Introductory Course on Non-smooth Optimisation

Lecture 03 - Krasnosel'skiĭ-Mann iteration

Jingwei Liang

Department of Applied Mathematics and Theoretical Physics

Table of contents

1 Method of alternating projection

2 Monotone and non-expansive mappings

3 Krasnosel'skii-Mann iteration

4 "Accelerated" Krasnosel'skii-Mann iteration

Recap of descent methods

- include gradient descent, proximal gradient descent.
- convergence (rate) properties
 - objective function value
 - o O(1/k) convergence rate.
 - o optimal $O(1/k^2)$ convergence rate.
 - sequence
 - o $O(1/\sqrt{k})$ convergence rate.
 - o optimal O(1/k) convergence rate.
 - linear convergence under e.g. strong convexity.

NB: end of happiness, most of the above results, especially for objective function values, will not be true for non-descent type methods.

Operator splitting

Consider the problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} \ \mu_1 \|\mathbf{x}\|_1 + \mu_2 \|\nabla \mathbf{x}\|_1 + \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{f}\|^2.$$

In 1D, both

$$\operatorname{prox}_{\gamma\|\cdot\|_1}(\cdot)$$
 and $\operatorname{prox}_{\gamma\|\nabla\cdot\|_1}(\cdot)$

have close form solution. However, not for

$$\mathsf{prox}_{\gamma(\|\cdot\|_1+\|\nabla\cdot\|_1)}(\cdot).$$

Operator splitting design properly structured scheme such that

- the proximal mapping of non-smooth functions are evaluated separated.
- gradient descent is applied to the smooth part.

Outline

1 Method of alternating projection

2 Monotone and non-expansive mappings

3 Krasnosel'skiĭ-Mann iteration

4 "Accelerated" Krasnosel'skiĭ-Mann iteration

Feasibility problem

Feasibility problem

Consider finding a common point

$$\text{find } x \in \mathcal{X} \cap \mathcal{Y},$$

where $\mathcal{X}, \mathcal{Y} \in \mathbb{R}^n$ are two closed and convex sets.

Method of alternating projection

Equivalent formulation

$$\min_{\mathbf{x} \in \mathbb{R}^n} \ \iota_{\mathcal{X}}(\mathbf{x}) + \iota_{\mathcal{Y}}(\mathbf{x}).$$

Method of alternating projection (MAP)

initial: $x_0 \in \mathcal{X}$;

repeat:

- 1. Projection onto \mathcal{Y} : $y_k = \mathcal{P}_{\mathcal{Y}}(x_k)$
- 2. Projection onto \mathcal{X} : $x_{k+1} = \mathcal{P}_{\mathcal{X}}(y_k)$

until: stopping criterion is satisfied.

- The projection onto two sets are computed separately.
- Stopping criterion: $||x_k x_{k-1}|| \le \epsilon$.

Convergence analysis

MAP

$$x_{k+1} = \mathbb{P}_{\mathcal{X}} \circ \mathbb{P}_{\mathcal{Y}}(x_k).$$

Convergence proerties

- convergence result for the objective function value?
- convergence of the sequences $\{x_k\}_{k\in\mathbb{N}}, \{y_k\}_{k\in\mathbb{N}}$?

Outline

1 Method of alternating projection

2 Monotone and non-expansive mappings

3 Krasnosel'skii-Mann iteration

4 "Accelerated" Krasnosel'skii-Mann iteration

Notations

Given two non-empty sets $\mathcal{X}, \mathcal{U} \subseteq \mathbb{R}^n$, $A: \mathcal{X} \rightrightarrows \mathcal{U}$ is called set-valued operator if A maps every point in \mathcal{X} to a subset of \mathcal{U} , *i.e.*

$$A: \mathcal{X} \rightrightarrows \mathcal{U}, \ x \in \mathcal{X} \mapsto A(x) \subseteq \mathcal{U}.$$

The graph of A is defined by

$$\operatorname{gra}(A) \stackrel{\text{def}}{=} \{(x, u) \in \mathcal{X} \times \mathcal{U} : u \in A(x)\}.$$

■ The domain and range of A are

$$dom(A) \stackrel{\text{def}}{=} \{x \in \mathcal{X} : A(x) \neq \emptyset\}, \ ran(A) \stackrel{\text{def}}{=} A(\mathcal{X}).$$

The inverse of A defined through its graph

$$\operatorname{gra}(A^{-1}) \stackrel{\text{def}}{=} \{(u, x) \in \mathcal{U} \times \mathcal{X} : u \in A(x)\}.$$

■ The set of zeros of A are the points such that

$$\operatorname{zer}(A) \stackrel{\text{def}}{=} A^{-1}(0) = \{ x \in \mathcal{X} : 0 \in A(x) \}.$$

Monotone operator

Monotone operator

Let $\mathcal{X}, \mathcal{U} \subseteq \mathbb{R}^n$ be two non-empty convex sets, $A: \mathcal{X} \rightrightarrows \mathcal{U}$ is monotone if

$$\langle x-y, u-v\rangle \geq 0, \ \forall (x,u), (y,v) \in gra(A).$$

It is moreover maximal monotone if gra(A) is not strictly contained in the graph of any other monotone operators.

A is called α -strongly monotone for some $\kappa > 0$ if

$$\langle x - y, u - v \rangle \ge \kappa ||x - y||^2$$
.

Lemma

Let $R \in \Gamma_0$, then ∂R is maximal monotone.

Cocoercive operator

Cocoercive operator

An operator $B: \mathbb{R}^n \to \mathbb{R}^n$ is called β -cocoercive if there exists $\beta > 0$ such that

$$\beta \|B(x) - B(y)\|^2 \leq \langle B(x) - B(y), \, x - y \rangle, \ \, \forall x,y \in \mathbb{R}^n.$$

The above equation implies that *B* is $(1/\beta)$ -Lipschitz continuous.

Baillon-Haddad theorem

Let $F \in C_L^1$, then ∇F is β -cocoercive.

Lemma

Let $C: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be β -strongly monotone, then its inverse C^{-1} is β -cocoercive.

Resolvent of monotone operator

Resolvent

Let $A:\mathbb{R}^n \rightrightarrows \mathbb{R}^n$ be a maximal monotone operator and $\gamma>0$, the resolvent of A is defined by

$$\mathcal{J}_A \stackrel{\text{def}}{=} (Id + A)^{-1}.$$

The reflection of \mathcal{J}_A is defined by

$$\mathcal{R}_A \stackrel{\text{def}}{=} 2\mathcal{J}_A - Id.$$

Given a function $R \in \Gamma_0$ and its sub-differential ∂R ,

$$prox_R = \mathcal{J}_{\partial R}$$
.

Set of fixed points, $x = prox_R(x)$

$$fix(prox_R) = fix(\mathcal{J}_{\partial R}) = zer(\partial R).$$

Yosida approximation

Yosida approximation

Let $A:\mathbb{R}^n\rightrightarrows\mathbb{R}^n$ be a maximal monotone operator and $\gamma>0$, the Yosida approximation of A with γ is

$$^{\gamma}A\stackrel{\text{def}}{=}\frac{1}{\gamma}(\operatorname{Id}-\mathcal{J}_{\gamma A})=(\gamma\operatorname{Id}+A^{-1})^{-1}=\mathcal{J}_{A^{-1}/\gamma}(\cdot/\gamma).$$

Moreover,

$$\mathsf{Id} = \mathcal{J}_{\gamma \mathsf{A}}(\cdot) + \gamma \mathcal{J}_{\mathsf{A}^{-1}/\gamma} \left(\frac{\cdot}{\gamma}\right).$$

 \blacksquare $^{\gamma}$ A is γ -cocoercive

Non-expansive operator

Non-expansive operator

An operator $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ is called non-expansive if it is 1-Lipschitz continuous, *i.e.*

$$\|\mathcal{T}(x) - \mathcal{T}(y)\| \le \|x - y\|, \ \forall x, y \in \mathbb{R}^n.$$

For any $\alpha \in]0,1[$, \mathcal{T} is α -averaged if there exists a non-expansive operator \mathcal{T}' such that

$$\mathcal{T} = \alpha \mathcal{T}' + (1 - \alpha) \mathrm{Id}.$$

- $\mathcal{A}(\alpha)$ denotes the class of α -averaged operators on \mathbb{R}^n .
- $\mathcal{A}(\frac{1}{2})$ is the class of firmly non-expansive operators.

Properties: α -averaged operators

Lemma

Let $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ be non-expansive and $\alpha \in]0,1[$. The following statements are equivalent:

- \blacksquare \mathcal{T} is α -averaged non-expansive.
- The operator

$$\left(1-\frac{1}{\alpha}\right)\operatorname{Id}+\frac{1}{\alpha}\mathcal{T}$$

is non-expansive.

■ For any $x, y \in \mathbb{R}^n$,

$$\|\mathcal{T}(x) - \mathcal{T}(y)\|^2 \le \|x - y\|^2 - \frac{1 - \alpha}{\alpha} \|(\operatorname{Id} - \mathcal{T})(x) - (\operatorname{Id} - \mathcal{T})(y)\|^2.$$

Properties: α -averaged operators

 $\mathcal{A}(\alpha)$ is closed under relaxations, convex combinations and compositions.

Lemma

Let $m \in \mathbb{N}_+$, $\{\mathcal{T}_i\}_{i \in \{1,...,m\}}$ be non-expansive operators on \mathbb{R}^n , $(\omega_i)_i \in]0,1]^m$ and $\sum_i \omega_i = 1$, and $(\alpha_i)_i \in]0,1]^m$ such that $\mathcal{T}_i \in \mathcal{A}(\alpha_i), i \in \{1,...,m\}$. Then,

- $\operatorname{Id} + \lambda_i(\mathcal{T}_i \operatorname{Id}) \in \mathcal{A}(\lambda_i \alpha_i), \ \lambda_i \in]0, \frac{1}{\alpha_i}[$ and $i \in \{1, ..., m\}.$
- $\mathcal{T}_1 \cdots \mathcal{T}_m \in \mathcal{A}(\alpha)$ with $\alpha = \frac{m}{m-1+1/\max_{i \in \{1,\ldots,m\}} \alpha_i}$.

Remark For the composition of two averaged operators, a sharper bound of α can be obtained,

$$\alpha = \frac{\alpha_1 + \alpha_2 - 2\alpha_1\alpha_2}{1 - \alpha_1\alpha_2} \in]0,1[.$$

Properties: firmly non-expansive operators

Lemma

Let $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ be non-expansive. The following statements are equivalent:

- lacktriangleright T is firmly non-expansive.
- Id $-\mathcal{T}$ is firmly non-expansive.
- \blacksquare 2 \mathcal{T} Id is non-expansive.
- $\blacksquare \|\mathcal{T}(x) \mathcal{T}(y)\|^2 \le \langle \mathcal{T}(x) \mathcal{T}(y), x y \rangle, \forall x, y \in \mathbb{R}^n.$
- \mathcal{T} is the resolvent of a maximal monotone operator A, i.e. $\mathcal{T} = \mathcal{J}_A$.

Lemma

Let operator $B:\mathbb{R}^n \to \mathbb{R}^n$ be β -cocoercive for some $\beta > 0$. Then

- $\beta B \in \mathcal{A}(\frac{1}{2})$, i.e. is firmly non-expansive.
- Id $-\gamma B \in \mathcal{A}(\frac{\gamma}{2\beta})$ for $\gamma \in]0, 2\beta[$.

Outline

1 Method of alternating projection

2 Monotone and non-expansive mapping

3 Krasnosel'skiĭ-Mann iteration

4 "Accelerated" Krasnosel'skiĭ-Mann iteration

Fixed point

Fixed point

Let $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ be a non-expansive operator, $x \in \mathbb{R}^n$ is called the fixed point of \mathcal{T} if

$$x = \mathcal{T}(x)$$
.

The set of fixed points of \mathcal{T} is denoted as fix(\mathcal{T}).

• fix(T) may be empty, e.g. translation by a non-zero vector.

Lemma

Let \mathcal{X} be a non-empty bounded closed convex subset of \mathbb{R}^n and $\mathcal{T}: \mathcal{X} \to \mathbb{R}^n$ be a non-expansive operator, then fix $(\mathcal{T}) \neq \emptyset$.

Lemma

Let \mathcal{X} be a non-empty closed convex subset of \mathbb{R}^n and $\mathcal{T}: \mathcal{X} \to \mathbb{R}^n$ be a non-expansive operator, then $fix(\mathcal{T})$ is closed and convex.

Krasnosel'skii-Mann iteration

Fixed-point iteration

$$x_{k+1} = \mathcal{T}(x_k).$$

However, it may not converge, e.g. $\mathcal{T} = -Id...$

Krasnosel'skii-Mann iteration

Let $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ be a non-expansive operator such that fix $(\mathcal{T}) \neq \emptyset$. Let $\lambda_k \in [0,1]$ and choose x_0 arbitrarily from \mathbb{R}^n , then the Krasnosel'skiĭ-Mann iteration of \mathcal{T} reads

$$x_{k+1} = x_k + \lambda_k (\mathcal{T}(x_k) - x_k).$$

• If $\mathcal{T} \in \mathcal{A}(\alpha)$, then $\lambda_k \in [0, 1/\alpha]$

Fejér monotonicity

Fejér monotonicity

Let $S \subseteq \mathbb{R}^n$ be a non-empty set and $\{x_k\}_{k \in \mathbb{N}}$ be a sequence in \mathbb{R}^n . Then

• $\{x_k\}_{k\in\mathbb{N}}$ is Fejér monotone with respect to S if

$$||x_{k+1}-x|| \le ||x_k-x||, \ \forall x \in \mathcal{S}, \, \forall k \in \mathbb{N}.$$

■ $\{x_k\}_{k\in\mathbb{N}}$ is quasi-Fejér monotone with respect to \mathcal{S} , if there exists a summable sequence $\{\epsilon_k\}_{k\in\mathbb{N}}\in\ell_+^1$ such that

$$\forall k \in \mathbb{N}, \quad \|x_{k+1} - x\| \le \|x_k - x\| + \epsilon_k, \quad \forall x \in \mathcal{S}.$$

Example Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a non-empty convex set, and $\mathcal{T}: \mathcal{X} \to \mathcal{X}$ be a non-expansive operator such that $\operatorname{fix}(\mathcal{T}) \neq \emptyset$. The sequence $\{x_k\}_{k \in \mathbb{N}}$ generated by

$$x_{k+1} = \mathcal{T}(x_k)$$

is Fejér monotone with respect to fix(\mathcal{T}).

Convergence

Lemma

Let $S \subseteq \mathbb{R}^n$ be a non-empty set and $\{x_k\}_{k \in \mathbb{N}}$ be a sequence in \mathbb{R}^n . Assume the $\{x_k\}_{k \in \mathbb{N}}$ is quasi-Fejér monotone with respect to S, then the following holds

- $\{x_k\}_{k\in\mathbb{N}}$ is bounded.
- $||x_k x||$ is bounded for any $x \in S$.
- $\{\operatorname{dist}(x_k,\mathcal{S})\}_{k\in\mathbb{N}}$ is decreasing and convergent.

If every sequential cluster point of $\{x_k\}_{k\in\mathbb{N}}$ belongs to \mathcal{S} , then $\{x_k\}_{k\in\mathbb{N}}$ converges to a point in \mathcal{S} .

■ Weak convergence in general real Hilbert space

Convergence

Convergence

Let $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ be a non-expansive operator such that fix $(\mathcal{T}) \neq \emptyset$. Consider the Krasnosel'skiĭ-Mann iteration of \mathcal{T} , and choose $\lambda_k \in [0, 1]$ such that

$$\sum_{k\in\mathbb{N}}\lambda_k(1-\lambda_k)=+\infty,$$

then the following holds

- $\{x_k\}_{k\in\mathbb{N}}$ is Fejér monotone with respect to fix (\mathcal{T}) .
- $\{x_k \mathcal{T}(x_k)\}_{k \in \mathbb{N}}$ converges strongly to 0.
- $\{x_k\}_{k\in\mathbb{N}}$ converges to a point in fix (\mathcal{T}) .

Remark When \mathcal{T} is α -averaged, then

$$\lambda_k \in [0, 1/\alpha]$$
 such that $\sum_{k \in \mathbb{N}} \lambda_k (1/\alpha - \lambda_k) = +\infty$.

Preliminiary

■ Krasnosel'skiĭ-Mann iteration with constant relaxation

$$x_{k+1} = x_k + \lambda (\mathcal{T}(x_k) - x_k)$$

= $((1 - \lambda) \operatorname{Id} + \lambda \mathcal{T})(x_k)$.

■ Denote $\mathcal{T}_{\lambda} = (1 - \lambda) \text{Id} + \lambda \mathcal{T}$, and define residual

$$e_k = (\operatorname{Id} - \mathcal{T})(x_k) = \frac{1}{\lambda}(x_k - x_{k+1}).$$

- $\mathcal{T}_{\lambda} \in \mathcal{A}(\lambda)$ if $\lambda \in]0,1[$. If $\mathcal{T} \in \mathcal{A}(\alpha)$, then $\mathcal{T}_{\lambda} \in \mathcal{A}(\lambda \alpha)$.
- For any $x^* \in fix(\mathcal{T})$,

$$x^* \in fix(\mathcal{T}) \Leftrightarrow x^* \in fix(\mathcal{T}_{\lambda}) \Leftrightarrow x^* \in zer(Id - \mathcal{T}).$$

- If $\lambda \in [\epsilon, 1 \epsilon], \epsilon \in]0, 1/2]$,
 - o ek converges to 0.
 - ∘ $\{x_k\}_{k \in \mathbb{N}}$ is quasi-Fejér monotone with respect to fix(\mathcal{T}), and converges to a point $x^* \in \text{fix}(\mathcal{T})$.

Pointwise convergence rate

Rate of $||e_k||^2$:

■ For residual

$$\|e_{k+1}\|^2 \leq \|e_k\|^2 - \frac{1-\lambda}{\lambda} \|e_k - e_{k+1}\|^2.$$

 \bullet $\mathcal{T}_{\lambda} \in \mathcal{A}(\lambda), \tau = \lambda(1-\lambda)$

$$||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2 - \tau ||e_k||^2$$
.

Summation

$$(k+1)\|e_k\|^2 \le \tau \sum_{i=0}^k \|e_i\|^2 \le \|x_0 - x^*\|^2 - \|x_{k+1} - x^*\|^2.$$

Rate

$$\|e_k\|^2 \leq \frac{\|x_0 - x^*\|^2}{k+1}.$$

NB: if $T \in \mathcal{A}(\alpha)$, then the above holds for $\lambda \in [\epsilon, 1/\alpha - \epsilon]$.

Define
$$\bar{e}_k = \frac{1}{k+1} \sum_{i=0}^k e_i$$
.

Boundedness

$$||x_{k+1} - x^*|| = ||\mathcal{T}_{\lambda}(x_k) - \mathcal{T}_{\lambda}(x^*)|| \le ||x_k - x^*||$$

$$\le ||x_0 - x^*||.$$

$$\begin{split} \blacksquare \ \lambda e_k &= x_k - x_{k+1} \\ \|\bar{e}_k\| &= \frac{1}{k+1} \| \sum_{i=0}^k e_i \| = \frac{1}{\lambda(k+1)} \| \sum_{i=0}^k \left(x_i - x_{i+1} \right) \| \\ &= \frac{1}{\lambda(k+1)} \| x_0 - x_{k+1} \| \\ &\leq \frac{1}{\lambda(k+1)} (\| x_0 - x^* \| + \| x_{k+1} - x^* \|) \\ &\leq \frac{2 \| x_0 - x^* \|}{\lambda(k+1)}. \end{split}$$

NB: both rates (pointwise and ergodic) can be extended to the inexact case...

Metric sub-regularity

Metric sub-regularity

A set-valued mapping $A : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is called metrically sub-regular at \bar{x} for $\bar{u} \in A(\bar{x})$ if there exists $\kappa > 0$ along with neighbourhood \mathcal{X} of \bar{x} such that

$$\operatorname{dist}(x, A^{-1}(\bar{u})) \leq \kappa \operatorname{dist}(\bar{u}, A(x)), \ \forall x \in \mathcal{X}.$$

The infimum of all κ such that above holds is called the modulus of metric sub-regularity, and denoted by subreg(A; $\bar{x}|\bar{u}$).

Example Let
$$F \in S^1_{\alpha,L}$$
 and $A = \gamma \nabla F$ with $\gamma \leq 1/L$: $\bar{x} = \operatorname{argmin}_{\mathbb{R}^n} F$ and $\bar{u} = 0$,
$$\operatorname{dist}(\bar{u}, A(x)) = \|\gamma \nabla F(x) - \gamma \nabla F(\bar{x})\|$$
$$\geq \gamma \alpha \|x - y\|$$

(Local) linear convergence

Let $x^* \in \text{fix}(\mathcal{T})$, suppose $\mathcal{T}' \stackrel{\text{def}}{=} \text{Id} - \mathcal{T}$ is metrically sub-regular at x^* with neighbourhood \mathcal{X} of x^* , let $\kappa > \text{subreg}(\mathcal{T}'; x^* | 0)$:

$$\bullet 0 = \mathcal{T}'(x^*), \mathcal{T}'^{-1}(0) = \operatorname{fix}(\mathcal{T})$$

$$\operatorname{dist}(x, \operatorname{fix}(\mathcal{T})) \le \kappa \operatorname{dist}(0, \mathcal{T}'(x)) = \kappa \|x - \mathcal{T}(x)\|.$$

■ Denote
$$d_k = \operatorname{dist}(x_k, \operatorname{fix}(\mathcal{T}))$$
, $\bar{x} \in \operatorname{fix}(\mathcal{T})$ such that $d_k = \|x_{k+1} - \bar{x}\|$,
$$d_{k+1}^2 \le \|x_{k+1} - \bar{x}\|^2 \le \|x_k - \bar{x}\|^2 - \tau \|\mathcal{T}'(x_k) - \mathcal{T}'(\bar{x})\|^2$$
$$\le d_k^2 - \frac{\tau}{\kappa^2} d_k^2$$
$$= \left(1 - \frac{\tau}{\kappa^2}\right) d_k^2.$$

NB: As metric sub-regularity is a local propery, the linear convergence will happen only when x_k is close enough to fix(\mathcal{T}).

Optimal relaxation parameter?

Consider
$$\lambda_k \in [0,1]$$
 and $x_{k+1} = (1 - \lambda_k)x_k + \lambda_k \mathcal{T}(x_k)$. Then

$$\begin{aligned} \|\mathbf{x}_{k+1} - \mathbf{x}^{\star}\|^{2} &= \|(1 - \lambda_{k})(\mathbf{x}_{k} - \mathbf{x}^{\star}) + \lambda_{k}(\mathcal{T}(\mathbf{x}_{k}) - \mathbf{x}^{\star})\|^{2} \\ &= (1 - \lambda_{k})\|\mathbf{x}_{k} - \mathbf{x}^{\star}\|^{2} + \lambda_{k}\|\mathcal{T}(\mathbf{x}_{k}) - \mathbf{x}^{\star}\|^{2} \\ &- \lambda_{k}(1 - \lambda_{k})\|\mathbf{x}_{k} - \mathcal{T}(\mathbf{x}_{k})\|^{2} \\ &= \lambda_{k}^{2}\|\mathbf{x}_{k} - \mathcal{T}(\mathbf{x}_{k})\|^{2} \\ &- \lambda_{k}(\|\mathbf{x}_{k} - \mathbf{x}^{\star}\|^{2} - \|\mathcal{T}(\mathbf{x}_{k}) - \mathbf{x}^{\star}\|^{2} + \|\mathbf{x}_{k} - \mathcal{T}(\mathbf{x}_{k})\|^{2}) + \|\mathbf{x}_{k} - \mathbf{x}^{\star}\|^{2} \end{aligned}$$

which is a quadratic funntion of λ_k , and minimises at

$$\lambda = \frac{1}{2} + \frac{\|x_k - x^*\|^2 - \|\mathcal{T}(x_k) - x^*\|^2}{2\|x_k - \mathcal{T}(x_k)\|^2}.$$

Approximation:

$$\lambda = \frac{1}{2} + \frac{\|x_k - \mathcal{T}(x_k)\|^2 - \|\mathcal{T}(x_k) - \mathcal{T}^2(x_k)\|^2}{2\|(x_k - \mathcal{T}(x_k)) - (\mathcal{T}(x_k) - \mathcal{T}^2(x_k))\|^2}.$$

Outline

2 Monotone and non-expansive mappings

3 Krasnosel'skiĭ-Mann iteration

4 "Accelerated" Krasnosel'skii-Mann iteration

An inertial Krasnosel'skii-Mann iteration

Initial:
$$x_0 \in \mathbb{R}^n, x_{-1} = x_0$$
;

$$\begin{split} y_k &= x_k + a_k(x_k - x_{k-1}), \, a_k \in [0,1], \\ z_k &= x_k + b_k(x_k - x_{k-1}), \, b_k \in [0,1], \\ x_{k+1} &= (1 - \lambda_k)y_k + \lambda_k \mathcal{T}(z_k), \, \lambda_k \in [0,1]. \end{split}$$

- Covers heavy-ball method, Nesterov's scheme, inertial FB and FISTA.
- Convergence analysis is much harder than the inertial version of descent methods.
- No convergence rate.
- May perform very poorly in practice, slower than the original scheme.

A multi-step inertial scheme

A multi-step inertial Krasnosel'skii-Mann iteration

Initial:
$$x_0 \in \mathbb{R}^n$$
, $x_{-1} = x_0$ and $\gamma \in]0, 2/L[$;
$$y_k = x_k + a_{0,k}(x_k - x_{k-1}) + a_{1,k}(x_{k-1} - x_{k-2}) + \cdots,$$

$$z_k = x_k + b_{0,k}(x_k - x_{k-1}) + b_{1,k}(x_{k-1} - x_{k-2}) + \cdots,$$

$$x_{k+1} = (1 - \lambda_k)y_k + \lambda_k \mathcal{T}(z_k), \ \lambda_k \in [0, 1].$$

- Even harder to analyse convergence.
- No rate.
- However, can outperform the original scheme...

Convergence

• Conditional convergence, i = 0, 1, ...

$$\sum_{k\in\mathbb{N}}\max\big\{\max_i\big|a_{i,k}\big|,\max_i|b_{i,k}\big|\big\}\sum_i\|x_{k-i}-x_{k-i-1}\|<+\infty.$$

Online updating rule

$$a_{i,k} = \min \left\{ a_i, c_{i,k} \right\}$$

where

$$c_{i,k} = \frac{c_i}{k^{1+\delta} \sum_i \|x_{k-i} - x_{k-i-1}\|}, \ \delta > 0.$$

Reference

- H. Bauschke and P. L. Combettes. "Convex Analysis and Monotone Operator Theory in Hilbert Spaces". Springer, 2011.
- P. L. Lions and B. Mercier. "Splitting algorithms for the sum of two nonlinear operators". SIAM Journal on Numerical Analysis, 16(6):964–979, 1979.
- J. Liang, J. Fadili, and G. Peyré. "Convergence rates with inexact non-expansive operators".
 Mathematical Programming 159.1-2 (2016): 403-434.