MIPS Reference Data

	S

1

The state of the s											
CORE INSTRUCTI	ON SE	Т			OPCODE						
NAME ARTEMO		FOR-		/ FUNCT							
NAME, MNEMO Add	NIC add	MAT R	- (6)	(1)	(Hex) 0 / 20 _{hex}						
Add Immediate		I	R[rd] = R[rs] + R[rt] $R[rd] = R[rs] + Sign Entleson$								
	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}						
Add Imm. Unsigned	addu	R	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex} 0 / 21 _{hex}						
Add Unsigned			R[rd] = R[rs] + R[rt]		$0/21_{\text{hex}}$ $0/24_{\text{hex}}$						
And Immediate	and	R I	R[rd] = R[rs] & R[rt]	(2)							
Branch On Equal	andi beq	I	R[rt] = R[rs] & ZeroExtImm if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(3)	c _{hex}						
Branch On Not Equal	bne	Ι	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}						
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}						
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{hex}						
Jump Register	jr	R	PC=R[rs]	(5)	0 / 08 _{hex}						
Load Byte Unsigned	_	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}						
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}						
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	$30_{ m hex}$						
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}						
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23 _{hex}						
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}						
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}						
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	d_{hex}						
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}						
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}						
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}						
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	$0/2b_{hex}$						
Shift Left Logical	sll	R	$R[rd] = R[rt] \le shamt$		$0 / 00_{hex}$						
Shift Right Logical	srl	R	$R[rd] = R[rt] \gg shamt$		0 / 02 _{hex}						
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}						
Store Conditional	sc	I	$\begin{aligned} M[R[rs] + SignExtImm] &= R[rt]; \\ R[rt] &= (atomic) ? 1 : 0 \end{aligned}$	(2,7)	38 _{hex}						
Store Halfword	sh	Ι	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}						
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{hex}$						
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	$0/22_{hex}$						
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		$0/23_{hex}$						
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atom											

BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5
I	opcode	rs	rt		immediate)
	31 26	25 21	20 16	15		
J	opcode			address		
	31 26	25				

ARITHMETIC CORE INSTRUCTION SET

			_	/ FMT /FT
		FOR-		/ FUNCT
NAME, MNEMO		MAT		(Hex)
Branch On FP True		FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False	bc1f	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	$Lo=R[rs]/R[rt]; Hi=R[rs]\%R[rt] \qquad (6)$	0///1b
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double			{F[ft],F[ft+1]}	
FP Compare Single	C.X.S*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	c.x.d*	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y
Double			$\{F[ft],F[ft+1]\}\)?1:0$	11/11/ /y
			=, <, or <=) (y is 32, 3c, or 3e)	11/10/ /2
FP Divide Single	div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
Double		ED	{F[ft],F[ft+1]}	11/10/ /2
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply Double	mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11//2
	,	ED	{F[ft],F[ft+1]}	11/10//1
FP Subtract Single FP Subtract	sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
Double	sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {F[ft],F[ft+1]}$	11/11//1
Load FP Single	lwc1	I	$ \{F[tt], F[tt+1]\} $ $F[rt]=M[R[rs]+SignExtImm] $	31//
Load FP	IWCI	1		31//
Double	ldc1	I	F[rt]=M[R[rs]+SignExtImm]; (2) F[rt+1]=M[R[rs]+SignExtImm+4]	35//
Move From Hi	mfhi	R	R[rd] = Hi	0 ///10
Move From Lo	mflo	R	R[rd] = III R[rd] = Lo	0 ///12
Move From Control		R	R[rd] = CR[rs]	10 /0//0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned	multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ $\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19
Shift Right Arith.	sra	R	R[rd] = R[rt] >>> shamt	0///3
Store FP Single	swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP	SWCI		M[R[rs]+SignExtImm] = F[rt] (2) M[R[rs]+SignExtImm] = F[rt]; (2)	
Double	sdc1	I	M[R[rs]+SignExtImm] - F[rt]; (2) M[R[rs]+SignExtImm+4] = F[rt+1]	3d//
Dodoic			M[K[is]+SignExtillili+4] = F[It+1]	

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	fmt ft		fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

O I E I I I I I	TIVIL, ITOIVII	DEIT, GOE, CALL GOITTE	
NAME	NUMBER	USE	PRESERVEDACROSS
INAIVIE	NUMBER	USE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	No

MIPS

OPCOD	ES, BASI	CONVER	SION	, A	SCII	SYME	OLS		(3)	
	(1) MIPS			, -			ASCII	. .	Hexa-	ASCI
opcode	funct	funct	Binar	v	Deci-	deci	Char-	Deci-	deci-	Char-
(31:26)	(5:0)	(5:0)		,	mal	mal	acter	mal	mal	acter
(1)	sll	add.f	00 000	00	0	0	NUL	64	40	(a)
(1)	011	sub.f	00 000		1	1	SOH	65	41	Ă
j	srl	mul.f	00 00		2	2	STX	66	42	В
jal	sra	div. f	00 00		3	3	ETX	67	43	C
beq	sllv	sqrt.f	00 010		4	4	EOT	68	44	D
bne		abs.f	00 010		5	5	ENO	69	45	E
blez	srlv	mov.f	00 01		6	6	ACK	70	46	F
bgtz	srav	$\operatorname{neg} f$	00 01	11	7	7	BEL	71	47	G
addi	jr		00 100	00	8	8	BS	72	48	Н
addiu	jalr		00 100	01	9	9	HT	73	49	I
slti	movz		00 10	10	10	a	LF	74	4a	J
sltiu	movn		00 10		11	b	VT	75	4b	K
andi	syscall	round.w.f	00 110	00	12	c	FF	76	4c	L
ori	break	trunc.w.f	00 110		13	d	CR	77	4d	M
xori		ceil.w f	00 11		14	e	SO	78	4e	N
lui	sync	floor.w.f	00 11		15	f	SI	79	4f	0
	mfhi	y	01 000		16	10	DLE	80	50	P
(2)	mthi		01 000		17	11	DC1	81	51	Q
()	mflo	movz.f	01 00		18	12	DC2	82	52	Ř
	mtlo	movn.f	01 00		19	13	DC3	83	53	S
			01 010				DC4	84	54	T
			01 010			or 15	NAK	85	55	Ū
			01 01		22	16	SYN	86	56	V
			01 01		23	17	ETB	87	57	W
	mult		01 100		24	18	CAN	88	58	X
	multu		01 100		25	19	EM	89	59	Y
	div		01 10		26	1a	SUB	90	5a	Z
	divu		01 10		27	1b	ESC	91	5b	[
			01 110		28	1c	FS	92	5c	
			01 110		29	1d	GS	93	5d	i
			01 11		30	1e	RS	94	5e	ÿ
			01 11		31	1f	US	95	5f	
lb	add	cvt.s.f	10 000	00	32	20	Space	96	60	
lh	addu	cvt.d.f	10 000	01	33	21	1!	97	61	a
lwl	sub		10 00		34	22	"	98	62	b
lw	subu		10 00		35	23	#	99	63	c
lbu	and	cvt.w.f	10 010	00	36	24	\$	100	64	d
lhu	or	y	10 010		37	25	%	101	65	e
lwr	xor		10 01		38	26	&	102	66	f
	nor		10 01		39	27	, c	103	67	g
sb			10 10		40	28	(103	68	h
sh			10 10		41	29)	105	69	i
swl	slt		10 10		42	2a	*	106	6a	i
SW	sltu		10 10		43	2b	+	107	6b	k
S.W	SILU		10 110		44	2c		108	6c	1
			10 110		45	2d	,	109	6d	m
swr			10 11		46	2e	-	110	6e	n
cache			10 11		47	2f	,	111	6f	0
11	tae	c.f.f	11 000		48	30	0	1112	70	p
lwc1		c.un.f	11 000		49	31	1	1113	71	
lwc2	tgeu tlt		11 00		50	32	2	113	72	q r
rwcz pref	tltu	c.eq.f c.ueq.f	11 00		51	33	3	1114	73	S
hrer		c.ueq.f	11 010		52	34	4	116	74	t
ldc1	teq		11 010		53	35	5	117	75	
ldc1 ldc2	tno	c.ult.f	11 01		54	36	6	118	76	u v
±uc2	tne	c.ole.f	11 01		54 55	37	7	118	76 77	W
		c.ule.f			56	38	8	120	78	
SC STIG1		c.sf.f	11 100 11 100		50 57	39	9	120	78 79	X
swc1		c.ngle.f	11 10		58	39 3a		121	79 7a	y z
swc2		c.seq.f	1		58 59		:	1		
		c.ngl.f	11 10			3b	;	123	7b	-{
sdc1		c.lt.f	11 110		60 61	3c 3d	=	124	7c)
sdcl		c.nge.f	11 11		62	30	_	123	7d	}

(1) opcode(31:26) == 0

sdc2

c.le.f

11 1110

11 1111

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

4 IEEE 754 Symbols

Exponent	Fraction	Object
0	0	± 0
0	≠0	± Denorm
1 to MAX - 1	anything	± Fl. Pt. Num.
MAX	0	±∞
MAX	≠0	NaN
$SPM\Delta X = 2$	55 DP N	$1 \Delta X = 2047$

S	Exponent	Fraction	
31	30 23	22	0
S	Exponent	Fraction	.>
63	62	52 51	0

DATA ALIGNMENT

	Double Word												
	Wo	rd		Word									
Halfword		Half	word	Hal	fword	Half	word						
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte						
0	1	2	3	4	5	6	7						

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

EFTION CONTROL REGISTERS. CAUSE AND STATUS											
	В			Interrupt			E	xception			
	D			Mask				Code			
	31		15		8		6		2		
				Pending				U		Е	Ι
				Interrupt				M		L	Е
			15		8			4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

Number	Name		Number	Name	Cause of Exception	
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception	
4	AdEL	Address Error Exception	10	RI	Reserved Instruction	
		(load or instruction fetch)			Exception	
5	AdES	Address Error Exception (store)	11	CpU	Coprocessor Unimplemented	
6	IBE	Bus Error on	12	Ov	Arithmetic Overflow	
		Instruction Fetch	12	Ov	Exception	
7	DBE	Bus Error on	13	Tr	Trap	
		Load or Store				
8	Sys	Syscall Exception	15	FPE	Floating Point Exceptio	

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

= 1 11=1 121 (10 101 2101), Communication, = 101 montery,									
SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol				
10 ³	Kilo-	K	2 ¹⁰	Kibi-	Ki				
10^{6}	Mega-	M	2 ²⁰	Mebi-	Mi				
10 ⁹	Giga-	G	230	Gibi-	Gi				
10^{12}	Tera-	T	2 ⁴⁰	Tebi-	Ti				
10^{15}	Peta-	P	2 ⁵⁰	Pebi-	Pi				
10^{18}	Exa-	Е	2 ⁶⁰	Exbi-	Ei				
10^{21}	Zetta-	Z	2 ⁷⁰	Zebi-	Zi				
10 ²⁴	Yotta-	Y	280	Yobi-	Yi				

3e

7e 7f

DEL

126

127

⁽²⁾ opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f = s$ (single); if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$