Magnet Precalculus C Semester Exam Review

Devin D. Droddy

Contents

Chapter 1		Page 2
1.1	Solving Polynomials	2
1.2	Domain and Range of Functions	2
1.3	Increasing, Decreasing, and Constant Intervals	3
1.4	Even and Odd Functions	3

Chapter 1

1.1 Solving Polynomials

Question 1: 1a

Solve for x where $2x^3 = -3x^2 + 2x$.

Solution: Subtract $-3x^2 + 2x$ from both sides to find that $2x^3 + 3x^2 - 2x = 0$. Factor x from that identity to find that $x(2x^2 + 3x - 2) = 0$. Multiplying 2 by -2 tells us that we need to find two numbers which sum to 3 and produce -4. These numbers are -1 and 4. 2x + 4 can be simplified to x + 2. We now know that the factors of $2x^2 + 3x - 2$ are x + 2 and 2x - 1. Therefore, $x(2x^2 + 3x - 2) = x(x + 2)(2x - 1)$. The values of x are 0, -2, and $\frac{1}{2}$.

Question 2: 1b

Solve for x where $x^2 = 3x - 1$.

Solution: Subtract 3x - 1 from both sides to find that $x^2 - 3x + 1 = 0$. There are no two numbers which sum to -3 and produce 1, so we must use the quadratic formula. $x = \frac{3 \pm \sqrt{9 - 4(1 + 1)}}{2} = \boxed{\frac{3 \pm \sqrt{5}}{2}}$.

1.2 Domain and Range of Functions

Question 3: 2a

Find the domain and range of the function $f(x) = x^2 + sqrtx - 3$.

Solution: The more restrictive function is the square root function, so we must look there to find our domain restriction. We can see that the square root is translated 3 units to the right, so the domain is $[3, \infty)$. At x = 3, $y = 3^2 + sqrt3 - 3 = 3^2 = 9$, so the point at which the curve ends is (3, 9). The range is $[9, \infty)$

Question 4: 2b

Find the domain and range of the function $f(x) = \frac{x-5}{x^2-x-20}$.

Solution: $x^2 - x - 20$ can be factored into (x + 4)(x - 5), and since x - 5 is in the numerator and denominator, it can be removed. We are left with $f(x) = \frac{1}{x+4}$. This is a reciprocal function, translated 4 units left. This means that its domain is \mathbb{R} ; $x \neq -4$, and its range is \mathbb{R} ; $y \neq 0$, since its asymptotes are at y = 0 and x = -4.

1.3 Increasing, Decreasing, and Constant Intervals

Question 5: 3a

Determine the intervals over which the function $f(x) = (x^2 - 4)^2$ is increasing, decreasing, or constant.

Solution: $(x^2-4)^2$ can be factored into $(x^2-4)(x^2-4)$, which can be further factored into $(x+2)(x-2)(x+2)(x-2) = (x+2)^2(x-2)^2$. The degree of the function is 4, which is positive and even, so the end behavior of the function is $\lim_{x\to\infty} f(x) = \infty$; $\lim_{x\to\infty} f(x) = \infty$. The zeros -2 and 2 both have a multiplicity of 2, so they serve as relative minimums/maximums. f(x) decreases from $-\infty$, so (-2,0) is a relative minimum. f(x) increases to ∞ , so (2,0) must also be a relative minimum. This means there must be a relative maximum somewhere in the middle between these two points. $2-(-2)=4; \frac{4}{2}=2; -2+2=0$, therefore the x-value of the relative maximum must be 0. $f(0)=(0^2-4)^2=(-4)^2=16$, therefore the relative maximum is located at (0,16). With our 2 relative minimums and relative maximum located, we can find the increasing and decreasing intervals. Increasing: $(-2,0)u(2,\infty)$. Decreasing: $(-\infty,-2)u(0,2)$.

Question 6: 3b

Determine the intervals over which the function f(x) = |x-1| + 1 is increasing, decreasing, or constant.

Solution: This absolute value function is translated 1 unit up and 1 unit to the right. Therefore, its increasing interval is $(1, \infty)$, and its decreasing interval is $(-\infty, 1)$

Question 7: 3c

Determine the intervals over which the function $g(x) = \frac{x^2}{x^2-4}$ is increasing, decreasing, or constant.

Solution: In this reciprocal function, the degree of the numerator is equal to that of the denominator, so the horizontal asymptote is at y=1, since the quotient of the two leading coefficients is $\frac{1}{1}$. There are two vertical asymptotes, since the denominator has a degree of 2. x^2-4 can be factored into (x+2)(x-2), making the zeros of the expression 2 and -2. Therefore, the vertical asymptotes are at x=2 and x=-2. We can determine direction by calculating a few values. $g(-3)=\frac{(-3)^2}{(-3)^2-4}=\frac{9}{9-4}=\frac{9}{5}>1$, so on the interval $(-\infty,-2)$, g(x) increases. $g(-1)=\frac{(-1)^2}{(-1)^2-4}=\frac{1}{1-4}=\frac{1}{-3}<1$, so on the interval (-2,0), g(x) increases. In order to follow the vertical asymptote x=2, g(x) must decrease on the interval (0,2). $g(3)=\frac{3^2}{3^2-4}=\frac{9}{9-4}=\frac{9}{5}>1$, therefore on the interval $(2,\infty)$, g(x) decreases.

Question 8: 3d

Determine the intervals over which the function $h(x) = \sqrt[3]{x+1}$ is increasing, decreasing, or constant.

Solution: This third root function is translated 1 unit to the left. However, it isn't reflected, so it is always increasing.

1.4 Even and Odd Functions

Question 9: 4a

Determine whether the function $f(x) = x^5 + 3x - 4$ is even, odd, or neither