

(2) Bosquem la velocitat amb la que la vagoneta arriba al final de la rampa.

Sabem que la variació d'energia mecànica serà igual al treball de la força de tregament (no conservativa)

WFreg = AEM

 F_{\mp} . L. cos 180° = $\frac{1}{2} m N_B^2 + mg h_B - \frac{1}{2} m N_A^2 + mg h_A$

on F== µN = µmg cos 30°

hB=0, NA=0 i hA = LSin 30

Ens qued 3: - M Mg Cos 30° L = $\frac{1}{2}$ My $\sqrt{3}^2 - \frac{1}{2}$ My L Sin 30° $\sqrt{3}^2 = \sqrt{3} L \left(\sin 30^2 - \mu \cos 30^2 \right) = \sqrt{40.20} \left(0.5 - 0.2.0.87 \right)$ $\sqrt{3}^2 = 8.1 \text{ M/s}$

(b) Per obtenir el temps d'anar d'A & B fem servir l'equació de moliment:

on 2 = Freta segons la 2a llei de Newton

Per saber el valor de la força neta fem el diagrama de

farces:

en P=mg, Px=mg sin 36, Py=mg cos 30°

Les equacions de la 22 llei de Newton queden:

$$N-P_{\gamma}=0$$
 $N=P_{\gamma}=m_{\gamma}\cos 3\delta$ 3

Reemplagant 3 en 2 ens queda:

Mg sin 30 - Mmg cos 30° = MZ

per tant: 2 = g (sin 30 - h cm 30) = 10 (0,5 - 0.2.0,87)

De l'equació (1) tenim:
$$t = \sqrt{\frac{2L}{a}} = \sqrt{\frac{2.20}{3,26}} = \sqrt[3,5s]$$

(c) Per trober la deformació màxima de la molla podem fer servir que l'energia mecànica es conserva en aquest tram de B a C (Punt de màxima compressió) ja que no hi ha fregament:

$$E_{n}^{c} = E_{n}^{8}$$

$$\frac{1}{2}kx_{c}^{2} = \frac{1}{2}mN_{B}^{2}$$

$$X_{c} = \sqrt{\frac{mN_{B}^{2}}{k}} = \sqrt{\frac{50.81}{7410^{4}}} = 0.24 \text{ m}$$

La compressió màxima és de 24 cm.