第8讲 非线性电阻电路分析

- > 非线性电阻
- > 非线性电阻电路的解析解法
- > 非线性电阻电路的图形解法
- > 非线性电阻电路的分段线性解法
- > 非线性电阻电路解的存在性和唯一性

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

1 非线性电阻

(1) 线性电阻元件

$$R = \frac{u}{i} = \operatorname{tg} \alpha = \operatorname{const}$$

(2) 非线性电阻元件

伏安特性 u=f(i) 过原点 i=g(u)

$$i = g(u)$$

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

例3 整流二极管

伏安特性

$$i = I_{\rm S}(e^{u/U_{\rm TH}}-1)$$

 $I_{
m S}>0$ 反向饱和电流

对于硅二极管来说, 典型值为

$$I_{\rm S} = 10^{-12} \,\rm A = 1 pA, \quad U_{\rm TH} = 0.025 \,\rm V = 25 \,mV$$

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

(3) 线性电阻和非线性电阻的区别

已预习

例 非线性电阻 $u=f(i)=50 i+0.5 i^3$

$$i_1$$
=2A u_1 =100+0.5×8=104V
 i_2 =10A u_2 =500+500=1000V \neq 5×104
当 $i=i_1+i_2$ 时 齐次性不满足
 $u=50(i_1+i_2)+0.5(i_1+i_2)^3$
=50 i_1 +0.5 i_1 ³+50 i_2 +0.5 i_2 ³+1.5 $i_1i_2(i_1+i_2)$
= u_1 + u_2 +1.5 $i_1i_2(i_1+i_2)$
 $\neq u_1+u_2$ 可加性不满足

① 齐次性和可加性不适用于非线性电阻。

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

例 非线性电阻 $u = f(i) = 50 i + 0.5 i^3$

 $4 \sin^3 t = 3 \sin t - \sin 3t$

 $i_3=2 \sin 60tA$ $u_3=50 \times 2 \sin 60t +0.5 \times 8 \sin^3 60t$

 $=100 \sin 60t + 3 \sin 60t - \sin 180t$

 $=103 \sin 60t - \sin 180t A$

出现3倍频

②非线性电阻能产生与输入信号不同的频率(变频作用)。

如何看待非线性?

线性元件:分压、分流、滤波等作用。

非线性元件:整流、稳压、放大、振荡、变频、开关等作用。

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

2 非线性电阻电路的解析解法

例求电压u。

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

_

$$\frac{U_{S} - u}{R} = I_{S} \left(e^{u/U_{TH}} - 1 \right) \longrightarrow 10^{-9} \left(e^{\frac{u}{0.025}} - 1 \right) + u - 2 = 0$$

$$3\xi U_{S} = 2V, R = 1k\Omega, I_{S} = 1pA, U_{TH} = 25mV$$

法1 手算
$$10^{-9} \left(e^{\frac{u}{0.025}} - 1 \right) + u = 2$$
 法2 MATLAB

и	左	右
0	0	2
0.3	0.3	2
0.6	27	2
0.5	0.985	2
0.53	2.14	2
0.525	1.844	2
0.527	1.956	2
0.528	2.015	2

function f=diode(x) $f=10^{(-9)*}(exp(x/0.025)-1)+x-2;$

trial and error

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

(1) 节点电压方程的列写

电路方程 电路的连接——KCL, KVL

非线性电阻电路——非线性代数方程

例1 已知 $i_1 = u_1$, $i_2 = u_2^5$, $i_3 = u_3^3$, 列写求电压u所需方程。

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

(1) 节点电压方程的列写

非线性电阻为压控电阻

KCL

电路方程

非线性电阻电路——非线性代数方程

例1 已知 $i_1 = u_1$, $i_2 = u_2^5$, $i_3 = u_3^3$, 列写求电压 u所需方程。

由KCL

 $i_1+i_2+i_3=0$

代入元件性质

 $u_1 + u_2^5 + u_3^3 = 0$

应用KVL,得

非线性代数 方程

$$u-2+(u-1)^5+(u-4)^3=0$$

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

市课堂 Rain Classroom

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

(2) 回路电流方程的列写

例3 已知 $u_3 = 20 i_3^{1/3}$, 求节点电压 u_3 。

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

(2) 回路电流方程的列写

例3 已知 $u_3 = 20 i_3^{1/3}$, 求节点电压 u_3 。

非线性电阻为流控电阻 KVL

$$\begin{cases}
R_1 i_{l1} + R_2 (i_{l1} - i_{l2}) = U_S \\
20 i_{l2}^{1/3} + R_2 (i_{l2} - i_{l1}) = 0
\end{cases}$$

$$i_3 \longrightarrow u_3$$

非线性代数方程组

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

3 非线性电阻电路的图形解法

用图解法求解非线性电路

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

4 非线性电阻电路的分段线性解法

分段线性法:将非线性电阻近似地用折线来表示。 将求解过程分为几个线性段,每段中分析线性电路。

例1

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

单选题 1分

A-B段对应等效电路为

- A 阻值为tan(a)的电阻
- $oxed{B}$ 阻值为tan(a)的电阻串联 U_0 电压源
- 阻值为tan(b)的电阻
- $lacksymbol{D}$ 阻值为tan(b)的电阻串联 U_0 电压源

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

市课堂 Rain Classroom

模型1

研究二极管的分段线性模型

课前推送

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

单选题 1分

B $\stackrel{+ u_d}{\longrightarrow}$ 条件是i < 0

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

- 28/54页 -

《 L8-2023 》

模型2

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

单选题

阴影部分对应的 模型和条件是?

条件是i > 0

$$\longrightarrow_{i}^{+ u_{d} -}$$
 条件是 $u_{d} < u_{sd}$

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

市课堂 Rain Classroom

市课堂 Rain Classroom

例 3 用分段线性法求u, 用理想二极管模型。

模型1 短路 条件是i>0

开路 条件是 $u_d < 0$

假设二极管短路,得

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

例 3 用分段线性法求u,用理想二极管模型。

模型1 短路 条件是i>0

开路 条件是 $u_d < 0$

假设二极管短路, 得 $u=10\sin(t)$ 假设二极管开路, 得 u=0

$$i = \frac{10\sin(t)}{R}$$

$$u_d = 10\sin(t)$$

看仿真

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

例 3 用分段线性法求u。二极管用模型2, 硅二极管。

i u $i = \frac{\sin(t) - 0.7}{R}$ $\operatorname{pr} \sin(t) > 0.7$ 时成立。

设二极管开路,得

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

单选题 1分

含两个非线性电阻,电路参数如下所示计算电路中电流i=___A(红包) [

A 0

非线性电阻
$$u = 2i$$
, $i < 1A$, $u = i + 1$, $i \ge 1A$,

D 2

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

分段线性解法的特点

- 步骤
 - 将非线性元件根据精度的需要划分为若干段,每段中用线性元件来建模。 确定模型和条件
 - 假设非线性元件位于某一段,将模型带入,检验条件是否满足
- 优点
 - 线性模型的求解比较方便
- 缺点
 - 精度上有牺牲
 - 非线性元件多的时候需要求解的线性电路数量大大增加

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

用"假设-检验"的思路来分析MOSFET电路

2.恒流源区

$$I_{\rm DS} = \frac{K(U_{\rm GS} - U_{\rm T})^2}{2}$$

3.电阻区

 $U_{\rm DS}\!<\!(U_{\rm GS}\!-\!U_{\rm T})$

性质:

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

问题: 给定MOSFET元件参数(U_T 和K)和 U_S 数值, U_{GS} 取不同值时, 如何确定MOSFET工作区间?

假设-检验!

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

雨课堂 Rain Classroom

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

雨课堂 Rain Classroom

50

《 L8-2023 》

假设"恒流源区"

$$(U_{\rm GS}-U_{\rm T}) < U_{\rm DS}$$

51

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

51

市课堂 Rain Classroom

5 非线性电阻电路解的存在性与唯一性

线性电路一般有唯一解。

非线性电阻电路可以有多个解或没有解。

Principles of Electric Circuits Lecture 8 Tsinghua University 2023

例2

当
$$I_S > -I_0$$
 时 有唯一解

当
$$I_S < -I_0$$
 时 无解

非线性电阻电路有唯一解的充分条件请参考教材4.1.2节

Principles of Electric Circuits Lecture 8 Tsinghua University 2023