嵌入式系统结构与设计课程实验

实验报告 9

ALU (Arithmetic and Logic Unit) Design and ALU Pipeline

Content

1. Target	1
2. Arithmetic and Logic Unit	
2.1 Designing	1
2.2 Simulation	1
2.3 Synthesization and RTL diagram	3
2.4 Design Summary	3
3. ALU Pipeline Example	5
3.1 Design	5
3.2 Simulation	5
2.3 Synthesization and RTL diagram	6
2.4 Design Summary	6
Afterthought	8
Appendix 1: Attachment List	9
Appendix 2: ALU Operation List	10
Appendix 3: RTL Diagram	11
Appendix 4: Timing Constraints Report	12
Annendix 5: RTI Diagram of ALLI Pineline Example	19

1. Target

- Design an ALU (arithmetic logic unit)
- Further understand and use timing/area/power report to optimize the design

2. Arithmetic and Logic Unit

2.1 Designing

The most important step is to design the available operation list. By following the operation list, actual ALU implementation is much easier.

Since the available operations of ALU are directly affected what the CPU can execute, and the optimization of the ALU is related to the CPU requirements, I have to wait until our CPU design instruction comes out. I'm sorry for the latency of my assignment, but I really want to implement a complete and optimal ALU.

The available ALU operations are as followed.

```
(See Appendix 2: ALU Operation List)
```

In accord to special CPU design for optimization, only a half of the CPU's instructions are necessary being an individual operation within the ALU, thus a 5-bit-instruction CPU requires only a 4-bit-opcode ALU. And these operation codes are allocated after 10000 of the instruction code table.

2.2 Simulation

Test is based on texture test bench, and the result is as followed.

```
TEST 01 : (1)0000 [ADD]

OPC : IN1 : IN2 : ICF : OUT : OCF : OZF : ONF

0000: f002: Offf: 0 : 0001: 1 : 0 : 0

TEST 02 : (1)0001 [ADDI]

OPC : IN1 : IN2 : ICF : OUT : OCF : OZF : ONF

0001: 102c: 59ff: 0 : 6a2b: 0 : 0 : 0

TEST 03 : (1)0010 [ADDC]

OPC : IN1 : IN2 : ICF : OUT : OCF : OZF : ONF

0010: 2008: 0108: 1 : 2111: 0 : 0 : 0
```

TEST 04: (1)0011 [SUB] OPC :IN1 :IN2 :ICF :OUT :OCF :OZF :ONF 0011:1000:08ff:0 :0701:0 :0 :0 TEST 05: (1)0100 [SUBI] OPC : IN1 : IN2 : ICF : OUT : OCF : OZF : ONF 0100:0001:1000:0 :f001:0 :0 :1 TEST 06: (1)0101 [SUBC] OPC : IN1 : IN2 : ICF : OUT : OCF : OZF : ONF 0101:1000:0fff:1 :0000:0 :1 :0 TEST 07: (1)0110 [INC] OPC :IN1 :IN2 :ICF :OUT :OCF :OZF :ONF 0110:0fff:0000:0 :1000:0 :0 :0 TEST 08: (1)0111 [CMP] - less OPC :IN1 :IN2 :ICF :OUT :OCF :OZF :ONF 0111:21fc:2f56:0 :0000:0 :1 :0 TEST 09: (1)0111 [CMP] - equal OPC : IN1 : IN2 : ICF : OUT : OCF : OZF : ONF 0111:64ff:64ff:0 :0000:0 :1 :0 TEST 10 : (1)0111 [CMP] - larger OPC :IN1 :IN2 :ICF :OUT :OCF :OZF :ONF 0111:b9a8:975f:0 :0000:0 :1 :0 TEST 11: (1)1000 [TRAN] OPC :IN1 :IN2 :ICF :OUT :OCF :OZF :ONF 1000:56fc:0000:0 :56fc:0 :0 :0 TEST 12: (1) 1001 [XOR] OPC :IN1 :IN2 :ICF :OUT :OCF :OZF :ONF 1001:ff0f:f0fa:0 :0ff5:0 :0 :0 TEST 13: (1)1010 [AND] OPC :IN1 :IN2 :ICF :OUT :OCF :OZF :ONF 1010:f00f:ff0a:0 :f00a:0 :0 :0 TEST 14: (1)1011 [OR] OPC : IN1 : IN2 : ICF : OUT : OCF : OZF : ONF 1011:f00f:ff0a:0 :ff0f:0 :0 :0

```
TEST 15 : (1)1100 [SLL]

OPC :IN1 :IN2 :ICF :OUT :OCF :OZF :ONF

1100:f0f0:0004:0 :0f00:1 :0 :0

TEST 16 : (1)1101 [SLA]

OPC :IN1 :IN2 :ICF :OUT :OCF :OZF :ONF

1101:0f0f:0004:0 :f0f0:0 :0 :0

TEST 17 : (1)1110 [SRL]

OPC :IN1 :IN2 :ICF :OUT :OCF :OZF :ONF

1110:f000:0004:0 :0f00:0 :0 :0

TEST 18 : (1)1111 [SRA]

OPC :IN1 :IN2 :ICF :OUT :OCF :OZF :ONF

1111:f0ff:0004:0 :ff0f:1 :0 :0
```

2.3 Synthesization and RTL diagram

After Synthesization RTL diagram of the design is generated.

The RTL diagram of the core module, the ALU module, generated from Synthesization is as below.

(See Appendix 3: RTL Diagram)

2.4 Design Summary

Device utilization summary:

Slice Logic Utilization:				
Number of Slice LUTs:	246	out of	9112	2%
Number used as Logic:	246	out of	9112	2%
Slice Logic Distribution:				
Number of LUT Flip Flop pairs used:	246			
Number with an unused Flip Flop:	246	out of	246	100%
Number with an unused LUT:	0	out of	246	0%
Number of fully used LUT-FF pairs:	0	out of	246	0%
Number of unique control sets:	0			
IO Utilization:				
Number of IOs:	56			
Number of bonded IOBs:	56	out of	232	24%
Specific Feature Utilization:				

Timing Constraints:

The timing constraints report is as follow.

(See Appendix 4: Timing Constraints Report)

Power Report:

I			On-(Chip I	 Poឃ	er Summ	naı	 гу				I
I	On-Chip	I	Power	(mW)	I	Used	I	Available	I	Utilization	(%)	I
ı	Clocks	ı		0.00	Ι	0	I		ı			ı
1	Logic			0.00		235		9112	1		3	1
1	Signals			0.00		274	1					
1	IOs			0.00		56	1	232			24	
1	Quiescent		:	14.84			1					1
I	Total	Ι	:	14.84	Ι				I			I

3. ALU Pipeline Example

3.1 Design

In pipeline ALU design, the implementation is not complete, rather only addition operation is implemented as an example. The design follows the following architecture.

There are 2 stages of pipeline in this design, with each computing 8 bits of the inputs.

3.2 Simulation

The simulation involves 4 clock trigger pulses, and inputs of each pulse are as followed.

Clock#		Input	
CIOCK#	IN1	IN2	Carry
1	01FF	0102	0
2	1F05	0100	0
3	0	0	0
4	0	0	0

The result of simulation is as followed.

```
Pipeline ALU example testing
IN1 :IN2 :ICF ::OUT :OCF :OZF :ONF
01ff:0102:0
               ::0000:0
                          :x
                               : x
1f05:0100:0
              ::0000:0
                          :x
                               :x
0000:0000:0
              ::0301:0
                          :0
                               :0
0000:0000:0
                          :0
                               :0
               ::2005:0
0000:0000:0
              ::0000:0
                          :0
                               :0
```

2.3 Synthesization and RTL diagram

After Synthesization RTL diagram of the design is generated.

The RTL diagram of the core module, the ALUP2 module, generated from Synthesization is as below.

(See Appendix 5: RTL Diagram of ALU Pipeline Example)

2.4 Design Summary

Device utilization summary:

Slice Logic Utilization:				
Number of Slice Registers:	36	out of	18224	0%
Number of Slice LUTs:	27	out of	9112	0%
Number used as Logic:	19	out of	9112	0%
Number used as Memory:	8	out of	2176	0%
Number used as SRL:	8			
Slice Logic Distribution:				
Number of LUT Flip Flop pairs used:	46			
Number with an unused Flip Flop:	10	out of	46	21%
Number with an unused LUT:	19	out of	46	41%
Number of fully used LUT-FF pairs:	17	out of	46	36%
Number of unique control sets:	2			
IO Utilization:				
Number of IOs:	53			
Number of bonded IOBs:	53	out of	232	22%
Specific Feature Utilization:				
Number of BUFG/BUFGCTRLs:	1	out of	16	6%

Timing Report:

The timing report is as follow.

Power Report:

On-Chip Power Summary									
I	Power (mW)	I	Used	I	Available	Ι	Utilization	(%)	I
ı	0.01		1						
- 1	0.00	-	24	1	9112	I		0	1
- 1	0.00		82	1					
- 1	0.00		53	1	232			23	
- 1	14.84			1					
- 1	14.86	Ι		Ι		1			Ι
	 	Power (mW) 0.01 0.00 0.00 0.00		Power (mW) Used 0.01 1 0.00 24 0.00 82 0.00 53 14.84	Power (mW) Used 0.01 1 0.00 24 0.00 82 0.00 53 14.84	Power (mW) Used Available 0.01 1 0.00 24 9112 0.00 82 0.00 53 232 14.84	Power (mW) Used Available 0.01 1 0.00 24 9112 0.00 82 0.00 53 232 14.84	Power (mW) Used Available Utilization 0.01 1 0.00 24 9112 0.00 82 0.00 53 232 14.84	Power (mW) Used Available Utilization (%) 0.01 1 0.00 24 9112 0 0.00 82 0.00 53 232 23 14.84

Afterthought

CPU design is a big topic: a lot of technologies, theories, techniques and knowledge are required. Since the CPU is exact a highly coupling module, one has to think hard to optimize the design until the final product comes out. Hence, I am half exciting and half worrying about this assignment.

As I once thought, merely the design of ALU, a component of the CPU, costs me a lot of time.

To build an experimental, or says example, ALU is easy with the guidance from our teacher. However, what I want to build is an ALU fit and optimized for the later CPU design, which means these two designs is highly coupling but quite optimized that they seem to be exactly one piece.

So I had to wait for the final assignment of our CPU design, before I could start to build my ALU. What's more, I consider this project a real one, so I pushed it as a currently not visible open source project. What I mean by invisible is because I do not want my homework be copied, so I just hide it from the public currently, but later I will make it visible. A lot of documentation and details are required in my design. So I design the both the operation tables of CPU and ALU together, actually. To apply a lot of tricks in the design actually cost a majority of my time on this project, for example, the order of operation code allocation.

I wanted to optimize this design as far as possible, but the payment is time. I am so sorry that I submit my homework so late. But the outcome is not so bad, because merely all my initial expectations finally come true in my design.

David Qiu (邱迪聪)

2013.12.24

Appendix 1: Attachment List

1. ALU

\ ALU.v

\ ALU_test01.v

2. ALU pipeline example

\ ALUP2_example.v

\ ALUP2_example_test01.v

X.v files are primary code files; X_test.v files are test files.

Appendix 2: ALU Operation List

						Arithmetic and Logic Unit Operation List	Logic Unit	Operation List	
Category	Mnemonic	Input1	Input2	Input Flags	Output	Output Flags	Opcode	Full Name	Operation
Arithmetic	ADD	bit[16]	bit[16]		bit[16]	CF, ZF, NF	10000	ADD	Input1+Input2 -> Output
	ADDI	bit[16]	bit[16]		bit[16]	CF, ZF, NF	10001	<u>ADD I</u> MMEDIATE	Input1+Input2 -> Output
	ADDC	bit[16]	bit[16]	CF	bit[16]	CF, ZF, NF	10010	<u>ADD</u> <u>C</u> ARRY	Input1+Input2+Carry -> Output
	SUB	bit[16]	bit[16]		bit[16]	CF, ZF, NF	10011	<u>SUB</u> TRACT	Input1-Input2 -> Output
	SUBI	bit[16]	bit[16]		bit[16]	CF, ZF, NF	10100	SUBTRACT IMMEDIATE	Input1-Input2 -> Output
	SUBC	bit[16]	bit[16]	CF	bit[16]	CF, ZF, NF	10101	SUBTRACT CARRY	Input1-Input2-Borrow -> Output
	INC	bit[16]			bit[16]	CF, ZF, NF	10110	<u>INC</u> REASE	Input1+1-> Output
	CMP	bit[16]	bit[16]		0	CF, ZF, NF	10111	<u>COM</u> PARE	Input1-Input2
Special	TRAN	bit[16]			bit[16]	ZF	11000	<u>TRAN</u> SFER	Input1 -> Output
Logic	XOR	bit[16]	bit[16]		bit[16]	ZF	11001	EXCLUSIVE <u>OR</u>	Input1 XOR Input2 -> Output
	AND	bit[16]	bit[16]		bit[16]	ZF	11010	AND	Input1 AND Input2 -> Output
	OR	bit[16]	bit[16]		bit[16]	ZF	11011	<u>OR</u>	Input1 OR Input2 -> Output
Shift	SLL	bit[16]	bit[16]		bit[16]	CF, ZF	11100	SHIFT LEFT LOGICAL	{CF, Input1, 0} << Input2[3:0] -> Output
	SLA	bit[16]	bit[16]		bit[16]	CF, ZF	11101	SHIFT LEFT ARITHMETICAL	{CF, Input1, 0} << Input2[3:0] -> Output
	SRL	bit[16]	bit[16]		bit[16]	CF, ZF	11110	SHIFT RIGHT LOGICAL	{0, Input1, CF} >> Input2[3:0] -> Output
	SRA	bit[16]	bit[16]		bit[16]	CF, ZF	11111	SHIFT RIGHT ARITHETICAL	{Input1[0], Input1, CF} >> Input2[3:0] -> Output

Appendix 3: RTL Diagram

Appendix 4: Timing Constraints Report

All values di	splayed in nanoseco	nds (ns)	IN1<0>	OUT<14>	13.
			IN1<0>	OUT<15>	15.
Pad to Pad			IN1<0>	0ZF	17.
	+	+	IN1<1>	OCF	13.
Source Pad	Destination Pad	Delay	IN1<1>	ONF	14.
	+	+	IN1<1>	OUT<0>	11.
ICF	OCF	12. 463	IN1<1>	OUT<1>	14.
ICF	ONF	12.773	IN1<1>	OUT<2>	13.
ICF	OUT<0>	12.032	IN1<1>	OUT<3>	15.
ICF	OUT<1>	12. 327	IN1<1>	OUT<4>	14.
ICF	OUT<2>	11.515	IN1<1>	OUT<5>	13.
ICF	OUT<3>	12. 177	IN1<1>	OUT<6>	14.
ICF	OUT<4>	13.068	IN1<1>	OUT<7>	13.
ICF	OUT<5>	11. 950	IN1<1>	OUT<8>	14.
ICF	OUT<6>	12.756	IN1<1>	OUT<9>	15.
ICF	OUT<7>	12. 149	IN1<1>	OUT<10>	14.
ICF	OUT<8>	12. 227	IN1<1>	OUT<11>	14.
ICF	OUT<9>	13.008	IN1<1>	OUT<12>	14.
ICF	OUT<10>	12.944	IN1<1>	OUT<13>	14.
ICF	OUT<11>	12.878	IN1<1>	OUT<14>	13.
ICF	OUT<12>	13. 428	IN1<1>	OUT<15>	15.
ICF	OUT<13>	13. 128	IN1<1>	OZF	17.
ICF	OUT<14>	12. 531	IN1<2>	OCF	13.
ICF	OUT<15>	13. 458	IN1<2>	ONF	13.
ICF	OZF	15. 103	IN1<2>	OUT<0>	11.
[N1<0>	OCF	13. 174	IN1<2>	OUT<1>	10.
[N1<0>	ONF	14. 526	IN1<2>	OUT<2>	12.
N1<0>	OUT<0>	12.970	IN1<2>	OUT<3>	13.
[N1<0>	OUT<1>	14. 613	IN1<2>	OUT<4>	13.
[N1<0>	OUT<2>	13. 583	IN1<2>	OUT<5>	12.
[N1<0>	OUT<3>	15. 084	IN1<2>	OUT<6>	13.
[N1<0>	OUT<4>	14. 173	IN1<2>	OUT<7>	12.
[N1<0>	OUT<5>	13. 683	IN1<2>	OUT<8>	13.
[N1<0>	OUT<6>	14. 047	IN1<2>	OUT<9>	14.
N1<0>	OUT<7>	13. 692	IN1<2>	OUT<10>	13.
[N1<0>	OUT<8>	14. 116	IN1<2>	OUT<11>	13.
[N1<0>	OUT<9>	15. 145	IN1<2>	OUT<12>	14.
[N1<0>	OUT<10>	14. 369	IN1<2>	OUT<13>	13.
IN1<0>	OUT<11>	13. 902	IN1<2>	OUT<14>	13.
IN1<0>	OUT<12>	14. 734	IN1<2>	OUT<15>	14.
IN1<0>	OUT<13>	13. 849	IN1<2>	OZF	16.

IN1<3>	OCF	12. 946	IN1<5>	OUT<4>	11. 566
IN1<3>	ONF	14. 101	IN1<5>	OUT<5>	13. 357
IN1<3>	OUT<0>	10.740	IN1<5>	OUT<6>	13. 971
IN1<3>	OUT<1>	10.619	IN1<5>	OUT<7>	13.616
IN1<3>	OUT<2>	12.057	IN1<5>	OUT<8>	14. 094
IN1<3>	OUT<3>	14. 027	IN1<5>	OUT<9>	15. 123
IN1<3>	OUT<4>	13. 214	IN1<5>	OUT<10>	14. 347
IN1<3>	OUT<5>	12.710	IN1<5>	OUT<11>	14. 249
IN1<3>	OUT<6>	13. 461	IN1<5>	OUT<12>	14.814
IN1<3>	OUT<7>	13. 106	IN1<5>	OUT<13>	14. 514
IN1<3>	OUT<8>	13. 553	IN1<5>	OUT<14>	13. 917
IN1<3>	OUT<9>	14. 582	IN1<5>	OUT<15>	15. 177
IN1<3>	OUT<10>	13.806	IN1<5>	OZF	16.822
IN1<3>	OUT<11>	13. 346	IN1<6>	OCF	12. 913
IN1<3>	OUT<12>	14. 171	IN1<6>	ONF	14.698
IN1<3>	OUT<13>	13.611	IN1<6>	OUT<0>	10.869
IN1<3>	OUT<14>	13.014	IN1<6>	OUT<1>	9.863
IN1<3>	OUT<15>	14.634	IN1<6>	OUT<2>	12. 275
IN1<3>	OZF	16. 534	IN1<6>	OUT<3>	10.419
IN1<4>	OCF	13. 482	IN1<6>	OUT<4>	11.406
IN1<4>	ONF	14. 339	IN1<6>	OUT<5>	12.916
IN1<4>	OUT<0>	10.801	IN1<6>	OUT<6>	14.004
IN1<4>	OUT<1>	10. 438	IN1<6>	OUT<7>	13.649
IN1<4>	OUT<2>	11. 993	IN1<6>	OUT<8>	14. 120
IN1<4>	OUT<3>	10.861	IN1<6>	OUT<9>	15. 149
IN1<4>	OUT<4>	13. 468	IN1<6>	OUT<10>	14. 373
IN1<4>	OUT<5>	12.809	IN1<6>	OUT<11>	13.906
IN1<4>	OUT<6>	13.665	IN1<6>	OUT<12>	14. 738
IN1<4>	OUT<7>	13.310	IN1<6>	OUT<13>	13.853
IN1<4>	OUT<8>	13.788	IN1<6>	OUT<14>	13. 218
IN1<4>	OUT<9>	14.817	IN1<6>	OUT<15>	15. 231
IN1<4>	OUT<10>	14. 041	IN1<6>	OZF	16.876
IN1<4>	OUT<11>	13.882	IN1<7>	OCF	12.653
IN1<4>	OUT<12>	14.447	IN1<7>	ONF	14. 528
IN1<4>	OUT<13>	14. 147	IN1<7>	OUT<0>	10.831
IN1<4>	OUT<14>	13. 550	IN1<7>	OUT<1>	10.460
IN1<4>	OUT<15>	14.872	IN1<7>	OUT<2>	12. 345
IN1<4>	OZF	16. 517	IN1<7>	OUT<3>	10.383
IN1<5>	OCF	13.849	IN1<7>	OUT<4>	11. 368
IN1<5>	ONF	14.644	IN1<7>	OUT<5>	13. 513
IN1<5>	OUT<0>	11.029	IN1<7>	OUT<6>	11. 976
IN1<5>	OUT<1>	10. 304	IN1<7>	OUT<7>	13.438
IN1<5>	OUT<2>	12. 331	IN1<7>	OUT<8>	13. 938
IN1<5>	OUT<3>	10.703	IN1<7>	OUT<9>	14. 967

IN1<7>	OUT<10>	14. 191	IN1<9>	OZF	16.618
IN1<7>	OUT<11>	13. 724	IN1<10>	OCF	12. 820
IN1<7>	OUT<12>	14. 556	IN1<10>	ONF	14. 193
IN1<7>	OUT<13>	13. 671	IN1<10>	OUT<0>	10. 228
IN1<7>	OUT<14>	13.048	IN1<10>	OUT<1>	10. 178
IN1<7>	OUT<15>	15. 061	IN1<10>	OUT<2>	12. 110
IN1<7>	OZF	16. 706	IN1<10>	OUT<3>	10. 750
IN1<8>	OCF	12.962	IN1<10>	OUT<4>	10. 479
IN1<8>	ONF	14.640	IN1<10>	OUT<5>	11. 554
IN1<8>	OUT<0>	10. 193	IN1<10>	OUT<6>	11.869
IN1<8>	OUT<1>	10.061	IN1<10>	OUT<7>	11.901
IN1<8>	OUT<2>	11.794	IN1<10>	OUT<8>	10.688
IN1<8>	OUT<3>	10.337	IN1<10>	OUT<9>	11.599
IN1<8>	OUT<4>	10.444	IN1<10>	OUT<10>	13.412
IN1<8>	OUT<5>	13.114	IN1<10>	OUT<11>	12. 982
IN1<8>	OUT<6>	11.425	IN1<10>	OUT<12>	14. 172
IN1<8>	OUT<7>	11.488	IN1<10>	OUT<13>	13. 273
IN1<8>	OUT<8>	13. 554	IN1<10>	OUT<14>	12.713
IN1<8>	OUT<9>	14. 571	IN1<10>	OUT<15>	14. 726
IN1<8>	OUT<10>	14.012	IN1<10>	OZF	16. 371
IN1<8>	OUT<11>	13. 549	IN1<11>	OCF	13. 531
IN1<8>	OUT<12>	14.619	IN1<11>	ONF	14. 404
IN1<8>	OUT<13>	13.720	IN1<11>	OUT<0>	10.740
IN1<8>	OUT<14>	13. 160	IN1<11>	OUT<1>	10.360
IN1<8>	OUT<15>	15. 173	IN1<11>	OUT<2>	12. 755
IN1<8>	OZF	16.818	IN1<11>	OUT<3>	10.391
IN1<9>	OCF	13.483	IN1<11>	OUT<4>	10. 991
IN1<9>	ONF	14.440	IN1<11>	OUT<5>	11. 736
IN1<9>	OUT<0>	10. 275	IN1<11>	OUT<6>	12. 514
IN1<9>	OUT<1>	10.026	IN1<11>	OUT<7>	11. 242
IN1<9>	OUT<2>	12. 476	IN1<11>	OUT<8>	11. 200
IN1<9>	OUT<3>	10.500	IN1<11>	OUT<9>	11. 781
IN1<9>	OUT<4>	10. 526	IN1<11>	OUT<10>	12. 062
IN1<9>	OUT<5>	11.402	IN1<11>	OUT<11>	13. 181
IN1<9>	OUT<6>	12. 107	IN1<11>	OUT<12>	14. 383
IN1<9>	OUT<7>	11.651	IN1<11>	OUT<13>	13. 484
IN1<9>	OUT<8>	10.735	IN1<11>	OUT<14>	13. 060
IN1<9>	OUT<9>	14. 304	IN1<11>	OUT<15>	14. 937
IN1<9>	OUT<10>	13. 945	IN1<11>	OZF	16. 582
IN1<9>	OUT<11>	13.883	IN1<12>	OCF	12. 442
IN1<9>	OUT<12>	14.448	IN1<12>	ONF	14. 407
IN1<9>	OUT<13>	14. 148	IN1<12>	OUT<0>	11. 332
IN1<9>	OUT<14>	13. 551	IN1<12>	OUT<1>	9.862
IN1<9>	OUT<15>	14. 973	IN1<12>	OUT<2>	12. 125

IN1<12>	OUT<3>	10. 271	IN1<14>	OUT<9>	13. 484
IN1<12>	OUT<4>	11.503	IN1<14>	OUT<10>	10.847
IN1<12>	OUT<5>	11. 238	IN1<14>	OUT<11>	13. 331
IN1<12>	OUT<6>	11.884	IN1<14>	OUT<12>	12.867
IN1<12>	OUT<7>	11. 122	IN1<14>	OUT<13>	13.881
IN1<12>	OUT<8>	11.748	IN1<14>	OUT<14>	12.698
IN1<12>	OUT<9>	11. 283	IN1<14>	OUT<15>	14. 711
IN1<12>	OUT<10>	11.432	IN1<14>	OZF	16. 356
IN1<12>	OUT<11>	12. 208	IN1<15>	OCF	12. 956
IN1<12>	OUT<12>	14. 278	IN1<15>	ONF	13. 269
IN1<12>	OUT<13>	13. 379	IN1<15>	OUT<0>	11.748
IN1<12>	OUT<14>	12. 927	IN1<15>	OUT<1>	11.608
IN1<12>	OUT<15>	14.940	IN1<15>	OUT<2>	10. 928
IN1<12>	OZF	16. 585	IN1<15>	OUT<3>	9.855
IN1<13>	OCF	12. 186	IN1<15>	OUT<4>	11. 919
IN1<13>	ONF	13. 957	IN1<15>	OUT<5>	13. 382
IN1<13>	OUT<0>	11. 236	IN1<15>	OUT<6>	11. 022
IN1<13>	OUT<1>	10. 941	IN1<15>	OUT<7>	10. 521
IN1<13>	OUT<2>	12. 293	IN1<15>	OUT<8>	12. 164
IN1<13>	OUT<3>	10. 401	IN1<15>	OUT<9>	12. 467
IN1<13>	OUT<4>	11. 407	IN1<15>	OUT<10>	11. 156
IN1<13>	OUT<5>	12.715	IN1<15>	OUT<11>	12. 971
IN1<13>	OUT<6>	12.052	IN1<15>	OUT<12>	12. 219
IN1<13>	OUT<7>	11. 252	IN1<15>	OUT<13>	12.864
IN1<13>	OUT<8>	11.652	IN1<15>	OUT<14>	12. 166
IN1<13>	OUT<9>	11.800	IN1<15>	OUT<15>	14. 486
IN1<13>	OUT<10>	11.600	IN1<15>	0ZF	16. 131
IN1<13>	OUT<11>	12. 338	IN2<0>	OCF	12.822
IN1<13>	OUT<12>	11.707	IN2<0>	ONF	14. 238
IN1<13>	OUT<13>	12.837	IN2<0>	OUT<0>	12. 933
IN1<13>	OUT<14>	12. 477	IN2<0>	OUT<1>	14. 335
IN1<13>	OUT<15>	14. 490	IN2<0>	OUT<2>	13. 305
IN1<13>	OZF	16. 135	IN2<0>	OUT<3>	14.806
IN1<14>	OCF	13. 262	IN2<0>	OUT<4>	13. 895
IN1<14>	ONF	14. 178	IN2<0>	OUT<5>	13. 974
IN1<14>	OUT<0>	12.396	IN2<0>	OUT<6>	13. 769
IN1<14>	OUT<1>	12.625	IN2<0>	OUT<7>	13.414
IN1<14>	OUT<2>	10.619	IN2<0>	OUT<8>	13.838
IN1<14>	OUT<3>	11.394	IN2<0>	OUT<9>	14.867
IN1<14>	OUT<4>	12. 567	IN2<0>	OUT<10>	14. 091
IN1<14>	OUT<5>	14. 399	IN2<0>	OUT<11>	13.624
IN1<14>	OUT<6>	10.713	IN2<0>	OUT<12>	14. 456
IN1<14>	OUT<7>	12. 245	IN2<0>	OUT<13>	13. 571
IN1<14>	OUT<8>	12.812	IN2<0>	OUT<14>	12.890

IN2<0>	OUT<15>	14. 771	IN2<3>	OUT<2>	10.644
IN2<0>	0ZF	17. 313	IN2<3>	OUT<3>	14. 175
IN2<1>	OCF	12.670	IN2<3>	OUT<4>	13. 325
IN2<1>	ONF	14.069	IN2<3>	OUT<5>	12.835
IN2<1>	OUT<0>	11.390	IN2<3>	OUT<6>	13. 496
IN2<1>	OUT<1>	14. 107	IN2<3>	OUT<7>	13. 141
IN2<1>	OUT<2>	13. 077	IN2<3>	OUT<8>	13. 588
IN2<1>	OUT<3>	14. 578	IN2<3>	OUT<9>	14. 617
IN2<1>	OUT<4>	13.667	IN2<3>	OUT<10>	13.841
IN2<1>	OUT<5>	13. 591	IN2<3>	OUT<11>	13. 374
IN2<1>	OUT<6>	13. 541	IN2<3>	OUT<12>	14. 206
IN2<1>	OUT<7>	13. 186	IN2<3>	OUT<13>	13. 321
IN2<1>	OUT<8>	13.610	IN2<3>	OUT<14>	12.666
IN2<1>	OUT<9>	14.639	IN2<3>	OUT<15>	14. 669
IN2<1>	OUT<10>	13.863	IN2<3>	OZF	16. 682
IN2<1>	OUT<11>	13.396	IN2<4>	OCF	12. 475
IN2<1>	OUT<12>	14. 228	IN2<4>	ONF	14. 059
IN2<1>	OUT<13>	13. 343	IN2<4>	OUT<4>	13.030
IN2<1>	OUT<14>	12.589	IN2<4>	OUT<5>	12. 529
IN2<1>	OUT<15>	14.602	IN2<4>	OUT<6>	13. 385
IN2<1>	0ZF	17. 085	IN2<4>	OUT<7>	13.030
IN2<2>	OCF	14. 092	IN2<4>	OUT<8>	13. 508
IN2<2>	ONF	14. 503	IN2<4>	OUT<9>	14. 537
IN2<2>	OUT<0>	11. 317	IN2<4>	OUT<10>	13. 761
IN2<2>	OUT<1>	10.989	IN2<4>	OUT<11>	13. 294
IN2<2>	OUT<2>	13. 121	IN2<4>	OUT<12>	14. 126
IN2<2>	OUT<3>	14.618	IN2<4>	OUT<13>	13. 241
IN2<2>	OUT<4>	13.711	IN2<4>	OUT<14>	12. 579
IN2<2>	OUT<5>	13. 221	IN2<4>	OUT<15>	14. 592
IN2<2>	OUT<6>	13.863	IN2<4>	OZF	16. 237
IN2<2>	OUT<7>	13. 508	IN2<5>	OCF	12. 572
IN2<2>	OUT<8>	13. 955	IN2<5>	ONF	13. 617
IN2<2>	OUT<9>	14. 984	IN2<5>	OUT<5>	12. 020
IN2<2>	OUT<10>	14. 208	IN2<5>	OUT<6>	12. 944
IN2<2>	OUT<11>	13. 741	IN2<5>	OUT<7>	12. 589
IN2<2>	OUT<12>	14. 573	IN2<5>	OUT<8>	13. 067
IN2<2>	OUT<13>	13.688	IN2<5>	OUT<9>	14. 096
IN2<2>	OUT<14>	13. 023	IN2<5>	OUT<10>	13. 320
IN2<2>	OUT<15>	15. 036	IN2<5>	OUT<11>	12. 972
IN2<2>	OZF	17. 125	IN2<5>	OUT<12>	13. 685
IN2<3>	OCF	13. 589	IN2<5>	OUT<13>	13. 237
IN2<3>	ONF	14. 136	IN2<5>	OUT<14>	12. 640
IN2<3>	OUT<0>	11.656	IN2<5>	OUT<15>	14. 150
IN2<3>	OUT<1>	10. 763	IN2<5>	OZF	15. 795

IN2<6>	OCF	12.778	IN2<9>	OUT<15>	13. 987
IN2<6>	ONF	13. 438	IN2<9>	OZF	15. 632
IN2<6>	OUT<6>	12.744	IN2<10>	OCF	12.684
IN2<6>	OUT<7>	12. 389	IN2<10>	ONF	13. 769
IN2<6>	OUT<8>	12.860	IN2<10>	OUT<10>	12. 988
IN2<6>	OUT<9>	13.889	IN2<10>	OUT<11>	12.680
IN2<6>	OUT<10>	13. 240	IN2<10>	OUT<12>	13.748
IN2<6>	OUT<11>	13. 178	IN2<10>	OUT<13>	13. 113
IN2<6>	OUT<12>	13.743	IN2<10>	OUT<14>	12.733
IN2<6>	OUT<13>	13.443	IN2<10>	OUT<15>	14. 302
IN2<6>	OUT<14>	12.846	IN2<10>	OZF	15. 947
IN2<6>	OUT<15>	13. 971	IN2<11>	OCF	12.784
IN2<6>	OZF	15.616	IN2<11>	ONF	14.021
IN2<7>	OCF	12. 296	IN2<11>	OUT<11>	12.798
IN2<7>	ONF	13. 301	IN2<11>	OUT<12>	14.000
IN2<7>	OUT<7>	12. 211	IN2<11>	OUT<13>	13. 213
IN2<7>	OUT<8>	12.711	IN2<11>	OUT<14>	12.833
IN2<7>	OUT<9>	13.740	IN2<11>	OUT<15>	14. 554
IN2<7>	OUT<10>	12.964	IN2<11>	OZF	16. 199
IN2<7>	OUT<11>	12.696	IN2<12>	OCF	12. 268
IN2<7>	OUT<12>	13. 329	IN2<12>	ONF	14. 255
IN2<7>	OUT<13>	12. 961	IN2<12>	OUT<12>	14. 126
IN2<7>	OUT<14>	12. 364	IN2<12>	OUT<13>	13. 227
IN2<7>	OUT<15>	13.834	IN2<12>	OUT<14>	12. 775
IN2<7>	OZF	15. 479	IN2<12>	OUT<15>	14.788
IN2<8>	OCF	12.707	IN2<12>	OZF	16. 433
IN2<8>	ONF	14. 222	IN2<13>	OCF	12. 260
IN2<8>	OUT<8>	13. 136	IN2<13>	ONF	14. 031
IN2<8>	OUT<9>	14. 153	IN2<13>	OUT<13>	12.911
IN2<8>	OUT<10>	13. 594	IN2<13>	OUT<14>	12. 551
IN2<8>	OUT<11>	13. 131	IN2<13>	OUT<15>	14. 564
IN2<8>	OUT<12>	14. 201	IN2<13>	0ZF	16. 209
IN2<8>	OUT<13>	13. 372	IN2<14>	OCF	13.025
IN2<8>	OUT<14>	12.775	IN2<14>	ONF	13.316
IN2<8>	OUT<15>	14. 755	IN2<14>	OUT<14>	13.074
IN2<8>	OZF	16.400	IN2<14>	OUT<15>	14.001
IN2<9>	OCF	12. 281	IN2<14>	OZF	15.646
IN2<9>	ONF	13. 454	IN2<15>	OCF	11.763
IN2<9>	OUT<9>	13. 318	IN2<15>	ONF	12.406
IN2<9>	OUT<10>	12.759	IN2<15>	OUT<15>	12. 939
IN2<9>	OUT<11>	12.681	IN2<15>	0ZF	14.584
IN2<9>	OUT<12>	13. 433	0PC<0>	OCF	9.503
IN2<9>	OUT<13>	12.946	0PC<0>	ONF	11.649
IN2<9>	OUT<14>	12.349	0PC<0>	OUT<0>	12.029

0PC<0>	OUT<1>	12. 216	0PC<2>	OUT<1>	11. 251
0PC<0>	OUT<2>	10.337	0PC<2>	OUT<2>	9.446
0PC<0>	OUT<3>	12.646	0PC<2>	OUT<3>	10.876
0PC<0>	OUT<4>	11.584	0PC<2>	OUT<4>	10. 257
0PC<0>	OUT<5>	11.515	0PC<2>	OUT<5>	10.084
0PC<0>	OUT<6>	10.763	0PC<2>	OUT<6>	10.141
0PC<0>	OUT<7>	11.660	0PC<2>	OUT<7>	9.871
0PC<0>	OUT<8>	11.829	0PC<2>	OUT<8>	10.647
0PC<0>	OUT<9>	13.034	0PC<2>	OUT<9>	10.700
0PC<0>	OUT<10>	11.819	0PC<2>	OUT<10>	10.016
0PC<0>	OUT<11>	11.438	0PC<2>	OUT<11>	10.664
0PC<0>	OUT<12>	12. 263	0PC<2>	OUT<12>	10.740
0PC<0>	OUT<13>	12. 201	0PC<2>	OUT<13>	10.889
0PC<0>	OUT<14>	11.425	0PC<2>	OUT<14>	10.415
0PC<0>	OUT<15>	12. 182	0PC<2>	OUT<15>	10. 503
0PC<0>	0ZF	15. 153	0PC<2>	OZF	13. 383
0PC<1>	OCF	13. 487	0PC<3>	OCF	9.336
0PC<1>	ONF	12.225	0PC<3>	ONF	9.819
OPC<1>	OUT<0>	11. 984	0PC<3>	OUT<0>	10.068
0PC<1>	OUT<1>	12. 323	0PC<3>	OUT<1>	10.900
OPC<1>	OUT<2>	10.400	0PC<3>	OUT<2>	9.095
OPC<1>	OUT<3>	12.641	0PC<3>	OUT<3>	10. 525
OPC<1>	OUT<4>	12. 219	0PC<3>	OUT<4>	10. 517
0PC<1>	OUT<5>	12. 441	0PC<3>	OUT<5>	9. 733
OPC<1>	OUT<6>	11.027	0PC<3>	OUT<6>	9.790
OPC<1>	OUT<7>	12. 249	0PC<3>	OUT<7>	9. 520
OPC<1>	OUT<8>	12. 984	0PC<3>	OUT<8>	10. 296
0PC<1>	OUT<9>	13. 360	0PC<3>	OUT<9>	10. 349
OPC<1>	OUT<10>	11. 422	0PC<3>	OUT<10>	9.665
0PC<1>	OUT<11>	12.633	0PC<3>	OUT<11>	10. 313
0PC<1>	OUT<12>	13. 329	0PC<3>	OUT<12>	10.389
0PC<1>	OUT<13>	12.638	0PC<3>	OUT<13>	10. 538
0PC<1>	OUT<14>	11.714	0PC<3>	OUT<14>	10. 127
OPC<1>	OUT<15>	12.758	0PC<3>	OUT<15>	10. 215
0PC<1>	OZF	15. 148	0PC<3>	OZF	13.032
OPC<2>	OCF	9.922		+	++
OPC<2>	ONF	9.648			
0PC<2>	OUT<0>	10.419			

Appendix 5: RTL Diagram of ALU Pipeline Example

