Sprawozdanie

Obliczenia ewolucyjne

Spis treści:

1.	Cel	. 4
2.	Selekcje	. 4
3.	Rekombinacje	. 4
4.	Mutacje	. 4
5.	Eliminacja rozwiązań spoza dziedziny	. 5
6.	Ustalanie liczby baterii:	. 5
7.	Zrównoleglenie obliczeń	. 5
8.	Algorytm zachłanny	. 5
9.	Eksperymenty dla Grecji	. 5
10.	Grecja - PMX + selekcja turniejowa	. 7
11.	Grecja - PMX + selekcja ruletka rankingowa	28
12.	Grecja - cięcie i łączenie + selekcja turniejowa	39
13.	Grecja - cięcie i łączenie + selekcja ruletka rankingowa	48
14.	Grecja - podsumowanie	58
15.	Eksperymenty dla Szwecji	62
16.	Szwecja - PMX + selekcja turniejowa	64
17.	Szwecja- PMX + selekcja ruletka rankingowa	79
18.	Szwecja- cięcie i łączenie + selekcja turniejowa	89
19.	Szwecja- cięcie i łączenie + selekcja ruletka rankingowa	93
20.	Szwecja - podsumowanie	97
21.	Podsumowanie1	.02
22.	Dane w plikach wynikowych1	.02
23.	Plik parametrów1	.04
24.	Powtórzenie obliczeń1	.05
25.	Załączniki1	.05
26.	Grecja- CX+turniej1	.05
27.	Grecja- CX+ruletka1	.12
28	Grecia- OX+turniei1	20

29. Grecja- OX+ruletka	129
30. Porównanie kombinacji operatorów krzyżowania i selekcji ob	liczonych
dodatkowo z tymi wymaganymi przez zadanie	136
31. Najlepsza trasa	137

1. Cel

Celem jest porównanie w sumie czterech kombinacji operatorów krzyżowania z operatorami selekcji, tj.:

- krzyżowania PMX i selekcji turniejowej
- krzyżowania PMX i selekcji ruletki rankingowej
- krzyżowania przez cięcie i łączenie i selekcji turniejowej
- krzyżowania przez cięcie i łączenie i selekcji ruletki rankingowej.

Porównywać będziemy przede wszystkim ze względu na uzyskane czasy przebycia ścieżek - im krótszy jest ten czas, tym jest lepszy. Jeśli jednak wyniki dla dwóch różnych kombinacji selekcji i rekombinacji będą zbliżone, patrzyć będziemy także na czas wykonywania algorytmu korzystającego z danych parametrów - im krótszy czas, tym lepiej.

2. Selekcje

- Selekcja turniejowa polega na wybraniu dwóch losowych osobników z populacji i porównaniu ich wartości funkcji celu. Wybierany jest ten osobnik, który ma lepszą wartość.
- Selekcja ruletka rankingowa polega na przydzieleniu każdemu z osobników wartości prawdopodobieństwa wylosowania na podstawie rankingu pod względem najlepszej wartości funkcji celu. Prawdopodobieństwo każdemu z osobników przypisywane jest wg następującego wzoru:

$$prawdopodobienstwo = \frac{\textit{liczba_osobnik\'ow} + 1 - \textit{miejsce_w_rankingu}}{\sum_{i=1}^{\textit{liczba_osobnik\'ow}} \textit{i}}$$

Wg wzoru najlepszy osobnik ma największe szanse na bycie wylosowanym, natomiast najgorszy ma te szanse najmniejsze.

3. Rekombinacje

Reprezentacja ścieżkowa:

- PMX
- CX (dodatkowo)
- OX (dodatkowo).

Reprezentacja porządkowa:

• ciecie i łączenie.

4. Mutacje

Stosowane będą następujące rodzaje mutacji:

- dla reprezentacji ścieżkowej:
 - o zamiana dwóch losowych miast
 - INVER-OVER operator zamiany dwukrawędziowej
- dla reprezentacji porządkowej:
 - o zamiana jednej współrzędnej polega na wylosowaniu którejś ze współrzędnych w reprezentacji porządkowej, a następnie zastąpienie jej inną, wylosowaną współrzędną - oczywiście w taki sposób, aby po mutacji genotyp osobnika wciąż był poprawnie zapisany w reprezentacji porządkowej (nie wystąpi więc np. taka sytuacja, że ostatnia współrzędna w tej reprezentacji będzie > 1 [przy założeniu, że indeksujemy od jedynki]).

5. Eliminacja rozwiązań spoza dziedziny

Program dopuszcza tylko takie ścieżki, które da się przejechać dla liczby baterii < 100. Gdy liczba baterii wymagana do przebycia ścieżki jest >= 100, to taka ścieżka jest odrzucana i generowana jest nowa, do momentu aż liczba baterii dla wygenerowanej ścieżki będzie < 100. W przypadku, gdy po selekcji, rekombinacji i mutacji stworzony ścieżka dla stworzonego osobnika będzie wymagała >= 100 liczby baterii, to operacje selekcji, rekombinacji i mutacji są powtarzane do czasu znalezienia osobnika ze ścieżką wymagającą do przebycia < 100 baterii.

6. Ustalanie liczby baterii:

Każdy osobnik ma indywidualnie ustalaną liczbę baterii na podstawie swojej ścieżki. Liczba ta to najmniejsza możliwa liczba baterii, dla której ścieżka danego osobnika jest przejezdna.

7. Zrównoleglenie obliczeń

W programie zrównoleglone jest:

- generowanie osobników w populacji, każdy osobnik generowany jest niezależnie
- każde z powtórzeń algorytmu (wykorzystywane do celów statystycznych)
- każdy osobnik generowany w ramach tego samego pokolenia.

8. Algorytm zachłanny

Używany w programie algorytm zachłanny polega na tym, że startując od losowego miasta, jako kolejne miasto wybieramy miasto znajdujące się najbliżej niego. Następnie od drugiego miasta szukamy najbliższego mu miasta, wyłączając miasta już wcześniej wybrane, itd.

9. Eksperymenty dla Grecji

W przypadku Grecji każdy eksperyment będzie powtarzany 10 razy. Pierwszym eksperymentem będzie wygenerowanie 10 ścieżek korzystając z algorytmu zachłannego:

		Czas		
Nr eksperymentu	00001	wykonania [ms]	86	6
		Liczby	Numery	
Nr próby	Wynik	baterii	pokoleń	
1	5295636,255	67		0
2	5949488,279	70		0
3	174240724,6	99		0
4	3712127,358	58		0
5	5021069,049	65		0
6	5020898,497	65		0
7	6315398,11	72		0
8	10691655,69	86		0
9	8970966,307	81		0
10	5660594,981	69		0
Średnia	23087855,91	73,2		0
Mediana	5805041,63	69,5		0

Odchylenie standardowe	53149366,21	12,1271	0
Minimum	3712127,358	58	0
Maksimum	174240724,6	99	0

Te wyniki mogą jednak nie być porównywalne z późniejszymi eksperymentami, gdyż w tym wypadku na jedno powtórzenie przypada jeden wygenerowany osobnik. W późniejszych eksperymentach dla każdego z powtórzeń będziemy używać populacji wygenerowanej zachłannie - zaczniemy zazwyczaj od 20 osobników w populacji - toteż dla każdego powtórzenia zostanie wygenerowanych 20 zachłannych ścieżek jako populacja startowa i z tych ścieżek zostanie wybrany najlepszy osobnik, więc szanse na znalezienie lepszego osobnika są większe, niż gdybyśmy wygenerowali tylko jednego osobnika dla każdego powtórzenia jak zrobiliśmy to w poprzednim eksperymencie. Przeprowadźmy więc taki eksperyment dla algorytmu zachłannego, że najlepszego osobnika dla konkretnego powtórzenia będziemy wybierać z 20 wygenerowanych osobników:

		Czas wykonania		
Nr eksperymentu	00000	[ms]		166
		Liczby	Numery	
Nr próby	Wynik	baterii	pokoleń	
1	4723088,644	66		0
2	4747387,223	63		0
3	5306133,296	70		0
4	5367106,511	70		0
5	5263823,087	68		0
6	4743127,523	68		0
7	4605640,147	67		0
8	4540200,562	67		0
9	4816362,94	63		0
10	4379209,078	63		0
Średnia	4849207,901	66,5		0
Mediana	4745257,373	67		0
Odchylenie				
standardowe	343708,6259	2,718251		0
Minimum	4379209,078	63		0
Maksimum	5367106,511	70		0

Od razu można zauważyć poprawę wyników w stosunku do poprzedniego eksperymentu. Porównajmy teraz, jakie wyniki otrzymamy dla populacji wygenerowanej losowo i tak jak poprzednio dla każdego z powtórzeń najlepszego osobnika będziemy wybierać z 20 wygenerowanych losowo:

		Czas wykonania		
Nr eksperymentu	00002	[ms]		950
-		Liczby	Numery	
Nr próby	Wynik	baterii	pokoleń	

Maksimum		32012424,18	90	0
Minimum		380869,8769	22	0
Odchylenie standardowe		9889531,101	21,1316	0
Mediana		30496277,62	89,5	0
Średnia		25809088,22	81,9	0
1	0	22785899,19	86	0
	9	32012424,18	90	0
	8	21271138,01	85	0
	7	32012424,18	90	0
	6	28980131,07	89	0
	5	32012424,18	90	0
	4	380869,8769	22	0
	3	32012424,18	90	0
	2	24610723,19	87	0
	1	32012424,18	90	0

Jak widać wyniki są rzędu kilkudziesięciu milionów w porównaniu z kilkoma milionami dla algorytmu zachłannego. Toteż w dalszych eksperymentach będziemy używać populacji wygenerowanej zachłannie, dzięki czemu jako populację startową będziemy mieć już w miarę dobrą, a przynajmniej lepszą niż losową populację. Warto odnotować, że eksperymenty 00000 i 00002 były wykonywane z ograniczeniem, iż wygenerowana ścieżka musi być przejezdna (eksperymenty powstały na bazie algorytmu ewolucyjnego, gdzie liczba wykonywanych pokoleń wynosi 0). Eksperyment 00001 także posiada takie ograniczenie, jednak odpowiada za niego odrębny fragment kodu.

Sprawdźmy jeszcze jakie wyniki otrzymamy dla algorytmu zachłannego, jeśli zwiększymy liczbę wygenerowanych osobników do wybrania z nich najlepszego. Ustalmy liczbę osobników na 100:

10.Grecja - PMX + selekcja turniejowa

W pierwszej kolejności zostanie zbadany wpływ mutacji na algorytm. Testowany będzie na następujących parametrach:

liczba osobników w populacji: 20

sposób generowania populacji: zachłanny

warunek stopu: 1000 pokoleń.

Pierwszym eksperymentem będzie sprawdzenie jak algorytm zachowuje się w przypadku braku mutacji:

			Czas wykonania	
Nr eksperymentu		0000	[ms]	2208007
				Numery
Nr próby		Wynik	Liczby baterii	pokoleń
	1	4255944,794	62	1
	2	4080998,432	61	1
	3	3920345,024	63	6

Maksimum	4804057,414	64	31
Minimum	3755836,856	57	1
Odchylenie standardowe	346423,1314	2,496664441	11,6619
Mediana	4204636,11	62	5
Średnia	4260973,438	61,3	10
10	4510595,277	62	6
9	4153327,427	57	18
8	4804057,414	64	29
7	3983055,391	57	31
6	4438732,269	62	2
5	3755836,856	61	2
4	4706841,499	64	4

Otrzymane wyniki są lepsze niż te uzyskane z użyciem algorytmu zachłannego dla populacji 20 (eksperyment nr 00000), ale gorsze od algorytmu zachłannego dla populacji 100 (eksperyment nr 00002). Jako że w naszym eksperymencie użyliśmy populacji = 20 co oznacza, to porównując z odpowiadającym mu algorytmem zachłannym dla 20 osobników, nasz algorytm ewolucyjny spisuje się od niego lepiej.

Na podstawie powyższej tabeli można zauważyć, że mimo wykonania przez algorytm 1000 pokoleń, najlepszego osobnika udało się uzyskać maksymalnie w 31 pokoleniu. Oznacza to, iż nawet przy zwiększeniu liczby wykonywanych pokoleń szanse na to, że znajdziemy lepszego osobnika nie są zbyt duże. Wynika z tego, że brak mutacji nie jest najlepszym rozwiązaniem.

W kolejnym eksperymencie zwiększone zostanie prawdopodobieństwo mutacji zostanie ustawione na 5%, a rodzajem mutacji będzie zamiana dwóch losowych miast:

		Czas wykonania	
Nr eksperymentu	0001	[ms]	2592553
			Numery
Nr próby	Wynik	Liczby baterii	pokoleń
1	4125358,238	63	532
2	3266802,555	55	974
3	3566967,628	57	985
4	3415202,173	57	994
5	3519988,764	57	7
6	4320996,599	62	988
7	3580436,501	54	995
8	4085592,927	62	992
9	3465203,82	56	979
10	3752861,315	62	998
Średnia	3709941,052	58,5	844,4
Mediana	3573702,065	57	986,5
Odchylenie standardowe	350452,176	3,374742789	327,3758
Minimum	3266802,555	54	7
Maksimum	4320996,599	63	998

zamiana miast, 5% szans na mutację

Można zauważyć, że dodanie mutacji do algorytmu spowodowało poprawienie wyników. Średnia wyników zmniejszyła się o około 500 000, zmniejszyła się także średnia liczba baterii. Oznaczać to może, iż im mniejsza liczba baterii, tym szybciej jesteśmy w stanie pokonać daną trasę. Co najważniejsze, znacząco zwiększyła się średnia liczba pokoleń, w którym uzyskujemy najlepszy wynik. W większości przypadków liczba ta jest bliska liczbie pokoleń wykonywanych przez algorytm, co daje nadzieję, że przy zwiększeniu liczby wykonywanych pokoleń otrzymamy lepsze rezultaty. Sprawdzone zostanie to w późniejszych eksperymentach.

Teraz sprawdzone zostanie, jak przy tych samych parametrach wypada mutacja INVER-OVER:

		Czas wykonania	
Nr eksperymentu	0002	[ms]	2566765
			Numery
Nr próby	Wynik	Liczby baterii	pokoleń
1	3978012,408	59	927
2	3149216,879	51	698
3	4220624,804	61	5
4	3450789,586	50	967
5	3126035,564	51	980
6	3913292,831	55	653
7	3231993,009	49	462
8	3605491,908	56	948
9	3920701,573	54	940
10	4071280,346	60	475
Średnia	3666743,891	54,6	705,5
Mediana	3759392,369	54,5	812,5
Odchylenie standardowe	407185,309	4,351245033	318,4208
Minimum	3126035,564	49	5
Maksimum	4220624,804	61	980

INVER-OVER, 5% szans na mutację

Uzyskana średnia jest niewiele lepsza, ale mediana jest większa niż dla mutacji przez zamianę miast. Zmniejszyła się także średnia pokoleń, w których otrzymano wyniki.

Jako że dla obu operatorów mutacji dla 5% szans na mutację otrzymano lepsze wyniki niż przy braku mutacji sprawdzone zostanie jak zachowuje się algorytm przy zwiększonej szansy na mutację, gdyż otrzymane wyniki mogą być jeszcze lepsze. W tym celu zostaną przeprowadzone eksperymenty dla obu operatorów dla mutacji 30% i 50%:

		Czas	
		wykonania	
Nr eksperymentu	0003	[ms]	2553876
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
]	3112401	49	999
2	3049245	52	995
3	3 2928887	49	1000
4	3828105	59	1000
4	2929664	52	996

6	3490852	55	993
7	3702662	56	996
8	3229423	51	945
9	3080207	46	1000
10	2981622	50	983
Średnia	3233307	51,9	990,7
Mediana	3096304	51,5	996
Odchylenie			
standardowe	326696,7	3,842742	16,85263
Minimum	2928887	46	945
Maksimum	3828105	59	1000

zamiana miast, 30% szans na mutację

		Czas wykonania	
Nr eksperymentu	0004	[ms]	4944390
Tir exsperyments	0001	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3542116	57	2
2	3957296	61	0
3	4195953	60	22
4	4063187	55	10
5	3737113	57	10
6	4171347	63	1
7	4412275	65	0
8	3930325	54	7
9	3861699	58	12
10	3705079	55	6
Średnia	3957639	58,5	7
Mediana	3943810	57,5	6,5
Odchylenie		Ź	,
standardowe	261475,8	3,659083	6,896054
Minimum	3705079	54	0
Maksimum	4412275	65	22

INVER-OVER, 30% szans na mutację

Dla 30% szans na mutację operator zamiany miast spisuje się lepiej niż przy 5%. Zwiększyła się również średnia liczba pokoleń w jakich uzyskujemy wynik. Natomiast w przypadku INVER-OVER średnia uległa zwiększeniu. Drastycznie spadła również średnia liczba pokoleń - z 705,5 na 7.

		Czas wykonania	
Nr eksperymentu	0005	[ms]	2217739
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3253305	56	998
2	3013118	51	997
3	2696341	46	982
4	3425827	51	999

1				•
	5	3236396	53	1000
	6	2579350	45	1000
	7	3162715	50	998
	8	2946159	49	1000
	9	3004951	51	999
]	10	3528163	56	996
Średnia		3084632	50,8	996,9
Mediana		3087917	51	998,5
Odchylenie				
standardowe		299524	3,645393	5,40473
Minimum		2579350	45	982
Maksimum		3528163	56	1000

zamiana miast, 50% szans na mutację

		Czas	
		wykonania	
Nr eksperymentu	0006	[ms]	4749153
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	4083064	58	9
2	3670220	59	0
3	4083499	58	10
4	3596917	58	3
5	3845446	56	3
6	4225523	63	0
7	3691543	56	3
8	4752220	59	11
9	5271192	69	1
10	4109420	55	11
Średnia	4132904	59,1	5,1
Mediana	4083281	58	3
Odchylenie			
standardowe	524096,7	4,121758	4,605552
Minimum	3596917	55	0
Maksimum	5271192	69	11

INVER-OVER, 50% szans na mutację

Przy szansie na mutację 50% i zamianie miast udało się uzyskać jeszcze lepsze rezultaty niż dla 30%. W przypadku INVER-OVER wyniki się pogorszyły.

Jak można zauważyć, dotychczas przy operatorze zamiany miast wraz ze wzrostem prawdopodobieństwa mutacji otrzymywaliśmy lepsze wyniki. W przypadku INVER-OVER tendecja jest odwrotna. Następnie więc zostanie przeprowadzony eksperyment dla obu operatorów mutacji z szansą mutacji 75% - dla zamiany miast z nadzieją otrzymania jeszcze lepszych rezultatów, a dla INVER-OVER w celu sprawdzenia, czy tendencja spadkowa się utrzyma.

		Czas	
		wykonania	
Nr eksperymentu	0009	[ms]	2553799
Nr próby	Wynik	Liczby	Numery

		baterii	pokoleń
1	3251581	52	997
2	2814990	45	987
3	3192272	51	995
4	3603827	57	977
5	3317472	50	999
6	3707113	55	998
7	3225959	49	946
8	3343585	53	996
9	2744781	44	993
10	3122907	48	994
Średnia	3232449	50,4	988,2
Mediana	3238770	50,5	994,5
Odchylenie			
standardowe	299800,3	4,115013	16,19877
Minimum	2744781	44	946
Maksimum	3707113	57	999

zamiana miast, 75% szans na mutację

		Czas	
N. 1	0010	wykonania	5002400
Nr eksperymentu	0010	[ms]	5082408
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	4290511	64	3
2	3957296	61	0
3	4314654	57	7
4	3653949	55	17
5	4569853	58	5
6	4618312	63	3
7	4204843	63	9
8	3669715	56	6
9	3986657	60	6
10	4072440	59	5
Średnia	4133823	59,6	6,1
Mediana	4138642	59,5	5,5
Odchylenie			
standardowe	331563,5	3,134042	4,557046
Minimum	3653949	55	0
Maksimum	4618312	63	17

INVER-OVER, 75% szans na mutację

Dla zamiany miast dla 75% uzyskane wyniki są jednak gorsze niż dla 50%. Prawdopodobnie więc optymalna wartość mutacji jest mniejsza niż 75%. Dla mutacji INVER-OVER wyniki nieznacznie się pogorszyły, jednak jest to mniejszy spadek niż w przy spadku z 30% na 50%.

Na podstawie dotąd przeprowadzonych eksperymentów można stwierdzić, że przy zadanych parametrach mutacja przez zamianę miast spisuje się lepiej od INVER-OVER, więc to ona będzie

brana pod uwagę przy dalszych eksperymentach. Dla pewności jednak zostanie przeprowadzony jeszcze jeden eksperyment dla obu typów mutacji - z prawdopodobieństwem mutacji 15%.

		Czas	
		wykonania	
Nr eksperymentu	0007	[ms]	2588014
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3639753	56	994
2	3674083	57	988
3	3297368	54	991
4	3611526	58	0
5	3074013	52	966
6	3729657	56	519
7	3188013	55	997
8	3799095	59	999
9	3901494	59	993
10	2924019	50	998
Średnia	3483902	55,6	844,5
Mediana	3625640	56	992
Odchylenie			
standardowe	335773,7	2,951459	331,8364
Minimum	2924019	50	0
Maksimum	3901494	59	999

zamiana miast, 15% szans na mutację

		Czas wykonania	
Nr eksperymentu	0008	[ms]	2361113
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2829621	46	384
2	3393852	53	3
3	3738755	54	48
4	4733498	69	3
5	4895458	65	6
6	3796632	57	55
7	3588667	49	80
8	3657119	56	5
9	3645623	56	16
10	4295576	60	17
Średnia	3857480	56,5	61,7
Mediana	3697937	56	16,5
Odchylenie			,
standardowe	622117	6,883959	116,3042
Minimum	3393852	49	3
Maksimum	4895458	69	80

INVER-OVER, 15% szans na mutację

Zgodnie z oczekiwaniami, wyniki dla zamiany miast dla 15% są lepsze niż dla 5%, ale gorsze od tych dla 30%. Podobnie z operatorem INVER-OVER, tylko tutaj odwrotnie, lepsze dla tych z 30%, a gorsze od tych dla 5%.

Z wykresu wynika, że optymalna wartość mutacji znajduje się w przedziale od 30% do 75%. Aby sprawdzić ta wartość to otrzymana na podstawie poprzednich eksperymentów 50% czy jakaś inna, dla operatora zamiany miast zostaną przeprowadzone jeszcze dwa eksperymenty - z szansą na mutację 40% oraz 60%. Operator INVER-OVER wypadł gorzej, więc w następnych eksperymentach będzie używany operator zamiany miast.

		Czas wykonania	
Nr eksperymentu	0011	[ms]	2534840
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3072044	48	1000
2	2935819	51	1000
3	2971104	52	1000
4	3266782	52	999
5	3057621	50	1000
6	2722801	48	997
7	3462573	55	1000
8	3155021	51	999
9	2992383	51	1000
10	2843046	49	999
Średnia	3047919	50,7	999,4
Mediana	3025002	51	1000
Odchylenie			
standardowe	211137,5	2,110819	0,966092
Minimum	2722801	48	997
Maksimum	3462573	55	1000

		Czas wykonania	
Nr eksperymentu	0012	[ms]	2201581
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3466023	55	994
2	3048154	48	987
3	3815846	56	1000
4	3739302	57	1000
5	2929102	52	990
6	3006735	47	998
7	3155243	50	999
8	3187396	51	988
9	3727371	53	995
10	3049462	49	1000
Średnia	3312463	51,8	995,1
Mediana	3171319	51,5	996,5
Odchylenie			
standardowe	341750,2	3,425395	5,15213
Minimum	2929102	47	987
Maksimum	3815846	57	1000

zamiana miast, 60% szans na mutację

Dla 40% prawdopodobieństwa mutacji otrzymano najlepsze wyniki - najniższe do tej pory średnią oraz medianę i najwyższą, równą niemal 1000 średnią liczbę pokoleń, w których uzyskano najlepszego osobnika. Dla 60% prawdopodobieństwa wyniki są nieco gorsze. Tak wygląda wykres wyników w zależności od prawdopodobieństwa mutacji dla operatora zamiany dwóch losowych miast:

Na podstawie dotychczas przeprowadzonych eksperymentów w następnych wykorzystywana będzie mutacja przez zamianę dwóch losowych miast z prawdopodobieństwem wystąpienia 40%. Tutaj jeszcze raz wyniki dla 40% mutacji przez zamianę miast:

		Czas wykonania	
Nr eksperymentu	0011	[ms]	2534840
1 3		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3072044	48	1000
2	2935819	51	1000
3	2971104	52	1000
4	3266782	52	999
5	3057621	50	1000
6	2722801	48	997
7	3462573	55	1000
8	3155021	51	999
9	2992383	51	1000
10	2843046	49	999
Średnia	3047919	50,7	999,4
Mediana	3025002	51	1000
Odchylenie			
standardowe	211137,5	2,110819	0,966092
Minimum	2722801	48	997
Maksimum	3462573	55	1000

zamiana miast, 40% szans na mutację

Mając obliczenia dotyczące mutacji dla populacji startowej zachłannej, przeprowadźmy sprawdźmy jak algorytm radzi sobie z użyciem populacji wygenerowanej losowo. W tym celu dla warunku stopu 1000 pokoleń i następujących konfiguracji mutacji dokonamy obliczeń:

- brak mutacji
- 5% szans na mutację, zamiana miast
- 5% szans na mutację, INVER-OVER
- 30% szans na mutację, zamiana miast
- 30% szans na mutację, INVER-OVER
- 50% szans na mutację, zamiana miast
- 50% szans na mutację, INVER-OVER.

Tak prezentują się wyniki:

		Czas wykonania		
Nr eksperymentu	0100	[ms]	50	5206
			Numery	
Nr próby	Wynik	Liczby baterii	pokoleń	
1	13261917,07	76		7
2	12587167,21	75		21
3	16478374,6	81		32
4	16734622,09	81		2

5	15102222,25	79	30
6	13214527,56	76	11
7	16548202,76	81	28
8	15118872,99	79	3
9	12730983,73	75	5
10	15153812,41	79	6
Średnia	14693070,27	78,2	14,5
Mediana	15110547,62	79	9
Odchylenie standardowe	1628791,57	2,485513584	11,97451
Minimum	12587167,21	75	2
Maksimum	16734622,09	81	32

populacja wygenerowana losowo, brak mutacji

		Czas wykonania	
Nr eksperymentu	0101	[ms]	64240
			Numery
Nr próby	Wynik	Liczby baterii	pokoleń
1	11285053,1	73	999
2	13610983,21	77	311
3	11567542,36	73	348
4	12774679,93	76	931
5	15288955,32	79	12
6	14711711,89	79	1000
7	17251144,07	82	1000
8	12253541,82	74	11
9	11541334,76	73	637
10	11452471,44	73	998
Średnia	13173741,79	75,9	624,7
Mediana	12514110,88	75	784
Odchylenie standardowe	2012086,644	3,247221034	419,275
Minimum	11452471,44	73	11
Maksimum	17251144,07	82	1000

populacja wygenerowana losowo, 5% szans na mutację, zamiana miast

		Czas wykonania	
Nr eksperymentu	0103	[ms]	64581
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	10827541,09	73	998
2	9716594,782	70	1000
3	9390818,184	69	1000
4	9647963,418	70	999
5	10133367,67	71	1000
6	10794584,06	73	1000
7	9311253,703	69	1000

	8	8791792,549	67	999
	9	11158983,44	74	998
	10	9448177,405	69	1000
Średnia		9922107,63	70,5	999,4
Mediana		9682279,1	70	1000
Odchylenie standardowe		776784,044	2,22361068	0,84327404
Minimum		8791792,549	67	998
Maksimum		11158983,44	74	1000

populacja wygenerowana losowo, 30% szans na mutację, zamiana miast

		Czas	
		wykonania	
Nr eksperymentu	0105	[ms]	56034
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	9572309,132	70	1000
2	8414115,274	66	1000
3	8383348,879	66	1000
4	10574939,98	73	1000
5	8089099,27	65	1000
6	7916202,537	64	999
7	8280525,648	66	1000
8	7335262,927	61	999
9	9234491,639	69	1000
10	9251319,327	69	1000
Średnia	8705161,462	66,9	999,8
Mediana	8398732,077	66	1000
Odchylenie			
standardowe	947141,5036	3,414023	0,421637
Minimum	7335262,927	61	999
Maksimum	10574939,98	73	1000

populacja wygenerowana losowo, 50% szans na mutację, zamiana miast

		Czas wykonania	
Nr eksperymentu	0102	[ms]	58413
			Numery
Nr próby	Wynik	Liczby baterii	pokoleń
1	12266470,31	74	49
2	11985637,87	74	855
3	12058477,26	74	871
4	11153017,08	72	994
5	12511478,55	75	982
6	10129828,12	69	980
7	11536785,31	73	977
8	10698146,67	71	987

9	11086332,48	72	929
10	15657287,18	80	996
Średnia	11908346,08	73,4	862
Mediana	11761211,59	73,5	978,5
Odchylenie standardowe	1512433,246	2,913569784	290,2378
Minimum	10129828,12	69	855
Maksimum	15657287,18	80	996

populacja wygenerowana losowo, 5% szans na mutację, INVER-OVER

		Czas wykonania	
Nr eksperymentu	0104	[ms]	104308
1 3		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	9877721,62	68	447
2	9648198,004	67	657
3	9883583,086	68	85
4	9241826,704	66	378
5	10221042,16	69	857
6	9657854,834	67	417
7	9623575,743	67	87
8	9498176,43	67	414
Ç	9876308,187	68	800
10	10194923,35	69	404
Średnia	9772321,012	67,6	454,6
Mediana	9767081,511	67,5	415,5
Odchylenie	Ź	,	,
standardowe	302114,57	0,96609178	259,374118
Minimum	9241826,704	66	85
Maksimum	10221042,16	69	857

populacja wygenerowana losowo, 30% szans na mutację, INVER-OVER

		Czas	
		wykonania	
Nr eksperymentu	0106	[ms]	117673
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	10219340,13	69	678
2	10215909,85	69	356
3	10152028,81	69	658
4	9644471,834	67	237
5	9974715,401	68	727
6	10187071,37	69	511
7	9970414,274	68	522
8	10259553,05	69	978
9	9924549,825	68	135

10	10175498,37	69	739
Średnia	10072355,29	68,5	554,1
Mediana	10163763,59	69	590
Odchylenie standardowe	192139,3667	0,707107	255,658
Minimum	9644471,834	67	135
Maksimum	10259553,05	69	978

populacja wygenerowana losowo, 50% szans na mutację, INVER-OVER

Tutaj wykres zależności średniego wyniku od prawdopodobieństwa wystąpienia mutacji dla populacji wygenerowanej losowo i zachłannie:

Z wykresu wynika, że algorytm spisuje się znacznie lepiej gdy korzysta z populacji wygenerowanej zachłannie niż losowej. Toteż w dalszych eksperymentach wykorzystywana będzie populacja wygenerowana zachłannie.

Następnym eksperymentem będzie sprawdzenie jak algorytm zachowuje się dla większej liczby pokoleń. Ponieważ średni nr pokolenia uzyskany w eksperymencie 0011 jest bliski a mediana równa liczbie pokoleń równej 1000, która była warunkiem stopu dla tego eksperymentu, można przypuszczać, że zwiększając liczbę pokoleń uzyskamy jeszcze lepsze rezultaty.

Zwiększona zostanie więc liczba pokoleń z 1000 do 2000 przy niezmienionych pozostałych parametrach (liczba osobników w populacji = 20, populacja generowana zachłannie):

Nr eksperymentu		0013	Czas wykonania [ms]	5095003
Nr próby		Wynik	Liczby baterii	Numery pokoleń
	1	2956048,471	50	2000
	2	3083914,691	52	1997

3	2879957,548	51	1993
4	3134677,362	52	2000
5	3019176,815	49	1998
6	2741198,908	51	1996
7	2934697,203	50	1991
8	3001139,214	52	1944
9	2684213,214	47	1998
10	2746457,547	45	1995
Średnia	2918148,097	49,9	1991,2
Mediana	2945372,837	50,5	1996,5
Odchylenie standardowe	152803,735	2,330951165	16,83119
Minimum	2684213,214	45	1944
Maksimum	3134677,362	52	2000

liczba osobników w populacji = 20, liczba pokoleń = 2000

Otrzymane wyniki poprawiły się, a średni nr pokolenia i mediana są bliskie 2000, więc następnym krokiem będzie zwiększenie liczby pokoleń do 4000:

		Czas	
		wykonania	
Nr eksperymentu	0017	[ms]	8703773
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2450908	43	4000
2	2157034	41	4000
3	2142768	39	3996
4	2427644	46	3991
5	2514528	44	3999
6	2400018	43	3999
7	2851348	47	4000
8	2114850	41	3999
9	2231421	40	3999
10	2551354	40	3999
Średnia	2384187	42,4	3998,2
Mediana	2413831	42	3999
Odchylenie			
standardowe	229861,1	2,674987	2,780887
Minimum	2114850	39	3991
Maksimum	2851348	47	4000

liczba osobników w populacji = 20, liczba pokoleń = 4000

Sytuacja jest analogiczna, więc zwiększmy liczbę pokoleń do 8000:

Nr eksperymentu	0019	Czas wykonania [ms]	602520
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2099744	37	5805
2	2148141	40	4905

Maksimum	2412933	42	5680
Minimum	2091746	39	3703
Odchylenie standardowe	111150,7	1,619328	667,3631
Mediana	2199655	40	5140,5
Średnia	2219044	40,2	5018,7
10	2334426	42	3703
9	2412933	42	5513
8	2138805	39	5157
7	2213638	40	5398
6	2091746	42	4721
5	2351694	40	4181
4	2198180	39	5124
3	2201130	41	5680

liczba osobników w populacji = 20, liczba pokoleń = 8000

Widać, że otrzymane wyniki są jeszcze lepsze, ale średni nr pokolenia i jego mediana już nie są bliskie liczbie pokoleń będącej warunkiem stopu. Oznacza to, że nawet gdyby dalej zwiększono liczbę pokoleń, np. na 16000, to i tak nie udało już by się uzyskać lepszych wyników, gdyż średnia liczba pokoleń w jakich uzyskujemy najlepszego osobnika dla ustalonych wcześniej parametrów wynosi około 5000 pokoleń.

Warto jeszcze jednak sprawdzić jak algorytm zachowywał się będzie przy innym rozmiarze populacji. Bo jeśli dla 10 osobników uzyskamy podobne rezultaty jak dla 20 przy tych samych parametrach, to warto używać mniejszą liczbę osobników populacji, gdyż czas wykonania wtedy się skraca. Sprawdzimy więc jak zachowuje się algorytm dla liczby populacji = 10 i warunku stopu 1000 pokoleń (porównamy wyniki z eksperymentem 0011 - wielkość populacji 20, pozostałe parametry takie same):

		Czas wykonania	
Nr eksperymentu	0015	[ms]	1099150
			Numery
Nr próby	Wynik	Liczby baterii	pokoleń
1	3148918,439	53	993
2	3564133,747	55	1000
3	3706539,676	60	999
4	4074251,706	61	997
5	4084603,284	58	996
6	4142497,637	61	994
7	4042573,943	59	1000
8	3867251,671	59	997
9	4397074,498	62	822
10	3853196,265	59	742
Średnia	3888104,087	58,7	954
Mediana	3954912,807	59	996,5
Odchylenie standardowe	350691,6946	2,790858092	92,62109
Minimum	3564133,747	55	742
Maksimum	4397074,498	62	1000

liczba osobników w populacji = 10, liczba pokoleń = 1000

W porównaniu z populacją = 20 osobników wyniki są zauważalnie gorsze. Wniosek, który się nasuwa jest taki, że im większa liczba osobników w populacji przy tych samych pozostałych parametrach tym lepsze wyniki. Sprawdźmy więc co się stanie, gdy zwiększymy populację do 40 osobników:

		Czas wykonania	
Nr eksperymentu	0014	[ms]	165957
			Numery
Nr próby	Wynik	Liczby baterii	pokoleń
1	3023651,602	50	998
2	2808685,912	50	1000
3	2850127,163	46	1000
4	3188999,847	50	999
5	3119120,93	51	1000
6	3061553,408	51	998
7	3205674,699	48	1000
8	2868410,049	45	1000
9	2759726,136	45	1000
10	2805879,92	50	1000
Średnia	2969182,967	48,6	999,5
Mediana	2946030,826	50	1000
Odchylenie standardowe	169593,351	2,412928143	0,849837
Minimum	2759726,136	45	998
Maksimum	3205674,699	51	1000

liczba osobników w populacji = 40, liczba pokoleń = 1000

Zgodnie z oczekiwaniami wyniki dla 40 osobników są lepsze od tych dla 20 osobników. Zobaczmy co się stanie, jeśli liczba osobników wyniesie 80:

		Czas wykonania	
Nr eksperymentu	0021	[ms]	335765
			Numery
Nr próby	Wynik	Liczby baterii	pokoleń
1	2961859,017	46	721
2	3122924,948	48	1000
3	3535427,779	56	15
4	3027258,675	44	706
5	3632141,621	51	32
6	3268495,259	51	464
7	3609700,246	57	1
8	2862407,43	41	413
9	3551596,298	53	539
10	3669435,323	50	528
Średnia	3324124,66	49,7	441,9
Mediana	3401961,519	50,5	496
Odchylenie standardowe	310588,015	5,078276173	336,9703
Minimum	2862407,43	41	1
Maksimum	3669435,323	57	1000

liczba osobników w populacji = 80, liczba pokoleń = 1000

Okazuje się, że otrzymane wyniki są gorsze zarówno od wyników dla 20 i 40 osobników w populacji. Możliwe jest więc, że tylko do pewnego stopnia sprawdza się twierdzenie im więcej pokoleń tym lepsze wyniki. Zobaczmy jak to wygląda dla 60 i 100 osobników:

		Czas wykonania	
Nr eksperymentu	0022	[ms]	254396
			Numery
Nr próby	Wynik	Liczby baterii	pokoleń
1	2880183,874	48	996
2	2550323,502	39	1000
3	3024532,226	50	999
4	3127220,403	46	1000
5	3082210,22	48	1000
6	2667963,784	45	997
7	2435821,898	43	1000
8	3320417,586	47	1000
9	2816913,668	42	1000
10	2760238,316	47	999
Średnia	2866582,548	45,5	999,1
Mediana	2848548,771	46,5	1000
Odchylenie standardowe	275746,8147	3,308238874	1,449138
Minimum	2435821,898	39	997
Maksimum	3320417,586	50	1000

liczba osobników w populacji = 60, liczba pokoleń = 1000

		Czas wykonania	
Nr eksperymentu	0023	[ms]	514970
			Numery
Nr próby	Wynik	Liczby baterii	pokoleń
1	3981434,869	53	27
2	3690548,869	55	8
3	2928261,758	44	1000
4	3534648,069	59	0
5	3626098,44	51	24
6	3754210,848	56	11
7	3630149,369	56	0
8	3869623,932	61	1
9	3601588,643	56	2
10	3630149,369	56	0
Średnia	3624671,416	54,7	107,3
Mediana	3630149,369	56	5
Odchylenie standardowe	279302,242	4,667856991	313,8227
Minimum	2928261,758	44	0
Maksimum	3869623,932	61	1000

liczba osobników w populacji = 100, liczba pokoleń = 1000

Wykres przedstawiający średnie wyniki dla liczby pokoleń = 1000:

Widać, że sytuacja jest podobna jak z prawdopodobieństwem mutacji. Dla ustalonych parametrów istnieje optymalna liczba pokoleń, dla której wyniki są najlepsze. Do pewnego momentu zwiększając liczbę pokoleń otrzymujemy coraz lepsze wyniki, ale jeżeli przekroczymy optimum, to wyniki zaczną się pogarszać.

Sprawdzimy czy uzyskamy podobne wyniki dla:

- populacji o rozmiarze = 20 i liczbie pokoleń = 1000
- populacji o rozmiarze = 10 i liczbie pokoleń = 2000.

W obu przypadkach przez cały czas wykonywania przez algorytm przewinie się taka sama liczba osobników (20x1000 = 20000 i 10x2000 = 20000). Sprawdzimy czy przy takich parametrach wyniki będą do siebie podobne. Dla pierwszego przypadku eksperyment został już przeprowadzony (nr 0011). Przypomnijmy jego wyniki:

		Czas	
		wykonania	
Nr eksperymentu	0011	[ms]	2534840
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3072044	48	1000
2	2935819	51	1000
3	2971104	52	1000
4	3266782	52	999
5	3057621	50	1000
6	2722801	48	997
7	3462573	55	1000
8	3155021	51	999
9	2992383	51	1000
10	2843046	49	999

Średnia	3047919	50,7	999,4
Mediana	3025002	51	1000
Odchylenie			
standardowe	211137,5	2,110819	0,966092
Minimum	2722801	48	997

liczba osobników w populacji = 20, liczba pokoleń = 1000

Teraz przeprowadźmy eksperyment dla drugiego przypadku:

		Czas wykonania	
Nr eksperymentu	0016	[ms]	2182005
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3712181	57	1997
2	3014067	51	1983
3	2992024	54	1991
4	3093742	49	2000
5	2985839	47	1788
6	2879065	51	1997
7	3359193	52	1997
8	3180800	55	1992
9	3339753	54	1998
10	3156814	52	1996
Średnia	3171348	52,2	1973,9
Mediana	3125278	52	1996,5
Odchylenie			,
standardowe	244768,9	2,936362	65,50055
Minimum	2879065	47	1788
Maksimum	3359193	55	2000

liczba osobników w populacji = 10, liczba pokoleń = 2000

Wyniki są do siebie zbliżone, jednak lepiej wypada większa liczba populacji przy mniejszej liczbie pokoleń (eksperyment 0011).

Sprawdźmy teraz warianty z większą liczbą pokoleń:

- populacji o rozmiarze = 20 i liczbie pokoleń = 4000
- populacji o rozmiarze = 10 i liczbie pokoleń = 8000 .

Przypomnijmy wyniki z juz przeprowadzonego eksperymentu z pierwszego przypadku (eksperyment nr 0017).

Nr eksperymentu	0017	Czas wykonania [ms]	8703773
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2450908	43	4000
2	2157034	41	4000
3	2142768	39	3996

4	2427644	46	3991
5	2514528	44	3999
6	2400018	43	3999
7	2851348	47	4000
8	2114850	41	3999
9	2231421	40	3999
10	2551354	40	3999
Średnia	2384187	42,4	3998,2
Mediana	2413831	42	3999
Odchylenie			
standardowe	229861,1	2,674987	2,780887
Minimum	2114850	39	3991
Maksimum	2851348	47	4000

liczba osobników w populacji = 20, liczba pokoleń = 4000

A teraz policzmy drugi przypadek:

		Czas	
NY 1	0010	wykonania	227555
Nr eksperymentu	0018	[ms]	337555
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2430520	40	2112
2	2817045	51	2182
3	2591956	46	2049
4	2671022	44	2056
5	2430829	43	2069
6	2664410	42	2123
7	2391451	45	1980
8	2529282	43	1983
9	2764338	49	2072
10	2575267	42	2036
Średnia	2586612	44,5	2066,2
Mediana	2583612	43,5	2062,5
Odchylenie			
standardowe	144540,7	3,374743	61,8597
Minimum	2391451	42	1980
Maksimum	2817045	51	2182

liczba osobników w populacji = 10, liczba pokoleń = 8000

Tutaj także większa populacja z mniejszą liczbą pokoleń wygrywa. Warto odnotować, że przy mniejszej populacji szybciej osiągnęliśmy graniczną liczbę pokoleń, w której uzyskujemy najlepszego osobnika (eksperyment 0018 - średnia 2066,2), natomiast w przypadku eksperymentu 0017 średnia liczba pokoleń wciąż jest bliska liczbie wykonywanych pokoleń. Wcześniej udało nam się ustalić wielkość populacji, dla której dla 1000 pokoleń otrzymano najlepsze rezultaty. W związku z tym spróbujmy osiągnąć maksymalną możliwą liczbę pokoleń dla tego rozmiaru populacji, gdyż istnieje szansa, że otrzymamy jak do tej pory najlepsze wyniki. Załóżmy liczbę pokoleń równą 8000. Jeżeli okaże się, że średni nr pokolenia i jego mediana będą bliskie tej liczbie, to liczba pokoleń znów zostanie zwiększona.

		Czas	
		wykonania	
Nr eksperymentu	0022	[ms]	254396
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2176067	37	3929
2	2053771	36	3652
3	2108696	36	3409
4	1946862	35	4455
5	1993545	36	4492
6	2379484	40	3236
7	2185286	37	3525
8	2321002	43	3052
9	2280158	36	3984
10	2136628	37	4420
Średnia	2158150	37,3	3815,4
Mediana	2156347	36,5	3790,5
Odchylenie			
standardowe	140235,5	2,406011	523,7073
Minimum	1946862	35	3052
Maksimum	2379484	43	4492

liczba osobników w populacji = 80, liczba pokoleń = 8000

Zgodnie z przypuszczeniami wyniki otrzymane w tym eksperymencie są lepsze od wszystkich poprzednich.

11.Grecja - PMX + selekcja ruletka rankingowa

W pierwszej kolejności podobnie jak przy selekcji turniejowej w poprzednim punkcie zostanie zbadany wpływ **mutacji** na algorytm. Testowany będzie na następujących parametrach:

• liczba osobników w populacji: 20

• sposób generowania populacji: zachłanny

• warunek stopu: 1000 pokoleń.

Najpierw sprawdzimy jak wypada algorytm bez mutacji:

		Czas	
		wykonania	
Nr eksperymentu	1000	[ms]	2619652
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	5089535	68	8
2	4098072	62	27
3	4118700	60	11
4	4240464	65	1
5	4470945	66	29
6	3906680	59	22
7	4396064	62	64
8	4491826	62	4
9	3997414	57	65

10	4060164	61	6
Średnia	4286986	62,2	23,7
Mediana	4179582	62	16,5
Odchylenie standardowe	346071,3	3,32666	23,56103
Minimum	3906680	57	1
Maksimum	5089535	68	65

Rezultaty są bardzo zbliżone do tych otrzymanych z użyciem selekcji turniejowej. Mała średnia oraz mediana nr pokoleń w stosunku do 1000 pokoleń, będącego warunkiem stopu algorytmu świadczy o tym, iż brak mutacji nie jest korzystny dla algorytmu. Teraz dodamy sprawdzimy jak algorytm będzie sobie radził po dodaniu mutacji z szansą wystąpienia 5%. Oczekiwane jest, że wyniki się poprawią. Przetestowana zostanie mutacja przez zamianę dwóch losowych miast oraz INVER-OVER:

		Czas wykonania	
Nr eksperymentu	0001	[ms]	2592553
			Numery
Nr próby	Wynik	Liczby baterii	pokoleń
1	4125358,238	63	532
2	3266802,555	55	974
3	3566967,628	57	985
4	3415202,173	57	994
5	3519988,764	57	7
6	4320996,599	62	988
7	3580436,501	54	995
8	4085592,927	62	992
9	3465203,82	56	979
10	3752861,315	62	998
Średnia	3709941,052	58,5	844,4
Mediana	3573702,065	57	986,5
Odchylenie standardowe	350452,176	3,374742789	327,3758
Minimum	3266802,555	54	7
Maksimum	4320996,599	63	998

zamiana miast 5%

		Czas wykonania	
Nr eksperymentu	0002	[ms]	2566765
			Numery
Nr próby	Wynik	Liczby baterii	pokoleń
1	3978012,408	59	927
2	3149216,879	51	698
3	4220624,804	61	5
4	3450789,586	50	967
5	3126035,564	51	980

Maksimum	4220624,804	61	980
Minimum	3126035,564	49	5
Odchylenie standardowe	407185,309	4,351245033	318,4208
Mediana	3759392,369	54,5	812,5
Średnia	3666743,891	54,6	705,5
10	4071280,346	60	475
9	3920701,573	54	940
8	3605491,908	56	948
7	3231993,009	49	462
6	3913292,831	55	653

zamiana miast 5%

Zgodnie z oczekiwaniami po dodaniu mutacji wyniki poprawiły się. Wyniki zarówno dla zamiany miast jak i INVER-OVER są bardzo zbliżone dla prawdopodobieństwa mutacji 5%. Teraz sprawdźmy jak te dwa operatory radzą sobie przy prawdopodobieństwie mutacji 30%:

		Czas wykonania	
Nr eksperymentu	0003	[ms]	2553876
1 7		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3112401	49	999
2	3049245	52	995
3	2928887	49	1000
4	3828105	59	1000
5	2929664	52	996
6	3490852	55	993
7	3702662	56	996
8	3229423	51	945
9	3080207	46	1000
10	2981622	50	983
Średnia	3233307	51,9	990,7
Mediana	3096304	51,5	996
Odchylenie		Ź	
standardowe	326696,7	3,842742	16,85263
Minimum	2928887	46	945
Maksimum	3828105	59	1000

INVER-OVER 5%

Nr eksperymentu	0004	Czas wykonania [ms]	4944390
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3542116	57	2
2	3957296	61	0
3	4195953	60	22
4	4063187	55	10

5	3737113	57	10
6	4171347	63	1
7	4412275	65	0
8	3930325	54	7
9	3861699	58	12
10	3705079	55	6
Średnia	3957639	58,5	7
Mediana	3943810	57,5	6,5
Odchylenie			
standardowe	261475,8	3,659083	6,896054
Minimum	3705079	54	0
Maksimum	4412275	65	22

INVER-OVER 30%

Przy tym prawdopodobieństwie mutacji wyniki dla operatora zamiany miast uległy poprawie względem 5%, ale już dla operatora INVER-OVER się pogorszyły. Widać, że przy zbyt dużej szansie na mutację INVER-OVER uzyskał średni nr pokolenia i medianę równe odpowiednio tylko 6 i 7, co względem 1000 wykonywanych pokoleń nie jest dobrym wynikiem. Zamiana miast natomiast ma te dwie wartości bliskie liczbie wykonywanych pokoleń, co daje nadzieję na uzyskanie jeszcze lepszych wyników przy zwiększeniu liczby pokoleń. Zwiększmy teraz mutację do 50% i przekonajmy się, czy analogicznie jak w przypadku selekcji turniejowej wyniki dla zamiany miast jeszcze bardziej się poprawią, a dla INVER-OVER pogorszą:

		Czas	
		wykonania	
Nr eksperymentu	0005	[ms]	2217739
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3253305	56	998
2	3013118	51	997
3	2696341	46	982
4	3425827	51	999
5	3236396	53	1000
6	2579350	45	1000
7	3162715	50	998
8	2946159	49	1000
9	3004951	51	999
10	3528163	56	996
Średnia	3084632	50,8	996,9
Mediana	3087917	51	998,5
Odchylenie			·
standardowe	299524	3,645393	5,40473
Minimum	2579350	45	982
Maksimum	3528163	56	1000

zamiana miast 50%

		Czas	
Nr eksperymentu	0006	wykonania	4749153

		[ms]	
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	4083064	58	9
2	3670220	59	0
3	4083499	58	10
4	3596917	58	3
5	3845446	56	3
6	4225523	63	0
7	3691543	56	3
8	4752220	59	11
9	5271192	69	1
10	4109420	55	11
Średnia	4132904	59,1	5,1
Mediana	4083281	58	3
Odchylenie			
standardowe	524096,7	4,121758	4,605552
Minimum	3596917	55	0
Maksimum	5271192	69	11

INVER-OVER 50%

Otrzymane rezultaty dla mutacji 50% są zgodne z oczekiwaniami. Przekonajmy się, co stanie się przy mutacji 75%:

		Czas	
		wykonania	
Nr eksperymentu	1007	[ms]	2557305
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3449934	54	999
2	2945246	48	983
3	3516621	49	1000
4	3317238	47	999
5	2859945	48	999
6	3228358	50	1000
7	3346825	51	990
8	3186694	49	991
9	3551033	55	998
10	3474961	54	984
Średnia	3287685	50,5	994,3
Mediana	3332032	49,5	998,5
Odchylenie		,	,
standardowe	236050,1	2,877113	6,733828
Minimum	2859945	47	983
Maksimum	3551033	55	1000

zamiana miast 75%

Nr eksperymentu	1008	Czas	5181581

		wykonania	
		[ms]	
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	4102747	61	10
2	4212931	60	3
3	3977556	60	0
4	4187567	64	1
5	4875410	64	0
6	3877200	58	2
7	3939775	61	1
8	4325775	59	7
9	3996208	63	0
10	4445961	63	2
Średnia	4194113	61,3	2,6
Mediana	4145157	61	1,5
Odchylenie			
standardowe	299046,2	2,110819	3,339993
Minimum	3877200	58	0
Maksimum	4875410	64	10

INVER-OVER 75%

Wyniki dla INVER-OVER wciąż się pogarszają, natomiast tym razem dla zamiany miast zamiast poprawy odnotowano lekki spadek wyników. Oznacza to, że prawdopodobnie wartość optymalna prawdopodobieństwa mutacji jest mniejsza niż 75%. Zobaczmy zatem jakie wyniki uzyskamy dla zamiany miast przy 40% szans na mutację, gdyż wartość ta okazała się najlepsza spośród badanych wartości dla selekcji turniejowej:

		Czas	
		wykonania	
Nr eksperymentu	1009	[ms]	2564454
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3471594	53	981
2	2874559	45	987
3	3010510	52	1000
4	3019382	50	891
5	3157839	50	997
6	3474939	55	990
7	3387021	51	999
8	2768551	47	999
9	3459674	53	998
10	3320395	56	997
Średnia	3194446	51,2	983,9
Mediana	3239117	51,5	997
Odchylenie		,	
standardowe	264221,2	3,392803	33,23803
Minimum	2768551	45	891
Maksimum	3474939	56	1000

zamiana miast 40%

Okazuje się, że wartość ta jest również najlepsza spośród dotychczas badanych szans na mutację dla ruletki rankingowej, gdyż otrzymane średnia i mediana są z dotychczas otrzymanych najniższe. Policzmy zatem jeszcze wyniki dla 40% szans na mutację INVER-OVER w celu upewnienia się, czy trend wyników będzie podobny do tego z selekcji turniejowej:

		Czas	
Na alranamimantu	1010	wykonania	4613589
Nr eksperymentu	1010	[ms]	
NT /1	*** *1	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	4545968	57	7
2	3409966	56	2
3	4825865	68	2
4	3657577	55	6
5	5040948	66	6
6	4151627	58	3
7	3666513	58	4
8	4651243	62	2
9	4111278	60	6
10	3630149	56	0
Średnia	4169114	59,6	3,8
Mediana	4131453	58	3,5
Odchylenie			
standardowe	572577,2	4,427189	2,347576
Minimum	3409966	55	0
Maksimum	5040948	68	7

INVER-OVER 40%

Tam wygląda wykres zależności średnich wyników od % szans na mutację dla dwóch badanych operatorów mutacji:

Na podstawie wykresu widać, że operator INVER-OVER radzi sobie zdecydowanie gorzej od zamiany miast dla badanych parametrów, toteż w dalszych eksperymentach użyty zostanie operator zamiany miast z prawdopodobieństwem mutacji 40%, gdyż wartość ta okazała się najlepsza.

Teraz zwiększymy liczbę wykonywanych pokoleń dla wcześniej ustalonych parametrów (liczba osobników = 20, populacja generowana zachłannie) oraz uzyskanego na podstawie poprzednich eksperymentów najlepszego operatora mutacji (zamiana dwóch losowych miast, prawdopodobieństwo mutacji = 40%). Sprawdźmy jak zachowa się algorytm przy warunku stopu 4000 pokoleń:

		Czas	
Nr eksperymentu	1011	wykonania [ms]	8701794
141 eksperymentu	1011	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2437126	43	4000
2	2907732	48	3999
3	2397243	45	3980
4	2334094	39	4000
5	2575052	44	3992
6	2917836	50	4000
7	2497812	46	3974
8	2320659	45	4000
9	2525833	50	3999
10	2395153	44	3993
Średnia	2530854	45,4	3993,7
Mediana	2467469	45	3999
Odchylenie			
standardowe	216746,2	3,339993	9,39326
Minimum	2320659	39	3974
Maksimum	2917836	50	4000

liczba osobników w populacji = 20, liczba pokoleń = 4000

Otrzymane wyniki są znacznie lepsze od tych uzyskanych przy warunku stopu 1000 pokoleń (eksperyment nr 1009). Zmniejszyła się zarówno średnia i mediana dla wyników oraz dla liczby baterii. Średni nr pokolenia (3993,7) wciąż jest bliski warunkowi stopu równemu 4000 pokoleń. W związku z tym zwiększmy liczbę wykonywanych pokoleń do 8000:

		Czas wykonania	
Nr eksperymentu	1014	[ms]	595214
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2086303	41	7939
2	2158280	39	7997
3	2100352	38	8000
4	1767793	33	7994
5	1959551	38	7989
6	2283258	43	8000
7	2198668	41	8000

	8	2063980	37	7994
	9	2112145	41	8000
	10	2087734	39	7998
Średnia		2081806	39	7991,1
Mediana		2094043	39	7997,5
Odchylenie standardowe		139553,2	2,788867	18,66339
Minimum		1767793	33	7989
Maksimum		2283258	43	8000

liczba osobników w populacji = 20, liczba pokoleń = 8000

Sytuacja jest analogiczna, więc zwiększmy liczbę pokoleń do 16000:

		Czas wykonania	
Nr eksperymentu	1018	[ms]	1088415
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1805714	35	9498
2	1828528	33	9304
3	1827350	36	9433
4	1845422	34	10280
5	2397188	42	6998
6	1939856	34	9564
7	1929740	37	9507
8	1799976	33	9596
9	1826340	32	9833
10	2227097	39	6839
Średnia	1942721	35,5	9085,2
Mediana	1836975	34,5	9502,5
Odchylenie		,	
standardowe	204422,3	3,100179	1173,593
Minimum	1799976	32	6839
Maksimum	2397188	42	10280

liczba osobników w populacji = 20, liczba pokoleń = 16000

Wyniki uległy poprawie. Udało się uzyskać wartość wyniku oraz medianę poniżej 2 000 000. Jednak średni nr pokolenia, który wynosi 9085,2 już znacznie odbiega od 16000 wykonywanych pokoleń, co oznacza, że nie ma dalszego sensu kolejne zwiększenie liczby wykonywanych pokoleń.

Teraz sprawdzimy, czy dla warunku stopu 100 pokoleń otrzymamy lepsze rezultaty dla liczby osobników = 40 niż dla = 20 (eksperyment nr 1009). wyniki przeprowadzonego już eksperymentu:

		Czas	
		wykonania	
Nr eksperymentu	1009	[ms]	2564454
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3471594	53	981

2	2874559	45	987
3	3010510	52	1000
4	3019382	50	891
5	3157839	50	997
6	3474939	55	990
7	3387021	51	999
8	2768551	47	999
9	3459674	53	998
10	3320395	56	997
Średnia	3194446	51,2	983,9
Mediana	3239117	51,5	997
Odchylenie			
standardowe	264221,2	3,392803	33,23803
Minimum	2768551	45	891
Maksimum	3474939	56	1000

liczba osobników w populacji = 20, liczba pokoleń = 1000

A teraz eksperyment z populacją równą 40 osobników:

		Czas	
		wykonania	
Nr eksperymentu	1013	[ms]	5104728
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2810852	46	999
2	3255838	51	1000
3	3189881	51	997
4	3449006	55	993
5	3208651	49	1000
6	3161176	51	1000
7	2805857	49	1000
8	3476341	48	999
9	3056389	48	1000
10	3479720	57	1000
Średnia	3189371	50,5	998,8
Mediana	3199266	50	1000
Odchylenie			
standardowe	246687,7	3,341656	2,250926
Minimum	2805857	48	993
Maksimum	3479720	57	1000

liczba osobników w populacji = 40, liczba pokoleń = 1000

Wyniki dla obu przypadków są zbliżone, nieznacznie wygrywa większa liczba pokoleń. Teraz porównamy jak te dwa rozmiary populacji zachowują się dla maksymalnej liczby pokoleń, w jakiej uzyskuje się najlepszego osobnika. Dla populacji = 20 osobników znaleźliśmy już tą liczbę pokoleń (eksperyment nr 1018), dla populacji = 40 będziemy jej dopiero szukać. Zacznijmy od 4000 pokoleń:

Nr eksperymentu	1015	Czas	605946
1 ti eksperymenta	1015	Czus	005710

		wykonania [ms]	
N /1	*** '1	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1982182	35	4000
2	2275793	42	4000
3	2152972	39	3773
4	2301961	42	3998
5	2195269	39	3999
6	3058125	54	3728
7	2032657	38	4000
8	1850091	35	3996
9	2330105	40	3915
10	2284506	43	3629
Średnia	2246366	40,7	3903,8
Mediana	2235531	39,5	3997
Odchylenie			
standardowe	325782,6	5,417051	140,5764
Minimum	1850091	35	3629
Maksimum	3058125	54	4000

liczba osobników w populacji = 40, liczba pokoleń = 4000

Wyniki oczywiście uległy poprawie względem eksperymentu nr 1013, ale średnia liczba pokoleń i jej mediana są wciąż bliskie liczbie wykonywanych pokoleń. Zwiększmy więc liczbę pokoleń do 8000:

		Czas wykonania	
Nr eksperymentu	1016	[ms]	1098180
1 3		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1941266	37	4990
2	1816939	37	5823
3	2189643	40	4881
4	2040585	38	4642
5	2166134	36	4754
6	1928186	34	4944
7	1855875	34	4573
8	1775110	37	4443
9	1965410	35	5231
10	1934294	37	5544
Średnia	1961344	36,5	4982,5
Mediana	1937780	37	4912,5
Odchylenie			
standardowe	137133	1,840894	437,4444
Minimum	1775110	34	4443
Maksimum	2189643	40	5823

liczba osobników w populacji = 40, liczba pokoleń = 8000

Tym razem udało nam się dojść do granicznej liczby pokoleń - jej średnia wartość wynosi 4982,5. Porównamy teraz wyniki z populacją równą 20 osobników.

Wyniki uzyskane dla 20 osobników są zbliżone do tych dla 40 osobników, jednak są od nich nieznacznie lepsze. Z tego wynika, że niekoniecznie im większa populacji tym lepsze otrzymamy wyniki. Sprawdźmy jeszcze co się stanie dla populacji = 80 osobników i jej granicznej liczby pokoleń:

		Czas wykonania	
Nr eksperymentu	1017	[ms]	3347949
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3238692	46	576
2	3712258	58	0
3	3418196	48	498
4	3670220	59	0
5	3290154	48	15
6	3503152	56	1
7	4211337	64	0
8	3439932	56	7
9	3628294	58	0
10	3337243	56	0
Średnia	3544948	54,9	109,7
Mediana	3471542	56	0,5
Odchylenie			
standardowe	283901,9	5,743595	226,0074
Minimum	3290154	48	0
Maksimum	4211337	64	498

liczba osobników w populacji = 80, liczba pokoleń = 8000

Okazuje się, że dla tak dużej populacji wyniki są niemal dwukrotnie gorsze, a średni nr pokolenia, w którym uzyskujemy najlepszego osobnika wynosi zaledwie 109,7. Zdaje się to potwierdzać tezę, że dla operatora PMX i ruletki rankingowej nie sprawdza się reguła, że im większą populację mamy tym lepsze otrzymamy wyniki.

Najlepsze wyniki dla operatora krzyżowania PMX oraz selekcji ruletki rankingowej dla Grecji udało się uzyskać dla eksperymentu nr 1018.

12.Grecja - cięcie i łączenie + selekcja turniejowa

Tak jak w dwóch poprzednich punktach najpierw zostanie ustalona optymalna wartość mutacji. W przypadku reprezentacji porządkowej i operatora krzyżowania przez cięcie i łączenie jedynym testowanym rodzajem mutacji będzie zamiana jednej współrzędnej w reprezentacji porządkowej.

Działanie algorytmu testowane będzie na następujących parametrach:

- liczba osobników w populacji: 20
- sposób generowania populacji: zachłanny
- warunek stopu: 1000 pokoleń.

Zacznijmy od braku mutacji:

		Czas	
	•	wykonania	4440400
Nr eksperymentu	2000	[ms]	1142189
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3621423	57	8
2	3936237	59	9
3	3841667	55	3
4	3883671	57	6
5	3831159	61	1
6	3783738	55	9
7	3812488	57	4
8	4537758	67	0
9	4694084	64	1
10	3987255	57	13
Średnia	3992948	58,9	5,4
Mediana	3862669	57	5
Odchylenie			
standardowe	344323,5	3,95671	4,299871
Minimum	3621423	55	0
Maksimum	4694084	67	13

prawdopodobieństwo mutacji = 0%

Tak jak dla operatora PMX i dwóch testowanych dotychczas rodzajów selekcji wydaje się, że brak mutacji źle wpływa na wyniki, gdyż średni nr pokolenia, w którym uzyskano najlepszego osobnika wynosi tylko 13, co jest bardzo małą liczbą w stosunku do 1000 wykonywanych pokoleń. Dodanie mutacji z szansą wystąpienia 5% prawdopodobnie poprawi wyniki:

		Czas	
		wykonania	
Nr eksperymentu	2001	[ms]	1166432
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3153659	50	917
2	3463610	49	925
3	3218009	49	878
4	3003498	45	985
5	3211251	47	996
6	3293037	53	999
7	3104799	48	997
8	3041043	48	948
9	3525634	50	962
10	3557924	54	323
Średnia	3257247	49,3	893
Mediana	3214630	49	955
Odchylenie			
standardowe	198624,1	2,668749	204,2972
Minimum	3003498	45	323
Maksimum	3557924	54	999

prawdopodobieństwo mutacji = 5%

Zgodnie z oczekiwaniami wyniki z algorytmem wykorzystującym mutację są lepsze, wzrosła również średnia nr pokolenia, w którym otrzymano najlepszego osobnika. Także średnia liczba baterii się zmniejszyła. Spróbujmy teraz sprawdzić inne prawdopodobieństwo mutacji, tym razem 30%:

		Czas	
		wykonania	
Nr eksperymentu	2002	[ms]	1246331
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3112084	48	990
2	3196993	48	970
3	2892422	46	975
4	3248344	49	741
5	2975246	43	983
6	3053091	47	982
7	2926053	44	985
8	3156974	49	555
9	3193692	49	993
10	3175886	46	992
Średnia	3093078	46,9	916,6
Mediana	3134529	47,5	982,5
Odchylenie			
standardowe	124710,3	2,13177	148,3713
Minimum	2892422	43	555
Maksimum	3248344	49	993

prawdopodobieństwo mutacji = 30%

Znów odnotowano poprawę wyników. Zwiększmy więc mutację do 50%:

		Czas	
		wykonania	
Nr eksperymentu	2003	[ms]	1250562
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3405697	48	188
2	3522157	48	589
3	2873407	44	501
4	3130540	44	291
5	3316475	49	599
6	3175670	47	467
7	3396197	48	95
8	3402046	48	380
9	3487174	58	1
10	3441721	47	345
Średnia	3315108	48,1	345,6
Mediana	3399121	48	362,5

Odchylenie standardowe	199849	3,871549	203,5503
Minimum	2873407	44	1
Maksimum	3522157	58	599

prawdopodobieństwo mutacji = 50%

Tym razem wyniki się pogorszyły, co prawdopodobnie oznacza, że optymalna wartość mutacji wynosi mniej niż 50% i będzie gdzieś w przedziale od 5% do 50%, ale bliżej 30%, gdyż dla tego prawdopodobieństwa mutacji otrzymaliśmy najlepszy jak dotąd wynik. Ustawmy teraz mutację na 40%:

		Czas	
	2004	wykonania	10505.0
Nr eksperymentu	2004	[ms]	1250562
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3453149	49	845
2	2943854	43	783
3	3089414	48	952
4	3087362	43	994
5	3414497	48	997
6	3271933	48	612
7	2923723	46	965
8	3266617	47	288
9	3053582	44	969
10	3291734	47	764
Średnia	3179586	46,3	816,9
Mediana	3178015	47	898,5
Odchylenie			
standardowe	186263,9	2,213594	224,4937
Minimum	2923723	43	288
Maksimum	3453149	49	997

prawdopodobieństwo mutacji = 40%

Wyniki są lepsze niż dla 50%, ale gorsze niż dla 30%, więc tym razem spróbujmy ustawić mutację < 30%, a konkretnie 20%:

		Czec	
		Czas	
		wykonania	
Nr eksperymentu	2005	[ms]	1131769
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3251907	51	316
2	3273211	47	998
3	3272529	51	974
4	3123056	49	968
5	3201693	49	989
6	2787208	44	975
7	3457132	49	297
8	3296313	48	997

9	3105880	48	721
10	3265215	49	982
Średnia	3203414	48,5	821,7
Mediana	3258561	49	974,5
Odchylenie			
standardowe	175759,6	2,013841	283,7801
Minimum	2787208	44	297
Maksimum	3457132	51	998

prawdopodobieństwo mutacji = 20%

Tutaj również otrzymaliśmy wyniki gorsze od tych z szansą mutacji 30%. Spróbujmy więc przetestować prawdopodobieństwa mutacji bliższe 30%, a mianowicie 25% i 35%:

		Czas	
		wykonania	
Nr eksperymentu	2006	[ms]	1259566
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3361514	48	992
2	3543485	49	998
3	3603517	50	999
4	2872441	46	983
5	3285711	49	980
6	3118858	43	990
7	3592846	49	996
8	3461321	48	989
9	3246517	47	976
10	3252349	47	989
Średnia	3333856	47,6	989,2
Mediana	3323612	48	989,5
Odchylenie			
standardowe	230088,7	2,01108	7,641989
Minimum	2872441	43	976
Maksimum	3603517	50	999

prawdopodobieństwo mutacji = 25%

		Czas wykonania	
Nr eksperymentu	2007	[ms]	1282788
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3237879	47	835
2	3718148	52	984
3	3065523	48	974
4	3127780	46	960
5	3248909	46	990
6	3150134	45	978
7	3140486	46	996
8	3471290	49	417

9	2929714	42	964
10	3143218	46	717
Średnia	3223308	46,7	881,5
Mediana	3146676	46	969
Odchylenie			
standardowe	222629,8	2,626785	185,9535
Minimum	2929714	42	417
Maksimum	3718148	52	996

prawdopodobieństwo mutacji = 35%

Uzyskane wyniki wciąż są gorsze od tych otrzymanych dla 30% mutacji. Sprawdźmy jeszcze jakie wyniki uzyskamy dla bardzo małej mutacji, wynoszącej 2%. Oczekiwane jest, że będą lepsze od tych z 0% szans na mutację, ale gorsze od 5% szans na mutację:

		Czas	
NI - 1	2000	wykonania	1140277
Nr eksperymentu	2008	[ms]	1148377
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3604321	52	981
2	3673445	55	889
3	3258377	50	980
4	3812269	56	277
5	3420407	52	957
6	3836326	54	995
7	3748716	57	996
8	4039886	53	998
9	3668540	53	971
10	3238998	49	915
Średnia	3630129	53,1	895,9
Mediana	3670993	53	975,5
Odchylenie			
standardowe	257518,1	2,514403	220,4548
Minimum	3238998	49	277
Maksimum	4039886	57	998

prawdopodobieństwo mutacji = 2%

Uzyskane wyniki są zgodne z oczekiwaniami. Tak prezentuje się wykres zależności średnich wyników od prawdopodobieństwa mutacji dla testowanego operatora mutacji przez zamianę jednej losowej współrzędnej w reprezentacji porządkowej:

Wobec tego przy następnych eksperymentach wykorzystywana będzie mutacja z szansą wystąpienia 30%.

Następnym krokiem będzie zwiększenie liczby pokoleń dla populacji = 20 osobników przy wykorzystaniu znalezionej najlepszej szansy na mutację (30%) oraz niezmienionych pozostałych parametrach (generowanie zachłanne):

		Czas	
		wykonania	
Nr eksperymentu	2009	[ms]	2304762
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2818838	44	1943
2	3056210	47	1989
3	2875377	44	1885
4	3082995	45	1797
5	2839500	45	1947
6	3236097	47	1945
7	3136845	45	1990
8	3243482	47	1973
9	2639059	41	1788
10	3376859	49	1977
Średnia	3030526	45,4	1923,4
Mediana	3069602	45	1946
Odchylenie			
standardowe	231154,8	2,221111	75,47214
Minimum	2639059	41	1788
Maksimum	3376859	49	1990

liczba osobników w populacji = 20, liczba pokoleń = 2000

Z otrzymanych danych wynika, że osiągnięte rezultaty są nieco lepsze niż w przypadku 1000 pokoleń. Średnia wartość nr pokolenia z otrzymanym najlepszym osobnikiem jest bliska wykonywanej liczbie pokoleń, więc zwiększymy ja kolejny raz, tym razem do 4000:

		Czas	
		wykonania	
Nr eksperymentu	2011	[ms]	4771164
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2794625	43	2556
2	2958506	44	3993
3	2751513	43	3904
4	2971439	42	3984
5	2883632	42	3972
6	3197173	48	3995
7	2963752	44	3933
8	3041186	46	3996
9	2850829	43	3993
10	3495908	47	984
Średnia	2990856	44,2	3531
Mediana	2961129	43,5	3978
Odchylenie			
standardowe	218386,1	2,097618	999,8148
Minimum	2751513	42	984
Maksimum	3495908	48	3996

liczba osobników w populacji = 20, liczba pokoleń = 4000

Sytuacja jest analogiczna jak w poprzednim przypadku, wyniki się poprawiły, średni nr pokolenia jest bliski 4000, więc zwiększamy liczbę pokoleń do 8000:

		Czas wykonania	
Nr eksperymentu	2013	[ms]	9239041
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3070286	44	2675
2	2563118	43	3157
3	2646375	42	2859
4	3156999	44	1967
5	3083785	47	3136
6	3188309	45	2742
7	2903495	42	2142
8	3074231	46	2695
9	2854926	44	2793
10	2979450	46	2757
Średnia	2952097	44,3	2692,3
Mediana	3024868	44	2749,5
Odchylenie			
standardowe	211168,8	1,702939	378,0944
Minimum	2563118	42	1967
Maksimum	3188309	47	3157

liczba osobników w populacji = 20, liczba pokoleń = 8000

Wyniki nieznacznie się poprawiły.

Teraz sprawdzimy jak wyniki otrzymane dla populacji = 20 i liczby pokoleń = 2000 (20x2000=40000) wypadają na tle populacji = 40 i liczby pokoleń = 1000 (40x1000=40000). W obu przypadkach łączna liczba osobników przewijających się przez algorytm jest taka sama. Dla pierwszego przypadku mamy już wyniki (eksperyment nr 2009). Teraz policzmy wyniki dla drugiego:

		Czas wykonania	
Nr eksperymentu	2010	[ms]	2798135
1 1 1		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2806610	45	998
2	2881069	41	930
3	3150001	48	982
4	3267423	45	859
5	3156358	43	1000
6	3019049	44	996
7	3066134	44	673
8	3419824	49	943
9	2966765	43	990
10	2908022	41	995
Średnia	3064126	44,3	936,6
Mediana	3042592	44	986
Odchylenie			
standardowe	188396,7	2,626785	102,8658
Minimum	2806610	41	673
Maksimum	3419824	49	1000

liczba osobników w populacji = 40, liczba pokoleń = 1000

W obu przypadka wyniki są do siebie bardzo zbliżone. Zobaczmy, czy ten trend sie utrzyma, gdy dla każdego z tych przypadków podwoimy liczbę wykonywanych pokoleń. Pierwsza część jest już obliczona (eksperyment 2011), teraz pora na drugą:

		Czas wykonania	
Nr eksperymentu	2012	[ms]	5012504
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2873631	44	1999
2	2965092	44	1933
3	2962868	44	1975
4	2667954	40	1989
5	2774186	42	1995
6	3136844	48	1996
7	2835855	43	1996
8	2773358	42	1857
9	3055909	45	1998
10	3027173	45	1999
Średnia	2907287	43,7	1973,7
Mediana	2918250	44	1995,5

Odchylenie standardowe	147104,2	2,162817	45,74094
Minimum	2667954	40	1857
Maksimum	3136844	48	1999

liczba osobników w populacji = 40, liczba pokoleń = 2000

Znów wyniki są mniej więcej na tym samym poziomie. Trochę lepiej wypadł jednak algorytm z populacją = 40 osobników. Przeprowadźmy jeszcze jedno porównanie, kolejny raz podwajając liczby pokoleń. Dla liczby osobników = 20 i liczby pokoleń = 8000 wyniki zostały już obliczone w eksperymencie nr 2013. Policzmy teraz wyniki dla 40 osobników i 4000 pokoleń:

		Czas	
Nr eksperymentu	2014	wykonania [ms]	14394996
1 tr exsperymenta	2014	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3278970	45	1937
2	2854310	41	1890
3	2961797	48	1944
4	2850966	45	1849
5	2624959	43	2385
6	2769626	44	1883
7	3000517	44	1826
8	3282602	49	1502
9	2726971	43	2066
10	2844921	41	1860
Średnia	2919564	44,3	1914,2
Mediana	2852638	44	1886,5
Odchylenie			·
standardowe	218633,8	2,626785	219,2258
Minimum	2624959	41	1502
Maksimum	3282602	49	2385

liczba osobników w populacji = 40, liczba pokoleń = 4000

Znów wyniki dla obu przypadków są bardzo podobne.

Teraz wybierzmy ten eksperyment, który dał nam najlepsze rezultaty dla testowanego operatora krzyżowania i selekcji. Jest to eksperyment nr 2014, a więc ostatni z przeprowadzonych eksperymentów.

13. Grecja - cięcie i łączenie + selekcja ruletka rankingowa

Pierwszym krokiem będzie przetestowanie wpływu prawdopodobieństwa mutacji na działanie algorytmu.

Działanie algorytmu testowane będzie na następujących parametrach:

- liczba osobników w populacji: 20
- sposób generowania populacji: zachłanny

warunek stopu: 1000 pokoleń.

Najpierw obliczymy wyniki przy zerowej szansie na mutację:

Nr eksperymentu	3000	Czas	1020780
-----------------	------	------	---------

		wykonania	
		[ms]	
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3092165	47	27
2	3633134	59	0
3	3753690	58	19
4	4067863	58	9
5	3583321	56	9
6	3541388	57	3
7	4037115	59	21
8	4745172	64	11
9	3404252	57	3
10	3293558	51	14
Średnia	3715166	56,6	11,6
Mediana	3608228	57,5	10
Odchylenie			
standardowe	472264,6	4,64758	8,707596
Minimum	3092165	47	0
Maksimum	4745172	64	27

prawdopodobieństwo mutacji = 0%

Podobnie jak w trzech poprzednich przypadkach, najlepszego osobnika otrzymujemy po bardzo małej liczbie pokoleń (średnio 11,6) w stosunku do wykonywanych 1000. Teraz dodamy 5% mutację przez zamianę jednej współrzędnej w reprezentacji porządkowej:

		Czas	
		wykonania	
Nr eksperymentu	3001	[ms]	1078546
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3321706	49	996
2	3343657	50	959
3	3603141	53	940
4	3388226	53	990
5	3141604	48	989
6	3074667	50	995
7	3809122	54	1000
8	3356388	49	997
9	3266740	49	965
10	2808141	46	990
Średnia	3311339	50,1	982,1
Mediana	3332681	49,5	990
Odchylenie			
standardowe	275287,7	2,514403	20,20149
Minimum	2808141	46	940
Maksimum	3809122	54	1000

prawdopodobieństwo mutacji = 5%

Jak widać wyniki poprawiły się średnio o około 400 000. Także średnia liczba pokoleń, w których otrzymujemy najlepszego osobnika zwiększyła sie do 982,1 i jest już bliska wykonywanemu 1000 pokoleń, co daje nadzieję, że przy dalszym zwiększeniu liczby pokoleń wyniki będą jeszcze lepsze. Teraz jednak zostaną przetestowane inne wartości prawdopodobieństwa wystąpienia mutacji. Kolejną wartością będzie 30%:

		Czas wykonania	
Nr eksperymentu	3002	[ms]	1066974
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3015438	46	997
2	2874853	48	967
3	3285740	48	991
4	3199354	47	994
5	2925108	44	944
6	3332871	47	740
7	2870777	44	946
8	3537271	49	948
9	3652271	51	996
10	3353364	50	863
Średnia	3204705	47,4	938,6
Mediana	3242547	47,5	957,5
Odchylenie		,	,
standardowe	276956,5	2,319004	80,73028
Minimum	2870777	44	740
Maksimum	3652271	51	997

prawdopodobieństwo mutacji = 30%

Wyniki uległy poprawie względem 5% mutacji. Spróbujmy teraz zwiększyć mutację do 50%, gdyż być może wyniki znów się poprawią:

		Czas	
		wykonania	
Nr eksperymentu	3003	[ms]	1082274
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3218629	47	544
2	2938558	46	214
3	3616022	50	68
4	3819325	51	446
5	3547596	50	217
6	3473199	49	161
7	3317445	48	511
8	3462432	49	381
9	3343437	49	688
10	3391887	47	158
Średnia	3412853	48,6	338,8
Mediana	3427159	49	299

Odchylenie standardowe	237531,8	1,577621	204,1289
Minimum	2938558	46	68
Maksimum	3819325	51	688

prawdopodobieństwo mutacji = 50%

Tym razem wyniki się pogorszyły, prawdopodobnie zwiększyliśmy mutację zbyt dużo, zmniejszmy więc szansę na mutację do 40%:

		Czas	
		wykonania	
Nr eksperymentu	3004	[ms]	1066974
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3295010	48	444
2	3228250	48	970
3	3189399	45	902
4	3247306	46	950
5	3048664	44	757
6	3377027	48	961
7	3157896	47	508
8	3322210	46	953
9	3088765	48	973
10	2989083	44	906
Średnia	3194361	46,4	832,4
Mediana	3208824	46,5	928
Odchylenie		,	
standardowe	124573	1,646545	198,7881
Minimum	2989083	44	444
Maksimum	3377027	48	973

prawdopodobieństwo mutacji = 40%

Średnia wartość wyniku poprawiła się nie tylko względem mutacji 50%, ale też względem 30%. Spróbujmy zmniejszyć mutację do 20%:

		Czas wykonania	
Nr eksperymentu	3005	[ms]	1094915
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3257143	49	998
2	3590023	49	999
3	3126921	46	890
4	3325596	50	883
5	3113955	45	919
6	3200424	47	988
7	3113692	50	981
8	3277957	47	989
9	3364527	50	974
10	3023517	46	965
Średnia	3239376	47,9	958,6

Mediana	3228784	48	977,5
Odchylenie			
standardowe	163346,7	1,911951	44,4002
Minimum	3023517	45	883
Maksimum	3590023	50	999

prawdopodobieństwo mutacji = 20%

Wyniki dla 20% są tylko trochę gorsze od tych dla 40% i bardzo zbliżone do tych dla 30%. Teraz jeszcze bardziej zawęzimy zakres mutacji, dokonując obliczeń dla 25% i 35% z nadzieją znalezienia jeszcze lepszych rezultatów:

		Czas	
		wykonania	
Nr eksperymentu	3006	[ms]	1122025
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3050226	45	993
2	2974989	46	958
3	3339466	51	960
4	3404551	47	258
5	3250550	48	958
6	3185398	47	854
7	3121772	45	986
8	3346785	47	983
9	2642890	44	992
10	2907452	46	990
Średnia	3122408	46,6	893,2
Mediana	3153585	46,5	971,5
Odchylenie			
standardowe	235829,2	1,95505	226,9713
Minimum	2642890	44	258
Maksimum	3404551	51	993

prawdopodobieństwo mutacji = 25%

		Czas wykonania	
Nr eksperymentu	3007	[ms]	1117935
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3389728	51	470
2	3064605	47	989
3	3493137	51	999
4	3343693	52	742
5	2943171	45	998
6	2917435	44	907
7	3213805	47	975
8	3212698	47	994
9	3199290	45	749
10	3463369	50	964

Średnia	3224093	47,9	878,7
Mediana	3213251	47	969,5
Odchylenie			
standardowe	202928,6	2,884826	174,5025
Minimum	2917435	44	470

prawdopodobieństwo mutacji = 35%

Dla 25% szans na mutację udało się znaleźć najlepsze dotąd wyniki. Na koniec sprawdzimy jeszcze co dzieje się przy bardzo małej mutacji, a konkretnie 2%:

		Czas	
		wykonania	
Nr eksperymentu	3008	[ms]	1090031
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3087126	50	945
2	3988840	57	982
3	3751252	56	984
4	3824328	54	983
5	3254440	51	995
6	3574778	52	980
7	3312291	49	993
8	3571539	52	915
9	3298692	54	867
10	3406775	56	0
Średnia	3507006	53,1	864,4
Mediana	3489157	53	981
Odchylenie			
standardowe	285329,1	2,726414	306,487
Minimum	3087126	49	0
Maksimum	3988840	57	995

prawdopodobieństwo mutacji = 2%

Wyniki dla 2% mutacji są najgorsze ze wszystkich, nie licząc tych dla zerowej mutacji. Tak prezentuje się wykres zależności średnich wyników od prawdopodobieństwa mutacji:

Jak widać najlepsza wartość została uzyskana dla 25% szans na mutację. Toteż ta wartość będzie wykorzystywana w kolejnych eksperymentach.

Teraz dla populacji = 20 osobników spróbujemy osiągnąć jak najlepsze wyniki. W tym celu będziemy zwiększać liczbę wykonywanych pokoleń aż dojdziemy do granicy, po której nie będziemy już osiągać poprawy rezultatów. Dla ustalonej wartości mutacji (25%) i tych niezmienionych pozostałych parametrach zwiększymy liczbę pokoleń do 2000:

		Czas wykonania	
Nr eksperymentu	3009	[ms]	2093158
1 7		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2786831	43	1958
2	2866759	44	1996
3	3489677	49	1983
4	2964102	45	2000
5	3181515	45	1894
6	2995232	44	1905
7	2988611	46	1966
8	3445810	49	1980
9	3013016	47	1987
10	3382112	48	1762
Średnia	3111366	46	1943,1
Mediana	3004124	45,5	1973
Odchylenie		,	
standardowe	249057,6	2,160247	73,2749
Minimum	2786831	43	1762
Maksimum	3489677	49	2000

liczba osobników w populacji = 20, liczba pokoleń = 2000

Nastąpiła poprawa wyników - zmniejszyły się średnia i mediana wyników oraz liczby baterii. Średni nr pokolenia, w którym uzyskano najlepszego osobnika również się zwiększył (1943,1)

i wciąż jest bliski liczbie wykonywanych pokoleń = 2000. Teraz podwoimy więc liczbę wykonywanych pokoleń:

		Czas wykonania	
Nr eksperymentu	3011	[ms]	4241574
1 3		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3192744	47	3731
2	3096080	46	3968
3	3067294	44	3947
4	3258414	48	3991
5	2916689	43	3993
6	3100596	45	3454
7	2806370	41	4000
8	3018747	46	3973
9	2405890	40	3961
10	2692694	42	3993
Średnia	2955552	44,2	3901,1
Mediana	3043021	44,5	3970,5
Odchylenie		,	Ź
standardowe	258250,4	2,65832	176,0451
Minimum	2405890	40	3454
Maksimum	3258414	48	4000

liczba osobników w populacji = 20, liczba pokoleń = 4000

Średnie wyniki znów uległy poprawie, uzyskano również najlepszą jak dotąd minimalną wartość wyników (czyli najszybciej pokonywaną ścieżkę) równą 2405890 i odpowiadającą jej również najniższą liczbę baterii równą 40. Średni nr pokolenia (3901,1) wciąż jest bliski liczbie wykonywanych pokoleń (4000). Zwiększmy więc liczbę pokoleń do 8000:

		Czas wykonania	
Nr eksperymentu	3013	[ms]	9123062
1 7		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2884025	43	5154
2	2838423	44	3491
3	2939455	44	4117
4	2830146	42	5180
5	2999293	46	4761
6	3217334	47	5219
7	2775277	41	5378
8	2951304	43	4973
9	3003486	42	4848
10	2580184	42	5182
Średnia	2901893	43,4	4830,3
Mediana	2911740	43	5063,5
Odchylenie			
standardowe	167394,2	1,897367	589,7107

Minimum	2580184	41	3491
Maksimum	3217334	47	5378

liczba osobników w populacji = 20, liczba pokoleń = 8000

W tym wypadku osiągnęliśmy średni nr pokolenia (4830,3) znacząco mniejszy od liczby wykonywanych pokoleń (8000). Nie ma więc sensu dalsze zwiększanie liczby pokoleń. Otrzymana średnia wyników oraz ich mediana uległy poprawie.

Teraz sprawdzimy jak algorytm radzi sobie dla populacji równej 40 osobników i porównamy z populacją równą 20 osobników. Będziemy porównywać na podstawie tej samej liczby osobników, jacy przewinęli się w całym czasie działania algorytmu (np. populację = 20 osobników i 2000 pokoleń porównamy z populacją = 40 osobników i liczbą pokoleń = 1000). Obliczenia dla populacji = 20 zostały już wcześniej wykonane przy okazji poszukiwania granicznej liczby pokoleń, dla której otrzymujemy najlepszego osobnika. Zacznijmy więc od obliczeń dla populacji = 40 i liczby pokoleń = 1000:

		Czas wykonania	
Nr eksperymentu	3010	[ms]	2297017
1 1 1		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2860720	44	1000
2	3149132	48	996
3	3439771	49	769
4	2731178	40	991
5	3040237	43	988
6	2935374	43	978
7	2961577	43	979
8	3053208	45	997
9	3206653	47	986
10	3145212	45	1000
Średnia	3052306	44,7	968,4
Mediana	3046722	44,5	989,5
Odchylenie		,	
standardowe	198281,2	2,710064	70,51115
Minimum	2731178	40	769
Maksimum	3439771	49	1000

liczba osobników w populacji = 40, liczba pokoleń = 1000

Wyniki są lepsze od tych otrzymanych dla odpowiadającego eksperymentu dla populacji = 20 osobników (eksperyment nr 3009). Średnia zmniejszyła się o 59060. Teraz podwajamy liczbę pokoleń:

Nr eksperymentu	3012	Czas wykonania [ms]	4400452
Nr próby	Wynik	Liczby baterii	Numery pokoleń
1	2895709	47	1983
2	3026929	46	1976

3	2769524	43	1950
4	2834266	46	1995
5	2836008	42	1983
6	2751083	43	1962
7	2746430	40	1971
8	2846357	42	1982
9	2771194	42	1922
10	3063276	44	1670
Średnia	2854078	43,5	1939,4
Mediana	2835137	43	1973,5
Odchylenie			
standardowe	111738	2,223611	96,92403
Minimum	2746430	40	1670
Maksimum	3063276	47	1995

liczba osobników w populacji = 40, liczba pokoleń = 2000

Uzyskane wyniki poprawiły się jeszcze bardziej (porównujemy z eksperymentem nr 3011) niż przy poprzednim porównaniu - tym razem średnia jest mniejsza o 101474. Teraz znowu podwoimy liczbę pokoleń:

		Czas wykonania	
Nr eksperymentu	3014	[ms]	14051167
TH exsperymenta	3011	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2536914	37	3909
2	2587443	38	3962
3	2662638	40	3897
4	2503800	40	3730
5	2655699	40	3961
6	2959654	43	3968
7	2796654	42	3991
8	2765961	44	3812
9	2761435	43	3888
10	3102812	45	3940
Średnia	2733301	41,2	3905,8
Mediana	2712037	41	3924,5
Odchylenie			,
standardowe	187727,6	2,616189	80,69944
Minimum	2503800	37	3730
Maksimum	3102812	45	3991

liczba osobników w populacji = 40, liczba pokoleń = 4000

Tutaj poprawa jest jeszcze większa, gdyż średnia wartość wyniki poprawiła się o 168592 (porównanie z eksperymentem nr 3013). Warto zauważyć, że w tym przypadku wciąż średni nr pokolenia (3905,8) jest bliski liczbie wykonywanych pokoleń (4000). Tak prezentuje się wykres zależności wyników od sumarycznej liczby osobników jaka przewinęła się przez algorytm dla obu testowanych wielkości populacji:

Z wykresu wynika, iż im więcej pokoleń będziemy wykonywać tym różnice przy wcześniej ustalonych parametrach dla obu wielkości populacji będą się zwiększać na korzyść populacji = 40 osobników. Wyniki te różnią się od tych dla cięcia i łączenia i selekcji turniejowej, gdyż tam utrzymywały się na bardzo podobnym poziomie dla obu wielkości populacji.

Wyniki otrzymane w eksperymencie nr 3014 okazały sie najlepsze dla testowanego operatora krzyżowania i selekcji.

14. Grecja - podsumowanie

Porównamy teraz każdą testowaną kombinację krzyżowania i selekcji oraz algorytmu zachłannego dla Grecji, tj.

- algorytm zachłanny
- PMX i selekcja turniejowa
- PMX i selekcja ruletka rankingowa
- cięcie i łączenie i selekcja turniejowa
- cięcie i łączenie i selekcja ruletka rankingowa.

Przypomnijmy sobie wartości eksperymentów, w których uzyskano najlepsze wyniki dla każdego z przypadków:

		Czas wykonania		
Nr eksperymentu	00003	[ms]		78662
		Liczby	Numery	
Nr próby	Wynik	baterii	pokoleń	
1	4295741	64		0
2	3337243	56		0
3	3907098	58		0
4	3506297	58		0
5	4085392	63		0
6	4216053	63		0
7	4086138	63		0

	8 3	611526	58	0
	9 4	540201	67	0
	10 3	337243	56	0
Średnia	3	892293	60,6	0
Mediana	3	996245	60,5	0
Odchylenie standardowe	1	22484,8	3,835507	0
	72	22404,0	3,033307	U
Minimum	3	337243	56	0
Maksimum	4	540201	67	0

algorytm zachłanny

		Czas wykonania	
Nr eksperymentu	0022	[ms]	1367041
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2176067,25	37	3929
2	2053770,707	36	3652
3	2108696,054	36	3409
4	1946862,057	35	4455
5	1993544,985	36	4492
6	2379483,791	40	3236
7	2185286,145	37	3525
8	2321001,892	43	3052
9	2280157,959	36	3984
10	2136627,63	37	4420
Średnia	2158149,847	37,3	3815,4
Mediana	2156347,44	36,5	3790,5
Odchylenie	,	Ź	Ź
standardowe	140235,5452	2,40601099	523,70734
Minimum	1946862,057	35	3052
Maksimum	2379483,791	43	4492

PMX i selekcja turniejowa

		Czas	
		wykonania	
Nr eksperymentu	1018	[ms]	1088415
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1805714	35	9498
2	1828528	33	9304
3	1827350	36	9433
4	1845422	34	10280
5	2397188	42	6998
6	1939856	34	9564
7	1929740	37	9507
8	1799976	33	9596

9	1826340	32	9833
10	2227097	39	6839
Średnia	1942721	35,5	9085,2
Mediana	1836975	34,5	9502,5
Odchylenie			
standardowe	204422,3	3,100179	1173,593
Minimum	1799976	32	6839
Maksimum	2397188	42	10280

PMX i selekcja ruletka rankingowa

		Czas wykonania	
Nr eksperymentu	2014	[ms]	14394996
1		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3278970	45	1937
2	2854310	41	1890
3	2961797	48	1944
4	2850966	45	1849
5	2624959	43	2385
6	2769626	44	1883
7	3000517	44	1826
8	3282602	49	1502
9	2726971	43	2066
10	2844921	41	1860
Średnia	2919564	44,3	1914,2
Mediana	2852638	44	1886,5
Odchylenie			Ź
standardowe	218633,8	2,626785	219,2258
Minimum	2624959	41	1502
Maksimum	3282602	49	2385

cięcie i łączenie i selekcja turniej

		Czas wykonania	
Nr eksperymentu	3014	[ms]	14051167
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2536914	37	3909
2	2587443	38	3962
3	2662638	40	3897
4	2503800	40	3730
5	2655699	40	3961
6	2959654	43	3968
7	2796654	42	3991
8	2765961	44	3812
9	2761435	43	3888

10	3102812	45	3940
Średnia	2733301	41,2	3905,8
Mediana	2712037	41	3924,5
Odchylenie			
standardowe	187727,6	2,616189	80,69944
Minimum	2503800	37	3730
Maksimum	3102812	45	3991

cięcie i łączenie i selekcja ruletka rankingowa

Zestawmy te wyniki na wykresach słupkowych:

Najlepszy średni wynik udało się uzyskać dla kombinacji PMX+ranking. Widać tutaj również przewagę krzyżowania PMX nad cięciem i łączeniem oraz selekcji ruletki rankingowej nad cięciem i łączeniem w reprezentacji porządkowej. Wszystkie kombinacje rekombinacji i selekcji okazały się lepsze od algorytmu zachłannego.

Teraz zobaczmy wykres średniej liczby baterii:

Na podstawie dwóch poprzednich wykresów widać, iż im lepszy (czyli mniejszy) średni wynik uzyskujemy, tym uzyskujemy mniejszą średnią liczbę baterii.

Teraz ostatni wykres przedstawiający czasy wykonania poszczególnych algorytmów:

Tutaj widać zdecydowaną przewagę krzyżowania PMX nad cięciem i łączeniem. Również ruletka rankingowa liczy się krócej niż selekcja turniejowa. Na podstawie pierwszego i ostatniego wykresu widać zależność, że im lepszy średni wynik uzyskaliśmy w eksperymencie, tym czas wykonania tego eksperymentu był krótszy (wykluczając algorytm zachłanny). Więc zdecydowanie najlepszą z dotychczas testowanych kombinacji rekombinacji i selekcji dla Grecji jest krzyżowanie PMX i selekcja ruletka rankingowa. Oczywiście czas wykonania dla algorytmu zachłannego był bezsprzecznie najkrótszy, jednak uzyskaliśmy nim zdecydowanie najgorsze wyniki.

15. Eksperymenty dla Szwecji

W przypadku Szwecji każdy z eksperymentów będzie powtarzany 10 razy.

Zobaczmy jak prezentują się wyniki uzyskane algorytmem zachłannym dla Szwecji dla wygenerowania jednego osobnika dla każdego powtórzenia (pod warunkiem, że jego ścieżka jest przejezdna dla liczby baterii < 100, w innym przypadku generowany jest nowy osobnik):

		Czas wykonania		
Nr eksperymentu	00000	[ms]		6977
		Liczby	Numery	
Nr próby	Wynik	baterii	pokoleń	
1	57421161,54	92		0
2	20983202,58	78		0
3	22052570,49	78		0
4	18679906,68	77		0
5	20315363,76	78		0
6	30620819,81	85		0
7	19529099,07	78		0
8	96184907,49	95		0

9	20982152,33	78	0
10	20436963,77	78	0
Średnia	32720614,75	81,7	0
Mediana	20982677,46	78	0
Odchylenie			
standardowe	25182763,11	6,65081	0
Minimum	18679906,68	77	0
Maksimum	96184907,49	95	0

Średni wynik jest rzędu kilkudziesięciu milionów. Zwiększmy teraz liczbę osobników algorytmu zachłannego do 20:

		Czas	
		wykonania	
Nr eksperymentu	00001	[ms]	121991
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	13908687,78	70	0
2	14109800,33	70	0
3	14056557,71	70	0
4	14020380,06	70	0
5	18536246,44	77	0
6	18331538,08	77	0
7	18663059,09	77	0
8	13997885,09	70	0
9	18399247,85	77	0
10	15615809,06	73	0
Średnia	15963921	73,1	0
Mediana	14862805	71,5	0
Odchylenie			
standardowe	2223666,7	3,47851	0
Minimum	13908687,78	70	0
Maksimum	18663059,09	77	0

Tym razem średni wynik jest około dwukrotnie mniejszy. Zwiększmy więc teraz liczbę osobników, z których wybieramy najlepszego do 100:

		Czas wykonania	
Nr eksperymentu	00002	[ms]	589226
THE CROPELY THE HEA	00002	Liczby	Numery
Nr próby	Wynik	, baterii	pokoleń
1	13868183,1	70	0
2	13940549,9	70	0
3	14045281	70	0
4	14036705,8	70	0
5	14047161	70	0

6	13945485,1	70	0
7	14009347,6	70	0
8	14040689,8	70	0
9	18361031,9	77	0
10	14045148,9	70	0
Średnia	14433958	70,7	0
Mediana	14038698	70	0
Odchylenie			
standardowe	1381170	2,21359	0
Minimum	13868183,1	70	0
Maksimum	18361031,9	77	0

Średni wynik znów się poprawił, jednak tym razem tylko o około 1,5 mln.

16.Szwecja - PMX + selekcja turniejowa

Najpierw przeprowadzimy porównanie pomiędzy dwoma wielkościami populacji - 10 osobników i 20 osobników. W tym celu sprawdzimy jak każda z tych wielkości populacji radzi sobie przy różnych wartościach i operatorach mutacji, a konkretnie:

- brak mutacji
- 5% szans na mutację i zamiana miast
- 5% szans na mutację i INVER-OVER
- 30% szans na mutację i zamiana miast
- 30% szans na mutację i INVER-OVER
- 50% szans na mutację i zamiana miast
- 50% szans na mutację i INVER-OVER.

Pozostałe parametry są następujące:

- populacja generowana losowo
- warunek stopu: liczba pokoleń = 1000.

Tak prezentują się obliczenia dla populacji = 10:

		Czas	
		wykonania	
Nr eksperymentu	0000	[ms]	7792043
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	20337189,92	78	0
2	18716499,49	77	0
3	15684596,07	73	5
4	20083341,68	79	0
5	18378539,17	77	0
6	12626334,8	67	4
7	18528408,97	77	0
8	20401944,89	78	3
9	20171848,84	79	0
10	19582939,66	78	0

Średnia	18451164,35	76,3	1,2
Mediana	19149719,57	77,5	0
Odchylenie			
standardowe	2492934,319	3,6833	1,98886
Minimum	12626334,8	67	0
	20401944,89	79	

populacja = 10, brak mutacji

		Czas wykonania	
Nr eksperymentu	0001	[ms]	6815911
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	18616718,44	77	0
2	20207317,73	78	934
3	12865991,66	67	3
4	12006843,3	61	991
ū	14036424,6	70	5
6	20228335,49	78	0
7	13278675,56	67	998
8	18356353,66	77	0
g	15343230,4	73	973
10	19477051,24	78	7
Średnia	16441694,21	72,6	391,1
Mediana	16849792,03	75	6
Odchylenie			
standardowe	3258813,676	6,05897	501,958
Minimum	12006843,3	61	0
Maksimum	20228335,49	78	998

populacja = 10, zamiana miast, mutacja = 5%

		Czas wykonania	
		l _ * _	
Nr eksperymentu	0002	[ms]	6827969
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	16581133,97	72	980
2	15153585,43	71	983
3	18354321,86	77	993
4	13269842,05	65	967
5	15687303,5	72	996
6	16365074,01	73	975
7	17859366,05	75	3
8	19874878,11	78	0

	9	20748371,92	78	2
	10	14548544,59	70	302
Średnia		16844242,15	73,1	620,1
Mediana		16473103,99	72,5	971
Odchylenie				
standardowe		2363613,511	4,06749	475,68
Minimum		13269842,05	65	0
Maksimum		20748371,92	78	996

populacja = 10, zamiana miast, mutacja = 30%

		Czas wykonania	
Nr eksperymentu	0003	[ms]	148799
, ,		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	14027185,61	67	1000
2	11933781,14	62	979
3	16222894,07	71	983
4	13099083,87	65	894
5	15803927,12	70	998
6	13190866,18	67	834
7	14309847,28	69	996
8	10675560,74	59	950
9	16644509,54	73	916
10	10944283,33	61	3
Średnia	13685193,9	66,4	855,3
Mediana	13609025,9	67	964,5
Odchylenie			·
standardowe	2119210,18	4,59952	304,362
Minimum	10675560,74	59	3
Maksimum	16644509,54	73	1000

populacja = 10, zamiana miast, mutacja = 50%

Przy operatorze zamiany miast najlepsze wyniki uzyskano przy mutacji 50%. Wyniki dla 5% i 30% są do siebie zbliżone. Najgorzej wypadają jednak wyniki algorytmu pozbawionego mutacji. Pokrywa się to z tym, co udało się zaobserwować dla Grecji - tam też przy braku mutacji wyniki były najgorsze.

Teraz zobaczmy jak radzi sobie operator INVER-OVER:

		Czas	
		wykonania	
Nr eksperymentu	0004	[ms]	139209
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	14824676,79	71	1
2	16150655,74	71	946

Ĭ	Ì	i	i
3	13517770,87	69	881
4	15869223,47	71	879
5	18240241,84	75	885
6	15096581,53	72	0
7	15671876,8	73	652
8	18286143,77	77	800
g	13697464,79	68	490
10	14066609,16	67	775
Średnia	15542124,48	71,4	630,9
Mediana	15384229,16	71	787,5
Odchylenie			
standardowe	1689667,323	3,06232	357,837
Minimum	13517770,87	67	0
Maksimum	18286143,77	77	946

populacja = 10, INVER-OVER, mutacja = 5%

		Czas wykonania	
Nr eksperymentu	0005	[ms]	117285
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	12232078,05	62	128
2	12312298,6	59	221
3	12706383,13	64	296
4	12837973,26	59	263
5	14022282,67	67	102
6	15416891,63	67	149
7	13513292,97	64	152
8	12654785,92	62	202
9	11965663,52	62	19
10	12636348,29	64	186
Średnia	13029799,8	63	171,8
Mediana	12680584,52	63	169
Odchylenie	,		
standardowe	1034804,573	2,78887	80,5037
Minimum	11965663,52	59	19
Maksimum	15416891,63	67	296

populacja = 10, INVER-OVER, mutacja = 30%

Nr eksperymentu	0005	Czas wykonania [ms]	148044
The enoperymented	0000		Numery
Nr próby	Wynik	baterii	pokoleń

1	12401204,44	63	51
2	11761829,68	60	50
3	14574330,83	69	46
4	15995866,86	64	146
5	13231605,68	66	4
6	14334334,62	67	49
7	12475210,79	61	64
8	12168028	63	4
9	12163251,69	62	45
10	14201267,43	66	27
Średnia	13330693	64,1	48,6
Mediana	12853408,2	63,5	47,5
Odchylenie			
standardowe	1382294,45	2,84605	39,7162
Minimum	11761829,68	60	4
Maksimum	15995866,86	69	146

populacja = 10, INVER-OVER, mutacja = 50%

Tak prezentuje się wykres zależności średniej liczby pokoleń od prawdopodobieństwa mutacji porównujący te dwa operatory:

Jak widać dla wielkości populacji = 10 osobników operator INVER-OVER wypada lepiej pod względem wartości średniej uzyskanych wyników. Jednak zobaczmy jak wygląda wykres zależności średniego nr pokolenia z najlepszym osobnikiem do prawdopodobieństwa mutacji:

W tym wypadku zdecydowanie dla większych prawdopodobieństw mutacji (dla których otrzymano lepsze średnie wyniki) lepiej wypada operator zamiany miast. Oznaczać to może, że gdybyśmy zwiększyli liczbę wykonywanych pokoleń, to średnie wyniki dla zamiany miast byłyby lepsze od wyników dla INVER-OVER, w którym nr pokolenia z najlepszym osobnikiem jest stosunkowo mały w porównaniu z liczbą wykonywanych pokoleń = 1000.

Teraz przejdźmy do populacji = 20 osobników. Wykonane zostaną analogiczne eksperymenty. Na początek eksperyment przy zerowym prawdopodobieństwie mutacji:

		Czas wykonania	
Nr eksperymentu	0007	[ms]	298653
. ,		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	14069943,23	67	4
2	18160040,05	76	2
3	14065005,26	70	0
4	19519483,14	78	21
5	14067023,5	70	21
6	14033386,8	70	1
7	18585510,2	77	0
8	19545897,1	78	0
9	12806571,9	67	2
10	15294634,66	69	7
Średnia	16014749,59	72,2	5,8
Mediana	14682288,95	70	2
Odchylenie			
standardowe	2626307,526	4,51664	8,29726
Minimum	12806571,9	67	0
Maksimum	19545897,1	78	21

populacja = 20, brak mutacji

Wyniki wypadają lepiej w porównaniu z populacją 10 osobników (eksperyment nr 0000) dla braku mutacji. Teraz przejdźmy do zamiany miast:

Nr eksperymentu	0008	Czas wykonania [ms]	302868
, ,		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	18352280,56	77	996
2	13027452,3	68	990
3	13955001,62	70	0
4	10239065,05	58	994
5	12864490,78	64	9
6	15631682	73	0
7	11357321,37	62	995
8	13793021,75	69	6
9	14975519,78	72	0
10	13831164,7	67	8
Średnia	13802699,99	68	399,8
Mediana	13812093,23	68,5	8,5
Odchylenie			
standardowe	2251026,446	5,57773	511,203
Minimum	10239065,05	58	0
Maksimum	18352280,56	77	996

populacja = 20, zamiana miast, mutacja = 5%

		Czas wykonania	
Nr eksperymentu	0009	[ms]	272339
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	12713128,45	66	998
2	12537099,77	66	997
3	15404309,56	72	999
4	14266649,38	68	1000
5	13133525,5	67	995
6	12138368,46	66	1000
7	13348287,42	66	1000
8	14881497,93	68	9
9	12569970,06	62	997
10	11708475,77	62	995
Średnia	13270131,23	66,3	899
Mediana	12923326,98	66	997,5
Odchylenie			
standardowe	1212275,425	2,90784	312,72
Minimum	11708475,77	62	9

		Czas wykonania	
Nr eksperymentu	0010	[ms]	235091
1 /		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	11573203,78	62	1000
2	13309513,67	69	998
3	11490797,24	60	999
4	11764415,23	62	979
5	10946347,85	59	1000
6	14784485,94	72	968
7	14061487,91	70	0
8	13262136,39	65	997
9	12289660,93	64	1000
10	10337866,58	59	998
Średnia	12381991,6	64,2	893,9
Mediana	12027038,1	63	998
Odchylenie			
standardowe	1426162,28	4,70933	314,274
Minimum	10337866,58	59	0
Maksimum	14784485,94	72	1000

populacja = 20, zamiana miast, mutacja = 50%

Na podstawie dotychczasowych obliczeń można wywnioskować, że dla populacji = 20 osobników i mutacji operatora zamiany miast wraz szans na mutację wyniki ulegają poprawie. Zobaczmy jak rzecz ma się z operatorem INVER-OVER:

		Czas wykonania	
Nr eksperymentu	0011	[ms]	247087
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	10870589,92	59	951
2	13499471,09	65	984
3	15746382,21	71	5
4	12806871,85	65	914
5	12924597,58	65	987
6	11519533,65	61	994
7	13805681,31	70	913
8	10541384,44	60	990
9	12192366,4	63	939
10	13154196,24	66	4
Średnia	12706107,47	64,5	768,1

Mediana	12865734,72	65	945
Odchylenie			
standardowe	1529977,184	3,95109	403,583
Minimum	10541384,44	59	4
Maksimum	15746382,21	71	994

populacja = 20, INVER-OVER , mutacja = 5%

		Czas wykonania	
Nr eksperymentu	0012	[ms]	294479
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	13528972,15	64	125
2	12060528,76	63	30
3	14074272,07	67	7
4	14003340,91	70	1
5	13745426,99	67	29
6	12525395,68	65	22
7	14467244,38	68	30
8	13872770,76	70	0
9	14418106,03	64	48
10	14028036,34	70	0
Średnia	13672409,41	66,8	29,2
Mediana	13938055,83	67	25,5
Odchylenie	,		
standardowe	786352,7678	2,69979	37,3833
Minimum	12060528,76	63	0
Maksimum	14467244,38	70	125

populacja = 20, INVER-OVER , mutacja = 30%

		Czas wykonania	
Nr eksperymentu	0013	[ms]	395487
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	17707217,07	74	12
2	14100994,74	70	0
3	17026962,99	73	9
4	14026890,35	70	0
5	13789191,52	70	4
6	12874138,19	67	16
7	14326122,28	69	13
8	15412068,59	69	10
9	15709402,22	73	3

10	17547559,42	75	1
Średnia	15252054,7	71	6,8
Mediana	14869095,4	70	6,5
Odchylenie			
standardowe	1704895,17	2,58199	5,90292
Minimum	12874138,19	67	0
Maksimum	17707217,07	75	16

populacja = 20, INVER-OVER, mutacja = 50%

Tutaj rzecz ma się odwrotnie - im większe prawdopodobieństwo mutacji, tym gorsze wyniki. Tak wyglądają wykresy dla populacji = 20, odpowiednio zależności średniej wyników od szans na mutację, a także średniego nr pokolenia z najlepszym osobnikiem od szans na mutację:

Wyniki dla mutacji 50% z zamianą miast są porównywalne z mutacją 5% i INVER-OVER. Są to najlepsze otrzymane wyniki dla populacji = 20 osobników.

Dla obu najlepszych uzyskanych wyników dla populacji = 20 (50% dla zamiany miast oraz 5% dla INVER-OVER) średni nr pokolenia jest bliski liczbie wykonywanych pokoleń.

W przypadku średniego nr pokoleń z najlepszym osobnikiem na podstawie przeprowadzonych obliczeń widać, że dla zamiany miast wraz ze wzrostem szans na mutację zwiększa się ta średnia, natomiast dla INVER-OVER.

Porównajmy teraz wyniki dla obu wielkości populacji (10 i 20 osobników) tworząc wykres zależności średniego wyniku od szans na mutację:

Wyniki uzyskane dla populacji = 20 są lepsza dla tych uzyskanych dla populacji = 10. Toteż w dalszych badaniach będziemy wykorzystywać populację = 20.

Spróbujemy teraz znaleźć dla populacji = 20 wartości mutacji dla obu operatorów, dla których być może otrzymamy jeszcze lepsze wyniki. Zaczniemy od operatora zamiany miast. Jako, że najlepsze wartości uzyskaliśmy dla mutacji = 50%, spróbujmy zacząć od mutacji bliskiej tej wartości, a mianowicie 40%:

		Czas wykonania	
Nr eksperymentu	0014	[ms]	254900
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	12580264,13	67	989
2	11569531,31	64	943
3	13295828,8	66	999
4	10086654,2	58	1000
5	13463760,81	69	992
6	14468166,89	71	994
7	10922973,36	59	996
8	14000921,75	67	997
9	11180758,22	60	992
10	16813674,26	72	1000
Średnia	12838253,37	65,3	990,2
Mediana	12938046,46	66,5	995
Odchylenie			
standardowe	2002113,375	4,94526	16,9954

Minimum	10086654,2	58	943
Maksimum	16813674,26	72	1000

populacja = 20, zamiana miast, mutacja = 40%

Średnia i mediana wyników są nieco gorsze. Zwiększymy więc mutację do 45%:

		Czas wykonania	
Nr eksperymentu	0016	[ms]	256672
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	10270578,96	59	996
2	11822258,26	62	1000
3	11183784,05	60	1000
4	12399989,16	65	542
5	14411065,2	70	990
6	10725173,64	59	981
7	13755084,68	64	1000
8	12362247,71	66	995
9	13529760,11	66	998
10	12505542,48	66	996
Średnia	12296548,42	63,7	949,8
Mediana	12381118,43	64,5	996
Odchylenie			
standardowe	1342261,021	3,62246	143,405
Minimum	10270578,96	59	542
Maksimum	14411065,2	70	1000

populacja = 20, zamiana miast, mutacja = 45%

Wyniki zarówno dla 50% jak i 45% są do siebie bardzo zbliżone. Sprawdźmy jeszcze mutację większą od tych wartości, tj. 55%:

		Czas wykonania	
Nr eksperymentu	0017	[ms]	259320
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	10795729,13	60	883
2	11173602,79	61	999
3	12502828,8	62	1000
4	13404761,95	67	998
5	10653597,16	61	998
6	12274822	66	831
7	9682201,445	57	997
8	13717410,59	69	958
9	11933732	63	4
10	13947471,02	70	1
Średnia	12008615,7	63,6	766,9

Mediana	12104277	62,5	977,5
Odchylenie			
standardowe	1428507,5	4,22164	406,98
Minimum	9682201,445	57	1
Maksimum	13947471,02	70	1000

populacja = 20, zamiana miast, mutacja = 55%

Średnie wartości dla 55% się nieznacznie poprawiły, jednak pogorszył się średni nr pokolenia i jego mediana. Jako że otrzymane wyniki są niemal identyczne do dalszych badać przyjmiemy wartość mutacji = 50%.

Teraz czas na operator INVER-OVER. Jako, że dotychczas najlepsza wartość mutacji wynosiła 5%, to spróbujemy poszukać blisko tej wartości. Zaczniemy od 2%:

7	13127838,4	68	916
7 8	13127838,4 19494048,03	68 78	916 0
	-		
6	12340818,57	64	837
5	13933796,1	70	0
4	18618319,94	77	0
3	13955226,71	70	0
	,		_
2	12142169,49	65	1
1	14265648,97	70	777
Nr próby	Wynik	baterii	Numery pokoleń
Nr eksperymentu	0015	[ms] Liczby	261223
No all and a second	0045	wykonania	264222
		Czas	

populacja = 20, INVER-OVER, mutacja = 2%

Wyniki uległy pogorszeniu, toteż spróbujmy z mutacją >5%, a konkretnie 15%:

		Czas wykonania	
Nr eksperymentu	0017	[ms]	229109
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	11400023,29	62	5
2	13357949,28	67	8
3	13728087,98	68	273
4	12202227,51	64	979
5	11615366,94	61	996

6	11844182,05	62	970
7	12791582,84	64	71
8	14783620,73	66	951
9	13321538,19	65	29
10	13854193,22	66	5
Średnia	12889877,2	64,5	428,7
Mediana	13056560,51	64,5	172
Odchylenie			
standardowe	1107762,17	2,3214	475,914
Minimum	11400023,29	61	5
Maksimum	14783620,73	68	996

populacja = 20, INVER-OVER, mutacja = 15%

Wyniki są porównywalne z mutację = 5%, więc być może wartość optymalna znajduje się w granicach od 5% do 15%. Przetestujmy więc wartość mutacji 10%:

		Czas wykonania	
Nr eksperymentu	0018	[ms]	243263
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	12081677,69	62	993
2	11760699,78	63	35
3	13786833,95	66	871
4	12915482,73	66	953
5	13860209,45	66	497
6	11984937,54	66	974
7	14677839,9	70	924
8	11704242,12	63	906
9	12354510,53	354510,53 66	
10	13899727,63	70	0
Średnia	12902616,1	65,8	690,3
Mediana	12634996,6	66	888,5
Odchylenie			
standardowe	1075030,2	2,69979	383,229
Minimum	11704242,12	62	0
Maksimum	14677839,9	70	993

populacja = 20, INVER-OVER, mutacja = 10%

Wyniki są bardzo do siebie zbliżone, jednak największy średni nr pokolenia uzyskaliśmy przy 5% szans na mutację, więc to tę wartość wykorzystamy w dalszych badaniach.

Teraz sprawdzimy jak najlepsze znalezione wartości mutacji dla obu operatorów (50 % dla zamiany miast, 5% dla INVER-OVER) spiszą się przy zwiększeniu liczby pokoleń. Ustalmy ją na 8000:

		Czas	
		wykonania	
Nr eksperymentu	0020	[ms]	1162584

Nr próby	Wynik		Liczby baterii	Numery pokoleń
	<u> </u>	395496,965	48	7995
	. 1	0215728,66	58	7999
		9557525,88	57	7980
	. 8	888498,874	54	7994
į	8	778745,412	54	7999
	8	799989,293	53	7946
	8	467123,245	51	7793
	3	9697573,15	57	7987
9	9	430516,101	58	7971
10	8	789341,328	55	7999
Średnia	9	102053,891	54,5	7966,3
Mediana	8	8844244,083	54,5	7990,5
Odchylenie				
standardowe		591775,365	3,24037	63,1419
Minimum	8	395496,965	48	7793
Maksimum	1	0215728,66	58	7999

populacja = 20, zamiana miast, mutacja = 50%, liczba pokoleń = 8000

No along a manager	0024	Czas wykonania	1000446
Nr eksperymentu	0021	[ms]	1008446
Nr próby	Wynik	Liczby baterii	Numery pokoleń
1	11164096,46	59	35
2	11898432,21	63	6952
3	11240948,23	59	6991
4	10201759,67	59	5253
5	10386931,3	59	6813
6	12842167,73	67	6034
7	10610312,59	59	6350
8	12325477,56	64	31
g	12307521,92	63	6979
10	10485365,03	59	7233
Średnia	11346301,27	61,1	5267,1
Mediana	11202522,34	59	6581,5
Odchylenie			
standardowe	941792,0857	2,92309	2819,55
Minimum	10201759,67	59	31
Maksimum	12842167,73	67	7233

populacja = 20, INVER-OVER, mutacja = 5%, liczba pokoleń = 8000

Operator zamiany miast wypadł zdecydowanie lepiej pod każdym względem. W dodatku średni nr pokolenia z najlepszym osobnikiem dla INVER-OVER jest zdecydowanie mniejszy od wykonywanej liczby pokoleń, natomiast w przypadku zamiany miast jest bliski tej wartości.

W związku z tym nie ma sensu zwiększać liczby pokoleń dla INVER-OVER, ale warto to zrobić dla zamiany miast. Ustalmy tym razem liczbę pokoleń na 16000:

		Czas wykonania	
Nr eksperymentu	0022	[ms]	1933379
, ,		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	8009565,759	50	13543
2	7712618,384	51	14446
3	8338780,586	54	13888
4	7369090,038	49	14441
5	7414089,52	48	15835
6	7952723,05	52	14905
7	8114287,833	51	15995
8	7756675,499	49	15915
9	7580832,377	50	14149
10	7665079,343	48	14803
Średnia	7791374,239	50,2	14792
Mediana	7734646,942	50	14624,5
Odchylenie			
standardowe	310182,8035	1,8738	871,949
Minimum	7369090,038	48	13543
Maksimum	8338780,586	54	15995

populacja = 20, zamiana miast, mutacja = 50%, liczba pokoleń = 16000

Wyniki oczywiście poprawiły się, uzyskaliśmy średnią i medianę poniżej 8 000 000. Są to jak do tej pory najlepsze wyniki uzyskane dla tego operatora krzyżowania i selekcji.

17.Szwecja- PMX + selekcja ruletka rankingowa

Jako że w poprzednim punkcie okazało się, że lepsze wyniki uzyskano na populacji = 20 osobników, to tym razem ograniczymy się do tej wielkości populacji.

Przeprowadzimy podobny test mutacji jak w poprzednim punkcie dla następujących jej parametrów:

- brak mutacji
- 5% szans na mutację i zamiana miast
- 5% szans na mutację i INVER-OVER
- 30% szans na mutację i zamiana miast
- 30% szans na mutację i INVER-OVER
- 50% szans na mutację i zamiana miast
- 50% szans na mutację i INVER-OVER.

Pozostałe parametry są następujące:

- populacja generowana losowo
- warunek stopu: liczba pokoleń = 1000.

Zaczynamy od zerowej mutacji:

		Czas wykonania	
Nr eksperymentu	1000	[ms]	323053
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	19660196,68	78	16
2	13903143,88	68	53
3	13576969,74	69	1
4	16090038,45	73	16
5	14368538,14	69	2
6	13917601,06	70	35
7	16032300,72	74	2
8	19460714,44	78	0
9	12497419,02	66	31
10	13170485,93	65	11
Średnia	15267740,81	71	16,7
Mediana	14143069,6	69,5	13,5
Odchylenie			
standardowe	2528962,389	4,59468	17,7892
Minimum	12497419,02	65	0
Maksimum	19660196,68	78	53

brak mutacji

Otrzymane wyniki są gorsze niż w przypadku selekcji turniejowej. Dodajmy teraz 5% szans na mutację zarówno dla operatora zamiany miast jak i INVER-OVER:

		Czas wykonania	
Nr eksperymentu	1001	[ms]	324880
, ,		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	14510872,46	77	0
2	18211098,98	78	934
3	20015273,87	67	3
4	16698203,77	61	991
5	12498621,34	70	5
6	13624340,55	78	0
7	13895168,14	67	998
8	17822004,88	77	0
9	14037867,33	73	973
10	16149451,85	78	7
Średnia	15746290,32	72,6	391,1
Mediana	15330162,15	75	6
Odchylenie			
standardowe	2417492,181	6,05897	501,958
Minimum	12498621,34	61	0
Maksimum	20015273,87	78	998

zamiana miast, 5% szans na mutację

		Czas	
		wykonania	
Nr eksperymentu	1004	[ms]	139209
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	12708761,02	64	932
2	12219387,87	63	17
3	10451568,13	59	867
4	13177265,27	65	237
5	11341658,88	60	894
6	13017915,74	68	945
7	14023452,68	70	0
8	12083397,2	63	943
9	12263102,65	64	30
10	12948032,4	67	882
Średnia	12423454,18	64,3	574,7
Mediana	12485931,84	64	874,5
Odchylenie			
standardowe	1004423,733	3,40098	438,977
Minimum	10451568,13	59	0
Maksimum	14023452,68	70	945

INVER-OVER, 5% szans na mutację

Przy tej wartości mutacji lepiej wypada INVER-OVER. Teraz czas na mutację = 30%:

		Czas	
No alexa a mora a satur	1003	wykonania	200602
Nr eksperymentu	1002	[ms]	298602
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	11223264,61	63	1000
2	13396153,74	67	13
3	14011346,83	70	3
4	12253826,99	65	999
5	12288417,09	65	1000
6	11416591,93	64	999
7	11336120,46	62	980
8	10380321,75	59	998
9	14402244,02	70	1000
10	13482816,51	68	991
Średnia	12419110,39	65,3	798,3
Mediana	12271122,04	65	998,5
Odchylenie			
standardowe	1348379,124	3,52924	416,578
Minimum	10380321,75	59	3
Maksimum	14402244,02	70	1000

zamiana miast, 30% szans na mutację

		Czas wykonania	
Nr eksperymentu	1005	[ms]	364528
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	13929633,25	70	0
2	13050330,74	67	6
3	10747927,23	59	25
4	11488899,02	60	34
5	18394583,03	74	49
6	13777865,26	67	6
7	14039254,43	70	0
8	12785750,95	60	35
9	11211337,08	62	12
10	15317584,2	70	4
Średnia	13474316,52	65,9	17,1
Mediana	13414098	67	9
Odchylenie			
standardowe	2245373,314	5,27994	17,3682
Minimum	10747927,23	59	0
Maksimum	18394583,03	74	49

INVER-OVER, 30% szans na mutację

Wyniki dla INVER-OVER uległy pogorszeniu, a dla zamiany miast poprawiły się i są porównywalne z tymi dla operatora INVER-OVER i 5% szans na mutację. Zobaczmy, czy jeśli zwiększymy prawdopodobieństwo mutacji do 50%, to wyniki dla zamiany miast dalej będą się poprawiać, a dla INVER-OVER pogarszać:

		Czas wykonania	
Nr eksperymentu	1003	[ms]	266895
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	12071544,12	61	994
2	19478923,34	78	0
3	12370823,39	67	999
4	14909064,07	70	1000
5	13943129,15	68	998
6	14863239,14	70	7
7	13398342,2	68	1000
8	11081633,16	61	1000
9	11811449,7	63	997
10	13990890,45	68	743
Średnia	13791903,9	67,4	773,8
Mediana	13670735,7	68	997,5

Odchylenie			
standardowe	2385191,01	5,03764	413,721
Minimum	11081633,16	61	0
Maksimum	19478923,34	78	1000

zamiana miast, 50% szans na mutację

		Czas wykonania	
Nr eksperymentu	1006	[ms]	509154
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	18300823,28	77	1
2	15248971,2	70	3
3	13074344,36	61	56
4	12221776,78	63	6
5	18270873,43	73	26
6	13014458,88	63	23
7	14255975,68	67	16
8	13063384,34	67	6
9	15979762,22	69	27
10	14626963,23	67	51
Średnia	14805733,3	67,7	21,5
Mediana	14441469,5	67	19,5
Odchylenie			
standardowe	2161553,68	4,85455	19,3979
Minimum	12221776,78	61	1
Maksimum	18300823,28	77	56

INVER-OVER, 50% szans na mutację

Tylko część przypuszczeń się sprawdziła, w obu przypadkach wyniki się pogorszyły. Jako że dotychczas w obu przypadkach uzyskane najlepsze wyniki są do siebie zbliżone, dla każdego z tych operatorów mutacji spróbujemy znaleźć jeszcze lepszą wartość prawdopodobieństwa mutacji. Zaczniemy od operatora zamiany miast. Najlepsze wyniki uzyskano dla mutacji = 30%, więc poszukamy w granicach tej wartości. Sprawdźmy wartość mutacji nieco większą od 30%, a konkretnie 40%:

		Czas wykonania	
Nin aliana amina amin	1007	•	256205
Nr eksperymentu	1007	[ms]	256295
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	11730869,44	64	995
2	12078574,03	62	998
3	11579108,39	60	999
4	13975603,42	67	1000
5	12277693,89	64	993
6	10802542,46	57	996

7	11995518,22	64	1000
8	12948890,54	65	995
9	17826850,44	74	1
10	12666959,62	66	848
Średnia	12788261,04	64,3	882,5
Mediana	12178133,96	64	995,5
Odchylenie			
standardowe	1965074,554	4,49815	313,256
Minimum	10802542,46	57	1
Maksimum	17826850,44	74	1000

zamiana miast, 40% szans na mutację

Średnia wartość jest niewiele gorsza od tej uzyskanej dla 30% szans na mutację, ale średni nr pokolenia jest za to lepszy. Spróbujmy teraz z mniejszą wartością niż 30%, tzn. 25%:

		Czas wykonania	
Nr eksperymentu	1009	[ms]	281097
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	14613553,05	71	770
2	13825059,11	65	758
3	11803367,05	64	993
4	12725762,74	65	998
5	15725515,09	72	996
6	14008598,33	70	0
7	11669878,22	62	997
8	13306486,49	66	4
9	15606897,59	73	1000
10	19513891,8	77	999
Średnia	14279900,9	68,5	751,5
Mediana	13916828,7	68	994,5
Odchylenie			
standardowe	2308089,89	4,79004	406,344
Minimum	11669878,22	62	0
Maksimum	19513891,8	77	1000

zamiana miast, 25% szans na mutację

Otrzymane rezultaty są gorsze zarówno od tych dla 30% i tych dla 40%. Na koniec sprawdźmy wartość będącą pomiędzy tymi dwiema wartościami, tj. 35%:

		Czas	
		wykonania	
Nr eksperymentu	1011	[ms]	276977
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	11593360,3	64	998
2	14634731,8	70	999

3	13434802,5	67	5
4	13098223,9	67	999
5	15296749,5	68	91
6	10865996,7	60	999
7	12892250	61	766
8	12770316,3	67	7
9	10170091,2	59	998
10	11690752,1	63	991
Średnia	12644727	64,6	685,3
Mediana	12831283	65,5	994,5
Odchylenie			
standardowe	1605663,8	3,74759	455,441
Minimum	10170091,2	59	5
Maksimum	15296749,5	70	999

zamiana miast, 35% szans na mutację

Wyniki są nieco gorsze od tych dla 40%, toteż w dalszych badaniach zostaniemy przy wartości prawdopodobieństwa wystąpienia mutacji równej 40%, gdyż wartość ta dysponuje najlepszym średnim nr pokolenia, w którym uzyskano najlepszego osobnika, przy porównywalnej średniej wyników.

Teraz czas rozpocząć poszukiwania lepszej wartości mutacji dla operatora INVER-OVER. Najlepszą wartość mutacji jaką do tej pory dysponujemy jest 5%, więc poszukiwania rozpoczniemy w granicach tej wartości, zacznijmy od nieco mniejszej mutacji, tj. 2%:

		Czas wykonania	
Nr eksperymentu	1008	[ms]	271180
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	10890010,49	59	916
2	19822637,19	78	999
3	18562797,95	75	1
4	11038749,34	62	858
5	15641467,44	69	19
6	12827583,83	67	1
7	13982310,23	70	0
8	13887240,49	70	0
9	10694721,81	57	917
10	11015988,46	60	764
Średnia	13836350,72	66,7	447,5
Mediana	13357412,16	68	391,5
Odchylenie			
standardowe	3279679,011	7,02456	470,886
Minimum	10694721,81	57	0
Maksimum	19822637,19	78	999

INVER-OVER, 2% szans na mutację

Wyniki pogorszyły się względem tych dla prawdopodobieństwa mutacji = 5%. Wybierzmy teraz mutację większą od tej wartości, a mianowicie 15%:

		Czas wykonania	
Nr eksperymentu	1010	[ms]	223655
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	13173942,28	67	4
2	12282704,92	65	948
3	14047048,16	68	889
4	12834471,25	63	888
5	11081187,41	59	28
6	10984642,66	59	87
7	12044057,27	63	158
8	13598715,76	67	9
9	11680049,36	62	989
10	13526372,27	66	233
Średnia	12525319,1	63,9	423,3
Mediana	12558588,1	64	195,5
Odchylenie			
standardowe	1077568,77	3,24722	441,156
Minimum	10984642,66	59	4
Maksimum	14047048,16	68	989

INVER-OVER, 15% szans na mutację

Średnia wartość wyniku oraz liczby baterii są niewiele większe od tych dla 5% mutacji. Sugeruje to, że trochę zmniejszymy wartość mutacji, to możemy otrzymać wyniki lepsze od tych dla 5%. Ustalmy mutację na 10% szans wystąpienia:

		Czas wykonania	
Nr eksperymentu	1012	[ms]	222300
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	10333004,2	59	959
2	11775744,9	58	926
3	10842687,3	61	907
4	12731588,1	67	989
5	12554228,5	65	867
6	10336462,3	58	778
7	13723769,5	64	26
8	15410856,4	71	26
9	14043095	70	0
10	11402208,5	62	932
Średnia	12315364	63,5	641
Mediana	12164987	63	887

Odchylenie			
standardowe	1697077,6	4,74342	434,11
Minimum	10333004,2	58	0
Maksimum	15410856,4	71	989

INVER-OVER, 10% szans na mutację

Zgodnie z oczekiwaniami znaleźliśmy wartość mutacji, dla której otrzymaliśmy wyniki najlepsze z dotychczas obliczonych. Niepokoi może jednak to, iż średni nr pokolenia (641) z najlepszym osobnikiem znacząco odbiega od liczby wykonywanych pokoleń = 1000. Sugeruje to, iż przy zwiększeniu liczby pokoleń możemy nie otrzymać znacznej poprawy wyników.

Jako że ustaliliśmy najlepsze prawdopodobieństwa mutacji dla obu testowanych operatorów krzyżowania dla warunku stopu = 1000 pokoleń, toteż zwiększymy teraz liczbę pokoleń i zobaczymy jak będą się spisywać oba te operatory. Ustalmy liczbę wykonywanych pokoleń na 8000:

		Czas wykonania	
Nr eksperymentu	1013	[ms]	851000
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	10622082,58	59	5760
2	10193427,31	57	6011
3	9677914,722	56	5509
4	11946895,07	62	8000
5	8715900,707	53	8000
6	11000321,31	58	7425
7	8222890,735	51	7110
8	8948041,074	51	7962
9	9082657,021	52	6504
10	9431817,262	58	5631
Średnia	9784194,779	55,7	6791,2
Mediana	9554865,992	56,5	6807
Odchylenie			
standardowe	1151398,167	3,77271	1029,63
Minimum	8222890,735	51	5509
Maksimum	11946895,07	62	8000

zamiana miast, 40% szans na mutację, liczba pokoleń = 8000

		Czas wykonania	
Nr eksperymentu	1014	[ms]	977483
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	10223111,54	57	7974
2	11626454,98	61	7853

3	11387838,34	59	7650
4	13908693,01	69	1
5	12095833,38	62	7762
6	10497206,29	56	7999
7	11007091,58	59	7780
8	10991189,38	62	7826
9	11983174,42	64	7957
10	13894978,82	70	1
Średnia	11761557,17	61,9	6280,3
Mediana	11507146,66	61,5	7803
Odchylenie			
standardowe	1274037,17	4,67737	3311,2
Minimum	10223111,54	56	1
Maksimum	13908693,01	70	7999

INVER-OVER, 10% szans na mutację, liczba pokoleń = 8000

Jak się okazuje średnie i mediany nr pokoleń dla obu operatorów są zbliżone do siebie i bliskie liczbie wykonywanych pokoleń, co wskazuje na to, że przy dalszym zwiększeniu liczby pokoleń możemy otrzymać jeszcze lepsze wyniki. Jednak średnia i mediana zarówno wyników jak i liczby baterii zdecydowanie przemawia za operatorem zamiany miast. W związku z tym to z tym operatorem będziemy przeprowadzać dalsze badania. Zwiększmy liczbę pokoleń do 16000:

		Czas	
		wykonania	
Nr eksperymentu	1015	[ms]	2115510
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	8168122,909	52	15990
2	7691833,881	52	15998
3	8166490,148	54	15983
4	6748326,609	46	15990
5	7740478,274	51	16000
6	7496833,314	49	15582
7	8394981,334	49	15999
8	7869992,415	51	16000
9	7676760,827	49	15997
10	6476316,724	44	15998
Średnia	7643013,644	49,7	15953,7
Mediana	7716156,078	50	15997,5
Odchylenie			
standardowe	611262,7262	2,98329	130,722
Minimum	6476316,724	44	15582
Maksimum	8394981,334	54	16000

zamiana miast, 40% szans na mutację, liczba pokoleń = 8000

Uzyskane wyniki są jak do tej pory najlepszymi znalezionymi dla Szwecji. Są porównywalne z tymi dla selekcji turniejowej, ale jednak nieznacznie lepsze.

18. Szwecja- cięcie i łączenie + selekcja turniejowa

Zaczniemy od uruchomienia algorytmu bez mutacji z następującymi parametrami:

- liczba osobników = 20
- generowanie populacji zachłanne
- warunek topu = 1000 pokoleń.

		Czas wykonania	
Nr eksperymentu	2000	[ms]	5831748
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	14029222,52	70	1
2	14034480,35	70	0
3	16712713,63	75	3
4	15698370,05	71	7
5	18418891,94	77	0
6	14837850,66	70	1
7	17888193,84	75	2
8	13899727,63	70	0
9	14747135,98	70	3
10	18658662,97	77	0
Średnia	15892525	72,5	1,7
Mediana	15268110,4	70,5	1
Odchylenie			
standardowe	1886998,5	3,10018	2,21359
Minimum	13899727,63	70	0
Maksimum	18658662,97	77	7

brak mutacji

Średni nr pokolenia z najlepszym osobnikiem wynosi tylko 1,7, więc efektywność algorytmu dla rozpatrywanego sposobu selekcji i krzyżowania bez mutacji jest niska. Po dodaniu mutacji bardzo prawdopodobne jest polepszenie się wyników i uzyskanie większej średniej nr pokolenia, gdyż tak stało się w przypadku dotychczasowych testów dla Grecji i Szwecji. Ustalmy więc mutację na 5%:

		Czas wykonania	
Nr eksperymentu	2001	[ms]	7986331
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	11334247,8	62	905
2	12820854,9	61	447

3	12367750	62	942
4	12152946	61	605
5	13779317,7	67	1000
6	13064295,8	65	960
7	9945886,48	57	843
8	12843207,4	64	789
9	10334731,5	58	974
10	10545739,4	58	330
Średnia	11918898	61,5	779,5
Mediana	12260348	61,5	874
Odchylenie			
standardowe	1304988,6	3,24037	237,666
Minimum	9945886,48	57	330
Maksimum	13779317,7	67	1000

prawdopodobieństwo mutacji = 5%

Zgodnie z oczekiwaniami wszystkie wartości się poprawiły - zmalały średnie wyniki i liczby baterii oraz zwiększyła się średnia nr pokolenia z najlepszym osobnikiem. Zwiększmy teraz jeszcze bardziej mutację - do 30%:

		Czas wykonania	
Nr eksperymentu	2002	[ms]	8117124
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	10780798,58	59	996
2	11120719,26	57	460
3	9804239,241	55	800
4	10805253,43	60	640
5	10370841,04	54	840
6	9998615,739	53	813
7	11726770,04	59	126
8	10673799,97	58	986
9	12068034,92	60	997
10	12473710,87	61	260
Średnia	10982278,3	57,6	691,8
Mediana	10793026	58,5	806,5
Odchylenie			
standardowe	873879,391	2,75681	313,332
Minimum	9804239,241	53	126
Maksimum	12473710,87	61	997

prawdopodobieństwo mutacji = 30%

Znów średnia wyników uległa poprawie, spróbujmy jeszcze zwiększyć prawdopodobieństwo mutacji, tym razem do 50%:

		Czas	
Nr eksperymentu	2003	wykonania	7376418

		[ms]	
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	10939359,35	56	278
2	13263408,66	64	45
3	13202080,16	61	201
4	12891312,64	60	195
5	11821428,67	59	46
6	13355112,92	63	196
7	11911644,8	62	23
8	13431915,71	65	150
9	10698361,04	57	167
10	15298612,83	66	228
Średnia	12681323,7	61,3	152,9
Mediana	13046696,4	61,5	181
Odchylenie			
standardowe	1367076,93	3,335	86,5287
Minimum	10698361,04	56	23
Maksimum	15298612,83	66	278

prawdopodobieństwo mutacji = 50%

Wyniki pogorszyły się względem poprzedniego eksperymentu. Oznacza to, że powinniśmy nieco zmniejszyć mutację i poszukać wokół najlepszej do tej pory wartości mutacji, tj. 30%. Sprawdzimy więc wyniki dla 20% oraz 40% szans na mutację:

		Czas wykonania	
Nr eksperymentu	2004	[ms]	12139284
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	10980730,75	62	987
2	9393546,313	55	980
3	10114378,43	56	998
4	9823285,545	56	802
5	11687223,05	58	948
6	12243712,88	62	988
7	11114027,78	57	946
8	14055544,93	66	980
9	10036636,08	58	993
10	10895076,91	59	747
Średnia	11034416,3	58,9	936,9
Mediana	10937903,8	58	980
Odchylenie			
standardowe	1376216,06	3,44642	88,3069
Minimum	9393546,313	55	747
Maksimum	14055544,93	66	998

prawdopodobieństwo mutacji = 20%

		Czas wykonania	
Nr eksperymentu	2005	[ms]	8235329
, ,		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	11165170,2	58	583
2	12343740,96	61	973
3	10577819,28	59	139
4	11331387,22	60	739
5	12180124,62	61	231
6	11003228,04	55	587
7	11149413,5	60	212
8	11153738,35	58	68
9	10731578,91	58	112
10	10420056,32	57	147
Średnia	11205626	58,7	379,1
Mediana	11151576	58,5	221,5
Odchylenie			
standardowe	627623,78	1,88856	315,62
Minimum	10420056,32	55	68
Maksimum	12343740,96	61	973

prawdopodobieństwo mutacji = 40%

W porównaniu z 30% szans na mutację (eksperyment nr 2002) średnia wyników i ich mediana uzyskana dla 20% jest gorsza, ale za to znacznie lepszy jest średni nr pokolenia (936,9 dla 20%, 691,8 dla 30%), co może oznaczać, że przy większej liczbie pokoleń skuteczniejsza jednak może okazać się wartość 20%. Dla 40% średnia wyników jest nieco gorsza niż dla 20% i 30%, ale znacznie gorszy jest średni nr pokolenia (379,1). Sprawdźmy więc wartość 25%, która znajduje się pomiędzy dwoma dotychczas najlepszymi znalezionymi wartościami mutacji:

		Czas	
		wykonania	
Nr eksperymentu	2006	[ms]	12452622
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	11243344,43	60	991
2	14397921,76	65	961
3	9872192,995	55	984
4	9350182,068	54	783
5	10990838,98	58	587
6	10737505,43	59	909
7	10719104,46	55	976
8	10469905,03	57	710
9	9980869,871	54	940
10	10176512,28	56	990

Średnia	10793837,7	57,3	883,1
Mediana	10594504,7	56,5	950,5
Odchylenie			
standardowe	1387225,7	3,40098	141,231
standardowe Minimum	1387225,7 9350182,068	3,40098 54	141,231 587

prawdopodobieństwo mutacji = 25%

Jak się okazuje dla tej wartości prawdopodobieństwa mutacji otrzymaliśmy najlepsze wyniki.

Zwiększmy teraz liczbę wykonywanych pokoleń z 1000 do 2000:

19. Szwecja- cięcie i łączenie + selekcja ruletka rankingowa

Tak prezentują się parametry, przy których wykonywane będą początkowe eksperymenty:

- liczba osobników = 20
- generowanie populacji zachłanne
- warunek topu = 1000 pokoleń.

Zaczynamy od 0% szans na mutację:

		Czas wykonania	
Nr eksperymentu	3000	[ms]	4237519
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	14890716,36	70	10
2	19305912,64	78	0
3	18658558,1	77	5
4	18238700,66	75	2
5	18432980,23	77	0
6	19211872,28	77	1
7	14267999,43	70	14
8	14034857,29	70	0
9	11525050,98	63	17
10	20471953,17	78	0
Średnia	16903860,11	73,5	4,9
Mediana	18335840,44	76	1,5
Odchylenie			
standardowe	2966297,943	5,01664	6,45411
Minimum	11525050,98	63	0
Maksimum	20471953,17	78	17

brak mutacji

W porównaniu z operatorem selekcji turniejowej oraz krzyżowania przez cięcie i łączenie dla reprezentacji porządkowej (eksperyment 2000), średnia wyników oraz ich mediana są zdecydowanie gorsze. Podobnie jak w tamtym eksperymencie średni nr pokolenia również jest bardzo niewielki (4,9) w porównaniu z 1000 wykonywanych pokoleń. Zwiększmy więc mutację do 5%:

		Czas wykonania	
Nr eksperymentu	3001	[ms]	4343927
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	11449374,62	58	957
2	13078552,66	62	958
3	10909961,86	60	892
4	10815767,82	57	866
5	14036686,91	67	987
6	12794165,05	62	968
7	10855525,27	59	983
8	12848493,82	65	968
9	12991679,86	62	882
10	10473033,24	59	676
Średnia	12025324	61,1	913,7
Mediana	12121770	61	957,5
Odchylenie			
standardowe	1254956,9	3,14289	94,3764
Minimum	10473033,24	57	676
Maksimum	14036686,91	67	987

prawdopodobieństwo mutacji = 5%

Wartości wyników, liczby baterii oraz liczby pokoleń poprawiły się. Powiększmy teraz prawdopodobieństwo mutacji do 30%:

		Czas	
		wykonania	
Nr eksperymentu	3002	[ms]	4366497
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	11347019,8	58	921
2	11637106,7	61	82
3	12564348,8	61	394
4	12960885,8	64	368
5	10591520,9	59	142
6	11942491,6	59	289
7	12212908,9	60	952
8	10458863,1	58	400
9	10576930,6	58	988
10	11702884,4	61	479

Średnia	11599496	59,9	501,5
Mediana	11669996	59,5	397
Odchylenie			
standardowe	863892,32	1,91195	334,361
		_	
Minimum	10458863,1	58	82

prawdopodobieństwo mutacji = 30%

Nastąpiła poprawa średniej oraz mediany wyników, ale już średni nr pokolenia znacząco odstaje od 1000 wykonywanych pokoleń. Prawdopodobnie więc, gdy jeszcze powiększymy mutację, to otrzymamy jeszcze niższą średnią nr pokoleń, a co za tym idzie gorsze wyniki. Ustalmy więc wartość mutacji na 50% i sprawdźmy nasze przypuszczenia:

		Czas	
		wykonania	
Nr eksperymentu	3003	[ms]	8759968
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	11394989,32	62	28
2	16103631,91	66	286
3	10840985,59	59	190
4	12201997,89	59	407
5	14372775,37	65	15
6	13265034,21	65	12
7	15200850,08	67	177
8	12690102,91	65	28
9	13803911,23	69	1
10	13710760,12	66	88
Średnia	13358504	64,3	123,2
Mediana	13487897	65	58
Odchylenie			
standardowe	1642067,7	3,30151	138,553
Minimum	10840985,59	59	1
Maksimum	16103631,91	69	407

prawdopodobieństwo mutacji = 50%

Zgodnie z oczekiwaniami nastąpił spadek średniej wartości nr pokolenia oraz wzrost wyników. Prawdopodobnie więc, jeśli zmniejszylibyśmy teraz mutację do 40%, to wyniki byłyby lepsze od tych dla 50%, ale gorsze od tych dla 30%. Zobaczmy czy tak się stanie:

		Czas wykonania	
Nr eksperymentu	3004	[ms]	8620203
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	14086070,86	70	0

2	13598669,29	62	716
	,		
3	12993288,14	63	71
4	12725311,23	59	715
5	13254871,32	62	514
6	13694183,79	63	308
7	11700459,4	60	51
8	11951736,81	60	81
9	13936423,45	65	19
10	10338289,22	57	30
Średnia	12827930,4	62,1	250,5
Mediana	13124079,7	62	76
Odchylenie			
standardowe	1183848,68	3,60401	292,67
Minimum	10338289,22	57	0
Maksimum	14086070,86	70	716

prawdopodobieństwo mutacji = 40%

Otrzymane rezultaty pokazują, że stało się dokładnie tak jak przypuszczaliśmy. Dotychczas najlepszy wynik uzyskaliśmy dla 30% mutacji. Zwiększając mutację wyniki ulegały pogorszeniu, więc możliwe jest, że gdy zmniejszymy wartość mutacji, może udać się nam osiągnąć lepsze wyniki. Spróbujmy więc nieco zmniejszyć mutację i ustalmy ją na 20%:

		Czas wykonania	
Nr eksperymentu	3005	[ms]	8108881
ivi eksperymentu	3003	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	12339563,3	61	979
2	10923824,5	59	933
3	10236428,5	58	919
4	12514506,9	60	978
5	9996474,55	56	978
6	12667538,8	63	1000
7	11076122,1	58	949
8	12407148,4	61	994
9	11729193,7	60	951
10	9434152,83	55	985
Średnia	11332495	59,1	966,6
Mediana	11402658	59,5	978
Odchylenie		,	
standardowe	1170407,5	2,42441	27,0111
Minimum	9434152,83	55	919
Maksimum	12667538,8	63	1000

prawdopodobieństwo mutacji = 20%

Dla 20% szans na mutację otrzymaliśmy do tej pory najlepszą średnią oraz medianę wyników a także najlepszą średnią liczbę baterii i nr pokolenia, więc to wartość prawdopodobieństwa mutacji = 20% będziemy brać pod uwagę w przypadku kolejnych eksperymentów.

Jako że dla wartości 20% średni nr pokolenia (966,6) był bliski liczbie wykonywanych pokoleń, to teraz zwiększymy tą liczbę z 1000 do 2000:

		Czas wykonania	
Nr eksperymentu	3006	[ms]	15274715
, ,		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	11360254,54	59	1878
2	10155303,95	57	1978
3	11215053,75	60	1968
4	9347926,357	55	1751
5	11035475,71	58	1985
6	12824844,57	63	1966
7	10041637,83	58	1780
8	12726603,8	61	1355
9	12496905,32	61	1222
10	9899543,855	56	1979
Średnia	11110354,97	58,8	1786,2
Mediana	11125264,73	58,5	1922
Odchylenie			
standardowe	1255201,278	2,48551	277,453
Minimum	9347926,357	55	1222
Maksimum	12824844,57	63	1985

prawdopodobieństwo mutacji = 20%, liczba pokoleń = 2000

Okazuje się, że wartości wyników się poprawiły i są jak do tej pory najlepsze, ale stopień ich poprawy jest bardzo niewielki. Uwzględniając jeszcze fakt, że czas wykonywania eksperymentu był bardzo długi wychodzi na to, że nie jest to najlepsza kombinacja selekcji i krzyżowania.

20.Szwecja - podsumowanie

Porównamy teraz każdą testowaną kombinację krzyżowania i selekcji oraz algorytmu zachłannego dla Szwecji, tj.

- algorytm zachłanny
- PMX i selekcja turniejowa
- PMX i selekcja ruletka rankingowa
- cięcie i łączenie i selekcja turniejowa
- cięcie i łączenie i selekcja ruletka rankingowa.

Przypomnijmy sobie wartości eksperymentów, w których uzyskano najlepsze wyniki dla każdego z przypadków:

		Czas	
Nr eksperymentu	00002	wykonania	589226

		[ms]	
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	13868183,1	70	0
2	13940549,9	70	0
3	14045281	70	0
4	14036705,8	70	0
5	14047161	70	0
6	13945485,1	70	0
7	14009347,6	70	0
8	14040689,8	70	0
9	18361031,9	77	0
10	14045148,9	70	0
Średnia	14433958	70,7	0
Mediana	14038698	70	0
Odchylenie			
standardowe	1381170,4	2,21359	0
Minimum	13868183,1	70	0
Maksimum	18361031,9	77	0

algorytm zachłanny

	ı		
		Czas	
		wykonania	
Nr eksperymentu	0022	[ms]	1933379
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	8009566	50	13543
2	7712618	51	14446
3	8338781	54	13888
4	7369090	49	14441
5	7414090	48	15835
6	7952723	52	14905
7	8114288	51	15995
8	7756675	49	15915
9	7580832	50	14149
10	7665079	48	14803
Średnia	7791374	50,2	14792
Mediana	7734647	50	14624,5
Odchylenie			
standardowe	310183	1,8738	871,949
Minimum	7369090	48	13543
Maksimum	8338781	54	15995

PMX i selekcja turniejowa

Nr eksperymentu	1015	Czas	2115510
-----------------	------	------	---------

		wykonania [ms]	
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	8168123	52	15990
2	7691834	52	15998
3	8166490	54	15983
4	6748327	46	15990
5	7740478	51	16000
6	7496833	49	15582
7	8394981	49	15999
8	7869992	51	16000
9	7676761	49	15997
10	6476317	44	15998
Średnia	7643014	49,7	15953,7
Mediana	7716156	50	15997,5
Odchylenie			
standardowe	611263	2,98329	130,722
Minimum	6476317	44	15582
Maksimum	8394981	54	16000

PMX i selekcja ruletka rankingowa

		Czas wykonania	
Nr eksperymentu	2014	[ms]	14394996
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3278970	45	1937
2	2854310	41	1890
3	2961797	48	1944
4	2850966	45	1849
5	2624959	43	2385
6	2769626	44	1883
7	3000517	44	1826
8	3282602	49	1502
9	2726971	43	2066
10	2844921	41	1860
Średnia	2919564	44,3	1914,2
Mediana	2852638	44	1886,5
Odchylenie			
standardowe	218633,8	2,626785	219,2258
Minimum	2624959	41	1502
Maksimum	3282602	49	2385

cięcie i łączenie i selekcja ruletka rankingowa

		Czas wykonania	
Nr eksperymentu	3006	[ms]	15274715
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	11360254,54	59	1878
2	10155303,95	57	1978
3	11215053,75	60	1968
4	9347926,357	55	1751
5	11035475,71	58	1985
6	12824844,57	63	1966
7	10041637,83	58	1780
8	12726603,8	61	1355
9	12496905,32	61	1222
10	9899543,855	56	1979
Średnia	11110355	58,8	1786,2
Mediana	11125264,7	58,5	1922
Odchylenie			
standardowe	1255201,28	2,48551	277,453
Minimum	9347926,357	55	1222
Maksimum	12824844,57	63	1985

cięcie i łączenie i selekcja ruletka rankingowa

Tak prezentuje się wykres zależności średniej wartości wyniku od rodzaju zastosowanej kombinacji selekcji i mutacji oraz algorytmu zachłannego:

Tak jak przypadku Grecji, okazało się, że najlepszą z testowanych kombinacji krzyżowania i selekcji jest kombinacja rekombinacji PMX i selekcji ruletki rankingowej. Drugie miejsce zajęła kombinacja PMX i selekcji turniejowej. Trzecie miejsce zajęła jednak rekombinacja przez cięcie i łączenie i selekcji turniejowej (w przypadku Grecji trzecie miejsce zajęła kombinacja cięcie i łączenie i ruletka rankingowa), czwarte cięcie i łączenie i ruletka

rankingowa, a ostatnie algorytm zachłanny. Oznacza to, że algorytm wykorzystujący każdą z testowanych kombinacji rekombinacji i selekcji jest lepszy od algorytmu zachłannego. Wyniki dla tych samych operatorów krzyżowania a różnych rodzajów selekcji są do siebie bardzo zbliżone.

Teraz zobaczmy wykres średniej liczby baterii dla testowanych kombinacji krzyżowania i selekcji:

Tutaj rzecz ma się podobnie jak dla eksperymentów przeprowadzonych dla Grecji – im lepszy (mniejszy) średni wynik, tym niższa średnia wartość liczby baterii wymagana do przebycia trasy.

Teraz przyjrzyjmy się czasom wykonania eksperymentów, dla których otrzymaliśmy najlepsze wyniki dla każdej kombinacji rekombinacji i selekcji:

Tutaj zdecydowaną przewagę ma operator krzyżowania PMX. Nie dość, że daje lepsze wyniki od operatora krzyżowania przez cięcie i łączenie, to czas uzyskania wyników jest dla niego zdecydowanie krótszy. Z kolei w przypadku operatora krzyżowania przez cięcie i łączenie,

czas znalezienia wyniku dla selekcji turniejowej jest niemal dwukrotnie dłuższy niż dla selekcji ruletki rankingowej. Więc pomimo uzyskania lepszych, ale bardzo zbliżonych do selekcji ruletki rankingowej wyników przez selekcję turniejową uznać można, że kombinacja selekcji ruletki rankingowej i krzyżowania przez cięcie i łączenie jest lepsza niż dla tego samego operatora krzyżowania i selekcji turniejowej. Podobnie również jak dla Grecji różnice czasowe między algorytmem wykorzystującym operator PMX a tego z cięciem i łączeniem jest bardzo duża na korzyść rekombinacji PMX. Obliczenia wartości za pomocą algorytmu zachłannego trwało zdecydowanie najkrócej, ale za to jego wyniki były najgorsze.

21.Podsumowanie

Zarówno dla Grecji i Szwecji najlepsze okazały się rekombinacja PMX oraz selekcja ruletka rankingowa. Na drugim miejscu uplasowała się rekombinacja PMX i turniej. Na trzecim miejscu znajduje się cięcie i łączenie i ranking a na ostatnim cięcie i łączenie i turniej (dla Szwecji nieznacznie lepsze wyniki niż cięcie i ruletka uzyskało cięcie i turniej, ale ze względu na znacznie dłuższy czas wykonywania [prawie dwukrotnie dłuższy] uznano, że to jednak cięcie i ruletka są lepsze dla Szwecji).

22. Dane w plikach wynikowych

Przykładowy plik wyników:

```
grecja.txt
Wielkość populacji: 60
Algorytm: ewolucyjny
Generowanie populacji: zachłanne
turniej
PMX
Prawdopodobieństwo mutacji: 40%
Mutacja: zamiana dwóch losowych miast
Warunek stopu: liczba pokoleń = 8000
Liczba powtórzeń: 10
Czas wykonania: 1367041 ms
Wyniki:
2176067,25010891
2053770,70723855
2108696,05421862
1946862,05731998
1993544,98523947
2379483,79107955
2185286,14481423
2321001,89152891
2280157,95862728
2136627,63004774
Liczby baterii:
36
36
35
36
40
37
43
36
37
Numery pokoleń:
3929
3652
3409
4455
4492
3236
3525
3052
3984
4420
Czasy obliczeń poszczególnych powtórzeń [ms]:
1310015
1303747
1353979
1168605
1201690
1357952
1346379
1367040
1257266
1177198
Numery miast:
8740 8739 8712 8711 8681 8662 8629 8603 8582 8554 8532 8486 589
5849 7714 5519 3345 6464 6883 6602 5619 6913 9485 6067 5268 593
```

Struktura pliku z wynikami:

- a. Nazwa pliku z danymi miast
- b. Liczba osobników w populacji
- c. Rodzaj algorytmu
- d. Sposób generowania populacji
- e. Rodzaj selekcji
- f. Rodzaj krzyżowania
- g. Prawdopodobieństwo mutacji

- h. Rodzaj mutacji
- i. Warunek stopu
- j. Liczba powtórzeń algorytmu
- k. Czas wykonania algorytmu
- I. Czasy przejazdu dla poszczególnych powtórzeń
- m. Numery pokoleń, w których uzyskano poszczególne wyniki
- n. Czasy obliczeń poszczególnych powtórzeń algorytmu
- o. Trasy dla poszczególnych powtórzeń

23.Plik parametrów

Przykładowy plik parametrów:

Struktura pliku parametrów:

- a. nazwa pliku z danymi miast
- b. liczba osobników w populacji
- c. rodzaj algorytmu
 - 0 ewolucyjny
 - 1 zachłanny
 - 2 osobnik 12345...
- d. Sposób generowania populacji
 - 0 losowo
 - 1 zachłannie
- e. Typ selekcji
 - 0 turniejowa
 - 1 ruletka rankingowa
- f. Typ krzyżowania
 - 0 PMX
 - 1 cięcie i łączenie
 - 2 CX
 - 3 OX
- g. Prawdopodobieństwo mutacji w %
- h. Rodzaj mutacji

- 0 zamiana dwóch losowych miast (ścieżkowa)
- 1 INVER-OVER (ścieżkowa)
- 0 zamiana losowej współrzędnej w reprezentacji porządkowej (porządkowa)
- i. Warunek stopu
 - 0 liczba pokoleń, po spacji wybrana liczba pokoleń do wykonania
 - 1 czas, po spacji czas w [ms]
- Liczba powtórzeń algorytmu
- k. Ścieżka, gdzie mają zostać zapisane wyniki.

24. Powtórzenie obliczeń

W paczce z projektem w folderze *projekt/lab4/bin/Release* znajdują się foldery z nazwami państw, dla których były przeprowadzane obliczenia. W każdym z tych folderów znajdują się kolejne foldery z wynikami dla konkretnych kombinacji operatorów krzyżowania i selekcji, a także folder z wynikami dla algorytmu zachłannego. W każdym z tych folderów znajdują się trzy foldery:

- baty znajdują się tam pliki .bat uruchamiające obliczenia eksperymentu
- parametry znajdują się tam pliki z parametrami dla eksperymentów, to tam wybieramy liczbę osobników w populacji, typ selekcji, rekombinacji, itp.
- wyniki folder zawierający pliki z wynikami dla poszczególnych eksperymentów.

Każdy plik .bat jest powiązany z jednym plikiem parametrów, który z kolei jest powiązany z jednym plikiem wynikowym (plik .bat ma w sobie odniesienie do konkretnego pliku parametrów, a plik parametrów do konkretnego pliku wynikowego). Na przykład plik grecja2001.bat odnosi się do pliku parametrów parametry_grecja2001.txt, który z kolei odnosi się do pliku wynikowego grecja2001.txt. Czyli każdemu eksperymentowi przypisane są trzy pliki. W podanym wcześniej przykładzie odnoszą się one dla eksperymentu nr 2001 dla Grecji. W przypadku chęci zmiany ścieżki, do której zostaną zapisane wyniki, należy zmodyfikować odpowiedni dla danego eksperymentu plik parametrów.

25.Załączniki

Do projektu zostało dołączone sprawozdanie oraz dwa pliki arkuszy kalkulacyjnych z wynikami obliczeń dla Grecji i Szwecji, a także z ich opracowaniem.

26.Grecja- CX+turniej

Pierwszym krokiem będzie przetestowanie wpływu mutacji na algorytm przy następujących parametrach:

- liczba osobników w populacji = 20
- generowanie populacji: zachłanne
- warunek stopu: 1000 pokoleń.

Zacznijmy od braku mutacji:

		Czas	
		wykonania	
Nr eksperymentu	4001	[ms]	82792

Nr práby	Wymile	Liczby baterii	Numery pokoleń
Nr próby	Wynik		•
1	3966618	57	2
2	4196182	60	0
3	4118548	55	9
4	4199767	56	3
5	4021779	54	11
6	3668544	60	0
7	3788442	53	5
8	4728573	69	0
9	3559864	58	0
10	3893972	54	16
Średnia	4014229	57,6	4,6
Mediana	3994198	56,5	2,5
Odchylenie			
standardowe	330389,1	4,695151	5,621388
Minimum	3559864	53	0
Maksimum	4728573	69	16

brak mutacji

Tak jak w przypadku poprzednich eksperymentów, średni nr pokolenia jest bardzo mały w porównaniu z liczbą wykonywanych pokoleń, więc spróbujmy dodać mutację. Najpierw przeprowadzimy obliczenia dla następujących kombinacji rodzajów i prawdopodobieństw mutacji:

- zamiana miast, 5% szans na mutację
- INVER-OVER, 5% szans na mutację
- zamiana miast, 30% szans na mutację
- INVER-OVER miast, 30% szans na mutację
- zamiana miast, 50% szans na mutację
- INVER-OVER miast, 50% szans na mutację.

Zobaczmy jak prezentują się wyniki:

		Czas	
		wykonania	
Nr eksperymentu	4002	[ms]	80363
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3720738	54	981
2	3506297	58	0
3	3193700	52	994
4	4522817	61	981
5	3578255	56	87
6	3831584	53	983
7	3596436	50	997
8	3508880	51	987
9	4345124	57	995
10	3065543	48	6

Średnia	3686937	54	701,1
Mediana	3587345	53,5	982
Odchylenie			
standardowe	455548,7	4	463,0146
Minimum	3065543	48	0
Maksimum	4522817	61	997

zamiana miast, prawdopodobieństwo mutacji = 5%

		Czas	
		wykonania	
Nr eksperymentu	4003	[ms]	71625
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3582916	50	964
2	4297908	57	827
3	4582521	61	2
4	3798083	56	3
5	3793408	55	967
6	3721456	54	974
7	4308630	58	2
8	4074048	55	808
9	3429807	53	1
10	4240373	57	2
Średnia	3982915	55,6	455
Mediana	3936066	55,5	405,5
Odchylenie			
standardowe	371751,5	2,988868	480,6969
Minimum	3429807	53	1
Maksimum	4582521	61	974

INVER-OVER, prawdopodobieństwo mutacji = 5%

		Czas	
		wykonania	
Nr eksperymentu	4004	[ms]	76513
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3928525	53	998
2	3415399	47	894
3	3738221	54	988
4	3286777	47	1000
5	3907272	53	1
6	3888511	53	940
7	3581950	52	996
8	3832499	54	1000
9	3701151	55	998
10	3441754	51	998
Średnia	3672206	51,9	881,3

Mediana	3719686	53	997
Odchylenie			
standardowe	229587,2	2,806738	311,2898
Minimum	3286777	47	1
Maksimum	3928525	55	1000

zamiana miast, prawdopodobieństwo mutacji = 30%

		Czas	
		wykonania	
Nr eksperymentu	4005	[ms]	80461
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	4531022	56	951
2	3506297	58	0
3	4007549	58	2
4	3630149	56	0
5	4092742	59	836
6	3786900	55	1
7	4692148	63	373
8	3848955	58	1
9	4043143	55	981
10	4291586	60	1
Średnia	4043049	57,8	314,6
Mediana	4025346	58	1,5
Odchylenie			
standardowe	378127	2,485514	436,5346
Minimum	3506297	55	0
Maksimum	4692148	63	981

INVER-OVER, prawdopodobieństwo mutacji = 30%

		Czas	
		wykonania	
Nr eksperymentu	4006	[ms]	74444
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3140614	48	998
2	3426078	49	997
3	3583683	50	999
4	3500004	51	997
5	3871895	56	1000
6	3898347	53	994
7	3659830	54	999
8	3328919	51	990
9	3251969	50	999
10	3719433	50	1000
Średnia	3538077	51,2	997,3
Mediana	3541844	50,5	998,5

Odchylenie standardowe	255733,7	2,440401	3,12872
Minimum	3140614	48	990
Maksimum	3898347	56	1000

zamiana miast, prawdopodobieństwo mutacji = 50%

		Czas	
Nr eksperymentu	4007	wykonania [ms]	77490
	.007	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	4454280	61	2
2	4619680	57	623
3	4046573	56	2
4	3197384	46	712
5	3883769	52	974
6	3835773	61	0
7	3454754	44	934
8	4092920	58	0
9	3565892	49	841
10	4426419	66	0
Średnia	3957745	55	408,8
Mediana	3965171	56,5	312,5
Odchylenie			
standardowe	463749,4	7,102425	441,2381
Minimum	3197384	44	0
Maksimum	4619680	66	974

INVER-OVER, prawdopodobieństwo mutacji = 50%

W celu łatwiejszej interpretacji wyników umieścimy dane na wykresie zależności średniej wartości wyników w zależności od prawdopodobieństwa mutacji:

Jak widać operator zamiany miast wyraźnie wygrywa z operatorem IVER-OVER. Toteż w dalszych badaniach mutacji ograniczymy się tylko do operatora zamiany miast. Spróbujemy teraz znaleźć dla tego operatora taką wartość mutacji, aby otrzymać jeszcze lepsze wyniki. Najlepszą wartością prawdopodobieństwa mutacji znalezioną do tej pory dla operatora zamiany miast było 50%. Na podstawie wykresu można dojść do wniosku, że im większa wartość mutacji, tym średnia wartość wyników się zmniejsza. Sprawdźmy czy wartości mutacji 40% i 60% wpiszą się w ten trend:

		Czas wykonania	
Nr eksperymentu	4008	[ms]	84844
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3309716	49	988
2	3979818	56	1000
3	4107813	56	991
4	3937549	61	997
5	3054091	50	996
6	4139805	63	0
7	3367642	50	994
8	3821183	57	996
9	3350206	51	986
10	4267984	56	998
Średnia	3733581	54,9	894,6
Mediana	3879366	56	995
Odchylenie			
standardowe	424633,3	4,817791	314,3619
Minimum	3054091	49	0
Maksimum	4267984	63	1000

zamiana miast, prawdopodobieństwo mutacji = 40%

		Czas	
		wykonania	
Nr eksperymentu	4009	[ms]	78430
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3736537	52	999
2	3502930	52	9
3	3717947	50	982
4	3284079	48	998
5	4230528	59	999
6	3864087	57	998
7	3770006	49	987
8	3868381	54	786
9	3071690	46	966
10	3405198	53	986
Średnia	3645138	52	871
Mediana	3727242	52	986,5

Odchylenie standardowe	334449,1	4	309,7171
Minimum	3071690	46	9
Maksimum	4230528	59	999

zamiana miast, prawdopodobieństwo mutacji = 60%

Zobaczmy jak teraz prezentuje się wykres dla operatora zamiany miast:

Jak się okazało obliczone wyniki dla 40% i 60% nie pokryły się z wcześniejszymi przypuszczeniami. Są również gorsze od wartości wyników dla 50%, których średnia wyników była najlepsza oraz średni nr pokoleń był największy. Więc to wartość mutacji 50% i operator zamiany miast będą stosowane w dalszych eksperymentach.

Zwiększymy teraz liczbę wykonywanych pokoleń z 1000 do 8000 i zobaczymy jak wpłynie to na wyniki:

Nr eksperymentu	4010	Czas wykonania [ms]	489632
Ne neáby	Wymile	Liczby baterii	Numery
Nr próby	Wynik		pokoleń
1	2445724	42	7989
2	2184123	39	7981
3	2292706	36	7991
4	2685372	40	7990
5	2479329	41	7929
6	2426940	38	7985
7	2593516	39	7978
8	2665968	42	7992
9	2471879	42	7999
10	2546695	40	7960
Średnia	2479225	39,9	7979,4
Mediana	2475604	40	7987
Odchylenie	156620,2	1,969207	20,64084

standardowe			
Minimum	2184123	36	7929
Maksimum	2685372	42	7999

zamiana miast, prawdopodobieństwo mutacji = 40%, liczba pokol \overline{e} ń = 8000

Wyniki się poprawiły, średni nr pokolenia wciąż jest bliski wykonywanej liczbie pokoleń, więc ponownie zwiększamy liczbę pokoleń, tym razem do 16000:

		Czas	
		wykonania	
Nr eksperymentu	4011	[ms]	845327
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2181354	32	11531
2	2420780	39	11317
3	2530051	41	10929
4	2344573	37	13854
5	2237928	35	11118
6	2436860	38	10652
7	2340461	36	11114
8	2352114	37	12205
9	2398565	38	10843
10	2282310	36	10824
Średnia	2352500	36,9	11438,7
Mediana	2348344	37	11116
Odchylenie			
standardowe	101640,8	2,424413	958,2336
Minimum	2181354	32	10652
Maksimum	2530051	41	13854

zamiana miast, prawdopodobieństwo mutacji = 40%, liczba pokoleń = 16000

Średnia wyników i ich mediana ponownie się poprawiły, natomiast średni nr pokolenia, w którym uzyskano najlepszego osobnika (11438,7) już odbiega od liczby wykonywanych pokoleń = 16000, więc dalsze jej zwiększanie nie ma już sensu, gdyż mała jest szansa, że nastąpi wtedy poprawa wyników.

27. Grecja - CX+ruletka

Tak jak w poprzedni punkcie zbadamy jak algorytm zachowuje się dla różnych wartości mutacji. Testować będziemy na następujących parametrach:

- liczba osobników w populacji = 20
- generowanie populacji: zachłanne
- warunek stopu: 1000 pokoleń.

Zacznijmy od braku mutacji:

		Czas wykonania	
Nr eksperymentu	5001	[ms]	93512
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń

1	3903140	55	3
2	3336945	56	0
3	4049403	61	1
4	4123314	56	5
5	3406775	56	0
6	4380262	60	4
7	4276071	56	2
8	4509484	67	0
9	5228722	65	11
10	4407714	59	7
Średnia	4162183	59,1	3,3
Mediana	4199692	57,5	2,5
Odchylenie			
standardowe	548931,1	4,175324	3,591657
Minimum	3336945	55	0
Maksimum	5228722	67	11

brak mutacji

Teraz przeprowadzimy obliczenia dla następujących kombinacji rodzajów i prawdopodobieństw mutacji:

- zamiana miast, 5% szans na mutację
- INVER-OVER, 5% szans na mutację
- zamiana miast, 30% szans na mutację
- INVER-OVER miast, 30% szans na mutację
- zamiana miast, 50% szans na mutację
- INVER-OVER miast, 50% szans na mutację.

Oto otrzymane wyniki:

		Czas wykonania	
Nr eksperymentu	5002	[ms]	79402
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	4737986	66	1
2	3870765	53	995
3	3538906	51	5
4	3759086	54	3
5	3905897	53	994
6	4208852	56	992
7	3904574	58	1
8	4866702	69	0
9	3475644	50	962
10	3979657	53	999
Średnia	4024807	56,3	495,2
Mediana	3905235	53,5	483,5
Odchylenie			
standardowe	461150	6,360468	519,976

Minimum	3475644	50	0
Maksimum	4866702	69	999

zamiana miast, prawdopodobieństwo mutacji = 5%

		Czas	
N1	5002	wykonania	01070
Nr eksperymentu	5003	[ms]	81069
27 (1		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3785631	54	3
2	4277534	59	995
3	3978853	51	937
4	4673487	59	638
5	3580250	53	943
6	3764081	55	1
7	4072795	55	856
8	3919138	54	14
9	3819858	54	9
10	4275279	62	1
Średnia	4014691	55,6	439,7
Mediana	3948996	54,5	326
Odchylenie			
standardowe	320896	3,339993	467,1367
Minimum	3580250	51	1
Maksimum	4673487	62	995

INVER-OVER, prawdopodobieństwo mutacji = 5%

		Czas	
N1	5004	wykonania	72210
Nr eksperymentu	5004	[ms]	72218
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3485367	50	993
2	4707901	60	6
3	3591851	54	989
4	3638606	52	982
5	3706038	59	0
6	2974620	49	997
7	3426339	51	995
8	3777193	50	999
9	3172701	51	999
10	3999063	56	999
Średnia	3647968	53,2	795,9
Mediana	3615229	51,5	994
Odchylenie			
standardowe	474326,3	3,910101	417,9313
Minimum	2974620	49	0
Maksimum	4707901	60	999

zamiana miast, prawdopodobieństwo mutacji = 30%

		Czas	
Na alranamymanty	5005	wykonania	82199
Nr eksperymentu	3003	[ms] Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	4193187	62	2
2	4002119	54	2
3	3559864	58	0
4	3874110	59	1
5	4000747	56	3
6	3668213	60	0
7	4526824	59	666
8	4585666	61	2
9	4021792	53	881
10	3781169	53	895
Średnia	4021369	57,5	245,2
Mediana	4001433	58,5	2
Odchylenie			
standardowe	336868,2	3,308239	397,1473
Minimum	3559864	53	0
Maksimum	4585666	62	895

INVER-OVER, prawdopodobieństwo mutacji = 30%

		Czas	
Nr eksperymentu	5006	wykonania [ms]	76237
	2000	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3273830	48	993
2	3209280	47	901
3	3733606	51	999
4	3535637	55	1000
5	3344573	50	994
6	3342405	50	998
7	3797567	54	5
8	3559835	51	992
9	4013960	53	998
10	3643354	52	1000
Średnia	3545405	51,1	888
Mediana	3547736	51	996
Odchylenie			
standardowe	257492,5	2,514403	311,7235
Minimum	3209280	47	5
Maksimum	4013960	55	1000

zamiana miast, prawdopodobieństwo mutacji = 50%

Nr eksperymentu	5007	Czas	77483
ivi eksperymentu	3007	Czas	11403

		wykonania [ms]	
N (1	XX7 '1	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3353041	47	985
2	3909417	62	1
3	3857811	51	448
4	3611263	58	0
5	4032144	53	75
6	3916270	56	901
7	3797992	52	114
8	4643655	55	620
9	4235718	57	817
10	3949900	62	0
Średnia	3930721	55,3	396,1
Mediana	3912844	55,5	281
Odchylenie			
standardowe	345014,7	4,762119	406,1047
Minimum	3353041	47	0
Maksimum	4643655	62	985

INVER-OVER, prawdopodobieństwo mutacji = 5%

Tak prezentuje się wykres zależności średnich wartości otrzymanych wyników od prawdopodobieństwa mutacji:

Operator zamiany miast wypadł zdecydowanie lepiej. Więc to jego będziemy wykorzystywać w dalszych badaniach. Na podstawie wykresu widać, że dla operatora zamiany miast im większa wartość prawdopodobieństwa mutacji, tym lepsze wyniki otrzymamy. Ta zależność może się jednak nie mieć miejsca, gdy obliczymy wartości dla innych szans na mutację. Przetestujmy wartość 40% mutacji, gdyż możliwe, że wartość optymalna znajduje się jednak przed 50% (jak w większości poprzednich przypadków, gdy testowaliśmy wpływ mutacji na algorytm przy Szwecji czy poprzednich kombinacji selekcji i rekombinacji dla Grecji).

Sprawdzimy również wartość mutacji 60%, gdyż istnieje również możliwość, że tendencja spadkowa wyników wraz ze wzrostem szans na mutację się utrzyma:

		Czas wykonania	
Nr eksperymentu	5008	[ms]	83770
THE CREPCT SHICITED	3000	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3870877	53	998
2	4074575	56	999
3	3313651	48	999
4	3738159	49	997
5	3337865	50	982
6	3153481	47	999
7	3117776	46	1000
8	3267203	50	998
9	3734318	56	997
10	3308750	49	988
Średnia	3491665	50,4	995,7
Mediana	3325758	49,5	998
Odchylenie		,	
standardowe	332761,3	3,50238	5,888784
Minimum	3117776	46	982
Maksimum	4074575	56	1000

zamiana miast, prawdopodobieństwo mutacji = 40%

		Czas	
Nr eksperymentu	5009	wykonania [ms]	72701
THE ERSPETYMENT	2007	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3901600	52	995
2	3455576	47	998
3	3885591	54	951
4	3461890	46	966
5	3468701	49	888
6	3189436	47	994
7	3336335	56	0
8	3847407	53	988
9	3969651	54	999
10	3369923	49	983
Średnia	3588611	50,7	876,2
Mediana	3465296	50,5	985,5
Odchylenie		-	·
standardowe	282305,8	3,529243	309,7195
Minimum	3189436	46	0
Maksimum	3969651	56	999

zamiana miast, prawdopodobieństwo mutacji = 60%

Okazało się, że najlepsze jak dotąd wyniki uzyskaliśmy dla prawdopodobieństwa mutacji = 40%. Wyniki dla 60% uległy pogorszeniu w stosunku do 50% mutacji. 40% mutacja ma również największy średni nr pokolenia, w którym uzyskano najlepszego osobnika (995,7 - jest to również wartość bardzo bliska liczbie wykonywanych pokoleń = 1000, więc zwiększając liczbę pokoleń istnieje duża szansa, że otrzymamy poprawę rezultatów), więc to tę wartość mutacji uwzględnimy w dalszych badaniach.

Dla ustalonych przed chwilą parametrów mutacji i pozostałych parametrach oprócz liczby pokoleń niezmienionych (generowanie populacji zachłanne, liczba osobników w populacji = 20) zwiększymy liczbę wykonywanych pokoleń do 8000:

		Czas	
NY 1	5010	wykonania	475172
Nr eksperymentu	5010	[ms]	475173
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2527721	39	7986
2	2231649	38	7986
3	2352511	41	7998
4	2353274	40	7990
5	2449847	39	7950
6	2476704	40	7995
7	2437100	40	7979
8	2327260	40	7997
9	2780303	43	7995
10	2467983	39	7997
Średnia	2440435	39,9	7987,3
Mediana	2443474	40	7992,5
Odchylenie			
standardowe	147960,5	1,37032	14,49943
Minimum	2231649	38	7950
Maksimum	2780303	43	7998

zamiana miast, prawdopodobieństwo mutacji = 40%, liczba pokoleń = 8000

Średnia wyników uległa znacznej poprawie (ok. 1 mln). Średni nr pokolenia (7987,3) wciąż jest bliski maksymalnej liczbie wykonywanych pokoleń (8000), więc ponownie zwiększmy liczbę pokoleń, tym razem do 16000:

			Czas wykonania	
Nr eksperymentu		5011	[ms]	903310
			Liczby	Numery
Nr próby		Wynik	baterii	pokoleń
	1	1917169	32	15974
	2	1989565	33	15996
	3	2419233	41	15997
	4	2214197	38	15991
	5	2122807	35	15968
	6	1951670	31	15999
	7	1948211	33	15993

8	2192816	36	15978
9	2072161	37	15991
10	2247133	37	15973
Średnia	2107496	35,3	15986
Mediana	2097484	35,5	15991
Odchylenie			
standardowe	162142,6	3,093003	11,49879
Minimum	1917169	31	15968
Maksimum	2419233	41	15999

zamiana miast, prawdopodobieństwo mutacji = 40%, liczba pokoleń = 16000

Średnia wyników znów uległa poprawie, lecz tym razem w mniejszym stopniu niż poprzednio (ok. 300 tys.). Średni nr pokolenia (15986) wciąż nie odstaje od liczby wykonywanych pokoleń (16000). Zwiększymy więc liczbę pokoleń do 32000:

		Czas wykonania	
Nr eksperymentu	5012	[ms]	1720585
TH exsperymenta	3012	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1751405	29	26674
2	1982127	34	31613
3	1869058	32	27165
4	1835729	32	31976
5	1769829	31	31822
6	1649869	30	31682
7	1789927	32	31970
8	1857355	33	27296
9	2103191	36	28724
10	1691636	32	31500
Średnia	1830012	32,1	30042,2
Mediana	1812828	32	31556,5
Odchylenie			
standardowe	134609,7	1,969207	2280,534
Minimum	1649869	29	26674
Maksimum	2103191	36	31976

zamiana miast, prawdopodobieństwo mutacji = 40%, liczba pokoleń =32000

Średnia wyników w dalszym ciągu się poprawia (ok. 300 tys.), sytuacja ze średnim nr pokolenia jest analogiczna. Podwajamy więc liczbę wykonywanych pokoleń (teraz 64000):

		Czas wykonania	
Ne alranagumantu	5013		3351327
Nr eksperymentu	3013	[ms]	3331327
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1736656	31	48383
2	1670308	30	63912
3	1560908	28	47106
4	1572398	30	63864

5	1621393	28	63914
6	1698283	30	48885
7	1603678	29	61921
8	1554142	29	59767
9	1738311	30	48141
10	1596226	28	63605
Średnia	1635230	29,3	56949,8
Mediana	1612535	29,5	60844
Odchylenie			
standardowe	70611,84	1,05935	7707,471
Minimum	1554142	28	47106
Maksimum	1738311	31	63914

zamiana miast, prawdopodobieństwo mutacji = 40%, liczba pokoleń = 64000

Tym razem średnia wyników poprawiła się o ok. 200 tys. Średni nr pokolenia (56949,8) jest już w widocznym stopniu mniejszy od liczby wykonywanych pokoleń (64000), choć dla części powtórzeń nr pokolenia jest bliski granicy liczby wykonywanych pokoleń.

28.Grecja- OX+turniej

Jak zwykle zaczniemy od przetestowania wpływu mutacji na algorytm przy zadanych parametrach:

- liczba osobników w populacji = 20
- populacja wygenerowana losowo
- warunek stopu: liczba pokoleń = 1000.

Zaczniemy od braku mutacji:

		Czas	
N. 1	6001	wykonania	215250
Nr eksperymentu	6001	[ms]	215350
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1929234	37	115
2	1954857	35	168
3	1856645	33	218
4	1952289	34	204
5	1797989	37	50
6	2005166	35	261
7	1891496	36	62
8	1961186	37	157
9	2125437	39	135
10	2062933	37	201
Średnia	1953723	36	157,1
Mediana	1953573	36,5	162,5
Odchylenie			
standardowe	95607,5	1,763834	67,92553
Minimum	1797989	33	50
Maksimum	2125437	39	261

brak mutacji

Okazuje się, że wyniki uzyskane przy braku mutacji są zdecydowanie lepsze niż uzyskane do tej pory dla innych kombinacji selekcji i rekombinacji dla Grecji. Również średnia liczba pokoleń z najlepszym osobnikiem nie jest teraz rzędu kilka kilkanaście, ale kilkaset (157,1). Uzyskane tym sposobem wyniki są lepsze od niemal wszystkich testowanych kombinacji operatorów selekcji i krzyżowania (jedynie PMX i ruletka rankingowa daje niewiele lepsze wyniki), a przecież algorytm nawet nie używa jeszcze mutacji! Dodajmy więc mutację i zobaczmy czy tak jak we wszystkich poprzednich przypadkach testowania kombinacji selekcji i rekombinacji również tutaj po dodaniu mutacji uzyskamy lepsze wyniki. Przetestujemy następujące kombinacje wartości prawdopodobieństw i operatorów mutacji:

- zamiana miast, 5% szans na mutację
- INVER-OVER, 5% szans na mutację
- zamiana miast, 30% szans na mutację
- INVER-OVER miast, 30% szans na mutację
- zamiana miast, 50% szans na mutację
- INVER-OVER miast, 50% szans na mutację.

Zobaczmy jak prezentują się wyniki:

		Czas	
Na alson amous autor	6002	wykonania	212920
Nr eksperymentu	6002	[ms]	213830
NI /1	*** *1	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2165858	37	148
2	2108740	34	223
3	1975563	36	117
4	2014572	35	228
5	2477087	42	185
6	1742009	33	102
7	1981076	39	92
8	1845785	35	139
9	2080012	36	153
10	1858969	36	47
Średnia	2024967	36,3	143,4
Mediana	1997824	36	143,5
Odchylenie			
standardowe	205077,8	2,58414	57,44795
Minimum	1742009	33	47
Maksimum	2477087	42	228

zamiana miast, 5% szans na mutację

Nr eksperymentu	6003	Czas wykonania [ms]	228894
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1818336	35	45
2	1994540	39	102
3	1929798	37	96

4	2225627	37	104
5	2086144	40	140
6	2112022	39	74
7	1970287	36	197
8	1942020	37	248
9	2031241	41	68
10	2017234	38	70
Średnia	2012725	37,9	114,4
Mediana	2005887	37,5	99
Odchylenie			
standardowe	111920,4	1,852926	63,68359
Minimum	1929798	36	68
Maksimum	2225627	41	248

INVER-OVER, 5% szans na mutację

		Czas	
		Czas	
	-004	wykonania	
Nr eksperymentu	6004	[ms]	223469
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1978933	36	195
2	2012347	39	75
3	2153710	41	44
4	2215900	39	223
5	2389440	42	260
6	2144017	40	120
7	1907387	37	64
8	1891323	34	99
9	2016453	36	116
10	2063790	35	136
Średnia	2077330	37,9	133,2
Mediana	2040121	38	118
Odchylenie			
standardowe	152085,1	2,685351	71,29095
Minimum	1891323	34	44
Maksimum	2389440	42	260

zamiana miast, 30% szans na mutację

		Czas wykonania	
Nr eksperymentu	6005	[ms]	262226
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1813481	34	50
2	1824209	33	50
3	1827565	37	53
4	1933866	35	57

5	1895589	34	108
6	2050265	39	54
7	1953971	39	49
8	1924479	35	95
9	1859710	38	59
10	1895591	31	105
Średnia	1897873	35,5	68
Mediana	1895590	35	55,5
Odchylenie			
standardowe	72519,86	2,677063	24,33562
Minimum	1813481	31	49
Maksimum	2050265	39	108

INVER-OVER, 30% szans na mutację

Nr eksperymentu	6006	Czas wykonania [ms]	233346
141 eksperymenta	0000	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1839732	39	45
2	2185334	40	144
3	2613544	38	371
4	1889537	34	91
5	2315475	37	214
6	2334009	41	53
7	1864945	36	51
8	2101044	38	103
9	2180575	39	70
10	2282812	37	167
Średnia	2160701	37,9	130,9
Mediana	2182954	38	97
Odchylenie			
standardowe	245527	2,024846	101,0714
Minimum	1839732	34	45
Maksimum	2613544	41	371

zamiana miast, 50% szans na mutację

		ı	
		Czas	
		wykonania	
Nr eksperymentu	6007	[ms]	271998
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1857489	34	48
2	2087867	41	44
3	1929413	38	51
4	1977141	34	54
5	1768940	34	44

6	2154804	41	33
7	1813414	37	38
8	2214178	40	94
9	1821801	33	100
10	2158344	37	85
Średnia	1978339	36,9	59,1
Mediana	1953277	37	49,5
Odchylenie			
standardowe	164556,9	3,071373	24,4015
Minimum	1768940	33	33
Maksimum	2214178	41	100

INVER-OVER, 50% szans na mutację

Tak prezentuje się wykres zależności wartości średniej wyniki od prawdopodobieństwa mutacji dla każdego z testowanych operatorów mutacji:

Okazuje się, że inaczej niż w poprzednich przypadkach, mutacja negatywnie oddziaływuje na wyniki (w 5 na 6 testowanych przypadków otrzymana średnia wyników była gorsza, tylko 30% INVER-OVER okazał się lepszy). W każdym z obliczonych przypadków średni nr pokolenia z otrzymanym najlepszym osobnikiem był gorszy od przypadku z brakiem mutacji. Jako że dla dość dużych wartości mutacji algorytm zazwyczaj nie dawał nam lepszych średni wyników, sprawdźmy mniejsze wartości mutacji dla obu testowanych operatorów mutacji, a konkretnie 10% i 2%:

		Czas	
Na alamamanan	6000	wykonania	212722
Nr eksperymentu	6008	[ms]	212733
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2175182	39	245
2	1904257	36	77
3	2196007	40	90
4	1768447	36	54
5	2162051	39	93

Maksimum	2196007	40	245
Minimum	1736017	34	54
standardowe	170810,3	2,097618	61,77162
Odchylenie			
Mediana	2039604	36	83,5
Średnia	2018658	37,2	106,2
10	2019837	36	67
9	1981143	40	61
8	2184266	36	135
7	1736017	34	64
6	2059370	36	176

zamiana miast, 10% szans na mutację

		Czas wykonania	
Nr eksperymentu	6009	[ms]	271998
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2004572	40	65
2	1777850	35	64
3	2052875	39	76
4	1848354	30	116
5	1779529	34	61
6	2172742	39	88
7	1770495	38	57
8	1932049	39	70
9	2022661	39	61
10	2091536	39	104
Średnia	1945266	37,2	76,2
Mediana	1968310	39	67,5
Odchylenie			
standardowe	145233,6	3,190263	20,1097
Minimum	1770495	30	57
Maksimum	2172742	40	116

INVER-OVER, 10% szans na mutację

		Czas	
		wykonania	
Nr eksperymentu	6010	[ms]	210240
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1815944	35	88
2	1745238	32	161
3	2083592	36	271
4	2018261	34	226
5	1668103	31	122
6	1764307	36	86

7	1986196	37	156
8	2110689	38	109
9	2143085	38	246
10	2372810	37	520
Średnia	1970823	35,4	198,5
Mediana	2002228	36	158,5
Odchylenie			
standardowe	219898,5	2,412928	130,6278
Minimum	1668103	31	86
Maksimum	2372810	38	520

С

		Czas wykonania	
Nr eksperymentu	6011	[ms]	222134
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2067400	38	170
2	1791848	38	104
3	2387294	40	197
4	2329419	40	228
5	1967801	35	131
6	1882757	37	84
7	1726360	37	45
8	1791690	32	83
9	1975578	34	216
10	2250480	38	528
Średnia	2017063	36,9	178,6
Mediana	1971689	37,5	150,5
Odchylenie		,	,
standardowe	235669,9	2,558211	137,4774
Minimum	1726360	32	45
Maksimum	2387294	40	528

INVER-OVER, 2% szans na mutację

Teraz zobaczmy na wykres uzupełniony nowe wartości:

Najlepszy średni wynik dalej należy do 30% INVER-OVER. Natomiast dla 2% zamiany miast udało się uzyskać najlepsze wyniki dla operatora zamiany miast, które jednak wciąż są gorsze od wyników algorytmu bez mutacji. Teraz dla najlepszych wersji operatorów mutacji oraz dla przypadku bez mutacji zwiększymy liczbę wykonywanych pokoleń i zobaczymy jak wpłynie to na wyniki:

		Czas wykonania	
Nr eksperymentu	6014	[ms]	804519
1 7		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1662986	35	59
2	1791714	33	64
3	2110803	35	363
4	2111846	38	280
5	2033438	37	108
6	2034362	37	136
7	2210994	35	380
8	1948974	39	46
9	2206361	36	391
10	1876792	33	261
Średnia	1998827	35,8	208,8
Mediana	2033900	35,5	198,5
Odchylenie			·
standardowe	179171,2	1,988858	141,205
Minimum	1791714	33	46
Maksimum	2210994	39	391

brak mutacji, liczba pokoleń = 4000

Nu alvon amunantu	6012	Czas wykonania	740716
Nr eksperymentu	0012	[ms]	/40/10
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń

1	2035855	36	250
2	1827869	37	83
3	2034385	37	222
4	1983158	35	257
5	2017707	37	182
6	2146546	36	344
7	2083654	36	99
8	1832826	35	87
9	1699640	32	153
10	2097160	35	220
Średnia	1975880	35,6	189,7
Mediana	2026046	36	201
Odchylenie standardowe	142576,9	1,505545	85,30996
Minimum	1699640	32	83
Maksimum	2146546	37	344

zamiana miast, 2% szans na mutację, liczba pokoleń = 4000

		Czas wykonania	
Nr eksperymentu	6013	[ms]	926611
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1993070	34	122
2	1882261	32	66
3	2182664	41	67
4	2081173	41	52
5	2103850	40	43
6	1846999	33	54
7	1689423	31	63
8	2364889	45	48
9	1802403	36	52
10	2101120	39	72
Średnia	2004785	37,2	63,9
Mediana	2037121	37,5	58,5
Odchylenie			
standardowe	201853,3	4,661902	22,42741
Minimum	1689423	31	43
Maksimum	2364889	45	72

INVER-OVER, 30% szans na mutację, liczba pokoleń = 4000

Pomimo zwiększenia liczby wykonywanych pokoleń średni nr pokolenia jest porównywalny z poprzednimi wynikami i nie przekroczył nawet 1000. Oznacza to, że znaczne zwiększanie liczby pokoleń w stosunku do średniego nr pokolenia nie ma sensu. Wychodzi na to, że w przypadku OX i selekcji turniejowej dla testowanych parametrów mutacja nie ma większego wpływu na wyniki, tylko w największym stopniu zależą one od wygenerowanej populacji startowej.

29. Grecja - OX+ruletka

Tak jak dotychczas, sprawdźmy najpierw wpływ mutacji na algorytm wykorzystujący krzyżowanie OX i selekcję ruletkę rankingową. Najpierw przetestujmy zachowanie algorytmu przy braku mutacji:

		Czas	
Na alranamymanty	7001	wykonania	66210
Nr eksperymentu	7001	[ms]	66210
NI /1	337 '1	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2526719	41	982
2	2660993	44	706
3	2616764	43	998
4	2769780	46	987
5	2496722	42	750
6	2725379	48	835
7	2649853	44	737
8	2571051	47	820
9	2320035	40	525
10	2261307	37	733
Średnia	2559860	43,2	807,3
Mediana	2593907	43,5	785
Odchylenie			
standardowe	164953,8	3,359894	150,4837
Minimum	2261307	37	525
Maksimum	2769780	48	998

brak mutacji

Tutaj sytuacja jest inna niż w poprzednich przypadkach. Teraz wyniki są gorsze niż przy kombinacji OX+turniej, ale za to średni nr pokolenia jest zdecydowanie większy (807,3) i jednocześnie największy z dotychczas testowanych kombinacji selekcji i rekombinacji dla zerowej mutacji. Średni wynik również wydaje się dobry w porównaniu z innymi operatorami selekcji i krzyżowania dla braku mutacji, ale jest gorszy niż dla rekombinacji OX i selekcji turniejowej. Zobaczmy więc jak prezentowały się będą wyniki po dodaniu mutacji. Przetestujemy następujące kombinacje prawdopodobieństw i operatorów mutacji:

- zamiana miast, 5% szans na mutację
- INVER-OVER, 5% szans na mutację
- zamiana miast, 30% szans na mutację
- INVER-OVER miast, 30% szans na mutację
- zamiana miast, 50% szans na mutację
- INVER-OVER miast, 50% szans na mutację.

Tak będą prezentują się wyniki:

		Czas		
		wykonania		
Nr eksperymentu	7002	[ms]		61809
		Liczby	Numery	
Nr próby	Wynik	baterii	pokoleń	

Maksimum	3101525	48	1000
Minimum	2432864	38	650
Odchylenie standardowe	216376,5	3,259175	123,8901
Mediana	2589985	41,5	857
Średnia	2678179	42,2	821,1
10	2674109	42	863
9	2489929	40	745
8	2591576	42	699
7	2582774	38	905
6	2432864	39	866
5	2588395	41	965
4	2726805	44	650
3	3010557	47	667
2	2583259	41	851
1	3101525	48	1000

zamiana miast, 5% szans na mutację

	1	T =:	Г
		Czas	
		wykonania	
Nr eksperymentu	7003	[ms]	65920
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2584992	42	561
2	2525154	41	978
3	2928623	46	587
4	2686775	45	786
5	2320976	40	910
6	2516835	40	917
7	2555389	39	776
8	2644672	44	952
9	2946482	48	506
10	2562777	42	876
Średnia	2627267	42,7	784,9
Mediana	2573884	42	831
Odchylenie			
standardowe	189768	2,945807	174,4104
Minimum	2320976	39	506
Maksimum	2946482	48	978

INVER-OVER, 5% szans na mutację

		Czas		
		wykonania		
Nr eksperymentu	7004	[ms]	619	921
		Liczby	Numery	
Nr próby	Wynik	baterii	pokoleń	
1	2539941	41	7	717
2	2750551	40	Ç	926

3	2443365	37	727
4	2873393	40	790
5	2738927	44	588
6	2874965	41	815
7	2689484	40	971
8	2492459	39	940
9	2555404	40	935
10	2310660	37	782
Średnia	2626915	39,9	819,1
Mediana	2622444	40	802,5
Odchylenie standardowe	188117,3	2,024846	123,4256
Minimum	2310660	37	588
Maksimum	2874965	44	971

zamiana miast, 30% szans na mutację

		Czas	
		wykonania	
Nr eksperymentu	7005	[ms]	71908
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	3009544	49	64
2	2980668	45	435
3	3038760	48	85
4	2552285	43	91
5	2635285	42	148
6	2672605	46	188
7	2852486	44	324
8	2504299	38	316
9	2711421	49	100
10	2767029	48	70
Średnia	2772438	45,2	182,1
Mediana	2739225	45,5	124
Odchylenie			
standardowe	191430,2	3,552777	130,8956
Minimum	2504299	38	64
Maksimum	3038760	49	435

INVER-OVER, 30% szans na mutację

		Czas wykonania	
Nr eksperymentu	7006	[ms]	65447
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2663765	43	525

2	2890352	43	655
3	2810280	43	669
4	2807403	42	318
5	2582863	39	636
6	2972163	42	842
7	2761179	46	422
8	2864373	41	924
9	2531082	43	438
10	2902265	41	844
Średnia	2778572	42,3	627,3
Mediana	2808841	42,5	645,5
Odchylenie			
standardowe	144340,3	1,828782	202,1501
Minimum	2531082	39	318
Maksimum	2972163	46	924

zamiana miast, 50% szans na mutację

		Czas wykonania	
Nr eksperymentu	7007	[ms]	74912
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2477441	45	54
2	3308360	44	380
3	2474747	44	32
4	2882798	49	90
5	2248354	41	23
6	2935840	51	81
7	2845436	50	42
8	2775741	41	321
9	2631208	49	96
10	2615592	46	96
Średnia	2719552	46	121,5
Mediana	2703474	45,5	85,5
Odchylenie		Ź	,
standardowe	297828,4	3,620927	124,3403
Minimum	2248354	41	23
Maksimum	3308360	51	380

INVER-OVER, 50% szans na mutację

Tak prezentuje się wykres zależności średniej liczby pokoleń od prawdopodobieństwa mutacji dla każdego z testowanych operatorów mutacji:

Widać, że po dodaniu mutacji średnie wyniki uległy pogorszeniu. Sprawdźmy jeszcze dla obu operatorów mniejszą wartość mutacji niż wszystkie testowane do tej pory (nie licząc oczywiście braku mutacji), a konkretnie 2%:

		Czas	
Nu alvanamumantu	7000	wykonania	61620
Nr eksperymentu	7008	[ms]	61629
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2812258	45	957
2	2302838	43	778
3	2407453	37	787
4	2803777	41	976
5	2359129	45	980
6	2695481	39	954
7	1995642	44	1000
8	2751881	35	744
9	2495246	45	724
10	2902265	41	517
Średnia	2552597	41,5	841,7
Mediana	2595364	42	870,5
Odchylenie			
standardowe	288150,6	3,566822	157,7643
Minimum	1995642	35	517
Maksimum	2902265	45	1000

zamiana miast, 2% szans na mutację

		Czas wykonania	
Nr eksperymentu	7009	[ms]	58896
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2656134	46	869

2	2466824	41	960
3	2504742	43	101
4	2303093	40	750
5	2968913	50	355
6	2487036	41	406
7	2434139	42	856
8	2389035	40	610
9	2592522	41	986
10	2474574	40	880
Średnia	2527701	42,4	677,3
Mediana	2480805	41	803
Odchylenie			
standardowe	183334,9	3,238655	298,9616
Minimum	2303093	40	101
Maksimum	2968913	50	986

INVER-OVER, 2% szans na mutację

Nanieśmy obliczone wartości na nasz wykres:

Okazało się, że średnie wyniki dla 2% mutacji w przypadku obu operatorów mutacji są nieco lepsze od tych dla zerowej mutacji. Najlepsze jak dotąd wyniki uzyskał operator INVER-OVER (który w eksperymentach dla poprzednich kombinacji selekcji i rekombinacji spisywał się gorzej od operatora zamiany miast) dla 2% szans na mutację. Spróbujemy teraz więc dla tych dwóch operatorów z 2% szansą na mutację i bez mutacji (w sumie trzy przypadki) zwiększyć liczbę wykonywanych pokoleń do 4000, gdyż aktualnie dla 1000 pokoleń średni nr pokolenia dla tych trzech przypadków jest stosunkowo wysoki w porównaniu do 1000:

Nr eksperymentu	7010	Czas wykonania [ms]	66210
Nr próby	Wynik	Liczby baterii	Numery pokoleń
1	2557542	37	3644
2	2371964	39	1244

3	2711584	42	859
4	2532558	38	3938
5	2642290	38	2008
6	2519034	36	3753
7	2566357	37	3691
8	2244746	38	1027
9	2618579	37	1051
10	2612241	37	3415
Średnia	2537690	37,9	2463
Mediana	2561949	37,5	2711,5
Odchylenie			
standardowe	136688	1,66333	1332,1
Minimum	2244746	36	859
Maksimum	2711584	42	3938

brak mutacji, liczba pokoleń = 4000

		Czas	
		wykonania	
Nr eksperymentu	7011	[ms]	204819
THEOREGE	7011	Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	2541338	36	3730
2	2562462	38	2084
3	2506844	36	3014
4	2137751	33	1897
5	2500691	38	2753
6	2535882	39	1341
7	2733157	38	3796
8	2497232	38	1726
9	2736004	39	3495
10	2599392	37	2920
Średnia	2535075	37,2	2675,6
Mediana	2538610	38	2836,5
Odchylenie			,
standardowe	165265,2	1,813529	872,9143
Minimum	2137751	33	1341
Maksimum	2736004	39	3796

zamiana miast, 2% szans na mutację, liczba pokoleń = 4000

Nr eksperymentu	7012	Czas wykonania [ms]	201314
Nr próby	Wynik	Liczby baterii	Numery pokoleń
1	2482286	40	755
2	2411166	40	1218

3	2647228	37	3188
4	2488420	39	897
5	2806607	40	3079
6	2392291	38	1083
7	2237846	36	580
8	2525589	37	3116
9	2456232	38	1082
10	2426771	38	2133
Średnia	2487444	38,3	1713,1
Mediana	2469259	38	1150,5
Odchylenie	1.50000		10.50.004
standardowe	153008,9	1,418136	1059,024
Minimum	2237846	36	580
Maksimum	2806607	40	3188

INVER-OVER, 2% szans na mutację, liczba pokoleń = 4000

Każdy z testowanych operatorów mutacji przy zwiększeniu liczby pokoleń osiągnął lepsze wyniki. Tak jak dla 1000 pokoleń najlepiej spisał się operator INVER-OVER, potem zamiana miast, a na końcu brak mutacji. Różnice między najlepszy a najgorszym operatorem w wynikach nie są jednak duże (rzędu ok. 5000).

30. Porównanie kombinacji operatorów krzyżowania i selekcji obliczonych dodatkowo z tymi wymaganymi przez zadanie

Na podstawie eksperymentów na dodatkowych kombinacjach selekcji i rekombinacji zostały sporządzone następujące wykresy w celu porównania ich z wymaganymi w zadaniu operatorami selekcji i rekombinacji:

Jak się okazuje, najlepiej spisuje się kombinacja CX+ruletka rankingowa. Ruletka rankingowa okazała się lepsza w każdym przypadku od turnieju z wyjątkiem rekombinacji OX. Wciąż najgorzej wypada rekombinacja przez cięcie i łączenie w reprezentacji porządkowej.

W przypadku średniej liczby baterii, zależność "im krótszy czas przebycia trasy tym mniej baterii" została podtrzymana.

Zdecydowanie najdłużej wciąż wykonywał się algorytm z rekombinacjami przez cięcie i łączenie. Dla tej rekombinacji, nie licząc algorytmu zachłannego, wyniki są wciąż najgorsze. Algorytm z kombinacją CX+turniej wykonywał się zauważalnie dłużej od innych kombinacji selekcji i rekombinacji w reprezentacji ścieżkowej, prawdopodobnie dlatego, iż w tym eksperymencie użyta została rekordowa liczba 64000 pokoleń, gdyż nr pokoleń z najlepszym osobnikiem okazywały się aż tak duże.

31.Najlepsza trasa

Trasa, której przebycie wymaga najmniej czasu dla Grecji została uzyskana w eksperymencie nr 5013 i jej czas wynosi 1554142 dla liczby baterii równej 29 z użyciem operatora krzyżowania CX i selekcji ruletki rankingowej.

Z kolei dla Szwecji najlepszą trasę uzyskano w eksperymencie nr 1015 dla PMX i ruletki rankingowej. Czas jej przebycia wynosi 6476317, a liczba baterii jest równa 44.

Jednak udało się znaleźć znacznie lepsze ścieżki zarówna dla Grecji jak i Szwecji ze względu na błąd w programie, który został naprawiony, a polegał na tym, że generując losową populację startową ścieżka w osobniku nie mieszała się losowo, ale składała się z kolejnych miast, czyli 1 2 3 4 5 itd. Aby móc zaprezentować te wyniki, dodana została możliwość generowania takiej populacji przez algorytm. Okazało się, ze dla osobnika o ścieżce 1 2 3 4 5... czas przebycia ścieżki jest zdecydowanie mniejszy od tego, który uzyskaliśmy podczas naszych wcześniejszych obliczeń. Być może wpływają na to ograniczenia, które występują przy liczeniu tego czasu, tj. np. ładowanie w mieście o co piątym numerze - przy ścieżce 1 2 3 4 5... ładujemy za każdym razem baterie w co piątym mieście, więc to może być klucz do uzyskania tak dobrych wyników.

Tak wyglądają wyniki tego eksperymentu:

		Czas	
		wykonania	
Nr eksperymentu	123456	[ms]	72
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	380869,9	22	0
2	380869,9	22	0
3	380869,9	22	0
4	380869,9	22	0
5	380869,9	22	0
6	380869,9	22	0
7	380869,9	22	0
8	380869,9	22	0
9	380869,9	22	0
10	380869,9	22	0
Średnia	380869,9	22	0
Mediana	380869,9	22	0
Odchylenie			
standardowe	0	0	0
Minimum	380869,9	22	0
Maksimum	380869,9	22	0

W porównaniu z uzyskanym wcześniej wynikiem 1554142 i 29 baterii dla Grecji wynik 380869,9 i 22 baterie to zdecydowanie lepszy rezultat.

Bazując więc na takiej populacji możemy osiągnąć jeszcze lepsze wyniki. Sprawdźmy jakie wartości dostaniemy, gdy uruchomimy algorytm ewolucyjny o danych parametrach:

- 1000 pokoleń
- PMX
- turniej

- zamiana miast
- 30% szans na mutację.

		Czas	
	100456	wykonania	5 40 co
Nr eksperymentu	123456	[ms]	54269
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	356053,2	17	793
2	357280	17	727
3	366756,5	19	977
4	354475,1	16	871
5	370906,9	20	946
6	358250,8	17	735
7	379689,4	22	984
8	378759,7	22	995
9	353966,7	16	928
10	358489,9	17	679
Średnia	363462,8	18,3	863,5
Mediana	358370,3	17	899,5
Odchylenie			
standardowe	9885,695	2,311805	120,1261
Minimum	353966,7	16	679
Maksimum	379689,4	22	995

Uzyskane wyniki się poprawiły. Jak widać ze względu na błąd w programie można czasem odkryć coś, co da nam zdecydowanie lepsze rezultaty.

Zwiększmy teraz liczbę wykonywanych pokoleń do 10000:

		Czas	
		wykonania	
Nr eksperymentu	1234567	[ms]	54269
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	348390,2	16	9671
2	351466,8	16	9967
3	353217,3	16	9785
4	347522,1	15	9242
5	350812,5	16	9475
6	349927,3	16	9972
7	351160,7	16	9988
8	354099,3	17	9720
9	352347,5	16	9975
10	342119	14	9867
Średnia	350106,3	15,8	9766,2
Mediana	350986,6	16	9826

Odchylenie standardowe	3457,014	0,788811	248,7215
Minimum	342119	14	9242
Maksimum	354099,3	17	9988

Wyniki poprawiły się jeszcze bardziej. Uzyskaliśmy najkrótszy dotychczas czas przebycia ścieżki, który wynosi 342119 dla liczby baterii równej 14.

Dla Szwecji natomiast dla ścieżki 1 2 3 4 5... uzyskano taki wynik:

		Czas wykonania	
Nr eksperymentu	12345	[ms]	144
		Liczby	Numery
Nr próby	Wynik	baterii	pokoleń
1	1331292	28	0
2	1331292	28	0
3	1331292	28	0
4	1331292	28	0
5	1331292	28	0
6	1331292	28	0
7	1331292	28	0
8	1331292	28	0
9	1331292	28	0
10	1331292	28	0
Średnia	1331292	28	0
Mediana	1331292	28	0
Odchylenie			
standardowe	0	0	0
Minimum	1331292	28	0
Maksimum	1331292	28	0

W porównaniu z dotychczas najlepszą ścieżką, której czas przebycia wynosi 6476317 dla 44 baterii, znów otrzymaliśmy olbrzymią poprawę.

Wychodzi więc na to, że korzystając z naszego algorytmu ewolucyjnego dla populacji startowej złożonej z osobników 1 2 3 4 5... uzyskamy lepsze wyniki niż dla populacji startowej zachłannej.