    |         |
| (1) Any erosion?                                                           |        |    |         |
| (2) Any longitudinal cracks?                                               |        |    |         |
| (3) Any transverse cracks?                                                 |        |    |         |
| (4) Any visual settlement, slumps, sloughing, depressions or bulges?       |        |    |         |
| (5) Is the toe drain dry?                                                  |        |    |         |
| (6) Are the relief wells flowing?                                          |        |    |         |
| (7) Any boils at the toe?                                                  |        |    |         |
| (8) Any seepage areas?                                                     |        |    |         |
| (9) Any traffic or animal damage?                                          |        |    |         |
| (10) Any burrowing animals?                                                |        |    |         |
| (11) Adequate grass cover?                                                 |        |    |         |
| (12) Other?                                                                |        |    |         |
| D. Amount and Type of Vegetation on t                                      | he Dam |    |         |
|                                                                            |        |    |         |

B3 2001

| ITEM | YES | NO | REMARKS |
|------|-----|----|---------|
|      |     |    |         |

## 2. ABUTMENT CONTACTS

| A) Any erosion?                      |  |
|--------------------------------------|--|
| B) Any visual differential movement? |  |
| C) Any cracks?                       |  |
| D) Any seepage present?              |  |
| E) Other?                            |  |

## 3. OUTLET WORKS

A. Intake Structure -- Size=

| A. Intake Structure Size=      |  |
|--------------------------------|--|
| (1) Any settlement?            |  |
| (2) Any tilting?               |  |
| (3) Do concrete surfaces show: |  |
| a. Spalling?                   |  |
| b. Cracking?                   |  |
| c. Erosion?                    |  |
| d. Exposed reinforcement?      |  |
| (4) Do joints show:            |  |
| a. Displacement or offset?     |  |
| b. Loss of joint material?     |  |
| c. Leakage?                    |  |
| (5) Metal appurtenances:       |  |
| a. Any corrosion present?      |  |
| b. Any breakage present?       |  |
| (6) Trash rack?                |  |
| a. Condition?                  |  |
| b. Anchor system secure?       |  |
| (7) Other?                     |  |

B4 2001

| ITEM  | YES | NO | REMARKS |
|-------|-----|----|---------|
| HEIVI |     |    |         |

## 3. OUTLET WORKS (continued)

| B. Conduit Type =                | Size = |
|----------------------------------|--------|
| (1) Do concrete surfaces show:   |        |
| a. Spalling?                     |        |
| b. Cracking?                     |        |
| c. Erosion?                      |        |
| d. Exposed reinforcement?        |        |
| (2) Do joints show:              |        |
| a. Displacement or offset?       |        |
| b. Loss of joint material?       |        |
| c. Leakage?                      |        |
| (3) Is the conduit metal?        |        |
| a. Any corrosion present?        |        |
| b. Protective coatings adequate? |        |
| (4) Is the conduit misaligned?   |        |
| (5) Any calcium deposits?        |        |
| (6) Other?                       |        |

C. Gates and Tower

| (1) Gates:                                                        |                          |  |
|-------------------------------------------------------------------|--------------------------|--|
| <ul><li>a. Size: Operating:</li><li>b. Type: Operating:</li></ul> | Emergency:<br>Emergency: |  |
| (2) Controls operational?                                         |                          |  |
| (3) Controls lubricated?                                          |                          |  |
| (4) Operational problems?                                         |                          |  |
| (5) Leakage around gates?                                         |                          |  |
| (6) Condition of gate seals?                                      |                          |  |
| (7) Any cavitation damage?  If so, describe?                      |                          |  |
| (8) Describe air vent-size and con                                | dition.                  |  |

B5 2001

| 3. OUTLET WORKS (continued)                |   |
|--------------------------------------------|---|
| C. Gates and Tower (continued)             |   |
| (9) Is there a jet pump?                   |   |
| a. Is it operational?                      |   |
| b. Leakage?                                |   |
| (10) Is the tower dry? wet?                |   |
| (11) Any seepage in the tower?             |   |
| (12) Condition of the tower?               |   |
| (13) Any safety problems?                  |   |
| (14) Ladder in good condition?             |   |
| (15) Condition of the gatehouse?           |   |
| (16) Emergency plan completed for the dam? |   |
| a. Posted in the gatehouse?                |   |
| (17) Other?                                | , |
| D. Stilling Basin                          |   |
| (1) Do concrete surfaces show:             |   |
| a. Spalling?                               |   |
| b. Cracking?                               |   |
| c. Erosion?                                |   |
| d. Exposed reinforcement?                  |   |
| (2) Do joints show:                        |   |
| a. Displacement or offset?                 |   |
| b. Loss of joint material?                 |   |
| c. Leakage?                                |   |
| (3) Do energy dissipaters show:            |   |
| a. Signs of deterioration?                 |   |
| b. Are they covered with debris?           |   |
| (4) Other?                                 |   |

YES

NO

REMARKS

ITEM

B6 2001

| ITEM                                           | YES                                   | NO        | REMARKS |
|------------------------------------------------|---------------------------------------|-----------|---------|
| 3. OUTLET WORKS (continued)                    |                                       |           |         |
| E. Downstream Channel                          |                                       |           |         |
| (1) Is the channel:                            |                                       | , <u></u> |         |
| a. Eroding or backcutting?                     |                                       |           |         |
| b. Sloughing?                                  |                                       |           |         |
| c. Obstructed?                                 |                                       |           |         |
| (2) Is released water:                         |                                       |           |         |
| a. Undercutting the outlet?                    |                                       |           |         |
| b. Eroding the embankment?                     |                                       |           |         |
| (3) Other?                                     |                                       |           |         |
| 4. SPILLWAY  A. Description                    |                                       |           |         |
| (1) Location?                                  |                                       |           |         |
| (2) Type of Spillway?                          | _                                     |           |         |
| (3) Size of Spillway?                          | · · · · · · · · · · · · · · · · · · · |           |         |
| (4) Spillway lining?                           |                                       |           |         |
| (5) Is there a weir?                           |                                       |           |         |
| (6) Is the spillway in good condition?         |                                       |           |         |
| (7) Any drains?                                |                                       |           |         |
| a. Describe the condition of drains.           |                                       |           |         |
| B. Does spillway show:                         |                                       |           |         |
| (1) Any cracking concrete?                     |                                       |           |         |
| (2) Any spalling concrete?                     |                                       |           |         |
| (3) Any exposed reinforcement in the concrete? |                                       |           |         |
| (4) Any erosion?                               |                                       |           |         |

B7 2001

| ITEM                                  | YES | NO | REMARKS            |  |  |  |  |  |  |  |
|---------------------------------------|-----|----|--------------------|--|--|--|--|--|--|--|
| 4. SPILLWAY (continued)               |     |    |                    |  |  |  |  |  |  |  |
| 4. B. Does spillway show: (continued) |     |    |                    |  |  |  |  |  |  |  |
| (5) Any slope sloughing?              |     |    |                    |  |  |  |  |  |  |  |
| (6) Any obstructions?                 |     |    |                    |  |  |  |  |  |  |  |
| (7) Displacement or offset joints?    |     |    |                    |  |  |  |  |  |  |  |
| (8) Loss of joint material?           |     |    |                    |  |  |  |  |  |  |  |
| (9) Leakage at the joints?            |     |    |                    |  |  |  |  |  |  |  |
| (10) Other?                           |     |    |                    |  |  |  |  |  |  |  |
| C. Do the energy dissipaters show:    |     |    |                    |  |  |  |  |  |  |  |
| (1) Signs of deterioration?           |     |    |                    |  |  |  |  |  |  |  |
| (2) Any cracking?                     |     |    |                    |  |  |  |  |  |  |  |
| (3) Any spalling?                     |     |    |                    |  |  |  |  |  |  |  |
| (4) Any exposed reinforcement?        |     |    |                    |  |  |  |  |  |  |  |
| (5) Are they covered with debris?     |     |    |                    |  |  |  |  |  |  |  |
| (6) Other?                            |     |    |                    |  |  |  |  |  |  |  |
| D. Has release water:                 |     |    |                    |  |  |  |  |  |  |  |
| (1) Eroded the embankment?            |     |    | - V                |  |  |  |  |  |  |  |
| (2) Undercut the outlet?              |     |    |                    |  |  |  |  |  |  |  |
| (3) Eroded the downstream channel?    |     |    |                    |  |  |  |  |  |  |  |
| (4) Other?                            |     |    |                    |  |  |  |  |  |  |  |
| E. Emergency Spillway                 |     |    |                    |  |  |  |  |  |  |  |
| (1) Is there an emergency spillway?   |     |    | (If YES, describe) |  |  |  |  |  |  |  |

B8 2001

| ITEM                                    | YES     | NO | REMARKS |
|-----------------------------------------|---------|----|---------|
| 5. RESERVOIR CONTROL                    |         |    |         |
| A) Recent upstream development?         |         |    |         |
| B) Recent downstream development?       |         |    |         |
| C) Slides in reservoir area?            |         |    |         |
| D) Change in reservoir operation?       |         |    |         |
| E) Large impoundment upstream?          |         |    |         |
| F) Any debris in the reservoir?         |         |    |         |
| G) Other?                               |         |    |         |
| 6. INSTRUMENTATION                      |         |    |         |
| A) List type(s) of instrumentation:     |         |    |         |
| B) In good condition?                   |         |    |         |
| C) Read periodically?                   |         |    |         |
| D) Is data available?                   |         |    |         |
| E) Include all data gathered since last | report. |    |         |
|                                         |         |    |         |
| 7. DOWNSTREAM CONDITION                 |         |    |         |
| A. Downstream Land Use.                 |         |    |         |
|                                         |         |    |         |

Additional comments and recommendations.

This dam was inspected by:

B9 2001

B10 2001

# APPENDIX C SEEPAGE DATA

C1 2001

# CATARACT RESERVOIR SEEPAGE DATA

| oir Reservoir         | <u> </u>  | ╬                | $\frac{1}{1}$       | 6322.70      | 6322.83      |          | 6326.90  | 6332.50 |         | 6339.05 | 0 6343.87    | 0 6345.66    | 0 6346.38 | 1 6346.30 | 0 6345.31   |             | 0 6343.13                               |             | 6339.40     | 6336.64 | 6334.25 | 6331.00 | 6328.39 |           | 6325.78                  | 6334.10 |  |  |
|-----------------------|-----------|------------------|---------------------|--------------|--------------|----------|----------|---------|---------|---------|--------------|--------------|-----------|-----------|-------------|-------------|-----------------------------------------|-------------|-------------|---------|---------|---------|---------|-----------|--------------------------|---------|--|--|
| Reservoir             | Capacity  | acre reet        | 235.0               | 330.0        | 410.0        | 465.0    | 521.5    | 692.0   | 767.0   | 913.4   | 1,096.0      | 1,165.0      | 1,196.0   | 1,184.1   | 1,152.0     | 1,144.0     | 1,067.0                                 | 995.0       | 926.0       | 830.0   | 748.0   | 658.0   | 566.0   | 610.0     | 488.0                    | 743.0   |  |  |
| Reservoir             | Slope     | 1991             |                     |              |              | 111.0    | 106.5    | 93.5    | 85.0    | 68.4    | 32.0         | 23.5         | 20.3      | 21.7      | 25.0        | 29.5        | 36.4                                    | 58.0        | 67.5        | 76.0    | 87.0    | 0.96    | 103.0   | 99.5      | 109.0                    | 88.0    |  |  |
| Appearance Of Seepage | 4 17      | reet from outlet | Snow - none visable | 1000 - 1100  | 900 - 1000   | 700      | 009      | 150     | 26      | 76      | At Dam (72?) | At Dam (69?) | 99        | 99        | At Dam (66) | At Dam (66) | At Dam (66)                             | At Dam (66) | At Dam (66) | 20      | 98      | 115     | 133     | 200       | Did not measure distance | 101     |  |  |
| Piez #2               | S         |                  | Not Measured        | Not Measured | Not Measured | No Water | No Water | 4.00    | 3.04    | 2.35    | 2.20         | 2.27         | 2.12      | 2.18      | 2.25        | 2.32        | 2.33                                    | 2.39        | 2.35        | 2.66    | 2.88    | 3.25    | 4.27    | 4.93      | 6.86                     | 2       |  |  |
| Piez #1               | 4         | II TOO WAY       | Not Measured        | Not Measured | Not Measured | Dry      | Dry      | Dry     | Dry     | 8.70    | 8.80         | 8.60         | 8.12      | 7.89      | 8.00        | 7.95        | 8.21                                    | 8.50        | 9.05        | dry     | dry     | dry     | dry     | dry       | dry                      | dry     |  |  |
| Drain                 | Turbidity | OIN              |                     | -            | -            | -        |          | -       |         | 1.84    |              |              | 2.34      | 2.28      |             | 1 - 1       | -                                       |             |             |         |         |         |         |           |                          |         |  |  |
| Drain                 | Flow      | mdg              | 0.0                 | 0.0          | 0.0          | wet      | dry      | 5.0     | 14.0    | 45.1    | 57.0         | 26.0         | 64.9      | 2.99      | 47.0        | 53.0        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 41.4        | 37.5        | 26.6    | 10.2    | 2.6     | dry     | 6.0       | dry                      | 7.5     |  |  |
| Seepage               | Outflow   | CIS              | 71.0                | 99.0         | 1.20         | 1.86     | 2.95     | 5.93    | 89.9    | 8.10    | 9.23         | 8.91         | 9.51      | 10.32     | 9.31        | 9.71        | 10.06                                   | 9.19        | 9.02        | 9.10    | 8.01    | 7.01    | 5.12    | 5.7 (est) |                          | -       |  |  |
| Inflow                | 3         | CIS<br>0.47      | 71.7                | 2.46         | 3.90         | 7.30     | 9.05     | 16.46   | 18.90   | 14.43   | 16.30        | 22.10        | 11.65     | 10.24     | 9.77        | 8.95        | 7.88                                    | 6.74        | 7.56        | 6.14    | 5.41    | 4.96    | 4.04    | 8.5 (est) |                          |         |  |  |
| Date                  |           | 70/00/0          | 3/28/97             | 4/17/97      | 2/2/97       | 5/16/97  | 5/22/97  | 26/8/9  | 6/10/97 | 6/17/97 | 6/25/97      | 7/1/97       | 26/6/2    | 7/16/97   | 7/22/97     | 7/28/97     | 8/4/97                                  | 8/11/97     | 8/18/97     | 8/28/97 | 26/8/6  | 9/19/97 | 10/1/97 | 6/2/98    | 9/23/98                  | 7/19/99 |  |  |

C2 2001

# APPENDIX D O&M MANUAL DISTRUBUTION LIST

D1 2001

## CATARACT DAM

## **0&M DISTRIBUTION LIST**

|    |                                      | Number<br>Of Copies |
|----|--------------------------------------|---------------------|
| 1. | SWPB                                 | 7                   |
|    | Glen McDonald                        |                     |
|    | Greg Ames                            |                     |
|    | Art Taylor (2)                       |                     |
|    | Bob Arrington                        |                     |
|    | Bob Clark                            |                     |
|    | Dolores Eustice                      |                     |
| 2. | DNRC Information Services Section    | 1                   |
| 3. | Regional Office                      | 2                   |
|    | Scott Compton (Bozeman)              |                     |
|    | Jim Beck (Helena)                    |                     |
| 4. | Dam Safety                           | 1                   |
| 5. | Water Users                          |                     |
|    | George Reich President /Dam Operator | 4                   |
|    | Bob Rice Vice president              |                     |
|    | William Jackson Secretary            |                     |
|    | Jim Sitz Director                    |                     |
| 6. | Willow Creek Water Users             | 1                   |
|    | LeRoy Miller President               |                     |
| 7. | State Library Attn: Roberta Gebhardt | 4                   |
| 8. | Extra                                | 2                   |
|    | TOTAL                                | 22                  |

D2 2001

## APPENDIX E

## PROJECT DRAWINGS

(NOTE: These reduced project drawings are design drawings and not "As Builts". These drawing should be used for reference only. The SWPB has the full size project drawings.)

E1 2001

E2 2001























