Syntax and Parsing

Slav Petrov – Google Research

Thanks to: Dan Klein, Ryan McDonald

Lisbon Machine Learning School

Analyzing Natural Language

Syntax and Semantics

They solved the problem with statistics.

Constituency and Dependency

Constituency and Dependency

A "real" Sentence

Influential members of the House Ways and Means Committee introduced legislation that would restrict how the new savings-and-loan bailout agency can raise capital, creating another potential obstacle to the government's sale of sick thrifts.

Phrase Structure Parsing

- Phrase structure parsing organizes syntax into constituents or brackets
- In general, this involves nested trees
- Linguists can, and do, argue about details
- Lots of ambiguity
- Not the only kind of syntax...
- First part of today's lecture

new art critics write reviews with computers

Dependency Parsing

- Directed edges between pairs of word (head, dependent)
- Can handle free word-order languages
- Very efficient decoding algorithms exist
- Second part of today's lecture

Classical NLP: Parsing

Write symbolic or logical rules:

```
VBD VB
VBN VBZ VBP VBZ
NNP NNS NN NNS CD NN
Fed raises interest rates 0.5 percent
```

- Use deduction systems to prove parses from words
 - Minimal grammar on "Fed raises" sentence: 36 parses
 - Real-size grammar: many millions of parses
- This scaled very badly, didn't yield broad-coverage tools

Attachments

I cleaned the dishes from dinner

I cleaned the dishes with detergent

I cleaned the dishes in my pajamas

I cleaned the dishes in the sink

Probabilistic Context-Free Grammars

- A context-free grammar is a tuple <N, T, S, R>
 - N: the set of non-terminals
 - Phrasal categories: S, NP, VP, ADJP, etc.
 - Parts-of-speech (pre-terminals): NN, JJ, DT, VB
 - T: the set of terminals (the words)
 - S: the start symbol
 - Often written as ROOT or TOP
 - Not usually the sentence non-terminal S
 - R: the set of rules
 - Of the form $X \rightarrow Y_1 Y_2 \dots Y_k$, with $X, Y_i \in N$
 - Examples: S → NP VP, VP → VP CC VP
 - Also called rewrites, productions, or local trees

A PCFG adds:

A top-down production probability per rule P(Y₁ Y₂ ... Y_k | X)

Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):

- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.

Treebank Grammar Scale

Treebank grammars can be enormous

NP

- As FSAs, the raw grammar has ~10K states, excluding the lexicon
- Better parsers usually make the grammars larger, not smaller

Chomsky Normal Form

- Chomsky normal form:
 - All rules of the form $X \rightarrow Y Z$ or $X \rightarrow w$
 - In principle, this is no limitation on the space of (P)CFGs
 - N-ary rules introduce new non-terminals

- Unaries / empties are "promoted"
- In practice it's kind of a pain:
 - Reconstructing n-aries is easy
 - Reconstructing unaries is trickier
 - The straightforward transformations don't preserve tree scores
- Makes parsing algorithms simpler!

A Recursive Parser

- Will this parser work?
- Why or why not?
- Memory requirements?

A Memoized Parser

One small change:

```
bestScore(X,i,j,s)
  if (scores[X][i][j] == null)
   if (j = i+1)
      score = tagScore(X,s[i])
  else
      score = max     score(X->YZ) *
            bestScore(Y,i,k) *
            bestScore(Z,k,j)
      scores[X][i][j] = score
  return scores[X][i][j]
```

A Bottom-Up Parser (CKY)

Can also organize things bottom-up

```
bestScore(s)
 for (i : [0,n-1])
      for (X : tags[s[i]])
      score[X][i][i+1] =
           tagScore(X,s[i])
 for (diff : [2,n])
                                      i k
    for (i : [0,n-diff])
      j = i + diff
      for (X->YZ : rule)
         for (k : [i+1, j-1])
              score[X][i][j] = max score[X][i][j],
                             score(X->YZ) *
                             score[Y][i][k] *
                             score[Z][k][j]
```

Unary Rules

• Unary rules?

```
bestScore(X,i,j,s)
    if (j = i+1)
        return tagScore(X,s[i])
    else
        return max max score(X->YZ) *
        bestScore(Y,i,k) *
        bestScore(Z,k,j)
        max score(X->Y) *
        bestScore(Y,i,j)
```

CNF + Unary Closure

- We need unaries to be non-cyclic
 - Can address by pre-calculating the unary closure
 - Rather than having zero or more unaries, always have exactly one

- Alternate unary and binary layers
- Reconstruct unary chains afterwards

Time: Theory

- How much time will it take to parse?
 - For each diff (<= n)</p>
 - For each i (<= n)</p>
 - For each rule $X \rightarrow Y Z$
 - For each split point k
 Do constant work

- Total time: |rules|*n³
- Something like 5 sec for an unoptimized parse of a 20-word sentences, or 0.2sec for an optimized parser

Agenda-Based Parsing

- Agenda-based parsing is like graph search (but over a hypergraph)
- Concepts:
 - Numbering: we number fenceposts between words
 - "Edges" or items: spans with labels, e.g. PP[3,5], represent the sets of trees over those words rooted at that label (cf. search states)
 - A chart: records edges we've expanded (cf. closed set)
 - An agenda: a queue which holds edges (cf. a fringe or open set)

PP

Word Items

- Building an item for the first time is called discovery.
 Items go into the agenda on discovery.
- To initialize, we discover all word items (with score 1.0).

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

CHART [EMPTY]

0 1 2 3 4 5

critics write reviews with computers

Item Successors

- When we pop items off of the agenda:
 - Graph successors: unary projections (NNS → critics, NP → NNS)

$$Y[i,j]$$
 with $X \rightarrow Y$ forms $X[i,j]$

Hypergraph successors: combine with items already in our chart

$$Y[i,j]$$
 and $Z[j,k]$ with $X \rightarrow Y Z$ form $X[i,k]$

- Enqueue / promote resulting items (if not in chart already)
- Record backtraces as appropriate
- Stick the popped edge in the chart (closed set)
- Queries a chart must support:
 - Is edge X:[i,j] in the chart? (What score?)
 - What edges with label Y end at position j?
 - What edges with label Z start at position i?

An Example

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] VP[1,2] NP[2,3] NP[4,5] S[0,2] VP[1,3] PP[3,5] ROOT[0,2] S[0,3] VP[1,5] NP[2,5] ROOT[0,3] S[0,5] ROOT[0,5]

Treebank Grammars

[Charniak '96]

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):

- Better results by enriching the gramma
- Can also get reasonable parsers witho

Model	F1
Charniak '96	72.0

Conditional Independence?

Not every NP expansion can fill every NP slot

- A grammar with symbols like "NP" won't be context-free
- Statistically, conditional independence too strong

Non-Independence

Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

The Game of Designing a Grammar

- Structure Annotation [Johnson '98, Klein&Manning '03]
- Lexicalization [Collins '99, Charniak '00]
- Latent Variables [Matsuzaki et al. 05, Petrov et al. '06]

A Fully Annotated (Unlexicalized) Tree

[Klein & Manning '03]

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Head lexicalization [Collins '99, Charniak '00]

Problems with PCFGs

- If we do no annotation, these trees differ only in one rule:
 - VP → VP PP
 - NP → NP PP
- Parse will go one way or the other, regardless of words
- We addressed this in one way with unlexicalized grammars (how?)
- Lexicalization allows us to be sensitive to specific words

Problems with PCFGs

- What's different between basic PCFG scores here?
- What (lexical) correlations need to be scored?

Lexicalized Trees

[Charniak '97, Collins '97]

- Add "headwords" to each phrasal node
 - Syntactic vs. semantic heads
 - Headship not in (most) treebanks
 - Usually use head rules, e.g.:
 - NP:
 - Take leftmost NP
 - Take rightmost N*
 - Take rightmost JJ
 - Take right child
 - VP:
 - Take leftmost VB*
 - Take leftmost VP
 - Take left child

Lexicalized PCFGs?

Problem: we now have to estimate probabilities like

```
VP(saw) -> VBD(saw) NP-C(her) NP(today)
```

- Never going to get these atomically off of a treebank
- Solution: break up derivation into smaller steps

Lexical Derivation Steps

A derivation of a local tree [Collins '99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children

Lexicalized Grammars

Challenges:

- Many parameters to estimate: requires sophisticated smoothing techniques
- Exact inference is too slow: requires pruning heuristics
- Difficult to adapt to new languages: At least head rules need to be specified, typically more changes needed

Model	F1
Klein&Manning '03	86.3
Charniak '00	90.1

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Automatic clustering

Latent Variable Grammars

Parse Tree T Sentence $\eta \eta$

Derivations t:T

Parameters θ

Learning Latent Annotations

EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories

Just like Forward-Backward for HMMs.

Refinement of the DT tag

Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful

Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	It	He	
PRP-1	it	he	they
PRP-2	it	them	him

Learned Splits

Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Detailed English Results

Multi-Lingual Results

Syntax and Parsing

Slav Petrov – Google Research

Lisbon Machine Learning School

Dependency Parsing

(Non-)Projectivity

- Crossing Arcs needed to account for nonprojective constructions
- Fairly rare in English but can be common in other languages (e.g. Czech):

He is mostly not even interested in the new things and in most cases, he has no money for it either.

Formal Conditions

- For a dependency graph G = (V, A)
- ▶ With label set $L = \{l_1, \ldots, l_{|L|}\}$
- ► *G* is (weakly) connected:
 - ▶ If $i, j \in V$, $i \leftrightarrow^* j$.
- ▶ G is acyclic:
 - ▶ If $i \rightarrow j$, then not $j \rightarrow^* i$.
- ► *G* obeys the single-head constraint:
 - ▶ If $i \rightarrow j$, then not $i' \rightarrow j$, for any $i' \neq i$.
- G is projective:
 - ▶ If $i \rightarrow j$, then $i \rightarrow^* i'$, for any i' such that i < i' < j or j < i' < i.

Arc-Factored Models

Assumes that the score / probability / weight of a dependency graph factors by its arcs

$$w(G) = \prod_{(i,j,k)\in G} w_{ij}^k$$
 look familiar?

- w_{ij}^k is the weight of creating a dependency from word w_i to w_j with label I_k
- Thus there is an assumption that each dependency decision is independent
 - Strong assumption! Will address this later.

Arc-factored Projective Parsing

All projective graphs can be written as the combination of two smaller adjacent graphs

Arc-factored Projective Parsing

- Chart item filled in a bottom-up manner
 - ▶ First do all strings of length 1, then 2, etc. just like CKY

- ▶ Weight of new item: $\max_{l,j,k} w(A) \times w(B) \times w_{hh'}^{k}$
- ▶ Algorithm runs in $O(|L|n^5)$
- Use back-pointers to extract best parse (like CKY)

Eisner Algorithm

- $ightharpoonup O(|L|n^5)$ is not that good
- ▶ [Eisner 1996] showed how this can be reduced to $O(|L|n^3)$
 - Key: split items so that sub-roots are always on periphery

Eisner Algorithm PseudoCode

```
Initialization: C[s][s][d][c] = 0.0 \quad \forall s, d, c
for k:1..n
  for s:1..n
    t = s + k
    if t > n then break
     % First: create incomplete items
    C[s][t][\leftarrow][0] = \max_{s \le r < t} (C[s][r][\rightarrow][1] + C[r+1][t][\leftarrow][1] + s(t,s))
    C[s][t][\to][0] = \max_{s \le r \le t} (C[s][r][\to][1] + C[r+1][t][\leftarrow][1] + s(s,t))
     % Second: create complete items
    C[s][t][\leftarrow][1] = \max_{s \le r \le t} (C[s][r][\leftarrow][1] + C[r][t][\leftarrow][0])
    C[s][t][\to][1] = \max_{s < r < t} (C[s][r][\to][0] + C[r][t][\to][1])
  end for
end for
```

Maximum Spanning Trees (MSTs)

- A directed spanning tree of a (multi-)digraph G = (V, A), is a subgraph G' = (V', A') such that:
 - V' = V
 - $ightharpoonup A' \subseteq A$, and |A'| = |V'| 1
 - ► G' is a tree (acyclic)
- A spanning tree of the following (multi-)digraphs

Can use MST algorithms for nonprojective parsing!

Chu-Liu-Edmonds

 $\triangleright x = \text{root John saw Mary}$

Chu-Liu-Edmonds

Find highest scoring incoming arc for each vertex

If this is a tree, then we have found MST!!

Find Cycle and Contract

- ▶ If not a tree, identify cycle and contract
- Recalculate arc weights into and out-of cycle

Recalculate Edge Weights

- Incoming arc weights
 - Equal to the weight of best spanning tree that includes head of incoming arc, and all nodes in cycle
 - root → saw → John is 40 (**)
 - root → John → saw is 29

Theorem

The weight of the MST of this contracted graph is equal to the weight of the MST for the original graph

Therefore, recursively call algorithm on new graph

Final MST

This is a tree and the MST for the contracted graph!!

▶ Go back up recursive call and reconstruct final graph

Chu-Liu-Edmonds PseudoCode

Chu-Liu-Edmonds(G_x, w)

- 1. Let $M = \{(i^*, j) : j \in V_x, i^* = \arg\max_{i'} w_{ij}\}$
- 2. Let $G_M = (V_x, M)$
- 3. If G_M has no cycles, then it is an MST: return G_M
- Otherwise, find a cycle C in G_M
- 5. Let $\langle G_C, c, ma \rangle = \text{contract}(G, C, w)$
- 6. Let $G = \text{Chu-Liu-Edmonds}(G_C, w)$
- 7. Find vertex $i \in C$ such that $(i', c) \in G$ and ma(i', c) = i
- 8. Find arc $(i'', i) \in C$
- 9. Find all arc $(c, i''') \in G$
- 10. $G = G \cup \{(ma(c, i'''), i''')\}_{\forall (c, i''') \in G} \cup C \cup \{(i', i)\} \{(i'', i)\}$
- 11. Remove all vertices and arcs in G containing c
- return G
 - ▶ Reminder: $w_{ij} = \arg \max_k w_{ij}^k$

Chu-Liu-Edmonds PseudoCode

```
contract(G = (V, A), C, w)
     Let G_C be the subgraph of G excluding nodes in C
   Add a node c to G_C representing cycle C
3.
     For i \in V - C: \exists_{i' \in C}(i', i) \in A
        Add arc (c, i) to G_C with
           ma(c, i) = \arg \max_{i' \in C} score(i', i)
           i' = ma(c, i)
           score(c, i) = score(i', i)
    For i \in V - C: \exists_{i' \in C}(i, i') \in A
        Add edge (i, c) to G_C with
           ma(i, c) = \arg \max_{i' \in C} [score(i, i') - score(a(i'), i')]
           i' = ma(i, c)
           score(i, c) = [score(i, i') - score(a(i'), i') + score(C)]
              where a(v) is the predecessor of v in C
              and score(C) = \sum_{v \in C} score(a(v), v)
5.
      return \langle G_C, c, ma \rangle
```

Arc Weights

$$w_{ij}^k = e^{\mathbf{W} \cdot \mathbf{f}(i,j,k)}$$

- Arc weights are a linear combination of features of the arc, f, and a corresponding weight vector w
- Raised to an exponent (simplifies some math ...)
- What arc features?
- ► [McDonald et al. 2005] discuss a number of binary features

Arc Feature Ideas for f(i,j,k)

- Identities of the words wi and wj and the label lk
- Part-of-speech tags of the words wi and wj and the label lk
- Part-of-speech of words surrounding and between wi and wj
- Number of words between wi and wj, and their orientation
- Combinations of the above

(Structured) Perceptron

```
Training data: T = \{(x_t, G_t)\}_{t=1}^{|T|}
1. \mathbf{w}^{(0)} = 0; i = 0
2. for n : 1..N
3. for t:1...T
           Let G' = \arg \max_{G'} \mathbf{w}^{(i)} \cdot \mathbf{f}(G')
5.
           if G' \neq G_t
              \mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} + \mathbf{f}(G_t) - \mathbf{f}(G')
6.
       i = i + 1
7.
     return wi
8.
```

Partition Function

Partition Function:
$$Z_x = \sum_{G \in T(G_x)} w(G)$$

▶ Lapacian Matrix Q for graph $G_x = (V_x, A_x)$

$$Q_{jj} = \sum_{i \neq j, (i,j,k) \in A_x} w_{ij}^k$$
 and $Q_{ij} = \sum_{i \neq j, (i,j,k) \in A_x} -w_{ij}^k$

Cofactor Qⁱ is the matrix Q with the ith row and column removed

> The Matrix Tree Theorem [Tutte 1984] The determinant of the cofactor Q^0 is equal to Z_x

- ▶ Thus $Z_x = |Q^0|$ determinants can be calculated in $O(n^3)$
- ▶ Constructing Q takes $O(|L|n^2)$
- ▶ Therefore the whole process takes $O(n^3 + |L|n^2)$

Arc Expectations

$$\langle i,j,k\rangle_{\times} = \sum_{G\in\mathcal{T}(G_{\times})} w(G) \times \mathbb{1}[(i,j,k)\in A]$$

Can easily be calculated, first reset some weights

$$w_{i'j}^{k'} = 0 \ \forall i' \neq i \ \text{and} \ k' \neq k$$

- Now, $\langle i, j, k \rangle_x = Z_x$
- Why? All competing arc weights to zero, therefore every non-zero weighted graph must contain (i, j, k)
- ▶ Naively takes $O(n^5 + |L|n^2)$ to compute all expectations
- ▶ But can be calculated in $O(n^3 + |L|n^2)$ (see [McDonald and Satta 2007, Smith and Smith 2007, Koo et al. 2007])

Summary

- Constituency Parsing
 - CKY Algorithm
 - Lexicalized Grammars
 - Latent Variable Grammars

- Dependency Parsing
 - Eisner Algorithm
 - Maximum Spanning Tree Algorithm

There is lots more and these models are being actively used in practice!