Minimal set of inference rules

This set of inference rules provides a type system that is ?decidable?, with a condition that all op definitions must have an annotation.

Notation

- All latin letters represent a single element type.
- All greek letters represent a monoid of stack element types.
- " τ " is a special case and represents a singleton.
- "." denotes a monoid concatenation, e.g., mappend in Haskell.
- "[pre][post]" represents an operator type. Where pre and post represent the argument and the return stack element types respectively.
- An operator(s) between the stack descriptions is a shorthand, e.g., writing [a,b] foo bar[c,d] is equivalent to foo bar : [a,b][c,d]
- The leftmost element in the stack type description is the most recently pushed, e.g., []foo bar baz[Baz, Bar, Foo].

Specialization rule

Specialization rule for stack element types

$$\frac{\tau' = \{a \mapsto a'\}\tau}{\tau \sqsubseteq \tau'} \tag{Spec}$$

LHS is considered an \sqsubseteq of RHS when there exists a substitution that turns the LHS into the RHS.

Specialization rule for operator types

$$\frac{[\alpha'][\beta'] = \{\tau_i \mapsto \tau_i'\}[\alpha][\beta]}{[\alpha][\beta] \sqsubseteq [\alpha'][\beta']}$$
 (Spec)

Relaxed specialization with nop postfix

$$\frac{[\alpha][\beta] \sqsubseteq [\alpha'][\beta']}{[\alpha][\beta] \sqsubseteq [\alpha' \cdot \gamma][\beta' \cdot \gamma]}$$
 (Nop postfix)

This rule is heavily used in the pattern matching to check if the case arms have the same type signature.

Operator name

$$\frac{[\alpha] \mathsf{op}[\beta] \in \Gamma}{\Gamma \vdash [\alpha] \mathsf{op}[\beta]} \tag{Op}$$

As a consequence, all operators should have an annotation. This allows the type system to get rid of the generalization rule from the HM completely

Instantiation

$$\frac{\Gamma \vdash [\alpha'] \mathsf{op}[\beta'] \quad [\alpha'][\beta'] \sqsubseteq [\alpha][\beta]}{\Gamma \vdash [\alpha] \mathsf{op}[\beta]} \tag{Inst}$$

Instantiation is the same as in the HM.

Pattern matching

$$\frac{\Gamma \vdash [\alpha_i] \mathsf{destr1} \ \mathsf{body1}[\beta_i] \sqsubseteq [\alpha][\beta] \quad \forall (\mathsf{constr}, \mathsf{body})}{\Gamma \vdash [\alpha] \mathsf{case} \{\mathsf{constr1} \{ \mathsf{body1} \}, \ldots \}[\beta]} \tag{Case}$$

Where destructor is a constructor with its pre and post flipped, i.e.

$$\operatorname{destr}([\alpha] \operatorname{constr}[\beta]) = [\beta][\alpha]$$

An important thing to note is that this inference rule states that all match arms must have an op type that is \sqsubseteq of the whole case expression op type.

Chaining

Operator chaining is split into 2+1 possible variants: overflow, underflow, and exact, with the last being a consequence of any of the first two.

Overflow

$$\frac{\Gamma \vdash [\alpha] \mathbf{x} [\beta \cdot \gamma] \quad [\psi] \mathbf{y} [\omega] \qquad \beta_i \sqsubseteq \psi_i}{\Gamma \vdash [\alpha] \mathbf{x} \ \mathbf{y} [\omega \cdot \gamma]}$$
(Overflow)

Underflow

$$\frac{\Gamma \vdash [\alpha] \mathbf{x}[\beta] \qquad [\chi \cdot \psi] \mathbf{y}[\omega] \qquad \beta_i \sqsubseteq \chi_i}{\Gamma \vdash [\alpha \cdot \psi] \mathbf{x} \ \mathbf{y}[\omega]}$$
(Underflow)

Exact

$$\frac{\Gamma \vdash [\alpha] \mathbf{x}[\beta] \qquad [\psi] \mathbf{y}[\omega] \qquad \beta_i \sqsubseteq \psi_i}{\Gamma \vdash [\alpha] \mathbf{x} \ \mathbf{y}[\omega]}$$
(Underflow)

Standard operations: dup, del, bury, dig

$$\frac{}{\Gamma \vdash [\tau] \mathrm{dup}[\tau,\tau]} \tag{Dup}$$

$$\frac{}{\Gamma \vdash [\tau] \mathtt{del}[]} \tag{Del)}$$

$$\frac{||\alpha|| = n}{\Gamma \vdash [\tau \cdot \alpha] \mathtt{br-n}[\alpha \cdot \tau]} \tag{Bury}$$

$$\frac{||\alpha|| = n}{\Gamma \vdash [\alpha \cdot \tau] \mathsf{dg-n}[\tau \cdot \alpha]} \tag{Dig}$$

All four primitive operators are self explanatory, and are related to the stack elements manipulation. $\,$