ТЕОРІЯ ЙМОВІРНОСТЕЙ, СТАТИСТИКА ТА ЙМОВІРНІСНІ ПРОЦЕСИ Лекція 12.

Розора Ірина Василівна

Київ, 2022

Функція вірогідності

Функція впливу

- 3 Властивості функції впливу, інформація за Фішером
 - Нерівність Крамера Рао

Зміст

- Функція вірогідності
- Властивості функції впливу, інформація за Фішером
 - Нерівність Крамера Рао

Нехай $X:\Omega\to \mathbb{R}^n$ — n-кратна вибірка, тобто $X=(\xi_1,\xi_2,\ldots,\xi_n)$ і ξ_k — незалежні однаково розподілені в.в. (н.о.р.в.в.) із щільністю $f(x,\theta)$, де параметр $\theta\in\Theta$.

Зауваження

Якщо елементи вибірки ξ_k дискретно розподілені, то будемо розглядати їх точкові ймовірності $P(x,\theta)$.

Надалі, всі твердження будемо записувати саме для неперервної вибірки.

Функція вірогідності

Функцією вірогідності (або функцією правдоподібності) кратної вибірки називається сумісна щільність розподілу (ссумісна ймовірність для д.в.в.) вибірки:

$$L(x,\theta) \equiv f(x,\theta) = \prod_{k=1}^n f(x_k,\theta), \quad x = (x_1,x_2,\ldots,x_n) \in \mathbb{R}^n.$$

Вибіркова функція вірогідності

Вибірковою функцією вірогідності (емпіричною функцією вірогідності) називається в.в., що отримується в результаті підстановки у функцію вірогідності замість аргумента $x \in \mathbb{R}^n$ значення вибірки як випадкового вектора

$$L(X, \theta) \equiv L(x, \theta)|_{x=X}$$
.

Функція вірогідності спостереження

Функцією вірогідності спостереження для кратної вибірки називається щільність розподілу спостереження ξ_1

$$f(y,\theta)$$
,

тобто така вимірна функція f, що

$$P_{\theta}(\xi_k \in B) = \int_B f(y, \theta) dy, \quad \forall B \in \mathcal{B}, \forall \theta \in \Theta.$$

Зміст

- Функція вірогідності
- Функція впливу
- Властивості функції впливу, інформація за Фішером • Нерівність Крамера – Рао

Функція впливу

У даному розділі припускатимемо, що параметричний простір евклідів: $\theta \subset \mathbb{R}^d$, а функція вірогідності $L(x,\theta)$ – диференційовна за θ .

Функція впливу

Функцією впливу, або функцією внеску, вибірки X називається частинна похідна за параметром θ від логарифма вибіркової функції вірогідності :

$$U(X,\theta) \equiv \frac{\partial}{\partial \theta} \ln L(X,\theta).$$

У випадку кратної вибірки функцією впливу спостереження ξ називається похідна за θ від логарифма функції вірогідності спостереження:

$$u(\xi,\theta) \equiv \frac{\partial}{\partial \theta} \ln f(\xi,\theta).$$

Теорема (про функцію впливу кратної вибірки)

Для кратної вибірки $X=(\xi_1,\ldots,\xi_n)$ вибіркова функція впливу дорівнює сумі функцій впливу спостережень, які її утворюють:

$$U(X,\theta) = \sum_{k=1}^{n} u(\xi_k,\theta).$$

Доведення.

Доведення випливає з означення функції вірогідності кратної вибірки та лінійності частинної похідної:

$$\frac{\partial}{\partial \theta} \ln L(X, \theta) = \frac{\partial}{\partial \theta} \prod_{k=1}^{n} f(\xi_k, \theta)$$

$$= \frac{\partial}{\partial \theta} \sum_{k=1}^{n} \ln f(\xi_k, \theta) = \sum_{k=1}^{n} \frac{\partial}{\partial \theta} \ln f(\xi_k, \theta)$$

$$= \sum_{k=1}^{n} u(\xi_k, \theta)$$

Приклад. Пуассонівська вибірка

Для кратної вибірки з розподілом Пуассона $\Pi(\lambda)$ та невідомим параметром $\theta=\lambda$

$$u(y, \theta) = \frac{\partial}{\partial \theta} \ln \left(\exp(-\theta) \frac{\theta^y}{y!} \right) = y/\theta - 1, \quad y \in \mathbb{Z}_+,$$

$$U(X,\theta) = \sum_{k=1}^{n} (\xi_k/\theta - 1) = n(\overline{X}/\theta - 1),$$

 $\overline{X} = \frac{1}{n} \sum_{k=1}^{n} \xi_k$ —вибіркове середнє.

Приклад. Вибірка з гама-розподілу

Для кратної вибірки з гама-розподілом $\Gamma(\lambda,\alpha)$ та невідомим параметром $\theta = (\lambda, \alpha)$

$$\ln f(y,\theta) = \alpha \ln \lambda + (\alpha - 1) \ln y - \lambda y - \ln \Gamma(\alpha),$$

$$u_1(y,\theta) = \alpha/\lambda - y,$$

$$u_2(y,\theta) = \ln \lambda + \ln y - \psi(\alpha), \quad \psi(\alpha) = \frac{\partial}{\partial \alpha} \ln \Gamma(\alpha)$$

$$U_1(X,\theta) = n(\alpha/\lambda - \hat{\mu}_n),$$

$$U_2(X,\theta) = n \ln \lambda + \ln \prod_{n=1}^{n} \xi_k - n\psi(\alpha).$$

Приклад. Вибірка з гама-розподілу

Для кратної вибірки з гама-розподілом $\Gamma(\lambda,\alpha)$ та невідомим параметром $\theta=(\lambda,\alpha)$

$$\ln f(y,\theta) = \alpha \ln \lambda + (\alpha - 1) \ln y - \lambda y - \ln \Gamma(\alpha),$$

$$u_1(y,\theta) = \alpha/\lambda - y,$$

$$u_2(y,\theta) = \ln \lambda + \ln y - \psi(\alpha), \quad \psi(\alpha) = \frac{\partial}{\partial \alpha} \ln \Gamma(\alpha),$$

$$U_1(X,\theta) = n(\alpha/\lambda - \mu_n),$$

$$U_2(X,\theta) = n \ln \lambda + \ln \prod_{k=1}^n \xi_k - n\psi(\alpha).$$

Приклад. Вибірка з гама-розподілу

Для кратної вибірки з гама-розподілом $\Gamma(\lambda,\alpha)$ та невідомим параметром $\theta=(\lambda,\alpha)$

$$\ln f(y,\theta) = \alpha \ln \lambda + (\alpha - 1) \ln y - \lambda y - \ln \Gamma(\alpha),$$

$$u_1(y,\theta) = \alpha/\lambda - y,$$

$$u_2(y,\theta) = \ln \lambda + \ln y - \psi(\alpha), \quad \psi(\alpha) = \frac{\partial}{\partial \alpha} \ln \Gamma(\alpha),$$

$$U_1(X,\theta) = n(\alpha/\lambda - \hat{\mu}_n),$$

$$U_2(X,\theta) = n \ln \lambda + \ln \prod_{n=1}^{n} \xi_k - n\psi(\alpha).$$

k=1

Умови регулярності

- **1** Множина тих значень вибірки X, для яких функція вірогідності $L(X, \theta)$ додатна, не залежить від θ .
- **3** $U(X, \theta)$ ненульова та інтегровна у квадраті, тобто:

$$0 < \mathbf{M}_{\theta} U^2(X, \theta) < \infty, \quad \forall \theta \in \Theta.$$

• Знак похідної за параметром θ можна внести під знак інтегралів вигляду $\int_S g(x,\theta) L(x,\theta) \lambda(\,\mathrm{d} x)$ з функцією вірогідності $L(x,\theta)$ для певних функцій g, що спричиняється умовою 1 і збіжністю інтеграла від похідної.

Зміст

- 1 Функція вірогідності
- 2 Функція впливу
- 3 Властивості функції впливу, інформація за Фішером
 - Нерівність Крамера Рао

Властивості функції впливу, інформація за Фішером

Теорема (про центрованість функції впливу)

За умов регулярності функція впливу центрована:

$$\mathbf{M}_{\theta}U(X,\theta)=0, \quad \forall \theta \in \Theta.$$

Доведення.

Оскільки функція вірогідності $L(x,\theta)$ — це сумісна щільність всієї вибірки, то

$$\int_{\mathbf{R}^n} L(x,\theta) dx = 1.$$

Візьмемо похідну від лівої і правої частин рівності за θ , міняючи диференціювання та інтегрування місцями:

$$0 = \int_{\mathbf{R}^n} \frac{\partial L(x,\theta)}{\partial \theta} dx = \int_{\mathbf{R}^n} \frac{\partial L(x,\theta)}{\partial \theta} \frac{L(x,\theta)}{L(x,\theta)} dx$$

$$\int_{\mathbf{R}^n} \frac{\partial \ln(L(x,\theta))}{\partial \theta} L(x,\theta) dx = \mathbf{M}_{\theta} \ln(L(X,\theta)) = \mathbf{M}_{\theta} U(X,\theta)$$

Інформація за Фішером

Нехай параметр $\theta \in \Theta \subset R$ – скалярний. Інформацією за Фішером у вибірці X називається функція

$$I(\theta) \equiv \mathsf{D}_{\theta} U(X, \theta) = \mathsf{M}_{\theta} U^2(X, \theta).$$

Друга рівність в означенні випливає з теореми про центрованість функції впливу та з властивостей дисперсії.

Інформація за Фішером

Нехай параметр $\theta \in \Theta \subset R$ – скалярний. Інформацією за Фішером у вибірці X називається функція

$$I(\theta) \equiv \mathsf{D}_{\theta} U(X, \theta) = \mathsf{M}_{\theta} U^2(X, \theta).$$

Друга рівність в означенні випливає з теореми про центрованість функції впливу та з властивостей дисперсії.

Теорема (про обчислення інформації за Фішером)

За умов регулярності справедлива тотожність

$$I(\theta) = -\mathbf{M}_{\theta} \frac{\partial^2}{\partial \theta^2} \ln L(X, \theta)$$

$$=-\mathsf{M}_{\theta}\frac{\partial}{\partial\theta}U(X,\theta),\quad\forall\theta\in\Theta.$$

Теорема (про обчислення інформації за Фішером)

За умов регулярності справедлива тотожність

$$I(\theta) = -\mathbf{M}_{\theta} \frac{\partial^2}{\partial \theta^2} \ln L(X, \theta)$$

$$=-\mathbf{M}_{\theta}\frac{\partial}{\partial\theta}U(X,\theta),\quad \forall \theta\in\Theta.$$

Доведення.

З теореми про центрованість функції впливу $\mathbf{M}_{ heta}U(X, heta)=0$ або

$$0 = \int_{\mathbf{R}^n} U(x,\theta) L(x,\theta) dx.$$

Продиференцюємо рівність за θ :

$$0 = \int_{\mathbf{R}^{n}} \left(\frac{\partial U(x,\theta)}{\partial \theta} L(x,\theta) + U(x,\theta) \frac{\partial L(x,\theta)}{\partial \theta} \right) dx =$$

$$= \mathbf{M}_{\theta} \frac{\partial U(X,\theta)}{\partial \theta} + \int_{\mathbf{R}^{n}} U(x,\theta) \frac{\partial L(x,\theta)}{\partial \theta} \frac{L(x,\theta)}{L(x,\theta)} dx =$$

$$= \mathbf{M}_{\theta} \frac{\partial U(X,\theta)}{\partial \theta} + \int_{\mathbf{R}^{n}} U(x,\theta) \frac{\partial \ln(L(x,\theta))}{\partial \theta} L(x,\theta) dx =$$

$$= \mathbf{M}_{\theta} \frac{\partial U(X,\theta)}{\partial \theta} + \mathbf{M}_{\theta} U^{2}(X,\theta)$$

D & ()

Теорема (про адитивність інформації за Фішером)

Нехай для кратної вибірки $X=(\xi_1,\ldots,\xi_n)$ функція

$$i(\theta) \equiv \mathsf{D}_{\theta} u(\xi_1, \theta)$$

задає інформацію за Фішером в одному спостереженні. Тоді повна інформація за Фішером дорівнює:

$$I(\theta) = ni(\theta)$$
.

Приклад. Схема Бернуллі

Нехай вибірка $X=(\chi_1,\ldots,\chi_n)$ містить результати випробувань Бернуллі з невідомою ймовірністю успіху θ , де χ_k – індикатор успіху в k-му випробуванні. Функція вірогідності одного спостереження є щільністю відносно точкової міри і має вигляд

$$f(y,\theta) = \theta I_{y=1} + (1-\theta)I_{y=0} = \theta^{y}(1-\theta)^{1-y}, \quad y \in \{0,1\},$$

теоретична функція впливу дорівнює

$$u(y,\theta) = \frac{\partial}{\partial \theta} \ln f(y,\theta) = \frac{y}{\theta} - \frac{1-y}{1-\theta} = \frac{y-\theta}{\theta(1-\theta)}$$

Приклад. Схема Бернуллі

Нехай вибірка $X=(\chi_1,\ldots,\chi_n)$ містить результати випробувань Бернуллі з невідомою ймовірністю успіху θ , де χ_k – індикатор успіху в k-му випробуванні. Функція вірогідності одного спостереження є щільністю відносно точкової міри і має вигляд

$$f(y,\theta) = \theta I_{y=1} + (1-\theta)I_{y=0} = \theta^{y}(1-\theta)^{1-y}, \quad y \in \{0,1\},$$

теоретична функція впливу дорівнює

$$u(y,\theta) = \frac{\partial}{\partial \theta} \ln f(y,\theta) = \frac{y}{\theta} - \frac{1-y}{1-\theta} = \frac{y-\theta}{\theta(1-\theta)},$$

Приклад. Схема Бернуллі (продовження)

функція вірогідності та впливу всієї вибірки

$$L(X,\theta) = \prod_{k=1}^{n} \theta^{\chi_k} (1-\theta)^{1-\chi_k} = \theta^{\nu_n} (1-\theta)^{n-\nu_n}, \quad \nu_n = \sum_{k=1}^{n} \chi_k,$$

$$U(X,\theta) = \sum_{k=1}^{n} u(\chi_k,\theta) = \frac{n(\hat{\theta}_n - \theta)}{\theta(1-\theta)}, \quad \hat{\theta}_n = \frac{\nu_n}{n},$$

функції інформації за Фішером мають вигляд

$$i(\theta) = \mathsf{M}_{\theta} \left(\frac{\chi_1 - \theta}{\theta(1 - \theta)} \right)^2 = \frac{\mathsf{D}_{\theta} \chi_1}{\theta^2 (1 - \theta)^2} = \frac{1}{\theta(1 - \theta)},$$

$$I(\theta) = \frac{n}{\theta(1 - \theta)}$$

приклад. Показниковии розподіл.

Нехай $X=(\xi_1,\ldots,\xi_n)$ кратна вибірка з показниковим розподілом: $\xi_k\cong Exp(\theta)$. Функції впливу дорівнюють:

$$u(y,\theta) = \frac{\partial}{\partial \theta}(\ln \theta - \theta y) = \frac{1}{\theta} - y,$$

$$U(X,\theta) = \sum_{k=1}^{n} u(\xi_k,\theta) = \frac{n}{\theta} - n\hat{\mu}_n,$$

 $\hat{\mu}_{n}=\overline{X}$, а інформація за Фішером у спостереженні та у вибірці

$$i(\theta) = M_{\theta} \left(\frac{1}{\theta} - \xi_1\right)^2 = D_{\theta} \xi_1 = \frac{1}{\theta^2},$$

$$I(\theta) = \frac{n}{\theta^2}$$

Приклад. Показниковий розподіл.

Нехай $X = (\xi_1, \dots, \xi_n)$ кратна вибірка з показниковим розподілом: $\xi_k \cong Exp(\theta)$. Функції впливу дорівнюють:

$$u(y,\theta) = \frac{\partial}{\partial \theta} (\ln \theta - \theta y) = \frac{1}{\theta} - y,$$

$$U(X,\theta) = \sum_{k=1}^{n} u(\xi_k,\theta) = \frac{n}{\theta} - n\hat{\mu}_n,$$

 $\hat{\mu}_n = \overline{X}$, а інформація за Фішером у спостереженні та у вибірці

$$i(\theta) = \mathsf{M}_{ heta} \left(rac{1}{ heta} - \xi_1
ight)^2 = \mathsf{D}_{ heta} \xi_1 = rac{1}{ heta^2},$$
 $I(heta) = rac{n}{ heta^2}$

Аглоритм знаходження інформації за Фішером вибірки

- **3** Записати щільність (ймовірність) розподілу функцію вірогідності $L(X,\theta) = \prod_{k=1}^n f(\xi_k,\theta);$

- $\bullet \frac{\partial U(X,\theta)}{\partial \theta} \quad \Rightarrow \quad I(\theta) = -M_{\theta} \frac{\partial U(X,\theta)}{\partial \theta}$

Зауваження

Інформацію за Фішером можна шукати для одного спостереження, а потім потрібно використати теорему про адитивність інформації за Фішером.

Нерівність Крамера – Рао

Розглянемо задачу оцінювання значення дійсної параметричної функції au(heta) у класі $\Gamma_{ au}$ незсунутих її оцінок.

Теорема (про нерівність та критерій Крамера – Рао)

Нехай параметр θ ϵ скалярним: $\theta \in \mathsf{R}.$

(a) Якщо $T = T(X) \in \Gamma_{\tau}$ – довільна незсунута оцінка $\tau(\theta)$, і виконуються умови регулярності, то $\forall \theta \in \Theta$ має місце нерівність Крамера – Рао

$$\mathsf{M}_{\theta}(T-\tau)^2 \equiv \mathsf{D}_{\theta} T \geq \frac{\tau_{\theta}^2(\theta)}{I(\theta)},$$

де

$$\tau_{\theta}(\theta) = \frac{\mathrm{d}}{\mathrm{d}\theta} \tau(\theta),$$

 $I(\theta)$ – інформація за Фішером у вибірці X.

(б) Рівність у нерівності (а) виконується тоді й тільки тоді, коли оцінка T є лінійною функцією від функції впливу вибірки:

$$T(X) - \tau(\theta) = c(\theta)U(X, \theta)$$
 m.H., $\forall \theta \in \Theta$,

для деякої дійсної $c(\theta)$. Ця стала дорівнює

$$c(\theta) = \frac{\tau_{\theta}(\theta)}{I(\theta)}.$$

Зауваження

Якщо функція au(heta) = heta, то нерівність Крамера-Рао має вигляд

$$\mathsf{M}_{ heta}(T- heta)^2 \equiv \mathsf{D}_{ heta}T \geq rac{1}{I(heta)},$$

Доведення

За означенням незміщеності

$$\mathbf{M}_{\theta}T(X) = \int_{\mathbf{R}^n} T(x)L(x,\theta)dx = \tau(\theta), \ \forall \theta \in \Theta.$$

Візьмемо похідну та використаємо властивість $\mathbf{M}U(X,\theta)=0$:

$$\tau_{\theta}(\theta) = \int_{R^{n}} T(x) \frac{\partial}{\partial \theta} L(x, \theta) \ dx =$$

$$\int_{R^{n}} T(x) U(x, \theta) L(x, \theta) dx =$$

$$\mathsf{M}_{\theta} T(X) U(X, \theta) = E_{\theta} (T(X) - \tau(\theta)) U(X, \theta).$$

Доведення

За нерівністю Коші

$$\tau_{\theta}^{2}(\theta) = \mathsf{M}_{\theta}(T(X) - \tau(\theta))U(X, \theta)^{2} \le$$
$$\mathsf{M}_{\theta}(T(X) - \tau(\theta))^{2} \; \mathsf{M}_{\theta}U^{2}(X, \theta) = D_{\theta}T \cdot I(\theta),$$

за означенням $I(\theta)$.

та ця нерівність перетворюється на рівність тоді і тільки тоді, коли множники під знаком математичного сподівання є лінійно пов'язаними, тобто $T(X)-\tau(\theta)=c(\theta)U(X,\theta)$ м.н. для сталої $c(\theta)$ при кожному θ .

Ефективна оцінка

Оцінка $T \in \Gamma_{\tau}$ називається ефективною оцінкою параметричної функції $\tau(\theta)$, якщо нерівність Крамера — Рао для неї є рівністю, тобто у випадку, коли ця оцінка має найменше можливе значення дисперсії у класі Γ_{τ} всіх незсунутих оцінок.

Твердження (б) дає критерій ефективності Крамера – Рао.

Ефективна оцінка

Оцінка $T \in \Gamma_{\tau}$ називається ефективною оцінкою параметричної функції $\tau(\theta)$, якщо нерівність Крамера — Рао для неї є рівністю, тобто у випадку, коли ця оцінка має найменше можливе значення дисперсії у класі Γ_{τ} всіх незсунутих оцінок.

Твердження (б) дає критерій ефективності Крамера – Рао.

І спосіб перевірки оцінки на ефективність

- **1** Знайти дисперсію оцінки $D_{\theta}T(X)$;
- $m{Q}$ Обчислити інформацію за Фішером $I(\theta) = D_{\theta}U(X,\theta)$ або $I(\theta) = -M_{\theta} \frac{\partial U(X,\theta)}{\partial \theta}$;
- $oldsymbol{\circ}$ Якщо $D_{ heta}T(X)=rac{1}{I(heta)}$, то оцінка T(X) є ефективною.

II спосіб перевірки оцінки на ефективність

Використати критерій ефектривності:

- **3** Запиати щільність (ймовірність) розподілу функцію вірогідності $L(X,\theta) = \prod_{k=1}^n f(\xi_k,\theta)$;
- $2 \ln(L(X,\theta));$
- $U(X,\theta) = \frac{\partial \ln L(X,\theta)}{\partial \theta};$
- Якщо можна подати $U(X,\theta) = k(\theta)(T(X) \theta)$, де $k(\theta)$ деяка функція, що не залежить від вибірки,то оцінка T(X) є ефективною для параметра θ .

Ефективна оцінка у схемі Бернуллі

Розглянемо задачу оцінювання, в якій проводяться n випробувань Бернуллі з невідомою ймовірністю $p=\theta$ успіху в окремому випробуванні. Припустимо, що спостерігається вибірка $X=(\chi_1,\ldots,\chi_n)$, де χ_k – індикатор k-го успіху. Логарифмічна функція вірогідності має вигляд

$$\ln L(X,\theta) = \nu_n(X) \ln \theta + (n - \nu_n(X)) \ln(1 - \theta),$$

де $\nu_n(X) = \sum_{k=1}^n \chi_k$ – загальна кількість успіхів. Звідси

$$U(X,\theta) = \frac{\nu_n(X)}{\theta} - \frac{n - \nu_n(X)}{1 - \theta} = \frac{\nu_n(X)}{\theta(1 - \theta)} - \frac{n}{1 - \theta},$$

функція інформації за Фішером дорівнює

$$I(\theta) = \frac{\mathsf{D}_{\theta}\nu_n(X)}{\theta^2(1-\theta)^2} = \frac{n}{\theta(1-\theta)}.$$

Розглянемо оцінку для $\theta = p$ як вибіркове середнє:

$$T(X) = \hat{\theta} = \frac{\nu_n(X)}{n} = \frac{1}{n} \sum_{k=1}^n \chi_k.$$

Знайдемо дисперсію цієї оцінки

$$D(\hat{\theta}) = D(\frac{1}{n} \sum_{k=1}^{n} \chi_k) = \frac{1}{n^2} \sum_{k=1}^{n} D\chi_k =$$
$$= \frac{1}{n^2} \sum_{k=1}^{n} \theta(1 - \theta) = \frac{\theta(1 - \theta)}{n}.$$

Оскільки $D(\hat{ heta}) = \frac{1}{I(heta)}$, то оцінка $\hat{ heta}$ ефективна для параметра heta.

Приклад

Розглянемо кратну вибірку $X=(\xi_1,\ldots,\xi_n)$ з показниковим розподілом, $\xi_k \sim Exp(\frac{1}{\theta})$. Покажемо, що $\hat{\theta}=\frac{1}{n}\sum_{i=1}^n \xi_k$ є ефективною оцінкою для θ .

Використаємо другий спосіб (критерій ефективності Крамера-Рао).

Оскільки
$$f(x,\theta)=rac{1}{\theta}e^{-rac{x}{\theta}}$$
, $x>0$, то

• функція вірогідності

$$L(X,\theta) = \prod_{k=1}^{n} f(\xi_k,\theta) = \frac{1}{\theta^n} e^{-\sum_{k=1}^{n} \frac{\xi_k}{\theta}};$$

2

$$\ln(L(X,\theta)) = -n\ln(\theta) - \sum_{k=1}^{n} \frac{\xi_k}{\theta};$$

Знаходимо функцію впливу

$$U(X,\theta) = \frac{\partial \ln(L(X,\theta))}{\partial \theta} = -\frac{n}{\theta} + \sum_{k=1}^{n} \frac{\xi_k}{\theta^2} =$$
$$= \frac{n}{\theta^2} \left(-\theta + \frac{1}{n} \sum_{k=1}^{n} \xi_k \right) = \frac{n}{\theta^2} \left(\hat{\theta} - \theta \right).$$

Отже, $\hat{\theta} \epsilon$ ефективною оцінкою параметра θ .

Приклад

Розглянемо кратну вибірку $X=(\xi_1,\ldots,\xi_n)$ з нормальним розподілом, $\xi_k \sim N(0,\sigma^2)$. Дослідити оцінку $\hat{\sigma}^2=\frac{1}{n}\sum_{i=1}^n \xi_k^2$ параметра σ^2 на ефективність двома способами.

Приклад

Розглянемо кратну вибірку $X=(\xi_1,\ldots,\xi_n)$ із розподілом Релея, тобто ξ_k мають щільність

$$f(x,\theta) = \frac{x}{\theta} \exp\{-\frac{x^2}{2\theta}\}, \quad x > 0.$$

Чи є оцінка $\hat{\theta} = \frac{1}{2n} \sum_{i=1}^{n} \xi_k^2$ ефективною параметра θ ?

ПИТАННЯ?