1 Radioactive decay

 $w19\ 42\ Q12$

Radon-222 is a radioactive gas. Decay constant is $7.55 \times 10^{-3} hour^{-1}$. The activity of radon gans in a sample of $4.8 \times 10^{-3} m^3$ of air taken from a building is $0.6000 \mathrm{Bq}$.

There are 2.52×10^{25} are molecules in a volume of $1.00m^3$ of air.

Calculate, for $1.00m^3$ of the air, the ratio

 $\frac{number of air molecules}{number of radon atoms}$

Solution:

$$A = \lambda NN = \frac{A}{\lambda} = \frac{\frac{4.600}{4.8 \times 10^{-3}}}{\frac{7.55 \times 10^{-3}}{3600}} = 5.96 \times 10^{7}$$