First-Order Logic

Yu "Tony" Zhang, Ph.D.
Assistant Professor
Arizona State University

The Need For a Richer Language

Propositional Logic

- Study of declarative sentences, statements about the world which can be given a truth value
- Dealt very well with sentence components like: not, and, or, if, ..., then
- Limitations: Cannot deal with modifiers like there exists, all, among, only.

The Need For a Richer Language

- Example: "Every student is younger than some instructor."
 - We could identify the entire phrase with the propositional symbol p
 - However, the phrase has a finer structure. It is a statement about the following properties:
 - Being a student
 - Being an instructor
 - Being younger than somebody else

Predicates, Variables, and Quantifiers

- Example: "Every student is younger than some instructor."
 - Relationships are expressed by predicates:
 - S(andy): Andy is a student
 - /(paul): Paul is an instructor
 - Y(andy, paul): Andy is younger than Paul

Predicates, Variables, and Quantifiers

- Example: "Every student is younger than some instructor."
 - Variables are placeholders for concrete values
 - S(x): x is a student
 - *I(x): x* is an instructor
 - Quantifiers to express "every", "some", etc.:
 - Two quantifiers: ∀ -- forall, and ∃ -- exists

Encoding of the above sentence:

$$\forall x(S(x) \rightarrow (\exists y(I(y) \land Y(x,y))))$$

Dealing with Quantifiers

Formulas under quantifiers:

- $\exists x \Phi$ We try to find some instance of x (some concrete value) such that Φ holds for that particular instance of x. If this succeeds, then $\exists x \Phi$ evaluates to t; otherwise (i.e. there is no concrete value of x that realizes Φ) the formula evaluates to t.
- $\forall x \Phi$ We try to show that for all possible instances of x, Φ evaluates to t. If this is successful, $\forall x \Phi$ evaluates to t; otherwise (i.e. if there exists some instance of x that does not realize Φ) the formula evaluates to t.

Predicates, Variables, and Quantifiers

Not all birds can fly

- B(x,y): x is a bird
- F(x): x can fly

Encoding of the above sentence:

- $\quad \neg \left(\forall X (B(X) \to F(X)) \right)$
- $-\exists x(B(x) \land \neg F(x))$

Example: "Every son of my father is my brother."

- Predicates S, F, B:
 - S(x,y): x is the son of y.
 - F(x, y): x is the father of y.
 - B(x,y): x is the brother of y.
 - m: constant, denoting "myself".
- Translation:
 - $\forall x \forall y (F(x, m) \land S(y, x) \rightarrow B(y, m))$

Example: "Every son of my father is my brother."

- Predicates S, F, B:
 - S(x,y): x is the son of y.
 - f(x): father of x f is a function
 - B(x,y): x is the brother of y.
 - m: constant, denoting "myself".
- Translation:
 - $\forall x(S(x, f(m)) \rightarrow B(x, m))$

Example: "Every child is younger than its mother."

- Predicates, C, M, Y:
 - C(x): x is a child
 - M(x, y): x is mother of y
 - Y(x, y): x is younger than y
- Translation
 - $\forall x \forall y (C(x) \land M(y, x) \rightarrow Y(x, y))$
- Translation with a function: m(x)
 - $\forall x(C(x) \rightarrow Y(x, m(x)))$

- **Example:** "Andy and Paul have the same maternal grandmother."
 - Predicates, M,:
 - *M*(*x*, *y*): *x* is mother of *y*
 - a: Andy
 - p: Paul
 - Translation
 - $\forall x \forall y \forall u \forall v (M(x,y) \land M(y,a) \land M(u,v) \land M(v,p) \rightarrow x = u)$
 - Translation with a function: m(x)
 - m(m(a)) = m(m(p))

Predicate Logic as a Formal Language

Two sorts of "things" in a predicate formula:

- Objects such as a (Andy) and p (Paul). Function symbols also refer to objects. These are modeled by terms.
- Expressions that can be given truth values. These are modeled by formulas.

A predicate vocabulary consists of 3 sets:

- Predicate symbols \mathcal{P}
- Function symbols \mathcal{F}
- Constants $\mathcal C$

Terms

Definitions: Terms are defined as follows:

- Any variable is a term;
- Any constant in C is a term;
- If $t_1,...,t_n$ are terms and $f \in \mathcal{F}$ has arity n, then $f(t_1,...,t_n)$ is a term;
- Nothing else is a term.

Terms

Backus Normal Form (BNF) Definition:

- t::x|c|f(t,...,t) where x represents variables, c represents constants in C, and f represents function
- Remarks:
 - The first building blocks are constants and variables
 - More complex terms are built from function symbols

Formulas

- Definition: We define the set of formulas over $(\mathcal{F}, \mathcal{P})$ inductively, using already defined set of terms over \mathcal{F} .
 - If P is a predicate with $n \ge 1$ arguments, and $t_1, ..., t_n$ are terms over $\mathcal F$, then $P(t_1, ..., t_n)$ is a formula.
 - If Φ is a formula, then so is¬Φ
 - If Φ and Ψ are a formulas, then so are $\Phi \wedge \Psi, \Phi \vee \Psi, \Phi \rightarrow \Psi$
 - If Φ is a formula and x is a variable, then $\forall x\Phi$ and $\exists x\Phi$ are formulas.
 - Nothing else is a formula.

Formulas

BNF Definition:

$$\Phi ::= P(t_1, ..., t_n) |(\neg \Phi)|(\Phi \land \Phi)|(\Phi \lor \Phi)|(\Phi \to \Phi)|(\forall x \Phi)|(\exists x \Phi)$$

- where P is a predicate of arity n, t_i are terms, $i \in \{1,...,n\}, x$ is a variable.
- Remarks:
 - Convention: We retain the usual binding priorities of the connectives ¬, ∧, ∨, →
 - We add that $\forall x$ and $\exists x$ bind like \neg

Scope of Variables

Parse tree:

$$\forall x((P(x) \to Q(x)) \land S(x,y))$$

Bound and free variables

First-Order logic

Reasoning with first-order logic:

- In addition to proof rules in propositional logic, also have proof rules with quantifiers
- Sound and complete

 $\Gamma \vdash \psi$ $\Gamma \vDash \psi$

Undecidability of first-order logic

Summary

- Introduction to first-order logic
 - Predicates, variables and quantifiers
 - Functions
 - Terms
 - Formulas
- Parse of first-order logic formulas
 - Scope of variables