计算机组成原理

单周期CPU控制器设计

2020年秋

本讲提要

- 指令执行方式和步骤
- ▶ 单周期CPU设计
 - ▶ 指令集: 9条指令为例
 - 数据通路
 - > 控制器

CPU设计

- 完成指令功能的主要部件
 - ALU
- 指令功能
 - 数据运算:算术、逻辑、移位
 - 数据移动: 内存到寄存器之间的数据拷贝
 - ▶ 流程控制:转移、调用/返回、中断
 - 其它: 优先级控制,虚拟内存
- ▶ 如何实现?
 - Datapath: 实现数据的移动和运算
 - 控制器: 指挥数据的移动和运算

每条指令的执行过程

- 第一步
 - ▶ 取指令 (IF)
- ▶ 第二步
 - ▶ 指令译码 (ID)
- 第三步
 - ▶ 执行指令 (EXE)
- ▶ 第四步
 - ▶ 访问存储器 (MEM)
- 第五步
 - ▶ 写回寄存器 (WB)

指令执行步骤 —— 单周期CPU

- ▶ 计算机一条指令的执行时间被称为指令周期,一个CPU时钟时间被称为CPU周期(在某些计算机中,还可再把一个CPU周期区分为几个更小的步骤,称其为节拍)。执行每条指令平均使用的CPU周期个数被称为CPI
- 全部指令都选用一个CPU周期完成的系统被称为单周期 CPU,指令串行执行,前一条指令结束后才启动下条指令 。每条指令都用5个步骤的时间完成,控制各部件运行的信 号在整个指令周期不变化。单周期CPU 用于早期计算机, 系统性能和资源利用率很低,相对当前技术变得不再实用

实现的指令集

- ▶ 选取RISC-V指令中9条典型指令组成的子集
 - ▶ 访存指令: Iw、sw
 - ▶ 算逻运算指令: add、sub、andi、auipc
 - ▶ 转移指令: beq、jal、jalr
- 解决三个主要问题
 - 数据通路设计
 - 控制信号设计
 - 执行时序设计
- 其他指令的实现原理可以从中体现
 - ▶ 上面9条指令覆盖了所有的RISC-V指令集的不同类型指令

设计思路

- 指令的执行
 - ▶ 显然要设计一个时序逻辑电路
 - ▶ 一条指令用一个CPU周期完成
- 执行步骤的实现
 - ▶ 取指:从指令存储器中读指令(地址: PC)
 - ▶ 译码:读出一或两个源寄存器的值(寄存器组)
 - ▶ 运算: 进行指令规定的运算 (ALU)
 - ▶ 访存:读/写数据存储器
 - ▶ 写回:将结果写入目的寄存器
- 需要保存的值
 - ▶ PC、寄存器组、存储器

初步的Datapath

使用的组合逻辑部件

D触发器

- ▶ 在时钟的上升沿写入输入数据
- ▶ 一直保持到下一个上升沿

存储器

寄存器组

接口简单

- ▶ 输入
 - ▶ 地址
 - ▶ 写入数据
 - > 写信号
- 輸出
 - ▶ 读出的数据
- ▶ 3个地址端口, 2个用来
 - 读,I个用来写
- 每个时钟周期可以完成3次访问

时序设计

- 每条指令占用一个时钟周期
 - 取指令后分析指令,并给出整个执行期间的全部信号
 - ▶ 不需要状态信息,在时钟的结束的边沿写入结果
- > 控制对象
 - **ALU的运算**
 - ▶ 寄存器组和存储器的写入
 - > 多路选通器
- 时钟周期开始时读取指令
 - 与具体指令无关

时钟周期开始时的控制

算术逻辑运算指令的控制

算术逻辑运算指令的控制

Addi rd r1 r2

Load指令

lw rd, rs1, imm

Store指令

sw rs2, rs1, imm

beq rs1, rs2, label

Jal指令

jal rd, imm

Jalr指令

jalr rd, imm

auipc指令

信号整理

inst[31:0]	BrEq	BrLT	PCSel	ImmSel	BrUn	ASel	BSel	ALUSel	MemR W	RegWE n	WBSel
add	-	-	+4	-	-	Reg	Reg	Add	Read	1	ALU
sub	-	-	+4	-	-	Reg	Reg	Sub	Read	1	ALU
(R-R Op)	-	-	+4	-	-	Reg	Reg	(qO)	Read	1	ALU
addi	-	-	+4		-	Reg	lmm	Add	Read	1	ALU
lw	-	-	+4		-	Reg	lmm	Add	Read	1	Mem
SW	-	-	+4	S	-	Reg	lmm	Add	Write	0	-
beq	0	_	+4	В	-	PC	lmm	Add	Read	0	-
	1	-	ALU	В	-	PC	Imm	Add	Read	0	-
bne	0	-	ALU	В	-	PC	Imm	Add	Read	0	-
	1	-	+4	В	-	PC	Imm	Add	Read	0	-
blt	-	1	ALU	В	0	PC	Imm	Add	Read	0	-
bltu	-	1	ALU	В	1	PC	Imm	Add	Read	0	-
jalr	-	-	ALU		-	Reg	lmm	Add	Read	1	PC+4
jal	-	-	ALU	J	-	PC	Imm	Add	Read	1	PC+4
auipc	-	-	+4	U	-	PC	lmm	Add	Read	1	ALU

完整的单周期CPU

单周期CPU特点

- ▶ 优点
 - 每条指令占用一个时钟周期
 - > 逻辑设计简单, 时序设计也简单
- ▶缺点
 - 各组成部件的利用率不高
 - ▶ 维持有效信号
 - 时钟周期应满足执行时间最长指令的要求
 - ▶ Load指令
- ▶ CPI = I

小结

- ▶ 单周期CPU设计
 - 全部控制信号
 - 无需状态信息
 - 控制信号生成:组合逻辑电路
 - ▶ 输入: inst, breq, brlt
 - ▶ 输出:完成指令功能所需要的全部控制信号

阅读和思考

-)阅读
- ▶思考
 - ▶ 单周期CPU设计中是否存在什么不足?
 - ▶ 可以从哪几个方面对其进行改进?
- > 实践
 - ▶ 设计能实现ThinPAD RISC-V指令系统的数据通路(单周期), 并列出各硬件模块所需要的控制信号。

谢谢

inst[31:0]	BrEq	BrLT	PCSel	ImmSel	BrUn	ASel	BSel	ALUSel	MemR W	RegWE n	WBSel
add	-	_	+4	-	-	Reg	Reg	Add	Read	1	ALU
sub	1	_	+4	-	-	Reg	Reg	Sub	Read	1	ALU
(R-R Op)	-	_	+4	-	-	Reg	Reg	(Op)	Read	1	ALU
addi	1	_	+4		-	Reg	lmm	Add	Read	1	ALU
lw	_	_	+4		-	Reg	Imm	Add	Read	1	Mem
SW	1	_	+4	S	-	Reg	lmm	Add	Write	0	-
beq	0	-	+4	В	_	PC	lmm	Add	Read	0	-
	1	-	ALU	В	-	PC	lmm	Add	Read	0	-
bne	0	-	ALU	В	_	PC	Imm	Add	Read	0	-
	1	-	+4	В	-	PC	lmm	Add	Read	0	-
blt	-	1	ALU	В	0	PC	Imm	Add	Read	0	-
bltu	-	1	ALU	В	1	PC	lmm	Add	Read	0	-
jalr	-	-	ALU		-	Reg	lmm	Add	Read	1	PC+4
jal	-	-	ALU	J	_	PC	lmm	Add	Read	1	PC+4
auipc	-	_	+4	U	-	PC	lmm	Add	Read	1	ALU