[Cheng P.4-4] Verify that

$$V_1 = C_1/R$$
 and $V_2 = C_2 z/(x^2 + y^2 + z^2)^{3/2}$,

where C_1 and C_2 are arbitrary constants, are solutions of Laplace's equation.

Solution: First, we need to verify that $V_1 = C_1/R$ satisfies the Laplace equation. In spherical coordinates, the Laplacian of V_1 is

$$\nabla^{2}V_{1} = \frac{1}{R^{2}} \frac{\partial}{\partial R} \left(R^{2} \frac{\partial}{\partial R} \left(\frac{C_{1}}{R} \right) \right)$$

$$= \frac{-C_{1}}{R^{2}} \frac{\partial}{\partial R} \left(R^{2} \frac{1}{R^{2}} \right)$$

$$= \frac{-C_{1}}{R^{2}} \frac{\partial}{\partial R} \left(1 \right) = 0$$

$$\implies \nabla^{2}V_{1} = 0$$

which is the Laplace equation, as desired.

Next, we need to verify that $V_2 = C_2 z/(x^2+y^2+z^2)^{3/2}$ satisfies the Laplace equation. Converting to spherical coordinates and taking the Laplacian of V_2 ,

$$\nabla^{2}V_{2} = C_{2} \left[\frac{1}{R^{2}} \frac{\partial}{\partial R} \left(R^{2} \frac{\partial}{\partial R} \left(\frac{R \cos \theta}{R^{3}} \right) \right) + \frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \left(\frac{R \cos \theta}{R^{3}} \right) \right) \right]$$

$$= C_{2} \left[\frac{\cos \theta}{R^{2}} \frac{\partial}{\partial R} \left(R^{2} \frac{\partial}{\partial R} \left(\frac{1}{R^{2}} \right) \right) - \frac{1}{R^{4} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin^{2} \theta \right) \right]$$

$$= C_{2} \left[\frac{-2 \cos \theta}{R^{2}} \frac{\partial}{\partial R} \left(\frac{1}{R} \right) - \frac{2 \sin \theta \cos \theta}{R^{4} \sin \theta} \right]$$

$$= C_{2} \left[\frac{2 \cos \theta}{R^{4}} - \frac{2 \cos \theta}{R^{4}} \right] = 0$$

$$\implies \nabla^{2}V_{2} = 0$$

which is the Laplace equation, as desired.

Answer: Proof problem