

COMP110: Principles of Computing

5: Computational Complexity

Worksheet 5

Due **Friday 8th November** (2 weeks tomorrow)

Presentations

- Prepare and deliver a brief presentation on your research journal
- Maximum four minutes, maximum three slides
- Summarise the context in which your chosen paper is situated
- Outline the contributions of your chosen paper to the field of computing
- Describe the influence of your chosen paper on work that came since

Schedule

- Presentations are timetabled for week 7
- Running order will be released next week
 - Half of you will present Monday, the other half Friday
- All students are expected to attend the full duration of both sessions to listen and support their peers

Paper selection — please do ASAP!

Slides

- Prepare your slides in PowerPoint or PDF format
 - If not using PowerPoint or Beamer, export your slides in one of these formats
 - Slides "in the cloud" are not acceptable!
- Upload your slides to LearningSpace by 11:59pm on Friday 1st November

Slides upload

Week 7: Research Presentations; Data Structures I Session Introduction Session Plan Research Presentation --- Slides Upload Additional Resources

Search

Search

- We have a list of names, each with some data associated
- ► We want to find one of them

Linear search

```
procedure FIND(name, list)
for each item in list do
    if item.name = name then
    return item
    end if
    end for
    throw "Not found"
end procedure
```


How long does it take?

Socrative room code: FALCOMPED

- Suppose there are 25 items in the list
- In the **best case**, how many items do we need to visit before finding the one we want?
- How about in the worst case?

How long does it take?

Socrative room code: FALCOMPED

- If there are 25 items in the list, the worst case number of items visited is 25
- ► How about if there are 50 items?
- ► How about 100 items?
- If the number of items doubles, what happens to the amount of time the search takes?

Linear time

- ➤ The running time of linear search is proportional to the size n of the list
- Linear search is said to have linear time complexity
- Also written as O(n) time complexity

Searching a sorted list

► If the list is **sorted** in alphabetical order, we can do better than linear...

Binary search

```
procedure FIND(name, list)
   if list is empty then
      throw "Not found"
   end if
   mid \leftarrow the "middle" item of the list
   if name = mid.name then
      return mid
   else if name < mid.name then
      return FIND(name, first half of list)
   else if name > mid.name then
      return FIND(name, second half of list)
   end if
end procedure
```


How long does it take?

Socrative room code: FALCOMPED

- Each iteration cuts the list in half
- Worst case: we have to keep halving until we get down to a single element
- If the size of the list is doubled, what happens to the worst-case number of iterations required?
- Answer: it increases by 1
- ► The running time is logarithmic or O(log n)

Hidden complexity

if name < mid.name then
return FIND(name, first half of list)
else if name > mid.name then
return FIND(name, second half of list)
end if

- Careful how you implement this!
- ► Copying (half of) a list is linear O(n)
- The actual running time would be O(n log n)
- Use pointers into the list instead of copying

Binary search done wrong

```
def binary_search(name, mylist):
    if mylist == []:
        raise ValueError("Not found")
    mid = len(mylist) / 2
    mid_name = mylist[mid_index].name
    if name == mid_name:
        return mid
    elif name < mid_name:</pre>
        return binary_search(name, mylist[:mid])
    else:
        return binary_search(name, mylist[mid+1:])
```

Binary search done right

```
def binary_search(name, mylist, start, end):
    if end <= start:
        raise ValueError("Not found")
    mid = (start + end) / 2
    mid_name = mylist[mid].name
    if name == mid_name:
        return mylist[mid]
    elif name < mid_name:</pre>
        return binary_search(name, mylist, start, mid)
    else:
        return binary_search(name, mylist, mid+1, end)
```


Binary search vs linear search

Socrative room code: FALCOMPED

- So binary search is better than linear search... right?
- ► Discuss in pairs
- On Socrative, post one reason why, or one situation where, linear search may be a better choice than binary search

Hashing

- Come up with a hashing function which maps elements to numbers
- ► Example: assign A = 1, B = 2, C = 3 etc, and add them together
- Use these numbers to assign each element to a "bin" where it can be found

112	Ward, Jessica	
113	Baker, Theresa	
114	Collins, Jane	
115	_	
116	_	
117	Hughes, Aaron	
118	_	
119	_	
120	_	
121	_	
122	Brown, Janet	
123	_	
124	_	
125	Gonzalez, Adam	
	Lewis, Rose	
126	_	
127	_	
128	_	
129	_	
130	_	
131		
132	Young, Frank	

Hash look-up

98	Diaz, Harold		
99	Parker, Debra		
	Perez, Diana		
	White, Amanda		
112	Ward, Jessica		
113	Baker, Theresa		
114	Collins, Jane		
117	Hughes, Aaron		
122	Brown, Janet		
125	Gonzalez, Adam		
	Lewis, Rose		
132	Young, Frank		
135	Kelly, Philip		
138	Cox, Shirley		
142	Clark, Stephanie		
144	Scott, Michelle		
145	Miller, Jeremy		
147	Davis, Marilyn		
149	Lopez, Jeffrey		
151	Anderson, Martha		
158	Williams, Billy		
162	Sanders, Phillip		
171	Russell, Mildred		
175	Stewart, Howard		
183	Henderson, Lawrence		

How long does it take?

- If there are no "collisions", look-up time is constant or O(1)
 - (NB: constant with respect to n)
- I.e. doubling the size of the list does not change the look-up time
- When there are collisions, need to fall back on something like linear or binary search within each bin

Don't reinvent the wheel!

- We are using search as an example, to learn the principles — in practice you should hardly ever implement your own search
- Linear search in Python:
 - ▶ list.index() method
 - List comprehension, e.g.

- ▶ Binary search in Python:
 - ▶ The bisect module
- ► Hash tables in Python:
 - ► The dict (dictionary) data structure

More on complexity

Common complexity classes

"Faster"	Constant	O(1)
†	Logarithmic	0(log n)
	Fractional power	$O(n^k), k < 1$
	Linear	O(n)
	Quadratic	$O(n^2)$
	Polynomial	$O(n^k), k > 1$
\downarrow	Exponential	$O(e^n)$
"Slower"	Factorial	O(n!)

Common complexity classes

Working with big O notation

- Can ignore leading constants
 - ▶ If one algorithm takes n^2 operations, another takes $500n^2$ and a third takes $0.00000001n^2$, all three are $O(n^2)$
- Take only the dominant term
 - ► The term that is largest when n is large
 - If an algorithm takes $0.1n^3 + 300n^2 + 7000$ operations, it is $O(n^3)$
- Multiply compound algorithms
 - ▶ If an algorithm does n "things" and each "thing" is O(n), then the overall algorithm is $O(n^2)$

Quadratic complexity

- Collision detection between n objects
- The naïve way: check each pair of objects to see whether they have collided
- ► This is **quadratic** or $O(n^2)$
- Doubling the number of objects would quadruple the time required!
- Cleverer methods exist that are more scalable
 - Further reading: spatial hashing, quadtrees, octrees, Verlet lists

Exponential complexity

- A prime number is a number that is divisible only by 1 and itself
- ► Given an n-bit number m = pq that is a product of two primes p and q, find p and q.

```
for p = 2, 3, ..., m do q \leftarrow m/p if q is an integer then return p, q end if end for
```

- ▶ Since $m \le 2^n 1$, in the worst case this is $O(2^n)$
 - ightharpoonup Actually even slower because division is not O(1)
- ▶ Adding 1 to n potentially doubles the running time!

Aside: a famous unanswered question in computing

- A problem is "in P" if it can be solved with an algorithm running in O(nk) time
- A problem is in NP if a potential solution can be checked in O(n^k) time
 - ▶ Equivalently, it can be solved with an algorithm running in $O(n^k)$ time on an infinitely parallel machine
- ▶ Are there any problems in NP but not in P?

P versus NP

- ▶ If you can find a **mathematical proof** that either P = NP or $P \neq NP$, there's a \$1 million prize...
- ▶ It is believed that $P \neq NP$, so large instances of NP-hard problems are not solvable in a feasible amount of time
 - Many types of cryptography are based on this assumption
 - Quantum computers are "infinitely parallel" in a sense so can solve some large NP-hard problems

Caveats

- ► Time complexity only tells us how an algorithm **scales** with the size of the input
 - If we know the input will always be small, time complexity is not so important
 - Linear search is quicker than binary search if you only ever have 3 elements
 - Naïve collision detection is fine if your game only ever has 4 objects on screen
 - Sometimes complexity in terms of other resources (e.g. space, bandwidth) are more important than time
- Software development is all about choosing the right tool for the job
 - If you need scalability, choose a scalable algorithm
 - Otherwise, choose simplicity

Summary

- Time complexity tells us how the running time of an algorithm scales with the size of the data it is given
- Choice of data structures and algorithms can have a large impact on the efficiency of your software
- ... but only if scalability is actually a factor

Turing machines

Turing machines

- ► Introduced in 1936 by Alan Turing
- Theoretical model of a "computer"
 - I.e. a machine that carries out computations (calculations)

Turing machine

- Has a finite number of states
- Has an infinite tape
- Each space on the tape holds a symbol from a finite alphabet
- Has a tape head pointing at one space on the tape
- Has a transition table which, given:
 - ► The current state
 - The symbol under the tape head

specifies:

- A new state
- A new symbol to write to the tape, overwriting the current symbol
- Where to move the tape head: one space to the left, or one space to the right

The Church-Turing Thesis

- If a calculation can be carried out by a mechanical process at all, then it can be carried out by a Turing machine
- I.e. a Turing machine is the most "powerful" computer possible, in terms of what is possible or impossible to compute
- ► A machine, language or system is **Turing complete** if it can simulate a Turing machine

Computability

Computability theory

- Let A and B be sets of elements
 - NB: A may be infinite
- A function f : A → B is computable if there exists a Turing machine which computes f
 - ▶ I.e. given an encoding of $a \in A$ as input, the Turing machine outputs an encoding of f(a)

An uncomputable function

The halting problem

- ➤ A = the set of all Turing machines (encoded as transition tables)
- ▶ $B = \{ true, false \}$
- $f(a) = \begin{cases} \text{true} & \text{if } a \text{ halts in finite time on all inputs} \\ \text{false} & \text{otherwise} \end{cases}$
- ► There is no Turing machine that computes f
- ► f is uncomputable

Halting revisited

- Write a software tool that, given a Python program, predicts whether that program can go into an infinite loop
- Your tool must work for all Python programs
- ▶ Is this possible?