程序代写代做CS编程辅导

1a. (5 points) Suppose subspace of \mathbb{C}^n such the

rix with complex entries and $A^* = A$. Suppose V is a $V \Rightarrow Ax \in V$. Show that $A(V^{\perp}) \subset V^{\perp}$.

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

1b. (5 points) Suppose this real symmetric $n \times n$ matrix. Show that e^A is positive definite.

2a. (2 points) Write down the overdetermined linear system Ax = b whose least squares solution $x = \begin{pmatrix} C \\ D \end{pmatrix}$ gives the best-fit line y(t) = C + Dt to the following points (t_i, b_i)

 $r_i = b_i - y(t_i).$

程序:代写:代做:4CS:编程辅导

in the sense that $||r||_2$ is

brmation $H_1 = I - \tau_1 v_1 v_1^T$ that reflects the first column b_1 axis. (Find τ_1 and v_1 , following the convention that

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

2c. (3 points) After applying pand computing and applying a second householder transformation, the above system becomes

$$\begin{pmatrix} -2 & -13/3 \\ 0 & -5 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} -1 \\ -5 \\ -0.3 \\ -0.4 \end{pmatrix}.$$

Compute C, D and the norm $||r||_2$ of the minimum residual.

3. (10 points) Let $A = \begin{pmatrix} 6 & 8 \\ 4 & -3 \end{pmatrix}$. Find all rank-1 matrices B such that $\|A - B\|_2$ is minimized. Hint: if you can't figure out the SVD by inspection, AA^T is simpler than A^TA as a starting point to compute the SVD system of $A^TA = A^TA = A^$

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com

4. (10 points) Compute the pseudo-inverse of

程序代2写代做-C5编程辅导

You can leave your answer as a product of 3 matrices if you wish, but compute each entry of each of those matrices.

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

https://tutorcs.com