1 Транспортная задача. Постановка, математическая модель. Свойства классической ТЗ

1.1 Постановка задачи

- m поставщиков однородной продукции (источников);
- n потребителей однородной продукции (стоков);
- a_i запасы i-го поставщика;
- b_j потребности (спрос) j-го потребителя;
- c_{ij} стоимость перевозки из пункта i в пункт j;
- x_{ij} количество груза, перевезённого из пункта i в пункт j.

1.2 Математическая модель

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min$$

$$\sum_{j=1}^{n} x_{ij} \le a_i, \quad i = \overline{1, m}$$

$$\sum_{i=1}^{m} x_{ij} \ge b_j, \quad j = \overline{1, n}$$

$$x_{ij} \ge 0, \quad i = \overline{1, m}, \quad j = \overline{1, n}$$

1.3 Определение закрытой и открытой задач

Определение 1. Транспортная задача, в которой сумма запасов равна сумме потребностей, называется **закрытой**. В противном случае задача называется **открытой**.

В случае, если транспортная задача является открытой, невозможно удовлетворить всех потребителей (если сумма потребностей больше суммы запасов) или вывезти все грузы от поставщиков (если сумма запасов больше, чем сумма потребностей).

1.4 Классическая транспортная задача

- m поставщиков однородной продукции (источников);
- n потребителей однородной продукции (стоков);
- a_i мощность i-го источника;
- b_j мощность j-го стока;
- c_{ij} стоимость перевозки из пункта i в пункт j.

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \to \min$$

$$\sum_{j=1}^{n} x_{ij} = a_i, \quad i = \overline{1, m}$$

$$\sum_{i=1}^{m} x_{ij} = b_j, \quad j = \overline{1, n}$$

$$x_{ij} \ge 0, \quad i = \overline{1, m}, \quad j = \overline{1, n}$$

1.5 Приведение открытой ТЗ к закрытой

1) Если сумма запасов больше суммы потребностей $\left(\sum_{i=1}^m a_i > \sum_{j=1}^n b_j\right)$, то введём в таблицу ещё одного потребителя, потребность которого определим как

$$\sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j.$$

Так как грузы к новому потребителю (фиктивному) отправляться не будут, то и стоимость этих перевозок равна нулю, т.е. цены (тарифы) в новой строке будут равны 0.

2) Если сумма запасов меньше суммы потребностей $\left(\sum_{i=1}^m a_i < \sum_{j=1}^n b_j\right)$, то вводим в таблицу ещё одного поставщика, запас груза у которого определим как

$$\sum_{j=1}^{n} b_j - \sum_{i=1}^{m} a_i.$$

Цены в новом столбце проставим равными нулю из тех же соображений, что и в первом случае.

1.6 Решение транспортной задачи

- Любая транспортная задача, как задача ЛП, может быть решена симплексметодом. Однако специфика задач рассмотренного класса (каждая неизвестная входит лишь в два уравнения-ограничения, и коэффициенты при неизвестных в ограничениях равны единице) позволила выработать более эффективные вычислительные методы.
- Транспортную задачу можно представить с помощью сети, что позволяет использовать для их решения эффективные алгоритмы.

Теорема 1. Необходимым и достаточным условием разрешимости транспортной задачи является равенство суммы запасов сумме потребностей.

Так как транспортная задача является задачей линейного программирования, то и методика нахождения оптимального решения остаётся той же:

- находится первоначальный опорный план,
- проверяется на оптимальность, и если план не оптимален, то
- переход к другому опорному плану, улучшающему целевую функцию в смысле оптимума (а именно уменьшающую значение целевой функции).

Критерий отсутствия решения не требуется, так как решению подлежат лишь закрытые ТЗ.