Exercise 1. Let X be a connected scheme, and \mathcal{E} be a locally free coherent \mathcal{O}_{X} -module. Show that the dimension of the $\kappa(x)$ -vector space $\mathcal{E}_x \otimes_{\mathcal{O}_{X,x}} \kappa(x)$ does not depend on the point $x \in X$. Give a counterexample in case \mathcal{E} is coherent but not locally free.

Exercise 2. Let $A \to B$ be a ring morphism, and $f \colon \operatorname{Spec} B \to \operatorname{Spec} A$ the corresponding scheme morphism.

(i) Let M, N be two A-modules. Show that

$$\widetilde{M \oplus N} = \widetilde{M} \oplus \widetilde{N}$$
 and $\widetilde{M \otimes_A N} = \widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N}$.

- (ii) Let N be a B-module. What is the A-module M such that $f_*\widetilde{N}=\widetilde{M}$?
- (iii) Let M be a A-module. What is the B-module N such that $f^*\widetilde{M}=\widetilde{N}$?

Exercise 3. Let $f: Y \to X$ be a separated and quasi-compact morphism of schemes, and \mathcal{F} a quasi-coherent \mathcal{O}_Y -module. Show that the \mathcal{O}_X -module $f_*\mathcal{F}$ is quasi-coherent.

Exercise 4. Let $f: Y \to X$ be a scheme morphism.

(i) Let \mathcal{A}, \mathcal{B} be two \mathcal{O}_X -modules. Show that

$$f^*\mathcal{A} \otimes_{\mathcal{O}_Y} f^*\mathcal{B} \simeq f^*(\mathcal{A} \otimes_{\mathcal{O}_X} \mathcal{B})$$

(ii) Let \mathcal{E} be a locally free coherent \mathcal{O}_X -module, and \mathcal{F} an \mathcal{O}_Y -module. Prove the projection formula

$$f_*(f^*\mathcal{E}\otimes_{\mathcal{O}_Y}\mathcal{F})\simeq \mathcal{E}\otimes_{\mathcal{O}_X}f_*\mathcal{F}.$$

Exercise 5. Let X be a scheme, and $\pi \colon \mathbb{P}^n_X \to X$.

- (i) Show that $\pi_*\mathcal{O}_{\mathbb{P}^n_X} = \mathcal{O}_X$.
- (ii) Let \mathcal{E} be a locally free coherent \mathcal{O}_X -module. Show that there is a locally free coherent $\mathcal{O}_{\mathbb{P}^n_X}$ -module \mathcal{F} such that $\pi_*\mathcal{F} = \mathcal{E}$ (Hint: use the projection formula).