

Gestione delle tabelle

Linguaggio SQL

Linguaggio SQL: gestione delle tabelle

- ➤ Creazione tabelle
- ➤ Modifica delle tabelle
- ➤ Cancellazione delle tabelle
- ➤Integrità dei dati

Creazione delle tabelle

Gestione delle tabelle

CREATE

CREATE TABLE NomeTabella

```
(NomeAttributo Dominio [ValoreDiDefault ] [Vincoli] { , NomeAttributo Dominio [ValoreDiDefault ] [Vincoli ]} AltriVincoli );
```

• Permette di

- definire tutti gli attributi (le colonne) della tabella
- definire vincoli di integrità sui dati della tabella

Dominio

- definisce il tipo di dato dell'attributo
- domini predefiniti del linguaggio SQL (domini elementari)
- domini definiti dall'utente a partire dai domini predefiniti

Vincoli

• permette di specificare vincoli di integrità sull'attributo

• AltriVincoli

 permette di specificare vincoli di integrità di tipo generale sulla tabella

Definizione di domini

- ValoreDiDefault
 - permette di specificare il valore di default dell'attributo
- GenericoValore
 - valore compatibile con il dominio
- *USER
 - identificativo dell'utente
- NULL
 - valore di default di base

Domini elementari

Tipologia di dato	SQL
Testo	CHARACTER [VARYING] [(Lunghezza)] [CHARACTER SET NomeFamigliaCaratteri] VARCHAR (Lunghezza) TEXT
Binario	BIT [VARYING] [(Lunghezza)] BLOB BINARY
Booleano	BOOLEAN
Numeri interi	INTEGER SMALLINT BIGINT
Numeri reali	NUMERIC [(Precisione, Scala)] DECIMAL [(Precisione, Scala)] FLOAT [(n)] REAL DOUBLE PRECISION

Domini elementari

Tipologia di dato	SQL
Tempo	TIMESTAMP [(Precisione)] [WITH TIME ZONE] DATE DATETIME
JSON	JSON
Spaziali	SDO_GEOMETRY GEOMETRY POINT LINESTRING POLYGON

La definizione delle tipologie di dato in SQL differisce dal DBMS usato

Definizione database fornitori-prodotti

• Creazione della tabella fornitori CREATE TABLE F (

CodF CHAR(5),

NomeF CHAR(20),

NSoci SMALLINT,

Sede CHAR(15));

Creazione della tabella forniture

```
CREATE TABLE FP (
```

CodF CHAR(5),

CodP CHAR(6),

Qta INTEGER);

Creazione della tabella prodotti

```
CREATE TABLE P (
```

CodP CHAR(6),

NomeP CHAR(20),

Colore CHAR(6),

Taglia SMALLINT,

Magazzino CHAR(15));

Manca la definizione dei vincoli di integrità

Modifica delle tabelle

Gestione delle tabelle

ALTER TABLE

- Sono possibili le seguenti "alterazioni"
 - aggiunta di una nuova colonna
 - definizione di nuovo valore di default per una colonna (attributo) esistente
 - per esempio, sostituzione del precedente valore di default
 - eliminazione di una colonna (attributo) esistente
 - definizione di un nuovo vincolo di integrità
 - eliminazione di un vincolo di integrità esistente

```
ALTER TABLE NomeTabella

< ADD COLUMN < Definizione-Attributo > |

ALTER COLUMN NomeAttributo

< SET < Definizione-Valore-Default > | DROP DEFAULT > |

DROP COLUMN NomeAttributo

< CASCADE | RESTRICT > |

ADD CONSTRAINT [NomeVincolo]

< definizione-vincolo-unique > |

< definizione-vincolo-integrità-referenziale > |

< definizione-vincolo-check > |

DROP CONSTRAINT [NomeVincolo]

< CASCADE | RESTRICT >
```

- RESTRICT (opzione di default)
 - l'elemento (colonna o vincolo) non è rimosso se è presente in qualche definizione di un altro elemento
- CASCADE
 - tutti gli elementi che dipendono da un elemento rimosso vengono rimossi, fino a quando non esistono più dipendenze non risolte

Esempi: modifica struttura della tabella

Aggiungere la colonna numero dipendenti alla tabella dei fornitori

ALTER TABLE F

ADD COLUMN NDipendenti SMALLINT;

 Aggiungere il valore di default 0 alla colonna quantità della tabella delle furniture

ALTER TABLE FP

ALTER COLUMN Qta SET DEFAULT 0;

Eliminare la colonna NSoci dalla tabella dei fornitori

ALTER TABLE F

DROP COLUMN NSoci RESTRICT;

Cancellazione delle tabelle

Gestione delle tabelle

DROP TABLE

DROP TABLE NomeTabella [RESTRICT | CASCADE];

 Tutte le righe della tabella sono eliminate insieme alla tabella

RESTRICT

- la tabella non è rimossa se è presente in qualche definizione di tabella, vincolo o vista
- opzione di default

CASCADE

• se la tabella compare in qualche definizione di vista anche questa è rimossa

Dizionario dei dati

Dizionario dei dati

- I metadati sono informazioni (dati) sui dati
 - possono essere memorizzati in tabelle della base di dati
- Il dizionario dei dati contiene i metadati di una base di dati relazionale
 - contiene informazioni sugli oggetti della base di dati
 - è gestito direttamente dal DBMS relazionale
 - può essere interrogato con istruzioni SQL
- Contiene diverse informazioni
 - descrizione di tutte le strutture (tabelle, indici, viste) della base di dati
 - stored procedure SQL
 - privilegi degli utenti
 - statistiche
 - sulle tabelle della base di dati
 - sugli indici della base di dati
 - sulle viste della base di dati
 - sulla crescita della base di dati

Informazioni sulle tabelle

- Il dizionario dei dati contiene per ogni tabella della base di dati
 - nome della tabella e struttura fisica del file in cui è memorizzata
 - nome e tipo di dato per ogni attributo
 - nome di tutti gli indici creati sulla tabella
 - vincoli di integrità

Tabelle del dizionario dati

- Le informazioni del dizionario dati sono memorizzate in alcune tabelle
 - ogni DBMS utilizza nomi diversi per tabelle diverse
- È possibile interrogare il dizionario dati mediante istruzioni SQL

Dizionario dati in Oracle

- In Oracle sono definite 3 collezioni di informazioni per il dizionario dati
 - USER_*: metadati relativi ai dati dell'utente corrente
 - ALL_*: metadati relativi ai dati di tutti gli utenti
 - DBA *: metadati delle tabelle di sistema
- USER_* contiene diverse tabelle e viste, tra le quali:
 - USER_TABLES contiene metadati relativi alle tabelle dell'utente
 - USER_TAB_STATISTICS contiene le statistiche calcolate sulle tabelle dell'utente
 - USER_TAB_COL_STATISTICS contiene le statistiche calcolate sulle colonne delle tabelle dell'utente

Interrogazione del dizionario dati n.1

 Visualizzare il nome delle tabelle definite dall'utente e il numero di tuple memorizzate in ciascuna di esse

SELECT Table_Name, Num_Rows FROM USER_TABLES;

R

Table_Name	Num_Rows	
F	5	
Р	6	
FP	12	

Interrogazione del dizionario dati n.2

 Per ogni attributo della tabella delle forniture, visualizzare il nome dell'attributo, il numero di valori diversi e il numero di tuple che assumono valore NULL

```
SELECT Column_Name, Num_Distinct, Num_Nulls
FROM USER_TAB_COL_STATISTICS
WHERE Table_Name = 'FP'
ORDER BY Column_Name;
```

R

Column_Name	Num_Distinct	Num_Nulls
CodF	4	0
CodP	6	0
Qta	4	0

Integrità dei dati

Gestione delle tabelle

Vincoli di integrità

- I dati all'interno di una base di dati sono corretti se soddisfano un insieme di regole di correttezza
 - le regole sono dette vincoli di integrità
 - esempio: Qta >=0
- Le operazioni di modifica dei dati definiscono un nuovo stato della base dati, non necessariamente corretto
- La verifica della correttezza dello stato di una base di dati può essere effettuata
 - dalle procedure applicative, che effettuano tutte le verifiche necessarie
 - mediante la definizione di vincoli di integrità sulle tabelle
 - mediante la definizione di trigger

Procedure applicative

All'interno di ogni applicazione sono previste tutte le verifiche di correttezza necessarie

Vantaggi

approccio "flessibile"

Svantaggi

- è possibile "aggirare" le verifiche interagendo direttamente con il DBMS
- un errore di codifica può avere un effetto significativo sulla base di dati
- la conoscenza delle regole di correttezza è tipicamente "nascosta" nelle applicazioni

Vincoli di integrità sulle tabelle

- I vincoli di integrità sono
 - definiti nelle istruzioni CREATE o ALTER TABLE
 - memorizzati nel dizionario dati di sistema
- Durante l'esecuzione di qualunque operazione di modifica dei dati il DBMS verifica automaticamente che i vincoli siano osservati

Vincoli di integrità sulle tabelle

Vantaggi

- definizione dichiarativa dei vincoli, la cui verifica è affidata al sistema
 - il dizionario dei dati descrive tutti i vincoli presenti nel sistema
- unico punto centralizzato di verifica
 - impossibilità di aggirare la verifica dei vincoli

Svantaggi

- possono rallentare l'esecuzione delle applicazioni
- non è possibile definire tipologie arbitrarie di vincoli
 - esempio: vincoli su dati aggregati

Trigger

- I trigger sono procedure eseguite in modo automatico quando si verificano opportune modifiche dei dati
 - definiti nell'istruzione CREATE TRIGGER
 - memorizzati nel dizionario dati del sistema
- Quando si verifica un evento di modifica dei dati sotto il controllo del trigger, la procedura viene eseguita automaticamente

Trigger

Vantaggi

- permettono di definire vincoli d'integrità di tipo complesso
 - normalmente usati insieme alla definizione di vincoli sulle tabelle
- unico punto centralizzato di verifica
 - impossibilità di aggirare la verifica dei vincoli

Svantaggi

- applicativamente complessi
- possono rallentare l'esecuzione delle applicazioni

Riparazione delle violazioni

- Se un'applicazione tenta di eseguire un'operazione che violerebbe un vincolo, il sistema può
 - impedire l'operazione, causando un errore di esecuzione dell'applicazione
 - eseguire un'azione compensativa tale da raggiungere un nuovo stato corretto
 - esempio: quando si cancella un fornitore, cancellare anche tutte le sue forniture

Vincoli d'integrità in SQL

- Possibilità di specificare i vincoli di integrità in modo dichiarativo
- Si affida al sistema la verifica della loro consistenza
- Tipologie di vincoli:
 - vincoli di tabella
 - restrizioni sui dati permessi nelle colonne di una tabella
 - vincoli d'integrità referenziale
 - gestione dei riferimenti tra tabelle diverse
 - basati sul concetto di chiave esterna

Vincoli di tabella

- Sono definiti su una o più colonne di una tabella
- Sono definiti nelle istruzioni di creazione di
 - tabelle
 - domini
- Tipologie
 - chiave primaria
 - ammissibilità del valore nullo
 - unicità
 - vincoli generali di tupla
- Sono verificati dopo ogni istruzione SQL che opera sulla tabella soggetta al vincolo
 - inserimento di nuovi dati
 - modifica del valore di colonne soggette al vincolo
- Se il vincolo è violato, l'istruzione SQL che ha causato la violazione genera un errore di esecuzione

Chiave primaria

- La chiave primaria è un insieme di attributi che identifica in modo univoco le righe di una tabella
- Può essere specificata una sola chiave primaria per una tabella
- Definizione della chiave primaria
 - composta da un solo attributo

NomeAttributo Dominio PRIMARY KEY

composta da uno o più attributi

PRIMARY KEY (ElencoAttributi)

Esempi chiave primaria

un solo attributo

```
CREATE TABLE F (CodF CHAR(5) PRIMARY KEY,
NomeFCHAR(20),
NSoci SMALLINT,
Sede CHAR(15));
```

uno o più attributi

```
CREATE TABLE FP (CodF CHAR(5),

CodP CHAR(6),

Qta INTEGER

PRIMARY KEY (CodF, CodP));
```


Ammissibilità del valore nullo

- Il valore NULL indica l'assenza di informazioni
- Quando è obbligatorio specificare sempre un valore per l'attributo

NomeAttributo Dominio NOT NULL

• il valore nullo non è ammesso

Esempio: NOT NULL

```
CREATE TABLE F (CodF CHAR(5),

NomeFCHAR(20) NOT NULL,

NSoci SMALLINT,

Sede CHAR(15));
```


UNIQUE

- Un attributo o un insieme di attributi non può assumere lo stesso valore in righe diverse della tabella
 - per un solo attributo

NomeAttributo Dominio UNIQUE

per uno o più attributo

UNIQUE (*ElencoAttributi*)

• È ammessa la ripetizione del valore NULL (considerato sempre diverso)

Chiave candidata

- La chiave candidata è un insieme di attributi che potrebbe assumere il ruolo di chiave primaria
 - è univoca
 - può non ammettere il valore nullo
- La combinazione UNIQUE NOT NULL permette di definire una chiave candidata che non ammette valori nulli

NomeAttributo Dominio UNIQUE NOT NULL

Esempio: UNIQUE

CREATE TABLE P (CodP CHAR(6),

NomeP CHAR(20) NOT NULL UNIQUE,

Colore CHAR(6),

Taglia SMALLINT,

Magazzino CHAR(15));

Vincoli generali di tupla

- Permettono di esprimere condizioni di tipo generale su ogni tupla
 - vincoli di tupla o di dominio

NomeAttributo Dominio CHECK (Condizione)

- possono essere indicati come condizione i predicati specificabili nella clausola WHERE
- La base di dati è corretta se la condizione è vera

Esempio: vincoli generali di tupla

```
CREATE TABLE F (CodF CHAR(5) PRIMARY KEY,

NomeF CHAR(20) NOT NULL,

NSoci SMALLINT CHECK (NSoci>0),

Sede CHAR(15));
```


Vincoli d'integrità referenziale

- Permettono di gestire il legame tra tabelle mediante il valore di attributi
- La chiave esterna è definita nell'istruzione CREATE TABLE della tabella referenziante

```
FOREIGN KEY (ElencoAttributiReferenzianti )
REFERENCES NomeTabella [(ElencoAttributiReferenziati )]
```

• Se gli attributi referenziati hanno lo stesso nome di quelli referenzianti, non è obbligatorio specificarli

Esempio: Definizione della chiave esterna

```
CREATE TABLE FP (CodF CHAR(5),

CodP CHAR(6),

Qta INTEGER,

PRIMARY KEY (CodF, CodP),

FOREIGN KEY (CodF)

REFERENCES F(CodF),

FOREIGN KEY (CodP)

REFERENCES P(CodP));
```


Politiche di gestione dei vincoli

- I vincoli d'integrità sono verificati dopo ogni istruzione SQL che potrebbe causarne la violazione
- Non sono ammesse operazioni di inserimento e modifica della tabella referenziante che violino il vincolo
- Nell'istruzione CREATE TABLE della tabella referenziante

```
FOREIGN KEY (ElencoAttributiReferenzianti)
REFERENCES
NomeTabella [(ElencoAttributiReferenziati)]
[ON UPDATE
<CASCADE | SET DEFAULT | SET NULL | NO ACTION>]
[ON DELETE
<CASCADE | SET DEFAULT | SET NULL | NO ACTION>]
```

- Operazioni di modifica o cancellazione dalla tabella referenziata causano sulla tabella referenziante:
 - CASCADE: propagazione dell'operazione di aggiornamento o cancellazione
 - SET NULL/DEFAULT: null o valore di default in tutte le colonne delle tuple che hanno valori non più presenti nella tabella referenziata
 - NO ACTION: non si esegue l'azione invalidante

Esempio: DB forniture prodotti

- tabella P: descrive i prodotti disponibili
 - chiave primaria: CodP
 - nome prodotto non può assumere valori nulli o duplicati
 - la taglia è sempre maggiore di zero
- tabella F: descrive i fornitori
 - chiave primaria: CodF
 - nome fornitore non può assumere valori nulli o duplicati
 - numero dei soci è sempre maggiore di zero

- tabella FP: descrive le forniture, mettendo in relazione i prodotti con i fornitori che li forniscono
 - chiave primaria: (CodF, CodP)
 - quantità non può assumere il valore null ed è maggiore di zero
 - vincoli di integrità referenziale

Gestione dei vincoli: esempio n.1

- Tabella FP (referenziante)
 - insert (nuova tupla) -> No
 - update (CodF) -> No
 - delete (tupla) -> Ok
- Tabella F (referenziata)
 - insert (nuova tupla) -> Ok
 - update (CodF) -> aggiornare in cascata (cascade)
 - delete (tupla) -> aggiornare in cascata (cascade) impedire l'azione (no action)

Esempio SQL: DB forniture prodotti

CREATE TABLE P (CodP CHAR(6) PRIMARY KEY,

NomeP CHAR(20) NOT NULL UNIQUE,

Colore CHAR(6),

Taglia SMALLINT CHECK (Taglia > 0),

Magazzino CHAR(15));

CREATE TABLE F (CodF CHAR(5) PRIMARY KEY,
NomeF CHAR(20) NOT NULL,
NSoci SMALLINT CHECK (NSoci>0),
Sede CHAR(15));

CREATE TABLE FP (CodF CHAR(5), CodP CHAR(6), **Qta INTEGER** CHECK (Qta IS NOT NULL and Qta>0), PRIMARY KEY (CodF, CodP), FOREIGN KEY (CodF) REFERENCES F(CodF) ON DELETE NO ACTION ON UPDATE CASCADE, FOREIGN KEY (CodP) REFERENCES P(CodP) ON DELETE NO ACTION ON UPDATE CASCADE);

Gestione dei vincoli: esempio n.2

- Impiegati (Matr, Nomel, Residenza, DNum)
- Dipartimenti (<u>DNum</u>, DNome, Sede)
- Impiegati (referenziante)
 - insert (nuova tupla) -> No
 - update (DNum) -> No
 - delete (tupla) -> Ok
- Dipartimenti (referenziata)
 - insert (nuova tupla) -> Ok
 - update (DNum) -> aggiornare in cascata (cascade)
 - delete (tupla)
 -> aggiornare in cascata (cascade)

impedire l'azione (no action)

impostare a valore ignoto (set null)

impostare a valore di default (set default)

