概率论与数理统计练习题(9)

点估计、评价估计量的标准

	姓名	学号	
1. 填空题			
(1) 设总体 X 在[a	,1]上服从均匀分布	, a 为未知参数, X_1	$,X_{2},\cdots,X_{n}$ 为总体 X 的一个
样本,则 a 的最大似	然估计量为	·	
$(2) \overset{\wedge}{\boxtimes} \overset{\wedge}{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (1)^{n}$	$(X_i - \overline{X})^2$,其中 $(X_i - \overline{X})^2$	$,X_{_{2}},\cdots,X_{_{n}}$ 为来自总	总体 $X \sim N(\mu, \sigma^2)$ 的样本,则
有 $E(\hat{\sigma}^2) = \underline{\hspace{1cm}}$	·		
2. 选择题			
(1) 设总体 X 的分	布密度为 $\varphi(x,\alpha)$ =	$\begin{cases} (\alpha+1)x^{\alpha}, 0 < x < 1 \\ 0, & \text{ 其他} \end{cases}$	1 ,其中α>-1为未知参数,
X_1, X_2, \cdots, X_n 为总	体 X 的一个样本,	记 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$,则	$ullet$ 多数 $oldsymbol{lpha}$ 的矩估计为().
(A) \overline{X} ;	(B) $2\overline{X}$;	(C) $\frac{2\overline{X}-1}{1-\overline{X}}$;	(D) $\frac{1}{\overline{X}}$.
(2) 设 $\hat{\theta} = \hat{\theta}(X_1, X_2)$	(X_2, \cdots, X_n) 是参数(θ 的最大似然估计,则	则下列结论正确的是().
$(\mathbf{A})\stackrel{\hat{oldsymbol{ heta}}}{oldsymbol{ heta}}$ 必定是似 $(\mathbf{A})\stackrel{\hat{oldsymbol{ heta}}}{oldsymbol{ heta}}$	然方程的解;	$(B)\stackrel{\wedge}{ heta}$ 是唯一	的;
$(\mathbf{C})\stackrel{\hat{oldsymbol{lpha}}}{\hat{oldsymbol{ heta}}}$ 存在时不-	一定唯一;	(D) A 和 B 同	时成立.
(3) 设总体 X ~ N($(\mu,\sigma^2), X_1, X_2, \cdots$	$\cdot, X_n (n > 1)$ 为来自	X 的一个样本,若
$\hat{\sigma}^2 = c \sum_{i=1}^{n-1} (X_{i+1} - X_i)$	$ ho^2$ 是 σ^2 的一个无偏	估计量,则 $c=$ ().
(A) $\frac{1}{n}$;	(B) $\frac{1}{n-1}$;	(C) $\frac{1}{2(n-1)}$;	(D) $\frac{1}{2n}$.

3. 计算题

(1) 设总体 X 具有分布律

X	1	2	3
P	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 θ (0< θ <1) 为未知参数. 己知取得了样本 x_1 = 1, x_2 = 2, x_3 = 1. 试求 θ 的矩估计值.

(2) 设某种元件的使用寿命 X 的概率密度为 $f(x,\theta) = \begin{cases} 2e^{-2(x-\theta)}, x > \theta, \\ 0, x \leq \theta, \end{cases}$ 其中 $\theta > 0$ 为未知

参数. 又 x_1, x_2, \cdots, x_n 是 X 的一组样本观测值,求参数 θ 的最大似然估计值.

(3) 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, X_3 为总体的一个样本, 试证明:

$$\begin{split} & \stackrel{\smallfrown}{\mu_{\rm I}} = \frac{1}{5} \, X_{\rm I} + \frac{3}{10} \, X_{\rm 2} + \frac{1}{2} \, X_{\rm 3} \, , \, \stackrel{\smallfrown}{\mu_{\rm 2}} = \frac{1}{3} \, X_{\rm I} + \frac{1}{4} \, X_{\rm 2} + \frac{5}{12} \, X_{\rm 3} \, , \, \stackrel{\smallfrown}{\mu_{\rm 3}} = \frac{1}{3} \, X_{\rm I} + \frac{1}{6} \, X_{\rm 2} + \frac{1}{2} \, X_{\rm 3} \, \, \text{都是} \, \mu \, \, \text{的} \\ & \mathcal{E}偏估计量,并分析哪一个最好. \end{split}$$

(4)证明在样本的一切线性组合中, $\overline{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$ 是总体期望值 μ 的无偏估计中有效的估计量.

概率论与数理统计练习题(9)详细解答

1. 填空题

(1)

(2)

$$\hat{\sigma}^2 = \frac{m}{n}S^2$$
 $E(S^2) = \sigma^2$ $H(\hat{\sigma}^2) = \frac{m}{n}H(S^2) = \frac{m}{n}\sigma^2$.

2. 选择题

(1)

$$EX = \int_0^1 x \cdot (\alpha + 1) \, \chi^{\alpha} dx = \frac{\alpha + 1}{\alpha + 2} = \overline{x} \Rightarrow \alpha = \frac{2\overline{x} - 1}{|\overline{x}|} \, \text{ for } C$$

(2)

A 有反例:
$$X \sim U(a,b)$$
 中 a , b in that A in A

(3)

日(
$$\hat{\sigma}^2$$
) = σ^2 可復 日($\hat{\sigma}^2$) = c [E(\hat{x}_{H}^2) - $2E\hat{x}_{H}$ ·E \hat{x}_{H} : + $E\hat{x}_{H}$: + $E\hat{x}_{H}$: $E\hat$

3. 计算题

(1) 解:

(2) 解:

(3) 解:

$$E\hat{M}_1 = \frac{1}{5}EX_1 + \frac{3}{16}EX_2 + \frac{1}{2}EX_3 = (\frac{1}{5} + \frac{3}{6} + \frac{1}{2})U = U$$
同程可得 $E\hat{M}_2 = U$. $E\hat{M}_3 = U$. $E\hat{M}_3 = U$. $E\hat{M}_3 = U$. $E\hat{M}_3 = U$. $E\hat{M}_4 = U$. $E\hat{M}_3 = U$. $E\hat{M}_4 = U$. $E\hat{M}_3 = U$. $E\hat{M}_4 = U$. $E\hat{M}_4 = U$. $E\hat{M}_5 = U$

(4) **解**:易证当且仅当 $\sum_{i=1}^n k_i = 1$ 时, $\hat{\mu} = \sum_{i=1}^n k_i X_i$ 是总体均值 μ 的无偏估计.由于

$$D\hat{\mu} = D(\sum_{i=1}^{n} k_i X_i) = \sigma^2 \sum_{i=1}^{n} k_i^2$$
,

故要证 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ 是总体均值 μ 的线性无偏估计中最有效的估计量,即要证 n 元函数

$$\sum_{i=1}^n k_i^2$$
 在条件 $\sum_{i=1}^n k_i = 1$ 下的条件最小值点为 $k_1 = k_2 = \cdots = k_n = \frac{1}{n}$.

引入拉格朗日函数

$$L(k_1, k_2, \dots, k_n) = (k_1^2 + k_2^2 + \dots + k_n^2) - \lambda(k_1 + k_2 + \dots + k_n - 1)$$
,

$$\begin{cases} \frac{\partial L}{\partial k_1} = 2k_1 - \lambda = 0; \\ \frac{\partial L}{\partial k_2} = 2k_2 - \lambda = 0; \\ \dots \vdots \\ \frac{\partial L}{\partial k_n} = 2k_n - \lambda = 0. \end{cases}$$

解之并利用
$$\sum_{i=1}^n k_i = 1$$
,得 $k_1 = k_2 = k_3 = \cdots = k_n = \frac{1}{n}$.所以当 $k_1 = k_2 = k_3 = \cdots = k_n = \frac{1}{n}$ 时,

 $D\hat{\mu}$ 取得条件最小值,即 μ 的最有效的线性无偏估计为 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$.