

AGD – WS 2020/21 – Übungssitzung 4

Jakob Bach (jakob.bach@kit.edu)

Zeitplan

Woche	Datum*	Übung	Woche	Datum*	Übung
1	03.11.2020		8	22.12.2020	
2	10.11.2020		9	12.01.2021	Abgabe Blatt 4
3	17.11.2020	Abgabe Blatt 1	10	19.01.2021	Sitzung 2
4	24.11.2020		11	26.01.2021	Keine Abgabe
5	01.12.2020	Abgabe Blatt 2	12	02.02.2021	Sitzung 3
6	08.12.2020	Sitzung 1	13	09.02.2021	Abgabe Blatt 5
7	15.12.2020	Abgabe Blatt 3	14	16.02.2021	Sitzung 4

^{*} regulärer Vorlesungstermin am Dienstag; Abgabetermin der Übungsblätter kann ein anderer Tag sein

Agenda

Inhalt: Übungsblatt 5, Vorlesungskapitel 9-10

- Umfrage: Vorbereitung auf Sitzung
- Eure Fragen: Code-Aufgaben, Online-Tests, Sonstiges
- Theorie-Aufgaben
- Kurze Feedback-"Runde"

Ankündigungen:

- Umfrage zur Übung im ILIAS vom 16.02. bis zum 21.02.
- Abgabedatum der Qualifikationsaufgabe für Praktikum: 14.03.2021

Fragen (1)

- Ist das Praktikum zu empfehlen?
 - Ja ;-)
 - Noch mal umfassenderer Blick auf Data Science, große Aufgaben (nicht nur isolierte Betrachtung der Algorithmen wie in Vorlesung/Übung)
- Was ist der Inhalt des Praktikums?
 - 2 Phasen mit jeweils 6-7 Wochen
 - Aufgabe 1: Teilnahme an <u>Data Mining Cup</u> 2021 in Vergangenheit meist Regressions-/ Klassifikationsaufgabe mit Daten aus dem Einzelhandel
 - Aufgabe 2: jetzt noch nicht bekannt, Aufgabe aus einem aktuellen Forschungsgebiet unseres Lehrstuhls
 - Arbeit in Teams (vermutlich Dreierteams)

Fragen (2)

- Wie werden die Praktikums-ECTS verbucht, da das Praktikum unbenotet ist?
 - Wie normale Lehrveranstaltung im Notenauszug, nur ohne Note (ähnlich Schlüsselqualifikation)
- Warum haben die Testdaten in der Qualifikationsaufgabe keine Labels das Testen der Performance ist dadurch doch nicht möglich?
 - Performance testet Jakob anhand eurer Vorhersage ;-)
 - In der Praxis wären die Testdaten neue Daten, die nach Training des Vorhersagemodells hereinkommen
 - Testdaten sollen (hier und auch generell) nicht zum Training (oder Auswahl von Vorhersagemodellen) genutzt werden
 - Für das Vergleichen von Vorhersagemodellen in eurer Lösung könnt ihr selbst die Trainingsdaten aufteilen (Trainingsdaten Validierungsdaten)

Fragen (3)

- Was ist das Praktikum "Analysis of Complex Data Sets"?
 - Findet nicht statt, auch wenn es im Modulhandbuch steht
 - Einzige "aktive" Praktika des Lehrstuhls sind Datenbank-Praktikum im WS und Data-Science-Praktikum (früher: AGD-Praktikum) im SS
 - Außerdem jedes Semester Seminar, Titel ändert sich laufend (Themen werden von Doktoranden gestellt): http://dbis.ipd.kit.edu/3051.php
- Ist die letzte Vorlesung prüfungsrelevant?
 - Im Zweifelsfall: ja
 - Feste Aussage diesbezüglich kann aber nur Prof. Böhm treffen
- Woher kommt der Unterschied zwischen AGD und AGD2 bzgl. ECTS?
 - AGD2 hat keine Übung
 - Stoffumfang der Vorlesung tatsächlich vergleichbar

15.11.2021

Theorieaufgaben – Hierarchisches Clustering

- Was sind die Vorteile/Nachteile von divisivem Clustering gegenüber agglomerativem Clustering?
 - Generell: agglomerativ beginnt lokal (bottom-up), divisiv beginnt global (top-down)
 - Generell: Ergebnis von agglomerativem Clustering hängt stark von Linkage Criterion (Distanzfunktion zwischen zwei Clustern) ab
 - Vorteil divisiv: startet mit Blick auf Verteilung der Gesamtdaten (bei agglomerativ dagegen erst später größere Cluster, Informationsverlust durch Aggregation)
 - Vorteil agglomerativ: Komplexität von $O(n^3)$, da n Iterationen mit je $O(n^2)$ Distanzberechnungen; bei divisivem Clustering allein im ersten Schritt $O(2^n)$ Möglichkeiten, die Daten aufzuteilen (daher nicht alle Möglichkeiten betrachtet)
 - Zum Vergleich: k-means hat O(n * k * #Iterationen), OPTICS/DBSCAN haben $O(n * \log n)$ (mit räumlicher Indexstruktur und "passender" Verteilung der Daten)

Theorieaufgaben – OPTICS allgemein

- Was sind Vor- und Nachteile von OPTICS gegenüber DBSCAN?
 - \blacksquare Parameter ε bei DBSCAN normalerweise schwer zu wählen
 - Bei OPTICS kann man einfach großes ε wählen
 - Wenn ε zu groß, geht Laufzeit allerdings gegen $O(n^2)$ (räumliche Indexstruktur nutzlos)
 - OPTICS liefert kein festes Clustering, sondern eine Datenstruktur (Reachability Plot)
 - Geeignetes ε lässt sich ablesen
 - DBSCAN-Ergebnisse für verschiedene ε lassen sich schnell daraus bestimmen $\to O(n)$
 - In Datenstruktur lassen sich womöglich Cluster unterschiedlicher Dichte erkennen (bei Umwandlung in DBSCAN-Ergebnis wird aber eine einheitliche Dichtegrenze festgelegt)
 - Reale Laufzeit bei OPTICS kann schlechter als bei DBSCAN sein
 - Theoretische Komplexität wie bei DBSCAN $O(n * \log n)$ (mit räumlicher Indexstruktur und "passender" Verteilung der Daten)
 - **Durch** ε statt (kleinerem) ε verringert sich aber Nutzen der räumlichen Indexstruktur
 - Zeitlicher Zusatzaufwand für Verwaltung/Update der Priority Queue (erhöht aber theoretische Komplexität nicht), außerdem zusätzlicher Speicheraufwand dafür

Theorieaufgaben – OPTICS-Algorithmus

- Wie viele Datenobjekte müssen bei der Ausgabe eines Datenobjekts von OPTICS betrachtet werden?
 - Objekte in $\underline{\varepsilon}$ -Nachbarschaft müssen betrachtet werden (siehe ExpandClusterOrder() in Vorlesungsfolien)
 - Für Nachbar-Objekte jeweils (siehe ControlList::update()) Reachability Distance berechnet und je nach Situation
 - Objekt in Priority Queue eingefügt (wenn Objekt noch nicht darin vorhanden)
 - Wert (Priorität) des Objektes in der Priority Queue angepasst (wenn neue Reachability Distance kleiner als bisherige Reachability Distance)
 - Nichts getan (Objekt bereits in Priority Queue und potentielle neue Reachability Distance größer als bisherige)

Theorieaufgaben – Clustering mit kategorischen **Attributen / Link-basiertes Clustering**

- Warum ist Clustering mit kategorischen Attributen besonders (in Bezug auf Link-basiertes Clustering)?
 - Generell bei kategorischen Attributen:
 - Abstand zwischen Werten meist nur als 0 oder 1 (gleich oder nicht) beschreibbar
 - Wenn viele Attribute (z.B. mögliche Itemsets bei Einkauf), dann viele davon oft 0
 - Abhilfe: Jaccard-Koeffizient
 - Link-basiertes Clustering
 - Ähnlichkeit zwischen Datenobjekten zunächst z.B. mit Jaccard-Koeffizient beschrieben, dann aber binärisiert (ist Ähnlichkeit über Schwellwert oder nicht?)
 - Eigentliches Ähnlichkeitsmaß: wie viele Nachbarn (Objekte, deren Ähnlichkeit zu gegebenem Objekt über Schwellwert liegt) haben zwei Datenobjekte gemeinsam?
 - Alternatives Ähnlichkeitsmaß: Jaccard-Koeffizient der Mengen der Nachbarn

Theorieaufgaben – CLARANS

- Wie findet man bei CLARANS die Nachbarn?
 - Hinweis: nur Konzept in Vorlesung behandelt, nicht genauer Algorithmus
 - Konzeptionell lässt sich (partitionierendes) Clustering als das Problem beschreiben, die Menge der Clusterzentren zu finden
 - In Vorlesung mit Graph beschrieben, ist aber nicht notwendig, Graph existiert nur implizit
 - "Nachbar" einer Lösung: eines der bisherigen Clusterzentren durch einen anderen (Nicht-Zentrums-)Punkt austauschen
 - Es gibt viele solche Nachbarlösungen
 - CLARANS testet iterativ jeweils eine zufällige Nachbarlösung
 - Falls besserer Zielfunktionswert, neue Lösung übernommen
 - Falls keine Verbesserung, Zähler erhöht; nach vorgegebener Anzahl erfolgloser Versuche abgebrochen
 - Ganzer Prozess eine vorgegebene Anzahl von Versuchen wiederholt (mit jeweils anderer Initialisierung), beste Lösung ausgewählt

Theorieaufgaben – Silhouetten-Koeffizient (1)

- Wie ist der Silhouetten-Koeffizient definiert und wie interpretiert man ihn?
 - **a**(o)
 - Durchschnittlicher Abstand von Objekt o zu anderen Objekten desselben Clusters
 - Sollte bei einem guten Clustering klein sein
 - Misst Kompaktheit des Clusters
 - **b**(0)
 - Minimaler durchschnittlicher Abstand von Objekt o zu Objekten eines anderen Clusters
 - Sollte bei einem guten Clustering groß sein
 - Misst Separierung der Cluster
 - S(o) Silhouette von Objekt o, kombiniert a(o) und b(o)
 - S(C) Silhouette eines Clusters (Durchschnitt über Objekte in Cluster)
 - Silhouetten-Koeffizient: Durchschnitt der Silhouette über alle Objekte
 - Exakte Formeln siehe Vorlesung

Theorieaufgaben – Silhouetten-Koeffizient (2)

- Wie ist der Silhouetten-Koeffizient definiert und wie interpretiert man ihn?
 - Silhouetten-Koeffizient bewertet Qualität eines Clustering-Ergebnisses
 - Kann zur Auswahl eines Clustering-Algorithmus oder zur Wahl der Parameter eines Clustering-Algorithmus genutzt werden
 - Wertebereich [-1,1]
 - 1: Distanz von 0 zu Objekten im selben Cluster (z.B. Cluster mit nur einem Objekt)
 - 0: gleicher durchschnittlicher Abstand zu Objekten im selben Cluster wie zu Objekten im n\u00e4chstgelegenen anderen Cluster
 - -1: Distanz von 0 zu Objekten in anderem Cluster (sehr theoretischer Fall)

15.11.2021

Theorieaufgaben – Silhouetten-Koeffizient (3)

- Wie ist der Silhouetten-Koeffizient definiert und wie interpretiert man ihn?
 - Für Verfahren wie DBSCAN ist Silhouetten-Koeffizient nicht geeignet
 - Silhouette geht von kompakten, wohl-separierten Clustern aus, nicht Clustern beliebiger Form (z.B. ein Kreis umgeben von einem Ring)
 - Wie Ausreißer-Punkte des DBSCAN-Ergebnisses für Silhouette behandeln?
 - 1) Jeweils in neue Ein-Objekt-Cluster stecken: Silhouetten-Koeffizient wird unangemessen gut (diese Cluster haben Silhouette von 1)
 - 2) Alle in ein Cluster stecken: Silhouetten-Koeffizient wird unangemessen schlecht (Ausreißer-Cluster wird höchstwahrscheinlich nicht zusammenhängend sein)
 - Ignorieren: unschön, weil ein Teil des Clustering-Ergebnisses vom Koeffizienten nicht bewertet wird
 - 4) Dem jeweils nächsten Cluster zuordnen: Ausreißer-Punkte haben aber vermutlich hohe Distanz zu restlichen Punkten in Cluster, daher schlechte Silhouette

Theorieaufgaben – CF-Tree / BIRCH

- Berücksichtigt der CF-Tree die vorgegebene Anzahl an Clustern?
 - CF-Tree selbst hat nicht Anzahl der Cluster als Parameter, sondern B (Kapazität innerer Knoten), B' (Kapazität von Blattknoten), T (Grenzwert für Größe von Blättern) → Anzahl der Knoten ergibt sich nur implizit daraus
 - Blattknoten sind Elementarcluster
 - CF-Tree gibt uns eine mögliche Clustering-Hierarchie
 - Verschiedene Möglichkeiten, aus CF-Tree ein Clustering mit einer festen Anzahl von Clustern zu machen (Folie 52 der Clustering-Vorlesung)
 - Weiterhin aber auch andere Clustering-Verfahren auf CF-Tree anwendbar, die keine feste Anzahl von Clustern als Eingabeparameter haben
 - Ursprünglicher BIRCH-Algorithmus nutzt agglomeratives hierarchisches Clustering auf den Blattknoten, mit optionalen Schritten zur Bereinigung und Verfeinerung des Clustering-Ergebnisses

Theorieaufgaben – Arten von Outlier Detection

- Welche Arten von Ansätzen gibt es bei Outlier Detection?
 - Ausreißer als Nebenprodukt von Clustering-Algorithmen wie DBSCAN
 - Statistische Verfahren: betrachte z.B. die Punkte als Ausreißer, die 2/3/4 Standardabweichungen vom Mittelwert entfernt sind
 - Distanzbasierte Verfahren
 - z.B. DB(p,D)-Outlier, ermittelt mit Index-basiertem, Nested-Loop oder Zellenbasiertem Algorithmus
 - z.B. Ausreißer-Ranking/-Scoring basierend auf kNN-Distanz
 - Dichtebasierte Verfahren, z.B. LOF
 - Wichtig: auch lokale Verteilung der Distanzen der Nachbarschaft betrachtet (also nicht allein der Dichte-Aspekt ausschlaggebend für die Kategorie, denn Distanzbasierte Verfahren kann man mathematisch zum Teil auch über Dichten formulieren)

Theorieaufgaben – Zellenbasierte Outlier Detection

- Ist es eher gut oder eher schlecht bzw. welche Bedeutung hat es, wenn in der "Hauptzelle" des zellenbasierten Outlier-Detection-Ansatzes viele Datenpunkte liegen?
 - Generell gut für Zellen-basiert:
 - viele Punkte in L1-Nachbarschaft → keine Ausreißer in Zelle
 - wenige Punkte in L2-Nachbarschaft → nur Ausreißer in Zelle
 - In anderen Fällen müssen wir Tupel der Zelle einzeln inspizieren
 - Wenn also schon viele Punkte in Zelle selbst (mehr, als die DB(p,D)-Definition für Ausreißer erlaubt), ist das aus algorithmischer Sicht gut, weil diese Punkte alle keine Ausreißer sind

Theorieaufgaben – Aggregationsfunktionen (1)

- Wie ist der Zusammenhang zwischen self-maintainable und den restlichen Eigenschaften (distributiv, algebraisch, holistisch)?
 - Self-maintainable beim Löschen: aus altem Aggregatwert und Wert des gelöschten Punktes lässt sich neuer Aggregatwert bestimmen
 - Distributiv → Self-maintainable beim Löschen?
 - Nein, Gegenbeispiel Minimum: Wenn ich einen Punkt entferne, der genau den minimalen Wert hat, kenne ich das neue Minimum nicht (Scan über Daten nötig)
 - Algebraisch → Self-maintainable beim Löschen?
 - Nein, Gegenbeispiel Mittelwert: Wenn ich einen Punkt entferne, kenne ich den neuen Mittelwert nicht (zusätzlich noch Wissen über Anzahl der Datenpunkte nötig)
 - Holistisch → Self-maintainable beim Löschen?
 - Nein, Gegenbeispiel Median: Wenn ich einen Punkt entferne, kenne ich den neuen Median nicht (Scan über Daten nötig)

Theorieaufgaben – Aggregationsfunktionen (2)

- Wie ist der Zusammenhang zwischen self-maintainable und den restlichen Eigenschaften (distributiv, algebraisch, holistisch)?
 - Self-maintainable beim Einfügen: aus altem Aggregatwert und Wert des eingefügten Punktes lässt sich neuer Aggregatwert bestimmen
 - Distributiv → Self-maintainable beim Einfügen?
 - Ja: Neuen Punkt als ein-elementige Menge betrachten, Aggregatwert darauf berechnen und mit dem Aggregatwert für den restlichen Datenbestand kombinieren, um neuen Aggregatwert zu erhalten (funktioniert wegen Distributivität)
 - Algebraisch → Self-maintainable beim Einfügen?
 - Nein, Gegenbeispiel Mittelwert: Wenn ich einen Punkt einfüge, kenne ich den neuen Mittelwert nicht (zusätzlich noch Wissen über Anzahl der Datenpunkte nötig)
 - Holistisch → Self-maintainable beim Einfügen?
 - Nein, Gegenbeispiel Median: Wenn ich einen Punkt einfüge, kenne ich den neuen Median nicht (Scan über Daten nötig)

Theorieaufgaben – Aggregationsfunktionen (3)

- Wie ist der Zusammenhang zwischen self-maintainable und den restlichen Eigenschaften (distributiv, algebraisch, holistisch)?
 - Umkehrung: self-maintainable → distributiv / algebraisch / holistisch?
 - Self-maintainable bei Einfügen
 - Ist zumindest für folgende Beispiele zugleich distributiv: Minimum, Maximum, Summe, Count
 - Formale Definition von Distributivität sollte generell erfüllt sein
 - Wer ein Gegenbeispiel findet: gerne E-Mail schreiben
 - Self-maintainable bei Löschen
 - Klassische Beispiele (Summe, Count) sind zugleich distributiv
 - Unklar (zumindest dem Übungsleiter), ob man Implikation "self-maintainable bei Löschen → distributiv" beweisen kann, denn Definition von Distributitivität bezieht sich auf Aggregation, während Löschen eine Disaggregation ist (Invertierung)

15.11.2021