Albert Ludwigs Universität Freiburg

TECHNISCHE FAKULTÄT

PicoC-Compiler

Übersetzung einer Untermenge von C in den Befehlssatz der RETI-CPU

BACHELORARBEIT

Abgabedatum: 13. September 2022

Autor: Jürgen Mattheis

Gutachter: Prof. Dr. Scholl

Betreung: M.Sc. Seufert

Eine Bachelorarbeit am Lehrstuhl für

Betriebssysteme

ERKLÄRUNG

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine anderen als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen wurden, als solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht auszugsweise, bereits für eine andere Prüfung angefertigt wurde.

Danksagungen

Bevor der Inhalt dieser Schrifftlichen Ausarbeitung der Bachelorarbeit anfängt, will ich einigen Personen noch meinen Dank aussprechen.

Ich schreibe die folgenden Danksagungen nicht auf eine bestimmte Weise, wie es sich vielleicht etabliert haben sollte Danksagungen zu schreiben und verwende auch keine künstlichen Floskeln, wie "mein aufrichtigster Dank" oder "aus tiefstem Herzen", sondern drücke im Folgenden die Dinge nur so aus, wie ich sie auch wirklich meine.

Estmal, ich hatte selten im Studium das Gefühl irgendwo Kunde zu sein, aber bei dieser Bachelorarbeit und dem vorangegangenen Bachelorprojekt hatte ich genau diese Gefühl, obwohl die Verhältnisse eigentlich genau umgekehrt sein sollten. Die Umgang mit mir wahr echt unglaublich nett und unbürokratisch, was ich als keine Selbverständlichkeit ansehe und sehr wertgeschätzt habe.

An erster Stelle will ich zu meinem Betreuer M.Sc. Tobias Seufert kommen, der netterweise auch bereits die Betreuung meines Bachelorprojektes übernommen hatte. Wie auch während des Bachelorprojektes, haben wir uns auch bei den Meetings während der Bachelorarbeit hervorragend verstanden. Dabei ging die Freundlichkeit und das Engagement seitens Tobias weit über das heraus, was man bereits als eine gute Betreuung bezeichnen würde.

Es gibt verschiedene Typen von Menschen, es gibt Leute, die nur genauso viel tun, wie es die Anforderungen verlangen und nichts darüberhinaus tun, wenn es nicht einen eigenen Vorteil für sie hat und es gibt Personen, die sich für nichts zu Schade sind und dies aus einer Philanthropie oder Leidenschafft heraus tun, auch wenn es für sie keine Vorteile hat. Tobias¹ konnte ich während der langen Zeit, die er mein Bachelorprojekt und dann meine Bachelorarbeit betreut hat eindeutig als letzteren Typ Mensch einordnen.

Er war sich nie zu Schade für meine vielen Fragen während der Meetings, auch wenn ich meine Zeit ziemlich oft überzogen habe², er hat sich bei der Korrektur dieser Schrifftlichen Ausarbeitung sogar die Mühe gemacht bei den einzelnen Problemstellen längere, wirklich hilfreiche Textkommentare zu verfassen und obendrauf auch noch Tippfehler usw. angemerkt und war sich nicht zu Schade die Rolle des Nachrichtenübermittlers zwischen mir und Prof. Dr. Scholl zu übernehmen. All dies war absolut keine Selbverständlichkeit, vor allem wenn ich die Betreuung anderer Studenten, die ich kenne mit der vergleiche, die mir zu Teil wurde.

An den Kommentar zu meinem Betreuer Tobias will ich einen Kommentar zu meinem Gutachter Prof. Dr. Scholl anschließen. Wofür ich meinem Gutachter Prof. Dr. Scholl sehr dankbar bin, ist, dass er meine damals sehr ambitionierten Ideen für mögliche Funktionalitäten, die ich in den PicoC-Compiler für die Bachelorarbeit implementierten wollte runtergeschraubt hat. Man erlebt es äußerst selten im Studium, dass Studenten freiwillig weniger Arbeit gegeben wird.

Bei den für die Bachelorarbeit zu implementierenden Funktionalitäten gab es bei der Implementierung viele unerwartete kleine Details, die ich vorher garnicht bedacht hatte, die in ihrer Masse unerwartet viel Zeit zum Implementieren gebraucht haben. Mit den von Prof. Dr. Scholl festgelegten Funktionalitäten für die Bachelorarbeit ist der Zeitplan jedoch ziemlich perfekt aufgegangen. Mit meinen ambitionierten Plänen wäre es bei der Bachelorarbeit dagegeben wohl mit der Zeit äußerst kritisch geworden. Das Prof. Dr. Scholl mir zu

¹Wie auch Prof. Dr. Scholl. Hier geht es aber erstmal um Tobias.

²Wofür ich mich auch nochmal Entschuldigen will.

seinem eigenen Nachteil 3 weniger Arbeit aufgebrummt hat empfand ich als ich eine äußerst nette Geste, die ich sehr geschätzt habe.

Wie mein Betreuer M.Sc. Tobias Seufert und wahrscheinlich auch mein Gutachter Prof. Dr. Scholl im Verlauf dieser Bachelorarbeit und des vorangegangenen Bachelorprojektes gemerkt haben, kann ich schon manchmal ziemlich eigensinnigen sein, bei der Weise, wie ich bestimmte Dinge umsetzen will. Ich habe es sehr geschätzt, dass mir das durchgehen gelassen wurde. Es ist, wie ich die Universitätswelt als Student erlebe bei Arbeitsvorgaben keine Selbverständlichkeit, dass dem Studenten überhaupt die Freiheit und das Vertrauen gegeben wird diese auf seine eigenen Weise umzusetzen.

Vor allem, da mein eigenes Vorgehen größtenteils Vorteile für mich hatte, da ich auf diese Weise am meisten über Compilerbau gelernt hab und eher Nachteile für Prof. Dr. Scholl, da mein eigenes Vorgehen entsprechend mehr Zeit brauchte und ich daher als Bachelorarbeit keinen dazu passenden RETI-Emulator mit Graphischer Anzeige implementieren konnte, da die restlichen Funktionalitäten des PicoC-Compilers noch implementiert werden mussten.

Glücklicherweise gibt es aber doch noch einen passenden RETI-Emulator, der den PicoC-Compiler über seine Kommandozeilenargumente aufruft, um ein PicoC-Programm visuell auf einer RETI-CPU auszuführen. Für dessen Implementierung hat sich Michel Giehl netterweise zur Verfügung gestellt. Daher Danke auch an Michel Giehl, dass er sich mit meinem PicoC-Compiler ausgeinandergesetzt hat und diesen in seinen RETI-Emulator integriert hat, sodass am Ende durch unsere beiden Arbeiten ein anschauliches Lerntool für die kommenden Studentengenerationen entstehen konnte. Vor allem da er auch mir darin vertrauen musste, dass ich mit meinem PicoC-Compiler nicht irgendeinen Misst baue. Der RETI-Emulator von Michel Giehl ist unter Link⁵ zu finden.

Mir hat die Implementierung des PicoC-Compilers tatsächlich ziemlich viel Spaß gemacht, da Compilerbau auch in mein perönliches Interessengebiet fällt⁶. Das Aufschreiben dieser Schrifftlichen Ausarbeitung hat mir dagegen eher weniger Spaß gemacht⁷. Wobei ich allerdings sagen muss, dass ich eine große Erleichterung verspüre das ganze Wissen über Compilerbau mal aufgeschrieben zu haben, damit ich mir keine Sorgen machen muss dieses ziemlich nützliche Wissen irgendwann wieder zu vergessen. Es hilft einem auch als Programmierer ungemein weiter zu wissen, wie ein Compiler unter der Haube funktioniert, da man sich so viel besser merken, wie eine bestimmte Funktionalität einer Programmiersprache zu verwenden ist. Manch eine Funktionalität einer Programmiesprache kann in der Verwendung ziemlich wilkürlich erscheinen, wenn man die technische Umsetzung dahinter im Compiler nicht kennt.

Ich wollte mich daher auch noch dafür Bedanken, dass mir ein so ergiebiges und interessantes Thema als Bachelorarbeit vorgeschlagen wurde und vor allem, dass auch das Vertrauen in mich gesteckt wurde, dass ich am Ende auch einen funktionsfähigen, sauber programmierten und gut durchdachten Compiler implementiere.

Zum Schluss nochmal ein abschließendes Danke an meinen Betreuer M.Sc Seufert und meinen Gutachter Prof. Dr. Scholl für die Betreuung und Bereitstellung dieser interessanten Bachelorarbeit und des vorangegangenen Bachelorprojektes und Michel Giehl für das Integrieren des PicoC-Compilers in seinen RETI-Emulator.

³Der PicoC-Compiler hätte schließlich mehr Funktionalitäten haben können.

⁴Vielleicht finde ich ja noch im nächsten Semester während des Betriebssysteme Tutorats noch etwas Zeit einige weitere Features einzubauen oder möglicherweise im Rahmen eines Masterprojektes ³.

 $^{^5}$ https://github.com/michel-giehl/Reti-Emulator.

⁶Womit nicht alle Studenten so viel Glück haben.

⁷Dieses ständige überlegen, wo man möglicherweise eine Erklärlücke hat, ob man nicht was wichtiges ausgelassen hat usw.

Inhaltsverzeichnis

Abbildungsverzeichnis	Ι
Codeverzeichnis	II
Tabellenverzeichnis	III
Definitionsverzeichnis	IV
0.0.1.1 Mehrere Funktionen	6 9 11 19 23
0.0.1.3.3 Umsetzung einer Übergabe eines Verbundes	27 A

Abbildungsverzeichnis

	18		er Dinstanzberechnung	Veranschaulichung der	1
--	----	--	-----------------------	-----------------------	---

Codeverzeichnis

0.1	PicoC-Code für 3 Funktionen	1
0.2	Abstrakter Syntaxbaum für 3 Funktionen	2
0.3	PicoC-Blocks Pass für 3 Funktionen	3
0.4	PicoC-ANF Pass für 3 Funktionen	4
0.5	RETI-Blocks Pass für 3 Funktionen	6
0.6	PicoC-Code für Funktionen, wobei die main Funktion nicht die erste Funktion ist	6
0.7	RETI-Blocks Pass für Funktionen, wobei die main Funktion nicht die erste Funktion ist	7
0.8	RETI-Patch Pass für Funktionen, wobei die main Funktion nicht die erste Funktion ist	8
0.9	RETI Pass für Funktionen, wobei die main Funktion nicht die erste Funktion ist	8
0.10	PicoC-Code für Funktionen, wobei eine Funktion vorher deklariert werden muss	G
0.11	Symboltabelle für Funktionen, wobei eine Funktion vorher deklariert werden muss	11
	PicoC-Code für Funktionsaufruf ohne Rückgabewert	11
	Abstrakter Syntaxbaum für Funktionsaufruf ohne Rückgabewert	12
	Symboltabelle für Funktionsaufruf ohne Rückgabewert	15
	PicoC-ANF Pass für Funktionsaufruf ohne Rückgabewert	15
	RETI-Blocks Pass für Funktionsaufruf ohne Rückgabewert	17
	RETI-Pass für Funktionsaufruf ohne Rückgabewert	19
0.18	PicoC-Code für Funktionsaufruf mit Rückgabewert.	19
	Abstrakter Syntaxbaum für Funktionsaufruf mit Rückgabewert	20
	PicoC-ANF Pass für Funktionsaufruf mit Rückgabewert	21
0.21	RETI-Blocks Pass für Funktionsaufruf mit Rückgabewert	23
	PicoC-Code für die Übergabe eines Feldes	23
0.23	Symboltabelle für die Übergabe eines Feldes.	25
	PicoC-ANF Pass für die Übergabe eines Feldes	26
	RETI-Block Pass für die Übergabe eines Feldes	27
	PicoC-Code für die Übergabe eines Verbundes.	28
	PicoC-ANF Pass für die Übergabe eines Verbundes.	29
0.28	RETI-Block Pass für die Übergabe eines Verbundes	30

Tabellenverzeichnis

1	Datensegment mit Stackframe	13
2	Aufbau Stackframe	13

Definitionsverzeichnis

0.1 Stackframe	13
----------------	----

Grammatikverzeichnis

0.0.1 Umsetzung von Funktionen

Um die Umsetzung von Funktionen zu verstehen, ist es erstmal wichtig zu verstehen, wie Funktionen später im RETI-Code aussehen (Unterkapitel 0.0.1.1), wie Funktionen deklariert (Definition ??) und definiert (Definition ??) werden können und hierbei Sichtbarkeitsbereiche (Definition ??) umgesetzt sind (Unterkapitel 0.0.1.2). Aufbauend darauf können dann die notwendigen Schritte zur Umsetzung eines Funktionsaufrufes erklärt werden (Unterkapitel 0.0.1.3). Beim Thema Funktionsaufruf wird im speziellen darauf eingegangen werden, wie Rückgabewerte (Unterkapitel 0.0.1.3.1) umgesetzt sind und die Übergabe von Zusammengesetzten Datentypen, die mehr als eine Speicherzelle belegen, wie Verbunden (Unterkapitel 0.0.1.3.3) und Feldern (Unterkapitel 0.0.1.3.2) umgesetzt ist.

0.0.1.1 Mehrere Funktionen

Die Umsetzung mehrerer Funktionen wird im Folgenden mithilfe des Beispiels in Code 0.1 erklärt. Dieses Beispiel soll nur zeigen, wie Funktionen in verschiedenen, für die Kompilierung von Funktionen relevanten Passes übersetzt werden. Das Beispiel ist so gewählt, dass es möglichst isoliert von weiterem möglicherweise störendem Code ist.

```
1 void main() {
2    return;
3 }
4
5 void fun1() {
6    int var = 41;
7    if(1) {
8      var = 42;
9    }
10 }
11
12 int fun2() {
13    return 1;
14 }
```

Code 0.1: PicoC-Code für 3 Funktionen.

Im Abstrakten Syntaxbaum in Code 0.2 werden die 3 Funktionen durch entsprechende Knoten dargestellt. Am Beispiel der Funktion void fun2() {return 1;} wäre der hierzu passende Knoten FunDef(VoidType(), Name('fun2'), [], [Return(Num('1'))]). Die einzelnen Attribute dieses FunDef(datatype, name, allocs, stmts_blocks)-Knoten sind in Tabelle ?? erklärt.

```
1 File
2  Name './verbose_3_funs.ast',
3  [
4  FunDef
5   VoidType 'void',
6   Name 'main',
7   [],
8   [
9   Return
10   Empty
11  ],
12  FunDef
```

```
VoidType 'void',
14
          Name 'fun1',
15
          [],
16
          Γ
17
            Assign
18
              Alloc
19
                 Writeable,
20
                 IntType 'int',
21
                 Name 'var',
22
              Num '41',
23
            Ιf
24
              Num '1',
25
              Γ
26
                 Assign
27
                   Name 'var',
28
                   Num '42'
29
30
          ],
31
       FunDef
          IntType 'int',
32
33
          Name 'fun2',
34
          [],
35
36
            Return
37
              Num '1'
38
          ]
39
     ]
```

Code 0.2: Abstrakter Syntaxbaum für 3 Funktionen.

Im PicoC-Blocks Pass in Code 0.3 werden die Anweisungen der Funktion in Blöcke Block(name, stmts_instrs) aufgeteilt. Hierbei bekommt ein Block Block(name, stmts_instrs), der die Anweisungen der Funktion vom Anfang bis zum Ende oder bis zum Auftauchen eines If(exp, stmts), IfElse(exp, stmts1, stmts2), While(exp, stmts) oder DoWhile(exp, stmts)⁸ beinhaltet den Bezeichner bzw. den Name(str)-Knoten der Funktion an sein Label bzw. an sein name-Attribut zugewiesen. Dem Bezeichner wird vor der Zuweisung allerdings noch eine Nummer <number> angehängt <name>.<number> 100 mmer <number> 100 mmer <number <number> 100 mmer <number <num

Es werden parallel dazu neue Zuordnungen im Assoziativen Feld fun_name_to_block_name hinzugefügt. Das Assoziative Feld fun_name_to_block_name ordnet einem Funktionsnamen den Blocknamen des Blockes, der die erste Anweisung der Funktion enthält zu. Der Bezeichner des Blockes <name>.<number> ist dabei bis auf die angehängte Nummer <number> identisch zu dem der Funktion. Diese Zuordnung ist nötig, da Blöcke eine Nummer an ihren Bezeichner <name>.<number> angehängt haben, die auf anderem Wege nicht ohne großen Aufwand herausgefunden werden kann.

```
1 File
2 Name './verbose_3_funs.picoc_blocks',
3 [
4 FunDef
5 VoidType 'void',
```

⁸Eine Erklärung dazu ist in Unterkapitel ?? zu finden.

⁹Der Grund dafür kann im Unterkapitel ?? nachgelesen werden.

¹⁰Die Bedeutung aller hier erwähnten Knoten und Kompositionen von Knoten wird in den Tabellen der Kapitel ??, ?? und ?? erläutert.

```
Name 'main',
         [],
         Ε
           Block
10
             Name 'main.4',
11
12
               Return(Empty())
13
14
         ],
15
       FunDef
16
         VoidType 'void',
17
         Name 'fun1',
18
         [],
19
         Ε
           Block
             Name 'fun1.3',
22
23
                Assign(Alloc(Writeable(), IntType('int'), Name('var')), Num('41'))
24
                // If(Num('1'), []),
               IfElse
25
26
                 Num '1',
27
                  [
28
                    GoTo
29
                      Name 'if.2'
30
                 ],
31
                  [
32
                    GoTo
                      Name 'if_else_after.1'
33
34
                 ]
35
             ],
36
           Block
37
             Name 'if.2',
38
39
               Assign(Name('var'), Num('42'))
40
               GoTo(Name('if_else_after.1'))
41
             ],
42
43
             Name 'if_else_after.1',
44
             []
45
         ],
46
       FunDef
47
         IntType 'int',
48
         Name 'fun2',
49
         [],
50
51
           Block
             Name 'fun2.0',
53
54
                Return(Num('1'))
56
         ]
    ]
```

Code 0.3: PicoC-Blocks Pass für 3 Funktionen.

Im PicoC-ANF Pass in Code 0.4 werden die FunDef(datatype, name, allocs, stmts)-Knoten komplett

aufgelöst, sodass sich im File(name, decls_defs_blocks)-Knoten nur noch Blöcke befinden.

```
1 File
    Name './verbose_3_funs.picoc_mon',
 4
       Block
         Name 'main.4',
 6
           Return(Empty())
         ],
 9
       Block
10
         Name 'fun1.3',
           // Assign(Alloc(Writeable(), IntType('int'), Name('var')), Num('41'))
13
           // Assign(Name('var'), Num('41'))
14
           Exp(Num('41'))
15
           Assign(Stackframe(Num('0')), Stack(Num('1')))
16
           // If(Num('1'), [])
           // IfElse(Num('1'), [], [])
18
           Exp(Num('1')),
19
           IfElse
20
             Stack
               Num '1',
22
             23
               GoTo
24
                 Name 'if.2'
25
             ],
26
             [
27
               GoTo
28
                 Name 'if_else_after.1'
29
             ]
30
         ],
       Block
32
         Name 'if.2',
33
34
           // Assign(Name('var'), Num('42'))
35
           Exp(Num('42'))
36
           Assign(Stackframe(Num('0')), Stack(Num('1')))
37
           Exp(GoTo(Name('if_else_after.1')))
38
         ],
39
       Block
40
         Name 'if_else_after.1',
41
         Γ
42
           Return(Empty())
43
         ],
44
       Block
45
         Name 'fun2.0',
46
         Γ
47
           // Return(Num('1'))
48
           Exp(Num('1'))
49
           Return(Stack(Num('1')))
50
    ]
```

Code 0.4: PicoC-ANF Pass für 3 Funktionen.

Nach dem RETI Pass in Code 0.5 gibt es nur noch RETI-Befehle, die Blöcke wurden entfernt. Die RETI-Befehle in diesen Blöcken wurden genauso zusammengefügt, wie die Blöcke angeordnet waren. Ohne die Kommentare könnte man die RETI-Befehle nicht mehr direkt Funktionen zuordnen. Die Kommentare enthalten die Bezeichner <name>.<number> der Blöcke, die in diesem Beispiel immer zugleich bis auf die Nummer, dem Namen der jeweiligen Funktion entsprechen.

Da es in der main-Funktion keinen Funktionsaufruf gab, wird der Code, der nach dem Befehl in der markierten Zeile kommt nicht mehr betreten. Funktionen sind im RETI-Code nur dadurch existent, dass im RETI-Code Sprünge (z.B. JUMP<rel> <im>) zu den jeweils richtigen Adressen gemacht werden. Die Sprünge werden zu den Adressen gemacht, wo die RETI-Befehle anfangen, die aus den Anweisungen einer Funktion kompiliert wurden.

```
1 # // Block(Name('start.5'), [])
 2 # // Exp(GoTo(Name('main.4')))
3 # // not included Exp(GoTo(Name('main.4')))
 4 # // Block(Name('main.4'), [])
 5 # Return(Emptv())
 6 LOADIN BAF PC -1;
7 # // Block(Name('fun1.3'), [])
 8 # // Assign(Alloc(Writeable(), IntType('int'), Name('var')), Num('41'))
 9 # // Assign(Name('var'), Num('41'))
10 # Exp(Num('41'))
11 SUBI SP 1;
12 LOADI ACC 41:
13 STOREIN SP ACC 1:
14 # Assign(Stackframe(Num('0')), Stack(Num('1')))
15 LOADIN SP ACC 1;
16 STOREIN BAF ACC -2;
17 ADDI SP 1;
18 # // If(Num('1'), [])
19 # // IfElse(Num('1'), [], [])
20 # Exp(Num('1'))
21 SUBI SP 1;
22 LOADI ACC 1;
23 STOREIN SP ACC 1;
24 # IfElse(Stack(Num('1')), [], [])
25 LOADIN SP ACC 1;
26 ADDI SP 1:
27 # JUMP== GoTo(Name('if_else_after.1'));
28 JUMP== 7;
29 # GoTo(Name('if.2'))
30 # // not included Exp(GoTo(Name('if.2')))
31 # // Block(Name('if.2'), [])
32 # // Assign(Name('var'), Num('42'))
33 # Exp(Num('42'))
34 SUBI SP 1;
35 LOADI ACC 42;
36 STOREIN SP ACC 1;
37 # Assign(Stackframe(Num('0')), Stack(Num('1')))
38 LOADIN SP ACC 1;
39 STOREIN BAF ACC -2;
40 ADDI SP 1;
41 # Exp(GoTo(Name('if_else_after.1')))
42 # // not included Exp(GoTo(Name('if_else_after.1')))
43 # // Block(Name('if_else_after.1'), [])
44 # Return(Empty())
```

```
45 LOADIN BAF PC -1;
46 # // Block(Name('fun2.0'), [])
47 # // Return(Num('1'))
48 # Exp(Num('1'))
49 SUBI SP 1;
50 LOADI ACC 1;
51 STOREIN SP ACC 1;
52 # Return(Stack(Num('1')))
53 LOADIN SP ACC 1;
54 ADDI SP 1;
55 LOADIN BAF PC -1;
```

Code 0.5: RETI-Blocks Pass für 3 Funktionen.

0.0.1.1.1 Sprung zur Main Funktion

Im vorherigen Beispiel in Code 0.1 war die main-Funktion die erste Funktion, die im Code vorkam. Dadurch konnte die main-Funktion direkt betreten werden, da die Ausführung eines Programmes immer ganz vorne im RETI-Code beginnt. Man musste sich daher keine Gedanken darum machen, wie man die Ausführung, die von der main-Funktion ausgeht überhaupt startet.

Im Beispiel in Code 0.6 ist die main-Funktion allerdings nicht die erste Funktion. Daher muss dafür gesorgt werden, dass die main-Funktion die erste Funktion ist, die ausgeführt wird.

```
1 void fun1() {
2 }
3
4 int fun2() {
5   return 1;
6 }
7
8 void main() {
9   return;
10 }
```

Code 0.6: PicoC-Code für Funktionen, wobei die main Funktion nicht die erste Funktion ist.

Im RETI-Blocks Pass in Code 0.7 sind die Funktionen nur noch durch Blöcke umgesetzt.

```
1 File
2  Name './verbose_3_funs_main.reti_blocks',
3  [
4   Block
5   Name 'fun1.2',
6   [
7   # Return(Empty())
8   LOADIN BAF PC -1;
9  ],
10  Block
11  Name 'fun2.1',
```

```
Γ
13
           # // Return(Num('1'))
14
           # Exp(Num('1'))
15
           SUBI SP 1;
16
           LOADI ACC 1;
           STOREIN SP ACC 1;
17
18
           # Return(Stack(Num('1')))
19
           LOADIN SP ACC 1;
20
           ADDI SP 1;
21
           LOADIN BAF PC -1;
22
         ],
23
       Block
24
         Name 'main.0',
25
26
           # Return(Empty())
27
           LOADIN BAF PC -1;
28
29
     ]
```

Code 0.7: RETI-Blocks Pass für Funktionen, wobei die main Funktion nicht die erste Funktion ist.

Eine simple Möglichkeit die Ausführung durch die main-Funktion zu starten, ist es, die main-Funktion einfach nach vorne zu schieben, damit diese als erstes ausgeführt wird. Im File(name, decls_defs)-Knoten muss dazu im decls_defs-Attribut, welches eine Liste von Funktionen ist, die main-Funktion an den ersten Index 0 geschoben werden.

Die Möglichkeit für die sich in der Implementierung des PicoC-Compilers allerdings entschieden wurde, ist es, wenn die main-Funktion nicht die erste auftauchende Funktion ist, einen start.<number>-Block als ersten Block einzufügen. Dieser start.<number>-Block enthält einen GoTo(Name('main.<number>'))-Knoten, der im RETI Pass 0.9 in einen Sprung zur main-Funktion übersetzt wird.

In der Implementierung des PicoC-Compilers wurde sich für diese Möglichkeit entschieden, da es für Verwender¹² des PicoC-Compilers vermutlich am intuitivsten ist, wenn der RETI-Code für die Funktionen an denselben Stellen relativ zueinander verortet ist, wie die Funktionsdefinitionen im PicoC-Code.

Das Einsetzen des start. -Blockes erfolgt im RETI-Patch Pass in Code 0.8. Der RETI-Patch Pass ist der Pass, der für das Ausbessern von Befehlen und Anweisungen zuständig ist, wenn z.B. in manchen Fällen die main-Funktion nicht die erste Funktion ist.

¹¹Die Bedeutung aller hier erwähnten Knoten und Kompositionen von Knoten wird in den Tabellen der Kapitel ??, ?? und ?? erläutert.

 $^{^{12}\}mathrm{Also}$ die kommenden Studentengenerationen.

¹³In engl. to patch.

```
Name 'fun1.2',
12
13
           # Return(Empty())
           LOADIN BAF PC -1;
15
         ],
16
       Block
17
         Name 'fun2.1',
18
19
           # // Return(Num('1'))
20
           # Exp(Num('1'))
21
           SUBI SP 1;
22
           LOADI ACC 1;
23
           STOREIN SP ACC 1;
24
           # Return(Stack(Num('1')))
25
           LOADIN SP ACC 1;
26
           ADDI SP 1;
27
           LOADIN BAF PC -1;
28
         ],
29
       Block
30
         Name 'main.0',
31
32
           # Return(Empty())
33
           LOADIN BAF PC -1;
34
    ]
```

Code 0.8: RETI-Patch Pass für Funktionen, wobei die main Funktion nicht die erste Funktion ist.

Im RETI Pass in Code 0.9 wird das Exp(GoTo(Name('main.<number>'))) durch den entsprechenden Sprung JUMP <distance_to_main_function> ersetzt und es werden die Blöcke entfernt.

```
1 # // Block(Name('start.3'), [])
 2 # // Exp(GoTo(Name('main.0')))
 3 JUMP 8;
 4 # // Block(Name('fun1.2'), [])
 5 # Return(Empty())
 6 LOADIN BAF PC -1;
 7 # // Block(Name('fun2.1'), [])
 8 # // Return(Num('1'))
9 # Exp(Num('1'))
10 SUBI SP 1;
11 LOADI ACC 1;
12 STOREIN SP ACC 1;
13 # Return(Stack(Num('1')))
14 LOADIN SP ACC 1;
15 ADDI SP 1;
16 LOADIN BAF PC -1;
17 # // Block(Name('main.0'), [])
18 # Return(Empty())
19 LOADIN BAF PC -1;
```

Code 0.9: RETI Pass für Funktionen, wobei die main Funktion nicht die erste Funktion ist.

0.0.1.2 Funktionsdeklaration und -definition und Umsetzung von Sichtbarkeitsbereichen

In der Programmiersprache L_C und somit auch L_{PicoC} ist es notwendig, dass eine Funktion deklariert ist, bevor man einen Funktionsaufruf zu dieser Funktion machen kann. Das ist notwendig, damit Fehler-meldungen ausgegeben werden können, wenn der Prototyp (Definition ??) der Funktion nicht mit den Datentypen der Argumente oder der Anzahl Argumente übereinstimmt, die beim Funktionsaufruf an die Funktion in einer festen Reihenfolge übergeben werden.

Die Dekleration einer Funktion kann explizit erfolgen (z.B. int fun2(int var);), wie in der im Beispiel in Code 0.10 markierten Zeile 1 oder zusammen mit der Funktionsdefinition (z.B. void fun1(){}), wie in den markierten Zeilen 3-4.

In dem Beispiel in Code 0.10 erfolgt ein Funktionsaufruf der Funktion fun2, die allerdings erst nach der main-Funktion definiert ist. Daher ist eine Funktionsdekleration, wie in der markierten Zeile 1 notwendig. Beim Funktionsaufruf der Funktion fun1 ist das nicht notwendig, da die Funktion vorher definiert wurde, wie in den markierten Zeilen 3-4 zu sehen ist.

```
int fun2(int var);
2
3
  void fun1() {
5
6
   void main() {
     int var = fun2(42);
    fun1();
9
    return;
10
11
12
   int fun2(int var) {
13
     return var;
14 }
```

Code 0.10: Pico C-Code für Funktionen, wobei eine Funktion vorher deklariert werden muss.

Die Deklaration einer Funktion erfolgt mithilfe der Symboltabelle, die in Code 0.11 für das Beispiel in Code 0.10 dargestellt ist. Für z.B. die Funktion int fun2(int var) werden die Attribute des Symbols Symbols(type_qual, datatype, name, val_addr, pos, size) wie üblich gesetzt. Dem datatype-Attribut wird dabei einfach die komplette Funktionsdeklaration FunDecl(IntType('int'), Name('fun2'), [Alloc(Writeable(), IntType('int'), Name('var'))]) zugewiesen.

Die Variablen var@main und var@fun2 der main-Funktion und der Funktion fun2 haben unterschiedliche Sichtbarkeitsbereiche (Definition??). Die Sichtbarkeitsbereiche der Funktionen werden mittels eines Suffix "@<fun_name>" umgesetzt, der an den Bezeichner var angehängt wird: var@<fun_name>. Dieser Suffix wird geändert, sobald beim Top-Down¹⁴-Iterieren über den Abstrakten Syntaxbaum des aktuellen Passes ein neuer FunDef(datatype, name, allocs, stmts_blocks)-Knoten betreten wird und über dessen Anweisungen im stmts-Attribut iteriert wird. Beim Iterieren über die Anweisungen eines Funktionsknotens wird beim Erstellen neuer Symboltabelleneinträge an die Schlüssel ein Suffix angehängt, der aus dem name-Attribut des Funktionsknotens FunDef(name, datatype, params, stmts_blocks) entnommen wird.

Ein Grund, warum Sichtbarkeitsbereiche über das Anhängen eines Suffix an den Bezeichner gelöst sind, ist, dass auf diese Weise die Schlüssel, die aus dem Bezeichner einer Variable und einem angehängten Suffix bestehen, in der als Assoziatives Feld umgesetzten Symboltabelle eindeutig sind. Des Weiteren lässt sich

¹⁴D.h. von der Wurzel zu den Blättern eines Baumes.

aus dem Symboltabelleneintrag einer Variable direkt ihr Sichtbarkeitsbereich, in dem sie definiert wurde ablesen. Der Suffix ist ebenfalls im Name(str)-Knoten des name-Attribubtes eines Symboltabelleneintrags der Symboltabelle angehängt. Dies ist in Code 0.11 markiert.

Die Variable var@main, bei der es sich um eine Lokale Variable der main-Funktion handelt, ist nur innerhalb des Codeblocks {} der main-Funktion sichtbar und die Variable var@fun2 bei der es sich im einen Parameter handelt, ist nur innerhalb des Codeblocks {} der Funktion fun2 sichtbar. Das ist dadurch umgesetzt, dass der Suffix, der bei jedem Funktionswechsel angepasst wird, auch beim Nachschlagen eines Symbols in der Symboltabelle an den Bezeichner der Variablen, die man nachschlagen will angehängt wird. Und da die Zuordnungen im Assoziativen Feld eindeutig sein müssen¹⁵, kann eine Variable nur in genau der Funktion nachgeschlagen werden, in der sie definiert wurde.

Das Symbol '@' wurde aus einem bestimmten Grund als Trennzeichen verwendet, nämlich, weil kein Bezeichner das Symbol '@' jemals selbst enthalten kann. Die Produktionen für einen Bezeichner in der Konkretten Grammatik $G_{Lex} \uplus G_{Parse}$ (siehe ?? und ??) lassen das Symbol @ nicht zu. Damit ist es ausgeschlossen, dass es zu Problemen kommt, falls ein Benutzer des PicoC-Compilers zufällig auf die Idee kommt seine Funktion auf eine unpassende Weise zu benennen¹⁶.

```
SymbolTable
     Ε
       Symbol
 4
         {
           type qualifier:
 5
                                     Empty()
                                     FunDecl(IntType('int'), Name('fun2'), [Alloc(Writeable(),
           datatype:

    IntType('int'), Name('var'))])

                                     Name('fun2')
           name:
 8
                                     Empty()
           value or address:
 9
                                     Pos(Num('1'), Num('4'))
           position:
10
                                     Empty()
           size:
11
         },
12
       Symbol
13
         {
14
           type qualifier:
                                     Empty()
           datatype:
                                     FunDecl(VoidType('void'), Name('fun1'), [])
16
           name:
                                     Name('fun1')
17
           value or address:
                                     Empty()
18
           position:
                                     Pos(Num('3'), Num('5'))
19
           size:
                                     Empty()
20
         },
21
       Symbol
22
23
           type qualifier:
                                     Empty()
24
           datatype:
                                     FunDecl(VoidType('void'), Name('main'), [])
25
           name:
                                     Name('main')
26
           value or address:
                                     Empty()
                                     Pos(Num('6'), Num('5'))
27
           position:
28
           size:
                                     Empty()
29
         },
30
       Symbol
31
32
           type qualifier:
                                     Writeable()
33
           datatype:
                                     IntType('int')
34
                                     Name('var@main')
           name:
```

¹⁵Sonst gibt es eine Fehlermeldung, wie ReDeclarationOrDefinition.

¹⁶Z.B. var@fun2 als Funktionsname.

```
Num('0')
           value or address:
36
           position:
                                     Pos(Num('7'), Num('6'))
37
           size:
                                     Num('1')
38
         },
39
       Symbol
40
         {
41
                                     Writeable()
           type qualifier:
42
                                     IntType('int')
           datatype:
43
                                     Name('var@fun2')
           name:
44
                                     Num('0')
           value or address:
45
           position:
                                     Pos(Num('12'), Num('13'))
46
                                     Num('1')
           size:
47
         }
```

Code 0.11: Symboltabelle für Funktionen, wobei eine Funktion vorher deklariert werden muss.

0.0.1.3 Funktionsaufruf

Ein Funktionsaufruf (z.B. stack_fun(local_var)) wird im Folgenden mithilfe des Beispiels in Code 0.12 erklärt. Das Beispiel ist so gewählt, dass alleinig der Funktionsaufruf im Vordergrund steht und das Beispiel nicht auch noch mit z.B. Aspekten wie der Umsetzung eines Rückgabewertes überladen ist. Der Aspekt der Umsetzung eines Rückgabewertes wird erst im nächsten Unterkapitel 0.0.1.3.1 erklärt. Zudem wurde, um die Adressberechnung anschaulicher zu machen als Datentyp für den Parameter param der Funktion stack_fun ein Verbund gewählt, der mehrere Speicherzellen im Hauptspeicher einnimmt.

```
1 struct st {int attr[2];};
2
3 void stack_fun(int param);
4
5 void main() {
6    struct st local_var[2];
7    stack_fun(1+1);
8    return;
9 }
10
11 void stack_fun(int param) {
12    struct st local_var[2];
13 }
```

Code 0.12: PicoC-Code für Funktionsaufruf ohne Rückgabewert.

Im Abstrakten Syntaxbaum in Code 0.13 wird ein Funktionsaufruf stack_fun(1+1) durch die Knoten Exp(Call(Name('stack_fun'), [BinOp(Num('1'), Add('+'), Num('1'))])) dargestellt.

```
1 File
2 Name './example_fun_call_no_return_value.ast',
3 [
4 StructDecl
5 Name 'st',
6 [
```

```
Alloc(Writeable(), ArrayDecl([Num('2')], IntType('int')), Name('attr'))
         ],
 9
       FunDecl
10
         VoidType 'void',
11
         Name 'stack_fun',
12
13
           Alloc
14
             Writeable,
15
             IntType 'int',
16
             Name 'param'
17
         ],
18
       FunDef
19
         VoidType 'void',
20
         Name 'main',
21
         [],
22
         Γ
23
           Exp(Alloc(Writeable(), ArrayDecl([Num('2')], StructSpec(Name('st'))),
           → Name('local_var')))
           Exp(Call(Name('stack_fun'), [BinOp(Num('1'), Add('+'), Num('1'))]))
24
25
           Return(Empty())
26
         ],
27
       FunDef
28
         VoidType 'void',
29
         Name 'stack_fun',
30
31
           Alloc(Writeable(), IntType('int'), Name('param'))
32
         ],
33
34
           Exp(Alloc(Writeable(), ArrayDecl([Num('2')], StructSpec(Name('st'))),
              Name('local_var')))
         ]
35
36
    ]
```

Code 0.13: Abstrakter Syntaxbaum für Funktionsaufruf ohne Rückgabewert.

Alle Funktionen außer der main-Funktion besitzen einen Stackframe (Definition 0.1). Bei der main-Funktion werden Lokale Variablen einfach zu den Globalen Statischen Daten geschrieben.

In Tabelle 1 ist für das Beispiel in Code 0.12 das Datensegment inklusive Stackframe der Funktion stack_fun mit allen allokierten Variablen dargestellt. Mithilfe der Spalte Relativadresse in der Tabelle 1 erklären sich auch die Relativadressen der Variablen local_var@main, local_var@stack_fun, param@stack_fun in den value or address-Attributen der markierten Symboltabelleneinträge in der Symboltabelle in Code 0.14. Bei Stackframes fangen die Relativadressen erst 2 Speicherzellen relativ zum BAF-Register an, da die Rücksprungadresse und die Startadresse des Vorgängerframes Platz brauchen.

Relativ- adresse	Inhalt	Register
0		CS
1	$\langle local_var@main \rangle$	
2		
3		
• • •	• • •	SP
4	$\langle local_var@stack_fun angle \ \langle param_var@stack_fun angle$	
3		
2		
1		
0		
	Rücksprungadresse	
	Startadresse Vorgängerframe	BAF

Tabelle 1: Datensegment mit Stackframe.

Definition 0.1: Stackframe

7

Eine Datenstruktur, die dazu dient während der Laufzeit eines Programmes den Zustand einer Funktion "konservieren" zu können, um diese Funktion später im selben Zustand fortsetzen zu können. Stackframes werden dabei in einem Stack übereinander gestappelt und in die entgegengesetzte Richtung wieder abgebaut, wenn sie nicht mehr benötigt werden. Der Aufbau eines Stackframes ist in Tabelle 2 dargestellt.

 $\begin{array}{ccc} & & \leftarrow \text{SP} \\ \hline \text{Temporäre Berechnungen} \\ & \text{Lokale Variablen} \\ & \text{Parameter} \\ & \text{Rücksprungadresse} \\ \hline \text{Startadresse Vorgängerframe} & \leftarrow \text{BAF} \\ \hline \end{array}$

Tabelle 2: Aufbau Stackframe

Üblicherweise steht als erstes^a in einem Stackframe die Startadresse des Vorgängerframes. Diese ist notwendig, damit beim Rücksprung aus einer aufgerufenen Funktion, zurück zur aufrufenden Funktion das BAF-Register wieder so gesetzt werden kann, dass es auf den Stackframe der aktuell aktiven Funktion, also den Stackframe der aufrufenden Funktion zeigt.

Als zweites steht in einem Stackframe üblicherweise die Rücksprungadresse. Die Rücksprungadresse ist die Adresse im Codesegment, an welcher die Ausführung einer Funktion nach einem Funktionsaufruf fortgesetzt wird. Alles weitere in Tabelle 2 ist selbsterklärend.^b

SymbolTable

, ,

Ε

^aDie Tabelle 2 ist von unten zu lesen, da im PicoC-Compiler Stackframes in einem Stack untergebracht sind, der von unten-nach-oben wächst. Alles soll konsistent dazu gehalten werden, wie es im PicoC-Compiler aussieht.

^bScholl, "Betriebssysteme".

```
Symbol
 4
         {
          type qualifier:
                                   Empty()
                                   ArrayDecl([Num('2')], IntType('int'))
          datatype:
 7
8
9
          name:
                                   Name('attr@st')
          value or address:
                                   Emptv()
                                   Pos(Num('1'), Num('15'))
          position:
10
                                   Num('2')
          size:
11
        },
12
      Symbol
13
        {
14
          type qualifier:
                                   Empty()
          datatype:
                                   StructDecl(Name('st'), [Alloc(Writeable(),
           → ArrayDecl([Num('2')], IntType('int')), Name('attr'))])
                                   Name('st')
16
17
                                   [Name('attr@st')]
          value or address:
18
                                   Pos(Num('1'), Num('7'))
          position:
19
          size:
                                   Num('2')
20
        },
21
      Symbol
22
        {
23
          type qualifier:
                                   Empty()
24
                                   FunDecl(VoidType('void'), Name('stack_fun'),
          datatype:
           Name('stack_fun')
26
          value or address:
                                   Empty()
27
          position:
                                   Pos(Num('3'), Num('5'))
28
                                   Empty()
          size:
29
        },
30
      Symbol
31
        {
          type qualifier:
32
                                   Empty()
33
                                   FunDecl(VoidType('void'), Name('main'), [])
          datatype:
34
                                   Name('main')
          name:
                                   Empty()
          value or address:
36
                                   Pos(Num('5'), Num('5'))
          position:
37
                                   Empty()
          size:
38
        },
      Symbol
39
40
        {
41
           type qualifier:
                                   Writeable()
                                   ArrayDecl([Num('2')], StructSpec(Name('st')))
42
          datatype:
43
                                   Name('local_var@main')
          name:
44
                                   Num('0')
          value or address:
45
                                   Pos(Num('6'), Num('12'))
          position:
46
                                   Num('4')
          size:
47
        },
48
      Symbol
49
        {
50
           type qualifier:
                                   Writeable()
51
          datatype:
                                   IntType('int')
52
          name:
                                   Name('param@stack_fun')
53
                                   Num('0')
          value or address:
54
                                   Pos(Num('11'), Num('19'))
          position:
                                   Num('1')
          size:
56
        },
      Symbol
```

```
{
59
           type qualifier:
                                     Writeable()
60
           datatype:
                                     ArrayDecl([Num('2')], StructSpec(Name('st')))
61
           name:
                                     Name('local_var@stack_fun')
62
           value or address:
                                     Num('4')
63
           position:
                                     Pos(Num('12'), Num('12'))
64
                                     Num('4')
           size:
65
         }
66
    ]
```

Code 0.14: Symboltabelle für Funktionsaufruf ohne Rückgabewert.

Im PicoC-ANF Pass in Code 0.15 werden die Knoten Exp(Call(Name('stack_fun'), [Name('local_var')])) durch die Knoten StackMalloc(Num('2')), Ref(Global(Num('0'))), NewStackframe(Name('stack_fun'), GoTo(Name('addr@next_instr'))), Exp(GoTo(Name('stack_fun.0'))) und RemoveStackframe() ersetzt. Die Bedeutung aller hier erwähnten Knoten und Kompositionen von Knoten wird in den Tabellen der Kapitel??, ?? und ?? erläutert.

Der Knoten StackMalloc(Num('2')) ist notwendig, weil auf dem Stackframe für den Wert des BAF-Registers der aufrufenden Funktion und die Rücksprungadresse am Anfang des Stackframes 2 Speicherzellen Platz gelassen werden müssen. Das wird durch den Knoten StackMalloc(Num('2')) umgesetzt, indem das SP-Register einfach um zwei Speicherzellen dekrementiert wird und somit Speicher auf dem Stack allokiert wird.¹⁷

```
File
    Name './example_fun_call_no_return_value.picoc_mon',
     Γ
       Block
         Name 'main.1',
 6
7
8
           StackMalloc(Num('2'))
           Exp(Num('1'))
 9
           Exp(Num('1'))
10
           Exp(BinOp(Stack(Num('2')), Add('+'), Stack(Num('1'))))
11
           NewStackframe(Name('stack_fun'), GoTo(Name('addr@next_instr')))
12
           Exp(GoTo(Name('stack_fun.0')))
13
           RemoveStackframe()
14
           Return(Empty())
15
         ],
16
       Block
17
         Name 'stack_fun.0',
18
19
           Return(Empty())
20
21
    ]
```

Code 0.15: PicoC-ANF Pass für Funktionsaufruf ohne Rückgabewert.

Im RETI-Blocks Pass in Code 0.16 werden die PicoC-Knoten StackMalloc(Num('2')), Ref(Global(Num(

¹⁷Die Bedeutung aller hier erwähnten Knoten und Kompositionen von Knoten wird in den Tabellen der Kapitel ??, ?? und ?? erläutert.

'0'))), NewStackframe(Name('stack_fun'), GoTo(Name('addr@next_instr'))), Exp(GoTo(Name('stack_fun.0'))) und RemoveStackframe() durch ihre semantisch entsprechenden RETI-Knoten ersetzt.

Die Knoten LOADI ACC GoTo(Name('addr@next_instr')) und Exp(GoTo(Name('stack_fun.0'))) sind noch keine RETI-Knoten und werden erst später in dem für sie vorgesehenen RETI-Pass passend ergänzt bzw. ersetzt.

Der Bezeichner des Blocks stack_fun.0 in Exp(GoTo(Name('stack_fun.0'))) wird im Assoziativen Feld fun_name_to_block_name¹⁸ mit dem Schlüssel stack_fun¹⁹, der im Knoten NewStackframe(Name('stack_fun')) gespeichert ist nachgeschlagen.

```
File
 2
     Name './example_fun_call_no_return_value.reti_blocks',
 4
       Block
         Name 'main.1',
           # StackMalloc(Num('2'))
           SUBI SP 2;
 9
           # Exp(Num('1'))
10
           SUBI SP 1;
           LOADI ACC 1;
           STOREIN SP ACC 1;
13
           # Exp(Num('1'))
14
           SUBI SP 1;
15
           LOADI ACC 1;
16
           STOREIN SP ACC 1;
17
           # Exp(BinOp(Stack(Num('2')), Add('+'), Stack(Num('1'))))
18
           LOADIN SP ACC 2;
           LOADIN SP IN2 1;
19
20
           ADD ACC IN2;
21
           STOREIN SP ACC 2;
22
           ADDI SP 1;
23
           # NewStackframe(Name('stack_fun'), GoTo(Name('addr@next_instr')))
24
           MOVE BAF ACC;
25
           ADDI SP 3;
26
           MOVE SP BAF;
27
           SUBI SP 7;
28
           STOREIN BAF ACC 0;
29
           LOADI ACC GoTo(Name('addr@next_instr'));
30
           ADD ACC CS;
31
           STOREIN BAF ACC -1;
32
           # Exp(GoTo(Name('stack_fun.0')))
           Exp(GoTo(Name('stack_fun.0')))
33
34
           # RemoveStackframe()
35
           MOVE BAF IN1;
36
           LOADIN IN1 BAF 0;
37
           MOVE IN1 SP;
38
           # Return(Empty())
39
           LOADIN BAF PC -1;
40
         ],
41
       Block
         Name 'stack_fun.0',
```

 $^{^{18} \}mathrm{Dieses}$ Assoziative Feld wurde in Unterkapitel0.0.1.1eingeführt.

¹⁹Dem Bezeichner der Funktion.

```
43 [
44 # Return(Empty())
45 LOADIN BAF PC -1;
46 ]
47 ]
```

Code 0.16: RETI-Blocks Pass für Funktionsaufruf ohne Rückgabewert.

Im RETI Pass in Code 0.16 wird nun der finale RETI-Code generiert. Die RETI-Befehle aus den Blöcken sind nun zusammengefügt und es gibt keine Blöcke mehr. Des Weiteren wird das GoTo(Name('addr@next_instr')) in LOADI ACC GoTo(Name('addr@next_instr')) durch die Adresse des nächsten Befehls direkt nach dem Befehl JUMP 5²⁰ ersetzt: LOADI ACC 14. Der Knoten, der den Sprung Exp(GoTo(Name('stack_fun.0'))) darstellt wird durch den Knoten JUMP 5 ersetzt.

Die Distanz 5 im RETI-Knoten JUMP 5 wird mithilfe des versteckten instrs_before-Attributs des Zielblocks Block(name, stmts_instrs, instrs_before, num_instrs, param_size, local_vars_size)²² und des aktuellen Blocks, in dem der RETI-Knoten JUMP 5 selbst liegt berechnet.

Die relative Adresse 14 des Befehls LOADI ACC 14 wird ebenfalls mithilfe des versteckten instrs_before-Attributs des aktuellen Blocks Block(name, stmts_instrs, instrs_before, num_instrs, param_size, local_vars_size) berechnet. Es handelt sich bei 14 um eine relative Adresse, die relativ zum CS-Register²³ berechnet wird.

Anmerkung Q

Die Berechnung der Adresse adr_{danach} bzw. '<addr@next_instr>' des Befehls nach dem Sprung JUMP <distanz> für den Befehl LOADI ACC <addr@next_instr> erfolgt mithilfe der folgenden Formel:

$$adr_{danach} = \#Bef_{vor\,akt.\,Bl.} + idx + 4 \tag{0.0.1}$$

wobei:

- es sich bei adr_{danach} um eine relative Adresse handelt, die relativ zum CS-Register berechnet wird.
- #Bef_{vor akt. Bl.} Anzahl Befehle vor dem aktuellen Block. Es handelt sich hierbei um ein verstecktes Attribut instrs_before eines jeden Blockes Block(name, stmts_instrs, instrs_before, num_instrs, param_size, local_vars_size), welches im RETI-Patch-Pass gesetzt wird. Der Grund dafür, dass das Zuweisen dieses versteckten Attributes instrs_before im RETI-Patch Pass erfolgt, ist, weil erst im RETI-Patch Pass die finale Anzahl an Befehlen in einem Block feststeht. Das liegt darin begründet, dass im RETI-Patch Pass GoTo()'s entfernt werden, deren Sprung nur eine Adresse weiterspringen würde. Die finale Anzahl an Befehlen kann sich in diesem Pass also noch ändern und muss daher im letzten Schritt dieses Pass berechnet werden.
- idx = relativer Index des Befehls LOADI ACC <addr@next_instr> selbst im aktuellen Block.
- 4 \(\hat{=}\) Distanz, die zwischen den in Code 0.17 markierten Befehlen LOADI ACC <im> und JUMP <im> liegt und noch eins mehr, weil man ja zum n\(\tilde{a}\)chsten Befehl will.

 $^{^{20}\}mathrm{Der}$ für den Sprung zur gewünschten Funktion verantwortlich ist.

²¹Also der Befehl, der bisher durch die Komposition Exp(GoTo(Name('stack_fun.0'))) dargestellt wurde.

²²Welcher den ersten Befehl der gewünschten Funktion enthält.

²³Welches im RETI-Interpreter von einem Startprogramm im EPROM immer so gesetzt wird, dass es die Adresse enthält, an der das Codesegment anfängt.

Die Berechnug der Distanz $Dist_{Zielbl}$ bzw. <distance> zum ersten Befehl eines im vorhergehenden Pass existenten Blockes^a für den Sprungbefehl JUMP <distance> erfolgt nach der folgenden Formel:

$$Dist_{Zielbl.} = \begin{cases} #Bef_{vor\ Zielbl.} - #Bef_{vor\ akt.\ Bl.} - idx & #Bef_{vor\ Zielbl.}! = #Bef_{vor\ akt.\ Bl.} \\ -idx & #Bef_{vor\ Zielbl.} = #Bef_{vor\ akt.\ Bl.} \end{cases}$$
(0.0.2)

wobei:

- #Bef_{vor Zielbl.} Anzahl Befehle vor dem Zielblock zu dem gesprungen werden soll. Es handelt sich hierbei um ein verstecktes Attribut instrs_before eines jeden Blockes Block(name, stmts_instrs, instrs_before, num_instrs, param_size, local_vars_size).
- $\#Bef_{vor\ akt.\ Bl.}$ und idx haben die gleiche Bedeutung, wie in der Formel 0.0.1.
- idx = relativer Index des Befehls JUMP <distance> selbst im aktuellen Block.

Abbildung 1: Veranschaulichung der Dinstanzberechnung

^aIm **RETI-Pass** gibt es keine Blöcke mehr.

```
1 # // Exp(GoTo(Name('main.1')))
2 # // not included Exp(GoTo(Name('main.1')))
 3 # StackMalloc(Num('2'))
 4 SUBI SP 2;
 5 # Exp(Num('1'))
 6 SUBI SP 1;
 7 LOADI ACC 1;
8 STOREIN SP ACC 1;
 9 # Exp(Num('1'))
10 SUBI SP 1;
11 LOADI ACC 1;
12 STOREIN SP ACC 1;
13 # Exp(BinOp(Stack(Num('2')), Add('+'), Stack(Num('1'))))
14 LOADIN SP ACC 2;
15 LOADIN SP IN2 1;
16 ADD ACC IN2;
17 STOREIN SP ACC 2;
18 ADDI SP 1;
19 # NewStackframe(Name('stack_fun'), GoTo(Name('addr@next_instr')))
20 MOVE BAF ACC;
```

```
21 ADDI SP 3;
22 MOVE SP BAF;
23 SUBI SP 7;
24 STOREIN BAF ACC 0;
25 LOADI ACC 21;
26 ADD ACC CS;
27 STOREIN BAF ACC -1;
28 # Exp(GoTo(Name('stack_fun.0')))
29 JUMP 5;
30 # RemoveStackframe()
31 MOVE BAF IN1;
32 LOADIN IN1 BAF 0;
33 MOVE IN1 SP;
34 # Return(Empty())
35 LOADIN BAF PC -1;
36 # Return(Empty())
37 LOADIN BAF PC -1;
```

Code 0.17: RETI-Pass für Funktionsaufruf ohne Rückgabewert.

0.0.1.3.1 Rückgabewert

Ein Funktionsaufruf inklusive Zuweisung eines Rückgabewertes (z.B. int var = fun_with_return_valu e()) wird im Folgenden mithilfe des Beispiels in Code 0.18 erklärt.

Um den Unterschied zwischen einem return ohne Rückgabewert und einem return 21 * 2 mit Rückgabewert hervorzuheben, wurde ist auch eine Funktion fun_no_return_value, die keinen Rückgabewert hat in das Beispiel integriert.

```
int fun_with_return_value() {
   return 21 * 2;
}

void fun_no_return_value() {
   return;
}

void main() {
   int var = fun_with_return_value();
   fun_no_return_value();
}
```

Code 0.18: PicoC-Code für Funktionsaufruf mit Rückgabewert.

Im Abstrakten Syntaxbaum in Code 0.19 wird eine Return-Anweisung mit Rückgabewert return 21 * 2 mit der Komposition Return(BinOp(Num('21'), Mul('*'), Num('2'))) dargestellt, eine Return-Anweisung ohne Rückgabewert return mit der Komposition Return(Empty()) und ein Funktionsaufruf inklusive Zuweisung des Rückgabewertes int var = fun_with_return_value() durch die Komposition Assign(Alloc (Writeable(),IntType('int'),Name('var')),Call(Name('fun_with_return_value'),[])).

```
Name './example_fun_call_with_return_value.ast',
     Γ
 4
       FunDef
 5
         IntType 'int',
         Name 'fun_with_return_value',
 6
7
8
         [],
         Ε
 9
           Return(BinOp(Num('21'), Mul('*'), Num('2')))
10
         ],
11
       FunDef
12
         VoidType 'void',
13
         Name 'fun_no_return_value',
14
         [],
         [
16
           Return(Empty())
17
         ],
18
       FunDef
19
         VoidType 'void',
         Name 'main',
20
21
         [],
22
23
           Assign(Alloc(Writeable(), IntType('int'), Name('var')),
               Call(Name('fun_with_return_value'), []))
           Exp(Call(Name('fun_no_return_value'), []))
24
25
26
     ]
```

Code 0.19: Abstrakter Syntaxbaum für Funktionsaufruf mit Rückgabewert.

Im PicoC-ANF Pass in Code 0.20 wird bei der Komposition Return(BinOp(Num('21'), Mul('*'), Num('2'))) erst die Expression BinOp(Num('21'), Mul('*'), Num('2')) ausgewertet. Die hierfür erstellten Kompositionen Exp(Num('21')), Exp(Num('2')) und Exp(BinOp(Stack(Num('2')), Mul('*'), Stack(Num('1')))) berechnen das Ergebnis des Ausdrucks 21*2 auf dem Stack. Dieses Ergebnis wird dann von der Komposition Return(Stack(Num('1'))) vom Stack gelesen und in das Register ACC geschrieben. Als letztes wird die Rücksprungadresse in das PC-Register geladen, die durch den NewStackframe()-Knoten eine Speicherzelle nach dem Wert des BAF-Registers der aufrufenden Funktion im Stackframe gespeichert ist.

Ein wichtiges Detail bei der Funktion fun_with_return_value ist, dass der Funktionsaufruf Call(Name('fun_with_return_value'), [])) anders übersetzt wird, da die Funktion einen Rückgabewert vom Datentyp IntType() und nicht VoidType() hat. Um den Rückgabewert, der durch die Komposition Return(BinOp(Num('21'), Mul('*'), Num('2'))) in das ACC-Register geschrieben wurde für die aufrufende Funktion, deren Stackframe nun wieder das aktuelle ist auf den Stack zu schreiben, muss ein neue Komposition Exp(ACC)²⁴ definiert werden.

Dieser Trick mit dem Speichern des Rückgabewertes im ACC-Register ist notwendidg, weil durch das Entfernen des Stackframes der aufgerufenen Funktion das SP-Register nicht mehr an der gleichen Stelle steht. Daher sind alle temporären Werte, die in der aufgerufenen Funktion auf den Stack geschrieben wurden unzugänglich, weil man nicht wissen kann, um wieviel die Adresse im SP-Register verglichen zu vorher verschoben ist, weil der Stackframe von unterschiedlichen aufgerufenen Funktionen unterschiedlich groß sein kann.

 $[\]overline{^{24} ext{Diese Komposition}}$ schreibt den aktuellen Wert des Registers ACC auf den Stack

Die Komposition Assign(Alloc(Writeable(),IntType('int'),Name('var')),Call(Name('fun_with_return_va lue'),[])) wird nach dem allokieren der Variable Name('var') durch die Komposition Assign(Global(Num ('0')),Stack(Num('1'))) ersetzt, welche den Rückgabewert der Funktion Name('fun_with_return_value'), welcher durch die Komposition Exp(Acc) aus dem ACC-Register auf den Stack geschrieben wurde nun vom Stack in die Speicherzelle der Variable Name('var') in den Globalen Statischen Daten speichert. Hierzu muss die Adresse der Variable Name('var') in der Symboltabelle nachgeschlagen werden.

Die Komposition Return(Empty()) für ein return ohne Rückgabewert bleibt unverändert, sie stellt nur das Laden der Rücksprungsadresse in das PC-Register dar.

Des Weiteren ist zu beobachten, dass wenn bei einer Funktion mit dem Rückgabedatentyp void keine return-Anweisung explizit ans Ende geschrieben wird, im PicoC-ANF Pass eines hinzufügt wird in Form der Komposition Return(Empty()). Beim Nicht-Angeben im Falle eines Dantentyps, der nicht void ist, wird allerdings eine MissingReturn-Fehlermeldung ausgelöst.

```
1 File
    Name './example_fun_call_with_return_value.picoc_mon',
 4
5
       Block
         Name 'fun_with_return_value.2',
           // Return(BinOp(Num('21'), Mul('*'), Num('2')))
           Exp(Num('21'))
 9
           Exp(Num('2'))
10
           Exp(BinOp(Stack(Num('2')), Mul('*'), Stack(Num('1'))))
11
           Return(Stack(Num('1')))
12
         ],
13
       Block
14
         Name 'fun_no_return_value.1',
16
           Return(Empty())
17
         ],
18
       Block
19
         Name 'main.0',
20
21
           // Assign(Name('var'), Call(Name('fun_with_return_value'), []))
22
           StackMalloc(Num('2'))
23
           NewStackframe(Name('fun_with_return_value'), GoTo(Name('addr@next_instr')))
24
           Exp(GoTo(Name('fun_with_return_value.2')))
25
           RemoveStackframe()
26
           Exp(ACC)
27
           Assign(Global(Num('0')), Stack(Num('1')))
28
           StackMalloc(Num('2'))
29
           NewStackframe(Name('fun_no_return_value'), GoTo(Name('addr@next_instr')))
30
           Exp(GoTo(Name('fun_no_return_value.1')))
31
           RemoveStackframe()
32
           Return(Empty())
33
    1
```

Code 0.20: PicoC-ANF Pass für Funktionsaufruf mit Rückgabewert.

Im RETI-Blocks Pass in Code 0.21 werden die Kompositionen Exp(Num('21')), Exp(Num('2')), Exp(BinOp(Stack(Num('2')),Mul('*'),Stack(Num('1')))), Return(Stack(Num('1'))) und Assign(Global(Num('0')),Stack(Num('1'))) durch ihre entsprechenden RETI-Knoten ersetzt.

```
Name './example_fun_call_with_return_value.reti_blocks',
       Block
         Name 'fun_with_return_value.2',
           # // Return(BinOp(Num('21'), Mul('*'), Num('2')))
           # Exp(Num('21'))
           SUBI SP 1;
10
           LOADI ACC 21;
11
           STOREIN SP ACC 1;
12
           # Exp(Num('2'))
13
           SUBI SP 1;
14
           LOADI ACC 2;
15
           STOREIN SP ACC 1;
16
           # Exp(BinOp(Stack(Num('2')), Mul('*'), Stack(Num('1'))))
17
           LOADIN SP ACC 2;
18
           LOADIN SP IN2 1;
19
           MULT ACC IN2;
20
           STOREIN SP ACC 2;
21
           ADDI SP 1;
22
           # Return(Stack(Num('1')))
23
           LOADIN SP ACC 1;
24
           ADDI SP 1;
25
           LOADIN BAF PC -1;
26
         ],
27
       Block
28
         Name 'fun_no_return_value.1',
29
30
           # Return(Empty())
31
           LOADIN BAF PC -1;
32
         ],
33
       Block
34
         Name 'main.0',
35
36
           # // Assign(Name('var'), Call(Name('fun_with_return_value'), []))
37
           # StackMalloc(Num('2'))
38
           SUBI SP 2;
39
           # NewStackframe(Name('fun_with_return_value'), GoTo(Name('addr@next_instr')))
40
           MOVE BAF ACC;
41
           ADDI SP 2;
42
           MOVE SP BAF;
43
           SUBI SP 2;
44
           STOREIN BAF ACC 0;
45
           LOADI ACC GoTo(Name('addr@next_instr'));
46
           ADD ACC CS;
47
           STOREIN BAF ACC -1;
48
           # Exp(GoTo(Name('fun_with_return_value.2')))
49
           Exp(GoTo(Name('fun_with_return_value.2')))
50
           # RemoveStackframe()
51
           MOVE BAF IN1;
52
           LOADIN IN1 BAF O;
53
           MOVE IN1 SP;
54
           # Exp(ACC)
55
           SUBI SP 1;
```

```
STOREIN SP ACC 1;
57
           # Assign(Global(Num('0')), Stack(Num('1')))
58
           LOADIN SP ACC 1;
59
           STOREIN DS ACC 0;
           ADDI SP 1;
61
           # StackMalloc(Num('2'))
62
           SUBI SP 2;
63
           # NewStackframe(Name('fun_no_return_value'), GoTo(Name('addr@next_instr')))
64
           MOVE BAF ACC;
65
           ADDI SP 2;
66
           MOVE SP BAF;
67
           SUBI SP 2;
68
           STOREIN BAF ACC 0;
69
           LOADI ACC GoTo(Name('addr@next_instr'));
70
           ADD ACC CS;
71
           STOREIN BAF ACC -1;
72
           # Exp(GoTo(Name('fun_no_return_value.1')))
           Exp(GoTo(Name('fun_no_return_value.1')))
           # RemoveStackframe()
75
           MOVE BAF IN1;
76
           LOADIN IN1 BAF 0;
77
           MOVE IN1 SP;
78
           # Return(Empty())
79
           LOADIN BAF PC -1;
80
81
    ]
```

Code 0.21: RETI-Blocks Pass für Funktionsaufruf mit Rückgabewert.

0.0.1.3.2 Umsetzung der Übergabe eines Feldes

Die Eigenheit, dass bei der Übergabe eines Feldes an eine andere Funktion, dieses als Zeiger übergeben wird, wurde bereits im Unterkapitel ?? erläutert. Die Umsetzung der Übergabe eines Feldes an eine andere Funktion wird im Folgenden mithilfe des Beispiels in Code 0.22 erklärt.

```
void fun_array_from_stackframe(int (*param)[3]) {

void fun_array_from_global_data(int param[2][3]) {

int local_var[2][3];

fun_array_from_stackframe(local_var);
}

void main() {

int local_var[2][3];

fun_array_from_global_data(local_var);
}

fun_array_from_global_data(local_var);
}
```

Code 0.22: PicoC-Code für die Übergabe eines Feldes.

Im PicoC-ANF Pass muss im Fall dessen, dass der oberste Knoten im Teilbaum, der den Datentyp darstellt und an die Funktion übergeben wird ein Feld ArrayDecl(nums, datatype) ist auf spezielle Weise

vorgegangen werden. Dieser oberste Knoten des Teilbaums, der den Datentyp darstellt muss zu einem Zeiger PntrDecl(num, datatype) umgewandelt und der Rest des Teilbaumes, der am datatype-Attribut hängt, muss an das datatype-Attribut des Zeigers PntrDecl(num, datatype) gehängt werden.

Diese Umwandlung des Datentyps kann in der Symboltabelle in Code 0.23 beobachtet werden. Die lokalen Variablen local_var@main und local_var@fun_array_from_global_data sind beide vom Datentyp ArrayDecl([Num('2'), Num('3')], IntType('int')) und bei der Übergabe ändert sich der Datentyp beider Variablen zu PntrDecl(Num('1'), ArrayDecl([Num('3')], IntType('int'))). Die Größe dieser Variablen ändert sich damit zu Num('1'), da ein Zeiger nur eine Speicherzelle braucht.

```
SymbolTable
 2
     Γ
       Symbol
 4
         {
           type qualifier:
                                    Emptv()
                                    FunDecl(VoidType('void'), Name('fun_array_from_stackframe'),
           datatype:
               [Alloc(Writeable(), PntrDecl(Num('1'), ArrayDecl([Num('3')], IntType('int'))),
           → Name('param'))])
                                    Name('fun_array_from_stackframe')
           name:
 8
                                    Empty()
           value or address:
           position:
                                    Pos(Num('1'), Num('5'))
10
           size:
                                    Empty()
11
         },
12
       Symbol
13
         {
14
                                    Writeable()
           type qualifier:
                                    PntrDecl(Num('1'), ArrayDecl([Num('3')], IntType('int')))
15
           datatype:
16
                                    Name('param@fun_array_from_stackframe')
17
           value or address:
                                    Num('0')
18
                                    Pos(Num('1'), Num('37'))
           position:
19
           size:
                                    Num('1')
20
         },
21
       Symbol
22
23
           type qualifier:
                                    Empty()
                                    FunDecl(VoidType('void'), Name('fun_array_from_global_data'),
           datatype:
                                    ArrayDecl([Num('3')], IntType('int')), Name('param'))])
           → [Alloc(Writeable(),
                                    Name('fun_array_from_global_data')
           name:
26
                                    Empty()
           value or address:
27
                                    Pos(Num('4'), Num('5'))
           position:
28
                                    Empty()
           size:
29
         },
30
       Symbol
31
32
           type qualifier:
                                    Writeable()
                                    PntrDecl(Num('1'), ArrayDecl([Num('3')], IntType('int')))
33
           datatype:
34
           name:
                                    Name('param@fun_array_from_global_data')
35
                                    Num('0')
           value or address:
36
                                    Pos(Num('4'), Num('36'))
           position:
37
                                    Num('1')
           size:
38
         },
39
       Symbol
40
         {
41
                                    Writeable()
           type qualifier:
42
                                    ArrayDecl([Num('2'), Num('3')], IntType('int'))
           datatype:
                                    Name('local_var@fun_array_from_global_data')
           name:
```

```
value or address:
                                     Num('6')
45
           position:
                                     Pos(Num('5'), Num('6'))
46
                                     Num('6')
           size:
47
         },
48
       Symbol
49
         {
50
                                     Empty()
           type qualifier:
51
                                     FunDecl(VoidType('void'), Name('main'), [])
           datatype:
52
                                     Name('main')
           name:
53
                                     Empty()
           value or address:
54
                                     Pos(Num('9'), Num('5'))
           position:
55
                                     Empty()
           size:
56
         },
57
       Symbol
58
         {
59
           type qualifier:
                                     Writeable()
60
                                     ArrayDecl([Num('2'), Num('3')], IntType('int'))
           datatype:
61
                                     Name('local_var@main')
           name:
62
                                     Num('0')
           value or address:
63
                                     Pos(Num('10'), Num('6'))
           position:
64
                                     Num('6')
           size:
65
         }
66
     ]
```

Code 0.23: Symboltabelle für die Übergabe eines Feldes.

Im PicoC-ANF Pass in Code 0.24 ist zu sehen, dass zur Übergabe der beiden Felder die Adresse des jeweiligen Feldes auf den Stack geschrieben wird. Die Adressen der beiden Felder auf den Stack zu schreiben wird durch die Kompositionen Ref(Global(Num('0'))) und Ref(Stackframe(Num('6'))) repräsentiert.

Die Komposition Ref(Global(Num('0'))) ist für die Variable local_var aus der main-Funktion, da diese in den Globalen Statischen Daten liegt und die Komposition Ref(Stackframe(Num('6'))) ist für die Variable local_var aus der Funktion fun_array_from_global_data, da diese auf dem Stackframe dieser Funktion liegt. Dabei stellen die Zahlen in den Knoten Global(num) bzw. Stackframe(num) die relative Adressen relativ zum DS-Register bzw. SP-Register dar, die aus der Symboltabelle entnommen sind.

```
Name './example_fun_call_by_sharing_array.picoc_mon',
    Γ
4
      Block
        Name 'fun_array_from_stackframe.2',
6
7
8
           Return(Empty())
        ],
9
      Block
10
         Name 'fun_array_from_global_data.1',
11
12
           StackMalloc(Num('2'))
13
           Ref(Stackframe(Num('6')))
14
           NewStackframe(Name('fun_array_from_stackframe'), GoTo(Name('addr@next_instr')))
          Exp(GoTo(Name('fun_array_from_stackframe.2')))
16
          RemoveStackframe()
          Return(Empty())
```

```
],
19
       Block
20
         Name 'main.0',
21
22
           StackMalloc(Num('2'))
23
           Ref(Global(Num('0')))
24
           NewStackframe(Name('fun_array_from_global_data'), GoTo(Name('addr@next_instr')))
25
           Exp(GoTo(Name('fun_array_from_global_data.1')))
26
           RemoveStackframe()
27
           Return(Empty())
28
    ]
```

Code 0.24: PicoC-ANF Pass für die Übergabe eines Feldes.

Im RETI-Blocks Pass in Code 0.25 werden Kompositionen Ref(Global(Num('0'))) und Ref(Stackframe(Num('6'))) durch ihre entsprechenden RETI-Knoten ersetzt.

```
1 File
 2
    Name './example_fun_call_by_sharing_array.reti_blocks',
     Γ
       Block
         Name 'fun_array_from_stackframe.2',
           # Return(Empty())
 8
           LOADIN BAF PC -1;
9
         ],
10
11
         Name 'fun_array_from_global_data.1',
12
13
           # StackMalloc(Num('2'))
14
           SUBI SP 2;
15
           # Ref(Stackframe(Num('6')))
16
           SUBI SP 1;
17
           MOVE BAF IN1;
18
           SUBI IN1 8;
19
           STOREIN SP IN1 1;
20
           # NewStackframe(Name('fun_array_from_stackframe'), GoTo(Name('addr@next_instr')))
21
           MOVE BAF ACC;
22
           ADDI SP 3;
23
           MOVE SP BAF;
24
           SUBI SP 3;
25
           STOREIN BAF ACC 0;
26
           LOADI ACC GoTo(Name('addr@next_instr'));
27
           ADD ACC CS;
28
           STOREIN BAF ACC -1;
29
           # Exp(GoTo(Name('fun_array_from_stackframe.2')))
30
           Exp(GoTo(Name('fun_array_from_stackframe.2')))
31
           # RemoveStackframe()
           MOVE BAF IN1;
33
           LOADIN IN1 BAF 0;
34
           MOVE IN1 SP;
35
           # Return(Empty())
           LOADIN BAF PC -1;
```

```
],
38
       Block
39
         Name 'main.0',
40
           # StackMalloc(Num('2'))
42
           SUBI SP 2:
43
           # Ref(Global(Num('0')))
44
           SUBI SP 1;
45
           LOADI IN1 0;
46
           ADD IN1 DS;
47
           STOREIN SP IN1 1;
48
           # NewStackframe(Name('fun_array_from_global_data'), GoTo(Name('addr@next_instr')))
49
           MOVE BAF ACC;
           ADDI SP 3;
50
           MOVE SP BAF;
52
           SUBI SP 9;
53
           STOREIN BAF ACC 0;
54
           LOADI ACC GoTo(Name('addr@next_instr'));
55
           ADD ACC CS:
56
           STOREIN BAF ACC -1;
57
           # Exp(GoTo(Name('fun_array_from_global_data.1')))
58
           Exp(GoTo(Name('fun_array_from_global_data.1')))
59
           # RemoveStackframe()
60
           MOVE BAF IN1;
61
           LOADIN IN1 BAF 0;
62
           MOVE IN1 SP;
           # Return(Empty())
63
           LOADIN BAF PC -1;
64
65
         ]
66
    ]
```

Code 0.25: RETI-Block Pass für die Übergabe eines Feldes.

0.0.1.3.3 Umsetzung einer Übergabe eines Verbundes

Die Eigenheit, dass ein Verbund als Argument beim Funktionsaufruf einer anderen Funktion in den Stackframe der aufgerufenen Funktion kopiert wird, wurde bereits im Unterkapitel ?? erläutert. Die Umsetzung der Übergabe eines Verbundes wird im Folgenden mithilfe des Beispiels in Code 0.26 erklärt.

```
struct st {int attr1; int attr2[2];};

void fun_struct_from_stackframe(struct st param) {

void fun_struct_from_global_data(struct st param) {

fun_struct_from_stackframe(param);
}

void main() {

struct st local_var;

fun_struct_from_global_data(local_var);
```

15 }

Code 0.26: PicoC-Code für die Übergabe eines Verbundes.

Im PicoC-ANF Pass in Code 0.27 wird zur Übergabe eines Verbundes, der komplette Verbund auf den Stack kopiert. Das wird mittels der Komposition Assign(Stack(Num('3')), Global(Num('0'))) bzw. der Komposition Assign(Stack(Num('3')), Stackframe(Num('2'))) dargestellt.

Bei der Übergabe an eine Funktion wird der Zugriff auf einen gesamten Verbund anders gehandhabt als sonst. Normalerweise wird beim Zugriff auf einen Verbund die Adresse des ersten Attributs dieses Verbundes auf den Stack geschrieben. Bei der Übergabe an eine Funktion wird dagegen der gesamte Verbund auf den Stack kopiert.

Das wird durch eine Variable argmode_on implementiert, die auf true gesetzt wird, solange der Funktionsaufruf im Picoc-ANF Pass verarbeitet wird und wieder auf false gesetzt, wenn die Verarbeitung des
Funktionsaufrufs abgeschlossen ist. Solange die Variable argmode_on auf true gesetzt ist, wird immer die
Komposition Assign(Stack(Num('3')), Global(Num('0'))) bzw. die Komposition Assign(Stack(Num('3')),
Stackframe(Num('2'))) für die Ersetzung verwendet. Ist die Variable argmode_on auf false wird die Komposition Ref(Globalnum()) bzw. Ref(Stackframe(num)) für die Ersetzung verwendet.

Die Komposition Assign(Stack(Num('3')), Global(Num('0'))) wird verwendet, da die Verbundsvariable local_var der main-Funktion in den Globalen Statischen Daten liegt und die Komposition Assign(Stack(Num('3')), Stackframe(Num('2'))) wird verwendet, da die Verbundsvariable local_var der Funktion fun_struct_from_global_data im Stackframe liegt.

```
File
    Name './example_fun_call_by_value_struct.picoc_mon',
     Γ
       Block
         Name 'fun_struct_from_stackframe.2',
 7
8
           Return(Empty())
         ],
 9
       Block
10
         Name 'fun_struct_from_global_data.1',
11
12
           StackMalloc(Num('2'))
13
           Assign(Stack(Num('3')), Stackframe(Num('2')))
14
           NewStackframe(Name('fun_struct_from_stackframe'), GoTo(Name('addr@next_instr')))
           Exp(GoTo(Name('fun_struct_from_stackframe.2')))
16
           RemoveStackframe()
17
           Return(Empty())
18
         ],
19
       Block
20
         Name 'main.0',
21
22
           StackMalloc(Num('2'))
23
           Assign(Stack(Num('3')), Global(Num('0')))
24
           NewStackframe(Name('fun_struct_from_global_data'), GoTo(Name('addr@next_instr')))
25
           Exp(GoTo(Name('fun_struct_from_global_data.1')))
26
           RemoveStackframe()
           Return(Empty())
```

```
28 ]
29 ]
```

Code 0.27: PicoC-ANF Pass für die Übergabe eines Verbundes.

Im RETI-Blocks Pass in Code 0.28 werden die Kompositionen Assign(Stack(Num('3')), Stackframe(Num('2'))) und Assign(Stack(Num('3')), Global(Num('0'))) durch ihre entsprechenden RETI-Knoten ersetzt.

```
Name './example_fun_call_by_value_struct.reti_blocks',
 4
       Block
         Name 'fun_struct_from_stackframe.2',
 7
8
9
           # Return(Empty())
           LOADIN BAF PC -1;
         ],
10
       Block
11
         Name 'fun_struct_from_global_data.1',
12
13
           # StackMalloc(Num('2'))
14
           SUBI SP 2:
15
           # Assign(Stack(Num('3')), Stackframe(Num('2')))
16
           SUBI SP 3;
17
           LOADIN BAF ACC -4;
18
           STOREIN SP ACC 1;
19
           LOADIN BAF ACC -3:
20
           STOREIN SP ACC 2;
21
           LOADIN BAF ACC -2;
22
           STOREIN SP ACC 3;
23
           # NewStackframe(Name('fun_struct_from_stackframe'), GoTo(Name('addr@next_instr')))
24
           MOVE BAF ACC;
25
           ADDI SP 5;
26
           MOVE SP BAF;
27
           SUBI SP 5;
28
           STOREIN BAF ACC 0;
29
           LOADI ACC GoTo(Name('addr@next_instr'));
30
           ADD ACC CS;
31
           STOREIN BAF ACC -1;
32
           # Exp(GoTo(Name('fun_struct_from_stackframe.2')))
33
           Exp(GoTo(Name('fun_struct_from_stackframe.2')))
34
           # RemoveStackframe()
35
           MOVE BAF IN1;
36
           LOADIN IN1 BAF O;
37
           MOVE IN1 SP;
38
           # Return(Empty())
39
           LOADIN BAF PC -1;
40
         ],
41
       Block
42
         Name 'main.0',
43
           # StackMalloc(Num('2'))
           SUBI SP 2;
```

Grammatikverzeichnis

```
# Assign(Stack(Num('3')), Global(Num('0')))
           SUBI SP 3;
48
           LOADIN DS ACC 0;
           STOREIN SP ACC 1;
           LOADIN DS ACC 1;
51
           STOREIN SP ACC 2;
52
           LOADIN DS ACC 2;
53
           STOREIN SP ACC 3;
54
           # NewStackframe(Name('fun_struct_from_global_data'), GoTo(Name('addr@next_instr')))
55
           MOVE BAF ACC;
56
           ADDI SP 5;
57
           MOVE SP BAF;
58
           SUBI SP 5;
59
           STOREIN BAF ACC 0;
60
           LOADI ACC GoTo(Name('addr@next_instr'));
61
           ADD ACC CS;
62
           STOREIN BAF ACC -1;
63
           # Exp(GoTo(Name('fun_struct_from_global_data.1')))
64
           Exp(GoTo(Name('fun_struct_from_global_data.1')))
65
           # RemoveStackframe()
66
           MOVE BAF IN1;
67
           LOADIN IN1 BAF 0;
68
           MOVE IN1 SP;
69
           # Return(Empty())
           LOADIN BAF PC -1;
71
         ]
    ]
```

Code 0.28: RETI-Block Pass für die Übergabe eines Verbundes.

Literatur

Vorlesungen

• Scholl, Christoph. "Betriebssysteme". Vorlesung. Vorlesung. Universität Freiburg, 2020. URL: https://abs.informatik.uni-freiburg.de/src/teach_main.php?id=157 (besucht am 09.07.2022).