chap01 电磁场的普遍规律

	错误	更正
P2: (1.1.17)式 第四个方程	$\nabla \times \boldsymbol{H} = \frac{4\pi}{c} \boldsymbol{j} + \frac{1}{c} \partial_t \boldsymbol{E}$	$\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \partial_t \mathbf{E}$
P2: (1.1.19)式 第二个方程	$ abla imes oldsymbol{E} = -\partial_t oldsymbol{B}$	$\mathbf{\nabla} \times \mathbf{E} = -\frac{1}{c} \partial_t \mathbf{B}$
P3: (1.2.2)式 上方一行	对于线性介质	对于线性、 <mark>无色散</mark> 介质
P4: (1.2.5)式 下方一行	对于线性介质	对于均匀线性介质
P5: 例题 1-2 的第一行	Schockley - James 佯谬	Shockley – James 佯谬
P9: (1.3.2)式 第二个方程	$\Box \mathbf{A} - \nabla \left(\frac{1}{c^2} \partial_t \phi + \nabla \cdot \mathbf{A} \right) = \mu_0 \mathbf{j}$	$\Box \mathbf{A} + \nabla \left(\frac{1}{c^2} \partial_t \phi + \nabla \cdot \mathbf{A} \right) = \mu_0 \mathbf{j}$
P10: 第 11 行	因此 G ^(±) (k, R) 为方程(1.3.9)的解	因此 G ^(±) (k, R) 为方程(1.3.11)的解
P11: 第三行 公式的中间 表达式	$\int d^3 \mathbf{r}' dt \frac{\delta \left(t \mp \frac{R}{c} \right)}{4\pi R} f(t, \mathbf{r})$	$\int d^3 \mathbf{r}' d\mathbf{t}' \frac{\delta \left(t - \mathbf{t}' \mp \frac{R}{c}\right)}{4\pi R} f(\mathbf{t}', \mathbf{r})$