Übung 8

Approximation der Grösse eines Graphen

In dieser Übung entwickeln Sie eine Methode zur Approximation der Grösse eines Graphen, von dem Sie fast nur zufällig gewählte Kanten sehen. Ein Graph G=(V,E) besteht aus einer Menge V mit n=|V| Knoten und einer Menge $E\subseteq V\times V$ von m=|E| Kanten. Jede Kante $e\in E$ verbindet zwei Knoten. Der Graph ist ungerichtet, enthält keine Mehrfachkanten und auch keine Schlingen, d.h., keine Kanten der Form e=(v,v). Der $Grad \deg(v)$ eines Knotens v ist die Zahl der Kanten, welche den Knoten enthalten, d.h., $\deg(v)=|\{e\in E|e=(v,v)\}|$. Angenommen, jeder Knoten mindestens Grad 1.

Über einen Graph G kennt man nur folgendes: (1) Eine Funktion, welche zufällig eine Kante mit uniformer Verteilung aus E liefert; (2) die Anzahl Kanten insgesamt (m); (3) den Grad $\deg(v)$ für einen bekannten Knoten v; und (4) dass der Graph d-begrenzt ist (siehe Teilaufgabe 8.3).

Der Graph ist so gross, dass Ihr Algorithmus weder alle Knoten noch Kanten aufzählen kann. Gesucht ist eine Approximation für n = |V|.

Die Zufallsvariable $S \in V$ wird durch den nachfolgenden randomisierten Algorithmus bestimmt, welcher über eine Zufallsvariable $R \stackrel{R}{\leftarrow} \{0,1\}$ uniforme Zufallsbits erzeugen kann. (Die Notation $a \stackrel{R}{\leftarrow} \mathcal{A}$ steht dafür, dass ein Wert a aus einer Menge \mathcal{A} zufällig und mit uniformer Verteilung gewählt wird.)

Algorithm S:

```
(u,v) \overset{R}{\leftarrow} E  // Eine zufällige Kante mit Gleichverteilung r \overset{R}{\leftarrow} \{0,1\}  // Ein zufälliges Bit if r=1 then return u else return v
```

8.1 Knoten-Wahrscheinlichkeit (2pt)

Berechnen Sie $P_S(v) = P[S = v]$ für einen bestimmten Knoten $v \in V$, in Abhängigkeit von $\deg(v)$ und m. (Hinweis: $\sum_{u \in V} \deg(u) = 2m$.)

8.2 Schätzfunktion (2pt)

Sei
$$\ell(v) = \frac{2m}{\deg(v)}$$
. Bestimmen Sie $\mathrm{E}[\,\ell(S)\,]$.

8.3 Varianz (2pt)

Ab jetzt sei der Graph G Grad-d-begrenzt, was bedeutet, dass $\max_{v \in V} \deg(v) \leq d$. Zeigen Sie, dass gilt

$$\operatorname{Var}[\ell(S)] \leq dn^2$$
.

8.4 Testverfahren (2pt)

Sei $Z=\frac{1}{t}\sum_{i=1}^t\ell(S_i)$, wobei die Zufallsvariable S_i für $i=1,\ldots,t$ mittels unabhängiger Wiederholungen von S bestimmt wird. Berechnen Sie $\mathrm{E}[Z]$ und zeigen Sie, dass

$$Var[Z] < dn^2/t$$
.

(Hinweis: Eigenschaften der Varianz aus [MU17; Kapitel 3.2] und [MU17; Exercise 3.4].)

8.5 Beschränkung des Approximationsfehlers (2pt)

Ihr Algorithmus wählt also t Testkanten und berechnet dann Z anhand von Teilaufgabe 8.4. Für gegebene Konstanten $\epsilon>0$ und $\delta>0$, wie gross muss t mindestens sein, damit der relative Approximationsfehler kleiner als ϵ ist ausser mit Wahrscheinlichkeit δ ? Die Schranke für t sollte eine Funktion von d, ϵ und δ sein.

In anderen Worten, benutzen Sie die Chebyshev-Ungleichung, um einen Wert von t zu bestimmen, für welchen gilt

$$P[|Z - n| \ge \epsilon n] \le \delta.$$