

Data Streams: Probabilistic Counting

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — https://chato.cl/teach

Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

Sources

- Mining of Massive Datasets (2014) by Leskovec et al. (chapter 4)
 - Slides <u>part 1</u>, <u>part 2</u>
- Tutorial: Mining Massive Data Streams (2019) by Michael Hahsler

Probabilistic counting

Counting fishes with pebbles

- Normally, to count with pebbles, you add one pebble every time you see an event
- How do you extend this method to count up to 1000 fishes with 10 pebbles?
- Assume you have access to a random number generator but not to an abacus for ... reasons

Answer

- . How to count up to 1000 fishes with 10 pebbles?
- . Every time you see a fish:
 - generate a random integer between 1 and 100
 - Add one pebble if that number is 1 (or any fixed value)
- . Return 100 x number of pebbles as an approximation

Morris' probabilistic counting (1977)

- . x ← 0
- . For each of the n events:
 - $x \leftarrow x + 1$ with probability $(1/2)^x$
- Return estimate $n' = 2^{x} + 1$

. Counter x needs only log₂(n) bits

. Simulation results by Flajolet (1985)

Morris' algorithm provides an unbiased estimator

- Init x=0, let $p_{x} = 2^{-x}$, estimate $n' = 2^{x} 1$
- n = 1
 - before: $x = 0 p_0 = 1$;
 - prob. 1: $x \rightarrow 1$
 - estimate $n' = 2^1 1 = 1 = n$
- n = 2
 - before: x = 1; $p_1 = 1/2$
 - prob. $\frac{1}{2}$: x stays at 1; n' = $2^1 1 = 1$
 - prob. $\frac{1}{2}$: $x \rightarrow 2$. $n' = 2^2 1 = 3$
 - E[n'] = 1/2 x 1 + 1/2 x 3 = 2 = n

Morris' algorithm provides an unbiased estimator (cont.)

```
Let X(n) denote random counter x after n<sup>th</sup> arrival Initialize X(0) = 0; increment w.p. p_x = 2^{-x} Estimate n' = 2^{X(n)} - 1  = \sum_{j=1,...,n-1} \Pr[X(n-1) = j] E[2^{X(n)} | X(n-1) = j]  = \sum_{j=1,...,n-1} \Pr[X(n-1) = j] (p_j 2^{j+1} + (1-p_j) 2^j)  = \sum_{j=1,...,n-1} \Pr[X(n-1) = j] (2^j + 1)  = E[2^{X(n-1)}] + 1
```

Iterating: $E[2^{X(n)}] = E[2^{X(0)}] + n = 1 + n$

Therefore: $E[2^{X(n)} - 1] = n$

Source: Slides by Nick Duffield

Flajolet-Martin algorithm for distinct counting

Motivating example how many neighbors?

- Let n(u,h) be the number of nodes reachable through a path of length up to h from node u
- . Naïve method
 - Maintain a set for each node u, initialize $S(u) = \{u\}$
 - Repeat h times:

$$S(u) = S(u) \cup$$

 $\int S(v)$

add to the set all the neighbours up to distance h

- Answer n(u,h) = |S(u)|

v neighbor of u

What is the problem with this method?

- Let n(u,h) be the number of nodes reachable through a path of length up to h from node u
- Naïve method
 - Maintain a set for each node u, initialize $S(u) = \{u\}$
 - Repeat h times:

$$S(u) = S(u) \cup \bigcup_{v \text{ neighbor of } u} S(v)$$

- Answer n(u,h) = |S(u)|

Let's look at each node

- . We will receive a stream of items
 - Our neighbors at distance <= h
 - Repeated many times because of loops
- We want to use a small amount of memory
- . We don't care which items are in the stream
- We just want to know how many are distinct

Flajolet-Martin algorithm for counting distinct elements

- For every element u in the stream, compute hash h(u) hash will be bit array
- Let r(u) be the number of trailing zeros in hash value
 - Example: if h(u) = 001011101000 then r(u) = 3

we look at the number of trailing 0s

• What is the probability of having r(u)=1? r(u)=2? r(u)=3? r(u)=#number of trailing 0s

Flajolet-Martin algorithm for counting distinct elements

- For every element u in the stream, compute hash h(u)
- Let r(u) be the number of trailing zeros in hash value
 - Example: if h(u) = 001011101000 then r(u) = 3
- Maintain R = max r(u) seen so far
- Output 2^R as an estimator of the number of distinct elements seen so far

Flajolet-Martin algorithm

(intuition)

- Let r(u) be the number of trailing zeros in hash value, keep R = max r(u), output 2^R as estimate
- Repeated items don't change our estimates because their hashes are equal
- About ½ of distinct items hash to *******0
 - To actually see a ******0, we expect to wait until seeing 2 distinct items
- About ¼ of distinct items hash to ******00

imp intuition

- To actually see a ******00, we expect to wait until seeing 4 items
- USEFUL TO DRAW THE ELEMENTS
- If we actually saw a hash value of ***000...0 (having R trailing zeros) then on expectation we saw 2^R different items

Flajolet-Martin, correctness proof

- Let m be the number of distinct elements
- Let z(r) be the probability of finding a tail of r zeroes
- We will prove that
 - $-z(r) \rightarrow 1 \text{ if } m \gg 2^r$
 - $-z(r) \rightarrow 0 \text{ if } m \ll 2^r$
- Hence 2^r should be around m

Flajolet-Martin, correctness proof (cont.)

- Probability a hash value ends in r zeroes = $(1/2)^r$
 - Assuming *h(u)* produces values at random
 - Prob. random binary ends in r zeroes = $(1/2)^r$
- Probability of seeing m distinct elements and NOT seeing a tail of r zeroes = $(1 (\frac{1}{2})^r)^m$

Imp to understand the proof

Flajolet-Martin, correctness proof (cont.)

- Probability of seeing m distinct elements and NOT seeing a tail of r zeroes = $(1 (\frac{1}{2})^r)^m$
- Remember $(1-\varepsilon)^{1/\varepsilon} \approx 1/e$ for small ε
- . Hence

$$\left(1 - \left(\frac{1}{2}\right)^r\right)^m = \left(1 - \left(\frac{1}{2}\right)^r\right)^{\frac{m\left(\frac{1}{2}\right)^r}{\left(\frac{1}{2}\right)^r}} \approx \left(\frac{1}{e}\right)^{\left(\frac{m}{2^r}\right)}$$

Flajolet-Martin, correctness proof (cont.)

- Probability of seeing m distinct elements and NOT seeing a tail of r zeroes $\approx (1/e)^{(\frac{m}{2^r})}$
- If $m \gg 2^r$, this tends to 0
 - We almost certainly will see a tail of *r* zeroes
- If $m \ll 2^r$, this tends to 1
 - We almost certainly will not see a tail of *r* zeroes
- Hence, 2^r should be around m

Flajolet-Martin: increasing precision

- Idea: repeat many times or compute in parallel for multiple hash functions
- . How to combine?
 - Average? E[2^r] is infinite, extreme values will skew the number excessively
 - Median? 2^r is always a power of 2
- Solution: group hash functions, take median of values obtained in each group, then average across groups

Let's go back to counting neighbors

Naïve method:

```
Maintain a set for each node u, initialize S(u) = \{u\}
Repeat h times: S(u) = S(u) \cup \bigcup_{v \text{ neighbor of } u} S(v)
```

Answer n(u,h) = |S(u)|

ANF method:

```
// Set \mathcal{M}(x,0) = \{x\}
FOR each node x DO
M(x,0) = \text{ concatenation of } k \text{ bitmasks}
\text{ each with 1 bit set } (P(\text{bit } i) = .5^{i+1})
FOR each distance h starting with 1 DO
\text{FOR each node } x \text{ DO } M(x,h) = M(x,h-1)
// Update \mathcal{M}(x,h) by adding one step
\text{FOR each edge } (x,y) \text{ DO}
M(x,h) = (M(x,h) \text{ BITWISE-OR } M(y,h-1))
// Compute the estimates for this h
FOR each node x DO
\text{Individual estimate } I\hat{N}(x,h) = (2^b)/.77351
\text{where } b \text{ is the average position of the least zero bits in the } k \text{ bitmasks}
```

Palmer, C. R., Gibbons, P. B., & Faloutsos, C. (2002, July). ANF: A fast and scalable tool for data mining in massive graphs. In Proc. KDD.

Example of another variant of the same type of algorithm

 More repetitions of the algorithm yield better precision

Becchetti, Luca, Carlos Castillo, Debora Donato, Stefano Leonardi, and Ricardo Baeza-Yates. "Using rank propagation and probabilistic counting for link-based spam detection." In Proc. of WebKDD, 2006.

Summary

Things to remember

- Probabilistic counting algorithms:
 - Morris
 - Flajolet-Martin

Exercises for TT22-T26

- Mining of Massive Datasets (2014) by Leskovec et al.
 - Exercises 4.2.5
 - Exercises 4.3.4
 - Exercises 4.4.5
 - Exercises 4.5.6