# Data Mining:

# **Concepts and Techniques**

- Chapter 2 -

Jiawei Han, Micheline Kamber, and Jian Pei
University of Illinois at Urbana-Champaign
Simon Fraser University
©2011 Han, Kamber, and Pei. All rights reserved.

### **Chapter 2: Getting to Know Your Data**

Data Objects and Attribute Types



- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary

#### Types of Data Sets

#### Record

- Relational records
- Data matrix, e.g., numerical matrix
- Document data: text documents: termfrequency vector
- Transaction data
- Graph and network
  - World Wide Web
  - Social or information networks
  - Molecular Structures
- Ordered
  - Video data: sequence of images
  - Temporal data: time-series
  - Sequential Data: transaction sequences
  - Genetic sequence data
- Spatial, image and multimedia:
  - Spatial data: maps
  - Image data
  - Video data

| n-         | team | coach | pla<br>y | ball | score | game | n <u>≷</u> | lost | imeout | season |
|------------|------|-------|----------|------|-------|------|------------|------|--------|--------|
| Document 1 | 3    | 0     | 5        | 0    | 2     | 6    | 0          | 2    | 0      | 2      |
| Document 2 | 0    | 7     | 0        | 2    | 1     | 0    | 0          | 3    | 0      | 0      |
| Document 3 | 0    | 1     | 0        | 0    | 1     | 2    | 2          | 0    | 3      | 0      |

| TID | Items                        |
|-----|------------------------------|
| 1   | Bread, Coke, Milk            |
| 2   | Butter, Bread                |
| 3   | Butter, Coke, Cookies, Milk  |
| 4   | Butter, Bread, Cookies, Milk |
| 5   | Coke, Cookies, Milk          |

#### Important Characteristics of Structured Data

- Dimensionality
  - Curse of dimensionality
- Sparsity
  - Only presence counts
- Distribution
  - Centrality and dispersion

#### **Data Objects**

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
  - sales database: customers, store items, sales
  - medical database: patients, treatments
  - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database rows -> data objects; columns ->attributes.

#### **Attributes**

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
  - E.g., customer \_ID, name, address
- Types:
  - Nominal
  - Binary
  - Numeric: quantitative
    - Interval-scaled
    - Ratio-scaled

### **Attribute Types**

- Nominal: categories, states, or "names of things"
  - Hair\_color = { auburn, black, blond, brown, grey, red, white}
  - marital status, occupation, ID numbers, zip codes

#### Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
  - e.g., gender
- Asymmetric binary: outcomes not equally important.
  - e.g., medical test (positive vs. negative)
  - Convention: assign 1 to most important outcome (e.g., HIV positive)

#### Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings

### **Numeric Attribute Types**

Quantity (integer or real-valued)

#### Interval

- Measured on a scale of equal-sized units
- Values have order
  - E.g., temperature in C°or F°, calendar dates
- No true zero-point

#### Ratio

- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
  - e.g., *temperature in Kelvin, length, counts, monetary quantities*

#### Discrete vs. Continuous Attributes

#### Discrete Attribute

- Has only a finite or countably infinite set of values
  - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

#### Continuous Attribute

- Has real numbers as attribute values
  - E.g., temperature, height, or weight
- Continuous attributes are typically represented as floating-point variables

## **Example: Family Car Data**

#### Attributes

| Example # | Price | Engine Power | Family Car |
|-----------|-------|--------------|------------|
| 1         | 7000  | 310          | no         |
| 2         | 8000  | 180          | no         |
| 3         | 14000 | 200          | no         |
| 4         | 15000 | 280          | yes        |
| 5         | 20000 | 250          | yes        |
| 6         | 20000 | 340          | no         |
| 7         | 21000 | 290          | no         |
| 8         | 22000 | 300          | no         |
| 9         | 25000 | 260          | no         |
| 10        | 27000 | 285          | yes        |
| 11        | 29000 | 340          | no         |
| 12        | 30000 | 210          | no         |
| 13        | 39000 | 260          | no         |
| 14        | 40000 | 245          | no         |
| 15        | 41000 | 285          | no         |

# **Example: Family Car Data (cont.)**

|           | Attributes | labels       |            |  |
|-----------|------------|--------------|------------|--|
|           |            |              |            |  |
| Example # | Price      | Engine Power | Family Car |  |
| 1         | 7000       | 310          | no         |  |
| 2         | 8000       | 180          | no         |  |
| 3         | 14000      | 200          | no         |  |
| 4         | 15000      | 280          | yes        |  |
| 5         | 20000      | 250          | yes        |  |
| 6         | 20000      | 340          | no         |  |
| 7         | 21000      | 290          | no         |  |
| 8         | 22000      | 300          | no         |  |
| 9         | 25000      | 260          | no         |  |
| 10        | 27000      | 285          | yes        |  |
| 11        | 29000      | 340          | no         |  |
| 12        | 30000      | 210          | no         |  |
| 13        | 39000      | 260          | no         |  |
| 14        | 40000      | 245          | no         |  |
| 15        | 41000      | 285          | no         |  |

### **Chapter 2: Getting to Know Your Data**

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data



- Measuring Data Similarity and Dissimilarity
- Summary

### **Basic Statistical Descriptions of Data**

#### Motivation

- To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
  - median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
  - Data dispersion: analyzed with multiple granularities of precision
  - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
  - Folding measures into numerical dimensions
  - Boxplot or quantile analysis on the transformed cube

### Quantiles

Probability density of a normal distribution, with quartiles shown. The area below the red curve is the same in the intervals  $(-\infty, Q_1)$ ,  $(Q_1, Q_2)$ ,  $(Q_2, Q_3)$ , and  $(Q_3, +\infty)$ .



### **Measuring the Central Tendency**

Mean (algebraic measure) (sample vs. population):

Note: *n* is sample size and *N* is population size.

Weighted arithmetic mean:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \mu = \frac{\sum x}{N}$$

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

- Median:
  - Middle value if odd number of values, or average of the middle two values otherwise
- Mode
  - Value that occurs most frequently in the data
  - Unimodal, bimodal, trimodal
  - Empirical formula:  $mean-mode=3\times(mean-median)$

#### Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data







### Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
  - **Quartiles**: Q<sub>1</sub> (25<sup>th</sup> percentile), Q<sub>3</sub> (75<sup>th</sup> percentile)
  - Inter-quartile range: IQR = Q<sub>3</sub> Q<sub>1</sub>
  - Five number summary: min,  $Q_1$ , median,  $Q_3$ , max
  - **Boxplot**: ends of the box are the quartiles; median is marked by a line within the box; add two lines , and plot outliers individually
  - Outlier: usually, a value higher/lower than 1.5 x IQR the 3<sup>rd</sup> / 1 st quartile
- Variance and standard deviation (sample: s, population:  $\sigma$ )
  - **Variance**: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[ \sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left( \sum_{i=1}^{n} x_{i} \right)^{2} \right] \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

**Standard deviation** s (or  $\sigma$ ) is the square root of variance  $s^2$  (or  $\sigma^2$ )

#### Quartiles

 A plot of the data distribution for some attribute X. The quantiles plotted are quartiles. The three quartiles divide the distribution into four equal-size consecutive subsets. The second quartile corresponds to the median.



#### Quiz

Find the median, quartiles, and interquartile range for the following 19 samples:

5, 7, 10, 15, 19, 21, 21, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24, 25

How many data points can we say are outliers?

### **Boxplot Analysis**



- Five-number summary of a distribution
  - Minimum, Q1, Median, Q3, Maximum

#### Boxplot

- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

### **Boxplots**

 Boxplot for the unit price data for items sold at four branches of AllElectronics during a given time period.



#### **Properties of Normal Distribution Curve**

- The normal (distribution) curve
  - From  $\mu$ – $\sigma$  to  $\mu$ + $\sigma$ : contains about 68% of the measurements ( $\mu$ : mean,  $\sigma$ : standard deviation)
  - From  $\mu$ –2 $\sigma$  to  $\mu$ +2 $\sigma$ : contains about 95% of it
  - From  $\mu$ -3 $\sigma$  to  $\mu$ +3 $\sigma$ : contains about 99.7% of it



#### **Outlier Detection: Just an Idea**

The parameters of the mixture normal model are computed automatically from the available data. The results of finding the canonical start times of the "Wash Dishes" activity can be seen in Fig. 2a as a mixture of two normal distributions. According to the normal distribution features, the distance of "two standard deviations" from the mean accounts for about 95% of the values (see Fig. 2b). Therefore if we consider only observations falling within two standard deviations, observations that are deviating from the mean will be automatically left out. Such observations that are distant from the rest of the data are called "outlying observations" or "outliers".



Fig. 2. A mixture normal model and normal distribution characteristics

distribution features

time of "Wash Dishes" activity

#### Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- **Quantile plot**: each value  $x_i$  is paired with  $f_i$  indicating that approximately  $100*f_i\%$  of data are  $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- **Histogram**: x-axis are values, y-axis represents frequencies
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

#### **Dataset**

A Set of Unit Price Data for Items Sold at a Branch of AllElectronics

| Unit price | Count of items sold |  |  |
|------------|---------------------|--|--|
| (\$)       |                     |  |  |
| 40         | 275                 |  |  |
| 43         | 300                 |  |  |
| 47         | 250                 |  |  |
| _          | S                   |  |  |
| 74         | 360                 |  |  |
| 75         | 515                 |  |  |
| 78         | 540                 |  |  |
| _          | S-3                 |  |  |
| 115        | 320                 |  |  |
| 117        | 270                 |  |  |
| 120        | 350                 |  |  |

### **Quantile Plot**

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
  - For a data  $x_i$  data sorted in increasing order,  $f_i$  indicates that approximately  $100*f_i$ % of the data are below or equal to the value  $x_i$



### Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- View: Is there a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.



### Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent



### **Scatter plot**

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane
- Determines the relationship, pattern, or trend between two numeric attributes.



#### Positively and Negatively Correlated Data



# **Uncorrelated Data**







### **Chapter 2: Getting to Know Your Data**

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity



Summary

### Similarity and Dissimilarity

#### Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- Dissimilarity (e.g., distance)
  - Numerical measure of how different two data objects are
  - Lower when objects are more alike
  - Minimum dissimilarity is often 0
  - Upper limit varies
- Proximity refers to a similarity or dissimilarity

### Data Matrix and Dissimilarity Matrix

#### Data matrix

- n data points with p dimensions
- Two modes

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

#### Dissimilarity matrix

- n data points, but registers only the distance
- A triangular matrix
- Single mode

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}$$

#### **Proximity Measure for Nominal Attributes**

- Nominal attributes can take 2 or more states,
   e.g., red, yellow, blue, green (generalization of a binary attribute)
- Method 1: Simple matching
  - *m*: # of matches, *p*: total # of variables

$$d\left(i,j\right) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary attributes
  - creating a new binary attribute for each of the M nominal states

#### **Proximity Measure for Binary Attributes**

A contingency table for binary

Object jObject j1 0 sum q r q+r0 sum q+r q+r

- data
- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:
- Jaccard coefficient (similarity)
   measure for asymmetric binary
   variables):

$$d(i,j) = \frac{r+s}{a+r+s+t}$$

$$d(i,j) = \frac{r+s}{q+r+s}$$

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

Note: Jaccard coefficient is the same as "coherence":

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

### Dissimilarity between Binary Variables

#### Example

| Name | Gender | Fever | Cough | Test-1 | Test-2 | Test-3 | Test-4 |
|------|--------|-------|-------|--------|--------|--------|--------|
| Jack | M      | Y     | N     | P      | N      | N      | N      |
| Mary | F      | Y     | N     | P      | N      | P      | N      |
| Jim  | M      | Y     | P     | N      | N      | N      | N      |

- Gender is a symmetric attribute
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N be set to 0

$$d (jack , mary ) = \frac{0+1}{2+0+1} = 0.33$$

$$d (jack , jim ) = \frac{1+1}{1+1+1} = 0.67$$

$$d (jim , mary ) = \frac{1+2}{1+1+2} = 0.75$$

### Distance on Numeric Data: Minkowski Distance

Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

where  $i = (x_{i1}, x_{i2}, ..., x_{ip})$  and  $j = (x_{j1}, x_{j2}, ..., x_{jp})$  are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm)

- Properties
  - d(i, j) > 0 if  $i \neq j$ , and d(i, i) = 0 (Positive definiteness)
  - d(i, j) = d(j, i) (Symmetry)
  - $d(i, j) \le d(i, k) + d(k, j)$  (Triangle Inequality)
- A distance that satisfies these properties is a metric

### **Special Cases of Minkowski Distance**

- h = 1: Manhattan (city block, L<sub>1</sub> norm) distance
  - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

• h = 2: (L<sub>2</sub> norm) Euclidean distance

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

- $h \to \infty$ . "supremum" (L<sub>max</sub> norm, L<sub>∞</sub> norm, Chebyshev) distance.
  - This is the maximum difference between any component (attribute) of the vectors

$$d(i, j) = \lim_{h \to \infty} \left( \sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

# **Example: Minkowski Distance**

#### **Dissimilarity Matrices**

| point      | attribute 1 | attribute 2 |
|------------|-------------|-------------|
| <b>x</b> 1 | 1           | 2           |
| <b>x2</b>  | 3           | 5           |
| х3         | 2           | 0           |
| <u>x</u> 4 | 4           | 5           |

| attribute 1 | attribute 2 |
|-------------|-------------|
| 1           | 2           |
| 3           | 5           |
| 2           | 0           |
| 4           | 5           |
|             |             |

 $\mathbf{X}_{\mathbf{4}}$ 

### Manhattan (L₁)

| L         | <b>x</b> 1 | <b>x2</b> | х3 | x4 |
|-----------|------------|-----------|----|----|
| <b>x1</b> | 0          |           |    |    |
| <b>x2</b> | 5          | 0         |    |    |
| х3        | 3          | 6         | 0  |    |
| <b>x4</b> | 6          | 1         | 7  | 0  |

### **Euclidean (L<sub>2</sub>)**

| L2        | <b>x</b> 1 | <b>x2</b> | х3   | x4 |
|-----------|------------|-----------|------|----|
| <b>x1</b> | 0          |           |      |    |
| <b>x2</b> | 3.61       | 0         |      |    |
| х3        | 2.24       | 5.1       | 0    |    |
| <b>x4</b> | 4.24       | 1         | 5.39 | 0  |

### **Supremum**

| $L_{\infty}$ | <b>x1</b> | <b>x2</b> | х3 | <b>x4</b> |
|--------------|-----------|-----------|----|-----------|
| <b>x1</b>    | 0         |           |    |           |
| <b>x2</b>    | 3         | 0         |    |           |
| х3           | 2         | 5         | 0  |           |
| <b>x4</b>    | 3         | 1         | 5  | 0         |



### **Ordinal Variables**

- An ordinal variable can be discrete or continuous
- Order is important, e.g., rank
- Can be treated like interval-scaled
  - replace  $x_{if}$  by its rank:  $r_{if} \in \{1,..., M_f\}$ 
    - $M_f$  represents the number of possible states that variable f have
  - map the range of each variable onto [0, 1] by replacing ith object in the ith variable by: ith object in the ith variable by:

 $z_{if} = \frac{r_{if} - 1}{M_f - 1}$ 

 compute the dissimilarity using methods for intervalscaled variables

# Example

| Object            | test-2    |
|-------------------|-----------|
| <b>Identifier</b> | (ordinal) |
| 1                 | excellent |
| 2                 | fair      |
| 3                 | good      |
| 4                 | excellent |

Show the dissimilarity matrix for the above 4 objects.

# **Example**

| Object     | test-2    |
|------------|-----------|
| Identifier | (ordinal) |
| 1          | excellent |
| 2          | fair      |
| 3          | good      |
| 4          | excellent |

- f = {fair, good, excellent}
- $M_f = 3 \rightarrow z_1 = 0.0$  (fair),  $z_2 = 0.5$  (good),  $z_3 = 1.0$  (excellent)
- The following dissimilarity matrix is obtained using the Euclidean distance:

# **Cosine Similarity**

 A document can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

| Document  | team | coach | hockey | baseball | soccer | penalty | score | win | loss | season |
|-----------|------|-------|--------|----------|--------|---------|-------|-----|------|--------|
| Document1 | 5    | 0     | 3      | 0        | 2      | 0       | 0     | 2   | 0    | 0      |
| Document2 | 3    | 0     | 2      | 0        | 1      | 1       | 0     | 1   | 0    | 1      |
| Document3 | 0    | 7     | 0      | 2        | 1      | 0       | 0     | 3   | 0    | 0      |
| Document4 | 0    | 1     | 0      | 0        | 1      | 2       | 2     | 0   | 3    | 0      |

• Cosine measure: If  $d_1$  and  $d_2$  are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||,$$

where  $\bullet$  indicates vector dot product, ||d||: the norm of vector d

## **Example: Cosine Similarity**

- $cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$ , where • indicates vector dot product, ||d|: the length of vector d
- Ex: Find the similarity between documents 1 and 2.

$$d_{1} = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

$$d_{2} = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$$

$$d_{1} \bullet d_{2} = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25$$

$$||d_{1}|| = (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)^{\mathbf{0.5}} = (42)^{\mathbf{0.5}}$$

$$= 6.481$$

$$||d_{2}|| = (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)^{\mathbf{0.5}} = (17)^{\mathbf{0.5}}$$

$$= 4.12$$

$$\cos(d_{1}, d_{2}) = 0.94$$

## **Chapter 2: Getting to Know Your Data**

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Measuring Data Similarity and Dissimilarity
- Summary



# Summary

- Data attribute types: nominal, binary, ordinal, interval-scaled, ratioscaled
- Many types of data sets, e.g., numerical, text, graph, Web, image.
- Gain insight into the data by:
  - Basic statistical data description: central tendency, dispersion, graphical displays
  - Measure data similarity
- Above steps are the beginning of data preprocessing.
- Many methods have been developed but still an active area of research.

### References

- W. Cleveland, Visualizing Data, Hobart Press, 1993
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003.
- U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
- H. V. Jagadish, et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech.
   Committee on Data Eng., 20(4), Dec. 1997
- D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- S. Santini and R. Jain," Similarity measures", IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999
- E. R. Tufte. The Visual Display of Quantitative Information, 2nd ed., Graphics Press,
   2001
- C. Yu, et al., Visual data mining of multimedia data for social and behavioral studies,
   Information Visualization, 8(1), 2009