Scheduling Multicast Traffic with Deadlines in Wireless Networks

Kyu Seob Kim, Chih-ping Li, and Eytan Modiano

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

IEEE INFOCOM 2014, Toronto, Canada

Real-time multicast over wireless

- Increasing demand for serving real-time flows in wireless networks
- Challenges:
 - Hard delay constraints
 - Unreliable wireless channels
 - Per-user QoS (throughput) demand
 - Exploiting multicast
 - Exploiting instant user feedback
- We study multicast transmissions with hard deadlines over unreliable wireless channels

Wireless network model

- Each flow generates one packet every frame
- Old packets are discarded at the end of a frame
- BS broadcasts a flow to its subscribers in a slot
- User n receives a packet in a slot successfully with prob. pn
- Instant ACK/NACK feedback from users to BS

The multicast scheduling problem

- d_n = timely throughput of user n
- Timely throughput region?
- Throughput-optimal policies?

Special examples

- Unicast transmissions [Hou Borkar Kumar 2009]
 - This year's keynote
 - Timely throughput region is a polymatroid [Hou et al 2011]
 - Not applicable to multicast

Special examples

- Multicast without user feedback [Hou Kumar 2011]
 - Blind and redundant packet transmissions
 - Throughput region is decided by # of slots allocated to each flow
- Feedback improves throughput

Multicast throughput

- Throughput region Λ_0 in the first frame
- Computing Λ_0 is difficult
 - finite-horizon DP with exponentially large state space
- We characterize boundary points of Λ_0 by solving:

Dynamic programming formulation

$$\text{maximize } \sum_{n=1}^N \alpha_n \, \mathbb{E}[d_n^\pi(0)], \quad \text{subject to } \pi \in \Pi,$$

State space S = the collection of all subsets of users

State s_k = subset of unserved users of all flows in slot k

Action $u_k(s_k)$ = multicast flow to serve

Reward $g_k(s_k, u_k)$ = sum of successful transmissions to unserved users, weighted by α

Solve:
$$J^*(s_0) \triangleq \max_{\pi \in \Pi} \mathbb{E} \left\{ \left. \sum_{k=0}^{T-1} g_k(s_k, u_k) \mid s_0 \right. \right\},$$

There is an optimal greedy policy

pi = reward if user i receives a new packet

 $\alpha i = user-i weight$

 $r_f(t) = \sum_{i \in U_f(t)} \alpha_i \, p_i$: weighted reward from unserved users of flow f

Optimal greedy policy: serve the flow f that maximizes rf(t) in slot t (it follows backward induction and interchange arguments of DP)

T = 3 slots, t = 1

$$rI(t) = 0.5 \times 2 \times 3 > r2(t) = 0.4 \times 3 \times 2$$

Serve multicast flow BLUE

$$T = 3$$
 slots, $t = 2$

$$rI(t) = 0.5 \times 2 \times I < r2(t) = 0.4 \times 3 \times 2$$

Serve multicast flow RED

T = 3 slots, t = 3

$$rI(t) = 0.5 \times 2 > r2(t) = 0$$

serve multicast flow BLUE

Special example: unicast transmissions

Two users
Frame size T=5 slots
Channel probabilities p1=p2=0.2

Throughput region is given by supporting hyperplanes

[Hou Borkar Kumar 2009]

Throughput-optimal policy

- Achieving feasible throughput q_n for each user n
- Throughput-optimal policy:
 - Delivery debt up to frame k: $D_n(k) = \sum_{j=0}^{k-1} \left(q_n d_n(j)\right)$ $D_n^+(k) = \max\{D_n(k), 0\}$
 - Transmit the flow f that maximizes rf(t) from unserved users in slot t of the kth frame:

Feedback improves throughput

Users I & 2 subscribe to flow I with (pI, p2) = (0.4, 0.8)Users 3 & 4 subscribe to flow 2 with (p3, p4) = (0.9, 0.4)Frame size T=5

Popularity of multicast flows

2 multicast flows, frame size T=10 All users have the same channel probability p

Different frame sizes

3 multicast flows, each has 2 subscribers All users have the same channel probability p=0.3

Number of multicast flows

Each multicast flow has 3 subscribers, frame size T=5 All users have the same channel probability p=0.3

Summary

- Multicast is efficient for real-time transmissions over wireless
 - Issues include unreliable channels, hard deadline constraints, and per-user QoS demand, and multicast protocol design
- When user feedback is available, the multicast throughput region is characterized by greedy policies
 - Using backward induction and inter-change arguments of DP
- An adaptive throughput-optimal policy
- Simulations identify conditions under which user feedback provides the largest and the lowest throughput gain over the no-feedback case