Aufgabe 1

- a) Geben Sieein Beispiel für eine nicht stetige Funktion f über cpo's an.
- b) Beweisen Sie, dass die Komposition stetiger Funktionen wieder eine stetige Funktion ergibt.

Aufgabe 2

- a) Zeigen Sie, wie Sie zu gegebenen cpos $D_1, ..., D_n$ mit $n \ge 2$ den Bereich der disjunkten Vereinigung $(D_1 + ... + D_n)$ erklären können, ohne die minimalen Elemente zu verschmelzen.
- b) Definieren Sie folgende Injektions-, Projektions- und Testfunktionen in kanonischer Weise:

$$in_i: D_i \rightarrow (D_1 + ... + D_n)$$
 für alle $1 \le i \le n$
 $out_i: (D_1 + ... + D_n) \rightarrow D_i$ für alle $1 \le i \le n$
 $is_i: (D_1 + ... + D_n) \rightarrow BOOL_{\perp}$ für alle $1 \le i \le n$

Aufgabe 3

Definieren Sie stetige Erweiterungen der Addition und des Tests auf Gleichheit, so dass diese Operationen total werden auf den cpo's \mathbb{N}_{\perp} und $BOOL_{\perp}$. Diskutieren Sie, ob es mehrere solche Erweiterungen gibt.

Aufgabe 4

Seien D_1 und D_2 cpo's und auf $f:D_1\to D_2$ und $d:D_2\to D_1$ stetige Funktionen. Beweisen Sie:

$$fix_{f \circ g} = f(fix_{g \circ f})$$
 und
 $fix_{g \circ f} = g(fix_{f \circ g})$