Introduction to Machine Learning

A Gentle Introduction

What is ML?

What is ML - in more detail

Domain Knowledge

Al vs. ML?

Artificial Intelligence

"mimic intelligence"

Machine Learning

"learning tasks"

Deep Learning

What tasks can ML solve?

- Unsupervised Learning
 find structure in data ("insight") without
 quidance
- Supervised Learning
 predict ("target") variable based on a
 "training sample"
 - Regression: predict continuous variable
 - Classification: predict discrete categories
- Reinforcement Learning learn rules through rewards

Supervised Learning: Examples

Unsupervised Learning: Examples

Reinforcement Learning: Examples

Snake

Chess

Scikit-learn

- Module structure
- Example data sets
- *.train, *.fit, *transform
- Random seeds
- a simple linear regression example

Python Resources (Open Source)

- Data handling: Pandas (pandas.pydata.org)
 flexible and convenient framework for working
 with large data sets
- Machine Learning: Scikit-learn (scikit-learn.org)
 probably the largest ML library out there with excellent documentation, examples, and huge community
- Math framework for ML and Deep Learning:
 pytorch (pytorch.org)
 cuda-compatible framework to build your own models; autograd; specialized for computer vision

Schedule for this Seminar

Unsupervised Learning Methods

- Clustering methods
- Kernel-density estimation
- Principal Component Analysis

November 22

Supervised Learning Concepts

- Data: training/test/validation data, iid
- Objective functions
- Metrics and Errors
- Regularization and Generalization
- Parameters and Hyperparameters

November 25-27

Supervised Learning Methods

- K-nearest neighbors
- Decision trees
- Ensemble methods: random forests
- Hyperparameter tuning

December 2-4

Deep Learning

- Neurons and perceptrons
- Multi-layer perceptrons
- Stochastic Gradient Descent and Backprop
- Convolutional Neural Networks
- Why Deep Learning is the hot stuff right now...

December 13