Math 445 Number Theory

October 20, 2004

For Q odd and (A,Q)=1, if $Q=q_1\cdots q_k$ is the prime factorization of Q, then the $Jacobi\ symbol$ $\left(\frac{A}{Q}\right)$ is defined to be $\left(\frac{A}{Q}\right)=\left(\frac{A}{q_1}\right)\cdots\left(\frac{A}{q_k}\right)$.

The use of the same notation as for Legendre symbols should cause no confusion, and is in fact deliberate; if Q is prime, then both symbols are equal to one another. Straight from the definition, some basic properties:

If
$$(A, Q) = 1 = (B, Q)$$
 then $\left(\frac{AB}{Q}\right) = \left(\frac{A}{Q}\right)\left(\frac{B}{Q}\right)$

If
$$(A,Q) = 1 = (A,Q')$$
 then $\left(\frac{A}{QQ'}\right) = \left(\frac{A}{Q}\right)\left(\frac{A}{Q'}\right)$

If
$$(PP', QQ') = 1$$
 then $\left(\frac{P'P^2}{Q'Q^2}\right) = \left(\frac{P'}{Q'}\right)$

Warning! If Q is not prime, then $\left(\frac{A}{Q}\right) = 1$ does not mean that $x^2 \equiv A \pmod{Q}$ has a solution. For example, $\left(\frac{2}{9}\right) = \left(\left(\frac{2}{3}\right)\right)^2 = 1$, but $x^2 \equiv 2 \pmod{9}$ has no solution, because $x^2 \equiv 2 \pmod{3}$ has none. But $\left(\frac{A}{Q}\right) = -1$ does mean that $x^2 \equiv A \pmod{Q}$ has no solution, because $\left(\frac{A}{Q}\right) = -1$ implies $\left(\frac{A}{q_i}\right) = -1$ for some prime factor of Q, so $x^2 \equiv A \pmod{q_i}$ has no solution.

Some less basic properties:

If
$$Q$$
 is odd, then $\left(\frac{-1}{Q}\right) = (-1)^{\frac{Q-1}{2}}$: If $Q = q_1 \cdots q_k$ is the prime factorization, then $\left(\frac{-1}{Q}\right) = \left(\frac{-1}{q_1}\right) \cdots \left(\frac{-1}{q_k}\right) = (-1)^{\frac{q_1-1}{2}} \cdots (-1)^{\frac{q_k-1}{2}} = (-1)^{\sum_{i=1}^k \frac{q_i-1}{2}}$, and this equals $(-1)^{\frac{Q-1}{2}}$, provided, mod 2 , $\sum_{i=1}^k \frac{q_i-1}{2} \equiv \frac{Q-1}{2} = \frac{q_1 \cdots q_k-1}{2}$. This in turn can be established by induction; the inductive step is

$$\frac{q_1 \cdots q_k q_{k+1} - 1}{2} = (q_{k+1} - 1) \frac{q_1 \cdots q_k - 1}{2} + \frac{q_1 \cdots q_k - 1}{2} + \frac{q_{k+1} - 1}{2} \equiv (q_{k+1} - 1) \frac{q_1 \cdots q_k - 1}{2} + \frac{q_{k+1} - 1}{2} + \sum_{i=1}^k \frac{q_i - 1}{2} \equiv (q_{k+1} - 1) \frac{q_1 \cdots q_k - 1}{2} + \sum_{i=1}^{k+1} \frac{q_i - 1}{2} \equiv \sum_{i=1}^{k+1} \frac{q_i - 1}{2}, \text{ since } Q \text{ is odd, so } q_{k+1} - 1 \text{ is even.}$$

If
$$Q$$
 is odd, then $\left(\frac{2}{Q}\right) = (-1)^{\frac{Q^2-1}{8}}$: as before, $\left(\frac{2}{Q}\right) = \left(\frac{2}{q_1}\right) \cdots \left(\frac{2}{q_k}\right)$

$$= (-1)^{\frac{q_1^2 - 1}{8}} \cdots (-1)^{\frac{q_k^2 - 1}{8}} = (-1)^{\sum_{i=1}^k \frac{q_i^2 - 1}{8}} \text{ and this equals} (-1)^{\frac{Q^2 - 1}{8}}, \text{ provided, mod } 2,$$

$$\sum_{i=1}^k \frac{q_i^2 - 1}{8} \equiv \frac{Q^2 - 1}{8} = \frac{q_1^2 \cdots q_k^2 - 1}{8}, \text{ i.e., mod } 16, \sum_{i=1}^k (q_i^2 - 1) \equiv \frac{Q^2 - 1}{8} = \frac{q_1^2 \cdots q_k^2 - 1}{8}. \text{ This can also be established by induction; the inductive step is}$$

$$q_1^2\cdots q_{k+1}^2-1=q_{k+1}^2q_1^2\cdots q_k^2-1=(q_{k+1}^2-1)(q_1^2\cdots q_k^2-1)+(q_1^2\cdots q_k^2-1)+(q_{k+1}^2-1)\equiv (q_{k+1}^2-1)+(q_1^2\cdots q_k^2-1)\equiv (q_{k+1}^2-1)+(q_1^2\cdots q_k^2-1)\equiv (q_{k+1}^2-1)+\sum_{i=1}^k(q_i^2-1)=\sum_{i=1}^{k+1}(q_i^2-1)\;\text{, since both }(q_{k+1}^2-1)$$
 and $(q_1^2\cdots q_k^2-1)$ are multiples of 8, so $(q_{k+1}^2-1)(q_1^2\cdots q_k^2-1)$ is divisible by 64, hence by 16.

Finally, if
$$P$$
 and Q are both odd, and $(P,Q)=1$, then $\left(\frac{P}{Q}\right)\left(\frac{Q}{P}\right)=(-1)^{\left(\frac{P-1}{2}\right)\left(\frac{Q-1}{2}\right)}$: if

$$P = p_1 \cdots p_r$$
 and $Q = q_1 \cdots q_s$ are their prime factorizations, then $\left(\frac{P}{Q}\right)\left(\frac{Q}{P}\right) = \left(\frac{p_1 \cdots p_r}{Q}\right)\left(\frac{Q}{p_1 \cdots p_r}\right)$

$$= \left(\frac{p_1}{Q}\right) \cdots \left(\frac{p_r}{Q}\right) \left(\frac{Q}{p_1}\right) \cdots \left(\frac{Q}{p_r}\right) =$$

$$\left[\left(\left(\frac{p_1}{q_1}\right)\cdots\left(\frac{p_1}{q_s}\right)\right)\cdots\left(\left(\frac{p_r}{q_1}\right)\cdots\left(\frac{p_r}{q_s}\right)\right)\right]\left[\left(\left(\frac{q_1}{p_1}\right)\cdots\left(\frac{q_s}{p_1}\right)\right)\cdots\left(\left(\frac{q_1}{p_r}\right)\cdots\left(\frac{q_s}{p_r}\right)\right)\right]=$$

$$\prod_{i,j} \left(\frac{p_i}{q_j} \right) \left(\frac{q_j}{p_i} \right) = \prod_{i,j} (-1)^{\frac{p_i - 1}{2} \frac{q_j - 1}{2}} = (-1)^{\sum_{i,j} \frac{p_i - 1}{2} \frac{q_j - 1}{2}} = (-1)^{(\sum_{i=1}^r \frac{p_i - 1}{2})(\sum_{j=1}^s \frac{q_j - 1}{2})}$$

This equals $(-1)^{(\frac{P-1}{2})(\frac{Q-1}{2})}$, provided, mod 2, $(\sum_{i=1}^r \frac{p_i-1}{2})(\sum_{j=1}^s \frac{q_j-1}{2}) \equiv (\frac{P-1}{2})(\frac{Q-1}{2})$. But our first proof above established this, for each of the two parts, and so it is also true for their product!