Inf-1100 Innføring i programmering og datamaskiners virkemåte

Åge Kvalnes

University of Tromsø, Norway

August 28, 2014

Counting in binary

		Bit
0 (0)	1000 (8)	1000 <mark>0</mark> (16)
1 (1)	1001 (9)	10001 (17)
10 (2)	1010 (10)	10010 (18)
11 (3)	1011 (11)	10011 (19)
100 (4)	1100 (12)	10100 (20)
101 (5)	1101 (13)	10101 (21)
110 (6)	1110 (14)	10110 (22)
111 (7)	1111 (15)	10111 (23)
		Bit-string

The **binary** numeral system uses only two symbols, 1 and 0.

The **decimal** numeral system uses 10 symbols, 0..9.

Computers manipulate bit-strings.

Bit-strings can represent anything

By associating a particular interpretation with a bit-string, the string can be made to represent information beyond a number.

- ▶ Numbers: Integers, rational numbers, irrational numbers, ...
- Images: Color, size, pixels,...
- Music: Midi, mp3, wav
- **>** ...

Representing a picture as a bit-string

ASCII codes

To represent letters, numbers, punctuation marks, and other special characters in a computer, an interpretation is needed. ASCII is one such interpretation.

The ASCII standard defines a numerical representation for all the characters you find on a (US) computer keyboard. For example,

- ▶ The value 65 corresponds to the character 'A'
- ▶ The value 33 corresponds to the character '!'

Hexadecimal notation

A hexadecimal number is a number in base 16. The letters *A..F* are used to denote numbers between 10 and 15.

Hexadecimal notation offers two useful features:

- Hexadecimal numbers are very compact (easier to memorize).
 - ► $111011100110101100101000000000_2 = 10000000000_{10} = 3B9ACA00_{16}$
- ► Easy to convert a number from binary to hexadecimal and vice versa. Group the binary number into 4-bit groups (nibbles). Each nibble corresponds to a hexadecimal digit.
 - ▶ $110111101001_2 = 1101 \ 1110 \ 1001 = DE9_{16}$

Adding binary numbers

$$\begin{array}{ccc}
\frac{1}{1} & \frac{11}{10110} & & \frac{1}{22} \\
+ & 10011 & & + 19 \\
\hline
101001 & & 41
\end{array}$$

Decimal or binary, the math is the same

Unsigned integers as bit-strings

Weighted positional notation:

$$1101 = 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0$$

Same as in the decimal system: $912 = 9 * 10^2 + 1 * 10^1 + 2 * 10^0$

Problem: How do we represent negative numbers as bit-strings?

Signed integers as bit-strings

Using n bits we have 2^n possible values.

- ▶ Use most significant bit (MSB) to hold the sign of the value.
 - ▶ Leaves about $2^n/2$ bits to hold actual value.
- Signed magnitude:
 - ► MSB=0: positive value, e.g. 00110 = 6.
 - ▶ MSB=1: negative value, e.g. 10110 = -6.

Note: A bit-string becomes a representation of a signed integer by associating an interpretation with the string (e.g. MSB tells sign).

Signed magnitude vs 2's complement

Problems with signed magnitude:

- ► Two representations of 0 (+0 and -0)
- ▶ What's the result of -5 + 5 (using normal addition)?
 - ► Signed magnitude: -10

Most common representation: 2's complement.

- ▶ -5 + 5 = 0 using normal addition.
- ► MSB=0:
 - Positive value
- ► MSB=1:
 - ▶ Negative value. To go from positive to negative, first flip every bit, *then add 1*.

2's complement arithmetic: Addition

Straightforward addition works as expected:

$$\begin{array}{r}
01111000 (120) \\
+ 11101100 (-20) \\
\hline
01100100 (100)
\end{array}$$

2's complement arithmetic: Subtraction

Take 2's complement of subtrahend, and then perform a straightforward addition:

```
01111000 (120)
- 00010100 (20)

01111000 (120)
+ 11101100 (-20)

01100100 (100)
```

2's complement arithmetic: Sign extension

When adding two numbers, both numbers must be represented with the same number of bits.

Wrong approach: Pad with zeroes

Correct approach: Pad with sign bit

$$\begin{array}{c} 01111000 \ (120) \\ + \ \ \ \, 1100 \ (-4) \\ \hline 01111000 \ (120) \\ + \ 11111100 \ (-4) \end{array}$$

2's complement arithmetic: Overflow

Integers are usually represented in a computer using a fixed number of bits (e.g. 8, 16, 32, 64). What if there aren't enough bits to represent the result of an addition? **overflow!**

Easy to detect: Signs of operands are the same, but sign of result is different.

Note: In many popular programming languages, such as C and Java, overflows are silently ignored! \Rightarrow be conscious of the overflow problem when writing code in these languages.

Logial operations

A logical operation is an operation on logical TRUE or FALSE.

- ▶ Represented using one bit (1=TRUE, 0=FALSE).
- ▶ An n-bit number is a collection of n logical values.

Operations:

- AND
- OR
- ▶ NOT

Logial operations: AND

Result is 1 only if both operands are 1, 0 otherwise:

- ightharpoonup 0 AND 0 = 0
- ▶ 0 AND 1 = 0
- ▶ 1 AND 0 = 0
- ▶ 1 AND 1 = 1

10100111 AND 11111100

10100100

Logial operations: OR

Result is 1 if any operand is 1, 0 otherwise:

- ightharpoonup 0 OR 0 = 0
- ▶ 0 OR 1 = 1
- ▶ 1 OR 0 = 1
- ▶ 1 OR 1 = 1

10100111 OR 11111100

11111111

Logial operations: NOT

Flips every bit (complement).

NOT 11111100

00000011

The transistor

A transistor is a semiconductor component that acts like a switch, controlling the flow of an electric current.

Think of IN as a binary digit. The value 0 is a voltage low enough to keep the p-type transistor open. The value 1 is a voltage high enough to keep the n-type transistor open. And vice versa.

Transistors: Inverting

Combine a p-type and an n-type transistor to invert a binary digit. 1 becomes 0 and 0 becomes 1.

IN represents the binary digit. Depending on the value of IN, OUT is either GND (value 0) or 2.9v (value 1).

Note: The two transistors are performing a logical NOT operation on a bit!

Transistors: Logical operations

- a) Inverts 0 to 1, and 1 to 0.
- b) C is 1 only if A and B are 1.
- c) C is 1 if either A or B are 1.

All these gates can be implemented by a circuit of transistors

Transistors: The AND gate

Binary addition revisited

Operation on each digit:

$$\begin{array}{ccc}
 \frac{1}{1} & \frac{11}{10110} \\
 + & \frac{10011}{101001}
\end{array}$$

$$\begin{array}{cccc}
 0 + 0 = 0, \text{ carry} = 0 \\
 0 + 1 = 1, \text{ carry} = 0 \\
 1 + 0 = 1, \text{ carry} = 0 \\
 1 + 1 = 0, \text{ carry} = 1
\end{array}$$

The operation on each digit can be expressed as a series of logical operations...which can be performed by transistors!

Transistors: Adding two binary digits

A B 0 0	Sum 0	Carry 0
0 1	1	0
1 0	1	0
1 1	0	1

Add the binary digits A and B.

