

Positive voltage regulator ICs

Datasheet - production data

Features

- Output current up to 1.5 A
- Output voltages of 5; 6; 8; 8.5; 9; 12; 15; 18; 24 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection
- 2 % output voltage tolerance (A version)
- Guaranteed in extended temperature range (A version)

Description

The L78 series of three-terminal positive regulators is available in TO-220, TO-220FP, D2PAK and DPAK packages and several fixed output voltages, making it useful in a wide range of applications.

These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type embeds internal current limiting, thermal shutdown and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Contents L78

Contents

1	Diag	ram	. 3
2	Pin o	configuration	. 4
3	Maxi	imum ratings	. 5
4	Test	circuits	. 6
5	Elec	trical characteristics	. 7
6	Appl	lication information	23
	6.1	Design consideration	23
7	Турі	cal performance	33
8	Pack	rage information	35
	8.1	TO-220 (dual gauge) package information	36
	8.2	TO-220 (single gauge) package information	38
	8.3	TO-220FP package information	40
	8.4	TO-220 packing information	42
	8.5	DPAK package information	43
	8.6	DPAK packing information	46
	8.7	D²PAK (SMD 2L STD-ST) type A package information	48
	8.8	D²PAK (SMD 2L Wooseok-subcon.) package information	50
	8.9	D²PAK packing information	53
9	Orde	ering information	55
10	Revi	sion history	57

L78 Diagram

1 Diagram

VI SERIES PASS ELEMENT

CURRENT SOA PROTECTION

STARTING REFERENCE VOLTAGE

VO SERIES PASS ELEMENT

ELEMENT

STARTING REFERENCE AMPLIFIER

THERMAL PROTECTION

Figure 1. Block diagram

GND CS22280 Pin configuration L78

2 Pin configuration

Figure 2. Pin connections (top view)

Figure 3. Schematic diagram

L78 Maximum ratings

3 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter		Value	Unit	
V	DC input voltage	for V _O = 5 to 18 V	35	V	
V _I	DC input voltage	for V _O = 20, 24 V	40	V	
Io	Output current		Internally limited		
P _D	Power dissipation		Internally limited		
T _{STG}	Storage temperature range		-65 to 150	°C	
т	Operating junction temperature range	for L78xxC, L78xxAC	0 to 125	°C	
T _{OP}	Operating junction temperature range	for L78xxAB	-40 to 125	30	

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2. Thermal data

Symbol	Parameter	D ² PAK	DPAK	TO-220	TO-220FP	Unit
R _{thJC}	Thermal resistance junction-case	3	8	5	5	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	100	50	60	°C/W

Figure 4. Application circuits

Test circuits L78

4 Test circuits

Figure 5. DC parameter

Figure 6. Load regulation

Figure 7. Ripple rejection

577

5 Electrical characteristics

 V_I = 10 V, I_O = 1 A, T_J = 0 to 125 °C (L7805AC), T_J = -40 to 125 °C (L7805AB), unless otherwise specified $^{\rm (a)}$.

Table 3. Electrical characteristics of L7805A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	4.9	5	5.1	V
V _O	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 7.5 \text{ to 18 V}$	4.8	5	5.2	V
V _O	Output voltage	$I_O = 1 \text{ A}, V_I = 18 \text{ to } 20 \text{ V}, T_J = 25^{\circ}\text{C}$	4.8	5	5.2	V
		$V_I = 7.5 \text{ to } 25 \text{ V}, I_O = 500 \text{ mA}, T_J = 25^{\circ}\text{C}$		7	50	mV
ΔV _O ⁽¹⁾	Line regulation	V _I = 8 to 12 V		10	50	mV
ΔνΟ΄΄	Line regulation	V _I = 8 to 12 V, T _J = 25°C		2	25	mV
		V _I = 7.3 to 20 V, T _J = 25°C		7	50	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{~(1)}$	Load regulation	I _O = 5 mA to 1.5 A, T _J = 25°C		30	100	mV
		I _O = 250 to 750 mA		8	50	
	Quiescent current	T _J = 25°C		4.3	6	mA
I _q	Quiescent current				6	mA
		V _I = 8 to 23 V, I _O = 500 mA			0.8	mA
Δl_{q}	Quiescent current change	V _I = 7.5 to 20 V, T _J = 25°C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	$V_1 = 8 \text{ to } 18 \text{ V}, f = 120 \text{ Hz}, I_O = 500 \text{ mA}$		68		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
eN	Output noise voltage	T _A = 25°C, B =10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output voltage drift			-1.1		mV/°C

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

a. Minimum load current for regulation is 5 mA.

DocID2143 Rev 33 7/59

Electrical characteristics L78

 V_I = 11 V, I_O = 1 A, T_J = 0 to 125 °C (L7806AC), T_J = -40 to 125 °C (L7806AB), unless otherwise specified $^{(b)}$.

Table 4. Electrical characteristics of L7806A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	5.88	6	6.12	٧
Vo	Output voltage	$I_O = 5$ mA to 1 A, $V_I = 8.6$ to 19 V	5.76	6	6.24	٧
Vo	Output voltage	$I_O = 1 \text{ A}, V_I = 19 \text{ to } 21 \text{ V}, T_J = 25^{\circ}\text{C}$	5.76	6	6.24	٧
		$V_I = 8.6 \text{ to } 25 \text{ V}, I_O = 500 \text{ mA}, T_J = 25^{\circ}\text{C}$		9	60	mV
ΔV _O ⁽¹⁾	Line regulation	V _I = 9 to 13 V		11	60	mV
Δνο	Line regulation	V _I = 9 to 13 V, T _J = 25°C		3	30	mV
		V _I = 8.3 to 21 V, T _J = 25°C		9	60	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C		30	100	mV
		I _O = 250 to 750 mA		10	50	
	Quiescent current	T _J = 25°C		4.3	6	mA
l _q	Quiescent current				6	mA
		V _I = 9 to 24 V, I _O = 500 mA			0.8	mA
Δl_{q}	Quiescent current change	V _I = 8.6 to 21 V, T _J = 25°C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	$V_1 = 9 \text{ to } 19 \text{ V, f} = 120 \text{ Hz, I}_O = 500 \text{ mA}$		65		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		٧
eN	Output noise voltage	$T_A = 25$ °C, B =10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_O/\Delta T$	Output voltage drift			-0.8		mV/°C

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

8/59 DocID2143 Rev 33

b. Minimum load current for regulation is 5 mA.

 $\rm V_I$ = 14 V, $\rm I_O$ = 1 A, $\rm T_J$ = 0 to 125 °C (L7808AC), $\rm T_J$ = -40 to 125 °C (L7808AB), unless otherwise specified $^{\rm (c)}$.

Table 5. Electrical characteristics of L7808A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	7.84	8	8.16	V
V _O	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 10.6 \text{ to 21 V}$	7.7	8	8.3	V
V _O	Output voltage	I _O = 1 A, V _I = 21 to 23 V, T _J = 25°C	7.7	8	8.3	V
		$V_I = 10.6 \text{ to } 25 \text{ V}, I_O = 500 \text{ mA}, $ $T_J = 25^{\circ}\text{C}$		12	80	mV
ΔV _O ⁽¹⁾	Line regulation	V _I = 11 to 17 V		15	80	mV
		V _I = 11 to 17 V, T _J = 25°C		5	40	mV
		V _I = 10.4 to 23 V, T _J = 25°C		12	80	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	I _O = 5 mA to 1.5 A, T _J = 25°C		30	100	mV
		I _O = 250 to 750 mA		10	50	
	Quiocont current	T _J = 25°C		4.3	6	mA
Iq	Quiescent current				6	mA
		V _I = 11 to 23 V, I _O = 500 mA			0.8	mA
ΔI_q	Quiescent current change	V _I = 10.6 to 23 V, T _J = 25°C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz, I _O = 500 mA		62		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
eN	Output noise voltage	T _A = 25°C, B =10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output voltage drift			-0.8		mV/°C

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

c. Minimum load current for regulation is 5 mA.

DocID2143 Rev 33

Electrical characteristics L78

 $\rm V_I$ = 15 V, $\rm I_O$ = 1 A, $\rm T_J$ = 0 to 125 °C (L7809AC), $\rm T_J$ = -40 to 125 °C (L7809AB), unless otherwise specified^(d).

Table 6. Electrical characteristics of L7809A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	8.82	9	9.18	V
Vo	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 10.6 \text{ to } 22 \text{ V}$	8.65	9	9.35	٧
V _O	Output voltage	I _O = 1 A, V _I = 22 to 24 V, T _J = 25°C	8.65	9	9.35	٧
		$V_I = 10.6 \text{ to } 25 \text{ V}, I_O = 500 \text{ mA},$ $T_J = 25^{\circ}\text{C}$		12	90	mV
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 11 to 17 V		15	90	mV
		V _I = 11 to 17 V, T _J = 25°C		5	45	mV
		V _I = 11.4 to 23 V, T _J = 25°C		12	90	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	I _O = 5 mA to 1.5 A, T _J = 25°C		30	100	mV
		I _O = 250 to 750 mA		10	50]
	Quiescent current	T _J = 25°C		4.3	6	mA
I _q	Quiescent current				6	mA
		V _I = 11 to 25 V, I _O = 500 mA			8.0	mA
ΔI_q	Quiescent current change	V _I = 10.6 to 23 V, T _J = 25°C			8.0	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz, I _O = 500 mA		61		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		٧
eN	Output noise voltage	T _A = 25°C, B =10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_{O}/\Delta T$	Output voltage drift			-0.8		mV/°C

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

10/59 DocID2143 Rev 33

d. Minimum load current for regulation is 5 mA.

 $\rm V_I$ = 19 V, $\rm I_O$ = 1 A, $\rm T_J$ = 0 to 125 °C (L7812AC), $\rm T_J$ = -40 to 125 °C (L7812AB), unless otherwise specified^(e).

Table 7. Electrical characteristics of L7812A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	11.75	12	12.25	V
V _O	Output voltage	$I_O = 5$ mA to 1 A, $V_I = 14.8$ to 25 V	11.5	12	12.5	V
V _O	Output voltage	$I_O = 1 \text{ A}, V_I = 25 \text{ to } 27 \text{ V}, T_J = 25^{\circ}\text{C}$	11.5	12	12.5	V
		$V_I = 14.8 \text{ to } 30 \text{ V}, I_O = 500 \text{ mA}, \\ T_J = 25^{\circ}\text{C}$		13	120	mV
ΔV _O ⁽¹⁾	Line regulation	V _I = 16 to 12 V		16	120	mV
		V _I = 16 to 12 V, T _J = 25°C		6	60	mV
		V _I = 14.5 to 27 V, T _J = 25°C		13	120	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C		30	100	mV
		I _O = 250 to 750 mA		10	50	
	Quiescent current	T _J = 25°C		4.4	6	mA
I _q	Quiescent current				6	mA
		V _I = 15 to 30 V, I _O = 500 mA			0.8	mA
ΔI_q	Quiescent current change	V _I = 14.8 to 27 V, T _J = 25°C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	$V_1 = 15 \text{ to } 25 \text{ V}, f = 120 \text{ Hz}, I_O = 500 \text{ mA}$		60		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
eN	Output noise voltage	T _A = 25°C, B = 10 Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_O/\Delta T$	Output voltage drift			-1		mV/°C

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

e. Minimum load current for regulation is 5 mA.

DocID2143 Rev 33

Electrical characteristics L78

 $\rm V_I$ = 23 V, $\rm I_O$ = 1 A, $\rm T_J$ = 0 to 125 °C (L7815AC), $\rm T_J$ = -40 to 125 °C (L7815AB), unless otherwise specified^(f).

Table 8. Electrical characteristics of L7815A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	14.7	15	15.3	V
Vo	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 17.9 \text{ to 28 V}$	14.4	15	15.6	V
Vo	Output voltage	I _O = 1 A, V _I = 28 to 30 V, T _J = 25°C	14.4	15	15.6	V
		$V_I = 17.9 \text{ to } 30 \text{ V}, I_O = 500 \text{ mA}, $ $T_J = 25^{\circ}\text{C}$		13	150	mV
ΔV _O ⁽¹⁾	Line regulation	V _I = 20 to 26 V		16	150	mV
		V _I = 20 to 26 V, T _J = 25°C		6	75	mV
		V _I = 17.5 to 30 V, T _J = 25°C		13	150	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$		30	100	mV
		I _O = 250 to 750 mA		10	50	
	Quippont ourrent	T _J = 25°C		4.4 6	mA	
I _q	Quiescent current				6	mA
		V _I = 17.5 to 30 V, I _O = 500 mA			0.8	mA
ΔI_q	Quiescent current change	V _I = 17.5 to 30 V, T _J = 25°C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V _I = 18.5 to 28.5 V, f = 120 Hz, I _O = 500 mA		58		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
eN	Output noise voltage	T _A = 25°C, B = 10Hz to 100 kHz		10		μV/V _O
R _O	Output resistance	f = 1 kHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_O/\Delta T$	Output voltage drift			-1		mV/°C

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

12/59 DocID2143 Rev 33

f. Minimum load current for regulation is 5 mA.

 $\rm V_I$ = 33 V, $\rm I_O$ = 1 A, $\rm T_J$ = 0 to 125 °C (L7824AC), $\rm T_J$ = -40 to 125 °C (L7824AB), unless otherwise specified $^{(g)}$.

Table 9. Electrical characteristics of L7824A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	23.5	24	24.5	V
V _O	Output voltage	$I_{O} = 5$ mA to 1 A, $V_{I} = 27.3$ to 37 V	23	24	25	V
V _O	Output voltage	$I_O = 1 \text{ A}, V_I = 37 \text{ to } 38 \text{ V}, T_J = 25^{\circ}\text{C}$	23	24	25	V
		$V_{I} = 27 \text{ to } 38 \text{ V}, I_{O} = 500 \text{ mA}, T_{J} = 25^{\circ}\text{C}$		31	240	mV
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 30 to 36 V		35	200	mV
Δνο	Line regulation	V _I = 30 to 36 V, T _J = 25°C		14	120	mV
		V _I = 26.7 to 38 V, T _J = 25°C		31	240	mV
		I _O = 5 mA to 1 A		25	100	
$\Delta V_{O}^{(1)}$	Load regulation	I _O = 5 mA to 1.5 A, T _J = 25°C		30	100	mV
		I _O = 250 to 750 mA		10	50	
	Quiescent current	T _J = 25°C		4.6	6	mA
Iq	Quiescent current				6	mA
		V _I = 27.3 to 38 V, I _O = 500 mA			0.8	mA
Δl_{q}	Quiescent current change	V _I = 27.3 to 38 V, T _J = 25°C			0.8	mA
		I _O = 5 mA to 1 A			0.5	mA
SVR	Supply voltage rejection	V _I = 28 to 38 V, f = 120 Hz, I _O = 500 mA		54		dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
eN	Output noise voltage	T _A = 25°C, B = 10 Hz to 100 kHz		10		μ V/V _O
R _O	Output resistance	f = 1 kHz		20		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _A = 25°C		0.2		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α
$\Delta V_O/\Delta T$	Output voltage drift			-1.5		mV/°C

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

g. Minimum load current for regulation is 5 mA.

DocID2143 Rev 33

Electrical characteristics L78

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 10 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified^(h).

Table 10. Electrical characteristics of L7805C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	4.8	5	5.2	V
Vo	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 7 \text{ to 18 V}$	4.75	5	5.25	V
V _O	Output voltage	$I_O = 1 \text{ A}, V_I = 18 \text{ to } 20\text{V}, T_J = 25^{\circ}\text{C}$	4.75	5	5.25	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 7 to 25 V, T _J = 25°C		3	100	mV
Δ v _O ('')	Line regulation	V _I = 8 to 12 V, T _J = 25°C		1	50	IIIV
ΔV _O ⁽¹⁾	Load regulation	I _O = 5 mA to 1.5 A, T _J = 25°C			100	mV
Δν _Ο , ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			50	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	Quiescent current change	I _O = 5 mA to 1 A			0.5	m 1
Δl _d		V _I = 7 to 23 V			8.0	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1.1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		40		μ V/V _O
SVR	Supply voltage rejection	V _I = 8 to 18 V, f = 120 Hz	62			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.75		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

14/59 DocID2143 Rev 33

h. Minimum load current for regulation is 5 mA.

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 11 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified⁽ⁱ⁾.

Table 11. Electrical characteristics of L7806C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	5.75	6	6.25	V
Vo	Output voltage	I _O = 5 mA to 1 A, V _I = 8 to 19 V	5.7	6	6.3	٧
V _O	Output voltage	I _O = 1 A, V _I = 19 to 21 V, T _J = 25°C	5.7	6	6.3	٧
ΔV _O ⁽¹⁾	Line regulation	V _I = 8 to 25 V, T _J = 25°C			120	mV
Δνοί	Line regulation	V _I = 9 to 13 V, T _J = 25°C			60	IIIV
ΔV _O ⁽¹⁾	Load regulation	I _O = 5 mA to 1.5 A, T _J = 25°C			120	m\/
Δ ν ο ^(*)	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			60	- mV
I _d	Quiescent current	T _J = 25°C			8	mA
41	Quiescent current change	I _O = 5 mA to 1 A			0.5	A
Δl _d		V _I = 8 to 24 V			1.3	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		45		μV/V _O
SVR	Supply voltage rejection	V _I = 9 to 19 V, f = 120 Hz	59			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		٧
R _O	Output resistance	f = 1 kHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.55		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

i. Minimum load current for regulation is 5 mA.

DocID2143 Rev 33 15/59

Electrical characteristics L78

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 14 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified^(j).

Table 12. Electrical characteristics of L7808C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _O	Output voltage	T _J = 25°C	7.7	8	8.3	V	
Vo	Output voltage	$I_O = 5$ mA to 1 A, $V_I = 10.5$ to 21 V	7.6	8	8.4	V	
V _O	Output voltage	I _O = 1 A, V _I = 21 to 25 V, T _J = 25°C	7.6	8	8.4	V	
ΔV _O ⁽¹⁾	Line and Latin	V _I = 10.5 to 25 V, T _J = 25°C			160	m\/	
Δνο, ,	Line regulation	V _I = 11 to 17 V, T _J = 25°C			80	1110	
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			160	mV mA mA mV/°C	m\/
Δνο,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			80		
I _d	Quiescent current	T _J = 25°C			8	mA	
4.1	Ouises and surrent above as	I _O = 5 mA to 1 A			0.5	mA	
Δl _d	Quiescent current change	V _I = 10.5 to 25 V			1		
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C	
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		52		μ V/V _O	
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz	56			dB	
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V	
R _O	Output resistance	f = 1 kHz		16		mΩ	
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.45		Α	
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α	

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

16/59 DocID2143 Rev 33

j. Minimum load current for regulation is 5 mA.

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 14.5 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified^(k).

Table 13. Electrical characteristics of L7885C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	8.2	8.5	8.8	V
Vo	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 11 \text{ to 21.5 V}$	8.1	8.5	8.9	V
V _O	Output voltage	$I_O = 1 \text{ A}, V_I = 21.5 \text{ to } 26 \text{ V}, T_J = 25^{\circ}\text{C}$	8.1	8.5	8.9	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 11 to 27 V, T _J = 25°C			160	mV
ΔνΟ, ,	Line regulation	V _I = 11.5 to 17.5 V, T _J = 25°C			80	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			160	- mV
Δνο, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			80	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	0	I _O = 5 mA to 1 A			0.5	m A
Δl _d	Quiescent current change	V _I = 11 to 26 V			1	— mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		55		μV/V _O
SVR	Supply voltage rejection	V _I = 12 to 22 V, f = 120 Hz	56			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		16		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.45		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

k. Minimum load current for regulation is 5 mA.

DocID2143 Rev 33 17/59

Electrical characteristics L78

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 15 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified^(I).

Table 14. Electrical characteristics of L7809C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	8.64	9	9.36	V
Vo	Output voltage	$I_O = 5 \text{ mA to 1 A}, V_I = 11.5 \text{ to } 22 \text{ V}$	8.55	9	9.45	V
V _O	Output voltage	I _O = 1 A, V _I = 22 to 26 V, T _J = 25°C	8.55	9	9.45	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 11.5 to 26 V, T _J = 25°C			180	mV
Δνο, ,	Line regulation	V _I = 12 to 18 V, T _J = 25°C			90	
ΔV _O ⁽¹⁾	Load regulation	I _O = 5 mA to 1.5 A, T _J = 25°C			180	mV mA
Δν _Ο , ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			90	
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	Ouises and surrent about a	I _O = 5 mA to 1 A			0.5	
Δl _d	Quiescent current change	V _I = 11.5 to 26 V			1	- mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		70		μ V/V _O
SVR	Supply voltage rejection	V _I = 12 to 23 V, f = 120 Hz	55			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		17		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.40		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

18/59 DocID2143 Rev 33

I. Minimum load current for regulation is 5 mA.

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 19 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified^(m).

Table 15. Electrical characteristics of L7812C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	11.5	12	12.5	V
Vo	Output voltage	$I_{O} = 5$ mA to 1 A, $V_{I} = 14.5$ to 25 V	11.4	12	12.6	V
V _O	Output voltage	$I_O = 1 \text{ A}, V_I = 25 \text{ to } 27 \text{ V}, T_J = 25^{\circ}\text{C}$	11.4	12	12.6	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 14.5 to 30 V, T _J = 25°C			240	m\/
Δ ν Ο΄,	Line regulation	V _I = 16 to 22 V, T _J = 25°C			120	- mV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			240	m\/
Δ v O, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			120	mV
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	0	I _O = 5 mA to 1 A			0.5	m A
Δl_{d}	Quiescent current change	V _I = 14.5 to 30 V			1	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		75		μV/V _O
SVR	Supply voltage rejection	V _I = 15 to 25 V, f = 120 Hz	55			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		18		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.35		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

m. Minimum load current for regulation is 5 mA.

DocID2143 Rev 33 19/59

Electrical characteristics L78

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 23 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified⁽ⁿ⁾.

Table 16. Electrical characteristics of L7815C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	14.4	15	15.6	٧
Vo	Output voltage	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = 17.5 \text{ to 28 V}$	14.25	15	15.75	٧
V _O	Output voltage	$I_O = 1 \text{ A}, V_I = 28 \text{ to } 30 \text{ V}, T_J = 25^{\circ}\text{C}$	14.25	15	15.75	٧
ΔV _O ⁽¹⁾	Line regulation	V _I = 17.5 to 30 V, T _J = 25°C			300	mV
Δ ν Ο΄,	Line regulation	V _I = 20 to 26 V, T _J = 25°C			150	IIIV
$\Delta V_{O}^{(1)}$	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			300	mV
Δν ₀ , ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			150	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	0	I _O = 5 mA to 1A			0.5	mA
Δl_{d}	Quiescent current change	V _I = 17.5 to 30 V			1	
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100kHz, T _J = 25°C		90		μV/V _O
SVR	Supply voltage rejection	V _I = 18.5 to 28.5 V, f = 120 Hz	54			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		٧
R _O	Output resistance	f = 1 kHz		19		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.23		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.2		Α

Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

20/59 DocID2143 Rev 33

n. Minimum load current for regulation is 5 mA.

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 26 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified^(o).

Table 17. Electrical characteristics of L7818C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	17.3	18	18.7	V
Vo	Output voltage	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = 21 \text{ to 31 V}$	17.1	18	18.9	V
V _O	Output voltage	$I_O = 1 \text{ A}, V_I = 31 \text{ to } 33 \text{ V}, T_J = 25^{\circ}\text{C}$	17.1	18	18.9	V
$\Delta V_{O}^{(1)}$	Line regulation	V _I = 21 to 33 V, T _J = 25°C			360	mV
Δ ν Ο΄,	Line regulation	V _I = 24 to 30 V, T _J = 25°C			180	IIIV
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5$ mA to 1.5 A, $T_{J} = 25^{\circ}$ C			360	mV
Δ ν Ο, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			180	IIIV
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	Ouises and surrent about a	I _O = 5 mA to 1 A			0.5	m A
Δl_{d}	Quiescent current change	V _I = 21 to 33 V			1	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		110		μV/V _O
SVR	Supply voltage rejection	V _I = 22 to 32 V, f = 120 Hz	53			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		22		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.20		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.1		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

o. Minimum load current for regulation is 5 mA.

DocID2143 Rev 33 21/59

Electrical characteristics L78

Refer to the test circuits, T_J = 0 to 125 °C, V_I = 33 V, I_O = 500 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified^(p).

Table 18. Electrical characteristics of L7824C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	23	24	25	V
Vo	Output voltage	$I_{O} = 5 \text{ mA to 1 A}, V_{I} = 27 \text{ to } 37 \text{ V}$	22.8	24	25.2	V
V _O	Output voltage	$I_O = 1 \text{ A}, V_I = 37 \text{ to } 38 \text{ V}, T_J = 25^{\circ}\text{C}$	22.8	24	25.2	V
ΔV _O ⁽¹⁾	Line regulation	V _I = 27 to 38 V, T _J = 25°C			480	mV
Δ ν Ο΄,	Line regulation	V _I = 30 to 36 V, T _J = 25°C			240	
ΔV _O ⁽¹⁾	Load regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			480	V
Δ v O, ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			240	
I _d	Quiescent current	T _J = 25°C			8	mA
4.1	0	I _O = 5 mA to 1 A			0.5	m 1
Δl_{d}	Quiescent current change	V _I = 27 to 38 V			1	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5 mA		-1.5		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, T _J = 25°C		170		μ V/V _O
SVR	Supply voltage rejection	V _I = 28 to 38 V, f = 120 Hz	50			dB
V _d	Dropout voltage	I _O = 1 A, T _J = 25°C		2		V
R _O	Output resistance	f = 1 kHz		28		mΩ
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		0.15		Α
I _{scp}	Short circuit peak current	T _J = 25°C		2.1		Α

Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

22/59 DocID2143 Rev 33

p. Minimum load current for regulation is 5 mA.

6 Application information

6.1 Design consideration

The L78 Series of fixed voltage regulators are designed with thermal overload protection that shuts down the circuit when subjected to an excessive power overload condition, internal short-circuit protection that limits the maximum current the circuit will pass, and output transistor safe-area compensation that reduces the output short-circuit current as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with capacitor if the regulator is connected to the power supply filter with long lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtained with the arrangement is 2 V greater than the regulator voltage.

The circuit of *Figure 13* can be modified to provide supply protection against short circuit by adding a short circuit sense resistor, RSC, and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three terminal regulator Therefore a four ampere plastic power transistor is specified.

Figure 8. Fixed output regulator

- 1. Although no output capacitor is need for stability, it does improve transient response.
- 2. Required if regulator is located an appreciable distance from power supply filter.

Figure 9. Current regulator

Figure 10. Circuit for increasing output voltage

Figure 11. Adjustable output regulator (7 to 30 V)

 $R_{1} = \frac{V_{BEQ1}}{I_{REQ} \cdot (I_{Q1}/I_{DQ1})}$ $I_{O} = I_{REG} + Q_{1} (I_{REG} \frac{V_{BEQ1}}{R_{1}})$ CS25500 Q1 BD536 $I_{Q1} \rightarrow I_{Q1} \rightarrow I$

Figure 13. High current voltage regulator

Figure 15. Tracking voltage regulator

Figure 16. Split power supply (± 15 V - 1 A)

^{*} Against potential latch-up problems.

Figure 17. Negative output voltage circuit

Figure 18. Switching regulator

Figure 19. High input voltage circuit (configuration 1)

57

Figure 20. High input voltage circuit (configuration 2)

Figure 21. High input and output voltage

Figure 22. Reducing power dissipation with dropping resistor

Figure 23. Remote shutdown

Note: The circuit performs well up to 100 kHz.

Figure 25. Adjustable output voltage with temperature compensation

Note: Q_2 is connected as a diode in order to compensate the variation of the Q_1 V_{BE} with the temperature. C allows a slow rise time of the V_O .

Figure 26. Light controllers $(V_{O(min)} = V_{XX} + V_{BE})$

Figure 27. Protection against input short-circuit with high capacitance loads

Note:

Application with high capacitance loads and an output voltage greater than 6 volts need an external diode (see Figure 22 on page 29) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decrease slowly. The capacitance discharges by means of the base-emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.

L78 Typical performance

7 Typical performance

Figure 29. Peak output current vs. input/output differential voltage

Figure 30. Supply voltage rejection vs. frequency

Figure 31. Output voltage vs. junction temperature

Figure 32. Output impedance vs. frequency

Figure 33. Quiescent current vs. junction temp.

Typical performance L78

L78 Package information

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Package information L78

8.1 TO-220 (dual gauge) package information

Figure 37. TO-220 (dual gauge) package outline øΡ H1 L20 L30 <u>L</u>1 b1(X3) b (X3)

0015988_typeA_Rev_T

Table 19. TO-220 (dual gauge) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L,	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

8.2 TO-220 (single gauge) package information

Figure 38. TO-220 (single gauge) package outline

Table 20. TO-220 (single gauge) mechanical data

Dim		mm				
Dim.	Min.	Тур.	Max.			
А	4.40		4.60			
b	0.61		0.88			
b1	1.14		1.70			
С	0.48		0.70			
D	15.25		15.75			
E	10		10.40			
е	2.40		2.70			
e1	4.95		5.15			
F	0.51		0.60			
H1	6.20		6.60			
J1	2.40		2.72			
L	13		14			
L1	3.50		3.93			
L20		16.40				
L30		28.90				
ØP	3.75		3.85			
Q	2.65		2.95			

8.3 TO-220FP package information

-B-Dia L6 L2 *L7* L3 L4 F2 7012510A-H

Figure 39. TO-220FP package outline

577

Table 21. TO-220FP mechanical data

Dim		mm.	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
В	2.5		2.7
D	2.5		2.75
E	0.45		0.70
F	0.75		1
F1	1.15		1.50
F2	1.15		1.50
G	4.95		5.2
G1	2.4		2.7
Н	10.0		10.40
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
DIA.	3		3.2

8.4 TO-220 packing information

8 <u>5.5</u> MARKING SIDE 11) 532 ±0.5 ±0.2 © (4) (4) (5) (6) (7) 4.3 ±0.2 10 <u>2.2</u>2 13 6.5 ±0.2 6.5 ±0.2 (12) PRINTING AREA – SEE SPEC. DOC. Nr. 0062566
PRINT HEIGHT "A" = 3mm. SECTION A-A 10 (16) (15)

Figure 40. Tube for TO-220 (dual gauge) (mm.)

8.5 DPAK package information

E -THERMAL PAD c2 L2 D 1 <u>L4</u> <u>b(</u>2x) R С SEATING PLANE *A2* (L1) *V2* GAUGE PLANE 0068772_K

Figure 42. DPAK package outline

Table 22. DPAK mechanical data

Dim.	mm				
Dilli.	Min.	Тур.	Max.		
А	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1		5.10			
Е	6.40		6.60		
E1		4.70			
е		2.28			
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
(L1)		2.80			
L2		0.80			
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

Figure 43. DPAK recommended footprint (q)

q. All dimensions are in millimeters

8.6 DPAK packing information

Top cover tolerance on tape +/- 0.2 mm

Top cover power powe

Figure 44. Tape for DPAK

Figure 45. Reel for DPAK

Table 23. DPAK tape and reel mechanical data

	Таре			Reel	
Dim.	n	mm	Dim.	r	nm
Dilli.	Min.	Max.	Dilli.	Min.	Max.
A0	6.8	7	Α		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			•
P0	3.9	4.1		Base qty.	2500
P1	7.9	8.1		Bulk qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

8.7 D²PAK (SMD 2L STD-ST) type A package information

SEATING PLANE
COPLANARITY AT

R

GAUGE PLANE
V2

0079457_T

Figure 46. D²PAK (SMD 2L STD-ST) type A package outline

Table 24. D2PAK (SMD 2L STD-ST) mechanical data

Dim		mm				
Dim.	Min.	Тур.	Max.			
Α	4.40		4.60			
A1	0.03		0.23			
b	0.70		0.93			
b2	1.14		1.70			
С	0.45		0.60			
c2	1.23		1.36			
D	8.95		9.35			
D1	7.50					
E	10		10.40			
E1	8.50					
е		2.54				

Table 24. D²PAK (SMD 2L STD-ST) mechanical data

Dim.	mm				
Dilli.	Min.	Тур.	Max.		
e1	4.88		5.28		
Н	15		15.85		
J1	2.49		2.69		
L	2.29		2.79		
L1	1.27		1.40		
L2	1.30		1.75		
R		0.4			
V2	0°		8°		

8.8 D²PAK (SMD 2L Wooseok-subcon.) package information

SEATING PLANE

QUOT9457, T

Figure 47. D²PAK (SMD 2L Wooseok-subcon.) package outline

477

Table 25. D²PAK (SMD 2L Wooseok-subcon.) mechanical data

Dim	,	mm				
Dim.	Min.	Тур.	Max.			
Α	4.30		4.70			
A1	0		0.20			
b	0.70		0.90			
b2	1.17		1.37			
С	0.45	0.50	0.60			
c2	1.25	1.30	1.40			
D	9	9.20	9.40			
D1	7.50					
Е	10		10.40			
E1	8.50					
е		2.54				
e1	4.88		5.08			
Н	15		15.30			
J1	2.20		2.60			
L	1.79		2.79			
L1	1		1.40			
L2	1.20		1.60			
R		0.30				
V2	0°		3°			

Figure 48. D²PAK (SMD 2L Wooseok-subcon.) recommended footprint

8.9 D²PAK packing information

10 pitches cumulative tolerance on tape +/- 0.2 mm
Top cover tape

For machine ref. only including draft and radii concentric around B0

User direction of feed

Bending radius

AM08852v1

Figure 49. Tape for D²PAK

Figure 50. Reel for D²PAK

Table 26. D²PAK tape and reel mechanical data

	Таре			Reel	
D:	mm		D:	m	ım
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	10.5	10.7	Α		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
Е	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1		Base qty	1000
P2	1.9	2.1	Bulk qty 1000		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

9 Ordering information

Table 27. Order codes

			Order cod	es		
Part numbers	TO-220 (single gauge)	TO-220 (dual gauge)	DPAK	D²PAK	TO-220FP	Output voltages
L7805C	L7805CV		L7805CDT-TR	L7805CD2T-TR	L7805CP	5 V
		L7805CV-DG				5 V
L7805AB	L7805ABV			L7805ABD2T-TR	L7805ABP	5 V
		L7805ABV-DG				5 V
L7805AC	L7805ACV			L7805ACD2T-TR	L7805ACP	5 V
		L7805ACV-DG				5 V
L7806C	L7806CV			L7806CD2T-TR		6 V
		L7806CV-DG				6 V
L7806AB	L7806ABV			L7806ABD2T-TR		6 V
		L7806ABV-DG				6 V
L7806AC	L7806ACV					6 V
		L7806ACV-DG				6 V
L7808C	L7808CV			L7808CD2T-TR		8 V
		L7808CV-DG				8 V
L7808AB	L7808ABV			L7808ABD2T-TR		8 V
		L7808ABV-DG				8 V
L7808AC	L7808ACV					8 V
		L7808ACV-DG				8 V
L7885C	L7885CV					8.5 V
L7809C	L7809CV			L7809CD2T-TR	L7809CP	9 V
		L7809CV-DG				9 V
L7809AB	L7809ABV			L7809ABD2T-TR		9 V
	L7809ABV-DG					9 V
L7809AC	L7809ACV					9 V
L7812C	L7812CV			L7812CD2T-TR	L7812CP	12 V
		L7812CV-DG				12 V
L7812AB	L7812ABV			L7812ABD2T-TR		12 V
		L7812ABV-DG				12 V
L7812AC	L7812ACV			L7812ACD2T-TR		12 V
		L7812ACV-DG				12 V

Ordering information L78

Table 27. Order codes (continued)

			Order cod	les		
Part numbers	TO-220 (single gauge)	TO-220 (dual gauge)	DPAK	D²PAK	TO-220FP	Output voltages
L7815C	L7815CV			L7815CD2T-TR	L7815CP	15 V
		L7815CV-DG				15 V
L7815AB	L7815ABV			L7815ABD2T-TR		15 V
		L7815ABV-DG				15 V
L7815AC	L7815ACV			L7815ACD2T-TR		15 V
		L7815ACV-DG				15 V
L7818C	L7818CV					18 V
		L7818CV-DG				18 V
L7824C	L7824CV			L7824CD2T-TR	L7824CP	24 V
		L7824CV-DG				24 V
L7824AB	L7824ABV					24 V
		L7824ABV-DG				24 V
L7824AC	L7824ACV					24 V
		L7824ACV-DG				24 V

56/59

L78 Revision history

10 Revision history

Table 28. Document revision history

Date	Revision	Changes
21-Jun-2004	12	Document updating.
03-Aug-2006	13	Order codes has been updated and new template.
19-Jan-2007	14	D²PAK mechanical data has been updated and add footprint data.
31-May-2007	15	Order codes has been updated.
29-Aug-2007	16	Added Table 1 in cover page.
11-Dec-2007	17	Modified: Table 27.
06-Feb-2008	18	Added: TO-220 mechanical data Figure 38 on page 38, Figure 39 on page 39, and Table 23 on page 37. Modified: Table 27 on page 58.
18-Mar-2008	19	Added: Table 29: DPAK mechanical data on page 50, Table 30: Tape and reel DPAK mechanical data on page 52. Modified: Table 27 on page 58.
26-Jan-2010	20	Modified Table 1 on page 1 and Table 23 on page 37, added: Figure 38 on page 38 and Figure 39 on page 39, Figure 40 on page 45 and Figure 41 on page 45.
04-Mar-2010	21	Added notes Figure 38 on page 38.
08-Sep-2010	22	Modified Table 27 on page 58.
23-Nov-2010	23	Added: TJ = 25 °C test condition in DVO on Table 3, 4, 5, 6, 7, 8 and Table 9.
16-Sep-2011	24	Modified title on page 1.
30-Nov-2011	25	Added: order codes L7805CV-DG, L7806CV-DG, L7808ABV-DG, L7812CV-DG and L7815CV-DG Table 27 on page 58.
08-Feb-2012	26	Added: order codes L7805ACV-DG, L7805ABV-DG, L7806ABV-DG, L7808CV-DG, L7809CV-DG, L7812ACV-DG, L7818CV-DG, L7824CV-DG Table 27 on page 58.
27-Mar-2012	27	Added: order codes L7812ABV-DG, L7815ABV-DG Table 27 on page 58.
27-Apr-2012	28	Modified: VI = 10.4 to 23 V ==> VI = 11.4 to 23 V test conditon value Line regulation Table 6 on page 13.
10-May-2012	29	Added: order codes L7806ACV-DG, L7808ACV-DG, L7815ACV-DG, L7824ABV-DG and L7824ACV-DG Table 27 on page 58.
19-Sep-2012	30	Modified load regulation units from V to mV in Table 3 to Table 9.
12-Mar-2013	31	Modified: VO output voltage at 25 °C min. value 14.4 V Table 16 on page 23.

Revision history L78

Table 28. Document revision history (continued)

Date	Revision	Changes
04-Mar-2014	32	Part numbers L78xx, L78xxC, L78xxAB, L78xxAC changed to L78. Removed TO-3 package. Updated the description in cover page, Section 2: Pin configuration, Section 3: Maximum ratings, Section 4: Test circuits, Section 5: Electrical characteristics, Section 6: Application information, Section 8: Package information and Table 27: Order codes. Added Section 9: Packaging mechanical data. Minor text changes.
26-Feb-2016	33	Updated Section 8: Package information. Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

