ELEMENTOS DE ÁLGEBRA

TIAGO MACEDO

Aula 1

Avisos:

- Livro-texto: Abstract Algebra de D. Dummit e R. Foote. (Ler e entender a Seção 0.1.)
- Provas do curso: P1 em 19/set, P2 em 31/out, P3 em 14/dez, e Exame em 19/dez.

1.1. Axiomas e exemplos básicos

Vamos começar com a definição abstrata de grupo.

Definição 1.1. Um grupo é um conjunto não-vazio G munido de uma função $m: G \times G \to G$ (ou seja, uma operação binária) satisfazendo as seguintes condições:

- (i) m é associativa, ou seja, m(m(a,b),c)=m(a,m(b,c)) para todos $a,b,c\in G$.
- (ii) Existe $e \in G$ tal que m(e,g) = g = m(g,e) para todo $g \in G$.
- (iii) Para cada $g \in G$ existe $\tilde{g} \in G$ tal que $m(g, \tilde{g}) = e = m(\tilde{g}, g)$.

O elemento e é chamado de elemento neutro ou identidade de G. O elemento \tilde{g} é chamado de inverso de g. Um grupo (G, m) é dito comutativo ou abeliano quando m é uma operação binária comutativa, ou seja, quando m(g, h) = m(h, g) para todos $g, h \in G$. Um grupo (G, m) é dito finito quando |G| (a cardinalidade do conjunto G) é finita.

Agora vamos ver alguns exemplos conhecidos de grupos.

Exemplo 1.2. Considere o conjunto dos números inteiros $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ munido da operação binária $m: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ dada por m(a, b) = a + b. Verifique que (\mathbb{Z}, m) é um grupo abeliano. (Encontre explicitamente $e \in \tilde{g}$ para cada $g \in \mathbb{Z}$.)

Exemplo 1.3. Considere um espaço vetorial $(V, +, \cdot)$. Verifique que o conjunto V munido da operação binária $+: V \times V \to V$ é um grupo abeliano. Em particular, os conjuntos dos números racionais \mathbb{Q} , dos números reais \mathbb{R} e dos números complexos \mathbb{C} são grupos abelinos quando munidos de suas somas usuais.

Outra operação binária conhecida em \mathbb{R} é a multiplicação.

Exemplo 1.4. Considere o conjunto \mathbb{R} e a operação binária $m \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ dada por m(a,b) = ab. Observe que (\mathbb{R}, m) **não** é um grupo. Apesar de m ser associativa (verifique) e existir elemento neutro (verifique que 1 é o único elemento neutro), não existe o inverso de 0. De fato, m(a,0) = 0 para todo $a \in \mathbb{R}$, portanto não existe $\tilde{0} \in \mathbb{R}$ tal que $m(\tilde{0},0) = 1$.

Vamos tentar corrigir o (não-)exemplo anterior.

Exemplo 1.5. Considere o conjunto $\mathbb{R}\setminus\{0\}$ e a operação binária $m: \mathbb{R}\setminus\{0\}\times\mathbb{R}\setminus\{0\}$ dada por m(a,b)=ab. Observe que m está bem definida, pois ab=0 se, e somente se, a=0 ou b=0. Verifique que $(\mathbb{R}\setminus\{0\},m)$ é um grupo abeliano.

Exemplo 1.6. Considere o conjunto $\mathbb{Z}\setminus\{0\}$ e a operação binária $m\colon\mathbb{Z}\setminus\{0\}\times\mathbb{Z}\setminus\{0\}\to\mathbb{Z}\setminus\{0\}$ dada por m(a,b)=ab. Verifique que m está bem definida, é associativa, e 1 é o único elemento neutro de $\mathbb{Z}\setminus\{0\}$. Mas $(\mathbb{Z}\setminus\{0\},m)$ **não** é um grupo, pois, se $g\notin\{-1,1\}$, então não existe $\tilde{g}\in\mathbb{Z}\setminus\{0\}$ tal que $g\tilde{g}=1$.

Nós podemos corrigir o (não-)exemplo anterior de duas formas. A primeira é incluir todos os inversos dos números inteiros não-nulos e todos os produtos entre números inteiros e inversos de inteiros não-nulos (ou seja, todos os números racionais).

Exemplo 1.7. Considere o conjunto $\mathbb{Q}\setminus\{0\}$ e a operação binária $m: \mathbb{Q}\setminus\{0\}\times\mathbb{Q}\setminus\{0\}\to\mathbb{Q}\setminus\{0\}$ dada por m(a,b)=ab. Verifique que $(\mathbb{Q}\setminus\{0\},m)$ é um grupo abeliano.

A segunda é excluir todos os inteiros não-nulos que não têm inversos multiplicativos.

Exemplo 1.8. Considere o conjunto $G = \{-1, 1\}$ e a operação binária $m: G \times G \to G$ dada por m(a, b) = ab. Verifique que m está bem definida e que (G, m) é um grupo abeliano finito.

Pelo Exemplo 1.3, o conjunto de matrizes n por n com entradas reais, $M_n(\mathbb{R})$ é um grupo abeliano quando munido da soma usual de matrizes. Outra operação binária bem conhecida em $M_n(\mathbb{R})$ é o produto de matrizes.

Exemplo 1.9. Observe que $M_n(\mathbb{R})$ munido do produto usual de matrizes **não** é um grupo. De fato, apesar do produto ser associativo e da matriz identidade ser um elemento neutro para essa operação, nem todas as matrizes têm inversos multiplicativos (por exemplo, a matriz nula). Então denote por $GL_n(\mathbb{R})$ o conjunto de matrizes invertíveis de $M_n(\mathbb{R})$ e considere a operação binária $m: GL_n(\mathbb{R}) \times GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ dada por m(A, B) = AB. Verifique que $(GL_n(\mathbb{R}), m)$ é um grupo e que esse grupo **não** é abeliano.

Proposição 1.10. Seja (G, m) um grupo.

- (a) Existe um único elemento neutro em G.
- (b) Para cada $g \in G$ existe um único elemento inverso.
- (c) Para todo $g \in G$ o elemento inverso de \tilde{g} (o inverso de g) é g.
- (d) Para todos $g, h \in G$, $m(g, h) = m(h, \tilde{g})$.
- (e) Dados $a, b \in G$, existe um único $x \in G$ tal que m(a, x) = b.
- (f) Dados $a, b \in G$, existe um único $x \in G$ tal que m(x, a) = b.
- (g) Se $a, b, c \in G$ são tais que m(a, b) = m(a, c), então b = c.
- (h) Se $a, b, c \in G$ são tais que m(b, a) = m(c, a), então b = c.
- Demonstração. (a) Pela Definição 1.1(ii), existe pelo menos um elemento neutro em G. Suponha que $e, e' \in G$ sejam tais que m(e, g) = g = m(g, e) e m(e', g) = g = m(g, e') para todo $g \in G$. Então temos que e = m(e, e') = e'. Isso mostra a unicidade do elemento neutro.
- (b) Pela Definição 1.1(iii), para cada $g \in G$, existe pelo menos um elemento inverso para g. Suponha que $\tilde{g}, \tilde{g}' \in G$ sejam tais que $m(g, \tilde{g}) = e = m(\tilde{g}, g)$ e $m(g, \tilde{g}') = e = m(\tilde{g}', g)$. Então temos que $\tilde{g} = m(\tilde{g}, e) = m(\tilde{g}, m(g, \tilde{g}')) = m(m(\tilde{g}, g), \tilde{g}') = m(e, \tilde{g}') = \tilde{g}'$. Isso mostra a unicidade do inverso de g.
- (c) Fixe $g \in G$. Pela Definição 1.1(iii) e item (b), o inverso de \tilde{g} é o único $x \in G$ que satisfaz $m(\tilde{g},x)=e=m(x,\tilde{g})$. Também pela Definição 1.1(iii), \tilde{g} satisfaz $m(g,\tilde{g})=e=m(\tilde{g},g)$. Ou seja, g é o (único) inverso de \tilde{g} .
- (d) Fixe $g, h \in G$. Pela Definição 1.1(iii) e item (b), o inverso de m(g, h) é o único $x \in G$ que satisfaz m(m(g, h), x) = e = m(x, m(g, h)). Vamos mostrar que $x = m(\tilde{h}, \tilde{g})$ satisfaz essas equações.

$$\begin{split} m(m(g,h),m(\tilde{h},\tilde{g})) &= m(m(m(g,h),\tilde{h}),\tilde{g}) & m(m(\tilde{h},\tilde{g}),m(g,h)) = m(m(m(\tilde{h},\tilde{g}),g),h) \\ &= m(m(g,m(h,\tilde{h})),\tilde{g}) & = m(m(\tilde{h},m(\tilde{g},g)),h) \\ &= m(m(g,e),\tilde{g}) & = m(m(\tilde{h},e),h) \\ &= m(g,\tilde{g}) & = m(\tilde{h},h) \\ &= e, & = e. \end{split}$$

- (e) Observe que, se m(a,x) = b, então $m(\tilde{a},b) = m(\tilde{a},m(a,x)) = m(m(\tilde{a},a),x) = m(e,x) = x$. Por outro lado, $m(a,m(\tilde{a},b)) = m(m(a,\tilde{a}),b) = m(e,b) = b$. Como $m(\tilde{a},b) \in G$ e \tilde{a} é único, então $x = m(\tilde{a},b)$ é o único elemento de G que satisfaz m(a,x) = b.
- (f) Similar à do item (e).
- (g) Segue do item (e) substituindo x por b e b por m(a, c).
- (h) Segue do item (f) substituindo x por $b \in b$ por m(c, a).

Observação 1.11. A definição de grupo é completamente abstrata. Ou seja, um grupo é um conjunto não-vazio qualquer, munido de uma operação binária qualquer, desde que essa operação binária satisfaça as condições (i)-(iii) da Definição 1.1. Em particular, podemos criar um grupo a partir de um conjunto $G \neq \emptyset$ qualquer, se especificarmos toda uma tabela de multiplicação

satisfazendo as condições (i)-(iii).

Além disso, é fácil ver que existe uma quantidade enorme de grupos (não só os que nós exemplificamos acima). Portanto um problema interessante seria descrever todos os possíveis grupos que existem e classificá-los.