UNIVERSIDAD DE SAN CARLOS DE GUAT EMALA FACULTAD DE INGENIERIA ESCUELA DE CIENCIAS

NOMBRE DEL CURSO: Sistemas Operativos 1

CÓDIGO:	281	CRÉDITOS:	5
ESCUELA:	Ciencias y Sistemas	ÁREA A LA QUE PERTENECE:	Ciencias de la Computación.
PRE REQUISITO:	781 – Org. Lenguajes Compiladores 2. 778 – Arq. Compu y Ensambladores 1	POST REQUISITO:	285 Sistemas Operativos 2 775 Sistemas de Bases de Datos 2
CATEGORÍA:	Obligatorio	SEMESTRE:	2do. Semestre 2022
CATEDRÁTICO: (A):	Ing. Sergio Arnaldo Méndez Aguilar	AUXILIAR:	German José Paz Cordón
EDIFICIO:	Virtual	SECCIÓN:	N
SALÓN DEL CURSO:	Salón virtual asignado en Portal de Facultad de Ingeniería	SALÓN DEL LABORATORIO:	Salón virtual asignado en el Portal de Facultad de Ingeniería
HORAS POR SEMANA DEL C	URSO: 4 períodos	HORAS POR SEMANA DEL LABORATORIO:	2 períodos
DÍAS QUE SE IMPARTE EL	Lunes y Miércoles	DÍAS QUE SE IMPARTE EL	Miércoles
CURSO:		LABORATORIO:	
HORARIO DEL C Lunes 18:10 PM – Miércoles 18:10 PM	19:50 PM	HORARIO DEL LABORATORIO:	Miércoles 15:40 PM – 15:20 PM

DESCRIPCIÓN DEL CURSO:

El curso de sistemas operativos busca que el estudiante comprenda de forma práctica y sencilla los aspectos a evaluar en los sistemas operativos, teniendo como punto de vista el estudio de este a través de su funcionamiento en la administración de procesos y la máquina extendida o máquina virtual.

Adicionalmente busca introducir al estudiante a las prácticas de administración de sistema, manejo de paralelismo y concurrencia, existentes en sistemas de carga intensa y el diseño de pequeño de pequeños sistemas distribuidos usando las últimas tecnologías actuales relacionadas con los conceptos de Cloud Computing y Cloud Native.

OBJETIVO GENERAL:

Proporcionar al estudiante los conocimientos necesarios para entender el comportamiento y construcción de un sistema operativo desde el punto de vista de estudio de un sistema operativo como administrador de procesos y como máquina extendida.

OBJETIVOS ESPECÍFICOS:

- 1. Entender e implementar virtualización y cloud computing, y la concurrencia de procesos.
- 2. Aprender a administrar procesos en un sistema operativo.

- 3. Implementar sistemas que implementan concurrencia y paralelismo, como optimización de servidores usando tecnologías asociadas a dichos conceptos.
- 4. Exponer al estudiante en las últimas tecnologías de servidores con respecto a sistemas con concurrencia y paralelismo, utilizando containers, orquestadores de contenedores como Kubernetes y tecnologías Cloud Native.

METODOLOGÍA:

El desarrollo del curso se basa en el funcionamiento y administración de un sistema operativo estudiando sus componentes a través del estudio del sistema operativo como administrador de procesos y como máquina extendida.

EVALUACIÓN DEL RENDIMIENTO ACADEMICO: Según el Reglamento General de Evaluación y Promoción del Estudiante de la Universidad de San Carlos de Guatemala, la zona tiene valor de 75 puntos, la nota mínima de promoción es de 61 puntos y la zona mínima para optar a examen final es de 36 puntos.

Distribución de Puntos

Procedimiento	Instrumento de Evaluación	Ponderación
2 Evaluaciones de Rendimiento 2	20 pts c/u	40%
Laboratorio		28%
Tareas		7%
Total de la zona		75%
Evaluación final		25%
	Nota de Promoción	100%

PROGRAMATICO Y CALENDARIZACIÓN:

CONTENIDO:

Unidad 1: Conceptos básicos y Máquina extendida

- 1. Concepto de sistema operativo
- 1.2 Puntos de vista de estudio de un sistema operativo
- 1.2.1 Máquina Jerárquica
- 1.2.2 Administradora de Recursos
- 1.2.3 Máquina Extendida
- 1.2.4 Administradora de procesos
- 1.3 Historia de los sistemas operativos
- 1.4 GNU/Linux y su filosofía
- 1.5 Partes del sistema operativo
- 1.5.1 Gestor de arranque
- 1.5.2 Kernel
- 1.5.2.1 Tipos de Kernel
- 1.5.2.1.1 Monolítico y Modular
- 1.5.2.1.2 Microkernel e híbrido
- 1.5.2.1.3 Tipos contemporáneos, exokernel y unikernel
- 1.6 Pasos de arranque de la computadora
- 1.7 Máquina Extendida o Máquina Virtual
- 1.7.1 Virtualización
- 1.7.1.1 Historia
- 1.7.1.2 Tipos de Virtualización
- 1.7.1.3 Virtualización por hardware
- 1.7.1.3.1 Arquitectura de virtualización Intel
- 1.7.1.3.2 Hipervisores
- 1.7.1.3.2.1 Tipos de Hipervisores
- 1.7.1.3.2.1.1 Tipo 1
- 1.7.1.3.2.1.2 Tipo 2
- 1.7.1.4 Virtualización a nivel sistema operativo
- 1.7.1.4.1 Containers
- 1.7.1.4.2 Docker
- 1.7.1.4.2.1 CGROUPS
- 1.7.1.4.3 Unikernel y su relación containers
- 1.7.1.4.4 Concepto de containers Distroless
- 1.7.1.4.5 Cross compiling y architecturas ARM
- 1.7.2 Cloud Computing
- 1.7.2.1 Tipos de nube
- 1.7.2.2 Tipos de Servicios
- 1.7.2.3 Exokernel en la nube
- 1.7.2.4 Green IT
- 1.7.3 Edge Computing
- 2. Segunda Unidad: Procesos
- 2.2 Concepto proceso
- 2.3 Exclusión Mutua
- 2.4 Interbloqueo
- 2.4.1 Condiciones para el interbloqueo
- 2.4.2 Políticas de prevención de interbloqueo
- 2.5 Diagrama de transición de procesos
- 2.6 PCB (Process Control Block)

2.7 Comunicación entre procesos 2.8 IPC (Inter Process Communication) 2.8.1 Semáforos 2.8.2 Colas de mensajes 2.8.3 Memoria Compartida 2.8.4 Monitores 2.8.5 Sockets 2.9 Programador de tareas 2.9.1 Tipos 2.9.2 Disciplinas/Algoritmos 2.10 Lenguajes para comunicación entre procesos y sistemas distribuidos 2.10.1 Go 2.10.2 Rust 2.11 Tecnologías relacionadas a procesamiento concurrente 2.11.1 Conceptos relacionados 2.11.1.1 Balanceo de Carga 2.11.1.1.1 LB de capa 4 y 7 Proxies 2.11.1.2 2.11.1.3 **Brokers** 2.11.1.4 Streaming 2.11.1.5 Web Sockets 2.11.1.5.1 Comet 2.11.1.6 Map Reduce 2.11.1.7 NoSOL 2.11.1.8 Cache 2.11.2 Brokers 2.11.2.1 RabbitMQ 2.11.2.2 Kafka 2.12 Procesamiento concurrente 2.12.1 Concepto de concurrencia 2.12.2 Concepto de paralelismo 2.12.3 Arquitecturas de Paralelismo 3. Tercera unidad: Algoritmos y construcción de sistemas concurrentes 3.2 Hilos 3.2.1 Arquitecturas 3.3 Técnicas para crear concurrencia 3.4 Modelos de concurrencia en servidores web 3.5 Algoritmo de Dekker 3.5.1 Primer Algoritmo (Sincronización Forzada) 3.5.2 Segundo Algoritmo (Interbloqueo) 3.5.3 Tercer Algoritmo (No se garantiza la Exclusión Mutua) 3.5.4 Cuarto Algoritmo (Postergación Indefinida) 3.6 Problemas clásicos de concurrencia

- 3.6.1 Productor Consumidor
- 3.6.2 Lectores y Escritores
- 3.6.3 Filósofos comensales
- 3.6.4 Barbero Dormilón
- 3.6.5 Fumadores de cigarros
- 3.7 Sistemas Distribuidos
- 3.7.1 Remote Procedure Call contemporáneos
- 3.7.1.1 RPC con gRPC
- 3.7.1.2 Kubernetes
- 3.7.1.2.1 Arquitectura
- 3.7.1.2.2 Casos de uso
- 3.7.1.3 NoSQL y Sistemas distribuidos
- 3.7.1.3.1 Redis
- 3.7.1.3.1 MongoDB
- 3.8 Service Mesh
- 3.8.1 Linkerd
- 3.9 Ingeniería de Caos
- 3.9.1 Chaos Mesh

BIBLIOGRAFIA

- Sistemas Operativos (William Stallings)
- Contenido Sistemas Operativos de Universidad Rudgers, Paul Krzyzanowski, New Jersey

LISTA DE CATEDRÁTICOS

CURSO	SECCIÓN	SALÓN	INICIO	FIN	L	M	M	J	V	S	CATEDRÁTICOS
Sistemas	N		18:10	19:50	X		x				ING. SERGIO MENDEZ
Operativos 1		VIRTUAL									AGUILAR