Chapter 5

Charles

Domination Set

Definition:

A dominating set for a graph is a subset D of its vertices, such that any vertex of G is either in D or has a neighbor in D.

Example: (Minimal US, Minmum)

Minimal Dominating Set

y propor subset is not dominating

Minimum Dominating Set 101=7=3

With minmum #
of vertices of
dominating set

I heorem =

G has no isolate vertex, D_1 is a minimal dominating set, then $\overline{D} = V(Q) - D_1$ is also a dominating set.

* Proof by contradiction

Theorem.

Dominating set D of graph of is a minimal dominating set if and only if every vertex of D satisfies one of following

(~) ∃ ~ ∈ N(d) - D: N(n) U D = 3~}

Theorem.

If G has no isolated vertex, then $\sqrt{(G)} \leq \frac{\sqrt{2}}{2}$

Thoorem (Arnautor 1974) 8 (4) 1+8

Vertex Indpendent Set

Definition

A subset S of V is called an independent set of G if no two vertices of S are adjacent in G. XCG)

-> Maximal and maximum Indm.

Theorem.

Maximal independent set of graph CT must be minimal dominating set.

Theorem

If I is independent set, then to is maximal independent set if and only if it is dominating set.

Theorem:

For any graph: $\alpha(q) \geq \gamma(q)$

Theorem (Bondy, 1978)

 $V(q) \ge \lambda$. If any two non-adjacent vertice \times and y. have $d_{q}(x) + d_{q}(y) \ge 10(q)$. Then $d(q) \le K(q)$ (Connectivity)

Theorem (Chuátal & Erdős, 1972)

IGI = 20>3. If K(4) > d(4), then G

is Hamiltonian.

Vertex Covering Set

Definition:

A subset K of V such that every edge of G has at least one end in K is called a covering of G. The number of vertices in a minimum covering of G is covering number $\beta(G)$

Theorem

A set $F \subseteq V$ is an independent set of G if and only if V(G) - F is a covering of G.

Corollary:

F is minimal covering (>> V(q)-F is maximal independent set.

d(9) + B(4) = v.

Edge Independent

Definition:

Matching M () Edge Independent d'((1): edge independent number.

Theorem.

For Any G without loop, d'(4) < B(4)

Theorem (König, Epervary, 1931);

For Bipartite Ctraph, &'(41= B(4)

Edge Covering.

An edge covering of G is a subset

L of E such that each vertex of

G is an end of some edge in L.

Edge covering number: B'LG) (minimum)

Theorem:

S(G) >0, then d'(G) = B'(G),

d'(G) = B'(G) if and only if (7 has

perfect matchine.

Theorem (Gallai, 1959): S(G) >0, then d'(G) + B'(G) = 2.