Задача R02. Нека \leq е релация над \mathbb{Z} , определена чрез $x \leq y \Leftrightarrow x = y \vee x + 1 < y$. Проверете дали тази релация е частична наредба.

Решение:

а) Рефлексивност.

Нека $x \in \mathbb{Z}$. Тогава x = x, откъдето следва, че $[x = x \lor x + 1 < x]$ е винаги истина. Следователно $x \unlhd x$, тоест релацията \unlhd е рефлексивна.

b) Антисиметричност.

Нека $x \le y$. Тогава $[x = y \lor x + 1 < y]$. Искаме да докажем, че . За целта допускаме, че $y \le x$. Тогава от допускането и $[y = x \lor y + 1 < x]$ също ще е истина. Но във всеки друг сценарии различен от x = y това ще доведе до тривиално противоречие и следователно x = y. Но x и y са произволни, което е противоречие с допускането, че и $y \le x$. Следователно релацията $\le x$ 0 е антисиметрична.

с) Транзитивност.

Нека $x \le y$ и $y \le z$. Тогава $[x = y \lor x + 1 < y]$ и $[y = z \lor y + 1 < z]$ са истина. Ще докажем, че $x \le z$, тоест ще докажем, че $[x = z \lor x + 1 < z]$.

- (1) $x = y, y = z \Rightarrow x = z \Rightarrow x \le z$;
- $(2) \quad x = y, y + 1 < z \Rightarrow x + 1 < z \Rightarrow x \le z;$
- (3) $x + 1 < y, y = z \Rightarrow x + 1 < z \Rightarrow x \le z$;
- (4) $y + 1 < z, x + 1 < y \Rightarrow x + 1 < y < z 1 \Leftrightarrow x + 2 < z, \text{ Ho } x + 1 < x + 2 < z \Rightarrow x + 1 < z \text{ if take } x \leq z.$

Тъй като \unlhd е рефлексивна, антисиметрична и транзитивна (във всеки един от 4-те случая), то \unlhd е частична наредба над \mathbb{Z} .

П