Системы типизации лямбда-исчисления

Лекция 6. Просто типизированная система: разрешимость, нормализация, расширения

Денис Москвин

13.03.2011

CS Club при ПОМИ РАН

Проблемы разрешимости

Есть ли алгоритм, который позволяют решить задачу?

 $\vdash M:\sigma$? Задача проверки типа ЗПТ Type Checking Problem TCP

⊢ M:? Задача синтеза типаЗСТType Synthesis (or Assgnment) Problem TSP, TAP

⊢ ?:σ Задача обитаемости типа ЗОТ Type Inhabitation Problem TIP

Для $\lambda \to ($ и в стиле Чёрча, и в стиле Карри) все эти задачи разрешимы.

ЗПТ выглядит проще ЗСТ, но обычно они эквивалентны: проверка (MN): σ ? требует синтеза N:?.

Проблемы разрешимости (2)

3ПТ \vdash M: σ ? и 3СТ \vdash M:?.

Для $\lambda \! \to \! a$ ля Чёрч — тривиально: строим дерево вывода типа.

Для $\lambda \to a$ ля Карри: ЗСТ разрешается с помощью алгоритма РТ, ЗПТ — проверкой, что тип σ может быть получен подстановкой в результат РТ.

3OT ⊢ ?:σ.

Разрешим, поскольку соответствует *доказуемости* в PROP, для которой факт разрешимости известен.

Например, $mathred{\sharp} M \vdash M : (\alpha \to \beta) \to \beta,$ поскольку $\vdash (\alpha \to \beta) \to \beta$ не является тавтологией минимальной пропозициональной логики.

Слабая и сильная нормализация (Weak and Strong Normalization)

- ► Терм называют *слабо нормализуемым* (WN), если имеется последовательность редукций, приводящих его к нормальной форме.
- ► Терм называют *сильно нормализуемым* (SN), если любая последовательность редукций, приводит его к нормальной форме.

Пример. Терм **KIK** — SN, терм **KI** Ω — WN, терм Ω — не нормализуем.

Слабая и сильная нормализация

- ▶ Систему типов называют *слабо нормализуемой* если все её допустимые термы — WN.
- ▶ Систему типов называют сильно нормализуемой если все её допустимые термы — SN.

Обе системы $\lambda \rightarrow$ (и Карри, и Чёрча) *сильно нормализуемы*.

Доказательство не является тривиальным.

Что мешает нормализации?

▶ Терм может увеличиваться.

$$(\lambda f x. f (f x)) M \rightarrow_{\beta} \lambda x. M (M x)$$

▶ Редекс может размножиться.

$$(\lambda f x. f (f x)) ((\lambda y. M) N) \rightarrow_{\beta} \lambda x. ((\lambda y. M) N) (((\lambda y. M) N) x)$$

▶ Могут появиться новые редексы.

$$(\lambda f x. f (f x)) (\lambda y. M) \rightarrow_{\beta} \lambda x. (\lambda y. M) ((\lambda y. M) x)$$

Идея для док-ва WN: выбирать стратегию, которая на каждом шаге: или делает терм короче или не создаёт новых редексов.

Увы, это не проходит.

WN: лемма о появлении редексов

При β-редукции редексы могут образовываться только следующими способами:

▶ Создание.

$$(\lambda x. \cdots (x N) \cdots) (\lambda y. M) \rightarrow_{\beta} \cdots ((\lambda y. M) N) \cdots$$

Размножение.

$$(\lambda x. \, \cdots x \cdots x \cdots) \, ((\lambda y. \, M) \, N) \, \rightarrow_{\beta} \, \cdots \, ((\lambda y. \, M) \, N) \cdots \, ((\lambda y. \, M) \, N) \cdots$$

▶ Спрятанный редекс.

$$(\lambda x. (\lambda y. M)) N P \rightarrow_{\beta} (\lambda y. M[x := N]) P$$

▶ Редукция тождества.

$$(\lambda x. x) (\lambda y. M) N \rightarrow_{\beta} (\lambda y. M) N$$

WN: меры типа

Длиной типа σ называют число $len(\sigma)$ стрелок в нём.

Порядком типа σ называют число ord (σ)

- ightharpoonup ord(α) = 0;
- $ightharpoonup \operatorname{ord}(\sigma_1 \to \ldots \to \sigma_n \to \alpha) = \max(\operatorname{ord}(\sigma_1), \ldots \operatorname{ord}(\sigma_n)) + 1.$

Эквивалентное определение (докажите это):

- ightharpoonup ord(α) = 0;
- ightharpoonup ord $(\sigma
 ightharpoonup \tau) = max(ord(\sigma) + 1, ord(\tau)).$

Примеры.

$$\begin{aligned} & \text{ord}(\alpha \! \to \! \beta) = 1; \\ & \text{ord}(\alpha \! \to \! \beta \! \to \! \gamma) = 1; \\ & \text{ord}((\alpha \! \to \! \beta) \! \to \! \gamma) = 2; \\ & \text{ord}((\gamma \! \to \! \epsilon) \! \to \! ((\gamma \! \to \! \epsilon) \! \to \! \epsilon) \! \to \! \epsilon) = ? \end{aligned}$$

WN: мера терма

Высотой редекса назовём длину типа его левого аппликанда. Для $M:\tau$, $N:\sigma$ имеем

$$h((\lambda x : \sigma. M) N) = len(\sigma \rightarrow \tau)$$

Введём для терма M **меру** $\mu(M)=(h_{r}(M),\sharp M)$, где

- ▶ $h_r(M)$ максимальная высота редекса в M;
- ▶ $\sharp M$ число редексов такой высоты в M.

Зададим для меры лексикографический порядок:

$$(h_1, n_1) < (h_2, n_2) \mid (h_1 \not\equiv h_2) = h_1 < h_2 (h_1, n_1) < (h_2, n_2) \mid (h_1 \equiv h_2) = n_1 < n_2$$

WN: Теорема о слабой нормализации $\lambda \rightarrow$

Теорема. Если M — типизируемый терм в $\lambda \rightarrow$, то для него имеется завершающаяся редукционная стратегия.

Доказательство. Выберем редекс максимальной высоты $h_r(M)$, не содержащий другого такого же редекса.

Сократим этот редекс: $M \to_{\beta} N$. При этом не возникнет новых редексов высоты $h_r(M)$.

Имеем $\mu(N) < \mu(M)$. Поскольку этот процесс не может продолжаться бесконечно, мы придём к терму без редексов.

Осталось проверить утверждение о новых редексах.

WN: используем лемму о появлении редексов

▶ Создание. Был редекс высоты $h_0 = h((\sigma \to \tau) \to \rho)$, возник с $h(\sigma \to \tau) < h_0$.

$$(\lambda x^{\sigma \to \tau}. \cdots (x N^{\sigma}) \cdots) (\lambda y^{\sigma}. M^{\tau}) \to_{\beta} \cdots ((\lambda y^{\sigma}. M^{\tau}) N^{\sigma}) \cdots$$

▶ Размножение. Был редекс высоты $h_0 = h(\tau \to \rho)$, по условию $h_0 > h(\sigma \to \tau)$ (иначе бы сокращали не его).

$$(\lambda x^{\tau}. \cdots x \cdots x \cdots) ((\lambda y^{\sigma}. M^{\tau}) N^{\sigma}) \rightarrow_{\beta} \cdots ((\lambda y^{\sigma}. M^{\tau}) N^{\sigma}) \cdots ((\lambda y^{\sigma}. M^{\tau}) N^{\sigma}) \cdots$$

▶ Спрятанный редекс. $h_0 = h(\sigma \rightarrow \tau \rightarrow \rho)$, возник с $h(\tau \rightarrow \rho) < h_0$.

$$(\lambda x^{\sigma}. (\lambda y^{\tau}. M^{\rho})) N^{\sigma} P^{\tau} \rightarrow_{\beta} (\lambda y^{\tau}. M[x := N]) P^{\tau}$$

▶ Редукция **I**. $h_0 = h((\sigma \rightarrow \tau) \rightarrow \sigma \rightarrow \tau)$, возник с $h(\sigma \rightarrow \tau) < h_0$.

$$(\lambda x^{\sigma \to \tau}. x) (\lambda y^{\sigma}. M^{\tau}) N^{\sigma} \to_{\beta} (\lambda y^{\sigma}. M^{\tau}) N^{\sigma}$$

Сильная нормализация для $\lambda \rightarrow$ -Карри

Введём SN — множество термов, для которых все последовательности редукций завершаются нормальной формой. Наша задача — показать, что

$$\Gamma \vdash M : \sigma \Rightarrow M \in SN$$

Для этого каждого типа σ определим логический предикат P^{σ} над термами этого типа.

Цель. Если для предиката P^{σ} выполняется

- ▶ $\Gamma \vdash M$: σ влечёт $P^{\sigma}(M)$;
- ▶ $P^{\sigma}(M)$ влечёт $M \in SN$, то SN доказана.

SN: определение предиката P^{σ}

Определим логический предикат P^{σ} так

$$\begin{array}{cccc} P^{\alpha}(M) & := & M \in \mathsf{SN} \\ P^{\sigma \to \tau}(M) & := & \forall N \ P^{\sigma}(N) \Rightarrow P^{\tau}(M \, N) \end{array}$$

Предикат для стрелки верен, если он верен для всех аппликаций соответствующего терма к любым термам, для которых верен такой предикат.

Иногда пишут $[[\sigma]] \equiv \{M \mid P^{\sigma}(M)\}$ и говорят про *интерпретацию* типов.

Полезное замечание: $(MN) \in SN \Rightarrow M \in SN \land N \in SN$, но не наоборот (приведите пример!).

Лемма: если P^{σ} , то SN

Лемма 1. Для каждого σ и $k \geqslant 0$ верно:

- ▶ (1) Если $(x M_1 ... M_k)$: σ и $\forall i M_i \in SN$, то $P^{\sigma}(x M_1 ... M_k)$;
- ▶ (2) Если $P^{\sigma}(M)$, то $M \in SN$.

Доказательство. Индукция по структуре типа.

Для α (1) тривиально; (2) по определению P^{σ} . Для $\sigma \! \to \! \tau$.

- (1) Пусть $(x \overrightarrow{M}): \sigma \to \tau$ и $\forall i \ M_i \in SN;$ берём $\forall N \ P^{\sigma}(N).$ По (IH2) для σ имеем $N \in SN.$ По (IH1) для τ имеем $P^{\tau}(x \overrightarrow{M} N).$ Отсюда $P^{\sigma \to \tau}(x M_1 \ldots M_k)$, поскольку N произвольное.
- (2) Берём $\forall M \ P^{\sigma \to \tau}(M)$ и $x : \sigma$. По (IH1) $P^{\sigma}(x)$, откуда $P^{\tau}(M x)$. По (IH2) имеем $M x \in SN$, что даёт $M \in SN$, поскольку бесконечная редукция во втором даст её и в первом.

Сильная нормализация

Лемма 2. Для каждого σ для предиката P^{σ} верно: ▶ Для любого $N \in SN$ если $P^{\sigma}(M[x := N] \overrightarrow{L})$, то $P^{\sigma}((\lambda x. M) N \overrightarrow{L})$. **Доказательство**. Индукция по структуре типа. Проведите её.

Утверждение. Пусть дан контекст $\Gamma = \{x_1 : \tau_1, \dots, x_k : \tau_k\}$ и термы N_1, \dots, N_k , такие что $\forall i \ P^{\tau_i}(N_i)$. Тогда

$$\Gamma \vdash M : \sigma \Rightarrow P^{\sigma}(M[x_1 := N_1, \dots, x_k := N_k])$$

Доказательство. Индукция по выводу $\Gamma \vdash M : \sigma$, используя лемму 2. Проведите её.

Следствие. $\lambda \rightarrow$ является SN. Доказательство. Положим $N_i = x_i$.

Интерпретации $\lambda \rightarrow$

Как можно интерпретировать стрелочный тип?

Теоретико-множественная модель

$$[[\sigma \to \tau]] := [[\tau]]^{[[\sigma]]}$$

Она слишком «большая».

Наша модель

$$\begin{aligned} & [[\alpha]] &:= & \mathsf{SN} \\ & [[\sigma \! \to \! \tau]] &:= & \{ M \mid \forall N \in [[\sigma]] \ (M \ N) \in [[\tau]] \} \end{aligned}$$

Иначе говоря

$$[[\sigma \to \tau]] := \{f \colon [[\sigma]] \to [[\tau]] \mid f \ \lambda - \mathsf{определима} \}$$

Расширения \(\lambda\)-исчисления

Можно расширить множество λ-термов константами:

$$\Lambda(\mathbb{C}) ::= \mathbb{C} \mid V \mid \Lambda(\mathbb{C}) \Lambda(\mathbb{C}) \mid \lambda V. \Lambda(\mathbb{C})$$

Например, $\mathbb{C} = \{ true, false \} ?$

Но нам ещё нужно уметь их использовать. Поэтому лучше

$$\mathbb{C} = \{\text{true, false, not, and, iif}\}$$

И всё равно, помимо констант нужны дополнительные правила, описывающие работу с ними. Какие?

δ-редукция: пример

Всем известные:

«Внешние» функции над константами порождают новые правила редукции.

δ-редукция: обобщение

Если на множестве термов X (обычно $X \subseteq \mathbb{C}$) задана «внешняя» функция $f: X^k \to \Lambda(\mathbb{C})$, то для неё добавляем δ -правило:

- ▶ выбираем константу $\delta_{\rm f}$;
- ightharpoonup для $M_1, \ldots, M_k \in X$ добавляем правило сокращения

$$\delta_f M_1 \ldots M_k \rightarrow_{\delta} f(M_1, \ldots, M_k)$$

Для одной f — не одно правило, а целая схема правил.

Например, для $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ схемы правил:

plus $m\ n\ \to_\delta\ m+n$ mult $m\ n\ \to_\delta\ m\times n$ equal $n\ n\ \to_\delta$ true equal $m\ n\ \to_\delta$ false, если $m\neq n$

Типизация расширенной системы

Расширим и типы константами $\mathbb{T}::=\mathbb{B}\mid\mathbb{V}\mid\mathbb{T}\to\mathbb{T}$, подходящими для типизации термовых констант, и *аксиомами типизации* вида

 \mathbf{C} : σ

Например, $\mathbb{B} = \{B, Z\}$ с аксиомами

true:B, false:B, n:Z,

 $not: B \rightarrow B$, $or: B \rightarrow B \rightarrow B$,

iif: $B \rightarrow \sigma \rightarrow \sigma \rightarrow \sigma$,

plus: $Z \rightarrow Z \rightarrow Z$,

 $mult: Z \rightarrow Z \rightarrow Z$,

equal: $Z \rightarrow Z \rightarrow B$.

Вывод типа для расширенной системы

Типизируем $\lambda x y$. **mult** y (**plus** x y).

$$\frac{\text{plus}:Z\to Z\to Z \quad [y:Z]^1}{\text{mult } y:Z\to Z} \frac{\frac{\text{plus}:Z\to Z}{\text{plus } x:Z\to Z} \quad [y:Z]^1}{\text{plus } x:Z\to Z}$$

$$\frac{\text{mult } y (\text{plus } x \ y):Z}{\frac{\lambda y. \text{mult } y (\text{plus } x \ y):Z\to Z}{\lambda x \ y. \text{mult } y (\text{plus } x \ y):Z\to Z}} \tag{2}$$

Система $\lambda Y \delta$

Типизация для системы с числами обладает свойством сильной нормализации.

Это не всегда так.

Определим расширение с одной термовой константой $\mathbb{C}=\{Y\}$, правилом редукции:

$$Yf \rightarrow_{\delta} f(Yf)$$

и одной схемой аксиом типизации:

$$Y:(\sigma \rightarrow \sigma) \rightarrow \sigma$$
.

Свойства системы λΥδ

- Система λΥδ обладает свойством Чёрча-Россера.
- ► Нормальная редукционная стратегия приводит терм системы $\lambda Y \delta$ к нормальной форме, если у него она есть.
- ightharpoonup Система $\lambda Y\delta
 ightharpoonup$ обладает свойством редукции субъекта.
- \blacktriangleright В системе $\lambda Y \delta$ представимы все вычислимые функции.

Домашнее задание

Докажите эквивалентность двух определений порядка типа.

Литература (1)

LCWT гл. 4.4, 4.3

Henk Barendregt, Lambda calculi with types, Handbook of logic in computer science (vol. 2), Oxford University Press, 1993

ITT гл. 4.3, 4.4

Herman Geuvers, Introduction to Type Theory Alfa Lernet Summer school 2008, Uruguay

http://www.cs.ru.nl/H.Geuvers/Uruguay2008SummerSchool.html

Литература (2)

TAPL гл. 12

Benjamin C. Pierce, Types and Programming Languages, MIT Press, 2002

http://www.cis.upenn.edu/~bcpierce/tapl

ОЯП гл. 8.3.2

Дж.Митчелл, Основания языков программирования, М.-Ижевск, НИЦ РХД, 2010