NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 6, Lecture 1

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Backtracking

- * Systematically search for a solution
- * Build the solution one step at a time
- * If we hit a dead-end
 - * Undo the last step
 - * Try the next option

- * Place 8 queens on a chess board so that none of them attack each other
- * In chess, a queen can move any number of squares along a row column or diagonal

- * Place 8 queens on a chess board so that none of them attack each other
- * In chess, a queen can move any number of squares along a row column or diagonal

- * Place 8 queens on a chess board so that none of them attack each other
- * In chess, a queen can move any number of squares along a row column or diagonal

- * Place 8 queens on a chess board so that none of them attack each other
- * In chess, a queen can move any number of squares along a row column or diagonal

- * Place N queens on an N x N chess board so that none attack each other
- *N = 2, 3 impossible

* Place N queens on an N x N chess board so that none attack each other

*N = 2, 3 impossible

- * Place N queens on an N x N chess board so that none attack each other
- *N = 2, 3 impossible
- *N = 4 is possible

- * Place N queens on an N x N chess board so that none attack each other
- *N = 2, 3 impossible
- *N = 4 is possible
- * And all bigger N as well

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column

- * Clearly, exactly one queen in each row, column
- * Place queens row by row
- * In each row, place a queen in the first available column
- * Can't place a queen in the 8th row!

* Can't place the a queen in the 8th row!

- * Can't place the a queen in the 8th row!
- * Undo 7th queen, no other choice

- * Can't place the a queen in the 8th row!
- * Undo 7th queen, no other choice
- * Undo 6th queen, no other choice

- * Can't place the a queen in the 8th row!
- * Undo 7th queen, no other choice
- * Undo 6th queen, no other choice
- * Undo 5th queen, try next

- * Can't place the a queen in the 8th row!
- * Undo 7th queen, no other choice
- * Undo 6th queen, no other choice
- * Undo 5th queen, try next

Backtracking

- * Keep trying to extend the next solution
- * If we cannot, undo previous move and try again
- * Exhaustively search through all possibilities
- * ... but systematically!

Coding the solution

- * How do we represent the board?
- * n x n grid, number rows and columns from 0 to n-1
 - * board[i][j] == 1 indicates queen at (i,j)
 - * board[i][j] == 0 indicates no queen
- * We know there is only one queen per row
- * Single list board of length n with entries 0 to n-1
 - * board[i] == j:queen in row i, column j, i.e. (i,j)

Overall structure

```
def placequeen(i,board): # Trying row i
  for each c such that (i,c) is available:
    place queen at (i,c) and update board
    if i == n-1:
      return(True) # Last queen has been placed
    else:
      extendsoln = placequeen(i+1,board)
    if extendsoln:
      return(True) # This solution extends fully
    else:
      undo this move and update board
  else:
    return(False) # Row i failed
```

Updating the board

- * Our 1-D and 2-D representations keep track of the queens
- * Need an efficient way to compute which squares are free to place the next queen
- * n x n attack grid
 - * attack[i][j] == 1 if (i,j) is attacked by a queen
 - * attack[i][j] == 0 if (i,j) is currently available
- * How do we undo the effect of placing a queen?
 - * Which attack[i][j] should be reset to 0?

Updating the board

- * Queens are added row by row
- * Number the queens 0 to n-1
- * Record earliest queen that attacks each square
 - * attack[i][j] == k if (i,j) was first attacked by queen k
 - * attack[i][j] == -1 if (i,j) is free
- * Remove queen k reset attack[i][j] == k to -1
 - * All other squares still attacked by earlier queens

Updating the board

- * attack requires n² space
 - * Each update only requires O(n) time
 - * Only need to scan row, column, two diagonals
- * Can we improve our representation to use only O(n) space?

A better representation

- * How many queens attack row i?
- * How many queens attack row j?
- * An individual square (i,j) is attacked by upto 4 queens
 - * Queen on row i and on column j
 - * One queen on each diagonal through (i,j)

* Decreasing diagonal: column - row is invariant

* Decreasing diagonal: column - row is invariant

- * Decreasing diagonal: column row is invariant
- * Increasing diagonal:column + row is invariant

- * Decreasing diagonal: column row is invariant
- * Increasing diagonal:column + row is invariant

- * Decreasing diagonal: column row is invariant
- * Increasing diagonal: column + row is invariant
- * (i,j) is attacked if
 - * row i is attacked
 - * column j is attacked
 - * diagonal j-i is attacked
 - * diagonal j+i is attacked

O(n) representation

- * row[i] == 1 if row i is attacked, 0..N-1
- * col[i] == 1 if column i is attacked, 0..N-1
- * NWtoSE[i] == 1 if NW to SE diagonal i is attacked, -(N-1) to (N-1)
- * SWtoNW[i] == 1 if SW to NE diagonal i is attacked, 0 to 2(N-1)

Updating the board

```
* (i,j) is free if
row[i]==col[j]==NWtoSE[j-i]==SWtoNE[j+i]==0

* Add queen at (i,j)
board[i] = j
```

```
board[i] = j
(row[i],col[j],NWtoSE[j-i],SWtoNE[j+i]) =
(1,1,1,1)
```

* Remove queen at (i,j)

Implementation details

- * Maintain board as nested dictionary
 - * board['queen'][i] = j : Queen located at (i,j)
 - * board['row'][i] = 1: Row i attacked
 - * board['col'][i] = 1: Column i attacked
 - * board['nwtose'][i] = 1:NWtoSW diagonal i
 attacked
 - * board['swtone'][i] = 1:SWtoNE diagonal i
 attacked

Overall structure

```
def placequeen(i,board): # Trying row i
  for each c such that (i,c) is available:
    place queen at (i,c) and update board
    if i == n-1:
      return(True) # Last queen has been placed
    else:
      extendsoln = placequeen(i+1,board)
    if extendsoln:
      return(True) # This solution extends fully
    else:
      undo this move and update board
  else:
    return(False) # Row i failed
```

All solutions?

```
def placequeen(i,board): # Try row i
  for each c such that (i,c) is available:
    place queen at (i,c) and update board
    if i == n-1:
       record solution # Last queen placed
    else:
       extendsoln = placequeen(i+1,board)
    undo this move and update board
```

NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 6, Lecture 2

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Recall 8 queens

```
def placequeen(i,board): # Trying row i
  for each c such that (i,c) is available:
    place queen at (i,c) and update board
    if i == n-1:
      return(True) # Last queen has been placed
    else:
      extendsoln = placequeen(i+1,board)
    if extendsoln:
      return(True) # This solution extends fully
    else:
      undo this move and update board
  else:
    return(False) # Row i failed
```

Global variables

- * Can we avoid passing board explicitly to each function?
- * Can we have a single global copy of board that all functions can update?

Scope of name

- * Scope of name is the portion of code where it is available to read and update
- * By default, in Python, scope is local to functions
 - * But actually, only if we update the name inside the function

Two examples

```
def f():
    y = x
    print(y)

x = 7
f()
```

Fine!

Two examples

```
def f():
    y = x
    print(y)

x = 7
f()
```

Fine!

Error!

Two examples

```
def f():
    y = x
    print(y)

x = 7
f()
```

Fine!

```
def f():
    y = x
    print(y)
    x = 22

x = 7
f()
```

Error!

- * If x is not found in f(), Python looks at enclosing function for global x
- * If x is updated in f(), it becomes a local name!

Global variables

- * Actually, this applies only to immutable values
- * Global names that point to mutable values can be updated within a function

```
def f():
    y = x[0]
    print(y)
    x[0] = 22

x = [7]
f()
```

Fine!

Global immutable values

- * What if we want a global integer
 - * Count the number of times a function is called
- * Declare a name to be global

```
def f():
    global x
    y = x
    print(y)
    x = 22

x = 7
f()
print(x)
```

Global immutable values

- * What if we want a global integer
 - * Count the number of times a function is called
- * Declare a name to be global

```
def f():
    global x
    y = x
    print(y)
    x = 22
```

Nest function definitions

- * Can define local "helper" functions
- * g() and h() are only
 visible to f()
- * Cannot be called directly from outside

```
def f():
  def g(a):
    return(a+1)
  def h(b):
    return(2*b)
  global x
  y = g(x) + h(x)
  print(y)
  x = 22
x = 7
```

Nest function definitions

- # If we look up x, y inside
 g() or h() it will first
 look in f(), then outside
- * Can also declare names global inside g(), h()
- * Intermediate scope declaration: nonlocal
 - * See Python documentation

```
def f():
  def g(a):
    return(a+1)
  def h(b):
    return(2*b)
  global x
  y = g(x) + h(x)
  print(y)
  x = 22
x = 7
```

Summary

- * Python names are looked up inside-out from within functions
- * Updating a name with immutable value creates a local copy of that name
 - * Can update global names with mutable values
- * Use global definition to update immutable values
- * Can nest helper function hidden to the outside

NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 6, Lecture 3

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Backtracking

- * Systematically search for a solution
- * Build the solution one step at a time
- * If we hit a dead-end
 - * Undo the last step
 - * Try the next option

Generating permutations

- * Often useful when we need to try out all possibilities
 - * Each potential columnwise placement of N queens is a permutation of {0,1,...,N-1}
- * Given a permutation, generate the next one
- * For instance, what is the next sequence formed from {a,b,...,m}, in dictionary order after

dchbaeglkonmji

Generating permutations

* Smallest permutation — all elements in ascending order

* Largest permutation — all elements in descending order

- Next permutation find shortest suffix that can be incremented
 - * Or longest suffix that cannot be incremented

Next permutation

- * Longest suffix that cannot be incremented
 - * Already in descending order

```
dchbaeglkonmji
```

Next permutation

- * Longest suffix that cannot be incremented
 - * Already in descending order

```
d c h b a e g l k o n m j i
```

* The suffix starting one position earlier can be incremented

Next permutation

- * Longest suffix that cannot be incremented
 - * Already in descending order

```
d c h b a e g l k o n m j i
```

- * The suffix starting one position earlier can be incremented
 - * Replace k by next largest letter to its right, m
 - * Rearrage k o n j i in ascending order

```
dchbaeglmijkno
```

Implementation

* From the right, identify first decreasing position

* Swap that value with its next larger letter to its right

```
d c h b a e g l m o n k j i
```

- * Finding next larger letter is similar to insert
- * Reverse the increasing suffix

dchbaeglmijkno

NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 6, Lecture 4

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Data structures

- * Algorithms + Data Structures = Programs
 Niklaus Wirth
- * Arrays/lists sequences of values
- * Dictionaries key-value pairs
- * Python also has sets as a built in datatype

Sets in Python

* List with braces, duplicates automatically removed

```
colours = {'red','black','red','green'}
>>> print(colours)
{'black', 'red', 'green'}
```

* Create an empty set

```
colours = set()
```

* Note, not colours = {} — empty dictionary!

Sets in Python

* Set membership

```
>>> 'black' in colours
True
```

* Convert a list into a set

```
>>> numbers = set([0,1,3,2,1,4])
>>> print(numbers)
{0, 1, 2, 3, 4}

>>> letters = set('banana')
>>> print(letters)
{'a', 'n', 'b'}
```

Set operations

```
odd = set([1,3,5,7,9,11])
prime = set([2,3,5,7,11])
```

- * Union odd | prime $\rightarrow \{1, 2, 3, 5, 7, 9, 11\}$
- * Intersection
 odd & prime → {3, 11, 5, 7}
- * Set difference odd prime → {1, 9}
- * Exclusive or
 odd ^ prime → {1, 2, 9}

Stacks

- * Stack is a last-in, first-out list
 - * push(s,x) add x to stack s
 - * pop(s) return most recently added element
- * Maintain stack as list, push and pop from the right
 - * push(s,x) is s.append(x)
 - * s.pop() Python built-in, returns last element

Stacks

- * Stacks are natural to keep track of recursive function calls
- * In 8 queens, use a stack to keep track of queens added
 - * Push the latest queen onto the stack
 - * To backtrack, pop the last queen added

Queues

- * First-in, first-out sequences
 - * addq(q,x) adds x to rear of queue q
 - * removeq(q) removes element at head of q
- * Using Python lists, left is rear, right is front
 - * addq(q,x) is q.insert(0,x)
 - * l.insert(j,x), insert x before position j
 - * removeq(q) is q.pop()

Systematic exploration

- * Rectangular m x n grid
- * Chess knight starts at (sx,sy)
 - * Usual knight moves
- * Can it reach a target square (tx,ty)?

Systematic exploration

- * Rectangular m x n grid
- * Chess knight starts at (sx,sy)
 - * Usual knight moves
- * Can it reach a target square (tx,ty)?

- * Rectangular m x n grid
- * Chess knight starts at (sx,sy)
 - * Usual knight moves
- * Can it reach a target square (tx,ty)?

- * Rectangular m x n grid
- * Chess knight starts at (sx,sy)
 - * Usual knight moves
- * Can it reach a target square (tx,ty)?

- * X1 all squares reachable in one move from (sx,sy)
- * X2 all squares reachable from X1 in one move
- *
- * Don't explore an already marked square
- * When do we stop?
 - * If we reach target square
 - * What if target is not reachable?

- * Maintain a queue Q of cells to be explored
- * Initially Q contains only start node (sx,sy)
 - * Remove (ax,ay) from head of queue
 - Mark all squares reachable in one step from (ax,ay)
 - * Add all newly marked squares to the queue
- * When the queue is empty, we have finished

```
def explore((sx,sy),(tx,ty)):
 marked = [[0 for i in range(n)]
                      for j in range(m)]
 marked[sx][sy] = 1
  queue = [(sx, sy)]
 while queue != []:
    (ax,ay) = queue.pop()
    for (nx,ny) in neighbours((ax,ay)):
      if !marked[nx][ny]:
        marked[nx][ny] = 1
        queue.insert(0,(nx,ny))
  return(marked[tx][ty])
```

Example

$$src = (0,1)$$
 $tgt = (1,1)$

* This is an example of breadth first search

Summary

- * Data structures are ways of organising information that allow efficient processing in certain contexts
- * Python has a built-in implementation of sets
- * Stacks are useful to keep track of recursive computations
- * Queues are useful for breadth-first exploration

NPTEL MOOC

PROGRAMMING, DATA STRUCTURES AND ALGORITHMS IN PYTHON

Week 6, Lecture 5

Madhavan Mukund, Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Job scheduler

- * A job scheduler maintains a list of pending jobs with their priorities.
- * When the processor is free, the scheduler picks out the job with maximum priority in the list and schedules it.
- * New jobs may join the list at any time.
- * How should the scheduler maintain the list of pending jobs and their priorities?

Priority queue

- * Need to maintain a list of jobs with priorities to optimise the following operations
 - * delete_max()
 - * Identify and remove job with highest priority
 - * Need not be unique
 - * insert()
 - * Add a new job to the list

Linear structures

- * Unsorted list
 - * insert() takes O(1) time
 - * delete_max() takes O(n) time
- * Sorted list
 - * delete_max() takes O(1) time
 - * insert() takes O(n) time
- * Processing a sequence of n jobs requires O(n²) time

Binary tree

- * Two dimensional structure
- * At each node
 - * Value
 - * Link to parent, left child, right child

Priority queues as trees

- * Maintain a special kind of binary tree called a heap
 - * Balanced: N node tree has height log N
- * Both insert() and delete_max() take O(log N)
 - * Processing N jobs takes time O(N log N)
- * Truly flexible, need not fix upper bound for N in advance

Heaps

- * Binary tree filled level by level, left to right
- * At each node, value stored is bigger than both children
 - * (Max) Heap PropertyBinary tree filled level by level, left to right

Examples

Examples

Non-examples

* No "holes" allowed

Non-examples

* Can't leave a level incomplete

Non-examples

* Violates heap property

- * insert 12
- * Position of new node is fixed by structure
- Restore heap property along the path to the root

- * insert 12
- * Position of new node is fixed by structure
- Restore heap property along the path to the root

- * insert 12
- * Position of new node is fixed by structure
- Restore heap property along the path to the root

- * insert 12
- * Position of new node is fixed by structure
- Restore heap property along the path to the root

- * insert 12
- * Position of new node is fixed by structure
- Restore heap property along the path to the root

Complexity of insert()

- * Need to walk up from the leaf to the root
 - * Height of the tree
- * Number of nodes at level 0,1,...,i is 2⁰,2¹, ...,2ⁱ
- * K levels filled: $2^0+2^1+...+2^{k-1}=2^k-1$ nodes
- * N nodes: number of levels at most log N + 1
- * insert() takes time O(log N)

- * Maximum value is always at the root
 - * From heap property, by induction
- * How do we remove this value efficiently?

- Removing
 maximum value
 creates a "hole"
 at the root
- Reducing one value requires deleting last node
- * Move "homeless" value to root

- Removing maximum value creates a "hole" at the root
- Reducing one value requires deleting last node
- * Move "homeless" value to root

- * Removing maximum value creates a "hole" at the root
- Reducing one value requires deleting last node
- * Move "homeless" value to root

- Removing maximum value creates a "hole" at the root
- Reducing one value requires deleting last node
- * Move "homeless" value to root

- * Now restore the heap property from root downwards
 - * Swap with largest child
- * Will follow a single path from root to leaf

- * Now restore the heap property from root downwards
 - * Swap with largest child
- * Will follow a single path from root to leaf

- * Now restore the heap property from root downwards
 - * Swap with largest child
- * Will follow a single path from root to leaf

- * Will follow a single path from root to leaf
- Cost proportional to height of tree
- * O(log N)

- * Will follow a single path from root to leaf
- Cost proportional to height of tree
- * O(log N)

- * Will follow a single path from root to leaf
- Cost proportional to height of tree
- * O(log N)

- * Will follow a single path from root to leaf
- Cost proportional to height of tree
- * O(log N)

- * Will follow a single path from root to leaf
- Cost proportional to height of tree
- * O(log N)

- * Will follow a single path from root to leaf
- Cost proportional to height of tree
- * O(log N)

Impementing using arrays

- * Number the nodes left to right, level by level
- * Represent as an array H[0..N-1]
- * Children of H[i] are at H[2i+1], H[2i+2]
- * Parent of H[j] is at
 H[floor((j-1)/2)] for j > 0

Building a heap, heapify()

- * Given a list of values [x₁,x₂,...,x_N], build a heap
- * Naive strategy
 - * Start with an empty heap
 - * Insert each x_j
 - * Overall O(N log N)

Better heapify()

- * Set up the array as $[x_1, x_2, ..., x_N]$
 - * Leaf nodes trivially satisfy heap property
 - * Second half of array is already a valid heap
- * Assume leaf nodes are at level k
 - * For each node at level k-1, k-2, ..., 0, fix heap property
 - * As we go up, the number of steps per node goes up by 1, but the number of nodes per level is halved
 - * Cost turns out to be O(N) overall

Better heapify()

1 node, height 3 repair

2 nodes, height 2 repair

4 nodes, height 1 repair

N/2 nodes already satisfy heap property

Heap sort

- * Start with an unordered list
- * Build a heap O(n)
- Call delete_max() n times to extract elements in descending order — O(n log n)
- * After each delete_max(), heap shrinks by 1
 - * Store maximum value at the end of current heap
 - * In place O(n log n) sort

Summary

- * Heaps are a tree implementation of priority queues
 - * insert() and delete_max() are both O(log N)
 - * heapify() builds a heap in O(N)
 - * Tree can be manipulated easily using an array
- * Can invert the heap condition
 - * Each node is smaller than its children
 - * Min-heap, for insert(), delete_min()