

SVD Summary

Distributed Computing School of Data Science University of Virginia

Last updated: October 2, 2025

Matrix Factorization

SVD factors an $m \times n$ rectangular matrix into three matrices w special structure:

$$A = U\Sigma V^T$$

Matrix Factorization

SVD factors an *m x n* rectangular matrix into three matrices w special structure:

$$A = U\Sigma V^T$$

U is an orthonormal $m \times m$ matrix; its columns are called *left singular vectors* Σ is a rectangular $m \times n$ diagonal matrix. It has nonnegative values in descending order V is an orthonormal $n \times n$ matrix; its columns are called *right singular vectors*

Diagonal elements of \sum called *singular values*

3

Dimension Reduction

Select top *k* singular values and associated singular vectors

This yields matrix approximation:

$$\hat{A} = \hat{U} \hat{\Sigma} \hat{V}^T$$

Dimension Reduction

Select top *k* singular values and associated singular vectors

This yields matrix approximation:

$$\hat{A} = \hat{U}\hat{\Sigma}\hat{V}^T$$

 \hat{U} has dimensions m x k $\hat{\Sigma}$ has dimensions k x k \hat{V}^T has dimensions k x n

These matrices can be substantially smaller Only need to store diagonal elements of $\hat{\Sigma}$

SVD in Spark

Dataset stored as RowMatrix, which is distributed across partitions

Large computations (matrix-matrix, matrix-vector products across all data) are distributed

Small computations (eigenvalue, singular value) done on driver

SVD in Spark: Special Cases

Calculation breaks into special cases and general case.

- > **Special Cases**: n is small (n < 100) or k is large compared with n (k > n/2)
 - 1. Compute Gramian in distributed manner

$$G = A^{\top}A \in \mathbb{R}^{n \times n}$$

- Feasible since *n* relatively small
- Each partition of A contributes to local $A_i^ op A_i$
- The dense Gramian is stored on **driver** (since it's small)

SVD in Spark: Special Cases

Step 2 done on driver

- 2. Decompose Gramian: $G = V \Lambda V^{ op}$
 - V = eigenvectors of G,
 - $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ are eigenvalues.

Then
$$\Sigma = \operatorname{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n})$$

Note diagonal elements of Σ are singular values σ_i

SVD in Spark: Special Cases

Step 3 done on workers

3. Compute left singular vectors
$$\;u_i=rac{1}{\sigma_i}Av_i\;$$

Now we have all of the factors to reconstruct the matrix

SVD in Spark: General Case

Gramian won't fit in driver memory, so earlier strategy won't work

Instead, at a high level, start with relationship $A^ op A v = \sigma^2 v$

SVD in Spark: General Case

Gramian won't fit in driver memory, so earlier strategy won't work

Instead, at a high level, start with relationship $A^ op A v = \sigma^2 v$

Then compute $(A^TA)v$ in a distributed way

Builds a Krylov subspace by repeatedly multiplying the matrix by a vector:

$$\mathcal{K}_k(A,v) = \operatorname{span}\{v,Av,A^2v,\ldots,A^{k-1}v\}$$

Project onto subspace for small tridiagonal matrix *T*

SVD in Spark: General Case

Send *T* to ARPACK to compute top eigenvalues, eigenvectors on driver

ARPACK:

- > FORTRAN software library for solving large-scale eigenvalue problems
- > Highly optimized for sparse and large matrices

```
! svd_example.f90
!
! A modern Fortran example demonstrating how to use the LAPACK routine
! DGESVD to compute the Singular Value Decomposition (SVD) of a matrix.
!
! Link with a LAPACK and BLAS implementation:
! e.g., gfortran svd_example.f90 -llapack -lblas

program svd_solver
  implicit none

! Dimensions of the matrix A
  integer, parameter :: m = 4, n = 3

! Input matrix A and workspace for DGESVD.
! DGESVD will overwrite A with intermediate values.
  real(kind=8), dimension(m, n) :: a

! Singular values stored in s.
  real(kind=8), dimension(min(m, n)) :: s
```