Paket 3

Erlang Wiratama Surya

1. Perhatikan kalau $a_{n!} = \frac{1}{n!}(\lfloor \frac{n!}{1} \rfloor + \ldots + \lfloor \frac{n!}{n} \rfloor + \ldots + \lfloor \frac{n!}{n!} \rfloor) \geq \frac{1}{n!}(\frac{n!}{1} + \ldots + \frac{n!}{n}) = \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{n}$ well known kalau $S_n = \sum_{i=1}^n \frac{1}{i}$, maka $\lim_{n \to \infty} S_n = \infty$, $a_{n!} \geq S_n$, maka terdapat tak berhingga banyaknya n sehingga $a_{n+1} \geq a_n$.

Perhatikan kalau untuk p prima lebih besar sama dengan 60, maka $p-1+\frac{p-1}{2}+\frac{p-1}{3}+\frac{p-1}{4} \geq 1$

 $p-1+\frac{p-2}{2}+\frac{p-3}{3}+\frac{p-4}{4}=\frac{25p}{12}-4=2p+\frac{p}{12}-4\geq 2p.$ Maka misalkan $a_{p-1}=\frac{1}{p-1}S$, maka $S+2>2p\Rightarrow \frac{s+2}{p}<\frac{s}{p-1}$. Jelas $a_p=\frac{1}{p}(S+2)$, maka $a_p< a_{p-1}$. Karena ada takhingga banyaknya prima yang lebih besar dari 60 maka ada tak berhingga banyakanya n sehingga $a_{n+1} < a_n$.

2. Belom selesai.

Baru buktiin $f(0)=0,\,f(x)=f(-x),\,f(nc)=n^2f(c)$ untuk $n\in\mathbb{N}.$

Kalau f memenuhi, maka c.f memenuhi untuk semua konstan $c \geq 0$.

kalau f(1) = 0, maka f(x) = 0 untuk semua $x \in \mathbb{R}$

kalau $f(1) \neq 0$, wlog f(1) = 1 (karena bisa di map ke c.f), nanti diperoleh $f(q) = q^2$ untuk semua $q \in \mathbb{Q}$, dari sini bingung extend ke realnya gimana.

lain kali soalnya yang lebih seru dong han :p

3. kompleks.