MOM-based robust nonlinear anomaly detection for multispectral and hyperspectral data

Gaspar Massiot

joint work with Sidonie Lefebvre, Matthieu Lerasle, Zoltán Szabó, Guillaume Lecué and Eric Moulines.

50èmes Journées de Statistique de la SFdS Paris Saclay

ONERA Plane dataset - Multispectral dataset

Simulated multispectral aircraft signatures by ONERA

Distance target/sensor ⇒ low resolution

SIR faible résolution 16×16

Kernel methods

source: reddit.com/r/MachineLearning/

Kernel methods

- X ambient space
- H is a reproducing kernel Hilbert space (RKHS)
- $\exists ! K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that $K(\cdot, x) \in \mathcal{H}$ for all $x \in \mathcal{H}$ and $f(x) = \langle K(\cdot, x), f \rangle_{\mathcal{H}}$ for all $f \in \mathcal{H}$, $x \in \mathcal{X}$.
- K is called the reproducing kernel of H as

$$K(x,y) = \langle K(\cdot,x), K(\cdot,y) \rangle_{\mathfrak{H}}$$

and is symmetric and positive definite.

• $\mathcal{H} = \overline{\text{span}\{K(\cdot,x):x\in\mathcal{X}\}}$ (linear span of kernel functions)

Mean embedding* of prob. meas. ℙ

$$\mu_{\mathbb{P}} = \int_{\mathfrak{X}} K(\cdot, x) d\mathbb{P}(x) \in \mathfrak{H}_{K},$$

- $\mu_{\mathbb{P}}$ is well defined
 - \triangleright when $\int_{\mathcal{X}} \sqrt{K(x,x)} d\mathbb{P}(x) < \infty$,
 - ▶ specifically if K is bounded, example: Gaussian kernel.
 - \Rightarrow representation of a prob. dist. on \mathcal{X} as a point in $\mathcal{H}_{\mathcal{K}}$.
- Mean reproducing property:

$$\mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}} f(\boldsymbol{x}) = \langle f, \mu_{\mathbb{P}} \rangle_{\mathcal{H}_{K}} \quad (\forall f \in \mathcal{H}_{K})$$

^{*}Berlinet & Thomas-Agnan, 2004; Smola et al., 2007

Maximum mean discrepancy (MMD)*

$$\mathsf{MMD}_{\mathcal{K}}(\mathbb{P},\mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}_{\mathcal{K}}}.$$

 \Rightarrow (semi-)metric on distributions on \mathfrak{X} .

• Gretton et al. (2012): Unbiased estimation

$$\mathsf{MMD}_u(\mathbb{P},\mathbb{Q}) = \frac{1}{N(N-1)} \sum_{i \neq i=1}^N h(z_i,z_i),$$

where
$$z_i = (x_i, y_i)$$
 and $h(z_i, z_j) = K(x_i, x_j) + K(y_i, y_j) - K(x_i, y_j) - K(x_j, y_i)$.

^{*}Smola et al., 2007; Gretton et al., 2012

Median-Of-meaNs (MON) intuition

 Intuitively, MONs* replace the linear operation of expectation with the median of averages taken over non-overlapping blocks of the data, in order to get a robust estimate thanks to the median step.

Median Of meaN (MON)

$$\mathsf{MON}_Q[f] := \max_{q \in [Q]} \left\{ \mathbb{P}_{B_q} f \right\} = \max_{q \in [Q]} \left\{ \left\langle f, \mu_{B_q} \right\rangle_{\mathfrak{H}_K} \right\}.$$

ONERA

^{*}Jerrum et al., 1986; Lugosi & Mendelson, 2017

ullet Robust estimation of the mean embedding based on MON: $\hat{\mu}_{\mathbb{P},Q}$

$$\hat{\mu}_{\mathbb{P},Q} = \hat{\mu}_{\mathbb{P},Q}(x_{1:N}) \in \underset{f \in \mathcal{H}_K}{\operatorname{argmin}} \underset{g \in \mathcal{H}_K}{\sup} J(f,g),$$

where
$$J(f,g) = \mathsf{MON}_Q \left[\left\| f - K(\cdot,x) \right\|_K^2 - \left\| g - K(\cdot,x) \right\|_K^2 \right]$$
.

• Robust estimation of the MMD based on MON: $\widehat{\mathsf{MMD}}_Q(\mathbb{P},\mathbb{Q})$:

$$\widehat{\mathsf{MMD}}_Q(\mathbb{P},\mathbb{Q}) = \sup_{f \in \mathcal{B}_K} \max_{q \in [Q]} \left\{ \left\langle f, \mu_{B_q,\mathbb{P}} - \mu_{B_q,\mathbb{Q}} \right\rangle_K \right\}.$$

where $\mathcal{B}_K = \{ f \in \mathcal{H}_K : ||f||_K \leq 1 \}.$

Outlier contamination

- Mean embedding:
 - \triangleright N_c elements $(x_{n_i})_{i=1}^{N_c}$ of the sample are arbitrarily corrupted.
- MMD:
 - $\triangleright \{(x_{n_i}, y_{n_i})\}_{i=1}^{N_c}$ can be contaminated.
- The number of corrupted samples can be (almost) half of the number of blocks: $\exists \delta \in (0, 1/2]$ such that $N_c \leq Q(1/2 \delta)$.
- $\delta = \frac{1}{2} \Rightarrow$ no contamination.

Theorem (Consistency and outlier robustness)

Assume $\Sigma_{\mathbb{P}}, \Sigma_{\mathbb{Q}} \in \mathcal{L}_1(\mathcal{H}_K)$. Let $c_1 = 2\left(1 + \sqrt{2}\right)$. Then with prob. at least $1 - e^{-\frac{Q\delta^2}{18}}$

$$\left\|\hat{\mu}_{\mathbb{P},Q} - \mu_{\mathbb{P}}\right\|_{\mathcal{K}} \leq c_{1} \max\left(\sqrt{\frac{3\left\|\Sigma_{\mathbb{P}}\right\| Q}{\delta N}}, \frac{12}{\delta}\sqrt{\frac{\mathsf{Tr}\left(\Sigma_{\mathbb{P}}\right)}{N}}\right)$$

and

$$\begin{split} \left| \widehat{\textit{MMD}}_{\textit{Q}}(\mathbb{P}, \mathbb{Q}) - \textit{MMD}_{\textit{Q}}(\mathbb{P}, \mathbb{Q}) \right| \leq \\ \leq 2 \max \left(\sqrt{\frac{3 \left(\|\Sigma_{\mathbb{P}}\| + \|\Sigma_{\mathbb{Q}}\| \right) \textit{Q}}{\delta \textit{N}}} \frac{12}{\delta} \sqrt{\frac{\text{Tr} \left(\Sigma_{\mathbb{P}} \right) + \text{Tr} \left(\Sigma_{\mathbb{Q}} \right)}{\textit{N}}} \right). \end{split}$$

Pixel patches, plane in the middle

Plane + noise + contamination

Approximation of the null distribution

Detected anomalies

Anomaly detection using MMD_u

Anomaly detection using MONK estimator

Conclusion

- New outlier-robust mean embedding and MMD estimators.
- Obtained estimators
 - obey optimal sub-Gaussian deviation bounds
 - are robust to contamination

Lerasle, M., Szabó, Z., Lecué, G., Massiot, G., & Moulines, E. (2018). MONK – Outlier-Robust Mean Embedding Estimation by Median-of-Means. *arXiv preprint arXiv:1802.04784*.

Kernel methods

- Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.
- Steinwart, I., & Christmann, A. (2008). Support vector machines. Springer.

Mean embedding

Muandet, K., Fukumizu, K., Sriperumbudur, B., & Schölkopf, B. (2017). Kernel mean embedding of distributions: A review and beyond. *Foundations and Trends in Machine Learning*, 10(1-2), 1-141.

MOM / MON

Lugosi, G., & Mendelson, S. (2017). Sub-Gaussian estimators of the mean of a random vector. *To appear in Ann. Statist. arXiv preprint arXiv:1702.00482.*