Outline

- Binary-Coded Genetic Algorithm
 - Solution Representation
 - Working Principles Through An Example
 - Initial Population
 - Evaluate population
 - Selection
 - Crossover
 - Mutation
 - Survivor
 - Graphical Example
- 2 Closure

Recap

- Search and optimization
- Applications of optimization
- Properties of optimization problems in practice
- Mathematical problem formulation or modeling
- Remarks on the numerical optimization techniques
- Introduction to evolutionary computation (EC)
- Principles of EC: Genetics, evolution and survival of the fittest
- Generalized framework
- Advantages and limitations of EC techniques
- Behavior of EC run
- No Free Lunch (NLP) Theorem in optimization

Generalized Framework of EC Techniques

Algorithm 1 Generalized Framework

- 1: Solution representation
- 2: **Input**: t := 1 (Generation counter), Maximum allowed generation = T
- 3: Initialize random population (P(t)); %Parent population 4: Evaluate (P(t)); %Evaluate objective, constraints and assign fitness
- 5: while $t \leq T$ do
- 6: M(t) := Selection(P(t));
- 7: Q(t) := Variation(M(t));
- 8: Evaluate Q(t);
- 9: $P(t+1) := \mathsf{Survivor}(P(t), Q(t));$
- 10: t := t + 1;
- 11: end while

%Survival of the fittest

%Offspring population

%Survival of the fittest

%Crossover and mutation

%Genetics

Solution Representation

Decision variables for an optimization problem are represented using Boolean variables in binary-coded genetic algorithm.

- Binary variable: {0,1}
- Real variable
- Discrete and Integer variable

Real Variable (x_i)

- Suppose string length (l) = 5 is chosen for x_i
- Maximum value of binary string of (l)=5, that is, DV(s) of $\{11111\}=b=31$ and minimum value is a=0
- Suppose lower bound is $x_i^{(L)} = 3$ and upper bound is $x_i^{(U)} = 10$

Real Variable Representation

- Value of decision variable, $x_i = x_i^{(L)} + \frac{x_i^{(U)} x_i^{(L)}}{2^l 1} DV(s)$, DV(s) is a decoded value of binary string.
- $x_i = 3 + \frac{7}{31}DV(s)$
- String is $= \{11011\}$
- Decoded value $DV(s) = (1*2^4) + (1*2^3) + (0*2^2) + (1*2^1) + (1*2^0) = 27$
- $x_i = 3 + \frac{7}{31} * 27 = 9.096$
- Precision = 7/31 = 0.226
 - ▶ The neighbor of 9.096 is 9.096 + 0.226 = 9.322.
 - ▶ We cannot get any value of x_i between 9.096 and 9.322.
- If we want a precision of 0.01, then $7/(2^l-1)=0.01$
- $l = \log_2(1 + 7/0.01) = 9.453$ or 10.

Working Principles Through An Example

Rosenbrock Function

Minimize
$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$
, bounds $-5 \le x_1 \le 5$ and $-4 \le x_2 \le 4$.

• Optimum solution is $x^* = (1,1)^T$ and $f(x^*) = 0$

Working Principles: Initial Population

Solution Representation

- Let the chromosome string length is l = 10.
 - First five bits are used to represent x_1 and rest of them for x_2 .

Generate initial random population

- Let the population size is N=8.
- Let the first string is 01100 11010. The

first five bits (01100)	are used to represent
x_1 and the remaining	; bits (11010) for x_2 .

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$
1	01100 11010	12	26
2	11000 01011	24	11
0	00110 00110		

_				
3	00110 00110	6	6	
4	01000 10111	8	23	
5	10100 11101	20	29	
6	01101 01000	13	8	
7	00101 11011	5	27	,

11100 11000

Working Principles: Initial Population

$$x_1 = x_1^{(L)} + \frac{x_1^{(U)} - x_1^{(L)}}{2^l - 1} DV(s)$$

$$x_1 = x_1 + \frac{1}{2^{l}-1}DV(s)$$

= $-5 + \frac{10}{2^{5}-1}DV(s)$.

• The decoded value of (01100) is
$$DV(x_1) = 12$$

$$DV(x_1) = 12.$$

6

• $x_1 = -5 + \frac{10}{2^5 - 1} \cdot 12 = -1.129$

 $\mathsf{DV}(x_1)$ Index Chromosomes

01100 11010 2 11000 01011

3 00110 00110

4 01000 10111 5 10100 11101

01101 01000

00101 11011

11100 11000

12 24 6

8

20

13

5

28

26 11 6

23

29

27

24

 $\mathsf{DV}(x_2)$

2.742

-3.065-2.4191.452

-0.806

4.032

The scaling formula is

 $=-4+\frac{8}{2^{5}-1}DV(s).$

 $DV(x_2) = 26.$

 $x_2 = x_2^{(L)} + \frac{x_2^{(U)} - x_2^{(L)}}{2l-1}DV(s)$

• The decoded value of (11010) is

• $x_2 = -4 + \frac{8}{2^5 - 1}26 = 2.710$

 x_1

-1.129

3.484

-2.4521.935

22

2.710

-1.935

-1.161

-3.3872.968

Working Principles: Evaluate Population

Solution 1

- Let solution 1 is represented as $\mathbf{x}^{(1)} = (-1.129, 2.710)^T$.
- Objective function value:

$$f(-1.129, 2.710) = 100(2.710 - (-1.129)^2)^2 + (1 - (-1.129))^2 = 210.445.$$

Let us choose the fitness value same as the function value.

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$	x_1	x_2	$f(x_1,x_2)$
1	01100 11010	12	26	-1.129	2.710	210.445
2	11000 01011	24	11	2.742	-1.161	7536.407
3	00110 00110	6	6	-3.065	-2.452	14041.882
4	01000 10111	8	23	-2.419	1.935	1546.603
5	10100 11101	20	29	1.452	3.484	189.732
6	01101 01000	13	8	-0.806	-1.935	671.924
7	00101 11011	5	27	-3.387	2.968	7252.209
8	11100 11000	28	24	4.032	2.194	19793.183

Termination Condition

- ullet BGA gets terminated when generation counter is more than the allowed maximum generations, that is, (t>T).
- Some other criterion can also be considered for terminating the algorithm.
- Since it is the first generation, we continue and move to selection operator.

Working Principles: Selection

- The purpose is to identify good (usually above-average) solutions in the population.
- In this process, we eliminate bad solutions in the population.
- We make multiple copies of good solutions.
- Selection can be used either before or after search/variation operators.
 - When selection is used before search/variation operators, it is called as <u>reproduction</u> or selection.
 - After search/variation operators: The process of choosing the next generation population from parent and offspring populations is referred to as <u>survivor</u> or <u>elimination</u>. It is also being referred to as environmental selection.
- Common selection operators are
 - Fitness proportionate selection
 - Tournament selection
 - Ranking selection, etc.

Working Principles: Selection

Binary Tournament Selection Operator

- It is similar to playing a tournament among the teams. Here, binary stands for tournament between two teams.
- Outcome of binary tournament selection operator is: 'win', 'loss' or 'tie'.
- It is performed by picking two solutions randomly and choose the one that has better fitness value.

Working Principles: Binary Tournament Selection Operator

Index	1	2	3	4
Fitness	210.445	7536.407	14041.882	1546.603
Index	5	6	7	8
Fitness	189.732	671.924	7252.209	19793.183

Index	$f(x_1, x_2)$	Winner		Index	$f(x_1, x_2)$	Winner
2	7536.407	Index 4	_	5	189.732	Index 5
4	1546.603			7	7252.209	
7	7252.209	Index 7	_	4	1546.603	Index 4
3	14041.882			2	7536.407	
8	19793.183	Index 6	_	3	14041.882	Index 6
6	671.924			6	671.924	
1	210.445	Index 5	-	8	19793.183	Index 1
5	189.732			1	210.445	

Working Principles: Crossover Operator

- Crossover operator is responsible for creating new solutions. These new solutions explore
 the search space.
- Crossover is performed with probability (p_c) . Generally, the value of p_c is kept high that supports exploration of search space.
- Types of crossover operators
 - Single-point crossover operator
 - n-point crossover operator
 - Uniform crossover operator

Single-point crossover operator

• For performing single-point crossover, two solutions are picked <u>randomly</u> from the pool at a time.

Working Principles: Mating Pool

Mating pool is created after performing selection operator.

Old	New	Chromo-	DV	DV	x_1	x_2	$f(x_1,x_2)$
Index	index	somes	(x_1)	(x_2)			
4	1	01000 10111	8	23	-2.419	1.935	1546.603
7	2	00101 11011	5	27	-3.387	2.968	7252.209
6	3	01101 01000	13	8	-0.806	-1.935	671.924
5	4	10100 11101	20	29	1.452	3.484	189.732
5	5	10100 11101	20	29	1.452	3.484	189.732
4	6	01000 10111	8	23	-2.419	1.935	1546.603
6	7	01101 01000	13	8	-0.806	-1.935	671.924
1	8	01100 11010	12	26	-1.129	2.710	210.445

- Let solutions with the following <u>new indexes</u> are picked for performing crossover.
 - ▶ Solutions {4,7}, {8,2}, {5,1} and {6,3}

- The random numbers are generated for each pair of solutions. These random numbers are compared with p_c for performing crossover.
- Let $p_c = 0.9$.

Pair	Random number (r)	Pair	Random number (r)
{4,7}	0.75	{8,2}	0.23
{5,1}	0.93	{6,3}	0.68

- For the first pair, since $r = 0.75 < p_c = 0.9$, we perform crossover operator.
- Randomly, we choose 8th site to perform crossover.

Index	Chromosome	DV(s)	(x_1, x_2)	$f(x_1, x_2)$
P4:	10100111 01	(20,29)	(1.452, 3.484)	189.732
P7:	01101010 00	(13,8)	(-0.806, -1.935)	671.924
04:	10100111 00	(20,28)	(1.452, 3.226)	125.336
07:	01101010 01	(13,9)	(-0.806, -1.677)	545.121

- For the second pair, since $r = 0.23 < p_c = 0.9$, we perform crossover operator.
- Randomly, we choose 3rd site to perform crossover.

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$	x_1	x_2	$f(x_1,x_2)$
P8	011 0011010	12	26	-1.129	2.710	210.445
P2	001 0111011	5	27	-3.387	2.968	7252.209
08	011 0111011	13	27	-0.806	2.968	540.287
02	001 0011010	4	26	-3.710	2.710	12236.916

• For the third pair, since $r = 0.93 > p_c = 0.9$, we <u>do not</u> perform crossover operator. These solutions are copied directly.

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$	x_1	x_2	$f(x_1,x_2)$
05	1010011101	20	29	1.452	3.484	189.732
01	0100010111	8	23	-2.419	1.935	1546.603

- For the fourth pair, since $r = 0.68 < p_c = 0.9$, we perform crossover operator.
- Randomly, we choose 6th site to perform crossover.

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$	x_1	x_2	$f(x_1,x_2)$
P6	010001 0111	8	23	-2.419	1.935	1546.603
P3	011010 1000	13	8	-0.806	-1.935	671.924
06	010001 1000	8	24	-2.419	2.194	1351.054
03	011010 0111	13	7	-0.806	-2.194	812.047

- We observe that crossover can create good or bad solutions with respect to their parent solutions.
- If a bad solution is created, it will be eliminated during selection in further generations.
- If a good solution is created, it will have multiple copies in further generations.
- As crossover is performed on two parent solutions which survived the tournament selection
 - New solutions/offspring will more likely to preserve good traits of parents and will evolve as better solutions than their parents.

Offspring population after crossover

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$	x_1	x_2	$f(x_1, x_2)$
4	1010011100	20	28	1.452	3.226	125.336
7	0110101001	13	9	-0.806	-1.677	545.121
8	0110111011	13	27	-0.806	2.968	540.287
2	0010011010	4	26	-3.710	2.710	12236.916
5	1010011101	20	29	1.452	3.484	189.732
1	0100010111	8	23	-2.419	1.935	1546.603
6	0100011000	8	24	-2.419	2.194	1351.054
3	0110100111	13	7	-0.806	-2.194	812.047

- Mutation operator is also responsible for search aspect of GA.
- The purpose of mutation is to keep diversity in the population.
- Mutation is generally performed with a small probability (p_m) .

Bit-wise mutation operator

- A solution is chosen with the probability $(p_m = 0.10)$ and a random bit is chosen for mutation.
- Following are the random numbers for performing mutation

Index	Random number (r)	Index	Random number (r)
1	0.05	2	0.32
3	0.15	4	0.01
5	0.06	6	0.24
7	0.5	8	0.54

- For solution 1, since $r = 0.05 < p_m = 0.1$, we perform mutation.
- Randomly, we pick 4th bit-position to mutate 0 to 1, or 1 to 0.

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$	x_1	x_2	$f(x_1,x_2)$
1	010 0 010111	8	23	-2.419	1.935	1546.603
1	010 1 010111	10	23	-1.774	1.935	154.658

- For solution 2, since $r = 0.32 > p_m = 0.1$, we do not perform mutation.
- Copy the solution.

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$	x_1	x_2	$f(x_1, x_2)$
2	0010011010	4	26	-3.710	2.710	12236.916

- For solution 3, since $r = 0.15 > p_m = 0.1$, we do not perform mutation.
- Copy the solution.

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$	x_1	x_2	$f(x_1, x_2)$
3	0110100111	13	7	-0.806	-2.194	812.047

- For solution 4, since $r = 0.01 < p_m = 0.1$, we perform mutation.
- Randomly, we pick 5th bit-position for mutating the bit.

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$	x_1	x_2	$f(x_1, x_2)$
4	1010 0 11100	20	28	1.452	3.226	125.336
4	1010 1 11100	21	28	1.774	3.226	1.208

- For solution 5, since $r = 0.06 < p_m = 0.1$, we perform mutation.
- Randomly, we pick 1st bit-position for mutating the bit.

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$	x_1	x_2	$f(x_1, x_2)$
5	1 010011101	20	29	1.452	3.484	189.732
5	0 010011101	20	29	-3.710	3.484	10585.571

- For other solutions, since $r > p_m$, we do not perform mutation.
- Copy them.

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$	x_1	x_2	$f(x_1,x_2)$
6	0100011000	8	24	-2.419	2.194	1351.054
7	0110101001	13	9	-0.806	-1.677	545.121
8	0110111011	13	27	-0.806	2.968	540.287

Offspring population after mutation

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$	x_1	x_2	$f(x_1,x_2)$
1	0101010111	10	23	-1.774	1.935	154.658
2	0010011010	4	26	-3.710	2.710	12236.916
3	0110100111	13	7	-0.806	-2.194	812.047
4	1010111100	21	28	1.774	3.226	1.208
5	0010011101	20	29	-3.710	3.484	10585.571
6	0100011000	8	24	-2.419	2.194	1351.054
7	0110101001	13	9	-0.806	-1.677	545.121
8	0110111011	13	27	-0.806	2.968	540.287

- Similar to crossover operator, mutation operator can create <u>better or worse solution</u> than parent solution.
- However, good solution will be emphasized and bad solution may get deleted by selection operator in further generations.

Working Principles: Survivor

- It is used to preserve good solutions for the next generation.
- Survivor or elimination stage is also referred to as environmental selection.

$(\mu + \lambda)$ -strategy

- ullet μ stands for parent population and λ stands for offspring population.
- We combine both the population and choose the best solutions for the next generation population.

Working Principles: Survivor

Parent population

Index	$f(x_1,x_2)$
P1	210.445
P2	7536.407
P3	14041.882
P4	1546.603
P5	189.732
P6	671.924
P7	7252.209
P8	19793.183

Offspring population

$f(x_1, x_2)$
154.658
12236.916
812.047
1.208
10585.571
1351.054
545.121
540.287

- Since it is the minimization problem, we select solutions in an ascending order of their fitness values.
- Select O4, O1, P5, P1, O8, O7, P6 and O3.

Working Principles: Survivor

Next generation population

Index	Chromosomes	$DV(x_1)$	$DV(x_2)$	x_1	x_2	$f(x_1, x_2)$
1	1010111100	21	28	1.774	3.226	1.208
2	0101010111	10	23	-1.774	1.935	154.658
3	10100 11101	20	29	1.452	3.484	189.732
4	01100 11010	12	26	-1.129	2.710	210.445
5	0110111011	13	27	-0.806	2.968	540.287
6	0110101001	13	9	-0.806	-1.677	545.121
7	01101 01000	13	8	-0.806	-1.935	671.924
8	0110100111	13	7	-0.806	-2.194	812.047

Closure

- Binary-coded genetic algorithm
 - Generalized framework
 - Solution representation
 - Working principles through an example
 - * selection operator,
 - * crossover and mutation operators,
 - * survivor operator
 - Graphical example