AT6558R

BDS/GNSS satellite positioning SOC chip

	title	AT6558R				
Hangzhou Zhongke Microelectronics Co., Ltd.		BDS/GNSSSatellite positioningSOCchip				
	Document Type	Data Sheet				
	Document Number	DS-AT6558-R				
	Version Number	1.0				
Document Summary						
This manual provides the chip's functional features, chip overview, and usage instructions.						

Table of contents

Table of contents2	
1Chip Overview4	
1.1Chip Introduction4	
1.2Main features4	
1.3Performance Specifications5	
1.4Chip Applications5	
2Pin Description6	
2.1Pin Arrangement6	
2.2Pin Description6	
3Chip Architecture8	
3.1Chip Block Diagram8	
3.2Power Solution9	
3.2.1Chip low power supply connection solution	
3.2.2Not usedDCDCPower connection scheme9	
3.3Working Mode10	
3.4Chip Reset10	
4RF front end12	
4.1RF front-end architecture12	
4.2Active Antenna Detection12	
5Baseband Processor12	
5.1Multi-system satellite processing engine12	
5.2Real-time clock backup area12	
5.3 UART 13	
6Electrical Characteristics13	
6.1Limiting Characteristics13	
6.2DC Characteristics13	
6.2.1Power Pins13	
6.2.2numberIOPins13	

6.3Analog Related Characteristics14
6.4RF-related characteristics14
7Reference Design15
7.1Reference Solution15
7.2Device Selection16
8Application Solution18
8.1Active Antenna Feed and Detection18
8.2RF Input Gain18
8.3Lightning protection and ESD
8.4Reference Clock Crystal19
9.5 RTCclock19
8.6Power Management19
8.7 DCDC20
8.8 LDO 20
8.9Backup Power20
9Chip packagingtwenty one
9.1Chip Identification Rulestwenty one
10.2Package Specificationstwenty two
10Chip soldering and storagetwenty thre
10.1Moisture resistance level:twenty three
10.2Reflow profile:twenty three
11Packaging and Shippingtwenty four
11.1Packagetwenty four
11.2 ESDProtectiontwenty four
12Document update history25
Contact information25

1 Chip Overview

1.1 Chip Introduction

 $AT6558RIs\ a\ high\ performance BDS/GNSSMulti-mode\ satellite\ navigation\ receiver SOCS in gle\ chip,\ integrated\ RF\ front\ end,$

 $\label{thm:power management function} \mbox{Digital baseband processor, 32PositionRISC CPU, power management function.}$

The chip supports multiple satellite navigation systems, including China's BeiDou satellite navigation systemBDS, the United StatesGPS,Russia ofGLONASS, and realize multi-system joint positioning.

1.2 Main features

- Functional Specifications
 - -supportBDS/GPS/GLONASSMulti-system joint positioning and single-system independent positioning.
- Sensitivity
 - Cold Start Capture Sensitivity: -148dBm.
 - Tracking sensitivity: -162dBm.
- Power Management
 - support2.7~3.6VSingle power supply, typical3.3Vpowered by.
 - **-** RTCand backup circuit power can be as low as1.4V.
 - BDS/GPSDual-mode continuous operation:23mA(@3.3V).
 - Standby:8uA(@3.3V)
- Antenna detection and protection
 - Supports active antenna detection.
 - Supports active antenna short-circuit protection.
- Package and size
 - -QFN40Package, chip size:5mm×5mm×0.9mm.

1.3 Performance indicators

Technical Parameters	index
Signal reception	supportBDS/GPS/GLONASSParallel reception and joint positioning
Cold StartTTFF	≤32s
Hot StartTTFF	≤1s
RecaptureTTFF	≤ 1s
Cold start capture sensitivity	- 148dBm
Hot start capture sensitivity	- 156dBm
Recapture sensitivity	- 160dBm
Tracking sensitivity	- 162dBm
Positioning accuracy	<2m (1σ)
Speed measurement accuracy	<0.1m/s (1σ)
Timing accuracy	<30ns (1σ)
Positioning update rate	maximum5Hz

1.4 Chip Application

- Vehicle positioning and navigation
- Timing
- Wearable devices
- Portable devices such as mobile phones and tablets

2 Pin Description

2.1 Pin Arrangement

picture2-1Chip package pin arrangement

2.2 Pin Description

Serial number	name	I/Otype	Functional Description
1	VDD_ANA	Analog Power Supply	simulationLDOOutput,1.08~1.32V,1uFCapacitor grounding
2	VX_OUT	simulationIO	Output toTCXOPower supply,2.7~3.6V,0.1uFCapacitor grounding
3	XREF	simulationIO	Clock input terminal, externalTCXO
4	TST_RF	simulationIO	RF test port. Default output3.3VVoltage
5	VDD12BK	simulationIO	BackupLDOThe output,1.08~1.32V
6	VDD_BK	Analog Power Supply	Backup power input,1.4~3.6V
7	VDD_IO	Digital Power	numberIOPower input,2.7~3.6V

8	GPIO8	Digital two-way	GeneralGPIO, the default mode configuration, should be left floating when used
9	NC		
10	ANT_BIAS	simulationIO	Active antenna powering and detection,2.7~3.6V
11	RTC_O	simulationIO	RTC OSCOutput
12	RTC_I	simulationIO	RTC OSCInput
13	GPIO4	Digital two-way	GeneralGPIO, the default isUART1ofTXD
14	GPIO5	Digital two-way	GeneralGPIO, the default isUART1ofRxD
15	TCK	Digital Input	SWDDebug interface clock line
16	TMS	Digital two-way	SWDDebug interface data line
17	nRST	simulationIO	External reset input, with internal pull-up, must be left floating if not used
18	GPIO1	Digital two-way	GeneralGPIO, the default isUART0ofRxD
19	GPIO0	Digital two-way	GeneralGPIO, the default isUART0ofTXD
20	GPIO6	Digital two-way	GeneralGPIO, default input
twenty one	DX_IN	Analog Power Supply	DCDCenter,2.7~3.6V
twenty two	DX_OUT	simulationIO	DCDCOutput,1.35~1.75V
twenty three	Vcore	Analog Power Supply	Chip main power input,1.4~3.6V
twenty four	VDD12BB	Digital Power	Digital CoreLDOOutput,1.08~1.32V
25	NC	Digital two-way	NC
26	NC	Digital two-way	NC
27	NC	Digital two-way	NC
28	NC	Digital two-way	NC
29	TEST	Digital Input	Mode control, keep low level for normal operation; internal pull-down
30	ON_OFF	Digital Input	Shutdown control, keep high level for normal operation; internal pull-up
31	GPIO10	Digital two-way	GeneralGPIO,defaultI2CofSCLClock Line
32	GPIO11	Digital two-way	GeneralGPIO,defaultI2CofSDAData cable
33	GPIO16	Digital two-way	GeneralGPIO, must be left unconnected by default
34	GPIO12	Digital two-way	GeneralGPIO, default input
35	GPIO13	Digital two-way	General GPIO, default 1 PPSO utput
36	GPIO14	Digital two-way	GeneralGPIO, default input
37	GPIO15	Digital two-way	GeneralGPIO, default input
38	VDD_PLL	simulationIO	Phase-locked loopLDOOutput,1.08~1.32V
39	VDD_RF	simulationIO	Radio FrequencyLDOOutput,1.08~1.32V
40	RF_IN	Radio FrequencyIO	RFenter
EP	GND	Bottom Metal	Public grounding point must be well grounded

3 Chip Architecture

3.1 Chip Block Diagram

picture3-1chipblock diagram

3.2 Power supply solution

3.2.1 Chip low power supply connection solution

 $As shown 3-2 As shown, the main power supply VDD_3.3 Vsupply 3.3 VPower supply, which provides power to the entire chip. \\$

VDD_3.3VConnect toVDD_IOFor chipsIO PADPower supply; also to the internalPORPowered by a two

The diode supplies power to the backup area; it also supplies power to the antenna detection and active antenna parts.

 $VDD_3.3VC on nect \ to DCDCInput DX_IN right DCDC Power \ supply, \ use DCDCOutput \ as \ internal LDO lose$

In, from the insideLDOProvides power to the RF front-end, analog and digital parts of the chip.

External button battery as backup power supply (VBAT) to supply power to the backup area of the chip, which can be used when the main power fails

Provides power to backup circuits.

picture3-2Chip low power supply connection solution (using chip internalDCDC)

3.2.2 Power connection scheme without DCDC

In the external PMUOr if you are not sensitive to power consumption, you can choose not to use the internal chipDCDC. Can be omitted DCDC outside the internal chipDCDC outside the inte

The inductor and capacitor components of the part; at the same time, the performance is better than using DCDCThere is a certain improvement.

External button battery as backup power supply (VBAT) to supply power to the backup area of the chip, which can be used in case of a main power failure

The backup circuit is powered.

Note: Do not useDCDChour,DX_INandDX_OUTIt is recommended to leave the pin floating.

picture3-3No chip insideDCDCPower connection scheme

3.3 Working Mode

The chip has multiple working modes: full working mode, sleep mode and battery backup mode.

Full working mode: All power supplies are working normally, and ON_OFFWhen the pin is high, the chip is in full working mode.

Perform normal signal reception and resolution.

Sleep mode: All power supplies are normal.ON_OFFPulling the pin low will turn offDCDCandLDO, RF circuits and

The baseband circuit stops working and enters a low-power sleep state.ON_OFFAfter the pin is pulled high, the chip will automatically resume full operation mode (equivalent to a hot start).

Battery backup mode: Turn offVDD_BKAll power sources except for theRTCclock

and backupRAMAfter power is restored, the navigation program can be restored from the backupRAMRecovery for a fast warm start.

model	RF Front End	Baseband Core	IO/POR	RTC/ BackupRAM
Full working mode	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
Sleep Mode	×	×	$\sqrt{}$	$\sqrt{}$
Battery backup mode	×	×	×	$\sqrt{}$

3.4 Chip Reset

The chip integrates a power-on reset circuit and supports external reset. The reset sequence is as follows:

picture3-5Chip reset timing diagram

4 RF front end

4.1 RF Front-end Architecture

The RF front end supports satellite signal frequencies of the entire constellation:BDS B1,GPS L1,GLONASS L1. Data channel sharing LNA/RFA and PLL, supports multiple reference frequencies. Integrated active antenna detection circuit, integrated clock multiplication circuit,ADCPick

The sampling frequency is configurable.

picture4-1Chip RF front-end block diagram

4.2 Active Antenna Detection

The chip integrates active antenna detection circuit, which can feed the external active antenna.

The active antenna detection circuit also provides short circuit protection by limiting the current feeding the active antenna.

Protect the chip and active antenna from damage.

The detection circuit defines three states. When the current is less than the set value, it indicates that the antenna is open; when the current is greater than the set value,

Indicates that the antenna is normal; when the current is too large or a short circuit occurs, it indicates that the antenna is overcurrent

5 Baseband Processor

5.1 Multi-system satellite processing engine

The chip integrates the latest multi-system satellite processing engine, supporting BDS, GPS, GLONASSThe system signal and

The joint positioning can significantly improve the positioning accuracy and positioning availability, especially in complex environments such as urban canyons.

The improvement is more significant.

5.2 Real-time clock backup area

Real-time clock (RTC) is located in the battery powered area and is equipped with a backupRAM. Use independent low powerLDO

Provide power supply.RTCIt can work normally in case of loss of main power supply, while ensuring backupRAMThe data in

Lost.

5.3 UART

Contains two independent full-duplexUARTModule, realizes the conversion between serial and parallel data, the baud rate is supported

hold256000bps, and has automatic baud rate detection function.

6 Electrical characteristics

6.1 Limiting characteristics

parameter	Maximum swing	unit
Power supply to ground voltage (analog core power supply, digital core power supply)	- 0.3~1.8	V
Power supply to ground voltage (digitalIORear drive power supply,LDOInput Power)	- 0.3~4.1	V
Analog pin voltage	- 0.3~1.8	V
Other pin voltages	- 0.3~4.1	V
Maximum RF input power	5	dBm
Operating temperature	- 40~85	°C
Junction temperature	150	°C
Storage temperature	- 50~125	°C

6.2 DC Characteristics

6.2.1 Power pins

parameter	Minimum	Typical Value	Maximum	unit
VDD12BB	1.08	1.2	1.32	٧
VDD12BK	1.08	1.2	1.32	V
VDD_ANA	1.08	1.2	1.32	V
VDD_PLL	1.08	1.2	1.32	V
VDD_RF	1.08	1.2	1.32	٧
VDD_IO	2.7	3.3	3.6	V
VDD_BK	1.4	3.3	3.6	V
VCore	1.4	1.5	3.6	٧
DX_IN	2.7	3.3	3.6	V
DX_OUT	1.4	1.5	1.75	V

6.2.2 Digital IO Pins

parameter	illustrate	Minimum	Typical Value	Maximum	unit
Ileak	Leakage current input pin		<1		uA
Vil	Low level input voltage	- 0.3	0	VDD_IO*0.2	٧
Vih	High level input voltage	VDD_IO*0.8		VDD_IO+0.3	V

Vol	Low level output voltage		0	0.4	V
Voh	High level output voltage	VDD_IO-0.4			٧
R	Pull-up resistor		40		kΩ
R	Pull-down resistor		40		kΩ

6.3 Simulation-related characteristics

Carial pur-	parameter	and distant		Parameters			
Serial number		condition	Minimum	Typical Value	Maximum	unit	
1	Reset voltage	@VDD_IO	2.35	2.45	2.6	٧	
2	Reset time	Crystal frequency		160		ms	
_	Neset time	26.000MHz		100		1113	
3	TCXOCrystal frequency ₁			26.000000		MHz	
4	TCXOAmplitude		0.5	1.5		Vpp	
5	Active Antenna		2.5			mA	
J	Detection current		2.5			111/ (
6	Active Antenna		45	50	60	mA	
J	Short circuit protection current		73	30	00	1117 (
7	Antenna detection circuit voltage drop	enter3.3V,50mAload			0.3	٧	
8	Working current	@3.3V BDS+GPS		twenty three		mA	
9	Battery backup current			8		uA	
10	Sleep mode current	ON_OFF=0		20		uA	
11	RTC Crystalfrequency			32.768		kHz	
12	RTC CrystalEquivalence				80	ΚΩ	
12	Series resistance <i>Rs</i>				30	1/22	
13	RTC CrystalSeries Capacitor			8		pF	

6.4 RF-related characteristics

sequence			Parameters			unit
Number	parameter	condition		Typical Value	Maximum	unit
		GPS		1575.42		MHz
1	Input frequency Fin	Galileo		1575.42		MHz
'		BDS		1561.098		MHz
		GLONASS	1597.78	1602	1605.66	MHz
2	Input signal level <i>Pɪ</i> N		- 110		- 65	dBm
3	Input reflection coefficientS11				- 10	dB
4	Noise FigureNF			2.5		dB
5	1dBCompression Point			- 75		dBm
6	Image Rejection Ratio		16	26		dB
7	Phase-locked loop lock time				100	us
8	AGCStabilization time				100	us

7 Reference Design

7.1 Reference Solution

picture7-1Chip reference design

The application solution can use passive antenna or active antenna, and the total external gain of the chip is recommended to be greater than 18dB, less than 35dB.

 $Active \ antenna \ through ANT_BIASPower \ supply \ to \ provide \ antenna \ detection \ and \ short \ circuit \ protection.$

The capacitor should be close to the RF inlet.

Notice, RF_INThe DC voltage of the pin shall not exceed 1.2 VIf the external LNAThe output is DC and must be powered

Capacity for direct isolation.

Positioning information is output through the serial port. The output port isUART0, corresponding toGPIO0 (TXD0)andGPIO1 (RXD0).

Materials list: Please refer to "Main peripheral devicesBOMSelection Table"

7.2 Device Selection

Main peripheral devicesBOMSelection Table

Device Name	parameter	Encapsulation	Specification	factory	model
DC/DCD	2.2uH	0603	120W C20mA 0 FF.	SAMSUNG	CIG10W4R7MNC
DC/DCPower Inductors	2.2un		±20%,620mA,0.5Europe	MURATA	LQM18PN4R7MFR
	4.2511	0402	±0.2nH,750mA,0.07Europe		LQW15AN4N3C00D
	4.3nH		±0.3nH,300mA,0.21Europe		LQG15HN4N3S02
	6.2-11		±3%,570mA,0.13Europe	AALIDATA	LQW15AN6N8H00D
High frequency inductor	6.2nH		±5%,300mA,0.29Europe	MURATA	LQG15HN6N8J02
	22-11/47-11		±3%,260mA,0.63Europe		LQW15AN33NH00D
	33nH/47nH		±5%,200mA,0.67Europe		LQG15HN33NJ02
RTCCrystal	32.768K	SMD3215	20ppm,CL=8pF	EPSON	FC-135
				KDS	DST310S
		SMD2520		EPSON	TG-5035CG
				EPSON	TG-5006CG
			3.3V,	KDS	DSB221SDN
TCXOCrystal Oscillator	26M		0.5ppm@-30°Cto +85°C or	KYOCERA	KT2520K26000ACW33T
			0.5ppm@-40°Cto +85°C	NDK	NT2520SB
				TXC	7L26003
				SIWARD	STO-2520A
Low Noise Amplifier	LNA	6UDFN	Gain=21.5dB,NF=0.8dB	Hangzhou Zhongkewei	AT2659

			Insertion Loss= 0.9dB@1575.42M	TDK EPCOS	B39162B9416K610	
			impedance=50Europe	TDR EFCO3		
			nsertion Loss =1.3dB@1561.098M			
			0.9dB@1575.42M , 1.4dB@1602M		SAFFB1G56KB0F0A	
filter SAW			impedance=50 Ω			
	SAW	SMD1411	Insertion Loss = 0.95dB@1575.42M	MURATA	CAFED4 CF71/F0F00	
			impedance=50Europe		SAFEB1G57KE0F00	
			Insertion Loss = 0.9dB@1575.42M		CAFFA4CF0KA0F00	
			1.3dB@1602M, impedance=50Europe		SAFEA1G58KA0F00	
			Insertion Loss = 1.0dB@1575.42M	MICOL	SFHG89DQ102	
			1.3dB@1602M, impedance=50Europe	WISOL		

8.1 Active Antenna Feeding and Detection

As shown in the figure below, the chip's active antenna detection circuit can detect the state of the active antenna, and the input is the systemIOPower supply, most High Voltage3.6V.ANT_BIASFeed the active antenna and connect one33nHor47nHThe inductance and0.1uFCapacitor filtering

The inductor and capacitor are used to block AC signals.PCBIt should be close to the RF input terminal.

Note: Even if AC signal blocking is addedLCfilter, low frequency AC large signals may still feed through to ANT_BIASport, causing the detection circuit to misjudge. Especially in strong interference environments or near high-power transmitters,

The probability of misjudgment will increase.

The default minimum detection current for antenna access is 2.5mA, the short-circuit protection current limit default is 50mA.

picture8.1Active Antenna Detection and Protection

8.2 RF Input Gain

The RF signal from RF_INInput, external antenna unit (passive dielectric +LNA, or active antenna) is recommended to have a gain of 18~35dB.

8.3 Lightning Protection and ESD

The RF interface of the device is usually exposed, although this chip has beenHBM2000V ESDTesting, but in testing and using During use, strong impact may still cause chip damage; so please be careful during chip testing and use.ESDProtection, And add appropriateESDProtective design.

When the navigation antenna is placed outdoors, lightning protection design is also required.

8.4 Reference Clock Crystal

The frequency stability of the reference clock will greatly affect the performance of the receiver, including sensitivity, positioning accuracy, and timing.

Therefore, in order to obtain the best performance, it is recommended that users use a high-stability crystal oscillator.

It is the clock reference source of the navigation chip. It is recommended to select a frequency with an initial error less than2ppm, temperature-40°C-85Stability in °C range

Less than0.5ppm, and a temperature compensated crystal oscillator that is insensitive to temperature and environmental vibrationTCXO.

9.5 RTC Clock

Real-time clock (RTC) is located in the backup battery power supply area to ensure backup after the main power supply failsRAMThe data in the

It can be quickly repositioned when the main power is restored.RTC OSCUse passive crystal, connected to the chipRTC_IandRTC_O

Pins, no external capacitors and feedback resistors are required, as shown below:

picture8.2 32k RTCPassive Crystal

The chip also supports direct clock input. *Note that the signal must be fromRTC_Ienter*, and ensure *RTC_I*The voltage on Pass1.5VAs shown in the figure below, the clock signal is added to the *RTC_I*On, adjustR1andR2ratio, *RTC_I*Last time

The clock high level is1.2V.

picture8.3 32kDirect clock input (resistor voltage divider)

8.6 Power Management

Chip has2Ways to enter low power mode:

1) Close exceptBDD_BKAll power supplies except

 $2) Will ON_OFF The \ pin \ is \ set \ to \ low \ level. \ The \ chip \ enters \ a \ low-power \ sleep \ state \ and \ consumes \ very \ little \ current.$

Power Mode		Kernel	IO/POR	LNA	TCXO	antenna	RTC	Main power supply
Full working mode		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	ON
Low power consumption	Power off	×	×	×	×	×	$\sqrt{}$	OFF
model	ON_OFFPull down	×	$\sqrt{}$	×	×	×	$\sqrt{}$	ON

8.7 DCDC

If the system is not sensitive to power consumption, or to save the cost of inductors and capacitors, it can be omitted.DCDC.at this timeDCDClose

It is recommended to leave the input and output pins floating. VCOREThe power supply can be $1.4 \sim 3.6 \text{V}$.

 $\label{thm:constraint} \mbox{On-chipDCDCIt can effectively reduce chip power consumption.}$

To reduceDCDCThe impact of switching noise on chip performance should be minimizedDCDCInductors and capacitors and pins

 $DCDC_OUT The connection length should be short and the device should be away from the RF signal input port and RF related components.\\$

DCDCPower supply filtering at the input is very important and should be used 2.2 uFThe above capacitors, and filter capacitors as close as possible

DX_INPin.

All filter capacitors should be well grounded.DCDCThe input filter capacitor is grounded, the output capacitor is grounded, and the chip bottom

All metal parts must be fully and well grounded.PCBTrace width and number of vias.

8.8 LDO

Chip internal integrationLDO.

RF analog partLDOOutput likeVDD_ANA,VDD_RF,VDD_PLLThe bypass filter has high requirements.PCB

When designing, please try to shorten the trace length between the bypass capacitor and the corresponding pin, and pay attention to the good grounding of the bypass capacitor.

8.9 Backup Power Supply

It is recommended to connect a rechargeable 3VB utton cell battery or Farad capacitor, provide RTC and backup RAMBackup power supply,

To support hot start positioning. The chip has built-in trickle charging circuit and anti-reverse charging circuit. Note the maximum

The charging voltage should be greater than VDD_IO+0.3V.

If the system does not require hot start function, VDD_BKThe pin can be left floating; when the system is powered off,RTCand backupRAMDepend on

If there is no power supply, it will stop working, the positioning information cannot be saved, and the hot start function will be invalid.

Note: Whether or not to add backup power supply, VDD12BK on 1 uFThe capacitors cannot be removed.

picture8.4Backup power connection diagram

9 Chip packaging

9.1 Chip Identification Rules

coding	illustrate
AT6558R	Chip Model
LLLLLLLLLL	Chip serial number

10.2 Packaging Specifications

Chip AdoptionQFN5×5-40L (P0.4T0.8) package, and below are the package dimensions.

Side View

Package size

Sumbol	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.700/0.800 0.800/0.900		0.028/0.031	0.031/0.035	
A1	0.000	0.050	0.000	0.002	
A3	0.203REF.		0.008REF.		
D	4.924	5.076	0.194	0.200	
E	4.924	5.076	0.194	0.200	
D1	3.300	3.500	0.130	0.138	
E1 3.300		3.500	0.130	0.138	
k	0.200MIN.		0.008	BMIN.	
b	0.150	0.250	0.006	0.010	
е	0.400TYP.		0.016TYP.		
L	0.324	0.476	0.013	0.019	

10 Chip welding and storage

10.1 Moisture resistance level:

Moisture Sensitivity Level (MSL):3class

 $MSLP lease\ refer\ to IPC/JEDEC\ J-STD-020 standard.$

10.2 Reflow Oven Curve:

!Notice

Adjust the equilibration time to ensure proper gas handling when the solder paste is melted. PCBThere are too many gaps on the board, you can increase

Balance time.

Considering that the product is placed in the welding area for a long time (temperature 180°C or above), in order to prevent damage to components and the base plate,

Keep placement time as short as possible.

! Important features of the curve:

Ascending speed =1~4°C /sec, 25°C to150°Caverage

Preheat temperature =140°C to 150°C, 60sec~90sec

Temperature Fluctuation =225°C to 250°C,About30sec

Falling speed =2~6°C/sec, to 183°C,About15sec

Total time = approx.300sec

11.1 Packaging

The chip is packaged in vacuum tape and has moisture-proof and anti-static properties. The use process is compatible with major chip placement machines in the industry.

Minimum packaging 1000 Pieces/reel. Specific tape dimensions are as follows:

11.2 ESD Protection

 ${\it Please pay attention to anti-static and moisture-proof during chip transportation and production.}$

Please pay attention to static electricity protection during use, packaging and transportation!

12 Document update history

date	Version	illustrate
2018.03.29	V0.1	Document Drafting
2018.08.22	V1.0	

Contact Details

Hangzhou Zhongke Microelectronics Co., Ltd.

Hangzhou Zhongke Microelectronics Co., Ltd

www.icofchina.com

address(Add): Jiangnan Avenue, Binjiang District, Hangzhou3850Innovation Building10building

10F Innovation Tower, #3850 Jiangnan Avenue Binjiang,

Hangzhou, China

Telephone(Tel): +86-571-28918107

fax(Fax):+86-571-28918122