费定晖 周学圣编演 郭大钧 邵品琼主审

Б. П. **吉米多维奇** Б. П. ДЕМИДОВИЧ

数学分析 习题集题解

山东科学技术出版社

B. П. 吉米多维奇

数学分析习题集题解

(二)

费定晖 周学圣 編演 郭大钧 邵品琮 主审

山东科学技术出版社

Б. Π. 吉米多维奇数学分析习题集题解

(二)

费定晖 周学釜 编演 郭大钧 邵晶琮 主审

山东科学技术出版社出版 山东省新华书店发行 山东莒县印刷厂印刷

787mm×1092mm 32 开本 17.75 印张 384 千字 1999 年 [1 月第 2 版第 8 次印刷 印数: 210 601-220 600

ISBN 7─5331─0100─6 0 • 6 定价:15.10 元

****图书在版编目(CIP)数据

B. Π. 吉米多维奇数学分析习题集题解 (2)/费定 晖编. —2 版—济南:山东科学技术出版社,1999.9 ISBN 7-5331-0100-6

I.Б··· I.费··· I.数学分析-高等学校-解题 IV.0 17-44

中国版本图书馆 CIP 数据核字(1999)第 43961 号

出版说明

吉米多维奇(Б.П.Д ЕМИД ОВИЧ)著《数学分析习题集》 一书的中译本,自50年代初在我国翻译出版以来,引起了全国各大专院校广大师生的巨大反响。凡从事数学分析教学的师生,常以试解该习题集中的习题,作为检验掌握数学分析基本知识和基本技能的一项重要手段。二十多年来,对我国数学分析的教学工作是甚为有益的。

该书四千多道习题,数量多,内容丰富,由浅入深,部分题目难度大。涉及的内容有函数与极限,单变量函数的微分学,不定积分,定积分,级数,多变量函数的微分学,带参变量积分以及重积分与曲线积分、曲面积分等等,概括了数学分析的全部主题。当前,我国广大读者,特别是肯于刻苦自学的广大数学爱好者,在为四个现代化而勤奋学习的热潮中,迫切需要对一些疑难习题有一个较明确的回答。有鉴于此,我们特约作者,将全书4462题的所有解答汇辑成书,共分六册出版。本书可以作为高等院校的教学参考用书,同时也可作为广大读者在自学微积分过程中的参考用书。

众所周知,原习题集,题多难度大,其中不少习题如果认真习作的话,既可以深刻地巩固我们所学到的基本概念,又可以有效地提高我们的运算能力,特别是有些难题还可以迫使我们学会综合分析的思维方法。正由于这样,我们殷切期望初学数学分析的青年读者,一定要刻苦钻研,千万不要轻易查抄本书的解答,因为任何削弱独立思索的作法,都是违背我们出版此书的本意。何况所作解答并非一定标准,仅作参考而已。

如有某些误解、差错也在所难免,一经发觉,恳请指正,不胜感谢。

本书蒙潘承洞教授对部分难题进行了审校。特请郭大钧 教授、邵品琮教授对全书作了重要仔细的审校。其中相当数量 的难度大的题,都是郭大钧、邵品琮亲自作的解答。

参加本册审校工作的还有刘一鸣同志。

参加编演工作的还有黄春朝同志。

本书在编审过程中,还得到山东大学、山东工业大学、山东师范大学和曲阜师范大学的领导和同志们的大力支持,特在此一并致谢。

目 录

第	_	ij	: 单变量函数的微分学····································	• 1
	§	1.	显函数的导函数	• 1
	§	2.	反函数的导函数,用参变数表示的函数的导函数,	
			隐函数的导函数	111
	§	3.	导函数的几何意义	123
	Ş	4.	函数的微分	143
	§	5.	高阶的导函数和微分	158
	§	6.	洛尔、拉格朗日及哥西定理	228
	Ş	7.	函数的增大与减小. 不等式	260
	8	8.	凹凸性. 拐点	290
	§	9.	未定形的求值法	307
	Š	10	. 台劳公式	336
	§	11	. 函数的极值. 函数的最大值和最小值	363
	§	12	. 依据函数的特征点作函数图形	401
	§	13	. 函数的极大值与极小值问题	500
	ş	14		525
	§	15	方程的近似解法	541

第二章 单变量函数的微分学

§ 1. 显函数的导函数

1° 导函数的定义 若 x 及 $x_1 = x + \Delta x$ 为自变量的值,则差 $\Delta y = f(x + \Delta x) - f(x)$

称为函数 y = f(x) 的增量.

$$y' = f'(x) - \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \tag{1}$$

有意义,则称为导函数,而函数f(x)本身在此情形下称为可微分的函数。

函数 f'(x) 在几何上是函数 y = f(x) 的图形在 x 点切线的斜率(tga = f'(x))(图 2.1).

 2° 求导函数的基本法则 若 c 为 常数且函数 u = u(x), v = v(x), w = w(x) 都有导函数,则

$$(1)c' = 0, (2)(cu)' = cu',$$

(3)
$$(u ! v - w)' - u' + v' + w';$$

$$(4)(uv)' = u'v + v'u;$$

$$(5)\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}(v \neq 0);$$

图 2.1

- (6)(u")' = nu"·1u'(n 为常数);
- (7) 若函数 y = f(u) 及 $u = \varphi(x)$ 都有导函数,则 $y' = y'_{*}u'_{*}$.

3°基本公式 若 x 为自变数*',则

$$(\sin x)' = \cos x;$$

$$\mathbf{I} \cdot (\cos x)' = -\sin x;$$

$$(V, (tgx)' = \frac{1}{\cos^2 x};$$

$$\mathbb{V} \cdot (\mathbf{t} \mathbf{g} x)' = \frac{1}{\cos^2 x}; \qquad \mathbb{V} \cdot (\mathbf{c} \mathbf{t} \mathbf{g} x)' = -\frac{1}{\sin^2 x};$$

$$W. (arc \sin x)' = \frac{1}{\sqrt{1-x^2}},$$

VI.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$
,

WL.
$$(\operatorname{arc} \, \operatorname{tg} x)' = \frac{1}{1+x^2}$$
;

$$X \cdot (\operatorname{arc ctg} x)' = -\frac{1}{1+x^2},$$

$$X \cdot (a^x)' = a^x \ln a \quad (a > 0); (e^x)' = e^x;$$

$$(\log_a x)' = \frac{1}{x \ln a} (a > 0 \text{ ff } a \neq 1);$$

$$(\ln x)' = \frac{1}{r};$$

$$XI. (sh x)' = ch x$$

$$XI. (sh x)' = ch x;$$
 $X II. (chx)' = shx;$

$$X N \cdot (thx)' = \frac{1}{ch^2x}$$

$$X \ N \cdot (thx)' = \frac{1}{ch^2x}; \qquad X \ V \cdot (cthx)' = -\frac{1}{sh^2x}.$$

4°单侧的导函数 表示式

$$f'_{-}(x) = \lim_{\Delta x \to -0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

及

$$f'_+(x) = \lim_{\Delta r \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta r}$$

分别称为函数 f(x) 在 x 点的左导函数或右导函数.

导函数 f(x) 存在的充分且必要的条件是

$$f'_{-}(x) = f'_{+}(x).$$

⁾ 在本意基本公式及习题解答的叙述过程中,一些明显的定义城要求,例如 本节公式 V 中要求 $x \neq k\pi(k$ 整数), VI 中要求 |x| < 1等等, 以及例如尔 后 § 5 中相应的限制,一般地就不再一一声明.

$$5^{\circ}$$
 无穷的导函数 若在某一点 x 有
$$\lim_{t \to \infty} \frac{f(x + \Delta x) + f(x)}{\Delta t} = \infty,$$

则称函数 f(x) 在 x 点有无穷的导函数, 在此种情形下,函数 y = f(x) 的图形上在 x 点的切线与 Ox 轴垂直.

821. 若x由 1 变到 1000, 求自变量x的增量 Δx 和函数 $y = \lg x$ 的对应的增量 Δy .

解
$$\Delta x = 1000 - 1 = 999$$
;
 $\Delta y = \lg 1000 - \lg 1 = 3$.

822. 若 x 由 0.01 变到 0.001, 求自变量 x 的增量 Δx 和函数 y = $\frac{1}{x^2}$ 的对应的增量 Δy .

$$\Delta x = 0.001 - 0.01 = -0.009;$$

$$\Delta y = \frac{1}{(0.001)^2} - \frac{1}{(0.01)^2} = 990000.$$

823. 设:

(a)
$$y = ax + b$$
; (6) $y = ax^2 + bx + c$; (B) $y = a^x$.

若变量 x 得到增量 Δx , 求增量 Δy .

$$(a)\Delta y = ((ax + a\Delta x) + b) - (ax + b) = a\Delta x;$$
 $(6)\Delta y = (a(x + \Delta x)^2 + b(x + \Delta x) + c)$
 $- (ax^2 + bx + c)$
 $= (2ax + b)\Delta x + a(\Delta x)^2;$
 $(a)\Delta y = a^{x+\Delta x} - a^x = a^x(a^{\Delta x} - 1).$

824. 证明:

$$(a)\Delta(f(x) + g(x)) = \Delta f(x) + \Delta g(x);$$

$$(b)\Delta(f(x)g(x))$$

$$= g(x + \Delta x)\Delta f(x) + f(x)\Delta g(x).$$

$$(a)\Delta(f(x) + g(x))$$

$$= (f(x + \Delta x) + g(x + \Delta x)) - (f(x) + g(x))$$

$$= (f(x + \Delta x) - f(x)) + (g(x + \Delta x) - g(x))$$

$$= \Delta f(x) + \Delta g(x),$$

于是,

$$\Delta(f(x) + g(x)) = \Delta f(x) + \Delta g(x);$$

$$(6)\Delta(f(x)g(x))$$

$$= (f(x + \Delta x)g(x + \Delta x)) - (f(x)g(x))$$

$$= (f(x + \Delta x) - f(x))g(x + \Delta x)$$

$$+ (g(x + \Delta x) - g(x))f(x)$$

$$= \Delta f(x)g(x + \Delta x) + \Delta g(x)f(x),$$

于是,

$$\Delta(f(x)g(x))$$
= $g(x + \Delta x)\Delta f(x) + f(x)\Delta g(x)$.

同样,我们还可将(σ) 的结果写成

$$\Delta(f(x)g(x)) = f(x + \Delta x)\Delta g(x) + g(x)\Delta f(x).$$

825. 过曲线 $y = x^2$ 上的二点 A(2,4) 和 $A'(2 + \Delta x, 4 + \Delta y)$ 引割线 AA',求此割线的斜率,设。

(a)
$$\Delta x = 1$$
; (b) $\Delta x = 0.1$; (a) $\Delta x = 0.01$;

(r)Δx 为任意小,

在已知曲线上江点的切线的斜率等于甚么?

解 割线
$$AA'$$
 的斜率 $k_{AA}=rac{(2+\Delta x)^2-4}{\Delta x}=4+\Delta x$,

$$(a)k_{AA} = 5; (6)k_{AA} = 4.1;$$

(B)
$$k_{AA'} = 4.01$$
; (r) $k_{AA'} = 4 + \Delta x$.

于是,在A点的切线斜率为

$$k_A = \lim_{A' \to A} k_{AA'} = \lim_{\Delta x \to 0} (4 + \Delta x) = 4.$$

826. 把 Ox 轴上的线段 $1 \le x \le 1 + h$ 利用函数关系 $y = x^3$ 映变到 Oy 轴上,求其平均的伸长系数,设。

(a)h = 0.1; (6)h = 0.01; (B)h = 0.001, 计算此系数的值.

当 x = 1 时伸长的系数等于甚么?

解 平均伸长系数
$$\bar{l} = \frac{(1+h)^3-1^3}{h} = 3+3h+h^2$$
,

(a)
$$\bar{l} = 3 + 3(0,1) + (0,1)^2 = 3.31$$
;

$$(6)\bar{l} = 3 + 3(0.01) + (0.01)^2 = 3.0301;$$

(B)
$$\overline{l} = 3 + 3(0.001) + (0.001)^2 = 3.003001.$$

于是,

$$l|_{x=1}=\lim_{t\to 0}\overline{l}=3.$$

827. 动点沿 Ox 轴运动的规律由下式表出

$$x = 10t + 5t^2$$

式中t以秒计的时间,x为以米计的距离.求在 $20 \le t \le 20 + \Delta t$ 时间内运动的平均速度.设:(a) $\Delta t = 1$;(5) $\Delta t = 0.1$;(a) $\Delta t = 0.01$,计算此速度的值.当t = 20时运动的速度等于甚么?

解 平均速度
$$\overline{v} = \{(10(20 + \Delta t) + 5(20 + \Delta t)^2\}$$

 $-(10 \times 20 + 5 \times 20^2)\} \div \Delta t$
 $= 210 + 5\Delta t(\% / 秒)$

$$(a)\overline{v} = 210 + 5 \times 1 = 215(米/秒);$$

$$(6)\overline{v} = 210.5(米/秒);$$

$$(B)\overline{v} = 210.05(米/秒).$$

于是,

$$v|_{t=20} = \lim_{\Delta t \to 0} (210 + 5\Delta t) = 210(\% / \%).$$

828. 根据导函数的定义,直接求下列函数的导函数:

(a)
$$x^2$$
; (6) x^3 ; (B) $\frac{1}{x}$; (F) \sqrt{x} ; (A) $\sqrt[3]{x}$;

(e)tg $x_1(x)$ ctg $x_1(a)$ arc sin $x_1(u)$ arc cos $x_1(a)$

(κ)arc tgx.

$$\mathbf{ff} \quad (a)y = x^2,$$

$$\frac{\Delta y}{\Delta x} = \frac{(x + \Delta x)^2 - x^2}{\Delta x} = 2x + \Delta x.$$

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} (2x + \Delta x) = 2x.$$

$$(6) y = x^3,$$

$$\frac{\Delta y}{\Delta x} = \frac{(x + \Delta x)^3 - x^3}{\Delta x}$$

$$= 3x^2 + 3x\Delta x + (\Delta x)^2,$$

于是,

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
$$= \lim_{\Delta x \to 0} (3x^2 + 3x\Delta x + (\Delta x)^2) = 3x^2.$$

$$(\mathbf{B})\mathbf{y}=\frac{1}{x},$$

$$\frac{\Delta y}{\Delta x} = \frac{\frac{1}{x + \Delta x} - \frac{1}{x}}{\Delta x} = -\frac{1}{x(\Delta x + x)}.$$

于是,

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left(-\frac{1}{x(\Delta x + x)} \right)$$
$$= -\frac{1}{x^2}.$$

(r)
$$y = \sqrt{x}$$
,
$$\frac{\Delta y}{\Delta x} = \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x}$$

$$= \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}}$$

$$y' = \lim_{\Delta x \to 0} \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}}$$

$$= \frac{1}{2\sqrt{x}}(x > 0).$$

$$(\beta) y = \sqrt[3]{x},$$

$$\frac{\Delta y}{\Delta x} = \sqrt[3]{x + \Delta x} - \sqrt[3]{x}$$

$$= \frac{1}{\sqrt[3]{(x + \Delta x)^2} + \sqrt[3]{x(x + \Delta x)} + \sqrt[3]{x^2}}.$$

于是,

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1}{\sqrt[3]{(x + \Delta x)^2 + \sqrt[3]{x(x + \Delta x) + \sqrt[3]{x^2}}}}$$

$$= \frac{1}{3\sqrt[3]{x^2}} (x \neq 0).$$

$$(e)y=tgx,$$

$$\frac{\Delta y}{\Delta x} = \frac{\lg(x + \Delta x) - \lg x}{\Delta x}$$

$$= \frac{\frac{\lg x + \lg \Delta x}{1 - \lg x \lg \Delta x} - \lg x}{\Delta x}$$

$$= \frac{\frac{\lg \Delta x (1 + \lg^2 x)}{\Delta x (1 - \lg x \lg \Delta x)}$$

$$= \frac{\lg \Delta x \sec^2 x}{\Delta x (1 - \lg x \lg \Delta x)}.$$

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{\operatorname{tg} \Delta x \operatorname{sec}^2 x}{\Delta x (1 - \operatorname{tg} x \operatorname{tg} \Delta x)}$$

$$= \sec^{2}x = \frac{1}{\cos^{2}x}.$$

$$(\mathfrak{m})y = \operatorname{ctg}x,$$

$$\frac{\Delta y}{\Delta x} = \frac{\operatorname{ctg}(x + \Delta x) - \operatorname{ctg}x}{\Delta x}$$

$$= \frac{\operatorname{ctg}x\operatorname{ctg}\Delta x - 1}{\Delta x} - \operatorname{ctg}x$$

$$= \frac{-1 - \operatorname{ctg}^{2}x}{\Delta x(\operatorname{ctg}x + \operatorname{ctg}\Delta x)}$$

$$= -\frac{\operatorname{csc}^{2}x}{\Delta x(\operatorname{ctg}x + \operatorname{ctg}\Delta x)}.$$

$$= \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x(\operatorname{ctg}x + \operatorname{ctg}\Delta x)}$$

$$= -\operatorname{csc}^{2}x = -\frac{1}{\sin^{2}x}.$$

$$(3)y = \operatorname{arc}\sin x,$$

$$\frac{\Delta y}{\Delta x} = \frac{\operatorname{arc}\sin(x + \Delta x) - \operatorname{arc}\sin x}{\Delta x}$$

$$= \frac{\operatorname{arc}\sin((x + \Delta x) \sqrt{1 - x^{2}} - \sqrt{1 - (x + \Delta x)^{2}}x)}{\Delta x}$$

$$= \frac{\operatorname{arc}\sin((x + \Delta x) \sqrt{1 - x^{2}} - x \sqrt{1 - (x + \Delta x)^{2}})}{(x + \Delta x) \sqrt{1 - x^{2}} - x \sqrt{1 - (x + \Delta x)^{2}}},$$

$$\frac{(x + \Delta x) \sqrt{1 - x^{2}} - x \sqrt{1 - (x + \Delta x)^{2}}}{\Delta x}$$

$$= \frac{\operatorname{arc}\sin t}{t}$$

$$\frac{(x+\Delta x)\sqrt{1-x^2}-x\sqrt{1-(x+\Delta x)^2}}{\Delta x}$$

$$=\frac{\arcsin t}{t}$$

$$\frac{2x+\Delta x}{(x+\Delta x)\sqrt{1-x^2}+x\sqrt{1-(x+\Delta x)^2}},$$
式中 $t=(x+\Delta x)\sqrt{1-x^2}-x\sqrt{1-(x+\Delta x)^2},$
从而 $\lim_{\Delta x\to 0} t=0.$
于是.
$$y'=\lim_{\Delta x\to 0} \frac{\Delta y}{\Delta x}$$

$$=\lim_{t\to 0} \frac{2x+\Delta x}{(x+\Delta x)\sqrt{1-x^2}+x\sqrt{1-(x+\Delta x)^2}},$$

$$\lim_{t\to 0} \frac{\arcsin t}{t}=\frac{1}{\sqrt{1-x^2}},$$
其中 $\lim_{t\to 0} \frac{\arcsin t}{t}=\lim_{x\to 0} \frac{u}{\sin u}=1;$

$$(u) y=\arccos x,$$

$$\frac{\Delta y}{\Delta x}=\frac{\arccos (x+\Delta x)-\arccos x}{\Delta x}$$

$$=\frac{\arcsin (x\sqrt{1-(x+\Delta x)^2}-(x+\Delta x)\sqrt{1-x^2})}{\Delta x}$$

$$=\frac{\arcsin (x\sqrt{1-(x+\Delta x)^2}-(x+\Delta x)\sqrt{1-x^2})}{(x+\Delta x)\sqrt{1-x^2}+x\sqrt{1-(x+\Delta x)^2}},$$
式中 $t=(x+\Delta x)\sqrt{1-x^2}-x\sqrt{1-(x+\Delta x)^2},$

从而
$$\lim_{\Delta \tau \to 0} t = 0$$
.

于是,

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{-(2x + \Delta x)}{(x + \Delta x)} \frac{-(2x + \Delta x)}{\sqrt{1 + x^2} + x} \frac{-(2x + \Delta x)^2}{\sqrt{1 - (x + \Delta x)^2}}$$

$$\lim_{t \to 0} \frac{\arcsin t}{t}$$

$$= -\frac{1}{\sqrt{1 - x^2}}.$$

 $(\kappa)y = \operatorname{arc} \operatorname{tg} x_*$

$$\frac{\Delta y}{\Delta x} = \frac{\text{arc tg}(x + \Delta x) - \text{arc tg}x}{\Delta x}$$
$$= \frac{\text{arc tg} \frac{\Delta x}{1 + x(x + \Delta x)}}{\Delta x}$$

$$=\frac{\frac{\Delta x}{1+x(x+\Delta x)}}{\frac{\Delta x}{1+x(x+\Delta x)}}$$

$$\cdot \frac{1}{1+x(x+\Delta x)}.$$

$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\operatorname{arc tg} \frac{\Delta x}{1 + x(x + \Delta x)}}{\frac{\Delta x}{1 + x(x + \Delta x)}}$$

$$\cdot \frac{1}{1 + x(x + \Delta x)} \Big] = \frac{1}{1 + x^2},$$

其中利用
$$\lim_{t\to 0} \frac{\operatorname{arc tg} t}{t} = \lim_{u\to 0} \frac{u}{\operatorname{tg} u} = 1.$$

829. 没:

$$f(x) = (x-1)(x-2)^{2}(x-3)^{3},$$

求 f'(1), f'(2) 和 f'(3).

$$\mathbf{f}'(x) = (x-2)^2(x-3)^3$$

$$+ 2(x-1)(x-2)(x-3)^3$$

$$+ 3(x-1)(x-2)^2(x-3)^2$$

$$= 2(x-2)(x-3)^2(3x^2-11x+9).$$

于是,

$$f'(1) = -8; f'(2) = f'(3) = 0.$$

830. 设:

$$f(x) = x^2 \sin(x-2),$$

求 f'(2).

$$\mathbf{M}$$
 $f'(x) = 2x\sin(x-2) + x^2\cos(x-2)$.

于是,

$$f'(2) = 4$$
.

831. 设:

$$f(x) = x + (x - 1) \arcsin \sqrt{\frac{x}{x + 1}},$$
 $\Re f'(1).$

解 方法一:

若用复合函数求导法,可得

$$f'(x) = 1 + \arcsin \sqrt{\frac{x}{x+1}} + \frac{x-1}{2(x+1)\sqrt{x}}$$

于是,

$$f'(1) = 1 + \arcsin \frac{1}{\sqrt{2}} = 1 + \frac{\pi}{4}$$
.

方法二:

若按定义作,注意到当x = 1时,

$$\frac{\Delta y}{\Delta x} = 1 + \arcsin \sqrt{\frac{1 + \Delta x}{2 + \Delta x}},$$

即得

$$f'(1) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \left(1 + \arcsin \sqrt{\frac{1 + \Delta x}{2 + \Delta x}} \right)$$

$$= 1 + \frac{\pi}{4}.$$

832. 设函数 f(x) 在 a 点可微分,求

$$\lim_{x\to a}\frac{f(x)-f(a)}{x-a}.$$

解 设 $\Delta x = x - a$,则当 $x \rightarrow a$ 时, $\Delta x \rightarrow 0$. 于是,

得
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
$$= \lim_{\Delta x \to a} \frac{f(a + \Delta x) - f(a)}{\Delta x} = f'(a).$$

833. 证明:若函数 f(x) 可微分及 n 为自然数,则

$$\lim_{n\to\infty} \left(f\left(x + \frac{1}{n}\right) - f(x) \right) = f'(x). \tag{1}$$

反之, 若对于函数 f(x) 有极限(1) 存在,则可否断定这个函数有导函数?研究迪里黑里函数的例子(参阅第一章第 734 题).

$$\lim_{n \to \infty} \lim_{n \to \infty} \left(f\left(x + \frac{1}{n}\right) - f(x) \right) \\
= \lim_{n \to \infty} \frac{f\left(x + \frac{1}{n}\right) - f(x)}{\frac{1}{n}} = f'(x).$$

反之,就不一定对了.例如,对于迪里黑里函数

$$\chi(x) = \begin{cases} 1, \text{若 } x \text{ 为有理数,} \\ 0, \text{若 } x \text{ 为无理数,} \end{cases}$$

在任一有理点是不连续的,当然其导数也不存在.但由于 $x + \frac{1}{n}$ 仍为有理数,故当 x 为有理数时,

$$\chi\left(x+\frac{1}{n}\right)-\chi(x)=1-1=0,$$

从而,极限(1)

$$\lim_{n\to\infty} n \left(\chi \left(x + \frac{1}{n} \right) - \chi(x) \right) = 0$$

存在.

利用导函数表,求下列函数的导函数:

834.
$$y = 2 + x - x^2$$
. 问 $y'(0)$; $y'(\frac{1}{2})$; $y'(1)$; $y'(-10)$ 等于 甚么?

解 由于
$$y'(x) = 1 - 2x$$
,故得

$$y'(0) = 1; y'(\frac{1}{2}) = 0; y'(1) = -1;$$

 $y'(-10) = 21.$

835.
$$y = \frac{x^3}{3} + \frac{x^2}{2} - 2x$$
. 当 x 为何值时:

(a)
$$y'(x) = 0$$
; (6) $y'(x) = -2$; (B) $y'(x) = 10$?

$$\mathbf{M} \quad y'(x) = x^2 + x - 2.$$

- (6) 令 y'(x) = -2, 得 $x^2 + x = 0$. 于是, x = -1 或 x = 0:
- (B) 令 y'(x) = 10; 得 $x^2 + x 12 = 0$. 于是, x = -4 或 x = 3.

836.
$$y = a^5 + 5a^3x^2 - x^5$$
.

$$\mathbf{ff} \quad \mathbf{y}^t = 10a^3x - 5x^4.$$

$$837. y = \frac{ax+b}{a+b}.$$

838.
$$y = (x - a)(x - b)$$
.

$$x' = x - a + x - b = 2x - a - b$$
.

839.
$$y = (x+1)(x+2)^2(x+3)^3$$
.

$$\mathbf{y}' = (x+2)^2(x+3)^3 + 2(x+1)(x+2)(x+3)^3 + 3(x+1)(x+2)^2(x+3)^2$$

$$= (x+2)(x+3)^{2}[(x+2)(x+3)$$

$$+ 2(x+1)(x+3) + 3(x+1)(x+2)]$$

$$= 2(x+2)(x+3)^{2}(3x^{2}+11x+9).$$

840. $y = (x\sin\alpha + \cos\alpha)(x\cos\alpha - \sin\alpha)$.

$$y' = \sin \alpha (x \cos \alpha - \sin \alpha)$$

$$+ \cos \alpha (x \sin \alpha + \cos \alpha)$$

$$= x \sin 2\alpha + \cos 2\alpha.$$

841.
$$y = (1 + nx^m)(1 + mx^n)$$
.

$$\mathbf{ff} \quad y' = mnx^{m-1}(1 + mx^n) + mnx^{m-1}(1 + nx^m)$$
$$= mn(x^{m-1} + x^{m-1} + (m+n)x^{m+n-1}).$$

842.
$$y = (1-x)(1-x^2)^2(1-x^3)^3$$
.

843.
$$y = \frac{1}{x} + \frac{2}{x^2} + \frac{3}{x^3}$$
.

$$\mathbf{M} \quad y' = -\left(\frac{1}{x^2} + \frac{4}{x^3} + \frac{9}{x^4}\right)(x \neq 0).$$

844. 证明公式

$$\left| \frac{ax + b}{cx + d} \right|' = \frac{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}{(cx + d)^2}.$$

$$\mathbf{iII} \quad \left| \frac{ax + b}{cx + d} \right|' = \frac{a(cx + d) - c(ax + b)}{(cx + d)^2}$$

$$= \frac{ad - bc}{(cx + d)^2} = \frac{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}{(cx + d)^2}.$$

这里已暗设 $cx + d \neq 0$.

求下列函数之导函数:

845.
$$y = \frac{2x}{1 - x^2}$$
.

$$y' = \frac{2(1 - x^2) + 4x^2}{(1 - x^2)^2}$$

$$= \frac{2(1 + x^2)}{(1 - x^2)^2} (|x| \neq 1).$$

846.
$$y = \frac{1+x-x^2}{1-x+x^2}$$
.

解 由于
$$y = \frac{2}{1 - x + x^2} - 1$$
,故 $y' = \frac{2(1 - 2x)}{(1 - x + x^2)^2}$.

847.
$$y = \frac{x}{(1-x)^2(1+x)^3}$$
.

$$\mathbf{p}' =$$

$$\frac{(1-x)^2(1+x)^3-x(3(1+x)^2(1-x)^2-2(1-x)(1+x)^3)}{(1-x)^4(1-x)^6}$$

$$= \frac{1 - x + 4x^{2}}{(1 - x)^{3}(1 + x)^{4}}, (|x| \neq 1).$$
848. $y = \frac{(2 - x^{2})(3 - x^{3})}{(1 - x)^{2}}.$

$$\mathbf{#} y' = \frac{(1 - x)^{2}(-2x(3 - x^{3}) - 3x^{2}(2 - x^{2})) + 2(1 - x)(2 - x^{2})(3 - x^{3})}{(1 - x)^{4}}$$

$$= \frac{12 - 6x - 6x^{2} + 2x^{3} + 5x^{4} - 3x^{5}}{(1 - x)^{3}}(x \neq 1).$$

849.
$$y = \frac{(1-x)^p}{(1+x)^q}$$
.

$$\mathbf{ff} \quad y' = \frac{-p(1-x)^{p-1}(1+x)^q - q(1+x)^{q-1}(1-x)^p}{(1+x)^{2q}} \\
= \frac{-(1-x)^{p-1}((p+q)+(p-q)x)}{(1+x)^{q+1}} \\
(x \neq -1)$$

850.
$$y = \frac{x^p(1-x)^q}{1+x}$$
.

解

$$y' = \frac{(px^{p+1}(1-x)^q - qx^p(1-x)^{q+1})(1+x) - x^p(1-x)^q}{(1+x)^2}$$

$$= \frac{x^{p+1}(1-x)^{q+1}}{(1+x)^2} (p-(q+1)x-(p+q-1)x^2)$$

$$(x \neq -1).$$

851.
$$y = x + \sqrt{x} + \sqrt[3]{x}$$
.

$$\mathbf{ff} \quad y' = 1 + \frac{1}{2\sqrt{x}} + \frac{1}{3\sqrt[3]{x^2}} (x > 0),$$

852.
$$y = \frac{1}{x} + \frac{1}{\sqrt{x}} + \frac{1}{\sqrt[3]{x}}$$
.

FR
$$y' = -\left(\frac{1}{x^2} + \frac{1}{2x\sqrt{x}} + \frac{1}{3x\sqrt[3]{x}}\right) (x > 0).$$

853.
$$y = \sqrt[3]{x^2} - \frac{2}{\sqrt{x}}$$
.

$$x' = \frac{2}{3\sqrt[3]{x}} + \frac{1}{x\sqrt{x}}(x > 0).$$

854.
$$y = x \sqrt{1 + x^2}$$
.

$$\mathbf{x}$$
 $\mathbf{y}' = \sqrt{1+x^2} + \frac{x^2}{\sqrt{1+x^2}} = \frac{1+2x^2}{\sqrt{1+x^2}}.$

855.
$$y = (1+x) \cdot \sqrt{2+x^2} \cdot \sqrt[3]{3+x^3}$$
.

$$y' = \sqrt{2 + x^2} \cdot \sqrt[3]{3 + x^3}$$

$$+ (1 + x) \left(\frac{x \sqrt[3]{3 + x^3}}{\sqrt{2 + x^2}} \right)$$

$$+ \frac{x^2 \sqrt{2 + x^2}}{\sqrt[3]{(3 + x^3)^2}}$$

$$= \frac{6 + 3x + 8x^2 + 4x^3 + 2x^4 + 3x^5}{\sqrt{2 + x^2} \cdot \sqrt[3]{(3 + x^3)^2}}$$

$$(x \neq \sqrt[3]{-3}).$$

856.
$$y = \sqrt[m+n]{(1-x)^m(1+x)^n}$$
.

解

$$y' = \frac{-m(1-x)^{m-1}(1+x)^n + n(1+x)^{n-1}(1-x)^m}{(m+n)^{m+n}\sqrt{(1-x)^m(1+x)^n}}$$
$$= \frac{(n-m) - (n+m)x}{(m+n)^{m+n}\sqrt{(1-x)^n(1+x)^m}}(|x| \neq 1).$$

857.
$$y = \frac{x}{\sqrt{a^2 - x^2}}$$
.

$$\mathbf{FF} \quad \mathbf{y}' = \frac{\sqrt{a^2 - x^2} + \frac{x^2}{\sqrt{a^2 - x^2}}}{a^2 - x^2}$$

$$= \frac{a^2}{\sqrt{(a^2 - x^2)^3}} (|x| < |a|).$$

$$\mathbf{858.} \quad \mathbf{y} = \sqrt[3]{\frac{1 + x^3}{1 - x^3}}.$$

$$\mathbf{FF} \quad \mathbf{y}' = \frac{1}{3\sqrt[3]{\left(\frac{1 + x^3}{1 - x^3}\right)^2}}$$

$$\cdot \frac{3x^2(1 - x^3) + 3x^2(1 + x^3)}{(1 - x^3)^2}$$

$$= \frac{2x^2}{1 - x^6} \sqrt[3]{\frac{1 + x^3}{1 - x^3}} (|x| \neq 1).$$

$$\mathbf{859.} \quad \mathbf{y} = \frac{1}{\sqrt{1 + x^2}(x + \sqrt{1 + x^2})}.$$

$$\mathbf{FF} \quad \mathbf{y}' = -\frac{1}{(1 + x^2)(x + \sqrt{1 + x^2})^2}$$

$$= -\frac{1}{(1 + x^2)^{\frac{3}{2}}}.$$

$$\mathbf{860.} \quad \mathbf{y} = \sqrt{x + \sqrt{x + \sqrt{x}}}.$$

$$\mathbf{FF} \quad \mathbf{y}' = \frac{1}{2\sqrt{x + x^2 + x^2}}.$$

$$\cdot \left[1 + \frac{1}{2\sqrt{x + \sqrt{x}}} \left(1 + \frac{1}{2\sqrt{x}} \right) \right] \\
= \frac{1 + 2\sqrt{x + 4\sqrt{x}} \cdot \sqrt{x + \sqrt{x}}}{8\sqrt{x} \cdot \sqrt{x + \sqrt{x}} \cdot \sqrt{x + \sqrt{x} + \sqrt{x}}} \\
861. y = \sqrt[3]{1 + \sqrt[3]{1 + \sqrt[3]{x}}}.$$

$$\mathbf{RF} \quad y = \frac{1}{3\sqrt[3]{(1 + \sqrt[3]{1 + \sqrt[3]{x}})^2}} \cdot \frac{1}{3\sqrt[3]{x^2}} \\
= \frac{1}{27\sqrt[3]{x^2(1 + \sqrt[3]{x})^2} \cdot \sqrt[3]{(1 + \sqrt[3]{1 + \sqrt[3]{x}})^2}} \\
(x \neq 0, x \neq -1, x \neq -8).$$
862. $y = \cos 2x - 2\sin x$.

862. $y = \cos 2x - 2\sin x$.

$$\mathbf{ff} \quad y' = -2\sin 2x - 2\cos x$$
$$= -2\cos x(1 + 2\sin x).$$

863. $y = (2 - x^2)\cos x + 2x\sin x$.

$$\mathbf{ff} \qquad \mathbf{y}' = -2x\cos x - (2 - x^2)\sin x + 2\sin x + 2x\cos x$$
$$= x^2\sin x.$$

864. $y = \sin(\cos^2 x)\cos(\sin^2 x).$

$$y' = -2\sin x \cos x \cos(\cos^2 x)\cos(\sin^2 x)$$

$$-2\sin x \cos x \sin(\cos^2 x)\sin(\sin^2 x)$$

$$= -\sin 2x (\cos(\cos^2 x)\cos(\sin^2 x))$$

$$+\sin(\cos^2 x)\sin(\sin^2 x))$$

$$= -\sin 2x \cos(\cos^2 x - \sin^2 x)$$

$$= -\sin 2x \cos(\cos^2 x).$$

865. $y = \sin^n x \cos n x$.

$$y' = n\sin^{n-1}x\cos x\cos nx - n\sin^{n}x\sin nx$$
$$= n\sin^{n-1}x(\cos x\cos nx - \sin x\sin nx)$$
$$= n\sin^{n-1}x\cos(n+1)x.$$

866. $y = \sin(\sin(\sin x))$.

$$\mathbf{x}' = \cos x \cdot \cos(\sin x) \cdot \cos(\sin(\sin x)).$$

867.
$$y = \frac{\sin^2 x}{\sin x^2}.$$

$$y' = \frac{2\sin x(\cos x \sin x^2 - x \sin x \cos x^2)}{\sin^2 x^2}$$
$$(x^2 \neq k\pi, k = 1, 2, \cdots).$$

$$868. y = \frac{\cos x}{2\sin^2 x}.$$

$$y' = \frac{-2\sin^3 x - 4\sin x \cos^2 x}{4\sin^4 x}$$

$$= -\frac{1 + \cos^2 x}{2\sin^3 x} (x \neq k\pi; k = 0, \pm 1, \pm 2, \cdots).$$

869.
$$y = \frac{1}{\cos^* x}$$
.

解
$$y' = -\frac{1}{\cos^{2n}x}(-n\cos^{n-1}x\sin x)$$

$$= \frac{n\sin x}{\cos^{n+1}x}(x \neq \frac{2k-1}{2}\pi; k$$
 为整数).
870. $y = \frac{\sin x - x\cos x}{\cos x + x\sin x}$.

解 $y' = \frac{1}{(\cos x + x\sin x)^2}((x\sin x - \cos x))$

$$y' = \frac{1}{(\cos x + x \sin x)^2} ((x \sin x - \cos x) + \cos x)(\cos x + x \sin x) - (\sin x - \sin x) + x \cos x)(\sin x - x \cos x)$$

$$= \frac{x^2}{(\cos x + x \sin x)^2}$$

871.
$$y = tg \frac{x}{2} - ctg \frac{x}{2}$$
.

$$\mathbf{ff} \quad y' = \frac{1}{2}\sec^2\frac{x}{2} + \frac{1}{2}\csc^2\frac{x}{2}$$
$$= \frac{2}{\sin^2x}(x \neq k\pi; k = 0, \pm 1, \pm 2, \cdots).$$

872.
$$y = tgx - \frac{1}{3}tg^3x + \frac{1}{5}tg^5x$$
.

$$\mathbf{ff} \quad y' = \sec^2 x - tg^2 x \sec^2 x + tg^4 x \sec^2 x = 1 + tg^6 x$$
$$(x \neq (2k+1) \frac{\pi}{2}; k = 0, \pm 1, \pm 2, \cdots).$$

873.
$$y = 4 \sqrt[3]{\text{ctg}^2 x} + \sqrt[3]{\text{ctg}^8 x}$$
.

$$\mathbf{ff} \quad \mathbf{y}' = \frac{8}{3} (\operatorname{ctg} x)^{-\frac{1}{3}} (-\operatorname{csc}^2 x)$$

$$+ \frac{8}{3} (\operatorname{ctg} x)^{\frac{5}{3}} (-\operatorname{csc}^2 x)$$

$$= -\frac{8}{3\sin^4 x} \sqrt[3]{\operatorname{ctg} x}$$

$$(x \neq k\pi; x \neq (2k+1) \frac{\pi}{2}; k = 0, \pm 1, \pm 2, \cdots).$$

874.
$$y = \sec^2 \frac{x}{a} + \csc^2 \frac{x}{a}$$
.

$$y' = \frac{2}{a}\sec^2\frac{x}{a}\operatorname{tg}\frac{x}{a} - \frac{2}{a}\csc^2\frac{x}{a}\operatorname{ctg}\frac{x}{a}$$

$$= \frac{2}{a}\left(\frac{\sin\frac{x}{a}}{\cos^3\frac{x}{a}} - \frac{\cos\frac{x}{a}}{\sin^3\frac{x}{a}}\right)$$

$$= \frac{2}{a}\cdot\frac{\sin^4\frac{x}{a} - \cos^4\frac{x}{a}}{\sin^3\frac{x}{a}\cos^3\frac{x}{a}}$$

$$= \frac{16\left(\sin^2\frac{x}{a} - \cos^2\frac{x}{a}\right)}{a\left(2\sin\frac{x}{a}\cos\frac{x}{a}\right)^3} = \frac{-16\cos\frac{2x}{a}}{a\sin^3\frac{2x}{a}}$$

$$(x \neq \frac{k\pi a}{3}; k = 0, \pm 1, \pm 2, \cdots).$$

875.
$$y = \sin(\cos^2(tg^3x))$$
.

$$\mathbf{ff} \quad \mathbf{y}' = \cos(\cos^2(\mathsf{tg}^3x)).$$

$$\cdot (-2\cos(tg^3x)\sin(tg^3x))$$

•
$$(3tg^2xsec^2x)$$

$$= -3tg^2x \sec^2x \cdot \sin(2tg^3x)$$

$$\cdot \cos[\cos^2(\mathsf{tg}^3x)]$$

$$(x \neq k\pi + \frac{\pi}{2}; k = 0, \pm 1, \pm 2, \cdots).$$

876.
$$y = e^{-x^2}$$
.

$$\mathbf{f} \mathbf{f} \quad \mathbf{y}' = -2xe^{-x^2}.$$

877.
$$y = 2^{\lg \frac{1}{3}}$$
.

ff
$$y' = -\frac{1}{x^2} \sec^2 \frac{1}{x} \cdot 2^{\lg \frac{1}{x}} \ln 2 \quad (x \neq 0).$$

878.
$$y = e^x(x^2 - 2x + 2)$$
.

$$\mathbf{M} \quad \mathbf{y}' = e^x(x^2 - 2x + 2) + e^x(2x - 2) = x^2e^x.$$

879.
$$y = \left(\frac{1-x^2}{2}\sin x - \frac{(1+x)^2}{2}\cos x\right)e^{-x}$$
.

$$\mathbf{f} \qquad y' = -e^{-x} \left(\frac{1 - x^2}{2} \sin x - \frac{(1 + x)^2}{2} \cos x \right)$$

$$+ e^{-x} \left(\frac{1 - x^2}{2} \cos x - x \sin x \right)$$

$$+ \frac{(1 + x)^2}{2} \sin x - (1 + x) \cos x \right)$$

$$= x^2 e^{-\tau} \sin x.$$

880.
$$y = e^x \left(1 + \operatorname{ctg} \frac{x}{2}\right)$$
.

解
$$y' = e^x \left(1 + \operatorname{ctg} \frac{x}{2} \right) - \frac{1}{2} e^x \operatorname{csc}^2 \frac{x}{2}$$

$$= \frac{e^x (\sin x - \cos x)}{2 \sin^2 \frac{x}{2}} (x \neq 2k\pi; k \text{ 为整数}).$$

$$881. y = \frac{\ln 3 \cdot \sin x + \cos x}{3^x}.$$

解

$$y' = \frac{3^{x}(\ln 3 \cdot \cos x - \sin x) - 3^{x}\ln 3(\ln 3 \cdot \sin x + \cos x)}{3^{2x}}$$
$$= -\frac{(1 + \ln^{2} 3)\sin x}{3^{x}}.$$

882.
$$y = e^{ax} \frac{a \sin bx - b \cos bx}{\sqrt{a^2 + b^2}}.$$

$$\mathbf{x} \qquad y' = \frac{1}{\sqrt{a^2 + b^2}} e^{ax} (a(a \sin bx - b \cos bx))$$

$$+ (ab\cos bx + b^2\sin bx)$$

$$= \sqrt{a^2 + b^2} e^{ax} \sin bx.$$

883.
$$y = e^x + e^{e^x} + e^{e^x}$$
.

$$\mathbf{x}' = e^{x}(1 + e^{x^{x}}(1 + e^{x^{x}})).$$

884.
$$y = \left(\frac{a}{b}\right)^x \cdot \left(\frac{b}{x}\right)^a \cdot \left(\frac{x}{a}\right)^b (a > 0, b > 0).$$

解 两边取对数,得

$$\ln y = x \ln \frac{a}{b} + a(\ln b - \ln x) + b(\ln x - \ln a).$$

两端同时对 x 求导数,得

$$\frac{y'}{y} = \ln \frac{a}{b} - \frac{a}{x} + \frac{b}{x}.$$

$$y' = y \left(\ln \frac{a}{b} - \frac{a}{x} + \frac{b}{x} \right)$$
$$= \left(\frac{a}{b} \right)^x \cdot \left(\frac{b}{x} \right)^a \left(\frac{x}{a} \right)^b \left(\ln \frac{a}{b} - \frac{a}{x} + \frac{b}{x} \right) (x > 0).$$

885.
$$y = x^{a^*} + a^{x^*} + a^{a^*} (a > 0)$$
.

$$\mathbf{M} \quad y' = a^a x^{a^a - 1} + a x^{a - 1} a^{x^a} \ln a + a^x \cdot a^{a^x} \ln^2 a.$$

886.
$$y = \lg^3 x^2$$
.

解
$$y' = 3\lg^2 x^2 \cdot \frac{1}{x^2} 2x \lg e$$

$$= \frac{6}{x} \lg e \cdot \lg^2 x^2 \qquad (x \neq 0).$$

或按
$$y = (\lg e \cdot \ln x^2)^3 = 8\lg^3 e \cdot \ln^3 |x|$$
 求导数,有
$$y' = 24\lg^3 e \cdot \left(\frac{1}{x} \ln^2 |x|\right)^{*} (x \neq 0).$$

*)
$$(\ln|x|)' = \frac{1}{|x|} \cdot \frac{|x|}{x} = \frac{1}{x}$$
.以后不再说明.

887. $y = \ln(\ln(\ln x))$.

$$\mathbf{ff} \quad \mathbf{y}' = \frac{1}{x \ln x \ln (\ln x)} (x > e).$$

888. $y = \ln(\ln^2(\ln^3 x))$.

$$\mathbf{x}' = \frac{1}{\ln^2(\ln^3 x)} \cdot 2\ln(\ln^3 x) \frac{1}{\ln^3 x}$$
$$\cdot 3\ln^2 x \cdot \frac{1}{x}$$
$$= \frac{6}{x \ln x \cdot \ln(\ln^3 x)} (x > e).$$

889.
$$y = \frac{1}{2}\ln(1+x) - \frac{1}{4}\ln(1+x^2) - \frac{1}{2(1+x)}$$

$$y' = \frac{1}{2} \cdot \frac{1}{1+x} - \frac{x}{2(1+x^2)} + \frac{1}{2(1+x)^2}$$
$$= \frac{1}{(1+x)^2(1+x^2)} (x > -1).$$

890.
$$y = \frac{1}{4} \ln \frac{x^2 - 1}{x^2 + 1}$$
.

$$y' = \frac{1}{4} (\ln(x^2 - 1) - \ln(x^2 + 1))'$$

$$= \frac{1}{4} \left(\frac{2x}{x^2 - 1} - \frac{2x}{x^2 + 1} \right) = \frac{x}{x^4 - 1} (|x| > 1).$$

891.
$$y = \frac{1}{4(1+x^4)} + \frac{1}{4} \ln \frac{x^4}{1+x^4}$$
.

$$y = \frac{1}{4(1+x^4)} + \ln|x| - \frac{1}{4}\ln(1+x^4),$$

$$y' = -\frac{4x^3}{4(1+x^4)^2} + \frac{1}{x} - \frac{1}{4} \cdot \frac{1}{1+x^4} \cdot 4x^3$$

$$= \frac{1}{x(1+x^4)^2} (x \neq 0).$$

$$1 + x \sqrt{3} - \sqrt{2}$$

892.
$$y = \frac{1}{2\sqrt{6}} \ln \frac{x\sqrt{3} - \sqrt{2}}{x\sqrt{3} + \sqrt{2}}$$
.

$$\mathbf{ff} \quad \mathbf{y} = \frac{1}{2\sqrt{6}} (\ln|x\sqrt{3} - \sqrt{2}|)$$
$$-\ln|x\sqrt{3} + \sqrt{2}|)$$

$$y' = \frac{1}{2\sqrt{6}} \left(\frac{\sqrt{3}}{x\sqrt{3} - \sqrt{2}} - \frac{\sqrt{3}}{x\sqrt{3} + 2} \right)$$
$$= \frac{1}{3x^2 - 2} \left(|x| > \sqrt{\frac{2}{3}} \right).$$

893.
$$y = \frac{1}{1-k} \ln \frac{1+x}{1-x} - \frac{\sqrt{k}}{1-k} \ln \frac{1+x\sqrt{k}}{1-x\sqrt{k}}$$

$$(0 < k < 1).$$

$$\mathbf{ff} \quad y' = \frac{1}{1-k} \left(\frac{1}{1+x} + \frac{1}{1-x} \right)$$

$$- \frac{\sqrt{k}}{1-k} \left(\frac{\sqrt{k}}{1+x\sqrt{k}} + \frac{\sqrt{k}}{1-x\sqrt{k}} \right)$$

$$= \frac{2}{(1-x^2)(1-kx^2)} (|x| < 1).$$

894.
$$y = \sqrt{x+1} - \ln(1+\sqrt{x+1})$$
.

$$\mathbf{ff} \quad y' = \frac{1}{2\sqrt{x+1}} - \frac{1}{2\sqrt{x+1}(1+\sqrt{x+1})}$$

$$=\frac{1}{2(1+\sqrt{x+1})}(x>-1).$$

895.
$$y = \ln(x + \sqrt{x^2 + 1})$$
.

$$\mathbf{ff} \quad y' = \frac{1}{x + \sqrt{1 + x^2}} \left(1 + \frac{x}{\sqrt{x^2 + 1}} \right)$$
$$= \frac{1}{\sqrt{x^2 + 1}}.$$

896.
$$y = x \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2}$$
.

$$\mathbf{ff} \quad y' = \ln(x + \sqrt{1 + x^2}) + \frac{x}{\sqrt{1 + x^2}}$$
$$-\frac{x}{\sqrt{1 + x^2}}$$
$$= \ln(x + \sqrt{1 + x^2}).$$

*) 利用 895 题的结果,下同,不再说明.

897.
$$y = x \ln^2(x + \sqrt{1+x^2}) - 2\sqrt{1+x^2} \ln(x + \sqrt{1+x^2}) + 2x$$
.

$$\mathbf{ff} \quad y' = \ln^2(x + \sqrt{1 + x^2})$$

$$+ \frac{2x}{\sqrt{1 + x^2}} \ln(x + \sqrt{1 + x^2})$$

$$- \frac{2x}{\sqrt{1 + x^2}} \ln(x + \sqrt{1 + x^2})$$

$$- 2\sqrt{1 + x^2} \cdot \frac{1}{\sqrt{1 + x^2}} + 2$$

$$= \ln^2(x + \sqrt{1 + x^2}).$$
898. $y = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln(x + \sqrt{x^2 + a^2}).$

$$y' = \frac{1}{2} \sqrt{x^2 + a^2} + \frac{x^2}{2\sqrt{x^2 + a^2}} + \frac{a^2}{2\sqrt{x^2 + a^2}} = \sqrt{x^2 + a^2}.$$

899.
$$y = \frac{1}{2\sqrt{ab}} \ln \frac{\sqrt{a} + x\sqrt{b}}{\sqrt{a} - x\sqrt{b}} (a > 0, b > 0).$$

$$\mathbf{ff} \quad \mathbf{y}' = \frac{1}{2\sqrt{ab}} \left(\frac{\sqrt{b}}{\sqrt{a} + x\sqrt{b}} + \frac{\sqrt{b}}{\sqrt{a} - x\sqrt{b}} \right)$$
$$= \frac{1}{a - bx^2} \left(|x| < \sqrt{\frac{a}{b}} \right).$$

900.
$$y = \frac{2+3x^2}{x^4} \sqrt{1-x^2} + 3\ln \frac{1+\sqrt{1-x^2}}{x}$$
.

$$y' = \frac{6x^5 - 4x^3(2 + 3x^2)}{x^8} \sqrt{1 - x^2}$$

$$-\frac{x(2 + 3x^2)}{x^4 \sqrt{1 - x^2}} + \frac{3}{1 + \sqrt{1 - x^2}}$$

$$\cdot \left(-\frac{x}{\sqrt{1 - x^2}} \right) - \frac{3}{x}$$

$$= -\frac{8}{x^5 \sqrt{1 - x^2}} (0 < |x| < 1).$$

901.
$$y = \ln tg \frac{x}{2}$$
.

解
$$y' = \frac{1}{\lg \frac{x}{2}} \cdot \sec^2 \frac{x}{2} \cdot \frac{1}{2} = \frac{1}{2\sin \frac{x}{2}\cos \frac{x}{2}}$$

= $\frac{1}{\sin x} (0 < x - 2k\pi < \pi; k 为整数).$

902.
$$y = \ln \operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)$$
.

$$\mathbf{x} \quad y' = \frac{1}{\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)} \cdot \sec^2\left(\frac{x}{2} + \frac{\pi}{4}\right) \cdot \frac{1}{2}$$

$$= \frac{1}{2\sin\left(\frac{x}{2} + \frac{\pi}{4}\right)\cos\left(\frac{x}{2} + \frac{\pi}{4}\right)}$$

$$= \frac{1}{\sin\left(x + \frac{\pi}{2}\right)} = \frac{1}{\cos x}$$

$$(|x - 2k\pi| < \frac{\pi}{2}; k 为整数).$$

903.
$$y = \frac{1}{2}\operatorname{ctg}^2 x + \ln \sin x.$$

解
$$y' = -\operatorname{ctg} x \cdot \operatorname{csc}^2 x + \frac{\cos x}{\sin x}$$

= $-\operatorname{ctg}^3 x$ (0 < $x - 2k\pi < \pi$; k 为整数).

904.
$$y = \ln \sqrt{\frac{1 - \sin x}{1 + \sin x}}$$
.

905.
$$y = -\frac{\cos x}{2\sin^2 x} + \ln \sqrt{\frac{1 + \cos x}{\sin x}}$$
.

$$y' = \frac{\sin^3 x + 2\sin x \cos^2 x}{2\sin^4 x} + \frac{1}{2} \left(\frac{-\sin x}{1 + \cos x} - \frac{\cos x}{\sin x} \right)$$

$$=\frac{\cos^2 x}{\sin^3 x}(0 < x - 2k\pi < \pi; k 为整数).$$

906.
$$y = \ln \frac{b + a \cos x + \sqrt{b^2 - a^2} \sin x}{a + b \cos x} (0 \le |a| < |b|).$$

解 当 a = 0 时, $y = \ln \frac{1 + \sin x}{\cos x}$. 由于 $1 + \sin x$ 非负, 为使对数有意义,必须有

$$\begin{cases} 1 + \sin x > 0, \\ \cos x > 0, \end{cases}$$

当 $\left(2k-\frac{1}{2}\right)\pi < x < \left(2k+\frac{1}{2}\right)\pi(k$ 为整数) 时,上述不等式成立. 在此域内,得

$$u(x) = \frac{1 + \frac{a}{b}\cos x + \frac{\sqrt{b^2 - a^2}}{b}\sin x}{\frac{a}{b} + \cos x}$$
$$= \frac{1 + \cos \varphi_0 \cos x + \sin \varphi_0 \sin x}{\cos \varphi_0 + \cos x}$$
$$= \frac{1 + \cos(x - \varphi_0)}{\cos x + \cos x} = \frac{v_1(x)}{v_1(x)},$$

其中 $q_0 = \operatorname{arc} \operatorname{tg} \frac{\sqrt{b^2 - a^2}}{a}$. 显然 $v_1(x) \ge 0$. 为保证 y 可导,首先必须有 u(x) > 0,故应有 $v_1(x) \ne 0$ (从而 $v_1(x) > 0$),进而应有 $v_2(x) > 0$. 于是,y的存在域 R 为满足不等式

$$\begin{cases} v_1(x) \neq 0, \\ v_2(x) > 0 \end{cases}$$

的一切x值,记成

$$R = \{x | v_1(x) \neq 0, v_2(x) > 0\},\$$

厠

$$R = \{x | \cos x + \cos \varphi_0 > 0 \text{ 且 } x \neq (2k+1)\pi + \varphi_0;$$

k 为整数}.

在此域内,得

$$y' = \frac{-\sin(x - \varphi_0)}{1 + \cos(x - \varphi_0)} + \frac{\sin x}{\cos x + \cos \varphi_0}$$

$$= \frac{-\sin x \cos \varphi_0 + \cos x \sin \varphi_0}{1 + \cos x \cos \varphi_0 + \sin x \sin \varphi_0}$$

$$+ \frac{\sin x}{\cos x + \cos \varphi_0}$$

$$= \frac{-\frac{a}{b} \sin x + \cos x \cdot \frac{\sqrt{b^2 - a^2}}{b}}{1 + \frac{a}{b} \cos x + \frac{\sqrt{b^2 - a^2}}{b} \sin x}$$

$$+ \frac{\sin x}{\cos x + \frac{a}{b}}$$

$$= \frac{\sqrt{b^2 - a^2}}{a + b \cos x},$$

其实此结果也包含了a = 0时的情形.

907.
$$y = \frac{1}{x}(\ln^3 x + 3\ln^2 x + 6\ln x + 6)$$
.

$$\mathbf{ff} \quad y' = -\frac{1}{x^2} (\ln^3 x + 3\ln^2 x + 6\ln x + 6)$$

$$+ \frac{1}{x} \left(\frac{3}{x} \ln^2 x + \frac{6}{x} \ln x + \frac{6}{x} \right)$$

$$= -\frac{\ln^3 x}{x^2} \quad (x > 0).$$

908.
$$y = \frac{1}{4x^4} \ln \frac{1}{x} - \frac{1}{16x^4}$$
.

$$\mathbf{ff} \quad \mathbf{y}' = -\frac{1}{x^5} \ln \frac{1}{x} - \frac{1}{4x^5} + \frac{1}{4x^5}$$
$$= \frac{1}{x^5} \ln x \quad (x > 0).$$

909.
$$y = \frac{3}{2}(1 - \sqrt[3]{1 + x^2})^2 + 3\ln(1 + \sqrt[3]{1 + x^2}).$$

$$\mathbf{ff} \quad y' = \frac{3}{2} \cdot 2(1 - \sqrt[3]{1 + x^2}) \left(-\frac{2x}{3\sqrt[3]{(1 + x^2)^2}} \right)$$

$$+ \frac{3}{1 + \sqrt[3]{1 + x^2}} \cdot \frac{2x}{3\sqrt[3]{(1 + x^2)^2}}$$

$$= \frac{2x}{1 + \sqrt[3]{1 + x^2}}.$$

910.
$$y = \ln\left(\frac{1}{x} + \ln\left(\frac{1}{x} + \ln\frac{1}{x}\right)\right)$$
.

$$\mathbf{x} \quad \mathbf{y}' = \frac{1}{\frac{1}{x} + \ln\left(\frac{1}{x} + \ln\frac{1}{x}\right)} \left[-\frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x} + \ln\frac{1}{x} \left(-\frac{1}{x^2} - \frac{1}{x} \right) \right]$$

$$=-\frac{1+x+\frac{1}{x}+\ln\frac{1}{x}}{\left(1+x\ln\frac{1}{x}\right)\left(1+x\ln\left(\frac{1}{x}+\ln\frac{1}{x}\right)\right)}$$

$$(x>0).$$

911. $y = x(\sin(\ln x) - \cos(\ln x)).$

$$\mathbf{ff} \quad y' = (\sin(\ln x) - \cos(\ln x))$$

$$+ x \left(\frac{1}{x}\cos(\ln x) + \frac{1}{x}\sin(\ln x)\right)$$

$$= 2\sin(\ln x) \quad (x > 0).$$

912⁺. $y = \ln \operatorname{tg} \frac{x}{2} - \cos x \cdot \ln \operatorname{tg} x$.

$$\mathbf{ff} \quad \mathbf{y}' = \frac{1}{\operatorname{tg} \frac{x}{2}} \cdot \sec^2 \frac{x}{2} \cdot \frac{1}{2} + \sin x \cdot \ln \operatorname{tg} x$$
$$-\cos x \cdot \frac{1}{\operatorname{tg} x} \cdot \sec^2 x$$

 $= \sin x \cdot \ln \operatorname{tg} x (0 < x - 2k\pi < \frac{\pi}{2}; k 为整数).$

913.
$$y = \arcsin \frac{x}{2}$$
.

$$\mathbf{ff} \quad y' = \frac{1}{\sqrt{1 - \left(\frac{x}{2}\right)^2}} \cdot \frac{1}{2} = \frac{1}{\sqrt{4 - x^2}} (|x| < 2).$$

914.
$$y = \arccos \frac{1-x}{\sqrt{2}}$$
.

$$\mathbf{F} \quad \mathbf{y}' = -\frac{1}{\sqrt{1 - \left(\frac{1 - x}{\sqrt{2}}\right)^2}} \cdot \left(-\frac{1}{\sqrt{2}}\right)$$

$$= \frac{1}{\sqrt{1+2x-x^2}} \quad (|x-1| < \sqrt{2}).$$

915.
$$y = \text{arc tg } \frac{x^2}{a}$$
.

#
$$y' = \frac{1}{1 + \left(\frac{x^2}{a}\right)^2} \cdot \frac{2x}{a} = \frac{2ax}{a^2 + x^4} (a \neq 0).$$

916.
$$y = \frac{1}{\sqrt{2}} \operatorname{arc ctg} \frac{\sqrt{2}}{x}$$
.

$$\mathbf{x} \quad \mathbf{y}' = -\frac{1}{\sqrt{2}} \cdot \frac{1}{1 + \left(\frac{\sqrt{2}}{x}\right)^2} \cdot \left(-\frac{\sqrt{2}}{x^2}\right)$$
$$= \frac{1}{x^2 + 2} \quad (x \neq 0).$$

917.
$$y = \sqrt{x} - \operatorname{arc} \operatorname{tg} \sqrt{x}$$
.

$$y' = \frac{1}{2\sqrt{x}} - \frac{1}{2\sqrt{x}(1+x)} = \frac{\sqrt{x}}{2(1+x)} \quad (x \ge 0).$$

918.
$$y = x + \sqrt{1 - x^2} \operatorname{arc} \cos x$$
.

$$y' = 1 - \frac{x}{\sqrt{1 - x^2}} \operatorname{arc} \cos x$$

$$- \frac{1}{\sqrt{1 - x^2}} \cdot \sqrt{1 - x^2}$$

$$= - \frac{x}{\sqrt{1 - x^2}} \operatorname{arc} \cos x (|x| < 1).$$

919.
$$y = x \arcsin \sqrt{\frac{x}{1+x}} + \operatorname{arc tg} \sqrt{x} - \sqrt{x}$$
.

$$\mathbf{ff} \qquad y' = \arcsin\sqrt{\frac{x}{1+x}} + \frac{x}{\sqrt{1-\frac{x}{1+x}}}$$

$$\cdot \frac{1}{2\sqrt{\frac{x}{1+x}}} \cdot \frac{1+x-x}{(1+x)^2}$$

$$+ \frac{1}{2\sqrt{x}(1+x)} - \frac{1}{2\sqrt{x}}$$

$$= \arcsin\sqrt{\frac{x}{1+x}} (x \ge 0).$$

920. $y = \arccos \frac{1}{x}$.

$$\mathbf{ff} \quad y' = -\frac{1}{\sqrt{1 - \left(\frac{1}{x}\right)^2}} \left(-\frac{1}{x^2}\right)$$
$$= \frac{1}{|x| \sqrt{x^2 - 1}} (|x| > 1).$$

921. $y = \arcsin(\sin x)$.

922. $y = arc \cos(\cos^2 x)$.

$$y' = \frac{\sin 2x}{\sqrt{1 - \cos^4 x}} = \frac{\sin 2x}{\sqrt{\sin^2 x (1 + \cos^2 x)}}$$
$$= \frac{2\operatorname{sgn}(\sin x) \cdot \cos x}{\sqrt{1 + \cos^2 x}} (x \neq k\pi; k \text{ 为整数}).$$

923.
$$y = \arcsin(\sin x - \cos x)$$
.

解
$$y' = \frac{\cos x + \sin x}{\sqrt{1 - (\sin x - \cos x)^2}}$$

$$= \frac{\sin x + \cos x}{\sqrt{\sin 2x}}$$
 $(0 < x - k\pi < \frac{\pi}{2}; k$ 为整数).

924.
$$y = \arccos \sqrt{1 - x^2}$$
.

$$y' = \frac{-1}{\sqrt{1 - (1 - x^2)}} \cdot \frac{-x}{\sqrt{1 - x^2}}$$
$$= \frac{\operatorname{sgn} x}{\sqrt{1 - x^2}} (0 < |x| < 1).$$

925.
$$y = \text{arc tg } \frac{1+x}{1-x}$$
.

$$\mathbf{ff} \quad y' = \frac{1}{1 + \left(\frac{1+x}{1-x}\right)^2} \cdot \frac{(1-x) + (1+x)}{(1-x)^2}$$
$$= \frac{1}{1+x^2} (x \neq 1).$$

926.
$$y = \operatorname{arc} \operatorname{ctg} \left(\frac{\sin x + \cos x}{\sin x - \cos x} \right)$$
.

解

$$y' = \frac{-1}{1 + \left(\frac{\sin x + \cos x}{\sin x - \cos x}\right)^2}$$

$$\frac{(\cos x - \sin x)(\sin x - \cos x) - (\cos x + \sin x)^2}{(\sin x - \cos x)^2}$$

$$=1 \quad (x \neq k\pi + \frac{\pi}{4}; k$$
为整数).

927.
$$y = \frac{2}{\sqrt{a^2 - b^2}} \operatorname{arc} \operatorname{tg} \left(\sqrt{\frac{a - b}{a + b}} \operatorname{tg} \frac{x}{2} \right) (a > b \ge 0).$$

$y' = \frac{2}{\sqrt{a^2 - b^2}} \cdot \frac{1}{1 + \frac{a - b}{a + b}} \operatorname{tg}^2 \frac{x}{2}$
 $\cdot \sqrt{\frac{a - b}{a + b}} \cdot \frac{1}{2} \cdot \sec^2 \frac{x}{2}$
 $= \frac{1}{a + b \cos x}.$

928. $y = \arcsin \frac{1-x^2}{1+x^2}$.

$$\mathbf{ff} \quad y' = \frac{1}{\sqrt{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2}} \cdot \frac{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2}{(1 + x^2)^2} \cdot \frac{-2x(1 + x^2) - 2x(1 - x^2)}{(1 + x^2)^2} = -\frac{2\operatorname{sgn} x}{1 + x^2} \ (x \neq 0).$$

929. $y = \frac{1}{\arccos^2(x^2)}$.

$$y' = -\frac{2}{\arccos^3(x^2)} \cdot \frac{-2x}{\sqrt{1-x^4}}$$

$$= \frac{4x}{\sqrt{1-x^4} \cdot \arccos^3(x^2)} (|x| < 1).$$

930. $y = \text{arc } tgx + \frac{1}{3} \text{arc } tg(x^3)$.

$$\mathbf{ff} \quad \mathbf{y}' = \frac{1}{1+x^2} + \frac{x^2}{1+x^5} = \frac{1+x^4}{1+x^5}.$$

931. $y = \ln(1 + \sin^2 x) - 2\sin x \arctan(\sin x)$.

$$y' = \frac{\sin 2x}{1 + \sin^2 x} - 2\cos x \cdot \text{arc tg}(\sin x)$$
$$-\frac{\sin 2x}{1 + \sin^2 x}$$
$$= -2\cos x \cdot \text{arc tg}(\sin x).$$

932.
$$y = \ln\left\{ \arccos \frac{1}{\sqrt{x}} \right\}$$
.

$$y' = \frac{1}{\arccos \frac{1}{\sqrt{x}}} \cdot \frac{-1}{\sqrt{1 - x^{-1}}} \cdot \frac{-1}{2x \sqrt{x}}$$
$$= \frac{1}{2x \sqrt{x - 1} \operatorname{arc} \cos \frac{1}{\sqrt{x}}} (x > 1).$$

933.
$$y = \ln \frac{x+a}{\sqrt{x^2+b^2}} + \frac{a}{b} \operatorname{arc} \operatorname{tg} \frac{x}{b}$$
.

$$\mathbf{p}' = \frac{1}{x+a} - \frac{x}{x^2 + b^2} + \frac{a}{b} \cdot \frac{1}{b\left(1 + \frac{x^2}{b^2}\right)}$$
$$= \frac{a^2 + b^2}{(x+a)(b^2 + x^2)} (x > -a).$$

934.
$$y = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} \ (a > 0).$$

$$y' = \frac{1}{2} \sqrt{a^2 - x^2} - \frac{x^2}{2 \sqrt{a^2 - x^2}} + \frac{a^2}{2} \cdot \frac{1}{\sqrt{a^2 - x^2}} = \sqrt{a^2 - x^2}$$

935.
$$y = \frac{1}{6} \ln \frac{(x+1)^2}{x^2 - x + 1} + \frac{1}{\sqrt{3}} \operatorname{arc} \operatorname{tg} \frac{2x - 1}{\sqrt{3}}$$
.

$$\mathbf{FF} \quad y' = \frac{1}{3} \cdot \frac{1}{x+1} - \frac{1}{6} \cdot \frac{2x-1}{x^2-x+1} + \frac{1}{\sqrt{3}} \cdot \frac{1}{1+\left(\frac{2x-1}{\sqrt{3}}\right)^2} \cdot \frac{2}{\sqrt{3}} = \frac{1}{1+x^3} (x \neq -1).$$

$$936. \quad y = \frac{1}{4\sqrt{2}} - \ln \frac{x^2 + x\sqrt{2} + 1}{x^2 - x\sqrt{2} + 1} - \frac{1}{2\sqrt{2}} \operatorname{arc} \operatorname{tg} \frac{x\sqrt{2}}{x^2 - 1}.$$

$$\mathbf{FF} \quad y' = \frac{1}{4\sqrt{2}} \left(\frac{2x + \sqrt{2}}{x^2 + x\sqrt{2} + 1} - \frac{2x - \sqrt{2}}{x^2 - x\sqrt{2} + 1}\right) - \frac{1}{2\sqrt{2}} \cdot \frac{1}{1+\left(\frac{x\sqrt{2}}{x^2-1}\right)^2} - \frac{1}{2\sqrt{2}} \cdot \frac{\sqrt{2}(x^2-1) - 2x^2\sqrt{2}}{(x^2-1)^2} = \frac{1}{1+x^4} (|x| \neq 1).$$

$$937. \quad y = x(\arcsin x)^2 + 2\sqrt{1-x^2} \arcsin x - 2x.$$

937.
$$y = x(\arcsin x)^2 + 2\sqrt{1-x^2} \arcsin x - 2x$$
.

$$y' = (\arcsin x)^2 + \frac{2x \arcsin x}{\sqrt{1 - x^2}} - \frac{2x \arcsin x}{\sqrt{1 - x^2}} + 2 - 2$$
$$= (\arcsin x)^2 (|x| < 1).$$

938.
$$y = \frac{\arccos x}{x} + \frac{1}{2} \ln \frac{1 - \sqrt{1 - x^2}}{1 + \sqrt{1 - x^2}}$$
.

$$y' = \frac{-\frac{x}{\sqrt{1-x^2}} - \arccos x}{+\frac{1}{2} \left(\frac{\frac{x}{\sqrt{1-x^2}}}{1-\sqrt{1-x^2}} + \frac{\frac{x}{\sqrt{1-x^2}}}{1+\sqrt{1-x^2}} \right)}{= -\frac{\arccos x}{x^2} (0 < |x| < 1).$$

939.
$$y = \text{arc tg } \sqrt{x^2 - 1} - \frac{\ln x}{\sqrt{x^2 - 1}}$$
.

$$y' = \frac{1}{1 + (x^2 - 1)} \cdot \frac{x}{\sqrt{x^2 - 1}} - \frac{1}{x\sqrt{x^2 - 1}} + \frac{x \ln x}{(x^2 - 1)\sqrt{x^2 - 1}} = \frac{x \ln x}{(x^2 - 1)^{\frac{3}{2}}} (x > 1).$$

940.
$$y = \frac{\arcsin x}{\sqrt{1-x^2}} + \frac{1}{2} \ln \frac{1-x}{1+x}$$
.

$$y' = \frac{1}{1 - x^2} + \frac{x \arcsin x}{(1 - x^2)^{\frac{3}{2}}} + \frac{1}{2} \left(-\frac{1}{1 - x} - \frac{1}{1 + x} \right)$$
$$= \frac{x \arcsin x}{(1 - x^2)^{\frac{3}{2}}} (|x| < 1).$$

941.
$$y = \frac{1}{12} \ln \frac{x^4 - x^2 + 1}{(x^2 + 1)^2} - \frac{1}{2\sqrt{3}} \operatorname{arc} \operatorname{tg} \frac{\sqrt{3}}{2x^2 - 1}.$$

$$\mathbf{ff} y' = \frac{1}{12} \left(\frac{4x^3 - 2x}{x^4 - x^2 + 1} - \frac{4x}{x^2 + 1} \right)$$

$$-\frac{1}{2\sqrt{3}} \frac{1}{1 + \left(\frac{\sqrt{3}}{2x^2 - 1}\right)^2} \left(\frac{-4\sqrt{3}x}{(2x^2 - 1)^2}\right)$$
$$= \frac{x^3}{1 + x^5} \left(|x| \neq \frac{1}{\sqrt{2}}\right).$$

942. $y = \frac{x^6}{1 + x^{12}} - \operatorname{arc} \operatorname{ctg} x^6$.

$$y' \frac{6x^{5}(1+x^{12})-12x^{17}}{(1+x^{12})^{2}} + \frac{6x^{5}}{1+x^{12}}$$

$$= \frac{12x^{5}}{(1+x^{12})^{2}}.$$

943⁺ .
$$y = \ln \frac{1 - \sqrt[3]{x}}{\sqrt{1 + \sqrt[3]{x} + \sqrt[3]{x}}} + \sqrt{3} \operatorname{arc} \operatorname{tg} \frac{1 + 2\sqrt[3]{x}}{\sqrt{3}}$$
.

$$y' = -\frac{1}{3\sqrt[3]{x^2} \cdot (1 - \sqrt[3]{x})}$$

$$-\frac{1}{2(1 + \sqrt[3]{x} + \sqrt[3]{x^2}} \left(\frac{1}{3\sqrt[3]{x^2}} + \frac{2}{3\sqrt[3]{x}}\right)$$

$$+\sqrt{3} \frac{1}{1 + \left(\frac{1 + 2\sqrt[3]{x}}{\sqrt{3}}\right)^2} \cdot \frac{2}{3\sqrt{3}\sqrt[3]{x^2}}$$

$$= -\frac{1}{(1-x)\sqrt[3]{x}}(-\infty < x < 1, x \neq 0).$$

944.
$$y = \text{arc tg} \frac{x}{1 + \sqrt{1 - x^2}}$$
.

$$\mathbf{x} \quad \mathbf{y}' = \frac{1}{1 + \left(\frac{x}{1 + \sqrt{1 - x^2}}\right)^2}$$

$$\cdot \frac{1 + \sqrt{1 - x^2} + \frac{x^2}{\sqrt{1 - x^2}}}{(1 + \sqrt{1 - x^2})^2}$$

$$= \frac{1}{2\sqrt{1 - x^2}} (|x| < 1).$$

945.
$$y = \operatorname{arc} \operatorname{ctg} \frac{a - 2x}{2\sqrt{ax - x^2}} (a > 0).$$

$$y' = -\frac{1}{1 + \frac{(a - 2x)^2}{4(ax - x^2)}} \cdot \frac{1}{2}$$

$$-2\sqrt{ax - x^2} - \frac{(a - 2x)^2}{2\sqrt{ax - x^2}}$$

$$\cdot \frac{1}{ax - x^2}$$

$$= \frac{1}{\sqrt{ax - x^2}} (0 < x < a).$$

946.
$$y = \frac{3-x}{2} \sqrt{1-2x-x^2} + 2\arcsin\frac{1+x}{\sqrt{2}}$$
.

$$y' = -\frac{1}{2} \sqrt{1 - 2x - x^2} - \frac{3 - x}{2} \cdot \frac{1 + x}{\sqrt{1 - 2x - x^2}} + 2 \cdot \frac{1}{\sqrt{2} \cdot \sqrt{1 - \left(\frac{1 + x}{\sqrt{2}}\right)^2}} = \frac{x^2}{\sqrt{1 - 2x - x^2}} (|x + 1| < \sqrt{2}).$$

947.
$$y = \frac{1}{4} \ln \frac{\sqrt[4]{1+x^4} + x}{\sqrt[4]{1+x^4} - x} - \frac{1}{2} \operatorname{arc} \operatorname{tg} \frac{\sqrt[4]{1+x^4}}{x}$$
.

$$\mathbf{W} \quad y' = \frac{1}{4} \left\{ \frac{1}{\sqrt[4]{1+x^4+x}} \cdot \left(1 + \frac{x^3}{\sqrt[4]{(1+x^4)^3}} \right) \right\}$$

$$-\frac{1}{\sqrt[4]{1+x^4}-x}\left(\frac{x^3}{\sqrt[4]{(1+x^4)^3}}-1\right)$$

$$-\frac{1}{2}\cdot\frac{1}{1+\left(\frac{\sqrt[4]{1+x^4}}{x}\right)^2}$$

$$\cdot\frac{1}{x^2}\left(\frac{x^4}{\sqrt[4]{(1+x^4)^3}}-\sqrt[4]{1+x^4}\right)$$

$$=\frac{1}{\sqrt[4]{1+x^4}}(x\neq 0).$$

948. $y = arc tg(tg^2x)$.

$$\mathbf{ff} \quad \mathbf{y}' = \frac{1}{1 + \mathbf{t}\mathbf{g}^4x} \cdot 2\mathbf{t}\mathbf{g}x\mathbf{sec}^2x$$
$$= \frac{\sin 2x}{\sin^4 x + \cos^4 x} \left(x \neq \frac{2k - 1}{2}\pi; k \right) 整数).$$

949.
$$y = \sqrt{1-x^2} \cdot \ln \sqrt{\frac{1-x}{1+x}} + \frac{1}{2} \ln \frac{1-\sqrt{1-x^2}}{1+\sqrt{1-x^2}} + \sqrt{1-x^2} + \arcsin x.$$

$$\mathbf{x} \quad y' = -\frac{x}{\sqrt{1-x^2}} \ln \sqrt{\frac{1-x}{1+x}} \\
+ \frac{1}{2} \sqrt{1-x^2} \left(-\frac{1}{1-x} - \frac{1}{1+x} \right) \\
+ \frac{1}{2} \left(\frac{x}{(1-\sqrt{1-x^2}) \sqrt{1-x^2}} \right) \\
+ \frac{x}{(1+\sqrt{1-x^2}) \sqrt{1-x^2}} \right) \\
- \frac{x}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-x^2}}$$

$$= \frac{\sqrt{1-x^2}}{x} - \frac{x}{\sqrt{1-x^2}} \ln \sqrt{\frac{1-x}{1+x}}$$

$$(0 < |x| < 1).$$

950. $y = x \operatorname{arc} \operatorname{tg} x - \frac{1}{2} \ln(1 + x^2) - \frac{1}{2} (\operatorname{arc} \operatorname{tg} x)^2$.

$$y' = \arctan tg \ x + \frac{x}{1 + x^2} - \frac{x}{1 + x^2}$$

$$- \frac{1}{1 + x^2} \arctan tg \ x$$

$$= \frac{x^2}{1 + x^2} \arctan tg \ x.$$

951. $y = \ln(e^x + \sqrt{1 + e^{2x}})$.

$$\mathbf{ff} \quad y' = \frac{1}{e^x + \sqrt{1 + e^{2x}}} \left(e^x + \frac{e^{2x}}{\sqrt{1 + e^{2x}}} \right) \\
= \frac{e^x}{\sqrt{1 + e^{2x}}}.$$

952. $y = arc tg(x + \sqrt{1 + x^2})$.

$$y' = \frac{1}{1 + (x + \sqrt{1 + x^2})^2} \left(1 + \frac{x}{\sqrt{1 + x^2}} \right)$$
$$= \frac{1}{2(1 + x^2)}.$$

953. $y = \arcsin\left(\frac{\sin a \sin x}{1 - \cos a \cos x}\right)$.

解

$$y' = \frac{1}{\sqrt{1 - \left(\frac{\sin \alpha \sin x}{1 - \cos \alpha \cos x}\right)^2}}$$

$$\frac{\sin a \cos x (1 - \cos a \cos x) - \sin a \cos a \sin^2 x}{(1 - \cos a \cos x)^2}$$

$$= \frac{1 - \cos a \cos x}{\sqrt{(\cos x - \cos a)^2}} \cdot \frac{\sin a \cdot (\cos x - \cos a)}{(1 - \cos a \cos x)^2}$$

$$= \frac{\sin a \cdot \sin (\cos x - \cos a)}{1 - \cos a \cos x}$$

$$(\cos x \neq \cos a, \exists x \neq a + 2k\pi, k \Rightarrow 2k\pi).$$
954.
$$y = \frac{1}{4\sqrt{3}} \ln \frac{\sqrt{x^2 + 2} - x\sqrt{3}}{\sqrt{x^2 + 2} + x\sqrt{3}} + \frac{1}{2} \arctan \left(\frac{x}{\sqrt{x^2 + 2}} - \frac{x\sqrt{3}}{\sqrt{x^2 + 2}} - \frac{1}{\sqrt{x^2 + 2$$

$$\frac{\sqrt{2} \cdot \sqrt{1+x^4} - \frac{2\sqrt{2}x^4}{\sqrt{1+x^4}}}{1+x^4} \cdot \frac{1}{1+x^4} - \frac{1}{4\sqrt{2}} \left(\frac{1}{\sqrt{1+x^4}} - \frac{1}{x\sqrt{2}} \left(\frac{2x^3}{\sqrt{1+x^4}} + x\sqrt{2} \right) - \frac{1}{\sqrt{1+x^4}} + x\sqrt{2} \right) - \frac{1}{\sqrt{1+x^4}} \cdot (|x| \neq 1).$$

$$956. y = \frac{x\sqrt{1-x^2}}{1+x^2} - \frac{3}{\sqrt{2}} \operatorname{arc} \operatorname{ctg} \frac{x\sqrt{2}}{\sqrt{1-x^2}}.$$

$$y' = \frac{1}{(1+x^2)^2} \left(\left(\sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}} \right) + \frac{3}{\sqrt{2}\left(1+\frac{2x^2}{1-x^2}\right)} + \frac{3}{\sqrt{2}\left(1+\frac{2x^2}{1-x^2}\right)} \cdot \frac{\sqrt{2}\sqrt{1-x^2} + \sqrt{2}x^2}{1-x^2} - \frac{4}{(x^2+1)^2\sqrt{1-x^2}} (|x| < 1).$$

957⁺ $y = arc \cos(\sin x^2 - \cos x^2)$.

$$y' = -\frac{1}{\sqrt{1 - (\sin x^2 - \cos x^2)^2}}$$

$$\cdot 2x(\cos x^2 + \sin x^2)$$

$$= -\frac{2x(\sin x^2 + \cos x^2)}{\sqrt{\sin(2x^2)}}$$

$$\left(0 < |x| < \sqrt{\left(k + \frac{1}{2}\right)\pi}, k = 0.1.2\cdots\right).$$

958. $y = \arcsin(\sin x^2) + \arccos(\cos x^2)$.

$$y' = \frac{2x\cos(x^2)}{\sqrt{1 - \sin^2(x^2)}} + \frac{2x\sin(x^2)}{\sqrt{1 - \cos^2(x^2)}}$$

$$= 2x[\operatorname{sgn}(\cos x^2) + \operatorname{sgn}(\sin x^2)]$$

$$\left(|x| \neq \sqrt{\frac{k\pi}{2}}; k = 0, 1, 2, \cdots\right).$$

959. $y = e^{marc \sin x} (\cos(marc \sin x) + \sin(marc \sin x))$.

$$\mathbf{f} \qquad \mathbf{f} \qquad$$

960.
$$y = \operatorname{arc} \operatorname{tg} e^x - \ln \sqrt{\frac{e^{2r}}{e^{2r} + 1}}$$
.

$$y' = \frac{e^x}{1 + e^{2x}} - \frac{1}{2} \left(2 - \frac{2e^{2x}}{e^{2x} + 1} \right)$$
$$= \frac{e^x - 1}{e^{2x} + 1}.$$

961.
$$y = x + x^x + x^{x^x} (x > 0)$$
.

$$y' = 1 + x^{x} (1 + \ln x) + x^{x^{x}} (x^{x} \ln x)'$$

$$= 1 + x^{x} (1 + \ln x) + x^{x} \cdot x^{x^{x}} \left(\frac{1}{x} + \ln x + \ln^{2} x \right).$$

962.
$$y = x^{x^a} + x^{a^x} + a^{x^x} (a > 0, x > 0)$$
.

$$\mathbf{ff} \quad \mathbf{y}' = x^{x^a} \left(a x^{a-1} \ln x + \frac{x^a}{x} \right)$$

$$+ x^{a^x} \left(a^x \ln a \cdot \ln x + \frac{a^x}{x} \right)$$

$$+ a^{x^x} \cdot \ln a \cdot x^x (1 + \ln x)$$

$$= x^{a-1} x^{x^a} (1 + a \ln x) + a^x x^{a^x} \left(\frac{1}{x} + \ln a \ln x \right)$$

$$+ x^x \cdot a^{x^x} \ln a (1 + \ln x).$$

963.
$$y = \sqrt[x]{x}$$
 $(x > 0)$.

964.
$$y = (\sin x)^{\cos x} + (\cos x)^{\sin x}.$$

$$y' = (\sin x)^{\cos x} \left(-\sin x \cdot \ln(\sin x) + \frac{\cos^2 x}{\sin x} \right)$$

$$+ (\cos x)^{\sin x} \left(\cos x \cdot \ln(\cos x) - \frac{\sin^2 x}{\cos x} \right)$$

$$= (\sin x)^{\cos x + 1} \left(\cot g^2 x - \ln(\sin x) \right)$$

$$- (\cos x)^{\sin x + 1} \left(\cot g^2 x - \ln(\cos x) \right)$$

$$\left(0 < x - 2k\pi < \frac{\pi}{2}, k \right)$$

$$965^{+*} \cdot y = (\ln x)^{x} \cdot x^{\ln x}$$

$$y = \frac{e^{\sin(\ln x)}}{e^{\ln^2 x}} = e^{x \ln(\ln x) - \ln^2 x}.$$

$$y' = \frac{(\ln x)^x}{x^{\ln x}} \{ (x \ln(\ln x))' - (\ln^2 x)' \}$$

$$= \frac{(\ln x)^x}{x^{\ln x}} \{ \ln(\ln x) + \frac{1}{\ln x} - \frac{2\ln x}{x} \}$$

$$= \frac{(\ln x)^{x-1}}{x^{\ln x+1}} \{ x \ln x \cdot \ln(\ln x) + x - 2\ln^2 x \}.$$

966. $y = \lg_x e$.

解 由
$$y = \lg_x e$$
 推得 $y = \frac{1}{\lg_x x}$.
于是,
 $y' = -\frac{1}{x \ln^2 x} = -\frac{1}{x} (\lg_x e)^2 (x > 0, x \neq 1)$.

[•] 題号右上角带"+"号表示题解答案与原习题集中译本所附答案不一致, 以后不再说明,中译本基本是按俄文第二版翻译的、俄文第二版中有一些错误已 在俄文第三版中改正。

967.
$$y = \ln(\cosh x) + \frac{1}{2\cosh^2 x}$$
.

 $y' = \sinh x - \frac{\sinh x}{\cosh^3 x} = \sinh^3 x$.

968. $y = \frac{\cosh x}{\sinh^2 x} - \ln\left(\coth\frac{x}{2}\right)$.

 $y' = \frac{\sinh^3 x - 2\sinh x \cosh^2 x}{\sinh^4 x} + \frac{1}{2\sinh^2 \frac{x}{2} \cdot \coth\frac{x}{2}}$
 $= -\frac{2}{\sinh^3 x} (x > 0)$.

969. $y = \arctan \lg(\tanh x)$.

 $y' = \frac{1}{1 + \sinh^2 x} \cdot \frac{1}{\cosh^2 x} = \frac{1}{\cosh 2x}$.

970. $y = \arctan \cos\left(\frac{1}{\cosh x}\right)$.

 $y' = -\frac{1}{\sqrt{1 - \frac{1}{\cosh^2 x}}} \left(-\frac{\sinh x}{\cosh^2 x}\right)$
 $= \frac{\operatorname{sgn}(\sinh x)}{\cosh x} \quad (x \neq 0)$.

971. $y = \frac{b}{a}x + \frac{2\sqrt{a^2 - b^2}}{a} \arctan \lg\left(\sqrt{\frac{a - b}{a + b}} \operatorname{th} \frac{x}{2}\right)$
 $(0 \le |b| < a)$.

$$y' = \frac{1}{a} + \frac{a - b}{1 + \frac{a - b}{a + b}} \operatorname{th}^{2} \frac{3}{2}$$

$$\cdot \sqrt{\frac{a - b}{a + b}} \cdot \frac{1}{2\operatorname{ch}^{2} \frac{x}{2}}$$

$$= \frac{b}{a} + \frac{a^{2} - b^{2}}{a(b + a\operatorname{ch} x)} = \frac{a + b\operatorname{ch} x}{b + a\operatorname{ch} x}.$$

972. 引入中间变量
$$u = \cos^2 x$$
 求函数

$$y = \ln(\cos^2 x + \sqrt{1 + \cos^4 x})$$

的导函数.

$$\mathbf{ff} \quad u = \cos^2 x, y = \ln(u + \sqrt{1 + u^2}),$$
$$y'_x = y'_u \cdot u'_x,$$

而

$$y'_{u} = \frac{1}{\sqrt{1 + u^{2}}} = \frac{1}{\sqrt{1 + \cos^{4}x}},$$

$$u'_{x} = -2\cos x \sin x = -\sin 2x,$$

于是,

$$y'_x = -\frac{\sin 2x}{\sqrt{1 + \cos^4 x}}.$$

利用 972 题所示的方法,求下列函数的导函数:

973⁺.
$$y = (arc cos x)^2 (ln^2 (arc cos x) - ln (arc cos x)$$

$$+\frac{1}{2}$$
).

解 设
$$u = \operatorname{arc} \cos x$$
,则 $y = u^2 \left(\ln^2 u - \ln u + \frac{1}{2} \right)$.
由于

$$y'_{u} = 2u \left(\ln^{2} u - \ln u + \frac{1}{2} \right) + u^{2} \left(\frac{2 \ln u}{u} - \frac{1}{u} \right)$$

$$= 2u \ln^{2} u = 2 \arccos x \cdot \ln^{2} (\arccos x),$$

$$u'_{x} = -\frac{1}{\sqrt{1 - x^{2}}},$$

于是,

$$y'_{x} = y'_{x} \cdot u'_{x} = -\frac{2}{\sqrt{1 - x^{2}}} \operatorname{arc} \cos x$$

 $\cdot \ln^{2}(\operatorname{arc} \cos x) \quad (|x| < 1).$

974+.
$$y = \frac{1}{2} \operatorname{arc} \operatorname{tg}(\sqrt[4]{1+x^4}) + \frac{1}{4} \ln \frac{\sqrt[4]{1+x^4}+1}{\sqrt[4]{1+x^4}-1}$$
.

解 设 $u = \sqrt[4]{1+x^4}$, 则
$$y = \frac{1}{2} \operatorname{arc} \operatorname{tg}u + \frac{1}{4} \ln \frac{u+1}{u-1}.$$
由于
$$y'_u = \frac{1}{2(1+u^2)} + \frac{1}{4} \left(\frac{1}{u+1} - \frac{1}{u-1} \right)$$

$$= \frac{1}{1-u^4} = -\frac{1}{x^4},$$

$$u'_x = \frac{x^3}{\sqrt[4]{(1+x^4)^3}},$$
于是,
$$y'_z = y'_u \cdot u'_z = -\frac{1}{x\sqrt[4]{(1+x^4)^3}} \quad (x \neq 0).$$
975. $y = \frac{e^{-x^2} \operatorname{arc} \sin(e^{-x^2})}{\sqrt{1-e^{-2x^2}}} + \frac{1}{2} \ln(1-e^{-2x^2}).$

$$y = \frac{u \operatorname{arc} \sin u}{\sqrt{1-u^2}} + \frac{1}{2} \ln(1-u^2).$$
由于
$$y'_u = \frac{\left(\operatorname{arc} \sin u + \frac{u}{\sqrt{1-u^2}}\right)\sqrt{1-u^2} + \frac{u^2 \operatorname{arc} \sin u}{\sqrt{1-u^2}}}{1-u^2}$$

$$= \frac{\operatorname{arc} \sin u}{(1-u^2)^{\frac{3}{2}}} = \frac{\operatorname{arc} \sin(e^{-x^2})}{(1-e^{-2x^2})^{\frac{3}{2}}},$$

 $u' = -2xe^{-x^2}.$

于是,

$$y'_{x} = y'_{x} \cdot u'_{x} = \frac{-2xe^{-x^{2}} \arcsin(e^{-x^{2}})}{(1 - e^{-2x^{2}})^{\frac{3}{2}}}$$

$$(x \neq 0).$$

976.
$$y = \frac{a^x}{1+a^{2x}} - \frac{1-a^{2x}}{1+a^{2x}} \operatorname{arc } \operatorname{ctg}(a^{-x}).$$

解 设 $u=a^x$,则

$$y = \frac{u}{1+u^2} - \frac{1-u^2}{1+u^2} \operatorname{arc} \operatorname{ctg}(u^{-1}).$$

由于

$$y'_{u} = \frac{(1 + u^{2}) - 2u^{2}}{(1 + u^{2})^{2}}$$

$$- \frac{-2u(1 + u^{2}) - 2u(1 - u^{2})}{(1 + u^{2})^{2}} \operatorname{arc} \operatorname{ctg}(u^{-1})$$

$$- \frac{1 - u^{2}}{1 + u^{2}} \cdot \frac{1}{u^{2} \left(1 + \frac{1}{u^{2}}\right)}$$

$$= \frac{4u \operatorname{arc} \operatorname{ctg}(u^{-1})}{(1 + u^{2})^{2}} = \frac{4a^{x} \cdot \operatorname{arc} \operatorname{ctg}(a^{-x})}{(1 + a^{2x})^{2}},$$

$$u'_{u} = a^{x} \ln a.$$

于是,

$$y'_{x} = y'_{u} \cdot u'_{x} = \frac{4a^{2x} \ln a}{(1+a^{2x})^{2}} \operatorname{arc} \operatorname{ctg}(a^{-x})$$
(a > 0).

977. 求函数的导函数并作函数及导函数的图形,设,

(a)
$$y = |x|$$
; (b) $y = x|x|$; (b) $y = \ln|x|$.

解 (a)
$$y = \begin{cases} x, \exists x \ge 0 \text{ 时,} \\ -x, \exists x < 0 \text{ 时.} \end{cases}$$
 (图 2. 2). $y' = \begin{cases} 1, \exists x > 0 \text{ 时,} \\ -1, \exists x < 0 \text{ H,} \end{cases}$ 或写成 $y' = \frac{|x|}{x}$.

在 x = 0 时 y' 不存在(图 2.3).

(6)
$$y = \begin{cases} x^2, \exists x \ge 0 \text{ bh}, \\ -x^2, \exists x < 0 \text{ bh}, \end{cases}$$
 (图 2.4). $y' = \begin{cases} 2x, \exists x > 0 \text{ bh}, \\ -2x, \exists x < 0 \text{ bh}, \end{cases}$ 而且易见有 $y'|_{x=0} = 0,$ 故 $y' = 2|x|$ ''(图 2.5).

*) 以下各题,对于分界点的导数,不再单独讨论.

$$(B)y = \ln |x| ($$
 2.6 $).$

$$y' = \frac{1}{|x|} \cdot \frac{|x|}{x} = \frac{1}{x} (x \neq 0)$$
 (图 2.7).

图 2. 2
y'

O

x

图 2. 3

图 2.4

图 2.6

图 2.5

图 2.7

978. 求下列函数的导函数:

(a)
$$y = |(x-1)^2(x+1)^3|$$
; (6) $y = |\sin^3 x|$;

(6)
$$y = |\sin^3 x|$$

(B)
$$y = \arccos \frac{1}{|x|}$$
;

$$(r)y = (x)\sin^2\!\pi x,$$

解 (a)
$$y' = \frac{|(x-1)^2(x+1)|}{(x-1)^2(x+1)^3} (2(x-1)(x+1)^3 + 3(x-1)^2(x+1)^2)$$

$$= (x-1)(x+1)^2(5x-1) \operatorname{sgn}(x+1)$$

$$(|x| \neq 1);$$

$$(6) y' = \frac{|\sin^3 x|}{\sin^3 x} 3 \sin^2 x \cos x$$

$$= \frac{3}{2} \sin 2x |\sin x| \quad (x \neq k\pi, k \text{ 为整数});$$

$$(B) y' = \begin{bmatrix} -\frac{1}{\sqrt{1-\frac{1}{x^2}}} \end{bmatrix} \cdot \left(-\left(\frac{|x|}{x \cdot x^2}\right)\right)$$

$$= \frac{1}{x\sqrt{x^2-1}} \quad (|x| > 1);$$

$$(C) \text{ 对于 } y = (x) \text{ find } y' = 0$$

$$(x \neq k, k = 0, \pm 1, \pm 2, \cdots),$$

于是,当 $x \neq k$ $(k = 0, \pm 1, \pm 2, \cdots)$ Brit. 有

于是,当 $x \neq k$ (k = 0, ± 1 , ± 2 ,...) 时,有 $\{(x)\sin^2\pi x\}' = 2\pi\sin\pi x \cos\pi x \cdot (x\}$ $= \pi(x)\sin 2\pi x.$

容易直接验证当 x = k $(k = 0, \pm 1, \pm 2, \cdots)$ 时上式也成立.

求导函数并作出函数及其导函数的图形:

979.
$$y = \begin{cases} 1-x & \exists -\infty < x < 1; \\ (1-x)(2-x) & \exists 1 \le x \le 2; \quad (图 2.8) \\ -(2-x) & \exists 2 < x < +\infty. \end{cases}$$
解 显然 $y' = \begin{cases} -1 & \exists -\infty < x < 1; \\ 2x-3 & \exists 1 < x < 2; \\ 1 & \exists 2 < x < +\infty. \end{cases}$

图 2.9

当
$$x = 1$$
 时,右导数
 $y'_{+}|_{x=1} = (2x - 3)|_{x=1} = -1$,

左导数

$$y'_{-}|_{x=1} = -1.$$

因此 x = 1 的导数存在,且 $y'|_{x=1} = -1$. 同理,可得 $y'|_{x=2} = 1$. 于是

$$y' = \begin{cases} -1, & \exists -\infty < x < 1; \\ 2x - 3, & \exists 1 \le x \le 2; \\ 1, & \exists 2 < x < +\infty. \end{cases}$$
 (图 2.9)

注:在下面 980 题到 983 题中,求分段定义函数的导数时,在分段点,都要先求其左、右导数.若左、右导数存在而且相等,则导数存在.为简便计,我们只写出结果,而省去了(在分段点)求左、右导数的过程.

980.
$$y = \begin{cases} (x-a)^2(x-b)^2, \, \text{当} \, a \leqslant x \leqslant b; \\ 0, \, \text{在线段}(a,b) \, \text{之外}. \end{cases}$$
 (图 2.10)

解
$$y' = \begin{cases} 2(x-a)(x-b)(2x-a-b), & \exists x \in [a,b]; \\ 0, & \exists x \in [a,b]. \end{cases}$$
(图 2.11)

图 2.10

图 2.11

981.
$$y = \begin{cases} x & \exists x < 0; \\ \ln(1+x) & \exists x \ge 0. \end{cases}$$
 (图 2.12)

解
$$y' = \begin{cases} 1 & \exists x < 0; \\ \frac{1}{1+x} & \exists x \ge 0. \end{cases}$$
 (图 2.13)

982.
$$y = \begin{cases} \arctan tgx. & |x| \leq 1; \\ \frac{\pi}{4} \operatorname{sgn} x + \frac{x-1}{2} & |x| > 1. \end{cases}$$
 (2.14)

图 2.14

解
$$y = \begin{cases} \frac{1}{1+x^2} & \Rightarrow -1 < x \leq 1 \\ \frac{1}{2} & \Rightarrow |x| > 1. \end{cases}$$
 (图 2.15)

图 2.15

983.
$$y = \begin{cases} x^2 e^{-x^2} & \implies |x| \leqslant 1; \\ \frac{1}{e} & \implies |x| > 1. \end{cases}$$
 (图 2. 16)

解
$$y = \begin{cases} 2xe^{-x^2}(1-x^2) & \text{当} |x| \leq 1; \\ 0 & \text{当} |x| > 1. \end{cases}$$
 (图 2.17)

图 2.16

图 2.17

984. 由已知函数的对数得来的导函数称为此函数的对数的导函数:

$$\frac{d}{dx}\ln f(x) = \frac{f'(x)}{f(x)}$$

己知函数 y,求其对数的导函数:

(a)
$$y = x \sqrt{\frac{1-x}{1+x}}$$
; (6) $y = \frac{x^2}{1-x} \sqrt[3]{\frac{3-x}{(3+x)^2}}$;
(B) $y = (x-a_1)^{a_1} (x-a_2)^{a_2} \cdots (x-a_n)^{a_n}$;

$$(\Gamma)y = (x + \sqrt{1 + x^2})^n$$

解 (a) 由
$$y = x\sqrt{\frac{1-x}{1+x}}$$
 得

$$\ln y = \ln|x| + \frac{1}{2}\ln|1 - x| - \frac{1}{2}\ln|1 + x|,$$

$$\frac{d}{dx}\ln y = \frac{1}{x} - \frac{1}{2(1+x)} - \frac{1}{2(1+x)}$$
$$= \frac{1-x-x^2}{x(1-x^2)} (0 < |x| < 1);$$

(6) 由
$$y = \frac{x^2}{1-x} - \sqrt[3]{\frac{3-x}{(3+x)^2}}$$
 得
$$\ln y = 2\ln|x| - \ln|1-x| + \frac{1}{3}\ln|3-x|$$

$$\frac{2}{3}\ln|3+x|,$$

$$\frac{d}{dx}\ln y = \frac{2}{x} + \frac{1}{1-x} - \frac{1}{3(3-x)}$$

$$-\frac{2}{3(3+x)}$$

$$= \frac{54 - 36x + 4x^2 + 2x^3}{3x(1-x)(9-x^2)}$$

$$(x \neq 0, x \neq 1, |x| \neq 3);$$

(B) 由于 $y = \prod_{i=1}^{n} (x - a_i)^n$ 及 y 在对数符号内,故应设

$$\prod_{i=1}^{n} (x - a_i)^{a_i} > 0$$
,从而有

$$\ln y = \ln \prod_{i=1}^{n} (x - a_i)^{a_i} = \sum_{i=1}^{n} a_i \ln |x - a_i|,$$

得

$$\frac{d}{dx}\ln y = \sum_{i=1}^{n} \frac{a_i}{x - a_i} (x \in R) ,$$

其中
$$R = \left\{x \mid \prod_{i=1}^n (x-a_i)^a > 0\right\};$$

(r) 由
$$y = (x + \sqrt{1 + x^2})^n$$
 得
$$\ln y = n \ln(x + \sqrt{1 + x^2}),$$

$$\frac{d}{dx} \ln y = \frac{n}{\sqrt{1 + x^2}}.$$

985. 设 $\varphi(x)$ 及 $\psi(x)$ 为 x 的可微分函数. 求函数 y 的导函数,

若:

(a)
$$y = \sqrt{\varphi^2(x) + \psi^2(x)}$$
; (6) $y = \text{arc tg } \frac{\varphi(x)}{\psi(x)}$;

(B)
$$y = \sqrt[\varphi(x)]{\phi(x)} \quad (\varphi(x) \neq 0, \phi(x) > 0);$$

$$(r)y = \lg_{\varphi(x)} \psi(x) \quad (\varphi(x) > 0, \psi(x) > 0).$$

解 (a)
$$y' = \frac{\varphi(x)\varphi'(x) + \varphi(x)\varphi'(x)}{\sqrt{\varphi'(x) + \varphi^2(x)}}$$

 $(\varphi'(x) + \varphi^2(x) \neq 0).$

$$(6)y' = \frac{1}{1 + \frac{\varphi^2(x)}{\psi^2(x)}}$$
$$\frac{\varphi'(x)\varphi(x) - \psi'(x)\varphi(x)}{\psi^2(x)}$$

$$=\frac{\varphi'(x)\psi(x)-\psi'(x)\varphi(x)}{\varphi'(x)+\psi^2(x)}$$

$$(\psi(x)\neq 0).$$

(B) 由
$$y = \sqrt[g(x)]{\psi(x)}$$
 得

$$\ln y = \frac{1}{\varphi(x)} \ln \psi(x).$$

$$\frac{y'}{y} = \frac{\frac{\psi'(x)}{\psi(x)}\varphi(x) - \varphi'(x)\ln\psi(x)}{\varphi'(x)}$$

于是,

$$y' = \sqrt[\varphi(x)]{\psi(x)} \left\{ \frac{1}{\varphi(x)} \frac{\psi'(x)}{\psi(x)} - \frac{\varphi'(x)}{\varphi'(x)} \ln \psi(x) \right\}.$$

(r) 由 y
$$-\lg_{w,r}\psi(x)$$
 得

$$y = \frac{\ln \psi(x)}{\ln \varphi(x)},$$

$$y' = \frac{\frac{\psi'(x)}{\psi(x)} \ln \varphi(x) - \frac{\psi'(x)}{\varphi(x)} \ln \psi(x)}{\ln^2 \varphi(x)}$$
$$= \frac{\psi'(x)}{\psi(x)} \cdot \frac{1}{\ln \varphi(x)}$$
$$- \frac{\psi'(x)}{\varphi(x)} \cdot \frac{\ln \psi(x)}{\ln^2 \varphi(x)}.$$

986. 求 火,设:

(a)
$$y = f(x^2)$$
; (b) $y = f(\sin^2 x) + f(\cos^2 x)$;
(b) $y = f(e^x) \cdot e^{f(x)}$; (c) $y = f\{f(f(x))\}$,

其中f(u) 表示可微分的函数.

(a)
$$y' = 2xf'(x^2)$$
;
(b) $y' = 2\sin x \cos x f'(\sin^2 x)$
 $-2\sin x \cos x f'(\cos^2 x)$
 $= \sin 2x \{ f'(\sin^2 x) - f'(\cos^2 x) \};$
(b) $y' = e^{f(x)} \{ f'(x) f(e^x) + e^x f'(e^x) \};$
(c) $y' = f'(x) \cdot f' \{ f(x) \} \cdot f' \{ f(f(x)) \}.$

987. 证明 n 阶行列式微分法:

$$\frac{d}{dx} \begin{vmatrix} f_{11}(x) \ f_{12}(x) \cdots f_{1n}(x) \\ \vdots \\ f_{i1}(x) f_{i2}(x) \cdots f_{in}(x) \\ \vdots \\ f_{n1}(x) f_{n2}(x) \cdots f_{nn}(x) \end{vmatrix}$$

$$= \sum_{i=1}^{n} \left| \frac{d}{dx} f_{i1}(x) - f_{12}(x) \cdots - f_{1n}(x) - \frac{d}{dx} f_{in}(x) - \frac{d}{dx} f_{in}(x) - f_{n2}(x) \cdots - f_{nn}(x) \right|. \tag{1}$$

证 证法一:从行列式的定义出发予以证明.

$$\frac{d}{dx} | f_{11}(x) f_{12}(x) \cdots f_{1n}(x)$$

$$| f_{i1}(x) f_{i2}(x) \cdots f_{in}(x)$$

$$| f_{n1}(x) f_{n2}(x) \cdots f_{nn}(x)$$

$$= \frac{d}{dx} \sum_{j_1 j_2 \cdots j_n} (-1)^{N(j_1 j_2 \cdots j_n)} f_i j_i(x) f_2 j_2(x) \cdots$$
$$f_n j_n(x)^{*}$$

$$= \sum_{j_1 j_2 \cdots j_n} (-1)^{N(j_1 j_2 \cdots j_n)} \frac{d}{dx} (f_1 j_1(x) f_2 j_2(x) \cdots f_n j_n(x))$$

$$=\sum_{j_1j_2\cdots j_n}(-1)^{N(j_1j_2\cdots j_n)}\sum_{i=1}^nf_1j_i(x)f_2j_2(x)\cdots$$

$$\frac{d}{dx}f_i j_i(x) \cdots f_n j_n(x)$$

$$=\sum_{i=1}^{n}\sum_{j_1j_2\cdots j_n}(-1)^{N(j_1j_2\cdots j_n)}f_1j_1(x)f_2j_2(x)\cdots$$

$$\frac{d}{dx}fij_i(x)\cdots f_nj_n(x)$$

$$= \sum_{i=1}^{n} \left| \frac{d}{dx} f_{i1}(x) f_{i2}(x) \cdots f_{in}(x) \right| \\ f_{n1}(x) f_{n2}(x) \cdots f_{nn}(x) \right|.$$

*) 其中 $N(j_1j_2\cdots j_n)$ 表示排列 $j_1j_2\cdots j_n$ 的逆序数.

 $\sum_{j_1j_2\cdots j_n}$ 表示对 1.2,…n 的所有排列 $j_1j_2\cdots j_n$ 求和.

证法二:利用数学归纳法予以证明.

由于

$$\frac{d}{dx} \begin{vmatrix} f_{11}(x) & f_{12}(x) \\ f_{21}(x) & f_{22}(x) \end{vmatrix}
= \frac{d}{dx} [f_{11}(x)f_{22}(x) - f_{12}(x)f_{21}(x)]
= \left[\frac{d}{dx} f_{11}(x) \cdot f_{22}(x) - \frac{d}{dx} f_{12}(x) \cdot f_{21}(x) \right]
+ \left[\frac{d}{dx} f_{22}(x) \cdot f_{11}(x) - \frac{d}{dx} f_{21}(x) \cdot f_{12}(x) \right]
= \begin{vmatrix} \frac{d}{dx} f_{11}(x) & \frac{d}{dx} f_{12}(x) \\ f_{21}(x) & f_{22}(x) \end{vmatrix}
+ \begin{vmatrix} f_{11}(x) & f_{12}(x) \\ \frac{d}{dx} f_{21}(x) & \frac{d}{dx} f_{22}(x) \end{vmatrix},$$

知等式(1) 对于 n = 2 时成立.

今假定等式(1) 对于n = k 时成立,即

$$\frac{d}{dx} \begin{vmatrix} f_{i1}(x) & f_{i2}(x) \cdots f_{ik}(x) \\ \vdots & \vdots & \vdots \\ f_{i1}(x) & f_{i2}(x) \cdots f_{ik}(x) \end{vmatrix} \\ = \sum_{i=1}^{k} \begin{vmatrix} \frac{d}{dx} f_{i1}(x) & \frac{d}{dx} f_{i2}(x) \cdots & \frac{d}{dx} f_{ik}(x) \\ \vdots & \vdots & \vdots \\ f_{k1}(x) & f_{k2}(x) \cdots & f_{kk}(x) \end{vmatrix}.$$

要证明等式(1) 对于n=k+1时也成立,事实上,有

$$= \sum_{j=1}^{k+1} (-1)^{k+j+1} \frac{d}{dx}$$

$$\begin{bmatrix} f_{!1}(x) \cdots f_{1j-1}(x) \ f_{!j+1}(x) \cdots f_{1k+1}(x) \\ \vdots \\ f_{k!}(x) \cdots f_{ij-1}(x) \ f_{ij+1}(x) \cdots f_{ik+1}(x) \\ \vdots \\ f_{k!}(x) \cdots f_{kj-1}(x) \ f_{kj+1}(x) \cdots f_{kk+1}(x) \end{bmatrix}$$

$$= \sum_{i=1}^{k+1} (-1)^{k+j+1} \cdot$$

$$\begin{bmatrix} \frac{d}{dx} f_{k+1j}(x) & f_{1j-1}(x) & f_{1j+1}(x) \cdots f_{1k+1}(x) \\ \vdots & \vdots & \vdots \\ f_{i!}(x) \cdots & f_{ij-1}(x) & f_{ij+1}(x) \cdots f_{ik+1}(x) \\ \vdots & \vdots & \vdots \\ f_{k!}(x) \cdots & f_{kj-1}(x) & f_{kj+1}(x) \cdots f_{kk+1}(x) \end{bmatrix}$$

$$+ f_{k+1j}(x) \cdot \frac{d}{dx}$$

$$= \begin{vmatrix} f_{11}(x) & \cdots & f_{ik+1}(x) \\ \vdots & \vdots & \vdots \\ \frac{d}{dx} f_{k+31}(x) \cdots & \frac{d}{dx} f_{k+3k+1}(x) \end{vmatrix} + \\ + \sum_{j\neq i}^{k+1} (-1)^{k+j+1} f_{k+1j}(x) \cdot \sum_{i=1}^{k} \\ f_{11}(x) \cdots & f_{3j+1}(x) & f_{3j+1}(x) \cdots & f_{3k+1}(x) \\ \frac{d}{dx} f_{i1}(x) \cdots & \frac{d}{dx} f_{ij-1}(x) & \frac{d}{dx} f_{ij+1}(x) \cdots & \frac{d}{dx} f_{ik+1}(x) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{d}{dx} f_{k+11}(x) \cdots & \frac{d}{dx} f_{k+1k+1}(x) \\ + \sum_{i=1}^{k} \sum_{j=1}^{k+1} (-1)^{k+j+1} f_{k+1j}(x) \\ \vdots & \vdots & \vdots \\ \frac{d}{dx} f_{ij}(x) \cdots & \frac{d}{dx} f_{ij+1}(x) \cdots & f_{1k+1}(x) \\ \vdots & \vdots & \vdots \\ \frac{d}{dx} f_{ij}(x) \cdots & \frac{d}{dx} f_{ij+1}(x) & \vdots \\ \vdots & \vdots & \vdots \\ f_{k1}(x) \cdots & f_{kj+1}(x) & \frac{d}{dx} f_{ij+1}(x) \cdots & \frac{d}{dx} f_{ik+1}(x) \\ \vdots & \vdots & \vdots \\ f_{k1}(x) \cdots & f_{kj+1}(x) & f_{kj+1}(x) \cdots & f_{kk+1}(x) \\ \end{vmatrix}$$

$$= \begin{vmatrix} f_{11}(x) & \cdots & f_{1k+1}(x) \\ \vdots & \vdots & \vdots \\ \frac{d}{dx} f_{k-11}(x) \cdots & \frac{d}{dx} f_{k-1k+1}(x) \end{vmatrix} + \\ + \sum_{i=1}^{k} \begin{vmatrix} \frac{d}{dx} f_{ii}(x) & \cdots & \frac{d}{dx} f_{ik+1}(x) \\ \vdots & \vdots & \vdots \\ \frac{d}{dx} f_{ii}(x) & \cdots & \frac{d}{dx} f_{ik+1}(x) \end{vmatrix} + \\ = \sum_{i=1}^{k+1} \begin{vmatrix} \frac{d}{dx} f_{ii}(x) & \cdots & \frac{d}{dx} f_{ik+1}(x) \\ \vdots & \vdots & \vdots \\ \frac{d}{dx} f_{ii}(x) & \cdots & \frac{d}{dx} f_{ik+1}(x) \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ f_{k-11}(x) & \cdots & \frac{d}{dx} f_{ik+1}(x) \end{vmatrix}$$
故等式(1) 对于 $n = k + 1$ 时也成立.

故等式(1) 对于 n = k + 1 时也成立.

于是,由数学归纳法知,等式(1) 对于一切自然数 n 均成 <u></u>

988. 设:

$$F(x) = \begin{vmatrix} x-1 & 1 & 2 \\ -3 & x & 3 \\ -2 & -3 & x+1 \end{vmatrix}.$$

求 F'(x).

用上题结果,有

$$F'(x) = \begin{vmatrix} 1 & 0 & 0 \\ -3 & x & 3 \\ -2 & -3 & x+1 \end{vmatrix} + \begin{vmatrix} x-1 & 1 & 2 \\ 0 & 1 & 0 \\ -2 & -3 & x+1 \end{vmatrix} + \begin{vmatrix} x-1 & 1 & 2 \\ -3 & x & 3 \\ 0 & 0 & 1 \end{vmatrix} = (x^2 + x + 9) + (x^2 - 1 + 4) + (x^2 - x + 3) = 3(x^2 + 5).$$

989. 设:

$$F(x) = \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2x & 3x^2 \\ 0 & 2 & 6x \end{vmatrix},$$

求 F'(x).

$$F'(x) = \begin{vmatrix} 1 & 2x & 3x^2 \\ 1 & 2x & 3x^2 \\ 0 & 2 & 6x \end{vmatrix} + \begin{vmatrix} x & x^2 & x^3 \\ 0 & 2 & 6x \end{vmatrix} + \begin{vmatrix} x & x^2 & x^3 \\ 0 & 2 & 6x \end{vmatrix} + \begin{vmatrix} x & x^2 & x^3 \\ 1 & 2x & 3x^2 \\ 0 & 0 & 6 \end{vmatrix} = 0 + 0 + 6(2x^2 - x^2) = 6x^2,$$

990. 已知函数的图形. 近似地作出其导函数的图形.

解 先由给定曲线 y = f(x) 上一点 M, 作出曲线 y' = f'(x) 上的对应点 M'. 为清楚起见, 作两个坐标系 Oxy 及 O'x'y', 取相同的单位, x 轴与 x' 轴平行, y 轴及 y' 轴平行且在一条直线上(如图 2.18).

在Oxy 系内画出曲线 y = f(x), 在曲线上任取一点 M(x,f(x)), 并作曲线在点 M 处的切线 MN. 过 O'x'y' 系内的点 P(-1,0) 作平行 MN 的直线 PQ 交 y' 轴于点 Q, 于是

图 2.18

$$O'Q = tg\alpha = f'(x)$$
,

即线段O'Q是对应于在点x的导函数f'(x).再过点Q引 平行x轴的直线,交过点(x,0) 且垂直于x轴的直线于点 M',则点 M' 就是曲线 y'=f'(x) 上对应于曲线 y=f(x) 上点 M 的点.

由此,我们就可由已给曲线 y = f(x) 作出曲线 y' = f'(x),按上述方法,在曲线 y = f(x) 上取若干点:

$$M_i(x_i, f(x_i))(i = 1, 2, \dots, n),$$

且在Oxy' 系(相当于O'x'y' 系,这是为了方便起见,分开画) 内作出对应点:

$$M'_{i}(x_{i}, f'(x_{i}))(i = 1, 2, \dots, n).$$

最后用光滑曲线连接 M_1', M_2', \dots, M_n' 各点,此即已给曲线 y = f(x) 对应的导函数 y' = f'(x) 的图形,如图 2.19 所示.

991. 证明函数

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}$$

有不连续的导函数.

证 当 $x \neq 0$ 时,

$$f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x},$$

而

图 2.19

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \left(\Delta x \sin \frac{1}{\Delta x} \right) = 0,$$

故 f'(x) 在 $-\infty$ < x < $+\infty$ 中处处存在. 但当 x → 0 时, f'(x) 并不趋向于任何极限,所以f'(x) 在点x=0 处是 间断的,这就说明了 f(x) 有不连续的导函数.

992. 在甚么条件下函数

$$f(x) = x^* \sin \frac{1}{x} (x \neq 0) \not \not b f(0) = 0$$

- (a) 在 x = 0 处是连续的;(b) 在 x = 0 处可微分;
- (B) 在 x = 0 处其导函数是连续的?

解 (a) 当n > 0 时

$$\lim_{x\to 0} x^n \sin \frac{1}{x} = 0,$$

于是, $\lim_{x\to 0} f(x) = f(0)$,此时,f(x)在x = 0处是连续的

(当 $n = \frac{p}{q}(p, q)$ 互质) 且 q 为偶数时,只考虑在x = 0 处右连续).

(6) 当 n > 1 时

$$\lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x}$$

$$=\lim_{\Delta x\to 0} (\Delta x)^{n-1} \sin\frac{1}{\Delta x}=0,$$

于是,f(0) = 0,即 f(0) 在 x = 0 处是可微的;

(B) 当 n > 2 时,由于

$$f(x) = nx^{n-1}\sin\frac{1}{x} - x^{n-2}\cos\frac{1}{x}(x \neq 0),$$

故

$$\lim_{x \to 0} f(x) = 0,$$

而由(6) 可得 f(0) = 0, 所以 $\lim_{x \to 0} f'(x) = f'(0)$. 这就说明当 n > 2 时, f(x) 在 x = 0 处是连续的.

993. 在甚么条件下函数

$$f(x) = |x|^n \sin \frac{1}{|x|^m} (x \neq 0) \not b f(0) = 0$$

有 (a) 于坐标原点的邻域上有有界的导函数;

(6) 在此域上有无界的导函数.

解 (a) 当 $x \neq 0, x \in (-\delta, \delta)(\delta > 0)$ 时,

$$f(x) = n|x|^{n-1} \frac{|x|}{x} \sin \frac{1}{|x|^m}$$

$$= \frac{m}{|x|^{m+1}} \cdot \frac{|x|}{x} \cdot |x|^n \cdot \cos \frac{1}{|x|^m}$$

$$= \frac{|x|}{x} \left(n|x|^{n-1} \sin \frac{1}{|x|^m} - m|x|^{n-(m+1)} \cos \frac{1}{|x|^m} \right).$$

由于 $\frac{|x|}{x}$, $\sin \frac{1}{|x|^n}$, $\cos \frac{1}{|x|^n}$ 均为有界函数,于是当 $n \ge m+1$ 时, f'(x) 为有界函数(易知此时 f'(0)=0).

(6) 在此域上,当 n - (m + 1) < 0(即 n < m + 1) 时 f'(x) 无界. 另一方面,同 992 题(6) 一样,当 n > 1 时 f'(0) 才存在,因而所求的条件为

$$1 < n < m + 1 \quad (m > 0),$$

994. 设:

$$f(x) = (x - a)\varphi(x),$$

其中函数 $\varphi(x)$ 在 x = a 处是连续的,求 f'(a).

$$\mathbf{f} = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

$$=\lim_{\Delta x\to 0}\frac{\Delta x\varphi(a+\Delta x)-0}{\Delta x}=\lim_{\Delta x\to 0}\varphi(a+\Delta x),$$

由于 $\varphi(x)$ 在 x = a 处连续,故 $\lim_{\Delta x \to 0} \varphi(a + \Delta x) = \varphi(a)$.于

是,
$$\lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x} = \varphi(a)$$
,即 $f'(a) = \varphi(a)$.

995. 设:

$$f(x) = |x - a| \varphi(x),$$

其中 $\varphi(x)$ 为连续函数及 $\varphi(a) \neq 0$,证明此函数在a 点没有导数。

单侧导函数 f'(a)及 f'(a)等于甚么?

即

$$f'(a) = -\varphi(a);$$

$$\lim_{\Delta x \to +0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to -0} (\varphi(a + \Delta x)) = \varphi(a),$$

即

$$f'_+(a)=\varphi(a).$$

由于 $\varphi(a) \neq 0$,故 $f'_{--}(a) \neq f'_{+-}(a)$,因此 f(x) 在 a 点 没有导数.

996. 举出在已知点:*a*₁,*a*₂,…,*a*_n 没有导数的连续函数的例子.

解 我们已知 y = |x - a| 在 x = a 处连续而无导数。 利用这一点,我们作一个函数

$$y = f(x) = \sum_{k=1}^{n} |x - a_k|,$$

它在 a_1, a_2, \cdots, a_n 点均连续,而在这些点均无导数.

997. 证明:函数

$$f(x) = x^2 \left| \cos \frac{\pi}{x} \right| (x \neq 0) \ \mathbb{R} f(0) = 0$$

在点x=0的任何邻域上有不可微分的点,但在x=0这点是可微分的。

作出此函数的略图,

图 2,20

证 对于函数 f(x),我们有

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \left| \cos \frac{\pi}{x} \right|}{x} = 0,$$

故 f'(0) = 0,即在 x = 0 处函数 f(x) 是可微的.

下面我们将指出对于x=0的任何邻域($-\delta,\delta$)(其

中 $\delta > 0$) 中,函数 f(x) 总有不可微分的点,事实上,令

$$x_n = \frac{1}{n+\frac{1}{2}}.$$

则当 n 充分大时,总可使 $0 < x_s < \delta$,从而点 $x_s \in (-\delta, \delta)$. 对于这样的点 x_s ,有

$$f'(x_{2n}) = \pi - \not \ge f'(x_{2n}) = -\pi.$$

所以

$$f'_{-}(x_{2n}) \neq f'_{-}(x_{2n}).$$

同法可得

$$f':(x_{2n+1})\neq f':(x_{2n+1}).$$

于是,函数 f(x) 在点 x。处不可微.

函数的图形全在 Ox 轴上方,包括原点;当 $x = \frac{2}{2n+1}$ 时,f(x) = 0,且 f'(x) 不存在.此函数的略图如图 2.20 所示.

998. 证明:函数

$$f(x) = \begin{cases} x^2 \cdot \text{若 } x \text{ 为有理数}, \\ 0, \text{若 } x \text{ 为无理数}. \end{cases}$$

仅在x = 0时有导数.

证
$$\frac{f(0 + \Delta x) - f(0)}{\Delta x}$$
$$= \begin{cases} \Delta x, \text{ 当 } \Delta x \text{ 为 有 理 数,} \\ 0, \text{ 当 } \Delta x \text{ 为 无 理 数.} \end{cases}$$

于是,有

$$\lim_{\Delta t \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = 0.$$

$$f'(0) = 0.$$

其次,对于任一点 $x \neq 0$,分两种情形讨论函数的可微性:

(1)x 为有理数. 取一无理数叙列 $\{x_n\}$,且 $\lim_{n\to\infty}x_n=x$,则有

$$\lim_{x_n \to x} \frac{f(x_n) - f(x)}{x_n - x} = \lim_{x_n \to x} \frac{0 - x^2}{x_n - x} = \infty.$$

由此可知,函数 f(x) 在任一有理点($\neq 0$) 不可微.

(2)x 为无理数. 取一异于零的有理数叙列 $\{x,i'\}$,使 $\lim_{n\to\infty} x_n' = x$,则有

$$\lim_{x_{n}'\to x}\frac{f(x_{n}')-f(x)}{x_{n}'-x}=\lim_{x_{n}'\to x}\frac{x_{n}'^{2}}{x_{n}'-x}=\infty.$$

由此可知,函数 f(x) 在任一无理点也不可微.

总上所述,函数 f(x) 仅在 x=0 时有导数.

999. 研究下列函数的可微性:

(a)
$$y = |(x-1)(x-2)^2(x-3)^3|$$
;

$$(6)y = \{\cos x\};$$

$$(B)y = |\pi^2 - x^2|\sin^2 x;$$

(r) $y = \arcsin(\cos x)$;

$$(x)y = \begin{cases} \frac{x-1}{4}(x+1)^2 & \text{if } |x| \leq 1; \\ |x|-1 & \text{if } |x| > 1. \end{cases}$$

解 (a) 当 $x \neq 1$ 或 $x \neq 2$ 或 $x \neq 3$ 时,函数均可微.现在我们来考察在1,2,3 这三点的可微性.

$$1. 当 x = 1$$
 时,由于

$$\frac{\Delta y}{\Delta x} = \frac{|\Delta x|}{\Delta x} \left| (\Delta x - 1)^2 (\Delta x - 2)^3 \right|,$$

故
$$\lim_{\Delta x \to +0} \frac{\Delta y}{\Delta x} = 8$$
, $\lim_{\Delta x \to -0} \frac{\Delta y}{\Delta x} = -8$.

因此 $\lim_{N\to\infty} \frac{\Delta y}{\Delta x}$ 不存在,由此可知 y 在 x=1 点不可微;

2. 当 x = 2 时,由于

$$\frac{\Delta y}{\Delta x} = \Delta x |(\Delta x + 1)(\Delta x - 1)^3|,$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 0,$$

因而 y 在 x = 2 点可微;

3. 当 x = 3 时,由于

$$\frac{\Delta y}{\Delta x} = \Delta x \left| (\Delta x + 2)(\Delta x + 1)^2 \Delta x \right|,$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 0,$$

因而 y 在 x = 3 点可微.

$$(6)y = |\cos x|$$
 在 $x = \frac{2k-1}{2}\pi(k$ 为整数) 点不可微分.

$$(B)y = |\pi^2 - x^2|\sin^2 x$$
 只可能在 $x = \pm \pi$ 的点不可微分.

现在我们来考察在 $x = -\pi D x = \pi$ 时函数y的可微性.

1. 当 $x = \pi$ 时,

$$\frac{\Delta y}{\Delta x} = \frac{|\pi^2 - (\pi + \Delta x)^2|\sin^2(\pi + \Delta x)}{\Delta x}$$

$$=\frac{\sin\Delta x \sin\Delta x |2\pi\Delta x + (\Delta x)^{2}!}{\Delta x},$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 0,$$

所以函数 y 在 x = π 点可微.

2. 同理可证函数 y 在 x = - π 点也可微.

于是,函数 $y = \frac{1}{\pi^2} - x^2 \sin^2 x$ 处处可微分.

- $(r)y = \arcsin(\cos x)$ 在 $|\cos x| = 1$ 的点不可微分,即在 $x = k\pi(k)$ 为整数)的点不可微分。
- (a) 函数 y 对于 $|x| \neq 1$ 的点均可微. 现在我们来考虑函数 y 在 |x| = 1 点的可微性.
- 1. 当 x = 1 时,

$$\frac{\Delta y}{\Delta x} = \begin{cases} \frac{1}{4} (\Delta x + 2)^2, & \text{if } \Delta x < 0; \\ 1, & \text{if } \Delta x > 0; \end{cases}$$

于是,

$$\lim_{\Delta x \to -0} \frac{\Delta y}{\Delta x} = 1 \not \! \sum_{\Delta x \to +0} \lim_{\Delta x \to +0} \frac{\Delta y}{\Delta x} = 1.$$

所以 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 1$,即函数 y 在 x = 1 点可微.

2. 当 x = -1 时,

$$\frac{\Delta y}{\Delta x} =$$

$$\begin{cases} \frac{|-1+\Delta x|-1}{\Delta x} = -1, & \text{if } \Delta x < 0 \text{ if,} \\ \frac{(-2+\Delta x)(\Delta x)^2}{4} = -\frac{1}{2}\Delta x + \frac{1}{4}(\Delta x)^2, & \text{if } \Delta x > 0 \text{ if.} \end{cases}$$

于是,

$$\lim_{\Delta r \to -0} \frac{\Delta y}{\Delta x} = -1 \, \not \! \sum_{\Delta r \to +0} \frac{\Delta y}{\Delta x} = 0.$$

所以函数 y 在 x = - 1 点不可微分.

求函数 f(x) 左侧和右侧的导函数 $f'_{--}(x)$ 和 $f'_{--}(x)$. 设:

1000. f(x) = |x|.

解 当 x ≠ 0 时,易见

$$f'_{+}(x) = f'_{-}(x) = \frac{|x|}{x} = \operatorname{sgn} x.$$

当 x = 0 时,

$$\frac{f(0+\Delta x)-f(0)}{\Delta x} = \begin{cases} -1, & \text{当 } \Delta x < 0 \text{ 时;} \\ 1, & \text{当 } \Delta x > 0 \text{ 时.} \end{cases}$$

所以,

$$f'_{+}(0) = 1, f'_{-}(0) = -1.$$

1001. $f(x) = (x)\sin \pi x$.

解 当 x ≠ 整数时,

$$f'(x) = f'(x) = \pi(x)\cos\pi x;$$

当 x 为整数时,从定义出发得

$$f'_{+}(k) = \lim_{\Delta x \to +0} \frac{(k + \Delta x)\sin\pi(k + \Delta x)}{\Delta x}$$
$$= \lim_{\Delta x \to +0} \frac{k\cos k\pi\sin(\pi\Delta x)}{\Delta x}$$
$$= k\pi(-1)^{k},$$

同法可得 $f'(k) = \pi(k-1)(-1)^k$.

1002.
$$f(x) = x \left| \cos \frac{\pi}{x} \right| (x \neq 0), f(0) = 0.$$

解 当 $x \neq \frac{2}{2k+1}(k)$ 为整数) 时(即使 $\cos \frac{\pi}{x} \neq 0$ 的 x 值),

$$f'_{-}(x) = f'_{+}(x)$$

$$= \left|\cos\frac{\pi}{x}\right| + \frac{\pi}{x} \frac{\left|\cos\frac{\pi}{x}\right|}{\cos\frac{\pi}{x}} \sin\frac{\pi}{x}$$

$$= \left(\cos\frac{\pi}{x} + \frac{\pi}{x}\sin\frac{\pi}{x}\right) \operatorname{sgn}\left(\cos\frac{\pi}{x}\right);$$

$$\stackrel{\text{def}}{=} x = \frac{2}{2k+1} \text{ 时, 从定义出发易得}$$

$$f'_{-}\left(\frac{2}{2k+1}\right) = -\frac{2k+1}{2}\pi,$$

$$f'_{+}\left(\frac{2}{2k+1}\right) = \frac{2k+1}{2}\pi(k)$$

 $1003. f(x) = \sqrt{\sin x^2}.$

解 当 $\sqrt{2k\pi}$ < |x| < $\sqrt{(2k+1)\pi}(k=0,1,2,...)$ 时,

$$f'_{+}(x) = f'_{-}(x) = \frac{x \cos x^2}{\sqrt{\sin x^2}}$$

当x=0时,

$$f'_{+}(0) = \lim_{\Delta x \to +0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to +0} \frac{\sqrt{\sin(\Delta x)^2}}{\Delta x}$$
$$= 1;$$

$$f'_{-}(0) = \lim_{\Delta x \to -0} \frac{\Delta f}{\Delta x}$$

$$= \lim_{\Delta x \to -0} \left(-\sqrt{\frac{\sin(\Delta x)^2}{\Delta x^2}} \right) = -1.$$

当
$$x = \sqrt{2k\pi}(k = 1, 2, \cdots)$$
 时,我们有
$$f'_{+}(\sqrt{2k\pi}) = \lim_{\Delta x \to +0} \frac{\Delta f}{\Delta x}$$

$$= \lim_{\Delta x \to +0} \frac{\sqrt{\sin(\sqrt{2k\pi} + \Delta x)^{2}}}{\Delta x}$$

$$= \lim_{\Delta x \to +0} \sqrt{\frac{\sin(2\Delta x \sqrt{2k\pi} + (\Delta x)^{2})}{2\Delta x \sqrt{2k\pi} + (\Delta x)^{2}}}$$

$$\cdot \sqrt{\frac{2\sqrt{2k\pi}}{\Delta x} + 1}$$

$$= + \infty;$$

同理,可得

$$f'$$
. $(\sqrt{2k\pi}) = -\infty(k = 1, 2, \cdots);$
 $f'_{\pm}(\sqrt{(2k+1)\pi}) = \mp\infty(k = 1, 2, \cdots).$

1004.
$$f(x) = \frac{x}{1 + e^{\frac{1}{x}}} (x \neq 0), f(0) = 0.$$

解 当 $x \neq 0$ 时,

$$f'_{+}(x) = f'_{+}(x) = \frac{1 + \left(1 + \frac{1}{x}\right)e^{\frac{1}{x}}}{(1 + e^{\frac{1}{x}})^2};$$

当x=0时,

$$f'_{-}(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1}{1 + e^{\frac{1}{\Delta x}}} = 1,$$

$$f'_{+}(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1}{1 + e^{\frac{1}{\Delta x}}} = 0.$$

1005.
$$f(x) = \sqrt{1 - e^{-x^2}}$$
.

解 当 $x \neq 0$ 时,

$$f'_{-}(x) = f'_{+}(x) = \frac{xe^{-x^2}}{\sqrt{1 - e^{-x^2}}};$$

当 x = 0 时,

$$f'_{-}(0) = \lim_{\Delta x \to -0} \frac{f(0 + \Delta x) - f(0)}{\Delta x}$$

$$= \lim_{\Delta x \to -0} \frac{\sqrt{1 - e^{-(\Delta x)^2}}}{\Delta x}$$

$$= -\lim_{\Delta x \to -0} \sqrt{\frac{1 - e^{-(\Delta x)^2}}{(\Delta x)^2}} = -1$$

同理可求得 $f'_{-}(0) = 1$.

1006.
$$f(x) = |\ln|x| | (x \neq 0).$$

解 当
$$|x| \neq 1$$
 时,

$$f'_{-}(x) = f'_{+}(x) = \frac{|\ln|x||}{|\ln|x|} \cdot \frac{1}{|x|} \cdot \frac{|x|}{x}$$
$$= \frac{1}{x} \frac{|\ln|x||}{|\ln|x|},$$

分两种情况:

$$1^{\circ}$$
当 $0 < |x| < 1$ 时,

$$f'(x) = f'(x) = -\frac{1}{x}$$

 2° 当 |x| > 1 时,

$$f'(x) = f'(x) = \frac{1}{r}$$

当 |x|=1 时,

$$f'$$
. (1) = $\lim_{\Delta x \to -0} \frac{f(1 + \Delta x) - f(1)}{\Delta x}$

$$= \lim_{\Delta x \to -0} \frac{|\ln|1 + \Delta x||}{\Delta x}$$

$$= -\lim_{\Delta x \to -0} |\ln(1 + \Delta x)^{\frac{1}{\Delta x}}|$$

$$= -\ln e = -1,$$
同理可求得 f' $(-1) = -1, f'_{+} (\pm 1) = 1.$

1007. $f(x) = \arcsin \frac{2x}{1 + x^{2}}.$

解 $\pm |x| \neq 1 \text{ bd},$

$$f' = (x) = f'_{+} (x) = \frac{1}{\sqrt{1 - \left(\frac{2x}{1 + x^{2}}\right)^{2}}}$$

$$= \frac{2(1 + x^{2}) - 4x^{2}}{(1 + x^{2})^{2}}$$

$$= \frac{2(1 - x^{2})}{(1 + x^{2})\sqrt{(1 - x^{2})^{2}}}$$

$$= \frac{2}{1 + x^{2}} \operatorname{sgn}(1 - x^{2});$$

$$\pm x = 1 \text{ bd},$$

$$f'_{-}(1) = \lim_{\Delta x \to -0} \frac{f(1 + \Delta x) - f(1)}{\Delta x}$$

$$= \lim_{\Delta x \to -0} \frac{\arcsin \frac{2(1 + \Delta x)}{1 + (1 + \Delta x)^{2}} - \arcsin 1}{\Delta x}$$

$$= \lim_{\Delta x \to -0} \frac{\arcsin \frac{(1 + \Delta x)^{2} - 1}{1 + (1 + \Delta x)^{2}}$$

$$= \lim_{\Delta x \to -0} \frac{\arcsin \frac{(1 + \Delta x)^{2} - 1}{1 + (1 + \Delta x)^{2}}$$

$$= \lim_{\Delta x \to -0} \frac{\arcsin \frac{(1 + \Delta x)^{2} - 1}{1 + (1 + \Delta x)^{2}}$$

$$= \lim_{\Delta x \to -0} \frac{\arcsin \frac{(1 + \Delta x)^{2} - 1}{1 + (1 + \Delta x)^{2}}$$

$$= \lim_{\Delta x \to -0} \frac{\arcsin \frac{(1 + \Delta x)^{2} - 1}{1 + (1 + \Delta x)^{2}}$$

$$= \lim_{\Delta x \to -0} \frac{\arcsin \frac{(1 + \Delta x)^{2} - 1}{1 + (1 + \Delta x)^{2}}$$

$$= \lim_{\Delta x \to -0} \frac{(1 + \Delta x)^{2} - 1}{1 + (1 + \Delta x)^{2}}$$

$$\frac{(1 + \Delta \tau)^2 - 1}{1 + (1 + \Delta \tau)^2}$$

$$= 1.$$

同理可求得

$$f'_{-}(-1) = -1, f'_{+}(1) = -1, f'_{+}(-1) = 1.$$

1008. f(x) = (x-2) arc tg $\frac{1}{x-2}(x \neq 2)$, f(2) = 0.

解 当 $x \neq 2$ 时,

$$f'(x) = f'(x)$$

$$= \operatorname{arc} \operatorname{tg} \frac{1}{x-2}$$

$$+ \frac{x-2}{1+\left(\frac{1}{x-2}\right)^2} \left(-\frac{1}{(x-2)^2}\right)$$

$$= \operatorname{arc} \operatorname{tg} \frac{1}{x-2} - \frac{x-2}{(x-2)^2+1};$$

当x=2时,

$$f'_{-}(2) = \lim_{\Delta x \to -0} \frac{f(2 + \Delta x) - f(2)}{\Delta x}$$
$$= \lim_{\Delta x \to -0} \operatorname{arc} \operatorname{tg} \frac{1}{\Delta x} = -\frac{\pi}{2},$$

同理可求得 $f'_+(2) = \frac{\pi}{2}$.

1009. 证明:在 $x \neq 0$ 时函数 $f(x) = x \sin \frac{1}{x}$, 在 x = 0 时 f(0) = 0, 在此点连续, 但在此点既无左侧导数, 又无右侧导数.

证 由于

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin \frac{1}{x} = 0 = f(0),$$

所以 f(x) 在 x = 0 点连续.

其次,由丁

$$\frac{f(0+\Delta x)-f(0)}{\Delta x}=\sin\frac{1}{\Delta x},$$

不论 Δx 从左、右侧趋向于零,此极限均不存在,因此在点 x = 0,函数 f(x) 既无左侧导数,也无右侧导数.

1010. 设:

$$f(x) = \begin{cases} x^2, & \text{ if } x \leq x_0; \\ ax + b, & \text{ if } x > x_0. \end{cases}$$

为了使函数 f(x) 于点 $x = x_0$ 处连续而且可微分,应当如何选取系数 a 和 b?

解 $f(x_0) = x_0^2 = f(x_0 - 0), f(x_0 + 0) = ax_0 + b.$

$$x_0^2 = ax_0 + b$$

时,函数 f(x) 在点 x_0 连续. 又因 $f'_-(x_0) = 2x_0$, $f'_+(x_0) = a$, 故当

$$a=2x_0$$

时,函数在点 x。处可微. 从而得

$$x_0^2 = 2x_0^2 + b,$$

 $p b = -x_0^2.$

于是,所求的系数为

$$a = 2x_0, b = -x_0^2$$

1011. 设:

$$F(x) = \begin{cases} f(x), & \text{若 } x \leq x_0; \\ ax + b, & \text{若 } x > x_0. \end{cases}$$

其中函数 f(x) 在 $x = x_0$ 为左方可微分的. 应当选择如何的系数 a 和 b, 使函数 F(x) 在点 x_0 处连续而且可微分?

解
$$F(x_0) = F(x_0 - 0) = f(x_0)$$
,
 $F(x_0 + 0) = ax_0 + b$. 当
$$f(x_0) = ax_0 + b$$

时,函数 F(x) 在点 x_0 处连续. 又因 $F'(x_0) = f'(x_0)$, $F'_+(x_0) = a$, 故当

$$a=f'_{-}(x_0)$$

时,函数 F(x) 在点 x。处可微分.

解方程组

$$\begin{cases} a = f'_{-}(x_0), \\ f(x_0) = ax_0 + b, \end{cases}$$

即得所求的系数为

$$a = f'_{-}(x_0), b = f(x_0) - x_0 f'_{-}(x_0),$$

1012. 适当地选定参数 A 与 c 用立方抛物线

$$y = A(x - a)(x - b)x - c)$$

在区域 $a \leq x \leq b$ 上把两个半直线:

$$y = k_1(x - a) \quad (-\infty < x < a)$$

及

$$y = k_2(x-b) \quad (b < x < +\infty)$$

光滑地连接起来.

解 对于立方抛物线,

$$y' = A((x-b)(x-c) + (x-a)(x-c) + (x-a)(x-b)),$$

此即曲线上在任一点切线的斜率,

当接点处两条曲线的切线重合时,它们就平滑地 联接起来,此时应有相等的斜率,于是,有

 1° . 在点 x = a 处,

$$A(a-b)(a-c) = k_1; \tag{1}$$

 2° . 在点 x = b 处,

$$A(b-a)(b-c) = k_2. \tag{2}$$

联立(1)和(2)式,解之得

$$A = \frac{k_1 + k_2}{(b-a)^2}, c = \frac{ak_2 + bk_1}{k_1 + k_2}.$$

- 1013. 用抛物线 $y = a + bx^2$ $(|x| \le c)$ (其中 a = b 为未知的参数) 去补充曲线 $y = \frac{m^2}{|x|}(|x| > c)$ 的部分,使所得的为一平滑曲线.
 - 解 显见 c > 0,否则在点 x = c 处就不可能形成一平 滑曲线. 此时,在点 x = c 处两曲线的切线斜率相等,且 有相同的纵坐标. 于是,有

$$(a+bx^2)'\Big|_{x=c}=\left(\frac{m^2}{|x|}\right)'\Big|_{x=c}$$

及

$$a+bc^2=\frac{m^2}{c}.$$

从而得

$$\begin{cases} 2bc = -\frac{m^2}{c^2}, \\ a + bc^2 = \frac{m^2}{c}. \end{cases}$$

解之,得

$$a = \frac{3m^2}{2c}, b = -\frac{m^2}{2c^3}.$$

由曲线的对称性可知. 在点 x = -c 处,按上述系数 a = -c 处,接上述系数 a = -c 处,接上证系数 a = -c 处 a

1014. 若;(a) 函数 f(x) 在点 x₀ 有导数,而函数 g(x) 在这点 没有导数;(6) 函数 f(x) 和 g(x) 二者在点 x₀ 都没有导 数,可否断定它们的和

$$F(x) = f(x) + g(x)$$

在点x=x。没有导数?

解 (a)能.因为

$$\frac{\Delta F(x)}{\Delta x} = \frac{\Delta f(x)}{\Delta x} + \frac{\Delta g(x)}{\Delta x},$$

当 $\Delta x \rightarrow 0$,上式右端第一项的极限存在,而第二项的极限不存在. 因而当 $\Delta x \rightarrow 0$,左端的极限也不存在(否则 差 $\frac{\Delta g(x)}{\Delta x} = \frac{\Delta F(x)}{\Delta x} - \frac{\Delta f(x)}{\Delta x}$ 的极限就存在,与 g(x) 不可导相矛盾),这说明 F(x) 在点 x_0 没有导数.

(6) 不能. 例如,

$$f(x) = \frac{x + |x|}{2}, g(x) = \frac{x - |x|}{2},$$

它们在点 x = 0 处都没有导数,但它们的和 F(x) =

f(x) + g(x) = x 在点 x = 0 处有导数且为 1.

1015. 若:(a) 函数 f(x) 在点 x₀ 有导数,而函数 g(x) 在此点没有导数;(6) 在点 x₀ 函数 f(x) 和 g(x) 二者都没有导数,可否断定他们的积

$$F(x) = f(x)g(x)$$

在点 $x = x_0$ 没有导数?

解 (a) 不能. 例如,

$$f(x) = x$$
,在 $x = 0$ 处有导数,

$$g(x) = |x|$$
,在点 $x = 0$ 没有导数,

而它们的积

$$F(x) = f(x)g(x) = x|x|$$

在点x=0处有导数・事实上,

$$\lim_{\Delta x \to 0} \frac{\Delta F(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x |\Delta x| - 0 \cdot |0|}{\Delta x}$$
$$= \lim_{\Delta x \to 0} |\Delta x| = 0,$$

即有 F'(0) = 0.

(6) 不能. 例如,

$$f(x) = |x|, g(x) = |x|,$$

在点x=0它们都没有导数,但它们的积

$$F(x) = f(x)g(x) = (|x|)^2 = x^2$$
,

在点 x = 0 处有导数,且 $F'(0) = 2x|_{x=0} = 0$.

1016. 若:(a) 函数 f(x) 于点 $x = g(x_0)$ 有导数,而函数 g(x) 于点 $x = x_0$ 没有导数;(6) 函数 f(x) 于点 $x = g(x_0)$ 没有导数,而函数 g(x) 于点 $x = x_0$ 有导数;(B) 函数 f(x)

于点 $x = g(x_0)$ 没有导数及函数g(x) 于点 $x = x_0$ 没有导数,则函数

$$F(x) = f(g(x))$$

于已知点 $x = x_0$ 的可微性怎样?

解 $(a)F'(x_0)$ 可能存在,也可能不存在.例如,考察函数 f(x),g(x) 及点 x_0 如下:

 $1^{\circ}f(x) = x^{2}, g(x) = |x|, \text{ if } x = 0, g(0) = 0.$ $f'(0) = 0, g'(0) \text{ AFA}; \text{ if } F(x) = f(g(x)) = (|x|)^{2}$ $= x^{2}, F'(0) = 0. \text{ is } F'(x_{0}) \text{ if } F(x) = 0.$

 $(6)F'(x_0)$ 可能存在,也可能不存在,例如,

 $1^{\circ}f(x) = |x|, g(x) = x^{2}, \land x = 0, g(0) = 0.$ f'(0) 不存在,g'(0) 存在,且等于零;而 $F(x) = f(g(x)) = |x^{2}| = x^{2}, F'(0)$ 存在,且等于零.

 $2^{\circ}f(x) = |x|, g(x) = x, \text{点 } x = 0, g(0) = 0.$ 而 F(x) = f(g(x)) = |x|, F'(0) 不存在.

(B) $F'(x_0)$ 可能存在,也可能不存在,例如,

 $1^{\circ}f(x) = 2x + |x|, g(x) = \frac{2}{3}x - \frac{1}{3}|x|, \& x = 0, g(0) = 0. 则 f'(0) 及 g'(0) 均不存在; 易知 F(x) = f(g(x)) = 2\left(\frac{2}{3}x - \frac{1}{3}|x|\right) + \left|\frac{2}{3}x - \frac{1}{3}|x|\right| \equiv x.$ 因此 F'(0) 存在且等于 1.

 $2^{\circ}f(x) = |x|, g(x) = |x|,$ 点 x = 0, g(0) = 0. f'(0) 及 g'(0) 均不存在;而 F(x) = f(g(x)) = |x|, F'(0) 也不存在.

1017. 在函数

$$y = x + \sqrt[3]{\sin x}$$

的图形上哪些点处有垂直切线?作出这图形.

#
$$y' = 1 + \frac{\cos x}{3\sqrt[3]{\sin^2 x}} (x \neq k\pi, k = 0, \pm 1, \cdots).$$

当 $x = k\pi$ 时,容易直接算出

$$y'|_{x=k''}=\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{k\pi + \Delta x + \sqrt[3]{\sin(k\pi + \Delta x)} - k\pi}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \left(1 + \sqrt[3]{\frac{(-1)^k}{(\Delta x)^2} \cdot \frac{\sin \Delta x}{\Delta x}}\right)$$

$$= \infty,$$

故当 $x = k\pi (k = 0, \pm 1, \pm 2, \cdots)$ 时有垂直切线.

当
$$x = k\pi$$
 时, $y = k\pi$; 当 $x = \frac{2k+1}{2}\pi$ 时, $y = x \pm 1$,

其图形如图 2.21 所示.

1018. 函数 f(x) 在其不连续点

图 2.21

可否有(a)有穷的导数;(6)无穷的导数?

解 (a)不能.否则由此可推出其连续性.

(6) 能, 例如,

$$y = f(x) = \operatorname{sgn} x$$

它在x = 0点不连续,但

$$\frac{\Delta y}{\Delta x} = \frac{\frac{|\Delta x|}{\Delta x}}{\frac{|\Delta x|}{\Delta x}} = \frac{1}{|\Delta x|} \rightarrow + \infty (\Delta x \rightarrow 0).$$

1019. 若函数 f(x) 于有限的区间(a,b) 上可微分,且

$$\lim_{x\to a+0}f(x)=\infty,$$

则是否必有

(1)
$$\lim_{x\to a+0} f'(x) = \infty;$$
 (2) $\lim_{x\to a+0} -|f'(x)| = +\infty?$

解 (1) 一般地说,不能保证 $\lim_{x\to x+0} f'(x) = \infty$. 例如,对

于 $\left(0,\frac{\pi}{2}\right)$ 内定义的函数

$$f(x) = \frac{1}{x} + \cos\frac{1}{x},$$

显然有 $\lim_{x \to +0} f(x) = \infty$. 但是, $f'(x) = -\frac{1}{x^2} + \frac{1}{x^2} \sin \frac{1}{x}$,

对于特殊的一串数 $x_{\pi} = \frac{1}{2k\pi + \frac{\pi}{2}} (k = 1, 2, \dots)$ 有

 $f'(x_n) = 0$,所以 $\lim_{x \to \infty} f'(x_n) = 0$,因而 $\lim_{x \to +0} f'(x) = \infty$ 不成立.

(2) 必有 $\lim_{x \to a+0} |f'(x)| = \infty$.

由于 f(x) 在(a,b) 连续,且 $\lim_{x\to a+0} f(x) = \infty$,故 f(x) 在

点 x = a 的右近旁保持定号,从而必有 $\lim_{x \to a \to 0} f(x) = +$ ∞ 或 $\lim_{x \to a \to 0} f(x) = -\infty$,显然可设前者成立(否则,考察函数 -f(x) 即化为前者). 再通过对自变量作代换 t = a + b - x 可知,我们只须证明下面的命题:

"若函数 f(x) 于有限的区间(A,B) 上可微分,且

$$\lim_{x \to B - 0} f(x) = + \infty, \tag{1}$$

则必有

$$\lim_{x\to B=0} |f'(x)| = +\infty. \tag{2}$$

现在给出上述命题的证明如下:

由(1),对于任给 $M_0 > 0$,存在 $\delta_0 > 0$,使当 $x \in (B - \delta_0, B)$ 时,有

$$f(x) \geqslant M_0(B_0 \leqslant x \leqslant B$$
,其中 $B_0 = B - \delta_0$).

记 $P = (B_0, f(B_0)), f(B_0) \ge M_0$. 为证(2),我们采用 反证法. 设存在 K > 0,使

$$|f'(x)| \leq K \ (x \in (B_0, B)),$$

则将引出矛盾.论证如下:

今过 P_o 作斜率为 2K 的直线

$$l: Y = -f(B_0) = 2K(x - B_0).$$
 (3)

它与x = B 垂线相交于一点 Q,其纵坐标为

$$y_Q = f(B_0) + 2K(B - B_0) = f(B_0) + 2K\delta_0$$

记 $M_1 = f(B_0) + 2K\delta_0$,则 $y_0 = M_1$,它是 l 直线在(B_0 , B)上的最大值.

对 M_1 而言,由(1)可知,存在 $x_2 \in (B_0,B)$ 使

 $f(x_2) > M_1$,即点 $P_2 = (x_2, f(x_2))$ 位于 l 线之上方.

另一方面,由在 $x=B_0$ 点 f(x) 的可微性,在 $x=B_0$ 有侧邻域内,对于任给 $\epsilon_1>0$ (取 $\epsilon_1<\frac{K}{2}$),存在 δ ,使当 $0<|x-x_0|<\delta$ 时,有

$$\left|f'(B_0) - \frac{f(x) - f(B_0)}{x - B_0}\right| < \varepsilon_1 < \frac{K}{2}.$$

于是,当 $0 < |x - x_0| < \delta$ 时,有

$$\left| \frac{f(x) - f(B_0)}{x - B_0} \right|$$

$$\leq |f'(B_0)| + \left| \frac{f(x) - f(B_0)}{x - x_0} - f'(B) \right|$$

$$\leq K + \epsilon_1 \leq K + \frac{K}{2} = \frac{3}{2}K.$$

$$|f(x) - f(B_0)| < \frac{3}{2}K|x - B_0|,$$
 (4)

今取 $x_1 > B_0$ 使 $x_1 < x_2, x_1 < B_0 + \delta$.

于是,由(3)式和(4)式知

$$f(x_1) - f(B_0) < \frac{3}{2}K(x_1 - B_0)$$

$$< 2K(x_1 - B_0) = Y(x_1) - f(B_0),$$

故

$$f(x_1) < Y(x_1),$$

即点 $(x_1,f(x_1))$ 位于直线 l 之下方.

考虑连续函数

$$G(x) = f(x) - Y(x),$$

我们取

$$c = \inf_{x \in \Gamma_{x_1, \dots, x_n}} \langle x | G(x) > 0 \rangle,$$

则由 $G(x_i) < 0$, $G(x_i) > 0$, 易见 c 是存在的, 而且 G(c) = 0. 它也就是连续函数 G(x) 的一个中间值点.

考虑 $x_2 \geqslant x > c$,则有 G(x) > 0,即在 c 点附近且 x > c 时,有

$$f(x) > Y(x)$$
.

从而

$$f(x) - f(c) > Y(x) - f(c) = Y(x) - Y(c)$$

注意 $x - \epsilon > 0$,故又有(当 $x > \epsilon$,且在 ϵ 附近时):

$$\frac{f(x)-f(c)}{x-c} > \frac{Y(x)-Y(c)}{x-c}.$$

$$f'(c) \geqslant Y'(c) = 2K$$
.

此处 $c \in (x_1, x_2) \subset [B_0, B)$,这个不等式与 $|f'(x)| \leq K$ 式相抵触. 因此 f'(x) 当 $x \in [B_0, B)$ 时是无界的. 这就完成了(2)的证明,从而命题得证.

注. 若利用以后的拉格朗日定理,则可很简单地证明此结论.

1020. 若函数 f(x) 于有限的区间(a,b) 上可微分且

$$\lim_{x\to a+0}f'(x)=\infty,$$

是否必有

$$\lim_{x\to a+0} f(x) = \infty?$$

解 不一定,例如:

$$f(x) = \sqrt[3]{x},$$

它在(0,b)(b>0) 上可微分,且 $f'(x) = \frac{1}{3\sqrt[3]{x^2}}$,

$$\lim_{x\to +0}f'(x)=+\infty,$$

然而

$$\lim_{x \to +0} f(x) = \lim_{x \to +0} \sqrt[3]{x} = 0.$$

1021. 设函数 f(x) 在区间 $(x_0, +\infty)$ 上可微分且有 $\lim_{x \to +\infty} f(x)$ 存在. 由此能否推出 $\lim_{x \to +\infty} f'(x)$ 存在?

解 不能,例如,函数

$$f(x) = \frac{\sin(x^2)}{x},$$

它在 $(0, +\infty)$ 上可微分 $f'(x) = 2\cos(x^2) - \frac{\sin(x^2)}{x^2}$,且

$$\lim_{x \to +\infty} f(x) = 0,$$

然而 $\lim_{x \to \infty} f'(x)$ 不存在.

1022. 设有界函数 f(x) 在 $(x_0, +\infty)$ 上可微分且有 $\lim_{x \to +\infty} f'(x)$ 存在. 由此可否推出有穷的或无穷的 $\lim_{x \to +\infty} f(x)$ 存在?

解解不能.例如,

$$f(x) = \cos(\ln x),$$

它由 $(0, +\infty)$ 上有界且可微分,其导数为

$$f'(x) = -\frac{\sin(\ln x)}{x},$$

同时有

$$\lim_{x \to +\infty} f'(x) = 0.$$

然而 $\lim_{x\to a} f(x)$ 不存在.

1023. 对不等式可否逐项微分?

解 一般地说不行. 例如,在(-∞,0)上有

$$2x \leqslant x^2 + 1$$

但在此区间上不能对此不等式逐项微分,因为在 $(-\infty,0)$ 上不等式

$$2 \leqslant 2x$$

不成立.

1024. 导出表示和式

$$P_n = 1 + 2x + 3x^2 + \dots + nx^{n-1}$$

及

$$Q_n = 1^2 + 2^2x + 3^2x^2 + \cdots + n^2x^{n-1}$$

的公式.

解 设
$$\overline{P}_n = x + x^2 + x^3 + \dots + x^n$$
, (1)

$$\overline{Q}_n = 1 \cdot x + 2x^2 + 3x^3 + \dots + nx^n. \tag{2}$$

则
$$(\overline{P}_n)' = 1 + 2x + 3x^2 + \dots + nx^{n-1} = P_n$$

$$(\overline{Q}_n)' = 1^2 + 2^2x + 3^2x^2 + \dots + n^2x^{n-1} = Q_n.$$

另一方面,由(1)式得

$$\overline{P}_n = \frac{x(1-x^n)}{1-x}.$$

由于 $(\overline{P}_{\bullet})' = P_{\star}$,即

$$\left(\frac{x(1-x^n)}{1-x}\right)'=P_n,$$

于是,得

$$P_n = \frac{1 - (n+1)x^n + nx^{n+1}}{(1-x)^2}.$$

由(2) 式得

$$\overline{Q}_n = x(1 + 2x + \cdots + nx^{n-1}) = xP_n.$$

由于 $\overline{(Q_n)'}=Q_n$,所以

$$(xP_n)'=Q_n,$$

即

$$P_n + x P_n' = Q_n. (3)$$

而

$$P_{n}' = \left(\frac{1 - (n+1)x^{n} + nx^{n-1}}{(1-x)^{2}}\right)' = \frac{(-n(n+1)x^{n+1} + n(n+1)x^{n})(1-x)^{2} + 2(1-x)(1-(n+1)x^{n} + nx^{n+1})}{(1-x)^{4}}$$

将 P, 及 P', 代入(3) 式,即得

$$Q_n = \frac{1+x-(n+1)^2x^n+(2n^2+2n-1)x^{n+1}-n^2x^{n+2}}{(1-x)^3}.$$

1025. 导出表示和式

$$S_n = \sin x + \sin 2x + \cdots + \sin nx$$

及

$$T_n = \cos x + 2\cos 2x + \dots + n\cos nx$$

的公式.

$$S_{n} = \frac{1}{2\sin\frac{x}{2}} \left(2\sin\frac{x}{2}\sin x + 2\sin\frac{x}{2}\sin 2x + \cdots + 2\sin\frac{x}{2}\sin nx \right)$$

$$= \frac{1}{2\sin\frac{x}{2}} \left(\left(\cos\frac{x}{2} - \cos\frac{3x}{2} \right) + \cdots + \left(\cos\frac{3x}{2} - \cos\frac{5x}{2} \right) + \cdots + \left(\cos\frac{2n-1}{2}x - \cos\frac{2n+1}{2}x \right) \right)$$

$$= \frac{1}{2\sin\frac{x}{2}} \left(\cos\frac{x}{2} - \cos\frac{2n+1}{2}x \right)$$

$$= \frac{\sin\frac{nx}{2}\sin\frac{n+1}{2}x}{\sin\frac{x}{2}}$$

即

$$S_n = \frac{\sin\frac{nx}{2}\sin\frac{n+1}{2}x}{\sin\frac{x}{2}}.$$

又因

$$T_n = (S_n)' =$$

$$\frac{\left(n\cos\frac{nx}{2}\sin\frac{n+1}{2}x+(n+1)\cos\frac{n+1}{2}x\sin\frac{nx}{2}\right)\sin\frac{x}{2}}{2\sin^2\frac{x}{2}}$$

$$= \frac{-\frac{\cos\frac{x}{2}\sin\frac{nx}{2}\sin\frac{n+1}{2}x}{2\sin^2\frac{x}{2}}}{\frac{2\sin^2\frac{x}{2}}{2}}$$

$$= \frac{n\left(\frac{\sin\frac{n+1}{2}x\cos\frac{nx}{2} + \cos\frac{n+1}{2}x\sin\frac{nx}{2}\right)\sin\frac{x}{2}}{2\sin^2\frac{x}{2}}}{\frac{2\sin^2\frac{x}{2}}{2}}$$

$$= \frac{\sin\frac{nx}{2}\left(\sin\frac{n+1}{2}x\cos\frac{x}{2} - \cos\frac{n+1}{2}\sin\frac{x}{2}\right)}{2\sin^2\frac{x}{2}}}{2\sin^2\frac{x}{2}},$$

所以,

$$T_{n} = \frac{n\sin\frac{x}{2}\sin\frac{2n+1}{2}x - \sin^{2}\frac{nx}{2}}{2\sin^{2}\frac{x}{2}}.$$

1026. 利用恒等式:

$$\cos\frac{x}{2}\cos\frac{x}{4}\cdots\cos\frac{x}{2^n} = \frac{\sin x}{2^n\sin\frac{x}{2^n}},$$

推出表示和式:

$$S_n = \frac{1}{2} \operatorname{tg} \frac{x}{2} + \frac{1}{4} \operatorname{tg} \frac{x}{4} + \dots + \frac{1}{2^n} \operatorname{tg} \frac{x}{2^n}$$
的公式.

解 对等式

$$\cos\frac{x}{2}\cos\frac{x}{4}\cdots\cos\frac{x}{2^n} = \frac{\sin x}{2^n\sin\frac{x}{2^n}} \tag{1}$$

两端分别求导数,即得

$$-\frac{1}{2}\sin\frac{x}{2}\cos\frac{x}{4}\cdots\cos\frac{x}{2^{n}}$$

$$-\frac{1}{4}\cos\frac{x}{2}\sin\frac{x}{4}\cos\frac{x}{8}\cdots\cos\frac{x}{2^{n}}$$

$$-\cdots-\frac{1}{2^{n}}\cos\frac{x}{2}\cos\frac{x}{4}\cdots\sin\frac{x}{2^{n}}$$

$$=\frac{\cos x \sin\frac{x}{2^{n}}-\frac{1}{2^{n}}\sin x \cos\frac{x}{2^{n}}}{2^{n}\sin^{2}\frac{x}{2^{n}}}.$$
(2)

(2) ÷ (1) 得

$$-\frac{1}{2} \operatorname{tg} \frac{x}{2} - \frac{1}{4} \operatorname{tg} \frac{x}{4} - \dots - \frac{1}{2^{n}} \operatorname{tg} \frac{x}{2^{n}}$$

$$= \operatorname{ctg} x - \frac{1}{2^{n}} \operatorname{ctg} \frac{x}{2^{n}},$$

所以,

$$\frac{1}{2} \operatorname{tg} \frac{x}{2} + \frac{1}{4} \operatorname{tg} \frac{x}{4} + \dots + \frac{1}{2^{n}} \operatorname{tg} \frac{x}{2^{n}}$$

$$= \frac{1}{2^{n}} \operatorname{ctg} \frac{x}{2^{n}} - \operatorname{ctg} x$$

1027. 求证可微分的偶函数的导函数为奇函数,而可微分的奇函数的导函数为偶函数.

对这个事实加以几何解释,

证 设 f(x) 为偶函数,则 f(x) = f(-x).

两端微分之,得

$$f'(x) = -f'(-x), \text{ If } f'(-x) = -f'(x).$$

这就说明 f'(x) 是奇函数.

同理可证:可微分的奇函数的导函数为偶函数.

这个事实说明:凡对称于 Oy 轴的图形,其对称点

的 切线也关于 *Oy* 轴对称; 凡关于原点对称的图形, 其对称点的切线互相平行。

1028. 求证可微分的周期函数,其导函数仍为具有相同周期的 周期函数。

证 设 f(x) 为周期函数,周期为 T,则

$$f(x+T)=f(x).$$

两端微分之,得

$$f'(x+T)=f'(x),$$

这说明 f'(x) 为具有周期 T 的周期函数.

1029. 若圆半径以 2 厘米 / 每秒的等速度增加,则当圆半径 R = 10 厘米时,圆面积增加的速度如何?

解 设圆面积为S,则 $S = \pi R^2$,

$$\left. \frac{dS}{dt} \right|_{R=10} = 2\pi R \frac{dR}{dt} \bigg|_{R=10} = 40\pi (平方厘米/每秒),$$

故当 R 为 10 厘米时,圆面积的增加速度为 40π 平方厘 米 / 每秒.

1030. 长方形的一边 x = 20 米, 另一边 y = 15 米, 若第一边以 1 米 / 秒的速度减少, 而第二边以 2 米 / 秒的速度增加, 问这长方形的面积和对角线变化的速度如何?

解 面积
$$S = xy$$
, 对角线 $l = \sqrt{x^2 + y^2} (x > 0, y > 0)$

0). 对 t 求导数,即得

$$\frac{dS}{dt} = x\frac{dy}{dt} + y\frac{dx}{dt}$$

及

$$\frac{dl}{dt} = \frac{x\frac{dx}{dt} + y\frac{dy}{dt}}{\sqrt{x^2 + y^2}}.$$

按题设,有 $x = 20, y = 15.\frac{dx}{dt} = -1, \frac{dy}{dt} = 2$,代入上面两式,得

$$\frac{dS}{dt} = 20 \cdot 2 + (-1) \cdot 15 = 25,$$

$$\frac{dl}{dt} = \frac{-20 + 2 \cdot 15}{\sqrt{20^2 + 15^2}} = 0.4.$$

于是,该长方形的面积的变化率为 25 平方米 / 每秒,而对角线的变化率为 0.4 米 / 每秒.

1031. 二轮船 A 和 B 从同一码头同时出发 · A 船往北 · B 船往 东 · 若 A 船的速度为 30 千米 / 每小时 · B 船的速度为 40 千米 / 每小时 · 问二船间的距离增加的速度如何?

解 记时间为t(小时),A与B离码头的距离分别为30t与40t(千米),注意成直角情形,故两船间的距离为

$$d(t) = \sqrt{(30t)^2 + (40t)^2} = 50t,$$

故两船间的距离增加的速度为

$$d'(t) = 50$$
 千米 / 每小时.

1032. 设:

$$f(x) = \begin{cases} x, & \text{若 } 0 \leq x \leq 2; \\ 2x - 2, \text{若 } 2 < x < +\infty, \end{cases}$$

又设 S(x) 表示由曲线 y = f(x),轴 Ox 及过点 $x(x \ge 0)$ 而垂直于 Ox 的直线三者围成的面积.作出函数 S(x) 的解析表达式,求出导函数 S'(x),并作出函数 y = S'(x) 的图形.

解 当
$$x \in (0,2)$$
 时, $S(x) = \frac{1}{2}x^2$;

当
$$x \in (2, +\infty)$$
 时,
$$S(x) = \frac{1}{2}2^{2} + \frac{1}{2}(x-2)(2+(2x-2))$$

$$= x^{2} - 2x + 2.$$

从而有

$$S'(x) = \begin{cases} x, & \text{if } 0 \leq x \leq 2 \text{ if }, \\ 2x - 2, \text{if } 2 < x < + \infty \text{ if }. \end{cases}$$
 (22.22)

图 2-22

1033. 函数 S(x) 是由圆弧 $y = \sqrt{a^2 - x^2}$ 、轴 Ox 及通过点 Ox 和 $x(|x| \le a)$ 而垂直于轴 Ox 的两条直线四者围成的面积,作出函数 S(x) 的解析表达式,求出导函数 S'(x),并作其导函数 y = S'(x) 的图形,

解 S(x) 是由一个直角三角形和一个中心角为 α 的扇形组成,其中 $\sin \alpha = \frac{|x|}{\alpha}$,故当 $0 < |x| \le \alpha$ 时,

$$S(x) = \frac{|x|}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{|x|}{a}$$
.

于是,

$$S'(x) = \frac{1}{2} \cdot \frac{|x|}{x} \sqrt{a^2 - x^2} - \frac{|x|}{2} \cdot \frac{x}{\sqrt{a^2 - x^2}} + \frac{x^2}{x^2} + \frac{1}{a} \cdot \frac{|x|}{x}$$

$$+ \frac{a^2}{2} \cdot \frac{1}{\sqrt{1 - \frac{x^2}{a^2}}} \cdot \frac{1}{a} \cdot \frac{|x|}{x}$$

$$= \frac{|x| \sqrt{a^2 - x^2}}{x} = \sqrt{a^2 - x^2} \operatorname{sgn} x(0 < x)$$

$$|x| \leq a).$$

函数 y = S(x) 的图形如图 2.23 所示。函数 y = S'(x) 的图形就是以原点为中心,a 为半径的圆周上位于第一及第三象限的弧段,但不包括(0,a) 点及(0,-a) 点,图形省略。

§ 2. 反函数的导函数,用参变数表示的函数的导函数,隐函数的导函数

 1° 反函数的导函数 若具有导函数 $f'(x) \neq 0$ 的可微分的函数 y = f(x)(a < x < b) 有单值连续的反函数 $x = f^{-1}(y)$,则此反函数也可

微分,且有公式

$$x'_{y} = \frac{1}{y'_{x}}$$

成立,

2° 用参变数表示的函数的导函数 若方程组:

$$\begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases} (\alpha < t < \beta),$$

其中 $\varphi(t)$ 和 $\varphi(t)$ 为可微分的函数,且 $\varphi(t) \neq 0$,确定 y 为 x 的单值连续函数:

$$y = \psi(\varphi^{-1}(x)),$$

则此函数的导函数存在,且可用公式

$$y'_x = \frac{y'_x}{x'_x}$$

求出.

3° 隐函数的导函数 若可微函数 y = y(x) 满足方程 F(x,y) = 0,

则此隐函数之导函数 $y' \approx y'(x)$ 可从以下方程求得:

$$\frac{d}{dx}(F(x,y)) = 0,$$

其中F(x,y) 是当作变量x的复合函数,

1034. 证明由方程 $y^3 + 3y = x$ 定义的单值函数 y = y(x) 存在,并求它的导函数 y'_x .

证 对函数
$$x = f(y) = y^3 + 3y$$
 有
$$f'(y) = 3y^2 + 3 = 3(y^2 + 1) > 0$$

其中 y 为任意实数,故 f(y) 是严格增大的(在 $-\infty < y$ $<+\infty$),因此存在单值的反函数 $y=y(x)(-\infty < x$ $<+\infty$),且

$$y'_{x} = \frac{1}{x'_{y}} = \frac{1}{3(y^{2}+1)}.$$

1035. 证明由方程 $y - \epsilon \sin y = x(0 \le \epsilon < 1)$ 确定的单值函数 112

y = y(x) 存在,并求其导函数 y'x

证 对于函数 $x = f(y) = y - \epsilon \sin y$ 有

$$f'(y) = 1 - \epsilon \cos y > 0 \ (0 \le \epsilon < 1).$$

故 f(y) 在 $(-\infty, +\infty)$ 上是严格增大的,从而反函数 y = y(x) 存在且是单值的,且

$$y'_{x} = \frac{1}{x'_{y}} = \frac{1}{1 - \varepsilon \cos y}.$$

1036. 设:

(a)
$$y = x + \ln x \ (x > 0);$$
 (6) $y = x + e^x;$

(a)
$$y = \sinh x$$
; (c) $y = \sinh x$.

求 它们的反函数 x = x(y) 的存在域,并求它们的导函数.

解 (a) 由 $y'_x = 1 + \frac{1}{x} > 0$ (x > 0) 知有单值连续反函数 x = x(y),其存在域为 $-\infty < y < +\infty$,而导函数

$$\frac{dx}{dy} = \frac{1}{y'_x} = \frac{1}{1 + \frac{1}{x}} = \frac{x}{x+1}.$$

(6) 由 $y'_x = 1 + e^x > 0$ 知有单值连续反函数 x = x(y),其存在域为 $-\infty < y < +\infty$,而导函数

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} = \frac{1}{1+e^x} = \frac{1}{1-x+y}.$$

(B) 由 $y'_x = \text{ch}x > 0$ 知有单值连续反函数 x = x(y),其存在域为 $-\infty < y < +\infty$,而导函数

$$\frac{dx}{dy} = \frac{2}{e^z + e^{-x}} = \frac{1}{\sqrt{1 + y^2}},$$

其中因为 $x = \ln(y + \sqrt{1 + y^2})$,所以, $e^x + e^{-x} =$

$$2\sqrt{1+y^2}.$$

(r) 由 $y'_x = \frac{1}{(\cosh x)^2} > 0$ 知有单值连续反函数 x = x(y),其存在域为 -1 < y < 1.由于

$$y^2 = th^2x = \frac{sh^2x}{ch^2x} = \frac{ch^2x - 1}{ch^2x},$$

而 $ch^2x = \frac{1}{y'_x} = x'_y$,于是,反函数的导函数

$$\frac{dx}{dy} = \frac{1}{1 - y^2}.$$

1037. 设:

(a)
$$y = 2x^2 - x^4$$
; (6) $y = \frac{x^2}{1 + x^2}$;
(B) $y = 2e^{-x} - e^{-2x}$.

选出反函数 x = x(y) 的单值连续的各枝,求它们的导函数并作其图形.

解 (a)
$$x^4 - 2x^2 + y = 0$$
.
 $x^2 = 1 \pm \sqrt{1 - y}$.

单值连续的各枝为

$$x_{1} = -\sqrt{1 + \sqrt{1 - y}} \quad (-\infty < y \le 1),$$

$$x_{2} = -\sqrt{1 - \sqrt{1 - y}} \quad (0 \le y \le 1),$$

$$x_{3} = \sqrt{1 - \sqrt{1 - y}} \quad (0 \le y \le 1),$$

$$x_{4} = \sqrt{1 + \sqrt{1 - y}} \quad (-\infty < y \le 1).$$

由 $y = 2x^2 - x^4$, 微分得

$$1 = 4x \frac{dx}{dy} - 4x^3 \frac{dx}{dy},$$

所以

$$\frac{dx}{dy} = \frac{1}{4x - 4x^3}.$$

从而有

$$\frac{dx_i}{dy} = \frac{1}{4x(1-x^2)}(i=1,2,3,4)($$
 ② 2.24).

图 2.24

(6)
$$\frac{x^2}{1+x^2} = y$$
, $\mathbb{P} x^2 = \frac{y}{1-y}$.

单值连续各枝为

$$x_1 = -\sqrt{\frac{y}{1-y}},$$

$$x_2 = \sqrt{\frac{y}{1-y}} \qquad (0 \le y < 1).$$

及
$$\frac{dx}{dy} = \frac{1}{y'_x}$$
有

 $= \ln \frac{1 + \sqrt{1 - y}}{v}$

 $(0 < y \le 1).$

$$1 = -2e^{-x}\frac{dx}{dy} + 2e^{-2x}\frac{dx}{dy}$$
,所以,

图 2,25

图 2.26

$$\frac{dx_i}{dy} = -\frac{1}{2(e^{-x} - e^{-2x})}$$

$$(i = 1, 2)([8] 2, 26).$$

1038. 作出函数 y = y(x) 的略图,并求其导函数 y'_x ,设: $x = -1 + 2t - t^2$, $y = 2 - 3t + t^3$. 当 x = 0 及 x = -1 时 $y'_x(x)$ 等于甚么?在何点 M(x,y) 的导函数 $y'_x(x) = 0$?

列表:

t	- 3	– 2	- 1	0	1	2	3	4
<i>x</i>	- 16	···· 9	- 4	– 1	0	– 1	— 4	9
У	16	0	4	2	0	4	20	54

当t < -1时, $\frac{dy}{dx} > 0$,函数值 y 随自变量增加而增加,曲线上升.

当
$$t > -1$$
时, $\frac{dy}{dx} < 0$,曲线下降.

图形如图 2.27 所示 .

求导函数 y'、(参数是正数). 设:

1039.
$$x = \sqrt[3]{1 - \sqrt[3]{t}},$$

$$y = \sqrt{1 - \sqrt[3]{t}}.$$

$$\frac{dy}{dt}$$

$$= -\frac{1}{\sqrt{1 - \sqrt[3]{t}}}$$

$$-\frac{1}{6\sqrt{t}\cdot\sqrt[3]{(1-\sqrt{t})^2}},$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \sqrt[6]{\frac{(1-\sqrt{t})^4}{t(1-\sqrt[3]{t})^3}} \quad (t > 0, t \neq 1).$$

1040. $x = \sin^2 t$, $y = \cos^2 t$.

$$\mathbf{m} \quad \frac{dy}{dt} = -2 \cos t \sin t, \frac{dx}{dt} = 2 \sin t \cos t,$$

于是,

$$\frac{dy}{dx} = \frac{-2 \operatorname{costsin}t}{2 \operatorname{costsin}t} = -1 \quad (0 < x < 1).$$

 $1041. x = a \cos t, y = b \sin t.$

$$\mathbf{M} \quad \frac{dy}{dx} = \frac{b\cos t}{-a\sin t} = -\frac{b}{a}\operatorname{ctg}t(0 < |t| < \pi).$$

1042. x = a cht, y = b sht.

$$\mathbf{ff} \qquad \frac{dy}{dx} = \frac{b \operatorname{ch} t}{a \operatorname{sh} t} = \frac{b}{a} \operatorname{cth} t \quad (t \neq 0).$$

1043. $x = a\cos^3 t$, $y = a\sin^3 t$.

$$\frac{dy}{dx} = \frac{3a\sin^2t\cos t}{-3a\cos^2t\sin t}$$

$$=-\operatorname{tgt}\left(t\neq\frac{2k+1}{2}\pi,k\right)$$
整数).

1044. $x = a(t - \sin t), y = a(1 - \cos t)$.

解
$$\frac{dy}{dx} = \frac{a\sin t}{a(1-\cos t)}$$
$$= \cot g \frac{t}{2} \quad (t \neq 2k\pi, k \ \text{为整数}).$$

1045. $x = e^{2t}\cos^2 t$, $y = e^{2t}\sin^2 t$.

解
$$\frac{dy}{dx} = \frac{2e^{2t}(\sin^2 t + \sin t \cos t)}{2e^{2t}(\cos^2 t - \sin t \cos t)}$$

$$= \frac{\sin t \cdot \sqrt{2}\sin\left(t + \frac{\pi}{4}\right)}{\cos t \cdot \sqrt{2}\cos\left(t + \frac{\pi}{4}\right)}$$

$$= tgttg\left(t + \frac{\pi}{4}\right)\left(t \neq \frac{\pi}{4} + k\pi, k \right) 整数;$$

$$t \neq n\pi + \frac{\pi}{2}, n = 0, 1, 2, \cdots\right).$$

1046.
$$x = \arcsin \frac{t}{\sqrt{1+t^2}}$$
, $y = \arccos \frac{1}{\sqrt{1+t^2}}$.

$$\frac{dy}{dt} = -\frac{1}{\sqrt{1 - \frac{1}{1 + t^2}}} \left(-\frac{t}{(1 + t^2)^{\frac{3}{2}}} \right)$$

$$= \frac{\text{sgn}t}{1 + t^2},$$

$$\frac{dx}{dt} = \frac{1}{\sqrt{1 - \frac{t^2}{1 + t^2}}}$$

$$\cdot \frac{\sqrt{1+t^2} - \frac{t^2}{\sqrt{1+t^2}}}{1+t^2}$$

$$=\frac{1}{1+t^2}.$$

$$\frac{dy}{dx} = \frac{\frac{\text{sgn}t}{1+t^2}}{\frac{1}{1+t^2}} = \text{sgn}t \ (0 < |t| < +\infty).$$

1047. 证明由方程组

$$x = 2t + |t|, y = 5t^2 + 4t|t|,$$

所确定的函数 y = y(x) 当 t = 0 时可微分. 但它的导函数不能用普通的公式求得.

证 当 t 由 0 变化到 Δt 时,x 由 0 变化到 $\Delta x = 2\Delta t + |\Delta t|$,y 由 0 变化到 $\Delta y = 5(\Delta t)^2 + 4\Delta t \cdot |\Delta t|$. 于是,

$$\frac{\Delta y}{\Delta x}\Big|_{t=0} = \frac{5(\Delta t)^2 + 4\Delta t \cdot |\Delta t|}{2\Delta t + |\Delta t|}$$
$$= \left\{\frac{3\Delta t}{\Delta t}, \Delta t > 0, \right\}$$
$$= \left\{\frac{3\Delta t}{\Delta t}, \Delta t < 0, \right\}$$

从而

$$\frac{\Delta y}{\Delta \tau} \to 0 \quad (\Delta t \to 0).$$

即 y = y(x) 当 t = 0 时可微分. 但由于 |t| 当 t = 0 时不可微,因而 $\frac{dx}{dt}$ 及 $\frac{dy}{dt}$ 当 t = 0 时不存在. 所以,导数 $\frac{dy}{dx}$ 当 t = 0 的值不能从普通公式求得.

求下列隐函数的导函数 y' ";

1048. $x^2 + 2xy - y^2 = 2x$. 当 x = 2 与 y = 4 及当 x = 2 与 y = 0 时, y' 等于甚么?

解 对求微分,得

$$2x + 2xy'_x + 2y - 2yy'_x = 2.$$

$$y'_{x} = \frac{1 - x - y}{x - y} \ (x \neq y),$$
$$y'_{x}|_{\substack{x=2\\y=4}} = \frac{5}{2}, \ y'|_{\substack{y=0\\y=0}}^{2} = -\frac{1}{2}.$$

1049. $y^2 = 2px$ (拋物线).

解 対 x 微分,得 2yy'x - 2p.

于是,

$$y'_{x} = \frac{p}{y} \ (y \neq 0).$$

1050. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (椭圆).

 \mathbf{f} 对x 微分,得

$$\frac{2x}{a^2} + \frac{2yy'_x}{b^2} = 0.$$

于是,

$$y'_{x} = -\frac{b^{2}x}{a^{2}y} (y \neq 0).$$

1051. $\sqrt{x} + \sqrt{y} = \sqrt{a}$ 拋物线).

解 对 x 微分,得

$$\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}y'_x = 0.$$

于是,

$$y'_x = -\sqrt{\frac{y}{x}}$$
 $(x > 0, y > 0).$

1052. $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ (内摆线).

解 对 x 微分,得

$$\frac{2}{3}x^{-\frac{1}{3}} + \frac{2}{3}y^{-\frac{1}{3}}y'_{x} = 0.$$

$$y'_{z} = -\sqrt[3]{\frac{y}{x}} \ (x \neq 0).$$

1053. arc tg $\frac{y}{x} = \ln \sqrt{x^2 + y^2}$ (对数螺线).

解 对求微分,得

$$\frac{1}{1+\frac{y^2}{x^2}} \cdot \frac{xy'_x - y}{x^2} = \frac{x+yy'_x}{x^2+y^2}.$$

于是,

$$y'_x = \frac{x+y}{x-y} (x \neq y, x \neq 0).$$

1054. 求 火.,设:

 $(a)r = a\varphi(阿基米得螺线);$

(6)
$$r = a(1 + \cos\varphi)$$
(心脏形线);

 $(B)r = ae^{m\phi}(对数螺线),$

其中 $r = \sqrt{x^2 + y^2}$ 及 $\varphi = \text{arc tg } \frac{y}{x}$ 表极坐标.

解 $x = r \cos \varphi, y = r \sin \varphi,$ 其中 $r = r(\varphi)$. 于是,

$$\frac{dy}{dx} = \frac{\frac{dy}{d\varphi}}{\frac{dx}{d\varphi}} = \frac{\frac{dr}{d\varphi}\sin\varphi + r\cos\varphi}{\frac{dr}{d\varphi}\cos\varphi - r\sin\varphi}.$$
 (1)

(a)
$$\frac{dr}{d\varphi} = a$$
,代入(1) 式得

$$\frac{dy}{dx} = \frac{a \sin \varphi + a \varphi \cos \varphi}{a \cos \varphi - a\varphi \sin \varphi}$$

=
$$tg(\varphi + arc tg\varphi)$$
.

(6)
$$\frac{dr}{d\varphi} = -a\sin\varphi$$
,代入(1) 式得

$$\frac{dy}{dx} = \frac{-a\sin^2\varphi + a(1 + \cos\varphi)\cos\varphi}{-a\sin\varphi\cos\varphi - a(1 + \cos\varphi)\sin\varphi}$$

$$= -\frac{\cos 2\varphi + \cos\varphi}{\sin 2\varphi + \sin\varphi}$$

$$= \frac{2\cos\frac{3\varphi}{2}\cos\frac{\varphi}{2}}{2\sin\frac{3\varphi}{2}\cos\frac{\varphi}{2}}$$

$$= -\cot\frac{3\varphi}{2}\Big(\varphi \neq 0, \varphi \neq \pm\frac{2\pi}{3}\Big).$$
(B)
$$\frac{dr}{d\varphi} = mae^{m\varphi}.\{\xi\}(1)\} \neq \emptyset$$

$$\frac{dy}{dx} = \frac{mae^{m\varphi}\sin\varphi + ae^{m\varphi}\cos\varphi}{mae^{m\varphi}\cos\varphi - ae^{m\varphi}\sin\varphi}$$

$$= \frac{m\sin\varphi + \cos\varphi}{m\cos\varphi - \sin\varphi}$$

$$= \tan\frac{\varphi}{\varphi} + \frac{\varphi}{\varphi} + \frac{1}{2}$$

$$= \tan\frac{\varphi}{\varphi} + \frac{\varphi}{\varphi} + \frac{1}{2}$$

§ 3. 导函数的几何意义

1° 切线和法线的方程 可微分的函数 y = f(x) 在其图形上之一点 M(x,y) (图 2.28) 处的切线 MT 和法线 MN 的方程的形式分别是:

$$Y - y = y'(X - x)$$

及

$$Y - y = -\frac{1}{v'}(X - x),$$

其中 X,Y 为切线或法线上的流动坐标,而 y'=f'(x) 为切点处导函数的值。

$$PT = \left| \frac{y}{y'} \right|, PN =$$

|yy'|,

$$MT = \left| \frac{y}{y'} \right| \sqrt{1 + y'^2}$$

$$MN = |\mathbf{y}| \sqrt{1 + \mathbf{y}^2}.$$

坐标方程及β为切线 MT 与切点

M的向径OM所成的角(图 2.29),

图 2.28

则

$$tgeta=rac{r}{r'}$$
 .

1055. 写出曲线 y = (x + 1) $\sqrt[3]{3-x} \pm A(-1,0)$ B(2,3)、C(3,0) 诸点处的 o← 切线和法线方程:

图 2,29

$$y' = \sqrt[3]{3-x} - \frac{x+1}{3\sqrt[3]{(3-x)^2}},$$

所以,在 A 点的切线方程为

$$y = 0 = y'|_{x=-1}(x+1)$$
,即 $y = \sqrt[3]{4}(x+1)$;
法线方程为

$$y - 0 = -\frac{1}{\sqrt[3]{4}}(x+1),$$

在 B 点的切线方程为

法线方程为

$$x=2$$
.

在 C 点,由于 y' 为无穷,故切线方程为

$$x = 3$$
:

法线方程为

$$y = 0$$
.

1056. 在曲线

$$y = 2 + x - x^2$$

上的哪些点其切线(a) 平行于Ox 轴;(5) 平行于第一象限角的平分线?

解 由于

$$y'=1-2x,$$

所以,有

(a)
$$\Rightarrow y' = 0$$
, \emptyset $x = \frac{1}{2}$, $y = 2 + \frac{1}{2} - \frac{1}{4} = \frac{9}{4}$,

故在点 $\left(\frac{1}{2}, \frac{9}{4}\right)$ 处其切线平行于Ox轴;

(6) 令 y' = 1,则 x = 0, y = 2,故在点(0,2) 处其切线平行于第一象限角的平分线。

1057. 证明抛物线

$$y = a(x - x_1)(x - x_2) \ (a \neq 0, x_1 < x_2)$$

与Ox 轴相交所成的两角 α 及 β

$$\left(0 < \alpha < \frac{\pi}{2}, 0 < \beta < \frac{\pi}{2}\right)$$
彼此相等.

解 如图 2.30 所示,显然抛物线与 Ox 轴的交点为 $A(x_1,0),B(x_2,0)$.由于 $y'=2ax-a(x_1+x_2)$,故在点 A,B 处切线的斜率分别为

$$k_A = y'|_{x=x_1} = 2ax_1 - a(x_1 + x_2)$$

= $a(x_1 - x_2) = tgY = tg(\pi - \beta)$, (1)

图 2.30

$$k_B = y' \big|_{x = x_2} = 2ax_2 - a(x_1 + x_2)$$

$$= a(x_2 - x_1) = tga.$$
 (2)

由(2) 式得

$$tg(\pi - \alpha) = a(x_1 - x_2).$$
 (3)

由(1) 式及(3) 式证得

$$\alpha = \beta$$
.

1058. 在曲线

$$y = 2\sin x \ (-\pi \leqslant x \leqslant \pi)$$

上求出"曲线的坡度"(即是 |y'|) 大于 1 的区域.

解 由于 $y' = 2\cos x$,故要 |y'| > 1,只要

$$|\cos x| > \frac{1}{2}$$
,

也即

$$|x| < \frac{\pi}{3} \quad \not \mathbb{Z} \quad \frac{2\pi}{3} < |x| \leqslant \pi,$$

此即所求的区域,

1059. 函数 $y = x \neq 0.01 \cdot \sin 1000\pi x$ 二者相差不大于 0.01,则这些函数的导函数的差的最大值为何?作出对应的图形。

图 2.31

解 导函数差的最大值

 $\max |y' - y_1'| = \max |10\pi \cdot \cos 1000\pi x| = 10\pi \approx$ 31. 4.

由此可见,两函数相差甚微时(图 2.31),其导函数 却可相差很大。

如图 2.32 所示,

1060. 曲线 $y = \ln x + Ox$ 轴相交的角如何?

解 曲线 $y = \ln x$ 与 Ox 轴的交点为(1,0),设曲线与 Ox 轴的相交角为 α ,则

$$tg\alpha = y' \Big|_{x=1} = \frac{1}{x} \Big|_{x=1} = 1$$

故交角α为45°.

图 2.32

1061. 曲线 $y = x^2$ 及 $x = y^2$ 相交的角如何?

解 两曲线的交点为(0,0)及(1,1)。由于导数为

$$y'=2x\not Dy'=\frac{1}{2y},$$

故在(0,0) 点两曲线的交角显然为 90°.

在(1,1) 点两切线的斜率分别为

$$k_1 = 2 \not B k_2 = \frac{1}{2},$$

故其交角 θ 的正切为

$$tg\theta = \frac{k_1 - k_2}{1 + k_1 k_2} = \frac{2 - \frac{1}{2}}{1 + 2 \cdot \frac{1}{2}} = \frac{3}{4},$$

于是

$$\theta = {\rm arc} \ {\rm tg} \ {3\over 4} \approx 37^{\circ}.$$

1062. 曲线 $y = \sin x$ 及 $y = \cos x$ 相交的角如何?

解 先求交点,解

$$\begin{cases} y = \sin x, \\ y = \cos x, \end{cases}$$

其次,求两曲线在 $x = \frac{\pi}{4} + k\pi$ 处切线的斜率:

$$k_1 = (\sin x)' \Big|_{x = \frac{\pi}{4} + k\pi} = (-1)^k \frac{\sqrt{2}}{2} \Big|,$$

$$k_2 = (\cos x)^t \Big|_{x=\frac{x}{4}+kx} = (-1)^{k+1} \frac{\sqrt{2}}{2} \Big|.$$

在 $x = \frac{\pi}{4} + k\pi$ 处,交角 θ (今取锐角,即 $0 \le \theta \le \frac{\pi}{2}$)满足

$$tg\theta = \left| \frac{k_1 - k_2}{1 + k_1 k_2} \right| = \left| (-1)^k \frac{\sqrt{2}}{1 - \frac{1}{2}} \right|$$
$$= 2\sqrt{2}.$$

于是,

$$\theta = \text{arc tg2 } \sqrt{2} \approx 70^{\circ}32'.$$

1063. 当如何选择参数 n,以使曲线

$$y = arc tgnx (n > 0)$$

与 Ox 轴相交所成的角大于 89°?

解 曲线 y = arc tg nx = Ox 轴的交点为 $(k\pi,0)(k + 2\pi)$ 整数). 不妨取 $0 \le x < \pi$,则交点为 O(0,0). 交角的正切为

$$\operatorname{tg}\theta = \frac{n}{1 + n^2 x^2} \bigg|_{x=0} = n.$$

$$\theta > 89^{\circ}$$
,相当于 $tg\theta > tg89^{\circ} = 57.29$,即 $n > 57.29$.

1064. 求出曲线:(a) $y = \sqrt{1 - e^{-a^2 x^2}}$ 于点 x = 0 处,
(6) $y = \arcsin \frac{2x}{1 + x^2}$ 于点 x = 1 处的左切线与右切线
同的夹角:

解 (a) 函数的左、右导数分别为

$$y'(0) = \lim_{x \to -0} \frac{\sqrt{1 - e^{-a^2 x^2}}}{x}$$

$$= \lim_{x \to -0} \left(-\sqrt{\frac{e^{-a^2 x^2} - 1}{-a^2 x^2} \cdot a^2} \right)$$

$$= -|a|,$$

$$y'_{+}(0) = \lim_{x \to +0} \frac{\sqrt{1 - e^{-a^2 x^2}}}{x}$$

$$= \lim_{x \to +0} \sqrt{\frac{e^{-a^2 x^2} - 1}{-a^2 x^2} \cdot a^2} = |a|.$$

所以,于点x=0处左、右切线之间的夹角 θ 满足

$$tg\theta = \frac{2|a|}{|a|^2 - 1}$$
, $\mathbb{P} \theta = 2arc \ tg \frac{1}{|a|}$.

(6) 函数的左、右导数分别为

$$y' = (1) = \lim_{x \to 1 \to 0} \frac{\arcsin \frac{2x}{1 + x^2} - \arcsin 1}{x - 1}$$

$$= \lim_{x \to 1 \to 0} \frac{-\arcsin \frac{1 - x^2}{1 + x^2}}{x - 1}$$

$$= \lim_{x \to 1 \to 0} \frac{\frac{1 - x^2}{1 + x^2}}{1 - x} = 1,$$

同理,y', (1) = -1. 因此, 左、右切线的斜率互为负倒数, 所以, 夹角为 90°.

1065. 证明对数螺线r=ae^{mp}(a及m为常数)的切线与切点的 向径所成的角度为一常量。

证 设切线与切点的向径所成的角为 β ,由于 $r = ae^{m\varphi}, r' = ame^{m\varphi}$,

所以 $\operatorname{tg}\beta = \frac{r}{r'} = \frac{1}{m}$,它为一常数,故 β 为一常量.

1066. 求曲线 y = ax" 的次切 线长,由此给出作这曲 线的切线的方法。

解 设在任一点 M(x, y) 的次切线长为 l_T , 如图 2.33 中的 |PT|,则 $l_T = \left|\frac{y}{yy}\right| = \left|\frac{y}{y'}\right|$

$$= \left| \frac{1}{\log \alpha} \right| = \left| \frac{y'}{y'} \right| = \left| \frac{ax^n}{nax^{n-1}} \right| = \left| \frac{x}{n} \right|.$$

图 2.33

由此,该曲线的切线可以这样作:对于曲线 $y = ax^n$ 上任一点 M(x,y),由此点向 Ox 轴作垂线,得交点 P. 再在 Ox 轴上取点 T,使 $|PT| = \frac{|x|}{n}$ (当然,只是在 P 的一侧取点 T,若在此点 yy' > 0,则在 P 点的左侧取 T;若在此点 yy' < 0,则在 P 点的右侧取 T. 以后不再说明),然后联接 MT,则 MT 就是所求的切线.

1067. 证明抛物线 y² = 2px 的(a) 次切线长等于切点的横坐标的两倍;(6) 次法线为一常量,给出作抛物线的切线的方法.

证 (a) 次切线长为

$$l_{T} = |PT| = \left| \frac{y}{y'} \right| = \left| \frac{y}{\frac{p}{y}} \right|$$
$$= \left| \frac{y^{2}}{p} \right| = \left| \frac{2px}{p} \right| = 2|x|,$$

所以,次切线长为切点横坐标的两倍,

(6) 次法线长为
$$l_N = |PN| = |yy'| = \left| y \cdot \frac{p}{y} \right| = |p|$$
, 所以,次法线长为一常量.

由此, 拋物线的切线可以这样作: 由曲线 $y^2 = 2px$ 上的任: 由曲点 M(x,y) 向 Ox 轴作 线, 得交点 P. 由于 yy' = p, 故当 p > 0 (p < 10) 时, 在 Ox 轴上 P 点 的左(右) 侧取点 T, 如 图 2.34, 使 |PT|

图 2.34

2|x|,联结 MT,此即所求的切线.

1068. 证明指数曲线 $y = a^{x}(a > 0$, 且 $a \ne 1$) 有定长的次切线. 给出作指数曲线的切线的方法.

证 次切线长为

$$l_T = \left| \frac{y}{y'} \right| = \left| \frac{a^x}{a^x \ln a} \right| = \frac{1}{|\ln a|}.$$

从而 47 为常量・

由此,该曲线的切线可以这样作:对于曲线 $y = a^x$ 上任一点 M(x,y) 向 Ox 轴作垂线,得交点 P. 由于当 a

> 1时 yy' > 0,当 0 < a < 1时 yy' < 0,故在 Ox轴上点 P的左侧(当 a > 1时)或右侧(当 0 < a < 1时)取点 T,使 $|PT| = \frac{1}{|\ln a|}$,联接 MT,此即所求的切线 (图 2.35).

图 2.35

1069. 求悬链线

$$y = a \operatorname{ch} \frac{x}{a}$$

上任一点 $M(x_o, y_o)$ 处的法线长.

解 法线长为

|MN|

$$= |y| \sqrt{1+y^2} \Big|_{(x_0,y_0)}.$$

由于

$$y' = a \cdot \frac{1}{a} \operatorname{sh} \frac{x}{a} = \operatorname{sh} \frac{x}{a},$$

$$\sqrt{1 + y'^2} = \sqrt{1 + \operatorname{sh}^2 \frac{x}{a}} = \left| \operatorname{ch} \frac{x}{a} \right|$$

$$= \left| \frac{y}{a} \right|,$$

故

$$|MN| = |y_0| \cdot \left| \frac{y_0}{a} \right| = \frac{y_0^2}{|a|},$$

即

$$|MN| = \frac{y_0^2}{|a|} \quad (a \neq 0).$$

1070. 证明内摆线

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}(a > 0)$$

的切线介于坐标轴间的部分的长为一常量。

证 由方程 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ 求得导数 $y' = -\sqrt[3]{\frac{y}{x}}$. 对于曲线上任一点 $(x_0, y_0)(x_0 \neq 0)$ 处,其切线方程为

$$y - y_0 = -\sqrt[3]{\frac{y_0}{x_0}}(x - x_0)$$
.

它在两坐标轴上的截距分别为

$$l_x = x_0 + \sqrt[3]{x_0 y_0^2} \not \not b l_y = y_0 + \sqrt[3]{x_0^2 y_0}.$$

于是,切线在两坐标轴间的部分长为

$$l = \sqrt{l_x^2 + l_y^2}.$$

由于,

$$l_x^2 + l_y^2 = x_0^2 + y_0^2 + 3x_0 \sqrt[3]{x_0 y_0^2} + 3y_0 \sqrt[3]{x_0^2 y_0}$$

$$= x_0^2 + y_0^2 + 3 \sqrt[3]{x_0^2 y_0^2} (\sqrt[3]{x_0^2} + \sqrt[3]{y_0^2})$$

$$= x_0^2 + y_0^2 + 3 \sqrt[3]{a^2 x_0^2 y_0^2}$$

$$= (a^{\frac{2}{3}} - y_0^{\frac{2}{3}})^3 + y_0^2 + 3(ax_0 y_0)^{\frac{2}{3}}$$

$$= a^2 - 3a^{\frac{4}{3}}y_0^{\frac{2}{3}} + 3a^{\frac{2}{3}}y_0^{\frac{4}{3}} + 3(ax_0 y_0)^{\frac{2}{3}}$$

$$= a^2 - 3a^{\frac{2}{3}}y_0^{\frac{2}{3}} (a^{\frac{2}{3}} - y_0^{\frac{2}{3}}) + 3(ax_0 y_0)^{\frac{2}{3}}$$

$$= a^2 - 3(ax_0 y_0)^{\frac{2}{3}} + 3(ax_0 y_0)^{\frac{2}{3}}$$

$$= a^2.$$

故l = a,即内摆线

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}} (a > 0)$$

的切线介于坐标轴间部分的长为一常量,

1071. 若拋物线 $y = ax^2 + bx + c 与 Ox 轴相切,则系数 a,b,c 间的关系如何?$

解 由方程 $y = ax^2 + bx + c$ 求得导数 y' = 2ax + b. 要抛物线与 Ox 轴相切,需 y' = 0,所以

$$2ax + b = 0$$
.

即

$$x = -\frac{b}{2a}; \tag{1}$$

另一方面,切点的横坐标满足:

$$ax^2 + bx + c = 0$$

即

$$x = -\frac{b}{2a} \pm \frac{I}{2a} \sqrt{b^2 - 4ac}. \tag{2}$$

比较(1) 式及(2) 式,得

$$b^2-4ac=0,$$

此即所求的 a,b,c 间的关系.

1072. 在甚么条件下,三次抛物线

$$y = x^3 + px + q$$

与Ox轴相切?

解 由方程 $y = x^3 + px + q$ 求得 $y' = 3x^2 + p$. 要此曲线与 Ox 轴相切,必须满足

$$\begin{cases} 3x^{2} + p = 0, & (1) \\ x^{3} + px + q = 0. & (2) \end{cases}$$

由(2) 式得 $x(x^2 + p) = -q$,两端平方,则

$$x^{2}(x^{2} + p)^{2} = q^{2}. (3)$$

以(1) 式代入(3) 式,得

$$-\frac{p}{3}\cdot\left(-\frac{p}{3}+p\right)^2=q^2.$$

即

$$\left(\frac{p}{3}\right)^3 + \left(\frac{q}{2}\right)^2 = 0,$$

此即所求的条件:

1073. 当参数 a 为何值时, 抛物线 $y = ax^2$ 与曲线 $y = \ln x$ 相切?

解 按题意,我们有

$$(ax^2)' = (\ln x)',$$

即

$$x^2=\frac{1}{2a}\ (a\neq 0)\,,$$

从而

$$y=a\cdot\frac{1}{2a}=\frac{1}{2}.$$

同时,由于在切点相切,其纵坐标也必需相等,所以

$$\ln x = \frac{1}{2}, \text{ If } x = \sqrt{e}.$$

最后得到

$$a=\frac{1}{2x^2}=\frac{1}{2e}$$
.

1074. 证明曲线

$$y = f(x) \left(f(x) > 0 \right)$$

及
$$y = f(x)\sin ax$$
,

其中 f(x) 为可微分的函数,于公共点彼此相切.

证 解曲线方程

$$\begin{cases} y = f(x), \\ y = f(x)\sin ax, \end{cases}$$

得 $\sin ax = 1$, $x = \frac{(4k+1)\pi}{2a}(k)$ 整数), 这就是两曲线 交点的横坐标. 两曲线在交点处切线的斜率分别为

$$k_{1} = f'\left(\frac{4k+1}{2a}\pi\right),$$

$$k_{2} = f'\left(\frac{4k+1}{2a}\pi\right)\sin\left(\frac{4k+1}{2}\pi\right)$$

$$+ a\cos\left(\frac{4k+1}{2}\pi\right)f\left(\frac{4k+1}{2a}\pi\right)$$

$$= f'\left(\frac{4k+1}{2a}\pi\right).$$

从面

$$\mathbf{k}_1 = \mathbf{k}_2$$

所以两曲线在公共点彼此相切.

1075. 证明双曲线族 $x^2 - y^2 = a$ 及 xy = b 形成一正交网,就是说这两族中的曲线成直角相交.

证 设双曲线 $x^2 - y^2 = a$ 与双曲线 xy = b 相交于点 P(x,y),则在此点双曲线 $x^2 - y^2 = a$ 的切线的斜率 k_1 满足: $2x - 2yk_1 = 0$,所以,

$$k_1=\frac{x}{y};$$

在同一点双曲线 xy = b 的切线的斜率 k_2 满足: $y + xk_2 = 0$,所以,

$$k_2 = -\frac{y}{x};$$

由此得到

$$k_1k_2=\frac{x}{y}\cdot\left(-\frac{y}{x}\right)=-1.$$

因此,两双曲线交成直角,故此两曲线族形成一正交 网.

1076. 证明抛物线族

$$y^2 = 4a(a-x) \ (a>0)$$

及 $y^2 = 4b(b+x) (b>0)$

形成正交网。

证 设抛物线 $y^2 = 4a(a-x)$ 与抛物线 $y^2 = 4b(b+x)$ 相交于点 P(x,y),则在此点 $y^2 = 4a(a-x)$ 的切线的斜率 k_1 满足 $2yk_1 = -4a$,所以,

$$k_1 = -\frac{2a}{y};$$

在同一点抛物线 $y^2 = 4b(b+x)$ 的切线的斜率 k_2 满足: $2yk_2 = 4b$, 所以,

$$k_z=\frac{2b}{y};$$

由此得到

$$k_1 k_2 = -\frac{4ab}{v^2}. \tag{1}$$

但点 P(x,y) 同时在这两条抛物线上,故

$$4a(a-x)=4b(b+x).$$

于是,x = a - b,所以

$$y^2 = 4a(a - a + b) = 4ab. (2)$$

以(2) 式代入(1) 式,得知在交点处,两切线的斜率满足 $k_1k_2 = -1$,

故此两切线直交,由此可知,该两抛物线族形成正交 网.

1077. 写出曲线 $x = 2t - t^2$ 及 $y = 3t - t^3$ 上于(a)t = 0,(6)t = 1 各点处的切线和法线的方程.

解 由手

$$\frac{dy}{dx} = \frac{3-3t^2}{2-2t} = \frac{3}{2}(1+t),$$

所以,有

(a) 当 t == 0 时,

$$x = 0, y = 0, \frac{dy}{dx} = \frac{3}{2}.$$

切线方程为

$$y = \frac{3}{2}x \cdot \mathbb{P} \ 3x - 2y = 0$$

法线方程为

$$y = -\frac{2}{3}x$$
, $\mathbb{P}[2x + 3y = 0]$.

(6) 当t = 1时,

$$x = 1, y = 2, \frac{dy}{dx} = 3.$$

切线方程为

$$y-2=3(x-1)$$
, $y=0$, $y=1=0$,

法线方程为

$$y-2=-\frac{1}{3}(x-1)$$
, $x+3y-7=0$.

1078. 写出曲线

$$x = \frac{2t + t^2}{1 + t^3}, \quad y = \frac{2t - t^2}{1 + t^3}$$

在(a)t=0,(6)t=1,(B) $t=\infty$ 各点的切线与法线的方程。

解 由于

$$\frac{dy}{dx} = \frac{2 - 2t - 4t^3 + t^4}{2 + 2t - 4t^3 - t^4},$$

所以,有

(a) 当 t = 0 时,

$$x=0,y=0,\frac{dy}{dx}=1.$$

切线方程为

$$y=x$$
;

法线方程为

$$y = -x$$
.

(6) 当 t = 1 时,

$$x = \frac{3}{2}, y = \frac{1}{2}, \frac{dy}{dx} = 3.$$

切线方程为

$$y - \frac{1}{2} = 3(x - \frac{3}{2})$$
, $\mathbb{P}[3x - y - 4 = 0]$

法线方程为

$$y - \frac{1}{2} = -\frac{1}{3} \left(x - \frac{3}{2} \right)$$
,即 $x + 3y - 3 = 0$;
(B) 当 $t = \infty$ 时,

$$x = 0, y = 0, \frac{dy}{dx} = -1.$$

(意即:当 $t \to \infty$ 时, $x \to 0, y \to 0, \frac{dy}{dx} \to -1$).

切线方程为

$$y = -x$$

法线方程为

$$y=x$$
.

1079. 写出摆线(旋轮线)

$$x = a(t - \sin t), y = a(1 - \cos t)$$

上任意一点 $t = t_0$ 处的切线方程.给出摆线的切线的作法.

解 因为

$$\frac{dy}{dx}\Big|_{t=t_0} = \frac{a\sin t}{a(1-\cos t)}\Big|_{t=t_0}$$

$$= \cot g \frac{t}{2}\Big|_{t=t_0} = \cot g \frac{t_0}{2}.$$

于是,切线方程为

$$y - a(1 - \cos t_0) = \operatorname{ctg} \frac{t_0}{2} \cdot (x - a(t_0 - \sin t_0)),$$
 化简得

$$y-2a=(x-at_0)\operatorname{ctg}\frac{t_0}{2}.$$

图 2-36

由此可知,切线通过点 $(at_0,2a)$,其斜率为 ctg $\frac{t_0}{2}$. 如图 2.36 中所示, $\angle T'O'P=t_0$,而

$$OT' = \widehat{T'P} = at_0, T'T = 2a,$$

故 T 点的坐标为 $(at_0,2a)$,它在切线上. 其次,联接 PT 及 PT',则 $PT' \perp PT$,

$$k_{PT} = \operatorname{tg}\left(\frac{\pi}{2} - \angle PTT'\right) = \operatorname{tg}\left(\frac{\pi}{2} - \frac{t_0}{2}\right)$$

$$= \operatorname{ctg}\frac{t_0}{2}.$$

这样,PT 就通过点 $(at_0,2a)$,且其斜率为 $\operatorname{ctg} \frac{t_0}{2}$,所以,

直线 PT 即为所求的切线.于是摆线的切线可以这样作.先联接切点与滚动的圆的接触点(即点 P),然后,过 P 作其垂直线,此即所求的切线.

1080. 证明曳物线

$$x = a \left(\ln tg \left(\frac{t}{2} + \cos t \right), \right.$$

$$y = a \sin t \ (a > 0, 0 < t < \pi)$$

有一定长的切线段:

证 切线段的长 =
$$\left| \frac{y}{y'_x} \right| \sqrt{1 + y'_x^2}$$
, 而
$$\frac{dy}{dx} = \frac{a\cos t}{a\left(\frac{1}{\sin t} - \sin t\right)} = \frac{\sin t}{\cos t},$$

所以

$$\left| \frac{y}{y'_x} \right| \sqrt{1 + y'_x^2} = \left| \frac{a \sin t}{\frac{\sin t}{\cos t}} \right| \sqrt{1 + \frac{\sin^2 t}{\cos^2 t}}$$

$$= |a| |\cos t| \cdot \frac{1}{|\cos t|}$$

$$= |a|,$$

这是一个常量,故曳物线有定长的切线段.

写出下列曲线在指定点的切线与法线方程:

1081.
$$\frac{x^2}{100} + \frac{y^2}{64} = 1$$
, $M(6, 6.4)$.

解 由于

$$y' = -\frac{64x}{100y} = -\frac{16x}{25y}$$

从而点 M 处的导数

$$y'|_{M} = -\frac{16 \times 6}{25 \times 6.4} = -\frac{3}{5}$$

此即曲线在 M 点的切线的斜率,

所以,切线方程为

$$y = 6.4 = -\frac{3}{5}(x - 6)$$
, $\mathbb{H} 3x + 5y - 50 = 0$;

法线方程为

$$y - 6.4 = \frac{5}{3}(x - 6)$$
, $10.8 = 0$.

1082. $xy + \ln y = 1$, M(1,1).

解 先求 y. 由于

$$xy'+y+\frac{y'}{y}=0,$$

从而

$$y' = -\frac{y^2}{x+y}, \quad y' \Big|_{x=1 \atop x=t} = -\frac{1}{2},$$

故切线方程为

$$y-1=-\frac{1}{2}(x-1)$$
, $x=2y-3=0$;

法线方程为

$$y-1=2(x-1)$$
, $y=2x-y-1=0$.

§ 4. 函数的微分

 1° 函数的微分 苍自变数为x的函数y = f(x) 之增量可表为下形

$$\Delta y = A(x)dx + o(dx),$$

其中 $dx = \Delta x$,则此增量的线性主部称为函数 y 的微分:

$$dy = A(x)dx$$

函数 y = f(x) 的微分存在的必要且充分条件为存在有限的导函数 y' = f'(x),且有

$$dy = y^t dx. (1)$$

若自变数 x 为另一自变数的函数,公式(1) 于这种情形下仍然有效 (一阶微分的不变性)。

 2° 函数的微小增量的估计 为了计算可微分的函数 f(x) 的微小增量可利用公式

$$f(x + \Delta x) - f(x) \approx f'(x)\Delta x$$

若 $f'(x) \neq 0$,当 $|\Delta x|$ 充分小时,它的相对误差可以任意地小。

特别情形,若计算自变数 x 的绝对误差等于 $|\Delta x|$,则函数 y = f(x) 的绝对误差 $|\Delta y|$ 和相对误差 δy 用下列公式近似地表示出来:

$$|\Delta y| = |f'(x)\Delta x|$$

及

$$\delta y = \left| (\ln f(x))' \Delta x \right| = \left| \frac{f'(x)}{f(x)} \Delta x \right|.$$

1083. 设;

$$(a)\Delta x = 1, (6)\Delta x = 0.1, (B)\Delta x = 0.01,$$

对于函数

$$f(x) = x^3 - 2x + 1$$

求出:(1) $\Delta f(1)$,(2)df(1),并比较它们.

$$\mathbf{f}(1) = f(1 + \Delta x) - f(1)$$

$$= (\Delta x + 1)^3 - 2(1 + \Delta x) + 1 - (1 - 2 + 1)$$

 $=\Delta x+3(\Delta x)^2+(\Delta x)^3,$ $df(1)=f'(1)\Delta x=(3x^2-2)|_{x=1}\cdot\Delta x=\Delta x,$ 将所求值列表如下:

		$\Delta f(1)$	df(1)
- - -	Δx	$\Delta x + 3(\Delta x)^2 + (\Delta x)^3$	Δx
(a)	$\Delta x = 1$	5	1
(5)	$\Delta x = 0$, 1	0.131	0.1
(в)	$\Delta x = 0.01$	0. 010301	0 . 01

从上表可以看出,当 Δx 值愈小时, $\Delta f(1)$ 与 df(1) 之差就愈小。

1084. 运动方程是

$$x = 5t^2$$
,

其中t以秒来度量,x以公尺来度量.设(a) $\Delta t = 1$ 秒, (6) $\Delta t = 0.1$ 秒,(B) $\Delta t = 0.001$ 秒,对 t = 2秒的时刻,求出路线的增量 Δx 及路线的微分 dx,并作比较.

解
$$\Delta x = 5(2 + \Delta t)^2 - 5 \cdot 2^2 = 20\Delta t + 5(\Delta t)^2$$
,
 $dx = x_t'|_{t=2} \cdot \Delta t = 10t|_{t=2} \cdot \Delta t = 20\Delta t$,

- (a) 当 $\Delta t = 1$ 秒时, $\Delta x = 25$ 公尺,dx = 20 公尺;
- (6) 当 $\Delta t = 0.1$ 秒时,

$$\Delta x = 2.05$$
 公尺, $dx = 2$ 公尺;

(B) 当 $\Delta t = 0.001$ 秒时,

 $\Delta x = 0.020005$ 公尺, dx = 0.02 公尺.

由上可以看出,当 Δt 愈小时, $\Delta x = dx$ 就愈小。

求下列函数 y 的微分:

1085.
$$y = \frac{1}{x}$$
.

$$\mathbf{M}$$
 $y' = -\frac{1}{x^2}, dy = -\frac{1}{x^2}dx(x \neq 0).$

1086.
$$y = \frac{1}{a} \operatorname{arc} \operatorname{tg} \frac{x}{a} (a \neq 0).$$

$$\mathbf{ff} \quad y' = \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{1 + \frac{x^2}{a^2}} = \frac{1}{a^2 + x^2},$$

$$dy = \frac{dx}{a^2 + x^2}.$$

$$1087. y = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right|.$$

$$\mathbf{ff} \quad y' = \frac{1}{2a} \left(\frac{1}{x-a} - \frac{1}{x+a} \right) = \frac{1}{x^2 - a^2},$$

$$dy = \frac{dx}{x^2 - a^2} (|x| \neq |a|).$$

1088. $y = \ln|x + \sqrt{x^2 + a}|$.

$$\mathbf{M} \quad y' = \frac{1}{\sqrt{x^2 + a}}, dy = \frac{dx}{\sqrt{x^2 + a}}.$$

1089. $y = \arcsin \frac{x}{a} (a \neq 0)$.

$$y' = \frac{|a|}{\sqrt{a^2 - x^2}} \cdot \frac{1}{a} = \frac{\operatorname{sgn} a}{\sqrt{a^2 - x^2}},$$

$$dy = \frac{\operatorname{sgn} a}{\sqrt{a^2 - x^2}} dx \ (|x| < |a|).$$

$$1090. \ (a) d(xe^x); \qquad (6) d(\sin x - x \cos x);$$

$$(b) d\left(\frac{1}{x^3}\right); \qquad (c) d\left(\frac{\ln x}{\sqrt{x}}\right);$$

$$(\pi) d(\sqrt{a^2 + x^2}); \qquad (e) d\left(\frac{x}{\sqrt{1 - x^2}}\right);$$

$$(\pi) d\ln(1 - x^2); \qquad (3) d\left(\arctan \cos \frac{1}{|x|}\right);$$

$$(a) d\left(\frac{\sin x}{2\cos^2 x} + \frac{1}{2}\ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right|\right)$$

$$\mathbf{ff} \qquad (a) d(xe^x) = (xe^x)' dx = e^x(x + 1) dx;$$

$$(b) d(\sin x - x \cos x) = (\sin x - x \cos x)' dx$$

$$= x \sin x dx;$$

$$(b) d\left(\frac{1}{x^3}\right) = -\frac{3}{x^3} dx \ (x \neq 0);$$

$$(c) d\left(\frac{\ln x}{\sqrt{x}}\right) = \frac{\frac{1}{x}}{x} \frac{\sqrt{x} - \frac{1}{2\sqrt{x}} \ln x}{x} dx$$

$$= \frac{2 - \ln x}{2x \sqrt{x}} dx \ (x > 0);$$

$$(\pi) d(\sqrt{a^2 + x^2}) = \frac{x dx}{\sqrt{a^2 + x^2}};$$

$$(e) d\left(\frac{x}{\sqrt{1 - x^2}}\right) = \frac{\sqrt{1 - x^2} + \frac{x^2}{\sqrt{1 - x^2}}}{1 - x^2} dx$$

$$= \frac{dx}{(1 - x^2)^{\frac{3}{2}}} (|x| < 1);$$

(ж)
$$d\ln(1-x^2) = -\frac{2xdx}{1-x^2} \ (|x| < 1);$$
(з) $d\left(\arccos\frac{1}{|x|}\right) = -\frac{1}{\sqrt{1-\frac{1}{x^2}}}\left(-\frac{1}{x^2}\right)$

$$\cdot \frac{|x|}{x}dx$$

$$= \frac{dx}{x\sqrt{x^2-1}} \ (|x| > 1);$$
(и) $d\left(\frac{\sin x}{2\cos^2 x} + \frac{1}{2}\ln\left|\operatorname{tg}\left(\frac{x}{2} + \frac{\pi}{4}\right)\right|\right)$

$$= \left(\frac{\cos^3 x + 2\sin^2 x \cos x}{2\cos^3 x} + \frac{1}{2\cos x}\right)dx$$

$$= \frac{dx}{\cos^3 x} \left(x \neq \frac{\pi}{2} + k\pi, k \ \text{为整数}\right).$$

设u,v,w为x的可微分的函数.求函数y的微分,设:

1091. y = uvw.

$$\mathbf{M} \quad dy = uwdu + uwdv + uvdw.$$

1092.
$$y = \frac{u}{v^2}$$
.

$$\mathbf{ff} \quad dy = \frac{v^2 du - 2uv dv}{v^4}$$
$$= \frac{v du - 2u dv}{v^3} \quad (v \neq 0).$$

1093.
$$y = \frac{1}{\sqrt{u^2 + v^2}}$$
.

$$= -\frac{udu + vdv}{(u^2 + v^2)^{\frac{3}{2}}} (u^2 + v^2 > 0).$$

1094. $y = \operatorname{arc} \operatorname{tg} \frac{u}{v}$.

$$\mathbf{ff} \quad dy = \frac{1}{1 + \frac{u^2}{v^2}} \cdot \frac{vdu - udv}{v^2}$$
$$= \frac{vdu - udv}{u^2 + v^2} (u^2 + v^2 > 0, v \neq 0).$$

1095. $y = \ln \sqrt{u^2 + v^2}$.

$$dy = \frac{2udu + 2vdv}{2(u^2 + v^2)}$$

$$= \frac{udu + vdv}{u^2 + v^2} \quad (u^2 + v^2 > 0).$$

1096. 求

(a)
$$\frac{d}{dx^3}(x^3-2x^6-x^9)$$
; (6) $\frac{d}{dx^2}\left(\frac{\sin x}{x}\right)^{+}$;

(B)
$$\frac{d(\sin x)}{d(\cos x)}$$
; (c) $\frac{d(\operatorname{tg} x)}{d(\operatorname{ctg} x)}$;

(
$$\pi$$
) $\frac{d(\arcsin x)}{d(\arccos x)}$.

$$\mathbf{ff} \qquad (a) \frac{d}{dx^3} (x^3 - 2x^6 - x^9)$$

$$= \frac{d}{dx^3} (x^3 - 2(x^3)^2 - (x^3)^3)$$

$$= 1 - 4x^3 - 3x^6;$$

(6) 由于 $\frac{\sin x}{x}$ 为偶函数,故不妨设 x > 0,则

$$\frac{d}{dx^2} \left(\frac{\sin x}{x} \right) = \frac{d}{dx^2} \left(\frac{\sin \sqrt{x^2}}{\sqrt{x^2}} \right)$$

$$= \frac{\frac{1}{2}\cos x - \frac{1}{2x}\sin x}{x^2}$$
$$= \frac{x\cos x - \sin x}{2x^3},$$

显然,上述结果对于 x < 0 也是正确的($x \neq 0$).

1097. 有半径为 R = 100 厘米及圆心角 α = 60°的扇形. 若(a) 其半径 R 增加 1 厘米;(6) 角 α 减小 30′,则扇形面积的 变化若干?求出精确的和近似的解.

(|x| < 1).

解 扇形面积
$$A = \frac{1}{2}R^2\alpha$$
, 其增量
$$\Delta A = \frac{\alpha}{2} [(R + \Delta R)^2 - R^2]$$
$$= \alpha R \Delta R + \frac{1}{2} \alpha (\Delta R)^2,$$

或

$$\Delta A = \frac{1}{2} R^2 \Delta \alpha.$$

扇形面积的微分

$$dA = R\alpha dR$$
.

或

$$dA = \frac{1}{2}R^2d\alpha.$$

增量是精确的解,微分是近似的解.

(a) 当
$$R = 100$$
, $\alpha = \frac{\pi}{3}$, $\Delta R = 1$ 时,
$$\Delta A = \frac{\pi}{6}(200 + 1) = 105.2 \text{ 平方厘米},$$

$$dA = 100 \cdot \frac{\pi}{3} = 104.7 \text{ 平方厘米}(增加).$$

(6) 当
$$\Delta a = -\frac{\pi}{360}$$
 时,
$$\Delta A = \frac{1}{2} \cdot 100^2 \cdot \left(-\frac{\pi}{360} \right) = -43.6 \text{ 平方厘米},$$

$$dA = \frac{1}{2} \cdot 100^2 \cdot \left(-\frac{\pi}{360} \right)$$

$$= -43.6 \text{ 平方厘米(減少)}.$$

1098. 单摆振动的周期(以秒计算) 按下式确定:

$$T=2\pi\sqrt{\frac{l}{g}},$$

其中 l 为摆长以厘米计, g = 981 厘米 / 每秒 3 为重力加速度.

为了使周期T增大0.05秒,对摆长l=20厘米的长度需要作多少修改?

解 周期 T 对摆长 l 的微分

$$dT = \frac{2\pi}{\sqrt{g}} \cdot \frac{1}{2\sqrt{l}} dl = \frac{\pi dl}{\sqrt{lg}}.$$

将 dT = 0.05, g = 981, l = 20 代入上式,即得

$$dl = \frac{0.05 \times \sqrt{981 \times 20}}{3.1416} \approx 2.23,$$

即摆长增加约 2.23 厘米.

利用函数之微分代替函数的增量,求下列各式之近似值:

1099. ³√1. 02.

解 设
$$f(x) = \sqrt[3]{x}, x_0 = 1, \Delta x = 0.02, 则$$

$$f'(x_0) = \frac{1}{3\sqrt[3]{x^2}}\bigg|_{x=1} = \frac{1}{3},$$

$$df(x_0) = f'(x_0)\Delta x = 0.0066.$$

于是

$$\sqrt[3]{1.02} = f(x_0 + \Delta x) \approx f(x_0) + df(x_0)$$

= 1 + 0.0066,

即

$$\sqrt[3]{1.02} \approx 1.007$$
.

1100. sin29°.

解 没
$$f(x) = \sin x$$
, $x_0 = \frac{\pi}{6}$, $\Delta x = -\frac{\pi}{180}$, 则 $\sin 29^\circ \approx \sin \frac{\pi}{6} - \frac{\pi}{180} \cos \frac{\pi}{6} = 0.4849$.

1101. cos151°.

解 设
$$f(x) = \cos x$$
, $x_0 = \frac{5\pi}{6}$, $\Delta x = \frac{\pi}{180}$, 则 $\cos 151^\circ \approx \cos \frac{5\pi}{6} - \sin \frac{5\pi}{6} \cdot \frac{\pi}{180} = -0.8748$.

1102. arc tg1.05.

解 设
$$f(x) = \arctan x$$
, $x_0 = 1.\Delta x = 0.05$,则 $\arctan 1.05 \approx \arctan 1.05 \cdot \frac{1}{2}$ $= 0.8104$ (公) $= 46^{\circ}26'$.

1103. lg11.

解
$$\lg 11 = \lg 10 + \lg 1.1 = 1 + \lg 1.1.$$

设 $f(x) = \lg x, x_0 = 1.\Delta x = 0.1, 则$
 $\lg 1.1 \approx \lg 1 + \frac{0.1}{\ln 10} = \frac{0.1}{2.3026} = 0.0434.$
于是

$$lg11 \approx 1.0434$$
.

1104. 证明近似公式:

$$\sqrt{a^2+x}\approx a+\frac{x}{2a}(a>0),$$

其中 $|x| \ll a$ (正数 $A \cap B$ 间的关系式 $A \ll B$ 表示 $A \in B$ 相比较时,A为高阶无穷小).

利用这个公式近似地计算:

(a)
$$\sqrt{5}$$
; (6) $\sqrt{34}$; (8) $\sqrt{120}$

并与表中的数值比较,

证
$$\partial f(y) = \sqrt{y}$$
, $y_0 = a^2$, $\Delta y = x$, 则

$$\sqrt{y_0 + \Delta y} \approx \sqrt{y_0} + \frac{1}{2\sqrt{y_0}} \Delta y$$

$$($$
当 $|\Delta y| \ll \sqrt{y_0}$ 时 $).$

于是,

$$\sqrt{a^2+x} \approx a + \frac{x}{2a}$$
,(当 $|x| \ll a$ 时)

(a)
$$\sqrt{5} = \sqrt{2^2 + 1} \approx 2 + \frac{1}{4} = 2.25$$
,

查表: $\sqrt{5} = 2.24$;

(6)
$$\sqrt{34} = \sqrt{6^2 - 2} \approx 6 - \frac{2}{2.6} = 5.833$$
,

查表: $\sqrt{34} = 5.831$;

(B)
$$\sqrt{120} = \sqrt{11^2 - 1} \approx 11 - \frac{1}{2.11} = 10.9546$$
,

査表: $\sqrt{120} = 10.9545$.

1105. 证明近似公式:

$$\sqrt[n]{a^n + x} \approx a + \frac{x}{na^{n-1}} (a > 0).$$

其中 $|x| \ll a$. 利用此公式近似地计算:

(a)
$$\sqrt[3]{9}$$
; (6) $\sqrt[4]{80}$; (B) $\sqrt[7]{100}$;

(г) ¹⁰/1000.

证 设
$$f(y) = \sqrt[q]{y}$$
, $y_0 = a^x$, $\Delta y = x$, 则

(a)
$$\sqrt[3]{9} = \sqrt[3]{2^3 + 1} \approx 2 + \frac{1}{3 \cdot 2^2} = 2.083$$
,
査表: $\sqrt[3]{9} = 2.080$;

(6)
$$\sqrt[4]{80} = \sqrt[4]{3^4 - 1} \approx 3 - \frac{1}{4 \cdot 3^3} = 2.9907$$
,
春表: $\sqrt[4]{80} = 2.9905$:

(B)
$$\sqrt[7]{100} = \sqrt[7]{2^7 - 28} \approx 2 - \frac{28}{7 \cdot 2^6} = 1.938$$
, 查表: $\sqrt[7]{100} = 1.931$;

(r)
$$\sqrt[19]{1000} = \sqrt[19]{2^{10} - 24} \approx 2 - \frac{24}{10 \cdot 2^9} = 1.9953,$$
查表: $\sqrt[19]{1000} = 1.9953.$

1106. 正方形的边x = 2.4 + 0.05 + . 由此计算所得正方

形的面积的相对误差和绝对误差如何?

解 正方形的面积 $A = x^2$. 于是,面积的相对误差为

$$\delta_A = \left| \frac{\Delta A}{A} \right| = \left| \frac{2x\Delta x}{x^2} \right| = 2 \left| \frac{\Delta x}{x} \right|$$
$$= 2 \cdot \frac{0.05}{2.4} = 4.2\%;$$

而绝对误差为

$$|\Delta A| = |2.45^2 - 2.4^2| = 0.24$$
 平方米.

- 1107. 为了计算出球的体积准确到 1%, 问度量球半径 R 时所允许发生的相对误差如何?
 - 解 球的体积 $V = \frac{4}{3}\pi R^3$, 从而

$$dV = \frac{4}{3}\pi \cdot 3R^2 dR = V \frac{3dR}{R},$$

即体积的相对误差是半径的相对误差的 3 倍:

$$\left| \frac{dV}{V} \right| = 3 \left| \frac{dR}{R} \right|.$$

因而, 半径 R 允许发生的相对误差为

$$\delta_R = \frac{1}{3} \delta_V \leqslant \frac{1}{3} \cdot 0.01 = 0.33\%.$$

1108. 借助于单摆的振动利用公式 $g = \frac{4\pi^2 l}{T^2}$ (其中 l 为摆长,T 为摆振动的全周期) 以求重力加速度. 当测量(a) 摆长 l (6) 周期 T 时的相对误差 δ 影响于值 g 几何?

解
$$(a)\delta_g = \left|\frac{dg}{g}\right| = \left|\frac{dl}{l}\right|$$
,于是

$$\delta_{\kappa} = \delta_{\ell}$$
,

即 g 的相对误差等于摆长的相对误差,

(6)
$$\delta_{g}=\left|\frac{-8\pi^{2}l\cdot T^{2}dT}{T^{3}\cdot 4\pi^{2}l}\right|-2\left|\frac{dT}{T}\right|$$
,于是 $\delta_{g}=2\delta_{T}$,

即 g 的相对误差是周期的相对误差的 2 倍,

1109. 求数 x(x > 0) 的常用对数的绝对误差,设此数的相对误差等于 δ .

解 设 $f(x) = \ln x$, 若数 δ 很小, 则有

$$ln(1+\delta) \approx \delta$$
.

因而,所要求的绝对误差

$$\left| \lg(x + \Delta x) - \lg x \right| = \left| \lg \left(1 + \frac{\Delta x}{x} \right) \right|$$
$$= \left| \lg(1 + \delta) \right| = \frac{1}{\ln 10} \ln(1 + \delta) \approx 0.43\delta.$$

1110. 证明:根据正切对数表所求得的角度比用具有同样多位小数的正弦对数表求得的角度更为精确。

证 正切对数函数的微分

$$d(\lg \lg \varphi) = \frac{d\varphi}{\ln 10 \cdot \lg \varphi \cos^2 \varphi}$$
$$= \frac{d\varphi}{\ln 10 \cdot \sin \varphi \cos \varphi},$$

于是

$$|d\varphi| = \ln 10 \cdot |\sin\varphi| \cdot |\cos\varphi| \cdot |d(\lg \lg\varphi)|; \tag{1}$$

而正弦对数函数的微分

$$d(\lg \sin \varphi) = \frac{\cos \varphi d\varphi}{\sin \varphi \ln 10},$$

于是

$$|d\varphi| = \ln 10 \cdot |\sin \varphi| \cdot \left| \frac{1}{\cos \varphi} \right|$$

$$\cdot |d(\lg \sin \varphi)|. \tag{2}$$

比较(1) 式及(2) 式的右端,由于假设确定 $\lg \sin \varphi$ 与 $\lg tg \varphi$ 时,具有同样的误差,而 $\frac{1}{\cos \varphi}$ $\geqslant 1 \geqslant |\cos \varphi|$,故由(2) 式所确定的 $|d\varphi|$ 不比(1) 式的 $|d\varphi|$ 小. 这就证明了求角度时用正切对数表更为精确.

§ 5. 高阶的导函数和微分

 1° 基本定义 函数 y = f(x) 的高阶导函数由下列关系式顺次地定义出来(假设对应的运算都有意义!):

$$f^{(n)}(x) = \{f^{(n-1)}(x)\}^t \ (n = 2,3,\cdots).$$

函数 y = f(x) 的高阶微分是根据下列公式顺次定义的:

$$d^{n}y = d(d^{n-1}y) \ (n = 2,3,\cdots),$$

其中采取 $d^1y = dy = y'dx$.

若 x 为自变数,则应有:

$$d^2x=d^3x=\cdots=0.$$

在这种情形下,下列公式正确

$$d^n y = y^n dx^n \not x y^{(n)} = \frac{d^n y}{dx^n}.$$

2°基本公式:

$$i \cdot (a^x)^{(n)} = a^x \ln^n a \qquad (a > 0)_+ (e^x)^{(n)} = e^x_+$$

$$1 \cdot (\sin x)^{(n)} = \sin \left(x + \frac{n\pi}{2} \right);$$

$$\mathbf{I}\cdot(\cos x)^{(n)}=\cos\left(x+\frac{n\pi}{2}\right);$$

$$\mathbb{N} \cdot (x^n)^{(n)} = m(m-1)\cdots(m-n+1)x^{m-n};$$

$$V. (\ln x)^{(n)} = \frac{(-1)^{n-1}(n-1)!}{x^n}.$$

 3° 莱布尼茲公式 若函数 $u = \varphi(x)$ 及 $v = \psi(x)$ 有 n 阶导函数 (可微分 n 次),则

$$(uv)^{(n)} = \sum_{i=0}^{n} C_n^i u^{(i)} v^{(n-i)},$$

其中 $u^{(0)}=u$, $v^{(0)}=v$,C,为由n个元素每次取i个的组合数.

同样地对于微分 d*(uv) 得:

$$d^n(uv) = \sum_{i=0}^n C^i_n d^{n-i} u d^i v,$$

其中设 $d^{\circ}u = u \otimes d^{\circ}v = v$.

求 y",设:

1111.
$$y = x \sqrt{1 + x^2}$$

$$y' = \sqrt{1+x^2} + \frac{x^2}{\sqrt{1+x^2}} = \frac{1+2x^2}{\sqrt{1+x^2}},$$

$$y'' = \frac{4x\sqrt{1+x^2} - \frac{x(1+2x^2)}{\sqrt{1+x^2}}}{1+x^2}$$

$$=\frac{x(3+2x^2)}{(1+x^2)^{\frac{3}{2}}}.$$

$$1112. \ y = \frac{x}{\sqrt{1-x^2}}.$$

$$y' = \frac{\sqrt{1 - x^2} + \frac{x^2}{\sqrt{1 - x^2}}}{1 - x^2}$$

$$= \frac{1}{(1 - x^2)^{\frac{3}{2}}},$$

$$y'' = \frac{3}{2} \cdot 2x \cdot (1 - x^2)^{-\frac{5}{2}} = \frac{3x}{(1 - x^2)^{\frac{5}{2}}}$$

$$(|x| < 1).$$

1113. $y = e^{-x^2}$.

M
$$y' = -2xe^{-x^2}, y'' = 2e^{-x^2}(2x^2 - 1).$$

1114. y = tgx.

解
$$y' = \frac{1}{\cos^2 x}$$
,
$$y'' = \frac{2\sin x}{\cos^3 x} \left(x \neq \frac{2k+1}{2} \pi, k 为整数 \right).$$

1115. $y = (1 + x^2)$ are tgx.

解
$$y' = 1 + 2x \arctan x$$
,
 $y'' = 2 \arctan x + \frac{2x}{1+x^2}$.

1116.
$$y = \frac{\arcsin x}{\sqrt{1 - x^2}}.$$

$$\mathbf{H} \quad y' = \frac{1}{1 - x^2} + \frac{x \arcsin x}{(1 - x^2)^{\frac{3}{2}}},$$

$$y'' = \frac{2x}{(1-x^2)^2} + \frac{\left(\frac{x}{\sqrt{1-x^2}} + \arcsin x\right) (1-x^2)^{\frac{3}{2}} + 3x^2 \sqrt{1} - x^2 \arcsin x}{(1-x^2)^{\frac{3}{2}}} = \frac{3x}{(1-x^2)} + \frac{(1+2x^2)\arcsin x}{(1-x^2)^{\frac{5}{2}}} = \frac{(|x| < 1)}{(1-x^2)^{\frac{5}{2}}}$$

1117. $y = x \ln x$.

解
$$y' = 1 + \ln x$$
, $y'' = \frac{1}{x}(x > 0)$.

1118. $y = \ln f(x)$.

$$\mathbf{M} \quad y' = \frac{f'(x)}{f(x)},$$
$$y'' = \frac{f(x)f''(x) - f'^{2}(x)}{f^{2}(x)} (f(x) > 0).$$

1119. $y = x(\sin(\ln x) + \cos(\ln x)).$

$$\mathbf{ff} \quad y' = \sin(\ln x) + \cos(\ln x)$$

$$+ x \cdot \frac{1}{x} (\cos(\ln x) - \sin(\ln x))$$

$$= 2\cos(\ln x),$$

$$y'' = -\frac{2\sin(\ln x)}{x} (x > 0).$$

1120. 设 $y = e^{\sin x}\cos(\sin x)$, 求 y(0), y'(0) 及 y''(0).

解
$$y(0) = 1$$
. 又
$$y' = e^{\sin x} (\cos x \cos(\sin x))$$

 $-\cos x\sin(\sin x)$].

于是,

$$v'(0) = e^0(1-0) = 1.$$

丽

$$y'' = e^{\sin x} (\cos^2 x \cos(\sin x) - \cos^2 x \sin(\sin x)$$

$$- \sin x \cos(\sin x) - \cos^2 x \sin(\sin x)$$

$$+ \sin x \sin(\sin x) - \cos^2 x \cos(\sin x)$$

$$= e^{\sin x} \{ -2\cos^2 x \sin(\sin x)$$

$$+ \sin x (\sin(\sin x) - \cos(\sin x)) \},$$

于是,

$$y''(0) = e^0\{0+0\} = 0.$$

设 $u = \varphi(x)$ 及 $v = \psi(x)$ 为可微分二次的函数. 求 y'', 设:

1121. $y = u^2$.

$$y' = 2uu',$$

$$y'' = 2u'^{2} + 2uu'' = 2(u'^{2} + uu'').$$

1122.
$$y = \ln \frac{u}{v}$$
.

$$y'' = \frac{u'}{u} - \frac{v'}{v},$$

$$y'' = \frac{uu'' - u'^2}{u^2} - \frac{vv'' - v'^2}{v^2} (uv > 0).$$

1123.
$$y = \sqrt{u^2 + v^2}$$
.

$$\mathbf{ff} \quad y' = \frac{uu' + vv'}{\sqrt{u^2 + v^2}},$$

$$y'' = \frac{(uu'' + u'^{2} + vv'' + v'^{2})\sqrt{u^{2} + v^{2}} - \frac{(uu' + vv')^{2}}{\sqrt{u^{2} + v^{2}}}}{u^{2} + v^{2}}$$

$$= \frac{(u^{2} + v^{2})(uu'' + vv'') + (u'v - v'u)^{2}}{(u^{2} + v^{2})^{\frac{3}{2}}}$$

$$(u^{2} + v^{2} > 0),$$

1124. $y = u^{\nu}(u > 0)$.

$$\mathbf{ff} \quad y' = u^{v} \Big(v' \ln u + \frac{vu'}{u} \Big),$$

$$y'' = u^{v} \Big(v' \ln u + \frac{vu'}{u} \Big)^{2}$$

$$+ u^{v} \Big(v'' \ln u + \frac{u'v'}{u} + \frac{(u'v' + vu'')u - vu'^{2}}{u^{2}} \Big)$$

$$= u^{v} \Big(\Big(v' \ln u + \frac{u'}{u} v \Big)^{2} + v'' \ln u + \frac{2u'v'}{u} + \frac{v}{v^{2}} (uu'' - u'^{2}) \Big).$$

设 f(x) 为可微分三次的函数、求 y'' 及 y''',设:

1125.
$$y = f(x^2)$$
.

$$\mathbf{ff} \quad y' = 2xf'(x^2),$$
$$y'' = 2f'(x^2) + 4x^2f''(x^2),$$

$$y''' = 4xf''(x^2) + 8xf''(x^2) + 8x^3f'''(x^2)$$
 $= 12xf''(x^2) + 8x^3f'''(x^2).$
1126. $y = f\left(\frac{1}{x}\right).$
 $y' = -\frac{1}{x^2}f'\left(\frac{1}{x}\right),$
 $y'' = \frac{2}{3}f'\left(\frac{1}{x}\right) + \frac{1}{3}f''\left(\frac{1}{x}\right),$

$$y'' = \frac{2}{x^3} f'\left(\frac{1}{x}\right) + \frac{1}{x^4} f''\left(\frac{1}{x}\right),$$

$$y''' = -\frac{6}{x^4} f'\left(\frac{1}{x}\right) - \frac{2}{x^5} f''\left(\frac{1}{x}\right)$$

$$-\frac{4}{x^5} f''\left(\frac{1}{x}\right) - \frac{1}{x^6} f'''\left(\frac{1}{x}\right)$$

$$= -\frac{1}{x^6} f'''\left(\frac{1}{x}\right) - \frac{6}{x^5} f''\left(\frac{1}{x}\right)$$

$$-\frac{6}{x^4} f'\left(\frac{1}{x}\right) \quad (x \neq 0).$$

 $1127. \ y = f(e^x).$

$$y'' = e^{x} f'(e^{x}),$$

$$y''' = e^{2x} f''(e^{x}) + e^{x} f'(e^{x}),$$

$$y'''' = e^{3x} f'''(e^{x}) + 3e^{2x} f''(e^{x}) + e^{x} f'(e^{x}).$$

1128. $y = f(\ln x)$.

$$\mathbf{ff} \quad y' = \frac{1}{x} f'(\ln x),$$

$$y'' = -\frac{1}{x^2} f'(\ln x) + \frac{1}{x^2} f''(\ln x)$$

$$= \frac{1}{x^2} [f''(\ln x) - f'(\ln x)],$$

$$y''' = -\frac{2}{x^3} (f''(\ln x) - f'(\ln x))$$

$$+ \frac{1}{x^3} (f'''(\ln x) - f''(\ln x))$$

$$- \frac{1}{x^3} (f'''(\ln x) - 3f''(\ln x) - 2f'(\ln x))$$

$$(x \ge 0).$$

1129. $y = f(\varphi(x))$, 其中 $\varphi(x)$ 是可多次微分的函数,

$$\mathbf{ff} \quad y' = \varphi(x)f'(\varphi(x)),$$

$$y'' = \varphi^{-2}(x)f''(\varphi(x)) + \varphi''(x)f'(\varphi(x)),$$

$$y''' = \varphi^{-3}(x)f'''(\varphi(x))$$

$$\frac{1}{2}\varphi(x)\varphi''(x)f'''(\varphi(x))^{-1}$$

于是,

$$d^2y = \frac{dx^2}{(1+x^2)^{\frac{3}{2}}}.$$

1132.
$$y = \frac{\ln x}{x}$$
.

$$\mathbf{M} \quad y' = \frac{1 - \ln x}{x^2}, y'' = \frac{2\ln x - 3}{x^3},$$

于是,

$$d^2y = \frac{2\ln x - 3}{x^3} dx^2 \quad (x > 0).$$

1133. $y = x^x$.

$$\mathbf{f} \mathbf{f} \mathbf{f} \mathbf{g}' = x^x (1 + \ln x),$$

$$y'' = x^x \Big((1 + \ln x)^2 + \frac{1}{x} \Big),$$

于是,

$$d^2y = x^x \left((1 + \ln x)^2 + \frac{1}{x} \right) dx^2 (x > 0).$$

令 u 及 v 为变数 x 的可微分两次的函数,求 d^2y ,设:

1134. y = uv.

$$\mathbf{ff} \quad dy = udv + vdu,$$

$$d^2y = dudv + ud^2v + dvdu + vd^2u$$
$$= ud^2v + 2dudv + vd^2u.$$

$$1135 \div y = \frac{u}{v}.$$

$$\mathbf{ff} \quad dy = \frac{vdu - udv}{v^2},$$

$$d^{2}y = \frac{v^{2}(dvdu + vd^{2}u - dudv \cdot ud^{2}v) - 2vdv (vdu - udv)}{v^{4}}$$

$$= \frac{v(vd^{2}u - ud^{2}v) - 2dv(vdu - udv)}{v^{3}} (v \neq 0)$$

1136. $y = u^m v^n (m 及 n 为常数).$

$$\mathbf{A}y = mu^{m-1}v^{n}du + nu^{m}v^{n-1}dv,
d^{2}y = m(m-1)u^{m-2}v^{n}du^{2}
+ mu^{m-1}(v^{n}d^{2}u + nv^{n-1}dudv)
+ mnu^{m-1}v^{n-1}dudv
+ nu^{m}(n-1)v^{n-2}dv^{2} + nu^{m}v^{n-1}d^{2}v
= u^{m-2}v^{n-2}\{[m(m-1)v^{2}du^{2}
+ 2mnuvdudv + n(n-1)u^{2}dv^{2}]
+ uv(mvd^{2}u + nud^{2}v)\}.$$

1137. $y = a^*(a > 0)$.

$$\begin{aligned} \mathbf{ff} \quad dy &= a^* \ln a du, \\ d^2 y &= a^* \ln^2 a \cdot du^2 + a^* \ln a \cdot d^2 u \\ &= a^* \ln a (\ln a \cdot du^2 + d^2 u) (a > 0). \end{aligned}$$

1138. $y = \ln \sqrt{u^2 + v^2}$.

$$d^{2}y = \frac{(u^{2} + v^{2})(du^{2} + ud^{2}u + dv^{2} + vd^{2}v) - 2(udu + vdv)^{2}}{(u^{2} + v^{2})^{2}}$$

$$= \frac{(v^2 - u^2)du^2 - 4uvdudv + (u^2 - v^2)dv^2 + (u^2 + v^2)(ud^2u + vd^2v)}{(u^2 + v^2)^2}$$

$$(u^2 + v^2 > 0).$$

1139. $y = \operatorname{arctg} \frac{u}{v}$.

$$\mathbf{M} dy = \frac{vdu - udv}{v^2 + v^2},$$

$$d^{2}y = \frac{(u^{2} + v^{2})(vd^{2}u - ud^{2}v)}{(u^{2} + v^{2})^{\frac{2}{2}}} \frac{2(udu + vdv)(vdu - udv)}{(u^{2} + v^{2})^{\frac{2}{2}}}$$

$$= \frac{(u^{2} + v^{2})(vd^{2}u - ud^{2}v) + 2uv(dv^{2} - du^{2}) + 2(u^{2} - v^{2})dudv}{(u^{2} + v^{2})^{2}}$$

$$(v \neq 0).$$

求以参数给出的函数 y = y(x) 的导函数 $y'_x + y''_x^2$, y'''_x^2 ,设:

1140. $x = 2t - t^2$, $y = 3t - t^3$.

M
$$y'_x = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3 - 3t^2}{2 - 2t} = \frac{3}{2}(t + 1),$$

$$y_x''^2 = \frac{\frac{dy_x'}{dt}}{\frac{dx}{dt}} = \frac{\frac{3}{2}}{2-2t} = \frac{3}{4(1-t)},$$

$$y_{x}^{w_{3}} = \frac{\frac{dy_{x}^{w_{2}}}{dt}}{\frac{dx}{dt}} = \frac{\frac{3}{4(1-t)^{2}}}{2-2t}$$

$$= \frac{3}{8(1-t)^3} (t \neq 1).$$

1141.
$$x = a\cos t, y = a\sin t$$
.

1142.
$$x = a(t - \sin t), y = a(1 - \cos t)$$
.

$$y'_{x} = \frac{a\sin t}{a(1-\cos t)} = \cot g \frac{t}{2}.$$

$$-\frac{1}{2\sin^{2}\frac{t}{2}}$$

$$y''_{x}^{2} = \frac{1}{a(1-\cos t)} = -\frac{1}{4a\sin^{4}\frac{t}{2}},$$

$$y_{x}^{m_{3}} = \frac{\frac{\cos\frac{t}{2}}{2a\sin^{5}\frac{t}{2}}}{a(1-\cos t)} = \frac{\cos\frac{t}{2}}{4a^{2}\sin^{7}\frac{t}{2}}$$

 $(t \neq 2k\pi, k$ 为整数).

1143. $x = e^t \cos t$, $y = e^t \sin t$.

$$\mathbf{ff} \quad y_x' = \frac{e^t(\sin t + \cos t)}{e^t(\cos t - \sin t)} = \frac{\sin\left(\frac{\pi}{4} + t\right)}{\cos\left(\frac{\pi}{4} + t\right)}$$

$$y_{x}^{m_{3}} = \frac{1}{\cos^{2}\left(\frac{\pi}{4} + t\right)},$$

$$y_{x}^{m_{2}} = \frac{1}{e^{-t}(\cos t - \sin t)}$$

$$= \frac{e^{-t}}{\sqrt{2}\cos^{3}\left(\frac{\pi}{4} + t\right)},$$

$$y_{x}^{m_{3}} = \frac{1}{\sqrt{2}}e^{-t}\left(-\cos^{-3}\left(\frac{\pi}{4} + t\right) + 3\cos^{-4}\left(\frac{\pi}{4} + t\right)\sin\left(\frac{\pi}{4} + t\right)\right)}{e^{t}(\cos t - \sin t)}$$

$$= \frac{e^{-2t}(2\sin t + \cos t)}{\sqrt{2}\cos^{5}\left(\frac{\pi}{4} + t\right)}\left(t \neq \frac{\pi}{4} + k\pi, k \text{ 为整数}\right).$$
1144. $x = f'(t), y = tf'(t) - f(t).$

$$y_{x}' = \frac{tf''(t)}{f''(t)} = t,$$

$$y_{x}^{m_{3}} = -\frac{f'''(t)}{f''(t)} = -\frac{f(t)}{[f''(t)]^{3}}$$

$$(f''(t) \neq 0).$$

1145. 设函数 y = f(x) 是可微分若干次的. 求反函数 $x = f^{-1}(y)$ 的导函数 x', x'', x''', x'''' (设这些导函数都存在).

$$\mathbf{ff} \quad x' = \frac{1}{y'},$$

$$x'' = -\frac{1}{y'^{\frac{1}{2}}} \frac{dy'}{dy}$$

$$= -\frac{1}{y'^{\frac{1}{2}}} \frac{dy'}{dx} \cdot \frac{dx}{dy} = -\frac{y''}{y'^{\frac{3}{3}}},$$

$$x''' = -\frac{y'''' \cdot \frac{1}{y'}y'^{\frac{3}{3}} - 3y'^{\frac{1}{2}} \cdot y'' \cdot \frac{1}{y'} \cdot y''}{y'^{\frac{6}{6}}}$$

$$= -\frac{y'y'''' - 3y''^{\frac{2}{3}}}{y'^{\frac{5}{5}}},$$

$$x^{(4)} = -\frac{y'^{\frac{5}{3}} \left(\frac{y''}{y'}y''' + y^{(4)} - 6y''y''' \cdot \frac{1}{y'}\right)}{y'^{\frac{10}{3}}}$$

$$= -\frac{y'^{\frac{2}{3}}y'^{\frac{4}{3}} - 10y' y''y''' + 15y''^{\frac{3}{3}}}{y'^{\frac{7}{3}}}(y' \neq 0).$$

求由下列隐函数给出的 y = y(x) 的 y'_x, y''_x 及 y'''_x :

1146. $x^2 + y^2 = 25$. 在点 M(3,4) 的 y', y'' 及 y''' 等于甚么?

$$\mathbf{ff} \quad \mathbf{y}' = -\frac{x}{\mathbf{y}},$$

$$y'' = -\frac{y - xy'}{y^2} = -\frac{v + \frac{x^2}{y}}{y^2}$$
$$= -\frac{x^2 + y^2}{y^3} = -\frac{25}{y^3},$$
$$y''' = \frac{75y'}{y^4} = -\frac{75x}{y^5},$$

在 M(3,4) 点,得

$$y' = -\frac{3}{4} \cdot y'' = -\frac{25}{64} \cdot y''' = -\frac{225}{1024}$$

1147. $y^2 = 2px$.

M
$$y' - \frac{p}{y}, \quad y'' - \frac{p}{y^2}y' = -\frac{p^2}{y^3},$$

 $y''' = \frac{3p^2}{y^3}y' = \frac{3p^3}{y^5}(y \neq 0).$

1148. $x^2 - xy + y^2 = 1$.

解 对求微分,得

$$2x - y - xy' + 2yy' = 0, (1)$$

$$y' = \frac{2x - y}{x - 2y}.\tag{2}$$

将(1) 式两端再对 x 微分,得

$$2 - 2y' - xy'' + 2y'^{2} + 2yy'' = 0, (3)$$

将(2) 式所得 y' 代入(3) 式,得

$$y'' = \frac{6}{(x - 2y)^3}. (4)$$

将(3) 式两端对 x 微分,得

$$-3y'' - xy''' + 6y'y'' + 2yy''' = 0, (5)$$

将(2) 式及(4) 式代入(5) 式,得

$$y''' = \frac{54x}{(x-2y)^5} (x \neq 2y).$$

求 y', 及 y'', 2,设:

1149. $y^2 + 2\ln y = x^4$.

解 対 x 微分,得

$$2yy' + \frac{2y'}{y} = 4x^3, (1)$$

再对 x 微分,得

$$2y'^{2} + 2yy'' + \frac{2y''}{y} - \frac{2y'^{2}}{y^{2}} + 12x^{2}, \tag{2}$$

由(1) 式及(2) 式得

$$y' = \frac{2x^3y}{1+y^2},$$

$$y'' = \frac{2x^2y}{(1+y^2)^3} (3(1+y^2)^2 + 2x^4(1-y^2)).$$

1150. $\sqrt{x^2 + y^2} = ae^{a \cos \frac{y}{x}} (a > 0).$

解 取对数得

$$\frac{1}{2}\ln(x^2+y^2) = \ln a + \operatorname{arc tg} \frac{y}{x},$$

对 x 微分,得

$$\frac{x + yy'}{x^2 + y^2} = \frac{xy' - y}{x^2 + y^2},$$

于是

$$y' = \frac{x+y}{x-y}.$$

将上式对x微分,得

$$y'' = \frac{(1+y')(x-y) - (1-y')(x+y)}{(x-y)^2}$$

$$= \frac{2xy' - 2y}{(x - y)^2} - \frac{2x \cdot \frac{x + y}{x - y} - 2y}{(x - y)^2}$$
$$= \frac{2(x^2 + y^2)}{(x - y)^3} \quad (x \neq y, x \neq 0).$$

1151. 设函数 f(x) 当 $x \leq x_0$ 时有定义且可微分两次. 应当如何选择系数 a,b 及 c,使函数

$$F(x) = \begin{cases} f(x), \stackrel{\cdot}{\text{H}} x \leq x_0, \\ a(x-x_0)^2 + b(x-x_0) + c, \stackrel{\cdot}{\text{H}} x > x_0 \end{cases}$$

是可微分两次的函数?

解 按题设 F'(x) 存在,所以 F(x) 在点 x。连续,

即

$$\lim_{x\to x_0-0} F(x) = \lim_{x\to x_0+0} = F(x_0),$$

也即

$$\lim_{x \to x_0 = 0} f(x) = \lim_{x \to x_0 = 0} (a(x - x^0)^2 + b(x - x_0) + c) = f(x_0).$$

于是, $c = f(x_0)$. 其次,由 $F'(x_0 - 0) = F'(x_0 + 0)$

得

$$f'(x_0) = (2a(x-x_0)+b)\big|_{x=x_0} = b,$$

再由 $F''(x_0 - 0) = F''(x_0 + 0)$ 得

$$f''(x_0)=2a,$$

于是

$$a=\frac{1}{2}f''(x_0).$$

1152. 点作直线运动的规律为

$$s = 10 + 20t - 5t^2$$
.

求其运动的速度和加速度.在t=2的时刻,速度与加速度等于甚么?

解 速度

$$v = \frac{ds}{dt} = 20 - 10t, v \big|_{t=2} = 0;$$

而加速度

$$j = \frac{d^2s}{dt^2} = -10, \ j \Big|_{t=2} = -10.$$

1153. 点 M(x,y) 沿圆周 $x^2 + y^2 = a^2$ 均匀地运动,每 T 秒走完一圈. 求点 M 在 Ox 轴上的射影之速度 v 及加速度 j,设 t = 0 时点的位置为 $M_0(a,0)$.

解 设M点的坐标为(x,y),由于 $\angle M_0OM = \frac{2\pi}{T}t$,从

$$x = a\cos\frac{2\pi}{T}t,$$

于是速度和加速度分别为

$$v = \frac{dx}{dt} = -\frac{2\pi a}{T} \sin \frac{2\pi}{T} t,$$
$$j = \frac{d^2x}{dt^2} = -\frac{4\pi^2 a}{T^2} \cos \frac{2\pi}{T} t.$$

1154. 质点 M(x,y) 在铅直平面 Oxy 内以速度 v₀ 沿与水平面 成 α 角的方向抛去,建立(空气的阻力略去不计) 运动的方程并计算速度 v 加速度 j 的大小及运动的轨道,最大的高度和射程等于多少?

解 若不考虑空气的阻力,则有

$$egin{cases} x = v_0 t \mathrm{cos} lpha, \ y = v_0 t \mathrm{sin} lpha - rac{1}{2} g t^2, \end{cases}$$

此即运动方程, 化为直角坐标方程,得

$$y = x t g \alpha - \frac{g x^2}{2 v_0^2 \cos^2 \alpha}.$$

即轨道为一抛物线,速度

$$egin{aligned} v &= \sqrt{v_x^2 + v_y^2} = \sqrt{\left(rac{dx}{dt}
ight)^2 + \left(rac{dy}{dt}
ight)^2} \ &= \sqrt{v_0^2 \mathrm{cos}^2 lpha + (v_0 \mathrm{sin} lpha - gt)^2} \ &= \sqrt{v_0^2 + g^2 t^2 - 2v_0 gt \mathrm{sin} lpha}, \end{aligned}$$

而加速度

$$j = \sqrt{j_x^2 + j_y^2} = \sqrt{\left(\frac{dv_x}{dt}\right)^2 + \left(\frac{dv_y}{dt}\right)^2}$$
$$= \sqrt{0 + (-g)^2} = g.$$
$$\frac{dy}{dx} = tg\alpha - \frac{gx}{v_0^2 \cos^2 \alpha}.$$

在最大高度处, $\frac{dy}{dx} = 0$. 此时

$$y = \frac{v_0^2 \cos^2 \alpha t g \alpha}{g} = \frac{v_0^2 \sin \alpha \cos \alpha}{g}.$$

于是,最大高度为

$$egin{align} H_{
m max} &= rac{v_0^2 {
m cos} lpha {
m sin} lpha}{g} {
m t} {
m g} \ &= rac{g}{2 v_0^2 {
m cos}^2 lpha} \cdot rac{v_0^4 {
m sin}^2 lpha {
m cos}^2 lpha}{g^2} \ &= rac{v_0^2 {
m sin}^2 lpha}{2 g}. \end{split}$$

上式也可从 $\frac{dy}{dt}=0$,解出 $t=\frac{v_0\sin\alpha}{g}$,再以 t 值代入 y 的表达式而得到,在最大射程处有:y=0. 于是

$$x \operatorname{tg} \alpha - \frac{g x^2}{2v_{\text{cos}}^2 \alpha} = 0,$$

解得

$$x = \frac{v_0^2 \sin 2\alpha}{g}.$$

从而,最大射程为 $\frac{v_s^2 \sin 2\alpha}{g}$.

1155. 点运动的方程为

 $x = 4\sin\omega t - 3\cos\omega t$, $y = 3\sin\omega t + 4\cos\omega t$, (ω 为常数). 求运动的轨道,速度与加速度的大小.

解 由于

$$x^{2} + y^{2} - 16\sin^{2}\omega t + 9\cos^{2}\omega t$$
$$- 24\sin\omega t\cos\omega t + 9\sin^{2}\omega t$$
$$+ 16\cos^{2}\omega t + 24\sin\omega t\cos\omega t$$
$$= 25(\sin^{2}\omega t + \cos^{2}\omega t) = 25.$$

所以,运动的轨道为一以原点为中心,5 为半径的圆,

其次,速度与加速度的大小分别为

$$v = \sqrt{v_x^2 + v_y^2} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

 $= \sqrt{(4\omega\cos\omega t + 3\omega\sin\omega t)^2 + (3\omega\cos\omega t - 4\omega\sin\omega t)^2}$

$$= 5 |\omega|$$
,

$$j = \sqrt{j_x^2 + j_y^2} = \sqrt{\left(\frac{dv_x}{dt}\right)^2 + \left(\frac{dv_y}{dt}\right)^2}$$
$$= \sqrt{\left(\frac{d^2x}{dt^2}\right)^2 + \left(\frac{d^2y}{dt^2}\right)^2}$$

$$= \sqrt{(-4\omega^2 \sin\omega t + 3\omega^2 \cos\omega t)^2 + (-4\omega^2 \cos\omega t - 3\omega^2 \sin\omega t)^2}$$
$$= 5\omega^2.$$

求下列指定的阶的导函数:

解 y是 x 的多项式,最高次数为 6 次,因而

$$y^{(6)} = 1 \cdot 2^2 \cdot 1^3 \cdot 6! = 4 \cdot 6! = 2880,$$
 $y^{(7)} = 0.$

1157. $y = \frac{a}{x^m}$; $\Re y^m$.

$$y'' = -amx^{-m-1},$$

$$y'' = am(m+1)x^{-m-2},$$

$$y''' = -am(m+1)(m+2)x^{-m-3}$$

$$= -\frac{am(m+1)(m+2)}{x^{m+3}}(x \neq 0).$$

1158.
$$y = \sqrt{x}$$
; $\Re y^{(10)}$.

$$\mathbf{x}^{(10)} = \frac{1}{2} \left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(-\frac{5}{2} \right) \left(-\frac{7}{2} \right) \left(-\frac{9}{2} \right)$$

$$\left(-\frac{11}{2} \right) \left(-\frac{13}{2} \right) \left(-\frac{15}{2} \right) \left(-\frac{17}{2} \right) x^{-\frac{19}{2}}$$

$$= -\frac{17!!}{2^{10} \cdot x^9 \sqrt{x}} (x > 0),$$

其中 17!! = 1·3···17.

1159.
$$y = \frac{x^2}{1-x}$$
; $\Re y^{(8)}$.

$$y = \frac{x^2 - 1 + 1}{1 - x} = -(x + 1) + \frac{1}{1 - x},$$

$$y' = -1 + \frac{1}{(1 - x)^2},$$

$$y'' = \frac{2}{(1 - x)^3},$$

$$y''' = \frac{2 \cdot 3}{(1 - x)^4},$$

$$y^{(8)} = \frac{8!}{(1-x)^9} (x \neq 1).$$

1160.
$$y = \frac{1+x}{\sqrt{1-x}}$$
; $\Re y^{(100)}$.

解
$$y = (1+x)(1-x)^{-\frac{1}{2}}$$
,利用莱布尼兹公式,得 $y^{(100)} = \sum_{i=0}^{100} C_{100}^i (1+x)^{(i)} \left[(1-x)^{-\frac{1}{2}} \right]^{(100-i)}$ $= (1+x) \left[(1-x)^{-\frac{1}{2}} \right]^{(100)}$

$$+ C_{100}^{1} \cdot \left[(1-x)^{-\frac{1}{2}} \right]^{(99)}$$

$$= (1+x) \cdot \frac{199!!}{2^{100}} (1-x)^{-\frac{201}{2}}$$

$$+ 100 \cdot \frac{197!!}{2^{99}} (1-x)^{-\frac{199}{2}}$$

$$= \frac{197!! \cdot (399-x)}{2^{100} (1-x)^{100}} (x < 1).$$

1161. $y = x^2 e^{2x}$; $\Re y^{(20)}$.

解
$$y^{(20)} = x^2 (e^{2x})^{(20)} + 2xC_{20}^{1} \cdot (e^{2x})^{(19)}$$

 $+ 2C_{20}^{2} (e^{2x})^{(18)}$
 $= 2^{20}e^{2x}(x^2 + 20x + 95).$

1162. $y = \frac{e^x}{x}$; $\Re y^{(10)}$.

$$\mathbf{y}^{(10)} = \sum_{i=0}^{10} C_{10}^{i} e^{x} \cdot \left(\frac{1}{x}\right)^{(10-i)}$$
$$= e^{x} \sum_{i=0}^{10} (-1)^{i} \frac{A_{10}^{i}}{x^{i+1}},$$

其中 $A_{10}^i = 10 \cdot 9 \cdots (11 - i)$ 及 $A_{10}^0 = 1$.

1163. $y = x \ln x; \Re y^{(5)}$.

M
$$y' = 1 + \ln x$$
, $y'' = \frac{1}{x}$, $y^{(5)} = -\frac{3!}{x^4} (x > 0)$.

1164.
$$y = \frac{\ln x}{x}$$
; $\Re y^{(5)}$.

$$y'' = \frac{1 - \ln x}{x^2},$$

$$y'' = -\frac{\frac{1}{x} \cdot x^2 - 2x(1 - \ln x)}{x^4}$$

$$= -\frac{3 - 2\ln x}{x^3}$$

$$y''' = -\frac{\frac{2}{x} \cdot x^3 - 3x^2(3 - 2\ln x)}{x^6}$$

$$= \frac{11 - 6\ln x}{x^4},$$

$$y^{(4)} = \frac{-\frac{6}{x} \cdot x^4 - 4x^3(11 - 6\ln x)}{x^8}$$

$$= -\frac{50 - 24\ln x}{x^5},$$

$$y^{(5)} = -\frac{\frac{24}{x} \cdot x^5 - 5x^4(50 - 24\ln x)}{x^{10}}$$

$$= \frac{274 - 120\ln x}{x^6}(x > 0).$$

1165.
$$y = x^2 \sin 2x$$
; 求 $y^{(50)}$

解
$$y^{(50)} = x^2 (\sin 2x)^{(50)} + C_{50}^1 \cdot 2x \cdot (\sin 2x)^{(49)}$$
 $+ 2C_{50}^2 (\sin 2x)^{(48)}$
 $= 2^{50}x^2 \sin\left(2x + \frac{50}{2}\pi\right)$
 $+ 100x \cdot 2^{49} \sin\left(2x + \frac{49}{2}\pi\right)$

$$\begin{aligned}
&+ \frac{50 \cdot 49}{1 \cdot 2} \cdot 2^{49} \cdot \sin\left(2x + \frac{48}{2}\pi\right) \\
&= 2^{50} \left(-x^2 \sin 2x + 50x \cos 2x + \frac{1225}{2} \sin 2x\right). \\
&+ \frac{1225}{2} \sin 2x\right). \\
\mathbf{#} \quad y''' &= \cos 3x \left(\frac{1}{\sqrt[3]{1 - 3x}}\right)'' \\
&+ C_3^1 (\cos 3x)' \left(\frac{1}{\sqrt[3]{1 - 3x}}\right)'' \\
&+ C_3^2 (\cos 3x)'' \left(\frac{1}{\sqrt[3]{1 - 3x}}\right)' \\
&+ (\cos 3x)''' \cdot \frac{1}{\sqrt[3]{1 - 3x}}\right) \\
&= -\frac{28}{3^3} \left(-3\right)^3 \cdot \frac{\cos 3x}{\left(1 - 3x\right)^{\frac{10}{3}}} \\
&+ 3\left(-3\sin 3x\right) \cdot \left(\frac{4}{3^2}\right) \left(-3\right)^2 \\
&\cdot \frac{1}{\left(1 - 3x\right)^{\frac{7}{3}}} + 3 \cdot \left(-3^2 \cos 3x\right) \cdot \left(-\frac{1}{3}\right) \\
&\cdot \left(-3\right) \cdot \frac{1}{\left(1 - 3x\right)^{\frac{1}{3}}} \\
&= \frac{28 - 27\left(1 - 3x\right)^{\frac{10}{3}}}{\left(1 - 3x\right)^{\frac{10}{3}}} \cos 3x
\end{aligned}$$

$$+\frac{27(1-3x)^{2}-36}{(1-3x)^{\frac{7}{3}}}\sin 3x\left(x\neq \frac{1}{3}\right).$$

1167. $y = \sin x \sin 2x \sin 3x$; $\Re y^{(10)}$.

解 利用三角函数和,差与其积的互化公式,将 y 化简

得

$$y = \frac{1}{4}\sin 4x - \frac{1}{4}\sin 6x + \frac{1}{4}\sin 2x.$$

于是,

$$y^{(10)} = \frac{1}{4} \cdot 4^{10} \sin\left(4x + \frac{10}{2}\pi\right)$$

$$-\frac{1}{4} \cdot 6^{10} \sin\left(6x + \frac{10}{2}\pi\right)$$

$$+\frac{1}{4} \cdot 2^{10} \sin\left(2x + \frac{10}{2}\pi\right)$$

$$= -2^{18} \sin 4x + 2^8 \cdot 3^{10} \sin 6x - 2^8 \sin 2x.$$

1168. $y = x \operatorname{sh} x$; $\Re y^{(100)}$.

$$\mathbf{ff} \quad \mathbf{y}^{(100)} = \mathbf{x}(\sinh \mathbf{x})^{(100)} + C_{100}^{1}(\sinh \mathbf{x})^{(99)}$$
$$= \mathbf{x} \sinh \mathbf{x} + 100 \cosh \mathbf{x}.$$

1169. $y = e^x \cos x$; $\Re y^{(4)}$.

$$y' = e^{x}(\cos x - \sin x),$$

 $y'' = e^{x}((\cos x - \sin x) + (-\sin x - \cos x))$
 $= -2e^{x}\sin x,$
 $y''' = -2e^{x}(\sin x + \cos x),$
 $y^{(4)} = -2e^{x}((\sin x + \cos x) + (\cos x - \sin x))$

183

$$= -4e^x \cos x$$
.

1170.
$$y = \sin^2 x \ln x$$
; $x y^{(6)}$.

$$\mathbf{ff} \quad y = \frac{1 - \cos 2x}{2} \ln x$$

$$= \frac{1}{2} \ln x - \frac{1}{2} \cos 2x \cdot \ln x.$$

$$y^{(6)} = \frac{(-1)^5}{2} \cdot \frac{2 \cdot 3 \cdot 4 \cdot 5}{x^6}$$

$$- \frac{1}{2} (\cos 2x \cdot \ln x)^{(6)}$$

$$= -\frac{60}{x^6} + \left(\frac{144}{x^5} - \frac{160}{x^3} + \frac{96}{x}\right) \sin 2x$$

$$+ \left(\frac{60}{x^6} - \frac{180}{x^4} + \frac{120}{x^2} + 32 \ln x\right) \cos 2x.$$

于下列各例中,视x为自变数,求指定的阶的微分.

1171.
$$y = x^5$$
; $\Re d^5 y$.

$$M d^5y = 5! dx^5 = 120 dx^5.$$

1172.
$$y=\frac{1}{\sqrt{x}}$$
; $\Re d^3y$.

$$\mathbf{A}^{3}y = \left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)x^{-\frac{7}{2}}dx^{3}$$

$$= -\frac{15}{8x^{3}\cdot\sqrt{x}}dx^{3}(x>0).$$

1173.
$$y = x\cos 2x$$
; $\vec{x} d^{10}y$.

解
$$d^{10}y = (x\cos 2x)^{(10)}dx^{10}$$

= $\left[2^{10}x\cos\left(2x + \frac{10\pi}{2}\right)\right]$

$$+ 10 \cdot 2^{9} \cos \left(2x + \frac{9}{2}\pi\right) dx^{10}$$

= - 1024(x\cos 2x + 5\sin 2x) dx^{10}.

1174. $y = e^x \ln x$;求 $d^4 y$.

$$d^4y = (e^x \ln x)^{(4)} dx^4$$

$$= e^x \left(\ln x + \frac{4}{x} - \frac{6}{x^2} + \frac{8}{x^3} - \frac{6}{x^4} \right) dx^4.$$

1175. $y = \cos x \cdot \operatorname{ch} x$;求 $d^{\epsilon} y$.

 $\mathbf{f} d^6y = (\cos x \cdot \cosh x)^{(6)} dx^6 = 8\sin x \sinh x dx^6.$

设 u 为 x 的可微分足够多次的函数,于下列各例中求指 定的阶的微分.

1176. $y = u^2$;求 $d^{10}y$.

$$\mathbf{A}^{10}y = d^{10}(u \cdot u) = \sum_{i=0}^{10} C_{10}^{i} d^{10-i} u \cdot d^{i} u$$

$$= u d^{10}u + 10 d^{9}u \cdot du + \frac{10 \cdot 9}{1 \cdot 2} d^{8}u \cdot d^{2}u$$

$$+ \frac{10 \cdot 9 \cdot 8}{1 \cdot 2 \cdot 3} d^{7}u d^{3}u$$

$$+ \frac{10 \cdot 9 \cdot 8 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 4} d^{6}u d^{4}u$$

$$+ \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} (d^{5}u)^{2}$$

$$+ \frac{10 \cdot 9 \cdot 8 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 4} d^{4}u d^{6}u$$

$$+ \frac{10 \cdot 9 \cdot 8 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 4} d^{4}u d^{6}u$$

$$+ \frac{10 \cdot 9 \cdot 8}{1 \cdot 2 \cdot 3} d^{3}u d^{7}u + \frac{10 \cdot 9}{1 \cdot 2} d^{2}u d^{8}u$$

$$+ 10dud^{9}u + ud^{10}u$$

$$= 2ud^{10}u + 20dud^{9}u + 90d^{2}ud^{8}u$$

$$+ 240d^{3}ud^{7}u + 420d^{4}ud^{6}u + 252(d^{5}u)^{2}.$$

1177. $y = e^{u}$; $\Re d^{4}y$.

1178. $y = \ln u$; 求 d^3y .

$$d^{2}y = -\frac{1}{u^{2}}du^{2} + \frac{1}{u}d^{2}u,$$

$$d^{3}y = \frac{2}{u^{3}}du^{3} - \frac{2}{u^{2}}dud^{2}u - \frac{1}{u^{2}}d^{2}udu$$

$$+ \frac{1}{u}d^{3}u$$

$$= \frac{2}{u^{3}}du^{3} - \frac{3}{u^{2}}dud^{2}u + \frac{1}{u}d^{3}u.$$

1179. 视x为某个自变数的函数,由函数y = f(x) 求 d^2y , d^3y 及 d^4y .

$$\mathbf{f}''(x)dx
d^2y = f''(x)dx^2 + f'(x)d^2x
d^3y = f'''(x)dx^3 + 3f''(x)dxd^2x + f'(x)d^3x,
d^4y = f^{(4)}(x)dx^4 + 3f'''(x)dx^2d^2x
+ 3f'''(x)dx^2d^2x + 3f''(x)(d^2x)^2
+ dxd^3x) + f''(x)dxd^3x + f'(x)d^4x
= f^{(4)}(x)dx^4 + 6f'''(x)dx^2d^2x
+ 4f''(x)dxd^3x + 3f''(x)(d^2x)^2
+ f'(x)d^4x.$$

1180. 以变量 x 和 y 的逐次微分来表示函数 y = f(x) 的导函数 y'' 及 y, 但不假定 x 为自变量.

$$y'' = \frac{dy}{dx},$$

$$y'' = \frac{d\left(\frac{dy}{dx}\right)}{dx} = \frac{dxd^2y - dyd^2x}{dx^3}$$

$$= \frac{\begin{vmatrix} dx & dy \\ d^2x & d^2y \end{vmatrix}}{dx^3},$$

$$y''' = \frac{d\left(\frac{dxd^2y - dyd^2x}{dx^3}\right)}{dx}$$

$$= \frac{dx \begin{vmatrix} dx & dy \\ d^3x & d^3y \end{vmatrix} - 3d^2x \begin{vmatrix} dx & dy \\ d^2x & d^2y \end{vmatrix}}{dx^5}.$$

1181. 证明:函数

$$y = C_1 \cos x + C_2 \sin x,$$

其中 C_1 及 C_2 为任意的常数,满足方程

$$y'' + y = 0.$$

$$\mathbf{ii} \quad \mathbf{y}' = -C_1 \sin x + C_2 \cos x,$$

$$y'' = -C_1 \cos x - C_2 \sin x = -y,$$

所以

$$y'' + y = 0.$$

1182. 证明:函数

$$y = C_1 \mathrm{ch} x + C_2 \mathrm{sh} x,$$

其中 C_1 及 C_2 为任意的常数,满足方程

$$y''-y=0.$$

 $\mathbf{iii} \quad \mathbf{y}' = C_1 \mathrm{sh} x + C_2 \mathrm{ch} x,$

$$y'' = C_1 \mathrm{ch} x + C_2 \mathrm{sh} x = y,$$

所以

$$y''-y=0.$$

1183. 证明:函数

188

$$y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x},$$

其中 C_1 及 C_2 为任意的常数, λ_1 及 λ_2 为常数,满足方程

$$y'' - (\lambda_1 + \lambda_2)y' + \lambda_1\lambda_2y = 0.$$

$$\mathbf{ii} \quad y' = C_1 \lambda_1 e^{\lambda_1 x} + C_2 \lambda_2 e^{\lambda_2 x},$$

$$y'' = C_1 \lambda_1^2 e^{\lambda_1 x} + C_2 \lambda_2^2 e^{\lambda_2 x},$$

于是,

$$y'' - (\lambda_1 + \lambda_2)y' + \lambda_1\lambda_2y$$

$$= C_1\lambda_1^2 e^{\lambda_1 x} + C_2\lambda_2^2 e^{\lambda_2 x} - C_1\lambda_1^2 e^{\lambda_1 x}$$

$$- C_1\lambda_1\lambda_2 e^{\lambda_1 x} - C_2\lambda_2^2 e^{\lambda_2 x} - C_2\lambda_1\lambda_2 e^{\lambda_2 x}$$

$$+ C_1\lambda_1\lambda_2 e^{\lambda_1 x} + C_2\lambda_1\lambda_2 e^{\lambda_2 x}$$

$$= 0.$$

1184. 证明:函数

$$y = x^* (C_1 \cos(\ln x) + C_2 \sin(\ln x)),$$

其中 C_1 及 C_2 为任意常数,n为常数,满足方程:

$$x^2y'' + (1-2n)xy' + (1+n^2)y = 0.$$

$$\mathbf{ii} \quad y' = nx^{n-1} [C_1 \cos(\ln x) + C_2 \sin(\ln x)] \\
+ x^{n-1} [C_2 \cos(\ln x) - C_1 \sin(\ln x)], \\
y'' = x^{n-2} \{ (n^2 - n - 1) [C_1 \cos(\ln x)] \}, \\$$

 $+C_2\sin(\ln x)+(2n-1)(C_2\cos(\ln x))$

$$-C_1\sin(\ln x)$$
),

于是,

$$x^{2}y'' + (1 - 2n)xy' + (1 + n^{2})y$$

$$= x^{n} \{ (n^{2} - n - 1) \{ C_{1}\cos(\ln x) + C_{2}\sin(\ln x) \}$$

$$+ (2n - 1) \{ C_{2}\cos(\ln x) - C_{1}\sin(\ln x) \} \}$$

$$+ (1 - 2n)x^{n} \{ n \{ C_{1}\cos(\ln x) + C_{2}\sin(\ln x) \} \}$$

$$+ \{ C_{2}\cos(\ln x) - C_{1}\sin(\ln x) \} \}$$

$$+ (1 + n^{2})x^{n} \{ C_{1}\cos(\ln x) + C_{2}\sin(\ln x) \}$$

$$= 0.$$

1185. 证明:函数

$$y = e^{\frac{x}{\sqrt{2}}} \left(C_1 \cos \frac{x}{\sqrt{2}} + C_2 \sin \frac{x}{\sqrt{2}} \right)$$
$$+ e^{-\frac{x}{\sqrt{2}}} \left(C_3 \cos \frac{x}{\sqrt{2}} + C_4 \sin \frac{x}{\sqrt{2}} \right),$$

其中 C_1 , C_2 , C_3 及 C_4 为任意常数,满足方程

$$y^{(4)} + y = 0.$$

$$\mathbf{\overline{u}} \quad \mathbf{y}' = e^{\frac{x}{\sqrt{2}}} \left(\frac{C_1}{\sqrt{2}} \cos \frac{x}{\sqrt{2}} + \frac{C_2}{\sqrt{2}} \sin \frac{x}{\sqrt{2}} - \frac{C_1}{\sqrt{2}} \sin \frac{x}{\sqrt{2}} + \frac{C_2}{\sqrt{2}} \cos \frac{x}{\sqrt{2}} \right)$$

$$+ e^{-\frac{x}{\sqrt{2}}} \left(-\frac{C_3}{\sqrt{2}} \cos \frac{x}{\sqrt{2}} \right)$$

$$-\frac{C_4}{\sqrt{2}}\sin\frac{x}{\sqrt{2}} - \frac{C_3}{\sqrt{2}}\sin\frac{x}{\sqrt{2}} + \frac{C_4}{\sqrt{2}}\cos\frac{x}{\sqrt{2}} \right),$$

$$y'' = e^{\frac{x}{\sqrt{2}}} \left(\frac{C_1}{2}\cos\frac{x}{\sqrt{2}} + \frac{C_2}{2}\sin\frac{x}{\sqrt{2}} - \frac{C_1}{2}\sin\frac{x}{\sqrt{2}} + \frac{C_2}{2}\cos\frac{x}{\sqrt{2}} - \frac{C_1}{2}\sin\frac{x}{\sqrt{2}} + \frac{C_2}{2}\cos\frac{x}{\sqrt{2}} - \frac{C_1}{2}\sin\frac{x}{\sqrt{2}} + \frac{C_2}{2}\cos\frac{x}{\sqrt{2}} \right)$$

$$+ e^{-\frac{x}{\sqrt{2}}} \left(\frac{C_3}{2}\cos\frac{x}{\sqrt{2}} + \frac{C_4}{2}\sin\frac{x}{\sqrt{2}} + \frac{C_4}{2}\sin\frac{x}{\sqrt{2}} + \frac{C_3}{2}\sin\frac{x}{\sqrt{2}} - \frac{C_4}{2}\cos\frac{x}{\sqrt{2}} + \frac{C_3}{2}\sin\frac{x}{\sqrt{2}} - \frac{C_4}{2}\sin\frac{x}{\sqrt{2}} \right)$$

$$= e^{\frac{x}{\sqrt{2}}} \left(C_2\cos\frac{x}{\sqrt{2}} - C_4\sin\frac{x}{\sqrt{2}} \right)$$

$$+ e^{-\frac{x}{\sqrt{2}}} \left(C_3\sin\frac{x}{\sqrt{2}} - C_4\cos\frac{x}{\sqrt{2}} \right),$$

$$y^{(4)} = (y'')'' = e^{-\frac{x}{\sqrt{2}}} \left(- C_1\cos\frac{x}{\sqrt{2}} \right)$$

$$-C_{2}\sin\frac{x}{\sqrt{2}}\Big)$$

$$+e^{-\frac{x}{\sqrt{2}}}\Big(-C_{3}\cos\frac{x}{\sqrt{2}}-C_{4}\sin\frac{x}{\sqrt{2}}\Big)$$

$$=-y,$$

于是,

$$y^{(4)} + y = 0.$$

1186. 证明:若函数 f(x) 有 n 阶导函数,则

$$[f(ax+b)]^{(n)}=a^nf^{(n)}(ax+b).$$

证 每求一次导函数,均要乘以因子(ax + b)' = a, 所以.

$$(f(ax+b))^{(n)} = a^n f^{(n)}(ax+b).$$

$$\mathbf{P}'(x) = a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + \dots + a_{n-1}$$

$$P''(x) = a_0 n (n-1) x^{n-2} + a_1 (n-1) (n-2) x^{n-3}$$

$$+ \dots + a_{n-2}$$

.....

$$P^{(n)}(x) = n!a_0.$$

求 y⁽ⁿ⁾,设:

$$1188. \ y = \frac{ax+b}{cx+d}.$$

$$\mathbf{g}' = \frac{a(cx+d) - c(ax+b)}{(cx+d)^2} = \frac{ad - bc}{(cx+d)^2};$$
$$y'' = -\frac{2c(ad - bc)}{(cx+d)^3};$$

利用数学归纳法,可证得

$$y^{(n)} = \frac{(-1)^{n-1}c^{n-1}(ad - bc)n!}{(cx+d)^{n+1}} \left(x \neq -\frac{d}{c}, c \neq 0\right).$$

事实上,对于n=2等式成立,设对于n等式成立,则对于n+1有

$$y^{(n+1)} = \frac{-(-1)^{n+1}c^{n-1}(ad-bc)n!(n+1)(cx+d)^{n} \cdot c}{(cx+d)^{2(n+1)}}$$
$$= \frac{(-1)^{(n+1)-1}c^{(n+1)-1}(ad-bc)(n+1)!}{(cx+d)^{(n+1)+1}}$$

即对于n+1等式也成立,于是得证.

1189.
$$y = \frac{1}{x(1-x)}$$
.

1190.
$$y = \frac{1}{x^2 - 3x + 2}$$
.

$$y^{(n)} = (-1)^n n! \left(\frac{1}{(x-2)^{n+1}} - \frac{1}{(x-1)^{n+1}} \right)$$
$$(x \neq 1, x \neq 2).$$

1191.
$$y = \frac{1}{\sqrt{1-2x}}$$

$$\mathbf{ff} \quad y^{(n)} = \left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \cdots \\ \left(-\frac{2n-1}{2}\right)(-2)^{n}(1-2x)^{-\frac{2n+1}{2}} \\ = \frac{(2n-1)!!}{(1-2x)^{n+\frac{1}{2}}}\left(x < \frac{1}{2}\right).$$

1192.
$$y = \frac{x}{\sqrt[3]{1+x}}$$
.

$$y = \frac{(x+1)-1}{\sqrt[3]{1+x}} = (1+x)^{\frac{1}{2}} - (1+x)^{-\frac{1}{3}}.$$

$$y^{(n)} = \frac{2}{3} \left(-\frac{1}{3} \right) \left(-\frac{4}{3} \right) \cdots$$

$$\left(-\frac{3n-5}{3} \right) (1+x)^{-\frac{3n-2}{3}}$$

$$-\left(-\frac{1}{3} \right) \left(-\frac{4}{3} \right) \cdots$$

$$\left(-\frac{3n-2}{3} \right) (1+x)^{-\frac{3n+1}{3}}$$

$$= \frac{(-1)^{n+1} \cdot 1 \cdot 4 \cdots (3n-5)}{3^{n} (1+x)^{n+\frac{1}{3}}} (2(1+x) + (3n-2))$$

 $=\frac{(-1)^{n+1}1\cdot 4\cdot 7\cdots (3n-5)(3n+2x)}{3^{n}(1+x)^{n+\frac{1}{3}}}$

$$(n \geqslant 2; x \neq -1).$$

1193. $y = \sin^2 x$.

$$y'' = 2\sin x \cos x = \sin 2x,$$

$$y''' = (y')^{(n-1)} = (\sin 2x)^{(n-1)}$$

$$= 2^{n-1} \sin \left(2x + \frac{n-1}{2}\pi\right)$$

$$= -2^{n-1} \cos \left(2x + \frac{n}{2}\pi\right).$$

1194. $y = \cos^2 x$.

$$y' = -2\cos x \sin x = -\sin 2x,$$

$$y^{(n)} = -(\sin 2x)^{(n-1)}$$

$$= -2^{n-1} \sin \left(2x + \frac{n-1}{2}\pi\right)$$

$$= 2^{n-1} \cos \left(2x + \frac{n}{2}\pi\right).$$

1195. $y = \sin^3 x$.

$$\mathbf{ff} \quad y = \sin x \sin^2 x = \frac{1}{2} \sin x (1 - \cos 2x)
= \frac{1}{2} \sin x - \frac{1}{2} \sin x \cos 2x
= \frac{3}{4} \sin x - \frac{1}{4} \sin 3x.
y''' = \frac{3}{4} \sin \left(x + \frac{n}{2}\pi\right) - \frac{3^n}{4} \sin \left(3x + \frac{n}{2}\pi\right).$$

1196. $y = \cos^3 x$.

$$\mathbf{ff} \quad y = \cos x \cos^2 x = \frac{1}{2} \cos x (1 + \cos 2x)
= \frac{1}{2} \cos x + \frac{1}{2} \cos x \cos 2x
= \frac{3}{4} \cos x + \frac{1}{4} \cos 3x.
y'''' = \frac{3}{4} \cos \left(x + \frac{n}{2}\pi\right) + \frac{3^n}{4} \cos\left(3x + \frac{n}{2}\pi\right).$$

1197. $y = \sin ax \sin bx$.

$$\mathbf{ff} \quad y = \frac{1}{2}\cos(a-b)x - \frac{1}{2}\cos(a+b)x.$$

$$y^{(n)} = \frac{1}{2}(a-b)^n\cos\left((a-b)x + \frac{n}{2}\pi\right)$$

$$-\frac{1}{2}(a+b)^n\cos\left((a+b)x + \frac{n}{2}\pi\right).$$

1198. $y = \cos ax \cos bx$.

$$\mathbf{x} = \frac{1}{2}\cos(a-b)x + \frac{1}{2}\cos(a+b)x,$$

$$y^{(n)} = \frac{(a-b)^n}{2}\cos\left((a-b)x + \frac{n}{2}\pi\right) + \frac{1}{2}(a+b)^n\cos\left((a+b)x + \frac{n}{2}\pi\right).$$

1199. $y = \sin ax \cos bx$.

$$\mathbf{ff} \quad y = \frac{1}{2}\sin(a+b)x + \frac{1}{2}\sin(a-b)x,$$

$$y^{(n)} = \frac{1}{2}(a+b)^n \sin\left((a+b)x + \frac{n}{2}\pi\right)$$

$$+ \frac{1}{2}(a-b)^n \sin\left((a-b)x + \frac{n}{2}\pi\right).$$

1200.
$$y = \sin^2 a x \cos b x$$
.

$$\mathbf{ff} \quad y = \frac{1}{2} \cos bx (1 - \cos 2ax)$$

$$= \frac{1}{2} \cos bx - \frac{1}{4} \cos (2a + b)x$$

$$- \frac{1}{4} \cos (2a - b)x.$$

$$y^{(n)} = \frac{1}{2} b^n \cos \left(bx + \frac{n}{2}\pi\right)$$

$$- \frac{1}{4} (2a + b)^n \cos \left((2a + b)x + \frac{n}{2}\pi\right)$$

$$- \frac{1}{4} (2a - b)^n \cos \left((2a - b)x + \frac{n}{2}\pi\right).$$

1201. $y = \sin^4 x + \cos^4 x$.

$$\mathbf{ff} \quad y = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x$$

$$= 1 - \frac{1}{2}\sin^2 2x = 1 - \frac{1}{4}(1 - \cos 4x)$$

$$= \frac{3}{4} + \frac{1}{4}\cos 4x.$$

$$y^{(n)} = 4^{n-1}\cos\left(4x + \frac{n}{2}\pi\right).$$

1202. $y = x \cos a x$.

$$\mathbf{ff} \quad y^{(n)} = x(\cos ax)^{(n)} + n(\cos ax)^{(n-1)}$$

$$= a^n x \cos\left(ax + \frac{n}{2}\pi\right)$$

$$+ na^{n-1} \cos\left(ax + \frac{n-1}{2}\pi\right)$$

$$= a^n x \cos\left(ax + \frac{n}{2}\pi\right)$$

$$+ na^{n-1}\sin\left(ax + \frac{n}{2}\pi\right).$$

1203. $y = x^2 \sin ax$.

$$\mathbf{ff} \qquad \mathbf{f}^{(n)} = a^n x^2 \sin\left(ax + \frac{n}{2}\pi\right)$$

$$+ 2na^{n-1} x \sin\left(ax + \frac{n-1}{2}\pi\right)$$

$$+ n(n-1)a^{n-2} \sin\left(ax + \frac{n-2}{2}\pi\right)$$

$$= a^n \left(x^2 - \frac{n(n-1)}{a^2}\right) \sin\left(ax + \frac{n}{2}\pi\right)$$

$$- 2na^{n-1} x \cos\left(ax + \frac{n}{2}\pi\right).$$

1204. $y = (x^2 + 2x + 2)e^{-x}$.

$$\mathbf{ff} \quad \mathbf{f}^{(n)} = (-1)^n (x^2 + 2x + 2)e^{-x}$$

$$+ 2(-1)^{n-1} (x+1)e^{-x} \cdot n$$

$$+ (-1)^{n-2} n(n-1)e^{-x}$$

$$= (-1)^n e^{-x} (x^2 - 2(n-1)x)$$

$$+ (n-1)(n-2) 1.$$

 $1205. \ y = \frac{e^x}{x}.$

$$\mathbf{ff} \quad y^{(n)} = \sum_{k=0}^{n} C_{n}^{k} e^{x} \left(\frac{1}{x}\right)^{k}$$

$$= e^{x} \left\{ \frac{1}{x} + \sum_{k=1}^{n} (-1)^{k} \frac{n(n-1)\cdots(n-k+1)}{x^{k+1}} \right\}.$$

 $1206. \ y = e^x \cos x.$

198

$$y' = e^{x}(\cos x - \sin x) = 2^{\frac{1}{2}}e^{x}\cos\left(x + \frac{\pi}{4}\right).$$

$$y'' = 2^{\frac{1}{2}}e^{x}\left(\cos\left(x + \frac{\pi}{4}\right) - \sin\left(x + \frac{\pi}{4}\right)\right)$$

$$= 2^{\frac{2}{2}}e^{x}\cos\left(x + \frac{2\pi}{4}\right),$$

利用数学归纳法可证得

$$y^{(n)}=2^{\frac{n}{2}}e^{x}\cos\left(x+\frac{n\pi}{4}\right).$$

 $1207^+ \cdot y = e^x \sin x.$

$$y' = e^x(\sin x + \cos x) = 2^{\frac{1}{2}}e^x\sin\left(x + \frac{\pi}{4}\right),$$

$$y'' = 2^{\frac{1}{2}}e^x\left(\sin\left(x + \frac{\pi}{4}\right) + \cos\left(x + \frac{\pi}{4}\right)\right)$$

$$= 2^{\frac{2}{2}}e^x\sin\left(x + \frac{2\pi}{4}\right),$$

利用数学归纳法可证得

$$y^{(n)} = 2^{\frac{n}{2}}e^x \sin\left(x + \frac{n\pi}{4}\right).$$

$$1208. \ y = \ln \frac{a + bx}{a - bx}.$$

$$\mathbf{ff} \quad y' = \frac{b}{a+bx} + \frac{b}{a-bx},$$

$$y^{(n)} = \frac{(-1)^n b^n (n-1)!}{(a+bx)^n} + \frac{b^n (n-1)!}{(a-bx)^n}$$

$$= \frac{(n-1)! b^n}{(a^2 - b^2 x^2)^n} \{(a+bx)^n + (-1)^{n-1} (a-bx)^n\} \left(|x| < \left|\frac{a}{b}\right|\right).$$

1209.
$$y = e^{xx} P(x)$$
,其中 $P(x)$ 为多项式.

$$\mathbf{F} \quad \mathbf{y}^{(n)} = e^{ax} \{ a^{n} P(x) + C_{n}^{1} a^{n-1} P'(x) + \cdots + P^{(n)}(x) \},$$

1210. $y = x \sinh x$.

$$\mathbf{ff} \qquad \mathbf{f}^{(n)} = x(\sinh x)^{(n)} + n(\sinh x)^{(n-1)} \\
= \frac{x}{2} \left\{ e^{x} - (-1)^{n} e^{-x} \right\} \\
+ \frac{n}{2} \left(e^{x} - (-1)^{n-1} e^{-x} \right) \\
= \frac{1}{2} \left\{ (x+n) e^{x} - (-1)^{n} (x-n) e^{-x} \right\} \\
= \frac{1}{2} \left\{ (x+n) (\cosh x + \sinh x) - (-1)^{n} (x-n) (\cosh x - \sinh x) \right\} \\
= \frac{1}{2} \left\{ \left\{ (x+n) - (-1)^{n} (x-n) \right\} \right\} \\
+ \left\{ (x+n) + (-1)^{n} (x-n) \right\}$$

1211. 求 $d^{n}y$,设 $y = x^{n}e^{x}$.

$$\mathbf{ff} \quad d^{n}y = y^{(n)}dx^{n}
= e^{x} \Big(x^{n} + n^{2}x^{n-1} + \frac{n^{2}(n-1)^{2}}{2!}x^{n-2}
+ \dots + n! \Big) dx^{n}.$$

1212. 求
$$d^*y$$
,设 $y = \frac{\ln x}{x}$.

$$\mathbf{A}^n y = y^{(n)} dx^n$$

$$= \left(\left(\frac{1}{x} \right)^{(n)} \ln x + n \cdot \frac{1}{x} \left(\frac{1}{x} \right)^{(n-1)} + C_n^2 \left(-\frac{1}{x^2} \right) \left(\frac{1}{x} \right)^{(n-2)} + \dots + \frac{1}{x} (\ln x)^{(n)} \right) dx^n$$

$$= \frac{(-1)^n n!}{x^{n+1}} \left(\ln x - \sum_{k=1}^n \frac{1}{k} \right) dx^n (x > 0).$$

1213. 证明等式:

$$(1) [e^{ax} \sin(bx + c)]^{(n)}$$

$$= e^{ax} (a^2 + b^2)^{\frac{\pi}{2}} \sin(bx + c + n\varphi)$$
及 $(2) [e^{ax} \cos(bx + c)]^{(n)}$

$$= e^{ax} (a^2 + b^2)^{\frac{\pi}{2}} \cos(bx + c + n\varphi),$$
其中 $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$ 及 $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}.$
证 $(1) [e^{ax} \sin(bx + c)]'$

$$= e^{ax} [a\sin(bx + c) + b\cos(bx + c)]$$

$$= \sqrt{a^2 + b^2} e^{ax} [\frac{a}{\sqrt{a^2 + b^2}} \sin(bx + c)]$$

$$+ \frac{b}{\sqrt{a^2 + b^2}} \cos(bx + c)]$$

$$= \sqrt{a^2 + b^2} e^{ax} \sin(bx + c + \varphi),$$
其中 $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$ 及 $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}},$

$$[e^{ax} \sin(bx + c)]''$$

$$= (a^2 + b^2)^{\frac{2}{2}} e^{ax} \sin(bx + c + 2\varphi).$$

利用数学归纳法可证得

$$(e^{ax}\sin(bx+c))^{(n)}$$

$$= (a^2 + b^2)^{\frac{n}{2}}e^{ax}\sin(bx+c+n\varphi).$$

(2) 同理可证

$$[e^{ax}\cos(bx+c)]^{(n)}$$

$$= (a^2 + b^2)^{\frac{n}{2}}e^{ax}\cos(bx+c+n\varphi).$$

1214. 求 y(*),设:

(a) $y = \operatorname{ch} ax \cos bx$; (6) $y = \operatorname{ch} ax \sin bx$;

(B) $y = \sinh ax \cosh x$; (F) $y = \sinh ax \sin bx$.

$$\mathbf{ff} \quad (a)y = \frac{1}{2}e^{ax}\cos bx + \frac{1}{2}e^{-ax}\cos bx,$$

利用 1213 题(2) 的结果,得

$$y^{(n)} = \frac{1}{2} (a^2 + b^2)^{\frac{n}{2}} [e^{ax} \cos(bx + n\varphi) + e^{-ax} \cos(bx + n\pi - n\varphi)]$$

$$= \frac{1}{2} (a^2 + b^2)^{\frac{n}{2}} \left\{ e^{ax} \left[\cos \left(bx + \frac{n\pi}{2} \pi \right) \cos \left(n\varphi - \frac{n\pi}{2} \pi \right) \right] \right\}$$

$$- \sin \left(bx + \frac{n\pi}{2} \pi \right) \sin \left(n\varphi - \frac{n\pi}{2} \pi \right) \right\}$$

$$+ e^{-ax} \Big[\cos \Big(bx + \frac{n}{2}\pi \Big) \cos \Big(n\varphi - \frac{n}{2}\pi \Big) \Big]$$

$$+ \sin \Big(bx + \frac{n}{2}\pi \Big) \sin \Big(n\varphi - \frac{n}{2}\pi \Big) \Big] \Big\}$$

$$= (a^2 + b^2)^{\frac{n}{2}} \Big\{ \frac{e^{ax} + e^{-ax}}{2} \cos \Big(bx + \frac{n}{2}\pi \Big) \Big\}$$

$$\cdot \cos \Big(n\varphi - \frac{n}{2}\pi \Big) - \frac{e^{ax} - e^{-ax}}{2} \Big\}$$

$$\cdot \sin \Big(bx + \frac{n}{2}\pi \Big) \sin \Big(n\varphi - \frac{n}{2}\pi \Big) \Big\}$$

$$= (a^2 + b^2)^{\frac{n}{2}} \Big[\cos \Big(n\varphi - \frac{n}{2}\pi \Big) \Big]$$

$$\cdot \cosh ax \cos \Big(bx + \frac{n}{2}\pi \Big)$$

$$\cdot \cosh ax \cos \Big(bx + \frac{n}{2}\pi \Big) \Big]$$

$$- \sin \Big(n\varphi - \frac{n}{2}\pi \Big) \sinh ax \sin \Big(bx + \frac{n}{2}\pi \Big) \Big]$$

$$= (a^2 + b^2)^{\frac{n}{2}} \Big[\cos \Big(n\varphi - \frac{n\pi}{2} \Big) \cosh ax \Big]$$

$$\cdot \sin \Big(bx + \frac{n}{2}\pi \Big) + \sin \Big(n\varphi - \frac{n}{2}\pi \Big) \sinh ax \Big]$$

$$\cdot \cos \Big(bx + \frac{n}{2}\pi \Big) \Big] ;$$

$$(B) y^{(n)} = (a^2 + b^2)^{\frac{n}{2}} \Big[\sinh \varphi \cosh ax \sin \Big(bx + \frac{n}{2}\pi \Big) \Big]$$

$$+ \cosh \varphi \sinh ax \cos \Big(bx + \frac{n}{2}\pi \Big) \Big] ;$$

$$+ \cosh \varphi \sinh ax \sin \Big(bx + \frac{n}{2}\pi \Big) \Big] .$$

$$\Rightarrow \sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}, \cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}.$$

1215. 将函数

$$f(x) = \sin^{2p} x,$$

其中 / 为自然数,化为三角多项式:

$$f(x) = \sum_{k=0}^{p} A_k \cos 2kx,$$

以求 f'(x).

解 设 $t = \cos x + i \sin x$,则

$$\sin x = \frac{1}{2i}(t - \bar{t})$$

其中 / 为 / 的共轭复数,

于是

$$\sin^{2p} x = \frac{1}{(2i)^{2p}} (t - \bar{t})^{2p}$$

$$= \frac{1}{(2i)^{2p}} \sum_{k=0}^{2p} C_{2p}^{k} t^{2p+k} (-1)^{k} \bar{t}^{k}$$

$$= (-1)^{p} \frac{1}{(2i)^{2p}} C_{2p}^{p} + \frac{2}{(2i)^{2p}} \sum_{k=0}^{p-1} C_{2p}^{k} (-1)^{k}$$

$$\cdot \cos(2p - 2k) x.$$

所以,

$$(\sin^{2p} x)^{(n)} = \frac{2}{(2i)^{2p}} \sum_{k=0}^{p-1} C_{2p}^{k} (-1)^{k} (2p - 2k)^{n} \cos \left[(2p - 2k)x + \frac{n}{2}\pi \right]$$
$$= \sum_{k=0}^{p-1} (-1)^{p+k} 2^{n-2p+1} (p-k)^{n}$$
$$C_{2p}^{k} \cos \left[(2p - 2k)x + \frac{n}{2}\pi \right].$$

1216. 设:

(a)
$$f(x) = \sin^{2p+1} x;$$
 (6) $f(x) = \cos^{2p} x;$

$$(\mathbf{B})f(x) = \cos^{2p+1}x,$$

其中 p 为正整数, 求 $f^{(n)}(x)$.

解 (a) 设
$$t = \cos x + i \sin x$$
,则
$$\sin x = \frac{1}{2i}(t-t),$$

$$\sin^{2p+1}x = \frac{1}{(2i)^{2p+1}} \sum_{k=0}^{2p+1} C_{2p+1}^{k} t^{2p+1-k} (-1)^{k} \tilde{t}^{k}$$

$$= \frac{1}{(2i)^{2p+1}} \sum_{k=0}^{2p+1} C_{2p+1}^{k} (-1)^{k} (\cos(2p+1)^{k} + 2k) x + i \sin(2p+1-2k) x$$

$$= \sum_{k=0}^{p} (-1)^{p+k} 2^{-2p} C_{2p+1}^{k} \sin(2p+1-2k) x$$

$$= 2k) x.$$

所以,

$$f^{(n)}(x) = \sum_{k=0}^{p} (-1)^{p+k} C_{2p+1}^{k} \frac{(2p+1-2k)^{n}}{2^{2p}}$$

$$\cdot \sin\left[(2p+1-2k)x + \frac{n}{2}\pi\right]$$

类似 1215 题及本题(a) 的方法,可求得:

(6)
$$f^{n}(x) = (\cos^{2p}x)^{(n)}$$

$$= \sum_{k=0}^{p-1} 2^{n-2p+1} (p-k)^{n} C_{2p}^{k} \cos (2p-2k)x + \frac{n}{2}\pi);$$

(B)
$$f^{(n)}(x) = (\cos^{2p+1}x)^{(n)}$$

= $\sum_{k=0}^{p} \frac{(2p+1-2k)^{n}}{2^{2p}} C_{2p+1}^{k} \cos((2p+1))$

$$-2k(x+\frac{n}{2}\pi).$$

1217. 利用恒等式

$$\frac{1}{x^2+1} = \frac{1}{2i} \left(\frac{1}{x-i} - \frac{1}{x+i} \right)$$

证明

$$\left(\frac{1}{x^2+1}\right)^{(n)} = \frac{(-1)^n n!}{(1+x^2)^{\frac{n+1}{2}}} \sin((n+1)\operatorname{arcctg} x).$$

证 将复数x+i及x-i 化成下列形式:

$$x + i = r(\cos\theta + i\sin\theta).$$

$$x - i = r(\cos\theta - i\sin\theta)$$
.

其中 $r=(1+x^2)^{\frac{1}{2}}$, $\theta=\operatorname{arcet} gx$.

于是

$$\left(\frac{1}{x^{2}+1}\right)^{(n)} = \frac{1}{2i} \left(\left(\frac{1}{x-i}\right)^{(n)} - \left(\frac{1}{x+i}\right)^{(n)}\right)$$

$$= \frac{1}{2i} \left(\frac{(-1)^{n}n!}{(x-i)^{n+1}} - \frac{(-1)^{n}n!}{(x+i)^{n+1}}\right)$$

$$= \frac{(-1)^{n}n!}{2i(x^{2}+1)^{n+1}} \left((x+i)^{n+1} - (x-i)^{n+1}\right)$$

$$= \frac{(-1)^{n}n!}{2i(x^{2}+1)^{n+1}} \left\{r^{n+1} \left(\cos(n+1)\theta + i\sin(n+1)\theta\right) - r^{n+1} \left(\cos(n+1)\theta - i\sin(n+1)\theta\right)\right\}$$

$$= \frac{(-1)^{n}n!}{(x^{2}+1)^{n+1}} r^{n+1} \sin(n+1)\theta$$

$$= \frac{(-1)^{n}n!}{(x^{2}+1)^{n+1}} \sin((n+1)arc \cot x),$$

所以,

$$\left(\frac{1}{x^2+1}\right)^{(n)} = \frac{(-1)^n n!}{(x^2+1)^{\frac{n+1}{2}}} \sin((n+1)\operatorname{arc\ ctg} x).$$

1218. 求函数 $f(x) = \operatorname{arc} \operatorname{tg} x$ 的 n 阶导函数.

$$\mathbf{f}'(x) = \frac{1}{1+x^2}$$

利用 1217 题的结果,得

$$f^{n}(x) = \frac{(-1)^{n-1}(n-1)!}{(x^{2}+1)^{\frac{n}{2}}} \sin(n\operatorname{arc} \operatorname{ctg} x)$$

$$= \frac{(-1)^{n-1}(n-1)!}{(x^{2}+1)^{\frac{n}{2}}} \sin\left(n\operatorname{arc} \operatorname{tg} \frac{1}{x}\right)$$

$$(x \neq 0),$$

求 f(n)(0),设:

1219. (a)
$$f(x) = \frac{1}{(1-2x)(1+x)}$$
;

$$(6)f(x) = \frac{x}{\sqrt{1-x}}.$$

(a)
$$f(x) = \frac{1}{3} \left(\frac{1}{1+x} + \frac{2}{1-2x} \right)$$
.

于是,

$$f^{(n)}(x) = \frac{1}{3} \Big(\frac{(-1)^n n!}{(1+x)^{n+1}} + \frac{n! \, 2^{n+1}}{(1-2x)^{n+1}} \Big).$$

所以

$$f^{(n)}(0) = \frac{n!}{3}((-1)^n + 2^{n+1}).$$

(6)
$$f(x) = -\sqrt{1-x} + \frac{1}{\sqrt{1-x}}$$
.

于是,

$$f^{(n)}(x) = \frac{(2n-3)!!}{2^n} \cdot \frac{1}{(1-x)^{\frac{2n-1}{2}}}$$

$$+\frac{(2n-1)!!}{2^n}\cdot\frac{1}{(1-x)^{\frac{2n+1}{2}}}.$$

所以

$$f^{(n)}(0) = \frac{(2n-3)!!}{2^n} + \frac{(2n-1)!!}{2^n}$$
$$= \frac{n(2n-3)!!}{2^{n-1}} (n > 1).$$

1220. (a) $f(x) = x^2 e^{ax}$; (6) f(x) = arc tg x; (8) f(x) = arc sin x.

$$\mathbf{f}^{(n)}(x) = x^2 a^n e^{ax} + 2nxa^{n-1} e^{ax} + n(n-1)a^{n-2} e^{ax},$$
$$f^{(n)}(0) = n(n-1)a^{n-2}.$$

(6) 利用 1218 题的结果,得

$$f^{(2k)}(0) = 0 \not b f^{(2k+1)}(0) = (-1)^k (2k)!$$

 $(k = 0, 1, 2, \cdots);$

(a)
$$y' = f'(x) = \frac{1}{\sqrt{1-x^2}}$$
,

$$y'' = f''(x) = \frac{x}{(1 - x^2)^{\frac{3}{2}}}.$$

若以添加下标"0"表示在x=0时的导数值,则得

$$y'_0 = f'(0) = 1, y''_0 = f''(0) = 0,$$

并且有

$$(1-x^2)y'' - xy' = 0.$$

对上式应用莱布尼兹公式,得

$$(1-x^2)y^{(n+2)} - 2nxy^{(n+1)} - n(n-1)y^{(n)} - xy^{(n+1)} - ny^{(n)} = 0.$$

在上式中,令x=0,则有

$$y_0^{(n+2)} - n(n-1)y_0^{(n)} - ny_0^{(n)} = 0,$$

$$y_0^{(n+2)} = n^2 y_0^{(n)}.$$
由于 $y''_0 = 0$,故
$$y_0^{2k} = f^{(2k)}(0) = 0 \qquad (k = 0, 1, 2, \cdots);$$
又由于 $y'_0 = 1$,故
$$y_0^{(2k+1)} = f^{(2k+1)}(0)$$

$$= (2k-1)^2 y_0^{(2k-1)}$$

$$= (2k-1)^2 \cdot (2k-3)^2 y_0^{(2k-3)}$$

$$= \cdots$$

$$= (1 \cdot 3 \cdots (2k-1))^2$$

$$= ((2k-1)!!)^2 (k = 1, 2, \cdots).$$
1221. (a) $f(x) = \cos(\max \sin x);$
(b) $f(x) = \sin(\max \cos x).$
(c) $f(x) = \sin(\max \cos x).$

$$f(x) = \frac{m}{\sqrt{1-x^2}} \sin(\max \cos x),$$

$$y'' = -\frac{m^2}{1-x^2} \cos(\max \cos x)$$

$$-\frac{mx}{(1-x^2)^{\frac{3}{2}}} \sin(\max \cos x).$$
于是,
$$y'_0 = f'(0) = 0, y''_0 = f''(0) = -m^2,$$
并且有
$$(1-x^2)y'' - xy' + m^2y = 0.$$

 $(1-x^2)y^{(n+2)}-2nxy^{(n+1)}-n(n-1)y^{(n)}$

 $= xy^{(n+1)} - ny^{(n)} + m^2y^{(n)} = 0.$

对上式应用莱布尼兹公式,得

209

$$令 x = 0$$
,即得

$$y_0^{(n+2)} + (m^2 - n^2)y_0^{(n)} = 0.$$

由于
$$y'_0 = 0$$
,故 $y_0^{(2k+1)} = f^{(2k+1)}(0) = 0(k = 1, 2, \cdots)$;

又由于 $y''_{\parallel} = -m^2$,故

$$y_0^{(2k)} = f^{2k}(0) = -(m^2 - (2k - 2)^2)y_0^{(2k-2)}$$

$$= \{-(m^2 - (2k - 2)^2)\}$$

$$\cdot \{-(m^2 - (2k - 4)^2)\}y_0^{(2k-4)}$$

==

$$= (-1)^{k-1} [m^2 - (2k-2)^2]$$

$$[m^2 - (2k-4)^2] \cdots (m^2 - 2^2) y''_0$$

$$= (-1)^k m^2 (m^2 - 2^2) \cdots [m^2 - (2k-2)^2]$$

$$(k = 1, 2, \cdots).$$

(6)
$$y' = f'(x) = \frac{m}{\sqrt{1 - x^2}} \cos(m \arctan \sin x),$$

 $y'' = f''(x) = \frac{m^2}{1 - x^2} \sin(m \arctan \sin x) + \frac{mx}{(1 + x^2)^{\frac{3}{2}}} \cos(m \arctan \sin x).$

于是,

$$y'_0 = f'(0) = m, y''_0 = f''(0) = 0,$$

并且有

2,...);

$$(1-x^2)y''-xy'+m^2y=0.$$

这与本题(a) 所得的方程是一样的,因而也有与(a) 同样的结果,

$$y_0^{(n+2)} + (m^2 - n^2)y_0^{(n)} = 0.$$
由于, $y_0'' = 0$,故 $y_0^{(2k)} = f^{(2k)}(0) = 0$ $(k = 1, 0)$

又由于
$$y'_0 = m$$
,故
$$y_0^{(2k+1)} = f^{(2k+1)}(0)$$

$$= -(m^2 - (2k-1)^2)y_0^{2k-1} = \cdots$$

$$= (-1)^k m(m^2 - 1^2) \cdots (m^2 - (2k-1)^2)$$

$$(k = 1, 2, \cdots).$$

1222. (a) $f(x) = (\text{arc tg} x)^2$; (b) $f(x) = (\text{arc sin} x)^2$.

解 (a) 仍以下标带"0" 者表示在 x = 0 时的导数值, 应用莱布尼兹公式及 1220 题(6) 的结果,即得

$$f^{(2k-1)}(0) = (\text{arc tg}x \cdot \text{arc tg}x)_0^{(2k-1)}$$

= 0 (k = 1,2,...)

及

$$f^{(2k)}(0) = (\operatorname{arc} \operatorname{tg} x \cdot \operatorname{arc} \operatorname{tg} x)_0^{(2k)}$$

$$= \sum_{i=0}^{2k} C_{2k}^i (\operatorname{arc} \operatorname{tg} x)_0^{(i)} \cdot (\operatorname{arc} \operatorname{tg} x)_0^{(2k-i)}$$

$$= \sum_{i=0}^{k-1} C_{2k}^{2i+1} (\operatorname{arc} \operatorname{tg} x)_0^{(2i+1)}$$

$$\cdot (\operatorname{arc} \operatorname{tg} x)_0^{(2k-2i-1)}$$

$$= \sum_{i=0}^{k-1} C_{2k}^{2i+1} (-1)^i (2i)!$$

$$\cdot (-1)^{k-i-1} (2k-2i-2)!$$

$$= (-1)^{k-1} \sum_{i=0}^{k-1} \frac{(2k)!}{(2i+1)!(2k-2i-1)!}$$

$$\cdot (2i)! (2k-2i-2)!$$

$$= (-1)^{k-1} (2k)!$$

$$= (-1)^{k-1} (2k)!$$

$$\cdot \sum_{i=0}^{k-1} \left(\frac{1}{2k} \left(\frac{1}{2i+1} + \frac{1}{2k-2i-1} \right) \right)$$

$$= (-1)^{k-1} 2(2k-1)! \sum_{i=0}^{k-1} \frac{1}{2(k-i)-1}$$

$$= (-1)^{k-1} (2k-1)! \cdot$$

$$= \left(\frac{1}{2k-1} \right) (k-1)! \cdot$$

$$+ \frac{1}{2k-1} (k-1)! \cdot$$

$$= \frac{2}{\sqrt{1-x^2}} \arcsin x \ \vec{\boxtimes}$$

(6)
$$f'(x) = \frac{2}{\sqrt{1-x^2}} \operatorname{arc} \sin x$$
 of

$$\sqrt{1-x^2}f'(x)=2{\rm arc}\,\sin x,$$

对上式两边再求导,得

$$\sqrt{1-x^2}f''(x) - \frac{xf'(x)}{\sqrt{1-x^2}} = \frac{2}{\sqrt{1-x^2}},$$

即

$$(1-x^2)f''(x) - xf'(x) - 2 = 0.$$

应用莱布尼兹公式,得

$$(1-x^2)f^{(n+2)}(x) - 2nxf^{(n+1)}(x) - n(n-1)f^{(n)}(x) - xf^{(n+1)}(x) - nf^{(n)}(x) = 0.$$

在上式中今x=0,即得

$$f^{(n+2)}(0) - n^2 f^{(n)}(0) = 0.$$

由于f'(0) = 0,故

$$f^{2k-1}(0) = 0 \ (k = 1, 2, \cdots)$$
:

又由于 f''(0) = 2. 故

$$f^{(2k)}(0) = (2k-2)^{2}(2k-4)^{2}\cdots 2^{2}f''(0)$$
$$= 2^{(2k-1)}\{(k-1)!\}^{2}(k=1,2,\cdots).$$

1223. 设

$$f(x) = (x - a)^n \varphi(x),$$

其中函数 $\varphi(x)$ 于 a 点的邻区内有(n-1) 阶的连续导函数,求 $f^{(n)}(a)$.

解 由莱布尼兹公式,得

$$f^{(n-1)}(x) = (x-a)^{n} \varphi^{(n-1)}(x)$$

$$+ C_{n-1}^{1} n(x-a)^{n-1} \varphi^{(n-2)}(x) + \cdots$$

$$+ C_{n-1}^{n-2} n(n-1) \cdots 3(x-a)^{2} \varphi(x)$$

$$+ n! (x-a) \varphi(x).$$

于是, $f^{(n-1)}(a) = 0$.

按导数定义,即得

$$f^{(n)}(a) = \lim_{x \to a} \frac{f^{(n-1)}(x) - f^{(n-1)}(a)}{x - a}$$

$$= \lim_{x \to a} ((x + a)^{n-1} \varphi^{(n-1)}(x) + C_{n-1}^{1} n(x - a)^{n-2} \varphi^{(n-2)}(x) + \cdots + C_{n-1}^{n-2} n(n-1) \cdots 3(x - a) \varphi(x) + n! \varphi(x))$$

$$= n! \varphi(a).$$

1224. 证明:函数

$$f(x) = \begin{cases} x^{2n} \sin \frac{1}{x}, \text{ if } x \neq 0, \\ 0, \text{ if } x = 0 \end{cases}$$

(n 为自然数) 于点 x = 0 有一直到 n 阶的导函数, 而无 (n + 1) 阶导函数.

证 由莱布尼兹公式, 当 $x \neq 0$ 时得

$$f^{m}(x) = \left(x^{2n} \sin \frac{1}{x}\right)^{(m)}$$

$$= \sum_{i=0}^{m} C_m^i (x^{2n})^{m-i} \left(\sin \frac{1}{x} \right)^{(i)}$$

首先指出,有

$$\left(\sin\frac{1}{x}\right)^{(i)} = \sum_{k=1}^{i-1} \left(a_k x^{-(i+k)} \sin\left(\frac{1}{x} + \frac{k\pi}{2}\right)\right) + (-x^{-2})^i \sin\left(\frac{1}{x} + \frac{i\pi}{2}\right),$$

$$(x \neq 0),$$

其中 ax 是某些常数.现用数学归纳法证明之:

当i=1时,命题显然成立;

设当i=N时,命题成立,要证命题对i=N+1时也成立.事实上,有

$$\left(\sin\frac{1}{x}\right)^{(N+1)} = \sum_{k=1}^{N-1} a_k \left(x^{-(N+k)} \sin\left(\frac{1}{x} + \frac{k\pi}{2}\right)\right)'$$

$$+ \left((-x^{-2})^N \sin\left(\frac{1}{x} + \frac{N\pi}{2}\right)\right)'$$

$$= \sum_{k=1}^{N-1} a_k (-(N+k)x^{-(N+1+k)})$$

$$\cdot \sin\left(\frac{1}{x} + \frac{k\pi}{2}\right) + x^{-(N+k)}$$

$$\cdot (-x^{-2}) \sin\left(\frac{1}{x} + \frac{k+1}{2}\pi\right)$$

$$+ (N(-x^{-2})^{N-1} \cdot (2x^{-3}))$$

$$\cdot \sin\left(\frac{1}{x} + \frac{N\pi}{2}\right) + (-x^{-2})^{N+1}$$

$$\cdot \sin\left(\frac{1}{x} + \frac{N+1}{2}\pi\right)$$

$$= \sum_{k=1}^{(N+1)-1} \left(b_k x^{-(N+1+k)}\right)$$

$$\cdot \sin\left(\frac{1}{x} + \frac{k\pi}{2}\right) + (-x^{-2})^{N+2}$$

$$\cdot \sin\left(\frac{1}{x} + \frac{N+1}{2}\pi\right),$$

其中 6, 是一些适当的常数.于是,命题对于一切自然 数均成立.

因而,我们有

$$f^{(m)}(x) = \sum_{i=0}^{m} C_{m}^{i} \cdot \frac{(2n)!}{(2n-m+i)!} x^{2n-m+i}$$

$$\cdot \left(\sum_{k=1}^{i-1} a_{k} x^{-(i+k)} \sin \left(\frac{1}{x} + \frac{k\pi}{2} \right) + (-x^{-2})^{i} \sin \left(\frac{1}{x} + \frac{i\pi}{2} \right) \right) (x \neq 0).$$

于是

$$f^{(m)}(x) = (-1)^m x^{2(n-m)} \sin\left(\frac{1}{x} + \frac{m\pi}{2}\right) + O(|x|^{2(n-m)+1} (x \to 0)$$

$$(m = 1, 2, \dots, n).$$
(*)

由于

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x)}{x}$$
$$= \lim_{x \to 0} x^{2n-1} \sin \frac{1}{x} = 0,$$

故由(*),得知

$$f''(0) = \lim_{x \to 0} \frac{f'(x)}{x}$$

$$= \lim_{x \to 0} \left(-x^{2n-3} \sin\left(\frac{1}{x} + \frac{\pi}{2}\right) + O(|x|^{2n-2}) \right)$$

$$= 0.$$

一直推下去,得

$$f^{(n)}(0) = \lim_{x \to 0} \frac{f^{(n-1)}(x)}{x}$$

$$= \lim_{x \to 0} \left((-1)^{n-1} x \sin\left(\frac{1}{x} + \frac{(n-1)\pi}{2}\right) + O(|x|^2) \right)$$

$$= 0.$$

但

$$f^{(n-1)}(0) = \lim_{x \to 0} \frac{f^{(n)}(x)}{x}$$

$$= \lim_{x \to 0} \left(\frac{(-1)^n}{x} \sin\left(\frac{1}{x} + \frac{n\pi}{2}\right) + O(1)\right),$$
在 $x = 0$ 近旁, $\frac{(-1)^n}{x} \sin\left(\frac{1}{x} + \frac{n\pi}{2}\right)$ 无界且振荡,故
$$\lim_{x \to 0} \left(\frac{(-1)^n}{x} \sin\left(\frac{1}{x} + \frac{n\pi}{2}\right) + O(1)\right)$$
 不 存 在, 因 而 $f^{(n+1)}(0)$ 不存在,证毕

1225. 证明:函数

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, \text{ if } x \neq 0, \\ 0, \text{ if } x = 0, \end{cases}$$

在x=0处是无穷次可微分的.作出此函数的图形.

证 当 $x \neq 0$ 时, $f'(x) = \frac{2}{x^3}e^{-\frac{1}{x^2}}$. 下面我们指出,对于任何自然数 n,均有

$$f^{(n)}(x) = e^{-\frac{1}{x^{i}}} P_{n} \left(\frac{1}{x} \right) (x \neq 0),$$

其中 $P_n(t)$ 是关于 t 的多项式,现用数学归纳法证明之:

当n=1时,命题显然成立;

设当
$$n = k$$
时命题成立,即 $f^{(k)}(x) = e^{-\frac{1}{x^k}} P_k \left(\frac{1}{x}\right)$,

 $P_k(t)$ 是关于t的某多项式,要证命题对于n=k+1时也成立,事实上,有

$$f^{(k+1)}(x) = \left(e^{-\frac{1}{x'}}P_k\left(\frac{1}{x}\right)\right)'$$

$$= \frac{2}{x^3}e^{-\frac{1}{x'}}P_k\left(\frac{1}{x}\right) + e^{-\frac{1}{x'}}P'_k\left(\frac{1}{x}\right).$$

$$\cdot \left(-\frac{1}{x^2}\right)$$

$$= e^{-\frac{1}{x'}}\left\{2\left(\frac{1}{x}\right)^3P_k\left(\frac{1}{x}\right) - \left(\frac{1}{x}\right)^2P'_k\left(\frac{1}{x}\right)\right\}$$

$$= e^{-\frac{1}{x'}}P_{k+1}\left(\frac{1}{x}\right).$$

其中 $P_{k+1}(t)$ 是关于 t 的另一多项式 . 于是,命题对于一切 自然数 n 均成立 .

现在,证明函数 f(x)在x=0处是无穷次可微分的,首先,注意到

图 2.37

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{e^{-\frac{1}{x^{i}}}}{x} = 0,$$

其中最末一式的极限求法可参看 654 题(6). 仍用此法,设 $f^{(*)}(0) = 0$,则可证明 $f^{(*-1)}(0) = 0$. 事实上,有

$$f^{(n+1)}(0) = \lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x}$$
$$= \lim_{x \to 0} \left\{ \frac{1}{x} P_n \left(\frac{1}{x} \right) e^{-\frac{1}{x^r}} \right\}$$

$$= \lim_{x \to 0} \left\{ P_n^{*} \left(\frac{1}{x} \right) e^{-\frac{1}{x^i}} \right\} = 0,$$

$$(P_n^{*}(t) = t p_n(t) \text{ b.g. } t \text{ b.s.}$$

根据数学归纳法,可知 $f^{(n)}(0) = 0$ 对于一切自然数 n 均成立,即函数 f(x) 在 x = 0 处无穷次可微分,且其各阶导数为零、图象如图 2.37 所示。

1226. 证明:契比协夫多项式

$$T_m(x) = \frac{1}{2^{m-1}} \cos(m \arccos x) (m = 0.1.2, \dots)$$

满足方程式

$$(1-x^2)T''_m(x)-xT'_m(x)+m^2T_m(x)=0.$$

$$T'_{m}(x) = \frac{m}{2^{m-1} \sqrt{1-x^{2}}} \sin(m \arccos x)$$
(|x| < 1),

$$T''_{m}(x) = -\frac{m^{2}}{2^{m-1}(1-x^{2})}\cos(m\arccos x) + \frac{mx}{2^{m-1}(1-x^{2})^{\frac{3}{2}}}\sin(m\arccos x).$$

于是,

$$(1 - x^{2})T''_{m}(x) = -\frac{m^{2}}{2^{m-1}}\cos(m\operatorname{arc}\cos x) + \frac{mx}{2^{m-1}\sqrt{1 - x^{2}}}\sin(m\operatorname{arc}\cos x) = -m^{2}T_{m}(x) + xT'_{m}(x),$$

即

$$(1-x^2)T''_{m}(x)-xT'_{m}(x)+m^2T_{m}(x)=0.$$

1227. 证明:勒襄德多项式

$$P_m(x) = \frac{1}{2^m m!} ((x^2 - 1)^m)^{(m)} (m = 0, 1, 2, \dots)$$

满足方程式

$$(1 - x^2)P''_m(x) - 2xP'_m(x) + m(m+1)P_m(x)$$

= 0

证 设 $y = (x^2 - 1)^m$,就有

$$y' = 2mx(x^2 - 1)^{m-1}$$
 $g(x^2 - 1)y' = 2mxy$.

对上式两端各取(m + 1) 阶导函数,按莱布尼兹公式,即得

$$(x^{2}-1)y^{(m+2)} + 2(m+1)xy^{(m+1)} + m(m+1)y^{(m)} = 2mxy^{(m+1)} + 2m(m+1)y^{(m)}.$$

于是,

$$(x^2 - 1)y^{(m+2)} + 2xy^{(m+1)} - m(m+1)y^{(m)}$$

= 0,

两端再以 $\frac{1}{2^m m!}$ 乘之、并以 $P_m(x) = \frac{1}{2^m m!} y^{(m)}$ 代入,即得所要证明的等式

$$(1-x^2)P''_{m}(x) - 2xP'_{m}(x) + m(m+1)P_{m}(x)$$

= 0.

1228. 契比协夫 一拉格耳多项式定义如下:

$$L_m(x) = e^x (x^m e^{-x})^{(m)} (m = 0, 1, 2, \cdots).$$

求多项式 $L_m(x)$ 的明显的表达式.

证明:L_n(x) 满足方程

$$xL''_{m}(x) + (1-x)L'_{m}(x) + mL_{m}(x) = 0.$$

解 按莱布尼兹公式,有

$$L_m(x) = e^x \{ (-1)^m x^m e^{-x} + (-1)^{m-1} - C_m^1 m x^{m-1} e^{-x} \}$$

$$+ \cdots + (-1)C_{m}^{m-1}m!xe^{-x} + m!e^{-x}$$

$$= (-1)^{m}x^{m} + (-1)^{m-1}C_{m}^{1}mx^{m-1}$$

$$+ \cdots + (-1)C_{m}^{m-1}m!x + m!$$

$$= (-1)^{m}(x^{m} - m^{2}x^{m-1} + \cdots$$

$$+ (-1)^{m-1}m^{2}(m-1)!x + \cdots$$

$$(-1)^{m}m!$$

其次,设 $y = x^m e^{-x}$,就有 $y' = mx^{m-1}e^{-x} - x^m e^{-x}$,

于是,

$$xy' + (x - m)y = 0.$$

在上述等式两端各取(m+1)阶导函数,按莱布尼兹公式,即得

$$xy^{(m+2)} + (m+1)y^{(m+1)} + (x-m)y^{(m+1)} + (m+1)y^{(m)} = 0$$

或

$$xy^{(m+2)} + (1+x)y^{(m+1)} + (m+1)y^{(m)} = 0.$$

再设 $z = y^{(r)}$,则由上式可得

$$xz'' + (1+x)z' + (m+1)z = 0. (1)$$

由于 $L_m(x) = e^x \cdot z$,故

$$L'_{m}(x)=e^{z}(z+z').L''_{m}(x)=e^{x}(z+2z'+z''),$$
 于是

$$xL''_{m}(x) + (1-x)L'_{m}(x) + mL_{m}(x)$$

$$= e^{x} \langle x(z+2z'+z'') + (1+x)(z+z') + mz \rangle$$

$$= e^{x} \langle xz'' + (x+1)z' + (m+1)z \rangle.$$
 (2)

将(1) 式代入(2) 式,即证得

$$xL_m''(x) + (1-x)L_m'(x) + mL_m(x) = 0.$$

1229. 设 y = f(u) 及 $u = \varphi(x)$,其中 f(u) 及 $\varphi(x)$ 为可微分 n 次的函数.

证明:
$$\frac{d^n y}{dx^n} = \sum_{k=1}^n A_k(x) f^{(k)}(u),$$

其中系数 $A_k(x)(k=0,1,\cdots,n)$ 与函数 f(u) 无关.

证 由于

$$\frac{dy}{dx} = f'(u)\phi(x),$$

故命题当n=1时成立;

设当n=m时命题成立,即有

$$\frac{d^m y}{dx^m} = \sum_{k=1}^m A_k(x) f^{(k)}(u),$$

要证命题对于 n = m + 1 时也成立、事实上,有

$$\frac{d^{m+1}y}{dx^{m+1}} = \frac{d}{dx} \sum_{k=1}^{m} A_k(x) f^{(k)}(u)
= \sum_{k=1}^{m} \{ A^i_{\ k}(x) f^{(k)}(u)
+ A_k(x) f^{(k+1)}(u) \varphi^i(x) \}
= \sum_{k=1}^{m+1} B_k(x) f^{(k)}(u),$$

其中, $B_1(x) = A'_1(x)$, $B_k(x) = \phi(x)A_{k-1}(x) + A'_k(x)$ $(k = 2, 3, \dots, m)$, $B_{m+1}(x) = A_m(x)\phi(x)$, 它们均与f(u) 无关。

于是,按数学归纳法得知

$$\frac{d^n y}{dx^n} = \sum_{k=1}^n A_k(x) f^{(k)}(u)$$

对于一切自然数 n 均成立,

1230. 证明:对于复合函数 $y = f(x^2)$ 的n阶导函数,下面的公

式止确

$$\frac{d^{n}y}{dx^{n}} = (2x)^{n} f^{(n)}(x^{2}) + \frac{n(n-1)}{1!} (2x)^{n-2} f^{(n-1)}(x^{2}) + \frac{n(n-1)(n-2)(n-3)}{2!} (2x)^{n-4} f^{(n-2)}(x^{2}) + \cdots,$$

证 当 n = 1 时公式成立,事实上, $\frac{dy}{dx} = 2xf(x^2).$

设当n=m时公式成立,要证公式对于n=m+1时也成立,事实上,有

$$\frac{d^{m+1}y}{dx^{m+1}} = \frac{d}{dx} \left(\frac{d^m y}{dx^m} \right) \\
= 2m(2x)^{m-1} f^{(m)}(x^2) + (2x)^{m+1} f^{(m+1)}(x^2) \\
+ \frac{m(m-1)}{1!} 2(m-2)(2x)^{m-3} f^{(m-1)}(x^2) \\
+ \frac{m(m-1)}{1!} (2x)^{m-1} f^{(m)}(x^2) \\
+ \frac{m(m-1)(m-2)(m-3)}{2!} \\
\cdot 2(m-4)(2x)^{m-5} f^{(m-2)}(x^2) \\
+ \frac{m(m-1)(m-2)(m-3)}{2!} \\
\cdot (2x)^{m-3} f^{(m-1)}(x^2) + \cdots \\
= (2x)^{m+1} f^{(m+1)}(x^2) \\
+ \left(\frac{2m}{1!} \right) (2x)^{m-1} f^{(m)}(x^2) \\
+ \left(\frac{2m(m-1)(m-2)}{1!} \right) \\
+ \frac{m(m-1)(m-2)(m-3)}{2!} \right)$$

$$\cdot (2x)^{m-3} f^{(m-1)}(x^2) + \cdots$$

$$- (2x)^{m+1} f^{(m+1)}(x^2)$$

$$+ \frac{(m+1)m}{1!} (2x)^{m-1} f^{(m)}(x^2)$$

$$+ \frac{(m+1)m(m-1)(m-2)}{2!}$$

$$\cdot (2x)^{m-3} f^{(m-1)}(x^2) + \cdots$$

这正是公式对于n = m + 1时的情形,于是,按数学归纳法得知,公式对于一切自然数n均成立。

1231. 契比协夫一厄耳米特多项式定义如下:

$$\dot{H}_m(x) = (-1)^m e^{x^2} (e^{-x^2})^{(m)} (m = 0, 1, 2, \cdots).$$

求多项式 $H_m(x)$ 的明显的表达式.

证明:H"(x)满足方程

$$H''_{m}(x) - 2xH'_{m}(x) + 2mH_{m}(x) = 0.$$

解 设
$$y = e^{-x^2}$$
,则有
 $y' = (-2x)e^{-x^2} = (-1)^1(2x)^3 e^{-x^2}$,
 $y'' = e^{-x^2}((-2x)^2 - 2)$
 $= ((-1)^2(2x)^2 - 2)e^{-x^2}$.

一般地,可用数学归纳法证明

$$y^{(m)} = \left((-1)^m (2x)^m + (-1)^{m-1} \frac{m(m-1)}{1!} (2x)^{m-2} + (-1)^{m-2} \frac{m(m-1)(m-2)(m-3)}{2!} + (2x)^{m-4} + \cdots \right) e^{-x^2}.$$

于是,得

$$H_m(x) = (-1)^m e^{x^2} y^{(m)}$$
$$= (2x)^m - \frac{m(m-1)}{1!} (2x)^{m-2}$$

$$+\frac{m(m-1)(m-2)(m-3)}{2!}(2x)^{m-4}-\cdots$$

y' + 2xy = 0.

对上式两端各取(m + 1) 阶导函数,按莱布尼兹公式,即得

$$y^{(m+2)} + 2xy^{(m+1)} + 2(m+1)y^{(m)} = 0.$$

再设 $z = y^{(m)}$,上式就是

$$z'' + 2xz' + 2(m+1)z = 0. (1)$$

由 $H_m(x) = (-1)^m e^{x^2} z$, 得

$$H'_{m}(x) = (-1)^{m}e^{x^{2}}(2xz + z'),$$

$$H''_{m}(x) = (-1)^{m} e^{x^{2}} ((4x^{2} + 2)z + 4xz' + z'').$$

从而有

$$H''_{m}(x) - 2xH'_{m}(x) + 2mH_{m}(x)$$

$$= (-1)^{m}e^{x^{2}}\{(4x^{2} + 2)z + 4xz' + z'' - 4x^{2}z - 2xz' + 2mz\}$$

$$= (-1)^{m}e^{x^{2}}\{z'' + 2xz' + 2(m+1)z\}.$$
 (2)

将(1) 式代入(2) 式,即证得

$$H''_{m}(x) - 2xH'_{m}(x) + 2mH_{m}(x) = 0.$$

1232. 证明等式

$$(x^{n-1}e^{\frac{1}{x}})^n = \frac{(-1)^n}{x^{n+1}}e^{\frac{1}{x}}.$$

证 当 n = 1 时,由于 $(e^{\frac{1}{x}})' = -\frac{1}{x^2}e^{\frac{1}{x}}$,故等式成立.

设当 n = k 时等式成立,即有

$$(x^{k-1}e^{\frac{1}{x}})^{(k)} = \frac{(-1)^k}{r^{k+1}}e^{\frac{1}{x}},$$

要证等式对n = k + 1时也成立,事实上,有

$$(x^k e^{\frac{1}{x}})^{(k+1)} = [(x \cdot x^{k-1} e^{\frac{1}{k}})^{(k)}]^t$$

$$= (x(x^{k-1}e^{\frac{1}{x}})^{(k)} + k(x^{k-1}e^{\frac{1}{x}})^{(k-1)})'$$

$$= x(x^{k-1}e^{\frac{1}{x}})^{(k-1)} + (x^{k-1}e^{\frac{1}{x}})^{(k)}$$

$$+ k(x^{k-1}e^{\frac{1}{x}})^{(k)}$$

$$= x\left(\frac{(-1)^k}{x^{k+1}}e^{\frac{1}{x}}\right)' + (k+1) \cdot \frac{(-1)^k}{x^{k+1}}e^{\frac{1}{x}}$$

$$= \frac{(-1)^{k+1}(k+1)}{x^{k+1}}e^{\frac{1}{x}}$$

$$+ \frac{(-1)^{k+1}}{x^{k+2}}e^{\frac{1}{x}} + \frac{(-1)^k(k+1)}{x^{k+1}}e^{\frac{1}{x}}$$

$$= \frac{(-1)^{k+1}e^{\frac{1}{x}}}{x^{k+2}}e^{\frac{1}{x}}.$$

于是,按数学归纳法得知

$$(x^{n-1}e^{\frac{1}{x}})^{(n)}=\frac{(-1)^n}{x^{n+1}}e^{\frac{1}{x}}$$

对于一切自然数 n 均成立.

1233. 设 $\frac{d}{dx} = D$ 表示微分算子及

$$f(D) = \sum_{k=0}^{n} p_k(x) D^k$$

为微分符号的多项式,其中 $p_k(x)$ $(k = 0,1,\dots,n)$ 为 x 的某连续函数.

证明:

$$f(D)\{e^{\lambda x}u(x)\}=e^{\lambda x}f(D+\lambda)u(x),$$

其中λ为常数:

证 按莱布尼兹公式,有

$$D^{k}\langle e^{kx}u(x)\rangle = \{e^{kx}u(x)\}^{(k)}$$
$$= \sum_{i=0}^{k} C_{k}^{i}(e^{kx})^{(i)}u^{(k+i)}(x)$$

$$=e^{\lambda x}\sum_{i=0}^{k}C_{k}^{i}\lambda^{i}u^{(k-i)}(x).$$

另一方面,有

$$(D+\lambda)^k u(x) = \sum_{i=0}^k C_k^i \lambda^i D^{(k-i)} u(x)$$
$$= \sum_{i=0}^k C_k^i \lambda^i u^{(k-i)}(x).$$

因而,得

$$D^{k}\{e^{\lambda t}u(x)\}=e^{\lambda t}(D+\lambda)^{k}u(x).$$
于是,

$$f(D)\{e^{\lambda x}u(x)\} = \sum_{k=0}^{n} p_{k}(x)D^{k}\{e^{\lambda x}u(x)\}$$

$$= e^{\lambda x}\sum_{k=0}^{n} p_{k}(x) \cdot (D+\lambda)^{k}u(x)$$

$$= e^{\lambda x}(D+\lambda)u(x),$$

即

$$f(D)\langle e^{\lambda x}u(x)\rangle = e^{\lambda x}f(D+\lambda)u(x).$$

1234. 证明:若干方程

$$\sum_{k=0}^{n} a_k x^k \frac{d^k y}{dx^k} = 0$$

中,令

$$x = e^t$$
,

其中 t 为自变数,则此方程具有下形

$$\sum_{k=0}^{n} a_{k} D(D-1) \cdots (D-k+1) y = 0,$$

其中
$$D = \frac{d}{dt}$$
.

证 记
$$\delta = \frac{d}{dx}$$
,则有

$$Dy = \frac{dy}{dx} \cdot \frac{dx}{dt} = e^{t} \delta y \otimes \delta y = e^{-t} Dy.$$

从而对于符号 D 及δ有关系

$$\delta = e^{-i}D$$
.

继续求得

$$\delta^2 y = e^{-t}D(e^{-t}Dy) = e^{-t}(-e^{-t}Dy + e^{-t}D^2y)$$

= $e^{-2t}D(D-1)y$,

一般地,可用数学归纳法证得

$$\delta^{(k)} y = e^{-kt} D(D-1) \cdots (D-k+1) y. \tag{1}$$

事实上,设公式(1) 对 k = m 时成立,则有

$$\delta^{(m+1)}y = \delta(\delta^{(m)}y)$$

$$= e^{-t}D(e^{-mt}D(D-1)\cdots(D-m+1)y)$$

$$= e^{-t}(-me^{-mt}D(D-1)\cdots(D-m+1)y)$$

$$+ e^{-mt}D^{2}(D-1)\cdots(D-m+1)y)$$

$$= e^{-(m-1)t}D(D-1)\cdots(D$$

$$- (m+1) + 1)y,$$

即公式(1) 对 k = m + 1 时也成立.于是,公式(1) 对于一切自然数均成立.

于是,

$$\sum_{k=0}^{n} a_k x^k \frac{d^k y}{dx^k} = \sum_{k=0}^{n} a_k x^k \delta^{(k)} y$$

$$= \sum_{k=0}^{n} a_k e^{kt} \cdot e^{-kt} D(D-1) \cdots (D-k+1) y = 0,$$

即

$$\sum_{k=0}^{n} a_k D(D-1) \cdots (D-k+1) y = 0.$$

§ 6. 洛尔、拉格朗日及哥西定理

1° 洛尔定理 若函数 f(x); (1) 在闭区间 [a,b] 上有定义并且是连续的; (2) 在此区间内有有限的导函数 f'(x); (3) f(a) = f(b),则至少存在有一个数 c 下区间 (a,b) 内,使

$$f'(c) = 0$$
, 其中 $a < c < b$.

 2° 拉格朗日定理 若函数 f(x):(1) 在闭区间[a,b] 上有定义并且是连续的;(2) 在区间[a,b] 内有有限的导函数,则

$$f(b) - f(a) = (b - a)f'(c)$$
, 其中 $a < c < b$ (有限增量公式).

$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)},$$

其中a < c < b.

1235. 检验洛尔定理对于函数

$$f(x) = (x+1)(x-2)(x-3)$$

的正确性:

- **解** (1) 函数 f(x) 在[1, 2] 及[2, 3] 上连续;
 - (2)f'(x) 在(1,2) 及(2,3) 上处处存在;
 - (3) $f(1) = f(2) = 0 \ \text{M} \ f(2) = f(3) = 0.$

由洛尔定理,应该有 $1 < c_1 < 2$, $2 < c_2 < 3$ 存在,使 $f'(c_1) = 0$, $f'(c_2) = 0$. 下面,我们验证确有这种 c_1 , c_2 存在. 易知

$$f'(x) = (x-2)(x-3) + (x-1)(x-3) + (x-1)(x-2)$$

$$= 3x^2 - 12x + 11.$$

令 f'(x) = 0 解之,得 $x = 2 \pm \frac{\sqrt{3}}{3}$,故可取

$$c_1 = 2 - \frac{\sqrt{3}}{3}, c_2 = 2 + \frac{\sqrt{3}}{3};$$

显然 $1 < c_1 < 2$, $2 < c_2 < 3$, 且

$$f'(c_1) = 0 \cdot f'(c_2) = 0.$$

1236. 函数

$$f(x) = 1 - \sqrt[3]{x^2}$$

当 $x_1 = -1$ 及 $x_2 = 1$ 时为零、但是当 $-1 \le x \le 1$ 时, $f'(x) \ne 0$. 说明与洛尔定理表面上的矛盾。

解 $f'(x) = -\frac{2}{3\sqrt[3]{x}}$,它在[-1,1]上恒不为零,表

面上看是与洛尔定理矛盾的,实际上不然,原因是f'(x)在x=0处不存在,不满足洛尔定理的第二个条件,故当 $-1 \le x \le 1$ 时,可以有 $f'(x) \ne 0$.

1237. 设函数 f(x) 于有穷或无穷的区间(a,b) 中的任意一点有有限的导函数 f'(x),且

$$\lim_{x\to a+0} f(x) = \lim_{x\to b+0} f(x).$$

证明:

$$f'(c) = 0$$
,

其中 c 为区间(a,b) 中的某点.

证 当(a,b) 为有穷区间时,设

$$F(x) = \begin{cases} f(x), \, \exists \, x \in (a,b) \text{ 时}, \\ A, \, \exists \, x = a \, \exists \, b \text{ 时}, \end{cases}$$

其中 $A = \lim_{x \to a+0} f(x) = \lim_{x \to b=0} f(x).$

显然 $F(\tau)$ 在[a,b] 上连续,在(a,b) 内可导,且有 F(a)

= F(b), 故由洛尔定理可知,在(a,b) 内至少存在一点c,使

$$F'(c) = 0.$$

而在(a,b) 内,F'(x) = f'(x),所以

$$f'(c) = 0$$
.

下设(a,b) 为无穷区间、若 $a=-\infty,b=+\infty$, 可设

$$x = \operatorname{tg} t \left(-\frac{\pi}{2} < t < \frac{\pi}{2} \right),$$

则对由函数 f(x) 与 x = tgt 组成的复合函数

$$g(t) = f(tgt)$$

在有穷区间 $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ 内仿前讨论可知:至少存在一

点
$$t_0 \in \left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\}$$
,使

$$\mathbf{g}'(t_0) = f'(c) \cdot \sec^2 t_0 = 0,$$

其中 $c = \operatorname{tg} t_0$. 由于 $\operatorname{sec}^2 t_0 \neq 0$,故

$$f'(c) = 0$$
.

若 a 为有限数, $b = + \infty$. 则可取 $b_0 > \max \{a, 0\}$,而令

$$x = \frac{(b_0 - a)t}{b_0 - t} \cdot$$

于是,对复合函数 $g(t) = f\left(\frac{(b_0 - a)t}{b_0 - t}\right)$ 在有穷区间 (a, b_0)

 b_0) 上仿前讨论,可知:存在 $t_0 \in (a,b_0)$ 使

$$g'(t_0) = f'(c) \cdot \frac{b_0(b_0 - a)}{(b_0 - t_0)^2} = 0,$$

其中 $c = \frac{(b_0 - a)t}{b_0 - t_0}$. 显然 $a < c < + \infty$ 由于

$$\frac{b_0(b_0-a)}{(b_0-t_0)^2} > 0,$$

故 f'(c) = 0.

对于 $a = -\infty$, b 为有限数的情形, 可类似地进行讨论,证毕.

1238. 设函数 f(x); (1) 于闭区间(x_0, x_n) 上有定义且有(n - 1) 阶的连续导函数 $f^{(n-1)}(x)$; (2) 于区间(x_0, x) 内有n 阶导函数 $f^{(n)}(x)$; (3) 有下面的等式成立

$$f(x_0) = f(x_1) = \cdots = f(x_n)(x_0 < x_1 < \cdots < x_n).$$

证明,在区间 (x_0, x_n) 内最少有一点 ξ ,使
 $f^{(n)}(\xi) = 0.$

证 在每一个闭区间

$$(x_0, x_1), (x_1, x_2), \cdots, (x_{k-1}, x_k), \cdots, (x_{n-1}, x_n)$$

上,函数f(x)满足洛尔定理的条件.因此,存在n个点 x'_1,x'_2,\dots,x'_n

其中
$$x'_k \in (x_{k-1}, x_k)(k = 1, 2, \dots, n)$$
,使 $f'(x'_k) = 0 \ (k = 1, 2, \dots, n)$.

于是,在每个区间 $[x'_k,x'_{k+1}](k=1,2,\cdots,n-1)$ 上,函数 f'(x) 满足洛尔定理的条件. 因此存在点 x''_k 属于 $[x'_k,x'_{k+1}](k=1,2,\cdots,n-1)$,使

$$f''(x''_k) = 0 \ (k = 1, 2, \dots, n-1).$$

继续上述步骤, 经(n-1) 次后, 得出一个区间 $[x_1^{n-1}, x_2^{n-1}] \subset (x_0, x_n)$, 满足 $f^{(n-1)}(x_k^{n-1}) = 0$ (k=1, 2).

于是在此区间上,函数 $f^{(r-1)}(x)$ 满足洛尔定理的条件。

所以,至少存在一点 $\xi(x_1^{n-1},x_2^{n-1})$,使 $f^{(n)}(\xi) = 0$.

1239. 设函数 f(x); (1) 于闭区间[a, b] 上有定义且有(p+q) 阶的连续导函数 $f^{(p+q)}(x)$; (2) 在区间(a,b) 内有(p+q+q+1) 阶的导函数 $f^{(p+q+1)}(x)$; (3) 有下面的等式成立:

$$f(a) = f'(a) = \cdots = f^{(p)}(a) = 0$$
及 $f(b) = f'(b) = \cdots = f^{(q)}(b) = 0$
证明:在此种情形下
$$f^{(p+q+1)}(c) = 0.$$

其中 c 为区间(a,b) 内的某点,

在[a,b]上f(x)满足洛尔定理的条件,因此,至少存在一点 $x_1^{(i)} \in (a,b)$,使 $f'(x_1^{(i)}) = 0$;

对于区间 $\{a,x_1^{(1)}\}$ 及 $\{x_1^{(1)},b\}$,函数 f'(x) 在其上满足洛尔定理的条件,因此,至少分别存在 $x_2^{(1)},x_2^{(2)}$,使 $f''(x_2^{(1)})=0$, $f''(x_2^{(2)})=0$;

继续上述步骤,经过p次后,得出(p+2)个点: $a, x_p^{(1)}, x_p^{(2)}, x_p^{(3)}, \dots, x_p^{(p)}, b$

使 $f^{(p)}(a) = f^{(p)}(x_p^{(k)}) = f^{(p)}(b) = 0 \ (k = 1, 2, \dots, p)$;

由此(p+2)个点组成(p+1)个区间,仿 1238 题对于它们重复使用洛尔定理 p 次,即可得出点 c 属于(a,b),使

$$f^{(p+q+1)}(c)=0.$$

若 $p \neq q$,不失一般性,设 q = p + k(k) 为某正整

数).

当进行(p+1) 次后,对于函数 $f^{(p)}(x)=0$ 而言,在(a,b) 内有(p+1) 个点:

$$\xi_1, \xi_2, \cdots, \xi_{p+1},$$

満足 $f^{(p+1)}(\xi_k) = 0 \ (k = 1, 2, \dots, p+1);$

再加上条件 $f^{(p+1)}(b) = f^{(p+2)}(b) = \cdots = f^{(p+k)}(b) = 0$, 重复对此再应用洛尔定理 k 次,则在(a,b) 内仍然存在(p+1) 个点,

$$\xi_1^{(k)}, \xi_2^{(k)}, \cdots, \xi_{r+1}^{(k)},$$

使

$$f^{(p+k+1)}(\xi_j^{(k)}) = 0 \ (j=1,2,\cdots,p+1).$$

以后,每进行一次,减少一个点,进行 p 次后,即可得出一点 $c \in (a,b)$,使

$$f^{(p+k+q+1)}(c)=0,$$

閗

$$f^{(p+q+1)}(c)=0.$$

证毕.

1240. 证明:若具实系数 $a_k(k=0,1,\cdots,n)$ 的多项式

$$P_n(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n (a_0 \neq 0)$$

之一切根为实数,则其逐次的导函数 $P'_{\pi}(x), P''_{\pi}(x)$, …, $P''_{\pi}^{(n-1)}(x)$ 也仅有实根.

证 根据假设,此处n次多项式 $P_n(x)$ 有n个实根.记其诸实根为 $\alpha_1,\alpha_2,\cdots,\alpha_l$,并且 α_i 是 k_i 重根, $k_i \ge 1$ ($i=1,2,\cdots,l$),有 $k_1+k_2+\cdots+k_l=n$.

于是可改写 $P_*(x)$ 为

$$P_{x}(x) = a_{0}(x - \alpha_{1})^{k_{1}}(x - \alpha_{2})^{k_{2}} \cdots (x - \alpha_{1})^{k_{i}}.$$

显见 α_i 为 $P_n'(x)$ 的 $k_i - 1$ 重根 $(i = 1, 2, \dots, l)$. 由 $P_n(\alpha_1) = P_n(\alpha_2) = \dots = P_n(\alpha_l) = 0, P_n(x)$ 可微,据 洛 尔 定 理,存在 $\xi_1, \xi_2, \dots, \xi_{l-1}$,而 $\xi_i \in (\alpha_i, \alpha_{i+1})$,使 $P_n'(\xi_i) = 0$ $(i = 1, 2, \dots, l-1)$,于是有

$$P'_{n}(x)$$
 的根 $\left| \xi_{1}, \xi_{2}, \cdots, \xi_{i-1} \right|$ $\left| \alpha_{1} \right|$ $\left| \alpha_{2} \right|$ $\left| \cdots \right|$ $\left| \alpha_{i} \right|$ $\left| \alpha_{i} \right|$ $\left| \alpha_{2} \right|$ $\left| \cdots \right|$ $\left| \alpha_{i} \right|$ \left

即n-1次多项式 $P'_n(x)$ 的根恰有 $(k_1-1)+(k_2-1)+\cdots+(k_l-1)+(l-1)=k_1+k_2+\cdots+k_l-1)+\cdots+(k_l-1)+(l-1)=k_1+k_2+\cdots+k_l-1=n-1$ 个,这就是说,一个n次多项式,若n个根均为实根的话,则其导函数n-1次多项式的n-1个根也必全为实根,反复运用这一结果,由 $P'_n(x)$ 的n-1个根皆为实根,便可推知 $P_n''(x)$ 的n-2个根也均为实根,如此下去,即知关于 $P_n(x)$ 的一切低阶导函数—— 直至 $P^{(n-1)}(x)$ 也仅有实根,

1241. 证明:勒襄德多项式

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \{ (x^2 - 1)^n \}$$

的一切根都是实数且包含于区间(-1,1)中.

证 显然,2n次多项式 $Q_{2n}(x) = (x^2 - 1)^n = (x + 1)^n$ · $(x - 1)^n$ 仅有实根 $(-1 + 1)^n$ 但是n 重根,1 也是n 重根)。 因此,根据 1240 题的结果知 $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} Q_{2n}(x)$ 仅有实根,且都含于[-1,1] 中,但显然 -1 和 1 都不是 $P_n(x)$ 的根(因为,例如,-1 是 $Q_{2n}(x)$ 的 n 重根,故

-1是 $\frac{d^{n-1}}{dx^{n-1}}Q_{2n}(x)$ 的单根,因而-1不是 $\frac{d^n}{dx^n}Q_{2n}(x)$ 的根)。因此, $P_n(x)$ 的根全部位于(-1,1)中、证毕、

1242. 证明:契比协夫 —— 拉格耳多项式

$$L_n(x) = e^x \frac{d^n}{dx^n} (x^n e^{-x})$$

所有的根都是正数:

$$Q^{(m)}(x) = e^{-x} \{ (-1)^m x^n + (-1)^{m-1} C_m^1 n x^{n-1} + \dots + (-1) C_m^{m-1} n (n-1) \dots (n-m+1) x^{n-m+1} + n (n-1) \dots (n-m+1) x^{n-m} \} (m=1,2,\dots,n).$$

显然 $Q^{(n)}(0) = 0$ $(m = 0, 1, \dots, n-1;$ 为方便计,以下记 $Q^{(n)}(x) = Q(x)$,但 $Q^{(n)}(0) = n! \neq 0$. 义

$$\lim_{x \to +\infty} Q^{(m)}(x) = 0 \ (m = 0, 1, \dots, n).$$

对函数Q(x)和区间 $(0, +\infty)$ 应用 1237题,知存在 $\xi^{(1)}$ $\in (0, +\infty)$ 使 $Q'(\xi^{(1)}) = 0$. 再对函数Q'(x) 和区间 $(0, \xi^{(1)})$ 及 $(\xi^{(1)}, +\infty)$ 应用 1237题,知存在 $\xi^{(2)}_{1} \in (0, \xi^{(1)})$, $\xi^{(2)}_{2} \in (\xi^{(1)}, +\infty)$ 使

$$Q''(\hat{\xi}_i^{(2)}) = 0 \ (i = 1, 2).$$

这样继续下去,反复应用 1237 题 n 次,知存在 $0 < \xi_n^{(n)} < \cdots < \xi_n^{(n)} < + \infty$ 使

$$Q^{(n)}(\xi_i^{(n)}) = 0 \ (i = 1, 2, \dots, n).$$

显然 $L_n(\xi_i^{(n)})=0$ $(i=1,2,\cdots,n)$,故 $\xi_i^{(n)}(i=1,2,\cdots,n)$ 都是 $L_n(x)$ 的根,但由于

$$L_n(x) = e^x Q^{(n)}(x)$$

$$= (-1)^{n}x^{n} + (-1)^{n-1}C_{n}^{1}nx^{n-1} + \cdots + (-1)C_{n}^{n-1}n[x+n]$$

是x的n次多项式,故 $L_n(x)$ 恰有n个根(实的或复的),因此 $\xi_n^{(n)}(i=1,2,\cdots,n)$ 是 $L_n(x)$ 的全部根 \cdot 证毕、

1243. 证明: 契比协夫 —— 厄耳米特多项式

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$$

所有的根都是实数:

证 设 $Q(x) = e^{-x^2}$. 显然有 $Q'(x) = -2xe^{-x^2},$ $Q''(x) = 2e^{-x^2}(\sqrt{2}x + 1)(\sqrt{2}x - 1),$

从而得知 Q'(x) = 0 有一个实根, Q''(x) = 0 有两个相 异的实根.

设
$$Q^{(k)}(x) = 0$$
 有 k 个相异实根,并记成 $\alpha_1 < \alpha_2 < \cdots < \alpha_k$,

注意到 $Q^{(k)}(x)$ 是 e^{-x^2} 与一个 k 次多项式的乘积,从而就有

$$Q^{(k)}(x) = Ae^{-x^2}(x - a_1)(x - a_2)\cdots(x - a_k),$$

其中 $A \neq 0$ 为某个常数. 下面我们将证 $Q^{(k+1)}(x) = 0$ 有 k+1 个相异实根. 事实上,由

$$Q^{(k)}(\alpha_i) = Q^{(k)}(\alpha_{i+1})(i = 1, 2, \dots, k-1)$$

应用洛尔定理得知,存在 $\beta_i \in (\alpha_i, \alpha_{i+1})$,使

$$Q^{(k+1)}(\beta_i) = 0 \ (i = 1, 2, \dots, k-1).$$

又由于

$$\lim_{x \to +\infty} Q^{(k)}(x) = 0 \not \! D Q^{(k)}(\alpha_1) = 0,$$

利用 1237 题的结果,故知存在 $\beta_0 \in (-\infty, \alpha_1)$,使

$$Q^{(k+1)}(eta_{\mathfrak{o}})=0.$$

同法可知,存在 $eta_{k}\in(lpha_{k},\pm\infty)$,使

$$Q^{(k+1)}(\beta_k) = 0.$$

于是, $Q^{(k+1)}(x) = 0$ 有 k+1 个实根. 故由数学归纳法,知 $Q^{(n)}(x) = 0$ 有 n 个相异实根 $(n=1,2,\cdots)$. 从而 $H_n(x)$ 有 n 个相异实根. 但是由于 $H_n(x)$ 是 x 的一个 n 次多项式,故 $H_n(x)$ 恰有 n 个根(实的或复的). 因此 $H_n(x)$ 所有的根都是实数. 证毕.

1244. 在曲线 $y = x^3$ 上某点的切线,平行于连接点 A(-1, -1) 及点 B(2,8) 所成的弦,求出此点.

解 由题设知 $y = x^3$ 在所求点 (x_0, y_0) 的切线斜率应为 $y'(x_0) = 3x_0^2 = \frac{8 - (-1)}{2 - (-1)} = 3$. 于是, $x_0 = -1$,或 $x_0 = 1$,

故所求的点为 A(-1,-1) 及 C(1,1).

1245. 若 ab < 0,有限增量的公式对于函数

$$f(x) = \frac{1}{x}$$

在闭区间(a,b)上是否正确?

解 不正确,事实上,如果有限增量公式在此成立,则有

$$f(b) - f(a) = f'(\xi)(b-a), \xi \in (a,b),$$

即

$$\frac{1}{b} - \frac{1}{a} - \frac{1}{\xi^2}(b-a) = \frac{a-b}{\xi^2}.$$

但是

$$\frac{1}{b} - \frac{1}{a} = \frac{a}{ab} - \frac{b}{ab}.$$

所以

$$\frac{a-b}{\xi^2} = \frac{a-b}{ab},$$

即有 $\xi^2 = ab < 0$,这样产生矛盾.因此,有限增量公式对于函数 $f(x) = \frac{1}{x}$ 在 (a,b)(ab < 0) 上不正确.原因是 f'(x) 在 x = 0 处不存在,故有限增量公式的条件不满足.

1246. 设

(a)
$$f(x) = ax^2 + bx + c(a \neq 0)$$
; (6) $f(x) = x^{3^+}$;
(B) $f(x) = \frac{1}{x}^+$; (1) $f(x) = e^x$.

求满足

$$f(x + \Delta x) - f(x) = \Delta x f'(x + \theta \Delta x) (0 < \theta < 1)$$

的函数 $\theta = \theta(x, \Delta x)$.

解
$$(a)f'(x) = 2ax + b.$$

于是,有

$$a(x + \Delta x)^2 + b(x + \Delta x) + c - ax^2 - bx - c$$

= $\Delta x(2a(x + \theta \Delta x) + b)$,

化简之,得 $\theta = \frac{1}{2}$.

$$(6) f'(x) = 3x^2.$$

于是,有

$$(x + \Delta x)^3 - x^3 = 3\Delta x(x + \theta \Delta x)^2.$$

如果
$$x=0$$
,则 $\theta=\frac{\sqrt{3}}{3}$;

如果 $x \neq 0$, 化简整理得

$$3\theta^2 \Delta x + 6\theta x - (3x + \Delta x) = 0,$$

从而有

$$\theta = \frac{\pm \sqrt{x^2 + x\Delta x + \frac{1}{3}(\Delta x)^2} - x}{\Delta x}.$$

其中正负号的取法由 x 及 Δx 的符号及条件 $0 < \theta < 1$ 决定,例如,当 $x \ge 0$, $\Delta x > 0$ 时,根式前应取正号.

(B)
$$f'(x) = -\frac{1}{x^2}$$
.

于是,有

$$\frac{1}{x+\Delta x}-\frac{1}{x}=-\frac{\Delta x}{(x+\theta\Delta x)^2}.$$

化简之,得

$$\theta^2 (\Delta x)^2 + 2x\theta \Delta x - x\Delta x = 0,$$

或
$$\theta^2 + 2\frac{x}{\Delta x}\theta - \frac{x}{\Delta x} = 0$$
,

故

$$\theta = \frac{x}{\Delta x} \Big(\pm \sqrt{1 + \frac{\Delta x}{x}} - 1 \Big).$$

此处取正负号要视确保 $\theta \in (0,1)$ 而定,且应有

$$\frac{\Delta x}{x} > -1(x \neq 0).$$

$$(\Gamma)f'(x)=e^x,$$

于是,有

$$e^{x+\Delta x} - e^x = \Delta x e^{x+\delta \Delta x}$$

$$e^{\Delta x} = 1$$

$$\theta = \frac{1}{\Delta x} \ln \frac{e^{\Delta x} - 1}{\Delta x}$$
,

可以验证 $\theta \in (0,1)$.

1247. 证明,若ょ≥ 0,则

$$\sqrt{x+1} - \sqrt{x} = \frac{1}{2\sqrt{x+\theta(x)}}$$

其中
$$\frac{1}{4} \leqslant \theta(x) \leqslant \frac{1}{2}$$
,

并且
$$\lim_{x\to +\infty}\theta(x)=\frac{1}{4}$$
, $\lim_{x\to +\infty}\theta(x)=\frac{1}{2}$.

证 当 $x \ge 0$ 时,对函数 \sqrt{x} 施用有限增量公式,即得

$$\sqrt{x+1} - \sqrt{x} = \frac{1}{2\sqrt{x+\theta(x)}},$$

解之,得

$$\theta(x) = \frac{1}{4} + \frac{1}{2} \left(\sqrt{x(x+1)} - x \right).$$

当
$$x = 0$$
时 $\theta = \frac{1}{4}$. 当 $x > 0$ 时,有

$$0 \leqslant \sqrt{x(x+1)} - x = \frac{x}{\sqrt{x(x+1)} + x} < \frac{x}{2x}$$
$$= \frac{1}{2}.$$

于是

$$\frac{1}{4} \leqslant \theta(x) < \frac{1}{4} + \frac{1}{4} = \frac{1}{2},$$

且有

$$\lim_{x\to+0}\theta(x)=\frac{1}{4},$$

$$\lim_{x \to +\infty} \theta(x) = \lim_{x \to +\infty} \left\{ \frac{1}{4} + \frac{x}{2(\sqrt{x(x+1)} + x)} \right\}$$
$$= \frac{1}{2}.$$

1248

$$f(x) = \begin{cases} \frac{3-x^2}{2} & \text{if } 0 \leq x \leq 1, \\ \frac{1}{x} & \text{if } 1 < x < +\infty. \end{cases}$$

在闭区间 $\{0,2\}$ 上对于函数f(x)求有限增量公式中的中间值c.

解
$$f(0) = \frac{3}{2}, f(2) = \frac{1}{2},$$

$$f'(x) = \begin{cases} -x, & \text{if } 0 \leq x \leq 1, \\ -\frac{1}{x^2}, & \text{if } 1 < x < +\infty. \end{cases}$$

按题设有

$$\frac{1}{2} - \frac{3}{2} = -c(2-0) \otimes \frac{1}{2} - \frac{3}{2} = -\frac{1}{c^2}(2-0),$$

所以 $c = \frac{1}{2}$ 或 $c = \sqrt{2} (-\sqrt{2} \text{ 不适合})$,此即所求的中间值 c.

1249. 设:

$$f(x) - f(0) = xf'(\xi(x)),$$

其中 $0 < \xi(x) < x$.

证明:若

$$f(x) = x\sin(\ln x) \ (x > 0)$$

及

$$f(0) = 0$$

则函数 $\xi = \xi(x)$ 于任意小的区间 $(0, \epsilon)$ 内 $(于此 \epsilon > 0)$ 是不连续的.

证 用反证法 · 假定 $\xi(x)$ 在某区间 $(0, \epsilon)$ 内连续 $(\epsilon > 0)$.

由于当
$$x > 0$$
 时,

$$f'(x) = \sin(\ln x) + \cos(\ln x)$$
$$= \sqrt{2}\sin\left(\frac{\pi}{4} + \ln x\right),$$

故由 $f(x) - f(0) = xf'(\xi(x))$ 得

$$x\sin(\ln x) = x \sqrt{2}\sin\left(\frac{\pi}{4} + \ln\xi(x)\right),\,$$

从面

$$\sin(\ln x) = \sqrt{2}\sin\left(\frac{\pi}{4} + \ln\xi(x)\right), 0 < x < +\infty.$$

现取一个充分大的正整数 N,使

$$=2N\pi+\frac{\pi}{4}<\ln\xi\left(\frac{\varepsilon}{2}\right).$$

由 $0 < \xi(x) < x$ 知 $\lim_{x \to 0+0} \xi(x) = 0$,从而

$$\lim_{x\to 0+0} \ln \xi(x) = -\infty,$$

因此,可取 0 $< \delta < \frac{\varepsilon}{2}$,使

$$\ln \xi(\delta) < -2N\pi + \frac{\pi}{4}.$$

由于 $\ln \xi(x)$ 在 $\left(\delta, \frac{\epsilon}{2}\right)$ 上连续,根据中间值定理,必有

$$x_0 \in \left(\delta, \frac{\epsilon}{2}\right)$$
存在,使

$$\ln \xi(x_0) = -2N\pi + \frac{\pi}{4}.$$

于是

$$1 \geqslant \sin(\ln x_0) = \sqrt{2} \sin\left(\frac{\pi}{4} + \ln \xi(x_0)\right)$$
$$= \sqrt{2},$$

这是不可能的,证毕,

1250. 设函数f(x)于区间(a,b)内有连续的导函数f'(x),对于区间(a,b)内任何一点 ξ 可否从此区间中指出另外的两点 x_1 及 x_2 使满足于

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) \ (x_1 < \xi < x_2)?$$

解 一般地说,不可以,例如,研究函数

$$f(x) = x^3(-1 < x < 1),$$

它对于 $\xi = 0$ 就找不到所需的 x_1 和 x_2 ,使

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi).$$

事实上, $f'(\xi) = 3\xi^2 = 0$,而当 $x_1 < 0 < x_2$ 时,

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{x_2^3 - x_1^3}{x_2 - x_1} \\
= x_2^2 + x_1 x_2 + x_1^2 \\
= x_2^2 + x_1^2 - |x_1| \cdot |x_2| \\
> x_2^2 + x_1^2 - 2|x_1| |x_2| \\
= (|x_1| - |x_2|^2) \ge 0.$$

1251. 证明下列不等式:

 $(a)|\sin x - \sin y| \leqslant |x - y|;$

(6) 若
$$0 < y < x$$
 及 $p > 1$, $py^{p-1}(x - y) < x^p - y^p$ $< px^{p-1}(x - y)$;

(B) $|arc tga - arc tgb| \le |a - b|$;

(r)
$$\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}$$
,设 $0 < b < a$.

证 (a) $|\sin x - \sin y| = |(x - y)\cos \xi| \le |x - y|(\xi$ 在 x, y 之间).

(6)
$$x^p - y^p = p(x-y) \hat{\varsigma}^{p-1}$$
,其中 $0 < y < \xi < x$.

量子
$$p > 1$$
.所以
$$y^{p-1} < \xi^{p+1} < x^{p-1}.$$

干是

$$py^{p-1}(x-y) < x^p - y^p < px^{p-1}(x-y);$$

*)原题的不等式中的等号可以去掉。

(B)
$$|\operatorname{arc} \operatorname{tg} a - \operatorname{arc} \operatorname{tg} b| = \left| \frac{a-b}{1+\xi^2} \right| \le |a-b|$$
;
(C) $|\operatorname{ln} a - \operatorname{ln} b| = \frac{a-b}{\xi}$,其中 $0 < b < \xi < a$.

于是,

$$\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}.$$

1252. 说明在闭区间(-1,1)上哥西定理对于函数 $f(x) = x^2$ 及 $g(x) = x^3$ 何以不真?

解 f(x) 及 g(x) 在 (-1,1) 上虽有连续的导函数,且 $g(-1) \neq g(-1)$,但是,当 x = 0 时,

$$(f'(x))^2 + (g'(x))^2 = 4x^2 + 9x^4 = 0$$

因此,对于函数 f(x) 及 g(x) 不满足哥西定理的条件, 所以结论可以不真,事实上

$$\frac{f(1) - f(-1)}{g(1) - g(-1)} = 0,$$

而

$$\frac{f'(\xi)}{g'(\xi)} = \frac{2\xi}{3\xi^2} \neq 0 \; \xi \in (-1,1), \xi \neq 0,$$

它们是不相等的,

1253. 设函数 f(x) 在闭区间 $\{x_1,x_2\}$ 上可微分,并且 $x_1x_2 > 0$. 证明

$$\frac{1}{x_1-x_2} \left| \frac{x_1}{f(x_1)} \frac{x_2}{f(x_2)} \right| = f(\xi) - \xi f'(\xi),$$

其中 $x_1 < \xi < x_2$.

证 设 $g(x) = \frac{1}{x}$, $F(x) = \frac{f(x)}{x}$, 由于 $x_1x_2 > 0$, 故 x = 0 在 $\{x_1, x_2\}$ 之外. 从而 g(x) 和 F(x) 均在 $\{x_1, x_2\}$ 上可微, 且有

$$(g'(x))^{2} + (F'(x))^{2}$$

$$= \frac{1}{x^{4}} \{1 + (xf'(x) - f(x))^{2}\} \neq 0$$

及

$$g(x_1) \neq g(x_2)$$
.

因此,对于函数F(x)和g(x)满足哥西定理的条件.故 在 (x_1,x_2) 内至少存在一点 ξ ,使有

$$\frac{F(x_2) - F(x_1)}{g(x_2) - g(x_2)} = \frac{F'(\xi)}{g'(\xi)},$$

即

$$\frac{\frac{f(x_2)}{x_2} - \frac{f(x_1)}{x_1}}{\frac{1}{x_2} - \frac{1}{x_1}} = \frac{\frac{\xi f'(\xi) - f(\xi)}{\xi^2}}{-\frac{1}{\xi^2}},$$

化简整理,即得

$$\frac{1}{x_1-x_2} \left| \frac{x_1}{f(x_1)} \frac{x_2}{f(x_2)} \right| = f(\xi) - \xi f'(\xi).$$

1254. 证明 若函数 f(x) 于有穷的区间(a,b) 内可微分,但 无界,则其导函数 f'(x) 于区间(a,b) 内也无界. 逆定 理不真;举出例子.

证 在开区间(a,b)内,由于导函数存在,因此,f(x)在(a,b)内连续.

现在假定 |f'(x)| < N (a < x < b), 即 f'(x) 是

有界的. 取定 $c \in (a,b)$. 则按有限增量公式可知,对任何a < x < b,均有

 $|f(x) - f(c)| = |x - c||f'(\xi)| < N(b - a).$ 其中 ξ 在 c 与 x 之间,从而属于(a,b).

因为,

$$|f(x) - f(c)| \ge |f(x)| - |f(c)|,$$

所以

$$|f(x)| < |f(c)| + N(b-a).$$

此与 f(x) 是无界的条件相矛盾,所以 f'(x) 是无界的. 反之不一定正确,例如,函数

$$f(x) = \sin\frac{1}{x}$$

在 $\left(0,\frac{1}{2}\right)$ 内有界,但其导函数却是无界的.

注意,在无限区间内无界的函数的导函数可能有界.例如,函数

$$f(x) = \ln x$$

在 $(1, + \infty)$ 内无界、但其导函数 $f'(x) = \frac{1}{x}$ 在 $(1, + \infty)$ 内却是有界的.

1255. 证明:若函数 f(x) 于有穷或无穷的区间(a,b) 内有有界的导函数 f'(x),则 f(x) 于(a,b) 中一致连续.

证 设当 $x \in (a,b)$ 时, $|f'(x)| \leq M$. 对于任给的 $\epsilon > 0$, 取 $\delta = \frac{\epsilon}{M}$, 则当 $x_1, x_2 \in (a,b)$ 且 $|x_1 + x_2| < \delta$ 时, 就有

$$|f(x_1) - f(x_2)|$$

$$= |x_1 - x_2| \cdot |f'(\xi)| \leqslant M|x_1 - x_2| < \varepsilon,$$

(f 在 x₁ 与 x₂ 之间),

于是,f(x) 在(a,b) 内一致连续.

1256. 证明:若函数f(x)于无穷的区间 $(x_0, +\infty)$ 内可微分,且

$$\lim_{x \to +\infty} f^i(x) = 0,$$

则

$$\lim_{x \to +\infty} \frac{f(x)}{x} = 0,$$

即: 当 $x \to +\infty$ 时, f(x) = o(x).

证 由于 $\lim_{x \to +\infty} f'(x) = 0$, 故对任给的 $\epsilon > 0$, 存在 $X_1 > 0$, 使当 $x > X_1$ 时, 恒有

$$|f'(x)| < \frac{\epsilon}{2}$$
.

今在(X_1 , + ∞)内任取一点a,则当x>a时,由有限增量公式可得

$$|f(\vec{x}) - f(a)| = |x - a| \cdot |f'(\xi)| < \frac{\varepsilon}{2} |x - a|.$$
由于

$$|f(x)| - |f(a)| \le |f(x) - f(a)|,$$

所以

$$|f(x)| \leq |f(a)| + \frac{\varepsilon}{2}|x-a|.$$

再取 $X_2>a$,使 $rac{|f(a)|}{X_2}<rac{arepsilon}{2}$,则当 $x>X_2$ 时,

恒有

$$\left| \frac{f(x)}{x} \right| \leqslant \frac{|f(a)|}{x} + \frac{\varepsilon}{2} \frac{|x-a|}{x}$$

$$< \frac{|f(a)|}{X_2} + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

所以,

$$\lim_{x\to +\infty}\frac{f(x)}{x}=0,$$

即:当 $x \to + \infty$ 时,f(x) = o(x).

1257. 证明:若函数 f(x) 于无穷的区间 $(x_0, +\infty)$ 内可微分且当

$$x \to + \infty$$
 时, $f(x) = o(x)$;

则 $\lim_{x \to \infty} |f'(x)| = 0.$

证 由条件 $\lim_{x\to+\infty} \frac{f(x)}{x} = 0$ 易得对于任意常数 $a > x_0$, 均有

$$\lim_{x \to +\infty} \frac{f(x) - f(a)}{x - a}$$

$$= \lim_{x \to +\infty} \left(\frac{f(x)}{x} \left(1 + \frac{a}{x - a} \right) - \frac{f(a)}{x - a} \right)$$

$$= 0.$$

于是,对于 $\epsilon_n = \frac{1}{n}$, $a_n = \max \{n, x_0 + 1\} (n = 1, 2, \dots)$, 总存在 $b_n > a_n$,使

$$\left|\frac{f(b_n)-f(a_n)}{b_n-a_n}\right|<\varepsilon_n.$$

由拉格朗日定理知,存在 $x_n:a_n < x_n < b_n$,使

$$f'(x_n) = \frac{f(b_n) - f(a_n)}{b_n - a_n},$$

即

$$|f'(x_n)| < \epsilon_n (n = 1, 2, \cdots),$$

从而

$$\lim_{n\to+\infty}|f'(x_n)|=0.$$

由于
$$x_n > a_n \ge n$$
,故 $\lim_{x \to \infty} x_n = +\infty$. 由此可知
$$\lim_{x \to +\infty} |f'(x)| = 0.$$

1258. (a) 证明函数 f(x); (1) 在闭区间[x_0 , X] 上有定义并且是连续的; (2) 于区间(x_0 , X) 内有有限的导函数 f'(x); (3) 有有限或无限的极限

$$\lim_{x \to x_0 + 0} f'(x) = f'(x_0 + 0),$$

则有有限或无穷的单侧导函数 $f'_+(x_0)$ 且

$$f'_{+}(x_0) = f'(x_0 + 0).$$

(6) 证明函数

$$f(x) = \text{arc tg } \frac{1+x}{1-x} (x \neq 1) \ \text{\ensuremath{\mbox{\ensuremath{\mathcal{L}}}}} f(1) = 0$$

有有限的极限

$$\lim_{x\to 1}f'(x),$$

但是函数 f(x) 没有单侧的导函数 $f'_{-}(1)$ 及 $f'_{+}(1)$. 作这个事实的几何图解.

证 (a) 由有限增量公式,有

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0 + \theta \Delta x)$$

$$(0 < \theta < 1),$$

当 $\Delta x \rightarrow + 0$ 时, $x_0 + \theta \Delta x \rightarrow x_0 + 0$.

由假设条件知 $\lim_{\Delta x \to +0} f'(x_0 + \theta \Delta x) = f'(x_0 + 0)$,所以有

$$\lim_{\Delta x \to +0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0 + 0),$$

凯

$$f'_{+}(x_0) = f'(x_0 + 0).$$

(6) 当 $x \neq 1$ 时,

$$f'(x) = \frac{1}{1 + \left(\frac{1+x}{1-x}\right)^2} \cdot \frac{1-x+1+x}{(1-x)^2}$$
$$= \frac{1}{1+x^2} \cdot$$

于是,

$$\lim_{x \to 1} f'(x) = \lim_{x \to 1} \frac{1}{1 + x^2} = \frac{1}{2} \cdot$$

但是

$$\lim_{x \to 1-0} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1-0} \frac{\text{arc tg } \frac{1 + x}{1 - x}}{x - 1}$$

及

$$\lim_{x \to 1+0} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1+0} \frac{\operatorname{arc tg} \frac{1 + x}{1 - x}}{x - 1}$$

$$= -\infty,$$

所以 $f'_{-}(1)$ 及 $f'_{+}(1)$ 皆不存在.

$$y = f(x)$$
 的图形

如图 2.38 所示.

当
$$x \rightarrow 1 - 0$$
时,

$$f(x) \to \frac{\pi}{2}; \stackrel{\text{def}}{=} x \to$$

$$1+0$$
时, $f(x)$ \rightarrow --

 $\frac{\pi}{2}$.

图 2.38

即 x = 1 为 f(x) 的第一类

不连续点,即在x=1处 f(x) 产生跳跃,所以 f(x) 在 250

x=1 处无导数.

1259. 证明:若当 a < x < b 时, f'(x) = 0, 则当 a < x < b 时, f(x) = 常数.

证 c(a,b) 内取一定点 x_0 ,则当 a < x < b 时,按有限增量公式可得

$$f(x) - f(x_0) = f'(c) \cdot (x - x_0)$$

其中 c 在 x_0 与 x 之间.由于 f'(c) = 0,故

$$f(x) - f(x_0) = 0.$$

即

$$f(x) = f(x_0) = 常数.$$

1260. 证明, 导函数为常数

$$f'(x) = k$$

的唯一函数 f(x) $(-\infty < x < +\infty)$ 是线性函数:

$$f(x) = kx + b.$$

证 (f(x) - kx)' = f'(x) - k = k - k = 0, 于是,

$$f(x) - kx = b (b 为常数).$$

故 f(x) 必为线性函数: f(x) = kx + b. 证完.

1261. 设 $f^{(a)}(x) = 0$,则函数 f(x) 有什么性质?

解 由 $f^{(n)}(x) = 0$, 于是 $f^{(n-1)}(x) = c$ (c 为常数).

再由 1260 题的结果得知

$$f^{(n-2)}(x)=cx+b.$$

假设

$$f^{(k)}(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-k-1} x^{n-k-1},$$
#\$\delta\$

$$\Phi(x) = f^{(k-1)}(x) - \left(a_0x + \frac{1}{2}a_1x^2 + \cdots + \frac{1}{n-k}a_{n-k-1}x^{n-k}\right),$$

则有 $\Phi'(x) = f^{(k)}(x) - (a_0 + a_1 x + \cdots + a_{n-k-1} x^{n-k-1}) = 0.$

由 1259 题知 $\Phi(x) = b_0$,并记 $a_0 = b_1$, $\frac{1}{2}a_1 = b_2$, …,

$$\frac{1}{n-k}a_{n-k-1}=b_{n-k},则有$$

$$f^{(k-1)}(x) = b_0 + b_1 x + b_2 x^2 + \cdots + b_{n-k} x^{n-k}.$$

依归纳法便有

$$f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_{n-1} x^{n-1},$$

它是n-1次多项式,其中 c_0,c_1,\cdots,c_{n-1} 是常数,而且是任意的.

1262. 证明:满足方程

$$y' = \lambda y (\lambda = \sharp \mathfrak{A})$$

的唯一函数 $y = y(x) (-\infty < x < +\infty)$ 是指数函数: $y = Ce^{\lambda x}$,

其中 C 为任意常数.

$$iii (ye^{-\lambda x})' = y'e^{-\lambda x} - \lambda ye^{-\lambda x}$$
$$= \lambda ye^{-\lambda x} - \lambda ye^{-\lambda x}$$
$$= 0,$$

于是,

$$ye^{-\alpha} = C(c 为常数)$$

即

$$y=Ce^{\lambda r}.$$

1263. 检验函数

$$f(x) = \text{arc tg } \frac{x+a}{1-ax}$$

及

$$g(x) = \operatorname{arc} \operatorname{tg} x$$

于范围:(1)ax < 1 及(2)ax > 1 内有相同的导函数. 推出这些函数间的关系.

解 当 ax < 1 或 ax > 1 时,

$$f'(x) = \frac{1}{1 + \left(\frac{x+a}{1-ax}\right)^2} \cdot \frac{1 - ax + a(x+a)}{(1-ax)^2}$$
$$= \frac{1}{1+x^2},$$
$$g'(x) = \frac{1}{1+x^2},$$

故有

$$f'(x) = g'(x) \ (ax < 1 \text{ od } ax > 1).$$

因此

$$f(x) - g(x) = C_1$$
, $\exists ax < 1 \text{ fd.}$ (1)

$$f(x) - g(x) = C_z$$
, $ax > 1$ $brace$ (2)

下面确定常数 C_1 与 C_2 . 设 a > 0 (a < 0 情形可类似地讨论).

在(1) 中令
$$x \rightarrow -\infty$$
,得
$$-\operatorname{arc} \operatorname{tg} \frac{1}{a} + \frac{\pi}{2} = C_1,$$

故 $C_1 = \operatorname{arc} \operatorname{tg} a$. 因此

$$arc tg \frac{x+a}{1-ax} - arc tgx = arc tga (ax < 1).$$

在(2) 中令
$$x \rightarrow + \infty$$
,得

$$-\operatorname{arc} \operatorname{tg} \frac{1}{a} - \frac{\pi}{2} = C_2,$$
故 $C_2 = \operatorname{arc} \operatorname{tg} a - \pi$. 因此
$$\operatorname{arc} \operatorname{tg} \frac{x+a}{1-ax} - \operatorname{arc} \operatorname{tg} x = \operatorname{arc} \operatorname{tg} a - \pi$$

$$(ax > 1).$$

1264. 证明下列恒等式:

(a)
$$2\operatorname{arc} \operatorname{tg} x + \operatorname{arc} \sin \frac{2x}{1+x^2} = \pi \operatorname{sgn} x$$
,
 $|x| \ge 1$;

(6)
$$3 \operatorname{arc} \cos x - \operatorname{arc} (3x - 4x^3) = \pi, \le |x| \le \frac{1}{2}$$
.

证 (a) 当
$$|x| > 1$$
 时,由于

$$\left(2\operatorname{arc} \, \operatorname{tg} x + \operatorname{arc} \, \sin \frac{2x}{1+x^2}\right)'$$

$$= \frac{2}{1+x^2} + \frac{1}{\sqrt{1-\frac{4x^2}{(1+x^2)^2}}}$$

$$\cdot \frac{2(1+x^2)-4x^2}{(1+x^2)^2} = 0,$$

故

$$2\operatorname{arc} \operatorname{tg} x + \operatorname{arc} \sin \frac{2x}{1+x^2} = C_1$$
, 当 $x > 1$ 时; $2\operatorname{arc} \operatorname{tg} x + \operatorname{arc} \sin \frac{2x}{1+x^2} = C_2$, 当 $x < -1$ 时. 下面确定常数 C_1 与 C_2 .

令
$$x = \sqrt{3}$$
,代入前一式,得 $C_1 = \pi$;
令 $x = -\sqrt{3}$,代入后一式,得 $C_2 = -\pi$.

从而当 $|x| \neq 1$ 时,有

$$2\operatorname{arc} \operatorname{tg} x + \operatorname{arc} \sin \frac{2x}{1+x^2}$$
$$= \begin{cases} \pi, \pm x > 1 & \text{时}; \\ -\pi, \pm x < -1 & \text{ਚ}. \end{cases}$$

而当 |x| = 1 时,上式仍然成立.于是,当 $|x| \ge 1$ 时,有

 $2arc tgx + arc sin \frac{2x}{1+x^2} = \pi sgnx.$

(6) 当
$$|x| < \frac{1}{2}$$
 时,由于

 $(3\operatorname{arc}\cos x - \operatorname{arc}\cos(3x - 4x^3))^t$

$$= -\frac{3}{\sqrt{1-x^2}} + \frac{1}{\sqrt{1-(3x-4x^3)^2}}$$

$$\cdot (3-12x^2) = 0,$$

故有

 $3 \operatorname{arc} \cos x - \operatorname{arc} \cos(3x - 4x^3) = C$

$$\left(-\frac{1}{2} < x < \frac{1}{2}\right).$$

其中 C 为常数 . 令 x = 0,代入上式,即可求出 $C = \pi$. 于是

 $3 \operatorname{arc} \cos x - \operatorname{arc} \cos (3x - 4x^3) = \pi$

$$\left(-\frac{1}{2} < x < \frac{1}{2}\right).$$

由于上式左端的函数在 $x = \frac{1}{2}$ 左连续,在 $x = -\frac{1}{2}$ 右

连续,分别取极限即知上式当 $x = \frac{1}{2}$ 和 $x = -\frac{1}{2}$ 时也成立、于是

 $3 \operatorname{arc} \cos x - \operatorname{arc} \cos (3x - 4x^3) = \pi$

$$\left(|x| \leqslant \frac{1}{2} \right).$$

1265. 证明, 若函数 f(x) (1) 在闭区间 [a,b] 上是连续的; (2) 于此线段内有有穷的导函数 f'(x); (3) 非线性函数,则于区间 (a,b) 内至少能找到一点 c,满足

$$|f'(c)| > \left| \frac{f(b) - f(a)}{b - a} \right|.$$

作出这个事实的几何解释.

证 当 $a \leq x \leq b$ 时,设

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

易知 F(a) = F(b) = 0,且当 a < x < b 时, $F(x) \neq 0$ (因为 f(x) 为非线性函数).设在 $c_1(a < c_1 < b)$ 点, $F(c_1) \neq 0$,不妨设 $F(c_1) > 0$,在区间 $[a,c_1]$ 与 $[c_1,b]$ 上分别应用拉格朗日定理,可知存在

$$\xi_{1} \in (a,c_{1}) \notin F'(\xi_{1}) = \frac{F(c_{1}) - F(a)}{c_{1} - a} \\
= \frac{F(c_{1})}{c_{1} - a} > 0; \\
\xi_{2} \in (a,c_{1}) \notin F'(\xi_{2}) = \frac{F(b) - F(c_{1})}{b - c_{1}} \\
= -\frac{F(c_{1})}{b - c_{1}} < 0.$$

因而,

$$f'(\xi_1) > \frac{f(b) - f(a)}{b - a},\tag{1}$$

$$f'(\xi_i) < \frac{f(b) - f(a)}{b - a}. \tag{2}$$

由此可知:

当
$$\frac{f(b)-f(a)}{b-a} \ge 0$$
 时,由(1),

$$|f'(\xi_1)| > \left| \frac{f(b) - f(a)}{b - a} \right|;$$

$$||\underline{f'(\xi_1)}| > \left| \frac{f(b) - f(a)}{b - a} \right|.$$

$$||f'(\xi_2)| > \left| \frac{f(b) - f(a)}{b - a} \right|.$$

于是命题得证:

这个事实的几何意义是:对于一条非直线的连续

图 2.39

f(b)) 的弦的斜率

的绝对值,换句话说,此切线比此弦"陡",如图 2.39 所示。

1266. 若函数 f(x): (1) 在区间[a,b] 上有二阶导函数 f''(x) 及 (2) f'(a) = f'(b) = 0,则在区间(a,b) 内至少存在一点 c,满足

$$|f''(c)| \ge \frac{4}{(b-a)^2} |f(b) - f(a)|.$$

证令

$$K = \frac{4}{(b-a)^2} |f(b) - f(a)|.$$

用反证法,即设 |f''(x)| < K (a < x < b).

对于函数 $(x_0$ 是(a,b)中任意固定的一点)

$$F(x) = f(x) - [f(x_0) + f'(x_0)(x - x_0)]$$

及

$$G(x) = (x - x_0)^2,$$

两次应用哥西定理:),即得

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}(x - x_0)^2 f''(\xi),$$
 (1)

其中 ξ 在 x_0 与 x 之间(即 $x_0 \le \xi \le x$), x 为 $\{a,b\}$ 中任 意点、特别, 在(1) 式中取

$$x_0=a, x=\frac{a+b}{2},$$

并利用已知条件 f'(a) = 0,则有

$$f\left(\frac{a+b}{2}\right) = f(a) + \frac{(b-a)^2}{8}f''(c_1),$$

其中 c_1 满足 $a < c_1 < \frac{a+b}{2}$.

于是,

$$\left| f\left(\frac{a+b}{2}\right) - f(a) \right| < \frac{(b-a)^2}{8}K.$$

同理在(1) 式中取 $x_0 = b, x = \frac{a+b}{2}$, 并利用已知条件 f'(b) = 0, 则得

$$f\left(\frac{a+b}{2}\right) = f(b) + \frac{(b-a)^2}{8}f''(c_2),$$

其中 $\frac{a+b}{2}$ < c_2 < b.

于是

$$\left| f(b) - f\left(\frac{a+b}{2}\right) \right| < \frac{(b-a)^2}{8}K.$$

因此,

$$|f(b) - f(a)| \le \left| f(b) - f\left(\frac{a+b}{2}\right) \right| + \left| f\left(\frac{a+b}{2} - f(a)\right) \right| < \frac{(b-a)^2}{4}K = |f(b) - f(a)|,$$

这是不可能的.所以,在区间(a,b)内至少存在一点c,使

$$|f''(c)| \geqslant \frac{4}{(b-a)^2} |f(b) - f(a)|.$$

*) 仅考虑
$$x > x_0(x < x_0)$$
 时可类似地讨论) 令
$$F(x) = f(x) - [f(x_0) + f'(x_0)(x - x_0)]$$
$$G(x) = (x - x_0)^2.$$

那么有
$$F(x_0) = G(x_0) = 0$$
, $F'(x) = f'(x) - f'(x_0)$ (记为 $F_1(x)$), $G'(x) = 2(x + x_0)$ (记为 $G_1(x)$),

并且 $F'(x_0) = G'(x_0) = \emptyset$, (即 $F_1(x_0) = G_1(x_0) = \emptyset$), 但当 $x \neq x_0$, $G'(x) \neq$, 而

$$F_1'(x) = F''(x) = f''(x), G_1'(x) = G''(x) = 2.$$

应用哥西定理,得

$$\begin{split} \frac{F(x)}{G(x)} &= \frac{F(x) - F(x_0)}{G(x) - G(x_0)} = \frac{F'(c)}{G'(c)} = \frac{F_1(c) - F_1(x_0)}{G_1(c) - G_1(x_0)} \\ &= \frac{F_1'(\xi)}{G_1'(\xi)} = \frac{f''(\xi)}{2}, \end{split}$$

此处 $\xi \in (x_0,c)$, 而 $\epsilon \in (x_0,x)$, 从 而知 $\xi \in (x_0,x)$.

因此有

$$F(x) = \frac{1}{2}G(x)f''(\xi)$$

也即有公式

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}(x - x_0)^2 f''(\xi).$$

其中 x₆ < \$< x(以后即将看到,这就是所谓的台劳公式,这里就顺便给了一个关于二阶的台劳公式的另一种推证方法。)

1267. 汽车从某点开始行驶,于 t 秒钟内走完了路程,于此时间内经过了距离 s 米,证明汽车运动的加速度的绝对值在某瞬间不小于 4s 米 秒 ...

证 利用 1266 题的结果即可得证,此时

$$s = f(t)$$
, $f(t) - f(0) = s$, $t - 0 = t$. 故 $a = \frac{d^2s}{dt^2}\Big|_{t=t_1}$ 的绝对值 $|a| \geqslant \frac{4s}{t^2}$.

§ 7. 函数的增大与减小. 不等式

 1° 函数的增大和减小 若当 $a \leq x_1 \leq x_2 \leq b$ 时, $f(x_2) > f(x_3)$

「或当 $a \le x_1 \le x_2 \le b$ 时, $f(x_2) \le f(x_1)$],则称函数f(x)于闭区间[a,b]上增大(或对应地减小).

若可微分的函数 f(x) 在闭区间[a,b] 上增大(或减小),则当

$$a \leq x \leq b \text{ iff}, f'(x) \geq 0$$

〔或对应地当 $a \leq x \leq b$ 时, $f'(x) \leq 0$).

 2° 函数增大(或减小)的充分条件 若函数 f(x) 在闭区间[a,b] 上是连续的,并且在其内有正的(或负的) 导函数 f'(x),则函数 f(x) 于 [a,b] 内增大(或对应地减小).

求下列函数在严格意义上的单调(增大或减小)的区间: $y = 2 + x - x^2$

解
$$y' = 1 - 2x$$
.
当 $-\infty < x < \frac{1}{2}$ 时, $y' > 0$,函数增大;
当 $\frac{1}{2} < x < +\infty$ 时, $y' < 0$,函数减小.

1269. $y = 3x - x^3$.

解
$$y' = 3 - 3x^2 = 3(1 - x)(1 + x)$$
.
当 $-\infty < x < -1$ 时, $y' < 0$,函数减小;
当 $-1 < x < 1$ 时, $y' > 0$,函数増大;
当 $1 < x < +\infty$ 时, $y' < 0$,函数减小.

1270. $y = \frac{2x}{1+x^2}$.

解
$$y' = \frac{2(1-x)(1+x)}{(1+x^2)^2}$$
.
当 $-\infty < x < -1$ 时, $y' < 0$,函数减小;
当 $-1 < x < 1$ 时, $y' > 0$,函数增大;
当 $1 < x < +\infty$ 时, $y' < 0$,函数减小.

1271.
$$y = \frac{\sqrt{x}}{x + 100} (x \ge 0).$$

解
$$y' = \frac{-x+100}{2\sqrt{x}(x+100)^2}$$
.
当 $0 < x < 100$ 时, $y' > 0$,函数增大;
当 $100 < x < + \infty$ 时, $y' < 0$,函数减小.

1272. $y = x + \sin x$.

解
$$y' = 1 + \cos x \ge 0$$
.
 $\dot{y} = -\infty < x < +\infty$ 时,函数增大.

1273. $y = x + |\sin 2x|$.

$$\mathbf{y}' = 1 + 2 \frac{|\sin 2x|}{\sin 2x} \cos 2x$$

1274. $y = \cos \frac{\pi}{x}$.

$$\mathbf{x} y' = \frac{\pi}{x^2} \sin \frac{\pi}{x}.$$

当 $2k\pi < \frac{\pi}{x} < (2k+1)\pi$ 及 $-(2k+2)\pi < \frac{\pi}{x}$ < $-(2k+1)\pi$.

 $0 < \frac{\pi}{x} < \pi$ 时,即 $x > 1, x \in \left(\frac{1}{2k+1}, \frac{1}{2k}\right)$ 及 $x \in \left(-\frac{1}{2k+1}, -\frac{1}{2k+2}\right)$ 时,y' > 0,所以函数增大($k = 1, 2, \cdots$).

同 理, 当 $x \in \left(\frac{1}{2k+2}, \frac{1}{2k+1}\right)$ 及 $x \in \left(-\frac{1}{2k}, -\frac{1}{2k+1}\right)$ 时, y' < 0, 函数减小(k = 1, 2, …).

1275.
$$y = \frac{x^2}{2^x}$$
.

$$\mathbf{x}' = \frac{2x - x^2 \ln 2}{2^x}.$$

当 $-\infty < x < 0$ 及 $\frac{2}{\ln 2} < x < +\infty$ 时,y' < 0,函

数减小;

当
$$0 < x < \frac{2}{\ln 2}$$
 时, $y' > 0$, 函数增大.

1276.
$$y = x^n e^{-\tau} (n > 0, x \ge 0)$$
.

解
$$y' = x^{n-1}e^{-x}(n-x)$$
.
当 $x \in (0,n)$ 时, $y' > 0$,函数增大;
当 $x \in (n, +\infty)$ 时, $y' < 0$,函数减小。

1277. $y = x^2 - \ln x^2$.

$$\mathbf{ff} \quad y' = \frac{2(x-1)(x+1)}{x}.$$

当 $-\infty$ <x<-1及0<x<1时,y'<0,函数减小;

当 -1 < x < 0 及 $1 < x < + \infty$ 时,y' > 0,函数增大。

1278. 若
$$x > 0$$
, $f(x) = x \left(\sqrt{\frac{3}{2}} + \sin \ln x \right)$ 及 $f(0) = 0$.

解
$$f'(x) = \sqrt{\frac{3}{2}} + \sin \ln x + \cos \ln x$$

$$= \sqrt{\frac{3}{2}} + \sqrt{2} \sin \left(\frac{\pi}{4} + \ln x\right) (x > 0).$$

令 $f'(x) = 0$,得

$$\sin\Bigl(\ln x + \frac{\pi}{4}\Bigr) = -\frac{\sqrt{3}}{2}.$$

解上述方程得

函数增大;

当 $x \in (e^{\frac{13}{12}\pi - 2k\pi}, e^{\frac{17}{12}\pi + 2k\pi})$ 时f'(x) < 0,函数减小。

1279. 证明:内接于圆的正n边形,当边的数日n增加时,其周界 P_n 增加,而外切于此圆的正n边形的周界 P_n 则减小、利用这点来证明,当 $n \to \infty$ 时, p_n 及 P_n 有相同的极限。

证 如图 2.40 所示,

我们有

$$p_n = 2nx$$

$$= 2na \sin \alpha$$

$$= 2na \sin \frac{\pi}{n},$$

$$P_n = 2ny$$

$$= 2na \operatorname{tg} \alpha$$

$$= 2na \operatorname{tg} \frac{\pi}{n}.$$

考虑 $f(x) = \frac{2a}{x} \sin \pi x$. 易证当 x(x > 0) 很小时有 f'(x) < 0,从而当 x 变小时 f(x) 增大 . 所以, $p_n = f\left(\frac{1}{n}\right)$ 当 n 增大时, p_n 逐渐增大 . 同样,令 $g(x) = \frac{2a}{x} \tan x$,利用 $x < \tan x$ (当 x 很小时,x > 0),可证得 g'(x) > 0,情形相反,当 x 变小时,g(x) 逐渐减小,故 $P_n = g\left(\frac{1}{n}\right)$ 当 n 变大时逐渐变小,总之,有 $p_n < p_{n+1}$ 及 $P_{n+1} < P_{n+1}$. 于是 $p_n < p_{n+1} < P_{n+1} < P_{n+1}$

故 $\{P_n\}$ 是有界减数列, $\{p_n\}$ 是有界增数列,从而它们的极限都存在,但

$$\lim_{n\to\infty} (P_n-p_n)$$

$$=\lim_{n\to\infty}2\pi a\left(\frac{\lg\frac{\pi}{n}}{\frac{\pi}{n}}-\frac{\sin\frac{\pi}{n}}{\frac{\pi}{n}}\right)=0,$$

故有

$$\lim_{n\to\infty}p_n=\lim_{n\to\infty}P_n.$$

1280. 证明:函数

$$\left(1+\frac{1}{x}\right)^x$$

于区间 $(-\infty,-1)$ 及 $(0,+\infty)$ 内增大.

证 设
$$y = \left(1 + \frac{1}{x}\right)^x = e^{x \ln(1 + \frac{1}{x})},$$
则

$$y' = \left(1 + \frac{1}{x}\right)^x \left(\ln\left(1 + \frac{1}{x}\right) - \frac{1}{1+x}\right).$$

由于当 $x \in (-\infty, -1)$ 时, $\left(1 + \frac{1}{x}\right)^x > 0$,因此要看

y' 为正或为负,只需看 $\ln\left(1+\frac{1}{x}\right)-\frac{1}{1+x}$ 的正负性、

再设
$$z = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{1+x}$$
,则

$$z' = -\frac{1}{x(1+x)^2} > 0, x \in (-\infty, -1),$$

故当 $-\infty < x < -1$ 时z增大,又 $\lim z = 0$,因而z >

0. 于是,在 $(-\infty, -1)$ 内 y' > 0. 因此,函数

$$\left(1+\frac{1}{x}\right)^x$$

在区间 $(-\infty,-1)$ 内增大。

同理可证,函数 $\left(1+\frac{1}{x}\right)^x$ 在区间 $(0,+\infty)$ 内增大.

1281. 证明:有理整函数

 $P(x) = a_0 + a_1 x + \cdots + a_n x^n (n \ge 1, a_n \ne 0)$ 于区间 $(-\infty, -x_0)$ 及 $(x_0, +\infty)$ 内是单调的(就严格的意义而言!),其中 x_0 为充分大的正数.

证 由于

$$P'_{n}(x) = a_{1} + 2a_{2}x + \dots + na_{n}x^{n-1}$$

$$= x^{n-1} \left(na_{n} + \frac{(n-1)a_{n-1}}{x} + \dots + \frac{a_{1}}{x^{n-1}} \right),$$

而

$$\lim_{x \to \pm \infty} \left(\frac{(n-1)a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}} \right) = 0,$$
故存在 $x_0 > 0$,使当 $|x| > x_0$ 时,
$$\left| \frac{(n-1)a_{n-1}}{x} + \dots + \frac{a_1}{x^{n-1}} \right| < n|a_n|.$$

由此可知,当 $-\infty < x < -x_0$ 或 $x_0 < x < +\infty$ 时 $P'_n(x)$ 均保持定号(例如,若 $a_0 > 0$,则当 $x_0 < x < +\infty$ 时, $P'_n(x) > 0$),故 $P_n(x)$ 在($-\infty$, $-x_0$)及 $(x_0, +\infty)$ 内都是严格单调的.证毕.

1282. 证明:有理函数

$$R(x) = \frac{a_0 + a_1 x + \dots + a_n x^n}{b_0 + b_1 x + \dots + b_m x^m}$$

$$(m + n \ge 1, m \ne n^*) a_n b_m \ne 0)$$

于区间 $(-\infty, -x_0)$ 及 $(x_0, +\infty)$ 内是单调的(就严格的意义而言!),其中 x_0 为充分大的正数.

证 我们有

$$R'(x) = \frac{1}{(b_0 + b_1 x + \dots + b_m x^m)^2} \{ (a_1 + 2a_2 x + \dots + na_n x^{n-1})(b_0 + b_1 x + \dots + b_m x^m) - (b_1 + 2b_2 x + \dots + mb_m x^{m-1})(a_0 + a_1 x + \dots + a_n x^n) \}$$

$$= \frac{1}{(b_0 + b_1 x + \dots + b_m x^m)^2} \{ (a_1 b_0 - a_0 b_1) + 2(a_2 b_0 - a_0 b_2) x + \dots + ((n - m + 1)a_n b_{m-1} - (n - m - 1)a_{n-1}b_m) x^{m+n-2} + (n - m)a_n b_m x^{m+n-1} \}$$

$$= \frac{x^{m+n-1}}{(b_0 + b_1 x + \dots + b_m x^m)^2} ((n - m)a_n b_m + \frac{(n - m + 1)a_n b_{m-1} - (n - m - 1)a_{n-1}b_m}{x} + \dots + \frac{a_1 b_0 - a_0 b_1}{x^{m+n-1}} \}.$$

仿 1281 题之证法,可知存在 $x_0 > 0$,使当 $|x| > x_0$ 时上式右端方括弧内的式子与第一项 $(n-m)a_nb_m$ 同符号,由此可知,当 $-\infty < x < -x_0$ 或 $x_0 < x < +\infty$ 时 $R'_*(x)$ 均保持定号,故 R(x) 在 $(-\infty, -x_0)$ 及 $(x_0, +\infty)$ 中都是严格单调的.

*) 本题应加上条件 $m \neq n$ (原题上没有). 否则 所述结论不成立、例如,若 $m = n, a_i = b_i (i = 0, 1, \dots, n)$ n),则 $R(x) \equiv 1$,它在 $(x_0, +\infty)$ 上显然不是严格单调的。

1283. 单调函数的导函数是否也必为单调的?

解 不・例如函数

$$f(x) = x + \sin x,$$

在区间 $(0, +\infty)$ 内,由于 $f'(x) = 1 + \cos x > 0$ (除 $x = (2n+1)\pi, n = 0, 1, \cdots$),所以它是单调增加的;然而其导函数 f'(x) 却不是单调的、事实上由于 $f'\left(\frac{\pi}{2}\right) = 1, f'(\pi) = 0, f'\left(\frac{3\pi}{2}\right) = 1$,显见并非是单调的.

1284. 证明:若 $\varphi(x)$ 为单调增大的可微分的函数,且当 $x \ge x_0$ 时, $|f'(x)| \le \varphi(x)$,

则当 $x \ge x_0$ 时, $|f(x) - f(x_0)| \le \varphi(x) - \varphi(x_0)$. 对这个事实作几何的解释.

证 证法一:

作函数 $\psi(x) = \varphi(x) - f(x)$,由拉格朗日定理知 $\psi(x) - \psi(x_0) = \psi'(\xi)(x - x_0)(x_0 < \xi < x)$.

由 $|f'(x)| \leq \phi(x)$ 知

$$\psi'(\xi) = \varphi(\xi) - f'(\xi) \geqslant 0,$$

从而 $\psi(x) - \psi(x_0) \geqslant 0$ (当 $x \geqslant x_0$ 时),由此得

$$\varphi(x) - \varphi(x_0) \geqslant f(x) - f(x_0). \tag{1}$$

再令 $\psi_1(x) = \varphi(x) + f(x)$,同理有 $\psi_1(x) - \psi_1(x_0) \ge 0$ (当 $x \ge x_0$ 时),由此得

$$\varphi(x) - \varphi(x_0) \geqslant f(x_0) - f(x). \tag{2}$$

结合(1)和(2)便得

$$\varphi(x) - \varphi(x_0) \geqslant |f(x) - f(x_0)|.$$

证法二:

用反证法、若有一点 $b > x_0$,而使 $|f(b) - f(x_0)| > \varphi(b) - \varphi(x_0).$

设 $F(x) = f(x) - f(x_0) - \frac{f(b) - f(x_0)}{\varphi(b) - \varphi(x_0)} (\varphi(x) - \varphi(x_0))$,由于 $F(b) = F(x_0) = 0$,所以根据洛尔定理,得知存在点 $c \in (x_0, b)$ 使 F'(c) = 0,即

$$f'(c) - \frac{f(b) - f(x_0)}{\varphi(b) - \varphi(x_0)} \varphi(c) = 0.$$

因而,有 $|f'(c)| = \frac{|f(b)-f(x_0)|}{\varphi(b)-\varphi(x_0)} \varphi(c) > \varphi(c)$.

这与题设条件 $|f'(c)| \le \phi(c)$ (对于一切 $x \ge x_0$ 而言) 相矛盾、于是结论得证。

其几何意义就是:若一单调上升曲线上各点的切线都比另一曲线上对应点的切线"陡",则此曲线上每条弦必比另一曲线上对应的弦"陡",如图 2.41 所示.

1285. 设函数 f(x) 于区间 $a \le x < + \infty$ 内是连续的,而且当 x > a 时, f'(x) > k > 0, 其中 k 为常数. 证明: 若 f(a) < 0,则于区间 $\left(a, a - \frac{f(a)}{k}\right)$ 内方程 f(x) = 0 有一而且仅有一实根.

证 由有限增量公式,有

$$\begin{split} f\Big(a-\frac{f(a)}{k}\Big) - f(a) \\ = &-\frac{f(a)}{k} \cdot f'(\xi) > -\frac{f(a)}{k} \cdot k = -f(a). \end{split}$$

图 2.41

于是, $f\left(a-\frac{f(a)}{k}\right)>0$. 又 f(a)<0,故根据连续函数的介值定理知,方程 f(x)=0 在 $\left(a,a-\frac{f(a)}{k}\right)$ 上至少有一实根,又因为当 x>a 时,f'(x)>0,故 f(x) 在 $(a,+\infty)$ 内严格单调上升,由此可知,方程 f(x)=0 在 $\left(a,a-\frac{f(a)}{k}\right)$ 内恰有一个实根.

1286. 若于某邻域 $|x-x_0| < \delta$ 内,函数增量 $\Delta f(x_0) = f(x)$ $-f(x_0)$ 的符号与自变数增量 $\Delta x_0 = x - x_0$ 的符号相同,函数 f(x) 称为在 x_0 点增大.

证明:若函数 f(x)(a < x < b) 于有穷或无穷的区间(a,b) 内的每一点增大,则它在此区间内为增函数.

证 要证对任意两点 $x_1 < x_2 (a < x_1 < x_1 < b)$,都有

 $f(x_1) < f(x_2)$. 对 (x_1,x_2) 中每一点c,由假定都存在开区间 $\Delta_c = (c - \delta_c, c + \delta_c)$ 使当 $0 < |x - c| < \delta_c$ 时, f(x) - f(c) > 0. 于是,诸区间 $\{\Delta_c\}$ (c 取遍 $\{x_1,x_2\}$ 形成 $\{x_1,x_2\}$ 的一个开复盖。由波内耳有限复盖定理,从 $\{\Delta_c\}$ 中可选出有限个,设为 $\Delta_{c_1},\Delta_{c_2}\cdots,\Delta_{c_m}$,它们已经复盖了 $\{x_1,x_2\}$. 不妨设 $x_1 < c_1 < c_2 < \cdots < c_m < x_2$,而且可设诸 Δ_{c_1} 互不包含(因若 Δ_{c_1} 气和,则可将 Δ_{c_1} 会去). 于是,必有 Δ_{c_1} (因若 Δ_{c_1} (因若 Δ_{c_1} ,而属于某 Δ_{c_1} ,则 见然有 Δ_{c_1} ,此与诸 Δ_{c_1} 互不包含矛盾). 另外,易知 Δ_{c_1} 与 $\Delta_{c_{i+1}}$ $(i=1,2,\cdots,m-1)$ 必有公共点 $\overline{x_i}$ (因若 Δ_{c_i} 与 $\Delta_{c_{i+1}}$ 没有公共点,则点 c_i + δ_{c_i} 必属于某 Δ_{c_i} , $j \neq i$, $j \neq i+1$.若 j < i ,则 Δ_{c_i} 二 Δ_{c_i} ,矛盾;若 j > i+1 ,则 $\Delta_{c_{i+1}}$ 二 一 Δ_{c_i} ,也矛盾). 显然可取公共点 $\overline{x_i}$ 满足 $c_i < \overline{x_i} < c_{i+1}$ 。

于是

$$f(c_i) < f(\bar{x}_i) < f(c_{i+1})(i = 1, 2, \dots, m-1).$$

同理,可知 $x_2 \in \Delta_{c_m}$. 于是,我们有
 $f(x_1) < f(c_1) < f(c_2) < \dots < f(c_m) < f(x_2).$
证完.

1287. 证明:函数

 $f(x) = x + x^2 \sin \frac{1}{x}$,若 $x \neq 0$ 及 f(0) = 0, 于点 x = 0 增大,但在含这点的任何区间($-\epsilon$, ϵ) 中并 非增大的,其中 $\epsilon > 0$ 为任意小的数.作出此函数的略

271

图:

证 当
$$x \neq 0$$
时,

$$f'(x) = 1 + 2x\sin\frac{1}{x} - \cos\frac{1}{x},$$

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x}$$

$$=\lim_{\Delta x \to 0} \frac{\Delta x + \Delta x^2 \sin \frac{1}{\Delta x}}{\Delta x} = 1 > 0,$$

所以 f(x) 在 x = 0 点增大. 又当 $x \neq 0$ 时,

$$f''(x) = 2\sin\frac{1}{x} - \frac{2}{x}\cos\frac{1}{x} - \frac{1}{x^2}\sin\frac{1}{x}$$

$$f''\left(\frac{1}{2n\pi}\right) = -4n\pi \left| \begin{array}{c} <0,n \text{ 为正整数}; \\ >0,n \text{ 为负整数}; \end{array} \right|$$

$$\overline{n}\overline{n} f'\left(\frac{1}{2n\pi}\right) = 0.$$

$$=\frac{1}{2n\pi}(n=1,2,$$

…)都达极大值.

由于
$$x_n = \frac{1}{2n\pi}$$
 →

0, 故 f(x) 在

(-ε,ε) 内不是

增大的(作无穷

次 振 荡, 如 图

2.42 所示).

图 2.42

1288. 证明定理:设(1)

函数 $\varphi(x)$ 及 $\psi(x)$ 可 微 分 n 次; $(2)\varphi^{(k)}(x_0) = \psi^{(k)}(x_0)(k=0,1,2,\cdots,n-1)$; (3) 当 $x \geq_{\perp} x_0$ 时, $\varphi^{(n)}(x) > \psi^{(n)}(x)$,则当 $x > x_0$ 时有不等式

$$\varphi(x) > \psi(x)$$
.

证 设 $F(x) = \varphi(x) - \psi(x)$, 则由于 $\varphi^{(n)}(x) > \psi^{(n)}(x)$,所以

$$F^{(n)}(x) = \varphi^{(n)}(x) - \psi^{(n)}(x) > 0 \ (x > x_0).$$

因此 $F^{(n-1)}(x)$ 在 $x > x_0$ 时是严格增大的. 另外,由条件(2) 得

$$F^{(n-1)}(x_0) = \varphi^{(n-1)}(x_0) - \psi^{(n-1)}(x_0) = 0,$$

因此

$$F^{(n-1)}(x) > F^{(n-1)}(x_0) = 0 \ (x > x_0).$$

由此又知 $F^{(n-2)}(x)$ 在x>x。时是严格增大的. 再由条件(2),知

$$F^{(n-2)}(x_0) = \phi^{(n-2)}(x_0) - \phi^{(n-2)}(x_0) = 0,$$

故

$$F^{(n-2)}(x) > F^{(n-2)}(x_0) = 0 \ (x > x_0).$$

依此类推,最后得

$$F(x) > F(x_0) = 0(x > x_0)$$
,即
 $\varphi(x) > \psi(x) (x > x_0)$.

1289. 证明下列不等式:

(a) 当
$$x \neq 0$$
 时, $e^x > 1 + x$;

(6) 当
$$x > 0$$
 时, $x - \frac{x^2}{2} < \ln(1+x) < x$;

(B) 当
$$x > 0$$
 时, $x - \frac{x^3}{6} < \sin x < x$;

(г) 当
$$0 < x < \frac{\pi}{2}$$
 时, $tgx > x + \frac{x^3}{3}$;

(д) 当
$$x > 0, y > 0$$
 及 $0 < \alpha < \beta$ 时,
$$(x^{\alpha} + y^{\alpha})^{\frac{1}{\alpha}} > (x^{\beta} + y^{\beta})^{\frac{1}{\beta}}.$$

作不等式(a)-(r)的几何解释,

证 (a) 设
$$f(x) = e^x - (1+x)$$
,则当 $x > 0$ 时, $f'(x) = e^x - 1 > 0$.

所以,
$$f(x) > f(0) = 0 (x > 0)$$
,即
 $e^x > 1 + x (x > 0)$.

同理可证,当x < 0时,

$$e^{x} > 1 + x$$
.

总之,当 $x \neq 0$ 时,

$$e^x > 1 + x$$
.

此不等式的几何意义是,曲线 $y = e^x$ 位于曲线y = 1 + x的上方.如图 2.43 所示.

(6) 设
$$\varphi(x) = x, \psi(x) = \ln(1+x), 则$$
 $\varphi'(x) = 1, \psi'(x) = \frac{1}{1+x}.$

当 x > 0 时, $\phi(x) > \psi(x)$, 即 $\phi(x) - \psi(x) > 0$,

且有 $\varphi(0) = \psi(0) = 0$,从而

$$\varphi(x) - \psi(x) > \varphi(0) - \psi(0) = 0 \ (x > 0)$$

即

$$x - \ln(1+x) > 0 \ (x > 0).$$

同理可证, 当x > 0 时,

$$x-\frac{x^2}{2}<\ln(1+x).$$

所以,当x > 0时,

图 2.43

此不等式表示对数函数 $y = \ln(1 + x)$ 的图形介于抛物线 $y = x - \frac{x^2}{2}$ 和直线 y = x 之间(x > 0). 如图 2.44 所示.

(B) 令
$$F(x) = x - \sin x$$
,则
$$F'(x) = 1 - \cos x > 0 (当 x > 0, x \neq 2n\pi, n = 1, 2, \dots 时),$$

故 F(x) 在 x > 0 时是严格增大的。因此,当 x > 0 时,有

$$F(x) > F(0) = 0,$$

从而

$$x > \sin x \ (x > 0)$$
,

其次再证, $x - \frac{x^3}{6} < \sin x \ (x > 0)$. 设

$$\psi_1(x) = x - \frac{x^3}{6}, \varphi_1(x) = \sin x,$$

则有

$$\psi_1(0) = \varphi_1(0) = 0, \ \psi'(0) = \varphi(0) = 1.$$

又因 $\psi''_1(x) = -x, \varphi''_1(x) = -\sin x$,于是,当 $x > 0$ 时,有

$$\varphi''_1(x) > \psi''_1(x)$$
.

利用 1288 题的结果得知,

$$\sin x > x - \frac{x^3}{6}(x > 0).$$

图 2.45

(r) 设
$$\varphi(x) = \operatorname{tg} x$$
, $\psi(x) = x + \frac{x^3}{3}$,则有 $\varphi(0) = \psi(0) = 0$; $\varphi(x) = \sec^2 x$, $\psi'(x) = 1 + x^2$, $\varphi(0) = \psi'(0) = 1$; $\varphi'(x) = \frac{2\sin x}{\cos^3 x}$, $\psi''(x) = 2x$, $\varphi''(0) = \psi''(0) = 0$; $\varphi'''(x) = 2(1 + 3\operatorname{tg}^2 x)(1 + \operatorname{tg}^2 x)$, $\psi'''(x) = 2$,

从而当 $0 < x < \frac{\pi}{2}$ 时, $\varphi'''(x) > \varphi'''(x)$.

于是利用 1288 题的结果 得知

当
$$0 < x < \frac{\pi}{2}$$
 时, $tgx > x + \frac{x^3}{3}$. 此不等式表示,在 $\left(0, \frac{\pi}{2}\right)$ 内, 曲线 $y = tgx$ 在曲线 $y = x + \frac{x^3}{3}$ 的上方. 如图 2.46 所示.

2.46

(A) 当
$$x = y$$
 时,由 $0 < \alpha < \beta$ 知,不等式 $2^{\frac{1}{\alpha}} > 2^{\frac{1}{\beta}} (x > 0, y > 0)$

显然成立:

当 $x \neq y$,且 x > 0,y > 0,不妨设 $0 < \frac{y}{x} < 1$. 令 $a = \frac{y}{x}$,为证不等式,只需证明 $f(t) = (1 + a')^{\frac{1}{t}}$ 严格递减,也即只要证明函数 $F(t) = \frac{1}{t} \ln(1 + a')$ 严格递减.实际上,因为

$$F'(t) = \frac{a' \ln a}{t(1+a')} - \frac{\ln(1+a')}{t^2}.$$

当 a' > 0 时,有 $a' - \frac{a^{2i}}{2} < \ln(1 + a')$,所以

$$F'(t) = \frac{a^t \ln a}{t(1+a^t)} - \frac{a^t - \frac{a^{2t}}{2}}{t^2}.$$

由于 0 < a < 1 及 t > 0,所以 $\ln a < 0$ 及 $a' > a'' > \frac{a^{2t}}{2}$ 从而 F'(t) < 0,即 F(t) 是严格递减,从而当 $x \neq y$ 时,不等式

$$(x^a + y^a)^{\frac{1}{a}} > (x^\beta + y^\beta)^{\frac{1}{\beta}}$$

也成立,

作 $f(t) = (1 + a')^{\frac{1}{t}}$ 的图形,如图 2.47 所示.对于 $(0, + \infty)$ 内任意两个值 α , $\beta(\alpha < \beta)$,图形上对应点的 纵坐标却相应地减小

$$f(\alpha) > f(\beta)$$
.

*) 利用本题(6)的结果.

图 2.47

1290. 证明不等式

$$\frac{2}{\pi}x < \sin x < x,$$

当 $0 < x < \frac{\pi}{2}$ 时成立.

证 不等式的后半部分于 1289 题(в) 中已证明,我们 仅证其前半部分。

设
$$f(x) = \frac{\sin x}{x}$$
, 显然有 $f\left(\frac{\pi}{2}\right) = \frac{2}{\pi}$. 而
$$f'(x) = \frac{x\cos x - \sin x}{x^2} = \frac{\cos x}{x^2}(x - tgx),$$

由于当 $0 < x < \frac{\pi}{2}$ 时, $\cos x > 0$ 及 $tgx > x + \frac{x^3}{3} > x$,于是在此区间内 f'(x) < 0. 所以函数 f(x) 在区间 $\left(0, \frac{\pi}{2}\right)$ 内是递减的 . 因而,当 $0 < x < \frac{\pi}{2}$ 时,有

$$f(x) > f\left(\frac{\pi}{2}\right),\,$$

即

$$\frac{\sin x}{x} > \frac{2}{\pi} \left(0 < x < \frac{\pi}{2} \right).$$

所以

$$\frac{2}{\pi}x < \sin x < x \left(0 < x < \frac{\pi}{2} \right).$$

1291. 证明当 x > 0 时有不等式

$$\left(1+\frac{1}{x}\right)^x < e < \left(1+\frac{1}{x}\right)^{x+1}.$$

证 由于当 x > 0 时,

$$\left(1+\frac{1}{x}\right)^x$$

严格增大(利用 1280 题的结果),并且有

$$\lim_{x\to+\infty} \left(1+\frac{1}{x}\right)^x = e,$$

所以,

$$\left(1+\frac{1}{x}\right)^x < e \ (x>0).$$

同理可证,当x > 0时, $\left(1 + \frac{1}{x}\right)^{x+1}$ 严格递减,并且有

$$\lim_{x\to+\infty}\left(1+\frac{1}{x}\right)^{x+1}=e,$$

所以

$$\left(1+\frac{1}{x}\right)^{x+1} > e \ (x > 0).$$

1292. 等差级数与等比级数的项的数目相同且有相同的首项与末项,它们的一切项都是正的.证明等差级数各项的和大于或等于**)等比级数各项的和.

证证 证法一:

设等差级数各项为 a_1,a_2,\cdots,a_n 公差为d;等比级数各项为 b_1,b_2,\cdots,b_n ,公比为q. 记其和为

$$\sigma = \sum_{k=1}^n a_k, Q = \sum_{k=1}^n b_k.$$

当 q=1 时,由 $a_1=b_1$ 及 $a_n=b_n$ 可知有 $\sigma=Q$.

当q < 1时,由 $a_1 = b_1$ 及 $a_n = a_1 + (n-1)d_1b_n$

 $=b_1q^{n-1}$ 且 $a_n=b_n$ 得知

$$a_1 + (n-1)d = b_1q^{n-1}$$
,

即

$$d = -\frac{1-q^{n-1}}{n-1}a_1(a_1 > 0).$$

那么有

$$\sigma = \sum_{k=1}^{n} (a_1 + (k-1)d)$$

$$= \sum_{k=1}^{n} \left(a_1 - \frac{k-1}{n-1} (1 - q^{n-1}) a_1 \right)$$

$$= a_1 \left(n - \frac{1}{n-1} (1 - q^{n-1}) \sum_{l=0}^{n-1} l \right)$$

$$= \frac{n}{2} a_1 (1 + q^{n-1}),$$

$$Q = \sum_{k=1}^{n} a_1 q^{k-1} = a_1 \frac{1 - q^n}{1 - q}.$$

研究

$$\frac{2}{a_1}(1-q)(\sigma-Q)$$

$$= n(1-q)(1+q^{n-1}) - 2(1-q^n)$$

$$= n(1-q+q^{n-1}-q^n) - 2(1-q^n)$$

$$= (n-2)(1-q^n) - nq(1-q^{n-2}).$$

作函数

$$\varphi(t) = (n-2)(1-t^n),$$

 $\psi(t) = nt(1-t^{n-2}),$

则有 $\varphi(1) = \psi(1) = 0, \varphi'(1) = \psi'(1) = -n(n-2).$ 但是

$$\varphi''(t) = -n(n-1)(n-2)t^{n-2},$$

$$\psi''(t) = -n(n-1)(n-2)t^{n-3},$$

当 0 < t < 1 时,有 $\psi''(t) < \varphi''(t)$,利用 1288 题的结果可得,

$$\phi(t) < \varphi(t) \ (0 < t < 1),$$

即当q < 1时, $\psi(q) < \varphi(q)$. 从而,

$$\frac{2}{a_1}(1-q)(\sigma-Q)=\varphi(q)-\psi(q)>0.$$

这就证明了 $\sigma > Q$.

当q > 1时,由 $a_n = b_n$ 得知 $q^{n-1} - 1 = 0$

$$d = \frac{q^{n-1}-1}{n-1}a_1 > 0.$$

义

$$\sigma = \sum_{k=1}^{n} (a_1 + (k-1)d)$$

$$= na_1 + \frac{n(n-1)}{2}d$$

$$= \frac{n}{2}a_1(1+q^{n-1}),$$

$$Q = \sum_{k=1}^{n} a_1q^{k-1} = a_1\frac{q^n-1}{q-1}.$$

与上述讨论相同,有

$$\frac{2}{a_1}(q-1)(\sigma-Q)$$
= $(n+2)(q^n-1) - nq(q^{n-2}-1)$.

作函数

$$\varphi(t) = (n-2)(t^{n}-1),$$

$$\psi(t) = nt(t^{n-2}-1),$$

则有

$$\varphi(1) = \psi(1) = 0, \varphi'(1) = \psi'(1) = n(n-2).$$

而

$$\varphi''(t) = n(n-1)(n-2)t^{n-2},$$

$$\varphi''(t) = n(n-1)(n-2)t^{n-3},$$

当 t > 1 时,有 $\phi'(t) > \phi''(t)$,利用 1288 题结果有

$$\varphi(t) > \psi(t)$$
.

于是当q > 1时,便得 $\varphi(q) > \psi(q)$. 因而

$$\frac{2}{a_1}(q-1)(\sigma-Q)=\varphi(q)-\psi(q)>0.$$

从而完全证明了 $\sigma > Q$.

证法二:

设等差级数的公差为d,等比级数的公比为q.

如果 d = 0, 易见两个级数叙列均为常数叙列, 因此其和相等.

如果 $d \neq 0$,不妨设 d > 0(否则把末项变为首项, 将叙列颠倒即成),由于各项均为正的,所以 q > 0.

设首项为a,则末项为 $a + nd = aq^n$. 考虑函数 $f(x) = a + xd - aq^n$.

由于 f(0) = f(n) = 0,所以在(0,n) 内存在一点 c,使得 f'(c) = 0,而 $f''(x) = -aq^x \ln^2 q < 0$. 从而 $f'(x) = d - aq^x \ln q$

为一递减函数,所以

当
$$x < c$$
 时, $f'(x) > 0$;

当
$$x > c$$
 时, $f'(x) < 0$.

从而当 $0 \le x \le n$ 时, $f(x) \ge 0$,其中等号当且仅当x = 0及x = n时成立、特别是,对于0 < k < n,有

$$f(k) = a + kd - aq^k > 0,$$

即

$$a + kd > aq^k$$
.

于是,

$$\sum_{k=0}^{n} (a + kd) > \sum_{k=0}^{n} aq^{k}.$$

*) 原题要求证明"大于"。实际应为"大于或等于"。 1293. 用不等式

$$\sum_{k=1}^{n}(a_kx+b_k)^2\geqslant 0,$$

其中 $x,a_k,b_k(k=1,2,\cdots n)$ 为实数,来证明哥西一布尼雅柯夫斯基不等式

$$\left(\sum_{k=1}^n a_k b_k\right)^2 \leqslant \sum_{k=1}^n a_k^2 \cdot \sum_{k=1}^n b_k^2.$$

证 由于

$$\sum_{k=1}^n (a_k x + b_k)^2$$

$$= \left(\sum_{k=1}^{n} a_{k}^{2}\right) x^{2} + 2\left(\sum_{k=1}^{n} a_{k} b_{k}\right) x + \sum_{k=1}^{n} b_{k}^{2} \geqslant 0,$$

对任何 x 都成立,故上述二次式的判别式不能为正,即

$$4\left(\sum_{k=1}^{n}a_{k}b_{k}\right)^{2}-4\left(\sum_{k=1}^{n}a_{k}^{2}\right)\left(\sum_{k=1}^{n}b_{k}^{2}\right)\leqslant0$$

也即,

$$\left(\sum_{k=1}^n a_k b_k\right)^2 \leqslant \sum_{k=1}^n a_k^2 \cdot \sum_{k=1}^n b_k^2.$$

1294. 证明:正数的算术平均数不大于这些数的平方的平均数,即是

$$\frac{1}{n}\sum_{k=1}^n x_k \leqslant \sqrt{\frac{1}{n}\sum_{k=1}^n x_k^2}.$$

证 利用 1293 题的结果,设

$$a_k=x_k,b_k=\frac{1}{n},$$

则有

$$\left(\sum_{k=1}^{n} \frac{x_{k}}{n}\right)^{2} \leqslant \sum_{k=1}^{n} x_{k}^{2} \cdot \sum_{k=1}^{n} \frac{1}{n^{2}} = \frac{1}{n} \sum_{k=1}^{n} x_{k}^{2},$$

所以,

$$\frac{1}{n}\sum_{k=1}^n x_k \leqslant \sqrt{\frac{1}{n}\sum_{k=1}^n x_k^2}.$$

1295. 证明:正数的几何平均数不大于这些数的算术平均数,即是

$$\sqrt[n]{x_1x_2\cdots x_n} \leqslant \frac{1}{n}(x_1+x_2+\cdots+x_n).$$

证 设 $G_n = (x_1, x_2 \cdots x_n)^{\frac{1}{n}}$,

$$A_{\pi} = \frac{1}{n}(x_1 + x_2 + \cdots + x_{\pi}).$$

则有

$$(G_n)^n = x_1, x_2 \cdots x_n, nA_n = x_1 + x_2 + \cdots + x_n.$$

当 n=2 时,我们已有不等式

$$\sqrt{x_1x_2} \leqslant \frac{x_1+x_2}{2}.$$

今假定 n = k 时,有

$$G_{\bullet} \leqslant A_{\bullet}$$
,

我们来证n = k + 1时,有

$$G_{k+1} \leqslant A_{k+1}$$
.

事实上,

$$G_{k+1} = (x_1 \cdot x_2 \cdots x_k \cdot x_{k+1})^{\frac{1}{k+1}}$$

$$= ((G_k)^k \cdot x_{k+1})^{\frac{1}{k+1}}$$

$$\leq (G_k)^{\frac{k}{k+1}} \cdot (x_{k+1})^{\frac{1}{k+1}}$$

$$\leq (A_k)^{\frac{k}{k+1}} \cdot (x_{k+1})^{\frac{1}{k+1}}.$$

如果我们设

$$f(x) = x^{\alpha} - (1 - \alpha + \alpha x),$$

$$(x) = \alpha(x^{\alpha-1} - 1) \begin{cases} > 0, \pm 0 < x < 1; \\ 0, \pm x = 1; \\ < 0, \pm x > 1, \end{cases}$$

故知 f(x) 在 (0,1) 上是严格递增的,而在 $(1,\infty)$ 上是严格递减的. 令 $\alpha = \frac{1}{p}$, $1 - \alpha = \frac{1}{q}$, 用 $\frac{a}{b}$ 代替 x, 于是就有下列不等式:

当
$$a > 0, b > 0, p > 1, q > 1, \frac{1}{p} + \frac{1}{q} = 1$$
 时
$$a^{\frac{1}{p}}b^{\frac{1}{q}} \leqslant \frac{a}{p} + \frac{b}{q}.$$

$$\frac{1}{p} + \frac{1}{q} = \frac{k}{k+1} + \frac{1}{k+1} = 1,$$

所以,

$$G_{k+1} \leq \frac{k}{k+1} A_k + \frac{1}{k+1} x_{k+1}$$

$$= \frac{1}{k+1} (kA_k + x_{k+1})$$

$$= \frac{1}{k+1} (x_1 + x_2 + \dots + x_k + x_{k+1}) = A_{k+1}.$$

从而有

$$G_{k+1} \leqslant A_{k+1},$$

按照数学归纳法得知不等式

$$\sqrt[n]{x_1x_2\cdots x_n} \leqslant \frac{1}{n}(x_1+x_2+\cdots+x_n).$$

对于任何的自然数 n 均成立.

1296. 设 a 及 b 为二正数,则由下之等式

若
$$s \neq 0, \Delta_s(a,b) = \left(\frac{a^s + b^s}{2}\right)^{\frac{1}{s}},$$

$$\Delta_0(a,b) = \lim_{s \to 0} \Delta_s(a,b)$$

所定义之函数称为正数 a 及 b 之 s 阶平均数.

特别是,当s=-1时得调和平均数,当s=0时得几何平均数(试证之!);当s=1时得算术平均数;当s=2时得平方平均数.

证明: (1) $\min(a,b) \leq \Delta_i(a,b) \leq \max(a,b)$;

- (2) 当 $a \neq b$ 时,函数 $\Delta_s(a,b)$ 是变量 s 的增函数;
- (3) $\lim_{b \to -\infty} \Delta_{s}(a,b) = \min(a,b);$ $\lim_{b \to +\infty} \Delta_{s}(a,b) = \max(a,b).$

证 先证当 s=0 时得几何平均数,由题设知

$$\Delta_0(a,b) = \lim_{s \to 0} \Delta_s(a,b) = \lim_{s \to 0} e^{\frac{1}{s} \ln \frac{a^2 + b^2}{2}},$$

研究 $f(x) = \ln \frac{a^x + b^x}{2}$ 在 x = 0 点的导数,有

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \left\{ \frac{1}{x} \ln \left(\frac{a^x + b^x}{2} \right) \right\}.$$
另一方面,

$$f'(0) = f'(x)|_{x=0}$$

$$= \left[\frac{2}{a^x + b^x} \cdot \frac{1}{2} (a^x \ln a + b^x \ln b) \right]_{x=0}$$

$$=\frac{1}{2}(\ln a + \ln b).$$

因此求得

$$\Delta_0(a,b) = e^{f'(0)} = e^{\frac{1}{2}(\ln a + \ln b)} = \sqrt{ab},$$

此即几何平均数,

(1) 由于
$$2(\min(a,b))' \leq a' + b'$$
 $\leq 2(\max(a,b))'$,

所以,

$$\min(a,b) \leqslant \left(\frac{a^s+b^s}{2}\right)^{\frac{1}{s}} \leqslant \max(a,b),$$

即

$$\min(a,b) \leqslant \Delta_s(a,b) \leqslant \max(a,b)$$
.

(2) 考虑
$$\ln \Delta_{s}(a,b) = \frac{1}{s} \ln \frac{a^{s} + b^{s}}{2}$$
,则
$$\frac{d}{ds} \ln \Delta_{s}(a,b)$$

$$= -\frac{1}{s^{2}} \ln \frac{a^{s} + b^{s}}{2} + \frac{a^{s} \ln a + b^{s} \ln b}{s(a^{s} + b^{s})}$$

$$= \frac{1}{s^{2}(a^{s} + b^{s})} \Big((a^{s} \ln a^{s} + b^{s} \ln b^{s})$$

$$- (a^{s} + b^{s}) \ln \frac{a^{s} + b^{s}}{2} \Big).$$

由于 a' > 0, b' > 0, 参看 1314 题(в) 的结果知 $a' \ln a' + b' \ln b' > (a' + b') \ln \frac{a' + b'}{2}$,

所以, $\frac{d}{ds}\ln\Delta_s(a,b) > 0$,即 $\ln\Delta_s(a,b)$ 是严格增函数,由于对数函数的严格单调增加性,故知函数 $\Delta_s(a,b)$ 是变量 s 的严格增函数.

$$\lim_{n\to\infty} \Delta_r(a,b)$$

$$= \lim_{x \to -\infty} a \left(\frac{1}{2} + \frac{1}{2} \left(\frac{b}{a} \right)^{s} \right)^{\frac{1}{s}} + a = \min(a, b),$$

$$\lim_{x \to -\infty} \Delta_{s}(a, b)$$

$$=\lim_{b\to\infty}b\Big(\frac{1}{2}\Big(\frac{a}{b}\Big)'+\frac{1}{2}\Big)^{\frac{1}{2}}=b=\max(a,b),$$

1297. 设 $f(x)(-\infty < x < +\infty)$ 为可微分二次的函数及

$$M_k = \sup_{-\infty < x < +\infty} |f^{(k)}(x)| < +\infty (k = 0,1,2).$$

证明不等式:

$$M_1^2 \leqslant 2M_0M_2$$
.

证 运用 1266 题解附注的公式(对任何 h)

$$f(x+h) = f(x) + f'(x)h + \frac{f''(\xi_1)}{2}h^2$$

$$(x \leq \xi_1 \leq x + h), \tag{1}$$

$$f(x - h) = f(x) - f'(x)h + \frac{f''(\xi_2)}{2}h^2$$

$$(x - h \le \xi_2 \le x),$$
(2)

(1)减(2),得

$$f(x+h) - f(x-h)$$

$$= 2f'(x)h + \frac{h^2}{2} (f''(\xi_1) - f''(\xi_2)),$$

即

$$2f'(x)h = f(x+h) - f(x-h) - \frac{h^2}{2} (f''(\xi_1) - f''(\xi_2)).$$

所以

$$2h|f'(x)| \leqslant |2hf'(x)|$$

$$\leqslant |f(x+h)| + |f(x-h)|$$
 $+ \frac{h^2}{2} (|f''(\xi_1)| + |f''(\xi_2)|)$
 $\leqslant 2M_0 + h^2M_2,$

即

$$M_2h^2 - 2|f'(x)|h + 2M_0 \geqslant 0.$$

由于此式对任何 A 都成立,故此二次式的判别式必非正。

$$4|f'(x)|^2+4M_2(2M_0)\leqslant 0,$$

即

$$|f'(x)|^2 \leqslant 2M_0M_2$$

由此可得

$$M_1^2 \leqslant 2M_0M_2.$$

证完,

§ 8. 凹凸性,拐点

1° 凹的充分条件 若曲线 y = f(x) ($a \le x \le b$)的一段,位于其任意一点的切线之上(或之下),则称这个可微分的函数 y = f(x) 的图形于闭区间(a,b) 上是凹(或对应地,凸)的,在假设二阶导函数 f''(x)存在的情况下,当 a < x < b 时不等式

$$f''(x) > 0$$
 [或对应地 $f''(x) < 0$]

成立,为图形是凹(或对应地,凸)的充分条件。

2°拐点的充分条件 若函数的图形在某点的凹凸性改变,则称此点为拐点。

若在点 x_0 ,或是 $f''(x_0) = 0$,或是 $f''(x_0)$ 不存在,且当x变动经过 x_0 时,f''(x)变号,则 x_0 便是拐点.

290

1298. 研究曲线

$$y=1+\sqrt[3]{x}$$

于 A(-1,0), B(1,2) 及 C(0,0) 诸点的凹凸性.

M
$$y' = \frac{1}{3\sqrt[3]{x^2}}, y'' = -\frac{2}{9x\sqrt[3]{x^2}}.$$

于 A(-1,0) 点, $y'' = \frac{2}{9} > 0$, 故在该点附近曲线的图象是凹的;

于 B(1,2) 点, $y'' = -\frac{2}{9} < 0$. 故在该点附近曲线的图形是凸的:

于C(0,0) 点附近,y''变号,因此它是拐点.在C 点左边(x<0),y''>0,曲线是凹的;在C 点右边(x>0),y''<0,曲线是凸的.注意,当x=0时,y''不存在.求下列函数的图象的凹或凸的区域及拐点:

1299.
$$y = 3x^2 - x^3$$
.

解
$$y' = 6x - 3x^2, y'' = 6 - 6x.$$

当 $-\infty < x < 1$ 时, $y'' > 0$,故图形是凹的;
当 $1 < x < +\infty$ 时, $y'' < 0$,故图形是凸的;
 $x = 1$ 为拐点.

1300.
$$y = \frac{a^3}{a^2 + x^2} (a > 0).$$

解
$$y' = -\frac{2a^3x}{(a^2 + x^2)^2}, y'' = -\frac{2a^3(a^2 - 3x^2)}{(a^2 + x^2)^3}.$$
当 $|x| < \frac{a}{\sqrt{3}}$ 时, $y'' < 0$,故图形是凸的;
当 $|x| > \frac{a}{\sqrt{3}}$ 时, $y'' > 0$,故图形是凹的;

$$x = \pm \frac{a}{\sqrt{3}}$$
 是拐点.

1301. $y = x + x^{\frac{5}{3}}$

解
$$y' = 1 + \frac{5}{3}x^{\frac{2}{3}}, y'' = \frac{10}{9}x^{-\frac{1}{3}}.$$

当 $-\infty < x < 0$ 时, $y'' < 0$, 故图形是凸的;
当 $0 < x < +\infty$ 时, $y'' > 0$, 故图形是凹的;
 $x = 0$ 是拐点(注意, $x = 0$ 时, y'' 不存在).

1302. $y = \sqrt{1 + x^2}$.

解 $y' = (1+x^2)^{-\frac{1}{2}}, y'' = x(1+x^2)^{-\frac{3}{2}} > 0$, 图形始终呈凹状、无拐点、

1303. $y = x + \sin x$.

 $\mathbf{ff} \quad \mathbf{y}' = 1 + \cos x, \mathbf{y}'' = -\sin x.$

当 $2k\pi < x < (2k+1)\pi$ 时, y'' < 0, 故图形是凸的;

当 $(2k+1)\pi < x < (2k+2)\pi$ 时y'' > 0,故图形是凹的;

$$x = k\pi$$
 是拐点($k = 0$, ± 1, ± 2,...).

1304. $y = e^{-x^2}$.

解
$$y' = -2xe^{-x^2}, y'' = e^{-x^2}(4x^2 - 2).$$

当 $|x| < \frac{1}{\sqrt{2}}$ 时, $y'' < 0$,故图形是凸的;
当 $|x| > \frac{1}{\sqrt{2}}$ 时, $y'' > 0$,故图形是凹的;
 $x = \pm \frac{1}{\sqrt{2}}$ 是拐点.

1305. $y = \ln(1 + x^2)$.

解
$$y' = \frac{2x}{1+x^2}$$
, $y'' = \frac{2(1-x^2)}{(1+x^2)^2}$.
当 $|x| < 1$ 时, $y'' > 0$, 故图形是凹的;
当 $|x| > 1$ 时, $y'' < 0$, 故图形是凸的;
 $x = \pm 1$ 是拐点.

1306. $y = x \sin(\ln x) \ (x > 0)$.

解
$$y' = \sin(\ln x) + \cos(\ln x)$$
,
 $y'' = \frac{\sqrt{2}}{x}\cos(\frac{\pi}{4} + \ln x)$,
令 $y'' = 0$, 得 $x = e^{k\pi + \frac{\pi}{4}}(k = 0, \pm 1, \pm 2, \cdots)$
当 $e^{2k\pi - \frac{3}{4}\pi} < x < e^{2k\pi - \frac{\pi}{4}}$ 时, $y'' > 0$, 故图形是凹的;
当 $e^{2k\pi + \frac{\pi}{4}} < x < e^{2k\pi - \frac{\pi}{4}\pi}$ 时, $y'' < 0$, 故图形是凸的;
 $x = e^{k\pi + \frac{\pi}{4}}$ 是拐点 $(k = 0, \pm 1, \pm 2, \cdots)$.

1307. $y = x^x (x > 0)$.

解
$$y' = x'(\ln x + 1), y'' = x'\left(\frac{1}{x} + (1 + \ln x)^2\right).$$

当 $x > 0$ 时, $y'' > 0$, 故图形始终是凹的.

1308. 证明曲线

$$y = \frac{x+1}{x^2+1}$$

有位于同一直线上的三个拐点,作出这个函数的图形,

证
$$y' = \frac{1-2x-x^2}{(x^2+1)^2}$$
,
$$y'' = \frac{2(x^3+3x^2-3x-1)}{(x^2+1)^3}.$$

$$\Leftrightarrow y'' = 0 \ \theta \ x_1 = -2 - \sqrt{3}, x_2 = -2 + \sqrt{3},$$

$$x_3 = 1,$$
对应的函数值为 $y_1 = \frac{1-\sqrt{3}}{4}$,

$$y_2 = \frac{1 + \sqrt{3}}{4}, y_3 = 1. \pm 7$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & -2 + \sqrt{3} & -2 - \sqrt{3} \\ 1 & \frac{1 + \sqrt{3}}{4} & \frac{1 - \sqrt{3}}{4} \end{vmatrix} = 0$$

所以拐点 $A(x_1,y_1),B(x_2,y_2)$ 及 $C(x_3,y_3)$ 在一条直线上(图 2.48).

图 2.48

1309. 当如何选择参变数 h 时,"概率曲线"

$$y = \frac{h}{\sqrt{\pi}}e^{-h^2x^2}(h > 0)$$

有拐点 $x = \pm \sigma$?

解
$$y' = \frac{-2h^3x}{\sqrt{\pi}}e^{-h^2x^2}$$
, $y'' = \frac{h}{\sqrt{\pi}}e^{-h^2x^2}(4h^4x^2 - 2h^2)$. $\Rightarrow y'' = 0$, 得 $x^2 = \frac{1}{2h^2}$.

由于拐点为 $x=\pm \sigma$,故有

$$h^2 = \frac{1}{2\sigma^2}, \text{ pr } h = \frac{1}{\sigma\sqrt{2}}(\sigma > 0).$$

1310. 研究摆线(旋轮线)

$$x = a(t - \sin t), y = a(1 - \cos t)(a > 0)$$

的凹凸性。

$$\mathbf{ff} = \frac{dy}{dx} = \frac{a \sin t}{a(1 - \cos t)} = \cot \frac{t}{2},$$

$$\frac{d^2y}{dx^2} = \frac{x_t' \ y_t'' - x_t'' \ y_t'}{(x_t')^3}$$

$$= -\frac{\csc^2 \frac{t}{2}}{2a(1 - \cos t)} < 0$$

$$(2k\pi < t < 2(k+1)\pi, k = 0, \pm 1, \cdots),$$

故摆线始终呈凸状.

1311. 设函数 f(x) 于区间 $a \le x < + \infty$ 中可微分二次,并且;

(1)
$$f(a) = A > 0$$
; (2) $f'(a) < 0$;

(3) 当 $x > a, f''(x) \leq 0$.

证明:在区间 $(a, + \infty)$ 内有而且仅有方程f(x) = 0之一实根.

证 由于 f'(x) 在 $a \le x < + \infty$ 上连续且当 $a < x < + \infty$ 时 $f''(x) \le 0$,故函数 f'(x) 在 $a \le x < + \infty$ 上是减小的,于是当 $a \le x < + \infty$ 时,必 $f'(x) \le f'(a) < 0$;由此又知函数 f(x) 在 $a \le x < + \infty$ 上是严格减小的,因此在 $(a, + \infty)$ 上至多有一点使 f(x) = 0,即在 $(a, + \infty)$ 上方程 f(x) = 0 至多有一(实) 根.

下面再证明必有点 $a < x_o < + \infty$ 存在,使 $f(x_o) =$

0. 考虑函数 F(x) = f(x) - f(a) - f'(a)(x - a)(a) $\leq x < +\infty$),则

$$F'(x) = f'(x) - f'(a), F''(x) = f''(x),$$
$$(a \le x < + \infty).$$

于是当 $a < x < + \infty$ 时 $F''(x) \le 0$,从而 F'(x) 在 $a \le x < + \infty$ 上是减小的,但 F'(a) = 0,故当 $a \le x < + \infty$ 时, $F'(x) \le F'(a) = 0$;由此又知 F(x) 在 $a \le x < + \infty$ 上是减小的,但 F(a) = 0,因此当 $a \le x < + \infty$ 时, $f(x) \le F(a) = 0$,

令 $x^* = a - \frac{f(a)}{f'(a)}$. 由于f(a) > 0, f'(a) < 0, 故 $x^* > a$. 很明显

$$F(x^*) = f(x^*) - f(a) - f'(a) \left[-\frac{f(a)}{f'(a)} \right]$$
$$= f(x^*).$$

但上面已证必 $F(x^*) \le 0$.故 $f(x^*) \le 0$. 于是,根据连续函数的中间值定理,知必有 $a < x_0 \le x^*$ 存在,使 $f(x_0) = 0$.证毕.

注 上述证明的思路在几何上是明显的. 函数 F(x) 代表曲线 y = f(x) (它是凸的) 上的纵坐标与在点(a, f(a)) 处的切线 y = f(a) + f'(a)(x - a) 上的纵坐标之差,点 $x^* = a - \frac{f(a)}{f'(a)}$ 即是此切线与Ox 轴的交点(图 2.49).

1312. 若对于区间(a,b) 内的任意两点 x_1 与 x_2 及任意二数 λ_1 与 $\lambda_2(\lambda_1 > 0, \lambda_2 > 0, \lambda_1 + \lambda_2 = 1)$ 有不等式:

$$f(\lambda_1x_1+\lambda_2x_2)<\lambda_1f(x_1)+\lambda_2f(x_2)$$

〔或对应地,相反的不等式 $f(\lambda_1x_1 + \lambda_2x_2) > \lambda_1 f(x_1) + \lambda_2 f(x_2)$ 〕,则称函数 f(x) 于区间 (a,b) 上是凹(凸)的.

证 明: 函 数 f(x)(1) 若当 a <

图 2.49

x < b时,f''(x) > 0,则于(a,b)上是凹的;(2)若当a < x < b时,f''(x) < 0,则于(a,b)上是凸的.

证 证法一:

设 x_1, x_2 为(a,b) 中任意两点, $\lambda_1 > 0, \lambda_2 > 0, \lambda_1 + \lambda_2 = 1$. 不妨设 $x_1 < x_2$. 于是 $a < x_1 < x_2 < b$. 考虑 $0 \le t \le 1$ 上的函数 $F(t) = f((1-t)x_1 + tx_2) - (1-t)f(x_1) - tf(x_2)$. 显然,

$$F(0) = f(x_1) - f(x_1) = 0,$$

$$F(1) = f(x_2) - f(x_2) = 0.$$

利用中值定理得知: $0 \le t \le 1$ 时,

$$F'(t) = (x_2 - x_1)f'((1 - t)x_1 + tx_2)$$

$$- \{f(x_2) - f(x_1)\}$$

$$= (x_2 - x_1)\{f'((1 - t)x_1 + tx_2) - f'(c)\},$$

其中 $x_1 < c < x_2$. 令 $t_0 = \frac{c - x_1}{x_2 - x_1}$,则 $0 < t_0 < 1$ 且 $c = (1 - t_0)x_1 + t_0x_2$. 于是 $F'(t_0) = 0$. 此外,当 $0 \le t \le 1$ 时,有

 $F''(t) = (x_2 - x_1)^2 f''((1-t)x_1 + tx_2).$

(1) 若 f''(x) > 0(a < x < b). 由上式知 $F''(t) > 0(0 \le t \le 1)$,故 F'(t) 在 $0 \le t \le 1$ 上是严格增大的,再注意 到 $F'(t_0) = 0$,即知:当 $0 \le t < t_0$ 时 F'(t) < 0;当 $t_0 < t \le 1$ 时,F'(t) > 0,由此又知:在 $0 \le t \le t_0$ 上 F(t) 是严格减小的,在 $t_0 \le t \le 1$ 上 F(t) 是严格增大的;由此,再用 F(0) = 0,F(1) = 0,即知:当 0 < t < 1 时,恒有 F(t) < 0,特别 $F(\lambda_2) < 0$,但 $F(\lambda_2) = f(\lambda_1 x_1 + \lambda_2 x_2) - \lambda_1 f(x_1) - \lambda_2 f(x_2)$,故

 $f(\lambda_1x_1+\lambda_2x_2)<\lambda_1f(x_1)+\lambda_2f(x_2).$

由此可知 f(x) 在(a,b) 上是凹的.

(2) 若 f''(x) < 0(a < x < b),则 $F''(t) < 0(0 \le t \le 1)$. 和(1) 情形完全类似地可推知:当 0 < t < 1 时,恒有 F(t) > 0. 特别 $F(\lambda_2) > 0$,由此即知

$$f(\lambda_1x_1+\lambda_2x_2) > \lambda_1f(x_1) + \lambda_2f(x_2),$$

故 f(x) 在(a,b) 上是凸的,

证法二:

在(a,b) 内任取两点 x_1 及 x_2 , 使 $a < x_1 < x_2 < b$, 并令 $t = \lambda_1 x_1 + \lambda_2 x_2$,则由 $\lambda_1 > 0$, $\lambda_2 > 0$, $\lambda_1 + \lambda_2 = 1$ 知: $x_1 < t < x_2$.

将函数 f(x) 在 x = t 点接 1266 题题解附注的公式 展开,得

 $f(x) = f(t) + (x - t)f'(t) + \frac{1}{2}(x - t)^2 f''(\xi), (1)$ 其中 $a < t < \xi < x$ 或 $a < x < \xi < t$. 将 $x = x_1$ 及 $x = x_2$ 代入(1) 式,得

$$f(x_1) = f(t) + (x_1 - t)f'(t) + \frac{1}{2}(x_1 - t)^2 f''(\xi_1), \qquad (2)$$

$$f(x_2) = f(t) + (x_2 - t)f'(t) + \frac{1}{2}(x_2 - t)^2 f''(\xi_2), \qquad (3)$$

其中 ξ_1 , ξ_2 分别是界于 x_1 ,t及 x_2 ,t之间的数.以入乘(2)式, λ_2 乘(3)式,再相加,得

$$\lambda_{1}f(x_{1}) + \lambda_{2}f(x_{2}) = (\lambda_{1} + \lambda_{2})f(t) + (\lambda_{1}x_{1} + \lambda_{2}x_{2})$$

$$- (\lambda_{1} + \lambda_{2})t)f'(t) + \frac{1}{2}(\lambda_{1}(x_{1} + t)^{2}f''(\xi_{1}))$$

$$+ \lambda_{2}(x_{2} - t)^{2}f''(\xi_{2}).$$

但
$$t = \lambda_1 x_1 + \lambda_2 x_2$$
,及 $\lambda_1 + \lambda_2 = 1$,故[$\lambda_1 f(x_1) + \lambda_2 f(x_2)$] $- f(\lambda_1 x_1 + \lambda_2 x_2)$

$$=\frac{1}{2}[\lambda_1(x_1-t)^2f''(\xi_1)+\lambda_2(x_2-t)^2f''(\xi_2)]$$

由于 $\lambda_1 > 0$, $\lambda_2 > 0$, $(x_1 - t)^2 > 0$, $(x_2 - t)^2 > 0$, 所以

$$(\lambda_1 f(x_1) + \lambda_2 f(x_2)) - f(\lambda_1 x_1 + \lambda_2 x_2)$$

与 $f''(\xi_1), f''(\xi_2)$ 有同样的正负号,

当
$$f''(x) > 0$$
 时,则

$$f(\lambda_1x_1+\lambda_2x_2)<\lambda_1f(x_1)+\lambda_2f(x_2),$$

所以,函数 f(x) 于区间(a,b) 上是凹的.

当
$$f''(x) < 0$$
 时,则

$$f(\lambda_1x_1+\lambda_2x_2) > \lambda_1f(x_1) + \lambda_2f(x_2),$$

所以,函数 f(x) 于区间(a,b) 上是凸的.

1313. 证明:函数

$$x^n (n > 1), e^x, x \ln x$$

于区间 $(0, +\infty)$ 上是凹的;而函数 $x''(0 < n < 1), \ln x$.

于区间(0, + ∞)上是凸的。

证 (1) 设
$$y = x^{n}(n > 1)$$
,则 $y'' = n(n-1)x^{n-2}$.

它在 $(0, + \infty)$ 上是大于零的,因此图形是凹的.

但当 0 < n < 1 时,则 y'' < 0,故此时图形是凸的.

- (2) 对于函数 e^{ϵ} ,其二阶导函数为 e^{ϵ} ,它始终为正,因此图形是凹的.
- (3) 对于函数 $x \ln x$, 其二阶导函数为 $\frac{1}{x}$, 它在(0, + ∞) 内大于零,因此图形是凹的.
- (4)对于函数 $\ln x$,其二阶导函数为 $-\frac{1}{x^2}$,它始终为负,因此,在(0, + ∞) 内图形是凸的.

1314. 证明下列不等式,并解释其几何意义:

(a)
$$\frac{1}{2}(x^n + y^n) > \left(\frac{x+y}{2}\right)^n, (x > 0, y > 0, x \neq y, n > 1);$$

(6)
$$\frac{e^x + e^y}{2} > e^{\frac{x+y}{2}} (x \neq y);$$

(B)
$$x \ln x + y \ln y > (x + y) \ln \frac{x + y}{2}$$

(x > 0, y > 0).

证 我们已知,若函数 f(x) 的图形在区间(a,b) 内是凹的,则对于(a,b) 中的任意两点 x 和 y 满足不等式

$$\frac{1}{2}(f(x) + f(y)) \ge f\left(\frac{x + y}{2}\right).$$

于是,利用 1313 题的结果,我们有,

(a) 设 $f(x) = x^*, (x > 0, n > 1)$. 则 其图形是凹的. 于是,对于任意两点 x 和 y,得

$$\frac{1}{2}(x^n+y^n)>\left(\frac{x+y}{2}\right)^n.$$

(6) 设 f(x) = e',则在 $(-\infty, +\infty)$ 上图形是凹的.于是,对于任意两点 x 和 y,得

$$\frac{e^x + e^y}{2} > e^{\frac{x + y}{2}}$$

(a) 设 $f(x) = x \ln x$,则对于 x > 0 图形是凹的.于是,对于任意两点 x 和 y,得

$$x \ln x + y \ln y > (x + y) \ln \frac{x + y}{2}.$$

它们的几何意义是:联接点(x,f(x)) 及(y,f(y)) 的弦的中点给终位于曲线上对应点(具相同横坐标)的上方.

1315. 证明有界的凸的函数处处连续,并有左侧及右侧的导函数.

证 设 f(x) 在(a,b) 内是凸的,并设 x_0 为(a,b) 内的任一点,今证 f(x) 在点 x_0 连续,且有左侧及右侧的导数.

在点 x_0 附近取一邻域 $|x-x_0| < \delta$,使得这邻域全部包含在(a,b)内,并记

$$M = \min\{f(x_0 - \delta), f(x_0 + \delta)\}.$$
设 $0 < |x - x_0| < \delta$. 记
$$t = \frac{|x - x_0|}{\delta},$$

则 0 < t < 1.

当
$$x_0 < x < x_0 + \delta$$
 时,有
$$x = t(x_0 + \delta) + (1 - t)x_0$$

及

$$x_0 = \frac{1}{1+t}x + \frac{t}{1+t}(x_0 - \delta).$$

由于 f(x) 为凸函数,故有

$$f(x) > tf(x_0 + \delta) + (1 - t)f(x_0)$$

$$\geqslant tM + (1 - t)f(x_0)$$
(1)

及

$$f(x_0) > \frac{1}{1+t} f(x) + \frac{t}{1+t} f(x_0 - \delta)$$
$$\geqslant \frac{f(x) + tM}{1+t}. \tag{2}$$

由(1),得

$$f(x) - f(x_0) > -t(f(x_0) - M);$$

由(2),得

$$t(f(x_0) - M) > f(x) - f(x_0).$$

从而
$$f(x_0) - M > 0$$
,且

$$|f(x) - f(x_0)| < t(f(x_0) - M)$$

$$=\frac{(f(x_0)-M)}{\delta}\cdot|x-x_0|. \tag{3}$$

当 $x_0 - \delta < x < x_0$ 时,类似地也可导出(3) 式,故当 $0 < |x - x_0| < \delta$ 时,(3) 式恒成立.

由此显然有

$$\lim_{x\to x_0} f(x) = f(x_0).$$

这就证实了凸函数 f(x) 在点 x_0 的连续性.

记
$$x = x_0 + h$$
,则(3) 式可改写为
$$\left| \frac{f(x_0 + h) - f(x_0)}{h} \right|$$

$$< \frac{|f(x_0) - M|}{\delta} (0 < |h| < \delta). \tag{4}$$

引进函数

$$\varphi(h) = f(x_0 + h) - f(x_0)(-\delta < h < \delta).$$

容易验证 $\varphi(h)$ 仍为凸函数,且有 $\varphi(0) = 0$. 今取任意两数 t_1 及 t_2 ,设有 $0 < t_1 < t_2 < \delta$,并改写为

$$t_1 = \frac{t_1}{t_2} \cdot t_2 + (1 - \frac{t_1}{t_2}) \cdot 0.$$

对于 t2 与 0 两点可用凸函数性质,有

$$\varphi(t_1) > \frac{t_1}{t_2} \varphi(t_2) + \left(1 - \frac{t_1}{t_2}\right) \varphi(0)$$

$$= \frac{t_1}{t_2} \varphi(t_2),$$

即

$$\frac{\varphi(t_1)}{t_1} > \frac{\varphi(t_2)}{t_2},$$

这说明函数 $F(t) = \frac{\varphi(t)}{t}$ 是一个严格单调下降函数. 如

$$\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = f'. (x_0)$$

存在. 同理,可证左侧导数 $f_{-}(x_0)$ 也存在.

以上讨论中,对于区间是否有穷无关紧要,证毕.

注 本题不需假定凸函数有界,证明中也未用到有界这个条件,参看 E. C. Titchmarsh, The Theory of Functions, § 5. 31. 若以较弱的不等式 $f\left(\frac{x_1+x_2}{2}\right) > \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2)(x_1 \neq x_2)$ 作为凸函数的定义,则需

加上凸函数有界这个条件,才能推出它连续并且左、右导数都存在.参看 G. Pólya, G. Szegő, Problems and Theorems in Analysis, Vol. I,70 题和 124 题.

1316. 设函数 f(x) 于区间(a,b) 内可微分二次,且 $f''(\xi) \neq 0$,其中 $a < \xi < b$. 证明;在区间(a,b) 中可找出两个值 x_1 与 x_2 ,满足

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi).$$

证 不妨设 $f''(\xi) > 0$. 考察 $f'(\xi)$, 分两种情形:

(1) 若 $f'(\xi) = 0$,则由 $f''(\xi) > 0$ 知 $f(\xi)$ 为极小值. 从而存在 $\delta > 0$,在 $(-\delta + \xi, \xi + \delta)$ ((-(a,b))) 上函数 f(x) 在 ξ 的左侧单调下降,在 ξ 的右侧单调上升. 如 304

果 $f(-\delta+\xi)=f(\xi+\delta)$,则取 $x_1=-\delta+\xi$, $x_2=\xi+\delta$,就满足了题中的等式. 如果 $f(-\delta+\xi)< f(\xi+\delta)$,则取 $x_1=-\delta+\xi$,而在 $(\xi,\xi+\delta)$ 上函数值 $f(x_1)$ 介于 $f(\xi)$ 与 $f(\xi+\delta)$ 之间. 由于 f(x) 在 $(\xi,\xi+\delta)$ 上单调上升,故存在 $x_2\in(\xi,\xi+\delta)$,使 $f(x_2)=f(x_1)$,从而题中的等式成立. 如果 $f(-\delta+\xi)>f(\xi+\delta)$,仿前也可取得两点 x_1 及 x_2 ,使 $f(x_1)=f(x_2)$. 这时题中的等式得证.

$$(2) 若 f'(\xi) \neq 0, 则设$$
$$F(x) = f(x) - f'(\xi)x,$$

从而有

$$F'(\xi) = f'(\xi) - f'(\xi) = 0$$

Ħ.

$$F''(\xi) = f''(\xi) > 0.$$

对 于函数 F(x),应用上述(1) 的推证方法,总存在两点 x_1 及 x_2 ,使 $F(x_1) = F(x_2)$,也即有

$$f(x_1) - f'(\xi)x_1 = f(x_2) - f'(\xi)x_2$$

解得

$$f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1},$$

从而命题得证.

1317. 证明:若函数 f(x) 在无穷的区间 $(x_0, + \infty)$ 内可微分两次,且

$$\lim_{x\to x_0+0}f(x)=0,\quad \lim_{x\to+\infty}f(x)=0,$$

则在区间 $(x_0, + \infty)$ 内至少有一点 ξ ,满足

$$f''(\xi)=0.$$

证 用反证法,即若不存在 ξ ,使 $f''(\xi) = 0$,则当 $x > x_0$ 时,或者 f''(x) > 0,或者 f''(x) < 0,如果不是这样,即若存在点 a = b,使得 f''(a) < 0及 f''(b) > 0,则由 达布定理')可知,在 a = b之间必有 c 存在,使得 f''(c) = 0,这与我们的反证假设矛盾. 因此我们不妨设 f''(x) > 0,从而函数 f(x) 的图象是凹的,位于其任一点曲线的切线的上方.

再由

$$\lim_{x\to x_0+0}f(x)=0,\quad \lim_{x\to+\infty}f(x)=0$$

与 f(x) 的可微性,利用 1237 题的结果,即知:在 $(x_0, +\infty)$ 中至少存在一点 c_1 ,使

$$f'(c_1)=0.$$

由 f''(x) > 0 易知 f'(x) 单调上升,从而当 $x > c_1$ 时, f'(x) > 0. 取 $c_2 > c_1$,则 $f'(c_2) > 0$.

过点 $(c_2, f(c_2))$ 作曲线y = f(x)的切线,其方程为 $Y(x) = f(c_2) + f'(c_2)(x - c_2),$

易知

$$\lim_{x\to+\infty}Y(x)=+\infty,$$

而 f(x) - Y(x) > 0,从而应有 $\lim_{x \to \infty} f(x) = +\infty$,

这与原设条件 $\lim_{x \to +\infty} f(x) = 0$ 矛盾. 同样,对于 f''(x) < 0 的情况也可推得以上结论.

于是,在区间
$$(x_0, +\infty)$$
内至少有一点 ξ ,使 $f''(\xi) = 0$.

*) 达布定理指:若函数 g(x) 在[a,b] 内有有限的导 306

函数,且g'(a)g'(b) < 0,则在(a,b)内至少有一点c,使

$$g'(c)=0.$$

其证法是:不妨设 g'(a) < 0, g'(b) > 0,则在 a 有边且与 a 充分近的点 x,有 g(a) > g(x);在 b 左边且与 b 充分近的点 x,有 g(x) < g(b);由此可知 g(x) 在 a, b 上的最小值必在 a, b)内某点 c 达到,从而必有 g'(c) = 0.

在本题中,可设 g(x) = f'(x),则由 g'(a) = f''(a) < 0 及 g'(b) = f''(b) > 0 可知在 a 与 b 之间必有 c 存在,使 g'(c) = 0,即 f''(c) = 0.

§ 9. 未定形的求值法

洛比塔第一法则(未定形 $\frac{0}{0}$) 的求值法) 若(1) 函数 f(x) 与 g(x) 在 a 点的某邻域U, *内有定义并且是连续的(此处 a 为数字或符号 ∞),并且当 $x \rightarrow a$ 时,这两个函数都趋近于零。

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0;$$

(2) 在 a 点的邻域U,内,除 a 点而外,在其余各点导函数f'(x) 与 g'(x) 都存在,并且当 $x \neq a$ 时,二者不同时为零;(3) 有限或无 穷的极限值 $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ 存在,则有

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}.$$

及

^{*} 所谓 a 点的邻域 U, 系指适合于不等式 (1) |x - a| < ε,若 a 为---个数

⁽²⁾ $|x|>\frac{1}{\epsilon}$, 若 a 为符号 ∞ , x 的集合.

洛比塔第三法则(不定形 $\frac{\infty}{n}$) 的求值法) 若 $_{*}(1)$ 当 $_{x} \rightarrow a$ 时, 函数 f(x) 与 g(x) 二者都趋于无穷大;

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = \infty,$$

其中 a 为有限数或符号 ∞ :

(2) 对于属于a点的邻域U, 而异于a的一切x值, 导函数 f'(x) 与 g'(x) 都存在,并且当 $x \in U$, 及 $x \neq a$ 时,

$$f^{(2)}(x) + g^{(2)}(x) \neq 0$$

(3) 有限或无穷的极限

$$\lim_{x\to a}\frac{f'(x)}{g'(x)}$$

存在,则

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

利用代数变形与取对数的方法,可使未定形 $0 \cdot \infty$, $\infty - \infty$, 1",0° 等的求值法化为前面两个类型的未定形;

$$\frac{0}{0}$$
 $\pm j \frac{\infty}{\infty}$

的求值法.

求出下列各式之值: 1318. $\lim_{x\to 0} \frac{\sin ax}{\sin bx}$.

$$\lim_{x\to 0} \frac{\sin ax}{\sin bx} = \lim_{x\to 0} \frac{a\cos ax}{b\cos bx} = \frac{a}{b} (b \neq 0)^{x}.$$

1319.
$$\lim_{x\to 0} \frac{\mathrm{ch}x - \mathrm{cos}x}{x^2}.$$

$$\lim_{x \to 0} \frac{\cosh x - \cos x}{x^2} = \lim_{x \to 0} \frac{\sinh x + \sin x}{2x}$$
$$= \lim_{x \to 0} \frac{\cosh x + \cos x}{2} = 1.$$

1320.
$$\lim_{x\to 0} \frac{\operatorname{tg} x - x}{x - \sin x}.$$

$$\lim_{x \to 0} \frac{\operatorname{tg} x - x}{x - \sin x} = \lim_{x \to 0} \frac{\sec^2 x - 1}{1 - \cos x} = \lim_{x \to 0} \frac{1 + \cos x}{\cos^2 x}$$
= 2.

1321.
$$\lim_{x\to 0} \frac{3tg4x - 12tgx}{3\sin 4x - 12\sin x}$$

$$\lim_{x \to 0} \frac{3tg4x - 12tgx}{3\sin 4x - 12\sin x} = \lim_{x \to 0} \frac{12\sec^2 4x - 12\sec^2 x}{12\cos 4x - 12\cos x}$$
$$= \lim_{x \to 0} \left(-\frac{\cos 4x + \cos x}{\cos^2 x \cos^2 4x} \right) = -2.$$

1322.
$$\lim_{x\to \frac{\pi}{2}}\frac{\operatorname{tg} 3x}{\operatorname{tg} x}.$$

$$\lim_{x \to \frac{\pi}{2}} \frac{\lg 3x}{\lg x} = \lim_{x \to \frac{\pi}{2}} \frac{3\sec^2 3x}{\sec^2 x} = 3 \left(\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\cos 3x} \right)^2 \\
= 3 \left(\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{3\sin 3x} \right)^2 = \frac{1}{3}.$$

1323.
$$\lim_{x \to 0} \frac{x \cot gx - 1}{x^2}$$
.

$$\lim_{x \to 0} \frac{x \cot gx - 1}{x^2} = \lim_{x \to 0} \frac{x - \tan x}{x^2 \tan x}$$

$$= \lim_{x \to 0} \frac{1 - \sec^2 x}{2x \tan x + x^2 \sec^2 x}$$

$$= -\lim_{x \to 0} \frac{\tan^2 x}{x^2 \tan^2 x + 2x \tan x + x^2}$$

$$= -\lim_{x \to 0} \frac{1}{x^2 + 2\frac{x}{tgx} + \left(\frac{x}{tgx}\right)^2} = -\frac{1}{3}.$$

1324.

$$\lim_{x\to\frac{\pi}{4}}\frac{\sqrt[3]{\operatorname{tg}x}-1}{2\sin^2x-1}.$$

$$\lim_{x \to \frac{\pi}{4}} \frac{\sqrt[3]{\operatorname{tg} x} - 1}{2\sin^2 x - 1} = \lim_{x \to \frac{\pi}{4}} \frac{\frac{1}{3\sqrt[3]{\operatorname{tg}^2 x}} \sec^2 x}{4\sin x \cos x} = \frac{1}{3}.$$

1325.
$$\lim_{x\to 0} \frac{x(e^x+1)-2(e^x-1)}{x^3}$$
.

$$\lim_{x \to 0} \frac{x(e^x + 1) - 2(e^x - 1)}{x^3}$$

$$= \lim_{x \to 0} \frac{e^x + 1 + xe^x - 2e^x}{3x^2}$$

$$= \lim_{x \to 0} \frac{1 - e^x + xe^x}{3x^2} = \lim_{x \to 0} \frac{-e^x + e^x + xe^x}{6x} = \lim_{x \to 0} \frac{e^x}{6} = \frac{1}{6}.$$

1326. $\lim_{x\to 0} \frac{1-\cos x^2}{x^2 \sin x^2}$.

$$\lim_{x \to 0} \frac{1 - \cos x^{2}}{x^{2} \sin x^{2}} = \lim_{t \to 0} \frac{1 - \cos t}{t \sin t} = \lim_{t \to 0} \frac{\sin t}{\sin t + t \cos t}$$

$$= \lim_{t \to 0} \frac{1}{1 + \frac{t}{\sin t} \cos t} = \frac{1}{2}.$$

1327.
$$\lim_{x\to 0} \frac{\operatorname{are } \sin 2x - 2\operatorname{are } \sin x}{x^3}$$
310

$$\lim_{x \to 0} \frac{\arcsin 2x - 2 \arcsin x}{x^3}$$

$$= \lim_{x \to 0} \frac{\frac{2}{\sqrt{1 - 4x^2}} - \frac{2}{\sqrt{1 - x^2}}}{3x^2}$$

$$= \lim_{x \to 0} \frac{2\left(\frac{4x}{(1 - 4x^2)^{\frac{3}{2}}} - \frac{x}{(1 - x^2)^{\frac{3}{2}}}\right)}{6x}$$

$$= \frac{1}{3} \lim_{x \to 0} \left(\frac{4}{(1 - 4x^2)^{\frac{3}{2}}} - \frac{1}{(1 - x^2)^{\frac{3}{2}}}\right) = 1.$$
1328.
$$\lim_{x \to 0} \frac{1}{x \sqrt{x}} \left(\sqrt{a} \text{ are tg } \sqrt{\frac{x}{a}} - \sqrt{b} \text{ are tg } \sqrt{\frac{x}{b}}\right).$$

$$\lim_{x \to 0} \frac{1}{x \sqrt{x}} \left(\sqrt{a} \text{ are tg } \sqrt{\frac{x}{a}} - \sqrt{b} \text{ are tg } \sqrt{\frac{x}{a}}\right)$$

$$\lim_{x \to 0} \frac{1}{x \sqrt{x}} \left(\sqrt{a} \text{ are tg } \sqrt{\frac{x}{a}} - \sqrt{b} \text{ are tg } \sqrt{\frac{x}{b}} \right)$$

$$= \lim_{x \to 0} \frac{\frac{\sqrt{a}}{1 + \frac{x}{a}} \cdot \frac{1}{2\sqrt{a}\sqrt{x}} - \frac{\sqrt{b}}{1 + \frac{x}{b}} \cdot \frac{1}{2\sqrt{b}\sqrt{x}}}{\frac{3}{2}\sqrt{x}}$$

$$= \lim_{x \to 0} \frac{\frac{a}{x+a} \frac{b}{x+b}}{3x} = \lim_{x \to 0} \frac{-\frac{a}{(x+a)^2} + \frac{b}{(x+b)^2}}{3}$$
$$= \frac{a-b}{3ab} (ab \neq 0).$$

1329.
$$\lim_{x\to 0} \frac{a^x - a^{\sin x}}{x^3}$$
.

$$\lim_{x\to 0} \frac{a^x - a^{\sin x}}{x^3} = \lim_{x\to 0} \frac{(a^x - \cos x \cdot a^{\sin x})\ln a}{3x^2}$$

$$= \frac{\ln a}{3} \lim_{x \to 0} \frac{a^x \ln a + \sin x \cdot a^{\sin x} - \cos^2 x \cdot a^{\sin x} \ln a}{2x}$$

$$= \frac{\ln a}{6} \lim_{x \to 0} (a^x \ln^2 a + \cos x \cdot a^{\sin x} + \sin x \cos x \cdot a^{\sin x} \ln a)$$

$$+ \sin 2x \cdot a^{\sin x} \ln a - \cos^3 x \cdot a^{\sin x} \ln^2 a)$$

$$= \frac{\ln a}{6} (a > 0).$$

1330.
$$\lim_{x\to 1} \left(\frac{x^x - x}{\ln x - x + 1} \right).$$

$$\lim_{x \to 0} \left(\frac{x^{x} - x}{\ln x - x + 1} \right) = \lim_{x \to 1} \frac{x^{x} (\ln x + 1) - 1}{\frac{1}{x} - 1}$$

$$= \lim_{x \to 1} \frac{x^{x} (\ln x + 1)^{2} + x^{x-1}}{-\frac{1}{x^{2}}} = -2.$$

1331. $\lim_{x\to 0} \frac{\ln(\sin ax)}{\ln(\sin bx)}.$

$$\lim_{x \to 0} \frac{\ln(\sin ax)}{\ln(\sin bx)} = \lim_{x \to 0} \frac{a\sin bx \cos ax}{b\sin ax \cos bx} = \frac{a}{b} \cdot \frac{b}{a}^{*} = 1.$$

*) 利用 1318 题的结果.

1332. $\lim_{x\to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)}.$

$$\lim_{x \to 0} \frac{\ln(\cos ax)}{\ln(\cos bx)} = \lim_{x \to 0} \frac{a \operatorname{tg} ax}{b \operatorname{tg} bx}$$
$$= \frac{a}{b} \lim_{x \to 0} \frac{a \operatorname{sec}^2 ax}{b \operatorname{sec}^2 bx} = \left(\frac{a}{b}\right)^2 (b \neq 0).$$

1333.
$$\lim_{x\to 0} \frac{\cos(\sin x) - \cos x}{x^4}$$
.

$$\lim_{x \to 0} \frac{\cos(\sin x) - \cos x}{x^4}$$

$$= \lim_{x \to 0} \frac{-\cos x \cdot \sin(\sin x) + \sin x}{4x^3}$$

$$= \lim_{x \to 0} \frac{\sin x \cdot \sin(\sin x) - \cos^2 x \cos(\sin x) + \cos x}{12x^2}$$

$$= \lim_{x \to 0} \frac{1}{24x} \Big[\cos x \sin(\sin x) + \frac{1}{2} \sin 2x \cos(\sin x) + \sin 2x \cos(\sin x) + \cos^3 x \sin(\sin x) - \sin x\Big]$$

$$= \frac{1}{24} \lim_{x \to 0} \Big[-\sin x \sin(\sin x) + \cos^2 x \cos(\sin x) + \cos^2 x \cos(\sin x) \Big]$$

$$+ 3\cos 2x \cos(\sin x) - \frac{3}{2} \cos x \sin 2x \sin(\sin x)$$

$$- 3\cos^2 x \sin x \sin(\sin x) + \cos^4 x \cos(\sin x) - \cos x\Big]$$

1334.
$$\lim_{x\to 0} \frac{1}{x} \left(\frac{1}{\operatorname{th} x} - \frac{1}{\operatorname{tg} x} \right).$$

 $=\frac{1}{c}$

$$\lim_{x \to 0} \frac{1}{x} \left(\frac{1}{\text{th}x} - \frac{1}{\text{tg}x} \right) = \lim_{x \to 0} \left(-\frac{1}{\text{th}^2 x} \cdot \frac{1}{\text{ch}^2 x} + \frac{1}{\sin^2 x} \right)$$

$$= \lim_{x \to 0} \frac{\sinh^2 x - \sin^2 x}{\sin^2 x \sinh^2 x} = \lim_{x \to 0} \frac{\sinh 2x - \sin 2x}{\sin 2x \sinh^2 x + \sinh 2x \sin^2 x}$$

$$= \lim_{x \to 0} \frac{\cosh 2x - \cos 2x}{\cos 2x \sinh^2 x + \sin 2x \sinh 2x + \cosh 2x \sin^2 x}$$

$$= \lim_{x \to 0} \frac{2 \operatorname{sh} 2x + 2 \operatorname{sin} 2x}{-2 \operatorname{sin} 2x \operatorname{sh}^2 x + 3 \operatorname{cos} 2x \operatorname{sh} 2x + 3 \operatorname{sin} 2x \operatorname{ch} 2x + 2 \operatorname{sh} 2x \operatorname{sin}^2 x}$$

$$= \lim_{x \to 0} (4 \operatorname{ch} 2x + 4 \operatorname{cos} 2x)(-4 \operatorname{cos} 2x \operatorname{sh}^2 x)$$

$$-2 \operatorname{sin} 2x \operatorname{sh} 2x - 6 \operatorname{sin} 2x \operatorname{sh} 2x + 6 \operatorname{cos} 2x \operatorname{ch} 2x$$

$$+6 \operatorname{cos} 2x \operatorname{ch} 2x + 6 \operatorname{sin} 2x \operatorname{sh} 2x + 4 \operatorname{ch} 2x \operatorname{sin}^2 x$$

$$+2 \operatorname{sin} 2x \operatorname{sh} 2x)^{-1}$$

$$= \frac{2}{3}.$$

$$1335. \lim_{x \to 0} \frac{\operatorname{ar} \operatorname{sh} (\operatorname{sh} x) - \operatorname{ar} \operatorname{sh} (\operatorname{sin} x)}{\operatorname{sh} x - \operatorname{sin} x},$$

$$= \lim_{x \to 0} \frac{\operatorname{ar} \operatorname{sh} (\operatorname{sh} x) - \operatorname{ar} \operatorname{sh} (\operatorname{sin} x)}{\operatorname{sh} x - \operatorname{sin} x},$$

$$= \lim_{x \to 0} \frac{\operatorname{lim} (\operatorname{sh} x + \operatorname{ch} x) - \operatorname{ln} (\operatorname{sin} x + \sqrt{1 + \operatorname{sin}^2 x})}{\operatorname{sh} x - \operatorname{sin} x},$$

$$= \lim_{x \to 0} \frac{\operatorname{ch} x + \operatorname{sh} x}{\operatorname{sh} x + \operatorname{ch} x} - \frac{\operatorname{cos} x}{\operatorname{sin} x + \sqrt{1 + \operatorname{sin}^2 x}}$$

$$= \lim_{x \to 0} \frac{\operatorname{ch} x + \operatorname{sh} x}{\operatorname{ch} x - \operatorname{cos} x} - \frac{\operatorname{cos}^2 x \operatorname{sin} x}{\operatorname{ch} x - \operatorname{cos} x}$$

$$- \lim_{x \to 0} \frac{\operatorname{cos} x}{1 + \operatorname{sin}^2 x} - \frac{\operatorname{cos}^2 x \operatorname{sin} x}{\sqrt{1 + \operatorname{sin}^2 x}}$$

$$= \lim_{x \to 0} \frac{\operatorname{sh} x + \operatorname{sin} x}{\operatorname{sh} x + \operatorname{sin} x}$$

$$= \lim_{x \to 0} \frac{\operatorname{sh} x + \operatorname{sin} x}{\operatorname{sh} x + \operatorname{sin} x}$$

$$= \lim_{x \to 0} \frac{\frac{2\sin x}{(1 + \sin^2 x)^{\frac{3}{2}}}}{\sinh x + \sin x}$$

$$= 2 \lim_{x \to 0} \frac{\frac{\cos x}{(1 + \sin^2 x)^{\frac{3}{2}}} - \frac{3\sin^2 x \cos x}{(1 + \sin^2 x)^{\frac{5}{2}}}}{\cosh x + \cos x}$$

$$= 1.$$

1336. $\lim_{x \to +\infty} \frac{\ln x}{x^{\epsilon}} (\epsilon < 0).$

$$\lim_{x \to +\infty} \frac{\ln x}{x^{\epsilon}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\epsilon x^{\epsilon-1}} = 0.$$

1337. $\lim_{x\to +\infty} \frac{x^n}{e^{ax}} (a > 0, n > 0).$

$$\lim_{x\to+\infty}\frac{x^n}{e^{ax}}=\lim_{x\to+\infty}\frac{nx^{n-1}}{ae^{ax}}=\cdots=\lim_{x\to+\infty}\frac{n!}{a^ne^{ax}}=0.$$

以上是就n为正整数的情形解得的.若n不是正整数,则

$$(n) < n < (n) + 1.$$

于是,

$$\frac{x^{(n)}}{e^{ax}} < \frac{x^n}{e^{ax}} < \frac{x^{(n)+1}}{e^{ax}} (x > 1).$$

而左右两端当 $x \to + \infty$ 时,上面已证明它们的极限为零. 因此,中间的极限也为零. 于是,对于任意大于零的实数 a 和 n,均有

$$\lim_{x\to +\infty}\frac{x''}{e^{ax}}=0.$$

1338.
$$\lim_{x\to 0} \frac{e^{-\frac{1}{x^2}}}{x^{100}}$$
.

$$\prod_{x \to 0} \frac{e^{-\frac{1}{x^2}}}{x^{100}} = \lim_{\frac{1}{x^2} \to +\infty} \frac{\left(\frac{1}{x^2}\right)^{50}}{e^{\frac{1}{x^2}}} = 0.$$

*) 利用 1337 题的结果.

1339. $\lim_{x \to +\infty} x^2 e^{-0.01x}$.

$$\lim_{x \to +\infty} x^2 e^{-0.01x} = \lim_{x \to +\infty} \frac{x^2}{e^{0.01x}} = 0.$$

*) 利用 1337 题的结果.

1340. $\lim_{x\to 1-0} \ln x \cdot \ln(1-x)$.

$$\lim_{x \to 1-0} \ln x \cdot \ln(1-x) = \lim_{x \to 1-0} \frac{\ln(1-x)}{\frac{1}{\ln x}}$$

$$= \lim_{x \to 1^{-0}} \frac{-\frac{1}{1-x}}{-\frac{1}{x \ln^2 x}} = \lim_{x \to 1^{+0}} \frac{x \ln^2 x}{1-x}$$

$$= \lim_{x \to 1+0} \frac{\ln^2 x + 2\ln x}{-1} = 0.$$

1341. $\lim_{x\to+0} x^{\epsilon} \ln x \quad (\epsilon > 0).$

$$\lim_{x \to +0} x^{\varepsilon} \ln x = \lim_{x \to +0} \frac{\ln x}{x^{-\varepsilon}} = \lim_{x \to +0} \frac{\frac{1}{x}}{-\varepsilon x^{-\varepsilon - 1}}$$
$$= -\lim_{x \to +0} \frac{x^{\varepsilon}}{\varepsilon} = 0.$$

1342. $\lim_{x\to +\infty} x^x$.

*) 利用 1341 题的结果.

1343. $\lim_{x\to\pm 0} x^{x^{x-1}}$.

由于

$$\lim_{x \to +0} x \ln x = 0^{-*}, \lim_{x \to +0} \frac{e^{x \ln x} - 1}{x \ln x} = 1$$

及

$$\lim_{x \to +0} (x^{\dagger} n^{2} x) = \lim_{x \to +0} \frac{\ln^{2} x}{\frac{1}{x}} = \lim_{x \to +0} \frac{\frac{2}{x} \ln x}{-\frac{1}{x^{2}}}$$
$$= \lim_{x \to +0} (-2x \ln x) = 0,$$

故

$$\lim_{x \to -0} \{ (e^{x \ln x} - 1) \ln x \}$$

$$= \lim_{x \to +0} \left\{ \frac{e^{\sin x} - 1}{x \ln x} \cdot x \ln^2 x \right\} = 1 \cdot 0 = 0.$$

于是,

$$\lim_{x \to +0} x^{x^{x-1}} = \lim_{x \to +0} e^{(e^{x \ln x} - 1) \ln x} = e^0 = 1.$$

*) 利用 1341 题的结果.

1344.
$$\lim_{x \to +0} (x^{x^x} - 1)$$
.

$$\lim_{x \to +0} (x^{x^x} - 1) = \lim_{x \to +0} (e^{x^x \ln x} - 1).$$

利用 1342 题的结果,有

$$\lim_{x\to+0}x^x=1,$$

故得

$$\lim_{x \to +0} e^{x^x \ln x} = 0,$$

从而有

$$\lim_{x \to +0} (x^{x^x} - 1) = -1.$$

1345. $\lim_{x\to +\infty} x^{\frac{\lambda}{1+\ln x}}$.

解 由于

$$\lim_{x \to +0} \frac{k}{1 + \ln x} \ln x = k \lim_{x \to +0} \frac{\frac{1}{x}}{\frac{1}{x}} = k,$$

所以

$$\lim_{x\to +0} x^{\frac{k}{1+\ln x}} = e^k.$$

1346. $\lim_{x\to 1} x^{\frac{1}{1-x}}$.

解 由于

$$\lim_{x \to 1} \frac{\ln x}{1 - x} = \lim_{x \to 1} \frac{\frac{1}{x}}{-1} = -1,$$

所以

$$\lim_{x \to 1} x^{\frac{1}{1+x}} = e^{-1}.$$

1347.
$$\lim_{x\to 1} (2-x) \operatorname{tg} \frac{\pi x}{2}$$
.

解 由于
$$\lim_{x\to 1} \frac{\pi x}{2} \ln(2-x) = \lim_{x\to 1} \frac{\ln(2-x)}{\cot\frac{\pi x}{2}}$$

$$= \lim_{x \to 1} \frac{\frac{1}{x-2}}{-\frac{\pi}{2} \csc^2 \frac{\pi x}{2}} = \frac{2}{\pi},$$

$$\lim_{x \to 1} (2 - x)^{\lg \frac{\pi x}{2}} = e^{\frac{2}{\pi}}.$$

1348. $\lim_{x \to \frac{\pi}{4}} (tgx)^{tg2x}$.

解 由于

$$\lim_{x \to \frac{\pi}{4}} 2x \operatorname{lnt} g x = \lim_{x \to \frac{\pi}{4}} \frac{\operatorname{lnt} g x}{\operatorname{ct} g 2x} = \lim_{x \to \frac{\pi}{4}} \frac{\frac{\sec^2 x}{\operatorname{tg} x}}{-2\csc^2 2x}$$

$$= -\lim_{x \to \frac{\pi}{4}} 12x = -1$$

所以

$$\lim_{x \to \frac{\pi}{4}} (tgx)^{tg2x} = e^{-1}.$$

1349. $\lim_{x\to 0} (\operatorname{ctg} x)^{\sin x}$.

解 由于

 $\lim_{x\to 0} \sin x \ln \operatorname{ctg} x = \lim_{x\to 0} \frac{\ln \operatorname{ctg} x}{\operatorname{csc} x}$

$$=\lim_{x\to 0}\frac{-\frac{\csc^2x}{\cot gx}}{-\csc x\cot gx}=\lim_{x\to 0}\frac{\sin x}{\cos^2x}=0,$$

$$\lim_{x\to 0}(\mathrm{ctg}x)^{\sin x}=e^{o}=1.$$

1350.
$$\lim_{x\to +0} \left(\ln \frac{1}{x} \right)^x$$
.

解 由于
$$\lim_{x \to -0} x \ln \left(\ln \frac{1}{x} \right) = \lim_{y \to +\infty} \frac{\ln(\ln y)}{y}$$
$$= \lim_{y \to +\infty} \frac{1}{y \ln y} = 0,$$

$$\lim_{x\to+0}\left(\ln\frac{1}{x}\right)^x=e^0=1.$$

1351.
$$\lim_{x\to\infty} \left(\operatorname{tg} \frac{\pi x}{2x+1} \right)^{\frac{1}{x}}.$$

$$\lim_{x \to \infty} \frac{1}{x} \ln \left(\operatorname{tg} \frac{\pi x}{2x+1} \right) = \lim_{x \to \infty} \frac{\frac{\pi}{(1+2x)^2}}{\operatorname{tg} \frac{\pi x}{2x+1} \cdot \cos^2 \frac{\pi x}{2x+1}}$$

$$= 2\pi \lim_{x \to \infty} \frac{\frac{1}{(1+2x)^2}}{\sin \frac{2\pi x}{2x+1}}$$

$$= 2\pi \lim_{x \to \infty} \frac{-\frac{4}{(1+2x)^3}}{\frac{2\pi}{(1+2x)^2} \cos \frac{2\pi x}{2x+1}}$$

$$= -4 \lim_{x \to \infty} \frac{1}{(1+2x)\cos\frac{2\pi x}{2x+1}}$$

$$= 0.$$

$$\lim_{x\to\infty} \left(\operatorname{tg} \frac{\pi x}{2x+1} \right)^{\frac{1}{x}} = e^0 = 1.$$

1352. $\lim_{x \to a} (\frac{\operatorname{tg} x}{\operatorname{tg} a})^{\operatorname{etg}(x-a)}$.

解 由于

$$\lim_{x \to a} (x - a) \ln \left| \frac{\mathrm{tg}x}{\mathrm{tg}a} \right| = \lim_{x \to a} \frac{\ln \mathrm{tg}x - \ln \mathrm{tg}a}{\mathrm{tg}(x - a)}$$

$$=\lim_{x\to a}\frac{\frac{1}{\operatorname{tg}x}\operatorname{sec}^2x}{\operatorname{sec}^2(x-a)}=\frac{2}{\sin 2a},$$

所以

$$\lim_{x \to a} \left(\frac{\operatorname{tg} x}{\operatorname{tg} a} \right)^{\operatorname{eig}(x-a)} = e^{\frac{2}{\sin 2a}} (a \neq \frac{k\pi}{2}, k \text{ 为整数}).$$

1353.
$$\lim_{x\to 0} \left(\frac{a^x - x \ln a}{b^x - x \ln b} \right)^{\frac{1}{x^2}}$$
.

$$\lim_{x\to 0}\frac{\ln(a^x-x\ln a)-\ln(b^x-x\ln b)}{x^2}$$

$$= \lim_{x \to 0} \frac{\frac{(a^x - 1)\ln a}{a^x - x\ln a} - \frac{(b^x - 1)\ln b}{b^x - x\ln b}}{2x}$$

$$= \lim_{x \to 0} \frac{1}{2} \left(\frac{a^{x} \ln^{2} a (a^{x} - x \ln a) - (a^{x} - 1)^{2} \ln^{2} a}{(a^{x} - x \ln a)^{2}} \right)$$

$$-\frac{b^{x}\ln^{2}b(b^{x}-x\ln b)-(b^{x}-1)^{2}\ln^{2}b}{(b^{x}-x\ln b)^{2}}\Big]$$

$$=\frac{1}{2}(\ln^2 a - \ln^2 b),$$

$$\lim_{x\to 0} \left(\frac{a^x - x \ln a}{b^x - x \ln b}\right)^{\frac{1}{x^2}} = e^{\frac{\ln^2 a - \ln^2 b}{2}}.$$

1354.
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right)$$
.

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right) = \lim_{x \to 0} \frac{e^x - 1 - x}{x(e^x - 1)}$$

$$= \lim_{x \to 0} \frac{e^x - 1}{e^x - 1 + xe^x} = \lim_{x \to 0} \frac{e^x}{e^x(x + 2)} = \frac{1}{2}.$$

1355.
$$\lim_{x\to 1} \left(\frac{1}{\ln x} - \frac{1}{x-1} \right)$$
.

$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right) = \lim_{x \to 1} \frac{x - \ln x - 1}{(x - 1)\ln x}$$

$$= \lim_{x \to 1} \frac{1 - \frac{1}{x}}{\frac{x - 1}{x} + \ln x}$$

$$= \lim_{x \to 1} \frac{x - 1}{(x - 1) + x \ln x} = \lim_{x \to 1} \frac{1}{1 + 1 + \ln x} = \frac{1}{2}$$

1356.
$$\lim_{x\to 0} \left(\operatorname{ctg} x - \frac{1}{x}\right).$$

$$\lim_{x \to 0} \left(\operatorname{ctg} x - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x \cos x - \sin x}{x \sin x}$$

$$= \lim_{x \to 0} \frac{\cos x - x \sin x - \cos x}{\sin x + x \cos x} = \lim_{x \to 0} \frac{-\sin x}{\sin x} + \cos x = 0.$$

1357.
$$\lim_{x\to 0} \left(\frac{1}{\ln(x+\sqrt{1+x^2})} - \frac{1}{\ln(1+x)} \right)$$
.

$$\mathbf{M} \quad \lim_{x \to 0} \left\{ \frac{1}{\ln(x + \sqrt{1 + x^2})} - \frac{1}{\ln(1 + x)} \right\}$$

$$= \lim_{x \to 0} \frac{\ln(1 + x) - \ln(x + \sqrt{1 + x^2})}{\ln(1 + x) \cdot \ln(x + \sqrt{1 + x^2})}$$

$$= \lim_{x \to 0} \frac{\frac{1}{1 + x} - \frac{1}{\sqrt{1 + x^2}}}{\frac{1}{1 + x} \ln(x + \sqrt{1 + x^2}) + \frac{1}{\sqrt{1 + x^2}} \ln(1 + x)}$$

$$= \lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1 - x}{\sqrt{1 + x^2} \ln(x + \sqrt{1 + x^2}) + (1 + x) \ln(1 + x)}$$

$$= \lim_{x \to 0} \frac{\frac{x}{\sqrt{1+x^2}} - 1}{1 + \frac{x}{\sqrt{1+x^2}} \ln(x + \sqrt{1+x^2}) + 1 + \ln(1+x)}$$

$$= -\frac{1}{2}.$$

1358.
$$\lim_{x\to a} \frac{a^x - x^a}{x - a} (a > 0)$$
.

$$\prod_{x \to a} \frac{a^x - x^a}{x - a} = \lim_{x \to a} (a^x \ln a - ax^{a-1}) = a^a (\ln a - 1).$$

1359.
$$\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}}-e}{x}$$
.

$$\mathbf{ff} \qquad \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x} \\
= \lim_{x \to 0} (1+x)^{\frac{1}{x}} \left(\frac{1}{x(1+x)} - \frac{1}{x^2} \ln(1+x) \right)$$

$$= e \lim_{x \to 0} \frac{\frac{x}{1+x} - \ln(1+x)}{x^2}$$

$$= e \lim_{x \to 0} \frac{\frac{1}{(1+x)^2} - \frac{1}{1+x}}{2x}$$

$$= -e \lim_{x \to 0} \frac{1}{2(1+x)^2} = -\frac{e}{2}.$$

$$(a+x)^x - e^x$$

1360.
$$\lim_{x \to 0} \frac{(a+x)^x - a^x}{x^2} (a > 0)$$
.

$$\lim_{x\to 0} \frac{(a+x)^x-a^x}{x^2}$$

$$= \lim_{x \to 0} \frac{(a+x)^{x} \left(\ln(a+x) + \frac{x}{a+x}\right) - a^{x} \ln a}{2x}$$

$$= \frac{1}{2} \lim_{x \to 0} \left\{ (a+x)^{x} \left(\ln(a+x) + \frac{x}{a+x}\right)^{2} + (a+x)^{x} \left(\frac{1}{a+x} + \frac{a}{(a+x)^{2}}\right) - a^{x} \ln^{2} a \right\}$$

$$= \frac{1}{a}.$$

1361.
$$\lim_{x\to +\infty} \left(\frac{2}{\pi} \operatorname{arc} \operatorname{tg} x\right)^{x}$$
.

$$\lim_{x \to +\infty} x \ln\left(\frac{2}{\pi} \operatorname{arc} \, \operatorname{tg} x\right) = \lim_{x \to +\infty} \frac{\ln\left(\frac{2}{\pi} \operatorname{arc} \, \operatorname{tg} x\right)}{\frac{1}{x}}$$

$$= \lim_{x \to +\infty} \frac{\frac{\pi}{2\operatorname{arc} \, \operatorname{tg} x} \cdot \frac{2}{\pi(1+x^2)}}{-\frac{1}{x^2}}$$

$$=-\lim_{x\to+\infty}\frac{x^2}{(1+x^2)\arctan x}=-\frac{2}{\pi},$$

$$\lim_{x \to +\infty} \left(\frac{2}{\pi} \operatorname{arc} \, \operatorname{tg} x \right)^2 = e^{-\frac{2}{\pi}}.$$

1362. $\lim_{x \to 0} (th.x)^x$,

解 由于

$$\lim_{x \to +\infty} x \ln(thx) = \lim_{x \to +\infty} \frac{\ln(thx)}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{\frac{1}{thxch^2x}}{-\frac{1}{x^2}}$$

$$= -2 \lim_{x \to +\infty} \frac{x^2}{\sinh 2x} = -2 \lim_{x \to +\infty} \frac{2x}{2ch2x}$$

$$= -2 \lim_{x \to +\infty} \frac{1}{2sh2x} = 0.$$
所以
$$\lim_{x \to +\infty} (thx)^x = e^0 = 1.$$

1363. $\lim_{x\to 0} \left(\frac{\arcsin x}{x} \right)^{\frac{1}{x^2}}.$

$$\lim_{x \to 0} \frac{\ln(\arcsin x) - \ln x}{x^2} = \lim_{x \to 0} \frac{\frac{1}{\arcsin x} \sqrt{1 - x^2}}{2x} - \frac{1}{x}$$

$$= \lim_{x \to 0} \frac{x - \sqrt{1 - x^2} \arcsin x}{2x^2 \sqrt{1 - x^2} \arcsin x}$$

$$= \lim_{x \to 0} \frac{1 - 1 + \frac{x}{\sqrt{1 - x^2}} \arcsin x}{\left| 4x \sqrt{1 - x^2} - \frac{2x^2}{\sqrt{1 - x^2}} \right| \arcsin x + 2x^2}$$

$$= \lim_{x \to 0} \frac{\arcsin x}{2(2 - 3x^2) \arcsin x + 2x \sqrt{1 - x^2}}$$

$$=\lim_{x\to 0} \frac{\frac{1}{\sqrt{1-x^2}}}{-12x \text{are } \sin x + \frac{2(2-3x^2)}{\sqrt{1-x^2}} + 2\sqrt{1-x^2} - \frac{2x^2}{\sqrt{1-x^2}}}$$

$$= \frac{1}{6},$$

$$\lim_{x\to 0} \left(\frac{\arcsin x}{x} \right)^{\frac{1}{x^2}} = e^{\frac{1}{6}}.$$

1364.
$$\lim_{x\to 0} \left(\frac{(1+x)^{\frac{1}{x}}}{e}\right)^{\frac{1}{x}}$$
.

解 由于

$$\lim_{x \to 0} \frac{\frac{1}{x} \ln(1+x) - 1}{x} = \lim_{x \to 0} \frac{\ln(1+x) - x}{x^2}$$

$$= \lim_{x \to 0} \frac{\frac{1}{1+x} - 1}{2x} = -\lim_{x \to 0} \frac{1}{2(1+x)} = -\frac{1}{2}$$

所以

$$\lim_{x\to 0} \left(\frac{(1+x)^{\frac{1}{x}}}{e}\right)^{\frac{1}{x}} = e^{-\frac{1}{2}}$$

1365.
$$\lim_{x\to 0} \left(\frac{2}{\pi} \operatorname{arc} \cos x\right)^{\frac{1}{x}}.$$

$$\lim_{x\to 0} \frac{\ln\left(\frac{2}{\pi} \arccos x\right)}{x} = \lim_{x\to 0} \frac{-1}{\sqrt{1-x^2}\arccos x} = -\frac{2}{\pi},$$

$$\lim_{x \to 0} \left(\frac{2}{\pi} \arccos x \right)^{\frac{1}{x}} = e^{-\frac{2}{x}}.$$

1366.
$$\lim_{x\to 0} \left(\frac{\cos x}{\cosh x}\right)^{\frac{1}{x^2}}.$$

解 由于

$$\lim_{x \to 0} \frac{\ln \cos x - \ln \ln x}{x^2} = \lim_{x \to 0} \frac{- \lg x - \ln x}{2x}$$

$$= \lim_{x \to 0} \frac{-\sec^2 x - \frac{1}{\cosh^2 x}}{2} = -1,$$

所以

$$\lim_{x\to 0} \left(\frac{\cos x}{\cosh x}\right)^{\frac{1}{x^2}} = e^{-1}.$$

1367.
$$\lim_{x\to 0} \frac{\ln \cosh x}{\sqrt[n]{\cosh x} - \sqrt[n]{\cosh x}}.$$

$$\lim_{x \to 0} \frac{\ln \cosh x}{\sqrt[n]{\cosh x} - \sqrt[n]{\cosh x}}.$$

$$= \lim_{x \to 0} \frac{-\frac{\text{th}x}{\sinh x \left(\frac{1}{m}(\cosh x)^{\frac{1}{m}-1} - \frac{1}{n}(\cosh x)^{\frac{1}{n}-1}\right)}$$

$$=\frac{1}{\frac{1}{m}-\frac{1}{n}}=\frac{mn}{n-m}(n\neq m),$$

于是

$$\lim_{x\to 0} \frac{\ln \cosh x}{\sqrt[n]{\cosh x} - \sqrt[n]{\cosh x}} = \frac{mn}{n-m}.$$

1368.
$$\lim_{x\to 0} \left(\frac{1+e^x}{2}\right)^{\coth x}.$$

解 由于

$$\lim_{x\to 0} \frac{\ln(1+e^{x}) - \ln 2}{\sinh x} = \lim_{x\to 0} \frac{\frac{e^{x}}{1+e^{x}}}{\frac{1}{\cosh^{2} x}} = \frac{1}{2},$$

所以

$$\lim_{x\to 0} \left(\frac{1+e^x}{2}\right)^{\coth x} = e^{\frac{1}{2}} = \sqrt{e}.$$

1369.

$$\lim_{x \to +\infty} \left(\sqrt[3]{x^3 + x^2 + x + 1} - \sqrt{x^2 + x + 1} \cdot \frac{\ln(e^x + x)}{x} \right).$$

解 当
$$x \rightarrow + \infty$$
 时,有

$$\sqrt[3]{x^3 + x^2 + x + 1} = x \left(1 + \left(\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} \right) \right)^{\frac{1}{3}}$$

$$= x \left(1 + \frac{1}{3} \left(\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} \right) + o \left(\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} \right) \right)$$

$$= x + \frac{1}{3} + o \left(\frac{1}{x} \right) + o(1) = x + \frac{1}{3} + o(1),$$

$$\sqrt{x^2 + x + 1} = x \left(1 + \left(\frac{1}{x} + \frac{1}{x^2} \right) \right)^{\frac{1}{2}}$$

$$= x \Big(1 + \frac{1}{2} \Big(\frac{1}{x} + \frac{1}{x^2} \Big) + o \Big(\frac{1}{x} + \frac{1}{x^2} \Big) \Big)$$

$$= x + \frac{1}{2} + o\left(\frac{1}{x}\right) + o(1) = x + \frac{1}{2} + o(1)$$

328

$$\frac{\ln(e^x + x)}{x} = \frac{1}{x} \ln(e^x(1 + xe^{-x}))$$

$$= 1 + \frac{1}{x} \ln(1 + xe^{-x})$$

$$= 1 + o\left(\frac{1}{x}\right) (这是由于 \lim_{x \to \infty} \ln(1 + xe^{-x}) = 0).$$

于是,

$$\sqrt[3]{x^{2} + x^{2} + x + 1} - \sqrt{x^{2} + x + 1} \cdot \frac{\ln(e^{x} + x)}{x}$$

$$= \left(x + \frac{1}{3} + o(1)\right) - \left(x + \frac{1}{2} + o(1)\right) \left(1 + o(\frac{1}{x})\right)$$

$$= \left(x + \frac{1}{3} + o(1)\right) - \left(x + \frac{1}{2} + o(1) + o(\frac{1}{x})\right)$$

$$= -\frac{1}{6} + o(1),$$

从而有

$$\lim_{x \to +\infty} \left(\sqrt[3]{x^3 + x^2 + x + 1} - \sqrt{x^2 + x + 1} \right)$$

$$\cdot \frac{\ln(e^x + x)}{x} \Big] = \lim_{x \to +\infty} \Big(-\frac{1}{6} + o(1) \Big) = -\frac{1}{6}.$$

1370.
$$\lim_{x\to +\infty} ((x+a)^{1+\frac{1}{x}} - x^{1+\frac{1}{x+a}}).$$

解 当 $x \rightarrow + \infty$ 时,有

$$\left(1 + \frac{a}{x}\right)^{\frac{1}{x}} = e^{\frac{1}{x}\ln(1 + \frac{a}{x})} = e^{o(\frac{1}{x})} = 1 + o\left(\frac{1}{x}\right)$$

及

$$x^{\frac{1}{x+a} - \frac{1}{x}} = x^{-\frac{a}{x(x+a)}} = e^{-\frac{a}{x(x+a)} \ln x} = e^{o\left(\frac{1}{x}\right)} = 1 + o\left(\frac{1}{x}\right),$$
329

并注意到 $x^{\frac{1}{x}} \rightarrow 1$,于是得

$$(x+a)^{\frac{1}{x}} - x^{\frac{1}{x+a}} = (x+a)(x+a)^{\frac{1}{x}} - x \cdot x^{\frac{1}{x+a}}$$

$$= (x+a) \cdot x^{\frac{1}{x}} \left(1 + \frac{a}{x}\right)^{\frac{1}{x}} - x \cdot x^{\frac{1}{x}} x^{\frac{1}{x+a} - \frac{1}{x}}$$

$$= x^{\frac{1}{x}} \left\{ (x+a) \left(1 + o\left(\frac{1}{x}\right)\right) - x \left(1 + o\left(\frac{1}{x}\right)\right) \right\}$$

$$= x^{\frac{1}{x}} \left\{ (x+a+o(1)) - (x+o(1)) \right\}$$

$$= x^{\frac{1}{x}} (a+o(1)),$$

从而有

$$\lim_{x \to +\infty} \left\{ (x+a)^{1+\frac{1}{x}} - x^{1+\frac{1}{x+a}} \right\}$$

$$= \lim_{x \to +\infty} \left\{ x^{\frac{1}{x}} (a+o(1)) \right\} = a.$$

1371. 若当 $x \to 0$ 时, 曲线 y = f(x) 通过坐标原点(0,

0)[
$$\lim_{x \to 0} f(x) = f(0) = 0$$
],且在此有斜角 α ,求

$$\lim_{x\to 0}\frac{y}{x}.$$

$$\lim_{x \to 0} \frac{y}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = f'(0) = \operatorname{tg} \alpha^{*}.$$

*) 所谓有斜角 α 是指在 x = 0 点有 $f'(0) = tg\alpha$,注意到当 $x \to 0$ 时, $f(x) \to 0$,以及 f'(0) 存在,如果再假定 f'(x) 在 x = 0 连续,则也可用洛比塔法则求得

$$\lim_{x\to 0}\frac{y}{x}=\lim_{x\to 0}\frac{y'}{1}=f'(0)=\operatorname{tg}\alpha.$$

1372. 若当 x → + 0 时, 曲线 y = f(x) 通过坐标原点(0, 330

0) $\{\lim_{x \to +0} f(x) = 0\}$,并且当 $0 < x < \varepsilon$ 时,此曲线完全是在两直线 y = -kx 及 $y = kx(k \neq \infty)$ 所组成的锐角之内,证明

$$\lim_{x\to +0}x^{f(x)}=1.$$

证 当 $x \rightarrow + 0$ 时,有 $x \ln x \rightarrow 0$. 按题设应有

$$-kx \leq f(x) \leq kx \quad (k>0, 0 < x < \varepsilon),$$

而当 x > 0 且很小时,有 $\ln x < 0$,故

$$kx \ln x < f(x) \ln x < -kx \ln x$$
,

从而有

$$e^{kx\ln x} < e^{f(x)\ln x} < e^{-kx\ln x}$$

当 $x \rightarrow + 0$ 时,不等式两端均趋于 $e^0 = 1$,注意到 $e^{f(x)\ln x}$ = $x^{f(x)}$,即有

$$\lim_{x\to +0}x^{f(x)}=1.$$

1373. 证明:若函数 f(x) 的二阶导函数 f''(x) 存在,则

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2}.$$

证 当 $h \to 0$ 时, $f(x+h) + f(x-h) - 2f(x) \to 0$ 及 $h^2 \to 0$, 且分子、分母(视为 h 的函数)都有导数,又注意到分母的导数 $2h \neq 0(h \to 0)$ 但 $h \neq 0$),故对 $\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2}$ 可用洛比塔法则,并

且继续运算,最后得证

$$\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2}$$

$$= \lim_{h \to 0} \frac{f'(x+h) - f'(x-h)}{2h}$$

$$= \frac{1}{2} \lim_{h \to 0} \left[\frac{f'(x+h) - f'(x)}{h} + \frac{f'(x-h) - f'(x)}{-h} \right]$$

$$= \frac{1}{2} (f''(x) + f''(x)) = f''(x).$$

1374. 研究运用洛比塔法则于下列各例的可能性:

(a)
$$\lim_{x\to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x}$$
; (6) $\lim_{x\to \infty} \frac{x - \sin x}{x + \sin x}$;

(a)
$$\lim_{x \to +\infty} \frac{e^{-2x}(\cos x + 2\sin x) + e^{-x^2}\sin^2 x}{e^{-x}(\cos x + \sin x)}$$
;

(r)
$$\lim_{x \to +\infty} \frac{1 + x + \sin x \cos x}{(x + \sin x \cos x)e^{\sin x}}.$$

解 (a) 分子、分母分别求导数,得商为

$$\frac{2x\sin\frac{1}{x}-\cos\frac{1}{x}}{\cos x},$$

此函数当 $x \to 0$ 时,极限不存在,因此洛比塔法则不能适用. 但是,原极限是存在的. 事实上,函数

$$\frac{x^2 \sin \frac{1}{x}}{\sin x} = \frac{x}{\sin x} \cdot x \sin \frac{1}{x},$$

当
$$x \to 0$$
 时, $\frac{x}{\sin x} \to 1$ 及 $x \sin \frac{1}{x} \to 0$, 于是,

$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = 0.$$

(6) 分子、分母分别求导数,得商为

$$\frac{1-\cos x}{1+\cos x},$$

当 $x \rightarrow \infty$ 时,上述函数的极限不存在,因此洛比塔法则不能适用. 但是,原极限是存在的,事实上,有

$$\lim_{x \to \infty} \frac{x - \sin x}{x + \sin x} = \lim_{x \to \infty} \frac{1 - \frac{\sin x}{x}}{1 + \frac{\sin x}{x}} = 1.$$

(B) 如果运用洛比塔法则,就有

$$\lim_{x \to +\infty} \frac{e^{-2r}(\cos x + 2\sin x) + e^{-r^2}\sin^2 x}{e^{-r}(\cos x + \sin x)}$$

$$= \lim_{x \to +\infty} \frac{-5e^{-2r}\sin x - 2xe^{-x^2}\sin^2 x + e^{-r^2}\sin 2x}{-2e^{-r}\sin x}$$

$$= \lim_{x \to +\infty} \left(\frac{5}{2}e^{-r} + xe^{-r^2 + x}\sin x - e^{-r^2 + x}\cos x\right) = 0.$$
这个结果是错误的. 事实上, 若取 $x_n = n\pi + \frac{3\pi}{4}$, 则 $\lim_{x \to +\infty} x_n = +\infty$. 对于叙列 $\{x_n\}$, 原式的分母 $e^{-r_n} \cdot (\cos x_n + \sin x_n) = \sqrt{2}e^{-r_n}\sin\left(x_n + \frac{\pi}{4}\right) = \sqrt{2}e^{-(n\pi + \frac{3\pi}{4})} \cdot \sin(n+1)\pi = 0$, 而分子不为零,此时原式的极限不存在,从而对于 $x \to +\infty$,原式的极限不存在,原因是在求极限 $\lim_{x \to +\infty} \frac{f(x)}{g(x)}$ 时,虽然 $f(x)$ 及 $g(x)$ 均连续且极限为

零,但其导函数在点列 $x^{(n)} = n\pi(n = 1, 2, \cdots)$ 上两者同时出现了零点.因此,一方面本题不符合运用洛比塔法则的条件;另一方面也不允许在求极限过程中,用 $\sin x$ 作除数,上、下同时约分后再求极限.

(r) 如果运用洛比塔法则,就有

$$\lim_{x \to +\infty} \frac{1 + x + \sin x \cos x}{(x + \sin x \cos x)e^{\sin x}}$$

$$= \lim_{x \to +\infty} \frac{1 + \cos 2x}{e^{\sin x} (1 + \cos 2x + \cos x \cdot (x + \sin x \cos x))}$$

$$= \lim_{x \to +\infty} \frac{2\cos^2 x}{e^{\sin x} [2\cos^2 x + \cos x \cdot (x + \sin x \cos x)]}$$

$$= \lim_{x \to \infty} \frac{1}{e^{\sin x} [1 + \frac{1}{2\cos x} (x + \sin x \cos x)]}.$$

由于

$$e^{\sin x} \geqslant e^{-1}, x + \sin x \cos x \geqslant x - 1,$$

故当x > 1时,有

$$\begin{split} \left| e^{\sin x} \left(1 + \frac{1}{2\cos x} (x + \sin x \cos x) \right) \right| \\ & \geqslant e^{-1} \left(\frac{1}{2 |\cos x|} (x - 1) - 1 \right) \\ & \geqslant e^{-1} \left(\frac{1}{2} (x - 1) - 1 \right) \rightarrow + \infty (\stackrel{\text{def}}{=} x \rightarrow + \infty \text{ BF}), \end{split}$$

从而得

$$\lim_{x \to +\infty} \frac{1 + x + \sin x \cos x}{(x + \sin x \cos x)e^{\sin x}} = 0.$$

这个结果是错误的. 事实上,对于不同的叙列:

$$x'_n = 2n\pi + \frac{\pi}{2} \not \! D_n x''_n = 2n\pi(n = 1, 2, \cdots),$$

让 $n \to +\infty$,则分别取不同的极限 $\frac{1}{e}$ 及 1,从而原极限是不存在的.原因与(e)的情况类似,只是注意到 $\cos x$ 在 $x^{(n)} = n\pi + \frac{\pi}{2}$ 的点列上($n = 1, 2, \cdots$) 取值为零.因此,本题不符合运用洛比塔法则的条件;当然也不允许在中间过程里,用 $\cos x$ 作除数,上、下约分后再求极限.

1375. 设有一弓形,其弦为 b, 矢为 h, 又有内接于此弓形之内的等腰三角形,若当 R 不变时弓形的弧趋于零,求弓形面积与内接等腰三角形面积之比. 利用所得之结果推出计算弓形面积之近似公式:

$$S \approx \frac{2}{3}bh$$
.

解 如图 2.50 所示.

$$AB = b DC = h$$

$$\angle AOB = \alpha, \triangle ABC$$
 为

内接等腰三角形,其面

积为

$$A \xrightarrow{C} B$$

图 2.50

$$\frac{1}{2}bh = R^2 \Big(\sin \frac{a}{2} - \frac{1}{2} \sin a \Big).$$

弓形面积为 $\frac{1}{2}R^2(\alpha-\sin\alpha)$

当弧长趋于零时,α趋于零,于是,弓形面积与内接等腰三角形面积之比为

$$\lim_{\alpha \to 0} \frac{\frac{1}{2}R^{2}(\alpha - \sin\alpha)}{R^{2}\left(\sin\frac{\alpha}{2} - \frac{1}{2}\sin\alpha\right)}$$

$$= \lim_{\alpha \to 0} \frac{\frac{1}{2}(1 - \cos\alpha)}{\frac{1}{2}\left(\cos\frac{\alpha}{2} - \cos\alpha\right)} = \lim_{\alpha \to 0} \frac{\sin^{2}\frac{\alpha}{2}}{\sin\frac{3\alpha}{4}\sin\frac{\alpha}{4}}$$

$$= \lim_{\alpha \to 0} \frac{\left(\frac{\alpha}{2}\right)^{2}}{\frac{3\alpha}{4} \cdot \frac{\alpha}{4}} = \frac{4}{3}.$$

由此得弓形面积的近似公式为

$$S \approx \frac{4}{3} \cdot \frac{1}{2}bh = \frac{2}{3}bh.$$

§ 10. 台劳公式

 1° 台劳局部公式 若(1) 函数 f(x) 在 x。点的某邻域 $|x-x_{*}| < \epsilon$ 内有定义; (2) 于此邻域内有一直到(n-1) 阶的导函数 f'(x),…, $f^{(n-1)}(x)$; (3)n 级导函数 $f^{(n)}(x_{*})$ 于 x。点存在,则

$$f(x) = \sum_{k=0}^{n} a_{k}(x - x_{0})^{k} + o(|x - x_{0}|^{n}), \qquad (1)$$
其中
$$a_{k} = \frac{f^{(k)}(x_{0})}{k!}(k = 0, 1, \dots, n).$$

336

特例,当 $x_0 = 0$ 时,有;

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(|x|^{n}).$$
 (2)

在所示的条件下,(1)式是唯一的,

从台劳局部公式(2),得出下列五个重要的展开式:

I.
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n);$$

I. $\sin x = x - \frac{x^3}{3!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + o(x^{2n});$

$$\mathbf{I} \cdot \cos x = 1 - \frac{x^2}{2!} + \cdots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1});$$

$$N. (1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!}x^{2} + \cdots + \frac{m(m-1)\cdots(m-n+1)}{n!}x^{n} + o(x^{2});$$

$$V.\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n).$$

 2° 台劳公式 若函数 f(x)(1) 在闭区间(a,b) 上有定义;(2) 在此闭区间上有连续的导函数 $f'(x),\cdots,f^{(r-1)}(x)$,(3) 当 a < x < b 时,有有限值的导函数 $f^{(r)}(x)$,则

$$f(x) = \sum_{k=0}^{n+1} \frac{f^{(k)}(a)}{k!} (x-a)^k + R_n(x) (a \leqslant x \leqslant b),$$

其中

$$R_{n}(x) = \frac{f^{(n)}(a + \theta(x - a))}{n!}(x - a)^{n}(0 < \theta < 1)$$

(拉格朗日余项公式),或

$$R_n(x) = \frac{f^{(n)}(a + \theta_1(x - a))}{(n - 1)!} (1 - \theta_1)^{n-1} (x - a)^n$$

$$(0 < \theta_1 < 1)$$

(哥西余项公式).

1376. 将多项式

$$P(x) = 1 + 3x + 5x^2 - 2x^3$$

表成二项式 x + 1 的正整数乘幂多项式.

$$P'(x) = 3 + 10x - 6x^2$$
, $P'(-1) = -13$. $P''(x) = 10 - 12x$, $P''(-1) = 22$. $P'''(x) = -12$, $P'''(-1) = -12$. $P^{(4)}(x) = 0$, $P(-1) = 5$.

按台劳公式有

$$P(x) = P(-1) + \frac{P'(-1)}{1!}(x+1) + \frac{P''(-1)}{2!}(x+1)^2 + \frac{P'''(-1)}{3!}(x+1)^3 + R_4(x),$$

这里 $R_4(x) = 0$,即展开式中的余项为零,将上述结果代入,即得

$$P(x) = 5-13(x+1)+11(x+1)^2-2(x+1)^3$$

按变数x的正整数乘幂,写出下列函数的展开式至含有指出阶数的项:

1377.
$$\frac{1+x+x^2}{1-x+x^2}$$
 到含 x^4 的项. $f^{(4)}(0)$ 等于甚么?

$$\mathbf{ff} \qquad \frac{1+x+x^2}{1-x+x^2} = (1+x+x^2) \frac{(1+x)}{1+x^3}$$
$$= (1+x)(1+x+x^2) \cdot (1-x^3+o(x^6))$$

$$= 1 + 2x + 2x^2 - 2x^4 + o(x^4).$$

$$f^{(4)}(0) = 41 \cdot (-2) = -48.$$

1378.
$$\frac{(1+x)^{100}}{(1-2x)^{40}(1+2x)^{60}}$$
 到含 x^2 的项.

解 设
$$f(x) = \frac{(1+x)^{100}}{(1-2x)^{40}(1+2x)^{60}}$$
,则
$$f'(x) = \frac{60(1+x)^{99}(1+6x)}{(1-2x)^{41}(1+2x)^{61}},$$

$$f''(x) = \frac{60(1+x)^{98}(65+728x+2196x^2+48x^3)}{(1-2x)^{42}(1+2x)^{62}},$$

m

$$f(0) = 1, f'(0) = 60, f''(0) = 3900.$$

所以,按台劳公式就有

$$\frac{(1+x)^{100}}{(1-2x)^{40}(1+2x)^{60}} = 1+60x+1950x^2+o(x^2).$$

1379. $\sqrt[n]{a^m + x}$ (a > 0) 到含 x^2 的项.

解 设
$$f(x) = \sqrt[n]{a^n + x}$$
,则

$$f'(x) = \frac{1}{m}(a^m + x)^{\frac{1-m}{m}},$$

$$f^{n}(x) = \frac{(1-m)(a^{m}+x)^{\frac{1-2m}{m}}}{m^{2}},$$

而

$$f(0) = a, f'(0) = \frac{1}{m}a^{1-m}, f''(0) = \frac{1-m}{m^2}a^{1-2m}.$$

$$\sqrt[m]{a^m + x} = a + \frac{x}{ma^{m-1}} + \frac{(1-m)x^2}{2m^2a^{2m-1}} + o(x^2),$$

1380.
$$\sqrt{1-2x+x^3}-\sqrt[3]{1-3x+x^2}$$
 到含 x^3 的项.

解 设
$$f(x) = \sqrt{1-2x+x^3} - \sqrt[3]{1-3x+x^2}$$
,则

$$f'(x) = \frac{1}{2}(3x^2 - 2)(1 - 2x + x)^{-\frac{1}{2}}$$

$$=\frac{1}{3}(2x-3)(1-3x+x^2)^{-\frac{2}{3}},$$

$$f''(x) = 3x(1 - 2x + x^3)^{-\frac{1}{2}}$$

$$-\frac{1}{4}(3x^2-2)^2(1-2x+x^3)^{-\frac{3}{2}}$$

$$-\frac{2}{3}(1-3x+x^2)^{-\frac{2}{3}}+\frac{2}{9}(2x-3)^2(1-3x+$$

$$(x^2)^{-\frac{5}{3}}$$
,

$$f'''(x) = 3(1 - 2x + x^3)^{-\frac{3}{2}}$$

$$=\frac{3}{2}x(3x^2-2)(1-2x+x^3)^{-\frac{3}{2}}$$

$$+\frac{3}{8}(3x^2-2)^3(1-2x+x^3)^{-\frac{5}{2}}$$

$$=3x(3x^2-2)(1-2x+x^3)^{-\frac{3}{2}}$$

$$+\frac{4}{9}(2x-3)(1-3x+x^2)^{-\frac{5}{3}}$$

$$+\frac{8}{9}(2x-3)(1-3x+x^2)^{-\frac{5}{3}}$$

$$=\frac{10}{27}(2x-3)^3(1-3x+x^2)^{-\frac{8}{3}},$$

从而

$$f(0) = 0, f'(0) = 0, f''(0) = \frac{1}{3}, f'''(0) = 6,$$

于是,

$$\sqrt{1 - 2x + x^3} - \sqrt[3]{1 - 3x + x^2}$$
$$= \frac{1}{6}x^2 + x^3 + o(x^3).$$

1381. e^{2x-x²} 到含 x⁵ 的项.

$$\begin{aligned}
\mathbf{ff} \quad e^{2x-x^2} &= 1 + (2x - x^2) \\
&+ \frac{(2x - x^2)^2}{2!} + \frac{(2x - x^2)^3}{3!} + \frac{(2x - x^2)^4}{4!} \\
&+ \frac{(2x - x^2)^5}{5!} + o(x^5) \\
&= 1 + 2x + x^2 - \frac{2}{3}x^3 - \frac{5}{6}x^4 - \frac{1}{15}x^5 + o(x^5).
\end{aligned}$$

1382. $\frac{x}{e^x-1}$ 到含 x^4 的项.

解 当
$$x$$
 很小时. 令 $\frac{e^x-1}{x}=1+\Delta$,则有

$$\Delta = \frac{x}{2} + \frac{x^2}{6} + \frac{x^3}{24} + \frac{x^4}{120} + o(x^4),$$

其中 Δ 也很小. 于是,

$$\frac{x}{e^x - 1} = \frac{1}{\frac{e^x - 1}{x}} = \frac{1}{1 + \Delta}$$
$$= 1 - \Delta + \Delta^2 - \Delta^3 + \Delta^4 + o(x^4).$$

注意到

$$\Delta^2 = \frac{x^2}{4} + \frac{x^3}{6} + \frac{5x^4}{72} + o(x^4),$$

$$\Delta^3 = \frac{x^3}{8} + \frac{x^4}{8} + o(x^4),$$

$$\Delta^4 = \frac{x^4}{16} + o(x^4),$$

则得

$$\frac{x}{e^x-1}=1-\frac{x}{2}+\frac{x^2}{12}-\frac{x^4}{720}+o(x^4).$$

1383. ³√sinx³ 到含 x¹³ 的项.

$$\mathbf{ff} \qquad \sqrt[3]{\sin x^3} = \left(x^3 - \frac{x^9}{3!} + \frac{x^{15}}{5!} + o(x^{15})\right)^{\frac{1}{3}} \\
= x \left(1 + \left(\frac{x^{12}}{120} - \frac{x^6}{6} + o(x^{12})\right)\right)^{\frac{1}{3}} \\
= x \left(1 + \frac{1}{3}\left(\frac{x^{12}}{120} - \frac{x^6}{6} + o(x^{12})\right) - \frac{1}{9}\left(\frac{x^{12}}{120} - \frac{x^6}{6} + o(x^{12})\right)^2 + o(x^{12})\right) \\
= x - \frac{7}{18}x^7 - \frac{1}{3240}x^{13} + o(x^{13}).$$

1384. ln cosx 到含 x⁶ 的项.

$$\mathbf{F} \quad \ln \cos x = \frac{1}{2} \ln(1 - \sin^2 x) \\
= -\frac{1}{2} \left(\sin^2 x + \frac{\sin^4 x}{2} + \frac{\sin^6 x}{3} + o(\sin^6 x) \right) \\
= -\frac{1}{2} \left(\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6) \right)^2 + \frac{1}{2} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6) \right)^4$$

$$+ \frac{1}{3} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6) \right)^6 + o(x^6)$$

$$= -\frac{1}{2} x^2 - \frac{1}{12} x^4 - \frac{1}{45} x^6 + o(x^6).$$

其中用到: $\frac{\sin x}{x} \rightarrow 1$ (当 $x \rightarrow 0$), 故 $o(\sin^6 x)$ 可换为 $o(x^6)$.

1385. sin(sinx) 到含 x³ 的项.

$$\mathbf{ff} \quad \sin(\sin x) = \sin x - \frac{\sin^3 x}{3!} + o(x^4)$$

$$= \left(x - \frac{x^3}{3!} + o(x^4)\right) - \frac{1}{3!} \left(x - \frac{x^3}{3!} + o(x^4)\right)^3$$

$$+ o(x^4)$$

$$= x - \frac{1}{3}x^3 + o(x^3)$$

1386. tgx 到含 x5 的项.

 $\mathbf{M} = \mathbf{M} \times \mathbf{M} \times \mathbf{M}$

$$\sin x = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + o(x^5),$$

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5) = 1 - \Delta,$$
其中 $\Delta = \frac{x^2}{2} - \frac{x^4}{24} + o(x^5)$ 很小,易见 $\Delta^2 = \frac{x^4}{4} + o(x^5)$.
于是,

$$tgx = \frac{\sin x}{\cos x} = \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + o(x^6)\right) \frac{1}{1 - \Delta}$$

$$= \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + o(x^6)\right)$$

$$\cdot (1 + \Delta + \Delta^2 + o(x^4))$$

$$= \left(x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + o(x^6)\right)$$

$$\cdot \left(1 + \frac{x^2}{2} + \frac{5}{24}x^4 + o(x^4)\right)$$

$$= x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5).$$

1387. $\ln \frac{\sin x}{x}$ 到含 x^6 的项.

$$\begin{array}{ll}
\mathbf{R} & \ln \frac{\sin x}{x} = \ln \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + o(x^7)}{x} \\
&= \ln \left(1 + \left(-\frac{x^2}{6} + \frac{x^4}{120} - \frac{x^6}{5040} + o(x^6) \right) \right) \\
&= \left(-\frac{x^2}{6} + \frac{x^4}{120} - \frac{x^6}{5040} + o(x^6) \right) \\
&- \frac{1}{2} \left(-\frac{x^2}{6} + \frac{x^4}{120} - \frac{x^6}{5040} + o(x^6) \right)^2 \\
&+ \frac{1}{3} \left(-\frac{x^2}{6} + \frac{x^4}{120} - \frac{x^6}{5040} + o(x^6) \right)^3 + o(x^6) \\
&= -\frac{x^2}{6} - \frac{x^4}{180} - \frac{x^6}{2835} + o(x^6).
\end{array}$$

1388. 求函数 $f(x) = \sqrt{x}$ 按照差(x-1) 的正整数乘幂展开式的前三项.

$$f'(x) = \frac{1}{2\sqrt{x}}, f''(x) = -\frac{1}{4x\sqrt{x}}.$$

$$f(1) = 1, f'(1) = \frac{1}{2}, f''(1) = -\frac{1}{4}.$$
The.

$$\sqrt{x} = 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + o((x-1)^2).$$

1389. 将函数 $f(x) = x^x - 1$ 按照(x - 1) 的正整数乘幂展开到含有 $(x - 1)^3$ 的项.

$$\mathbf{f}''(x) = x^{x}(1 + \ln x),$$

$$f'''(x) = x^{x}(1 + \ln x)^{2} + x^{x-1},$$

$$f''''(x) = x^{x}(1 + \ln x)^{3} + 2x^{x-1}(1 + \ln x)$$

$$+ x^{x-1} \left(\frac{x-1}{x} + \ln x\right).$$

$$f(1) = 0, f'(1) = 1, f''(1) = 2, f'''(1) = 3.$$

于是,

$$x^{x} - 1 = (x - 1) + (x - 1)^{2} + \frac{1}{2}(x - 1)^{3} + o((x - 1)^{3}).$$

1390. 于点 x=0 的邻域中,用二阶抛物线近似地代替函数

$$y = a \operatorname{ch} \frac{x}{a} (a > 0).$$

$$\mathbf{y}'' \Big|_{x=0} = a, y' \Big|_{x=0} = \operatorname{sh} \frac{x}{a} \Big|_{x=0} = 0,$$

$$\mathbf{y}'' \Big|_{x=0} = \frac{1}{a} \operatorname{ch} \frac{x}{a} \Big|_{x=0} = \frac{1}{a}.$$

于是,

$$a\mathrm{ch}\ \frac{x}{a} = a + \frac{x^2}{2a} + o(x^2).$$

1391. 按分式 $\frac{1}{x}$ 的正整数乘幂展开函数 $f(x) = \sqrt{1+x^2} - x(x > 0)$ 到含 $\frac{1}{x^3}$ 的项、

解 由于

$$\sqrt{1+\left(\frac{1}{x}\right)^2}=1+\frac{1}{2}\left(\frac{1}{x^2}\right)-\frac{1}{8}\left(\frac{1}{x^4}\right)+o\left(\frac{1}{x^4}\right),$$

于是,

$$f(x) = \sqrt{1+x^2} - x = x\sqrt{1+\left(\frac{1}{x}\right)^2} - x$$
$$= \frac{1}{2x} - \frac{1}{8x^3} + o\left(\frac{1}{x^3}\right).$$

1392. 求函数 $f(h) = \ln(x+h)(x>0)$ 按增量 h 的正整数乘幂展开到含 h^n 的项 (n 为自然数).

$$\mathbf{ff} \quad \ln(x+h) = \ln\left(x\left(1+\frac{h}{x}\right)\right) = \ln x + \ln\left(1+\frac{h}{x}\right)$$

$$= \ln x + \frac{h}{x} - \frac{h^2}{2x^2} + \frac{h^3}{3x^2} - \dots + (-1)^{n-1} \frac{h^n}{nx^n} + o(h^n),$$

1393. 设:

$$f(x+h) = f(x) + hf'(x) + \cdots + \frac{h^n}{n!} f^{(n)}(x+\theta h) (0 < \theta < 1).$$

且 $f^{(u+1)}(x) \neq 0$. 证明:

$$\lim_{n\to 0}\theta=\frac{1}{n+1}.$$

证 按题设,我们有

$$f(x+h) = f(x) + hf''(x) + \dots + \frac{h''}{n!}f^{(n)}(x+\theta h).$$
 Ext $0 < \theta < 1$.

又因 f (x) 存在,故

$$f(x+h) = f(x) + hf'(x) + \dots + \frac{h^n}{n!} f^{(n)}(x) + \frac{h^{n+1}}{(n+1)!} f^{(n+1)}(x) + o(h^{n+1}).$$

比较上面两式,得

$$\frac{h^n}{n!}f^{(n)}(x+\theta h) = \frac{h^n}{n!}f^{(n)}(x) + \frac{h^{n+1}}{(n+1)!}f^{(n+1)}(x) + o(h^{n+1}),$$

从而有

$$\theta \cdot \frac{f^{(n)}(x+\theta h)}{\theta h} \cdot \frac{f^{(n)}(x)}{f^{(n)}(x)}$$

$$= \frac{1}{n-1} f^{(n+1)}(x) + n! \frac{o(h^{n-1})}{h^{n-1}}.$$
由于 $\lim_{h \to \infty} \frac{f^{(n)}(x+\theta h)}{\theta h} \cdot \frac{f^{(n)}(x)}{f^{(n)}(x)} = f^{(n+1)}(x) \neq 0.$

故由上式知 lim 0 存在,并且

$$\lim_{h \to 0} \theta = \frac{n + 1}{f^{(n+1)}(x)} = \frac{1}{n+1}.$$

1394. 估计下列近似公式的绝对误差:

(a)
$$e' \approx 1 + x + \frac{x^2}{2!} + \dots + \frac{x''}{n!}$$
 $\cong 0 \leqslant x \leqslant 1;$

(6)
$$\sin x \approx x - \frac{x^3}{6}$$
 当 $|x| \leqslant \frac{1}{2}$;

(в)
$$\lg x \approx x + \frac{x^3}{3}$$
 $\implies |x| \leqslant 0.1$:

(r)
$$\sqrt{1+x} \approx 1 + \frac{x}{2} - \frac{x^2}{8} \quad \stackrel{\text{def}}{=} 0 \leqslant x \leqslant 1.$$

解 用拉格朗日余项公式估计误差:

$$R_{n+1}(x) = \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1} (0 < \theta < 1).$$

(a) 由 $f(x) = e^x$ 及 $0 \le x \le 1$,得

$$f^{(n+1)}(\theta x) = e^{\theta x} < e.$$

于是, 当 $0 \leq x \leq 1$ 时,

$$\left| R_{n+1}(x) \right| < \frac{e}{(n+1)!} \left| x \right|^{n+1} \le \frac{e}{(n+1)!} < \frac{3}{(n+1)!}$$

(6) 由 $f(x) = \sin x$,得

$$\left| f^{(5)}(\theta x) \right| = \left| \sin \left(\theta x + \frac{5}{2} \pi \right) \right| \leqslant 1.$$

于是,当 $|x| \leq \frac{1}{2}$ 时,

$$\left| R_{4}(x) \right| \leqslant \frac{1}{5!} |x|^{5} \leqslant \frac{1}{5!} \cdot \frac{1}{2^{5}} = \frac{1}{3840}.$$

(B) 由 f(x) = tgx,得

$$f'(x) = \frac{1}{\cos^2 x}, f''(x) = \frac{2\sin x}{\cos^3 x},$$

$$f'''(x) = \frac{6}{\cos^4 x} - \frac{4}{\cos^2 x},$$

$$f^{(4)}(x) = \frac{24\sin x}{\cos^5 x} - \frac{8\sin x}{\cos^3 x},$$

$$f^{(5)}(x) = \frac{16}{\cos^2 x} + \frac{120\sin^2 x}{\cos^6 x},$$

$$f^{(6)}(x) = \frac{32\sin x}{\cos^3 x} + \frac{240\sin x}{\cos^5 x} + \frac{720\sin^3 x}{\cos^7 x}.$$

因为 $f^{(5)}(x)$ 是偶函数,义当 $0 \le x \le 0.1$ 时, $f^{(6)}(x) \ge$

0,所以, $f^{(5)}(x)$ 在 $x=\pm 0.1$ 处达到最大值,注意到

$$f'(0) = 1, f''(0) = 0, f'''(0) = 2, f^{(4)}(0) = 0,$$

及

$$\cos^2 0.1 = 1 - \sin^2 0.1 > 0.9$$

$$\left| f^{(5)}(x) \right| \le \frac{16}{0.9} + \frac{120 \times 0.1^2}{0.9^3} < 20.$$

于是,

$$|R_5(x)| \leq \frac{0.1^5}{5!} \times 20 < 2 \times 10^{-6}$$
.

(r) 由 $f(x) = \sqrt{1+x}$ 及 $0 \le x \le 1$,得

$$|f'''(x)| = \frac{3}{8} \left| \frac{1}{(1+x)^{\frac{5}{2}}} \right| \leqslant \frac{3}{8}.$$

于是,当 $0 \le x \le 1$ 时,

$$|R_3(x)| \leqslant \frac{3}{8} \cdot \frac{1}{3!} = \frac{1}{16}.$$

1395. 近似公式

$$\cos x = 1 - \frac{x^2}{2}$$

对于怎样的 x 准确到 0.0001.

解 误差
$$\Delta \leq \frac{|x|^4}{4!}$$
 按题设需 $\frac{|x|^4}{4!} < 0.0001$,于是 $|x| < 0.22134$ (烃) = 12°41′.

1396. 利用台劳公式近似地计算:

(a)
$$\sqrt[3]{30}$$
; (6) $\sqrt[3]{250}$; (B) $\sqrt[12]{4000}$;

(r)
$$\sqrt{e}$$
; (a) $\sin 18^{\circ}$; (c) $\ln 1.2$;

(м)arc tg0.8; (з)arc sin0.45; (п)(1.1)^{1.2},并估计误
— 差.

AF (a)
$$\sqrt[3]{30} = 3\left(1 + \frac{1}{9}\right)^{\frac{1}{3}}$$

$$\approx 3\left[1 + \frac{1}{3} \cdot \frac{1}{9} + \frac{\frac{1}{3}\left(\frac{1}{3} - 1\right)}{2!} \left(\frac{1}{9}\right)^{\frac{2}{3}}\right]$$

$$\approx 3.1070;$$

$$\Delta < 3 \cdot \frac{\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{5}{3}}{3!} \cdot \left(\frac{1}{9}\right)^3 \approx 2.54 \times 10^{-4}.$$

(6)
$$\sqrt[3]{250} = 3\left(1 + \frac{7}{243}\right)^{\frac{1}{5}}$$

$$\approx 3 \left[1 + \frac{1}{5} \cdot \frac{7}{243} + \frac{\frac{1}{5} \left(\frac{1}{5} - 1 \right)}{2!} \left(\frac{7}{243} \right)^2 \right]$$

$$\approx 3.0171$$
:

$$\Delta \le \frac{1}{3!} \cdot \frac{1}{5} \cdot \frac{4}{5} \cdot \frac{9}{5} \cdot \left(\frac{7}{243}\right)^3 \approx 1.15 \times 10^{-6}.$$

(B)
$$\sqrt[12]{4000} = 2\left(1 + \frac{3}{128}\right)^{\frac{1}{12}}$$

$$\approx 2\left(1 - \frac{1}{12} \cdot \frac{3}{128}\right) \approx 1.9960;$$

$$\Delta < \left(\frac{3}{128}\right)^{2} \cdot \frac{1}{1 - \frac{1}{328}} \approx 5.625 \times 10^{-4}.$$
(f) $\sqrt{e} \approx 1 + \frac{1}{2} + \frac{1}{2!} \left(\frac{1}{2}\right)^{2} + \frac{1}{3!} \left(\frac{1}{2}\right)^{3} + \frac{1}{4!} \left(\frac{1}{2}\right)^{4} + \frac{1}{5!} \left(\frac{1}{2}\right)^{5} + \frac{1}{6!} \left(\frac{1}{2}\right)^{6} \approx 1.64872;$

$$\Delta = \frac{1}{7!} \left(\frac{1}{2}\right)^{7} + \frac{1}{8!} \left(\frac{1}{2}\right)^{8} + \cdots < \frac{1}{7!} \left(\frac{1}{2}\right)^{7} \cdot \frac{1}{1 - \frac{1}{8} \cdot \frac{1}{2}} \approx 1.7 \times 10^{-6}.$$
(A) $\sin 18^{\circ} \approx \frac{\pi}{10} - \frac{1}{3!} \left(\frac{\pi}{10}\right)^{3} + \frac{1}{5!} \left(\frac{\pi}{10}\right)^{5} \approx 0.309017,$

$$\Delta < \frac{1}{7!} \left(\frac{\pi}{10}\right)^{7} \approx 6 \times 10^{-8}.$$
(e) $\ln 1.2 = \ln(1 + 0.2) \approx 0.2$

$$-\frac{1}{2}(0.2)^{2} + \frac{1}{3}(0.2)^{3} - \frac{1}{4}(0.2)^{4} + \frac{1}{5}(0.2)^{5} - \frac{1}{6}(0.2)^{6} + \frac{1}{7}(0.2)^{7} \approx 0.182322;$$

$$\Delta < \frac{1}{8}(0.2)^{5} \approx 3.2 \times 10^{-7}.$$
(**) arc $tg0.8 \approx 0.8 - \frac{1}{3}(0.8)^{3} + \frac{1}{5}(0.8)^{5} - \frac{1}{7}(0.8)^{7} + \cdots - \frac{1}{30}(0.8)^{39}$

 ≈ 0.67474 (怪) $\approx 38^{\circ}39'35''$:

$$\Delta < \frac{1}{41}(0.8)^{41} \approx 2.6 \times 10^{-6}$$
.

(3) arc sin0.
$$45 \approx 0.45 + \frac{1}{2.3}(0.45)^3$$

$$+\frac{1\cdot 3}{2\cdot 4\cdot 5}(0.45)^5+\cdots$$

$$+\frac{1\cdot 3\cdot 5\cdot 7\cdot 9\cdot 11}{\cdot 4\cdot 6\cdot 8\cdot 10\cdot 12\cdot 13}(0.45)^{13}$$

 ≈ 0.46676 经 $\approx 26^{\circ}44'37''$

$$\Delta = \frac{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12 \cdot 14 \cdot 15} (0.45)^{15}$$

$$+\frac{1\cdot 3\cdots 15}{2\cdot 4\cdots 16\cdot 17}(0.45)^{37}+\cdots$$

$$<\frac{1}{15}(0.45)^{15}(1+(0.45)^2$$

$$+\cdots$$
 $> <\frac{1}{15}(0.45)^{15} \cdot \frac{1}{1-(0.45)^2} \approx 5.26 \times 10^{-7}.$

(n) 事实上,只需计算 in1.1.

$$\ln 1.1 = \ln(1+0.1) = 0.1 - \frac{(0.1)^2}{2}$$

$$+\cdots+\frac{(0.1)^5}{5}\approx 0.0953.$$

取五项,所以 $(1.1)^{1.2} = e^{1.2\ln 1.1} \approx e^{1.2 \times 0.0953} \approx 1.12117.$

$$\Delta = \frac{1}{4!} e^{1.2 \times 0.0953\theta} (0.0953 \times 1.2)^4 < 7.9 \times 10^{-6}.$$

1397. 计算:

(a)e 准确到 10⁻⁹; (6)sin1°准确到 10⁻⁸;

(в)cos9°准确到 10⁻5; (г) √5 准确到 10⁻4;

(д)log₁₀11准确到 10⁻⁶.

$$(a)\Delta = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \cdots$$

$$< \frac{1}{(n+1)!} \left(1 + \frac{1}{n+1} + \cdots \right)$$

$$= \frac{1}{(n+1)!} \cdot \frac{1}{1 - \frac{1}{n+1}} = \frac{1}{n!n}.$$

要 $\Delta < 10$ °, 只需 n!n > 10°, 即只需 $n \ge 11$. 于是,

$$e \approx 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{11!} \approx 2.718281828.$$

$$(6)\Delta < \frac{1}{(2n+1)!} \left(\frac{\pi}{180}\right)^{2n+1}.$$

要 $\Delta < 10^{-8}$,只需 $\frac{1}{(2n+1)!} \left(\frac{\pi}{180}\right)^{\frac{2n+1}{2n+1}} < 10^{-8}$,即只需 $n \ge 3$. 于是,

$$\sin 1^{\circ} \approx \frac{\pi}{180} - \frac{1}{3!} \left(\frac{\pi}{180}\right)^{3} \approx 0.01745241.$$

$$(\mathbf{B})\Delta < \frac{1}{(2n)!} \left(\frac{\pi}{20}\right)^{2n}.$$

要 $\Delta < 10^{-5}$,只需 $\frac{1}{(2n)!} \left(\frac{\pi}{20}\right)^{2n} < 10^{-5}$,即只需 $n \ge 3$. 于是,

$$\cos 9^{\circ} \approx 1 - \frac{1}{2!} \left(\frac{\pi}{20}\right)^2 + \frac{1}{4!} \left(\frac{\pi}{20}\right)^4 \approx 0.98769.$$

(r)
$$\sqrt{5} = 2\left(1 + \frac{1}{4}\right)^{\frac{1}{2}}$$
,

$$\Delta < \frac{2 \cdot (2n-1)!!}{2^{n+1}(n+1)!} \left(\frac{1}{4}\right)^{n+1}.$$

要
$$\Delta < 10^{-4}$$
, 只需 $\frac{2(2n-1)!!}{2^{n+1}(n+1)!} \left(\frac{1}{4}\right)^{n+1} < 10^{-4}$, 即只需 $n \ge 4$. 于是,

$$\sqrt{5} \approx 2 \left(1 + \frac{1}{2} \cdot \frac{1}{4} - \frac{1 \cdot 1}{2! \cdot 2^2} \left(\frac{1}{4} \right)^2 + \frac{1 \cdot 3}{3! \cdot 2^3} \left(\frac{1}{4} \right)^3 \right)$$

 $\approx 2.2361.$

(a)
$$\log_{10} 11 = 1 + \log_{10} (1 + 0.1)$$
,

$$\Delta < \frac{1}{n+1}(0,1)^{n+1}.$$

要 $\Delta < 10^{-5}$,只需 $\frac{1}{n+1}$ $(0.1)^{n+1} < 10^{-5}$,即只需 $n \ge 4$. 于是,

$$\log_{10} 11 \approx 1 + \left(0.1 - \frac{1}{2}(0.1)^2 + \frac{1}{3}(0.1)^3 - \frac{1}{4}(0.1)^4\right) \cdot \frac{1}{\ln 10} \approx 1.04139.$$

利用展开式1-V,求下列极限:

1398.
$$\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$$
.

$$\lim_{x \to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$$

$$= \lim_{x \to 0} \frac{\left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)\right) - \left(1 - \frac{x^2}{2} + \frac{1}{2!} \cdot \frac{x^4}{4} + o(x^4)\right)}{x^4}$$

$$= \lim_{x \to 0} \frac{\left(\frac{1}{4!} - \frac{1}{4 \cdot 2!}\right) x^4 + o(x^4)}{x^4} = -\frac{1}{12}.$$

1399.
$$\lim_{x \to 0} \frac{e^{x} \sin x - x(1+x)}{x^{3}}$$

$$= \lim_{x \to 0} \frac{\left((1+x+\frac{x^{2}}{2!}+o(x^{2})\right) \cdot \left((x-\frac{x^{3}}{3!}+o(x^{3})\right) - x(1+x)}{x^{4}}$$

$$= \lim_{x \to 0} \frac{\frac{1}{3}x^{3} + o(x^{3})}{x^{3}} = \frac{1}{3}.$$
1400.
$$\lim_{x \to 0} x^{\frac{3}{2}} \left(\sqrt{x+1} + \sqrt{x-1} - 2\sqrt{x}\right).$$

$$= \lim_{x \to 0} x^{\frac{3}{2}} \left(\sqrt{x+1} + \sqrt{x-1} - 2\sqrt{x}\right)$$

$$= \lim_{x \to 0} x^{\frac{3}{2}} \left(x^{\frac{1}{2}} \left(1 + \frac{1}{x}\right)^{\frac{1}{2}} + x^{\frac{1}{2}} \left(1 - \frac{1}{x}\right)^{\frac{1}{2}} - 2x^{\frac{1}{2}}\right)$$

$$= \lim_{x \to \infty} x^{\frac{3}{2}} \left(1 + \frac{1}{2x} - \frac{1}{8x^{2}} + \frac{1}{16x^{3}} + o\left(\frac{1}{x^{3}}\right)\right)$$

$$+ \left(1 - \frac{1}{2x} - \frac{1}{8x^{2}} - \frac{1}{16x^{3}} + o\left(\frac{1}{x^{3}}\right) - 2\right)$$

$$= -\lim_{x \to \infty} \left(\frac{1}{4} + o\left(\frac{1}{x}\right)\right) = -\frac{1}{4}.$$
1401.
$$\lim_{x \to \infty} \left(\sqrt[6]{x^{6} + x^{5}} - \sqrt[6]{x^{6} - x^{5}}\right).$$

$$\text{Iff} \qquad \lim_{x \to \infty} \left(\sqrt[6]{x^{6} + x^{5}} - \sqrt[6]{x^{6} - x^{5}}\right).$$

$$= \lim_{x \to \infty} x \left(\left(1 + \frac{1}{x} \right)^{\frac{1}{6}} - \left(1 - \frac{1}{x} \right)^{\frac{1}{6}} \right)$$
$$= \lim_{x \to \infty} x \left(\left(1 + \frac{1}{6x} - \frac{5}{72x^2} + o\left(\frac{1}{x^2}\right) \right) \right)$$

$$-\left(1 - \frac{1}{6x} - \frac{5}{72x^2} + o\left(\frac{1}{x^2}\right)\right)$$

$$= \lim_{x \to \infty} \left(\frac{1}{3} + o\left(\frac{1}{x}\right)\right) = \frac{1}{3}.$$
1402.
$$\lim_{x \to \infty} \left(\left(x^3 - x^2 + \frac{x}{2}\right)e^{\frac{1}{x}} - \sqrt{x^6 + 1}\right),$$

$$= \lim_{x \to \infty} \left(\left(x^3 - x^2 + \frac{x}{2}\right)e^{\frac{1}{x}} - \sqrt{x^6 + 1}\right)$$

$$= \lim_{x \to \infty} \left(\left(x^3 - x^2 + \frac{x}{2}\right)\left(1 + \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} + o\left(\frac{1}{x^3}\right)\right)\right)$$

$$- x^3\left(1 + \frac{1}{2x^6} - \frac{1}{8x^{12}} + o\left(\frac{1}{x^{12}}\right)\right)$$

$$= \lim_{x \to \infty} \left(\frac{1}{6} + o\left(\frac{1}{x}\right)\right) = \frac{1}{6}.$$
1403.
$$\lim_{x \to +0} \frac{a^x + a^{-x} - 2}{x^2} = \lim_{x \to +0} \frac{e^{x^2 \ln x} + e^{-x \ln x} - 2}{x^2}$$

$$= \lim_{x \to +0} \frac{1}{x^2} \left((1 + x \ln x + \frac{x^2}{2!} \ln^2 x + o(x^2)) + (1 - x \ln x + \frac{x^2}{2!} \ln^2 x + o(x^2)) - 2\right)$$

$$= \lim_{x \to +\infty} \left(\ln^2 x + o(1)\right) = \ln^2 x (a > 0).$$
1404.
$$\lim_{x \to +\infty} \left(x - x^2 \ln\left(1 + \frac{1}{x}\right)\right)$$

$$= \lim_{x \to +\infty} \left(x - x^2 \ln\left(1 + \frac{1}{x}\right)\right)$$

$$= \lim_{x \to +\infty} \left(x - x^2 \ln\left(1 + \frac{1}{x}\right)\right)$$

$$= \lim_{x \to +\infty} \left(x - x^2 \ln\left(1 + \frac{1}{x}\right)\right)$$

$$=\lim_{x\to \infty} \left(\frac{1}{2} + o\left(\frac{1}{x}\right)\right) = \frac{1}{2}.$$

1405.
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$$
.

$$\mathbf{ff} \qquad \lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right) = \lim_{x \to 0} \frac{\sin x - x}{x \sin x}$$

$$= \lim_{x \to 0} \frac{x - \frac{x^3}{3!} + o(x^3) - x}{x \left(x - \frac{x^3}{3!} + o(x^3) \right)} = \lim_{x \to 0} \frac{-\frac{1}{3!} x + o(x)}{1 + o(x^2)}$$

$$= 0$$

 $1406. \lim_{x\to 0} \frac{1}{x} \left(\frac{1}{x} - \operatorname{ctg} x \right).$

$$\mathbf{ff} \qquad \lim_{x \to 0} \frac{1}{x} \left(\frac{1}{x} - \operatorname{ctg} x \right) \\
= \lim_{x \to 0} \frac{1}{x} \left(\frac{1}{x} - \left(\frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} + o(x^3) \right) \right) \\
= \lim_{x \to 0} \left(\frac{1}{3} + o(x^2) \right) = \frac{1}{3}.$$

当 $x \to 0$ 时,求出无穷小量y的形如 $Cx^*(C)$ 为常数)的主项,假设:

1407. $y = tg(\sin x) - \sin(tgx).$

$$\mathbf{ff} \quad \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots,$$

$$tgx = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \cdots.$$

从而

$$y = \left(\sin x + \frac{1}{3}\sin^3 x + \frac{2}{15}\sin^5 x + \frac{1}{35}\sin^7 x + o(\sin^7 x)\right)$$

$$\left(\operatorname{tg} x - \frac{1}{3!} \operatorname{tg}^{3} x + \frac{1}{5!} \operatorname{tg}^{5} x - \frac{1}{7!} \operatorname{tg}^{7} x + o(\operatorname{tg}^{7} x) \right)$$

$$= \left(\left(x - \frac{1}{6} x^{5} + \frac{1}{120} x^{5} - \frac{1}{5040} x^{7} + o(x^{7}) \right)$$

$$+ \frac{1}{3} \left(x - \frac{1}{6} x^{5} + \frac{1}{120} x^{5} - \frac{1}{5040} x^{7} + o(x^{7}) \right)^{5}$$

$$+ \frac{2}{15} \left(x - \frac{1}{6} x^{5} + \frac{1}{120} x^{7} - \frac{1}{5040} x^{7} + o(x^{7}) \right)^{5}$$

$$+ \frac{1}{315} \left(x - \frac{x^{5}}{6} + \frac{x^{7}}{120} - \frac{x^{7}}{5040} + o(x^{7}) \right)^{7} \right)$$

$$- \left(\left(x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \frac{x^{7}}{315} + o(x^{7}) \right)$$

$$- \frac{1}{3!} \left(x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \frac{x^{7}}{315} + o(x^{7}) \right)^{5}$$

$$+ \frac{1}{5!} \left(x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \frac{x^{7}}{315} + o(x^{7}) \right)^{5}$$

$$- \frac{1}{7!} \left(x + \frac{x^{3}}{3} + \frac{2x^{5}}{15} + \frac{x^{7}}{315} + o(x^{7}) \right)^{7} + o(x^{7}) \right)$$

$$= \frac{x^{7}}{30} + o(x^{7}) .$$

故 y 的主项为 $\frac{x'}{30}$.

1408. $y = (1 + x)^x - 1$.

$$\begin{aligned}
\mathbf{ff} \quad y &= e^{x \ln(1+\alpha x)} - 1 = e^{x \left(x - \frac{x^2}{2} + o(x^2)\right)} - 1 \\
&= e^{x^2 - \frac{x^3}{2} + o(x^2)} - 1 \\
&= 1 + \left(x^2 - \frac{x^3}{2} + o(x^2)\right) + o\left(x^2 - \frac{x^3}{2} + o(x^3)\right) - 1 \\
&= x^2 + o(x^2),
\end{aligned}$$

故主项为 x2.

1409.
$$y = 1 - \frac{(1+x)^{\frac{1}{x}}}{e}$$
.

$$\begin{aligned}
\mathbf{x} & y = 1 - e^{\frac{1}{x}\ln(1+x)+1} = 1 - e^{\frac{1}{x}\left(x - \frac{x^2}{2} + o(x^2)\right) - 1} \\
&= 1 - e^{-\frac{x}{2} + o(x)} \\
&= 1 - \left(1 + \left(-\frac{x}{2} + o(x)\right) + o\left(-\frac{x}{2} + o(x)\right)\right) \\
&= \frac{x}{2} + o(x),
\end{aligned}$$

故主项为 $\frac{x}{2}$.

1410. 当选择怎样的系数 a 与 b 时, 量

$$x - (a + b\cos x)\sin x$$

对于 π 为 5 阶无穷小?

$$\mathbf{ff} \quad x - (a + b\cos x)\sin x$$

$$= x - a\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)\right)$$

$$- \frac{b}{2}\left(2x - \frac{1}{3!}(2x)^3 + \frac{1}{5!}(2x)^5 + o(x^5)\right)$$

$$= (1 - a - b)x + \left(\frac{a}{6} + \frac{2b}{3}\right)x^3$$

$$- \left(\frac{a}{120} + \frac{2b}{15}\right)x^5 + o(x^5).$$

要此量对于 x 为 5 阶无穷小,当且仅当

$$\begin{cases} 1 - a - b = 0, \\ \frac{a}{6} + \frac{2b}{3} = 0. \end{cases}$$

解之,得
$$a=\frac{4}{3},b=-\frac{1}{3}$$
.

1411. 当 [x] 为小量时,推出下列各式的简单的近似公式;

(a)
$$\frac{1}{R^2} - \frac{1}{(R+x)^2} (R > 0)$$
;

(6)
$$\sqrt[3]{\frac{1+x}{1-x}} = \sqrt[3]{\frac{1-x}{1+x}}$$
;

(B)
$$\frac{A}{x} \left(1 - \left(1 + \frac{x}{100} \right)^{-n} \right)$$
;

(r)
$$\frac{\ln 2}{\ln \left(1 + \frac{x}{100}\right)}.$$

(6)
$$\sqrt{\frac{1+x}{1-x}} - \sqrt{\frac{1-x}{1+x}} = \left(1 + \frac{2x}{1-x}\right)^{\frac{1}{3}}$$

$$-\left(1 - \frac{2x}{1+x}\right)^{\frac{1}{3}}$$

$$\approx \left(1 + \frac{2x}{3(1-x)}\right) - \left(1 - \frac{2x}{3(1+x)}\right)$$

$$\approx \frac{4x}{3(1-x^2)} \approx \frac{4}{2}x;$$

(B)
$$\frac{A}{x} \left(1 - \left(1 + \frac{x}{100} \right)^{-n} \right) \approx \frac{A}{x} \left(1 - \left(1 - \frac{nx}{100} \right) \right) = \frac{nA}{100}$$

(r)
$$\frac{\ln 2}{\ln \left(1 + \frac{x}{100}\right)} = \frac{\ln 2}{\frac{x}{100} - \frac{x^2}{20000} + \cdots}$$

$$\approx \frac{\ln 2}{\frac{x}{100}} = \frac{100 \ln 2}{x} \approx \frac{70}{x}.$$

1412. 当 x 的绝对值为小量时,推出形如

$$x = \alpha \sin x + \beta t g x$$

且准确到 x3 项的近似公式.

把这个公式用于小角度的弧长的近似求法.

解
$$x = a\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^5)\right)$$

 $+ \beta\left(x + \frac{x^3}{3} + \frac{2x^5}{15} + o(x^5)\right)$
 $= (\alpha + \beta)x - \left(\frac{\alpha}{6} - \frac{\beta}{3}\right)x^3$
 $+ \left(\frac{\alpha}{120} + \frac{2\beta}{15}\right)x^5 + o(x^5)$
所以 $(1 - \alpha - \beta)x + \left(\frac{\alpha}{6} - \frac{\beta}{3}\right)x^3$
 $- \left(\frac{\alpha}{120} + \frac{2\beta}{15}\right)x^5 + o(x^5) = 0.$

要此近似公式准确到 x5 项,当且仅当

$$\begin{cases} 1-\alpha-\beta=0, \\ \frac{\alpha}{6}-\frac{\beta}{3}=0. \end{cases}$$

解之,得 $\alpha = \frac{2}{3}, \beta = \frac{1}{3}$.

于是, 近似公式为

$$x \approx \frac{2}{3} \sin x + \frac{1}{3} t \mathbf{g} x;$$

弧长 = 中心角 × 半径,设中心角为 x,半径为 R,则弧长 = $Rx \approx \frac{2R}{3} \sin x + \frac{R}{3} tgx$,此即小角度的弧长的近似公式.

- 1413. 估计下面的契比协夫法则的相对误差。圆弧近似地等于等腰三角形两腰的和,此等腰三角形是立于弧所对的弦上,并且高为此弓形之矢的 $\sqrt{\frac{4}{3}}$.
 - 解 如图 2.51 所示

$$BC = R\sin\alpha, BC^2 = R^2\sin^2\alpha = \frac{R^2}{2}(1-\cos 2\alpha),$$

$$DC = \sqrt{\frac{4}{3}}EC = \sqrt{\frac{4}{3}}R(1 - \cos \alpha),$$

$$DC^2 = \frac{4}{3}R^2(1 - 2\cos\alpha + \cos^2\alpha)$$

$$=R^2\Big(2-\frac{8}{3}\cos\alpha+\frac{2}{3}\cos2\alpha\Big).$$

于是, $BD^2 = BC^2 + DC^2$

$$= R^{2} \left(\frac{5}{2} - \frac{8}{3} \cos \alpha + \frac{1}{6} \cos 2\alpha \right)$$
$$= R^{2} \left\{ \frac{5}{2} - \frac{8}{3} \left(1 - \frac{1}{2} \alpha^{2} + \frac{1}{24} \alpha^{4} - \frac{1}{720} \alpha^{6} \right) \right\}$$

$$+\frac{1}{6}\left(1-2\alpha^2+\frac{2}{3}\alpha^4-\frac{4}{45}\alpha^6\right)\right\}+o(\alpha^7)$$

$$=R^2(\alpha^2-\frac{1}{90}\alpha^6)+o(\alpha^7)$$

$$= R^{2}\alpha^{2} \left(1 - \frac{1}{90}\alpha^{4} + o(\alpha^{5}) \right)$$

$$= R^{2}\alpha^{2} (1 - \Delta),$$

$$\Leftrightarrow \Delta = \frac{1}{90}\alpha^{4} + o(\alpha^{5}).$$

$$BD = R\alpha \sqrt{1 - \Delta} =$$

$$R\alpha \left(1 - \frac{1}{2}\Delta + o(\Delta^{2}) \right) =$$

$$R\alpha \left(1 - \frac{1}{180}\alpha^{1} + o(\alpha^{5}) \right).$$

$$\boxtimes 2.51$$

从而得

$$|\widehat{BE} - BD| = \left| R\alpha - R\alpha \left(1 - \frac{\alpha^{1}}{180} + o(\alpha^{5}) \right) \right|$$
$$= \frac{\alpha^{5}}{180}R + o(\alpha^{5}).$$

因此,所求的相对误差为

$$\left|\frac{\widehat{AB} - (AD + DB)}{\widehat{AB}}\right| = \left|\frac{2\widehat{BE} - 2BD}{2\widehat{BE}}\right|$$

$$= \frac{|\widehat{BE} - BD|}{|\widehat{EE}|} = \frac{\frac{\alpha^6}{180}R + \alpha(\alpha^6)}{\alpha R} - \frac{\alpha^6}{180} + \alpha(\alpha^6).$$

可见α愈小,相对误差就愈小,就愈精确.

§ 11. 函数的极值. 函数的最大值和最小值

1"有极值的必要条件 若函数于点土。的双侧邻域中有定义,并且

对于某域: $0 < |x - x_0| < \delta$ 内的一切点 x,有下列的不等式成立:

$$f(x) < f(x_0) \le f(x) > f(x_0),$$

则称函数 f(x) 在点 x。有极值(极大值或极小值).

在有极值的点导函数 $f'(x_0) = 0$ (假定它存在).

2° 有极值的充分条件 第一法则:若(1)函数 f(x) 于点 x_0 的某邻域 $|x-x_0| < \delta$ 内有定义并且是连续的,且在 x_0 点, $f'(x_0) = 0$ 或不存在(临界点);(2) f(x) 在范围: $0 < |x-x_0| < \delta$ 内有有限值的导函数 f'(x);(3) 导函数 f'(x) 在 x_0 的左侧与右侧有固定的符号,则函数 f(x) 的性质用下表表示出来;

	导函 数	的符号	结		论	
	$s < x_{\circ}$	$x > x_0$] ≐ ਜ		12	
i	+	1	无	极	值	
I	+	_	极	大	值	
ľ	_	+	极	小	值	
ľ.			无	极	值	

第二法则: 若函数 f(x) 有二阶导函数 f''(x),并且在点 x。有下列条件成立:

$$f'(x_0) = 0 \le f''(x_0) \ne 0$$
,

则函数 f(x) 在此点有极值,就是说:当 $f''(x_0) < 0$ 时,有极大值;当 $f''(x_0) > 0$ 时,有极小值.

第三法则:设函数 f(x) 于某区间 $|x-x_0| < \delta$ 内有导函数 f'(x), …, $f^{(n-1)}(x)$, 并且在点 x_0 有导函数 $f^{(n)}(x_0)$ 及

 $f^{(n)}(x_0) = 0(k = 1, \dots, n - 1), f^{(n)}(x_0) \neq 0.$ 这时: (1) 若 n 为 偶数,则函数 f(x) 在点 x_0 处有极值,就是说,当 $f^{(n)}(x_0) < 0$ 时,有极大值: 当 $f^{(n)}(x_0) > 0$ 时有极小值: (2) 若 n 为奇数,则函数 f(x) 在点 x_0 无极值.

 3° 绝对极值 在闭区间 $\{a,b\}$ 内,连续函数 f(x),或于其临界点 364

(就是导函数f'(x)等于零或不存在的点),或于所给闭区间的端点a和b,达到其最大(最小)值、

研究下列函数的极值:

1414. $y = 2 - x - x^2$.

解
$$y' = 1 - 2x \cdot \Rightarrow y' = 0$$
 得 $x = \frac{1}{2}$. 由于 $y'' = -2$
< 0,所以当 $x = \frac{1}{2}$ 时 · 函数 y 取极大值
 $y = 2 + \frac{1}{2} - \frac{1}{4} = 2\frac{1}{4}$.

1415. $y = (x-1)^3$.

解 由于 $y' = 3(x-1)^2 > 0(除 x = 1 外)$,即函数始终上升,故函数 y 无极值.

 $1416 y = (x-1)^4.$

解 $y' = 4(x-1)^3$,令y' = 0得x = 1.当x < 1时y'
< 0,当x > 1时y' > 0,所以函数y当x = 1时取极小值

$$y=0.$$

1417. $y = x^m (1 - x)^n (m 及 n 为正整数).$

解
$$y' = x^{m-1}(1-x)^{m-1}(m-(m+n)x)$$
, 由 $y' = 0$

$$x = 0, x = 1, x = \frac{m}{m + n}$$

(1) 若 m 为偶数,则

当
$$0 < x < \frac{m}{m+n}$$
 时, $y' > 0$,
当 $x < 0$ 时, $y' < 0$,

所以在x = 0 处有极小值 y = 0.

- (2) 若 m 为奇数,则 y' 在 x = 0 邻近不变号,故无极值,
 - (3) 不论 m 、n 是奇数还是偶数时,由于

当
$$0 < x < \frac{m}{m+n}$$
 时, $y' > 0$,

当
$$\frac{m}{m+n} < x < 1$$
 时, $y' < 0$.

所以,函数 y 在 $x = \frac{m}{m+n}$ 处有极大值

$$y = \frac{m^m n^n}{(m+n)^{m+n}}.$$

(4)同理,容易得知:若n为偶数时,则当x=1时有极小值

$$y=0$$
.

若n 为奇数,则当x = 1 时函数 y 无极值.

1418. $y = \cos x - \cosh x$.

解
$$y' = -\sin x + \sin x$$
, 令 $y' = 0$ 得 $x = 0$. 由于 $y'' = -\cos x + \cot x$, $y''(0) = 0$,

$$y''' = \sin x + \sinh x, y'''(0) = 0,$$
$$y^{(4)} = \cos x + \cosh x, y^{(4)}(0) = 2 > 0,$$

所以, 当x = 0 时有极小值 y = 2.

1419. $y = (x + 1)^{10}e^{-x}$.

解 $y' = e^{-x}(x+1)^{9}(9-x)$, 令 y' = 0 得 x = -1 或 x = 9.

由于

当
$$x < -1$$
时, $y' < 0$,
当 $-1 < x < 9$ 时, $y' > 0$,
当 $x > 9$ 时, $y' < 0$,

所以,当x=-1时有极小值y=0;当x=9时有极大值

$$y = 10^{10} e^{-9} \approx 1234100.$$

1420.
$$y = \left(1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}\right)e^{-x}$$
 (n 为自然数).

$$\mathbf{F}$$
 $y' = -\frac{1}{n!}e^{-x}x^{n}$, 令 $y' = 0$ 得 $x = 0$.

(1) 若n 为偶数,由于y' < 0(除x = 0 外),故当x = 0 时函数 y 无极值.

(2) 若 n 为奇数,则

当
$$x < 0$$
时, $y' > 0$,

当
$$x > 0$$
时, $y' < 0$,

所以, 当 x = 0 时有极大值 y = 1.

1421. y = |x|.

解 当x = 0时,得y = 0,又在x = 0的邻域内对于任意 $x \neq 0$,恒有y = |x| > 0,所以,当x = 0时函数有极小值 y = 0.注意, $y'|_{x \in 0}$ 不存在.

1422. $y = x^{\frac{1}{3}}(1-x)^{\frac{2}{3}}$.

所以,当x = 0时无极值;当 $x = \frac{1}{3}$ 时有极大值

$$y = \frac{1}{3} \sqrt[3]{4} \approx 0.529;$$

当x=1时有极小值y=0.

1423. 函数

$$f(x) = (x - x_0)^s \varphi(x)$$

 $(n 为自然数), 其中函数 <math>\varphi(x)$ 当 $x = x_0$ 时连续及 $\varphi(x_0)$ 368

 $\neq 0$. 研究此函数在点 $x = x_0$ 的极值.

解 由于 $\varphi(x)$ 在 $x=x_0$ 点连续且 $\varphi(x_0)\neq 0$,所以 $\varphi(x)$ 在点 x_0 的充分小邻域 $(x_0-\delta,x_0+\delta)$ 内与 $\varphi(x_0)$ 同号.于是 $_{*}f(x)$ 的符号与 $_{n}$ 的奇偶性有关.

- (1) 若n为奇数,则经过 x_0 时,函数f(x)的值变号, 所以在 $x=x_0$ 时没有极值.
- (2) 若 n 为偶数,则 $(x x_0)^n > 0$ $(x \neq x_0)$. 因而 当 $\varphi(x_0) > 0$ 时,则 $f(x) > f(x_0) = 0$

$$(0<|x-x_0|<\delta),$$

所以,当 $x=x_0$ 时有极小值 $f(x_0)=0$.

当
$$\varphi(x_0) < 0$$
 时,则 $f(x) < f(x_0) = 0$

$$(0<|x-x_0|<\delta),$$

所以, 当 $x = x_0$ 时有极大值 $f(x_0) = 0$.

1424. 设:

$$f(x) = \frac{P(x)}{Q(x)}, f'(x) = \frac{P_1(x)}{Q^2(x)},$$

及 x_0 为函数 f(x) 的驻点,就是说

$$P_1(x_0) = 0, Q(x_0) \neq 0.$$

证明: $\operatorname{sgn} f''(x_0) = \operatorname{sgn} P'(x_0)$.

证 因为

$$f''(x) = \frac{P'_{-1}(x)Q^{2}(x) - 2Q(x)Q'_{-1}(x)P_{+}(x)}{Q^{4}(x)},$$

于是

$$f''(x_0) = \frac{P_1^{t}(x_0)}{Q_2(x_0)}.$$

由于 $Q_2(x_0) > 0$, 所以有

$$\operatorname{sgn} f''(x_0) = \operatorname{sgn} P'(x_0).$$

- 1425. 可否断定下面的事实:若函数 f(x) 在点 x。有极大值,则在此点某充分小邻域内,函数 f(x) 在点 x。的左侧上升,而右侧下降?
 - 解 不能断定,例如,函数

$$f(x) = \begin{cases} 2 - x^2(2 + \sin\frac{1}{x}), & \text{if } x \neq 0 \text{ if }, \\ 2, & \text{if } x = 0 \text{ if }, \end{cases}$$

则
$$f(x) - f(0) = -x^2 \left(2 + \sin \frac{1}{x} \right) < 0$$
$$(x \in (-\delta, \delta), x \neq 0).$$

所以在 x = 0 点有极大值 f(0) = 2.

易知

$$f'(x) = \cos \frac{1}{x} - 2x \left(2 + \sin \frac{1}{x} \right) (x \neq 0).$$

故在x = 0的任意小邻域内f'(x)都时正时负,故在x = 0的左侧或右侧的任意小邻近f(x)都是振荡的(时上升时下降).

1426. 已给函数

$$f(x) = e^{-\frac{f}{x^2}} \pm x \neq 0; f(0) = 0.$$

证明:虽然

$$f^{(n)}(0) = 0(n = 1.2\cdots),$$

函数 f(x) 在点 x=0 有极小值,

作出此函数的图形.

证 在 1225 题中已证 $f^{(n)}(0) = 0$ $(n = 1, 2\cdots)$.

由于

图 2,52

$$f'(x) = \frac{2}{x^3}e^{-\frac{1}{x^2}}, f''(x) = \frac{4}{x^3} - \frac{6x^2}{x^5}e^{-\frac{1}{x^5}},$$

又过 $x \leftarrow 0$ 点f'(x)从负变到正,故f(0) = 0为极小值.

令
$$f''(x) = 0$$
 解得拐点 $x = \pm \sqrt{\frac{2}{3}}$. 又由

$$f(x) = f(-x), \lim_{x \to \infty} f(x) = 1$$

知,f(x) 为偶函数,y = 1 为渐近线(图 2.52).

1427. 研究下列函数的极值:

(a) 当
$$x \neq 0$$
 时, $f(x) = e^{-\frac{1}{|x|}} \left(\sqrt{2} + \sin \frac{1}{x} \right)$ 及
$$f(0) = 0;$$

(6) 当
$$x \neq 0$$
 时, $f(x) = e^{-\frac{1}{|x|}} \left(\sqrt{2} + \cos\frac{1}{x}\right)$ 及
$$f(0) = 0.$$

作出这些函数的图形.

解 由于 $\left|\sin\frac{1}{x}\right| < \sqrt{2}$, $\left|\cos\frac{1}{x}\right| < \sqrt{2}$ 及 $e^{-\frac{1}{12}} > 0$, 所以对于 (a) 和 (6) 均有 $f(x) > f(0)(x \neq 0)$, 故当 x = 0 时均有极小值 f(0) = 0. 对于 $x \neq 0$, (a) 和 (6) 均存在 f'(x), 但易知 f'(x) = 0 无解,因而无其它极值。它们的图形分别如图 2.53 及图 2.54 所示。

图 2.53

图 2.54

1428. 巴给函数

 $f(x) = |x| \left(2 + \cos\frac{1}{x}\right) \stackrel{\text{def}}{=} x \neq 0; f(0) = 0.$

研究此函数于点 x = 0 处的极值,并作出此函数的图形.

解 由于当 $x \neq 0$ 时,恒有f(x) > f(0),故当x = 0时有极小值 f(0) = 0,其图形如图 2.55 所示,它对称于 Oy 轴,又当 $x \rightarrow 0$ 时, $f(x) \rightarrow 0$.

求下列函数的极值:

1429. $y = x^3 - 6x^2 + 9x - 4$.

$$y'' = 6x - 12, y''(1) = -6 < 0, y''(3) = 6 > 0,$$

图 2.55

所以,

当x=1时有极大值y=1-6+9-4=0; 当x=3时有极小值 $y=3^3-6\times 3^2+9\times 3-4=-4$.

1430. $y = 2x^2 - x^4$.

解 $y' = 4x - 4x^3$, 令 y' = 0 得 $x = \pm 1$ 或 0. 因为 $y'' = 4 - 12x^2$, y''(-1) = -8 < 0, y''(0) = 4 > 0, y''(1) = -8 < 0,

所以,

当
$$x=-1$$
时有极大值 $y=1$;

当x=0时有极小值y=0;

当 x = 1 时有极大值 y = 1.

1431.
$$y = x(x-1)^2(x-2)^3$$
.

解
$$y' = (x-1)(x-2)^2(6x^2-10x+2)$$
. 令 $y' = 0$ 得 $x = 1,2$ 或 $\frac{5 \pm \sqrt{13}}{6}$.

因为

当
$$x < \frac{5 - \sqrt{13}}{6}$$
时, $y' < 0$,
当 $\frac{5 - \sqrt{13}}{6} < x < 1$ 时, $y' > 0$,
当 $1 < x < \frac{5 + \sqrt{13}}{6}$ 时, $y' < 0$,
当 $\frac{5 + \sqrt{13}}{6} < x < 2$ 时, $y' > 0$,
当 $x > 2$ 时, $y' > 0$,

所以,

当
$$x = \frac{5 - \sqrt{13}}{6} \approx 0.23$$
 时有极小值 $y \approx -0.76$;
当 $x = 1$ 时有极大值 $y = 0$;
当 $x = \frac{5 + \sqrt{13}}{6} \approx 1.43$ 时有极小值 $y \approx -0.05$;
当 $x = 2$ 时无极值.

1432.
$$y = x + \frac{1}{x}$$
.

解
$$y' = 1 - \frac{1}{x^2}$$
,令 $y' = 0$ 得 $x = \pm 1$. 因为 当 $x < -1$ 时, $y' > 0$, 当 $0 < x < 1$ 时, $y' < 0$, 当 $0 < x < 1$ 时, $y' < 0$, 当 $x > 1$ 时, $y' > 0$,

所以,

当
$$x = -1$$
 时有极大值 $y = -2$;
当 $x = 1$ 时有极小值 $y = 2$.

1433.
$$y = \frac{2x}{1+x^2}$$
.

解
$$y' = \frac{2(1-x^2)}{(1+x^2)^2}$$
,令 $y' = 0$ 得 $x = \pm 1$. 因为 当 $x < -1$ 时, $y' < 0$, 当 $x > 1$ 时, $y' < 0$,

所以,

当
$$x = -1$$
 时有极小值 $y = -1$;
当 $x = 1$ 时有极大值 $y = 1$.
1434. $y = \frac{x^2 - 3x + 2}{x^2 + 2x + 1}$.

376

解
$$y' = \frac{5x - 7}{(x + 1)^3}$$
, 令 $y' = 0$ 得 $x = \frac{7}{5}$. 因为
 当 $-1 < x < \frac{7}{5}$ 时, $y' < 0$,
 当 $x > \frac{7}{5}$ 时, $y' > 0$,

所以・治 $x = \frac{7}{5}$ 时有极小值 $y = -\frac{1}{24}$.

1435.
$$y = \sqrt{2x - x^2}$$
.

解
$$y' = \frac{1 - x}{\sqrt{2x - x^2}}$$
、令 $y' = 0$ 得 $x = 1$. 因为 当 $0 < x < 1$ 时, $y' > 0$, 当 $1 < x < 2$ 时, $y' < 0$,

所以,当x = 1时有极大值y = 1.

其次,由于函数y的值不为负数,故当x=0及x=2时,有边界的极小值y=0.

1436.
$$y = x \sqrt[5]{x-1}$$
.

解
$$y' = \frac{4x-3}{3(x-1)^{\frac{2}{3}}}$$
, 令 $y' = 0$ 得 $x = \frac{3}{4}$. 因为 当 $x < \frac{3}{4}$ 时, $y' < 0$, 当 $x > \frac{3}{4}$ 时, $y' > 0$,

所以,当 $x = \frac{3}{4}$ 时有极小值 $y = -\frac{3}{8} \sqrt[3]{2} \approx -0.47$. 此外,对于 $y' \rightarrow \infty$ 的点也可能有极值,但在此题 377 中,当 x 经过 1 时,导数不变号,故当 x=1 时无极值. 1437. $y=xe^{-x}$.

解 $y' = e^{x}(1-x)$, 令 y' = 0 得 x = 1. 因为 当 x < 1 时, y' > 0. 当 x > 1 时, y' < 0,

所以,当 x=1 时有极大值 $y=e^{-1}\approx 0.368$. 1438. $y=\sqrt{x}\ln x$.

解 $y = \frac{1}{2\sqrt{x}}(\ln x + 2)$, 令 y' = 0 得 $x = e^{-2}$. 因为 当 $0 < x < e^{-2}$ 时, y' < 0, 当 $x > e^{-2}$ 时, y' > 0,

所以,当 $x = e^{-2} \approx 0.135$ 时有极小值 $y = -\frac{2}{e}$ ≈ -0.736 .

又因当0 < x < 1时,y < 0,而

$$y=\lim_{x\to+0}\sqrt{x}\ln x=0,$$

所以, 当 x = + 0 时有边界的极大值 y = 0.

1439.
$$y = \frac{\ln^2 x}{x}$$
.

解
$$y' = \frac{2\ln x - \ln^2 x}{x^2}$$
, 令 $y' = 0$ 得 $x = 1$ 或 e^2 . 因为 当 $0 < x < 1$ 时, $y' < 0$, 当 $1 < x < e^2$ 时, $y' > 0$,

当
$$e^2 < x < + \infty$$
时, $y' < 0$,

所以,

当x = 1时有极小值y = 0;

当 $x = e^2 \approx 7.389$ 时有极大值 $y = \frac{4}{e^2} \approx 0.541$.

1440. $y = \cos x + \frac{1}{2}\cos 2x$.

解 $y' = -\sin x (1 + 2\cos x)$, 令 y' = 0 得 $x = k\pi$ 或 $\pm \frac{2\pi}{3} + 2k\pi(k = 0, \pm 1, \pm 2, \cdots)$. 因为 $y'' = -\cos x - 2\cos 2x$,

$$y'' \Big|_{x=k\pi} = (-1)^{k+1} - 2 < 0,$$

$$y'' \Big|_{x=\pm \frac{2\pi}{2}+2k\pi} = \frac{1}{2} + 1 > 0.$$

所以,

当 $x = k\pi$ 时有极大值 $y = (-1)^k + \frac{1}{2}$;

当 $x = \pm \frac{2\pi}{3} + 2k\pi$ 时有极小值 $y = -\frac{3}{4}$.

 $1441. \ y = \frac{10}{1 + \sin^2 x}.$

解 当 $x = k\pi(k = 0, \pm 1, \dots)$ 时, $\sin x = 0$, 所以此时有极大值 y = 10;

当 $x = \left(k + \frac{1}{2}\right)\pi(k = 0, \pm 1, \cdots)$ 时, $|\sin x| = 1$.

所以此时有极小值 y = 5.

1442.
$$y = arctg.x - \frac{1}{2}ln(1 + x^2).$$

解
$$y' = \frac{1-x}{1+x^2}$$
,令 $y' = 0$ 得 $x = 1$. 因为 当 $x < 1$ 时, $y' > 0$,

所以、当 x=1 时有极大值 $y=\frac{\pi}{4}-\frac{1}{2}\ln 2\approx 0.439.$ 1443. $y=e^r\sin x$.

因为

$$y'' = 2e^{x}\cos x,$$

$$y'' \Big|_{x \leftarrow -\frac{\pi}{4} + 2k\pi} > 0,$$

$$y'' \Big|_{x = \frac{3\pi}{4} + 2k\pi} < 0,$$

所以, 当 $x = -\frac{\pi}{4} + 2k\pi$ 时有极小值 $y = -\frac{\sqrt{2}}{2}e^{-\frac{\pi}{4} + 2k\pi}$;

当 $x = \frac{3\pi}{4} + 2k\pi$ 时有极大值 $y = \frac{\sqrt{2}}{2}e^{\frac{3\pi}{4} + 2k\pi}$.

1444. $y = |x|e^{-(x+1)}$.

解 当
$$x < 0$$
 时, $y = -xe^{x-1}$, $y' = -(x+1)e^{x-1}$.
令 $y' = 0$ 得 $x = -1$. 因为

当
$$x < -1$$
时, $y' > 0$,

当
$$-1 < x < 0$$
时, $y' < 0$,

所以,当 x = -1 时有极大值 $y = e^{-2} \approx 0.135$.

又当0 < x < 1时,有

$$y = xe^{x-1}, y' = (x+1)e^{x-1} > 0,$$

所以,当ェニ0时有极小值リニ0.

而当x > 1时,有

$$y = xe^{1-x}, y' = (1 - x)e^{1-x} < 0.$$

所以,当x = 1时有极大值y = 1.

求下列函数的最大值和最小值:

1445. $f(x) = 2^{\epsilon}$,在闭区间(-1.5)上.

解 由于 $f(x) = 2^x$ 单调上升,故最小值和最大值分别为

$$m=2^{-1}=\frac{1}{2} \not \! D M=2^5=32.$$

1446. $f(x) = x^2 - 4x + 6$,在闭区间(-3,10) 上.

$$\mathbf{R}$$
 $f'(x) = 2x - 4, f''(x) = 2,$

令
$$f'(x) = 0$$
 得 $x = 2$.

由于 f''(2) = 2 > 0,所以

当x=2时有极小值f(2)=2. 因为这是唯一的极

小值,因此也就是最小值,即 m=2.

又由于 f''(x) > 0, 曲线呈凹状, 所以在端点取得最大值, 从而,

$$M = \max\{f(-3), f(10)\} = 66.$$

1447. $f(x) = |x^2 - 3x + 2|$,在闭区间[-10,10] 上.

解 由于 $f(x) \ge 0$,故对于在区间[-10,10]上能使 f(x) = 0的点取得最小值.由 $x^2 - 3x + 2 = 0$ 得 x = 1,2.即当 x = 1,2 时,函数取得最小值

$$m=0.$$

其次,
$$f'(x) = (2x - 3)\operatorname{sgn}(x^2 - 2x + 3)$$
,
当 $1 < x < \frac{3}{2}$ 时, $f'(x) > 0$,
当 $\frac{3}{2} < x < 2$ 时, $f'(x) < 0$,

所以,当 $x = \frac{3}{2}$ 时有极大值 $y = \frac{1}{4}$,于是 $M = \max \left\{ f(\frac{3}{2}), f(-10), f(10) \right\} = 132.$

1448. $f(x) = x + \frac{1}{x}$,在闭区间(0.01,100) 上.

解 利用 1432 题结果知 f(x) 当 x = 1 时有极小值 f(1) = 2.

由于在此闭区间[0.01,100]上f(1)为唯一的极小 382

值,因此也是最小值,即

$$m=2.$$

其次,最大值

$$M = \max\{f(0.01), f(100)\} = 100.01.$$

1449. $f(x) = \sqrt{5-4x}$,在闭区间(-1,1)上.

$$f'(x) = -\frac{2}{\sqrt{5-4x}} < 0.$$

因此函数 f(x) 在[-1,1] 上单调下降,所以,最小值和最大值分别为

$$m = f(1) = 1, M = f(-1) = 3.$$

求下列函数的下界(inf)与上界(sup);

1450. $f(x) = xe^{-0.01x}$,在区间 $(0, +\infty)$ 内.

解 当 $x \in (0, +\infty)$ 时, f(x) > 0, 而 $\lim_{x \to 0} f(x) = 0$, 于是,

$$\inf\{f(x)\}=0.$$

其次,求极值判断得知,当x = 100时,函数 f(x)取极大值,并且是唯一的极值,即为最大值.于是,

$$\sup\{f(x)\} = f(100) = \frac{100}{e} \approx 36.8.$$

1451. $f(x) = (1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!})e^{-x}$,在区间 $(0, +\infty)$ 内.

解 由 1420 题知, f'(x) < 0, 即 f(x) 在区间(0, 十

$$\infty$$
) 内单调递减,且 $\lim_{x \to +\infty} f(x) = 0$, $f(0) = 1$. 于是, $\inf\{f(x)\} = 0$, $\sup\{f(x)\} = 1$.

1452.
$$f(x) = \frac{1+x^2}{1+x^2}$$
,在区间 $(0, +\infty)$ 内.

解
$$f(x) > 0$$
,且 $\lim_{x \to +\infty} f(x) = 0$.于是,
$$\inf\{f(x)\} = 0.$$

容易验证, 当 $x = \sqrt{\sqrt{2} - 1}$ 时函数 f(x) 有极大值, 并且只有一个极值,因而就是最大值.于是,

$$\sup\{f(x)\} = f(\sqrt{\sqrt{2} - 1})$$

$$= \frac{1}{2}(1 + \sqrt{2}) \approx 1.2.$$

1453. $f(x) = e^{-x^2}\cos x^2$,在区间 $(-\infty, +\infty)$ 内.

解 可以求得,函数的最小值和最大值分别为

$$m = f\left(\pm\sqrt{\frac{3\pi}{4}}\right) = -\frac{\sqrt{2}}{2}e^{-\frac{3\pi}{4}} \approx -0.067,$$
 $M = f(0) = 1.$

于是,

$$\inf\{f(x)\} = -\frac{\sqrt{2}}{2}e^{-\frac{3\pi}{4}} \approx -0.067,$$

$$\sup\{f(x)\} = 1.$$

1454. 求函数 $f(\xi) = \frac{1+\xi}{3+\xi^2}$ 在区间 $x < \xi < +\infty$ 内的下界与 384

上界,作出下列函数的图形:

$$m(x) = \inf_{x < \xi < +\infty} f(\xi) \not \boxtimes M(x) = \sup_{x < \xi < +\infty} f(\xi).$$

解 由于 f(-3), f(1) 分別是函数 $f(\xi)$ 的极小值和极大值, 又 $\lim_{\xi \to +\infty} f(\xi) = 0$, 于是,

当
$$-\infty < x \le -3$$
 时, $m(x) = f(-3) = \frac{1}{6}$,
当 $-3 < x \le -1$ 时, $m(x) = \frac{1+x}{3+x^2}$,
当 $-1 < x < +\infty$ 时, $m(x) = 0$;
当 $-\infty < x \le 1$ 时, $M(x) = f(1) = \frac{1}{2}$,
当 $1 < x < +\infty$ 时, $M(x) = \frac{1+x}{3+x^2}$.

m(x) 及 M(x) 的图形分别如图 2.56 及图 2.57 所示。

图 2.56

图 2.57

1455. 求以下各叙列的最大项:

(a)
$$\frac{n^{10}}{2^n}(n=1,2,\cdots);$$

(6)
$$\frac{\sqrt{n}}{n+10000}$$
 $(n=1,2,\cdots);$

(B)
$$\sqrt[n]{n}$$
 $(n = 1, 2, \dots)$.

解 (a) 经判断知当 $x = \frac{10}{\ln 2}$ 时, $f(x) = \frac{x^{10}}{2^x}$ 有极大值, 并且是唯一的极值. 从而,最大项

$$\max\left(\frac{n^{10}}{2^n}\right) = \max\left(\frac{(N-1)^{10}}{2^{N-1}}, \frac{N^{10}}{2^N}, \frac{(N+1)^{10}}{2^{N+1}}\right),$$
其中 $N = \left(\frac{10}{\ln 2}\right) = 14.$ 于是

$$\max\left(\frac{n^{10}}{2^n}\right) = \max\left(\frac{13^{10}}{2^{13}}, \frac{14^{10}}{2^{14}}, \frac{15^{10}}{2^{15}}\right) = \frac{14^{10}}{2^{14}}$$

$$\approx 1.77 \times 10^7.$$

(6) 经判断知当
$$x = 10000$$
 时 $f(x) = \frac{\sqrt{x}}{x + 10000}$ 有

极大值,并且是唯一的极值. 于是,最大项

$$\max\left(\frac{\sqrt{n}}{n+10000}\right) = f(10000) = \frac{1}{200}.$$

(B) 经判断知当 x = e 时, $f(x) = x^{\frac{1}{x}}(x > 0)$ 有极大值, 并且是唯一的极值. 于是,最大项

$$\max(\sqrt[n]{n}) = \max(\sqrt[3]{3}, \sqrt{2}) = \sqrt[3]{3} \approx 1.44.$$

1456. 证明下列不等式:

- (a) 当 $|x| \le 2$ 时, $|3x x^3| \le 2$;
- (6) 若 $0 \le x \le 1$ 及 p > 1,则 $\frac{1}{2^{p-1}} \le x^p + (1-x)^p \le 1$;
- (B) 当 m > 0, n > 0 及 $0 \le x \le a$ 时, $x^{m}(a-x)^{n} \le \frac{m^{m}n^{n}}{(m+n)^{m+n}}a^{m+n};$

(r)
$$\frac{x+a}{2^{\frac{n-1}{n}}} \leqslant \sqrt[n]{x^n+a^n} \leqslant x+a(x>0,a>0,n>1);$$

(д) $|a\sin x + b\cos x| \leqslant \sqrt{a^2 + b^2}$.

证 (a) 设 $f(x) = 3x - x^3$, 经判断知, 在 $|x| \le 2$ 上, 其最小值和最大值分别为

$$m = f(-1) = -2, M = f(1) = 2,$$

而边界函数值为 f(-2) = 2, f(2) = -2. 于是,

$$|3x-x^3| \leq 2.$$

(6) 设 f(x) = x' + (1-x)', 经判断知 $f\left(\frac{1}{2}\right) = \frac{1}{2^{k-1}}$ 为 $0 \le x \le 1$ 上的唯一的极小值, 而边界值 f(0) = f(1) — 1.所以

$$\frac{1}{2^{p+1}} \leqslant x^p + (1-x)^p \leqslant x + (1-x) = 1.$$

(B) 设 $f(x) = x^m (a - x)^n$, 经判断知 $f\left(\frac{ma}{m+n}\right)$ 为 $0 \le x \le a$ 上 的 唯一 的 极 大 值,所以 $x^m (a - x)^n \le \left(\frac{ma}{m+n}\right)^m \cdot \left(a - \frac{ma}{m+n}\right)^n = \frac{m^m n^n}{(m+n)^{m+n}} a^{m+n}$.

(r) 设 $f(x) = \frac{(x^n + a^n)^{\frac{1}{n}}}{x + a}$. 经判断知 $f(a) = \frac{1}{2^{\frac{n-1}{n}}}$ 为满足 x > 0 的唯一的极小值,而边界值 $f(+0) = f(+\infty)$ = 1,所以

$$\frac{1}{2^{\frac{n-1}{n}}} \leqslant \frac{(x^n + a^n)}{x + a} \leqslant 1.$$

由于x + a > 0.于是

$$\frac{x+a}{2^{\frac{n-1}{n}}} \leqslant \sqrt[n]{x^n+a^n} \leqslant x+a.$$

 $(\pi)a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x + \varphi),$

其中
$$\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}} \cdot \sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$$
,所以恒有

$$|a\sin x + b\cos x| \le \sqrt{a^2 + b^2}.$$

1457. 求多项式

$$P(x) = x(x-1)^{2}(x+2)$$

在闭区间(一2,1)上"与零的差",就是求

$$E_r = \sup_{1 \le n(x \le 1)} |P(x)|.$$

解
$$P^{t}(x) = 2(x-1)(2x^{2}+2x-1).$$

令
$$P'(x) = 0$$
 得 $x = 1$ 或 $\frac{-1 \pm \sqrt{3}}{2}$, 所以

$$E_P = \max\{|P(-2)|, |P(1)|,$$

$$\left|P\left(-\frac{1-\sqrt{3}}{2}\right)\right|,\left|P\left(-\frac{1+\sqrt{3}}{2}\right)\right|$$

$$= \left| P \left(-\frac{1-\sqrt{3}}{2} \right) \right| = \frac{9+6}{4} \sqrt{\frac{3}{4}} \approx 4.85.$$

1458. 应当选择怎样的系数 g. 使多项式

$$P(x) = x^2 + q$$

在闭区间[1,1] 上与零的差最小,即

$$E_p = \sup_{-1 \leqslant x \leqslant 1} |P(x)| = \min.$$

解
$$P'(x) = 2x, \Leftrightarrow P'(x) = 0$$
 得 $x = 0$, 所以

$$E_p = \max\{|P(0)|, |P(1)|, |P(-1)|\}$$

$$= \max\{|q|, |1+q|\}.$$

当 |q| = |1 + q| 时, E_p 最小、解之,得

$$q = -\frac{1}{2}.$$

1459.数

$$\Delta = \sup_{a \le x \le b} |f(x) - g(x)|$$

称为函数 f(x) 及 g(x) 于闭区间[a,b] 上的绝对差.

求函数 $f(x) = x^2 + g(x) = x^3 + x^3$

解 由于

$$f(x) - g(x) = x^2 - x^3,$$

 $f'(x) - g'(x) = 2x - 3x^2.$

从而令 f'(x) - g'(x) = 0,得 x = 0 或 $\frac{2}{3}$. 又因 f''(x) - g''(x) = 2 - 6x.

$$f''\left(\frac{2}{3}\right) - g''\left(\frac{2}{3}\right) = 2 - 4 = -2 < 0,$$

所以,当 $x = \frac{2}{3}$ 时f(x) - g(x)取极大值;又由于当 0 $\leq x \leq 1$ 时, $f(x) - g(x) \geq 0$,所以绝对差

$$\Delta = f\left(\frac{2}{3}\right) - g\left(\frac{2}{3}\right) = \frac{4}{27}.$$

1460. 于闭区间〔x1,x2〕上用线性函数

$$g(x) = (x_1 + x_2)x + b$$

近似地代替函数

$$f(x)=x^2,$$

使函数 f(x) 与 g(x) 的绝对差(参阅上题)为最小,并求 390

此最小的绝对差,

解 由于

$$f(x) - g(x) = x^2 - ((x_1 + x_2)x + b),$$

 $f'(x) - g'(x) = 2x - (x_1 + x_2),$

从而令
$$f'(x) - g'(x) = 0$$
,得 $x = \frac{x_1 + x_2}{2}$. 又因 $f''(x) - g''(x) = 2 > 0$,

故当 $x = \frac{x_1 + x_2}{2}$ 时, f(x) = g(x) 取极小值. 于是,

$$\Delta = \max\left\{ \left| f\left(\frac{x_1 + x_2}{2}\right) - g\left(\frac{x_1 + x_2}{2}\right) \right|,$$

$$\left| f(x_1) - g(x_1) \right|, \left| f(x_2) - g(x_2) \right| \right\}$$

$$= \max\left\{ \left| b + \frac{(x_1 + x_2)^2}{4} \right|, \left| b + x_1 x_2 \right| \right\}.$$

要 △ 为最小,需

$$\left|b+\frac{(x_1+x_2)^2}{4}\right|=\left|b+x_1x_2\right|.$$

解之得

$$b = -\frac{1}{8}(x_1^2 + x_2^2 + 6x_1x_2).$$

此时

$$g(x) = (x_1 + x_2)x - \frac{1}{8}(x_1^2 + x_2^2 + 6x_1x_2),$$

而最小的绝对差

$$\Delta = \frac{1}{8}(x_1 - x_2)^2.$$

1461. 求函数

$$f(x) = \max\{2|x|, |1+x|\}$$

的极小值.

解 y = 2|x| 及 y = |1 + x| 的图形如图 2.58 所示,它们的交点是 $A\left(-\frac{1}{3}, \frac{2}{3}\right)$ 及 B(1,2). 从而

$$f(x) = \begin{cases} 2x, & 1 \le x < +\infty, \\ 1+x, -\frac{1}{3} \le x \le 1, \\ -2x, -\infty < x \le -\frac{1}{3}. \end{cases}$$

于是,函数 f(x) 的极小值为 $f\left(-\frac{1}{3}\right) = \frac{2}{3}$.

确定下列各方程实根的数目,并定这些根所在的范围; 392 1462. $x^4 - 6x^2 + 9x - 10 = 0$.

解 $\mathcal{L}f(x) = x^3 - 6x^2 + 9x - 10, \text{则} f(x)$ 为在(一

∞・+∞)内的连续函数,且有

$$f'(x) = 3x^2 - 12x + 9.$$

令 f'(x) = 0,得驻点 x = 1 或 3.

当x ∈ ($-\infty$,1) 时,由于

$$\lim_{x \to -\infty} f(x) = -\infty, f'(x) > 0, f(1) = -6 < 0,$$

故在区间(-∞,1) 内方程无实根.

当 x ∈ (1,3) 时,由于

$$f'(x) < 0, f(3) = -10 < 0,$$

故在(1,3) 内也无实根.

当
$$x \in (3, +\infty)$$
,由于

$$f'(x) > 0, f(3) = -10 < 0, \lim_{x \to +\infty} f(x) = +\infty,$$

故在(3, + ∞)内方程有且仅有一实根.

1463. $x^3 - 3x^2 - 9x + h = 0$.

解 设
$$f(x) = x^3 - 3x^2 - 9x + h$$
,则

$$f'(x) = 3x^2 - 6x - 9.$$

令
$$f'(x) = 0$$
,得驻点 $x = -1$ 或 3.由于

$$f(-1) = 5 + h, f(3) = -27 + h,$$

$$\lim_{x \to -\infty} f(x) = -\infty, \lim_{x \to +\infty} f(x) = +\infty,$$
故当 $h < -5$ 时, $f(-1) < 0$, $f(3) < 0$, 且
$$f'(x) > 0, x \in (-\infty, -1),$$

$$f'(x) < 0, x \in (-1, 3),$$

$$f'(x) > 0, x \in (3, +\infty),$$

因此,有且仅有一实根位于 $(3, + \infty)$ 内.

当 -5 < h < 27 时,f(-1) > 0,f(3) < 0,导数 f'(x) 的符号变化同上,于是,有三个实根,分别位于 $(-\infty,-1)$,(-1,3) 及 $(3,+\infty)$ 内.

当 h > 27 时,f(3) > 0,f(-1) > 0,因此,有且仅有一实根位于 $(-\infty, -1)$ 内.

$$1464.\ 3x^4 - 4x^3 - 6x^2 + 12x - 20 = 0.$$

解 设
$$f(x) = 3x^4 - 4x^3 - 6x^2 + 12x - 20$$
,则
$$f'(x) = 12x^3 - 12x^2 - 12x + 12.$$

令
$$f'(x) = 0$$
,得驻点 $x = \pm 1$.由于

$$\lim_{x \to -\infty} f(x) = +\infty, \lim_{x \to +\infty} f(x) = +\infty,$$

$$f(-1) = -31 < 0, f(1) = -15 < 0,$$

并且

$$f'(x) < 0, x \in (-\infty, -1),$$

$$f'(x) > 0, x \in (-1, +\infty),$$

故有两实根,分别位于 $(-\infty,-1)$ 和 $(1,+\infty)$ 内. 1465. $x^5-5x=a$.

解 设
$$f(x) = x^5 - 5x - a$$
,则
$$f'(x) = 5x^4 - 5.$$

令
$$f'(x) = 0$$
,得驻点 $x = \pm 1$.由于

$$\lim_{x \to -\infty} f(x) = -\infty, \lim_{x \to +\infty} f(x) = +\infty,$$

$$f'(x) > 0, x \in (-\infty, -1), x \in (1, +\infty),$$

$$f'(x) < 0, x \in (-1, 1),$$

$$f(-1) = 4 - a, f(1) = -4 - a,$$

故当a < -4时,f(-1) > 0,f(1) > 0. 因此,有且仅有一实根,位于($-\infty$, -1) 内;当 -4 < a < 4 时,f(-1) > 0,f(1) < 0,此时有三个实根,分别位于($-\infty$, -1),(-1, 1) 和(1, $+\infty$) 内;当a > 4 时,f(-1) < 0,f(1) < 0. 因此,有且仅有一实根位于(1, $+\infty$) 内.

 $1466. \ln x = kx.$

解 当 k=0 时,方程显然仅有一个根 x=1. 因此,不 妨设 $k \neq 0$. 令 $f(x) = \ln x - kx(x > 0)$,则 $f'(x) = \frac{1}{x} - k$.

令
$$f'(x) = 0$$
,得驻点 $x = \frac{1}{k}$.由于 $f''(x) = -\frac{1}{r^2} < 0$,

故曲线的图形始终呈凸状.

当
$$x \in \left(0, \frac{1}{k}\right)$$
时, $f'(x) > 0$;
当 $x \in \left(\frac{1}{k}, +\infty\right)$ 时, $f'(x) < 0$.

又因

$$f\left(\frac{1}{k}\right) = \ln \frac{1}{k} - 1,$$

故当 $k > \frac{1}{e}$ 时, $f(\frac{1}{k}) < 0$,此时方程无根.

当
$$0 < k < \frac{1}{e}$$
 时, $f\left(\frac{1}{k}\right) > 0$,

因此,方程有两个实根,分别位于 $\left(0,\frac{1}{k}\right)$ 和 $\left(\frac{1}{k},+\infty\right)$ 内、

当 $-\infty < k < 0$ 时,由于

 $\lim_{x \to +0} f(x) = -\infty, f(1) = -k > 0, f'(x) = \frac{1}{x} - k > 0, \text{故此时方程有且仅有一实根位于(0,1) 内.}$

 $1467^+ \cdot c^x = ax^2 (a > 0).$

解 对于函数 $f(x) = e^x - ax^2$,有 f(0) = 1 > 0;又 因 $\lim_{x \to -\infty} f(x) = -\infty$,故总存在充分大的正数 x_0 ,使 $f(-x_0) < 0$. 由函数 f(x) 的连续性得知在 $(-x_0,0)$ 中,从而在 $(-\infty,0)$ 中至少有 f(x) = 0 的一个实根. 而当 $x \in (-\infty,0)$ 时, $f'(x) = e^x - 2ax > 0$,即函数

严格单调上升. 因此, f(x) = 0, 当 $x \in (-\infty, 0)$ 时只有唯一的根.

对于x > 0的情况,为求方程 $e^x = ax^2$ 的根,只需求方程 $x = \ln a + 2\ln x (a > 0, x > 0)$ 的根.设 $g(x) = x - \ln a - 2\ln x,$

则有

$$g'(x) = 1 - \frac{2}{x} = \frac{x + 2}{x}$$

当 0 < x < 2 时,g'(x) < 0;

当x > 2时,g'(x) > 0,

所以, $g(2) = \ln \frac{e^2}{4a}$ 为极小值、又因 $\lim_{x \to \pm 0} g(x) = +\infty$, $\lim_{x \to \pm 0} g(x) = +\infty$.因此,

当 g(2) > 0,即 $0 < a < \frac{e^2}{4}$ 时,g(x) = 0 无根.

当 g(2) = 0,即 $a = \frac{e^2}{4}$ 时,g(x) = 0 有唯一的根.

当 g(2) < 0,即 $a > \frac{e^2}{4}$ 时,g(x) = 0 有二个根,它们分别位于(0,2) 和 $(2, +\infty)$ 内。

综上所述,方程 $e^x = ax^2$ 根的情况如下:

当 $0 < a < \frac{e^2}{4}$ 时有唯一的根,位于 $(-\infty,0)$ 内;当 $a = \frac{e^2}{4}$ 时,有两个根,一根为 2,一根位于 $(-\infty,0)$ 内; 当 $\frac{e^2}{4} < a < +\infty$ 时有三个根,分别位于 $(-\infty,0)$,(0,2) 和 $(2,+\infty)$ 内.

1468. 当 $0 \le x \le \pi$ 时, $\sin^3 x \cdot \cos x = a$.

解 当a=0时,方程显然有实根 $x=0,\frac{\pi}{2}$ 或 π . 因此, 不妨设 $a\neq 0$. 令 $f(x)=\sin^3x\cos x-a$,则

$$f'(x) = 3\sin^2 x \cos^2 x - \sin^4 x.$$

令
$$f'(x) = 0$$
,得驻点 $x = \frac{\pi}{3}, \frac{2\pi}{3}$.由于

$$f\left(\frac{\pi}{3}\right) = \frac{3\sqrt{3}}{16} - a, f\left(\frac{2\pi}{3}\right) = -\frac{3\sqrt{3}}{16} - a,$$

$$f(0) = f(\pi) = -a,$$

并且

当
$$x \in \left(0, \frac{\pi}{3}\right), x \in \left(\frac{2\pi}{3}, \pi\right)$$
时, $f'(x) > 0$,
当 $x \in \left(\frac{\pi}{3}, \frac{2\pi}{3}\right)$ 时, $f'(x) < 0$.

于是,当 $|a| < \frac{3\sqrt{3}}{16}$ 时,方程有两个实根位于 $(0,\pi)$ 内;当 $|a| > \frac{3\sqrt{3}}{16}$ 时,方程无实根.

1469. chx = kx.

解 设 $f(x) = \operatorname{ch} x - kx$,则

$$f'(x) = \operatorname{sh} x - k.$$

令 f'(x) = 0, 得唯一驻点 x_0 , 它适合 $k = \sinh x_0$.

由于 f''(x) = ch x > 0, 故曲线图形呈凹状,且在 $x = x_0$ 达最小值.显然 $\lim_{x \to \pm \infty} f(x) = +\infty$,因此,我们只

需考虑 $f(x_0)$ 的符号,而

$$f(x_0) = chx_0 - kx_0 = chx_0 - x_0 shx_0.$$

先设 k > 0,于是 $x_0 > 0$. 引进辅助函数

$$g(x) = \cosh x - x \sinh x,$$

方程 g(x) = 0,即 cth x = x 的(唯一)正根 $\xi \approx 1.2^{*}$,由于

$$g'(x) = \sinh x - \sinh x - x \cosh x = -x \cosh x,$$

因此假如 x > 0,则 g'(x) < 0,故 g(x) 在[0, $+\infty$) 上 严格单调下降.

若 $k > \mathrm{sh}\xi$,即 $\mathrm{sh}x_0 > \mathrm{sh}\xi$,由于 $\mathrm{sh}x$ 是严格增大的,故必 $x_0 > \xi$. 从而有

$$f(x_0) = \cosh x_0 - x_0 \sinh x_0 < \cosh \xi - \xi \sinh \xi = 0.$$

因此,方程 f(x) = 0 恰有两个实根.由于

$$f(\xi) = \mathrm{ch}\xi - k\xi < \mathrm{ch}\xi - \xi \mathrm{sh}\xi = 0,$$

$$f(0)=1,$$

故两根分别位于 $(0,\xi)$ 及 $(\xi,+\infty)$ 内.

若 $k = \mathrm{sh}\xi$,则 $\mathrm{sh}x_0 = \mathrm{sh}\xi$,从而 $x_0 = \xi$.因此, $f(x_0) = 0$,此时方程 f(x) = 0 恰有一实根 x_0 .

若 $0 < k < \mathrm{sh}\xi$,则 $\mathrm{sh}x_0 < \mathrm{sh}\xi$,从而 $x_0 < \xi$. 因此 $f(x_0) = \mathrm{ch}x_0 - x_0 \mathrm{sh}x_0 > \mathrm{ch}\xi - \xi \mathrm{sh}\xi = 0$,

故方程 f(x) = 0 无实根.

若 k = 0, 显然方程 f(x) = 0 无根,

若 k < 0,则可令 x = -t,于是得

$$cht = -kt \ (-k > 0).$$

通过按上述的方法讨论该方程的根,易知当 $\operatorname{sh} \xi < -k$ 时,原方程有两实根,分别位于 $(-\xi,0)$ 及 $(-\infty,-\xi)$ 内,其中 ξ 满足 $\operatorname{cth} \xi = \xi (\approx 1.2)$. 而当 $-\operatorname{sh} \xi < k < 0$ 时,方程无实根.

综上所述,若 $|k| > \text{sh} \approx 1.50$,方程有两实根 x_1

及 x_2 ,满足 $0 < |x_1| < \xi, \xi < |x_2| < + \infty$; 若 $|k| = \text{sh}\xi$,方程只有一个实根 $(k = \text{sh}\xi)$ 时,根为 $\xi, k = -\text{sh}\xi$ 时,根为 $-\xi$). 若 $|k| < \text{sh}\xi$,则方程无实根.

*) 方程根的近似解法见本章 § 15.

1470. 在什么条件下方程

$$x^3 + px + q = 0$$

有:(a)一个实根;(6)三个实根:

在平面(p,q)上描绘对应的范围。

解 设 $f(x) = x^3 + px + q$,则 $f'(x) = 3x^2 + p$. 若 $p \ge 0$,则 $f'(x) \ge 0$ ($x \ne 0$),故 f(x) 在 $(-\infty, +\infty)$ 上是严格增大的,并且显然 $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to -\infty} f(x) = +\infty$,故 f(x) = 0 有唯一实根.

若
$$p < 0$$
. 令 $f'(x) = 0$ 解得 $x_1 = \sqrt{-\frac{p}{3}}, x_2 = -\sqrt{-\frac{p}{3}}$. 在 $(-\infty, x_2)$ 和 $(x_1, +\infty)$ 上 $f(x)$ 严格增大,在 (x_2, x_1) 上 $f(x)$ 严格减小、

因此,若 $f(x_1)f(x_2) > 0$,则方程f(x) = 0仅有一个实根.若 $f(x_2) > 0$, $f(x_1) < 0$,则方程f(x) = 0恰有三个实根.

由于

$$f(x_1) = -\frac{p}{3} \cdot \sqrt{-\frac{p}{3}} + p \cdot \sqrt{-\frac{p}{3}} + q,$$

$$f(x_2) = \frac{p}{3} \cdot \sqrt{-\frac{p}{3}} - p \cdot \sqrt{-\frac{p}{3}} + q,$$
故 $f(x_1)f(x_2) > 0$ 相当于

$$\frac{q^2}{4} + \frac{p^3}{27} > 0$$
,

此即方程仅有一实根的条件(前面 p ≥ 0 的情形可合并到此条件中去).

而 $f(x_1) < 0$ 及 $f(x_2)$ > 0 相当于

$$\frac{q^2}{4} + \frac{p^3}{27} < 0$$
,

此即方程有三实根的 条件,

如图 2.59 所示,

图 2.59

曲线

$$\frac{q^2}{4} + \frac{p^3}{27} = 0$$

的左右上方是方程仅有一实根的(p,q)域,以阴影表之;而曲线的下方则是方程有三实根的(p,q)域,以不具阴影表之.

§ 12. 依据函数的特征点作函数图形

为了作出函数 y = f(x) 的图形,必须;(1) 确定此函数的存在域;并研究函数在其存在域之边界上各点之性质;(2) 查明图形的对称性和周期性;(3) 求出函数的不连续点及连续的区间;(4) 确定函数的零值点及同号区间;(5) 求出极值点及查明函数上升和下降的区间;(6) 确定扬及函数图形凸凹的区间;(7) 若有渐近线存在则求出渐近线;(8)

指出函数图形的各种特性。

作出下列函数的图形:

1471.
$$y = 3x - x^3$$

解
$$y' = 3 - 3x^2$$
, 令 $y' = 0$ 得 $x = -1$ 或 1.
 $y'' = -6x$ 令 $y'' = 0$ 得 $x = 0$.

列表

x		- 1	,	0		1	
y'		0	+	+	+	0	_
у"	+	+	+	0	_	_	
у	>	极小点	Я	拐点	7	极大点	7

1472.
$$y=1+x^2-\frac{x^4}{2}$$
.

解 以一 x 替代 x,y

图 2,60

值不变,故图形对称于 Oy 轴.

零点处:
$$x = \pm \sqrt{1 + \sqrt{3}} \approx \pm 1.65$$
.
 $y' = 2x - 2x^3$, $\Rightarrow y' = 0$ 得 $x = 0$, 或 ± 1 .

$$y'' = 2 - 6x^2$$
, $\Rightarrow y'' = 0$ $\Rightarrow x = \pm \frac{1}{\sqrt{3}}$.

列表

x		0		$\frac{1}{\sqrt{3}}$		1	
y'		0	+	+	+	0	+
у"	+	+	+	0	_	_	
у	7	极小点	7	拐点	7	极大点	<i>y</i>

当
$$x = 0$$
 时, $y = 1$; $x = \frac{1}{\sqrt{3}}$ 时, $y = \frac{23}{18}$; $x = 1$ 时, $y = \frac{3}{2}$ (图 2.61)

图 2.61

1473.
$$y = (x + 1)(x - 2)^2$$

解 $y' = 3x(x - 2)$, 令 $y' = 0$ 得 $x = 0$ 或 2;
 $y'' = 6x - 6$, 令 $y'' = 0$ 得 $x = 1$.
列表

х	<u> </u>	0		1		2	
y'	+	0	-			0	-i-
y"	—	_	_	0	+	-	+
у	Я	极大点	`*	拐点	`*	极小点	,71

当
$$x = 0$$
时, $y = 4$;
 $x = 1$ 时, $y = 2$;
 $x = 2$, -1 时, $y = 0$
(图 2.62)

1474.
$$y = \frac{2 - x^2}{1 + x^4}$$
.

解 显见图形对称于 O_y 轴。 零点处: $x=\pm \sqrt{2}$.

$$y' = \frac{2x(x^4 - 4x^2 - 1)}{(1 + x^4)^2},$$

图 2.62

令
$$y' = 0$$
 得 $x = 0$ 或 $\pm \sqrt{2 + \sqrt{5}} \approx \pm 2.06$.
$$y'' = -\frac{2(3x^8 - 20x^6 - 12x^4 + 12x^2 + 1)}{(1 + x^4)^3},$$

令 y'' = 0 得 $x = \pm 2$. 67 或 ± 0 . 77. 经判别知它们为拐点,又因

$$y''|_{x=0} = -2 < 0$$
,故有极大值 $y = 2$; $y''|_{x=\pm} \sqrt{2+\sqrt{5}} > 0$,故有极小值 $y = 1 - \frac{\sqrt{5}}{2}$ ≈ -0.12 .

渐近线为y=0. 事实上,它的斜率和截距分别为k

 $= \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{2 - x^2}{x(1 + x^4)} = 0, 它在 y 轴上的截距为$ $b = \lim_{x \to \infty} (y - kx) = \lim_{x \to \infty} \frac{2 - x^2}{1 + x^4} = 0, \text{ 如图 2.63 所示}.$

1475.
$$y = \frac{x^2 - 1}{x^2 - 5x + 6}$$
.

解 零点处:x = -1及x = 1.

渐近线:x = 2, x = 3 和 y = 1.

$$y' = \frac{-5x^2 + 14x - 5}{(x^2 - 5x + 6)^2}.$$

$$y'' = \frac{2(5x^3 - 21x^2 + 15x + 17)}{(x^2 - 5x + 6)^3}.$$

令 y' = 0 得 $x \approx 0.42$, $x \approx 2.38$. 令 y'' = 0 得 $x \approx -0.586$. 经判别知: $y|_{x \approx 0.42} \approx -0.20$ 为极 小值, $y|_{x \approx 2.36} \approx -19.80$ 为极 大值; $x \approx -0.586$, $y \approx -0.07$ 为拐点.由于

$$y = 1 - \frac{3}{x - 2} + \frac{8}{x - 3}$$

故可用图形相加法作出函数的图形(图 2.64).

图 2.64

1476.
$$y = \frac{x}{(1+x)(1-x)^2}$$
.

解 零点处:x = 0. 不连续点:x = -1 及 x = 1. 渐近线:y = 0. x = -1 和 x = 1.

$$y' = \frac{2x^2 + x + 1}{(1+x)^2(1-x)^3},$$

$$y'' = \frac{2(3x^3 + 3x^2 + 5x + 1)}{(1+x)^3(1-x)^4},$$

y' = 0 无实根,无极值点.令y'' = 0 得 $x \approx -0.22$,经判别知它为拐点,此时y = -0.20.

当 x < -1 时,y > 0,曲线上升;

当 -1 < x < 1 时,y' > 0,曲线上升;

当x > 1时,y' < 0,曲线下降(图 2.65)

图 2.65

1477.
$$y = \frac{x^4}{(1+x)^3}$$
.

解 零点处:x = 0. 不连续点:x = -1.

斜渐近线:y = x - 3,事实上,

$$k = \lim_{x \to \infty} \frac{y}{x} = 1, b = \lim_{x \to \infty} (y - kx) = -3.$$

垂直漸近线:x=-1.

$$y' = \frac{x^3(x+4)}{(1+x)^4}.$$

令 y' = 0, 得 x = 0, 或 x = -4.

$$y'' = \frac{12x^2}{(1+x)^5}.$$

当 x < -1 时, y'' < 0, 图形呈凸状;

当 x > 1 时, y'' > 0, 图形呈凹状;

 $|\nabla y''|_{z=-4} < 0$,

故当 x = - 4 时有极大值

$$y = -9\frac{13}{27}$$
;

由于y 经过x=0从负变到正,故当x=0时取得极小值y=0(图 2.66)

图 2.66

1478.
$$y = \left(\frac{1}{1} + \frac{x}{x}\right)^4$$
.

解 零点处:x = -1.

垂直渐近线:x = 1; 又

$$k = \lim_{x \to \infty} \frac{y}{x} = 0, b = \lim_{x \to \infty} (y - kx) = 1.$$

故还有水平渐近线为 y = 1.

$$y' = \frac{8(1+x)^3}{(1-x)^5}$$
, $\Leftrightarrow y' = 0 \Leftrightarrow x = -1$;

$$y'' = \frac{16(x+1)^2(x+4)}{(1-x)^6}$$
, $\Leftrightarrow y'' = 0 \Leftrightarrow x = -1 \Rightarrow$

- 4.

列表

x		4		~- 1		1	
<i>y'</i>	_	_		0	ŀ	~	_
<i>y</i> "	_	0	+	0	+	ω.	+
y	*	拐点	7	极小点	7	不连续点	`*

当
$$x = -4$$
时, $y = \frac{81}{625}$; $x = -1$ 时, $y = 0$; $x = 0$ 时, $y = 1$ (图 2.67).

1479.
$$y = \frac{x^2(x-1)}{(x+1)^2}$$
.

解 零点处:x = 0 及 x = 1.

垂直渐近线:x = -1;

斜渐近线:y = x - 3. 事实上,

$$k = \lim_{x \to \infty} \frac{y}{x} = 1, b = \lim_{x \to \infty} (y - kx) = -3.$$

图 2.67

$$y' = \frac{x(x^2 + 3x - 2)}{(x+1)^3}$$
, $\Leftrightarrow y' = 0 \ \mbox{if } x = 0 \ \m$

v (x+1); へv 列表

 x
 - √17 + 3
 - 1
 0
 1/5
 √17 - 3

 y' +
 0
 - ∞
 + 0
 - - 0
 +

 y" - ∞
 - - 0
 + + +

 y
 A 极大点
 不连续点
 A 极大点
 A 极小点

* 核点

当
$$x = -\frac{\sqrt{17} + 3}{2} \approx -3.56$$
 时,有极大值 $y = -\frac{34\sqrt{17} + 142}{32} \approx -8.82$;

当
$$x = 0$$
 时,有极大值 $y = 0$;
当 $x = \frac{\sqrt{17} - 3}{2} \approx 0.56$ 时,有极小值
$$y = \frac{34\sqrt{17} - 142}{32} \approx -0.06$$
;
当 $x = \frac{1}{5}$ 时, $y = -\frac{1}{45}$ (图 2.68).

图 2.68

1480.
$$y = \frac{x}{(1-x^2)^2}$$
.

解 零点处:x = 0.间断点:x = -1及x = 1. 新近线:x = -1,x = 1及y = 0. 以一x 替代x,y的绝对值不变,符号改变,故图形关于原点对称。

$$y' = \frac{3x^2 + 1}{(1 - x^2)^3}$$
,令 $y' = 0$,无实根 .
$$y'' = \frac{12x(x^2 + 1)}{(1 - x^2)^4}$$
,令 $y'' = 0$,得 $x = 0$. 经判别知:无极值, $x = 0$ 为拐点(图 2.69).

图 2.69

列表

I		1		0		1	
y'	_	00	+	+	+	~	_
<i>y</i> "		(co	_	0	+	∞	+
у	`*	间断点	7	拐点	7	间断点	7

1481.
$$y = \frac{(x+1)^3}{(x-1)^2}$$
.

解 零点处: $x = -1$. 间断点: $x = 1$.

垂直渐近线:x = 1;

斜渐近线:y = x + 5.事实上,

$$k = \lim_{x \to \infty} \frac{y}{x} = 1, b = \lim_{x \to \infty} (y - kx) = 5.$$

$$y' = \frac{(x+1)^2(x-5)}{(x-1)^3}$$
, $\Rightarrow y' = 0$ $\ \# x = -1$ $\ \# 5$.

$$y'' = \frac{24(x+1)}{(x-1)^4}$$
, $\Rightarrow y'' = 0 \notin x = -1$.

列表

<i>x</i>		- 1		1	, 	5	<u> </u>
<u>y'</u>	+	0	+	œ	_	0	+
y"		0	+	œ	+	+	+
уу	*	拐点	7	间断点	7	极小点	7

当
$$x = -1$$
 时, $y = 0$;
当 $x = 5$ 时, $y = 13 \cdot \frac{1}{2}$ (图 2.70).

1482.
$$y = \frac{x^4 + 8}{x^3 + 1}$$
.

解 垂直渐近线:
$$x = -1$$
;

斜渐近线:y = x. 事实上,

图 2.70

$$k = \lim_{x \to \infty} \frac{y}{x} = 1, b = \lim_{x \to \infty} (y - kx) = 0.$$

$$y'=\frac{x^6+4x^3-24x^2}{(x^3+1)^2},$$

$$y'' = \frac{-6x^5 + 96x^4 + 12x^2 - 48x}{(x^3 + 1)^3},$$

令 y' = 0,得 x = 0.2 及 $x \approx -2.4$. $y'|_{x=2} > 0$,故当 x

$$=2$$
时有极小值 $y=2\frac{2}{3}$;

$$y''|_{x=-2.4} < 0;$$
故

当 x ≈ - 2.4 时有极

大値 y ≈ - 3.2.

经判别知:当

x = 0.0.752.16.006

时有拐点. 渐近线 y = x 与曲线交于点(8,8). 如图 414

1483.
$$y = \frac{1}{1+x} - \frac{10}{3x^2} + \frac{1}{1-x}$$

解 图形对于 *Oy* 轴 对称.

$$\frac{\sqrt{10}}{4} \approx \pm 0.79.$$

图 2.71

$$\frac{4(8x^4-10x^2+5)}{3x^3(1-x^2)^2},$$

$$y' = 0$$
 无实根,无极值点.

$$y'' = \frac{4(8x^6 - 14x^4 + 15x^2 - 5)}{x^4(1 - x^2)^3},$$

|令y'' = 0,得 $x = \pm \sqrt{\frac{1}{2}} \approx \pm 0.71$. 经判别,此为拐

点,相应纵坐标 $y = -2\frac{2}{3}$.

渐近线:x = 0, x = -1, x = 1 和 y = 0.

当
$$x > 0$$
时, $y' > 0$,曲线上升.

当
$$0 < x < 0.71$$
 时, $y'' < 0$,图形呈凸状.

当
$$0.71 < x < 1$$
 时, $y'' > 0$,图形呈凹状.

当
$$1 < x < + \infty$$
 时, $y'' < 0$,图形呈凸状.

图形如图 2.72 所示.

1484.
$$y = (x - 3) \sqrt{x}$$
.

图 2.72

 \mathbf{M} 存在域: $0 \leq x < + \infty$.

零点处:x = 0和x = 3.

$$y' = \frac{3(x-1)}{2\sqrt{x}}, \Leftrightarrow y' = 0 \Leftrightarrow x = 1;$$

 $y'' = \frac{3(x+1)}{4x\sqrt{x}} > 0 \qquad (0 < x < +\infty),$

所以图形始终是凹的:

由于 $y''|_{x=1} > 0$,故当x = 1时有极小值y = -2; 当x = 0时,由 $\lim_{x \to 0+} y' = -\infty$ 知,曲线在x = 0点与y轴相切,易见它有边界极大值y = 0.

图形如图 2.73 所示.

1485. $y = \pm \sqrt{8x^2 - x^4}$.

解 存在域:需 $8-x^2 \ge 0$,即 $|x| \le 2\sqrt{2} \approx 2.83$. 零点处:x = 0和 $x = \pm 2\sqrt{2}$.

图 2.73

图形关于坐标原点及坐标轴对称, 下面就第一象限讨论之:

$$y' = \frac{2(4-x^2)}{\sqrt{8-x^2}}, \Leftrightarrow y' = 0 \ \# \ x = 2.$$

$$y'' = \frac{2x(x^2-12)}{(8-x^2)^{\frac{3}{2}}}, \Leftrightarrow y'' = 0 \ \# \ x = 2 \ \sqrt{3} \ \vec{x}$$
 $x = 0.$

然而点 $x = 2\sqrt{3}$ 不在存在域内,对于 x = 0来说,如果将曲线由第三象限穿向第一象限看成一分支曲线的话.则也可理解为拐点,同样由第四象限到第二象限的那个分支也有同样情况,故曲线呈双纽状.

当 0 < x < 2 时,y' > 0,当 $2 < x < 2\sqrt{2}$ 时,y < 0,故当 x = 2 时,有极大值 y = 4.当 $x = 2\sqrt{2}$ 及 x = 0 时,显然有极小值 y = 0.

前者是边界的极小值,而且曲线在 $x=2\sqrt{2}$ 处以 $x=2\sqrt{2}$ 为垂直切线.图形如图 2.74 所示.

图 2.74

1486. $y = \pm \sqrt{(x-1)(x-2)(x-3)}$.

 \mathbf{F} 存在域: $1 \leq x \leq 2$ 及 $3 \leq x < + \infty$.

零点处:x = 1, x = 2 和 x = 3.

图形关于 Ox 轴对称,下面就第一象限讨论之:

$$y' = \frac{3x^2 - 12x + 11}{2\sqrt{(x-1)(x-2)(x-3)}}, \diamondsuit y' = 0, \maltese x$$

$$=\frac{6-\sqrt{3}}{3} \approx 1.42$$
 经判别此时有极大値 $|y|=\frac{1}{3}$

•
$$\sqrt[4]{12} \approx 0.62$$
.

令 y = 0 解得 x = 3.468, 经判别是拐点.

当
$$x > 3$$
时,

y' > 0,曲线上

升.

当
$$x = 1,2$$

1487.
$$y = \sqrt[3]{x^3 - x^2 - x + 1}$$
. 解 零点处: $x = -1$ 和 $x = 1$. 又当 $x = 0$ 时, $y = 1$.

渐近线:
$$y = x - \frac{1}{3}$$
.

图 2.75

事实上,

$$k = \lim_{x \to \infty} \frac{y}{x} = 1, b = \lim_{x \to \infty} (y - kx) = -\frac{1}{3}.$$

$$y' = \frac{3x^2 - 2x - 1}{3\sqrt[3]{(x^3 - x^2 - x + 1)^2}}, \Leftrightarrow y' = 0 \Leftrightarrow$$

$$x = -\frac{1}{3}; \stackrel{\text{def}}{=} x = \pm 1 \text{ iff}, y' = \infty.$$

$$y'' = \frac{-8}{9} \cdot \frac{1}{(x - 1)^{\frac{4}{3}}(x + 1)^{\frac{5}{3}}}, \stackrel{\text{def}}{=} x = \pm 1 \text{ iff}, y'' = \infty.$$

列表

x		- 1		$-\frac{1}{3}$		1	
y '	+	8	+	0	_	8	+
<i>y</i> "	+	8	_		_	8	<u></u>
у	7	拐点	7	极大点	*	极小点	. 7

当
$$x=-\frac{1}{3}$$
 时,

有极大值 y ≈ 1.06;

当x = 1时,有极 小值y = 0.

图形如图 2.76 所

ボ

1488. $y = \sqrt[3]{x^2} - \sqrt[3]{x^2 + 1}$.

解 图形关于Oy轴对称.

$$y' = \frac{2}{3} \cdot \frac{(x^2 + 1)^{\frac{2}{3}} - x^{\frac{4}{3}}}{x^{\frac{1}{3}}(x^2 + 1)^{\frac{2}{3}}}$$

图 2.76

当x经过x = 0时,y'

由负变正,故当x = 0 时有极小值 y = -1,且 $y'_{x=0}$ = $-\infty$, $y'_{x=0}$ = $+\infty$,又当x < 0 时,y' < 0,当x > 0 时,y' > 0.同时,y' = 0 和 y = 0 均无实根,故知图形是向下凹的,且以 y = 0 为渐近线(图 2.77).

图 2.77

1489.
$$y = (x+2)^{\frac{2}{3}} - (x+2)^{\frac{2}{5}}$$
.

 $\mathbf{M} = \mathbf{U} = x$ 替代x,y变成=y,故图形关于坐标原点对称。

渐近线:
$$v=0$$
.

零点处:
$$x = 0$$
.

$$y' = \frac{2}{3} \cdot \frac{(x-2)^{\frac{1}{3}} - (x+2)^{\frac{1}{3}}}{(x+2)^{\frac{1}{3}}(x-2)^{\frac{1}{3}}} \cdot \stackrel{\text{th}}{=} x = \pm 2 \text{ lt}, y'$$

$$= \infty$$
.

$$y'' = \frac{2}{9} \cdot \frac{(x+2)^{\frac{1}{3}} - (x-2)^{\frac{4}{3}}}{(x+2)^{\frac{4}{3}}(x-2)^{\frac{4}{3}}}, \Leftrightarrow y'' = 0 \Leftrightarrow x = 0$$

0.

列表

<i>x</i>		- 2		0		2	
<u>y'</u>		- ∞	+	+	+	- ου	
y"		83		0	+	×	+
у	\sqrt	最小点	*	拐点	7	最大点	7

当 x = -2 时,有最小值 $y = -\sqrt[3]{16}$:

当
$$x = 2$$
 时,有最大值 $y = \sqrt[3]{16}$.

图形如图 2.78 所示。

1490.
$$y = (x+1)^{\frac{2}{3}} + (x-1)^{\frac{2}{3}}$$

解 图形关于 Oy 轴对称。

$$y' = \frac{2}{3} \left[\frac{1}{(x+1)^{\frac{1}{3}}} + \frac{1}{(x-1)^{\frac{1}{3}}} \right], \diamondsuit y' = 0 得 x$$

= 0; 当 $x = \pm 1$ 时, $y' = \infty$.

图 2.78

$$y'' = -\frac{2}{9} \left(\frac{1}{(x+1)^{\frac{4}{3}}} + \frac{1}{(x-1)^{\frac{4}{3}}} \right) < 0,$$

图形始终星凸状.

当 $x=\pm1$ 时,取得

最小値 y = ∛4 ≈ 1.59.

当x=0时,有极大

值 y=2.

图形如图 2.79 所示. --

图 2.79

1491.
$$y = \frac{x}{\sqrt[3]{x^2 - 1}}$$
.

解 图形关于坐标原点

对称.

零点处:x = 0.

间断点: $x=\pm 1$.

$$y' = \frac{x^2 - 3}{3(x^2 - 1)^{\frac{4}{3}}}, \diamondsuit y' = 0 \ \mbox{0 } \mb$$

$$y'' = -\frac{2x(x^2-9)}{9(x^2-1)^{\frac{7}{3}}}, \diamondsuit y'' = 0 \ \mbox{β} \ x = 0 \ \mbox{$\mbox{$\vec{\alpha}$}$} \ \pm 3.$$

列表

<i>x</i>		— 3		- √3		1		0		1		√3		3	
y'	+	+	+	0	_	&				. 3		0	+	+	+
y"	+	0			·-	ာင	+	0		89	+	+	<u>+</u>	0	.,.
у	7	拐点	7	极大点	71	何 断 点	7	拐点	1	间断 点	1	极小点	,*	拐点	7

渐近线:x = -1, x = 1.

当
$$x = \pm \sqrt{3}$$
 时. $y = \pm \frac{\sqrt{3}}{\sqrt[3]{2}} \approx \pm 1.38$;

当
$$x = \pm 3$$
 时, $y = \pm 1\frac{1}{2}$.

图形如图 2.80 所示.

图 2.80

1492.
$$y = \frac{x^2 \sqrt{x^2 - 1}}{2x^2 - 1}$$
.

解 存在域: $|x| \ge 1$. 图形关于Oy轴对称,且位于Ox轴的上方:新近线: $y = \pm \frac{x}{2}$.

$$y' = \frac{2x^5 - 3x^3 + 2x}{(2x^2 - 1)^2 \sqrt{x^2 - 1}},$$

$$y'' = \frac{1}{(2x^2 - 1)^3 (x^2 - 1)^{\frac{3}{2}}} \cdot (-6x^4 + 3x^2 + 2).$$

当 x > 1 时,y' > 0,y'' < 0,故曲线上升,图形呈凸状. 又当 $x = \pm 1$ 时,有边界的极小点 y = 0(图 2.81).

1493.
$$y = \frac{(1+x)^{\frac{3}{2}}}{\sqrt{x}}$$
.

解 存在域:x > 0.

渐近线:
$$x = 0$$
 及 $y = x + \frac{3}{2}$.

$$y' = \frac{(2x-1)\sqrt{x+1}}{2x\sqrt{x}}, \Leftrightarrow y' = 0 \Leftrightarrow x = \frac{1}{2}.$$

$$y'' = \frac{3}{4x^{\frac{5}{2}}(x+1)^{\frac{1}{2}}} > 0,$$

故图形是凹的.

当
$$x = \frac{1}{2}$$
 时. 有极小值

$$y = \frac{3}{2} \sqrt{3} \approx 2.60.$$

图形如图 2.82 所示.

1494.
$$y = 1 - x + \sqrt{\frac{x^3}{3 + x}}$$
.

存在域: $x \ge 0$

及 x < -3.

图 2.82

零点处:
$$x = \frac{5 + \sqrt{13}}{2} \approx 4.30.$$

斜渐近线:
$$y = \frac{5}{2} - 2x$$
. 事实上,

$$k = \lim_{x \to -\infty} \frac{y}{x} = -2.$$

$$b = \lim_{x \to -\infty} (y - kx) = \lim_{x \to -\infty} \left(1 + x + \sqrt{\frac{x^3}{x+3}} \right)$$

$$= \lim_{x \to -\infty} \frac{\frac{x^3}{x+3} - (x+1)^2}{\sqrt{\frac{x^3}{x+3} - x - 1}} = \frac{5}{2}.$$

水平渐近线: $y = -\frac{1}{2}$. 事实上,

$$k = \lim_{x \to +\infty} \frac{y}{x} = 0,$$

$$b = \lim_{x \to +\infty} (y - kx) = \lim_{x \to +\infty} \left(1 - x + \sqrt{\frac{x^3}{x+3}}\right)$$

$$= \lim_{x \to +\infty} \frac{x^3}{x+3} - (x-1)^2$$

$$\sqrt{\frac{x^3}{x+1}} + x - 1$$

$$= -\frac{1}{2}.$$

$$= -\infty, 故垂直漸近$$

$$y' = -1 +$$

$$\frac{\sqrt{x}(2x+9)}{2(x+3)^{\frac{3}{2}}},$$

令
$$y'=0$$
得 x

$$y'' = \frac{27}{4(x+3)^2 \sqrt{x(x+3)}}$$

> 0,故图形呈凹状,

当 x = -4 时有极小值 y = 13.

当x=0时有边界极大值y=1.

图形如图 2.83 所示。

1495.
$$y = \sqrt[3]{\frac{x^2}{x+1}}$$
.

解 零点处:x = 0.

垂直渐近线:x = -1.

$$y' = \frac{x+2}{3(x+1)\sqrt[3]{x(x+1)}},$$

令
$$y' = 0$$
 得 $x = -2$. 当 $x = 0$ 时 $y' = \infty$.
$$y'' = -\frac{2(x^2 + 4x + 1)}{x^2 + 2x^2}$$

$$y'' = -\frac{2(x^2 + 4x + 1)}{9x(x+1)^2 \sqrt[3]{x(x+1)}},$$

$$\Rightarrow y'' = 0$$
 得 $x = -2 \pm$

 $\sqrt{3}$.

经判别:

当 x = 0 时有

极小值 y=0;

当 x = -2 时

有

极大値 y = - ¾4

≈- 1.59.

祸点。

$$x = - (2 -$$

≈-0.27,此时 y

 ≈ 0.46 ;

$$x = -(2 + \sqrt{3})$$

 ≈ -3.73 ,此时 $\nu \approx -1.72$.

图形如图 2.84 所示.

1496.
$$y = \sqrt{\frac{x^4 + 3}{x^2 + 1}}$$
.

图形关于 Oy 轴对称. 函数值始终是正的.

渐近线: $y = \pm x$.

$$y' = \frac{x(x-1)(x+1)(x^2+3)}{(x^4+3)^{\frac{1}{2}}(x^2+1)^{\frac{3}{2}}},$$

图 2.84

令
$$y' = 0$$
 得 $x = 0$ 或 ± 1.

$$y'' = \frac{-x^3 + 20x^6 + 18x^4 + 36x^2 - 9}{(x^4 + 3)^{\frac{3}{2}}(x^2 + 1)^{\frac{5}{2}}}.$$

令 y'' = 0 得 $x \approx \pm 0.47$ 或 ± 4.58,经判别均为拐点:

当
$$x \approx \pm 0.47$$
 时, $y \approx 1.58$;

当
$$x \approx \pm 4.58$$
 时, $y \approx 4.49$.

当
$$x = 0$$
 时有极大值 $y = \sqrt{3} \approx 1.73$;

当
$$x=\pm 1$$
 时有极小值 $y=\sqrt{2}\approx 1.41$.

图形如图 2.85 所示.

图 2-85

1497. $y = \sin x + \cos^2 x$.

解 函数的周期 $T = 2\pi$. 在一周期 $0 \le x \le 2\pi$ 内的图形讨论如下:

零点处:
$$x = \pi + \arcsin \frac{\sqrt{5} - 1}{2} \approx 1.21\pi$$
 及
$$x = 2\pi - \arcsin \frac{\sqrt{5} - 1}{2} \approx 1.79\pi.$$

$$y' = \cos x (1 - 2\sin x)$$
, 令 $y' = 0$ 得
$$x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}$$
 及 $\frac{3\pi}{2}$;
$$y'' = -\sin x - 2\cos 2x$$
, 令 $y'' = 0$ 得 $4\sin^2 x - \sin x - 2 = 0$,

图 2.86

解之得

$$x_1 = rc \sin rac{1 + \sqrt{33}}{8}$$
,此时 $y_1 pprox 1.13$; $x_2 = \pi - rc \sin rac{1 + \sqrt{33}}{8}$,此时 $y_2 pprox 1.13$; $x_3 = \pi + rc \sin rac{\sqrt{33} - 1}{8}$,此时 $y_3 pprox 0.055$; $x_4 = 2\pi - rc \sin rac{\sqrt{33} - 1}{8}$,此时 $y_4 pprox 0.055$,

经判断: $x_1 \approx 0.32\pi$, $x_2 \approx 0.68\pi$, $x_3 \approx 1.20\pi$, $x_4 \approx 1.80\pi$ 均为拐点;

当
$$x = \frac{\pi}{2}$$
 时有极小值 $y = 1$;
当 $x = \frac{3\pi}{2}$ 时有极小值 $y = -1$;

当
$$x = \frac{\pi}{6}$$
 和 $x = \frac{5\pi}{6}$ 时,有极大值 $y = 1\frac{1}{4}$.

如图 2.86 所示. 图中主要点的坐标;

$$A(0,1), B\left(\frac{\pi}{6}, 1, \frac{1}{4}\right), C(0, 32\pi, 1, 13),$$

$$D\left(\frac{\pi}{2},1\right)$$
, $E(0,68\pi,1,13)$,

$$F\left(\frac{5}{6}\pi, 1\frac{1}{4}\right), G(1.20\pi, 0.055), H\left(\frac{3}{2}\pi, -1\right),$$

 $K(1.80\pi, 0.055)$ 和 $L(2\pi, 1)$.

1498. $y = (7 + 2\cos x)\sin x$.

解 图形关于原点对称,函数的周期 $T = 2\pi$.在一周期 $-\pi \le x \le \pi$ 内的图形讨论如下:

零点处:x = 0或 $\pm \pi$.

$$y' = 7\cos x + 2\cos 2x, \Leftrightarrow y' = 0$$

 $2\cos 2x + 7\cos x = 0.$

解之得

$$x = \arccos\frac{1}{4} \approx 0.42\pi,$$

$$x = - rc \cos \frac{1}{4}$$

$$\approx -0.42\pi$$
.

$$y'' = -7\sin x - 4\sin 2x,$$

令
$$y'' = 0$$
 得 $sinx(7 + 8cosx) = 0$,

解之得

$$x_1 = 0$$
,此时 $y_1 = 0$.

$$x_{2,3} = \pm \, \mathrm{arc} \, \cos \left(- \, \frac{7}{8} \right)$$

 $\approx \pm 0.84\pi$,此时

$$y_{2.3} \approx \pm 2.54;$$

$$x_{4.5} = \pm \pi$$
,此时 $y_{4.5} = 0$.

经判别:点 x_1, x_2, x_3 ,

 x_4 和 x_5 均为拐点;

当
$$x = - \arccos \frac{1}{4}$$
 时有

极小值 $y = -\frac{15}{8} \sqrt{15}$

 $\approx -7.3;$

当 $x = \arccos \frac{1}{4}$ 时有极

大值
$$y = \frac{15}{8} \sqrt{15} \approx 7.3.$$

图形如图 2.87 所示,图中

图 2.87

主要点的坐标:

$$A(0.42\pi,7.3), B(0.84\pi,2.54), C(\pi,0);$$

 $A'(-0.42\pi,-7.3), B'(-0.84\pi,-2.54),$

 $C'(-\pi,0).$

1499.
$$y = \sin x + \frac{1}{3} \sin 3x$$
.

解 图形关于坐标原点对称.函数的周期 $T=2\pi$.在一周期 $-\pi \le x \le \pi$ 内讨论图形.

零点处:x = 0或 ± π.

$$y' = \cos x + \cos 3x$$
, $\Leftrightarrow y' = 0$ \Leftrightarrow

$$x = -\frac{3\pi}{4}, -\frac{\pi}{2}, -\frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4};$$

 $y'' = -\sin x - 3\sin 3x,$

$$x_1 = 0, y_1 = 0;$$
 $x_{2.3} = \pm \arcsin \sqrt{\frac{5}{6}} \approx \pm 0.37\pi,$
 $y_{2.3} = \pm \frac{4}{27} \sqrt{30} = \pm 0.81;$
 $x_{4.5} = \pm \left(\pi - \arcsin \sqrt{\frac{5}{6}}\right) \approx \pm 0.63\pi,$
 $y_{4.5} = \pm \frac{4}{27} \sqrt{30} = \pm 0.81;$
 $x_{6.7} = \pm \pi, y_{6.7} = 0.$

经判别:点 x_1,x_2,x_3,x_4,x_5,x_6 和 x_7 均为拐点;

极 小 值: 当
$$x = -\frac{3\pi}{4}$$
, $-\frac{\pi}{4}$ 时, $y = -\frac{2}{3}$ √ 2 ≈ -- 0.94;

当
$$x = \frac{\pi}{2}$$
 时, $y = \frac{2}{3}$;

极大值: 当
$$x = -\frac{\pi}{2}$$
 时, $y = -\frac{2}{3}$;

当
$$x = \frac{\pi}{4}, \frac{3\pi}{4}$$
时, $y = \frac{2}{3}\sqrt{2} \approx 0.94$.

图形如图 2.88 所示,图中主要点的坐标:

图 2.88

$$A\left(\frac{\pi}{4}, 0.94\right), B(0.37\pi, 0.81), C\left(\frac{\pi}{2}, \frac{2}{3}\right).$$

$$D(0.63\pi, 0.81), E\left(\frac{3\pi}{4}, 0.94\right)$$
 和 $F(\pi, 0)$;

点 A',B',C',D',E',F',和点 A,B,C,D,E,F 关于原点对称。

1500.
$$y = \cos x - \frac{1}{2}\cos 2x$$
.

解 图形关于 Oy 轴对称. 函数的周期 $T = 2\pi$. 在一周期 $-\pi \le x \le \pi$ 内讨论图形.

零点处;
$$x = \pm \arccos \frac{1 - \sqrt{3}}{2} \approx \pm 0.62\pi$$
.
 $y' = -\sin x + \sin 2x$, \diamondsuit $y' = 0$ 得
 $x = 0$, $\pm \frac{\pi}{3}$, $\pm \pi$.
 $y'' = -\cos x + 2\cos 2x$, \diamondsuit $y'' = 0$ 得
 $x_{1,2} = \pm \arccos \frac{1 + \sqrt{33}}{8} \approx \pm 0.18\pi$, $y_{1,2} \approx 0.63$;
 $x_{3,4} = \pm \arccos \frac{1 - \sqrt{33}}{8} \approx \pm 0.70\pi$, $y_{3,4} \approx -0.44$.

经判别:点 x_1,x_2,x_3 和 x_4 均为拐点;

当
$$x = 0$$
 时有极小值 $y = \frac{1}{2}$;
当 $x = \pm \pi$ 时有极小值 $y = -\frac{3}{2}$;
当 $x = \pm \frac{\pi}{3}$ 时有极大值 $y = \frac{3}{4}$.

图 2.89

图形如图 2.89 所示,图中主要点的坐标:

$$A\left(0,\frac{1}{2}\right), B(0.18\pi,0.63), C\left(\frac{\pi}{3},\frac{3}{4}\right),$$

 $D(0.62\pi,0), E(0.70\pi,-0.44), F(\pi,-\frac{3}{2});$

点 B',C',D',E',F',与点 B,C,D,E,F 关于 O_Y 轴对称.

1501. $y = \sin^4 x + \cos^4 x$.

解 图形关于 Oy 轴对称,

由于

$$y = \sin^4 x + \cos^4 x$$
= $\left(\frac{1 - \cos 2x}{2}\right)^2 + \left(\frac{1 + \cos 2x}{2}\right)^2$
= $\frac{1}{4}(3 + \cos 4x)$,

故函数的周期 $T=\frac{\pi}{2}$. 在一周期 $-\frac{\pi}{4} \leqslant x \leqslant \frac{\pi}{4}$ 内讨论图形.

$$y' = -\sin 4x$$
. $\Leftrightarrow y' = 0$, $\# x = 0$ $\# \pm \frac{\pi}{4}$.

$$y'' = -4\cos 4x$$
. $\Leftrightarrow y'' = 0$, $\# x_{1,2} = \pm \frac{\pi}{8}$.

$$y_{1,2}=\frac{3}{4}.$$

经判别:点 xi和

x2 均为拐点;

当x = 0 时有极大值

$$y=1$$
;

当 $x = \pm \frac{\pi}{4}$ 时有极小

值
$$y=\frac{1}{2}$$
.

图形如图 2.90 所示,

图中主要点的坐标:

图 2.90

$$A(0,1)$$
, $B\left(\frac{\pi}{8},\frac{3}{4}\right)$ $A\left(\frac{\pi}{4},\frac{1}{2}\right)$.

1502. $y = \sin x \cdot \sin 3x$.

解 图形关于 O_y 轴对称.

由于

$$y = \sin x \sin 3x = -(\cos 2x - \frac{1}{4})^2 + \frac{9}{16}$$
,故函数的周期

$$T = \pi$$
. 在一周期 $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ 内讨论图形.

零点处:
$$x=0$$
或 $\pm \frac{\pi}{3}$.

$$y' = 2\sin 4x - \sin 2x$$
, $\diamondsuit y' = 0$ 得

$$x = 0, \pm \frac{\pi}{2}, \pm \frac{1}{2} \arccos \frac{1}{4}.$$

$$y'' = 8\cos 4x - 2\cos 2x, \Leftrightarrow y'' = 0$$
 \Leftrightarrow

$$x_{1,2} = \pm \frac{1}{2} \operatorname{arc} \cos \frac{1 + \sqrt{129}}{16} \approx \pm 0.11\pi$$

图 2.91

 $y_{1,2} \approx 0.29$;

$$x_{3,4} = \pm \frac{1}{2} \operatorname{arc} \cos \frac{1 - \sqrt{129}}{16} \approx \pm 0.36\pi,$$

 $y_{3,4} \approx -0.24.$

经判别:点 x_1, x_2, x_3 和 x_4 均为拐点;

极小值: 当x = 0时y = 0,

当
$$x = \pm \frac{\pi}{2}$$
 时, $y = -1$;

极大值: 当 $x = \pm \frac{1}{2} \operatorname{arc} \cos \frac{1}{4} \approx \pm 0.21\pi$ 时, $y = \frac{9}{16}$ 图形如图 2.91 所示,图中主要点的坐标:

$$A(0.11\pi,0.29), B(0.21\pi,\frac{9}{16}), C(\frac{\pi}{3},0),$$

$$D(0.36\pi, -0.24), E(\frac{\pi}{2}, -1).$$

1503.
$$y = \frac{\sin x}{\sin \left(x + \frac{\pi}{4}\right)}$$
.

解 利用 $\sin(\pi + x) = -\sin x$, 易知函数的周期 $T = \pi$.

在一周期 $0 \le x \le \pi$ 内讨论图形.

不连续点:
$$x = \frac{3\pi}{4}$$
.

零点处:x = 0或 π .

渐近线:
$$x = \frac{3\pi}{4}$$
.

$$y' = \frac{\sin\frac{\pi}{4}}{\sin^2\left(x + \frac{\pi}{4}\right)} > 0,$$

无极值,函数图形上升,

$$y'' = -\frac{2\sin\frac{\pi}{4}\cos\left(x + \frac{\pi}{4}\right)}{\sin^3\left(x + \frac{\pi}{4}\right)},$$

图 2.92

令
$$y'' = 0$$
 得 $x = \frac{\pi}{4}$, 对应的 $y = \frac{\sqrt{2}}{2}$. 经判别为拐点.

图形如图 2.92 所示,图中主要点的坐标:

$$A\left(\frac{\pi}{4},\frac{\sqrt{2}}{2}\right),B(\pi,0)$$
 $\Re C\left(\frac{5\pi}{4},\frac{\sqrt{2}}{2}\right).$

 $1504. \ \ y = \frac{\cos x}{\cos 2x}.$

解 图形关于 Oy 轴对称、函数的周期 $T=2\pi$ 、在一周期 $-\pi \le x \le \pi$ 内讨论图形、

零点处:
$$x=\pm \frac{\pi}{2}$$
.

渐近线:
$$x = \pm \frac{\pi}{4}$$

及
$$x = \pm \frac{3\pi}{4}$$
.

 $y' = \frac{\sin x(1 + 2\cos^2 x)}{\cos^2 2x}$,

 $\Rightarrow y' = 0$ 得 $x = 0$ 或 $\pm \pi$;

 $y'' = \frac{1}{\cos^3 2x} [3\cos x \cos^2 2x + 4\sin 2x \sin x (1 + 2\cos^2 x)]$,

 $\Rightarrow y'' = 0$ 得 $x = \pm \frac{\pi}{2}$.

经判别: 当 $x = 0$ 时有极小值 $y = 1$:
 当 $x = \pm \pi$ 时有极大值 $y = -1$;
 点 $x = \pm \frac{\pi}{2}$ 均为拐点,此时 $y = 0$.

当 $0 < x < \pi$ 时, $y' > 0$, 曲线上升;

当 $-\pi < x < 0$ 时, y' < 0, 曲线下降.

图形如图 2.93 所示.

图 2.93

1505.
$$y = 2x - tgx$$
.

解 零点处:
$$x = 0$$
及 $x \approx \pm 0.37\pi$.……

对称中心:
$$(k\pi, 2k\pi)(k = 0, \pm 1, \pm 2, \cdots)$$
.

渐近线:
$$x = \frac{2k+1}{2}\pi(k=0,\pm 1,\pm 2,\cdots)$$
.

$$y'=2-\sec^2x$$
, $\diamondsuit y'=0$ 得

$$x = \frac{\pi}{4} + k\pi \stackrel{\mathbf{d}}{\otimes} x = -\left(\frac{\pi}{4} + k\pi\right).$$

经判别: 当 $x = \frac{\pi}{4} + k\pi$ 时, 有极大值 $y = \frac{\pi}{2} - 1 + 2k\pi$;

当
$$x = -\left(\frac{\pi}{4} + k\pi\right)$$
 时,有极小值 $y = -$

$$\left(\frac{\pi}{2}-1+2k\pi\right)(k=0,1,2,\cdots).$$

$$y'' = -2\sec^2 x \operatorname{tg} x$$
, $\Leftrightarrow y'' = 0$ $\Leftrightarrow x = k\pi(k = 0, \pm 1, \pm 2, \cdots)$.

经判别此为拐点. 图形如图 2.94 所示

(仅描绘从
$$-\frac{3\pi}{2}$$
 到 $\frac{3\pi}{2}$ 区间内的图形).

1506.
$$y = e^{2x-x^2}$$
.

解 函数值始终为正的,故图形在 Ox 轴的上方.

$$y = e^{-(x-1)^2+1}$$
,于是图形关于直线 $x = 1$ 对称.

新近线:y = 0.

 $y' = (2-2x) \cdot e^{2x-x^2}$, 令 y' = 0 得 x = 1, 经判别知此 时有极大值 y = e;

$$y'' = 2(2x^2 - 4x + 1)e^{2x - x^2}$$
, $\Leftrightarrow y'' = 0 \Leftrightarrow x = 1 \pm \frac{\sqrt{2}}{2}$,

经判别为拐点, $y = \sqrt{e} \approx 1.65$.

图形如图 2.95 所示,图中各点的位置:

图 2.94

图 2.95

$$A(0,1), B\left(1-\frac{\sqrt{2}}{2}, \sqrt{e}\right), C(1,e),$$

$$D\left(1+\frac{\sqrt{2}}{2},\sqrt{e}\right).$$

1507. $y = (1 + x^2)e^{-x^2}$.

解 图形关于 Oy 轴对称,在 Ox 轴的上方.

渐近线:y = 0.

$$y' = -2x^3e^{-x^2}$$
, $\Rightarrow y' = 0 \ \# x = 0$, $\% \ \forall x = 0 \ \pitchfork$,

导数 y 从正变负,所以当 x = 0 时取极大值 y =

1.

图 2.96

$$y'' = 2x^2e^{-r^2}(2x^2-3)$$
, $\Leftrightarrow y'' = 0 \Leftrightarrow x = \pm \sqrt{\frac{3}{2}} \approx \pm 1.22$,

经判别为拐点,而 $y = \frac{5}{2}e^{-\frac{3}{2}} \approx 0.56$.

图形如图 2.96 所示,图中主要点的坐标:

1508. $y = x + e^{-x}$.

解
$$y' = 1 - e^{-x}$$
, 令 $y' = 0$ 得 $x = 0$, $y = 1$.

 $y'' = e^{-x} > 0$,图形向上凹,故当x = 0时有极小值 y = 1.

斜渐近线:y = x.事实上,

图 2.97

$$k = \lim_{x \to +\infty} \frac{y}{x} = 1, b = \lim_{x \to +\infty} (y - kx) = 0.$$

图形如图 2.97 所示。

1509. $y = x^{\frac{2}{3}}e^{-x}$.

解 零点处:x=0.

新近线:

y = 0(当 → + ∞ 时).

$$y' = -x^{-\frac{1}{3}}e^{-x}\left(x-\frac{2}{3}\right)^{2}$$

令
$$y' = 0$$
 得 $x = \frac{2}{3}$, 当 $x = 0$ 时, $y' = \infty$.

经判别: 当x = 0有极小值y = 0, 且(0,0) 点为失点.

当
$$x = \frac{2}{3}$$
 时有极大值 $y = \sqrt[3]{\frac{4}{9}}e^{-\frac{2}{3}} \approx 0.39.$

由此可知函数值始终为正的,故图形在 Ox 轴上方.

$$y'' = \frac{1}{9}e^{-x}x^{-\frac{4}{3}}(9x^2 - 12x - 2), \Leftrightarrow y'' = 0,$$

$$x_1 = \frac{2 - \sqrt{6}}{3} \approx -0.15, y_1 \approx 0.33,$$
 $x_2 = \frac{2 + \sqrt{6}}{3} \approx 1.48, y_2 \approx 0.30,$

经判别均为拐点,

图形如图 2.98 所示,图中主要点的坐标:

图 2.98

$$A(-0.15,0.34), B(\frac{2}{3},0.39), C(1.48,0.30).$$

1510.
$$y = \frac{e^x}{1+x}$$
.

解 当x < -1时,函数值为负的,

当 工 > 一 1 时,函数值为正的.

不连续点:x = -1. 垂直渐近线:x = -1.

$$k = \lim_{x \to -\infty} \frac{y}{x} = 0, b = \lim_{x \to -\infty} (y - kx) = 0.$$

$$y'=\frac{xe^x}{(1+x)^2},$$

令
$$\mathbf{y}' = 0$$
 得 $x = 0$.

经判别知此时有极小值

$$y=1$$
.

$$y'' = \frac{e^x(x^2+1)}{(1+x)^3},$$

当 x < -1 时,y'' < 0,故

图形是凸的;

当x > -1时,y'' > 0,故

图形是凹的.

图形如图 2.99 所示.

1511.
$$y = \sqrt{1 - e^{-x^2}}$$
.

解 图形关于 Oy 轴对

称.

零点处:x = 0.

函数值不为负,

当 x = 0 时有最小值 y = 0.

新近线:y=1.

$$y' = \frac{xe^{-x^2}}{\sqrt{1 - e^{-x^2}}}.$$

图 2.100

当x < 0, y' < 0; 当x > 0, y' > 0.

$$y'' = e^{-x^2} \frac{1 - 3x^2 - e^{-x^2} + 2x^2 e^{-x^2}}{(1 - e^{-x^2}) \sqrt{1 - e^{-x^2}}}.$$

令 $g(t) = 1 - 3t - e^{-t} + 2te^{-t} (0 \le t < + \infty)$,易

证 $g(t) \le 0$. 于是,对于 $x \ne 0$,恒有 y'' < 0,即图形呈凸 状. 而(0,0) 点为尖点(图 2,100).

$$1512. \ y = \frac{\ln x}{\sqrt{x}}.$$

 \mathbf{M} 存在域:x > 0.

零点处:x = 1.

渐近线:
$$x = 0 (x \rightarrow + 0), y = 0 (x \rightarrow + \infty).$$

$$y' = \frac{2 - \ln x}{2x^{\frac{3}{2}}}, \diamondsuit y' = 0$$
 得

$$x = e^2 \approx 7.39.$$

图 2.101

经判别知此时有极大值 $y = \frac{2}{e} \approx 0.74$.

$$y'' = \frac{3\ln x - 8}{4x^{\frac{5}{2}}}, \diamondsuit y'' = 0$$
 得

$$x = e^{\frac{8}{3}} \approx 14.39$$

经判别此为拐点,此时 $y = \frac{8}{3}e^{-\frac{4}{3}} \approx 0.70.$

图形如图 2.101 所示,图中主要点的坐标:

A(1,0), B(7.39,0.74), C(14.39,0.70).

1513. $y = \ln(x + \sqrt{x^2 + 1})$.

解由于 $\ln(\sqrt{x^2+1}-x) = -\ln(x+\sqrt{x^2+1})$,

故图形关于坐标原点对称,

零点处:x = 0.

$$y' = -\frac{1}{\sqrt{x^2 + 1}} > 0$$
,故图形始终上升,无极值点.

$$y'' = \frac{-x}{(x^2 + 1)^{\frac{3}{2}}},$$

$$\diamondsuit y'' = 0, \ \# x = 0,$$

在此点切线斜率为 k=1.

经判别此为拐点,此

时 y=0.

图形如图 2.102 所示:

解 图形关于坐标原点对称:

零点处:x = 0.

形是凹的,

图 2.103

当 x < 0 时,由对称性知图形是凸的.

于是得知 0(0,0) 为拐点,在此点切线斜率为 k=1. 从而,函数图形始终上升,如图 2.103 所示.

1515.
$$y = \frac{\arcsin x}{\sqrt{1-x^2}}$$
.

解 图形关于坐标原 点对称:

渐近线:
$$x = \pm 1$$
.

$$\frac{\sqrt{1-x^2}+x \arcsin x}{(1-x^2)^{\frac{3}{2}}}$$

故图形始终上升,

$$y'' = \frac{3x}{(1-x^2)^2} +$$

$$\frac{(1+2x^2)\arcsin x}{(1-x^2)^{\frac{5}{2}}},$$

今
$$y'' = 0$$
 得 $x = 0$.

当
$$-1 < x < 0$$
 时, $y'' < 0$,故图形是凸的,

当0 < x < 1时,y'' > 0,故图形是凹的,0(0,0) 为拐点 处,在此点切线斜率为k=1.

图形如图 2,104 所示,

1516.
$$y = x + arc tgx$$
.

图形关于坐标原点对称:

零点处:x=0.

渐近线:
$$y = x - \frac{\pi}{2}, y = x + \frac{\pi}{2}$$
. 事实上,

$$k = \lim_{x \to \infty} \frac{y}{x} = 1, b_1 = \lim_{x \to \infty} (x - kx) = -\frac{\pi}{2}, b_2 =$$

$$\lim_{x \to +\infty} (y - kx) = \frac{\pi}{2}.$$

$$y' = 1 + \frac{1}{1 + x^2} > 0$$

图 2.104

故图形始终上升,无 极值点,

$$y'' = -\frac{2x}{(1+x^2)^2}$$
.
令 $y'' = 0$ 得 $x = 0$,判
别知为拐点,在此点切线
斜率为 $k = 2$.

图形如图 2,105 所示.

1517.
$$y = \frac{x}{2} + \text{arc ctg} x$$
.

解 零点处:x≈-5.95.

新近线: $y = \frac{x}{2} + \pi$. 事

图 2.105

实上,

$$k = \lim_{x \to -\infty} \frac{\frac{x}{2} + \operatorname{arc ctg} x}{x} = \frac{1}{2}.$$

$$b = \lim_{x \to -\infty} \left[\left(\frac{x}{2} + \operatorname{arc ctg} x \right) - \frac{1}{2} x \right] = \pi;$$

同法还可得渐近线 $y = \frac{x}{2}$ (当 $x \rightarrow + \infty$ 时).

$$y' = \frac{1}{2} - \frac{1}{1+x^2}, \Leftrightarrow y' = 0 \Leftrightarrow x = \pm 1.$$

当x < -1及当x > 1时,y' > 0,曲线上升;

当 -1 < x < 1 时,y' < 0,曲线下降;

故当
$$x = 1$$
 时有极小值 $y = \frac{1}{2} + \frac{\pi}{4} \approx 1.285$, 当 $x = -1$

时有极大值
$$y = -\frac{1}{2} + \frac{3\pi}{4} \approx 1.856$$
.

图 2.106

$$y'' = \frac{2x}{(1+x^2)^2}, \Leftrightarrow y'' = 0 \Leftrightarrow x = 0.$$

当 x < 0 时,y'' < 0,故图形是凸的.

当 x > 0 时, y'' > 0, 故图形是凹的.

从而有拐点 x = 0,此时 $y = \frac{\pi}{2}$, $y' = -\frac{1}{2}$. 图形如图 2.106 所示.

1518. $y = x \arctan x$.

图形关于 Oy 轴对称.

函数值不为负,故图形始终在Ox轴上方.

渐近线:

$$y = \frac{\pi}{2}x - 1 \ (\, \underline{\, \, \underline{\,}} \, \, x \to - \, \infty \, \, \mathbf{f} \,).$$

$$y' = \frac{x}{1+x^2} + \text{arc tg} x,$$

令 y' = 0 得 x = 0.

当 x < 0 时, y' < 0, 图形下降; 当 x > 0 时, y' > 0, 图

形上升,故当x=0时,有极小值y=0.

$$y'' = \frac{2}{(1+x^2)^2} > 0$$
, 图

形是凹的.

图形如图 2.107 所示,y=-*z-1

1519.
$$y = \arcsin \frac{2x}{1 + x^2}$$
.

解 零点处:x = 0.

图形关于坐标原点 对称:

图 2,107

渐近线:y = 0.事实上,

$$k = \lim_{x \to \infty} \frac{\arcsin \frac{2x}{1+x^2}}{x} = 0,$$

$$b = \lim (y - kx) = 0.$$

$$y' = \frac{2\operatorname{sgn}(1-x^2)}{1+x^2}(|x| \neq 1).$$

当 |x| < 1 时,y' > 0,图形上升,

当 |x| > 1 时,y' < 0,图形下降,

当x=1时,直接从定义出发,可得

$$y'$$
 (1) = 1, y' ₊ (1) = -1,

故点 $\left(1,\frac{\pi}{2}\right)$ 为角点,且当 x=1 时有最大值 $y=\frac{\pi}{2}$.

利用对称性可知点 $\left(-1,-\frac{\pi}{2}\right)$ 也为角点,且当 x

$$=-1$$
时有最小值 $y=-\frac{\pi}{2}$;

$$y'_{-}(-1) = -1, y'_{+}(-1) = 1.$$

当 x = 0 时, y' = 1. 又点 x = 0 为拐点。 图形如图 2.108 所示。

图 2.108

1520.
$$y = \arccos \frac{1-x^2}{1+x^2}$$
.

解 零点处:x=0.

图形关于 Oy 轴对称.

函数值不为负,故图形始终在 Ox 轴上方.

渐近线: $y = \pi$. 事实上,

$$k = \lim_{x \to \infty} \frac{\arccos \frac{1-x^2}{1+x^2}}{x} = 0,$$

$$b = \lim_{x \to \infty} \cos \frac{1 - x^2}{1 + x^2} = \pi.$$

$$y' = \frac{2}{1+x^2} > 0 (x > 0)$$
,图形上升.

当x = 0时,直接从定义出发,得

$$y'_{+}(0) = 2.$$

由对称性知,y' (0) = -2,且当x < 0时,图形下降,故当x = 0时有极小值y = 0,此点为角点.

$$y'' = -\frac{4x}{(1+x^2)^2} < 0 (x > 0)$$
,图形是凸的.

由对称性知,当x < 0时,图形也是凸的。

图形如图 2.109 所示:

图 2,109

1521.
$$y = (x+2)e^{\frac{1}{x}}$$
.

解 零点处: x = - 2.

不连续点:x=0.

渐近线:y = x + 3. 事实上,

$$k = \lim_{x \to \infty} \frac{(x+2)e^{\frac{1}{x}}}{x} = 1,$$

$$b = \lim_{x \to \infty} \left((x+2)e^{\frac{1}{x}} - x \right)$$

$$= \lim_{x \to \infty} \left(3 + x + o\left(\frac{1}{x}\right) - x \right) = 3.$$

$$y'=e^{\frac{1}{x}}\left(\frac{x^2-x-2}{x^2}\right).$$

$$\phi y' = 0 得 x = 2 或 - 1.$$

当 0 < x < 2 时, y' < 0, 图形下降,

当 -1 < x < 0 时,

y' < 0,图形下降,

当 x < -1 及 x > 2

时,

y > 0,图形上升;

故当x = -1时有极

大值 $y = \frac{1}{e} \approx 0.37$.

当 ェ = 2 时有极小値

$$y=4\sqrt{e}\approx 6.59.$$

$$y'' = e^{\frac{1}{x}} \left(\frac{5x+2}{x^4} \right).$$

$$\diamondsuit y'' = 0$$
 得 $x = -$

图 2.110

$$\frac{2}{5}$$
,

当
$$x < -\frac{2}{5}$$
 时, $y'' < 0$, 图形是凸的,

当
$$x > -\frac{2}{5}$$
 $(x \neq 0)$ 时, $y'' > 0$, 图形是凹的,

故该点是拐点,此时 $y = \frac{8}{5}e^{-\frac{5}{2}} \approx 0.13$.

$$\lim_{x\to 0^{-}} y = 0, \lim_{x\to 0^{+}} y = +\infty.$$

图形如图 2.110 所示,图中各点的位置;

$$A(-2,0), B(-1,0,37),$$

$$C(-0.40, 0.13), D(2, 6, 59).$$

1522.
$$y = 2^{\sqrt{x^2+1} - \sqrt{x^2-1}}$$
.

解 存在域: $|x| \ge 1$. 图形关于 Oy 轴对称:

渐近线:y = 1. 事实上.

$$k = \lim_{x \to \infty} \frac{2^{\sqrt{x^2+1} - \sqrt{x^2-1}}}{x} = 0,$$

$$b = \lim_{n \to \infty} \left(2^{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\right) = 1.$$

当 $x = \pm 1$ 时有边界的极大值 $y = 2^{\sqrt{2}} \approx 2.67$.

$$y'_{+}(1) = -\infty$$

$$y'_{-}(-1) = +\infty$$

$$y'(x) = 2^{\sqrt{x^2+1} - \sqrt{x^2-1}}$$

$$\cdot \ln 2 \left(\frac{x}{\sqrt{x^2 + 1}} - \frac{x}{\sqrt{x^2 - 1}} \right),$$

故当x < -1时,y' > 0,曲线上升;

$$x > 1$$
 时, $y' < 0$, 曲线下降.

$$y''(x) = (\ln 2)^2 2^{\sqrt{x^2+1} - \sqrt{x^2-1}} \left(\frac{x}{\sqrt{x^2+1}} - \frac{x}{\sqrt{x^2-1}} \right)^2$$

$$+ \ln 2 \cdot 2^{\sqrt{x^2+1}-\sqrt{x^2-1}}$$

•
$$\left(\frac{1}{\sqrt{(x^2+1)^3}} + \frac{1}{\sqrt{(x^2-1)^3}}\right) > 0$$
,故图形呈凹状.

图形如图 2.111 所示:

1523.
$$y = \ln \frac{x^2 - 3x + 2}{x^2 + 1}$$
.

解 存在域:x < 1及x > 2.

与坐标轴的交点: $(0,\ln 2)$ 及 $\left(\frac{1}{3},0\right)$.

渐近线:y = 0;事实上,

$$k = \lim_{x \to \infty} \frac{\ln \frac{x^2 - 3x + 2}{x^2 + 1}}{x} = 0,$$

$$b = \lim_{x \to \infty} \frac{x^2 - 3x + 2}{x^2 + 1} = 0.$$

$$y' = \frac{3x^2 - 2x - 3}{(x - 1)(x - 2)(x^2 + 1)}, \Leftrightarrow y' = 0 \Leftrightarrow x = 0$$

$$\frac{1-\sqrt{10}}{3}$$
 ≈ - 0.72(另一根不在存在域内),经判别知

当 x ≈ - 0.72 时有极大值 y ≈ 1.12.

$$y'' = \frac{-6x^5 + 15x^4 - 30x^2 + 30x - 13}{(x - 1)^2(x - 2)^2(x^2 + 1)^2}, \Leftrightarrow y'' =$$

0 得 x ≈ - 1.52. 判别知为拐点,此时 y ≈ 0.99.

当 x < -1.49 时,y'' > 0,图形是凹的.

当x > 2时,y'' < 0,图形是凸的.

当 $x \rightarrow 1 - 0$ 及 $x \rightarrow 2 + 0$ 时, $y \rightarrow -\infty$.

图形如图 2.112 所示.

图中主要点的坐标:A(-1.52,0.99),B(-0.72,

1.12),
$$C(0,\ln 2),D(\frac{1}{3},0)$$
.

图 2,112

1524.
$$y = a \arcsin \frac{x}{a} - \sqrt{a^2 - x^2} \ (a > 0)$$

解 存在域: $|x| \leq a$.

与坐标轴交点:(0, - a) 及(0.67a,0).

当
$$x = -a$$
 时有边界的极小值 $y = -\frac{\pi}{2}a$.

当 x = a 时有边界的极大值 $y = \frac{\pi}{2}a$.

$$y' = \frac{a+x}{\sqrt{a^2-x^2}} > 0$$
(当 $|x| < a$ 时),故图形单调

上升,又

$$y'_{-}(a) = +\infty, y'_{+}(-a) = 0.$$

$$y'' = \frac{a(a+x)}{(a^2-x^2)^{\frac{3}{2}}} > 0(|x| < a),$$

故图形是凹的.

图形如图 2.113 所示,

图中主要点的坐

标:

$$A\Big(-a, -\frac{\pi}{2}a\Big),$$

$$B(0, -a)$$
,

C(0.67a,0),

$$D(a,\frac{\pi}{2}a)$$
.

1525. $y = \arccos \frac{1-x}{1-2x}$.

图 2.113

解 存在域: $\left|\frac{1-x}{1-2x}\right| \leq 1$, 两端平方之, 解得

$$x \leqslant 0$$
 或 $x \geqslant \frac{2}{3}$.

渐近线: $y = \frac{\pi}{3}$.事实上,

$$k = \lim_{x \to \infty} \frac{\arccos \frac{1-x}{1-2x}}{x} = 0,$$

$$b = \lim_{x \to \infty} \arccos \frac{1-x}{1-2x} = \frac{\pi}{3}.$$

当x=0时有边界的极小值y=0,

当 $x = \frac{2}{3}$ 时有边界的极大值 $y = \pi$.

$$y' = -\frac{\operatorname{sgn}(1-2x)}{(1-2x)\sqrt{3x^2-2x}},$$

当 $x \leq 0$

时,y" < 0,图形

是凸的;

当 $x \ge \frac{2}{3}$ $y = \frac{\pi}{3}$ 时, y'' > 0, 图形 是凹的.

又当x < 0

时,y' < 0,图形

图 2.114

下降;

当 $x > \frac{2}{3}$ 时, y' < 0, 图形也下降;

$$y'_{-}(0) = -\infty, y'_{+}(\frac{2}{3}) = -\infty.$$

图形如图 2.114 所示:

1526. $y = x^{x}$.

解 一般只讨论x>0. 函数值始终为正的,故图形在 458

Ox 轴的上方.

$$y' = x^x(1 + \ln x).$$

令 y' = 0 得 $x = \frac{1}{e} \approx 0.368$. 经判别知此时有极

小值

$$y = \left(\frac{1}{e}\right)^{\frac{1}{e}} \approx 0.692.$$

$$y'' = x^x \left((1 + \ln x)^2 + \frac{1}{x} \right) > 0$$
, 图形是凹的.

当x = +0时有边界值

y = 1(利用洛比塔法则求

得).

图形如图 2.115 所示.

1527. $y = x^{\frac{1}{x}}$.

渐近线:y=1. 事实

图 2,115

上,

$$k = \lim_{x \to +\infty} x^{\frac{1}{x}-1} = 0, b = \lim_{x \to +\infty} x^{\frac{1}{x}} = 1.$$

当x=+0时有边界的最小值y=0.

$$y' = x^{\frac{1}{x}-2}(1-\ln x)$$
. $\diamondsuit y' = 0$ $\maltese x = e$.

当x < e时,y' > 0,图形上升,

当x > e时,y' < 0,图形下降.

当 x = e 时有极大值 $y = e^{\frac{1}{\epsilon}} \approx 1.445$.

$$y'' = x^{\frac{1}{2}-4}(1 - 2\ln x + \ln^2 x - 3x + 2x\ln x), 2y'' = 0$$

得 $x \approx e^{1.47} (\approx 4.35)$.

当 0 < x <

 $e^{1.47}$ 时,y'' < 0,图

形是凸的:

 $\pm x > e^{1.47}$

时,y">0,图形是

图 2, 116

凹的,故 $x = e^{1.47}$ 是拐点, $y \approx 1.402$.

图形如图 2.116 所示,图中各点位置:

A(e,1,445), B(4.35,1.402).

1528. $y = (1+x)^{\frac{1}{x}}$.

解 存在域: $x > -1, x \neq 0$,函数值为正的,故图形在 Ox 轴上方.

$$y' = \frac{(1+x)^{\frac{1}{x}}}{x^2} \Big(\frac{x}{1+x} - \ln(1+x) \Big),$$

易证 $\frac{x}{1+x} - \ln(1+x) < 0$,故 y' < 0,从而图形下降.

渐近线:x = -1 和 y = 1.

图形是凹的 x = 0 为可移去不连续点。

460

图 2.117

图形如图 2.117 所示.

1529.
$$y = x \left(1 + \frac{1}{x}\right) (x > 0).$$

解
$$y' = \left(1 + \frac{1}{x}\right)^x + x\left(1 + \frac{1}{x}\right)\left(\ln\left(1 + \frac{1}{x}\right) - \frac{1}{x+1}\right) > 0$$
,

易证 $\ln\left(1+\frac{1}{x}\right)-\frac{1}{x+1}>0(x>0)$,故 y'>0,从而图形上升.

当 x → + 0 时,有边界的最小值 y = 0.

渐近线:
$$y = e\left(x - \frac{1}{2}\right)$$
, 事实上,

$$k = \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e.$$

$$b = \lim_{x \to +\infty} \frac{\left(1 + \frac{1}{x}\right)^x - e}{\frac{1}{x}}$$

$$= \lim_{x \to +\infty} \frac{\left(1 + \frac{1}{x}\right) \left(\ln\left(1 + \frac{1}{x}\right) - \frac{1}{x + 1}\right)}{-\frac{1}{x^2}}$$

图 2.118

图形如图 2.118 所示.

1530.
$$y = \frac{\frac{1}{e^{1-x^2}}}{1+x^2}$$
 (不研究凸凹性).

解 函数值始终为正的,故图形在Ox轴的上方.图形 关于Oy轴对称.

不连续点: $x = 1 \$ 及 x = -1.

$$y' = \frac{2x^3e^{\frac{1}{1-x^2}}(3-x^2)}{(1-x^2)^2(1+x^2)^2},$$

$$\phi y' = 0$$
 得 $x = 0$ 或 $x = \pm \sqrt{3}$.

经判别:

当 x = 0 时有极小值 $y = e_i$

当
$$x = -\sqrt{3}$$
 时有极大值 $y = \frac{1}{4\sqrt{e}} \approx 0.15$;

当
$$x = \sqrt{3}$$
 时有极大值 $y = \frac{1}{4\sqrt{e}} \approx 0.15$.

渐近线:y = 0; x = -1 及 x = 1;

图形如图 2.119 所示,图中主要点的坐标:

$$A(0.e), B(\sqrt{3}, 0.15), C(-\sqrt{3}, 0.15).$$

图 2,119

作出下列参数方程所表示的曲线:

1531.
$$x = \frac{(t+1)^2}{4}, y = \frac{(t-1)^2}{4}$$
.

解 先把此参数方程化成直角坐标系下的方程.

$$\sqrt{x} = \frac{|t+1|}{2}, \sqrt{y} = \frac{|t-1|}{2}.$$

当
$$t \ge 1$$
 时, $\sqrt{x} = \frac{t+1}{2}$, $\sqrt{y} = \frac{t-1}{2}$. 相减得
$$\sqrt{x} - \sqrt{y} = 1(x \ge 1, x > y); \tag{1}$$

当
$$t \le -1$$
 时, $\sqrt{x} = \frac{-t-1}{2}$, $\sqrt{y} = \frac{1-t}{2}$. 因而
$$\sqrt{y} - \sqrt{x} = 1(y \ge 1, y > x); \tag{2}$$

当 $-1 \le t \le 1$ 时, $\sqrt{x} = \frac{t+1}{2}$, $\sqrt{y} = \frac{1-t}{2}$, 相加得

$$\sqrt{x} + \sqrt{y} = 1(0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant 1).$$
 (3)

由方程(1),(2)及(3)

即得所给曲线的图形. 图

形关于 y = x 对称,如图

2.120 所示.

图中主要点的坐标:

A(1,0), B(4,1),

C(0,1),D(1,4),

图 2.120

$$E\left(\frac{1}{4},\frac{1}{4}\right)$$
.

1532. $x = 2t - t^2$, $y = 3t - t^3$.

解
$$x'_t = 2(1-t)$$
, $y'_t = 3(1-t^2)$, $\diamondsuit x'_t = 0$, $y'_t = 0$, 得 $t = \pm 1$.

作下表:

 t 的区间	x' t	<i>y'</i> ,	x	у		
(-∞, -1)	+	_	由 - ∞ 上升到 - 3	由 + ∞ 下降到 - 2		
(- 1,1)	+	+	由一3上升到1	由一2上升到2		
(1, +∞)			由1下降到 ∞	由2下降到∞		

$$\frac{dy}{dx} = \frac{3(1-t^2)}{2(1-t)} = \frac{3}{2}(1+t) \quad (t \neq 1). \ \diamondsuit \frac{dy}{dx} = 0 \ \raigntham{4}{7}$$
$$t = -1, \ \text{此时} \ x = -3, \ y = -2.$$

由于 $t = 1 \pm \sqrt{1-x}$,故存在域为 $x \le 1$,且图形有两支,又因 $\frac{d^2y}{dx^2} = \frac{3}{4(1-t)}$,故当t > 1时

图形呈凸状,而当 t < 1 时图形呈凹状,

当
$$x = 0$$
 时, $t = 0$ 或 $t = 2$, 此时 $y = 0$ 或 y

=-2.

图 2.121

当 y = 0 时, t = 0, $+\sqrt{3}$ 或 $-\sqrt{3}$,此时 x = 0, 0.464 或 -6.464.

图形如图 2.121 所示,图中主要点的坐标:

$$A(-6.464,0), B(-3,-2), D(1,2), E(0,+2).$$

1533.
$$x = \frac{t^2}{t-1}, y = \frac{t}{t^2-1}$$
.

解
$$x'_t = \frac{t(t-2)}{(t-1)^2}, y'_t = -\frac{1+t^2}{(t^2-1)^2}.$$
考虑 $x'_t = 0$,

$$y'_{t} = 0$$
 及 x'_{t} , y'_{t} 趋于 ∞ 的 t 值: $t = 0$, ± 1 及 2 .

作下表:

z的范围	x'_t	y'i	x	у
(-∞, -1)	+-	_	由 - ∞ 上升到 - 1/2	由0下降到一∞
(-1.0)	+	_	由 1/2 上升到 0	由 十 ∞ 下降到 0
(0,1)	 		由0下降到一∞	由0下降到一∞
(1,2)		_	由 + ∞ 下降到 4	由 + >>> 下降到 - 2/3
(2, +∞)	- -		由4上升到 + ∞	由 2 下降到 0

$$\frac{dy}{dx} = -\frac{1+t^2}{t(t-2)(t+1)^2},$$

当 $x \in (-\infty,0)$ 及 $(4,+\infty)$ 时, $\frac{dy}{dx} < 0$,因而曲线下降.

$$\frac{d^2y}{dx^2} = \frac{2(t-1)^3(t^4+3t^2+4t+1)}{t^3(t-2)^3(t+1)^4}, \, \diamondsuit \frac{d^2y}{dx^2} = 0 \, \textcircled{4} t$$

≈ -0.33, 经判别此时对应于拐点(-0.08, 0.30).

$$\Rightarrow \frac{dx}{dy} = 0$$
 得 $t = 0,2$ 及 -1 ,其中当 $t = 0$ 及 2 时有

垂直切线,切点为(0,0)及 $\left(4,\frac{2}{3}\right)$. 当t=-1时,x=

 $-\frac{1}{2}$, 此为垂直渐近线, 事实上,

$$\lim_{x \to -\frac{1}{2}} y = \lim_{t \to -1} \frac{t}{t^2 - 1} = \infty.$$

斜新近线为 $y = \frac{1}{2}x - \frac{3}{4}$. 事实上,

$$k = \lim_{t \to \infty} \frac{y}{x} = \lim_{t \to 1} \frac{1}{t(t+1)} = \frac{1}{2}$$

$$b = \lim_{t \to \infty} \left(y - \frac{x}{2} \right) = -\lim_{t \to 1} \frac{t(t+2)}{2(t+1)} = -\frac{3}{4}.$$

又当 $x \to +\infty$,即当 $t \to 1 + 0$ 时, $y \to +\infty$ 或当 $t \to +\infty$ 时, $y \to 0$;

又当 $x \to -\infty$ 时,即当 $t \to -\infty$ 时, $y \to 0$ 或当 $t \to 1-0$ 时, $y \to -\infty$.

总之, $\lim_{x \to +\infty} y = + \infty$ 或 0, $\lim_{x \to +\infty} y = 0$ 或 $- \infty$. 图形如图 2.122 所示,图中主要点的坐标:

$$A\left(-\frac{4}{3},-\frac{2}{3}\right)$$
, $B\left(4,\frac{2}{3}\right)$.

图 2.122

1534.
$$x = \frac{t^2}{1-t^2}, y = \frac{1}{1+t^2}.$$

解 由于以一t换t,x及y值不变,故只须考虑t的正

值、又因
$$t^2 = \frac{x}{1+x}$$
,故 $x \ge 0$ 或 $x \le -1$.

$$x'_t = \frac{2t}{(1-t^2)^2}, y'_t = \frac{-2t}{(1+t^2)^2},$$

$$\frac{dy}{dx} = -\left(\frac{1-t^2}{1+t^2}\right)^2 < 0, 曲线下降.$$

$$\frac{d^2y}{dx^2} = \frac{4(1-t^2)^3}{(1+t^2)^3}$$
,当 $[t] < 1$ 时图形呈凹状,当 $[t] > 1$

时图形呈凸状,

考虑 $x_i' = 0$, $y_i' = 0$ 及 x_i' , y_i' 趋于 ∞ 的 t 值:

$$t = 0, t = 1.$$

468

图 2.123

作下表:

t 的范围	x_{l}^{\prime}	y_i^t	х	У
(0,1)	.+-	_	由○上升到+∞	由 1 下降到 1/2
$(1, +\infty)$	+		由 — ∞ 上升到 一 1	由 1/2 下降到 0

渐近线为
$$y = \frac{1}{2}$$
. 事实上

$$k = \lim_{x \to \infty} \frac{y}{x} = \lim_{t \to +1} \frac{1 - t^2}{t^2 (1 + t^2)} = 0$$

$$b = \lim_{x \to \infty} (y - kx) = \lim_{t \to \pm 1} \frac{1}{1 + t^2} = \frac{1}{2}.$$

在点(-1,0) 处 $(t=+\infty)$, $\frac{dy}{dx}=-1$; 而在点(0,1) 处

(t=0) 仍有 $\frac{dy}{dx}=-1$. 这说明在这两点处的切线均与

Ox 轴成 135° 的角. 这两点且为边界极值点。

图形如图 2.123 所示:

1535.
$$x = t + e^{-t}, y = 2t + e^{-2t}.$$

$$x'_{t} = \frac{e^{t} - 1}{e^{t}},$$

$$y'_{t} = \frac{2(e^{2t} - 1)}{e^{2t}},$$

$$\frac{dy}{dx} = \frac{2(e^{t} + 1)}{e^{t}},$$

$$\frac{d^{2}y}{dx^{2}} = \frac{-2}{e^{t} - 1}.$$

作下表:

图 2,124

1的范围	x',	y',	x	У	$\frac{dy}{dx}$	$\frac{d^2y}{dx^2}$	图	形
(-∞,0)	-	_	由 + ∞ 下降到1	由 + ∞ 下降到1	+	+	上升,	凹状
(0. +∞)	+	+	由1上升到 + ∞	由1上升到 + ∞	+	_	上升,	凸状

渐近线:y = 2x,事实上,有

$$k = \lim_{x \to +\infty} \frac{y}{x} = \lim_{t \to +\infty} \frac{2t + e^{-2t}}{t + e^{-t}} = 2,$$

$$b = \lim_{x \to +\infty} (y - 2x) = \lim_{t \to +\infty} ((2t + e^{-2t}) - 2t + 2e^{-t}) = 0.$$

当 t=0 时,对应于曲线上的点 A(1,1),此点的导数 $\frac{dy}{dx}$ = 4. 当 $t=-\ln 2$ 时,曲线与渐近线相交.图形如图 2.124 所示.

1536.
$$x = a\cos 2t$$
, $y = a\cos 3t$ $(a > 0)$.

解 由于 $a\cos 2(t+2\pi) = a\cos 2t$ 及 $a\cos 3(t+2\pi) =$

acos3t. 因此,我们只须 考虑 t 在(0,2π) 内变化 时,x 及 y 的变化情况.

$$x_t' = -2a\sin 2t$$

$$y_t' = -3a\sin 3t$$
,

$$\frac{dy}{dx} = \frac{3\sin 3t}{2\sin 2t}.$$

考虑 $x'_i = 0, y'_i = 0$ 的值:

$$t=0,\frac{\pi}{3},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{4\pi}{3},$$

$$\frac{3\pi}{2}$$
, $\frac{5\pi}{3}$ 及 2π .

图 2.125

作下表:

t的范围	x_i'	yί	x	у	$\frac{dy}{dx}$	图形
$\left(0,\frac{\pi}{3}\right)$	_		由 a 下降到 <u>a</u>	由 a 下降到 一 a	+	上升
$\left(\begin{array}{c} \frac{\pi}{3},\frac{\pi}{2} \end{array}\right)$	1	+	由 $-\frac{a}{2}$ 下降到 $-a$	由 一 a 上升到 0	_	下降
$\left(\frac{\pi}{2},\frac{2\pi}{3}\right)$	+	+	由 一 4 上升到 一 4 2	由 0 上升到 a	+	上升
$\left(\frac{2\pi}{3},\pi\right)$	+		由 — <u>a</u> 上升到 a	由 0 下降到 - a		下降
$\left(\pi,\frac{4\pi}{3}\right)$	1	+	由 a 下降到 — <u>a</u>	由一业上升到。		下降

<i>t</i> 的范围	x'_t	y'_t	х	у	$\frac{dy}{dx}$	图形
$\left(\frac{4\pi}{3},\frac{3\pi}{2}\right)$	<u> </u>	-	由 — <u>a</u> 下降到 — a	由a下降到0	+	上升
$\left(\frac{3\pi}{2},\frac{5\pi}{3}\right)$	+	_	山 — a 上升到 — a	由0 F降到一a		下降
$\left(\frac{5\pi}{3}, 2\pi\right)$	+	+	由 - 2 上升到 a	由一a上升到a	+	上升

当
$$t = \frac{\pi}{3}$$
 时, $\frac{dy}{dx} = 0$,此时 $x = -\frac{a}{2}$, $y = -a$;
当 $t = \frac{\pi}{2}$ 时, $\frac{dy}{dx} = \infty$ (t 从小于 $\frac{\pi}{2}$ 趋于 $\frac{\pi}{2}$ 时, $\frac{dy}{dx} = -\infty$;
从大于 $\frac{\pi}{2}$ 趋于 $\frac{\pi}{2}$ 时, $\frac{dy}{dx} = +\infty$),此时 $x = -a$, $y = 0$;
当 $t = \frac{2\pi}{3}$ 时, $\frac{dy}{dx} = 0$,此时 $x = -\frac{a}{2}$, $y = a$;

当
$$t=\pi$$
时,利用洛比塔法则可求得 $\frac{dy}{dx}=-\frac{9}{4}$,此时 $x=$

当
$$t=0$$
时,利用洛比塔法则可求得 $\frac{dy}{dx}=\frac{9}{4}$,此时 $x=y=a$.

图形如图 2.125 所示,图中主要点的坐标;

$$A(a,a), B\left(\frac{a}{2},0\right), C\left(0,-\frac{\sqrt{2}}{2}a\right),$$
 $D\left(-\frac{a}{2},-a\right), E(-a,0), F\left(-\frac{a}{2},a\right),$

$$G\left(0,\frac{\sqrt{2}}{2}a\right),H(a,-a).$$

1537. $x = \cos^4 t$, $y = \sin^4 t$.

解 $\sqrt{x} = \cos^2 t$, \sqrt{y} = $\sin^2 t$, 相加即得 \sqrt{x} + \sqrt{y} = 1. 图形如图 2. 126 所示*).

*)参看1531题.

1538. $x = t \ln t, \ y = \frac{\ln t}{t}$.

图 2,126

有意义.

当 $0 < t \le 1$ 时,令 $t' = \frac{1}{t}$,则 $t' \ge 1$,且 $x = -\frac{\ln t'}{t'}$, $y = -t' \ln t'$,所以,图形关于直线 x + y = 0 对称.

以下讨论图形的极值点,凹凸性及拐点,不妨设 $t \ge 1$;

$$\frac{dy}{dx} = \frac{1 - \ln t}{t^2(1 + \ln t)}, \frac{d^2y}{dx^2} = \frac{2\ln^2 t - 4}{t^3(1 + \ln t)^2}.$$

令 $1 - \ln t = 0$,得 t = e. 经判别此时图形有极大值点: $A\left(e, \frac{1}{e}\right)$.

令 $\ln^2 t - 2 = 0$,得 $t = e^{\sqrt{2}}$,相应的点

图 2.127

$$B\left(\sqrt{2}e^{\sqrt{2}},\frac{\sqrt{2}}{e^{\sqrt{2}}}\right)$$
 为图形的拐点.

当 $1 \le t \le e^{\sqrt{2}}$,即当 $0 \le x \le \sqrt{2}e^{\sqrt{2}}$ 时,图形 呈凸状. 当 $t \ge e^{\sqrt{2}}$,即当 $x \ge \sqrt{2}e^{\sqrt{2}}$ 时,图形呈凹 状.

作下表:

t 的范围	x_i'	yί	æ	у	$\frac{dy}{dx}$	图形
$\left(0,\frac{1}{e}\right)$	1	+	由 0 下降到 — 1	由一∞上升到一。		下降
$\left(\begin{array}{c} 1 \\ e \end{array}, e\right)$	+ .	+	由一皇上升到 e	由 e 上升到 1	+	上升
(e, + ∞)	+		由←上升到 + ∞	由 一下降到 0	_	下降

曲线通过点(0,0),在此点切线的倾角为 45°.

水平渐近线为y=0. 事实上,

$$k = \lim_{x \to +\infty} \frac{y}{x} = \lim_{t \to +\infty} \frac{1}{t^2} = 0,$$

$$b = \lim_{t \to +\infty} (y - kx) = \lim_{t \to +\infty} \frac{\ln t}{t} = \lim_{t \to +\infty} \frac{\frac{1}{t}}{1} = 0.$$

垂直渐近线为x=0.事实上,

$$\lim_{t\to 0} y = \lim_{t\to +0} y = \lim_{t\to +0} \frac{\ln t}{t} = -\infty.$$

图形如图 2.127 所示:

1539.
$$x = \frac{a}{\cos^3 t}, y = a \operatorname{t} g^3 t (a > 0).$$

解 将此参数方程化为直角坐标系下的方程:

$$x^{\frac{2}{3}} - y^{\frac{2}{3}} = a^{\frac{2}{3}}.$$

显然, $|x| \ge a$. 且图形对于两坐标轴都对称,故只须考虑在第一象限部分的函数图形.由于

$$y' = x^{-\frac{1}{3}}y^{\frac{1}{3}}, y'' = \frac{1}{3}x^{-\frac{2}{3}}y^{\frac{1}{3}}(y^{-\frac{2}{3}} - x^{-\frac{2}{3}}).$$

而当x > 0, y > 0时,有x > y. 从而有

故图形上升且呈凹状,

在(a,0) 点的切线的倾角为 0°. 图形如图 2.128 所示.

图 2.128

1540. $x = a(\sinh t - t), y = a(\cosh t - 1) (a > 0).$

解 当t用 = t换时,x的大小不变符号相反,而y却不变,故图形对于 Oy 轴对称.

$$x'_{t} = a(\cosh t - 1), y'_{t} = a \sinh t,$$

$$\frac{dy}{dx} = \frac{e^{t} + 1}{e^{t} - 1}, \frac{d^{2}y}{dx^{2}} = -\frac{4e^{2t}}{a(e^{t} - 1)^{4}}.$$

作下表:

t 的范围	x_i'	y,	x	y	$\frac{dy}{dx}$	$\frac{d^2y}{dx^2}$	图形
(-∞,0)	+	_	由一∞上升到0	由 + ∞ 下降到 0	_	-	下降
(0, +∞)	+	+	由 0 上升到 + ∞	由 0 上升到 + ∞	+	_	上升

当
$$t \rightarrow -0$$
时, $x \rightarrow -0$, $\frac{dy}{dx} \rightarrow -\infty$;

当 $t \rightarrow +0$ 时, $x \rightarrow +0$, $\frac{dy}{dx} \rightarrow +\infty$. 因此在(0,0)点的切476

线垂直于 Ox 轴.

图形如图 2.129 所示:

图 2-129

把下列曲线方程变成参数式,然后作出这些曲线:

1541.
$$x^3 + y^3 - 3axy = 0 (a > 0)$$
.

解 设 y = tx,代入方程,并消去 x^2 ,即得

$$x = \frac{3at}{1+t^3}, y = \frac{3at^2}{1+t^3}.$$

由于

$$x'_{t} = \frac{6a\left(\frac{1}{2}-t^{3}\right)}{(1+t^{3})^{2}}, y'_{t} = \frac{3at(2-t^{3})}{(1+t^{3})^{2}}.$$

考虑 $x'_i = 0, y'_i = 0$ 及 x'_i, y'_i 趋于无穷的 t 值:

作下表示

t 的范围	x_i'	y!	æ	У
(-∞, -1)	+		由 0 上升到 + ∞	由 0 下降到 - ∞
(-1,0)	+	_	由 - ∞ 上升到 0	. 由 + ∞ 下降到 0
$\left(0,\frac{1}{\sqrt[3]{2}}\right)$	+	+	由 0 上升到 3 4 4 4 4	由 0 上升到 ³ 2a
$\left(\frac{1}{\sqrt[3]{2}},\sqrt[3]{2}\right)$		+	由 ³ √4a 下降到 ³ √2a	由 ∛2a 上升到 ∛4a
$(\sqrt[3]{2},+\infty)$	_	_	由 ∛2a 下降到 0	由 √44 下降到 0

$$\frac{dy}{dx} = \frac{t(2-t^3)}{2\left(\frac{1}{2}-t^3\right)},$$

当
$$t = 0$$
 时, $x = 0$, $y = 0$, $\frac{dy}{dx} = 0$; 当 $t \to +\infty$ 时,

$$x = 0, y = 0, \frac{dy}{dx} = \lim_{t \to +\infty} \frac{t(2-t^3)}{2(\frac{1}{2}-t^3)} = \infty.$$
 这说明,

坐标原点是曲线的二重点.曲线的一支与Ox轴相切,一支与Oy轴相切.

渐近线:
$$x + y + a = 0$$
. 事实上,

$$k = \lim_{x \to \infty} \frac{y}{x} = \lim_{t \to -1} \frac{3at^2(1+t^3)}{3at(1+t^3)} = -1,$$

$$b = \lim_{x \to \infty} (y - kx) = \lim_{t \to -1} \frac{3at^2 + 3at}{1 + t^3} = \lim_{t \to -1} \frac{6at + 3a}{3t^2}$$
$$= -a.$$

图形如图 2.130 所示 . 图中主要点的坐标:

$$A(a \sqrt[3]{4}, a \sqrt[3]{2}),$$

$$B(\frac{3}{2}a, \frac{3}{2}a),$$

$$C(a \sqrt[3]{2}, a \sqrt[3]{4}).$$
1542. $x^2 + y^2 = x^4 + y^4.$

解 显见曲线关于 两坐标轴对称,同 时关于直线 y = x 对称.

设x = ty,则当

图 2.130

 $y \neq 0$ 时,得

$$y = \pm \sqrt{\frac{t^2 + 1}{t^4 + 1}}.$$

根据对称性,不妨限于考察方程

$$\begin{cases} x = t \sqrt{\frac{t^2 + 1}{t^4 + 1}}, \\ y = \sqrt{\frac{t^2 + 1}{t^4 + 1}}. \end{cases} (0 \le t \le 1).$$

由于 $0 \le x \le 1, x \le y$, 故曲线界于纵轴正半轴与直线 y = x 之间,由此根据对称性即可作出全部图形. 当t 由 0 连续变到 1 时, 曲线上的点(0,1) 连续变化到点 (1,1). 由于

经判别知,当x = 0时y取得极小值;当 $x = -\frac{1}{\sqrt{2}}$ 时, y取得极大值.类似地,当y = 0时,x取得极小值x = 1;当 $y = -\frac{1}{\sqrt{2}}$ 时,x取得极大值 $x \approx 1.10$.

由对称性即得知:当x=0时,有极小值|y|=1; 当 $|x|=-\frac{1}{\sqrt{2}}$ 时,有极大值 $|y|\approx 1.10$;当y=0时有极小值|x|=1;当 $|y|=\frac{1}{\sqrt{2}}$ 时,有极大值 $|x|\approx 1.10$.

值得注意的是,当t=1时即在点(1,1)处, $\frac{dy}{dx}$ =-1,因而曲线在点(1,1)光滑联接.

原点(0,0) 是一个孤立点,再计算几点的坐标 $(0 \le t \le 1)$:

1	0	0, 2	6. 1	0, 6	$\sqrt{\frac{2}{2}+1}$	0.8	0, 9	1
x	0	0. 20	0.42	0, 65	0.71	0,86	0.94	1
y	1	1. 02	1.06	1, 09	1. 10	1.08	1.64	1

曲线与两坐标轴的

2.131 所示.

1543.
$$x^2y^2 = x^3 - y^3$$
.

方程,即得

$$x = \frac{1 - t^{3}}{t^{2}},$$

$$y = \frac{1 - t^{3}}{t} (t \neq 0).$$

$$x'_{t} = -\frac{2 + t^{3}}{t^{3}}, y'_{t} = -\frac{1 + 2t^{3}}{t^{2}},$$

$$\frac{dy}{dx} = \frac{t(1 + 2t^{3})}{t^{3}}.$$

令
$$x'_{i} = 0$$
, $y'_{i} = 0$ 及 x'_{i} , y'_{i} 趋于 ∞ , 得 $t = -\sqrt[3]{2}$, $-\frac{1}{\sqrt[3]{2}}$, 0 .

作下表:

/ 的范围	x',	,y' t	.т	У	dy 图 dx 光	g ()
$(-\infty, -\sqrt[3]{2})$		+	由十二下降到一3	由 $-\infty$ 上升到 $-\frac{3}{\sqrt[3]{2}}$	[1	¥
$(-\sqrt[3]{2},-\frac{1}{\sqrt[3]{2}})$	+	+	由 3 上升到 3 2/2	由 $-\frac{3}{\sqrt[3]{2}}$ 上升到 $-\frac{3}{\sqrt[3]{4}}$	+ 1	出中
$\left(-\frac{1}{\sqrt[3]{2}},0\right)$	+	_	由 3 上升到 + ∞	由 - 3/4 下降到 - ∞		下筝
(0, +∞)	-		由+∞下降到一∞	由+∞下降到-∞	+ 3	<u>ተ</u>

$$\frac{dy}{dx}\Big|_{t=-\frac{1}{\sqrt{2}}} = \infty, \frac{dy}{dx}\Big|_{t=-\frac{1}{\sqrt{2}}} = 0,$$

$$\frac{dy}{dx}\Big|_{t=1} = 1.$$

图形通过点 $A\left(\frac{3}{\sqrt[3]{4}}, -\frac{3}{\sqrt[3]{2}}\right)$, $B\left(\frac{3}{\sqrt[3]{2}}, -\frac{3}{\sqrt[3]{4}}\right)$, 及 O(0,0). 如图 2.132 所示 .

1544. $x^y = y^x (x > 0, y > 0)$.

解 由方程显见直线 y = x 是图形的一部分. 对于 $y \neq x$ 的部分,图形显然关于直线 y = x 对称.

设 $x=(1+t)^{\frac{1}{t}}$,则 $y=(1+t)^{1+\frac{1}{t}}$,即当 $x\neq y$ 时, 曲线的参数方程为

$$\begin{cases} x = (1+t)^{\frac{1}{t}}, \\ y = (1+t)^{1+\frac{1}{t}}. \end{cases}$$

由条件 x > 0, y > 0 知,t 满足 $-1 < t < + \infty$,由于

图 2.132

$$\lim_{t \to -1+0} x = \lim_{t \to -1+0} (1+t)^{\frac{1}{r}} = +\infty,$$

$$\lim_{t \to -1+0} y = \lim_{t \to -1+0} (1+t)^{1+\frac{1}{t}} = 1;$$

$$\lim_{t \to +\infty} x = 1, \lim_{t \to +\infty} y = +\infty,$$

故直线 x = 1 和 y = 1 是曲线的渐近线、又因 $\lim_{t \to 0} x = \lim_{t \to 0} y = e$,

故点(e,e) 是曲线上的二重点. 由于

$$\frac{dy}{dt} = (1+t)^{1+\frac{1}{t}} \left(\frac{t - \ln(1+t)}{t^2} \right),$$

$$\frac{dx}{dt} = (1+t)^{\frac{1}{t}} \left(\frac{t - (1+t)\ln(1+t)}{t^2(1+t)} \right),$$

于是,

$$\frac{dy}{dx} = (1+t)\Big(1 + \frac{t^2}{t - (1+t)\ln(1+t)}\Big).$$

容易证明:

$$\lim_{t\to 0}\frac{dy}{dx}=-1,$$

并且当 $t \in (0, +\infty)$,从而 $x \in (1,e)$ 时,恒有 $\frac{dy}{dx} < 0$.
事实上,设

$$g(t) = t^2 - \{(1+t)\ln(1+t) - t\},$$

则 g(0) = 0,并且容易证明

$$g'(t) = 2t - \ln(1+t) > 0,$$

(1+t)\ln(1+t) - t > 0.

从而,有

$$g(t) = t^2 - ((1+t)\ln(1+t) - t) > 0,$$

即

$$\frac{t^2}{(1+t)\ln(1+t)-t} > 1.$$

于是,

$$\frac{dy}{dx} = (1+t)\left(1 - \frac{t^2}{(1+t)\ln(1+t) - t}\right) < 0.$$

由对称性知,对于 $t \in (-1,0)$,也有 $\frac{dy}{dx} < 0$. 而当t = 0 时,有

$$\left. \frac{dy}{dx} \right|_{x=0} = \lim_{t \to 0} \frac{dy}{dx} = -1$$

所以,曲线始终是单调下降的,并呈凹状,无极值和拐点,对应于t的变化范围0至1.

计算几点坐标如下:

t	0	~ 0.2	- 0.4	- 0.6	- 0.8	- 0.9	t → — 1
x	€	3.05	3, 59	4. 50	7. 48	12.9	x ++ 00
у	e	2.44	2.15	1.84	1.49	1. 29	y → 1

综上所述,曲线的图形由两部分组成,一部分是直线,另一部分是对称于直线y=x的曲线(图 2.133).

1545. 作出曲线 $ch^2x - ch^2y = 1$ 的图形.

解 显见曲线的图形关于 两坐标轴是对称的,故只须 在第一象限 $x \ge 0$, $y \ge 0$ 范 围内进行讨论,考虑渐近线;

图 2.133

$$\lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \frac{\ln(\sinh x + \sqrt{\sinh^2 x - 1})}{x}$$

$$= \lim_{x \to +\infty} \frac{1}{\sinh x + \sqrt{\sinh^2 x - 1}} \left(\cosh x + \frac{\sinh x}{\sqrt{\sinh^2 x - 1}} \cosh x \right)$$

$$= \lim_{x \to +\infty} \frac{\cosh x}{\sqrt{\sinh^2 x - 1}} = \lim_{x \to +\infty} \sqrt{\frac{\sinh^2 x + 1}{\sinh^2 x - 1}} = 1.$$
为求 $\lim_{x \to +\infty} (y - x)$,令

$$u = y - x = \ln(\sinh x + \sqrt{\sinh^2 x - 1}) - x.$$
因为

$$\lim_{x \to +\infty} e^x = \lim_{x \to +\infty} \frac{\sinh x + \sqrt{\sinh^2 x - 1}}{e^x}$$

$$= \lim_{x \to +\infty} \frac{\cosh x + \frac{\sinh x \cosh x}{\sqrt{\sinh^2 x - 1}}}{e^x}$$

$$= \lim_{x \to +\infty} \frac{\cosh x (\sinh x + \sqrt{\sinh^2 x - 1})}{e^x} = 1,$$

所以

$$\lim_{x\to +\infty} (y-x) = 0.$$

因此,直线 y = x 是原曲线的渐近线.

因为当y=0时 chy取最小值 chy=1,所以,x必须满足

$$\cosh^2 x \ge 2$$
 或 $|x| \ge \ln(1 + \sqrt{2}) \approx 0.88$,
并且当 $y = 0$ 时, $|x| = \ln(1 + \sqrt{2})$.

曲线方程也可表示成

$$(\cosh x - \cosh y)(\cosh x + \cosh y) = 1,$$

从而令

$$chx - chy = t$$

即

$$chx + chy = \frac{1}{t}.$$

所以,对于第一象限部分的曲线方程可表示为

$$\begin{cases} \operatorname{ch} x = \frac{t + \frac{1}{t}}{2}, \\ \operatorname{ch} y = \frac{\frac{1}{t} - t}{2}, \end{cases} (0 < t \leq \sqrt{2} - 1).$$

由原方程知

$$2\cosh x + \cosh y \cdot y' = 0$$

或

$$y' = \frac{\text{ch}x\text{sh}x}{\text{ch}y\text{sh}y} > 0.$$

因而,曲线是单调上升的。

又由于

$$y'' = \frac{(\text{ch}^2 x + \text{sh}^2 x) \text{ch} y \text{sh} y - (\text{sh}^2 y + \text{ch}^2 y) \cdot y' \cdot \text{ch} x \text{sh} x}{(\text{ch} y \text{sh} y)^2}$$

$$= \frac{(\text{ch}^2 x + \text{sh}^2 x) \text{ch}^2 y \text{sh}^2 y - (\text{sh}^2 y + \text{ch}^2 y) \text{ch}^2 x \text{sh}^2 x}{(\text{ch} y \text{sh} y)^3},$$

简
$$(\text{ch}^2 x + \text{sh}^2 x) \text{ch}^2 y \text{sh}^2 y - (\text{sh}^2 y + \text{ch}^2 y) \text{ch}^2 x \text{sh}^2 x}$$

$$= (\text{ch}^2 x + \text{sh}^2 x) \text{ch}^2 y \text{sh}^2 y - (\text{sh}^2 y + \text{sh}^2 x \text{sh}^2 y) \text{ch}^2 y - \text{ch}^2 x)$$

$$= (\text{ch}^2 x \text{ch}^2 y (\text{sh}^2 y - \text{sh}^2 x) + \text{sh}^2 x \text{sh}^2 y (\text{ch}^2 y - \text{ch}^2 x)$$

$$= (\text{ch}^2 x \text{ch}^2 y (\text{ch}^2 y - \text{ch}^2 x) + \text{sh}^2 x \text{sh}^2 y)$$

$$= (\text{ch}^2 x \text{ch}^2 y + \text{sh}^2 x \text{sh}^2 y) < 0.$$

$$= (\text{ch}^2 x \text{ch}^2 y + \text{sh}^2 x \text{sh}^2 y) < 0.$$

$$= \text{fl.}, y'' < 0$$

$$= \text{fl.}, y'' < 0$$

计算几点的坐标如下:

t	$\sqrt{2}-1$	0.4	0.3	0, 2	0.1	1-0
<i>x</i>	$ln(1+\sqrt{2})$	0. 92	1. 07	1. 61	2. 31	<i>x</i> →+∞
у	0	0. 33	0. 98	1. \$3	2. 28	y→+∞

2.134 所示. 作出

曲线形状如图

下列用极坐标(φ,r)

(r≥0) 表示的函数 的图形:

$$1546. \ r = a + b \cos \varphi$$

$$(0 < a \leq b)$$
.

解 当
$$a=b$$
时, $r=a(1+\cos\varphi)$.

这就是心脏线,如

图 2,135 所示,

当0 < a < b 时,其几何轨迹叫做蚶线,由于 $r(-\varphi) = r(\varphi)$.故图形关于极轴对称。由于当 $r \ge 0$ 时, $|\varphi| \le \alpha = \arccos\left[-\frac{a}{b}\right]$.故当 $\varphi = 0$ 时r 有极大值r = a + b;当 $\varphi = \pm \alpha$ 时r 有边界的极小值r = 0.又由于 $r' = -b\sin\varphi < 0$,故当 φ 由0变到 α 时,r由a + b变到0.当r < 0时, $\alpha < |\varphi| \le \pi$,仿照上述讨论,r由0下降到a - b.

极点 ○ 为二重点,如图 2.136 所示,如果不考慮 r < 0,则极点 ○ 不是二重点,

图 2.135

图 2.136

1547. $r = a \sin 3\varphi \ (a > 0)$.

解 由于 $r\left(\varphi + \frac{2\pi}{3}\right) = r(\varphi)$,故函数r是以 $\frac{2\pi}{3}$ 为周期的函数.

函数的存在域为:

$$0 \le \varphi \leqslant \frac{\pi}{3}$$
; $\frac{2\pi}{3} \leqslant \varphi \leqslant \pi$; $\frac{4\pi}{3} \leqslant \varphi \leqslant \frac{5\pi}{3}$.

为此, 只要讨论 $0 \leqslant \varphi \leqslant \frac{\pi}{3}$ 即可,

$$r' = 3a\cos3\varphi \left\{ > 0.\varphi \in \left\{0, \frac{\pi}{6}\right\}, \\ < 0.\varphi \in \left\{\frac{\pi}{6}, \frac{\pi}{3}\right\}. \right\}$$

故当 $\varphi = \frac{\pi}{6}$ 时r有极大值r = a;当 φ (= 0 及 $\frac{\pi}{3}$ 时 $\cdot r$ 有极

射线 $\varphi = \frac{\pi}{6}, \varphi = \frac{5\pi}{6}$

及 $\varphi = \frac{3\pi}{2}$ 为图形的

三对称轴,

小侑ァ = 0.

曲线在点 O 自 交且为三重点,整个

图 2.137

图形有三个形状相同的瓣,如图 2.137 所示。

1548.
$$r = \frac{a}{\sqrt{\cos 3\varphi}}(a > 0)$$
.

解 由于 $r\left(\varphi + \frac{2\pi}{3}\right) = r(\varphi)$,故函数r是以 $\frac{2\pi}{3}$ 为周期的函数。显然图形关于极轴对称。

函数的存在域为:

$$|\varphi|<rac{\pi}{6}\ \c 2rac{\pi}{2}<|arphi|<rac{5\pi}{6}.$$

为此只要讨论
$$-\frac{\pi}{6} \le \varphi \le \frac{\pi}{6}$$
 即可.

$$r' = \frac{3a\sin 3\varphi}{2(\cos 3\varphi)^{\frac{3}{2}}} \left\{ < 0, \varphi \in \left(-\frac{\pi}{6}, 0\right), \\ > 0, \varphi \in \left(0, \frac{\pi}{6}\right), \right.$$

故当 $\varphi = 0$ 时有极小值 r = a. 当 φ 由 0 单调地增大到 $\frac{\pi}{6}$ 时,r 由 α 单调地增大到 $+\infty$,在这种意义上, $\varphi = \frac{\pi}{6}$ 为曲线的新近线,同样地 $\varphi = -\frac{\pi}{6}$ 也为新近线。

由周期性可知,当 $\varphi=\pm \frac{2\pi}{3}$ 时有极小值 $r=a.\varphi$ = $\pm \frac{\pi}{2}$ 及 $\varphi=\pm \frac{5\pi}{6}$ 均为曲线的渐近线.

最后还要研究在点(a,0) 附近的状态,为此,只要考虑在该点切线的斜率:

$$tg\alpha = \frac{\frac{dr}{d\varphi}\sin\varphi + r\cos\varphi}{\frac{dr}{d\varphi}\cos\varphi - r\sin\varphi},$$

再以
$$\frac{dr}{d\varphi} = \frac{3a\sin3\varphi}{2(\cos3\varphi)^{\frac{3}{2}}}$$
代入上式,即得

$$tga = \frac{3a\sin 3\varphi\sin\varphi + 2a\cos\varphi\cos 3\varphi}{3a\sin 3\varphi\cos\varphi - 2a\sin\varphi\cos 3\varphi}$$

于是,

 $tga|_{p=0} = \infty$,即在(a,0)点曲线的切线垂直于极轴. 如图 2.138 所示。

1549.
$$r=a\frac{\mathrm{th}\varphi}{\varphi-1}$$
,其中 $\varphi>1(a>0)$.

$$\lim_{\varphi \to 1} = \lim_{\varphi \to 1}$$

$$\frac{a \operatorname{th} \varphi}{\varphi - 1} = +\infty,$$

$$\lim_{p \to +\infty} r = \lim_{p \to +\infty}$$

$$\frac{\operatorname{th}\varphi}{\varphi-1} = \lim_{\varphi \to +\infty} \frac{a}{\operatorname{ch}^2 \varphi}$$

$$= 0.$$

从而曲线以 φ == 1 为渐近线,以极点

为渐近点,又

$$\frac{dr}{d\varphi} = a \cdot \frac{\frac{1}{\cosh^2 \varphi} (\varphi - 1) - \sinh \varphi}{(\varphi - 1)^2}$$
$$= a \cdot \frac{(\varphi - 1) - \frac{1}{2} \sinh 2\varphi}{(\varphi - 1)^2 \cosh^2 \varphi},$$

当 $1 < \varphi < + \infty$ 时恒有 $(\varphi - 1) - \frac{1}{2} \operatorname{sh} 2\varphi < 0$. 事实上, 今

$$y(\varphi) = (\varphi - 1) - \frac{1}{2} \operatorname{sh} 2\varphi.$$

 $y(1) = -\frac{1}{2} sh2 < 0.\overline{m}$ $y'(\varphi) = 1 - \cosh 2\varphi < 0,$

故有 $y(\varphi) \leq y(1) < 0$. 这就证明了当 $1 < \varphi < + \infty$ 时 恒有 $\frac{dr}{d\theta}$ < 0,即当 φ 增大时 r 单调减小.

为考察当r→+ ∞ 时曲线的变化趋势,令

$$y_1 = x t g 1$$
, $y_2 = a \frac{t h \varphi}{\varphi - 1} sin \varphi$.

由于

$$y_{2} - y_{1} = a \frac{\text{th}\varphi}{\varphi - 1} \sin\varphi - x \text{tg1}$$

$$= a \frac{\text{th}\varphi}{\varphi - 1} \sin\varphi - a \frac{\text{th}\varphi}{\varphi - 1} \cos\varphi \text{tg1}$$

$$= a \frac{\text{th}\varphi}{\varphi - 1} \cos\varphi \frac{\sin\varphi}{\cos\varphi} - a \frac{\text{th}\varphi}{\varphi - 1} \cos\varphi \text{tg1}$$

$$= a \text{th}\varphi \cos\varphi \frac{\text{tg}\varphi - \text{tg1}}{\varphi - 1},$$

从而

$$\lim_{\varphi + 1} (y_2 - y_1) = \lim_{\varphi + 1} a th \varphi \cos \varphi \frac{tg \varphi - tg l}{\varphi - 1}$$
$$= \frac{a th l}{\cos l}.$$

于是,在直角坐标系下,当 $r\to +\infty$ 时,曲线r=a $\frac{\mathrm{th}\varphi}{\varphi-1}$ 以直线

$$y = x t g 1 + a \frac{t h 1}{\cos 1}$$

为渐近线:

计算几点的坐标如下表:

ф	1.2	1.4	2	1.6	1.8	2	2.5	π	5	$\frac{3\pi}{2}$	2π	10	φ-• + :×
,	4. 15a	2, 20a	1. 59a	1.534	1.17a	0.96a	0. 65 <i>a</i>	0, 46 a	0. 24a	0, 21a	0. 18a	0. 11 a	0

综上分析知,曲线是螺状线,如图 2.139 所示,

1550.
$$\cos \varphi = \frac{r-1}{r^2}$$
.

解 由方程容易判定,曲线关于极轴对称.因而只需在0≤φ≤π范围内研究图形.方程可化为

$$r = \frac{1 \pm \sqrt{1 - 4\cos\varphi}}{2\cos\varphi}.$$

由于必有 $1 - 4\cos\varphi \ge 0$,故角 φ 的最小值应为

$$\varphi = \arccos \frac{1}{4} \approx$$

75°30',

对应的r = 2.由r > 0知曲线方程为

图 2.139

$$r = \frac{1 + \sqrt{1 - 4\cos\varphi}}{2\cos\varphi} \left(\arccos\frac{1}{4} \leqslant \varphi < \frac{\pi}{2} \right); (1)$$

$$r = \frac{1 - \sqrt{1 - 4\cos\varphi}}{2\cos\varphi}$$
 (2)

首先研究方程(1) 所表示的曲线的图形、因为随着 φ 增加, $2\cos\varphi$ 减小, $\sqrt{1-4\cos\varphi}$ 增大,因而r随 φ 增加而单调增加,事实上,易证 $\frac{dr}{d\varphi}>0$. 又

$$\lim_{\varphi \to \frac{\pi}{2} - 0} r = \lim_{\varphi \to \frac{\pi}{2} - 0} \frac{1 + \sqrt{1 - 4\cos\varphi}}{2\cos\varphi} = + \infty,$$

所以,当 $r \to + \infty$ 时有渐近线 $\varphi = \frac{\pi}{2}$. 又由 $\cos \varphi = \frac{r-1}{r^2}$,得

$$x = \frac{r-1}{r},$$

故当 $r \to + \infty$ 时 $x \to 1$,即当 $r \to + \infty$ 时,曲线与直线 $r = \frac{1}{\cos \varphi}$ 无限接近(直角坐标系下 x = 1 为渐近线).

再来研究拐点,由

$$\begin{split} \frac{d\cos\varphi}{dr} &= \frac{r^2 - 2r(r-1)}{r^4} = \frac{2-r}{r^3}, \\ &- \sin\varphi \frac{d\varphi}{dr} = \frac{2-r}{r^3}, \\ \frac{dr}{d\varphi} &= \frac{r^3}{r-2} \sin\varphi, \end{split}$$

从而

$$\frac{d^2r}{d\varphi^2} = \frac{3r^2(r-2)-r^3}{(r-2)^2} \frac{dr}{d\varphi} \sin\varphi + \frac{r^3}{r-2} \cos\varphi$$

$$= \frac{r^3(2r^3-6r^2)}{(r-2)^3} \sin^2\varphi + \frac{r^3}{r-2} \cos\varphi$$

$$= \frac{r^5(2r-6)}{(r-2)^3} \left(1 - \frac{(r-1)^2}{r^4}\right) + \frac{r^3}{r-2} \cdot \frac{r-1}{r^2}$$

$$= \frac{r\{(2r-6)(r^4-(r-1)^2)+(r-2)^2(r-1)\}.}{(r-2)^3}$$

由
$$r^2 + 2\left(\frac{dr}{d\varphi}\right)^2 - r\frac{d^2r}{d\varphi^2} = 0$$
 得 $2r^4 - 3r^2 + 8r - 6 =$

$$0,$$
经判别知:拐点的 r 介于 $\frac{\sqrt{5}-1}{2}$ 和 1 之间.

再来研究方程(2). 由于

$$\lim_{\varphi \to \frac{\pi}{2} - 0} r = \lim_{\varphi \to \frac{\pi}{2} - 0} \frac{1 - \sqrt{1 - 4\cos\varphi}}{2\cos\varphi} = 1,$$

事实上,由 $\cos \varphi = \frac{r-1}{r^2}$ 也可得: 当 $\varphi = \frac{\pi}{2}$ 时, r=1. 因

而点
$$\left(1,\frac{\pi}{2}\right)$$
是曲线上的点.又

$$\frac{dr}{d\varphi} = \frac{1}{(2\cos\varphi)^2} \left((1 - 4\cos\varphi)^{-\frac{1}{2}} (-2\sin\varphi) \right)$$

$$\cdot (2\cos\varphi) + 2\sin\varphi(1 - \sqrt{1 - 4\cos\varphi})$$

$$= \frac{2\sin\varphi((1-\sqrt{1-4\cos\varphi})\sqrt{1-4\cos\varphi}-2\cos\varphi)}{(2\cos\varphi)^2\sqrt{1-4\cos\varphi}}$$

$$= \frac{2\sin\varphi(\sqrt{1-4\cos\varphi}-(1-2\cos\varphi))}{(2\cos\varphi)^2\sqrt{1-4\cos\varphi}}.$$
 (1)

容易证明: $f(\varphi) = \sqrt{1 - 4\cos\varphi} - (1 - 2\cos\varphi) < 0$. 事实上,有

$$f'(\varphi) = 2\sin\varphi\left(\frac{1}{\sqrt{1-4\cos\varphi}}-1\right) < 0$$
 If $f\left(\frac{\pi}{2}\right) = 0$.

又因当 $\varphi \in \left(\frac{\pi}{2},\pi\right)$ 时,(1)的其它因子均为正,故得 $\frac{dr}{d\varphi}$ < 0,即r 随 φ 的增加而单调下降,并且当 $\varphi = \pi$ 时达到极小值

$$r = \frac{1 - \sqrt{5}}{-2} = \frac{\sqrt{5} - 1}{2}.$$

事实上, $\frac{dr}{d\varphi}$ 经过 $\varphi = \pi$ 从负变到正.

计算几点的坐标列表如下:

φ	75°30′	76*5′	77°10′	81*	84°	87°	$\varphi \rightarrow \frac{\pi}{2} + 0$	90°	105°	140°	155°	180°
7	2	2.5	3	5	8. 8 5	19. 7	r → + ∞	1	0. 81	0. 66	0. 63	0.62

曲线如图 2.140 所示.

作出下列曲线族的图表(a 表参变量);

1551.
$$y = x^2 - 2x + a$$
.

解 将方程变形:

$$y - (a - 1) = (x - 1)^2$$
.

作平移

$$\begin{cases} x = x' + 1, \\ y = y' + (a - 1), \end{cases}$$

即得标准方程

$$y' = x'^{\perp}$$
,

此为向上凹的抛物线,

当a > 1时, 抛物线的顶点位于第一象限; 当a < 1时, 抛物线的顶点位于第四象限; 当a = 1时, 抛物线的顶点在(1,0). 不论a为何值, 此抛物线族的顶点位于直线x = 1上. 如图 2.141 所示.

解 当a - 0 时为直线 y = x, 当 a ≠ 0 时为双曲 线族,其图形可由

$$y = x \land y = \frac{a^2}{x} + 1$$

加而成,它们均以直线

$$y = x \, \text{和} \, x = 0 \,$$
为新
近线。

当 x = |a| 时,有极 小値 y = 2|a|; 当 x — -|a| (a ≠ 0) 时有极大値

y=-2|a|,如图 2,142 所示.

图 2.140

图 2.141

1553.
$$y = x \pm \sqrt{a(1-x^2)}$$
.

解 リーエー士

$$\sqrt{a(1-x^2)}$$
, $\mathbb{H}(y-$

$$x)^2 + ax^2 = a.$$

作仿射变换

$$\begin{cases} \boldsymbol{\xi}_1 = -x + \mathbf{y}, \\ \boldsymbol{\xi}_2 = x, \end{cases}$$

则原方程变形为

$$\xi_1^2 + a\xi_2^2 = a.$$

当
$$0 < a < + \infty$$

时为椭圆族;当 - ∞

<a<O时为双曲线

族; a = 0 时为直线 y = x.

全族曲线均通过点(-1,-1)及(1,1).

$$y' = 1 \mp \frac{ax}{\sqrt{a(1-x^2)}}$$
. 令 $y' = 0$, 得 $x^2 = \frac{1}{1+a}$,

$$y'' = \mp \frac{a^2}{(a(1-x^2))^{\frac{3}{2}}},$$

当 y $\ge x$ 时上式取负号; 当 y $\le x$ 时上式取正号.

于是,当y≥x时,有

(1) 若
$$a > 0$$
,则当 $x = \frac{1}{\sqrt{1+a}}$ 时,由于 $y'' < 0$,

故取得极大值 $y = \sqrt{1+a}$.

若-1<a<0,则当 $x=-\frac{1}{\sqrt{1+a}}$ 时也取得极

大值 $y=-\sqrt{1+a}$.

当 $x = \mp 1$ 时取得边界极小值 $y = \mp 1(a \neq 0)$.

(2) 由于 y'' < 0, 故曲线是凸的.

当 y ≤ x 时,有

(1) 若 a > 0,当 $x = -\frac{1}{\sqrt{1+a}}$ 时有极小值 $y = -\sqrt{1+a}$.

若 -1 < a < 0, 当 $x = \frac{1}{\sqrt{1+a}}$ 时有极小值

$$y=\sqrt{1+a}.$$

当 $x=\mp 1$ 时取得边界极大值 $y=\mp 1$.

(2) 由于 y'' > 0,故曲线是凹的.

此外,当a < 0时,曲线有渐近线,容易求得它们为 $y = (1 \pm \sqrt{-a})x$.

椭圆族、双曲线族与直线已为大家所熟悉,故图略.

1554. $y = \frac{x}{2} + e^{-ax}$.

解 原方程可变形为

$$y-\frac{x}{2}=e^{-ax}.$$

因此,若作仿射变换

$$\begin{cases} \boldsymbol{\xi}_1 = -\frac{x}{2} + y, \\ \boldsymbol{\xi}_2 = x, \end{cases}$$

则原方程化成标准形式

$$\xi_1 = e^{-ax}2.$$

当 $a \neq 0$ 时,表示一指数曲线族,当 a = 0 时,表示直线 $y = 1 + \frac{x}{2}$.

全族曲线均通过点(0,1).

$$y' = \frac{1}{2} - ae^{-ax}$$
. 令 $y' = 0$ 得
$$x = \frac{1}{a} \ln 2a.$$

 $y'' = a^2 e^{-ax} > 0$,故曲线呈凹状.

若 a > 0,则当 $x = \frac{1}{a} \ln 2a$ 时有极小值

$$y = \frac{1}{2a}(1 + \ln 2a);$$

若 a ≤ 0,则因 y' > 0,故函数 y 是增大的.

现求渐近线: a > 0 时,

$$k = \lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \left(\frac{1}{2} + \frac{1}{xe^{ax}} \right) = \frac{1}{2},$$

$$b = \lim_{x \to +\infty} (y - kx) = 0,$$

故漸近线为 $y = \frac{x}{2}$.

同法求得当 a < 0 时,渐近线也为 $y = \frac{x}{2}$,然此时应考虑 $x \rightarrow -\infty$.

如图 2.143 所示。

1555. $y = xe^{-\frac{x}{a}}$.

解 全族曲线均通过原点.

$$y' = e^{-\frac{x}{a}} \left(1 - \frac{x}{a} \right)$$
. 令 $y' = 0$, 得 $x = a$.

图 2.143 $y'' = e^{-\frac{x}{a}} \left(\frac{x}{a^2} - \frac{2}{a} \right). \Leftrightarrow y'' = 0, 得$ x = 2a,

经判别知:若a > 0,当x = a 时有极大值 $y = ae^{-1} \approx 0$. 37a; 若a < 0,当x = a 时有极小值 $y = ae^{-1}$. 拐点 x = 2a, $y = 2ae^{-2} \approx 0$. 27a.

容易求得:新近线为y = 0. 与 1554 题类似,当 a > 0 时应考虑 $x \rightarrow + \infty$; 当 a < 0 时应考虑 $x \rightarrow - \infty$.

又曲线族与直线y=x在原点相切,如图 2.144 所示。

§ 13. 函数的极大值与极小值问题

1556. 证明:若函数 f(x) 不为负,则函数

$$F(x) = Cf^2(x)(C > 0)$$

与函数 f(x) 有相同的极值点.

图 2.144

证 如果 x_0 为 F(x) 的极大值点,则在 x_0 点附近有 $F(x_0) > F(x)$ $(x \neq x_0)$ (*)

即 $Cf^{2}(x_{0}) > Cf^{2}(x)$. 根据 C > 0,以及 f(x) 不为负,必有

 $f(x_0) > f(x)$ (x 在 x_0 附近,且 $x \neq x_0$)

这就证明了 x_0 点也为f(x)的极大值点.反之,若 x_0 为 f(x)的极大值点,则在 x_0 附近,有

$$f(x_0) > f(x) \ (x \neq x_0).$$

于是,

$$Cf^2(x_0) > Cf^2(x)$$
.

即(*)式成立.这就证明了x。点也为F(x)的极大值点.同样道理,若x。为极小值点时,也可证明F(x)与f(x)有相同的极小值点.

1557. 证明:若当 $-\infty < x < +\infty$ 时,函数 $\varphi(x)$ 单调增加,

则函数

$$f(x)$$
与 $\varphi(f(x))$

有相同的极值点:

证 设 x_0 点为f(x)的极值点,例如是极大值点,则在 x_0 点附近有

$$f(x_0) > f(x) \ (x \neq x_0).$$
 (1)

因为函数 $\varphi(x)$ 为单调增加的,故也有

$$\varphi(f(x_0)) > \varphi(f(x)) \ (x \neq x_0). \tag{2}$$

这就证明了 x_0 点也是 $\varphi(f(x))$ 的极大值点. 反之也对,因为由(2),从 $\varphi(x)$ 的单调增加性质知必有(1). 另一种情形,即设 x_0 点是极小值点时,也可类似获证. 于是,原命题得证.

1558. 二正数的和等于常数 a,求此二正数的 m 次幂与 n 次幂 (m > 0, n > 0) 相乘积的极大值.

解 设一正数为 x,则按题设,我们须求函数

 $f(x) = x^m (a - x)^n (0 < x < a)$ 的极大值、由于 $f'(x) = x^{m-1}(a - x)^{m-1}[ma - (m+n)x]$,故若令 f'(x) = 0,即得 $x = \frac{ma}{m+n}$. 当 $0 < x < \frac{ma}{m+n}$ 时, f'(x) > 0;当 $a > x > \frac{ma}{m+n}$ 时 f'(x) < 0. 因此,当 $x = \frac{ma}{m+n}$ 时, f(x) 有极大值 $f\left(\frac{ma}{m+n}\right) = \frac{a^{m+n}m^mn^n}{(m+n)^{m+n}}$.

1559. 二正数的乘积等于常数 a,求此二数的 m 次幂与 n 次幂 (m > 0, n > 0) 之和的极小值.

解 设一正数为 x,则按题设,我们须求函数

$$f(x) = x^m + \left(\frac{a}{x}\right)^m (0 < x < +\infty)$$

的极小值.

由于

$$f'(x) = \frac{mx^{m+n} - na^n}{x^{n+1}}.$$

令 f'(x) = 0,得 $x = \left(\frac{n}{m}\right)^{\frac{1}{m+n}} a^{\frac{n}{m+n}}$. 显然,在此点的左边, f'(x) < 0, 而在此点的右边, 有 f'(x) > 0, 故知当 $x = \left(\frac{n}{m}\right)^{\frac{1}{m+n}} a^{\frac{n}{m+n}}$ 时,函数 f(x) 有极小值

$$f\left(\left(\frac{n}{m}\right)^{\frac{1}{m+n}}a^{\frac{n}{m+n}}\right) = (m+n)\left(\frac{a^{mn}}{m^m n^n}\right)^{\frac{1}{m+n}}.$$

1560. 取怎样的数为对数之底时有一个数,它本身和它的对数相等?

解解法一:

设所求之数为a,则对于 $0 < a < 1,1 < a < + \infty$ 及x > 0 时

$$\log_a x = x$$

或

$$a^x = x. (1)$$

问题即为 a 取怎样的数,上式才成立.

为研究使(1) 式成立的 a 及相应的 x 的取值情况. 我们在直角坐标系内取曲线

$$\begin{cases} y = a^x, \\ y = x. \end{cases} \tag{2}$$

在交点处,方程(1) 与(2) 等价(图 2.145)

图 2.145

注意,指数曲线 $y = a^x$ 与直线 y = x 是否有公共点,就看其差

$$\Delta = f(x) = a^x + x$$

有无使 $\Delta = f(x) = 0$ 的点 x.

设 $y = a_0^r$ 与 y = x 相切于一点 $(x_0, a_0^{r_0})$,此时 $f'(x_0) = 0$,

即有

$$a_0^{r_0} \ln a_0 - 1 = 0. {(3)}$$

从 $\Delta=0$ 知有(1),即

$$a_0^{x_0} - x_0 = 0. (4)$$

由(3)和(4)可解得

$$a_0 = e^{\frac{1}{r}}, x_0 = e. ag{5}$$

当 $a > a_0$ 时,易见y = a' 比 $y = a'_0$ 远离直线 y = x. 故此时无交点.实际上,注意到有 $a'_0 \ge x$,并记g(a,x) = a',对于 $x \ge 0$,只要 $a > a_0$ 就有 $a^x > a'_0 \ge x$,也即 $g(a_0,x)$ 是g(a,x)的极小值.故当 $a > a_0$ 时,y = a 与y = a'

x 无交点. 而当 $0 < a \le a_0$ 时(且要求 $a \ne 1$),此时(2) 有解,从而(1) 有解. 如图 2.145 中曲线 ①、②、③、④ 所示.

解法二:

设 $f(x) = e^{\frac{\ln x}{x}}$,则由 $f'(x) = e^{\frac{\ln x}{x}} \cdot \frac{1 - \ln x}{x^2} = 0$ 得 x = e. 显然当 x 通过 e 时 f'(x) 由正变负,故知 $f(e) = e^{\frac{1}{e}} \approx 1.445$ 为极大值. 从而 $0 < x^{\frac{1}{2}} \le e^{\frac{1}{e}}$.

因此,当 $0 < a \le e^{\frac{1}{\epsilon}}$ 且 $a \ne 1$ 时,有 $\log_a x = x$.

1561. 从面积为 S 的一切矩形中, 求其周界为最小者.

解 设矩形的一边长为x,则另一边长为 $\frac{S}{x}$,周界长为

$$f(x)=2\Big(x+\frac{S}{x}\Big),$$

按题设,我们须求其最小值.

由于 $f'(x) = 2\left(1 - \frac{S}{x^2}\right)$,故令 f'(x) = 0,即得 $x = \sqrt{S}$.由 $f''(\sqrt{S}) > 0$ 知此时 f(x) 有极小值,又由于极值的唯一性,故此也为最小值,因此,所求的矩形为以 \sqrt{S} 为边的正方形,

1562. 若直角三角形的一直角边与斜边之和为常数,求有最大面积的直角三角形.

解 设一直角边为 x,则按题设,另一直角边为 $\sqrt{(a-x)^2-x^2}=\sqrt{a^2-2ax}$,故直角三角形的面积为

$$S(x) = \frac{1}{2}x \sqrt{a^2 - 2ax}.$$

利用极值的解法得: 当 $x = \frac{a}{3}$ 时, S(x)值为极大值. 又

由于极值的唯一性,故知当 $x = \frac{a}{3}$ 时,S(x)取最大值.

此时斜边为 $a - x = a - \frac{a}{3} = \frac{2}{3}a$,它为直角边的两倍,故此三角形的两锐角分别为 30° 及 60°.

本题也可用 1556 题结论求得结果、事实上,令 $F(x) = 4S^2(x)$,则 F(x) 与 S(x) 有相同的极值点,对 F(x) 求极值可得同样的结果.

1563. 当有怎样的长度大小时,容积为 V 的圆柱形闭合罐子 有最小的表面积?

解 设底半径为x,则高为 $H = \frac{V}{\pi x^2}$,故圆柱的表面积为

$$S(x) = 2\pi x \cdot \frac{V}{\pi x^2} + 2\pi x^2.$$

由于,

$$S'(x) = \frac{4\pi x^3 - 2V}{x^2},$$

令
$$S'(x) = 0$$
 得 $x = \sqrt[3]{\frac{V}{2\pi}}$. 由 $S''\left(\sqrt[3]{\frac{V}{2\pi}}\right) > 0$ 知,当 $x =$

$$\sqrt[3]{\frac{V}{2\pi}}$$
 时, $S(x)$ 有极小值

$$s\left(\sqrt[3]{\frac{V}{2\pi}}\right) = \sqrt[3]{54\pi V^2}.$$

由于只有一个极值,故知当底半径为 $\sqrt[3]{\frac{V}{2\pi}}$,而高为 $\frac{V}{\pi x^2}$ $=2\sqrt[3]{\frac{V}{2\pi}}$ 时有最小面积 $\sqrt[3]{54\pi V^2}$.

1564. 在不超过半圆的已知弓形内嵌入有最大面积的矩形,

解 由图 2.146 知,不妨设圆的

半径为单位长度,则

$$OA = \cos \varphi$$

$$BC = \sin \alpha$$
,

$$BA = \cos\alpha - \cos\varphi$$

从而矩形面积为

$$S(\alpha) = 2BC \cdot BA$$

$$= 2\sin\alpha(\cos\alpha - \cos\varphi)$$

$$= \sin 2\alpha - 2\sin \alpha \cos \varphi$$
.

图 2.146

而

$$S'(\alpha) = 2\cos 2\alpha - 2\cos \alpha\cos \varphi = 4\cos^2\alpha - 2\cos\alpha \cdot \cos\varphi - 2$$
,令 $S'(\alpha) = 0$,可得 $\cos \alpha = \frac{\cos \varphi + \sqrt{\cos^2 \varphi + 8}}{4}$.

注意到
$$\alpha \leqslant \varphi \leqslant \frac{\pi}{2}$$
,故 $\cos \varphi \leqslant \cos \alpha$,于是有 $S''(\alpha) = -4\sin 2\alpha + 2\cos \varphi \sin \alpha \leqslant -4\sin 2\alpha + 2\cos \varphi \sin \alpha \leqslant -4\sin 2\alpha \leqslant 0$.

这就说明

$$\alpha = arc \cos \frac{\cos \varphi + \sqrt{\cos^2 \varphi + 8}}{4}$$

是使 $S(\alpha)$ 达到极大值的点,也就是说此时弓形内所对应的矩形面积最大。

1565. 在椭圆

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

中,嵌入有最大面积而边平行于椭圆轴的矩形。

解 如图 2.147 所示:

由于点 M(x,y)在椭圆上,故适合方程 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$ 解之,

于是按题设,求函数

图 2.147

$$f(x) = 4x \cdot \frac{b}{a} \sqrt{a^2 - x^2}$$

当 x 为何值时最大,记 $C = \frac{a^2}{16b^2}$,利用 1556 题的结果, f(x) 与 $F(x) = Cf^2(x) = x^2(a^2 - x^2)$ 有相同的极值, 但 $F'(x) = 4x\left(\frac{a^2}{2} - x^2\right)$,令 F'(x) = 0,则 x = 0(不适合), $x = \frac{a}{\sqrt{2}}$. 当 $x = \frac{a}{\sqrt{2}}$ 时,有 $F''\left(\frac{a}{\sqrt{2}}\right) = -4a^2 < 0$,故 $f\left(\frac{a}{\sqrt{2}}\right) = 2ab$ 为最大面积.此时矩形的边为 a $\sqrt{2}$ 和 b $\sqrt{2}$.

1566. 在底边为 6 及高为 h 的三角形中,嵌入有最大周长的矩形,研究此问题有解的可能性.

解 如图 2.148 所示:

$$AB = b$$
, $CD = h$. 由于 $\frac{x}{b} = \frac{h - y}{h}$, 故 $x = \frac{b}{h}(h - y)$. 矩形的周长为
$$p = 2\left(y + \frac{b}{h}(h - y)\right) = 2\left(\left(1 - \frac{b}{h}\right)y + b\right).$$

显见,当h=b时,周长 p=2b为一定值;当h>b时,p',>0,p 单调 均加,故当y=h时间 边界的极大值p=2h; 当h<b时,p',<0,p单调减少,理论上当y= 0时有边界的极大值

图 2.148

- 26. 但嵌入的矩形不允许边长为 0, 故当 h < b 时嵌入的 矩形有最大周长者是不存在的,即此时问题无解.
- 1567. 从直径为 d 的圆形树干切出横断面为矩形的梁,此矩形的底等于 b,高等于 h. 若梁的强度与 bh² 成比例,问梁的尺寸为如何时,其强度最大?

解 由于 $b^2 + h^2 = d^2$, 故 $h^2 = d^2 - b^2$, 从而考虑函数 $f(b) = b(d^2 - b^2)$

何时取最大值.

由于
$$f'(b) = d^2 - 3b^2$$
, 令 $f'(b) = 0$ 得 $b = \frac{d}{\sqrt{3}}$.

此时 $h = d\sqrt{\frac{2}{3}}, f''(b) = -6b < 0, f(b)$ 的值最大. 因

此,所求的矩形的底为 $\frac{d}{\sqrt{3}}$,高为 $d\sqrt{\frac{2}{3}}$.

- 1568. 于半径为 R 的半球中,嵌入有最大体积的底为正方形的直角平行六面体.
 - 解 设底边之一半为x,则按题设,有

$$2x^2+y^2=R^2,$$

其中 y 为平行六面体高之一半,解之,得 $y = \sqrt{R^2 - 2x^2}$,由题意求函数

$$f(x) = 4x^2y = 4x^2 \sqrt{R^2 - 2x^2}.$$

何时取最大值,

$$f'(x) = \frac{8x(R^2 - 3x^2)}{\sqrt{R^2 - 2x^2}}, \Leftrightarrow f'(x) = 0 \Leftrightarrow x =$$

$$\frac{R}{\sqrt{3}}$$
,此时 $y = \frac{R}{\sqrt{3}}$. 经判别可知, $f\left(\frac{R}{\sqrt{3}}\right)$ 值为最

大,因此,所求的直角平行六面体之底、宽、高分别为

$$\frac{2R}{\sqrt{3}}$$
, $\frac{2R}{\sqrt{3}}$, $\frac{R}{\sqrt{3}}$, 而最大体积为

$$f\left(\frac{R}{\sqrt{3}}\right) = \frac{4R^3}{3\sqrt{3}}.$$

1569. 于半径为 R 的球内嵌入有最大体积的圆柱.

解 设圆柱的底半径为r,高为 2h,则有

$$r^2+h^2=R^2,$$

即 $h = \sqrt{R^2 - r^2}$. 按题设,求函数

$$f(r) = 2\pi r^2 h = 2\pi r^2 \cdot \sqrt{R^2 - r^2}$$

何时最大.

$$f'(r) = \frac{2\pi r(2R^2 - 3r^2)}{\sqrt{R^2 - r^2}}, \Leftrightarrow f'(r) = 0 \approx r = \sqrt{\frac{2}{3}}R,$$

此时
$$h = \frac{R}{\sqrt{3}}$$
,且

$$f(r) = f\left(\sqrt{\frac{2}{3}}R\right) = \frac{4\pi R^3}{3\sqrt{3}}.$$

经判别可知此值即为柱体体积的最大值.

1570. 于半径为 R 的球内嵌入有最大表面积的圆柱.

解 如图 2.149,圆柱的表面积为

$$S = 2\pi (R\cos\varphi)^2 + 4\pi (R\cos\varphi) \cdot (R\sin\varphi)$$
$$= \pi R^2 (1 + \cos 2\varphi) + 2\pi R^2 \sin 2\varphi.$$

由
$$\frac{dS}{d\varphi} = 0$$
得 $\operatorname{tg} 2\varphi = 2$. 记其解为 $\varphi_b = \frac{1}{2}\operatorname{tg}^{-1}2, \varphi_b \in \left(0, \frac{\pi}{2}\right)$. 于是 $\left(\sin 2\varphi_b = \frac{2}{\sqrt{5}}, \cos 2\varphi_b = \frac{1}{\sqrt{5}}\right)$. 又

由于

$$\frac{d^{2}S}{d\varphi^{2}}\Big|_{\varphi=\varphi_{0}} = -4\pi R^{2} \left(2\sin 2\varphi\right)$$

$$+\cos 2\varphi\right)_{\varphi=\varphi_{0}}$$

$$= -4\pi R^{2} \left(2\sin 2\varphi_{0} + \frac{1}{2}\sin 2\varphi_{0}\right)$$

$$= -10\pi R^{2}\sin 2\varphi_{0} < 0,$$

故此时表面积最大,且最大表面积为

$$S = \pi R^2 \left(1 + \frac{1}{\sqrt{5}} \right) + 2\pi R^2 \cdot \frac{2}{\sqrt{5}}$$
$$= \pi R^2 \left(1 + \sqrt{5} \right)$$
$$\approx 0.81 \times 4\pi R^2.$$

从而,球内嵌入圆柱的最大表面积约为球面面积的81%.

1571. 对于已知球作具有最小体积的外切圆锥.

解 设外切圆锥的底半径为x,高为h,球的半径为R,则可求得 $h = \frac{2Rx^2}{x^2 - R^2}$,于是,外切圆锥的体积为

$$V = \frac{1}{3}\pi x^2 \cdot \frac{2Rx^2}{x^2 - R^2} = \frac{2}{3}\pi R \cdot \frac{x^4}{x^2 - R^2} (x > 0).$$

由

$$\frac{dV}{dx} = \frac{4}{3}\pi R \cdot \frac{x^3(x^2 - 2R^2)}{(x^2 - R^2)^2} = 0.$$

得 $x = \sqrt{2}R$,经检验知此时体积最小,且

$$V|_{z=\sqrt{2}R}=2\cdot\frac{4}{3}\pi R^3.$$

所以,外切圆锥的最小体积是球体体积的二倍,

1572. 求母线为 / 的圆锥之最大体积.

解 设圆锥的底半径为r,高为h,则 $h = \sqrt{l^2 - r^2}$,圆锥的体积为 $\frac{1}{3}\pi r^2 h = \frac{1}{3}\pi r^2 \sqrt{l^2 - r^2}$. 按题设,只须求函数

$$f(r) = r^4(l^2 - r^2)$$

的最大值:

由于 $f'(r) = 4l^2r^3 - 6r^5$, 令 f'(r) = 0 得 $r = \sqrt{\frac{2}{3}}l$,此时 $h = \frac{l}{\sqrt{3}}$. 经判别可知 $f\left(\sqrt{\frac{2}{3}}l\right)$ 最大,因此所求的圆锥的底半径为 $\sqrt{\frac{2}{3}}l$,高为 $\frac{l}{\sqrt{3}}$,体积最大值为 $f\left(\sqrt{\frac{2}{3}}l\right) = \frac{2\pi}{9\sqrt{3}}l^3$.

1573. 于顶角为 2α 与底半径为 R 的直圆锥中,嵌入有最大表面积的圆柱.

解 设 r 及 h 为圆柱的底半径与高, H 为圆锥的高(图 2.150) 按题设, 只须求函数

$$S = 2\pi r^2 + 2\pi rh$$

的最大值.由于 $\frac{MN}{BD} = \frac{AN}{AD}$,即 $\frac{h}{H} = \frac{R-r}{R}$,故h =

$$\frac{R-r}{R}II$$
.其中 $H=R\operatorname{ctg}\alpha$ 是已知常数. 于是.

$$S = f(r) = 2\pi \left[r^2 + rH \left[1 + \frac{r}{R} \right] \right] (0 \leqslant r \leqslant R),$$

$$f'(r) = 2\pi \left[2r + H + \frac{2r}{R}H \right].$$

令 f'(r) = 0, 得 r =

 $\frac{HR}{2(H-R)}$,此值应在 0 与

R之间,即H > R与 $\frac{R}{H} =$

 $tg\alpha < \frac{1}{2}$. 经判别可知,此时 f(r) 为最大,因此,所 A 求的圆柱当 $tg\alpha < \frac{1}{2}$ 及 r

$$= \frac{R}{2(1 + \lg \alpha)}$$
 时达到最大值。

图 2.150

当 $\operatorname{tg}\alpha \geqslant \frac{1}{2}$ 即 $H \leqslant 2R$ 时,由于 $f'(r) = \frac{2\pi}{R} \mathbb{C}(2R - H)r + H(R - r)$ 大于零。因此,当r = R 时,达到边界的极大值,但是,当r = R 时,显然有h = 0,于是得到的解可以考虑作为一个扁平的圆柱,它的两底都与已知圆锥的底重合,而全表面积为 $2\pi R^2$.

1574. 求从点 M(p,p) 到抛物线 $y^2 = 2px$ 的最短距离,

解 按题设,只须考虑函数

$$f(y) = (x - p)^2 + (y - p)^2 = x^2 + 2p^2 - 2py$$
$$-\frac{y^4}{4p^2} + 2p^2 - 2py$$

的极值,

由于 $f'(y) = \frac{y^3 - 2p^3}{p^2}$. 令 f'(y) = 0 得 $y = \sqrt[3]{2}$ • p,此时 $x = \frac{\sqrt[3]{4}}{2}p$. 经判别可知, $f(\sqrt[3]{2}p)$ 为最小。 因此,所求的最短距离为

$$\sqrt{f(\sqrt[3]{2})} = p \sqrt{\left(\frac{\sqrt[3]{4}}{2} - 1\right)^2 + \left(\sqrt[3]{2} - 1\right)^2}$$

$$= p(\sqrt[3]{2} - 1) \sqrt{\left(\frac{\sqrt[3]{4} - 2}{2(\sqrt[3]{2} - 1)}\right)^2 + 1}$$

$$= p(\sqrt[3]{2} - 1) \sqrt{\frac{\sqrt[3]{2} + 2}{2}}.$$

1575. 求从点 A(2,0) 到圆 $x^2 + y^2 = 1$ 的最短与最长距离.

解 显见,最短距离为1,最长距离为3,事实上,用微分法也可解之,只须求函数

$$(x-2)^2 + y^2 = 5 - 4x = f(x)$$

的极值:

由于f'(x) = -4 < 0,故f(x)单调下降,因此,当x = -1时,有最大值 $\sqrt{f(-1)} = 3$;而当x = 1时有最小值 $\sqrt{f(1)} = 1$.

1576. 求椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (0 < b < a) 的经过顶点(0, -b) 的最大弦.

解 按题设,我们须求函数

$$x^{2} + (y + b)^{2} = x^{2} + y^{2} + 2by + b^{2}$$

$$= \left(a^{2} - \frac{a^{2}}{b^{2}}y^{2}\right) + y^{2} + 2by + b^{2}$$

$$= \left(1 - \frac{a^{2}}{b^{2}}\right)y^{2} + 2by + (a^{2} + b^{2}) = f(y)$$

的最大值. 为此,先求得 $f'(y) = 2\left(1 - \frac{a^2}{b^2}\right)y + 2b$. 令 $f'(y) = 0, 得 y = \frac{b^3}{a^2 - b^2} = \frac{b^3}{c^2}(c = \sqrt{a^2 - b^2}), 此时$ $x^2 = a^2 - \frac{a^2}{b^2} \cdot \frac{b^6}{c^4} = a^2\left(1 - \frac{b^4}{c^4}\right),$

或

$$x = \pm \frac{a}{c^2} \sqrt{c^4 - b^4}$$
$$= \pm \frac{a^2}{c^2} \sqrt{a^2 - 2b^2} \left(b \leqslant \frac{a}{\sqrt{2}} \right).$$

经判别可知此时为最大值,其值为

$$\sqrt{a^2\Big(1-\frac{b^4}{c^4}\Big)+\Big(\frac{b^3}{c^2}+b\Big)^2}=\frac{a^2}{c}.$$

此即最大弦长. 弦的一端点为(0, -b),另一端点为 $\left(\pm \frac{a^2}{c^2} \sqrt{a^2 - 2b^2} \cdot \frac{b^3}{c^2}\right)$, 但必须 $b \leq \frac{a}{\sqrt{2}}$ 时, $\sqrt{a^2 - 2b^2}$ 才有意义.

若
$$b > \frac{a}{\sqrt{2}}$$
,则由于
$$f'(y) = 2\left(1 - \frac{a^2}{b^2}\right)y + 2b > 2\left(1 - \frac{a^2}{b^2}\right) \cdot (-b)$$

$$+ 2b = \frac{2a^2}{b} > 0$$

故当 y = b, x = 0 时,取得弦长的边界最大值.此时最大弦长为 2b.

1577. 过椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 上的点 M(x,y) 引切线,此切线与 坐标轴构成一个三角形,使此三角形的面积为最小.

解 切线斜率为 $k = -\frac{b^2x}{a^2y}$,于是切线方程为 $Y - y = -\frac{b^2x}{a^2y}(X - x).$

不失一般性,可设点 M 在第一象限。它在两坐标轴上的截距分别为 $\frac{a^2}{x}$ 和 $\frac{b^2}{y}$. 因此,所求三角形的面积为

$$\frac{a^2b^2}{2xy} = \frac{a^3b}{2x\sqrt{a^2 - x^2}}.$$

按题设,我们考虑函数

$$f(x) = x^2(a^2 - x^2)$$

的最大值,为此,先求得

$$f'(x) = 2a^2x - 4x^3.$$

令 f'(x) = 0, 得 $x = \frac{a}{\sqrt{2}}$, 此时, $y = \frac{b}{\sqrt{2}}$. 经判别可

知 $f\left(\frac{a}{\sqrt{2}}\right)$ 为最大值. 因此, 所求的点 M 为 $\left(\frac{a}{\sqrt{2}},\frac{b}{\sqrt{2}}\right)$, 三角形面积的最小值为 ab.

1578. 一物体为直圆柱形,其上端为半球形. 若此物体的体积等于 V,问这物体的尺寸如何,才有最小表面积?

解 设r为圆柱的底半径,h为圆柱的高,则按题设,我们有

$$V = \frac{2}{3}\pi r^3 + \pi r^2 h \ \vec{\boxtimes} \ h = \frac{V}{\pi r^2} - \frac{2}{3}r,$$

故知其表面积为

$$S(x) = 3\pi r^{2} + 2\pi r \left(\frac{V}{\pi r^{2}} - \frac{2}{3}r\right) = \frac{5}{3}\pi r^{2} + \frac{2V}{r}.$$

$$S'(r) = \frac{10}{3}\pi r - \frac{2V}{r^{2}}, \Leftrightarrow S'(r) = 0, \Leftrightarrow$$

$$r=\sqrt[3]{\frac{3V}{5\pi}}$$
,此时 $h=\sqrt[3]{\frac{3V}{5\pi}}$. 经判别可知 $S\left(\sqrt[3]{\frac{3V}{5\pi}}\right)$ 为最小值,因此,当 $r=h=\sqrt[3]{\frac{3V}{5\pi}}$ 时表面积最小.

1579. 露天水沟的横断面为等腰梯形. 若沟中流水的横断面等于 S,水面的高等于 h,问水沟侧边的倾角 φ如何,才使横断面被水浸湿的周长为最小?

解 浸湿周长 $l = a + 2h\csc\varphi$, 其中 a 为底边长, 而截面积

$$S = \frac{1}{2}(2a + 2h\operatorname{ctg}\varphi)h = ah + h^2\operatorname{ctg}\varphi.$$

于是,

$$l = 2h\csc\varphi + \frac{S}{h} - h\cot\varphi.$$

由
$$\frac{dl}{d\varphi} = -\frac{2h\cos\varphi}{\sin^2\varphi} + \frac{h}{\sin^2\varphi} = 0$$
,得 $\cos\varphi = \frac{1}{2}$,所以, $\varphi = 60^\circ$.

因为

$$\left. \frac{d^2l}{d\varphi^2} \right|_{\varphi=60^\circ} = \frac{2h \sin^3\varphi - h \sin 2\varphi (1-2\cos\varphi)}{\sin^4\varphi} \left|_{\varphi=60^\circ} > 0.$$

所以,当 $\varphi = 60^{\circ}$ 时,横断面被水浸湿周长为最小。

1580. 设闭曲线所包围的面积为 S 及一圆周也包围同一的面积 S,则闭曲线的长与圆周长之比为该曲线的"弯曲性".

设等腰梯形 ABCD(AD // BC) 的底边 AD = 2a 及锐角 $BAD = \alpha$,问等腰梯形的形状如何,才有最小的弯曲性?

解 设腰 AB = CD = b,则梯形的周长为

$$l = 4a + 2b(1 - \cos\alpha),$$

梯形的面积为

$$S = (2a - b\cos a)b\sin a$$
.

$$R = \frac{1}{\sqrt{\pi}} \sqrt{(2a - b\cos\alpha)b\sin\alpha},$$

相应的圆周长为

$$L = 2\pi R = 2 \sqrt{\pi (2a - b\cos\alpha)b\sin\alpha}$$
.

令弯曲性为K,则

$$K = \frac{l}{L} = \frac{2a + b(1 - \cos\alpha)}{\sqrt{\pi(2a - b\cos\alpha)b\sin\alpha}}.$$

由 $\frac{dK}{db} = 0$,得 $b = a\sec^2\frac{\alpha}{2}$. 可以验证,当 AB = CD =

 $a \sec^2 \frac{\alpha}{2}$ 时,具有最小的弯曲性,此时,梯形恰好外切于某圆.

1581. 从半径为 R 的圆中应切去怎样的扇形,才能使余下的部分,可卷成一漏斗,其容积为最大?

解 设余下部分的中心角为x,则漏斗(呈圆锥状)底的周长为Rx,底半径为 $\frac{Rx}{2\pi}$ (R为原圆的半径),其高h

$$= \sqrt{R^2 - \left(\frac{Rx}{2\pi}\right)^2} = \frac{R}{2\pi} \sqrt{4\pi^2 - x^2}, 其容积为$$

$$V = \frac{1}{3}\pi \left(\frac{Rx}{2\pi}\right)^2 \frac{R}{2\pi} \sqrt{4\pi^2 - x^2} = \frac{R^3}{24\pi^2} x^2 \sqrt{4\pi^2 - x^2}.$$

按题设,我们只须考虑当 x 为何值时,函数

$$f(x) = x^4(4\pi^2 - x^2)$$

的值最大,为此,先求得

$$f'(x) = 16\pi^2 x^3 - 6x^5.$$

令 f'(x) = 0,要注意不允许 x = 0,得 $x = 2\pi \sqrt{\frac{2}{3}}$. 经

判别可知 $f\left(2\pi\sqrt{\frac{2}{3}}\right)$ 最大,因此, 所割去的扇形的中心角应为 $2\pi\left(1-\sqrt{\frac{2}{3}}\right)$.

图 2.151

铁路为一千米 q 卢布(p>q),则侧轨应向铁路取怎样的角度 φ ?

解 所需运费为

 $M = (b - a\operatorname{ctg}\varphi)q + \sqrt{a^2 + a^2\operatorname{ctg}^2\varphi}p = qb - aq\operatorname{ctg}\varphi + pa\operatorname{csc}\varphi.$

由
$$\frac{dM}{d\varphi} = \frac{aq}{\sin^2\varphi} - \frac{ap\cos\varphi}{\sin^2\varphi} = 0$$
,得 $\varphi_0 = \arccos\frac{q}{p}$. 又 $\frac{d^2M}{d\varphi^2}\Big|_{\varphi=\varphi_0} = ap\frac{1}{\sin\varphi_0} > 0$,

故当 $\operatorname{arc} \cos \frac{q}{p} \geqslant \operatorname{arc} \operatorname{tg} \frac{a}{b}$ 时, $q_0 = \operatorname{arc} \cos \frac{q}{p}$,相应运

1583. 两船各以一定的速度 u 和 v 沿直线前进, 两者前进方向 所成的角为 θ. 若于某时刻它们与其路线交点之距离分 别为 a 和 b, 求二船的最小距离。

解 设两船与路线交点的距离分别为a,b时的时刻 t_0 = 0,则时刻为t时两船的距离s适合下式:

 $s^{2} = (a + ut)^{2} + (b + vt)^{2} - 2(a + ut)(b + vt)\cos\theta,$

由 $2s\frac{ds}{dt} = 2(a+ut)u + 2(b+vt)v - 2(bu+2uvt+av)\cos\theta = 0$.解得

$$t_1 = -\frac{au + bv - (av + bu)\cos\theta}{u^2 + v^2 - 2uv\cos\theta}.$$

于是,相应地有

$$s^{2} = (a^{2} + b^{2} - 2ab\cos\theta) + 2((au + bv) - (av + bu)\cos\theta)t_{1}^{2} + (u^{2} + v^{2} - 2av\cos\theta)t_{1}^{2}$$

$$= \frac{1}{u^{2} + v^{2} - 2av\cos\theta}\{(a^{2} + b^{2} - 2ab\cos\theta) - (u^{2} + v^{2} - 2av\cos\theta) - 2((au + bv) - (av + bu)\cos\theta)^{2} + ((au + bv) - (av + bu)\cos\theta)^{2}\}$$

$$= \frac{((av - bu)\sin\theta)^{2}}{u^{2} + v^{2} - 2av\cos\theta}$$

经检验可知,此时 s 最小:

$$s = \frac{|av + bu| \sin \theta}{\sqrt{u^2 + v^2 - 2uv \cos \theta}}.$$

义两船的最小距离也可在 $t_0 = 0$ 之前达到. 类似地,可求得最小距离为 $s = \frac{|av + bu|\sin\theta}{\sqrt{u^2 + v^2 - 2uv\cos\theta}}$.

总之,两船间的最小距离为

$$s = \frac{|av \mp bu| \sin\theta}{\sqrt{u^2 + v^2 - 2uv\cos\theta}}.$$

1584. 在 A = B = A 点处各有一光源,其强度分别为 S_1 枝烛光与 S_2 枝烛光. 在线段 AB = a 上求出最小照明的点 M. **解** 设 AM = x,则照度

$$I = rac{S_1}{x^2} + rac{S_2}{(a-x)^2}.$$
 $riangledown rac{dI}{dx} = -rac{2S_1}{x^3} + rac{2S_2}{(a-x)^3} = 0 riangledown
onumber \ S_2 x^3 = S_1 (a-x)^3.$

解之,得

$$x = a \left(1 + \sqrt[3]{\frac{S_2}{S_1}}\right)^{-1}.$$

经检验此时照度最小,

1585. 发光点位于半径为 R 与 r(R > r) 的二互不相交之球的 连心线上,并在此二球的外面,此发光点的位置如何, 才可使二球表面上照明部分之和为最大?

解 设发光点离大球中心之距离为 x, 两球中心之距 离为 a,则按球冠面积公式推知照明部分面积之和为

$$S = 2\pi R \left(R - \frac{R^2}{x} \right) + 2\pi r \left(r - \frac{r^2}{a - x} \right),$$

式中 x 应満足 $R < x \le a - r$. 由

$$\frac{dS}{dx} = 2\pi R^3 \cdot \frac{1}{x^2} - 2\pi r^3 \cdot \frac{1}{(a-x)^2} = 0$$

得

$$x = \frac{a}{1 + \left(\frac{r}{R}\right)^{\frac{3}{2}}}.$$

又由 $x \leq a - r$ 可得

$$\frac{R^{\frac{3}{2}}}{R^{\frac{3}{2}} + r^{\frac{3}{2}}} a \leqslant a - r,$$

即

$$a \geqslant r + R \sqrt{\frac{R}{r}}$$
,

经检验此时照明面积最大:

当 $R + r < a < r + R\sqrt{\frac{R}{r}}$ 时,显然有 x = a - r,

经检验此时照明面积也为最大,

1586. 设圆桌面的半径为 a,应当在 圆桌面中央上面怎样高的地 方安置电灯,才可使其桌子 边沿上的照度为最大?

解 如图 2.152 所示·由物理学知,照度 1 为

$$I=k\,\frac{\sin\varphi}{r^2}$$

$$= k \frac{\sqrt{r^2 - a^2}}{r^3} (k) 为常$$

图 2.152

数). 考虑函数

$$f(r) = \frac{r^2 - a^2}{r^6} = \frac{1}{r^4} - \frac{a^2}{r^6}$$
 何时最大 $f'(r) = -\frac{4}{r^5}$ +

$$\frac{6a^2}{r^7} = \frac{6a^2 - 4r^2}{r^7}, \diamondsuit f'(r) = 0 得 r = \sqrt{\frac{3}{2}}a.$$
 经判别可知
$$\int \left(a\sqrt{\frac{2}{3}}\right)$$
 最大,因此,我们应在高 $h = \sqrt{\frac{3}{2}a^2 - a^2}$
$$= \frac{a}{\sqrt{2}}$$
 的地方安置电灯,才可使桌子边沿上的照度为最大,

1587. 向宽为 a 米的河修建一宽为 b 米的运河, 二者成直角相 交, 问能驶进这运河的船, 其最大的长度如何?

解 如图 2.153 所示 .BC ^B 的长度

$$l' = a \csc \varphi + b \sec \varphi,$$

$$l' = \frac{b \sin^3 \varphi - a \cos^3 \varphi}{\cos^2 \varphi \sin^2 \varphi},$$

右

令
$$l' = 0$$
 得 $tgq_b = \left(\frac{a}{b}\right)^{\frac{1}{3}}$ 或 $ctgq_b = \left(\frac{b}{a}\right)^{\frac{1}{3}}$,从而

$$\csc \varphi_{0} = \frac{\left(a^{\frac{2}{3}} + b^{\frac{2}{3}}\right)^{\frac{1}{2}}}{a^{\frac{1}{3}}}, \sec \varphi_{0} = \frac{\left(a^{\frac{2}{3}} + b^{\frac{2}{3}}\right)^{\frac{1}{2}}}{b^{\frac{1}{3}}}.$$

$$l'' \Big|_{\varphi = \varphi_{0}} = 3\left(\frac{b}{\cos \varphi_{0}} + \frac{a}{\sin \varphi_{0}}\right) > 0,$$

因此,儿一点 为最小值,即船的最大长度为

$$l|_{\varphi=\varphi_0}=(a^{\frac{2}{3}}+b^{\frac{2}{3}})^{\frac{3}{2}}.$$

1588. 船航行一昼夜的耗费由两部分组成;固定部分等于a 卢布,变动部分与速度的立方成比例增加. 在怎样的速度

v时,船航行为最经济?

解 设航行的全路程为 s,速度为 v,则总耗费

$$Q = (a + kv^3) \frac{s}{v} = \frac{as}{v} + skv^2.$$

由 $\frac{dQ}{dv}=0$ 得 $v=\sqrt[3]{\frac{a}{2k}}$. 经检验知,此时船航行最经济.

1589. 重量为 1'的物体位于粗糙的水平面上,须用力把物体 从原位置移动,若物体摩擦系数等于 k,问作用力对水 平面的倾斜如何,才使所须的力量为最小?

解 设作用力 F 对水平面的倾角为 α ,则

$$F\cos\alpha = k(P - F\sin\alpha)$$
,

則

$$F = \frac{kP}{\cos\alpha + k\sin\alpha}.$$

令 $y = \cos \alpha + k \sin \alpha$, 为使 F 最小, 只要使 y 最大. 由 y' $a = -\sin \alpha + k \cos \alpha = 0$ 得 $\alpha_0 = \text{arc tg} k$. 此时,

$$y''_{a}\Big|_{a=a_{0}} = -\cos a_{0} - k\sin a_{0} = -\sqrt{1+k^{2}} < 0.$$

即当 $a_0 = \text{arc tg} k$ 时,y 为最大值,从而 F 为最小值,也即此时用力最省.

1590. 有一茶杯,其形状为半径为 a 的半球,于茶杯中放一长为 l > 2a 的棒,求棒的平衡位置.

解 取球心为坐标原点. 当 $2a < l \le 4a$ 时,设棒的重心的纵坐标为 y,棒对杯口所在平面的倾角为 φ ,则

$$y = -\left(2a\cos\varphi - \frac{1}{2}\right)\sin\varphi \quad \left(0 < \varphi < \frac{\pi}{2}\right).$$

当棒平衡时,y最小,为此,求y的极值,由 y'。=

$$-4a\cos^{2}\varphi - \frac{l}{2}\cos\varphi + 2a = 0 得$$

$$\cos\varphi = \frac{l + \sqrt{l^{2} + 128a^{2}}}{16a} (负值不合适 , 舍去). 经$$

检验知此时 y 取最小值、即当 $\cos \varphi = \frac{l - \sqrt{l^2 + 128a^2}}{16a}$ 时棒取平衡位置、

当 / > 4a 时,棒的重心必在半球心外,于是此时棒失去平衡,无平衡位置。

§ 14. 曲线的相切、盘率圆、渐屈线

$$1^{n}$$
 的 相切 有 两 曲线 $y = \varphi(x)$ 及 $y = \psi(x)$,若 于 点 x_n , $\varphi^{k_0}(x_0) = \psi^{(k)}(x_0)$ ($k = 0, 1, 2, \cdots, n$) $\varphi^{n+1}(x_0) \neq \psi^{(n-1)}(x_0)$,

及

便说这两曲线于点 x₀有 n 阶相切(在严格的意义上讲!). 当 x → x₀ 时在这种情形有:

$$\varphi(x) - \psi(x) = O(((x - x_0)^{n+1})$$

2°曲率圆 圆周

$$(x-\xi)^2 + (y-\eta)^2 = R^2,$$

与已知曲线 y = f(x) 有不低于 2 阶的相切,此圆称为在对应点的曲率圆、这个圆的半径。

$$R = \frac{(1 + y \cdot 2)^{\frac{3}{2}}}{|y''|}$$

称为曲率半径,而量 $k = \frac{1}{R}$ 为曲率.

3° 新屈线 曲率圆中心(ξ,η)(曲率中心)

$$\xi = x - \frac{y'(1+y'^2)}{y''}, \eta = y + \frac{1+y'^2}{y''}$$

的轨迹称为已知曲线 y = f(x) 的新屈线.

1591. 选择直线

$$y = kx + b$$

的参数 k 与 b, 使它与曲线

$$y=x^3-3x^2+2$$

有高于一阶的相切:

解 要有高于一阶的相切,必须使 y'' = 6x - 6 = 0,即 要 x = 1;同时在 x = 1 时,两个一阶导数也应相等,即 $k = 3 \cdot 1^2 - 6 \cdot 1 = -3$.

当 x = 1 时,代入方程 $x^3 - 3x^2 + 2 - y = 0$,得 y = 0.由于直线 y = kx + b 也须通过点(1,0),故有 0 = $-3 \cdot 1 + b$,即 b = 3.

因此,所求的直线为

$$y=3(1-x),$$

参数 k = -3, b = 3.

1592. 应当怎样选择系数 a,b 和 c,才能使拋物线

$$y = ax^2 + bx + c$$

于点 $x = x_0$ 与曲线 $y = e^x$ 有二阶的相切?

解 对于拋物线 $y = ax^2 + bx + c$,在点 $x = x_0$ 有

$$y'\Big|_{x=x_0}=2ax_0+b,y''\Big|_{x=x_0}=2a,y''=0.$$

按假设,应有

$$\begin{cases} ax_0^2 + bx_0 + c = e^{x_0}, \\ 2ax_0 + b = e^{x_0}, \\ 2a = e^{x_0}, \end{cases}$$

解之,得

$$a = \frac{1}{2}e^{x_0}, b = e^{x_0}(1-x_0), c = e^{x_0}\left(1-x_0+\frac{x_0^2}{2}\right).$$

1593. 下列曲线与 Ox 轴在点 x=0 相切的阶如何:

(a)
$$y = 1 - \cos x$$
; (6) $y = tgx + \sin x$;

(B)
$$y = e^x - \left(1 + x + \frac{x^2}{2}\right)$$
.

解 (a) $y' = \sin x, y'' = \cos x$,于是

$$y' \Big|_{x=0} = 0 \qquad y'' \Big|_{x=0} = 1.$$

而对于Ox轴 y = 0,始终有 y' = 0, y'' = 0. 因此,曲线 $y = 1 - \cos x$ 与 Ox 轴有一阶的相切.

(6)
$$y' = \sec^2 x - \cos x$$
, $y'' = 2\sec^2 x \operatorname{tg} x + \sin x$, $y''' = 4\sec^2 x \operatorname{tg}^2 x + 2\sec^4 x + \cos x$,

于是 $y' \Big|_{x=0} = y'' \Big|_{x=0} = 0, y''' \Big|_{x=0} = 3 \neq 0$. 因此,曲线 $y = tgx - \sin x = 0$ 知有二阶的相切.

(B)
$$y' = e^x - 1 - x$$
, $y'' = e^x - 1$, $y = e^x$, 于是
 $y' \Big|_{x=0} = y'' \Big|_{x=0} = 0$, $y''' \Big|_{x=0} = 1 \neq 0$.

因此,曲线 $y = e^x - \left(1 + x + \frac{x^2}{2}\right)$ 与 Ox 轴有二阶的相切。

1594. 证明曲线:

当 $x \neq 0$ 时, $y = e^{-\frac{1}{x^2}}$; 当 x = 0 时, y = 0 在点 x = 0 与 Ox 轴相切的阶为无穷大.

解 利用 1225 题的结果知,对于任意自然数 n,有

$$y^{(n)}\Big|_{x=0}=0,$$

此即证明了所给的曲线在点x=0与Ox轴相切的阶为

无穷大,

1595. 求双曲线

$$xy = 1$$

在下列各点的曲率半径和曲率中心:

(a)M(1,1);(6)N(100,0.01).

解
$$y = \frac{1}{x}, y' = -\frac{1}{x^2}, y'' = \frac{2}{x^3}.$$

(a) 在点M(1,1),y=1,y'=-1,y''=2,于是,曲率半径

$$R = \frac{(1+(1)^2)^{\frac{3}{2}}}{2} = \sqrt{2},$$

曲率中心(ξ,η) 为

$$\xi = x - \frac{y'(1+y'^2)}{y''} = 1 - \frac{-1(1+1)}{2} = 2,$$

$$\eta = y + \frac{1+y'^2}{y''} = 1 + \frac{2}{2} = 2.$$

(6) 在点 N(100,0.01),

$$y = 0.01, y' = -0.0001, y'' = 0.000002.$$

与(a) 相似,代入公式,近似地有

曲率半径 R = 500000 和曲率中心(150,500000).

求下列曲线的曲率半径:

1596. 拋物线 $y^2 = 2px$.

解
$$y' = \frac{p}{y}, y'' = -\frac{p}{y^2}y' = -\frac{p^2}{y^3}$$
. 于是,曲率半径

$$R = \frac{(1 + y'^2)^{\frac{3}{2}}}{|y''|} = \frac{\left(1 + \frac{p^2}{y^2}\right)^{\frac{3}{2}}}{\left|\frac{p^2}{y^3}\right|} = \frac{(y^2 + p^2)^{\frac{3}{2}}}{p^2}$$

$$= p \left(1 + \frac{y^2}{p^2} \right)^{\frac{3}{2}} = p \left(1 + \frac{2x}{p} \right)^{\frac{3}{2}}.$$

1597. 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

解 不妨设 α > b. 由于

$$y' = -\frac{b^2x}{a^2y}, y'' = -\frac{b^4}{a^2y^3}.$$

干是,曲率半径

$$R = \frac{\left(1 + \frac{b^4 x^2}{a^4 y^2}\right)^{\frac{3}{2}}}{\frac{b^4}{a^2 |y|^3}} = \frac{(a^4 y^2 + b^4 x^2)^{\frac{3}{2}}}{a^4 b^4}$$

$$=\frac{(a^4b^2-a^2b^2x^2+b^4x^2)^{\frac{3}{2}}}{a^4b^4}$$

$$=\frac{a^3b^3\left(a^2-\frac{a^2-b^2}{a^2}x^2\right)^{\frac{3}{2}}}{a^4b^4}=\frac{(a^2-\epsilon^2x^2)^{\frac{3}{2}}}{ab}.$$

其中 $\epsilon = \frac{\sqrt{a^2 - b^2}}{a}$ 为椭圆的离心率.

1598. 双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$

解 由于 $y' = \frac{b^2x}{a^2y}, y'' = -\frac{b^4}{a^2y^3}$. 于是,曲率半径

$$R = \frac{\left(1 + \frac{b^4 x^2}{a^4 y^2}\right)^{\frac{3}{2}}}{\frac{b^4}{a^2 |y|^3}} = \frac{(a^4 y^2 + b^4 x^2)^{\frac{3}{2}}}{a^4 b^4}$$

$$=\frac{(a^2b^2x^2-a^4b^2+b^4x^2)^{\frac{3}{2}}}{a^4b^4}$$

$$=\frac{\left(\frac{a^2+b^2}{a^2}x^2-a^2\right)^{\frac{3}{2}}}{ab}=\frac{\left(\varepsilon^2x^2-a^2\right)^{\frac{3}{2}}}{ab},$$

其中 $\epsilon = \frac{\sqrt{a^2 + b^2}}{a}$ 为双曲线的离心率.

1599. 内摆线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.

解 由于 $y' = -\sqrt[3]{\frac{y}{x}}, y'' = \frac{a^{\frac{2}{3}}}{3x^{\frac{4}{3}}v^{\frac{1}{3}}}$. 于是, 曲率半径为

$$R = \frac{\left(1 + \left(\frac{y}{x}\right)^{\frac{2}{3}}\right)^{\frac{3}{2}}}{\left|\frac{a^{\frac{2}{3}}}{3x^{\frac{4}{3}}y^{\frac{1}{3}}}\right|} = \left|\frac{\frac{a}{x}}{\frac{a^{\frac{2}{3}}}{3x^{\frac{4}{3}}y^{\frac{1}{3}}}}\right| = 3|axy|^{\frac{1}{3}}.$$

1600. 椭圆 $x = a\cos t, y = b\sin t$.

解 由于

$$\frac{dy}{dx} = \frac{b\cos t}{-a\sin t} = -\frac{b}{a}\operatorname{etg}t,$$

$$\frac{d^2y}{dx^2} = \frac{-\frac{b}{a}\left(-\frac{1}{\sin^2 t}\right)}{-a\sin t} = -\frac{b}{a^2\sin^3 t}.$$

于是,曲率半径为

$$R = \frac{\left(1 + \frac{b^2 \operatorname{ct} g^2 t}{a^2}\right)^{\frac{3}{2}}}{\frac{b}{a^2 |\sin t|^3}} = \frac{(a^2 \sin^2 t + b^2 \cos^2 t)^{\frac{3}{2}}}{ab}$$

$$=\frac{a^{3}\left(1-\frac{a^{2}-b^{2}}{a^{2}}\cos^{2}t\right)^{\frac{3}{2}}}{ab}=\frac{a^{2}}{b}(1-\varepsilon^{2}\cos^{2}t)^{\frac{3}{2}},$$

其中 ε 为椭圆的离心率.

1601. 摆线 $x = a(t - \sin t), y = a(1 - \cos t)$.

$$\frac{dy}{dx} = \frac{a\sin t}{a(1-\cos t)} = \operatorname{ctg}\frac{t}{2},$$

$$\frac{1}{2\sin^2\frac{t}{2}} = 1$$

$$\frac{d^2y}{dx^2} = \frac{\frac{1}{2\sin^2\frac{t}{2}}}{a(1-\cos t)} = \frac{1}{4a\cos^4\frac{t}{2}}.$$

于是,曲率半径为

$$R = \frac{\left(1 + \operatorname{ctg}^{2} \frac{t}{2}\right)^{\frac{5}{2}}}{\frac{1}{4a\sin^{4} \frac{t}{2}}} = 4a \left|\sin \frac{t}{2}\right| = 2 \sqrt{2ay}.$$

1602. 圆的渐伸线 $x = a(\cos t + t \sin t), y = a(\sin t - t \cos t)$.

解 由于

$$\frac{dy}{dx} = tgt, \frac{d^2y}{dx^2} = \frac{1}{at\cos^3t}.$$

于是,曲率半径为

$$R = \frac{(1 + tg^2t)^{\frac{3}{2}}}{\frac{1}{a|t\cos^3t|}} = a|t|.$$

1603. 证明二次曲线

$$y^2 = 2px - qx^2$$

的曲率半径与法线段的立方成比例,

曲线的曲率半径公式为

$$R = \frac{(1+y'^2)^{\frac{3}{2}}}{|y''|},$$

而法线段公式为

$$l=|y|\sqrt{1+y'^2}|,$$

因此, $\frac{R}{l^3} = \frac{1}{|y^3y''|}$. 下面求 y^3y'' .

因为 $y^2 = 2px - qx^2$,故在等式两端分别对 x 求两次导数,即得

$$2yy' = 2p - 2qx \otimes yy' = p - qx, \tag{1}$$

$$yy'' + y'^2 = -q. (2)$$

以 y² 乘(2) 式两端,并以(1) 式及原二次曲线的表达式 代入左右端,即得

$$y^3y'' + (p - qx)^2 = -q(2px - qx^2);$$

化简之,最后得

$$y^3y''=-p^2.$$

因此, $\frac{R}{l^3} = \frac{1}{p^2}$ 为一常数.证完.

1604. 写出以极坐标表示的曲线的曲率半径公式.

解 设曲线的极坐标方程为 $r = r(\varphi)$,则由

$$x = r\cos\varphi, y = r\sin\varphi$$

可求得

$$\frac{dy}{dx} = \frac{r'\sin\varphi + r\cos\varphi}{r'\cos\varphi - r\sin\varphi}, \frac{d^2y}{dx^2} = \frac{r^2 + 2r'r' - rr''}{(r'\cos\varphi - r\sin\varphi)^3},$$

其中
$$r' = \frac{dr}{d\varphi}, r'' = \frac{d^2r}{d\varphi^2}.$$

于是,曲率半径为

$$R = \frac{\left(1 + \left(\frac{dy}{dx}\right)^{2}\right)^{\frac{3}{2}}}{\left|\frac{d^{2}y}{dx^{2}}\right|} = \frac{(r^{2} + r'^{2})^{\frac{3}{2}}}{\left|r^{2} + 2r'^{2} - rr''\right|}.$$

求下列极坐标方程所表曲线的曲率半径:

1605. 阿基米德螺线 r = aq.

解 由于
$$r' = a$$
, $r'' = 0$. 于是, 曲率半径为
$$R = \frac{(a^2 + r^2)^{\frac{3}{2}}}{2a^2 + r^2}.$$

1606. 对数螺线 $r = ae^{mv}$.

解 由于 $r' = mae^{m\varphi} = mr, r'' = m^2r$. 于是,曲率半径为

$$R = \frac{r^3(1+m^2)^{\frac{3}{2}}}{r^2+m^2r^2} = r \sqrt{1+m^2}.$$

1607. 心脏形线 $r = a(1 + \cos \varphi)$.

 $\mathbf{f}\mathbf{f} = -a\sin\varphi, \mathbf{r}'' = -a\cos\varphi.$

$$R = \frac{(a^2(1+\cos\varphi)^2 + a^2\sin^2\varphi)^{\frac{3}{2}}}{a^2(1+\cos\varphi)^2 + 2a^2\sin^2\varphi + a^2\cos\varphi(1+\cos\varphi)}$$
$$= \frac{2\sqrt{2}a^3(1+\cos\varphi)^{\frac{3}{2}}}{3a^2(1+\cos\varphi)}$$
$$= \frac{2}{3}\sqrt{2ar}.$$

1608. 双纽线 $r^2 = a^2 \cos 2\varphi$.

$$\mathbf{f} \qquad r' = -\frac{a^2 \sin 2\varphi}{r}, r'' = -\frac{r^4 + a^4}{r^3},$$

$$r^2 + 2r'^2 - rr'' = \frac{3a^4}{r^2}, (r^2 + r'^2)^{\frac{3}{2}} = \frac{a^6}{r^3}.$$

于是,曲率半径为

$$R=\frac{\frac{a^6}{r^3}}{\frac{3a^4}{r^2}}=\frac{a^2}{3r}.$$

1609. 在曲线 $y = \ln x$ 上求曲率最大的点。

解 由于
$$y' = \frac{1}{x}, y'' = -\frac{1}{x^2},$$
所以, 曲率半径为

$$R = \frac{\left(1 + \frac{1}{x^2}\right)^{\frac{3}{2}}}{\frac{1}{x^2}} = \frac{(1 + x^2)^{\frac{3}{2}}}{|x|}.$$

按颞设,我们只须考虑函数

$$f(x) = \frac{(1+x^2)^3}{x^2}$$

当 x 取何值时达到最小值,由于

$$f'(x) = \frac{2(1+x^2)^2(2x^2-1)}{x^3}$$
, $\dot{a} \diamondsuit f'(x) = 0$

得正根 $x = \frac{1}{\sqrt{2}}$. 当 $0 < x < \frac{1}{\sqrt{2}}$ 时, f'(x) < 0; 当

 $x > \frac{1}{\sqrt{2}}$ 时,f'(x) > 0. 因此,当 $x = \frac{1}{\sqrt{2}}$ 时,f(x)取

极小值,又由于只有一个极小值,故也是最小值。

这样一来,当 $x = \frac{1}{\sqrt{2}}$, $y = -\frac{\ln 2}{2}$ 时,曲率半径为最小,也即曲率为最大.因此,所求的点为

$$\left(\frac{1}{\sqrt{2}}, -\frac{\ln 2}{2}\right)$$
.

1610. 三次拋物线 $y = \frac{kx^3}{6} (0 \le x < + \infty, k > 0)$ 的最大曲率 等于 $\frac{1}{1000}$, 求达到此最大曲率的点 x.

解 为方便起见,令 $c = \frac{k}{6}$. 因为

$$y' = 3cx^2, y'' = 6cx,$$

所以,曲率

$$K = \frac{|y''|}{(1+y'^2)^{\frac{3}{2}}} = \frac{6cx}{(1+9c^2x^4)^{\frac{3}{2}}} (x \geqslant 0).$$

由
$$\frac{dK}{dx} = 6c \frac{\sqrt{1 + 9c^2x^4}(1 - 45c^2x^4)}{(1 + 9c^2x^4)^3} = 0$$
,得 $x_0^4 = \frac{1}{45c^2}$.

可证 $\frac{d^2K}{dx^2}\Big|_{x=x_0}$ <0,又根据条件, $K(x_0)$ 为K(x)的最大值,且有

$$K(x_0) = \frac{6c\sqrt[4]{\frac{1}{45c^2}}}{\left(1 + 9c^2 \cdot \frac{1}{45c^2}\right)^{\frac{3}{2}}} = \frac{6\sqrt{c}\sqrt[4]{\frac{1}{45}}}{\left(\frac{6}{5}\right)^{\frac{3}{2}}} = \frac{1}{10^3},$$

解之,得

$$c = \frac{18\sqrt{5}}{5^3 \times 10^6},$$

从而

$$x_0^2 = \frac{1}{\sqrt{45}c} = \frac{5^2 \times 10^6}{54}$$

或

$$x_0 = \sqrt{\frac{5^2 \times 10^6}{54}} \approx 680.$$

此即达到最大曲率的点,

求下列各曲线的新屈线方程:

1611. 拋物线 $y^2 = 2px$ 的新屈线.

解 由于 $y' = \frac{p}{y}, y'' = -\frac{p^2}{y^3}$, 故曲率中心坐标为

$$\xi = x - \frac{y'(1+y'^2)}{y''} = x + \frac{\frac{p}{y}\left(1+\frac{p^2}{y^2}\right)}{\frac{p^2}{y^3}}$$

$$= x + \frac{y^2 + p^2}{p} = x + \frac{2px + p^2}{p} = 3x + p,$$

$$\eta = y + \frac{1 + y'^2}{y''} = y - \frac{1 + \frac{p^2}{y^2}}{\frac{p^2}{y^3}} = -\frac{y^3}{p^2},$$

期

$$x = \frac{\xi - p}{3}, y^3 = -p^2 \eta.$$
 (*)

由于 $y^6 = 8p^3x^3$,故将 $^{(*)}$ 式代入后,消去x及y,即得渐 屈线方程为

$$27p\eta^2 = 8(\xi - p)^3$$
.

1612. 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 的新屈线.

解 由于 $y' = -\frac{b^2x}{a^2y}$, $y'' = -\frac{b^4}{a^2y^3}$, 故曲率中心的坐标为

$$\dot{\xi} = x - \frac{y'(1 + y'^2)}{y''} = x - \frac{\frac{b^2 x}{a^2 y} \left(1 + \frac{b^4 x^2}{a^4 y^2}\right)}{\frac{b^4}{a^2 y^3}}$$

$$= x - \frac{b^2 x \cdot a^2 y^3 \cdot (a^4 y^2 + b^4 x^2)}{a^5 y^3 b^4}$$

$$= x - \frac{x a^2 b^2 \left(a^2 - \frac{a^2 - b^2}{a^2} x^2\right)}{a^4 b^2}$$

$$= x - \frac{x \left(a^2 - \frac{c^2}{a^2} x^2\right)}{a^2} = \frac{c^2}{a^4} x^3,$$

$$\eta = y + \frac{1 + y'^2}{y''} = y - \frac{1 + \frac{b^4 x^2}{a^4 y^2}}{\frac{b^4}{a^2 y'^4}} \\
= y - \frac{y(a^4 y^2 + b^4 x^2)}{a^2 b^4} \\
= y - \frac{ya^2 b^2 \left(b^2 + \frac{c^2}{b^2} y^2\right)}{a^2 b^4} = -\frac{c^2}{b^4} y^5,$$

即

$$c^2y^3 = -b^4\eta \cdot c^2x^3 = a^4\xi$$

于是,

$$c^{\frac{4}{3}}y^2 = b^{\frac{8}{3}}\eta^{\frac{2}{3}}, c^{\frac{4}{3}}x^2 = a^{\frac{8}{3}}\xi^{\frac{2}{3}},$$
从而,将 $\frac{x^2}{a^2} = \frac{a^{\frac{2}{3}}\xi^{\frac{2}{3}}}{c^{\frac{4}{3}}}, \frac{y^2}{b^2} = \frac{b^{\frac{2}{3}}\eta^{\frac{2}{3}}}{c^{\frac{4}{3}}}$ 相加即得新屈线方程
$$(a\xi)^{\frac{2}{3}} + (b\eta)^{\frac{2}{3}} = c^{\frac{4}{3}}.$$

其中 $c^2 = a^2 - b^2$. 它为一内摆线.

1613. 内摆线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ 的新屈线.

解 由于 $y' = -\left(\frac{y}{x}\right)^{\frac{1}{3}}, y'' = \frac{1}{3}a^{\frac{2}{3}}x^{-\frac{4}{3}}y^{-\frac{1}{3}}$, 故曲率中心的坐标为

$$\xi = x - \frac{y'(1+y'^2)}{y''}$$

$$= x + \frac{3x^{\frac{4}{3}}y^{\frac{1}{3}}y^{\frac{1}{3}}\left[1 + \frac{y^{\frac{2}{3}}}{x^{\frac{2}{3}}}\right]}{a^{\frac{2}{3}}x^{\frac{1}{3}}} = x + 3x^{\frac{1}{3}}y^{\frac{2}{3}},$$

$$\eta = y + \frac{1 + y'^{2}}{y''} = y + \frac{3x^{\frac{4}{3}}y^{\frac{1}{3}}\left[1 + \frac{y^{\frac{2}{3}}}{x^{\frac{2}{3}}}\right]}{a^{\frac{2}{3}}}$$

$$= y + 3x^{\frac{2}{3}}y^{\frac{1}{3}}.$$

于是,

$$\xi + \eta - (x + y) + 3x^{\frac{1}{3}}y^{\frac{1}{3}}(x^{\frac{1}{3}} + y^{\frac{1}{3}})$$

$$= (x^{\frac{1}{3}} + y^{\frac{1}{3}}) \left[\left(x^{\frac{2}{3}} + y^{\frac{2}{3}} - x^{\frac{1}{3}}y^{\frac{1}{3}} \right) + 3x^{\frac{1}{3}}y^{\frac{1}{3}} \right]$$

$$= \left(x^{\frac{1}{3}} + y^{\frac{1}{3}} \right)^{3},$$

$$\xi - \eta = (x - y) - 3x^{\frac{1}{3}}y^{\frac{1}{3}}(x^{\frac{1}{3}} - y^{\frac{1}{3}})$$

$$= (x^{\frac{1}{3}} - y^{\frac{1}{3}}) \left[(x^{\frac{2}{3}} + y^{\frac{2}{3}} + x^{\frac{1}{3}}y^{\frac{1}{3}}) - 3x^{\frac{1}{3}}y^{\frac{1}{3}} \right]$$

$$= (x^{\frac{1}{3}} - y^{\frac{1}{3}})^{3}.$$

因此,

$$(\xi + \eta)^{\frac{2}{3}} + (\xi - \eta)^{\frac{2}{3}}$$

$$= (x^{\frac{1}{3}} + y^{\frac{1}{3}})^{2} + (x^{\frac{1}{3}} - y^{\frac{1}{3}})^{2}$$

$$= 2(x^{\frac{2}{3}} + y^{\frac{2}{3}}) = 2a^{\frac{2}{3}}.$$

此即所求的渐屈线方程,它仍为一内摆线.

1614. 曳物线 $x = a \ln \frac{a + \sqrt{a^2 - y^2}}{y} - \sqrt{a^2 - y^2}$ 的新屈线.

解 先求 y' 和 y''. 在等式

$$x = a \ln \frac{a + \sqrt{a^2 - y^2}}{y} - \sqrt{a^2 - y^2}$$

两端分别对x求导,得

$$1 = a \left(\frac{-1}{a + \sqrt{a^2 - y^2}} \cdot \frac{yy'}{\sqrt{a^2 - y^2}} - \frac{y'}{y} \right) + \frac{yy'}{\sqrt{a^2 - y^2}}.$$

化简得

$$y' = -\frac{y}{\sqrt{a^2 - y^2}}.\tag{1}$$

再将(1) 式两端分别对 x 求导并以(1) 式代入, 化简即 538

得

$$y'' = \frac{a^2 y}{(a^2 - y^2)^2}.$$

于是, 曲率中心的坐标为

$$\xi = x - \frac{y'(1 + y'^2)}{y''} = x + \frac{\frac{a^2y}{(a^2 - y^2)^{\frac{3}{2}}}}{\frac{a^2y}{(a^2 - y^2)^2}}$$

$$= x + \sqrt{a^2 - y^2},$$

$$\eta = y + \frac{1 + y'^2}{y''} = y + \frac{\frac{a^2}{a^2 - y^2}}{\frac{a^2y}{(a^2 - y^2)^2}} = \frac{a^2}{y}.$$

由于点(x,y)的坐标 x 和 y,适合方程

$$x + \sqrt{a^2 - y^2} = a \ln \frac{a + \sqrt{a^2 - y^2}}{y},$$

故

$$\xi = a \ln \frac{a + \sqrt{a^2 - y^2}}{y},$$

即

$$\frac{a+\sqrt{a^2-y^2}}{y}=e^{\frac{\xi}{a}}.$$
 (2)

将(2) 式分子有理化,得

$$\frac{a^2 - (a^2 - y^2)}{y(a - \sqrt{a^2 - y^2})} = e^{\frac{\xi}{a}},$$

即

$$\frac{a-\sqrt{a^2-y^2}}{y}=e^{-\frac{\xi}{a}}.$$
 (3)

(2) + (3) 并除以 2, 即得

$$\frac{a}{y} = \operatorname{ch} \frac{\xi}{a},$$

从而得

$$\eta = a \operatorname{ch} \frac{\xi}{a},$$

此即所要求的新屈线方程,它为一悬链线,

1615. 对数螺线 $r = ae^{mr}$ 的渐屈线.

利用直角坐标与极坐标的互化公式来求新屈线 方程, 首先, 我们有

$$\frac{1}{2}\ln(x^2+y^2)=\ln a+m \operatorname{arc} \operatorname{tg} \frac{y}{x}.$$

两边对 x 求导得

$$\frac{x + yy'}{x^2 + y^2} = \frac{m(xy' - y)}{x^2 + y^2},$$

即

$$x + yy' = m(xy' - y). \tag{1}$$

解(1) 式即得

$$y' = \frac{x + my}{mx - y}.$$

由(1) 式再对 x 求导, 化简得

$$y'' = \frac{1 + y'^2}{mx - y}.$$

以 y' 及 y" 代入曲率中心的表达式中,化简整理得

$$\hat{\varsigma} = -my, \eta = mx. \tag{2}$$

设 $\rho = \sqrt{\xi^2 + \eta^2}$, $\psi = \text{arc tg} \frac{\eta}{\xi}$, 于是由(2) 式得

$$[\xi^2 + \eta^2 = m^2(x^2 + y^2), \qquad (3)$$

$$\begin{cases} \xi^{2} + \eta^{2} = m^{2}(x^{2} + y^{2}), \\ -\frac{\xi}{\eta} = \frac{y}{x}. \end{cases}$$
 (3)

(3) 式即 $\rho = mr = mae^{m\theta}$, (4) 式即 $- \text{ctg} \psi = \text{tg} \varphi$ 或 $\varphi = \Psi - \frac{\pi}{2}$. 因此,最后我们得到所求的新屈线方程为对数螺线

$$\rho = mae^{m(\varphi - \frac{\pi}{2})}.$$

1616. 证明摆线

$$x = a(t - \sin t), y = a(1 - \cos t)$$

的渐屈线仍为一摆线,仅其位置与已知摆线不同而已.

证 由于

$$y' = \frac{dy}{dx} = \operatorname{ctg} \frac{t}{2}, y'' = \frac{d^2y}{dx^2} = -\frac{1}{4a\sin^4\frac{t}{2}}.$$

于是,

$$\xi = x - \frac{y'(1 + y'^2)}{y''} = a(t - \sin t)$$

$$+ \frac{\cot g \frac{t}{2} \cdot (1 + \cot g^2 \frac{t}{2})}{\frac{1}{4a\sin^4 \frac{t}{2}}}$$

$$= a(t + \sin)t,$$

$$\eta = y + \frac{1 + y'^2}{y''} = a(\cos t - 1).$$

令 $t-\pi=\tau$,即得

 $\xi = \pi a + a(\tau - \sin \tau), \eta = -2a + a(1 - \cos \tau).$ 此仍为摆线,显然,只是位置与原摆线不同而已.

§ 15. 方程的近似解法

1°比例法(弦位法) 若函数 f(x) 于闭区间(a,b) 上连续及

$$f(a)f(b) < 0,$$

且当a < x < b 时, $f'(x) \neq 0$, 则方程

$$f(x) = 0 (1)$$

于区间(a,b) 内有一个而且仅有一个实根 5. 可取下面的值作为此根的 第一近似值:

$$x_1 = a + \delta_1,$$

$$f(a) = a + \delta_1$$

武中 $\delta_1 = -\frac{f(a)}{f(b) - f(a)}(b + a).$

更进而对于区间 (a,x_1) 或 (x_1,b) 中,函数f(x)在其两端异号的那一个区间运用这方法,得到根专的第二近似值 x_2 ,由此类推,对于第n近似值 x_n ,下列公式正确:

$$|x_n - \xi| \leqslant \frac{|f(x_n)|}{m},\tag{2}$$

式中 $m = \inf_{x \le x \le b} |f'(x)|$,并且

$$\lim x_* = \xi.$$

2° 牛顿法(切线法) 若在闭区间(a,b)内 $f''(x) \neq 0$ 及 f(a)f''(a) > 0,则可取数值

$$\xi_1 = a - \frac{f(a)}{f'(a)}$$

作为方程(1) 的根 6 的第一近似值 61.

重复利用这个方法,很快就得到趋近于根底的一系列近似值 $\xi_n(n)$ = 1,2,…),这些近似值的精确性可根据公式(2)来估计。

为了大略的确定方程的根,最好可作函数 y = f(x) 的图形.

利用比例法,求下列方程的根(精确到 0.001)。

1617. $x^3 - 6x + 2 = 0$.

解 设 $f(x) = x^3 - 6x + 2 = 0$,则 f(x) 在[0,1] 上 连续及 f(0) = 2,f(1) = -3,且当 0 < x < 1 时,f'(x) = $3x^2 - 6x \ne 0$. 因而所给方程在(0,1) 内有且仅有一实根 ξ_1 . 现求之,以 x_i 表示此根的第 i 次近似值,则有

$$x_1 = 0 + \delta_1 = -\frac{f(0)}{f(1) - f(0)}(1 - 0) = 0.4;$$
又因 $f(0,4) = -0.336$,故

$$x_2 = -\frac{f(0)}{f(0.4) - f(0)}(0.4 - 0) = 0.342;$$

$$f(0.342) = -0.012$$
, to

$$x_3 = -\frac{f(0)}{f(0.342) - f(0)}(0.342 - 0) = 0.340;$$

由于 $f(0.340) = -0.001, m_1 = \inf_{0 < x < 1} |f'(x)| = 3,$ 因

此,如果取 0.340 作为此根的第三次近似值,其误差为

$$|0.340 - \xi_1| \leq \frac{|f(0.340)|}{m_1} < 0.001,$$

已达到所需的精确度,于是,所给方程的一近似根为0.340.

再求其它的根:

因为 f(2) = -2, f(3) = 11, 且当 2 < x < 3 时, $f'(x) \neq 0$, 故方程在(2,3) 内有且仅有一实根 ξ_2 . 与求 ξ_1 的方法类似,分别求得其各次的近似值为:

$$x_{1} = 2 - \frac{f(2)}{f(3) - f(2)}(3 - 2) = 2.15;$$

$$x_{2} = 2.15 - \frac{f(2.15)}{f(3) - f(2.15)}(3 - 2.15) = 2.22;$$

$$x_{3} = 2.22 - \frac{f(2.22)}{f(3) - f(2.22)}(3 - 2.22)$$

$$= 2.245;$$

$$x_{4} = 2.245 - \frac{f(2.245)}{f(3) - f(2.245)}(3 - 2.245)$$

$$= 2.256;$$

$$x_{5} = 2.256 - \frac{f(2.256)}{f(3) - f(2.256)}(3 - 2.256)$$

$$= 2.260;$$

$$x_6 = 2.260 - \frac{f(2.260)}{f(3) - f(2.260)}(3 - 2.260)$$

$$= 2.261;$$

$$x_7 = 2.261 - \frac{f(2.261)}{f(3) - f(2.261)}(3 - 2.261)$$

$$= 2.262.$$

由于 $f(2, 262) = 0.003, m_2 = \inf_{z \in F(3)} |f'(x)| = 6$,因此, 如果取 2,262 作为 ξ_2 的第七次近似值,其误差为

$$|2.262 - \xi_z| \leqslant \frac{|f(2.262)|}{m_z} < 0.001.$$

已达到所需的精确度,于是,所给方程的一近似根为2.262.

由于此方程为一个三次方程,最后必然还有一实根.

因为 f(-2) = 6, f(-3) = -7, 且当 -3 < x < -2 时, $f'(x) \neq 0$, 故此根 ξ_3 介于 -3 和 -2 之间,同上法求得其各次近似值为

$$x_1 = -3 - \frac{f(-3)}{f(-2) - f(-3)}(-2 + 3)$$

= -2.461;

$$x_2 = -3 - \frac{f(-3)}{f(-2.461) - f(-3)}(-2.461 + 3)$$
= -2.574;

$$x_3 = -3 - \frac{f(-3)}{f(-2.574) - f(-3)}(-2.574 + 3)$$
= -2.596;

$$x_4 = -3 - \frac{f(-3)}{f(-2.596) - f(-3)}(-2.596 + 3)$$

= -2.601;

$$x_5 = 3 - \frac{f(-3)}{f(-2.601) - f(-3)} (-2.601 + 3)$$

= -2.602.

由于 $f(-2.602) = -0.004 \cdot m_3 = \inf_{-3 \le x \le -2} |f'(x)| = 6 \cdot$ 因此,如果取 -2.602 作为 ξ_3 的第五次近似值,则其误差为

$$|-2.602 - \xi_3| \leqslant \frac{|f(-2.602)|}{m_3} < 0.001,$$

已达到所需的精确度、于是,所给方程的第三个根的近似值为一 2.602.

1618. $x^4 - x - 1 = 0$.

解 设 $f(x) = x^t - x - 1$. 由于 f(1) = -1, f(2) = 13, 且当 1 < x < 2 时, $f'(x) \neq 0$,故所给方程在(1,2) 内有且仅有一实根 ξ ,按 1617 题的方法,依次求得该根的各次近似值为

$$x_1 = 1.07; x_2 = 1.12; x_3 = 1.156; x_4 = 1.180;$$

 $x_5 = 1.196; x_6 = 1.205; x_7 = 1.217;$
 $x_8 = 1.220; x_9 = 1.221.$

由于 $f(1,221) = 0.002, m_1 = \inf_{1 \le x \le 2} |f'(x)| = 3$,因此,如果取 1.221 作为 ξ , 的第九次近似值,其误差为

$$|1.221 - \xi_1| \leqslant \frac{|f(1.221)|}{m_1} < 0.001$$

已达到所需的精确度.于是,所给方程的一近似根为1,221.

又因 f(-1) = 1, f(-0.5) = -0.4375, 且当 -1 < x < -0.5 时 $f'(x) \neq 0$, 故所给方程在(-1, -0.5) 内有且仅有一实根 ξ_2 , 依次求得其各次近似值

为

$$x_1 = -0.652$$
; $x_2 = -0.789$; $x_3 = -0.706$; $x_4 = -0.719$; $x_5 = -0.723$; $x_6 = -0.724$. 由于 $f(-0.724) = -0.001$, $m_2 = \inf_{-1 \le x \le -0.5} |f'(x)| = 1$, 因此, 如果取 -0.724 作为 ξ_2 的第六次近似值,其误差为

$$|-0.724 - \xi_2| \leqslant \frac{|f(-0.724)|}{m_2} = 0.001.$$

已达到所需的精确度,于是,所给方程的另一近似根为 - 0.724.

由于 $f'(x) = 4x^3 - 1 = 0$ 只有一实根,且 $f''(x) = 12x^2 > 0(x \neq 0)$,故所给方程仅有二实根,其余二根为一对共轭复根.

1619. x - 0. $1\sin x = 2$.

解 设 $f(x) = x - 0.1\sin x - 2$,则 f(2) = -0.091, $f\left(\frac{2\pi}{3}\right) = 0.0237$,且当 $2 < x < \frac{2\pi}{3}$ 时, $f'(x) \neq 0$,故所 给方程在 $\left(2, \frac{2\pi}{3}\right)$ 内有且仅有一实根 ξ_1 ,依次求得其各次近似值为

 $x_1 = 2.075; x_2 = 2.080; x_3 = 2.083; x_4 = 2.087.$ 由于 $f(2.087) = 0.00003, m_1 = \inf_{2 \le x \le \frac{3\pi}{2}} |f'(x)| = 1$

0.1cos2*³≈ 0.959,因此,如果取 2.087作为 €, 的第四次近似值,其误差为

$$|2.087 - \xi_1| \leqslant \frac{|f(2.087)|}{m_1} < 0.001,$$

已达到所需的精确度,于是,所给方程的近似根为 546 2.087(發)。

又方程 $x-0.1\sin x=2$ 与方程 $x-2=0.1\sin x$ 等价,而曲线y=x-2与 $y=0.1\sin x$ 只有一个交点,因此,原方程只有一个实根.

*) 因 $f'(x) = 1 - 0.1\cos x$, $f''(x) = 0.1\sin x > 0$, 故 $m_1 = |f'(2)| = 1 - 0.1\cos 2$. 以下同样情况不再说明.

1620. $\cos x = x^2$.

解 设 $f(x) = \cos x - x^2$,则因 f(-x) = f(x),故原 方程若有一根 ξ ,必有另一根 $-\xi$. 又曲线 $y = x^2$ 与 $y = \cos x$ 只有两个交点 . 因此,原方程有且仅有两个根土 ξ . 为此,只需求一正根即可 .

由于 $f\left(\frac{\pi}{4}\right) = 0.09$, f(1) = -0.46, 且当 $\frac{\pi}{4} < x$ < 1 时, $f'(x) \neq 0$,故所给方程在 $\left(\frac{\pi}{4}, 1\right)$ 内有且仅有一实根 ξ ,依次求得其各次的近似值为

 $x_1 = 0.821; x_2 = 0.828; x_3 = 0.826; x_4 = 0.825.$ 由于 $f(0.825) = -0.002, m = \inf_{\frac{\pi}{4} < x < 1} |f'(x)| = |f'(\frac{\pi}{4})| = 2.278,$ 因此,如果取 0.825 作为专的第四次

近似值,其误差为

$$|0.825 - \xi| \leq \frac{f(0.825)}{m} < 0.001$$

已达到所需的精确度,于是,所给方程的二近似根为 ± 0,825.

如果注意到f(0.824) = 0.002, f(0.825) =

- 0,002, 因此,取 ± 0.824 作为所给方程的二近似根,也可保证所需的精确度。

利用牛顿法,求下列方程的根(精确到所指定的程度): **1621.** $x^2 + \frac{1}{x^2} = 10x$ (精确到 10^{-3}).

解 曲线 $y = x^2 + \frac{1}{x^2}$ 与 y = 10x 共有两个交点、因此,所给方程共有两个实根.

设 $f(x) = x^2 + \frac{1}{x^2} - 10x$,则因 f(0.4) = 2.41, f(0.5) = -0.75,且当 0.4 < x < 0.5时 $f'(x) \neq 0$, 故所给方程在(0.4,0.5) 内有且仅有一实根.又由于在(0.4,0.5) 内 $f''(x) \neq 0$ 且 f(0.4)f''(0.4) > 0,故利用牛顿法求近似根时,切点应取(0.4,f(0.4)). 依次求得其各次近似值为

$$x_1 = 0.4 - \frac{f(0.4)}{f'(0.4)} = 0.459;$$

 $x_2 = 0.459 - \frac{f(0.459)}{f'(0.459)} = 0.471;$
 $x_3 = 0.471 - \frac{f(0.471)}{f'(0.471)} = 0.472.$

今估计误差:f(0.472) = -0.013. 由于 f'(x) 为增函数,且为负的,故 $m = \inf_{0.4 \le x \le 0.5} |f'(x)| = |f'(0.5)| = 25$. 此,如果取 0.472 作为根的近似值,其误差为

$$|0.472 \quad \xi| \leqslant \frac{f(0.472)}{m} < 0.001,$$

已达到所需的精确度.于是,所给方程的一近似根为0.472.

现求第二个近似根,由于 f(10) = 0.001,故此根可能逼近 10. 现分别以 9.9 及 9.99 试之:f(9.9) = -0.98,f(9.99) = -0.09,因此,f(9.99),f(10) < 0,加以在(9.99,10)内 $f'(x) \neq 0$,故所给方程在(9.99,10)内有且仅有一实根,又因 f(10)f''(10) > 0及 $f''(x) \neq 0$,故应用牛顿法求近似根时,切点应选在(10,f(10))处,于是

$$x_i = 10 - \frac{f(10)}{f'(10)} = 9.99999,$$

如果取 9.999 作为根的近似值,则其误差显然已达到 所需的精确度,于是,所给方程的又一近似根为 9.999.

1622. $x \lg x = 1$ (精确到 10^{-4}).

解 曲线 $y = \lg x$ 与 $y = \frac{1}{x}$ 只有一个交点. 因此,所给方程只有一个实根. 现确定其范围. 设 $f(x) = x \lg x$ 一 1,由于 f(2.506) = -0.0004, f(2.507) = 0.0005,且当 2.506 < x < 2.507 时, f'(x) > 0, f''(x) > 0, 故在 (2.506, 2.507) 内有且仅有一实根,切点选在 (2.507, f(2.507)). 依次求得其各次近似值为

$$x_1 = 2.5064; x_2 = 2.5062.$$

由于 $f(2.5062) = 0.00002, m = \inf_{\substack{2.506 < x < 2.507}} |f'(x)|$ = |f'(2.506)| = 0.84,因此,如果取 2.5062 作为根的 近似值时,其误差为,

$$|2.5062 - \xi| \leq \frac{|f(2.5062)|}{m} < 0.0001,$$

已达到所需的精确度,故所求的唯一近似根为 2.5062.

1623. cosx・chx = 1 (精确到 10 ³) (二正根).

解 曲线 $y = \cos x$ 与 $y = \frac{1}{\text{ch}}x$ 的交点有无穷多个,其中最小的三个正根分别记为 α, β, γ ,且

$$\frac{3\pi}{2} < \alpha < 2\pi,$$

$$2\pi < \beta < \frac{5\pi}{2},$$

$$\frac{7\pi}{2} < \gamma < 4\pi.$$

现在我们将求 α 与 γ 两正根的计算方法叙述如下、设 $f(x) = \cos x \cosh x - 1$.

(1) 先求 α.

由于 f(4.7) = -1.6812, f(4.8) = 4.3159, 知 $4.7 < \alpha < 4.8$. 又因在(4.7,4.8) 内 f''(x) > 0, 故切点应取在(4.8,f(4.8)) 处, 依次求得 α 的各次近似值为

$$x_1 = 4.7345; x_2 = 4.7301.$$

本题若采用 $\frac{|f(x_i)|}{m}$ 估计误差,由于m本身也需估计,而且繁琐,今用比例法与牛顿法联合使用求根的近似值.设以右上角带""的 x'_i 表示用比例法求出的第i次近似根,则有

$$x'_1 = 4.7 - \frac{f(4.7)}{f(4.8) - f(4.7)}(4.8 - 4.7)$$

= 4.7280,

从而知

4.
$$7280 < \alpha < 4.7345$$
.

于是,

$$x'_{2} = 4.7280 - \frac{f(4.7280)}{f(4.7345) - f(4.7280)}$$

(4.7345 - 4.7280) = 4.7300.

因此,

4.
$$7300 < \alpha < 4.7301$$
.

取 4.730 作为 α 的近似值,即可保证所需的精确度,于是,所给方程的一正根的近似值为 4.730.

(2) 再求 7.

由于
$$f\left(\frac{7\pi}{2}\right) = -1$$
, $f(11) \approx 133$, 故知 $\frac{7\pi}{2} < \gamma < 11$. 切点取在(11, $f(11)$) 处.分别用比例法及牛顿法求得

$$x'_1 = 10.9956, x_1 = 10.9956,$$

因而取 10.996 作为 7 的近似值,即可保证所需的精确度,于是,所给方程的又一正根的近似值为 10.996.

1624. $x + e^x = 0$ (精确到 10^{-5}).

解 设 $f(x) = x + e^x$,则 $f'(x) = 1 + e^x > 0$, $f''(x) = e^x > 0$.由于 f(0) = 1, $f(-1) = \frac{1}{c} - 1 < 0$,故在 (-1,0) 内所给方程有且仅有一实根,切点选在(0,f(0)) 处.依次求得此根的各次近似值为

$$x_1 = -0.5$$
; $x_2 = -0.56631$; $x_3 = -0.567132$; $x_4 = -0.567145$.

由于

$$|x_4 - \xi| \le \frac{|f(-0.567145)|}{m}$$

$$= \frac{|f(-0.567145)|}{1 + e^{-1}} < 10^{-5},$$

故取一0.56715作为根的近似值,即可保证所需的精确度.

由于曲线y = e' = 5y = -x只有一个交点,故上述近似根 0.56715 即为所给方程的唯一近似根.

1625. xthx = 1. (精确到 10⁻⁶).

解 设 $f(x) = \text{th}x - \frac{1}{x}$,则因曲线 y = thx 与 $y = \frac{1}{x}$ 仅有两个交点,故所给方程仅有二实根,又因在 xthx 中以一 x 代 x,其值不变,故方程的二实根为 $\pm \xi$.

由 $f'(x) = \frac{1}{\operatorname{ch}^2 x} + \frac{1}{x^2} > 0$, 知 f(x) 是增函数. 又因 f(1) = -0.2384, f(2) = 0.4640. 故所给方程在(1,2) 内有且仅有一实根. 又

$$f''(x') = -\frac{2\sinh x}{\cosh^3 x} - \frac{2}{x^3} < 0 \quad (x > 0),$$

因此切点应选为(1,f(1)). 仍以x',及x,分别表示用比例 法及牛顿法求得的根的第i次近似值,重复使用,即得

$$x'_1 = 1.339, x_1 = 1.168,$$

故 1.168 < \$ < 1.339.

$$x'_{2} = 1.2032, x_{2} = 1.1989,$$

有 1.1989 < ₹ < 1.2032.

$$x'_{3} = 1.1996796, x_{3} = 1.1996781.$$

故 1.1996781 < \$ < 1.1996796.

于是,取 ± 1.199678 作为根的近似值,即可保证所需的精确度。

1626. 求方程

$$tgx = x$$

最小的三个正根(精确到 0,001).

解 由 y = tgx 及 y = x 的图形知方程有正根,且有无 552

穷个,只求其最小三正根,设f(x) = tgx - x.

(1) 由于 $f'(x) = \operatorname{tg}^2 x > 0$, $f''(x) = 2\operatorname{tg} x \cdot \sec^2 x$ > $0\left(x \in \left(\pi, \frac{3\pi}{2}\right)\right)$ 及 $f\left(\frac{4\pi}{3}\right)f\left(\frac{23\pi}{16}\right) < 0$, 故 在 $\left(\frac{4\pi}{3}, \frac{23\pi}{16}\right)$ 内所给方程有且仅有一实根 ξ_1 , 切点应选在 $\left(\frac{23\pi}{16}, f\left(\frac{23\pi}{16}\right)\right)$ 处 . 依次求得其各次近似值为 $x_1 = 4.4959$; $x_2 = 4.4933$.

由于 $|f(4.4933)| = 0.0012, m = \inf_{\frac{4\pi}{3} < x < \frac{23\pi}{16}} |f'(x)|$

= $tg^2 \frac{4\pi}{3} = 3$,因此,如果取 4.493 作为根 ξ_1 的近似值, 其误差为

$$|x_2 - \xi_1| \leqslant \frac{|f(4.4933)|}{m} < 0.001,$$

已达到所需的精确度.于是,所给方程的一最小正近似根为 4.493.

(2) 再求第二个最小正根.

由于 $f\left(\frac{39\pi}{16}\right) < 0$, $f\left(\frac{79\pi}{32}\right) > 0$,故在 $\left(\frac{39\pi}{16},\frac{79\pi}{32}\right)$ 内方程有且仅有一实根 ϵ_2 . 又因在此区间内 f'(x) > 0,f''(x) > 0,故切点应选在 $\left(\frac{79\pi}{32},f\left(\frac{79\pi}{32}\right)\right)$ 处. 依次求得 ϵ_2 的各次近似值为

$$x_1 = 7.7325$$
; $x_2 = 7.7258$; $x_3 = 7.7254$.
由于 $f(7.7254) = 0.0083$, $m =$

 $\inf_{\frac{39\pi}{16} < x < \frac{79\pi}{32}} |f'(x)| = tg^2 \frac{39\pi}{16} > 25$,因此,如果取 7. 725 作

为 & 的近似值,其误差为

$$|x_3 - \xi_2| \leqslant \frac{|f(7.7254)|}{m} < 0.001$$

已达到所需的精确度.于是,所给方程的第二个最小正根的近似值为 7,725.

(3) 最后求第三个最小正根。

由 于 $f\left(\frac{111\pi}{32}\right) < 0, f\left(\frac{223\pi}{64}\right) > 0$, 故 在 $\left(\frac{111\pi}{32}, \frac{223\pi}{64}\right)$ 内方程有且仅有一实根 ξ_s . 又因在此区间 内 f'(x) > 0, f''(x) > 0, 故 切 点 应 选 在 $\left(\frac{223\pi}{64}, f\left(\frac{223\pi}{64}\right)\right)$ 处,依次求得 ξ_s 的各次近似值为

 $x_1 = 10.9233; x_2 = 10.9086; x_3 = 10.9041.$

由于 |f(10.9041)| = 0.014, $m = tg^2 \frac{111\pi}{32} = 102.78$.

因此,如果取 10.904 作为 €。的近似值,其误差为

$$|x_3 - \xi_3| \leqslant \frac{|f(10.9041)|}{m} < 0.001,$$

已达到所需的精确度,于是,所给方程的第三个最小正根的近似值为10,904.

1627. 求方程

$$\operatorname{ctg} x = \frac{1}{r} - \frac{x}{2}$$

的二正根(精确到 10-3)。

解 由 $y = \operatorname{ctg} x$ 与 $y = \frac{1}{x} - \frac{x}{2}$ 的图形知交点有无穷个,我们只求其最小二正根 ξ_1 及 ξ_2 :

$$\frac{\pi}{2}<\xi_1<\pi,\frac{3\pi}{2}<\xi_2<2\pi.$$

(1) 先求 ξ1

设 $f(x) = \operatorname{ctg} x - \frac{1}{x} + \frac{x}{2}$,则在所考虑的区间内 $f'(x) = -\operatorname{ctg}^2 x - \frac{1}{2} + \frac{1}{x^2} < 0$, $f''(x) = \frac{2\cos x}{\sin^3 x} - \frac{2}{x^3}$ < 0. 又 因 f(2.0708) = 0.0062, f(2.1708) = -0.0593, 故切点应选在(2.1708, f(2.1708)) 处,用 比例法与牛顿法联合求 ξ_1 . 重复应用,即得

$$x'_1 = 2.0803, x_1 = 2.0923,$$

故 2.0803 $< \xi_1 < 2.0923$.

$$x'_{2} = 2.0815, x_{2} = 2.0816,$$

故取 2.081 作为 \$1 的近似值,即可保证所需的精确度. 于是,所给方程的一正根的近似值为 2.081.

(2) 再求 🐔

由于 f(5.9324) = 0.0648, f(5.9424) = -0.0169,故

5. $9324 < \xi_2 < 5.9424$,

切点取(5,9424,f(5,9424)).

用比例法及牛顿法各一次,即得

$$x'_1 = 5.9403, x_1 = 5.9404,$$

因此,取 5.940 作为 5.0 的近似值,即可保证所需的精确度,于是,所给方程的又一正根的近似值为 5.940.