Data Projection **数据投影**以鸢尾花数据集为例

人生就像骑自行车。为了保持平衡, 你必须不断移动。

Life is like riding a bicycle. To keep your balance, you must keep moving.

—— 阿尔伯特·爱因斯坦 (Albert Einstein) | 理论物理学家 | 1879 ~ 1955

- numpy.linalg.eig() 特征值分解
- ✓ seaborn.heatmap() 绘制热图

10.1 从一个矩阵乘法运算说起

有数据的地方,就有向量;有向量的地方,就有几何!

本章将结合数据、几何、向量三个元素,总结本书前九章主要内容。此外,本章承前启后, 它将开启本书下一个重要板块——矩阵分解。

本节和下一节内容会稍微枯燥,请大家耐心读完。之后,本章会用鸢尾花数据集作为例子,给大家展开讲解这两节内容。

正交投影

本章从一个矩阵乘法运算说起:

$$\mathbf{Z} = XV \tag{1}$$

X是数据矩阵,形状为 $n \times D$,即 n 行、D 列。大家很清楚,以鸢尾花数据集为例,X 每一行代表一个数据点,每一列代表一个特征。

V是正交矩阵,即满足 $V^TV = VV^T = I$ 。这意味着 $V = [v_1, v_1, ..., v_D]$ 是 \mathbb{R}^D 空间的一组规范正交基。

几何视角下,矩阵乘积 XV 完成的是 X 向规范正交基 $V = [v_1, v_1, ..., v_D]$ 投影,乘积 XV 结果 Z 代表 X 在新的规范正交基下的坐标。

图 1. 数据矩阵 X 到 Z 线性变换

本书前文反复提到,一个矩阵可以看成由一系列行向量或列向量构造得到。下面,我们分别 从这两个视角来分析。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

列向量

将Z和V分别写成各自列向量, (1) 可以展开写成:

$$\begin{bmatrix} \boldsymbol{z}_1 & \boldsymbol{z}_2 & \cdots & \boldsymbol{z}_D \end{bmatrix} = \boldsymbol{X} \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_D \end{bmatrix}$$

$$= \begin{bmatrix} \boldsymbol{X}\boldsymbol{v}_1 & \boldsymbol{X}\boldsymbol{v}_2 & \cdots & \boldsymbol{X}\boldsymbol{v}_D \end{bmatrix}$$

$$(2)$$

(2) 这个视角是数据列向量(即特征)之间的转换。

提取 (2) 等式左右第 j 列,得到 Z 矩阵的第 j 列向量 z_i 的计算式:

$$\boldsymbol{z}_{i} = \boldsymbol{X} \boldsymbol{v}_{i} \tag{3}$$

如图 2 所示, (3) 相当于 x_1, x_2, \dots, x_D 通过线性组合得到 z_i , 即:

$$\mathbf{z}_{j} = \underbrace{\begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{D} \end{bmatrix}}_{\mathbf{x}} \underbrace{\begin{bmatrix} \mathbf{v}_{1,j} \\ \mathbf{v}_{2,j} \\ \vdots \\ \mathbf{v}_{D,j} \end{bmatrix}}_{\mathbf{v}_{j}} = \mathbf{v}_{1,j} \mathbf{x}_{1} + \mathbf{v}_{2,j} \mathbf{x}_{2} + \cdots + \mathbf{v}_{D,j} \mathbf{x}_{D}$$
(4)

图 2. \mathbf{Z} 第 \mathbf{j} 列向量 \mathbf{z}_i 的计算过程

行向量: 点坐标

矩阵 X 的任意行向量 $x^{(i)}$ 代表其在 \mathbb{R}^D 的坐标,注意 \mathbb{R}^D 基底为标准正交基 $E = [e_1, e_1, ..., e_D]$ 。将 X 和 Z 写成行向量形式,(1) 可以写作:

$$\begin{bmatrix} z^{(1)} \\ z^{(2)} \\ \vdots \\ z^{(n)} \end{bmatrix} = \begin{bmatrix} x^{(1)}V \\ x^{(2)}V \\ \vdots \\ x^{(n)}V \end{bmatrix}$$
(5)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

如图 3 所示,(5) 代表每一行数据点之间的转换关系。即,(5) 的第 i 行 $x^{(i)}$ 投影得到 Z 的第 i 行向量 $z^{(i)}$:

$$\boldsymbol{z}^{(i)} = \boldsymbol{x}^{(i)} \boldsymbol{V} \tag{6}$$

图 3. 每一行数据点之间的转换关系

进一步将 (6) 中 V 写成 [$\nu_1, \nu_1, ..., \nu_D$], (6) 可以展开得到:

$$\begin{bmatrix} z_{i,1} & z_{i,2} & \cdots & z_{i,D} \end{bmatrix} = \boldsymbol{x}^{(i)} \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_D \end{bmatrix}$$
 (7)

图 4. 每一行数据点向 ν_i 投影

取出 (7) 中向量 $z^{(i)}$ 第 j 列元素 $z_{i,j}$,对应的运算为:

$$z_{i,j} = \mathbf{x}^{(i)} \mathbf{v}_j \tag{8}$$

图 4 对应 (8) 运算。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

从空间视角来看,如图 5 所示, $\mathbf{x}^{(i)}$ 位于 \mathbb{R}^D 空间,而 $\mathbf{x}^{(i)}$ 正交投影到子空间 (subspace) span(\mathbf{v}_j) 对应的坐标点就是 $\mathbf{z}_{i,j}$ 。换句话说, \mathbf{z}_{i} 是 $\mathbf{x}^{(i)}$ 在 span(\mathbf{v}_j) 的像 (image)。 $\mathbf{x}^{(i)}$ 在 \mathbb{R}^D 空间是 \mathbf{D} 维,在 span(\mathbf{v}_j) 仅是 1 维。图 5 中,从左边 \mathbb{R}^D 空间到右侧 span(\mathbf{v}_j) 这个投影过程,是个降维过程,数据发生压缩。

图 5. \mathbb{R}^D 空间数据点投影到 $\operatorname{span}(v_j)$

10.2 二次投影 + 层层叠加

本书前文给出下面这个看似莫明其妙的矩阵乘法:

$$X = XI = XVV^{\mathsf{T}} = X \tag{9}$$

也就是说,数据矩阵 X 乘以单位阵,结果为其本身! 这个显而易见的等式,有何意义?

其实,这个看似再简单不过的矩阵运算背后实际藏着"二次投影"和"层层叠加"这两重几何操作!下面,我们就解密这两个几何操作。

将 V 写成 $[v_1, v_1, ..., v_D]$,代入 (9) 得到:

$$X = XVV^{\mathrm{T}} = X \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{D} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{\mathrm{T}} \\ \mathbf{v}_{2}^{\mathrm{T}} \\ \vdots \\ \mathbf{v}_{D}^{\mathrm{T}} \end{bmatrix}$$

$$= \underbrace{X\mathbf{v}_{1}\mathbf{v}_{1}^{\mathrm{T}}}_{X_{1}} + \underbrace{X\mathbf{v}_{2}\mathbf{v}_{2}^{\mathrm{T}}}_{X_{2}} + \cdots + \underbrace{X\mathbf{v}_{D}\mathbf{v}_{D}^{\mathrm{T}}}_{X_{D}}$$

$$(10)$$

令,

$$\boldsymbol{X}_{j} = \boldsymbol{X} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\mathrm{T}} \tag{11}$$

图 6 所示为上述运算, X_j 的形状和原数据矩阵 X 完全相同。我们称图 6 为二次投影,一会将解释原因。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 6. 二次投影

(10) 可以写成:

$$\boldsymbol{X} = \boldsymbol{X}_1 + \boldsymbol{X}_2 + \dots + \boldsymbol{X}_D \tag{12}$$

上式就是"层层叠加"。如图7所示,D个形状完全相同的数据,层层叠加还原原始数据X。

图 7. 层层叠加

二次投影

下面,我们聊聊"二次投影"。

取出 (7) 中向量 X_j 第 j 行元素,对应的运算为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

整个二次投影的过程如图 8 所示。注意, $x^{(i)}$ 和 $z_{i,i}v_{i}^{\mathsf{T}}$ 都用行向量表达坐标点。

可以这样理解, $\mathbf{x}^{(i)} \rightarrow z_{i,j}$ 代表"标量投影"; $\mathbf{x}^{(i)} \rightarrow \mathbf{x}^{(i)} \mathbf{v}_i \mathbf{v}_i^{\mathsf{T}}$ 则是"向量投影"。

图 8. \mathbb{R}^D 空间数据点先投影到 $span(v_j)$, 再投影回到 \mathbb{R}^D

向量投影: 张量积

将(11)写成张量积的形式:

$$\boldsymbol{X}_{i} = \boldsymbol{X}\boldsymbol{v}_{i} \otimes \boldsymbol{v}_{i} \tag{14}$$

 X_j 就是 X 经过"降维"到 $\operatorname{span}(v_j)$ 后,再正交投影到 \mathbb{R}^D 中得到的"像"。 X_j 也是 X 在 v_j 上的向量投影。

张量积 $\mathbf{v}_{_{j}}\otimes\mathbf{v}_{_{j}}$ 本身完成 "多维 \rightarrow 一维" + "一维 \rightarrow 多维" 这两步投影。

很显然,

$$\operatorname{rank}\left(\mathbf{v}_{j} \otimes \mathbf{v}_{j}\right) = 1 \quad \Rightarrow \quad \operatorname{rank}\left(\mathbf{X}_{j}\right) = 1 \tag{15}$$

所以,在 \mathbb{R}^D 空间中, X_i 所有数据点在一条直线上,和 v_i 同向。也就是说,虽然 X_i 在D维空间 \mathbb{R}^D 中,它实际上只有 1 个维度,即 $\dim(v_i)$ = $\dim(v_i\otimes v_i)$ = 1, $\mathrm{rank}(X_i)$ = 1。

利用张量积, (10) 可以写成:

$$X = \underbrace{X v_1 \otimes v_1}_{X_1} + \underbrace{X v_2 \otimes v_2}_{X_2} + \dots + \underbrace{X v_D \otimes v_D}_{X_D}$$
 (16)

可以这样理解上式,X分别二次投影到规范正交基 [$\nu_1, \nu_1, ..., \nu_D$] 每个列向量 ν_j 所代表的子空间中,获得 X_1 、 X_2 ... X_D 。而 X_1 、 X_2 ... X_D 层层叠加还原原始数据 X。

再进一步, (16) 消去得到:

$$\boldsymbol{I} = \boldsymbol{v}_{1} \otimes \boldsymbol{v}_{1} + \boldsymbol{v}_{2} \otimes \boldsymbol{v}_{2} + \dots + \boldsymbol{v}_{D} \otimes \boldsymbol{v}_{D}$$

$$\tag{17}$$

标准正交基: 便于理解

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

标准正交基是特殊的规范正交基。为了方便理解,我们用标准正交基 $[e_1, e_2, ..., e_D]$ 替换 (16) 中的 $[v_1, v_2, ..., v_D]$, 得到:

$$X = Xe_1 \otimes e_1 + Xe_2 \otimes e_2 + \dots + Xe_n \otimes e_n$$
 (18)

展开上式中第一项得到:

$$\boldsymbol{X}_{1} = \boldsymbol{X}\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} = \boldsymbol{X} \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} \otimes \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \cdots & \boldsymbol{x}_{D} \end{bmatrix} \begin{bmatrix} 1\\0\\0\\\vdots\\0 \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}_{1} & 0 & \cdots & 0 \end{bmatrix}$$

$$(19)$$

 Xe_1 得到的是 X的每一行在 $span(e_1)$ 这个子空间的坐标,即 x_1 。而 $Xe_1 \otimes e_1$ 告诉我们的是 Xe_1 在 D 维空间 \mathbb{R}^D 中坐标值。

此后每一项 X_i 可以写成:

$$\mathbf{X}_{2} = \mathbf{X} \mathbf{e}_{2} \otimes \mathbf{e}_{2} = \begin{bmatrix} 0 & \mathbf{x}_{2} & \cdots & 0 \end{bmatrix}
\vdots
\mathbf{X}_{D} = \mathbf{X} \mathbf{e}_{D} \otimes \mathbf{e}_{D} = \begin{bmatrix} 0 & 0 & \cdots & \mathbf{x}_{D} \end{bmatrix}$$
(20)

也就是说,这个每次计算 $Xe_i \otimes e_j$ 投影就是仅保留 X 的第 j 列 x_j ,其他元素置 0。

因此, (18) 可以写成:

$$\boldsymbol{X} = \left[\underline{\boldsymbol{x}}_{1} \quad 0 \quad \cdots \quad 0 \right] + \left[0 \quad \underline{\boldsymbol{x}}_{2} \quad \cdots \quad 0 \right] + \cdots + \left[0 \quad 0 \quad \cdots \quad \underline{\boldsymbol{x}}_{D} \right]$$

$$(21)$$

图9所示为上式二次投影与叠加过程。

图 9. 标准正交基 $[e_1, e_2, ..., e_D]$ 中二次投影与叠加

回过头再看 (9),我们知道这个过程是先从标准正交基 [e_1 , e_2 , ..., e_D] 到规范正交基 [v_1 , v_2 , ..., v_D] 的投影,然后再投影回到标准正交基 [e_1 , e_2 , ..., e_D]:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$X \xrightarrow{V} XV \xrightarrow{V^{\perp}} X$$
 (22)

看到这里,有些读者有可能已经晕头转向。下面利用鸢尾花数据集做例子,帮大家更直观理 解本节内容。

10.3 二特征数据投影:标准正交基

本节以二特征矩阵为例讲解何谓"二次投影"和"层层叠加"。数据矩阵选取鸢尾花数据集前两列——花萼长度、花萼宽度,这样数据矩阵 $X_{150\times 2}$ 的形状为 150×2 。

水平方向投影

如图 10 所示, $X_{150 \times 2}$ 向水平方向投影,即 $X_{150 \times 2}$ 向 e_1 投影。以图中红点 A 为例,A 的坐标为 (5,2),它在 e_1 方向上的投影坐标为:

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 5 \tag{23}$$

注意, 5代表的是 A 在 $span(e_1)$ 空间中的坐标值, 而 $span(e_1)$ 显然为一维空间。

图 10. 二特征数据矩阵 $X_{150\times 2}$ 向 e_1 投影,一次投影

如图 11 热图所示, $X_{150\times2}$ 向 e_1 投影结果相当于保留了 $X_{150\times2}$ 第一列数据:

$$\mathbf{z}_{1} = \mathbf{X}\mathbf{e}_{1} = \mathbf{x}_{1} \tag{24}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 11. 数据热图,二特征数据矩阵 $X_{150\times 2}$ 向 e_1 投影,一次投影

大家可能会好奇,既然图 $10 中 X_{150 \times 2}$ 向水平方向投影结果都可以画在图 10 直角坐标系中,也就是 $span(e_1, e_2)$ 二维空间中,这些投影点一定有其二维坐标值。

很明显,以 A 为例,A 在横轴投影点 P 在 span(e_1 , e_2) 的坐标值为 (5, 0)。这个结果是怎么得到的?

这就用到了本章前文讲到的"二次投影",相当于在 (23) 基础上再次投影。第二次投影相当于 "升维",从一维升到二维。

以点 A 为例, "二次投影"对应的计算为:

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} = \begin{bmatrix} 5 & 2 \end{bmatrix} \boldsymbol{e}_{1} \boldsymbol{e}_{1}^{\mathrm{T}} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 0 \end{bmatrix}$$
 (25)

上式对应的计算如图 12 所示。

图 12. 二特征数据矩阵 X 向 e_1 投影,二次投影

X在 e_1 二次投影对应 span(e_1 , e_2) 坐标值为 X_1 :

$$\boldsymbol{X}_{1} = \boldsymbol{X}\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} = \boldsymbol{X}\boldsymbol{e}_{1}\boldsymbol{e}_{1}^{\mathrm{T}} = \boldsymbol{X}\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}_{1} & \boldsymbol{\theta} \end{bmatrix}$$
(26)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 13 所示为上述运算对应热图。值得注意的是,这种数据"升维",不代表数据信息增多。显然,上式中 X_1 的秩仍为 1,即 $\operatorname{rank}(X_1)$ 。

图 13. 数据热图,二特征数据矩阵 $X_{150\times 2}$ 向 e_1 投影,二次投影

向竖直方向投影

如图 10 所示, $X_{150\times2}$ 向竖直方向投影,即 $X_{150\times2}$ 向 e_2 投影。还是以 A 点为例,A (5,2) 在 e_2 方向上的标量投影为:

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 2 \tag{27}$$

2代表的是 A 在 $span(e_2)$ 空间中的坐标值, $span(e_2)$ 同样为一维空间。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 14. 二特征数据矩阵 $X_{150\times2}$ 向 e_2 方向标量投影,一次投影

图 15. 数据热图,二特征数据矩阵 $X_{150\times2}$ 向 e_2 投影,一次投影

同样利用"二次投影",得到 A 在竖直方向投影点 H 在 $span(e_1, e_2)$ 的坐标值为 (0, 2):

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2} = \begin{bmatrix} 5 & 2 \end{bmatrix} \boldsymbol{e}_{2} \boldsymbol{e}_{2}^{\mathrm{T}} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \end{bmatrix}$$
 (28)

上式对应的计算如图 16 所示。

图 16. 二特征数据矩阵 $X_{150\times 2}$ 向 e_2 方向标量投影,二次投影

 $X_{150\times 2}$ 在 e_2 二次投影对应在 span(e_1, e_2) 对的矩阵为 X_2 :

$$\boldsymbol{X}_{2} = \boldsymbol{X}\boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2} = \boldsymbol{X}\boldsymbol{e}_{2}\boldsymbol{e}_{2}^{\mathrm{T}} = \boldsymbol{X} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
 (29)

上式对应的热图运算为图 17。 X_2 第一列向量为 0,第二列向量为 x_2 。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 17. 数据热图,二特征数据矩阵 $X_{150\times 2}$ 向 e_2 投影,二次投影

叠加

如图 18 所示,以 A 为例, P(5,0) 和 H(0,2) 叠加得到点 A 坐标 (5,2)。这也相当于两个向量叠加得到一个向量,即:

$$\begin{bmatrix} 5 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \tag{30}$$

或,

$$\begin{bmatrix} 5 \\ 0 \end{bmatrix}^{\mathsf{T}} + \begin{bmatrix} 0 \\ 2 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}^{\mathsf{T}} \tag{31}$$

图 18. 数据叠加还原散点图

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

如图 19 所示, X_1 和 X_2 叠加还原 $X_{150\times 2}$:

$$X_{150\times2} = X_1 + X_2$$

$$= X \left(\mathbf{e}_1 \otimes \mathbf{e}_1 + X \mathbf{e}_2 \otimes \mathbf{e}_2 \right)$$

$$= X \left(\mathbf{e}_1 \mathbf{e}_1^{\mathrm{T}} + \mathbf{e}_2 \mathbf{e}_2^{\mathrm{T}} \right)$$

$$= X \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right) = XI$$
(32)

图 20 所示为上述运算对应的热图。

图 19. 数据叠加还原 $X_{150\times2}$

图 20. 数据热图,叠加还原 $X_{150\times 2}$

10.4 二特征数据投影: 规范正交基

本节分析 $X_{150\times 2}$ 在三个不同规范正交基投影情况。

第一个规范正交基

给定如下规范正交基 $V = [v_1, v_2]$:

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\boldsymbol{V} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{bmatrix} = \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix}$$
 (33)

从几何变换角度来上,V就是一个旋转矩阵。

如图 21 所示,同样以点 A(5,2) 为例, $A 在 v_1$ 方向标量投影为:

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \underbrace{\begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix}}_{p_1} \approx 5.33 \tag{34}$$

也就是说,A 在 $span(v_1)$ 投影 H 的坐标值为 5.33,对应向量可以写成 5.33 v_1 。

图 21. 二特征数据矩阵 X_{150×2} 向 v₁ 投影

通过二次投影获得 H 在 $span(e_1, e_2)$ 坐标值,相当于把 v_1 的具体值代入 $5.33v_1$,即:

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \mathbf{v}_{1} \otimes \mathbf{v}_{1} = \begin{bmatrix} 5 & 2 \end{bmatrix} \mathbf{v}_{1} \mathbf{v}_{1}^{\mathrm{T}} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 3/4 & \sqrt{3}/4 \\ \sqrt{3}/4 & 1/4 \end{bmatrix} \approx \begin{bmatrix} 4.616 & 2.665 \end{bmatrix}$$
(35)

这就是 H 在图 21 中坐标值。

X_{150×2} 在 ν₁ 投影 z₁ 为:

$$z_{1} = X v_{1} = \underbrace{\left[x_{1} \quad x_{2} \right]}_{X} \underbrace{\left[\frac{\sqrt{3}/2}{1/2} \right]}_{v_{1}} \approx 0.866 x_{1} + 0.5 x_{2}$$
 (36)

即, z_1 相当于 x_1 和 x_2 的线性组合。

 $X_{150\times 2}$ 在 v_1 二次投影 X_1 为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\boldsymbol{X}_{1} = \boldsymbol{X}\boldsymbol{v}_{1} \otimes \boldsymbol{v}_{1} = \boldsymbol{X}\boldsymbol{v}_{1}\boldsymbol{v}_{1}^{\mathrm{T}} \approx \left[\underbrace{\boldsymbol{x}_{1} \quad \boldsymbol{x}_{2}}_{\boldsymbol{X}} \right] \begin{bmatrix} 0.750 & 0.433 \\ 0.433 & 0.250 \end{bmatrix} = \begin{bmatrix} 0.750\boldsymbol{x}_{1} + 0.433\boldsymbol{x}_{2} & 0.433\boldsymbol{x}_{1} + 0.250\boldsymbol{x}_{2} \end{bmatrix}$$
(37)

如图 22 所示,同样以点 A(5,2) 为例, $A 在 v_2$ 方向标量为:

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \underbrace{\begin{bmatrix} -1/2 \\ \sqrt{3}/2 \end{bmatrix}}_{r_2} \approx -0.7679 \tag{38}$$

即 A 在 $span(v_2)$ 投影点的坐标值为-0.7679,对应向量可以写成 $-0.7679v_2$ 。通过二次投影获得其坐标值:

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \mathbf{v}_{2} \otimes \mathbf{v}_{2} = \begin{bmatrix} 5 & 2 \end{bmatrix} \mathbf{v}_{2} \mathbf{v}_{2}^{\mathrm{T}} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 1/4 & -\sqrt{3}/4 \\ -\sqrt{3}/4 & 3/4 \end{bmatrix} \approx \begin{bmatrix} 0.384 & -0.665 \end{bmatrix}$$
(39)

(35) 和 (39) 之和还原 A 坐标值 (5, 2):

$$\begin{bmatrix} 5 & 2 \end{bmatrix} (\mathbf{v}_{1} \otimes \mathbf{v}_{1} + \mathbf{v}_{2} \otimes \mathbf{v}_{2}) = \begin{bmatrix} 5 & 2 \end{bmatrix} \left\{ \begin{bmatrix} 3/4 & \sqrt{3}/4 \\ \sqrt{3}/4 & 1/4 \end{bmatrix} + \begin{bmatrix} 1/4 & -\sqrt{3}/4 \\ -\sqrt{3}/4 & 3/4 \end{bmatrix} \right\} = \begin{bmatrix} 5 & 2 \end{bmatrix}$$
(40)

图 22. 二特征数据矩阵 $X_{150\times 2}$ 向 v_2 投影

 $X_{150\times 2}$ 在 v_2 投影 z_2 为:

$$z_{2} = Xv_{2} = \underbrace{\left[x_{1} \quad x_{2}\right]}_{x} \underbrace{\left[\frac{-1/2}{\sqrt{3}/2}\right]}_{y_{2}} \approx -0.5x_{1} + 0.866x_{2}$$
(41)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

 z_2 也是 x_1 和 x_2 的线性组合。

 $X_{150\times 2}$ 在 v_2 二次投影 X_2 为:

$$\boldsymbol{X}_{2} = \boldsymbol{X}\boldsymbol{v}_{2} \otimes \boldsymbol{v}_{2} = \boldsymbol{X}\boldsymbol{v}_{2}\boldsymbol{v}_{2}^{\mathrm{T}} \approx \begin{bmatrix} \boldsymbol{x}_{1} & \boldsymbol{x}_{2} \\ -0.433 & 0.750 \end{bmatrix} = \begin{bmatrix} 0.250\boldsymbol{x}_{1} - 0.433\boldsymbol{x}_{2} & -0.433\boldsymbol{x}_{1} + 0.750\boldsymbol{x}_{2} \end{bmatrix} (42)$$

(37) 和 (42) 叠加还原 X:

$$X_{1} + X_{2} = Xv_{1} \otimes v_{1} + Xv_{2} \otimes v_{2} = X \left\{ \begin{bmatrix} 0.750 & 0.433 \\ 0.433 & 0.250 \end{bmatrix} + \begin{bmatrix} 0.250 & -0.433 \\ -0.433 & 0.750 \end{bmatrix} \right\} = X$$
 (43)

第二个规范正交基

给定如下规范正交基 $W = [w_1, w_2]$:

$$\boldsymbol{W} = \begin{bmatrix} \boldsymbol{w}_1 & \boldsymbol{w}_2 \end{bmatrix} = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}$$
 (44)

图 23 和图 24 所示为二特征数据矩阵 $X_{150\times 2}$ 向 w_1 和 w_2 投影。请按照本节之前分析 V 的逻辑,自行分析数据在 W 中的投影。

图 23. 二特征数据矩阵 $X_{150\times 2}$ 向 w_1 投影

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 24. 二特征数据矩阵 $X_{150\times 2}$ 向 w_2 投影

第三个规范正交基

给定如下规范正交基 $U = [u_1, u_2]$:

$$\boldsymbol{U} = \begin{bmatrix} \boldsymbol{u}_1 & \boldsymbol{u}_2 \end{bmatrix} = \begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix}$$
 (45)

图 25 和图 26 所示为二特征数据矩阵 $X_{150\times 2}$ 向 w_1 和 w_2 投影。请自行分析数据在 U 中的投影。

图 25. 二特征数据矩阵 $X_{150\times 2}$ 向 u_1 投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 26. 二特征数据矩阵 $X_{150\times 2}$ 向 u_2 投影

10.5 四特征数据投影:标准正交基

本章最后两节以四特征数据矩阵为例,推广前文分析思路。

本节先从最简单的标准正交基 $[e_1, e_2, ..., e_D]$ 入手。

一次投影: 标量投影

前文提到过,一次投影实际上就是"标量投影"。图 27 所示为鸢尾花数据集矩阵 X 在 e_1 方向上标量投影的运算热图。

从行向量角度来看, $\mathbf{x}^{(i)}\mathbf{e}_1 \to x_{i,1}$ 代表 \mathbb{R}^D 空间坐标值 $\mathbf{x}^{(i)}$,投影到 $\operatorname{span}(\mathbf{e}_1)$ 这个子空间后,得到的坐标值变成 $x_{i,1}$ 。再次强调, $x_{i,1}$ 是 $\mathbf{x}^{(i)}$ 在 $\operatorname{span}(\mathbf{e}_1)$ 的坐标值。

从列向量角度来看, $[x_1, x_2, x_3, x_4]e_1 \rightarrow x_1$,是一个线性组合过程。而 $e_1 = [1, 0, 0, 0]^T$,所以组合的结果只保留了鸢尾花数据集第一列 x_1 ,即花萼长度,这个特征的所有样本数据。

请大家按照这个思路分析图 28、图 29、图 30 三幅热图运算。

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 27. 四特征数据矩阵 $X_{150\times4}$ 向 e_1 投影,一次投影

图 28. 四特征数据矩阵 $X_{150\times4}$ 向 e_2 投影,一次投影

图 29. 四特征数据矩阵 $X_{150\times4}$ 向 e_3 投影,一次投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 30. 四特征数据矩阵 $X_{150\times4}$ 向 e_4 投影,一次投影

二次投影

如前文所述,本章所谓的"二次投影"实际上就是向量投影。如图 31 所示,X 向 e_1 方向向量投影结果就是 X 和 $e_1 \otimes e_1$ 的矩阵乘积。乘积结果是,只保留鸢尾花数据集第一列——花萼长度,其他数据均置 0。请大家按照这个思路自行分析图 32、图 33、图 34。

图 31. 四特征数据矩阵 $X_{150\times4}$ 向 e_1 方向向量投影,二次投影

图 32. 四特征数据矩阵 $X_{150\times4}$ 向 e_2 方向向量投影,二次投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 33. 四特征数据矩阵 $X_{150\times4}$ 向 e_3 方向向量投影,二次投影

图 34. 四特征数据矩阵 $X_{150\times4}$ 向 e_4 方向向量投影,二次投影

两个方向投影

本节之前提到的都是向单一方向投影。下面,我们用一个例子说明向两个方向投影。

如图 35 所示,X 向 $[e_1, e_2]$ 方向标量投影,这个过程也相当于降维,从 4 维降到 2 维,只保留了鸢尾花花萼长度、花萼宽度两个特征。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 35. 四特征数据矩阵 $X_{150\times4}$ 向 $[e_1, e_2]$ 方向标量投影

图 36 所示为 X 向 $[e_1, e_2]$ 方向向量投影,结果相当于图 31 和图 32 结果"叠加",即 $X_1 + X_2$ 。 很明显, $X_1 + X_2$ 并没有还原 X。

图 36. 四特征数据矩阵 $X_{150\times 4}$ 向 $[e_1, e_2]$ 方向向量投影

层层叠加: 还原原始矩阵

上一节 (12) 告诉我们,数据矩阵 X 在规范正交基 [$v_1, v_2, ..., v_D$] 中每个方向上向量投影层层叠加可以完全还原原始数据。而标准正交基 [$e_1, e_2, ..., e_D$] 可以视作特殊的规范正交基。

图 37 告诉我们,要想完整还原 X,需要图 31、图 32、图 33、图 34 四副热图叠加,即 $X_1 + X_2 + X_3 + X_4$ 。显然, $X_1 \setminus X_2 \setminus X_3 \setminus X_4$ 这四个矩阵的秩都是 1。

图 38 是张量积的层层叠加,它是数据还原的另外一个侧面。如图 38 所示,这四个张量积相加得到单位矩阵,即:

$$\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} + \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{3} + \boldsymbol{e}_{3} \otimes \boldsymbol{e}_{3} + \boldsymbol{e}_{4} \otimes \boldsymbol{e}_{4} = \boldsymbol{I}$$

$$(46)$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 37. 投影数据矩阵的层层叠加还原数据矩阵 X150×4

图 38. 张量积的层层叠加还原 4×4单位矩阵

10.6 四维数据投影: 规范正交基

有了上一节内容作为基础,这一节提高难度,我们用一个规范正交基重复上一节所有计算。 我们恰好找到了一个 4×4 规范正交基 V,具体如下:

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix} = \begin{bmatrix} 0.751 & 0.284 & 0.502 & 0.321 \\ 0.380 & 0.547 & -0.675 & -0.317 \\ 0.513 & -0.709 & -0.059 & -0.481 \\ 0.168 & -0.344 & -0.537 & 0.752 \end{bmatrix}$$
(47)

图 39 所示为规范正交基 V 乘其转置 V^{T} 得到单位矩阵。大家可以自己试着验算上式是否满足 $VV^{T}=I$,即 V 每一列列向量都是单位向量,且 V 的列向量两两正交。

图 39. 规范正交基 V 乘其转置得到 4×4单位矩阵

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

V中的像

如图 40 所示,直接将 X 投影到规范正交基 V,得到 Z。Z 就是 X 在 V 中的像,根据 $Xv_j = z_j$,下面我们逐一分析矩阵 Z 的列向量。

图 40. 四特征数据矩阵 $X_{150\times 4}X$ 投影到规范正交基 V 得到 Z

第1列向量 🗤

图 41 所示为鸢尾花数据集矩阵 X 在 v_1 方向上标量投影的运算热图。

从行向量角度来看, $\mathbf{x}^{(i)}\mathbf{v}_1 \to z_{i,1}$ 代表 \mathbb{R}^D 空间坐标值 $\mathbf{x}^{(i)}$,投影到 $\mathrm{span}(\mathbf{v}_1)$ 这个子空间后,得到的坐标值变成 $z_{i,1}$ 。再次强调, $z_{i,1}$ 是 $\mathbf{x}^{(i)}$ 在 $\mathrm{span}(\mathbf{v}_1)$ 的坐标值。

从列向量角度来看, $[x_1, x_2, x_3, x_4]v_1 \rightarrow z_1$,是一个线性组合过程,即:

$$\mathbf{z}_{1} = \mathbf{X}\mathbf{v}_{1} = \begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} & \mathbf{x}_{4} \end{bmatrix} \begin{bmatrix} 0.751 \\ 0.380 \\ 0.513 \\ 0.168 \end{bmatrix} = 0.751\mathbf{x}_{1} + 0.380\mathbf{x}_{2} + 0.513\mathbf{x}_{3} + 0.168\mathbf{x}_{4}$$
(48)

上式说明,0.7512 的 x_1 、0.380 倍的 x_2 、0.513 倍的 x_3 、0.168 倍的 x_4 合成得到了一个向量 z_1 。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 41. 四特征数据矩阵 $X_{150\times4}X$ 向 v_1 方向标量投影,一次投影

如图 42 所示, z_1 再乘 v_1^T , 便得到 X_1 :

$$X_1 = z_1 v_1^T = z_1 \begin{bmatrix} 0.751 & 0.380 & 0.513 & 0.168 \end{bmatrix} = \begin{bmatrix} 0.751 z_1 & 0.380 z_1 & 0.513 z_1 & 0.168 z_1 \end{bmatrix}$$
 (49)

很容易发现, X_1 的每一列都是 z_1 乘一个标量系数。显然, X_1 的秩为 1,即 rank(X_1) = 1。 总结来说,图 41 和图 42 用了两步完成了"二次投影",即向量投影。

图 42. 四特征数据矩阵 $X_{150\times4}Z_1$ 乘 v_1^T 得到 X_1

下面,我们用向量张量积的方法,完成同样的计算。

首先计算张量积 $v_1 \otimes v_1$:

$$\mathbf{v}_{1} \otimes \mathbf{v}_{1} = \mathbf{v}_{1} \mathbf{v}_{1}^{\mathrm{T}} = \begin{bmatrix} 0.751 \\ 0.380 \\ 0.513 \\ 0.168 \end{bmatrix} @ \begin{bmatrix} 0.751 \\ 0.380 \\ 0.513 \\ 0.168 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 0.564 & 0.285 & 0.385 & 0.126 \\ 0.285 & 0.144 & 0.194 & 0.063 \\ 0.385 & 0.194 & 0.263 & 0.086 \\ 0.126 & 0.063 & 0.086 & 0.028 \end{bmatrix}$$
(50)

图 43 所示为上述运算热图。注意,上式仅仅保留小数点后 3 位数值。很容易发现,张量积为对称矩阵。请大家自行计算,张量积的秩是否为 1。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 43. 计算张量积 $v_1 ⊗ v_1$

图 44 所示为 X 和张量积 $\nu_1 \otimes \nu_1$ 乘积,几何视角,即 X 向 ν_1 方向向量投影得到 X_1 ,即所谓 "二次投影"。

请大家特别注意一点,X 和 X_1 在热图上已经非常接近。这是因为我们在设定 ν_1 时,有特殊的"讲究"。我们将会在本书下一个板块——矩阵分解,和大家深入探讨。

图 44. 四特征数据矩阵 $X_{150\times4}X$ 向 v_1 方向向量投影,二次投影

第 2 列向量 v₂

图 45 和图 46 分别所示为获得 z_2 和 X_2 的过程。请大家根据之前分析 v_1 的思路自行分析这两图。

图 45. 四特征数据矩阵 $X_{150\times 4}X$ 向 v_2 投影,一次投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 46. z_2 乘 v_2 ^T 得到 X_2

大家自行计算张量积 $v_2 \otimes v_2$ 具体值,按照前文思路分析图 47 和图 48。有必要指出一点,相比 X_1 , X_2 热图和 X 相差很大。

图 47. 计算张量积 $v_2 \otimes v_2$

图 48. 四特征数据矩阵 $X_{150\times4}$ 向 v_2 投影,二次投影

第 3 列向量 v₃

大家自行分析图49、图50、图51、图52这四幅图。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 49. 四特征数据矩阵 $X_{150\times4}$ 向 ν_3 投影,一次投影

图 $50. z_3$ 乘 v_3 ^T得到 X_3

图 51. 计算张量积 ν₃ ⊗ ν₃

图 52. 四特征数据矩阵 $X_{150\times4}$ 向 v_3 投影,二次投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

成权归有平人字面版在所有,有勿向用,引用有压切面处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

第4列向量 ٧4

大家自行分析图53、图54、图55、图56这四幅图。

图 53. 四特征数据矩阵 $X_{150\times 4}$ 向 v_4 投影,一次投影

图 54. z_4 乘 v_4 ^T得到 X_4

图 55. 计算张量积 ν₄ ⊗ ν₄

图 56. 四特征数据矩阵 $X_{150\times4}$ 向 v_4 投影,二次投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

层层叠加

类似前文,我们也从两个视角讨论层层叠加还原原矩阵。

如图 57 所示,数据矩阵 X 在规范正交基 [$v_1, v_2, ..., v_D$] 中每个方向上向量投影层层叠加可以完全还原原始数据。

图 57. 层层叠加还原四特征数据矩阵 X150×4

图 57 告诉我们,要想完整还原 X,需要四副热图叠加,即 $X_1 + X_2 + X_3 + X_4$ 。我们已经很清楚 X_1 、 X_2 、 X_3 、 X_4 这四个矩阵的秩都是 1,而 X就是这四个秩为 1 的不同矩阵层层叠加之和。

但是,如前文已经指出的, X_1 已经非常接近X。也就是说,我们可以用 X_1 近似X。

特别考虑到 X_1 的秩为 1,即 rank(X) = 1。也就是说 X_1 的四个列向量之间存在倍数关系,即,

$$X_{1} = z_{1} v_{1}^{T} = z_{1} \begin{bmatrix} 0.751 & 0.380 & 0.513 & 0.168 \end{bmatrix} = \begin{bmatrix} 0.751 z_{1} & 0.380 z_{1} & 0.513 z_{1} & 0.168 z_{1} \end{bmatrix}$$
 (51)

 X_2 、 X_3 、 X_4 各自的列向量也存在一样的关系。

此外,建议大家仔细对比图 57 中 X、 X_1 、 X_2 、 X_3 、 X_4 这五幅热图,它们采用完全相同的色谱。

图 58. 张量积层层累加获得 4×4单位矩阵

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 58 是张量积的层层叠加,如前文所述,它是数据还原的另外一个侧面。如图 58 所示,这四个张量积相加得到单位矩阵,即:

$$\mathbf{v}_{1} \otimes \mathbf{v}_{1} + \mathbf{v}_{2} \otimes \mathbf{v}_{2} + \mathbf{v}_{3} \otimes \mathbf{v}_{3} + \mathbf{v}_{4} \otimes \mathbf{v}_{4} = \mathbf{I}$$
 (52)

本章前文就提到 (9),也就是一个矩阵乘单位矩阵,结果为其本身,即 XI = X。而单位矩阵 I 可以按 (46) 分解。这也就是说,张量积层层叠加得到了单位矩阵 I,等价于还原原始数据。

数据正交化

本节最后再回过头来分析图 40 中数据矩阵 \mathbf{Z} 。如图 59 所示,矩阵 \mathbf{Z} 转置乘自身得到 \mathbf{Z} 的格拉姆矩阵:

$$\mathbf{Z}^{\mathsf{T}}\mathbf{Z} = \begin{bmatrix} z_{1}^{\mathsf{T}} \\ z_{2}^{\mathsf{T}} \\ \vdots \\ z_{D}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} z_{1} & z_{2} & \cdots & z_{D} \end{bmatrix} = \begin{bmatrix} z_{1}^{\mathsf{T}}z_{1} & z_{1}^{\mathsf{T}}z_{2} & \cdots & z_{1}^{\mathsf{T}}z_{D} \\ z_{1}^{\mathsf{T}}z_{1} & z_{2}^{\mathsf{T}}z_{2} & \cdots & z_{2}^{\mathsf{T}}z_{D} \\ \vdots & \vdots & \ddots & \vdots \\ z_{D}^{\mathsf{T}}z_{1} & z_{D}^{\mathsf{T}}z_{2} & \cdots & z_{D}^{\mathsf{T}}z_{D} \end{bmatrix}$$
(53)

图 59. 矩阵 Z 的格拉姆矩阵

(53) 写成向量内积形式:

$$\mathbf{Z}^{\mathsf{T}}\mathbf{Z} = \begin{bmatrix} z_{1} \cdot z_{1} & z_{1} \cdot z_{2} & \cdots & z_{1} \cdot z_{D} \\ z_{2} \cdot z_{1} & z_{2} \cdot z_{2} & \cdots & z_{2} \cdot z_{D} \\ \vdots & \vdots & \ddots & \vdots \\ z_{D} \cdot z_{1} & z_{D} \cdot z_{2} & \cdots & z_{D} \cdot z_{D} \end{bmatrix} = \begin{bmatrix} \langle z_{1}, z_{1} \rangle & \langle z_{1}, z_{2} \rangle & \cdots & \langle z_{1}, z_{D} \rangle \\ \langle z_{2}, z_{1} \rangle & \langle z_{2}, z_{2} \rangle & \cdots & \langle z_{2}, z_{D} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle z_{D}, z_{1} \rangle & \langle z_{D}, z_{2} \rangle & \cdots & \langle z_{D}, z_{D} \rangle \end{bmatrix}$$

$$(54)$$

观察 \mathbb{R} 59,发现 $\mathbb{Z}^T\mathbb{Z}$ 的结果而恰好对角方阵,即:

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\mathbf{Z}^{\mathsf{T}}\mathbf{Z} = \begin{bmatrix} z_{1} \cdot z_{1} & z_{1} \cdot z_{2} & \cdots & z_{1} \cdot z_{D} \\ z_{2} \cdot z_{1} & z_{2} \cdot z_{2} & \cdots & z_{2} \cdot z_{D} \\ \vdots & \vdots & \ddots & \vdots \\ z_{D} \cdot z_{1} & z_{D} \cdot z_{2} & \cdots & z_{D} \cdot z_{D} \end{bmatrix} = \begin{bmatrix} \langle z_{1}, z_{1} \rangle & \langle z_{1}, z_{2} \rangle & \cdots & \langle z_{1}, z_{D} \rangle \\ \langle z_{2}, z_{1} \rangle & \langle z_{2}, z_{2} \rangle & \cdots & \langle z_{2}, z_{D} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle z_{D}, z_{1} \rangle & \langle z_{D}, z_{2} \rangle & \cdots & \langle z_{D}, z_{D} \rangle \end{bmatrix} = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{D} \end{bmatrix} = \boldsymbol{\Lambda} (55)$$

这说明, Z的列向量两两正交, 即:

$$\mathbf{z}_{i}^{\mathsf{T}}\mathbf{z}_{j} = \mathbf{z}_{j}^{\mathsf{T}}\mathbf{z}_{i} = \mathbf{z}_{i} \cdot \mathbf{z}_{j} = \mathbf{z}_{j} \cdot \mathbf{z}_{i} = \left\langle \mathbf{z}_{i}, \mathbf{z}_{j} \right\rangle = \left\langle \mathbf{z}_{j}, \mathbf{z}_{i} \right\rangle = 0, \quad i \neq j$$
 (56)

大家可以想象一下, z_i 和 z_j 都是长度为 150 的列向量,两者的向量内积竟然为 0。

对比X的格拉姆矩阵:

$$G = X^{\mathrm{T}} X = \begin{bmatrix} x_{1}^{\mathrm{T}} \\ x_{2}^{\mathrm{T}} \\ \vdots \\ x_{D}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{D} \end{bmatrix} = \begin{bmatrix} x_{1}^{\mathrm{T}} x_{1} & x_{1}^{\mathrm{T}} x_{2} & \cdots & x_{1}^{\mathrm{T}} x_{D} \\ x_{2}^{\mathrm{T}} x_{1} & x_{2}^{\mathrm{T}} x_{2} & \cdots & x_{2}^{\mathrm{T}} x_{D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{D}^{\mathrm{T}} x_{1} & x_{D}^{\mathrm{T}} x_{2} & \cdots & x_{D}^{\mathrm{T}} x_{D} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} \cdot x_{1} & x_{1} \cdot x_{2} & \cdots & x_{1} \cdot x_{D} \\ x_{2} \cdot x_{1} & x_{2} \cdot x_{2} & \cdots & x_{2} \cdot x_{D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{D} \cdot x_{1} & x_{D} \cdot x_{2} & \cdots & x_{D} \cdot x_{D} \end{bmatrix} = \begin{bmatrix} \langle x_{1}, x_{1} \rangle & \langle x_{1}, x_{2} \rangle & \cdots & \langle x_{1}, x_{D} \rangle \\ \langle x_{2}, x_{1} \rangle & \langle x_{2}, x_{2} \rangle & \cdots & \langle x_{2}, x_{D} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle x_{D}, x_{1} \rangle & \langle x_{D}, x_{2} \rangle & \cdots & \langle x_{D}, x_{D} \rangle \end{bmatrix}$$

$$(57)$$

图 60 所示为计算矩阵 X 的格拉姆矩阵的热图。

图 60. 矩阵 X 的格拉姆矩阵

像 Z 这样具有这种正交性 (orthogonality) 的数据应用场合很多,因此我们再深究一步。将 Z = XV 其代入 (55) 得到:

$$\mathbf{Z}^{\mathsf{T}}\mathbf{Z} = (XV)^{\mathsf{T}}XV = V^{\mathsf{T}}X^{\mathsf{T}}XV = V^{\mathsf{T}}GV = \Lambda$$
(58)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

也就是说,对于鸢尾花数据矩阵 X 来说,(47) 中给出的这个 V 可谓"无数里挑一",不是一个寻常的规范正交基!

再进一步,由于 V 为规范正交基,因此 $V^TV = I$,根据 (58) 等式关系,G 可以写成:

$$G = V \Lambda V^{\mathrm{T}} \tag{59}$$

这就是说,如图 61 所示,X 的格拉姆矩阵 G 可以分解成三个矩阵的乘积。其中,V 为正交矩阵, Λ 为对角方阵。从 G 到 Λ 也是一个方阵对角化 (diagonalization) 的过程。

图 61. 对 G 矩阵分解

为了获得(59)等式,就需要本书下一个板块要介绍的重要线性代数工具——矩阵分解。 Bk4 Ch10 01.py 绘制本章大部分热图。


```
# Bk4 Ch10 01.py
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import load_iris
# A copy from Seaborn
iris = load iris()
X = iris.data
y = iris.target
# Convert X array to dataframe
X df = pd.DataFrame(X, columns=feature names)
#%% Original data, X
X = X df.to numpy();
# Gram matrix, G and orthogonal basis V
G = X.T@X
D, V = np.linalg.eig(G)
```

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

```
def heatmap (Matrices, Titles, Ranges, Equal tags):
   M1 = Matrices[0]
   M2 = Matrices[1]
   M3 = Matrices[2]
   Title 1 = Titles[0]
   Title 2 = Titles[1]
   Title 3 = Titles[2]
   fig, axs = plt.subplots(1, 5, figsize=(12, 3))
   plt.sca(axs[01)
   ax = sns.heatmap(M1,cmap='RdYlBu r',
                    vmin = Ranges[0][0],
                    vmax = Ranges[0][1],
                    cbar=False,
                    xticklabels=False,
                    yticklabels=False)
   if Equal tags[0] == True:
       ax.set_aspect("equal")
   plt.title(Title 1)
   plt.sca(axs[1])
   plt.title('=')
   plt.axis('off')
   plt.sca(axs[2])
   ax = sns.heatmap(V,cmap='RdYlBu r',
                    vmin = Ranges[1][0],
                    vmax = Ranges[1][1],
                    cbar=False,
                    xticklabels=False,
                    yticklabels=False)
   if Equal tags[1] == True:
       ax.set aspect("equal")
   plt.title(Title 2)
   plt.sca(axs[3])
   plt.title('@')
   plt.axis('off')
   plt.sca(axs[4])
   ax = sns.heatmap(V.T,cmap='RdYlBu r',
                    vmin = Ranges[2][0],
                    vmax = Ranges[2][1],
                    cbar=False,
                    xticklabels=False,
                    yticklabels=False)
   if Equal_tags[2] == True:
       ax.set aspect("equal")
   plt.title(Title 3)
#88
def plot four figs(X,v j,idx):
   # Fig 1: X@v j = z j
   z_j = X@v_j
   Ranges = [[-2,11],
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。
版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466
欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com
```

```
[-1,1],
             [-2,11]]
   Equal tags = [False,True,False]
   heatmap([X,v j,z j], Titles, Ranges, Equal tags)
   # Fig 2: z@v_j.T = X_j
X_j = z_j@v_j.T
   Ranges = [[-2,11],
            [-1,1],
             [-2,11]]
   Equal tags = [False,True,False]
   heatmap([z_j,v_j.T,X_j],Titles,Ranges,Equal tags)
   # Fig 3: T_j = v_j@v_j.T
   T_j = v_j@v_j.T
   Ranges = [[-1,1],
             [-1,1],
             [-1,1]]
   Equal tags = [True,True,True]
   heatmap([v_j,v_j.T,T_j],Titles,Ranges,Equal_tags)
   # Fig 4: X@T j = X j
   T j = X@T j
   Ranges = [[-2,11],
             [-1,1],
             [-2,11]]
   Equal tags = [False,True,False]
   heatmap([X,T j,X j],Titles,Ranges,Equal tags)
#%% First basis vector
v1 = V[:, 0].reshape((-1, 1))
plot four figs (X, v1, 1)
#%% Second basis vector
v2 = V[:, 1].reshape((-1, 1))
plot four figs (X, v2, 2)
#%% Third basis vector
v3 = V[:, 2].reshape((-1, 1))
plot four figs (X, v3, 3)
#%% Fourth basis vector
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。
版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466
欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com
```

```
v4 = V[:, 3].reshape((-1, 1))
plot four figs(X, v4, 4)
```


本章内容是个分水岭。如果本章内容,特别是前两节内容,你读起来毫无压力,恭喜你,你可以顺利进入本书下一个板块——矩阵分解——的学习。

如果你对本章内容感觉很陌生,请回头重读前9章内容。

大家可能会好奇,本章中可以很好还原原始数据矩阵的 ν_1 到底是怎么算出来的? 其实本章代码文件已经给出了答案——特征值分解。这是本书下一个板块要讲的内容之一。

再次,强调有数据的地方,就有向量;有向量的地方,就有几何!

再加一句,有向量的地方,也会有空间。

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com