Силабус освітнього компоненту

TTT 1	100) (
Шифр та назва	132 – Матеріалознавство
спеціальності	
Назва освітньої	Матеріалознавство та обробка металів
програми	
Рівень вищої	Третій (доктор філософії)
освіти	
Статус	Вибіркова дисципліна з циклу професійної підготовки
освітнього	
компонента	
Обсяг освітнього	3 кредити ЄКТС (90 академічних годин)
компонента	
Терміни	3 семестр (I – II чверті)
вивчення	
освітнього	
компонента	
Назва кафедри,	аспірантура
яка виклада€	
освітній	
компонент	
Провідний	Бобирь Сергій Володимирович, провідний науковий співробітник
викладач	відділу термічної обробки металу для машинобудування,
(лектор)	E-mail: svbobyr07@gmail.com, кімн. Т-32
Мова	Українська
викладання	
Передумови	Вивченню дисципліни має передувати вивчення дисциплін:
вивчення	- Інформаційні технології в наукових дослідженнях;
освітнього	- Методологія наукових досліджень.
компонента	
Мета навчальної	Набуття теоретичних та практичних знань щодо різних методів та
освітнього	методологічних підходів для моделювання фазово-структурних
компонента	перетворень та прогнозного визначення властивостей сталей та
	сплавів із використанням існуючих аналітичних моделей та
	комп'ютерного програмного забезпечення.
Компетентності,	ІК. Здатність розв'язувати складні спеціалізовані задачі та практичні
формування	проблеми матеріалознавства у професійній діяльності або у
яких забезпечує	дослідницько-інноваційної діяльності, що передбачає застосування
освітній	теоретичних положень та методів інженерії, проведення досліджень
компонент	та/або здійснення інновацій і характеризується комплексністю та
	невизначеністю умов і вимог, глибоке переосмислення наявних та
	створення нових цілісних знань та/або професійної практики.
	К03. Володіння загальною та спеціальною методологією наукового
	пізнання, застосування здобутих знань у практичній діяльності.

- K12. Здатність та готовність узагальнювати результати самостійних досліджень у формі складання аналітичних звітів і оцінювати ці результати з погляду їх застосування для рекомендацій і оцінки практичних заходів у галузі матеріалознавство.
- К13. Критичне осмислення наукових фактів, концепцій, теорій, принципів і методів, необхідних для професійної діяльності в сфері матеріалознавства.
- К15. Здатність застосовувати наукові і інженерні методи, а також комп'ютерне програмне забезпечення для вирішення типових та комплексних завдань матеріалознавства за спеціалізацією, у тому числі в умовах невизначеності.
- K17. Здатність виявляти, класифікувати і описувати ефективність систем, компонентів і процесів в матеріалознавстві на основі використання аналітичних методів і методів моделювання.
- K18. Здатність самостійно аналізувати, оцінювати та порівнювати різноманітні теорії, концепції та підходи з предметної сфери наукового дослідження, робити відповідні висновки, надавати пропозиції та рекомендації.
- К22. Здатність використовувати математичні принципи і методи, необхідні для підтримки спеціалізації в матеріалознавстві.

Програмні результати навчання

В результаті вивчення освітнього компонента здобувач вищої освіти третього (освітньо-наукового) рівня повинен

знати:

- різні методи та методологічні підходи, які застосовують на практиці під час термічної обробки сталей та сплавів;
- методи кількісного визначення фазового складу та параметрів структури із використанням комп'ютерного програмного забезпечення;
- основні принципи моделювання твердофазних фазовоструктурних перетворень при охолоджені сталей та сплавів для побудови ізотермічних та термокінетичних діаграм.

вміти:

- проводити моделювання фазово-структурних перетворень у легованих сталях за різних умов охолодження;
- застосовувати комп'ютерне програмне забезпечення для побудови термокінетичних, ізотермічних та структурних діаграм а також прогнозного визначати механічні властивості готових металовиробів.

Дисципліна забезпечує досягнення таких програмних результатів навчання:

ПР01. Концептуальні знання і розуміння фундаментальних наук, що лежать в основі матеріалознавства, на рівні, необхідному для досягнення інших результатів освітньої програми.

ПР04. Вміння виявляти, формулювати і вирішувати типові та складні й непередбачувані інженерні завдання і проблеми відповідно до спеціалізації, що включає збирання та інтерпретацію інформації (даних), вибір і використання відповідних обладнання, інструментів та методів, застосування інноваційних підходів.

ПР06. Вміння обирати і застосовувати придатні типові методи досліджень (аналітичні, розрахункові, моделювання,

	експериментальні); правильно інтерпретувати результати таких
	досліджень та робити висновки.
	ПР10. Розуміння особливостей матеріалів, що застосовуються,
	обладнання та інструментів, інженерних технологій і процесів, а
	також їх обмежень відповідно до спеціалізації.
	ПР16. Розуміння широкого міждисциплінарного контексту
	матеріалознавства.
	ПР19. Вміння впроваджувати автоматизовані інструменти управління
	в усіх напрямках діяльності.
	ПР24. Розуміння кращих світових практик і стандартів діяльності та
	навички застосовувати їх у матеріалознавстві України.
Зміст освітнього	Модуль 1. Основні методи та методологічні підходи для моделювання
компонента	твердофазних фазово-структурних перетворень в сталях та
	сплавах: терміни, класифікація, принципи та сфера застосування.
	Модулі 2. Переваги і недоліки існуючих аналітичних моделей та
	комп'ютерного програмного забезпечення, які застосовують для
	прогнозного визначення параметрів структури сталей та сплавів
	при термічній обробці.
	Модуль 3. Вдосконалення існуючих аналітичних моделей та
	розроблення нових методологічних підходів для побудови
	ізотермічних, термокінетичних і структурних діаграм, а також
	прогнозного визначення механічних властивостей сталей сплавів в
	залежності від фактичного хімічного складу та параметрів
	завершальної термічної обробки.
Форми та	Отримання позитивної оцінки при виконанні 3-х модульних
методи	контрольних робіт за 12-бальною шкалою.
оцінювання	Підсумкова оцінка навчальної дисципліни визначається як середнє
	арифметичне 3-х модульних оцінок та результатів іспиту за 12-
	бальною шкалою.

Види навчальної роботи та її обсяг в акад. годинах

	Marana	Семестр
	Усього	2
Усього годин за навчальним планом, у тому числі		90
Аудиторні заняття		54
з них:		
- лекції	36	36
- лабораторні роботи		
- практичні заняття	18	18
- семінарські заняття	-	-
Самостійна робота		36
у тому числі при:		
- підготовці до аудиторних занять	18	18
- підготовці до заходів модульного контролю (екзамен)		9
- виконанні курсових проектів (робіт)		-
- виконанні індивідуальних завдань		-
- опрацюванні розділів програми, які не викладаються		
на лекціях		9
Семестровий контроль		Іспит

Мотолу	Vovi v domi povriv obranavna iv ovietv to provisi Dom'snovna
Методи	Усні у формі лекцій, обговорення їх змісту та дискусії. Розв'язання
навчання	дослідницьких задач на основі вивчення окремих кейсів. Самостійна
	робота здійснюється у формі: підготовки до лекцій, практичних занять;
	роботи з науковою літературою та науковими публікаціями.
Політика щодо	При отриманні здобувачем за підсумковим контролем (іспитом)
дедлайнів та	оцінки «незадовільно», підсумкова оцінка з дисципліни не
перескладання	виставляється. Перескладання модулів відбувається за наявності
	поважних причин (наприклад, лікарняний) та у відповідності до
	діючого Положення про організацію освітнього процесу в ІЧМ НАН
	України
Політика щодо	Списування під час проведення контрольних робіт та екзаменів
академічної	заборонені (в т.ч. із використанням мобільних девайсів). Мобільні
доброчесності	пристрої дозволяється використовувати лише під час он-лайн
1	тестування та підготовки практичних завдань під час заняття
Політика щодо	Відвідування занять є обов'язковим компонентом оцінювання. За
відвідування	об'єктивних причин (наприклад, хвороба, працевлаштування,
Бідвіду вання	міжнародне стажування) навчання може відбуватись в он-лайн формі
	за погодженням із керівником курсу
Навчально-	S.V. Bobyr. Calculation of Diffusion Flows for the Formation of Phases
методичне	in Alloys Iron-Carbon-Alloying Element. <i>Physics and Chemistry of Solid</i>
забезпечення	State. V. 20. № 2 (2019).
	2. S.V. Bobyr. Using the principles of nonequilibrium thermodynamics for
	the analysis of phase transformations in iron-carbon alloys. Chapter in
	the book "Non-Equilibirum Particle Dynamics", London: Intechopen,
	May 2019 (DOI: 10.5772 /Intechopen.83657).
	3. S.V. Bobyr, P.V. Krot D.V. Loschkarev. Models of structural phase
	transformations and mechanical properties of alloy steels rolls. Chapter in
	the book Carbon Steel. Microstructure, Mecanical Properties and
	Applications: Nova Publications, 2019. P.81–106.
	4. S.V. Bobyr, G.V. Levchenko, A. Yu. Borisenko, N.O. Kutseva. Influence
	of tempering modes on fine structure parameters, stress and hardness of
	25Cr2Mo1V steel. <i>Metalozn. obrobka met.</i> 2019. V. 91. No 3. P. 16–22.
	5. С. В. Бобирь, Е. В. Парусов, Т. М. Голубенко, Д. В. Лошкарьов.
	Розроблення та впровадження нової методики моделювання
	фазово-структурних перетворень у процесі охолодження легованих
	сталей. Металознавство та термічна обробка металів. 2022. №
	1 (96). C. 17-23.
	6. Bobyr S. V., Krot P. V., Loschkarev D. V. Models of structural phase
	transformations and mechanical properties of alloy steels rolls. Chapter
	in book Carbon Steel: Microstructure, Mechanical Properties and
	Applications – Hauppauge (USA): Nova Science Publishers Inc., 2019.
	Pp. 81–106.
	7. Попова Л.Е., Попов А.А. Диаграммы превращения аустенита в
	сталях и бета-растворах в сплавах титана: Справочник термиста:
	3-е изд. перераб. и доп. М.: Металургия, 1991. 503 с.
	8. Подольський Р. В., Бабаченко О. І., Кононенко Г. А., Романова Н. С.,
	Сафронова А. О., Клемешов Е. С. Застосування спеціалізованого
	програмного забезпечення в матеріалознавстві та термічній обробці
	металів та сплавів : методичній посібник : Дніпро : УДУНТ, 2022.
	54 c.

- 9. Bobyr S. V., Loschkarev D. V. Simulation phase-structure transformations in alloy steels for the piersing tools. *JOJ Materials Science*. 2019. Vol. 5. Iss. 3. pp. 1–3.
- S.V. Bobyr, E.V. Parusov, G.V. Levchenko, A.Yu. Borisenko, and I.N. Chuiko. Shear transformation of austenite in steels considering stresses effects. Review. Progress in Physics of Metals, 2022, vol. 23. No3. P.379-410

Tronof

Ухвалено на засіданні групи забезпечення якості освітньої програми «Матеріалознавство та обробка металів» (Протокол № 3 від 14.06.2023 р.).

Гарант освітньої програми, д.т.н, ст.д.

Ганна КОНОНЕНКО