Vv156 Lecture 11

Dr Jing Liu

UM-SJTU Joint Institute

October 24, 2016

- Recall the sequence $\{a_n\}$ is said to be increasing if

$$a_{n+1} \ge a_n$$
 for all n .

and it is said to be decreasing if

$$a_{n+1} \le a_n$$
 for all n .

Q: Let $\mathcal{I}\subset\mathbb{R}$ be an interval, How to define the notion of increasing/decreasing for

a function
$$f(x)$$
 where $x \in \mathcal{I}$

Definition

Suppose f is defined on an interval \mathcal{I} , and x_1 and x_2 denote points in \mathcal{I} , then

- 1. f is increasing on the interval if $f(x_1) \le f(x_2)$ whenever $x_1 < x_2$.
- 2. f is decreasing on the interval if $f(x_1) \ge f(x_2)$ whenever $x_1 < x_2$.

Q: Can you think of any connection between increasing/decreasing and f'(x)?

Theorem

Suppose f(x) is continuous on an interval \mathcal{I} , and differentiable on its interior.

- 1. If f'(x) > 0 for every interior point of \mathcal{I} , then f is increasing on \mathcal{I} .
- 2. If f'(x) < 0 for every interior point of \mathcal{I} , then f is decreasing on \mathcal{I} .

Proof

- Consider some interior point c of \mathcal{I} , if f'(x) > 0 for every interior point \mathcal{I} , then

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = L > 0$$

- By definition, for every $\epsilon > 0$ there is a $\delta > 0$ such that

$$\left| \frac{f(x) - f(c)}{x - c} - L \right| < \epsilon$$
 if $0 < |x - c| < \delta$

- Expanding the left, we have

$$-\epsilon + L < \frac{f(x) - f(c)}{x - c} < \epsilon + L$$

- For x sufficiently close to c but greater than c, we have

$$x-c>0$$

Proof

- So we can rearrange the last inequality

$$\frac{(L-\epsilon)(x-c) < f(x) - f(c)}{(L+\epsilon)(x-c)} < (L+\epsilon)(x-c)$$

- If we look at the lower bound provided of f(x) - f(c) by the last inequality

$$(L - \epsilon)(x - c) < f(x) - f(c)$$

- Since L >, there is always some $0 < \epsilon < L$, such that

$$f(x) - f(c) > 0$$
 for $x - c > 0$.

- So there is an open interval extending right from c such that the function is

increasing

- Since c is arbitrary, this shows that f is increasing on the entire interval \mathcal{I} .
- This proves the first part, the second part is true for a similar reason.

- The sign of the derivative of f reveals where the graph of f is increasing and where it is decreasing, but it does not reveal the direction of curvature, i.e.

Definition

Let f(x) be differentiable on an interval \mathcal{I} . The graph of f(x) is said to be

- 1. concave up on \mathcal{I} if and only if f'(x) is increasing on \mathcal{I} .
- 2. concave down on \mathcal{I} if and only if f'(x) is decreasing on \mathcal{I} .

Theorem

Suppose f(x) is twice differentiable on an interval \mathcal{I} .

- 1. If f''(x) > 0 for all x in \mathcal{I} , then f is concave up on I.
- 2. If f''(x) < 0 for all x in \mathcal{I} , then f is concave down on I.

- This theorem follows directly from the last theorem P3.

Definition

If f changes the direction of concavity at the point $(x_0, f(x_0))$, then we say that f has an inflection point at x_0 .

Exercise

(a) Find the intervals on which

$$f(x) = x + \sin x$$

is increasing or decreasing.

(b) Use the first and second derivatives of the function

$$f(x) = x^3 - 3x^2 + 1$$

to determine the intervals on which f(x) is increasing, decreasing, concave up, and concave down. Identify all inflection points, if any.

(c) Describe the concavity of the graph of

$$f(x) = x^4$$

Definition

Let c be a number in the domain $\mathcal D$ of a function f. Then f(c) is a

- global/absolute maximum of f for a set $\mathcal{I} \subset \mathcal{D}$ which contains c if

$$f(c) \ge f(x)$$
 for all $x \in \mathcal{I}$.

- global/absolute minimum of f for a set $\mathcal{I} \subset \mathcal{D}$ which contains c if

$$f(c) \le f(x)$$
 for all $x \in \mathcal{I}$.

- local/relative maximum of f if there is a neighbourhood $\mathcal{U} \subset \mathcal{D}$ of c such that

$$f(c) \ge f(x)$$
 for all $x \in \mathcal{U}$.

- local/relative minimum of f if there is a neighbourhood $\mathcal{U} \subset \mathcal{D}$ of c such that

$$f(c) \le f(x)$$
 for all $x \in \mathcal{U}$.

- We say f has an extremum at c if f has either a maximum or a minimum at c

- If we imagine the graph of a function f(x) to be a two-dimensional mountain range with hills and valleys,

- Relative maxima or local maxima are the tops of the hills.
- Relative minima or local maxima are the bottoms of the valleys.
- The relative extrema are the high or low points in their immediate vicinity

- Q: Find the relative extrema, if any, for the following functions
- 1. $f(x) = x^2$:

Relative minimum at x = 0.

2. $f(x) = x^3$:

No relative extremum.

3. $f(x) = \cos x$:

Relative maxima at even π ; Relative minima at odd π .

4. $f(x) = x^3 - 3x + 3$:

Relative maximum at x = -1; Relative minimum at x = 1.

- 5. $f(x) = \frac{1}{2}x^4 \frac{4}{3}x^3 x^2 + 4x + 1$
- Q: How to find relative extrema for a function, that is differentiable in its domain, except possibly for finite number of points?

- Q: What do you notice regarding extrema and the slope at the extremum?
- Q: Is there any other way to have a relative extreme?

Definition

We define a critical point for f to be a point in the domain of f at which either

1. The graph of f has a horizontal tangent line.

$$f' = 0$$

2. The derivative function f' does not exist.

To distinguish between the two types of critical points we call

point c a stationary point of f if f'(c) is defined.

- Q: Which of the followings x_0 is a critical point/stationary point?
 - (a)

(b)

- (c)
- (
 - (d)
- (e)
- (f)
- (g)
- (h)
 - x₀

Q: What will ensure that a critical point is a relative extrema?

The first derivative test

Suppose c is a critical point for f(x).

- 1. If f' changes from positive to negative at c, then
 - f has a relative maximum at c.
- 2. If f' changes from negative to positive at c, then

f has a relative minimum at c.

3. If f' does not change sign at c, then

f has no local maximum or minimum at c.

Exercise

Find all critical points of

$$f(x) = 3x^5 - 5x^3$$

and then determine their nature by using the first derivative test.

Q: Is there any connection between the relative extrema of a twice differentiable function f(x) and the concavity of f(x)?

The second derivative test

Suppose that f'' exists at the point c.

- 1. If f'(c) = 0 and f''(c) > 0, then f has a relative minimum at c.
- 2. If f'(c) = 0 and f''(c) < 0, then f has a relative maximum at c.
- 3. If f'(c) = 0 and f''(c) = 0, then the test is inconclusive; that is,

f may have a relative maximum, a relative minimum, or neither at c.

- The second derivative test is more convenient than the first derivative test.

Exercise

Find all critical points of

$$f(x) = 3x^5 - 5x^3$$

and then determine their nature using the second derivative test.

- Neither the first nor the second derivative test gives us a procedure directly to find relative extrema, they are merely tests for points in the domain of f.
- Q: How can we narrow it down to a finite number of points?

The next theorem proves our previous formally.

Theorem

If f(x) is differentiable at x = c and f(c) is a relative extremum, then the point c is a stationary point

$$f'(c) = 0$$

Proof

- If f has a relative maximum at c, then

$$f(x) \le f(c)$$
 for all x in a δ -neighbourhood of c

SO

$$\frac{f(c+h) - f(c)}{h} \le 0 \qquad \text{for all } 0 < h < \delta,$$

which implies that

$$f'(c) = \lim_{h \to 0^+} \left[\frac{f(c+h) - f(c)}{h} \right] \le 0.$$

Proof

- Moreover,

$$\frac{f(c+h)-f(c)}{h} \geq 0 \qquad \text{for all } -\delta < h < 0,$$

which implies that

$$f'(c) = \lim_{h \to 0^-} \left[\frac{f(c+h) - f(c)}{h} \right] \ge 0.$$

- If follows that f'(c) = 0 in order to have no contradiction of differentiability.
- If f has a relative minimum at c, the argument is similar. The only difference is the signs in these inequalities are reversed and the conclusion remains to be

$$f'(c) = 0$$

- This theorem limits the search for an extremum on the domain to critical points.
- However, the converse of this theorem is not true.
- Q: Can you think of an example where a critical point is not a relative extremum?

Q: Is there any curve, which is continuous on a closed interval, and has either not got an absolute maximum or not got an absolute minimum in the interval?

The Extreme-Value Theorem

If a function f(x) is continuous on a closed interval \mathcal{I} , then f attains an absolute maximum value f(c) and an absolute minimum value f(d) where $c, d \in \mathcal{I}$.

Q: Is there any curve, which is either not continuous or only defined on an open interval has got both absolute maximum and absolute minimum?

- The extreme-value theorem (EVT) is an example of what mathematicians call an existence theorem. Such theorems state conditions under which certain objects exist, in this case absolute extrema.
- However, knowing that an object exists and finding it are two separate things.
- If f is continuous on the finite closed interval [a, b], the following procedures can be used to find the absolute extrema:

Procedures for finding absolute extrema

- 1. Find the critical point of f in (a, b)
- 2. Evaluate f at all the critical points and the end points
- 3. Compare values in step 2, the largest of them is the absolute maximum of f on [a, b], the smallest is the absolute minimum.

Exercise

Find the absolute extrema of $f(x) = 6x^{4/3} - 3x^{1/3}$ on the interval [-1,1], and determine where these values occur.