

Ampliación de Señales y Sistemas

Examen final (convocatoria extraordinaria)		
Apellidos		
Nombre		
Titulación (marque con un círculo lo que corresponda): Tecnologías - Telemática - Siste mas - Doble Sistemas+ADE - Doble Teleco+Aero		
Ejercicio 1 (conteste en la hoja del enunciado) [1.25 puntos]		
Considere una señal $x[n]$ que da lugar a la Transformada de Fourier (TF) denotada como que se muestra a continuación en el intervalo $[-\pi, \pi)$.	$X(e^{j\Omega})$	
$X(e^{j\Omega})$		
0.9		
$-\pi$ 0 π Q		
Figura 1.1		
(a) Indique si $X(e^{j\Omega})$ es real. Justifique muy brevemente su respuesta. [0.25 puntos]		
Justificación: Indique sí/no:		
(b) Indique si la TF de una señal real es real. [0.5 puntos]		
(c) Indique si la señal $x[n]$ que ha dado lugar a la TF dibujada en la Figura 1.1 es real. Justifique muy brevemente su respuesta (no más de tres líneas). [0.5 puntos]		
Justificación:		
Indique sí/no:		

Ejercicio 2 (conteste en la hoja del enunciado) [1.75 puntos]

Considere una señal x[n] que da lugar a la TF $X(e^{j\Omega})$ que se muestra a continuación en el intervalo $[-\pi, \pi)$

Figura 2.1

(a) Marque con un círculo cuál de las siguientes señales ha dado lugar a esta transformada. Si marca más de una respuesta o si marca una respuesta incorrecta se le restarán 0.4 puntos. Si no está seguro de su respuesta, no marque ninguna opción. [0.75 puntos]

```
a.1) x[n] = 0.5\cos(2\pi/4 \cdot n) + \sin(\pi n/16)/(\pi n) \cdot (e^{+j\pi/16n} - e^{-j\pi/16n})
a.2) x[n] = 0.5\sin(2\pi/4 \cdot n) + \sin(\pi n/16)/(\pi n) \cdot (e^{+j\pi/16n} - e^{-j\pi/16n})
a.3) x[n] = \pi/2\cos(2\pi/4 \cdot n) + \sin(\pi n/16)/(\pi n) \cdot (e^{+j\pi/16n} - e^{-j\pi/16n})
a.4) x[n] = \pi/2\sin(2\pi/4\cdot n) + \sin(\pi n/16)/(\pi n) \cdot (e^{+j\pi/16n} - e^{-j\pi/16n})
a.5) x[n] = 0.5\cos(2\pi/4 \cdot n) + \sin(\pi n/16)/(\pi n) \cdot (e^{+j\pi/16n} + e^{-j\pi/16n})
a.6) x[n] = 0.5\sin(2\pi/4 \cdot n) + \sin(\pi n/16)/(\pi n) \cdot (e^{+j\pi/16n} + e^{-j\pi/16n})
a.7) x[n] = \pi/2\cos(2\pi/4 \cdot n) + \sin(\pi n/16)/(\pi n) \cdot (e^{+j\pi/16n} + e^{-j\pi/16n})
a.8) x[n] = \pi/2\sin(2\pi/4 \cdot n) + \sin(\pi n/16)/(\pi n) \cdot (e^{+j\pi/16n} + e^{-j\pi/16n})
a.9) x[n] = 0.5\cos(2\pi/4 \cdot n) + \sin(\pi n/8)/(\pi n) \cdot (e^{+j\pi/16n} - e^{-j\pi/16n})
a.10) x[n] = 0.5\sin(2\pi/4\cdot n) + \sin(\pi n/8)/(\pi n)\cdot(e^{+j\pi/16n} - e^{-j\pi/16n})
a.11) x[n] = 0.5\cos(2\pi/4 \cdot n) + \sin(\pi n/8)/(\pi n) \cdot (e^{+j\pi/16n} - e^{-j\pi/16n})
a.12) x[n] = 0.5\sin(2\pi/4 \cdot n) + \sin(\pi n/8)/(\pi n) \cdot (e^{+j\pi/16n} - e^{-j\pi/16n})
a.13) x[n] = 0.5\cos(2\pi/4 \cdot n) + \sin(\pi n/8)/(\pi n) \cdot (e^{+j\pi/16n} + e^{-j\pi/16n})
a.14) x[n] = 0.5\sin(2\pi/4 \cdot n) + \sin(\pi n/8)/(\pi n) \cdot (e^{+j\pi/16n} + e^{-j\pi/16n})
a.15) x[n] = \pi/2\cos(2\pi/4\cdot n) + \sin(\pi n/8)/(\pi n) \cdot (e^{+j\pi/16n} + e^{-j\pi/16n})
a.16) x[n] = \pi/2\sin(2\pi/4\cdot n) + \sin(\pi n/8)/(\pi n) \cdot (e^{+j\pi/16n} + e^{-j\pi/16n})
```

(b) Considere la señal $v[n]=\sin(2\pi/10\cdot n)$ e indique cuál es la expresión de la señal z[n]=x[n]*v[n] que se obtiene al convolucionar x[n] con v[n]. [0.5 puntos]

Suponga ahora que, tal y como se indica en la figura 2.2, la señal x[n] se utiliza como entrada de un sistema lineal e invariante con respuesta al impulso h[n]. Si se sabe que la salida de dicho sistema es la señal y[n] cuya transformada se dibuja a continuación

Figura 2.2

(c) Indique cuál es la respuesta al impulso del sistema h[n]. Justifique muy brevemente su respuesta. [0.5 puntos]

```
h[n] =
```

Ejercicio 3 (conteste en la hoja del enunciado) [2 puntos]

Suponga que tiene una señal x(t) con la TF indicada en la Figura 3.1.

 $y[n] = x_1[n]$ Dicha $x_2[n]$ señal se procesa con el esquema

indicado en la Figura 3.2.

Donde:

- C/D es un conversor continuo a discreto (muestreador más paso de tren a secuencia) a una tasa de muestreo de T segundos.
- D/C es un conversor discreto a continuo (paso de tren a secuencia más filtro paso bajo) a una tasa de interpolación de T segundos.
- \uparrow P , indica interpolar $x_1[n]$ por un factor P, es decir, $x_2[n]$ representa el resultado de insertar P-1 <u>ceros</u> entre dos muestras sucesivas de x[n].
- \downarrow K, indica diezmar $x_3[n]$ por un factor K.

Suponga que $\omega_{\rm m} \text{=} 2000\pi,\, T\text{=}1/8000,\, P\text{=}4,\, T\text{'}\text{=}1/16000.$

(a) Indique cuánto vale $X_1(e^{j\Omega})$ para $\Omega = \pi/2$. [0.5 puntos]

$$X_1(e^{j\pi/2}) =$$

(b) Indique cuánto vale $X_2(e^{j\Omega})$ para $\Omega = \pi/2$. [0.5 puntos]

$$X_2(e^{j\pi/2}) =$$

(c) Indique cuánto vale $X_3(e^{j\Omega})$ para $\Omega = \pi/2$. [0.5 puntos]

$$X_3(e^{j\pi/2}) =$$

(d) Indique cuánto vale K si se quiere que y(t)=x(t). [0.5 puntos]

Ejercicio 4 (conteste en la hoja del enunciado) [2.5 puntos]

(a) Dos secuencias de longitud finita $x_1[n]$ y $x_2[n]$ que son cero fuera del intervalo $0 \le n \le 99$, se convolucionan circularmente para formar una nueva secuencia y[n], es decir:

$$y[n] = x_1[n] \underbrace{100} x_2[n]$$

Si $x_1[n]$ es distinta de cero en el intervalo $10 \le n \le 39$, determine el conjunto de valores de n para los que se garantiza que y[n] es igual a la convolución lineal de $x_1[n]$ y $x_2[n]$. [1.5 puntos]

(b) Determine la señal temporal que da lugar a la siguiente DFT [1 punto]:

$$X[0] = 1; X[1] = j; X[2] = -1; X[3] = -j$$

Ejercicio 5 (conteste en la hoja del enunciado) [2.5 puntos]

Considere la estructura del filtro digital mostrado en la Figura 5.1

Figura 5.1

(a) Determine $H(z)$ para este filtro causal. Represente el digrama de cercon la región de convergencia. [1 punto]	os y polos junto
H(z) =	
Diagrama de polos-ceros y ROC:	
Diagrama de polos-ceros y NOC.	
(b) ¿Para qué valores de <i>k</i> es estable el sistema?. [0.5 puntos]	
(c) Determine $y[n]$ si $k = 1$ y $x[n] = (2/3)^n$ para todo n . [1 punto]	
(c) Betermine y[n] 51 k	
y[n] =	