

ActivPal Week 10

Adnan Akbas
Ali Safdari
Mark Boon
Matthew Turkenburg
Colin Werkhoven

Table of contents

WHAT HAVE WE DONE PREVIOUS WEEK?

WHAT ARE OUR GOALS FOR THE NEW SPRINT?

What have we done in the previous week?

- Data cleaning
- Representativeness between training/validation and test sets
- Predicted the MET value using different models
- Compared these models to pick the best

Cleaning data

- In consultation with Annemieke, removed respondent 'BMR015' based on age (70+).
- After further analysis of respondents, removed 'BMR 032' and 'BMR 043' for the same reason
- Dataset exists of 23 respondents after cleaning

Representative training/validation and test split

- Test respondents set size: 3
- Training/validation respondents set size: 20
 - Training: 80%
 - Validation: 20%
- Used Random Forest to assure representativeness between training and test set.
 - The model should not be able to make distinction between training/validation respondents and test respondents
 - So ROC should be as close as possible to 0.5

Src: https://glassboxmedicine.com/

Predicting MET values

PREDICT MET VALUES FOR DIFFERENT ACTIVITIES

OUR APPROACH

- Random Forest Regression Model
- Used data from 23 respondents
- 3 used for testing
- 20 used for Train (80%) / Valid (20%)
- RFE Function that selects best features
- The issue? Small dataset since every respondent has only 5 rows of data

Predicting Walking MET value

The 5 Features for this model

- Sum of magnutide of acceleration
- Weight in kilograms
- Length in centimetres
- Age Category
- Meets Balance Guidelines

Applying Train + Valid Users

Applying Test Users

R^2 score: 0.4217384048976238 Mean absolute error: 0.58 MET

Predicting Running MET value

The 5 Features for this model

- Sum of magnutide of acceleration
- Weight in kilograms
- Length in centimetres
- Age Category
- Speed

Applying Train + Valid Users

R^2 score: 0.901083655528726 Mean absolute error: 0.7 MET

Accuracy: 87.63 %.

Applying Test Users

R^2 score: 0.6101151912596139 Mean absolute error: 1.5 MET

Predicting Cycling MET value

The 6 Features for this model

- SUM OF MAGNUTIDE OF ACCELERATION
- WEIGHT IN KILOGRAMS
- LENGTH IN CENTIMETRES
- BMI (CALCULATED FROM WEIGHT AND LENGTH)
- SPEED
- MEETS BALANCE GUIDELINES

Applying Train + Valid Users

R^2 score: 0.9411765429847458 Mean absolute error: 0.24 MET

Accuracy: 94.02 %.

Applying Test Users

Predicting Sitting + Standing MET value

The 5 Features for this model

- SUM OF MAGNUTIDE OF ACCELERATION
- WEIGHT IN KILOGRAMS
- LENGTH IN CENTIMETRES
- AGE CATEGORY
- ESTIMATED LEVEL

Applying Train + Valid Users

R^2 score: 0.09748643006469526 Mean absolute error: 0.23 MET

Accuracy: 85.76 %.

Applying Test Users

R^2 score: 0.3872709109153565 Mean absolute error: 0.25 MET

Predicting MET running – Multivariate Linear Regression

What are our goals for the new sprint?

- Begin to write the paper
- Validate correctness of our models with teachers and CBS

