

Outline

Lecture 4: Random Variable, Part II

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

MONTH DAY, 2021

• Continuous Random Variable

- PDF (Probability Density Function)
- CDF (Cumulative Distribution Function)
- Exponential and Normal Distribution
- Joint PDF. Conditional PDF
- Bayes' rule for continous and even mixed cases

Roadmap

KAIST EE

1/32

- o Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- Summarizing a random variable: Expectation and Variance
- Functions of a single random variable, Functions of multiple random variables
- o Conditioning for random variables, Independence for random variables
- Continuous random variables
- Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables

Continuous RV and Probability Density Function

2/32

- Many cases when random variable have "continuous values", e.g., velocity of a car

Continuous Random Variable

A rv X is continuous if \exists a function f_X , called probability density function (PDF), s.t.

 $\mathbb{P}(X \in B) = \int_{B} f_{X}(x) dx$

- All of the concepts and methods (expectation, PMFs, and conditioning) for discrete rvs have continuous counterparts

•
$$\mathbb{P}(a \le X \le b) = \int_a^b f_X(x) dx$$

PDF and Examples

Expectation and Variance

- $\mathbb{P}(a \leq X \leq a + \delta) \approx |f_X(a) \cdot \delta|$
- $\mathbb{P}(X = a) = 0$

$$f_X(x)$$

$$\frac{1}{b-a}$$

$$a \qquad b \qquad x$$

- $\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_a^b \frac{x}{b-a} dx = \frac{1}{b-a} \frac{b^2 a^2}{2} = \frac{b+a}{2}$
- $\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f_X(x) dx = \int_a^b \frac{x^2}{b-a} dx = \frac{1}{b-a} \frac{b^3 a^3}{3} = \frac{a^2 + ab + b^2}{3}$
- $var[X] = \frac{a^2 + ab + b^2}{3} \frac{a^2 + 2ab + b^2}{4}$

5/32

6/32

Cumulative Distribution Function (CDF)

- Discrete: PMF. Continuous: PDF
- Can we describe all rvs with a single mathematical concept?

$$F_X(x) = \mathbb{P}(X \le x) =$$

$$\begin{cases} \sum_{k \le x} p_X(k), & \text{discrete} \\ \int_{-\infty}^x f_X(t) dt, & \text{continuous} \end{cases}$$

- always well defined, because we can always compute the probability for the event ${X \le x}$
- CCDF (Complementary CDF): $\mathbb{P}(X > x)$

CDF Properties

- Non-decreasing
- $F_X(x)$ tends to 1, as $x \to \infty$
- $F_X(x)$ tends to 0, as $x \to -\infty$

Now, let's look at famous continuous random variables popularly used in our life.

Exponential RV with parameter $\lambda > 0$: exp(λ)

Modeling Waiting Time? A Discrete Twin (1)

• A rv X is called exponential with λ , if

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$
 or $F_X(x) = 1 - e^{-\lambda x}$

- Models a waiting time
- CCDF $\mathbb{P}(X \ge x) = e^{-\lambda x}$ (waiting time decays exponentially)
- $\mathbb{E}[X] = 1/\lambda$, $\mathbb{E}[X^2] = 2/\lambda^2$, $\text{var}[X] = 1/\lambda^2$
- (Q) What is the discrete rv which models a waiting time?

9 / 32

• A discrete twin for modeling waiting times is geometric rvs.

- Models a system evolution over time: Continuous time vs. Discrete time. In many cases, continuous case is the some type of limit of its corresponding discrete case.
- Can you make mathematical description, where geometric and exponential rvs meet each other in the limit?
- Key idea.
 - Continuous system: Discrete system with infinitely many slots whose duration is infinitely small.
- limiting system: $X_{exp}(\lambda)$ with CDF $F_{exp}(\cdot)$
- *n*-th system: $X_{geo}^n(p_n)$ with CDF $F_{geo}^n(\cdot)$

10 / 32

Modeling Waiting Time? A Discrete Twin (2)

KAIST EE

For a given x > 0,

- Define $\delta = \frac{x}{n}$ (a slot length in the *n*-th system)
- Remember

$$F_{exp}(x) = 1 - e^{-\lambda x}$$

 $F_{geo}^{n}(n) = 1 - (1 - p_n)^{n}$

- Choose $p_n = 1 e^{-\lambda \delta} = 1 e^{-\lambda \frac{x}{n}}$.
- As $n \to \infty$, the slot length $\delta \to 0$ thus $p_n \to 0$
- The CDF values of exponential and *n*-th geometric rvs become equal whenever $x = \delta, 2\delta, 3\delta, \ldots$, i.e.,

$$F_{\text{exp}}(n\delta) = F_{\text{geo}}^n(n), \quad n = 1, 2, \dots$$

- As n grows, the number of slots grows, but the success probability over one slot decreases, so that everything is balanced up.
- As n grows, $F_{geo}^n(n)$ approaches $F_{exp}(n\delta)$.

Normal (also called Gaussian) Random Variable

KAIST EE

Why important?

- Central limit theorem (중심극한정리)
- One of the most remarkable findings in the probability theory $% \left(1\right) =\left(1\right) \left(1\right) \left($
- Convenient analytical properties
- Modeling aggregate noise with many small, independent noise terms

Normal: PDF, Expectation, Variance

KAIST EE

• Standard Normal N(0,1)

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

- $\mathbb{E}[X] = 0$
- var[X] = 1

Need to check:

- a legitimate PDF or not
- expectation/variance

• General Normal $N(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2}$$

- $\mathbb{E}[X] = \mu$
- $var[X] = \sigma^2$

13/32

KAIST EE

Linear transformation preserves normality

Linear transformation of Normal

Normal: Useful Property

If $X \sim Norm(\mu, \sigma^2)$, then for $a \neq 0$ and $b Y = aX + b \sim Norm(a\mu + b, a^2\sigma^2)$.

- Thus, every normal rv can be standardized: If $X \sim \textit{Norm}(\mu, \sigma^2)$, then $Y = \frac{X \mu}{\sigma} \sim \textit{Norm}(0, 1)$
- Thus, we can make the table which records the following CDF values:

$$\Phi(y) = \mathbb{P}(Y \le y) = \mathbb{P}(Y < y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-t^2/2} dt$$

Example

- Annual snowfall X is modeled as Norm(60, 20²). What is the probability that this year's snowfall is at least 80 inches?
- $Y = \frac{X-60}{20}$.

$$\mathbb{P}(X \ge 80) = \mathbb{P}(Y \ge \frac{80 - 60}{20})$$
$$= \mathbb{P}(Y \ge 1) = 1 - \Phi(1)$$
$$= 1 - 0.8413 = 0.1587$$

Roadmap

14/32

- Famous discrete random variables used in the community
 - Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- Summarizing a random variable: Expectation and Variance
- o Functions of a single random variable, Functions of multiple random variables
- o Conditioning for random variables, Independence for random variables
- Continuous random variables
- Normal, Uniform, Exponential, etc.
- Bayes' rule for random variables
- ** Continuous counterparts are intuitively understandable. So, we will be quick at reviewing them.

Continuous: Joint PDF and CDF (1)

Jointly Continuous

Two continuous rvs are jointly continuous if a non-negative function $f_{X,Y}(x,y)$ (called joint PDF) satisfies: for every subset B of the two dimensional plane,

$$\mathbb{P}((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy$$

1. The joint PDF is used to calculate probabilities

$$\mathbb{P}((X,Y)\in B)=\iint_{(x,y)\in B}f_{X,Y}(x,y)dxdy$$

Our particular interest: $B = \{(x, y) \mid a \le x \le b, c \le y \le d\}$

Continuous: Joint PDF and CDF (2)

2. The marginal PDFs of X and Y are from the joint PDF as:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy, \quad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

3. The joint CDF is defined by $F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)$, and determines the joint PDF as:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{x,y}}{\partial x \partial y}(x,y)$$

4. A function g(X, Y) of X and Y defines a new random variable, and

$$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) dxdy$$

17 / 32

18 / 32

Continuous: Conditional PDF given an event

- * Conditional PDF, given an event
- $f_X(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta)$ $f_{X|A}(x) \cdot \delta \approx \mathbb{P}(x \le X \le x + \delta|A)$
- $\mathbb{P}(X \in B) = \int_B f_X(x) dx$ $\mathbb{P}(X \in B|A) = \int_B f_{X|A}(x) dx$

Note: A is an event, but B is a subset that includes the possible values which can be taken by the rv X.

• $\int f_{X|A}(x) = 1$

* Conditional PDF, given $X \in B$

$$\mathbb{P}(x < X < x + \delta | X \in B) \approx f_{X \mid X \in B}(x) \cdot \delta$$

$$f_{X|X\in B}(x) = \begin{cases} 0, & \text{if } x \notin B\\ \frac{f_X(x)}{\mathbb{P}(B)}, & \text{if } x \in B \end{cases}$$

(Q) In the discrete, we consider the event $\{X = x\}$, not $\{X \in B\}$. Why?

Continuous: Conditional Expectation

 $f_X(x)$

• $\mathbb{E}[g(X)] = \int g(x)f_X(x)dx$ $\mathbb{E}[g(X)|A] = \int g(x)f_{X|A}(x)dx$

$$\mathbb{E}[X|A] = \int_{(a+b)/2}^{b} x \frac{2}{b-a} dx = \frac{a}{4} + \frac{3b}{4}$$

$$\mathbb{E}[X^2|A] = \int_{(a+b)/2}^b x^2 \frac{2}{b-a} dx =$$

Exponential RV: Memoryless

Total Probability/Expectation Theorem

• Exponential rv is a continous counterpart of geometric rv.

• Thus, expected to be memeoryless.

Definition. A random variable X is called memoryless if, for any n, m > 0,

$$\mathbb{P}(X > n + m | X > m) = \mathbb{P}(X > n)$$

• Proof. Note that $\mathbb{P}(X > x) = e^{-\lambda x}$. Then,

$$\mathbb{P}(X>n+m|X>m)=\frac{\mathbb{P}(X>n+m)}{\mathbb{P}(X>m)}=\frac{e^{-\lambda(n+m)}}{e^{-\lambda m}}=e^{-\lambda n}=\mathbb{P}(X>n)$$

Partition of Ω into A_1, A_2, A_3, \dots

* Discrete case

Total Probability Theorem

$$p_X(x) = \sum_i \mathbb{P}(A_i)\mathbb{P}(X = x|A_i)$$
$$= \sum_i \mathbb{P}(A_i)p_{X|A_i}(x)$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

* Continuous case

Total Probability Theorem

$$f_X(x) = \sum_i \mathbb{P}(A_i) f_{X|A_i}(x)$$

Total Expectation Theorem

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}(A_i) \mathbb{E}[X|A_i]$$

21/32

22 / 32

Example

KAIST EE

- Your train's arrival every quarter hour (0, 15min, 30min, 45min).
- Your arrival \sim uniform(7:10, 7:30) am.
- What is the PDF of waiting time for the first train?
- X : your arrival time, Y : waiting time.
- The value of X makes a different waiting time. So, consider two events:

$$A = \{7:10 \le X \le 7:15\}$$

$$B = \{7:15 \le X \le 7:30\}$$

$$f_{Y}(y) = \mathbb{P}(A)f_{Y|A}(y) + \mathbb{P}(B)f_{Y|B}(y)$$

$$f_{Y}(y) = \frac{1}{4}\frac{1}{5} + \frac{3}{4}\frac{1}{15} = \frac{1}{10}, \text{ for } 0 \le y \le 5$$

$$f_{Y}(y) = \frac{1}{4}0 + \frac{3}{4}\frac{1}{15} = \frac{1}{20}, \text{ for } 5 < y \le 15$$

Continuous: Conditional PDF given a RV

- $p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$
- Similarly, for $f_Y(y) > 0$,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

- Remember: For a fixed event A, $\mathbb{P}(\cdot|A)$ is a legitimate probability law.
- Similarly, For a fixed y, $f_{X|Y}(x|y)$ is a legitimate PDF, since

$$\int_{-\infty}^{\infty} f_{X|Y}(x|y) \frac{dx}{dx} = \frac{\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx}{f_{Y}(y)} = 1$$

Multiplication rule.

$$f_{X,Y}(x,y) = f_Y(y) \cdot f_{X|Y}(x|y)$$

= $f_X(x)f_{Y|X}(y|x)$

• Total prob./exp. theorem.

$$f_X(x) = \int_{-\infty}^{\infty} f_Y(y) f_{X|Y}(x|y) dy$$

$$\mathbb{E}[X|Y = y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$$

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} f_Y(y) \mathbb{E}[X|Y = y] dy$$

Independence

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
, for all x and y

Example: Stick-breaking (Ch 3. Prob 21)

KAIST EE

- Break a stick of length / twice
- first break at $X \sim uniform[0.1]$
- second break at $Y \sim uniform[0, X]$
- (Q) What is $\mathbb{E}[Y]$?
- Since Y depends on X, the total expectation theorem seems useful.

$$\mathbb{E}[Y] = \int_{-\infty}^{\infty} f_X(x) \mathbb{E}[Y|X = x] dx$$

• Using the TET,

$$\mathbb{E}[Y] = \int_0^l \frac{1}{l} \mathbb{E}[Y|X = x] dx$$
$$= \int_0^l \frac{1}{l} \frac{x}{2} dx = \frac{l}{4}$$

• $f_X(x)$ and $f_{Y|X}(y|x)$ seems easy to compute. Thus,

$$f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x) = \frac{1}{I} \cdot \frac{1}{x}$$

You can do many other things with the joint PDF.

- Famous discrete random variables used in the community
- Bernoulli, Uniform, Binomial, Geometric, Poisson, etc.
- Summarizing a random variable: Expectation and Variance
- o Functions of a single random variable, Functions of multiple random variables
- o Conditioning for random variables, Independence for random variables
- Continuous random variables

Roadmap

- Normal, Uniform, Exponential, etc.
- o Bayes' rule for random variables

25 / 32

26 / 32

Bayes Rule for Continuous

- X: state/cause/original value $\rightarrow Y$: result/resulting action/noisy measurement
- Model: $\mathbb{P}(X)$ (prior) and $\mathbb{P}(Y|X)$ (cause \rightarrow result)
- Inference: $\mathbb{P}(X|Y)$?

$$p_{X,Y}(x,y) = p_X(x)p_{Y|X}(y|x)$$

$$= p_Y(y)p_{X|Y}(x|y)$$

$$p_{X|Y}(x|y) = \frac{p_X(x)p_{Y|X}(y|x)}{p_Y(y)}$$

$$p_Y(y) = \sum_{x'} p_X(x')p_{Y|X}(y|x')$$

$$f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x)$$

$$= f_Y(y)f_{X|Y}(x|y)$$

$$f_{X|Y}(x|y) = \frac{f_X(x)f_{Y|X}(y|x)}{f_Y(y)}$$

$$f_Y(y) = \int f_X(x')f_{Y|X}(y|x')dx'$$

Bayes Rule for Mixed Case

K: discrete, Y: continuous

• Inference of K given Y

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_Y(y)}$$
$$f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

• Inference of Y given K

$$f_{Y|K}(y|k) = \frac{f_Y(y)p_{K|Y}(k|y)}{p_K(k)}$$
$$p_K(k) = \int f_Y(y')p_{K|Y}(k|y')dy'$$

Example: Signal Detection (1)

Example: Signal Detection (2)

Inference of discrete K given continuous Y:

$$p_{K|Y}(k|y) = \frac{p_K(k)f_{Y|K}(y|k)}{f_{Y}(y)}, \quad f_Y(y) = \sum_{k'} p_K(k')f_{Y|K}(y|k')$$

- K: -1, +1, original signal, equally likely. $p_K(1) = 1/2, p_K(-1) = 1/2$.
- Y: measured signal with Gaussian noise, Y = K + W, $W \sim N(0, 1)$
- Your received signal = 0.7. What's your guess about the original signal? +1
- Your received signal = -0.2. What's your guess about the original signal? -1

• $Y|K = 1 \sim N(1,1)$ and $Y|K = -1 \sim N(-1,1)$.

$$f_{Y|K}(y|k) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-k)^2}, \quad k = 1, -1$$

$$f_{Y}(y) = \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y+1)^2} + \frac{1}{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-1)^2}$$

• Probability that K = 1, given Y = y? After some algebra,

$$p_{K|Y}(1|y) = \frac{1}{1 + e^{-2y}}$$

29 / 32

30 / 32

KAIST EE

Review Questions

Questions?

- 1) What is PDF and CDF?
- 2) Why do we need CDF?
- 3) What are joint/marginal/conditional PDFs?
- 4) Explain memorylessness of exponential random variables.
- 5) Explain the version of Bayes' rule for continuous and mixed random variables.

31/32