

Math Methods for Political Science

Lecture 10: Multivariate Calculus I

Objects of interests

Curves	$f: \mathbb{R} \to \mathbb{R}^n$
Curves	$f: \mathbb{R} \to \mathbb{R}^n$

- Curvature
- Lengths of curves/line integrals

Objects of interests cont'd

Surfaces	$f: \mathbb{R}^2 \to \mathbb{R}^n$	CurvatureAreas/flux of/through surfaces
		& surface integrals

Objects of interests cont'd

Scalar fields	$f: \mathbb{R}^m \to \mathbb{R}$	Gradient & Hessian
		Maxima and minima,
		Lagrange multipliers & level sets
Vector fields	$f: \mathbb{R}^m \to \mathbb{R}^n$	All of the above
		 Jacobian/divergences/curl

$$x \exp(-x^2 - y^2)$$
 and its gradient

Limits of functions of *n* variables

Let $f: \mathbb{R}^n \to \mathbb{R}$

Definition 1 (Limits)

L is the limit of f at \mathbf{z}_0 , $\lim_{\mathbf{z}\to\mathbf{z}_0} f(\mathbf{z}) = L$, if for every $\epsilon > 0$, there is a $\delta > 0$ such that for all \mathbf{z} in D_f ,

$$0 < \|\mathbf{z} - \mathbf{z}_0\| < \delta \implies |f(\mathbf{z}) - L| < \epsilon$$

Example 1 (Limits)

Let $\mathbf{z} = (x, y) \in \mathbb{R}^2$, then

•
$$f(x,y) = x/y \implies \lim_{(x,y)\to(1,1)} f(x,y) = 1$$

■
$$f(x,y) = 1 - x^2 - 2y^2 \implies \lim_{(x,y)\to(x_0,y_0)} f(x,y) = 1 - x_0^2 - 2y_0^2$$
 for every (x_0,y_0) .

Limits of functions of *n* variables

Let $f: \mathbb{R}^n \to \mathbb{R}$

Theorem 1 (Uniqueness of the limit)

If $\lim_{z\to z_0} f(z) = L$ exists, then it is unique.

Example 2 (Limits)

Let $\mathbf{z} = (x, y) \in \mathbb{R}^2$ and $f(x, y) = \frac{xy}{x^2 + y^2}$, does the limit at $\mathbf{z}_0 = (0, 0)$ exists?

- Along the y = x line, f(x, x) = 1/2.
- Along the y = -x line, f(x, -x) = -1/2.

 $\implies \lim_{\mathbf{z} \to \mathbf{z}_0} f(\mathbf{z})$ undefined!

Limits of functions of n variables

Theorem 2 (Limits and arithmetic operations)

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ are such that $\lim_{\mathbf{z} \to \mathbf{z}_0} f(\mathbf{z}) = L_1$ and $\lim_{\mathbf{z} \to \mathbf{z}_0} g(\mathbf{z}) = L_2$, then

$$\begin{split} \lim_{\mathbf{z} \to \mathbf{z}_0} (f+g)(\mathbf{z}) &= L_1 + L_2, \\ \lim_{\mathbf{z} \to \mathbf{z}_0} (f-g)(\mathbf{z}) &= L_1 - L_2, \\ \lim_{\mathbf{z} \to \mathbf{z}_0} (fg)(\mathbf{z}) &= L_1 L_2, \end{split}$$
 and if $L_2 \neq 0$, $\lim_{\mathbf{z} \to \mathbf{z}_0} \left(\frac{f}{g}\right)(\mathbf{z}) = \frac{L_1}{L_2}.$

Example 3 (Limits and arithmetic operations)

- $f(x,y) = x + y \implies \lim_{(x,y)\to(1,1)} f(x,y) = 2$
- $f(x,y) = xy \implies \lim_{(x,y)\to(1,1)} f(x,y) = 1$

Continuity of functions of *n* **variables**

Let $f: \mathbb{R}^n \to \mathbb{R}$

Definition 2 (Continuity)

f is continuous at z_0 if $\lim_{z\to z_0} f(z) = f(z_0)$.

Example 4 (Continuity)

- Since $f(x, y) = 1 x^2 2y^2 \implies \lim_{(x,y)\to(x_0,y_0)} f(x,y) = 1 x_0^2 2y_0^2$ for every (x_0, y_0) , f is continuous in \mathbb{R}^2 .
- Since $f(x,y) = \frac{xy}{x^2 + y^2} \implies \lim_{(x,y) \to (0,0)} f(x,y)$ does not exists, f is not continuous at 0.

Continuity of functions of *n* **variables**

Let $f: \mathbb{R}^n \to \mathbb{R}$

Theorem 3 (Continuity)

- f and g continuous on $S \in \mathbb{R}^n \implies$ so are f + g, f g, fg, and f/g at each \mathbf{z}_0 in S such that $g(\mathbf{z}_0) \neq 0$.
- f is continuous at $\mathbf{z}_0 \iff \forall \epsilon > 0$ there is a $\delta > 0$ such that $\|\mathbf{z} \mathbf{z}_0\| < \delta$ and $\mathbf{z} \in D_f \implies |f(\mathbf{z}) f(\mathbf{z}_0)| < \epsilon$..

Example 5 (Continuity)

- f(x, y) = xy
- $f(x,y) = 5x^3 x^2y^2$, $x_0 = y_0 = 0$, $D_f = \{(x,y) \mid |y| \le |x|\}$.