Chapter 3

同构定理

定义 3.1 <u>商空间</u>: F 为域, V 是 F 上的向量空间, S 是 V 的子空间, 则称 $\frac{V}{S} \equiv \{[v] \mid v \in V\}$ 是 F 的**商空间**, 其中 $[v] \equiv \{u \in V \mid u - v \in S\} = S + v$.

 $\frac{V}{S}$ 是 F 上的向量空间.

 $\begin{tabular}{l} \mathbf{\ddot{u}} \colon [u] + [v] = \{a \in V \mid a - u \in S\} + \{b \in V \mid b - v \in S\} = \{(a + b) \in V \mid a - u \in S, b - v \in S\}. \\ [u + v] = \{w \in V \mid w - (u + v) \in S\}. \\ \end{tabular}$

 $\forall a + b \in [u] + [v], (a - u) + (b - v) = (a + b) - (u + v) \in S \Longrightarrow (a + b) \in [u + v] \Longrightarrow [u] + [v] \in [u + v].$

 $\forall w \in [u+v], \exists c, d \in S, \text{ s.t. } c+d=w-(u+v) \Longrightarrow w=(c+d)+(u+v)=(c+u)+(d+v), \not\exists \text{ \mathbb{P}} (c+u) \in [u], \\ (d+v) \in [v] \Longrightarrow w \in [u]+[v].$

故 [u] + [v] = [u + v].

假设 $u \sim u', v \sim v'$, 即 [u] = [u'], [v] = [v'].

- \therefore $[u] = [u'], \therefore uS = u'S \Longrightarrow \exists s_1, s'_1 \in S$, s.t. $u + s_1 = u' + s'_1 \Longleftrightarrow v' = u + s_1 s'_1$,
- \therefore $[v] = [v'], \therefore vS = v'S \Longrightarrow \exists s_2, s'_2 \in S$, s.t. $v + s_2 = v' + s'_2 \Longleftrightarrow v' = v + s_2 s'_2$,

从而 $u'+v'=u+s_1-s_1'+v+s_1-s_1'$, 其中 $::s_1,s_1',s_1,s_1'\in S,\ s_1-s_1'\in S,\ s_2-s_2'\in S,$

- $\therefore V$ 是交换群, \therefore , s.t. $s_1 s_1' + v = v + s_1 s_1' \Longrightarrow u' + v' = u + v + (s_1 s_1' + s_2 s_2')$
- $\implies (u' + v')S = (u + v + (s_1 s_1' + s_2 s_2'))S \implies [u' + v'] = [u' + v'] = [u + v],$

即 [u] + [v] = [u + v] 与代表元选取无关, 故 [u] + [v] = [u + v] 是运算.

 $r[u] = r\{v \in V \mid v - u \in S\} = \{rv \mid v \in V, v - u \in S\} = \{rv \in V \mid rv - ru \in S\} = [ru].$ 假设 $u \sim u'$, 即 [u] = [u'].

 $\therefore [u] = [u'], \therefore uS = u'S \Longrightarrow \exists s, s' \in S, \text{ s.t. } u + s = u' + s' \Longleftrightarrow u' = u + s - s',$

从而 ru' = r(u+s-s') = ru+r(s-s'),其中 $s-s' \in S \Longrightarrow (ru')S = (ru+r(s-s'))S = (ru)S \Longrightarrow r[u'] = [ru]$,即 r[u] = [ru] 与代表元选取无关,故 r[u] = [ru] 是运算.

 $(\frac{V}{S},+)$ 满足

- $(1) \ \textbf{ 结合律: } ([v]+[u])+[w]=[u+v]+[w]=[u+v+w]=[u+(v+w)]=[u]+[v+w]=[u]+([v]+[w])$
- (2) 有单位元 [0]: [0] + [u] = [0 + u] = [u] = [u + 0] = [u] + [0]
- (3) 有逆元: $\forall v \in V, \exists -v, \text{ s.t. } [a] + [-a] = [a + (-a)] = [0] = [(-a) + a] = [-a] + [a]$

且 [u] + [v] = [u + v] = [v + u] = [v] + [u],即 $(\frac{V}{S}, +)$ 交换,故 $(\frac{V}{S}, +)$ 是交换群. (总之就是因为 $\frac{V}{S}$ 中的元素 [v] 保持了 V 中的元素 v 的各种运算性质,所以 (V, +) 是交换群就可以推出 $\frac{V}{S}$ 也是交换群.)

 $\frac{V}{S}$ 满足

3. 同构定理

- (1) r([u+v]) = r([u] + [v]) = r[u] + r[v]
- (2) (r+t)[u] = [(r+t)u] = [ru+tu] = [ru] + [tu] = r[u] + t[u]
- (3) $(r \cdot t)[u] = [(r \cdot t)u] = [r(tu)] = r[tu] = r(t[u])$
- (4) 有单位元 1: [1][u] = [1u] = [u]

故 $\frac{V}{S}$ 是 F 上的向量空间.

定理 3.1 (课本定理3.2): (1) $\Pi_S:V \to \frac{V}{S}, v \mapsto [v]$ 是线性变换.

- (2) Π_S 是满线性变换, 即 $\operatorname{Im} \Pi_S = \frac{V}{S}$.
- (3) $\ker \Pi_S = S$.
- 证: (1) 显然 Π_S 是唯一的, 故 Π_S 是映射.

如前所证, V 和 $\frac{V}{S}$ 均为 F 上的向量空间.

$$: [u+v] = \{w \in V \mid w - (u+v) \in S\}, r[u] = [ru], : r[u] + t[v] = [ru] + [tv] = [ru+tv],$$
故 Π_S 为线性变换.

- (2) $\forall [v] \in \frac{V}{S}$, $\exists v \in V$, s.t. $\Pi_S(v) = [v]$, 即 $\operatorname{Im} \Pi_S = \frac{V}{S}$, 故 Π_S 是满线性变换.
- (3) $\ker \Pi_S = \{ v \in S \mid \Pi_S(v) = [0] \}.$

 $\Pi_S(v) = [v] = S + v = [0] = S \Longrightarrow v \in S \Longrightarrow \ker \Pi_S = S.$

定理 3.2 (课本定理3.3): (1) S,T 是子空间,且 $S\subseteq T$,则 $\frac{T}{S}$ 是 $\frac{V}{S}$ 的子空间.

- (2) 取 X 为 $\frac{V}{S}$ 的子空间, 则 $\exists V$ 的子空间 T, s.t. $\emptyset \neq S \subseteq T$, $\frac{T}{S} = X$.
- **证:** (1) $\frac{T}{S} = \{[u] \mid u \in T\}, \frac{V}{S} = \{[v] \mid v \in V\}.$

 $\forall [u] \in \frac{T}{S}, u \in T, : T \not \in V \text{ in } \overrightarrow{S} \subseteq V \implies [u] \in \frac{V}{S}, \text{ in } \frac{T}{S} \subseteq \frac{V}{S}.$

 $\forall [u_1], [u_2] \in \frac{T}{S}, r, t \in F, r[u_1] + t[u_2] = [ru_1 + tu_2], \because u_1, u_2 \in T, \therefore ru_1 + tu_2 \in T \Longrightarrow [ru_1 + tu_2] \in \frac{T}{S},$ 故 $\frac{T}{S}$ 是线性空间.

综上, 得证.

显然 $T \subseteq V$.

 $\forall u, v \in T$, 根据 T 的定义, $[u], [v] \in X$,

 $\therefore X$ 为子空间, $\therefore r[u] + t[v] = [ru + tv] \in X \Longrightarrow ru + tv \in [ru + tv] \subseteq T = \bigcup_{v \in X} [v] \Longrightarrow ru + tv \in T$. 故 T 为 V 的子空间.

$$\therefore [0] = S, \therefore S \subseteq T.$$

$$\frac{T}{S} = \{ [v] = S + v \mid v \in T \}.$$

$$\forall [v] \in \frac{T}{S}, v \in T \Longrightarrow [v] \in X.$$

$$\forall [v] \in X, v \in T \Longrightarrow [v] \in \frac{T}{S}.$$

故
$$\frac{T}{S} = X$$
.

综上, 得证.

定理 3.3 第一同态基本定理(课本定理3.4): ${}^aS \in V$ 的子空间, $\tau \in \mathcal{L}(V,W)$,

若 $S \subseteq \ker \tau$, 即 $\ker \Pi_S \subseteq \ker \tau$, 则 $\exists ! \tau'$, s.t. $\tau = \tau' \circ \Pi_S$, 即 $\forall v \in V, \tau(v) = \tau'([v])$, 此时上图可交换.

"该定理回答了 au' 的存在性 (即 au' 在什么条件下存在) 的问题. 之所以称"基本", 是因为若将该定理中的向量空间换成其他代数结构, 定理仍然成立.

证: τ' 的唯一性要求, 若 [u] = [v], 则 $\tau'([u]) = \tau'([v])$,

即若 $u \sim v$, 则 $\tau(u) = \tau(v)$,

即若 $u-v \in S$, 则 $\tau(u-v)=0$,

即 $S \subseteq \ker \tau$.

此时, $\ker \tau' = \{[v] \in \frac{V}{S} \mid \tau'([v]) = 0\} = \{[v] \in \frac{V}{S} \mid \tau(v) = 0\} = \{[v] \in \frac{V}{S} \mid v \in \ker \tau\} = \{[v] \mid v \in \ker \tau\} = \frac{\ker \tau}{S},$ $\operatorname{Im} \tau' = \{\tau'([v]) \mid [v] \in \frac{V}{S}\} = \{\tau'([v]) \mid v \in V\} = \{\tau(v) \mid v \in V\} = \operatorname{Im} \tau \ (:\Pi_S \ \text{满射}, :: \forall [v] \in \frac{V}{S}, \exists v \in V).$ 那么,如果 τ 双射,即 $\exists \tau^{-1} \in \mathcal{L}(W, V)$,再加上条件 $\ker \tau \subseteq S$,即 $\ker \tau = S$,如何?

此时, $\ker \tau' = \frac{\ker \tau}{S} = \{[v] \mid v \in \ker \tau\} = \{[v] \mid v \in S\} = \{[0]\} \Longrightarrow \tau'$ 单射. 由上面关于第一同态定理的延伸讨论我们得到:

定理 3.4 第一同构定理(课本定理3.5): 若 $\ker \tau = S$, 则 τ' 单射, $\frac{V}{\ker \tau} = \frac{V}{S} \approx \operatorname{Im} \tau$.

3. 同构定理

证: $V = \ker \tau \oplus (\ker \tau)^c$, 其中 $(\ker \tau)^c \approx \operatorname{Im} \tau \Longrightarrow \frac{V}{\ker \tau} = (\ker \tau)^c$.

更一般地, 若 $V = S \oplus T$, 则 $\frac{V}{S} = T$, $\frac{V}{T} \approx S$.

证: $\forall v \in V, v = u_S + u_T$, 其中 $u_S \in S, u_T \in T$. 令投影映射 $P_T : V \to T, v = u_S + u_T \mapsto u_T$. $\ker P_T = \{v \in V \mid P_T(v) = 0\} = S = [0] = \ker \Pi_S$. $\exists ! \tau' \, \text{ $\dot{\tau}$} \text{ $\dot{\tau}$}, \text{ $\dot{\tau}$}.$

又 $\operatorname{Im} P_T = T$, 即 P_T 满射, $\therefore \tau'$ 满射 $\Longrightarrow \tau'$ 同构 $\Longrightarrow \frac{V}{S} \approx T$.

同理可证 $\frac{V}{T} \approx S$.

定义 3.2 <u>对偶(空间)和线性泛函</u>: $V^* = \mathcal{L}(V, F)$ 是 F 上的向量空间, 称 V^* 为 V 的对偶(空间). 若 $f \in V^*$, 称 f 为线性泛函.

- (1) $\ker V^*$ 为 F 上的向量空间.
- (2) $\dim F = 1$, $\operatorname{Im} f \subseteq F$, $\therefore \dim \operatorname{Im} f \le 1$, $\dim \ker f \ge \dim V 1$.
- (3) V^* 非空, :: 必有零映射 $0 \in V^*$, $0: V \to F$, $v \mapsto 0$.
- (4) 若 dim Im f = 0, 则 Im $f = \{0\}$, f 为零映射.
- (5) 若 dim Im f = 1, 则 Im $f = \langle r \rangle$, 其中 $0 \neq r \in F \Longrightarrow$ Im f = F, 由反证法易证, 若 $v \in f^{-1}(r) = \{v \in V \mid f(v) = r\}$, 其中 $r \neq 0$, 则 $v \neq 0$, 且必有 $f(\langle v \rangle^c) = \{0\}$.

证明一下 (5) 的末句:

证: 假设 $\exists u \in \langle v \rangle^c$, s.t. $f(u) \neq 0$,

则有 $f\left(\frac{ru}{f(u)}\right) = r \Longrightarrow \frac{ru}{f(u)} \in f^{-1}(r) \Longrightarrow f^{-1} = \langle v \rangle \oplus \langle u \rangle$,

又 : $u \in \langle v \rangle^c$, : $\dim f^{-1} \geq 2$, 这与 $f^{-1} \subseteq (\ker f)^c$, $\dim(\ker f)^c = \dim \operatorname{Im} f \leq 1$ 矛盾,

故假设错误, $\forall u \in \langle v \rangle^c$, $f(u) = 0 \Longrightarrow f(\langle v \rangle^c) = \{0\}$.

定理 3.5 (课本定理3.11): (1) 若 $0 \neq v \in V$, $\exists 0 \neq f \in V^*$, s.t. $f(v) \neq 0$.

- (2) $v = 0 \iff \forall f \in V^*, f(v) = 0.$
- (3) $f \in V^*$, 若 $f(x) \neq 0$, 则 $V = \ker f \oplus \langle x \rangle$, 即 Im $f \approx \langle x \rangle$.
- (4) $0 \neq f, g \in V^*$, $\ker f = \ker g \iff \exists 0 \neq \lambda \in F$, s.t. $f = \lambda g$.
- 证: (1) $v \neq 0$, 则 $V = \langle v \rangle \oplus \langle v \rangle^c$, 其中 $\langle v \rangle = \{rv \mid r \in F\}$.

 $\Leftrightarrow f: V \to F, rv + w \mapsto r, \text{ if } rv \in \langle v \rangle, w \in \langle v \rangle^c, \text{ if } f(v) = 1, f \in V^*.$

我们来验证一下: $\forall u_1, u_2 \in V, r, t \in F, u_1$ 和 u_2 可写成 $u_1 = r_1 v + w_2, u_2 = r_2 v + w_2$

 $\implies f(ru_1 + tu_2) = f(r(r_1v + w_1) + t(r_2v + w_2)) = f((rr_1v + rw_1) + (tr_2v + tw_2)) = rr_1 + tr_2 = rf(r_1v + w_2)$ $(w_1) + tf(r_2v + w_2) = rf(u_1) + tf(u_2).$

故得证.

并且需要注意这里的 f 的构造不是唯一的: 我们可以构造 $f: V \to F, rv + u \mapsto rt$, 其中 $u \in \langle v \rangle^c$, 如此一来, f(v) = t.

- (2) "⇒": 若 v = 0, 则 $\forall u \in V$, $f(v) + f(u) = f(v + u) = f(u) \Longrightarrow f(v) = 0$. "←": 若 $\forall f \in V^*, f(v) = 0$, 则假设 $v \neq 0$, 则由 $(1), \exists v \in V^*, \text{ s.t. } f(v) \neq 0$, 矛盾, 故假设错误, v = 0.
- (3) $f(x) \neq 0 \implies \operatorname{Im} f \neq \{0\} \implies \dim \operatorname{Im} f \neq 0 \implies \dim \operatorname{Im} f \dim (\ker f)^c = 1 \implies \dim \ker f = \dim V 1$ $\dim(\ker f)^c = \dim V - 1$

 $\Longrightarrow \exists v \in V, \text{ s.t. } V = \ker f \oplus (\ker f)^c = \langle v \rangle,$

又 :: $f(x) \neq 0$, :: $x \in \langle v \rangle \Longrightarrow \langle x \rangle = \langle w \rangle \Longrightarrow V = \ker f \oplus \langle x \rangle$, 故得证.

(4) " \Longrightarrow ": $\diamondsuit K = \ker f = \ker g$.

∴ $\ker f = \ker g, \forall x \notin K, \text{ in } (3) \text{ ff}, V = \langle x \rangle \oplus K.$

取 $\lambda = \frac{f(x)}{g(x)}$ 即得.

" \Longrightarrow ": 若 $\exists \lambda \neq 0, f = \lambda g$, 则显然 $\ker f = \ker g$.

定义 3.3 对偶基: $\mathcal{B} = \{b_1, \dots, b_n\}$ 为 V 的基, 则 $\forall i, \exists b_i^* \in V, \text{ s.t. } b_i^*(b_i) = 1, \ \forall j \neq i, \ b_i^*(b_j) = 0, \ \text{即}$ $b_i^*(b_i) = \delta_{ij}$, 从而可以构造出 $\mathcal{B}^* = \{b_1^*, \cdots, b_n^*\} \subseteq V^*$, 称为 \mathcal{B} 的对偶基.

定理 3.6 (课本定理3.12): (1) $\mathcal{B}^* = \{b_1^*, \dots, b_n^*\}$ 线性无关.

- (2) $\dim V < \infty$, 则 \mathcal{B}^* 是 V^* 的基.
- ਪੱE: (1) $\sum_{i=1}^{m} r_i b_i^* = 0 \Longrightarrow \forall v \in V, \left(\sum_{i=1}^{m} r_i b_i^*\right)(v) = 0(v) = 0$ $\Longrightarrow \sum_{i=1}^{m} r_i b_i^*(v) = 0$

5 / 8

取 $v = b_j$, 则 $\sum_{i=1}^m r_i b_i^*(b_j) = \sum_{i=1}^m r_i \delta_{ij} = r_j = 0$, 对各个 b_i 如法炮制, 从而得到 $r_i = 0 \forall i$, 故得证.

(2) $\forall f \in V^*, \forall v \in V, :: \mathcal{B} \in V$ 的基, $:: v = \sum_{i=1}^n r_i b_i$ $\implies b_j^*(v) = b_j^* \left(\sum_{i=1}^n r_i b_i \right) = \sum_{i=1}^n r_i b_j^* (b_i) = \sum_{i=1}^n r_i \delta_{ij} = r_j$ 回代得 $v = \sum_{i=1}^n b_i^*(v) b_i$ $\implies f(v) = f \left(\sum_{i=1}^n b_i^*(v) b_i \right) = \sum_{i=1}^n b_i^*(v) f(b_i) = \sum_{i=1}^n f(b_i) b_i^*(v) = \left(\sum_{i=1}^n f(b_i) b_i^* \right) (v), \text{ 这里 } b_i^*(v), f(b_i) \in F,$ 因此可以交换位置,我们可视 $\{b_i^*(v)\}$ 为基, $f(b_i)$ 为 f(v) 在这组基上的展开系数 $\implies f = \sum_{i=1}^n f(b_i) b_i^*, \text{即 } f \text{ 可展开为 } \{\mathcal{B}^*\} \text{ 的线性表示,结合 (1) 得证.}$

按照类似上面的方法, $\forall v \in V$, 我们都可构造 $v^* \in V^*$, s.t. $\forall u_1 \in \langle v \rangle$, $v^*(u) = 1$, $\forall u_2 \in \langle v \rangle^c$, $v^*(u_2) = 0$, 从而有映射 $V \to V^*$, $v \mapsto v^*$,

定义 3.4 二重对偶(空间): $V^{**} = \mathcal{L}(V^*, F)$ 称为二重对偶(空间), 其中的元素为 $v^{**}: V^* \to F, f \to f(v)$.

 $V \to V^* \to V^{**}, v \mapsto v^* \mapsto v^{**}, b_i \mapsto b_i^* \mapsto b_i^{**},$ 满足 $b_i^*(b_j) = \delta_{ij}, b_i^{**}(b_j^*) = b_j^*(b_i),$ 两个映射复合得 $\tau: V \to V^{**}, v \mapsto v^{**}.$

- (1) τ 是映射.
- (2) τ 是线性变换.
- (3) $\ker \tau = \{v \in V \mid \tau(v) = 0\} = \{0\} \iff \tau$ 单射.

证: (1) 若 u = v, 则 $\forall f \in V^*$, $u^{**}(f) = f(u) = f(v) = v^{**}(v)$, 即得证.

- (2) $\tau(ru+tv) = (ru+tv)^{**}$, $\forall f \in V^*$, $(ru+tv)^{**}(f) = f(ru+tv) = rf(u) + tf(v) = ru^{**}(f) + tv^{**}(f) = r\tau(u)(f) + t\tau(v)(f) \Longrightarrow \tau(ru+tv) = r\tau(u) + t\tau(v)$, 结合 (1) 即得证.
- (3) $\tau(v) = 0 \Longrightarrow \forall f \in V^*, v^{**}(f) = 0 \Longrightarrow f(v) = 0 \Longrightarrow (定理 3.5 (1)) v = 0$, 即得证.

引理 3.1 (课本引理3.13): 若 $\dim V = n < \infty$, 则 $\dim V^* = \dim V^{**} = n$, V^{**} 与 V 同构, 一个线性空间的二 重对偶就回到自身, 所以实际上套娃式的 V^{****} 是没有意义的, 这里我们就写成 $V^{***} = V$.

定义 3.5 算子伴随: 由线性变换 τ 可引出算子伴随 $\tau^*: W^* \to V^*, g \mapsto g \circ \tau$.

6 / 8

3. 同构定理

- (1) τ^* 是映射.
- (2) τ^* 是线性的.

证: (1) 若 $f = g \in W^*$, $v^* * \in \tau^*$, 则 $\tau^*(f) = f \circ \tau = g \circ \tau = \tau^*(g)$, 故得证.

(2) $\tau^*(rg_1 + tg_2) = (rg_1 + tg_2) \circ \tau = rg_1 \circ \tau + tg_2 \circ \tau = r\tau^*(g_1) + t\tau^*(g_2)$, 故得证.

定理 3.7 (课本定理3.18): (1) $\tau.\sigma \in \mathcal{L}(V,W)$, $a,b \in F$, 则 $(a\tau + b\sigma)^* = a\tau^* + b\sigma^*$, 即求和与算子伴随可交换.

- (2) $\sigma \in \mathcal{L}(V, W), \tau \in \mathcal{L}(W, U), \ \mathbb{M} \ (\tau \circ \sigma)^* = \sigma^* \circ \tau^*.$
- (3) $\tau \in \mathcal{L}(V)$ 可逆 $\Longrightarrow (\tau^{-1})^* = (\tau^*)^{-1}$.

证: $(1) \forall f \in W^*, (a\tau + b\sigma)^*(f) = f \circ (a\tau + b\sigma) = af \circ \tau + bf \circ \sigma = a\tau^*(f) + b\tau^*(f),$ 即得证.

(2) $\forall f \in V^*, (\tau \circ \sigma)^*(f) = f \circ (t \circ \sigma) = f \circ (\tau \circ \sigma) = (f \circ \tau) \circ \sigma = \sigma^*(f \circ \tau) = \sigma^*(\tau^*(f)) = (\sigma^* \circ \tau^*)(f) \Longrightarrow (\tau \circ \sigma)^* = \sigma^* \circ \tau^*.$

(3) $1^* = (\tau \circ \tau^{-1})^* = (\tau^{-1})^* \circ \tau^* \Longrightarrow (\tau^{-1})^* = (\tau^*)^{-1}$.

定理 3.8 (课本定理3.18): $\dim V < \infty$, $\dim W < \infty$, $\tau \in \mathcal{L}(V,W)$, $\tau^* \in \mathcal{L}(V,W)$, $\tau^{**} \in \mathcal{L}(V^{**},W^{**}) = \mathcal{L}(V,W)$, 则 $\tau^{**} = \tau$.

定理 3.9 (课本定理3.22): $\tau \in \mathcal{L}(V, W)$, 其中 dim $V < \infty$, dim $W < \infty$, \mathcal{B} 和 \mathcal{C} 分别是 V 和 W 的定序基, \mathcal{B}^* 和 \mathcal{C}^* 分别是 \mathcal{B} 和 \mathcal{C} 的对偶空间, 则 $[\tau^*]_{\mathcal{C}^*\mathcal{B}^*} = ([\tau]_{\mathcal{B}\mathcal{C}})^T$.

证: 设 dim V=n, dim W=m, V 的定序基 $\mathcal{B}=\{b_1,\cdots,b_n\}$, W 的定序基 $\mathcal{C}=\{c_1,\cdots,c_m\}$, $\tau\in\mathcal{L}(V,W)$ 的矩阵 表示为 $[\tau]_{\mathcal{BC}} = [\alpha_{ij}]_{m \times n}, \, \tau^* \in \mathcal{L}(W^*, V^*)$ 的矩阵表示为 $[\tau^*]_{\mathcal{C}^*\mathcal{B}^*} = [\beta_{ij}]_{n \times m},$

$$\mathbb{P}[\tau]_{\mathcal{BC}} = \left([\tau(b_1)]_{\mathcal{C}} \cdots [\tau(b_n)]_{\mathcal{C}} \right), \, \, \, \, \, \, \, [\tau(b_i)]_{\mathcal{C}} = \begin{pmatrix} \alpha_{1i} \\ \vdots \\ \alpha_{mi} \end{pmatrix}, \, \tau(b_i) = \sum_{k=1}^m \alpha_{ki} c_k.$$

又 : $\tau^*(c_i^*) = c_i^* \circ \tau$, 我们将这一复合函数作用在 b_j 上有, $(c_i^* \circ \tau)(b_j) = (\sum_{l=1}^n \beta_{li} b_l^*)(b_j) = \sum_{l=1}^n \beta_{li} b_l^*(b_j) = \beta_{ji}$ $\implies \beta_{ji} = c_i^*(\tau(b_j)),$ 代入上面的 $\tau(b_j)$ 的展开式得 $\beta_{ji} = c_i^* \left(\sum_{k=1}^m \alpha_{kj} c_k\right) = \sum_{k=1}^m \alpha_{kj} c_i^*(c_k) = \sum_{k=1}^m \alpha_{kj} \delta_{ik} = \alpha_{ij},$ 故得证.