Uma Introdução aos Sistemas Dinâmicos Discretos

Agenor Gonçalves Neto ^a São Paulo, 2020

^aOrientado pelo Prof. Salvador Addas Zanata (IME-USP).

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Bifurcação

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Bifurcação

Definição

Um sistema dinâmico é função $f: X \to X$, onde X é um espaço métrico.

Dado $x \in X$, nosso objetivo é estudar as propriedades da sequência definida recursivamente por

$$f^{0}(x) = x$$
 e $f^{k}(x) = f(f^{k-1}(x))$

para todo $k \ge 1$.

Definição

Seja $p \in X$.

- 1. Se f(p) = p, então p é um ponto fixo de f.
- 2. Se $f^n(p) = p$ para algum $n \ge 1$, então p é um ponto periódico de f de período n.
- O conjunto dos pontos periódicos de f será denotado por Per(f). 3. Se $f^n(p) = p$ para algum $n \ge 1$ e $f^k(p) \ne p$ para todo $1 \le k < n$, então p é um ponto
- periódico f de período primo n. O conjunto dos pontos periódicos de f de período primo n será denotado por $Per_n(f)$.

Definição

Se $x \in X$, então $\mathcal{O}(x) = \{f^k(x) : k \ge 0\}$ é a órbita de x.

Definição

Se $p \in \operatorname{Per}_n(f)$, então

$$\mathcal{B}(p) = \{ x \in X : \lim_{k \to \infty} f^{kn}(x) = p \}$$

 $\mathcal{B}(\infty) = \{ x \in X : \lim_{k \to \infty} |f^k(x)| = \infty \}$

é o conjunto estável de p. Além disso, dizemos que

Proposição

Seja $f:[a,b]\to\mathbb{R}$ uma função contínua. Se $f([a,b])\subset [a,b]$ ou $f([a,b])\supset [a,b]$, então f possui ponto fixo.

Demonstração.

Basta considerar a função contínua $g:[a,b]\to\mathbb{R}$ dada por g(x)=f(x)-x e observar, pelo TVI, que em ambos os casos existe $p\in[a,b]$ tal que g(p)=0.

Definição

Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 e $p \in \operatorname{Per}_n(f)$.

- i. Se $|Df^n(p)| < 1$, então p é um ponto atrator.
- ii. Se $|Df^n(p)| > 1$, então p é um ponto repulsor.

Essa definição pode ser estendida para órbitas de pontos periódicos. De fato, se um ponto é atrator, então todos os pontos de sua órbita também são atratores e, nesse caso, dizemos que a órbita é atratora.

Teorema

Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 e $p \in \mathsf{Per}_n(f)$.

- 1. Se $|Df^n(p)| < 1$, então existe uma vizinhança de p contida no conjunto estável de p.
- 2. Se $|Df^n(p)| > 1$, então existe uma vizinhança V de p com a seguinte propriedade: se $x \in V \setminus \{p\}$, então a órbita de x não está contida em V.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Bifurcação

Família Quadrática

Nessa seção, vamos considerar a família de funções $h:[0,1] \to [0,1]$ dadas por

$$h(x) = \mu x(1-x),$$

onde $\mu>1$ é um parâmetro real. Essa família de funções é conhecia como família quadrática.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Bifurcação

Família Quadrática: Estudo Inicial

Proposição

Se
$$\mu > 1$$
, então $h(0) = 0$ e $h(p_{\mu}) = p_{\mu}$, onde $p_{\mu} = \frac{\mu - 1}{\mu}$.

Proposição

Se $\mu > 1$, então $\lim_{k \to \infty} h^k(x) = -\infty$ para todo $x \in (-\infty, 0) \cup (1, \infty)$.

Família Quadrática: Estudo Inicial

Proposição

Se $1 < \mu < 3$, então

- 1. 0 é um ponto repulsor e p_{μ} é um ponto atrator.
- 2. $\lim_{k \to \infty} h^k(x) = p_{\mu}$ para todo 0 < x < 1.

Desse modo, a dinâmica de h está completamente determinada quando $1<\mu<$ 3. De fato,

$$\mathcal{B}(0)=\{0,1\},\quad \mathcal{B}(p_u)=(0,1)\quad ext{e}\quad \mathcal{B}(\infty)=(-\infty,0)\cup(1,\infty).$$

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Bifurcação

Suponha $\mu >$ 4. Considere o conjunto

$$\Lambda_n = \{ x \in [0,1] : h^n(x) \in [0,1] \}$$

formado pelos pontos de [0,1] que permanecem em [0,1] após n iterações de h e o conjunto

$$\Lambda = \bigcap_{n=1}^{\infty} \Lambda_n$$

formado pelos pontos de [0,1] cuja órbita está contida em [0,1]. Desse modo, podemos restringir o estudo da dinâmica de h em Λ .

Proposição

Se $\mu >$ 4, então

- 1. Λ_n é a união de 2^n intervalos fechados disjuntos.
- 2. $h^n:[a,b] \rightarrow [0,1]$ é bijetora, onde [a,b] é um dos intervalos que formam Λ_n .

Lema

Se
$$\mu > 2 + \sqrt{5}$$
, então

- 1. $|Dh(\Lambda_1)| > \lambda > 1$.
- 2. $b-a<\frac{1}{\lambda^n}$, onde [a,b] é um dos intervalos que formam Λ_n .

Teorema

Se $\mu > 2 + \sqrt{5}$, então Λ é um conjunto de Cantor ^a.

Demonstração.

- a) Λ é totalmente desconexo.
 - Se existe $[a,b]\subset \Lambda$, seja k tal que $\frac{1}{\lambda^k}<|a-b|$. Em particular, $[a,b]\subset \Lambda_k$, o que é um absurdo pois os intervalos que formam Λ_k possuem tamanho menor que $\frac{1}{\lambda^k}$.
- b) Λ é perfeito.

Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Se $x \in [a,b]$, onde [a,b] é um dos intervalos que formam Λ_k , então $a \in \Lambda$ e $|x-a| < \varepsilon$ e, portanto, x é ponto de acumulação de Λ . \square

Observação

Esse teorema é válido para 4 < μ < 2 + $\sqrt{5}$, porém a demonstração é mais complicada.

 $^{{}^}a\mathsf{Um}$ subconjunto de $\mathbb R$ não vazio, limitado, totalmente desconexo e perfeito.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Bifurcação

Definição

Seja $f: X \to X$ uma função. Dizemos que f é topologicamente transitiva se dados $x, y \in X$ e $\varepsilon > 0$, existem $z \in X$ e $k \ge 0$ tais que $|x - z| < \varepsilon$ e $|y - f^k(z)| < \varepsilon$.

Proposição

Se $\mu>2+\sqrt{5}$, então $h|_{\Lambda}$ é topologicamente transitiva.

Demonstração.

Sejam $x,y\in\Lambda$, $\varepsilon>0$ e $k\geq1$ tal que $\frac{1}{\lambda^k}<\varepsilon$. Temos que $h^k:[a,b]\to[0,1]$ é bijetora, onde $x\in[a,b]$ e [a,b] é um dos intervalos que formam Λ_k . Pelo TVI, existe $z\in[a,b]$ tal que $h^k(z)=y$. Observando que $z\in\Lambda$ e $|x-z|<\varepsilon$, concluímos que $h|_\Lambda$ é topologicamente transitiva.

Definição

Seja $f: X \to X$ uma função. Dizemos que f depende sensivelmente das condições iniciais se existe $\delta > 0$ com a seguinte propriedade: dados $x \in X$ e $\varepsilon > 0$, existem $y \in X$ e $k \ge 0$ tais que $|x - y| < \varepsilon$ e $|f^k(x) - f^k(y)| > \delta$.

Proposição

Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ depende sensivelmente das condições iniciais.

Demonstração.

Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Temos que $h^k : [a, b] \to [0, 1]$ é bijetora, onde $x \in [a, b]$ e [a, b] é um dos intervalos que formam Λ_k . Suponha que $h^k(a) = 0$ e $h^k(b) = 1$; se $h^k(a) = 1$ e $h^k(b) = 0$, a demonstração é análoga.

Como $h(\frac{1}{2}) > 1$ e $x \in \Lambda$, temos que $h^k(x) \in [0, \frac{1}{2}) \cup (\frac{1}{2}, 1]$. Se $h^k(x) \in [0, \frac{1}{2})$, então $|h^k(x) - h^k(b)| = |h^k(x) - 1| > \frac{1}{2}$ e se $h^k(x) \in (\frac{1}{2}, 1]$, então $|h^k(x) - h^k(a)| = |h^k(x)| > \frac{1}{2}$.

Observando que $|x-a|<\varepsilon$ e $|x-b|<\varepsilon$, concluímos que $h|_{\Lambda}$ depende sensivelmente das condições iniciais.

Definição

Seja $f:X \to X$ uma função. Dizemos que f é caótica se as seguintes condições são válidas:

- i. Per(f) é denso em X.
- ii. f é topologicamente transitiva.
- iii. f depende sensivelmente das condições iniciais.

Teorema

Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ é caótica.

Demonstração.

 $x \in [a, b]$ e [a, b] é um dos intervalos que formam Λ_k . Como $h^k([a, b]) \supset [a, b]$, existe $y \in [a, b]$ tal que $h^k(y) = y$. Observando que $y \in \Lambda$ e $|x - y| < \varepsilon$, concluímos que $\text{Per}(h|_{\Lambda})$ é denso em Λ .

Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Temos que $h^k : [a, b] \to [0, 1]$ é bijetora, onde

Observação

Esse teorema é válido para 4 < μ < 2 + $\sqrt{5}$, porém a demonstração é mais complicada.

Teorema

Seja $f: X \to X$ é uma função contínua, onde X é um conjunto infinito. Se Per(f) é denso em X e f é topologicamente transitiva, então f é caótica.

Demonstração.

Ver [Holmgren, 1996].

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Bifurcação

Definição

Sejam $f:X\to X$, $g:Y\to Y$ e $\tau:X\to Y$ funções. Dizemos que f e g são topologicamente conjugadas por τ se as seguintes condições são válidas:

- i. au é um homeomorfismo.
- ii. $\tau \circ f = g \circ \tau$.

Proposição

Sejam $f: X \to X$, $g: Y \to Y$ e $\tau: X \to Y$ funções. Se f e g são topologicamente conjugadas por τ , então

- 1. Per(f) é denso em X se, e somente se, Per(g) é denso em Y.
- 2. f é topologicamente transitiva se, e somente se, g é topologicamente transitiva.

Lema

A função $T:[0,1] \rightarrow [0,1]$ dada por

$$T(x) = \begin{cases} 2x, & x \in [0, \frac{1}{2}] \\ 2 - 2x, & x \in [\frac{1}{2}, 1] \end{cases}$$

Teorema

Se $\mu =$ 4, então h é caótica.

Demonstração.

Basta observar que $\tau \circ T = h \circ \tau$, onde $\tau : [0,1] \to [0,1]$ é o homeomorfismo dado por $\tau(x) = \text{sen}^2(\frac{\pi x}{2})$.

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Bifurcação

Família Quadrática: Dinâmica Simbólica

Seja

$$\Sigma = \{(x_0 x_1 x_2 \dots) : x_n = 1 \text{ ou } x_n = 2 \text{ para todo } n \ge 0\}.$$

Seja $d:\Sigma imes\Sigma o\mathbb{R}$ a função dada por

$$d(x,y) = \sum_{k=0}^{\infty} \frac{|x_k - y_k|}{2^k},$$

onde
$$x = (x_0 x_1 x_2 ...)$$
 e $y = (y_0 y_1 y_2 ...)$.

Família Quadrática: Dinâmica Simbólica

Seja $\sigma: \Sigma \to \Sigma$ a função dada por $\sigma(x_0 x_1 x_2 \dots) = (x_1 x_2 x_3 \dots)$. Se $\Lambda_1 = I_1 \cup I_2$, podemos definir a função $S: \Lambda \to \Sigma$ dada por

$$S(x) = (x_0 x_1 x_2 ...),$$

onde $x_k = 1$ se $h^k(x) \in I_1$ e $x_k = 2$ se $h^k(x) \in I_2$ para todo $k \ge 0$.

Teorema

Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ e σ são topologicamente conjugadas por S.

Família Quadrática: Dinâmica Simbólica

Corolário

Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ possui 2^n pontos periódicos de período n para todo $n \ge 1$.

Demonstração.

Basta observar que os pontos periódicos de σ de período n são determinados pelas primeiras n entradas e, portanto, σ possui 2^n pontos periódicos de período n para todo n > 1.

Sumário

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Bifurcação

Teorema de Sharkovsky

Seja f_{λ} uma família parametrizada de funções no parâmetro λ de modo que a função

$$G(x,\lambda)=f_{\lambda}(x),$$

definida num aberto de \mathbb{R}^2 , seja de classe \mathcal{C}^{∞} nas variáveis x e λ .

Definição

Dizemos que a família f_{λ} sofre uma bifurcação em λ_0 se existe $\varepsilon > 0$ com a seguinte propriedade: se $\lambda_1 \in (\lambda_0 - \varepsilon, \lambda_0)$ e $\lambda_2 \in (\lambda_0, \lambda_0 + \varepsilon)$, então f_{λ_1} e f_{λ_2} não são topologicamente conjugadas.

Exemplo

A família E_λ de funções dadas por $E_\lambda(x)=e^{x+\lambda}$ sofre uma bifurcação em $\lambda_0=-1$.

Exemplo

A família quadrática sofre uma bifurcação em $\mu_0=3$.

Observe, nos exemplos, que as bifurcações ocorreram quando a derivada em módulo no ponto fixo se tornou igual à 1. O teorema a seguir mostra que isso não é coincidência.

Teorema

Seja f_{λ} uma família parametrizada de funções. Suponha que

- 1. $f_{\lambda_0}(x_0) = x_0$,
- 2. $f'_{\lambda_0}(x_0) \neq 1$.

Então existem vizinhanças I e J de λ_0 e x_0 , respectivamente, e uma função $p:I\to J$ de classe \mathcal{C}^∞ tais que

- 1. $p(\lambda_0) = x_0$,
- 2. $f_{\lambda}(p(\lambda)) = p(\lambda)$ para todo $\lambda \in I$.

Além disso, f_{λ} não possui outros pontos fixos em J.

Inicialmente, observe que se $\mu > 2$, então existe $p'_{\mu} < p_{\mu}$ tal que $h(p'_{\mu}) = p_{\mu}$. Na Figura $\ref{eq:property}$, observe o gráfico de h^2 para alguns valores de μ , juntamente com um quadrado de vértices (p'_{μ}, p_{μ}) , (p_{μ}, p_{μ}) , (p_{μ}, p'_{μ}) e (p'_{μ}, p'_{μ}) .

 $Rh(x) = L \circ h^2 \circ L^{-1}(x).$

Restringindo o gráfico de h^2 ao quadrado e rotacionando em π radianos, vemos que ele se assemelha ao gráfico da própria h no intervalo [0,1] para um valor de μ diferente. Se $\mu>2$, considere a função $L:[p'_{\mu},p_{\mu}]\to[0,1]$ linear tal que $L(p'_{\mu})=1$ e $L(p_{\mu})=0$. Desse modo, definimos a renormalização de h como a função $Rh:[0,1]\to[0,1]$ dada por

Observe que cada ponto fixo de Rh está relacionado com um ponto periódico de h de período 2. Além disso, o gráfico de Rh não está contido em [0,1] para algum $\mu < 4$.

Desse modo, esperamos que Rh sofra uma bifurcação com duplicação de período conforme o parâmetro cresce e, de maneira análoga, que h^2 sofra uma bifurcação com duplicação de período. Continuando esse processo, temos uma sucessão de bifurcações com duplicação de período na família quadrática.

O computador nos permite observar esse fato experimentalmente. Para isso, vamos computar o digrama de órbita do ponto crítico da família quadrática para $\mu>2$.

Sumário

Conceitos Elementares

Família Quadrática

Estudo Inicial

Conjuntos de Cantor

Caos

Conjugação Topológica

Dinâmica Simbólica

Bifurcação

Teorema de Sharkovsky

Nessa seção, vamos considerar $f: \mathbb{R} \to \mathbb{R}$ uma função contínua. Além disso, escreveremos $I_0 \longrightarrow I_1 \longrightarrow \cdots \longrightarrow I_n$ quando I_0, I_1, \ldots, I_n são intervalos compactos e $f(I_k) \supset I_{k+1}$ para todo $0 \le k \le n$.

Proposição

Se $I_0 \longrightarrow I_1$, então existe um intervalo fechado $I'_0 \subset I_0$ tal que $f(I'_0) = I_1$.

Demonstração.

Se $l_0 = [a, b]$ e $l_1 = [c, d]$, sejam $p, q \in [a, b]$ tais que f(p) = c e f(q) = d. Suponha que $p \le q$; se $q \le p$, a demostração é análoga.

Definindo $b' = \inf\{x \in [p, q] : f(x) = d\}$ e $a' = \sup\{x \in [p, b'] : f(x) = c\}$ e observando que f é contínua, podemos concluir que $f(I'_0) = I_1$, onde $I'_0 = [a', b']$.

Lema

Se $l_0 \longrightarrow l_1 \longrightarrow \cdots \longrightarrow l_{n-1} \longrightarrow l_0$, então existe $p \in l_0$ tal que as seguintes condições são válidas:

- 1. $f^k(p) \in I_k$ para todo $1 \le k < n$.
- 2. $f^n(p) = p$.

Demonstração.

Basta observar que podemos construir uma sequência de intervalos fechados $l'_0, l'_1, \ldots, l'_{n-1}$ com as seguintes propriedades:

- a) $I_0 \supset I_0' \supset I_1' \supset \cdots \supset I_{n-1}'$.
- b) $f^{k}(I'_{k-1}) = I_{k}$ para todo $1 \le k < n$.
- c) $f^n(I'_{n-1}) = I_0$.

Teorema

Se $\operatorname{Per}_3(f) \neq \emptyset$, então $\operatorname{Per}_n(f) \neq \emptyset$ para todo $n \geq 1$.

Demonstração.

Sejam $p_1 < p_2 < p_3$ os pontos da órbita de um elemento de $Per_3(f)$. Suponha que $f(p_1) = p_2$ e $f(p_2) = p_3$; se $f(p_1) = p_3$ e $f(p_3) = p_2$, a demonstração é análoga. Definindo $I_0 = [p_1, p_2]$ e $I_1 = [p_2, p_3]$, temos que $I_0 \longrightarrow I_1$, $I_1 \longrightarrow I_0$ e $I_1 \longrightarrow I_1$. Desse modo, podemos demonstrar as seguintes afirmações:

a)
$$\mathsf{Per}_1(f)
eq \emptyset$$
.

De fato, $I_1 \longrightarrow I_1$ implica que existe $p \in I_1$ tal que f(p) = p. b) $\operatorname{Per}_2(f) \neq \emptyset$. De fato, $I_0 \longrightarrow I_1 \longrightarrow I_0$ implica que existe $p \in I_0$ tal que $f(p) \in I_1$ e $f^2(p) = p$. Se f(p) = p, então $p \in I_0 \cap I_1$, o que é um absurdo pois $I_0 \cap I_1 = \{p_2\}$ e $p_2 \in \operatorname{Per}_3(f)$. c) $\operatorname{Per}_4(f) \neq \emptyset$.

Definição (Ordenação de Sharkovsky)

$$3 \, \triangleright \, 5 \, \triangleright \cdots \, \triangleright \, 2 \cdot 3 \, \triangleright \, 2 \cdot 5 \, \triangleright \cdots \, \triangleright \, 2^2 \cdot 3 \, \triangleright \, 2^2 \cdot 5 \, \triangleright \cdots \, \triangleright \, 2^k \cdot 3 \, \triangleright \, 2^k \cdot 5 \, \triangleright \cdots \, \triangleright \, 2^2 \, \triangleright \, 2 \, \triangleright \, 1$$

Teorema (Sharkovsky)

Se $\operatorname{Per}_n(f) \neq \emptyset$, então $\operatorname{Per}_m(f) \neq \emptyset$ para todo $n \triangleright m$.

Demonstração.

Ver [Burns e Hasselblatt, 2011].

O Teorema de Sharkovsky pode ser usado para provar que órbitas periódicas de certos tamanhos não existem. Por exemplo, observando os gráficos de h, h^2 e h^4 para $\mu=3.2$ vemos que $\operatorname{Per}_4(h)=\emptyset$ e, portanto, $\operatorname{Per}_n(h)=\emptyset$ para todo $n\geq 3$.

Teorema

Se $n \ge 1$, então existe uma função f com as seguintes propriedades:

- 1. $\operatorname{Per}_n(f) \neq \emptyset$.
- 2. $Per_m(f) = \emptyset$ para todo $m \triangleright n$.

Demonstração.

Ver [Burns e Hasselblatt, 2011].

Referências

Burns, K. e Hasselblatt, B. (2011).

The Sharkovsky Theorem: a Natural Direct Proof.

The American Mathematical Monthly, 118(3):229–244.

🔋 Devaney, R. L. (1989).

An Introduction to Chaotic Dynamical Systems.

Perseus Books.

🖥 Holmgren, R. A. (1996).

A First Course in Discrete Dynamical Systems.

Springer-Verlag New York.