# The strong hull property for affine irreducible Coxeter groups of rank 3

Proof of the strong hull conjecture for an interesting class

Ziming Liu

School of Mathematics, Shandong University

May 20, 2025





- Background and preliminaries
- 2 Progress and main result
- 3 Reference

- Background and preliminaries
- 2 Progress and main result
- 3 Reference

#### Basic notation

- G: a connected undirected graph
- V(G): vertices of G
- $d: V(G) \times V(G) \to \mathbb{Z}_+$ : distance function forms hull metric
- d(x, y): the shortest path between vertices x and y in V(G)
- $C \subset V(G)$  is convex:  $\forall u, v \in V(G)$

$$d(u, w) + d(w, v) = d(u, v) \Rightarrow w \in C$$

• Conv(X): intersection of all convex sets containing X.

#### Basic notation

- Coxeter group: together with a generating set  $S = \{s_1, \dots, s_r\}$  subject to the relations  $s_i^2 = 1$  for  $i=1,\cdots,r$  and  $(s_is_i)^{m_{ij}}=\mathbf{1}$  for  $i\neq j\in\{1,\cdots,r\}$  for some numbers  $m_{ii} \in \{2, 3, \cdots, \infty\}$
- Rank: cardinality of the generating set S of a Coxeter group
- Coxeter graph:
  - vertices are the elements of S:
  - attach  $s_i$  and  $s_i$  to form an edge if  $m_{ii} > 3$ ;
  - label the edges with  $m_{ii}$  where  $m_{ii} > 4$
- Irreducible Coxeter group: its Coxeter graph is connected

### Basic notation

- Cayley graph  $Cay(\Gamma, S)$ :
  - vertices are the elements of a group Γ;
  - at each vertex  $g \in \Gamma$ , insert an edge joining g to  $gs_{\alpha}$  for each of the chosen generators  $s_{\alpha} \in S$ .

## Example (Cayley graph of infinite dihedral group)

 $I_2(\infty)$  has the presentation  $\langle s_0, s_1 \mid s_0^2 = s_1^2 = 1 
angle \Rightarrow$  Coxeter group



Figure 1: The Cayley graph of  $I_2(\infty)$ 

## Strong hull conjecture

A graph G has the *strong hull property* if for every u, v,  $w \in V(G)$ ,

$$|\operatorname{Conv}(u, v)| \cdot |\operatorname{Conv}(v, w)| \ge |\operatorname{Conv}(u, v, w)|.$$
 (1)

# Conjecture (Strong hull conjecture [GG22])

Let W be any Coxeter group. Then Cay(W) has the strong hull property.

- Background and preliminaries
- Progress and main result
- 3 Reference

# Finite irreducible Coxeter groups

## Coxeter groups were classified in 1935 for the finite case [Cox35].

| Туре             | Graph                                                                          | Туре              | Graph    |
|------------------|--------------------------------------------------------------------------------|-------------------|----------|
| $A_n, n \ge 1$   | $s_1$ $s_2$ $s_3$ $s_{n-1}$ $s_n$                                              | E <sub>8</sub>    |          |
| $B_n, n \geq 2$  | $s_0$ $s_1$ $s_2$ $s_{n-2}$ $s_{n-1}$                                          | F <sub>4</sub>    | •—•4•—•  |
| $D_n \ n \geq 4$ | s <sub>1</sub> s <sub>2</sub> s <sub>3</sub> s <sub>n-2</sub> s <sub>n-1</sub> | G <sub>2</sub>    | • 6      |
| E <sub>6</sub>   |                                                                                | H <sub>3</sub>    | <u> </u> |
| E <sub>7</sub>   |                                                                                | H <sub>4</sub>    | 5        |
|                  |                                                                                | $I_2(m), m \ge 3$ | <u></u>  |

## **Progress**

- In [GG22], Gaetz-Gao proved that the strong hull conjecture holds when
  - W is a symmetric group (type A):
  - W is a hyperoctahedral group (type B);
  - W is any right-angled Coxeter group;
  - W is types  $D_4$ ,  $F_4$ ,  $G_2$ , or  $H_3$  (verified by computer).
- 2 It can be easily verified that the Cayley graph of  $I_2(\infty)$  has the strong hull property.
- 3 This thesis investigates the affine types  $A_2$ ,  $C_2$ , and  $C_3$ . By employing key concepts from building theory, we develop novel techniques:
  - Reducing and classifying the convex hull;
  - Combinatorial computations.



## Affine irreducible Coxeter groups

| Туре                            | Graph                                                                          | Туре              | Graph     |
|---------------------------------|--------------------------------------------------------------------------------|-------------------|-----------|
| $\widetilde{A}_1 = I_2(\infty)$ | <u>~</u>                                                                       | $\widetilde{E}_6$ |           |
| $\widetilde{A}_{n-1}, n \geq 3$ | $s_1$ $s_2$ $s_{n-2}$ $s_{n-1}$                                                | $\widetilde{E}_7$ |           |
| $\widetilde{B}_n$ , $n \geq 3$  | $s_n$ $s_0$ $s_1$ $s_2$ $s_{n-2}$ $s_{n-1}$                                    | $\widetilde{E}_8$ |           |
| $\widetilde{C}_n$ , $n \geq 2$  | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                          | $\widetilde{F}_4$ | •—•4•—•   |
| $\widetilde{D}_n$ , $n \geq 4$  | S <sub>1</sub> S <sub>2</sub> S <sub>3</sub> S <sub>n-2</sub> S <sub>n-1</sub> | $\widetilde{G}_2$ | • 6 • • • |

Prop. A. 17 of [MT11] and Section 6.7 in [Hum90] imply that the three types of affine irreducible groups of rank 3 are  $\widetilde{A}_2$ ,  $\widetilde{C}_2$ ,  $\widetilde{G}_2$ .

#### Main result

# Theorem (Main result)

The strong hull conjecture holds for affine irreducible Coxeter groups of rank 3.



- (a) Reflection hyperplanes of type  $\widetilde{A}_2$
- (b) Reflection hyperplanes of type  $\widetilde{C}_2$
- (c) Reflection hyperplanes of type  $\widetilde{G}_2$

Figure 2: The triangulation of Euclidean space for affine irreducible Coxeter groups of rank 3



"That's what you get for skipping geometry class."

- 1 Background and preliminaries
- 3 Reference

#### Reference

- [Cox35] Harold SM Coxeter, The complete enumeration of finite groups of the form  $r_i^2 = (r_i r_j)^{k_{ij}} = 1$ , Journal of the London Mathematical Society **1** (1935), no. 1, 21–25.
- [GG22] Christian Gaetz and Yibo Gao, The hull metric on Coxeter groups, Comb. Theory 2 (2022), no. 2, Paper No. 7, 15. MR 4449815
- [Hum90] James E Humphreys, *Reflection groups and coxeter groups*, Cambridge studies in advanced mathematics, no. 29, Cambridge university press, 1990.
- [MT11] Gunter Malle and Donna Testerman, *Linear algebraic* groups and finite groups of lie type, vol. 133, Cambridge university press, 2011.

Thanks!