ALGORITHMS & DATA STRUCTURES

LES 1: ALGORITME ANALYSE

UITWERKINGEN

THEORIE OPGAVEN

OPGAVE 1 (5.6)

- x because O(N)
- x^2 , $x^2 x$ because both are O(N²)
- $x^3 + x$, $x^4/(x-1)$ because both are O(N³)

remark: $x^4/(x-1)$ becomes equal to x^3 for large values of x

OPGAVE 2 (5.12ACD)

- a) 2 ms
- b) 10 ms
- c) 50 ms

OPGAVE 3 (5.16 ACD)

- a) For a linear-time algorithm, we can solve a problem 120,000 times as large, or 12,000,000 (assuming sufficient resources);
- b) For a quadratic algorithm, we can solve a problem $\sqrt{120000}$ = 346 times as large, so we can solve a problem of size 34,600;
- c) For a cubic algorithm, we can solve a problem $\sqrt[3]{120000}$ = 49 times as large, so we can solve an instance of size 4,900.

OPGAVE 4 (5.19)

O(N)

OPGAVE 5 (5.26)

- 1) O(N)
- 2) O(N)
- 3) $O(N^2)$

- 4) O(N)
- 5) O(N³)
- 6) O(N²)
- 7) O(N⁵)
- 8) O(logN)

OPGAVE 6

De method functie() wordt in totaal N^3 aangeroepen. Binnen functie() wordt functie2() x^2 keer aangeroepen. Dus functie2() wordt N^5 keer aangeroepen. De compexiteit van functie2() is logaritmisch dus de totale complexiteit is $O(N^5 \log(N))$.

OPDRACHT 7

a)

$$N = 1, 2, ..., 10$$

$$N = 1, 2, ..., 50$$

$$N = 1, 2, \dots 100$$

Wat opvalt is, dat voor grotere N (N.B. N is hier nog maar maximaal 100) de grafiek van N^2 al bijna wegvalt tegen de grafiek van N.

OPGAVE 8

a)

X	$\log x$
4	2
8	3
16	4
32 64	5
64	6
128	7
256	8
512	9

- b) $\log 1024 = 10$, $\log 2048 = 11$
- c) x = 16
- d) x = 1024

OPGAVE 9

a) De grafiek laat het volgende zien:

We lezen af: de (rood getekende) kwadratische functie wordt groter dan de lineaire als x de waarde 10 heeft. De berekening toont dit aan. We zoeken de x waarvoor

geldt: $x^2 = 10x$. Links en rechts delen door x levert direct op: x = 10. Evenzo vinden we voor $x^2 = 1000x$ als grens x = 1000.

Algemeen geldt het volgende. Als $x^2 = \alpha \cdot x$ met $x \neq 0$, dan volgt daaruit $x = \alpha$. Voor alle $x > \alpha$ wint de grafiek van x^2 het van die van x. Anders gezegd: voor alle $x > \alpha$ geldt dat $x^2 > \alpha \cdot x$. Daarom wint voor grote x de kwadratische functie het altijd van de lineaire, met welk getal je die lineaire ook zou vermenigvuldigen. Daarom concluderen we terecht dat voor een algoritme met complexiteit 3N + 10 in Big-Oh notatie O(N) mag worden geschreven.

b) Uit onderstaande grafiek lezen we af: de lijn van de logaritmische functie snijdt de lijn van de lineaire functie voor $x \approx 996$.

Uit het verloop zien we, dat voor grote N de logaritmische gunstiger is dan de lineaire. Dit onderstreept de conclusie dat binair zoeken voor grote N gunstiger is dan lineair zoeken.