Digital Design and Computer Architecture LU

Lab Protocol

Exercise IV

Group 25

Elias Eckenfellner, Matr. Nr. 11776200

e11776200@student.tuwien.ac.at

Bernhard Seiser, Matr. Nr. 11777741

e11777741@student.tuwien.ac.at

Hannes Brantner, Matr. Nr. 01614466

e01614466@student.tuwien.ac.at

Vienna, June 25, 2019

Forwarding Simulation

Figure 1: Simulation screenshot for Listing 1.

Make sure that at least the following signals are visible in Figure 1: the program counter in the fetch stage, the instruction being fetched, and the signals wraddr, wrdata, and regwrite of the register file.

Listing 1: Assembler example with forwarding

```
addi $1, $0, 7
addi $2, $0, 5
and $1, $2, $1
nop
```

Branch Hazards Simulation

Figure 2: Simulation screenshot for Listing 2.

Make sure that at least the following signals are visible in Figure 2: the program counter in the fetch stage, the instruction being fetched, and the signals wraddr, wrdata, and regwrite of the register file.

Listing 2: Assembler example with branch delay slot

Synthesis Results

Table 1: Resource usage by entity, including resources used by sub-entities.

	LC Combinationals	LC Registers	Memory Bits
Fetch Stage	90	14	131072
Decode Stage	1486 (1312)	1070(46)	0
– Register File	174	1024	0
Execute Stage	1125 (624)	153	0
$- \mathrm{ALU}$	501	0	0
Memory Stage	395(232)	101	0
– Jump Unit	4	0	0
– Memory Unit	159	0	0
Write-Back Stage	49	71	0
Forwarding Unit	16	0	0
Control Unit	0	0	0
Sum	3161	1409	131072

Question: What is the maximum frequency of your design?

 $\textbf{Answer:} \quad 81.57 \text{ MHz at } 0\text{C}, \ 75.83 \text{ MHz at } 85\text{C} \text{ in the slow Models and } 147.69 \text{ MHz in}$

the fast 0C Model (all Models with $1200 \mathrm{mV}$)

Question: Where is the critical path of your design?

Answer: From exec_inst|rdaddr1_out to mem_inst|sig_aluresult_in.