

학습 **내용**

- 01 디지털 논리회로
- 02 조합 논리회로
- 03 순차 논리회로

학습 <mark>목표</mark>

- 조합 및 순차 논리회로의 특성과 종류에 대해 설명할 수 있다.
- 조합 논리회로를 설계할 수 있으며, 진리표를 간소화하고, 논리식을 작성할 수 있다.
- 플립플롭의 정의와 구조, 레지스트와의 관계를 설명할 수 있다.

지난시간 돌아보기

- 3주차. 디지털 논리회로 -

지/난/시/간/의/ 학/습/내/용

논리회로

부울 대수

논리회로

지난시간 돌아보기

- ✓ 게이트
 - AND, OR, NOT, XOR 게이트의 회로도 표시, 진리표

진리표	기호	진리표	기호
A B X 0 0 0 0 1 0 1 0 0 1 1 1	A	A B X 0 0 0 0 1 1 1 0 1 1 1 1	A
논리식	스위치 사용 회로	논리식	스위치 사용 회로
X = A · B	A B	X = A + B	
717177			
진리표	기호	진리표	기호
신리표 A X 0 1 1 0	7 Ē A — X	A B X 0 0 0 1 1 1 0 1 1 1 0	7]章 A B
	_	A B X 0 0 0	A — \

지난시간 돌아보기

부울 대수

- ✓ 기본 법칙
 - 교환법칙, 결합법칙, 분배법칙, 다중부정 등
- ✓ 부울 대수의 기본적 관계

1	X + 0 = X	2	X · 0 = 0
3	X + 1 = 1	4	X · 1 = X
5	X + X = X	6	X · X = X
7	X + X' = 1	8	X · X' = 0
9	X + Y = Y + X	10	XY = YX
11	X + (Y + Z) = (X + Y) + Z	12	X(YZ) = (XY)Z
13	X(Y + Z) = XY + YZ	14	X + YZ = (X + Y)(X + Z)
15	(X + Y)' = X' Y'	16	(XY)' = X' + Y'
17	(X')' = X		

- ✓ 카르노 맵을 이용한 부울 함수 간소화
 - 도식적 표현을 사용해 부울 대수를 간략화

생각 해보기

디지털 논리회로의 결합을 통한 새로운 회로의 창출을 생각해 본 적 있나요?

1) 회로

■ 회로의 종류

2) 디지털 논리회로란?

- 디지털 논리회로
 - ▶ 디지털 신호(불연속적 신호)로 나타낸 정보를 처리하는 회로
 - ▶논리연산(1 또는 0에 의한 연산)을 하는 회로

2) 디지털 논리회로란?

■ 디지털 논리회로의 종류

조합(combinational) 논리회로

• 출력 값: 입력 값에 의해서만 결정

순차(sequential) 논리회로

- 출력 값: 회로의 상태(기억된 정보)와 입력 값에 의해 결정
- 플립플롭(Flip Flop)

2) 설계방법 3) 가산기

1) 개요

- 조합 논리회로
 - ▶ 출력 값이 그 시점의 입력 값에 의해 결정되는 회로
 - ▶ 메모리를 갖지 않는 회로

1) 개요

■ 조합 논리회로의 종류

2) 설계 방법

■ 조합 논리회로의 설계 방법

1/ 입력과 출력 조건에 적합한 진리표를 작성함

2/ 진리표를 가지고 카르노 도표를 작성함

3/ 간소화된 논리식을 구함

♣ 논리식을 기본 게이트로 구성함

예제

입력 변수는 3개(X, Y, Z)이며, 출력 F는 2진값이 4초과이면 1의 값을, 그렇지 않은 경우에는 0의 값을 가지는 조합 논리회로를 작성해보세요.

1/ 입력과 출력 조건에 적합한 진리표를 작성함

Х	Υ	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

예제

입력 변수는 3개(X, Y, Z)이며, 출력 F는 2진값이 4초과이면 1의 값을, 그렇지 않은 경우에는 0의 값을 가지는 조합 논리회로를 작성해보세요.

1/ 입력과 출력 조건에 적합한 진리표를 작성함

2/ 진리표를 가지고 카르노 도표를 작성함

예제

입력 변수는 3개(X, Y, Z)이며, 출력 F는 2진값이 4초과이면 1의 값을, 그렇지 않은 경우에는 0의 값을 가지는 조합 논리회로를 작성해보세요.

- 1/ 입력과 출력 조건에 적합한 진리표를 작성함
- 2/ 진리표를 가지고 카르노 도표를 작성함
- 3/ 간소화된 논리식을 구함

$$F = XZ + XY$$

4/ 논리식을 기본 게이트로 구성함

- 가산기
 - ▶ 두 개 이상의 입력을 이용하여 이들의 합을 출력하도록 하는 조합 논리회로

- 반가산기(Half Adder)
 - ▶ 두 개의 입력과 출력 합(Sum)과 <mark>올림수(Carry)</mark>가 사용

가산기

- 반가산기(Half Adder)
 - ▶ 두 개의 입력과 출력 합(Sum)과 <mark>올림수(Carry)</mark>가 사용

Sum =
$$A\overline{B} + \overline{A}B = A \oplus B$$

반가산기의 논리회로

- 전가산기(Full adder)
 - ▶ 두 입력과 하나의 올림수를 사용하여 덧셈 수행

- 전가산기(Full adder)
 - ▶ 두 입력과 하나의 올림수를 사용하여 덧셈 수행

전가산기의 올림수와 합에 대한 부울 대수식

A BC_0	00	01	11	10	A
0			1		
1		1	1	1	

$$Carry = AC_0 + AB + BC_0$$

A BC ₀	00	01	11	10
0		1		1
1	1		1	

$$Sum = A\overline{BC_0} + \overline{AB}C_0 + ABC_0 + \overline{A}B\overline{C_0}$$

- 전가산기(Full adder)
 - ▶ 두 입력과 하나의 올림수를 사용하여 덧셈 수행

전가산기의 논리회로

4) 멀티플렉서

- 멀티플렉서
 - ▶ 여러 개의 입력선 중 하나의 입력선 만을 출력에 전달해주는 조합 논리회로

4) 멀티플렉서

- 디멀티플렉서
 - ▶ 멀티플렉서의 역기능을 수행
 - ▶ 선택선이 N개인 경우 2^N개의 출력선이 존재

S ₀	S ₁	출력
0	0	Input 0
0	1	Input 1
1	0	Input 2
1	1	Input 3

1) 개요

- 순차 논리회로
 - ▶ 조합 논리회로와 Flip flop을 가지고 구성된 회로
 - ▶ 출력 값은 입력 값과 회로의 내부 상태에 의해 결정
 - 기억 소자인 Latch나 Flip flop을 사용함
 - 1비트의 기억 능력을 가짐

1) 개요

■ 종류

- 플립플롭이란?
 - ▶ 1비트를 저장할 수 있는 기억 소자
 - ▶ Pulse에 의해 주어진 입력과 상태에 따라 현재의 2진 정보를 변경
 - ▶ 전원 소멸 시 정보가 사라지는 휘발성 기억 소자
 - ▶ 컴퓨터의 주기억장치 RAM, 캐쉬기억장치, 레지스터를 구성하는 기본 회로

■ 플립플롭의 종류

R-S D T J-K

- R(reset)과 S(set)의 두 입력을 받아 Q(현 상태)와 Q'(다음 상태)를 출력
- NAND 게이트를 이용한 RS 플립플롭의 논리회로

■ 플립플롭의 종류

R-S D T J-K

- R, S에 동시에 1이 입력되는 것을 회로적으로 차단
- 입력신호 D가 클록펄스에 의해서 변화 없이 그대로 출력에 전달
 - → D 플립플롭의 "D": 데이터 (Data) 전달, 지연 (Delay) 의미

클록 펄스	D	Q (t+1)
1	0	0
1	1	1

진리표

■ 플립플롭의 종류

R-S D T J-K

• 두 개의 입력을 하나로 묶어 입력 0이면 Q가 출력, 입력 1이면 Q의 보수값 출력

클록 펄스	D	Q (t+1)
1	0	Q
1	1	Q

진리표

■ 플립플<mark>롭</mark>의 종류

R-S D T J-K

• 입력이 동시에 1이 입력되면 출력은 Q

정리 하기

조합 논리회로

✓ 조합 논리회로

- 임의의 시점에서의 출력 값이 그 시점의 입력에 의해서 결정되는 논리회로
- 내부 기억 능력(메모리)을 갖지 않음
- 종류: NOT, AND, OR, XOR, NOR, NAND, 반가산기, 전가산기, 디코더, 인코더, 멀티플렉서, 디멀티플렉서 등

정리 하기

순차 논리회로

✓ 순차 논리회로

- 조합 논리회로와 플립플롭을 가지고 구성한 회로
- 출력 값이 입력 값과 회로의 내부 상태에 의해 정해지는 논리회로

✓ 플립플롭(Plip flop)

- 1비트를 저장할 수 있는 기억 소자
- 신호의 상태를 일시적으로 유지 또는 기억시켜두는 장치나 회로
- 입력 펄스가 상태 변환을 일으키기 전까지는 2진 상태를 그대로 유지

정리 하기

순차 논리회로

✓ 플립플롭의 종류

- R-S 플립플롭: R과 S의 두 입력을 받아 Q와 Q'의 2가지 출력을 가짐
- J-K 플립플롭: R-S 플립플롭에서 R=S=1인 경우 출력이 불안정한 상태가 되는 단점을 보완함

