Unidad 2: Estadística Basica y Aplicada

Inferencia estadistica

Nicolas Sidicaro Octubre 2025

El para que

Caso: queremos saber el ingreso promedio de los argentinos. Pero no podemos preguntarle a todos. Entonces tomamos una muestra (EPH)... ¿como llevamos las conclusiones de la muestra a la poblacion?

Con la inferencia estadística

Conceptos: población, muestra, parámetro, estadístico

En el caso: los trabajadores argentinos; la EPH; el ingreso promedio de la poblacion (μ) ; el ingreso promedio de la muestra (\overline{x})

¿Como estudiamos la muestra?

Tomemos 1000 muestras de nuestra población de tamaño 100.

- 1. Cada muestra tendrá un promedio diferente
- 2. Esos promedios forman una distribucion muestral
- 3. Esta distribucion tiene propiedades predecibles

¿Gracias a quién? Al Teorema Central del Límite

- ullet Para muestras suficientemente grandes \overline{x} es aproximadamente normal
- Con media = μ
- Con error estandar = $\frac{\sigma}{\sqrt{n}}$

Dada una poblacion exponencial

Intervalos de Confianza

¿Qué es un intervalo de confianza?

Definición: Rango de valores plausibles para un parámetro poblacional.

Interpretación correcta (95% de confianza):

• Si repetimos el muestreo infinitas veces, el 95% de los intervalos calculados contendrán el verdadero parámetro

Interpretación INCORRECTA:

X "Hay 95% de probabilidad de que μ esté en este intervalo" X "El 95% de los datos están en este intervalo"

Fórmula general para desvío conocido

$$IC = \overline{x} \pm z * rac{\sigma}{\sqrt{n}}$$

Factores que afectan el ancho del IC

```
# Simulación: Impacto del tamaño muestral
tamaños \leftarrow c(10, 30, 100, 500)
resultados \leftarrow map df(tamaños, function(n) {
  muestra \leftarrow rnorm(n, mean = 50, sd = 15)
  ic \leftarrow t.test(muestra)$conf.int
  tibble(
     n = n,
     ancho_ic = ic[2] - ic[1]
})
print(resultados)
## # A tibble: 4 × 2
         n ancho_ic
##
     <dbl>
             <dbl>
## 1
        10
             31.8
```

Conclusión: A mayor n, menor ancho del IC (más precisión).

12.5

6.10 2.66

30

100

500

2

3

4

Test de hipótesis

Caso: Decimos que el salario promedio de Argentina es de 800 mil pesos, pero al tomar una muestra representantiva nos da 700 mil ¿la diferencia es por azar o hay evidencia suficiente para rechazar la afirmación inicial?

Componentes del test

- 1. Hipótesis Nula (H₀): Lo que asumimos verdadero hasta probar lo contrario
- 2. Hipótesis Alternativa (H₁): Lo que queremos probar
- 3. Estadístico de prueba: Número que resume la evidencia
- 4. Nivel de significancia (α): Tolerancia al error (típicamente 0.05)
- 5. P-valor: Probabilidad de obtener nuestros datos si H₀ es cierta
- 6. Decisión: Rechazar o no rechazar H₀

Tipos de error

	H_0 es verdadera	H_0 es falsa
No rechazamos H_0	Decisión correcta	Error tipo II (eta)
Rechazamos H_0	Error tipo I $(lpha)$	Decisión correcta (Poder)

P-value: interpretación correcta

¿Qué es el p-value?

Probabilidad de observar un estadístico tan extremo (o más) como el observado, asumiendo que H_0 es verdadera.

Es decir, si H_0 fuera cierta ¿qué tan raro sería obtener estos datos?

Nos ayuda a decidir sin ver los estadísticos

- Si p-value < lpha => se rechaza H_0
- ullet Si p-value>lpha => No se rechaza H_0

Siendo un $\alpha = \{0.1, 0.05, 0.01\}$

Visualizacion de p-value

Supuestos de los tests paramétricos

Antes de aplicar tests como el t-test, debemos verificar:

- 1. Normalidad: Los datos (o residuos) siguen una distribución normal
- 2. Homogeneidad de varianzas: Las varianzas son similares entre grupos
- 3. **Independencia**: Las observaciones son independientes

¿Por qué importa?

- Si se violan estos supuestos, los p-valores pueden ser incorrectos
- Existen alternativas no paramétricas cuando no se cumplen

Herramientas para verificar normalidad:

- Test de Shapiro-Wilk
- Gráficos Q-Q

El rol del TCL

El Teorema Central del Límite nos protege... pero no siempre

Tamaño muestral	¿Verificar normalidad?	Razón
n < 30	✓ Sĺ, siempre	TCL no aplica efectivamente
30 ≤ n < 100	<u>∧</u> Considerar	TCL aplica, pero puede ser débil con asimetrías severas
n ≥ 100	X Generalmente NO	TCL garantiza normalidad de \overline{x}

Matiz importante:

- El t-test evalúa la **media muestral** (\overline{x}) , no los datos individuales
- ullet Con n grande, \overline{x} es normal **incluso si los datos no lo son** (gracias al TCL)
- Con n pequeño, necesitamos que los **datos originales** sean aproximadamente normales

Test de Shapiro-Wilk

¿Qué evalúa?

Contrasta si una muestra proviene de una distribución normal.

- ullet H_0 : Los datos provienen de una distribución normal
- ullet H_1 : Los datos NO provienen de una distribución normal

¿Cuándo es realmente necesario?

- Crucial para muestras pequeñas (n < 30)
- Opcional para muestras medianas (30-100)
- Menos relevante para muestras grandes (n > 100) por el TCL

Test de Shapiro-Wilk

```
# Datos que parecen normales
datos normales \leftarrow rnorm(50, mean = 100, sd = 15)
shapiro.test(datos_normales)
##
       Shapiro-Wilk normality test
##
##
## data: datos normales
## W = 0.98504, p-value = 0.7733
# Datos claramente NO normales (exponencial)
datos exponencial \leftarrow rexp(50, rate = 0.1)
shapiro.test(datos exponencial)
##
       Shapiro-Wilk normality test
##
```

data: datos exponencial

W = 0.84853, p-value = 0.00001412

Limitaciones del Test de Shapiro

Problema 1: Sensible al tamaño muestral

- Con muestras pequeñas (n < 30): Poco poder, puede no detectar desviaciones importantes
- Con muestras grandes (n > 200): Demasiado sensible, rechaza H₀ por desviaciones triviales que no afectan al t-test (el TCL ya protege)

```
# Muestra grande de datos casi normales
set.seed(123)
datos_grandes ← rnorm(1000, mean = 50, sd = 10)
datos_grandes[1:10] ← datos_grandes[1:10] + 5 # Pequeña perturbación
shapiro.test(datos_grandes) # Probablemente rechace H0
# Pero el t-test seguirá siendo válido por el TCL
```

Limitaciones del Test de Shapiro

Problema 2: No es suficiente por sí solo

- Un p-valor > 0.05 NO garantiza normalidad perfecta
- Siempre complementar con visualización (Q-Q plot)

Recomendación: Shapiro + Q-Q plot + considerar el tamaño muestral (TCL)

Gráfico Q-Q (Quantile-Quantile)

¿Qué muestra?

Compara los cuantiles de nuestros datos vs. los cuantiles teóricos de una distribución normal.

Interpretación:

- Puntos sobre la línea: Los datos son aproximadamente normales
- Puntos se desvían sistemáticamente: Desviación de normalidad

Interpretación de patrones en Q-Q plot

Test contra un valor

Test t para una muestra

Pregunta: ¿El promedio poblacional es igual a un valor específico?

Ejemplo: ¿El salario promedio es \$50,000?

```
salarios \leftarrow c(48, 52, 45, 55, 49, 51, 47, 53, 46, 54)
# H0: \mu = 50 (mil pesos) # H1: \mu \neq 50 (test de dos colas)
resultado ← t.test(salarios, mu = 50)
print(resultado)
##
       One Sample t-test
###
## data: salarios
## t = 0, df = 9, p-value = 1
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
   47.49909 52.50091
## sample estimates:
## mean of x
 Nicolas Sidicaro - Inferencia estadistica - FCE-UBA
```

Test de homogeneidad de varianzas

¿Por qué importa?

El t-test clásico (Student) combina las varianzas de ambos grupos en un único error estándar:

$$SE_{pooled} = \sqrt{rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2} \cdot \left(rac{1}{n_1} + rac{1}{n_2}
ight)}$$

Problema: Esta fórmula asume $s_1^2 pprox s_2^2$

Si las varianzas son MUY diferentes:

- El error estándar está mal calculado
- El p-valor es incorrecto (más errores tipo I o menos poder)

Test de Levene: verifica homogeneidad

Test de Levene (más robusto que el F-test):

- H_0 : Las varianzas son homogéneas (iguales)
- H_1 : Las varianzas son diferentes

¿Cómo funciona?

- 1. Calcula desviaciones absolutas de cada dato respecto a la mediana de su grupo
- 2. Aplica ANOVA sobre esas desviaciones
- 3. Usa la **mediana** → robusto a outliers (ventaja vs F-test)

Test de Levene: verifica homogeneidad

```
library(car) # Para test de Levene
# Crear dos grupos con varianzas diferentes
grupo a \leftarrow rnorm(50, mean = 50, sd = 5) # Varianza pequeña
grupo b \leftarrow rnorm(50, mean = 52, sd = 15) # Varianza grande
# Test de Levene
leveneTest(c(grupo_a, grupo_b) ~ rep(c("A", "B"), each = 50))
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = median)
        Df F value Pr(>F)
## group 1 33.6 0.0000008247 ***
        98
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Interpretando Levene y eligiendo el test

Si p-valor > 0.05 (NO rechazamos H_0):

- Las varianzas son similares
- Puedes usar t-test clásico con var.equal = TRUE (más poder)

Si p-valor < 0.05 (Rechazamos H_0):

- X Las varianzas son diferentes
- Solución: Usar corrección de Welch con var.equal = FALSE

```
# Test t con corrección de Welch (por defecto en R)
t.test(grupo_a, grupo_b, var.equal = FALSE) # ← DEFAULT en R

# Test t clásico (solo si Levene confirma varianzas iguales)
t.test(grupo_a, grupo_b, var.equal = TRUE)
```

Buena noticia: R usa Welch por defecto

¿Qué hace la corrección de Welch?

En lugar de combinar varianzas, calcula errores estándar separados:

T-test clásico (Student):

ullet Un solo SE para ambos grupos ightarrow asume $s_1=s_2$

T-test con Welch:

- SE separado para cada grupo ightarrow permite $s_1
 eq s_2$
- Ajusta los grados de libertad automáticamente

¿Qué hace la corrección de Welch?

Comparación visual:

Levene vs F-test: ¿cuál usar?

Aspecto	Test F (var.test)	Test de Levene
Supuesto	Normalidad estricta	Menos exigente
Outliers	Muy sensible	Más robusto (usa mediana)
Uso recomendado	Solo si datos muy normales	En la mayoría de casos

```
# Test F (más antiguo, más restrictivo)
var.test(grupo_a, grupo_b)
# Test de Levene (preferido actualmente)
leveneTest(c(grupo_a, grupo_b) ~ rep(c("A", "B"), each = 50))
```

Regla práctica:

- 1. Siempre verifica homogeneidad cuando compares grupos
- 2. Si Levene rechaza $H_0 o ext{usa}$ Welch (var.equal = FALSE)
- 3. En R, como Welch es el default, ¡estás protegido automáticamente!

Dos muestras independientes

Pregunta: ¿Hay diferencia entre dos grupos?

Ejemplo: ¿Los hombres ganan más que las mujeres?

Dos muestras independientes

Dos muestras independientes

Wilcoxon: no paramétrica

¿Cuándo usar Test de Wilcoxon en lugar de t-test?

- 1. Los datos NO son normales (y n es pequeño)
- 2. Hay outliers extremos
- 3. Los datos son ordinales (ej: escalas de Likert)

Diferencias clave con el t-test:

Aspecto	Test T	Test de Wilcoxon
Supuesto	Normalidad	No requiere normalidad
Compara	Medias	Medianas/rangos
Sensible a	Outliers	Más robusto
Poder	Mayor (si supuestos OK)	Menor (pero más seguro)

Ejemplo comparativo: T-test vs Wilcoxon

```
# Datos con outliers extremos
set.seed(456)
grupo_control \( \simeq \) c(rnorm(20, mean = 100, sd = 10), 250) # Un outlier
grupo_tratamiento \( \simeq \) rnorm(21, mean = 110, sd = 10)
# Test T (sensible a outliers)
t.test(grupo_tratamiento, grupo_control)$p.value
```

[1] 0.6004376

```
# Test de Wilcoxon (robusto a outliers)
wilcox.test(grupo_tratamiento, grupo_control)$p.value
```

[1] 0.9207121

Interpretación:

- El t-test puede verse afectado por el outlier (250)
- Wilcoxon se basa en rangos, más robusto

Visualización: T-test vs Wilcoxon

Test pareado

• ¿Qué es?

- Una prueba estadística para comparar las medias de dos grupos relacionados o dependientes.
- Evalúa si la diferencia promedio entre las dos observaciones pareadas es significativamente distinta de cero.
- Los datos provienen de los **mismos sujetos**, medidos en dos momentos o condiciones diferentes.

Aplicaciones comunes

- "Antes y Después": Medir el rendimiento de un grupo de empleados antes y después de un curso de capacitación.
- Comparación de tratamientos: Probar la efectividad de una política pública en empresas similares

Test pareado

• Hipótesis

- \circ H_0 : La diferencia media entre los pares es cero. (No hay efecto)
- \circ H_1 : La diferencia media entre los pares no es cero. (Hay un efecto)

Cómo funciona

- 1. Se calculan las diferencias individuales para cada par.
- 2. Se aplica un t-test sobre estas diferencias.

Conclusión

- Si el **p-valor < 0.05**:
 - El resultado es estadísticamente significativo.
 - Se rechaza la hipótesis nula.
 - Existe una diferencia real entre las dos mediciones.

Ejemplo: en codigo_4 de Códigos en clase (Clase 15)

Test pareado de Wilcoxon

Cuando los datos pareados NO son normales, usamos el test de rangos con signo de Wilcoxon:

Ventaja: Más apropiado para escalas ordinales o datos con distribuciones asimétricas.

```
# Ejemplo: satisfacción antes y después de capacitación (escala 1-10, datos ordinales)
antes \leftarrow c(5, 6, 4, 7, 5, 6, 4, 5, 6, 7)
despues \leftarrow c(7, 8, 6, 8, 7, 7, 5, 6, 8, 9)
# Test t pareado (asume normalidad)
t.test(despues, antes, paired = TRUE)$p.value
## [1] 0.000004239739
# Test de Wilcoxon pareado (no asume normalidad)
wilcox.test(despues, antes, paired = TRUE)$p.value
## Warning in wilcox.test.default(despues, antes, paired = TRUE): cannot
## compute exact p-value with ties
## [1] 0.004565114
```

¿Y la regresión lineal?

Ya vamos a llegar...

Nos sirve para potenciar este tipo de test: controlamos por más variables al mismo tiempo para determinar los efectos.

Test de proporciones

Pregunta: ¿Una proporción poblacional es igual a un valor específico?

Ejemplo: ¿El 60% de los consumidores prefieren nuestro producto?

El desvío de este test surge de la hipótesis nula, a diferencia de los anteriores que surgen de la propia muestra.

Es decir:

- media muestral: \overline{p}
- media poblacional (a testear): *p*
- error estandar de la media (desvio / n): $\sqrt{\frac{p*(1-p)}{n}}$

¿Por qué usamos p en lugar de \overline{p} ? Porque el test pregunta: "Si H_0 fuera verdadera (p = 0.6) ¿qué tan raro sería observar un $\overline{p}=0.7$?

Entonces se calcula considerando la variabilidad esperada bajo H_0

Test Chi de Independencia

Pregunta: ¿Dos variables categóricas son independientes?

Ejemplo: ¿El nivel educativo está relacionado con la preferencia política?

Test Chi de Independencia

```
##
## Pearson's Chi-squared test
##
## data: tabla
## X-squared = 48.192, df = 4, p-value = 0.0000000008605
```

Rechazamos H0 => las variables están relacionadas

Código 5

Resumen: ¿Qué test usar?

Situacion	Test
1 muestra vs valor (n ≥ 30)	t.test(x, mu = valor)
1 muestra vs valor (n < 30 o NO normal)	wilcox.test(x, mu = valor)
2 muestras independientes (n ≥ 30)	t.test(x, y)
2 muestras independientes (n < 30 o NO normal)	wilcox.test(x, y)
2 muestras pareadas (n ≥ 30)	t.test(x, y, paired = TRUE)
2 muestras pareadas (n < 30 o NO normal)	wilcox.test(x, y, paired = TRUE)
Verificar normalidad (crucial si n < 30)	shapiro.test() + Q-Q plot
Verificar varianzas iguales	leveneTest() o var.test()

Regla general: Con n < 30, verificar supuestos. Con n \geq 30, el TCL protege al t-test.