Capítulo 3

Transformações Lineares

Neste capítulo vamos estudar um tipo especial de funções, as quais são chamadas de "transformações lineares" e que é um dos objetos fundamentais da álgebra linear. Em cálculo, por exemplo, costuma-se aproximar uma função diferenciável por uma transformação linear. Veremos, também, que resolver um sistema

$$AX = B$$

de equações lineares é equivalente a encontrar todos os elementos $\mathbf{X} \in \mathbb{R}^{n \times 1}$ tais que

$$T_{\mathbf{A}}(\mathbf{X}) = \mathbf{B},$$

onde $T_{\bf A}:\mathbb{R}^{n\times 1}\to\mathbb{R}^{m\times 1}$ definida por $T_{\bf A}({\bf X})={\bf A}{\bf X}$ é uma transformação linear.

3.1 Transformações Lineares

Sejam V e W espaços vetoriais sobre \mathbb{R} . Uma função $T:V\to W$ é uma transformação linear se as seguintes condições são satisfeitas:

- 1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$, para todos $\mathbf{u}, \mathbf{v} \in V$ (Aditividade).
- 2. $T(a\mathbf{u}) = aT(\mathbf{u})$, para todo $a \in \mathbb{R}$ e $\mathbf{u} \in V$ (Homogeneidade).

Observações 3.1 1. Intuitivamente, uma transformação linear é uma função que preserva as operações dos espaços vetoriais.

2. Se $T: V \to W$ é uma transformação linear, então $T(\mathbf{0}) = \mathbf{0}$, pois

$$T(\mathbf{0}) = T(0 \cdot \mathbf{u}) = 0 \cdot T(\mathbf{u}) = \mathbf{0}.$$

3. Se $T: V \to W$ é uma transformação linear, então

$$T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v}), \ \forall \ a, b \in \mathbb{R} \ e \ \mathbf{u}, \mathbf{v} \in V,$$

pois

$$T(a\mathbf{u} + b\mathbf{v}) = T(a\mathbf{u}) + T(b\mathbf{v})$$

= $aT(\mathbf{u}) + bT(\mathbf{v})$.

Mais geralmente,

$$T(a_1\mathbf{u}_1 + \dots + a_n\mathbf{u}_n) = a_1T(\mathbf{u}_1) + \dots + a_nT(\mathbf{u}_n), \ \forall \ a_i \in \mathbb{R} \ e \ \mathbf{u}_i \in V.$$

4. $Se\ T: V \to W$ é uma transformação linear $e\ V = W$, dizemos que T é um operador linear $sobre\ V$.

Exemplo 3.2 (Operador Nulo) Sejam V e W espaços vetoriais sobre \mathbb{R} . A função $0: V \to W$ definida por $0(\mathbf{u}) = \mathbf{0}$, para todo $\mathbf{u} \in V$, é uma transformação linear, pois

$$0(\mathbf{u} + \mathbf{v}) = \mathbf{0} = \mathbf{0} + \mathbf{0} = 0(\mathbf{u}) + 0(\mathbf{v}), \ \forall \ \mathbf{u}, \mathbf{v} \in V$$

e

$$0(a\mathbf{u}) = \mathbf{0} = a0(\mathbf{u}), \ \forall \ a \in \mathbb{R} \ e \ \mathbf{u} \in V.$$

Exemplo 3.3 (Operador Identidade) Seja V um espaço vetorial sobre \mathbb{R} . A função $I = I_V : V \to V$ definida por $I_V(\mathbf{u}) = \mathbf{u}$, para todo $\mathbf{u} \in V$, é um operador linear, pois

$$I_V(\mathbf{u} + \mathbf{v}) = \mathbf{u} + \mathbf{v} = I_V(\mathbf{u}) + I_V(\mathbf{v}), \ \forall \ \mathbf{u}, \mathbf{v} \in V$$

e

$$I_V(a\mathbf{u}) = a\mathbf{u} = aI_V(\mathbf{u}), \ \forall \ a \in \mathbb{R} \ e \ \mathbf{u} \in V.$$

Exemplo 3.4 Toda transformação linear $T : \mathbb{R} \to \mathbb{R}$ é da forma ax, para algum $a \in \mathbb{R}$ fixado. De fato, é claro que a função $T : \mathbb{R} \to \mathbb{R}$ definida por T(x) = ax, para todo $x \in \mathbb{R}$, é uma transformação linear. Reciprocamente, seja $T : \mathbb{R} \to \mathbb{R}$ uma transformação linear. Então

$$T(x) = T(1 \cdot x) = T(1)x, \ \forall \ x \in \mathbb{R}.$$

Fazendo $a = T(1) \in \mathbb{R}$, obtemos T(x) = ax, para todo $x \in \mathbb{R}$.

Exemplo 3.5 Sejam $V = \mathbb{R}^{n \times 1}$, $W = \mathbb{R}^{m \times 1}$ espaços vetoriais sobre \mathbb{R} e $\mathbf{A} \in \mathbb{R}^{m \times n}$ uma matriz fixada. A função $T_{\mathbf{A}}: V \to W$ definida por

$$T_{\mathbf{A}}(\mathbf{X}) = \mathbf{AX},$$

para todo $X \in V$, é uma transformação linear, pois

$$T_{\mathbf{A}}(\mathbf{X} + \mathbf{Y}) = \mathbf{A}(\mathbf{X} + \mathbf{Y}) = \mathbf{A}\mathbf{X} + \mathbf{A}\mathbf{Y} = T_{\mathbf{A}}(\mathbf{X}) + T_{\mathbf{A}}(\mathbf{Y}), \ \forall \ \mathbf{X}, \mathbf{Y} \in V.$$

e

$$T_{\mathbf{A}}(a\mathbf{X}) = \mathbf{A}(a\mathbf{X}) = a(\mathbf{A}\mathbf{X}) = aT_{\mathbf{A}}(\mathbf{X}), \ \forall \ a \in \mathbb{R} \ e \ \mathbf{X} \in V.$$

Note, também, que $S_{\mathbf{A}}: \mathbb{R}^{1 \times m} \to \mathbb{R}^{1 \times n}$ definida por

$$T_{\mathbf{A}}(\mathbf{v}) = \mathbf{v}\mathbf{A},$$

para todo $\mathbf{v} \in \mathbb{R}^{m \times 1}$, é uma transformação linear.

Exemplo 3.6 (Operador Diferencial) Seja $V = P_n(\mathbb{R})$ o espaço vetorial de todos os polinômios com coeficientes reais e grau menor do que ou igual a n. A função $D: V \to V$ definida por (Dp)(x) = p'(x), para todo $p \in V$, é uma transformação linear, pois

$$(D(p+q))(x) = ((p+q)(x))' = (p(x) + q(x))'$$

$$= p'(x) + q'(x) = (Dp)(x) + (Dq)(x)$$

$$= (Dp + Dq)(x), \forall p, q \in V$$

e

$$(D(ap))(x) = (ap(x))' = ap'(x) = a(Dp)(x)$$

= $(a(Dp))(x), \forall a \in \mathbb{R} \ e \ p \in V.$

Exemplo 3.7 (Operador Semelhança) Seja $V=\mathbb{R}^2$. A função $T:V\to V$ definida por

$$T(x,y) = c(x,y), \ \forall \ c \in \mathbb{R},$$

é uma transformação linear (prove isto!). Quando $c>0,\ T$ é chamado de operador semelhança.

Exemplo 3.8 (Rotação de uma ângulo θ) $Seja V = \mathbb{R}^2$. Determine a transformação linear $R_{\theta}: V \to V$, onde $R_{\theta}(\mathbf{u})$ é uma rotação anti-horário de um ângulo θ , $0 \le \theta < 2\pi$, do vetor $\mathbf{u} \in V$.

Solução. Sejam $\mathbf{u} = (x, y)$ e $R_{\theta}(x, y) = (u, v)$. Então, pela Figura 3.1,

Figura 3.1: Rotação de um ângulo θ .

temos que

$$u = r\cos(\alpha + \theta), \ x = r\cos\alpha \ e \ y = r\sin\alpha.$$

Logo,

$$u = x \cos \theta - y \sin \theta$$
.

De modo análogo,

$$v = x \operatorname{sen} \theta + y \operatorname{cos} \theta$$
.

Assim,

$$R_{\theta}(x, y) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta).$$

Exemplo 3.9 (Operador Translação) $Seja~V=\mathbb{R}^2.~A~função~T_{\mathbf{v}}:V\to V~definida~por$

$$T(\mathbf{u}) = \mathbf{u} + \mathbf{v},$$

onde $\mathbf{u}=(x,y)$ e $\mathbf{v}=(a,b)$, não é uma transformação linear, a menos que a=b=0, pois

$$T(0,0) = (a,b) \neq (0,0)$$

(confira Figura 3.2).

Figura 3.2: Translação por v.

Exemplo 3.10 Seja $V = \mathbb{R}^2$. A função $T: V \to V$ definida por T(x, y) = (x, |y|) não é uma transformação linear, pois

$$T((x,y) + (r,s)) = T(x+r,y+s)$$

$$= (x+r,|y+s|)$$

$$\neq (x,|y|) + (r,|s|)$$

$$= T(x,y) + T(r,s),$$

desde que |y+s| < |y| + |s| se ys < 0. Em particular,

$$T((2,1) + (3,-1)) = T(5,0) = (5,0) \neq (5,2) = T(2,1) + T(3,-1)$$

Note que T(0,0) = (0,0). Portanto, $T(\mathbf{0}) = \mathbf{0}$ é condição necessária mas não suficiente para que T seja uma transformação linear.

Exemplo 3.11 Sejam V e W espaços vetoriais sobre o corpo dos racionais \mathbb{Q} . Mostre que se a função $T:V\to W$ satisfaz à condição aditiva

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}), \ \forall \ \mathbf{u}, \mathbf{v} \in V,$$

então T é uma transformação linear.

Solução. Como 0 + 0 = 0 temos que

$$T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + T(\mathbf{0}).$$

Logo, $T(\mathbf{0}) = \mathbf{0}$. Assim,

$$\mathbf{0} = T(\mathbf{0}) = T(\mathbf{u} + (-\mathbf{u})) = T(\mathbf{u}) + T(-\mathbf{u}) \Rightarrow T(-\mathbf{u}) = -T(\mathbf{u}), \ \mathbf{u} \in V.$$

Dado $n \in \mathbb{N}$, segue, indutivamente, que $T(n\mathbf{u}) = nT(\mathbf{u})$, para todo $n \in \mathbb{N}$ e $\mathbf{u} \in V$. Dado $n \in \mathbb{Z}$ com n < 0, obtemos

$$T(n\mathbf{u}) = T(-n(-\mathbf{u})) = -nT(-\mathbf{u}) = -n(-T(\mathbf{u})) = nT(\mathbf{u}).$$

Assim, $T(n\mathbf{u}) = nT(\mathbf{u})$, para todo $n \in \mathbb{Z}$ e $\mathbf{u} \in V$. Dado $n \in \mathbb{Z}$ com $n \neq 0$, obtemos

$$T(\mathbf{u}) = T(n(\frac{1}{n}\mathbf{u})) = nT(\frac{1}{n}\mathbf{u}).$$

Logo, $T(\frac{1}{n}\mathbf{u}) = \frac{1}{n}T(\mathbf{u})$, para todo $n \in \mathbb{Z}$, com $n \neq 0$, e $\mathbf{u} \in V$. Finalmente, dado $r = \frac{m}{n} \in \mathbb{Q}$, obtemos

$$T(r\mathbf{u}) = T(m(\frac{1}{n}\mathbf{u})) = mT(\frac{1}{n}\mathbf{u}) = \frac{m}{n}T(\mathbf{u}) = rT(\mathbf{u})$$

e, assim, $T(r\mathbf{u}) = rT(\mathbf{u})$, para todo $r \in \mathbb{Q}$ e $\mathbf{u} \in V$. Portanto, T é uma transformação linear. Assim, podemos cuncluir que toda função definida em espaço vetorial sobre o corpo dos racionais \mathbb{Q} , satisfazendo à condição aditiva, é sempre linear. Mostraremos a seguir, que esse resultado não é, em geral, verdade.

Teorema 3.12 Sejam V e W espaços vetoriais sobre \mathbb{R} . Sejam $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ uma base de V e $\mathbf{w}_1, \ldots, \mathbf{w}_n$ vetores arbitrários em W. Então existe uma única transformação linear $T: V \to W$ tal que

$$T(\mathbf{u}_i) = \mathbf{w}_i, i = 1, \dots, n.$$

Prova. (Existência) Como $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ é uma base de V temos que cada vetor $\mathbf{u} \in V$ pode ser escrito de modo único sob a forma

$$\mathbf{u} = x_1 \mathbf{u}_1 + \dots + x_n \mathbf{u}_n.$$

Vamos definir $T: V \to W$ por

$$T(\mathbf{u}) = x_1 \mathbf{w}_1 + \dots + x_n \mathbf{w}_n = \sum_{i=1}^n x_i \mathbf{w}_i.$$

É claro que T está bem definida e

$$T(\mathbf{u}_i) = \mathbf{w}_i, i = 1, \dots, n,$$

pois

$$\mathbf{u}_i = 0\mathbf{u}_1 + \dots + 0\mathbf{u}_{i-1} + 1\mathbf{u}_i + 0\mathbf{u}_{i+1} + \dots + 0\mathbf{u}_n, i = 1,\dots, n.$$

Dados $\mathbf{v} \in V$, digamos

$$\mathbf{v} = y_1 \mathbf{u}_1 + \dots + y_n \mathbf{u}_n,$$

e $c \in \mathbb{R}$, temos que

$$T(\mathbf{u} + \mathbf{v}) = T\left(\sum_{i=1}^{n} (x_i + y_i)\mathbf{u}_i\right) = \sum_{i=1}^{n} (x_i + y_i)\mathbf{w}_i$$
$$= \sum_{i=1}^{n} x_i\mathbf{w}_i + \sum_{i=1}^{n} y_i\mathbf{w}_i = T(\mathbf{u}) + T(\mathbf{v})$$

e

$$T(c\mathbf{u}) = T\left(\sum_{i=1}^{n} (cx_i)\mathbf{u}_i\right) = \sum_{i=1}^{n} (cx_i)\mathbf{w}_i$$
$$= c\left(\sum_{i=1}^{n} x_i\mathbf{w}_i\right) = cT(\mathbf{u}).$$

Portanto, T é uma transformação linear.

(Unicidade) Seja $S:V\to W$ outra transformação linear tal que

$$S(\mathbf{u}_i) = \mathbf{w}_i, i = 1, \dots, n.$$

Então

$$S(\mathbf{u}) = S\left(\sum_{i=1}^{n} x_i \mathbf{u}_i\right) = \sum_{i=1}^{n} x_i S(\mathbf{u}_i) = \sum_{i=1}^{n} x_i \mathbf{w}_i = T(\mathbf{u}),$$

para todo $\mathbf{u} \in V$. Portanto, S = T.

Observação 3.13 Sejam V e W espaços vetoriais sobre \mathbb{R} . Sejam $\beta = \{\mathbf{u}_i\}_{i\in I}$ uma base de V e $\{\mathbf{w}_i\}_{i\in I}$ uma família arbitrário de vetores em W. Então existe uma única transformação linear $T:V\to W$ tal que

$$T(\mathbf{u}_i) = \mathbf{w}_i, \ \forall \ i \in I.$$

Exemplo 3.14 Determine a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1,2) = (3,2,1) e T(3,4) = (6,5,4).

Solução. É fácil verificar que $\{(1,2),(3,4)\}$ é uma base de \mathbb{R}^2 . Assim, pelo Teorema 3.12, existe uma única transformação linear $T:\mathbb{R}^2\to\mathbb{R}^3$ tal que T(1,2)=(3,2,1) e T(3,4)=(6,5,4). Agora, para determinar T, dado $\mathbf{u}=(x,y)\in\mathbb{R}^2$, devemos encontrar $r,s\in\mathbb{R}$ tais que

$$\mathbf{u} = r(1,2) + s(3,4),$$

isto é, resolver o sistema não-homogêneo

$$\begin{cases} r + 3s = x \\ 2r + 4s = y \end{cases}.$$

Logo,
$$r = \frac{1}{2}(-4x + 3y)$$
 e $s = \frac{1}{2}(2x - y)$. Portanto,

$$T(x,y) = T(r(1,2) + s(3,4))$$

$$= rT(1,2) + sT(3,4)$$

$$= \frac{-4x + 3y}{2}(3,2,1) + \frac{2x - y}{2}(6,5,4)$$

$$= \left(\frac{3}{2}y, x + \frac{1}{2}y, 2x - \frac{1}{2}y\right).$$

Exemplo 3.15 (Operador Projeção) Determine a projeção de um vetor $\mathbf{u} \in \mathbb{R}^2$ sobre a reta y = ax, com $a \in \mathbb{R}$.

Solução. É fácil verificar que $\{(1,a),(-a,1)\}$ é uma base de \mathbb{R}^2 , para todo $a \in \mathbb{R}$. Então, pelo Teorema 3.12, existe uma única transformação linear $P: \mathbb{R}^2 \to \mathbb{R}^2$ tal que P(1,a)=(1,a) e P(-a,1)=(0,0). Agora, para determinar P, dado $\mathbf{u}=(x,y)\in \mathbb{R}^2$, devemos encontrar $r,s\in \mathbb{R}$ tais que

$$\mathbf{u} = r(1, a) + s(-a, 1),$$

isto é, resolver o sistema não-homogêneo

$$\begin{cases} r - as = x \\ ar + s = y \end{cases}.$$

Logo,

$$P(x,y) = \left(\frac{x+ay}{1+a^2}, \frac{ax+a^2y}{1+a^2}\right)$$
$$= \frac{\langle (x,y), (1,a) \rangle}{\|(1,a)\|^2} (1,a).$$

Como

$$\mathbb{R}^2 = [(1, a)] \oplus [(-a, 1)],$$

dizemos que P é a projeção sobre [(1,a)] na direção de [(-a,1)], com $a \in \mathbb{R}$ (confira Figura 3.3).

Figura 3.3: Projeção de um vetor $\mathbf{u} \in \mathbb{R}^2$ sobre a reta y = ax.

Exemplo 3.16 (Operador Reflexão) Determine a reflexão de um vetor $\mathbf{u} \in \mathbb{R}^2$ em torno de uma reta y = ax, com $a \in \mathbb{R}$.

Solução. É fácil verificar que $\{(1,a),(-a,1)\}$ é uma base de \mathbb{R}^2 , para todo $a \in \mathbb{R}$. Então, pelo Teorema 3.12, existe uma única transformação linear $R: \mathbb{R}^2 \to \mathbb{R}^2$ tal que R(1,a)=(1,a) e R(-a,1)=(a,-1). Agora, para determinar R, dado $\mathbf{u}=(x,y)\in \mathbb{R}^2$, devemos encontrar $r,s\in \mathbb{R}$ tais que

$$\mathbf{u} = r(1, a) + s(-a, 1)$$

isto é, resolver o sistema não-homogêneo

$$\begin{cases} r - as = x \\ ar + s = y \end{cases}.$$

Logo,

$$R(x,y) = \left(\frac{(1-a^2)x + 2ay}{1+a^2}, \frac{2ax - (1-a^2)y}{1+a^2}\right)$$
$$= (x,y) - 2\frac{\langle (x,y), (1,a) \rangle}{\|(1,a)\|^2} (1,a).$$

Como

$$\mathbb{R}^2 = [(1, a)] \oplus [(-a, 1)],$$

dizemos que P é a reflexão em [(1, a)] na direção de [(-a, 1)], com $a \in \mathbb{R}$ (confira Figura 3.4).

Figura 3.4: Reflexão de um vetor $\mathbf{u} \in \mathbb{R}^2$ em torno da reta y = ax.

Finalmente, se θ é o ângulo que a reta y=ax faz com o eixo dos x, então $a=\tan\theta$ e é fácil verificar que

$$R(x, y) = (x \cos 2\theta + y \sin 2\theta, x \sin 2\theta - y \cos 2\theta).$$

Em particular, quando $\theta = \frac{\pi}{4}$, temos que

$$R(x,y) = (y,x).$$

Exemplo 3.17 Mostre que existe uma função $T: \mathbb{R} \to \mathbb{R}$ satisfazendo à condição aditiva

$$T(x+y) = T(x) + T(y), \ \forall \ x, y \in \mathbb{R},$$

mas não é uma transformação linear, isto é, $T(x) \neq ax$, para algum $x \in \mathbb{R}$.

Solução. É fácil verificar que \mathbb{R} com as operações usuais é um espaço vetorial sobre \mathbb{Q} . Assim, pela Observação 2.38, podemos escolher uma base "de Hamel" $\beta = \{x_i\}_{i \in I}$ de \mathbb{R} sobre \mathbb{Q} . Assim, para cada $x \in \mathbb{R}$, existem únicos $r_{k_1}, \ldots, r_{k_n} \in \mathbb{Q}$, onde $k_1, \ldots, k_n \in I$, tais que

$$x = r_{k_1} x_{k_1} + \dots + r_{k_n} x_{k_n} = \sum_{j=1}^{n} r_{k_j} x_{k_j}.$$

A função $T: \mathbb{R} \to \mathbb{R}$ definida por

$$T(x) = \sum_{j=1}^{n} r_{k_j} T(x_{k_j}), \ \forall \ x \in \mathbb{R},$$

possui as propriedades desejadas, pois se fizermos

$$T(x_{k_1}) = 1 \ e \ T(x_{k_2}) = 0,$$

então

$$T(x+y) = T(x) + T(y), \ \forall \ x, y \in \mathbb{R}, \ \text{mas} \ T(x) \neq ax, \ \text{para algum} \ a \in \mathbb{R}.$$

EXERCÍCIOS

- 1) Verifique quais das transformações abaixo são lineares.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (2x y, 0).
 - (b) $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (x 1, y + z).
 - (c) $T : \mathbb{R} \to \mathbb{R}^3$, T(x) = (x, 2x, -x).
 - (d) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x, y) = (y, x^3)$.
 - (e) $T \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (ax + by, cx + dy), onde $a, b, c, d \in \mathbb{R}$.
- Seja $\mathbf{V} = \mathbb{R}^{n \times n}$ o espaço vetorial das matrizes quadradas de ordem n. Se \mathbf{B} é uma matriz não-nula fixada em \mathbf{V} , quais das seguintes transformações são lineares?
 - (a) T(A) = BA.
 - (b) $T(\mathbf{A}) = \mathbf{B}\mathbf{A} \mathbf{A}\mathbf{B}$.

- (c) $T(\mathbf{A}) = \mathbf{B} + \mathbf{A}$.
- (d) $T(\mathbf{A}) \mathbf{A}^t$
- (e) T(A) = B'AB
- 3. Sejam $\mathbf{V} = \mathcal{F}(\mathbb{R}, \mathbb{R})$ o espaço vetorial de todas as funções reais e $h \in \mathbb{R}$ fixado. Mostre que cada uma das funções $T : \mathbf{V} \to \mathbf{V}$ abaixo é uma transformação linear:
 - (a) (Tf)(x) = f(x+h). (Deslocamento)
 - (b) (Tf)(x) = f(x+h) f(x). (Diferença para frente)
 - (c) (Tf)(x) = f(x) f(x h). (Diferença para trás)
 - (d) $(Tf)(x) = f(x + \frac{h}{2}) f(x \frac{h}{2})$. (Diferença central)
 - (e) $(Tf)(x) = \frac{1}{2} \left(f(x + \frac{h}{2}) f(x \frac{h}{2}) \right)$. (Valor médio)
- 4. (**Operador Integração**) Seja $V = \mathcal{C}(\mathbb{R}, \mathbb{R})$ o espaço vetorial de todas as funções reais contínuas. Mostre que a função $J: V \to V$ definida por

$$(Jf)(x) = \int_{0}^{x} f(t)dt$$

é uma transformação linear.

- 5. (**Operador Cisalhamento na direção de** x) Determine a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ que satisfaça T(1,0) = (1,0) e T(0,1) = (a,1), onde $a \in \mathbb{R}^*$. Defina **Operador Cisalhamento na direção de** y.
- Determine o operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ que satisfaça T(1,2) = (1,1) e T(0,1) = (1,0).
- Determine o operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ que satisfaça T(1,0) = (a,b) e T(0,1) = (c,d).
- 8. Seja $V=P(\mathbb{R})$ o espaço vetorial de todos os polinômios com coeficientes reais. Mostre que cada uma das funções $T:V\to V$ abaixo é uma transformação linear:
 - (a) (Tp)(x) = xp(x) (Multiplicação por x).
 - (b) $(Tp)(x) = \frac{p(x) a_0}{x}$ (Eliminação do termo constante e divisão por x).
- 9. Sejam $S:V\to W$ e $T:V\to W$ transformações lineares. Mostre que S+T e aT, para todo $a\in\mathbb{R}$, são lineares. Conclua que o conjunto de todas as transformações lineares L(V,W) é um espaço vetorial sobre \mathbb{R} .

10. Se dim V=2 e dim W=3, determine uma base de L(V,W). (Sugestão: Sejam $\{\mathbf{v}_1,\mathbf{v}_2\}$ e $\{\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3\}$ bases de V e W, respectivamente. Então as transformações lineares

$$E_{ij}(\mathbf{v}_k) = \delta_{ik}\mathbf{w}_j = \begin{cases} \mathbf{w}_j & \text{se } i = k \\ \mathbf{0} & \text{se } i \neq k \end{cases}, i = 1, 2 \text{ e } j = 1, 2, 3,$$

estão bem definidas e são únicas. Agora mostre que o conjunto

$$\{E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}\}$$

é uma base de L(V, W)). Generalize.

11. Sejam $R:U\to V,\,S:U\to V$ e $T:V\to W$ transformações lineares. Mostre que $T\circ S$ é uma transformação linear e

$$T \circ (R+S) = T \circ R + T \circ S.$$

- 12. Sejam $R: \mathbb{R}^2 \to \mathbb{R}^2$, $S: \mathbb{R}^2 \to \mathbb{R}^2$ e $T: \mathbb{R}^2 \to \mathbb{R}^2$ operadores lineares definidos por R(x,y)=(x,0), S(x,y)=(y,x) e T(x,y)=(0,y). Determine:
 - (a) S + T = 3S 5T.
 - (b) $R \circ S$, $S \circ R$, $R \circ T$, $T \circ R$, $S \circ T \in T \circ S$.
 - (c) R^2 , $S^2 \in T^2$.
 - (d) Mostre que S e T são LI.
- 13. Sejam $V = P(\mathbb{R})$ o espaço vetorial de todos os polinômios com coeficientes reais e $D: V \to V$ e $M: V \to V$ operadores lineares definidos por

$$(Dp)(x) = p'(x)$$
 e $(Mp)(x) = xp(x)$.

Mostre que MD - DM = I e $(DM)^2 = D^2M^2 + DM$.

- 14. Sejam V e W espaços vetoriais sobre \mathbb{R} e $f:V\to W$ uma função. Mostre que as seguintes condições são equivalentes:
 - (a) Se $\mathbf{w} \mathbf{u} = c(\mathbf{v} \mathbf{w})$, então $f(\mathbf{w}) f(\mathbf{u}) = c(f(\mathbf{v}) f(\mathbf{w}))$, para todos $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V \text{ e } c \in \mathbb{R}$;
 - (b) $f(\mathbf{z}) = T(\mathbf{z}) + \mathbf{x}$, para todo $\mathbf{z} \in V$, onde $\mathbf{x} \in W$ e $T: V \to W$ é uma transformação linear;
 - (c) $f(\sum_{i=0}^n c_i \mathbf{u}_i) = \sum_{i=0}^n c_i f(\mathbf{u}_i)$, para todo $\mathbf{u}_i \in V$ e $c_i \in \mathbb{R}$, $i = 1, \ldots, n$, com $c_1 + \cdots + c_n = 1$.

(Sugestão: $(a \Rightarrow b)$ Sejam $\mathbf{x} = f(\mathbf{0}) \in W \text{ e } T : V \to W \text{ definida por } T(\mathbf{y}) = f(\mathbf{y}) - \mathbf{x}$. Agora, vamos provar que T é linear. Como $\mathbf{y} - c\mathbf{y} = (c-1)(\mathbf{0} - \mathbf{y})$ temos que

$$T(\mathbf{y}) - T(c\mathbf{y}) = f(\mathbf{y}) - f(c\mathbf{y}) = (c-1)[f(\mathbf{0}) - f(\mathbf{y})] = (c-1)(-T(\mathbf{y})).$$

Logo, $T(c\mathbf{y}) = cT(\mathbf{y})$, para todo $\mathbf{y} \in V$ e $c \in \mathbb{R}$. Finalmente, como

$$2\mathbf{z} - (\mathbf{y} + \mathbf{z}) = \mathbf{z} - \mathbf{y} = -\frac{1}{2}(2\mathbf{y} - 2\mathbf{z})$$

temos que

$$2T(\mathbf{z}) - T(\mathbf{y} + \mathbf{z}) = T(2\mathbf{z}) - T(\mathbf{y} + \mathbf{z}) = f(2\mathbf{z}) - f(\mathbf{y} + \mathbf{z})$$
$$= -\frac{1}{2}[f(2\mathbf{y}) - f(2\mathbf{z})] = -[T(\mathbf{y}) - T(\mathbf{z})].$$

Portanto, $T(\mathbf{y} + \mathbf{z}) = T(\mathbf{y}) + T(\mathbf{z})$, para todos $\mathbf{y}, \mathbf{z} \in V$.)

- 15. Seja $T:V\to V$ um operador linear tal que $T^k=T\circ T\circ \cdots \circ T=0,$ para algum $k\in\mathbb{N}.$
 - (a) Mostre que se $\mathbf{u} \in V$ é tal que $T^{k-1}(\mathbf{u}) \neq \mathbf{0}$, então o conjunto

$$\{\mathbf{u}, T(\mathbf{u}), \dots, T^{k-1}(\mathbf{u})\}$$

é LI.

(b) Mostre que se

$$W = [\mathbf{u}, T(\mathbf{u}), \dots, T^{k-1}(\mathbf{u})],$$

então $T(\mathbf{v}) \in W$, para todo $\mathbf{v} \in W$.

3.2 Núcleo e Imagem de uma Transformação Linear

Sejam V, W espaços vetoriais sobre \mathbb{R} e $T:V\to W$ uma transformação linear. A imagem de T é o conjunto

$$\operatorname{Im} T = \{ \mathbf{w} \in W : \mathbf{w} = T(\mathbf{u}), \text{ para algum } \mathbf{u} \in V \}$$
$$= \{ T(\mathbf{u}) : \mathbf{u} \in V \}$$
$$= T(V)$$

(confira Figura 3.5).

Figura 3.5: Representação gráfica da imagem de T.

O núcleo de T é o conjunto

$$\ker T = \{\mathbf{u} \in V : T(\mathbf{u}) = \mathbf{0}\}$$
$$= T^{-1}(\mathbf{0})$$

(confira Figura 3.6).

Figura 3.6: Representação gráfica do núcleo de T.

Teorema 3.18 Sejam V, W espaços vetoriais sobre \mathbb{R} e $T:V\to W$ uma transformação linear. Então $\operatorname{Im} T$ é um subespaço de W e $\ker T$ é um subespaço de V.

Prova. Vamos provar apenas que $\operatorname{Im} T$ é um subespaço de W. É claro que $\operatorname{Im} T \neq \emptyset$, pois

$$\mathbf{0} = T(\mathbf{0}) \in \operatorname{Im} T.$$

Dados \mathbf{w}_1 , $\mathbf{w}_2 \in \operatorname{Im} T$ e $a \in \mathbb{R}$. Como \mathbf{w}_1 , $\mathbf{w}_2 \in \operatorname{Im} T$ temos que existem \mathbf{u}_1 , $\mathbf{u}_2 \in V$ tais que

$$\mathbf{w}_1 = T(\mathbf{u}_1) \ \text{e} \ \mathbf{w}_2 = T(\mathbf{u}_2).$$

Logo,

$$\mathbf{w}_1 + \mathbf{w}_2 = T(\mathbf{u}_1) + T(\mathbf{u}_2)$$
$$= T(\mathbf{u}_1 + \mathbf{u}_2) \in \operatorname{Im} T,$$

pois $\mathbf{u}_1 + \mathbf{u}_2 \in V$, e

$$a\mathbf{w}_1 = aT(\mathbf{u}_1)$$

= $T(a\mathbf{u}_1) \in \operatorname{Im} T$,

pois $a\mathbf{u}_1 \in V$. Portanto, Im T é um subespaço de W.

Observação 3.19 Seja $T: V \to W$ uma transformação linear com $\dim V = n$. Então

$$posto(T) = \dim \operatorname{Im} T \ e \ \operatorname{nul}(T) = \dim \ker T.$$

Exemplo 3.20 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por

$$T(x, y, z) = (x, 2y, 0).$$

Determine o núcleo e a imagem de T.

Solução. Por definição

$$\ker T = \{(x, y, z) \in \mathbb{R}^3 : T(x, y, z) = (0, 0, 0)\}$$
$$= \{(x, y, z) \in \mathbb{R}^3 : (x, 2y, 0) = (0, 0, 0)\}$$
$$= \{(0, 0, z) : z \in \mathbb{R}\}$$
$$= [(0, 0, 1)]$$

 \mathbf{e}

$$\operatorname{Im} T = \{T(x, y, z) : (x, y, z) \in \mathbb{R}^3\}$$
$$= \{(x, 2y, 0) : x, y \in \mathbb{R}\}$$
$$= [(1, 0, 0), (0, 2, 0)].$$

Finalmente, como T(1,0,0)=(1,0,0), T(0,1,0)=(0,2,0) e T(0,0,1)=(0,0,0) temos que

$$\operatorname{Im} T = [T(1,0,0), T(0,1,0)]$$

(confira Figura 3.7).

Figura 3.7: Representação gráfica do núcleo e da imagem de T.

Exemplo 3.21 Determine uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^4$ tal que

$${\rm Im}\, T=[(1,0,0,-1),(0,1,1,0)].$$

Solução. É fácil verificar que

$$\alpha = \{(1, 0, 0, -1), (0, 1, 1, 0)\}$$

é uma base de Im T. Como $(1,0,0,-1),(0,1,1,0)\in \operatorname{Im} T$ temos que existem $\mathbf{u}_1,\mathbf{u}_2\in\mathbb{R}^3$ tais que

$$T(\mathbf{u}_1) = (1, 0, 0, -1) \ e \ T(\mathbf{u}_2) = (0, 1, 1, 0).$$

Seja $W = [\mathbf{u}_1, \mathbf{u}_2]$. Então $\{\mathbf{u}_1, \mathbf{u}_2\}$ é uma base de W, pois α é uma base de $\operatorname{Im} T$. Afirmação. $\mathbb{R}^3 = W \oplus \ker T$.

De fato, dado $\mathbf{u} \in \mathbb{R}^3$, temos que $T(\mathbf{u}) \in \operatorname{Im} T$. Logo, existem $y_1, y_2 \in \mathbb{R}$ tais que

$$T(\mathbf{u}) = y_1(1,0,0,-1) + y_2(0,1,1,0) = y_1T(\mathbf{u}_1) + y_2T(\mathbf{u}_2)$$

= $T(y_1\mathbf{u}_1 + y_2\mathbf{u}_2)$.

Assim,

$$T(\mathbf{u} - (y_1\mathbf{u}_1 + y_2\mathbf{u}_2)) = T(\mathbf{u}) - T(y_1\mathbf{u}_1 + y_2\mathbf{u}_2) = T(\mathbf{u}) - T(\mathbf{u}) = \mathbf{0},$$

isto é,

$$\mathbf{u} - (y_1\mathbf{u}_1 + y_2\mathbf{u}_2) \in \ker T.$$

Portanto, existe $\mathbf{v} \in \ker T$ tal que

$$\mathbf{u} - (y_1\mathbf{u}_1 + y_2\mathbf{u}_2) = \mathbf{v} \Rightarrow \mathbf{u} = (y_1\mathbf{u}_1 + y_2\mathbf{u}_2) + \mathbf{v} \in W + \ker T,$$

ou seja, $\mathbb{R}^3 = W + \ker T$. Agora, é fácil verificar que $W \cap \ker T = \{\mathbf{0}\}$. Escolhendo uma base $\{\mathbf{u}_3\}$ para $\ker T$, obtemos uma base

$$\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3\}$$

para \mathbb{R}^3 . Em particular, escolhendo $\mathbf{u}_1 = (1,0,0), \mathbf{u}_2 = (0,1,0)$ e $\mathbf{u}_3 = (0,0,1)$ temos, pelo Teorema 3.12, que existe uma única transformação linear $T : \mathbb{R}^3 \to \mathbb{R}^4$ tal que

$$T(\mathbf{u}_1) = (1, 0, 0, -1), T(\mathbf{u}_2) = (0, 1, 1, 0) \text{ e } T(\mathbf{u}_3) = (0, 0, 0, 0).$$

Agora, para determinar T, dado $\mathbf{u} = (x, y, z) \in \mathbb{R}^3$, temos que

$$T(x, y, z) = xT(\mathbf{u}_1) + yT(\mathbf{u}_2) + zT(\mathbf{u}_3)$$
$$= (x, y, y, -x).$$

Sejam V, W espaços vetoriais sobre $\mathbb R$ e $T:V\to W$ uma transformação linear. Dizemos que T é injetora se

$$T(\mathbf{u}) = T(\mathbf{v}) \Rightarrow \mathbf{u} = \mathbf{v}, \ \forall \ \mathbf{u}, \mathbf{v} \in V$$

ou, equivalentemente,

$$\mathbf{u} \neq \mathbf{v} \Rightarrow T(\mathbf{u}) \neq T(\mathbf{v}), \ \forall \ \mathbf{u}, \mathbf{v} \in V.$$

Dizemos que T é sobrejetora se dado $\mathbf{w} \in W$, existir $\mathbf{u} \in V$ tal que $T(\mathbf{u}) = \mathbf{w}$, isto é, Im T = W. Finalmente, dizemos que T é bijetora se T é injetora e sobrejetora. Neste caso,

$$\mathbf{w} = T(\mathbf{u}) \Leftrightarrow \mathbf{u} = T^{-1}(\mathbf{w}).$$

Exemplo 3.22 Seja $T: \mathbb{R}^2 \to \mathbb{R}$ a transformação linear definida por T(x,y) = x. Então T é sobrejetora, pois

$$\operatorname{Im} T = \{ T(x, y) : (x, y) \in \mathbb{R}^2 \} = \{ x \cdot 1 : x \in \mathbb{R} \} = [1] = \mathbb{R}.$$

Mas não é injetora, pois T(0,1) = 0 = T(0,-1) e $(0,1) \neq (0,-1)$.

Exemplo 3.23 Seja $T: \mathbb{R} \to \mathbb{R}^2$ a transformação linear definida por T(x) = (x, 0). Então T é injetora, pois

$$T(x) = T(y) \Rightarrow (x,0) = (y,0) \Rightarrow x = y.$$

Mas não é sobrejetora, pois $T(x) \neq (0,1)$, para todo $x \in \mathbb{R}$, isto é, $\operatorname{Im} T \neq \mathbb{R}^2$.

Exemplo 3.24 Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por T(x, y, z) = (x, 2y, 0). Então T não é injetora e nem sobrejetora, pois

$$T(0,0,1) = (0,0,0) = T(0,0,-1)$$

 $com(0,0,1) \neq (0,0,-1) \ e \ T(x,y,z) \neq (0,0,1), \ para \ todo(x,y,z) \in \mathbb{R}^3, \ isto \ \acute{e}, \ Im \ T \neq \mathbb{R}^3.$

Sejam V, W espaços vetoriais sobre \mathbb{R} e $T: V \to W$ uma transformação linear. Dizemos que T é não-singular se $\ker T = \{0\}$. Caso contrário, dizemos que T é singular.

Teorema 3.25 Sejam V, W espaços vetoriais sobre \mathbb{R} e $T:V\to W$ uma transformação linear. Então T é não-singular se, e somente se, T é injetora.

Prova. Suponhamos que T seja não-singular, isto é, $\ker T = \{0\}$. Dados $\mathbf{u}, \mathbf{v} \in V$, se $T(\mathbf{u}) = T(\mathbf{v})$, então

$$T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v}) = T(\mathbf{u}) - T(\mathbf{u}) = \mathbf{0}.$$

Logo, $\mathbf{u} - \mathbf{v} \in \ker T = \{\mathbf{0}\}$. Portanto, $\mathbf{u} = \mathbf{v}$, ou seja, T é injetora. Reciprocamente, suponhamos que T seja injetora. Dado $\mathbf{u} \in \ker T$, temos que $T(\mathbf{u}) = \mathbf{0}$. Como $T(\mathbf{0}) = \mathbf{0}$ temos que

$$T(\mathbf{u}) = \mathbf{0} = T(\mathbf{0}) \Rightarrow \mathbf{u} = \mathbf{0}.$$

Assim, $\ker T = \{0\}$. Portanto, T é não-singular.

Corolário 3.26 Sejam V, W espaços vetoriais sobre \mathbb{R} e $T: V \to W$ uma transformação linear. Então T é não-singular se, e somente se, T leva todo conjunto LI de V em algum conjunto LI de W.

Prova. Suponhamos que T seja não-singular, isto é, $\ker T = \{0\}$. Seja

$$\alpha = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$$

conjunto qualquer LI de V. Devemos provar que

$$T(\alpha) = \{T(\mathbf{u}_1), \dots, T(\mathbf{u}_n)\}\$$

é um conjunto LI de W. Sejam $x_1, \ldots, x_n \in \mathbb{R}$ tais que

$$x_1T(\mathbf{u}_1) + \dots + x_nT(\mathbf{u}_n) = \mathbf{0}.$$

Logo,

$$T(x_1\mathbf{u}_1 + \dots + x_n\mathbf{u}_n) = x_1T(\mathbf{u}_1) + \dots + x_nT(\mathbf{u}_n) = \mathbf{0}.$$

Assim,

$$x_1\mathbf{u}_1 + \dots + x_n\mathbf{u}_n \in \ker T = \{\mathbf{0}\},\$$

isto é,

$$x_1\mathbf{u}_1 + \dots + x_n\mathbf{u}_n = \mathbf{0}.$$

Logo, $x_1 = 0, \ldots, x_n = 0$, pois $\alpha \in LI$. Portanto,

$$\{T(\mathbf{u}_1),\ldots,T(\mathbf{u}_n)\}\$$

é um conjunto LI de W. Reciprocamente, seja $\mathbf{u} \in \ker T$, com $\mathbf{u} \neq \mathbf{0}$. Então $\{\mathbf{u}\}$ é um conjunto LI de V. Assim, $\{T(\mathbf{u})\} = \{\mathbf{0}\}$ é um conjunto LI de W, o que é impossível. Portanto, $\mathbf{u} = \mathbf{0}$ e T é não-singular.

Teorema 3.27 (Teorema do Núcleo e da Imagem) Sejam V, W espaços vetoriais sobre \mathbb{R} , com dim V = n, $e \ T : V \to W$ uma transformação linear. Então

$$\dim V = \dim \ker T + \dim \operatorname{Im} T$$
$$= \operatorname{nul}(T) + \operatorname{posto}(T).$$

Prova. Como $\ker T$ é um subespaço de V temos que $\ker T$ contém uma base

$$\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$$

que é parte de uma base

$$\beta = \{\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{u}_{k+1}, \dots, \mathbf{u}_n\}$$

de V.

Afirmação. $\{T(\mathbf{u}_{k+1}), \dots, T(\mathbf{u}_n)\}$ é uma base de Im T.

De fato, dado $\mathbf{w} \in \operatorname{Im} T$, existe $\mathbf{u} \in V$ tal que $\mathbf{w} = T(\mathbf{u})$. Como $\mathbf{u} \in V$ e β é uma base de V temos que existem $x_1, \ldots, x_n \in \mathbb{R}$ tais que

$$\mathbf{u} = x_1 \mathbf{u}_1 + \dots + x_k \mathbf{u}_k + x_{k+1} \mathbf{u}_{k+1} + \dots + x_n \mathbf{u}_n.$$

Assim,

$$\mathbf{w} = T(\mathbf{u})$$

$$= T(x_1\mathbf{u}_1 + \dots + x_k\mathbf{u}_k + x_{k+1}\mathbf{u}_{k+1} + \dots + x_n\mathbf{u}_n)$$

$$= x_{k+1}T(\mathbf{u}_{k+1}) + \dots + x_nT(\mathbf{u}_n),$$

pois $T(\mathbf{u}_i) = \mathbf{0}, i = 1, ..., k$. Logo,

$$\{T(\mathbf{u}_{k+1}),\ldots,T(\mathbf{u}_n)\}$$

gera $\operatorname{Im} T$. Agora, para provar que

$$\{T(\mathbf{u}_{k+1}),\ldots,T(\mathbf{u}_n)\}\$$

é um conjunto LI, sejam $y_{k+1}, \ldots, y_n \in \mathbb{R}$ tais que

$$y_{k+1}T(\mathbf{u}_{k+1}) + \dots + y_nT(\mathbf{u}_n) = \mathbf{0}.$$

Então

$$T(y_{k+1}\mathbf{u}_{k+1} + \dots + y_n\mathbf{u}_n) = y_{k+1}T(\mathbf{u}_{k+1}) + \dots + y_nT(\mathbf{u}_n) = \mathbf{0}.$$

Assim,

$$y_{k+1}\mathbf{u}_{k+1} + \dots + y_n\mathbf{u}_n \in \ker T.$$

Logo, existem $x_1, \ldots, x_k \in \mathbb{R}$ tais que

$$y_{k+1}\mathbf{u}_{k+1} + \cdots + y_n\mathbf{u}_n = x_1\mathbf{u}_1 + \cdots + x_k\mathbf{u}_k.$$

Donde,

$$x_1\mathbf{u}_1 + \dots + x_k\mathbf{u}_k + (-y_{k+1})\mathbf{u}_{k+1} + \dots + (-y_n)\mathbf{u}_n = \mathbf{0}.$$

Como β é uma base de V temos que $y_{k+1} = \cdots = y_n = 0$ e

$$\{T(\mathbf{u}_{k+1}),\ldots,T(\mathbf{u}_n)\}\$$

é um conjunto LI. Portanto,

$$\dim V = n = k + (n - k) = \dim \ker T + \dim \operatorname{Im} T.$$

Corolário 3.28 Sejam V, W espaços vetoriais sobre \mathbb{R} , com $\dim V = \dim W = n$, e $T:V\to W$ uma transformação linear. Então T é injetora se, e somente se, T é sobrejetora.

Prova. Suponhamos que T seja injetora. Então, pelo Teorema 3.25, ker $T = \{0\}$. Assim,

$$\dim W = \dim V = \dim \ker T + \dim \operatorname{Im} T = \dim \operatorname{Im} T.$$

Como $\operatorname{Im} T \subseteq W$ e $\dim W = \dim \operatorname{Im} T$ temos que $\operatorname{Im} T = W$. Portanto, T é sobrejetora. Reciprocamente, suponhamos que T seja sobrejetora. Então $\operatorname{Im} T = W$ e $\dim W = \dim \operatorname{Im} T$. Assim,

 $\dim \operatorname{Im} T = \dim V = \dim \ker T + \dim \operatorname{Im} T \Rightarrow \dim \ker T = 0.$

Assim, $\ker T = \{0\}$ e, pelo Teorema 3.25, T é injetora.

Corolário 3.29 Sejam V, W espaços vetoriais sobre \mathbb{R} , com $\dim V = \dim W = n$, e $T: V \to W$ uma transformação linear. Então as seguintes condições são equivalentes:

- 1. T é bijetora.
- 2. T é não-singular.
- 3. T é sobrejetora.
- 4. T leva toda base de V em alguma base de W.

Exemplo 3.30 Determine uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^4$ tal que

$$\ker T = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$$

Solução. É fácil verificar que

$$\{(1,0,-1),(0,1,-1)\}$$

é uma base de ker T. Como ker T é um subespaço de \mathbb{R}^3 temos que

$$\{(1,0,-1),(0,1,-1)\}$$

é parte de uma base de \mathbb{R}^3 . Vamos estender este conjunto a uma base de \mathbb{R}^3 , digamos

$$\{(1,0,-1),(0,1,-1),(0,0,1)\}.$$

Assim, definindo arbitrariamente T(0,0,1), digamos T(0,0,1) = (0,0,0,1), temos, pelo Teorema 3.12, que existe uma única transformação linear $T : \mathbb{R}^3 \to \mathbb{R}^4$ tal que

$$T(1,0,-1) = (0,0,0,0), T(0,1,-1) = (0,0,0,0)$$
e $T(0,0,1) = (0,0,0,1).$

Agora, para determinar T, dado $\mathbf{u} = (x, y, z) \in \mathbb{R}^3$, devemos encontrar $r, s, t \in \mathbb{R}$ tais que

$$\mathbf{u} = r(1, 0, -1) + s(0, 1, -1) + t(0, 0, 1),$$

isto é, resolver o sistema não-homogêneo

$$\begin{cases} r = x \\ s = y \\ -r - s + t = z \end{cases}$$

Logo,

$$T(x, y, z) = (0, 0, 0, x + y + z).$$

Teorema 3.31 Sejam V, W espaços vetoriais sobre \mathbb{R} e $T:V\to W$ uma transformação linear bijetora. Então a transformação inversa $T^{-1}:W\to V$ é linear.

Prova. É claro que $T^{-1}(\mathbf{0}) = \mathbf{0}$, pois $T(\mathbf{0}) = \mathbf{0}$. Dados \mathbf{w}_1 , $\mathbf{w}_2 \in W$, $a \in \mathbb{R}$ e T sendo bijetora temos que existem únicos \mathbf{u}_1 , $\mathbf{u}_2 \in V$ tais que

$$\mathbf{w}_1 = T(\mathbf{u}_1) \Leftrightarrow \mathbf{u}_1 = T^{-1}(\mathbf{w}_1) \text{ e } \mathbf{w}_2 = T(\mathbf{u}_2) \Leftrightarrow \mathbf{u}_2 = T^{-1}(\mathbf{w}_2).$$

Como

$$T(\mathbf{u}_1 + \mathbf{u}_2) = T(\mathbf{u}_1) + T(\mathbf{u}_2) = \mathbf{w}_1 + \mathbf{w}_2$$

temos que

$$T^{-1}(\mathbf{w}_1 + \mathbf{w}_2) = \mathbf{u}_1 + \mathbf{u}_2 = T^{-1}(\mathbf{w}_1) + T^{-1}(\mathbf{w}_2).$$

Finalmente, como

$$T(a\mathbf{u}_1) = aT(\mathbf{u}_1) = a\mathbf{w}_1$$

temos que

$$T^{-1}(a\mathbf{w}_1) = a\mathbf{u}_1 = aT^{-1}(\mathbf{w}_1).$$

Portanto, T^{-1} é linear.

Sejam V, W espaços vetoriais sobre \mathbb{R} e $T: V \to W$ uma transformação linear. Dizemos que T é um isomorfismo se T é bijetora. Se existir um isomorfismo de V sobre W, dizemos que V é isomorfo a W e será denotado por $V \simeq W$. Intuitivamente, um isomorfismo T de V sobre W é uma regra que consiste em renomear os elementos de V, isto é, o nome do elemento sendo $T(\mathbf{u})$ ao invés de $\mathbf{u} \in V$.

Exemplo 3.32 Mostre que $T : \mathbb{R}^3 \to \mathbb{R}^3$ definida por T(x, y, z) = (x - 2y, z, x + y) é um isomorfismo e determine uma regra para T^{-1} como a que define T.

Solução. Como

$$\ker T = \{(x, y, z) \in \mathbb{R}^3 : T(x, y, z) = (0, 0, 0)\}$$
$$= \{(x, y, z) \in \mathbb{R}^3 : (x - 2y, z, x + y) = (0, 0, 0)\}$$
$$= \{(0, 0, 0)\}$$

temos que T é injetora. Portanto, T é isomorfismo. Assim, dado $(a, b, c) \in \mathbb{R}^3$, existe um único $(x, y, z) \in \mathbb{R}^3$ tal que

$$T(x, y, z) = (a, b, c) \Leftrightarrow T^{-1}(a, b, c) = (x, y, z).$$

Logo,

$$(a, b, c) = (x - 2y, z, x + y),$$

isto é,

$$\begin{cases} x - 2y = a \\ z = b \\ x + y = c \end{cases}$$

Assim,

$$x = \frac{a+2c}{3}, y = \frac{c-a}{3}$$
 e $z = b$.

Portanto,

$$T^{-1}(a,b,c) = \left(\frac{a+2c}{3}, \frac{-a+c}{3}, b\right),$$

ou ainda,

$$T^{-1}(x, y, z) = \left(\frac{x + 2z}{3}, \frac{-x + z}{3}, y\right).$$

Teorema 3.33 Todo espaço vetorial de dimensão n sobre \mathbb{R} é isomorfo a \mathbb{R}^n .

Prova. Sejam V um espaço vetorial sobre \mathbb{R} com dim V = n e

$$\beta = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$$

uma base ordenada de V. Então para cada $\mathbf{u} \in V$ existem únicos $x_1, \dots, x_n \in \mathbb{R}$ tais que

$$\mathbf{u} = \sum_{i=1}^{n} x_i \mathbf{u}_i.$$

Vamos definir $T_{\beta}: \mathbb{R}^n \to V$ por

$$T_{\beta}(x_1,\ldots,x_n)=\mathbf{u}.$$

É fácil verificar que T_{β} está bem definida, é linear e injetora. Portanto, V é isomorfo a \mathbb{R}^n .

- Observações 3.34 1. A transformação linear $T_{\beta}: \mathbb{R}^n \to V$ é chamada a parametrização de V dada pela base β e T_{β}^{-1} é chamada de isomorfismo de base canônica de V associada com a base β .
 - 2. Sejam $T: V \to W$ um isomorfismo e $S = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ um subconjunto de V. Então S é LI se, e somente se, T(S) é LI. Portanto, ao decidirmos que S é LI não importa se consideramos S ou T(S), confira Corolário 3.26.

EXERCÍCIOS

- 1. Seja $T:V\to W$ uma transformação linear.
 - (a) Mostre se U é um subespaço de V, então o conjunto

$$T(U) = \{T(\mathbf{u}) : \mathbf{u} \in U\}$$

é um subespaço de W.

(b) Mostre que se Z é um subespaço de W, então o conjunto

$$T^{-1}(Z) = \{ \mathbf{u} \in V : T(\mathbf{u}) \in Z \}$$

é um subespaço de V.

2. Sejam $T: \mathbb{R}^2 \to \mathbb{R}^2$ um operador linear definido por T(x,y) = (x+y,y),

$$A = \{(x,y) \in \mathbb{R}^2 : \max\{|x|,|y|\} = 1\}, \ B = \{(x,y) \in \mathbb{R}^2 : |x| + |y| = 1\} \ \text{e}$$

$$C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

Determine T(A), T(B) e T(C).

- 3. Para cada tranformação linear abaixo determine o núcleo e a imagem:
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por T(x, y) = (y x, 0, 5x).
 - (b) $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida por T(x, y, z) = (x + y + z, z).
- 4. Seja $T:V\to W$ uma transformação linear. Mostre que se

$$\mathbf{V} = [\mathbf{u}_1, \dots, \mathbf{u}_n],$$

 $ent\tilde{a}o$

$$\operatorname{Im}(T) = [T(\mathbf{u}_1), \dots, T(\mathbf{u}_n)].$$

5. Seja T de \mathbb{R}^3 em \mathbb{R}^3 a função definida por

$$T(x, y, z) = (x - y + 2z, 2x + y, -x - 2y + 2z).$$

- (a) Verifique que T é uma transformação linear.
- (b) Se (a, b, c) é um vetor em \mathbb{R}^3 , quais as condições sobre a, b e c, para que o vetor esteja na imagem de T? Qual é o posto de T?

- (c) Quais as condições sobre $a, b \in c$, para que o vetor esteja no núcleo de T? Qual é a nulidade de T?
- 6. Sejam ${\bf V}$ e ${\bf W}$ espaços vetoriais sobre $\mathbb R$ e $T:{\bf V}\to {\bf W}$ uma transformação linear. Mostre que se

$$\{T(\mathbf{u}_1),\ldots,T(\mathbf{u}_n)\}$$

é um conjunto linearmente independente de W, então

$$\{\mathbf{u}_1,\ldots,\mathbf{u}_n\}$$

é um conjunto linearmente independente de V.

Determine uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$\operatorname{Im} T = [(1, 0, -1), (1, 2, 2)].$$

8. Determine uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$\operatorname{Im} T = [(1, 2, 3), (4, 0, 5)].$$

Determine uma transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$\ker T = [(1, 1, 0)].$$

10. Determine uma transformação linear sobrejetora $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que T(1,1,0) = T(0,0,1).

. Existe uma transformação linear T de \mathbb{R}^3 em \mathbb{R}^2 tal que T(1,-1,1)=(1,0) e T(1,1,1)=(0,1)?

Existe uma transformação linear T de \mathbb{R}^2 em \mathbb{R}^2 tal que T(1,-1)=(1,0), T(2,-1)=(0,1) e T(-3,2)=(1,1)?

- 13. Sejam $S:U\to V$ e $T:V\to W$ transformações lineares.
 - (a) Mostre que $\operatorname{Im}(T \circ S) \subseteq \operatorname{Im} T$ e $\operatorname{posto}(T \circ S) \leq \operatorname{posto}(T)$.
 - (b) Mostre que $\ker S \subseteq \ker(T \circ S)$ e $\operatorname{nul}(S) \leq \operatorname{nul}(S \circ T)$.
- 14. Sejam T_1 e T_2 operadores lineares de V tais que

$$\operatorname{nul}(T_1) = \operatorname{nul}(T_2) = 0.$$

Mostre que $\operatorname{nul}(T_1 \circ T_2) = 0$.

15. Sejam $S, T: V \to V$ operadores lineares com dim V = n. Mostre que: