INTERACTIVE, VISUAL LEARNING-BASED TOOL FOR HEARING-IMPAIRED CHILDREN TO IMPROVE LANGUAGE SKILLS

22_23-J 18

Status Document - 1

Udbhasa M M S IT19188928

BSc (Hons) in Information Technology Specializing in Data Science

Department of Information Technology

Sri Lanka Institute of Information Technology Sri Lanka

February 2023

TABLE OF CONTENTS

1 Introduction	3
2 Meetings	5
2.1 Physical Meetings	
2.2 Online Meetings	8
3 Screenshots of Chats	13
4 Work-breakdown Structure	19
5 Gantt Chart	20
6 Task Outputs	21
7 Repository and documentation	25
8 Work Planner Graphs	28
9 Field Visits	29

1. INTRODUCTION

Project introduction

Hearing impairment is a sensory disability that hinders linguistic development. Language proficiency among the hearing-impaired community is reported to be low compared to hearing peers. Research has proven that if a child has not acquired a first language in early childhood when the brain plasticity changes, there is a risk that the child might not be able to be completely fluent in any language in their life. Language acquisition at an early age is automatic if it is engaged regularly and meaningfully.

Children with disabilities have different mental operations compared to hearing peers, which leads to sensory and/or motor deficits, making reading and writing more challenging. Researchers have found that hearing impaired people typically find reading and writing challenging compared to hearing peers.

Reading and writing involve a complex thinking process. Writing involves the choice of words, organization, purpose, audience, clarity, sequence, and transcription. Competency in writing is greatly influenced by the vocabulary, knowledge of synthetical structures, planning composition, reviewing, and revising. Researchers have found a link between disabilities and linguistic skills. Missing "phonological processing" is responsible for poor reading and writing skills among hearing-impaired children. Poor phonological awareness holds responsible for the difficulty in identifying and remembering orthographic forms of words and difficulty in guessing the order of the sounds and poses.

Introduction to individual component

Speech therapy module employs techniques for training a hearing-impaired child for language skills and it also improves the cognition of the child by providing a gamified environment while doing the speech training.

Lip reading is the main mode of validating speech when noise is present. The input from the camera captures the facial landmarks and the lip movements.

For the facial landmark detection blazeface deep learning model is used since it's optimized for running in mobile devices and it yields high accuracy for facial landmark detections. t runs at a speed of 200-1000+ FPS on flagship devices. This super-realtime performance enables it to be applied to any augmented reality pipeline that requires an accurate facial region of interest as an input for task-specific models, such as 2D/3D facial keypoint or geometry estimation, facial features or expression classification, and face region segmentation.

The coordinates relevant to the lips are extracted from the model output. When doing the training, a unique fingerprint is generated for specific pronounced word by mapping coordinates with time axis. When testing against the child pronunciation similarity score is calculated even the child's voice is not loud enough or noise is present.

The audio will also be captured concurrently to assess the similarity of pronunciation. It will be assessed using convolutional neural networks (CNN). A generated text will be shown, and corresponding lip movements also visualized for the pronunciation.

According to the user's pronunciation a composite score will be calculated based on both lip detection and the audio processing. Using the above-mentioned techniques, a feedback mechanism can be created where several speech therapy practices can be implemented in future.

2. MEETINGS

2.1 Physical Meetings

Photographs taken at physical group meetings and planning sessions

2.2 Online Meetings

Microsoft teams software is used as the primary communication method during the whole period

Daily Standup is being conducted for daily updates and progress check

Following snapshots are taken as a proof of online meetings conducted through MS Teams.

Following snapshots are taken as a proof of online meetings conducted with supervisor and co-supervisor via WhatsApp.

3 SCREENSHOTS OF CHATS

4 WORK-BREAKDOWN STRUCTURE

Figure 1: WBS

5 GANTT CHART

Figure 2: Gantt chart

6 TASK OUTPUTS

Model training/testing

Model	FPS (On Colab GPU)	FPS (On Apple M1 CPU)
Haar cascade	-	19.95
Dlib	-	33.92
SSD	19.90	15.58
MTCNN	2.11	1.81
Blazeface	525.63	225.34
RetinaFace Resnet50	72.24	1.43
RetinaFace MobilenetV1	69.50	28.89
Dual Shot Face Detector	18.89	0.22
YuNet	-	49.43

Face detetction model perfortmance comparison

Hi, Starting face detection INFO: Created TensorFlow Lite XNNPACK delegate for CPU. Frames per second using video.get(cv2.CAP_PROP_FPS) : 23.976023976023978 Frames per second using video.get(cv2.CAP_PROP_FPS) : 23.976023976023978

Face detection

Extract mesh points

Lip detection

```
landmark {
    x: 8.5541493
    y: 8.5755461
    z: 8.804211265
}
frozenset({(278, 489), (176, 149), (37, 8), (84, 17), (318, 324), (293, 334), (386, 385), (7, 163), (33, 246), (17, 314), (374, 388), (251, 389), (398, 373), (267, 269)
Frames per second using video.get(cv2.CAP_PROP_FPS) : 38.8
```

Lip mesh points

```
▶ 0:00 / 0:01 —
[ ] imported = tf.saved_model.load("content/saved")
   rslt = imported(tf.constant(str(data_dir/audiof)))
   [ ] prd = rslt['predictions'][0]
x_labels = ['go', 'yes', 'left', 'no', 'down', 'up', 'right', 'stop']
   plt.bar(x_labels, prd)
   plt.gca().set_ylim(bottom=0)
   plt.show()
   p.convert(x_labels[2])
                  Prediction
    5 -
    3 ·
    2 -
    0 -
           yes left
                   no down up right stop
    'lεft'
```

Audio processing

7 REPOSITORY AND DOCUMENTATION

master v

You can move around the graph by using the arrow keys.

Documentation

Main Objecive

language skills.

To implement an interactive Mobile and Web-based learning tool for hearing impaired children and to improve the overall language proficiency while bridging the skills gap between the hearing peers. This should be accomplished by using visual learning and speech therapy in an engaging way.

Main Research question

Hearing impairment is a sensory disability that hinders linguistic development. Language proficiency among the hearing-impaired community is reported to be low compared to hearing peers [2]. Research has proven that if a child has not acquired a first language in early childhood when the brain plasticity changes, there is a risk that the child might not be able to be completely fluent in any language in their life [3]. Language acquisition at an early age is automatic if it is engaged regularly and meaningfully [1].

Children with disabilities have different mental operations compared to hearing peers, which leads to sensory and/or motor deficits, making reading and writing more challenging. Researchers have found that hearing impaired people typically find reading and writing challenging compared to hearing peers [4].

Reading and writing involve a complex thinking process. Writing involves the choice of words, organization, purpose, audience, clarity, sequence, and transcription. Competency in writing is greatly influenced by the vocabulary, knowledge of synthetical structures, planning composition, reviewing, and revising. Researchers have found a link between disabilities and linguistic skills ingrip orthological processing" is responsible for poor reading and writing skills among hearing-impaired children. Poor phonological awareness holds responsible for the difficulty in identifying and remembering orthographic forms of words and difficulty in guessing the order of the sounds and poses [4].

In order to develop the linguistic skills of hearing-impaired children, primarily visual learning methods are used. Most existing systems provide translation between spoken language to sign language which does not necessarily aim to develop linguistic competency. To teach young hearing-impaired children, software-based visual learning tools are used in schools. But they often have a limited vocabulary and are does not provide complex learning materials that are crucial to learning the choice of words, word organization, synthetical structures, etc. Those systems do not support explorative learning. Explorative learning at an early age is crucial as if the child does not develop communication and language, it is difficult to achieve later [5]. Being able to keep the visual attention of the child is crucial to success in visual learning which most of the existing systems have not addressed.

Individual Research components

IT19188928 - M.M.S. Udbhasa

Lip reading and speech therapy

8 WORK PLANNER RECORDS

9 FIELD VISITS

Lady Ridgeway Hospital for Children (LRH)

The School for the Deaf, Ratmalana

Photographs taken on multiple field visits to CEHIC, Dalugama

Photographs taken from field visit to Wickramarachchi Hearing Care Centre

