Principal Component Analysis

Learn How to Manage Data Dimensionality Without Losing Information

Contents

- 1. Data Reduction-Recap
- 2. Case Study
- 3. **PCA in Python**
 - Variance Explained
 - Loadings
 - Scree plot
 - Score using PCA

Data Reduction

- Summarization of data with p variables by a smaller set of (k) derived variables.
- These k derived variables are linear combinations of original p variables.

• In short, **n** * **p** matrix is **reduced to n** * **k** matrix.

Case Study – Athletics Records

Background

• Data on national athletics records for various countries is available.

Objective

• To achieve data reduction and obtain score for each country which can be used to rank countries based on athletics records.

Available Information

- Data Source: Applied Multivariate Statistical Analysis by Richard A. Johnson, Dean W. Wichern
- Sample size is 55 countries athletics.
- Records for 8 different athletics events 100 meters to Marathon

Data Snapshot

Athleticsdata

Variables

	I								1	
	Country 1	100m_s	200m_s	400m_s	800m_min	1500m_m	in 5000m_mir	10000m_min	Marathon_min	
	Argentina	10.39	20.81	46.84	1.81	3	14.04	4 29.36	137.72	
	Australia	10.31	20.06	44.84	1.74	3.	57 13.28	8 27.66	128.3	
ns	Column		Descr	iption	Ту	/pe	Measureme	ent Poss	ible Values	
Li O	Country		Countr	y Name	Categ	gorical	-		_	
Observations	100m_s	Tiı		100 mete ning	er Conti	nuous	Seconds	Posi	tive Values	
Obs	200m_s	Tir		200 mete ning	er Conti	nuous	Seconds	Posi	Positive Values	
L	400m_s	Tir		100 mete ning	er Conti	nuous	Seconds	Posi	Positive Values	
	800m_min	Tir		300 mete ning	er Conti	nuous	Minutes	Posi	tive Values	
	1500m_mir	Time for 1500 running			er Conti	nuous	Minutes	Posi	tive Values	
	5000m_mir	า Tin	Time for 5000 meter running		er Conti	nuous	Minutes	Posi	Positive Values	
	10000m_mi	n Tim		0000 me [.] ning	ter Conti	nuous	Minutes	Posi	tive Values	
	Marathon_m	nin Ti		Maratho ning	n Conti	nuous	Minutes	Posi	tive Values	

PCA in Python

#Importing data import pandas as pd read csv() is used to import import numpy as np csv file. Our data is stored as athletics=pd.read_csv("Athleticsdata.csv") an object named athletics. # standardize all variables athletics2=athletics.drop(['Country'], axis=1) □ drop() is used to remove the column named "Country" from the data. from sklearn.decomposition import PCA from sklearn.preprocessing import scale standardisedX = scale(athletics2) X = pd.DataFrame(standardisedX, index=athletics2.index, columns = athletics2.columns) The data is standardised using the function scale() and stored as a

dataframe object X

PCA in Python

#Running PCA and creating summary table

```
pca = PCA().fit(X)

    Create a vector of names as

names = ["PC"+str(i) for i in range(1,9)]
                                              PC1,PC2 .... PC8.
SD = list(np.std(pca.transform(X), axis=0))
VarProp = list(pca.explained variance ratio )
CumProp = [np.sum(VarProp[:i]) for i in range(1,9)]
                                        Extract Standard Deviation and
                                        Proportion of variance explained.
                                        Define Cumulative proportion for
                                        the summary table
                                        pca.transform(X) computes scores
summary = pd.DataFrame(list(zip(SD, VarProp, CumProp)), index=names,
columns=['Standard Deviation','Proportion of Variance','Cumulative
Proportion'])
                  Create a dataframe of summary output
summary
```

PCA in Python

Output:

	Standard Deviation	Proportion of Variance	Cumulative Proportion
PC1	2.574068	0.828228	0.828228
PC2	0.935501	0.109395	0.937624
PC3	0.398207	0.019821	0.957445
PC4	0.352195	0.015505	0.972950
PC5	0.282863	0.010001	0.982951
PC6	0.260302	0.008470	0.991421
PC7	0.214848	0.005770	0.997191
PC8	0.149910	0.002809	1.000000

Interpretation:

- summary gives **std. deviation (sd), proportion of variance and cumulative proportion**. Variance is nothing but the Eigenvalue of correlation matrix.
- First Principal Component explains 83% of the variation. Note that 8 PC's are derived using 8 variables but first PC explains most of the variation

PCA in Python - Loadings and Scores

#Component Loadings

```
rows = X.columns
col = ["Comp"+str(i) for i in range(1, len(X.columns)+1)]
L = pd.DataFrame(list(zip(pca.components_[0],pca.components_[1],
pca.components_[2],pca.components_[3],pca.components_[4],
pca.components_[5],pca.components_[6],pca.components_[7])),index=rows,
columns = col)
L
```

Output:

```
Comp1
                          Comp2
                                   Comp3
                                                  Comp6
                                                            Comp7
                                                                     Comp8
100m s
             0.318293 -0.564684 0.326323
                                               0.590449 -0.154303
                                                                  0.113210
200m s
             0.336855 -0.462270 0.369020
                                              -0.647587 0.128066 -0.101621
400m s
             0.355561 -0.249318 -0.561085
                                          ... -0.158447 0.009292 -0.002585
800m min
             0.368626 -0.013405 -0.530948
                                               0.011856 0.237073 -0.040305
1500m min
             0.372682 0.140200 -0.154640
                                               0.143104 -0.608456 0.143305
5000m min
             0.364283 0.312458 0.189618
                                               0.155079 0.592691 0.543015
10000m min
             0.366702 0.307018 0.181817
                                               0.231701 0.165205 -0.796334
Marathon min
             0.341825 0.439947 0.260172
                                              -0.329455 -0.393327 0.160236
```

Interpretation:

First Principal Component can be interpreted as 'general athletics skill' since all variables have similar loadings.

PCA in Python - Loadings and Scores

#Scores Based on PCA

```
Score= PCA().fit_transform(X)
Score_df = pd.DataFrame(Score, index = athletics.index, columns = col)
athletics = athletics.assign(performance=Score_df.Comp1)
athletics.head()
```

Output:

	Country	100m_s	200m_s	 10000m_min	Marathon_min	performance
0	Argentina	10.39	20.81	 29.36	137.72	0.265654
1	Australia	10.31	20.06	 27.66	128.30	-2.466968
2	Austria	10.44	20.81	 27.72	135.90	-0.813415
3	Belgium	10.34	20.68	 27.45	129.95	-2.058239
4	Bermuda	10.28	20.58	 30.55	146.62	0.747146

Interpretation:

- New column 'performance' enumerates scores returned by the PCA summary.
- Lower score implies lesser time and hence better athletics performance.

PCA in Python – Scree Plot

#Scree Plot : plot the principal components vs. variances.

```
y = np.std(pca.transform(X), axis=0)**2
x = np.arange(len(y)) + 1
plt.plot(x, y, "o-")
plt.xticks(x, ["Comp."+str(i) for i in x], rotation=60)
plt.ylabel("Variance")
plt.show()
```

Output:

Interpretation:

First Principal
 Component is sufficient in explaining the maximum variation.

Exploratory Data Analysis Based on PCA

#Using Scores to Check Data Features

```
athletics.sort_values(by = 'performance').head(3)
athletics.sort_values(by = 'performance').tail(3)
```

- sort_values() sorts the data frame based on performance. Python takes ascending = True as default.
- head() and tail() extracts top n and bottom n countries in terms of performance measured by performance variable. Here n=3.

Output:

		Country	100m_s		Marathon_min	performance
52		USA	9.93		128.22	-3.460450
20	Great Britain and Northern	Ireland	10.11		129.13	-3.050287
28		Italy	10.01	• • •	131.08	-2.750446

	Country	100m_s	200m_s	 10000m_min	Marathon_min	performance
35	Mauritius	11.19	22.45	 31.77	152.23	4.299192
54	Western Samoa	10.82	21.86	 34.71	161.83	7.297965
11	Cook Isands	12.18	23.20	 35.38	164.70	10.653867

Interpretation:

- ☐ USA, Britain and Italy are the top three performing countries.
- Cook Islands, Western Samoa and Mauritius are the bottom three countries.

PCA in Python – Verification of PCA

#Verification that PC's are Uncorrelated

	Comp1	Comp2	Comp3	Comp4	Comp5	Comp6	Comp7	Comp8
Comp1	1.0	0.0	-0.0	-0.0	0.0	0.0	-0.0	-0.0
Comp2	0.0	1.0	0.0	-0.0	-0.0	0.0	0.0	-0.0
Comp3	-0.0	0.0	1.0	-0.0	-0.0	0.0	0.0	0.0
Comp4	-0.0	-0.0	-0.0	1.0	-0.0	0.0	-0.0	0.0
Comp5	0.0	-0.0	-0.0	-0.0	1.0	-0.0	-0.0	0.0
Comp6	0.0	0.0	0.0	0.0	-0.0	1.0	-0.0	0.0
Comp7	-0.0	0.0	0.0	-0.0	-0.0	-0.0	1.0	-0.0
Comp8	-0.0	-0.0	0.0	0.0	0.0	0.0	-0.0	1.0

Interpretation:

The principal components are uncorrelated

Quick Recap

In this session we learnt about, Principal Component Regression:

Data Reduction and PCA

- Principal Component Analysis is a key data reduction method
- Data Reduction is necessary while analyzing high dimensional data

PCA in Python

- PCA() function in Scikit Learn performs PCA
- Scree Plot is used to decide number of components to be retained