

Análise Complexa e Equações Diferenciais 1º Semestre 2009/2010

2º Teste - Versão A

(CURSOS: LEIC-A, MEC, LEGM, LET)

19 de Dezembro de 2009

Duração: 1h 30m

INSTRUÇÕES

- Não é permitida a utilização de quaisquer elementos de consulta, incluindo máquinas de calcular.
- Justifique as suas respostas e apresente todos os cálculos.
- Este caderno de exame inclui duas folhas em branco no final, que poderá utilizar como rascunho ou para terminar outras respostas. Todo o caderno é para ser entregue no final da prova, pelo que não poderá rasgar ou arrancar essas folhas.

Pergunta	cotação	classificação
1)	1,5	
2)	1.5	
3) a)	1,0	
3) b)	1,5	
3) c)	1,0	
4) a)	1,0	
4) b)	1,5	
5)	1	
Total	10	

Nome:	
N°:	Sala:
Curso:	Rúbrica (DOCENTE):

[1,5 val.] 1. Resolva o seguinte problema de valor inicial, determinando a sua solução <u>na forma explícta</u> e indicando o seu intervalo máximo de existência:

$$(xy^2 - 2x) - (x^3 + 2yx^2)y' = 0$$
 , $y(-2) = -2$.

Sugestão: Utilize um factor integrante da forma $\mu(x)$.

Resolução: Denotemos por M(x,y) e N(x,y) as funções

$$M(x,y) = (xy^2 - 2x),$$
 $N(x,y) = -(x^3 + 2yx^2).$

A equação dada não é exacta, visto que as derivadas cruzadas destas funções não são iguais

$$\frac{\partial M}{\partial y}(x,y) = 2yx \neq \frac{\partial N}{\partial x}(x,y) = -(3x^2 + 4yx).$$

Seguindo a sugestão, procuramos um factor integrante que seja apenas função de x, $\mu(x)$. Isso significa que é possível multiplicar toda a equação por um tal factor, de modo a torná-la exacta, ou seja:

$$\mu(x)M(x,y) + \mu(x)N(x,y)y' = 0,$$

tal que

$$\frac{\partial}{\partial y} \Big(\mu(x) M(x,y) \Big) = \frac{\partial}{\partial x} \Big(\mu(x) N(x,y) \Big).$$

Desenvolvendo, obtém-se a equação diferencial ordinária, linear e homogénea, para $\mu(x)$,

$$\mu'(x) = \left(\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N(x, y)}\right) \mu(x),$$

a qual só faz sentido se o termo

$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N(x, y)},$$

for apenas função de x. Mas, efectivamente,

$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N(x,y)} = \frac{2yx + 3x^2 + 4yx}{-(x^3 + 2yx^2)}$$
$$= -\frac{3x(x+2y)}{x^2(x+2y)}$$
$$= -\frac{3}{x}.$$

A solução da equação linear homogénea

$$\mu'(x) = -\frac{3}{x}\mu(x),$$

é dada pela fórmula $\mu(x) = e^{-\int \frac{3}{x} \, dx}$, donde

$$\mu(x) = x^{-3}.$$

A nova equação,

$$\left(\frac{y^2}{x^2} - \frac{2}{x^2}\right) - \left(1 + \frac{2y}{x}\right)y' = 0,$$

obtida da original, multiplicando-a pelo factor integrante $\mu(x)=x^{-3}$ encontrado, é exacta. Para resolvê-la, precisamos agora determinar por primitivação o potencial $\Phi(x,y)$, que tem por gradiente as novas funções, ou seja

$$\nabla \Phi(x,y) = \left(\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}\right) = \left(\frac{y^2}{x^2} - \frac{2}{x^2}, -1 - \frac{2y}{x}\right).$$

Primitivando primeiro em ordem a x, tem-se

$$\frac{\partial \Phi}{\partial x} = \frac{y^2}{x^2} - \frac{2}{x^2} \Rightarrow \Phi(x, y) = -\frac{y^2}{x} + \frac{2}{x} + \alpha(y),$$

o que, substituindo na segunda equação,

$$\frac{\partial \Phi}{\partial y} = -1 - \frac{2y}{x} \Rightarrow -\frac{2y}{x} + \alpha'(y) = -1 - \frac{2y}{x},$$

permite concluir que

$$\alpha'(y) = -1 \Rightarrow \alpha(y) = -y + C,$$

onde C é uma constante real. A solução geral na forma implícita é, portanto

$$\Phi(x,y) = 0 \Leftrightarrow -\frac{y^2}{x} + \frac{2}{x} - y + C = 0 \Leftrightarrow y^2 + xy - Cx - 2 = 0$$

Para terminar, usamos finalmente a condição inicial para determinar o valor de C e explicitar a solução. Assim, substituindo nesta equação os valores de x=-2 e y=-2, concluimos que C=-3. E utilizando a fórmula resolvente, para resolver a equação em ordem a y, obtemos a expressão explícita de y(x),

$$y(x) = -\frac{x}{2} - \frac{\sqrt{x^2 - 4(3x - 2)}}{2},$$

onde o sinal da raíz foi escolhido de modo a satisfazer a condição inicial y(-2)=-2.

O intervalo máximo de definição da solução é determinado a partir da condição $x^2-4(3x-2)>0$, a qual tem por solução o conjunto $x\in]-\infty, 6-\sqrt{28}[\cup]6+\sqrt{28}, +\infty[$. Como pretendemos o intervalo máximo que contém o instante inicial x=-2, a resposta é portanto

$$]-\infty, 6-\sqrt{28}[.$$

[1,5 val.] 2. Considere o problema de valor inicial

$$\mathbf{x}' = A\mathbf{x}$$
 , $\mathbf{x}(2) = (0, -1, 1)$

em que

$$A = \left[\begin{array}{rrr} 3 & 5 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{array} \right]$$

Determine a matriz e^{At} e indique a solução do problema.

Resolução: A matriz A já está praticamente na forma canónica de Jordan, com a excepção do termo 5 em vez de 1. Obviamente, os valores próprios são $\lambda=3$, com multiplicidade algébrica 2, mas multiplicidade geométrica 1, e $\lambda=2$, com multiplicidade algébrica e geométrica ambas iguais a 1.

Como a matriz já está essencialmente diagonalizada, também é fácil ver imediatamente quais são os vectores próprios. Para $\lambda=3$, os vectores próprios são apenas os múltiplos do primeiro vector da base canónica, ou sejam, os vectores do tipo

$$\mathbf{v} = \left[\begin{array}{c} \alpha \\ 0 \\ 0 \end{array} \right] = \alpha \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right],$$

portanto formam um espaço vectorial de dimensão 1 (multiplicidade geométrica do valor próprio $\lambda=3$), pelo que não se têm vectores próprio suficientes para a multiplicidade algébrica do valor próprio.

Quanto a $\lambda=2$, os vectores próprios são apenas os múltiplos do terceiro vector da base canónica, ou sejam, os vectores do tipo

$$\mathbf{v} = \left[\begin{array}{c} 0 \\ 0 \\ \alpha \end{array} \right] = \alpha \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right].$$

É necessário, portanto, recorrer à forma canónica de Jordan para determinar a matriz e^{At} , visto não se terem vectores próprios suficientes para formar uma base. Assim, a forma canónica de Jordan associada à matriz A dada é

$$J = \left[\begin{array}{ccc} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{array} \right],$$

e tem-se $e^{At}=Se^{Jt}S^{-1}$, onde S é a matriz de mudança de base $A=SJS^{-1}$, dada por

$$S = \left[\begin{array}{ccc} 1 & w_1 & 0 \\ 0 & w_2 & 0 \\ 0 & w_3 & 1 \end{array} \right].$$

A primeira e terceira colunas de S são os vectores próprios linearmente independentes já encontrados (por exemplo fazendo $\alpha=1$, nos dois casos) correspondentes aos valores próprios $\lambda=3$ e $\lambda=2$. Para a segunda coluna de S é necessário, para completar a mudança de base, determinar um vector próprio generalizado ${\bf w}$ associado à segunda repetição de $\lambda=3$,

$$A\mathbf{w} = \mathbf{v} + 3\mathbf{w} \Leftrightarrow (A - 3I)\mathbf{w} = \mathbf{v}.$$

ou seja

$$\begin{bmatrix} 0 & 5 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Daqui se conclui que $w_1 \in \mathbb{R}, w_2 = 1/5, w_3 = 0$. Então, escolhendo por exemplo $w_1 = 0$, temos

$$S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad S^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

donde

$$e^{At} = Se^{Jt}S^{-1} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} e^{3t} & te^{3t} & 0 \\ 0 & e^{3t} & 0 \\ 0 & 0 & e^{2t} \end{array} \right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{array} \right] = \left[\begin{array}{ccc} e^{3t} & 5te^{3t} & 0 \\ 0 & e^{3t} & 0 \\ 0 & 0 & e^{2t} \end{array} \right].$$

Finalmente, a solução do problema de valor inicial do sistema homogéneo, é dada, recorrendo a esta matriz exponencial, por

$$\mathbf{x}(t) = e^{A(t-2)}\mathbf{x}(2) = \begin{bmatrix} e^{3t-6} & 5(t-2)e^{3t-6} & 0\\ 0 & e^{3t-6} & 0\\ 0 & 0 & e^{2t-4} \end{bmatrix} \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix} = \begin{bmatrix} (10-5t)e^{3t-6}\\ -e^{3t-6}\\ e^{2t-4} \end{bmatrix}.$$

3. Considere a equação diferencial

$$y'' + y = b(x) \tag{1}$$

em que b(x) é uma função contínua.

- [1,0 val.] (a) Determine a solução geral da equação homogénea associada.
- [1,5 val.] (b) Considere

[1,0 val.]

$$b(x) = 2x - 1 - 2\cos x.$$

Determine a solução de (1) que verifica as condições iniciais y(0) = 1 e y'(0) = 0.

(c) Determine uma solução particular de (1) no caso em que $b(x) = \frac{-2}{\cos x}$.

Resolução: (a) A equação homogénea associada é

$$y'' + y = 0$$

que, fazendo y' = Dy, pode ser escrita na forma

$$(D^2 + 1)y = 0$$

O polinómio característico associado, $P(R)=R^2+1$ tem raízes $\pm i$, pelo que a solução geral é

$$y(x) = a\cos x + b\sin x$$
 , $a, b \in \mathbb{R}$

(b) Por ser uma equação linear não homogénea, a sua solução geral é da forma

$$y(x) = y_G(x) + y_P(x)$$

em que $y_G(x)$ é a solução geral da equação homogénea associada (ou seja a solução determinada em (a)), e $y_P(x)$ uma solução particular. Atendendo à forma de b(x) vamos considerar

$$y_P(x) = u(x) + v(x)$$

sendo u(x) uma solução particular da equação y''+y=2x-1 e v(x) uma solução particular da equação $y''+y=-2\cos x$. Para determinar u(x) iremos utilizar o método dos coeficientes indeterminados. O polinómio aniquilador de 2x-1 é D^2 . Então

$$(D^2 + 1)y = 2x - 1 \implies D^2(D^2 + 1)y = D^2(2x - 1) \implies D^2(D^2 + 1)y = 0$$

O polinómio característico associado, $P(R)=R^2(R^2+1)$ tem raízes $\pm i$ (simples) e 0 (dupla), pelo que a solução geral da equação é

$$y(x) = a\cos x + b\sin x + cx + d$$

Comparando com a solução obtida na alínea (a), concluimos que a forma da solução u é cx+d. Vamos determinar as constantes c e d de forma a que

$$u'' + u = 2x - 1 \Leftrightarrow (cx + d)'' + cx + d = 2x - 1 \Leftrightarrow c = 2, d = -1$$

pelo que u(x) = 2x - 1.

Para determinar v(x) iremos tambem utilizar o método dos coeficientes indeterminados. O polinómio aniquilador de $-2\cos x$ é D^2+1 . Então

$$(D^2+1)y = -2\cos x \implies (D^2+1)(D^2+1)y = (D^2+1)(-2\cos x) \implies (D^2+1)^2y = 0$$

O polinómio característico associado, $P(R)=(R^2+1)^2$ tem raízes $\pm i$ (duplas), pelo que a solução geral da equação é

$$y(x) = a\cos x + b\sin x + cx\cos x + dx\sin x$$

Comparando com a solução obtida na alínea (a), concluimos que a forma da solução v é $cx \cos x + dx \sin x$. Vamos determinar as constantes c e d de forma a que

$$v'' + v = -2\cos x \Leftrightarrow (cx\cos x + dx\sin x)'' + cx\cos x + dx\sin x = -2\cos x$$

 $\Leftrightarrow -2c\sin x + 2d\cos x = -2\cos x$
 $\Leftrightarrow c = 0$, $d = -1$

pelo que $v(x) = -x \operatorname{sen} x$.

Conclui-se que $y_P(x) = 2x - 1 - x \operatorname{sen} x$ e a solução geral de (1) é

$$y(x) = a\cos x + b\sin x + 2x - 1 - x\sin x$$

Para que as condições iniciais se verifiquem:

$$y(0) = 1 \Rightarrow a - 1 = 1 \Rightarrow a = 2$$

е

$$y'(0) = 0 \Rightarrow b+2=0 \Rightarrow b=-2$$

donde se conclui finalmente que a solução pedida do problema de valor inicial é

$$y(x) = 2\cos x - 2\sin x + 2x - 1 - x\sin x$$

(c) Para calcular a solução particular da equação no caso em que $b(x)=\frac{-2}{\cos x}$, é conveniente utilizar a fórmula da variação das constantes visto não ser possível aplicar o método dos aniquiladores. Assim, uma matriz Wronskiana associada à equação homogénea y''+y=0 é

$$W(x) = \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix},$$

pelo que

$$y_P(x) = \begin{bmatrix} \cos x & \sin x \end{bmatrix} \int \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ \frac{-2}{\cos x} \end{bmatrix} dx$$

$$= \begin{bmatrix} \cos x & \sin x \end{bmatrix} \int \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix} \begin{bmatrix} 0 \\ \frac{-2}{\cos x} \end{bmatrix} dx$$

$$= \begin{bmatrix} \cos x & \sin x \end{bmatrix} \int \begin{bmatrix} \frac{2 \sin x}{\cos x} \\ -2 \end{bmatrix} dx$$

$$= \begin{bmatrix} \cos x & \sin x \end{bmatrix} \begin{bmatrix} -2 \log(|\cos x|) \\ -2x \end{bmatrix}$$

$$= \log(\cos^{-2} x) \cos x - 2x \sin x.$$

4. Considere o problema de valores na fronteira e valor inicial

$$\begin{cases}
\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = (3t^2)u & x \in]0, \pi[\ , \ t > 0 \\
\frac{\partial u}{\partial x}(t,0) = \frac{\partial u}{\partial x}(t,\pi) = 0 & t > 0 \\
u(0,x) = f(x) & x \in [0,\pi]
\end{cases} \tag{2}$$

em que $f:[0,\pi] o \mathbb{R}$ é definida por

$$f(x) = \begin{cases} 0 & \text{se } x \in [0, \frac{\pi}{2}] \\ x & \text{se } x \in]\frac{\pi}{2}, \pi] \end{cases}$$

- [1,0 val.] (a) Determine a série de Fourier de cosenos de f e indique a sua soma para cada valor de
- [1,5 val.] (b) Resolva o problema (2).

Resolução: (a) A série de cosenos de f será da forma

$$S_{\cos}f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx)$$

sendo os coeficientes obtidos pelo prolongamento par da função f dada ao intervalo $[-\pi,\pi]$,

$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx = \frac{2}{\pi} \int_{\pi/2}^{\pi} x dx = \frac{3\pi}{4}$$

e, integrando por partes,

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_{\pi/2}^{\pi} x \cos(nx) dx =$$
$$= \left(-\frac{1}{n} \operatorname{sen} \left(\frac{n\pi}{2} \right) + \frac{2}{\pi n^2} \left(\cos(n\pi) - \cos\left(\frac{n\pi}{2} \right) \right) \right)$$

Então

$$S_{\cos}f(x) = \frac{3\pi}{8} + \sum_{n=1}^{\infty} \left(-\frac{1}{n} \operatorname{sen} \left(\frac{n\pi}{2} \right) + \frac{2(-1)^n}{\pi n^2} - \frac{2}{\pi n^2} \cos \left(\frac{n\pi}{2} \right) \right) \cos(nx)$$

Em $[-\pi,\pi]$, o prolongamento par da função f é seccionalmente C^1 , pelo que se tem que a série converge para

$$S_{\cos}f(x) = \begin{cases} -x & \text{se} & -\pi \le x < -\frac{\pi}{2} \\ \frac{\pi}{4} & \text{se} & x = -\frac{\pi}{2} \\ 0 & \text{se} & -\frac{\pi}{2} \le x < \frac{\pi}{2} \\ \frac{\pi}{4} & \text{se} & x = \frac{\pi}{2} \\ x & \text{se} & \frac{\pi}{2} < x \le \pi \end{cases}$$

e em \mathbb{R} a série converge para a extensão periódica de período 2π desta função.

(b) Iremos utilizar o método de separação de variáveis para determinar soluções não nulas da equação diferencial que verificam as condições de fronteira. Considere-se u(t,x)=T(t)X(x). Substituindo na equação

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = (3t^2)u \iff T'(t)X(x) - T(t)X''(x) = 3t^2T(t)X(x) \iff \frac{T'(t)}{T(t)} - 3t^2 = \frac{X''(x)}{X(x)}$$

Atendendo a que a igualdade de uma função de t com uma função de x só é verificada para todos t e x se ambas forem iguais à mesma constante, teremos que para $\lambda \in \mathbb{R}$ constante

$$\frac{T'(t)}{T(t)} - 3t^2 = \lambda$$
 e $\frac{X''(x)}{X(x)} = \lambda$

Por outro lado

$$\frac{\partial u}{\partial x}(t,0) = 0 \implies T(t)X'(0) = 0 \implies T(t) = 0 \quad \forall t \text{ ou } X'(0) = 0$$

dado que procuramos soluções não nulas, a função T não pode ser identicamente nula e como tal é necessário que X'(0)=0. E de igual forma

$$\frac{\partial u}{\partial x}(t,\pi) = 0 \implies X'(\pi) = 0$$

Vamos então resolver os seguintes problemas

$$(\mathbf{P1}) \ \left\{ \begin{array}{ll} X'' - \lambda X = 0 \\ X'(0) = X'(\pi) = 0 \end{array} \right. \quad \text{e} \quad (\mathbf{P2}) \ T' = (\lambda + 3t^2)T$$

O problema (P1) é um problema de valores próprios: iremos determinar para que valores de λ o problema admite solução não identicamente nula. Resolvendo a equação, teremos que

$$(D^2 - \lambda)X = 0 \Rightarrow X(x) = \begin{cases} Ax + B & \text{se } \lambda = 0\\ Ae^{\mu x} + Be^{-\mu x} & \text{se } \lambda = \mu^2 > 0\\ A\cos(\mu x) + B\sin(\mu x) & \text{se } \lambda = -\mu^2 < 0 \end{cases}$$

Atendendo a que $X'(0) = X'(\pi) = 0$ teremos que as soluções de (P1) serão da forma

$$X(x) = \begin{cases} B & \text{se } \lambda = 0 \\ 0 & \text{se } \lambda > 0 \\ A\cos(nx) & \text{se } \lambda < 0 , \lambda = -n^2, n \in \mathbb{N} \\ 0 & \text{se } \lambda < 0 , \lambda \neq -n^2 \end{cases}$$

Concluimos que, o problema (P1) admite

- ullet $\lambda=0$ relativo à solução $X_0(x)=1$
- para cada $n \in \mathbb{N}$, $\lambda = -n^2$ relativo à solução $X_n(x) = \cos(nx)$

Para estes valores de λ , o problema (P2) terá então as soluções

- se $\lambda = 0$. $T_0(t) = e^{t^3}$
- ullet para cada $n\in\mathbb{N}$, $T_n(t)=e^{t^3-n^2t}$

Temos então que as soluções da equação diferencial parcial $\frac{\partial u}{\partial t}-\frac{\partial^2 u}{\partial x^2}=(3t^2)u$ que verificam as condições de fronteira são

- se $\lambda = 0$, $u_0(t, x) = e^{t^3}$
- para cada $n \in \mathbb{N}$, $u_n(t,x) = e^{t^3 n^2 t} \cos(nx)$

e pela linearidade da equação aplica-se o princípio da sobreposição, pelo que fazendo a "combinação linear infinita" das soluções obtidas anteriormente por separação de variáveis

$$u(t,x) = c_0 e^{t^3} + \sum_{n=1}^{\infty} c_n e^{t^3 - n^2 t} \cos(nx)$$

é tambem solução formal da equação e condições de fronteira. Finalmente, para determinar as constantes c_n iremos utilizar a condição inicial. Assim, para que u(0,x)=f(x) será necessário que

$$c_0 + \sum_{n=1}^{\infty} c_n \cos(nx) = f(x) \quad x \in]0, \pi[$$

ou seja as constantes c_n são os coeficientes da série de Fourier de cosenos da função f(x) em $]0,\pi[$ que determinamos na alínea (a). Então a solução do problema é

$$u(t,x) = \frac{3\pi}{8}e^{t^3} + \sum_{n=1}^{\infty} \left(-\frac{1}{n} \operatorname{sen} \left(\frac{n\pi}{2} \right) + \frac{2(-1)^n}{\pi n^2} - \frac{2}{\pi n^2} \cos \left(\frac{n\pi}{2} \right) \right) e^{-n^2t + t^3} \cos(nx)$$

[1,0 val.] 5. Seja y a solução do problema de valor inicial

$$y' = t(1+y^2)(\operatorname{sen} y + 3)$$
 , $y(0) = 1$.

Mostre que o intervalo máximo de existência de y é da forma]a,b[, em que a e b são reais verificando a<0< b.

Resolução: O problema, pela forma como está posto, já assume o conhecimento de que a equação tem solução única, o que é óbvio pela aplicação do Teorema de Picard-Lindeloff.

O que se quer não é, portanto, justificar existência e unicidade, mas sim que o intervalo máximo de existência da solução única é limitado. Ou seja, pretende-se mostrar que os extremos desse intervalo são reais, pelo que a solução não tem tempo de vida infinito, nem para t>0, nem para t<0. Por outras palavras, quer-se mostrar que a solução explode em tempo finito, nesses dois casos.

Procedemos por comparação com uma equação que consigamos resolver.

Com efeito, porque é sempre sen y + 3 > 1, tem-se para $t \ge 0$,

$$t(1+y^2) < t(1+y^2)(\sin y + 3),$$

pelo que a solução do problema de valor inicial

$$u' = t(1 + u^2), \qquad u(0) = 1,$$

satisfaz, para todo o $t \ge 0$, na intersecção dos intervalos de definição,

$$u(t) \leq y(t)$$
.

Mas u(t) pode obter-se explicitamente, de forma bastante fácil, visto a sua equação ser separável:

$$\frac{u'}{1+u^2} = t \Rightarrow \int_0^t \frac{d}{ds} \arctan(u(s))ds = \int_0^t s \, ds,$$

donde

$$\arctan(u(t)) - \arctan(1) = \frac{t^2}{2} \Rightarrow u(t) = \tan\left(\frac{t^2}{2} + \frac{\pi}{4}\right).$$

Concluimos portanto que, para $t \geq 0$, quando $t \rightarrow \sqrt{\frac{\pi}{2}} -$

$$\lim_{t \to \sqrt{\frac{\pi}{2}} -} u(t) = \tan(\frac{\pi}{2}) = +\infty,$$

pelo que, sendo $y(t) \geq u(t)$, a solução y(t) terá que obrigatoriamente explodir também antes de $t=\sqrt{\frac{\pi}{2}}$. Assim, para $t\geq 0$, o intervalo máximo de definição de y(t), [0,b[, satisfaz obrigatoriamente $b\leq \sqrt{\frac{\pi}{2}}$.

Para $t \leq 0$ não podemos usar directamente a mesma comparação acima, visto o teorema de comparação em questão ser válido apenas para $t \geq t_0$. Temos que fazer uma mudança de variável na equação diferencial, e alterá-la, de modo a converter $t \leq t_0$, em $t \geq t_0$. Ora a mudança óbvia é fazer a substituição $\tilde{y}(t) = y(-t)$: agora, o intervalo desejado $t \leq 0$, da solução original y(t), corresponde a $t \geq 0$ da nova função $\tilde{y}(t)$, como pretendemos. A função $\tilde{y}(t)$ satisfaz a nova equação diferencial

$$\tilde{y}'(t) = -y'(-t) = -(-t)(1+y^2(-t))(\operatorname{sen} y(-t) + 3) = t(1+\tilde{y}^2(t))(\operatorname{sen} \tilde{y}(t) + 3).$$

Por outras palavras, a função $\tilde{y}(t)$ que, para $t \geq 0$, descreve a evolução da solução original y(t) para $t \leq 0$, satisfaz exactamente a mesma equação

$$\tilde{y}' = t(1 + \tilde{y}^2)(\operatorname{sen}\tilde{y} + 3),$$

que a função original. Pelo que a comparação anterior mantém-se exactamente igual e concluimos portanto que, para $t\geq 0$ a função $\tilde{y}(t)$ explode obrigatoriamente antes de $t=\sqrt{\frac{\pi}{2}}$, donde para $t\leq 0$ a solução original y(t) explodirá também antes de $t=-\sqrt{\frac{\pi}{2}}$.

Conclui-se finalmente assim que o intervalo máximo de definição de y(t), é da forma]a,b[, com ___

$$-\sqrt{\frac{\pi}{2}} \le a < 0 < b \le \sqrt{\frac{\pi}{2}}.$$