DM Quiz Unit 5 (SE COMP-I (2020-21))

* Required	
* This form will record your name, please fill your name.	
1	
Roll Number *	
2	
Name *	
3	
Class *	
SE Shift 1	
SE Shift 2	

Which of the following is false about a binary search tree? * (1 Point)
The left child is always lesser than its parent
The right child is always greater than its parent
The left and right sub-trees should also be binary search trees
In order sequence gives decreasing order of elements
5
What is the speciality about the inorder traversal of a binary search tree? * (1 Point)
It traverses in a non increasing order
It traverses in an increasing order
It traverses in a random fashion
It traverses based on priority of the node
6
The number of edges from the root to the node is called of the tree. * (1 Point)
○ Height
O Depth
Clength
Width

	What is a full binary tree? * 1 Point)
\bigcirc	Each node has exactly zero or two children
\bigcirc	Each node has exactly two children
\bigcirc	All the leaves are at the same level
\bigcirc	Each node has exactly one or two children
	8
	Which of the following is false in the case of a spanning tree of a graph G? * 1 Point)
\bigcirc	It is tree that spans G
\bigcirc	It is a subgraph of the G
\bigcirc	It includes every vertex of the G
	It can be either cyclic or acyclic
	9
	Consider a complete graph G with 4 vertices. The graph G has spanning trees. * 2 Points)
\bigcirc	15
\bigcirc	8
\bigcirc	16
\bigcirc	20

Which of the following is not the algorithm to find the minimum spanning tree of the given graph? * (2 Points)
Boruvka's algorithm
O Prim's algorithm
C Kruskal's algorithm
Bellman–Ford algorithm
11
Kruskal's algorithm is used to * (2 Points)
of find minimum spanning tree
find single source shortest path
find all pair shortest path algorithm
traverse the graph

Consider the following statements.

- S1. Kruskal's algorithm might produce a non-minimal spanning tree.
- S2. Kruskal's algorithm can efficiently implemented using the disjoint-set data structure. *
- (2 Points)
- S1 is true but S2 is false
- Both S1 and S2 are false
- Both S1 and S2 are true
- S2 is true but S1 is false

13

Consider the graph shown below.

Which of the following edges form the MST of the given graph using Prim'a algorithm, starting from vertex 4. * (4 Points)

- \bigcirc (4-3)(5-3)(2-3)(1-2)
- (4-3)(3-5)(5-1)(1-2)
- (4-3)(3-5)(5-2)(1-5)
- (4-3)(3-2)(2-1)(1-5)

A ______ is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. *
(1 Point)

- Oecision tree
- Graphs
- Trees
- Neural Networks
- Option 2

15

For the tree below, write the in-order traversal. * (2 Points)

- 6, 2, 5, 7, 11, 2, 5, 9, 4
- 0 6, 5, 2, 11, 7, 4, 9, 5, 2
- 2, 7, 2, 6, 5, 11, 5, 9, 4
- 2, 7, 6, 5, 11, 2, 9, 5, 4
- Option 2

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

12/14/2020