Department of Mathematics

National University of Singapore

(2022/23) Semester I MA1521 Calculus for Computing Tutorial 9

1. Evaluate the following double integrals:

(a)
$$\iint_R (x^2 + y^2) dA$$
 where R is bounded by the lines, $x = 0, x = a, y = 0$ and $y = b$.

(b)
$$\iint\limits_R \frac{xy}{\sqrt{4-x^2}} \, dA \text{ where } R \text{ is bounded by the lines } x = 0, x = 1, y = 1 \text{ and } y = 2.$$

(c)
$$\iint_R e^{x^2} dA$$
 where R is the region bounded by $y = 0$, $y = x$, $x = 1$.

(d)
$$\iint_R (x+y) dA$$
, where R is the region bounded by the two curves $y = \sqrt{x}$, $y = x^2$.

Ans. (a)
$$\frac{1}{3}ab(a^2+b^2)$$
, (b) $3-3\sqrt{3}/2$, (c) $\frac{1}{2}(e-1)$, (d) $\frac{3}{10}$.

2. Evaluate the double integral $\iint_D x \ dA$ where D is the region as shown below.

Ans. 25.

3. Evaluate the following integrals by converting it to polar coordinates:

(a)
$$\int_0^a \int_0^{\sqrt{a^2 - x^2}} \frac{1}{1 + x^2 + y^2} dy dx$$
, (b) $\int_0^1 \int_0^{\sqrt{1 - x^2}} e^{x^2 + y^2} dy dx$

Ans. (a)
$$\frac{\pi}{4} \ln(a^2 + a)$$
, (b) $\frac{1}{4} \pi(e - 1)$.

4. Evaluate the following integrals by reversing the order of integration.

(a)
$$\int_0^1 \int_{x-1}^{1-x} x \, dy dx$$
 (b) $\int_0^8 \int_{\sqrt[3]{y}}^2 e^{x^4} \, dx dy$ (c) $\int_0^{2\sqrt{\ln 3}} \int_{y/2}^{\sqrt{\ln 3}} e^{x^2} \, dx dy$.
Ans. (a) $\frac{1}{3}$, (b) $\frac{1}{4}(e^{16} - 1)$, (c) 2.

Further Exercises

1. Evaluate the following double integrals

(a)
$$\iint_{D} \frac{2y}{x^2 + 1} dA, \quad D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le \sqrt{x}\}$$
(b)
$$\iint_{D} x \cos y dA, \quad D \text{ is the region bounded by } y = 0, y = x^2, x = 1.$$
(c)
$$\iint_{D} (2x - y) dA, \quad D \text{ is the region bounded by the circle } x^2 + y^2 = 4.$$

Ans. (a)
$$\frac{1}{2} \ln 2$$
, (b) $\frac{1}{2} (1 - \cos(1))$, (c) 0.

2. Find the volume of the solid bounded by the elliptic paraboloid $z = 1 + (x - 1)^2 + 4y^2$, the planes x = 3 and y = 2, and the coordinate planes.

Ans. 44.

3. Let R be the smaller segment of the circular region $x^2 + y^2 \le a^2$ cut off by the line x + y = a, (a > 0). Sketch R and evaluate $\iint_R xy^2 dA$.

Ans. $\frac{a^5}{20}$.