Control of an inverted double pendulum

> Nich olas Capel

Introduction

ivoaumap

Control of an inverted double pendulum using Machine Learning and Camera Feedback

Nicholas Capel

November 21, 2016

Contents

Control of an inverted double pendulum

> Nich olas Capel

Introduction

Background

Roadmap

1 Introduction

2 Background: Pilco

3 Roadmap

The inverted double pendulum problem

Control of an inverted double pendulum

> Nich olas Capel

Introduction

Background

Roadmap

Conclusion

Figure: Diagram of inverted double pendulum

Discover controller

$$\mathbf{x} \longmapsto \pi(\mathbf{x}) = \mathbf{u}$$

$$min(\sum_{t=0}^{T} \mathbb{E}[c(x_t)])$$

Task 1: Swing up
$$(\theta_1 = \pi, \theta_2 = 0)$$

Task 2: Stabilize
$$(\theta_1 = 0, \theta_2 = 0)$$

Experimental setup

Control of an inverted double pendulum

> Nich olas Capel

Introduction

Backgroun

Roadmap

Conclusion

Figure: Diagram of experimental setup

■ x vector generated using camera feedback

Motivation

Control of an inverted double pendulum

> Nich olas Capel

Introduction

. . .

Roadmap

_ . .

Comparison of Approaches

Classical Approach

- 1st order approximation breaks down
- Model-based approach

PILCO Approach

- Can learn model for entire state space
- Data-based approach

- Video-based feedback
 - State uncertainty
 - Delay
- This has been done before
 - But no realistic simulation (noise + uncertainty)

Overview of Pilco

Control of an inverted double pendulum

> Nicholas Capel

Introduction

Background: Pilco

Roadmap

Figure: PILCO algorithm

Overview of Pilco

Control of an inverted double pen du lum

Background:

Pilco

Learning Dynamics Model

Fundamental assumption that the next state

$$x_{t+1} = f(x_t, u_t)$$

Models this transition using a Gaussian process $p(x_t|x_{t-1},u_{t-1}) =$ $N(x_t, \Sigma_t)$

Optimising policy

Figure: Rollout

- Compute Cost Function $J = \sum_{t=0}^{T} \mathbb{E}[c(x_t)]$
- Gradient Descent $(\frac{\partial J}{\partial \theta})$ over policy parameters to find policy that minimizes J

Computer simulation experiments

Control of an inverted double pendulum

> Nicholas Capel

Introduction

Background

Roadmap

- Computer simulations explore how the PILCO algorithm performs with noise and time delay
- Pendulum initialized in upright position

Control of an inverted double pendulum

> Nich olas Capel

Introduction

Pilco

Roadmap

Figure: Computer Simulation Results for single experiment

PILCO toolbox

Control of an inverted double pendulum

> Nich olas Capel

Introduction

Backaroune

Roadmap

.

Conclusion

Figure: Computer Simulation Results for single experiment with rollouts

Preliminary Results

Control of an inverted double pendulum

> Nich olas Capel

Introduction

Roadmap

itouumup

Conclusion

Figure: Stability of Controller for various noise and delay levels

Delay (ms) \ Noise Scaling Factor	0.25	0.5	1	2	4	
5						
10						
20						
30						
40						
49						
				Controller is stable Controller is somewhat st Controller is unstable		t st

Noise scaling factor

Observation noise at each coordinate modelled as a Gaussian with variance scaled by this factor

Analytical Handle on control problem

Control of an inverted double pendulum

> Nicholas Capel

Introduction

. . .

Roadmap

- Linearize systems of equations of the inverted double pendulum about equilibrium
- Introduce controller with delay
- Introduce noise to the readings

Physical Experiments

Control of an inverted double

Nich olas Capel

Background

Roadmap

- Explore maximum time delay for transmission and processing of a single camera frame
 - Expected delay of approximately 30ms
 - Test time delay via a perturbance to the double pendulum system
- Run PILCO algorithm with real system for the stabilization task
- Run PILCO algorithm with real system for the swingup and stabilization task

Conclusion and Outlook

Control of an inverted double pendulum

> Nich olas Capel

Introduction

. . .

Roadmap

- It seems that the algorithm is more sensitive to input noise than to delays
- Run repeated computer simulations to confirm results
- Perform analysis of inverted double pendulum problem
- Perform physical experiments on camera and cart system