



# Präsentation der Plattform und Realisierungskonzepte

Referenten Clemens Drauschke Markus Baisch

#### Inhaltsübersicht



- Team
- Hardwarekonzept
  - Die Plattform
  - Sensorik
- Softwarekonzept
  - Spurführung
  - Parken
  - Hinderniskonzept
- Vision

#### **Team FAUST**







Alexander Eisenbraun



Clemens Drauschke



Florian Dannenberg



Jonathan Becker



Markus Baisch



Martin Gosch



Tim Cleemann

#### **Plattformübersicht**





#### **Plattform**



#### Intel NUC

- Desktop-CPU i5(Haswell)
- 8 GB Arbeitsspeicher
- 128 GB SSD
- Wireless-Lan
- USB

#### Software

- Debian 7.4
- Echtzeit-Scheduler
- QT 5
- OpenCV
- uEye-Kamera-Treiber
- VNC, FTP, SSH



#### **Plattform**



#### Motion-Controller

- Ansteuerung der Aktorik
- Profilberechnungen
- Aufbereitung der Sensorik



## **Sensorik**





#### Kostenverteilung





#### Arbeitszeitverteilung





#### **Energiebedarf und Kosten**





#### **Motion-Controller**



- Interrupts
- periodischer Task (schnell)
  - Berechnung von Brems- und Beschleunigungsprofilen
  - Umrechnung von Sensorwerten
  - Übernahme von Steuerbefehlen
  - Auswertung Interrupts
- periodischer Task (langsam)
  - Senden von Daten an den PC

## Verteilungsschema





## **PC-Komponente**



Eventgesteuert



## **Spurhaltungsalgorithmus**





## **Spurhaltungsalgorithmus**





## Lenkwinkelberechnung





#### **Dynamische Geschwindigkeit**



- Erkennung von Kurvenanfang und –ende
- Abbremsen vor der Kurve
- Beschleunigung am Kurvenende
- Erkennung einer S-Kurve und Zurücksetzen auf den Kurvenmodus

## Einparkkonzept





## **Einparkkonzept**





#### Hinderniskonzept





## Hinderniskonzept





#### **Ausblick**



- Einzelradantrieb
- LIDAR anstatt IR-Sensoren
- Alternative zur Kamera
- FPGA zur Vorverarbeitung der Kameradaten



## Zeit für Ihre Fragen



## Vielen Dank!