Absolutely stable model-base force controller

Corso: pHRI

Studente: Giovanni Bagolin, VR445681

Data: 12/10/2020

Intro

Sistema di teleoperazione:

Intro

Robot soggetti a forze:

- inerzia
- attrito
- forze di contatto

Intro

Obiettivo: ridurre la forza di attrito.

Controllore di forza basato sul modello ideale

Modello robot slave.

$$F_{e} = rac{E(s)}{1+E(s)\cdot R_{2,2}}\cdot F_{d}\cdot R_{2,1}$$

$$\dot{x}_e = F_a \cdot R_{2.1} - F_e \cdot R_{2.2}$$

$$\dot{x}_a = F_a \cdot R_{1,1} - F_e \cdot R_{1,2}$$

$$R_{i,j} = \frac{1}{Ms+b}$$

Modello slave + modello ideale

$$M_{i,j} = rac{1}{M_r s}$$

$$G_{mr}(s) = K$$

$$\dot{x}_{ma} = F_d \cdot M_{1,1} - F_e \cdot M_{1,2}$$

$$egin{array}{ll} F_c &= \left(\dot{x}_{ma} \,-\, \dot{x}_a
ight) \,\cdot\, G_{mr}(s) \end{array}$$

Confronto posizioni

Confronto forze

Confronto posizioni, slave in contatto con env, (0.5 rad)

Confronto forze, slave in contatto con env, (0.5 rad)

Confronto force feed-back master e forza dell'environment

Confronto posizioni, free motion, reference model

Confronto forze, free motion, reference model

Confronto posizioni master slave e forze con diversi valori di K

Confronto posizioni master slave e forze con diversi valori di J_r

Confronto posizioni con two-layer attivo e senza two-layer in free motion con ritardo

Overshoot cancellato

Confronto posizioni con two-layer attivo e senza two-layer in contatto con ritardo, posizione env = 0.5 (rad)

Overshoot diminuito

Confronto attivazione passivity-layer in free motion e in contatto con env, posizione env 0.5 (rad). Lato master.

Il passivity-layer modula la coppia fornita dal transparency-layer grazie al TLC.

Free-motion

In contatto con env

Confronto attivazione passivity-layer in free motion e in contatto con env, posizione env 0.5 (rad). Lato slave.

Il passivity layer non agisce, perchè l'energia del tank non scende mai sotto il livello minimo.

Free-motion

In contatto con env

Confronto livello tank in free motion e in contatto con env.

Livello Minimo = 0 (J), Livello Desiderato = 0.5 (J), Livello massimo = 1 (J)

Free-motion

In contatto con env

Livello dei tank evidenziando il minimo

Livello Minimo = 0 (J), Livello di energia nel tank sempre sopra il livello minimo

Free-motion

In contatto con env

Livello Massimo, desiderato e minimo dei tank.

Confronto forze tra sistema in free-motion e in contatto con env, con two-layer attivo.

Fd = Forza desiderata che si vorrebbe applicare allo slave, Fa = forza veramente applicata allo slave, Fh = forza dell'operatore, Fcm = force feedback del master, Fe = forza di contatto con l'env.

Free-motion

In contatto con env