Révisions

Exercice 1.

On note pour tout réel x, $f_n(x) = \frac{\mathrm{d}^n \operatorname{Arctan} x}{\mathrm{d} x^n}$.

- 1) Montrer que $\forall x \in \mathbb{R}, f_1(x) (1 + x^2) = 1.$
- 2) Montrer que $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, f_{n+2}(x) (1+x^2) + 2(n+1)xf_{n+1}(x) + n(n+1)f_n(x) = 0.$
- 3) Pour tout entier n strictement positif, on définit P_n par $P_n : x \in \mathbb{R} \mapsto f_n(x) (1 + x^2)^n$. Montrer que $\forall n \in \mathbb{N}^*$, P_n est un polynôme et donner une relation de récurrence vérifiée par ces polynômes.
- 4) Calculer P_1 , P_2 , P_3 et P_4 .
- 5) Montrer que pour tout $n \in \mathbb{N}^*$, $\deg(P_n) = n 1$.
- 6) Montrer que, pour tout entier n strictement positif, la famille $\mathcal{B}_n = (P_1, P_2, ..., P_n)$ est une base de $\mathbb{R}_{n-1}[X]$.
- 7) Calculer, pour tout entier n strictement positif, le coefficient dominant de P_n .
- 8) On note C_n la base canonique de $\mathbb{R}_{n-1}[X]$. Calculer le déterminant de la matrice de passage $P_{C_n}^{\mathcal{B}_n}$.
- 9) Soit g une fonction de classe C^1 sur \mathbb{R} et $a \in \mathbb{R}$ tels que $g(a) = 0 = \lim_{x \to +\infty} g(x)$. Montrer qu'il existe $c \in]a; +\infty[$ tel que g'(c) = 0.
- 10) Montrer que pour tout n > 1, P_n est un polynôme de $\mathbb{R}[X]$ scindé à racines simples.

Exercice 2.

Soit f continue de \mathbb{R} dans \mathbb{R} une fonction telle que

$$\forall x, y \in \mathbb{R}, f(x+y) = f(x) + f(y)$$

- 1) Calculer f(0) et montrer que f est impaire.
- 2) Soit $x \in \mathbb{R}$. Montrer que pour tout $n \in \mathbb{N}$, f(nx) = nf(x). Étendre cette propriété aux entiers n négatifs.
- 3) On pose a = f(1). Montrer que pour tout $u \in \mathbb{Q}$, f(u) = au.
- 4) En utilisant la continuité de f, montrer que pour tout réel x, f(x) = ax.

Soit g de $\mathbb R$ dans] - 1; 1[telle que

$$\forall x, y \in \mathbb{R}, g(x+y) = \frac{g(x) + g(y)}{1 + g(x)g(y)}$$

5) Soit $\phi: x \in \mathbb{R} \mapsto \frac{e^x - 1}{e^x + 1}$. Montrer que ϕ est une bijection de \mathbb{R} sur un intervalle J à préciser et que

$$\forall x, y \in \mathbb{R}, \phi(x+y) = \frac{\phi(x) + \phi(y)}{1 + \phi(x)\phi(y)}$$

- 6) On pose $h = \phi^{-1} \circ g$. Exprimer, pour tout couple $(x; y) \in \mathbb{R}^2$, h(x + y) en fonction de h(x) et de h(y).
- 7) En déduire une expression de q(x) en fonction de $x \in \mathbb{R}$.

Exercice 3.

Soit n, p deux entiers naturels non nuls. On note $S_{n,p}$ le nombre de surjections de [1; n] dans [1; p]. Notamment, $S_{n,p} = 0$ si n < p. On pose de plus $S_{n,0} = 0$.

- 1) Soient $(x_i)_{i \in \mathbb{N}}$ une suite de nombres réels (ou complexes).

 On pose pour tout entier $q, y_q = \sum_{k=0}^q \binom{q}{k} x_k$.

 Montrer que pour tout entier $q, x_q = \sum_{k=0}^q (-1)^{q-k} \binom{q}{k} y_k$.
- 2) Soit $k \in [1; p]$. Exprimer le nombre d'applications de [1; n] dans [1; p] dont l'image contient exactement k éléments à l'aide des nombres $(S_{a,b})_{(a,b)\in\mathbb{N}^2}$.
- 3) En dénombrant de deux manières le nombre d'applications de $[\![1;n]\!]$ dans $[\![1;p]\!]$, montrer que

$$p^n = \sum_{k=0}^p \binom{p}{k} S_{n,k}$$

4) En déduire que $S_{n,p} = \sum_{k=0}^{p} (-1)^{p-k} \binom{p}{k} k^n$.

On pose

$$s_n = \sum_{p=1}^{n} (-1)^p \frac{S_{n,p}}{p}$$

$$U_{n,k} = \sum_{p=k}^{n} \frac{\binom{p}{k}}{p}$$

- 5) Montrer que $s_n = \sum_{k=1}^{n} (-1)^k k^n U_{n,k}$.
- 6) Montrer que

$$U_{n,k} = \frac{1}{k} \left(\begin{array}{c} n \\ k \end{array} \right)$$

- 7) Montrer que pour n > 1, $s_n = (-1)^n S_{n-1,n}$.
- 8) Que peut-on en déduire pour la valeur de s_n ? [Indication : on distinguera le cas n=1.]