Calculus I. Summer 17 Test 2 Review.

Make sure you also study all the quizzes, then notes and homework examples!

Overview of Derivatives

Power Rule:
$$y = x^2$$
, $7x^{-3}$, $\sqrt[5]{x^7}$, $x^{\sqrt{3}}$.

$$x^{-3}, \sqrt[5]{}$$

$$x^{\sqrt{3}}$$
.

Trig:
$$y = \sin x$$
, $\cos x$, $\tan x$, $\sec x$, $\csc x$, $\cot x$, $\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$.

Hyperbolic Trig:
$$y = \sinh x$$
, $\cosh x$, $\tanh x$.

Exponential:
$$y = e^x$$
, 3^x , $(\ln 2)^x$.

Logs:
$$y = \ln x$$
, $\log_5 x$, $\log_{2\pi} x$.

Find y' using implicit differentiation and logarithmic differentiation.

1. Find y'. Don't simplify.

a)
$$y = \frac{x^4 - \sqrt{x}}{\sin 3x}$$

b)
$$y = \frac{1}{\sqrt[7]{t^5}}$$

c)
$$y = e^p \cosh^3(2^p)$$

d)
$$y = \sec(\log_2(x))$$

e)
$$y = \frac{\tan x}{e^x - \sqrt{x}}$$

$$f) \quad x3^y = (x+1)y$$

- g) $xy = \csc y$
- h) $y = x^{(\frac{5}{x})}$
- $i) \quad y = \sin(x^{(\frac{5}{x})})$
- $j) \quad y = \sin^{-1}(2^r)$
- 2. Find the tangent slope to $y = \frac{7^x}{\sin(e^x)}$ at x = 3.
- 3. Find the tangent line to the curve given by $xy + y = 7^x$ at (x, y) = (0, 1).
- 4. Find the linearization L(x) to $f(x) = x^3 + 4x$ at $x_1 = 1$. Use it to approximate f(1.01). Also give the differentials dx and dy.
- 5. Estimate ln(1.01) using linearization.
- 6. Let the functions f(x) and g(x) be given such that f(2) = 1, f'(2) = 3, g(2) = -1, g'(2) = 5.
 - a) If $y = f(x)g(x) + g(x) \frac{g(x)}{f(x)}$ find the value of the derivative y' at x = 2.
 - b) If $y = \sin(\pi g(x))$ find the value of the derivative y' at x = 2.
- 7. A particle is moving along the curve given by $xy = y^2 e^{(x-1)}$. At the point (1,1) the x-coordinate is increasing at the rate 5 m/s. Find the rate of change in the y-coordinate.
- 8. A light on a 3 ft pole shines on a 1 inch mouse running away at 2 ft/s. How fast is the tip of the mouse shadow moving when it is 4 ft away?
- 9. A cylindrical tank with radius 5 m is being filled at a rate of 3 m^3/min . How fast is the height of the water increasing?