### **General Disclaimer**

## One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
  of the material. However, it is the best reproduction available from the original
  submission.

Produced by the NASA Center for Aerospace Information (CASI)





### SPECTRAL CHARACTERIZATION OF THE LANDSAT THEMATIC MAPPER SENSORS

Brian L. Markham and John L. Barker NASA/Goddard Space Flight Center Earth Resources Branch/Code 923 Greenbelt, MD 20771

(E84-10065) SPECTRAL CHARACTERIZATION OF THE LANDSAT THEMATIC MAPPER SENSORS (NASA) 47 p HC A03/MF A01 CSCL 14/2 N84-15634

Unclas G3/43 00065

Presented at the Landsat-4 Scientific Characterization Early Results Symposium, February 22-24, 1983, NASA/Goddard Space Flight Center, a denbelt, Maryland



### **EXECUTIVE SUMMARY**

### SPECTRAL CHARACTERIZATION OF THE LANDSAT THEMATIC MAPPER SENSORS

Brian L. Markham and John L. Barker NASA/Goddard Space Flight Center Earth Resources Branch/Code 923 Greenbelt. MD 20771

A summary and an analysis of data collected by Hughes/Santa Barbara Research Center\* on the spectral characteristics of the Landsat-4 and Landsat-4 backup Thematic Mapper instruments, the protoflight (TM/PF) and flight (TM/F) models, respectively, are presented. Tests were conducted on the instruments and their components to determine compliance with two sets of spectral specifications: Band-by-band spectral coverage and channel-by-channel within-band spectral matching.

Spectral coverage specifications were placed on: (1) band edges-points at 50% of peak response, (2) band edge slopes--steepness of rise and fall-off of response, (3) spectral flatness--evenness of response between edges, and (4) spurious system response--ratio of out-of-band response to in-band response. Compliance with the spectral coverage specifications was determined by analysis of spectral measurements on the individual components contributing to the overall spectral response: filters, detectors, and optical surfaces. The protoflight and flight model TM's used filter pieces cut from the same substrate and detectors from the same batch (except band 6); any differences between the calculated relative spectral responses (RSR) resulted from optics differences (except band 6).

The RSR's for the reflective bands were similar between TM/PF and TM/F except for the within-band flatnesses (Table 1). Calculated spectral responses for the reflective bands in both TM/PF and TM/F were within specifications with four exceptions. Insufficient spectral flatnesses in bands 2, 3 and 7 accounted for three. The other was the high upper-band edge for band 5, which had a specification of 1750 +20 nm and was calculated as 1784 nm; this implies that there will be more contribution from variable atmospheric water vapor absorption.

<sup>\*</sup>R.W. Cline, J.C. Lansing and D.G. Brandshaft of Hughes/SBRC provided data and assistance in interpretation.

In the emissive thermal band 6, the TM/PF and TM/F showed fundamentally different spectral responses. The TM/PF upper-band edge was detector limited at a temperature-dependent value of about 11.7  $\mu m$ . The TM/F upper-band edge was filter limited at 12.4  $\mu m$ . A specification of 12.5  $\mu m$  for the upper-band edge was chosen to provide a wide enough window for a radiometric precision of 0.5°C. While the TM/PF upper-band edge was lower than specified, the detectors were sufficiently sensitive that the driving radiometric requirement of 0.5°C was met. In the case of the TM/F, the detectors were less sensitive and had an overall lower signal to noise performance even though the upper-band edge requirement was met as well as the 0.5°C requirement.

Out-of-band responses for all bands were within specification. Bands 1 and 3 had some sensitivity to near-IR radiation. Band 1 filters had transmission peaks at 800 and 885 nm of 0.5% and 0.7%, respectively. When measured on the TM/F model, an approximately 1 count contribution to band 1 resulted when the radiance between 776 and 905 nm resulted in 100 counts in band 4. Band 3 filters had peaks in out-of-band transmission at 945 and 1000 nm, of 2.8% and 1.2%, respectively. The impact of this on the band 3 response has not been determined.

The spectral matching specification stated that "after system calibration, the peak-to-peak signal variations between channels within any of the first five bands and band seven, when all channels are viewing the same scene radiance, shall be less than 0.5 percent of the minimum saturation levels [for two test The two test conditions were a linearly varying spectral conditions]." radiance and a flat spectral radiance. The TM/PF test involved calibrating the individual channels or 1.22 meter integrating sphere and then recording the mismatch in their outputs to a spectrally different source, the TM calibrator (modified by filters). The TM/PF test gave out-of-specification results which appeared to be attributable to spatial non-uniformity of the calibrator source. A refined test was used for the TM/F testing, using a small integrating sphere source with and without filters for the two targets. With the exception of band 4, which showed a 1.7% mismatch, all bands were within specifications. Calculations using the relative spectral response ta for the 5 MSS sensors (MSS 1, 2, 3, 4 and 4-backup) showed that the TM/F has comparable or better spectral matching than the MSS sensors.

An examination for white light leaks in the along-scan line spread function for the flight model TM revealed several minor leaks in the primary focal plane bands (1-4). The magnitude of these light leaks is dependent on the spectral character of the illumination. Also, the magnitudes of the light leaks are comparable for all detectors in a half-band. For the odd channels of band 1, which were the worst observed, with the TM calibrator 'white' light source, a light leak at 13.1 IFOV off the detector center made about a 1% contribution to the signal. The location and shape of the light leaks suggests they are associated with the slots at the sides of the individual band assemblies. It is believed the TM/PF has comparable light leaks.

Table 1 TM Spectral Performance Calculated from Component Measurements

| SPURIOUS                   | RESPONSE!<br>(5) | 1.64           | 1.30        | 2,87       | 0.78       | 0.79                      | 1.25                               | 0.81                        |
|----------------------------|------------------|----------------|-------------|------------|------------|---------------------------|------------------------------------|-----------------------------|
| SPECTRAL<br>FLATNESS (X)   | "ADJUSTED"*      | 78<br>76       | 71,         | ++12       | . 18       | ; ;                       | ::                                 | ::                          |
| N. A.                      | RAM              | 32             | 26<br>48    | 56         | 76<br>53   | 80 80<br>87 87            | 59 <sup>+</sup><br>57 <sup>+</sup> | 67<br>78                    |
|                            | 75-5%            | : :            |             | 11         | ; ;        | 42                        | 37                                 | 1.01                        |
| NM)<br>UPPER               | 70-5%            | ۱۵ اس<br>جې خه | 18          | 8 8        | 17         | 1 1                       | : :                                | ::                          |
| EDGE SLOPE INTERVALS (NM R | 70-20%           | യയ             | ଉଉ          | ~9         | 90         | : ;                       | ::                                 | 1 1                         |
| E SLOPE IN                 | 5-75%            | ::             | ::          | ::         | ::         | 32                        | 75                                 | 0.25                        |
| EDGI<br>LOWER              | 5-70%            | 15             | <b>52</b>   | 22         | 23         | ::                        | : ;                                | ::                          |
|                            | 24               |                |             | •          | * w.,      |                           |                                    |                             |
|                            | 20-70%           | 8              | 20          | 15         | 55         | : :                       | ::                                 |                             |
| EDGES AT                   | UPPER            | 518<br>518     | 610<br>610  | 693<br>693 | 905<br>904 | 1784 <sup>‡</sup><br>1784 | 234 <i>?</i><br>2349               | 11.66 <sup>†</sup><br>12.43 |
| BAND HALF                  | LOWER            | 452<br>452     | 529<br>528  | 624<br>626 | 776<br>776 | 1568<br>1567              | 2097<br>2097                       | 10.42                       |
|                            | SCANNER .        | 11. LL         | u, u.<br>C. | L L        | IL IL<br>Q | <u>د.</u> د.              | u.u.                               | LL LL<br>Av                 |
|                            | BAND             | ,              | 2           | က          | ₹          | ហ                         | 7                                  | **9                         |

NASA specifications alluwed division by a linear factor (slope) prior to calculating flatness for bands 1-4 to account for sloping response of Si detectors
Out-of-specification characteristic.
Specification was on system response, except for bands 4 and 6, calculations used filter response only Band 6 band edges and edge slopes it micrometers (um)

#### SPECTRAL CHARACTERIZATION OF THE LANDSAT THEMATIC MAPPER SENSORS

### INTRODUCTION

The intent of this document is to provide a summary of the information obtained on the spectral characteristics of the two Thematic Mapper (TM) instruments built and tested by Hughes Aircraft Company for the NASA Landsat Program. The first of these two units, the protoflight (TM/PF) model, was integrated into the Landsat-4 satellite, which was launched on 16 July, 1982. The second, the flight (TM/F) unit, has been integrated into the Landsat-4 backup spacecraft, which is scheduled for possible launch in 1985.

Each Thematic Mapper has seven spectral bands. These bands, with their nominal bandpasses are:

- 1. Blue-green, 450 nm to 520 nm.
- 2. Green, 520 nm to 600 nm.
- Red, 630 nm to 690 nm.
- 4. Near-IR, 760 nm to 900 nm.
- 5. Mid-IR 1, 1550 nm to 1750 nm.
- 6. Thermal-IR, 10.4  $\mu$ m to 12.5  $\mu$ m.
- 7. Mid-IR 2, 2080 nm to 2350 nm.

Each reflective band consists of an array of 16 channels; the thermal band consists of four channels. Although there are multiple detectors per band, there is only one filter per band (covering all detectors). This design differs from the MSS where each channel has both an individual detector and

filter. The first four bands are located at the primary focal plane of the TM, which is uncooled, and all use monolithic silicon detectors. Bands 5 through 7 are located on the cooled focal plane, which operates at 90°K-105°K. Bands 5 and 7 use monolithic InSb detectors; band 6 uses photoconductive HgCdTe detectors.

NASA placed two sets of specifications related to spectral performance on the instrument. One set of specifications concerned the spectral coverage of the bands. The specifications were on the following parameters (Fig. 1):

- 1. Lower and upper-band edges--points at 50% of peak relative spectral response (RSR).
- 2. Lower and upper-edge slopes--widths between specified percentages of maximum spectral response.
- Spectral flatness--percentage of bandpass within given percentage (10% for reflective bands, 20% for thermal band) of peak response, after dividing out detector slope for silicon detectors.
- 4. Spurious system response--percentage of response outside 5% RSR points relative to response inside 50% points for solar equivalent input.

The second set of specifications concerned the spectral matching of the channels within each of the reflective bands. It stated that when all channels within a band are calibrated to produce equivalent outputs when viewing the specified flat scene radiances, then the maximum difference in output between channels when all are viewing the specified spectrally sloping scene shall be less than 0.5 percent of the minimum saturation level (Fig. 2).

Hughes developed separate tests to determine compliance with the spectral coverage and spectral matching specifications. In addition, other tests conducted on the TM instruments revealed spectrally related information. Time and program constraints limited the number and detail of the spectral tests conducted, and in general, less spectral data was collected on the TM instruments than on the MSS sensors (Markham and Barker, 1982).

SPECTRAL COVERAGE

#### Procedures

The primary spectral coverage test\* was based on analyses of spectral measurements on the components contributing to the spectral response: filters, detectors and optical surfaces. The overall spectral response for a TM channel was defined as:

$$RSR_{Ai}(\lambda) = \frac{T_{OA}(\lambda) * T_{FA}(\lambda) * R_{Ai}(\lambda)}{K_{Ai}}$$
(1)

\*Hughes Aircraft Company, Santa Barbara Research Center, "TM System Spectral Response," internal memorandum HS236-7213, Jan. 13, 1981; "F-1 TM System Relative Spectral Response," internal memorandum HS236-8162, Nov. 9, 1982.

### Where:

 $RSR_{Ai'}(\lambda)$  = normalized relative spectral response in band A, channel i (percent).

 $T_{OA}(\lambda)$  = spectral throughput of the optical system in band A (percent).

 $T_{FA}(\lambda)$  = spectral transmission of the filters in band A (percent).

 $R_{Af}(\lambda)$  = relative spectral response of detector i for band A (percent).

KAi = the normalization factor to bring the peak overall band A, channel i response to 100%.

By measuring the component responses and then calculating the overall spectral response, determination of compliance with the spectral coverage specifications could be facilitated without tying up the TM instrument for the test. Note that the filter and optical responses were band specific, whereas the detector response was channel specific.

The optical system for bands 1-4 consists of five mirror surfaces: the scan mirror, the primary and secondary telescope mirrors and the two mirrors of the scan line corrector (Fig. 3). Bands 5-7 have two additional mirror surfaces and two windows: the relay spherical and folding mirrors and the ambient and dewar windows. The optical components' transmittances and reflectances were measured with a spectrophotometer. Measurements of mirror reflectance were taken on vitness samples which were coated concurrently with each mirror. Reflectance measurements were taken at an angle corresponding to use within the system, that is, normal incidence for all but the scan and scan line corrector mirrors, which were measured at a 45 degree angle. Window transmittances were measured on the actual flight parts at a normal angle of incidence. The products of the appropriate set of measurements were used as the optical spectral throughputs for the individual bands.

Each TM band has one filter for all channels within the band (Fig. 4). The small size of each filter made measuring its spectral transmittance difficult, so measurements made on the filter material prior to sizing were used in the calculations of RSR. Filter materials for bands 1-5, 7 were measured at nominal operating temperature. Band 6 filter material could not be measured at operating temperature (90°K-105°K) prior to sizing, and was therefore measured at ambient temperature. Measurements on a piece of witness filter material at ambient and at 90°K were used to determine a factor for converting ambient measurements to 90°K conditions. Both the TM/PF and TM/F used filters cut from the same pieces of filter material, therefore identical filter transmission data were used for both calculations of RSR.

Each TM has 16 silicon photodiode detectors for each of bands 1-4, 16 InSb detectors for bands 5 and 7 and four HgCdTe detectors for band 6 (Fig. 4). The relative spectral responses of three of the TM/PF detectors per band were measured for bands 1-4. Differences between the three detector measurements were deemed to be smaller than the measurement errors, so the

average of the three was used to represent all 16 detectors of the TM/PF. As the detector spectral response should theoretically be smooth, a best-fit curve through the averaged measured responses was used in the calculations of RSR. The TM/PF measurements were also used to represent the TM/F detectors as all detector arrays were from the same batch. For bands 5 and 7, one element of "sister" arrays (manufactured from the same wafer as the actual parts) were measured, as the actual parts could not be measured directly. These measurements were used to represent all 16 detectors for both the TM/PF and TM/F. For band 6 in the TM/PF all four detectors were measured and were individually used to make channel-by-channel calculations of RSR. For the TM/F, the odd (1 and 3) channels were similar and the even (2 and 4) channels were similar, and only two calculations were made for band 6.

Thus, with the exception of band 6, RSR's for the TM units were calculated on a band-by-band basis. In addition, again excluding band 6, the same numbers were used for the TM/F as for the TM/PF for the filter and detector responses. In the reflective bands only the differences in the optical surfaces between TM/PF and TM/F affected the calculated RSR's. In band 6, RSR was calculated on a channel-by-channel basis for the TM/PF and with one calculation for the even channels and one for the odd channels for the TM/F.

The one spectral coverage specification not addressed by the RSR calculation was spurious system response. The spurious system response, a measure of out-of-band response, is the integrated response outside the 5% response points relative to inside the 50% response points for solar equivalent input. What was typically used to determine compliance with this specification was the filter vendor's (Optical Coating Laboratory, Inc.) calculations of the integrated spurious filter transmission—with the integration being performed across the nominal range of sensitivity for the detectors, but not considering the detector's response or solar irradiance. For bands 4 and 6, the nominal detector responses and solar irradiances were considered in the calculation and these should give more accurate representations of true out-of-band response.

A limited empirical determination of out-of-band response was also conducted on the TM/F.\* Peak responses of the primary focal plane bands to scans of a slit of light passed separately through witness filter pieces of the other bands were recorded.

### Results

The results of the RSR calculations are presented in Figures 5-11, along with a comparison of the spectral performance to specifications. In Appendix A the RSR data for TM/PF and TM/F are tabulated (Tables Al-A7). For the reflective bands (1-5, 7) performance was within specifications and near nominal with the following exceptions:

1. Bands 2 and 3 flatnesses were slightly below specifications (<5%), and band 7 flatness was below specifications.

<sup>\*</sup>Hughes Aircraft Company, SBRC, "Light Leaks in the Prime Focal Plane Assembly-II," internal memorandum HS236-8163, November 19, 1982.

- 2. Band 5 upper-band edge was higher than specifications: 1730-1770 nm specified, 1784 nm actual.
- 3. Band 2 band edges were shifted upward about 9 nm relative to nominal.
- 4. Band 4, 5 and 7 lower-band edges were 16-18 nm higher than nominal.

The band 5 out-of-specification upper-band edge resulted in the inclusion of a portion of the spectrum affected by atmospheric water absorption. This could contribute to increased sensitivity of the band to atmospheric water content variability. The other variations from specifications are not expected to produce significant data utility impacts. In bands 1-5 and 7 the TM/PF and TM/F responses were similar, with the only differences being apparent in the within-band shape. The differences in within-band shape were due to the only differences in the numbers input to the RSR calculations: optics.

In band 6, the TM/PF and TM/F showed fundamentally different spectral responses. The TM/PF upper-band edge was detector determined at a temperature dependent value of about 11.7  $\mu m$ ; the TM/F upper-band edge was filter determined at 12.43  $\mu m$ . The TM/PF band 6 was out of specification in terms of the upper band edge, upper-edge slope and flatness. The TM/F band 6 was within specification except for the lower-edge slope which was slightly wide. The principal reason for the 10.4  $\mu m$  to 12.5  $\mu m$  bandwidth specification on band 6 was to allow sufficient signal to achieve the 0.5  $^\circ$ K radiometric sensitivity requirement. As the TM/PF scanner's band 6 radiometric response was significantly better than specified, the failure to meet the spectral specification was not critical.

The calculated out-of-band responses suggest that all bands are within specifications (Table 1). In most bands the spurious response is simply an indication as to how rapidly the RSR rises from 0% to 5% and drops from 5% to 0%. The bands in general do not contain significant response peaks away from the primary response region. In band 1 there are two minor transmission "peaks" at 800 and 885nm with magnitudes of 0.5% and 0.7%, respectively (Fig. 12). In band 3 there is some transmission in the 950-1100nm range, reaching a peak transmittance of 3% at about 955nm (Fig. 13).

In the empirical test of spurious system response each band gave the highest output to light externally filtered through a piece of its filter material, as expected (Table 2). Also adjacent bands showed some spectral "crosstalk" as their spectral responses overlapped. The only noteworthy out-of-band response occurred in band 1. Band 1 gave a 1.2 count response for a radiance passing through a band 4 filter that produced 115 counts in band 4. This indicates that the two small peaks in the filter transmission of band 1 in the band 4 region result in a 1 count response in band 1 for about every 100 counts in band 4. A comparable impact on band 4 output filtered by a band 1 filter material was not obtained due to the lower gain setting in band 4 and the higher response of silicon in the band 4 region. Note that the impact of the band 3 response at 950-1100 nm was not evaluated in this test as no TM band covered this spectral region. The impact of the band 3 response at 950-1100 nm would be less than the filter transmission indicates, as the relative response of the silicon detectors drops rapidly with increasing wavelength in this region. At 950 nm it is

down to about 50% of its peak response at 850 nm and dropping rapidly.

#### SPECTRAL MATCHING

## TM/PF Procedures\*

The spectral matching test designed for the TM/PF scanner made use of instrumentation configurations already planned for other tests and data from existing tests, therebylimiting the impact on program scheduling. First, each channel of the TM/PF scanner was calibrated on a 1.22 m integrating sphere of known spectral radiance (Fig. 14). This test, conducted 29-30 June 1981, was a standard calibration test and provided the gains and offsets for each channel. Then on 8-11 July 1981, a second test, slightly modified to allow for spectral matching data collection, was conducted. In this test, the TM/PF was aligned to the TM calibrator (a collimator and several light sources) (Fig. 14). The output of each channel to the TM calibrator MTF source (a small integrating sphere) was recorded and converted to radiance using the gains and offsets from the first test. The MTF source was filtered for the band 1, 2 and 4 tests. As the large integrating sphere and the MTF light source were spectrally different, this provided a spectral matching test, with the differences in output between channels to the second source indicating the mismatch.

The spectral mismatch was determined as follows:

1. Using the gains and offsets of each channel in a band from the 29-30 June large integrating sphere test, the effective spectral radiance of the calibrator MTF source in each channel was calculated from the 8-11 July test output, e.g. band 1 channel 1:

| _  | <u>Parameter</u>           | <u>Units</u>                                    | <u>Value</u> | <u>Source</u> , |
|----|----------------------------|-------------------------------------------------|--------------|-----------------|
| a  | GAIN                       | (mux/mw cm $^{-2}$ st $^{-1}$ $\mu$ m $^{-1}$ ) | 16.490       | 29-30 June test |
| b. |                            | (mux)                                           | 1.187        | 29-30 June test |
| C٠ | OUTPUT TO<br>CALIBRATOR    | (mux)                                           | 146.720      | 8-11 July test  |
| d. | EFFECTIVE SPECTRA RADIANCE |                                                 | n 035        | (c)-(b)         |
|    |                            | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,          |              | (a)             |

2. The channels with the maximum and minimum effective spectral radiances in each band were determined. The difference in their spectral radiances was the spectral mismatch. This difference was expressed as a percentage of the average output of all channels in the band to the calibrator or as a percentage of the minimum saturation level. The first number gave a better measure of the spectral mismatch; the second number was useful for comparing to the specifications.

Although a spectral matching test, this test was not responsive to the original NASA specifications. It somewhat more closely matched a set of spectral matching

<sup>\*</sup>Hughes Aircraft Company, SBRC, "Spectral Matching Test Requirement-Supplement to Test BLO7," internal memorandum HS236-6922, July 21, 1980.

parameters provided by the Landsat-4 science office (Fig. 15).

## TM/PF Results

The results of the TM/PF spectral matching tests (Table 3)\* showed "spectral mismatches" of up to 6% of signal values (2% of minimum saturation levels), suggesting that either the detectors were poorly matched within bands or the filters had significant local variations in spectral transmittance. Two factors may have caused the indicated spectral mismatches to be greater than the actual values. First, the two tests were conducted about two weeks apart. Although TM detectors are stable relative to MSS photomultipliers, some changes in gains and offsets may have affected the results. Second, measurements of the TM calibrator's MTF spherical integrating source (SIS) indicated significant non-uniformities in illumination. As in the test using the calibrator's SIS, each channel views a different portion of the source, these non-uniformities could have contributed to inflating the spectral mismatches.\* No additional spectral matching tests were performed on the TM/PF to improve the spectral mismatch estimates.

## TM/F Procedurest

Thé spectral matching test was redesigned for the TM/F tests. Data from a 1.22 m integrating sphere test (14 July 1982) were again used to provide the gains and offsets. Then, a new second test, conducted on 15 July 1982 provided the alternate spectral source. In this test a laboratory collimator and a 15 cm integrating sphere replaced the TM calibrator with its spherical integrating source. In addition, a new set of spectral filters was obtained, such that the differences in spectral slopes of the two sources closely approximated the specified differences.

A second modified TM/F spectral matching test was conducted in an attempt to reduce the inflation of the spectral mismatch due to any non-uniformities of this 15 cm integrating sphere. In this test, the same data as before were taken with the filtered source mounted in the collimator and a second set of data was taken with the spectral filter removed. The data, signal levels in MUX, were converted to effective spectral radiance using the 1.22 m sphere calibration. To calculate spectral mismatch, the minimum difference in any channels output to give the error quantity, which was then expressed as a percentage of the output or the minimum saturation level. An additional correction was applied to the resultant percentages to account for the fact that the difference in spectra for the collimator with and without filters did not conform to the specified values.

<sup>\*</sup>Hughes Aircraft Co., SBRC, "TM PF BLO7R Test Result Summary," internal memorandum, HS236-7567, July 23, 1981.

<sup>+</sup>Hughes Aircraft Co., SBRC, "Protoflight Spectral Matching Performance Revisited," internal memorandum, HS236-7608, August 25, 1981.

tHughest Aircraft Co., SBRC, "TM Spectral Matching," internal memorandum, HS236-7873, March 1, 1982.

## TM/F Results

Results of the first test (Table 4)\* were generally "better" than in the TM/PF tests, except in band 4 where the TM/F test was more severe than the TM/PF test. Still, specifications were not indicated as being met in bands 1, 4 and 5. In the second test (Table 5) better performance was indicated, with all but band 4 meeting specifications.

To provide a reference point for the TM/F spectral mismatch results, the spectral mismatches of the five existing MSS sensors were calculated using their measured channel-by-channel relative spectral responses (Norwood et al., 1972; Felkel et al., 1977; Markham and Barker, 1982) for the specified targets (Table 6). The TM spectral mismatches fell within the range of MSS mismatches or were somewhat better. Thus, if the TM/F results can also be considered representative of the TM/PF spectral mismatches, no greater spectral striping problems can be expected on the TM than on past MSS°s.

\*Hughes Aircraft Company, SBRC, "Spectral Matching Test Results--Second Revision," internal memorandum, HS236-8084-2, July 21, 1982.

\*The output of each MSS channel was calculated as:

OUTPUT = 
$$I=a = \frac{\sum_{\Sigma}^{D} SR(I) *RSR(I)}{\sum_{\Sigma} RSR(I)}$$

$$I=a$$

Where:

I - points of RSR measurement
a,b - range of non-zero relative spectral responses for channel
SR(I) - sloped radiance at I for comparable TM Band (mw/cm² st μm)
RSR(I) - relative spectral response of channel at I
OUTPUT - output of channel (mw/cm² st μm)

The maximum output minus the minimum output equalled the spectral mismatch. This divided by the average output in the band provided the percentage spectral. mismatch.

### PRIMARY FOCAL PLANT LIGHT LEAKS\*

One additional spectrally related characteristic observed on the TM/F was a family of light leaks in the primary focal plane. These leaks were discovered during the spatial coverage testing of the TM/F. The light leaks have the following characteristics:

- 1. They affect all four bands in the prime focal plane (PFP) and no bands in the cooled focal plane (CFP).
- 2. They appear as secondary maxima in the scan direction line spread function (Fig. 16).
- 3. Their position is the same for both the odd and even half bands, (the odd and even detectors are displaced from each other by 2.5 IFOV's) (Table 7). The magnitude of the light leaks is the same for all detectors in a half-band.
- 4. They are roughly 20 IFOV's (track direction) by 1 IFOV (scan direction) in dimensions.
- 5. They are white leaks: the light does not pass through the spectral filters, though their relative magnitude does depend on the spectral character of the illumination.

The location and shape of the light leaks suggests they are associated with the gaps between the filter mounts in the primary focal plane (Fig. 4). The gaps between the individual band assemblies do not perfectly coincide. This may be allowing light to scatter into the detectors. Note that the PFP diagram is for the TM/PF, whereas the light leak data is the TM/F. It is believed that the TM/PF has comparable leaks, though not exactly at the same locations and of the same magnitudes. Also note that the worst measured light leak was about 1% of the detector's response, though this percentage would be greater when the detector is centered on a dark target and the light leaks are centered on a neighboring bright area.

--

### SUMMARY

Spectral coverage for the TM/PF and TM/F instruments was determined by analyses of spectral measurements of the optics, filters and detectors. Individual channel relative spectral responses were not measured. In the reflective bands, optics accounted for the only differences between the TM/PF and the TM/F, and the calculated spectral responses were similar. The only significant deviation from specifications in the reflective bands was the band 5 upper-band edge which extended to 1784 nm into an atmospheric water absorption region. In band 6 (emissive thermal) the TM/PF and TM/F had fundamentally different spectral responses. The TM/PF upper-band edge was lower than specifications, however the detectors were sufficiently sensitive to exceed the 0.50K radiometric specification, so the narrower bandwidth was not critical. The TM/F met the upper-band edge specification, as well as the radiometric specification, but was less sensitive overall.

<sup>\*</sup>Hughes Aircraft Co., SBRC, "Light Leaks in the Prime Focal Plane Assembly-II," internal memorandum, HS236-8163, November 19, 1982.

Band 1 and band 3 filters had minor transmission peaks in the near-IR region: 0.5% and 0.7% at 800 nm and 885 nm respectively for band 1, 2.8% and 1.2% at 945 nm and 1000 nm respectively for band 3.

Satisfactory spectral matching data for the TM/PF was never obtained. The TM/F spectral matching data indicated within specification performance (50.5%) for all but band 4 (1.7%). Comparison to MSS performance indicated TM performed comparably or better than MSS's in spectral matching.

Several minor leaks were detected in the TM/F prime focal plane. The odd channels of band 1 (magnitude of the light leaks comparable for all detectors in a half band), had the largest light leaks. In the band 1 odd channels, with the TM calibrator 'white' light source, a light leak at 13.1 IFOV along scan off the detector center made about a 1% contribution to the signal. The location and shape of the light leaks suggests that they are associated with the slots at the sides of the individual band assemblies. It is believed the TM/PF has comparable light leaks.

#### ACKNOWLEDGEMENTS

This paper is based solely on data obtained from Hughes/SBRC. This data has been provided along with generous assistance in interpretation by R. W. Cline, J. C. Lansing and  $D_{\ast}$  G. Brandshaft. The assistance of Sy Lee and Ronald Achenbach in data entry and presentation is also greatly appreciated.

#### REFERENCES

Felkel, E. O., K. Brinkman, R. Coon, and J. Stivers, 1977, "Five-Band Multi-Spectral Scanner--Final Report," Hughes Aircraft Co., Final Report for NASA contract NASS-11255.

Markham, B. L., and J. L. Barker, 1982, "Spectral Characterization of the Landsat-D Multispectral Scanner Subsystems," NASA TM-83955, NASA/GSFC, Greenbelt, MD, 45 pp.

Norwood, V. T., L. R. Fernelia and G. A. Tadler, 1972, "Multispectral Scanner System for ERTS-Four-Band Scanner System, Final Report," NASA CR-132758, NASA/GSFC, Greenbelt, MD.



Figure 1. Spectral coverage parameters under specification for TM bands 1-4. The bands 5-7 specifications were on the 5-75% edge slope and the band 6 flatness specification was at 80% RSR.



Figure 2. Spectral matching requirements for the Thematic Mapper reflective bands. When all channels within a band are calibrated to produce equivalent outputs when viewing the specified flat scene radiance, then the maximum difference in output between channels when all are viewing the spectrally sloping scene shall be less than 0.5 percent of the minimum saturation level.





Figure 4. TM/PF primary focal plane and projection of cooled focal plane at primary focal plane.



| SPECTRAL PARAMETER                                    | SPECIFICATION        | PROTOFLIGHT | FLIGHT   |
|-------------------------------------------------------|----------------------|-------------|----------|
| LOWER BAND EDGE (nm)                                  | 450±10               | 452         | 452      |
| UPPER BAND EDGE (nm)                                  | 520 ± 10             | 518         | 518      |
| LOWER BAND EDGE SLOPE (nm)<br>20% TO 70%<br>5% TO 70% | 20 (MAX)<br>30 (MAX) | 7<br>14     | 8<br>15  |
| UPPER BAND EDGE SLOPE (nm)<br>70% TO 20%<br>70% TO 5% | 20 (MAX)<br>40 (MAX) | 5<br>14     | 6<br>14  |
| FLATNESS (%) WITH LINEAR CORRECTION                   | –<br>75 (MIN)        | 32<br>78    | 42<br>76 |

Figure 5. Thematic Mapper spectral performance - band 1.

# ORIGINAL PAGE IS



| SPECTRAL PARAMETER         | SPECIFICATION | PROTOFLIGHT | FLIGHT |
|----------------------------|---------------|-------------|--------|
| LOWER BAND EDGE (nm)       | 520±10        | 529         | 528    |
| UPPER BAND EDGE (nm)       | 600 ± 10      | 610         | 610    |
| LOWER BAND EDGE SLOPE (nm) |               |             |        |
| 20% TO 70%                 | 20 (MAX)      | 20          | 17     |
| 5% TO 70%                  | 30 (MAX)      | 25          | 22     |
| UPPER BAND EDGE SLOPE (nm) |               |             |        |
| 70% TO 20%                 | 20 (MAX)      | 9           | 9      |
| 70% TO 5%                  | 40 (MAX)      | 19          | 18     |
| FLATNESS (%)               |               | 26          | 48     |
| WITH LINEAR CORRECTION     | 75 (MIN)      | 71 •        | 72 •   |
|                            |               |             |        |

OUT OF SPECIFICATION

Figure 6. Thematic Mapper spectral performance - band 2.



| SPECTRAL PARAMETER         | SPECIFICATION | PROTOFLIGHT | FLIGHT |
|----------------------------|---------------|-------------|--------|
| LOWER BAND EDGE (nm)       | 630 ± 20      | 624         | 626    |
| UPPER BAND EDGE (nm)       | 690 ± 10      | 693         | 693    |
| LOWER BAND EDGE SLOPE (nm) |               |             |        |
| 20% TO 70%                 | 20 (MAX)      | 14          | 15     |
| 5% TO 70%                  | 30 (MAX)      | 21          | 22     |
| UPPER BAND EDGE SLOPE (nm) |               |             |        |
| 70% TO 20%                 | 20 (MAX)      | 7           | 6      |
| 70% TO 5%                  | 40 (MAX)      | 18          | 18     |
| FLATNESS (%)               | _             | 65          | 56     |
| WITH LINEAR CORRECTION     | 75 (MIN)      | 71 •        | 73 •   |

**<sup>\*</sup>OUT OF SPECIFICATION** 

Figure 7. Thematic Mapper spectral performance - band 3.

# ORIGINAL PAGE IN



| SPECTRAL PARAMETER                                    | SPECIFICATION        | PROTOFLIGHT | FLIGHT   |
|-------------------------------------------------------|----------------------|-------------|----------|
| LOWER BAND EDGE (nm)                                  | 760 ± 20             | 776         | 776      |
| UPPER BAND EDGE (nm)                                  | 900 ± 10             | 905         | 904      |
| LOWER BAND EDGE SLOPE (nm)<br>20% TO 70%<br>5% TO 70% | 20 (MAX)<br>30 (MAX) | 13<br>23    | 13<br>24 |
| UPPER BAND EDGE SLOPE (nm)                            |                      |             | _,       |
| 70% TO 20%                                            | 30 (MAX)             | 9           | 10       |
| 70% TO 5%                                             | 40 (MAX)             | 17          | 18       |
| FLATNESS (%)                                          | -                    | 76          | 53       |
| WITH LINEAR CORRECTION                                | 75 (MIN)             | t           | 81       |
| †NO CORRECTION NEEDED                                 |                      |             |          |

Figure 8. Thematic Mapper spectral performance -- band 4.



| SPECTRAL PARAMETER                      | SPECIFICATION | PROTOFLIGHT | FLIGHT |
|-----------------------------------------|---------------|-------------|--------|
| LOWER BAND EDGE (nm)                    | 1550 ± 20     | 1568        | 1567   |
| UPPER BAND EDGE (nm)                    | 1750 ± 20     | 1784        | 1784   |
| LOWER BAND EDGE SLOPE (nm)<br>5% TO 75% | 50 (MAX)      | 32          | 33     |
| UPPER BAND EDGE SLOPE (nm)<br>75% TO 5% | 50 (MAX)      | 42          | 43     |
| FLATNESS (%)                            | 75 (MIN)      | 84          | 84     |

**\*OUT OF SPECIFICATION** 

Figure 9. Thematic Mapper spectral performance - band 5.



| SPECTRAL PARAMETER                      | SPECIFICATION | PROTOFLIGHT | FLIGHT      |
|-----------------------------------------|---------------|-------------|-------------|
| LOWER BAND EDGE (nm)                    |               | 2097        | 2097        |
| UPPER BAND EDGE (nm)                    | 2350±30       | 2347        | 2349        |
| LOWER BAND EDGE SLOPE (nm)<br>5% TO 75% | 80            | 75          | 71          |
| UPPER BAND EDGE SLOPE (nm)<br>75% TO 5% | 80            | 37          | 37          |
| FLATNESS (%)                            | 75            | <u>59</u> • | <u>57</u> • |

**<sup>\*</sup>OUT OF SPECIFICATION** 

Figure 10. Thematic Mapper spectral performance - band 7.



| SPECTRAL PARAMETER                      | SPECIFICATION | PROTOFLIGHT | FLIGHT |
|-----------------------------------------|---------------|-------------|--------|
| LOWER BAND EDGE (µm)                    | 10.4±0.1      | 10.42       | 10.45  |
| UPPER BAND EDGE (μm)                    | 12.5±0.1      | 11.66       | 12.43  |
| LOWER BAND EDGE SLOPE (μm)<br>5% TO 75% | 0.3 (MAX)     | 0.25        | 0.34   |
| UPPER BAND EDGE SLOPE (μm)<br>75% TO 5% | 0.3 (MAX)     | 1.01 •      | 0.26   |
| FLATNESS (%)                            | 75            | 67 •        | 78     |
| OUT OF SPECIFICATION                    |               |             |        |

Figure 11. Thematic Mapper spectral performance - band 6.



Figure 12. Thematic Mapper band 1 out-of-band filter transmission. Note scale 0-1%.



Figure 13. Thematic Mapper band 3 out-of-band filter transmission between 900 & 1100 nm. Note scale 0-5%.



Figure 14. Spectral matching test schematic. One set of measurements was taken viewing the large integrating sphere (mirror removed). A second set of measurements was taken viewing the small sphere (mirror in place). The TM calibrator with MTF source acted as the collimator/small sphere for the PF tests. A laboratory collimator and a separate small sphere were used for the F tests.



Figure 15. Ratio of spectral slopes of Spherical Integration Sources (SIS) used for TM/PF spectral matching tests in relation to specifications and science office recommendations.

TM/F tests simulated the original specifications.



Figure 16. TM/F band 1 odd-channel forward scan line spread function showing location of light leak at 13.1 IFOV off of detector center.

# OF POOR QUALITY

Table 1.

TM Integrated Out-of-Band Responses in Relation to Specifications

## OUT-OF-BAND RESPONSES

| BAND | CALCULATED FROM FILTER TRANSMISSION | (%) SPECIFICATION |
|------|-------------------------------------|-------------------|
| 1    | 1.64%                               | 5 (MAX)           |
| 2    | 1.30%                               | 5 (MAX)           |
| 3    | 2.87%                               | 5 (MAX)           |
| 4    | 0.78% *                             | 5 (MAX)           |
| 5    | 0.79%                               | 5 (MAX)           |
| 7    | 1.25%                               | 5 (MAX)           |
| 6    | 0.81% *                             | 5 (MAX)           |
|      |                                     |                   |

<sup>\*</sup>DETECTOR RSR AND SOLAR IRRADIANCE CONSIDERED IN CALCULATION

Table 2.
.TM/F Peak Responses to Filtered Slit Light Source

| BAND     | *****                        |      |       |       |  |  |
|----------|------------------------------|------|-------|-------|--|--|
| IN WHICH | SOURCE LIGHT FILTER (BAND #) |      |       |       |  |  |
| MEASURED | 1                            | 2    | 3     | 4     |  |  |
| 1        | 120.0                        | 6.6  | 0.0   | 1.2   |  |  |
| 2        | 2.7                          | 82.0 | 1.2   | 0.2   |  |  |
| 3        | < 0.2                        | 1.5  | 105.0 | 0.2   |  |  |
| 4        | ~0.2                         | ~0.2 | <0.1  | 115.0 |  |  |

Comparison of MSS to TM/F Spectral Mismatch

Table 6.

TM/PF Spectral Matching Results - Large and Filtered Small Integrating Spheres Table 3.

TM/F Spectral Matching Results Test 1 - Large

Table 4.

and Filtered Small Integrating Spheres

SPECIFICATION (% MSU

TM/F Spectral Matching Results Test 2 - Small Integrating Sphere With and Without Filters Table 5.

|              | MAXIMUM B                        | MAXIMUM BETWEEN CHANNEL SPECTRAL MISMATCH        | L MISMATCH            |             |                       |                                                                                                  |                                                |
|--------------|----------------------------------|--------------------------------------------------|-----------------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------|
| BAND         | PERCENT OF<br>OUTPUT (%)         | *- PERCENT OF<br>MINIMUM SATURATION<br>LEVEL (%) | SPECIFICATION (% MSL) | MSS BAND    | COMPARABLE<br>TM BAND | RANGE OF MSS-<br>SPECTRAL MISMATCHES<br>(% OF SIGNAL)                                            | FUGHT MODEL TM SPECTRAL MISMATCH (% OF SIGNAL) |
| -            | 0.89                             | 0.46                                             | 0.50                  |             | N                     | 1-5                                                                                              | 1.2                                            |
| 7            | :                                | :                                                | 0.50                  | 7           | en                    | 3-10                                                                                             |                                                |
| ന            | 1.50                             | 0.34                                             | 0.50                  | •           | , ,                   | <b>?</b> .                                                                                       | 3                                              |
| 4            | 3.00                             | 1.74                                             | 0.50                  | n           | •                     | 1-1                                                                                              | o<br>n,                                        |
| ιΩ           | 0.09                             | 0.0                                              | 0.50                  | <b>→</b>    | 4                     | 1-5                                                                                              | 3.0                                            |
| 7            | 0.22                             | 0.11                                             | 0.50                  | *CALCULATED | FROM MSS 1, 2,        | CALCULATED FROM MSS 1, 2, 3, 4 (PF), F CHANNEL-BY-CHANNEL                                        | INNEL                                          |
| /ALID TEST C | ALID TEST COULD NOT BE CONDUCTED | DUCTED                                           |                       | COMPARABLI  | E TM BAND SPECIF      | HELATIVE SPECTRAL RESPONSE MEASUREMENTS USING THE COMPARABLE TM BARES SPECIFIED SLOPING RADIANCE | 46                                             |

<sup>•</sup> VALID TEST COULD NOT BE CONDUCTED + OUT OF SPECIFICATION

# ORIGINAL PART 13 OF POOR QUALITY

Table 7.

Principal TM/F Primary Focal Plane Light Leaks (Magnitudes > 0.2 MUX with MTF Slit Source)

| HALF-BAND | LEAK POSITION RELATIVE TO CENTRAL MAX (IFOV'S) | LEAK<br>AMPLITUDE<br>(MUX) | LEAK AMPLITUDE<br>(% PEAK RESPONSE) |
|-----------|------------------------------------------------|----------------------------|-------------------------------------|
| I-ODD     | -13.1                                          | 1.3                        | 1.10                                |
| I - EVEN  | -15.6                                          | 0.45                       | 0.37                                |
|           | 14.7                                           | 0.20                       | 0.16                                |
| 2 - ODD   | -12.0                                          | 0.20                       | 0.18                                |
| 2 - EVEN  | <del>-</del>                                   | -                          | -                                   |
| 3 - ODD   | -12.0                                          | 0.30                       | 0.27                                |
|           | 12.3                                           | 0.90                       | 0.80                                |
| 3 – EVEN  | -14.8                                          | 0.25                       | 0.21                                |
|           | 9.7                                            | 0.30                       | 0.26                                |
| 4 - ODD   | -11.7                                          | 0.30                       | 0.24                                |
|           | 12.6                                           | 0.20                       | 0.16                                |
| 4 – EVEN  | -14.0                                          | 0.60                       | 0.53                                |
|           | -7.4                                           | 0.30                       | 0.26                                |
|           | 10.1                                           | 0.20                       | 0.18                                |

|                    |        |        | -        |             |         |        |                    |          |          |                    |        |
|--------------------|--------|--------|----------|-------------|---------|--------|--------------------|----------|----------|--------------------|--------|
| VAVELENGTH<br>(NM) | L.     | •      | . : K    | VAVELENGTH  | ï       | •      | WAVELENGTH<br>(NM) | t        |          | WAVELENGTH<br>(NH) | t      |
| 21.5               | 0.0005 | :      | 4+ **.   | 453         | 0.5788  | 0.5366 | 767                | 0.3476   | 0.9761   | \$35               | 0.0309 |
|                    | 0.000  | •      |          | 454         | 0.6282  | 0.5856 | 493                | 0.9519   | 0.9775   | 306                | 0.0273 |
|                    | 0.000  | • • •  |          | 50.0        | 0.7114  | 0.6667 | 496                | 0.9563   | 0.9788   | 537                | 0.0237 |
|                    | 200    |        | -441     | 929         | 0.7318  | 0.6880 | 497                | 0.9607   | 0.3802   | 578                | 0.0215 |
| 9 !                | 0.0001 |        | , s. say | 457         | 0.7415  | 0.6993 | 898                | 0.965 i  | 0.9815   | 539                | 0.0192 |
|                    | 0.0008 |        |          | 10 i        | 0.7300  | 0.7095 | 439                | 0.8703   | 1588.0   | 340                | 0.0110 |
|                    | 0.000  |        |          | 156         | 0.7550  | 0.7165 | 8                  | 0.9789   | 0.9891   | 25                 | 0.0147 |
| 6                  | 800    | •      | •        | 9           | 0.7564  | 0.7200 | 501                | 0.9866   | 0.9935   | 342                | 0.0125 |
| 20                 | 0.003  | 0.000  | -        |             | 0.7663  | 0.7326 | 205                | 0.9943   | 0.9378   | 543                | 0.0110 |
| 421                | 8.8    | 0.00   | -        | 462         | 0.7763  | 0.7454 | 503                | <br>800: | 2000     | 244                | 0.003  |
| 122                | 0.00   | 0000   | •        | <b>4</b> 63 | 0.7864  | 0,7583 | 504                | 0.9986   | 0.9952   | 345                | 0.0086 |
| 423                | 0.00   | 00.0   | •        | 164         | 0.7965  | 0.7714 | 203                | 0.9897   | 0.9828   | 346                | 0.0073 |
| ***                | 0.0012 | 6000.0 | •        | 465         | 0.8067  | 0.7847 | 206                | 0.9629   | 0.9524   | 347                | 0.0061 |
|                    | 0.007  | 0.0010 | -        | 997         | 0.8117  | 0.7924 | 507                | 0.9356   | G. 52 19 | 248                | 0.0058 |
| 9 5                | 9.83   | 0.00   |          | 197         | 0.8168  | 0.8002 | 808                | 0.9083   | 0.8914   | 543                | 0.0057 |
|                    | 36     | 9.00   | •        | 50          | 0.8219  | 0.8080 | 605                | 0.6806   | 0.8607   | 220                | 0.0055 |
| 0 0                | 200    | 0.0020 | •        | 459         | 0.6266  | 0.8156 | 0.0                | 0.8519   | 0.8292   | 35.                | 0.0053 |
| n C                |        | 353    |          | 2;          | 0.6265  | 0.8206 | - :                | 0.6244   | 0.8021   | 552                | 0.0051 |
| ? :                |        | 38     | , ,      |             | 60.8309 | 0.4257 | 512                | 0.8101   | 0.7877   | 553                | 0.00   |
| 132                | 0.0072 | 0000   |          | ,           | 20.00   |        | 7 ;                | 7336     | 0.1132   | 455                | 0.0046 |
| 5                  | 0.0103 | 0.0086 | 7        | 474 4       | 0.8383  | 0.8423 |                    |          | 7730     | 66.0               | 0.004  |
| 70                 | 0.0134 | 0.0113 | •        | 175         | 0.8457  | 0.8526 |                    | 2007     | 777.0    | 906                | 0.00   |
| 135                | 0.0166 | 0.0141 | •        | . 476       | 0.8522  | 0.8624 |                    | 2000     | 0.4033   |                    |        |
| 136                | 0.0199 | 0.010  | •        | 477         | 0.8607  | 0.8724 | 81.0               | 0.4956   | 0.4833   | 9                  | 200    |
| 137                | 0.0252 | 0.0216 | •        | 178         | 0.8682  | 0.8824 | 513                | 0.4132   | 0.4002   | 095                |        |
| 28                 | 0.0310 | 0.0268 | •        | 479         | O.875B  | 0.6925 | 520                | 0.3292   | 0.3187   | 26.1               | 0.0031 |
| 60                 | 0.0367 | 0.0321 | -        | 480         | 0.6835  | 0.9026 | 521                | 0.2447   | 0.2367   | 262                | 0.0029 |
| 0                  | 0.0421 | 0.0370 | •        | -           | 0.8860  | 0.3063 | 522                | 0.1369   | 0.1324   | 263                | 0.0027 |
|                    | 0.0476 | 0.0420 | -        | 207         | 0.8865  | 0.0123 | 523                | 0.1054   | 0.1018   | 264                | 0.0025 |
| 75                 | 0.0331 | 0.047  | -        | 600         | 0.8910  | 0.9154 | 524                | 0.0945   | 0.0911   | \$63               | 0.0023 |
|                    | 0.0588 | 0.0524 | •        | 40          | 0.8934  | 0.9196 | \$25               | 0.0834   | 0.0804   | 266                | 0.0020 |
| 777                | 0.0645 | 0.0577 | •        | 800         | 0.8329  | 0.9238 | 226                | 0.0723   | 0.0696   | 267                | 818    |
|                    | 0.0704 | 0.0633 | •        | 98          | 0.8983  | 0.9285 | 527                | 0.0612   | 0.0588   | 268                | 9.00.0 |
| 9                  | 0.0827 | 0.0746 | •        | 487         | 0.3007  | 0.933  | 528                | 0.0554   | 0.0532   | 695                | 0.0014 |
|                    | 0.1213 | 0.1097 | •        | 488         | 0.9031  | 0.9379 | 529                | 0.0520   | 0.0498   | 570                | 8.0    |
|                    | 0.1725 | 0.1564 | •        | 60          | 0.9034  | 0.9425 | 530                | 0.0485   | 0.0465   | 571                | 0000   |
| 677                | 0.2730 | 0.2483 | -        | 190         | 0.9078  | 0.9472 | 501                | 0.0450   | 0.0431   | 572                | 0.000  |
| 011                | 0,3718 | 0.3391 | -        | 107         | 0.5179  | 0,9548 | 532                | 0.04 23  | 760.0    | 573                | 0.0003 |
|                    | 0.4425 | 0.4058 | •        | 492         | 0.9281  | 0.9623 | 6.<br>63           |          |          | •                  |        |
| 443                | •      |        |          |             |         |        |                    | 20.00    | 970.0    | • 10               | 200    |

APPENDIX A

|                                                                                 |          |         |                                          |          | <del>10</del> | Table A2                                   |            |          |                    |         |
|---------------------------------------------------------------------------------|----------|---------|------------------------------------------|----------|---------------|--------------------------------------------|------------|----------|--------------------|---------|
|                                                                                 |          |         | THEMATIC                                 | MAPPER R | ELATIVE SF    | THEMATIC MAPPER RELATIVE SPECTRAL RESPONSE | NSE - BAND | ~        |                    |         |
|                                                                                 |          |         | - t> - <b>1</b>                          |          |               |                                            |            |          |                    |         |
| IVELENGTH<br>(NM)                                                               | <u>t</u> | •       | WAVELENGTH                               | ŭ.       | •             | WAVELENGTH<br>(NM)                         | t          | <b>L</b> | WAVELENGTH<br>(NH) | *       |
| 50.                                                                             | 9000.0   | 0.0001  | 539                                      | 0.6754   | 0.7163        | 577                                        | 0.8859     | 6.9047   | 717                | ****    |
| 302                                                                             | 0.0019   | 0.0021  | ç                                        | 0.6833   | 0.7312        | 578                                        | 0.8314     | 0.9073   |                    | 2017    |
| 03                                                                              | 0.0032   | 0.0036  | 7                                        | 0.7003   | 0.7416        | 579                                        | 0.8958     | 0.9096   | 919                | 0.1810  |
| 200                                                                             | 0.0068   | 0.0012  | 7                                        | 0.7107   | 0,7520        | 280                                        | 0.9002     | 0.9124   | 213                | 0.1562  |
| 50<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>0 | 0.0089   | 0.0038  | <b>9</b> ).                              | 0.7213   | 0.7625        | 281                                        | 0.9047     | 0.9155   | 97.9               | 0.1313  |
| 206                                                                             | 0.0114   | 0.0125  | 344                                      | 0.7319   | 0.1730        | 582                                        | 0.8092     | 0.9186   | 619                | 0, 1078 |
| 203                                                                             | 0.0139   | 0.0152  | 5                                        | 0.7426   | 0.7836        | 583                                        | 0.9136     | 0.9213   | 620                | 0.0973  |
| 000                                                                             | 0.0164   | 0.0179  | 345                                      | 0.7533   | 0.7941        | 384                                        | 0.9323     | 0.9392   | 25                 | 0.0868  |
| 80 G                                                                            | 0.0190   | 0.0206  | 547                                      | 0.7642   | 0.8047        | 583                                        | 0.9444     | 0.9500   | 622                | 0.0763  |
| 0                                                                               | 0.0215   | 0.0233  | 848                                      | 0.7751   | 0.8153        | 386                                        | 0.9536     | 0.9591   | 623                | 0.0637  |
| -                                                                               | 0.0241   | 0.0261  | 219                                      | 0.7851   | 0.8260        | 587                                        | 0.9630     | 0.9683   | 624                | 0.0550  |
| 5.2                                                                             | 0.0268   | 0.0330  | 230                                      | 0.7971   | 0.8367        | 588                                        | 0.9715     | 0.9768   | 623                | 0.0518  |
| 5<br>13                                                                         | 0,0295   | 0.0318  | - 55                                     | 0.8031   | 0.8425        | 589                                        | 0.9768     | 0.9819   | 626                | 0.0486  |
| 215                                                                             | 0.0322   | 0.0347  | 552                                      | 0.8091   | 0.8483        | 065                                        | 0.9820     | 0.9871   | 622                | 0.0434  |
| 513                                                                             | 0.0349   | 0.0317  | 553                                      | 0.8152   | 0.8541        | 165                                        | 0.9875     | 0.9913   | 628                | 0.0422  |
| 516                                                                             | 0.0504   | 0.0544  | 35.6                                     | 0.8206   | 0.8594        | 283                                        | 0.9941     | 0.9967   | 623                | 00.0    |
| 517                                                                             | 0.0662   | 0.0713  | ST S | 0.8261   | 0.8646        | 593                                        | 0.9386     | 0.8939   | 029                | 0.0357  |
| e e                                                                             | 0.0912   | 0.0962  | 19 20                                    | 0.8316   | 0.8695        | 594                                        | 1,000      | 0000     | 77                 | 0.0324  |
| 61.0                                                                            | 0.1205   | 0.1297  | 537                                      | 0.8371   | 0.6743        | 293                                        | 0.9391     | 0.3578   | 632                | 0.0291  |
| 520                                                                             | 0.1520   | 0.1635  | 828                                      | 0.8427   | 0.8792        | 396                                        | 0.9984     | 0.9361   | 633                | 0.0258  |
| 521                                                                             | 0.1912   | 0.2055  | 539                                      | 0.8482   | 0.8841        | 283                                        | 0.9953     | 0.9920   | 624                | 0.0225  |
| 225                                                                             | 0.2309   | 0.2479  | 260                                      | 0.8338   | 0.8830        | 898                                        | 0.9799     | 0.9757   | 625                | 0.0207  |
| 523                                                                             | 0.271    | 0.2308  | 267                                      | 0.8393   | 0.6937        | 888                                        | 0.9644     | 0.9392   | 909                | 0.0188  |
| 524                                                                             | 0.3117   | 0.3341  | 262                                      | 0.8650   | 0.8983        | 8                                          | 0.9488     | 0.9428   | 637                | 0.0170  |
| 523                                                                             | 0.3529   | 0.3779  | 563                                      | 0.8706   | 0.9029        | <b>1</b> 09                                | 0.9265     | 0.9199   | 628                | 0.0151  |
| 526                                                                             | 0.3917   | 0.4 190 | 700                                      | 0.8731   | 0.9044        | 602                                        | 0.8941     | 0.6870   | 623                | 0.5132  |
| 220                                                                             | 0.4259   | 0.4593  | 96                                       | 0.8743   | 0.9044        | 609                                        | 0.8616     | 0.6540   | 640                | 0.0114  |
| 220                                                                             | 0.4685   | 0.4999  | 286                                      | 0.8754   | 0.9050        | <b>2</b> 0                                 | 0.6288     | 0.8210   | £ 7.9              | 0.0102  |
| 523                                                                             | 0.5075   | 0.5403  | 267                                      | 0.8766   | 0.9056        | 503                                        | 0.7959     | 0.7878   | 642                | 0.0031  |
| 200                                                                             | 0.5372   | 0.5716  |                                          | 0.8777   | 0.9063        | 909                                        | 0,7466     | 0.7367   | 643                | 0.0000  |
| 23                                                                              | 0.5606   | 0.5967  | 369                                      | 0.8788   | 0.3068        | 607                                        | 0.6721     | 0.6647   | 773                | 0.0063  |
| 532                                                                             | 6,5772   | 0.6142  | 220                                      | 0.8799   | 0.9074        | 80 <b>9</b>                                | 0.5970     | 0.5901   | S79                | 0.0057  |
| 533                                                                             | 0.5909   | 0.6286  | 571                                      | 0.8809   | 0.9073        | <b>6</b> 09                                | 0.5215     | 0.5153   | 979                | 0.0046  |
| 300                                                                             | 0.6046   | 0.6431  | 572                                      | 6.8820   | 0.9072        | 9                                          | 0.4674     | 0.4616   | 647                | 0.0034  |
| 555                                                                             | 0.6186   | 0.6578  | 573                                      | 0.8830   | 0.9010        | - 5                                        | 0.4131     | 0.4083   | 879                | 0.0023  |
| 500<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000                     | 0.6326   | 0.6722  | 574                                      | 0.8840   | 0.9069        | £13                                        | 0.3586     | 0.3547   | 643                | 0.0012  |
| 227                                                                             | 0.6467   | 0.6868  | 373                                      | 0.8820   | 0.9061        | 613                                        | 0.3038     | 0.3007   | 630                | •••••   |
| 60<br>67<br>61                                                                  | 0.6610   | 0.7013  | 926                                      | 0.8860   | 0.9057        |                                            |            |          |                    |         |

ORIGINAL PAGE IS OF POOR QUALITY

| WAVELENGTH. | u.,                          | •                                       | WAVELENGTH<br>(NM) | HETH | <u>.</u> | ٠.     | WAVELENGTH (NH) | =       |          | WAVELENGTH | t      | -      |
|-------------|------------------------------|-----------------------------------------|--------------------|------|----------|--------|-----------------|---------|----------|------------|--------|--------|
| 60          | 0.000                        |                                         | 703                |      | 70.0     |        |                 |         |          |            |        |        |
| 180         | 0000                         | :::                                     | e G                |      | 2000     | 2000   |                 | 0.9397  | 0.9052   | <b>101</b> | 0.0844 | 0.0864 |
| 561         | 0.000                        | •                                       | 509                |      | 0.0378   |        | 3 6 9           |         | 60000    | 200        | 70.00  | 0.0756 |
| 562         | 0.000                        | :::                                     | 9                  |      | 0.0415   | 0.0375 |                 | 0.00    |          | 9 6        | 0.0629 | 0.0646 |
| 563         | 0.00                         |                                         | 119                |      | 0.0453   | 0.0409 | 9               |         | 0.000    |            | 2000   | 0.0384 |
| 564         | 0.0011                       | • • • • • • • • • • • • • • • • • • • • | 612                |      | 0.0616   | 0.0555 | 099             | 0.9351  | 1908-0   |            | 67.00  | 0.000  |
| 565         | 0.0012                       | :::                                     | 613                |      | 0.0811   | 0.0730 | 199             | 0.9372  | 0.9104   |            |        | 0.0353 |
| 366         | 0.0                          | •                                       | 614                |      | 0.1007   | 0.0306 | 662             | 0.9394  | 0.9143   | 2.5        |        |        |
| 267         | 0.0014                       | :                                       | 613                |      | 0.1204   | 0.1082 | 663             | 0.9429  | 0.9195   | -          | 0.0420 |        |
| 268         | ₹<br>0.00                    | •                                       | 919                |      | 0.1402   | 0.1262 | 799             | 0.9483  | 0.9266   | 712        | 0.0390 | 0.0402 |
| 696         | 0.0015                       | :                                       | 617                |      | 0.1602   | 0.1444 | 665             | 0.9537  | 0.9338   | 713        | 0.0360 | 0.037  |
| 570         | 0.0016                       |                                         | 618                |      | 0.1803   | 0.1626 | 999             | 0.9591  | 0.9412   | 714        | 0.0330 | 0.0340 |
| 571         | 0.00                         | •                                       | 619                |      | 0.2402   | 0.2169 | 667             | 0.9646  | 0.9488   | 715        | 0.000  | 0.0308 |
| 572         | 0.0017                       | • • • • • • • • • • • • • • • • • • • • | 620                |      | 0.3271   | 0.2958 | 668             | 0.9700  | 0.9363   | 716        | 0.0310 | 0.0277 |
| 573         | 0.8                          |                                         | 621                |      | 0.4145   | 0.3759 | 699             | 0.9755  | 0.9640   | 717        | 0.0239 | 0.0246 |
| 574         | 8.8                          |                                         | 622                |      | 0.4491   | 0.4086 | 670             | 0.9793  | 0.9699   | 718        | 0.0224 | 0.0230 |
| 272         | 0.00<br>0.00<br>0.00<br>0.00 |                                         | 623                |      | 0.4706   | 0.4293 | 1 29            | 0.9831  | 0.9749   | 7 19       | 0.0210 | 0.0215 |
| 276         | 0.0019                       |                                         | E 524              |      | 0.4921   | 0.4503 | 672             | 0.9869  | 0.9799   | 720        | 0.0195 | 0.0200 |
|             | 200.0                        | 0.0017                                  | 625                |      | 0.5138   | 0.4715 | 673             | D. 3904 | 0.9847   | 121        | 0.0180 | 0.0185 |
| 0 10        | 0.0020                       | 0.0017                                  | 626                | ۳.   | 9.5354   | 0.4923 | 674             | 0.9969  | . 0.9895 | 722        | 0.0166 | 0.0169 |
| 200         | 250                          | 0.00                                    | 627                | •    | 0.5572   | 0.5132 | 675             | 0.9964  | 0.9932   | 723        | 0.0151 | 0.0154 |
|             |                              | 38                                      | 628                |      | 0.5790   | 0.5343 | 676             | 0.9982  | 9366.0   | 724        | 0.0136 | 0.0139 |
|             |                              | 38                                      | 629<br>1           |      | 0.6010   | 0.0000 | 677             | 000     | .000     | 725        | 0.0121 | 0.0123 |
| 4 6         | 200                          | 36                                      |                    |      | 0.62.03  | 0.0774 | 678             | 0.9977  | 0.9395   | 726        | 0.0103 | 0.0111 |
| 7 85        |                              | 200                                     |                    |      | 0.000    | 200    | 5/9             | 0.9957  | 9388     | 727        | 0.0031 | 0.0039 |
| 100         | 0.0023                       | 0000                                    |                    |      | 3355     |        |                 | 90000   | 0.3983   | 728        | 0.0083 | 0.087  |
| 586         | 0.0024                       | 0.0021                                  | 634                |      | 2869     | 725    |                 | 0.9720  | 0.070    | E C F      | 0.0073 | 0.00   |
| 587         | 0.0024                       | 0.0021                                  | 63                 |      | 0.8027   | 0.7482 |                 | 0,110   | 0.000    |            | 38     | 0.0062 |
| 588         | 0.0025                       | 0.0022                                  | 636                |      | 0.8185   | 0.7642 | 9 6             | 0.9635  | 6 4713   |            | 88     | 600    |
| 589         | 0.0025                       | 0.0022                                  |                    |      | 0.8345   | 0.7802 | 58.5            | 0.9451  | 44.40    | נינ        |        |        |
| 290         | 0.0026                       | 0.0023                                  | 638                |      | 0.8485   | 0.7947 | 686             | 0.9265  | 0.9384   | 734        | 0.00   |        |
| 591         | 0.0029                       | 0.0026                                  | 63                 |      | 0.8598   | 0.8065 | 687             | 0.9078  | 0.9209   | 735        | 0.0046 | 00.0   |
| 592         | 0.0033                       | 0.0039                                  | 9                  |      | 0.8711   | 0.8184 | 688             | 0.8710  | 0.8850   | 736        | 0.0043 | 0,00   |
| D 4         | 0.0037                       | 0.0032                                  | 9                  |      | 0.8826   | 0.8304 | 683             | 0.8220  | 0.8364   | 757        | 0.0040 | 0.00.0 |
| 7 6         | 38                           |                                         | 7                  |      | 0.8941   | 0.8424 | 069             | 0.7727  | 0.7874   | 138        | 0.0017 | 0.0017 |
|             | 38                           | 300                                     |                    |      | 9026     | 0.8343 | 69              | 0.6869  | 0.100    | 439        | 0.0034 | 0.0034 |
|             |                              |                                         |                    |      |          |        | 269             | 0.5540  | 0.6052   | 240        | 0.031  | 0.00   |
| - C         |                              |                                         |                    |      | 27.00    |        | 7.00            | 0.5049  | 0.5144   | 745        | 0.0058 | •      |
| 9           | 000                          | 2000                                    | 179                |      | 0.3224   |        | 7 0             |         |          | 742        | 0.0025 |        |
| 9           | 0.0089                       | 00.0                                    | 2.5                |      | 2112     |        |                 |         |          | 7          | 2700   |        |
| 601         | 0.0114                       | 0.0101                                  | 679                |      | 0.9386   | 0.8971 | 697             | 2000    | 0 2277   | ***        | 38     |        |
| 602         | 0.0139                       | 0.0123                                  | 650                |      | 0.9441   | 0.8008 |                 | 0.1879  | 9161     | 745        |        |        |
| 603         | 0.0165                       | 0.0146                                  | 651                |      | 0.9433   | 0.9017 | 5 5             | 0.1522  |          | 747        |        |        |
| 109         | 0.0194                       | 0.0173                                  | 652                |      | 0.9424   | 0.9026 | 8               | 0.1162  | 0.1186   | 378        |        |        |
| 609         | 0.0231                       | 0.0203                                  | 683                |      | 0.9415   | 0.9035 | 102             | 0. 1056 | 0.1079   | 149        | 0000   | •      |
| 909         | 0.0267                       | 0.0238                                  | 69                 |      | 0.9406   | 0.9044 | 707             | 0.0350  | 0.0972   | )          | ,      |        |

Table A3
THEMATIC MAPPER RELATIVE SPECTRAL RESPONSE - BAND 3

| VAVELENGTH<br>(NM) | <b>1</b> | *      | WAVELENGTH<br>(NN) | ž       | <b>u.</b> | WAVELENGTH<br>(MM)    | ž.      | -       | WAVELENGTH<br>(NR) | u;      | •       |
|--------------------|----------|--------|--------------------|---------|-----------|-----------------------|---------|---------|--------------------|---------|---------|
| 726                | 0.0003   | •      | 783                | 0.7950  | 0.7745    | 628                   | 0.9578  | 0.8194  | 500                | 0.8344  | 0.7462  |
| 7                  | 250      |        | 407                | 0,8218  | 0.8017    | 0                     | 0.9598  | 0.9196  | , je 1             | 0.8229  | 0.7495  |
| . 5                | 38       |        |                    |         | 0.6230    | 7                     | 0.96.18 | 0.\$202 | A L #              | 0.8114  | 0.7388  |
| 2 2                | 200      | 6,000  |                    |         |           |                       |         | 0.9208  | 200                | 000     | 0.7302  |
| ā                  | 0.0029   | 0.0028 | 788                | 0.9170  | \$ 56 E O | 778                   | 0.9635  |         |                    | 7,7889  | 0.720   |
| 32                 | 0.0033   | 0.0032 | 789                | 0.9315  | 0.9146    |                       | 0.9647  | 0.4226  | 2 2                |         | 67.52   |
| 33                 | 0.0038   | 0.0037 | 730                | 0.9460  | 0.9300    | 978                   | 0.9717  | 0.9232  | 500                | 6883    |         |
| 7                  | 0.0043   | 0.0043 | 791                | 0.9564  | 0.9418    | 847                   | 0.9737  | 0.9237  | 606                | 0.6434  | 288.0   |
| 35                 | 0.0048   | 0.0046 | 792                | 0.9629  | 0.9499    | 648                   | 0.9756  | 0.9243  | 906                | 0.5785  | 0.5299  |
| 9 9                | 0.0053   | 0.0031 | 793                | 0.969\$ | 0.9580    | 649                   | 0.9776  | 0.5249  | 308                | 0.5090  | 0.466.4 |
| 7                  | 0.0038   | 0.0036 | 194                | 0.9760  | 0.9661    | 830                   | 0.9196  | 0.9254  | 906                | 0.4400  | 0.4033  |
| io i               | 0.0063   | 0.0060 | 795                | 0.9826  | 0.9743    | 951                   | 0.9782  | 0.9217  | 106                | 0.3714  | 0.3405  |
| e c                | 0.0067   | 0.0065 | . 196              | 0.9861  | 0.9794    | 22.0                  | 0.9768  | 0.5175  | 808                | 0.3211  | 0.2945  |
|                    | 38       | 0.000  | 787                | 9686    | 0.9843    | 7)<br>80              | 0.9754  | 0.9141  | 909                | 0.2755  | 0.2528  |
| ÷ :                | 300      | 0.0074 | 798                | 0.9930  | 0.9897    | 834                   | 0.9740  | 0.9104  | <b>9</b><br>0      | 0.2303  | 0.2114  |
| 7 :                | 888      | 0.0078 | 133                | 0.9965  | 0.9348    | 50 to                 | 0.9726  | 0.9067  | 116                | 0, 1853 | 0.1702  |
| ? ;                | 3000     | 5000   | 200                | 000     | 000       | 200                   | 0.9711  | 0.9029  | 912                | 0, 1557 | 0, 1430 |
|                    | 2500.0   | 0.00   | 100                | 0.9973  | 0.9982    | 637                   | 0.9697  | 0.6392  | G 8                | 0, 1301 | 0.1195  |
| n u                |          | 0.0033 | 202                | 0.9945  | 9364      |                       | 0.9674  | 0.8947  | 916                | 0, 1047 | 0.0962  |
|                    |          | 20.00  | 202                | 0.9918  | 0.9946    | 60 e                  | 0.9651  | 0.6901  | 915                | 0.0840  | 0.0772  |
|                    |          | 5.0    |                    | 0.9891  | 0.9928    | 860                   | 0.9627  | 0.8856  | 916                | 0.0738  | 0.0679  |
|                    | 90.00    |        | 2 6                | 0.9863  | 0.9910    | 199                   | 0.9604  | 0.6831  | 917                | 0.0638  | 0.0587  |
|                    | 2000     |        | 9 ¢                | 2000    | 50000     | fyl I<br>LØ (<br>R) ( | 0.9591  | 0.8815  | 918                | 0.0338  | 0.0495  |
| ? :                | 1000     |        | 5 6                |         | 0000      | 90                    | 0.3589  | 0.8810  | 9                  | 0.0439  | 0.0404  |
| . 5                |          | 0.00   | 0 6                | 0.9772  |           | * # #                 | 0.9387  | 0.6604  | 920                | 0.0341  | 0.0314  |
| 60                 | 0.0283   | 0.0270 | 2                  | 0.9712  | 200       |                       | 0.000   | 2000    | 70 0               | 0.030   | 0.0281  |
| 3.                 | 0.0313   | 0.0233 | -                  | 0.9682  | 0.9758    | 85.7                  | 0.3810  | 0.8510  | 922                | 20.02   | 0.0249  |
| 55                 | 0.0343   | 0.0326 | 612                | 0.9651  | 0.9712    | 899                   | 0.9532  | 0.8831  | 924                | 0000    | 2000    |
| 26                 | 0.0422   | 0.0402 |                    | 0.9621  | 9996.0    | 869                   | 0.9643  | 0.8838  | 92.5               | 0.0167  | 75.0    |
| 57                 | 0.0503   | 0.0478 | •                  | 1656.0  | 0.9620    | 870                   | 0.9655  | 0.8844  | 926                | 0.0150  | 0.0138  |
| 60                 | 0.0583   | 0.055  |                    | 0.9561  | 0.9574    | 871                   | 0.9666  | 0.8858  | 927                | 0.0132  | 0.0122  |
| 23                 | 0.0663   | 0.0630 |                    | 0.9530  | 0.9529    | 872                   | 0.9677  | 0.6871  | 928                | 0.0115  | 0.0106  |
| င္ထ                | 0.0744   | 0.070  | 617                | 0.9500  | 0.9483    | 673                   | 0.9653  | 0.8853  | 919                | 0.0038  | 0.0030  |
| ÷ .                | 0.0825   | 0.078  | 8.0                | 0.9474  | 0.9442    | 874                   | 0.9625  | 0.8832  | 930                | 0,0081  | 0.0075  |
| 2 2                | 0.0303   | 0.086  | <b>8</b> 0         | 0.9447  | 0.9400    | 875                   | 0.9553  | 0.8810  | 931                | 0.0077  | 0.031   |
|                    | 0.0387   | 960.0  | 950                | 0.9420  | 0.9359    | 876                   | 3.9549  | 0.8768  | 932                | 0.0072  | 0,0067  |
| •                  | 0, 1207  | 0.1152 | 821                | 0.9391  | 0.9313    | 277                   | 0.9499  | 0.8725  | 933                | 0.0068  | 0.0063  |
| ח ע                | 27.0     | 0.1264 | 279                | 0.9362  | 0.9268    | 10 to                 | 0.9449  | 0.8683  | 934                | 0.0063  | 0.0059  |
| 9 5                | 7        |        |                    | 0.6333  | 0.9223    | 55 f                  | 0.3400  | 0.8643  | 908                | 0.0058  | 0,0038  |
|                    | 20.00    | 20.00  |                    |         | 81.60     | 9 6                   | 0.8350  | 0.6559  | 936                | 0,0055  | 0.00    |
|                    |          | 200    | 2 4                | 0000    |           | 2 ;<br>0 0            | 0.8280  | 0.6530  | 937                | 0.0031  | 0.0047  |
| 2                  | 0.2864   | 2752   |                    | 200     |           | 4 5                   | 0.70    | 0.00    | בר<br>ה            | 50.0    | 0.00    |
|                    | 0.3219   | 0.3083 | 828                | 0.00    | 7318      |                       | 7,00    | 7765    | n (                | 38      |         |
| 277                | 0.3573   | 0.3440 | 828                | 0.00    | 0,10      | y                     |         |         |                    |         |         |
| 173                | 0.3929   | 0.3766 | 830                | 0.9399  | 0.9173    | 90                    | 0.8936  | 0.8139  | 676                |         |         |
| 774                | 0.4285   | 0.4133 | 631                | 0.9419  | 0.9176    | 887                   | 0.8865  | 0.8063  | 176                | 0.0024  | 0.0024  |
| 775                | 9,4642   | 0.4482 | 632                | 0.9433  | 0.9178    | 80.00                 | 0.6796  | 0.7986  | 776                | 0.0019  | 0.0021  |
| 776                | 0000     | 0.4833 | 833                | 0.9459  | 0.9181    | 60                    | 0.8726  | 0.7910  | 97<br>97<br>97     | 0.0015  | 0.0017  |
| 777                | 0.5436   | 0.5259 | 834                | 0.9479  | 0.9183    | 000                   | 0.8657  | 0.7835  | 376                | 0.0012  | 0.0014  |
| 92                 | 0.5868   | 0.5683 | 808                | 0.9499  | 0.9185    | 55                    | 0.8648  | 0.7835  | 276                | 0.000   | 0.0010  |
| 79                 | 0.6301   | 0.5108 | 836                | 0.9519  | 0.9188    | 892                   | 0.8640  | 0.7836  | 976                | 0.000   | 0.0001  |
| 280                | C. 6733  | 0.6534 | 637                | 0.9539  | 0.9190    | 693                   | 0.6577  | 0.7787  | 949                | 0.000   | 0.0003  |
| 78.1               | 0.7166   | 0.6963 | 838                | 0.9538  | 0.9192    | 70                    | 0.8460  | 0.7690  | 950                | •       | 0.000   |
| 2                  | 0.7599   | 0.7593 |                    |         |           |                       |         |         | •                  |         |         |
|                    |          |        |                    |         |           |                       |         |         |                    |         |         |

Table A4
THENATIC MAPPER RELATIVE SPECTRAL RESPONSE - BAND 4

| WAVELENGTH<br>(NH)       | *                    | <b>W</b> . | VAVELENGTH<br>(NH) | <b>:</b> | •        | WAVELENGTH<br>(NR) | in.<br>Bi | •      | VAVELENGTH<br>(NM) | ŧ      | •           |
|--------------------------|----------------------|------------|--------------------|----------|----------|--------------------|-----------|--------|--------------------|--------|-------------|
| 1301                     | 0000                 | 0.000      | 1381               | 0.3430   | 9000     |                    |           |        |                    | 1      |             |
| 1502                     | 00.0                 | 0.000      | 1362               | 0.3398   | 7476     |                    | 20.00     |        |                    | 0.9788 | 0.985       |
| 1363                     | 0.000                | 0.000      | 1363               | 0.3680   | , כל לכי | 1531               |           |        | 1682               | 0.9783 | 0.984       |
| 1504                     | 0.000                | 0.000      | 700                | C 386.0  | \$. 4013 | 7631               |           |        | 1683               | 0.9778 | 0.983       |
| 1505                     | 0.0003               | 0.000      | 1565               | 0.4248   | 3. 429.E | 1624               |           |        |                    | 0.3772 | 0.982       |
| 1306                     | 000.0                | 0.000      | 1366               | 0.4536   | D. 6578  | 1675               |           |        |                    | 79.50  | 1850        |
| 1507                     | 0.000                | 9000.0     | 1567               | 0.4826   | 0.4865   | 1627               | 0.9877    | 9806   | 7637               |        |             |
| 1508                     | 0.000                | 0.000      | 1568               | 0.5118   | 0.5154   | 1628               | 0.9894    | 0.6821 | 16.01              |        |             |
| 1509                     | 0.0001               | 0.000      | 1569               | 0.5412   | 0.5446   | 1629               | 0.9888    | 0.9834 | 5 2 2              |        |             |
| 550                      | 0.000                | 0.0008     | 1570               | 0.5709   | 0.5739   | 1630               | 0.9882    | 0.3850 | 0691               |        |             |
| 1511                     | 0.000                | 0.000      | 1571               | 0.5980   | 0.5989   | 1631               | 0.9871    | 0.9842 | 1691               | 274.0  |             |
| 1512                     | o.0010               | 0.0010     | 1572               | 0.6252   | 0.6239   | 1632               | 0.9859    | 0.9833 | . 693              | 0.9767 |             |
| 5.0                      | o.<br>0,<br>0,<br>0, | 8.8        | 1573               | 0.6326   | 0.6492   | 1633               | 0.9848    | 0.9827 | 1691               |        |             |
| 1314                     | 0.<br>Q              | 0.0012     | 1574               | 0.6801   | 0.6746   | 1634               | C.9836    | 0.9820 | 7691               |        |             |
| 1515                     | 0.0012               | 6.0013     | 1575               | 0.7077   | 0.1002   | 1635               | 0.9825    | 0.9813 | *691               | 200    |             |
| 1516                     | 0.0013               | 0.0014     | 1576               | 0.7319   | 0.7260   | 1635               | 0.9813    | 0.9805 | 1696               |        |             |
| 1517                     |                      | 0.00       | 1577               | 0.7546   | 0.7519   | 1631               | 0.9802    | 0.9798 | 1697               | 785    |             |
| 1518                     | 0.0015               | 0.0015     | 1578               | 0.7775   | 0.7781   | 1638               | 0.8790    | 0.9790 | 1691               | 286    |             |
| 1519                     | 0.0016               | 0.0016     | 1579               | 0.8003   | 0.8044   | 1639               | 0.9778    | 0.9783 | 1699               | 0.5883 |             |
| 1520                     | 0.0017               | 0.0017     | 1580               | 0.8236   | 0.8308   | 1640               | 0.9767    | 0.9776 | 1700               | 0.9898 |             |
| 1521                     | 0.0022               | 0.0074     | 1581               | 70.8417  | 0.8430   | 1641               | 0.9758    | 0.9763 | 101                | 0.9903 | 0.88        |
| 1522                     | 0.0029               | 0.0031     | 1582               | 0.8578   | 0.8353   | 1642               | 0,9749    | 0.9750 | 1702               | 0.9912 | 0.995       |
| 1523                     | 0.0036               | 0.0039     | 1583               | 0.8740   | 0.6676   | 1643               | 0.9740    | 0.9737 | 1703               | 0.9918 | 966.0       |
| 7701                     | 38                   |            | 100                | 0.8903   | 0.8800   | 1644               | 0.9730    | 0.9724 | 1704               | 0.9925 | 0.996       |
| 070                      | 500                  | 0000       | 600                | 0.3066   | 0.6925   | 1645               | 0.9721    | 0.9711 | 1705               | 0.9932 | 0.997       |
| 9701                     | 80.0                 | 200        | 900                | 0.9165   | 0.000    | 1646               | 0.9712    | 0.3639 | 1706               | 0.9939 | 0.537       |
| 1351                     |                      |            | 700                | 9238     | 0.8175   | 1647               | 0.9703    | 0.3686 | 1001               | 0.9546 | 0.338       |
| 000                      |                      |            |                    | 2007     | 0.9301   | 279                | 0.9694    | 0.9673 | 1708               | 0.9952 | 0.999       |
| 1530                     | 0600                 |            | 000                | 1        | 07770    | 7 0                | 2000      | 0.3660 | 1709               | 1966.0 | 0.939       |
| 1531                     | 0.0103               | 0.00       | 2081               | 20.00 C  |          |                    |           | 0.5648 | 01.1               | 0.9971 | 8           |
| 1532                     | 0.0116               | 0.0116     | 1892               | 8976     | 9636     | 1683               | 7790.0    | 0.3661 | = :                | 9378   | 0.999       |
| 1533                     | 0.0131               | 0.0128     | 1593               | 0.9459   | 0.9511   | 1683               | 0.067     | 1000   | ::                 | 0000   | 200         |
| 1534                     | 0.0146               | 0.0140     | 1594               | 0.9429   | 0.9497   | 1654               | 798.0     | 2078   |                    |        |             |
| 1535                     | 0.0161               | 0.0152     | 1595               | 0.8398   | 0.9482   | 16.55              | 0.9713    | 97.6   |                    |        |             |
| 1536                     | 0.0176               | 0.0165     | 1596               | 0.9368   | 0.9467   | 1656               | 0.9732    | 0.9727 | 17.15              |        |             |
| 1537                     | 0.0191               | 0.0177     | 1597               | 0.9337   | 0.9453   | 1657               | 0.9750    | 0.9740 | 71.71              | 0.00   |             |
| 1538                     | 0.0201               | 0.0190     | 1598               | 0.9327   | 0.9438   | 1658               | 0.9768    | 0.9753 | 1718               | 0.8962 |             |
| 1539                     | 0.0222               | 0.0203     | 1599               | 0.9326   | 0.9423   | 1659               | 0.9786    | 0.9767 | 1719               | 0.9947 | 0.997       |
| 1540                     | 0.0238               | 0.0216     | <br>609            | 0.9325   | 0.9409   | 1660               | 0.9303    | 0.9780 | 1720               | 0.9332 | 966.0       |
| 1241                     | 0.0278               | 0.0283     | 1601               | 0.9308   | 0.9472   | 1991               | 0.9819    | 0.9785 | 1721               | 0.9915 | 0.994       |
| 1542                     | 0.0327               | 0.0331     | 1602               | 0.8290   | 0.9415   | 1662               | 0.9833    | 0.9790 | 1722               | 0.9896 | 0.992       |
| 70.                      | 0.0378               | 0.0419     | 1603               | 0.9285   | 0.9418   | 1663               | 0.9847    | 0.9795 | 1723               | 0.9878 | 0.589       |
|                          |                      |            | 900                | 0.8284   | 0.9421   | 1664               | 0.3861    | 0.3800 | 1724               | 0.5859 | 0.987       |
| 2 4                      |                      |            | 000                | 7077     | 0.9424   | 1665               | 9286.0    | 0.9805 | 1725               | 0.9740 | 0.985       |
|                          | 90.0                 | 9 000      | 5 5                | 0.9282   | 0.9428   | 1666               | 0.9875    | 0.9810 | 1726               | 0.9821 | 0.983       |
|                          | 22.0                 | 0.000      |                    |          |          | 29.                | 0.9867    | 0.9815 | 1727               | 0.9802 | 0.980       |
| 1549                     | 0.0873               | 7680.0     | 6091               | 8250     | 70.00    | 9.4                |           | 0.3820 | 077                | 0.9164 | 2,7,0       |
| 1550                     | 0.0977               | 0.0903     | 1610               | 0.9396   | 0.9440   | 1670               | 0.9844    | 0.58   | 00.51              | 0.9745 |             |
| 1551                     | 0.1138               | 0.1104     | ozen               | 0.9436   | 0.9467   | 1671               | 0.9839    | 0.9833 | 1731               | 0.9727 | 0.972       |
| 1552                     | 0.1325               | 0.1300     | 1612               | 0.9465   | 0.9493   | 1672               | 0.9834    | 0.9837 | 1732               | 0.3709 | 0.970       |
| 1553                     | 0.1513               | 0.1497     | . 1613             | 0.9493   | 0.9519   | 1673               | 0.9829    | 0.3840 | 565                | 0.9690 | 0.958       |
| 1554                     | 0.1702               | 0.1695     | 1614               | 0.9521   | 0.9546   | 1674               | 0.9824    | 0.9844 | 11/20              | 0.9671 | 0.967       |
| 1555                     | 0.1893               | 0.1894     | 1613               | 0.9550   | 0.9572   | 1675               | 0.9819    | 0.9847 | 5071               | 0.9652 | 0.363       |
| 1556                     | 0.2085               | 0.2094     | 1616               | 0,3578   | 0.9598   | 1676               | 0.9813    | 0.9850 | 9228               | 0.9634 | 0.963       |
| 1557                     | 0.2278               | 0.2295     | 1617               | 0.9606   | 0.9625   | 1677               | 0.9808    | 0.9834 | 127                | 0.9615 | 0.967       |
| 8001                     | 20.0                 | 20.0       | 2 5                | 0.9634   | 0.9631   | 1678               | 0.9803    | 0.9857 | 1738               | 0.9597 | 0.360       |
| 090                      | 0.2867               | 2906       | 1620               | 0.00     | 1010     | # C                | 0.9798    | 0.9361 | 57.5               | 0.9378 | 0.33        |
| )<br> <br> -<br> -<br> - |                      |            | <u>:</u>           |          | •        | •                  | ,         | .>     | <u>}</u>           | P      | ,<br>,<br>, |
|                          |                      | •          |                    |          |          |                    |           |        |                    |        |             |

| A5  | 2    |
|-----|------|
| ه   |      |
| Tab | 7207 |

| WAVELENGTH | Ą         | -      | WAVELENGTH | ă         | _       | VAVELENGTH | L.     | _      |          | :       | •      |
|------------|-----------|--------|------------|-----------|---------|------------|--------|--------|----------|---------|--------|
| (MX)       |           |        | (NA)       |           |         | (NR)       |        | •      | (MM)     | ì       | •      |
| 1741       | 0.9549    | 0.9562 | 1779       | 0.6638    | 0.6542  | 1816       | 0.0369 | 9750   |          |         |        |
| 1742       | 0.9541    | 0.9555 | 1780       | 0.6370    | 0.6277  | 1817       |        |        | 700      | 200     | 0.0073 |
| 1743       | 0.9534    | 0.9549 | 1781       | 0.6072    | 0.5968  | 181        | 0.0507 |        |          |         | 00,0   |
| 1744       | 6.3526    | 0.9542 | 1782       | 0.5769    | 0.5659  | 61.61      | 0.0476 | 5000   |          | 38      | 3      |
| 1745       | 0.9519    | 0.9536 | 1783       | 0.5466    | 0.5350  | 1820       | 0.0446 | 2000   |          |         | 3      |
| 1746       | 0.9511    | 0.9529 | 1784       | 0.5163    | 0.5041  | 1821       | 0421   |        |          | 36      | 0.003  |
| 1747       | 0.9554    | 0.9523 | 1785       | 0.4860    | 0.4732  | 1822       | 0.039  |        |          |         | 1883   |
| 1748       | 0.9495    | 0.9516 | 1786       | 0.4557    | 0.4423  | 1823       | 6.0377 | 250.0  | 5 CV = - |         | 88     |
| 1749       | 0.9489    | 0.9509 | 1787       | 0.4254    | 0.4114  | 1824       | 0.0355 | 9750   | 900      | 38      | 38     |
| 1750       | 0.9482    | 0.9503 | 1788       | 0.3950    | 0.3806  | 1625       | 0.0333 | 0.0326 | 1862     |         | 38     |
| 1751       | 0.9505    | 0.9505 | 1789       | 0.3647    | 0.3497  | 1826       | 0.0311 | 0.0304 | E982     | 2000    | 88     |
| 1752       | 0.9538    | 0.9507 | 1790       | 0.3344    | 0.3190  | 1827       | 0.0230 | 0.0282 | 1864     | 0.005   |        |
| 1753       | 0.9572    | 0.9508 | 1791       | 0.3134    | 0.3026  | 1828       | 0.0268 | 0.0260 | 1865     | 200     |        |
| 1754       | 0.9605    | 0.9510 | 1792       | 0.2963    | 0.2862  | 1829       | 0.0246 | 0.0239 | 1866     |         |        |
| 1755       | 0.9638    | 0.9512 |            | 0.2792    | 0.2598  | 1830       | 0.0224 | 0.0217 | 1867     | 0000    |        |
| 1756       | 0.9615    | 0,9514 |            | 0,2621    | 0.2533  | 1631       | 0.0214 | G.0208 | 1868     | 0.0044  |        |
| 1757       | 0.9635    | 0.9516 |            | 0.2450    | 0.2369  | 1832       | 0.0208 | 0.0199 | 1869     | 0,000.0 | 0000   |
| 1758       | 0.9624    | 0.9517 |            | g. 2279   | 0.2204  | 1833       | 0.0202 | 0.0190 | 1870     | 0.0037  | 0.0032 |
| 55.        | 0.9514    | 0.9519 |            | , 0. 7108 | 0.2040  | 1834       | 7610.0 | 0.0182 | 1871     | 0.0033  | 0.001  |
| 200        | 90.00     | 0.9520 |            | 0.1936    | 0.1875  | 1835       | 0.0191 | 6.0173 | 1872     | 0.0030  | 0.00   |
| 1961       | 0.30      | 0.9460 |            | 0.1767    | 0.1710  | 1836       | 0.0186 | 0.0164 | 1873     | 0.0026  | 0.002  |
| 100        | 70.00     | 0000   |            | 0.1396    | 0.1546  | 1837       | 0.0160 | 0.0155 | 1874     | 0.0022  | 0.0027 |
| 70.        | 0.00      | 5776   |            | 0.1468    | 0.1462  | 1838       | 0.0175 | 0.0146 | 1875     | 0.00    | 0.0026 |
|            | 0.00      | 75.0   |            | 0.1407    | 0.1378  | 1839       | 0.0169 | 0.0138 | 1876     | 0.0015  | 0.0025 |
| 226        | 1000      | 575.0  |            | 0. 1327   | 0.1294  | 1840       | 0.0164 | 0.0129 | 1877     | 0.0012  | 0.0024 |
| 1767       |           | 6000   |            | 0.1247    | 0. 1210 | 184        | 0.0158 | 0.0125 | 1878     | 0.0008  | 0.0023 |
| 136        |           | 0000   |            |           | 0.1127  | 1842       | 0.0153 | 0.0120 | 1879     | 0.000   | 0.0022 |
| 004        | 0.300     |        |            | 500       | 0.1044  | 1843       | 0.0147 | 0.0116 | 1850     | 0.00    | 0.0021 |
|            | 0 0       | 0.00   | 200        | 3         | 0.0360  | 1644       | 0.0142 | 0.0112 | - 687    | •       | 8.0    |
|            | 0.000     | 0.6913 | 1808       | 0.0927    | 0.0877  | 1845       | 0.0137 | 0.0107 | 1862     | ••••    | 0.0013 |
|            | B 4 9 0 0 | 0.8651 | 6091       | 0.0847    | 0.0794  | 1846       | 0,0131 | 0.0103 | 1883     | •       | 0.0015 |
| 1772       | 0.8457    | 0.8368 | 0.5        | 0.0768    | 0.0712  | 1847       | 0.0126 | 0.0033 | 1684     | :::     | 0.0013 |
| 1773       | 0.8235    | 0.8124 |            | 0.0723    | 0.0684  | 878;       | 0,0120 | 0.0094 | 1885     | :       | 0.0010 |
| 1774       | 0.6012    | 0.7861 | 21.0       | 0.0692    | 0.0637  | 1849       | 0.0115 | 0.0030 | 1886     | ••••    | 0.00   |
| 1775       | 0.7790    | 0.7597 | 1813       | 0.0661    | 0.0629  | 1850       | 0.0109 | 9.00.0 | 1887     | •••••   | 9000   |
| 1776       | 0:7522    | 0.7333 | 181        | 0.0630    | 0.0601  | 1881       | 0.0105 | 0.0081 | 188      | :       | 0000   |
| 1771       | 0.7234    | 0.7069 | 1815       | 0.0599    | 0.0574  | 1852       | 0.0102 | 0.0011 | 1889     | •       | 0.000  |
| 1778       | 0.6946    | 9.6806 |            |           |         |            |        |        |          |         |        |

Table A6

| •                   | 0.9636 | 0.9575  | 0.9515 | 10,000 | 0.8403 | 0.9412                                  | 0.9422   | 0.9431 | 0.9440 | 6776.0 | 0.9458 | 0.9467 | 9476   | 200       |        | 0 4503 | 0.5507 | 0.9513 | 0.3518 | 0.9523 | 0.9528 | 0.9533 | 0.9538 | 0.9522 | 9000   | 0.3430 | 976.0  | 0.9442 | 0.9426 | 0.3409 | 0.9394 | 0.9378 | 0.9354 | 200    | 0.4284 | 0.9260 | 0.9236 | 0.9212 | 0.9189 | 20.00  | 10.0   | 0.9113  | 0.3033 | 0.9085 | 0.9012 | 0.9058 | 0.9034 |        |         | 0.8386  | 0.8370  | 0.1955  | 0.8338 | 0.8823 |
|---------------------|--------|---------|--------|--------|--------|-----------------------------------------|----------|--------|--------|--------|--------|--------|--------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|--------|--------|
| *                   | 0.5421 | 0.5311  | 0.5203 |        | 0.4912 | 0.4820                                  | 0.4740   | 0.4673 | 0.4606 | 0.4538 | 0.4471 | 0.4402 | 0.4324 |           | 9017   | 0.4024 | 0.3342 | 0.3860 | 0.3778 | 2692.0 | 0.36.0 | 0.3525 | 0.3441 | 0.3371 |        | 0.3150 | 0.3063 | 0.2986 | 0.2901 | 0.2815 | 0,2725 | 7617   | 0.2564 | 7,00   | 0.2323 | 0.2245 | 0.2168 | 0.2091 | 0.2014 | 0.1932 | 1837   | 0, 1797 | 0,1767 | 7571.0 | 0.1708 | 0.1678 | 0.1649 | 1251.0 | 7617    | 0.1553  | C. 1541 | 0.1525  | 0.1507 | 0,1490 |
| VAVELENGTH<br>(MA)  | 11560  | 11570   | 08514  | 0691   | 11610  | 11620                                   | 11630    | 01311  | 11650  | 11660  | 11670  | 11680  | 0630   | 3:        | 11730  | 02211  | 11740  | 11750  | 11760  | 11770  | 11780  | 11790  | 1100   | 0.81   | 075    | 11840  | 11850  | 11860  | 11870  | C8811  | 11890  | 0061   | 0.61   | 0261   | 11340  | 11950  | 11960  | 01910  | 11980  | 0000   | 2023   | 12020   | 12030  | 12040  | 12050  | 12060  | 02021  | 17080  | 20021   | 12110   | 12120   | 12130   | 12140  | 12150  |
| <b>u.</b>           | 0.8613 | 0.8661  | 502    | 0.00   | 0.3822 | 0.6853                                  | 0.8885   | 0.8912 | 0.8938 | 0.8363 | 0.8391 | 0.5018 | 7,000  |           | 4050   | 0.3013 | 0.9042 | 0.3034 | 0.9026 | 0.5013 | 0.9011 | 0.9003 | 0.8995 | 0.4089 | 2000   | 0.9172 | 0.9217 | 0.9362 | 0.9307 | 0.9352 | 0.9398 | 0.9443 |        | 0.00 C | 0.9542 | 0.3567 | 0.9591 | 0.9616 | 0.9640 | 4440   | 0.3500 | 0.9751  | 0.9782 | 0.3813 | 0.9844 | 0.9875 | 0.2307 | 2750   | 2000 S  | 0.9939  | 0.9879  | 0.9818  | 0.3758 | 0.9697 |
| *                   | 0.9874 | 0.9896  |        | 0.9963 | 0.9366 | 0.9968                                  | 0.3370   | 0.9973 | 0.9975 | 0.9984 | 0.9592 | 0000.  | 2665.0 | 7 Y Y G G | 0.9883 | 0.9807 | 0.9731 | 0.9656 | 0.3505 | 0.9355 | 0.9207 | 0.9039 | 0.6913 | 0.8821 | 200    | 0.8553 | 0.8480 | 0.8105 | 0.9330 | 0.8254 | 0.8177 | 0.8072 | 20.00  | 0.7808 | 0.7725 | 0.7641 | 0.7556 | 0.7457 | 0.7350 | 0.1433 | 2000   | 0.6392  | 6317   | 0.6839 | 0,6760 | 0.6663 | 0.6348 |        | 0.6196  | 0.6063  | 0.5932  | 0.5802  | 0.5673 | 0.5346 |
| WAVELENGTH<br>(NM): | 10960  | 02601   | 0000   | 1000   | 0101   | 11020                                   | 11030    | 11040  | 11050  | 1060   | 0.01   | 200    |        | 3 5       | 11120  | 1130   | 11140  | 11150  | 11160  | 11170  | 11180  | 11190  | 86     | 0 0    | 0,00   | 11240  | 11250  | 11260  | 11270  | 11280  | 11290  | 000    |        | 0000   | 11340  | 11350  | 03011  | 07011  | 1130   | 06711  | 0171   | 11420   | 11430  | 11440  | 11450  | 0971   |        |        | 000     | 1310    | 11320   | 11530   | 11540  | 11330  |
| •                   | 0.2209 | 0.2461  | 2475   | 0.3230 | 0.3566 | 0.3903                                  | - 0.4241 | 0.4581 | 0.4922 | 0.5263 | 9095,0 | 0.00   | 0.6533 | 0.6726    | 0.6812 | 0.6898 | 0.6985 | 0.7072 | 0.7160 | 0.7248 | 0.7336 | 0.7427 | 0.7307 | 20.00  | 7814   | 0.7513 | 0.7512 | 0.7511 | 0.7509 | 0.7507 | 0.7503 | 2,7503 | 2000   | 0.7605 | 0.7639 | 0.7673 | 0.7707 | 0.7741 | 0.7776 | 288    | 0.7892 | 0.7940  | 0.7388 | 0.8037 | 0.8085 | 0.8134 | 0.4362 |        | 0000    | 0.1376  | 0.8423  | 0.1470  | 0.6518 |        |
| ž.                  | 0.2821 | 0.3157  |        | 0.4184 | 0.4535 | 0.4920                                  | 0.5378   | 0.5839 | 0.6306 | 0.6777 | 0.7332 | 7,757  | 2000   | 0.8225    | 0.8403 | 0.8531 | 0.8568 | 0.8604 | 0,8618 | 0.8617 | 0.8615 | 0.8570 | 0.6324 |        | 666    | 0.8625 | 0.8639 | 0.8652 | 0.8565 | 0.6678 | 0.8690 | 0.8710 | 0.67   | 0.8812 | 0.8844 | 0.8876 | 0.8911 | 97680  | 0.9002 | 2000   | 0.6233 | 0.9295  | 0.8337 | 0.9389 | 0.9440 | 0.9497 | 0.3332 | 0.00   | 0.9638  | 0.9689  | 0.9739  | 0.3788  | 0.9820 | 0.9852 |
| WAVELENGTH<br>(NM)  | 10360  | 0100    | 10380  | 10400  | 10413  | 10420                                   | 10430    | 0770   | 05101  | 0970   |        |        |        | 10510     | 10520  | 10530  | 10540  | 10550  | 10560  | 10570  | 02202  | 10390  | 39     | 265    | 10630  | 10640  | 19650  | 10650  | 10670  | 10680  | 10690  | 0200   | 5,5    | 10730  | 10740  | 10750  | 10760  | 10770  | 00101  |        | 01801  | 10820   | 10830  | 10840  | 10850  | 09801  | 200    |        | 00603   | 01601   | 10920   | 10930   | 10340  | 0820   |
| •                   |        |         | *****  | ****   | •      | ••••••••••••••••••••••••••••••••••••••• | •        |        |        |        |        |        |        | ***       | •••••  | ****   | •      |        |        |        |        |        | 2000   | 36     | 0.0078 | 0.0085 | 0.0093 | 0.0100 | 0.0108 | 0.0116 | 0.0123 | 0.0131 | 9      | 0.0173 | 0.0189 | 0.0204 | 0.0219 | 0.0234 | 0.0243 | 0.0280 | 0.0325 | 0.0371  | 0.0417 | 0.0164 | 0.0511 | 2550'0 |        | 60.0   | 00000   | 0.0388  | 0. 1228 | 7 1470  | 1714   | 1950   |
| M. G                | 0.0004 |         | 0.00   | 0.0019 | 0.0023 | 0.0027                                  | 0.031    | 0.0038 | 0.0038 | 0.0042 | 38     |        | 500.0  | 0.0062    | 0.0056 | 0.00.0 | 0.0014 | 0.0078 | 0.0032 | 9.0036 | 0.0030 |        |        |        | 0.0103 | 0.0113 | 0.0117 | 0.0121 | 0.0125 | 0.0129 | 0.0132 | 90.00  |        | 0.0190 | 0.0208 | 0.0225 | 0.0243 | 0.0262 | 0.0280 | 9510   | 0.0369 | 0.0143  | 0.0322 | 0 0599 | 0.0677 | 0.0736 | 7.00   | 7000   | 0. 1074 | 0, 1172 | 0.1496  | 0, 1825 | 0.2155 | 0,2487 |
| WAVELENGTH<br>(NM)  | 9760   | 0 2 2 6 | 9790   | 9800   | 9810   | 9820                                    | 0286     | 0786   | 0000   | 0995   | 200    | 000    | 0000   | 9910      | 2920   | 9930   | 9940   | 9950   | 9360   | 0.55   | 0000   | 0888   | 35     | 200    | 10030  | 10010  | 10050  | 10050  | 0000   | 0800   | 06001  | 900    |        | 0220   | 10140  | 10150  | 10160  | 10170  |        | 00201  | 10210  | 10220   | 10230  | 10240  | 10250  | 10260  | 0770   | 08601  | 10300   | 103 10  | 10320   | 00001   | 10310  | 10350  |

| VELENGTH<br>(NR) | ¥        | •       | WAVELENGTH<br>(NM) | ŭ.     |         | WAVELENGTH<br>(NW) | ä      | <b>t.</b> | VAVELENGTH<br>(N4) | *      | •         |
|------------------|----------|---------|--------------------|--------|---------|--------------------|--------|-----------|--------------------|--------|-----------|
| 12160            | 0.1172   | 0.8301  | 12360              | 0.0107 | 0.5951  | 12600              | 0.0034 | 0.0422    | 12820              | 0.0003 | 9,000.0   |
| 07121            | 0.1254   | 0.6891  | 12390              | 0.0656 | 0.5721  | 12610              | 0.0032 | 0.0400    | 12830              | 0.000  | 0.0073    |
| 12180            | 0.1437   | 0.8875  | 1278               | 0.0606 | 0.5451  | 12620              | 0.0030 | 0.0377    | 12840              | 0.000  | 0,000     |
| 12190            | 6170     | 0.8839  | 12410              | 0.0561 | 0.5149  | 12630              | 0.0028 | 0.0356    | 12150              | 000    | 0.0067    |
| 12200            | 0 1396   | 0.8843  | 12420              | 0.0517 | .0.4846 | 12640              | 0.0026 | 0.0334    | 12860              | 0.00   | 0,0064    |
| 12210            | 0.1371   | 0.8774  | 12430              | 0.0473 | 0.4543  | 12650              | 0.0024 | 0.0312    | 12870              | 0.00   | 0.00      |
| 12220            | 0, 1346  | 0.8706  | 12410              | 0.0430 | 0.4238  | 12660              | 0.0022 | 0.0291    | 12880              | 0.000  | 0.005     |
| 12230            | 0, 1320  | 0.8638  | 12450              | 0.0389 | 0.3934  | 12670              | 0.0030 | 0.0270    | 12890              | 0.000  | 0.0055    |
| 12240            | 0.1295   | 0.8571  | 12460              | 0.0349 | 0.3628  | 12680              | 0.0018 | 0.0218    | 12900              | 0.0003 | 0.0031    |
| 12250            | 0. 1269  | 0.6503  | 12470-             | 0.0311 | 0.3322  | 12690              | 0.0016 | 0.0228    | 12910              | 0.000  | 0.0047    |
| 12260            | 0, 124.4 | 0.813\$ | 12480              | 0.0274 | 0.3015  | 12700              | 0.0015 | 0.0203    | 12920              | 0.005  | 0,0043    |
| 12370            | 0.1219   | 0.8368  | 12490              | 0.0238 | 0.2708  | 12710              | 0.0014 | 0.0194    | 12930              | 0.000  | 0.0039    |
| 12280            | 0.1177   | 0.8301  | 12500              | 0.0203 | 0.2400  | 12720              | 0.0013 | 0.0182    | 12940              | 0.000  | 0.0035    |
| 12290            | 0.1134   | 0.8234  | 12510              | 0.0186 | 0.2197  | 12730              | 0.0012 | 0.0170    | 12950              | 0.000  | 0.0031    |
| 12300            | 0.1092   | 0.8166  | 12520              | 0.0167 | 0, 1996 | 12740              | 0.0011 | 0.0157    | 12960              | 0.0001 | 0.0036    |
| 12310            | 0, 1051  | 0.7893  | 12530              | 0.0148 | 0.1795  | 12750              | 0.0010 | 0.0145    | 12970              | 0.00   | 0.0022    |
| 12320            | 0.1006   | 0.7620  | 12540              | 0.0130 | O. 159£ | 12760              | 0.000  | 0.0132    | 12980              | 0.0001 | 0.00      |
| 12330            | 0.0963   | 0.7347  | 12550              | 0.0112 | 0.139   | 12770              | 0.00   | 0.0120    | 12990              | 0.00   | 0.0014    |
| 12340            | 0.0921   | 0.7073  | 12560              | 0.0095 | 0.1200  | 12280              | 0.000  | 0.0107    | 13000              | 0.000  | •         |
| 12250            | 0.0872   | 0.6803  | 12570              | 0.0011 | 0       | 12790              | 9000   | 0.003     | 13010              | 0.000  |           |
| 12360            | 0.0815   | 0.6532  | 12580              | 0.0061 | 0.0808  | 12800              | 0.000  | 0.0083    | 13020              | 0.000  | • • • • • |
| 12370            | 0 0160   | 0,6261  | 12590              | 0.0047 | 0.0614  | 12810              | 0.0005 | 0.0079    |                    | :<br>: |           |
|                  |          |         |                    |        |         |                    |        |           |                    |        |           |

| •                  |     |        |     |     |     |              |      |    |     |     |     |       |            |      |     |     |                             |            |     |       |     |     |            |   |            |     |        |   |   |     |            |    |          |      | 144 0.9793  |      |      |        |      |      |            |      |      |            |      |    |        |        |       |
|--------------------|-----|--------|-----|-----|-----|--------------|------|----|-----|-----|-----|-------|------------|------|-----|-----|-----------------------------|------------|-----|-------|-----|-----|------------|---|------------|-----|--------|---|---|-----|------------|----|----------|------|-------------|------|------|--------|------|------|------------|------|------|------------|------|----|--------|--------|-------|
| WAVELENGTH PF      | Î   |        |     |     |     | 11610 0.5309 |      |    |     |     |     |       | 11590 0.43 |      |     |     |                             | 11750 0.41 |     |       |     |     | 11810 O.11 |   | 140 0.3541 |     |        |   |   |     |            |    |          |      | 11970 0.234 |      |      |        |      |      |            |      |      |            |      |    |        |        |       |
| F WAVE             | 2   |        |     |     |     | 0.9759 111   |      |    |     |     |     |       |            |      |     | _   |                             |            |     |       |     |     |            |   |            |     | 0,9716 |   |   |     | 0.9832 119 |    |          |      | 0.9866      |      |      |        |      |      | 0,9929 12( |      |      | 0.9977 52( |      |    | 0.9920 |        |       |
| *                  |     |        |     |     |     | 0.3330 0.    |      |    |     |     |     |       |            |      |     |     |                             |            |     |       |     |     |            |   |            |     |        |   |   |     |            |    |          |      | 0.7606 0.   |      |      |        |      |      |            |      |      |            |      |    |        | 0.6276 |       |
| VAVELES:3/H        | ŽE, | 09621  |     |     |     |              |      |    |     |     |     | CIROL |            |      |     |     |                             |            |     | 11180 |     | 220 |            |   |            |     | 11160  |   |   |     |            |    |          |      |             |      |      | 11410  |      |      |            |      |      |            |      |    | 0 55   | 11530  | * * * |
| ena<br>E           |     | 0.2256 |     |     |     |              |      |    |     |     |     |       |            |      |     |     |                             |            |     |       |     |     |            |   |            |     |        |   |   |     |            |    |          |      |             |      |      |        |      |      |            |      |      |            |      |    |        |        |       |
| TH PF              |     | 0.2883 |     |     |     |              |      |    |     |     |     |       |            |      |     |     |                             |            |     | •     |     |     |            |   |            |     |        |   |   |     |            |    |          |      |             |      |      |        |      |      |            |      |      |            |      |    |        |        |       |
| WAVELENGTH<br>(MM) |     | 10360  |     |     |     |              |      |    |     |     |     |       | 0000       |      |     |     |                             |            | •   |       |     |     |            |   |            |     | 10550  |   |   |     |            | -  | 10740    | _    |             |      | _    | 0.801  |      | _    |            | -    |      | _          | _    | _  | _      |        |       |
| •                  |     | 7      | •   |     |     | 0.5          | • •  | •  | •   | •   | •   |       | •          | •    | •   | -   |                             | •          | •   |       |     |     | 200.0      |   | 0          | 0 ( |        |   |   |     | 6.0150     |    | 3 0.0195 |      |             | Ó    |      | 0.0334 |      |      |            |      |      |            |      |    |        |        | 4.    |
| HGTH PF            |     | 200    |     |     |     |              |      |    |     |     |     |       |            |      |     |     |                             |            |     |       |     |     |            |   |            |     | 0.0124 |   |   |     |            |    |          |      | 0.0268      |      |      |        |      |      |            |      |      |            |      |    |        |        |       |
| WAVELENGTH<br>(NM) |     | 9760   | 878 | 979 | 980 | 196          | 7 60 | 40 | 985 | 986 | 100 | 100 G | ה כ<br>ה פ | 9 60 | 392 | C66 | יים מולים<br>מולים<br>מולים | 7 6        | 199 | 998   | 666 | 88  | 38         | Š | 2          | 5   | 10050  | 2 | 8 | 301 |            | 50 | 101      | 2010 | 10170       | 1018 | 5101 | 202    | 1022 | 1023 | 102        | 1026 | 1027 | 1028       | 1029 | 50 |        | 101    | 1 1 2 |

ORIGINAL PAGE 19 . OF POOR QUALITY

| WAVELENGTH<br>(NM) | ů.      | <b>4</b> 3, | WAVELENGTH<br>(NM) | *      | •         | VAVELENGTH<br>(NH) | ŧ.     | •      | VAVELENGTH<br>(NN) | ŧ                | •      |
|--------------------|---------|-------------|--------------------|--------|-----------|--------------------|--------|--------|--------------------|------------------|--------|
| 12160              | 0.1732  | 0.9602      |                    | 0.0814 | 0.6423    | 13600              | 8      |        |                    |                  |        |
| 12170              | 0.1710  | 0 6 5 0     |                    |        |           | 200                | 3      | 0.0    | 12520              | က်<br>000<br>000 | 88.0   |
| 12180              |         |             |                    | 0.00   | 0.6232    | 12610              | 0.0036 | 0.0433 | 12830              | 0.000            | 0000   |
|                    |         | 700.0       |                    | 0.0636 | 0.5940    | 12620              | 0.0033 | 0.0409 | 12840              | 2                |        |
| 05171              | 0.1565  | 0.9564      |                    | 0.0643 | \$ 19 ° ° | 12630              | 000    | 400    |                    |                  |        |
| 12200              | 0.1638  | 0.9551      |                    | 0,0591 | 0.5286    | 12540              | 2      | 50.0   |                    | 3                | 0.00   |
| 12210              | 0, 1607 | 0.9481      |                    | 0.00   | 4047      | 0 000              |        |        | 00071              | 80.0             | 0.00   |
| 12220              | 0.1576  | 0.9412      |                    | 0000   | 1000      | 000                | 20.00  | 7500   | 12870              | 88               | 0.00   |
| 12230              | 0.1545  | 0.9343      |                    |        |           | 0007               | 0.0024 | 0.0314 | 12880              | 8.0              | 900.0  |
| 12240              | 1514    | F206 0      |                    | 7 6    | 9674.0    | 17670              | 0.0022 | 0.0291 | 12890              | 0.000            | 0.0058 |
| 12250              | [87]    | 1000        |                    | 950.0  | 90.00     | 12680              | 0.0020 | 0.0268 | 12900              | 0.000            | 0.0034 |
| 12260              |         | 2000        |                    | 0.0332 | 0.3631    | 12690              | 8.8    | 0.0245 | 12910              | 0.0003           | 0000   |
|                    |         | 9 1 0 0     |                    | 0.0303 | 0.3297    | 2700               | 0.0016 | 0.0223 | 12920              | 0000             | 0      |
|                    | 77.0    | 2000        | 12490              | 0.0269 | 0.2962    | 12710              | 0.0015 | 0.0203 | 12930              | 0.0003           |        |
| 200                | 200     | 0.000       |                    | 0.0230 | 0.2627    | 12720              | 9.00   | 0.0195 | 12940              | 0.00             |        |
| 06771              | 0.1320  | 0.8930      |                    | 0.0203 | C. 2403   | 12730              | 0,0013 | 0.0182 | (295)              |                  |        |
| 200                | 0.1270  | 0.8861      |                    | 0.0187 | 0.2181    | 12740              | 0.0012 | 0.0168 | 12963              |                  |        |
| 0157               | 0.1220  | 0.8568      | ٠,                 | 0.0166 | 0.1960    | 12750              | 0.0011 | 20.0   | 12970              |                  |        |
| 12320              | 0.1168  | 0.8275      |                    | 0.0146 | 0.1741    | 12760              | 2      |        |                    | 3                | 3      |
| 12330              | 0.116   | 0.7982      | •                  | 0.0126 | 66.0      | 13776              |        |        | 2007               | 3                | 9.0    |
| 12340              | 0.1066  | 0.7590      |                    |        |           |                    | 5      | 0.0128 | 06621              | 80.              | 8.8    |
| 12350              | 2       | 1000        |                    |        |           | 12780              | 0.00   | 0.0115 | 5<br>8<br>8        | 90.0             | •      |
|                    |         | 0000        |                    | 0.0036 | 0.4092    | 12790              | 0.001  | 0.0101 | 33010              | 0000             |        |
| 200                | 0.0341  | 0.7136      |                    | 0.00   | 0.0879    | 12800              | 0.0003 | 200    | 0000               |                  |        |
| 12370              | 0.0877  | 0.6814      |                    | 0.0033 | 0.0667    | 12810              | 9000   | 0.0085 |                    | 3                |        |
|                    |         |             |                    |        |           |                    |        |        |                    |                  |        |

Table A75 (continue)

Table A7C THEMATIC MAPPER RELATVE SPECTRAL RESPONSE

| •                  | 3,000  |        |        | 0.0067  | 0.0064 | 0.00   | 0.0058 | 0.0055 | 0.0031 | 0.0047 | 0.0043 | 0.00   | 0.0038 | 0.0031  | 0.0026  | 0.0022 | 0.00   | 9.00.0 |        | :      | •      |        |
|--------------------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|
| *                  | 5000   | 0000   |        | 0.00    | 0.000  | 0.00   | 0:0004 | 0000   | 0.0003 | 0.000  | 0000   | 0.000  | 0.000  | 0.000   | 80.0    | 0.000  | 0000   | 0.000  | 000    | 0000   | 2      | 3      |
| WAVELENGTH<br>(NR) | 12820  | 12830  | 12840  | 12850   | 12860  | 12870  | 12680  | 12890  | 12900  | 12910  | 12920  | 12930  | 12940  | 12950   | 12960   | 12970  | 12980  | 12930  | 13000  | 13010  | 13020  |        |
| •                  | 0.0422 | 0.0400 | 7,100  | 0.0356  | 0.0334 | 0.0312 | 0.0291 | 0.0270 | 0.0248 | 0.0228 | 0.0207 | 0.0194 | 0.0182 | 0.0170  | 0.0157  | 0.0145 | 0.0132 | 0.0120 | 0.0107 | 0.0038 | 0.0083 |        |
| <b>±</b>           | 0.0038 | 0.0036 | 0.0033 | 0.0031  | 0.0038 | 0.0026 | 0.0024 | 0.0022 | 0.0020 | 0.0018 | 0.0016 | 0.0015 | 0.0014 | 0.0013  | 0.8012  | 28.6   | 0.00   | 0.000  | 0.0008 | 0.000  | 9000.0 |        |
| WAVELENGTH<br>(NH) | 12600  | 12610  | 12620  | 12630   | 12640  | 12650  | 12660  | 12670  | 12680  | 12690  | 12700  | 12710  | 12720  | 12730   | 12740   | 12750  | 12760  | 12770  | 12780  | 12790  | 12800  |        |
| •                  | 0.5391 | 0.5721 | 0.5451 | 0.5149  | 0.4846 | 0.4543 | 0.4238 | 0.3934 | 0.3628 | 0.3322 | 0.3015 | 0.2708 | 0.348  | 0.2197  | 0. 1936 | 0.1795 | 0.1596 | 0.1397 | 0.1200 | 0.100  | 0.0808 |        |
| u.                 | 0.0817 | 0.0757 | 0.0699 | 0.0646- | 0.0395 | 0.0544 | 0.0494 | 0.0446 | 0.0399 | 0.0355 | 0.0312 | 0.0272 | 0.0233 | 0.0211  | 0.0189  | 0.0168 | 0.0147 | 0:0127 | 0.0107 | 0.0387 | 0.00   |        |
| WAVELENGTH (NM)    | 12380  | 12390  | 12400  | 12410   | 12420  | 12430  | 12440  | 12450  | 12460  | 12470  | 12480  | 12490  | 12500  | 12510   | 12520   | 12530  | 12540  | 12550  | 12560  | 12570  | 12580  | .360   |
| •                  | 0,8907 | 0.8891 | 0.6875 | 0.8859  | 0.8843 | 0.8774 | 0.8706 | 0.8638 | 0.8571 | 0.8503 | 0.8435 | 0.8368 | 0.8301 | 0.8234  | 0.8166  | 0.7893 | 0.7620 | 0.7347 | 0.7075 | 0.6803 | 0.6532 | 1969 0 |
| <u>u</u>           | 0 1728 | 0.1707 | 0.1685 | 0.1663  | 0.1636 | 0.1606 | 0.1575 | 0.1544 | 0,1514 | 0.1483 | 0.1453 | 0.1432 | 0.1373 | 0. 1322 | 0. 1271 | 0.1222 | 0.1170 | 0.1119 | 0.1069 | 0.1012 | 0.0945 |        |
| WAVELENGTH<br>(MM) | 12160  | 12170  | 12180  | 12190   | 12200  | 12210  | 12220  | 12230  | 12240  | 12250  | 12250  | 12270  | 13280  | 12290   | 12300   | 12310  | 12320  | 12330  | 12340  | 12350  | 12360  | 12370  |

Table A7c

•

\*\*\*\*

•

|                  |        |                                       | *** ***            |            |            |                    |         |         |                    |         |        |
|------------------|--------|---------------------------------------|--------------------|------------|------------|--------------------|---------|---------|--------------------|---------|--------|
| VELENGTH<br>(NM) | t d    | <b>b.</b>                             | WAVELENGTH<br>(NM) | <b>t</b> . | <b>u</b> . | WAVELENGTH<br>(NM) | ŭ.      | •       | WAVELENGTH<br>(NM) | ŭ.      |        |
| 10000            | 0.0094 | 0.0058                                |                    | 0.8375     | 0.1179     | 11300              | 80738   | 5       |                    |         |        |
|                  | 0.0037 | 0.0066                                |                    | 0.8411     | 0.7793     | 11210              | 0.8682  | 0.334   |                    | 0.4297  | E775.0 |
|                  | 0.0100 | 0.0073                                |                    | 0.8447     | 0.7806     | 11220              | 0.6637  | 0.9608  |                    |         | 20.00  |
|                  | 0.0103 | 0.0081                                |                    | 0.8483     | 0.7820     | 11230              | 0.6391  | 0.9635  | 0.5                |         | 70.0   |
|                  | 0.0107 | 0.0088                                |                    | 0.8516     | 0.7833     | 11240              | 0.8552  | 0.9661  | 11840              | 8580    |        |
|                  | 0.0110 | 0.0036                                |                    | 0.8338     | 0.7846     | 11250              | 0.8524  | 0.9688  | 11850              | 0.3859  | 0.9797 |
|                  | 6.00   | 0.0104                                |                    | 0.8339     | 0.7859     | 11260              | 0.8496  | 0.9716  | 11860              | 0.3761  | 0.3801 |
|                  |        |                                       |                    | 0.6373     | 0.7872     | 11210              | 0.8468  | 0.9743  | 11870              | 0.3659  | 9086.0 |
|                  |        | 200                                   |                    | 0.8600     | 0.7884     | 11280              | 0.8139  | 0.9771  | 11880              | 0.3557  | 0.9810 |
|                  | 20.0   | 200                                   |                    | 0.8620     | 0.7896     | 0821               | 0.6410  | 0.9798  | 11890              | 0.3455  | 0.9815 |
|                  |        |                                       |                    | 0.8647     | 0.7908     | 000                | 0.6352  | 0.9826  | 11900              | 0.3357  | 0.9819 |
|                  | 7 6    | 20.00                                 |                    | 0.00       | 0.7958     | 01511              | 0.6294  | 0.9832  | 11910              | 0.3274  | 0.9816 |
|                  | 6.0.0  | 0.0165                                |                    | 0.8742     | 0.6008     | 11320              | 0.8266  | 0.9838  | 11920              | 0.3190  | 0.9813 |
|                  |        | 20.0                                  |                    | 0.8786     | 0,8058     | 11330              | 0.8232  | 0.9844  | 11930              | 0.3109  | 0.9809 |
|                  |        | 20.0                                  |                    | 0.88.0     | 0.8108     | 11340              | 0.8197  | 0.9849  | 11940              | 0.3030  | 0.9805 |
|                  | 20.00  | 0.07.0                                |                    | 0.8875     | 0.6156     | 11350              | 0.8162  | 0,9855  | 11950              | 0.2953  | 0.9801 |
|                  | 0.00   | 0.0528                                |                    | 0.6213     | 0.8209     | 11360              | 0.8125  | 0.9860  | 11550              | 0.2876  | 0.9797 |
|                  | 20.00  | 770.0                                 |                    | 0.3364     | 0.8260     | 0/5/1              | 0.8075  | 0.9866  | 11970              | 0.2799  | 0.9393 |
|                  | 0.020  | 0.000                                 |                    | 6.9029     | 0.8311     | 11380              | 0.8017  | 0.9871  | 11980              | 0.2722  | 0.9788 |
|                  | 90.00  |                                       |                    | 2000       | 0.8362     | 06611              | 1762.0  | 0.9876  | 1 1990             | 0.2639  | 0.9784 |
|                  | 0.00   | 0,00                                  |                    | 0.9202     | 0.6413     | 8                  | 0.7925  | 0.9861  | 200                | 0.2555  | 0.9779 |
|                  | 50.0   |                                       |                    | 20,270     | 57.00      | 0                  | 0.7384  | 0.9893  | 12010              | 0.2524  | 0.9369 |
|                  | 9050   |                                       |                    |            | 0.00       | 0.00               | 0.7889  | 0.3303  | 12020              | 0.2484  | 0.9759 |
|                  |        |                                       |                    | 20.00      | 0.8810     | 1430               | 0.7884  | 0.9917  | 12030              | 0.2444  | 0.9749 |
|                  | 0.0501 |                                       |                    | 0          |            | 0.5                | 0.7875  | 0.9929  | 12040              | 0.2404  | 0.9739 |
|                  | 50.0   | 0,000                                 |                    | 200        |            |                    | 0.7883  | 386.0   | 12050              | 0.2338  | 0.9729 |
|                  |        | 2000                                  |                    |            |            | 0 0 0 0            | 0.7834  | 0.5953  | 12060              | 0.2326  | 0.9719 |
|                  |        | 0,00                                  |                    |            |            |                    | 1124    | 555.0   | 12070              | 0.2283  | 0.9708 |
|                  | 0.0967 | 0.00                                  |                    | 6839       | 0.69.0     |                    | 7777    | 288.0   | 12050              | G. 2248 | 0.9698 |
|                  | 0.1046 | 0.0769                                |                    | 20.00      | 2000       | 000                | 7007    | . 2223  | 2090               | 0.2210  | 0.9688 |
|                  | 0.111  | 0.00                                  |                    | 1,10       | 47.0       | 3                  | 7 6 7 6 | 36      | 855                | 0.2172  | 2298.0 |
|                  | 0.1459 | 0.1256                                |                    | 0.9793     | 0.9252     | 11520              | 0 742 0 |         |                    |         | 00000  |
|                  | 0.1780 | 0, 1502                               |                    | 0.9833     | 0.927B     | 000                | 7117    | 0.364.0 | 27.5               | 0.2080  | 6.36.0 |
|                  | 0.2103 | 0.1751                                |                    | 9854       | 0.9345     | 270                | 0 7221  |         |                    |         |        |
|                  | 0.2425 | 0,2002                                |                    | 0.9876     | 0.9412     | 11550              | 0.7126  | 1096.0  | 200                |         | 700.0  |
|                  | 0.2755 | 0.2256                                |                    | 0.9898     | 0.9479     | 11560              | 0.7029  | 0.000   | 05.51              | 0.00    | 0.000  |
|                  | 0.3085 | 0.2511                                |                    | 0.9921     | 0.9547     | 11570              | 0.6951  | 9776    | 021.51             |         | 7000   |
|                  | 0,3417 | 0.2769                                |                    | 0.9943     | 0.9614     | 11580              | 0.6875  | 0.9358  | 12180              | 0.1747  | 7150   |
|                  | 0.3752 | 0.3029                                |                    | 0.9965     | 0.9683     | 11590              | 0.6799  | 0.9290  | 12190              | 0. 1690 | 1366.0 |
|                  | 0.1095 | 0.3292                                |                    | 0.9988     | 0.9751     | 11600              | 0,6743  | 0.9213  | 12200              | 0.1629  | 0.9551 |
|                  | 0.1438 | 0.3633                                |                    | 0.9390     | 0.9759     | 11610              | 0.6392  | 0.9243  | 12210              | 0.1531  | 0.9481 |
|                  | 0.4610 | 287.0                                 |                    | 2666.0     | 0.9768     | 11620              | D.6442  | 0.9272  | 12220              | 0.1554  | 0.5412 |
|                  | 0.0262 |                                       |                    | 0.9393     | 9116.0     | 0.91               | 0.6366  | 0.9302  | 12230              | 0.1317  | 0.9343 |
|                  |        |                                       |                    | 1886.0     | 20.00      |                    | 0.6188  | 0.9332  | 12240              | 0.1479  | 0.9274 |
|                  | 0.000  |                                       |                    | 200        |            | 00011              |         | 20.00   | 2220               | 0.1442  | 0.3205 |
|                  | 0.7093 | 0.5696                                |                    | 35.00      |            | 1670               |         | 2070    | 277                | 200     | 200    |
|                  | 0.7365 | 0.6043                                | 1080               | 0.9903     | 0.9818     | 11580              | 0.5711  | 0.44    | 2250               |         | 200 E  |
|                  | 0.7588 | 0.6391                                |                    | 0.9855     | 0.9828     | 11690              | 0.5579  | 0.9460  | 12290              | 0.1256  | 0.8930 |
|                  | 0.7812 | 0.6739                                |                    | 0.9807     | 0.9834     | 11780              | 0.5454  | 0.9509  | 12300              | 0, 120; | 0.8861 |
|                  | 0.8047 | 0.6839                                |                    | 0.9739     | 0.9806     | 11710              | 0.5358  | 0.9536  | 12310              | 0.1156  | 0.8368 |
|                  | 0.8228 | 0.6940                                |                    | 0.9625     | 0.9778     | 11720              | 0.5241  | 0.9562  | 12320              | 0.1107  | 0.8275 |
|                  | 0.6307 | 0.7042                                |                    | 0.9310     | 0.9750     | 11730              | 0.5124  | 0.9589  | 12330              | 0.1059  | 0.7982 |
|                  | 0.8398 | 0,7145                                |                    | 0.9396     | 0.9721     | 11740              | 0.5008  | 0.9615  | 12340              | 0.1013  | 0.7690 |
|                  | 0.8439 | 0.7248                                |                    | 0.9283     | 0.9693     | 11750              | 0.4891  | 0.9642  | 12350              | 0.0960  | 0.7398 |
|                  | 0.8458 | 0,7353                                |                    | 0.9170     | 0.9565     | 11760              | 0.4775  | 0.9688  | 12360              | 0.0897  | 0.7136 |
|                  |        |                                       |                    | 8008.0     | 0.3637     | 0771               | 9.4.0   | 0.9594  | 0/521              | 0.0335  | 0.6874 |
|                  | 200    | 7,130                                 |                    | 0.00       |            |                    | 77.7    | 0.8721  | 0000               | 0.07    | 0.5323 |
|                  | ;      | · · · · · · · · · · · · · · · · · · · |                    |            | )          | )<br>P.            | ;       | ;<br>;  | 0 877              | 5       | 177#.0 |

Table A7d
THEMATIC MAPPER RELATVE SPECTAAL RESPONSE - BAND 6 ... DETECTOR 4

| 0.0014<br>0.0012<br>0.0012<br>0.0012<br>0.0013<br>0.0013<br>0.0003<br>0.013<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0003<br>0.0 |        |        | F =   | ,      |        | (XX)      | :      | •      | (NA)  | :    |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------|--------|--------|-----------|--------|--------|-------|------|--------|
| 0.5256 12350 0.0056 0.1032 12720 0.0014 0.0185 12859 0.0004 0.55614 12570 0.0056 0.1032 12720 0.00014 0.0185 12859 0.0004 0.55614 12570 0.0056 0.1032 12730 0.00115 0.0182 12859 0.0004 0.55614 12570 0.0057 0.0012 0.0012 0.0185 12910 0.0004 0.0001 0.4257 12600 0.0013 0.0043 12740 0.0011 0.0141 12920 0.0001 0.0001 0.4256 12500 0.0013 0.0043 12750 0.0001 0.0141 12920 0.0001 0.0001 0.0001 0.0011 12920 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6300   | 0      | 21.   |        |        |           |        |        |       |      |        |
| 0.526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        | 09071 | 0.0    | 0.1307 | 12720     | 8.8    | 0.0195 | 12830 | 000  | 00.00  |
| 0.4286 12380 0.0067 0.0879 12740 0.0012 0.6% 1290 0.0000 0.04% 12380 0.00032 0.06% 12380 0.00032 0.06% 12380 0.00032 0.06% 12380 0.00038 0.0438 12380 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 12780 0.00031 0.0118 12390 0.00031 0.00031 0.0384 12800 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 12800 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.00031 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0617 | 0.5614 | 12570 | 0.0086 | 0.1092 | 12730     | 0.00   | 0.0182 | OPER  | 2    | 6      |
| 0.4957 12390 0.0052 0.0667 1750 0.0011 0.0155 12910 0.0002 0.4627 12600 0.0013 0.0015 12910 0.0002 0.4627 12600 0.0013 0.0015 12910 0.0002 0.456 12600 0.0013 0.0011 0.0114 12910 0.0002 0.3001 0.0136 12910 0.0003 0.0136 12910 0.0002 0.3001 0.0115 12910 0.0002 0.3001 0.0115 12910 0.0002 0.3001 0.0115 12910 0.0002 0.3001 0.0115 12910 0.0002 0.3001 0.0115 12910 0.0002 0.3001 0.0211 12800 0.0001 0.0001 0.0002 0.3001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0370 | 0.5286 | 12580 | 0.0067 | 0.0879 | 12740     | 8      | 9110   |       |      | 3      |
| 0.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |       |        |        |           |        | 2      | 357   | 3    | 3      |
| 0.4527 (2560 0.0038 0.0448 12760 0.0010 0.0141 12320 0.0003 0.0458 12760 0.0010 0.0141 12320 0.0003 0.0458 12760 0.0003 0.0158 12310 0.0003 0.0158 12310 0.0003 0.0158 12310 0.0003 0.0158 12310 0.0003 0.0158 12310 0.0003 0.0158 12310 0.0003 0.0158 12310 0.0003 0.0231 12810 0.0003 0.0008 12810 0.0003 0.0003 0.0252 14550 0.0034 0.0314 12810 0.0005 0.0008 12310 0.0003 0.0001 0.0001 0.0251 12810 0.0003 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77000  | 0.0    | 0667  | 0.0032 | 0.0667 | 12750     | 8.8    | 0.0135 | 12910 | 000  | 0.0030 |
| 0.4296 12610 0.0035 0.0443 12770 0.0009 0.0128 12930 0.0002 0.0138 12930 0.0002 0.0138 12930 0.0003 0.0138 12930 0.0002 0.0513 12630 0.0003 0.0138 12940 0.0002 0.0513 12640 0.0003 0.0138 12940 0.0003 0.0101 12950 0.0002 0.0223 12640 0.0003 0.0013 12950 0.0002 0.0223 12650 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0175 | 0.4627 | 12600 | 0.0038 | 0.0438 | 12750     | 0.0010 | 0.0141 | 12920 | 000  | 700    |
| 0.3854 (1252) 0.0033 0.0409 (12780 0.0006 0.0115 (12940 0.0002 0.0351 (14520 0.0031 0.03185 (12780 0.0003 0.0115 (12940 0.0002 0.0321 (14520 0.0031 0.03185 (12780 0.0003 0.0115 (12940 0.0002 0.0321 (12800 0.0003 0.0001 12800 0.0003 0.0001 (12800 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0430 | 0.4296 | 12610 | 0.0035 | 0.0433 | 12770     | 6000   | 0.0128 | 02661 | 6    | 38     |
| 0.3531 14530 0.0031 0.0315 17390 0.0007 0.0101 12550 0.0002<br>0.2327 12540 0.0028 0.0315 12800 0.0005 0.00101 12950 0.0002<br>0.2527 12550 0.0028 0.0314 12810 0.0005 0.0001 12910 0.0001<br>0.2403 12570 0.0022 0.0231 12820 0.0003 0.0031 12910 0.0001<br>0.2403 12580 0.0022 0.0231 12840 0.0005 0.0078 12990 0.0001<br>0.2181 12580 0.0016 12840 0.0003 0.0071 13010 0.0001<br>0.1741 12700 0.0016 0.0245 12850 0.0004 0.0068 13020 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0386 | 0.3964 | 12620 | 0.0033 | 0.0409 | 12780     |        |        | 070   |      | 38     |
| 0.1397 12640 0.0028 0.0361 12800 0.0006 0.0008 12960 0.0002 0.2262 12650 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0344 | 0.3631 | 12630 | 0.0031 | 0.0185 | 12790     |        |        | 0,00  | 3 6  | 3      |
| 0.2562 11550 0.0026 0.0317 12810 0.0005 12910 0.0002 0.0005 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000  | 0.3297 | 13640 | 2      | 926    |           |        |        | 000   | 3    | 3      |
| 0.2352 12550 0.0026 0.0031 12810 0.0006 0.0055 12970 0.0001 0.0215 12550 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |        |       |        |        | 000       | 5      | 3      | 12360 | 0.00 | 0.00   |
| 0.2867 12560 0.0024 0.0114 12820 0.0005 0.0031 12950 0.0001 0.0001 0.2401 12550 0.0002 0.0001 0.0001 0.02401 12550 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0265 | 0.2962 | 12650 | 0.00   | 0.0337 | 12810     | 9.000  | 0.0085 | 12970 | 80.0 | 0.0023 |
| 0.2403 12670 0.0022 0.0291 12830 0.0005 0.0078 12990 0.0001 0.02181 12680 0.0020 0.0268 12840 0.0005 0.0074 12000 0.0001 0.1960 12690 0.0018 0.0245 12850 0.0005 0.0071 13010 0.0001 0.1741 12700 0.0016 0.0223 12850 0.0004 0.0068 13020 0.0000 0.1823 12710 0.0016 0.0223 12850 0.0004 0.0068 13020 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.C22E | 0.2627 | 12660 | 0.854  | 0.0314 | 12820     | 0000   | 0.0081 | 12980 | 200  | 2      |
| 0.2181 12680 0.0020 0.0268 12840 0.0005 0.0074 13000 0.0001 0.1850 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0000 0.0001 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0206 | 0.2403 | 12670 | 0.0022 | 0.0291 | 12830     | 000    | 000    | 13000 | 8    |        |
| 0 1960 1250 0.0010 0.0245 12850 0.0003 0.0074 13000 0.0001 0.01741 12700 0.0016 0.0223 12850 0.0004 0.0008 13010 0.0000 0.0523 12850 0.0004 0.0008 13020 0.0000 0.1523 12710 0.0016 0.0223 12870 0.0004 0.0008 13020 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200    | 311    | 19680 | 5      |        |           |        |        |       | 3    | 3      |
| 0 1950 12590 0.0016 0.0245 12850 0.0005 0.0071 13010 0.0000 0. 0.1741 12700 0.0016 0.0223 12850 0.0006 0.00068 13020 0.0000 0.01523 12710 0.0015 0.0209 12870 0.0004 0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        | 000   | 3      | 0.070  | 0 7 0 7 1 | 3      | 8      | 0000  | 8    |        |
| 0.1741 12700 0.0016 0.0223 12860 0.0004 0.0068 12020 0.0000 0.1523 12710 0.0018 0.0209 12870 0.0004 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0165 | 0 1960 | 12690 | 8.8    | 0.0245 | 12850     | 000    | 0.0071 | 01051 | 2    | •      |
| 0.1523 12710 0.b018 0.0209 12870 0.0004 0.0054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0145 | 0.1741 | 1278  | 0.0016 | 0.0223 | 12860     | 000    | 0.00   | 2000  | 88   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 0125 | 0.1523 | 12710 | 0.0015 | 0.0209 | 12870     | 000    | 9900   |       | 3    |        |

Table A7d (continue)