Работа 2.1.1

Измерение удельной теплоемкости воздуха при постоянном давлении

Валеев Рауф Раушанович группа 825

25 февраля 2019 г.

Цель работы

- 1. измерение повышения температуры воздуха в результате подвода тепла при стационаром течении через стеклянную трубу;
- 2. Вычисление при постоянном давлении темплоемкости воздуха.

Введение

Теоретическая справка

Измерение теплоёмкости тел обычно производится в калориметрах, т.е. в сосудах, обеспечивающих теплоизоляцию исследуемого тела от внешней среды. При этом регистрируется изменение его температуры δT в зависимости от количества тепла δQ , полученного телом от некоторого нагревательного элемента внутри калориметра. Теплоёмкость тела в некотором процессе определяется как их отношение:

$$C = \frac{\delta Q}{\delta T} \tag{1}$$

Надёжность измерения определяется, в основном, качеством калориметра. Необходимо, чтобы количество тепла, затрачиваемое на нагревание исследуемого тела, существенно превосходило тепло, расходуемое на нагревание самого калориметра, а также на потери тепла из установки. При измерении теплоёмкости газов эти требования выполнить довольно трудно - масса газа в калориметре и, следовательно, количество тепла, идущее на его нагревание, как правило, малы. Для увеличения количества нагреваемого газа при неизменных размерах установки в нашей работе исследуемый газ (воздух) продувается через калориметр, внутри которого установлен нагреватель. При этом измеряются мощность нагревателя, масса воздуха, протекающего в единицу времени (расход), и приращение его температуры.

Рассмотрим газ, протекающий стационарно слева направо через трубу постоянного сечения, в кото-рой установлен нагревательный элемент (см.рис.1). Пусть за некоторое время dt через калориметр прошла малая порция газа массой dm = qdt, где q [кг/с] - массовый расход газа в трубе. Если мощность нагрева равна N, мощность тепловых потерь на обмен с окружающей средой $N_{\text{пот}}$, то порция получила тепло $\delta Q =$

Рис. 1: Нагрев газа при течении по трубе

 $(N-N_{\text{пот}})dt$. С другой стороны, по определению теплоёмкости (1): $\delta Q=cdm\Delta T$, где $\Delta T = T_2 - T_1$ - приращение температуры газа, и c — удельная (на единицу массы) теплоёмкость газа в рассматриваемом процессе. При малых расходах газа и достаточно большом диаметре трубы перепад давления на её концах мал, поэтому можно принять, что $P_1 pprox P_2 = P_0$, где P_0 - атмосферное давление. Следовательно, в условиях опыта измеряется удельная теплоёмкость при постоянном давлении c_P . Таким образом, получаем

$$C_p = \frac{N - N_{\text{nor}}}{q\Delta T} \tag{2}$$

Экспериментальная установка

Схема установки изображена на рис. 1. Воздух, нагнетаемый компрессором, прокачивается через калориметр. Калориметр представляет собой стеклянную цилиндрическую трубку с двойными стенками, запаянными с торцов. На внутреннюю поверхность стенок трубки нанесено серебряное покрытие для минимизации потерь тепла за счет излучения. Воздух из пространства между стенками калориметра откачан до высокого вакуума (10^{-5} торp) для минимизации потерь тепла, обусловленных теплопроводностью.

Рис. 1. Схема экспериментальной установки

Нагреватель в виде намотанной на пенопласт нихромовой проволоки расположен внутри калориметра непосредственно в воздушном потоке. Нагрев проволоки производится от регулируемого источника постоянного тока (ИП). Напряжение U на нагревателе и ток I через него регистрируются цифровыми мультиметрами. Таким образом, мощность нагрева равна

$$N = UI \tag{3}$$

Для измерения разности температур ΔT служит медно-константановая термопара. Один спай термопары расположен в струе воздуха, входящего в калориметр, и находится при комнатной температуре, а второй - в струе выходящего нагретого воздуха. Константановая проволока термопары расположена внутри калориметра, а медные проводники подключены к цифровому вольтметру. Возникающая в термопаре ЭДС ε пропорциональна разности температур ΔT спаев:

$$\varepsilon = \beta \Delta T \tag{4}$$

где $\beta = 40,7\frac{\text{мкB}}{^{\circ}C}$ - чувствительность медно-константановой термопары в рабочем диапазоне температур (20-30 °C). ЭДС регистрируется с помощью микровольтметра.

Объём воздуха, прошедшего через калориметр, измеряется газовым счётчиком Γ С. Для регулировки расхода служит кран К. Время Δt прохождения некоторого объема ΔV воздуха измеряется секундомером. Объёмный расход равен $\Delta V/\Delta t$, массовый расход может быть найден как

$$q = \rho_0 \frac{\Delta V}{\Delta t} \tag{5}$$

где ρ_0 - плотность воздуха при комнатной температуре, которая в свою очередь может быть получена из уравнения Менделеева–Клапейрона: $\rho_0=\frac{\mu P_0}{RT_0}$, где P_0 - атмосферное давление, T_0 - комнатная температура (в Кельвинах), $\mu=29,0$ г/моль - средняя молярная масса (сухого) воздуха.

Учитывая особенности устройства калориметра, следует ожидать, что мощность нагревателя расходуется не только на нагрев массы прокачиваемого воздуха, но и частично теряется за счет нагрева внутренних стенок термостата и рассеяния тепла через торцы термостата. Можно предположить, что при небольшом нагреве ($\Delta T << T_0$) мощность потерь тепла $N_{\text{пот}}$ прямо пропорциональна разности температур:

$$N_{\text{пот}} = \alpha \Delta T \tag{6}$$

где α — некоторая константа. При этом условии основное соотношение (2) принимает вид

$$N = (c_p q + \alpha) \Delta T \tag{7}$$

Следовательно, при фиксированном расходе воздуха (q=const) подводимая мощность и разность температур связаны прямой пропорциональностью $(\Delta T(N)-$ линейная функция).

Ход работы

Подготовка к эксперименту

1. подготавливаем к работе газовый счетчик: проверяем, заполнен ли он водой, устанавливаем счетчик по уровню.

- 2. Начинать измерения следует при условии, что калориметр охлажден до комнатной температуры. Для охлаждения включаем компрессор и открывая кран K, устанавливаем максимально возможный расход воздуха. Источник постоянного тока при этом выключен! Для проверки корректности работы газового счетчика стоит убедиться, что при постоянном расходе его стрелка вращается равномерно.
- **3.** Включаем вольтметр, предназначенный для измерения ЭДС термопары. Если показания вольтметра отличны от нуля, продуваем калориметр воздухом до полного охлаждения калориметра (т.е. до установления нуля на цифровом дисплее вольтметра).
- **4.** Запишем значения температуры и давления в комнате, необходимые для расчета расхода прокачиваемого воздуха. По психрометру определяем значение влажности воздуха в комнате.

	Значение	σ
р, Па	98340	1
$T, \circ C$	25,2	0,1
φ	71%	1%

5. С помощью газового счетчика и секундомера измерьте максимальный расход воздуха $\Delta V/\Delta t$ (в л/с). Измерения проведите несколько раз и определите среднее значение расхода. Вычислите соответствующий массовый расход воздуха $q_{max}\approx 0,095$ г/с, пользуясь формулой (5).

ho, г/л	$\sigma_{ ho},\ \Gamma/$ л	$C_{p \ theor}, \frac{\Delta \mathbf{x}}{\Gamma \cdot K}$
1,1502	$0,\!0005$	1

1						
ΔV , л	σ_V , л	$\Delta t, c$	σ_t , c	$q_{max(1)},\ \Gamma/\mathrm{c}$	σ_q , Γ/c	
5	0,1	60,6	0,5	$0,\!095$	0,002	
5	0,1	61,2	0,5	0,094	0,002	
5	0,1	60,8	0,5	0,095	0,002	

2						
ΔV , л	σ_V , л	$\Delta t, c$	σ_t , c	$q_{max(1)},\ \Gamma/\mathrm{c}$	σ_q , Γ/c	
2	0,1	70,7	0,5	0,033	0,002	
2	0,1	68,1	0,5	0,034	0,002	
3	0,1	103,8	0,5	0,033	0,002	

3						
ΔV , л	σ_V , л	$\Delta t, c$	σ_t , c	$q_{max(1)},\ \Gamma/\mathrm{c}$	$\sigma_q,~\Gamma/\mathrm{c}$	
1	0,1	60,6	0,5	0,019	0,002	
1	0,1	61,7	0,5	0,019	0,002	
1	0,1	60,3	0,5	0,019	0,002	

6. Оцениваем величину тока нагревателя I_0 , требуемого для нагрева воздуха на $\Delta T = 1^{\circ}C$. Для этого определяем теоретическое значение удельной теплоёмкости воздуха при постоянном давлении $c_{p \ theor} \ [\text{Дж/г·K}]$, считая воздух смесью двухатомных идеальных газов; оцениваем минимальную мощность $N_0 \approx (0,095 \pm 0,003)$ Вт $(N \geq$

 $c_p q \Delta T$), необходимую для нагрева газа при максимальном расходе q_{max} на $\Delta T_0 = 1^{\circ}C$; учитывая, что сопротивление проволоки нагревателя составляет приблизительно $R_H \approx 35~{\rm Om}$ и в процессе опыта практически не меняется, определияем искомое значение тока

$$I_0 = \sqrt{\frac{N_0}{R_H}} \approx (52 \pm 2) \ mA$$

Проведение измерений

- 7. Проведите измерение зависимости разности температур от мощности нагрева $\Delta T(N)$ при максимальном расходе воздуха $q_1 = q_{max}$. Рекомендуется измерить 4-5 точек в диапазоне температур ΔT от $\approx 2^{\circ}C$ до $\approx 10^{\circ}C$.
 - 7.1 Чтобы начать нагрев, включаем источник питания (ИП) нагревателя и устанавливаем на нём такое напряжение, чтобы ток через нить нагревателя составлял $I_1 \sim (2 \div 2, 5) I_0$ (см. п. 6). Записываем значения тока I и напряжения U в цепи. Рассчитайте мощность N нагрева, а также сопротивление нити нагревателя $R_{\rm H}$.
 - 7.2 После включения нагрева (или после изменения его мощности) дожидаемся установления стационарного состояния системы. Первоначальный прогрев калориметра происходит достаточно долго (~ 10 минут). Значения ЭДС ε вольтметра, подключенного к термопаре, должны оставаться постоянными (в пределах точности прибора) в течение 1-2 минут.
 - 7.3 По величине ε определите значение ΔT (см. (4)). Учитывая, что $\Delta T \propto N \propto I^2$, определяем значения токов накала, необходимые для того, чтобы равномерно повышать температуру нагрева ΔT до требуемого значения. Проводим измерения согласно пп. 7.1.-7.2, последовательно увеличивая ток нагрева до расчётных значений.
- **8.** Повторяем измерения по п. 7 по крайней мере ещё для одного значения расхода воздуха.

$q_1 = (0,095 \pm 0,002), \Gamma/c$						
I, MA	88,21	98,69	128,38	150,3	174,03	
σ_I , MA	0,01	0,01	0,01	0,01	0,01	
U, B	3,081	3,448	4,488	5,257	6,09	
σ_U , B	0,001	0,001	0,001	0,001	0,001	
$\Delta U_{thermopara}$, MKB	116	142	217	287	382	
$\sigma_{\Delta U_{thermopara}}$, MKB	1	1	1	1	1	
R, Om	34,93	34,94	34,96	34,98	34,99	
σ_R , Om	0,01	0,01	0,01	0,01	0,01	
N, B _T	0,2717	0,3403	0,5761	0,7901	1,0598	
σ_N , BT	0,0015	0,0015	0,0015	0,0015	0,0015	
$\Delta T, K$	2,85	3,49	5,33	7,05	9,39	
σ_{Delta_T}, K	0,02	0,02	0,02	0,02	0,02	

$q_2=(0,033\pm 0,001),$ г/с						
I, MA	42,64	55,77	65,1	99,74	110	
σ_I , MA	0,01	0,01	0,01	0,01	0,01	
U, B	1,5	1,968	2,297	3,522	3,854	
σ_U , B	0,001	0,001	0,001	0,001	0,001	
$\Delta U_{thermopara}$, MKB	105	122	157	320	380	
$\sigma_{\Delta U_{thermopara}}$, MKB	1	1	1	1	1	
R, Om	35,18	35,28	35,31	35,04	35,29	
σ_R , Om	0,01	0,01	0,01	0,01	0,01	
N, B _T	0,064	0,1098	0,15	0,3513	0,4239	
σ_N , B _T	0,0015	0,0015	0,0015	0,0015	0,0015	
$\Delta T, K$	2,58	3	3,86	7,86	9,33	
σ_{Delta_T}, K	0,02	0,02	0,02	0,02	0,02	

$q_3 = 0,019 \pm 0,001,$ г/с							
I, MA	40,75	51	71,93				
σ_I , MA	0,01	0,01	0,01				
U, B	1,427	1,786	2,523				
σ_U, B	0,001	0,001	0,001				
$\Delta U_{thermopara}$, MKB	115	150	250				
$\sigma_{\Delta U_{thermopara}}$, MKB	1	1	1				
R, Om	35,02	35,02	35,08				
σ_R , Om	0,01	0,01	0,01				
N, B _T	0,058	0,091	0,181				
σ_N , BT	0,0015	0,0015	0,0015				
$\Delta T, K$	2,82	3,69	6,14				
σ_{Delta_T}, K	0,02	0,02	0,02				

Обработка результатов измерений

9. Строим графики зависимости $\Delta T(N)$ для каждого расхода воздуха q. Проверяем, выполняется ли предположение о том, что тепловые потери пропорциональные разности температур. Аппроксимируя зависимость прямой y=kx, найдите угловые коэффициенты k для каждого расхода.

 Γ рафик для q_1

 Γ рафик для q_2

 Γ рафик для q_3

10. Анализируем зависимость наклона k от расхода q и, пользуясь формулой (7), определяем $c_p \approx (3,81\pm0,3)R$ Дж/(моль · K), $N_{\text{пот}}/N \approx (0,007\pm0,0015)$.

$k, B_T/K$	$\sigma_k, \mathrm{Bt/K}$	q, г/с	σ_q , Γ/c
0,11	0,006	0,095	0,002
0,044	0,006	0,033	0,002
0,028	0,006	0,019	0,002

 Γ рафик для c_p