2ª Avaliação de Cálculo Numérico Prof. Glauber Cintra

Você deve enviar essa avaliação pelo Classroom até o dia 14/set/2020 às 18h.

 (2 pontos) Dados os pontos da tabela abaixo, encontre o polinômio do terceiro grau que passa por esses pontos.

i	Xi	y i
0	1	3
1	2	1
2	3	3
3	4	15

- 2) (3 pontos) Seja p₄(x) o polinômio do quarto grau que passa pelos pontos da tabela abaixo. Calcule:
 - a) p₄(1) usando a Fórmula de Lagrange.
 - **b)** p₄(3) usando a Fórmula de Newton.
 - c) p₄(5) usando a Fórmula de Gregory-Newton.

I	Xi	y i
0	0	27
1	2	24,6
2	4	12,6
3	6	0,6
4	8	36,6

- 3) **(3 pontos)** Dada a função f(x) definida a partir da tabela abaixo, calcule uma aproximação para $\int_0^6 f(x)dx$:
 - a) Aplicando a regra dos trapézios com 6 subintervalos.
 - b) Aplicando a primeira regra de Simpson com 6 subintervalos.
 - c) Aplicando a segunda regra de Simpson com 6 subintervalos.
 - d) Aplicando a extrapolação de Richardson à regra dos trapézios com n₁ = 3 e n₂ = 6.
 - e) Aplicando a extrapolação de Richardson à primeira regra de Simpson com n₁ = 2 e n₂ = 6.
 - f) Aplicando a extrapolação de Richardson à segunda regra de Simpson com $n_1 = 3$ e $n_2 = 6$.

Xi	y i
0	7
1	6,82
2	4,44
3	1,66
4	0,28
5	4,5
6	23,32

4) **(2 pontos)** Dada a função f(x) definida a partir da tabela abaixo, calcule uma aproximação para $\int_0^8 f(x)dx$. Utilize as regras mais precisas que for possível.

Xi	y i
0	-2
1	10
2	8
5	-22
6	-20
7	-2
8	38