УДК 378.14

ИСПОЛЬЗОВАНИЕ РАЗНОУРОВНЕВЫХ ЗАДАЧ ПРИ ИЗУЧЕНИИ КУРСА ОБЩЕЙ ФИЗИКИ ВЫСШЕЙ ШКОЛЕ

THE USE OF MULTILEVEL PROBLEMS IN THE STUDY OF THE COURSE OF GENERAL PHYSICS IN HIGHER EDUCATION

Савченко Елизавета Викторовна

кандидат педагогических наук доцент кафедры «Физика», Севастопольский государственный университет globinaliza@mail.ru

Яковишин Леонид Александрович

доктор химических наук, доцент, профессор кафедры «Химия и химические технологии», Севастопольский государственный университет chemsevntu@rambler.ru

Корж Елена Николаевна

кандидат химических наук, доцент, доцент кафедры «Химия и химические технологии», Севастопольский государственный университет korzhen-sev@mail.ru

Аннотация. Цель исследования заключалась в оптимизации средств профессиональной подготовки студентов-будущих инженеров при изучении курса общей физики. Задачей исследования было создание классификации задач. В результате исследования рассмотрено применение классификации задач курса общей физики.

Ключевые слова: профессиональная деятельность, инженерная деятельность, задачный подход, курс общей физики.

Savchenko Elizaveta Viktorovna

Candidate of Pedagogical Sciences, Associate Professor of the Department of Physics, Sevastopol State University globinaliza@mail.ru

Yakovishin Leonid Aleksandrovich

D. Sci., Professor of Chemistry and Chemical Technologies Department, Sevastopol State University chemsevntu@rambler.ru

Korzh Elena Nikolaevna

Ph. D., Associate Professor of Chemistry and Chemical Technologies Department, Sevastopol State University korzhen-sev@mail.ru

Annotation. The purpose of the study was to optimize the means of professional training of future engineers students when studying a course in general physics. The objective of the study was to create a classification of tasks. As a result of the study, the application of the classification of problems of the course of general physics was considered.

Keywords: professional activity, engineering activity, task approach, general physics course.

о мнению многих авторов, для того, чтобы решить задачу, необходимо многократно преобразовывать условия и требования задачи, что и является этапами решения задачи. «Решающий задачу пытается все время сблизить, столкнуть, сопоставить и соотнести между собой условия и требования, включить их в единую систему отношений, которые в психологии называются основными отношениями задачи» [1–3].

Все преобразования, выполняемые в задаче, называются переформулировками с учетом возникающих идей и вариантов решения. «В зависимости от очередной переформулировки одна и та же задача выступает перед тем, кто ее решает, по-разному и представляет для него не одинаковые трудности, потому что формулировки задачи непременно включают в себя тот или иной ее анализ» [2].

Зная уровень сформированности умения решать физические задачи в группе, а также потенциал каждого студента, преподаватель может корректировать процесс обучения в зависимости от целей, поставленных на практическом занятии, для этого также необходимо определить роль, функции и назначение физических задач, которые тесно связаны с классификацией задач по различным признакам.

Переход преподавателей от пассивной к активной и проблемной форме преподавания, особенно на практических занятиях, значительно увеличивает роль задач в процессе обучения.

Новое переосмысление содержания образования привело к тому, что сейчас знания относятся не только к предметной области, но и представляют собой обучение определенной деятельности, способам мышления, поэтому роль задач в процессе обучения становится несоизмеримо большей.

При решении задач студентам предстоит не только ознакомиться с задачной ситуацией, как с объектом, но и проанализировать, переформулировать ее, добиваясь тем самым определенных поставленных целей.

Рассмотрим применение классификации физических задач и составление плана решения на примере темы «Теплоемкость идеального газа»:

- 1. Определить по условию задачи, для какого процесса необходимо найти теплоемкость.
- 2. Выбрать формулу для расчета молярной теплоемкости С.

- 3. Определить число степеней свободы газа і.
- 4. При необходимости рассчитать показатель адиабаты.
- 5. По таблице Менделеева определить молярную массу газа.
- 6. Записать выражение для определения удельной теплоемкости газа с.
- 7. Убедиться, что получена замкнутая система уравнений:

На практических занятиях лучше всего рассматривать задачи средней сложности, однако дифференцированный и личностный подход к студентам предполагает решение задач разной сложности в зависимости от подготовки группы в целом и от способностей отдельных студентов.

Таким образом, составление классификации задач по каждой выбранной теме курса общей физики является предпосылкой для создания обобщенных алгоритмов решения, способствуя активизации познавательной деятельности студентов и повышения интереса к изучаемой дисциплине.

Литература:

- 1. Киселева, О.М. Использование математических методов для формализации элементов образовательного процесса // Концепт. 2013. № 2 (18). С. 51–57.
- 2. Кравец А.Г., Бобков А.С. Автоматизированное управление практико-ориентированным обучением естественно научным дисциплинам (на примере дисциплины «Физика») // Образовательные технологии и общество. 2013. № 3. С. 521–540.
- 3. Шкерина Л.В., Панасенко А.Н. Моделирование математической компетенции бакалавра будущего учителя математики // Инновации в непрерывном образовании. 2012. № 4. С. 59–63.

References:

- 1. Kiseleva O.M. Using mathematical methods to formalize the elements of the educational process // Concept. $-2013. N \ge 2 (18). P. 51-57.$
- 2. Kravets A.G., Bobkov A.S. Automated management of practice-oriented learning es-tentially scientific disciplines (on the example of the discipline «Physics») // Educational Technologies and Society. 2013. № 3. P. 521–540.
- 3. Shkerina L.V., Panasenko A.N. Modeling mathematical competence of bachelor future teacher of mathematics // Innovations in Continuous Education. 2012. № 4. P. 59–63.