

THE EFFECT OF MICROSTRUCTURAL HETEROGENEITY ON DUCTILE FAILURE

GEOFFREY BOMARITO*, JAMES WARNER*, DEREK WARNER+

* NASA LANGLEY RESEARCH CENTER

+ CORNELL UNIVERSITY

13TH US NATIONAL CONGRESS ON COMPUTATIONAL MECHANICS

DUCTILE FAILURE

THE TWO SCALE PROBLEM

Micro

Macro

- Large-scale phenomenon controlled by micro-scale features
- We aim to capture two effects:
 - Variability in loading (micro-scale)
 - Variability in initial microstructure

VARIABILITY IN LOADING (MICRO-SCALE)

- Here loading is defined by 2 parameters

- Triaxiality

- $$T = \frac{\sigma_h}{\sigma_e}$$

- Lode Parameter

- $$L = \frac{27J_3}{2\sigma_e^3}$$

VARIABILITY IN LOADING (MICRO-SCALE)

VARIABILITY IN MICROSTRUCTURE

Chen and Lai (2014)

- Assume second phase particles act as voids
- Assume local porosity to be the defining microstructural feature

THE MODEL: MICRO-SCALE

- 3D FEM
- Initial porosity (f_0) defines geometry
- T and L define the loading ratios: $\frac{\sigma_2}{\sigma_1}$ and $\frac{\sigma_3}{\sigma_1}$
- Allow for different localization modes

THE MODEL: CONTINUUM-SCALE

$$\Phi = \left(\frac{\bar{\sigma}}{\sigma_y} \right)^2 + 2q_1 f^* \cosh \left(\frac{3}{2} q_2 \frac{\sigma_h}{\sigma_y} \right) - \left(1 + (q_1 f^*)^2 \right)$$

$$f^* = \begin{cases} f & : f \leq f_c \\ f_c + \kappa(f - f_c) & : f > f_c \end{cases}$$

q_1
 q_2
 f_c

POST-FAILURE RESPONSE

RECAP ON MECHANICAL RESPONSE

Given:
 f_0, T, L

Response = $f(\text{microstructure, loading})$

$$\begin{aligned} q_1(f_0, T, L) \\ q_2(f_0, T, L) \\ f_c(f_0, T, L) \end{aligned}$$

$$\begin{aligned} q_1 \\ q_2 \\ f_c \end{aligned}$$

UNCERTAINTY QUANTIFICATION

Response = $f(\text{microstructure}, \text{loading})$

$$\begin{aligned} q_1(f_0, T, L) \\ q_2(f_0, T, L) \\ f_c(f_0, T, L) \end{aligned}$$

CREATION OF REPRESENTATIVE MICROSTRUCTURES

Average particle volume fraction = 3%

QUERY RECONSTRUCTIONS FOR NEW STATISTICS

Looking for statistics on particle volume fraction (f_0)
-dependent upon sampling volume!

ASSIGNING LOCAL MICROSTRUCTURE

RECAP ON SEEDING RANDOM MICROSTRUCTURES

PRELIMINARY RESULTS

CLOSING REMARKS

- Failure initiation in a homogeneous material over predicts ductility
- Microstructural heterogeneity leads to macro-scale uncertainty
- Better statistics on microstructure (from observation rather than reconstruction) are needed
- Incorporation of more microstructural features could yield improvements

THANK YOU!

ARE THERE ANY QUESTIONS?

