

Neural Computation

Monday 30th of October

Convolutions

$$s(t) = \sum_{k=-m}^{m} x(t+k) g(k)$$

$$s(t) = \sum_{k=-m}^{m} x(t+k) g(k)$$

Definition of Convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - k)g(k)dk$$

Discrete Version

$$g(k) = 0$$
 outside $[-m, m]$

$$(f * g)(t) = \sum_{k=-\infty}^{\infty} f(t-k) g(k)$$
Flipped $g(k)$

$$s(t) = \sum_{k=-m}^{m} x(t+k) g(k)$$

Definition of Convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - k)g(k)dk$$

Discrete Version

$$g(k) = 0$$
 outside $[-m, m]$

$$(f * g)(t) = \sum_{k=-\infty}^{\infty} f(t + k) g(-k)$$
Flipped $g(k)$

$$s(t) = \sum_{k=-m}^{m} x(t+k) g(k)$$

Weighted averaging is a convolution

Convolutions - Properties

Commutativity

$$f * g = g * f$$

Associativity

$$(f * g) * h = f * (g * h)$$
$$a(f * g) = (af) * g$$

Distributivity

$$(f+g)*h = (f*h) + (g*h)$$

$$(f * g)(t) = \sum_{k=-\infty}^{\infty} f(t-k) g(k) = \sum_{k=-\infty}^{\infty} f(t+k) g(-k)$$

Convolutions - Examples

$$(f * g)(t) = \sum_{k=-\infty}^{\infty} f(t - k) g(k)$$

What is the Result of the Convolution?

$$(f * g)(t) = \sum_{k=-\infty}^{\infty} f(t-k) g(k) = \sum_{k=-\infty}^{\infty} f(t+k) g(-k)$$

What is the Result of the Convolution?

$$(f * g)(t) = \sum_{k=-\infty}^{\infty} f(t-k) g(k) = \sum_{k=-\infty}^{\infty} f(t+k) g(-k)$$

Convolutions - Examples

$$(f * g)(t) = \sum_{k=-\infty}^{\infty} f(t - k) g(k)$$

Convolution Reverb

Convolutional Neural Network

Depending on values, a kernel can cause a wide range of effects

Deconvolution of Images

Jinshan Pan, Zhe Hu, Zhixun Su, and Ming-Hsuan Yang, "Deblurring Text Images via L_0 -Regularized Intensity and Gradient Prior", IEEE Computer Society Conference on Computer Vision and Pattern Recognition (*CVPR*), 2014

Deconvolution in Microscopy

Convolutional Neural Networks

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Associativity (f * g) * h = f * (g * h)

Invariance vs equivariance

Invariance

Equivariance

Case study: VGG16 for ImageNet classification

zero-padding size = 1

Invariant with respect to translation?

Equivariant with respect to translation?

Semantic Segmentation Idea: Fully Convolutional

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Predictions: H x W

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Invariant with respect to translation?

Equivariant with respect to translation?

Semantic Segmentation Idea: Fully Convolutional

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Equivariant with respect to translation!