蒲丰投针问题研究

刘晗桐 171180526

摘要

本文简单介绍了蒲丰投针实验,使用Unity游戏引擎对实验进行了大数据模拟,并进行了结果的分析与总结

理论背景

以M表示针的中点,x表示M与最近的一条平行线的距离, φ 表示投落针与平行线的夹角,以a表示两条平行线的距离,那么显然 $0 < x \leq \frac{a}{2}$,为了使得投针可以与平行线相交,需要满足 $x \leq sin\varphi \frac{l}{2}$,满足这一关系式的区域记为D,阴影部分标记如下:

根据积分的几何意义,可以计算得出投针落在矩形区域的概率p:

$$p=rac{D$$
的面积 $}{$ 总落点的面积 $}=rac{\int_0^\pirac{l}{2}sinarphi dx}{rac{1}{2}a\pi}=rac{2l}{a\pi}$

编程测试

根据上述原理,使用 Unity 物理引擎在 Android 上搭建模拟投针平台,利用了Unity的**重力场模拟**以及**碰撞感应功能**,由于项目文件过大旦多数为软件材质内容,综合考虑,可以通过以下两种方式进行体验:

- 直接下载安卓 apk 安装包后在安卓系统手机上安装运行,点击下载
- 查看完整运行过程动图gif, 点击查看
- 进入Github仓库地址, clone 项目到本地后利用Unity软件自行构建运行

运行演示结果 | 测试于HUAWEI NOVA2

限定针的长度为l=2500,平行线间距为a=3000,满足l< a,限于 Unity游戏引擎3D效果实现的屏幕刷新率限制,取投针次数从 10~1000000 ,验证此方案的可行性,得到测试结果表格和图表见下:

投针次数	碰撞次数	估计的 π值
10	6	2.7778
100	64	2.6042
1000	538	3.0979
	2678	3.1118
10000	10000	3.1264
30000	16033	3.1186
50000	26724	3.1183
100000	61529	3.1422
150000	79408	3.1483

结果分析

使用Matlab绘图,直观展示随着投针次数的增加,逼近 π 值的精度变化:

可以看到,随着抛掷次数量级的上升,精度也在不断缩小,十万次以上的抛掷尝试可以得到圆周率 π 的小数点后两位 3.14,相信更高量级的抛掷次数将会得到更加精确的结果,受限于计算机性能和时间的限制,不再做尝试。