

Kapittel 10

Organohalider

Haloalkaner: Nomenklatur

R = alkylgruppe (rettkjedet eller forgrenet) X = halogen (F, Cl, Br, I)

Navnsetting

- Finn den lengste kjeden og gi navn på "stammen"
- Lokaliser substituenter
- Nummerer kjeden slik at første substituent kommer tidligst mulig
 - Alkyl og halogen likestilles
 - Alfabetisk rekkefølge

Fremstilling av haloalkaner

- Gammelt nytt for oss:
 - Addisjon av HX til C-C dobbelt/trippel-bindinger
 - Addisjon av X₂ til C-C dobbelt/trippel-bindinger
- Fremstilling, nye metoder.
 - Radikal kjede halogenering av alkaner med Cl₂ og Br₂
 - Halogenering av alkoholer med HX (Cl/Br/l) (mekanismer i kap. 11)
 - Reaktivitet: Tertiær >> sekundær > primær > metyl
 - Halogenering av alkoholer med SOCl₂ eller PBr₃ (mekanismer i kap. 11)
 - Foretrukken metode for primære og sekundære
 - Allylisk bromering med NBS (N-bromsuccinimid)
 - Radikal kjedereaksjon

Allylisk bromering med NBS

allyliske H H H
$$\frac{hv}{N-Br}$$
 $\frac{hv}{(lys)}$ $\frac{hv}{N-Br}$ $\frac{hv}{N-Br}$

Allylisk = naboposisjon til en C=C dobbeltbinding

- Den allyliske C-H bindingen reagerer selektivt fordi den er svakere (og dermed mye mer reaktiv) enn de andre C-H bindingene.
- Årsaken til dette er at allyliske radikaler er resonansstabiliserte, dermed stabilere og lettere tilgjengelige enn ikke-stabiliserte alkylradikaler.

resonansstabilisert radikal

allyliske H

Grignard-reaksjonen

Victor Grignard (1871-1935) (Nobelpris 1912)

aryl (sp²: aromatisk)

alkenyl (sp²: alken)

R-X

Br

X =

 δ - δ + δ -R-Mg-X

Et Grignard-reagens

Nukleofilt og sterkt basisk karbonatom

Grignard-reagenser reagerer voldsomt med vann...

Grignard-reagenser

- Reagerer som sterke baser med de fleste protiske forbindelser
 - Vann
 - Alkoholer
 - Karboksylsyrer
 - **—** ...
- Adderer til karbonylforbindelser o.l. (kap. 17)
 - Ketoner
 - Aldehyder
 - Estere
 - Nitriler
 - **–** ...