- 5 What is claimed is:
 - 1. A stent comprising an effective amount of a JNK Inhibitor.
 - 2. The stent of claim 1 having a coating comprising an effective amount of a JNK Inhibitor.
- 3. The stent of claim 1 comprising a material having an effective amount of a JNK10 Inhibitor incorporated therein.
 - 4. The stent according to claim 1, wherein the JNK Inhibitor has the following formula:

or a pharmaceutically acceptable salt, solvate or stereoisomer thereof,

wherein:

A is a direct bond, $-(CH_2)_a$, $-(CH_2)_bCH=CH(CH_2)_c$, or $-(CH_2)_bC\equiv C(CH_2)_c$;

 R_1 is aryl, heteroaryl or heterocycle fused to phenyl, each being optionally substituted with one to four substituents independently from R_3 ;

20 R₂ is -R₃, -R₄, -(CH₂)_bC(=O)R₅, -(CH₂)_bC(=O)OR₅, -(CH₂)_bC(=O)NR₅R₆, -(CH₂)_bC(=O)NR₅(CH₂)_cC(=O)R₆, -(CH₂)_bNR₅C(=O)R₆, -(CH₂)_bNR₅C(=O)NR₆R₇, -(CH₂)_bNR₅R₆, -(CH₂)_bOR₅, -(CH₂)_bSO_dR₅ or -(CH₂)_bSO₂NR₅R₆,

a is 1, 2, 3, 4, 5 or 6;

b and c are the same or different and at each occurrence independently 0, 1, 2, 3 or 4;

25 d is at each occurrence 0, 1 or 2;

5 R₃ is at each occurrence independently halogen, hydroxy, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, substituted aryl, arylalkyl, heterocycle, heterocycloalkyl, -C(=O)OR₈, -OC(=O)R₈, -C(=O)NR₈R₉, -C(=O)NR₈OR₉, -SO₂NR₈R₉, -NR₈SO₂R₉, -CN, -NO₂, -NR₈R₉, -NR₈C(=O)R₉, -NR₈C(=O)(CH₂)_bOR₉, -NR₈C(=O)(CH₂)_bR₉, -O(CH₂)_bNR₈R₉, or heterocycle fused to phenyl;

R₄ is alkyl, aryl, arylalkyl, heterocycle or heterocycloalkyl, each being optionally substituted with one to four substituents independently from R₃, or R₄ is halogen or hydroxy;

R₅, R₆ and R₇ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle or heterocycloalkyl, wherein each of R₅, R₆ and R₇ are optionally substituted with one to four substituents independently from R₃; and R₈ and R₉ are the same or different and at each occurrence independently hydrogen, alkyl, aryl, arylalkyl, heterocycle, or heterocycloalkyl, or R₈ and R₉ taken together with the atom or atoms to which they are bonded form a heterocycle, wherein each of R₈, R₉, and R₈ and R₉ taken together to form a heterocycle are optionally substituted with one to four substituents independently from R₃.

5. The stent according to claim 1, wherein the JNK Inhibitor has the following formula:

$$R_2$$
 R_1
 R_3
 R_4
 R_5
 R_6

25

15

20

or a pharmaceutically acceptable salt, solvate or stereoisomer thereof,

wherein:

R₁ is aryl or heteroaryl optionally substituted with one to four substituents independently from R₇;

5 R₂ is hydrogen;

R₃ is hydrogen or lower alkyl;

R₄ represents one to four optional substituents, wherein each substituent is the same or different and independently halogen, hydroxy, lower alkyl or lower alkoxy;

 R_5 and R_6 are the same or different and independently $-R_8$, $-(CH_2)_aC(=O)R_9$, $-(CH_2)_aC(=O)OR_9$, $-(CH_2)_aC(=O)NR_9R_{10}$, $-(CH_2)_aC(=O)NR_9(CH_2)_bC(=O)R_{10}$, $-(CH_2)_aNR_9C(=O)R_{10}$, $(CH_2)_aNR_{11}C(=O)NR_9R_{10}$, $-(CH_2)_aNR_9R_{10}$, $-(CH_2)_aSO_cR_9$ or $-(CH_2)_aSO_2NR_9R_{10}$;

or R₅ and R₆ taken together with the nitrogen atom to which they are attached to form a heterocycle or substituted heterocycle;

R₇ is at each occurrence independently halogen, hydroxy, cyano, nitro, carboxy, alkyl, alkoxy, haloalkyl, acyloxy, thioalkyl, sulfinylalkyl, sulfonylalkyl, hydroxyalkyl, aryl, arylalkyl, heterocycle, heterocycloalkyl, -C(=O)OR₈, -OC(=O)R₈, -C(=O)NR₈R₉, -C(=O)NR₈OR₉, -SO_cNR₈R₉, -NR₈SO_cR₉, -NR₈R₉, -NR₈C(=O)R₉, -NR₈C(=O)(CH₂)_bOR₉, -NR₈C(=O)(CH₂)_bNR₈R₉, or heterocycle fused to phenyl;

 R_8 , R_9 , R_{10} and R_{11} are the same or different and at each occurrence independently hydrogen, alkyl, substituted alkyl, aryl, arylalkyl, heterocycle or heterocycloalkyl;

or R₈ and R₉ taken together with the atom or atoms to which they are attached to form a heterocycle;

- 25 a and b are the same or different and at each occurrence independently 0, 1, 2, 3 or 4; and c is at each occurrence 0, 1 or 2.
 - 6. The stent according to claim 1, wherein the JNK Inhibitor has the following formula:

$$\begin{array}{c|c}
1 & 2 \\
R_0 & R_0
\end{array}$$

$$\begin{array}{c|c}
7 & 6 & 5
\end{array}$$

5

or a pharmaceutically acceptable salt, solvate or stereoisomer thereof,

wherein R_0 is -O-, -S-, -S(O)-, -S(O)₂-, NH or -CH₂-;

the compound being (i) unsubstituted, (ii) monosubstituted and having a first substituent, or (iii) disubstituted and having a first substituent and a second substituent;

the first or second substituent, when present, is at the 3, 4, 5, 7, 8, 9, or 10 position, wherein the first and second substituent, when present, are independently alkyl, hydroxy, halogen, nitro, trifluoromethyl, sulfonyl, carboxyl, alkoxycarbonyl, alkoxy, aryl, aryloxy, arylalkyloxy, arylalkyl, cycloalkylalkyloxy, cycloalkyloxy, alkoxyalkyl, alkoxyalkoxy, aminoalkoxy, mono-alkylaminoalkoxy, di-alkylaminoalkoxy, or a group represented by formula (a), (b), (c), (d), (e), or (f):

- 61 -

- wherein R₃ and R₄ are taken together and represent alkylidene or a heteroatomcontaining cyclic alkylidene or R₃ and R₄ are independently hydrogen, alkyl, cycloalkyl, aryl, arylalkyl, cycloalkylalkyl, aryloxyalkyl, alkoxyalkyl, aminoalkyl, monoalkylaminoalkyl, or di-alkylaminoalkyl; and
- R₅ is hydrogen, alkyl, cycloalkyl, aryl, arylalkyl, cycloalkylalkyl, alkoxy, alkoxyalkyl, alkoxycarbonylalkyl, amino, mono-alkylamino, di-alkylamino, arylamino, arylalkylamino, cycloalkylamino, aminoalkyl, mono-alkylaminoalkyl, or di-alkylaminoalkyl.
 - 7. The stent according to claim 2 wherein the coating comprises a pharmaceutically acceptable carrier.
- 15 8. The stent according to claim 1 wherein the stent is a stent graft.

20

- 9. The stent according to claim 1 wherein the stent comprises a polymer.
- 10. The stent according to claim 9 in which the polymer is a polyamide, a polyester, a polystyrene, a polypropylene, a polyacrylate, a polyvinyl, a polycarbonate, a polytetrafluorethylene, a polymethylmethacrylate, a polyethylene, a poly(ethylene terephthalate), a polyalkylene oxalate, a polyurethane, a polysiloxane, a poly(dimethyl siloxane), a polycyanoacrylate, a polyphosphazene, a poly(amino acid), a ethylene glycol

- I dimethacrylate, a poly(methyl methacrylate), a poly(2-hydroxyethyl methacrylate), a poly(HEMA), or a polyhydroxyalkanoate compound.
 - 11. The stent according to claim 2 wherein the coating is a controlled-release coating.
 - 12. A method for making the stent of claim 2, comprising the step of coating a stent with an effective amount of a JNK Inhibitor.
- 10 13. The method according to claim 12 wherein the stent is a stent graft.
 - 14. The stent according to claim 3 wherein the material having an effective amount of a JNK Inhibitor incorporated therein allows for controlled-release of the JNK Inhibitor.
- 15. A method for making the stent of claim 3, comprising manufacturing a stent with material having an effective amount of a JNK Inhibitor incorporated therein.
 - 16. A method for treating or preventing a cardiovascular or renal disease in a patient, comprising implanting the stent of claim 1 into a patient in need thereof.
 - 17. A method for treating or preventing atherosclerosis in a patient, comprising implanting the stent of claim 1 into a patient in need thereof.
- 20 18. The method of claim 16 further comprising surgical intervention.

25

- 19. The method of claim 17 further comprising surgical intervention.
- 20. The method of claim 18 wherein the surgical intervention involves percutaneous coronary intervention, revascularization, percutaneous transluminal coronary angioplasty, carotid percutaneous transluminal angioplasty coronary by-pass grafting or coronary angioplasty with stent implantation.
- 21. The method of claim 18 wherein the surgical intervention involves renal angioplasty; peripheral percutaneous transluminal intervention of the iliac, femoral or popliteal arteries; or surgical intervention using impregnated artificial grafts.

- 5 22. The method of claim 16 wherein the stent is a stent graft.
 - 23. The method of claim 17 wherein the stent is a stent graft.
 - 24. The method of claim 20 wherein the implanting occurs prior to the administration of angioplasty.
- 25. The method of claim 20 wherein the implanting occurs during the administrationof angioplasty.
 - 26. The method of claim 20 wherein the implanting occurs after the administration of angioplasty.
 - 27. A kit comprising the stent of claim 1 and directions for its use.