## **Mathematical Models of Networks**

CS5128701:

Practice of Social Media Analytics

NTUST CSIE Yi-Ling Chen

### Network models

### Empirical network features:

- Power-law (heavy-tailed) degree distribution
- Small average distance (graph diameter)
- Large clustering coefficient (transitivity)
- Giant connected component

#### Generative models:

- Random graph model (Erdos & Renyi, 1959)
- Preferential attachement model (Barabasi & Albert, 1999)
- Small world model (Watts & Strogatz, 1998)

# Random graph model

Graph  $G\{E, V\}$ , nodes n = |V|, edges m = |E| Erdos and Renyi, 1959.

•  $G_{n,p}$  - each pair out of  $N = \frac{n(n-1)}{2}$  is connected with probability p, number of edges m - random number

$$\langle m \rangle = \rho \frac{n(n-1)}{2}$$
  $\langle k \rangle = \frac{1}{n} \sum_{i} k_{i} = \frac{2\langle m \rangle}{n} = p \ (n-1) \approx pn$   $ho = \frac{\langle m \rangle}{n(n-1)/2} = p$ 

(Slide Credit: Leonid Zhukov)

3

## Random graph



Node degree distribution (Poisson distribution):

$$P(k_i = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad \lambda = pn = \langle k \rangle$$

(Slide Credit: Leonid Zhukov)

## Phase transition

Consider  $G_{n,p}$  as a function of p

- p = 0, empty graph
- p = 1, complete (full) graph
- There is a critical probability  $p_c$ , where structural changes from  $p < p_c$  to  $p > p_c$
- Gigantic connected component appears at  $p > p_c$

(Slide Credit: Leonid Zhukov)

5

## Phase transition



(Slide Credit: Leonid Zhukov)

# Phase transition

Graph G(n,p), for  $n \to \infty$ , critical value  $p_c = 1/n$ 

- when  $p < p_c$ ,  $(\langle k \rangle < 1)$  there is no components with more than  $O(\ln n)$  nodes, largest component is a tree
- ullet when  $p=p_c$ ,  $(\langle k 
  angle=1)$  the largest component has  $O(n^{2/3})$  nodes
- ullet when  $p>p_c$ ,  $(\langle k
  angle >1)$  gigantic component has all O(n) nodes

Critical value:  $\langle k \rangle = p_c n = 1$ - on average one neighbor for a node

(Slide Credit: Leonid Zhukov)

7

## Connected component

#### Random graph model GCC



$$\langle k \rangle = pn$$

(Slide Credit: Leonid Zhukov)

# Clustering coefficient

Clustering coefficient

$$C(k) = \frac{\text{\#of links between NN}}{\text{\#max number of links NN}} = \frac{pk(k-1)/2}{k(k-1)/2} = p$$

$$C = p = \frac{\langle k \rangle}{n}$$

• when  $n \to \infty$ ,  $C \to 0$ 

(Slide Credit: Leonid Zhukov)

С

# Graph diameter

• G(n, p) is locally tree-like (GCC) (no loops; low clustering coefficient)



- ullet on average, the number of nodes d steps away from a node  $\langle k \rangle^d$
- ullet in GCC, around  $p_c$  ,  $\langle k 
  angle^d \sim n$ ,

$$d \sim rac{\ln n}{\ln \langle k 
angle}$$

(Slide Credit: Leonid Zhukov)

# Random graph model

• Node degree distribution function - Poisson:

$$P(k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad \lambda = pn = \langle k \rangle$$

Average path length:

$$\langle L \rangle \sim \log(N)/\log\langle k \rangle$$

Clustering coefficient:

$$C = \frac{\langle k \rangle}{n}$$

(Slide Credit: Leonid Zhukov)

11

### Preferential attachment model

Barabasi and Albert, 1999 Dynamical growth model

- t = 0,  $n_0$  nodes
- growth: on every step add a node with  $m_0$  edges  $(m_0 \le n_0)$ ,  $k_i(i) = m_0$
- Preferential attachment: probability of linking to existing node is proportional to the node degree  $k_i$

$$\Pi(k_i) = \frac{k_i}{\sum_i k_i} = \frac{k_i}{2m_0t}$$

after t steps:  $n_0 + t$  nodes,  $m_0 t$  edges

(Slide Credit: Leonid Zhukov)

# Preferential attachment model

#### Scale-Free Model



Barabasi, 1999

(Slide Credit: Leonid Zhukov)

13

# Preferential attachment

#### Node degree k as function of time t



(Slide Credit: Leonid Zhukov)

# Preferential attachment



(Slide Credit: Leonid Zhukov)

15

# Preferential attachment

#### Node degree distribution



Node degree distribution:

$$P(k_i = k) = \frac{2m_0^2}{k^3}$$

(Slide Credit: Leonid Zhukov)

# Preferential attachment

## Preferential attachment vs. random graph



(Slide Credit: Leonid Zhukov)

17

# Preferential attachment model



(Slide Credit: Leonid Zhukov)

## Small world

Motivation: keep high clustering, get small diameter



- (O) Clustering coefficient C = 1/2
- (X) Graph diameter d = 8

(Slide Credit: Leonid Zhukov)

20

### Small world

Watts and Strogatz, 1998

Single parameter model, interpolation between regular lattice and random graph

- start with regular lattice with n nodes, k edges per vertex (node degree), k << n
- randomly connect with other nodes with probability p, forms pnk/2 "long distance" connections from total of nk/2 edges
- ullet p=0 regular lattice, p=1 random graph

(Slide Credit: Leonid Zhukov)

# Small world



Watts, 1998

(Slide Credit: Leonid Zhukov)

2

# Small world model



20% rewiring:

ave. path length = 3.58

clust. coeff = 0.49

 $\rightarrow$ 

ave. path length = 2.32

clust. coeff = 0.19