Taller práctico abierto: Adquisición de señales neuronales

Amplificador de Instrumentación y filtrado

Amplificador Operacional

Diferencial

$$Vs = (Vref - Ve) * \frac{R2}{R1}$$

$$A = \frac{R2}{R1}$$

La salida es la <u>diferencia de las entradas</u> por una ganancia La impedancia de entrada no es tan grande Dificultad para regular la ganancia al tener dos pares de resistencias

Relación de Rechazo en Modo Común (CMRR)

$$Vd = V_B - V_A$$
 $Ad = \frac{Vsd}{Vd}$ $Vc = \frac{V_B + V_A}{2}$ $Ac = \frac{Vsc}{Vc}$

La Vs en un Op-Amp diferencial real va a ser:

$$Vs = (V_B - V_A) * Ad + \left(\frac{V_B + V_A}{2}\right) * Ac$$

La CMRR es la relación entre la ganancia común y la ganancia diferencial, expresada en dB

Para que Ac = 0:

- Las resistencias R1 tienen que ser iguales
- Las resistencias R2 tienen que ser iguales

Ejemplo: Vc = 10V; $Vs=1mV \rightarrow CMMR = 80dB$

Las tensiones comunes no son de interés puesto que no aportan información, son ruido.

Amplificador Operacional Diferencial

Aumentando Zi

La salida es la <u>diferencia de las entradas</u> por una ganancia Dificultad para regular la ganancia al tener dos pares de resistencias

Amplificador de Instrumentación

$$Ad = \frac{R2}{R1} * \left(1 + 2 * \frac{R}{Rg}\right)$$

La salida es la <u>diferencia de las entradas</u> por una ganancia La ganancia se regula con una sola resistencia (Rg) Alta CMRR

Electrodo de tierra

Hacemos un pequeño descanso...

Ondas sinusoidales

- Funciones dependientes del tiempo
- Caracterizadas por:
 - Período (o frecuencia): tiempo transcurrido entre dos puntos equivalentes de la onda
 - Amplitud: la mitad de la amplitud del pico a pico
 - Fase: es la diferencia en grados entre un punto sobre este círculo y un punto de referencia

Ondas de diferentes frecuencias

Trasformada de Fourier

Dominio del Tiempo y Dominio de la Frecuencia

$$f = \frac{1}{T}$$

Trasformada de Fourier

Dominio del Tiempo y Dominio de la Frecuencia

Cualquier señal periódica en el tiempo puede descomponerse como una suma de ondas senoidales de infinitas frecuencias

Filtrado

El filtrado es el proceso por el que la parte esencial o útil de una señal se separa de otras componentes extrañas o indeseadas.

FiltradoTipos de Filtros

 Filtro Pasa-Bajo: deja pasar solo componentes de frecuencia por debajo de la frec. de corte

- Filtro Pasa-Alto: deja pasar solo componentes de frecuencia por encima de la frec. de corte
- **Filtro Pasabanda:** combinación de un filtro pasa-bajo y pasa-alto.
- Filtro Notch(ranura): deja pasar todos los componentes de frecuencia excepto el de un rango muy acotado

Filtrado

Filtros pasivos RC

$$f_c = \frac{1}{2\pi RC}$$

Hasta aquí llegamos ...