Active Bayesian Causal Inference

A Bayesian Active Learning Framework for Integrated Causal Discovery and Reasoning

Julius von Kügelgen

Max Planck Institute for Intelligent Systems, Tübingen & University of Cambridge

June 29, 2022

Joint work with:

Active Bayesian Causal Inference

Christian Toth TU Graz Lars Lorch

Christian Knoll

Andreas Krause ETH Zürich Franz Pernkopf
TU Graz

Robert Peharz* TU Graz

Julius von Kügelgen*
MPI for Intelligent Systems, Tübingen
University of Cambridge

Outline

- Motivation: Integrating Causal Discovery and Reasoning
- 2 Active Bayesian Causal Inference (ABCI) Framework
- 3 Tractable ABCI for Nonlinear Additive Noise Models
- Preliminary Experiments
- 5 Discussion: Related Work, Limitations, and Extensions

Causal Discovery vs Causal Reasoning

1. Causal Discovery

Infer the causal graph/SCM from data and assumptions.

2. Causal Reasoning

Assuming the causal model is known, (identify &) estimate some query.

This work: What if we are interested in causal reasoning, but do not have access to a causal model a priori?

- 2-stage approach uneconomical for actively-collected interventional data:
 - causal query of interest may not require a fully-specified causal model
 - epistemic uncertainty in causal model should be taken into account

Causal Discovery vs Causal Reasoning

1. Causal Discovery

Infer the causal graph/SCM from data and assumptions.

2. Causal Reasoning

Assuming the causal model is known, (identify &) estimate some query.

This work: What if we are interested in causal reasoning, but do not have access to a causal model a priori?

- 2-stage approach uneconomical for actively-collected interventional data:
 - causal query of interest may not require a fully-specified causal model
 - epistemic uncertainty in causal model should be taken into account

Causal Discovery vs Causal Reasoning

1. Causal Discovery

Infer the causal graph/SCM from data and assumptions.

2. Causal Reasoning

Assuming the causal model is known, (identify &) estimate some query.

This work: What if we are interested in causal reasoning, but do not have access to a causal model a priori?

2-stage approach uneconomical for actively-collected interventional data:

- causal query of interest may not require a fully-specified causal model
- epistemic uncertainty in causal model should be taken into account

Outline

- Motivation: Integrating Causal Discovery and Reasoning
- 2 Active Bayesian Causal Inference (ABCI) Framework
- Tractable ABCI for Nonlinear Additive Noise Models
- 4 Preliminary Experiments
- Discussion: Related Work, Limitations, and Extensions

Big Picture

To perform causal reasoning, we:

- lacktriangle Postulate a mathematically well-defined causal model ightarrow SCMs.
- ② Reduce causal queries to epistemic questions, i.e., what and how much is known about the causal model \rightarrow Bayesian approach.
- Ocllect interventional data to reduce our uncertainty in the causal query of interest → experimental design/active learning.

Big Picture

To perform causal reasoning, we:

- $\textbf{ 0} \ \, \text{Postulate a mathematically well-defined causal model} \, \rightarrow \, \text{SCMs}.$
- ② Reduce causal queries to epistemic questions, i.e., what and how much is known about the causal model \rightarrow Bayesian approach.
- Ocllect interventional data to reduce our uncertainty in the causal query of interest → experimental design/active learning.

Big Picture

To perform causal reasoning, we:

- $\textbf{ 0} \ \, \text{Postulate a mathematically well-defined causal model} \, \rightarrow \, \text{SCMs}.$
- ② Reduce causal queries to epistemic questions, i.e., what and how much is known about the causal model \rightarrow Bayesian approach.
- Ocllect interventional data to reduce our uncertainty in the causal query of interest → experimental design/active learning.

Structural Causal Models (SCMs)

Definition (Pearl 2009)

An SCM \mathcal{M} over endogenous (observed) variables $\mathbf{X} = \{X_1, \dots, X_d\}$ and exogenous (latent) variables $\mathbf{U} = \{U_1, \dots, U_d\}$ consists of:

structural equations, or mechanisms,

$$X_i := f_i(\mathbf{Pa}_i, U_i), \qquad \text{for} \qquad i \in \{1, \dots, d\}, \tag{1}$$

which assign the value of each X_i as a deterministic function f_i of its direct causes, or causal parents, $\mathbf{Pa}_i \subseteq \mathbf{X} \setminus \{X_i\}$ and U_i ;

2 a joint distribution $p(\mathbf{U})$ over the exogenous variables.

The corresponding causal graph G is assumed to be acyclic

 $p(X \mid \mathcal{M}) = \text{pushforward of } p(U) \text{ through the causal mechanisms } (1).$

Interventions: modify (1), $do(X_i = \tilde{f}_i(\mathbf{Pa}_i, U_i))$, e.g., $do(X_2 = 0)$

Structural Causal Models (SCMs)

Definition (Pearl 2009)

An SCM \mathcal{M} over endogenous (observed) variables $\mathbf{X} = \{X_1, \dots, X_d\}$ and exogenous (latent) variables $\mathbf{U} = \{U_1, \dots, U_d\}$ consists of:

structural equations, or mechanisms,

$$X_i := f_i(\mathbf{Pa}_i, U_i), \qquad \text{for} \qquad i \in \{1, \dots, d\}, \tag{1}$$

which assign the value of each X_i as a deterministic function f_i of its direct causes, or causal parents, $\mathbf{Pa}_i \subseteq \mathbf{X} \setminus \{X_i\}$ and U_i ;

② a joint distribution $p(\mathbf{U})$ over the exogenous variables.

The corresponding causal graph G is assumed to be acyclic.

 $p(X \mid \mathcal{M}) = \text{pushforward of } p(U) \text{ through the causal mechanisms } (1).$

Interventions: modify (1), $do(X_i = \tilde{f}_i(\mathbf{Pa}_i, U_i))$, e.g., $do(X_2 = 0)$

Epistemic challenge: true causal model \mathcal{M}^* is not (completely) known.

Bayesian approach:

- ① place a prior $p(\mathcal{M})$ over causal models,
- ② collect data \mathcal{D} from the true model \mathcal{M}^{\star} ,
- o compute the posterior via Bayes rule:

$$p(\mathcal{M} \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M})}{p(\mathcal{D})} = \frac{p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M})}{\int p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M}) d\mathcal{M}}.$$

- ullet parametrise the class of models \mathcal{M} , and
- perform posterior inference over this model class.

Epistemic challenge: true causal model \mathcal{M}^* is not (completely) known.

Bayesian approach:

- place a prior $p(\mathcal{M})$ over causal models,
- 2 collect data \mathcal{D} from the true model \mathcal{M}^* ,
- o compute the posterior via Bayes rule:

$$p(\mathcal{M} \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M})}{p(\mathcal{D})} = \frac{p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M})}{\int p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M}) d\mathcal{M}}.$$

- ullet parametrise the class of models ${\mathcal M}$, and
- perform posterior inference over this model class.

Epistemic challenge: true causal model \mathcal{M}^* is not (completely) known.

Bayesian approach:

- place a prior $p(\mathcal{M})$ over causal models,
- 2 collect data \mathcal{D} from the true model \mathcal{M}^* ,
- ompute the posterior via Bayes rule

$$p(\mathcal{M} \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M})}{p(\mathcal{D})} = \frac{p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M})}{\int p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M}) d\mathcal{M}}.$$

- ullet parametrise the class of models ${\mathcal M}$, and
- perform posterior inference over this model class.

Epistemic challenge: true causal model \mathcal{M}^* is not (completely) known.

Bayesian approach:

- place a prior $p(\mathcal{M})$ over causal models,
- ② collect data \mathcal{D} from the true model \mathcal{M}^{\star} ,
- compute the posterior via Bayes rule:

$$p(\mathcal{M} \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M})}{p(\mathcal{D})} = \frac{p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M})}{\int p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M}) d\mathcal{M}}.$$

- ullet parametrise the class of models \mathcal{M} , and
- perform posterior inference over this model class.

Epistemic challenge: true causal model \mathcal{M}^* is not (completely) known.

Bayesian approach:

- place a prior $p(\mathcal{M})$ over causal models,
- ② collect data \mathcal{D} from the true model \mathcal{M}^{\star} ,
- ompute the posterior via Bayes rule:

$$p(\mathcal{M} \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M})}{p(\mathcal{D})} = \frac{p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M})}{\int p(\mathcal{D} \mid \mathcal{M}) p(\mathcal{M}) d\mathcal{M}}.$$

- ullet parametrise the class of models \mathcal{M} , and
- perform posterior inference over this model class.

Target Causal Query

Causal query function q specifies a *target causal query* $Y = q(\mathcal{M})$:

Causal Discovery: $Y = q_{CD}(\mathcal{M}) = G$

Partial Causal Discovery: $Y = q_{PCD}(\mathcal{M}) = \phi(G)$

Causal Model Learning: $Y = q_{\text{\tiny CML}}(\mathcal{M}) = \mathcal{M}$

Causal Reasoning: $Y = q_{CR}(\mathcal{M}) = \{p^{do(\boldsymbol{X}_{\mathcal{I}(j)})}(X_j \mid \mathcal{M})\}_{j \in \mathcal{J}},$

Bayesian inference naturally extends to the *query posterior*:

$$p(Y \mid \mathcal{D}) = \int p(Y \mid \mathcal{M}) \, p(\mathcal{M} \mid \mathcal{D}) \, d\mathcal{M} = \mathbb{E}_{\mathcal{M} \mid \mathcal{D}} [p(Y \mid \mathcal{M})],$$

Target Causal Query

Causal query function q specifies a *target causal query* $Y = q(\mathcal{M})$:

Causal Discovery:
$$Y = q_{\text{CD}}(\mathcal{M}) = G$$

Partial Causal Discovery:
$$Y = q_{PCD}(\mathcal{M}) = \phi(G)$$

Causal Model Learning:
$$Y = q_{\text{\tiny CML}}(\mathcal{M}) = \mathcal{M}$$

Causal Reasoning:
$$Y = q_{CR}(\mathcal{M}) = \{p^{do(\boldsymbol{X}_{\mathcal{I}(j)})}(X_j \mid \mathcal{M})\}_{j \in \mathcal{J}},$$

Bayesian inference naturally extends to the query posterior.

$$p(Y \mid \mathcal{D}) = \int p(Y \mid \mathcal{M}) \, p(\mathcal{M} \mid \mathcal{D}) \, d\mathcal{M} = \mathbb{E}_{\mathcal{M} \mid \mathcal{D}}[p(Y \mid \mathcal{M})],$$

Active Learning with Sequential Interventions

At each time t, can perform an experiment a_t and observe outcome:

$$\mathbf{x}^t = \{\mathbf{x}^{t,n}\}_{n=1}^{N_t}, \qquad \mathbf{x}^{t,n} \overset{\text{i.i.d.}}{\sim} p^{\mathsf{do}(a_t)}(\mathbf{X} \mid \mathcal{M}^{\star})$$

Design experiment a_t to be maximally informative about causal query Y:

$$\max_{a_t} \mathsf{I}(Y; \boldsymbol{X}^t \,|\, \boldsymbol{x}^{1:t-1})$$

where X^t follows the predictive interventional distribution:

$$m{X}^t \sim p^{\mathsf{do}(a_t)}(m{X} \,|\, m{x}^{1:t-1}) \propto \int p^{\mathsf{do}(a_t)}(m{X} \,|\, \mathcal{M}) \, p(\mathcal{M} \,|\, m{x}^{1:t-1}) \, \mathrm{d}\mathcal{M}.$$

Active Learning with Sequential Interventions

At each time t, can perform an experiment a_t and observe outcome:

$$\mathbf{x}^t = \{\mathbf{x}^{t,n}\}_{n=1}^{N_t}, \qquad \mathbf{x}^{t,n} \overset{\text{i.i.d.}}{\sim} p^{\mathsf{do}(a_t)}(\mathbf{X} \mid \mathcal{M}^{\star})$$

Design experiment a_t to be maximally informative about causal query Y:

$$\max_{a_t} I(Y; X^t | x^{1:t-1})$$

where X^t follows the predictive interventional distribution:

$$m{X}^t \sim p^{\mathsf{do}(a_t)}(m{X} \,|\, m{x}^{1:t-1}) \propto \int p^{\mathsf{do}(a_t)}(m{X} \,|\, \mathcal{M}) \, p(\mathcal{M} \,|\, m{x}^{1:t-1}) \, \mathrm{d}\mathcal{M}.$$

Outline

- Motivation: Integrating Causal Discovery and Reasoning
- 2 Active Bayesian Causal Inference (ABCI) Framework
- 3 Tractable ABCI for Nonlinear Additive Noise Models
- 4 Preliminary Experiments
- 5 Discussion: Related Work, Limitations, and Extensions

Model Class and Parametrisation

Nonlinear additive Gaussian noise models:

$$X_i := f_i(\mathbf{Pa}_i) + U_i, \quad \text{with} \quad U_i \stackrel{\text{ind}}{\sim} \mathcal{N}(0, \sigma_i^2) \quad \text{for} \quad i \in \{1, \dots, d\}, \quad (2)$$

Mutually independent $U_i \rightarrow \text{causal sufficiency/no hidden confounding.}$

Can parametrise such models \mathcal{M} as triples $\mathcal{M}=(G, \boldsymbol{f}, \sigma^2)$, where

- G is a causal DAG,
- $f = (f_1, \dots, f_d)$ are functions over the parent sets implied by G,
- $\sigma^2 = (\sigma_1^2, \dots, \sigma_d^2)$ are the Gaussian noise variances.

Interventional Likelihood

Consider hard interventions $do(a_t) = do(X_{\mathcal{I}} = x_{\mathcal{I}})$ for $X_{\mathcal{I}} \subseteq W$.

Due to causal sufficiency and Gaussian noise

$$\begin{split} p^{\mathsf{do}(a_t)}(\boldsymbol{X} \mid G, \boldsymbol{f}, \sigma^2) &= \mathbf{1}_{\boldsymbol{X}_{\mathcal{I}} = \boldsymbol{x}_{\mathcal{I}}} \prod_{j \notin \mathcal{I}} p(X_j \mid \mathsf{Pa}_j^G) \\ &= \mathbf{1}_{\boldsymbol{X}_{\mathcal{I}} = \boldsymbol{x}_{\mathcal{I}}} \prod_{j \notin \mathcal{I}} \mathcal{N}(f_j(\mathsf{Pa}_j^G), \sigma_j^2). \end{split}$$

The likelihood of the entire dataset $x^{1:t}$ collected up to time t is:

$$p(\mathbf{x}^{1:t} \mid G, \mathbf{f}, \sigma^2) = \prod_{\tau=1}^{t} p^{\mathsf{do}(a_{\tau})}(\mathbf{x}^{\tau} \mid G, \mathbf{f}, \sigma^2)$$
$$= \prod_{\tau=1}^{t} \prod_{n=1}^{N_t} p^{\mathsf{do}(a_{\tau})}(\mathbf{x}^{\tau, n} \mid G, \mathbf{f}, \sigma^2).$$

Interventional Likelihood

Consider hard interventions $do(a_t) = do(X_{\mathcal{I}} = x_{\mathcal{I}})$ for $X_{\mathcal{I}} \subseteq W$.

Due to causal sufficiency and Gaussian noise:

$$egin{aligned} p^{ ext{do}(a_t)}(\pmb{X} \mid G, \pmb{f}, \pmb{\sigma}^2) &= \pmb{1}_{\pmb{X}_{\mathcal{I}} = \pmb{x}_{\mathcal{I}}} \prod_{j
ot\in \mathcal{I}} p(X_j \mid \mathsf{Pa}_j^G) \ &= \pmb{1}_{\pmb{X}_{\mathcal{I}} = \pmb{x}_{\mathcal{I}}} \prod_{j
ot\in \mathcal{I}} \mathcal{N}(f_j(\mathsf{Pa}_j^G), \sigma_j^2). \end{aligned}$$

The likelihood of the entire dataset $x^{1:t}$ collected up to time t is:

$$p(\mathbf{x}^{1:t} \mid G, \mathbf{f}, \sigma^2) = \prod_{\tau=1}^{t} p^{\mathsf{do}(a_{\tau})}(\mathbf{x}^{\tau} \mid G, \mathbf{f}, \sigma^2)$$
$$= \prod_{\tau=1}^{t} \prod_{n=1}^{N_t} p^{\mathsf{do}(a_{\tau})}(\mathbf{x}^{\tau,n} \mid G, \mathbf{f}, \sigma^2).$$

Interventional Likelihood

Consider hard interventions $do(a_t) = do(X_{\mathcal{I}} = x_{\mathcal{I}})$ for $X_{\mathcal{I}} \subseteq W$.

Due to causal sufficiency and Gaussian noise:

$$egin{aligned} p^{\mathsf{do}(a_t)}(\pmb{X} \mid G, \pmb{f}, \pmb{\sigma}^2) &= \mathbf{1}_{\pmb{X}_{\mathcal{I}} = \pmb{x}_{\mathcal{I}}} \prod_{j
ot\in \mathcal{I}} p(X_j \mid \mathsf{Pa}_j^G) \ &= \mathbf{1}_{\pmb{X}_{\mathcal{I}} = \pmb{x}_{\mathcal{I}}} \prod_{j
ot\in \mathcal{I}} \mathcal{N}(f_j(\mathsf{Pa}_j^G), \sigma_j^2). \end{aligned}$$

The likelihood of the entire dataset $x^{1:t}$ collected up to time t is:

$$p(\mathbf{x}^{1:t} \mid G, \mathbf{f}, \sigma^2) = \prod_{\tau=1}^{t} p^{\mathsf{do}(a_{\tau})}(\mathbf{x}^{\tau} \mid G, \mathbf{f}, \sigma^2)$$
$$= \prod_{\tau=1}^{t} \prod_{n=1}^{N_t} p^{\mathsf{do}(a_{\tau})}(\mathbf{x}^{\tau,n} \mid G, \mathbf{f}, \sigma^2).$$

Model Prior

For a given causal graph G, distinguish between

- root nodes $\mathbf{R}(G) = \{i \in [d] : \mathbf{Pa}_i^G = \emptyset\}$ with $f_i = \text{const}$
- non-root nodes $NR(G) = [d] \setminus R(G)$.

Place the following structured prior over SCMs $\mathcal{M} = (G, \mathbf{f}, \sigma^2)$:

$$p(\mathcal{M}) = p(G) \prod_{i \in R(G)} p(f_i, \sigma_i^2 \mid G) \prod_{j \in NR(G)} p(f_j \mid G) p(\sigma_j^2 \mid G)$$

Model Prior

For a given causal graph G, distinguish between

- root nodes $\mathbf{R}(G) = \{i \in [d] : \mathbf{Pa}_i^G = \varnothing\}$ with $f_i = \text{const}$
- non-root nodes $NR(G) = [d] \setminus R(G)$.

Place the following structured prior over SCMs $\mathcal{M} = (G, \mathbf{f}, \sigma^2)$:

$$p(\mathcal{M}) = p(G) \prod_{i \in \mathbf{R}(G)} p(f_i, \sigma_i^2 \mid G) \prod_{j \in \mathbf{NR}(G)} p(f_j \mid G) p(\sigma_j^2 \mid G).$$

Graphical Model Representation

Model Posterior

Given $\mathbf{x}^{1:t}$, the posterior over SCMs $\mathcal{M}=(G,\mathbf{f},\sigma^2)$ can be written as

$$p(\mathcal{M} \mid \boldsymbol{x}^{1:t}) = p(G \mid \boldsymbol{x}^{1:t}) \prod_{i \in R(G)} p(f_i, \sigma_i^2 \mid \boldsymbol{x}^{1:t}, G) \prod_{j \in NR(G)} p(f_j, \sigma_j^2 \mid \boldsymbol{x}^{1:t}, G).$$

For root nodes: conjugate N- $\Gamma^{-1}(\mu_i, \lambda_i, \alpha_i^R, \beta_i^R)$ priors on $p(f_i, \sigma_i^2 \mid G)$ \Longrightarrow closed form for $p(f_i, \sigma_i^2 \mid \mathbf{x}^{1:t}, G)$.

The graph and non-root node posteriors are more tricky:

$$p(G \mid \mathbf{x}^{1:t}) = \frac{p(\mathbf{x}^{1:t} \mid G) p(G)}{p(\mathbf{x}^{1:t})},$$

$$p(f_j, \sigma_j^2 \mid \mathbf{x}^{1:t}, G) = \frac{p(\mathbf{x}^{1:t} \mid G, f_j, \sigma_j^2) p(f_j, \sigma_j^2 \mid G)}{p(\mathbf{x}^{1:t} \mid G)}.$$

Challenge 1: Marginalising out the Functions

$$p(\mathbf{x}^{1:t} \mid G) = \int p(\mathbf{x}^{1:t} \mid G, f_j, \sigma_j^2) \, p(f_j \mid G) \, p(\sigma_j^2 \mid G) \, \mathrm{d}f_j \, \mathrm{d}\sigma_j^2$$

Gaussian processes $(GPs)^1$: nonlinear functions + analytical expressions.

$$p(f_j | G, \kappa_j) = \mathcal{GP}(0, k_j^G(\cdot, \cdot; \kappa_j)),$$

$$p(\sigma_j^2 | G) = \Gamma(\alpha_j^\sigma, \beta_j^\sigma),$$

$$p(\kappa_j | G) = \Gamma(\alpha_j^\kappa, \beta_j^\kappa)$$

where $k_j^G(\cdot,\cdot;\kappa_j)$ is a covariance function over \mathbf{Pa}_j^G with length scales κ_j .

 \implies closed-form GP-marginal likelihood $p(\mathbf{x}^{1:t} \mid G, \sigma_j^2, \kappa_j)$, posteriors $p(f_j \mid \mathbf{x}^{1:t}, G, \sigma_j^2, \kappa_j)$ and predictive posteriors $p(\mathbf{X} \mid \mathbf{x}^{1:t}, G, \sigma^2, \kappa)$

¹Williams and Rasmussen 2006

Challenge 2: Marginalising out the GP-Hyperparameters

In general, no analytical expression for $p(\sigma_j^2, \kappa_j \mid \mathbf{x}^{1:t}, G)$.

Approximate expectations w.r.t. posterior with MAP estimate $(\hat{\sigma}_i^2, \hat{\kappa}_j)$:

$$p(f_j \mid \boldsymbol{x}^{1:t}, G) \approx p(f_j \mid \boldsymbol{x}^{1:t}, G, \hat{\sigma}_j^2, \hat{\boldsymbol{\kappa}}_j)$$

obtained via gradient ascent on the log posterior

$$\nabla \log p(\sigma_j^2, \kappa_j \mid \mathbf{x}^{1:t}, G) = \nabla \log p(\mathbf{x}^{1:t} \mid G, \sigma_j^2, \kappa_j) + \nabla \log p(\sigma_j^2, \kappa_j \mid G).$$

Challenge 2: Marginalising out the GP-Hyperparameters

In general, no analytical expression for $p(\sigma_i^2, \kappa_j | \mathbf{x}^{1:t}, G)$.

Approximate expectations w.r.t. posterior with MAP estimate $(\hat{\sigma}_{i}^{2}, \hat{\kappa}_{j})$:

$$p(f_j \mid \mathbf{x}^{1:t}, G) \approx p(f_j \mid \mathbf{x}^{1:t}, G, \hat{\sigma}_j^2, \hat{\kappa}_j)$$

obtained via gradient ascent on the log posterior:

$$\nabla \log p(\sigma_j^2, \kappa_j \mid \mathbf{x}^{1:t}, G) = \nabla \log p(\mathbf{x}^{1:t} \mid G, \sigma_j^2, \kappa_j) + \nabla \log p(\sigma_j^2, \kappa_j \mid G).$$

Challenge 3: Marginalising out the Graphs

$$p(\mathbf{x}^{1:t}) = \sum_{G} p(\mathbf{x}^{1:t} \mid G) p(G)$$

Intractable for $d \ge 5$ (# DAGs grows super-exponentially in d).

DiBS (Lorch et al. 2021): continuous prior p(Z) models G via $p(G \mid Z)$ and simultaneously enforces acyclicity of G.

 \rightarrow can efficiently infer expectations w.r.t. $p(G \mid x^{1:t})$ via $p(Z \mid x^{1:t})$.

Stein Variational Gradient Descent² to approximately infer $p(Z | x^{1:t})$.

²Liu and Wang 2016

Challenge 3: Marginalising out the Graphs

$$p(\mathbf{x}^{1:t}) = \sum_{G} p(\mathbf{x}^{1:t} \mid G) p(G)$$

Intractable for $d \ge 5$ (# DAGs grows super-exponentially in d).

DiBS (Lorch et al. 2021): continuous prior p(Z) models G via $p(G \mid Z)$ and simultaneously enforces acyclicity of G.

 \rightarrow can efficiently infer expectations w.r.t. $p(G \mid \mathbf{x}^{1:t})$ via $p(\mathbf{Z} \mid \mathbf{x}^{1:t})$.

Stein Variational Gradient Descent² to approximately infer $p(\mathbf{Z} \mid \mathbf{x}^{1:t})$.

²Liu and Wang 2016.

Graphical Model Representation

Experimental Design

Given:

- previously collected data $\mathcal{D} = \mathbf{x}^{1:t-1}$,
- target causal query Y,

choose optimal next intervention $a_t^* = (\mathcal{I}^*, \mathbf{x}_{\mathcal{I}}^*)$ by maximising

$$U_{Y}(a) = H(\boldsymbol{X}^{t} \mid \mathcal{D}) + \mathbb{E}_{\mathcal{M} \mid \mathcal{D}} \left[\mathbb{E}_{\boldsymbol{X}^{t}, Y \mid \mathcal{M}} \left[\log \mathbb{E}_{\mathcal{M}' \mid \mathcal{D}} \left[p(\boldsymbol{X}^{t} \mid \mathcal{M}') \, p(Y \mid \mathcal{M}') \right] \right] \right]$$

Nested, bi-level optimization scheme:

$$\begin{array}{ll} \forall \mathcal{I}: & \textbf{\textit{x}}_{\mathcal{I}}^* \in \arg\max_{\textbf{\textit{x}}_{\mathcal{I}}} U_Y(\mathcal{I},\textbf{\textit{x}}_{\mathcal{I}})\,, & \text{(Bayesian Optimisation)} \\ & \mathcal{I}^* \in \arg\max_{\mathcal{I}} U_Y(\mathcal{I},\textbf{\textit{x}}_{\mathcal{I}}^*)\,. & \text{(}|\mathcal{I}| \leq k, \text{ here: } k=1\text{)} \end{array}$$

Outline

- Motivation: Integrating Causal Discovery and Reasoning
- 2 Active Bayesian Causal Inference (ABCI) Framework
- Tractable ABCI for Nonlinear Additive Noise Models
- Preliminary Experiments
- 5 Discussion: Related Work, Limitations, and Extensions

Experiment 1: Causal Discovery and Model Learning

Random scale-free graphs, 20 nodes, 5 ground truth SCMs, 6 runs each; initialise with 5 obs. samples, then 3 samples per experiment.

- **1 ESHD:** Expected Structural Hamming Distance
- AUPRC: Area Under Precision Recall Curve (for predicting edges)
- Average I-KLD: Average KL between true and inferred single-node interventional distributions (proxy for SCM learning).

Experiment 2: Causal Reasoning

Unknown ground truth graph over 5 nodes:

Query: $p^{do(X_3=\psi)}(X_5 \mid \mathcal{M})$ with $\psi \sim \mathcal{U}[4,7]$

Outline

- Motivation: Integrating Causal Discovery and Reasoning
- 2 Active Bayesian Causal Inference (ABCI) Framework
- Tractable ABCI for Nonlinear Additive Noise Models
- 4 Preliminary Experiments
- 5 Discussion: Related Work, Limitations, and Extensions

Related Work on Active Bayesian Causal Discovery

Work	Target Query	Model Class
(Tong and Koller 2001), (Murphy 2001)	causal graph <i>G</i>	Conjugate Dirichlet-Multinomial
(Cho, Berger, and Peng 2016)	causal graph G	Conjugate linear Gaussian-inverse-Gamma
(Agrawal et al. 2019)	some function $\phi(G)$ of the causal graph G	Linear Gaussian
(Tigas et al. 2022)	causal graph G and parameters of f_i	Additive Gaussian noise with parametric neural network functions f_i
GP-DiBS-ABCI (ours)	some function $q(\mathcal{M})$ of the full SCM \mathcal{M}	Additive Gaussian noise with nonparametric functions f_i modeled by GPs

Limitations and Extensions

In our GP-DiBS-ABCI approach, we did not consider:

- hidden confounding
- cyclic causal relationships
- heteroscedastic noise
- soft interventions
- counterfactual queries
- causal models other than SCMs

Future work: implementations for richer model classes + extensions.

In principle, possible within the ABCI framework, but can be challenging with regard to model parametrisation and tractable inference.

Summary

Principled, flexible framework for active Bayesian causal inference:

Useful when actively collecting (some) interventional data is feasible, but expensive relative to compute (e.g., for biological applications).

References I

- [1] Raj Agrawal et al. "ABCD-strategy: Budgeted experimental design for targeted causal structure discovery". In: *The 22nd International Conference on Artificial Intelligence and Statistics*. PMLR. 2019, pp. 3400–3409.
- [2] Hyunghoon Cho, Bonnie Berger, and Jian Peng. "Reconstructing causal biological networks through active learning". In: PloS one 11.3 (2016), e0150611.
- [3] Qiang Liu and Dilin Wang. "Stein variational gradient descent: A general purpose Bayesian inference algorithm". In: Advances in Neural Information Processing Systems. Ed. by D Lee et al. Vol. 29. Curran Associates, Inc., 2016.
- [4] Lars Lorch et al. "DiBS: Differentiable Bayesian Structure Learning". In: Advances in Neural Information Processing Systems 34 (2021).
- [5] Kevin P Murphy. Active learning of causal Bayes net structure. 2001.
- [6] Judea Pearl. Causality. 2nd. Cambridge University Press, 2009.
- [7] Panagiotis Tigas et al. "Interventions, Where and How? Experimental Design for Causal Models at Scale". In: arXiv preprint arXiv:2203.02016 (2022).
- [8] Simon Tong and Daphne Koller. "Active learning for structure in Bayesian networks". In: International Joint Conference on Artificial Intelligence. Vol. 17. 2001, pp. 863–869.
- [9] Christopher KI Williams and Carl Edward Rasmussen. Gaussian Processes for Machine Learning. Vol. 2. MIT Press Cambridge, MA, 2006.