Homework 1

b03901027 徐彥旻

Handwriting

1. CIA

Confidentiality

保密性,避免未經授權的人取得資訊。以 google doc 為例,要避免未加入分享的帳號檢視文件。

Integrity

完整性,避免資料有未授權的更改。以 messenger 為例,要確保傳出的訊息 跟對方收到的訊息是一致的。

Availability

可用性, (想要使用某服務的)使用者可以順利使用該服務。舉例來說, 購物網站限時特價時, 會有大量的使用者, 同時也可能會有 DDoS 攻擊, 若系統能讓使用者順利買到東西, 則可用性就有達成(對照的例子是, 使用者無法連到購物網站, 或是等待的時間過長)。

2. Hash Function

One-wayness

對於任一給定的輸出,難以找到對應的輸入。One-way Hash Chains 即為這個特性的應用,可以用來實作 one-time password,驗證發送方的身分。

Weak collision resistance

對於任一給定的輸入,難以找到相異的輸入,滿足兩者的輸出相同。近來火熱的區塊鍊,即是用此一性質來保證交易紀錄不被竄改。

Strong collision resestance

難以找到相異的輸入,滿足其輸出相同。數位簽章的過程隱含此一性質,簽署者無法預先生成兩份內容,讓經過函數後的結果會相同。因此簽署者無法否認簽章的內容。

3. Symmetric Cryptography with KDC

- a. 如果沒有 N_A ,或者 N_A 是常數,攻擊者可以假裝是 KDC,當 A 發出要跟 B 溝通的要求時,將要求攔截,並且回傳之前竊聽到的 $E_{K_{SA}}(K_S || ID_B || E_{K_{SB}}(K_S || ID_A))$,讓 A、B 重複使用同樣的 session key 。若 N_B 是常數,攻擊者還可以用之前竊聽到的 $E_{K_S}(f(N_B))$ 傳給 B,使得 B 以為攻擊者是 A。
- b. Eκ_{SB}(K_S || ID_A) 裡頭並沒有跟時間相關的資訊,只要 K_{SB} 沒有更新,已經畢業的學生 A 仍然可以用之前 KDC 給的 Eκ_{SB}(K_S || ID_A) 跟 B 建立通訊。又如果其他的攻擊者解出 A 與 B 某一次通訊的 Ks,攻擊者可以用之前竊聽到的 Eκ_{SB}(K_S || ID_A),偽裝成 A,跟 B 建立通訊。
- c. 提高更新 K_{Si} 的頻率,並在 $E_{K_{SB}}(K_{S} || ID_{A})$ 加入跟時間相關的資訊。舉例來 說,將 $E_{K_{SB}}(K_{S} || ID_{A})$ 改成 $E_{K_{SB}}(T || K_{S} || ID_{A})$,其中 T 是跟時間有關的資 訊, B 在解開的時候會檢查,如果 T 所代表的時間點是太久以前的,則不 與發送方建立通訊。

Capture The Flag

4. Classical Cipher

Flag: BALSN{C14\$5ic41_c!ph3r_1\$_r34lly_cl455ic41}

第一回合:計算明文的第一個字元減去密文的差距,加在第二個密文上即可。

第二回合:對二十六種位移量的結果,檢查每個字是否出現在英文字典當中,選擇 出現最多的送出。 第三回合:觀察明文與密文之間的差距,看其來像是等差級數,還原此等差級數,加到對應的第二個密文上除了空格以外的位置,還原回明文。

第四回合:未解出,但是應可以還原第一對明文密文跟第二個密文重疊的部分,若遇到空格則需查閱字典填入,此方法不適用於第一組明文密文比第二組密文短的情形。

第五回合:紀錄第一對明文密文換位置的情形,對第二個密文做逆向的換位。

第六回合:觀察明文與密文的換位情形,發現是 columnar cipher ,確認的 column 數量後,對第二個密文做逆向的換位操作。

第七回合:搜尋提示字串,發現是 base64 編碼,解碼回來就可以了。

5. Google can beat this

Flag: BALSN{D0NT_7RU57_SHA1_N0W}

從網路上得到兩份有相同雜湊值的檔案, 截到兩份檔案不再相異的地方為止, 得到兩個有一樣雜湊值的兩個足夠短的資料, 在後面嘗試接上隨機的資料, 直到其 雜湊值最後二十四的位元與指定的相同, 就做出所需的兩個相異輸入, 但其雜湊函 數的輸出相同了。

6. Many-time pad

Flag: BALSN{using a key one time is not enough, have you tried using it twice?}

對於每一串密文,與其他九個密文進行互斥或的運算。對於這些結果的每一個位置,若結果皆分布在 upper case, lower case, null 的 ascii 範圍內,則判定那一串密文的那個位置是空白字元。知道了密文跟明文(空白字元)之後,即可解出那個位置的金鑰,然後解開其他九個字串的對應位置的密文。

這樣即可解出大部分的密文,接著再用人工猜測克漏字的方法填補未解出的部分,每次填上一個或數個字元之後,觀察用這些字元去解碼其他字串的結果是否合理,若合理則當作是正確的猜測。如此解出 Flag

7. Backdoor of Diffie Hellman

Flag: BALSN{black magic number}

從題目的提示當中可知, $g_{backdoor}^{691829} \equiv 1 \ mod \ p$, 因此若使用 $g_{backdoor}$ 當成生成元,可能的金鑰數量(等於 691829)就會遠小於 p 。在可能的金鑰數量這麼少的狀況下,只要使用暴力破解就可以了。

8. Man In The Middle

Flag: BALSN{Wow you are really in the middle}

觀察題目所附的程式碼,發現可能的生成元只有二十個,但由於又分為三個階段,因此最後加密的金鑰為 $g_1^{b_1a_1} \oplus g_2^{b_2a_2} \oplus g_3^{b_3a_3}$, 這代表在這三個階段都要猜對生成元才能正確解開密文。故經過 [1, 1, 1] 到 [20, 20, 20] 共八千次的序列窮舉之後,必能取得 Flag.

Acknowledgements

王建元同學

陳佳佑同學

江緯璿同學