Small Assignment 1

Sunday, September 15, 2024 5:07 PM

Matthew P. Horisth JR.

- 1) "For every Integer n, n2+ N is even"
 - a) I would fix N to be a veriable belonging to all Integers.

 I would then show that for all of N, N2,11 will always be even.

 This would be a universal qualifier, All on N needs to work.
 - b) To show its false, we would wont to fix M to be an Integer, and show that $N^2 + M$ is odd.

 Show that $N^2 + M$ is odd.

 This would be an existential quantifier, as we need only $\frac{1}{M} = M$. This would be an existential quantifier, as we need only $\frac{1}{M} = M$. This would be an existential quantifier, as we need only $\frac{1}{M} = M$. This would be an existential quantifier, as we need only $\frac{1}{M} = M$.
- a) "If n2 is even, then n is even"
 - a) For Pinet Proof: $P \rightarrow Q$ Assume n^2 is even W.T.S. α is even
 - b) For Contrapositive: $\rho \rightarrow Q \iff T\rho \rightarrow TQ$ Assume Λ^2 is odd (not even)
 W.T.S. Λ is odd (not even)
 - () For contradiction (Indirect):

 Assure n' is even

 W.T.S. n is add (not even)

- 3) "For every positive Integer 1, 12+1 is even" whing Induction on 1
 - a) Positive Inlegers = 1, 2, 3 (N^+) If $n \in N^+$; p(n) = universalwe can get to Gert with Step 1

b) our steps are +1, so we can use l+1 $p(u) \rightarrow p(u+1)$