Birla Institute of Technology & Science, Pilani Work Integrated Learning Programmes Division First Semester 2023-2024

M.Tech (Data Science and Engineering) Mid-Semester Exam (EC-2 Makeup)

Course No. : DSECLZG516

Course Title : Computer Organization and Software Systems

Nature of Exam : Open Book

Weightage : 30%

Duration : No. of Pages = 2
No. of Questions = 6

Note to Students:

- 1. All parts of a question should be answered consecutively. Each answer should start from a fresh page.
- 2. **Assumptions** made if any, should be stated clearly at the beginning of your answer.
- 3. For all problems **relevant steps** are to be shown.

Q1: Answer the following questions.

[2 + 3 = 5 Marks]

- (a) Describe the main categories of interrupts. Provide situations where each interrupt type may be encountered.
- (b) Imagine a benchmark program operating on a system with a clock rate of 30MHz. The program involves 75,000 executable instructions, each categorized by instruction type, and each type has a designated count of clock cycles for execution.

Instruction Type	Instruction Count	Cycles Per Instruction
Integer Arithmetic	35000	1
Data Transfer	20000	2
Floating Point	12000	2
Control Transfer	8000	2

Determine the effective CPI, MIPS and execution time for the program.

Q2: Answer the following questions.

[2+3=5 MARKS]

a) The "INgate" company which manufactures Magnetic Disk Drives seeks your help in evaluating critical metrics using the following inputs:

Magnetic Disc pack has 16 surfaces, 256 tracks per surface and 512 sectors per track. There are 512 bytes per sector.

- i. What is the capacity of disk pack?
- ii. What is the number of bits required to address a sector?
- b) Following is the code word generated using Hamming code.

011010101010

This code word contains data and syndrome bits.

- i. Identify the syndrome bits.
- ii. What is the decimal equivalent of data?
- iii. Is there any error in the data? If so, what is the correct data?

Q3: Answer the following questions

[5MARKS]

Consider a memory system that uses a 32-bit address to address byte addressable main memory and a cache with 16 KB line size. Assume a four-way set-associative cache which stores tag of 6 bits along with data blocks in each cache line. Answer the following questions.

- a) Calculate the total capacity of main memory in **GBytes.**
- b) Calculate number of blocks in main memory.

- c) Show the main memory address format with number of bits needed for each field.
- d) Calculate number of lines per set and number of sets in cache.
- e) Calculate total number of lines in cache.

Q4: Answer the following question.

[4+1=5 MARKS]

a) Mr. Joel proposed a new cache replacement algorithm using two existing cache memory replacement algorithm LRU and FIFO. The new algorithm work in two phases. During first phase (clock number 0 to 4), it follows LRU and in second phase, that is (clock number 5 to 9), it follows FIFO. The algorithm is tested with the following main memory block sequence: 3 4 3 6 7 3 8 7 4 3. Find out the hit ratio of the new replacement algorithm. Assume that the cache uses associative mapping. Justify your answer.

	LFU				FIFO					
Time	0	1	2	3	4	5	6	7	8	9
Address	3	4	3	6	7	3	8	7	4	3
L_0										
L_1										
L_2										
L_3	·									
M/H										

- b) Assume the content Register A is 10101101. Find out the content of the Register A for the following cases.
 - i. Arithmetic left shift (one time)
 - ii. Arithmetic right shift (one time)

Q5: Answer the following questions.

[1+4=5 MARKS]

- a) Register Indirect addressing results in very fast execution but limited memory space compared to register addressing mode. State True/False with proper justifications.
- b) A RISC based processor is designed with 32 instructions and 13 bit addresses. Opcode field of the instruction has fixed number of bits.
 - i. There are 60 two address instructions. How many one address instructions can be accommodated?
 - ii. Draw the instruction format for one address instruction and two address instruction.
 - iii. List 2 differences between 2 address instruction and 3 address instruction with an example.

Q6: Answer the following questions.

[3 + 2 = 5 MARKS]

a) Consider a reservation table for a pipeline with four stages: S0, S1, S2, and S3.

Stages/Time	0	1	2	3
S0		X		X
S1			X	
S2		X		
S3	X			

- i. Draw the complete pipeline diagram.
- ii. Draw time-space diagram showing 3 Tasks (T1, T2, and T3) execution.
- b) State whether the following statements are **True** or **False** with proper justification. Answers without proper justification will not be given any marks.
 - a. RAID 0 is not a true member RAID family.
 - b. During instruction fetch operation, the instruction is directly transferred to the instruction register from the Main Memory before it is decoded.