数字媒体技术基础 20 组进展报告

小组成员

姓名	学号
张子扬	15331414
钟敏欣	15331426
朱文豪	15331443
赵寒旭	15331416
邹伊宁	15331449
李启明	14331133

进度总结

此次进展报告的主要内容是对《Single Image Haze Removal Using Dark Channel Prior》的详细阅读报告,附于下文。

根据相关资料, 小组实现了暗通道先验去雾的算法, 实验结果在展示 ppt 中已有简要的描述。

接下来的工作是结合其他论文的算法,基于暗通道先验对去雾算法进行改进,希望得到适应性更强的去雾效果。

《Single Image Haze Removal Using Dark Channel Prior》相关算法详解

1. 暗通道先验 (Dark Channel Prior)

1.1 原理

(1) 观察得到的结论

通过对室外无雾图像的观察可以发现,我们用 patch 表示与某一像素点关联的一片区域 (正方形区域), 在大多数非天空 patch (大小定为15×15) 内, 至少有一个颜色通道有某些光强度极低(接近于0)的像素点,即 patch 中的最小光强度趋近于0。

(2) 导致暗通道中的低强度产生的三个因素

- 1) 阴影,例如汽车,建筑物,城市景观图像中的窗户内部的影子,或者景观图像中的叶子,树木和岩石的阴影;
- 2) 彩色物体或表面,例如任何颜色通道(例如绿草/树/植物,红色或黄色花/叶和蓝色 水面)的任何反射率低的物体将导致黑暗通道中的低值:
- 3) 黑暗的物体或表面,例如黑树干和石头。由于自然的户外图像通常是多彩的,充满阴影、这些图像的暗诵道都十分黑暗。

(3) 利用大数据集的统计性验证

为了验证暗通道先验的正确性,选取户外图像集中无雾图片和城市图片(均为白天)。随机选择 5000 张图像,手动切割天空区域,调整图像大小,使得宽度和高度的最大值为 500 像素,并且使用 patch 大小为 15。

图(a)是 5,000 个暗通道的强度直方图,图(b)是相应的累积分布。暗通道中约 75%的像素具有零值,90%的像素的强度低于 25。这个统计量极大支持了暗通道先验算法。我们还计算每个暗通道的平均强度,并在图(c)中绘制相应的直方图,大多数暗通道具有非常低的平均强度,表明只有少部分室外无雾图像偏离我们的先验。

1.2 实现方法

定义:对任意图像J,其暗通道 J^{dark} 表示为:

$$J^{dark}(\mathbf{x}) = \min_{c \in \{r, g, b\}} (\min_{y \in \Omega(\mathbf{x})} (J^c(y)))$$

 J° 代表 J 的某一个颜色通道,而 $\Omega(x)$ 是以 x 为中心的一块正方形区域(local patch)。 以像素点 x 为中心,分别取三个通道内窗口 Ω 内的最小值,然后再取三个通道的最小值作为像素点 x 的暗通道的值,如下图所示:

1.2 代码实现

```
J darkchannel = min(Image, [], 3); % find the minimum value in RGB channel
   for i = (1 : dimr)
        for j = (1 : dimc)
            winLeft = i - dx; winRight = i + dx;
            winUp = j - dx; winDown = j + dx;
            % check the windows range
            if(i - dx < 1)
                winLeft = 1;
            end
            if(i + dx > dimr)
                winRight = dimr;
            end
            if(j - dx < 1)
                winUp = 1;
            if(j+dx>dimc)
                  winDown=dimc;
            end
            % find the minimum value in the patch windows
            J darktemp(i,j) = min(min(J darkchannel(winLeft : winRight, winUp : wi
nDown)));
        end
    end
    J_darkchannel = J_darktemp;
```

2. 估计大气光 (Estimating the Atmospheric Light)

2.1 原理

(1) 大气物理模型

要想从物理模型角度对有雾图像进行清晰化处理,就要了解雾天的大气散射模型。 大气散射物理模型包含两部分,第一部分称为直接衰减项,第二部分称为大气光照 (Airlight)

| 是观测到的有雾图像,] 是景物反射光强度(也就是清晰的无雾图像), A 是全局大气光照强度, t 用来描述光线通过介质透射到成像设备过程中没有被散射的部分, 去雾的目标就是从 | 中复原]。那么也就是要通过 | 求 A 和 t。

方程右边的第一项 J(x)t(x) 叫做直接衰减项,第二项 A(1-t(x))则是大气光照。直接衰减项描述的是景物光线在透射媒介中经衰减后的部分,而大气光则是由前方散射引起的,会导致景物颜色的偏移。因为大气层可看成各向同性的,透射率 t 可表示为:

$$t(x) = e^{-\beta d(x)}$$

β为大气的散射系数, 该式表明景物光线是随着景物深度 d 按指数衰减的。

(2) 估计大气光基本方法

通常有雾图像中最亮的像素被认为是雾最浓的地方,然而这个规律只适用于阴天阳 光可以被忽略的情况,此时大气光是唯一照明源。

由于整个图像的最亮的像素可能比大气光更亮(如在白色的汽车或白色的建筑物上的像素点),可以使用暗通道来检测雾最浓的区域,改善大气光的估计,使其不易受输入图像中高亮像素的影响。

- 1) 从暗通道中选择出最亮的 0.1%像素(认为这些像素所在位置是雾最浓处)
- 2) 从这些像素中选出在输入图像中对应最高强度的像素作为大气光(这些像素在整个输入图像中可能不是最亮的)

2.2 实现方法

求解全局大气光照Ac

- (1) 对输入的有雾图像 | 求解其暗通道图像 J dark
- (2) 选择暗通道 J^{dark} 内最亮的 0.1%像素点, 并记录这些像素点的(x, y) 坐标。
- (3) 根据这些点的坐标分别在原图像 | 的三个通道(r,g,b)内找到这些像素点并加和得到 (sum(r), sum(g), sum(b))
- (4) $A^c = [A^r, A^g, A^b], \quad \sharp h A^r = sum(r)/N, A^g = sum(g)/N, A^b = sum(b)/N$

2.3 代码实现

3. 估计透射率 t (Estimating the Transmission)

3.1 原理

$$I(x) = J(x)t(x) + A(1 - t(x))$$

现已知I(x),A, 需要求出透射率t(x)用于恢复无雾图像。

(1) 规范化表示

$$\frac{I^{c}(y)}{A^{c}} = t(x)\frac{J^{c}(y)}{A^{c}} + 1 - t(x)$$

每个颜色通道都被独立表示。

(2) 假设每个局部 patch $\Omega(x)$ 里的透射率 t 都是常数,用 $\tilde{t}(x)$ 表示透射率。对(1)中式两边求暗通道:

$$\min_{y \in \Omega(x)} (\min_c \frac{I^c(y)}{A^c}) = \tilde{t}(x) \min_{y \in \Omega(x)} (\min_c \frac{J^c(y)}{A^c}) + 1 - \tilde{t}(x)$$

(3) J 是无雾图像,暗通道值趋于 0, A^c 总为正

$$\min_{y \in \Omega(x)} (\min_{c} \frac{J^{c}(y)}{A^{c}}) = 0$$

(4) 得到透射率 \tilde{t}

$$\tilde{t}(x) = 1 - \min_{y \in \Omega(x)} (\min_{c} \frac{I^{c}(y)}{A^{c}})$$

 $\min_{y \in \Omega(x)} (\min_{c} \frac{I^{c}(y)}{A^{c}})$ 是规范化后有雾图像 $\frac{I^{c}(y)}{A^{c}}$ 的暗通道。

(5) 有雾图像的天空颜色通常非常接近大气光, 在天空区域, 有:

$$\min_{y \in \Omega(x)} (\min_{c} \frac{J^{c}(y)}{A^{c}}) \to 1$$

$$\tilde{f}(x) \to 0$$

由于天空区域无限远,其透射率的确接近于 0,因此我们不需要事先把天空区域分离开处理。

(6) 为使得恢复图像更加自然,不应彻底移除雾气,我们可以通过引入一个恒定的参数 ω ($0 < \omega \le 1$),为遥远物体选择性地保持非常小的雾度。

$$\tilde{t}(x) = 1 - \min_{y \in \Omega(x)} (\min_{c} \frac{I^{c}(y)}{A^{c}})$$

3.2 实现方法

透射率 t 的公式
$$\tilde{t}(x) = 1 - \omega \min_{y \in \Omega(x)} (\min_{C} \frac{I^{c}(y)}{A^{c}})$$

『为输入的有雾图像,对其除以全局大气光照 A°后在利用暗通道定义公式进行求解暗通道。ω $(0 < ω \le 1)$ 是雾的保留系数通常取 0.95。

这里需要值得注意的是, 求得的 t 是粗透射率图, 并不能直接带入大气模型公式求解, 所以需要讲行细化后再处理。

3.3 代码实现

```
1. % Estimating the raw transmission map(color)
  Im_n(:, :, 1) = Image(:, :, 1) ./ Airlight(1);
  Im_n(:, :, 2) = Image(:, :, 2) ./ Airlight(2);
4. Im_n(:, :, 3) = Image(:, :, 3) ./ Airlight(3);
    tmap = min(Im_n, [], 3);
   for i = (1 : dimr)
       for j = (1 : dimc)
            winLeft = i - dx; winRight = i + dx;
            winUp = j - dx; winDown = j + dx;
            % check the windows range
            if(i - dx < 1)
                winLeft = 1;
            end
            if(i + dx > dimr)
                winRight = dimr;
            if(j - dx < 1)
                winUp = 1;
            end
            if(j + dx > dimc)
               winDown = dimc;
            end
            % find the minimum value in the 惟 windows
            % get the image transmittance
            t_map(i, j) = 1 - w * min(min(tmap(winLeft : winRight, winUp : winDown)));
         end
    end
```

4. 精细化透射率

论文中的细化透射率的方法为软抠图(soft matting)的方法,详见论文如下:A Closed-Form Solution to Natural Image Matting[2],作者:Anat Levin

5. 恢复清晰图像 (Recovering the Scene Radiance)

5.1 原理

由大气光 A 和透射率 t 根据I(x) = J(x)t(x) + A(1-t(x))恢复图像时,有

$$J(x) = \frac{I(x) - A}{t(x)} + A$$

当 $t(x) \to 0$ 时,可能有 $J(x)t(x) \to 0$,恢复后 $J(x) \to 0$ 显示为噪点,影响效果。 为避免噪点的产生,给透射率选取一个下限 t_0 (典型取值为 0.1)

5.2 实现方法

得到了光照强度 A 和透射率 t, 代入大气模型公式:

$$J(x) = \frac{I(x) - A}{max(t(x), t_0)} + A$$

这里, t0 参数用来限定透射率 t 的下限值, 其作用也就是在输入图像的浓雾区域保留一定的雾。

5.3 代码实现

6. Patch 大小选取 (Patch size)

size 选取较大的结果

- (1) 每个 patch 包含暗像素的概率更大, 暗通道先验效果可能更好
- (2) 透射率在一个 patch 内为常数,靠近 depth edge 的光晕会更强,影响恢复图像的效果

综上两点,我们选取折中的 patch size 为15×15