MA502 Fall 2015 - Homework 7. Due November 12th, 2019

Write down detailed proofs of every statement you make

- 1. Let A be a $n \times n$ matrix and let J be the set of polynomials $f(t) \in \mathbb{K}(t)$ such that f(A) = 0. Prove that J is an ideal. Can you point out a specific polynomial of degree n and one of degree n^2 in J?
- 2. For any $n \times n$ matrix define the cofactor matrix coA to be the $n \times n$ matrix whose (i,j) entry is $(-1)^{i+j}$ times the determinant of the $(n-1) \times (n-1)$ matrix obtained from A deleting the i-th row and j-th columns. Let the classical adjoint matrix ad(A) (also called adjugate or adjunct) be defined as the transpose of the cofactor matrix. Prove that $Aad(A) = ad(A)A = \det(A)I$.
- 3. Let A be an upper triangular $n \times n$ matrix.
 - Prove that all powers A^k are upper triangular.
 - Derive a formula for the eigenvalues of f(A) when $f \in \mathbb{K}(t)$ is a polynomial.
 - Find a relation between the eigenvalues of a non-singular matrix A and those of its inverse A^{-1}
 - Using the property above, find the eigenvalues and the characteristic polynomial of

$$(A^3 - 3A^2 + I)^{-1}$$

where A is an upper triangular 3×3 matrix with eigenvalues 1, 0, -1. (As part of the problem you will need to check that $A^3 - 3A^2 + I$ is indeed invertible even if A is clearly not so)

4. If A is a square matrix with eigenvalues 1, 2, 3 find the eigenvalues of A^{100} . Provide a detailed proof of your answer (note we are not assuming that A is 3×3).

MA 502 Homework 7

Dane Johnson

November 15, 2019

1

Let A be an $n \times n$ matrix and $J = \{f(t) \in \mathbb{K}[t] \mid f(A) = 0\}$. To show that J is an ideal, we check that the zero polynomial is in J, that if $f, g \in J$ then $f + g \in J$, and that if $f \in J$ and $g \in K[t]$ then $gf \in J$.

Let \mathcal{O} denote the zero polynomial, then $\mathcal{O}(A) = 0$, so $\mathcal{O} \in J$.

Suppose $f, g \in J$. Then f(A) = 0 and g(A) = 0, so it follows that (f+g)(A) = f(A) + g(A) = 0. Thus, $f+g \in J$.

Let
$$g \in K[t]$$
 and $f \in J$. Then $(gf)(A) = g(A)f(A) = g(A)0 = 0$.

Let $p \in K[t]$ denote the characteristic polynomial of A. Then p is of degree n and by the Cayley Hamilton Theorem, p(A) = 0. Therefore $p \in J$ and since J is an ideal, we also have that $p^2 \in J$. Then p^2 is a polynomial of degree n^2 and it is the case that $p^2(A) = p(A)p(A) = 0$ as well.

 $\mathbf{2}$

Let ad(A) denote the classical adjoint of the $n \times n$ matrix A, where $ad(A) = (co(A))^T$. That is, the adjoint is the transpose of the cofactor matrix of A. Let $(Aad(A))_{ij}$ denote the element in the i^{th} row and j^{th} column of the product Aad(A), a_{ij} the element of A in row i and column j, and b_{ij} the element of ad(A) in row i and column j. Then considering the j^{th} column,

$$(Aad(A))_{ij} = \sum_{k=1}^{n} a_{ik} b_{ki} = \sum_{k=1}^{n} (-1)^k \det a_{ik} \det(A_{jk}).$$

When i = j this computes the determinant of A but when $i \neq j$, this computes the determinant of a matrix with a repeated row, which must have a 0 determinant. So we conclude that $(Aad(A))_{ij} = \det(A)$ when i = j and $(Aad(A))_{ij} = 0$ when $i \neq j$. Therefore $Aad(A) = \det(A)I$.

Next we note that the cofactor matrix of A^T is the transpose of the cofactor matrix of A. That is, $co(A^T) = (co(A))^T$. Also, recall that $det(A) = det(A^T)$. Then since

$$ad(A)A = (co(A))^T A = (A^T co(A))^T = (A^T (co(A^T))^T)^T,$$

we apply the reasoning above to see that $(\operatorname{ad}(A)A)^T = A^T(\operatorname{co}(A^T))^T = \operatorname{det}(A^T)I = \operatorname{det}(A)I$. But since $(\operatorname{ad}(A)A)^T = \operatorname{det}(A)I$, which is a diagonal matrix, we conclude that $\operatorname{ad}(A)A = \operatorname{det}(A)I$ as well.

3

Let A be an upper triangular $n \times n$ matrix.

•

If we let A_{ij} denote the element of A in the i^{th} row and j^{th} column, then $A_{ij} = 0$ for i > j. First we prove that the product of two upper triangular matrices is upper triangular.

Let B be an $n \times n$ upper triangular matrix as well. We define B_{ij} and $(AB)_{ij}$ similarly to A_{ij} . Note that if i = 1, then 1 = i > j cannot occur for any column number j and since the definition of upper triangular requires only that $(AB)_{ij} = 0$ for i > j, we assume i > 1 in what follows.

The element in the i^{th} row and j^{th} column of AB is found by:

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} = \sum_{k=1}^{i-1} A_{ik} B_{kj} + \sum_{k=i}^{n} A_{ik} B_{kj}.$$

Inspecting the summation from k = 1 to k = i - 1, we see that since k < i, $A_{ik} = 0$ in each term so that $sum_{k=1}^{i-1}A_{ik}B_{kj} = 0$. This means that

$$(AB)_{ij} = \sum_{k=i}^{n} A_{ik} B_{kj}.$$

Note that since $k \geq i$, then if it is the case that i > j, then k > j so that $B_{kj} = 0$. Therefore, we may conclude that $(AB)_{ij} = 0$ whenever it is the case that i > j, which means by definition of an upper triangular matrix that AB is upper triangular.

Using the result above, we see that since A^2 is the product of two upper triangular $n \times n$ matrices, A^2 is also upper triangular. Then since A and A^2 are upper triangular, $A^3 = A^2A$ is upper triangular. Applying the reasoning inductively we conclude that $A^k = A^{k-1}A$ is upper triangular for all positive powers k.

We cannot prove that A^k is upper triangular for k < 0 without further assuming that A is invertible. We do not know whether A is invertible here.

•

Since A is an upper triangular matrix, its eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ are the n elements on the diagonal of A (not necessarily distinct). Since f is a polynomial, f(A) is the result of exponentiating A, multiplying by elements $k \in \mathbb{K}$ and adding matrices. That is, if f is a degree m polynomial then $f(A) = k_0 I + k_1 A^1 + ... + k_m A^m$. Since A^p is upper triangular for all nonnegative integers p, the result of multiplying an upper triangular matrix by a scalar is upper triangular, and the sum of two upper triangular matrices is upper triangular, we conclude that f(A) must be an upper triangular matrix. Next we note that if λ is an eigenvalue of A with corresponding eigenvalue v, then since $Av = \lambda v$ we have

$$kA^pv = k\lambda A^{p-1}v = k\lambda A^{p-2}Av = k\lambda^2 A^{p-2}v = \dots = k\lambda^p v \quad k \in \mathbb{K}, p \in \mathbb{N}.$$

This shows that $k\lambda^p$ is an eigenvalue of kA^p . Then for $f(A) = k_0I + k_1A + ... + k_mA^m$, if λ is an eigenvalue of A with corresponding eigenvalue v, then

$$f(A)v = k_0 I + k_1 A + ... + k_m A^m = k_0 \lambda^0 v + k_1 \lambda v + ... + k_m \lambda^m v = (k_0 + k_1 \lambda + k_m \lambda^m)v$$
.

This implies that the eigenvalues of f(A) are $f(\lambda_i)$, where each λ_i is one of the *n* diagonal elements of *A*.

Let A be a nonsingular matrix and let λ be an eigenvalue of A. Then for an eigenvector v corresponding to the eigenvalue λ we have $Av = \lambda v$. Since A is invertible, we have $\lambda \neq 0$ and

$$A^{-1}Av = A^{-1}\lambda v$$

$$v = \lambda A^{-1}v$$

$$\frac{1}{\lambda}v = A^{-1}v .$$

Therefore, if λ is an eigenvalue of A then λ^{-1} is an eigenvalue of A^{-1} .

Suppose A is a 3×3 upper triangular matrix with eigenvalues -1, 0, 1. Since 0 is an eigenvalue of A, A is not invertible. Consider however, the matrix $A^3 - 3A^2 + I$.

Using our results above, the eigenvalues of $A^3 - 3A^2 + I$ are

$$1^{3} - 3(1)^{2} + 1 = 1 - 3 + 1 = -1$$
$$0^{3} - 3(0)^{2} + 1 = 1$$
$$(-1)^{3} - 3(-1)^{2} + 1 = -3.$$

Note that since none of the eigenvalues of $A^3 - 3A^2 + I$ are 0, then the matrix $A^3 - 3A^2 + I$ is invertible.

Therefore the eigenvalues of $(A^3 - 3A^2 + I)^{-1}$ are -1, 1 and -1/3.

4

Let A be an $n \times n$ matrix with eigenvalues 1, 2, and 3 with corresponding eigenvalues v_1, v_2 , and v_3 . In general for an $n \times n$ matrix with eigenvalue λ and corresponding eigenvector v,

$$Av = \lambda v \implies A^{100}v = \lambda A^{99}v = \lambda^2 A^{98}v = \dots = \lambda^{100}v$$
.

Therefore λ^{100} is an eigenvalue of A^{100} .

So we conclude that $1,2^{100}$, and 3^{100} are eigenvalues of A^{100} . Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be the transformation given by T(x) = Ax. Then there exists a basis \mathcal{B} such that $[T]_{\mathcal{B}\to\mathcal{B}}$ is an upper triangular matrix. The eigenvalues of the transformation T are the same as the matrix A since A is one matrix representation of the transformation T and the eigenvalues of T do not depend on the choice of basis used in the representation of T. By the previous exercise, the eigenvalues of the matrix $([T]_{\mathcal{B}\to\mathcal{B}})^{100}$ are found by applying the polynomial $f(\lambda) = \lambda^{100}$ to each eigenvalue of $[T]_{\mathcal{B}\to\mathcal{B}}$. Thus the eigenvalues of $([T]_{\mathcal{B}\to\mathcal{B}})^{100}$ are just $1,2^{100}$, and 3^{100} . Since these must be the same set of eigenvalues as the matrix A^{100} , we conclude that A^{100} does not have any eigenvalues aside from $1,2^{100}$, and 3^{100} .