

b-Tagged Dijets in 2016: 750 GeV?

Laurie McClymont, Andreas Korn

UCL Meeting 20 April 2016

1) Introduction to Analysis

- 2) Future Plans of Analysis
 - Analysis Plan for LHCP 2016

- 3) Flavour Fraction and Fitting Studies
 - My contribution so far

1) Introduction to Analyses

2) Future Plans for Analyses

3) Flavour and Fit Studies

4 Exotic b-Tagged Dijet Motivation

- Dijets are a powerful and general search for Beyond Standard Model Theories
 - Exotic dijet resonant searches have been performed at ATLAS
 - They are sensitive to many BSM models (q*, QBH, W')
- Many BSM models predict resonances that decay to b-quark(s)

- b-Tagging Increases Sensitivity to Such Models
 - QCD background is dominated by light jets (light = u, d, s and gluon)
 - b-Tagging can reduce the QCD background.
 - Increase sensitivity to such types of models

Resonance Analysis

- Follow inclusive dijet search
- Study dijet invariant mass

Two Steps:

Fit to Background

Use smoothly falling function:

$$f(z)=p_1\left(1-z
ight)^{p_2}(z)^{p_3}$$
 where, $z=m/\sqrt{s}$

Search for Discrepancies from Fit

- BumpHunter algorithm is used
- Finds most discrepant region
- Find p-Value using pseudo-experiments

b-Tagged Dijet Resonance Analysis arXiv:1603.08791

Moriond Result for b-Tagged Dijet Analysis

- First such analysis from ATLAS
- 3.2 fb⁻¹, excluding IBL-off data
- **Event Selection** (Full list in backup)
 - **HLT_j360**, Lowest unprescaled trigger
 - m_{ii} > 1.1 TeV, On trigger plateau
 - $|y^*| < 0.6, y^* = 0.5 * \Delta y$
 - Central region more sensitive to BSM
- b-Tagging = MV2c20 @ 85% Eff. WP
 - Two categories; >= 1 b-tag, 2 b-tag.

bumpHunter p-Values = 0.87, 0.71 (>= 1 b-tag, 2 b-tag)

<u>Limits Set</u>	ATLAS 13 TeV, 3.2fb ⁻¹	CMS 8 TeV, 3.2fb ⁻¹
b* Quark	2.1 TeV	1.54 TeV
Z' Boson	1.5 TeV (Leptophobic)	1.68 TeV (Sequential SM)

1) Introduction to Analyses

2) Future Plans for Analyses

3) Flavour and Fit Studies

- Motivation to go to lower masses
 - Cross over between yy and bb?
 - Weak limits on BSM in bb at low mass.
 - Further discussion. e.g. <u>arXiv:1512.04933</u>
 - We should study this region...

- **Currently two parallel plans**
 - Reuse 2015 data for LHCP 2016
 - Focus on low mass, 750 GeV
 - Fast paced analysis (13-18th June)
 - Use 2016 data for ICHEP 2016
 - More luminosity; **High and low mass analyses**
 - More time for this analyses (3rd-10th August)

10 Extending to Lower Masses - bJet Triggers

We can get to lower masses

- 2015: limited by trigger usage.
- Possible with use of new triggers

b-Jet Triggers

- HLT_j175_bmedium_j60_bmedium
- Trigger on two onine b-tagged jets
- We get to m_{ii} = 500 GeV

b-Jet Triggers have been studied

- b-jet trigger efficiencies exist
- Derived using fully leptonic ttbar
 - Set of special b-jet triggers
 - Offline selection eµ and 2 b-jets

1 Sensitivity Study using b-Jet Triggers

- Consider simple scalar model
 - Couples to only γγ and bb
 - Using 'observed' $\sigma_{\gamma\gamma}$ and Γ
 - We get σ_{bb} ~ 2.1 pb for 13 TeV
 - No limit exists at √s = 13 TeV
- Quick sensitivity study on 2015 data
 - Fit to data, 500 < m_{jj} < 1000 GeV
 - Blind 700-800 GeV
 - ~10% acceptance (from Z')
 - Find expected Gaussian limits
 - No systematics considered yet
- Event Selection (full list in backup)
 - HLT_j175_bmedium_j60_bmedium
 - 2 b-tagged jets (70% WP)
- $\sigma_{bb} \sim 2$ pb limit can be set (optimistic)
- We can try and exclude with 2015 data.

1) Introduction to Analyses

2) Future Plans for Analyses

3) Flavour and Fit Studies

Flavour fractions with just offline tagging

- Show that offline tagging doesn't sculpt background
- Show that after offline tagging we are have good bb purity
- Offline b-tagging gives upper limit on non-b flavour contribution

Why not include online tagging?

- Different WPs in MC and Data so not comparable!

Use Pythia8 Dijet MC

Event Selection

Same as sensitivity study

- No Trigger in MC
- Two b-Tags
 70% Eff. WP

- Leading jet p_T > 200 GeV, |η| < 2.5
- Subleading jet p_T > 80 GeV, |η| < 2.5
- $|y^*| < 0.6$
- 500 < m_{ii} < 1200 GeV

- Show that offline tagging doesn't sculpt background
 => Flavour fractions are smooth (within errors)
- Show that after offline tagging we are have good bb purity
 => High b-jet purity (bb ~ 70%)
- Offline b-tagging gives upper limit on non-b flavour contribution
 => II will contribute ~ 1% or less

Spurious Signal Check

LUCL

Look for spurious signal

- Fit to MC using fit function
- Search for bumps using BH
- Any features in MC that can't be fitted to will show.

bJet Trigger Emulated

- HLT_j175_bmedium_j60_bmedium
- Use derived bJet Trigger Eff.
- Justified by high b-jet purity
- Smoothed using Landau fit

Event Selection

- Same as before
- Fit range 0.5 < m_{jj} < 1.2 TeV
- Two 70% Offline b-tags

Calculate p-Values

Using pseudo experiments

 χ^2 p-value = 0.41

BumpHunter p-value = 0.58

Effective Entries

- Dijet is a rapidly falling spectrum in m_{jj}
 - We want MC with good stats across whole range
- To produce MC, produce several slices in m_{jj}, with the same number of entries
 Effective Entries
- To create a representative distribution, re-weight by (σ x L / N_{eff})
 - Scaled distribution

- No Trigger
- Leading jet p_T > 200 GeV
- Subleading jet p_T > 80 GeV
- Jet $|\eta| < 2.5$
- $|y^*| < 0.6$
- Trigger Eff. Applied
- Double b-tag 70%

Scaled > Eff. Entries =>

Not Poisson Like Errors

Next Steps

UCL

Currently Two Key Problems

- We have some plans to solve the issues

Showing that online trigger will not sculpt

- Using trigger currently in MC
 - Not the same WP
 - Low stats maybe a problem
 - Will give us an idea
- Emulate light/c-jet efficiency
 - Light-jet efficiency estimation from ttbar
 - Fully leptonic sample
 - So what non b-jets here?
- Fit to Data with only trigger on
 - Show that it is smooth?

Low stats for spurious signal test

- Emulate offline tagging
- Can usse eff. derived from ttbar
- These exist from Moriond paper

Backup!

Flavour Composition 750 GeV - bJet Trigger

- HLT_j175_bmedium_j60_bmedium
- Leading jet p_T > 200 GeV, |η| < 2.5
- Subleading jet p_T > 80 GeV, |η| < 2.5
- $|y^*| < 0.6$

No Trigger Eff. Applied

• 70% / 85% Eff. Point

- Dominant bb contribution
- Different Trigger WP in MC and Data

BumpHunter

