Санкт-Петербургский государственный университет

Соколов Вадим

Методическое пособие

Уравнения математической физики. Основные краевые задачи

Содержание

Глава 1. 1	Внутренняя и внешняя задача Дирихле на коль-	
]	це/круге	3
1.1.	Уравнение Лапласа на кольце (однородный случай)	3
1.2.	Внутренняя и внешняя задача Дирихле на круге	53
1.3.	Общий алгоритм решения уравнения Лапласа на кольце.	6
1.4.	Уравнение Пуассона на кольце (неоднородный случай)	7
Глава 2. Внутренняя и внешняя задача Неймана на коль-		
1	це/круге	9
2.1.	Уравнение Лапласа на круге (однородный случай)	9
2.2.	Общий алгоритм для уравнения Лапласа на круге	11
2.3.	Уравнение Лапласа на кольце	11
Глава 3. Прочие краевые задачи		13
3.1.	Уравнение теплопроводности	13
3.2.	Волновое уравнение	15

Глава 1. Внутренняя и внешняя задача Дирихле на кольце/круге

1.1 Уравнение Лапласа на кольце (однородный случай)

Рассмотрим уравнение Лапласа на кольце вида $u_{xx}+u_{yy}=0$, где $(x,y)\in\Omega\subset\mathbb{R}^2$, с граничным условием вида $u|_{\partial\Omega}=\chi$.

Пусть в качестве области Ω выбрано кольцо, то есть она ограничена двумя окружностями: внутренней с радиусом R_1 и внешней с радиусом R_2 (обозначим границы как s_1 и s_2), а центр симметрии кольца находится в начале координат (рассматриваем самый простой случай, в ином случае алгоритм решения будет аналогичным).

Тогда граничное условие примет вид:

$$u|_{s_2} = \chi_2 \Leftrightarrow u|_{x^2 + y^2 = R_2^2} = \chi_2,$$

$$u|_{s_1} = \chi_1 \Leftrightarrow u|_{x^2 + y^2 = R_1^2} = \chi_1.$$

Перейдём в полярные координаты, совершив в общем виде следующую замену: $\begin{cases} x = x_0 + \rho cos\varphi, \\ y = y_0 + \rho sin\varphi, \end{cases}$

где $\rho = \sqrt{x^2 + y^2} \ge 0, \varphi \in [0, 2\pi), (x_0, y_0)$ — координаты центра симметрии кольца (в нашем случае точка 0).

Посчитаем производные u по новым переменным:

$$u_{\rho} = u_x x_{\rho} + u_y y_{\rho} = \cos\varphi u_x + \sin\varphi u_y,$$

 $u_{\rho\rho} = \cos\varphi(u_{xx}\cos\varphi + u_{xy}\sin\varphi) + \sin\varphi(u_{yx}\cos\varphi + u_{yy}\sin\varphi) = \cos^2\varphi u_{xx} + 2\cos\varphi\sin\varphi u_{xy} + \sin^2\varphi u_{yy},$

$$u_{\varphi} = u_x x_{\varphi} + u_y y_{\varphi} = -\rho \sin \varphi u_x + \rho \cos \varphi u_y,$$

 $u_{\varphi\varphi} = -\rho \sin\varphi(-\rho \sin\varphi u_{xx} + \rho \cos\varphi u_{xy}) + \rho \cos\varphi(-\rho \sin\varphi u_{yx} + \rho \cos\varphi u_{yy}) + u_x(-\rho \cos\varphi) + u_y(-\rho \sin\varphi) = \rho^2 \sin^2\varphi u_{xx} - 2\rho^2 \sin\varphi \cos\varphi u_{xy} + \rho^2 \cos^2\varphi u_{yy} - \rho \cos\varphi u_x - \rho \sin\varphi u_x.$

Отсюда получаем уравнение в полярных координатах:

$$\rho^2 u_{\rho\rho} + u_{\varphi\varphi} + \rho u_{\rho} = \rho^2 (u_{xx} + u_{yy}) = 0.$$

В новых координатах область Ω примет вид: $\Omega = \{(\rho, \varphi) | \rho \in [R_1, R_2], \varphi \in [0, 2\pi]\}$. При этом должно выполняться условие непрерывности по φ : $u(\rho, 0) = u(\rho, 2\pi)$. Граничные условия примут вид: $u(R_2, \varphi) = \tilde{\chi}_2(\varphi)$, $u(R_1, \varphi) = \tilde{\chi}_1(\varphi)$.

Теперь применим к уравнению в полярных координатах метод разделения переменных Фурье для того, чтобы найти базисные решения уравнения. Зная эти решения, можем получить решение любого уравнения с граничным условием χ в виде их линейной комбинации.

Рассмотрим $u(\rho,\varphi) = F(\rho)G(\varphi)$ и подставим выбранное u в исходное уравнение, получим: $\rho^2 F''(\rho)G(\varphi) + F(\rho)G''(\varphi) + \rho F'(\rho)G(\varphi) = 0$.

Отсюда следует пропорция: $\frac{\rho^2 F''(\rho) + \rho F'(\rho)}{F(\rho)} = -\frac{G''(\varphi)}{G(\varphi)} = \lambda, \text{ где } \lambda$ — новая вещественная переменная.

Тогда получим систему:

$$\begin{cases} \rho^2 F''(\rho) + \rho F'(\rho) - \lambda F(\rho) = 0, \\ G''(\varphi) + \lambda G(\varphi) = 0. \end{cases}$$

Pассмотрим 3 случая возможных знаков переменной λ :

1)
$$\lambda > 0$$
:

Можем сразу найти решение второго уравнения: $G(\varphi) = C_1 cos(\sqrt{\lambda}\varphi) + C_2 sin(\sqrt{\lambda}\varphi)$.

Теперь найдём решение первого уравнения, рассмотрим $F(\varphi)$ в виде степенной функции ρ^k . Тогда уравнение примет вид $\rho^2 k(k-1) \rho^{k-2} + \rho k \rho^{k-1} - \lambda \rho^k = 0$. Оно имеет решение, если $k(k-1) + k = \lambda$ или $k^2 = \lambda$. Таким образом, получили, что $F(\rho) = C_3 \rho^{\sqrt{\lambda}} + C_4 \rho^{-\sqrt{\lambda}}$.

В результате мы получили для данного случая 4 группы решений и: $\rho^{\sqrt{\lambda}}cos(\sqrt{\lambda}\varphi), \ \rho^{\sqrt{\lambda}}sin(\sqrt{\lambda}\varphi), \ \rho^{-\sqrt{\lambda}}cos(\sqrt{\lambda}\varphi), \ \rho^{-\sqrt{\lambda}}sin(\sqrt{\lambda}\varphi).$

Проверим получившиеся решения на непрерывность по φ : $\rho^{\sqrt{\lambda}} = \rho^{\sqrt{\lambda}} cos(\sqrt{\lambda}2\pi)$. Это будет выполняться, если $\sqrt{\lambda} = n$, где n — произвольное натуральное число. Таким образом, наши 4 группы решений приняли окончательный вид: $\rho^n cos(n\varphi)$, $\rho^n sin(n\varphi)$, $\rho^{-n} cos(n\varphi)$, $\rho^{-n} sin(n\varphi)$. То есть базисные решения, выведенные для этого случая, выглядят следующим образом: $\rho cos(\varphi)$, $\rho sin(\varphi)$, $\rho^{-1} cos(\varphi)$, $\rho^{-1} sin(\varphi)$, $\rho^2 cos(2\varphi)$, $\rho^2 sin(2\varphi)$, $\rho^{-2} cos(2\varphi)$, $\rho^{-2} sin(2\varphi)$ и так далее.

2)
$$\lambda = 0$$
:

Получаем решение второго уравнения: $G(\varphi) = C_1 \varphi + C_2$. Для решения первого уравнения сделаем замену: $s(\rho) = F'(\rho)$. Тогда уравнение примет вид $\rho s'(\rho) + s(\rho) = 0$, решение этого уравнения: $s = \frac{C_3}{\rho}$, отсюда $F'(\rho) = \frac{C_3}{\rho}$ или $F(\rho) = C_3 ln\rho + C_4$. Получили 4 решения исходного уравнения, но решения φ и $ln\rho\varphi$ не удовлетворяют условию непрерывности по φ . Таким образом, при рассмотрении данного случая получили два новых базисных решения ρ и $ln\rho$.

3)
$$\lambda < 0$$
:

Решением второго уравнения будет являться функция $G(\varphi) = C_1 e^{\sqrt{-\lambda}\varphi} + C_2 e^{-\sqrt{-\lambda}\varphi}$. Но тогда дальнейшее рассмотрение этого случая не имеет смысла, потому что условие непрерывности не выполнится.

В результате получили, что базисными решениями для уравнения Лапласа на кольце в полярных координатах будут функции ρ , $ln\rho$, $\rho cos(\varphi)$, $\rho sin(\varphi)$, $\rho^{-1}cos(\varphi)$, $\rho^{-1}sin(\varphi)$ и так далее.

1.2 Внутренняя и внешняя задача Дирихле на круге

Рассмотрим 2 частных случая для рассмотренной выше задачи: $R_1 \to 0$ и $R_2 \to \infty$. То есть в этих случаях мы решаем уравнение Лапласа внутри круга (внутренняя задача Дирихле) и снаружи него (внешняя задача Дирихле), а граничное условие задано на окружности.

В обоих случаях мы должны исключить из рассмотрения $ln\rho$, поскольку предел при стремлении ρ к нулю не существует, а при стремлении к бесконечности логарифм тоже будет стремиться к бесконечности.

В случае внутренней задачи нужно исключить все базисные решения

вида $\rho^{-n}cos(n\varphi)$ и $\rho^{-n}sin(n\varphi)$, поскольку при $\rho\to 0$ они стремятся к бесконечности (это будет противоречить желаемой непрерывности функции u).

В случае внешней задачи к бесконечности при $\rho \to \infty$ будут стремиться решения $\rho^n cos(n\varphi)$ и $\rho^n sin(n\varphi)$. Поскольку по условиям внешней задачи Дирихле функция u должна быть равна на бесконечности О $\left(\frac{1}{\|x\|^{n-2}}\right)$ (п — размерность пространства), а в условиях двумерной задачи это будет означать просто ограниченность функции u на бесконечности, то мы должны исключить данные решения из-за возникающего противоречия.

Подведём итог, базисные решения для внутренней задачи Дирихле будут выглядеть следующим образом: ρ , $\rho cos(\varphi)$, $\rho sin(\varphi)$, $\rho^2 cos(2\varphi)$, $\rho^2 sin(2\varphi)$ и так далее, а для внешней задачи Дирихле ρ , $\rho^{-1}cos(\varphi)$, $\rho^{-1}sin(\varphi)$, $\rho^{-2}cos(2\varphi)$, $\rho^{-2}sin(2\varphi)$, ...

1.3 Общий алгоритм решения уравнения Лапласа на кольце

По итогам приведённых размышлений получим следующий алгоритм решения произвольной задачи уравнения Лапласа на кольце (в том числе и частные случаи Дирихле на круге):

- 1. Исходная задача сформулирована в декартовых координатах, поэтому осуществляем переход в полярные координаты с помощью замены (возможен случай, когда кольцо будет сдвинуто относительно начала координат, отличие в алгоритме будет только в сделанной замене)
- 2. Исходя из вида функций на границе области Ω , выбираем базисные функции из получившегося ранее набора и представляем u в виде их линейной комбинации с неизвестными коэффициентами.
- 3. Рассмотрим эту линейную комбинацию на границе области, подставив в неё радиусы R_1 и R_2 , и сравним получившиеся результаты с функциями, заданными в условии, $\tilde{\chi}_1(\varphi)$ и $\tilde{\chi}_2(\varphi)$. Отсюда получим систему уравнений, из которой найдём все неизвестные коэффициенты. Таким образом, мы получили функцию u, которая является решением задачи в полярных координатах.

4. Поскольку исходная задача задана в декартовых координатах, то желательно также привести ответ к декартовым координатам, осуществив обратную замену.

Далее будет рассмотрен неоднородный случай, уравнение Пуассона $u_{xx}+u_{yy}=f$, тогда решение неоднородной задачи будет выглядеть как $u_{\text{неодн.}}=u_{\text{частн.}}+u_{\text{одн.}}$, где $u_{\text{частн.}}$ — частное решение неоднородной задачи. Тогда в этом случае к алгоритму также необходимо добавить поиск частного решения неоднородной задачи и приведение задачи к однородной.

1.4 Уравнение Пуассона на кольце (неоднородный случай)

Рассматриваем уравнение Пуассона $u_{xx}+u_{yy}=f$. Для решения задачи необходимо перейти в полярные координаты и найти решение в виде $u_{\text{неодн.}}=u_{\text{частн.}}+u_{\text{одн.}}$. При этом важно помнить, что в данном случае: $\rho^2 u_{\rho\rho}+u_{\varphi\varphi}+\rho u_{\rho}=\rho^2(u_{xx}+u_{yy})=\rho^2 \tilde{f}(\rho,\varphi)$. Функция $\tilde{f}(\rho,\varphi)$ в полярных координатах выглядит как $\sum_i F_i(\rho)G_i(\varphi)$. Пусть мы рассматриваем самый простой случай $\tilde{f}(\rho,\varphi)=F(\rho)G(\varphi)$.

Тогда применим следующий способ отыскания частного решения неоднородной задачи в полярных координатах, пусть $u_{\text{частн.}} = \omega(\rho)G(\varphi)$, где $\omega(\rho)$ — неизвестная функция, которую мы хотим найти. Если в правой части уравнения не одно слагаемое, а несколько, то мы рассматриваем $u_{\text{частн.}} = \sum_i \omega_i(\rho)G_i(\varphi)$ и вместо одного уравнения возникнет система из аналогичных уравнений для каждого слагаемого правой части, в которых неизвестными будут функции $\omega_i(\rho)$. Тогда при подстановке данной функции в уравнение получим $(G''(\varphi) = -k^2G(\varphi))$:

$$\rho^2\omega''(\rho)G(\varphi) + \rho\omega'(\rho)G(\varphi) - k^2\omega(\rho)G(\varphi) = \rho^2F(\rho)G(\varphi).$$

Отсюда:
$$\rho^2\omega''(\rho) + \rho\omega'(\rho) - k^2\omega(\rho) = \rho^2F(\rho).$$

Теперь для упрощения уравнения сделаем замену $\rho=e^t$, тогда после замены мы можем свернуть первые два слагаемые в одно как производную сложной функции: $\omega''_{tt}-k^2\omega=e^{2t}\tilde{F}(e^t)$.

Таким образом, мы можем решить это уравнение относительно t, c помощью обратной замены найти $\omega(\rho)$, а значит и частное решение $u_{\text{частн.}} =$

 $\omega(\rho)G(\varphi)$.

Теперь нам остаётся только осуществить в исходной задаче замену вида: $u_{\text{неодн.}} = u_{\text{частн.}} + u_{\text{одн.}}$, тогда должна получиться однородная система, которую мы можем решить с помощью алгоритма, предложенного выше. Таким образом, мы найдём решение соответствующей однородной задачи, а как следствие и решение исходной неоднородной, что и было нашей целью.

Глава 2. Внутренняя и внешняя задача Неймана на кольце/круге

2.1 Уравнение Лапласа на круге (однородный случай)

Рассмотрим внутреннюю и внешнюю задачу для уравнения Неймана на круге радиуса R. Эта задача отличается от задачи Дирихле тем, что на границе (окружности) задано значение не функции u, а её производной по внешней нормали n (то есть используется понятие производной по направлению). Таким образом, в декартовых координатах наша задача выглядит следующим образом:

$$\begin{aligned} u_{xx} + u_{yy} &= 0, \\ \frac{\partial u}{\partial n} \Big|_{x^2 + y^2 = R^2} &= \chi(x, y). \end{aligned}$$

Иллюстрация к рассматриваемой задаче:

внутренняя задача Неймана

внешняя задача Неймана

Перейдём в полярные координаты с помощью замены. Тогда мы можем получить, чему в новых координатах будет равна производная по внешней нормали. Единственное отличие между внутренней и внешней задачами будет в направлении вектора внешней нормали, поэтому рассмотрим внутреннюю задачу, в рамках которой $n=(n_x,n_y)=(cos\varphi,sin\varphi)$.

рим внутреннюю задачу, в рамках которой
$$n=(n_x,n_y)=(cos\varphi,sin\varphi).$$

$$\frac{\partial u}{\partial n}=\frac{\partial u}{\partial x}n_x+\frac{\partial u}{\partial y}n_y=\frac{\partial u}{\partial \rho}\frac{\partial \rho}{\partial x}n_x+\frac{\partial u}{\partial \varphi}\frac{\partial \varphi}{\partial x}n_x+\frac{\partial u}{\partial \rho}\frac{\partial \rho}{\partial y}n_y+\frac{\partial u}{\partial \varphi}\frac{\partial \varphi}{\partial y}n_y=\frac{\partial u}{\partial \rho}\frac{\partial \rho}{\partial x}n_x+\frac{\partial u}{\partial \rho}\frac{\partial \rho}{\partial y}n_y+\frac{\partial u}{\partial \varphi}\frac{\partial \varphi}{\partial y}n_y=\frac{\partial u}{\partial \rho}\frac{\partial \rho}{\partial x}n_x+\frac{\partial u}{\partial \rho}\frac{\partial \rho}{\partial x}n_x+\frac{\partial u}{\partial \rho}\frac{\partial \rho}{\partial y}n_y+\frac{\partial u}{\partial \varphi}\frac{\partial \varphi}{\partial y}n_y=\frac{\partial u}{\partial \rho}\frac{\partial \rho}{\partial x}n_x+\frac{\partial u}{\partial \rho}\frac{\partial \varphi}{\partial y}n_y+\frac{\partial u}{\partial \varphi}\frac{\partial \varphi}{\partial y}n_y=\frac{\partial u}{\partial \rho}\frac{\partial \rho}{\partial y}n_x+\frac{\partial u}{\partial \rho}\frac{\partial \varphi}{\partial y}n_y+\frac{\partial u}{\partial \varphi}\frac{\partial \varphi}{\partial y}n_y=\frac{\partial u}{\partial \rho}\frac{\partial \rho}{\partial y}n_x+\frac{\partial u}{\partial \rho}\frac{\partial \varphi}{\partial y}n_y+\frac{\partial u}{\partial \varphi}\frac{\partial \varphi}{\partial y}n_y=\frac{\partial u}{\partial \rho}\frac{\partial \varphi}{\partial y}n_x+\frac{\partial u}{\partial \rho}\frac{\partial \varphi}{\partial y}n_y+\frac{\partial u}{\partial \varphi}\frac{\partial u}{\partial y}n_y+\frac{\partial u}{\partial \varphi$$

$$\frac{\partial u}{\partial \rho}(cos^2\varphi+sin^2\varphi)+\frac{\partial u}{\partial \rho}(-\frac{1}{\rho}sin\varphi cos\varphi+\frac{1}{\rho}cos\varphi sin\varphi)=\frac{\partial u}{\partial \rho}.$$
 Для внешней задачи аналогично:
$$\frac{\partial u}{\partial n}=-\frac{\partial u}{\partial \rho}.$$

Таким образом, задача Неймана в полярных координатах будет сформулирована как:

$$\left.\frac{\rho^2 u_{\rho\rho}+u_{\varphi\varphi}+\rho u_{\rho}=0}{\frac{\partial u}{\partial\rho}\right|_{\rho=R}=\delta\tilde{\chi}(\varphi),\ \text{где }\delta=1\ \text{для внутренней задачи, }\delta=-1\ \text{для внешней.}$$

Решением этой задачи будет модифицированный ряд Фурье функции $\tilde{\chi}(\varphi)$:

$$u(\rho,\varphi) = \sum_{n=0}^{\infty} \left(\frac{\rho}{R}\right)^{\delta n} [a_n cos(n\varphi) + b_n sin(n\varphi)],$$

где
$$a_n = \frac{R}{\pi n} \int_0^{2\pi} \tilde{\chi}(\varphi) cos(n\varphi) d\varphi$$
, $b_n = \frac{R}{\pi n} \int_0^{2\pi} \tilde{\chi}(\varphi) sin(n\varphi) d\varphi$.

Поскольку $\left(\frac{\rho}{R}\right)^{\sigma} < 1$, то ряд будет сходиться. Проясним смысл модификации коэффициентов ряда Фурье, а именно возникновение множителя $\frac{R}{n}$. Если мы продифференцируем по ρ множитель, входящий в каждое слагаемое ряда, $\left(\frac{\rho}{R}\right)^{\delta n}$, то получим $\left(\frac{\delta n \rho^{\delta n-1}}{R^{\delta n}}\right)$. Но если мы домножим эту производную на $\frac{R}{n}$, то получим $\delta\left(\frac{\rho}{R}\right)^{\delta n-1}$, что в точке $\rho=R$ будет равно просто δ . То есть в итоге мы получили, что производная u по ρ на границе равна произведению δ и ряда Фурье функции $\tilde{\chi}(\varphi)$. Так мы убедились, что для данного ряда граничное условие выполняется.

Кроме того, из необходимого условия существования решения $\int_{\partial\Omega}\frac{\partial u}{\partial n}ds=0 \ (\text{следует из формулы Грина}) \ \text{следует, что в функцию } \tilde{\chi}(\varphi) \ \text{не должны входить константы, иначе мы не сможем найти решение.}$

Напомним базовую идею ряда Фурье. Функция $\tilde{\chi}(\varphi)$ состоит из линейной комбинации синусов и косинусов, а при расчёте коэффициентов используется интеграл произведения $\tilde{\chi}(\varphi)$ на косинус или синус. То есть нужно рассмотреть интеграл от произведения синусов, косинусов или синуса на косинус:

$$\int_0^{2\pi} \sin(i\varphi)\sin(j\varphi) = \frac{1}{2} \int_0^{2\pi} \cos((i-j)\varphi) - \cos((i+j)\varphi)d\varphi$$
$$\int_0^{2\pi} \sin(i\varphi)\cos(j\varphi) = \frac{1}{2} \int_0^{2\pi} \sin((i-j)\varphi) + \sin((i+j)\varphi)d\varphi$$
$$\int_0^{2\pi} \cos(i\varphi)\cos(j\varphi) = \frac{1}{2} \int_0^{2\pi} \cos((i-j)\varphi) + \cos((i+j)\varphi)d\varphi$$

Отсюда получим, что если i не равно j, то все эти интегралы будут равны нулю, а если i равно j, то интегралы от синуса в квадрате или косинуса в квадрате будут равны π . То есть в приведённом выше ряду большая часть коэффициентов будет равна нулю.

2.2 Общий алгоритм для уравнения Лапласа на круге

Итак, подведём итог и составим алгоритм решения внутренней или внешней задачи Неймана для уравнения Лапласа на круге.

- 1. Перевести поставленную задачу из декартовых координат в полярные.
- 2. Рассмотреть получившуюся функцию $\tilde{\chi}(\varphi)$. Если в ней присутствуют константы, то мы не сможем найти решение. Иначе исходя из вида функции, выделяем все ненулевые коэффициенты ряда Фурье и рассчитываем их.
- 3. Подставляем коэффициенты в ряд Фурье и получаем решение. Так как исходная задача сформулирована в декартовых координатах, то желательно провести обратную замену и получить ответ так же в декартовых координатах.

В случае если вместо уравнения Лапласа задано уравнение Пуассона, действуем так же, как и в случае Дирихле, то есть получаем частное решение и сдвигаем на него систему, получая и решая таким образом однородную систему. Единственным отличием будет необходимое условие, оно примет вид: $\int_{\Omega} f(x) dx + \int_{\partial \Omega} \frac{\partial u}{\partial n} ds = 0 \text{ (функция f — функция неоднородности)}.$

2.3 Уравнение Лапласа на кольце

Теперь рассмотрим ту же задачу на кольце, то есть в качестве границы принимаем две окружности радиусами R_1 и R_2 .

По сути в этом случае мы одновременно решаем внешнюю задачу Неймана для внутреннего круга и внутреннюю задачу Неймана для внешнего круга, то есть граничное условие в полярных координатах примет вид:

$$\frac{\partial u}{\partial \rho}\Big|_{\rho=R_1} = -\tilde{\chi}_1(\varphi),$$

$$\frac{\partial u}{\partial \rho}\Big|_{\rho=R_2} = \tilde{\chi}_2(\varphi).$$

Решением этой задачи так же, как и для задачи на круге, будет ряд. Но на этот раз ряд должен сочетать в себе как ряд Фурье функции $\tilde{\chi}_1(\varphi)$, так и ряд Фурье $\tilde{\chi}_2(\varphi)$ (его коэффициенты мы обозначим с волнами). Выберем в качестве решения следующий ряд (соображения аналогичны случаю круга, идея в том, чтобы при $\rho = R_1$ оставалась одна часть ряда, а при $\rho = R_2$ — другая):

$$u(\rho,\varphi) = \frac{a_0}{2} \left(\frac{R_2 - \rho}{R_2 - R_1}\right)^2 + \frac{\tilde{a}_0}{2} \left(\frac{\rho - R_1}{R_2 - R_1}\right)^2 + \sum_{n=1}^{\infty} \left(\frac{R_2 - \rho}{R_2 - R_1}\right)^{n+1} [a_n cos(n\varphi) + b_n sin(n\varphi)] + \sum_{n=1}^{\infty} \left(\frac{\rho - R_1}{R_2 - R_1}\right)^{n+1} [\tilde{a}_n cos(n\varphi) + \tilde{b}_n sin(n\varphi)],$$
где:

$$a_{0} = \frac{R_{2} - R_{1}}{2\pi} \int_{0}^{2\pi} \tilde{\chi}_{1}(\varphi) d\varphi, \ \tilde{a}_{0} = \frac{R_{2} - R_{1}}{2\pi} \int_{0}^{2\pi} \tilde{\chi}_{2}(\varphi) d\varphi,$$

$$a_{n} = \frac{R_{2} - R_{1}}{\pi(n+1)} \int_{0}^{2\pi} \tilde{\chi}_{1}(\varphi) \cos(n\varphi) d\varphi, \ \tilde{a}_{n} = \frac{R_{2} - R_{1}}{\pi(n+1)} \int_{0}^{2\pi} \tilde{\chi}_{2}(\varphi) \cos(n\varphi) d\varphi,$$

$$b_{n} = \frac{R_{2} - R_{1}}{\pi(n+1)} \int_{0}^{2\pi} \tilde{\chi}_{1}(\varphi) \sin(n\varphi) d\varphi, \ \tilde{b}_{n} = \frac{R_{2} - R_{1}}{\pi(n+1)} \int_{0}^{2\pi} \tilde{\chi}_{2}(\varphi) \sin(n\varphi) d\varphi.$$

Необходимое условие, которое необходимо проверить, в нашем случае будет выглядеть следующим образом: $R_1 \int_0^{2\pi} \chi_1(\varphi) d\varphi = R_2 \int_0^{2\pi} \chi_2(\varphi) d\varphi$

Глава 3. Прочие краевые задачи

3.1 Уравнение теплопроводности

Рассмотрим следующее уравнение, которое будем называть уравнением теплопроводности (мы рассматриваем одномерный случай, в общем виде x — это вектор, а вместо u_{xx} в уравнении стоит оператор Лапласа):

$$u_t = a^2 u_{xx} + f(x, t),$$

где u(x,t) — распределение температуры в стержне в момент времени t,a — некоторая положительная константа, а f(x,t) — неоднородность (функция тепловых источников). В этой задаче x — координата точки на стержне, то есть $x \in [0,l]$, где l — длина стержня. Кроме того, считаем, что рассматривается $t \geq 0$.

Для приведённого уравнения также задаются начальное и граничные условия. Начальное условие выглядит следующим образом: $u(x,0) = \varphi(x), x \in [0,l]$. А вот вид граничного условия зависит от рассматриваемой задачи: как и для уравнения Лапласа/Пуассона можем рассмотреть задачу Дирихле и задачу Неймана. В задаче Дирихле граничное условие выглядит как u(0,t) = u(l,t) = 0, а в задаче Неймана как $u_x(0,t) = u_x(l,t) = 0$. Приведём иллюстрацию для задачи Дирихле:

Применим метод разделения переменных Фурье к однородному уравнению. Пусть u(x,t)=F(x)G(t), тогда при подстановке в уравнение получим: $F(x)G'(t)=a^2F''(x)G(t)$. Отсюда получим пропорцию $\frac{G'(t)}{G(t)}=a^2\frac{F''(x)}{F(x)}=a^2\lambda$, где λ — новая переменная. Таким образом, получили систему:

$$\begin{cases} G'(t) = \lambda a^2 G(t), \\ F''(x) = \lambda F(x). \end{cases}$$

Решением первого уравнения будет функция $G(t) = e^{\lambda a^2 t}$. Тогда рассмотрим три случая возможного знака λ и решим второе уравнение:

- $1. \ \lambda = 0: F''(x) = 0,$ тогда базисные решения уравнения 1, x. Поскольку G(t) = 1, то базисные решения системы будут теми же.
- 2. $\lambda=n^2$ (n натуральное число): $F''=n^2F$ характеристическое уравнение равно $s^2=n^2$. Тогда базисные решения уравнения равны e^{nx} , e^{-nx} , а решения системы $e^{a^2n^2t}e^{nx}$, $e^{a^2n^2t}e^{-nx}$
- 3. $\lambda = -n^2$: $F'' = -n^2F$ характеристическое уравнение равно $s^2 = -n^2$, а значит $s = \pm ni$. Базисные решения уравнения равны cos(nx) и sin(nx), системы $e^{-a^2n^2t}cos(nx)$, $e^{-a^2n^2t}sin(nx)$.

Теперь проверим, какие из базисных решений системы соответствуют граничным условиям Дирихле/Неймана. Сначала рассмотрим условие u(0,t)=u(l,t)=0. Оно будет выполняться только для одного базисного решения из шести, а именно $e^{-a^2n^2t}sin(nx)$, при этом n должно быть равно $\frac{\pi k}{l}$, где k — натуральное число. Аналогичным образом получим, что решением задачи Неймана будет линейная комбинация функций 1 и $e^{-a^2n^2t}cos(nx)$.

Для того, чтобы выбрать из всего набора базисных решений нужные, необходимо вспомнить про начальное условие $u(x,0)=\varphi(x)$. Например, для задачи Дирихле $\varphi(x)=\sum_i c_i \sin(n_i x)$. Тогда нам нужно выбрать те базисные решения, в которых $n=n_i$.

Если же у нас есть функция неоднородности, то нам, как и раньше, необходимо найти частное решение неоднородной системы и сдвинуть систему на него. Пусть неоднородность f(x,t) имеет вид F(t)G(x). Тогда $u_{\text{частн.}} = \omega(t)G(x)$, где $\omega(t)$ — неизвестная функция, которую мы получим, подставив частное решение в уравнение. Полученное дифференциальное уравнение принимает вид $\omega'(t) = -k^2\omega(t) + F(t)$ ($G''(x) = -k^2G(x)$).

Итак, подведём итог и запишем алгоритм:

1. Если имеется неоднородность, то необходимо найти частное решение неоднородной системы, решив дифференциальное уравнение, и сдви-

нуть на него систему. В этом случае решение неоднородной системы равно сумме этого частного решения и решения однородной системы.

- 2. Записать линейную комбинацию базисных функций следующего вида: для задачи Дирихле $e^{-a^2n^2t}sin(nx)$, Неймана 1 и $e^{-a^2n^2t}cos(nx)$, где n берутся из вида функции $\varphi(x)$.
- 3. Получить ответ, найдя коэффициенты путём сравнения линейной комбинации в момент времени t=0 и функции $\varphi(x)$.

3.2 Волновое уравнение

Теперь рассмотрим другое уравнение, которое будем называть волновым уравнением (снова рассматриваем одномерный случай, то есть уравнение колебания струны):

$$u_{tt} = a^2 u_{xx} + f(x, t),$$

где u(x,t) — отклонение в каждой точки струны от положения равновесия в момент времени t, a — некоторая положительная константа, а f(x,t) — неоднородность (влияющая внешняя сила). В этой задаче x — координата точки струны, то есть $x \in [0,l]$, где l — длина струны. Кроме того, считаем, что рассматривается $t \geq 0$.

Граничные условия будут аналогичны приведённым в прошлой задаче: u(0,t)=u(l,t)=0 (задача Дирихле) или $u_x(0,t)=u_x(l,t)=0$ (задача Неймана). А вот начальных условий будет два: $u(x,0)=\varphi_0(x), u_t(x,0)=\varphi_1(x), x\in [0,l]$. В физическом смысле это означает следующее: мы можем создать колебание двумя способами — отведя струну на некоторое расстояние от положение равновесия и отпустив, либо резко по ней ударив и задав таким образом начальную скорость. При этом поскольку наша струна закреплена на концах, то $\varphi_0(x)$ и $\varphi_1(x)$ должны быть равны нулю на концах.

Применим метод разделения переменных Фурье к однородному уравнению. Пусть u(x,t)=F(x)G(t), тогда при подстановке в уравнение получим: $F(x)G''(t)=a^2F''(x)G(t)$. Отсюда получим пропорцию $\frac{G''(t)}{G(t)}=a^2\frac{F''(x)}{F(x)}=a^2\lambda$, где λ — новая переменная. Таким образом, получили си-

стему:

$$\begin{cases} G''(t) = \lambda a^2 G(t), \\ F''(x) = \lambda F(x). \end{cases}$$

Pассмотрим три случая возможного знака λ и решим эти уравнения:

- $1. \ \lambda = 0: F''(x) = 0, G''(x) = 0,$ тогда базисные решения первого уравнения 1, x, а второго -1, t.
- 2. $\lambda = n^2 \ (n \text{натуральное число})$: $F'' = n^2 F \text{характеристиче-}$ ское уравнение равно $s^2 = n^2$. Тогда базисные решения первого уравнения равны e^{nx} , e^{-nx} , а второго уравнения: e^{nat} , e^{-nat}
- 3. $\lambda = -n^2$: $F'' = -n^2F$ характеристическое уравнение равно $s^2 = -n^2$, а значит $s = \pm ni$. Базисные решения первого уравнения равны cos(nx) и sin(nx), второго cos(nat) и sin(nat).

Таким образом, нам нужно проверить, какие из 12 базисных решений системы соответствуют граничным условиям Дирихле/Неймана. Сначала рассмотрим условие u(0,t)=u(l,t)=0. Оно будет выполняться для двух базисных решений, которые примут вид cos(ant)sin(nx) и sin(ant)sin(nx) ($n=\frac{\pi k}{l}$). Аналогичным образом получим, что решением задачи Неймана будет линейная комбинация функций 1,t,cos(ant)cos(nx) и sin(ant)cos(nx).

Таким образом, за исключением вида базисных функций, мы получили алгоритм, практически идентичный алгоритму для уравнения теплопроводности. Отличия будут заключаться лишь в двух вещах, возникающих от появления второго начального условия:

- 1) Мы берём n из вида не только $\varphi_0(x)$, но и $\varphi_1(x)$.
- 2) Получив линейную комбинацию, мы должны сравнить в начальный момент времени не только её саму с $\varphi_0(x)$, но и так же производную по t с $\varphi_1(x)$. То есть коэффициенты линейной комбинации мы получаем не из уравнения, а из системы двух уравнений.