Homework Assignment #4

Due: Feb 27, 2020 5:30 PM Written by Jiahong Zhai and Jiabao Shen

Question 1

a.

$$1-(\frac{k}{m})^2$$

By SUHA, probability of x been assigned to any slot by h_1 and h_2 is 1/m. There are m-k empty slots, so, the probability of x assigned to an empty slot by h_1 and h_2 is $\frac{1}{m}$ ·(m-k), to a non-empty slot is $\frac{1}{m}$ ·k. If x is inserted to an empty slot, we need at least one of h_1 and h_2 assign x to an empty slot. So, the probability is $1-(\frac{k}{m})^2$

b.
$$\frac{29}{8}$$
, 3.625

By SUHA, probability of x been assigned to any slot by h_1 and h_2 is $\frac{1}{4}$. The probability of any combination of $T[h_1(x)]$ and $T[h_2(x)]$ is the same, $\frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$. The final slot x goes to is shown below.

h_2 h_1	TO	T1	T2	T3
T0	TO	T1	TO	TO
T1	T1	T1	T1	T1
T2	TO	T1	T2	T3
T3	TO	T1	T2	T3

Prob(T0) =
$$\frac{5}{16}$$
, length = 4
Prob(T1) = $\frac{7}{16}$, length = 2
Prob(T2) = $\frac{2}{16}$, length = 6
Prob(T3) = $\frac{2}{16}$, length = 6
E[length] = $(\frac{5}{16})\cdot 4 + (\frac{7}{16})\cdot 2 + (\frac{2}{16})\cdot 6 + (\frac{2}{16})\cdot 6 = 29/8 = 3.625$