Importante:

 Resolução à mão: poste no Blackboard as fotos das questões resolvidas, organizadas de acordo com sua a ordem na prova: monte as fotos neste arquivo Word, ou em um novo arquivo Word, salve como um único arquivo PDF com as fotos da resolução.

Nome dos componentes da Equipe:

- Carlos Eduardo Marques Assunção Torres
- Gabriel Skorei Ferreira
- Gabriel Vitor Cezário
- Ricardo Godoi Kurashiki

Questão 1) Escreva o significado das fórmulas (1,5 ponto)

a)
$$\neg$$
 (\forall x) (R (x) \rightarrow O (x))

D = todo mundo R (x) = "x reluz" O (x) = "x é ouro"

1)a) $\neg (\forall x)(\beta(x) \rightarrow O(x))$	
D= todo mundo	
R(x)="x reluz"	
O(x): "x é ouro"	

Nem todo mando que reluz é ouro

b)
$$(\forall x)$$
 (M (x) \land C (x) $\rightarrow \neg$ A (x, j))

D = todo mundo $M(x) = "x \in médico"$ $A(x, y) = "x conhece y" j: João <math>C(x) = "x \in curitibano"$

D= todo mundo	j : João
1(x): "x é médico"	C(x)= "x é curitibano"
A(x,y) = "x conhece y"	

Questão 2) Simbolize as frases através de fórmulas da lógica de predicados, utilizando a interpretação dada: (1,5 ponto)

a) Nenhum estudante resolve o desafio de matemática.

matemática"

D = todas as pessoas
$$E(x) = x \text{ é estudante}$$

R(x) = "resolve o desafio de

a) Nenhum estudante resolve o desatio de matemática $\neg (\exists x) (E(x) \land R(x)$

b) Crianças se divertem mais que adultos

D = todo mundo $C(x) = "x \ \'e \ criança"$ $A(x) = "x \ \'e \ adulto"$ $D(x,y) = "x \ se \ diverte$ mais que y"

b) Crianças se divertem mais que a $(Ax)(AA)((C(X) \lor A(A)) \rightarrow$

Questão 3) Escreva o significado da FBF e indique o valor-verdade (V ou F) das fórmulas, de acordo com a interpretação, justificando sua resposta (questão correta se a justificativa estiver correta):

a)
$$(\exists x) (H(x) \land \neg R(x))$$
 (1,0 ponto)

$$\mathbf{H}(\mathbf{x}) = \mathbf{x} < \mathbf{zero}$$

 $\mathbf{R}(\mathbf{x}) = \mathbf{x}$ possui raiz quadrada real"

Alguns números inteiros x menores que zero não possuem raiz quadrada real.

Para x = -2 e - R(x) = "x não possui raiz quadrada real" então

(∃ x) (x não possui raiz quadrada real) <==> ("-2 não possui raiz quadrada real")

O valor verdade-verdade é VERDADEIRO, pois para um número possuir raiz quadrada real, o número precisa ser maior ou igual a 0. Ou seja, um número menor que 0 não possui raiz quadrada real.

b) (
$$\forall$$
 y) (B(y) \rightarrow A (a, y)) (1,0 ponto)

D = todo mundo **B** (x) = "x
$$\in$$
 N"

$$A(x, y) = "x < y"$$

a = 0

Para qualquer y pertencente aos números naturais, (0 < y).

O valor-verdade é FALSO, pois temos que os números naturais são compostos pelos números em sequência $\mathbb{N} = \{0, 1, 2, 3...\}$. Portanto, o número zero é um número natural e ele não é maior que zero, assim tornando esta frase falsa.

Questão 4) Negação de quantificador e interpretação do seu significado. (3,0 pontos)

Cada componente da equipe deverá criar uma sentença única na turma que atenda às seguintes características:

- a) Frase em linguagem natural, sendo que o sujeito deve ser quantificado e ter pelo menos 1 (uma) qualidade (a frase deve ser própria para lógica dos predicados)
- b) Formulação da frase em (a) para lógica dos predicados (com seu respectivo quantificador)
- c) A fórmula em (b) deverá ser negada e reinterpretada (com o quantificador original negado, reescrever a fórmula em linguagem natural)
- d) A fórmula de (c) deverá ter seu quantificador negado trocado pelo seu quantificador oposto e reinterpretada (após a troca quantificador, reescrever a fórmula em linguagem natural)

Importante:

- 1. As fórmulas de **(c)** e **(d)** têm o mesmo significado (semântica).
- 2. Recebem a nota desta avaliação **Prova 4** apenas os componentes da equipe que apresentarem a resolução desta **Questão 4**, que é **individual**.

Aluno: Gabriel Vitor Cezário
Estudante 3
A) "Policiais acham Josias suspeito" P(x) = "x 'e policial" S(x) = "x acha Josias suspeito" S(x) = x acha Josias suspeito" S(x) = x acha Josias suspeito" $S(x) = \text{x acha$

a) todas Az Pessoas Jogam FuteBol.

$$P(x) = x \in Pessoa'' \quad J(x) = x \quad Gabriel Shore, ferreira$$

$$L$$
) $\neg (Y_X) (P(X) \land \neg (X)) = NEM TODAS AS PESSOAS JOUAN FUTEBOL$

$$(x) \nabla (x) \nabla (x) \nabla (x)$$

$$(x) \nabla (x)$$

$$(x)$$

CS Scanned with CamScanner

Carlos Eduardo Marques Assunção Torres

a) Todo dançar	ino é charmoso
b) D= todo mu	$ando, A(x) = x \in dangarino$
	B(x)= x é charmoso
(Ax)(V(x)	$\rightarrow B(x)$
c) ¬(∀x)(A($(x) \rightarrow B(x) = Nem todo dancarino é$
0,	charmoso.
JY CHARAC	1 A 1 C A S
d) -(4x)(A($(x) \rightarrow \beta(x)$
A) - (xE)	$(x) \rightarrow B(x)$
r) r (xE)	$A(x) \vee B(x)$
(JA) (xE)	$(x) \land \neg B(x) = Alguns dangarinos não$
	são charmosos.

Ricardo Godoi Kurashiki	-
4)	_
a) Nem todas as pessoas, assistem televisão,	_
7 /x 5 P	_
b) P(x) = "x é pessoa"	_
T(x)= "x assiste televisão"	_
(100) AF ((v)) / (x) M. (x)	_
$\neg (\forall x) (P(x) \rightarrow T(x))$	
"march as a x " stable " to lime is a talk	_
c) (Yx)(P(x) - T(x)) = Todas as pessoas assistem televisa	0
	_
$d) \neg (\exists x) \neg (P(x) \rightarrow T(x))$	_
$\neg (\exists x) \neg (\neg P(x) \lor T(x))$	
7 (3x) (P(x) ^ T(x)) = Nenhuma pessoa não assiste televisão.	
	1

Questão 6) (2,0)

Analise as afirmativas e escolha a única alternativa CORRETA (questão correta apenas se a sequência de prova estiver correta).

Se Antônio é corredor, então Carlos não é ciclista. Ou Carlos é ciclista, ou Giovana é ginasta. Se Ricardo não é jogador de basquete, então Antônio é corredor. Sabemos que nem Giovana é ginasta nem João é judoca. O que podemos concluir?

- a) Se Carlos é ciclista, então Antônio é corredor.
- b) Ricardo não é jogador de basquete e Carlos é ciclista.
- c) Ricardo é jogador de basquete e Carlos é ciclista.
- d) Giovana é ginasta ou Antônio é corredor.
- e) Ricardo é jogador de basquete e Antônio é corredor.

1 A-> 1 C 2 C Y G 3 1 R -> 1 C 4 7 G 1 7 J 5 7 R -> 7 C 6 7 G 7 T 8 C 9 R 10 7 A	MiP -	Transformações da linha 2 $CYG = \gamma(C + G)$ $((C - S G) / G - S G)$ $(G - S G) / G G G$ $(G - S G) / G G G$	<u>-))</u>
		C está cert	ta

Justificativa: faça a sequência de prova.