Statistics Notes

Glen Wang

X	Description	Domain	PDF	CDF	μ	σ^2
D. Uniform	Equally likely outcomes	$a \dots b$	$\frac{1}{b-a+1}$	$\frac{x-a+1}{b-a+1}$	$\frac{a+b}{2}$	$\frac{(b-a+2)(b-a)}{12}$
Binomial	Chance for x successes in n trials	$0 \dots n$	$\binom{n}{x}p^x(1-p)^{n-x}$	_	np	np(1-p)
Poisson	Chance for x events over λ rate	0∞	$\frac{\lambda^x e^{-\lambda}}{x!}$	_	λ	λ
N. Binomial ^[1]	Chance for r th success on x th trial	$n \dots \infty$	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	_	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
C. Uniform	Flat distribution	[a,b]	$\frac{a}{b}$	$\frac{x-a}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Normal ^[2]	Bell curve	$(-\infty,\infty)$	$\frac{e^{\frac{-(x-\mu)^2}{2\sigma^2}}}{\sigma\sqrt{2\pi}}$	$P(Z \le \frac{x-\mu}{\sigma})$	μ	σ^2
Gamma ^[3]	Chance for the r th event to take x time	$[0,\infty)$	$\frac{\lambda^r e^{-\lambda x}}{(r-1)!} x^{r-1}$		$\frac{r}{\lambda}$	$\frac{r}{\lambda^2}$

^[1] Use r=1 for a geometric distribution. Does not have a simple continuous counterpart.

If a CDF is not displayed, use a table or calculator, because integration is impractical. For the normal distribution, the function provided will give the Z value to look up on a table.

https://stattrek.com/online-calculator/binomial.aspx https://stattrek.com/online-calculator/poisson.aspx https://stattrek.com/online-calculator/normal.aspx

^[2] PDF may also be represented as $\mu + \sigma Z$ or $N(\mu, \sigma^2)$.

^[3] Use r = 1 for an exponential distribution. Recall that 0! = 1.