Indian Institute of Technology, Kanpur.

Even semester, 2019 - 2020.

AE 322 Aircraft Control Systems

Assignment 1

Due in class on 30/1/2020

Answer all questions

Marks - 15

1. Consider the system model as the following differential equation.

$$\ddot{y} + 6\ddot{y} + 11\dot{y} + 6y = 0$$

- (a) Obtain the state-space representation.
- (b) Find the characteristic polynomial.
- (c) Extract its eigenvalues using eig() command in MATLAB.
- (d) Check and corroborate its stability using Routh-Hurwitz criterion.
- (e) Comment on the response of the system when perturbed from its equilibrium.

(5marks)

- 2. Form the Routh table to check the stability of the systems governed by the following characteristic polynomials.
 - (a) $s^3 + 8s^2 + 22s + 20$.
 - (b) $s^4 + 2s^3 + 3s^2 + 4s + 5$.
 - (c) $s^3 + 2s^2 + s + 2$.
 - (d) $s^5 + 2s^4 + 24s^3 + 48s^2 25s 50$.
 - (e) $s^4 + 3s^3 + 3s^2 + 2s + 1$.

(5 marks)

3. Write the linearized governing equations and the initial conditions for a pendulum and an inverted pendulum. The length and the mass of the pendulum are your roll number's last two non-zero integers respectively. Use 4th order Runge-Kutta method to simulate the pendulum and the inverted pendulum. Comment on the results. (5 marks)