OPTIMIZING STOCK INVESTMENT PORTFOLIO USING DYNAMIC GRAPH NEURAL NETWORKS

Martinovich E.N.

Sirius University of Science and Technology 354340, Sirius, Russia martinovich.en@talantiuspeh.ru

1 Data

Data

- 2 Modeling of Temporal Financial Graph
- 3 The Optimization Problem
- 4 Results

Representation of the asset market

The asset market is represented as a collection of financial time series X. A **time series** can be defined as a sequence of vectors (or scalars) that depend on time:

$$X = \{x(t_0), x(t_1), x(t_2), \dots, x(t_i), \dots\},$$
 (1)

here, t_i is the *i*-th time index, where i = 0, 1, ..., N.

Data 0●00000

Preprocessing time series to stationarity

A time series is considered stationary if its statistical properties remain constant over time. Specifically, stationarity implies that:

1 The expectation remains constant:

$$E[X_t] = \mu, \quad \forall t \tag{2}$$

2 The variance does not change over time:

$$Var(X_t) = \sigma^2, \quad \forall t$$
 (3)

3 The covariance between observations depends only on the time lag *h*, not on the absolute time:

$$Cov(X_t, X_{t+h}) = f(h) \tag{4}$$

Preprocessing time series to stationarity

(a) Non-stationary series

(b) Stationary series

Рис. 1: a) The original (non-stationary) closing price series of Google (GOOGL) stocks for 2016–2023, b) The transformed (stationary) series.

Normalization time series

We applied and compared several normalization techniques:

 StandardScaler normalization, which standardizes data to have zero mean and unit variance:

$$x^* = \frac{x - \mu}{\sigma}$$

• MinMax normalization, which scales the data to the [0, 1] range:

$$x^* = \frac{x - \min(x)}{\max(x) - \min(x)}$$

 Combined normalization, where StandardScaler is applied first, followed by MinMax:

$$x^{**} = \frac{x^* - \min(x^*)}{\max(x^*) - \min(x^*)}$$

after time series transformation

Рис. 2: Comparison of normalization methods applied to financial time series. Top-left: boxplot summary across methods. Top-right: StandardScaler. Bottom-left: MinMaxScaler. Bottom-right: Combined StandardScaler + MinMax.

Data

Correlation Structure After Pre

figures/f_correlation_matrix.png

- 1 Data
- 2 Modeling of Temporal Financial Graph
- 3 The Optimization Problem
- 4 Results

Definition of Temporal Financial Graph

A temporal graph is a graph whose structure and attributes evolve over time. Formally, we define a temporal graph at time t as:

$$G_t = (V_t, E_t, W_t, X_t) \tag{5}$$

where:

- V_t is the set of vertices at time t, where each vertex represents one of n assets.
- E_t is the set of edges at time t, representing relationships (e.g., correlation or covariance) between assets.
- W_t is the weight matrix associated with the edges, encoding the strength of relationships at time t.
- Each node $V_{i,t}$ has a feature vector $X_{i,t}$, representing the time series of asset i up to time t.

Modeling of Temporal Financial Graph

Number of Edges vs. Correlation Threshold

Distribution of Pairwise Correlation Coefficients

- Most asset pairs exhibit moderate correlation (peak around 0.35).
- Increasing the correlation threshold drastically reduces the number of edges in the financial graph.
- This sparsity can be leveraged in graph-based models to focus

Architecture of Temporal Financial Graph

We model the graph sequence $\{G_1, G_2, \ldots, G_T\}$

1 Graph Convolutional Layer (GCN): For each node $v_i \in V_t$, we aggregate features from its neighbors using:

$$H_t^{(1)} = \mathsf{ReLU}\left(\hat{D}_t^{-1/2}\hat{A}_t\hat{D}_t^{-1/2}X_tW^{(gcn)}\right),$$

2 Temporal Layer (GRU): To capture temporal evolution of asset embeddings, we use a gated recurrent unit:

$$H_t^{(2)}, h_t = GRU(H_t^{(1)}, h_{t-1}),$$

3 Output Layer (Linear + Softmax): The final layer maps the temporal embeddings to scalar scores and applies the softmax function to obtain valid portfolio weights:

$$\hat{\mathbf{w}}_t = \mathsf{Softmax}(W^{(out)}H_t^{(2)} + b),$$

- 1 Data
- 2 Modeling of Temporal Financial Graph
- 3 The Optimization Problem
- 4 Results

Formulation of the Optimization Problem

In each time step t, the goal is to determine optimal portfolio weights $\mathbf{w}_t \in \mathbb{R}^n$ for n assets that maximize cumulative profit and risk-adjusted performance:

Objective function:

$$\mathcal{L}_{\text{portfolio}} = -\sum_{t=1}^{T} \mathbf{w}_{t}^{\top} \mathbf{r}_{t} + \lambda \cdot \left(\frac{1}{\mathsf{Sharpe} + \epsilon} \right) \tag{6}$$

where r_t is the asset return vector, λ is the regularization coefficient, and ϵ is a small constant to avoid division by zero.

Constraints:

$$\mathbf{w}_t^{\top} \mathbf{\Sigma}_t \mathbf{w}_t \le \sigma_{\mathsf{max}}^2$$
 (Risk constraint) (7)

$$\sum_{i=1}^n w_{i,t}=1$$

(Budget constraint) (8)

The Optimization Problem

Investment Portfolio

In financial terms, a **portfolio** is a collection of financial assets such as stocks, bonds, or other instruments.

Each asset i in the portfolio is assigned a weight $w_{i,t}$ at time t, representing the proportion of the total investment allocated to it.

Portfolio vector:

$$\mathbf{w}_t = [w_{1,t}, w_{2,t}, \dots, w_{n,t}]^\top, \quad \sum_{i=1}^n w_{i,t} = 1$$

The total return of the portfolio at time t is the weighted sum of individual asset returns:

$$r_t^{(p)} = \mathbf{w}_{t-1}^{\top} \mathbf{r}_t$$

Portfolio Evaluation Metrics

To evaluate the performance of the portfolio, we use the following metrics:

1. Profit and Loss (PnL):

$$\mathsf{PnL} = \sum_{t=1}^T \mathsf{w}_{t-1}^\mathsf{T} \mathsf{r}_t$$

2. Sharpe Ratio:

Sharpe =
$$\frac{E[r^{(p)} - r_f]}{\sigma_p}$$

where r_f is the risk-free rate and σ_p is the portfolio volatility.

3. Maximum Drawdown (MDD):

$$MDD = \max_{t \in [1, T]} \left(\frac{\max_{s \le t} P_s - P_t}{\max_{s \le t} P_s} \right)$$

- 1 Data
- 2 Modeling of Temporal Financial Graph
- 3 The Optimization Problem
- 4 Results

Comparison of Portfolio Optimization Models

Metric	DGNN (Full)	DGNN (Lite)	Markowitz	WA
PnL	0.180	0.070	0.010	0.008
Sharpe	0.082	0.042	0.016	0.014
Risk	0.007	0.007	0.007	0.007

Таблица 1: Performance metrics for different portfolio optimization models.

Conclusion: The proposed DGNN model significantly outperforms traditional approaches in both profitability and risk-adjusted return, while maintaining the same level of risk.

OPTIMIZING STOCK INVESTMENT PORTFOLIO USING DYNAMIC GRAPH NEURAL NETWORKS

Martinovich Elizaveta Nikolaevna

Sirius University of Science and Technology 354340, Sirius, Russia martinovich.en@talantiuspeh.ru

Data