

Physics Higher level Paper 2

Tuesday	8 /	November	2016	(morning)
---------	-----	----------	------	-----------

2 hours 15 minutes

Instructions to candidates

- · Write your session number in the boxes above.
- · Do not open this examination paper until instructed to do so.
- · Answer all questions.
- Write your answers in the boxes provided.
- · A calculator is required for this paper.
- · A clean copy of the physics data booklet is required for this paper.
- · The maximum mark for this examination paper is [95 marks].

28EP01

International Baccalaureate*
Baccalauréat International
Bachillerato Internacional

Answer all questions. Write your answers in the boxes provided.

1. A tennis ball is hit with a racket from a point $1.5 \,\mathrm{m}$ above the floor. The ceiling is $8.0 \,\mathrm{m}$ above the floor. The initial velocity of the ball is $15 \,\mathrm{m}\,\mathrm{s}^{-1}$ at 50° above the horizontal. Assume that air resistance is negligible.

	(a)	Determine whether the ball will hit the ceiling.	[3]
	* ***		
	* *		
	0.7%		
	(b)	The tennis ball was stationary before being hit. It has a mass of $5.8\times10^{-2}\text{kg}$ and was in contact with the racket for 23 ms.	
10		(i) Calculate the mean force exerted by the racket on the ball.	[1]
	2 4 3		
		(ii) Explain how Newton's third law applies when the racket hits the tennis ball.	[2]
	* * *		
	* ***		
	• • •	ende mare mare o ese o ese o ese o ese esta de ese o ese o ese o ese o ese o ese o esta de ese de ese o	

Turn over

[2]

2. Curling is a game played on a horizontal ice surface. A player pushes a large smooth stone across the ice for several seconds and then releases it. The stone moves until friction brings it to rest. The graph shows the variation of speed of the stone with time.

The total distance travelled by the stone in 17.5 s is 29.8 m.

Determine the maximum speed v of the stone.

(a)

	is a U.S.			31)22	120	Vata Va	-			2 14	ii fi	• •	***	189			65/67		20 M	95/,35	124	•	7,27,5	274	(64)				887	JATE N					Table 1	5/.itsl		•
* ***		• •	• •		•(0)			• () • ()	•	* *:		٠.	•00	•		• •	• •			• •		•		•	•	•		•00•		•	• •	•	•		•00	•		• •
* ***		• •			***		•			2 10						• •				• •		•					•	•		•			•		•			• •
(b)				ine 0 s											nic	c fr	ict	ior	ı b	etv	ve	en	th	e	sto	on	е	an	d t	:he	e i	се	d	ur	in	g t	he	

(Question 2 continued)

(c) The diagram shows the stone during its motion after release.

Label the diagram to show the forces acting on the stone. Your answer should include the name, the direction **and** point of application of each force.

[3]

3.	(a)	Define internal energy.	[2]
	* * *	**************************************	
	* **		
	(b)	0.46 mole of an ideal monatomic gas is trapped in a cylinder. The gas has a volume of 21m^3 and a pressure of 1.4 Pa.	
		(i) State how the internal energy of an ideal gas differs from that of a real gas.	[1]
	* * *	******* ****** ****** ** *** ** *** **	
	2.7%		
		(ii) Determine, in kelvin, the temperature of the gas in the cylinder.	[2]
	* ***	****** ****** ***** ** *** ** *** ** **	
	29 4762		
	0.50		
L		(iii) The kinetic theory of ideal gases is one example of a scientific model. Identify two reasons why scientists find such models useful.	[2]
	1.	**** ****** ***** ** ***** *** *** ***	
	2.		

4.	(a)	A particular K meson has a quark structure $\overline{u}s.$ State the charge, strangeness and baryon number for this meson.	[2]
	Cha	rge:	
	Stra	ngeness:	
	Bary	on number:	
	(b)	The Feynman diagram shows the changes that occur during beta minus $(\beta^{\scriptscriptstyle{-}})$ decay.	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		Label the diagram by inserting the four missing particle symbols and the direction of the arrows for the decay particles.	[3]
	(c)	Carbon-14 (C-14) is a radioactive isotope which undergoes beta minus (β^-) decay to the stable isotope nitrogen-14 (N-14). Energy is released during this decay. Explain why the mass of a C-14 nucleus and the mass of a N-14 nucleus are slightly different even though they have the same nucleon number.	[2]
	* * *		
	* * *	****** ****** ****** *** *** *** *** *	
	2.5%		
	* * *		

(This question continues on the following page)

Turn over

		11
(Question	4 contin	IIDAII
Question	T COLLUL	ucuj

(d)	C-14	C-14 decay in (c) is used to estimate the age of an old dead tree. The activity of 4 in the dead tree is determined to have fallen to 21 % of its original value. C-14 a half-life of 5700 years.	
	(i)	Explain why the activity of C-14 in the dead tree decreases with time.	[1]
* * *		E C C C C C C C C C C C C C C C C C C C	
* • •		***************************************	
	(ii)	Calculate, in years, the age of the dead tree. Give your answer to an appropriate	
	(11)	number of significant figures.	[3]
	(11)		[3]
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			[3]
2 12 2 42 2 42			[3]
			[3]
x *** x *** x *** £ 63			[3]
* *** * *** * *** * ***			[3]

5. (a) Two microwave transmitters, X and Y, are placed 12 cm apart and are connected to the same source. A single receiver is placed 54 cm away and moves along a line AB that is parallel to the line joining X and Y.

Maxima and minima of intensity are detected at several points along AB.

		•		••	••	et 6	• • •				• •		• •	• •		• •	1891				08.5	a						50 5 16	•	: n			
				• •	* *		• •	. 100	• •	• •																	s: .				•		
		110/112															- FAST	0.536.753	5 5.33		25 T												
			•											2 2							SE 1											100	1 101
• •	٠.	٠.	• •	• •	• •	• •	• •		• •		• •		٠.	• •		٠.	• •	• •				• •								•		•	• •
• •	• •	• •	*	• •	• •		• •	100		• •	• •	• •	• •		• •	• •	*	•		* *	20 E		٠.	• •	*.:	• •			•		S.**	10000	
	• •	• •	• •	• •	* *		• •	• • •		• •	• •		٠.			• •					٠.			• •				• • •		٠.		(*)	

(ii)	The distance between the central maximum and the first minimum is 7.2 cm.
	Calculate the wavelength of the microwaves.

[2]

	the following the fixed the following form	AND SOLDED OF BOX DE REAL SECTION SELECTED OF
********	· · · · · · · · · · · · · · · · · · ·	***********

Turn over

(Question 5 continued)

(b) Radio waves are emitted by a straight conducting rod antenna (aerial). The plane of polarization of these waves is parallel to the transmitting antenna.

An identical antenna is used for reception. Suggest why the receiving antenna needs to be be parallel to the transmitting antenna.

[2]

2	•	•	•	3		•	•	•	•			•	•	•	•	•	•	•	•	•	•	•		*	•	•	•	•	•	•	2 (*)	•	•	•	•	•	•	Ť	•		(6.5	٠	*			•	Ť	•	•	•	•	•		•	•	•	•	÷	•	500	100		1 1	• •		100	•			
•		•0	•	8	• ()	•		•	•			•	ě	•		•		ě	•		٠			×		٠	٠			٠	٠	٠		٠		٠		×	•		0.	•	٠			٠		•	×		• •			*	٠		•		•	•110			. ,			*()(7	٠			
				ì				•								•00			•		•			2		٠		•							•			ž.	•				2		2			10	•				•	•			•		•	• 13			2 1			•000		2 :		
•		•	•	1		20	•	•	•		91)	•	•	•	•	tal.	•	•	•					٠	•	•	•	ं	•	•	U.Š		Ť	•	•	٠	•	ė	123	01.0			•	•	÷	•	•	•	ř	•		•		**	•	•	•	i	•	T AR	100		2 1		568	Ť.U.	•	•		
		•	٠	į	•	• 0		•	•	-09	650	•	ĸ	•		•	•		•		•		٠		٠	٠	•		*	•	٠	٠	•	•	•	•		×	•	00			٠		٠	٠	٠	•	÷	•			ı.	*:	•	٠	•		•	•00	•	•				•	•		•	
				-	•60	• 6			-35	-33	-33.5			•		•			• 77					9							0140								•33					334				•66		•					:-0						200		4 7		400	•				

(Question 5 continued)

(c) The receiving antenna becomes misaligned by 30° to its original position.

The power of the received signal in this new position is 12 μ W.

(i)	Calculate the power that was received in the original position.	[2]
* * * * * * *		
(ii)	Calculate the minimum time between the wave leaving the transmitting antenna and its reception.	[1]
* ** ** * *		

Turn over

[3]

6.	(a)	Police use radar to detect speeding cars. A police officer stands at the side of the road and points a radar device at an approaching car. The device emits microwaves which reflect off the car and return to the device. A change in frequency between the emitted and received microwaves is measured at the radar device.
		The frequency change Δf is given by

$$\Delta f = \frac{2fv}{c}$$

where f is the transmitter frequency, v is the speed of the car and c is the wave speed.

The following data are available.

 $\begin{array}{ll} \mbox{Transmitter frequency} \, f & = 40 \, \mbox{GHz} \\ \Delta f & = 9.5 \, \mbox{kHz} \\ \mbox{Maximum speed allowed} & = 28 \, \mbox{m s}^{-1} \end{array}$

((i)	Explain	the rea	son for th	ne frequenc	v change.

		(ii))	;	Sı	ug	g	es	st	W	'h'	у	th	ie	re	Э	is	6	a '	fa	IC'	to	r	0	f 2	2	in	t	h	Э	fr	ec	qι	ıe	n	су	'-C	h	ar	ng	е	е	qι	ıa	ti	or	٦.									[1	1
* **	•60			•30																•		•				•				•				* (3)					٠				•		٠								•				
	•								٠		٥.			•								•				•		702		150			•	•			12			•			•												•		
• • •	::		• •	•		113	0 1	181	٠	•		-	•	•	•		1	•	•	•	î	•		•	•	•		102	•	1	1/1		•	•	: :	•	98		•	•	•	ं	•			•	•	ų.	•	•	100	10.0	•	a a	•		
* * *	*()			•		•		• •	٠	•	٠.	*::: *	٠			•			٠	٠	•	•		•	٠	•			•	×		•	٠	•		٠			٠	•	•	•	• •		٠				٠	•	• •		٠		:::•		

(Question 6 continued)

	(iii)	Determine whether the speed of the car is below the maximum speed allowed.	[2]
		e broke belee w dee w kee w beard ward weard weard we belev be and we are by brake water wealth we	
,			
9	LE KOKO		
(aird	ports use radar to track the position of aircraft. The waves are reflected from the craft and detected by a large circular receiver. The receiver must be able to resolve radar images of two aircraft flying close to each other.	
	The	e following data are available.	
		Diameter of circular radar receiver = 9.3 m Wavelength of radar = 2.5 cm Distance of two aircraft from the airport = 31 km	
		lculate the minimum distance between the two aircraft when their images can just resolved.	[2]
2			
		m to dea telegraph de a telegraph de a de	
3			

Turn over

7.	(a)	Explain what is meant by the gravitational potential at the surface of a planet.	[2]
	* ***	CHE KO KATEN KATEN KO KWO KO KWO KO KOKAN KATEN KOKAN KO KWO KO KWO KO KATEN KATEN KATEN KATEN KO	
	3 6>		
	(b)	An unpowered projectile is fired vertically upwards into deep space from the surface of planet Venus. Assume that the gravitational effects of the Sun and the other planets are negligible.	
		The following data are available.	
		Mass of Venus $=4.87\times10^{24} \text{kg}$ Radius of Venus $=6.05\times10^6 \text{m}$ Mass of projectile $=3.50\times10^3 \text{kg}$ Initial speed of projectile $=1.10\times\text{escape}$ speed	
		(i) Determine the initial kinetic energy of the projectile.	[2]
	32 2770		
	4, 100		
	20 20 20		
	2 22		
	2.53		
		(ii) Describe the subsequent motion of the projectile until it is effectively beyond the gravitational field of Venus.	[3]
	* * *		
	• •		
	* * *		
	2 13		

(Question 7 continued)

(c) A planet orbits the Sun in a circular orbit with orbital period T and orbital radius R. The mass of the Sun is M.

(i) Show that $T = \sqrt{\frac{4\pi^2 R^3}{GM}}$.

[2]

	٠	•	•	•	•			•	•	٠	•		•	•		٠	•	 •		٠	٠	٠		•	٠	•		٠	٠	 ٠		•	•	•3	 • •	٠			٠	•	•	٠			•	•	•	•		•	•
								•				 				•												S-1						•	 																
							•			•			•		•						•										•			•	 	•			•	• 7		•							•	•	•
• •	Ť	•		•	•	1012	ı.	100		•	•			10		•	•		•		•		•		٠	•	1	11.5	•	 ÷	•	•	: ·	•		•	•	•	•	ň.N	•	•	•	•		•			•	•	ř
	٠			•			٠	• 0		٠	•		٠	٠	٠	•	•	 00+		٠		٠			٠			٠						•	 	٠	•		٠							٠			٠	•	•
	:			•							•	 						 				٠						٠		 2	: ·		881.	100	 				•											•	į.

(ii) The Earth's orbit around the Sun is almost circular with radius 1.5×10^{11} m. Estimate the mass of the Sun.

[2]

	•			•		•	•889	٠	٠		٠	•			٠				٠	•	•		•	•	 •	•		•		•	•		•			•		•	٠							•	•		•
	٠					•	•	 ٠	٠		•				•				•	٠					 •	•		٠	•	•	•		•	•		٠			•		•				•		•		 (•
	•	•	: :	•		::	•0.0		٠	:::	*	٠	•	•	7	•	•	•	*	۰	•	•	٠	•	935	•		•		S:3	•	•	•		•	•0		•	•	•		•	•	•			•	• •	99.9
* * * *	•	• •		•		٠	• 1	 ٠	٠	٠.	٠	٠			٠	٠			٠	٠			٠		 •	*(1)		٠		•	٠		٠		 ٠	•		٠		•			*		٠	٠	٠		· •
				•			•					•			2					•			*		 •	•					•		18	4		•						•	٠			٠	٠		
	• • •	11/16		•	113		n.		•	•	÷	•	÷	•	ň	•	•	•	ŧ	•	•		•	•	:	î	11.7	•	•	•	•		•	î	•	•	:	•	•			•	•	:	•	35	•	•	

8. The graph shows how current I varies with potential difference V for a resistor R and a non-ohmic component T.

(a)		(i)		S	Sta	ite	r	10	W	tl	ıe	r	e	si	S	ta	n	C	е	0	f ·	Τ	٧	aı	rie	es	3	W	it	n	th	ie	(cu	ırı	е	nt	ç	10	in	g	th	nr	οι	ıg	h	Τ.	93.								1]
		11411			(100)		USS)					2	•					2					7/2	·	•	341	· ·							•		S1.	ij.			•	2		\$		7.				112	 107		7/12				
	•	U.T.N	1.61				ne:	0.0	•	•		ð.		ô		1 8	•	•	•	•	•		•		•	9 2 4	•	•	•		٠	•	•	•			ı	•	÷	•	•		5.5		.*	•		·	0)\$	ne:	2/.5		•	•	,	

(ii)	Deduce, without a numerical calculation, whether R or T has the greater resistance at I =0.40 A.	[2]

•	•	•		•			•	30.00						٠	٠	٠		(•	•	•	•	•	•	٠		٠	•	٠	•		•		•				٠	•	•	•			•		٠	•	ě		•			•					•				•	,
	•	٠	8				•	×	•		•	e,	•	٠	•	•				.•.	•	•	•	٠	٠	•	٠	٠	*	•	٠	٠	•	•		•			•	•	•			•		•	•	•	•				96) 1	,	•	•			00		e 3•	•
	•	(e	×		:[4]	-			ं•			ě	•			٠	÷			•		•					•		×						•			e.	•	•	•		٠		٠	•		•		 		994						889				
			÷							313			į.			•	٠					2		٠															Į.						ु							 ٠.					٠.			7112		

(Question 8 continued)

(b) Components R and T are placed in a circuit. Both meters are ideal.

Slider Z of the potentiometer is moved from Y to X.

	(i)		St	ate	e W	/ha	at I	na	pp	er	าร	to	th	ne	n	na	gr	nit	uc	de	0	f th	ne	CI	urı	re	nt	in	th	ie	ar	nn	ne	te	r.								['	1]
* **		• •	• •			•	•••		• •			::• :::•			505 608	₹S:		•				: ·	•	• •		::: :::::		•	• •	•		• •		•	• •		•	• •	***			***	•		
	(ii)			stin ad:					a	n e	ex	pla	an	at	io	n,	tł	ne	V	oli	tm	et	er	re	ea	dii	ng	W	/h	en	th	ie	ar	nn	ne	te	r						[2	2]
	•		e 6		1825	101		F85 1		•								. •		550	102	45 (13 3 /			- 1 Table 1	•	275	5257	500		•		0.50		5675	1,0*0)	•	100	1/35	19.05	***			
					٠.							•		•		•	• •	•		•			•					• •	•	•				٠	•				•			•33			
																•		•		•									•	•			•			• 6•			•88			•			
					٠.			•	• (•			•		٠		•												•		•	•								•		• •	•			

[1]

[2]

9. A beam of electrons e⁻ enters a uniform electric field between parallel conducting plates RS. RS are connected to a direct current (dc) power supply. A uniform magnetic field B is directed into the plane of the page and is perpendicular to the direction of motion of the electrons.

The magnetic field is adjusted until the electron beam is undeflected as shown.

- (a) Identify, on the diagram, the direction of the electric field between the plates.
- (b) The following data are available.

Separation of the plates RS = 4.0 cmPotential difference between the plates = 2.2 kVVelocity of the electrons $= 5.0 \times 10^5 \text{ m s}^{-1}$

Determine the strength of the magnetic field B.

(Question 9 continued)

(c)	the path of the electron beam.	[2
	ename to the terminal to the terminal t	
* ***		

Turn over

10.	The foll	lowing data	are available	for a natura	ıl gas powe	r station t	hat has a high efficiency.	
			Rate of cons Specific ene Efficiency of Mass of CO ₂ One year	rgy of natura electrical po	al gas ower genera		= 14.6 kg s ⁻¹ = 55.5 MJ kg ⁻¹ = 59.0 % = 2.75 kg = 3.16×10^7 s	
	(a) (i) Calcula	ate, with a sui	table unit, th	ne electrical	power ou	utput of the power station.	[1]
	*****			*******				
	(ii		ate the mass es continuous	The second secon	rated in a y	ear assur	ming the power station	[1]
		. 404 14.40(4.4 40)		*** ** *** **		08 409 AD40A 4		
	(ii		n, using your a ependence or			untries a	re being asked to decrease	[2]
	* * * * * * *							

	a tet tetu	e died bod eerbed ber						
	(i		be, in terms o es electrical e		nsfers, how	thermal e	energy of the burning gas	[2]
	2 50 500					OF BOT BOTON 10		
							A NAME OF BUILDING SECOND SECOND SEC	

(Question 10 continued)

(b) The electrical power output is produced by several alternating current (ac) generators which use transformers to deliver energy to the national electricity grid.

The following data are available. Root mean square (rms) values are given.

ac generator output voltage to a transformer $= 25 \, \text{kV}$ ac generator output current to a transformer $= 3.9 \, \text{kA}$ Transformer output voltage to the grid $= 330 \, \text{kV}$ Transformer efficiency $= 96 \, \%$

(i) Calculate the current output by the transformer to the grid. Give your answer to an appropriate number of significant figures.

[2]

		•	•			-	•	•	•	•	•			•	•		•				•	•	•	•	•	•	•					•	•		•		•	•					•	•		•					•							•		
 •	•	•	•	•		87 .	1)2		î		V. 5	11.5	•	•	•	÷	•	•		٠	•	•	•	÷	•	•	•	•	87.	٠	1.	÷	•	1/4		•	÷	•	•	1		î	•	÷		Š	•	•		•	: :	٠	•	ė	183	5/ait.		•	•	Ť
 	80	•	٠	٠		•	•	•		•	•			*	:: <u>*</u>	٠	٠		•		٠	•	٠	٠	•	•	٠	•	•		٠	•	•	•		*:	•	•	•	: :	•	*	٠		•	*:	٠	•	• • •	٠	•	٠			• •	co:	•	•	•	
	*			٠	. ,	· •		•		•		•	•		•								٠		•			•	 •				•		٠	٠		•	•		•	٠				*				٠				*			•	•	•	
 ٠	•	•	•	•		•	•	•				٠	•	•	•	٠	•	•		•	٠	٠	•	٠	•	•	•				٠	•	•			•	÷	•			•	•	٠			•	٠			•			•			•	٠	٠	٠	٠
	*	٠	٠	•		•	•	:		() •		:	٠	*		•	•		•		•	•	٠		•	•	•	•	•	•	•		•	•	ં	:	•	•	•			•	٠		600	*	•			*	•		•		•			٠	:0	•

(ii) Electrical energy is often delivered across large distances at 330 kV. Identify the main advantage of using this very high potential difference.

[2]

a wa benalast baladet beka		
*******	** ** *** ** *** ** *** ** *** ** *** **	

Turn over

(Question 10 continued)

(c) In an alternating current (ac) generator, a square coil ABCD rotates in a magnetic field.

The ends of the coil are connected to slip rings and brushes. The plane of the coil is shown at the instant when it is parallel to the magnetic field. Only one coil is shown for clarity.

The following data are available.

Dimensions of the coil $= 8.5 \, \text{cm} \times 8.5 \, \text{cm}$

Number of turns on the coil = 80Speed of edge AB $= 2.0 \text{ ms}^{-1}$ Uniform magnetic field strength = 0.34 T

(i) Explain, with reference to the diagram, how the rotation of the generator produces an electromotive force (emf) between the brushes.

[3]

* * * * * * * *			

(Question 10 continued)

(ii) Calculate, for the position in the diagram, the magnitude of the instantaneous emf generated by a single wire between A and B of the coil.	[1]

(iii) Hence, calculate the total instantaneous peak emf between the brushes.	[1]
(iii) Hence, calculate the total instantaneous peak emf between the brushes.	[1]
(iii) Hence, calculate the total instantaneous peak emf between the brushes.	[1]
(iii) Hence, calculate the total instantaneous peak emf between the brushes.	[1]
(iii) Hence, calculate the total instantaneous peak emf between the brushes.	[1]
(iii) Hence, calculate the total instantaneous peak emf between the brushes.	[1]

11. An apparatus is used to investigate the photoelectric effect. A caesium cathode C is illuminated by a variable light source. A variable power supply is connected between C and the collecting anode A. The photoelectric current *I* is measured using an ammeter.

(a) A current is observed on the ammeter when violet light illuminates C. With V held constant the current becomes zero when the violet light is replaced by red light of the same intensity. Explain this observation.

	3	3]	
			l

 diner.			200						orne		S						207					000000			no.	60				-00					100								200	*****	200000		2010								ome		- 10			0.00			100	
 1300		•	•0.10			•			•		001	•			•	535		•	•	• 223		•				٠	•	•	•	•	•	• 3.0				•	•	•	 9005				•		•		 	•	•	•	•		988		•				•),), e	-		
 -	•		• 0					83						•	•	•	•	•	•	•		•			•	٠			٠	•		•		•		٠	•		 		٠	•	•	•	•		•	٠	•		•				•	•		٠			::: <u>.</u>	•	•	
	•	•	•				•		٠			•	•	٠			•	•	•	•	•	•		٠	•	•		•		•	•	•		•	•		•	•			٠	٠	•	٠	•	•	 •	•	•	•			•		٠	•			•	٠	1	•	٠	
 603	•	•	•					5.7			es 1•		(·	ં	•	::::::::::::::::::::::::::::::::::::::	•	٠	•	•		•	•	•		*	٠	1	٠	•	*	•		:: <u>*</u>	5	٠	•	•			•	: :	10	•	***	•	60 *	*	٠	٠	•	. :			::				•		8 9	2		
 ally		•	•579	99	•		: i i			•		0		٠		•	٠			•		•				٠	٠	٠	٠		•	•		•		٠	•		 			٠	•3		٠		 •			•	•		•	•	•	•		•	•	•	::•	٠	•	
				470				16.					7112	•					٠											•	•	. 16			Ü							٠													112		ı				•			
	•	•	:03	100			57.5	u e	913			100	51.5	•	•	•	ž.	•	•	•	1	•				÷	•	U.T.		•	•		903	::	ń	5 5 /	Ť.	• 3		ė	•		•		•	•	•	÷	•	•	•	1	878	i e	10.	: . ·	î	81	i t			÷		
		•	•		68						930	•	•	•		: i	٠	٠	•	•		•				8	•	٠	٠	•	•	•		•	•	•	•		 		•	٠	٠		٠	•	 •		٠	٠	•		•		•	•		•	٠	•		•		

(Question 11 continued)

(b) The graph shows the variation of photoelectric current I with potential difference V between C and A when violet light of a particular intensity is used.

The intensity of the light source is increased without changing its wavelength.

(i)	Draw, on the axes, a graph to show the variation of I with \emph{V} for the increa	sed
	intensity.	

[2]

(ii)	The wavelength of the violet light is 400 nm.	Determine, in eV, the work function
	of caesium	

[2]

																																		_
 	٠	 •			 ٠	• .	٠	 •				•		• 6	 •		 •		•		•		•	 	•	•			 :	•88		•		
 			. u		 •			 21	u i	 ٠			 		 0.25		 •		¥.		2	1 1				٠			 ·.			•		
 • • •			2.5		٠	•	•	 :		•	•			•	 •	 	 			•	•		•	 00.	•		٠		1.5	•		٠	•	
 		 •		o• o	 ٠	٠.	٠	 •			•	٠	 •	•	 ٠	 •	 ٠	٠.			•0		٠	 00+	• :		•		 •	•()	 	٠	٠.	•
 								 -		 •		•	 	•		 ٠					100						•	 ٠	 : ¥					i
 					 •		•	 •		 •							 ٠				•		٠								 ٠	٠	• •	

(iii)	V is adjusted to +2.50 V. Calculate the maximum kinetic energy of the	
	photoelectrons just before they reach A.	

[2]

 											•											• •	2 2		 	S 3		•				•01	 •	. 2	
 		٠.						•													٠			٠	 		 					•	 •		
 				 88 . .	93						50 5	• •					88		•					8.9						388		***	 3.0		
 ta mannan	res territor	101-5-1	už užtým	 		unnun	20 10		20025	no se	2013	arroa	e de como	1971	antan	10211-0		2571200	22727	70 6	772 1	277.277	00 20			775 8	 tronar	ens.	anna.	. 1022100	5000	2879	 		100

