Práctica 4

Probabilidades

2023

¿Con qué vamos a trabajar?

- Vectores bivariados discretos y continuos.
- Calculo de probabilidades.
- Conjunta y marginales.
- Esperanza, varianza y covarianza.
- Distribución condicional.

Manos a la obra

- 1. De una urna que contiene 3 bolillas numeradas 1, 2 y 3, se extraen sin reposición y sucesivamente 2 bolillas. Sea X el número de la primer bolilla e Y el de la segunda.
 - a) Hallar $p_{XY}(x, y)$, $p_X(x)$ y $p_Y(y)$.
 - b) Calcular $\mathbb{P}(X < Y)$.
 - c) ¿Son X e Y independientes?
- 2. Sea (X,Y) un vector aleatorio discreto con función de probabilidad puntual conjunta dada por

Y/X	0	1	2	3	4	5	6	7	8
0	0.0519	0.1779	0.2668	0.2287	0.1225	0.0420	0.0090	0.0011	0.0001
1	0.0000	0.0000	0.0001	0.0009	0.0046	0.0147	0.0294	0.0336	0.0168

- a) ¿Cuál es la distribución de Y?
- b) Calcular $\mathbb{P}(g(X) \neq Y)$, siendo g(x) la función definida por

					4				
g(x)	0	0	0	0	1	1	1	1	1

- 3. Sea (X,Y) un vector aleatorio con distribución uniforme sobre el trapecio de vértices (-6,0), (-3,4), (3,4) y (6,0).
 - a) Hallar la densidad conjunta de (X,Y) y las funciones de densidad marginales.

- b) ¿Son X e Y independientes? Justificar.
- 4. Sea (X, Y) un v.a. con densidad:

$$f_{XY}(x,y) = \begin{cases} \frac{1}{2x^2} & \text{si } |x| \le 1 ; 0 < y < x^2 \\ 0 & \text{caso contrario} \end{cases}$$

- a) Hallar $f_X(x)$ y $f_Y(y)$.
- b) ¿Son X e Y independientes? Justificar.
- c) Calcular cov(X, Y).
- d) Probar que $W=Y/X^2$ tiene distribución uniforme en el intervalor (0,1).
- 5. Sea (X,Y) un vector aleatorio con funcion de densidad conjunta dada por

$$f_{XY}(x,y) = e^{-y}, 0 \le x \le y$$
.

- a) Represente en el plano el soporte de la densidad. Es decir, la region en la cual la vale diferente de cero.
- b) Hallar $\mathbb{P}(X \geq Y)$.
- c) Hallar f_X y $f_{Y/X=x}$, para x > 0
- 6. Sea (X,Y) un vector aleatorio con funcion de densidad dada por

$$f_{X,Y}(x,y) = cxy I_{0 \le x \le 1} I_{0 \le y \le x}$$
.

- a) Calcule c.
- b) Calcule $P(5Y \leq X)$.
- c) Calcule f_Y , f_X . Calcule $\mathbb{P}(Y \leq 1/4/X = 1/2)$.
- d) Calcular cov(X, Y)
- 7. Sea (X,Y) un vector aleatorio con función de densidad conjunta dada por

$$f(x,y) = \begin{cases} 2e^{-x}e^{-2y} & \text{si } 0 < x, y \\ 0 & \text{caso contrario} \end{cases}$$
 (1)

- a) Son X e Y independientes?
- b) Calcular P(X > 1, Y < 1)
- c) Calcular $P(X \leq Y)$.