Lagrangian particles evolution through expansion fan, from Yann's work

M. Dutreuilh

Tsinghua University - Institut P'prime

June 15, 2020

Outline

Reminder of different refraction structures

2 Evolution of a Lagrangian particle in RRE struture

3 Use of CHEMKIN II to compute chemistry calculus

From Henderson 1976 and 1978

Figure 1: Three of the already known refraction structures: RRE and BPR schemes are from Henderson, Abd-el-Fattah & Lozzi 1976; RRR scheme is from Henderson & Abd-el-Fattah 1978.

Evolution of a Lagrangian particle in the $H_2 - O_2$ phase

Figure 2: Pressure, temperature and specific volume evolution for 3 different Lagrangian particles, in a $H_2 - O_2$ phase

Scheme of different steps of the evolution of Lagrangian particles

Figure 3: Different steps in the evolution of 3 Lagrangian particles

Zone of computation in the $\chi - \omega_i$ plane

1st step: Compute the evolution of Lagrangian particles in a Refraction with Reflected Expansion structure

Figure 4: Refraction structure boundaries for a $H_2 - O_2/He$ system

Main steps

- Calculate evolution of specific volume of different Lagrangian particles, for $\omega_i = 18^{\circ}$, for different Mach numbers, between 3.2 and 9.5
- Use of CHEMKIN II to calculate chemical reactions in the reactive phase
- Outputs of CHEMKIN II : evolution of pressure, temperature and ratios of chemical species
- Temperature jump in CHEMKIN II output = detonation