1. Write down formulas for an isomorphism and its inverse in case $\mathbb{Z}_6 \times \mathbb{Z}_{20} \simeq \mathbb{Z}_{10} \times \mathbb{Z}_{12}$. Novosad Tvan

$$Z_{6} \times Z_{20} - Z_{10} \times Z_{12}$$

$$|S \downarrow \psi, |S \uparrow \psi_{3}|$$

$$Z_2 \times Z_5 \rightarrow Z_{10}: u \cdot 2 + v \cdot 5 = 1 \rightarrow u = 3, v = -1$$

$$(a,b) -7(a \cdot (-1) \cdot 5 + 6 \cdot 3 \cdot 2) = (-5a + 66)$$

$$Z_3 \times Z_4 \rightarrow Z_2 : u \cdot 3 + v \cdot 4 = 1 \quad u = 3, J = -2$$

$$(a,b) \rightarrow (a.4.(-2)+6(3)(3)) = (-8a+9b)$$

$$Q(a,b) + 3(a,a,b,b) + 3(a,b,b,a) + 3(-5a+6b,-8b+9a)$$
620 2345

$$7/2 \times 7/3 \times 7/3 \times 7/5 \stackrel{\sim}{=} 7/2 \times 7/5 \times 7/3 \times 7/4$$

$$72 \times 723 \rightarrow 726 : 4 \cdot 2 + 3 = 1 \rightarrow 4 = 2 \cdot 2 = -1$$

$$Z_4 \times Z_5 \rightarrow Z_{20}: u.4 + v.5 = 1 - 3 = 4, v = -3$$

$$\psi(a,b) \stackrel{\psi_1}{\mapsto} (a,a,b,b) \stackrel{\psi_2}{\mapsto} (a,b,b,a) \stackrel{\psi_3}{\mapsto} (-3a+4b,-15b+16a)$$

2. Find all generators of the group \mathbb{Z}_{49}^* .

Since 49 is a prime power p^2 , where p=7, and the group of units $U(2^{\times}_{49})$ (i.e. the set of all invertible element under multiplication mod 49) is of order $p^2-p=49-7=42$.

There fore, we are looking for elements with order 42 in ding.

The order of an element a in finite group 15the smallest positive integer 5.t. am = 1 (mod 49). An element a is a generator of Zig; if it's order equal to the order of the group, which is 42 in this case.

Hence generators of Z_{4g}^* are: 3,5,10,12,17,24,26,33,38,40,45,47 and since $\varphi(42) = 12$, that's all. (4 is euler function)

Thus 724g = < 37 = <57 = <107 = <127 = <177 = <247 = <267 = <337 = <387 = <407 = <4477

3. Let G be \mathbb{Z}_{29}^* with $g=2$ being its generator.	The size of the group G is enough to encode the English
alphabet, space and period. We will use the following	owing table

a	b	С	d	е	f	g	h	i	j	k	l	m	n
1	2	3	4	5	6	7	8	9	10	11	12	13	14
О	p	q	r	S	t	u	v	w	X	У	Z		
15	16	17	18	19	20	21	22	23	24	25	26	27	28

Your lover sent you the public key $s = g^b = 12$. You chose a to be 10.

- (a) Compute the private key $k = g^{ab}$.
- (b) Decrypt the message from your lover 20, 2, 6, 28, 15, 9, 2, 4, 14, 8.

a)
$$g^{ab} = 12^{10} (29)$$
; $g^{ab} = 28 = k$
b) To compute k^{-1} , let's use $a \mid z_{us}^{*} \mid = 1 \rightarrow a$. $a \mid z_{us}^{*} \mid = 1$

$$k'' = 28'' = 28^{27} = 28 \pmod{29}$$

$$20 - 28 = 9(29)$$
 $9.28 = 20(29)$

$$2.28 = 27(29)$$
 $2.28 = 27(29)$

$$6-28=23(29)$$
 $4-28=26(29)$

$$28 \cdot 28 = 1 (29)$$
 $14 \cdot 28 = 15 (29)$

50 I want you! is the message

4. Let G be \mathbb{Z}_{49}^* with $g=3$ being its generator.	The size of the group G is enough to encode the English
alphabet. We will use the following table	

a	b	С	d	e	f	g	h	i	j	k	l	m
2	4	6	9	11	13	16	18	20	23	25	27	30
n	О	р	q	r	s	t	u	v	W	x	у	Z
32	34	37	39	41	44	46	48	3	17	31	45	24

Your lover chose the secret number b to be 7 and you chose your secret number a to be 5.

- (a) Compute your public key $r = g^a$.
- (b) Compute the public key $s = g^b$ of your lover.
- (c) Compute the private key $k = g^{ab}$ and its inverse.
- (d) Decrypt the message from your lover 31, 37, 3, 13, 44, 22.

a)
$$g^{9} = 47(49)$$

b)
$$g = 31(44)$$

c)
$$k = 19(49)$$
 $k^{-1} = 19^{-1} = 31(49)$

$$31 \cdot 31 = 30(49) \qquad |3 \cdot 31 = 11(49)$$

$$37 - 31 = 20 (49) 44 \cdot 31 = 41(49)$$

$$3.31 = 44(49)$$
 $22.31 = 45(49)$

Anwer: Misery.