Otimização de Matching Máximo de Custo Mínimo utilizando Meta-Heurística M²S - Multi-neighbourhood MultiStart

Bruno Araujo Lima, Diego Alysson Braga Moreira e Flávio Alves dos Santos

A Meta-Heurística M²S - Multineighbourhood Multistart

- Heurística híbrida
 - soluções estocásticas;
 - buscas locais.
- Soluções iniciais aleatórias;
- Perturbações locais.

Busca Local

- Buscas não-exaustivas;
- Busca não-sistemática até um critério de parada

Multi-neighbouhood - Multivizinhança

- Perturbação na vizinhança
 - \circ s' = N(s) = P(s)
 - o s, s' pertence a S
- Duas funções de vizinhança

$$N(s) = P(s, i, k)$$

$$N(s) = \begin{cases} P(s, i, i+k), \text{ se } i+k \le n \\ P(s, i, n-k+i), \text{ caso contrário} \end{cases}$$

Implementação

- Linguagem C++;
- Instâncias do repositório OR-Library;
- Solução candidata representada através de vetor;
- Indices inteiros (0 a n-1);
- Aresta X_{AR} ;
- $X_{AB}: \left\{ \begin{array}{l} A_i, \text{ onde } i\%2 == 0 \\ B_j, j = i+1 \end{array} \right.$ ISO Função aleatória homogênea do C++ imple. C standard:

$$randBetween(min, max) = (rand()\%(max + 1 - min)) + min$$

Algoritmo

- Inicializar soluções candidatas aleatoriamente;
- Realizar perturbações nas soluções;
- Escolher a perturbação com melhor avaliação, para cada solução;
- Admitir pertubação como substituta da solução anterior;
- Armazenar melhores soluções para cada iteração;
- Apresentar melhor solução encontrada.

Resultados

Instâncias Comparativas				Solução	Solução Obtida			Aproximação
Nº	Referência	n	m	"Ótima"	Inicial	Tempo(s)	Melhor	Gap
1	K5x5	10	25	50	26716	1 min 49s	50	1
2	Fign16m35	16	35	23	69997	2 min 41s	23	1
3	TSP58	58	1682	1187	65743	6 min 46s	34900	20,7
Média das aproximações com resultados conhecidos →								
Nº	Referência	n	m	inicial	Máxima	Média	Melhor	Tempo(s)
4	Groestchel	442	97682	39375	40807	37838	34870	37 min 11s
6	Rinaldi	2392	2860832	37868	39117	37311	35505	1h 23min
7	BillCook	20726	214783583	38203	Após uma tarde inteira, não achou resultado			

Resultados

Resultados

- Algoritmo de ordem O[2pq], onde p é o número de inicializações e q, é o número de vizinhos subsequêntes;
- p = {1, 10, 100, 1000, 10000, 100000};
- $q = \{1, 10, 100, 1000, 10000, 100000, 1000000\} e q = n^2$.

Trabalhos Futuros

- Implementação de uma heurística para a escolha de boas soluções de inicialização;
- Outras implementações da função aleatória, substitutas à função do C++;
- Implementação em outras linguagens, com outras funções aleatórias;
- Realimentação das melhores soluções.

Conclusão

- M2S não é uma boa técnica para cálculo de matching em sua forma pura;
- Escolha dos parâmetros de inicialização, tamanho de vizinhança e quantidade de perturbações por solução são itens a serem estudados separadamente, a fim de encontrar um trade-off;

Referencias

- Di Gaspero, L. and Schaerf, A. (2002). Multi-neighbourhood local search with application to course timetabling. In International Conference on the Practice and Theory of Automated Timetabling, pages 262–275. Springer.
- Edmonds, J. (1965). Maximum matching and a polyhedron with 0, I-vertices. J. Res. Nat.Bur. Standards B, 69(1965):125–130.
- Perin, C. (1981). Technical report 81-3 department of industrial and operations engineering the university of michigan ann arbor, michigan 48109.
- Viana, G. V. R. (1998). Meta-Heurísticas e Programação Paralela em Otimização Combinatória.
 Edições UFC, 1st edition.

Obrigado!

bruno.araujo@aluno.uece.br

diego.alysson@aluno.uece.br

flavio.alves@aluno.uece.br