Total No. of Questions: 6

Total No. of Printed Pages:3

## Enrollment No.....



## Faculty of Engineering End Sem Examination May-2024

ME3EL27 Machine Learning in Manufacturing

Programme: B.Tech. Branch/Specialisation: ME

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. Which of the following is not a sample application of machine 1 learning?
  - (a) Image recognition
- (b) Fraud detection
- (c) Weather forecasting
- (d) Sorting algorithms
- ii. Which method involves searching through the version space to 1 find the most suitable hypothesis?
  - (a) Candidate elimination
- (b) Decision trees

(c) Gradient descent

- (d) K-Means clustering
- iii. What is the primary purpose of backpropagation in neural **1** networks?
  - (a) To propagate input signals through the network
  - (b) To adjust the weights of connections based on prediction errors
  - (c) To initialize the network with random weights
  - (d) To determine the optimal learning rate
- iv. Which of the following is NOT a characteristic of genetic 1 algorithms?
  - (a) Population-based optimization
  - (b) Crossover and mutation operations
  - (c) Gradient descent optimization
  - (d) Selection of individuals based on fitness
- v. Nearest neighbour algorithms are primarily used for:
  - (a) Classification tasks
- (b) Regression tasks

(c) Clustering tasks

(d) Feature selection

1

| [2] |
|-----|
|-----|

Q.2

OR

| vi.   | Decision trees are used for:                                         | 1 |
|-------|----------------------------------------------------------------------|---|
|       | (a) Classifying data points into categories                          |   |
|       | (b) Predicting continuous numerical values                           |   |
|       | (c) Clustering similar data points together                          |   |
|       | (d) Dimensionality reduction                                         |   |
| vii.  | What is the primary goal of inductive logic programming?             | 1 |
|       | (a) To develop algorithms for symbolic reasoning                     |   |
|       | (b) To learn logic programs from examples and background             |   |
|       | knowledge                                                            |   |
|       | (c) To optimize decision boundaries in high-dimensional spaces       |   |
|       | (d) To train neural networks using logic-based representations       |   |
| viii. | What is one limitation of ILP compared to decision tree              | 1 |
|       | induction?                                                           |   |
|       | (a) ILP cannot handle symbolic data                                  |   |
|       | (b) ILP is more prone to overfitting                                 |   |
|       | (c) ILP is less interpretable                                        |   |
|       | (d) ILP requires more computational resources                        |   |
| ix.   | Reinforcement learning is a type of machine learning where:          | 1 |
|       | (a) The model learns by observing examples in the form of input-     |   |
|       | output pairs                                                         |   |
|       | (b) The model learns by interacting with an environment and          |   |
|       | receiving feedback in the form of rewards                            |   |
|       | (c) The model learns by inferring rules from logical expressions     |   |
|       | (d) The model learns by optimizing a loss function through           |   |
|       | gradient descent                                                     |   |
| х.    | What is the primary goal of hierarchical clustering methods?         | 1 |
|       | (a) To identify dense regions of data points                         |   |
|       | (b) To assign each data point to a predefined number of clusters     |   |
|       | (c) To construct a hierarchy of clusters that can be visualized as a |   |
|       | dendrogram                                                           |   |
|       | (d) To optimize a clustering criterion such as silhouette score      |   |
|       |                                                                      | _ |
| i.    | What is machine learning?                                            | 3 |
| ii.   | Explain the terms: Conjunctive Normal Form (CNF), Disjunctive        | 7 |
|       | Normal Form (DNF), and decision lists.                               | _ |
| iii.  | Describe the candidate elimination method in machine learning.       | 7 |
|       | Explain how the algorithm works step-by-step, including the          |   |
|       | initialization of the version space.                                 |   |

[3]

| Q.3 | i.        | What are genetic algorithms? How are they utilized in machine learning?                                                                                                      | 3      |
|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|     | ii.       | Explain feed forward neural network using example. List the application areas where it is used.                                                                              | 7      |
| OR  | iii.      | Discuss the backpropagation algorithm in neural networks. How does it work? What is its role in training multilayer networks?                                                | 7      |
| Q.4 | i.<br>ii. | Discuss the significance of statistical learning in machine learning. Describe the nearest neighbour algorithm in machine learning. What are its advantages and limitations? | 3<br>7 |
| OR  | iii.      | Explain learning belief networks in detail with the help of example.                                                                                                         | 7      |
| Q.5 | i.        | Discuss the advantages and disadvantages of using inductive logic programming over decision tree induction.                                                                  | 4      |
|     | ii.       | Explain the key characteristics and capabilities of Inductive Logic Programming (ILP).                                                                                       | 6      |
| OR  | iii.      | Describe the notation commonly used in inductive logic programming, including predicate logic symbols and terms.                                                             | 6      |
| Q.6 | i.        | Define unsupervised learning and discuss its importance in machine learning.                                                                                                 | 3      |
|     | ii.       | Describe hierarchical clustering methods. What are the benefits of hierarchical clustering?                                                                                  | 7      |
| OR  | iii.      | Define reinforcement learning and explain its fundamental principles. How does reinforcement learning differ from supervised and unsupervised learning?                      | 7      |

\*\*\*\*\*

[4]

## **Marking Scheme**

## Machine Learning in Manufacturing (T) - ME3EL27 (T)

| Q.1 | i)                                 | D) Sorting Algorithms                                               |  |
|-----|------------------------------------|---------------------------------------------------------------------|--|
|     | ii)                                | A) Candidate Elimination                                            |  |
|     | iii)                               | B) To adjust the weights of connections based on prediction errors  |  |
|     | iv)                                | C) Gradient descent optimization                                    |  |
|     | v)                                 | A) Classification tasks                                             |  |
|     | vi)                                | A) Classifying data points into categories                          |  |
|     | vii)                               | B) To learn logic programs from examples and background             |  |
|     | :::>                               | knowledge                                                           |  |
|     | viii) C) ILP is less interpretable |                                                                     |  |
|     | ix)                                | B) The model learns by interacting with an environment and          |  |
|     |                                    | receiving feedback in the form of rewards                           |  |
|     | x)                                 | C) To construct a hierarchy of clusters that can be visualized as a |  |
|     |                                    | dendrogram                                                          |  |
| Q.2 | i.                                 | Explaining machine learning                                         |  |
|     | ii.                                | Explain the terms: Conjunctive Normal Form (CNF),                   |  |
|     |                                    | 2.5Marks                                                            |  |
|     |                                    | Disjunctive Normal Form (DNF), 2.5Marks                             |  |
|     |                                    | and decision lists 2 Marks                                          |  |
| OR  | iii.                               | Describing the candidate elimination method in machine learning.    |  |
|     |                                    | 4 Marks                                                             |  |
|     |                                    | Explain how the algorithm works step-by-step, including the         |  |
|     |                                    | initialization of the version space 3Marks                          |  |
|     |                                    |                                                                     |  |
| 0.2 | •                                  | Emploining a gradie also statement                                  |  |
| Q.3 | i.                                 | Explaining genetic algorithms,                                      |  |
|     | ••                                 | and how are they utilized in machine learning?1 Marks               |  |
|     | ii.                                | Explaining feed forward Neural Network using example                |  |
|     |                                    | 5 Marks List the application areas where it is used 2 Marks         |  |
| OD  | iii.                               | List the application areas where it is used 2 Marks                 |  |
| OR  | 111.                               | Discuss the backpropagation algorithm in neural networks.  3 Marks  |  |
|     |                                    | How does it work 2 Marks                                            |  |
|     |                                    | what is its role in training multilayer networks? 2 Marks           |  |
|     |                                    | what is its fole in training multilayer networks? 2 warks           |  |
| Q.4 | i.                                 | Discuss the significance of statistical learning in machine         |  |
| `   |                                    | learning 3 Marks                                                    |  |
|     | ii.                                | Describe the nearest neighbour algorithm in machine learning.       |  |
|     |                                    | 4 Marks                                                             |  |
|     |                                    | what are its advantages and limitations? 3 Marks                    |  |

| OR  | iii. | Explain learning belief networks in detail with example | the help of <b>7 Marks</b> |
|-----|------|---------------------------------------------------------|----------------------------|
| Q.5 | i.   | Write the key characteristics and capabilities of In    | nductive Logic             |
|     |      | Programming (ILP)                                       | 3 Marks                    |
|     | ii.  | Discuss the advantages                                  | 3.5 Marks                  |
|     |      | and disadvantages of using inductive logic prog         | gramming over              |
|     |      | decision tree induction                                 | 3.5 Marks                  |
| OR  | iii. | Describe the notation commonly used in in               | nductive logic             |
|     |      | programming                                             | 3 Marks                    |
|     |      | , Explaining predicate logic symbols                    | 2 Marks                    |
|     |      | Explaining terms                                        | 2 Marks                    |
| Q.6 | i.   | Define unsupervised learning                            | 2 Marks                    |
|     |      | discuss its importance in machine learning              | 1 Marks                    |
|     | ii.  | Describe hierarchical clustering methods                | 5 Marks                    |
|     |      | what are the benefits of hierarchical clustering?       | 2 Marks                    |
| OR  | iii. | Define reinforcement learning                           | 3 Marks                    |
|     |      | and explaining its fundamental principles               | 2 Marks                    |
|     |      | How does reinforcement learning differ from s           | supervised and             |
|     |      | unsupervised learning?                                  | <sup>1</sup> 2 Marks       |
|     |      | · ·                                                     |                            |

\*\*\*\*\*

P.T.O.