Álgebra Linear I – Prof. José Luiz Neto – Resumo_A24

Livro de preparação do resumo: Álgebra Linear → Boldrine/Costa e Figueiredo/Wetzler (BOLDRINI, J. L. et al. Álgebra Linear. 3 ed. São Paulo: Harbra, 1986)

Multiplicidade Algébrica e Multiplicidade Geométrica de um autovalor

Muito Importante!

Definição 1 A multiplicidade algébrica de um autovolor λ é a quantidade de vezes que ele aparece Como raiz do polinômio característico.

Definição 2) A multiplicidade geométrica de um autovolor λ é a dirnensão do Suberpago V, de autovetores associados a λ.

Exemplo 1:

betweenine or autovalous do operador $T: \mathbb{R}^2 \to \mathbb{R}^2$ definido por T(x,y) = (-3x + 4y, -x + 2y).

Sol: A matriz de $T \in A = \begin{bmatrix} -3 & 4 \\ -1 & 2 \end{bmatrix}$. $p(\lambda) = \det(A - \lambda I) \Leftrightarrow$ $p(\lambda) = \begin{vmatrix} -3 - \lambda \\ -1 & 2 - \lambda \end{vmatrix} = (-3 - \lambda)(2 - \lambda) + 4 \Leftrightarrow$ $p(\lambda) = \lambda^2 + \lambda - 6 + 4 \Leftrightarrow p(\lambda) = \lambda^2 + \lambda - 2$. $p(\lambda) = 0 \Leftrightarrow$ $\lambda^2 + \lambda - 2 = 0 \Leftrightarrow \lambda = -2 \text{ on } \lambda = 1$. Assim, or autovalors de T sao: -2 = 1.

tetrminação dos autorotores associados: $P[X = -2; [-1, 4][x] = [0] ⇔ {-x + 4y = 0} x = 4y.$ $V = (4y, y); y \neq 0. V_{-2} = {(4y, y)/y ∈ R} = {y(4,1)/y ∈ R}$ $⇔ V_2 = [(4,1)]; β_{V-2} = {(4,1)}^2.$ $∀_1 = 1; [-4, 4][x] = [0] ⇔ {-4 x + 4y = 0} ⇔ y = x.$ $w = (x, x); x \neq 0. V_2 = {(x, x)/x ∈ R} = {x(1,1)/x ∈ R} ⇔ V_1 = [(1,1)]; β_{V_1} = {(1,1)}^2.$ Importante! $β = {(4,1), (1,1)} e uma bose do V = R^2.$

- i) A multiplicidade algébrica do autovalor $\lambda=-2$ é 1, e a multiplicidade geométrica também é 1.
- ii) A multiplicidade algébrica do autovalor $\lambda=1$ é 1, e a multiplicidade geométrica também é 1.

Exemplo 2:

Sign T: $\mathbb{R}^3 \to \mathbb{R}^3$ o operador linear definido pela matriz $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$. Letermine os autovaloros de T e os Auberbaços $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$. Letermine os autovaloros de T e os Auberbaços $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$. Letermine os autovaloros de T e os Auberbaços $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$. Letermine os autovaloros de T e os Auberbaços $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$. Letermine os autovaloros de T e os Auberbaços $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$. Letermine os autovaloros de T e os Auberbaços $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$. Letermine os autovaloros de T e os Auberbaços $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$. Letermine os autovaloros de T. $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$. Letermine os autovaloros de T. $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$. Letermine os autovaloros de T.

AUTOVETORES

AUTOVETORES

$$\frac{1}{2} = 0; (-1 \ 0 \ 2)(\frac{1}{2}) = (0) \ 67 \begin{cases} -x + 2z = 0 \ 6x = 2z ; y - lione; z - lione \\ 2x - 4z = 0 \end{cases}$$
 $\frac{1}{2} = 0; (-1 \ 0 \ 2)(\frac{1}{2}) = (0) \ 67 \begin{cases} -x + 2z = 0 \ 6x = 2z ; y - lione; z - lione \\ 2x - 4z = 0 \end{cases}$
 $\frac{1}{2} = (2z, y, z) / y = (2z, 0, 1), (0, 0, 1); (0,$

A multiplicidade algébrica de 7 = 0 é 2 e a multiplicidade geométrica tourbein e 2. É sempre assim?

Exemplo 3:

Seja T: R3 - R3 o operador linear definido por T(x, y, 2) = (y+22,32,0). Entaw,

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} \cdot p(\lambda) = \det(A - \lambda I) = \begin{vmatrix} -\lambda & 1 & 2 \\ 0 & -\lambda & 3 \\ 0 & 0 & -\lambda \end{vmatrix} = -\lambda^{3}.$$

P(λ)=0 ⇔-λ3=0 ⇔ λ=0 e'o único autovalor.

Autovetores associados a 2:

$$\begin{bmatrix}
0 & 1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\Leftrightarrow
\begin{bmatrix}
y + 2z = 0 \\
3z = 0 \\
0 = 0
\end{bmatrix}
\begin{cases}
z - livre$$

Vo={(x,0,0)(xeR) = [(1,0,0)]; Bo={(1,0,0)}; dimvo=1. CONCLUSÃO: A multiplicidade algébrica de 1=0 é 3 e a multiplicidade geométricade 7=0 é 1.