Fiches de révision

September 2025

Contents

1	Propriétés algébriques des nb complexes
	1.1 Partie réelle / Imaginaire
	1.2 Conjugué
2	Forme trigonométrique d'un nombre complexe
_	
	2.1 Module
	2.2 Argument

1 Propriétés algébriques des nb complexes

On note ici z un nombre de la forme z=x+iy avec $(a,b)\in\mathbb{R}^2$

1.1 Partie réelle / Imaginaire

- $\bullet \ Re(z) = x$
- Im(z) = y

1.2 Conjugué

$$\overline{z} = \overline{x + yi} = x - yi$$

On a alors les règles suivantes sur le conjugué.

- $\bullet \ \overline{z+z'} = \overline{z} + \overline{z'}$
- $\bullet \ \overline{zz'} = \overline{z} \times \overline{z'}$
- $\bullet \ \overline{\frac{z}{z'}} = \overline{\frac{\overline{z}}{z'}}$
- $\bullet \ \overline{z^n} = \overline{z}^n$
- $\overline{z} = z \Leftrightarrow z$ est un réel.
- $\overline{z} = -z \Leftrightarrow z$ est un imaginaire pur.

2 Forme trigonométrique d'un nombre complexe

2.1 Module

- $\bullet |z| = \sqrt{x^2 + y^2}$
- $\bullet \ |z|^2=z\overline{z}$
- $\bullet \ |-z|=|z|$
- $|\overline{z}| = |z|$
- $\bullet ||zz'| = |z||z'|$
- $\bullet |z^n| = |z|^n$
- $\bullet \ |\frac{z}{z'}| = \frac{|z|}{|z'|}$

On note également l'inégalité triangulaire suivante:

• $|z + z'| \le |z| + |z'|$

2.2 Argument