Инструментальные средства моделирования Модуль 1 Домашнее задание

Бобер С.А.

October 1, 2021

Введение

Материал, прочитанный на лекциях и примеры решения задач доступны в кратком содержании курса и в соответствующем классе Google Classroom.

Задание

Построить алгоритм численного решения и оптимизации предложенной в конкретном варианте задачи на языке Python (с использованием библиотек NumPy, SciPy, Matplotlib, Holoviews) и визуализировать результаты. Решение должно быть выполнено в Jupyter Notebook (Jupyter Lab, Google Colab).

Должны быть построены следующие рисунки:

• Рисунок 1. Сетка конечных элементов. Элементы отображаются треугольниками, узлы точками. Элементы и узлы должны быть отображены разными цветами. Отобразить номера граничных узлов.

Рис. 1. Сетка конечных элементов

- Рисунок 2. Контурная карта главных напряжений. Должны быть отображены:
 - начальная форма границы детали,
 - контурная карта поля главных напряжений в узлах,
 - координаты узлов должны учитывать перемещение (с учетом масштабного коэффициента), полученное в результате решения задачи,
 - цветовая шкала (colorbar), цвета и значения в которой соответствуют отображенному полю.
 - значения главных напряжений в тех узлах, где заданы граничные условия, а также в узлах с максимальным и минимальным значением главного напряжения.

Рис. 2. Контурная карта главных напряжений

- Рисунок 3. Интерактивный рисунок, демонстрирующий формоизменение детали (рекомендуется использовать модуль holoviews). Должны быть отображены:
 - цветовая карта главных напряжений,
 - элемент управления **scale**, позволяющий изменять масштаб формоизменения от 0 до значения, соответствующего максимальному перемещению в 5-10% характерного размера детали.

Рис. 3. Интерактивный рисунок

Типы деталей

На рисунке 3 приведены изображения 6 типов деталей A - F. Детали характеризуются размерами $L,\,H,\,W$ и радиусом R. На каждой детали указаны зоны границ, пронумерованные $1,\,2,\,3$.

Рис. 3. Типовые детали

Свойства материала

В качестве материала для деталей послужит конструкционная сталь различного качества. В таблице 1 указаны упругие свойства этих сталей, необходимые для расчетов.

E - модуль упругости (Юнга),

 σ_T - предел текучести при растяжении.

Табл. 1. Свойства материалов

No	$E, \Gamma\Pi a$	μ	σ_T , M Π a
1	200	0.27	300
2	210	0.29	600
3	220	0.31	900

Критерий оптимизации

В этом задании принимается следующий простейший критерий оптимизации - критерий выхода из зоны упругости: если первое главное напряжение превышает предел текучести σ_T .

Этапы решения

- Построение разбиения границы, генерации узлов и конечных элементов для указанного типа детали;
- Построение глобальной матрицы жесткости;
- Расчет граничных условий в указанных зонах (1-2) и внесение их в систему уравнений МКЭ;
- Решение задачи теории упругости при фиксированном параметре, и визуализация полученных при решении данных;

- Проверка корректности решения, исправление ошибок;
- Создание процедуры для оптимизации задачи по указанному в условии задачи параметру;
- Выполнение оптимизации и визуализация результатов.

Варианты заданий

Вариант 1

Рассчитать минимальную толщину t (см), при которой деталь A упруго деформируется равномерно распределенной по зоне границы 1 нагрузкой P=20 кг под углом 105° . Деталь изготовлена из стали \mathbb{N}^{1} , имеет размеры H,W,R=10,4,1 см, а зона границы 2 не перемещается.

Вариант 2

Равномерно распределенная нагрузка P=25 кг, приложенная к зоне 2 под углом -105°, деформирует деталь B с размерами $R,W,r=6,\ 1,\ 2$ см. Найти наименьшую толщину детали t (см), при которой не возникает пластической деформации, если зона 1 неподвижна, а деталь изготовлена из стали $\mathbb{N}2$.

Вариант 3

Рассчитать максимальное смещение U (см) детали C, которое она способна выдержать (до возникновения пластической деформации) при воздействии равномерно распределенного усилия P (кг) на зону границы 1 под углом -15°. Деталь имеет размеры R, H, W = 3, 10, 10 см, толщину - 8 (см), материал - \mathbb{N}^3 , а зона границы 2 закреплена.

Вариант 4

Деталь D с размерами R, H, W = 2, 9, 7 см и толщиной 5 см подвержена упругой деформации посредством приложенного к зоне 2 равномерно распределенного усилия P (кг), действующего под углом 75°. Зона 1 неподвижна. Определить наибольшее смещение детали U (см) при условии сохранения упругой деформации, если деталь изготовлена из стали №3.

Вариант 5

Рассчитать максимальную величину равномерно распределенного усилия P (H/cм²), приходящегося на зону границы 1 и действующего под углом -45°, которую деталь E из стали №1 способна выдержать (не допуская пластической деформации). Размеры детали - R,W = 7, 1 см, толщина - 4 см. Зона 2 закреплена.

Вариант 6

Зона 2 границы детали F закреплена, а зона 1 равномерно нагружена усилием P (H/cm^2) под углом 30° . Деталь задана следующими размерами: H,W,D=6,4,1 см и толщиной t=3 см. При условии сохранения упругости деформации определить наибольшую величину усилия P, если деталь изготовлена из стали N = 3.

Вариант 7

Рассчитать минимальную толщину t (см), при которой деталь A упруго деформируется равномерно распределенной по зоне границы 2 нагрузкой P=40 кг под углом 120° . Деталь изготовлена из стали \mathbb{N}^{2} , имеет размеры H,W,R=8,8,1 см, а зона границы 1 не перемещается.

Вариант 8

Равномерно распределенная нагрузка P=30 кг, приложенная к зоне 1 под углом 90° , деформирует деталь B с размерами $R,W,r=6,\ 3,\ 1$ см. Найти наименьшую толщину детали t (см), при которой не возникает пластической деформации, если зона 2 неподвижна, а деталь изготовлена из стали N1.

Вариант 9

Рассчитать максимальное смещение U (см) детали C, которое она способна выдержать (до возникновения пластической деформации) при воздействии равномерно распределенного усилия P (кг) на зону границы 2 под углом -120°. Деталь имеет размеры R, H, W = 1, 4, 7 см, толщину - 9 (см), материал - \mathbb{N}^2 , а зона границы 1 закреплена.

Вариант 10

Деталь D с размерами R, H, W = 1, 6, 5 см и толщиной 6 см подвержена упругой деформации посредством приложенного к зоне 1 равномерно распределенного усилия P (кг), действующего под углом 120° . Зона 2 неподвижна. Определить наибольшее смещение детали U (см) при условии сохранения упругой деформации, если деталь изготовлена из стали \mathbb{N}^3 .

Вариант 11

Рассчитать максимальную величину равномерно распределенного усилия P (H/cм²), приходящегося на зону границы 2 и действующего под углом -30°, которую деталь E из стали №2 способна выдержать (не допуская пластической деформации). Размеры детали - R,W = 5, 1 см, толщина - 2 см. Зона 1 закреплена.

Вариант 12

Зона 1 границы детали F закреплена, а зона 2 равномерно нагружена усилием P (H/cm^2) под углом -15°. Деталь задана следующими размерами: H, W, D = 8, 4, 2 см и толщиной t = 3 см. При условии сохранения упругости деформации определить наибольшую величину усилия P, если деталь изготовлена из стали N1.

Вариант 13

Рассчитать минимальную толщину t (см), при которой деталь A упруго деформируется равномерно распределенной по зоне границы 1 нагрузкой P=30 кг под углом 75° . Деталь изготовлена из стали M1, имеет размеры H,W,R=7,5,1 см, а зона границы 2 не перемещается.

Вариант 14

Равномерно распределенная нагрузка P=30 кг, приложенная к зоне 2 под углом -60°, деформирует деталь B с размерами $R,W,r=12,\ 5,\ 4$ см. Найти наименьшую толщину детали t (см), при которой не возникает пластической деформации, если зона 1 неподвижна, а деталь изготовлена из стали №2.

Вариант 15

Рассчитать максимальное смещение U (см) детали C, которое она способна выдержать (до возникновения пластической деформации) при воздействии равномерно распределенного усилия P (кг) на зону границы 1 под углом 105° . Деталь имеет размеры R, H, W = 2, 3, 10 см, толщину - 6 (см), материал - N3, а зона границы 2 закреплена.

Вариант 16

Деталь D с размерами R, H, W=1, 5, 5 см и толщиной 2 см подвержена упругой деформации посредством приложенного к зоне 2 равномерно распределенного усилия P (кг), действующего под углом 30°. Зона 1 неподвижна. Определить наибольшее смещение детали U (см) при условии сохранения упругой деформации, если деталь изготовлена из стали \mathbb{N}^3 .

Вариант 17

Рассчитать максимальную величину равномерно распределенного усилия P (H/см²), приходящегося на зону границы 1 и действующего под углом 75°, которую деталь E из стали №1 способна выдержать (не допуская пластической деформации). Размеры детали - R, W = 6, 2 см, толщина - 7 см. Зона 2 закреплена.

Вариант 18

Зона 2 границы детали F закреплена, а зона 1 равномерно нагружена усилием P (H/cm^2) под углом 75°. Деталь задана следующими размерами: H,W,D=6,4,1 см и толщиной t=3

см. При условии сохранения упругости деформации определить наибольшую величину усилия P, если деталь изготовлена из стали \mathbb{N}^1 .

Вариант 19

Рассчитать минимальную толщину t (см), при которой деталь A упруго деформируется равномерно распределенной по зоне границы 2 нагрузкой P=35 кг под углом -90°. Деталь изготовлена из стали №1, имеет размеры H, W, R=8, 3, 1 см, а зона границы 1 не перемещается.

Вариант 20

Равномерно распределенная нагрузка P=40 кг, приложенная к зоне 1 под углом -60°, деформирует деталь B с размерами R,W,r=7,1,3 см. Найти наименьшую толщину детали t (см), при которой не возникает пластической деформации, если зона 2 неподвижна, а деталь изготовлена из стали №1.

Вариант 21

Рассчитать максимальное смещение U (см) детали C, которое она способна выдержать (до возникновения пластической деформации) при воздействии равномерно распределенного усилия P (кг) на зону границы 2 под углом -105°. Деталь имеет размеры R, H, W = 2, 4, 10 см, толщину - 5 (см), материал - №3, а зона границы 1 закреплена.

Вариант 22

Деталь D с размерами R, H, W = 2, 7, 8 см и толщиной 5 см подвержена упругой деформации посредством приложенного к зоне 1 равномерно распределенного усилия P (кг), действующего под углом -75°. Зона 2 неподвижна. Определить наибольшее смещение детали U (см) при условии сохранения упругой деформации, если деталь изготовлена из стали №3.

Вариант 23

Рассчитать максимальную величину равномерно распределенного усилия P (H/см²), приходящегося на зону границы 2 и действующего под углом 105° , которую деталь E из стали №3 способна выдержать (не допуская пластической деформации). Размеры детали - R,W = 6,3 см, толщина - 7 см. Зона 1 закреплена.

Вариант 24

Зона 1 границы детали F закреплена, а зона 2 равномерно нагружена усилием P (H/cm^2) под углом -90°. Деталь задана следующими размерами: H, W, D = 6, 4, 2 см и толщиной t = 1 см. При условии сохранения упругости деформации определить наибольшую величину усилия P, если деталь изготовлена из стали \mathbb{N}_2 .

Вариант 25

Рассчитать минимальную толщину t (см), при которой деталь A упруго деформируется равномерно распределенной по зоне границы 1 нагрузкой P=40 кг под углом 30° . Деталь изготовлена из стали N1, имеет размеры H,W,R=16,4,2 см, а зона границы 2 не перемещается.

Вариант 26

Равномерно распределенная нагрузка P=35 кг, приложенная к зоне 2 под углом -90°, деформирует деталь B с размерами $R,W,r=8,\ 2,\ 1$ см. Найти наименьшую толщину детали t (см), при которой не возникает пластической деформации, если зона 1 неподвижна, а деталь изготовлена из стали №3.

Вариант 27

Рассчитать максимальное смещение U (см) детали C, которое она способна выдержать (до возникновения пластической деформации) при воздействии равномерно распределенного усилия P (кг) на зону границы 1 под углом 90° . Деталь имеет размеры R, H, W = 1, 2, 7 см, толщину - 5 (см), материал - N1, а зона границы 2 закреплена.

Вариант 28

Деталь D с размерами R, H, W=1, 5, 9 см и толщиной 7 см подвержена упругой деформации посредством приложенного к зоне 2 равномерно распределенного усилия P (кг), действующего под углом 120° . Зона 1 неподвижна. Определить наибольшее смещение детали U (см) при условии сохранения упругой деформации, если деталь изготовлена из стали N2.

Вариант 29

Рассчитать максимальную величину равномерно распределенного усилия P (H/cм²), приходящегося на зону границы 1 и действующего под углом 90°, которую деталь E из стали №3 способна выдержать (не допуская пластической деформации). Размеры детали - R, W = 5, 2 см, толщина - 3 см. Зона 2 закреплена.