TITLE OF INVENTION

AN INKJET PRINTHEAD CHIP FOR USE WITH A PULSATING PRESSURE INK SUPPLY

INVENTOR:

Kia Silverbrook

CROSS REFERENCES TO RELATED APPLICATIONS

The following Australian provisional patent applications are hereby incorporated by reference. For the purposes of location and identification, US patents/patent applications identified by their US patent/patent application serial numbers are listed alongside the Australian applications from which the US patents/patent applications claim the right of priority.

CROSS-REFERENCED	US PATENT/PATENT APPLICATION	DOCKET NO.
Australian	(CLAIMING RIGHT OF PRIORITY FROM AUSTRALIAN	- 80
PROVISIONAL PATENT	Provisional Application)	, ÷
APPLICATION NO.		
	09/113,060	ART01
PO7991 PO8505	6,476,863	ART01
PO7988	0,470,303	ART02 ART03
	6,322,181	ART04
PO9395 PO8017	09/112,747	ART04
PO8017	6,227,648	ART07
	09/112,750	ART07
PO8025		ART09
PO8032	09/112,746	ART10
PO7999	09/112,743	ART11
PO7998	09/112,742	ART11
PO8031	09/112,741	ART12 ART13
PO8030	6,196,541	ART15
PO7997	6,195,150	ART16
PO7979	6,362,868	ARTIO
PO8015	09/112,738	
PO7978	09/113,067	ART18
PO7982	6,431,669	ART19
PO7989	6,362,869	ART20
PO8019	6,472,052	ART21
PO7980	6,356,715	ART22
PO8018	09/112,777	ART24
PO7938	09/113,224	ART25
PO8016	6,366,693	ART26
PO8024	6,329,990	ART27
PO7940	09/113,072	ART28
PO7939	6,459,495	ART29
PO8501	6,137,500	ART30

CROSS-REFERENCED	US PATENT/PATENT APPLICATION	DOCKET NO.
Australian	(CLAIMING RIGHT OF PRIORITY FROM AUSTRALIAN	
PROVISIONAL PATENT	PROVISIONAL APPLICATION)	
	FROVISIONAL APPLICATION)	÷
APPLICATION NO.		*
PO8500	09/112,796	ART31
PO7987	09/113,071	ART32
PO8022	6,398,328	ART33
PO8497	09/113,090	ART34
PO8020	6,431,704	ART38
PO8023	09/113,222	ART39
PO8504	09/112,786	ART42
PO8000	6,415,054	ART43
PO7977	09/112,782	ART44
PO7934	09/113,056	ART45
PO7990	09/113,059	ART46
PO8499	6,486,886	ART47
PO8502	6,381,361	ART48
PO7981	6,317,192	ART50
PO7986	09/113,057	ART51
PO7983	09/113,054	ART52
PO8026	09/112,752	ART53
PO8027	09/112,759	ART54
PO8028	09/112,757	ART56
PO9394	6,357,135	ART57
PO9396	09/113,107	ART58
PO9397	6,271,931	ART59
PO9398	6,353,772	ART60
PO9399	6,106,147	ART61
PO9400	09/112,790	ART62
PO9401	6,304,291	ART63
PO9402	09/112,788	ART64
PO9403	6,305,770	ART65
PO9405	6,289,262	ART66
PP0959	6,315,200	ART68
PP1397	The state of the s	ART69
PP2370	09/112,781	DOT01
PP2371	09/113,052	DOT02
PO8003	6,350,023	Fluid01
PO8005	6,318,849	Fluid02
PO9404	09/113,101	Fluid03
PO8066	6,227,652	IJ01
PO8072		IJ02
PO8040	6,213,589	IJ03
PO8040 PO8071	6,231,163	IJ04
PO8047	6,247,795	IJ05
PO8047 PO8035	6,394,581	IJ06
PO8033 PO8044	6,244,691	IJ07

CROSS-REFERENCED	US PATENT/PATENT APPLICATION	DOCKET NO.
AUSTRALIAN	(CLAIMING RIGHT OF PRIORITY FROM AUSTRALIAN	
PROVISIONAL PATENT	PROVISIONAL APPLICATION)	* .
APPLICATION NO.		
PO8063	6,257,704	1108
PO8057	6,416,168	1109
PO8056	6,220,694	IJ10
PO8069	6,257,705	IJ11
PO8049	6,247,794	IJ12
PO8036	6,234,610	IJ13
PO8048	6,247,793	IJ14
PO8070	6,264,306	. IJ15
PO8067	6,241,342	IJ16
PO8001	6,247,792	IJ17
PO8038	6,264,307	IJ18
PO8033	6,254,220	IJ19
PO8002	6,234,611	IJ20
PO8068	6,302,528	IJ21
PO8062	6,283,582	IJ22
PO8034	6,239,821	IJ23
PO8039	6,338,547	IJ24
PO8041	6,247,796	IJ25
PO8004	09/113,122	IJ26
PO8037	6,390,603	IJ27
PO8043	6,362,843	IJ28
PO8042	6,293,653	IJ29
PO8064	6,312,107	IJ30
PO9389	6,227,653	IJ31
PO9391	6,234,609	IJ32
PP0888	6,238,040	IJ33
PP0891	6,188,415	IJ34
PP0890	6,227,654	IJ35
PP0873	6,209,989	IJ36
PP0993	6,247,791	IJ37
PP0890	6,336,710	IJ38
PP1398	6,217,153	IJ39
PP2592	6,416,167	IJ40
PP2593	6,243,113	IJ41
PP3991	6,283,581	IJ42
PP3987	6,247,790	IJ43
PP3985	6,260,953	IJ44
PP3983	6,267,469	IJ45
PO7935	6,224,780	. IJM01
PO7936	6,235,212	ІЈМ02
PO7937	6,280,643	IJM03
PO8061	6,284,147	<u> </u>
PO8054	6,214,244	IJM05

CROSS-REFERENCED	US PATENT/PATENT APPLICATION	DOCKET NO.
AUSTRALIAN	(CLAIMING RIGHT OF PRIORITY FROM AUSTRALIAN	
PROVISIONAL PATENT		
· · · · · · · · · · · · · · · · · · ·	PROVISIONAL APPLICATION)	
APPLICATION NO.		
PO8065	6,071,750	IJM06
PO8055	6,267,905	IJM07
PO8053	6,251,298	<u>І</u> ЛМ08
• PO8078	6,258,285	IJM09 ·
PO7933	6,225,138	IJM10
PO7950	6,241,904	<u> </u>
PO7949	6,299,786	IJM12
PO8060	09/113,124	IJM13
PO8059	6,231,773	IJM14
PO8073	6,190,931	IJM15
PO8076	6,248,249	IJM16
PO8075	09/113,120	IJM17
PO8079	6,241,906	ІЈМ18
PO8050	09/113,116	IJM19
PO8052	6,241,905	ІЈМ20
PO7948	09/113,117	IJM21
PO7951	6,231,772	IJM22
PO8074	6,274,056	IJM23
PO7941	6,290,861	IJM24
PO8077	6,248,248	IJM25
PO8058	6,306,671	IJM26
PO8051	6,331,258	ІЈМ27
PO8045	6,110,754	ІЈМ28
PO7952	6,294,101	IJM29
PO8046	6,416,679	ІЈМ30
PO9390	6,264,849	IJM31
PO9392	6,254,793	ІЈМ32
PP0889	6,235,211	IJM35
PP0887	6,491,833	IJM36
PP0882	6,264,850	IJM37
PP0874	6,258,284	ІЈМ38
PP1396	6,312,615	IJM39
PP3989	6,228,668	IJM40
PP2591	6,180,427	IJM41
PP3990	6,171,875	IJM42
PP3986	6,267,904	IJM43
PP3984	6,245,247	IJM44
PP3982	6,315,914	IJM45
PP0895	6,231,148	IR01
PP0870	09/113,106	IR02
PP0869	6,293,658	IR04
PP0887	09/113,104	IR05
PP0885	6,238,033	IR06

CROSS-REFERENCED	US PATENT/PATENT APPLICATION	DOCKET NO.
AUSTRALIAN	(CLAIMING RIGHT OF PRIORITY FROM AUSTRALIAN	••
PROVISIONAL PATENT	PROVISIONAL APPLICATION)	* * *
APPLICATION NO.		
PP0884	6,312,070	IR10
PP0886	6,238,111	IR12
PP0871	09/113,086	IR13
PP0876	09/113,094	-IR14
PP0877	6,378,970	IR16
PP0878	6,196,739	IR17
PP0879	09/112,774	IR18
PP0883	6,270,182	IR19
PP0880	6,152,619	IR20
PP0881	09/113,092	IR21
PO8006	6,087,638	MEMS02
PO8007	6,340,222	MEMS03
PO8008	09/113,062	MEMS04
PO8010	6,041,600	MEMS05
PO8011	6,299,300	MEMS06
PO7947	6,067,797	MEMS07
PO7944	6,286,935	MEMS09
PO7946	6,044,646	MEMS10
PO9393	09/113,065	MEMS11
PP0875	09/113,078	MEMS12
PP0894	6,382,769	MEMS13

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable.

5 FIELD OF THE INVENTION

The present invention relates to an ink jet printer for use with a pulsating pressure ink supply.

BACKGROUND OF THE INVENTION

Many different types of printing have been invented, a large number of which are presently in use. The known forms of print have a variety of methods for marking the print media with a relevant marking media. Commonly used forms of printing include offset printing, laser printing and copying devices, dot matrix type impact printers, thermal paper printers, film recorders, thermal wax printers, dye sublimation printers and ink jet printers both of the drop on demand and continuous flow type. Each type of printer has its own advantages and problems when considering cost, speed, quality, reliability, simplicity of construction and operation etc.

In recent years, the field of ink jet printing, wherein each individual pixel of ink is derived from one or more ink nozzles has become increasingly popular primarily due to its inexpensive and versatile nature.

Many different techniques on ink jet printing have been invented. For a survey of the field, reference is made to an

ZG007US

article by J Moore, "Non-Impact Printing: Introduction and Historical Perspective", Output Hard Copy Devices, Editors R Dubeck and S Sherr, pages 207 - 220 (1988).

Ink Jet printers themselves come in many different types. The utilisation of a continuous stream ink in ink jet printing appears to date back to at least 1929 wherein US Patent No. 1941001 by Hansell discloses a simple form of continuous stream electro-static ink jet printing.

US Patent 3596275 by Sweet also discloses a process of a continuous ink jet printing including the step wherein the ink jet stream is modulated by a high frequency electro-static field so as to cause drop separation. This technique is still used by several manufacturers including Elmjet and Scitex (see also US Patent No. 3373437 by Sweet et al)

Piezoelectric ink jet printers are also one form of commonly used ink jet printing device. Piezoelectric systems are disclosed by Kyser et. al. in US Patent No. 3946398 (1970) which discloses a diaphragm mode of operation, by Zolten in US Patent 3683212 (1970) which discloses a squeeze mode of operation of a piezoelectric crystal, Stemme in US Patent No. 3747120 (1972) which discloses a bend mode of piezoelectric operation, Howkins in US Patent No. 4459601 which discloses a piezoelectric push mode actuation of the ink jet stream and Fischbeck in US 4584590 which discloses a shear mode type of piezoelectric transducer element.

Recently, thermal ink jet printing has become an extremely popular form of ink jet printing. The ink jet printing techniques include those disclosed by Endo et al in GB 2007162 (1979) and Vaught et al in US Patent 4490728. Both the aforementioned references disclose ink jet printing techniques rely upon the activation of an electrothermal actuator which results in the creation of a bubble in a constricted space, such as a nozzle, which thereby causes the ejection of ink from an aperture connected to the confined space onto a relevant print media. Printing devices using the electro-thermal actuator are manufactured by manufacturers such as Canon and Hewlett Packard.

As can be seen from the foregoing, many different types of printing technologies are available. Ideally, a printing technology should have a number of desirable attributes. These include inexpensive construction and operation, high speed operation, safe and continuous long term operation etc. Each technology may have its own advantages and disadvantages in the areas of cost, speed, quality, reliability, power usage, simplicity of construction operation, durability and consumables.

SUMMARY OF THE INVENTION

According to a first aspect of the invention, there is provided an ink jet printhead chip which comprises: a substrate that incorporates drive circuitry,

a plurality of nozzle arrangements positioned on the substrate, each nozzle arrangement comprising

nozzle chamber walls that define a nozzle chamber and an ink ejection port in fluid communication with the nozzle chamber, the nozzle chamber being in fluid communication with an ink supply channel through the substrate for supplying the nozzle chamber with ink;

a closure that is operatively positioned with respect to the ink supply channel, the closure being displaceable between a closed position in which the closure closes the ink supply channel and an open position in which ink is permitted to flow into the nozzle chamber; and

an actuator that is connected to the drive circuitry and the closure so that, on receipt of an electrical signal from the drive circuitry, the actuator can act to displace the closure between the closed and open positions;

30

25

10

15.

20

an ink reservoir in fluid communication with each ink supply channel; and

a source of oscillating pressure that imparts an oscillating pressure to ink in the reservoir, so that, when the closure is displaced into the open position, a drop of ink can be ejected from the ink ejection port.

Each actuator may be elongate and may be anchored at one end to the substrate. The actuator may be shaped so that, in a rest condition, the actuator encloses an arc. The actuator may include a heating portion that is capable of being heated on receipt of an electrical signal to expand, the heating portion being configured so that, when the portion is heated, the resultant expansion of the portion causes the actuator to straighten at least partially and a subsequent cooling of the portion causes the actuator to return to its rest condition thereby displacing the closure between the closed and open positions.

Each actuator may include a body portion that is of a resiliently flexible material having a coefficient of thermal expansion which is such that the material can expand to perform work when heated. The heating portion may be positioned in the body portion and may define a heating circuit of a suitable metal.

The heating circuit may include a heater and a return trace. The heater may be positioned proximate an inside edge of the body portion and the return trace may be positioned outwardly of the heater, so that an inside region of the body portion is heated to a relatively greater extent with the result that the inside region expands to a greater extent than a remainder of the body portion.

A serpentine length of said suitable material may define the heater.

The body portion may be of polytetrafluoroethylene and the heating circuit may be of copper. Each actuator may define a coil that partially uncoils when the heating portion expands.

The actuator and the closure may be positioned within the nozzle chamber.

In accordance with a second aspect of the present invention, there is provided an ink jet nozzle comprising an ink ejection port for the ejection of ink, an ink supply with an oscillating ink pressure interconnected to the ink ejection port, a shutter mechanism interconnected between the ink supply and the ink ejection port, which blocks the ink ejection port, and an actuator mechanism for moving the shutter mechanism on demand away from the ink ejection port so as to allow for the ejection of ink on demand from the ink ejection port.

In another embodiment of the invention, there is provided a method of operating an ink jet printhead that includes a plurality of nozzle arrangements and an ink reservoir, each nozzle arrangement having:

a nozzle chamber and an ink ejection port in fluid communication with the nozzle chamber, and a closure that is operatively positioned with respect to the ink ejection port, the closure being displaceable between open and closed positions to open and close the ink ejection port, respectively,

the ink reservoir in fluid communication with the nozzle chambers, the method comprising the steps of:

maintaining each closure in the closed position;

subjecting ink in the ink reservoir and thus each nozzle chamber to an oscillating pressure, selectively and independently displacing each closure into the open position so that an ink droplet is ejected from the respective ink ejection port as a result of the oscillating pressure.

Further, the actuator preferably comprises a thermal actuator which is activated by the heating of one side of the

30

. 10

15

20

25

actuator. Preferably the actuator has a coiled form and is uncoiled upon heating. The actuator includes a serpentine heater element encased in a material having a high coefficient of thermal expansion. The serpentine heater concertinas upon heating. Advantageously, the actuator includes a thick return trace for the serpentine heater element. The material in which the serpentine heater element is encased comprises polytetrafluoroethylene. The actuator is formed within a nozzle chamber which is formed on a silicon wafer and ink is supplied to the ejection port through channels etched through the silicon wafer.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

20

25

30

Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:

Fig.1 is an exploded perspective view illustrating the construction of a single ink jet nozzle in accordance with the preferred embodiment;

Fig.2 is a perspective view, partly in section, of a single ink jet nozzle constructed in accordance with the preferred embodiment;

Fig. 3 provides a legend of the materials indicated in Figs. 4 to 16;

Fig. 4 to Fig. 16 illustrate sectional views of the manufacturing steps in one form of construction of an ink jet printhead nozzle; and

Fig. 17 shows a schematic, sectional end view of part of an ink jet nozzle array showing two nozzle arrangements of the array;

Fig. 18 shows the array with ink being ejected from one of the nozzle arrangements;

Fig. 19 shows a schematic side view of re-filling of the nozzle of the first nozzle arrangement; and

Fig. 20 shows operation of the array preceding commencement of ink ejection from the second of the illustrated nozzle arrangements.

DESCRIPTION OF PREFERRED AND OTHER EMBODIMENTS

In the preferred embodiment, an oscillating ink reservoir pressure is used to eject ink from ejection nozzles. Each nozzle has an associated shutter which normally blocks the nozzle. The shutter is moved away from the nozzle by an actuator whenever an ink drop is to be fired.

Turning initially to Fig.1, there is illustrated in exploded perspective a single ink jet nozzle 10 as constructed in accordance with the principles of the present invention. The exploded perspective illustrates a single ink jet nozzle 10. Ideally, the nozzles are formed as an array on a silicon wafer 12. The silicon wafer 12 is processed so as to have two level metal CMOS circuitry which includes metal layers and glass layers 13 and which are planarised after construction. The CMOS metal layer has a reduced aperture 14 for the access of ink from the back of silicon wafer 12 via an ink supply channel 15.

A bottom nitride layer 16 is constructed on top of the CMOS layer 13 so as to cover, protect and passivate the CMOS layer 13 from subsequent etching processes. Subsequently, there is provided a copper heater layer 18 which is sandwiched between two polytetrafluoroethylene (PTFE) layers 19,20. The copper layer 18 is connected to lower CMOS layer 13 through vias 25,26. The copper layer 18 and PTFE layers 19,20 are encapsulated within nitride borders e.g. 28 and nitride top layer 29 which includes an ink ejection port 30 in addition to a number of sacrificial etched access holes 32 which

ZG007US

are of a smaller dimension than the ejection port 30 and are provided for allowing access of a etchant to lower sacrificial layers thereby allowing the use of the etchant in the construction of layers, 18,19,20 and 28.

Turning now to Fig. 2, there is shown a cutaway perspective view of a fully constructed ink jet nozzle 10. The ink jet nozzle uses an oscillating ink pressure to eject ink from ejection port 30. Each nozzle has an associated shutter 31 which normally blocks it. The shutter 31 is moved away from the ejection port 30 by an actuator 35 whenever an ink drop is to be fired.

The ports 30 are in communication with ink chambers which contain the actuators 35. These chambers are connected to ink supply channels 15 which are etched through the silicon wafer. The ink supply channels 15 are substantially wider than the ports 30, to reduce the fluidic resistance to the ink pressure wave. The ink channels 15 are connected to an ink reservoir. An ultrasonic transducer (for example, a piezoelectric transducer) is positioned in the reservoir. The transducer oscillates the ink pressure at approximately 100 KHz. The ink pressure oscillation is sufficient that ink drops would be ejected from the nozzle were it not blocked by the shutter 31.

The shutters are moved by a thermoelastic actuator 35. The actuators are formed as a coiled serpentine copper heater 23 embedded in polytetrafluoroethylene (PTFE) 19/20. PTFE has a very high coefficient of thermal expansion (approximately 770x10⁻⁶). The current return trace 22 from the heater 23 is also embedded in the PTFE actuator 35, the current return trace 22 is made wider than the heater trace 23 and is not serpentine. Therefore, it does not heat the PTFE as much as the serpentine heater 23 does. The serpentine heater 23 is positioned along the inside edge of the PTFE coil, and the return trace is positioned on the outside edge. When actuated, the inside edge becomes hotter than the outside edge, and expands more. This results in the actuator 35 uncoiling.

The heater layer 23 is etched in a serpentine manner both to increase its resistance, and to reduce its effective tensile strength along the length of the actuator. This is so that the low thermal expansion of the copper does not prevent the actuator from expanding according to the high thermal expansion characteristics of the PTFE.

By varying the power applied to the actuator 35, the shutter 31 can be positioned between the fully on and fully off positions. This may be used to vary the volume of the ejected drop. Drop volume control may be used either to implement a degree of continuous tone operation, to regulate the drop volume, or both.

When data signals distributed on the printhead indicate that a particular nozzle is turned on, the actuator 35 is energized, which moves the shutter 31 so that it is not blocking the ink chamber. The peak of the ink pressure variation causes the ink to be squirted out of the nozzle 30. As the ink pressure goes negative, ink is drawn back into the nozzle, causing drop break-off. The shutter 31 is kept open until the nozzle is refilled on the next positive pressure cycle. It is then shut to prevent the ink from being withdrawn from the nozzle on the next negative pressure cycle.

Each drop ejection takes two ink pressure cycles. Preferably half of the nozzles 10 should eject drops in one phase, and the other half of the nozzles should eject drops in the other phase. This minimises the pressure variations which occur due to a large number of nozzles being actuated.

Referring to Figures 17 to 20, the operation of the printhead is described in greater detail. The printhead comprises an array of nozzle arrangements or nozzles 10, two of which are shown as 10.1 and 10.2 in Figure 17. Each nozzle arrangement 10 has a chamber 58 in which its associated shutter 31 is arranged.

Each chamber 58 is in communication with an ink reservoir 60 via an ink supply channel 36. An ultrasonic transducer in the form of a piezoelectric transducer 62 is arranged n the ink reservoir 60.

ZG007US

25

5.

10

15

As described above, each ink drop ejection takes two ink pressure cycles. The two ink pressure cycles are referred to as a phase. Half of the nozzles 10 should eject ink drops 64 (Figure 18) in one phase with the other half of the nozzles ejecting ink drops in the other phase.

Consequently, as shown in Figure 17 of the drawings, the shutter 31.2 of the nozzle 10.2 is in an open position while the shutter 31.1 of the nozzle 10.1 is in its closed position. It will be appreciated that the nozzle 10.2 represents all the open nozzles of the array of the printhead while the nozzle 10.1 represents all the closed nozzles of the array of the printhead.

In a first pressure cycle, the transducer 62 is displaced in the direction of arrows 66 imparting positive pressure to the ink 57 in the reservoir 60 and, via the channels 36, the chambers 58 of the nozzles 10. Due to the fact that the shutter 31.2 of the nozzle 10.2 is open, ink in the ink ejection port 30.2 bulges outwardly as shown by the meniscus 68. After a predetermined interval, the transducer 62 reverses direction to move in the direction of arrows 70 as shown in Figure 18 of the drawings. This causes necking, as shown at 72, resulting in separation of the ink drop 64 due to a first negative going pressure cycle imparted to the ink 57.

In the second positive pressure cycle, as shown in Figure 19 of the drawings, with the transducer moving again in the direction of arrow 66, the positive pressure applied to the ink results in a refilling of the chamber 58.2 of the nozzle 10.2. It is to be noted that the shutter 31.2 is still in an open position with the shutter 31.1 still being in a closed position. In this cycle, no ink is ejected from either nozzle 10.1 or 10.2.

Before the second negative pressure cycle, as shown in Figure 20 of the drawings, the shutter 31.2 moves to its closed position. Then, as the transducer 62 again moves in the direction of arrows 70 to impart negative pressure to the ink 57, a slight concave meniscus 74 is formed at both ink ejection ports 30.1 and 30.2 However, due to the fact that both shutters 31.1 and 31.2 are closed, withdrawal of ink from the chambers 58.1 and 58.2 of the nozzles 10.1 and 10.2, respectively, is inhibited.

The amplitude of the ultrasonic transducer can be altered in response to the viscosity of the ink (which is typically affected by temperature), and the number of drops which are to be ejected in the current cycle. This amplitude adjustment can be used to maintain consistent drop size in varying environmental conditions.

The drop firing rate can be around 50 KHz. The ink jet head is suitable for fabrication as a monolithic page wide printhead. Fig.2 shows a single nozzle of a 1600 dpi printhead in "up shooter" configuration.

Returning again to Fig.1, one method of construction of the ink jet print nozzles 10 will now be described. Starting with the bottom wafer layer 12, the wafer is processed so as to add CMOS layers 13 with an aperture 14 being inserted. The nitride layer 16 is laid down on top of the CMOS layers so as to protect them from subsequent etchings.

A thin sacrificial glass layer is then laid down on top of nitride layers 16 followed by a first PTFE layer 19, the copper layer 18 and a second PTFE layer 20. Then a sacrificial glass layer is formed on top of the PTFE layer and etched to a depth of a few microns to form the nitride border regions 28. Next the top layer 29 is laid down over the sacrificial layer using the mask for forming the various holes including the processing step of forming the rim 40 on nozzle 30. The sacrificial glass is then dissolved away and the channel 15 formed through the wafer by means of utilisation of high density low pressure plasma etching such as that available from Surface Technology Systems.

One form of detailed manufacturing process which can be used to fabricate monolithic ink jet printheads operating in accordance with the principles taught by the present embodiment can proceed using the following steps:

ZG007US

30

25

15

- 1. Using a double sided polished wafer 12, complete drive transistors, data distribution, and timing circuits using a 0.5 micron, one poly, 2 metal CMOS process 13. The wafer is passivated with 0.1 microns of silicon nitride 16. This step is shown in Fig. 4. For clarity, these diagrams may not be to scale, and may not represent a cross section though any single plane of the nozzle. Fig. 3 is a key to representations of various materials in these manufacturing diagrams, and those of other cross referenced ink jet configurations.
- 2. Etch nitride and oxide down to silicon using Mask 1. This mask defines the nozzle inlet below the shutter. This step is shown in Fig. 5.
 - 3. Deposit 3 microns of sacrificial material 50 (e.g. aluminum or photosensitive polyimide)
 - 4. Planarize the sacrificial layer to a thickness of 1 micron over nitride. This step is shown in Fig. 6.
 - 5. Etch the sacrificial layer using Mask 2. This mask defines the actuator anchor point 51. This step is shown in Fig.
 - 6. Deposit 1 micron of PTFE 52.

10

15

- 7. Etch the PTFE, nitride, and oxide down to second level metal using Mask 3. This mask defines the heater vias 25, 26. This step is shown in Fig. 8.
- 8. Deposit the heater 53, which is a 1 micron layer of a conductor with a low Young's modulus, for example aluminum or gold.
 - 9. Pattern the conductor using Mask 4. This step is shown in Fig. 9.
 - 10. Deposit 1 micron of PTFE 54.
- 11. Etch the PTFE down to the sacrificial layer using Mask 5. This mask defines the actuator and shutter This step is shown in Fig. 10.
 - 12. Wafer probe. All electrical connections are complete at this point, bond pads are accessible, and the chips are not yet separated.
 - 13. Deposit 3 microns of sacrificial material 55. Planarize using CMP
- 14. Etch the sacrificial material using Mask 6. This mask defines the nozzle chamber wall 28. This step is shown in Fig. 11.
 - 15. Deposit 3 microns of PECVD glass 56.
 - 16. Etch to a depth of (approx.) 1 micron using Mask 7. This mask defines the nozzle rim 40. This step is shown in Fig. 12.
 - 17. Etch down to the sacrificial layer using Mask 6. This mask defines the roof of the nozzle chamber, the nozzle 30, and the sacrificial etch access holes 32. This step is shown in Fig. 13.
 - 18. Back-etch completely through the silicon wafer (with, for example, an ASE Advanced Silicon Etcher from Surface Technology Systems) using Mask 7. This mask defines the ink inlets 15 which are etched through the wafer. The wafer is also diced by this etch. This step is shown in Fig. 14.
 - 19. Etch the sacrificial material. The nozzle chambers are cleared, the actuators freed, and the chips are separated by this etch. This step is shown in Fig. 15.
 - 20. Mount the printheads in their packaging, which may be a molded plastic former incorporating ink channels which supply the appropriate color ink to the ink inlets at the back of the wafer. The package also includes a piezoelectric actuator attached to the rear of the ink channels. The piezoelectric actuator provides the oscillating ink pressure required for

the ink jet operation.

- 21. Connect the printheads to their interconnect systems. For a low profile connection with minimum disruption of airflow, TAB may be used. Wire bonding may also be used if the printer is to be operated with sufficient clearance to the paper.
 - 22. Hydrophobize the front surface of the printheads.
 - 23. Fill the completed printheads with ink 57 and test them. A filled nozzle is shown in Fig. 16.

It would be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the preferred embodiment without departing from the spirit or scope of the invention as broadly described. The present embodiment is, therefore, to be considered in all respects to be illustrative and not restrictive.

The presently disclosed ink jet printing technology is potentially suited to a wide range of printing systems including: colour and monochrome office printers, short run digital printers, high speed digital printers, offset press supplemental printers, low cost scanning printers, high speed pagewidth printers, notebook computers with inbuilt pagewidth printers, portable colour and monochrome printers, colour and monochrome copiers, colour and monochrome facsimile machines, combined printer, facsimile and copying machines, label printers, large format plotters, photograph copiers, printers for digital photographic 'minilabs', video printers, PhotoCD printers, portable printers for PDAs, wallpaper printers, indoor sign printers, billboard printers, fabric printers, camera printers and fault tolerant commercial printer arrays.

Ink Jet Technologies

The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.

The most significant problem with thermal ink jet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal ink jet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.

The most significant problem with piezoelectric ink jet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per printhead, but is a major impediment to the fabrication of pagewidth printheads with 19,200 nozzles.

Ideally, the ink jet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new ink jet technologies have been created. The target features include:

low power (less than 10 Watts)
high resolution capability (1,600 dpi or more)
photographic quality output
low manufacturing cost
small size (pagewidth times minimum cross section)

3*5*

30

10 -

15

20

high speed (< 2 seconds per page).

All of these features can be met or exceeded by the ink jet systems described below with differing levels of difficulty. Forty-five different ink jet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the table under the heading Cross References to Related Applications.

The ink jet designs shown here are suitable for a wide range of digital printing systems, from battery powered onetime use digital cameras, through to desktop and network printers, and through to commercial printing systems.

For ease of manufacture using standard process equipment, the printhead is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the printhead is 100 mm long, with a width which depends upon the ink jet type. The smallest printhead designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm. The printheads each contain 19,200 nozzles plus data and control circuitry.

Ink is supplied to the back of the printhead by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The printhead is connected to the camera circuitry by tape automated bonding.

Tables of Drop-on-Demand Ink Jets

15

20

30

35

Eleven important characteristics of the fundamental operation of individual ink jet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.

The following tables form the axes of an eleven dimensional table of ink jet types.

Actuator mechanism (18 types)

Basic operation mode (7 types)

Auxiliary mechanism (8 types)

Actuator amplification or modification method (17 types)

25 Actuator motion (19 types)

Nozzle refill method (4 types)

Method of restricting back-flow through inlet (10 types)

Nozzle clearing method (9 types)

Nozzle plate construction (9 types):

Drop ejection direction (5 types)

Ink type (7 types)

The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of ink jet nozzle. While not all of the possible combinations result in a viable ink jet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain ink jet types have been investigated in detail. These are designated IJ01 to IJ45 above which matches the docket numbers in the table under the heading Cross References to Related Applications.

Other ink jet configurations can readily be derived from these forty-five examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into ink jet printheads with characteristics superior to any currently available ink jet technology.

Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, a print technology may be listed more than once in a table, where it shares characteristics with more than one entry.

Suitable applications for the ink jet technologies include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.

The information associated with the aforementioned 11 dimensional matrix are set out in the following tables.

5

	Description	Advantages	Disadvantages	Examples
Thermal	An electrothermal	♦ Large force	♦ High power	◆ Canon Bubblejet
bubble	heater heats the ink to	generated	♦ Ink carrier	1979 Endo et al GB
٠.	above boiling point,	♦ Simple	limited to water	patent 2,007,162
	transferring significant	construction	♦ Low efficiency	♦ Xerox heater-in-
9	heat to the aqueous	♦ No moving parts	♦ High	pit 1990 Hawkins et
and the second	ink. A bubble	♦ Fast operation	temperatures	al USP 4,899,181 -
	nucleates and quickly	♦ Small chip area	required	♦ Hewlett-Packard
	forms, expelling the	required for actuator	♦ High mechanical	TIJ 1982 Vaught et
:	ink.		stress	al USP 4,490,728
*	The efficiency of the	(0)	♦ Unusual	
	process is low, with		materials required	
_	typically less than		♦ Large drive	
	0.05% of the electrical		transistors	
	energy being	,	♦ Cavitation causes	
· · · · · · · · · · · · · · · · · · ·	transformed into		actuator failure	
	kinetic energy of the		♦ Kogation reduces	•
	drop.		bubble formation	
			♦ Large print heads	
		* **	are difficult to	
	*	.	fabricate	
Piezo-	A piezoelectric crystal	♦ Low power	♦ Very large area	♦ Kyser et al USP
electric	such as lead	consumption	required for actuator	3,946,398
cicciic	lanthanum zirconate	♦ Many ink types	♦ Difficult to	♦ Zoltan USP
	(PZT) is electrically	can be used	integrate with	3,683,212
	activated, and either	♦ Fast operation	electronics	♦ 1973 Stemme
	expands, shears, or	♦ High efficiency	♦ High voltage	USP 3,747,120
•	bends to apply	Tingin erineneney	drive transistors	♦ Epson Stylus
· '	pressure to the ink,		required	♦ Tektronix
÷	ejecting drops.	•	♦ Full pagewidth	◆ IJ04
*	.,		print heads	1
			impractical due to	
•	al.		actuator size	
,			♦ Requires	ļ · · · · .
			electrical poling in	
			high field strengths	
•	•		during manufacture	

	Description	Advantages	Disadvantages	Examples
Electro-	An electric field is	♦ Low power	♦ Low maximum	♦ Seiko Epson,
		consumption	strain (approx.	Usui et all JP
strictive	used to activate		0.01%)	253401/96
	electrostriction in	♦ Many ink types	1	◆ IJ04
	relaxor materials such	can be used	♦ Large area	▼ 1304
	as lead lanthanum	◆ Low thermal	required for actuator	
	zirconate titanate	expansion	due to low strain	7 -32 Y
	(PLZT) or lead	◆ Electric field	♦ Response speed	
	magnesium niobate	strength required	is marginal (~ 10	
4	(PMN).	(approx. 3.5 V/μm)	. μs)	
		can be generated	♦ High voltage	
		without difficulty	drive transistors.	
* .		Does not require	required	
* *			◆ Full pagewidth	1
•		electrical poling		
		•	print heads	
			impractical due to	
		*/	actuator size	
Ferro-	An electric field is	◆ Low power	♦ Difficult to	◆ IJ04
electric	used to induce a phase	consumption .	integrate with	
. •	transition between the	♦ Many ink types	electronics	(C)
• • • •	antiferroelectric (AFE)	can be used	♦ Unusual	*
· .	and ferroelectric (FE)	♦ Fast operation	materials such as	
	phase. Perovskite	(< 1 μs)	PLZSnT are	
	materials such as tin	• Relatively high	required	
	modified lead		♦ Actuators require	
*		longitudinal strain	a large area	
	lanthanum zirconate	♦ High efficiency	a large area	
	titanate (PLZSnT)	◆ Electric field		, ,
	exhibit large strains of	strength of around 3	× -	
*	up to 1% associated	V/µm can be readily	. *	*
	with the AFE to FE	provided		•
	phase transition.		· · · · · · · · · · · · · · · · · · ·	
Electro-	Conductive plates are	♦ Low power	Difficult to	♦ IJ02, IJ04
static plates	separated by a	consumption	operate electrostatic	
	compressible or fluid	♦ Many ink types	devices in an	
	dielectric (usually air).	can be used	aqueous	1.5
	Upon application of a	Fast operation	environment	
	voltage, the plates	• Tast operation	The electrostatic	*
	attract each other and		actuator will	. 00
	1		normally need to be	
	displace ink, causing		-	
	drop ejection. The		separated from the	
**	conductive plates may		ink	
	be in a comb or		♦ Very large area	
	honeycomb structure,		required to achieve	
	or stacked to increase		high forces	
	the surface area and		♦ High voltage	
	therefore the force.		drive transistors	0
,	. *		may be required	
	.* *	*	♦ Full pagewidth	
			print heads are not	
	· • - · - · - · - · - · -	- · · · · · · · · · · · · · · · · · · ·	competitive due to	
*	·	1 ,	compeniive due to	

•	Description	Advantages	Disadvantages	Examples
Electro-	A strong electric field	♦ Low current	♦ High voltage	♦ 1989 Saito et al,
static pull	is applied to the ink,	consumption	required	USP 4,799,068
on ink	whereupon	♦ Low temperature	♦ May be damaged	♦ 1989 Miura et al,
	electrostatic attraction	-	by sparks due to air	USP 4,810,954
	accelerates the ink		breakdown	♦ Tone-jet
	towards the print		♦ Required field	
	medium.	· ·	strength increases as	
		*	the drop size	
. •			decreases	
		3 .	♦ High voltage	
			drive transistors	
	***. "		required	
		**	Electrostatic field	· ·
		•	attracts dust	1))
Permanent	An electromagnet	♦ Low power	◆ Complex	♦ IJ07, IJ10
magnet	directly attracts a	consumption	fabrication	4 1307, 1310
magnet electro-	permanent magnet,	◆ Many ink types	♦ Permanent	*
	displacing ink and	can be used	magnetic material	
magnetic	causing drop ejection.	◆ Fast operation	such as Neodymium	
	Rare earth magnets		Iron Boron (NdFeB)	
	with a field strength	♦ High efficiency	required.	
•	around 1 Tesla can be	• Easy extension	◆ High local	
0.2	used. Examples are:	from single nozzles	currents required	
	Samarium Cobalt	to pagewidth print	_	
	(SaCo) and magnetic	heads	Copper metalization should	
	materials in the			
•	neodymium iron boron	*	be used for long	
	family (NdFeB,		electromigration lifetime and low	
	NdDyFeBNb,			
•	NdDyFeB, etc)	* *	resistivity	
	Nullyreb, etc)		• Pigmented inks	
			are usually	
			infeasible	
			♦ Operating	· · · · · · · · · · · · · · · · · · ·
	* *		temperature limited	
• .			to the Curie	
			temperature (around	1:
	I .	Programme and the second secon	540 K)	

*	Description	Advantages	Disadvantages	Examples
Soft	A solenoid induced a	♦ Low power	◆ Complex	◆ IJ01, IJ05, IJ08,
magnetic	magnetic field in a soft	consumption .	fabrication	IJ10, IJ12, IJ14,
core electro-	magnetic core or yoke	♦ Many ink types	♦ Materials not	IJ15, IJ17
nagnetic	fabricated from a	can be used	usually present in a	
	ferrous material such	♦ Fast operation	CMOS fab such as	
•	as electroplated iron	♦ High efficiency	NiFe, CoNiFe, or	
	alloys such as CoNiFe	• Easy extension	CoFe are required	
	[1], CoFe, or NiFe	from single nozzles	♦ High local	
	alloys. Typically, the	to pagewidth print	currents required	
	soft magnetic material	heads	♦ Copper	
	is in two parts, which	•	metalization should	***
	are normally held		be used for long	* .
	apart by a spring.		electromigration	w
. 10	When the solenoid is		lifetime and low	
	actuated, the two parts		resistivity	9
	attract, displacing the		♦ Electroplating is	*· · ,
	ink.	·	required	
	,		♦ High saturation	
5 . **			flux density is	
•	* * * * * * * * * * * * * * * * * * * *		required (2.0-2.1 T	•
			is achievable with	
A. *1			CoNiFe [1])	
orenz	The Lorenz force	◆ Low power	♦ Force acts as a	◆ IJ06, IJ11, IJ13,
orce	acting on a current	consumption	twisting motion	IJ16
•	carrying wire in a	♦ Many ink types	◆ Typically, only a	
	magnetic field is	can be used	quarter of the	
	utilized.	♦ Fast operation	solenoid length	
•	This allows the	♦ High efficiency	provides force in a	
	magnetic field to be	♦ Easy extension	useful direction	
	supplied externally to	from single nozzles	♦ High local	
v *	the print head, for	to pagewidth print	currents required	
	example with rare	heads	♦ Copper	
	earth permanent	• "	metalization should	*
	magnets.		be used for long	
	Only the current	*	electromigration	
	carrying wire need be		lifetime and low	
	fabricated on the print-		resistivity	
	head, simplifying		♦ Pigmented inks	
	materials	والمراواة المحال المحال المحال	are usually	
•	requirements.		infeasible	1

	Description	Advantages	Disadvantages	Examples
Magneto- striction	The actuator uses the giant magnetostrictive effect of materials such as Terfenol-D (an alloy of terbium, dysprosium and iron developed at the Naval Ordnance Läboratory, hence Ter-Fe-NOL). For best efficiency, the actuator should be prestressed to approx. 8 MPa.	 Many ink types can be used Fast operation Easy extension from single nozzles to pagewidth print heads High force is available 	◆ Force acts as a twisting motion ◆ Unusual materials such as Terfenol-D are required ◆ High local currents required ◆ Copper metalization should be used for long electromigration lifetime and low resistivity ◆ Pre-stressing	◆ Fischenbeck, USP 4,032,929 ◆ IJ25
Surface tension reduction	Ink under positive pressure is held in a nozzle by surface tension. The surface tension of the ink is reduced below the bubble threshold, causing the ink to egress from the nozzle.	 ◆ Low power consumption ◆ Simple construction ◆ No unusual materials required in fabrication ◆ High efficiency ◆ Easy extension from single nozzles to pagewidth print heads 	may be required Requires supplementary force to effect drop separation Requires special ink surfactants Speed may be limited by surfactant properties	Silverbrook, EP 0771 658 A2 and related patent applications
Viscosity reduction	The ink viscosity is locally reduced to select which drops are to be ejected. A viscosity reduction can be achieved electrothermally with most inks, but special inks can be engineered for a 100:1 viscosity reduction.	 ♦ Simple construction ♦ No unusual materials required in fabrication ♦ Easy extension from single nozzles to pagewidth print heads 	 Requires supplementary force to effect drop separation Requires special ink viscosity properties High speed is difficult to achieve Requires oscillating ink pressure A high temperature difference (typically 80 degrees) is 	• Silverbrook, EP 0771 658 A2 and related patent applications

	Description	Advantages	Disadvantages .	Examples
Acoustic	An acoustic wave is	♦ Can operate	◆ Complex drive	♦ 1993 Hadimioglu
٠.	generated and	without a nozzle	circuitry	et al, EUP 550,192
	focussed upon the	plate	♦ Complex	♦ 1993 Elrod et al,
	drop ejection region.		fabrication	EUP 572,220
			♦ Low efficiency	
	· · · · · · · · · · · · · · · · · · ·	*	♦ Poor control of	*
•			drop position	
	1 1 1 × 1 × 1 × 1 × 1 × 1	**	Poor control of	
			drop volume	
Thermo-	An actuator which	♦ Low power	Efficient aqueous	♦ IJ03, IJ09, IJ17,
elastic bend	relies upon differential	consumption	operation requires a	IJ18, IJ19, IJ20,
ectuator	thermal expansion	Many ink types	thermal insulator on	IJ21, IJ22, IJ23,
ictuatoi	upon Joule heating is	can be used	the hot side	IJ24, IJ27, IJ28,
	used.		• Corrosion	IJ29, IJ30, IJ31,
*	used.	Simple planar fabrication		IJ32, IJ30, IJ31, IJ32, IJ33, IJ34,
			prevention can be difficult	IJ32, IJ35, IJ34, IJ35, IJ36, IJ37,
		♦ Small chip area		IJ38 ,IJ39, IJ40,
		required for each	♦ Pigmented inks	IJ41
		actuator	may be infeasible,	1341
		♦ Fast operation	as pigment particles	8.747
	., .,	♦ High efficiency	may jam the bend	
		◆ CMOS	actuator	
	**	compatible voltages		
	, o Pi	and currents	5 2 36 5	
		♦ Standard MEMS	•	*
		processes can be	* *	
		used	* · · · ·	
	[·	♦ Easy extension	·	-
		from single nozzles		· ·
1	* **	to pagewidth print	2	* •
		heads	1	

	Description	Advantages	Disadvantages	Examples
High CTE	A material with a very	♦ High force can	♦ Requires special	◆ IJ09, IJ17, IJ18,
thermo-	high coefficient of	be generated	material (e.g. PTFE)	IJ20, IJ21, IJ22,
elastic _.	thermal expansion	◆ Three methods of	♦ Requires a PTFE	IJ23, IJ24, IJ27,
actuator	(CTE) such as	PTFE deposition are	deposition process,	IJ28, IJ29, IJ30,
	polytetrafluoroethylen	under development:	which is not yet	IJ31, IJ42, IJ43,
	e (PTFE) is used. As	chemical vapor	standard in ULSI	IJ44
	high CTE materials	deposition (CVD),	fabs	
	are usually non-	spin coating, and	♦ PTFE deposition	
	conductive, a heater	evaporation	cannot be followed	
	fabricated from a	◆ PTFE is a	with high	
	conductive material is	candidate for low	temperature (above	
	incorporated. A 50 μm	dielectric constant	350 °C) processing	*
	long PTFE bend	insulation in ULSI	Pigmented inks	* .
	actuator with	♦ Very low power	may be infeasible,	
	polysilicon heater and	consumption.	as pigment particles	
	15 mW power input	♦ Many ink types	may jam the bend	
	can provide 180 μN	can be used	actuator	
	force and 10 µm	♦ Simple planar		
	deflection. Actuator	fabrication		
	motions include:	♦ Small chip area		•
• •	Bend	required for each		,
	Push	actuator		
	7	♦ Fast operation		
	Buckle	♦ High efficiency		
	Rotate	• CMOS	* ;	·
		compatible voltages		
		and currents		0
	·	♦ Easy extension		,
		from single nozzles		0 • • •
	[* * * * * * * * * * * * * * * * * * *	to pagewidth print	*	v 0
		heads		

	Description	Advantages	Disadvantages	Examples
Conduct-ive	A polymer with a high	♦ High force can	♦ Requires special	♦ IJ24
olymer	coefficient of thermal	be generated	materials	
hermo-	expansion (such as	♦ Very low power	development (High	
lastic	PTFE) is doped with	consumption	CTE conductive	
ctuator	conducting substances	♦ Many ink types	polymer)	
	to increase its	can be used	♦ Requires a PTFE	
	conductivity to about 3	♦ Simple planar	deposition process,	
	orders of magnitude	fabrication	which is not yet	and the second
	below that of copper.	Small chip area	standard in ULSI	
	The conducting	required for each	fabs	
	polymer expands	actuator	◆ PTFE deposition	
	when resistively	◆ Fast operation	cannot be followed	
	heated.		with high	
	Examples of	♦ High efficiency	temperature (above	v .
	- ·	◆ CMOS	350 °C) processing	
	conducting dopants include:	compatible voltages		
		and currents	♦ Evaporation and	
	Carbon nanotubes	◆ Easy extension	CVD deposition	
•	Metal fibers	from single nozzles	techniques cannot	*
No.	Conductive polymers	to pagewidth print	be used	
	such as doped	heads	◆ Pigmented inks	•
1	polythiophene		may be infeasible,	-
	Carbon granules	*	as pigment particles	
. [Carbon granules		may jam the bend	
			actuator	
hape	A shape memory alloy	♦ High force is	♦ Fatigue limits	♦ IJ26
emory	such as TiNi (also	available (stresses	maximum number	
loy	known as Nitinol -	of hundreds of MPa)	of cycles	0.0
	Nickel Titanium alloy	♦ Large strain is	♦ Low strain (1%)	
	developed at the Naval	available (more than	is required to extend	
	Ordnance Laboratory)	3%)	fatigue resistance	, , , , , , , , , , , , , , , , , , ,
**	is thermally switched	♦ High corrosion	♦ Cycle rate	
	between its weak	resistance	limited by heat	
	martensitic state and	♦ Simple	removal	
*	its high stiffness	construction	♦ Requires unusual	,00
· ·	austenic state. The	• Easy extension	materials (TiNi)	. ,
	shape of the actuator	from single nozzles		
-	in its martensitic state		• The latent heat of	*
.	is deformed relative to	to pagewidth print	transformation must	, , ,
	the austenic shape.	heads	be provided	
		◆ Low voltage	♦ High current	
	The shape change	operation	operation	
	causes ejection of a drop.		♦ Requires pre-	
			stressing to distort	

• •	Description	Advantages	Disadvantages	Examples
Linear	Linear magnetic	♦ Linear Magnetic	♦ Requires unusual	♦ IJ12
Magnetic	actuators include the	actuators can be	semiconductor	
Actuator	Linear Induction	constructed with	materials such as	
	Actuator (LIA), Linear	high thrust, long	soft magnetic alloys	
• • •	Permanent Magnet	travel, and high	(e.g. CoNiFe)	
	Synchronous Actuator	efficiency using	♦ Some varieties	
	(LPMSA), Linear	planar	also require	
* • •	Reluctance	semiconductor	permanent magnetic	the common terms of the
	Synchronous Actuator	fabrication	materials such as	
	(LRSA), Linear	techniques	Neodymium iron	
٠,	Switched Reluctance	♦ Long actuator	boron (NdFeB)	
	Actuator (LSRA), and	travel is available	♦ Requires	
	the Linear Stepper	♦ Medium force is	complex multi-	
: *	Actuator (LSA).	available	phase drive circuitry	
• •		♦ Low voltage	♦ High current	,
	:	operation	operation	• **

	Description	Advantages	Disadvantages	Examples
Actuator directly pushes ink	This is the simplest mode of operation: the actuator directly supplies sufficient kinetic energy to expel the drop. The drop must have a sufficient velocity to overcome the surface tension.		◆ Drop repetition rate is usually limited to around 10 kHz. However, this is not fundamental to the method, but is related to the refill method normally used ◆ All of the drop kinetic energy must be provided by the actuator ◆ Satellite drops	◆ Thermal ink jet ◆ Piezoelectric ink jet ◆ IJ01, IJ02, IJ03, IJ04, IJ05, IJ06, IJ07, IJ09, IJ11, IJ12, IJ14, IJ16, IJ20, IJ22, IJ23, IJ24, IJ25, IJ26, IJ27, IJ28, IJ29, IJ30, IJ31, IJ32, IJ33, IJ34, IJ35, IJ36, IJ37, IJ38, IJ39, IJ40, IJ41,
Proximity	The drops to be	◆ Very simple print	usually form if drop velocity is greater than 4.5 m/s Requires close	IJ42, IJ43, IJ44 ◆ Silverbrook, EP
Transcond Control	printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink).	head fabrication can be used The drop selection means does not need to provide the energy	proximity between the print head and the print media or transfer roller May require two print heads printing	0771 658 A2 and related patent applications
	Selected drops are separated from the ink in the nozzle by contact with the print medium or a transfer roller.	required to separate the drop from the nozzle	alternate rows of the image Monolithic color print heads are difficult	*

BASIC OPERA	TION MODE	· · · · · · · · · · · · · · · · · · ·		
	Description	Advantages	Disadvantages	Examples
Electro- static pull on ink	The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are	 Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate 	 ♦ Requires very high electrostatic field ♦ Electrostatic field for small nozzle sizes is above air breakdown ♦ Electrostatic field 	 Silverbrook, EP 0771 658 A2 and related patent applications Tone-Jet
	separated from the ink in the nozzle by a strong electric field.	the drop from the nozzle	may attract dust	* * *
Magnetic pull on ink	The drops to be printed are selected by some manner (e.g. thermally induced surface tension reduction of pressurized ink). Selected drops are	 Very simple print head fabrication can be used The drop selection means does not need to provide the energy required to separate 	 Requires magnetic ink Ink colors other than black are difficult Requires very high magnetic fields 	Silverbrook, EP 0771 658 A2 and related patent applications
· · · · · · · · · · · · · · · · · · ·	separated from the ink in the nozzle by a strong magnetic field acting on the magnetic ink.	the drop from the nozzle		
Shutter	The actuator moves a shutter to block ink flow to the nozzle. The ink pressure is pulsed at a multiple of the drop ejection frequency.	 High speed (>50 kHz) operation can be achieved due to reduced refill time Drop timing can be very accurate The actuator energy can be very low 	 Moving parts are required Requires ink pressure modulator Friction and wear must be considered Stiction is possible 	• IJ13, IJ17, IJ21
Shuttered grill	The actuator moves a shutter to block ink flow through a grill to the nozzle. The shutter movement need only be equal to the width of the grill holes.	 ◆ Actuators with small travel can be used ◆ Actuators with small force can be used ◆ High speed (>50 kHz) operation can be achieved 	 Moving parts are required Requires ink pressure modulator Friction and wear must be considered Stiction is possible 	• IJ08, IJ15, IJ18, IJ19
Pulsed magnetic pull on ink pusher	A pulsed magnetic field attracts an 'ink pusher' at the drop ejection frequency. An actuator controls a catch, which prevents the ink pusher from moving when a drop is	 Extremely low energy operation is possible No heat dissipation problems 	 ◆ Requires an external pulsed magnetic field ◆ Requires special materials for both the actuator and the ink pusher ◆ Complex 	• И10

	Description	Advantages	Disadvantages	Examples
None	The actuator directly fires the ink drop, and there is no external field or other	 Simplicity of construction Simplicity of operation 	Drop ejection energy must be supplied by individual nozzle	Most ink jets, including piezoelectric and thermal bubble.
	mechanism required.	◆ Small physical size	actuator	◆ IJ01, IJ02, IJ03, IJ04, IJ05, IJ07,
	*	(i) +	ş	IJ09, IJ11, IJ12, IJ14, IJ20, IJ22, IJ23, IJ24, IJ25,
*	<i>)</i> -			IJ26, IJ27, IJ28, IJ29, IJ30, IJ31,
				IJ32, IJ33, IJ34, IJ35, IJ36, IJ37, IJ38, IJ39, IJ40,
	· · · ·		:	IJ41, IJ42, IJ43, IJ44
Oscillating ink pressure	The ink pressure oscillates, providing much of the drop	Oscillating ink pressure can provide a refill pulse,	Requires external ink pressure oscillator	Silverbrook, EP 0771 658 A2 and related patent
(including acoustic stimul-	ejection energy. The actuator selects which	allowing higher operating speed	Ink pressure phase and amplitude	applications ◆ IJ08, IJ13, IJ15,
ation)	drops are to be fired by selectively blocking or enabling	The actuators may operate with much lower energy	must be carefully controlled Acoustic	IJ17, IJ18, IJ19, IJ21
	nozzles. The ink pressure oscillation may be achieved by vibrating the print	Acoustic lenses can be used to focus the sound on the nozzles	reflections in the ink chamber must be designed for	·
· ·	head, or preferably by an actuator in the ink supply.			
Media proximity	The print head is placed in close proximity to the print medium. Selected	 Low power High accuracy Simple print head construction 	 Precision assembly required Paper fibers may cause problems 	Silverbrook, EP 0771 658 A2 and related patent applications
	drops protrude from the print head further than unselected drops,	i i	Cannot print on rough substrates	
	and contact the print medium. The drop soaks into the medium fast enough to cause			
	drop separation.			
Transfer roller	Drops are printed to a transfer roller instead of straight to the print	High accuracy Wide range of print substrates can	◆ Bulky◆ Expensive◆ Complex	Silverbrook, EP 0771 658 A2 and related patent
y	medium. A transfer roller can also be used for proximity drop separation.	 be used Ink can be dried on the transfer roller 	construction	applications Tektronix hot melt piezoelectric ink jet
	2		-	Any of the IJ series

	Description	Advantages	Disadvantages	Examples
Electro- static	An electric field is used to accelerate selected drops towards the print medium.	◆ Low power ◆ Simple print head construction	◆ Field strength required for separation of small drops is near or above air breakdown	◆ Silverbrook, EP 0771 658 A2 and related patent applications ◆ Tone-Jet
Direct magnetic field	A magnetic field is used to accelerate selected drops of magnetic ink towards the print medium.	◆ Low power ◆ Simple print head construction	 Requires magnetic ink Requires strong magnetic field 	Silverbrook, EP 0771 658 A2 and related patent applications
Cross magnetic field	The print head is placed in a constant magnetic field. The Lorenz force in a current carrying wire is used to move the actuator.	◆ Does not require magnetic materials to be integrated in the print head manufacturing process	 ◆ Requires external magnet ◆ Current densities may be high, resulting in electromigration problems 	♦ IJ06, IJ16
Pulsed magnetic field	A pulsed magnetic field is used to cyclically attract a paddle, which pushes on the ink. A small actuator moves a catch, which selectively prevents the paddle from	 ◆ Very low power operation is possible ◆ Small print head size 	 ◆ Complex print head construction ◆ Magnetic materials required in print head 	■ IJ10

	Descripti n	Advantages	Disadvantages	Examples
None	No actuator mechanical amplification is used. The actuator directly drives the drop ejection process.	◆ Operational simplicity	◆ Many actuator mechanisms have insufficient travel, or insufficient force, to efficiently drive the drop ejection	◆ Thermal Bubble Ink jet ◆ IJ01, IJ02, IJ06, IJ07, IJ16, IJ25, IJ26
Differential expansion bend actuator	An actuator material expands more on one side than on the other. The expansion may be thermal, piezoelectric, magnetostrictive, or other mechanism. The bend actuator converts a high force low travel actuator mechanism to high travel, lower force mechanism.	◆ Provides greater travel in a reduced print head area	process High stresses are involved Care must be taken that the materials do not delaminate Residual bend resulting from high temperature or high stress during formation	◆ Piezoelectric ◆ JJ03, IJ09, IJ17, IJ18, IJ19, IJ20, IJ21, IJ22, IJ23, IJ24, IJ27, IJ29, IJ30, IJ31, IJ32, IJ33, IJ34, IJ35, IJ36, IJ37, IJ38, IJ39, IJ42, IJ43, IJ44
Transient bend actuator	A trilayer bend actuator where the two outside layers are identical. This cancels bend due to ambient temperature and residual stress. The actuator only responds to transient heating of one side or the other.	 ♦ Very good temperature stability ♦ High speed, as a new drop can be fired before heat dissipates ♦ Cancels residual stress of formation 	 High stresses are involved Care must be taken that the materials do not delaminate 	◆ IJ40, IJ41
Reverse spring	The actuator loads a spring. When the actuator is turned off, the spring releases. This can reverse the force/distance curve of the actuator to make it compatible with the force/time requirements of the drop ejection.	Better coupling to the ink	 ◆ Fabrication complexity ◆ High stress in the spring 	◆ IJ05, IJ11
Actuator stack	A series of thin actuators are stacked. This can be appropriate where actuators require high electric field strength, such as electrostatic and piezoelectric	 ◆ Increased travel ◆ Reduced drive voltage 	◆ Increased fabrication complexity ◆ Increased possibility of short circuits due to pinholes	◆ Some piezoelectric ink jets◆ IJ04

	Description	Advantages	Disadvantages	Examples
Multiple	Multiple smaller	♦ Increases the	♦ Actuator forces	◆ IJ12, IJ13, IJ18,
actuators	actuators are used	force available from	may not add	IJ20, IJ22, IJ28,
actuators		an actuator	linearly, reducing	IJ42, IJ43
	simultaneously to	· ·		1342, 1343
*	move the ink. Each	♦ Multiple	efficiency	
	actuator need provide	actuators can be		,
	only a portion of the	positioned to control	•	
	force required.	ink flow accurately	,	
Linear	A linear spring is used	♦ Matches low	♦ Requires print	♦ IJ15
Spring	to transform a motion	travel actuator with	head area for the	
	with small travel and	higher travel	spring	
7 7 0	high force into a	requirements		
4.	longer travel, lower	♦ Non-contact		
	force motion.	method of motion		
	Torce motion.	transformation		. =
Coiled	A hand agreeter is	Increases travel	♦ Generally	◆ IJ17, IJ21, IJ34,
	A bend actuator is	5.	restricted to planar	IJ35
actuator	coiled to provide	♦ Reduces chip		1333
	greater travel in a	area	implementations .	
	reduced chip area.	♦ Planar	due to extreme	
		implementations are	fabrication difficulty	
•		relatively easy to	in other orientations.	
·		fabricate.		
Flexure	A bend actuator has a	♦ Simple means of	♦ Care must be	♦ IJ10, IJ19, IJ33
bend	small region near the	increasing travel of	taken not to exceed	
actuator	fixture point, which	a bend actuator	the elastic limit in	
	flexes much more		the flexure area	
	readily than the	-	◆ Stress	
	remainder of the		distribution is very	
	actuator. The actuator		uneven	
	flexing is effectively	•	♦ Difficult to	
	converted from an		accurately model	
	even coiling to an		with finite element	
	angular bend, resulting		analysis	
	in greater travel of the			
	actuator tip.		<u> </u>	
Catch	The actuator controls a	♦ Very low	♦ Complex	♦ IJ10
	small catch. The catch	actuator energy	construction	
	either enables or	♦ Very small	♦ Requires external	
	disables movement of	actuator size	force	4
	an ink pusher that is	and the second s	♦ Unsuitable for	χ
	controlled in a bulk		pigmented inks	
	manner.		piginence niks	
Coors		♦ Low force, low	♦ Moving parts are	◆ IJ13
Gears	Gears can be used to	travel actuators can	required	¥ 1313
	increase travel at the	be used		
•	expense of duration.		Several actuator	
	Circular gears, rack	◆ Can be fabricated	cycles are required	· .
,	and pinion, ratchets,	using standard	♦ More complex	
	and other gearing	surface MEMS	drive electronics	
	methods can be used.	processes	◆ Complex	-3-
			construction	
			♦ Friction, friction,	
	1977	• •	and wear are	
	1	i e e e e e e e e e e e e e e e e e e e		1 .

	Description	Advantages	Disadvantages	Examples
Buckle plate	A buckle plate can be used to change a slow actuator into a fast motion. It can also	◆ Very fast movement achievable	Must stay within elastic limits of the materials for long device life	◆ S. Hirata et al, "An Ink-jet Head Using Diaphragm Microactuator",
*	convert a high force, low travel actuator into a high travel, medium force motion.		 High stresses involved Generally high power requirement 	Proc. IEEE MEMS, Feb. 1996, pp 418- 423. ◆ IJ18, IJ27
Tapered magnetic pole	A tapered magnetic pole can increase travel at the expense of force.	Linearizes the magnetic force/distance curve	♦ Complex construction	♦ IJ14
Lever	A lever and fulcrum is used to transform a motion with small travel and high force into a motion with longer travel and lower force. The lever can also reverse the direction of travel.	 Matches low travel actuator with higher travel requirements Fulcrum area has no linear movement, and can be used for a fluid seal 	High stress around the fulcrum	♦ IJ32, IJ36, IJ37
Rotary impeller	The actuator is connected to a rotary impeller. A small angular deflection of the actuator results in a rotation of the impeller vanes, which push the ink against stationary vanes and out of the nozzle.	 High mechanical advantage The ratio of force to travel of the actuator can be matched to the nozzle requirements by varying the number of impeller vanes 	 ◆ Complex construction ◆ Unsuitable for pigmented inks 	• IJ28
Acoustic lens	A refractive or diffractive (e.g. zone plate) acoustic lens is used to concentrate sound waves.	♦ No moving parts	 Large area required Only relevant for acoustic ink jets 	◆ 1993 Hadimioglu et al, EUP 550,192 ◆ 1993 Elrod et al, EUP 572,220
Sharp conductive point	A sharp point is used to concentrate an electrostatic field.	◆ Simple construction	 Difficult to fabricate using standard VLSI processes for a surface ejecting inkjet Only relevant for electrostatic ink jets 	♦ Tone-jet

ACTUATOR M	OTION			
	Description	Advantages	Disadvantages	Examples
Volume expansion	The volume of the actuator changes, pushing the ink in all directions.	Simple construction in the case of thermal ink jet	♦ High energy is typically required to achieve volume expansion. This leads to thermal stress, cavitation, and kogation in thermal ink jet implementations	 ◆ Hewlett-Packard Thermal Ink jet ◆ Canon Bubblejet
Linear, normal to chip surface	The actuator moves in a direction normal to the print head surface. The nozzle is typically in the line of movement.	Efficient coupling to ink drops ejected normal to the surface	High fabrication complexity may be required to achieve perpendicular motion	◆ IJ01, IJ02, IJ04, IJ07, IJ11, IJ14
Parallel to chip surface	The actuator moves parallel to the print head surface. Drop ejection may still be normal to the surface.	Suitable for planar fabrication	 Fabrication complexity Friction Stiction 	◆ IJ12, IJ13, IJ15, IJ33, , IJ34, IJ35, IJ36
Membrane push	An actuator with a high force but small area is used to push a stiff membrane that is in contact with the ink.	The effective area of the actuator becomes the membrane area	 ◆ Fabrication complexity ◆ Actuator size ◆ Difficulty of integration in a VLSI process 	◆ 1982 Howkins USP 4,459,601
Rotary	The actuator causes the rotation of some element, such a grill or impeller	 Rotary levers may be used to increase travel Small chip area requirements 	 Device complexity May have friction at a pivot point 	• IJ05, IJ08, IJ13, IJ28
Bend	The actuator bends when energized. This may be due to differential thermal expansion, piezoelectric expansion, magnetostriction, or	◆ A very small change in dimensions can be converted to a large motion.	◆ Requires the actuator to be made from at least two distinct layers, or to have a thermal difference across the actuator	◆ 1970 Kyser et al USP 3,946,398 ◆ 1973 Stemme USP 3,747,120 ◆ IJ03, IJ09, IJ10, IJ19, IJ23, IJ24, IJ25, IJ29, IJ30, IJ31, IJ33, IJ34,
Swivel	other form of relative dimensional change. The actuator swivels around a central pivot. This motion is suitable where there are opposite forces applied to opposite	 ◆ Allows operation where the net linear force on the paddle is zero ◆ Small chip area requirements 	◆ Inefficient coupling to the ink motion	IJ35 ↓ IJ06
	sides of the paddle, e.g. Lorenz force.			

ACTUATOR M	UTION			
i	Description	Advantages	Disadvantages	Examples
Straighten	The actuator is normally bent, and straightens when energized.	◆ Can be used with shape memory alloys where the austenic phase is planar	Requires careful balance of stresses to ensure that the quiescent bend is accurate	♦ IJ26, IJ32
Double bend	The actuator bends in one direction when one element is energized, and bends the other way when another element is energized.	 ♦ One actuator can be used to power two nozzles. ♦ Reduced chip size. ♦ Not sensitive to ambient temperature 	Difficult to make the drops ejected by both bend directions identical. A small efficiency loss compared to equivalent single bend actuators.	• IJ36, IJ37, IJ38
Shear	Energizing the actuator causes a shear motion in the actuator material.	Can increase the effective travel of piezoelectric actuators	Not readily applicable to other actuator mechanisms	◆ 1985 Fishbeck USP 4,584,590
Radial con- striction	The actuator squeezes an ink reservoir, forcing ink from a constricted nozzle.	Relatively easy to fabricate single nozzles from glass tubing as macroscopic structures	 ◆ High force required ◆ Inefficient ◆ Difficult to integrate with VLSI processes 	♦ 1970 Zoltan USP 3,683,212
Coil / uncoil	A coiled actuator uncoils or coils more tightly. The motion of the free end of the actuator ejects the ink.	◆ Easy to fabricate as a planar VLSI process ◆ Small area required, therefore low cost	◆ Difficult to fabricate for non-planar devices ◆ Poor out-of-plane stiffness	• IJ17, IJ21, IJ34, IJ35
Bow	The actuator bows (or buckles) in the middle when energized.	◆ Can increase the speed of travel ◆ Mechanically rigid	Maximum travel is constrained High force required	◆ IJ16, IJ18, IJ27
Push-Pull	Two actuators control a shutter. One actuator pulls the shutter, and the other pushes it.	♦ The structure is pinned at both ends, so has a high out-of-plane rigidity	Not readily suitable for ink jets which directly push the ink	♦ IJ18
Curl inwards	A set of actuators curl inwards to reduce the volume of ink that they enclose.	◆ Good fluid flow to the region behind the actuator increases efficiency	◆ Design complexity	◆ IJ20, IJ42
Curl outwards	A set of actuators curl outwards, pressurizing ink in a chamber surrounding the actuators, and expelling ink from a	Relatively simple construction	◆ Relatively large chip area	◆ IJ43

ACTUATOR N	MOTION -	(c		
-	Description	Advantages	Disadvantages	Examples
Iris	Multiple vanes enclose a volume of ink. These simultaneously rotate, reducing the volume between the vanes.	◆ High efficiency◆ Small chip area	 High fabrication complexity Not suitable for pigmented inks 	♦ IJ22
Acoustic vibration	The actuator vibrates at a high frequency.	◆ The actuator can be physically distant from the ink	 ◆ Large area required for efficient operation at useful frequencies ◆ Acoustic coupling and crosstalk ◆ Complex drive circuitry ◆ Poor control of drop volume and position 	◆ 1993 Hadimioglu et al, EUP 550,192 ◆ 1993 Elrod et al, EUP 572,220
None	In various ink jet designs the actuator does not move.	♦ No moving parts	 Various other tradeoffs are required to eliminate moving parts 	 Silverbrook, EP 0771 658 A2 and related patent applications Tone-jet

			I	
	Description	Advantages	Disadvantages	Examples
Surface	This is the normal way	◆ Fabrication	♦ Low speed	◆ Thermal ink jet
tension	that ink jets are	simplicity	♦ Surface tension	♦ Piezoelectric ink
	refilled. After the	♦ Operational	force relatively	jet
	actuator is energized,	simplicity	small compared to	♦ IJ01-IJ07, IJ10-
	it typically returns		actuator force	IJ14, IJ16, IJ20,
	rapidly to its normal	*	♦ Long refill time	IJ22-IJ45
	position. This rapid		usually dominates	1002 10 10
	return sucks in air		the total repetition	
	through the nozzle	· .	rate	
	opening. The ink		Tate .	
- 3	surface tension at the		* * * * · · · · · · · · · · · · · · · ·	<i>'</i>
	nozzle then exerts a			
1	small force restoring			
	the meniscus to a			
	minimum area. This			
* * * ;	force refills the nozzle.			
Shuttered	Ink to the nozzle	♦ High speed	♦ Requires	◆ IJ08, IJ13, IJ15,
oscillating	chamber is provided at	♦ Low actuator	common ink	IJ17, IJ18, IJ19,
ink pressure	a pressure that	energy, as the	pressure oscillator	IJ21
. Y	oscillates at twice the	actuator need only	♦ May not be	
	drop ejection	open or close the	suitable for	
•	frequency. When a	shutter, instead of	pigmented inks	
• 00	drop is to be ejected,	ejecting the ink drop		
	the shutter is opened			
	for 3 half cycles: drop		-	*
	ejection, actuator	,		,
	return, and refill. The			
	shutter is then closed			•
	to prevent the nozzle			
	chamber emptying			÷
•	during the next			-50
			·	•
	negative pressure	•		
D 611	cycle.	. TT'-11		. 7700
Refill	After the main	♦ High speed, as	♦ Requires two	♦ IJ09
actuator	actuator has ejected a	the nozzle is	independent	
	drop a second (refill)	actively refilled	actuators per nozzle	* *
9	actuator is energized.			
	The refill actuator			
	pushes ink into the	و ساو و د د د د د سودو		
	nozzle chamber. The		*	
	refill actuator returns	*	11	
•	slowly, to prevent its	·.		
	return from emptying			
	the chamber again.			*
Positive ink	The ink is held a slight	♦ High refill rate,	♦ Surface spill	♦ Silverbrook, EP
pressure	positive pressure.	therefore a high	must be prevented	0771 658 A2 and
	After the ink drop is	drop repetition rate	♦ Highly	related patent
	ejected, the nozzle	is possible	hydrophobic print	applications
	chamber fills quickly	. Possiolo	head surfaces are	◆ Alternative for:, ···
		-X		IJ01-IJ07, IJ10-IJ14,
	as surface tension and		required	
	ink pressure both			IJ16, IJ20, IJ22-IJ45
	operate to refill the	00	*	
	nozzle.	i .	I a second	

	Description	Advantages	Disadvantages	Examples
Long inlet	The ink inlet channel	Design simplicity	◆ Restricts refill	◆ Thermal ink jet
channel	to the nozzle chamber	◆ Operational	rate	Piezoelectric ink
channel	is made long and	simplicity	· -	
	relatively narrow,		♦ May result in a	jet
•	relying on viscous	♦ Reduces crosstalk	relatively large chip	♦ IJ42, IJ43
	drag to reduce inlet	crosstalk	area	
	back-flow.	1	Only partially effective	
Positive ink	The ink is under a	Drop selection	◆ Requires a	◆ Silverbrook, EP
ressure	positive pressure, so	and separation	method (such as a	0771 658 A2 and
71 C33u1 C	that in the quiescent	forces can be	nozzle rim or	related patent
	state some of the ink	reduced	effective	applications
	drop already protrudes	♦ Fast refill time	hydrophobizing, or	• Possible
, .	from the nozzle.	1 ast telli tille	both) to prevent	
			flooding of the	operation of the
	This reduces the	·	ejection surface of	following: IJ01-
	pressure in the nozzle		the print head.	IJ07, IJ09- IJ12,
	chamber which is		uic print nead.	IJ14, IJ16, IJ20,
	required to eject a			IJ22, , IJ23-IJ34,
•	certain volume of ink.			IJ36- IJ41, IJ44
	The reduction in	i i		
	chamber pressure			
	results in a reduction			
	in ink pushed out		÷.	·
	through the inlet.	an au		
Baffle	One or more baffles	◆ The refill rate is	◆ Design	◆ HP Thermal Ink
	are placed in the inlet	not as restricted as	complexity	· Jet
	ink flow. When the	the long inlet	♦ May increase	♦ Tektronix
	actuator is energized,	method.	fabrication	piezoelectric ink jet
	the rapid ink	• Reduces	complexity (e.g.	*,
	movement creates	crosstalk	Tektronix hot melt	·
	eddies which restrict		Piezoelectric print	
	the flow through the		heads).	
•	inlet. The slower refill	,		•
	process is unrestricted,	. *	· .	
	and does not result in	· ·		
	eddies.	= 100		
lexible flap	In this method recently	◆ Significantly	 Not applicable to 	◆ Canon
estricts	disclosed by Canon,	reduces back-flow	most ink jet	
nlet	the expanding actuator	for edge-shooter	configurations	
	(bubble) pushes on a	thermal ink jet	♦ Increased	
•	flexible flap that	devices	fabrication	
	restricts the inlet.		complexity	
•			♦ Inelastic	÷ .
			deformation of	
	:		polymer flap results	
·	•	,	in creep over	
			extended use	

		(*		
	Description	Advantages	Disadvantages	Examples
Inlet filter	A filter is located between the ink inlet and the nozzle	Additional advantage of ink filtration	◆ Restricts refill rate ◆ May result in	◆ IJ04, IJ12, IJ24, IJ27, IJ29, IJ30
*	chamber. The filter has a multitude of	Ink filter may be fabricated with no	complex construction	
	small holes or slots, restricting ink flow. The filter also removes	additional process steps		
· *	particles which may block the nozzle.			
Small inlet compared to nozzle	The ink inlet channel to the nozzle chamber has a substantially	Design simplicity	 Restricts refill rate May result in a 	♦ IJ02, IJ37, IJ44
. ,	smaller cross section than that of the nozzle , resulting in easier ink		relatively large chip area	
	egress out of the nozzle than out of the inlet.	*	Only partially effective	3. =
Inlet shutter	A secondary actuator controls the position of a shutter, closing off	Increases speed of the ink-jet print head operation	Requires separate refill actuator and drive circuit	◆ IJ09
	the ink inlet when the main actuator is energized.			
The inlet is located behind the ink-pushing surface	The method avoids the problem of inlet backflow by arranging the ink-pushing surface of the actuator between the inlet and the nozzle.	◆ Back-flow problem is eliminated	Requires careful design to minimize the negative pressure behind the paddle	◆ IJ01, IJ03, IJ05, IJ06, IJ07, IJ10, IJ11, IJ14, IJ16, IJ22, IJ23, IJ25, IJ28, IJ31, IJ32, IJ33, IJ34, IJ35, IJ36, IJ39, IJ40,
Part of the octuator noves to hut off the nlet	The actuator and a wall of the ink chamber are arranged so that the motion of the actuator closes off the inlet.	◆ Significant reductions in back- flow can be achieved ◆ Compact designs possible	Small increase in fabrication complexity	IJ41 ◆ IJ07, IJ20, IJ26, IJ38
Nozzle octuator loes not esult in ink eack-flow	In some configurations of ink jet, there is no expansion or movement of an actuator which may	◆ Ink back-flow problem is eliminated	None related to ink back-flow on actuation	◆ Silverbrook, EP 0771 658 A2 and related patent applications ◆ Valve-jet
	cause ink back-flow through the inlet.			◆ Tone-jet

NOZZLE CLEARING METHOD				
	Description	Advantages	Disadvantages	Examples
Normal	All of the nozzles are	♦ No added	♦ May not be	♦ Most ink jet
nozzle firing	fired periodically,	complexity on the	sufficient to	systems
	before the ink has a	print head	displace dried ink	◆ IJ01, IJ02, IJ03,
	chance to dry. When	_		IJ04, IJ05, IJ06,
	not in use the nozzles			1J07, 1J09, 1J10,
4.	are sealed (capped)			IJ11, IJ12, IJ14,
	against air.		0.0	IJ16, IJ20, IJ22,
8	The nozzle firing is		•	IJ23, IJ24, IJ25,
	usually performed			IJ26, IJ27, IJ28,
	during a special			IJ29, IJ30, IJ31,
	clearing cycle, after			·IJ32, IJ33, IJ34,
•	first moving the print			IJ36, IJ37, IJ38,
		*		IJ39, IJ40,, IJ41,
	head to a cleaning	*		IJ42, IJ43, IJ44,,
	station.		*	IJ45
Extra	In systems which heat	♦ Can be highly	♦ Requires higher	Silverbrook, EP
power to	the ink, but do not boil	effective if the	drive voltage for	0771 658 A2 and
ink heater	it under normal	heater is adjacent to	clearing	related patent
	situations, nozzle	the nozzle	May require	applications
• %	clearing can be		larger drive	
	achieved by over-		transistors	
	powering the heater		a di Bistoro	
	and boiling ink at the			
	nozzle.			
Rapid .	The actuator is fired in	◆ Does not require	♦ Effectiveness	♦ May be used
success-ion	rapid succession. In	extra drive circuits	depends	with: IJ01, IJ02,
of actuator	some configurations,	on the print head	substantially upon	IJ03, IJ04, IJ05,
pulses	this may cause heat	♦ Can be readily	the configuration of	IJ06, IJ07, IJ09,
puises	build-up at the nozzle	controlled and	the ink jet nozzle	IJ10, IJ11, IJ14,
•	which boils the ink,	initiated by digital		IJ16, IJ20, IJ22,
•	clearing the nozzle. In	logic		IJ23, IJ24, IJ25,
. Yo	other situations, it may	logic		IJ27, IJ28, IJ29,
	cause sufficient		,	IJ30, IJ31, IJ32,
٠,	vibrations to dislodge			IJ33, IJ34, IJ36,
	clogged nozzles.			IJ37, IJ38, IJ39,
	clogged flozzies.			IJ40, IJ41, IJ42,
				IJ43, IJ44, IJ45
Extra	Where an actuator is	♦ A simple	♦ Not suitable	♦ May be used
power to	not normally driven to	solution where	where there is a	with: IJ03, IJ09,
ink pushing	the limit of its motion,	applicable	hard limit to	IJ16, IJ20, IJ23,
actuator	nozzle clearing may be	application .	actuator movement	IJ24, IJ25, IJ27,
actuatof	assisted by providing		actuator movement	IJ29, IJ30, IJ31,
-	an enhanced drive		*	IJ32, IJ39, IJ40,
		•	19	IJ41, IJ42, IJ43,
	signal to the actuator.	' -	· · · ·	IJ41, IJ42, IJ43, IJ44, IJ45

	Description	Advantages	Disadvantages	Examples
Acoustic resonance	An ultrasonic wave is applied to the ink chamber. This wave is of an appropriate amplitude and frequency to cause sufficient force at the nozzle to clear blockages. This is easiest to achieve if the ultrasonic wave is at a resonant frequency of the ink cavity.	 ◆ A high nozzle clearing capability can be achieved ◆ May be implemented at very low cost in systems which already include acoustic actuators 	High implementation cost if system does not already include an acoustic actuator	◆ IJ08, IJ13, IJ15, IJ17, IJ18, IJ19, IJ21
Nozzle clearing plate	A microfabricated plate is pushed against the nozzles. The plate has a post for every nozzle. A post moves through each nozzle, displacing dried ink.	◆ Can clear severely clogged nozzles	 ◆ Accurate mechanical alignment is required ◆ Moving parts are required ◆ There is risk of damage to the nozzles ◆ Accurate fabrication is required 	Silverbrook, EP 0771 658 A2 and related patent applications
Ink pressure pulse	The pressure of the ink is temporarily increased so that ink streams from all of the nozzles. This may be used in conjunction with actuator energizing.	May be effective where other methods cannot be used	 Requires pressure pump or other pressure actuator Expensive Wasteful of ink 	◆ May be used with all IJ series ink jets
Print head wiper	A flexible 'blade' is wiped across the print head surface. The blade is usually fabricated from a flexible polymer, e.g. rubber or synthetic elastomer.	 ◆ Effective for planar print head surfaces ◆ Low cost 	 Difficult to use if print head surface is non-planar or very fragile Requires mechanical parts Blade can wear out in high volume print systems 	◆ Many ink jet systems

NOZZLE CLE	ARING METHOD			
×	Description	Advantages	Disadvantages	Examples
Separate ink boiling heater	A separate heater is provided at the nozzle although the normal	Can be effective where other nozzle clearing methods	◆ Fabrication complexity	• Can be used with many IJ series ink jets
•	drop e-ection mechanism does not	cannot be used Can be		
	require it. The heaters	implemented at no		
•	do not require	additional cost in	3	
en la companya di salah sa	individual drive	some ink jet	· · · · · · · · · · · · · · · · · · ·	444 d
*	circuits, as many	configurations	1	
	nozzles can be cleared		*	
	simultaneously, and no	·		
	imaging is required.		1 200	

NOZZLE PLA	TE CONSTRUCTION		-22-	
- 30	Description	Advantages	Disadvantages	Examples
Electro- formed nickel	A nozzle plate is separately fabricated from electroformed nickel, and bonded to the print head chip.	◆ Fabrication simplicity	 High temperatures and pressures are required to bond nozzle plate Minimum thickness constraints Differential thermal expansion 	◆ . Hewlett Packard Thermal Ink jet
Laser ablated or drilled polymer	Individual nozzle holes are ablated by an intense UV laser in a nozzle plate, which is typically a polymer such as polyimide or polysulphone	 No masks required Can be quite fast Some control over nozzle profile is possible Equipment required is relatively low cost 	 Each hole must be individually formed Special equipment required Slow where there are many thousands of nozzles per print head May produce thin burrs at exit holes 	◆ Canon Bubblejet ◆ 1988 Sercel et al., SPIE, Vol. 998 Excimer Beam Applications, pp. 76-83 ◆ 1993 Watanabe et al., USP 5,208,604
Silicon micro- machined	A separate nozzle plate is micromachined from single crystal silicon, and bonded to the print head wafer.	High accuracy is attainable	 Two part construction High cost Requires precision alignment Nozzles may be clogged by adhesive 	◆ K. Bean, IEEE Transactions on Electron Devices, Vol. ED-25, No. 10, 1978, pp 1185-1195 ◆ Xerox 1990 Hawkins et al., USP 4,899,181
Glass capillaries	Fine glass capillaries are drawn from glass tubing. This method has been used for making individual nozzles, but is difficult to use for bulk manufacturing of print heads with thousands of nozzles.	 No expensive equipment required Simple to make single nozzles 	◆ Very small nozzle sizes are difficult to form ◆ Not suited for mass production	♦ 1970 Zoltan USP 3,683,212
Monolithic, surface micro-machined using VLSI lithographic processes	The nozzle plate is deposited as a layer using standard VLSI deposition techniques. Nozzles are etched in the nozzle plate using VLSI lithography and etching.	 High accuracy (<1 µm) Monolithic Low cost Existing processes can be used 	 ◆ Requires sacrificial layer under the nozzle plate to form the nozzle chamber ◆ Surface may be fragile to the touch 	◆ Silverbrook; EP-0771 658 A2 and related patent applications ◆ IJ01, IJ02, IJ04, IJ11, IJ12, IJ17, IJ18, IJ20, IJ22, IJ24, IJ27, IJ28, IJ29, IJ30, IJ31, IJ32, IJ33, IJ34, IJ36, IJ37, IJ38, IJ39, IJ40, IJ41, IJ42, IJ43, IJ44

NOZZLE PLATE CONSTRUCTION				
Y	Description	Advantages	Disadvantages	Examples
Monolithic, etched through substrate	The nozzle plate is a buried etch stop in the wafer. Nozzle chambers are etched in the front of the wafer, and the wafer is thinned from the back side. Nozzles are then etched in the etch stop layer.	 High accuracy (<1 µm) Monolithic Low cost No differential expansion 	 ◆ Requires long etch times ◆ Requires a support wafer 	• IJ03, IJ05, IJ06, IJ07, IJ08, IJ09, IJ10, IJ13, IJ14, IJ15, IJ16, IJ19, IJ21, IJ23, IJ25, IJ26
No nozzle plate	Various methods have been tried to eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms	No nozzles to become clogged	 ◆ Difficult to control drop position accurately ◆ Crosstalk problems 	 Ricoh 1995 Sekiya et al USP 5,412,413 1993 Hadimioglu et al EUP 550,192 1993 Elrod et al EUP 572,220
Trough	Each drop ejector has a trough through which a paddle moves. There is no nozzle plate.	◆ Reduced manufacturing complexity ◆ Monolithic	Drop firing direction is sensitive to wicking.	◆ IJ35
Nozzle slit instead of individual nozzles	The elimination of nozzle holes and replacement by a slit encompassing many actuator positions reduces nozzle clogging, but increases crosstalk due to ink surface waves	♦ No nozzles to become clogged	◆ Difficult to control drop position accurately ◆ Crosstalk problems	♦ 1989 Saito et al USP 4,799,068

.*	Description	Advantages	Disadvantages	Examples
Edge ('edge shooter')	Ink flow is along the surface of the chip, and ink drops are ejected from the chip edge.	 ♦ Simple construction ♦ No silicon etching required ♦ Good heat sinking via substrate ♦ Mechanically strong ♦ Ease of chip handing 	 Nozzles limited to edge High resolution is difficult Fast color printing requires one print head per color 	 Canon Bubblejet 1979 Endo et al GB patent 2,007,162 Xerox heater-inpit 1990 Hawkins et al USP 4,899,181 Tone-jet

	Description	Advantages	Disadvantages	Examples
Surface ('roof shooter')	Ink flow is along the surface of the chip, and ink drops are ejected from the chip surface, normal to the plane of the chip.	 No bulk silicon etching required Silicon can make an effective heat sink Mechanical strength 	Maximum ink flow is severely restricted	◆ Hewlett-Packard TIJ 1982 Vaught et al USP 4,490,728 ◆ IJ02, IJ11, IJ12, IJ20, IJ22
Through chip, forward ('up shooter')	Ink flow is through the chip, and ink drops are ejected from the front surface of the chip.	 High ink flow Suitable for pagewidth print heads High nozzle packing density therefore low manufacturing cost 	Requires bulk silicon etching	◆ Silverbrook, EP 0771 658 A2 and related patent applications ◆ IJ04, IJ17, IJ18, IJ24, IJ27-IJ45
Through chip, reverse ('down shooter')	Ink flow is through the chip, and ink drops are ejected from the rear surface of the chip.	 High ink flow Suitable for pagewidth print heads High nozzle packing density therefore low manufacturing cost 	 Requires wafer thinning Requires special handling during manufacture 	↓ IJ01, IJ03, IJ05, IJ06, IJ07, IJ08, IJ09, IJ10, IJ13, IJ14, IJ15, IJ16, IJ19, IJ21, IJ23, IJ25, IJ26
Through actuator	Ink flow is through the actuator, which is not fabricated as part of the same substrate as the drive transistors.	Suitable for piezoelectric print heads	 ◆ Pagewidth print heads require several thousand connections to drive circuits ◆ Cannot be manufactured in standard CMOS fabs ◆ Complex 	 Epson Stylus Tektronix hot melt piezoelectric ink jets

INK TYPE				
1-	Description	Advantages	Disadvantages	Examples
Aqueous, dye	Water based ink which typically contains: water, dye, surfactant, humectant, and biocide. Modern ink dyes have high water-fastness, light fastness	 ◆ Environmentally friendly ◆ No odor 	 Slow drying Corrosive Bleeds on paper May strikethrough Cockles paper 	 Most existing ink jets All IJ series ink jets Silverbrook, EP 0771 658 A2 and related patent applications
Aqueous, pigment	Water based ink which typically contains: water, pigment, surfactant, humectant, and biocide. Pigments have an advantage in reduced bleed, wicking and strikethrough.	 ◆ Environmentally friendly ◆ No odor ◆ Reduced bleed ◆ Reduced wicking ◆ Reduced strikethrough 	 Slow drying Corrosive Pigment may clog nozzles Pigment may clog actuator mechanisms Cockles paper 	 IJ02, IJ04, IJ21, IJ26, IJ27, IJ30 Silverbrook, EP 0771 658 A2 and related patent applications Piezoelectric inkjets Thermal ink jets (with significant restrictions)
Methyl Ethyl Ketone (MEK)	MEK is a highly volatile solvent used for industrial printing on difficult surfaces such as aluminum cans.	 Very fast drying Prints on various substrates such as metals and plastics 	◆ Odorous ◆ Flammable	All IJ series ink jets
Alcohol (ethanol, 2- butanol, and others)	Alcohol based inks can be used where the printer must operate at temperatures below the freezing point of water. An example of this is in-camera consumer photographic printing.	 ◆ Fast drying ◆ Operates at subfreezing temperatures ◆ Reduced paper cockle ◆ Low cost 	◆ Slight odor ◆ Flammable	◆ All IJ series ink jets
Phase change (hot melt)	The ink is solid at room temperature, and is melted in the print head before jetting. Hot melt inks are usually wax based, with a melting point around 80 °C. After jetting the ink freezes almost instantly upon contacting the print medium or a transfer roller.	 No drying time-ink instantly freezes on the print medium Almost any print medium can be used No paper cockle occurs No wicking occurs No bleed occurs No strikethrough occurs 	 High viscosity Printed ink typically has a 'waxy' feel Printed pages may 'block' Ink temperature may be above the curie point of permanent magnets Ink heaters consume power Long warm-up 	 ◆ Tektronix hot melt piezoelectric ink jets ◆ 1989 Nowak USP 4,820,346 ◆ All IJ series ink jets

INK TYPE				
	Description	Advantages	Disadvantages	Examples
Oil	Oil based inks are extensively used in offset printing. They have advantages in improved characteristics on paper (especially no wicking or cockle). Oil soluble dies and pigments are required.	 High solubility medium for some dyes Does not cockle paper Does not wick through paper 	High viscosity: this is a significant limitation for use in ink jets, which usually require a low viscosity. Some short chain and multi-branched oils have a sufficiently low viscosity.	◆ All IJ series ink jets
Micro- emulsion	A microemulsion is a stable, self forming emulsion of oil, water, and surfactant. The characteristic drop size is less than 100 nm, and is determined by the preferred curvature	 ◆ Stops ink bleed ◆ High dye solubility ◆ Water, oil, and amphiphilic soluble dies can be used ◆ Can stabilize pigment 	 Slow drying Viscosity higher than water Cost is slightly higher than water based ink High surfactant concentration required (around 	◆ All IJ series ink jets