Q1 (a)

Area of loop =
$$2\int_{\alpha}^{\beta} (1-x)\sqrt{x+3} \, dx$$

 $\alpha = -3, \ \beta = 1$

(b) Area of loop
$$=2\int_{-3}^{1} (1-x)\sqrt{x+1}$$

$$=2\int_0^2 \left(4-u^2\right)u \times 2u \, du$$

$$= 4 \int_0^2 (4u^2 - u^4) du$$
$$= 4 \left[\frac{4}{3} u^3 - \frac{1}{5} u^5 \right]_0^2$$

$$=\frac{256}{15} \quad units^2$$

$$u = \sqrt{x+3} \qquad \qquad u = \sqrt{x+3}$$

$$u^2 = x + 3$$
 or $\frac{du}{dx} = \frac{1}{2\sqrt{x+3}}$

$$u = \sqrt{x+3}$$

$$u = \sqrt{x+3}$$

$$u^{2} = x+3 \text{ or } \frac{du}{dx} = \frac{1}{2\sqrt{x+3}}$$

$$2u\frac{du}{dx} = 1$$

$$\frac{du}{dx} = \frac{1}{2u}$$

When
$$x = -3$$
, $u = 0$

When
$$x = 1$$
, $u = 2$

Q2	Suggested Answers
(a)	Vector equation $\mathbf{r} = \lambda \mathbf{a}$ where $0 \le \lambda \le 1$
	The equation gives the position vector of points on the line segment OA . (not line OA)
(b)	Vector equation $\mathbf{r} \times (\mathbf{a} - \mathbf{b}) = 0$
	\Rightarrow r is parallel to \overrightarrow{AB}
	$\mathbf{r} = k(\mathbf{a} - \mathbf{b}), \ k \in \mathbb{R}$
	The equation gives the position vector of points on the line passing through \underline{O} parallel to \underline{AB} .
(c)	$\mathbf{r} \cdot (\mathbf{r} - \mathbf{a}) = 0$ R Another possible R R
	$\overrightarrow{OR} \cdot \overrightarrow{AR} = 0$
	$ \overrightarrow{OR} \perp \overrightarrow{AR} $
	$O \mathbf{\hat{a}} A O A$
	Points on a sphere (or circle) with <i>OA</i> as a diameter.
(d)	$(\mathbf{r} - \mathbf{a}) \times (\mathbf{r} - \mathbf{b}) = 0$
	$(\mathbf{r} - \mathbf{a})$ is parallel to $(\mathbf{r} - \mathbf{b})$
	$(\mathbf{r} - \mathbf{a}) = \mu(\mathbf{r} - \mathbf{b})$ where $\mu \neq 1$
	$\mathbf{r}(1-\mu) = \mathbf{a} - \mu \mathbf{b}$
	$\mathbf{r} = \frac{\mathbf{a} - \mu \mathbf{b}}{(1 - \mu)} = \left(\frac{1}{1 - \mu}\right) \mathbf{a} + \left(\frac{-\mu}{1 - \mu}\right) \mathbf{b}$, where $\mu \neq 1$ since $\mathbf{a} \neq \mathbf{b}$
	Alternatively,
	$(\mathbf{r} - \mathbf{a}) \times (\mathbf{r} - \mathbf{b}) = 0$
	\overrightarrow{AR} is parallel to \overrightarrow{BR}
	Since R is a common point, A , B and R are colinear
	i.e. R lies on the line AB
	$\mathbf{r} = \mathbf{a} + \alpha (\mathbf{b} - \mathbf{a}), \text{ where } \alpha \in \mathbb{R}$

$$= \frac{1}{\sqrt{2}} e^{i\left(\frac{19}{12}\pi - 2\pi\right)}$$
$$= \frac{1}{\sqrt{2}} e^{i\left(-\frac{5}{12}\pi\right)}$$

Method 1: Properties of modulus & argument

$$\left| \frac{z_1 z_4}{z_2 (z_3)^2} \right| = 1$$

$$\left| \frac{z_1}{z_2 (z_3)^2} \right| |z_4| = 1$$

$$\Rightarrow r = \sqrt{2}$$

$$\arg\left(\frac{z_1 z_4}{z_2 \left(z_3\right)^2}\right) = \arg\left(\frac{z_1}{z_2 \left(z_3\right)^2}\right) + \arg z_4$$
$$= -\frac{5}{12}\pi + \theta$$

Since $\frac{z_1 z_4}{z_2 \left(z_3^*\right)^2}$ is purely real, $-\frac{5}{12} \pi + \theta = k\pi, k \in \mathbb{Z}$

$$\theta = k\pi + \frac{5}{12}\pi$$

$$= \frac{5}{12}\pi \text{ or } -\frac{7}{12}\pi \quad (\because -\pi < \theta \le \pi)$$

$$\therefore z_4 = \sqrt{2} \left(\cos \frac{5}{12}\pi + i \sin \frac{5}{12}\pi \right) \text{ or } \sqrt{2} \left(\cos \left(-\frac{7}{12}\pi \right) + i \sin \left(-\frac{7}{12}\pi \right) \right)$$

(c)
$$\frac{\text{Method 2: Using exponential form}}{\frac{z_1 z_4}{z_2 (z_3)^2}} = \left[\frac{1}{\sqrt{2}} e^{i\left(-\frac{5}{12}\pi\right)}\right] (re^{i\theta})$$

$$= \frac{r}{\sqrt{2}} e^{i\left(-\frac{5}{12}\pi + \theta\right)}$$

$$\frac{r}{\sqrt{2}} = 1 \Rightarrow r = \sqrt{2}$$
Since
$$\frac{z_1 z_4}{z_2 \left(z_3^*\right)^2} \text{ is purely real, } -\frac{5}{12}\pi + \theta = k\pi, k \in \mathbb{Z}$$

$$\theta = k\pi + \frac{5}{12}\pi = \frac{5}{12}\pi \text{ or } -\frac{7}{12}\pi \quad (\because -\pi < \theta \le \pi)$$

$$\therefore z_4 = \sqrt{2} \left(\cos\frac{5}{12}\pi + i\sin\frac{5}{12}\pi\right) \text{ or }$$

$$\sqrt{2} \left(\cos\left(-\frac{7}{12}\pi\right) + i\sin\left(-\frac{7}{12}\pi\right)\right)$$

Q4	Suggested Answers
(a)	$\frac{1}{4r^2 - 8r + 3} = \frac{A}{2r - 3} + \frac{B}{2r - 1}$
	A(2r-1)+B(2r-3)=1
	When is 1 D
	When $r = \frac{1}{2}$, $B = -\frac{1}{2}$
	When $r = \frac{3}{2}$, $A = \frac{1}{2}$
	$\frac{1}{4r^2 - 8r + 3} = \frac{1}{2} \left(\frac{1}{2r - 3} - \frac{1}{2r - 1} \right)$
	$4r^2 - 8r + 3$ $2(2r - 3 2r - 1)$
(b)	$\sum_{r=2}^{3n} \left(\frac{1}{4r^2 - 8r + 3} \right) = \frac{1}{2} \sum_{r=2}^{3n} \left(\frac{1}{2r - 3} - \frac{1}{2r - 1} \right)$
	, , , , , , , , , , , , , , , , , , , ,
	$= \frac{1}{2} \begin{vmatrix} 1 & -\frac{1}{3} \\ +\frac{1}{3} & -\frac{1}{5} \\ +\frac{1}{5} & -\frac{1}{7} \\ \vdots \end{vmatrix}$
	+-/- 5
	$=\frac{1}{2} \begin{vmatrix} +\frac{7}{5} - \frac{7}{7} \end{vmatrix}$
	$ $
	$\frac{+6n-5}{6n-3}$
	$\begin{vmatrix} +\frac{1}{6n-5} - \frac{1}{6n-3} \\ +\frac{1}{6n-3} - \frac{1}{6n-1} \end{vmatrix}$
	$=\frac{1}{2}\left(1-\frac{1}{6n-1}\right) \left(=\frac{3n-1}{6n-1}\right)$
	$=\frac{1}{2}\binom{1-\frac{1}{6n-1}}{6n-1}$ $\left(=\frac{1}{6n-1}\right)$
(c)	As $n \to \infty$, $\frac{1}{6n-1} \to 0$ and so $\sum_{r=2}^{3n} \left(\frac{1}{4r^2 - 8r + 3} \right) \to \frac{1}{2}$
	As $n \to \infty$, $\frac{1}{6n-1} \to 0$ and so $\sum_{r=2} \left(\frac{4r^2 - 8r + 3}{2} \right) \to \frac{1}{2}$
	$\therefore \sum_{r=2}^{\infty} \left(\frac{1}{4r^2 - 8r + 3} \right) = \frac{1}{2}$
	$\frac{1}{r-2} \left(4r^2 - 8r + 3 \right)^{-2} $
(d)	$\sum_{r=n+1}^{3n} \left(\frac{1}{4r^2 - 8r + 3} \right) = \sum_{r=2}^{3n} \left(\frac{1}{4r^2 - 8r + 3} \right) - \sum_{r=2}^{n} \left(\frac{1}{4r^2 - 8r + 3} \right)$
	7-111
	$=\frac{1}{2}\left(1-\frac{1}{6n-1}\right)-\frac{1}{2}\left(1-\frac{1}{2n-1}\right)$
	$=\frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{6n-1}\right)$
	$=\frac{4n}{2(2n-1)(6n-1)}$
	2(2n-1)(6n-1)
	$=\frac{2n}{(2n-1)(6n-1)}$
	(2n-1)(6n-1)

Q5	Suggested Answers
(a)	Volume of wok
()	$=\pi \int_{16}^{q} (256-y^2) dy$
	5-10 \
	$=\pi \left[256y - \frac{y^3}{3} \right]^q$
	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$
	$-[(256-q^3)(4096)]$
	$= \pi \left[\left(256q - \frac{q^3}{3} \right) - \left(-4096 + \frac{4096}{3} \right) \right]$
	$(a^3 8192)$
	$=\pi \left(256q - \frac{q^3}{3} + \frac{8192}{3}\right)$
	$a^3 8192$
	$\pi \left(256q - \frac{q^3}{3} + \frac{8192}{3} \right) = 3300$
	Using GC, $q = -7.01245634$
	Depth of wok = $-7.01245634 - (-16) = 9$ cm (correct to nearest integer)
(b)	Method 1 (direct integration):
	Volume of flat frying pan
	$=\pi \int_r^0 \left(256-y^2\right) \mathrm{d}y$
	[
	$=\pi \left[256y-\frac{y^3}{3}\right]_{1}^{0}$
	$\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \end{bmatrix}$
	$=\pi \left[0-\left(256r-\frac{r^3}{3}\right)\right]$
	$=\pi\left(\frac{r^3}{3}-256r\right)$
	(r^3)
	$\pi \left(\frac{r^3}{3} - 256r\right) = 1464\pi$
	$\frac{r^3}{3} - 256r = 1464$
	Using GC, $r = -6$
(b)	Method 2 (using result from part (a)):
	Volume of flat frying pan
	= Volume of hemisphere – $\pi \left(256r - \frac{r^3}{3} + \frac{8192}{3} \right)$
	$= \frac{2}{3}\pi \left(16\right)^3 - \pi \left(256r - \frac{r^3}{3} + \frac{8192}{3}\right)$
	$=\pi\left(\frac{r^3}{3}-256r\right)$
	$\pi \left(\frac{r^3}{3} - 256r\right) = 1464\pi$
	$\frac{r^3}{3} - 256r = 1464$
	Using GC, $r = -6$

(c) Let time taken to fill the wok to full capacity be T seconds

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{3}{55}t$$

$$\int dV = \int \frac{3}{55} t \, dt$$

$$V = \frac{3t^2}{110} + C$$

When
$$t = 0$$
, $V = 0$, $C = 0$

When
$$t = T$$
, $V = 3.3$, $3.3 = \frac{3T^2}{110}$

Method 2:

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{3}{55}t$$

$$\int_0^{3.3} dV = \int_0^T \frac{3}{55} t \, dt$$

$$[V]_0^{3.3} = \frac{3}{55} \left[\frac{t^2}{2} \right]_0^T$$

$$3.3 = \frac{3}{55} \left(\frac{T^2}{2} \right)$$

$$T = 11$$

Q6	Suggested Answers
(a)	(Treat as there is an 'invisible' car occupying a lot)
	Number of arrangements without restriction = 10!=3628800
(b)	Number of arrangements with BB and RR together = 8! × 2! × 2! = 161280
(c)	Method 1 Number of arrangements with B1B2 together = 9! × 2! = 725760
	Similarly, number of arrangements with R1R2 together 9! × 2! = 725760
	Number of arrangements with at least 2 adjacent cars = 725760 + 725760 - 161280 = 1290240
	By complement method, required number of arrangements is $= 3628800 - 1290240 = 2338560$
(c)	Method 2 Number of arrangements with B1B2 together and R1R2 not together = $7! \times 2! \times {}^{8}C_{2} \times 2! = 564480$
	Similarly, number of arrangements with R1R2 together and B1B2 not together = 564480
	By complement, required number of arrangements is $3628800 - 161280 - 564480 - 564480 = 2338560$
(c)	Method 3 Number of arrangements with red cars separated (no restrictions on blue cars) = $8! \times {}^{9}C_{2} \times 2! = 2903040$
	Number of arrangements with red cars separated and blue cars together = $7! \times 2! \times {}^{8}C_{2} \times 2! = 564480$
	By complement, required number of arrangements is $2903040 - 564480 = 2338560$

Q7	Suggested Answers
(a)	P(S=s) > P(S=s+1)
	$P(S = s) > P(S = s + 1)$ $\frac{{}^{18}C_{s} {}^{12}C_{10-s}}{{}^{30}C_{10}} > \frac{{}^{18}C_{s+1} {}^{12}C_{9-s}}{{}^{30}C_{10}}$
	18! 12! 18! 12!
	$\overline{s!(18-s)!} (s+2)!(10-s)! > \overline{(s+1)!(17-s)!} (s+3)!(9-s)!$
	(s+1)!(17-s)!(9-s)!(s+3)! > s!(18-s)!(10-s)!(s+2)!
	(s+1)(s+3) > (18-s)(10-s)
	$s^2 + 4s + 3 > s^2 - 28s + 180$
	32s > 177
	s > 5.53
	Thus $s = 6$.

(b) Outcome Table

0 0-7000							
Absolute		No. on Square					
Difference		1	2	3	4	5	6
	1	0	1	2	3	4	5
No. on	2	1	0	1	2	3	4
Triangle	3	2	1	0	1	2	3
	4	3	2	1	0	1	2

Probability Distribution

Х	0	1	2	3	4	5
	4	7	6	4	2	1
P(X = x)	24	24	24	24	24	$\overline{24}$

(c)
$$P(X_1 = 2 \mid X_1 + X_2 + X_3 = 3)$$

$$= \frac{P(X_1 = 2, X_2 = 0, X_3 = 1) \times 2!}{P(X_1 = 1, X_2 = 1, X_3 = 1) + P(X_1 = 1, X_2 = 2, X_3 = 0) \times 3! + P(X_1 = 3, X_2 = 0, X_3 = 0) \times \frac{3!}{2!}}$$

$$= \frac{\frac{6}{24} \left(\frac{4}{24}\right) \left(\frac{7}{24}\right) 2!}{\left(\frac{7}{24}\right)^3 + \frac{7}{24} \left(\frac{6}{24}\right) \left(\frac{4}{24}\right) 3! + \frac{4}{24} \left(\frac{4}{24}\right)^2 \frac{3!}{2!}}$$

$$= \frac{336}{1543} \text{ or } 0.218 \text{ (to } 3 \text{ s.f.)}$$

Q8	Suggested Answers
(a)	Let L be the length of a randomly chosen rectangular cotton fabric.
	$L \sim N(24, 1.5^2)$
	P(L < 23.5) = 0.36944 (5 s.f.)
	= 0.369 (3 s.f.)
(b)	Let <i>B</i> be the breadth of a randomly chosen rectangular cotton fabric.
	$B \sim N(20, 1.2^2)$
	Perimeter = $2L + 2B \sim N(88, 14.76)$
	P(2L+2B>90) = 0.30133 (5 s.f.)
	= 0.301 (3 s.f.)
(c)	The length and breadth of each /a randomly chosen rectangular cotton fabric
	are independent of each other.
	Note that this assumption is necessary for Var(2L + 2B) = Var(2L) + Var(2B)
	Recall: $Var(X + Y) = Var(X) + Var(Y)$ if and only if X and Y are
	independent.
(d)	$L \sim N(24, 1.5^2)$
	P(23 < L < 25) = 0.49502 (5 s.f.)
	Let X be the number of rectangular cotton fabric (out of 48) with length
	between 23 and 25 cm. $X \sim B(48, 0.49502)$
	E(X) = 48(0.49502) = 23.761 (5 s.f.)
(0)	= 23.8 (3 s.f.)
(e)	$L_1 - L_2 \sim N(0, 4.5)$
	$P(L_1 - L_2 \le k) \ge 0.9$
	$P\left(-k \le L_1 - L_2 \le k\right) \ge 0.9$
	$k \ge 3.4893$
	$k \ge 3.49$ (3 s.f.) Least $k = 3.49$ (3 s.f.)
	Least $k = 3.49$ (3 s.f.)
	Method 1:
	NORMAL FLOAT AUTO REAL RADIAN MP 1 nvNorm(0.9.0, 14.5, CENTER)
	(-3.489261459.3.489261459)
	Mothod 2
	Method 2: NORMAL FLOAT AUTO REAL RADIAN MP NORMAL FLOAT AUTO REAL RADIAN MP CALC INTERSECT
	Plot1 Plot2 Plot3 NY18
	■NY2■0.9 ■NY3=
	NY4 =
	NY 6= NY 7= NY 7= NY 2- NY 2- NY 3-4892611 V=0.9

Q9	Suggested Answers							
(a)	Let X be the number of diners (out of 10) who order the signature dish							
	$X \sim B(10, 0.7)$							
	$P(X \ge 3) = 1 - P(X < 3)$							
	$=1-P(X\leq 2)$							
	= 0.99841 (5 s.f.)							
	= 0.998 (3 s.f.)							
(b)	Method 1:							
	$P(3 < X < 8) = P(X < 8) - P(X \le 3)$							
	$= P(X \le 7) - P(X \le 3)$							
	= 0.60663 (5 s.f.)							
	= 0.607 (3 s.f.)							
(b)	Method 2 (not recommended):							
	P(3 < X < 8) = P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7)							
	= 0.60663 (5 s.f.)							
	=0.607 (3 s.f.)							
(c)	Let Y be the number of diners (out of n) who order the signature dish							
	$Y \sim B(n, 0.7)$							
	$P(Y \le 80) \ge 0.9$							
	106 0.9112 > 0.9							
	107 0.8826 < 0.9							
	largest $n = 106$ (maximum number of diners)							
	NORMAL FLOAT AUTO REAL RADIAN MP NORMAL FLOAT AUTO REAL RADIAN MP NORMAL FLOAT AUTO REAL RADIAN MP							
	Plot1 Plot2 Plot3 TABLE SETUP TblStart=80 TABLE SETUP 100 0.9911 101 0.9950							
	NY2=							
	109 0.8485 109 0.8091							
	NY9= NY9= Y1=0.91121114687385							
(d)	Probability = $\left[P(X \ge 3)\right]^{40} = (0.99841)^{40} = 0.938$ (3 s.f.)							
	OR $T \sim B(40, 0.99841)$							
	$P(T = 40) = 0.93833 \approx 0.938$							
(e)	Let X be the number of diners (out of 10) who order the signature dish, i.e. number							
	of portions of the signature dish served at a randomly chosen table of 10 diners $X \sim B(10, 0.7)$							
	` '							
	E(X) = 7, $Var(X) = 2.1$							
	Average number of portions of the signature dish served per table, V + V + V + V							
	$\bar{X} = \frac{X_1 + X_2 + \dots + X_{40}}{40}$							
	Since $n = 40$ is large, by the Central Limit Theorem,							

$$\overline{X} \sim N\left(7, \frac{2.1}{40}\right)$$
 approximately
$$P(\overline{X} \ge 6.9) = 0.66874 \qquad (5 \text{ s.f.})$$

$$= 0.669 \qquad (3 \text{ s.f.})$$

Q10	Suggested Answers
(a)	Unbiased estimate of population mean,
	$\overline{t} = \frac{543}{30} = 18.1$
	Unbiased estimate of population variance,
	$s^{2} = \frac{1}{29} \left[12722 - \frac{543^{2}}{30} \right] = 99.783 \text{ (5 s.f.)} = 99.8 \text{ (3 s.f.)}$
(b)	Let μ be the population mean bus arrival times after the scheduled pick-up time
	$H_0: \mu = 15$
	$H_1: \mu > 15$
	Test at 5% level of significance
	Under H_0 , since $n = 30$ is large, by the Central Limit Theorem,
	$\overline{T} \sim N\left(15, \frac{99.783}{30}\right)$ approximately
	Test statistic: $Z = \frac{\overline{T} - 15}{\sqrt{\frac{99.783}{30}}} \sim N(0, 1)$ approximately
	p-value = 0.044586 or $z_{\text{cal}} = \frac{18.1 - 15}{\sqrt{\frac{99.783}{30}}} = 1.6998(5 \text{ s.f.})$
	Since p-value ≤ 0.05 (or $z_{\text{cal}} \geq 1.6449$), we reject H_0 .
	There is sufficient evidence at 5% level of significance to conclude that the administration manager should agree with the feedback from teachers and students.
(c)	Test H_0 : $\mu = 15$
	$H_1: \mu \neq 15$
	at 10 % level of significance
	Under H_0 , since $n = 40$ is large, by the Central Limit Theorem,
	$\overline{T} \sim N\left(15, \frac{99.783}{40}\right)$ approximately
	Test statistic:
	$Z = \frac{\overline{T} - 15}{\sqrt{\frac{99.783}{40}}} \sim N(0, 1) \text{ approximately}$
	Since H_0 is not rejected, \underline{z} -value does not lie in critical region
	$-1.6449 < \frac{\overline{t} - 15}{\sqrt{\frac{99.783}{40}}} < 1.6449$
	$12.402 < \frac{v}{t} < 17.598$ (5 s.f.)
	$12.4 < \overline{t} < 17.6$ (3 s.f.)

(d) The sample of 40 buses is a **random sample**.

There is **no change in the unbiased estimate of the population variance** bus

There is **no change in the unbiased estimate of the population variance** bus arrival times after the scheduled pick-up time after the bus company claims to have made changes to its operation.

(a) Since (\bar{t}, \bar{h}) lies on the regression line,

$$\bar{h} = 1.6393\bar{t} + 11.475$$

$$\frac{k+273.2}{8}$$
 = 1.6393(17.5)+11.475

$$k = 48.1$$
 (to 1 d.p.)

(b) For $h = a\sqrt[3]{t} + b$, r = 0.98999

19.2⁻

For $h = c\sqrt{t} + d$, r = 0.98615

Since r-value for $h = a\sqrt[3]{t} + b$ is closer to 1 than the r-value for $h = c\sqrt{t} + d$, the linear correlation between h and $\sqrt[3]{t}$ is stronger.

Using GC, the equation is $h = 31.684\sqrt[3]{t} - 40.512$ (5 s.f.)

$$h = 31.7 \sqrt[3]{t} - 40.5$$
 (3 s.f.)

1	L2	Lз	L4	Ls	3	LinReg
7	19.2	1.9129			г	
10	25.4	2.1544			ı	y=ax+b
10 13	36.5	2.3513			ı	a=31.6842129
16	41.4	2.5198			ı	
19	45	2.6684			ı	b=-40.51180466
22	48.1	2.802			ı	r ² =0.9800849251
16 19 22 25 28	51.9	2.924			ı	r=0.9899923864
28	53.8	3.0366			1	1-0.7077723004
					ı	
.o=L1 ¹						

(c) Since the age of 2 months ($t \approx 60$) is out of the data range of t, the estimate is not reliable.

53.8 (3.04, 53.8)

	NORMAL FLOAT AUTO REAL RADIAN MP						
(e)	Value of residual = $53.8 - (31.684\sqrt[3]{28} - 40.512) = -1.90 (3 \text{ s.f.})$						
	(observed-value – predicted value)						
(f)	The values of the residuals could be positive or negative, and adding them up						
	might cause the values to cancel out. By squaring the residuals, all the values will						
	be positive.						
	The sum of squares of residuals has to be minimised in order to find the least						
	squares regression line.						