Конспект по топологии I семестр (лекции Иванова Сергея Владимировича)

Тамарин Вячеслав

30 декабря 2019 г.

Оглавление

1	Оби	Общая топология								5					
	1.1	1.1 Метрические пространства								 	. 5				
	1.2	Топологические пространства .									 				. 5
	1.3	Внутренность, замыкание, грани									 			 	. 5
	1.4	Подпространства									 			 	. 5
	1.5	1.5 Сравнение топологий						 				. 5			
	1.6 База топологии								 				. 5		
					ранств						 			 	. 5
		1.7.1 Произ	ведение параме	етризуемі	ых метр	оическ	их пр	остр	анс	ТВ	 			 	. 6
		1.7.2 Тихон	овская тополог	Ru'							 				. 7
1.8 He		Непрерывнос	ГЬ								 			 	. 8
		1.8.1 Непре	рывность в мет	рических	х прост	рансти	вах .				 			 	. 9
		1.8.2 Липши	ицевы отображ	ения							 				. 10
		1.8.3 Компо	зиция непреры	вных отс	браже	ний .					 		 	 	. 10
	1.9	Гомеоморфиз	м								 		 	 	. 10
	1.10	Аксиомы									 		 	 	. 12
		1.10.1 Аксио	мы счетности								 			 	. 12
		1.10.2 Сепера	абельность								 			 	. 13
		1.10.3 Аксио	мы отделимост	И							 			 	. 14
	1.11	Связность									 		 	 	. 15
		1.11.1 Связн	ые множества								 		 	 	. 15
		1.11.2 Связн	ость при отобра	ажении							 		 	 	. 16
		1.11.3 Компо	ненты связнос	ги							 			 	. 16
	1.12	Линейная свя	ІЗНОСТЬ								 			 	. 17
		1.12.1 Компо	ненты линейно	ой связно	сти						 			 	. 18
		1.12.2 Линей	ная связность :	и связно	Сть						 			 	. 18
		1.12.3 Локал	ьная линейная	связност	ъ						 			 	. 18
	1.13	Компактност	Ь								 			 	. 19
		1.13.1 Компа	ктность в \mathbb{R}^n								 			 	. 21
			ированные сем												
		1.13.3 Непре	рывные отобра	жения ко	омпакто	В					 			 	. 23
		1.13.4 Вложе	ния компактов								 			 	. 23
		1.13.5 Лемма	Лебега								 			 	. 23
		1.13.6 Равног	мерная непреры	ывность							 			 	. 24
			ла Тихонова .												
		_	ьная компактн												
			очечная компа												
	1.14		ические простр	=											. 25
		_	ктность полны												

ОГЛАВЛЕНИЕ 4

1.15	Факторизация									
	.15.1 Каноническая проекция на факторпространство	26								
	.15.2 Стягивание множества в точку	26								
	.15.3 Несвязное объединение	27								
	.15.4 Приклеивание по отображению	27								
1.16	Іногообразия	28								
	.16.1 Классификация многообразий	30								
	.16.2 Сферы	30								
	.16.3 Классификация поверхностей	30								
	16.4. Эйлерова уарактеристика	30								

Глава 1

Общая топология

- 1.1 Метрические пространства
- 1.2 Топологические пространства
- 1.3 Внутренность, замыкание, граница
- 1.4 Подпространства
- 1.5 Сравнение топологий
- 1.6 База топологии
- 1.7 Произведение топологических пространств

Def 1. X, Y - топологические пространства.

Топология произведения на $X \times Y$ – топология, база которой равна

$${A \times B \mid A \subset X, B \subset Y \text{ - открыты.}}.$$

 $X \times Y$ с такой топологией – произведение X и Y.

Theorem 1. Определение 1 корректно.

Доказательство. 1. Все пространство открыто

2. Пересечение двух множеств из базы = объединение множеств базы.

$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$$

Получили объединение открытого в X и в Y, а значит принадлежит базе.

Theorem 2. $A \cap X$ – замкнуто, $B \cap Y$ – замкнуто. Тогда $A \times B$ – замкнуто в $X \times Y$.

Рис. 1.1: Пересечение

Доказательство. Докажем, что дополнение открыто.

$$(X \times Y) \setminus (A \times B) = X \times (Y \setminus B) \cup (X \setminus A) \times Y.$$

 $Y\setminus B$ открыто в Y, а $X\setminus A$ открыто в X. Тогда объединение произведений с X и Y есть объединение открытых в $X\times Y$.

Practice. Для любых $A \subset X$, $B \subset Y$:

- 1. $Int(A \times B) = Int(A) \times Int(B)$
- 2. $Cl(A \times B) = Cl(A) \times Cl(B)$
- 3. $A \times B$ как произведение подпространств равно $A \times B$ как подпространство произведения.

1.7.1 Произведение параметризуемых метрических пространств

Здесь все также, только топология задается метрикой. d_X, d_Y - метрики.

Theorem 3.

$$d((x,y),(x',y')) = \max\{d_X(x,x'),d_Y(y,y')\}.$$

d - метрика на $X \times Y$. Произведение метризуемых пространств метризуемо.

Доказательство. 1. Проверим, что d - метрика. Очевидно, что $d((x,y),(x',y'))=0 \iff d_X(x,x')=d_Y(y,y')=0 \iff x=y \land x'=y'$. Также значение не зависит от порядка. Осталось проверить неравенство треугольника.

$$d(p, p') + d(p', p'') \stackrel{?}{\geqslant} d(p, p'') \stackrel{\text{HYO}}{=} d_X(x, x'').$$
$$d_X(x, x') + d_X(x', x'') \geqslant d_X(x, x'').$$

2. $\Omega_d \subset \Omega_{X \times Y}$

$$B_r((x,y)) = B_r^X(x) \times B_r^Y(y).$$

А это базовое множество, которое мы представили через базовые множества X и Y.

3. $\Omega_{X\times Y}\subset\Omega_d$ Рассмотрим $W\in\Omega_{X\times Y}$.

$$\exists A\subset X,\ B\subset Y$$
- открытые, $(x,y)\in A\times B\subset W.$
$$\exists r_1>0: B^X_{r_1}(x)\subset A.$$

ГЛАВА 1. ОБЩАЯ ТОПОЛОГИЯ

Рис. 1.2: Произведение метрических пространств

$$\exists r_2 > 0 : B_{r_2}^Y(y) \subset B.$$

Теперь возьмем $r = \min(r_1, r_2)$

$$B_r^{X\times Y}((x,y))=B_r^X(x)\times B_r^Y(y)\subset A\times B\subset W.$$

Statement. Согласование метрик:

$$d_1((x,y),(x',y')) = d_X(x,x') + d_Y(y,y').$$

$$d_2((x,y),(x',y')) = \sqrt{d_X(x,x')^2 + d_Y(y,y')^2}.$$

Доказательство. Проверим неравенство треугольника для второй метрики (для первого - очевидно).

$$d_2((x,y),(x'',y'')) \stackrel{?}{\leqslant} d_2((x,y),(x',y')) + d_2((x',y'),(x'',y''))$$

$$\sqrt{(a+b)^2 + (c+d)^2} \stackrel{!!}{\leqslant} \sqrt{a^2 + c^2} + \sqrt{b^2 + d^2}$$

1.7.2 Тихоновская топология

Designation.

- $X = \prod_{i \in I} X_i$ произведение множеств или пространств.
- $p_i: X \to X_i$ координатная проекция.
- Ω_i топология на X_i .

Рис. 1.3: Неравенство треугольника

Def 2 (Тихоновская топология). Пусть $\{X_i, \Omega_i\}_{i \in I}$ – семейство топологических пространств. Тихоновская топология на $X = \prod X_i$ – топология с предбазой

$$\{p_i^{-1}(U) \mid i \in I, \ U \in \Omega_i\}.$$

Tasks.

- 1. Счетное произведение метризуемых метризуемо. Сначала можно разобраться с отрезком $[0,1]^{\mathbb{N}} = \prod_{i \in \mathbb{N}} [0,1]$.
- 2. Канторовское множество $\approx \{0,1\}^{\mathbb{N}}$

1.8 Непрерывность

X,Y - топологические пространства, Ω_1,Ω_2 - топологии, $f:X\to Y$.

Def 3. f – непрерывна, если $\forall U \subset \Omega_Y : f^{-1}(U) \subset \Omega_X$.

Note.

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

Exs.

- 1. Тождественное отображение непрерывно. $id_X: X \to X$
- 2. Константа тоже непрерывна. $Const_{y_0}: X \to Y, \ \forall x \in X \quad x \mapsto y_0$
- 3. Если X дискретно, $\forall f: X \to Y$ непрерывно.

Рис. 1.4: Тихоновская топология

4. Если Y - антидискретно, $\forall f: X \to Y$ - непрерывно.

$${f Def~4.}~f:X o Y,~x_0\in Y~f$$
 непрерывна в точке $x_0,$ если \forall окрестности $U
i y_0=f(x_0)\exists$ окрестность $V
i x_0:f(U)\subset V.$

Theorem 4. f - непрерывна тогда и только тогда, когда $\forall x_0 \in X : f$ - непрерывна в точке x_0 .

Доказательство. \Rightarrow) $y_0 \in U$.

$$\left\{ \begin{array}{ll} f^{-1}(U) \text{ открыт} & V := f^{-1}(U) \\ x_0 \in f^{-1}(U) & f(V) \subset U \end{array} \right..$$

 \Leftarrow) $U \subset Y$ - открыто, хотим доказать, что $f^{-1}(U)$ - открыто. Достаточно доказать, что $\forall x \in f^{-1}(x)$ - внутренняя.

$$\exists V\ni x: f(V)\subset U \Leftrightarrow x\in V\subset f^{-1}(U).$$

Тогда x - внутренняя точка $f^{-1}(U)$.

1.8.1 Непрерывность в метрических пространствах

1.9. ГОМЕОМОРФИЗМ 10

Theorem 5. X,Y - метрические пространства. $f:X\to Y,\ x_0\in X.$

Tогда f – непрерывна в точка x_0 тогда и только тогда, когда

$$\forall \varepsilon > \exists \delta > 0 : f(B_{\delta}) \subset B_{\varepsilon}(f(x)).$$

Или можем записать альтернативную формулировку непрерывности:

$$\forall \varepsilon \exists \delta : \forall x' \in X \land d(x, x') < d \Rightarrow d(f(x), f(x')) < \varepsilon.$$

Доказательство. \Rightarrow) Так как f – непрерывна в точке x, существует окрестность $V \ni x : f(v) \subset B_{\varepsilon}(f(x))$. Так как V открыто, $\exists \delta > 0 : B_{\delta} \subset V$.

$$\Leftarrow$$
) Рассмотрим $U\ni f(x)$. Тогда $\exists \varepsilon>0: B_{\varepsilon}(f(x))\subset U:$ $\exists \delta>0: f(B_{\delta}(x))\subset B_{\varepsilon}(f(x))\subset U.$ Можем взять $V:=B_{\delta}(x).$

1.8.2 Липшицевы отображения

Def 5. X, Y – метрические пространства.

 $f:X\to Y$ – липшицево, если $\exists c>0 \forall x,x'\in X:d_Y(f(x),f(x'))\leqslant cd_X(x,x')$. C – константа Липшица данного отображения.

Corollary. Все липшицевы отображения непрерывны.

Доказательство. Рассмотрим $\delta = \frac{\varepsilon}{c}$.

$$d_X(x, x') < \delta \Rightarrow d_Y(f(x), f(x')) \leqslant C\delta = \varepsilon.$$

Ех. X – метрика, $x0 \in X$. $f: X \to \mathbb{R}$, $f(x) = d(x, x_0)$

$$|f(x) = f(y)| = f(y) - f(x) = d(y, x_0) - d(x, x_0) \le d(x, y).$$

Получили, что липшицево с константой 1.

Task. $A \subset X$

$$f(x) = dist(x, A) := \inf\{d(x, y) \mid y \in A\}.$$

Доказать, что X тоже липшицево с константой 1.

Ех. $d: X \times X \to \mathbb{R}$ – непрерывна.

1.8.3 Композиция непрерывных отображений

Theorem 6. Композиция непрерывных отображений непрерывна.

1.9 Гомеоморфизм

Designation. X, Y — топологические пространства.

Def 6. Гомеоморфизм между X и Y — непрерывное биективное отображение $f: X \to Y$ такое, что $f^{-1}: Y \to X$ тоже непрерывно.

1.9. ГОМЕОМОРФИЗМ

Рис. 1.5: Композиция отображений

Def 7. X и Y гомеоморфны, если существует гомеоморфизм между ними.

Designation. X и Y гомеоморфны: $X \cong Y$ или $X \simeq Y$.

Property.

- 1. Тождественное отображение гомеоморфизм.
- 2. Если f гомеоморфизм, то f^{-1} гомеоморфизм.
- 3. Композиция гомеоморфизмов гомеоморфизм.

Theorem 7. Гомеоморфность — отношение эквивалентности.

Note.

- 1. Гомеоморфизм задает биекцию между открытыми множествами в X и Y.
- 2. С топологической точки зрения гомеоморфные пространства неотличимы.

Note. Топологическая эквивалентность — гомеоморфность.

Note. Про гомеоморфные пространства говорят, что у них одинаковый тип.

Пример непрерывной биекции, не являющейся гомеоморфизмом

Пусть $f:[0,2\pi)\to S^1$ такое что:

$$f(t) = (\cos t, \sin t).$$

f – биекция между $[0,2\pi)$ и $S^1,\,f$ – непрерывно, но f^{-1} разрывно в точке $(1,\,0).$

ГЛАВА 1. ОБЩАЯ ТОПОЛОГИЯ

1.10. АКСИОМЫ 12

Примеры гомеоморфных пространств

Statement.

• $\forall a, b, c, d : [a, b] \cong [c, d]$

• $\forall a, b, c, d : (a, b) \cong (c, d)$

• $\forall a, b, c, d : [a, b) \cong [c, d) \cong (c, d]$

• $\forall a, b : (a, +\infty) \cong (b, +\infty) \cong (-\infty, a)$

• $\forall a, b : [a, +\infty) \cong [b, +\infty) \cong (-\infty, a]$

• $(0,1) \cong \mathbb{R}$

• $[0,1) \cong [0,+\infty)$

Theorem 8. Открытый шар в \mathbb{R}^n гомеоморфен \mathbb{R}^n

Designation. D^n — замкнутый единичный шар в \mathbb{R}^n

Designation. S^n — единичная сфера в \mathbb{R}^{n+1}

Theorem 9. $S^n \setminus \{mouna\} \cong \mathbb{R}^n$

Practice.

- 1. Квадрат с границей гомеоморфен D^2
- 2. $D^m \times D^n \cong D^{n+m}$

1.10 Аксиомы

1.10.1 Аксиомы счетности

Def 8. $X=(X,\Omega)$ База в точке $x\in X$ – такое множество $\Sigma_x\subset\Omega$, что:

- 1. $\forall V \in \Sigma_x : x \in V$
- 2. $\forall U \not\ni x \exists V \in \Sigma_x : V \subset U$

Designation. Счетное множество – не более, чем счетное.

Def 9. Пространство X удовлетворяет первой аксиоме сетности (1AC), если для любой точки $x \in X$ существует счетная база в этой точке.

Def 10. Пространство X удовлетворяет второй аксиоме счетности (2AC), если у него есть счетная база топологии.

1.10. АКСИОМЫ 13

Theorem 10. $2AC \Rightarrow 1AC$

Доказательство. Пусть Σ – база топологии, $x \in X$. Пусть . . .

Theorem 11. Все метрические пространства удовлетворяют второй аксиоме счетности.

Statement. \mathbb{R} имеет счетную базу.

Theorem 12. Если X и Y имеют счетную базу, то $X \times Y$ тоже имеет счетную базу.

Theorem 13. Если X имеет счетную базу, то любое его подпространство тоже имеет счетную базу.

Corollary. \mathbb{R}^n имеет счетную базу.

Practice. 1AC тоже наследуется подпространствами и произведениями.

Def 11. Топологические свойство – наследственное, если оно сохраняется при замене пространства на любое подпространство.

Ех. Дискретность, антидискретность, 1АС, 2АС – наследственные свойства.

Theorem 14. Линделёф Eсли X удовлетворяет 2AC, то из любого открытого покрытия можно выбрать счетное подпокрытие.

Доказательство. Пусть Λ – множество тех элементов базы, которые содержатся хотя бы в одном из элементов покрытия. Λ – счетное покрытие.

Каждому $U \in A$ сопоставим V из исходного покрытия, для которого $U \subset V$.

Все такие V образуют искомое счетное покрытие.

1.10.2 Сеперабельность

Def 12. Всюду плотное множество – множество, замыканние которого есть все пространство.

Def 13. Множество всюду плотно тогда и только тогда, когда оно не пересекается с любым непустым открытым множеством.

 $\mathbf{E}\mathbf{x}$. \mathbb{Q} всюду плотно в \mathbb{R}

Def 14. Топологическое пространство сепарабельно, если в нем есть счетное всюду плотное множество.

Property. X, Y – сепарабельны $\Longrightarrow X \times Y$ тоже.

Note. Сепарабельность – не наследственное свойство.

1.10. AKCИОМЫ 14

Theorem 15.

- Счетная база \Longrightarrow сепарабельность.
- ullet Для метризуемых пространств сеперабельность \Longrightarrow счетная база

1.10.3 Аксиомы отделимости

Def 15. X обладает свойтсвом T_1 , если для любой различных точек $x,y \in X$ существует такое открытое U, что $x \notin U \land y \notin U$.

Theorem 16. $T_1 \iff$ любая точка является замкнутым множеством.

Def 16. X – хаусдорфово, если для любых $x, y \in X$ существуют окрестности $U \ni x \land V \ni y : U \cap V = \emptyset$.

 ${f Def 17.}\,\,X$ хаусдорфово \Longleftrightarrow Диагональ $\Delta:=\{(x,x)\mid x\in X\}$ замкнута в $X\times X$

Def 18. X – регулярно, если

- обладает T_1
- \forall замкнутого $A \subset X \ \forall x \in X \setminus A \ \exists$ открытые $U,V:A \subset U \land x \in V \land U \cap V = \varnothing$ Другое название T_3 -пространство

Def 19. X – нормально, если

- обладает T₁
- $\forall A, B \in X (A \cap B = \emptyset)$ \exists открытые $U, V : A \subset U, B \subset V \land U \cap V = \emptyset$

Другое название T_4 -пространство

Statement. $T_4 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1$

Practice. Свойства $T_1 - T_3$ наследуются подпространствами и произведениям.

Нормальность не наследственная.

Def 20. Все метрические пространства нормальны.

Доказательство. Хороший метод.

$$f: X \to Y$$

$$f(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}.$$

Она корректна, непрерывна, и принимает значение ноль на A и единице B.

1.11. CBЯЗНОСТЬ 15

Lemma (Урысон). X – нормально, $A, B \subset X$ – замкнуты, $A \cap B = \emptyset$. Тогда существует непрерывна функция $f: X \to [0,1]: f \upharpoonright_A = 0 \land f \upharpoonright_B = 1$

1.11 Связность

Designation. X — топологическое пространство.

Def 21 (Связное топологическое пространство).

X связно, если:

его нельзя разбить на два непустых открытых множества;

его нельзя разбить на два непустых замкнутых множества;

не существует открыто-замкнутых множеств, кроме \emptyset и X;

не существует сюрьективного непрерывного отображения $f: X \to 0, 1$.

Exs.

- Антидискретное пространство связно
- Дискретное пространство из хотя бы двух точек несвязно
- ℝ \ 0 несвязно
- $[0,1] \cup [2,3]$ несвязно
- Ф несвязно

1.11.1 Связные множества

Def 22. Связное множество — подмножество топологического пространства, которое связано как топологическое пространство с индуцированной топологий.

Practice.

- Множество $A \subset X$ несвязно тогда и только тогда, когда оно разбивается на такие непустые B и C, что $ClA \cap C = \emptyset \wedge ClC \cap B = \emptyset$.
- Множество A в метрическом пространстве X несвязно тогда и только тогда, когда существуют открытые $U, V: U \cap V = \emptyset \land U \cap A \neq \emptyset \land V \cap A \neq \emptyset$.
- Предыдущее свойство неверно в общей топологии.

Property. Любое открытое содержится в некоторой компоненте связности.

Связные множества на прямой

Statement. Ompesok [0,1] связен.

1.11. СВЯЗНОСТЬ 16

Theorem 17. Для $X \subset \mathbb{R}$ следующие утверждения эквивалентны:

- 1. X c 6 я з н o
- 2. X выпукло (то есть вместе с любыми двумя точками содержит весь отрезок между ними)
- 3. X интервал, точка или пустое множество

1.11.2 Связность при отображении

Theorem 18. X — связно, $f: X \to Y$ непрерывно. Тогда множество f(x) связно.

Theorem 19. X связно, $f: X \to \mathbb{R}$ непрерывно, $a, b \in f(X)$. Тогда f(x) содержит все числа между a u b.

Доказательство. По теореме 18 f(x) связно. Тогда по определению f(x) выпукло, значит содержит [a,b].

1.11.3 Компоненты связности

Def 23. Компонента связности топологического пространства X — максимальное по включению связное множество в X.

Exs.

- 1. $[0,1] \cup [2,3]$ две компоненты связности [0,1] и [2,3].
- 2. Компоненты связности \mathbb{Q} отдельные точки.

Lemma (Об объединении связных множеств). Пусть $\{A_i\}_{i\in I}$ — семейство связных множеств, каждые два из которых имеют непустое пересечение. Тогда $A := \bigcup_{i\in I} A_i$ тоже связно.

 \mathcal{A} оказательство. Пусть A разбивается на непустые открытые U и V .

$$\exists i, j \in I: \ U \cap A_i \neq \emptyset \land V \cap A_j \neq \emptyset.$$

Так как A_i связно, $A_i \subset U$. Аналогично $A_j \subset V$. Следовательно, $A_i \cap A_j = \emptyset$. Противоречие.

Theorem 20. Пространство разбивается на компоненты связности. То есть:

- каждая точка содержится в некоторой компоненте связности;
- различные компоненты связности не пересекаются.

Доказательство.

1. Каждая точка принадлежит некоторой компоненте связности. Рассмотрим $x \in X$. Пусть A — объединение всех связных множеств, содержащих x. Такие есть, так как множество $\{x\}$ связно. По лемме 1.11.3 полученное множество связно, значит это компонента связности.

2. Различные компоненты связности не пересекаются.

Пусть A, B — различные компоненты связности и $A \cap B \neq \emptyset$. По лемме 1.11.3 $A \cup B$ тоже связно, но A и B были максимальными по включению. Значит $A \cup B = A = B$. Противоречие.

Lemma. Замыкание связного множества связно.

Theorem 21. Компоненты связности замкнуты.

Доказательство. Следует из леммы 1.11.3.

Note. компоненты связности не всегда открыты. Например, в \mathbb{Q} .

Corollary. Пространство несвязно тогда и только тогда, когда есть хотя бы две компоненты связности.

Corollary. Две точки принадлежат одной компоненте связности тогда и только тогда, когда существует связное множество, содержащее их.

1.12 Линейная связность

Designation. X — топологическое пространство.

Def 24. Путь в X — непрерывное отображение $\alpha:[0,1]\to X$. Точки $\alpha(0)$ и $\alpha(1)$ — концы пути (или начало и конец). Путь α **соединяет** $\alpha(0)$ и $\alpha(1)$.

Def 25. X линейно связно, если для любых двух точек существует соединяющий их путь.

 $\mathbf{E}\mathbf{x}$.

$$\forall p, q \in \mathbb{R}^n \ \exists \ \alpha(t) = (1-t)p + tq.$$

Theorem 22. Если X линейно связно, $f: X \to Y$ непрерывно, то f(X) линейно связно.

Доказательство. Если α — путь, соединяющий $x,y\in X$, то $f\circ \alpha$ соединяет f(x) в f(X).

Lemma. Соединимость путем — отношение эквивалентности на множестве точек.

Доказательство.

Рефлексивность: $\forall x \in X \exists \alpha(t) = x$

Симметричность: $\forall x, y \in X : (\exists \alpha : \alpha(0) = x \land \alpha(1) = y) \rightarrow \exists \overline{\alpha} = \alpha(1-t))$

Транзитивность: если α идет из x в y, а β из x в z, построим путь γ , идущий из x в z:

$$\gamma(t) = \begin{cases} \alpha(2t) & t \in [0, \frac{1}{2}) \\ \beta(2t - 1) & t \in [\frac{1}{2}, 1] \end{cases}.$$

1.12.1 Компоненты линейной связности

Def 26. Компонента линейной связности — класс эквивалентности отношения соединимости путем.

Def 27 (переформулировка). Компонента линейной связности — максимальные по включению линейно связные множества.

1.12.2 Линейная связность и связность

Theorem 23. Если X линейно связно, то оно связно.

Corollary. Компоненты линейной связности лежат в компонентах связности.

Ех (Связность не влечет линейную связность). Рассмотрим множество

$$\left\{ \left(x, \cos \frac{1}{x} \right) \mid x > 0 \right\} \cup \left\{ (0,0) \right\}.$$

Оно связно, но не линейно связно.

Доказательство.

1. Связность

График линейно связен, значит он связен, а (0,0) — его предельная точка. X — замыкание графика в X, следовательно, X — связно.

2. (0,0) не соединяется путем с другими точками

Пусть α — путь с началом в (0,0). Рассмотрим $T = \{t \in [0,1] \mid \alpha(t) = (0,0)\}$. T замкнуто, так как это прообраз замкнутого.

Докажем, что T открыто в [0,1]. Рассмотрим $t_0 \in T$. Так как α непрерывно $\exists \delta > 0 : \forall t \in (t_0 - \delta, t_0 + \delta) : |\alpha(t)| < 1$. Предположим, что $\exists t_1 \in (t_0 - \delta, t_0 + \delta) : \alpha(t_1) \neq (0,0)$. Пусть f(t) — первая координата $\alpha(t)$. Тогда $f(t_1) > 0$. По непрерывности

$$\exists t_2 \in [t_0, t_1] : f(t_2) = \frac{1}{2\pi n}, \quad n \in \mathbb{N}.$$

Следовательно, $\alpha(t_2) = (f(t_2), \cos f(t_2)) = (\frac{1}{2\pi n}, 1)$. Получаем $|\alpha(t_2)| > 1$. Противоречие.

Значит, T — открыто-замкнутое множество на отрезке, а так как отрезок связен, T = [0,1]. Тогда, α — постоянный путь в точке (0,0).

1.12.3 Локальная линейная связность

Def 28. Пространство X локально линейно связно, если для любой точки $x \in X$ и любой окрестности $U \ni x$ существует линейно связная окрестность $V \ni x : V \subset U$.

Ех. Любое открытое множество на плоскости локально линейно связано.

1.13. KOMПAKTHOCTЬ

Theorem 24. В локально линейно связном пространстве компоненты линейной связности открыты и совпадают с компонентами связности.

Доказательство. 1. Открытость компонент связности следует из того, что у каждой точки есть линейно связная окрестность, которая содержится в компоненте, а значит, точка каждая точка внутренняя.

2. Компоненты линейной связности совпадают с компонентами связности так как пространство разбито на открытые связные множества $\{U_i\}$, а тогда любое связное множество A содержится в одном из U_i (так как $A \cap U_i$ и $A \setminus U_i$ открыты в A). Значит это компоненты связности.

Негомеоморфность интервалов и окружности

Theorem 25. Интервалы [0,1], $[0,+\infty)$, \mathbb{R} , S^1 попарно негомеоморфны.

Theorem 26. \mathbb{R}^2 не гомеоморфна никакому интервалу и S^1

Доказательство.

- В интервалах и окружности существуют конечные множества с несвязными дополнениями.
- Дополнение любого конечного множества \mathbb{R}^2 связно.

1.13 Компактность

Designation. X — топологическое пространство.

Def 29. X компактно, если у любого открытого покрытия есть конечное подпокрытие.

Designation. X — компакт.

Exs.

- 1. Все конечные пространства компактны
- 2. Все ахти дискретные пространства пространства компактны
- 3. Бесконечное дискретное пространство некомпактно

Def 30. Компактное множество — множество, компактное как подпространство.

Note. $A \subset X$. Под покрытием можно понимать одно и двух:

- Набор множеств $V_i \subset A$, открытых в A, $\bigcup V_i = A$
- Набор множеств $U_i \subset X$, открытых в $X, A \subset \bigcup U_i$

Practice. Объединение двух компактных множеств компактно.

1.13. KOMПAKTHOCTЬ

Theorem 27 (лемма Гейне-Бореля). *Отрезок* [0,1] *компактен*.

Доказательство. Пусть $l_0 = [0,1], \{U_i\}$ — открытые множества в $\mathbb{R}, l_0 \subset \bigcup U_i$. Докажем, что l_0 покрывается конечным числом U_i . Предположим противное.

Разделим отрезок пополам и возьмем ту, которая не покрывается конечным числом U_i . Обозначим ее l_1 .

Продолжим последовательность вложенных отрезков далее: $l_0 \supset l_1 \supset l_2 \ldots$, длина уменьшается вдвое. Тогда они имеют одну общую точку x_0 . Она лежит в каком-то U_{i_0} . С некоторого n этот U_{i_0} содержит l_n . Следовательно, l_n покрывается конечным набором U_i . Противоречие.

Theorem 28. Если X компактно и $A \subset X$ замкнуто, то A компактно.

Доказательство. Рассмотрим $\{U_i\}$ — покрытие A открытыми в X множествами. Добавим в него $X \setminus A$, получим покрытие X, выберем конечное подпокрытие и уберем $X \setminus A$. Это конечное покрытие A некоторыми множествами из $\{U_i\}$.

Theorem 29. Ecau X, Y компактны, то $X \times Y$ компактно.

Доказательство.

1. Достаточно проверить определение компакта только для покрытий элементами базы. Рассмотрим покрытие $X \times Y$ открытыми $U_i \times V_i$, где $U_i \subset X$, $V_i \subset Y$.

Рис. 1.6: Покрытие и гомеокопия

1.13. KOMΠAKTHOCTЬ 21

2. Для всех $x \in X$ рассмотрим гомеокопию (вертикальный слой) $F_x \coloneqq \{x\}Y$. $F_x \cong Y$, тогда F_x компактно, следовательно, F_x покрывается конечным набором "прямоугольников" $U_{i_1}^x \times V_{i_1}^x, \dots, U_{i_n}^x \times V_{i_n}^x$.

- 3. $U^x = U^x_{i_1} \cap \ldots \cap U^x_{i_n}$ пересечение проекций "прямоугольников" на X. $U^x \times Y$ покрывается теми же "прямоугольниками".
- 4. Получили окрестности U^x для всех точке $x \in X$. Выберем из $\{U^x\}_{x \in X}$ конечное подпокрытие. Теперь мы можем объединим соответствующие "прямоугольники" и получим конечное покрытие $X \times Y$.

Theorem 30. Если X хаусдорфово и $A \subset X$ компактно, то A замкнуто в X.

Доказательство. Докажем, что

 $\forall x \in X \setminus A \exists \text{ окрестность } U \ni x : U \subset X \setminus A.$

Так как X хаусдорфово

 $\forall a \in A, x \in X \exists$ окрестности $U_a \ni a, V_a \ni x : U_a \cap V_a = \emptyset.$

Выберем из $\{U_a\}$ конечное подпокрытие $A: U_{a_1}, \dots, U_{a_n}$. $\bigcap_{i=1}^n V_{a_i}$ — окрестность x, не пересекающая A. \square

Theorem 31. Если X компактно и хаусдорфово, то оно нормально.

Доказательство.

1. Регулярность. Пусть A замкнуто, $x \notin A$. Построим $\{U_{a_i}\}$ и $\{V_{a_i}\}$ как в доказательстве теоремы 30.

$$U \coloneqq \bigcup U_{a_i}, \ V \coloneqq \bigcap V_{a_i}.$$

U и V — открытые множества, $U \supset A$, $V \ni x$, $U \cap V = \emptyset$.

2. Теперь выведем нормальность. Пусть A, B замкнуты и $A \cap B = \emptyset$. Так как X регулярно

 $\forall a \in A$ и замкнутого $B \subset X \exists$ окрестности $U_a \ni a, V_a \supset B : U_a \cap V_a$.

Теперь рассмотрим конечное подпокрытие A из $\{U_{a_i}\}: U_{a_1}, \ldots, U_{a_n}$. Аналогично получим открытые $U \coloneqq \bigcup U_{a_i} \supset A$ и $V \coloneqq \bigcap V_{a_i} \supset B, \ U \cap V = \emptyset$. Доказали, что X нормально.

1.13.1 Компактность в \mathbb{R}^n

Designation. X — метрическое пространство.

Def 31. Множество $A \subset X$ ограничено, если оно содержится в некотором шаре.

1.13. KOMПAKTHOCTЬ

Def 32. Диаметр множества A:

$$\operatorname{diam}(A) = \sup\{d(x, y) \mid x, y \in A\}.$$

Property. A ограничено тогда и только тогда, когда $\operatorname{diam}(A) < \infty$.

Corollary. Свойство ограниченности не зависит от объемлющего пространства.

Theorem 32. Компактное метрическое пространство ограничено.

Corollary. Компактное множество в метрическом пространстве замкнуто и ограничено.

Theorem 33. Множество в \mathbb{R}^n компактно тогда и только тогда, когда оно замкнуто и ограничено.

Доказательство.

- По прошлому следствию 1.13.1.
- Шеза Множество $A \subset \mathbb{R}^n$ ограничено тогда и только тогда, когда A содержится в некотором кубе $[-a,a]^n$. Куб компактен, так как является произведением компактов. A замкнуто и ограничено, из этого следует, что A замкнутое подмножество компакта. Значит оно компактно.

1.13.2 Центрированные семейства

Designation. Здесь I обозначает не более чем счетное множество.

Def 33. Набор множеств называется центрированным, если любой его конечный поднабор имеет непустое пересечение.

Theorem 34. X компактно тогда и только тогда, когда любой центрированный набор замкнутых множеств имеет непустое пересечение.

Доказательство.

 \implies От противного. Пусть $\{A_i\}$ — центрированный набор замкнутых множеств в X и $\bigcap A_i = \varnothing$. Тогда дополнения $X\setminus A_i$ образуют открытое покрытие. Выберем из него конечное подпокрытие.

Соответствующие A_i имеют пустое пересечение. Противоречие.

 \Longrightarrow Рассмотрим покрытие $\{A_i\}_{i\in I}$. Выберем в нем конечный набор множеств $A_1,\ldots A_n$. Если нет точки, которая не принадлежит ни одному из $A_{1...n}$, это конечное подпокрытие. Иначе пересечение дополнений $\bigcup_{i=1}^n A_i \neq \varnothing$. Значит $\{X\setminus A_i\}_{i\in I}$ — центрированный набор. По условию теоремы он имеет непустое пересечение. Значит $\{A_i\}_{i\in I}$ не покрытие. Противоречие.

Corollary. Пусть X — произвольное топологическое пространство, $\{A_i\}_{i\in I}$ — центрированный набор замкнутых множеств в X, хотя бы одно из которых компактно. Тогда $\bigcap_{i\in I} A_i \neq \emptyset$.

1.13. KOMIIAKTHOCTЬ

Доказательство. Не умоляя общности A_0 компактно. По теореме 34 (возьмем $X = A_0$) $\{A_i \cap A_0\}_{i \in I}$ имеет непустое пересечение.

Theorem 35. Пусть $\{A_i\}_{i\in I}$ — набор непустых замкнутых множеств, линейно упорядоченный по включению, и хотя бы одно из них компактно. Тогда $\bigcap_{i\in I} A_i \neq \emptyset$.

Note. Теорема 35 обычно применяется к последовательностям вложенных компактов:

$$A_1 \supset A_2 \supset \dots$$

1.13.3 Непрерывные отображения компактов

Theorem 36. Пусть X компактно, $f: X \to Y$ непрерывно. Тогда множество f(X) компактно.

Доказательство. Пусть $\{U_i\}$ — открытое покрытие f(X). Тогда $\{V_i \mid V_i = f^{-1}(U_i)\}$ — открытое покрытие X. Выберем в нем конечное подпокрытие V_{i_1}, \ldots, V_{i_n} . Тогда U_{i_1}, \ldots, U_{i_n} — конечное подпокрытие f(X). Следовательно, X компактно.

Theorem 37. Пусть X компактно, $f: X \to \mathbb{R}$ непрерывно. Тогда f(X) имеет максимум и минимум.

Доказательство. f(X) компактно, следовательно, f(x) замкнуто и ограничено, а тогда f(X) содержит свои супремум и инфимум.

Theorem 38. Пусть X компактно, Y хаусдорфово, $f: X \to Y$ — непрерывная бикеция. Тогда f — гомеоморфизм.

Доказательство. f непрерывно \iff прообразы замкнутых множеств замкнуты. f^{-1} непрерывно \iff fобразы замкнутых множеств замкнуты.

Если $A\subset X$ замкнуто, A компактно, так как является замкнутым подмножеством компакта. Тогда f(A) компактно, потому что это непрерывный образ компакта. А компакт в хаусдорфовом пространстве замкнут. \Box

1.13.4 Вложения компактов

Def 34. $f: X \to Y$ — вложение, если f — гомеоморфизм меду X и f(X).

Corollary. Пусть X компактно, Y хаусдорфово, $f: X \to Y$ — непрерывная инъекция. Тогда f — вложение.

1.13.5 Лемма Лебега

Theorem 39 (Лемма Лебега). X — компактное метрическое пространство. $\{U_i\}$ — его открытое покрытие. Тогда существует такое r > 0, что любой шар радиуса r целиком содержится в одном из U_i .

Def 35. Число r называется числом Лебега данного покрытия.

1.13. KOMПAKTHOCTЬ

Доказательство.

$$\forall x \in X \ \exists r_x > 0, \ U_i \in \{U_i\}: \ B_{r_x}(x) \subset U_i.$$

Заметим, что $\left\{B_{\frac{r_x}{2}}\right\}_{x\in X}$ — тоже покрытие. Выберем конечное покрытие.

Проверим, что подойдет минимальный из радиусов этих шаров в качестве числа Лебега.

$$\forall y \in X \ \exists x \in X : y \in B_{\frac{r_x}{2}}(x).$$

Рис. 1.7: Лемма Лебега

$$r \leqslant \frac{r_x}{2}, \quad \overline{xy} + \overline{yz} < r + \frac{r_x}{2} < r_x.$$

Следовательно, $B_r(y) \subset B_{\frac{r_x}{2}}(y) \subset B_{r_x}(x) \subset U_i$.

Corollary. Пусть X — компактное метрическое пространство, Y — топологическое пространство, $f: X \to Y$ непрерывно, $\{U_i\}$ — открытое покрытие Y. Тогда $\exists r > 0: \ \forall x \in X \ f(B_r(x))$ содержится в одном из U_i .

Доказательство. Применим лемму Лебега к покрытию $\{f^{-1}(U_i)\}$.

1.13.6 Равномерная непрерывность

Def 36. Отображение $f: X \to Y$ равномерно непрерывно, если

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall a, x' \in X \ (d(x, x') < \delta \Longrightarrow d(f(x), f(x')) < \varepsilon.$$

Theorem 40. Если X компактно, то любое непрерывное $f: X \to Y$ равномерно непрерывно.

Доказательство. Применим следствие 1.13.5 из леммы Лебега к f и покрытию Y шарами радиуса $\frac{\delta}{2}$ \square

1.13.7 Теорема Тихонова

Theorem 41 (Тихонов, без доказательства). Пусть $\{X_i\}$ — произвольное семейство компактных топологических пространств. Тогда тихоновское произведение $\prod_{i \in I} X_i$ тоже компактно.

1.13.8 Локальная компактность

Designation. X — топологическое пространство.

Def 37. X локально компактно, если $\forall x \in X \exists$ окрестность $U \ni x$: Cl U компактно.

Ex. \mathbb{R}^n докально компактно.

Practice. Если X локально компактно и хаусдорфово, то X регулярно.

1.13.9 Одноточечная компактификация

Designation. X — хаусдорфово топологическое пространство.

Def 38. Одноточечная компактификация X — топологическое пространство \widehat{X} :

- $\widehat{X} = X \cup \{\infty\}, \qquad \infty \notin X$
- $U \subset \widehat{X} \wedge \infty \not\in U$ открыто в \widehat{X} тогда и только тогда, когда U открыто в X
- $U \subset \widehat{X} \wedge \infty \in U$ открыто в \widehat{X} тогда и только тогда, когда $X \setminus U$ компактно

Statement. Определение 38 корректно, то есть указанные открытые множества образуют топологию на $X \cup \{\infty\}$.

Practice.

- 1. \widehat{X} компактно
- 2. \widehat{X} хаусдорфово тогда и только тогда, когда X локально компактно
- 3. $\widehat{\mathbb{R}} \cong S^1$
- $4. \ \widehat{\mathbb{R}^n} \cong S^n$

1.14 Полные метрические пространства

1.15 Предел последовательности

Designation. X — топологическое пространство.

Def 39. Точка $x \in X$ — предел последовательности $\{x_n\} \subset X$, если

$$\forall$$
 окрестности $U \ni x \; \exists N \in \mathbb{N} : \; x_n \in U \quad \forall n > N.$

Синонимы: x_n стремится к x или x_n сходится к x

Designation. $x_n \to x$ и $x = \lim x_n$

Property.

- 1. $x_n = x \operatorname{cxodumcs} \kappa x$
- $2. \ x_n \to x \Longrightarrow$ любая подпоследовательность тоже сходится к x
- 3. Если X хаусдорфово, то предел единственный
- 4. В метрическом пространстве X = (X, d),

$$x_n \to x \iff d(x, x_n) \to 0.$$

5. Замкнутое множество содержит все пределы содержащихся в нем последовательностей.

$$\forall$$
 замкнутого $A \subset X : (\{x_n\} \subset A, x_n \to x \Longrightarrow x \in A).$

6. В метрическом пространстве X (или в пространстве со счетной базой) верно обратное: если $A \subset X$ содержит все пределы содержащихся в нем последовательностей, то A замкнуто.

1.16 Полные пространства

Designation. X = (X, d) — метрическое пространство.

Def 40. $\{x_n\}$ — фундаментальная последовательность, если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n, k > N \ d(x_n, x_k) < \varepsilon$$

или

$$d(x_n, x_k) \to 0, \quad n, k \to \infty.$$

Синонимы: $\{x_n\}$ — последовательность Коши, $\{x_n\}$ сходится в себе.

Def 41. X полно, если любая фундаментальная последовательность имеет предел.

Property.

- 1. Если последовательность сходится, то она фундаментальна.
- 2. Фундаментальная последовательность ограничена.
- 3. Если последовательность фундаментальна и имеет сходящуюся подпоследовательность, то она сходится.

Note. Полнота — не топологическое свойство!

Exs.

- 1. ℝ полно (критерий сходимости Коши)
- 2. $\mathbb{R}\setminus\{0\}$ не полно (если $x_n\to 0,\ x_n\neq 0$, она фундаментальна, но не имеет предела в $\mathbb{R}\setminus\{0\}$)
- 3. [0,1] полно
- 4. (0,1) неполно

Theorem 42. \mathbb{R}^n полно.

Доказательство. Пусть $\{x\}$ — последовательность в \mathbb{R}^n , $x_k = (x_k^1, \dots, x_k^n)$. Предположим, что $\{x_k\}$ фундаментальна в \mathbb{R}^n . Тогда $\forall i \in [1, n]: \{x_k^i\}$ — тоже фундаментальна. Значит координатные последовательности имеют пределы x^1, \dots, x^n . Следовательно, $x_k \to x \coloneqq (x^1, \dots, x^n)$.

Theorem 43. Если X полно $u \ Y \subset X$ замкнуто, то Y полно.

Practice. Если множество в метрическом пространстве полно, то оно замкнуто.

Practice. Множество в \mathbb{R}^n полно тогда и только тогда, когда оно замкнуто.

1.16.1 Теорема о вложенных шарах

Theorem 44 ("о вложенных шарах"). Пусть

- ullet X полное метрическое пространство
- \bullet A_1, A_2, \ldots непустые замкнутые множества в X
- $A_1 \supset A_2 \supset \dots$
- $\operatorname{diam}(A_n) \to 0$

 $Tor\partial a \cap A_i \neq \varnothing.$

Доказательство. Для всех A_n выберем точку x_0 . Так как $\operatorname{diam}(A_n) \to 0$, $\{x_n\}$ фундаментальна, следовательно, имеет предел x, который принадлежит X, так как X полно.

$$\forall n \geqslant k : x_n \in A_k \Longrightarrow x \in A_k.$$

Тогда $x \in \bigcap A_i \Longrightarrow \bigcup A_i \neq \emptyset$.

1.16.2 Теорема Бэра

Def 42. X — топологическое пространство. Множество $A \subset X$ нигде не плотно, если:

Int Cl $A = \emptyset$

или

 $X \setminus A$ содержит всюду плотное множество

или

любое открытое $U \subset X$ содержит открытое $V \subset U$ такое, что $V \cap A = \emptyset$.

Ex. $f = f(x_1, \dots x_n)$ — ненулевой многочлен степени n над \mathbb{R} . Тогда $f^{-1}(0)$ нигде не плотно в \mathbb{R}^n .

Ех. Канторово множество нигде не плотно в \mathbb{R} .

Theorem 45 (Бэр). Полное метрическое пространство нельзя покрыть счетным набором нигде не nлотных множеств.

Доказательство. Пусть A_1, A_2, \ldots нигде не плотные множества. Пусть $B_0 = \overline{B}_{r_0}(x_0)$.

 A_1 нигде не плотно, следовательно, открытый шар $B_{r_0}(x_0)$ содержит открытое множество $U_1: U_1 \cap A_1 = \emptyset$.

 U_1 содержит открытый шар, который содержит $B_1 = \overline{B}_{r_1}(x_1), r_1 \leqslant 1.$

Построили замкнутый шар $B_1 \subset B_0$, $B_1 \cap A_1 = \emptyset$. Аналогично построим последовательность $B_0 \supset B_1 \supset B_2 \supset \ldots$, где радиус $r_i \leqslant \frac{1}{i}$ и $B_i \cap A_i = \emptyset$.

По теореме ?? о вложенных шарах существует точка $x \in \bigcap B_i$. Тогда $x \notin \bigcup A_i \Longrightarrow \bigcup A_i \neq X$.

Corollary. Полное метрическое пространство без изолированных точек несчетно.

Theorem 46 (усиление теоремы Бэра). Пусть X — полное метрическое пространство, A — объединение счетного набора нигде не плотных множеств. Тогда Int $A = \emptyset$.

1.16.3 Пополнение

Def 43. Пусть X — метрическое пространство. Пополнение X — такое метрическое пространство \overline{X} , что

- \bullet \overline{X} полно
- ullet $X\subset \overline{X}$ как подпространство, то есть $d_X=d_{\overline{X}}$
- ullet X всюду плотно в \overline{X}

Theorem 47 (без доказательства). У любого метрического пространства есть пополнение.

1.17 Компактность метрических пространств

- 1.17.1 Секвенциальная компактность
- 1.17.2 Вполне ограниченные множества
- 1.17.3 Компактность и счетная база

1.18 Факторизация

Def 44. Пусть X — топологическое пространство, \sim — отношение эквивалентности на нем как множестве точек.

Факторпространство $X/\!\sim\!-$ множество классов эквивалентности с такой топологией:

ullet множество U открыто в $X/\sim \iff \bigcup_{u\in U} u$ открыто в X.

Эта топология называется фактортопологией.

Note. Элементы факторпространства — классы эквивалентности — подмножества X.

1.18.1 Каноническая проекция на факторпространство

Designation. Здесь и далее X — топологическое пространство, \sim — отношение эквивалентности на X.

Def 45. Каноническая проекция X на X/\sim или отображение факторизации — отображение

$$p: X \to X/\sim$$

сопоставляющее каждой точке $x \in X$ ее класс эквивалентности:

$$p(x) = [x] := \{ y \in X : y \sim x \}.$$

Theorem 48. Каноническая проекция непрерывна.

Note (Переформулировка определения). $A \subset X/\sim$ открыто тогда и только тогда, когда $p^{-1}(A)$ открыто в X.

Note. Фактортопология — наибольшая топология, для которой каноническая проекция непрерывна.

Property. Следующие свойства наследуются факторпространством:

- Связность
- Линейная связность
- Компактность
- Сепарабельность

1.18.2 Стягивание множества в точку

Def 46. Пусть $A \subset X$. Введем отношение эквивалентности \sim на X:

$$x \sim y \iff x = y \lor (x \in A \land y \in A).$$

Факторпространство обозначается X/A, операция называется стягиванием в точку. Полученные классы эквивалентности — A и одноточечные.

Ех. $D^{n}/S^{n-1} \cong S^{n}$ (доказано позже в теореме 46)

1.18.3 Несвязное объединение

Def 47. Пусть X, Y — топологические пространства. Их несвязное объединение — дизъюнктное объединение $X \sqcup Y$ с такой топологий: A открыто в $X \sqcup Y \iff A \cap X$ открыто в X и $A \cap Y$ открыто в Y.

Note. Аналогично определяется несвязное объединение топологических пространств $\{X_i\}_{i\in I}$.

Practice. Все компоненты связности X открыты тогда и только тогда, когда X — несвязное объединение своих компонент связности.

1.18.4 Приклеивание по отображению

Designation. X, Y — топологические пространства, $A \subset X$. $f: A \to Y$ — непрерывное отображение.

Def 48. \sim — наименьшее отношение эквивалентности на $X \sqcup Y$, такое что

$$\forall a \in A : a \sim f(a).$$

Факторпространство $(X \sqcup Y)/\sim$ обозначается $X \sqcup_f Y$. Операция называется приклеиванием X к Y по f.

Ех. Пусть x_0, y_0 — точки в $X, Y, A = \{x_0\}, f(x_{00} = y_0)$. Результат склеивания — **букет** (X, x_0) и (Y, y_0) .

Ex. Склеим в квадрате \overrightarrow{ABCD} стороны \overrightarrow{AB} и \overrightarrow{DC} по аффинной биекции между ними, сохраняющей отученное направление. Получим цилиндр $S^1 \times [0,1]$.

 \overrightarrow{Ex} . Если склеить \overrightarrow{AB} и \overrightarrow{CD} , получилась **лента Мебиуса**.

Def 49. Пусть X – топологическое пространство. Γ – подгруппа группы Homeo(X) – группы всех гомеоморфизмов из X в себя.

Введем отношение эквивалентности \sim на X:

$$a \sim b \iff \exists q \in \Gamma : q(a) = b.$$

Designation. Факторпространство X/\sim обозначается X/Γ или $\Gamma\backslash X$

 $\mathbf{Ex.}\ \mathbb{R}/\mathbb{Z}\cong S^1$, где \mathbb{Z} действует на \mathbb{R} параллельными переносами.

Theorem 49. Пусть $p: X \to X/\!\sim -$ каноническая проекция. $f: X \to Y$ переводит эквивалентные точки в равные:

$$\forall x, y \in X : x \sim y \Longrightarrow f(x) = f(y).$$

Tог ∂a

- 1. $\exists \overline{f}: X/\sim \to Y: f=\overline{f}\circ p$.
- 2. \overline{f} непрерывно тогда и только тогда, когда f непрерывно.

Доказательство.

- Определим $\overline{f}([x]) = f(x)$ для всех $x \in X$
- \bullet \Longrightarrow По непрерывности композиции, если \overline{f} непрерывна, то f тоже.
- Е В обратную сторону по определению фактортопологии. (проверим определение непрерывности)

Theorem 50 (Склеивание концов отрезка). $[0,1]/\{1,0\} \cong S^1$

Доказательство. Рассмотрим $f:[0,1] \to S^1$.

$$f(x) = (\cos 2\pi x, \sin 2\pi x).$$

Это отображение пропускается через факторпространство $[0,1]/\{0,1\} \to S^1$. Соответствующее $\overline{f}:[0,1]/\{0,1\} \to S^1$ — биекция. По теореме 43 \overline{f} непрерывно. $[0,1]/\{0,1\}$ — компактно, S^t — хаусдорфово, следовательно, \overline{f} — гомеоморфизм.

Theorem 51. X – замкнуто, Y – хаусдорфово. $f: X \to Y$ – непрерывно и сюрьективно. Тогда

$$X/\sim \cong Y$$
,

 $rde \sim onpedeляется условием$

$$x \sim y \iff f(x) = f(y).$$

Theorem 52. $D^n/S^{n-1} \cong S^n$

Доказательство. Вместо D^n возьмем B – замкнутый шар радиуса π с центром в $0 \in \mathbb{R}^n$. По прошлой теореме 45 достаточно построить сюрьективный гомеоморфизм $f: B \to S^n$, отображающий край шара в одну точку, а в остальном инъективен. Сойдет такое:

$$f(x) = \begin{cases} \left(\frac{x}{|x|}\sin|x|,\cos|x|\right) & x \neq 0_{\mathbb{R}^n} \\ (0_{\mathbb{R}_{n-1}}, 1) & x = 0_{\mathbb{R}^n} \end{cases}$$

1.19. МНОГООБРАЗИЯ 32

1.19 Многообразия

Designation. Здесь и далее $n \in \mathbb{N} \cup \{0\}$

Def 50. n-мерное многообразие — хаусдорфово топологическое пространство со счетной базой, обладающее свойством локальной евклидовости: у любой точки $x \in M$ есть окрестность, гомеоморфная \mathbb{R}^n .

Число n — размерность многообразия.

Theorem 53. При $m \neq n$ никакие непустые открытые подмножества \mathbb{R}^n и \mathbb{R}^m не гомеоморфны.

Corollary. Многообразие размерности n не гомеоморфно многообразию размерности m.

Ех. 0-мерные многообразия – не более чем счетные дискретные пространства.

Ex. Любое открытое подмножество \mathbb{R}^n или любого многообразия – многообразие той же размерности.

Ex. Сфера S^n – n-мерное многообразие

Ex. Проективное пространство $\mathbb{RP}^n = S^n/\{id, -id\}$ – многообразие

Practice. В диске D^n склеим противоположные точки границы. Полученное пространство гомеоморфно \mathbb{RP}^n .

Def 51. *n*-мерное многообразие с краем – хаусдорфово пространство M со счетной базой и такое, что у каждой точки есть окрестность, гомеоморфная либо \mathbb{R}^n , либо $\mathbb{R}^n_+ := [0, +\infty) \times \mathbb{R}^{n-1}$.

Множество точек, у которых нет окрестностей первого вида, называются **краем** M и обозначаются ∂M .

Def 52. Поверхность – двумерное многообразие.

Ех. D^n — многообразие с краем, S^{n-1} — его край.

Theorem 54. \mathbb{R}^n_+ не гомеоморфно никакому открытому подмножеству в \mathbb{R}^n_-

Склеивание поверхности их квадрата Три варианта склейки сторон квадрата:

- 1. Обе пары сторон без переворота $(aba^{-1}b^{-1})$ тор $S^1 \times S^1$.
- 2. Одна пара с переворотом $(abab^{-1})$ бутылка Клейна.
- 3. Обе пары с переворотом (abab) проективная плоскость \mathbb{RP}^2 .

Theorem 55.

- Пусть дан правильный 2n угольник (D^2 с границей разбитой на части), стороны которого разбиты на пары и ориентированы. Склеим каждую пару сторон по естественному отображению с учетом ориентации. Тогда получится двумерное многообразие (поверхность).
- Пусть в т-угольнике некоторые 2n сторон (2n < m) которого разбиты на пары, ориентированы и склеены аналогично. Тогда получится двумерное многообразие с краем.

1.19. МНОГООБРАЗИЯ 33

Note. Можно брать и несколько многоугольников и склеивать из между собой.

1.19.1 Классификация многообразий

Note. Любое многообразие локально линейно связно. Следовательно, компоненты линейной связности совпадают с компонентами связности и открыты. Будем исследовать только связные многообразия.

Theorem 56 (без доказательства). Пусть M – непустое связное 1-мерное многообразие. Тогда

- 1. M компактно, без края $\Longrightarrow M \cong S^1$
- 2. M некомпактно, без края $\Longrightarrow M \cong \mathbb{R}$
- 3. M компактно, $\partial M \neq \varnothing \Longrightarrow M \cong [0,1]$
- 4. M некомпактно, $\partial M \neq \varnothing \Longrightarrow M \cong [0, +\infty)$

Corollary. Компактное 1-мерное многообразие без края — несвязное объединение конечного набора окружностей.

1.19.2 Сферы

Def 53. Пусть $p \in \mathbb{N}$. Сфера с p ручками строится так: берем сферу S^2 , вырезаем p не пересекающихся дырок (внутренностей D^2). Далее берем p торов с такими же дырками и приклеиваем по дыркам торы к сфере.

Def 54. Сфера с пленками – аналогично, только приклеиваем ленты Мебиуса.

Practice. Сфера с одной пленкой – \mathbb{RP}^2 , сфера с двумя пленками – бутылка Клейна.

1.19.3 Классификация поверхностей

Statement. Поверхность — связное двумерное многообразие.

Theorem 57.

- Компактная поверхность без края гомеоморфна сфере или сфере с ручками или сфере с пленками.
- Поверхности разного типа, сферы с разным числом ручек, сферы с разным числом пленок попарно не гомеоморфны.
- Компактная поверхность с краем гомеоморфна одному из этих цилиндров с несколькими дырками.

Поверхности с разным числом дырок негомеоморфны.

Note. Число дырок равно числу компонент края.

1.19. МНОГООБРАЗИЯ

1.19.4 Эйлерова характеристика

Def 55. Пусть M – компактная поверхность, разбитая вложенным связным графом на областидиски (замыкание области гомеоморфно диску, граница – цикл в графе). Эйлерова характеристика M – целое число:

$$\chi(M) = V - E + F.$$

Theorem 58. Эйлерова характеристика — топологический инвариант и не зависит от разбиения.

Exs.

- $\chi(S^2) = 2$
- $\chi(T^2) = 0$
- χ (бутылки Клейна) = 0
- При вырезании дырки х уменьшается на 1
- χ (сферы с n дырками) = $2 n, \chi$ (тора с дыркой) = -1
- $\chi(A \cap B) = \chi(A) + \chi(B) \chi(A \cup B)$
- χ (сферы с р ручками) = 2-2p
- χ (сферы с q пленками) = 2-q