Тема: Урок узагальнення і систематизації з теми «Трапеція. Вписані й описані чотирикутники»

Мета: систематизувати і узагальнити знання учнів з теми, закріплювати вміння розв'язувати задачі цього тематичного блоку; розвивати вміння учнів використовувати набуті навички під час розв'язування задач; виховувати наполегливість, вміння об'єктивно оцінювати здібності.

Хід уроку

Пригадайте:

- Яка трапеція називається прямокутною? (Прямокутною трапецією називається трапеція, у якій одна з бічних сторін перпендикулярна до основ)
- Сформулюйте теорему Фалеса (Паралельні прямі, які перетинають сторони кута і відтинають на одній із них рівні відрізки, відтинають рівні відрізки і на іншій стороні)
- Сформулюйте властивість середньої лінії трикутника (Середня лінія трикутника паралельна одній із його сторін і дорівнює половині цієї сторони)
- Скільки в трикутнику існує середніх ліній? (3)
- Сформулюйте означення середньої лінії трапеції (Середня лінія трапеції паралельна основам і дорівнює їх півсумі)
- Чи можна описати коло навколо чотирикутника, у якого лише один кут прямий? (Ні. Сума кутів вписаного чотирикутника 180°. Якщо в чотирикутнику буде лише один кут прямий то протилежний йому має бути також прямим, інакше сума кутів буде меншою від 180° і навколо такого чотирикутника не можна буде описати коло)

<mark>Розв'язування задач</mark>

Задача №1

∠CAB = 44°, ∠BCD = 32°. Знайдіть ∠x.

Дано:

 $\angle CAB = 44^{\circ}$

 $\angle BCD = 32^{\circ}$

 $\angle CAB$, $\angle BCD$, $\angle CBD$ — вписані у коло кути

Знайти:

 $\angle CBD-?$

Розв'язок:

 $\angle CBD = \frac{1}{2} \cup CD$ (за теоремою про вписаний кут)

 \cup CD = \cup CDB - \cup BD

 \cup CDB = $2 \angle CAB = 2 \cdot 44^{\circ} = 88^{\circ}$ (за теоремою про вписаний кут)

 $\cup BD = 2 \angle BCD = 2 \cdot 32^{\circ} = 64^{\circ}$ (за теоремою про вписаний кут)

 $\cup CD = \cup CDB - \cup BD = 88^{\circ} - 64^{\circ} = 24^{\circ}$

 $\angle CBD = \frac{1}{2} \cup CD = \frac{1}{2} \cdot 24^{\circ} = 12^{\circ}$

Відповідь: 12°

Задача №2

У рівнобедреній трапеції з тупим кутом 120° діагональ перпендикулярна до бічної сторони. Знайдіть бічну сторону, якщо більша основа трапеції дорівнює 26 см

Дано:

ABCD – рівнобедрена трапеція

 $\angle ABC = 120^{\circ}$

 $AC \perp CD$

 $\angle ACD = 90^{\circ}$

BC, AD — основи

AD = 26 cm

Знайти:

CD-?

Розв'язок:

$$\angle ABC = \angle BCD = 120^{\circ}$$
 (АВСD — рівнобедрена трапеція)

$$\angle BCA = \angle BCD - \angle ACD = 120^{\circ} - 90^{\circ} = 30^{\circ}$$

$3 \Delta ABC$:

$$\angle CAB = 180^{\circ} - (\angle ABC + \angle BCA) = 180^{\circ} - (120^{\circ} + 30^{\circ}) = 30^{\circ}$$

$$AB = BC \; (\Delta ABC \; ext{рівнобедрений})$$
 $AB = CD \; (ABCD - \; ext{рівнобедрена трапеція})$ $\Rightarrow AB = BC = CD$

$$\angle BAD + \angle ABC = 180^{\circ} (BC \parallel AD, AB - \text{січна})$$

 $\angle BAD = 180^{\circ} - \angle ABC = 180^{\circ} - 120^{\circ} = 60^{\circ}$

$3 \Delta ACD$:

$$\angle CAD = \angle BAD - \angle CAB = 60^{\circ} - 30^{\circ} = 30^{\circ}$$

 $CD = \frac{1}{2}AD$ (У прямокутному трикутнику катет, протилежний куту 30° , дорівнює половині гіпотенузи)

$$CD = \frac{1}{2}AD = \frac{1}{2} \cdot 26 = 13 \text{ cm}$$

Відповідь: 13 см

Задача №3

Три послідовні сторони описаного чотирикутника дорівнюють 44,17,12. Знайдіть четверту сторону цього чотирикутника.

AD = 39 cm

Відповідь: 39 см

Дано:

ABCD – описаний чотирикутник

$$AB = 44 \text{ cm}$$

$$BC = 17 \text{ cm}$$

$$CD = 12 \text{ cm}$$

Знайти:

$$AD-?$$

Розв'язок:

AB + CD = BC + AD (властивість описаного чотирикутника)

$$44 + 12 = 17 + AD$$

Домашнє завдання

Опрацювати стор.80-85. Підготуватись до контрольної роботи. Виконати письмово №398, 419.

Відправити на Human або електронну пошту smartolenka@gmail.com