Chapter 11

ELECTRIC MOTOR DRIVES

11-1	Introduction
11-2	Mechanical System Requirements
11-3	Introduction to Electric Machines and the Basic Principles of Operation
11-4	DC Motors
11-5	Permanent-Magnet AC Machines
11-6	Induction Machines
11-7	Summary
	References
	Problems

Figure 11-1 Block diagram of an electric drive system.

MECHANICAL SYSTEM REQUIREMENTS

Rotational Motor-Load Systems:

$$T = f \quad r$$
$$[Nm] \quad [N] \ [m]$$

Figure 11-2 Motor and load torque interaction with a rigid coupling.

$$\alpha = \frac{T_J}{J_{eq}} \qquad \qquad \omega_m(t) = \omega_m(0) + \int_0^t \alpha(\tau) d\tau \qquad \qquad \theta_m(t) = \theta_m(0) + \int_0^t \omega_m(\tau) d\tau$$

Power and Energy in Rotational Systems

Figure 11-3 Torque, work and power.

$$dW = Td\theta_m$$

$$p = \frac{dW}{dt} = T\frac{d\theta_m}{dt} = T\omega_m$$

Electrical Analogy

Table 11-1 Torque—Current Analogy

Mechanical System	Electrical System
Torque (T)	Current (i)
Angular speed (ω_m)	Voltage (v)
Angular displacement (θ_m)	Flux linkage (ψ)
Moment of inertia (J)	Capacitance (C)

Figure 11-2 Motor and load torque interaction with a rigid coupling.

Figure 11-4 Electrical Analogy.

INTRODUCTION TO ELECTRIC MACHINES AND THE BASIC PRINCIPLES OF OPERATION

Figure 11-5 Electric machine as an energy converter.

- 1) A force is produced on a current-carrying conductor when it is subjected to an *externally-established* magnetic field.
- 2) An emf is induced in a conductor moving in a magnetic field.

Electromagnetic Force

$$\underbrace{f_{em}}_{[N]} = \underbrace{B}_{[T][A][m]} \underbrace{i}_{[M]} \underbrace{\ell}_{[M]}$$

Figure 11-6 Electric force on a current-carrying conductor in a magnetic field.

Induced EMF

$$\underbrace{e}_{[V]} = \underbrace{B}_{[T][m][m/s]} \underbrace{u}_{[m/s]}$$

$$f_q = q(\mathbf{u} \times \mathbf{B})$$

Figure 11-7 Conductor moving in a magnetic field.

Basic Structure

Figure 11-8 Cross-section of the machine seen from one side.

DC MOTORS

Figure 11-9 Exploded view of a dc motor; source: Engineering Handbook by Electro-Craft Corp.

Operating Principles of DC Machines

Figure 11-10 DC machine schematic representation.

$$T_{em} = k_{\scriptscriptstyle T} i_{\scriptscriptstyle a}$$

$$e_{\rm a} = k_{\rm E} \omega_{\rm m}$$

$$k_{T} = k_{E}$$

DC-Machine Equivalent Circuit

$$v_a = e_a + R_a i_a + L_a \frac{di_a}{dt}$$
$$\frac{d\omega_m}{dt} = \frac{1}{J_{eq}} (T_{em} - T_L)$$

Figure 11-11 DC motor equivalent circuit.

Torque-Speed Characteristics

$$I_a = \frac{T_{em}(=T_L)}{k_T}$$

$$\omega_{m} = \frac{E_{a}}{k_{E}} = \frac{V_{a} - R_{a}I_{a}}{k_{E}} = \frac{V_{a} - R_{a}(T_{em}/k_{T})}{k_{E}}$$

Figure 11-12 DC motor in the dc steady state.

PERMANENT-MAGNET AC MACHINES

Figure 11-13 Block diagram of the closed loop operation of a PMAC drive.

Figure 11-14 Two-pole PMAC machine.

$$\overline{E}_{ma} = E_{rms} \angle 0^0$$

$$E_{rms} = k_{E, phase} \omega_m$$

$$\overline{I}_a = I_{rms} \angle 0^0$$

$$T_{em}\omega_m = 3\underbrace{\left(k_{E,phase}\omega_m\right)}_{E_{rms}}I_{rms}$$

$$T_{em}\omega_m = 3\underbrace{\left(k_{E,phase}\omega_m\right)}I_{rms}$$
 $T_{em,1-phase} = \frac{T_{em}}{3} = k_{T,phase}I_{rms}$ $k_{T,phase} = k_{E,phase}$

$$k_{T,phase} = k_{E,phase}$$

$$\frac{d\omega_{m}}{dt} = \frac{T_{em} - T_{L}}{J_{eq}} \qquad \Rightarrow \qquad \omega_{m}(t) = \omega_{m}(0) + \frac{1}{J_{eq}} \int_{o}^{t} \left(T_{em} - T_{L}\right) \cdot d\tau$$

$$\theta_{m}(t) = \theta_{m}(0) + \int_{o}^{t} \omega_{m}(\tau) \cdot d\tau$$

Figure 11-15 Equivalent circuit diagram and the phasor diagram of PMAC (2 pole). © Ned Mohan, 2003

PMAC Torque-Speed Characteristics

Figure 11-16 Torque-speed characteristics and the voltage versus frequency in PMAC.

Induction Machines

Figure 11-17 (a) Three-phase stator; (b) squirrel-cage rotor.

Principles of Induction Motor Operation

Figure 11-18 Induction machine: applied voltages and magnetizing currents.

$$\overline{V}_a = V_{rms} \angle 0^o$$
, $\overline{V}_b = V_{rms} \angle -120^o$, and $\overline{V}_c = V_{rms} \angle -240^o$
 $\overline{I}_{ma} = I_m \angle -90^o$, $\overline{I}_{mb} = I_m \angle -210^o$, and $\overline{I}_{mc} = I_m \angle -330^o$
 $\omega_{syn} = 2\pi f$ $\omega_{syn} = \frac{2\pi f}{p/2}$ for a p -pole machine slip speed $\omega_{slip} = \omega_{syn} - \omega_m$ slip frequency $f_{slip} = \frac{\omega_{slip}}{\omega_{syn}} f$

Per-Phase Equivalent Circuit of Induction Machines

$$\overline{V}_{a} = \overline{E}_{ma} = k_{E,phase} \omega_{syn} \angle 0^{0} \qquad \overline{I}'_{ra} = I'_{ra} \angle 0^{0} \qquad T_{em,phase} = k_{T,phase} I'_{ra}$$

$$P_{em,phase} = \omega_{m} T_{em,phase} = \omega_{m} k_{T,phase} I'_{ra} \qquad \overline{E}'_{a} = \omega_{m} k_{E,phase} \angle 0^{0} \qquad k_{T,phase} = k_{E,phase}$$

$$\overline{V}'_{ra} = \underbrace{k_{E,phase} \omega_{syn} \angle 0^{0}}_{\overline{E}_{ma}} - \underbrace{k_{E,phase} \omega_{slip} \angle 0^{0}}_{\overline{E}'_{a}} = I'_{ra} \underbrace{0^{0}}_{\overline{E}'_{a}} + \underbrace{V'_{ra} = k_{E,phase} \omega_{slip} \angle 0^{0}}_{\overline{E}'_{a}} - \underbrace{V'_{ra} = k_{E,phase} \omega_{slip} \angle 0^{0}}_{\overline{E}'_{a}} + \underbrace{V'_{ra} = k_{E,phase} \omega_{slip} \angle 0^{0}}_{\overline{E}'_{a}} - \underbrace{V'_{ra} = k_{E,phase} \omega_{slip} - \underbrace{V'_{ra} =$$

Figure 11-19 Induction motor equivalent circuit and phasor diagram.

$$I_{ra}^{'} = \left(\frac{k_{E,phase}}{R_{r}^{'}}\right) \omega_{slip}$$

$$T_{em} = \frac{P_{em}}{\omega_{m}} = \left(3\frac{k_{T,phase}^{2}}{R_{r}^{'}}\right) \omega_{slip}$$

$$\omega_{m} = \omega_{syn} - \frac{T_{em}}{k_{T,\omega_{slip}}}$$

Figure 11-20 Induction motors: Torque-speed characteristics and voltage vs. frequency.