Akademia Nauk Stosowanych Wydział Nauk Inżynieryjnych Kierunek: Informatyka studia I stopnia, semestr 2

Systemy operacyjne

WYKŁAD 3

dr inż. Stanisława Plichta splichta@ans-ns.edu.pl

autor: dr inż. Stanisława Plichta

Sprzętowa ochrona pamięci

- Ochrona całego SO przed wpływami programów użytkownika.
- Wzajemna ochrona programów użytkowników.
 - programy użytkowników ładowane są do przeznaczonych dla nich obszarów pamięci,
 - ochrona przestrzeni adresowej (rejestr bazowy i graniczny),
 - rejestr bazowy i graniczny może modyfikować tylko system operacyjny,
 - wygenerowanie adresu programu pracującego w trybie użytkownika, poza własną przestrzenią adresową kończy się pułapką obsługiwaną przez SO.

Zbiór rozkazów uprzywilejowanych

- Sprzęt pozwala na wykonywanie rozkazów uprzywilejowanych tylko w trybie nadzorcy.
- Próba wykonania rozkazu uprzywilejowanego w trybie użytkownika zakończy się pułapką obsługiwaną przez SO.
- Zmiana trybu pracy procesora jest instrukcją uprzywilejowaną.
- Cały mechanizm przerwań pozostaje w gestii systemu blokowanie i odblokowywanie przerwań to instrukcje uprzywilejowane.

Zegar czasu rzeczywistego

 Zegar sprzętowy, który wysyła przerwania w ustalonych odstępach czasu rzeczywistego.

 Jest podstawą realizacji polityki planowania przydziału i rozliczania zasobów, wykorzystanych przez różnych użytkowników.

Pamięć operacyjna (main memory)

- Obszar bezpośrednio dostępny dla procesora
- Rozkazy: load, store (PAO ⇔rejestr procesora)
- Cykl rozkazowy:
 - pobranie rozkazu z PAO do rejestru rozkazów,
 - dekodowanie,
 - realizacja (ew. pobranie argumentów z PAO)

Program i dane nie mogą być na stałe w PAO

- za mała
- ulotna

Pamięć dyskowa

- Rozszerzenie PAO,
- Trwałe przechowywanie dużej ilości danych,
- Źródło i miejsce przeznaczenia informacji,
- Sprowadzanie danych do PAO (op. we/wy)
 - rejestry sterowników PAO
 - we/wy odwzorowane w pamięci (memory mapped I/O)

wydzielenie adresów PAO na rejestry urządzeń (ekran, porty szeregowe i równoległe)

Wysyłanie ciągu bajtów przez port szeregowy

- 1. Programowane we/wy (programmed I/O)
 - Procesor wpisuje 1 bajt do rejestru danych.
 - Procesor ustawia bit w rejestrze kontrolnym.
 - Urządzenie pobiera bajt danych.
 - Urządzenie zeruje bit w rejestrze kontrolnym.
- 2. Przesyłanie sterowane przerwaniami (interrupt driven)

REJESTRY - wbudowane w JC (1 cykl zegara)

dostęp do PAO - za pośrednictwem szyny pamięci wiele cykli; utykanie procesora (*stall*)

SZYBKA PAMIĘĆ PODRĘCZNA (cache)

JC->cache->PAO

Pamięć podręczna

- przechowuje informacje przejściowo
- 80-99% dostępów
- polityka zastępowania informacji
- problem zgodności pamięci podręcznej:
 - te same dane na różnych poziomach hierarchicznej struktury pamięci
 - A⁺⁺ (liczba A w pliku B na dysku)
 - kopiowanie bloku z liczbą A do PAO
 - kopiowanie do pamięci podręcznej
 - kopiowanie do rejestru wewnętrznego
 - inkrementacja w rejestrze......

problem w środowisku wieloprocesorowym

Hierarchia pamięci

REJESTRY

PAMIĘĆ PODRĘCZNA

PAMIĘĆ OPERACYJNA

DYSK ELEKTRONICZNY

DYSK MAGNETYCZNY

DYSK OPTYCZNY

TAŚMY MAGNETYCZNE

Pamięć pomocnicza

- SO dostarcza jednolitego logicznie obrazu przechowywania informacji w oderwaniu od cech fizycznych urządzeń.
- PLIK logiczna jednostka informacji.
- System plikowy:
 - Zbiór plików
 - Struktura katalogów

Zadania systemu plików

- Pozwala tworzyć i usuwać pliki.
- Umożliwia dostęp do plików w celu czytania i pisania.
- Zarządza automatycznie przestrzenią pamięci pomocniczej.
- Umożliwia odwoływanie się do plików za pomocą nazw symbolicznych.
- Chroni pliki przed skutkami uszkodzenia systemu.
- Pozwala by współpracujący użytkownicy mogli korzystać z tych samych plików, ale też chronić pliki przed dostępem do nich nieuprawnionych użytkowników.

Atrybuty pliku

Pliki oprócz nazwy mają także pewne inne atrybuty, różne w poszczególnych SO. Na ogół są wśród nich następujące atrybuty:

- Nazwa
- Typ
- Położenie
- Rozmiar
- Ochrona
- Czas, data i identyfikator użytkownika

System plikowy

- Każdy plik jest zbiorem danych, które użytkownik traktuje jako pewną całość.
- Plik jest jednostką logiczną, na której system plików wykonuje pewne operacje.

Operacje, które można wykonać na plikach:

- Tworzenie pliku
- Zapisywanie pliku
- Czytanie pliku
- Zmiana pozycji w pliku
- Usuwanie pliku
- Skracanie pliku

System plikowy

W systemach Unixowych zwykle występują dwa poziomy tablic wewnętrznych

- Procesowa tablica wszystkich plików otwartych w procesie zawiera informacje o sposobie korzystania z plików przez proces.
 - bieżący wskaźnik do każdego pliku
 - wskaźnik do ogólnosystemowej tablicy plików otwartych
- Ogólnosystemowa tablica plików zawiera informacje niezależne od procesów takie jak:
 - Położenie pliku na dysku
 - Daty dostępu
 - Rozmiar pliku

System plikowy

Z każdym otwartym plikiem jest związany:

- Wskaźnik plikowy.
- Licznik otwarć pliku.
- Położenie pliku na dysku.

Prawa dostępu

W Linuxie występują następujące typy plików:

```
f – plik zwykły d – katalog
```

```
p – łącze nazwane FIFO
b – plik specjalny blokowy
```

- c plik specjalny znakowy I link symboliczny
- **s** gniazdo (semafor)
- Każdy plik i katalog posiada zestaw praw dostępu określających, kto ma dostęp do pliku i jakie ma prawa. Istnieją trzy kategorie użytkowników:
 - właściciel pliku,
 - grupa do której należy właściciel,
 - pozostali użytkownicy systemu.

Prawa dostępu

Prawa do pliku

- r prawo czytania umożliwia oglądanie zawartości pliku, oznacza jednocześnie prawo do kopiowania,
- w prawo pisania oznacza zezwolenie na modyfikację zawartości pliku,
- **x** prawo do uruchomienia pliku wykonywalnego.

Prawa do katalogu

- r prawo czytania umożliwia przeszukiwanie zawartości katalogu, jest interpretowane jako prawo wypisywania jego zawartości,
- w prawo pisania daje możliwość modyfikowania zawartości katalogu, umożliwia dodawanie nowych oraz usuwanie dotychczasowych plików z katalogu,
- x prawo wykonywania w stosunku do katalogu pozwala na dostęp do plików zapisanych w nim oraz na wejście do danego katalogu uczynienie go katalogiem bieżącym.

Prawa dostępu

chmod numeryczny_kod_uprawnien nazwa pliku

Prawo		binarnie	dziesiętnie
czytania	r	100	4
pisania	- w -	010	2
wykonywania	X	0 0 1	1

Punkty przysługujące poszczególnym kategoriom użytkowników należy złożyć razem

Prawa dostępu w postaci rw-r--r-- interpretujemy następująco:

prawo dostępu właściciela	rw -	4+2+0=6	
prawa dostępu grupy	r	4+0+0=4	644
prawa dostępu innych	r	4+0+0=4	

Metody dostępu

- Dostęp sekwencyjny.
- Dostęp bezpośredni.
- Dostęp indeksowy.