UNIT 2: SETS, SET THEORY, TRUTH TABLES AND LOGIC

Exercises

Murthy Kanuri Knowledge Representation and Reasoning University of Essex

Unit 2: Sets, Set Theory, Truth Tables and Logic

Exercise 1

1. Given the following sets:

$$A = \{a, b, c, 2, 3, 4\}$$
 $E = \{a, b, \{c\}\}$
 $B = \{a, b\}$ $F = \emptyset$
 $C = \{c, 2\}$ $G = \{\{a, b\}, \{c, 2\}\}$
 $D = \{b, c\}$

classify each of the following statements as true or false

- (a) $c \in A$ (g) $D \subset A$ (m) $B \subseteq G$

- (b) $c \in F$ (h) $A \subseteq C$ (n) $\{B\} \subseteq G$
- (c) $c \in E$ (i) $D \subseteq E$ (o) $D \subseteq G$
- (d) $\{c\} \in E$ (j) $F \subseteq A$ (p) $\{D\} \subseteq G$

- (e) $\{c\} \in C$ (k) $E \subseteq F$ (q) $G \subseteq A$ (f) $B \subseteq A$ (l) $B \in G$ (r) $\{\{c\}\}\}$

- (\mathbf{r}) $\{\{c\}\}\subseteq E$

Answers to Exercise 1

1-1	A > TDUE	A = (- - 0.0.4)
(a)	c ∈ A → TRUE	$A = \{a, b, c, 2, 3, 4\}$
		c is in A
(b)	c ∈ F → FALSE	F = Ø (Empty set)
(c)	c ∈ E → FALSE	$E = \{a,b,\{c\}\}\$
()		
		We have set {c} not c directly
(d)	{c} ∈ E → TRUE	E = {a,b,{c}}
(u)	(C) E E 7 IRUE	E − {a,b,{c}}
		We have set {c}
(e)	$\{c\} \in C \rightarrow FALSE$	$C = \{c, 2\}$
, ,		
		We have set {c} not c directly
(f)	B ⊆ A → TRUE	$B = \{a,b\} A = \{a,b,c, 2,3,4\}$
(-)	D = X / IXOL	
		All the elements of B are in A
		All the elements of B are in A
(g)	$D \subset A \rightarrow TRUE$	$D = \{b,c\} A = \{a,b,c, 2,3,4\}$
		All the elements of D are in A
(h)	A ⊆ C→ FALSE	A = {a,b,c,2,3,4} and C = {c, 2}
(,		(-,-,-,-,-,-,-, .,
		A is not subset of C. All elements of A
		are not in C

(i)	D ⊆ E → FALSE	D = {b,c} and E = {a,b,{c}}
		D is not subset of E. All elements of D
		are in E.
(j)	$F \subseteq A \rightarrow TRUE$	$F = \emptyset$ and $A = \{a,b,c,2,3,4\}$
		Empty set is a subset of every set.
(k)	E⊆F → FALSE	$E = \{a,b,\{c\}\} \text{ and } F = \emptyset$
		E is not an empty set and F is empty set
(1)	B ∈ G → TRUE	B = {a, b} and G={{a, b},{c,2}}
		{a,b} is there in G
(m)	$B \subseteq G \rightarrow FALSE$	B = $\{a,b\}$ and G= $\{\{a,b\},\{c,2\}\}$
		Since G has sets and not individual
		elements
(n)	$\{B\} \subseteq G \rightarrow TRUE$	B = {a,b} and G={{a,b},{c,2}}
		Since {B} is there in G
(o)	$D \subseteq G \rightarrow FALSE$	D = {b,c}and G ={{a,b},{c,2}}
		The elements of D are not directly in G
(p)	{D} ⊆ G → FALSE	D = {b,c}and G ={{a,b},{c,2}}
		The elements of D are not directly in G
(q)	$G \subseteq A \rightarrow FALSE$	G ={{a,b},{c,2}} and A ={a,b,c,2,3,4}
		G has sets and A has individual
		elements
(r)	{{c}} ⊆ E→ TRUE	$E = \{a,b,\{c\}\}$
		Since {c} is there in E

Exercise 4

. Consider the following sets:

$$S1 = \{\{\emptyset\}, \{A\}, A\}$$
 $S6 = \emptyset$
 $S2 = A$ $S7 = \{\emptyset\}$
 $S3 = \{A\}$ $S8 = \{\{\emptyset\}\}$
 $S4 = \{\{A\}\}$ $S9 = \{\emptyset, \{\emptyset\}\}$
 $S5 = \{\{A\}, A\}$

Answer the following questions Remember that the members of a set are the items separated by commas, if there is more than one, between the outermost braces only; a subset is formed by enclosing within braces zero or more of the members of a given set, separated by commas.

- (a) Of the sets S1 S9 which are members of S1?
- (b) which are subsets of S1?
- (c) which are members of S9?
- (d) which are subsets of S9?
- (e) which are members of S4?
- (f) which are subsets of S4?

Answers to Exercise 4

(a)	Of the sets S1-S9 which are members of S1	S3, S4, S8, S7
(b)	Which are subsets of S1	S1, S3, S4, S5, S6, S8
(c)	Which are members of \$9?	S6, S7, S8
(d)	Which are subsets of S9?	S6, S7, S8
(e)	Which are members of S4?	S6
(f)	Which are subsets of S4?	S6

Exercise 2

- i. For each clause (a) (f) below, create truth tables for each to answer the question of when each statement is false.
 - a. ~ P
 - b. $P \wedge Q$
 - c. PvQ
 - d. $P \rightarrow Q$
 - e. $P \longleftrightarrow Q$
 - f. $P \rightarrow (\sim Q)$

Р	Q	~ P	$P \wedge Q$	$P \lor Q$	$P \rightarrow Q$	$P \longleftrightarrow Q$	$P \rightarrow (\sim Q)$
Т	Т	F	Т	Т	Т	Т	F
Т	F	F	F	Т	F	F	Т
F	Т	Т	F	Т	Т	F	F
F	F	T	F	F	T	Т	T

- ii. Consider the statement (\sim Q) -> (\sim P).
 - a. When is it false?

The implication $(\sim Q) \rightarrow (\sim P)$ is **false only** when:

- 1. ~Q is True (meaning Q is False)
- 2. ~P is False (meaning P is True)

Thus, $(\sim Q) \rightarrow (\sim P)$ is false when P is True and Q is False.

b. Now consider $P \rightarrow Q$. When is it false?

The implication $P \rightarrow Q$ is **false only** when:

- 1. P is True
- 2. Q is False
- c. Do you believe these two compound statements mean the same thing?
- $(\sim Q) \rightarrow (\sim P)$ is logically equivalent to $P \rightarrow Q$ because they yield the same truth table and can be transformed into one another using logical rules.
 - d. Construct the truth table for the statement (\sim Q) -> (\sim P). Then revisit your answer to (c).

Truth table for $(\sim Q) \rightarrow (\sim P)$

P	Q	~ Q	~ P	(~ Q) -> (~ P)
T	T	F	F	Т
T	F	T	F	F
F	T	F	T	Т
F	F	Т	Т	Т

Truth table for $P \rightarrow Q$

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Since both truth tables are **identical**, this confirms that the two statements $(\sim Q) \rightarrow (\sim P)$ and $P \rightarrow Q$ are logically equivalent.

iii. Construct the truth table for P XOR Q.

P	Q	P XOR Q
T	T	F
T	F	Т
F	T	Т
F	F	F

iv. Construct the truth table for the below

a. $\sim (P \land Q)$

Р	Q	$P \wedge Q$	\sim (P \land Q)
Т	Т	T	F
Т	F	F	T
F	Т	F	T
F	F	F	T

b. $P \lor (Q \land R)$

Р	Q	R	$Q \wedge R$	$P \lor (Q \land R)$
T	Т	T	T	T

Т	Т	F	F	T
Т	F	T	F	T
Т	F	F	F	T
F	Т	T	T	T
F	Т	F	F	F
F	F	T	F	F
F	F	F	F	F

c. Pv(QvR)

Р	Q	R	QVR	$P \lor (Q \lor R)$
Т	Т	T	T	T
Т	Т	F	T	T
Т	F	T	T	T
Т	F	F	F	T
F	Т	T	T	T
F	Т	F	T	T
F	F	T	T	T
F	F	F	F	F

d. (P vQ) v R

Р	Q	R	$P \lor Q$	$(P \lor Q) \lor R$
Т	Т	T	T	T
Т	Т	F	T	T
Т	F	T	T	T
Т	F	F	T	T
F	Т	T	T	T
F	Т	F	T	T
F	F	T	F	T
F	F	F	F	F

e. $(P \rightarrow Q) \land (Q \rightarrow P)$

Р	Q	P→Q	Q → P	$P \to Q) \land (Q \to P)$
Т	Т	T	T	T
Т	F	F	T	F
F	T	T	F	F
F	F	T	T	T