Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań dopuszczalnych.

NP-optymalizacyjny problem Π składa się ze:

- zbioru *instancji* D_{Π} rozpoznawalnego w czasie wielomianowym; liczby w instancjach są wymierne; model obliczeń nie obsługuje liczb rzeczywistych nieskończonej precyzji; *rozmiarem* instancji $I \in D_{\Pi}$, oznaczanym |I|, nazywamy liczbę bitów potrzebnych do zapisania |I| przy założeniu, ze wszystkie liczby występujące w I są reprezentowane binarnie;
- zbioru $rozwiązań dopuszczalnych S_{\Pi}(I)$ dla każdej instancji $I \in D_{\Pi}$; zbiory $S_{\Pi}(I)$ są niepuste i każde rozwiązanie $s \in S_{\Pi}(I)$ ma rozmiar wielomianowy względem |I|; ponadto istnieje algorytm wielomianowy, który dla danej pary (I, s) stwierdza czy $s \in S_{\Pi}(I)$;
- wielomianowo obliczalnej $funkcji \ celu, f_{\Pi} \ lub f$ (w literaturze obj_{Π}), przyporządkowującej liczbę rzeczywistą f(I,s) każdej parze (I,s), gdzie I jest instancją Π , a s rozwiązaniem dopuszczalnym dla I; funkcja celu ma często interpretację fizyczną jak $koszt, \ dlugość, \ waga$ czy inna miara, w tym będąca kombinacją (często ważoną) różnych wielkości fizycznych.

- Dodatkowo o problemie Π wiemy, że może być problemem minimalizacji bądź problemem maksymalizacji (funkcji celu).
- Ograniczenie problemu Π do instancji, w których wszystkie koszty są jednostkowe, nazywamy licznościową wersją Π .
- Rozwiązaniem optymalnym problemu minimalizacji (maksymalizacji) jest takie rozwiązanie dopuszczalne, dla którego funkcja celu przyjmuje najmniejszą (największą) wartość. Przez $OPT_{\Pi}(I)$ (OPT jeśli problem i instancja są oczywiste) oznaczamy wartość funkcji celu dla rozwiązania optymalnego instancji I.

Na przykład:

- Instancja problemu pokrycia wierzchołkowego składa się z grafu nieskierowanego G = (V, E) i funkcji kosztu określonej na zbiorze wierzchołków.
- Dopuszczalnym rozwiązaniem jest dowolny zbiór $S \subseteq V$, będący pokryciem G.
- $\bullet~$ Wartością funkcji celu rozwiązania Sjest suma kosztów wierzchołków z S.
- Rozwiązaniem optymalnym jest rozwiązanie dopuszczalne o minimalnym koszcie.

Czy problem pokrycia wierzchołkowego jest problemem **NP**-trudnym i jakie są tego konsekwencje dla czasu jego rozwiązania?

Algorytm aproksymacyjny znajduje rozwiązanie, które jest "bliskie" optymalnemu, a do tego jest efektywny czasowo.

Niech Π będzie problemem minimalizacji (maksymalizacji) i niech $k: \mathbb{Z}^+ \to \mathbb{Q}^+$ spełnia $k \geq 1 (k \leq 1)$.

Algorytm \mathcal{A} jest algorytmem k-aproksymacyjnym dla Π , jeżeli dla dowolnej instancji I, \mathcal{A} znajduje rozwiązanie dopuszczalne s takie, że $f_{\Pi}(I,s) \leq k(|I|) \cdot OPT(I) (f_{\Pi}(I,s) \neq k(|I|) \cdot OPT(I))$. Ponadto wymagany czas działania \mathcal{A} musi być wielomianowy względem |I|.

Albo inaczej.

Algorytm aproksymacyjny \mathcal{A} dla problemu π znajduje w czasie wielomianowym rozwiązanie dopuszczalne, dla którego wartość funkcji celu jest bliska optymalnej, czyli różni się od OPT o co najwyżej o pewien z góry określony czynnik, tzw. współczynnik aproksymacji.

- 1. Kiedy algorytm aproksymacyjny jest lepszy, z punktu widzenia wielkości współczynnika~aproksymacji~k? k bliższe 1, k dalsze od 1, k = 1.
- 2. Aby zagwarantować aproksymację z konkretnym współczynnikiem należy ...
- 3. i dlaczego jest to trudne?

Aby zagwarantować aproksymację z konkretnym współczynnikiem należy porównać koszt rozwiązanie znajdowanego przez algorytm \mathcal{A} z kosztem rozwiązanie optymalnego. Jednak dla problemów **NP**-trudne jest nie tylko znalezienie rozwiązania optymalnego, ale również (a może nawet bardziej) obliczenie jego kosztu.

Czego potrzebujemy?

Wskazówka: to coś (pojęcie/nazwa) pojawiło się w związku ze schematem B&B.

Aby zagwarantować aproksymację z konkretnym współczynnikiem należy porównać koszt rozwiązanie znajdowanego przez algorytm \mathcal{A} z kosztem rozwiązanie optymalnego. Jednak dla problemów **NP**-trudne jest nie tylko znalezienie rozwiązania optymalnego, ale również (a może nawet bardziej) obliczenie jego kosztu.

Czego potrzebujemy?

Wskazówka: to coś (pojęcie/nazwa) pojawiło się w związku ze schematem B&B.

Ograniczenia dolnego znalezionego w czasie wielomianowym.

Algorytm aproksymacyjny dla licznościowego problemu pokrycia wierzchołkowego

Niezbędne definicje.

Dla grafu H = (U, F) podzbiór M zbioru krawędzi nazywamy skojarzeniem, jeżeli żadne dwie krawędzie z M nie mają wspólnego końca.

Skojarzeniem najliczniejszym nazywamy skojarzenie o największej możliwej mocy.

Skojarzeniem maksymalnym nazywamy skojarzenie maksymalne pod względem zawierania.

Skojarzenie maksymalne można znaleźć w czasie wielomianowym, zachłannie wybierając krawędzie i usuwając ich końca z grafu.

Można też znaleźć w czasie wielomianowym skojarzenie najliczniejsze, ale metoda(y) nie jest(są) już wtedy takie proste.

Rozmiar dowolnego maksymalnego skojarzenia w G jest ograniczeniem dolnym.

Dlaczego?

Algorytm aproksymacyjny dla licznościowego problemu pokrycia wierzchołkowego

Niezbędne definicje.

Dla grafu H = (U, F) podzbiór M zbioru krawędzi nazywamy skojarzeniem, jeżeli żadne dwie krawędzie z M nie mają wspólnego końca.

Skojarzeniem najliczniejszym nazywamy skojarzenie o największej możliwej mocy.

Skojarzeniem maksymalnym nazywamy skojarzenie maksymalne pod względem zawierania.

Skojarzenie maksymalne można znaleźć w czasie wielomianowym, zachłannie wybierając krawędzie i usuwając ich końca z grafu.

Można też znaleźć w czasie wielomianowym skojarzenie najliczniejsze, ale metoda(y) nie jest(są) już wtedy takie proste.

Rozmiar dowolnego maksymalnego skojarzenia w G jest ograniczeniem dolnym.

Dlaczego?

Dowolne pokrycie wierzchołkowe musi bowiem zawierać co najmniej jeden z końców każdej krawędzi skojarzenia.

Algorytm

```
W \leftarrow \varnothing while G zawiera przynajmniej jedną krawędź do wybierz dowolną krawędź (u,v) w G W \leftarrow W \cup u,v usuń wszystkie krawędzie pokryte przez u i v z G end while return W
```

Sprawdźmy, czy prawdziwe jest zatem twierdzenie, że powyższy algorytm jest algorytmem 2-aproksymacyjnym dla licznościowego problemu pokrycia wierzchołkowego?

Jeżeli M będzie znalezionym skojarzeniem, to wszystkie krawędzie G są pokryte wybranymi przez algorytm wierzchołkami.

Gdyby jakaś krawędź nie była pokryta, można by ją dodać do M, co przeczyłoby maksymalności M.

- 1. Jakie jest dolne ograniczenie?
- 2. Ile zatem jest krawędzi w M?
- 3. Ile jest wierzchołków pokrywanych przez te krawędzie?
- 4. Jaki współczynnik aproksymacji ma powyższy algorytm?

Sprawdźmy, czy prawdziwe jest zatem twierdzenie, że powyższy algorytm jest algorytmem 2-aproksymacyjnym dla licznościowego problemu pokrycia wierzchołkowego?

Jeżeli M będzie znalezionym skojarzeniem, to wszystkie krawędzie G są pokryte wybranymi przez algorytm wierzchołkami.

Gdyby jakaś krawędź nie była pokryta, można by ją dodać do M, co przeczyłoby maksymalności M.

- 1. Jakie jest dolne ograniczenie?
- 2. Ile zatem jest krawędzi w M?
- 3. Ile jest wierzchołków pokrywanych przez te krawędzie?
- 4. Jaki współczynnik aproksymacji ma powyższy algorytm?

Algorytm jest 2-aproksymacyjny

Niech Π będzie \mathbf{NP} -trudnym problemem optymalizacyjnym z funkcją celu f_{Π} .

Mówimy, że algorytm \mathcal{A} jest schematem aproksymacyjnym dla Π , jeżeli dla wejścia (I, ϵ) , gdzie I jest instancją Π , a $\epsilon > 0$ jest parametrem opisującym dopuszczalny błąd, \mathcal{A} daje rozwiązanie s takie, że

- $f_{\Pi}(I,s) \leq (1+\epsilon) \cdot OPT$, jeśli Π jest problemem minimalizacyjnym,
- $f_{\Pi}(I,s) \ge (1-\epsilon) \cdot OPT$, jeśli Π jest problemem maksymalizacyjnym.

Mówimy, że \mathcal{A} jest wielomianowym schematem aproksymacyjnym, (Polynomial Time Approximation Scheme), jeżeli dla dowolnego ustalonego $\epsilon > 0$ czas działania \mathcal{A} jest wielomianowy ze względu na rozmiar instancji I.

Mówimy, że \mathcal{A} jest w pełni wielomianowym schematem aproksymacyjnym, (Fully Polynomial Time Approximation Scheme), jeżeli dla dowolnego ustalonego $\epsilon > 0$ czas działania \mathcal{A} jest wielomianowy ze względu na rozmiar instancji I oraz ze względu na $1/\epsilon$.

O ile $\mathbf{P} \neq \mathbf{NP}$, to istnienie algorytmu FPTAS jest w wypadku \mathbf{NP} -trudnych problemów optymalizacyjnych najlepszą możliwą sytuacją.

Problem. Dla danego grafu pełnego i nieujemnej funkcji kosztu określonej na jego krawędziach należy znaleźć najtańszy cykl przechodzący przez każdy z wierzchołków dokładnie raz.

Pytanie 1. Czy dla ogólnego TSP istnieją algorytmy aproksymacyjne?

Problem. Dla danego grafu pełnego i nieujemnej funkcji kosztu określonej na jego krawędziach należy znaleźć najtańszy cykl przechodzący przez każdy z wierzchołków dokładnie raz.

Pytanie 1. Czy dla ogólnego TSP istnieją algorytmy aproksymacyjne?

Nie

Problem. Dla danego grafu pełnego i nieujemnej funkcji kosztu określonej na jego krawędziach należy znaleźć najtańszy cykl przechodzący przez każdy z wierzchołków dokładnie raz.

Pytanie 1. Czy dla ogólnego TSP istnieją algorytmy aproksymacyjne?

Nie

Pytanie 2. Czy można to udowodnić?

Problem. Dla danego grafu pełnego i nieujemnej funkcji kosztu określonej na jego krawędziach należy znaleźć najtańszy cykl przechodzący przez każdy z wierzchołków dokładnie raz.

Pytanie 1. Czy dla ogólnego TSP istnieją algorytmy aproksymacyjne?

Nie

Pytanie 2. Czy można to udowodnić?

Tak

Problem. Dla danego grafu pełnego i nieujemnej funkcji kosztu określonej na jego krawędziach należy znaleźć najtańszy cykl przechodzący przez każdy z wierzchołków dokładnie raz.

Pytanie 1. Czy dla ogólnego TSP istnieją algorytmy aproksymacyjne?

Nie

Pytanie 2. Czy można to udowodnić?

Tak

Pytanie 3. W jaki sposób?

Twierdzenie

Dla żadnej funkcji $\alpha(n)$ obliczalnej w czasie wielomianowym (np. $\alpha(n) = \log n, \alpha(n) = n_3, \alpha(n) = 5^n, \phi(n)/(2^n)$)
nie istnieje algorytm $\alpha(n)$ -aproksymacyjny dla TSP, o ile $\mathbf{P} \neq \mathbf{NP}$

Dowód.

Załóżmy przeciwnie, że algorytm \mathcal{A} może zostać użyty do rozwiązania problemu cyklu Hamiltona w czasie wielomianowym, czyli że $\mathbf{P} = \mathbf{NP}$.

Głównym elementem dowodu jest redukcja problemu Hamiltona do problemu komiwojażera. Redukcja ta przekształca n-wierzchołkowy graf G w pełny n-wierzchołkowy graf G', taki, że:

- 1. jeśli G ma cykl Hamiltona, to koszt optymalnej trasy w G' jest równy n, oraz
- 2. jeśli G nie posiada cyklu Hamiltona, to koszt optymalnej trasy w G' jest większy niż $\alpha(n) \cdot n$.

Graf G' jest instancją (egzemplarzem) problemu komiwojażera. Jest to graf pełny, G' = (V, E), gdzie

$$w(uv) = \begin{cases} 1 & \text{gdy } uv \in E \\ n \cdot \alpha(n) & \text{w p.p.} \end{cases}$$

Algorytm \mathcal{A} wykonany na grafie G' znajdzie:

ad. 1. rozwiązanie o koszcie $\leq \alpha(n) \cdot n$; n = OPT.

ad. 2. $> \alpha(n) \cdot n$; czyli każdy cykl Hamiltona zawiera co najmniej jedną krawędź o wadze $\alpha(n) \cdot n$.

Co zatem udowodniliśmy?

Algorytm \mathcal{A} wykonany na grafie G' znajdzie:

ad. 1. rozwiązanie o koszcie $\leq \alpha(n) \cdot n$; n = OPT.

ad. 2. $> \alpha(n) \cdot n$; czyli każdy cykl Hamiltona zawiera co najmniej jedną krawędź o wadze $\alpha(n) \cdot n$.

Co zatem udowodniliśmy?

Udowodniliśmy, że G ma cykl Hamiltona wtedy i tylko wtedy, gdy A zwróci rozwiązanie o koszcie co najwyżej $\alpha(n) \cdot n$, co możemy sprawdzić w czasie wielomianowym.

Ponieważ (decyzyjny) problem cyklu Hamiltona jest \mathbf{NP} -trudny, więc $\mathbf{P} = \mathbf{NP}$, co jest sprzeczne z założeniem.

Zatem, dla ogólnego TSP nie można stworzyć algorytmu aproksymacyjnego.

Pytanie. A dla jakiego można?

Krawędzie w grafie G nie spełaniały nierówności trójkąta.

$$c(u,v) \le c(u,w) + c(v,w)$$

Jeśli nierówność ta będzie spełniona, to problem TSP z ogólnego stanie się metrycznym TSP.

Nadal będzie **NP**-zupełny, jednak nie będzie już nieaproksymowalny.

Rozpatrzmy zatem najprostszy algorytm (k-apx_TSP) aproksymacyjny dla metrycznego TSP.

- 1. Znajdź minimalne drzewo rozpinające T grafu G.
- 2. Zastąp krawędzie T parami krawędzi; otrzymany graf $\mathcal L$ będzie eulerowski.
- 3. Znajdź cykl Eulera \mathcal{T} w \mathcal{L} .
- 4. Wypisz trasę $\mathcal C$, która odwiedza wierzchołki G w kolejności ich pierwszych wystąpień w $\mathcal T$.

Algorytm jest k-aproksymacyjny.

Pytanie. Ile wynosi k?

Wiemy (z poprzedniego wykładu ©), że aby zagwarantować aproksyma	cję z konkretnym współczynnikiem należy?

Czego potrzebujemy?

Wskazówka: to coś (pojęcie/nazwa) pojawiło się w związku ze schematem B&B.

Czego potrzebujemy?

Wskazówka: to coś (pojęcie/nazwa) pojawiło się w związku ze schematem B&B.

Ograniczenia dolnego znalezionego w czasie wielomianowym.

Czego potrzebujemy?

Wskazówka: to coś (pojęcie/nazwa) pojawiło się w związku ze schematem B&B.

Ograniczenia dolnego znalezionego w czasie wielomianowym.

Pytanie. Dlaczego zatem znalezienie MST da nam ograniczenie dolne?

Czego potrzebujemy?

Wskazówka: to coś (pojęcie/nazwa) pojawiło się w związku ze schematem B&B.

Ograniczenia dolnego znalezionego w czasie wielomianowym.

Pytanie. Dlaczego zatem znalezienie MST da nam ograniczenie dolne?

Ponieważ usunięcie dowolnej krawędzi z optymalnego rozwiązania problemu komiwojażera daje MST.

Czego potrzebujemy?

Wskazówka: to coś (pojęcie/nazwa) pojawiło się w związku ze schematem B&B.

Ograniczenia dolnego znalezionego w czasie wielomianowym.

Pytanie. Dlaczego zatem znalezienie MST da nam ograniczenie dolne?

Ponieważ usunięcie dowolnej krawędzi z optymalnego rozwiązania problemu komiwojażera daje MST.

Pytanie. Jaki jest koszt MST (w stosunku do OPT)?

Czego potrzebujemy?

Wskazówka: to coś (pojęcie/nazwa) pojawiło się w związku ze schematem B&B.

Ograniczenia dolnego znalezionego w czasie wielomianowym.

Pytanie. Dlaczego zatem znalezienie MST da nam ograniczenie dolne?

Ponieważ usunięcie dowolnej krawędzi z optymalnego rozwiązania problemu komiwojażera daje MST.

Pytanie. Jaki jest koszt MST (w stosunku do OPT)?

$$c(T) \le OPT$$

 $\textbf{Twierdzenie.} \ Algorytm \ k-apx_TSP \ jest \ algorytmem \ 2-aproksymacyjnym \ dla \ metrycznego \ TSP.$

Dowód. Wiemy, że ...

jaki jest koszt MST w stosunku do OPT?

 $\textbf{Twierdzenie.} \ Algorytm \ k-apx_TSP \ jest \ algorytmem \ 2-aproksymacyjnym \ dla \ metrycznego \ TSP.$

Dowód. Wiemy, że

$$c(T) \le OPT$$

Ponieważ $\mathcal T$ przechodzi każdą krawędź T dwukrotnie to . . .

jak się ma koszt cyklu Eulera do kosztu MST?

Twierdzenie. Algorytm k-apx_TSP jest algorytmem 2-aproksymacyjnym dla metrycznego TSP.

Dowód. Wiemy, że

$$c(T) \le OPT$$

Ponieważ $\mathcal T$ przechodzi każdą krawędź T dwukrotnie

$$c(\mathcal{T}) = 2 \cdot c(T)$$

Z nierówności trójkąta wynika, że w kroku 4. skracamy trasę, zatem

jak się ma koszt trasy do kosztu cyklu Eulera?

Twierdzenie. Algorytm k-apx_TSP jest algorytmem 2-aproksymacyjnym dla metrycznego TSP.

Dowód. Wiemy, że

$$c(T) \le OPT$$

Ponieważ $\mathcal T$ przechodzi każdą krawędź T dwukrotnie

$$c(\mathcal{T}) = 2 \cdot c(T)$$

Z nierówności trójkąta wynika, że w kroku 4. skracamy trasę, zatem

$$c(\mathcal{C}) \leq c(\mathcal{T})$$

W związku z tym, ostatecznie otrzymujemy ...

Twierdzenie. Algorytm k-apx_TSP jest algorytmem 2-aproksymacyjnym dla metrycznego TSP.

Dowód. Wiemy, że

$$c(T) \le OPT$$

Ponieważ $\mathcal T$ przechodzi każdą krawędź T dwukrotnie

$$c(\mathcal{T}) = 2 \cdot c(T)$$

Z nierówności trójkąta wynika, że w kroku 4. skracamy trasę, zatem

$$c(\mathcal{C}) \leq c(\mathcal{T})$$

W związku z tym, ostatecznie otrzymujemy

$$c(\mathcal{C}) \le 2 \cdot OPT$$

Współczynnik aproksymacji 3/2

Możliwe jest poprawienie współczynnika aproksymacji do 3/2

W tym celu należy skorzystać z dwóch twierdzeń

Twierdzenie 1. W spójnym multigrafie istnieje cykl Eulera wtedy i tylko wtedy, gdy stopień każdego wierzchołka jest parzysty.

Co więcej, jeśli cykl Eulera istnieje, można go znaleźć w czasie liniowym.

Twierdzenie 2. Skojarzenie doskonałe o najmniejszym koszcie można znaleźć w czasie wielomianowym.

Pozbywamy się wierzchołków stopnia nieparzystego. Niech V' oznacza zbiór wszystkich wierzchołków nieparzystych. liczba |V'| musi być liczbą parzystą, ponieważ suma stopni wszystkich wierzchołków MST jest parzysta. Jeżeli dodamy do tego drzewa $najtańsze\ doskonałe\ skojarzenie\ w\ V'$, wszystkie wierzchołki będą miały stopień parzysty. Otrzymany graf będzie eulerowski. Otrzymany następujący algorytm.

Metryczny TSP - algorytm o współczynniku 3/2

- 1. Znajdź minimalne drzewo rozpinające T grafu G.
- 2. Znajdź najtańsze skojarzenie doskonałe M w zbiorze wierzchołków nieparzystego stopnia w T. Dodaj M do T; otrzymany graf jest eulerowski.
- 3. Znajdź cykl Eulera \mathcal{T} w \mathcal{L} .
- 4. Wypisz trasę $\mathcal C$, która odwiedza wierzchołki G w kolejności ich pierwszych wystąpień w $\mathcal T$.

Dowód na to, że pokazany algorytm jest algorytmem 3/2-aproksymacyjnym można znaleźć w książce "Algorytmy aproksymacyjne" - Vijay V. Vazirani, strona 31.

Pytanie 1. Czy problem TSP można w jakiś sposób "uprościć"? Rozpatrywać go w inny sposób?

Tak

Tak

Pytanie 2. W jaki sposób?

Tak

Pytanie 2. W jaki sposób?

Otóż problem TSP można rozpatrywać jako rozgrywający się w określonej przesztrzeni. W d-wymiarowej przestrzeni euklidesowej. Jest to szczególny przypadek problemu TSP. Tak zwany euklidesowy TSP.

Tak

Pytanie 2. W jaki sposób?

Otóż problem TSP można rozpatrywać jako rozgrywający się w określonej przesztrzeni. W d-wymiarowej przestrzeni euklidesowej. Jest to szczególny przypadek problemu TSP. Tak zwany euklidesowy TSP.

Pytanie 3. Jak zatem wygląda rozwiązanie euklidesowego TSP?

Tak

Pytanie 2. W jaki sposób?

Otóż problem TSP można rozpatrywać jako rozgrywający się w określonej przesztrzeni. W d-wymiarowej przestrzeni euklidesowej. Jest to szczególny przypadek problemu TSP. Tak zwany euklidesowy TSP.

Pytanie 3. Jak zatem wygląda rozwiązanie euklidesowego TSP?

Skonstruowanie algorytmu rozwiązującego *euklidesowy* TSP nie jest proste. Stąd też nie będziemy się tym zajmować na wykładzie. Niemniej jednak, dla takiego problemu skonstruowano algorytm typu PTAS.

Sanjeev Arora w Polynomial time approximation scheme go Euclidian TSP and oyher geometric problems. In: *Proc.* 37th IEEE Annual Symposium on Foundations of Computer Science, pp. 2 – 11, 1996.

Prezentacja algorytmu znajduje się na stronie zio.iiar.pwr.wroc.pl/pea.html

Algorytm Arora miał złożoność

$$O\left(n^{2d}(logn)^{O\left((\sqrt{d}/\epsilon)^{d-1}\right)}\right)$$

Algorytm Arora miał złożoność

$$O\left(n^{2d}(logn)^{O\left((\sqrt{d}/\epsilon)^{d-1}\right)}\right)$$

Niezależnie, ten sam wynik uzyskał **J.S.B. Mitchell** Guillotine subdividions approximate polynomial subdivision: a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. $SIAM\ Journal\ on\ Computing,\ 28:1298-1309,\ 1999$

Algorytm Arora miał złożoność

$$O\left(n^{2d}(logn)^{O\left((\sqrt{d}/\epsilon)^{d-1}\right)}\right)$$

Niezależnie, ten sam wynik uzyskał **J.S.B. Mitchell** Guillotine subdividions approximate polynomial subdivision: a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. $SIAM\ Journal\ on\ Computing,\ 28:1298-1309,\ 1999$

W 1998 pojawił się algorytm o lepszej złożności czasowej

$$O\left(n\left(log(n) + 2^{poly(1/\epsilon)}\right)\right)$$

S. Rao i W.D. Smith Approximating geometrical graphs vis "spanners" and "banyans". In $Proc.~30^{th}~A~CM$ Symposium on the Theory of Computing, pp. 540-550, 1998.

Algorytm FPTAS dla problemu plecakowego

Punktem wyjścia do tworzenia algorytmów FPTAS dla problemów, które nie są silnie **NP**-zupełne (takim jest problem plecakowy), jest istnienie algorytmu pseudowielomianowego.

Niech P będzie maksymalnym zyskiem z zabrania pojedynczego przedmiotu.

$$P = max_{a \in S} \quad profit(a)$$

Wtedy nP jest ograniczeniem górnym wartości rozwiązania problemu plecakowego.

Dla dowolnego $i \in \{1, \ldots, n\}$ i $p \in \{1, \ldots, nP\}$ niech

 $S_{i,p}$ będzie najmniejszym podzbiorem zbioru a_1,\ldots,a_i dającym zysk p,

A(i,p) oznacza rozmiar zbioru $S_{i,p}$ (jeśli $S_{i,p}$ nie istnieje, to $A(i,p) = \infty$).

$$A(i+1,p) = \begin{cases} min \left\{ A(i,p), size(a_{i+1}) + A(i,p-profit(a_{i+1})) \right\} & \text{jeśli profit}(a_{i+1}) \le p \\ A(i,p) & \text{w p.p.} \end{cases}$$

obliczamy wszystkie A(i, p) w łącznym czasie $O(n^2P)$.

$$A(i+1,p) = \begin{cases} min \left\{ A(i,p), size(a_{i+1}) + A(i,p-profit(a_{i+1})) \right\} & \text{jeśli profit}(a_{i+1}) \le p \\ A(i,p) & \text{w p.p.} \end{cases}$$

obliczamy wszystkie A(i, p) w łącznym czasie $O(n^2P)$.

Pytanie 1. Co uzyskamy jeśli zyski odpowiadające przedmiotom będą ograniczone wielomianową funkcją n?

jaki algorytm uzyskamy?

$$A(i+1,p) = \begin{cases} min \Big\{ A(i,p), size(a_{i+1}) + A(i,p-profit(a_{i+1})) \Big\} & \text{jeśli profit}(a_{i+1}) \le p \\ A(i,p) & \text{w p.p.} \end{cases}$$

obliczamy wszystkie A(i, p) w łącznym czasie $O(n^2P)$.

Pytanie 1. Co uzyskamy jeśli zyski odpowiadające przedmiotom będą ograniczone wielomianową funkcją n?

jaki algorytm uzyskamy?

Wielomianowy (?)

$$A(i+1,p) = \begin{cases} min \left\{ A(i,p), size(a_{i+1}) + A(i,p-profit(a_{i+1})) \right\} & \text{jeśli profit}(a_{i+1}) \le p \\ A(i,p) & \text{w p.p.} \end{cases}$$

obliczamy wszystkie A(i, p) w łącznym czasie $O(n^2P)$.

Pytanie 1. Co uzyskamy jeśli zyski odpowiadające przedmiotom będą ograniczone wielomianową funkcją n?

jaki algorytm uzyskamy?

Wielomianowy (?)

Pytanie 2. Dlaczego?

$$A(i+1,p) = \begin{cases} min \left\{ A(i,p), size(a_{i+1}) + A(i,p-profit(a_{i+1})) \right\} & \text{jeśli profit}(a_{i+1}) \le p \\ A(i,p) & \text{w p.p.} \end{cases}$$

obliczamy wszystkie A(i, p) w łącznym czasie $O(n^2P)$.

Pytanie 1. Co uzyskamy jeśli zyski odpowiadające przedmiotom będą ograniczone wielomianową funkcją n?

jaki algorytm uzyskamy?

Wielomianowy

Pytanie 2. Dlaczego?

ponieważ mielibyśmy wtedy $O(n^2 \cdot poly(n))$

Pomijamy końcowe bity liczb $profit(a_i)$, dzięki czemu są one wielomianowe.

Pomijamy końcowe bity liczb $profit(a_i)$, dzięki czemu są one wielomianowe.

Pytanie 4. Co określa liczba pominiętych bitów? od czego może być/jest zależna ta liczba?

Pomijamy końcowe bity liczb $profit(a_i)$, dzięki czemu są one wielomianowe.

Pytanie 4. Co określa liczba pominiętych bitów? od czego może być/jest zależna ta liczba?

Dokładność rozwiązania $\epsilon.$

Pomijamy końcowe bity liczb $profit(a_i)$, dzięki czemu są one wielomianowe.

Pytanie 4. Co określa liczba pominiętych bitów? od czego może być/jest zależna ta liczba?

Dokładność rozwiązania $\epsilon.$

Pytanie 5. Od czego zatem otrzymane liczby są wileomianowo zależne?

Pomijamy końcowe bity liczb $profit(a_i)$, dzięki czemu są one wielomianowe.

Pytanie 4. Co określa liczba pominiętych bitów? od czego może być/jest zależna ta liczba?

Dokładność rozwiązania ϵ .

Pytanie 5. Od czego zatem otrzymane liczby są wileomianowo zależne?

... od n i $1/\epsilon$, a to pozwala na znalezienie rozwiązania o wartości co najmniej $(1 - \epsilon) \cdot OPT$ w czasie wielomianowym ze względu na n i $1/\epsilon$.

Pomijamy końcowe bity liczb $profit(a_i)$, dzięki czemu są one wielomianowe.

Pytanie 4. Co określa liczba pominiętych bitów? od czego może być/jest zależna ta liczba?

Dokładność rozwiązania ϵ .

Pytanie 5. Od czego zatem otrzymane liczby są wileomianowo zależne?

... od n i $1/\epsilon$, a to pozwala na znalezienie rozwiązania o wartości co najmniej $(1 - \epsilon) \cdot OPT$ w czasie wielomianowym ze względu na n i $1/\epsilon$.

Pytanie 6. Jakiego typu będzie to algorytm? ... gdzie rozwiązanie jest wielomianowo zależne od n i $1/\epsilon$?

Pomijamy końcowe bity liczb $profit(a_i)$, dzięki czemu są one wielomianowe.

Pytanie 4. Co określa liczba pominiętych bitów? od czego może być/jest zależna ta liczba?

Dokładność rozwiązania ϵ .

Pytanie 5. Od czego zatem otrzymane liczby są wileomianowo zależne?

... od n i $1/\epsilon$, a to pozwala na znalezienie rozwiązania o wartości co najmniej $(1 - \epsilon) \cdot OPT$ w czasie wielomianowym ze względu na n i $1/\epsilon$.

Pytanie 6. Jakiego typu będzie to algorytm? ... gdzie rozwiązanie jest wielomianowo zależne od n i $1/\epsilon$?

Algorytm FPTAS.

Algorytm FPTAS dla problemu plecakowego (PP)

Dla danego $\epsilon > 0$, niech $K = \frac{\epsilon P}{n}$.

Dla każdego przedmiotu a_i niech $profit'(a_i) = \lfloor \frac{profit(a_i)}{K} \rfloor$.

Korzystając z PD, znajdź najkorzystniejszy zbiór S' dla PP z zyskami $profit(a_i)$.

Wypisz S^\prime

Algorytm działa w czasie

$$O\left(n^2 \lfloor \frac{n}{\epsilon} \rfloor\right)$$