

손에 잡히는 딥러닝

Loss function and Optimization

모두의연구소

박은수 Research Director

Parametric approach

Score function: Simple Linear Classifier

- Cross entropy loss -

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $egin{aligned} s=f(x_i;W) \end{aligned}$

$$s=f(x_i;W)$$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$|L_i = -\log P(Y = y_i|X = x_i)$$

in summary:
$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

- Cross entropy loss -

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Reference: Stanford University cs231n Lecture note 2

모두의연구소

- Cross entropy loss -

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

- Cross entropy loss -

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

	전부다 양수가 됨				확률
고양이 점수	-1.2		0.3		0.03
강아지 점수	2.3	exp	9.97	normalize	0.97

Reference: Stanford University cs231n Lecture note 2

모두의연구소

- Cross entropy loss -

Softmax 함수

Supervised Learning

고양이?

One-hot Vector

One-hot Vector

- Cross entropy loss -

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Reference: Stanford University cs231n Lecture note 2

모두의연구소

- Cross entropy loss -

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

[0] [1] 정답

- Cross entropy loss -

강아지와 고양이 분류해보기

- 분류기의 구성
 - Score function
 - Loss function

고양이가 입력이면 고양이 점수가 높아야 함

강아지와 고양이 분류해보기

모두의연구소

- 분류기의 구성
 - Score function
 - Loss function

Cross-entropy loss (Softmax)

현재의 분류기는 3.5만큼 안 좋음. 이 loss 값을 줄이는게 목표

급 □ U

- Score function
- Loss function
- Optimization

이제 Loss를 최소로 하는 W를 찾는 방 법만 남았습니다

From: lecture note 2 - cs231n stanford university

From: lecture note 2 - cs231n stanford university

내리막을 찾는 방법

내리막 ?? == 기울기 ??

기울기를 따라 내려 가보자

Gradient Descent

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$w = w - \eta \frac{\partial L}{\partial w}$$

 η : learning rate

$$w = w - \eta \frac{\partial L}{\partial w}$$

 η : learning rate

$$w = w - \eta \frac{\partial L}{\partial w}$$

 η : learning rate

$$w = w - \eta \frac{\partial L}{\partial w}$$

Loss 함수에 대한 w의 음의 Gradient 찾아서 연속적으 업데이트해 주면 되는군요

그런데 어떻게 Gradient를 찾죠?

Loss를 W로 미분하기

Loss function

미분의 정의를 이용해 봅시다

$$\frac{\partial L(\mathbf{w}, \mathbf{w}_1)}{\partial \mathbf{w}_1} = \lim_{h \to 0} \frac{L(\mathbf{w}, \mathbf{w}_1 + \mathbf{h}) - L(\mathbf{w}, \mathbf{w}_1)}{h}$$

L: Loss function

미분을 이렇게 하는 것의 구현은 쉽지만 시간이 오래걸립니다

또한 부정확합니다

오차역전파법 (Backpropagation)

 χ^3

미분하면?

일단 미분공식을 이용해서 쉽게 미분할 겁니다

 $3x^2$

$$x^n \rightarrow nx^{n-1}$$

Score function

Loss function

Loss를 Score로 미분

$$\frac{\partial L(S(\underline{\mathbb{W}}, W))}{\partial W} = \frac{\partial L(S(\underline{\mathbb{W}}, W))}{\partial S(\underline{\mathbb{W}}, W)}$$

합성합수의 미분법

$$\frac{\partial L(S(\underline{\mathbb{W}}, W))}{\partial W} = \frac{\partial L(S(\underline{\mathbb{W}}, W))}{\partial S(\underline{\mathbb{W}}, W)} \frac{\partial S(\underline{\mathbb{W}}, W)}{\partial W}$$

Loss를 Score로 미분

합성합수의 미분법

곱으로 표현됨

Score를 W로 미분

Optimization

$$W = W - \eta \frac{\partial L(S(\underline{w}, W))}{\partial W}$$

Optimization

Gradient Tape

1_automatic_differentiation.ipynb

강아지와 고양이 분류해보기

- 분류기의 구성
 - Score function
 - Loss function
 - Optimization

고양이가 입력이면 고양이 점수가 높아야 함

강아지와 고양이 분류해보기

- 분류기의 구성
 - Score function
 - Loss function
 - Optimization

Cross-entropy loss (Softmax)

현재의 분류기는 3.5만큼 안 좋음. 이 loss 값을 줄이는게 목표

강아지와 고양이 분류해보기

0.3

- 분류기의 구성
 - Score function
 - Loss function
 - Optimization

정리

- 분류기의 구성
 - Score function : Wx+b
 - Loss function : Score Function의 잘못 분류된 정도를 측정
 - Optimization : Loss function의 값을 줄이는 방향으로 파라미터 업데이트 ∂L

박은수 Research Director

E-mail: es.park@modulabs.co.kr