#### Lec 14: Stepwise Regression

Ailin Zhang

# Roadmap for Regularized Learning

- Ridge regression
- Lasso regression
- Coordinate descent
- Spline regression
- Least angle regression
- Stagewise regression for  $\epsilon$  learning
- Bayesian regression
- Perceptron
- SVM
- Adaboost

# Least Angle Regression (LAR)

- LAR is a type of forward stepwise regression.
  - Forward step-wise regression builds a model sequentially, adding one
    variable at a time. At each step, it identifies the best variable to include
    in the active set, and then updates the least squares fit to include all the
    active variables.
- LAR is connected to Lasso regression.
- LAR was defined in the Efron et al., 2004. It is a relatively newer algorithm and is viewed as a democratic version of the forward step-wise regression.

# Least Angle Regress (LAR)



# Least Angle Regression (LAR)

The basic steps of the Least-angle regression algorithm are:

- Standardize the predictors (mean zero, unit norm). Initialize:
  - residuals  $r = y \bar{y}$
- regression coefficient estimates  $\beta_1 = \cdots = \beta_p = 0$ ;
- 2 find the predictor  $x_i$  most correlated with r;
- **1** move  $\hat{\beta}_j$  towards its least-squares coefficient  $\langle x_j, r \rangle$ ,
  - until for  $k \neq j$ , corr  $(x_k, r) = \text{corr } (x_j, r)$ .
- **①** add  $x_k$  in the active list and update both  $\hat{\beta}_j$  and  $\hat{\beta}_k$ :
  - towards their joint least squares coefficient;
- until  $x_l$  has as much correlation with the current residual;
- **5** continue until all *p* predictors have been entered.

#### **LAR Solution Path**



#### LAR vs Lasso

If  $\beta$  is the Lasso solution, at any given  $\lambda$ , let  $\mathbf{R} = \mathbf{Y} - \sum_{j=1}^p \mathbf{X}_j \beta_j$ , then  $\hat{\beta}_j = \beta_j + \langle \mathbf{R}, \mathbf{X}_j \rangle / \|\mathbf{X}_j\|_{\ell_2}^2$ . then

$$\langle \mathbf{R}, \mathbf{X}_j \rangle = \left\{ egin{array}{ll} \lambda, & ext{if } eta_j > 0, \\ -\lambda, & ext{if } eta_j < 0, \\ \mathfrak{s}\lambda & ext{if } eta_j = 0. \end{array} 
ight.$$

where |s| < 1.

Thus in the above process, for all of those selected  $\mathbf{X}_j$ , the algorithm maintains that  $\langle \mathbf{R}, \mathbf{X}_j \rangle$  to be  $\lambda$  or  $-\lambda$ , for all selected  $\mathbf{X}_j$ . If we interpret  $|\langle \mathbf{R}, \mathbf{X}_j \rangle|$  in terms of the angle between  $\mathbf{R}$  and  $\mathbf{X}_j$ , then we may call the above process as least angle regression (LAR). In fact, the solution path is piecewise linear, and the LARS computes the linear pieces analytically instead of gradually reducing  $\lambda$  as in coordinate descent.

Lasso can be thought of as restricted versions of LAR

# Other shrinkage methods: Group Lasso

Sometimes predictors belong to the same group: - genes that belong to the same molecular pathway; - dummy variables from the same categorical variable . . .

Suppose the p predictors are grouped in L groups, group lasso minimizes

$$\min_{\beta} \left\{ \left\| y - \beta_0 - \sum_{\ell=1}^{L} X_{\ell} \beta_{\ell} \right\|_{2}^{2} + \lambda \sum_{\ell=1}^{L} \sqrt{p_{\ell}} \|\beta_{j}\|_{2} \right\}.$$

#### where:

- $\sqrt{p_{\ell}}$  accounts for the group sizes;
- $\bullet \parallel \cdot \parallel$  denotes the (not squared) L2 norm
- sparsity is encouraged at both group and individual levels.

# Other shrinkage methods: Non-negative garrote

The idea of lasso originates from the non-negative garrote,

$$\hat{\beta}_{\text{garrote}} = \operatorname{argmin}_{\beta} \sum_{i=1}^{N} \left( y_i - \beta_0 - \sum_{j=1}^{p} c_j \beta_j x_{ij} \right)^2,$$

subject to

$$c_j\geqslant 0$$
 and  $\sum_i c_j\leqslant t$ 

Non-negative garrote starts with OLS estimates and shrinks them:

- by non-negative factors;
- the sum of the non-negative factor is constrained;
- for more information, see Breiman (1995).

## **Stagewise Regression**

The stagewise regression iterates the following steps:

- **1** Start with  $\mathbf{R} = \mathbf{Y}$ ,  $\beta_1, \beta_2, \cdots, \beta_p = 0$ .
- ② Find the predictor  $\mathbf{X}_j$  most correlated with R: ind j with the maximal  $|\langle \mathbf{R}, \mathbf{X}_j \rangle|$ .
- **3** Then update  $\beta_j \leftarrow \beta_j + \epsilon \langle \mathbf{R}, \mathbf{X}_j \rangle$
- Set  $\mathbf{R} = \mathbf{Y} \sum_{j=1}^{p} \mathbf{X}_{j} \beta_{j}$ , or  $\mathbf{R} = \mathbf{R} \epsilon \langle \mathbf{R}, \mathbf{X}_{j} \rangle \cdot \mathbf{X}_{j}$ .

#### Repeat step 2-4

This is similar to the matching pursuit but is much less greedy. Such an update will change  $\mathbf{R}$  and reduce  $|\langle \mathbf{R}, \mathbf{X}_j \rangle|$ , until another  $\mathbf{X}_j$  catches up.

So overall, the algorithm ensures that all of the selected  $\mathbf{X}_j$  to have the same  $|\langle \mathbf{R}, \mathbf{X}_i \rangle|$ .

The stagewise regression is also called  $\epsilon$ -boosting.

# R code for Stagewise Regression

```
T = 3000
epsilon = .0001
beta = matrix(rep(0, p), nrow = p)
db = matrix(rep(0, p), nrow = p)
beta_all = matrix(rep(0, p*T), nrow = p)
R = Y
for (t in 1:T)
      for (j in 1:p)
        db[j] = sum(R*X[, j])
      j = which.max(abs(db))
      beta[j] = beta[j]+db[j]*epsilon
      R = R - X[, j]*db[j]*epsilon
      beta all[, t] = beta
matplot(t(matrix(rep(1, p), nrow = 1)%*%abs(beta_all)), t(beta_all), type = 'l')
```

## Stagewise Regression vs Lasso Regression



Forward Stagewise and Lasso look similar. Are they Identical?

- If X is orthogonal: yes
- A more general case: almost identical, not exactly same.

# Relationship among Lasso, LAR, and stagewise regression

- LAR: uses least squares directions in the active set of variables
- LASSO: uses least square directions; if a variable crosses zero, it is removed from the active set.
- Forward stagewise: Move in the direction of maximum  $Corr(\mathbf{R}, \mathbf{X}_j)$  in the active set.

In forward stagewise, if  $\epsilon \to 0$ , it converges to LAR.

## **Stepwise Regression**

- Stepwise regression is a variable selection procedure for independent variables (X)
- Consists of a series of steps designed to find the most features to include in a regression model
- Basis for selection:
  - Choose a variable that satisfies the criterion
  - Remove a variable that least satisfies the criterion

At each step, we either enter or remove a predictor based on the partial F-tests — the t-tests for the slope parameters.

We stop when no more predictors can be justifiably entered or removed from our stepwise model, thereby leading us to a "final model."

Regress y on  $x_1$ , y on  $x_2$ , y on  $x_3$ , y on  $x_4$ . Choose significance level as 0.15.

| Predictor | Coef    | SE Coef | T     | P     |
|-----------|---------|---------|-------|-------|
| Constant  | 81.479  | 4.927   | 16.54 | 0.000 |
| x1        | 1.8687  | 0.5264  | 3.55  | 0.005 |
| Predictor | Coef    | SE Coef | т     | P     |
| Constant  | 57.424  | 8.491   | 6.76  | 0.000 |
| x2        | 0.7891  | 0.1684  | 4.69  | 0.001 |
| Predictor | Coef    | SE Coef | T     | P     |
| Constant  | 110.203 | 7.948   | 13.87 | 0.000 |
| х3        | -1.2558 | 0.5984  | -2.10 | 0.060 |
| Predictor | Coef    | SE Coef | т     | P     |
| Constant  | 117.568 | 5.262   | 22.34 | 0.000 |
| x4        | -0.7382 | 0.1546  | -4.77 | 0.001 |

As a result of the first step, we enter  $x_4$  into our stepwise model.

we fit the next two-predictor model that includes  $x_4$  as a predictor — that is, we regress y on  $x_4$  and  $x_1$ , y on  $x_4$  and  $x_2$ , and y on  $x_4$  and  $x_3$ 

| Predictor | Coef     | SE Coef | T      | P     |
|-----------|----------|---------|--------|-------|
| Constant  | 103.097  | 2.124   | 48.54  | 0.000 |
| ×4        | -0.61395 | 0.04864 | -12.62 | 0.000 |
| х1        | 1.4400   | 0.1384  | 10.40  | 0.000 |
| Predictor | Coef     | SE Coef | т      | P     |
| Constant  | 94.16    | 56.63   | 1.66   | 0.127 |
| x4        | -0.4569  | 0.6960  | -0.66  | 0.526 |
| x2        | 0.3109   | 0.7486  | 0.42   | 0.687 |
| Predictor | Coef     | SE Coef | т      | P     |
| Constant  | 131.282  | 3.275   | 40.09  | 0.000 |
| x4        | -0.72460 | 0.07233 | -10.02 | 0.000 |
| x3        | -1.1999  | 0.1890  | -6.35  | 0.000 |

As a result of the second step, we enter  $x_1$  into our stepwise model.

Regress y on  $x_4$ ,  $x_1$ , and  $x_2$ , and y on  $x_4$ ,  $x_1$  and  $x_3$ 

| Predictor | Coef     | SE Coef | T      | P     |
|-----------|----------|---------|--------|-------|
| Constant  | 71.65    | 14.14   | 5.07   | 0.001 |
| x4        | -0.2365  | 0.1733  | -1.37  | 0.205 |
| x1        | 1.4519   | 0.1170  | 12.41  | 0.000 |
| x2        | 0.4161   | 0.1856  | 2.24   | 0.052 |
| Predictor | Coef     | SE Coef | т      | P     |
| Constant  | 111.684  | 4.562   | 24.48  | 0.000 |
| x4        | -0.64280 | 0.04454 | -14.43 | 0.000 |
|           | 1.0519   | 0.2237  | 4.70   | 0.001 |
| x1        |          |         |        |       |

As a result of the third step, we enter  $x_1$  into our stepwise.

At the same time, remove  $x_4$ .

Proceed fitting each of the three-predictor models that include  $x_1$  and  $x_2$  as predictors — that is, we regress y on  $x_1$ ,  $x_2$ , and  $x_3$ ; y on  $x_1$ ,  $x_2$ , and  $x_4$ :

| Predictor | Coef    | SE Coef | T     | P     |
|-----------|---------|---------|-------|-------|
| Constant  | 71.65   | 14.14   | 5.07  | 0.001 |
| x1        | 1.4519  | 0.1170  | 12.41 | 0.000 |
| x2        | 0.4161  | 0.1856  | 2.24  | 0.052 |
| x4        | -0.2365 | 0.1733  | -1.37 | 0.205 |
| Predictor | Coef    | SE Coef | т     | P     |
| Constant  | 48.194  | 3.913   | 12.32 | 0.000 |
| x1        | 1.6959  | 0.2046  | 8.29  | 0.000 |
| x2        | 0.65691 | 0.04423 | 14.85 | 0.000 |
|           | 0.2500  | 0.1847  | 1.35  | 0.209 |

We stop our stepwise regression procedure. Our final regression model, based on the stepwise procedure contains only the predictors  $x_1$  and  $x_2$ .

Final model:

| Coef    | SE Coef | T                             | P                                         |
|---------|---------|-------------------------------|-------------------------------------------|
| 52.577  | 2.286   | 23.00                         | 0.000                                     |
| 1.4683  | 0.1213  | 12.10                         | 0.000                                     |
| 0.66225 | 0.04585 | 14.44                         | 0.000                                     |
|         | 52.577  | 52.577 2.286<br>1.4683 0.1213 | 52.577 2.286 23.00<br>1.4683 0.1213 12.10 |

Not only can you use t-test, you can also consider R<sup>2</sup>, AIC, BIC, etc. . .

# **Summary for Stepwise Regression**

- The final model is not guaranteed to be optimal in any specified sense.
- The procedure yields a single final model, although there are often several equally good models.
- Stepwise regression does not take into account domain knowledge about the predictors. It may be necessary to force the procedure to include important predictors.
- One should not over-interpret the order in which predictors are entered into the model.
- It is possible that we may have committed a Type I or Type II error along the way.