

	\$ S	ATG	શ્ છે	& ₹	& ₹	ఠ
	₽ S	₽ 92	\$ 8	₹ §	1C &	₹. 8
-107 GTG	્ર _ક છુ	£ 55	GIA GIA	∌ §	表 S	35
. ≨	€ 8	ATG PE	ξĬ	우호등	3 E	& G₹
₽AT.W	₹ ≥	≱ઇ	₹₹	₹.Z	Ala GCT	e £ 5
RBS	g 8	£ 5	₽₽	ØCT Ø₽	용물	휷
¥ 89	Met	₹₹	€ ₹	STC ST	₽ 00	Ser
. 😽	ACG T	₽E	₹. AG	AGC Ser	₹₹	Ser TCT
ATGA	£E	1999	9 5 ₹	£ 99	∄e A∏	GAT O
V	o le o	V& GTC	Val GTG	g g	౭ౖౖౖ౾	ATC
(3) (4) RBS TRATECARLICIAR CANADAM AND	E T	-	₹₹	₹₹	Z Se	G. GGT
	Ala C	PRO Tyr lle TAT AT	90 90	₹.\	Val GTA	Ser
(A)→Ř	TA LE	84	ე ცე	⊒ <u>e</u>	§ 0	Asp GAC
CTGT	Ala L	Lys AAG	R-SA	8 8 8	TAC	ATC
NTAAT	를 E	GA GA	₽ Ø	8-58	85	S val
CAGA	ي د	£ 99	Ser TCT	Val GTA	S SS	88 606
ITACA	PRE 13 ST	AC AS	AH ile	Aka GCT	38	Val GTA
⊕ ¥TTA/	AGT SE	శ్రీ	SIC SIC	ક્ક,	శ్ర	ձ
⊕~ફુ.	ATC ATC	ક્ર	છે કે ફે	₹ 8	~ \$ 8	E 42
IACTA	55	99	₹	5 ≥	- £2	Α¥
10CA	75 AS	₹ 5	Ag L	3 [₹ 99	\$ 5
ĮĮ.	84	. 4 88	F A	₽ Ş	¥ Z	6.94 GGA
AAAT,	8.5	5 S	aa GCT	SCT AB	\$ \$	₽. VCT
IACIA	- J - S - S - S	9 ₽ 33	2 25	£ % ₹	E Z	¥4
5) p <u>ggtcta</u> ctaaata)	\$ \$9 \$0	ું હ	₽ SE	SCT AB	¥ 5	8 5 8
⊕ - ©i		2	5	33	86	7

FIG._1B-1

Ala GCC	류象	Met	₽	6 €	£ 55	6€ 661	¥C1
ra C±	GTA GTA	Asn	ᇙ	83	∂ 8	₽¥ S	Asn
₹ 5	Ata GCT	ARC ARC	₽	₹₹	₹ 24	ξž	ξŞ
₹ Ş	₹	₹ છું	₹ફ	&§	Ser AGC	₽	ਰ -52
કે છે	ខន្ទ	₽	₹ \$ ₹	STG	5 % ₹	26.	AAC AS
돌	\$ \$ 5	8 8 60	₽ Ed ta	<u>≱</u> 5	₹2	돌	2 8
Ser	\$ \$ \$	ТФ 76	శ్ స్ట	Ser	दह	₹₹	휷옰
Asa	Ser AGC	Ghu GAG	₽	Ser TC	₽ 55	Asa AAC	AAG .
Asn AAC	£ 8	A TC	₹₹	Ser	₽¥ VQ	<u>₹</u> 5	Ser TCT
g As GAC	Ala GCG	5 § ₹	E E	න් දි රිරි	క్రక్	545	₹ 5
ક ્	val GTT	AC AS	SCT S	કું કું કું	AS AS	35	# E ≪
#£ 11 ₽	∂	lle ATT	Ata GCT	Ser ACT	Ser AGC		35 .
SC PS	TA E	ATC	Ser TCT	& ©	Ser		19 85 48
Pro Asn AT	Val GTA	± 50 €	G.4 GGT	∌	S. S.	క్ర	₽ GCT AB
¥Ç ¥	e€ €	Ser	38 TCT	Asn	S la CH		230 Ala
₆ .8	lle ATC	₹Z	55 P	G.	SC &		& &
Ser	₹ 12 %	క్ర	\$`&	₽ 29	2 00		₽ 25
8 <u>5</u>	ARC AR	ક ું	∂	₹ రై	Ya. GIA	& 86	₹ E
Val GTT	₽¥	5 Se	38	\$ 8	₹ છ	55	휷용
Met ATG	₹5	<u>§</u> .9≅	AGC AGC	55 Val	₽ ₩	8 t 2	₽8
AG.	₽ GCI	8 & S	ATG	GTC GTC	SIC GIC	Met	15 Ke
₽ 33	₽	& & §	AK AK	Val GTA	₫ &	Val GTC	₽ 25
<i>§</i>	Val GTT	8 2. 8	₽₽	Val GTC	85	8 ₽	ATG
100 100	≱ 5	<u> 3</u> 5	S Z	ક ેઇ	₹¥	35	₹
gg AB	≳ § 8	Val GTT	58 B	₹ 5	\$₹\$	3 8	ACG # 220
549	₹,	86	ž.	8	88	86	1074

1916 ATAITGGACGGATGGCTCCCTCTGAAAATTTTAACGACAAACGGGGGGTTGACCGGCTCAGTCCCGTAACGGGCAAGTCCTGAAACGTCTCAATCGGCG

1416 CTTCCCGGTTTCCGGTCAGCTCAATGCCGTAACGGTCGGCGGCGTTTTCCTGATACCGGGAGACGGCATTGGTAATGGGATC

FIG._1B-3

	CONSERVED RESIDUES IN SUBTILISINS FROM BACILLUS AMYLOLIOUEFACIENS																		
1 A	Q	s	v	Þ		G			10	0.		λ	P	Α		H			20 G
21	T	G	s		v	ĸ	v	A	3(V		Ð		G					H	40 P
41 D	L				G	G	A	s	50	v	P								60 D
61	ı N		н	G	T	н	v	A	7 (G	Ţ		λ	A	L	N	N	s	ï	80 'G
81 V	L	G	v	Α	₽	s	A		9 (L	Y	A	v	ĸ	v	L	G	A		100 G
10 S	1 G			s		L			11 G	٠.	E	W	A		N				120
12 V		N		s	L	G		P	13 (S	٥.	s		٠.				A		140
14	1				G	v		v	150 V	A	A		G	N		G		•	160
						Y	P		. 70	Y					A	v	G	Α	180.
1 E D	31		N			A	s	P	190 S	٥.		G			L	Ð		•	200 A
20 P	1 G	v			Q	s	T		21(P	G			¥				N		220 T
2 2 S	1 M	A		P	н	v	A	G	23(A	À	A	L				ĸ		•	240
24 W				Q		R			250 L	٥.	N	T				L	G	÷	260
26	1	¥	G		G	L		N	271	٥.	A	A							

FIG._2

COMPARISON OF SUBTILISIN SEQUENCES FROM:

```
0000
         ---
                               0000
                               EFFE
         0000+
                               2222
         8 8 4 E
                    2222
         0000
                    2202
                               < 0 F Z
                                          81 81 53 53
                               нные
                    2222
                               ~ ~ ~ ~
                                          0000
         0000
                    ***
                    <<<<
                               ***
                                          ~ < < 0
         . . . .
                               мими
                                          **
          000
                    > H > H
                                          4444
5455
         ı
V
                    ....
                               нння
          422
          >
            > >
                    0000
                              0000
          444
                                          Þ
                                            Þ
                                             >
                                               Þ
                    < < < <
                               2200
                                          >
         > > > >
                    > > > >
                               HHPK
                                          >
                                               >
         KKK
                    ====
                               нннн
                                          000
         >>>>
                    ....
                               2 2 0 W
                    0000
                               00 00 00
         2220
                                          4 0 A 0
                               ****
         8 8 8 8
                    ===
                    8 8 6 6
                               9 9 9 9
                                          7 2 2 E
          000
                               0000
         FFKE
                    2022
                                          KKZO
       20
G ¥
          2000
                               00000
                    0000
                               0000
                                          'n
                                            Ω
                                             a
                                          2500
         000 K
                    9949
                               < 5 5 5 A
                    M * # #
         5 5 5 Z
                               0 2 2 0
         HEOM
                    4420
                               4444
                                          KKKE
         2254
                    2224
                                          2227
                    H H K *
         < < × <
                               ***
                                          4444
4444
         ....
                    医医医医
                    8 8 9 9
         ***
                                          00 00 00 00
                    444
                               ~ < < <
           KKO
         001K
                               ***
                                          0000
                    b > > 5
                    ***
                               a
                                 ч
                                   22
                                          8 1 8 8 8
                                            4 4 6
                               0 0 0 0
                    . . . . .
         8 8 8 8
B.amyloliquefaciens
B.subtilis
B.licheniformis
B.lentus
                    < < < <
                               < < > <
                                          0000
                               . . . . .
                                          0000
           000
                    0000
                               . . . .
                                          2223
                    0000
          2 4 4 4
                    < & > &
                               < 0 K K
                    P > P > H
                              , r c c .
r c c .
                                 >>>
                                          ***
                                          z z z z
         20 14 20
                    4444
                                         121
7 7 1
7 7 1
7 7 1
         0000
         ~ < < <
                    8888
```

~ ~ ~ ~	ZHZW	

> > > H	====	
0000	KKKK	
2222	8 8 8 6	
医医胃反	444 K	000#
4 2 4 K	H H H Þ	< < < F
0000	2223	~ ~ ~ ~
> < > ×	~ ~ ~ ~	~ < < <
190 2 2 3 3 3 3	8 < < < <	500MM
	22444	× 4 4 6
	0000	2222
00000	~ ~ ~ ~	нннь
**	> > > >	4444
我我我我	* = = =	0000
CCZZ		KKKG
2202	SESE	0000
ល ល ដ ដ	**	***
8888	* * * *	てよよよ
180 4 0 0 4 0 0	○ № ₩ ₩ ₩	260 3 8 4 4 8 4 7 8 4
4 4 4 4 12	44445	4000 =
~ ~ < ~	0000	DKSS
0000	2222	0000
>>>	ててよよ	2222
***	< < H W	$\kappa \bowtie \bowtie \infty$
HHHX	0044	4444
> F > K	***	F < < <
សលសភ	***	***
880 4	2020	2002
****	04005	20 医医肾炎
12 K K K K	24444	44444
0 < < <	よよでで	SERE
84 84 84	****	2 2 Z 2
***	80 83 83 83	***
0000	00 + 0	> > > H
> > H H	H H Þ Þ	0000
++++	សសម្	E < 00 >
0 0 Z +	>><>	ZZZZ
12 x F F +	50000	4 E E 20 20
∺ ∞ ∞ ∞ +	24 6 6 6 6	4××4×

FIG._3B

FIG._3

<u>i</u>G. 4

<u>-1</u>G. 5

1	A12	IKDFHVYFRESRDAG	49	E12	SATSRGVLVVAASGN
2	A11	LEOAVNSATSRGVLV	50	E11	SRGVLVVAASGNSGA
3	A10	AOSVPWGISRVQAPA	51	E10	VLVVAASGNSGAGSI
4	A9	VPWGISRVOAPAAHN	52	E9	VAASGNSGAGSISYP
	A8	GISRVQAPAAHNRGL	53	E8	SGNSGAGSISYPARY
5 6	A6 A7	RVOAPAAHNRGLTGS	54	E7	SGAGSISYPARYANA
7		APAAHNRGLTGSGVK	55	E6	GSISYPARYANAMAV
8	A6	AHNRGLTGSGVKVAV	56		SYPARYANAMAYGAT
9	A5	RGLTGSGVKVAVLDT	57	E5	ARYANAMAYGATDON
10	A4		58	E4	
	A3	TGSGVKVAVLDTGIS		E3 .	ANAMAVGATDQNNNR
11	A2	GVKVAVLDTGISTHP	59	E2	MAVGATDQNNNRASF
12	A1	VAVLDTGISTHPDLN	60	E1	GATDQNNNRASFSQY
13	B12	LDTGISTHPDLNIRG	61	F12	DQNNNRASFSQYGAG
14	B11	GISTHPDLNIRGGAS	62	FII	nnrasfsqygagldi
15	B10	THPDLNIRGGASFVP	63	F10	ASFSQYGAGLDIVAP
16	B9	DLNIRGGASFVPGÉP	64	F9	SQYGAGLDIVAPGVN
17	B8	IRGGASFVPGEPSTO	65	F8	GAGLDIVAPGVNVOS
18	B7	GASFVPGEPSTODGN	66	F7	LDIVAPGVNVOSTYP
19	B6	FVPGEPSTODGNGHG	67	F6	VAPGVNVQSTYPGST
20	B5	GEPSTQDGNGHGTHV	68	F5	GVNVQSTYPGSTYAS
21	B4	STODGNGHGTHVAGT	69	F4	VOSTYPGSTYASLNG
22		DGNGHGTHVAGTIAA	70	F3	TYPGSTYASLNGTSM
23	B3	GHGTHVAGTIAALNN	71		GSTYASLNGTSMATP
24	B2	THVAGTIAALNNSIG	72	F2	YASLNGTSMATPHVA
25	B1		73	F1	
26	C12	AGTIAALNNSIGVLG	74	G12	LNGTSMATPHVAGAA
27	C11	IAALNNSIGVLGVAP		G11	TSMATPHVAGAAALV
28	C10	LNNSIGVLGVAPSAE	75	G10	ATPHVAGAAALVKQK
	C9	SIGVLGVAPSAELYA	76	G9	HVAGAAALVKQKNPS
29	Č8	VLGVAPSAELYAVKV	77	G8	GAAALVKQKNPSWSN
30	C7	VAPSAELYAVKVLGA	78	G7	ALVKQKNPSWSNVQI
31	C6	SAELYAVKVLGASGS	79	G6	KÖKNЬSMZNAÖIBÜH
32	C5	LYAVKVLGASGSGSV	80	G5	NPSWSNVQIRNHLKN
33	C4	VKVLGASGSGSVSSI	81	G4	WSNVQIRNHLKNTAT
34	C3	LGASGSGSVSSIAQG	82	G3	VQIRNHLKNTATSLG
35	C2	SGSGSVSSIAQGLEW	83	G2	RNHLKNTATSLGSTN
36	C1	GSVSSIAQGLEWAGN	84	G1	LKNTATSLGSTNLYG
37	D12	SSIAQGLEWAGNNGM	85	H12	TATSLGSTNLYGSGL
38	D11	AQGLEWAGNNGMHVA	86	H11	SLGSTNLYGSGLVNA
39	D10	LEWAGNNGMHVANLS	87	H10	STNLYGSGLVNAEAA
40	D9	AGNNGMHVANLSLGS	88	Н9	NLYGSGLVNAEAATR
41	D8	NGMHVANLSLGSPSP			
42	D7	HVANLSLGSPSPSAT			
43	D6	NLSLGSPSPSATLEO			
44	D5	LGSPSPSATLEOAVN			
45	D3	PSPSATLEQAVNSAT			
46		SATLEOAVNSATSRG			
47	D3	LEQAVNSATSRGVLV			
48	D2	AVNSATSRGVLV			
- 0	D1	DIIIDIG VDV VAA			

FIG. 6A

1	A12	IKDFHVYFRESRDAG	49	E12	KKIDVLNLSIGGPDF
2	A11	DAELHIFRVFTNNOV	50	E11	DVLNLSIGGPDFMDH
3	A10	PLRRASLSLGSGFWH	51	E10	NLSIGGPDFMDHPFV
4	A9	RASLSLGSGFWHATG	52	E9	IGGPDFMDHPFVDKV
5	A8	LSLGSGFWHATGRHS	53	E8	PDFMDHPFVDKVWEL
6	A7	GSGFWHATGRHSSRR	54	E7	MDHPFVDKVWELTAN
7	A6	FWHATGRHSSRRLLR	55	E6	PFVDKVWELTANNVI
8		ATGRHSSRRLLRAIP	56	E5	DKVWELTANNVIMVS
9	A5 A4	RHSSRRLLRAIPROV	57	Ē4	WELTANNVIMVSAIG
		SRRLLRAIPROVAOT	58	E3	TANNVIMVSAIGNDG
10	A3			E2	NVIMVSAIGNDGPLY
11	A2	LLRAIPRQVAQTLQA	59 60	E1	MVSAIGNDGPLYGTI
12	A1	AIPRQVAQTLQADVL		F12	
13	B12	RQVAQTLQADVLWQM	61		AIGNDGPLYGTLNNP
14	B11	AQTLQADVLWQMGYT	62		NDGPLYGTLNNPADO
15	B10	LQADVLWQMGYTGAN	63	F10	PLYGTLNNPADQMDV
16	B9	DVLWQMGYTGANVRV	64	F9	GTLNNPADOMDVIGV
17	B8	WQMGYTGANVRVAVF	65	F8	NNPADOMDVIGVGGI
18	B7	GYTGANVRVAVFDTG	66	F7	ADOMDVIGVGGIDFE
19	В6	GANVRVAVFDTGLSE	67	F6	MDVIGVGGIDFEDNI
20	B5	VRVAVFDTGLSEKHP	68	F5	IGVGGIDFEDNIARF
21	B4	AVFDTGLSEKHPHFK	69	F4	GGIDFEDNIARFSSR
22	В3	DTGLSEKHPHFKNVK	70	F3	DFEDNIARFSSRGMT
23	B2	LSEKHPHFKNVKERT	71	F2	DNIARFSSRGMTTWE
24	B1	KHPHFKNVKERTNWT	72	F1	ARFSSRGMTTWELPG
25	C12	HFKNVKERTNWTNER	73	G12	SSRGMTTWELPGGYG
26	C11	NVKERTNWTNERTLD	74	G11	GMTTWELPGGYGRMK
27	C10	ERTNWTNERTLDDGL	75	G10	TWELPGGYGRMKPDI
28	C9	NWTNERTLDDGLGHG	76	G9	LPGGYGRMKPDIVTY
29	C8	NERTLDDGLGHGTFV	לֹד	G8	GYGRMKPDIVTYGAG
30	C7	TLDDGLGHGTFVAGV	78	G7	RMKPDIVTYGAGVRG
31	C6	DGLGHGTFVAGVIAS	79	G6	PDIVTYGAGVRGSGV
32	C5	GHGTFVAGVIASMRE	80	G5	VTYGAGVRGSGVKGG
33	C4	TFVAGVIASMRECOG	81	G4	GAGVRGSGVKGGCRA
34	C3	AGVIASMRECQGFAP	82	G3	VRGSGVKGGCRALSG
35	C2	IASMREÇQGFAPDAE	83	G2	SGVKGGCRALSGTSV
36	C1	MRECOGFAPDAELHI -	84	G1	KGGCRALSGTSVASP
37	D12	COGFAPDAELHIFRV	85	H12	CRALSGTSVASPVVA
38	D11	FAPDAELHI FRVFTN	86	H11	LSGTSVASPVVAGAV
39	D10	DAELHIFRVFTNNOV	87	H10	TSVASPVVAGAVTLL
40	D9	LHIFRVFTNNOVSYT	88	H9	ASPVVAGAVTLLVST
41	D8	FRVFTNNOVSYTSWF	89	H8	VVAGAVTLLVSTVQK
42	D7	FTNNOVSYTSWFLDA	. 90	H7	GAVTLLVSTVOKREL
43	D6	NOVSYTSWFLDAFNY	91	Н6	TLLVSTVOKRELVNP
44	D5	SYTSWFLDAFNYAIL	92	H5	VSTVOKRELVNPASM
45	D4	SWFLDAFNYAILKKI	93	H4	VOKRELVNPASMKQA
46	D3	LDAFNYAILKKIDVL	94	Н3	RELVNPASMKOALIA
47	D2	FNYAILKKIDVLNLS	95	H2	VNPASMKOALIASAR
48	DI	AILKKIDVLNLSIGG	96	H1	ASMKOALIASARRLP
			- 0		·improvide

FIG. 6B

97 98	I12 I11	IKDFHVYFRESRDAG DAELHIFRVFTNNQV
99	- III	KOALIASARRLPGVN
100	19	LIASARRLPGVNMFE
101	18	SARRLPGVNMFEQGH
102	17	RLPGVNMFEOGHGKL
103	16	GVNMFEQGHGKLDLL
103		MFEOGHGKLDLLRAY
	15	
105	I-4	QGHGKLDLLRAYQIL
106	13	GKLDLLRAYQILNSY
107	12	DLLRAYQILNSYKPQ
108	11	RAYQILNSYKPQASL
109	J12	QILNSYKPQASLSPS
110	J11	NSYKPQASLSPSYID
111	J10	KPQASLSPSYIDLTE
112	J9	ASLSPSYIDLTECPY
113	J8	SPSYIDLTECPYMWP
114	J7	YIDLTECPYMWPYCS
115	J6	LTECPYMWPYCSQPI
116	45	CPYMWPYCSOPIYYG

FIG. 6C

MKI.VNIWLLLLVVLLCGKKHLGDRLEKKSFEKAPCPGCSHLTLKVEFSSTVVEYEYIVAFNGYFT AKARNSFISSALKSSEVDNWRIIPRNNPSSDYPSDFEVIOIKEKOKAGLLTLEDHPNIKRVTPOR KVFRSLKYAESDPTVPCNETRWSOKWOSSRPLRRASLSLGSGFWHATGRHSSRRLLRAIPROVAO TLOADVLWOMGYTGANVRVAVFDTGLSEKHPHFKNVKERTNWTNERTLDDGLGHGTFVAGVIASM RECOGFAPDAELHIFRVFTNNQVSYTSWFLDAFNYAILKKIDVLNLSIGGPDFMDHPFVDKVWEL TANNVIMVSAIGNDGPLYGTLNNPADOMDVIGVGGIDFEDNIARFSSRGMTTWELPGGYGRMKPD IVTYGAGVRGSGVKGGCRALSGTSVASPVVAGAVTLLVSTVQKRELVNPASMKQALIASARRLPG VNMFEOGHGKLDLLRAYOILNSYKPOASLSPSYIDLTECPYMWPYCSOPIYYGGMPTVVNVTILN GMGVTGRIVDKPDWQPYLPQNGDNIEVAFSYSSVLWPWSGYLAISISVTKKAASWEGIAQGHVMI TVASPAETESKNGAEQTSTVKLPIKVKIIPTPPRSKRVLWDQYHNLRYPPGYFPRDNLRMKNDPL DWNGDHIHTNFRDMYQHLRSMGYFVEVLGAPFTCFDASQYGTLLMVDSEEEYFPEEIAKLRRDVD NGLSLVIFSDWYNTSVMRKVKFYDENTROWWMPDTGGANIPALNELLSVWNMGFSDGLYEGEFTL ANHDMYYASGCSIAKFPEDGVVITQTFKDQGLEVLKQETAVVENVPILGLYQIPAEGGGRIVLYG DSNCLDDSHROKDCFWLLDALLQYTSYGVTPPSLSHSGNRQRPPSGAGSVTPERMEGNHLHRYSK VLEAHLGDPKPRPLPACPRLSWAKPOPLNETAPSNLWKHOKLLSIDLDKVVLPNFRSNRPOVRPL SPGESGAWDIPGGIMPGRYNQEVGQTIPVFAFLGAMVVLAFFVVQINKAKSRPKRRKPRVKRPQL MOOVHPPKTPSV

FIG. 7

FIG. 8

FIG. 10

rept	ide number	Sequence	
1 (unmo	dified sequence)	GSISYPARYANAMAV	
	2	ASISYPARYANAMAV	
	3	GAISYPARYANAMAV	
	4	GSASYPARYANAMAV	
	5	GSIAYPARYANAMAV	
	6	GSISAPARYANAMAV	
	7	GSISYAARYANAMAV	
	8	GSISYPAAYANAMAV	
	9	GSISYPARAANAMAV	
	10	GSISYPARYAAAMAV	
	11	GSISYPARYANAAAV	
	12	GSISYPARYANAMAA	

FIG. 11

FIG. 12

FIG. 13A

FIG. 13B

FIG. 14A

1 mrsslvlffv sawtalaspi rrevsgdlfn qfnlfaqysa aaycgknnda 51 pagtnitctg nacpevekad atflysfeds gy<u>qdytafla ldhtnklivl</u> 101 sfrgsrejen <u>wignlnfdlk</u> eindicegor ghafgftsswr avadtlrqkv 151 edavrehpdy rvyftghslg galatvagad lrgngydidv fsygaprvgn 201 rafaefltvg tggtlyrith tndivprlpp refgyshssp eywiksgtlv 251 pytndivki egidatggnn qpnipdipah lwyfgligte I

FIG. 14B

FIG. 15A

1 mftpvrrrvr taalalsaaa alvlgstaas gasatpspap apapapvkqg 51 ptsvayvevn nnsmlnygky tladgggnaf dvavifaani nydtgktkay 101 lhfnenvqrv ldnavtqirp lqqqg<u>ikvll svlqnhqqaq</u> fanfpsqqaa 151 safakqlsda vakygldgvd fddeyaeygn ngtaqpndss fvhlvtalra 201 nmpdkiisly nigpaasrls yggvdvsdkf dyawnpyygt wqvpgialpk 251 aqlspaavei grtsrstvad larrtvdegy gvyltynldg gdrtadvsaf 301 trelygseav rtp

FIG. 15B

peptide designate

GG36 percent responders

FIG. 17

Hybrid enzyme sequence (GG36-BPN)

GG36

AQSVPWGISRVQAPAAHNRGLTGSGVKVAVLDTGISTHPDLNIRGGASFVPGEPSTQDGNGH

BPN

 ${\tt GTHVAGTIAALNNSIGVLGVAPSAELYAVKVLGASGSGSVSSIAQGLEWAGNNGMHVINMSLGGS}$

 ${\tt GSAALKAAVDKAVASGVVVVAAAGNEGTSGSSSTVGYPGKYPSVIAVGAVDSSNQRASFSSVGP}$

 ${\tt ELDVMAPGVSIQSTLPGNKYGAYNGTSMASPHVAGAAALILSKHPNWTNTQVRSSLENTTTKLGD}$

SFYY GKGLINVQAAAQ

