

제5강

대기환경과 대기오염

강원대학교 박규현 교수

농축산환경학

방송통신대학교 고한종 교수 연암대학교 송준익 교수 <u>경남과학기술대학교</u> 김두환 교수

충남대학교 안희권 교수 강원대학교 박규현 교수 부산가톨릭대학교 김기연 교수

等等别 二、

- 1 지구의 대기
- 2 지구온난화
- 3 축산과 온실가스

제5강 대기환경과 대기오염

강원대학교 박규현 교수

1) 대기권이란?

- ☑ 대기(大氣, atmosphere)
 - > 천체의 주위를 대체로 일정하게 둘러싸고 있는 기체층
 - 지표에서 약 1,000 km 상공까지 존재
 - 질소(N₂; 약 78.1%); 산소(O₂; 약 20.9%); 아르곤(Ar);
 이산화탄소(CO₂); 수증기 등으로 구성되어 있음
- ☑ 대기권의 구분
 - ▶ 지표에서부터 대류권, 성층권, 중간권, 열권, 외기권으로 나눔
 - 우리는 대류권(지표면에서 ~18 km)에서 살고 있음

1. 지구의 대기

2) 대기권의 특성

- □ 대류권(Troposphere)
 - ▶ 지표면의 복사에너지로 가열되므로 고도가 높아지면 온도는 낮아짐
- ☑ 성층권(Stratosphere)
 - ▶ 오존(03)이 태양으로부터의 자외선 흡수하여 고도가 높아지면 온도 상승
- □ 중간권(Mesosphere)
 - > 고도가 올라갈수록 온도 감소
- □ 열권(Thermosphere)
 - > 고도가 올라갈수록 온도 증가

草舍

- 1 지구의 대기
- 2 지구온난화
- 3 축산과 온실가스

제5광 대기환경과 대기오염

강원대학교 박규현 교수

1) 대기와 복사에너지

(Intergovernmental Panel on Climate Change)

(National Aeronautics and Space Administration)

2) 온실가스란?

▷ 온실효과를 일으키는 가스

▶ 온실효과란?

짧은 파장의 태양 복사 에너지가 지구에 에너지 공급

지구는 긴 파장의 복사 에너지 방출

온실가스가 긴 파장의 지구 복사 에너지 흡수

흡수와 방출 에너지 불균형으로 인한 온난화

2) 온실가스의 종류

□ 기후변화협약에서 주로 논의되는 온실가스

- Carbon dioxide
 (이산화탄소, CO₂)
- Methane (메탄, CH₄)
- Nitrous oxide
 (아산화질소, N₂O)
- Hydrofluorocarbons(수소불화탄소, HFCs)
- > Perfluorocarbons (불화탄소, PFCs)
- Sulfur hexafluoride
 (육불화황, SF₆)

- Global Warming Potential (지구온난화지수, GWP)
 - 100년간의 이산화탄소의 온실 효과를 기준으로 다른 가스들의 온실 효과를 계량화

	Global warming potential	
	(100 year basis)	
CH ₄	25	
N_2O	298	
HFCs	4 ~ 12,400	
PFCs	6,630~11,100	
SF ₆	23,500	

3) 인간과 온실가스

▷ 산업혁명 이후 주요 온실가스의 농도가 증가하고 있음

•	산업혁명 (ppm)	현재 (ppm)
Carbon dioxide	277 ↑ <mark>36</mark> %	382
Methane	0.60 1 188%	1.73
Nitrous oxide	0.27~0.29 19 %	0.32

草舍学》

- 1 지구의 대기
- 2 지구온난화
- 3 축산과 온실가스

제5강 대기환경과 대기오염

강원대학교 박규현 교수

1) 축산과 관련된 온실가스

- □ 이산화탄소, 메탄, 아산화질소 배출원
 - ▶ 이산화탄소(CO₂)
 - 직접적 배출 : 가축의 호흡
 - 간접적 배출 : 가축과 관련된 활동에서 배출
 - 목초 및 사료작물 생산과정에서 배출
 - 농장과 수송, 가공산물 생산 등의 과정에서 에너지 사용으로 배출
 - > 메탄(CH₄)
 - 가축의 장내발효, 가축분뇨 처리과정,
 목초 및 사료작물 생산 과정(토양)에서 배출
 - > 아산화질소(N₂O)
 - 가축분뇨 처리과정, 목초 및
 사료작물 생산 과정(토양)에서 배출

2) 장내발효

☑메탄

- > 섭취사료: 20~30 시간 반추위에 존재, 70%의 소화가 반추위에서 발생
- > 메탄 생성 비율 : 장내발효 (87%), 대장 (13%)
- > 반추위에서 생성된 메탄의 95%는 트림으로 배출
- > 사료와 메탄
 - 섬유질 함유가 높고 소화율이 낮을 수록 → 메탄 발생량 증가
 - 농후사료가 높을 수록 → propionate 증가 → 메탄 발생량 감소
 - 사료가 반추위에서 머무르는 시간이 짧을 수록 → 메탄 발생량 감소

□ 우유 생산효율성과 메탄 발생량 비교

우유 생산량 (kg/yr)	메탄 발생량 (L/day)	메탄 발생량 (L/kg milk)
6,500	442	24.8
3,400	382	41.1

3) 가축분뇨

- ☑ 메탄과 아산화질소 생성 원리
 - > 가축분뇨의 유기성분(C, N)의 분해 과정에서 발생
 - > 가축분뇨의 처리 조건에 따른 온실가스 배출 변화
 - CO₂: 호기적 환경에서 주로 배출
 - N₂O: 혐기와 호기의 중간 환경에서 주로 배출
 - CH₄: 혐기적 환경에서 주로 배출

4) 토양

- □ 질산화(nitrification)와 탈질화(denitrification)
 - ▶ 토양의 온도, pH, 토양 내 NH₃ 양, 토양 내 수분량, 산소량 등에 따라 차이 발생

▶ 주요배출원

- 질소질 비료 사용, 유기질 분해, 작물 잔류물
- > 가축분뇨의 토양 시비
- 침출(leaching), 유출(runoff), 휘발(volatilization)
 등으로 인한 질소 손실

5)에너지

- □ 에너지 소비에 의한 CO₂ 배출
 - > 농장에서 사용하는 화석 연료
 - 트랙터, 농장용 기구, 사료 생산 및 수송 등
 - 프랑스: 93 L oil / 1,000 L 소비
 - 곡물 경작지가 있는 경우 더 많이 소비
 - 비료 생산 과정에서 사용하는 화석연료
 - > 제품 생산과정에서의 에너지 소비
- □ 냉장시설에서 가스 유출
 - > 운전과정 보다는 시설교체/수리 중의 유출이 원인

