CME 2001 Data Structures and Algorithms

Zerrin Işık

zerrin@cs.deu.edu.tr

Heaps

- A heap is a complete binary tree such that:
 - It is empty, or
 - Its root contains a search key greater than or equal to the search key in each of its children, and each of its children is also a heap.
- The root contains the item with the largest search key
- *Height* of node = # of edges on a longest simple path from the node down to a leaf.
- *Height* of heap = height of root = $\Theta(\lg n)$.

Heaps

A heap can be stored as an array **A**.

- Root of tree is A[1].
- Parent of $A[i] = A[\lfloor i/2 \rfloor]$.
- Left child of A[i] = A[2i].
- Right child of A[i] = A[2i + 1].

PARENT(i): return $\lfloor i/2 \rfloor$

LEFT (i): return 2i

RIGHT(i): return 2i+1

Heap Property:

- For max-heaps (largest element at root), max-heap property: for all nodes i, excluding the root, $A[PARENT(i)] \ge A[i]$.
- For min-heaps (smallest element at root), *min-heap property:* for all nodes i, excluding the root, $A[PARENT(i)] \leq A[i]$.

Max-Heap example

heap-size: # of elements that are already sorted in the heap.

 \rightarrow heap-size = 10

Max-Heapify

Used to maintain the max-heap property.

```
Max-Heapify(A, i, n)
 l = LEFT(i)
 r = RIGHT(i)
 if l \leq n and A[l] > A[i]
      largest = l
 else largest = i
 if r \leq n and A[r] > A[largest]
      largest = r
 if largest \neq i
      exchange A[i] with A[largest]
      Max-Heapify (A, largest, n)
```

n: heap-size

LEFT (i): return 2i

RIGHT (i): return 2i+1

Max-Heapify ...

- Node 2 violates max-heap property (a).
- Compare node 2 with its children, and then swap it with the larger of the two children (b).
- Continue swapping until the value is properly placed at the root of a subtree that is a max-heap (c).

Max-Heapify Analysis

```
MAX-HEAPIFY (A, i, n)
 l = LEFT(i)
 r = RIGHT(i)
 if l \leq n and A[l] > A[i]
      largest = l
 else largest = i
 if r \le n and A[r] > A[largest]
      largest = r
 if largest \neq i
      exchange A[i] with A[largest]
      MAX-HEAPIFY (A, largest, n)
```

Analysis

- $\Theta(1)$: Fix relations among the A[i], A[LEFT(i)], A[RIGHT(i)]
- Children subtreees have size at most 2n/3

$$T(n) \le T(2n/3) + 1$$

Apply recurrence $T(n) = O(\lg n)$

Building a Heap

• Given an unsorted array, build a max-heap

```
BUILD-MAX-HEAP(A, n) n: unsorted array size for i = \lfloor n/2 \rfloor downto 1

MAX-HEAPIFY(A, i, n)
```

- Why does it start from n/2?
 - All elements A[(n/2+1), ..., n] are on the leaves

Build-Max-Heap Analysis

Analysis

- Each call of Max-Heapify: O(lgn)
- For loop runs n/2 times: O(n)
- Upper bound: O(n. lgn)
- Tight bound : O(n) (check page 159)

BUILD-MAX-HEAP(A, n)

for $i = \lfloor n/2 \rfloor$ downto 1 MAX-HEAPIFY (A, i, n)

Heap Usage

- Heap sort
 - one of the best sorting methods not quadratic in the worst-case
- Selection algorithms
 - finding the min, max, median, kth element in sublinear time
- Graph algorithms
 - Prim's minimal spanning tree
 - Dijkstra's shortest path

Heap Sort Algorithm

Given an input array:

- Builds a max-heap from the array.
- Start with the root, place the maximum element into the correct place in the array by swapping it with the element in the last position in the array.
- "Discard" this last node by decreasing the heap size, and calling MAX-HEAPIFY on the new root.
- Repeat this "discarding" process until only one node (the smallest element) remains.

HEAPSORT (A,n)
BUILD-MAX-HEAP (A,n)
for i=A.length downto 2
 exchange A[1] with A[i]
 A.heap-size = A.heap-size -1
 MAX-HEAPIFY(A,1,i-1)

Heap Sort Algorithm

Given an input array:

- Builds a max-heap from the array.
- Start with the root, place the maximum element into the correct place in the array by swapping it with the element in the last position in the array.
- "Discard" this last node by decreasing the heap size, and calling MAX-HEAPIFY on the new root.
- Repeat this "discarding" process until only one node (the smallest element) remains.

HEAPSORT (A,n)
BUILD-MAX-HEAP (A,n)
for i=A.length downto 2
 exchange A[1] with A[i]
 A.heap-size = A.heap-size -1
 MAX-HEAPIFY(A,1,i-1)

Analysis

- BUILD-MAX-HEAP: O(n)
- for loop runs (n-1) times
- exchange elements: O(1)
- *MAX-HEAPIFY*: O(lgn)
- **Total time:** O(n lgn)

Heap Sort Example

(e)

Sorted array

Priority Queues - A Heap Application

- Maintains a dynamic set **S** of elements.
- Each set element has a *key* an associated value.
- Max-priority queue supports dynamic-set operations:
 - *INSERT* (S,x): inserts element x into set **S**.
 - *MAXIMUM* (S): returns element of **S** with largest key.
 - *EXTRACT-MAX* (S): removes and returns element of **S** with largest key.
 - INCREASE-KEY (S,x,k): increases value of element x's key to k. Assume $k \ge x$'s current key value.
- e.g. Max-priority queue application : schedule jobs on shared computer.

HEAP-MAXIMUM(A)
return A[1]

• Running Time = $\Theta(1)$.

```
HEAP-EXTRACT-MAX(A, n)

if n < 1

error "heap underflow"

max = A[1]

A[1] = A[n]

n = n - 1

MAX-HEAPIFY(A, 1, n) // remakes heap

return max
```

• Running Time = O(lgn).

```
HEAP-INCREASE-KEY (A, i, key)

if key < A[i]

error "new key is smaller than current key"

A[i] = key

while i > 1 and A[PARENT(i)] < A[i]

exchange A[i] with A[PARENT(i)]

i = PARENT(i)
```

• Running Time = O(lgn).

Heap-Increase-Key Example


```
MAX-HEAP-INSERT (A, key, n)

n = n + 1

A[n] = -\infty

HEAP-INCREASE-KEY (A, n, key)
```

• Running Time = O(lgn).

Quicksort

Quicksort is based on *divide-and-conquer* paradigm, similar to Mergesort.

Steps:

- 1. Partition an array into two subarrays
- 2. Sort each subarray independently,
- 3. Combine sorted subarrays.

Quicksort Steps

To sort the subarray A[p...r]:

- **Divide:** Partition A[p...r] into two subarrays A[p...q-1] and A[q+1...r], such that each element in the first subarray A[p...q-1] is $\leq A[q]$ and A[q] is \leq each element in the second subarray A[q+1...r]. Compute index q as a part of partition procedure
- **Conquer:** Sort the two subarrays by recursive calls to QUICKSORT.
- **Combine:** No work is needed to combine the subarrays, because they are sorted in place.

QUICKSORT(A, p, r) **if** p < r q = PARTITION(A, p, r)QUICKSORT(A, p, q - 1)QUICKSORT(A, q + 1, r)

• Initial call is QUICKSORT (A, 1, n).

```
PARTITION (A, p, r)

x = A[r]

i = p - 1

for j = p to r - 1

if A[j] \le x

i = i + 1

exchange A[i] with A[j]

exchange A[i + 1] with A[r]

return i + 1
```

- PARTITION always selects the last element A[r] in the subarray A[p...r] as the *pivot* the element around which to partition.
- As the procedure executes, the array is partitioned into four regions, some of which may be empty.

Runtime of PARTITION : $\Theta(n)$ where n=r-p+1

Performance of Quicksort

The running time of quicksort depends on the partitioning of the subarrays:

- If the subarrays are balanced, then quicksort can run as fast as mergesort.
- If they are unbalanced, then quicksort can run as slowly as insertion sort.

Worst-case Partitioning

• Occurs when the sub-arrays are completely unbalanced. i.e. one part with "n-1" elements, the other with only 0 element $PARTITION: \Theta(n)$

$$T(n) = T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n) = \sum_{k=1}^{n} \Theta(k) = \Theta(\sum_{k=1}^{n} k)$$

$$T(n) = \Theta(n^2)$$

- Same running time as insertion sort.
- It happens when input array is already ordered!

Best-case Partitioning

• Assume that PARTITION always produces n/2 splits.

$$T(n) = 2T(n/2) + \Theta(n) = \Theta(n \lg n)$$

Balanced Partitioning

• Assume that PARTITION always produces a 9-to-1 split.

$$T(n) = T(9n/10) + T(n/10) + n = \Theta(n \lg n)$$

Next Week Topics

Sorting in Linear Time (Chapter 8)