Computational Statistics Lab 6

Nahid Farazmand (nahfa
911), Aashana Nijhawan(aasni448) 2/28/2019

Contents

1	Question 1: Genetic algorithm (one-dimensional maximization) 1.1 maximum point	1 2
2	2.1 Make a time series plot describing dependence of Z and Y versus X. Does it seem that two processes are related to each other? What can you say about the variation of the response	10 10
	models by maximum likelihood. Use the following mod $Y_i\approx exp(\frac{X_i}{\lambda}), Z_i\approx exp(\frac{X_i}{2*\lambda})$	el
	2.3 Implement this algorithm in R, use $\lambda_0 = 100$ and convergence criterion "stop if the change in λ is less than 0.001". What is the optimal λ and how many iterations were required to	11
	2.4 Plot E[Y] and E[Z] versus X in the same plot as Y and Z versus X. Comment whether the	12 12
3	Appendix 1	13

1 Question 1: Genetic algorithm (one-dimensional maximization)

Objective function:

$$f(x) = \frac{x^2}{e^x} - 2exp(-\frac{9sinx}{x^2 + x + 1})$$

Crossover function:

$$\frac{x+y}{2}$$

Mutation function:

 $X^2 mod 30$

1.0.1 function f in the range from 0 to 30

f(x) in the range from 0 to 30

Based on the plot, function has a global maximum in this range.

1.1 maximum point

x F ## 13 1.2 0.2341007

1.1.1 maxiter = 10 and mutprob = 0.1

1.1.1.1 Maximum values found

X Values ## 1 15.0 -1.951947 ## 7 7.5 -1.724415

1.1.1.2 Plot

1.1.2 maxiter = 10 and mutprob = 0.5

1.1.2.1 Maximum values found

X Values ## 1 15 -1.951947

1.1.2.2 Plot

1.1.3 maxiter = 10 and mutprob = 0.9

1.1.3.1 Maximum values found

X Values ## 1 6.25 -1.937529

1.1.3.2 Plot

1.1.4 maxiter = 100 and mutprob = 0.1

1.1.4.1 Maximum values found

X Values ## 1 15.00000 -1.951947 ## 6 7.50000 -1.724415 ## 2 7.52346 -1.724358

1.1.4.2 Plot

1.1.5 maxiter = 100 and mutprob = 0.5

1.1.5.1 Maximum values found

```
##
              Х
                    Values
## 1 15.0000000 -1.9519470
      6.2500000 -1.9375289
      3.1250000 -1.5495431
## 3
## 2
      0.3883803 -0.1161797
## 28 1.7566901 0.0925651
## 33 1.1503318 0.2310126
## 39
      1.1742994 0.2327976
## 46
     1.1846050 0.2333965
## 49
     1.2352981 0.2348457
```

1.1.5.2 Plot

1.1.6 maxiter = 100 and mutprob = 0.9

1.1.6.1 Maximum values found

X Values ## 1 15.000000 -1.9519470 ## 4 6.250000 -1.9375289 ## 19 14.570312 -1.9294709 ## 28 9.062500 -1.9224657 ## 32 1.288334 0.2336496

1.1.6.2 Plot

As we can see, when we increase the number of iterations (we create more generations) and we increase the chance of mutation, we can find near optimum solution.

2 Question 2

2.1 Make a time series plot describing dependence of Z and Y versus X. Does it seem that two processes are related to each other? What can you say about the variation of the response values with respect to X?

*Analisys: Both Y and Z have a similar trend, they decrease with time, with very similar amplitude. But Y and Z with respect to X seem to differ minutely.

2.2 Note that there are some missing values of Z in the data which implies problems in esti- mating models by maximum likelihood. Use the following model

$$Y_i \approx exp(\frac{X_i}{\lambda}), \quad Z_i \approx exp(\frac{X_i}{2 * \lambda})$$

Where λ is an unknown parameters. The goal is to derive the EM algorithm that estimates λ

$$\begin{split} L(\lambda|Y,Z) &= \prod_{i=1}^n f(Y) \times \prod_{i=1}^n f(Z) \\ &= \prod_{i=1}^n \frac{X_i}{\lambda} \cdot e^{-\frac{X_i}{\lambda} Y_i} \times \prod_{i=1}^n \frac{X_i}{2\lambda} \cdot e^{-\frac{X_i}{\lambda} Z_i} \\ &= \frac{X_1 \cdot \ldots \cdot X_n}{\lambda^n} \times e^{-\frac{1}{\lambda} \sum_{i=1}^n X_i Y_i} \times \frac{X_1 \cdot \ldots \cdot X_n}{(2\lambda)^n} \times e^{-\frac{1}{2\lambda} \sum_{i=1}^n X_i Z_i} \\ lnL(\lambda|Y,Z) &= \sum_{i=1}^n ln(X_i) - nln(\lambda) - \frac{1}{\lambda} \sum_{i=1}^n X_i Y_i + \sum_{i=1}^n ln(X_i) - nln(2\lambda) - \frac{1}{2\lambda} \sum_{i=1}^n X_i Z_i \end{split}$$

2.2.1 E-step: Derive Q function

Obtaining the expected values for the missing data using an initial parameter estimate.

$$Q(\theta, \theta^k) = E[loglik(\lambda|Y, Z) \mid \lambda^k, (Y, Z)]$$

$$= \sum_{i=1}^n ln(X_i) - nln(\lambda) - \frac{1}{\lambda} \sum_{i=1}^n X_i Y_i + \sum_{i=1}^n ln(X_i) - nln(2\lambda)$$

$$- \frac{1}{2\lambda} \left[\sum_{i=1}^n X_i Z_i + m \cdot X_i \cdot \frac{2\lambda_{k-1}}{X_i} \right]$$

Here, we are taking expectation on the missing values in Z, so we need to separate the Z_{obs} and Z_{miss} . Here we are assuming there are 'm' missing Z values. λ_k is the lambda value from the previous iteration.

2.2.2 M-step

Obtain the maximum likelihood estimate of the parameters by taking the derivative with respect to λ . Repeat till estimate converges.

$$-\frac{n}{\lambda} - \frac{n}{\lambda} + \frac{\sum_{i=1}^{n} X_i Y_i}{\lambda^2} + \frac{\sum_{i=1}^{m} X_i Z_i + m \cdot 2\lambda_{k-1}}{2\lambda^2} := 0$$
$$-2\lambda(2n) + 2\sum_{i=1}^{n} X_i Y_i + \sum_{i=1}^{n} X_i Z_i + m \cdot 2\lambda_{k-1} := 0$$

$$\lambda = \frac{\sum_{i=1}^{n} X_{i} Y_{i} + \frac{1}{2} \sum_{i=1}^{n} X_{i} Z_{i} + m \cdot \lambda_{k-1}}{2n}$$

2.3 Implement this algorithm in R, use $\lambda_0 = 100$ and convergence criterion "stop if the change in λ is less than 0.001". What is the optimal λ and how many iterations were required to compute it?

```
## [1] 110.01 100.00

## [1] 1.00000 100.00000 15.32735

## [1] 2.00000 15.32735 11.64593

## [1] 3.00000 11.64593 11.48587

## [1] 4.00000 11.48587 11.47891

## [1] 5.00000 11.47891 11.47861

## [1] 11.47861
```

2.4 Plot E[Y] and E[Z] versus X in the same plot as Y and Z versus X. Comment whether the computed λ seems to be reasonable.

$$E[Y] = \frac{X_i}{\lambda} , \quad E[Z] = \frac{X_i}{2\lambda}$$

```
lambda <- 11.47861

X<- data$X
data$E_Y <- lambda/X
data$E_Z <- 2*data$E_Y

ggplot(data=data,aes(x=X, group=1)) +
    geom_line(aes(y = Y, colour = "Y")) +
    geom_line(aes(y = Z, colour = "Z")) +
    geom_line(aes(y = E_Y, colour = "E_Y")) +
    geom_line(aes(y = E_Z, colour = "E_Z")) +
    geom_line(aes(y = E_Z, colour = "E_Z")) +
    ggtitle("Plot of Y,Z and their expected value vs. X")</pre>
```

^{*}Analysis: The Optimal value of lambda is 11.47861 which was converged after 5 iterations.

3 Appendix

```
knitr::opts_chunk$set(echo = TRUE)
# Question 1
set.seed(123456)
f <- function(x){</pre>
  ((x^2)/\exp(x))-2*\exp(-9*\sin(x)/(x^2+x+1))
crossover <- function(x,y){</pre>
  (x+y)/2
}
mutate <- function(x){</pre>
  x^2\%30
library(ggplot2)
df = data.frame(x = seq(0,30,0.1),F = sapply(X = seq(0,30,0.1),FUN = f))
ggplot(data = df)+
geom_line(mapping = aes(x = x,y = F),
          color = 'gold',
          size = 1.5)+
ggtitle('f(x) in the range from 0 to 30') +
theme(plot.title = element_text(hjust = 0.5))
```

```
df [which.max(df$F),]
GA <- function(maxiter,mutprob){</pre>
population \leftarrow data.frame(X = seq(0,30,5), Values = sapply(X = seq(0,30,5), FUN = f))
maximums <- data.frame(X = 0, Values = 0)</pre>
for(i in 1:maxiter){
  parents <- sample(x = population$X,size = 2)</pre>
  victim <- population[which.min(population$Values),]</pre>
  cross kid <- crossover(parents[1],parents[2])</pre>
  new_member <- ifelse(runif(1) <= mutprob,mutate(cross_kid),cross_kid)</pre>
  population[which(population$X == victim$X)[1],] <- c(new_member,f(new_member))</pre>
  maximums[i,] <- population[which.max(population$Values),]</pre>
}
unique(maximums)
df1 \leftarrow GA(10,0.1)
df1
ggplot()+
geom_line(data = df ,mapping = aes(x = x,y = F),
          color = 'gold',
          size = 1.5) +
geom_point(data = df1 ,mapping = aes(x = X,y = Values),
          color = 'royalblue4',
          size = 2) +
ggtitle('f(x) in the range from 0 to 30') +
theme(plot.title = element_text(hjust = 0.5))
df2 \leftarrow GA(10,0.5)
ggplot()+
geom_line(data = df, mapping = aes(x = x,y = F),
          color = 'gold',
          size = 1.5) +
geom_point(data = df2,mapping = aes(x = X,y = Values),
          color = 'royalblue4',
          size = 2) +
ggtitle('f(x)) in the range from 0 to 30') +
theme(plot.title = element_text(hjust = 0.5))
df3 \leftarrow GA(10,0.9)
df3
ggplot()+
geom_line(data = df, mapping = aes(x = x,y = F),
          color = 'gold',
          size = 1.5) +
geom point(data = df3,mapping = aes(x = X,y = Values),
          color = 'royalblue4',
          size = 2) +
ggtitle('f(x)) in the range from 0 to 30') +
theme(plot.title = element_text(hjust = 0.5))
df4 \leftarrow GA(100,0.1)
df4
ggplot()+
geom_line(data = df, mapping = aes(x = x,y = F),
          color = 'gold',
          size = 1.5) +
```

```
geom_point(data = df4,mapping = aes(x = X,y = Values),
          color = 'royalblue4',
          size = 2) +
ggtitle('f(x) in the range from 0 to 30') +
theme(plot.title = element_text(hjust = 0.5))
df5 \leftarrow GA(100,0.5)
df5
ggplot()+
geom_line(data = df, mapping = aes(x = x,y = F),
          color = 'gold',
          size = 1.5) +
geom_point(data = df5,mapping = aes(x = X,y = Values),
          color = 'royalblue4',
          size = 2) +
ggtitle('f(x) in the range from 0 to 30') +
theme(plot.title = element_text(hjust = 0.5))
df6 \leftarrow GA(100,0.9)
df6
ggplot()+
geom_line(data = df, mapping = aes(x = x,y = F),
          color = 'gold',
          size = 1.5) +
geom_point(data = df6,mapping = aes(x = X,y = Values),
          color = 'royalblue4',
          size = 2) +
ggtitle('f(x) in the range from 0 to 30') +
theme(plot.title = element_text(hjust = 0.5))
library(ggplot2)
data <- read.csv("physical1.csv")</pre>
ggplot(data=data, aes(x=X))+
  geom_line(aes(y = Y, color="Y"))+
  geom_line(aes(y = Z, color="Z"))+
  ggtitle("Plot of Y and Z vs X")+
 theme_light()
plot.ts(data)
EM.Norm<-function(data,eps,kmax,lambda_0=100){</pre>
 Y <- data$Y
 Z <- data$Z
 X <- data$X
 X \leftarrow X[!is.na(Z)]
 Zobs <- Z[!is.na(Z)] #observed data # Yobs</pre>
  Zmiss <- Z[is.na(Z)] #missing data Ymiss</pre>
 n <- length(X)
 r <- length(Zobs)
  m <- length(Zmiss)
 k<-0
```

```
#muk<-1
  \#sigma2k < -0.1
  llvalprev<- lambda_0+10+10*eps</pre>
  llvalcurr<-lambda_0
  print(c(llvalprev, llvalcurr))
  while ((abs(llvalprev-llvalcurr)>eps) && (k<(kmax+1))){</pre>
    llvalprev<-llvalcurr
    ## E-step
    llvalcurr <- (1/(2*n)) * (sum(X*Y) + sum(X*Zobs)/2 + m*llvalprev)
    ## M-step
    \#muk < -EY/n
    #sigma2k<-EY2/n-muk^2
    ## Compute log-likelihood
    #llvalcurr<-floglik(Yobs,muk,sigma2k,r)
    k < -k+1
    print(c(k,llvalprev,llvalcurr))
  return(llvalcurr)
}
EM.Norm(data, 0.001, 500, 100)
lambda <- 11.47861
X<- data$X
data$E_Y <- lambda/X</pre>
data$E_Z <- 2*data$E_Y
ggplot(data=data,aes(x=X, group=1)) +
  geom_line(aes(y = Y, colour = "Y")) +
  geom_line(aes(y = Z, colour = "Z")) +
  geom_line(aes(y = E_Y, colour = "E_Y")) +
  geom_line(aes(y = E_Z, colour = "E_Z")) +
  ggtitle("Plot of Y,Z and their expected value vs. X")
```