浙江大学控制学院

方程

$$f(x) = ax^2 + bx + c = 0 \Longrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

代数方程求根问题是一古老的数学问题,十六世纪人们找到了求三次、四次方程根的公式,十九世纪证明了大于等于五次的代数方程没有一般的求根公式。

$$ax^{5} + bx^{4} + cx^{3} + dx^{2} + ex + f = 0 \implies x = ?$$

$$\sin x + x = 0 \implies x = ?$$

● 例1——问题:

- 求解降落伞的阻力系数c,其中降落伞的质量为 m=68.1kg,要求降落伞自由落体运动t=10s后速 率到40m/s。
- 解: 求解下列方程的根

$$v(t) = \frac{gm}{c} (1 - e^{-(c/m)t}) = 40$$

$$f(c) = \frac{9.8(68.1)}{c} \left(1 - e^{-(c/68.1)10} \right) - 40 = 0$$

非线性方程求根——图解法

С	f(c)
4	34.115
8	17.653
12	6.067
16	-2.269
20	-8.401

- 根的初步估计值为14.75
- 检验: f(14.75) = 0.059 v = 40.059

图解法不精确,但可以提供初始猜测值,理解函数性质和预测数值方法缺陷。

- 二分法
- 试位法
- 不动点迭代
- Newton-Raphson方法
- ●割线法

划界法 Bracketing Methods

开方法 Open Methods

• 设有一非线性方程

$$f(x) = 0$$

- 其中, f(x)为实变量x的非线性函数。
- 定义:
 - 如果有x*使f(x*)=0,则称x*为方程f(x)=0的根,或称为函数f(x)的零点。
 - 当f(x)为多项式时,即方程为 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0$ $(a_n \neq 0)$ 称f(x) = 0为n次代数方程。当f(x)包含指数函数或三角函数等特殊函数时,称f(x) = 0为超越方程。
 - 如果f(x)可分为 $f(x) = (x x^*)^m g(x)$ 其中, $g(x^*) \neq 0$,m为正整数,则称 x^* 为f(x) = 0的m重根,当m = 1时称 x^* 为f(x) = 0的单根。

非线性方程求根的一般方法

● 两个问题

- 求解代数方程和超越方程的实数根
 - 预先给出根的一个初略位置(根的分离),然后根据这个位置向真实根逼近(近似根的精确化)
- 求解多项式的所有实数根和复数根
 - 专为多项式设计,系统化地求解多项式的所有根,而不仅仅是逼近的实数根

定理

• 对一般函数方程,若f(x)在区间[a, b]上连续,且f(a) f(b)<0,则方程f(x)=0 在[a, b]上至少有一个实根,[a, b]上称为有根区间。

- 由下界和上界确定的区间中根出现的情况:
 - (a) $f(x_l)$ 和 $f(x_u)$ 符号相同,无根;
 - (b) $f(x_l)$ 和 $f(x_u)$ 符号相反,单根;
 - (c) $f(x_l)$ 和 $f(x_u)$ 符号相同,偶数个根;
 - (d) $f(x_i)$ 和 $f(x_u)$ 符号相反,奇数个根;

特殊情况:

- 函数和x轴相切, $f(x_l)$ 和 $f(x_u)$ 符号相反,但有偶数个根;
- (b) 不连续函数的情况。

- 二分法(二元截断法、区间等分法、波尔察诺(Bolzano) 方法)
- 试位法
- 不动点迭代
- Newton-Raphson方法
- 割线法

二分法

- ●基本思想
 - 首先确定有根区间,将区间二等分,通过判断*f(x)*的符号,逐 步将有根区间缩小,直至有根区间足够地小,便可求出满足精 度要求的近似根。

二分法

● 步骤

- 1. 猜测初始下界 x_l 和上界 x_u ,使 $f(x_l) f(x_u) < 0$;
- 2. 计算中间点

$$x_r = \frac{x_l + x_u}{2}$$

- 3. 根据情况确定根所在的区间
 - a) 如果 $f(x_l) f(x_r) < 0$,则根落在左边子区间,取 $x_u = x_r$,返回步骤2;
 - b) 如果 $f(x_l) f(x_r) > 0$,则根落在右边子区间,取 $x_l = x_r$,返回步骤2;
 - c) 如果 $f(x_l) f(x_r) = 0$,则 x_r 根为所要求的根,算法终止。
- 4. 终止条件
 - 新的估计值

$$x_r^{new} = \frac{x_l + x_u}{2}$$

• 近似相对误差

$$\varepsilon_a = \left| \frac{x_r^{new} - x_r^{old}}{x_r^{new}} \right| \times 100\%$$

当 ε_q 小于既定的终止条件 ε_s 或迭代次数达到一个上界时,计算终止。

二分法——例2

• 初始 $x_i = 12$, $x_u = 16$

 $x_r = \frac{12+16}{2} = 14$

误差基于方程真实根 估计,实际上是不可 能的。

相对误差为 $\varepsilon_{i} = 5.3\%$ (真值为14.7802)

- 计算f(12) f(14)=9.517>0
- 新的 $x_i=14$,根的估计值

$$x_r = \frac{14 + 16}{2} = 15$$

近似相对误差为 $\varepsilon_a = 6.67\%$

- 计算f(14) f(15)=-0.666<0
- 新的上界 $x_u=15$, $x_r = \frac{14+15}{2} = 14.5$

$$x_r = \frac{14 + 15}{2} = 14.5$$

近似相对误差为 $\varepsilon_a = 3.45\%$

$$\varepsilon_a = 3.45\%$$

二分法——误差估计

迭代 次数	x_l	x_u	X_r	\mathcal{E}_a	\mathcal{E}_t
1	12	16	14		
2	14	16	15	6.667	1.487
3	14	15	14.5	3.448	1.896
4	14.5	15	14. 75	1.695	0.204
5	14.75	15	14.875	0.840	0.641
6	14.75	14.875	14.8125	0.422	0.219

- 不是每次迭代后真实误差都会减小。
- 近似误差总是大于真实误差,当 ε_a 小于 ε_s 时,真实误差一定也小于 ε_s ,所以根可以达到要求的精度,算法可以终止。

二分法——误差估计

• 每次根的估计值为 $x_r = \frac{x_l + x_u}{2}$

$$x_r = \frac{x_l + x_u}{2}$$

• 真实根落在长度为 $\frac{x_u-x_l}{2}=\frac{L}{2}$

$$\frac{x_u - x_l}{2} = \frac{L}{2}$$

的区间中,

$$x_r^{new} - x_r^{old} = \frac{x_u - x_l}{2}$$

$$\left| x_r^{new} - x_r^{old} \right| \ge \left| x_r^{new} - x^* \right|$$

因此,近似误差为真实误差的一个精确上界。

二分法——迭代次数

- 每次迭代根的区间为上次迭代的一半:
 - 初始区间 L_0 ,第一次迭代后 $L_1=L_0$ /2 ,…,第k次迭代后区间长度 $L_k=L_0$ / 2^k
- 第k次迭代的绝对误差 $\leq L_k$
- 如果已知最终的期望绝对误差 $E_{a,d}$,可以计算迭代次数

$$n = \frac{\log(L_0 / E_{a,d})}{\log 2}$$

二分法——参考程序

function [c,err,yc]=bisect(f,a,b,delta)

```
%Input - f is the function input as a string 'f'
     - a and b are the left and right endpoints
     - delta is the tolerance
%Output - c is the zero
     - yc= f(c)
     - err is the error estimate for c
ya=feval(f,a);
yb=feval(f,b);
if ya*yb > 0,break,end
\max_{1=1+\text{round}((\log(b-a)-\log(\text{delta}))/\log(2))};
for k=1:max1
  c=(a+b)/2;
  yc=feval(f,c);
  if yc==0
    a=c;
    b=c;
  elseif yb*yc>0
   b=c;
    yb=yc;
  else
    a=c;
   ya=yc;
  end
  if b-a < delta, break, end
end
c=(a+b)/2;
err=abs(b-a)/2;
yc=feval(f,c);
```

二分法——评价

• 优点

- 简单
- 通常可以找到根
- 可以计算出需要的 迭代次数

缺点

- 慢
- 要求上下界已知
- 多根情况无法处理
- 没有考虑 $f(x_l)$ 和 $f(x_u)$ 的大小。 如果 $f(x_l)$ 更接近0,那么根可能 更加接近 x_l 。

- 二分法
- 试位法(regula falsi、false-position、线性插值方法)
- 不动点迭代
- Newton-Raphson方法
- 割线法

试位法(False position)

• 通过一条直线连接 $[x_l, f(x_l)]$ 和 $[x_u, f(x_u)]$,直线与x轴的交点作为新的根的估计值。

$$\frac{f(x_l)}{x_r - x_l} = \frac{f(x_u)}{x_r - x_u}$$

$$x_r = \frac{x_l f_u - x_u f_l}{f_u - f_l}$$

$$x_r = x_u - \frac{f_u(x_l - x_u)}{f_l - f_u}$$

少一次乘法计算

试位法——参考程序

function [c,err,yc]=regula(f,a,b,delta,epsilon,max1) %Input - f is the function input as a string 'f' - a and b are the left and right endpoints - delta is the tolerance for the zero - epsilon is the tolerance for the value of f at the zero - max1 is the maximum number of iterations %Output - c is the zero - yc=f(c) - err is the error estimate for c ya=feval(f,a); yb=feval(f,b); if ya*yb>0 disp('Note: f(a)*f(b) > 0'),break, end for k=1:max1 dx=yb*(b-a)/(yb-ya);c=b-dx; ac=c-a; yc=feval(f,c); if yc==0,break; elseif yb*yc>0 b=c;yb=yc; else a=c;ya=yc; end dx=min(abs(dx),ac); if abs(dx)<delta,break,end if abs(yc)<epsilon, break,end end

数值计算方法 20

err=abs(b-a);

试位法

● 使用试位法求解例2中方程的根,并与二分法进行对比。

• \mathbf{m} : $x_l = 12$, $x_u = 16$

i	x_l	x_u	$f(x_l)$	$f(x_u)$	\mathcal{X}_r	\mathcal{E}_t	\mathcal{E}_a
1	12	16	6.0699	-2.2688	14.9113	0.89%	
2	12	14.9113	6.0699	-0.2543	14.7942	0.09%	0.79%

试位法比二分法误差减小得快。

试位法——缺陷

- 问题: 求解方程 $f(x)=x^{10}-1$ 在x=0和1.3之间的根
- 试位法收敛慢!
 - 原因——违反了试位法的前提! 在这个例子中, $f(x_l)$ 更接近0,但根接近 x_u 。
- 近似误差小于真实误差
 - 除了检查迭代近似误差外,把根的估计值 代入原方程中,检验是否接近0
- 一个划界点保持不动可能导致很差的 收敛性。

试位法——改进

- 修正的试位法
 - 检测一个边界何时固定不变
 - 使用计数器来确定一个边界两次迭代保持不变
 - 如果出现这种情况,将停滞的边界点处的函数值变为原来的一半

$$x_r = x_u - \frac{f_u(x_l - x_u)}{f_l - f_u}$$

增量搜索和确定初始猜值

- 函数作图
- 增量搜索
 - 从感兴趣区域的一端开始,小增量地穿过区域并计算函数值,如果有函数值改变符号时($f(x_k) = f(x_k + \triangle x) < 0$),可以确定由一个根落在这个小增量区间内。
 - 小增量区间的两个端点可以作为初始猜值
 - 增量长度的确定:太小费时,太大丢失彼此相差近的根。
 - 计算区间端点处的一阶导数值,如果有符号改变,则区间中存在最大或最小值,减小区间继续 搜索

非线性方程求根——动画

- 求方程 $f(x)=x^3+4x^2-10$ 的根
 - 二分法 [0.5 2.0]
 - 试位法 [-1.0 2.0]

二分法

试位法

- 二分法
- 试位法
- 不动点迭代(简单定点迭代,Fixed-point Iteration)
- Newton-Raphson方法
- 割线法

不动点迭代

重组方程

$$f(x) = 0 \implies g(x) = x$$

 $x_k = g(x_{k-1})$ x_o given, $k = 1, 2, ...$ $\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$

- 定义:
 - 函数g(x)的一个不动点(Fixed point)是指一个实数P,满足P=g(P)。
 - 从图形上看,函数y=g(x)的不动点是y=g(x)和y=x的交点。
 - 迭代 $p_{n+1}=g(p_n)$, 其中n=0,1,2,..., 称为不动点迭代。
- 定理:
 - 设g是一个连续函数,且 $\{p_n\}^{\infty}_{n=0}$ 是由不动点迭代生成的序列。如果 $\lim_{n\to\infty}p_n=P$,则P是 g(x)的一个不动点。
 - 设函数 $g \in C[a, b]$,如果对于所有 $x \in [a, b]$,映射y = g(x)的范围满足 $y \in [a, b]$,则函数 $g \in C[a, b]$ 内有一个不动点。此外,设g'(x)定义在(a, b)内,且对于所有 $x \in (a, b)$,存在正常数K < 1,使得 $|g'(x)| \le K < 1$,则函数 $g \in C[a, b]$ 内有唯一的不动点P。

不动点迭代

• 迭代过程的收敛性?

方程

$$f(x) = x - \sin x - 0.5 = 0$$

可以用不同方法转化为等价方程

$$(a) \quad x = \sin x + 0.5 \equiv g_1(x)$$
 收敛

(b)
$$x = \sin^{-1}(x - 0.5) \equiv g_2(x)$$
 发散

在由方程f(x)=0转化为等价的方程 x=g(x)时,选择不同的迭代函数g(x),就会产生不同的序列,且这些序列的收敛情况也不会相同。因此,需要研究如何选取迭代函数使迭代过程收敛?

不动点迭代——图形解释

不动点迭代

- 定理(不动点定理)
 - 设有(i) g, $g' \in C[a, b]$, (ii) K是一个正常数, (iii) $p_0 \in (a, b)$, (iv)对于 所有 $x \in [a, b]$, 有 $g(x) \in [a, b]$ 。
 - 如果对于所有 $x \in [a, b]$,有 $|g'(x)| \le K < 1$,则迭代 $p_n = g(p_{n-1})$ 将收敛到唯一的不动点 $P \in [a, b]$ 。在这种情况下,P称为吸引(attractive)不动点。
 - 如果对于所有 $x \in [a, b]$,有|g'(x)| > 1,则迭代 $p_n = g(p_{n-1})$ 将不会收敛到P。在这种情况下,P称为排斥(repelling)不动点,而且迭代显示出局部发散性。

不动点迭代——例

• 问题: 使用不动点迭代法求解函数 $f(x)=e^{-x}-x$ 的根。

• $x_{i+1} = e^{-x_i}$, $x_0 = 0$

i	x_i	\mathcal{E}_a	\mathcal{E}_t
0	0		100
1	1.000000	100	76.3
2	0.367879	171.8	35.1
3	0.692201	46.9	22.1
4	0.5040473	38.3	11.8
5	0.606244	17.4	6.89
6	0.545396	11.2	3.83
7	0.579612	5.90	2.20
8	0.560115	3.48	1.24
9	0.571143	1.93	0.705
10	0.564879	1.11	0.399

- •每次迭代使根的估计越来越接近 真实根0.56714329
- •每次迭代的真实百分误差与上次 迭代相比大致成比例关系,线性 收敛

不动点迭代——参考程序

```
function [k,p,err,P] = fixpt(g,p0,tol,max1)
% Input - g is the iteration function
    - p0 is the initial guess for the fixed-point
% - tol is the tolerance
    - max1 is the maximum number of iterations
% Output - k is the number of iterations that were carried out
     - p is the approximation to the fixed-point
     - err is the error in the approximation
     - P'contains the sequence {pn}
P(1) = p0;
for k=2:max1
 P(k) = feval(g, P(k-1));
 err=abs(P(k)-P(k-1));
 relerr=err/(abs(P(k))+eps);
 p=P(k);
 if (err<tol) | (relerr<tol),break;end</pre>
end
if k == max1
 disp('maximum number of iterations exceeded')
end
P=P';
```

不动点迭代——收敛性

- 迭代方程
- $x_{i+1} = g(x_i)$
- 真实解

$$x_r = g(x_r)$$

- 两个方程相减:
- 导数中值定理:

$$g'(\xi) = \frac{g(b) - g(a)}{b - a}$$

 $x_r - x_{i+1} = g(x_r) - g(x_i)$

$$a = x_i$$
 $b = x_r$ \Longrightarrow

$$g(x_r) - g(x_i) = (x_r - x_i)g'(\xi)$$

定义第*i*次迭代的真实误差为 $E_{t,i} = x_r - x_i$

$$E_{t,i} = x_r - x_i$$

$$E_{t,i+1} = g'(\xi)E_{t,i}$$

- \rightarrow 如果 $|g'(\xi)|>1$,误差会增大
- ▶如果导数是正的,误差将是正的,迭代的解单调;如果导数是负的,误差振荡
- ▶方法收敛时,误差大致与前一次的迭代误差成比例,并且小于前一次的迭代误差 (线性收敛)

- 二分法
- 试位法
- 不动点迭代
- Newton-Raphson方法
- ●割线法

Newton-Raphson方法

$$f(x_{i+1}) \cong f(x_i) + f'(x_i)(x_{i+1} - x_i)$$

• f(x)与x轴的交点处,f(x)=0

$$0 = f(x_i) + f'(x_i)(x_{i+1} - x_i)$$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

寻找
$$g(x) = x - \frac{f(x)}{f'(x)}$$
 的不动点

Newton-Raphson方法——例

- 问题: 使用Newton-Raphson方法求解函数 $f(x)=e^{-x}-x$ 的根,根的初始值为 $x_0 = 0$.
- 解: 计算函数的一阶导数为f'(x)=-e⁻x-1

• 迭代公式为:
$$x_{i+1} = x_i - \frac{e^{-x_i} - x_i}{-e^{-x_i} - 1}$$

i	x_i	\mathcal{E}_t
0	0	100
1	0.5	11.8
2	0.566311003	0.147
3	0.567143165	0.0000220
4	0.567143290	<10-8

算法很快收敛到真实根, 每次迭代的真百分比相 对误差比不动点迭代法 减小快得多。

Newton-Raphson方法——终止条件和误差估计

• 终止条件:

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

• 误差分析:

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(\xi)}{2!}(x_{i+1} - x_i)^2$$

$$x_{i+1} = x_r \qquad f(x_r) = 0 \quad \Box$$

$$0 = f(x_i) + f'(x_i)(x_r - x_i) + \frac{f''(\xi)}{2!}(x_r - x_i)^2$$

$$0 = f(x_i) + f'(x_i)(x_{i+1} - x_i)$$

$$0 = f'(x_i)(x_r - x_{i+1}) + \frac{f''(\xi)}{2!}(x_r - x_i)^2$$

假设方法收敛, x_i 和 ξ 都应该靠近根 x_r

误差大致与前一次迭代 $E_{t,i+1} \approx \frac{-f''(x_r)}{2f'(x_r)} E_{t,i}^2$ 的误差平方成正比。

收敛阶

定义

• 设序列 $\{x_n\}_{n=0}^{\infty}$ 收敛到 x_r ,并令 $E_n=x_r-x_n$, $n\geq 0$ 。如果存在两个常量 $A\neq 0$ 和R>0,并且

$$\lim_{n \to \infty} \frac{|x_r - x_{n+1}|}{|x_r - x_n|^R} = \lim_{n \to \infty} \frac{|E_{n+1}|}{|E_n|^R} = A$$

- 则称该序列以收敛阶R收敛到 x_r ,A称为渐进误差常数。
- *R*=1, 称为线性收敛
- R=2, 称为二次收敛
- 一些序列的收敛阶不是整数。

Newton-Raphson方法——收敛速度

• 定理:

• 设Newton-Raphson迭代产生的序列 $\{x_n\}$ 收敛到函数f(x)的根 x_r ,如果 x_r 是单根,则 $\{x_n\}$ 是二次收敛,而且对于足够大的n有

$$|E_{n+1}| \approx \frac{|f''(x_r)|}{2|f'(x_r)|} |E_n|^2$$

• 如果 x_r 是M阶多重根,则 $\{x_n\}$ 是线性收敛,而且对于足够大的n有

$$\left| E_{n+1} \right| \approx \frac{M-1}{M} \left| E_n \right|$$

Newton-Raphson方法——收敛速度

• 问题: 方程 $f(x)=x^3-3x+2=0$ 的根为 $x_1=-2$, $x_{2,3}=1$, 用Newton-Raphson方法分别从 $x_0=-2.4$ 和 $x_0=1.2$ 开始迭代,检查序列的收敛性。

在单根处

i	x_i	$ E_{t,i} $	$ E_{t,i} / E_{t,i-1} ^2$
0	-2.400000000	0.400000000	
1	-2.076190676	0. 076190476	0.476190475
2	-2.003596011	0. 003596011	0.619469086
3	-2.000008589	0.000008589	0.664202613
4	-2.000000000	0.000000000	

A≈2/3

Newton-Raphson方法——收敛速度

在二重根处

i	x_i	$ E_{t,i} $	$ E_{t,i} / E_{t,i-1} $
0	1.200000000	0.200000000	
1	1.103030303	0.103030303	0.515151515
2	1.052356420	0.052356420	0.508165253
3	1.026400811	0.026400811	0.496751115
4	1.013257730	0.013257730	0.509753688
5	1.006643419	0.006643419	0.501097775

A≈1/2

Newton-Raphson方法——缺点

- f(x)与x轴的交点处,f(x)=0
 - (a) 在根附近出现拐点,f''(x)=0, 迭代逐渐远离根;
 - (b) 在局部极值点附近振荡;

(c) 跳过了几个根;

(d) f'(x)=0 ,被零除,解沿水平方向永远不会和x轴相交;

收敛性依赖于函数的性质和初始猜测的准确度

Newton-Raphson方法——算法

- 画图
- 将最终的估计根代入原始函数中检查f(x)是否为0,防止由于收敛很慢或振荡收敛导致很小的 ε_a 但根却离真实根仍然很远。
- 确定迭代上限,避免因振荡、慢收敛或发散的情况导致无限循环。
- 判断f'(x)=0的概率并通知用户。

Newton-Raphson方法——参考程序

• function [p0,err,k,y]=newton(f,df,p0,delta,epsilon,max1)

```
%Input - f is the object function input as a string 'f'
   - df is the derivative of f input as a string 'df'
   - p0 is the initial approximation to a zero of f
   - delta is the tolerance for p0
    - epsilon is the tolerance for the function values y
    - max1 is the maximum number of iterations
%Output - p0 is the Newton-Raphson approximation to the zero
     - err is the error estimate for p0
% - k is the number of iterations
     - y is the function value f(p0)
for k=1:max1
 p1=p0-feval(f,p0)/feval(df,p0);
 err=abs(p1-p0);
 relerr=2*err/(abs(p1)+delta);
 p0=p1;
 y=feval(f,p0);
 if (err<delta) | (relerr<delta) | (abs(y)<epsilon), break, end
end
```

非线性方程求根

- 二分法
- 试位法
- 不动点迭代
- Newton-Raphson方法
- ●割线法(正割法, Secant Method)

割线法 (正割法)

$$\frac{1}{f'(x_i)} \cong \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = x_i - f(x_i) \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} \qquad i = 1, 2, 3, \dots$$

- •类似于Newton-Raphson方法:用 差商估计斜率
- •类似于试位法:都是使用两个初始估计值来计算函数斜率的近似,并 将其投射到x轴上获得一个新的估计值。

•收敛阶: 1.618

割线法——例

• 问题: 使用割线法求解函数 $f(x)=e^{-x}-x$ 的根, 初始估计为 $x_{-1}=0$ 和 $x_0=1.0$ 。

• 解:

i	x_{i-2}	x_{i-1}	$f(x_{i-2})$	$f(x_{i-1})$	x_i	\mathcal{E}_t
1	0	1	1 00000	0.62212	0.61270	9.0
1	0		1.00000	-0.63212	0.61270	8.0
2	1	0.61270	-0.63212	-0.07081	0.56384	0.58
		\				
3	0.61270	0.56384	-0.07081	0.00518	0.56717	0.0048

两个估计值都在根的同一边。

割线法——参考程序

function [p1,err,k,y]=secant(f,p0,p1,delta,epsilon,max1)

```
%Input - f is the object function input as a string 'f'
   - p0 and p1 are the initial approximations to a zero of f
    - delta is the tolerance for p1
    - epsilon is the tolerance for the function values y
    - max1 is the maximum number of iterations
%Output - p1 is the secant method approximation to the zero
     - err is the error estimate for pl
    - k is the number of iterations
     - y is the function value f(p1)
for k=1:max1
 p2=p1-feval(f,p1)*(p1-p0)/(feval(f,p1)-feval(f,p0));
 err=abs(p2-p1);
 relerr=2*err/(abs(p2)+delta);
 p0=p1;
 p1=p2;
 y=feval(f,p1);
 if (err<delta) | (relerr<delta) | (abs(y)<epsilon), break, end
end
```

割线法——与试位法的比较

• 用两种方法估计 $f(x)=\ln x$ 的根。

对于所有现实情况,试位 法通常是收敛的,但割线 法可能会发散,如果割线 法收敛,通常比试位法快。

2024/3/2

割线法——改进

• 估计导数:通过独立变量的小量扰动来估计。

$$f'(x_i) \cong \frac{f(x_i + \delta x_i) - f(x_i)}{\delta x_i}$$

$$x_{i+1} = x_i - \frac{\delta x_i f(x_i)}{f(x_i + \delta x_i) - f(x_i)}$$

• 求解函数 $f(x)=e^{-x}-x$ 的根: 取 $\delta=0.01$

算法不会自动选择合适的δ,如果δ太小,可能会被分母的减性抵销引起的舍入误差淹没。如果选择正确,当导数难以计算或两个初始值不易获取时,是一种好

的替代算法。

i	x_{i-1}	$x_{i-1} + \delta x_{i-1}$	$f(x_{i-1})$	$f(x_{i-1} + \delta x_{i-1})$	x_i	\mathcal{E}_t
1	1	1.01	-0.63212	-0.64578	0.537263	5.3
2	0.537263	0.542635	0.047083	0.038579	0.56701	0.0236
3	0.56701	0.572680	0.000209	-0.00867	0.567143	2.365×10 ⁻⁵

针对重根的改进

• 定义一个新函数

$$u(x) = \frac{f(x)}{f'(x)}$$

- 这个函数和原函数有相同的根
- 改进的Newton-Raphson方法

$$x_{i+1} = x_i - \frac{u(x_i)}{u'(x_i)}$$

$$u'(x) = \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2}$$

$$x_{i+1} = x_i - \frac{f(x_i)f'(x_i)}{[f'(x_i)]^2 - f(x_i)f''(x_i)}$$

• 改进的割线法

$$x_{i+1} = x_i - u(x_i) \frac{x_i - x_{i-1}}{u(x_i) - u(x_{i-1})}$$

非线性方程求根——动画

- 求方程 $f(x)=3e^x-4\cos x$ 的根
 - Newton-Raphson方法 (1.0)
 - 割线法 (1.0, 0.9)

Newton-Raphson方法

割线法

扩展内容

- 方法的改进
- 非线性方程组求根
- 多项式求根

第二章 总结——各种方法

方法	初始估计	收敛速度	稳定性	精度	应用范围	编程难度	备注
直接法	_	_	_	_	受限		
图解法	-	-	_	差	求实数根	ı	比数值法时 间开销大
二分法	2	慢	通常收敛	好	求实数根	容易	
试位法	2	慢/中等	通常收敛	好	求实数根	容易	
不动点迭 代	1	慢	可能发散	好	求一般根	容易	
Newton- Raphson	1	快	可能发散	好	求一般根	容易	需要求导
割线法	2	中等到快	可能发散	好	求一般根	容易	初始估计不 用界定根

第二章 总结——重要内容

- 二分法
- 试位法
- 不动点迭代
- Newton-Raphson法
- 割线法
- 迭代公式
- 图解描述
- 误差和终止准则

MATLAB中的函数

函数	描述
fzero	单函数求根
roots	求多项式的根
poly	用已知的根构建多项式
polyval	求多项式的值
polyvalm	求带有矩阵变量的多项式的值