Extended Syllabus

Course Title	Visual Odometry and Augmented Reality	Semester	2022-2
Credit	3	Course Number	AIE6660
Class Time	월수 10:30 ~ 11:45	Enrollment Eligibility	

	Name: 서용덕	Homepage:
Instructor's	E-mail: yndk@sogang.ac.kr	Telephone: 02 705 8896
Photo	Office: GA215 Office Hours:	

I. Course Overview

1. Description

- 1. 디지털 카메라에서 획득한 영상을 분석하여 카메라의 움직임(motion, odometry)을 계산 하는 방법에 대하여 학습한다.
- 2. 증강현실 (비디오 + 컴퓨터 그래픽스) 구현에 필요한 기본적인 모델링, 수학적 개념, 추정 방법에 대하여 학습한다.
- 3. 영상정보로부터 카메라 모션 정보와 3차원 정보를 획득하기 위한 최적화 방법에 대하여 학습한다.

2.Prerequisites

Computer Programming in C/C++ or Python

- C/C++ is highly recommended because most of image processing and computer vision algorithms require a lot of computation time
- The source codes for the class are mostly written in C/C++ in Linux environment.
- Students may use Python language.
- Deep neural network will be not used for this class.
- Knowledge of OpenGL programming is not required for the class but would be useful.

3. Course Format (%)

Lecture	Discussion	Experiment /Practicum	Field study	Presentations	Other
50%	%	25%	%	25%	%

4. Evaluation (%)

Mid- term Exam	Final exam	Quizzes	Presentations	Projects	Assignments	Participation	Other
30%	35%	%	%	15%	20		%

П. Course Objectives	
Knowledge:	
Skill:	
Attitude:	
Ⅲ. Course Format	
	(* In detai
_	
IV. Course Requirements and Grading Criteria	
	d h da a
Examples of curriculum-based writing homeworks/activity: all writing exercises requested	d by classes,
including reports, discussion and presentations	
V. Course Policies	

VI. Materials and References

The class does not have a main textbook. Parts of the following references will be used. References:

- Computer Vision: Algorithms and Applications, 2nd ed., Richard Szeliski, https://szeliski.org/Book/
- 2. Multiple View Geometry in Computer Vision, Richard Hartley and Andrew Zisserman
- 3. Computer Graphics Using OpenGL (2nd Ed.), Francis S. Hill
- 4. Programming Computer Vision with Python: Tools and Algorithms for Analyzing Images, Erik Solem, http://programmingcomputervision.com/
- Augmented Reality: Principle and Practice, Dieter Schmalstieg, Tobias Hollerer, 2016 https://arbook.icg.tugraz.at/
- Robotics, vision and control by Peter Corke, https://library.sogang.ac.kr/search/detail/CAT000000711881
- 7. https://vnav.mit.edu/ MIT 16.485 Visual Navigation for Autonomous Vehicles, 2022
- 8. https://rpg.ifi.uzh.ch/teaching.html Vision Algorithms for Mobile Robotics, 2021
- 9. www.opencv.org
- 10. https://github.com/gaoxiang12/slambook2

VII. Course Schedule

(* Subject to change)

	Learning Objectives	Overview
	Topics	Introduction to AR/XR/MR/VFX and Computer Vision
Week 1	Class Work (Methods)	
(dd/ mm)	Materials (Required Readings)	
	Assignments	
	Learning Objectives	2D geometry, transformations, and image transformation
Week 2 (dd/ mm)	Topics	 Linear algebra revisited: rotation as change of frame basis Reference frames, rotation, translation Understand R & t
,	Class Work (Methods)	

	Materials (Required Readings)	
	Assignments	Linear/bilinear interpolation for geometric image transformation - Forward/backward mapping
	Learning Objectives	2D affine transformations
Week 3	Topics	 R, t, shear, scale Homogeneous coordinate representation Triangular image warping in 2D by a sequence of 2D elementary transformations
(dd/ mm)	Class Work (Methods)	
	Materials (Required Readings)	
	Assignments	Triangular image warping for 3 correspondences
Week 4 (dd/	Learning Objectives Topics Class Work (Methods)	Generalized homogeneous coordinates Effect of perspective projection through a pin-hole camera Transformation in projective space
mm)	Materials (Required Readings)	
	Assignments	Perspective rectification - Specify 4 correspondences - Warp to rectify a view of a rectangle
	Learning Objectives	Pin-hole camera model and camera calibration
Week 5	Topics	 Pin-hole model Normalized image plane, lens distortion, and image space transformation Camera calibration: from modeling to parameter optimization CV camera vs GL camera: a demo of opengl rendering on a view of the calibration checker board.
(dd/ mm)	Class Work (Methods)	
	Materials (Required Readings)	
	Assignments	 Camera calibration with opency DIY undistort the image by linear warping

	Learning Objectives	3D geometry
Week	Topics Class Work	 Linear algebra revisited: R, t, and basis change Projection and rigid motion: understand the meaning of the pose matrix Multiple views and multiple poses
(dd/ mm)	(Methods)	
,	Materials (Required Readings)	
	Assignments	Display all the camera poses in a graphic world.
	Learning Objectives	Camera rotation in 3D as a 2D projective transformation
Week 7	Topics	To solve the problem of obtaining a new image by a 3D-rotated camera without taking a new photo. Understand the meaning of pure rotation as a projective transformation: new view generation, panorama stitching, and autocalibration of a camera
(dd/ mm)	Class Work (Methods)	
	Materials (Required Readings)	
	Assignments	Novel view generation by image warping for a given R in 3D.
	Learning Objectives	Mid-term exam
Week	Topics	
8 (dd/	Class Work (Methods)	
mm)	Materials (Required Readings)	
	Assignments	
347	Learning Objectives	Image feature detection & matching
Week 9 (dd/ mm)	Topics	Harris, FAST corner detectors BRIEF, ORB SIFT feature descriptors RANSAC a robust parameter estimation method.
,	Class Work (Methods)	

	Materials (Required Readings)	
	Assignments	RANSAC computation for automatic panorama image stitching or image feature computation such as a line or a conic.
	Learning Objectives	Two view geometry
Week	Topics	R, t revised.Stereo vision (as an aligned two view system)Epipolar geometry
10 (dd/ mm)	Class Work (Methods)	
	Materials (Required Readings)	
	Assignments	Stereo image rectification
	Learning Objectives	Visual odometry
Week	Topics	TriangulationSolving PnP problems
11 (dd/	Class Work (Methods)	
mm)	Materials (Required Readings)	
	Assignments	Two view motion analysis
	Learning Objectives	Nonlinear optimization & Bundle adjustment
Week	Topics	Nonlinear optimization formulationGauss-Newton methodLM method
12 (dd/ mm)	Class Work (Methods)	
)	Materials (Required Readings)	
	Assignments	DIY Solving PnP by minimizing the reprojection error Pose estimation from scratch
Week 13	Learning Objectives	Parametrization of Rotation matrices
(dd/ mm)	Topics	Parametrizations: RPY, Angle-axis, quaternionLie group, Lie algebra, and optimization

	Class Work (Methods)	
	Materials (Required Readings)	
	Assignments	
	Learning Objectives	Filters and optimization for visual motion analysis
Week	Topics	- BA & Kalman filter - Pose-graph optimization
14 (dd/	Class Work (Methods)	
mm)	Materials (Required Readings)	
	Assignments	
	Learning Objectives	Selected topics in AR/MR and Computer Vision
Week	Topics	
15 (dd/	Class Work (Methods)	
mm)	Materials (Required Readings)	
	Assignments	
	Learning Objectives	Final exam / term-project
Week	Topics	
16 (dd/	Class Work (Methods)	
mm)	Materials (Required Readings)	
	Assignments	

Ⅷ. Special Accommodations

IX. Aid f	for the Chall	enged Stude	nts	

