

Chapter 0: Introduction

Time 1 Hour

After completing Chapter 0 you will understand the objectives for the Wireless Internet Connectivity for Embedded Devices (WICED) Wi-Fi® 101 Class, you should be able to explain the learning objectives, agenda, scope of the class, and format of the lab manual.

0.1	PREREQUISITES	.1
	ASSUMPTIONS	
	SCOPE	
	AGENDA	

0.1 Prerequisites

Solid fundamentals in C-Programming (data types, operators, expressions, control flow, functions, program structure, pointers and arrays, data structures, multi-file module programming).

Some experience with standard MCU concepts and peripherals (Serial communication, PWMs, ADCs).

0.2 Assumptions

There is literally a 96-page PowerPoint presentation in which Cypress presents compelling data that:

- Cypress has the most robust Wi-Fi in terms of RF, Chips, Power, Stability, and Partner Integration.
- You should use a partner and buy modules (you should NOT try to design using bare chips).
- You should use a Cloud partner (e.g. AWS, IBM, Ali etc.).

So... that is what we are going to assume and we are not going to address any of those topics.

0.3 Scope

What this class is:

- A discussion of what WICED is today.
- A survey of the WICED Wi-Fi Ecosystem (Chips, Modules, WICED Studio IDE, Software Development Kit (SDK), Forum etc.)
- A survey of using the WICED SDK to create an IoT device by connecting common MCU I/O peripherals to the "Cloud".
- An introduction to the "TCP/IP Network Stack".
- An introduction to Wi-Fi.
- An introduction to common cloud application protocols: HTTP, MQTT, COAP, AMQP
- An introduction to JSON and REST.

• An introduction to one cloud provider (Amazon AWS, IBM Bluemix, Microsoft Azure) and a taste of their programming model.

What this class is not:

- A discussion/debate of what WICED should be.
- A C-programming primer.
- A detailed examination of Wi-Fi or RF Parameters.
- A class on using WICED Chip-on-board (unless you are a very special case you should use a module).
- An advanced network programming class.
- An introduction to Bluetooth.
- An introduction to ZigBee.
- A discussion of Linux integrated WICED.
- A discussion of how to pick the correct Wi-Fi Module.
- A detailed examination of MCU peripherals.
- A tutorial of the advanced uses of WICED (Streaming Audio, Bluetooth/Wi-Fi Combos, TCP/IP Bridging/Routing, Wi-Fi Station Introducers, BLE Introducers).

0.4 Agenda

Day	Time	Duration	Chapter	Topic	Purpose
1	8:00 - 9:00	1:00	00-Intro	Lecture	An Introduction to the class (this document)
1	9:00 - 9:30	0:30	01-Tour	Lecture	A tour of the WICED Wi-Fi SDK, Wi-Fi Standard, Chips, Modules,
1	9:30 - 10:00	0:30		Lab	and Kits.
1	10:00 - 10:30	0:30	02-Peripherals	Lecture	How to create a new project and how to use chip peripherals
1	10:30 - 12:00	1:30		Lab	such as GPIOs, interrupts, UART, I2C, etc. The basic process of
					building and programming a project is introduced.
1	12:00 - 12:30	0:30	03-RTOS	Lecture	How to use the Thread-X RTOS in a WICED chip. The debugger is
1	12:30 - 2:00	1:30		Lab	also introduced.
1	2:00 - 2:15	0:15	04-Library	Lecture	An introduction to the WICED libraries and details on how to use
1	2:15 - 3:00	0:45		Lab	the graphics OLED and JSON parser libraries.
1	3:00 - 3:45	0:45	05-Wi-Fi	Lecture	How to connect to and interact with Wi-Fi access points
1	3:45 - 4:45	1:00		Lab	
1	4:45 - 5:00	0:15	Wrap-Up	Lecture	Summary of Day 1
2	8:00 - 8:30	0:30	06a-TCP/IP Sockets	Lecture	Establishing communication using TCP/IP sockets
2	8:30 - 9:30	1:00		Lab	
2	9:30 - 10:00	0:30	06b-TCP/IP Sockets	Lecture	Using TLS with TCP/IP sockets for secure communication.
2	10:00 - 10:30	0:30	with TLS	Lab	
2	10:30 - 10:45	0:15	07a-Cloud	Lecture	An introduction to cloud Application Layer protocols
					(HTTP, MQTT, AMQP, COAP)
2	10:45 - 11:15	0:30	07b-HTTP	Lecture	Using HTTP in WICED
2	11:15 - 12:45	1:30		Lab	
2	12:45 - 1:15	0:30	07c -MQTT-AWS	Lecture	Using MQTT in WICED with Amazon Web Services (AWS)
2	1:15 - 3:15	2:00		Lab	
2	3:15 – 3:30	0:15	08-Project	Introduction	Class project
2	3:30 - 4:45	1:15		Lab	
2	4:45 – 5:00	0:15	Wrap-Up	Lecture	Class Wrap-Up and Surveys
N/A	N/A	0	09-Shield	Reference	Details on the PSoC AFE shield board
N/A	N/A	0	10-Glossary	Reference	Glossary of terms

Most of the chapters have exercises. Some are marked as "Advanced". You should focus on the basic exercises first and work on the advanced ones as time allows.

0.5 Electronic Material

A GitHub repository is available at the following location:

https://github.com/cypresssemiconductorco/CypressAcademy WW101 Files

This repository contains, among other things:

- 1. Labmanual: An electronic copy of this manual
- 2. **Platforms**: Platform files to work with the combination of the PSoC Analog Front End shield (CY8CKIT-032) and various WICED base board kits.
- 3. **Projects**: Complete solutions to all the lab exercises. Use these AFTER attempting to solve the exercises on your own.

