

College College	DATA ACQUISITION DEVICES								
	DAQ products with sensors								
	Sensor	Phenomenon							
	Thermocouple, Thermistor	Temperature							
	Photo Sensor	Light							
	Microphone	Sound							
	Strain Gage, Piezoelectric Transducer	Force and Pressure							
	Potentiometer, Optical Encoder	Position and Displacement							
	Accelerometer	Acceleration							
	pH Electrode	pH							
	Content Copyright Nanyang Techno	logical University	9						

WHAT IS ANALOG TO DIGITAL CONVERSION?

- An electronic integrated circuit which transforms a signal from analog (continuous) to digital (discrete) form.
- Analog signals are directly measurable quantities.
- Digital signals only have two states. For digital computer, we refer to binary states: 0 and 1.

Content Copyright Nanyang Technological University

12

WHY WE NEED ANALOG TO DIGITAL CONVERSION?

- Microprocessors can only perform complex processing on digitised signals.
- When signals are in digital form, they are less susceptible to the deleterious effects of additive noise.
- ADC provides a link between the analog world of transducers and the digital world of signal processing and data handling.

Content Copyright Nanyang Technological University

1.4

QUANTISING AND ENCODING

• The smallest change in analog signal that will result in a change in the digital output.

$$\Delta V = V_{ref} / 2^n$$

- ΔV: Resolution
- o n: Number of bits in digital output
- o 2n: Number of states
- $\circ~V_{\text{ref}}\text{:}$ Reference voltage range
- The resolution represents the quantisation error inherent in the conversion of the signal to digital form.

Content Copyright Nanyang Technological Universit

17

QUANTISING AND ENCODING

- Quantising: Partition the reference signal range into a number of discrete quanta, then match the input signal to the correct quantum.
- Encoding: Assign a unique digital code to each quantum, then allocate the digital code to the input signal.

Analog signal Digital Output in binary

Content Copyright Nanyang Technological University

TWO WAYS TO IMPROVE THE ACCURACY OF A/D CONVERSION

- Increasing the resolution, which improves the accuracy in measuring the amplitude of the analog signal.
- Increasing the sampling rate, which increases the maximum frequency that can be measured.

Content Copyright Nanyang Technological University

10

ADVANTAGES OF A/D CONVERSION

- A digital signal is superior to an analog signal, because it is more robust to noise and can easily be recovered, corrected and amplified.
- For this reason, most analog signals will be changed to their digital forms.

Content Copyright Nanyang Technological University

APPLICATIONS OF A/D CONVERSION

- ADCs are used virtually everywhere where an analog signal has to be processed, stored, or transported in digital form.
- · Some examples of ADCs usage are,
 - Cell phones,
 - Thermocouples,
 - Digital oscilloscopes, and
 - Digital volt meters.

Content Copyright Nanyang Technological Universit

21

THE CONVERSION TIME

- Setting time depends on
 - the design of the converter,
 - $\,-\,$ the method used for conversion, and
 - the speed of the components used in the electronic design.
- Because the analog signal changes continuously, the uncertainty when the conversion occurs (in the sample time window), causes the corresponding uncertainty in the digital value.
- → This is of particular concern if there is no sample and hold amplifier on the A/D input.

Content Copyright Nanyang Technological University

DESIGN PRINCIPLES OF A/D CONVERTERS

Principle 1: Successive approximation

Principle 2: Flash or parallel encoding

Principle 3: Single-slope and dual-slope integration

Principle 4: Switched capacitor

Principle 5: Delta sigma

Other principles:

- Voltage-to-frequency
- · Staircase ramp or single slope
- Charge balancing or redistribution
- Tracking, synchronising or resolving

Content Copyright Nanyang Technological Universit

25

SUCCESSIVE APPROXIMATION

- 1. A/D Converter designed based on Principle 1 is very widely used because it is relatively fast and cheap.
- 2. Successive approximation A/D converter uses a D/A converter in a feedback loop.
- 3. When the start signal is applied, the sample and hold (S&H) amplifier latches the analog input.
- 4. The control unit begins an iterative process, where the digital value is approximated, converted to an analog value with the D/A converter, and compared to the analog input with the comparator.
- 5. When the D/A output equals the analog input, the end signal is set by the control unit and the correct digital output is available at the output.

Content Copyright Nanyang Technological University

Use a n-bit DAC to compare DAC and original analog results. Use Successive Approximation Register (SAR) to supply an approximate digital code to DAC of V_{in}. Compare the change in digital output to bring it closer to the input value. Use Closed-Loop Feedback Conversion.

ANAL	YSIS FOR SUCCESSIVE AP	PROXIMATION A/D CONVE	RTER
	Pros	Cons	
	High speed and good reliability	For higher resolution successive approximation, ADCs will be slower	
	Medium accuracy compared to other ADC types	Speed limited to ~5MSPS	
	Good tradeoff between speed and cost		
	Capable of outputting the binary number in serial format (one bit at a time)		
	Content Copyright Nanya	ng Technological University	29

A/D CONVERTERS

CONVERSION TIME

An n-bit successive approximation A/D converter has a conversion time of $n\Delta T$.

Where ΔT is the cycle time of the D/A converter and control unit.

Typical conversion time for 8/10/12-bit successive approximation A/D converters ranges from 1 to $100\mu s$.

Content Copyright Nanyang Technological Universit

33

A/D CONVERTERS

Example 2: Another working example

- n = 10 bit ADC
- V_{in} = 0.6 volts (from analog device)
- $V_{ref} = 1 \text{ Volt}$
- Find the digital value of V_{in}

Bit	Voltage
9	.5
8	.25
7	.125
6	.0625
5	.03125
4	.015625
3	.0078125
2	.00390625
1	.001952125
0	.0009765625

 $N=2^n=1024$ (possible states)

Resolution $\Delta V = (V_{max} - V_{min})/N = 1 \text{ Volt}/1024 = 0.0009765625V of } V_{ref}$

Content Copyright Nanyang Technological University

STATE !	A/D CONVERTERS												
MSB	(bit 9)					Bit	V	oltage					
• Div	ide V_{ref} by	2, <i>V</i> =	$=V_{ref}$	/2 = 0).5	9		5					
• Cor	npare $\it V$ wit	$h V_{in}$				8	.2	25					
• If I/	g_{in} is greate	r than	V t	urn M	SB on	7	.1	125					
	in is greate	i tilali	, v , c	uiii M	3D 011	6).	0625					
(1)						5	.0)3125					
• If <i>V</i>	$_{in}$ is less the	an V ,	turn	MSB (off (0)	4	.(015625	5				
 V_{in} 	= 0.6V and	V=0.5	;			3).	007812	25				
• Sin	Since $V_{in} > V$, MSB = 1(on)					2	.0	003906	525				
3111	oc in single	.00	_(0.	• /		1	.0	001952	2125				
						0).	000976	55625				
MSB	MSB-1 MSB-2	MSB-3											
1													
			Content C	opyright N	anyang Tec	hnological l	University	У					35

(1978)					Α/	D CC	NVE	RTEI	RS			The
	Next, calculate MSB-1 (bit 8)											
	• V=	$V_{ref}/2$	$2 + V_{re}$	f/4 = 1	5+0.25	5 = 0.7	5 <i>V</i>					
	• Cor	mpare	$V_{in} =$	0.6V	to V							
	• Sin	ce 0.6	< 0.7	5, MS	B is t	urned	off					
	MSB	MSB-1	MSB-2	MSB-3								
	1	0										
		U										
					Content C	Copyright N	anyang Tec	hnological	University			36

A/D CONVERTERS

Calculate MSB-2 (bit7)

- Go back to the last voltage that caused it to be turned on (Bit 9) and add it to $V_{ref}/8$, ${\rm V}=V_{ref}/2+V_{ref}/8=0.625$
- Compare V_{in} with V
- Since 0.6 < 0.625, MSB is turned off

MSB	MSB-1	MSB-2	MSB-3			
1	0	0				

Content Copyright Nanyang Technological University

37

A/D CONVERTERS

Calculate the state of MSB-3(bit 6)

- Go to the last bit that caused it to be turned on (in this case MSB-1) and add it to $V_{ref}/16$, $V=V_{ref}/2+V_{ref}/16=5+0.25=0.5625\,V$
- Compare V_{in} to V
- Since 0.6 > 0.5625, MSB-3=1(turned on)

Content Copyright Nanyang Technological University

HOW DOES IT WORK?

- Uses the N resistors to form a ladder voltage divider, which divides the reference voltage into N equal intervals.
- Uses the N-1 comparators to determine in which of these N voltage intervals the input voltage V_{in} lies.
- The Combinational logic then translates the information provided by the output of the comparators.
- This ADC does not require a clock, so the conversion time is essentially set by the settling time of the comparators and the propagation time of the combinational logic.

Content Copyright Nanyang Technological Universit

41

ANALYSIS FOR FLASH A/D CONVERTER

Pros	Cons
Very fast	Expensive
Very simple operational theory	Prone to produce glitches in the output
Speed is only limited by gate and comparator propagation delay	Each additional bit of resolution requires twice the comparators

Content Copyright Nanyang Technological University

HOW DOES IT WORK?

- Input is over sampled and goes to integrator.
- The integration is then compared to ground.
- Iterates and produces a serial bit stream.
- Output is a serial bit stream with # of 1's proportional to V_{in} With this arrangement, the sigma-delta modulator automatically adjusts its output to ensure that the average error at the quantiser output is zero.
- The integrator value is the sum of all past values of the error. So
 whenever there is a non-zero error value, the integrator value just keeps
 building until the error is once again forced to zero.

Content Copyright Nanyang Technological University

47

ANALYSIS FOR SIGMA-DELTA A/D CONVERTER

Pros	Cons
High resolution	Slow due to over sampling
No need for precision components	Only good for low bandwidth

Content Copyright Nanyang Technological University

CECUTA Y	COMPARISON OF	DIFFERENT TYPES	OF A/D CONVERT	ERS
	Туре	Speed (relative)	Cost (relative)	
	Dual-Slope	Slow	Med	
	Flash	Very Fast	High	
	Successive Approximation	Medium Fast	Low	
	Sigma-Delta	Slow	Low	
		Content Copyright Nanyang Technological U	Iniversity	50
		content copyright harryang reciniological o	The state of the s	30

A/D CONVERTERS

- Adding more resolution is a simple matter of adding more resistors, comparators and latches.
- The combinational logic code converter would also be different.
- Unlike with successive approximation converter, adding resolution does not increase the time required for a conversion.

Content Copyright Nanyang Technological Universit

• There are needs to reverse the process of A/D conversion by changing a digital value to an analog voltage. • D/A conversion allows a computer or other digital devices to interface with external analog circuits and devices. Content Copyright Nanyang Technological University 54

PROBLEMS WITH D/A CONVERSION

- Finite word length
 - Most systems today do 16 bit digitizing.
 - 65536 different levels.
- The loudest sounds need room, so the normal sounds don't use the entire range
 - Problems occur at the low levels where sounds are
 represented by only one or two bits. High distortions result.
- Dithering adds low level broadband noise.

Content Copyright Nanyang Technological University

F.C

HOW TO DO D/A CONVERSIONS?

Note:

- The digital input to the DAC is a 4-bit binary number represented by bits B_0 , B_1 , B_2 and B_3
- ullet B_0 is the least significant bit and B_3 is the most significant bit
- Each bit in the circuit controls a switch between ground and the inverting input of the op amp

Content Copyright Nanyang Technological Universit

59

D/A CONVERSIONS

 B_0 is LSB. If the bit number is 0001, then B_0 switch connects to the Op Am, others are grounded.

Content Copyright Nanyang Technological University

D/A CONVERSIONS

Since the inverting Op Am is grounded, we have

$$V_{out_0} = -\frac{1}{2}V_0$$

Moreover

$$V_0 = \frac{1}{2}V_1$$
, $V_1 = \frac{1}{2}V_2$, $V_2 = \frac{1}{2}V_3 = \frac{1}{2}V_s$

So

$$V_{out_0} = -\frac{1}{16}V_s$$

Similarly,

$$V_{out_1} = -\frac{1}{8}V_s$$
, $V_{out_2} = -\frac{1}{4}V_s$, $V_{out_3} = -\frac{1}{2}V_s$

Total output:

$$V_{out} = \sum_{i=0}^{n-1} B_i V_{out_i}$$

Content Copyright Nanyang Technological Universit