CMSC 641, Design and Analysis of Algorithms, Spring 2010

Sandipan Dey, Homework Assignment - 11

May 4, 2010

PiC (Partition into Cliques) is NP Complete

- 1. PiC = $\{\langle G, k \rangle : \exists$ a partition of V(G) into k subsets V_1, \dots, V_k s.t. each V_i is a clique in $G\}$
- 2. PiC \in NP : Given $\langle G, k \rangle$ and $\{V_1, \dots, V_k\}$ (certificate) we have to verify whether it is a valid partition of V(G) into k Cliques.
 - (a) Check if the vertex set (all vertices) V(G) is covered by the subsets $V = V_1 \cup V_2 \ldots \cup V_k$: can be done in polynomial time at most $O(|V|^2)$.
 - (b) Check if valid partition (all of the k subsets are mutually disjoint) $V_i \cap V_j = \phi$ if $i \neq j$: can be done in polynomial time $O(k^2|V|^2)$.
 - (c) Check if each V_i is a clique: this can be done in polynomial time $O(\sum_{i=1}^k |V_i|^2) = O(k|V|^2).$

Hence the 'Yes' certificate can be verified in polynomial time.

- \Rightarrow PiC \in NP.
- 3. PiC is NP-hard: We show by reducing the well-known NP-hard problem Graph Coloring to Pic.
 - (a) Graph Coloring = $\{\langle G, k \rangle : G \text{ is } k\text{-colorable}\}.$
 - (b) To Prove: Graph Coloring \leq_p^m Pic.
 - (c) Construction:
 - i. Construct the graph $\bar{G}(V, \bar{E})$, the complement graph of G(V, E) (s.t. $(u, v) \in \bar{E} \Leftrightarrow (u, v) \notin E$).
 - ii. Claim: G is k colorable iff \bar{G} can be partitioned into k cliques.

- (d) Proof:
 - i. (⇒)
 - Suppose G is k colorable.
 - $\exists (V_1, V_2, \dots V_k) \subseteq V$ that are colored by colors $1, 2, \dots k$ respectively, with V_i colored by color i.
 - $\bigcup_{i=1}^{\kappa} V_i = V$ (since all the vertices of G must be colored).
 - $V_i \cap V_j = \phi$ if $i \neq j$ (since every vertex must be colored with exactly one color).
 - Each $V_i \subseteq V$ forms an independent set of G (since any two vertices $u, v \in V$ can be colored with the same color only if $(u, v) \notin E$).
 - In \bar{G} each of V_i forms a clique $\forall i = 1, ..., k$ (since for any $u, v \in V_i \Rightarrow (u, v) \notin E \Rightarrow (u, v) \in \bar{E}$), with $\bigcup_{i=1}^k V_i = V$ and $V_i \cap V_j = \phi$ if $i \neq j$.

Hence \bar{G} can be partitioned into k cliques.

- ii. (⇐)
 - Suppose \bar{G} can be partitioned into k cliques.
 - $\exists (V_1, V_2, \dots V_k) \subseteq V$, with each V_i being a clique, $\bigcup_{i=1}^k V_i = V$, $V_i \cap V_j = \phi$ if $i \neq j$ (mutually disjoint since a partition).
 - Each $V_i \subseteq V$ forms an independent set in G (since for any $u, v \in V_i \Rightarrow (u, v) \in \bar{E} \Rightarrow (u, v) \notin E$).
 - In G, there are k such independent sets V_i .

Hence G is k colorable.

(e) The Construction is polynomial time: needs $\theta(|E|)$ time to construct the complement graph \bar{G} .

Parallel Transpose

Work = $T_1(n) = \theta(n^2)$ (serializing nested for loops on line 2 and 3). Span = $T_{\infty}(n) = \theta(lgn) + \theta(1) = \theta(lgn)$. Parallelism = $\frac{T_1(n)}{T_{\infty}(n)} = \frac{\theta(n^2)}{\theta(lgn)} = \theta\left(\frac{n^2}{lgn}\right)$.

Matrix-Vector Multiplication