Competing for Inventors: Market Concentration and the Misallocation of Innovative Talent

Andrea Manera

October 5, 2021

Research Questions and Main Idea

I ask three main questions:

- 1. What are the boundaries of labor markets for inventors?
- Does competition for scarce inventors between different product markets affect R&D allocation and productivity?
- 3. If so, which policies can restore efficiency?

Across product markets, more market power gives:

- Higher private returns to R&D, demand for inventors
- Lower social returns to R&D, less growth per inventor
- Uneven growth in concentration leads to misallocation across sectors

Complementary explanation for observed decline in R&D

00000000

Paper in a Slide

- 1. Build data on inventors' flows (USPTO) across product markets (NAICS 3-4 digits)
 - Competition for inventors extends beyond product markets
- 2. Long regressions (EC and regulations data, 1997-2012)

 - Within product markets that gained inventors: ↑ top 10% share, ↑ incremental/defensive innovation, ↓ growth/inventor
 - Misallocation explains up to .45pp lower annual growth
- 3. Schumpeterian model with defensive patenting:
 - Uneven markup increases lead to misallocation
 - Policy: entrant subsidies in less competitive sectors
 - Cost-neutral gives .155pp higher annual growth

0000000

Motivating Example: The Allocation of AI Talent

Source: Global AI Talent Report (TalentSeer, 2020), BEA

- Al is a GPT, but top Tech attracts a disproportionate share of specialists (and offer higher wages)
 - Anecdotal widespread shortage in other sectors and smaller companies "outcompeted" by big tech Headlines

00000000

Source: Bloom et al. (2021)

Increased Concentration (3d NAICS)

TODO: use Census

Introduction

00000000

00000000

- Trends in innovation and R&D.
 - Akcigit and Kerr (2018), Akcigit and Ates (2020), **Bloom et al.** (2020, 2021), Goldschlag et al. (2016)
- Increasing Concentration Facts and Measurement
 Barkai (2020), De Loecker et al. (2020), Gutiérrez and Philippon (2017, 2018), Grullon et al. (2019), Keil (2017)
- Competition and Innovation
 Aghion et al. (2005, 2009, 2019), Argente et al. (2020), Gutiérrez and
 Philippon (2017), Autor et al. (2021)
- Models of innovation and growth
 Aghion and Howitt (1992), Aghion et al. (2001), Acemoglu and Akcigit (2012), Abrams et al. (2018), Jo (2019)

Empirical Literature:

- Focus on R&D output (patents and citations)
- Allocation of R&D expenditure within markets

This paper:

Introduction

00000000

- Focus on R&D input (inventors)
- Allocation of relevant inventors across markets.

Theory Literature:

- R&D activity is (usually) non-rival
- Competition and innovation within product markets

This paper:

- R&D is rival (scarce inventors and defensive innovation)
- Competition and innovation across different product markets

Plan of the Talk

- 1. Data construction
- 2. Regression analysis
- 3. Model

Introduction

0000000

4. Calibration and Policy

- Understand boundaries of markets for inventors
 - Identify "knowledge markets" as sets of product markets that hire the same type of inventors
 - Use patent data to build a network of flows of inventors across sectors
 - Identify connected sectors maximizing network's modularity
- Look within knowledge markets to see how product markets' share of inventors relate to concentration

Data Sources

- USPTO (patent-year) and Goldschlag et al. (2016):
 - patent citation and disambiguated inventor id's, 1975-present;
 - patent classification by NAICS of application (1978-2016)
- Economic Census and Keil (2017) (5-year-NAICS)
 - Concentration measure: HHI and HHI lower bound
 - Output per worker growth
- NBER-CES:
 - Constructed Lerner Index
- Mercatus RegData 4.0 (2021):
 - Sector-specific regulation counts
 - Extended using text similarity across NAICS for missing sectors

Dataset Structure

Patent ID	Inventor ID	Goldschlag et al. (2016) NAICS	Year
US00001	00001-1	1111	1980
US00001	00001-1	1112	1980
US00001	00001-2	1111	1980
US00001	00001-2	1112	1980
US00002	00001-1	3111	1981

Dataset Structure

Patent ID	Inventor ID	Goldschlag et al. (2016) NAICS	Year
US00001	00001-1	1111	1980
US00001	00001-1	1112	1980
US00001	00001-2	1111	1980
US00001	00001-2	1112	1980
US00002	00001-1	3111	1981

Inventor ID	NAICS 1	NAICS 2	Year	Total Flow
00001-1	1111	1112	1980	2
00001-2	1111	1112	1980	2
00001-1	1112	3111	1981	1

"Knowledge Markets"

- Knowledge Market: set of NAICS (product markets) that employ the same type of inventors
 - To capture similar required knowledge to innovate
- From data, undirected network:
 - NAICS (4-digit) as nodes
 - Minimal share of inventor flows as edge weights, W

"Effective inventors"

- Effective inventors:
 - "Productivity-adjusted" inventor. Fixed effect α_i in regression:

$$\# \mathsf{Patents}_{\mathit{cfit}} = \alpha_{\mathit{i}} + \alpha_{\mathit{cft}} + \varepsilon_{\mathit{cfit}}$$

- α_{cft} : CPC class 1-digit, c, by firm (assignee), f, by year, t
- Raw number of inventors for robustness

• Strength of connection between two sectors

- Build directed flows for each inventor i (avoid double
- Build directed flows for each inventor i (avoid double counting):

$$\tilde{\mathsf{flow}}_{1 \to 2, i, t} \equiv \frac{\sum 1 \left\{ i \text{ moves } 1 \to 2 \text{ in } t \right\}}{\sum_{j, k} 1 \left\{ i \text{ moves } j \to k \text{ in } t \right\}} \times \alpha_i$$

 Compute total outflows and inflows for each NAICS 4-digit sector:

$$\mathsf{inflow}_{\mathsf{NAICS}} = \sum_{n} \sum_{t} \mathsf{flow}_{n \to \mathsf{NAICS}, i, t},$$

Network Weights

• Compute share of inflows and outflows, e.g.:

$$\text{share in}_{1\leftarrow 2} = \frac{\sum_t \sum_i \tilde{\mathsf{flow}}_{2\rightarrow 1,i,t}}{\mathsf{inflow}_1}$$

Define weight:

$$W_{12} = W_{21} = \min \left\{ rac{\mathsf{share} \ \mathsf{in}_{1 \leftarrow 2} + \mathsf{share} \ \mathsf{out}_{1
ightarrow 2}}{2}, rac{\mathsf{share} \ \mathsf{in}_{2 \leftarrow 1} + \mathsf{share}}{2}
ight.$$

 Can use average, but risk of overstating flows from small sectors to large

- Run a weighted community detection algorithm:
 - Maximizes modularity of the network
 - Finds *N non-overlapping* communities to maximize:

$$Q = \sum_{c=1}^{N} \left[W_{cc} - \left(\sum_{j} W_{cj} \right)^{2} \right],$$

where W_{cj} is the weight edges that have one end in community c and the other in community j.

- "How much more the community is connected internally than externally".
- Result: 10 non-singleton sets of NAICS 4-digit that share inventors

Visualization at 3-digit NAICS

- Many connections across product markets even at 3 digits!
- Same inventors are employed by firms in highly different product markets
- Broad communities
- Reasonable?
 - Green Cluster collects "Food and Agriculture": Crop Production,
 Food Manufacturing and Services, Beverage and Tobacco;
 - Orange Cluster is mostly "Mining" and "Heavy Industry": e.g.
 Petroleum and Coal Products, Chemical, Machinery Manufacturing;
 - Yellow Cluster collects "Communications", "Electronics" and "Publishing":e.g. Computer and Electronic Products, Telecommunications, Data Processing;

Additional Data

 Sector's share of effective inventors in knowledge market, k, employed by sector p:

$$\mathsf{Share}_{p,t}^k \equiv \frac{\sum_{p_i(t)=p} \alpha_i}{\sum_{k_i(t)=k} \alpha_i}.$$

 Baseline concentration measure is lower bound of HHI from Keil (2017):

$$\underline{\mathsf{HHI}}_{p,t} = 4 \left[\frac{\mathsf{Top-4~Share}_{p,t}}{4} \right]^2 + 4 \left[\frac{\mathsf{Top-8~Share}_{p,t} - \mathsf{Top-4~Share}_{p,t}}{4} \right]$$
 where top shares come from the Economic Census (corr. with

- actual HHI .93 when available)
- Regulation measure from Mercatus RegData 4.0: counts of regulation affecting NAICS 4d using text analysis
 - Extended to all sectors with HHI using cos-similarity Details

Specification

• At the NAICS 4-digit sector, *p*:

$$\Delta \mathsf{Outcome}_p = \mathit{f}_k 1\left\{p \in k\right\} + \beta \Delta \mathsf{Indep.Var.}_p + \gamma' \Delta \mathsf{Controls}_p + \varepsilon_p,$$

• Δ denotes the long-difference operator:

$$\Delta \mathsf{Outcome}_p = \mathsf{Outcome}_{p,2012} - \mathsf{Outcome}_{p,1997}$$

• $f_k 1 \{ p \in k \}$, indicator that sector p belongs to knowledge market k

Main Specification:

- Δ Outcome_p: Δ Share_p^k
- \triangle Indep.Var._p: \triangle HHI_p, \triangle HHI_p
- $\Delta Controls_p$: Change in log-real sales; controls for sector size
- $\beta > 0$: Sectors where concentration increased attracted more

Main Specification Results Robustness to Outliers Raw Inventors

	Ch. 4d K.M. Eff. Inv. Share (%)		
	(1)	(2)	
Ch. HHI lower bound	26.093*	22.509*	
	(10.696)	(10.848)	
Ch. Log Real Sales	0.914**	0.548*	
	(0.278)	(0.243)	
4D Knowledge Market FE		✓	
Sample	Full Sample	Full Sample	
Weight	Sales	Sales	
Observations	157	153	
0.1, p < 0.05, p < .01, p < .001			

Graphically

Robustness to Individual Firm Size Robustness to Outliers

Ch. 4d K.M. Eff. Inv. Share (%)	
(1)	(2)
35.230**	20.783+
(12.759)	(10.615)
0.175	-0.040
(0.382)	(0.253)
	✓
Full Sample	Full Sample
Sales	Sales
81	79
	(1) 35.230** (12.759) 0.175 (0.382) Full Sample Sales

IV Regression: Reduced Form and First Stage

Introducti 0000000		Regression Analysis ○○○○○●○○○	Theoretical Framework	Conclusions o
=		Ch. 4d	K.M. Eff. Inv. Share	(%) Ch. HF
			(1)	
	Ch. Log Restricitions (NAICS 4d)	0.478*	
			(0.220)	
	Ch. Log Real Sales		0.539+	

 $0.1,^* p < 0.05,^{**} p < .01,^{***} p < .001$

4D Knowledge Market FE

Sample

Weight

Observations

(0.274)

Full Sample

Sales

153

IV Regression: 2SLS Results

Introduction 00000000	Data Construction	Regression Analysis 000000●00	Theoretical Framework	Conclusions o
		Ch. 4d K.M. E	ff. Inv. Share (%)	
			(1)	000000000000000000000000000000000000000

30.560 +

(15.904)

0 5/1/*

4.587229

.0281448

30.096 +

(15.819)

0.525* (0.247)

Mahalanobis 5° Sales 150

4.753009

.0321185

Cii. Log ixeai Jaies	0.544	
	(0.244)	
4D Knowledge Market FE	✓	
Sample	Full Sample	
Weight	Sales	
Observations	157	

0.1, p < 0.05, p < .01, p < .001

Ch. HHI lower bound

Ch. Log Pool Salos

First-Stage F

Anderson-Rubin p-value

An increase in inventor shares:

- Significantly increases
 - Top 10% firms' inventor shares (link to Table), Top 10%/Bottom 50% ratio
 - Self-citations (link to Table)
- Significantly decreases
 - Inventors' productivity
 - Patents' forward citations (link to Table)

	Ch. Avg. Output/Worker Growth/Inventor (%)			
	(1)	(2)	(3)	
Ch. 4d K.M. Eff. Inv. Share (%)	-0.007**	-0.005*	-0.007**	
	(0.002)	(0.002)	(0.002)	
Ch. Log Real Sales		-0.051*		
		(0.021)		
4D Knowledge Market FE	✓	1	✓	
Sample	Full Sample	Full Sample	Mahalanobis 5%	Maha
Weight	Sales	Sales	Sales	
Observations	101	101	96	
p < 0.1, p < 0.05, p	* <i>p</i> < .01,*** <i>p</i> < .001			

Sizable Growth Loss from Misallocation

Back-of-the-envelope:

Model Objectives

- Explain intuition on decrease in competition driving lower growth through misallocation
- Build a model that generates a positive relation between concentration and inventor demand
 - Schumpeterian model
 - Entrants give creative-destruction growth
 - Incumbents can engage in defensive innovation
 - Two sectors, one knowledge market
- Calibration matching R&D statistics to evaluate policy:
 - Optimal to subsidize entrants in concentrated sectors
 - Cost-neutral policy gives up to .155pp higher annual growth

Environment

Production and Competition

Incumbents' Values

Entrants

Growth

Comparative Statics: Markup Increase

Two-Sectors, Inventor Market Equilibrium

Model Properties

Calibration

Policy Table

Discussion

What Next?

Regression Analysis

- Include human capital and specific inventor types
- Empirically:
 - Look at new inventors in each year as a function of concentration
- Quantitative exploration in more sophisticated model

Sector-Specific Parameter Values Pack

Tech Giants Are Paying Huge Salaries for Scarce A.I. Talent

Sector-Specific Parameter Values Pack

- For all pairs NAICS 4-d sectors:
 - Build cosine similarity between descriptions
- For each NAICS 4-d without missing data:
 - Rank 5 most similar sectors with regulation data
 - Attribute regulations of top 5 most similar sectors, weighted by cos.similarity
 - If highest cos-similarity is smaller than .2, use only most similar sector.

Main Specification: Robustness to Outliers Pack

	Ch. 4d K.M. Eff. Inv. Share (%)					
	(1)	(2)	(3)	(4)	(5)	(6)
Ch. HHI lower bound	26.093*	22.509*	25.904*	22.716*	26.111*	22.554*
	(10.696)	(10.848)	(11.124)	(10.948)	(10.725)	(11.019)
Ch. Log Real Sales	0.914**	0.548*	0.881**	0.539*	0.918**	0.562*
	(0.278)	(0.243)	(0.275)	(0.242)	(0.283)	(0.261)
4D Knowledge Market FE		/		1		/
Sample	Full Sample	Full Sample	Trim Outliers	Trim Outliers	Mahalanobis 5%	Mahalanobis 5%
Weight	Sales	Sales	Sales	Sales	Sales	Sales
Observations	157	153	155	152	150	139

Robustness to Individual Firm Size Back

	Ch. 4d K.M. Eff. Inv. Share (%)					
	(1)	(2)	(3)	(4)	(5)	(6)
Ch. HHI lower bound	35.230**	20.783+	35.230**	20.783+	35.154**	22.854*
	(12.759)	(10.615)	(12.759)	(10.615)	(12.647)	(11.197)
Ch. Log Real Sales per company	0.175	-0.040	0.175	-0.040	0.300	-0.055
	(0.382)	(0.253)	(0.382)	(0.253)	(0.460)	(0.346)
4D Knowledge Market FE		/		/		1
Sample	Full Sample	Full Sample	Trim Outliers	Trim Outliers	Mahalanobis 5%	Mahalanobis 5%
Weight	Sales	Sales	Sales	Sales	Sales	Sales
Observations	81	79	81	79	75	67