R09: Summarizing data with tidyverse

Nicky Wakim

2024-11-20

Where are we?

Sampling Variability, **Probability** Data Inference for continuous data/outcomes and Statistical Inference Simple linear 3+ independent One sample **Probability** Collecting regression / t-test samples data rules Sampling correlation distributions 2 sample tests: Independence, Non-parametric Power and conditional paired and Categorical tests sample size Central independent vs. Numeric Limit Random Theorem variables and Inference for categorical data/outcomes probability distributions **Summary** Confidence Fisher's exact One proportion Non-parametric statistics Intervals Linear test tests test combinations Data Binomial, Hypothesis Power and Chi-squared 2 proportion visualization Normal, and tests sample size test test Poisson Data Data R Packages R Projects **Basics** Reproducibility Quarto • • • visualization wrangling

What is the tidyverse? (revisited)

The **tidyverse** is a collection of R packages designed for data science. All packages share an underlying design philosophy, grammar, and data structures.

- ggplot2 data visualisation
- **dplyr** data manipulation
- tidyr tidy data
- readr read rectangular data
- purrr functional programming
- tibble modern data frames
- **stringr** string manipulation
- forcats factors
- and many more ...

Tidy data¹

- 1. Each variable must have its own column.
- 2. Each observation must have its own row.
- 3. Each value must have its own cell.

Pipe operator (magrittr)

• The pipe operator (%>%) allows us to step through sequential functions in the same way we follow if-then statements or steps from instructions

I want to find my keys, then start my car, then drive to work, then park my car.

Nested

Piped

```
1 find("keys") %>%
2  start_car() %>%
3  drive(to = "work") %>%
4  park()
```

Using summarize()

group_by (): group by one or more variables

- What if I want to quickly look at group differences?
- It will not change how the data look, but changes the actions of following functions

I want to group my data by sex assigned at birth.

```
1 dds.discr5 = dds.discr2 %>%
      group by (SAB)
 3 glimpse(dds.discr5)
Rows: 1,000
Columns: 7
Groups: SAB [2]
$ id
          <int> 10210, 10409, 10486, 10538, 10568, 10690, 10711, 10778, 1...
$ age.cohort <fct> 13-17, 22-50, 0-5, 18-21, 13-17, 13-17, 13-17, 13-17, 13-...
$ age
              <int> 17, 37, 3, 19, 13, 15, 13, 17, 14, 13, 13, 14, 15, 17, 20...
              <fct> Female, Male, Male, Female, Male, Female, Female, Male, F...
$ SAB
$ expenditures <int> 2113, 41924, 1454, 6400, 4412, 4566, 3915, 3873, 5021, 28...
              <fct> White not Hispanic, White not Hispanic, Hispanic, Hispani...
$ R E
$ exp to age <dbl> 124.2941, 1133.0811, 484.6667, 336.8421, 339.3846, 304.40...
```

• Let's see how the groups change something like the summarize() function in the next slide

summarize(): summarize your data or grouped data into one row

- What if I want to calculate specific descriptive statistics for my variables?
- This function is often best used with group_by()
- If only presenting the summaries, functions like tbl_summary() is better
- summarize() creates a new data frame, which means you can plot and manipulate the summarized data

Over whole sample:

```
1 dds.discr2 %>%
2    summarize(
3        ave = mean(expenditures),
4        SD = sd(expenditures),
5        med = median(expenditures))

# A tibble: 1 × 3
        ave      SD      med
        <dbl>        <dbl>        <dbl>        <dbl>        </dbl>
1 18066. 19543. 7026
```

Grouped by sex assigned at birth:

```
dds.discr2 %>%
      group_by(SAB) %>%
      summarize(
        ave = mean(expenditures),
        SD = sd(expenditures),
        med = median(expenditures))
# A tibble: 2 \times 4
  SAB
                   SD
                        med
           ave
 <fct> <dbl> <dbl> <int>
1 Female 18130. 20020.
                       6400
        18001. 19068.
2 Male
                       7219
```

Using get_summary_stats()

get_summary_stats() from rstatix package

```
1 dds.discr2 %>% get summary stats()
# A tibble: 4 \times 13
                         max median
 variable
                   min
                                        q1
                                              q3
                                                    iqr
                                                           mad
                                                                            sd
              n
                                                                  mean
          <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
 <fct>
                                                                 <dbl>
                                                                         <dbl>
           1000 1.02e4 99898 55384. 31809. 76135. 44326
1 id
                                                        3.27e4 54663. 25644.
                                       12
                                              26
           1000 0
                          95
                                18
                                                    14
                                                        1.04e1
                                                                  22.8
                                                                          18.5
2 age
3 expendi... 1000 2.22e2 75098 7026
                                     2899. 37713. 34814 7.76e3 18066.
                                                                       19543.
                         Inf 462. 274.
                                            938.
4 exp to ... 1000 2.76e1
                                                   664. 3.54e2
                                                                 Inf
                                                                         NaN
# i 2 more variables: se <dbl>, ci <dbl>
 1 dds.discr2 %>%
      group_by(R_E) %>%
      get summary stats(expenditures, type = "common")
# A tibble: 8 × 11
           variable
                        n min
                                  max median
                                               iqr
 R E
                                                     mean
                                                              sd
                                                                            ci
                                                                     se
 <fct>
           <fct>
                    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                                                                         <dbl>
                        4 3726 58392 41818. 34085. 36438. 25694. 12847. 40885.
1 American... expendi...
                            374 75098 9369
                                                   18392. 19209.
2 Asian
           expendi... 129
                                             30892
                                                                 1691. 3346.
           expendi...
                            240 60808
                                      8687
                                                    20885. 20549.
3 Black
                       59
                                             37987
                                                                  2675.
                                                                         5355.
           expendi... 376
                            222 65581
                                      3952
                                              7961. 11066. 15630.
                                                                        1585.
4 Hispanic
                                                                 806.
5 Multi Ra... expendi... 26
                            669 38619 2622
                                              2060. 4457.
                                                           7332. 1438. 2962.
                                              6331 42782.
6 Native H... expendi... 3 37479 50141 40727
                                                           6576.
                                                                 3797. 16337.
                                                                  1298. 16499.
                           2018 4615 3316.
                                              1298. 3316.
                                                           1836.
           expendi...
7 Other
```

How to force all output to be shown? (1/2)

Use kable () from the knitr package.

```
1 dds.discr2 %>% get_summary_stats() %>% kable()
```

variable	n	min	max	median	q1	q3	iqr	mad
id	1000	10210.000	99898	55384.500	31808.750	76134.750	44326.000	32734.325
age	1000	0.000	95	18.000	12.000	26.000	14.000	10.378
expenditures	1000	222.000	75098	7026.000	2898.750	37712.750	34814.000	7760.670
exp_to_age	1000	27.571	Inf	461.752	273.881	938.125	664.244	353.971

How to force all output to be shown? knitr (2/2)

Use kable() from the knitr package.

```
1 dds.discr2 %>%
2 group_by(R_E) %>%
3 get_summary_stats(expenditures, type = "common") %>%
4 kable()
```

R_E	variable	n	min	max	median	iqr	mean	sd	S
American Indian	expenditures	4	3726	58392	41817.5	34085.25	36438.250	25693.912	12846.95
Asian	expenditures	129	374	75098	9369.0	30892.00	18392.372	19209.225	1691.27
Black	expenditures	59	240	60808	8687.0	37987.00	20884.593	20549.274	2675.28
Hispanic	expenditures	376	222	65581	3952.0	7961.25	11065.569	15629.847	806.04
Multi Race	expenditures	26	669	38619	2622.0	2059.75	4456.731	7332.135	1437.95
Native Hawaiian	expenditures	3	37479	50141	40727.0	6331.00	42782.333	6576.462	3796.92
Other	expenditures	2	2018	4615	3316.5	1298.50	3316.500	1836.356	1298.50

R_E	variable	n	min	max	median	iqr	mean	sd	S
White not Hispanic	expenditures	401	340	68890	15718.0	39157.00	24697.549	20604.376	1028.93

Making a Table 1

Table 1 example

- Often, research studies will show a table with all the summary statistics (lovingly called "Table 1")
- Basic Table 1 will show all variables with:
 - Mean and SD for the numeric variables
 - n(%) for categorical variables

Are We on the Same Page?: A Cross-Sectional Study of Patient-Clinician Goal Concordance in Rheumatoid Arthritis J Barton et al.

Arthritis Care & Research.

2021 Sep 27

https://pubmed.ncbi.nlm.nih.gov/34569172/

Table 1. Patient characteristics, overall and by concordance

		Total	Discordant	Concordant	p-value
		N=204	N=40	N=164	
Site, n (%)	OHSU	122 (62.7%)	26 (65.0%)	96 (62.2%)	0.86
	VA	76 (37.3%)	14 (35.0%)	62 (37.8%)	
Gender, n (%)	Male	85 (41.7%)	18 (45.0%)	67 (40.9%)	0.72
	Female	119 (58.3%)	22 (55.0%)	97 (59.1%)	
Age (years), mean (SD)		57.2 (14.2)	58.2 (15.1)	56.9 (14.0)	0.62
Language, n (%)	English	168 (84.4%)	35 (92.1%)	133 (82.6%)	0.21
	Spanish	31 (15.6%)	3 (7.9%)	28 (17.4%)	
Limited English language proficiency, n (%)		30 (15.1%)	3 (7.9%)	27 (16.8%)	0.17
Coupled, n (%)		110 (57.9%)	22 (61.1%)	88 (57.1%)	0.71
Education, n (%)	High school or less	60 (31.6%)	15 (40.5%)	45 (29.4%)	0.24
	Some college or more	130 (68.4%)	22 (59.5%)	108 (70.6%)	
Income, >\$40,000, n (%)	Less than \$40,000	85 (45.5%)	12 (33.3%)	73 (48.3%)	0.14
	Greater than \$40,000	102 (54.5%)	24 (66.7%)	78 (51.7%)	
People in household, median (IQR)		2 (2-4)	2 (2-3)	2 (2-4)	0.92
Race/Ethnicity, n (%)	White	123 (68.3%)	25 (78.1%)	98 (66.2%)	0.62
	Black	6 (3.3%)	0 (0.0%)	6 (4.1%)	
	Latinx/Hispanic	39 (21.7%)	6 (18.8%)	33 (22.3%)	
	Other	12 (6.7%)	1 (3.1%)	11 (7.4%)	
Limited health literacy, n (%)		55 (28.6%)	13 (35.1%)	42 (27.1%)	0.42
Disease duration (years), median (IQR)		8 (4-16)	13 (5-21)	7 (4-15)	0.039
Number of medications, median (IQR)		1 (1-2)	1 (0-2)	1 (1-2)	0.10
Depressive symptoms, n (%)		38 (20.8%)	3 (8.1%)	35 (24.0%)	0.040
PTSD, n (%)		13 (7.1%)	2 (5.6%)	11 (7.5%)	1.00
Self-efficacy score, mean (SD)		6.3 (2.1)	6.3 (2.1)	6.3 (2.1)	0.96
Trust in Physician, n (%)		106 (53.8%)	19 (51.4%)	87 (%)	0.74
Disease activity score (CDAI), mean (SD)		12.8 (10.5)	10.5 (9.7)	13.2 (10.8)	0.21
Medication Adherence, n (%)	High	63 (33.5%)	7 (20.6%)	56 (36.4%)	0.11
	Low/Medium	125 (66.5%)	27 (79.4%)	98 (63.6%)	

Abbreviations: IQR, interquartile range; PTSD, post-traumatic stress disorder; SD, standard deviation; OHSU, Oregon Health & Science University; VA, Veterans Affairs; CDAI, Clinical Disease Activity Index

tbl_summary(): table summary(1/2)

• What if I want one of those fancy summary tables that are at the top of most research articles?

```
1 library(gtsummary)
2 tbl_summary(dds.discr2)
```

Characteristic	N = 1,000 ¹
id	55,385 (31,759, 76,205
age.cohort	
0-5	82 (8.2%)
6-12	175 (18%)
13-17	212 (21%)
18-21	199 (20%)
22-50	226 (23%)
51+	106 (11%)
age	18 (12, 26)
SAB	
Female	503 (50%)
Male	497 (50%)
expenditures	7,026 (2,898, 37,718)
R_E	
American Indian	4 (0.4%)
Asian	129 (13%)
Black	59 (5.9%)
Hispanic	376 (38%)
Multi Race	26 (2.6%)
Native Hawaiian	3 (0.3%)
Other	2 (0.2%)
White not Hispanic	401 (40%)
exp_to_age	462 (273, 938)
¹ Median (Q1, Q3); n (%)	

tbl_summary(): table summary(2/2)

• Let's make this more presentable

Characteristic	$N = 1,000^{1}$
Age	23 (18)
Sex Assigned at Birth	
Female	503 (50%)
Male	497 (50%)
Expenditures	18,066 (19,543)
Race/Ethnicity	
American Indian	4 (0.4%)
Asian	129 (13%)
Black	59 (5.9%)
Hispanic	376 (38%)
Multi Race	26 (2.6%)
Native Hawaiian	3 (0.3%)
Other	2 (0.2%)
White not Hispanic	401 (40%)
¹ Mean (SD); n (%)	

Resources

dplyr resources

• More dpylr functions to reference!

Additional details and examples are available in the vignettes:

- column-wise operations vignette
- row-wise operations vignette

and the dplyr 1.0.0 release blog posts:

- working across columns
- working within rows

R programming class at OHSU!

You can check out Dr. Jessica Minnier's R class page if you want more notes, videos, etc.

The larger tidy ecosystem

Just to name a few...

- janitor
- kableExtra
- patchwork
- gghighlight
- tidybayes

Credit to Mine Çetinkaya-Rundel

- These notes were built from Mine's notes
 - Most pages and code were left as she made them
 - I changed a few things to match our class
- Please see her Github repository for the original notes