BIOS668 HW7 Sara O'Brien

Honor Code: On my honor, I have neither given no received unauthorized aid on this assignment. *Sara O'Brien*

Q1. 6, 6, 6, 6 + , 7, 9 + , 10, 10+ , 11+ , 13, 16, 17+ 19+ , 20+ , 22, 23, 25+ , 32+ , 32+ , 34+ , 35+

Time	# at risk (r)	# censored (c)	# death (d)	1 – d/r	Survival Probability
6	21	1	3	0.857	0.857
7	17	0	1	0.941	0.857*((17-1)/17) = 0.807
9	16	1	0	1	0.807*((16-0)/16) = 0.807
10	15	1	1	0.933	0.807*((15-1)/15) = 0.753
11	13	1	0	1	0.753*((13-0)/13) = 0.753
13	12	0	1	0.917	0.753*((12-1)/12) = 0.690
16	11	0	1	0.909	0.690*((11-1)/11) = 0.627
17	10	1	0	1	0.627*((10-0)/10) = 0.627
19	9	1	0	1	0.627*((9-0)/9) = 0.627
20	8	1	0	1	0.627*((8-0)/8) = 0.627
22	7	0	1	0.857	0.627*((7-1)/7) = 0.538
23	6	0	1	0.833	0.538*((6-1)/6) = 0.448
25	5	1	0	1	0.448*((5-0)/5) = 0.448
32	4	2	0	1	0.448*((4-0)/4) = 0.448
34	2	1	0	1	0.448*((2-0)/2) = 0.448
35	1	1	0	1	0.448*((1-0)/1) = 0.448

Q2.

Table (time=1)	Treatment A	Placebo	Total
Number of Deaths	0	2	2
Number Alive	21	19	40
Number at Risk	21	21	42

Table (time=2)	Treatment A	Placebo	Total
Number of Deaths	0	2	2
Number Alive	21	17	38
Number at Risk	21	19	40

Table (time)	0	E	Var(O)
1 (time=1)	0	1	0.488
2 (time=2)	0	1.05	0.486

Q3. We can validate the sample size calculation, 1832, from the Whelan et al. paper using a 5-year survival rate of 75% as follows with formula, SAS PROC power, and simulation:

Using the log-rank test for sample size, we get

$$d = \frac{(\bar{\tau}_{1-\kappa/2} + \bar{\tau}_{1-\rho})^2 / \rho (1-\rho)}{(\log^2 H^2)^2} = ((1.96 + 0.842)^2) / (((\log(0.75))^2)) = 502.97$$

Using SAS PROC Power, we get a sample size of 248 per group or 496 total.

SAS Code:

```
proc power;
         twosamplesurvival test=logrank
         curve("Standard") = 5 : 0.75 /* Standard survival changed to 75% */
 9
         curve("Proposed") = 5 : 0.85 /* Proposed survival still 85% */
10
         groupsurvival = "Standard" | "Proposed"
         accrualtime = 4
         totaltime = 7
14
         npergroup = .
         power = 0.8;
16 run;
SAS Output:
                    The POWER Procedure
              Log-Rank Test for Two Survival Curves
                    Fixed Scenario Elements
    Method
                                Lakatos normal approximation
    Accrual Time
                                                      4
    Total Time
                                                      7
    Group 1 Survival Curve
                                                Standard
    Form of Survival Curve 1
                                              Exponential
    Group 2 Survival Curve
                                               Proposed
    Form of Survival Curve 2
                                              Exponential
    Nominal Power
                                                     2
    Number of Time Sub-Intervals
                                                     12
    Group 1 Loss Exponential Hazard
                                                      0
    Group 2 Loss Exponential Hazard
                                                      0
    Alpha
                                                   0.05
                    Computed N per Group
                  Actual Power N per Group
                         0.801
```

We can also validate using simulation, which produces a power close to the desired 0.80, as follows:

SAS Code:

```
18 * Original .73 hr and sample size = 1832;
19 data sim data;
20
     call streaminit(730317945);
21
     do n_sim = 1 to 1000;
         do i = 1 to floor(1832/2);
22
23
           hrgroup='Standard';
           y = rand('exponential', 1/0.73);
24
           c = rand('uniform', 0,7);
25
26
           t = \min(y,c);
           if y <= c then censor = 1;
27
28
           else if y > c then censor = 0;
29
           output;
           hrgroup='Proposed';
30
           y = rand('exponential', 1/0.85);
31
           c = rand('uniform', 0,7);
32
33
           t = \min(y,c);
           if y <= c then censor = 1;
34
           else if y > c then censor = 0;
35
36
           output;
37
         end;
38
     end;
39 run;
```

```
40
41 ODS EXCLUDE ALL;
42 proc lifetest data=sim data;
        by n_sim;
        time t*censor(0);
44
 45
        strata hrgroup;
        ods output HomTests = Table_logrank;
 46
 47 run;
 48 ODS EXCLUDE NONE;
 49
 50 data tests_rate;
 51
        set Table_logrank;
        where Test='Log-Rank';
 52
        i_sig=ProbChiSq<0.05;
 53
 54 run;
 55
 56 proc freq data = tests_rate;
        ods select binomial;
 57
 58
        tables i_sig / binomial(level='1');
 59 run;
61 * Simulation with hr 0.75 and proc power sample size 248;
62 data sim data;
63
     call streaminit(730317945);
     do n_sim = 1 to 1000;
64
         do i = 1 to floor(248);
65
66
           trt='Standard';
           y = rand('exponential', 1/0.75);
67
          c = rand('uniform', 0,7);
68
           t = \min(y,c);
69
70
          if y <= c then censor = 1;
           else if y > c then censor = 0;
71
72
           output;
73
           trt='Placebo';
           y = rand('exponential', 1/0.85);
74
75
           c = rand('uniform', 0,7);
76
           t = min(y,c);
77
           if y <= c then censor = 1;
           else if y > c then censor = 0;
78
79
           output;
80
         end;
81
     end;
82 run;
84 ODS EXCLUDE ALL;
85 proc lifetest data=sim data;
86
       by n_sim;
87
        time t*censor(0);
88
        strata trt;
89
        ods output HomTests = Table logrank;
90 run;
91 ODS EXCLUDE NONE;
92
93 data tests_rate;
94
        set Table_logrank;
        where Test='Log-Rank';
95
96
        i_sig=ProbChiSq<0.05;
97 run;
98
99 proc freq data = tests_rate;
100
        ods select binomial;
101
        tables i_sig / binomial(level='0');
102 run;
```

SAS Output:

Binomial Proportion i_sig = 1		
ASE	0.0119	
95% Lower Conf Limit	0.8078	
95% Upper Conf Limit	0.8542	
Exact Conf Limits		
95% Lower Conf Limit	0.8063	
95% Upper Conf Limit	0.8537	

The FREQ Procedure		
Binomial Proportion		
i_sig = 0		
Proportion	0.7620	
ASE	0.0135	
95% Lower Conf Limit	0.7356	
95% Upper Conf Limit	0.7884	
Exact Conf Limits		
95% Lower Conf Limit	0.7344	
95% Upper Conf Limit	0.7881	

The sample sizes produced are not exactly the same in part because certain simplifying assumptions and rounding result in differences between approaches, but in general these formula, software, and simulation approaches align with what we expect from the paper's stated sample size calculation.