Reply to "Comment on Simple approach to the creation of a strange nonchaotic attractor in any chaotic system"

J. W. Shuai

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106

K. W. Wong

Department of Electronic Engineering, City University of Hong Kong, Hong Kong (Received 14 May 2001; published 22 October 2001)

We have recently proposed a simple method to create a strange nonchaotic attractor with any chaotic system [Phys. Rev. E **59**, 5338 (1999)]. Such a system is controlled to switch periodically between a chaotic and a quasiperiodic attractor, each with an appropriate time duration. A topological condition for this approach is pointed out in the preceding Comment by Neumann and Pikovsky [Phys. Rev. E **64**, 058201 (2001)]. We show that this condition is not necessary if the durations are sufficiently long. Our approach is a general method to construct a strange nonchaotic attractor in any chaotic system.

DOI: 10.1103/PhysRevE.64.058202 PACS number(s): 05.45.Df

In Ref. [1], we addressed the problem of whether a general method to construct a strange nonchaotic attractor (SNA) in any chaotic system can be found. For simplicity, consider a discrete chaotic system

$$\mathbf{x}(t+1) = \mathbf{F}[\mathbf{x}(t), C_1], \tag{1}$$

where C_1 is a suitable control parameter. (In this paper, we use the same symbols employed in Ref. [2]). We proposed that an SNA can be generated in the following system:

$$\mathbf{x}(t+1) = \mathbf{F}[\mathbf{x}(t), C(t)] + A\sin(2\pi\omega t), \tag{2}$$

where ω is irrational, A should be small enough to maintain a chaotic attractor for $C(t) = C_1$ and a quasiperiodic attractor for $C(t) = C_2$. Suppose the maximum nontrivial Lyapunov exponent for the chaotic and quasiperiodic attractor is positive λ_1 and negative λ_2 , respectively. By switching the parameter C(t) periodically with $C(t) = C_1$ for duration T_1 and $C(t) = C_2$ for duration T_2 , we showed that the nonchaotic attractor obtained can be a SNA when T_1 and T_2 are sufficiently longer than the transient process [1]. Thus C(t) is typically a low-frequency periodic wave. Notice that in our method only the parameters in Eq. (1) are fixed, while all other parameters $(C_2, T_1, T_2, A, \text{ and } \omega)$ in Eq. (2) are adjustable in order to construct a SNA.

In the preceding Comment (Ref. [2]), the authors claim that ($Claim\ I$) a special topological property of the dynamics is required for the creation of the SNA in arbitrary T_1 . There should be an unstable torus coexisting with the stable torus for $C(t) = C_2$, and the range of such an unstable torus should overlap with the band of the chaotic attractor for $C(t) = C_1$. For a system lack of such a condition, a SNA is only constructed in a finite region near the border to chaos. A phase diagram corresponding to this situation is given in Fig. 2 of Ref. [2]. The authors at last claim that ($Claim\ 2$), in general, it is not possible to construct a SNA in any chaotic system by applying the method of Ref. [1].

Consider the example of Case A with $C_1^A = -0.01$ in Ref. [2] and let $T_1 = 10^5$ with any $T_2 > 3.11 \times 10^4 (\approx -\lambda_1^A T_1 / \epsilon)$

 λ_2). In this case, even a very small perturbation that is of the order of $\exp(-\lambda_1^A T_1) \approx 10^{-1539}$ can be enlarged to 1 by the T_1 -duration expanding dynamics. This indicates that a long segment of fully developed chaotic trajectory can be obtained during each T_1 period. The width of the band at the end of the regular part of iterations is about 2A = 0.002. With long T_1 -duration expanding dynamics, this band can be expanded and folded sufficiently, resulting in a strange attractor. As a comparison, consider the graph plotted in Fig. 4 of Ref. [2]. It shows that the probability of observing a positive time-8000 Lyapunov exponent is smaller than 3×10^{-8} . According to Eq. (5) of Ref. [2], the chance of observing the positive time- 10^5 Lyapunov exponent (i.e., k = 250) in this SNA is about $\exp(-210) \approx 10^{-91}$, which can be treated as zero. While in the present SNA example the positive time-10⁵ Lyapunov exponent can be observed periodically in each driving period. This discussion shows that a SNA can be created for any $T_2 > 3.11 \times 10^4$ and $T_1 = 10^5$ without any special requirement on the topological property of the system. Hence, all the nonchaotic attractors obtained using our approach are SNAs if T_1 (more strictly, $T_1\lambda_1$) is sufficiently large. Long enough T_1 directly causes a long duration of expanding dynamics for generating strange attractor. It does not require any special topological condition in the system.

However, for the case of small T_1 (e.g., the examples discussed in Fig. 1 of Ref. [1] or Fig. 2 of Ref. [2]), a special topological requirement should be satisfied in order to obtain SNAs in a large region, as pointed out in Ref. [2]. Without such a condition, SNAs can only occur in a finite region near the border to chaos. Although it then follows the general SNA theory [3], the finite region for SNA is still larger than that obtained with most of the other SNA methods (listed in Ref. 3 of Ref. [2]). As an example, one can compare Fig. 2 in Ref. [2] with Fig. 1 in Ref. [4]. Another unique property of this method is that a SNA can be easily obtained in any high dimensional chaotic system, which is a challenging problem for most of the other SNA methods. Because a low-frequency driving force of C(t), rather than the widely used sine wave with golden-mean frequency, is applied in our

COMMENTS PHYSICAL REVIEW E **64** 058202

method. Such a force can easily induce a finite-time Lyapunov exponent fluctuating substantially around zero, which is the key for the generation of a strange attractor.

In summary, our reply to the preceding Comment in Ref. [2] is as follows: their *Claim 1* is only applicable to the case of small T_1 . For sufficiently long T_1 , SNAs can be created without any special topological condition in the system. We

disagree with their *Claim 2*. The conclusion that our approach described in Ref. [1] is general for any chaotic system is in the sense that, for any given chaotic system, at least a SNA can be constructed with a set of suitably selected parameters of C_2 , T_1 , T_2 , A, and ω . Even with a small T_1 , one can certainly create a SNA at least near the border to chaos in any system.

^[1] J. W. Shuai and K. W. Wong, Phys. Rev. E 59, 5338 (1999).

^[2] E. Neumann and A. Pikovsky, Phys. Rev. E 64, 058201 (2001).

^[3] A. Pikovsky and U. Feudel, Chaos 5, 253 (1995).

^[4] A. Prasad, V. Mehra, and Ro. Ramaswamy, Phys. Rev. E **57**, 1576 (1998).