

IMT Atlantique

Bretagne-Pays de la Loire École Mines-Télécom

Final Project

Group 9
Zijie NING
Guoxiong SUN

CONTENTS

1. Results

2. Method

- 2.1 Model Select
- 2.2 Traditional Hyperparameters
- 2.3 Data Augmentation
- 2.4 Group Convolution
- 2.5 Distillation
- 2.6 Pruning (unstructured)
- 2.7 Quantization
- 2.8 Logger

3. Training Process

CHAPTER 1 Results

MicroNet Challenge

Hosted at NeurIPS 2019

On CIFAR-10

Flops: 22675830.0, Params: 47837.0

Score flops: 0.0271

Score Params: 0.0086

Final score: 0.0357

CHAPTER 2 Method

2.1 Model Select

DenseNet:

2.2 Traditional Hyperparameters

- Learning rate 0.1 for 100 epochs, 0.01 for 100 epochs, then 0.001 for 100 epochs
- Weight decay 5e-4? 1e-4? ...?
- Batch sizeAs hig as possible

As big as possible

Scheduler

CosineAnnealingLR()

Optimizer SGD

"SGD outperforms all other methods in most cases."

https://medium.com/geekculture/a-2021-guide-to-improving-cnns-optimizers-adam-vs-sgd-495848ac6008#:~:text=One%20interesting%20and%20dominant%20argument,results%20in%20improved%20final%20performance

2.3 Data Augmentation

Table 1: Overview of the results of Mixup, Cutout, and our CutMix on ImageNet classification, ImageNet localization, and Pascal VOC 07 detection (transfer learning with SSD [23] finetuning) tasks. Note that CutMix significantly improves the performance on various tasks.

CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features

P(cutmix)=1 Acc. ↑~3%

https://arxiv.org/abs/1905.04899

2.4 Group Convolution

(a) Convolution.

Methods for reducing Nops : **Group Convolution**

► Conv2d -> Groups

2.4 Group Convolution

Methods for reducing Nops : **Group Convolution**

- ► Conv2d
- ► Bottleneck 2
- ► Transition 1
- DenseNet 1

2.4 Group Convolution

École Mines-Télécom

2.4 Group Convolution

Sensitivity of different places

- The second place of Bottleneck is the least sensitive
- Direction of grouped convolution

2.5 Distillation

"Distilling the Knowledge in a Neural Network"

— Geoffrey Hinton, Oriol Vinyals, Jeff Dean

Temperature?

Even better teacher?

https://arxiv.org/abs/1503.02531

2.6 Pruning (unstructured)

"Unstructured" : weight pruning

- Set weights to prune to 0 definitely
- ► Same but iterative with a growing pruning rate (cf. Learning both Weights and Connections for Ecient Neural Networks, by Han et. al. 2015)
- At each epoch, set targeted weights to 0 but let them train again until the end, a.k.a. "Soft pruning" (cf. Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks, by He et. al. 2018)

2.7 Quantization

- model.half() (16bit)
- FX graph mode quantization (8bit)
- BinaryConnect (1bit)

https://arxiv.org/abs/1511.00363

https://pytorch.org/tutorials/prototype/fx_graph_mode_ptq_static.html

2.8 Logger

1	Train Acc.	Valid Acc.
2	26.396000	44.420000
3	37.164000	52.590000
4	42.034000	60.260000
5	46.234000	63.410000
6	46.142000	64.840000
7	50.502000	67.140000
8	51.582000	68.970000
9	52.082000	70.070000
10	51.788000	67.730000
11	53.536000	70.610000
12	54.864000	70.620000
13	54.166000	74.250000
14	55.266000	73.090000
15	55.528000	73.570000
16	55.932000	75.970000
17	56.040000	77.520000
18	56.658000	78.180000
19	56.490000	77.040000
20	58.262000	75.020000
21	55.886000	78.990000
22	58.236000	77.390000
23	57.948000	77.780000
24	59.928000	78.290000
25	60.588000	78.840000
26	58.588000	79.930000
27	60.858000	79.400000
28	59.268000	80.630000
29	59.918000	78.980000
	60.922000	80.310000
31	59.520000	79.170000

CHAPTER 3 Training Process

Flops: 192701552.0, Params: 500309.0

Score flops: 0.2309 Score Params: 0.0895 Final score: 0.3205

UEG_DEEP_LEARNING GROUP9

Start with densenet_cifar

```
def DenseNet121():
    return DenseNet(Bottleneck, [6,12,24,16], growth rate=32)
def DenseNet169():
    return DenseNet(Bottleneck, [6,12,32,32], growth rate=32)
def DenseNet201():
    return DenseNet(Bottleneck, [6,12,48,32], growth rate=32)
def DenseNet161():
    return DenseNet(Bottleneck, [6,12,36,24], growth rate=48)
def densenet cifar():
    return DenseNet(Bottleneck, [6,12,24,16], growth_rate=12)
```


Change growth rate?

```
def densenet_cifar():
    return DenseNet(Bottleneck, [6,12,24,16], growth_rate=12)

def densenet_small():
    return DenseNet(Bottleneck, [6,12,24,16], growth_rate=9)

def densenet_tiny():
    return DenseNet(Bottleneck, [6,12,24,16], growth_rate=6)

def densenet_nano():
    return DenseNet(Bottleneck, [6,12,24,16], growth_rate=4)
```

Thanks to Aziz & Alexandre...

CHAPITRE 3: Training Process

We got... nano!

90.9%

growth rate = 4

Params: 59573.0

Final score: 0.0378

Transformation, Batch normalization

Lr, weight_decay, temperature

Distillation

Pruning-retrain

Groups convolution

Cutmix-retrain

Quantization(half, 8bit, BC)

A simple L1norm unstructured pruning

Pruning rate = 19.7%

Thanks for listening

