- Important since $\nabla^2 \phi$ arises in heat/diffusion eqn: $\frac{\partial \phi}{\partial t} = k \nabla^2 \phi$

 - · Black-Scholes egn:
 wave egn: $\frac{325}{5t^2} = \frac{2776}{5}$

Example: Visualize hermonic functions as Steady state distributors of temperature.

because of insulator, imagine heat flows only laterally.

Next, apply sources & sinks at the boundaries of the 2D region.

Problem: Given T(x,y) of region, find temperature on interior such that D2T = 0

Ex: Sketch the isotherms for regions with boundary conditions

|7 | = 2 \$\psi_{=30}\$ |7 | = 1 \$\psi_{=20}\$

How do we calculate this precisely?

Example : "Washers"

By circular symmetry, Seek $d = \Phi(r)$ only, not dependent on θ .

Guess: P=AInr+B
For washer Probs

Idea: Real and Imaginary part of an analytic f(z)

outomatically satisfy 722 =0 or J2v=0

Recall $\log(z) = \ln(r) + i\theta$. On r = 1, $\phi = 20 = A Latti + B =>$ B = 20 on r=2, $\phi = 30 = A \ln(2) + 20$ $\Rightarrow A = \frac{10}{\ln(2)}$

$$\phi(z) = \frac{10}{\ln(2)} \ln(|z|) + 20$$

$$-10 = -A^{\frac{\pi}{2}}$$

$$A = \frac{20}{\pi}$$

$$A = \frac{20}{\pi} + 5$$