Improving Language Understanding by Generative Pre-Training

Introduction

- Unlabeled text가 많으나, 이로부터 단어 수준 이상의 정보를 얻기 어려움.
 - 1. 어떤 최적화 수식이 전이(transfer)에 유용한 텍스트 표현(representation)을 배우는데 가장 효과적인지 불분명
 - 2. Target tasks에 있어 가장 효과적인 representation에 대한 일치된 합의의 부재
 → semi-supervised learning 접근이 어려움
 - → Combination of unsupervised pre-training and supervised fine-tunning

Related Work

Semi-supervised learning for NLP

- Unlabeled corpus로 word-level embedding학습 → supervised learning의 feature로 사용
- GPT에서는 더 높은 수준인 phrase-level or sentence-level embedding을 학습하는 것이 목표

Unsupervised pre-training

- Supervised learning 목적함수를 수정없이 사용할 수 있는 좋은 초기화 지점을 찾는 것이 목표
- transformer 모델을 통해 더 긴 언어구조를 포착 가능
- 전이학습 동안, 모델 구조에 있어 최소한의 변화만 필요함.

Auxiliary training objectives

- 비지도 학습 수식에 보조수식을 넣는 것은 semi-supervised learning의 대안
- 이 논문에서도 보조수식을 사용하지만, 이미 비지도 학습에서 타겟 작업에 대한 언어정보들을 학습했다는 사실로 보여줌

Model Architecture

Framework

2 states of training procedure

1. Unsupervised pre-training

$$\begin{split} L_1(\mathcal{U}) &= \sum_i \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta) \\ h_0 &= UW_e + W_p \\ h_l &= \texttt{transformer_block}(h_{l-1}) \forall i \in [1, n] \\ P(u) &= \texttt{softmax}(h_n W_e^T) \end{split}$$

U: Unsupervised corpus of tokens
 U: Context vector of tokens
 We: Token embedding
 Wp: Position embedding

Framework

2 states of training procedure

2. Supervised fine-tunning

$$P(y|x^1,\ldots,x^m) = \operatorname{softmax}(h_l^m W_y).$$

$$L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1,\dots,x^m) \quad \leftarrow \text{ objective to maximize}$$

$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$

← Auxiliary objective

- Improving generalization of the supervised model
- Accelerating convergence(학습속도 향상)

C : Supervised corpus of tokens h_i^m : The final transformer's block

W, : Parameters

Task-specific input transformations

4 different tasks for fine-tunning

- Pre-trained model모델의 형태에 맞추어, ordered sequence로 변환
- Classification
- Textual entailment
- 3. Similarity
- 4. Question Answering& Commonsense Reasoning

Experiments

Unsupervised pre-training

- Transformer에서 decoder만 사용
- 12-layer decoder
- Adam optimizer
- Batch size = 64, epoch = 100
- Gaussian Error Linear Unit activation function
- Encoding: BPE(Byte Pair Encoding)
 - ➤ 단어를 character 단위로 나누어 subword를 생성하는 방법
 - ➤ Character 단위로 나누기 때문에, out of Vocabulary 문제를 극복

Supervised fine-tunning

- Reuse hyperparameter from unsupervised pretraining
- Add dropout (=0.1)
- Batch size = 32, epochs = 3

BPE(Byte Pair Encoding)

sentence: aaabdaaabac

- → vocab : (a, b, c, d) 초기에는 character 단위로 잘라줌
- → tokenize를 단위로 잘라줌 : (a a a b d a a a b a c)
- → 2글자 단위로 pair를 만든다 : (aa, aa, ab, bd, da, aa, aa, ab, ba, ac)
- → 제일 많이 등장한 token : aa(4번)
- → Iteration이 한번 끝나면서 vocab에 aa가 추가됨 : (a, b, c, d, aa)
- → 추가된 vocab으로 다시 tokenizing : (aa a b d aa a b a c)
- → 2번의 Iteration을 돌면 : (aa ab d aa ab a c) → vocab은 (a, b, c, d, aa, ab)
- → 3번의 Iteration을 돌면: (aaab d aaab a c) → vocab은 (a, b, c, d, aa, ab, aaab)

Results (1)

Natural language Inference (= Textual Entailment)

Method	MNLI-m	MNLI-mm	SNLI	SciTail	QNLI	RTE
ESIM + ELMo [44] (5x)	-	-	89.3	-	-	-
CAFE [58] (5x)	80.2	79.0	<u>89.3</u>	-	-	-
Stochastic Answer Network [35] (3x)	<u>80.6</u>	<u>80.1</u>	-	-	-	-
CAFE [58]	78.7	77.9	88.5	<u>83.3</u>		
GenSen [64]	71.4	71.3	-	-	82.3	59.2
Multi-task BiLSTM + Attn [64]	72.2	72.1	-	-	82.1	61.7
Finetuned Transformer LM (ours)	82.1	81.4	89.9	88.3	88.1	56.0

Question Answering & Commonsense Reasoning

Method	Story Cloze	RACE-m	RACE-h	RACE
val-LS-skip [55] Hidden Coherence Model [7]	76.5 77.6	-	-	-
Dynamic Fusion Net [67] (9x)	<u>77.0</u>	55.6	49.4	51.2
BiAttention MRU [59] (9x)	-	<u>60.2</u>	<u>50.3</u>	<u>53.3</u>
Finetuned Transformer LM (ours)	86.5	62.9	57.4	59.0

- ← RTE : the smaller datasets (2490 examples 평가)
- 큰 데이터 셋과 달리, 작은 데이터 셋에서 NLI 성능이 낮게 나온 이유는 규명되지 않음.

Results (2)

Semantic Similarity & Classification

Method	Classification		Seman	GLUE		
	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	
Sparse byte mLSTM [16]	-	93.2		-	-	-
TF-KLD [23]	-	-	86.0	-	-	-
ECNU (mixed ensemble) [60]	-	-	-	<u>81.0</u>	-	-
Single-task BiLSTM + ELMo + Attn [64] Multi-task BiLSTM + ELMo + Attn [64]	35.0 18.9	90.2 91.6	80.2 83.5	55.5 72.8	66.1 63.3	64.8 <u>68.9</u>
Finetuned Transformer LM (ours)	45.4	91.3	82.3	82.0	70.3	72.8

GPT는 전반적으로, 다른 크기의 데이터 셋 (5,700개 ~ 550,000개)에 대하여 좋은 성능을 보임.

Analysis (1)

Unsupervised에서 supervised로 가는 layer수가 증가할수록, 성능이 더 증가함. → 각 layer가 target task를 해결하는데 유용한 정보를 포함하고 있음을 의미함.

Pre-training update가 증가할 수록, 각 테스크 에 대한 zero-shot performance가 증가함.

Analysis (2)

Auxiliary object에 대한 효과		작은 데이터 셋			큰 데이터 셋				
Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training Transformer w/o aux LM	59.9 75.0	18.9 47.9	84.0 92.0	79.4 84.9	30.9 83.2	65.5 69.8	75.7 81.1	71.2 86.9	53.8 54.4
LSTM w/ aux LM	69.1	30.3	90.5	83.2	71.8	68.1	73.7	81.1	54.6

← LSTM은 여기서만 성능이 조금 좋았 음.

• 큰 데이터 셋에서는 auxiliary가 성능 향상에 도움을 주었으나, 작은 데이터 셋에서는 그렇지 않음.

THANKS!