$\begin{array}{c} {\rm Week}\ 7 \\ {\rm MATH}\ 33 {\rm A} \end{array}$

TA: Jerry Luo

jerryluo8@math.ucla.edu Website: math.ucla.edu/~jerryluo8 Office Hours: Thursday 1PM-2PM, MS 2344

SMC hours: Tuesday 1-2PM, MS 3974

3.3.28 For which value(s) of k do the vectors below form a basis for \mathbb{R}^4 ?

1		0		$\begin{bmatrix} 0 \end{bmatrix}$		2
0		1		0		3
0	,	0	,	1	,	4
2		3		4		k

3.3.36 Can you find a 3×3 matrix such that $Im(A) = \ker(A)$? Explain.

3.4.46 Consider the plane $x_1 + 2x_2 + x_3 = 0$. Find a basis β for this plane such that $[x]_{\beta} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, where $x = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} 2 \\ -1 \end{bmatrix}, \text{ where } x = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

3.4.53 Consider the following basis for \mathbb{R}^2 : $\beta = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \right\}$. Given $[x]_{\beta} = \begin{bmatrix} 7 \\ 11 \end{bmatrix}$, what is x?