

Hierarchical Reinforcement Learning (HRL): An Introduction

Barry Plunkett (eplu@sas.upenn.edu) April 4, 2019

Problem & Motivation – Weaknesses of RL

- Sample inefficiency
- Sparse reward environments
- Large state, action space environments
- Unintuitive
- Generalization and abstraction
- Hold on...we solved Go!

Problem & Motivation – Weaknesses of RL

Problem & Motivation – Promise of HRL

Hierarchical
Reinforcement
Learning

Reinforcement
Learning

H

Abstraction

- Decompose goal into subtasks
 - Learn low-level policies to solve small subtasks
 - Compose low-level policies into longer-term, more abstract strategies to achieve goal
- Denser rewards
- Transfer learning via subproblem re-use
- Distill state/action space into cohesive subspaces

Problem & Motivation – Promise of HRL

Contents:

- Feudal Learning
- Markov Options
- HAMs
- MAXQ
- Conclusions

Feudal Learning – Introduction

Feudal Learning – Key Features

Reward Hiding

- A submanager receives reward if and only if it achieves the goal set for it by its manager
- No reward if manager goal attained but not submanager goal attained
- Receives reward if goal attained but manager goal not attained

Information Hiding

- Information hidden
 downwards submanagers do
 not know their manager's task
- Information hidden upwards –
 managers do not know how
 their sub-managers have
 assigned workers to complete
 task

Feudal Learning – Maze Task

- N, S, E, W: Move to region in given cardinal direction at current level
- *: pass control to sub-managers to search for goal within current region at finer grain
- A₁: {*}
- A_{1-(n-1)}: {N, S, E, W, *}
- A_n: {N, S, E, W}
- State:
 - Action selected by manager above
 - Location of agent on the board in the granularity below

Feudal Learning – Maze Task

Tabular Q-values updated at all levels where a transition occurred, if the transition was ordered at all lower levels

Feudal Learning – Maze Task

- F-Q: Feudal system
- S-Q: Standard tabular Q

- Feudal slower initially
- Faster later

Feudal Learning – Conclusions

Advantages

- Learns more about environment than standard Q-Learning approach
- Structured exploration

Costs

- Information hiding may introduce inefficiencies
- Submanagers learn solutions to subproblems, even if these are not relevant to goal
- Task may appear nonmarkovian at high level abstraction

Markov Options – Introduction

Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning Sutton et al (1999)

Markov Options – Semi-Markov Decision Processes (SMDP)

- MDP : Amount of time between decisions fixed
- SMDP: Amount of time between decisions is random variable (τ)
 - Continuous
 - Discrete
- Treat system as "waiting" for τ periods
- Instantaneous state transition afterward

Markov Options – Semi-Markov Decision Processes (SMDP)

MDP

P(s'|s, a)

r(s, a)

$$V^*(s) = \max_{a} [R(s, a) + \gamma(\Sigma_{s'}P(s'|a, s)V^*(s)]$$

 $Q^*(s,a) = R(s,a) + \gamma \Sigma_{s'} P(s',|a,s) \max_{a'} Q^*(s',a')$

SMDP

$$P(s', \tau | s, a)$$

$$V^*(s) = \max_{a} [R(s, a) + (\sum_{s'\tau} \gamma^{\tau} P(s', \tau | a, s) V^*(s')]$$

$$Q^*(s,a) = R(s,a) + \Sigma_{s'\tau} \gamma^{\tau} P(s',\tau \mid a,s) \max_{a'} Q^*(s',a')$$

Markov Options - SMDP - Q-Learning

Control via V, Q-learning again

$$Q^{\pi}(s,a) = Q^{\pi}(s,a) + \alpha(r_{t+1} + \gamma r_{t+2} + ... + \gamma^{\tau} r_{t+\tau} + \max_{a'} Q^{\pi}(s',a') - Q^{\pi}(s,a))$$

- Converges under same guarantees as MDP Q-Learning
 - Linear function approximator
- Symmetric update for new value function too

Markov Options Formalization

Option (O)				
Input set	Policy	Termination Condition		
I⊆S Set of states where option O is available	π : (S,A) \rightarrow [0, 1] Distribution of actions taken by options	β : (S) \rightarrow [0, 1] Probability option ends in a given state		

Markov Options – Assumptions

- Actions of core MDP
 - "Primitive actions" or one-step options

$$\beta(s) = 1 \forall s \in S$$

- At least one option available in all states
- Option available in all states where it may continue

$${s:\beta(s)<1}\subseteq I$$

Open-the-door

Markov Options – Semi-Markov Options

• Semi-Markov options: Options where actions may depend on entire history of observations, since beginning of option

$$\mu: S \times \cup_{s \in S} O_s \rightarrow [0, 1]$$

- Allow options that terminate after fixed number of steps
- Allow policies over options
- Flat policies
 - Policy over primitive actions of core MDP
 - All μ correspond to some flat policy $flat(\mu)$
 - Non-Markovian even when all policies are Markovian

Markov Options – SMDP Q-learning

Reward

$$R(s, o) = E[r_{t+1} + \gamma r_{t+2} + ... + \gamma^{\tau} r_{t+\tau}]$$

Transition Function

$$P(s'|s,o) = \Sigma_{t=1}p(s',t) \gamma^{t}$$

$$V_O^*(s) = \max_{o \in O_s} \left[R(s, o) + \sum_{s'} P(s'|s, o) V_O^*(s') \right] \quad Q_O^*(s, o) = R(s, o) + \sum_{s'} P(s'|s, o) \max_{o' \in O_{s'}} Q_O^*(s', o') \right]$$

$$Q_{k+1}(s,o) = (1-\alpha_k)Q_k(s,o) + \alpha_k \left[r + \gamma^{\tau} \max_{o' \in O_{S'}} Q_k(s',o')\right]$$

Markov Options – Intra-option learning

- Q-Learning Drawbacks
 - Updates 1 option at a time
 - Must wait until option completes to update
- Intra-option learning methods
 - Learn online while option executes
- One-step intra-option Q-Learning
 - Suppose primitive action a taken, then for every option whose policy could have selected a with the same distribution $\pi(s, *)$:

$$Q_{k+1}(s_t, o) = (1 - \alpha_k)Q_k(s_t, o) + \alpha_k[r_{t+1} + \gamma U_k(s_t, o)].$$

$$U_k(s, o) = (1 - \beta(s))Q_k(s, o) + \beta(s) \max_{o' \in O} Q_k(s, o')$$

Markov Options – Conclusions

- Add temporally-extended activities without precluding fine-grained control
- Exclude some primitives
 - Restrict set of learnable policies
 - Increase efficiency, prevent "flailing"
- Utilize options to achieve subgoals
 - Define subgoal-specific reward functions and use for option policy
 - Set options to terminate upon subgoal completion

Hierarchies of Abstract Machines (HAMs)

- Apply temporal abstraction to SIMPLIFY rather than augment
- Well-known set of optimal (or good enough) policies for longtime horizon actions
 - Robot navigation

HAMs – Formalization

- Collection of finite state machines {H_i}
- Core environment MDP (M)
- Machine state initialization function $I_i: S_M \rightarrow S$
- Stochastic state transition function: $\delta_i S \rightarrow S$

State set (S)				
Action	Call	Choice	Stop	
Executes action of M	Suspends execution of current machine, calls another machine H _j , function	Non- deterministically chooses next state of H _i	Suspends execution of current machine. Resumes execution	
$a = \pi(m_t, s_t)$	of m _{t.} I _j (s _t) sets initial state		of calling machine	

HAMs

- If no action is generated at step t, M remains in current state
- H: Initial machine
 - Assume no stop state
 - Assume no probability 1 loops
 - Ensure MDP will continue to receive primitive actions

HAMs – SMDP view

- Equivalent to SMPD : H o M
- State: S x S_M
- Actions: Choice points of H
 - Runs autonomously via action states until next choice point reached
 - Do not learn within machine policies program these
- Reward: Discounted awards accumulated during timesteps between choice states
 - Reward of 0 for timesteps where M does not change

HAMs – Q-learning

- Reduce(H M)
 - SMDP equivalent to H o M with states defined as only choice points of H o M
 - Optimal policy for Reduce(H M) same as H M
- Apply standard SMDP q-learning update to Reduce(*H M*)

$$Q_{k+1}([s_c, m_c], a_c) = (1 - \alpha_k)Q_k([s_c, m_c], a_c) + \alpha_k[r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{\tau-1}r_{t+\tau} + \gamma^{\tau} \max_{a'} Q_k([s'_c, m'_c], a')]$$

HAMs - Conclusions

- Success depends on quality of programmed policies and state transition functions for each machine
- Not used in any large-scale applications
- Allows integration of multiple controls problems, whose solutions are well known, but whose relationships are not

MAXQ

Decompose into hierarchy of SMDPs (rather than 1) and solve simultaneously

MAXQ – Formalization

- Decompose MDP M into subtasks M₀...M_n
 - M₀ corresponds to original task
- Each subtask similar to an option

Subtask anatomy (M_i) Pseudo-Reward Policy **Active States** S_i: Set of states where Task-specific reward $a = \pi(s_t, k)$ M_i can execute function that assigns Assume deterministic T_i : (S\S_i) states where reward to each state K denotes subtask subtask terminates in Ti call stack

MAXQ – SMPDs

Representation of top-level policy

$$\pi = \{\pi_0, \dots, \pi_n\}$$

Transition probabilities

$$P_i(s', \tau | s, a)$$

• Value of completing ith subtask task from state s and following $\boldsymbol{\pi}$

$$V^{\pi}(i,s)$$

MAXQ – State Value Function

Reward of selecting subtask a from subtask i:

$$R_i(s,a) = V^{\pi}(a,s)$$

Corresponding Bellman state value equation

$$V^{\pi}(i,s) = V^{\pi}(\pi_i(s),s) + \sum_{s',\tau} P_i^{\pi}(s',\tau|s,\pi_i(s)) \gamma^{\tau} V^{\pi}(i,s')$$

MAXQ – Action-Task Value Function

Q-Function

$$Q^{\pi}(i, s, a) = V^{\pi}(a, s) + \sum_{s', \tau} P_i^{\pi}(s', \tau | s, a) \gamma^{\tau} Q^{\pi}(i, s', \pi(s'))$$

$$C^{\pi}(i, s, a) = \sum_{s', \tau} P_i^{\pi}(s', \tau | s, a) \gamma^{\tau} Q^{\pi}(i, s', \pi(s'))$$

$$Q^{\pi}(i, s, a) = V^{\pi}(a, s) + C^{\pi}(i, s, a)$$

$$V^{\pi}(0, s) = V^{\pi}(a_n, s) + C^{\pi}(a_{n-1}, s, a_n) + \dots + C^{\pi}(a_1, s, a_2) + C^{\pi}(0, s, a_1)$$

$$V^{\pi}(a_n, s) = \sum_{s'} P(s' | s, a_n) R(s' | s, a_n)$$

MAXQ Learning

- High-level overview of complex algorithm
 - Similar to Monte Carlo Q-learning with completion function
- Estimate completion C(i, s, a) for each
 i->a edge in the tree
- Beginning at 0, recursively execute actions to descend to primitive MDP (choosing subtask with highest completion estimate)
- After each subtask a concludes, use reward accumulated at leaf below to update C(i, s, a)

MAXQ Conclusions

- Recursively optimal policy
 - Optimal for a given subtask SMDP, given SMDPs of children
- Weaker than hierarchically optimal policy
 - Optimal policy among all policies that can be expressed within constraints of hierarchy
- Why? Hierarchically optimal policy may need to exploit context of calling subtask
 - E.g. Optimal way to travel to a destination may depend on what you're doing at the destination

Conclusions

- HRL allows temporal abstraction for long-term and shortterm planning –maps onto human decision making
- Potentially valuable avenue for improving transfer learning of tasks and strategies
- Unsolvable problems today have characteristics HRL seems well suited to address
 - Sparse rewards
 - Large action and state spaces
 - Slow data generation

Conclusions

- Fundamental Problem: All frameworks we've seen today require hand-generated decompositions
 - Deal-breaker for complex tasks
 - ...and that's the whole point
- Learning decompositions automatically is an active area of research
 - Heuristics & approximations
 - MetaRL (approaches reminiscent of AutoML)
- Marriages with deep RL increasingly common
 - FUN : Deep feudal learning
 - Option-Critic: Actor-critic policy gradient setup meets options framework
 - HIRO, h-DQN, and many more

