CBM414 - Procesamiento digital de señales biomédicas Clase 01 - Señales analógicas y muestreo

David Ortiz, Ph.D. Escuela de Ingeniería Biomédica Universidad de Valparaíso

Expectativas de aprendizaje

El estudiante será capaz de analizar señales analógicas en el dominio del tiempo y la frecuencia, interpretar la respuesta al impulso y el efecto del filtrado, y comprender los fundamentos del muestreo.

Clase anterior:

Introducción al curso

Clase de hoy:

- Repaso de señales analógicas 1.2
- Teoréma del muestreo 1.3

Esta presentación es una recopilación de los textos de Vetterli y Orfanidis, y no contiene todos los temas abordados en clase. Por favor, reportar posibles errores al correo david.ortiz@uv.cl.

Señales analógicas

Señal continua: descripción formal de un fenómeno que evoluciona en el tiempo o el espacio y la representaremos por una función $x(t): \mathbb{R} \to \mathbb{C}$.

Transformada de Fourier

$$X(\Omega) := \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt, \quad \Omega \in \mathbb{R}$$

Del dominio "físico" t al dominio de la "frecuencia" Ω .

Transformada inversa de Fourier

$$X(\Omega) := \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt, \quad \Omega \in \mathbb{R} \qquad x(t) := \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega)e^{j\Omega t}d\Omega, \quad t \in \mathbb{R}$$

Del dominio de la "frecuencia" Ω al domínio "físico" t.

Observación: La frecuencia ordinaria f, expresada en [Hz] o [ciclos/segundo], se relaciona con Ω mediante la ecuación $\Omega = 2\pi f$.

Usamos la notación Ω para denotar la frecuencia física en unidades de [rads/seg], y reservamos la notación ω para denotar la frecuencia digital en [rads/muestra].

Sistemas continuos

Definición: sistema continuo en el timepo

Un sistema $T:V\to V$ es una transformación cuya entrada es una señal $x(t)\in V$ y cuya salida es otra señal $y(t)\in V$, i.e., y:=T(x)

Definición: Respuesta al impulso

Una función h(t) es llamada respuesta al impulso de un sistema T lineal, invariante, y continuo en el tiempo, cuando una entrada $\delta(t)$ produce una salida h, i.e., $h:=T(\delta)$

Filtrado de señales analógicas

Considerando la definición de una señal arbitraria $x(t)=\int_{-\infty}^{\infty}x(\tau)\delta(t-\tau)\,d\tau$ tenemos

$$y = Tx = T\underbrace{\int_{-\infty}^{\infty} x(t')\delta(t-t')dt'}_{\text{def. señal arbitraria}} = \underbrace{\int_{-\infty}^{\infty} x(t')T\delta(t-t')dt'}_{\text{Linealidad de T}} = \underbrace{\int_{-\infty}^{\infty} x(t')h(t-t')dt'}_{\text{respuesta al impulso}} = h*x$$

Definición: filtro y filtrado

La respuesta al impulso h es usualmente conocida como filtro, mientras que la convolución h*x se le conoce como filtrado de una señal.

Definición de la convolución o filtrado de una señal x(t)

$$y = h * x = \int_{-\infty}^{\infty} x(t')h(t - t')dt', \qquad Y(\Omega) = H(\Omega)X(\Omega).$$

Filtrado de señales analógicas

Un filtro afecta la magnitud y fase de una senal de entrada, i.e.,

There are taken a magnitud y rase defined senar defentrada, i.e.,
$$Y(\Omega) = H(\Omega) \cdot X(\Omega) \text{ where } H(\Omega) = |H(\Omega)| e^{j \angle H(\Omega)}, \quad X(\Omega) = |X(\Omega)| e^{j \angle X(\Omega)},$$

$$\Rightarrow Y(\Omega) = (|H(\Omega)| \cdot |X(\Omega)|) e^{j(\angle H(\Omega) + \angle X(\Omega))}$$

Ejercicio

Considere una función compuesta por la suma de dos sinusoides complejas con frecuencias Ω_1 y Ω_2 , y amplitudes A_1 y A_2 . Encuentre el espectro de la señal de salida $Y(\Omega)$ luego de ser filtrada por un sistema lineal e invariante en el tiempo con respuesta al impulso h(t). **Solución:** definamos la señal compleja como

$$x(t) = A_1 e^{j\Omega_1 t} + A_2 e^{j\Omega_2 t}$$

El espectro de entrada se obtiene aplicando la transformada de Fourier:

$$X(\Omega) = 2\pi A_1 \delta(\Omega - \Omega_1) + 2\pi A_2 \delta(\Omega - \Omega_2)$$

El espectro de salida es el producto con la respuesta en frecuencia $H(\Omega)$:

$$Y(\Omega) = H(\Omega)X(\Omega) = H(\Omega) \left[2\pi A_1 \delta(\Omega - \Omega_1) + 2\pi A_2 \delta(\Omega - \Omega_2) \right]$$
$$= 2\pi A_1 H(\Omega_1) \delta(\Omega - \Omega_1) + 2\pi A_2 H(\Omega_2) \delta(\Omega - \Omega_2)$$

Teorema de muestreo

¿Cómo elegir T? ¿Cuál es su efecto en el espectro?

Teorema de muestreo (Shannon-Nyquist)

Si la frecuencia más alta contenida en una señal analógica x(t) es f_{max} , y la señal es muestreada con una frecuencia de muestreo $f_s \geq 2f_{max}$, entonces es posible reconstruir x(t) en forma exacta a partir de las muestras de $x(nT), n \in \mathbb{Z}^+$, con $T = \frac{1}{f_s}$

Un mal muestreo de la señal analógica produce un efecto conocido como aliasing

Ejercicios

1. Demostrar el teorema de convolución:

Demostrar el teorema de convolución:
$$Y(\Omega) = H(\Omega)X(\Omega), \text{ donde } H(\Omega) = \int_{-\infty}^{\infty} h(t)e^{-j\Omega t}dt, \quad X(\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt,$$

- 2. Descripción, definición matemática, diferencias y aplicaciones de Convolución, correlación cruzada y autocorrelación. Cap 4 libro de Vetterli
- 3. Demuestre que la expresión

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$$

es la transformada de Fourier inversa, es decir, que permite recuperar la función x(t)a partir de su transformada de Fourier $X(\Omega)$.

4. Discuta bajo qué condiciones se garantiza la existencia de la transformada de Fourier de una función x(t), y en qué espacios funcionales se puede asegurar que es posible aplicar la fórmula de inversión para recuperar x(t) a partir de $X(\Omega)$. sec. 4.4.2 Vetterli

Objetivo general

Repasar conceptos acerca de una señal analógica y definir su muestreo iversidad de Valpa

Clase de hov:

- Repaso de señales analógicas 1.2
- Teoréma del muestreo 1.3

Próxima clase:

Muestreo, aliasing y reconstrucción 1.3.1. 1.4

Referencias:

- 1. S. J. Orfanidis, Introduction to signal processing. Rutgers University, 1st edition, 1995. Disponible en https://rutgers.app.box.com/s/5vsu06pp556g9dfsdvayh4k50wqpataw.
- 2. Vetterli, Martin, Jelena Kovačević, and Vivek K. Goyal. Foundations of signal processing. Cambridge University Press, 2014.

https://www.fourierandwavelets.org/FSP_v1.1_2014.pdf