In the claims:

1. (Currently Amended) A compound of formula (I)

$$R^{2}$$
 R^{3}
 R^{4}
 R^{4}
 R^{5}

or a salt, ester, amide or prodrug thereof; where X is O, or S, S(O), S(O)₂ or NR⁶ where R⁶ is hydrogen or C_{1-6} alkyl; R⁵ is a group of sub-formulae (i) or (ii)

or a group of sub-formula (iii), (iv) or (v)

$$R^{81}$$
 R^{80} R

where R⁸⁰ is a substituent of at least 4 atoms comprising one or more of:

1) halo, C₁₋₄alkyl, optionally substituted C₁₋₆ alkoxy, C₁₋₄alkoxymethyl,

di(C₁₋₄alkoxy)methyl, C₁₋₄alkanoyl, carboxy, benzoyl, trifluoromethyl, cyano, amino,

C₂₋₅alkenyl, C₂₋₅alkynyl, a phenyl group, a benzyl group or a 5-6-membered heterocyclic group with 1-3 heteroatoms, selected independently from O, S and N, which heterocyclic group may be aromatic or non-aromatic and may be saturated (linked via a ring carbon or

nitrogen atom) or unsaturated (linked via a ring carbon atom), and which phenyl, benzyl or heterocyclic group may bear on one or more ring carbon atoms up to 5 substituents selected from hydroxy, halogeno, C_{1-3} alkyl, C_{1-3} alkoxy, C_{1-3} alkanoyloxy, trifluoromethyl, cyano, amino, nitro, C_{2-4} alkanoyl, C_{1-4} alkanoylamino, C_{1-4} alkoxycarbonyl, C_{1-4} alkylsulphanyl, C_{1-4} alkylsulphonyl, carbamoyl, C_{1-4} alkylsulphonyl, C_{1-4} alkylsulphonyl, aminosulphonyl, C_{1-4} alkylaminosulphonyl, C_{1-4} alkylaminosulphonyl, C_{1-4} alkylaminosulphonyl, C_{1-4} alkylsulphonylamino, and a saturated heterocyclic group selected from morpholino, thiomorpholino, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl and pyrazolidinyl, which saturated heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C_{1-3} alkyl, C_{1-3} alkoxy, C_{1-3} alkanoyloxy, trifluoromethyl, cyano, amino, nitro and C_{1-4} alkoxycarbonyl;

Docket No.: ASZD-P01-598

2) a group of sub-formula (II)

$$(CH_2)_{s'}$$
 X^{12} $(CH_2)_{q'}$ R^{70} R^{99} (II)

where q' is 0, 1, 2, 3 or 4;

s' is 0 or 1;

 X^{12} is C(O) or $S(O_2)$,

 R^{70} is hydrogen, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, amino, $N-C_{1-6}$ alkylamino, $N-C_{1-6}$ alkyl)₂amino, hydroxy C_{2-6} alkoxy, C_{1-6} alkoxy, amino C_{2-6} alkoxy, amino C_{2-6} alkoxy, $N-C_{1-6}$ alkylamino C_{2-6} alkoxy, $N-C_{1-6}$ alkylamino C_{2-6} alkoxy, $N-C_{1-6}$ alkyl)₂amino C_{2-6} alkoxy or C_{3-7} cycloalkyl, or R^{70} is of the Formula (III):

$$-K-J$$
 (III)

wherein J is aryl, heteroaryl or heterocyclyl and K is a bond, oxy, imino, $N-(C_{1-6}alkyl)$ imino, $oxyC_{1-6}alkyl$ ene, imino $C_{1-6}alkyl$ ene, $N-(C_{1-6}alkyl)$ imino $C_{1-6}alkyl$ ene, $N-(C_{1-6}alkyl)$ imino $C_{1-6}alkyl$ ene, $N-(C_{1-6}alkyl)$ imino $C_{1-6}alkyl$ ene, $N-(C_{1-6}alkyl)$ imino $C_{1-6}alkyl$ ene, and any aryl, heteroaryl or heterocyclyl group in a R^{70} group may be optionally substituted by one or more groups selected from hydroxy, oxo, halo, trifluoromethyl,

Docket No.: ASZD-P01-598

$$-B^{\perp}(CH_2)_p - A^1$$
 (IV)

$$-E_{1}D_{1}$$

wherein D^1 is aryl, heteroaryl or heterocyclyl and E^1 is a bond, C_{1-6} alkylene, $oxyC_{1-6}$ alkoxyCarborylene, $oxyC_{1-6}$ alkylene, $oxyC_{1-6$

and any of the R⁷⁰ groups defined hereinbefore which comprises a CH₂ group which is attached to 2 carbon atoms or a CH₃ group which is attached to a carbon atom may

optionally bear on each said CH₂ or CH₃ group a substituent selected from hydroxy, amino, C₁₋₆alkoxy, N-C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino and heterocyclyl; or R⁷⁰ may be cycloalkenyl or alkenyl optionally substituted by aryl; and R⁹⁹ is hydrogen or a group C(O)R⁷⁰ where R⁷⁰ is as defined above;

3) a group of sub-formula (d) or (e)

Docket No.: ASZD-P01-598

$$-X^{10}(CH_2)_{p'}-X^{11}R^{100}$$
 (d)

$$-X^{13}R^{100}$$
 (e)

where p' is 1-3, X^{10} and X^{11} are independently selected from a bond, -O-, -S- or NR^{101} where R^{101} is hydrogen or a C_{1-3} alkyl, provided that one of X^{10} or X^{11} is a bond; X^{13} is
-O-, -S- or NR^{102} - where R^{102} is hydrogen or a C_{1-3} alkyl and R^{100} is hydrogen or
optionally substituted hydrocarbyl or optionally substituted heterocyclyl, wherein any
optional substituents may be functional groups;

4) a group of formula (VI)

$$\begin{array}{c|c}
R^{71} & R^{72} \\
\hline
 & Q \\
\hline
 & (VI)
\end{array}$$

where R⁷¹ and R⁷² are independently selected from hydrogen or C₁₋₄alkyl, or R⁷¹ and R⁷² together form a bond, and R⁷³ is a group OR⁷⁴, NR⁷⁵R⁷⁶ where R⁷⁴, R⁷⁵ and R⁷⁶ are independently selected from optionally substituted hydrocarbyl or optionally substituted heterocyclic groups, and R⁷⁵ and R⁷⁶ may additionally form together with the nitrogen atom to which they are attached, an aromatic or non-aromatic heterocyclic ring which may contain further heteroatoms, wherein suitable optional substituents for hydrocarbyl or heterocyclic groups R⁷⁴, R⁷⁵ and R⁷⁶ include functional groups and heterocyclic groups R⁷⁴, R⁷⁵ and R⁷⁶ may further be substituted by a hydrocarbyl group;

5) a group of sub-formula (f)

$$(CH_2)_{p^n} \xrightarrow{R^{83}}$$
 $N \times R^{84}$
 O

where p" is 0 or 1 and R⁸³ and R⁸⁴ are independently selected from hydrogen, optionally substituted hydrocarbyl or optionally substituted heterocyclyl, or R⁸³ and R⁸⁴ together with the nitrogen atom to which they are attached form an optionally substituted heterocyclic ring and where optional substituents for hydrocarbyl or heterocyclic groups R⁸³ and R⁸⁴ include functional groups and heterocyclic groups R⁸³ or R⁸⁴ may further be substituted by a hydrocarbyl group; and

R⁸¹ is hydrogen, halo, C₁₋₄alkoxy, cyano or trifluoromethyl, or phenylan optionally substituted 6-membered aromatic ring containing at least one nitrogen atom, and R¹, R², R³, R⁴ are independently selected from halogeno, cyano, nitro, C₁₋₃alkylsulphanyl, -N(OH)R⁷- (wherein R⁷ is hydrogen, or C₁₋₃alkyl), or R⁹X¹- (wherein X¹ represents a direct bond, -O-, -CH₂-, -OC(O)-, -C(O)-, -S-, -SO-, -SO₂-, -NR¹⁰C(O)-, -C(O)NR¹¹-, -SO₂NR¹²-, -NR¹³SO₂- or -NR¹⁴- (wherein R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl)), and R⁹ is hydrogen, optionally substituted hydrocarbyl, optionally substituted heterocyclyl or optionally substituted alkoxy where the optional substituents comprise at least one functional group; provided that at least one of R² or R³ is other than hydrogen; and where a functional group is selected from nitro, cyano, halo, oxo, = $CR^{78}R^{79}$, $C(O)_xR^{77}$, OR^{77} , $S(O)_{Y}R^{77}$, $NR^{78}R^{79}$, $C(O)NR^{78}R^{79}$, $OC(O)NR^{78}R^{79}$, $=NOR^{77}$, $-NR^{77}C(O)_{X}R^{78}$, $-NR^{77}CONR^{78}R^{79}$, $-N=CR^{78}R^{79}$, $S(O)_{v}NR^{78}R^{79}$ or $-NR^{77}S(O)_{v}R^{78}$ where R^{77} , R^{78} and R⁷⁹ are independently selected from hydrogen, optionally substituted hydrocarbyl, optionally substituted heterocyclyl or optionally substituted alkoxy, or R⁷⁸ and R⁷⁹ together form an optionally substituted ring which optionally contains further heteroatoms such as oxygen, nitrogen, S, S(O) or S(O)2, where x is an integer of 1 or 2, y is 0 or an integer of 1-3 and where hydrocarbyl, heterocyclyl or alkoxy groups R⁷⁷, R⁷⁸ and R⁷⁹ as well as rings formed by R⁷⁸ and R⁷⁹ are optionally substituted by halo, perhaloalkyl, mercapto, alkylthio, hydroxy, carboxy, alkoxy, heteroaryl, heteroaryloxy,

cycloalkyl, cycloalkenyl, cycloalkynyl, alkenyloxy, alkynyloxy, alkoxyalkoxy, aryloxy (where the aryl group may be substituted by halo, nitro, or hydroxy), cyano, nitro, amino, mono- or di-alkyl amino, oximino or S(O)_yR⁹⁰ where y is 0 or an integer of 1-3 and R⁹⁰ is a alkyl; and wherein hydrocarbyl is selected from alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, cycloalkyl, or combinations thereof.

- 2. (Canceled)
- 3. (Canceled)
- 4. (Currently Amended) A compound according to claim 1 any one of the preceding claims wherein at least one group R¹, R², R³, R⁴ is a group R⁹X¹- and R⁹ is hydrogen or an alkyl group, optionally substituted with one or more groups selected from functional groups as defined in claim 12 or claim 3, or alkenyl, alkynyl, aryl, heterocyclyl, cycloalkyl, or cycloalkenyl or cycloalkynyl, any of which may be substituted with a functional group as defined in claim 12 or claim 3, and where any aryl, heterocyclyl, cycloalkyl, or cycloalkenyl, eycloalkynyl groups may also be optionally substituted with hydrocarbyl such as alkyl, alkenyl or alkynyl.
- (Currently Amended) A compound according to claim 1 wherein at least one group R¹, R², R³, R⁴ is a group R⁹X¹- and R⁹ is selected from one of the following twenty-two groups:
 - 1) hydrogen or C_{1-5} alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, oxiranyl, fluoro, chloro, bromo and amino (including C_{1-3} alkyl and trifluoromethyl);
 - 2) $-R^aX^2C(O)R^{15}$ (wherein X^2 represents -O- or $-NR^{16}$ (in which R^{16} represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{15} represents C_{1-3} alkyl, $-NR^{17}R^{18}$ or $-OR^{19}$ (wherein R^{17} , R^{18} and R^{19} which may be the same or different each represents hydrogen, C_{1-5} alkyl₂- hydroxy C_{1-5} alkyl_or C_{1-3} alkoxy C_{2-3} alkyl));

Application No. 10/088856

3) $-R^bX^3R^{20}$ (wherein X^3 represents -O-, C(O) -S-, -SO-, -SO₂-, -OC(O)-, -NR²¹C(O)₅-, $-C(O)NR^{22}$, $-SO_2NR^{23}$, $-NR^{24}SO_2$ - or $-NR^{25}$ - (wherein R^{21} , R^{22} , R^{23} , R^{24} and R^{25} each independently represents hydrogen, C₁₋₃alkyl, hydroxy C₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl and s is 1 or 2) and R²⁰ represents hydrogen, C₁₋₆alkyl, C₂₋₆alkenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₆alkyl group may bear 1, 2 or 3 substituents selected from oxo, hydroxy, halogeno, cyclopropyl, amino, C₁₋₄alkylamino, C₁₋₄alkanoyldi-C₁₋₄alkylamino-, C₁₋₄alkylthio, C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, $di(C_{1-4}alkyl)amino, C_{1-4}alkylaminoC_{1-4}alkyl, di(C_{1-4}alkyl)aminoC_{1-4}alkyl,$ C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₁(R^{b'})_gD (wherein f is 0 or 1, g is 0 or 1 and D is a C₃₋₆cycloalkyl group or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl)); 4) -R^cX⁴R^{c'} X⁵R²⁶ (wherein X⁴ and X⁵ which may be the same or different are each -O-, C(O), -S-, -SO-, -SO₂-, -NR²⁷C(O)_s-, -C(O)_s[[x]]NR²⁸-, -SO₂NR²⁹-, -NR³⁰SO₂- or -NR³¹-(wherein R²⁷, R²⁸, R²⁹, R³⁰ and R³¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl and s is 1 or 2) and R²⁶ represents hydrogen, C₁₋₃alkyl, hydroxy C_{1-3} alkyl_or_ C_{1-3} alkoxy C_{2-3} alkyl); 5) R³² (wherein R³² is a 4-6-membered cycloalkyl or saturated heterocyclic ring (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which cycloalkyl or heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, cyanoC₁₋₄alkyl, cyclopropyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, carboxamido, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, C₁₋₄alkanoyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy nitro, amino, C₁₋₄alkoxy, C₁₋₄hydroxyalkoxy, carboxy, trifluoromethyl, -C(O)NR³⁸R³⁹.

-NR⁴⁰C(O)R⁴¹ (wherein R³⁸, R³⁹, R⁴⁰ and R⁴¹, which may be the same or different, each

represents hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and a group

- -(-O-)_f(C_{1-4} alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C_{3-6} cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C_{1-4} alkyl);
- 6) -R^dR³² (wherein R³² is as defined hereinbefore);
- 7) ReR³² (wherein R³² is as defined hereinbefore);
- 8) -R^fR³² (wherein R³² is as defined hereinbefore);
- 9) R³³ (wherein R³³ represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄alkydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, oxo, cyanoC₁₋₄alkyl, cyclopropyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, C₁₋₄alkoxy, carboxy, carboxamido, trifluoromethyl, cyano, -C(O)NR³⁸R³⁹, -NR⁴⁰C(O)R⁴¹ (wherein R³⁸, R³⁹, R⁴⁰ and R⁴¹, which may be the same or different, each represents hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C₃₋₆cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C₁₋₄alkyl);
- 10) -R^gR³³ (wherein R³³ is as defined hereinbefore);
- 11) -RhR33 (wherein R33 is as defined hereinbefore);
- 12) -RiR³³ (wherein R³³ is as defined hereinbefore);
- 13) $-R^{j}X^{6}R^{33}$ (wherein X^{6} represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR³⁸C(O)-, -C(O)NR³⁹-, -SO₂NR⁴⁰-, -NR⁴¹SO₂- or -NR⁴²- (wherein R³⁸, R³⁹, R⁴⁰, R⁴¹ and R⁴² each independently represents hydrogen, C₁₋₃alkyl, hydroxyC₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R³³ is as defined hereinbefore);
- 14) -R^kX⁷R³³ (wherein X⁷ represents -O-, C(O), -S-, -SO-, -SO₂-, -NR⁴³C(O)-,

-C(O)NR⁴⁴-, -SO₂NR⁴⁵-, -NR⁴⁶SO₂- or -NR⁴⁷- (wherein R⁴³, R⁴⁴, R⁴⁵, R⁴⁶ and R⁴⁷ each independently represents hydrogen, C₁₋₃alkyl, hydroxyC₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R³³ is as defined hereinbefore);

Docket No.: ASZD-P01-598

- 15) -R^mX⁸R³³ (wherein X⁸ represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁴⁸C(O)-, -C(O)NR⁴⁹-, -SO₂NR⁵⁰-, -NR⁵¹SO₂- or -NR⁵²- (wherein R⁴⁸, R⁴⁹, R⁵⁰, R⁵¹ and R⁵² each independently represents hydrogen, C₁₋₃alkyl, hydroxyC₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R³³ is as defined hereinbefore);
- 16) -Rⁿ X⁹Rⁿ'R³³ (wherein X⁹ represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁵³C(O)-, -C(O)NR⁵⁴-, -SO₂NR⁵⁵-, -NR⁵⁶SO₂- or -NR⁵⁷- (wherein R⁵³, R⁵⁴, R⁵⁵, R⁵⁶ and R⁵⁷ each independently represents hydrogen, C_{1-3} alkyl, hydroxy C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R³³ is as defined hereinbefore);
- 17) $-R^pX^9-R^{p1}IR^{32}$ (wherein X^9 and R^{32} are as defined hereinbefore);
- 18) C₂₋₅alkenyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino,
- $\underline{N},\underline{N}$ -di(C_{1-4} alkyl)amino, aminosulphonyl, \underline{N} - C_{1-4} alkylaminosulphonyl and $\underline{N},\underline{N}$ -di(C_{1-4} alkyl)aminosulphonyl;
- 19) C_{2-5} alkynyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C_{1-4} alkylamino,
- $\underline{N},\underline{N}$ -di(C_{1-4} alkyl)amino, aminosulphonyl, \underline{N} - C_{1-4} alkylaminosulphonyl and $\underline{N},\underline{N}$ -di(C_{1-4} alkyl)aminosulphonyl;
- 20) -R^tX⁹R^t'R³² (wherein X⁹ and R³² are as defined hereinbefore);
- 21) -R^uX⁹ R^u'R³² (wherein X⁹ and R³² are as defined hereinbefore); and
- 22) R^vR⁵⁸(R^{v'})_q(X⁹)_rR⁵⁹(wherein X⁹ is as defined hereinbefore, q is 0 or 1, r is 0 or 1, and R⁵⁸ is a C₁₋₃alkylene group or a cyclic group selected from cyclopropyl, cyclobutyl, cyclopentylene, cyclohexylene or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkylene group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄alkyl, C₁₋₄alkylamino, C₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl,

C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₆(C₁₋₄alkyl)₆ringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C₃₋₆cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C₁₋₄alkyl); and R⁵⁹ is hydrogen, C_{1,3}alkyl, or a cyclic group selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C_{1-4} cyanoalkyl, C_{1-4} alkyl, C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and D is a cyclic group selected from C₃₋₆cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C₁₋₄alkyl); and wherein R^a, R^b, R^c, R^c, R^c, R^d, R[[g]]^g, R^j, Rⁿ, Rⁿ, R^p, R^{p'}, R^{t'}, R^{u'}, R^v and R^{v'} are independently selected from C_{1-8} alkylene groups optionally substitued by one or more substituents selected from hydroxy, halogeno, amino, R^e, R^h, R^k and R^t are independently selected from C₂₋₈alkenylene groups optionally substituted by by one or more substituents selected from hydroxy, halogeno, amino, and R' may additionally be a bond; and R^f, Rⁱ, R^m and R^u are independently selected from by C₂₋₈alkynylene groups optionally

6. (Currently Amended) A compound according to claim 5 wherein R¹, R², R³, R⁴ are independently selected from, halo, cyano, nitro, trifluoromethyl, C₁₋₃alkyl, -NR⁷R⁸ (wherein R⁷ and R⁸, which may be the same or different, each represents hydrogen or C₁₋₃alkyl), or other groups from formula -X¹R⁹ (wherein X¹ represents a direct bond, -O-,

susbstituted by one or more substituents selected from hydroxy, halogeno, amino.

-CH₂-, -OCO-, carbonyl, -S-, -SO-, -SO₂-, -NR¹⁰CO-, -CONR¹¹-, -SO₂NR¹²-, -NR¹³SO₂- or -NR¹⁴- (wherein R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl), and R⁹ is selected from one of the following groups: 1') hydrogen or C_{1-5} alkyl which may be unsubstituted or which may be substituted with

2') C_{1-5} alkyl $X^2C(O)R^{15}$ (wherein X^2 represents -O- or -NR¹⁶- (in which R¹⁵ represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R⁵ represents C_{1-3} alkyl, -NR¹⁷R¹⁸ or -OR¹⁹ (wherein R¹⁷, R¹⁸ and R¹⁹ which may be the same or different each represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl);

one or more groups selected from hydroxy, fluoro or amino,

- 3') C₁₋₅alkylX³R²⁰ (wherein X³ represents -O-, -S-, -SO-, -SO₂-, -OCO-, -NR²¹CO-, -CONR²²-, -SO₂NR²³-, -NR²⁴SO₂- or -NR²⁵- (wherein R²¹, R²², R²³, R²⁴ and R²⁵ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁰ represents hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl and C₁₋₄alkoxy);
- 4') C_{1-5} alkyl X^4C_{1-5} alkyl X^5R^{26} (wherein X^4 and X^5 which may be the same or different are each -O-, -S-, -SO-, -SO₂-, -NR²⁷CO-, -CONR²⁸-, -SO₂NR²⁹-, -NR³⁰SO₂- or -NR³¹- (wherein R²⁷, R²⁸, R²⁹, R³⁰ and R³¹ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{26} represents hydrogen or C_{1-3} alkyl);
- 5') R^{32} (wherein R^{32} is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C_{1-4} alkyl, C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl and C_{1-4} alkylsulphonyl C_{1-4} alkyl);
- 6') C₁₋₅alkylR³² (wherein R³² is as defined in (5') above);
- 7') C_{2-s}alkenvlR³² (wherein R³² is as defined in (5') above);
- 8') C₂₋₅alkynylR³² (wherein R³² is as defined in (5') above);

9') R³³ (wherein R³³ represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group (linked via carbon or nitrogen) with

- 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents on an available carbon atom selected from hydroxy, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, trifluoromethyl, cyano, -CONR³⁴R³⁵ and -NR³⁶COR³⁷ (wherein R³⁴, R³⁵, R³⁶ and R³⁷, which may be the same or different, each represents hydrogen, C₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl));
- 10') C₁₋₅alkylR³³ (wherein R³³ is as defined in (9') above);
- 11') C₂₋₅alkenylR³³ (wherein R³³ is as defined in (9') above);
- 12') C₂₋₅alkynylR³³ (wherein R³³ is as defined in (9') above);
- 13') C₁₋₅alkylX⁶R³³ (wherein X⁶ represents -O-, -S-, -SO-, -SO₂-, -NR³⁸CO-, -CONR³⁹-, -SO₂NR⁴⁰-, -NR⁴¹SO₂- or -NR⁴²- (wherein R³⁸, R³⁹, R⁴⁰, R⁴¹ and R⁴² each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R³³ is as defined hereinbefore);
- 14') C_{2-5} alkenyl X^7R^{33} (wherein X^7 represents -O-, -S-, -SO-, -SO₂-, -NR⁴³CO-, -CONR⁴⁴-, -SO₂NR⁴⁵-, -NR⁴⁶SO₂- or -NR⁴⁷- (wherein R⁴³, R⁴⁴, R⁴⁵, R⁴⁶ and R⁴⁷ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{33} is as defined hereinbefore);
- 15') C_{2-5} alkynyl X^8R^{33} (wherein X^8 represents -O-, -S-, -SO-, -SO₂-, -NR⁴⁸CO-, -C(O)NR⁴⁹-, -SO₂NR⁵⁰-, -NR⁵¹SO₂- or -NR⁵²- (wherein R⁴⁸, R⁴⁹, R⁵⁰, R⁵¹ and R⁵² each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{33} is as defined hereinbefore);
- 16') C_{1-3} alkyl X^9C_{1-3} alkyl R^{33} (wherein X^9 represents -O-, -S-, -SO-, -SO₂-, -NR⁵³CO-, -C(O)NR⁵⁴-, -SO₂NR⁵⁵-, -NR⁵⁶SO₂- or -NR⁵⁷- (wherein R⁵³, R⁵⁴, R⁵⁵, R⁵⁶ and R⁵⁷ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{33} is as defined hereinbefore); and
- 17') C_{1-3} alkyl X^9C_{1-3} alkyl R^{32} (wherein X^9 and R^{32} are as defined in (5') above), provided that at least one of R^2 or R^3 is other than hydrogen.

7. (Currently Amended) A compound according to any one of the preceding claims 1, 4, 5 or 6, where R^1 is hydrogen and R^4 is hydrogen, halo, C_{1-4} alkyl or C_{1-4} alkoxy.

- 8. (Currently Amended) A compound according to any one of the preceding claims 1, 4, 5 or 6, wherein at least one group R² or R³ comprises a chain of at least 3 optionally substituted carbon atoms or heteroatoms selected from oxygen, nitrogen or sulphur.
- 9. (Currently Amended) A compound according to claim 8 wherein said chain is substituted by a polar group as defined in claim 5 which assists solubility, wherein the polar group is selected from oxo, hydroxy, halogeno, amino, C₁₋₄alkylamino, C₁.

 4alkanoyldi-C₁₋₄alkylamino-, C₁₋₄alkylthio, C₁₋₄alkoxy, cyano, C₁₋₄cyanoalkyl,

 C₁₋₄hydroxyalkyl, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl,

 C₁₋₄aminoalkyl, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl,

 C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy, nitro, C₁₋₄hydroxyalkoxy,

 di(C₁₋₄alkyl)aminoC₁₋₄alkoxy, carboxy, carboxamido, trifluoromethyl, -C(O)NR³⁸R³⁹,

 and -NR⁴⁰C(O)R⁴¹ (wherein R³⁸, R³⁹, R⁴⁰ and R⁴¹, which may be the same or different,
 each represents hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl).
- 10. (Currently Amended) A compound according to any one of the preceding claims 1, 4, 5 or 6, wherein R³ is a group X¹R⁹ where X¹ is oxygen and R⁹ includes a methylene group directly adjacent X¹.
- 11. (Original) A compound according to claim 5 wherein at least one of R¹, R², R³ or R⁴ is a group X¹R⁹ which includes a bridging alkylene, alkenylene or alkynylene groups R^a, R^b, R^b, R^c, R^c, R^c, R^d, R^g, Rⁿ, Rⁿ, Rⁿ, R^p, R^p, R^t, R^t, R^v, R^v, R^v, R^e, R^k, R
- 12. (Currently Amended) A compound according to claim 5 wherein R⁹ is selected from a group of formula—(1), (3), (6) or (10).

13. (Currenlty Amended) A compound according to any one of the preceding claims 1, 4, 5 or 6, wherein X is NH or O.

Docket No.: ASZD-P01-598

- 14. (Canceled)
- 15. (Canceled)
- 16. (Canceled)
- 17. (Canceled)
- 18. (Currently Amended) A compound according to claim 137 wherein R⁵ is a group of formula (iii).
- 19. (Canceled)
- 20. (Canceled)
- 21. (Currently Amended) A compound according to claim 120 wherein R⁵ is substituted by a group of sub formula (II) which is a compound of formula (IIA)

$$(CH_2)_{s'}$$
 N
 $(CH_2)_{q'}$
 R^{70}
 (IIA)

where s', q' and R^{70} are as defined in claim 120.

22. (Currently Amended) A compound according to claim 120 or claim 21 wherein the substituent R⁸⁰ includes a group R⁷⁰ and said group is phenyl optionally substituted by halo.

23. (Currenly Amended) A compound according to claim <u>120</u> where R⁵ is substituted by a group of formula (d) or (e) and R¹⁰⁰ is a group R⁷⁰-selected from optionally substituted phenyl or optionally substituted pyridyl.

- 24. (Currently Amended) A compound according to claim $\underline{120}$ or claim 23 wherein \underline{R}^5 \underline{R}^{80} is substituted by a group of sub-formula (d).
- 25. (Currently Amended) A compound according to any one of the preceding claims 1, 4, 5 or 6, which is a phosphate prodrug of a compound of formula (I).
- 26. (Currently Amended) A method for preparing a compound of formula (I) as defined in claim 1, which method comprises reacting a compound of formula (VII)

where R¹, R², R³, and R⁴ are equivalent to a group R¹, R², R³ and R⁴ as defined in relation to formula (I) or a precursor thereof, and R⁸⁵ is a leaving group, with a compound of formula (VIII)

where X and R⁵ are as defined in relation to formula (I): and thereafter if desired or necessary converting a group R¹, R²", R³" or R⁴' to a group R¹, R², R³ and or R⁴ respectively or to a different such group.

27. (Original) A method for inhibiting aurora 2 kinase in a warm blooded animal, such as man, in need of such treatment, which comprises administering to said animal an

effective amount of a compound according to claim 1, or salt, ester amide or prodrug thereof.

Docket No.: ASZD-P01-598

- 28. (Canceled)
- 29. (Currenly Amended) A pharmaceutical composition comprising a compound according to any one of claims 1, 4, 5 or 6, or salt, ester amide or prodrug thereof, -in combination with a pharmaceutically acceptable carrier.
- 30. (Cancelled)