MISC Processor instruction set summary

Tobias Markus

October 9, 2013

1 add, addc:

instruction	opcode
add/addc r_d, r_{s2}, r_{s1}	$0001 \ r_{d3}r_{d2}r_{d1}r_{d0} \ r_{s13}r_{s12}r_{s11}r_{s10} \ r_{s23}r_{s22}r_{s21}r_{s20} \ 000C \ 1110 \ 0000 \ 0000$

Operation:

add: $r_d \leftarrow r_{s2} + r_{s1}$

addc: $r_d \leftarrow r_{s2} + r_{s1} + C$

Cycles: 1

2 and

instruction	opcode
and r_d, r_{s2}, r_{s1}	$0001 \ r_{d3} r_{d2} r_{d1} r_{d0} \ r_{s13} r_{s12} r_{s11} r_{s10} \ r_{s23} r_{s22} r_{s21} r_{s20} \ 0100 \ 1100 \ 0000 \ 0000$

Operation:

and: $r_d \leftarrow r_{s2} \wedge r_{s1}$

Cycles: 1

3 branch

instruction	opcode
branch b, s, k	$0110 \ 0 \\ bs_1s_0 \ k_{23}k_{22}k_{21}k_{20} \ k_{19}k_{18}k_{17}k_{16} \ k_{15}k_{14}k_{13}k_{12} \ k_{11}k_{10}k_{9}k_{8} \ k_{7}k_{6}k_{5}k_{4} \ k_{3}k_{2}k_{1}k_{0}$

Operation:

branch: $PC \leftarrow k$ if s in sreg equals b.

Cycles: when jump 2, else 1

4 call

instruction	opcode
call k	$1110\ 0000\ k_{23}k_{22}k_{21}k_{20}\ k_{19}k_{18}k_{17}k_{16}\ k_{15}k_{14}k_{13}k_{12}\ k_{11}k_{10}k_{9}k_{8}\ k_{7}k_{6}k_{5}k_{4}\ k_{3}k_{2}k_{1}k_{0}$

Operation:

call: Writes PC to address stored in the stack pointer r_{15} and jumps to k.

 $r_{15} \leftarrow r_{15} - 1$

Cycles: 2

5 in

instruction	opcode
in r_d, r_s	$1001 \ r_{d3} r_{d2} r_{d1} r_{d0} \ 0000 \ r_{s3} r_{s2} r_{s1} r_{s0} \ 0000 \ 0000 \ 0000 \ 0000$

Operation:

in: Reads the databus value in r_d from address stored in r_s .

Cycles: 1

6 jump

instruction	opcode
jump k	$1110\ 1111\ k_{23}k_{22}k_{21}k_{20}\ k_{19}k_{18}k_{17}k_{16}\ k_{15}k_{14}k_{13}k_{12}\ k_{11}k_{10}k_{9}k_{8}\ k_{7}k_{6}k_{5}k_{4}\ k_{3}k_{2}k_{1}k_{0}$

Operation:

jump: $PC \leftarrow k$

Cycles: 2

7 load

instruction	opcode
load r_d, b, k	$0101 \ r_{d3} r_{d2} r_{d1} r_{d0} b000 \ 0000 \ k_{15} k_{14} k_{13} k_{12} \ k_{11} k_{10} k_9 k_8 \ k_7 k_6 k_5 k_4 \ k_3 k_2 k_1 k_0$

Operation:

load: if b=0 $r_d(15:0) \leftarrow k$, else $r_d(31:16) \leftarrow k$

Cycles: 1

8 nop

instruction	opcode
nop	0000 0000 0000 0000 0000 0000 0000 0000

Operation:

nop: no operation

Cycles: 1

9 out

instruction	opcode
out r_{s1}, r_{s2}	$0010\ 0000\ r_{s13}r_{s12}r_{s11}r_{s10}\ r_{s23}r_{s22}r_{s21}r_{s20}\ 0000\ 0000\ 0000\ 0000$

Operation:

out: Writes the content of r_{s1} to the address stored in r_{s2} to the data bus.

Cycles: 1

10 or

instruction	opcode
or r_d, r_{s2}, r_{s1}	$0001 \ r_{d3}r_{d2}r_{d1}r_{d0} \ r_{s13}r_{s12}r_{s11}r_{s10} \ r_{s23}r_{s22}r_{s21}r_{s20} \ 0011 \ 1100 \ 0000 \ 0000$

Operation:

or: $r_d \leftarrow r_{s2} \vee r_{s1}$

Cycles: 1

11 return

instruction	opcode
return	0000 0000 0000 0000 0000 0000 0000 0001

Operation:

return: Jumps to address stored in r_{15} .

 $r_{15} = r_{15} + 1$ Cycles: 2

$12 ext{ sub/subc}$

instruction	opcode
$sub/subc \ r_d, r_{s2}, r_{s1}$	$0001 \ r_{d3} r_{d2} r_{d1} r_{d0} \ r_{s13} r_{s12} r_{s11} r_{s10} \ r_{s23} r_{s22} r_{s21} r_{s20} \ 011 \mathrm{C} \ 1110 \ 0000 \ 0000$

Operation:

sub: $r_d \leftarrow r_{s2} - r_{s1}$

subc: $r_d \leftarrow r_{s2} - r_{s1} - C$

Cycles: 1

13 svr

instruction	opcode
svr r_d, r_s	$0001 \; r_{d3} r_{d2} r_{d1} r_{d0} \; r_{s3} r_{s2} r_{s1} r_{s0} \; 0000 \; 0010 \; 1110 \; 0000 \; 0000$

Operation:

svr: shift r_s on bit to the right and put the result in r_d .

Cycles: 1

14 xor

instruction	opcode
$xor r_d, r_{s2}, r_{s1}$	$0001 \ r_{d3}r_{d2}r_{d1}r_{d0} \ r_{s13}r_{s12}r_{s11}r_{s10} \ r_{s23}r_{s22}r_{s21}r_{s20} \ 0101 \ 1100 \ 0000 \ 0000$

Operation:

xor: $r_d \leftarrow r_{s2} \otimes r_{s1}$

Cycles: 1