

A Scalable Multi-User Uplink for Wi-Fi

Adriana B. Flores

Sadia Quadri, and Edward W. Knightly

NSDI, March 2016

Start of Wi-Fi

Client

- Standardized in 1997
- SISO
- Single user at a time
- Omni-directional transmission

MIMO in 802.11

 MxN MIMO increases throughput by min(Tx antennas, Rx antennas)

MIMO in 802.11

- Multiple concurrent transmissions
- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)

MIMO in 802.11

- Multiple concurrent transmissions
- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)

- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)
- Client devices often have N=1 antenna due to cost and space

 Client devices often have N=1 antenna due to cost and space

8 Antennas

- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)
- Client devices often have N=1 antenna due to cost and space

1 Antenna

8 Antennas

1 Antenna

- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)
- Client devices often have N=1 antenna due to cost and space

8 Antennas

1 Antenna

- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)
- Client devices often have N=1 antenna due to cost and space

Downlink Multi-User MIMO

- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)
- Downlink Multi-User MIMO allows for APs to leverage antennas
- Transmitter sends multiple streams concurrently to different users
- Remove Interference by "Zero-Forcing Beamforming" (ZFBF)

Downlink Multi-User MIMO

- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)
- Downlink Multi-User MIMO allows for APs to leverage antennas
- Transmitter sends multiple streams concurrently to different users
- Remove Interference by "Zero-Forcing Beamforming" (ZFBF)

Downlink Multi-User MIMO

- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)
- Downlink Multi-User MIMO allows for APs to leverage antennas
- Transmitter sends multiple streams concurrently to different users
- Remove Interference by "Zero-Forcing Beamforming" (ZFBF)

Uplink Multi-User MIMO?

- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)
- Back to 1997 SISO transmission

Uplink Multi-User MIMO?

- MxN MIMO increases throughput by min(Tx antennas, Rx antennas)
- Back to 1997 SISO transmission

Why Not Mimic Downlink MU-MIMO?

- Paradigm Shift
- Many → One
- No connection between devices
- How do we remove interference?

MUSE : Multi-User Scalable Uplink

- Match the number of transmitters to the number of antennas at AP
- No control signaling

MUSE : Multi-User Scalable E Uplink

- Match the number of transmitters to the number of antennas at AP
- No control signaling

MUSE : Multi-User Scalable Uplink

- Match the number of transmitters to the number of antennas at AP
- No control signaling

- Multiple transmitters act as a single device with multiple antennas
 - No control channel
 - Remove interference

- Association ID for user selection and grouping
- Arbitrary index for each user
- AP informs the network the Max ID

- Association ID for user selection and grouping
- Arbitrary index for each user
- AP informs the network the Max ID

- Association ID for user selection and grouping
- Arbitrary index for each user
- AP informs the network the Max ID

- Association ID for user selection and grouping
- Arbitrary index for each user
- AP informs the network the Max ID

- Association ID for user selection and grouping
- Arbitrary index for each user
- AP informs the network the Max ID

- Association ID for user selection and grouping
- Arbitrary index for each user
- AP informs the network the Max ID

Remove Interference

- Environmental Multipath
- Independent paths (channels)
- Receiver (AP) estimate channels

Remove Interference

- Environmental Multipath
- Independent paths (channels)
- Receiver (AP) estimate channels

Receiver Channel Estimation

- Known set of training signals
- Enable distributed usage
- Fixed size (# Streams = # Rx antennas)
- User has assigned set of training signals

IDs

- Assignment through Association ID
- No control signaling (coordination) required

Receiver Channel Estimation

- Known set of training signals
- Enable distributed usage
- Fixed size (# Streams = # Rx antennas)
- User has assigned set of training signals

IDs

- Assignment through Association ID
- No control signaling (coordination) required

Group Adaptation

- Association ID Reassignment
- AP learning process: which users are most likely to transmit

Group Adaptation

- Association ID Reassignment
- AP learning process: which users are most likely to transmit

Group Adaptation

- Association ID Reassignment
- AP learning process: which users are most likely to transmit

MUSE Implementation

- OTA experiments WARPLab
- 1 to 4 concurrent spatial streams
- Evaluation Setup:
 - Clients: single WARP board with independent RF clocks
 - Time synchronized through triggering cables
 - Conference room 645sq ft or 60 sq m
 - Evaluate over 20 locations

MUSE Scalability

- Scalability can be limited by inter-stream interference and channel correlation between users
- MUSE PHY ability to achieve full-rank capacity and permit scaling
- Setup:
 - 1x1, 2x2, 3x3, 4x4
 - 2000 packets
 - 24 Mbps

MUSE Scalability

- Scalability can be limited by inter-stream interference and channel correlation between users
- MUSE PHY ability to achieve full-rank capacity and permit scaling
- Setup:
 - 1x1, 2x2, 3x3, 4x4
 - 2000 packets
 - 24 Mbps

MUSE Scalability

 $C(bps/Hz) = log2[\det(I_N + (SNR/M)(HH^*))]_{[1]}$

• Empirical capacity with estimated channels

Conclusion MUSE

AP Y Y Y

- Scalable Multi-User MIMO uplink WLAN
- Match the number of transmitters to the number of antennas at AP
- No control signaling

Emulate Single Multi-Antenna device

- Transmit Simultaneously
- ID-Based Grouping and Synchronization
- Enable distributed and dynamic Rx channel estimation
- Leverage environmental multipath
- Standard compatible

Conclusion MUSE

AP Y Y Y

- Scalable Multi-User MIMO uplink WLAN
- Match the number of transmitters to the number of antennas at AP
- No control signaling

Emulate Single Multi-Antenna device

- Transmit Simultaneously
- ID-Based Grouping and Synchronization
- Enable distributed and dynamic Rx channel estimation
- Leverage environmental multipath
- Standard compatible

