

Decomposable Functions

Consider a convex function f that can be decomposed into two functions g and h in the following form:

$$f(x) = g(x) + h(x)$$

Suppose, we want to find

$$x^* = argmin f(x)$$
 for $x \in \mathbb{R}^n$

If both g and h are **convex and differentiable** then we could use gradient descent algorithm by minimizing the quadratic approximation of f.

$$f(z) = f(x) + \nabla f(x)^{T} (z - x) + \frac{1}{2t} ||z - x||_{2}^{2}$$

Which results in

$$x_{k+1} = x_k - t\nabla f(x_k)$$

Decomposable Functions

Consider a convex function f that can be decomposed into two functions g and h in the following form:

$$f(x) = g(x) + h(x)$$

Suppose, we want to find

$$x^* = argmin f(x)$$
 for $x \in \mathbb{R}^n$

Now assume, g is **convex** and **differentiable**, and h is **convex** (may or may not be differentiable)

Example:
$$f(x) = x^T A x + |x|_1$$
 (in real numbers, $f(x) = 2x^2 + |x|$)

Proximal Gradient Descent

- How can we efficiently solve: $x^* = argmin(g(x) + h(x))$ for $x \in \mathbb{R}^d$ using an iterative method?
- Because g is a differentiable function, we can approximate it around point x using quadratic approximation as following:

$$g(z) = g(x) + \nabla g(x)^{T} (z - x) + \frac{1}{2t} ||z - x||_{2}^{2}$$

Therefore, the function f can be rewritten as

$$x^{+} = \arg\min_{z} \left(g(x) + \nabla g(x)^{T} (z - x) + \frac{1}{2t} ||z - x||_{2}^{2} + h(z) \right)$$
$$= \arg\min_{z} \frac{1}{2t} ||z - (x - t\nabla g(x))||_{2}^{2} + h(z)$$

Proximal Gradient Descent

- Let us define the proximal function as $prox_t(x) = \arg\min_{z} \left(\frac{1}{2t} ||z x||_2^2 + h(z) \right)$
- Using the proximal function, the optimization problem that determines the direction in the next iteration can be written by

$$prox_t(x - t\nabla g(x)) = \arg\min\frac{1}{2t} ||x - (x - t\nabla g(x))||_2^2 + h(z)$$

The proximal gradient descent algorithm gives the next value as following:

$$x_k = prox_{t_k} (x_{k-1} - t_k \nabla g(x_{k-1}))$$

```
Algorithm 1 Proximal Gradient Descent

1: Define prox_t(x)
2: Initialize x_0
3: for k = 1 : K do
4: Compute x_k = prox_t(x_{k-1} \perp t\nabla g(x_{k-1}))
5: end for
```

 Note that proximal gradient descent works well if the prox function can be computed easily.

Proximal Gradient Descent - Example

Consider the objective of function of LASSO regression

$$f(x) = \underbrace{\frac{1}{2} \left| \left| y - Ax \right| \right|_{2}^{2}}_{g(x)} + \underbrace{\lambda \left| \left| x \right| \right|_{1}}_{h(x)}$$

Then

$$prox_t(a) = arg \min_{z} \frac{1}{2t} ||z - a||_2^2 + \lambda ||z||_1 = S_{\lambda t}(a)$$

This is a well-known problem that has a closed-form solution as follows:

$$[S_{\lambda t}(x)]_i = \begin{cases} x_i - t\lambda & x_i > t\lambda \\ 0 & -t\lambda \le x_i \le t\lambda \end{cases} \quad prox_t(x - t\nabla g(x)) = S_{\lambda t}((x + tA^T(y - Ax)))$$

$$\begin{cases} x_i + t\lambda & x < -t\lambda \end{cases}$$

Proximal Gradient Descent - Example

```
• Let f(x) = \frac{1}{2} ||y - Ax||_2^2 + \lambda ||x||_1
```

0.5. Also use constant t = 0.01

of iteration for achieving ϵ = 0.0001 : 991


```
A = [1 \ 2; 3 \ 4]; y = [-2; 3];
                                                                                                                                                                                                                                                                                                                                       lambda = 0.5;t = 0.01;iterations = 2000;
                                                                                                                                                                                                                                                                                                                                      x = zeros(2, iterations); L = zeros(1, iterations);
• Let f(x) = \frac{1}{2} ||y - Ax||_2^2 + \lambda ||x||_1
• Take y = \begin{bmatrix} -2 \\ 3 \end{bmatrix} A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} and \lambda = \begin{bmatrix} 1 & 2 
                                                                                                                                                                                                                                                                                                                                L(1) = 0.5*(y - A*x(:,1))' * (y - A*x(:,1)) +
                                                                                                                                                                                                                                                                                                                                                                      x current = x(:, i-1);
                                                                                                                                                                                                                                                                                                                                                                      grad g = -A'*(y - A*x current);
                                                                                                                                                                                                                                                                                                                                                                      x new gd = x current - t * grad g;
                                                                                                                                                                                                                                                                                                                                                                      for k = 1: length(x new gd)
                                                                                                                                                                                                                                                                                                                                                                                                       if x new gd(k) > lambda * t; x new(k) =
                                                                                                                                                                                                                                                                                                                                      x_new_gd(k) - lambda * t;
                                                                                                                                                                                                                                                                                                                                                                                               elseif x new gd(k) < -lambda * t; x new(k)</pre>
                                                                                                                                                                                                                                                                                                                                       = x_new_gd(k) + lambda * t;
                                                                                                                                                                                                                                                                                                                                                                                                     else; x_new(k) = 0; end
                                                                                                                                                                                                                                                                                                                                                                      x(:, i) = x new;
                                                                                                                                                                                                                                                                                                                                                                      L(i) = 0.5*(norm(y - A*x_new))^2 + lambda *
                                                                                                                                                                                                                                                                                                                                      norm(x new, 1);
```

Proximal Gradient Descent - Special Case

- Let f(x) be a differentiable function. Use proximal gradient descent to find the minimizer of f.
- Because f(x) is differentiable, then h(z) = 0. Therefore

$$prox_t(x) = x$$

- · Then, the iterative procedure of proximal gradient descent is as follows,
 - Choose x₀ as an initial value
 - · Iterate using the following formula

$$x_{k+1} = x_k - t_k \nabla f(x_k)$$

- The proximal gradient descent is the same as gradient descent for differentiable functions.
- Therefore, proximal gradient descent has the $O(\frac{1}{c})$ convergence rate (same as GD).

Accelerated Proximal Gradient Descent

- Similar to gradient descent, the proximal GD can be accelerated.
- Let f(x) = g(x) + h(x) where g is convex and differentiable, and h is convex but not differentiable.
- The accelerated proximal gradient descent is as follows:
 - Select an initial values x₀
 - Define $v = x_{k-1} + \frac{k-2}{k+1}(x_{k-1} x_{k-2})$
 - Set $x_k = prox_{t_k}(v t_k \nabla g(v))$
- *v* carries momentum from previous iterations.
- The convergence rate is same as the accelerated GD (i.e., $O(\frac{1}{\sqrt{\epsilon}})$).

Algorithm 2 Accelerated Proximal Gradient Descent

1: Define $prox_t(x)$ 2: Initialize x_{-1} and x_0 3: for k = 1 : K do

4: Compute $v = x_{k-1} + \frac{k-2}{k+1}(x_{k-1} - x_{k-2})$ 5: Compute $x_k = prox_{t_k}(v - t_k \nabla g(v))$

Accelerated Proximal GD - Example

- Let $f(x) = \frac{1}{2} ||y Ax||_2^2 + \lambda ||x||_1$
- Take $y = \begin{bmatrix} -2 \\ 3 \end{bmatrix} A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $\lambda = 0.5$. Also use constant t = 0.01

of iteration for achieving ϵ = 0.0001 : 101


```
A = [1 \ 2;3 \ 4]; y = [-2;3];
lambda = 0.5;t = 0.01;iterations = 2000;
x = zeros(2, iterations); L = zeros(1, iterations);
L(1) = 0.5*(y - A*x(:,1))' * (y - A*x(:,1)) + lambda *
norm(x(:,1), 1);
x new = zeros(size(A, 2), 1); %initiate
for i = 3: iterations
   x current = x(:, i-1);
    x prev = x(:, i - 2);
    v = x current + ((i - 2) / (i + 1)) * (x current - x prev);
   grad_g = -A'*(y - A*v);
   x \text{ new } gd = v - t * grad g;
   for k = 1 : length(x_new_gd)
        if x_new_gd(k) > lambda * t; x_new(k) = x_new_gd(k) -
        elseif x_new_gd(k) < -lambda * t; x_new(k) =</pre>
x_new_gd(k) + lambda * t;
        else x_new(k) = 0; end
    x(:, i) = x_new;
    L2(i) = 0.5*(norm(y - A*x_new))^2 + lambda * norm(x_new,
1):
end
```


Augmented Lagrangian Method

- Proximal gradient descent is useful for minimizing decomposable convex functions with a differentiable and a non-differentiable part.
- However, if $prox_t(x)$ is not easy to obtain, proximal gradient method may not be useful.
- For example, if a function is in the form of f(x) = g(x) + h(x), but h(x) = r(Ax), it may be difficult to use the proximal gradient descent method.
- Augmented Lagrangian method and Alternating direction method of multipliers (ADMM) are two methods that can be useful in these cases.

Augmented Lagrangian Method

· Assume we want to solve the following problem:

$$\min_{x} f(x) \qquad subject \ to \ Ax = b,$$

where $x \in \mathbb{R}^d$ and A is a $m \times d$ matrix and $b \in \mathbb{R}^m$ and f(x) is a convex function

- The main idea is to solve a constraint problem by solving a series of unconstraint problems.
- The augmented Lagrangian objective function is given by $(\rho > 0)$ is a parameter)

$$L(x, u; \rho) = f(x) + u^{T}(Ax - b) + \frac{\rho}{2} ||Ax - b||_{2}^{2}$$
Lagrangian Augmented

 The augmentation gives the strong convexity properties without changing the minimizer of the objective function.

Augmented Lagrangian Method

$$L(x, u; \rho) = f(x) + u^{T}(Ax - b) + \frac{\rho}{2} ||Ax - b||_{2}^{2}$$

The update of the Augmented Lagrangian method (a.k.a. method of multipliers) is as following: $x^+ = \arg\min_x f(x) + u^T A x + \frac{\rho}{2} \left| |Ax - b| \right|_2^2$

$$u^+ = u + \rho(Ax^+ - b)$$

One can use acceleration and backtracking (on u) as before for this algorithm.

```
Algorithm 3 Augmented Lagrangian Method

1: Select \rho and \epsilon
2: Initialize u_0
3: for k=1:K do
4: Compute x_k = \arg\min_x \left\{ f(x) + u_{k-1}^T Ax + \frac{\rho}{2} ||Ax - b||_2^2 \right\}
5: Compute u_k = u_{k-1} + \rho(Ax_k - b)
6: if ||Ax - b||_2 < \epsilon then
7: Break
8: end if
9: end for
```

Augmented Lagrangian Method - Example iterations

Minimize
$$f(x) = \frac{1}{2}(x_1^2 + x_2^2)$$
 where $x = (x_1, x_2)^T$
Subject to $x_1 = 1$

The steps for the Augmented Lagrangian methods are as following:

Initiate x₀ and u₀, then or k=1,2,...

(1)
$$x_k = \arg\min_{x} \frac{1}{2} (x_1^2 + x_2^2) + u_{k-1} (x_1 - 1) + \frac{\rho}{2} (x_1 - 1)^2$$

(2)
$$u_k = u_{k-1} + \rho(x_1 - 1)$$

By taking derivative from (1) we can derive,

$$x_1 = \frac{\rho - u_{k-1}}{1 + \rho}$$
 and $x_2 = 0$

Alternating Direction Method of Multipliers (ADMM)

Assume we want to solve the following problem:

$$\min_{x \in \mathcal{I}} f(x) + g(z) \qquad subject \ to \ Ax + Bz = c$$

Similar to the Augmented Lagrangian method, we augment the objective function as the following:

$$\min_{x,z} f(x) + g(z) + \frac{\rho}{2} \left| |Ax + Bz - c| \right|_2^2 \qquad subject \ to \ Ax + Bz = c$$

- The augmented term does not change the objective, as its value is always zero due to the constraints.
- Define the augmented Lagrangian function (for a given ρ) as following:

$$L(x, z, u; \rho) = f(x) + g(z) + u^{T}(Ax + Bz - c) + \frac{\rho}{2} \left| |Ax + Bz - c| \right|_{2}^{2}$$
Lagrangian Augmented

Alternating Direction Method of Multipliers (ADMM)

Define the augmented Lagrangian function (for a given ρ) as following:

$$L(x, z, u; \rho) = f(x) + g(z) + u^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2}$$

Then the ADMM updates are as following:

• Initiate z_0 and u_0 and for k = 1,2,... iterate using the following:

$$x_k = \arg\min_{x} L(x, z_{k-1}, u_{k-1}; \rho)$$

$$z_k = \arg\min_{z} L(x_k, z, u_{k-1}; \rho)$$

$$u_k = u_{k-1} + \rho(Ax_k + Bz_k - c)$$

Note that original augmented Lagrangian combines the updates of x, z:

$$(x_k, z_k) = \arg\min_{x, z} L(x, z, u_{k-1}; \rho)$$

Scaled Form of ADMM

If we define $w = \frac{u}{\rho}$ then the scaled form of the ADMM is as following:

$$L(x, z, w; \rho) = f(x) + g(z) + \frac{\rho}{2} ||Ax + Bz - c + w||_{2}^{2} + \frac{\rho}{2} ||w||_{2}^{2}$$

With the following updates:

$$x_k = \arg\min_{x} f(x) + \frac{\rho}{2} \left| |Ax + Bz_{k-1} - c + w_{k-1}| \right|_2^2$$

$$z_k = \arg\min_{z} g(z) + \frac{\rho}{2} \left| |Ax_k + Bz - c + w_{k-1}| \right|_2^2$$

$$w_k = w_{k-1} + Ax_k + Bz_k - c$$

Algorithm 4 ADMM

- 1: Initialize u_0 and z_0
- 2: **for** k = 1 : K **do**
- 3: Compute $x_k = \arg\min_x \left\{ f(x) + \frac{\rho}{2} ||Ax + Bz_{k-1} c + w_{k-1}||_2^2 \right\}$
- 4: Compute $z_k = \arg\min_z \left\{ g(z) + \frac{\rho}{2} ||Ax_k + Bz c + w_{k-1}||_2^2 \right\}$
- 5: Compute $w_k = w_{k-1} + Ax_k + Bz_k c$
- 6: end for

ADMM- Example

Minimize
$$h(x) = \frac{1}{2}(x_1^2 + x_2^2)$$

Subject to $x_1 + x_2 = 1$

Here, $f(x)=0.5x_1^2$ and $g(z)=0.5x_2^2$ and A=1; B=1; c=1. ADMM updates:

$$x_{1,k} = \arg\min_{x_1} 0.5x_1^2 + \frac{\rho}{2} (x_1 + x_{2,k-1} - 1 + w_{k-1})^2$$

$$x_{2,k} = \arg\min_{x_2} 0.5x_2^2 + \frac{\rho}{2} (x_{1,k} + x_2 - 1 + w_{k-1})^2$$

$$w_k = w_{k-1} + x_{1,k} + x_{2,k} - 1$$

Form the first two equations:

$$x_{1,k} = \frac{-\rho(x_{2,k-1} - 1 + w_{k-1})}{1 + \rho} \text{ and } x_{2,k} = \frac{-\rho(x_{1,k-1} - 1 + w_{k-1})}{1 + \rho}$$

$$x_k = \arg\min_{x} f(x) + \frac{\rho}{2} ||Ax + Bz_{k-1} - c + w_{k-1}||_2^2$$

ADMM and Proximal Gradient Descent

 Recall that the objective function of the proximal gradient descent was in the following form:

Minimize
$$f(x)$$
, where $f(x) = g(x) + h(x)$.

We can write the above objective as

Minimize
$$g(x) + h(z)$$
 subject to $x = z$

Which gives an objective function in the form suitable for ADMM.

• What if h(x) = r(Ax)? In this situation proximal gradient method is difficult to use but ADMM can be used as follows:

Minimize
$$g(x) + r(z)$$
 subject to $Ax = z$

Some Notes on ADMM

In practice

- ADMM can reach relatively accurate results in a few iterations. However, for highly-accurate results, ADMM requires many iterations.
- Selection of ρ influences the convergence of the algorithm:
 - If ρ is too large, then we are not appropriately minimizing the objective function
 - If ρ is too small, we may end up with infeasible solutions.

Decomposable Functions - Revisit

- We introduced decomposable functions that can be written as differentiable and non-differentiable parts.
- These functions, however, may or may not be decomposed in their coordinates.
- Suppose that we want to solve the following problem:

$$Minimizef(x) = g(x) + h(x),$$

where $h(x) = \sum_i h_i(x_i)$, g(x) is convex and differentiable and each h_i is convex.

• As can be seen, $h(x) = \sum_i h_i(x_i)$ is decomposable with respect to the coordinates.

Decomposable Functions - Revisit

Suppose that we want to solve the following problem:

$$Minimizef(x) = g(x) + h(x),$$

where $h(x) = \sum_i h_i(x_i)$, g(x) is convex and differentiable and each h_i is convex.

Example:

$$f(x) = \frac{1}{2} ||y - Ax||_{2}^{2} + ||x||_{1} = \frac{1}{2} ||y - Ax||_{2}^{2} + |x_{1}| + |x_{2}| \Big|_{x=0}^{2}$$
Let $y = \begin{bmatrix} 0 \\ 0 \end{bmatrix} A = \begin{bmatrix} 0.3 & 0 \\ 0 & 0.3 \end{bmatrix}$

When minimizing along each direction, the objective function is minimized

This results in an algorithm called coordinate descent

Decomposable Functions - Revisit

• What if the non-differentiable part (h(x)) is not decomposable into its coordinates?

Example:

Let
$$f(x) = \frac{1}{2} ||y - Ax||_2^2 + |x_1 + x_2|$$

Take $y = \begin{bmatrix} 0 \\ 0 \end{bmatrix} A = \begin{bmatrix} 0.3 & 0 \\ 0 & 0.3 \end{bmatrix}$

At the red point, we cannot minimize along one direction only.

 Therefore, separability of the nonsmooth part into its coordinates (or a block of coordinates) is a requirement to be able to solve the problem by minimizing along each direction.

Coordinate Descent Algorithm

Suppose that we want to solve the following problem:

Minimize
$$f(x)$$
 and $x \in \mathbb{R}^n$

Where f(x) = g(x) + h(x) and $h(x) = \sum_i h_i(x_i)$. Here, g(x) is convex and differentiable and each h_i is convex.

Then we can find the minimum by minimizing along each coordinate as following:

• Initiate $x = x_0$ and the for each coordinate i and for iternations k = 1, 2, ... solve

$$x_i^k = \arg\min_{x_i} f(x_1^k, x_2^k, \dots, x_i, x_{i+1}^{k-1}, \dots, x_n^{k-1})$$

We always use most updated results from other coordinates.

Coordinate Descent Algorithm

Initiate $x = x_0$ and the for each coordinate i and for iternations k = 1,2,... solve

$$x_i^k = \arg\min_{x_i} f(x_1^k, x_2^k, \dots, x_i, x_{i+1}^{k-1}, \dots, x_n^{k-1})$$

```
Algorithm 5 Coordinate Descent

1: Initialize x_0 \in \mathbb{R}^n
2: for k = 1 : K do
3: for i = 1 : n do
4: Compute x_i^k = \arg\min_{x_i} f\left(x_1^k, x_2^k, \cdots x_{i-1}^k, x_i, x_{i+1}^{k-1}, \cdots, x_n^{k-1}\right)
5: end for
6: end for
```

 If the nonsmooth part is decomposable into groups of coordinates, we should minimize the function along each block of coordinates. The resulting algorithm is known as block coordinate descent.

Coordinate Descent Algorithm - Example

Minimize
$$f(x) = \frac{1}{2} ||y - Ax||_2^2 + 0.5|x_1| + 0.5|x_2|$$

Let $y = \begin{bmatrix} -2 \\ 3 \end{bmatrix} A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Using coordinate descent algorithm, in each iteration we have,

$$x_1^k = \arg\min_{x_1} \frac{1}{2} \left| \left| y - A(x_1, x_2^{k-1})^T \right| \right|_2^2 + 0.5|x_1| + 0.5|x_2^{k-1}|$$

$$x_2^k = \arg\min_{x_2} \frac{1}{2} \left| \left| y - A(x_1^k, x_2)^T \right| \right|_2^2 + 0.5 \left| x_1^k \right| + 0.5 |x_2|$$

Coordinate Descent Algorithm - Example

$$x_1^k = \arg\min_{x_1} \frac{1}{2} ||y - A(x_1, x_2^{k-1})^T||_2^2 + 0.5|x_1| + 0.5|x_2^{k-1}|$$

$$x_2^k = \arg\min_{x_2} \frac{1}{2} ||y - A(x_1^k, x_2)^T||_2^2 + 0.5 |x_1^k| + 0.5 |x_2||$$

The solution to each of these is soft-thresholding:

Let A_i be the i^{th} column of the matrix A, and define $\gamma_i = \frac{0.5}{\left|\left|A_i\right|\right|_2^2}$ then,

$$x_1^k = S_{\gamma_1} \left(\frac{A_1^T (y - A_2 x_2^{k-1})}{A_1^T A_1} \right)$$
 and $x_2^k = S_{\gamma_2} \left(\frac{A_2^T (y - A_1 x_1^k)}{A_2^T A_2} \right)$

where
$$S_{\gamma_i}(a) = \begin{cases} a - \gamma_i & a > \gamma_i \\ 0 - \gamma_i \le a \le \gamma_i \\ a + \gamma_i & a < -\gamma_i \end{cases}$$

Coordinate Descent Algorithm – Example

Continued

```
4.4
                                                                      4.3
A = [1 \ 2;3 \ 4]; % this is same as the gradient of g
                                                                   function value
y = [-2;3];
                                                                     4.2
lambda = 0.5; x(1) = 0; x(2) = 0; e(1)=1; L(1)=5; k=1;
while e > 0.0001
                                                                     4.1
     k=k+1;
    for i = 1 : 2
       Ai = A(:,i);
                                                                       4
       A_i = A(:, 2-i+1);
       gamma = lambda/(Ai'*Ai);
                                                                      3.9
       z = Ai'*(y - A i * x(2-i+1))./(Ai'*Ai);
                                                                                    200
                                                                                          300
                                                                                                      500
                                                                                                400
       x(i) = softhres(z, gamma);
                                                                                  Iteration number
   L(k) = 0.5*(norm(y - A*x'))^2 + lambda * norm(x, 1);
                                                            # of iterations for achieving \epsilon = 0.0001 : 131
     e(k) = L(k-1) - L(k);
                                                                          x^* = [2.595, -1.392]'
function s = softhres(x, gamma)
                                                                                f^* = 3.940
   if x > gamma
       s = x - gamma;
   elseif x < -gamma
       s = x + gamma;
                                         APGD: # of iterations is 101
                                                                                 PGD: # of iterations is 991
       s = 0;
                                            x^* = [2.713, -1.474]'
                                                                                  x^* = [2.140, -1.070]'
   end
                                                                                         f^* = 3.998
                                                  f^* = 3.938
```