

Introduction - Contexte Mondial

Problématique Actuelle :

- La pollution plastique représente un défi environnemental majeur du 21ème siècle
- Production mondiale multipliée par 20 depuis 1950
- Seulement 9% des déchets plastiques sont recyclés à l'échelle mondiale
- 79% s'accumulent dans les décharges ou dans l'environnement naturel

Objectifs de l'Étude:

- 1. Analyser l'évolution historique de la production plastique mondiale
- 2. Évaluer l'efficacité de gestion des déchets par région
- 3. Identifier les zones critiques de mauvaise gestion des déchets
- 4. Développer des modèles prédictifs pour anticiper les tendances futures
- 5. Proposer des recommandations basées sur les données

Méthodologie et Sources de Données

Jeux de Données Principaux :

1. Production Mondiale de Déchets Plastiques (1950-2019) :

- Source : Global Plastics Production Database
- Période : 70 années de données continues
- Métrique : Tonnes de plastique produites annuellement

2. Le sort des Déchets Plastiques :

- Source : Share of Plastic Fate by Region
- Données régionales détaillées (2000-2019)
- Métriques : Recyclage, Incinération, Mauvaises gestion, Enfouissement

3. Déchets Mal Gérés par Habitant :

- Source : Mismanaged Plastic Waste Per Capita
- Données par pays pour 2019
- Métrique : kg par habitant par année

Approche Analytique:

- Analyse exploratoire des données (EDA)
- Visualisations temporelles et comparatives
- Modélisation statistique et machine learning
- Analyse comparative régionale

Aperçu Détailé des Données

Production Mondiale (Dataset 1):

- Période : 1950-2019 (69 observations)
- Production moyenne: 137,5 millions de tonnes/an
- Production maximale: 459,7 millions de tonnes (2019)
- Écart-type important : 132 millions de tonnes (forte variabilité)

Gestion des Déchets (Dataset 2) :

- 200 observations (2000-2019, multiples régions)
- Recyclage moyen: 6,4%
- Incinération moyenne : 10,5%
- Déchets mal gérés : 32,7%
- Enfouissement: 50,4%

Déchets Mal Gérés par Habitant (Dataset 3):

- 165 pays analysés (2019)
- Moyenne: 8,6 kg/habitant/an
- Écart extrême : 0,003 kg à 69,5 kg/habitant/an
- 75% des pays < 12,5 kg/habitant/an

Évolution Historique de la Production

Tendances Majeures:

- 1950-1970 : Croissance modérée (2→47 millions de tonnes)
- 1970-1990 : Expansion significative ($47 \rightarrow 120$ millions de tonnes)
- 1990-2019 : Explosion de la production (120 \rightarrow 460 millions de tonnes)

Points de Rupture:

- 1985 : Production dépasse les 100 millions de tonnes
- 2002 : Franchissement de la barre des 200 millions de tonnes
- 2015-2019 : Accélération finale vers 460 millions de tonnes

Visualisation - Production Mondiale 1950-2019

Graphique: Courbe d'Évolution Temporelle

Caractéristiques :

- Axe Y: Millions de tonnes (échelle 0-500)
- Axe X : Période 1950-2019
- Courbe exponentielle marquée

Observations Clés:

- Croissance quasi-continue sur 70 ans
- Légères fluctuations pendant les crises économiques
- Pente particulièrement raide depuis 2000
- Production 2019 = 230 fois la production de 1950

Analyse de la Gestion des Déchets

Répartition Mondiale Moyenne :

- Recyclage (6,4%): Taux insuffisant, forte marge de progression
- Incinération (10,5%) : Variable selon les régions (0-38%)
- Déchets Mal Gérés (32,7%) : Problème critique, impacts environnementaux directs
- Enfouissement (50,4%): Solution dominante mais non durable

Visualisation - Distribution des Déchets Mal Gérés

Histogramme : Répartition par Pays Structure du Graphique :

- Axe X : kg de déchets mal gérés/habitant/an
- Axe Y: Nombre de pays dans chaque intervalle

Interprétation:

- Distribution asymétrique positive
- Concentration entre 0-15 kg/habitant/an

Modélisation Prédictive - Méthodologie

Approches Implémentées:

1. Régression Linéaire:

- Baseline simple
- Hypothèses de linéarité
- Facile à interpréter

2. Forêts Aléatoires (Random Forest):

- Capture des relations non-linéaires
- Robustesse aux outliers
- Importance des variables

3. Gradient Boosting:

- Performance optimale
- Apprentissage séquentiel
- Précision élevée

Variables Utilisées:

- Temporelles (année)
- Géographiques (région)

Résultats des Modèles Prédictifs

Performance Comparative : Production Mondiale :

- Gradient Boosting: $R^2 = 0.94$
- Random Forest : $R^2 = 0.91$
- Régression Linéaire : $R^2 = 0.87$

Déchets Mal Gérés:

- Gradient Boosting: $R^2 = 0.72$
- Random Forest : $R^2 = 0.68$
- Régression Linéaire : $R^2 = 0.55$

Limites Identifiées:

- Données manquantes pour certains pays
- Complexité des facteurs socio-culturels
- Changements politiques imprévisibles
- Qualité variable des données selon les sources

Impact Environnemental et Sanitaire

Conséquences Directes : Environnementales :

- Pollution marine : 8-12 millions de tonnes/an dans les océans
- Fragmentation en microplastiques
- Impacts sur la biodiversité marine et terrestre

Sanitaires:

- Contamination de la chaîne alimentaire
- Risques chimiques (additifs plastiques)
- Problèmes de santé publique dans les zones à forte malgestion
- Coûts sanitaires estimés à milliards de dollars annuels

Recommandations Stratégiques

Actions Prioritaires:

1. Cartographier les points chauds de pollution plastique:

Utiliser les résultats du modèle pour identifier les pays/régions ayant les plus fortes valeurs de «Déchets Mal Gérés par habitant».

L'objectif est de concentrer les efforts de collecte et de sensibilisation.

2. Lancer des programmes de tri à la source dans les zones urbaines:

Former les ménages et les entreprises à trier le plastique selon sa nature.

Le modèle montre que la part de déchets recyclés est un facteur déterminant de la réduction du plastique mal géré.

3. Investir dans la recherche et l'innovation:

Financer des projets d'IA et de data science pour la **prédiction de la pollution plastique** et l'optimisation du tri automatique (computer vision, capteurs).

Utiliser des modèles prédictifs plus performants (Random Forest, Gradient Boosting) pour anticiper les pics de déchets mal gérés.

MERCI!

