Indian Institute of Technology Bombay

Department of Electrical Engineering

Handout 8
Tutorial 5

EE 229 Signal Processing Oct 20, 2020

Question 1) Under the assumption that Parseval's relation applies, find the energy $\int_{\mathbb{R}} |x(t)|^2 dt$, when $x(t) = \delta(t - \tau)$.

Question 2) Consider the digital signals

$$x[0] = 7, x[1] = 3, x[2] = 6, x[3] = 4, x[4] = 1, x[5] = 3$$
 and $h[0] = 4, h[1] = 2, h[2] = 2.$

Take the remaining indices to contain zeroes.

- (a) Find x[n] * h[n] and x[n] * h[n]. Which one has more entries.
- (b) Is $x[n] \circledast h[n]$ same as $h[n] \circledast x[n]$?
- (c) Find a signal u[n] s.t. u[n] * h[n] = x[n] * h[n] for $0 \le n \le N-1$. (Cyclic Prefix in 4G).
- (d) Express $x[n] \circledast h[n]$ as a matrix vector product.

Question 3) Suppose a signal x(t) is sampled at β samples per second by multiplying with $\sum_{n} \delta(t + \frac{n}{\beta})$ to obtain the digital samples $x[n], n \in \mathbb{Z}$. Let the signal $x(\frac{t}{\beta})$ be sampled at every integer instant to obtain y[n].

- (a) Compare the respective DTFTs of x[n] and y[n].
- (b) What is the highest frequency content of the samples x[n].

Question 4) The signal $\cos(2\pi 9000t)$ is sampled at 10 kilo samples per second to obtain x[n]. From the samples we wish to generate a 9 kHz waveform by filtering. Suggest a possible Block 1 in the figure below, to obtain a suitable discrete time signal, which will then give the shown output when filtered using h(t). You have to also specify an appropriate h(t).

