Binary Search Tree

น.ส.สุขหทัย เรื่องรัมย์ 65011119

1. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
0. BST tree;
1. tree.insert('H');
2. tree.insert('A');
3. tree.insert('R');
4. tree.insert('H');
5. tree.insert('U');
6. tree.insert('I');
```

H

1.

2.

3.

A

A R

5.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	HAKHIU
หาก travers tree ดังกล่าว แบบ <mark>In-order</mark> จะได้ output เป็น	. A H H I R U
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น	AIHURH

2. ต่อจากข้อ 1 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
7.delete_node(&(tree.root->left));// A
8.delete_node(&(tree.root->right));
9.delete_node(&(tree.root->right));
```

7.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น H H I
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น 🔝 👢 🖁 🖁 👢

3. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
0.
      BST tree2;
      tree2.insert('G');
1.
      tree2.insert('0');
2.
      tree2.insert('I');
3.
4.
      tree2.insert('N');
      tree2.insert('G');
5.
6.
      tree2.insert('M');
7.
      tree2.insert('E');
      tree2.insert('R');
8.
      tree2.insert('T');
9.
      tree2.insert('Y');
10.
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น

1

6.

7.

4.

9

10.

4. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
11. delete_node(&(tree2.root->right->left));
12. delete_node(&((tree2.root->right->left)->right));
13. delete_node(&((tree2.root->right->right)->right));
14. delete_node(&((tree2.root->right->right)->right));
```

11.

14

5. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree3;
1.
2.
      tree3.insert('A');
      tree3.insert('B');
3.
                                   ABCPEFO
      tree3.insert('C');
4.
      tree3.insert('D');
5.
      tree3.insert('E');
6.
                                    OPQRSTU
     tree3.insert('F');
7.
                                    VWXYZ
      tree3.insert('G');
8.
      tree3.insert('H');
9.
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น ABC DE FGH
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น ABC DE FGH
หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น HGFEDCBA

2. A

6. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

7.	BST ที่ balance กับ BST ที่ไม่ balance แบบใหนมีลำดับชั้นที่มากกว่ากัน หากจำนวนสมาชิกเท่ากัน เนื่องจากอะไร (ขอสั้นๆ) ไม่ balance จะมีลำดับชั้นที่เยอะกว่า เพราะ ถ้า balance จะ ซ้ายบวา เท่ากัน	
8.	BST ที่ balance กับ BST ที่ไม่ balance หากต้องการ search แบบใหน ให้เวลาในการค้นหาน้อยกว่ากัน อย่างไร (ขอสั้นๆ)	
	balance เพราะ การ balance ได้มีการเรียวข้อมูลมาแล้ว นาโด้ เริ่ว มากๆ	
9.	Tree ที่ balance กับ tree ที่ไม่ balance แบบใดโดยทั่วไปจะมีประสิทธิภาพดีกว่ากัน (ขอ1 คำ) balance จักว่า เพราะ ผินระเบียบ ซ้าย ฉ้อย ขวาม ก	
10.	ดังนั้นการคิด algorithm และ data structure เราควรพยายามให้ tree อยู่ในรูปของ balance หรือ unbalance เนื่องจากอะไร (ขอยาวๆ) balance เพราะ อิ่ว balance อิ่ว ดี ลีกว่า linklist จัดเก็บข้อมูลเป็นสะเขียง	
	และ นาข้อมูลได้รวดเร็ว มากๆ สะดอกต่อการใช้วาณ	