Group Lasso Standardization

Stephen Berg June 21, 2017

The unstandardized group lasso problem solves

$$arg \ min_{\beta} \ - l(X\beta) + \lambda \sum_{i=1}^{G} \sqrt{p_i} \cdot ||\beta_i||_2$$

where p_i is the number of parameters in group i and β_i refers to the subset in group i of parameters in β . Simon and Tibshirani recommend solving

$$arg \ min_{\beta} \ -l(X\beta) + \lambda \sum_{i=1}^{G} \sqrt{p_i} \cdot ||X_i\beta_i||_2$$

where the l2 norm of the predictions is penalized rather than the l2 norm of the coefficients themselves. They show that this is equivalent to solving

$$arg \ min_{\theta} \ - l(U\theta) + \lambda \sum_{i=1}^{G} \sqrt{p_i} \cdot ||\theta_i||_2$$

where the relationship between U and X is the following: $U_iR_i = X_i$ for all i, and R_i^{-1} orthonormalizes the columns of X_i . Thus $U_i\theta_i = X_i\beta_i = U_iR_i\beta_i$, so $\beta_i = R_i^{-1}\theta_i$.

They do not mention centering or subtracting out the mean of the columns of X before doing the standardization, but this seems appropriate, suggesting the modification

$$arg \ min_{\beta} \ - l(X\beta) + \lambda \sum_{i=1}^{G} \sqrt{r_i} \cdot ||P_{0^{\perp}} X_i \beta_i||_2$$

where $P_{0^{\perp}}$ is the projection of $X_i\beta_i$ onto the orthogonal complement of the unpenalized groups, and r_i denotes the rank of $P_{0^{\perp}}X_i$. The modification of p_i to r_i is useful in the case of k-level factors. Suppose X_{ij} is a k-level factor, with j = 1, ..., k, and the only unpenalized covariate is the intercept. Then

$$X_i = [X_{i1} \quad X_{i2} \quad \dots \quad X_{i(k-1)} \quad (1 - X_{i1} - \dots - X_{i(k-1)})]$$

and

$$P_{0^{\perp}}X_{i} = \left[\begin{array}{cccc} P_{0^{\perp}}X_{i1} & P_{0^{\perp}}X_{i2} & \dots & P_{0^{\perp}}X_{i(k-1)} & \left(-P_{0^{\perp}}X_{i1} - \dots - P_{0^{\perp}}X_{i(k-1)} \right) \end{array} \right]$$

which has rank k-1. Under the modified penalty with an unpenalized intercept, including all k levels of a factor or including any k-1 levels will produce the same model.

To standardize the model with penalty $||P_{0^{\perp}}X_i\beta_i||$, we need to orthonormalize the columns of $P_{0^{\perp}}X_i$ for each penalized group i. This can be done in the following way. Let

$$Q_i D_i Q_i^T = X_i^T P_{0^{\perp}}^T P_{0^{\perp}} X_i = X_i^T P_{0^{\perp}} X_i.$$

Then the columns of

$$P_{0^{\perp}} X_i Q_i D_i^{-1/2}$$

are orthonormal.

It remains to efficiently compute $X_i^T P_{0^{\perp}} X_i$, particularly in the case where X is sparse and X_0 is low rank. Suppose $X_0 = U_0 R_0$, where the columns of U_0 are orthonormal and R_0 is a $p_0 \times p_0$. Then

$$P_{0^{\perp}} = diag(n) - U_0 U_0^T = diag(n) - X_0 R_0^{-1} R_0^{-1}^T X_0^T$$

and

$$X_i^T P_{0^{\perp}} X_i = X_k^T X_k - (X_k^T X_0) (R_0^{-1} R_0^{-1}) (X_0^T X_k)$$

where the last term is parenthesized in a way that takes advantage of both the possible sparsity of X (to compute $X_k^T X_0$ rather than $P_{0^{\perp}} X_0$) and the low rank of X_0 ($R_0^- 1 R_0^- 1^T$ is $p_0 \times p_0$).