Recurrent Neural Networks

LATEST SUBMISSION GRADE

90%

1.

Question 1

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

0 / 1 point

C

 $x^{(i)\leq j\geq x(i)\leq j\geq x}$

 \odot

 $x^{(j)}(j)$

C

 $x^{(i)}(i)$

O

 $x^{(j)< i>}x_{(j)< i>}$

Incorrect

The parentheses represent the training example and the brackets represent the word. You should choose the training example and then the word.

2.

Question 2

Consider this RNN:

This specific type of architecture is appropriate when:

1 / 1 point

Œ

T_x=T_yTx =Ty

O

 $T_xT_yT_x <trong>$

 \bigcirc

 $T_x=1$

C

T_x<T_yTx T_yTx

Correct

It is appropriate when every input should be matched to an output.

3.

Question 3

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

1 / 1 point

V

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

Correct

Correct!

Image classification (input an image and output a label)

Speech recognition (input an audio clip and output a transcript)

V

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

Correct

Correct!

4.

Question 4

You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

1 / 1 point

0

 $\text{Estimating } P(y^{<}\{<\!t\!>\} \setminus y^{<}\{<\!1\!>\}, y^{<}\{<\!2\!>\}, ..., y^{<}\{<\!t\!>\}) P(y_{<\!t\!>}|y_{<\!1\!>},y_{<\!2\!>},...,y_{<\!t\!>})$

 \odot

Estimating $P(y^{<t>} \in y^{<t>}, y^{<t>})$, $y^{<t-1>}$, $y^{<t-1>}$)

 \circ

Estimating $P(y^{<1>}, y^{<2>}, ..., y^{<t-1>})P(y<1>,y<2>,...,y<t-1>)$

O

Estimating $P(y^{< t>})P(y < t>)$

Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

5.

Question 5

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step tt?

0

(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\frac{y}^{< t>} y^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.

 \Box

(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\frac{y}^{< t>}(ii)$ Then pass the ground-truth word from the training set to the next time-step.

•

(i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\frac{y}^{< t>}{y^{< t}}$. (ii) Then pass this selected word to the next time-step.

0

(i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\frac{y}^{< t>}(ii)$ Then pass this selected word to the next time-step.

Correct

6.

Question 6

You are training an RNN and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

1 / 1 point
C Vanishing gradient problem.
c
ReLU activation function g(.) used to compute g(z), where z is too large.
C Sigmoid activation function g(.) used to compute g(z), where z is too large.
Exploding gradient problem.
Correct
7. Question 7 Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{<} < t > $ $a < t > $. What is the dimension of $a = u \Gamma u$ at each time step?
1 / 1 point C 10000
C
1
C 300
⊙ 100
Correct Correct, $\Gamma_u\Gamma u$ is a vector of dimension equal to the number of hidden units in the LSTM.

Question 8

Here're the update equations for the GRU.

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

Alice proposes to simplify the GRU by always removing the $\Gamma_u\Gamma_u$. I.e., setting $\Gamma_u\Gamma_u = 1$. Betty proposes to simplify the GRU by removing the $\Gamma_r\Gamma_r$. I. e., setting $\Gamma_r\Gamma_r = 1$ always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

1 / 1 point

Betty's model (removing \Gamma_r\Gamma_r), because if \Gamma_u \approx $0\Gamma u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

 \bigcirc

Alice's model (removing \Gamma_u\Gu), because if \Gamma_r \approx $1\Gamma r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

Ö

Alice's model (removing \Gamma_u\Gu), because if \Gamma_r \approx $0\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

 \bigcirc

Betty's model (removing Γr), because if $\Gamma u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{<} \{< t>\} c < t>$ to be highly dependent on $c^{<} \{< t-1>\} c < t-1>$.

9.

Question 9

Here are the equations for the GRU and the LSTM:

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \qquad \qquad \tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \qquad \qquad \Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \qquad \qquad \Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$C^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>} \qquad \qquad \Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$C^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>} \qquad \qquad C^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>} \qquad \qquad C^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the blanks?

1 / 1 point

©

 $\Gamma u = u \Gamma u$ and $1-\Gamma u$

 \circ

 $1-\Gamma u$ and Γu

O

\Gamma $\,\mathrm{r}\Gamma r$ and \Gamma $\,\mathrm{u}\Gamma u$

0

\Gamma $u\Gamma u$ and \Gamma $r\Gamma r$

Correct

Yes, correct!

10.

Question 10

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>}, ..., x^{<365>}$ $x_1>, ..., x_{365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>}, ..., y^{<365>}$ $y_1>, ..., y_{365>}$. You'd like to build a model to map from $x \cdot y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

1 / 1 point

Ċ

Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.

 \odot

Unidirectional RNN, because the value of $y^{<}(< t>)y< t>$ depends only on $x^{<}(< 1>), ..., x^{<}(< t>)x< 1>,...,x< t>, but not on <math>x^{<}(< t+1>), ..., x^{<}(< 365>)x< t+1>,...,x< 365>$

O

Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.

 \circ

Unidirectional RNN, because the value of $y^{<t>}y<t>$ depends only on $x^{<t>}x<t>$, and not other days' weather.

Correct

Yes!