Lista de Exercícios 2

Dispositivos Eletrônicos e Teoria de Exercícios (Boylestad RL, Nashelsky L, Pearson Education do Brasil, 11ª edição – 2013) Capítulo 4 - Polarização CC / TBJ

Ex. 1 (pg. 209)

Para a configuração de polarização fixa da figura 4.118 determine: I_{BQ} , I_{CQ} , V_{CEQ} , V_C , V_B e V_E .

Ex. 3 (pg. 209)

Dada o circuito de polarização fixa da figura 4.120, determine: I_c , V_{CC} , β , R_{B} .

Figura 4.120

Ex. 5 (pg. 209)

Dadas as curvas características de um BJT mostradas na Fig.4.121:

- a) Desenhe a reta de carga sobre as curvas determinada por E=21V, R_C = $3k\Omega$ para uma configuração com polarização fixa.
- b) Escolha um ponto de operação no meio do caminho entre o corte e a saturação. Determine o valor de R_B que estabelece o ponto de operação escolhido.
- c) Quais são os valores resultantes de I_{CQ} e V_{CQ} ?
- d) Qual o valor de β no ponto de operação ?
- e) Qual é o valor de α definido pelo ponto de operação ?
- f) Qual é a corrente de saturação (I_{csat}) para o projeto ?
- g) Esboce a configuração com polarização fixa resultante.
- h) Qual a potência de CC dissipada pelo BJT no ponto de operação ?
- i) Qual a potência fornecida pela fonte V_{CC}?
- J) Qual a potência dissipada pelos elementos resistivos utilizando os cálculos dos itens (h) e (i).

Figura 4.121

Ex. 45 (pg. 215)

Para o circuito com acoplamento da Fig. 4.141, determine:

- a) As tensões V_B, V_C e V_E para cada transistor utilizando o cálculo aproximado).
- b) As correntes I_B , I_C e I_E para cada transistor.

Figura 4.141

Ex. 46 (pg. 215)

Para o amplificador Darlington da Fig. 4.142 determine:

- a) O valor de β_D .
- b) A corrente de base de cada transistor.
- c) A corrente de coletor de cada transistor.
- d) As tensões $C1_7V_{C2}$, V_{E1} e V_{E2} .

Figura 4.142

Ex. 65 (pg. 219)

Para o circuito da figura 4.118, determine:

Figura 4.118

- a) $S(I_{CO})$
- b) $S(V_{BE})$
- c) $S(\beta)$
- d) Determine a variação em I_C se uma alteração nas condições de operação resultar em um aumento de I_{CO} de 0,2 μ A para 10 μ , em uma queda de tensão de V_{BE} 0,7V para 0,5V e em uma elevação de 25% em β .

Ex. 67 (pg. 219)

Para o circuito da figura 4.125, determine:

Figura 4.125

- a) S (I_{co})
- b) S (V_{BE})
- c) $S(\beta)$
- d) Determine a variação líqueida em I_C se uma alteração nas condições de operação resultar em um aumento de I_{CO} de 0,2 μ A para 10 μ , em uma queda de tensão de V_{BE} 0,7V para 0,5V e em uma elevação de 25% em β .