MA101 Mathematics I

Department of Mathematics Indian Institute of Technology Guwahati

Jul - Nov 2013

Slides originally created by: Dr. Bikash Bhattacharjya

Instructors:

Rafikul Alam, Bhaba K. Sarma, Sriparna Bandyopadhyay, Kalpesh Kapoor

ver. 21 Sept 2013, 10:18 (bks)

1/15

Plan

- The Geometry and Algebra of Vectors (in \mathbb{R}^n)
- Matrices
 - Matrix operations
 - Transpose
 - Matrix Multiplication and powers
- Properties of matrix operations

Vectors in \mathbb{R}^2 and \mathbb{R}^3

Recall:

- A vector is a directed line segment corresponds to a displacement from one point A to another B.
- A vector in \mathbb{R}^2 :

$$\mathbf{v} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} \equiv \text{the position vector of the point } (a, b) := [a, b].$$

• A vector in \mathbb{R}^3 :

$$\mathbf{v} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}} \equiv \text{the position vector of the point } (a, b, c)$$

:= $[a, b, c]$.

• Thus, the vector [a, b, c] is identified by the position vector of (a, b, c) in \mathbb{R}^3 .

Sometimes, we write the vector also as
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = [a, b, c]^T$$
.

3 / 15

New Vectors from Old

- How do you add two vectors u and v?
 Using the 'head-to-tail rule' (which is same as the 'parallelogram rule'), right?
- Suppose $\mathbf{u} = a_1 \, \hat{\mathbf{i}} + b_1 \, \hat{\mathbf{j}} + c_1 \, \hat{\mathbf{k}}$ and $\mathbf{v} = a_2 \, \hat{\mathbf{i}} + b_2 \, \hat{\mathbf{j}} + c_2 \, \hat{\mathbf{k}}$. Then it follows from the 'parallelogram rule' that

$$\mathbf{u} + \mathbf{v} = (a_1 + a_2)\hat{\mathbf{i}} + (b_1 + b_2)\hat{\mathbf{j}} + (c_1 + c_2)\hat{\mathbf{k}}.$$

• Suppose k is a constant. What is the vector which is k times $\mathbf{u} = a_1 \, \hat{\mathbf{i}} + b_1 \, \hat{\mathbf{j}} + c_1 \, \hat{\mathbf{k}}$? Naturally,

$$k\mathbf{u} = ka_1 \hat{\mathbf{i}} + kb_1 \hat{\mathbf{j}} + kc_1 \hat{\mathbf{k}}.$$

The Euclidean Space \mathbb{R}^n

Let $n \in \mathbb{N}$. Then \mathbb{R}^n , as a Cartesian Product of sets, is the set of all ordered n-tuples (x_1, x_2, \ldots, x_n) , where $x_i \in \mathbb{R}$. We can think the point $(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$ as a vector, and write it as

- $[x_1, x_2, \dots, x_n]$, when written as a row vector,

Definition: Let $\mathbf{u} = [u_1, u_2, \dots, u_n]^T, \mathbf{v} = [v_1, v_2, \dots, v_n]^T \in \mathbb{R}^n$ and $k \in \mathbb{R}$. We define

- $\mathbf{0} \ \mathbf{u} + \mathbf{v} = [u_1 + v_1, \ u_2 + v_2, \ \dots, \ u_n + v_n]^T \ (\text{Vector Addition})$
- **2** $k\mathbf{u} = [ku_1, ku_2, \dots, ku_n]^T$ (Scalar Multiplication).
- **3** The concept of scalar product of vectors is also generalized to elements of \mathbb{R}^n , and is called inner product. (More later).

5 / 15

The Euclidean Space \mathbb{R}^n

Definition: Let set

$$\mathbb{R}^{n} = \left\{ [x_{1}, x_{2}, \dots, x_{n}]^{T} : x_{1}, x_{2}, \dots, x_{n} \in \mathbb{R} \right\},$$

with the vector addition, the scalar multiplication and the inner product (to be defined later) is called the *n*-dimensional Euclidean space.

The vector $[0,0,\ldots,0]^T$ of \mathbb{R}^n , called the zero vector, is denoted by the symbol $\mathbf{0}$.

Some Basic Properties:

Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $c, d \in \mathbb{R}$. Then

- $\mathbf{0} \ \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutativity);
- $\mathbf{0} \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ (associativity);
- **3** u + 0 = u;
- **4** $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$, where $-u = (-1)u = [-u_1, -u_2, \cdots, -u_n]^T$;
- **3** $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$ (distributivity over vector addition);
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$ (distributivity over scalar addition);
- $oldsymbol{o}$ $c(d\mathbf{u}) = (cd)\mathbf{u}$;
- **8** 1u = u;
- **9** 0u = 0;

7 / 15

Matrices

Matrix: A rectangular array of scalars (real or complex numbers, for us).

- A matrix A is of order or size m × n if it has m rows and n columns.
- We write a matrix A as $A = [a_{ij}]$, where a_{ij} is the entry in A on i-th row and j-th column.
- Matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are said to be equal if they are of same size and $a_{ij} = b_{ij}$ for each i, j.
- If m = n, then A is called a square matrix.
- If A is a square matrix, then the entries a_{ii} are called the diagonal entries of A.
- If A is a square matrix and if $a_{ij} = 0$ for all $i \neq j$, then A is called a diagonal matrix.

- Identity matrix I_n of size n: the $n \times n$ diagonal matrix with all diagonal entries equal to 1. I means the identity matrix of some size n.
- Zero matrix of size $m \times n$: The $mn \times n$ matrix with all entries 0.Notation: $\mathbf{O}_{m \times n}$ (or simply by \mathbf{O})
- A sub matrix B of A: one obtained from A by deleting some (may be 0 in number) rows and/or columns of A.
- The transpose A^T of $A = [a_{ij}]$ is defined as $A^T = [b_{ji}]$, where $b_{ji} = a_{ij}$ for all i, j.
- The matrix A is said to be symmetric if $A^T = A$.
- The matrix A is said to be anti-symmetric (or skew-symmetric) if $A^T = -A$.

9 / 15

- If A is a complex matrix, then $\overline{A} = [\overline{a}_{ij}]$ and $A^* = \overline{A}^T$.
- The matrix A^* is called the conjugate transpose of A.
- The (complex) matrix A is Hermitian if $A^* = A$, and skew-Hermitian if $A^* = -A$.
- A square matrix A is upper triangular if $a_{ij} = 0$ for all i > j.
- A square matrix A is lower triangular if $a_{ij} = 0$ for all i < j.

Matrix Operations

- $\mathcal{M}_{m \times n} :=$ the set of a $m \times n$ matrices.
- To specify real (complex) matrices, write $\mathcal{M}_{m\times n}(\mathbb{R})$ $(\mathcal{M}_{m\times n}(\mathbb{R}))$.
- If m = n, we write \mathcal{M}_n for $\mathcal{M}_{m \times n}$.
- For $A = [a_{ij}], \ B = [b_{ij}] \in \mathcal{M}_{m \times n}$ and a scalar c (real or complex)
 - **1** Matrix Addition: $A + B := [a_{ij} + b_{ij}] \in \mathcal{M}_{m \times n}$.
 - **2** Multiplication by a Scalar: $c A := [c a_{ij}] \in \mathcal{M}_{m \times n}$.

11 / 15

Properties of Addition and Scalar multiplication

Result

Let $A, B, C \in \mathcal{M}_{m \times n}$ and s, r be scalars. Then

- **1** Commutative Law: A + B = B + A.
- 2 Associative Law: (A + B) + C = A + (B + C).
- **3** $A + \mathbf{O} = A$, where $\mathbf{O} = \mathbf{O}_{m \times n} \in \mathcal{M}_{m \times n}$.
- **4** $A + (-A) = \mathbf{0}$, where $-A = (-1)A \in \mathcal{M}_{m \times n}$.
- **6** (s+r)A = sA + rA.
- $oldsymbol{o} s(rA) = (sr)A.$
- **1** A = A.

Matrix multiplication

Definition: For $A = [a_{ij}] \in \mathcal{M}_{m \times n}$, and $B = [b_{jk}] \in \mathcal{M}_{n \times p}$ the product of A and B is defined to be $AB = [c_{ik}] \in \mathcal{M}_{m \times p}$, where

$$c_{ik} := a_{i1}b_{1k} + a_{i2}b_{2k} + \ldots + a_{in}b_{nk}.$$

- If $A \in \mathcal{M}_{m \times n}$ and $B \in \mathcal{M}_{n \times p}$,, then
 - $A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$ where \mathbf{a}_i are vectors in \mathbb{R}^n (\mathbf{a}_i^T is the i-th row), and
 - $B = [\mathbf{b}_1, \ \mathbf{b}_2, \ \dots, \ \mathbf{b}_p]$ where \mathbf{b}_j are vectors in \mathbb{R}^n (\mathbf{b}_j is the j-th column).
 - If $AB = [c_{ik}]$, then $c_{ik} = \mathbf{a}_i^T b_j$.

13 / 15

Matrix multiplication

• Let
$$A = \begin{bmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}$$
 and $B = [\mathbf{b}_1, \ \mathbf{b}_2, \ \dots, \ \mathbf{b}_p]$. Then

$$AB = [A\mathbf{b}_1, A\mathbf{b}_2, \dots, A\mathbf{b}_p] = \begin{bmatrix} \mathbf{a}_1^T B \\ \mathbf{a}_2^T B \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix}.$$

• If $A=[\mathbf{a}_1,\ \mathbf{a}_2,\ \dots,\ \mathbf{a}_n]$ and $\mathbf{b}=[b_1,b_2,\dots,b_n]$, then $A\mathbf{b}=b_1\mathbf{a}_1+b_2\mathbf{a}_2+\dots+b_n\mathbf{a}_n,$

a linear combination of the columns of A.

Matrix multiplication

Result

Let A, B and C be matrices, and let $s \in \mathbb{R}$. Then

- **1** Associative Law: (AB)C = A(BC), if the respective matrix products are defined.
- Distributive Law: A(B+C) = AB + AC, (A+B)C = AC + BC, if the respective matrix sum and matrix products are defined.
- **3** s(AB) = (sA)B = A(sB), if the respective matrix products are defined.
- $I_m A = A = AI_n$, if A is of size $m \times n$.