Introduction to Machine Learning

Tuning: In a Nutshell

Learning goals

- Understand the main idea behind tuning,
- the untouched-test set principle,
- nested resampling,
- and pipelines

WHAT IS TUNING?

- ullet Tuning is the process of selecting the best hyperparameters, denoted as λ , for a machine learning model
- Hyperparameters are the parameters of the learner (versus model parameters θ)
- Consider a guitar analogy: Hyperparameters are akin to the tuning pegs. Learning the best parameters $\hat{\theta}$ playing the guitar is a separate process that depends on tuning!

WHY TUNING MATTERS

- Just like a guitar won't perform well when out-of-tune, properly tuning a learner can drastically improve the resulting model performance
- Tuning helps find a balance between underfitting and overfitting

× 0 0 × × ×

comparing AUCs of different values for hyperparameters maxdepth, k, gamma

HOW HARD COULD IT BE?

- ullet Very difficult: There are lots of different configurations to choose from, known as the hyperparameter space, denoted by Λ (analogous to Θ)
- Black box: If one opts for a configuration $\lambda \in \Lambda$, how can its performance be measured (and compared)?
- ⇒ Well-thought-out Black-Box Optimization Techniques are needed!

exponential growth of Λ : for two discrete hyperparameters with each 10 possible values, 10*10=100 configurations can be evaluated

NAÏVE APPROACHES

Goal: Find a best configuration $\lambda^* \in \arg\min_{\lambda \in \tilde{\Lambda}} \widehat{\mathrm{GE}}(\mathcal{I}, \rho, \lambda)$ \Rightarrow Tuners τ , e.g. **Grid Search** and **Random Search**, output a λ^*

Sophisticated techniques, based on assumptions about the objective function, search for optimal solutions more efficiently.

UNTOUCHED-TEST-SET PRINCIPLE

We've found a $\lambda^* \in \tilde{\Lambda}$. How well does it perform?

- Careful! We cannot use the same data for both tuning and performance estimation, as this would lead to (optimistically) biased performance estimates!
- \bullet To obtain an unbiased $\widehat{GE},$ we need an untouched test set:

NESTED RESAMPLING

To decrease variance of the $\widehat{\mathrm{GE}}$, Nested Resampling is used:

- Just like we can generalize holdout splitting to resampling, we can generalize the three-way split to nested resampling
- The key idea is to repeatedly perform a three-way split with an additional layer (as we first have to find a λ^*):

PIPELINES IN MACHINE LEARNING

Pipelines are like the assembly lines in machine learning. They automate the sequence of data processing and model building tasks.

Why Pipelines Matter:

- Streamlined Workflow: Automates the flow from data preprocessing to model training
- Reproducibility: Ensures that results can be reproduced consistently
- Error Reduction: Minimizes the chance of human errors in the model building process

