Respuestas de algunos ejercicios

A continuación podrán encontrar las respuestas de algunos de los ejercicios propuestos. Tengan en cuenta que sólo son respuestas, no están ni las resoluciones, ni las justificaciones necesarias para llegar a éstas.

Capítulo 1

Página 5

- 1. c) $Dom(f) = \mathbb{R} \{-2, 2\}$
- 1. f) Si la función es L(d), entonces $Dom(L) = \{d \in \mathbb{R}/d > 0\}$

Página 7

- 1. d) $(-\infty, 0) \cup (1, +\infty)$
- 1. e) $\left[-\sqrt{2}, \sqrt{2}\right]$
- 2. b) $Dom(q) = \mathbb{R}$
- 2. e) $Dom(g) = (-\infty, -1) \cup (-1, 1) \cup (1, 2]$

Página 11

- 5. d) Ninguna de ellas.
- 5. h) Lineal.

Página 15

- 2. a) h(0) = 0
- 2. c) No es posible hacerlo.
- 2. f) g(3) = 1

Página 17

- 3. c) $(-\infty, -5) \cup (5, +\infty)$. El gráfico queda para el lector.
- 3. f) {0}. El gráfico queda para el lector.
- 9. a) (-2,4). El gráfico queda para el lector.
- 9. f) \mathbb{R} . El gráfico queda para el lector.

12. c)
$$g(x) = \begin{cases} -2x+4 & x < 0 \\ 4 & 0 \le x < 4 \\ 2x-4 & x \ge 4 \end{cases}$$

9. OPTIMIZACIÓN

Capítulo 2

Página 27

- 2. a) $p_1(t) = 80t$ y $p_2(t) = 120(t-1)$ donde t está medido en horas y p_1 y p_2 en km.
- 2. b) 3 horas después de que parte el primer móvil.
- 4. $\frac{6}{7}$ de hora (aproximadamente 51'25")

Página 35

- 1. c) $v'(r) = 4\pi r^2$
- 1. e) $z'(s) = (2s+1)(s^2+2) + (s^2+s+1)2s$
- 1. g) $g'(x) = 2x \frac{2}{x^3}$
- 2. b) -16
- 3. c) $y 0.3 = -\frac{2}{25}(x 3)$
- 4. b) $y \frac{1}{2} = \frac{1}{8}(x-3)$ y $y \frac{3}{2} = \frac{1}{8}(x+5)$
- 5. c=10. La interpretación gráfica queda para el lector.

Página 37

1. a)
$$f \circ g(x) = \sqrt{x-1} + 1$$
 y $Dom(f \circ g) = [1, +\infty)$
 $g \circ f(x) = \sqrt{x}$ y $Dom(g \circ f) = [0, +\infty)$

Página 39

3. a)
$$y' = 2(x^3 - 2x^2 - 5x)(3x^2 - 4x - 5)$$

4. a)
$$h'(1) = 30$$

Capítulo 3

Página 48

 $k) \frac{1}{4}$

Página 53

2. d) No existe $\lim_{x\to 0} \frac{|x|}{x}$ ya que los límites laterales existen pero toman distinto valor.

Página 59

2. c) x = -2 es asíntota vertical.

Página 64

2. f es positiva estrictamente en $(-\infty, -3) \cup (2, +\infty)$ y es negativa estrictamente en (-3, 2).

Capítulo 4

Página 67

3. $\alpha = 1/2$.

Página 71

1. b) f es creciente en $(-\infty, -1) \cup (1, +\infty)$ y decreciente en $(-1, 0) \cup (0, 1)$.

Página 76

c) f es cóncava hacia arriba en $(0, +\infty)$ y cóncava hacia abajo en $(-\infty, 0)$.

Página 80

$$\text{1. d)} \ \lim_{x \to +\infty} \frac{2x^5 + 3}{-x^2 + x} = -\infty \ \ \text{y} \ \ \lim_{x \to -\infty} \frac{2x^5 + 3}{-x^2 + x} = +\infty.$$

3. a) La recta x=0 es asíntota vertical y las rectas y=1 y y=-1 son asíntotas horizontales.

Página 92

4. a) f admite inversa en los intervalos $I=(-\infty,-1],\ J=[-1,1]$ y $K=[1,+\infty)$.

4. b) Considerando la restricción de f al intervalo K, tenemos:

$$Dom(f_K) = [1, +\infty) \ Im(f_K) = (-\infty, 3] \ y$$

$${\rm Dom}(f_K^{-1}) = (-\infty, 3] \ {\rm Im}(f_K^{-1}) = [1, +\infty).$$

Dominio e imagen para las restricciones de f a los intervalos I y J quedan para el lector.

Capítulo 5

Página 95

1. c)
$$P(0,-1)$$

Página 96

d)
$$\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$

Página 103

c) Amplitud = 3, Período = 2 y Imagen = [-2, 4].

Página 105

1. e) sen 1

1. h) $\frac{1}{4}$

Página 114

2.
$$y = x + 1$$

Página 116

1. e)
$$\frac{x}{y}$$

2. b)
$$y = 2xe^x + 1$$

3. b)
$$k = 1000 \ln a$$

Página 119 (segunda lista de ejercicios)

f)
$$y' = (\tan x)^{x^2+1} \left[2x \ln(\tan x) + \frac{x^2+1}{\tan x \cos^2 x} \right]$$

Página 121

2. y = 0 es asíntota horizontal y x = -1 es asíntota vertical.

236 9. Optimización

Página 122

2. a) $y' = -2 \operatorname{sen}(2x) - 2 \operatorname{senh}(x)$

2. d) $y' = 10 \operatorname{senh}(5x) \cosh(5x)$

Capítulo 6

Página 128

4. b)
$$|\mathbf{v}| = 3\sqrt{5}$$
, $\mathbf{v} + \mathbf{w} = \langle 6, 1 \rangle$, $\mathbf{v} - \mathbf{w} = \langle 6, 5 \rangle$ y $2\mathbf{v} + 3\mathbf{w} = \langle 12, 0 \rangle$.

Página 130 (segunda lista de ejercicios)

1. c) Si, son paralelos ya que $\mathbf{v} = -\frac{2}{3}\mathbf{w}$.

5. La dirección determinada por $\mathbf{s} = -2\mathbf{i} - 2\mathbf{j}$ es $\frac{\mathbf{s}}{|\mathbf{s}|} = -\frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j}$.

Página 132

El vector $\mathbf{v} = \langle -1, 1 \rangle$ escrito en coordenadas polares queda $\mathbf{v} = \sqrt{2} \left\langle \cos(\frac{3}{4}\pi), \sin(\frac{3}{4}\pi) \right\rangle$.

Página 138

1. e) $\mathbf{v}.\mathbf{w} = 0$

3. a) $\mathbf{v}.\mathbf{u} = \frac{1}{2} \ \text{y} \ \mathbf{w}.\mathbf{u} = -\frac{1}{2}.$

Página 141

(4, -2, 7) pertenece a la recta del ejercicio 2. a) pero no pertenece a la recta del ejercicio 2. b).

Página 144

1. $\mathbf{r} = \langle -1, 1, 0 \rangle$ o cualquier vector colineal a \mathbf{r} .

5. $\mathbf{r} = \left\langle -\frac{3}{2}, 1, -1 \right\rangle$ o cualquier vector colineal a \mathbf{r} .

Página 146

3. -y + z - 1 = 0

6. a) Si, son paralelos.

6. b) (1,2,-9) pertenece a ϕ_1 pero no pertenece a ϕ_2 .

10. a) Los planos no son paralelos. Se cortan en la recta $\left\{\begin{array}{ll} x=1+t & \\ y=1-t & t\in\mathbb{R} \\ z=t \end{array}\right.$

12. Si, se cortan en el punto (1, 1, -2).

Página 152

2. La trayectoria de la curva del ejercicio 1. f) pasa por (2,0) y no pasa por (0,1) y (-1,1). El resto de las curvas quedan para el lector.

5. b) Si, chocan en el instante $t = \frac{3}{2}\pi$. El punto de colisión es (-3,0).

Página 161

7. b) Si, lo impacta en el punto (10,2). Tarda 1 unidad de tiempo desde que sale disparado del punto (6,1).

Capítulo 7

Página 164

5. Si el vértice de la parábola está ubicado en el origen de coordenadas y con directriz paralela al eje y, entonces su ecuación es $y^2=10x$. La abertura CD mide $2\sqrt{110}$ cm.

Página 173

- 1. a) f(1,1) = 0, f(e,1) = 1.
- 1. b) $Dom(f) = \{(x, y) \in \mathbb{R}^2 / y > 1 x\}, \text{ Im}(f) = \mathbb{R}.$
- 9. a) $x^2 + y^2 = 3$

Capítulo 8

Página 181

- 1. e) El límite existe y vale $\frac{1}{4}$.
- 1. g) El límite existe y vale 2.
- 1. j) El límite existe y vale 0.
- 1. k) El límite no existe.

Página 184

- 1. a) $\frac{\partial f}{\partial x}(x,y) = 3x^2 3y^2 \text{ y } \frac{\partial f}{\partial y}(x,y) = -6xy + 4y^3.$
- 1. h) $f_s(s,t) = \frac{t}{(s+t)^2}$ y $f_t(s,t) = \frac{-s}{(s+t)^2}$.
- 2. Las ecuaciones paramétricas para la recta tangente pedida son $\begin{cases} x=1+t \\ y=2 \\ z=2-2t \end{cases}$

Página 187

5.a)
$$\sqrt{36.1} \simeq 6.0083$$

Página 193

- 2. b) z = 0 + 2(x+1) + 1(y-3)
- 6. El máximo error en el área calculada es $5.4 \, \mathrm{cm}^2$.
- 9. a) $2.01e^{-0.01} \simeq 1.99$

Página 196

3. a) La razón de cambio del volumen es de $68 \text{ cm}^3/s$.

Página 201

- 1. a) $\frac{12}{5}$
- 2. c) $\frac{\sqrt{2}}{2}$
- 3. a) $-\frac{\sqrt{10}}{2}$
- 5. En las direcciones $\langle 0, 1 \rangle$ y $\left\langle \frac{4}{5}, -\frac{3}{5} \right\rangle$.
- 9. En la dirección $\left\langle \frac{8}{\sqrt{80}}, \frac{4}{\sqrt{80}}, -\sqrt{80} \right\rangle$.

238 9. OPTIMIZACIÓN

Página 205

1. b) La recta normal es $\left\{ \begin{array}{ll} x=1-2t & t\in\mathbb{R}\\ y=-2-4t \end{array} \right..$ La recta tangente es $\left\{ \begin{array}{ll} x=1+4t & t\in\mathbb{R}\\ y=-2-2t \end{array} \right..$

La interpretación gráfica queda para el lector.

3. b)
$$-2(x+1) + 4(y-2) + 2(z-1) = 0$$

4.
$$P_1(\frac{3\sqrt{2}}{5}, -\frac{\sqrt{2}}{10}, \frac{\sqrt{2}}{5})$$
 y $P_2(-\frac{3\sqrt{2}}{5}, \frac{\sqrt{2}}{10}, -\frac{\sqrt{2}}{5})$.

5.
$$\begin{cases} x = -1 + 5t \\ y = 1 + 8t \\ z = 2 + 6t \end{cases} \quad t \in \mathbb{R}$$

9. c) Todas las direcciones que forman con el gradiente $\nabla T(1,1,1)$ un ángulo $\theta \in$ $\left(\frac{\pi}{2},\frac{2}{3}\pi\right]$.

Página 207

2. a)
$$y' = -\frac{2x - y}{-x + 2y}$$
 si $-x + 2y \neq 0$.

4. b) Los puntos sobre la curva en los cuales la recta tangente es horizontal son $(0,0), (0,\frac{-1+\sqrt{21}}{2}) y (0,\frac{-1-\sqrt{21}}{2}).$

Los puntos sobre la curva en los cuales la recta tangente es vertical son $(\sqrt{\frac{175}{27}}, -\frac{5}{3})$ $y \left(-\sqrt{\frac{175}{27}}, -\frac{5}{3}\right).$

Capítulo 9

Página 213

1. El mínimo absoluto de f en el intervalo es -4 y se alcanza cuando x=2 y el máximo absoluto de f en el intervalo es 5 y se alcanza cuando x = 5.

Página 216

- 2. El rectángulo de área 9 con menor perímetro es el cuadrado de lado 3 unidades.
- $5. \left(\frac{6}{5}, -\frac{3}{5}\right)$
- 8. El rectángulo de mayor área tiene una base de $2\sqrt{\frac{8}{3}}$ y una altura de $\frac{16}{3}.$
- 10. $c = \frac{1}{2}$.

Página 221

- 3. a) (2,-1) es el único punto crítico y allí la función alcanza un mínimo local.
- 3. d) Los puntos críticos son (0,0) y $(\frac{1}{3},0)$. En (0,0) la función tiene un máximo local y en $(\frac{1}{3},0)$ tiene un punto silla.

Página 225

3. El máximo absoluto de f
 en la región vale 1 y se alcanza en los puntos (1,0)
y(-1,0) y el mínimo absoluto vale $-\frac{5}{27}$ y se alcanza en los puntos
 $(-\frac{1}{3},\frac{8}{9})$ y $(\frac{1}{3},-\frac{8}{9}).$

Página 231

2. a) Los puntos candidatos son: (2,2) y (-2,-2) con $\lambda = 1/2$ y (2,-2) y (-2,2) $con \lambda = -1/2$.

Luego se concluye que el máximo absoluto de la f sobre la curva es 4 y se alcanza en (2,2) y (-2,-2) y el mínimo absoluto es -4 y se alcanza en (2,-2) y (-2,2).

3. b) Los puntos críticos en el interior de la región son: (0,y) con $-\sqrt{3} < y < \sqrt{3}$. Los puntos candidatos del borde de la región son: $(0,\sqrt{3})$ y $(0,-\sqrt{3})$ con $\lambda=0$, $(\sqrt{2},1)$ y $(-\sqrt{2},1)$ con $\lambda=4$ y $(\sqrt{2},-1)$ y $(-\sqrt{2},-1)$ con $\lambda=-4$. Luego se concluye que el máximo absoluto de f sobre la región dada es g y se alcanza en $(\sqrt{2},1)$ y $(-\sqrt{2},1)$ y el mínimo absoluto es -g y se alcanza en $(\sqrt{2},-1)$ y $(-\sqrt{2},-1)$.

4. El punto de la esfera que cumple con lo pedido es (-3, -3, -3).