

Maschinelles Lernen

Modellselektion und -validierung

Prof. Dr. Rainer Stollhoff

Übersicht

Technische
Hochschule
Wildau
Technical University
of Applied Sciences

- Motivation
- Bias-Varianz-Zerlegung
- Regularisierung in der Modellselektion
- Resampling in der Modellvalidierung

Motivation: Polynominterpolation

 $(\gamma - f(x; \theta)) = 0$

Aufgabe: Regression, d.h. Vorhersage $\hat{y} = \hat{y}(x) = f(x)$

Erfahrung: Datensatz $(x_i, y_i)_{i=1}^{w}$

Qualität: Verlustfunktion: $L(y, \hat{y}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - f(x_i; \theta))^2 = L(\theta)$

Maschine: Regression mit $f(x; \theta_1, \dots, \theta_m) = \theta_0 + \theta_1 \cdot x + \theta_2 \cdot x^{\bigcirc} + \dots + \theta_m \cdot x^{\stackrel{\frown}{m}}$

Lernen: Finde Werte für $\theta=(\theta_1,\cdots,\theta_m)$, die die quadratische Verlustfunktion minimieren

Polynominterpolation:

Falls $m \ge n$ gibt es immer Werte für θ so dass $f(x_i; \theta) = y_i$ und damit $L(\theta) = 0$

$$\text{mit} \quad \ell_i(x) = \prod_{\substack{j=0 \\ j \neq i}}^n \frac{x - x_j}{x_i - x_j} = \underbrace{\frac{(x - x_0)}{x_i - x_0} \cdot \frac{(x - x_{i-1})}{(x_i - x_{i-1})} \cdot \frac{(x - x_{i+1})}{x_i - x_{i+1}} \cdot \frac{(x - x_n)}{x_i - x_n} }_{\ell_i(x_n)}$$

$$\text{definiere} \quad f(x) = \sum_{i=1}^n y_i \; \ell_i(x)$$

$$\text{definiere} \quad f(x) = \sum_{i=1}^n y_i \; \ell_i(x)$$

$$\text{definiere} \quad f(x) = \sum_{i=1}^n y_i \; \ell_i(x)$$

definiere
$$f(x) = \sum_{i=1}^{n} y_i \, \ell_i(x)$$

$$f(x_k) = \sum_{i=1}^{n} \gamma_i \cdot \ell_i(x_k) = \gamma_k \cdot 1 = \gamma_k$$

Motivation: Overfitting der Trainingsdaten

Bias-Varianz-Zerlegung des Vorhersagefehlers

- Bestmögliche Vorhersage
- Vorhersage $y = f(x) + \epsilon$ dabei f(x) als bestmögliche Vorhersage und ϵ als echter Zufallswert
- Bestmögliches geschätztes Modell
- Vorhersage $\hat{f}(x)$ minimiert $(f(x) \hat{f}(x))^2$ über x
- Bias des Modells $E_x \left[[(f(x) \hat{f}(x))^2] \right]$
- Bestmögliches auf einem Trainingsdatensatz geschätztes Modell
 - Trainingsdatensatz T = (x_i, y_i) für $i = 1, \dots, n$
 - Vorhersage $\hat{y} = \hat{f}(x;T)$ minimiert $\frac{1}{n}\sum_{i=1}^{n} (y_i \hat{f}(x_i))^2$
 - Varianz der Vorhersagen $E_{x,T}\left[\left[(\hat{f}(x) \hat{f}(x;T))^2\right]\right]$
- Bias-Varianz-Zerlegung

$$E_{y,x}\Big[[(y-\hat{f}(x))^2\Big] = E_{y,x}\Big[[(y-f(x))^2\Big] + E_x\Big[[(f(x)-\hat{f}(x))^2\Big] + E_{x,T}\Big[[(\hat{f}(x)-\hat{f}(x))^2\Big]$$

Vorhersagefehler = Unvermeidbarer Fehler + Bias + Varianz

Übersicht

- Motivation
- Bias-Varianz-Zerlegung
- Regularisierung in der Modellselektion
 - Ziel: Reduktion der Modellkomplexität und damit Verringerung der Varianz
- Resampling in der Modellvalidierung

Bias-Varianz-Zerlegung des Vorhersagefehlers

Hohe Varianz

Geringe Varianz

Methoden der Regularisierung in der Modellselektion

- Regularisierungsterm in der Verlustminimierung für parametrisches Modell mit $\theta=(\theta_1,\cdots,\theta_m)$
 - Tikhonov Regularization / Ridge Regression:

$$-L(\theta;\lambda) = \sum_{i=1}^{n} (y_i - f(x_i;\theta))^2 + \lambda \sum_{j=1}^{m} (\theta_j)^2$$

— Akaike Information Criterium:

$$- \underline{IC(\theta)} = -2 \left(\sum_{i} \log \hat{p}(y_i; x_i, \theta) \right) + 2 \underbrace{m}_{A}$$

Bayesian Information Criterium:

- Begrenzen der Anzahl der aufeinanderfolgenden
 Splits bei Klassifikationsbäumen oder
- Begrenzen der Anzahl der Boosting-Iterationen
- Feste Einschränkung der Modellkomplexität zum Beispiel $Q = Q_1 + Q_2 \times Q_2 \times Q_3 \times Q_4 \times Q_4 \times Q_5 \times$
- Beschränken des maximalen Grades einer polynomialen Funktion
- Beschränken auf lineare Funktionen in der multivariaten Regression

Übersicht

Technische
Hochschule
Wildau
Technical University
of Applied Sciences

- Motivation
- Bias-Varianz-Zerlegung
- Regularisierung in der Modellselektion
- Resampling in der Modellvalidierung
 - Ziel: Verlässlichere Schätzung des Vorhersagefehlers

Bias-Varianz-Zerlegung des Vorhersagefehlers

Sampling zur Modellvalidierung

Wiederholtes zufälliges Holdout

Kreuzvalidierung

Wiederholte Kreuzvalidierung

Aufteilen

Permutieren (Mischen)	Train	Train	Train	Train	Test
	Train	Train	Train	Test	Train
	Train	Train	Test	Train	Train
	Train	Test	Train	Train	Train
	Test	Train	Train	Train	Train

Permutieren	
(Mischen)	

Auitelien							
Train	Train	Train	Train	Test			
Train	Train	Train	Test	Train			
Train	Train	Test	Train	Train			
Train	Test	Train	Train	Train			
Test	Train	Train	Train	Train			

Leave-One-Out Kreuzvalidierung

Training auf n-1 Daten, Test auf Restbeobachtung