Carbonyl photochemistry on the ground state

Group Meeting - Feb 5th 2021 - Keiran Rowell

Absorption spectra of carbonyl classes

Possible **S**_o reactions in butanal

Electronic crossing to S_o

 $k_{NR} = rac{2\pi}{\hbar} \left| \langle \psi_f | \hat{V} | \psi_i
angle
ight|^2
ho(E_f)$ — Density of states

Wavefunction overlap (FC)

Coupling magnitudes $-T_1 \rightarrow S_0$ Spin-orbit coupling (SOC)

 $\underline{1}. Corrigan \, M. \, E., \text{``The Importance of the Electronic Ground State in the Atmospheric Chemistry of Small Carbonyls", \textit{PhD Thesis}, 2020, The University of Sydney$

Acetaldehyde PES

Figure 2.4: CH₃CHO PESs fitted to MRCI(CASSCF(6,6))/aug-cc-pVTZ electronic energies, for (a) S_0 (black), (b) S_1 (red), (c) T_1 (blue) and (d) S_1 and T_1 surfaces, superimposed, with S_0 contours on base of plot. Contour spacing is 50 kJ mol⁻¹, from zero as the minimum electronic energy on the S_0 surface.

 $\underline{1} \ Corrigan \ M. \ E., "The Importance of the Electronic Ground State in the Atmospheric Chemistry of Small Carbonyls", \textit{PhD Thesis}, \textbf{2020}, The University of Sydney$

Acetone PES

Figure 2.5: $(CH_3)_2CO$ PESs fitted to MRCI(CASSCF(6,6))/aug-cc-pVTZ electronic energies, for (a) S_0 (black), (b) S_1 (red), (c) T_1 (blue) and (d) S_1 and T_1 surfaces, superimposed, with S_0 contours on base of plot. Contour spacing is 50 kJ mol⁻¹, from zero as the minimum electronic energy on the S_0 surface.

Electronic surface crossing rates

Figure 2.10: Rate coefficients for ISC in CH₃CHO as a function of energy; red triangles $S_1 \to T_1$, black circles $T_1 \to S_0$. Blue data is literature $k_{ISC}(S_1 \to T_1)^{47}$ and purple data is literature $k_{IC}(S_1 \to S_0)^{48}$ (see text). Uncertainties as described in Section 2.2.3.

Decarbonylation

Roaming as dominant mechanism

Fig. 3. Vibrational energy distributions of CH₄ from experiment and two sets of QCT calculations described in the text. A dashed blue line is drawn through the direct dynamics points as a guide.

Fig. 3 CO speed distributions and two Boltzmann fits to the data (see Table 1). The cold component in the low-J data disappears for photolysis between 325 and 328 nm.

Some disagreement

Probed product	Component ^a	S ₀ C-C dissociation ————		TKER (kcal mol ⁻¹)	
		τ (ps) ^b	Branching ^c	$\langle f_{ m TKER} angle$	Assigned pathway
$CH_3(0_0)$	Blue	190 ± 10	36%	0.51	\bigcirc TS _{cc} (T ₁)
	Green	1750 ± 150	45%	0.45	② Isom.(S ₀ , T ₁)
	Red	800 ± 50	19%	0.18	3 CI(S ₁ /S ₀)
$ ext{CO}(u=0, j\sim 0)$	Blue	300 ± 15	46%	0.28	\P TS _{cc} (S ₀)
	Green	290 ± 15	24%	0.13	\bigcirc Non-TS _{cc} (S ₀)
	Red	480 ± 30	30%	0.05	⑥ CI(S₁/S₀)
$CO(\nu=0, j\sim 43)$	Blue	300 ± 20	86%	0.31	$\textcircled{4} \operatorname{TS}_{\operatorname{cc}}(S_0)$
	Green	310 ± 20	14%	0.12	⑤/⑥ Non-TS _{cc} (S ₀)

Proposed CO-loss in ketones

NEW MECHANISM OF PHOTODISSOCIATION OF GASEOUS ACETONE

1273

Only "Roaming" TS found^[1]

Table 1. Calculation of the fraction of the ethane formed by induced predissociation of photolyzed acetone (9)

[Acetone] ₀ , molecules/cm ³	Isotopic molecule	Measured isotopic composition of ethane, molar fraction	Calculated of recombination of CH_3 and CD_3 , molar fraction ^a	Contribution predissociation (9), molar fraction	Ethane formed intramolecularly,
$9.7\times10^{17}^{b}$	CH_3CH_3 CH_3CD_3 CD_3CD_3	0.477 ± 0.001 0.337 ± 0.001 0.186 ± 0.001	0.3065 0.3373 0.0928	0.170 ± 0.002 0 0.093 ± 0.002	26.3±0.4
3.9×10^{18} b	CH_3CH_3 CH_3CD_3 CD_3CD_3	0.487 ± 0.009 0.340 ± 0.008 0.173 ± 0.008	0.3265 0.3402 0.0886	0.161 ± 0.015 0 0.084 ± 0.009	} 24.5±2.4
$3.9\times10^{18}^{\text{c}}$	CH_3CH_3 CH_3CD_3 CD_3CD_3	$0.360 \pm 0.001 \\ 0.357 \pm 0.001 \\ 0.283 \pm 0.001$	0.2088 0.3573 0.1528	$\begin{array}{c} 0.151 \pm 0.002 \\ 0 \\ 0.130 \pm 0.002 \end{array}$	28.1 ± 0.4

^a Calculated by combinatorial formulas [6] without account for isotopic effects. ^b Temperature of photolyzed gas 340 K. ^c Photolysis temperature 418–438 K.

Concerted Triple Fragmentation

Norrish Type III - beta-H transfer

Keto-enol tautomerisation

S4. Keto-enol tautomerisation transition state geometries

Enal-Ketene tautomerisation

Potential atmospheric implications

Missing photolytic H₂

Enols →organic acids^[1]

• Organic acids under-modelled factor of $\sim 2^{[2]}$ CH₃CHO \rightarrow CH₂CHOH alone not enough.

Fig. 5 c Fraction of total FA produced via photo-tautomerization

- \sim 60% in H₂ is photolytic with ½ from H₂CO^[3]
- Irradiation of CDOM produces H₂^[4]
- H₂ above marine CDOM undermodelled^[5] known to be photolytic from isotopic data^[6]

Thank you!