# UNIVERSIDADE DE UBERABA – UNIUBE – CAMPUS VIA CENTRO CURSOS DE ENGENHARIA ELÉTRICA E ENGENHARIA DE COMPUTAÇÃO DISCIPLINA: SISTEMAS DIGITAIS – PROF. JOÃO PAULO SENO

## AULA PRÁTICA 8 – Explorando os Flip-flops

#### I. Objetivo da prática:

Implementar e testar um circuito digital utilizando flip-flops J-K.

#### II. Apresentação teórica:

No início da aula, para explicar o funcionamento do flip-flop J-K.

#### III. Material e equipamentos necessários (para cada bancada):

1 protoboard (pequeno);

- 1 fonte DC ajustável, ou fixa de 5V, 1,5º (para alimentação dos Cis);
- 1 CI 7473 (2X J-K Flip-flop);
- 1 Osciloscópio de dois canais;
- 2 ponteiras para osciloscópio (atenuação 1X 10X).
- 2 chaves liga-desliga de duas posições ou outra disponível e que seja equivalente;
- 1 gerador de função analógico, com cabos de força e sinal (para o sinal de clock);
- 2 cabos com garra jacaré para ligar a fonte de alimentação à protoboard;

Cabinhos diversos para as ligações na protoboard;

1 multímetro digital.

#### IV. Roteiro

- 1. Baixar a datasheet do CI 7473 (Disponível na Internet e no Disco Virtual).
- Usar o gerador de funções para gerar um sinal de clock de 1 kHz. Use a saída de sincronismo TTL para alimentar o sinal de clock do Flip-Flop. Deve-se verificar o sinal com o canal 1 do osciloscópio. NÃO LIGAR ANTES DE CONFERIR SE AS TENSÕES E LIGAÇÕES ESTÃO CORRETAS.
- 3. Ligue um dos flip-flops do circuito integrado e teste a tabela verdade abaixo. Use as chaves liga-desliga de duas posições para acionar as entradas J e K do flip-flop, conectando o pino central da chave na entrada e as outras duas uma no +5V e outra no GND.
- 4. Use o osciloscópio para observar a saída Q e validar a tabela verdade.

Obs.: Verifique os pinos corretos do flip-flop na datasheet. A figura abaixo é ilustrativa.



| J | K | K Q Q' |    | State              |  |
|---|---|--------|----|--------------------|--|
| 0 | 0 | Q      | Q' | No change in state |  |
| 0 | 1 | 0      | 1  | Resets Q to 0      |  |
| 1 | 0 | 1      | 0  | Sets Q to 1        |  |
| 1 | 1 |        |    | Toggles            |  |

#### V. Relatório

Entregar o relatório com a descrição dos passos e resultados obtidos.

## Anexos - Pinagem dos Cls











| Order Number Pack | Package Number | Package Description                                                   |  |  |
|-------------------|----------------|-----------------------------------------------------------------------|--|--|
| DM7473N           | N14A           | 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide |  |  |

## **Connection Diagram**



### **Function Table**

|     | Input | Outputs |    |        |                  |
|-----|-------|---------|----|--------|------------------|
| CLR | CLK   | J       | K  | Q      | Q                |
| L   | X     | X       | X  | L      | Н                |
| Н   | Jr.   | L       | E. | $Q_0$  | $\overline{Q}_0$ |
| Н   | J.L   | Н       | L  | H      | L                |
| H   | _rr_  | L       | н  | L      | Н                |
| H   | JL    | H       | Н  | Toggle |                  |

- H HIGH Logic Level
- L = LOW Logic Level X = Either LOW or HIGH Logic Level
- \_\_ = Positive pulse data: the J and K inputs must be held constant while the clock is HIGH. Data is transferred to the outputs on the failing edge of the clock pulse.
- $\mathbf{Q}_0$  = The output logic level before the indicated input conditions were established.

Toggle – Each output changes to the complement of its previous level on each HIGH level clock pulse.