Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Основи програмування - 2. Модульне програмування»

«Перевантаження операторів»

Варіант 5

Виконав студент <u>ІП-15, Буяло Дмитро Олександрович</u>

(шифр, прізвище, ім'я, по батькові)

Перевірив Вєчерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Лабораторна робота 4

Перевантаження операторів

Мета – вивчити механізми створення класів з використанням перевантажених операторів (операцій).

Індивідуальне завдання

Варіант 5

Завдання

Визначити клас «Квадратна матриця» розмірності *п*. Реалізувати для нього декілька конструкторів, геттери, метод обчислення норми матриці. Перевантажити оператори додавання «+» і множення «*» матриць. Створити три матриці (М1, М2, М3), використовуючи різні конструктори. Визначити матрицю М3 як суму матриць М1 та М2. Отриману матрицю М3 піднести до квадрату. Знайти норму нової матриці М3.

1. Код на С++

```
Лаб_4.cpp* 🛥 🗙 Functions.cpp
                              Class.cpp
                                           Functions.h
                                                          Class.h
№ Лаб_4
                                                                                           → Ø mair
                                                (Глобальная область)
          □#include "Functions.h"
         #include "Class.h"
         _
⊟int main()
                int n = input();
                double k = inputNum();
                TMatrix one(n), two(n,k);
                cout << "Your randomly generated M1:" << endl;</pre>
                findNorm(one); one.print();
                cout << "Your M2 filled with " << k << ": " << endl;</pre>
                findNorm(two); two.print();
                double** m = inputM(n);
                TMatrix three(n, m);
                cout << "\nYour own M3: " << endl;</pre>
                findNorm(three); three.print();
                three = one + two;
                cout << "Sum M1 + M2:" << endl;</pre>
                findNorm(three); three.print();
                cout << "Squared M3:" << endl;</pre>
                findNorm(three); three.print();
                cout << "First (random) M1:" << endl; // показываем, что начальные значения
                cout << "Second (filled) M2:" << endl; // не изменились
                two.print();
```

```
Functions.h
Лаб_4.срр
             Functions.cpp* → X Class.cpp
                                                          Class.h
№ Лаб 4
                                               (Глобальная область)
                                                                                         → Ø invalidInput(int &
          □#include "Functions.h"
         #include "Class.h"
          戸int input() { // вводим размерность матрицы
                cout << "Enter the dimention of your M1: "; cin >> n;
                invalidInput(n);
                cout << endl;</pre>
          □void invalidInput(int& n) { // проверка на валидность ввода
               while (!cin \mid \mid n < 1) {
                    cin.clear();
                    cin.ignore(64, '\n');
                    cout << "Your input is wrong, try again: "; cin >> n;
          📮 double inputNum() { // вводим число, от которого начнем заполнение M2
                double k;
                cout << "Enter the number you want to fill M2 with: "; cin >> k;
                invalidInput(k);
                cout << endl;</pre>
                return k;
          🗗 void invalidInput(double& input) { // перегруженная функция проверки валидности для дабла
               while (!cin) {
                    cin.clear();
                    cin.ignore(64, '\n');
                    cout << "Your input is wrong, try again: "; cin >> input;
          👨void findNorm(TMatrix& obj) { // одной функцией вызываем все нормы
               obj.findNormaM();
               obj.findNormaL();
               obj.findNormaE();
          □double** inputM(int n) { // ввод М3 с клавиатуры
               double** m = new double* [n];
               for (int i = 0; i < n; i++) {
         ⋳
                    m[i] = new double[n];
                    for (int j = 0; j < n; j++) {
          ₽
                        cout << "M3[" << i << "][" << j << "] = ";</pre>
                        cin >> m[i][j];
               return m;
```

```
Лаб_4.срр
             Functions.cpp
                            Class.cpp + X Functions.h
                                                        Class.h
Т Лаб_4
                                          → TMatrix
           #include "Class.h"
          □double TMatrix::getEl(int i, int j) {
               return matrix[i][j];
          □double TMatrix::getNormaE() {
               return normaEuclid;
          [}
          □void TMatrix::setNormaE(double euclid) {
               normaEuclid = euclid;
    11
    12
          □double TMatrix::getNormaM() {
               return normaM;
          □void TMatrix::setNormaM(double m) {
               normaM = m;
          □double TMatrix::getNormaL() {
               return normaL;
          □void TMatrix::setNormaL(double 1) {
               normal = 1;
          □TMatrix::TMatrix(const TMatrix& other) { // конструктор копирования
               n = other.n;
               matrix = new double* [n];
               for (int i = 0; i < n; i++) {
          ൎ
                   matrix[i] = new double[n];
                   for (int j = 0; j < n; j++) {
                       matrix[i][j] = other.matrix[i][j];
          PTMatrix::TMatrix(int dimention) { // конструктор для рандомного заполнения
               n = dimention;
               srand(time(NULL));
               matrix = new double* [dimention];
               for (int i = 0; i < dimention; i++) {
                   matrix[i] = new double[dimention];
                   for (int j = 0; j < dimention; j++) {
                       matrix[i][j] = rand() % 10;
```

```
Class.cpp* - X Functions.h
Лаб_4.срр
             Functions.cpp
                                                       Class.h
🛂 Лаб_4
                                         → TMatrix
                                                                                     → 🏵 TMatrix(int dimention, do
         □TMatrix::TMatrix(int dimention, double number) { // конструктор для заполнения от нашего числа
               matrix = new double* [dimention];
               for (int i = 0; i < dimention; i++) {
                   matrix[i] = new double[dimention];
                   for (int j = 0; j < dimention; j++) {
                       matrix[i][j] = number++;
          []
         □TMatrix::~TMatrix() {
                   delete[] matrix[i];
                    delete[] matrix;
         🗗 void TMatrix::findNormaM() { // поиск нормы М (максимальная из сумм рядов матрицы)
               double sum, max = 0;
               for (int i = 0; i < n; i++) {
                   sum = 0;
                   for (int j = 0; j < n; j++) {
                       sum += abs(matrix[i][j]);
                   if (max < sum) max = sum;</pre>
               setNormaM(max);//normaM=max;
          📮void TMatrix::findNormaL() { // поиск нормы L (максимальная из сумм столбцов матрицы)
                 double sum, max = 0;
                 for (int i = 0; i < n; i++) {
          Ġ
                     sum = 0;
          白
                     for (int j = 0; j < n; j++) {
                         sum += abs(matrix[j][i]);
                     if (max < sum) max = sum;</pre>
                 setNormaL(max);
            // поиск Эвклидовой нормы (корень из сумм квадратов всех элементов)
          ⊡void TMatrix::findNormaE() {
                 double sum = 0;
           ₫
                 for (int i = 0; i < n; i++) {
           ᆸ
                     for (int j = 0; j < n; j++) {
                          sum += pow(matrix[i][j], 2);
                 sum = sqrt(sum);
                 setNormaE(sum);
```

```
Лаб_4.срр
              Functions.cpp
                               Class.cpp + X Functions.h
                                                            Class.h
ѣ Лаб_4
                                              - → TMatrix

→ Ø findNormaE()

          □void TMatrix::print() { // вывод
□ for (int i = 0; i < n; i++) {
□ for (int j = 0; i < n: i-
                     for (int j = 0; j < n; j++) {
                         cout << setw(9) << matrix[i][j];</pre>
                     cout << endl;</pre>
                cout << "Norm M = " << normaM << endl;</pre>
                 cout << "Norm L = " << normaL << endl;</pre>
                 cout << "Norm E = " << normaEuclid << endl << endl;;</pre>
          🖘 TMatrix TMatrix::operator+(const TMatrix& obj) const { // перегрузка оператора плюс
                 TMatrix tmp(n, 1);
                     for (int j = 0; j < n; j++) {
                         tmp.matrix[i][j] = matrix[i][j] + obj.matrix[i][j];
                 return tmp;
          □TMatrix TMatrix::operator*(const TMatrix& obj) const { // перегрузка оператора умножения
                 TMatrix tmp(n, 1);
                 double s;
                 for (int i = 0; i < n; i++) {
          阜
          自
                     for (int j = 0; j < n; j++) {
                         s = 0;
                          for (int k = 0; k < n; k++) {
                              s += matrix[i][k] * obj.matrix[k][j];
                          tmp.matrix[i][j] = s;
                }return tmp;
          📮void TMatrix::operator=(const TMatrix& obj) { // перегрузка оператора равенства
                     delete[] matrix[i];
                 } delete[] matrix;
                 matrix = new double* [n];
                 for (int i = 0; i < n; i++) {
                     matrix[i] = new double[n];
                     for (int j = 0; j < n; j++) {
                          matrix[i][j] = obj.matrix[i][j];
    143
```

```
Лаб_4.срр
             Functions.cpp
                             Class.cpp
                                          Functions.h
                                                        Class.h ≠ X
№ Лаб_4
                                          → TMatrix
           #pragma once
          ⊟#include <iostream>
           #include <iomanip>
           using namespace std;
          ⊡class TMatrix {
               int n;
               double num;
               double** matrix;
               double normaM, normaL, normaEuclid;
    11
           public:
               double getEl(int i, int j);
               double getNormaM();
               void setNormaM(double m);
               double getNormaL();
               void setNormaL(double 1);
               double getNormaE();
               void setNormaE(double euclid);
               TMatrix(const TMatrix& other); // копирование
               TMatrix(int dimention); // рандом
    21
               TMatrix(int dimention, double number); // по нашему числу
               TMatrix(int dimension, double** matr) : n(dimension), matrix(matr) {}
               ~TMatrix();
               void findNormaM(); // ряды
               void findNormaL(); // столбцы
               void findNormaE(); // квадраты
               void print();
               TMatrix operator+(const TMatrix& obj) const;
               TMatrix operator*(const TMatrix& obj) const;
               void operator=(const TMatrix& obj);
```

2. Результат виконання на С++

```
Enter the dimention of your M1: лошгротл
                                                 Sum M1 + M2:
Your input is wrong, try again: 0
                                                                               5.3
                                                         2.3
                                                                  11.3
Your input is wrong, try again: 3
                                                        12.3
                                                                  15.3
                                                                               7.3
                                                        11.3
                                                                  15.3
                                                                             11.3
Enter the number you want to fill M2 with: juh
                                                  Norm M = 37.9
Your input is wrong, try again: 2.3
                                                  Norm L = 41.9
Your randomly generated M1:
                                                 Norm E = 33.0032
       0
                 8
                          1
        7
                 9
                          0
                                                 Squared M3:
                 6
                                                     204.17
                                                                           154.57
                                                                279.97
Norm M = 16
Norm L = 23
                                                     298.97
                                                                484.77
                                                                           259.37
Norm E = 15.5242
                                                                           299.27
                                                     341.87
                                                                534.67
                                                  Norm M = 1175.81
Your M2 filled with 2.3:
                                                  Norm L = 1299.41
     2.3
               3.3
                        4.3
                                                  Norm E = 1013.87
     5.3
               6.3
                        7.3
     8.3
               9.3
                       10.3
Norm M = 27.9
                                                 First (random) M1:
Norm L = 21.9
                                                           0
                                                                      8
                                                                                 1
Norm E = 20.4257
                                                           7
                                                                      9
                                                                                 0
                                                           3
                                                                      6
                                                                                 1
M3[0][0] = 0
M3[0][1] = -1.2
                                                 Norm M = 16
M3[0][2] = 5.1
                                                  Norm L = 23
M3[1][0] = 3
                                                 Norm E = 15.5242
M3[1][1] = -6
M3[1][2] = 0.8
M3[2][0] = 7.9
M3[2][1] = 5
M3[2][2] = 0.4
                                                 Second (filled) M2:
                                                                   3.3
                                                         2.3
                                                                              4.3
                                                         5.3
                                                                   6.3
                                                                               7.3
                                                         8.3
                                                                   9.3
                                                                             10.3
Your own M3:
                                                  Norm M = 27.9
              -1.2
                        5.1
       0
                                                  Norm L = 21.9
                        0.8
               -6
                                                  Norm E = 20.4257
     7.9
                        0.4
Norm M = 13.3
Norm L = 12.2
Norm E = 12.6752
                                                  C:\Users\Пользователь\OneDriv
```

3. Висновок

Під час виконання четвертої лабораторної роботи, розглянули на практиці роботу з класами з використанням перевантажених операторів. В результаті була створена програма, яка за допомогою різних конструкторів ініціалізує три об'єкти класу «Квадратна матриця», визначає матрицю М3 як суму матриць М1 та М2, а потім підносить її до квадрвту.