Universidad de Costa Rica, Facultad de Ciencias Económicas

Escuela de Estadística - Curso: SP-1633 Series Cronológicas

Prof. Shu Wei Chou-Chen

Lista de ejercicios # 3

- 1. En la base de datos "cardiovascular.xls" se refiere a las cifras de defunciones por problemas cardiovasculares en Costa Rica en el periodo 2000-2007.
- a. Obtenga el gráfico lineal de la serie y estime función de autocorrelación.
- b. Comente el comportamiento de la serie.
- 2. En la base de datos "ventas.xls" se refiere a las ventas mensuales de un producto realizadas por una empresa en el periodo 2001-2005.
- a. Obtenga el gráfico lineal de la serie y estime función de autocorrelación.
- b. Comente el comportamiento de la serie.
- 3. Utilice la serie fpp2::goog de la bolsa de valores del Google de 25 de febrero, 2013 a 13 de febrero, 2017.
- a. Haga un gráfico lineal de la serie y y estime función de autocorrelación.
- b. Comente las características de esta serie.
- c. Defina Z_t como la serie diferenciada de la serie Y_t , es decir,

$$Z_t = Y_t - Y_{t-1}.$$

 Z_t mide el cambio que produce la observación en el tiempo t con respecto a la observación en el tiempo t-1. Utilice la función diff(goog) para obtener los cambios diarios de la serie.

- d. Haga un gráfico lineal de la serie Z_t y estime su función de autocorrelación. Comente los resultados y compare con los resultados de (a) y (b).
- 4. Considere el proceso estocástico independiente $Z_t = a_t$ con $t = \pm 1, \pm 2, \dots$ y

$$a_t = \begin{cases} 1, & \text{con probabilidad } 1/2 \\ -1, & \text{con probabilidad } 1/2, \end{cases}$$

- a. Calcule la media del proceso Z_t .
- b. Calcule $\gamma(t,s) = Cov(a_t,a_s)$ y haga su gráfico.
- c. Calcule $\rho(t,s) = \frac{\gamma(t,s)}{\sqrt{\gamma(t,t)\gamma(s,s)}}$ y haga el gráfico.
- d. $i Z_t$ es débilmente estacionario?
- 5. Suponga que $\{a_t, t = 1, 2, ...\}$ es una secuencia de variables aleatorias independientes e identicamente distribuídas, con

1

$$P(a_t = 0) = P(a_t = 1) = \frac{1}{2}$$

- a. ¿El proceso $a_1 + a_2 cos(t)$ es estacionario?
- b. El proceso $a_1 + a_2 \cos(t) + a_3 \cos(t) + \sin(t)$ es estacionario?
- 6. Si $\{X_t, t \in T\}$ y $\{Y_t, t \in T\}$ son estacionarios y además independientes, defina $Z_t = aX_t + bY_t$ para todo t. $\{Z_t, t \in T\}$ será estacionario?
- 7. Considere una secuencia aleatorias $\{\epsilon_t, t \geq 1\}$, tal que ϵ_t es independiente e idénticamente distribuida con media μ_{ϵ} y variancia σ_{ϵ}^2 . Defina el paseo aleatorio X_t como

$$X_t = \epsilon_1 + \dots + \epsilon_t.$$

- a. Muestre que $E(X_t)=t\mu_\epsilon$ y $Var(X_t)=t\sigma_\epsilon^2$. b. Muestre que $\gamma_X(t,s)=\sigma_\epsilon^2 min(t,s)$.
- c. ¿Es X_t estacionario?
- d. Simule los datos de ϵ_t y X_t de tamaño T=100. Realice gráficos lineales para las dos series simuladas y comente los resultados.
- 8. Sea $Z(t) = \sum_{j=1}^{n} (A_j \cos \lambda_j t + B_j \sin \lambda_j t)$, donde $t = 0, \pm 1, ..., y \lambda_1, ..., \lambda_n$ son constantes positivas, y A_j , B_j son variables aleatorias independientes e independientes entre sí con medias 0 y variancias $\sigma_j^2 = Var(A_j) = Var(B_j), j = 1, ..., n$. El proceso Z(t) es estacionario? Encuentre la media E(Z(t)) y la función de autocovariancia $\gamma(t, t+h)$ de Z(t).
- 9. Utilice la serie fpp2::goog de la bolsa de valores del Google de 25 de febrero, 2013 a 13 de febrero, 2017.
- a. Haga un gráfico lineal de la serie y comente las características de esta serie.
- b. Una serie diferenciada Z_t de la serie Y_t es definida como

$$Z_t = Y_t - Y_{t-1}.$$

 Z_t mide el cambio que produce la observación en el tiempo t con respecto a la observación en el tiempo t-1. Utilice la función diff(goog) para obtener los cambios diarios de la serie.

- c. Haga un gráfico lineal de la serie obtenida en b. ¿La serie parece a un ruido blanco?
- d. Utilice la función ggAcf() para calcular la función de autocorrelación y compárela con la función de autocorrelación de los ruidos blancos.
- 10. Compare el modelo de caminata aleatoria con el ejercicio 7. Recuerde que una caminata aleatoria se define como:

$$X_t = X_{t-1} + \epsilon_t,$$

donde $\epsilon_t \sim N(0, \sigma^2)$.

- a. Simule una secuencia de variables aleatorias normales con media 0 y variancia 1.
- b. Utilice la función cumsum() para generar la suma acumulada de la secuencia en a.
- c. Haga un gráfico lineal de la serie generada en (b) y estime la función de autocorrelación.
- d. Realice varias veces el ejercicio y observe el comportamiento de la serie generada.
- e. Comente las características de este proceso y compare con los resultados empíricos de este ejercicio con los resultados teóricos del ejercicio 7.