一、填空题(共5小题,每小题3分,共15分)

1. 函数极限
$$\lim_{x \to x_0^-} f(x) = -\infty$$
 的 $G - \delta$ 定义是

$$\forall G > 0, \exists \delta > 0, \forall x : -\delta < x - x_0 < 0$$
 . $f(x) < -G$;

2. 设
$$a > b > 0$$
,则 $arctan a - arctan b$, $\frac{a-b}{1+a^2}$, $\frac{a-b}{1+b^2}$ 的从小到大的严格不等式的顺序是

$$\frac{a-b}{1+a^2}$$
 < arctan a - arctan $b < \frac{a-b}{1+b^2}$;

5. 反常积分
$$\int_{-\infty}^{0} \frac{xe^{-x}}{\left(1+e^{-x}\right)^2} dx = -\ln 2$$
.

$$\int_{a}^{x} tf\left(x^{2}-t^{2}\right) dt$$

1. 求极限 $\lim_{x\to 0} \frac{\int_0^x t f(x^2-t^2)dt}{\arcsin^4 x}$, 其中 f(x) 在 x=0 的邻域内连续,

得分

解:
$$\lim_{x\to 0} \frac{\int_0^x tf(x^2-t^2)dt}{\arcsin^4 x} = \frac{1}{2} \int_{x\to 0}^0 \frac{1}{2} \int_{x^2}^0 f(u)du}{x^4}$$

2. 求不定积分
$$\int \sqrt{x^2 - 1} dx$$
 .

解:
$$I = \int \sqrt{x^2 - 1} dx = x\sqrt{x^2 - 1} - \int x \cdot \frac{2x}{2\sqrt{x^2 - 1}} dx$$

$$=x\sqrt{x^2-1}-\int \frac{x^2-1+1}{\sqrt{x^2-1}}dx$$
4 \$\forall T

$$\int \sqrt{x^2 - 1} \, dx$$

$$=x\sqrt{x^2-1}-I-\int \frac{1}{\sqrt{x^2-1}}dx = x\sqrt{x^2-1}-I-\ln |x+\sqrt{x^2-1}|$$
6 \(\frac{\psi}{2}\)

所以,
$$I = \int \sqrt{x^2 - 1} dx = \frac{1}{2} x \sqrt{x^2 - 1} - \frac{1}{2} \ln \left| x + \sqrt{x^2 - 1} \right| + C$$
 ……8 分

$$I = \int \sqrt{x^2 - 1} dx = \int \tan t d \sec t \qquad \dots 4 \, \text{f}$$

$$= \tan t \cdot \sec t - \int \sec^3 t dt = \tan t \cdot \sec t - \int \sec t \cdot (\tan^2 t + 1) dt$$

$$= \tan t \cdot \sec t - I - \int \sec t dt = \tan t \cdot \sec t - \ln |\sec t + \tan t| - I \quad \dots 6 \implies$$

所以,
$$I = \frac{1}{2} \left[\tan t \cdot \sec t - \ln |\sec t + \tan t| \right] + C$$

$$= \frac{1}{2} x \sqrt{x^2 - 1} - \frac{1}{2} \ln \left| x + \sqrt{x^2 - 1} \right| + C \quad \dots \quad 8 \ \%$$

3. 计算定积分
$$\int_{-2a}^{-a} \frac{\sqrt{x^2 - a^2}}{x^4} dx$$
.

解:
$$\diamondsuit x = a \sec t$$
, ······2 分

$$\int_{-2a}^{-a} \frac{\sqrt{x^2 - a^2}}{x^4} dx = \int_{\frac{2\pi}{3}}^{\pi} \frac{-a^2 \tan^2 t \cdot \sec t}{a^4 \sec^4 t} dt = -\frac{1}{a^2} \int_{\frac{2\pi}{3}}^{\pi} \sin^2 t \cdot \cos t dt \qquad \cdots 6 \, \text{ }$$

$$= -\frac{1}{3a^2} \sin^3 t \Big|_{\frac{2\pi}{3}}^{\pi} = \frac{\sqrt{3}}{8a^2} \qquad \cdots 8 \, \text{ }$$

1. 设
$$x_1 = 2$$
,且 $x_{n+1} = \frac{3(1+x_n)}{3+x_n}$, $(n = 2, 3, \cdots)$.证明数列 $\{x_n\}$ 收敛,并求 $\lim_{n \to \infty} x_n$.

证明: (1) 由
$$x_1 = 2$$
, $x_{n+1} = \frac{3(1+x_n)}{3+x}$, $(n = 2,3,\cdots)$, 易知: $\forall n, x_n > 0$,

即数列
$$\{x_n\}$$
有下界,且 $x_2 = \frac{9}{5}$, $x_2 - x_1 < 0$ ······3 分

(2)
$$\forall n, x_{n+1} - x_n = \frac{3(1+x_n)}{3+x_n} - \frac{3(1+x_{n-1})}{3+x_{n-1}} = \frac{6(x_n - x_{n-1})}{(3+x_n)(3+x_{n-1})} < \frac{2}{3}(x_n - x_{n-1}) \quad \cdots \quad 6 \implies$$

又
$$x_2-x_1<0$$
,所以,利用归纳法,可证明: $\forall n,x_{n+1}-x_n<0$,即数列 $\left\{x_n\right\}$ 单调减少。

结合(1),利用单调有界性收敛定理,可知道,数列 $\{x_n\}$ 收敛。

(3) 设
$$\lim_{n\to\infty} x_n = A$$
,则在方程 $x_{n+1} = \frac{3(1+x_n)}{3+x_n}$ 两边令 $n\to\infty$,取极限,得到 $A = \frac{3(1+A)}{3+A}$,

解得
$$A = \sqrt{3}$$
, ($A = -\sqrt{3}$ 舍去), 故, $\lim_{n \to \infty} x_n = \sqrt{3}$ ······8 分

2. 设曲线
$$y = y(x)$$
 由方程 $y = 1 - xe^y$ 所确定,求它在点 $(0,1)$ 处的切线方程,并求 $\frac{d^2y}{dx^2}$.

解: (1) 在方程 $y=1-xe^y$ 两边同时对 x 求导,则

$$y' = -e^{y} - xe^{y} \cdot y'$$
, 解得 $y' = -\frac{e^{y}}{xe^{y} + 1}$,2 分

从而
$$y'|_{(0,1)} = -\frac{e^y}{re^y+1}|_{(0,1)} = -e$$

则曲线 y = y(x) 在点(0,1) 处的切线方程为: ex + y - 1 = 0 ……5 分

(2)
$$y'' = \frac{(xe^y + 2)e^{2y}}{(xe^y + 1)^3} = -\frac{(3-y)e^{2y}}{(2-y)^3}$$
8 $\%$

3. 求函数 $f(x) = x + \frac{x}{x^2 - 1}$ 的单调区间,极值以及凹凸区间和拐点(要求列表).

解: (1) 函数 f(x) 的定义域为: $x \neq \pm 1$

(2)
$$f'(x) = \frac{x^2(x+\sqrt{3})(x-\sqrt{3})}{(x^2-1)^2}$$
, $f''(x) = \frac{2x(x^2+3)}{(x^2-1)^3}$

令
$$f'(x) = 0$$
,得到 $x_1 = 0, x_2 = \sqrt{3}, x_3 = -\sqrt{3}$

令
$$f''(x) = 0$$
, 得到 $x_4 = 0$ ······2 分

(3) 列表如下

X	$\left(-\infty,-\sqrt{3}\right)$	$-\sqrt{3}$	$\left(-\sqrt{3},-1\right)$	(-1,0)	0	(0,1)	$\left(1,\sqrt{3}\right)$	$\sqrt{3}$	$\left(\sqrt{3},+\infty\right)$
f'(x)	+	0	_	_	0	_	_	0	+
f''(x)	_	_	_	+	0	_	+	+	+
f(x)		极 大 值 $f\left(-\sqrt{3}\right) = -\frac{3\sqrt{3}}{2}$	`		拐 点 (0,0)	7		极 小 值 $f\left(\sqrt{3}\right) = \frac{3\sqrt{3}}{2}$	ノ

----6分

(4) 函数的单调增区间是:
$$\left(-\infty, -\sqrt{3}\right]$$
, $\left[\sqrt{3}, +\infty\right]$, 单调减区间是: $\left[-\sqrt{3}, -1\right]$, $\left(-1, 1\right)$, $\left(1, \sqrt{3}\right]$;

函数的极大值为
$$f(-\sqrt{3}) = -\frac{3\sqrt{3}}{2}$$
;极小值为 $f(\sqrt{3}) = \frac{3\sqrt{3}}{2}$

函数的凹区间为: $(-\infty,-1)$, [0,1), 凸区间为: (-1,0], $(1,+\infty)$

函数的拐点为: (0,0),. ······8 分

4. 求双纽线 $r^2 = a^2 \cos(2\theta)$ 所围成图形的面积.

解:根据对称性,所求的面积为第一象限部分的4倍,则所求面积

$$A=4\times\frac{1}{2}\int_{0}^{\frac{\pi}{4}}a^{2}\cos(2\theta)d\theta \qquad \cdots 6 \ \%$$

$$=a^2$$
 ······8 \Re

得分

四、证明题(共2小题,每小题10分,共20分)

1. 设函数 f(x) 在 [0,1] 上二阶可导,且满足条件: $|f(x)| \le a, |f''(x)| \le b, \forall x \in [0,1]$,其中 a,b 为非负常数. 证明: $|f'(x)| \le 2a + \frac{b}{2}, \forall x \in [0,1]$.

证明: (1) 将 f(0), f(1)在 $\forall x \in [0,1]$ 处作二阶 Taylor 展开,则

$$f(0) = f(x) + f'(x)(0-x) + \frac{f''(\xi_1)}{2!}(0-x)^2, 0 < \xi_1 < x$$

$$f(1) = f(x) + f'(x)(1-x) + \frac{f''(\xi_2)}{2!}(1-x)^2, x < \xi_2 < 1$$
4 \(\frac{1}{2}\)

上两式相减,得到

$$f'(x) = f(1) - f(0) + \frac{f''(\xi_1)}{2}x^2 - \frac{f''(\xi_2)}{2}(1-x)^2$$
6

结合已知 $|f(x)| \le a, |f''(x)| \le b, \forall x \in [0,1]$, 及三角不等式, 有, 对 $\forall x \in [0,1]$,

$$|f'(x)| \le |f(1)| + |f(0)| + \frac{|f''(\xi_1)|}{2} x^2 + \frac{|f''(\xi_2)|}{2} (1 - x)^2 \qquad \dots 8 \ \%$$

$$\le 2a + \frac{b}{2} \left[x^2 + (1 - x)^2 \right] \le 2a + \frac{b}{2} \qquad \dots 10 \ \%$$

2. 证明: 函数 $f(x) = \ln(1+x)$ 在 $[0,+\infty)$ 上一致连续.

证明: (1) $\forall \varepsilon > 0, \forall x_1, x_2 \in [0, +\infty)$

(2) 利用 Lagrange 中值定理,有

$$f(x_1) - f(x_2) = \ln(1 + x_1) - \ln(1 + x_2) = \frac{x_1 - x_2}{1 + \xi}, \quad \dots 4$$

$$\xi$$
介于 x_1 , x_2 之间,则 $|f(x_1)-f(x_2)| = \frac{|x_1-x_2|}{1+\xi} \le |x_1-x_2|$ ······6分

(3) 取
$$\delta = \varepsilon > 0$$
,则,对 $\forall x_1, x_2 \in [0, +\infty): |x_1 - x_2| < \delta$ 时,有

$$|f(x_1)-f(x_2)| = \frac{|x_1-x_2|}{1+\xi} \le |x_1-x_2| < \varepsilon$$
9 \(\frac{\frac{1}{2}}{1+\xi}\)

故,函数
$$f(x) = \ln(1+x)$$
在 $[0,+\infty)$ 上一致连续。 ······10 分

设由
$$y = \frac{1}{x}$$
, $y = 0, x = 1, x = 2$ 所围成的曲边梯形被直线 $x = t(1 < t < 2)$ 分成 A,B 两部分,

得分

将 A, B 分别绕直线
$$x=t$$
 旋转一周, 所得旋转体体积分别为 $V_{\scriptscriptstyle A}$ 和 $V_{\scriptscriptstyle B}$,问 t 为何值时, $V_{\scriptscriptstyle A}+V_{\scriptscriptstyle B}$ 最小?.

解: (1)
$$V_A = 2\pi \int_1^t (t-x) \cdot \frac{1}{t} dx = 2\pi (t \ln t - t + 1)$$

$$V_B = 2\pi \int_{t}^{2} (x-t) \cdot \frac{1}{x} dx = 2\pi \left(t \ln t - t - t \ln 2 + 2 \right)$$

(2)
$$i \exists f(t) = V_4 + V_8 = 2\pi \left[2t \ln t - (2 + \ln 2)t + 3 \right]$$
4

令 $f'(t) = 2\pi [2 \ln t - \ln 2] = 0$, 得到 $t = \sqrt{2}$ (唯一) ·······8 分

又根据实际意义,所求的 V_A+V_B 的最小值存在

(或者因为
$$f''(\sqrt{2}) > 0$$
,所以 $f(\sqrt{2})$ 最小),

所以
$$t = \sqrt{2}$$
时, $V_A + V_B$ 最小。 ······9 分