1)Importing Libraries

```
In [1]: import numpy as np import pandas as pd
```

2) importing Dataset

```
In [2]: dataset = pd.read_csv('datasets_compresive_strength_concrete.csv')
```

In [3]: dataset

Out[3]:

		Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Concrete compressive strength
	0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
	1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
	2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
	3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
	4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30
	1025	276.4	116.0	90.3	179.6	8.9	870.1	768.3	28	44.28
	1026	322.2	0.0	115.6	196.0	10.4	817.9	813.4	28	31.18
	1027	148.5	139.4	108.6	192.7	6.1	892.4	780.0	28	23.70
	1028	159.1	186.7	0.0	175.6	11.3	989.6	788.9	28	32.77
	1029	260.9	100.5	78.3	200.6	8.6	864.5	761.5	28	32.40

```
1030 rows × 9 columns
```

3) Taking care of null values

```
In [4]: dataset.isnull().any()
Out[4]: Cement
                                         False
        Blast Furnace Slag
                                         False
        Fly Ash
                                         False
                                         False
        Water
        Superplasticizer
                                         False
        Coarse Aggregate
                                         False
                                         False
        Fine Aggregate
        Age
                                         False
        Concrete compressive strength
                                         False
        dtype: bool
```

No null values

4)Splitting in X and Y

```
In [5]: x = dataset.iloc[:,0:8].values
y = dataset.iloc[:,8:9].values

In [6]: x.shape
Out[6]: (1030, 8)

In [7]: y.shape
Out[7]: (1030, 1)
```

5) Splitting into Train and Test

```
In [8]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test= train_test_split(x,y,test_size = 0.2,ran
    dom_state =0)

In [9]: x_train.shape

Out[9]: (824, 8)

In [10]: y_train.shape

Out[10]: (824, 1)

In [11]: x_test.shape

Out[11]: (206, 8)

In [12]: y_test.shape

Out[12]: (206, 1)
```

6)Data Visualization

```
In [13]: import matplotlib.pyplot as plt
plt.scatter(x_train[:,0],y_train[:,0],color = "red")
plt.scatter(x_train[:,1],y_train[:,0],color = "blue")
plt.scatter(x_train[:,2],y_train[:,0],color = "yellow")

Out[13]: <matplotlib.collections.PathCollection at 0xlaa76414ac8>
```



```
In [14]: plt.scatter(x_train[:,3],y_train[:,0],color = "green")
   plt.scatter(x_train[:,5],y_train[:,0],color = "blue")
   plt.scatter(x_train[:,7],y_train[:,0],color = "red")
```

Out[14]: <matplotlib.collections.PathCollection at 0x1aa77494b48>

7) Applying Regression algorithm (Random

Forest Regressor)

```
In [15]: from sklearn.ensemble import RandomForestRegressor
         rfg = RandomForestRegressor(n estimators= 20, random state = 0)
         rfg.fit(x train, y train)
         C:\Users\vijay\anaconda3\lib\site-packages\ipykernel launcher.py:3: Dat
         aConversionWarning: A column-vector y was passed when a 1d array was ex
         pected. Please change the shape of y to (n samples,), for example using
         ravel().
           This is separate from the ipykernel package so we can avoid doing imp
         orts until
Out[15]: RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='mse',
                               max depth=None, max features='auto', max leaf nod
         es=None,
                               max samples=None, min impurity decrease=0.0,
                               min impurity split=None, min samples leaf=1,
                               min samples split=2, min weight fraction leaf=0.
         0,
                               n estimators=20, n jobs=None, oob score=False,
                               random state=0, verbose=0, warm start=False)
```

8) Saving the Model

```
In [16]: import pickle
        pickle.dump(rfg,open('concrete.pkl','wb'))
        model=pickle.load(open('concrete.pkl','rb'))
In [17]: x train
Out[17]: array([[ 480. ,
                                0., ..., 936., 721.,
                                                          28. 1,
                         0.,
                                0., ..., 1038., 758.,
                                                          28. 1,
               [ 375. ,
                         0.,
                                                          28. 1,
               [ 303.6, 139.9,
                                 0.,..., 895.5, 722.5,
               . . . ,
               [ 144. , 0. , 175. , ..., 943. , 844. ,
                                                          28. 1.
```

```
[ 239.6,
                                      0., ..., 941.6,
                            359.4,
                                                          664.3,
                                                                    28. 1,
                 [ 192. ,
                            288. ,
                                                  929.8,
                                                                    90. 11)
                                      0. , ...,
                                                          716.1,
In [18]: yrfg = rfg.predict(x test)
In [19]:
         yrfq
Out[19]: array([19.349
                                           , 79.3
                                7.586
                                                         , 59.2605
                                                                       , 11.497
                 48.19691667, 60.2525
                                           , 21.827
                                                         , 73.752
                                                                      , 51.381
                 18.428
                             . 42.6305
                                           , 34.897
                                                         , 13.447
                                                                       , 56.706
                                           , 34.775
                                                         , 55.828
                                                                       , 39.014
                 55,661
                             , 36.9055
                             , 28.359
                                           , 26.072
                                                         , 40.79333333, 16.986
                 57.36325
                                           , 25.27
                             , 62.937
                                                         . 55.661
                 25.38
                                                                        59.6455
                 18.421
                             , 45.905
                                           , 28.441
                                                         , 40.5615
                                                                      , 21.2495
                             , 34.328
                                           , 26.1225
                                                         , 34.9235
                                                                       , 33.004
                  7.4805
                 37.185
                             , 33.9415
                                           , 31.3805
                                                         , 39.792
                                                                      , 57.44
                 33.545
                             , 27.837875
                                           , 34.0995
                                                         , 33.2275
                                                                        49.8465
                             , 25.5595
                                           , 21.906
                                                         , 37.041
                                                                      , 52.857
                 44.351
                 45.4285
                             , 44.1915
                                           , 53.9175
                                                         , 64.1445
                                                                       , 38.048
                 36.1305
                             , 23.406
                                           , 62.57858333, 46.201
                                                                       , 11.871
                 56.624
                             , 38.1235
                                           , 25.895
                                                         , 13.892
                                                                       , 15.238
                             , 29.207
                                           , 49.08
                                                         , 25.6545
                                                                       , 38.984
                 15.8355
                 30.9138
                             , 36.914
                                           , 13.252
                                                         , 33.363
                                                                      , 39.619
                 18.8235
                             , 50.279
                                           , 18.1985
                                                         , 32.3965
                                                                       , 47.5905
                             , 39.04893333, 53.498
                                                         , 41.735
                                                                       , 38.4495
                 36.935
                 57.892
                             . 15.161
                                           . 13.4435
                                                         , 40.1735
                                                                       , 16.627
                 40.3365
                             , 15.879
                                           , 40.718
                                                         , 49.3895
                                                                       , 32.4075
                 16.859
                             , 19.0725
                                           , 30.0855
                                                         , 27.9055
                                                                       , 42.232
                 42,6035
                             , 52.013
                                           , 15.6745
                                                         , 34.1105
                                                                      , 46.378
                  8.6145
                             , 47.4225
                                           , 14.7975
                                                         , 33.1365
                                                                       , 42.795
                 59.481
                             , 37.1765
                                           , 36.0945
                                                         , 34.48
                                                                       , 17.5275
                 46.55
                             , 26.8365
                                           , 65.27
                                                         , 28.525
                                                                       , 12.7125
                 10.9325
                             , 11.5335
                                           , 8.216
                                                                       , 37.5195
                                                         , 53.054
                             , 53.1825
                                           , 35.6045
                                                         , 29.783
                                                                      , 13.5155
                 33.8175
                 54.341
                             , 36.5335
                                           , 44.094
                                                         , 5.1265
                                                                       , 12.7335
                 35.053
                             , 51.831
                                           , 23.72
                                                         , 28.6795
                                                                       , 18.1105
                 33.5055
                             , 39.48893333, 12.2795
                                                         , 41.339
                                                                      , 18.064
                 14.7145
                             , 15.941
                                           , 21.2015
                                                         , 38.278
                                                                        39.0795
                 36.339
                             , 47.5065
                                           , 27.945875
                                                         , 33.613
                                                                       , 27.996
```

```
41.333
                            , 40.124
                                          , 14.6655
                                                       , 33.2305
                                                                     , 30.9625
                  8.298
                                         , 49.9035
                            , 49.836
                                                       , 52.0905
                                                                     , 9.8225
                 36.538
                            , 37.4035
                                          , 32.5205
                                                       , 34.8805
                                                                     , 12.524
                                                                     , 53.6595
                 13.8185
                            , 10.8635
                                          , 40.4029
                                                       , 33.4995
                 15.157
                            , 28.3185
                                          , 14.946
                                                       , 38.9875
                                                                     , 16.765
                                          , 44.428
                 43.7215
                            , 36.256
                                                       , 15.1195
                                                                     , 62.57858333,
                 31.895
                            , 68.759
                                          , 60.2985
                                                       , 33.5195
                                                                     , 5.413
                            , 34.3585
                 46.4155
                                          , 27.4555
                                                       , 36.869
                                                                     , 67.9205
                 22.541
                            , 27.87
                                          , 35.3385
                                                       , 27.0675
                                                                     , 38.1235
                 10.345
                            ])
In [20]: y test
Out[20]: array([[26.06],
                 [10.35],
                 [79.3],
                 [74.99],
                 [ 9.69],
                 [47.1],
                 [59.],
                 [22.72],
                 [61.89],
                 [52.12],
                 [17.54],
                 [48.15],
                 [38.33],
                 [17.2],
                 [56.83],
                 [55.25],
                 [33.36],
                 [34.68],
                 [52.61],
                 [39.94],
                 [61.46],
                 [27.63],
                 [32.9],
                 [41.64],
                 [17.54],
                 [26.85],
```

```
[66.9],
[21.06],
[61.07],
[66.95],
[20.87],
[48.79],
[24.05],
[47.81],
[21.16],
[ 6.94],
[28.6],
[26.31],
[33.95],
[25.72],
[37.8],
[35.17],
[32.24],
[37.81],
[57.23],
[33.4],
[30.14],
[33.8],
[35.08],
[52.91],
[40.93],
[21.75],
[16.5],
[42.35],
[50.94],
[64.02],
[52.2],
[53.39],
[64.3],
[44.52],
[37.42],
[22.14],
[62.94],
[45.7],
[14.64],
```

```
[53.58],
[33.72],
[24.58],
[13.2],
[18.91],
[ 7.4 ],
[24.85],
[49.2],
[25.57],
[31.38],
[23.35],
[45.71],
[ 6.81],
[27.34],
[39.59],
[30.96],
[55.64],
[18.02],
[33.09],
[48.72],
[36.8],
[45.9],
[46.68],
[40.87],
[35.34],
[65.7],
[17.24],
[ 9.45],
[33.94],
[15.57],
[40.27],
[15.82],
[41.54],
[50.24],
[29.98],
[20.73],
[27.42],
[27.66],
[29.73],
```

```
[45.08],
[42.13],
[51.96],
[15.61],
[34.29],
[53.52],
[ 4.83],
[41.37],
[ 9.73],
[31.81],
[41.05],
[61.92],
[37.42],
[37.92],
[32.72],
[14.94],
[44.09],
[26.92],
[64.9],
[29.22],
[12.46],
[8.],
[13.71],
[13.66],
[63.14],
[37.91],
[37.4],
[55.06],
[35.23],
[31.42],
[10.73],
[47.97],
[38.89],
[38.8],
[ 4.57],
[10.39],
[29.59],
[54.38],
[22.5],
```

```
[28.63],
[17.34],
[32.33],
[41.67],
[15.87],
[44.86],
[17.54],
[11.98],
[15.42],
[30.39],
[45.85],
[41.68],
[42.64],
[34.9],
[25.45],
[39.3],
[27.92],
[52.5],
[37.81],
[15.53],
[30.57],
[37.36],
[14.59],
[53.69],
[57.03],
[55.26],
[ 6.47],
[33.42],
[41.16],
[31.45],
[36.15],
[14.4],
[13.36],
[ 8.54],
[40.29],
[32.04],
[51.43],
[21.48],
[29.72],
```

```
[14.2],
                 [37.68],
                 [24.13],
                 [23.85],
                 [36.45],
                 [44.28],
                 [19.52],
                 [59.49],
                 [25.18],
                 [69.3],
                 [61.23],
                 [32.92],
                 [ 6.28],
                 [39.7],
                 [33.4],
                 [23.84],
                 [39.27],
                 [72.3],
                 [18.13],
                 [27.53],
                 [33.76],
                 [33.01],
                 [33.72],
                 [13.82]])
           from sklearn.metrics import r2 score
In [21]:
          accurfg =r2 score(y test,yrfg)
In [22]: accurfg
Out[22]: 0.9199600438446415
          dataset.head(5)
In [23]:
Out[23]:
                         Blast
                                                                                Concrete
                                                         Coarse
                                                                    Fine
                                   Water Superplasticizer
             Cement
                      Furnace
                                                                         Age compressive
                              Ash
                                                      Aggregate Aggregate
                         Slag
                                                                                strength
```

	Cement	Blast Furnace Slag	Fly Ash	Water	Superplasticizer	Coarse Aggregate	Fine Aggregate	Age	Concrete compressive strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30

In [24]: p = rfg.predict([[234,234,78,457,6.8,1234,567,89]])

In [25]: p[0]

Out[25]: 42.145

Done!

In []: