Optymalizacja wykorzystania materiału w procesie rozkroju rur

Jakub Pelczar

$\begin{array}{c} 5 \text{ marca } 2017 \\ \text{v} 0.4.1 \end{array}$

Spis treści

1	Wst	tęp		3
2	Kna	apsack	Problem - Problem plecakowy	4
	2.1	Zastos	sowanie	4
	2.2	Różno	prodność problemu plecakowego	4
	2.3		we rozwiązania	7
		2.3.1	Metoda podziału i ograniczeń	8
		2.3.2	Programowanie dynamiczne	11
3	Cut	ting S	tock Problem - Problem optymalnego rozkroju	14
	3.1	_	da "Delayed Column Generation"	14
		3.1.1	Wprowadzenie	14
		3.1.2	Algorytm	17
		3.1.3	Metody użyte w implementacji	19
		3.1.4	Przykład	20
		3.1.5	Podsumowanie	23
	3.2	Metod	da "Brutal Force"	24
		3.2.1	Algorytm wyjściowy	24
		3.2.2	Rozszerzenie o szerokość cięcia	25
		3.2.3	Rozszerzenie o wiele długości bazowych	26
		3.2.4	Rozszerzenie o cenę materiału wsadowego	26
		3.2.5	Przykład	26
		3.2.6	Podsumowanie	28
4	Opi	$_{ m s}$ impl	ementacji	29
	4.1	_		32
	4.2		X	33
	4.3		1	34

5	Wyniki											36									
	5.1	Porówna	nie																		36
	5.2	Wnioski																			42
6	Zak	ończenie																			43

1 Wstęp

Tematem niniejszej pracy jest "Optymalizacja wykorzystania materiału w procesie rozkroju rur". W skład rozwiązania omawianego tytułu wchodzi rozwiązanie problemu optymalnego rozkroju (ang. "Cutting Stock Problem"). Uogólnionym przypadkiem tego zagadnienia jest problem plecakowy (ang. "Knapsack Problem").

Motywacją niniejszej pracy jest szerokie zastosowanie problemu optymalnego rozkroju w przemyśle. Rozkrój rur jest problemem jednowymiarowym wykorzystywanym między innymi w procesie wyrobu krzeseł w trakcie podziału elementów na podstawę krzesła. Typowym przykładem procesu rozkroju jednowymiarowgo jest podział rolki papieru w przemyśle papierniczym. Dwuwymiarowy problem rozkroju jest wykorzystywany w trakcie wykroju elementów z arkuszów blachy. Uogólnienie zagadnienia do problemu plecakowego znajduje zastosowanie w wielu dziedzinach życia takich jak transport oraz kryptografia.

Celem niniejszej pracy jest stworzenie programu obliczającego problem optymalnego rozkroju dwiema metodami: brutalnej siły oraz opóźnionej generacji kolumn. Intencją opracowania tematu jest również porównanie obu metod i określenie ich przydatności w procesie technologicznym.

Rozdział pierwszy wprowadza temat problemu plecakowego. Opisuje on jego zastosowanie oraz podaje przykładowe rozwiązanie. Temat ten jest istontny w kontekście problemu optymalnego rozkroju, gdyż jest to ogólny problemu optymalnego rozkroju.

Rozdział drugi opisuje problem optymalnego rozkroju. Opisuje on podstawy teoretyczne oraz zastosowanie praktyczne zadanego problemu. Jest on podzielony na podrozdziały które kolejno opisują rozwiązanie problemu metodą opóźnionej generacji kolumn oraz brutalnej siły. Metody te znacznie się od siebie różnią. Pierwsza z nich bazuje na obliczeniach matematycznych, natomiast druga na intuicyjnej definicji problemu.

Rozdział trzeci opisuje sposób implementacji programu użytego do generacji statystyk porównania algorytmów oraz programu możliwego do wykorzystania przez użytkownika w celu otrzymania schematu rozkroju zadanym algorytmem.

Rozdział czwarty opisuje wyniki uzyskane eksperymentalnie z porównania wykonania obu algorytmów. Rozdział ten zawiera również przykładowe rozwiązania uzyskane w trakcie przeprowadzania eksperymentu.

2 Knapsack Problem - Problem plecakowy

Problem plecakowy jest zagadnieniem z zakresu optymalizacji. Problem ten swoją nazwę wziął z analogii do rzeczywistego problemu pakowania plecaka. Rozwiązując go zarówno w praktyce jak i teorii trzeba zachować reguły określające ładowność plecaka dotyczące objętości i nośności plecaka. "Knapsack Problem" zaczął być intensywnie badany po pionierskiej pracy Dantziga[5] w późnych latach 50 XX wieku. Znalazł on natychmiast zastosowanie w przemyśle oraz w zarządzaniu finansami. Z teoretycznego punktu widzenia, problem plecakowy często występuję jako relaksacja różnorodnych problemów programowania całkowitoliczbowego[12].

2.1 Zastosowanie

Problem plecakowy stosowany jest nie tylko w sytuacji wynikającej bezpośrednio z nazwy. Znajduje on zastosowanie w wielu dziedzinach życia oraz nauki. Diffi i Helman[6] w 1976 roku oraz Merkle i Helman[11] w 1978 roku zaproponowali problem plecakowy jako podstawę do enkrypcji kluczy prywatnych. Jednakże klucze oparte na tym algorytmie w latach późniejszych zostały złamane przez środowisko kryptograficzne i jego miejsce zajęły standardy które są bardziej odporne na złamanie (przykładowo XTR).

"Knapsack Problem" jest stosowany również podczas załadunku kontenerów służacych do przewozu materiałów drogą morską. Ładowność oraz gabaryty ładowanych elementów są ograniczane przez budowę i wytrzymałość kontenera.

Problem ten stosowany jest również w dziedzinie finansów. Jest on podstawowym narzędziem do optymalizacji portfela inwestycyjnego. Poprzez uogólnienie i modyfikacje problemu plecakowego zjawiska ekonomiczne mogą być modelowane z większą dokładnością. Przykładowo możliwe jest zakupienie 0, 1, 2 lub więcej akcji inwestycyjnych, a zakup kolejnych akcji może przynieść obniżenie przychodu.

Wiele problemów związanych z planowaniem może być przyrównana do problemu plecakowego, dla przykładu czas wykonywania operacji na maszynie jest zasobem deficytowym. Jest on szczególnie uwydatniony gdy od aktywności maszyny zależy zysk przedsiębiorstwa. Poprzez rozwiązanie problemu plecakowego możliwe jest przewidzenie zapotrzebowania na materiały podaczas procesu tak aby warunki zamówienia zostały spełnione[3].

Kolejnym zagadnieniem wynikającym z problemu plecakowego jest problem optymalnego rozkroju, zostanie on przedstawiony w rozdziale 3.

2.2 Różnorodność problemu plecakowego

Wszystkie elementy z rodziny tego problemu wymagają pewnego zestawu elementów które mogą zostać wybrane w taki sposób aby zysk został zmak-

symalizowany, a pojemość placaka lub wielu plecaków nie została przekroczona. Wszystkie typy problemu należą do rodziny problemów \mathcal{NP} -Trudnych co oznacza, że mozliwe jest rozwiązanie problemu z użyciem algorytmów wielomianowych. Możliwe są różne warinaty problemu zależne od rozmieszczenia elementów oraz ilości plecaków[12]:

• Problem plecakowy 0-1 - każdy element może być wybrany tylko raz. Problem polega na wyborze n elementów dla których suma zysków p_j jest największa, bez konieczności osiągnięcia całkowitej pojemności c przy objętości w_j elementu. Może być sformułowany jako problem maksymalizacji:

maksymalizacja
$$\sum_{j=1}^{n} p_j x_j,$$
 w odniesieniu do
$$\sum_{j=1}^{n} w_j x_j \leq c,$$

$$x_j \in \{0,1\}, \qquad j=1,\dots,n$$

gdzie x_j jest wartością binarną. Jeżeli $x_j = 1$ wtedy j-ty element powinien znaleźć się w plecaku, w innym przypadku $x_j = 0$.

• Ograniczony problem plecakowy - każdy element może być wybrany ograniczoną ilość razy. Zmianą w obecnym problemie względem problemu 0-1 jest ograniczona m_i ilość elementów j:

maksymalizacja
$$\sum_{j=1}^{n} p_j x_j,$$
 w odniesieniu do
$$\sum_{j=1}^{n} w_j x_j \leq c,$$

$$x_j \in \{0, 1 \dots, m_j\}, \quad j = 1, \dots, n$$

Nieograniczony problem plecakowy - jest rozszerzeniem problemu ograniczonego o nielimitowaną liczbę dostępnych elementów:

maksymalizacja
$$\sum_{j=1}^{n} p_{j}x_{j},$$
 w odniesieniu do
$$\sum_{j=1}^{n} w_{j}x_{j} \leq c,$$

$$x_{j} \in N_{0}, \qquad j=1,\ldots,n$$

$$(2.3)$$

Każda zmienna x_j w metodzie niograniczonej zostanie ograniczona poprzez pojemność c, gdy waga każdego z elementów jest równa przynajmniej jeden. W ogólnym przypadku transformacja problemu nieograniczonego w ograniczony nie przynosi korzyści

• Problem plecakowy wielokrotnego wyboru - elementy powinny być wybierane z klas rozłącznych. Problem ten jest generalizacją problemu 0-1. Możliwy jest wybór dokładnie jednego elementu j z każdej grupy N_i , $i = 1, \ldots, k$:

maksymalizacja
$$\sum_{i=1}^k \sum_{j \in N_i} p_{ij} x_{ij},$$
 w odniesieniu do
$$\sum_{i=1}^k \sum_{j \in N_i} w_{ij} x_{ij} \leq c,$$

$$\sum_{j \in N_i} x_{ij} = 1, \qquad i = 1, \dots, k,$$

$$x_j \in \{0, 1\}, \qquad i = 1, \dots, k, \quad j \in N_i.$$

Zmienna binarna $x_{ij}=1$ określa że j-ty element został wybrany z i-tej grupy. Ograniczenie $\sum_{j\in N_i} x_{ij}=1, \quad i=1,\ldots,k$ wymusza wybór dokładnie jednego elementu z każdej grupy.

• Wielokrotny problem plecakowy - możliwość wypełnienia wielu pleckaków. Jeśli jest możliwość załadowania n elmentów do m pleckaów o różnych pojemnościach c_i w taki sposób że zysk będzie jak największy:

maksymalizacja
$$\sum_{i=1}^k \sum_{j \in N_i} p_{ij} x_{ij},$$
 w odniesieniu do
$$\sum_{j=1}^n w_j x_{ij} \leq c_i, \qquad i=1,\dots,m$$

$$\sum_{j \in N_i} x_{ij} \leq 1, \qquad i=1,\dots,k,$$

$$x_j \in \{0,1\}, \qquad i=1,\dots,m, \quad j=1,\dots,n.$$
 (2.5)

Zmienna $x_{ij}=1$ określa że j-ty element powinien zostać umiesczony w i-tym plecaku, podczas gdy ogranicznie $\sum_{j=1}^n w_{ij} x_{ij} \leq c_i$ zapewnia że restrykcja dotycząca pojemności plecaka zostanie zachowana. Ogranicznie $\sum_{j\in N_i} x_{ij} \leq 1$ zapewnia że każdy element zostanie wybrany tylko raz.

ullet Bin-packing problem - bardzo często spotykana wersja problemu plecakowego. Problem ten polega na umieszczeniu n elementów w jak

najmniejszej liczbie opakowań:

maksymalizacja
$$\sum_{i=1}^n y_i$$
 w odniesieniu do
$$\sum_{j=1}^n w_j x_{ij} \leq c y_i, \qquad \qquad i=1,\dots,n,$$

$$\sum_{i=1}^n x_{ij} = 1, \qquad \qquad j=1,\dots,n,$$

$$y_i \in \{0,1\}, \qquad \qquad i=1,\dots,n,$$

$$x_{ij} \in \{0,1\} \qquad \qquad i=1,\dots,m, \qquad j=1,\dots,n,$$

$$(2.6)$$

gdzie y_i określa czy i-te opakowanie zostało użyte, a x_{ij} stanowi czy j-ty element powinen zostać umieszcozny w i-tym opakowaniu

 Welokrotnie ograniczony problem plecakowy - najbardziej ogólny typ, który jest problemem programowania całkowitoliczbowego z dodatnimi współczynnikami:

maksymalizacja
$$\sum_{j=1}^{n} p_j x_j$$
,
w odniesieniu do $\sum_{j=1}^{n} w_j x_j \leq c_i$, $i=1,\ldots,m$, $x_j \in N_0$, $j=1,\ldots,n$.

2.3 Możliwe rozwiązania

Problem plecakowy należy do grupy problemów \mathcal{NP} -Trudnych. Rozwiązanie problemów z tej grupy jest co najmniej tak trudne, jak rozwiązanie każdego problemu z całej klasy \mathcal{NP} . Problem \mathcal{NP} -Trudny to problem obliczeniowy dla którego znalezienie rozwiązania problemu możliwe jest z wielomianową złożonościa obliczeniową. Problemy \mathcal{NP} -Trudne obejmują zarówno problemy decyzyjne jak również problemy przeszukiwania czy też problemy optymalizacyjne.

Rozwiązanie problemu plecakowego jest możliwe przy użyciu różnych metod:

- Metoda podziału i ograniczeń Metoda ta często jest stosowana do problemu plecakowego od momentu gdy Kolesar [10] zaprezentował pierwszy algorytm w 1967 roku.
- Programownaie dynamiczne Gdy zostaną dodane warunki brzegowe wtedy algorytm ten staje się "zaawansowaną" formą metody podziału i ograniczeń.

 Relaksacja przestrzeni stanów - relaksacja programowania dynamicznego gdzie współczynniki są skalowane przez pewną stałą wartość.

2.3.1 Metoda podziału i ograniczeń

Algorytm ten polega na wypisaniu wszystkich możliwych rozwiązań używając struktury drzewa. Algorytm przechodzi kolejno po gałęziach które reprezentują podzbiory rozwiązania. Każda gałąź jest sprawdzana zadanymi warunkami brzegowymi i zostaje odrzucona jeśli nie poprawia rozwiązania. Przedstawione zostanie rozwiązanie nieograniczonego problemu plecakowego (2.3) [4]. Współczynniki $w_1, \ldots, w_m, p_1, \ldots, p_m$ oraz c są nieujemne. Stosunek p_j/w_j jest wartością jednej jednostki długości j-tego elementu. Stosunek ten jest nazywany wydajnością zmiennej x_j . Pierwszym krokiem algorytmu jest posortowanie zmiennych w porządku malęjącym względem wydajności:

$$p_1/w_1 \ge p_2/w_2 \ge \dots \ge p_m/w_m$$
 (2.8)

Dla posortowanych elementów każde rozwiązanie optymalne (2.3) spełnia warunek:

$$c - \sum_{i=1}^{m} w_j x_j < w_m \tag{2.9}$$

Głównym elementem algorytmu jest stworzenie drzewa wyliczeń oraz przeprowadzenie jego redukcji. Przykładowo dla problemu który zawiera 13 rozwiązań:

maksymalizacja
$$4x_1+5x_2+5x_3+2x_4$$
w odniesieniu do
$$33x_1+49x_2+51x_3+22x_4\leq 120$$

$$x_i\in N_0$$

drzewo będzie miało 13 liści (rys. 2.1). Jeśli dany węzeł posiada więcej niż jedno dziecko, wówczas potomek o większej przechowywanej wartości zostaje umieszczony wyżej. Każdy następny węzeł jest obliczany według wzoru:

$$x_j = \lfloor (c - \sum_{i=1}^{j-1} w_i x_i) / w_j \rfloor \qquad i = 1, 2, \dots, m$$

$$x_1 = \lfloor c / w_1 \rfloor$$
(2.10)

Podczas poszukiwania węzłów które nie mogą polepszyć rozwiązania i gałęzi które dają szansę na rozwiązanie optymalne x_1, x_2, \ldots, x_m ustawione zostaje k=m-1. Jeśli zachodzi taka potrzeba zmienna k jest dekrementowana dopóki nie zostanie znalezione takie x_k , że $x_k>0$. Wówczas $x_k=x_{k-1}$, a wartości $x_{k+1}, x_{k+2}, \ldots, x_m$ są otrzymywane ze wzoru (2.10).

Dla bieżącego rozwiązania x_1^*, \ldots, x_m^* zachodzi $\sum_{i=1}^m p_i x_i^* = M$. Maksymalne k takie, że $k \leq m-1$ oraz $x_k > 0$ zostaje określone przechodząc od

Rysunek 2.1: Drzewo wyliczeń możliwych rozwiązań

węzłów x_1, x_2, \ldots, x_m w kierunku korzenia. Podobnie jak wcześniej, niech $\bar{x}_i = x_i$ dla $i = 1, 2, \ldots, k-1$ oraz $\bar{x}_k = x_k - 1$ będą zmiennymi kandydującymi do rozwiązania. Aby okreslić czy \bar{x}_i polepszy rozwiązanie x_i^* . Zgodnie z (2.8) dla każdej zmiennej $x_{k+1}, x_{k+2}, \ldots, x_m$ wydajność wynosi maksymalnie p_{k+1}/w_{k+1} , tak więc

$$\sum_{i=k+1}^{m} p_i \bar{x}_i \le \frac{p_{k+1}}{w_{k+1}} \sum_{i=k+1}^{m} w_i \bar{x}_i$$

połączone razem z (2.3) zwraca:

$$\sum_{i=1}^{m} p_i \bar{x}_i \le \sum_{i=1}^{m} w_i \bar{x}_i + \frac{p_i}{w_i} (c - \sum_{i=1}^{k} w_i \bar{x}_i). \tag{2.11}$$

Zgodnie z zasadami drzewa wyliczeń, nierówność

$$\sum_{i=1}^{k} p_x \bar{x}_i + \frac{p_{k+1}}{w_{k+1}} (c - \sum_{i=1}^{k} w_i \bar{x}_i) \le M$$
 (2.12)

określa że ścieżka $\bar{x}_1, \ldots, \bar{x}_k$ jest niegorsza niż pozostałe. Jeśli wszystkie współczynniki p_1, \ldots, p_m są dodatnimi liczbami całkowitymi, wówczas również M jest liczbą całkowitą, a słaba nierówność (2.12) może zostać zastąpiona mocną

$$\sum_{i=1}^{k} p_x \bar{x}_i + \frac{p_{k+1}}{w_{k+1}} (c - \sum_{i=1}^{k} w_i \bar{x}_i) < M + 1$$
 (2.13)

Dla wcześniejszego przykładu powyższy krok mający na celu redukcję drzewa przyjmuje postać:

$$x_1 = \lfloor 120/33 \rfloor = 3$$

 $x_2 = \lfloor (120 - 99)/49 \rfloor = 0$
 $x_3 = \lfloor (120 - 99)/51 \rfloor = 0$
 $x_4 = \lfloor (120 - 99)/22 \rfloor = 0$

Z powyższego wynika że początkowe rozwiązanie to $x_1^*=3, x_2^*=x_3^*=x_4^*=0$ oraz M=12. Początkowo k=3, następnie występuje redukcja k dopóki nie zostanie znalezione takie k=1 dla którego istnieje $x_k>0$. Wówczas $x_1=3$ zostaje zaminione na $x_1=2$. Przed sprawdzeniem gałęzi $x_1=2$ przeprowadzony zostaje test (2.13) z k=1 oraz $\bar{x}_1=2$. Wówczas lewa strona nierówności wynosi

$$8 + \frac{5}{49}(120 - 66) = 13.5$$

i jest nie mniejsza niż M+1=13 z czego wynika że gałąź może być warta sprawdzenia. Następnie zostaje obliczona kolejna ścieżka

$$x_2 = \lfloor (120 - 66)/49 \rfloor = 1$$

 $x_3 = \lfloor (120 - 115)/51 \rfloor = 0$
 $x_4 = \lfloor (120 - 115)/22 \rfloor = 0$

Rysunek 2.2: Zredukowane drzewo wyliczeń możliwych rozwiązań

i zastąpuje ona poprzednie rozwiązanie $x_1^*=2, x_2^*=1, x_3^*=x_4^*=0$ oraz M=13. Powtórzony zostaje krok z redukcją k=3 dopóki nie zostanie znalezione takie k=2 dla którego istanieje $x_k>0$. Wówczas $x_2=1$ zostaje zamienione na $x_2=0$. Aby określić czy ścieżka $x_1=2, x_2=0$ jest warta sprawdzenia, zostaje przeprowadzony test (2.13) z k=2 oraz $\bar{x}_1=2, \bar{x}_2=0$. Lewa strona nierówności wynosi

$$8 + \frac{5}{51}(120 - 66) = 13.3$$

Jest ona mniejsza niż M+1=14, więc gałąź ta jest odcinana. Następnie k dalej jest zmniejszane, a kroki sa powtarzane. Dla $x_1=1$ wynik testu to 12.9<14, a dla $x_1=0$ wynik to 12.2<14 więc gałęzie te są odcinane. Tak więc optymalnym rozwiązaniem jest $x_1^*=2, x_2^*=1, x_3^*=x_4^*=0$. Drzewo wyliczeń zostało zredukowane do postaci rys. 2.2.

Jeśli odcięta jest gałąź $\bar{x}_1, \ldots, \bar{x}_k$ wówczas odcięta również zostaje pozostała część gałęzi bez przeprowadzania dodatkowych testów.

Algorytm dla metody podziału i ograniczeń do rozwiązania problemu plecakowego, został przedstawiony poniżej

2.3.2 Programowanie dynamiczne

Metoda ta używana jest w przypadku gdy problem można podzielić na małe podproblemy które mogą zostać rozwiązane rekursywnie. Rozwiązanie optymalne podproblemu jest również optymalnym rozwiązaniem problemu głównego. Przedstawione zostanie rozwiązanie problemu plecakowego rodzaju 0-1 [9].

Jeśli elementy są oznaczone jako $1, \ldots, n$ wtedy podproblem będzie odpowiedzialny za znalezienie optymalnego rozwiązania dla $S_k = \{1, 2, \ldots, k\}$. Niemożliwe jest opisanie rozwiązania końcowego S_n na podstawie podpro-

Algorytm 1 Metoda podziału i ograniczeń - problem plecakowy

```
1: M := 0
 2: k := 0
 3: for j := k+1 TO m do
4: x_j = \lfloor (c - \sum_{i=1}^{j-1} w_i x_i)/w_j \rfloor
 5{:}\ k:=m
 6: if \sum_{i=1}^{m} p_i x_i > M then
7: M := \sum_{i=1}^{m} p_i x_i
8: for j := 1 TO m do
                 x_j^* = x_j
10: if k = 1 then
11:
            stop
12: else
            k = k - 1
13:
14: if x_k = 0 then
            idź do linii 10
15:
16: else
17: x_k = x_k - 1
18: if !\sum_{i=1}^k p_x \bar{x}_i + \frac{p_{k+1}}{w_{k+1}} (c - \sum_{i=1}^k w_i \bar{x}_i) < M + 1 then
19: idź do linii 3
20: else
            idź do linii 10
21:
```

blemów S_k . Rekursywne sformułowanie podproblemu:

$$B[k, w] = \begin{cases} B[k-1, w] & \text{jeśli} \quad w_k > w, \\ max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{jeśli} \quad w_k \le w. \end{cases}$$
(2.14)

Z powyższego równania wynika że najlepszy podzbiór podproblemu S_k z całkowitą wagą w jest najlepszym podzbiorem dla S_{k-1} którego całkowita waga wymosi w lub jest najlepszym podzbiorem dla S_{k-1} którego całkowita waga wynosi $w-w_k$ plus k-ty element. Złożoność programowania dynamicznego to O(n*W). Algorytm jako dane wejściowe przyjmuje maksymalną wartość ciężaru W, oraz dwie listy: listę wag w_1, \ldots, w_n oraz odpowiadającą jej listę zysku b_1, \ldots, b_n .

Algorytm 2 Programowanie dynamiczne - problem plecakowy 0-1

```
1: for w := 0 \text{ TO W do}
         B[0,w] := 0
 2:
 3: \mathbf{for} \ i := 1 \ TO \ n \ \mathbf{do}
         B[i,0] := 0
 4:
    for i := 1 \text{ TO n do}
         \mathbf{for} \ w := 0 \ \mathrm{TO} \ \mathrm{W} \ \mathbf{do}
 6:
 7:
              if w_i \leq w then
                  if b_i + B[i-1, w-w_i] > B[i-1, w] then
 8:
                       B[i, w] := b_i + B[i - 1, w - w_i]
 9:
10:
                  else
                       B[i, w] := B[i - 1, w]
11:
12:
              else
                  B[i, w] := B[i - 1, w]
13:
```

3 Cutting Stock Problem - Problem optymalnego rozkroju

Problem optymalnego rozkroju jest problemem wykroju zadanej liczby elementów z wielu elementów podstawowych takich, jak rury, arkusze papieru lub metalu, w taki sposób aby zminimalizować niewykorzystany materiał (odpad). Jest to problem optymalizacyjny znajdujący zastosowanie głównie w przemyśle. W odniesieniu do złożoności obliczeniowej jest to problem z rodziny problemów \mathcal{NP} -Trudnych, który może zostać zredukowany do problemu plecakowego (rozdział 2). W rozdziale niniejszym zostanie opisany jednowymiarowy problem optymalnego rozkoroju.

3.1 Metoda "Delayed Column Generation"

Metoda ta została zparoponowana przez Gilmore'a i Gomorego w 1961 roku [7]. Gdy problem optymalnego rokroju zostanie sformułowany jako problem programowania całkowitoliczbowego wówczas liczba zmiennych wchodzących w skład równań powoduje że rozwiązanie jest nieosiąglane. Dla przykładu gdy podstawowa długość to 200 z której ma zostać wycięte 40 różnych elementów o długościach od 20 do 80 wówczas liczba różnych wzorców rozkroju może osiągnąć nawet 100 milionów. Czas potrzebny do przejścia po samych rozkrojach byłby niosiagalny. Metoda ta pozwala na ciągłą generację nowych rozwiązań. Jest ona również metodą która znosi restrykcję liczb całkowitych w trakcie obliczania wyniku, dlatego wynik zostaje zaokraglony w górę, co odnosi skutek w tym że jest produkowane więcej lub tyle samo elementów niż jest wymagane przez zlecenie. Wynikiem tej metody jest rozwiązanie najbliższe optymalnemu.

3.1.1 Wprowadzenie

Założeniem metody jest że zamówienie N_i elementów długości l_i , gdzie $i=1,2,\ldots,m$, wyciętych z rur długości początkowych L_1,L_2,\ldots,L_k , dla którego spełniony jest warunek, że isntiej takie j, że dla każdego i spełnina jest nierówność $L_j \geq l_i$. Całkowity koszt rozkrojów jest całkowitym kosztem użytych elementów podstawowych. Celem rozwiązania problemu jest otrzymanie tylu wykrojów ile jest wymaganych przez zamówienie przy jak najmniejszym koszcie. Warunkiem koniecznym aby zamówinie zostało zrealizowane jest nierówność

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_i \ge N_i, \quad i = 1, \dots, m$$

gdzie a_{ij} oznacza krotność długości l_i w danym schemacie rozkroju x_i . Funkcja kosztu która powinna zostać zminimalizowana wynosi

$$c_1 x_1 + c_2 x_2 + \dots + c_n x_n \tag{3.1}$$

gdzie c_i to koszt długości podstawowej, z której jest pobierany i-ty wykrój. Wprowadzenie dodatkowych zmiennych x_{n+1}, \ldots, x_{n+m} pozwalają opisać problem optymalnego rozkroju jako problem znalezienia takich liczb całkowitych x_1, \ldots, x_{n+m} spełniających

$$a_{i1}x_1 + \dots + a_{in}x_n - x_{n+i} = N_i,$$
 $i = 1, \dots, m$ (3.2)
 $x_j \ge 0,$ $j = 1, \dots, n+m$ (3.3)

$$x_i \ge 0, \qquad j = 1, \dots, n + m \tag{3.3}$$

dla których funkcja (3.1) jest jak najmniejsza.

Takie sformułowanie problemu jest niepraktyczne ze względu na ograniczenie do liczb całkowitych oraz z uwagi na fakt, iż n może być bardzo duże nawet gdy ilość k elementów podstawowych, jak i ilość m zamówionych długości jest umiarkowana.

Jeśli zostanie usunięty warunek całkowitoliczbowości rozwiązania wówczas rozwiązanie będzie należało do zbioru liczb rzeczywistych dodatnich. Rozwiazanie to może zostać zaokraglone w góre lecz wtedy może zostać wyprodukowane więcej elementów niż zostało zamówione. Rozwiązanie może być również zaokrąglane na przemina w górę i w dół, a elementy które nie spełniają założeń zamówienia są dodawane do wykrojów metodą ad hoc. Gdy wartości niecałkwite sa duże wówczas zaokraglenie jej nie wpływa znaczaco na koszt, jednak gdy wartości są rzędu dziesiątek wówczas zaokrąglenie ma znaczny wpływ na koszty. Omawiana metoda znosi ograniczenie dla liczb całkowitych.

Usuniety warunek całkowitoliczbowości odnosi skutek w tym, że zmienne dodatkowe moga zostać usunięte z równiania (3.2). Dopóki rozwiązania (3.2) oraz (3.3) zawierają dodatnie zmienne dodatkowe wówczas istnieje rozwiązanie o takim samym koszcie w którym nie zawierają się dodatnie zmienne dodatkowe. Niech $\bar{x}_1, \ldots, \bar{x}_n, \bar{x}_{n+1}, \ldots, \bar{x}_{n+m}$ będzie rozwiązaniem (3.2) oraz (3.3) dla którego $\bar{x}_{n+1} \neq 0$. Dla tego rozwiązania istnieje takie i, dla którego $a_{1i}\bar{x}_i \geq \bar{x}_{n+1}$, to jest, *i*-ty schemat rozkroju należy do rozwiązania w przynajmniej takiej liczebności aby zamówinie długości l_1 było spełnione. Jeśli nie istnieje takie i, które spełnia warunek, wówczas niech j-ta zmienna przyjmuje niezerową wartość \bar{x}_i oraz niech k-ty rozkrój będzie identyczny jak j-tyz wyłączeniem uwzględniania długości $l_1.$ W takim przypadku w k-tymrozkroju długość l_1 która została uwzględniona w j-tym rozkroju traktowana jest jako odpad. Rozwiązanie $\bar{x}_1', \ldots, \bar{x}_{n'}, \bar{x}_{n+1}', \ldots, \bar{x}_{n+m'}$ z tym samym kosztem co poprzednio zostało uzyskane poprzez przypisanie $\bar{x}_i' = \bar{x}_i$ dla $i \neq j, k, n+1: \bar{x}_{j}' = 0, \bar{x}_{k}' = \bar{x}_{k} + \bar{x}_{j} \text{ oraz } \bar{x}_{n+1}' = \bar{x}_{n+1} - a_{1j}\bar{x}_{j} \text{ po-}$ nieważ koszt zmiennych x_i oraz x_k jest taki sam. W nowym rozwiązaniu zmienna x_{n+1} została zredukowana. Jeśli nie została zmniejszona o tyle aby $a_{1i}\bar{x}_{i}' \geq \bar{x}_{n+1}'$ wtedy powyższy proces jest powtarzany, dopóki nie zostanie znalezione rozwiązanie w którym jedna zmienna nie spełnia nierówności. Jeśli $a_{1i}\bar{x}_i' \geq \bar{x}_{n+1}'$ jest spełnione, wówczas zmienna dodatkowa x_{n+1} może być traktowana jako zmienna z przechowywaną wartością 0 w rozwiązaniu z takim smaym kosztem jak powyższe rozwiązanie. Niech k-ty rozkrój będzie schematem identyczny jak j-ty rozkrój z wyłączeniem długości l_1 oraz niech określa nowe rozwiązanie $\bar{x}_1',\ldots,\bar{x}_n',\bar{x}_{n+1}',\ldots,\bar{x}_{n+m}'$ poprzez przypisanie $\bar{x}_i'=\bar{x}_i$ dla $i\neq j,k,n+1,\,\bar{x}_j'=\bar{x}_j-(\bar{x}_{n+1})/a_{1j},\bar{x}_k'=\bar{x}_k+(\bar{x}_{n+1})/a_{1j}$ oraz $\bar{x}_{n+1}'=0$. Ponieważ współczynniki odpowiedzialne za koszt są identyczne dla x_j oraz x_k , nowe rozwiązanie posiada taki sam koszt jak poprzednie rozwiązanie.

Zniesienie warunku całkowitoliczbowości rozwiązania pozawala pominąć zmienne dodatkowe, jednak w pewnych przypadkach jest zalecane pozostawienie ich. Bez zmiennych dodatkowych każde minimalne rozwiązanie zawiera zazwyczaj m schematów rozkroju, podczas gdy rozwiązanie ze zmiennymi dodatkowymi może zawierać mniej niż m rozkrojów. Opisywana metoda nie znosi zmiennych dodatkowych.

Metoda simplex jest stosowana do obliczenia dopuszczalnego rozwiązania (3.2) w odniesieniu do (3.3) dla którego (3.1) jest namjniejsze. Dla podstawowego rozwiązania (3.3) oraz (3.1), metodą simplex sprawdzane są inne zmienne które mogą zastąpić pewne zmienne w bierzącym rozwiązaniu. Niech bierzącym rozwiązniem będzie x_1, x_2, \ldots, x_m . Niech P_i będzie wektorem $[a_{1i}, a_{2i}, \ldots, a_{mi}]$ oraz niech c_i bedzie kosztem w (3.1) który jest powiązany ze zmienną x_i . Jeśli x_i jest zmienną dodatkową wówczas koszt wynosi 0, a wektor ma jedną niezerową współrzędną wynoszącą -1. Niech $P = [a_1, a_2, \ldots, a_m]$ określa nowy schemat rozkroju który używa długości bazowej L o koszcie c. Następnie niech A będzie macierzą której kolumnami są wektory P_1, \ldots, P_m . Ponieważ P_1, \ldots, P_m określą podstawę macierzy, pomocniczy wektor kolumnowy U spełnia układ równań

$$\mathbf{A} \cdot \mathbf{U} = \mathbf{P}.\tag{3.4}$$

Nowy schemat rozkroju może zostać użyty w rozwiązaniu jako jego ulepszenie wtedy i tylko wtedy, gdy

$$C \cdot U > c \tag{3.5}$$

gdzie C jest wektorem wierszowym ze współczynnikami c_1, c_2, \ldots, c_m . Jeśli wektor wierszowy $C \cdot A^{-1}$ posiada współczynniki b_1, \ldots, b_2 , wtedy z równań (3.4) oraz (3.5) można wywnioskować że istnieje taki rozkrój z elementu podstawowego o długości L, który może poprawić rozwiązanie wtedy i tylko wtedy, gdy istnieją nieujemne liczby całkowite a_1, \ldots, a_m spełniające nierówności

$$L \ge l_1 a_1 + \dots + l_m a_m \tag{3.6}$$

$$b_1 a_1 + \dots + b_m a_m > c. \tag{3.7}$$

 $C \cdot A^{-1}$ zawsze jest częścią rozwiązania normalnej metody simplex.

Jeśli istnieje taka nieujemna liczba całkowita a_i która spełnia nierówności (3.6) oraz (3.7), wówczas istnieje taka nieujemna liczba całkowita która jest

rozwiązaniem nierówności (3.6) dla której $b_1a_1+\cdots+b_ma_m$ jest maksymalne. Problem wyboru nowej zmiennej dla metody simplex może zostać wyrażony poprzez rozwiązanie k problemów pomocniczych (po jednym dla każdej długości bazowej), które są całkowitoliczbowymi problemami programowania liniowego. Problemy te mogą zostać rozwiązane poprzez programowanie dynamiczne lub metodą $ad\ hoc$.

Jako, że maksymalizacja $b_1a_1 + \cdots + b_ma_m$ w odniesieniu do (3.6) jest generalizacją problemu plecakowego, dlatego można rozwiązać go metoda opisaną przez Dantziga [5] (patrz rozdział 2.3.2). Niech $F_s(x)$ będzie wartością maksymalną $b_1a_1 + \cdots + b_sa_s$ w odniesieniu do nierówności $x \geq l_1a_1 + \cdots + l_sa_s$, wówczas

$$F_{s+1}(x) = \max_{r} \{ rb_{s+1} + F_s(x - rl_{s+1}) \},$$

gdzie r może zostać wybrane z zakresu $0 \le r \le \lfloor x/ls + 1 \rfloor$. Tylko jedno kompletne obliczenie wyrażenia programowania dynamicznego jest niezbędne aby wprowadzić nową zmienną do metody simplex. Gdy najdłuższym elementem jest L_1 , wówczas automatycznie zostaną obliczone pozostałe długości.

Programowanie dynamiczne często wymaga więcej obliczeń niż jest konieczne. Aby przyspieszyć proces możliwe jest użycie metody podobnej do zapropnowanej przez Dantziga [5] (patrz rozdział 3.2). Niech i_1, \ldots, i_m będą takie, że $b_{i1}/l_{i1} \geq b_{i1}/l_{i2} \geq \cdots \geq b_{im}/l_{im}$. Następnie obliczone zostają współczynniki $a_{i1} = [L/l_{i1}], a_{i2} = [(L-l_{i1}a_{i1})/l_{i2}], a_{i3} = [(L-(l_{i1}a_{i1}+l_{i2}a_{i2}))/l_{i3}],$ etc. Dopiero gdy proste metody nie dostarczą rozwiązania, powinny zostać użyte bardziej złożone metody, jak programowanie dynamiczne.

3.1.2 Algorytm

- 1. Określnie m początkowych rokrojów i ich kosztu przebiega w następujący sposób: dla każdego i wybranie długości bazowej L_j dla której $L_j > l_i$ i określenie i-tego rokroju jako wycięcia $a_{ii} = [L_j/l_i]$ elementów o długości l_i z L_j . Koszt i-tego rozkroju będzie równy cenie c_j długości L_j z której i-ta operacja wycina odcinki o długości l_i .
- 2. Uformowanie macierzy \boldsymbol{B}

gdzie a_{ii} jest ilością odcinków o długości l_i wyciętych w i-tym rozkroju z długości bazowej o koszcie c_j . Ostatnie m kolumn odpowiada kolejmnym rozkrojom. Dane te będą aktualizowane gdy zostanie znaleziony wynik który zmniejszy koszt rozwiązania.

Utworzenie m m+1 wymiarowych wektorów kolumnowych $S_1,...,S_m$ odnoszących się do zmiennych dodatkowych, gdzie S_i zawiera same zera z wyjątkiem wiersza (i+1) który przechowuje wartość -1. Stworzony również zostaje m+1 wymiarowy wektor kolumnowy N' który jako pierwszy element przyjmuje 0, a w następnych i-tych wierszach posiada wartości N_i .

Obliczenie macierzy B^{-1} która wynosi:

1	c_1/a_{11}	c_2/a_{22}		c_m/a_{mm}
0	$1/a_{11}$	0		0
0	0	$1/a_{22}$		0
:	÷	:	٠	:
0	0	0		$1/a_{mm}$

Niech $N = B^{-1} \cdot N'$. Sprawdzając czy pierwszy element z $B^{-1} \cdot P$ jest dodatni można określić czy istnieje możliwość polepszenia rozwiązania. Wektor kolumnowy P jest wektorem złożonym ze zmiennych nieużytych w bieżącym rozwiązaniu. Dla przykładu pierwszy element jest kosztem pomnożonym przez -1, a pozostałe m wierszy jest równe zmiennym a_{ij} .

- 3. Z powyższego puntku wynika że jeśli i-ta zmienna dodatkowa która nie wchodzi w skład rozwiązania, może ulepszyć rozwiązanie wtedy i tylko wtedy, gdy (i+1) element pierwszego wiersza B^{-1} jest ujemny.
- 4. Jeśli nie jest możliwe zmniejszenie kosztu rozwiązania należy określić czy wprowadznie nowego rozkroju poprawi rozwiązanie. Jest to możliwe poprzez sprawdznie czy dla L z kosztem c istnieje rozwiązanie nierówności (3.6) oraz (3.7), gdzie b_1, \ldots, b_m to ostatnie m elementów z pierwszego wiersza B^{-1} . Jeśli te nierówności nie posiadają rozwiązania dla dowolnej długości L_1, \ldots, L_k z kosztem odpowiednio c_1, \ldots, c_m , wówczas bieżące rozwiązanie jest optymalne. Rozwiązanie i jego koszt jest określone poprzez N, gdzie pierwszy wiersz odpowiada cenie, a pozostałe m wierszy jest, w kolejności, odpowiednimi wartościami m-tej kolumny z B^{-1} .

Jeśli nowy rozkrój zmniejsza koszt rozwiązania, zostaje uformawany nowy wektor P o współczynnikach, w kolejności $-c, a_1, a_2, \ldots, a_m$.

5. Wprowadznie zarówno dodatkowej zmiennej jak i nowego rozkroju może poprawić rozwiązanie. W obu przypadkach P będzie wektorem kolumnowym. Określenia nowych B^{-1} oraz N które opisują ulepszone rozwiązanie i jego koszt, zostaje osiągnięte poprzez przejście kroków 3, 4 oraz kontynujacje kroku 5 w nastepujący sposób: Obliczenie $B^{-1} \cdot P$

- niech wynikiem będą elementy $y_1, \ldots, y_m, y_{m+1}$ oraz niech elementami bierzącego wektora N będą $x_1, \ldots, x_m, x_{m+1}$. Ustalenie $i, i \geq 2$ dla którego $y_i > 0$, $x_i \geq 0$ oraz x_i/y_i jest najminiejsze, a następnie przypisanie tej wartości do zmiennej k.

Jeśli stosunek nie jest równy zeru, wówczas k-ty element wektora P, y_k , będzie elementem wokół którego zajdzie eliminacja Gaussa, odbywająca się równocześnie w B^{-1} , $B^{-1} \cdot P$ oraz N. Eliminacja ta przebiega dla macierzy $(m+1) \times (m+3)$ wymiarowej G uformowanej z B^{-1} poprzez dołączenie kolumn $B^{-1} \cdot P$ oraz N. Pierwsze m+1 kolumn G' formuje nową macierz B^{-1} , a kolumna m+2 jest nowym wektorem N. Zależność między kolumnami B^{-1} , a rozkrojami lub zmiennymi dodatkowymi jest aktualizowana poprzez usunięcie k-tej kolumny i podmienieniu jej na nowy rozkrój lub zmienną dodatkową.

3.1.3 Metody użyte w implementacji

Do uzyskania maksymalnego rozwiązania spełniającego nierówności (przykładowo 3.7 oraz 3.6) które zostanie przypisane do \boldsymbol{P} zostały użyte metody:

- 1. Dwufazowa metoda simplex metoda to znajduje zastosowanie gdy bierzące rozwiązanie układu jest ujemne. Zwykła metoda sympleks jest użyta w drugiej fazie omawianej procedury. Faza pierwsza polega na przeprowadzeniu obliczeń metodą simplex ze zmienioną funcją celu. Jeśli zmienna wchodząca w skład rozwiązania układu jest ujemna wówczas do danego równania dodawana jest dodatkowa sztuczna zmienna. Funkcja celu wówczas przyjmuje postać sumy zmiennych które zostały dodane jako sztuczne do równań o ujemnym rozwiązaniu. Po obliczeniu wartości fazy pierwszej, następuje ponowne przekształcenie funkcji celu i przeprowadzenie normlanej procedury sympleks, jako fazy 2.
- 2. Metoda podziału i ograniczeń metoda ta pozwala osiągnąć wyniki całkowite z rozwiązań układów nierówności. Polega ona na budowie drzewa binarnego. Każdy liść staje się rodzicem poprzez stworznie dwóch węzłów oraz sprawdzenie dwóch warunków. Lewy potomek tworzony jest z dodatkowym warunkiem $x_i \leq \lfloor c_i \rfloor$ gdzie c_i jest zmienną niecałkowitą wchodzącą w skład rozwiązania. Prawy potomek posiada warunek $x_i \geq \lceil c_i \rceil$. Następnie dla każdego węzła przeprowadzana jest metoda sympleks. Jeśli dany węzeł posiada rozwiązanie wówczas procedura ta jest powtarzana, aż do osiągnięcia wyniku całkowitego. Poszczególne warunki dołączane są do układu nierówności który przekazywany jest do kolejnych potomków. Jeśli tworzenie drzewa binarnego jest zakończone, wówczas jako rozwiązanie wybierany jest liść z jak największą wartością zwróconą przez metodę simplex.

3.1.4 Przykład

Zamówione zostało 20 elementów o długości 2, 10 o długości 3 oraz 20 o długości 4. Jako długości bazowe zostały określone elementy o długości 5 z ceną 6, 6 z ceną 7 oraz o długości 9 z ceną 10. Początkowo:

$$\boldsymbol{B} = \begin{bmatrix} 1.0 & -6.0 & -6.0 & -6.0 \\ 0.0 & 2.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}, \qquad \boldsymbol{N'} = \begin{bmatrix} 0.0 \\ 20.0 \\ 10.0 \\ 20.0 \end{bmatrix}$$
$$\boldsymbol{B}^{-1} = \begin{bmatrix} 1.0 & 3.0 & 6.0 & 6.0 \\ 0.0 & 0.5 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix}, \qquad \boldsymbol{N} = \begin{bmatrix} 240.0 \\ 10.0 \\ 10.0 \\ 20.0 \end{bmatrix}$$

Długości bazowe będą próbowane w kolejności malejącej ponieważ im dłuższy element, tym więcej możliwości rozkroju. Pierwszy układ nierówności:

$$2.0x_1 + 3.0x_2 + 4.0x_3 \le 9.0$$
$$3.0x_1 + 6.0x_2 + 6.0x_3 > 10.0$$

Rozwiązaniem nierówności jest (0.0, 3.0, 0.0). Wówczas wektor $\mathbf{P} = [-10.0, 0.0, 3.0, 0.0]$ oraz

$$G = \begin{bmatrix} 1.0 & 3.0 & 6.0 & 6.0 & 240.0 & 8.0 \\ 0.0 & 0.5 & 0.0 & 0.0 & 10.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 10.0 & 3.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 20.0 & 0.0 \end{bmatrix}$$

gdzie ostatnią kolumną jest $B^{-1}P$. Element osiowy wokół którego zajdzie eliminacja Gaussa to wartość z ostatniej kolumny wynosząca 3.0. Macierzą po eliminacji Gaussa G jest:

$$\boldsymbol{G}' = \begin{bmatrix} 1.0 & 3.0 & 3.33 & 6.0 & 213.33 & 0.0 \\ 0.0 & 0.5 & 0.0 & 0.0 & 10.0 & 0.0 \\ 0.0 & 0.0 & 0.33 & 0.0 & 3.33 & 1.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 20.0 & 0.0 \end{bmatrix}$$

Zmieniona zostaje druga nierówność na $3.0x_1+3.33x_2+6.0x_3 > 10.0$. Wektor P dla takiego układu wynosi [-10.0, 3.0, 1.0, 0.0] oraz

$$G = \begin{bmatrix} 1.0 & 3.0 & 3.33 & 6.0 & 213.33 & 2.33 \\ 0.0 & 0.5 & 0.0 & 0.0 & 10.0 & 1.5 \\ 0.0 & 0.0 & 0.33 & 0.0 & 3.33 & 0.33 \\ 0.0 & 0.0 & 0.0 & 1.0 & 20.0 & 0.0 \end{bmatrix}$$

gdzie element osiowy wynosi 1.5. Po eliminacji Gaussa:

$$\boldsymbol{G}' = \begin{bmatrix} 1.0 & 2.22 & 3.33 & 6.0 & 197.78 & 0.0 \\ 0.0 & 0.33 & 0.0 & 0.0 & 6.67 & 1.0 \\ 0.0 & 0.11 & 0.33 & 0.0 & 1.11 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 20.0 & 0.0 \end{bmatrix}$$

Zmodyfikowana nierówność wynosi $2.22x_1 + 3.33x_2 + 6.0x_3 > 10.0$. Wektor \boldsymbol{P} dla takiego układu wynosi [-10.0, 0.0, 0.0, 2.0] oraz

$$G = \begin{bmatrix} 1.0 & 2.22 & 3.33 & 6.0 & 197.78 & 2.0 \\ 0.0 & 0.33 & 0.0 & 0.0 & 6.67 & 0.0 \\ 0.0 & 0.11 & 0.33 & 0.0 & 1.11 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 20.0 & 2.0 \end{bmatrix}$$

gdzie element osiowy wynosi 2.0. Po eliminacji Gaussa:

$$\boldsymbol{G}' = \begin{bmatrix} 1.0 & 2.22 & 3.33 & 5.0 & 177.78 & 0.0 \\ 0.0 & 0.33 & 0.0 & 0.0 & 6.67 & 0.0 \\ 0.0 & 0.11 & 0.33 & 0.0 & 1.11 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 & 10.0 & 1.0 \end{bmatrix}$$

Zmodyfikowana nierówność wynosi $2.22x_1 + 3.33x_2 + 5.0x_3 > 10.0$. Wektor \boldsymbol{P} dla takiego układu wynosi [-10.0, 1.0, 1.0, 1.0] oraz

$$G = \begin{bmatrix} 1.0 & 2.22 & 3.33 & 5.0 & 177.78 & 0.56 \\ 0.0 & 0.33 & 0.0 & 0.0 & 6.67 & 0.33 \\ 0.0 & 0.11 & 0.33 & 0.0 & 1.11 & 0.22 \\ 0.0 & 0.0 & 0.0 & 0.5 & 10.0 & 0.5 \end{bmatrix}$$

gdzie element osiowy wynosi 0.5. Po eliminacji Gaussa:

$$\boldsymbol{G}' = \begin{bmatrix} 1.0 & 2.5 & 2.5 & 5.0 & 175.0 & 0.0 \\ 0.0 & 0.5 & 0.5 & 0.0 & 5.0 & 0.0 \\ 0.0 & 0.5 & 1.5 & 0.0 & 5.0 & 1.0 \\ 0.0 & 0.25 & 0.75 & 0.5 & 7.5 & 0.0 \end{bmatrix}$$

Układ nierówności:

$$2.0x_1 + 3.0x_2 + 4.0x_3 \le 9.0$$
$$2.5x_1 + 2.5x_2 + 5.0x_3 > 10.0$$

nie posiada rozwiązania całkowitoliczbowego. Wówczas brana jest następna długość podstawowa 6. Nowy układ wynosi:

$$2.0x_1 + 3.0x_2 + 4.0x_3 \le 6.0$$

 $2.5x_1 + 2.5x_2 + 5.0x_3 > 7.0$

dla którego wektor P wynosi [-7.0, 1.0, 0.0, 1.0] oraz

$$G = \begin{bmatrix} 1.0 & 2.5 & 2.5 & 5.0 & 175.0 & 0.5 \\ 0.0 & 0.5 & 0.5 & 0.0 & 5.0 & 0.5 \\ 0.0 & 0.5 & 1.5 & 0.0 & 5.0 & 0.5 \\ 0.0 & 0.25 & 0.75 & 0.5 & 7.5 & 0.75 \end{bmatrix}$$

gdzie element osiowy wynosi 0.75. Po eliminacji Gaussa:

$$\boldsymbol{G}' = \begin{bmatrix} 1.0 & 2.33 & 3.0 & 4.67 & 170.0 & 0.0 \\ 0.0 & 0.33 & 0.0 & 0.33 & 0.0 & 0.0 \\ 0.0 & 0.33 & 1.0 & 0.33 & 10.0 & 0.0 \\ 0.0 & 0.33 & 1.0 & 0.67 & 10.0 & 1.0 \end{bmatrix}$$

Układ nierówności:

$$2.0x_1 + 3.0x_2 + 4.0x_3 \le 6.0$$
$$2.33x_1 + 3.0x_2 + 4.67x_3 > 7.0$$

nie posiada rozwiązania. Podobnie układ

$$2.0x_1 + 3.0x_2 + 4.0x_3 \le 5.0$$
$$2.33x_1 + 3.0x_2 + 4.67x_3 > 6.0$$

również nie posiada rozwiązania.

Następnie wykorzystywana jest metoda programowanie dynamicznego w celu określenia czy kolejny rozkrój może polepszyć rozwiązanie. Z metody tej wynika że możliwym jest ulepszenie rozwiązania poprzez rozkrój z długości 9. Jednak układ nierówności:

$$2.0x_1 + 3.0x_2 + 4.0x_3 \le 9.0$$
$$2.33x_1 + 3.0x_2 + 4.67x_3 > 10.0$$

nie posiada rozwiązania całkowitoliczbowego. Wektor N równy jest przedostatniej kolumnie ostatniej obliczonej macierzy G, czyli [170.0, 0.0, 10.0, 10.0] oraz

$$\boldsymbol{B} = \begin{bmatrix} 1.0 & -10.0 & -10.0 & -7.0 \\ 0.0 & 3.0 & 1.0 & 1.0 \\ 0.0 & 1.0 & 1.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 1.0 \end{bmatrix}$$

Na podstawie N oraz B można uzyskać wynikowe rozkroje. Pierwszy element wektora N okrśla że koszt zbioru rozkrojów wynosi 170. Następne elementy są ilością kolejnych rozkrojów, tak więc pierwszy schemat nie będzie brany pod uwagę, a dwa następne zostaną wykonane 10 razy. Macierz B jest analizowana od drugiej kolumny. Pierwszy wiersz równy jest kosztowi długości z której ma być wykonany rozkrój, pomnożonemu przez -1. Następnie wiersze w kolumnach określają ile elementów o danej długości powinno znaleźć się w rozkroju.

Rozwiązaniem powyższego przykładu jest układ rozkrojów:

- 1. elementy: [2.0, 3.0, 4.0], ilość: 10, odpad: 0, długość bazowa: 9
- 2. elementy: [2.0, 4.0], ilość: 10, odpad: 0, długość bazowa: 6

3.1.5 Podsumowanie

W drugiej części artykułu poświęconemu problemowi optymalnego rozkroju [8], Gilmore oraz Gomory opisali wyniki eksperymentów wykorzystujących różne warianty metody zawartej w części pierwszej. Problem który został użyty do testów jest problemem z przemysłu papierniczego. W podstawowym zbiorze 20 problemów długości bazowe miały tę samą długość 200 in lub mniej. Liczba elementów wynikowych była z przedziału od 20 do 40. Długości elementów wynosiły od 20 in. do 80 in. z dokładnością do 1/4 in. Liczba noży wynosiła pięć, siedem lub dziewięć.

Średnia liczba iteracji metody simplex dla tego problemu to w przybliżeniu 130. Jednak ich rozpiętość była duża od 20 do 300. Taka zmienność jest powszechna dla problemów programowania linowego. Problemy które są niemal identyczne mogą zachowywać się bardzo odmiennie w odniesieniu do metody sympleks. Zgodnie z przewidywaniami, problemy z mniejszą liczbą elementów wchodzących w skład rozkroju, potrzebują mniej iteracji. Trend ten jest niedeterministyczny, dla przykładu 35 elementowy rozkrój wymagał 197 iteracji, gdzie problem pokrewny dla 40 elementów wymagał ich tylko 161.

Gilmore oraz Gomory zbadali czy nowy schemat rozkroju powinien być akceptowany przy spełnieniu warunku $\sum b_i a_i > 1$, czy lepsze jest pozostanie przy maksymalizacji $\sum b_i a_i$. Pierwsza metoda prowadzi do większej liczby iteracji, jednak ich czas jest mniejszy niż w przypadku metody drugiej. Wynik eksperymentu odpowiedział na pytanie czy lepiej zastosować więcej krótszych iteracji, czy lepiej mniej ale dłuższych? W 19 na 20 przypadków średni czas potrzebny na rozwiązania problemu z użyciem metody drugiej był mniejszy niż metody pierwszej. Metodę tą można opisać jako znalezienie schematu który najbardziej wpłynie na obniżenie kosztu i zmniejszenie odpadu. Najprostsza implementacja tej metody wymaga wypisania bardzo dużej liczby schemtów rozkroju dla każdej iteracji. Aby zredukować liczbę nakładu obliczeniowego na każdą iteracje, można ostateczne elementy pogrupować w bardzo małe zbiory. Jeśli nowy rozkrój bedzie zawierał długość, która jest wymagana w małej ilości, wówczas schemat zostanie użyty tylko kilka razy. Wykorzystanie tego ulepszenia nie ma znaczącego wpływu na wynik. Gilmore oraz Gomory zaproponowali użycie metody medianowej. Metoda ta polega na równym podziale wymaganych elementów ze względu na liczbę elementów wynikowych - na wymagane w dużej lub małej ilości. W każdej drugiej iteracji schemat albo używa jedynie elementów wymaganych wiele razy lub maksymalizuje ulepszenie pośród wszystkich rozkrojów. Metoda medianowa była szybsza w 13 na 20 przypadków. Problemy dla których metoda ta była wolniejsza były małymi problemami które wymagały mało czasu do wykonania. Średnio czas został zredukowany o 40%.

W przypadkach testowych odpad wahał się od 0.1% do 10% oraz zachowywał się nieprzewidywalnie. Zauważone zostało również że problemy z dużym odpadem były rozwiązywane szybciej. Typowy problem z małym odpadem w początkowych iteracjach drastycznie malał, a następnie nieznacznie spadał dalej. Aby przyspieszyć obliczenia Gilmore oraz Gomory zaporponowali aby zakończyć obliczenia jeśli odpad wynosi poniżej 0.1% po 10 iteracjach. Dzięki zastosowaniu tego skrótu czas wykoywania zmniejszył się o 90% przy zachowaniu maksyamalnie 0.5% odpadu przy przedwczensym zakończeniu algorytmu.

Podczas badania zachowania algorytmu dla wielu długości początkowych, zauważono spadek ilości odpadu. Dla pojedynczej długości 168 in. odpad wynosił 7%. Po dodaniu dodatkowych elementów 145 in., 140 in, oraz 124 in. odpad zmniejszył się do 1.4%. Czas wykonania wzrósł od 144% do 211%.

Limitacja liczby noży nie zmieniła wartości rozwiązania. Po zniesieniu ograniczenia dla 19 przypadków z 20 ilość odpadu pozostała taka sama, przy jednoczesnej zmianie schematów rozkrojów.

3.2 Metoda "Brutal Force"

3.2.1 Algorytm wyjściowy

Metoda ta opiera się zarówno na intuicji jak i na rozwiązaniu zaproponowanym przez Dantziga dla problemu plecakowego [5]. Jest to metoda która w prosty sposób - nie używając złożonych modeli matematycznych, pozwala osiągnąć optymalny rozkrój materiału.

Pierwszym krokiem jest posortowanie elementów wyściowych malejąco wzgęldem ich długości $l_1 \geq l_2 \geq ... \geq l_m$ i umieszczenie w ten sposób w kolejce.

Drugim krokiem jest pobranie pierwszego elementu z kolejki i sprawdzenie, jak wiele razy jego długość zawiera się w długości elementu bazowego. Obliczone zostaje ile materiału pozostało w elemencie bazowym po docięciu najdłuższych elementów. Następnie pobierany jest kolejny odcinek z kolejki. Następuje sprawdzenie ile razy zawiera się on w pozostałej długości.

$$a_{1} = [L/l_{1}],$$

$$a_{2} = [(L - l_{1}a_{1})/l_{2}],$$

$$a_{3} = [(L - (l_{1}a_{1} + l_{2}a_{2}))/l_{3}], ...$$
(3.8)

Kroki te powtarzane są dopóki kolejka się nie skończy.

Każdy element wyjściowy posiada określoną liczebność jaką powinien osiągnąć pod koniec procesu cięcia. Jeśli na danym etapie procesu cięcia wymagana liczba elementów danego typu spada do zera, wówczas jest on

pomijany w dalszej pracy algorytmu. Koniecznie jest sprawdzenie czy liczba uzyskanych elementów danego typu jest mniejsza lub równa od wymaganej:

- Jeśli stwierdzenie jest prawdziwe długość z której elementy są wycinane zostanie zmniejszona o liczbę wystąpień elementu pomnożoną przez
 jego długość, a licznik wymaganych odcinków danej długości zostanie
 zmniejszony o odpowiednią liczbę wystąpień
- Jeśli stwierdzenie jest fałszywe długość z której elementy są wycinane zostanie zmniejszona o liczbę pozostałych wykrojów pomnożoną przez długość elementu, a licznik wymaganych odcinków danej długości zostanie ustawiony na zero.

Po zakończeniu przebiegu algorytmu dla jednego układu rozkroju, można określić ile razy będzie on użyty. Zostaje to wyznaczone poprzez obliczenie

$$g = \lfloor \min\{z_i/a_i\} \rfloor, \qquad i \in [0..m], g \in Z$$
(3.9)

gdzie g to liczba ile razy dany schemat może zostać użyty, z to liczbność wyjściowego elementu i która pozostała do wycięcia, a to ilość wykrojów elementu i w bierzącym układzie, m to liczba długości umieszczonych w rozkroju. Następnie licznik wymaganych odcinków elemntu i zostaje zmniejszony o qa_i .

Cały proces powtarzany jest do momentu aż wszytskie wymagane elementy zostaną wycięte.

3.2.2 Rozszerzenie o szerokość cięcia

W warunkach rzeczywistych elementy wycinane są za pomocą ostrza które ma niezerową grubość. Wówczas metodę obliczania należy rozszerzyć jeśli ma odpowiadać warunkom rzeczywistym. Szerokość cięcia wlicza się w odpad. Jest kilka przypadków wliczania szerokości ostrza.

Jeżeli element jest równy długości bazowej wówczas nie wlicza się szerokości cięcia. Natomiast jeżeli materiał bazowy ma zostać pocięty na kilka elmentów wówczas do każdego dolicza się szerokość cięcia. Szczególnym przypadkiem jest, gdy ostatni element wraz z szerokością ostrza jest dłuższy niż długość odcinka, który został po wycięciu wcześniejszych elementów.

Gdyby szerokość cięcia nie została uwzględniona w obliczeniach wówczas dla elementu wejściowego o długości 6000mm i wymaganych odcinkach 4500mm oraz 1500mm, obie długości zostały wycięte z jednego segmentu materiału bazowego. Skutkiem takiego postępowania byłby element krótszy o szerokość ostrza. Zazwyczaj długość ta może być akceptowana jako toleracneja dokładności maszyny. Jednak dla poprawności obliczeń wielkość ta powinna zostać uwzględniona.

3.2.3 Rozszerzenie o wiele długości bazowych

Dla zmniejszenia odpadu można użyć kilku długości bazowych. Rozszerzenie to wprowadza następująca zmianę algorytmu: obliczenia układu muszą zostać powtórzone dla każdego elementu wejściowego. Następnie wybierany jest ten rozkrój, który daje mniejszy odpad. Modyfikacja ta znacząco wpływa na wydajność metody. Jeżeli n oznacza złożoność obliczeniową podstawowego algorytmu, a m oznacza liczbę odcinków wejściowych, wówczas nowa złożoność obliczeniowa wynosi m*n.

3.2.4 Rozszerzenie o cenę materiału wsadowego

Rozszerzenie to wprowadza zmianę koncepcyjną. Każdy element bazowy posiada cenę za metr bieżący materiału, umożliwia to obliczenie kosztu odpadu i wybranie tańszej opcji wykroju.

3.2.5 Przykład

- 1. Dane wejściowe
 - 6000mm 3\$/mb
 - 7000mm 2\$/mb
 - szerokość cięcia: 10mm
- 2. Dane wyjściowe
 - 1x3500mm
 - 1x3000mm
 - 3x2000mm
 - 5x500mm
- 3. Przebieg algorytmu
 - Pierwszy rozkrój
 - -3500mm mieści się raz w 6000mm. Zostaje 2500-10 = 2490mm.
 - $-\ 3000\mathrm{mm}$ nie mieści się w 2490mm.
 - -2000mm mieści się raz w 2490mm. Zostaje 490-10=480mm.
 - -500mm nie mieści się w 480mm.
 - Rozkrój 6000mm: 3500mm, 2000mm. Odpad 6000 5500 = 500 * 0.003 = 1.5\$

⁻3500mm mieści się dwa razy w 7000mm. Dostępny jest jeden odcinek 3500mm. Zostaje 3500- $10=3490\rm{mm}.$

⁻³⁰⁰⁰mm mieści sie raz w 3490mm. Zostaje 490-10=480mm.

- -2000mm nie mieści się w 480mm.
- $-\ 500\mathrm{mm}$ nie mieści się w 480mm.
- Rozkrój 7000mm: 3500mm, 3000mm. Odpad 7000 6500 = 500 * 0.002 = 1.0\$

- Wybrano rozkrój 3500mm, 2000mm na długości 7000mm ze względu na mniejszy koszt odpadu.
- Do realizacji posostało: 0x3500mm; 0x3000mm; 3x2000mm; 5x500mm

Drugi rozkrój

- 2000mm mieści się trzy razy w 6000mm. Uwzględniając szerokość cięcia zostaną użyte tylko dwa elementy od długości 2000mm. Zostaje 2000-2*10=1980mm.
- -500mm mieści się trzy razy w 1980mm. Zostaje $480-3*10=450\mathrm{mm}.$
- Rozkrój 6000mm: 2x2000mm, 3x500mm. Odpad 6000-5500 = 500 * 0.003 = 1.5\$

_ ____

- 2000mm mieści się trzy razy w 7000mm. Zostaje 1000 3 * $10 = 970 \mathrm{mm}$.
- 500mm mieści się raz w 970mm. Zostaje 470 10 = 460mm.
- Rozkój 7000mm: 3x2000mm, 500mm. Odpad 7000 6500 = 500 * 0.002 = 1.0\$

- Wybrano rozkrój 3x2000mm, 500mm na długości 7000mm ze względu na mniejszy koszt odpadu
- Do realizacji posostało: 0x3500mm, 0x3000mm, 0x2000mm, 4x500mm

• Trzeci rozkrój

- 500mm mieści się dwanaście razy w 6000mm. Dostępne są cztery element 500mm. Zostaje 6000- 4 * 500- 4 * 10 = 3960mm.
- Rozkrój 6000mm: 4x500mm. Odpad 6000 4 * 500 = 4000 * 0.003 = 12\$

- 500mm mieści się czternaście razy w 7000mm. Dostępne są cztery elementy 500mm. zostaje 7000 4*500-4*10=4960mm
- Rozkrój 7000mm: 4x500mm. Odpad 7000 4 * 500 = 5000 * 0.002 = 10\$

_ ____

- Wybrano rozkrój 4x500 na długości 7000mm ze względu na mniejszy koszt odpadu
- Do realizacji posostało: 0x3500mm, 0x3000mm, 0x2000mm, 0x500mm

• Podsumowanie

 Rozkroje: 3500mm, 2000mm na długości 7000mm; 3x2000mm, 500mm na długości 7000mm; 4x500 na długości 7000mm.

- Suma odpadów: 6000 * 0.002 = 12\$

3.2.6 Podsumowanie

Przedstawiony algorytm jest intuicyjny oraz zwraca poprawne wyniki. Główną wadą jest brak świadomości o następnym kroku oraz kolejnych wykrojach. Dla przykładu: Zosatło 1000mm materiału, do dyspozycji (z długości mniejszych niż 1000mm) jest odcinek 900mm oraz dwa elementy 480mm. Algorytm przydzieli odcinek 900mm, jednak lepszym wyborem byłoby użycie dwóch odcinków 480mm.

4 Opis implementacji

Aplikacja została napisana przy użyciu języków programowania bazujących na maszynie wirtualnej javy:

- 1. Kotlin podstawowy język użyty do implementacji
- 2. Java 8 język użyty do generowania statystyk wykonania algorytmów
- 3. JavaFX technologia zastosowana do stworzenia graficzego interfejsu użytkownika (wraz z CSS)

Architektura aplikacji jest modułowa. Zostały wydzielone części odpowiedzialne za obliczenia matematyczne, implementacje algorytmów, zapis i odczyt plików CSV, generację statystyk, definicję modelu danych oraz moduł zawierający aplikację korzystający z pozostałych pakietów (rys. 4.1).

Rysunek 4.1: Architektura aplikacji

Architektura modułu odpowiedzialnego za implementację algorytmów posiada strukturę wzorca projektowego fasada. Klasy odpowiedzialne za konkretną implementację metody obliczenia rozkrojów rozszerzają klasę abstarkacyjną która definiuje wspólne funkcje oraz deklaruje metody które powinny zostać zdefiniowane w klasach potomnych. Główny moduł aplikacji wraz z modułem odpowiedzialnym za model danych tworzy implementację wzoraca Model-Widok-Kontroler (MVC). Klasa kontrolera zarządza widokiem stworzonym w języku FXML.

Rysunek 4.2: Relacja między głównymi modułami aplikacji

Rynukek 4.2 opisuje relacje pomiędzy poszczególnymi modułami aplikacji wykorzystanymi do stworzenia programu z graficznym interfejsem użytkownika. Moduł Main odpowiedzialny jest za połączenie funkcjonalności aplikacji z GUI. Znajdują się w nim definicje widoku, wywołanie metod obliczających wynik z danych pobranych przez moduł excel oraz zapis rezultatu obliczeń. Moduł Model zawiera klasy odpowiedzialne za przechowywanie danych w aplikacji. Moduł Excel zawiera metody użyte do odczytu oraz zapisu danych w formacie CSV. Moduł Math zawiera operacje wykonywane na macierzach, jak również zawiera metodę do obliczania wartości nierówności metodą dwufazowej metody simplex, metodę podziału i ograniczeń do obliczenia wyniku całkowitego układu nierówności, metodę eliminacji Gaussa. W module tym znajduje się również klasa odpowiedzialna za tworzenie drzewa wykorzystanego przez metodę podziału i ograniczeń. Moduł Algorithm zawiera klasy odpowiedzialne za obliecznie schematu rozkroju z wykorzystaniem metod brutalnej siły oraz opóźnionej generacji kolumn.

Rysunki 4.3 oraz 4.4 przedstawiają okno aplikacji, odpowiednio przed wypełnieniem danymi oraz po zakończeniu obliczeń.

Program posiada możliwość wczytania danych z pliku CSV, a następnie zapisanie danych wyjściowych również do pliku CSV lub TXT. Kolejnymi zaimplementowanymi funkcjonalnościami są:

- 1. Wyświetlenie danych wejściowych oaz wyniku w oknie aplikacji.
- 2. Wybór algorytmu rozkroju.
- 3. Dodanie wielu długości podstawowych z różnym kosztem domyślnie koszt jest równy długości.
- 4. Wyświetlenie długości podstawowych w oknie aplikacji.
- 5. Dodanie szerkości cięcia dla metody brutalnej siły.

Rysunek 4.3: Początkowe okno aplikacji

Rysunek 4.4: Aplikacja po zakończonych obliczeniach

4.1 Java

Język programowania Java jest językiem obiektowym z elementami programowania funkcyjnego wprowadzonymi od wersji 8. Aplikacje stworzone w tej technologii mogą być stosowane w różnych systemach operacyjnych, gdyż programy napisane w języku Java są kompilowane do plików class które umieszczane są w skompresowanej paczce jar. Pliki class następnie są przetwarzane przez maszynę wirtualną Javy (JVM - Java Virtual Machine) do postaci bytecode który jest wykonywany na urządzeniu. Istnieją implementacje JVM na większość używanych platform.

Tworzenie aplikacji w technologii Java jest możliwe poprzez użycie zestawu JDK (Java Development Kit). Uruchamianie tych aplikacji jest możliwe w środowisku JRE (Java Runtime Environment) (rys. 4.5).

Rysunek 4.5: Elementy składowe technologi Java [1]

Podstawowym elementem technologii jest maszyna wirtualna. Jest to element technologii odpowiedzialny za niezależność programów od specyfikacji urządzenia oraz systemu operacyjnego. JVM jest abstarakcyjną maszyną obliczeniową. Podobnie jak rzeczywiste urządzenia posiada zestaw instrukcji pozwlających na sterowanie nią oraz wykonywanymi zadaniami. Maszyna wirtualna Javy nie zna języka Java, jedynie jego postać binarną zapisaną w plikach class. Pliki te zawierają instrukcje dla JVM lub bytecode oraz inne wymagane informacje. Wiele języków programowania wykorzystuje tą cechę maszyny wirtualnej. Wymaganiem jest aby program był w postaci poprawnego pliku class, tak by mógł zostać wykonany na maszynie wirtualniej.

Technologia Java zawiera ponadto zestaw podstawowaych bibliotek pozwlających między innymi na budowanie plików JAR, refleksję czyli dostęp do metod oraz pól klasy bez zachowania zasad bezpieczeństwa, zdalne wywoływanie metod (RMI) oraz tworzenie graficznego interfejsu użytkownika Swing oraz AWT. Środowisko deweloperskie jest rozszerzone o narzędzia potrzebne do stworzenia programu, przykładowo: javac - kompilator przetwarzający pliki java do plików class, javadoc - narzędzie do tworzenia dokumentacji oraz język opisu interfejsów IDL służacy do komunikacji międzyprocesowej.

4.2 JavaFX

Zgodnie z (rysunkiem 4.5), JavaFX jest częścią standardowego API technologi Javy. Jest to zestaw graficznych i multimedialnych pakietów które mogą zostać wykorzystane do stowrzenia graficznego interfejsu użytkownika spójnego na przestrzeni wszystkich systemów operacyjnych [2]. Głównymi cechami tej technologii sa:

- 1. Zgodność z językiem programowania Java oraz możliwość współpracy z innymi językami JVM, takimi jak Scala, Kotlin lub JRuby.
- Język FXML który jest językiem znaczników bazujący na języku XML. Jest on wykorzystywany do opisu graficznego interfesju użytkownika, podobnie jak HTML.
- 3. WebView jest to technologia wykorzystująca WebKitHTML która umożliwia zagnieżdzanie stron internetowych w aplikacjach JavaFX. Java-Script uruchominy w widoku strony internetowej może wywoływać metody dostępne w języku Java. Od wersji JavaFX 8 możliwa jest również obsługa HTML5.
- 4. Istniejące aplikacje Swing mogą zostać zaktualizowane o możliwości JavaFX takie jak odtwarzanie treści multimedialnych oraz wyświetlanie stron internetowych.
- 5. Wbudowana obsługa kaskadowych arkuszy stylów oraz komponentów intefejsu użytkownika umożliwia tworzenie spersonalizowanych aplikacji pod względem wyglądu interfejsu użytkownika.
- 6. Obsługa grafiki 3D została dodana w wersji 8 JavaFX. Obiekty trójwymiarowe mogą być wyświetlane na odpowiednich z scenach z zastosowanym światłem. Klasa Camera odpowiedzialna jest za rendering widoku.
- 7. Obsługa Canvas API umożliwia bezpośrednie rysowanie po obiekcie sceny która zawiera jeden element graficzny.

- Aplikacja zbudowana z Java oraz JavaFX jest umieszczona w paczce która może zostać uruchomiana na każdym urządzeniu które obsługuje wirtualną maszynę Javy.
- 9. Ponadto JavaFX umożliwia obsługę drukowania, wielopunktowego dotyku oraz wysokich rozdzielczości.

Rysunek 4.6: Architektura JavaFX

Rynukek 4.6 opisuje architekturę technologi JavaFX. Zawiera ona zestaw deweloperski Java oraz maszynę wirtualną. Został również wyszczególniony silnik graficzny Prism odpowiedzialny za wyświetlanie widoków. Silnik ten może być wspomagany sprzętowo poprzez procesor graficzny. Na tym samym poziomie wraz z Prism znajduje się Glass Windowing Toolkik odpowiedzialny za współpracę z oknami systemowymi, zarządzaniu nimi oraz komunikację z systemowymi procesami odpowiedzialnymi za manipulację widokami. Prism, Glass Windowing Toolkit, silnik mutiledialny oraz internetowy współpracują ze sobą wykorzystując Quantum Toolkit który odpowiada za komunikację warstw powyżej z odpowiednimi elementami zarządzającymi grafiką.

4.3 Kotlin

Kotlin jest obiektowym językiem programowania który jest interpretowany do bytecode wywoływanego na maszynie wirtualnej Javy. Kotlin w porównaniu z Javą wnosi usprawnienia do programownaia proceduralnego. Kotlin jest zgodny z językiem Java, odnosi to skutek w możliwości łączenia obu języków programowania. Jest to technologia podobna do języka Scala jednak czas kompilacji został skrócony. Jest to język silnie rozwijający się w środowisku programistycznym Android. Dopiero najnowsza wersja narzędzi deweloperskich Android pozwala na wykorzystywanie niektórych elementów Javy 8. Kotlin zmniejsza liczbę nadmiarowego kodu potrzebnego do napisania przez programistę. Głównymi celami stworzenia technologii Kotlin były: pełna kompatybilność z językiem Java, zwiększenia bezpieczeństwa względem Javy (null safe), bardziej elastyczny oraz nieskomplikowany kod. Jedną z najciekawszych funkcjonalności języka Kotlin jest tworzenie metod

rozszerzających daną klasę. Przykładowo może zostać zdefiniowana metodaisNotEmpty()dla klasy $String\colon$

```
fun String.isNotEmpty() = !this.isEmpty()
```

Metoda ta będzię dostępna dla każdego obiektu typu String w programie.

5 Wyniki

Niniejszy rozdział przedstawia i porównuje wyniki otrzymane eksperymentalnie. Metody wykorzystane do porównania to "Delayed Column Generation" (rozdział 3.1) oraz "Brutal Force" (rozdział 3.2). Warunki przeprowadzenia testu:

- Losowo generowane odcinki wynikowe o długości od 1 do 21 cm, przy liczebności od 1 do 200 elementów.
- Losowo generowanych 5 długości początkowych od 22 do 42 cm, o koszcie od 1 zł. Każda długość posiada inną cenę.
- Obie metody testowane są z tymi samymi danymi.
- Wykonano 28 różnych rozkrojów.
- Czas wykonania mierzony od dostarczenia danych do zwrócenia wyniku, bez uwzględnianienia czasu przygotowania danych oraz ich zapisu.
- Warunki sprzętowe:
 - Procesor: Intel Core i
5-6500u @ 2.30 GHz x 2 z technologią HT.
 - RAM: 16 GB (15.2 GB).
 - System operacyjny: Linux Mint 18.1 Cinammon 64-bit.
- Język implementacji: Kotiln 1.0.5 (JVM), Java 8 (Oracle Java 1.8 121).
- Aplikacja jednowatkowa.

5.1 Porównanie

Dane z tabeli 1 przedstawiają porównanie podstawowych statystyk dla każdego kroku eksperymentu: czas wykonania, koszt całkowity rozkroju oraz odpad powstały w wyniku zastosowania schematu. Natomiast tabela 2 przedstawia średnie wartości statystyk przedstawionych w tabeli ją poprzedzającej.

Dane przedstawione w tabelach 1 oraz 2 wskzaują jednoznacznie że, metoda brutalnej siły (dalej BF) jest szybsza niż druga metoda użyta w porównaniu. Tabela 2 wskazuje iż metoda opóźnionej generacji kolumn (dalej DCG) jest prawie 30156 razy wolniejsza niż metoda BF. Ma to związek z nakładem obliczeniowym metody DCG. Metoda ta wykonuje wiele obliczeń macierzowych, dla każdej itereacji zachodzi odwracanie macierzy, mnożenie wektorów, eliminacja Gaussa oraz rozwiązywanie układu nierówności dwufazową metodą sympleks. Najwyższy czas wykonania metody DCG wynosi 446814 ms, czyli ponad 7 minut. Najmniejszy czas wykonania tej samej metody przy innych danych wejściowych i zachowaniu warunków testu wynosi

Tabela 1: Wyniki

Czas (ms)	Ko	szt	Odp	oad
DCG	BF	DCG	BF	DCG	BF
136396	11	1830	2835	0	0
27688	2	1719	2342	304	13
190893	3	3279	3421	109	33
113044	2	1936	5397	69	20
14453	5	1821	2342	819	8
446814	1	2912	4254	3947	3
20758	3	4544	5050	1729	3
101468	2	3024	6658	54	1
272598	1	2324	2560	44	0
18424	1	2365	4001	877	64
284007	1	1802	4000	46	40
36820	6	3078	3255	393	115
25840	8	4068	6981	325	14
42254	16	948	1034	1480	102
4664	1	3174	3707	1434	1297
11725	3	1377	2904	46	2
34074	6	1161	1490	411	45
323568	7	3072	3638	81	1
124059	4	8128	8971	0	51
27697	1	830	3965	0	9
169184	2	2754	3255	0	18
227189	7	3184	5741	150	94
25436	5	1235	1850	35	21
232145	3	4485	4598	0	4
47524	2	2993	4046	1278	159
77913	2	5002	5196	23	10
201725	1	2366	3162	0	14
18760	2	5330	5398	64	12

Tabela 2: Średnie

	DCG	BF
Średni czas	116325.71	3.86
(DCG/BF) * 100%	3015851	1.85%
Średni koszt	2883.61	4001.82
(BF/DCG) * 100%	138.7	8%
Średni odpad	489.93	76.89
(DCG/BF) * 100%	637.1	6%

4664 ms, czyli 4,7 s. Rozbieżność czasów wykonania metody DCG wskazują na silną zależność między danymi wejściowymi, a czasem wykonania. Czas wykonania metody BF jest bardzo niski, na poziomie kilkunastu milisekund, jest to związane ze spsobem implementacji. Głównym elementem tej metody jest przeszukiwanie, przechodzenie oraz uzupełnianie tablic. Operacje te są znacznie szybsze niż operacje macierzowe. Mediana czasów obu metod pokazuje że, metoda DCG nadal jest dużo wolniejsza niż BF, jednak w innej skali niż porównanie średnich. Mediana dla metody DCG to 62718.5 ms, a dla BF to 2.5 s. Metoda DCG jest ponad 25087 razy wolniejsza niż metoda BF.

Kolejna część tabel odnosi się do średniego kosztu wykroju całkowitego. Koszt uzyskany metodą BF jest średnio 1.4 razy większy niż metodą DCG. Stosunek kosztu metody pierwszej oraz drugej jest relatywnie niski. Jednak po sprawdzeniu wielkości kosztów wynika iż, różnica między ceną rozwiązania metodą DCG oraz metodą BF wynosi 1118,21 zł. Rząd wielkości oznacza że, różnica w cenie jest znacząca. Metoda DCG jako główny cel przyjmuje minimalizację kosztu, natomiast metoda BF jak najmniejszą cenę odpadu w ujęciu bieżącego schematu rozkroju.

Końcowe częsci tabel ukazują odpad powstały z rozkroju. Odpad uzyskany przy użyciu metody DCG jest ponad 6 razy większy niż odpad uzyskany przy użyciu metody BF. W jednym przypadku na 28, odpad uzyskany przy użyciu metody DCG był mniejszy niż z metody BF. Tak jak zostało to wspomnianie w rozdziale 3.2 metoda BF skupia się na minimalizacji kosztu odpadu, w uogólnionym przypadku minimalizuje odpad.

Zgdodnie z eksperymentem przeprowadzonym przez Gilmorea oraz Gomorego [8], prawdą jest że, im szybciej metoda zakończy obliczenia, tym większy będzie odpad. Trend ten jest zauważalny w tabeli 1.

Tabele 3 oraz 4 prezentują wynik jednego wywołania metody opóźnionej generacji kolumn oraz metody brutalnej siły.

Tabela 3: Rezultat DCG

Wejście								
Podstawa								
Długość	Koszt							
25	7							
31	21							
33	9							
36	15							
Zamówienie								
Długość	Koszt							
2	66							
4	167							
5	174							
7	151							
9	200							
10	135							
12	150							
15	26							
17	8							
117								
Wyjście								
Użyte podstawy	T1 //							
Długość	Ilość							
25	305							
33	21							
Rozkroje								
Ilość	Odpad	Podstawa			Sche	$_{ m mat}$		
14	0	25	2	2	2	2	5	12
76	0	25	4	4	5	12		
4	0	25	5	5	5	5	5	
16	0	25	4	7	7	7		
96	0	25	7	9	9			
68	0	25	5	10	10			
31	1	25	12	12				
13	1	33	2	15	15			
8	0	33	7	9	17			
Statystyka								
Czas (ms)	272598							
Koszt	2324							
Odpad	44							
Japaa								

Odpad $\%$	5.289733E-05
*** •1	
Wynik	
Długość	Ilość
2	69
4	168
5	178
7	152
9	200
10	136
12	152
15	26
17	8
Spadek kosztu	
Krok	Koszt
0	2755.0166
1	2692.1833
2	2661.5166
3	2437.5166
4	2343.0166
5	2324.7388
6	2317.6765
7	2314.585
8	2303.9917

Tabela 4: Rezultat BF

117											
Wyjście											
Użyte podstawy	T1 - 44										
Długość	Ilość										
25	94										
33	113										
36	59										
Rozkroje											
Ilość	Odpad	Podstawa			:	Sche	ema	t			
4	0	36	17	17	2						
25	0	25	15	10							
1	0	36	15	12	9						
74	0	33	12	12	9						
1	0	36	12	10	10	4					
53	0	25	10	10	5						
1	0	33	10	10	9	4					
31	0	36	9	9	9	9					
37	0	33	7	7	7	7	5				
1	0	33	7	7	7	5	5	2			
16	0	25	5	5	5	5	5				
1	0	36	5	5	4	4	4	4	4	4	2
17	0	36	4	4	4	4	4	4	4	4	4
1	0	36	4	4	4	4	4	4	2	2	2
			2	2	2						
3	0	36	2	2	2	2	2	2	2	2	2
			2	2	2	2	2	2	2	2	2
Statystyka											
Czas (ms)	1										
Koszt	2560										
Odpad	0										
Odpad %	0										

Dane w powyższych tabelach wzskazują, iż metoda DCG tworzy znacznie mniej rozkrojów w układzie, 9 do 14 w stosunku do BF. Rozkroje metodą BF są bardziej homogeniczne niż wynik metody DCG. Obie metody użyły tych samych długości podstawowych, metoda BF użyła dodatkowo długości 36. Dane przedstawione w tabeli 3 w sekcji "Wynik" prezentują liczbę wyciętych elementów, jest ich nie mniej niż w zamówieniu. Ma to związek z tym że, metoda DCG podaje rozwiązanie najbliższe optymalnemu. Jest to skutkiem zniesienia warunku całkowitości i zaokrąglania wyniku w górę.

Końcowa część tabeli 3 przedstawia spadek kosztu w kolejnych iteracjach metody. Początkowo spadek jest największy, następnie w większości zmniejsza się różnica pomiędzy poszczególnymi krokami (rys. 5.1).

Rysunek 5.1: Spadek ceny w metodzie DCG

Wyniki eksperymentu są zgodne z wynikami testu Gilmorea i Gomorego (rozdział 3.1.5)

5.2 Wnioski

Obie porównywane metody posiadają wady i zalety. Porównując metodę BF do DCG można stwierdzić, że jest ona znacznie szybsza oraz daje bardziej homogeniczne rozkroje. Takie same długosci w jendym układzie powodują brak konieczności przestawiania noża podczas cięcia, skutkuje to mniejszym nakładem pracy podczas stosowania metody w warunkach rzeczywistych. Metoda ta odpowiednia jest do szybkiego prototypowania oraz szacowania kosztu. Przewagą metody DCG jest znaczna minimalizacja kosztu mimo większej liczby wykrojów i znacznie większego odpadu. Czas wykonania metody DCG powoduje iż, jest to metoda nieodpowiednia do planowania, lecz do określania konkretnych wykrojów. Jest to metoda bardziej oszczędna niż metoda BF.

Implementacja metody DCG użyta do testu, jest wariantem podstawowym zaprpopnowanym przez Gilmorea oraz Gomorego [7]. Po wprowadzeniu usprawnień zaproponowanych w [8] oraz optymalizacji implementacji, czas wykonania programu prawdopodobnie zostałby skrócony.

6 Zakończenie

Problem optymalnego rozkroju rur jest szczegółowym przypadkiem problemu pleckaowego. Szczególne rozwiązania tego problemu mogą zostać osiągnięte na wiele sposobów. Porównanie dwóch algorytmów obliczania optymalnego rozkroju rur - brutalnej siły oraz opóźnionej generacji kolumn wskazuje na dwa typy metod. Obejmują one metody służące do prototypowania oraz do dokładnego obliczania wartości rozkroju. Metoda "Brutal Force" jest mniej skomplikowana oraz jest szybsza niż metoda "Delayed Column Generation", dlatego może zostać wykorzystana do szybkiego protypowania oraz przewidywania szacunkowych kosztów rozkroju. Druga metoda może zostać zastosowana do dokładnego obliczenia schematów rozkrojów. Schematy te mogą zawierać więcej elementów niż zostało zamówione lecz nadal posiadać mniejszy koszt niż metoda brutalnej siły.

Aplikacja udostępnia możliwość obliczania rozkrojów z własnych zamówień, zadanym algorytmem. Porównanie implementacji obu metod rozkroju potwierdziło, iż metoda brutalnej siły jest znacznie szybsza lecz wyniki są gorsze niż metody opóźnionej generacji kolumn. Implementacja programu wymaga wielu obliczeń macierzowych oraz wielu obliczeń wartości maksymalnej z układu nierówności. Są to operacje o bardzo dużym zapotrzebowaniu czasowym. Aplikacja może zostać rozszerzona o obsługę przypadku gdy w trakcie metody opóźnionej generacji wystepuje ujemna wartość kolumny liczebności danego rozkroju. Obecnie gdy taka sytuacja wystąpi zwracany jest ostatni znany poprawny rozkrój. W trakcie przeprowadzania eksperymentu, wyniki te zostały odrzucone ze względu na możliwość, iż sytuacja ta spowodowana jest losowymi danymi, które mogły mieć nieprawidłowy format wejściowy, lub ze względu iż przypadek ten został pominięty w implementacji. Kolejnym usprawnieniem aplikacji może zostać podzielenie obliczeń na watki, tak aby praca został zrównoleglona oraz przyspieszona.

Rozszerzeniem algorytmu zastosowanego w metodzie opóźninej generacji kolumn może zostać metoda medianowa, zaproponowana przez Gilmorea oraz Gomorego [8]. Metoda ta według przeprowadzonych eksperymentów może skrócić czas oraz obiżyć zapotrzebowanie na zasoby obliczeniowe nawet o 90%.

Spis rysunków

2.1	Drzewo wyliczeń możliwych rozwiązań	9
2.2	Zredukowane drzewo wyliczeń możliwych rozwiązań	11
4.1	Architektura aplikacji	29
4.2	Relacja między głównymi modułami aplikacji	30
4.3	Początkowe okno aplikacji	31
4.4	Aplikacja po zakończonych obliczeniach	31
4.5	Elementy składowe technologi Java [1]	32
4.6	Architektura JavaFX	34
5.1	Spadek ceny w metodzie DCG	42

Literatura

- [1] Java platform standard edition 8 documentation. https://docs.oracle.com/javase/8/docs/index.html. Dostęp: 2017-03-02.
- [2] Javafx: Getting started with javafx. http://docs.oracle.com/javase/8/javafx/get-started-tutorial/. Dostęp: 2017-03-04.
- [3] J. J. Bartholdi. The knapsack problem. In D. Chhajed and T. J. Lowe, editors, *Building Intuition*, chapter 2, pages 19 31. Springer US, 2008.
- [4] V. Chvatal. *Linear Programming*. W.H. Freeman and Company, New York, 1984.
- [5] G. B. Dantzig. Discrete variable extremum problems. *Operations Research*, 2:266 288, 1957.
- [6] W. Diffie and M. Hellman. New directions in cryptography. *IEEE Transactions on Information Theory*, 22:644 654, 1976.
- [7] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock problem. *Operation research*, 9(6):849 859, Nov. Dec. 1961.
- [8] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock problem part II. *Operation research*, 11(6):863 888, Nov. Dec. 1963.
- [9] S. Goddard. Lecture about dynamic programming 0-1 knapsack problem. http://cse.unl.edu/~goddard/Courses/CSCE310J/.
- [10] P. J. Kolesar. A branch and bound algorithm for the knapsack problem. Managment science, 13:723 – 735, 1967.

- [11] R. Merkle and M. Hellman. Hiding information and signatures in trapdoor knapsacks. *IEEE Transactions on Information Theory*, 24:525 – 530, 1978.
- [12] D. Pisinger. Algorithms for Knapsack Problems. PhD thesis, Dept. of Computer Science, University of Copenhagen, 1995.