SM4分组密码算法

1 符号

⊕: 32位异或

<<< i: 32位循环左移 i 位

 \mathbb{Z}_2^n : 比特长度为 \mathbf{n} 的二进制序列集合

2 密钥及密钥参量

密钥长度为128比特,表示为 $MK = (MK_0, MK_1, MK_2, MK_3)$,其中 $MK_i (i = 0, 1, 2, 3)$ 为字。

轮密钥表示为 $(rk_0, rk_1, \ldots, rk_{31})$,其中 $rk_i (i=0,\ldots,31)$ 为32比特字。轮密钥由密钥生成。

 $FK = (FK_0, FK_1, FK_2, FK_3)$ 为系统参数, $CK = (CK_0, CK_1, CK_2, CK_3)$ 为固定参数,用于密钥扩展算法,其中 $FK_i (i=0,1,2,3)$ 、 $CK_i (i=0,1,2,3)$ 为字。

3 轮函数 F

3.1 轮函数结构

设输入为 $(X_0,X_1,X_2,X_3)\in (Z_2^{32})^4$,轮密钥为 $rk\in Z_2^{32}$,则轮函数F见式(1):

$$F(X_0, X_1, X_2, X_3, rk) = X_0 \oplus T(X_1 \oplus X_2 \oplus X_3 \oplus rk) \tag{1}$$

3.2 合成置换 T

 $T:Z_2^{32} o Z_2^{32}$ 是一个可逆变换,由非线性变换au和线性变换L复合而成,即T(.)=L(au(.))。

(a)非线性变换au

 τ 由4个并行的S盒构成。

设输入为 $A=(a_0,a_1,a_2,a_3)\in (Z_2^8)^4$,输出为 $B=(b_0,b_1,b_2,b_3)\in (Z_2^8)^4$,则见式(2):

$$(b_0, b_1, b_2, b_3) = \tau(A) = (Sbox(a_0), Sbox(a_1), Sbox(a_2), Sbox(a_3))$$
 (2)

Sbox数据见下表:

	0	. 1	2	3	4	5	. 6	7	8	9	- A	В.	C:	D	E	F
0	D6	90	E9	FE	cc	El	3D	B7	16	В6	14.	C2	28	FB	2C	05
1	2B	67	9A	.76	2A	BE	04	C3	AA	:44	13	26	49	86	06	99
2	9C	42	:50	F4	91	EF	.98	7A	33	54	0B	43	ED	CF	AC	62
3	E4	В3	1C	A9	C9	08	E8	95	80	DF	94	FA	75	8F	3F	A
4	47	07	A7	FC	F3	73	17	BA	83	59	3C	19	E6	85	4F	A
5	68	6B	81	B2	71	64	DA	8B	F8	EB	0F	4B	70	56	9D	35
6	1E	24	0E	5E	63	58	DI	A2	25	22	7C	3B	01	21	78	87
7	D4 .	00	46	57	9F	D3	27	52	4C	36	02	E7	Α0	C4	C8	9E
8	EA	BF	8A	D2	40	C7	38	B5	A3	F7	F2	CE	F9	61	15	'A1
9	E0	AE	5D	A4	9B	34	1A	55	AD	93	32	30	F5	8C	B1	E

	0	1.	2	3	4	5	6:	. 7	8	.9:	A	В	C	D	Ε	F
A	1D	F6	E2	2E	82	66	CA	60	CO	29	23	AB	0D	53	4E	6F
В	D5	DB	37	45	DE	FD	8E	2F	03	FF	6A	72	6D	6C	5B	51
С	8D	1B	AF	92	BB	DD	BC	7F	11	D9	5C	41	1F	10	5A	D
D	0A	C1	:31	88	A5	CD	7B	BD	2D	74	D0	12	B8	E5	B4	В
E	89	69	97	4A	0C	96	77	7E	65	B9	F1	09	C5	6E	C6	84
F	18	F0	7D	EC	3A	DC	4D	20	79	EE	-5F	3E	D7	СВ	39	48

(b)线性变换L

非线性变换au的输出是线性变换L的输入。设输入为 $B\in Z_2^{32}$,则见式(3):

$$C = L(B) = B \oplus (B < << 2) \oplus (B < << 10) \oplus (B < << 18) \oplus (B <<< 24)$$
 (3)

4 算法描述

4.1 加密算法

本加密算法由32次迭代运算和1次反序变换R组成。

设明文输入为 $(X_0,X_1,X_2,X_3)\in (Z_2^{32})^4$,密文输出为 $(Y_0,Y_1,Y_2,Y_3)\in (Z_2^{32})^4$,轮密钥为 $rk_i\in Z_2^{32},i=0,1,2,\ldots,31$ 。加密算法的运算过程如下:

(a)32次迭代运算见式(4):

$$X_{i+4} = F(X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i), i = 0, 1, \dots, 31$$
 (4)

(b)反序变换见式(5):

$$(Y_0, Y_1, Y_2, Y_3) = R(X_{32}, X_{33}, X_{34}, X_{35}) = (X_{35}, X_{34}, X_{33}, X_{32})$$
 (5)

4.2 解密算法

本算法的解密变换与加密变换结构相同,不同的仅是轮密钥的使用顺序。解密时,使用轮密钥序 $(rk_{31},rk_{30},\ldots,rk_0)$

4.3 密钥扩展算法

加密过程使用的轮密钥由加密密钥生成,其中加密密钥 $MK = (MK_0, MK_1, MK_2, MK_3) \in (Z_2^{32})^4$,加密过程中的轮密钥生成方式见式(6)和式(7):

$$(K_0, K_1, K_2, K_3) = (MK_0 \oplus FK_0, MK_1 \oplus FK_1, MK_2 \oplus FK_2, MK_3 \oplus FK_3)$$
 (6)

$$rk_i = K_{i+4} = K_i \oplus T'(K_{i+1} \oplus K_{i+2} \oplus K_{i+3} \oplus CK_i), i = 0, 1, \dots, 31$$
 (7)

式中:

a)T'是将6.2中合成置换 T 的线性变换 L 替换为 L',见式(8):

$$L'(B) = B \oplus (B <<< 13) \oplus (B <<< 23)$$
 (8)

b)系统参数FK的取值为:

$$FK_0 = (A3B1BAC6), FK_1 = (56AA3350), FK_2 = (677D9197), FK_3 = (B27022DC)$$

c)固定参数CK取值方法为:

$$ck_{i,j}$$
为 CK_i 的第 j 字 节 $(i=0,1,\ldots,31;j=0,1,2,3)$. 即 $CK_i=(ck_{i,0},ck_{i,1},ck_{i,2},ck_{i,3})\in (Z_2^8)^4$,则 $ck_{i,j}=(4i+j)x7 (mod256)$ 固定参数 CK_i $(i=0,1,\ldots,31)$ 具体值为:

00070E15,	1C232A31,	383F464D,	545B6269,
70777E85,	8C939AA1,	A8AFB6BD,	C4CBD2D9,
E0E7EEF5,	FC030A11,	181F262D,	343B4249,
50575 E 65,	6C737A81,	888F969D,	A4ABB2B9,
C0C7CED5,	DCE3EAF1,	F8FF060D,	141B2229,
30373E45,	4C535A61,	686F767D,	848B9299,
A0A7AEB5,	BCC3CAD1,	D8DFE6ED,	F4FB0209,
10171E25,	2C333A41,	484F565D,	$646\mathrm{B}7279_{\circ}$

解密密钥同加密密钥,解密使用的轮密钥由解密密钥生成,其轮密钥生成方法同加密过程的轮密钥生成方法。