Capítulo 2 Camada de aplicação

Nota sobre o uso destes slides ppt:

Estamos disponibilizando estes slides gratuitamente a todos (professores, alunos, leitores). Eles estão em formato do PowerPoint para que você possa incluir, modificar e excluir slides (incluindo este) e o conteúdo do slide, de acordo com suas necessidades. Eles obviamente representam *muito* trabalho da nossa parte. Em retorno pelo uso, pedimos apenas o seguinte:

- Se você usar estes slides (por exemplo, em sala de aula) sem muita alteração, que mencione sua fonte (afinal, gostamos que as pessoas usem nosso livro!).
- Se você postar quaisquer slides sem muita alteração em um site Web, que informe que eles foram adaptados dos (ou talvez idênticos aos) nossos slides, e inclua nossa nota de direito autoral desse material.

Obrigado e divirta-se! JFK/KWR

Todo o material copyright 1996-2009

J. F Kurose e K. W. Ross, Todos os direitos reservados.

Capítulo 2: Camada de aplicação

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

- 2.1 Princípios de aplicações de rede
- □ 2.2 A Web e o HTTP
- □ 2.3 FTP
- □ 2.4 Correio eletrônico
 - ❖ SMTP, POP3, IMAP
- **2.5 DNS**

- □ 2.6 Aplicações P2P
- 2.7 Programação de sockets com UDP
- 2.8 Programação de sockets com TCP

Capítulo 2: Camada de aplicação

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Objetivos do capítulo:

- aspectos conceituais, de implementação de protocolos de aplicação de rede
 - modelos de serviço da camada de transporte
 - paradigma cliente--servidor
 - paradigma peerto-peer

- aprenda sobre protocolos examinando protocolos populares em nível de aplicação
 - * HTTP
 - * FTP
 - ❖ SMTP/POP3/IMAP
 - * DNS
- programando aplicações de rede
 - * API socket

Algumas aplicações de rede

REDES DE COMPUTADORES E A INTERNET 5' edição

- e-mail
- □ web
- mensagem instantânea
- login remoto
- compartilhamento de arquivos P2P
- jogos em rede multiusuários
- clipes de vídeo armazenados em fluxo contínuo

- redes sociais
- voice over IP
- vídeoconferência em tempo real
- omputação em grade

Criando uma aplicação de rede

Escreva programas que

- executem em (diferentes)sistemas finais
- * se comuniquem pela rede
- p. e., software de servidor Web se comunica com software de navegador Web

Não é preciso escrever software para dispositivos do núcleo da rede

- dispositivos do núcleo da rede não executam aplicações do usuário
- as aplicações nos sistemas finais permitem rápido desenvolvimento e propagação

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

Capítulo 2: Camada de aplicação

REDES DE COMPUTADORES E A INTERNET 5⁴ edição

- 2.1 Princípios de aplicações de rede
- □ 2.2 A Web e o HTTP
- □ 2.3 FTP
- □ 2.4 Correio eletrônico
 - ❖ SMTP, POP3, IMAP
- **2.5 DNS**

- □ 2.6 Aplicações P2P
- 2.7 Programação de sockets com UDP
- 2.8 Programação de sockets com TCP

Arquiteturas de aplicação

REDES DE COMPUTADORES E A INTERNET 5' edição

- Cliente-servidor
 - * Incluindo centros de dados/cloud computing
- □ Peer-to-peer (P2P)
- □ Híbrida de cliente-servidor e P2P

Arquitetura cliente-servidor

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

servidor:

- hospedeiro sempre ligado
- * endereço IP permanente
- * server farms por expansão

clientes:

- * comunicam-se com o servidor
- podem estar conectados intermitentemente
- podem ter endereços IP dinâmicos
- não se comunicam diretamente entre si

Centros de dados da Google

REDES DE COMPUTADORES E A INTERNET 5' edição

- custo estimado do centro de dados: \$600M
- □ Google gastou \$2,4B em 2007 em novos centros de dados
- □ cada centro de dados usa de 50 a 100 megawatts de potência

Arquitetura P2P pura

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- nenhum servidor sempre ligado
- sistemas finais arbitrários se comunicam diretamente
- pares são conectados intermitentemente e mudam endereços IP

altamente escalável, mas difícil de administrar

Híbrido de cliente-servidor e P2P

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Skype

- aplicação P2P voice-over-IP P2P
- servidor centralizado: achando endereço da parte remota:
- conexão cliente-cliente: direta (não através de servidor)

Mensagem instantânea

- bate-papo entre dois usuários é P2P
- serviço centralizado: detecção/localização da presença do cliente
 - usuário registra seu endereço IP com servidor central quando entra on-line
 - usuário contacta servidor central para descobrir endereços IP dos parceiros

Processos se comunicando

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- processo: programa rodando dentro de um hospedeiro
- no mesmo hospedeiro, dois processos se comunicam usando a comunicação entre processos (definida pelo 50).
- processos em
 hospedeiros diferentes
 se comunicam trocando
 mensagens

processo cliente:

processo que inicia a comunicação

processo servidor: processo que espera para ser contactado

■ Nota: aplicações com arquiteturas P2P têm processos clientes & processos servidores

Sockets

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- processo envia/recebe mensagens de/para seu socket
- □ socket semelhante à porta
 - processo enviando empurra mensagem pela porta
 - processo enviando conta com infraestrutura de transporte no outro lado da porta, que leva a mensagem ao socket no processo receptor

API: (1) escolha do protocolo de transporte; (2) capacidade de consertar alguns parâmetros (muito mais sobre isso adiante)

Endereçando processos

REDES DE COMPUTADORES E A INTERNET 5' edição

- para receber mensagens, processo deve ter identificador
- dispositivo hospedeiro tem endereço IP exclusivo de 32 bits
- exercício: use ipconfig do comando prompt para obter seu endereço IP (Windows)
- Basta o endereço IP do hospedeiro em que o processo é executado para identificar o processo?

- R: Não, muitos processos podem estar rodando no mesmo hospedeiro
- Identificador inclui endereço IP e números de porta associados ao processo no hospedeiro.
- Exemplos de número de porta:
 - * servidor HTTP: 80
 - * servidor de correio: 25

<u>Definições de protocolo</u> <u>da camada de aplicação</u>

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

- tipos de mensagens trocadas,
 - p. e., requisição, resposta
- sintaxe da mensagem:
 - que campos nas mensagens & como os campos são delineados
- 🗇 semântica da mensagem
 - significado da informação nos campos
- regras de quando e como processos enviam & respondem a mensagens

protocolos de domínio público:

- definidos em RFCs
- provê interoperabilidade
- p. e., HTTP, SMTP,BitTorrent

protocolos proprietários:

p. e., Skype, ppstream

Que serviço de transporte uma aplicação precisa?

perda de dados

- algumas apls. (p. e., áudio)podem tolerar alguma perda
- outras apls. (p. e., transferência de arquivos, telnet) exigem transferência de dados 100% confiável

temporização

algumas apls. (p. e., telefonia na Internet jogos interativos) exigem pouco atraso para serem "eficazes"

REDES DE COMPUTADORES E A INTERNET 5' edição

vazão

Uma Abordagem Top-Down

- algumas apls. (p. e., multimídia) exigem um mínimo de vazão para serem "eficazes"
- outras apls. ("apls. elásticas") utilizam qualquer vazão que receberem

segurança

criptografia, integridade de dados,...

Requisitos de serviço de transporte das aplicações comuns

REDES DE COMPUTADORES E A INTERNET 5' edição

Aplicação	Perda de dados	Vazão	Sensível ao tempo
transf. arquivos	sem perda	elástica	não
e-mail	sem perda	elástica	não
documentos Web	sem perda	elástica	não
áudio/vídeo	tolerante a perda	áudio: 5 kbps-1 Mbps	sim, centenas de ms
tempo real		vídeo:10 kbps-5 Mbps	
áudio/vídeo	tolerante a perda	o mesmo que antes	sim, alguns seg
armazenado			
jogos interativos	tolerante a perda	poucos kbps ou mais	sim, centenas de ms
Mensagem	sem perda	elástica	sim e não
instantânea			

Serviços de protocolos de transporte da Internet

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

<u>serviço TCP:</u>

- orientado a conexão:
 preparação exigida entre
 processos cliente e servidor
- □ *transporte confiável* entre processo emissor e receptor
- controle de fluxo: emissor não sobrecarrega receptor
- controle de congestionamento: regula emissor quando a rede está sobrecarregada
- não oferece: temporização, garantias mínimas de vazão, segurança

serviço UDP:

- transferência de dados não confiável entre processo emissor e receptor
- não oferece: preparação da conexão, confiabilidade, controle de fluxo, controle de congest., temporização, garantia de vazão ou segurança
- P: por que se incomodar? Por que existe um UDP?

Aplicações da Internet: aplicação, REDES DE COMPUTADORES protocolos de transporte

E A INTERNET 5° edição

	Aplicação	Protocolo da camada de aplicação	Protocolo de transporte básico
	e-mail	SMTP [RFC 2821]	TCP
	acesso remoto	Telnet [RFC 854]	TCP
	Web	HTTP [RFC 2616]	TCP
	transf. arquivos	FTP [RFC 959]	TCP
multimídia com		HTTP (p. e., Youtube),	TCP ou UDP
fluxo contínuo RT		RTP [RFC 1889]	
	telefonia da SIP, RTP, proprietário		
	Internet	(p. e., Skype)	normalmente UDP

Exercícios de Fixação

REDES DE COMPUTADORES E A INTERNET 5' edição

Uma Abordagem Top-Down

Exercícios de Fixação, página 129-130, quetões 1-9

□ Kurose: página 129-130, questões 1-9

Trabalho: Pesquisa sobre Criptografia e o SSL

- Disponível: no Q-Acadêmico
- Envio do relatório: upload via Moodle