The Cooper Union for the Advancement of Science and Art

ChE352 Numerical Techniques for Chemical Engineers Professor Stevenson

Lecture 12

The Cooper Union for the Advancement of Science and Art

When k_1 and k_2 are very different, this IVP becomes numerically difficult

 $k_{2} > k_{1}$

Stiff IVPs

What happens when f(t, y) is very sensitive to y, so small errors in w_i have a big effect?

Common for chemical reactions, especially when a system has both fast & slow reactions. Where does exp() appear in chemistry?

Stiff IVPs

 When the derivatives of f grow rapidly, higher order methods can have INCREASING error. These IVPs are called <u>stiff</u> (after stiff springs, which have equations with this property).

$$f(t,y) = e^{-ct} \rightarrow f^{(n)}(t,y) = (-1)^n c^n e^{-ct}$$

- Problems with e^{-ct} in their solutions, for large c, are often stiff (How is this like a spring?)
- How do we know if our IVP is stiff?
- Stiff IVPs require tiny steps or stable methods

Runge-Kutta-Fehlberg, RK45

- Error bound (ε) is chosen by the user
- Uses Runge-Kutta order 5 to estimate the error in a Runge-Kutta order 4 step
 - Shares some ks for efficiency
 - Only six different evaluations of f per step
 - Why not just use RK6?
- Fast, versatile, and returns correct answers if it returns at all: great algorithm
- Could RK45 still be dangerous in an engineering situation? How?

RK45 Step Size

- An <u>adaptive method</u> uses "big" steps when f is well-behaved and "small" ones when it isn't
- For RKF45, the step size t_{i+1} t_i is qh, where:
 - 0. Set h to default, e.g. h = 0.1
 - 1. Find k_1, k_2, k_3, k_4, k_5 , and k_6
 - 2. Find $\widetilde{w}_{i+1}, w_{i+1}$, and q where:

$$q = \sqrt[4]{\frac{h\varepsilon}{2|\widetilde{w}_{i+1} - w_{i+1}|}}$$
 What's ε ?

3. If q > 1: Keep w_{i+1} . Else: let h = qh and go to 1.

RK45 in practice

 Error for a given h is O(h⁵), but since the method is adaptive, it will shrink h to get local error below your

user-set tolerance ε

• RK45 uses qh to find k_1 through k_5 , uses those to get order 4 approx. (w_{i+1}) , calculates order 5 step (\hat{w}_{i+1}) , then calculates q from h and $(\hat{w}_{i+1} - w_{i+1})$

 If the steps get too small, RK45 may suffer from numerical errors. It may also simply run out of time.

One-step & explicit IVP methods

- All methods we've seen so far (Euler, RK2, RK4) are <u>explicit</u>, <u>one-step</u> methods
- A <u>one-step method</u> gives the next step y_{i+1} using only the previous step y_i (not y_{i-1} etc)
- An <u>explicit</u> method is a formula for y_{i+1} = ...

...How can we use a method that is not an explicit formula for y_{i+1}?

Implicit & multistep IVP methods

- All methods we've seen so far (Euler, RK2, RK4) are <u>explicit</u>, <u>one-step</u> methods
- A <u>one-step method</u> gives the next step y_{i+1} using only the previous step y_i (not y_{i-1} etc)
- An explicit method is a formula for $y_{i+1} = ...$
- Implicit methods require solving a system of algebraic equations within each step, in terms of f(t_{i+1}, y_{i+1}) & y_{i+1} - slow, but very reliable
- Multistep methods increase accuracy using more old steps y_{i-1}, y_{i-2}, etc (example: BDF)

For Stiff IVPs, higher RK = Bad

- Stiff equations often have less error with low order methods - Why?
- But they will still be sensitive to step size needs to be "small enough"
- For Euler, h < 2 / |c| will be stable, where c comes from the solution form e^{-ct}
- Implicit methods are the most reliable
- Try sensitivity analysis (e.g. RK45 vs BDF)

Solving Stiff IVPs in Python

- Use scipy.integrate.solve ivp
 - o sol = solve ivp(fun, (t0, tmax), [y0])
- If default (RK45) doesn't work (slow, blows up, or has unusual oscillations), IVP is likely stiff. Try method='Radau' or 'BDF'.
 - o sol = solve_ivp(fun, (t0, tmax), [y0],
 method='BDF')
 - Implicit multistep methods, good for stiff IVPs

Higher-Order IVPs

Let's say we have an mth order problem instead of a first order problem: we want y(t), y'(t), etc:

$$t_0 \le t \le t_{\text{max}}$$
You want each of these
$$y^{(m)}(t) = \frac{d^m y}{dt^m} = f(t, y(t), y'(t), \dots, y^{(m-1)}(t))$$

- How many initial conditions do we need?
- What is a physical example of this?
- How could we solve this IVP?

Higher-Order IVPs

Let's say we have an mth order problem instead of a first order problem: we want y(t), y'(t), etc:

$$t_0 \le t \le t_{\text{max}}$$
You want each of these
$$y^{(m)}(t) = \frac{d^m y}{dt^m} = f(t, y(t), y'(t), \dots, y^{(m-1)}(t))$$

Take advantage of the fact that each y⁽ⁱ⁾(t) is the derivative of the one below it y⁽ⁱ⁻¹⁾(t), so you can treat this as an IVP system instead

The Cooper Union for the Advancement of Science and Art

mth Order IVP Example

$$0 \le t \le 1$$
, $y_0 = -0.4$, $y_0' = -0.6$ — Initial conditions $y'' - 2y' + 2y = e^{2t} \sin(t)$ — We can calculate y" if we have the rest, so use that as our f(t, u) $\Rightarrow m = 2$: — Two dependent variables

$$y''(t) = \frac{d^2y}{dt^2} = f(t, y(t), y'(t)) = 2y' - 2y + e^{2t}\sin(t)$$

$$\Rightarrow u_1 \equiv y, \quad u_2 \equiv y'$$
:

$$u_1'(t) = u_2 = f_1(t, u_1, u_2), \quad u_1(0) = y_0 = -0.4$$

$$u_2'(t) = 2u_2 - 2u_1 + e^{2t} \sin(t) = f_2(t, u_1, u_2), \quad u_2(0) = y_0' = -0.6$$

Now we can solve for u₁ & u₂

Activity: Higher Order IVPs 5 min to do, 5 min discuss

Set up the IVP system for the following third order ODE:

$$1 \le t \le 2$$
, $y(1) = 2$, $y'(1) = 8$, $y''(1) = 6$
 $t^3y''' + t^2y'' - 2ty' + 2y = 8t^3 - 2$

State the components of u and f:

$$u_{1}, u_{2}, \dots u_{m}$$

 $f_{1}, f_{2}, \dots f_{m}$

Answer: Higher Order IVPs

$$u_{1} \equiv y, \quad u_{2} \equiv y' = u_{1}', \quad u_{3} \equiv y'' = u_{2}' \rightarrow u_{1}' = u_{2}, \quad u_{2}' = u_{3},$$

$$t^{3}u_{3}' + t^{2}u_{3} - 2tu_{2} + 2u_{1} = 8t^{3} - 2 \rightarrow u_{1}'(t) = u_{2} = f_{1}(t, u_{1}, u_{2}, u_{3})$$

$$u_{2}'(t) = u_{3} = f_{2}(t, u_{1}, u_{2}, u_{3})$$

 $u_3'(t) = t^{-3} (8t^3 - 2 - t^2u_3 + 2tu_2 - 2u_1) = f_3(t, u_1, u_2, u_3)$

$$u_1(1) = 2$$
, $u_2(1) = 8$, $u_3(1) = 6$

Differential-Algebraic Systems

 What if we have an IVP system containing an unknown, and a constraint on the unknown?

$$y^{(m)}(t) = \frac{d^m y}{dt^m} = f(t, v, y, y', \dots, y^{(m-1)})$$

$$C(t,v,y) = 0,$$
 $C: \mathbb{R}^p \to \mathbb{R}^p,$ $v \in \mathbb{R}^p$ Green v

- How many initial conditions do we need?
- How do we solve this IVP system?

Higher Order IVP example: F = ma

- Dynamics (F = ma) is a second-order IVP
- We want to know x(t) & v(t)
- We have a(t) = F/m = v'(t) = x''(t)
- If F is constant (example?), this is an integral
- But usually F = f(x) or f(x, v) examples?
- We can solve this if we know initial position x and initial velocity v
- You might see intuitively why we need initial conditions for both position & velocity

Where do we get F?

To calculate forces on a system of molecules, you either use quantum mechanics, or this:

$$E(\widehat{r}) = \sum_{bonds} (E_{bonds}, E_{angles}, E_{torsions}, E_{pairs})$$

$$E_{bonds} = \sum_{bonds} k_r (r - r_0)^2$$

$$E_{angles} = \sum_{angles} k_{\theta} (\theta - \theta_0)^2$$

$$E_{torsions} = \sum_{torsions} \sum_{n} k_{\phi,n} \cos(n\phi)$$

$$E_{pairs} = \sum_{i>j} \left(\frac{A_{ij}}{r_{ij}^1 2} - \frac{B_{ij}}{r_{ij}^6} + \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}}\right)$$

This kind of approximation is called a "force field"

The Cooper Union for the Advancement of Science and Art

Where do we get F?

https://www.kaggle.com/allaboutchemistry/xtb-water-ivp

To view, download the xyz file and open it using: https://molstar.org/viewer/

Next week: numerical linear algebra

Pre-reading for next week:

Matrix solvers,
eigenvectors, & norms:
PNM 14.1-7, 15.1 & 15.4

More math: F&B 7.1-7.3, 6.2, 6.4-6.6.

