The Cooper Union Department of Electrical Engineering ECE478 Financial Signal Processing Exam II

December 13, 2022

Time: 50 minutes. Closed book, closed notes. No calculators.

Some notes and results:

Assume W_t denotes a **standard** Wiener process.

Geometric Brownian motion S_t satisfies:

$$dS_t = \alpha S_t dt + \sigma S_t dW_t$$

Black-Scholes-Merton (BSM): formula: Assuming an underlying asset S_t that is geometric Brownian motion, the price at time t of a European option with strike price K is $c(t, S_t)$ where c(t, x) is an explicit function involving K, σ and the underlying interest rate r.

- 1. [16 pts.] Consider the function appearing in the BSM formula, c(t, x). Using the notation $c_t = \partial c/\partial t$, etc., associate each of the following "greeks" with c_t , c_{tt} , c_x , c_{xx} , c_{tx} , c_σ (the derivative with respect to volatility)
 - (a) delta
 - (b) gamma
 - (c) vega
 - (d) theta
- 2. **[12 pts.]** Let:

$$dX(t) = a(t) dt + b(t) dW(t)$$

$$dY(t) = c(t) dt + d(t) dW(t)$$

Write the SDE satisfied by:

$$V = X/Y$$

3. **[24 pts.]** Let:

$$d\tilde{W}_t = \theta_t dt + dW_t \tag{1}$$

where θ_t is adapted to the filtration associated with W_t . Let:

$$X(t) = -\frac{1}{2} \int_{0}^{t} \theta^{2}(u) du - \int_{0}^{t} \theta(u) dW(u)$$

and:

$$Z(t) = \exp(X(t))$$

Define the random variable Z = Z(T). We can use Z as a Radon-Nikodym derivative, and under the probability measure \tilde{P} so generated, Z(t) is the associated Radon-Nikodym process, and \tilde{W}_t is a standard Wiener process.

- (a) This is called _____ Theorem.
- (b) One property of the standard Wiener process prescribes $d\tilde{W}d\tilde{W}$. What should it be? Compute it using equation (1) to confirm it is what it should be.
- (c) The above tells us that the quadratic variation $\left[\tilde{W},\tilde{W}\right](t)$ is what?
- (d) Write the SDE satisfied by X(t).
- (e) Part of the proof requires expanding $d\left(\tilde{W}Z\right)$ and conclude that $\tilde{W}Z$ is a martingale under the original measure \mathbb{P} . What exactly must be true about $d\left(\tilde{W}Z\right)$ for it to be a martingale (under \mathbb{P})? **NOTE:** Do not actually try to obtain an expression for $d\left(\tilde{W}Z\right)$. Just say what we are hoping to happen.
- (f) Concluding that $d\left(\tilde{W}Z\right)$ is a martingale by observing its SDE is based on the theorem. **Hint: Two words, not someone's name.**
- (g) Using the Radon-Nikodym theorem, we conclude that \tilde{W}_t is a martingale under the measure $\tilde{\mathbb{P}}$. This combined with the formula for $\left[\tilde{W}, \tilde{W}\right](t)$ allows us to conclude that \tilde{W}_t is a standard Brownian motion under $\tilde{\mathbb{P}}$. THIS result is called _____ Theorem.
- (h) In finance theory, $\tilde{\mathbb{P}}$ is called the _____ measure.

4. [16 pts.] Consider an Itô integral:

$$X\left(t\right) = \int_{0}^{t} \Delta\left(u\right) dW\left(u\right)$$

where $\Delta(t)$ is adapted to the filtration generated by W_t . Also assume $\{t_j\}$ as listed below references a partition.

(a) The Itô integral is defined as the limit of which of the following:

1 :
$$\sum \Delta(t_j) \left[W(t_j) - W(t_{j-1}) \right]$$

$$2 : \sum \Delta (t_j) \left[W \left(t_{j+1} \right) - W \left(t_j \right) \right]$$

3: Either one- you get the same result either way.

- (b) Prove that X(t) is a martingale. **Hint:** For t < T, write X(T) = X(t) + sum of several terms.
- 5. [6 pts.] Let W_1, W_2 be independent Wiener processes and:

$$dS_1 = \alpha_1 S_1 dt + \sigma_{11} S_1 dW_1$$

$$dS_2 = \alpha_2 S_2 dt + \sigma_{21} S_2 dW_1 + \sigma_{22} S_2 dW_2$$

Find dS_1dS_2 .

6. [6 pts.] Let W_1, W_2 be independent Wiener processes generating a filtration \mathcal{F}_t , and $\alpha(t), \beta(t)$ are adapted processes with $\alpha > 0, \beta > 0$ a.s. Let:

$$d\tilde{W} = \alpha dW_1 + \beta dW_2$$

with W(0) = 0. I will tell you that \tilde{W} is a continuous martingale (you don't need to verify). We need one other property to conclude that \tilde{W} is itself a Wiener process, and that imposes a condition on α, β . What else do we need (express it in terms of $d\tilde{W}$, not an integral), and derive the condition on α, β .

- 7. [**20 pts.**] Short answer.
 - (a) A market is complete iff for every security a replicating portfolio (exists/ is unique).
 - (b) The definition of a risk-neutral measure is one under which the _____ of every security is _____.
 - (c) The (First / Second) Fundamental Theorem of Asset Pricing is that the market model is complete iff the risk-neutral measure (exists / is unique).
 - (d) The *other* Fundamental Theorem of Asset Pricing (the one that is not part **b**) is that the risk-neutral measure (exists / is unique) iff the market model satisfies the condition that _____.