Г		<u> </u>	
门班公共	C ₂₃ H ₂₀ O ₅ 理警值 C; 71.85% H; 7.34% 分析值 C; 72.22% H; 7.49%	C ₁ .H ₃ .O ₃ 理驗值 C; 70.37% H; 7.31% 分析值 C; 70.55% H; 7.44%	C29H23N3O4 理器值 C; 66.13% H; 6.08% N; 11.02% 分析值 C; 66.21% H; 6.09% N; 11.00%
Me	FAB 385 (M'1) 384(FAB+ 359 [M*H*] (30) 238(90) 221(95)	FAB+ 382 [M+H+] (20) 247(100)
7.8.70	KBr 3449 1514 1260	KBr 3377 2941 1687 1273	KBr 3448 2929 1777 1621 1595 1508 1260
IH NMR (&) pom	5.9 H 5.8 Hz 5.8 Hz 1.9 Hz 5.2 Hz 5.5 Hz 5.9 Hz 9 Hz)	CDCl,,300MHz 7.63(1H, dd, J=8.4, 2.0 Hz) 0.93(3H, t, J=7.0 Hz) 7.51(1H, d, J=2.0 Hz) 7.14(2H, d, J=8.5 Hz) 6.87(1H, d, J=8.4 Hz) 6.78(2H, d, J=8.5 Hz) 6.50(1H, bs) 4.45(2H, t, J=7.0 Hz) 4.04(2H, t, J=6.9 Hz) 3.91(3H, s) 2.99(2H, t, J=6.9 Hz) 1.8-1.9(2H, m)	CDC13,300Mhz 8.1 (1H, d, J=9 Hz) 8.0 (1H, d, J=15 Hz) 7.4-8.0 3H, m) 7.2 (1H, d, J=9 Hz) 7.2 (1H, d, J=9 Hz) 7.2 (1H, d, J=9 Hz) 6.9 (1H, d, J=9 Hz) 6.6 (1H, d, J=15 Hz) 6.6 (1H, d, J=15 Hz) 4.1 (2H, t, J=4 Hz) 4.0 (3H, s) 1.8-2.0 (2H, m) 1.4-1.6 (4H, m) 1.0 (3H, t, J=7.5 Hz)
10.00	102.1∼ 102.3℃	104.1 ∼ 104.3 ℃	170.1~ 171.2°C
構造式	HO OH	Meo OH	0 - O O O O O O O O O O O O O O O O O O
実施例	3-1	3-2	3.3

49

表 1 0 1

		& 1 & 1	
元素分析			
MS	FAB+ 483 [M*H*](55) 485(30) 482(100)	FAB+ 468 [M*H*](20) 469(40) 467(45)	FAB+ 389 [M*H*](60) 307(30) 197(30)
IRcm.1			
1H NMR (3) ppm	1.85-1.98(2H, m) 1.35-1.60(4H, m) 0.94(3H, t, J=7.13 Hz)	1.35-1.60(4H, m) 0.94(3H, t, J=7.16 Hz)	2.93(2H, t, J= 6.9 Hz) 1.90-2.00 (2H, m) 1.39-1.70(4H, m) 0.97(3H, t, J=7.4 Hz)
IH NM	DMSO-d6,300MHz 9.15(1H, s) 8.17-8.30(3H, m) 7.98(1H, d, J= 15.6 Hz) 7.72(1H, t, J=6.98 Hz) 7.15(1H, s) 7.15(1H, s) 7.15(1H, s) 7.15(1H, s) 6.80(1H, d, J=8.94 Hz) 6.80(1H, d, J=8.94 Hz) 6.60(2H, d, J=8.94 Hz) 4.33(2H, q, J=6.39 Hz) 3.39(2H, q, J=6.56 Hz) 2.69(2H, t, J=7.35 Hz)	BMSO-46,300MHz 8,49(2H, d, J=5.97 Hz) 8,20-8,34(3H, m) 8,00(1H, d, J=15.6 Hz) 7,74(1H, t, J=7.70 Hz) 7,55(1H, t, J=7.70 Hz) 7,29(2H, d, J=5.97 Hz) 7,15(1H, s) 6,79(1H, d, J=15.6 Hz) 8,73(2H, t, J=6.34 Hz) 3,50(2H, q, J=6.34 Hz) 2,85(2H, t, J=7.0 Hz) 1,85-1,98(2H, m)	CDC1,300MHz 8.76-8.82(1H, m) 8.55(2H, dd, J=4.2, 1.2 Hz) 8.22-8.37(1H, m) 7.74(1H, d, J=15.3 Hz) 7.26(1H, s) 7.26(1H, s) 7.18(2H, d, J=6.0 Hz) 6.89(1H, s) 6.89(1H, s) 6.39(1H, d, J=15.3 Hz) 5.67-5.75(1H, m) 4.15(2H, t, J= 6.5 Hz) 3.71(2H, q, J=6.6 Hz)
融点	205.4∼ 206.0℃	148.2~ 148.8 C	148.3~ 149.5 C
構造式	HO N N N N N N N N N N N N N N N N N N N	ZI O= bis-	Z A
実施領	4-1	4-2	4-3

表102

4-4-4	1				
保 道式	68 .R.	IH NMR (8) ppm	IRcm.1	MS	元素分析
		DMSO-46,300MHz		FAR+	
		9.15(1H, s) 1.83-1.95(2H, m)			
		(E		40	
				(M.H.)(60)	
0:	175.5~			197(45)	
	176.1 C	7.47-7.56(4H, m)			
		7.09(1H, s)			
<u> </u>		7.02(2H, d, J=8.4 Hz)			
\ \ \ \ \ \ \		6.74(1H, d, J=15.6 Hz)			-
•		6.67(2H, d, J=8.4 Hz)			
		4.2(2H, t, J=6.45 Hz)			
		3.38(2H, q, J=6.8 Hz)			
	•	2.66(2H, I, J=7.35 Hz)			

表103

	柜		T
	元素分析		
	MS FAB+ 394 [M*H*](100) 336(25)	FAB+ 378 [M*H'](80) 257(35) 241(50)	FAB+ 363 [M'H'](100) 305(15) 241(20)
	IRom.		23.2
(4) GYN	1.26-1.53(4H, m) 1.26-1.53(4H, m) (c) (d) (d)	1.85-2.00(2H, m) 1.35-1.62(4H, m) 0.96(3H, t, J=7.14 Hz)	1.37-1.60(4H, m) 0.96(3H, t, J=7.17 Hz)
	CDC1,300MHz 9.15(1H, s) 8.51(1H, s) 8.51(1H, d) 1=4.66 Hz) 7.61(1H, d, 1=9.02 Hz) 7.40(1H, d, 1=9.02 Hz) 7.40(1H, d, 1=4.66 Hz) 7.40(1H, d, 1=4.66 Hz) 6.64-6.75(1H, m) 4.26(2H, t, 1=7.01 Hz) 4.03(3H, s) 3.80(2H, q, 1=6.51 Hz) 2.99(2H, t, 1=6.85 Hz) 1.80-1.95(2H, m)	CDC! _{3-300MHz} 8.25-8.30(1H, m) 7.76-7.83(1H, m) 7.61(1H, s) 7.47-7.58(2H, m) 7.19(1H, s) 7.19(2H, s) 7.19(2H, d) 8.13(2H, d) 8.21(1H, s) 8.23(1H, m) 8.23(1H, s) 9.23(1H, s)	CDC1,,300MHz 8.55(1H, d, J=6.0 Hz) 8.25-8.31(1H, m) 7.77-7.83(1H, m) 7.63(1H, s) 7.50-7.57(2H, m) 7.21(1H, s) 7.20(2H, d, J=6.0 Hz) 6.30-6.45(1H, m) 4.19(2H, t, J=6.64 Hz) 3.78(2H, q, J=6.66 Hz) 3.00(2H, t, J=6.98 Hz) 1.89-2.00(2H, m)
融点			103.6~ 105.4℃
例構造式	M ₀ 00M	€ 24 0= 4	ZI O
奥施例	5-1	5-2	5-3

表104

		—	
元素分析			
MS	FAB+ 457 [M*H*](50) 458(90) 456(100)	FAB+ 442 [M*H*](40) 443(80) 441(100	FAB+ 409 [M*H*] (100) 339(50)
Ran			
1H NMR (8) ppm	CDCI,300MHz 8.28(1H, t, J=8.13 Hz) 1.85-1.99(2H, m) 8.25(1H, t, J=8.13 Hz) 1.37-1.39(4H, m) 7.64(1H, t, J=8.13 Hz) 0.88(3H, t, J=6.75 Hz) 7.55(1H, t, J=8.13 Hz) 0.88(3H, t, J=6.75 Hz) 7.15(2H, d, J=8.51 Hz) 6.80(1H, t, J=8.51 Hz) 6.78(2H, d, J=8.51 Hz) 6.78(2H, d, J=8.51 Hz) 7.92-6.03(1H, m) 6.78(2H, d, J=6.43 Hz) 7.92(2H, t, J=6.43 Hz) 7.93(2H, t, J=6.95 Hz)	CDCI,,300MHz 8.54(2H, d, J=5.96 Hz) 1.36·1.62(4H, m) 8.28(1H, d, J=6.98 Hz) 0.94(3H, t, J=7.16 Hz) 8.25(1H, d, J=6.98 Hz) 7.65(1H, d, J=6.98 Hz) 7.55(1H, d, J=6.98 Hz) 7.23(2H, d, J=5.98 Hz) 7.23(2H, d, J=5.96 Hz) 6.80(1H, s) 6.02-6.16(1H, m) 4.11(2H, t, J= 6.42 Hz) 3.82(2H, q, J=6.71 Hz) 3.03(2H, t, J=7.03 Hz) 1.87-2.00(2H, m)	DMSO-d6,300MHz 9.13(1H, d, J=2.4 Hz) 8.62(1H, d, J=2.4 Hz) 7.78(1H, d, J=9.9 Hz) 7.60(1H, d, J=9.9 Hz) 7.1(2H, d, J=8.7 Hz) 6.73(2H, d, J=8.7 Hz) 6.73(2H, d, J=8.7 Hz) 6.73(2H, d, J=8.7 Hz) 3.60(2H, t, J=6.8 Hz) 3.60(2H, t, J=7.4 Hz) 3.60(2H, t, J=7.4 Hz) 3.17-1.9(2H, m) 1.3-1.5(4H, m)
100	135.2~ 135.8°C	131.9~ 132.6°C	141.2~ 142.6 C
構造式	Br O H		Meo Messen meessen me
実施例	5-4	5-5	5-6

表 105

融点 CDCI,300MHz
9.12(1H, d, J=2.1 Hz) 8.50(1H, d, J=2.1 Hz) 8.50(1H, d, J=9.0 Hz) 7.64(1H, d, J=9.0 Hz)
4.27(2H, t, J=6.9 Hz) 4.04(3H, s)
3.83(2H, q, J=6.7 Hz) 3.12(2H, t, J=7.1 Hz) 1.83-1.95(2H, m)
8.51(1H, d, J=2.2 Hz) 7.65(1H, d, J=9.1 Hz)
NH2 106.2 7.42(1H, d, J=9.1 Hz)
7.07(2H, d, J=9.1 Hz) 6.70(2H, d, J=9.1 Hz)
6.22(1H, bt)
4.29(2H, I,
3.75(2H, q, J=6.2 Hz)
3.65(2H, bs) 2.88(2H, 1, J=6.6 Hz)
CDCI,300MHz
N NH 73.2~
74.7C
7.41(1H, d, J=9.1 Hz)
4.29(2H, t, J=7.1 Hz)
4.05(3H, s)
1.8-1.95(2H, m)

- 定數分析	U 型CHN 分CHN 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C ₁₉ H ₁₉ NO ₄ 四部(直	· ·
MS	FAB 292 (M') 291(276(FAB+ 336 [M'H'](100) HRFAB(m/z) 336.2189 理論(億 C ₁₉ H ₃₀ NO ₄ 336.458 分析值 336.2189	FAB+ 364 [M*H*] (100) 318(70) 176(50)
I.Rem.1	Neat 2959 1648 1513	Neat 3264 2960 1640	Neat 2961
1H NMR (&) ppm	CDC1,300MHz 7.51(1H, dd, J=8.4, 1.8 Hz) 7.46(1H, d, J=1.8 Hz) 6.86(1H, d, J=8.4 Hz) 6.86(1H, d, J=8.4 Hz) 4.07(2H, s) 4.05 (2H, t, J=6.9 Hz) 3.89(3H, s) 1.8-2.0(2H, m) 1.3-1.5(4H, m) 1.3-1.5(4H, m) 1.3-1.5(4H, t, J= 7.0 Hz)	CDCI,300MHz 7.5(1H d, 1=9.0 Hz) 6.89(1H, d, 1=9.0 Hz) 6.2(1H, bs) 4.1(2H, s) 4.0(2H, t, 1=7.5 Hz) 4.0(2H, t, 1=4.5 Hz) 3.9(3H, t, 1=4.5 Hz) 1.6-1.8(2H, m) 1.3-1.5(4H, m) 1.3-1.5(4H, m) 1.3-1.5(4H, m) 1.3-1.5(4H, m) 1.3-1.5(4H, m)	CDC' _{1,3} 00MHz 7.63(1H, dd, J=8.7 Hz) 6.90(1H, d, J=8.7 Hz) 4.36(2H, q, J=7.2 Hz) 4.02(2H, s) 4.00(2H, t, J=6.7 Hz) 3.88(3H, s) 1.6-1.8(2H, m) 1.37 (2H, t, J=7.2 Hz) 1.31(6H, s) 1.31(6H, s) 1.3-1.5(4H, m) 0.92(3H, t, J=7.0 Hz)
重	62.0~ 63.2°C		
構造式	MeO O	MeO OH	
実施例	6-1	6-2	6-3

	•	A 101	
元素分析			
MS	FAB+ 322 [M*H*](100) 304 (80) HRFAB(m/z) 理論值 C ₃₅ H ₃₂ NO ₅ 322.4286 分析值 322.2027	FAB+ 341 [M'H'](100) 221 (60)	FAB+ 308[M+H+] (100), 292(20).
IRcm.1	Neat 3300 2960 1635 1273		
1H NMR (3) ppm	CDCl ₃ 300MHz 7.59(1H, d, J=8.7 Hz) 6.84(1H, d, J=8.7 Hz) 6.66(1H, bs) 4.80(2H, s) 4.09(2H, s) 3.95(2H, t, J=6.7 Hz) 3.88(3H, s) 1.7-1.9(2H, m) 1.39(6H, s) 1.3-1.6(4H, m) 0.94(3H, t, J= 7.1 Hz)	CDCI _{3,300MHz} 8.06-8.13(1H, m) 7.70(1H, id, J=7.8, 1.7 Hz) 7.50(1H, id, J=7.8, 1.7 Hz) 7.50(1H, dd, J=8.4, 1.9 Hz) 7.56(1H, dd, J=8.4, 1.9 Hz) 7.56(1H, dd, J=1.9 Hz) 7.42(1H, dd, J=7.8 Hz) 7.21-7.25(1H, m) 6.90(1H, dd, J=8.4 Hz) 5.75(1H, dd, J=10.2, 7.2 Hz) 4.13(1H, dd, J=14.8, 7.2 Hz) 4.07(2H, i, J=6.9 Hz) 3.92(3H, s) 1.82-1.92(2H, m)	7.80(1H, d, J = 2.0 Hz), 7.60(1H,dd,J=8.5,2.0Hz), 6.83(1H, d, J = 8.5 Hz), 4.08(2H, s), 3.93(3H, s), 2.93(2H, t, J = 7.3 Hz), 1.3-1.5(10H, m, involving a singlet at 1.37), 0.90(3H, t, J = 7.2 Hz).
調点			
行果妻	₩	MeO O O	MeO S
事物和	6-4	6-5-1	9-9

	構造式	政権	1H NMR (8) ppm	E.E.	MS	元素分析
Ā	N II OPen 無色油状		CDCl3,300MHz 7.55(1H,d,J=8.1Hz) 7.44(1H,s) 7.37(1H,d,J=8,1Hz) 4.13(2H,s) 4.08(2H,t,J=6.6Hz) 1.80-1.93(2H,m) 1.33-1.60(4H,m) 1.38(6H,s) 0.94(3H,t,J=7.1Hz)		FAB (100) 340(
/	で		CDCI3,300MHz 7.48(1H, dd, J=8.4, 2.2 Hz), 7.45(2H, d, J=2.2 Hz), 6.85(1H, d, J=8.4 Hz) 4.07(2H, s) 4.07(2H, s) 1.7-1.9(4H, m) 1.7-1.9(4H, m) 1.37 (6H, m) 1.3-1.6 (8H, m) 0.93(3H, t, J=7.1 Hz)	Neat 2958 1648 1512	FAB+ 348[M+H+] (100)	
/	Me in the interval of the int		CDC13.300MHz 7.60(1H, d, J=8.7 Hz) 6.88(1H, d, J=8.7 Hz) 4.36(2H, q, J=7.2 Hz) 4.01(2H, s) 3.9-4.1(4H, m) 1.6-2.0(4H, m) 1.38 (3H, t, J=7.2 Hz) 1.32(6H, s) 1.31(6H, m) 0.8-1.0(6H, m)	Neat 2958 1739 1652 1276	FAB+ 420 M+H+] (100)	

一分括金	木井栗	1				
		3	1H NMR (8) ppm	Rem	MS	计数分析
			CDCI,300MHz 7 \$6(11 4 1=8.7 u-)	Neat	FAB+	14.57 8677
	-		6.20(111, u, J=0.7, f12)	1117	330	
_			6 64(1H hs)	7067	3/0	
	Z=	•	4.80(2H, s)	1635	160'80)	
	```\		4.07(2H, s)	130	Carron	
6-10			4.00(2H, t, J=6.5 Hz)	1273	-	
	- HO \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3.95(2H, t, J=6.7 Hz)	1010		•
	<b></b>		1.7-1.9(4H, m)			
			1.3-1.5(8H, m)			
	# 4 14 11		1.38(6H, s)			
			0.93(3H, 1, J=7.1 Hz)			
			0.93(3H, 1, J=7.1 Hz)			
			CDCI3,300MHz		FAB+	
	``		7.50(1H,d,J=8.1Hz)		<u> </u>	
	\ -		/(i.m.s)		308[M+H+]	
	Z=		7.08(1H,d,J=8,1Hz) 4.08/2H • 1=4.54+.		(38)	
	\\\ -_\\		7.00(211,43=0.3fLZ) 4 08(2H e)		_	
6-11	) }= \		2.43(3H.s)			
;			1.80-1.90(2H,m)			
	Calvi	-	1.35-1.50(4H,m)			
	\ \ \ \ \		1.37(6H,s)			<del></del>
	, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	٠	0.93(3H,t,J=7.2Hz)			
	<b>炎</b> 其色油状				-	
			CDC13 3001 411			
	٠		7.47(1H, d. / == 8 1Hz)		FAB+	
			7.36(1H. s)		J. C. WINAS	
	\ \ \		7.16(1H, d, J=8.1Hz)		(100)	
	^:=		4.08(2H, s),			
			4.07(2H, I, J =6.5 Hz),			<del></del>
6-12			2.90(2H, t, J=7.4 Hz),			
			1.80-1.90(2H, m),		<del>-</del>	
			1.60-1.75(2H, m),			
	\ \ \ \ \ \ \ \		1.33-1.55(8H, m)			
	沙磐色油状		(*iii) (*iii) (*iii) (*iii) (*iii) (*iii)			
		_	0.5(511, 1, 2 = 0, 5 fz),			
			(20 C) 11 ( ) -0.5 HZ)			

表 110

K	1.0					
N N	1	A CHI	1H NMR (&) ppm	7		
			CDC13.300MH+	ikem.	MS	元素分析
_		_			EAD.	
			7.78(1H, d, J=2.4 Hz),		- 1201	
			7.73(1H dd 1-8 d 1 00-1)			_
	_		(7170'11'10'11'11'11'11'11'11'11'11'11'11'11		28(M+H+)	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		6.81(1H, d, J =8.4 Hz),		- 60	
	^ =		4.07(2H, s),		294(20).	
			4.06(2H, 1, J =6,5 Hz).			
6-13			2.92(2H, 1, J = 7, 4 Hz)			
			1.80-1.90(2H, m),			
			1.60-1.75(2H, m),			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1.33-1.55(14H, m,		<del></del>	
	/ > >		involving a singlet at 1.37).			
	無色油状		0.94(3H, t, J =6.9 Hz),		-	_
			0.90(3H, t, J =6.9 Hz).		_	
					_	

表 111

元素分析			·
MS	FAB+ 313 [M'H'] (20)	FAB+ 283 [M*H*] (40)	FAB+ 451 [M'H'] (30) 367(20)
F. W.	KBr 3366 1777 1710	KBr 3382 3254 2942 1744 1673	KBr 3479 3372 1739 1692 1633
1H NMR (8) ppm	DMSO-d6,300MHz 9.19(1H, s) 8.26(1H, d, J=7.7 Hz 8.13(1H, d, J=7.7 Hz 8.03(1H, d, J=8.4 Hz 6.99(1H, d, J=8.4 Hz 6.68(2H, d, J=8.4 Hz 3.72(2H, t, J=7.5 Hz 2.78(2H, t, J=7.5 Hz	DMSO-d6,300MHz 9.16(1H, s) 7.39(1H, dd, J=7.0 Hz) 6.39(2H, d, J=8.4 Hz) 6.94(1H, d, J=8.3 Hz) 6.91(1H, d, J=8.3 Hz) 6.91(1H, d, J=8.4 Hz) 6.63(2H, d, J=8.4 Hz) 7.5(2H, t, J=7.3 Hz) 2.75(2H, t, J=7.3 Hz)	CDCl ₃ 300MHz 9.5(1H, s) 8.8(1H, d, J=6 Hz) 7.6(1H, t, J=6 Hz) 7.5(2H, d, J=6 Hz) 7.2(2H, d, J=9 Hz) 7.0(2H, d, J=9 Hz) 3.9(2H, t, J=7.5 Hz) 3.9(2H, t, J=7.5 Hz) 2.5(2H, t, J=7.5 Hz) 2.5(2H, t, J=7.5 Hz) 1.6(4H, m)
製点	108.2~ 109.2°C	210.0∼ 211.0℃	119.0∼ 120.2℃
構造式	NO ₂ OH	OH NH2 O	
実施例	7-1	7-2	7-3

表 112

		T	
元素分析		C ₂ H ₂ ,NO ₂ 理論信 C; 71.52% H; 7.37% N; 3.79% A) 亦有 C; 71.50% H; 7.39% N; 3.87%	
MS		FAB+ 370 [M*H*](100) 262(40)	
I.Rcm. ¹		KBr 3129 2956 1659 1273	Neat 3422 3021 2955 2871 1766 1704 1614 1516
1H NMR (&) ppm	DMSO-d6,300MHz 7.50(1H, d, J=8.0 Hz) 7.09(2H, d, J=8.3 Hz) 7.09(2H, d, J=8.3 Hz) 7.07(1H, d, J=8.0 Hz) 6.74(2H, d, J=8.3 Hz) 5.40(1H, bs) 4.26(2H, t, J=6.8 Hz) 3.92(3H, s) 3.83(2H, t, J=7.7 Hz) 2.89(2H, t, J=7.7 Hz) 1.7-1.9(2H, m) 1.7-1.5(4H, m) 0.92(3H, t, J=7.2 Hz)	CDCI,300MHz 7.52(1H, d, J=8.3 Hz) 7.06(2H, d, J=8.4 Hz) 6.97(1H, d, J=8.4 Hz) 6.7(2H, d, J=8.4 Hz) 6.7(2H, d, J=8.4 Hz) 6.7(2H, d, J=8.4 Hz) 6.7(2H, s) 4.24(2H, s) 4.24(2H, s) 3.89(3H, s) 3.89(3H, s) 3.89(3H, s) 1.6-1.8(2H, m) 1.5-1.3(4H, m)	CDCI, 300MHz 7.6I(1H, t, 1=7.83 Hz) 7.38(1H, d, 1=7.22 Hz) 7.16(1H, d, 1=8.43 Hz) 7.11(2H, d, 1=8.30 Hz) 6.75(2H, d, 1=8.33 Hz) 4.5-4.8(1H, br) 4.16(2H, t, 1=6.64 Hz) 3.84(2H, t, 1=7.69 Hz) 2.90 (2H, t, 1=7.69 Hz) 1.84-1.92(2H, m) 1.35-1.52(4H, m) 0.94(3H, t, 1=7.04 Hz)
融点		146.3∼ 146.9℃	
構造式	Mao O O O O O O O O O O O O O O O O O O O	MeO OH	HO O O O
莱施列	7-4	7-5	7-6

表 113

Г			T
计中央计	10.17 86.01		C ₃ H ₃ NO ₄ 理略值 C; 71.37% H; 6.56% N; 3.96% A)-析值 C; 71.39% H; 6.62% N; 3.99%
MS	FAB+ 340 [M*H*] (100) 326(60) 270(18)	FAB+ 326 [M*H*] (100) 218(62) 121(20)	FAB+ 354 [M'H'] (100) 289(16) 246(20)
I Permit	Neal 3163 2950 2868 1662 1612 1596	Neat 3400 2943 2870 2806 1613 1594	Neat 3435 2934 1765 1696 1613 1515
1H NMR (3) pom	CDCl ₃ 300MHz 7.39(1H, t, J=7.90 Hz) 7.04(2H, d, J=7.50 Hz) 6.89(1H, d, J=7.40 Hz) 6.89(1H, d, J=7.40 Hz) 6.85(1H, d, J=8.10 Hz) 6.80(2H, d, J=8.50 Hz) 4.14(2H, s) 4.07(2H, t, J=6.75 Hz) 3.76(2H, t, J=7.15 Hz) 2.87(2H, t, J=7.15 Hz) 1.88(2H, quint, J=7.15 Hz) 1.30-1.51(4H, m) 0.90(3H, t, J=7.15 Hz)	CDC!,300Mitz 7.26(1H, t, J=7.6 Hz) 7.07(2H, d, J=8.47 Hz) 6.79(1H, d, J=7.44 Hz) 6.69(1H, d, J=8.07 Hz) 6.69(1H, d, J=8.07 Hz) 6.67(2H, d, J=8.45 Hz) 6.07(2H, t, J=6.54 Hz) 3.97(2H, t, J=6.54 Hz) 2.80-3.00(4H, m) 1.70-1.85(2H, m) 0.93(3H, t, J=7.01 Hz)	CDCI,,300MHz 7.69(1H, d, J=8.25 Hz) 7.26(1H, d, J=8.19 Hz) 7.26(1H, d, J=2.19 Hz) 7.05-1.12(3H, m) 6.73(2H, d, J=8.46 Hz) 8.83 (1H, s) 4.03(2H, t, J=6.54 Hz) 3.85(2H, t, J=7.52 Hz) 2.89(2H, t, J=7.99 Hz) 1.75-1.84(2H, m) 1.32-1.47(4H, m) 6.93(3H, t, J=7.01 Hz)
融点	161.3∼ 161.6℃	107.8~ 108.1 °C	114.7~ 115.1°C
構造式	HO Z	₩ O	HO
奥施例	7-7	7-8	7-9

Γ	7	X 114	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	光紫沙竹		C ₁ ,H ₁ ,NO ₂ 四點 C; 77.50% H; 8.36% N; 4.30% 分析值 C; 77.29% N; 8.56% N; 4.29%
L	FAB+ 340 [M*H*] (100) 324(28) 232(33)	FAB+ 340 [M'H'] (100) 324(25) 232(32)	FAB+ 326 [M'H'] (97) 218(100) 191(26) 121(78)
4	Neat 3132 3012 2953 2867 1738 1662 1617 1594	Neat 3103 2934 1654 1618 1594	Neat 2941 2873 2807 1612 1590
H NMP (&) and	2 42 H 50 H 48 H 48 H 48 H 60 H 60 H 90 H 90 H 90 H	CDCI,300MHz 7.31(1H, d, J=2.33 Hz) 7.24(1H, d, J=7.89 Hz) 7.03-7.08(3H, m) 6.76(2H, d, J=8.48 Hz) 6.24(1H, br) 3.97(2H, t, J=6.59 Hz) 3.87(2H, t, J=7.19 Hz) 2.91(2H, t, J=7.16 Hz) 1.75-1.81(2H, m) 1.38-1.42(4H, m) 0.93(3H, t, J= 7.03 Hz)	CDCl,300MHz 7.04-7.09(3H, m) 6.64-6.75(4H, m) 3.90-2.97(4H, m) 1.74-1.79(2H, m) 1.36-1.44(4H, m) 0.93(3H, t, 1=7.04 Hz)
1000	138.5~ 138.8°C	137.5~ 137.8°C	120.7°C
网 標造式	HO NO	2 V V O	HO NO
実施例	7-10-1	7-10-2	7-11

表 115

MS 元素分析	+	(\$0)	(05)	(00)	(00) (00) (00) (00) (00) (00) (00) (00)
I'Rem. ¹ MS	FAB	3300 476 2933 [M*H*] (50) 1670 458(60) 1268	<del></del>	- 120	F 45
t		3300 2933 1670 1268	3300 2933 1670 1268	2933 1670 1268	XBr F F 3438 4 2950 [N 1597 1597 1597 1598 1598 1598 1598 1598 1598 1598 1598
			-		- W.S S S S S S S S
8-3.0(2H, m) 7-1.8(2H, m)	1.3-1.5 (4H, m) 0.92(3H, t, J=7.1 Hz)	•		1.6-1.8(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=6.8 Hz)	1.6-1.8(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=6.8 Hz) 1.7-1.9(2H, m) 1.3-1.6(4H, m) 0.94(3H, t, J=7.1 Hz)
2.8-3.0(2H, m) 1.7-1.8(2H, m) 1.3-1.5 (4H, m)	0.92(3H, t, J=7			1.6-1.8(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=6,	1.6-1.8(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=6, 1.7-1.9(2H, m) 1.3-1.6(4H, m) 0.94(3H, t, J=7.1
tz 8.4 Hz) ) 8.6 Hz)	8.4 Hz) 8.6 Hz)	9.8 Hz)	# #	7. Hz) 7. Hz) 7. Hz) 7. Hz) 4. Hz) 4. Hz)	
C.D.C.J.,300MHz 7.38(1H, d, J=8,4 Hz) 7.3-7.5(5H, m) 7.13(2H, d, J=8,6 Hz) 6.91(1H, d, 1_6,4 Hz)	6.88(2H, d, J=8.6 Hz)	5.64(1H, d, J=9.8 Hz) 5.01(2H, s) 4.0-4.2(2H, m) 3.86(3H, s)	3.7-3.8(1H, m) 3.5-3.6(1H, m) 2.97(2H, d, 1=9.8 H ₇	3.7-38(1H, m) 3.5-36(1H, m) 2.97(2H, d, J=9.8 Hz) CDCl,300MHz 7.53(1H, d, J=8.2 Hz) 7.3-7.5(5H, m) 7.15 (2H, d, J=8.6 Hz) 6.99(1H, d, J=8.6 Hz) 6.99(2H, d, J=8.6 Hz) 6.90(2H, d, J=8.6 Hz) 3.02(2H, s) 4.20(2H, s) 3.80(2H, t, J=7.4 Hz) 3.80(2H, t, J=7.4 Hz) 2.92(2H, t, J=7.4 Hz)	3.7-3.8(114, m) 3.5-3.6(114, m) 2.97(214, d, 1=9.8 Hz) CDC1,300MHz 7.53(114, d, 1=8.2 Hz) 7.3-7.5(514, m) 7.15 (214, d, 1=8.2 Hz) 6.99(114, d, 1=8.2 Hz) 6.99(114, d, 1=8.6 Hz) 6.99(214, d, 1=8.6 Hz) 7.02(214, s) 7.02(214, s) 7.02(214, s) 7.03(214, d, 1=6.7 Hz) 7.03(214, d, 1=6.7 Hz) 7.03(214, d, 1=9.1 Hz) 7.13(114, d, 1=9.1 Hz) 7.12(214, d, 1=8.6 Hz) 6.99(214, d, 1=8.6 Hz) 6.99(214, d, 1=7.7 Hz) 6.99(214, d, 1=7.7 Hz) 6.99(214, d, 1=7.7 Hz) 6.99(214, d, 1=7.7 Hz) 6.65 (114, d, 1=7.7 Hz) 7.04(214, s)
7.38(1) 7.3-7.5 7.13(2) 6.91(1)	6.88(21	5.64(1H, d, 5.01(2H, s) 4.0-4.2(2H, s) 3.86(3H, s) 3.7-3.8(1H, 3.5-3.6(1H, s) 3.5-3.6(1H, s)	2.97(2H	2.97(2H, d. CDC1, 3001 7.53(1H, d. 7.3-7.5(5H, d. 7.3-7.5(5H, d. 7.15 (2H, d. 6.99(2H, d. 6.99(2H, d. 6.90(2H, d. 5.02(2H, s. 5.02(2H, s. 3.90(3H, s. 3.80(2H, t. 2.92(2H, t. 1. 2.92(2H, t. 2.92(2	0 2 7 7 7 0 0 0 V 4
	<del></del>				106.3~ 107.2°C
					9 9
		}			
	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
		<b>X</b>		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
		7-13	1	4	7-14 M

Γ			
计等字符		C ₁₃ H ₂₇ NO ₄ 理路值 C; 72.42% H; 7.13% N; 3.66% 分析值 C; 72.30% H; 7.21% N; 3.58%	
MS	FAB+ 388[M+H+] (100)	FAB+ 381 [M*H*] (100) 261(40) 191(40)	
IRcm.1	Neat 2954 1714 1644 1279	Neat 3250 2959 1642 1586 1514 1283	
IH NMR (&) ppm	CDCI,,300MHz 7.83(1H, d, J=8.5 Hz) 6.88(1H, d, J=8.5 Hz) 6.88(1H, d, J=8.5 Hz) 3.93(2H, t, J=6.6 Hz) 3.89(3H, s) 3.63(2H, t, J=6.6 Hz) 3.54(2H, t, J=6.6 Hz) 3.24(2H, t, J=6.6 Hz) 3.12(2H, t, J=7.2 Hz) 0.94(3H, t, J=7.2 Hz)	CDC1,300MHz 8.20(1H, d, J=8.9 Hz) 1.3-1.5(4H, m) 7.13(1H, d, J=8.9 Hz) 0.93(3H, t, J=7.0 Hz) 7.08(1H, bs) 7.02(2H, d, J=8.2 Hz) 6.85(1H, d, J=7.5 Hz) 6.85(1H, d, J=7.5 Hz) 6.82(2H, d, J=7.5 Hz) 6.82(2H, d, J=7.5 Hz) 6.82(2H, d, J=7.5 Hz) 6.82(2H, d, J=7.5 Hz) 7.02(2H, d, J=7.5 Hz) 7.02(2H, d, J=7.5 Hz) 7.2(1H, d, J=7.5 Hz) 7.3(2H, t, J=7.5 Hz) 7.3(2H, t, J=7.5 Hz) 7.3(2H, t, J=7.5 Hz) 7.3(2H, t, J=7.5 Hz) 7.3(2H, m)	
最点		130.3∼ 131.1℃	
<b>情</b> 造式	MeO O O O	HO New O	Meo O OH
莱施例	7-18	7-19-1	7-19-2

7-20 MeO	実施例	構造式	融点	ų ні	IH NMR (8) ppm	IRcm ⁻¹	MS	元素分析
MeO  MoO  MoO  MoO  MoO  MoO  MoO  MoO	· · · · · · · · · · · · · · · · · · ·			711 6	0.94(3H, t, J=7.1 Hz)	Neat 3478	FAB+ 367	C22H26N3O3
MeO  MeO  MeO  MeO  MeO  MeO  MeO  MeO		0:	200	7.14(1H, d, J=8.9 Hz)		2936	(M'H'](50)	理論値
MeO  MeO  MeO  MeO  MeO  MeO  MeO  MeO			90.3C	7.14(2H, d, J=5.9 Hz) 6.76(1H, d, J=7.6 Hz)		1625		C; 72.11% H: 7.15%
M80				6.67(1H, d, J=7.6 Hz)		1596		N; 7.64%
9.97(3H, s) 9.97(3H, s) 9.97(3H, s) 9.97(3H, s) 1.3-1.5(4H, m) 1.3		WeO ~		4.19(2H, I, J=7.3 Hz) 4.01(2H, I, J=6.7 Hz)		1284		分析值
0Ac 1.1-9(2H, m) 1.3-1.5(4H, m) 1.3-		<>>°		3.97(3H, s)				C; 72.03%
MeO  MoO  MoO  MoO  MoO  MoO  MoO  MoO				3.09(2H, I, J=7.3 Hz)				H; 7.25%
CDCI,300MHz  220(H, d. J=8, Hz)  1,2-1,5(4H, m)  1,2(1H, d. J=8, Hz)  1,14(H, d. J=8, Hz)  1,				1.7-1.9(2H, m) 1.3-1.5(4H, m)				<u> </u>
MeO  OAC  OAC  OAC  OAC  OAC  OAC  OAC  O	l			CDCI,,300MHz		ğ	FAB+	
MeO  OAC  OAC  OAC  OAC  OAC  OAC  OAC  O				8.20(1H, d, J=8.9 Hz)	1.3-1.5(4H, m) 0.94(3H:1: 1±7.1 Hz)	3438	424	CzsHzpNO,
MeO  OAC  OAC  OAC  OAC  OAC  OAC  OAC  O				7.14(1H, d, J=8.9 Hz)		2957	[M'H'](50)	THE NO. (12)
6.80(1H, d, J=7,6 Hz)  6.67(1H, d, J=7,6 Hz)  1.1283  4.15(2H, I, J=7,3 Hz)  4.15(2H, I, J=7,3 Hz)  1.20(3H, s)  1.7-19(2H, m)  CDCI,300MHz  7.20(3H, s)  1.7-19(2H, m)  CDCI,300MHz  7.84(1H, d, J=8,6 Hz)  7.27(2H, d, J=8,4 Hz)  6.87(1H, d, J=8,6 Hz)  1.3-1.5(4H, m)  1.3		<b>_</b>		7.01(2H, d, J-8.5 Hz)		1762		C; 70.90%
0.607(H, d, J=7.6 Hz)  0.607(H, d, J=7.5 Hz)  1.71.9(2H, t, J=7.5 Hz)  1.71.9(2H, t, J=7.5 Hz)  1.72.9(3H, s)  1.71.9(2H, m)  CDCl,300MHz  7.84(H, d, J=8.6 Hz)  7.27(2H, d, J=8.4 Hz)  7.27(2H, d, J=8.4 Hz)  7.27(2H, d, J=8.4 Hz)  1.727(2H, d, J=8.6 Hz)  1.727(2H, t, J=7.5 Hz)		Z		6.80(1H, d, J=7.6 Hz)		16.24		H; 6.90%
MeO  4.01(2H, I, J=7.3 Hz)  3.05(3H, s)  3.07(2H, I, J=7.5 Hz)  2.29(3H, s)  1.7-1.9(2H, m)  CDCI _{3.3} 00MHz  7.27(2H, d, J=8.6 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, d, J=8.6 Hz) 7				6.67(1H, d, J=7.6 Hz)		1283		N; 3.31%
3.96(3H, s) 3.07(2H, t, J=7.3 Hz) 2.29(3H, s) 1.7-1.9(2H, m) CDCl,300MHz 7.84(1H, d, J=8.6 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, d, J=8.6 Hz) 7.27(2H, d, J=8.6 Hz) 7.27(2H, d, J=8.6 Hz) 7.37(2H, t, J=7.5 Hz) 7.302(2H, t, J=7.5 Hz) 7.38(3H, s)		( ) ( )		4.01(2H, 1, J=7.3 Hz)				分析值
3.07(2H, t, J=7.5 Hz) 2.29(3H, s) 1.7-1.9(2H, m)  CDCl,300MHz 7.84(1H, d, J=8.6 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, m)		\ \ \ \ \		3.96(3H, s)				C; 71.10%
2.29(3H, s) 1.7-1.9(2H, m)  CDCl ₃ 300MHz 7.84(1H, d, J=8.6 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, d, J=8.4 Hz) 7.01(2H, d, J=8.4 Hz) 7.01(2H, d, J=8.6 Hz) 7.01(2H, d, J=7.5 Hz) 7.				3.07(2H, t, J=7.5 Hz)				H; 6.99%
1.7-1.9(2H, m)  CDCl ₃ 300MHz 7.84(1H, d, J=8.6 Hz) 7.27(2H, d, J=8.4 Hz) 7.27(2H, d, J=				2.29(3H, s)				N; 3.22 %
CDCI,300MHz 7.84(1H, d. J=8.6 Hz) 7.27(2H, d. J=8.4 Hz) 7.27(2H, d. J=8.4 Hz) 7.01(2H, d. J=8.4 Hz) 7.01(2H, d. J=8.6 Hz) 7.01(2H, d. J=7.5 Hz) 7.01(2H, d. J=8.6 Hz) 7.01(2H, d. J=7.5 Hz) 7.01(2H, d. J=8.6 Hz) 7.01(2H, d				1.7-1.9(2H, m)				
OAC 7.27(2H, d, J=8.0 Hz) 1.3-1.3(4H, m) 7.27(2H, d, J=8.4 Hz) 0.93(3H, t, J=7.0 Hz) 1736 7.01(2H, d, J=8.4 Hz) 0.93(3H, t, J=7.0 Hz) 1736 1646 8.87(1H, d, J=8.6 Hz) 3.90(2H, t, J=6.7 Hz) 3.88(3H, s) 3.75(2H, t, J=7.5 Hz) 2.95(2H, t, J=7.5 Hz) 2.95(2H, t, J=6.6 Hz) 2.28(3H, s) 1.7-1.8(2H, m)				CDCI,300MHz		KBr	FAB+	
OAC 7.01(2H, d, J=8.4 Hz) 1756 6.87(1H, d, J=8.6 Hz) 1646 3.90(2H, t, J=6.7 Hz) 3.88(3H, s) 3.73(2H, t, J=7.5 Hz) 2.95(2H, t, J=7.5 Hz) 2.95(2H, t, J=6.6 Hz) 2.28(3H, s) 1.7-1.8(2H, m)				7.27(2H, d. J=8.4 Hz)	1.3-1.3(4ti, m) 0.93(3H + 1=7.0 Hz)	2936	426	
6.87(1H, d. J=8.6 Hz)  3.90(2H, t, J=6.7 Hz)  3.88(3H, s)  3.75(2H, t, J=7.5 Hz)  2.95(2H, t, J=7.5 Hz)  2.89(2H, t, J=6.6 Hz)  2.28(3H, s)  1.7-1.8(2H, m)		<b>\</b>		7.01(2H, d, J=8.4 Hz)		1756	[M*H*](100)	
3.90(2H, t, 1=6.7 Hz) 3.88(3H, s) 3.75(2H, t, 1=7.5 Hz) 3.38(2H, t, 1=6.6 Hz) 2.95(2H, t, 1=6.6 Hz) 2.28(3H, s) 1.7-1.8(2H, m)		)—		6.87(1H, d, J=8.6 Hz)		989	276(50)	
		2-		3.90(2H, t, J=6.7 Hz)		6171		
\ \ -0				3.88(3H, 8) 3.78(2H, L J=7.5 Hz)				
2.95(2H, t, J=7.5 Hz) 2.89(2H, t, J=6.6 Hz) 2.28(3H, s) 1.7-1.8(2H, m)		< < -0		3.38(2H, t, J=6.6 Hz)				
2.89(2H, t, J=6.6 Hz) 2.28(3H, s) 1.7-1.8(2H, m)		/ > }		2.95(2H, t, J=7.5 Hz)				
2.28(3H, s) 1.7-1.8(2H, m)				2.89(2H, t, J=6.6 Hz)				
				2.28(3H, 8) 1 7.1 8(2H m)				

	Ę	<b>H</b>	1H NMR (3) ppm	IDem-1	Me	おく様川
		CDCI,300MHz			<u>ا</u>	九本774
		7.82(1H, d, J=8.6 Hz)	1.3-1 \$(4H m)		FAB+	2
		7.08(2H, d. J=8.4 Hz)	0.02/3H / 1=71 Hz)		384	C23H29NO
공		6.85(1H, d. J=8.6 Hz)	(37.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		[M'H'1000	
<u> </u>	143.6~	6.79(2H, d, J=8.4 Hz)			276(60)	理論値
<u> </u>	7 4.4	6.35(1H, s)			264(40)	C; 72.04%
		3.90(2H, I, J=6.7 Hz)				%79'' 'H
		3.87(3H, s)				
		3.73(2H, 1, J=7.1 Hz)		_		分析值
		3.39(2H, t, J=6.6 Hz				C; 72.04%
		2.90(2H, t, J=6.6 Hz)				H; 7.79%
		2.86(2H, t, J=7.1 Hz) 1.6-1.8(2H, m)				% CC.C ;N
		CDCI,300MHz		Z S	EAB.	
<del></del>		7.59(1H, s)	1.3-1.5 (4H, m)	<u> </u>	+92-	CHNO.
		7.10(2H, d, J=8.5 Hz)	0.93(3H, t, J=7.1 Hz)	3227	384	
	170 6~	7.00(1H, bs)		2934	[M'H'](40)	497 (4)
	171.4C	6.77(2H, d, J=8.5 Hz)		2361		
# T		6.58(1H, s)		009		C, 12.07% H: 7.62%
<u> </u>		4.02(2H, t, J=6.9 Hz)		1516		N: 3648
<u> </u>		3.88(3H, s)		1280		9/00:0
		3.73(2H, t, J=7.3 Hz)				分析值
		3.39(2H, t, J=6.7 Hz)	٠			C; 71.93%
•		2.87(2H, I, J=7.3 Hz)		<del></del>		H; 7.65%
		2.77(2H, t, J=6.7 Hz)		-		N; 1113.62
-		l.8-l.9(2H, m)				
·		СБСІ,300МН2			FAB	
		7.82(1H, s)	1.3-1.5(4H, m)			
_		7.21(2H, d, J=8.5 Hz)	0.95(3H, t, J=7.1 Hz)		424	
•		7.00(2H, d, J=8.5 Hz)			[M"H"] (100)	
		6.83(1H, s)			261(70)	
OAC		6.74(1H, d, J=7.3 Hz)				
<b></b>	•	6.31(1H, d, J=7.3 Hz)				
_ }		4.19 2H, t, J.7.3 Hz)				
		4.10(2H, t, J=6.9 Hz)			-	
		4.00(3H, s)				
		3.08(2H, t, J=7.3 Hz)				
		7.29(3H, S)			-	
	1	1.0-2.0(2fl, m)				

表 119

東施列	<b>集</b> 遊式	1000	IH NMR (8) pom	Rem.1	MS	元素分析
7-27	HOOM	209.4∼ 210.7℃	1	KBr 3441 2953 1565 1516	FAB+ 382 [M'H'] (100) 261(50)	
7-28	Me M	147.2∼ 148.3℃	DMSO-d6,300Mth. 9.2(1H, bs) 7.6(1H, s) 7.2(1H, d, J=6 Hz) 7.1(1H, s) 7.0(2H, d, J=9 Hz) 6.6(2H, d, J=9 Hz) 6.4(1H, d, J=6 Hz) 4.0-4.1(2H, m) 4.0(2H, t, J=6 Hz) 3.9(3H, s) 2.8(2H, t, J=8 Hz) 1.7-1.8(2H, m)	KBr 3441 2953 1565 1516	FAB+ 382 [M*H*] (100) 261(50)	
7-29	MeO	93.2~ 94.1°C	CDCI,300MHz 7.60(1H, s) 7.27(2H, d, J=8.5 Hz) 7.01(2H, d, J=8.5 Hz) 6.59(1H, s) 6.50(1H, s) 4.02(2H, t, J=6.9 Hz) 3.90(3H, s) 3.36(2H, t, J=6.7 Hz) 3.38(2H, t, J=6.7 Hz) 2.95(2H, t, J=6.7 Hz) 2.95(2H, t, J=6.7 Hz) 2.28(3H, s) 1.8-1.9(2H, m)	Zear	FAB+ 426 [M+H+] (60) 276(55) 理論值 C ₂₅ H ₃₂ NO ₅ 426.5380 分析值	C ₂₅ H ₃₁ NO ₅ 理警信 C; 70.57% H; 7.34% N; 3.29% 分析值 C; 70.19% H; 7.36% N; 3.24 %

0.94(3H, t, J=7.1 Hz) 2933 455 0.93(3H, t, J=7.1 Hz) 2933 455 1687 1687 1687 1516 [M+H+] 1344 (100), 318
.1 Hz)
1.8-1.9(2H, m) 1.7-1.8(2H, m) 1.3-1.4(8H, m)
1.7-1.8(2H, m)

表 121

MS 元素分析	FAB+	471 433(60), 165(100).	471 453(60), 165(100). 165(100). FAB+ C26H36N2O3 425 [M+H+](65). 理論値 C; 73.55% H; 8.55% N; 6.60% 分析値 C; 73.39% H; 8.74% N; 6.47%
III III	Neat FAB+ 3300 471 2960 [M+H+]( 1673 453(60), 1520 165(100)	1269	
	Ê Ê		f. m) , J=7.0 Hz) , J=7.0 Hz)
	1.3-1.5(8H, m) 0.9-1.0(6H, m)		1.3-1.6(8H, m) 0.94(3H, t, J=7.0 Hz) 0.94(3H, t, J=7.0 Hz)
IH NMR (&) ppm	CDC13,300MHz 8.12(2H, d, J=8.6 Hz) 7.90(1H, d, J=8.2 Hz) 7.31(1H, d, J=8.2 Hz) 6.89(1H, d, J=9.2 Hz) 5.69(2H, d, J=9.6 Hz) 4.0-4.2(2H, m) 3.98(2H, t, J=6.5 Hz) 3.7-3.9(1H, m) 3.6-3.8(1H, m) 3.2-3.3(1H, m)	3.08(2H, q, J≈7.0 Hz) 1.7-1.9(4H, m)	3.08(2H, q, J=7.0 Hz) 1.7-1.9(4H, m) CDC13,300MHz 7.46(1H, d, J=8.2 Hz) 7.02(2H, d, J=8.3 Hz) 6.97(1H, d, J=8.3 Hz) 6.07(1H, d, J=8.3 Hz) 4.20 (2H, s) 4.20 (2H, s) 4.03(2H, t, J=6.6 Hz) 3.76(2H, t, J=6.5 Hz) 3.86(2H, t, J=7.4 Hz) 3.86(2H, t, J=7.4 Hz) 1.8-1.9(2H, m) 1.7-1.8(2H, m)
J. 1.1.1	CDCI3, 8.12(2H) 7.90(1H) 7.31(1H) 6.89(1H) 5.69(2H) 3.98(2H) 3.04.3(3H) 3.04.3(3H) 3.04.3(3H) 3.04.3(3H) 3.04.3(3H) 3.04.3(3H)	1.7-1.7	CDC13,300MH 7.46(1H, d, J=6 7.02(2H, d, J=6 6.97(1H, d, J=6 6.97(1H, d, J=6 6.97(2H, d, J=6 4.05(2H, t, J=6 4.03(2H, t, J=6 3.76(2H, t, J=7 3.88(2H, bs), 2.86(2H, t, J=7 1.8-1.9(2H, m) 1.7-1.8(2H, m)
2	2		\$3.5 ************************************
	\$\frac{1}{2}\frac{5}{6}\rightarrow}\$		
米脂包	7-33	+	7-34

Į.			
中華存在			
L			
N.	FAB+ 399[M+H+] (100), 262(80)	FAB+ 369[M+H+] (100)	FAB+ 383 ⁻ [M+H+](50), 120 (100).
  -  -			FAB+ 383 · [M+H 120 (1
Rem.1		XBr 3348 2931 1682 1621 1518 1572	
		( <b>2</b> )	(2)
		0.94 (3H, t, J = 7.2 Hz)	0.91 (3H, t, J = 6.9 Hz)
mdd (		(Эн, t,	(3) (1)
1H NMR (8) ppm			0.91
Ξ	(2) (2) (4) (4) (4) (5) (7) (7) (7) (8) (9) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(H1) (H2) (H2) (H2) (H3) (H3)	Hz) Hz) Hz) Hz) Hz) Hz) Hz)
	MH12 1 = 8.4 f 1 = 8.4 f 1 = 8.4 f 1 = 8.4 f 1 = 6.6 H 1 = 7.5 H 1 = 7.5 H 1 = 7.5 H 1 = 7.5 H	MHz 1, J = 8.4 1, J = 8.4 1, J = 8.4 1, J = 8.6 1, J = 6.6 1, J = 6.9 2, J = 6.9 3, J = 6.9 . m)	MHz bs) J=84 J=84 J=84 J=60 J=60 J=66 J=66
	CDC13,300MHz 8.15(2H, d, J=8,4 Hz) 7.52(1H, d, J=8,4 Hz) 7.41(2H, d, J=8,4 Hz) 7.00(1H, d, J=8,4 Hz) 7.00(3H, s) 7.00(3H, s) 7.00(3H, s) 7.11(2H, t, J=7,5 Hz) 7.11(2H, m) 7.11(2H, m) 7.11(3H, m)	CDC13,300MHz 7.52 (1H, d, J = 8.4 Hz) 7.02 (2H, d, J = 8.4 Hz) 6.98 (1H, d, J = 8.4 Hz) 6.61 (2H, d, J = 8.4 Hz) 4.20 (2H, s) 3.90 (3H, s) 3.76 (2H, t, J = 6.9 Hz) 3.30 (2H, bs) 2.86 (1H, d, J = 6.9 Hz) 1.7-1.9 (2H, m)	CDC13,300MHz 10.46 (3H, bs) 7.71 (1H, d, J = 8.4 Hz) 7.49 (2H, d, J = 8.4 Hz) 7.26 (2H, d, J = 6.0 Hz) 8.89 (2H, d, J = 6.6 Hz) 8.85 (3H, s) 8.71 (2H, t, J = 7.5 Hz) 8.44 (2H, t, J = 6.6 Hz) 8.44 (2H, t, J = 6.6 Hz) 8.51 (2H, t, J = 6.6 Hz) 8.71 (2H, t, J = 6.6 Hz)
'n	0.8 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7		
酸点		64-67 C	212~215 U(dec.)
	NO2	N. N	NH ₂ ·HG
	<i>\</i> \ \	(	\ \ \
其			~ <u>`</u>
養婦			
東諸宮	7.36	<u>ر</u> 2	
メ	7.5	7-37	7-38

ſ		<u> </u>	
	元素分析		C22H28CIN3O4 理論值 C; 60.89% H; 6.50% N; 9.68% 分析值 C; 60.95% H; 6.56% N; 9.63%
	W	FAB+ 398 [M+H+] (30)	FAB- 396(20) 326(20)
	E	KBr 2954 1708 1654 1618	KBr 2953 2542 1705 1665 1621 1412
(4) avus ni		0.95(3H.t.J=7.1Hz)	1.25-1.45(4H.m) 0.881(3H,1,J=7.2Hz)
	DMSO-d6,300MHz 10.7(1H,s) 8.14(2H,d,J=8.4Hz) 7.66(1H,d,J=8.7Hz) 7.50(2H,d,J=8.7Hz) 6.97(1H,d,J=7.4Hz) 3.91(2H,t,J=6.9Hz) 3.88(3H,s) 1.30-1.45(4H,m) 0.88(3H,t,J=7.1Hz) CDC13.300MHz	8.05(11.5) 8.05(11.5) 7.83(11.4.J.=9.0Hz) 7.12(21.4.J.=7.8Hz) 6.80(11.4.J.=9.0Hz) 6.64(21.4.J.=7.8Hz) 4.18(21.1.J.=8.0Hz) 3.95(311.5) 3.95(311.5) 7.86(21.J.=8.1Hz) 3.56(21.J.=8.1Hz) 1.73-1.85(21.m) 1.30-1.50(41.m)	DMSO-d6,300MHz 10.73(14,4) 10.17(2H,bs) 7.06(1H,d.J=8.7Hz) 7.32(2H,d.J=8.7Hz) 7.28(2H,d.J=8.7Hz) 6.96(1H,d.J=8.7Hz) 6.96(1H,d.J=7.5Hz) 3.91(2H,1,J=7.5Hz) 3.88(3H,s) 2.88(2H,L)=7.5Hz) 1.66-1.80(2H,m)
1000		154.9~ 155.7°C	244-249 C (decomp)
構造計	MBO NO2	MeO A N O Meo	Meo H O MA.HCI
奥施例	7-39	7-40	7-41

Γ	<u> </u>		
	元素が予 C23H29N3O4		
	MS FAB+ 412 [M+H+] (50)		
f	KBr 3455 3360 2935 1694 1634 1465 1290		
IH NMB (\$) and	DMSO-d6,300MHz 9-43(1H,s) 7-46(1H,d,J=9,0Hz) 6.97(2H,d,J=9,0Hz) 6.88(2H,d,J=8,1Hz) 6.47(2H,d,J=8,1Hz) 6.47(2H,d,J=8,1Hz) 4.87(2H,s) 3.90(2H,t,J=6,6Hz) 3.84(3H,s) 3.62(2H,t,J=7,7Hz) 2.64(2H,t,J=7,7Hz) 1.00-1.75(2H,m)		
最点	161.0~ 164.0°C		
構造式	MeO N O H O O O M	Mao H H NO2	Mao No2
実施例	7-42	7-43	7.44

	Γ			
	元素分析	C21H25N3O4	C21H25N3O3S	
	MS	FAB+ 384[M+H+] (100) 238(20)	FAB+ 400 [M+H+] (20)	
	IRcm.1	KBr 2933 1714 1672 1616 1370 1296	KBr 3415 2952 2952 2363 1687 1620 1488 1144 1094	
	TH NMR (&) ppm		CDC13,300MHz 9.51(1H,s) 8.54(2H,d,J=6.0Hz) 7.82(1H,d,J=9.0Hz) 7.32(2H,d,J=6.0Hz) 6.91(1H,d,J=9.0Hz) 4.71(2H,1,J=8.3Hz) 4.14(2H,1,J=7.1Hz) 3.97(3H,s) 1.00(2H,t,J=8.1Hz) 1.75-1.90(2H,m) 0.96(3H,J=7.1Hz)	CDCI3,300MHz 8.54(2H,d.J=5.9Hz) 8.08(1H,d.J=9.0Hz) 7.75(1H,s) 7.18(1H,d.J=9.0Hz) 7.14(2H,d.J=7.2Hz) 4.14(2H,t.J=7.2Hz) 4.14(2H,t.J=7.0Hz) 3.99(3H,s) 3.12(2H,t.J=7.3Hz) 1.75-1.90(2H,m) 0.92(3H,t.J=7.1Hz)
17 92	AN (TEXT	210.1∼ 212.3℃	107.5∼ 108.5℃	
4 後近式	Ĺ	N= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WHO O O O O O O O O O O O O O O O O O O	N=0 N=0 N=0 N=0 N=0 N=0 N=0 N=0 N=0 N=0
実施例		7-45	7-46	7-47

	T	<del></del>	
元素分析		C22H27CIN2O3 理路值 C; 65.58% H; 6.75% N; 6.95% 分析值 C; 65.34% H; 6.89% N; 6.98%	
MS			
IRcm.1		KBr 3436 2389 1655 1630 1285 1087	
IH NMR (8) ppm		300MHz J=6.6Hz) 0.90(3H,t,J=6.9Hz) J=6.6Hz) J=6.6Hz) J=7.5Hz) J=7.5Hz) J=6.6Hz) J=6.6Hz) J=7.5Hz) J=7.5Hz) J=6.6Hz) J=6.4Hz) J=6.4Hz) J=7.2Hz) J=7.2Hz) J=7.2Hz) J=7.2Hz) J=7.2Hz) J=7.2Hz) J=7.2Hz)	
	B.79(2H,d,1=6.0Hz) 7.95(2H,d,1=6.0Hz) 7.95(2H,d,1=6.0Hz) 7.76(1H,d,1=8.7Hz) 7.18(1H,d,1=6.9Hz) 8.18(2H,1,1=7.7Hz) 3.91(2H,s) 3.91(2H,s) 3.81(2H,s) 3.14(2H,m) 1.60-1.78(2H,m) 1.25-1.50(4H,m) 0.90(3H,t,1=7.1Hz)	DMSO-46,300MHz 8.81(2H,d.)=6.6Hz) 7.95(1H,d.)=9.0Hz) 7.92(2H,d.)=6.6Hz) 7.30(1H,d.)=7.5Hz) 7.30(1H,d.)=7.5Hz) 6.61(1H,d.)=7.5Hz) 4.30(2H,t.)=6.6Hz) 3.95(2H,t.)=6.6Hz) 3.91(3H,s) 3.31(2H,t.)=7.2Hz) 1.65-1.77(2H,m)	•
融点		152.8~ 153.3°C	
構造式	MeO O O O	MeO N. HCI	MeO O O O
実施例	7-48	7-49	7-50

•		
	 _	~
<del></del>	 ٠,	
-AX		

米畑外	<b>情</b> 遊式	7 92					
		A T	1H NMR (&) ppm	1,1,0	5		_
			7		MS	元素分析	_
			6.77-6.93(4H,m)		FAB+		
		_	6.51(2H,dJ=8.4Hz)			C23H30N2O3	
_	NHA		4.52(2H s)		363		
			4.512H.hs)		(08) [+H+W]		_
_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		3.88(2H.1.1=6.5Hz)		(00)607		
7-51			3.75(3H,s)				
			3.63(2H1,1,1=6,0Hz)				
	\ \ \ \ \ \		3.56(2H,s)				
			2.68(2H,t,J=S,9Hz)				
			1.60-1.73(2H.m)				
	無色油状		1.30-1.50(4H.m.)				
			0.89(3H,t,Jm7.2Hz)				
			CDCI,300MH2				
			7.61(1H. t. Ja-7.83 Hz)	ž			
	(			- '''			
	E 0	_		7477			
		_		3021	_		
		•		2955	_		
i i	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			2871			
75-/				1766	•		
				170			
				1614			
	<i>'</i>			1516	-		
	1			-	-		
	電路印集		1.35-1.52(4H, m)			<del></del>	
			0.94(3H, I, Ja7.04 Hz)				
				-			

実施例	構造式	製点	E E	1H NMR (\$) and			
7-54	必要色格晶		CDC13,300MHz 8.12(2H, d, J=8.7 Hz) 7.39(2H, d, J=8.7 Hz) 7.35(1H, d, J=8.1 Hz) 6.90(1H, d, J=8.1 Hz) 6.90(1H, d, J=8.1 Hz) 6.90(1H, d, J=9.4 Hz) 7.69(2H, d, J=9.4 Hz) 7.91(3H, s) 3.7-3.9(1H, m) 3.6-3.7(1H, m) 3.6-3.7(1H, m) 3.6-3.7(1H, m) 3.6-3.7(1H, m) 3.15(1H, d, J=9.4 Hz) 3.08(2H, q, J=6.6 Hz) 1.7-1.8(2H, m)	1.2-1.5(4H, m) 0.92(3H, t, J=6.9 Hz)		FAB+ 415 [M+H+](60), 397(80), 179(100).	JL# 3741
7-55	A M M M M M M M M M M M M M		CLX.15.340MHz 7.37(1H, d, J=8.4 Hz) 7.11(1H, dd, J=5.1, 1.2 Hz) 6.92(1H, d, J=8.4 Hz) 6.89(1H, dd, J=5.1, 3.3 Hz) 6.89(1H, dd, J=3.3, 1.2 Hz) 5.83(1H, dd, J=9.9 Hz) 5.65(1H, d, J=9.9 Hz) 4.0-4.1(2H, m) 3.87(3H, s) 3.87(3H, q, J=6.9 Hz) 3.67(1H, q, J=6.9 Hz) 3.67(1H, q, J=4.5 Hz) 3.17(2H, d, J=4.5 Hz)	1.7-1.8(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=7.2 Hz)	KBr 3312 1672 1267	FAB+ 376 [M+H+ (50). 358(100).	
7-56	を結晶 無色結晶		CDC13,300MHz 7.40(1H, d, J=8,1 Hz) 7.12(1H, d, J=8,1 Hz) 7.07(2H, d, J=8,1 Hz) 6.94(1H, d, J=8,1 Hz) 5.61(1H, d, J=9,5 Hz) 4.0-4.2(2H, m) 3.87(3H, s) 3.80(1H, q, J=6,9 Hz) 3.60(2H, q, J=6,9 Hz) 2.93(2H, t, J=7.2 Hz) 2.68(1H, d, J=9,8 Hz) 2.30(3H, s)	1.7-1.8(2H, m) 1.2-1.5(4H, m) 0.93(3H, t, J=7.1 Hz)		FAB+ 384[M+H+] (100), 366(100).	

表 129

_		A 129	
元素分析			C ₃ ,H ₄ ,NO ₅ 理論値 C; 74.55% H; 7.77% N; 2.63 % 分析值 C; 74.82% H; 7.77% N; 2.67%
MS	FAB+ 368[M+H+] (100)	FAB+ 416 [M*H*] (10) 398(100)	FAB+ (231) 14(80) 165(100) 1 165(100) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IRcm.1		Neat 3500 2956 1769 1274	KBr 3252 2951 1659 1271
1H NMR (\$) ppm CDC13,300MHz	7.52 (1H, d, J = 8.1 Hz) 7.13 (2H, d, J = 8.1 Hz) 7.08 (2H, d, J = 8.1 Hz) 6.98 (1H, d, J = 8.1 Hz) 4.17 (2H, s) 4.01 (2H, t, J = 6.9 Hz) 3.90 (3H, s) 3.80 (2H, t, J = 7.2 Hz) 2.99 (2H, t, J = 7.2 Hz) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m) 0.93 (3H, t, J = 7.2 Hz)		CDCI,,300MHz 7.3-7.5(5H, m) 7.39(1H, d, J=8.6 Hz) 7.14(2H, d, J=8.6 Hz) 7.14(2H, d, J=8.6 Hz) 6.91(1H, d, J=8.6 Hz) 6.91(1H, d, J=8.6 Hz) 6.88(2H, d, J=8.6 Hz) 5.65(1H, d, J=9.8 Hz) 5.02(2H, s) 4.0-4.2(2H, m) 3.99(2H, t, J=6.5 Hz) 3.7-3.9(1H, m) 3.5-3.6(1H, m) 3.5-3.6(1H, m)
要点	57.4-58.5 T		108.2 7.7 7.7 108.4 7 6.8 5.6 5.6 3.9 3.9 3.3 3.9 2.9
構造式	A 無色格晶		第644 图
水銀	7-57	7-58	7-59

表 130

奥施彻	標準式	100		114b ( 4 )	}			
			בואשני ישטעוז-	in Nivik (a) ppm	IRem.1	MS	元素分析	Γ
			7.61(1H, s)	13.1 (/812 = )	Near	FAB+		T
			7.45(1H, d, J=8.3 Hz)	0.3/34 · 1 2 0 · ·	1738	90		
			6.97(1H d 1-8.3 tt-	0.55(5n, l, J#7.0 HZ)	3000	20		_
	0.	114.2~	6 86(1H s)	0.93(3H, f, J=7.0 Hz)	0767	IM.H.] (100)		
	EN.	114.6C	4.60(1H, bs)		1464			
7-60			4.31(2H, s)		1268			
	\ \ -0		4.07(2H, I, J=6.6 Hz)		}			_
	/ >>		4.04(2H, t, J=6.5 Hz)					
			3.91(2H, t, J=6.8 Hz)					
	1		3.04(2H, 1, J=6.8 Hz)					
	電影印集		1.8-1.9(2H, m)					
			CDC1, 300MH7					
			7.50(1H, d, J=8.2 Hz)	1.7-1 8/2H m)	Neal	FAB+		T
			7.3-7.5(5H, m)	1.3-1.5(8H, m)	2931	516	C33H41NO4	
	<		7.16(2H, d, J-8.6 Hz)	0.94(3H, 1, J=7.1 Hz)	1687	(M'H') (100)	:	
			6.97(1H, d, J=8.2 Hz)	0.93(3H, t, J=7.1 Hz)	1618	318(50).	理論値	
,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		6.90(2H, d, J=8.6 Hz)	•	1511		C; 76.86%	<u> </u>
īo-/	, , , , , , , , , , , , , , , , , , , ,		5.03(2H, s)		1271	-	N: 0.01%	
	\{\}_*		4.19(2H, 6)				W 7/17 1	<u></u>
			4.03(2fl, l, J=0.6 Hz)				分析值	ა —
		_	4.04(2H, I, J=0.5 HZ)				C; 76.26%	
	無色油状		2.00(2ff, l, J=/.0 Hz) 2.03(2ff + J=7 6 U=)				H; 8.17% N: 2.43%	
			1.8-1.9(2H, m)				<i>2</i> (7:- 1:-	
			CDC1,300MHz		Ě	PART		<del></del>
			7.49(1H, 0, J=8.3 Hz) 7.06(7H, 4, 19 < Uz.)	1.3-1.5(8H, m)	_		C ₂₆ H,,NO,	
			695(1H d 1=83 Hz)	0.94(3H, t, J=7.0 Hz)	2017	426	•	
	H		6.75(2H, d, J=8.5 Hz)	0.94(3H, I, J=7.0 Hz)		(W.H.) (100)	理路值	
		122.6 C	6.72(1H. bs)		1464		C: 73.38%	_
7-62			4.24(2H, s)		1273		H; 8.29%	
	\ \ \ \ \		4.06(2H, t, J=6.7 Hz)				N; 3.29 %	
			4.02(2H, t, J=6.5 Hz)		-		分析值	
			7.03(2ff, [, J#/.2 HZ)				C; 73.60%	
	無色針状晶		1.8-1.9(2H, m)				H; 8.30% N: 3.29%	
		_	.7-1.8(2H, m)		-			

表 131

元素分析		四路值 四路值 C; 73.94% H; 8.73% N; 6.39% 分析值 C; 73.89% H; 9.10% N; 6.41%	
MS	FAB+ 412[M+H+] (100).	FAB+ 439[M+H+] (100)	FAB+ 453[M+H+] (100)
IRcm ⁻¹	KBr 3500 2932 1613 1515 1490 1263		Neat 3280 2931 2870 1666 1667 1523 1273
IH NMR (8) ppm		CDC[3,300MHz 7.50 (1H, d, J= 8.2 Hz) 7.50 (1H, d, J= 8.2 Hz) 7.06 (2H, d, J= 8.4 Hz) 6.97 (1H, d, J= 8.2 Hz) 6.97 (1H, d, J= 8.2 Hz) 6.94 (3H, t, J= 7.1 Hz) 6.54 (2H, d, J= 8.4 Hz) 7.06 (2H, d, J= 8.4 Hz) 7.06 (2H, t, J= 6.6 Hz) 7.07 (2H, t, J= 6.6 Hz) 7.08 (2H, t, J= 6.6 Hz) 7.08 (2H, t, J= 7.1 Hz) 7.08 (2H, t, J= 7.1 Hz) 7.08 (2H, t, J= 7.1 Hz) 7.09 (3H, s) 7.09 (2H, t, J= 7.1 Hz)	CDC13,300MHz 7.50 (1H, d, J= 8.2 Hz) 0.94 (3H, 1, J= 7.0 Hz) 7.10 (2H, d, J= 8.7 Hz) 0.93 (3H, 1, J= 7.0 Hz) 6.98 (1H, d, J= 8.7 Hz) 0.93 (3H, 1, J= 7.0 Hz) 6.08 (2H, d, J= 8.7 Hz) 6.08 (2H, d, J= 8.7 Hz) 4.20 (2H, s) 4.20 (2H, s) 2.90 (6H, s) 2.90 (6H, s) 2.88 (2H, t, J= 7.1 Hz) 1.8-1.9 (2H, m) 1.6-1.8 (2H, m) 1.3-1.5 (8H, m)
10 M	78.3∼ 78.6℃	91.7~ 92.0°C	
	(本)	無の結晶	新他海米
	<b>火 施</b> 7-63	7-64	7-65

元素分析		·	
MS	FAB+ 335[M+H+] (100).	FAB+ 397 [M+H+](30). 147(100).	FAB+ 383[M+H+] (100).
TRem. ¹		Near 2926 1682 1615 1522 1494 1270 1076	Neat 2931 1650 1622 1595 1524 1484 1282
1H NMR (8) ppm	6.01 8.41 8.41 8.41 7.2 F	CDC13,300MHz 7.53 (1H, d, J = 8.1 Hz) 7.11 (2H, d, J = 8.4 Hz) 6.99 (1H, d, J = 8.4 Hz) 6.68 (2H, d, J = 8.4 Hz) 6.68 (2H, d, J = 8.4 Hz) 7.0 (2H, s) 7.0 (2H, s) 7.0 (3H, d)	CDC13,300MHz 7.52 (1H, d, J= 8.1 Hz) 1.3-1.5 (4H, m) 7.05 (2H, d, J= 8.4 Hz) 0.94 (3H, t, J= 7.2 Hz) 6.99 (1H, d, J= 8.4 Hz) 0.94 (3H, t, J= 7.2 Hz) 6.54 (2H, d, J= 8.4 Hz) 6.54 (2H, d, J= 8.4 Hz) 6.54 (2H, s) 6.54 (2H, s) 6.55 (2H, t, J= 6.6 Hz) 6.56 (3H, s) 6.57 (2H, t, J= 7.2 Hz) 6.57 (2H, t, J= 7.2 Hz) 6.58 (1H, t, J= 7.2 Hz) 6.58 (3H, s) 6.69 (3H, s) 6.70 (3H, s)
1000年			
棒造式	0 0 0 7 € 11.7 7 X	7 = 1,7 7 X	TENTA
実施例	7-66	7-67	7-68

MS JUNEATIVE	FAB+ 380[M+H+] (100),				FAB+	FAB+ 380[M+H+] (100), 119 (50).	FAB+ 380[M+H+] (100), 119 (50).	FAB+ 380[M+H+] (100), 119 (50).	FAB+ 380[M+H+] (100), 119 (50).	FAB+ 380[M+H+] (100), 119 (50).	FAB+ 380[M+H+] (100), 119 (50). 119 (50). 126[M+H+]	FAB+ 380[M+H+] (100), 119 (50). 366[M+H+] (100), 261 (50).	FAB+ 380[M+H+] (100), 119 (50). 119 (50). 261 (50).	FAB+ 380[M+H+] (100), 119 (50). 366[M+H+) 366[M+H+) 366[M+H+) 366[M+H+)	FAB+ 380[M+H+] (100), 119 (50). 366[M+H+] (100), 261 (50).
, pp	0.93 (3H, t, J = 7.1 Hz)				(3H : F= 71 H2)	0.93 (3H, t, J= 7.1 Hz)	) (3H, t, J= 7.1 Hz)	) (3H, t, J= 7.1 Hz)	) (3H, t, J= 7.1 Hz)	i (3H, t, J= 7.1 Hz)	(3H, t, J= 7.1 Hz)	) (3H, t, J= 7.1 Hz)	(3H, t, J= 7.1 Hz)	(3H, t, J= 7.1 Hz)	(3H, t, J= 7.1 Hz)
mdd / 6 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		6.8 Hz) 7.5 Hz) 7.5 Hz) 6.8 Hz)	(ZH 7")		_										
CDC13 300MHz	8.17 (1H, d, J = 8.8 Hz) 8.14 (1H, d, J = 8.8 Hz) 7.36 (2H, d, J = 8.8 Hz)	6.75 (1H, d, J = 6.8 Hz) 6.75 (1H, d, J = 7.5 Hz) 6.67 (1H, d, J = 7.5 Hz) 4.20 (2H, t, J = 7.2 Hz) 4.01 (2H, d, J = 6.8 Hz) 3.96 (3H, s)	3.20 (2A, t, J = 7.2 HZ) 1.7-1.9 (2H, m)	1.4-1.0 (4H, m)	CDC13,300MHz 8.19 (1H, d, J=	CDCI3,300MHz 8.19 (1H, d, J = 8.8 Hz) 7.12 (1H, d, J = 8.8 Hz) 7.09 (4H, s) 6.78 (1H, d, J = 7.5 Hz) 6.78 (1H, d, J = 7.5 Hz)	CDC13,300MHz 8.19 (1H, d, J = 8.8 Hz) 7.12 (1H, d, J = 8.8 Hz) 7.09 (4H, s) 6.78 (1H, d, J = 7.5 Hz) 6.65 (1H, d, J = 7.5 Hz) 4.14 (2H, t, J = 7.2 Hz) 4.01 (2H, t, J = 6.6 Hz)	CDC13,300MHz 8.19 (1H, d, J= 8.8 Hz) 7.12 (1H, d, J= 8.8 Hz) 7.09 (4H, s) 6.78 (1H, d, J= 7.5 Hz) 6.65 (1H, d, J= 7.2 Hz) 4.14 (2H, t, J= 7.2 Hz) 3.02 (2H, t, J= 7.2 Hz) 3.02 (2H, t, J= 7.2 Hz)	CDC13,300Mfz 8.19 (1H, d, J= 7,12 (1H, d, J= 7,09 (4H, s) 6.78 (1H, d, J= 7,09 (4H, s) 6.65 (1H, d, J= 7,09 (4H, s) 6.65 (1H, d, J= 7,01 (2H, t, J= 7,01 (2H, m) 1,7-1.9 (2H, m) 1,3-1.5 (4H, m)	CDC[3,300MHz 8.19 (1H, d, J= 8.8 Hz 7,12 (1H, d, J= 8.8 Hz 7,09 (4H, s) 6.78 (1H, d, J= 7.5 Hz) 6.65 (1H, d, J= 7.2 Hz) 4.14 (2H, t, J= 7.2 Hz) 4.01 (2H, t, J= 6.6 Hz) 3.02 (2H, t, J= 7.2 Hz) 3.02 (2H, t, J= 7.2 Hz) 2.31 (3H, s) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m) CDC[3,300MHz 8.20 (1H, d, J= 9.0 Hz)	CDC[3,300MHz 8.19 (1H, d, J= 8.8 Hz) 7,12 (1H, d, J= 8.8 Hz) 7,09 (4H, s) 6.78 (1H, d, J= 7.5 Hz) 6.65 (1H, d, J= 7.2 Hz) 4.14 (2H, t, J= 6.6 Hz) 3.96 (3H, s) 3.02 (2H, t, J= 7.2 Hz) 2.31 (3H, s) 1.7-1.9 (2H, m) CDC[3,300MHz 8.20 (1H, d, J= 9.0 Hz) 7.2-7.4 (5H, m) 7.13 (1H, d, J= 9.0 Hz) 7.13 (1H, d, J= 9.0 Hz)	CDC[3,300MHz 8.19 (1H, d, J= 8.8 Hz) 7,12 (1H, d, J= 8.8 Hz) 7,09 (4H, s) 6.78 (1H, d, J= 7.5 Hz) 6.65 (1H, d, J= 7.2 Hz) 4.14 (2H, t, J= 6.6 Hz) 3.96 (3H, s) 3.02 (2H, t, J= 7.2 Hz) 2.31 (3H, s) 1.7-1.9 (2H, m) CDC[3,300MHz 8.20 (1H, d, J= 9.0 Hz) 7.2-7.4 (5H, m) 7.13 (1H, d, J= 9.0 Hz) 6.76 (1H, d, J= 7.5 Hz) 6.64 (1H, d, J= 7.5 Hz) 6.64 (1H, d, J= 7.5 Hz)	CDC[3,300MHz 8.19 (1H, d, J= 8.8 Hz) 7.12 (1H, d, J= 8.8 Hz) 7.09 (4H, s) 6.78 (1H, d, J= 7.5 Hz) 6.65 (1H, d, J= 7.2 Hz) 4.14 (2H, t, J= 7.2 Hz) 4.01 (2H, t, J= 6.6 Hz) 3.96 (3H, s) 3.02 (2H, t, J= 7.2 Hz) 2.31 (3H, s) 1.7-1.9 (2H, m) CDC[3,300MHz CDC[3,300MHz 8.20 (1H, d, J= 9.0 Hz) 7.13 (1H, d, J= 7.5 Hz) 6.64 (1H, d, J= 7.5 Hz) 6.64 (1H, d, J= 7.5 Hz) 4.17 (2H, t, J= 6.6 Hz) 4.00 (2H, t, J= 6.6 Hz)	CDC13,300MHz 8.19 (1H, d, J = 8.8 Hz 7.12 (1H, d, J = 8.8 Hz 7.09 (4H, s) 6.78 (1H, d, J = 7.5 Hz 6.65 (1H, d, J = 7.5 Hz 6.65 (1H, d, J = 7.5 Hz 4.14 (2H, t, J = 6.6 Hz 3.96 (3H, s) 3.02 (2H, t, J = 7.2 Hz 3.96 (3H, s) 3.02 (2H, t, J = 7.2 Hz 2.31 (3H, s) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m) 1.3-1.5 (4H, m) 7.3-1.4 (5H, m) 7.3-1.5 (1H, d, J = 7.5 Hz 6.64 (1H, d, J = 7.5 Hz 4.17 (2H, t, J = 6.6 Hz) 3.96 (3H, s) 3.97 (2H, t, J = 7.5 Hz)	CDC13,300MHz 8.19 (1H, d, J = 8.8 Hz 7.12 (1H, d, J = 8.8 Hz 7.19 (4H, s) 6.78 (1H, d, J = 7.5 Hz 6.65 (1H, d, J = 7.5 Hz 6.65 (1H, d, J = 7.5 Hz 6.65 (1H, d, J = 7.5 Hz 4.14 (2H, t, J = 6.6 Hz 3.02 (2H, t, J = 7.2 Hz) 3.02 (2H, t, J = 7.2 Hz) 3.02 (2H, t, J = 7.2 Hz) 3.02 (2H, m) 1.3-1.5 (4H, m) CDC13,300MHz 8.20 (1H, d, J = 9.0 Hz) 7.2-7.4 (5H, m) 7.13 (1H, d, J = 9.0 Hz) 6.64 (1H, d, J = 7.5 Hz) 6.64 (1H, d, J = 7.5 Hz) 4.00 (2H, t, J = 6.6 Hz) 3.96 (3H, s) 3.97 (2H, t, J = 7.5 Hz) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m) 1.3-1.5 (4H, m)
	δ _N							·	·	·	7=				
			谈綠色固体	***************************************					無の回の無本の回の事件を回りません。	無の画金	## ## ## ## ## ## ## ## ## ## ## ## ##	## ## ## ## ## ## ## ## ## ## ## ## ##			
		7-69-7		_	-		7-70	7-70	7-70	7-70	7-70	7-70	7-70 17-7	7-70 17-7	7-70

Γ	T	T	
市等公存			
Me	FAB (100 276	FAB+ 423(M+H+] (100)	FAB+ 425[M+H+] (100), 276(40).
18rm-1			
IH NMR (&) ppm	9.01 9.01 9.01 7.5 F 7.5 F 7.5 F	CDCI3,300MHz 8.19 (1H, d, J = 9.0 Hz) 7.41 (2H, d, J = 8.4 Hz) 7.15 (2H, d, J = 8.4 Hz) 7.12 (2H, d, J = 8.4 Hz) 7.12 (2H, d, J = 8.4 Hz) 6.76 (1H, d, J = 7.5 Hz) 6.64 (1H, d, J = 7.5 Hz) 6.64 (1H, d, J = 7.5 Hz) 6.64 (1H, d, J = 7.5 Hz) 7.00 (2H, t, J = 7.5 Hz) 7.00 (2H, t, J = 6.6 Hz) 7.01 (2H, t, J = 7.5 Hz) 7.02 (2H, t, J = 7.5 Hz) 7.03 (2H, t, J = 7.5 Hz) 7.04 (2H, t, J = 7.5 Hz) 7.05 (3H, s) 7.06 (3H, s) 7.07 (2H, t, J = 7.5 Hz) 7.08 (3H, s) 7.09 (3H, s) 7.09 (3H, s) 7.09 (3H, s)	CDC13.300Mfz 7.82 (1H, d, J = 8.7 Hz) 7.42 (2H, d, J = 8.4 Hz) 7.42 (2H, d, J = 8.4 Hz) 7.19 (2H, d, J = 8.4 Hz) 6.86 (1H, d, J = 8.7 Hz) 3.90 (2H, t, J = 6.9 Hz) 3.86 (3H, s) 3.73 (2H, t, J = 6.6 Hz) 3.36 (2H, q, J = 6.6 Hz) 2.89 (4H, q, J = 6.6 Hz) 2.16 (3H, s) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m)
融点			
構造式	ができます。	無色結晶	(次黄色枯晶
実施例	7-72	7-73	7-74

Г			T
上掛今花			
MS	FAB+ 370[M+H+] (100)	FAB+ 382[M+H+] (100), 276 (80).	FAB+ 383[M+H+] (50), 153 (100), 118.9 (100)
Rem.	3295 2957 1595 1306 1244		
1H NMR (&) ppm	J=8. J=8. J=8. J=8. J=7.4 =6.6 =6.6	CDC.13,300MHz 7.84 (1H, d, J = 9.0 Hz) 7.15 (2H, d, J = 8.1 Hz) 7.05 (2H, d, J = 8.1 Hz) 7.09 (2H, d, J = 8.1 Hz) 6.86 (1H, d, J = 9.0 Hz) 3.90 (2H, t, J = 6.6 Hz) 3.88 (3H, s) 3.73 (2H, t, J = 6.6 Hz) 3.61 (2H, t, J = 6.6 Hz) 2.89 (4H, qu, J = 7.2 Hz) 2.13 (3H, s) 1.7-1.8 (2H, m) 1.3-1.5 (4H, m)	CDC13,300Mhz 7.83 (2H, d, J = 8.4 Hz) 7.04 (2H, d, J = 8.4 Hz) 7.04 (2H, d, J = 8.4 Hz) 6.86 (1H, d, J = 8.4 Hz) 6.63 (2H, d, J = 8.4 Hz) 3.89 (2H, t, J = 6.9 Hz) 3.89 (2H, t, J = 6.9 Hz) 3.70 (2H, t, J = 6.9 Hz) 3.70 (2H, t, J = 6.9 Hz) 3.70 (2H, t, J = 6.9 Hz) 3.57 (2H, s) 3.57 (2H, s) 3.57 (2H, s) 3.57 (2H, m) 1.7-1.8 (2H, m)
融点	184.5∼ 154.8 ℃	688 88. 1 8. 1 D	75.5~ 75.9℃
標造式	HO OH OH	無色結晶	次 ※ 後 後 後 を の は の の の の の の の の の の の の の
東施包	7-75	7-76	7-7

DMSO-d6,000Mthz 9.17 (1H, s) 1.3-1.5 (8H, m) 9.17 (1H, s) 1.3-1.5 (8H, m) 1.3-1.5 (8H, m) 1.3-1.5 (1H, d. J = 6.6 Hz) 1.3-1.5 (1H, d. J = 6.6 Hz) 1.3-1.5 (1H, d. J = 6.2 Hz) 1.3-1.5 (1H, d. J = 8.6 Hz) 1.3-1.5 (1H, d. J = 8.7 Hz) 1.3-1.5 (1H, d. J = 8.7 Hz) 1.3-1.5 (1H, d. J = 8.4 Hz) 1.3-1.5 (1H, d. J = 7.2	英版机	1 情遊式	<b>100</b>	2 3	MP (R) and			
11.2					Mar ( o ) pan	IRcm.1	MS	元素分析
7.75 (114. d. J = 66 kt)   0.91 (341. J = 5.3 Hz)   3.356   3.85     7.26 (114. d. J = 56 kt)   0.83 (311. J = 5.3 Hz)   1.505   [M+] (100)     7.26 (114. d. J = 56 kt)   0.83 (311. J = 5.3 Hz)   1.505   [M+] (100)     7.26 (114. d. J = 56 kt)   0.83 (311. J = 5.3 Hz)   1.505     7.26 (114. d. J = 56 kt)   0.83 (311. J = 5.3 Hz)   1.505     7.26 (114. d. J = 5.8 Hz)   0.83 (311. J = 7.0 Hz)   1.505     7.27 (214. d. J = 5.3 Hz)   0.93 (314. J = 7.0 Hz)   1.505     7.27 (214. d. J = 5.3 Hz)   0.93 (314. d. J = 7.0 Hz)   1.505     7.27 (214. d. J = 5.3 Hz)   1.505     7.27 (214. d. J = 7.2 Hz)				9.17 (1H. s)	1 3_1 < /8H m)	ğ	FAB+	
11112				7.95 (1H. d. Ja 6.6 Hz)	001 /34 : 7 = 8.3 ::=>	3336	438	
111.72		8		7.76 (1H 4 I = 46 U-)	0.51 (3n, l, J = 3.3 Hz)	2360	(A)	
(11.75 7.00 (714.4) = 6.2 Hz)		0	111.2~	7.25 (1H, d, J= 6.6 Hz)	0.83 (3H, t, J = 5.4 Hz)	1505	(MIT) (100).	
6.66 (2H, d, J=62 Hz) 6.55 (Hz, d, J=52 Hz) 6.11 (2H, d, J=53 Hz) 6.55 (Hz, d, J=53 Hz) 8.36 (Hz, d, J=53 Hz) 8.36 (Hz, d, J=53 Hz) 8.37 (Hz, d, J=53 Hz) 8.37 (Hz, d, J=63 Hz) 8.37 (Hz, d, J=64 Hz) 8.37 (Hz, d, J=72 Hz) 8.38 (Hz, d, J=64 Hz) 8.39 (Hz, d, J=72 Hz)			111.70	7.00 (2H, d, J= 6.2 Hz)		}		
(6.55 (114 4.) = 56 it)  (6.55 (114 4.) = 56 it)  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11 18.1  (7.11 1.) = 4.11	.78			6.66 (2H. d. J = 6.2 Hz)				
4.11 (2H.1, J = 4.7 Hz)  4.05 (2H.1, J = 5.5 Hz)  4.05 (2H.1, J = 5.5 Hz)  3.05 (2H.1, J = 5.5 Hz)  1.7-19 (4H. m)  CDC13300MHz  8.35 (2H.4, J = 8.6 Hz)  7.31 (2H.4, J = 8.6 Hz)  7.32 (2H.4, J = 7.4 Hz)  7.32 (2H.1, J = 7.4 Hz)  7.34 (3H. m)  7.37 (4H. m)  7.38 (4H. m)  7.39 (4H. m)  7.39 (4H. m)  7.39 (4H. m)  7.30 (4H. m)  7.31 (4H. m)  7.31 (4H. m)  7.31 (4H. m)  7.31 (4H. m)  7.32 (4H. m)  7.32 (4H. m)  7.33 (4H. m)  7.34 (4H. m)  7.35 (4H. m)  7.35 (4H. m)  7.36 (4H. m)  7.37 (4H. m)  7.38 (4H. m)  7.38 (4H. m)  7.39 (4H. m)  7.30 (4H. m)  7.31 (4H. m)  7.31 (4H. m)  7.32 (4H. m)  7.32 (4H. m)  7.34 (4H. m)  7.35 (4H. m)  7.35 (4H. m)  7.36 (4H. m)  7.37 (4H. m)  7.38 (4H. m)  7.38 (4H. m)  7.39 (4H. m)  7.30 (4H.		» 		6.55 (1H, d, J = 5.6 Hz)				
#他的		<b>\</b>		4.11 (2H, t, J= 4.7 Hz)				
3.96 (2H, L, = 4.9 Hz)  1.7-19 (4H, m)  CDC13.300MHz  B 2.30 (2H, L, = 5.3 Hz)  1.7-19 (4H, m)  CDC13.300MHz  B 3.70 (2H, L, = 5.8 Hz)  1.7-10 (2H, L, = 6.8 Hz)  1.7-10 (2H, L, = 6.8 Hz)  1.7-10 (2H, L, = 7.4 Hz)  1.7-10 (2H, m)  CDC13.300MHz  Rechild  1.7-19 (2H, m)  CDC13.300MHz  1.7-19 (2H, m)				4.05 (2H, t, J = 5.5 Hz)				
(17-19 (44, m)		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		3.96 (2H, I, J = 4.9 Hz)				
CDC13,300MHz 8.33 (2H, d, J= 5.3 Hz) 8.33 (2H, d, J= 5.3 Hz) 8.33 (2H, d, J= 5.3 Hz) 8.34 (1H, d, J= 8.6 Hz) 8.37 (1H, d, J= 8.6 Hz) 8.37 (2H, d, J= 5.3 Hz) 8.37 (2H, d, J= 6.6 Hz) 8.37 (2H, d, J= 7.4 Hz) 8.37 (2H, d, J= 7.4 Hz) 8.38 (2H, d, J= 7.4 Hz) 8.38 (2H, d, J= 7.4 Hz) 8.39 (2H, d, J= 8.7 Hz) 8.39 (2H, d, J= 8.7 Hz) 8.30 (2H, d, J= 8.7 Hz) 8.30 (2H, d, J= 8.7 Hz) 8.30 (2H, d, J= 7.2 Hz) 8.30 (2H, d, J=		無色針状晶		$\begin{bmatrix} 2.83 \text{ (2H, I, } J = 5.5 \text{ Hz)} \\ 1.7-1.9 \text{ (4H, m)} \end{bmatrix}$				
8.33 (2H, d, J = 5.3 Hz) 0.93 (3H, t, J = 7.0 Hz) Neal FAM+ 7.31 (1H, d, J = 8.6 Hz) 1727 1727 1727 1727 1727 1727 1727 172				CDC13,300MHz		]		
(100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100).  (100				8.53 (2H, d, J= 5.3 Hz)	0.93 (3H, I, J = 7.0 Hz)	Nea Nea	FAB+	
(100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100). (100).		4		7.83 (1H, d, J = 8.6 Hz)		1631	369[M+H+]	
(6.87 (1H, d. J = 8.6 Hz) 1727 1789 1479 1589 1589 1589 1589 1589 1589 1589 158		<u>_</u>		7.21 (2H, d, J = 5.3 Hz)		2360	(100)	
(159) 1649 (174 kg) 165 (174 kg) 173 (174 kg) 1650 (174 kg) 173 (174				6.87  (1H, d,  J = 8.6  Hz)		1727	•	
#色油状		z-		3.89 (3H, s)		1649		
3.79 (2H, t, J = 7.4 Hz) 1475  3.38 (2H, t, J = 6.6 Hz) 1279  2.97 (2H, t, J = 6.6 Hz) 1279  1.7-1.9 (2H, m) 1.3-1.5 (4H, m) 1.	2			4.04 (2H, t, J = 6.6 Hz)		158		
(2.97 (2.H. I, J = 6.6 Hz) 1279 (2.H. I) = 7.4 Hz) 2.97 (2.H. I, J = 6.6 Hz) 2.90 (2.H. I, J = 6.6 Hz) 2.90 (2.H. I, J = 6.6 Hz) 2.90 (2.H. III		<b>&gt;</b>		3.79 (2H, t, J = 7.4 Hz)		1475		-
(2.9) (2.H, I, J = 7.4 Hz)  (2.9) (2.H, I, J = 6.6 Hz)  (1.7-1.9 (2.H, m) (1.3-1.5 (4.H, m) (2.98 (2.H, d. J = 8.7 Hz) (2.94 (2.H, d. J = 8.7 Hz) (2.94 (2.H, d. J = 7.2 Hz) (2.95 (2.H, d. J = 8.4 Hz) (2.95 (2.H, d. J = 8.4 Hz) (3.96 (3.H, s)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3.38 (2H, t, J = 6.6 Hz)		6/21		
#色油状		/ }		2.9/ (2H, I, J = 7.4 Hz)				
1.3-1.5 (4H, m)		4年7年		2.30 (2n, 1, 7 = 0.0 Hz)				
CDC13,300MHz 8.20 (1H, d, J = 8.7 Hz) 0.1.3-1.5 (4H, m) 7.13 (1H, d, J = 8.7 Hz) 0.94 (3H, t, J = 7.2 Hz) 2934 6.98 (2H, d, J = 8.4 Hz) 0.94 (3H, t, J = 7.2 Hz) 2934 79.2		までは		1.3-1.5 (4H, m)				
8.20 (1H, d, J = 8.7 Hz) 0.1.3-1.5 (4H, m) NN1- 7.13 (1H, d, J = 8.7 Hz) 0.94 (3H, t, J = 7.2 Hz) 2934 78.6~ 6.77 (1H, d, J = 7.2 Hz) 6.98 (2H, d, J = 7.2 Hz) 2934 6.65 (1H, d, J = 7.2 Hz) 6.65 (1H, d, J = 7.2 Hz) 6.65 (1H, d, J = 7.2 Hz) 6.65 (2H, d, J = 8.4 Hz) 6.62 (2H, d, J = 8.4 Hz) 6.62 (2H, d, J = 8.4 Hz) 6.62 (2H, d, J = 8.4 Hz) 6.63 (2H, d, J = 6.6 Hz) 7.2 Hz) 7.5 Hz) 7				CDC13,300MHz		╅		
Nat				8.20 (1H, d, J = 8.7 Hz)	0.1.3-1.5 (4H, m)	_	LAB+	
78.6~ 6.78 (1H, d, J = 7.2 Hz) 2934 79.2 C 6.65 (1H, d, J = 7.2 Hz) 1650 6.62 (2H, d, J = 8.4 Hz) 1652 4.11 (2H, t, J = 6.6 Hz) 1594 3.96 (3H, s) 3.96 (3H, s) 1.281 3.56 (2H, bs) 2.95 (2H, t, J = 7.2 Hz) 1.281		- E		7.13 (1H, d, J = 8.7 Hz)	0.94 (3H, t, J = 7.2 Hz)		381(M+H+)	_
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		0=	78.6-	6.98 (2H, d, J = 8.4 Hz)		_	(100).	
6.65 (1H, d, J=7.2 Hz) 6.62 (2H, d, J=8.4 Hz) 6.62 (2H, d, J=8.4 Hz) 4.11 (2H, t, J=7.2 Hz) 4.01 (2H, t, J=6.6 Hz) 3.96 (3H, s) 3.56 (2H, bs) 2.95 (2H, t, J=7.2 Hz) 1.7-1.9 (2H, m)			79.2C	6.77 (1H, d, J = 7.2 Hz)		2358		
6.62 (2H, d, J = 8.4 Hz) 4.11 (2H, t, J = 7.2 Hz) 4.01 (2H, t, J = 6.6 Hz) 3.96 (3H, s) 3.56 (2H, bs) 2.95 (2H, t, J = 7.2 Hz) 1.7-1.9 (2H, m)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		6.65 (1H, d, J = 7.2 Hz)		1650		
4.11 (2H, t, J = 7.2 Hz) 4.01 (2H, t, J = 6.6 Hz) 3.96 (3H, s) 3.56 (2H, bs) 2.95 (2H, t, J = 7.2 Hz) 1.7-1.9 (2H, m)	2			6.62 (2H, d, J = 8.4 Hz)		1622		
4.01 (2H, t, J = 6.6 Hz) 3.96 (3H, s) 3.56 (2H, bs) 2.95 (2H, t, J = 7.2 Hz) 1.7-1.9 (2H, m)		} }-		4.11 (2H, t, J = 7.2 Hz)		1594		
3.96 (3H, s) 3.56 (2H, bs) 2.95 (2H, t, J = 7.2 Hz) 1.7-1.9 (2H, m)		\ \ \ 		4.01 (2H, t, J = 6.6 Hz)		1518		
		/ }	_	3.96 (3H, s)		1281		
		年色社員		3.30 (ZH, bs)				
				1.7-1.9 (2H m)				

表 137

	<b>F</b>		
	元素分析 (本)		
N.	FAB 381 [M+	FAB+ 409[M+H+] (100).	FAB+ 395 [M+H+](20), 133 (100).
18'm.1	Neat 3448 2936 1644 1582 1287	Neat 2925 2360 1652 1282	Neat 2931 2359 1681 1681 1524 1270
IH NMR (8) ppm	7 Hz) 7 Hz) 7 Hz) 1 Hz) 1 Hz) 1 Hz) 1 Hz) 1 Hz) 1 Hz) 1 Hz)	Hz) 1.3-1.5 (4H, m) Hz) 0.94 (3H, t, J = 7.1 Hz) Hz) Hz) Hz) Hz) Hz) Hz) Hz) Hz)	(z) 1.7-1.9 (2H, m) (z) 1.2-1.5 (4H, m) (4z) 0.94 (3H, t, f = 7.1 Hz) (z) (z) (z) (z) (z) (z) (z) (
融点	DMSO-d6,300MHz 9.89 (3H, bs) 7.90 (1H, d, J = 6.7 Hz) 7.25 (1H, d, J = 5.7 Hz) 7.25 (1H, d, J = 6.2 Hz) 7.20 (2H, d, J = 6.2 Hz) 7.18 (2H, d, J = 6.2 Hz) 7.18 (2H, d, J = 6.0 Hz) 4.07 (2H, t, J = 6.0 Hz) 3.88 (2H, t, J = 5.0 Hz) 3.84 (3H, s) 2.92 (2H, t, J = 6.0 Hz) 1.6-1.7 (2H, m) 1.2-1.4 (4H, m)	CDC13,000Mtz 8.20 (1H, d, J = 8.9 Hz) 7.13 (1H, d, J = 8.9 Hz) 7.01 (2H, d, J = 8.4 Hz) 6.72 (2H, d, J = 8.4 Hz) 6.66 (1H, d, J = 7.5 Hz) 6.66 (1H, d, J = 7.5 Hz) 4.01 (2H, t, J = 7.2 Hz) 4.01 (2H, t, J = 6.7 Hz) 3.96 (3H, s) 2.98 (2H, d, J = 7.2 Hz) 2.99 (6H, s) 1.7-1.9 (2H, m)	6.20 (1H. d. J = 9.0 Hz) 7.13 (1H. d. J = 9.0 Hz) 7.03 (2H. d. J = 8.4 Hz) 6.80 (1H. d. J = 7.5 Hz) 6.50 (2H. d. J = 7.5 Hz) 6.50 (2H. d. J = 8.4 Hz) 4.11 (2H. t. J = 7.2 Hz) 4.01 (2H. t. J = 7.2 Hz) 7.03 (2H. t. J = 6.7 Hz) 7.04 (3H. s) 2.94 (1H. s) 2.82 (3H. s) 2.82 (3H. s)
<b>柳</b> 旗武	新色枯晶 新色枯晶	7 = N 7 + X	7 = 1 × 7 × × ×
米施領	7-81	7-82	7-83

1023 1459 1245
4.14(2H,t,1=7.5Hz) 3.95(2H,t,1=6.6Hz) 3.82(3H,s) 2.93(2H,t,1=7.4Hz) 1.60-1.80(2H,m) 1.30-1.50(4H,m) 0.89(3H,t,1=6.9Hz)
MeO 0 0   
7-86

実施例	構造式	融点	1H NMR (&) ppm	TR	TRem-1	MS	元要分析
7-87	Meo H O Meo Meo Meb	187.0∼ 187.8 €	DMSO-d6,300MHz 10.7(1H.s) 9.17((1H.s) 7.67(1H.d.J=8.7Hz) 7.00(2H.d.J=7.5Hz) 6.97(1H.d.J=8.7Hz) 6.66(2H.d.J=7.5Hz) 7.00(2H.d.J=7.7Hz) 3.91(2H.d.J=7.7Hz) 3.88(3H.s) 2.72(2H.d.J=7.7Hz) 1.25-1.45(4H.m)	KBr 3399 1707 1637 1432 1298		FAB+ 399 [M+H+] (50) 279(40)	C22H26N2O5
7-88	MH2 M色射状晶	144.2∼ 144.5℃	CDC13,300MHz 7.97 (1H, d, J= 9.0 Hz) 7.10 (2H, d, J= 8.1 Hz) 7.00 (1H, d, J= 9.0 Hz) 6.63 (2H, d, J= 8.1 Hz) 4.1-4.2 (2H, m) 4.00 (2H, t, J= 6.6 Hz) 3.94 (2H, s) 3.95 (2H, s) 3.59 (2H, m) 1.7-1.9 (2H, m) 1.7-1.9 (2H, m)	7 - 1 - 1		FAB+ 383[M+H+] (100).	
7-89		113.2~ 113.6°C	CDCi3,300Mhz 8.53 (2H, d, J= 5.7 Hz) 7.95 (1H, d, J= 9.0 Hz) 7.23 (2H, d, J= 5.7 Hz) 7.02 (1H, d, J= 9.0 Hz) 7.02 (2H, t, J= 6.9 Hz) 8.06 (2H, t, J= 6.9 Hz) 8.96 (2H, t) 8.94 (3H, s) 8.94 (3H, m) 8.97 (2H, m) 8.97 (2H, m) 8.97 (2H, m) 8.97 (2H, m) 8.97 (3H, m) 8.97 (3H, m) 8.97 (3H, t, J= 7.2 Hz)	KBr 1708 1662 1353 1353 1081		FAB+ 383[M+H+] (100).	

表 140

1	_	T	& 14V	
	元素分析	C23	C24H31N3O4	C23H31N3O3
	MS	FAB 412 [M+	FAB+ 426 [M+H+] (20)	FAB+ 398 [M+H+] (80) 382(60) 276(40)
	IRem.	XBr 3397 1707 1647 1615	KBr 2956 1709 1651 1619 1094	KBr 3448 3285 2954 1630 1303
(4) WAN H	in ithin (o) ppm	0.95(3H.t,J=7.2Hz)	0.95(3H,t,J=7.1Hz)	0.94(3H,t,J=7.11tz)
	CDC13 2001/13-	CDC13,300MHz 8.00(1H,s) 7.83(1H,d,1=8.4Hz) 7.16(2H,d,1=8.4Hz) 6.81(1H,d,1=8.4Hz) 6.87(2H,d,1=8.3Hz) 4.18(2H,1,1=6.9Hz) 3.95(3H,s) 2.86(2H,1,1=8.1Hz) 2.82(3H,s) 1.70-1.85(2H,m) 1.35-1.50(4H,m)	8.00(114,5) 7.84(114,5,1=8.7Hz) 7.22(24,dJ=8.7Hz) 6.81(114,d,1=8.7Hz) 6.71(24,d,1=8.7Hz) 4.19(24,t,1=8.3Hz) 4.08(24,t,1=7.1Hz) 3.95(34,s) 2.92(64,s) 2.92(64,s) 1.70-1.85(24,m) 1.30-1.50(44,m)	CDC13,300MHz 8.53(2H,d,1=6.0Hz) 7.64(1H,d,1=8.8Hz) 7.22(2H,d,1=6.0Hz) 6.44(1H,d,1=8.0Hz) 4.52(1H,s) 3.96(2H,t,1=6.8Hz) 3.88(3H,s) 3.63(2H,t,1=8.0Hz) 1.68-1.82(2H,m) 1.53(6H,s) 1.30-1.50(4H,m)
超		172.0~ 173.0°C	127.0~ 128.5℃	83.2~ 83.8 °C
1		MeO NHMeO HEEE EEE EEE EEE EEE EEE EEE EEE EEE E	M ₆ O N ₆ O N ₆ O N ₆ O N ₆ O	MeO
実施例		7-90	7-91	7-92

Г			I
元素分析	C24	C23H29N3O2	C21H26CIN3O3
MS	FAB+ 412 [M+H+] (60) 276(100)	FAB+ 396 [M+H+] (20) 307(10)	FAB+ 368 [M+H+  (30) 263(30)
IRcm ⁻¹	Neat 3345 2956 1632 1301	KBr 3356 2932 1658 1598 1101	KBr 3426 2958 1724 1655 1603 1498 1295
1H NMR (&) ppm	1.35-1.50(4H,m) 0.95(3H,i,J=7.1Hz)		
	(74, (74, (74, (74, (74, (74, (74, (74,	CDC13,300MHz 8.02(1H,d,J=8.9Hz) 7.09(1H,d,J=8.3Hz) 6.63(2H,d,J=8.3Hz) 6.63(2H,d,J=8.3Hz) 4.15-4.25(4H,m) 3.96(3H,s) 3.60(2H,bs) 2.92((2H,t,J=7.6Hz) 2.48(3H,s) 1.72-1.90(2H,m) 1.30-1.55(4H,m) 0.92(3H,t,J=7.2Hz)	DMSO-d6,300MHz 8.83(2H,d.)=5.4Hz) 8.28(1H,s) 7.97(2H,d.)=8.7Hz) 7.86(1H,d.)=8.7Hz) 7.32(1H,d.)=8.7Hz) 4.32(2H,t.)=6.9Hz) 4.03(2H,t.)=6.9Hz) 3.90(3H,s) 1.35(2H,t.)=6.8Hz) 1.50(1.55(2H,m) 1.25-1.50(4H,m) 0.887H; 1.46(3H,s)
酸点		80.3 80.3∼ 82.5℃	145.5∼ 148.3℃
<b>維</b> 商功	MeO NH ₂ Wffem状	MeO NH2 必其色結晶	MBO N N N N N N N N N N N N N N N N N N N
奥施例	7.93	7-94	7-95

元素分析		C22H27N3O4	C231130CIN304
MS		FAB+ 398 [M+H+] (30) 264(30)	FAB+ 412(30)
IRcm ⁻¹		KBr 3228 2948 1703 1593 1543 1395	
IH NMR (&) ppm		CDC13,300MHz 11.5(1H,s) 7.89(1H,d,J=8.4Hz) 7.34(2H,d,J=8.7Hz) 6.93(1H,s,J=8.4Hz) 6.68(2H,d,J=8.7Hz) 4.19(2H,t,J=6.5Hz) 3.93(2H,t,J=6.5Hz) 3.93(2H,t,J=6.5Hz) 1.70-1.83(2H,m) 0.94(3H,t,J=7.2Hz)	DMSO-d6,300NHz 9.74(2H,tJ=5.9Hz) 7.75(1H,dJ=8.7Hz) 7.40(2H,dJ=8.7Hz) 7.25(2H,dJ=8.4Hz) 7.25(2H,dJ=8.4Hz) 7.11((1H,dJ=8.7Hz) 7.11((1H,dJ=8.7Hz) 7.11((1H,dJ=6.2Hz) 3.99(2H,tJ=6.2Hz) 3.89(2H,tJ=6.3Hz) 3.89(2H,tJ=6.3Hz) 3.87(3H,s) 1.60-1.72(2H,m)
100		CG 111 7.7 7.7 158.0 ℃ 6.6 4.1 3.5 3.5 3.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
構造式	MeO A A A A A A A A A A A A A A A A A A A	MeO	MAGO O O NH ₂ HCI
実施例	2-96	7-97	7-98

東施知	8	4 41						
		AX A.	1H NMR (\$) ppm		E. H.	MS	<b>产数</b> 4 拆	_
7-99	NH2		CDC13,300MHz 7.03(2H,d.J=8.3Hz) 6.73(2H,s) 6.64(2H,d.J=8.3Hz) 3.91(2H,t.J=6.7Hz) 3.81(3H,s) 3.63(2H,s)		مد	FAB+ 369 [M+H+] (50) 262(100)	C23H32N2O2	<del></del>
	0~~~)		3.56(2H,bs) 2.65-2.95(8H,m) 1.70-1.83(2H,m) 1.30-1.50(4H,m) 0.93(3H,I,J=7.1Hz)					
	ZHN NH2		CDC13,300MHz 7.14(2H,d.J=9.0Hz) 6.85(1H,d.J=8.4Hz) 6.79(1H,d.J=8.4Hz) 6.64(2H,d.J=9.0Hz) 6.17(1H,bs)	J=7.1H2)		FAB+ 384 [M+H+] (80) 248(100)	C22H29N3O3	
7-100	M60 0 0 0 m60 m60 m60 m60 m60 m60 m60 m60		4.57(2H,s) 3.93(2H,t,1=6.6Hz) 3.84(3H,s) 3.65(2H,t,1=5.9Hz) 2.94(2H,t,1=5.9Hz) 1.70-1.82(2H,m)					
	2I 0={ 2-		1.32-1.55(4H,m)  DMSO-d6,300Mita 9.95(1H,bs) 7.33(2H,d,J=8.7Hz) 7.21(2H,d,J=8.7Hz) 7.21(2H,d,J=8.7Hz) 7.19(1H,bt) 6.88(1H,d,J=8.4Hz) 0.90(3H,t,J=6.9Hz)	=5.7Hz) H.m) H.m)	T 4.5.8.9	FAB. (432 [M-H+] (5) 396(10) 265(40)	C23H32CIN3O3	
7-101	MeO NH2.HCI NH2.HCI NH2.HCI	<u> </u>	6.82(1H,d,J=8.4Hz) 4.43(2H,s) 4.25(2H,d,J=4.8Hz) 3.85(2H,t,J=6.6Hz) 3.75(3H,s) 3.54(2H,bs)					
		7	3.34(zH,t,1=5,9Hz)			<b></b>		

表 144

実施研	構造式	融点	1H NMR (8) ppm	IRcm.1	MS	元素分析
7-102			CDC13,300MHz 7.09 (2H, d, J = 8.5 Hz) 6.74 (2H, d, J = 8.5 Hz) 6.73 (2H, s) 3.92 (2H, d, J = 6.7 Hz) 3.91 (1H, bs) 3.64 (2H, s) 2.7-2.9 (8H, m) 1.7-1.9 (2H, m) 1.3-1.5 (4H, m) 9.93 (3H, m)		FAB+ 370 [M+H+] (100)	
	無色結晶		(21.0.) = (1.1.1.) (2.0.)			

表 145

実施例	<b>横造式</b>	融点	IH NMR (8) Dom	IR.m.1	MS	广带华花
8-1	О НО ОӨМ	185.5~ 186.5°C	DMSO-d6,300MHz 7.73(1H, d, J=15.4 Hz) 7.58(1H, d, J=8.5 Hz) 7.00(1H, d, J=15.4 Hz) 6.98(1H, bs) 6.44(1H, s) 6.42(1H, d, J=8.5 Hz) 3.73(4H, m) 3.2-3.5(4H, m)	KBr 3424 1629 1560	FAB+ 264 [M'H'] (85)	
8-2	O O O O O O O O O O O O O O O O O O O		CDCI _{p,3} 00MHz 7.82(1H, d, J=15.5 Hz) 7.38(1H, d, J=8.4 Hz) 6.97(1H, d, J=8.4 Lz) 6.48(1H, dd, J=8.4, 2.4 Hz) 6.48(1H, dd, J=8.4, 2.4 Hz) 6.45(1H, d, J=2.4 Hz) 7.82(1H, s) 3.82(3H, s) 3.70(8H, bs) 1.3-1.5(4H, m) 0.94(3H, t, J=7.1 Hz)	Neat 2956 1643 1600	FAB+ 334 [M*H*] (70) 246(30) 177(100)	C ₁₉ H ₂ NO ₄ 理路值 C; 68.44% H; 8.16% N; 4.20% 分析值 C; 68.55% H; 8.43% N; 4.25%
8-3	O O O O O O O O O O O O O O O O O O O		DMSO-46,300MHz 9.00(1H, s) 7.36(1H, d, J=15.4 Hz) 7.14(1H, d, J=2.2 Hz) 7.09(1H, dd, J=8.4, 2.2 Hz) 6.97 (1H, d, J=18.4 Hz) 6.92(1H, d, J=8.4 Hz) 3.79(3H, s) 3.58(8H, bs)	KBr 3426 3200 1640 1574	FAB+ 264 [M*H*] (100) 177(70)	C ₁₄ H ₁₇ NO ₂ 理路(面 C; 63.87% H; 6.51% N; 5.32% 分析值 C; 63.67% H; 6.63% N; 5.35%

			6
下 概 小 析		C14H17NO4 阻除值 C; 63.87% H; 6.51% N; 5.32% 分析值 C; 63.67% H; 6.63% N; 5.35%	C18H22N2O3 理論值 C; 68.77% H; 7.05% N; 8.91% 分析值 C; 68.01% H; 7.04% N; 8.41%
MS		FAB+ 264[M+H+] (100) 177(70)	FAB+ 315 [M+H+] (20) 247(100)
IRem.1	N N	KBr 3426 3200 1640 1574	2934 1702 1616 1514
1H NMR (8) ppm	CDCl,300MHz 6.99(1H, d, J=1.7 Hz) 6.96(1H, dd, J=8.1, 1.7 Hz) 6.86(1H, d, J=8.1 Hz) 4.02(2H, t, J=6.9 Hz) 3.89(3H, s) 3.69(8H, bs) 1.8-1.9(2H, m) 1.3-1.5(4H, m) 0.93(3H, t, J=7.0 Hz)	DMSO-d6,300MHz 9.00 (1H, s) 7.36 (1H, d J = 15.4 Hz) 7.14 (1H, d, J = 2.2 Hz) 7.09 (1H, dd, J = 8.4, 2.2 Hz) 6.97 (1H, d, J = 15.4 Hz) 6.92 (1H, d, J = 8.4 Hz) 3.79 (3H, s) 3.58 (8H, bs)	CDCI3,300MHz 8.33 (1H, s) 8.01 (1H, d, J=11.5 Hz) 7.63 (1H, s) 7.26 (1H, s) 7.25 (1H, dd, J=6.3, 7.25 (1H, dd, J=6.3, 7.15 (1H, d, J=6.3 Hz) 6.93 (1H, d, J=1.5 Hz) 6.93 (3.93 (3.93 Hz)
融点			
構造式	MeO O O O	ON OHO OBW	N N O O O O O O O O
実施例	<b>*</b> *	8-5	8-6

表 147

1	1 11					
大百丈	<b>你</b> 道式	MAA	IH NMR (8) ppm	IP.m.1	Me	计数分析
			CDC13,300MHz		200	ノルボング
			811 (H s)	<u></u>	FAB+	:
	0		7.54 (1H. s)	3500	298	C16H20N2O3
			7.40 (1H dd 1=63	2957	(M+H+) (40)	
		110.9~	(C) - C (2) (11) (11)	1698	221(100)	理論値
		::::C	(70 ()			C; 66.65%
t			('.10 (1H, S)			H; 6.99%
/-o	MeO		0.93 (1H, d, J=0.3 Hz)			N; 9.72%
	)		4.00 (2H, t, J=5.1 HZ)			4. 存在值
	- { { o'		1.8-19 (2H, 3)			C; 66.69%
	/ > >		1.3-1.5 (4H, m)			H; 7.08%
			0.93 (3H, t, J=5.3 Hz)			N; 9.23%
				_	-	

## 薬理実験

(I) Binding assay (in vitro)

標本は、カンナビノイド中枢型(CB1)および末梢型(CB2)レセプターの豊富な組織として、それぞれラット小脳膜画分および脾臓細胞を用いた(雄性 SDラット、7~9 週齢)。丸底24 穴プレートに標本(小脳膜画分:50  $\mu$  g / m l 、脾臓細胞:1×10  7  cells/ml)、標識リガンド([ 3 H) W in55212-2、2nM)および非標識Win55212-2または被検物質を加え、小脳膜画分の場合30  $^{\circ}$ で90分、脾臓細胞の場合4  $^{\circ}$ で360分インキュベーションした。Assay bufferは、小脳膜画分の場合0.2% BSAを含む50 mM Tris 一HBSSを用いた。インキュベーション終了後、フィルター

(Packard, Unifilter 24GF/B) で濾過し、乾燥させた後 scintilation solution (Packard, Microsint-20)を加え、サンプルの放射能を測定した

(Packard, Top count A9912V)。非特異的結合は過剰量のWin55212-2  $(1 \mu M)$  を加えることにより得、標識リガンドのみを加えて得た全結合から非特異的結合を差し引くことにより、特異的結合を算出した。被検物質はDMSOに溶解し、DMSOの最終濃度が 0.1%になるようにした。結合した被検物質の、特異的結合に占める割合から  $IC_{60}$ 値を求め、これと〔  3H 〕Win552  $IC_{60}$ 00 を算出した。

〔II〕カラゲニン誘発足浮腫モデル(in vivo)

雌性 d d y マウス (6~8 週齢)を用いた。右足の投与前の容積を測定し (Unicom, Prethysumometer TK-101)、2時間後オリーブオイルに溶解した被検 化合物を10m1/kgにて経口投与した。投与1時間後に生理食塩水に溶解した1%カラゲニン50μ1を右足踵に皮内投与した。その3時間後右足の容積を 測定し、投与前と比較した。

[111] ヒツジ赤血球(SRBC)誘発遅延型過敏症(DTH)モデル(in vivo)雌性ddyマウス(6~8週齢)を用いた。初日に、マウス左足踵にSRBC



ミノで置換されていてもよく、

R³は水素原子またはアルコキシを示し、

 $R^{10}$  は水素原子またはアルキルを示し、当該アルキルはヘテロアリールで置換されていてもよく、

 $Alk^2$  はアルキレンを示し、当該アルキレンはアルコキシカルボニル;水酸基で置換されていてもよいアルキル;  $-CONR^{13}R^{14}$  ( $R^{13}$ 、 $R^{14}$ は同一または異なってそれぞれ水素原子またはアルキルを示す)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルコキシ、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、シアノで置換されていてもよく、当該シクロアルキルは水酸基で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。

なお、r=0のとき、 $R \ge R^{-0}$ "が隣接する窒素原子と一緒になってモルホリノまたはイミダゾリルを形成してもよい。〕

で表される請求の範囲3記載の化合物またはその医薬上許容される塩。

- 5. R³が水素原子、R²が-OR¹⁵、-NR®R°または-(CH₂) u·S(O) u·R¹²であり、ベンゼン環上の-CH=CH-CO-NR¹⁰³-(Alk²),
- Rの結合位置に対して、R² の置換位置がパラ位、-WR¹ の置換位置がメタ 位である請求の範囲 4 記載の化合物またはその医薬上許容される塩。

6.  $R^{+}$  が炭素数  $4 \sim 6$  のアルキルである請求の範囲 5 記載の化合物またはその医薬上許容される塩。

- 7.  $Alk^2$  がエチレンである請求の範囲 6 記載の化合物またはその医薬上許容される塩。
- 8. r=0 のとき、R と $R^{10}$  が隣接する窒素原子と一緒になってモルホリノを 形成する請求の範囲 4 記載の化合物またはその医薬上許容される塩。

- 3-(3, 4-i) 3-(2-(4-i) 3-(2-(4-i) 3-(3, 4-i) 3-(3, 4-i) 3-(4-i) 3-(4-i)
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メトキシー3-ブチルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メトキシ-3-ヘキシルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メトキシー3-ヘプチルオキシフェニル) アクリルアミド、
- (E) -N-(2-(3-)) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシシクロヘキシル) エチル] -3-(4- メトキシ-3-ペンチルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル]-N-メチル-3-(4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、
  - (E) -N-[2-(4-ヒドロキシフェニル) エチル] <math>-3-(3-イソペ

ンチルオキシー4-メトキシフェニル)アクリルアミド、

- (E) -N-[2-(4-ヒドロキシ-3-メトキシフェニル) エチル] -3 -(4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、
- 3-[3-(1, 1-ジメチルヘプチル)-4-メトキシフェニル]-(E)-N-[2-(4-ヒドロキシフェニル) エチル) アクリルアミド、
- (E) -N-[2-(3, 4-ジヒドロキシフェニル) エチル] -3-[3-(1, 1-ジメチルヘプチル) -4-メトキシフェニル] アクリルアミド、
- (E)  $-N-(4-r \le J-3- \% ) + J-1 = -N-(2-(4-r \le J-1)) + N-(2-(4-r \le$
- 3-(4-)++>-3-ペンチルオキシフェニル)-(E)-N-[2-(4-ペンチルオキシフェニル) エチル] アクリルアミド、
- (E) -N-(2-(4-)++)フェニル) エチル] -3-(4-)++) -3-ペンチルオキシフェニル) アクリルアミド、
- 3-(4-)++>-3-ペンチルオキシフェニル)-(E)-N-(2-モルホリノエチル) アクリルアミド、
- (E) -N-(2-(3, 4-ジヒドロキシフェニル) エチル) -3-(4- メトキシ-3-ペンチルオキシフェニル) アクリルアミド、
- $2-[2-[3-(3-\alpha)]$  アクリロイルアミノ エチル ピリジン-N- オキシド、
- (E)  $-N-(2-(4-E)^2-E)-E$  (4-E) -3-(4-F)-E -3-(4-F)-E -3-(4-F)-E -3-(4-F)-E

- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(3-ペンチルアミノ-4-ペンチルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-[3-(N'-メチル-N'-ペンチルアミノ) -4-メトキシフェニル] アクリルアミド、
- (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メトキシ-3-ペンチルチオフェニル) アクリルアミド、
- (E) -N-(2-(4-ヒドロキシフェニル) エチル]-3-(4-ペンチルオキシ-3-ペンチルチオフェニル) アクリルアミド、
- (E)  $-N-\{2-(4-アミノフェニル) エチル\} -3-(4-メトキシー3-ペンチルオキシフェニル) アクリルアミド、$
- (E) -N-(2-(4-ヒドロキシフェニル) エチル]-3-(3-ペンチルオキシ-4-ペンチルチオフェニル) アクリルアミド、
- (E)  $-N-\{2-(4-ヒドロキシフェニル) エチル\} -3-(3-ペンチルオキシー <math>4-$ メチルチオフェニル) アクリルアミド、
- (E) -N-(2-(4-r)) -3-(4-y) +2-(4-y) -3-(4-y) -3-(4-y) -3-(4-y) -3-(4-y) -3-(4-y) -3-(4-y)
- (E) -N-[2-(イミダゾール-4-イル) エチル] -3-(4-メトキシ-3-ペンチルチオフェニル) アクリルアミド、
- (E)  $-N-\{2-(イミダゾール-4-イル) エチル\} -3-(4-メトキシ-3-ペンチルアミノフェニル) アクリルアミド、$ 
  - (E) -N-[2-(4-ヒドロキシフェニル) エチル] -3-(4-メチル

アミノー3-ペンチルオキシフェニル) アクリルアミド、

(E)−N−〔2−(4−アミノフェニル)エチル〕−3−(4−メトキシー 3−ペンチルアミノフェニル)アクリルアミド、

(E)−N−〔2−(4−ニトロフェニル)エチル〕−3−(4−メチルアミ ノ−3−ペンチルオキシフェニル)アクリルアミド、

3-(4-)++シ-3-ペンチルオキシフェニル)-(E)-N-[2-(4-チオフェン-2-イル) エチル) アクリルアミド、

- (E) -N-[2-(4-ヒドロキシフェニル) エチル] <math>-3-(4-ペンチルアミノ-3-ペンチルオキシフェニル) アクリルアミド、
- (E) -N-[2-(4-シアノフェニル) エチル] -3-(4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド、および
- (E) -N-(2-(4-カルバモイルフェニル) エチル] -3-(4-メトキシ-3-ペンチルオキシフェニル) アクリルアミド

から選ばれる請求の範囲7記載の化合物またはその医薬上許容される塩。

# 10. 式(lb)



〔式中、Wは-O-、-S(O), -、-CR  $^{\circ}$ R  $^{\circ}$  -、-NR  $^{\prime}$  - 、-NR  $^{\prime}$  CO-、-CONR  $^{\prime}$  - 、-COO-または-OCO-(R  $^{\circ}$  、R  $^{\circ}$  は同一または異なってそれぞれ水素原子またはアルキルを、R  $^{\prime}$  は水素原子またはアルキルを、t は 0, 1, 2 を示す)を示し、

 $R^+$  はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルア

ルキルを示し、当該R'における各基はそれぞれ、アルキル、アルキルアミノ、 アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、 アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスル ホニルで置換されていてもよく、

 $R^2$  は水素原子、アルキル、 $-OR^{15}$ ( $R^{15}$ は水素原子、アルキル、アルケニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール アルキル、アリール、アリールアルキルを示す)、 $-NR^8$   $R^8$  ( $R^8$  、 $R^9$  は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリール、ヘテロアリール、ヘテロアリールを示すか、または $R^8$  と $R^9$  が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$  。S(O) 。 $R^{12}$ ( $R^{12}$ は水素原子、アルキル、アルケニルまたはアルキニルを、uは0, 1, 2 を示す)を示し、当該 $R^2$  における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル、ニトロ基またはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R¹⁰ は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

 $Alk^2$  はアルキレン、アルケニレン、 $-COCH_2$  - または-CONH ( $CH_2$ )、- (vは0, 1, 2 を示す)を示し、当該 $Alk^2$  におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$ 

R¹⁴(R¹³、R¹⁴は同一または異なってそれぞれ水素原子またはアルキルを示すか、またはR¹³とR¹⁴が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。

なお、r=0のとき、Rと $R^{10b}$ が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい。〕

で表される化合物またはその医薬上許容される塩。

### 11. 式(lb)

$$R^{2}$$

$$\begin{array}{c}
C - N - (A1k^{2}), -R \\
\parallel & \parallel \\
0 & R^{10b}
\end{array}$$
(1b)

〔式中、WはO-、-S(O)、-、-CR 5 R 6 -、-NR 7 -、-NR 7 CO-( $R^5$ 、 $R^6$ は同一または異なってそれぞれ水素原子またはアルキルを、 $R^7$ は水素原子またはアルキルを、 $R^7$ は水素原子またはアルキルを、 $R^7$ は水素原子またはアルキルを、 $R^7$ は水素原子またはアルキルを、 $R^7$ 

R' はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該R' における各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

 $R^{\circ}$  は水素原子、アルキル、 $-OR^{\circ}$  ( $R^{\circ}$  は水素原子、アルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示す)、-N

 $R^{8}$   $R^{8}$   $(R^{8}$  、  $R^{9}$  は同一または異なってそれぞれ水素原子、アルキルまたはアシルを示す)、または-  $(CH_{2})$   $_{u}$  S (O)  $_{u}$   $R^{12}$   $(R^{12}$   $_{u}$   $_{v}$   $_$ 

R[®] は水素原子、アルコキシ、アルキル、ニトロ基またはハロゲン原子を示し、 当該アルキルは水酸基で置換されていてもよく、

R¹⁰ は水素原子、アルキルまたはアルケニルを示し、当該アルキルはヘテロアリール、アリールスルフィニルまたはアルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

 $Alk^2$  はアルキレンまたはアルケニレンを示し、当該アルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}R^{14}$ ( $R^{14}$ は同一または異なってそれぞれ水素原子またはアルキルを示す)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシで置換されていてもよく、当該シクロアルキルは水酸基で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基で置換されていてもよく、

rは0または1を示す。

なお、r=0 のとき、 $R \ge R^{10b}$  が隣接する窒素原子と一緒になってモルホリノ、イミダゾリルを形成してもよい。〕

で表される請求の範囲10記載の化合物またはその医薬上許容される塩。

12. R³ が水素原子、R² が-OR¹⁵、-NR⁸ R⁹ または-(CH₂)_u·S (O)_u R¹²であり、ベンゼン環上の-CO-NR^{10b} - (Alk²), -Rの結合

位置に対して、R² の置換位置がパラ位、-WR¹ の置換位置がメタ位である請求の範囲11記載の化合物またはその医薬上許容される塩。

- 13. R' が炭素数  $4 \sim 6$  のアルキルである請求の範囲 12 記載の化合物またはその医薬上許容される塩。
- $14. \text{ Alk}^2$  がエチレンである請求の範囲 13 記載の化合物またはその医薬上許容される塩。
- 15.  $N-[2-(4-E)^2]$  エチル $]-4-y^2$  ンチルオキシベンズアミド、
- 4-xトキシーN-[2-(4-t)ドロキシフェニル)xチル]-3-ペンチルオキシベンズアミド、
- 3, 4-ジペンチルオキシ-N-[2-(4-ヒドロキシフェニル) エチル] ベンズアミド、
- 4-iiy チルアミノーN-[2-(4-ii)] エチル]-3-i ペンチルオキシベンズアミド、
- N- [2-(4-ヒドロキシフェニル) エチル] -3-ペンチルアミノ-4-メトキシベンズアミド、
- 3-ブチルオキシ-N-(2-(4-ヒドロキシフェニル) エチル) -4-メトキシベンズアミド、
- 3-ヘキシルオキシ-N- (2-(4-ヒドロキシフェニル) エチル) -4-メトキシベンズアミド、

- $N-(2-(2-E)^2+2)$  エチル) -4-4+2+2-3-3-3 ルオキシベンズアミド、

ペンチルオキシベンズアミド、

3- イソペンチルオキシ-N- [2-(4-ヒドロキシフェニル) エチル]-4-メトキシベンズアミド、

3-(2-xチルブチルオキシ) -N-(2-(4-t)ロキシフェニル) エチル] -4-xトキシベンズアミド、

 $N-\{2-(4-ヒドロキシー3-メトキシフェニル)$  エチル $\}-4-ヒドロキシー3-ペンチルオキシベンズアミド、$ 

N-[2-(4-ヒドロキシフェニル) エチル]-4-ヒドロキシ-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル) エチル]-4-ヒドロキシ-N-メチル-3-ペンチルオキシベンズアミド、

3-(1, 1-ジメチルへプタン)-N-(2-(4-ヒドロキシフェニル)エチル)-4-メトキシベンズアミド、

N-(2-(3, 4-ジヒドロキシフェニル) エチル)-3-(1, 1-ジメチルへプタン)-4-メトキシベンズアミド、

3-(1, 1-ジメチルへプタン)-N-[2-(4-ヒドロキシー<math>3-メトキシフェニル) エチル] -4-メトキシベンズアミド、

3-(1, 1-ジメチルへプタン) -N-(2-(4-ヒドロキシフェニル) エチル) -4-ヒドロキシベンズアミド、

 $N-\{2-(3,4-ジヒドロキシフェニル)$  エチル $\}-3-(1,1-ジメチルへプタン)$  -4-ヒドロキシベンズアミド、

N-[2-(4-アミノフェニル) エチル] -3, 4-ジペンチルオキシベンズアミド、

3, 4-ジへキシルオキシ-N-[2-(4-ヒドロキシフェニル) エチル) ベンズアミド、

4-メトキシ-N-[2-(4-ペンチルオキシフェニル) エチル] - 3-ペンチルオキシベンズアミド、

4-メトキシ-N-(2-モルホリノエチル)-3-ペンチルオキシベンズアミド、

4-メトキシ-N-〔2-(4-プロペン-2-イルオキシフェニル) エチル 〕-3-ペンチルオキシベンズアミド、

 $N-(2-(4-E)^2-E)^2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-E)^2-E(2-$ 

N-[2-(3, 4-i)] + (3-i) + (3

N-[2-(4-r+1)] N-[2-(4-r+1

 $4-[2-(N-(4-メトキシ-3-ペンチルオキシベンゾイル) アミノ}$ エチル) ピリジン-N-オキシド、

3-(2-(N-(4-メトキシ-3-ペンチルオキシベンゾイル) アミノ) エチル) ピリジン<math>-N-オキシド、

N-[2-(4-ヒドロキシフェニル) エチル] -3-イソヘキシル-4-メトキシベンズアミド、

ペンチルオキシベンズアミド、

- 3, 4 ジペンチルオキシ-N-[2-(4-スルファモイルフェニル) エチル] ベンズアミド、
- 3, 4-ジペンチルオキシ-N-[2-(イミダゾール-4-イル) エチル] ベンズアミド、
- 3, 4-ジペンチルオキシーN-[2-(4-ニトロフェニル) エチル] ベンズアミド、
- 3, 4-ジペンチルオキシーN-(2-(4-フルオロフェニル) エチル) ベンズアミド、
- N-(2-(4-ヒドロキシフェニル) エチル)-3-ペンチルオキシ-4-プロペン-2-イルベンズアミド、
- N-[2-(4-ヒドロキシフェニル) エチル] -4-プロピルオキシ-3- ペンチルオキシベンズアミド、
- 3, 4-ジプチルオキシ-N- (2-(4-ヒドロキシフェニル) エチル) ベンズアミド、
- 3, 4-ジへプチルオキシ-N-[2-(4-ヒドロキシフェニル) エチル] ベンズアミド、
- N-[2-(4-ヒドロキシフェニル) エチル]-4-メチルアミノ-3-ペンチルオキシベンズアミド、
- $N-[2-(4-E)^2]$  エチル]-3  $[4-i)^2$   $[4-i)^2$
- N [2 (4 E F D + 2) T E D ] 3 (N' 2 E D D )- N - [2 - (4 - E F D + 2) T E D ]- N - [2 - (4 - E F D + 2) T E D ]- N - [2 - (4 - E F D + 2) T E D ]- N - [2 - (N' - 2) T E D ]
- 4-アミノーN- [2-(4-ヒドロキシフェニル) エチル]-3-ペンチルオキシベンズアミド、

N-[2-(4-ヒドロキシフェニル) エチル] -4-メトキシ-3-ペンチルチオベンズアミド、

 $N-\{2-(4-ヒドロキシフェニル)$  エチル $\}-4-ペンチ$ ルオキシー3-4ペンチルチオベンズアミド、

- 3, 4-ジペンチルオキシ-N-[2-(2-チェニル) エチル] ベンズアミド、
- 3, 4-ジペンチルオキシ-N-[2-(5-ヒドロキシインドール-3-イル) エチル] ベンズアミド、
- 3, 4 ジペンチルオキシ-N- [2-(4-メチルアミノフェニル) エチル ] ベンズアミド、
- N-(2-(4-ジメチルアミノフェニル) エチル)-3 , 4-ジペンチルオキシベンズアミド、
- 4-ブチリルアミノーN- [2-(4-ヒドロキシフェニル) エチル]-3-ペンチルオキシベンズアミド、
- N-[2-(4-ヒドロキシフェニル) エチル]-4-ホルミルアミノ-3-ペンチルチオベンズアミド、
- N-[2-(4-ヒドロキシフェニル) エチル]-4-メチルチオー3-ペンチルオキシベンズアミド、
- N-[2-(4-ヒドロキシフェニル) エチル]-3-ペンチルオキシ-4-ペンチルチオベンズアミド、
- $N-(2-(4-E)^2+2)$   $N-(4-E)^2+2$   $N-(4-E)^2+$
- N-[2-(4-アミノフェニル) エチル] -4-メトキシ-3-ペンチルチオベンズアミド、
- 4-メトキシ-N- [2-(4-ニトロフェニル) エチル] -3-ペンチルチオベンズアミド、
  - N- [2-(イミダゾール-4-イル) エチル] -4-メトキシ-3-ペンチ

ルチオベンズアミド、

N-[2-(4-r)] フェニル) エチル $]-4-{2}$  ンチルオキシー $3-{2}$  チルチオベンズアミド、

N- [2-(4-二トロフェニル) エチル] - 4-ペンチルオキシー3-ペン チルチオベンズアミド、および

N- [2-(イミダゾール-4-イル) エチル] -4-ペンチルオキシ-3-ペンチルチオベンズアミド

から選ばれる請求の範囲14記載の化合物またはその医薬上許容される塩。

#### 1 6. 式(lc)

$$R^{2} \xrightarrow{h} Q N - (A1k^{2}), -R' \qquad (1c)$$

R! はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R! における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 $R^{2}$  は水素原子、アルキル、 $-OR^{15}$  ( $R^{15}$ は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^{8}R^{9}$  ( $R^{8}$ 、 $R^{9}$  は同一または異なってそれぞれ水素原子、アルキル、アルケニル、

アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または $R^8$  と $R^9$  が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または- ( $CH_2$ )  $_{u}$  S (O)  $_{u}$  R  $_{u}$  ( $R^{12}$  は水素原子、アルキル、アルケニルまたはアルキニルを、 $_{u}$  は  $_{u}$  1,  $_{u}$  2 を示す)を示し、当該 $_{u}$  における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

乙は一CH₂一または一CO一を示し、

 $Alk^2$  はアルキレン、アルケニレン、 $-COCH_2$  - または-CONH ( $CH_2$ ) 、- (vは0, 1, 2を示す)を示し、当該 $Alk^2$  におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$   $R^{14}$  ( $R^{13}$ 、 $R^{14}$ は同一または異なってそれぞれ水素原子またはアルキルを示すか、または $R^{13}$ と $R^{14}$ が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく

R'はアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、アシルアミノ、ピペリジノ、ピリジルで置換されていて

もよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

rは0または1を示す。]

で表される化合物またはその医薬上許容される塩。

#### 17. 式(Ic)

$$R^{2} \xrightarrow{h} Q N - (Alk^{2}), -R' \qquad (1c)$$

R ' はアルキルを示し、

R² は水素原子、アルキル、-OR¹⁵ (R¹⁵は水素原子またはアルキルを示す)

Zは−CH₂−または−CO−を示し、

Qは-CH=CH-、 $-CH_2$   $CHR^2$   $^7-$  、 $-CH_2$  - 、-S- 、-CHOH- 、-CO- 、 $-CH_2$  CO- 、 $-NHCR^2$   8  ( $CH_2$ ) 、- 、 $-NHCR^2$   9   $R^{30}$  - または $-N=CR^{31}-$  ( $R^{27}$  は水素原子または水酸基を、 $R^{28}$  は酸素原子または硫黄原子を、 $R^{29}$  、 $R^{30}$  は同一または異なってそれぞれアルキルを、 $R^{31}$  はアルキルまたは水素原子を、 $R^{30}$  は  $R^{30}$  は  $R^{30}$  または  $R^{30}$  も  $R^{30}$  も

 $Alk^2$  はアルキレン、 $-COCH_2$  -または-CONH ( $CH_2$ )、- (vは 0 , 1 , 2を示す)を示し、

R'はアリール、ヘテロアリールまたはシクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アシルオキシ、ニトロ、アミノ、アルキルアミノ、アラルキルオキシ、アシルアミノ、ピペリジノで置換さ

れていてもよく、当該シクロアルキルは=0で置換されていてもよく、rは0または1を示す。]

で表される請求の範囲16記載の化合物またはその医薬上許容される塩。

- 18. Zが-CO-であり、Qが $-CH_2-$ である請求の範囲 17記載の化合物またはその医薬上許容される塩。
- $19. R^2$  が $-OR^{15}$ 、Wが-O-、 $-NR^{1}$  または $-NR^{1}$  CO-であり、 $R^2$  の置換位置がベンゼン環上の i 位、 $-WR^{1}$  の置換位置がベンゼン環上の j 位である請求の範囲 18 記載の化合物またはその医薬上許容される塩。
- 20.  $R^1$  が炭素数  $4 \sim 6$  のアルキルである請求の範囲 19 記載の化合物またはその医薬上許容される塩。
- 2-[2-(4-ベンジルオキシフェニル) エチル] -5-メトキシ-4-ペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、
- 5-メトキシー2-(2-(4-ニトロフェニル) エチル) -4-ペンチルオキシー2, 3-ジヒドロイソインドール-1-オン、
- 2-(2-(4-)3+) エチル ]-5-3++ ]-4-ペンチルオ キシー 2, 3-ジヒドロイソインドールー1-オン、
- 4, 5 ジペンチルオキシー 2 〔2 〔イミダゾール 4 イル〕エチル〕
- 2, 3 ジヒドロイソインドール-1-オン、
- 2-[2-(4-ペンジルオキシフェニル) エチル] -4, 5-ジペンチルオキシ-2, 3-ジヒドロイソインドール-1-オン、
  - 4, 5-ジペンチルオキシー2-〔2-(4-ニトロフェニル〕エチル〕<math>-2
- , 3ージヒドロイソインドールー1ーオン、
  - 2-[2-(4-アミノフェニル) エチル] 4, 5-ジペンチルオキシ-2
- , 3-ジヒドロイソインドール-1-オン、
  - 4, 5-ジペンチルオキシ-2-[2-(4-ヒドロキシフェニル) エチル]

- -2.3-ジヒドロイソインドール-1-オン、
- 4, 5-ジペンチルオキシー2-[2-(4-メチルアミノフェニル) エチル ] <math>-2, 3-ジヒドロイソインドール-1-オン、
- 2 [2 (4 i) x + i) x + i 2, 3 i + 2
- 2-[2-(4-アミノフェニル) エチル] -5-メトキシ-4-ペンチルオ キシー2、3-ジヒドロイソインドールー1-オン、
- 5-メトキシー4-ペンチルオキシー2- [2-(4-ピリジン) エチル] -2. 3-ジヒドロイソインドール-1-オン、
- 2-[2-(4-ジメチルアミノフェニル) エチル] -5-メトキシー4-ペ ンチルオキシー2, 3-ジヒドロイソインドールー1-オン、および
- から選ばれる請求の範囲20記載の化合物またはその医薬上許容される塩。
- 22. Zが-CO-であり、Qが-CH=CH-である請求の範囲17記載の化合物またはその医薬上許容される塩。
- 23.  $R^2$  が $-OR^{15}$ 、Wが-O-、 $-NR^7$  または $-NR^7$  CO-であり、  $R^2$  の置換位置がベンゼン環上の i 位、 $-WR^1$  の置換位置がベンゼン環上の i 位である請求の範囲 2 2 記載の化合物またはその医薬上許容される塩。
- 24. R'が炭素数4~6のアルキルである請求の範囲23記載の化合物または その医薬上許容される塩。
- 25. 2-[2-(4-ベンジルオキシフェニル) エチル] -6-メトキシ-5 -ペンチルオキシー 2H-イソキノリン-1-オン、
- $2-\{2-\{4-EFロキシフェニル\}$  エチル $\}-6-Xトキシー5-ペンチルオキシー2H-イソキノリン-1-オン、$

2-[2-(4-ピリジル) エチル] -6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

4-[2-(6-x)++ y-1-x+y-5-2y+y++y-1]+-1+-1+y+ノリン-2-1ル) エチル) フェニルアセテート、

2-[2-(4-メチルフェニル) エチル) -6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

6-メトキシー5-ペンチルオキシー2-(2-フェニルエチル) -2H-イソキノリンー1-オン、

2-[2-(4-r)セチルアミノフェニル)エチル]-6-yトキシー5-ペンチルオキシー2H-4ソキノリンー1-4ン、

5, 6-ジペンチルオキシー2-(2-(4-ヒドロキシフェニル) エチル) -2 H-イソキノリン-1-オン、

2-[2-(4-r)] エチル]-6-yトキシー5-ペンチルオキシー2H-47+ノリン-1-47、

2-[2-(4-r)] エチル]-6-yトキシー5-ペンチルオ キシー2H-4 ソキノリン-1-4 ン塩酸塩、

2-[2-(4-ジメチルアミノフェニル) エチル]-6-メトキシ-5-ペンチルオキシ-2H-イソキノリン-1-オン、

6-メトキシー2- [2-(4-ピリジル) エチル] -5-ペンチルオキシー 2H-イソキノリン-1-オン塩酸塩

から選ばれる請求の範囲24記載の化合物またはその医薬上許容される塩。

26. Zが-CO-であり、Qが $-CH_2$   $CHR^2$ 7-であり、 $R^2$ 7が水素原子である請求の範囲 17記載の化合物またはその医薬上許容される塩。

- $2.7. R^2$  が $-OR^{15}$ 、Wが-O-、 $-NR^7$  または $-NR^7$  CO-であり、 $R^2$  の置換位置がベンゼン環上の i 位、 $-WR^1$  の置換位置がベンゼン環上の j 位である請求の範囲 2.6 記載の化合物またはその医薬上許容される塩。
- 28.  $R^+$  が炭素数  $4 \sim 6$  のアルキルである請求の範囲 27 記載の化合物またはその医薬上許容される塩。
- 29. 6-メトキシ-2- (2-(4-オキソシクロヘキシル) エチル) -5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、
- 4-[2-(6-x)++y-1-x+y-5-2x+y+y-3, 4-y+y-1]ドロー1H-4y+1yy-2-4y
- 2-[2-(4-ヒドロキシフェニル) エチル] -6-メトキシー5-ペンチルオキシー3, 4-ジヒドロー2H-イソキノリンー<math>1-オン、
- 2-(2-7ェニルエチル)-6-メトキシー5-ペンチルオキシー3,4-ジヒドロー2 H-イソキノリンー<math>1-オン、
- 2-[2-(4-アセチルアミノフェニル) エチル]-6-メトキシ-5-ペンチルオキシー3, 4-ジヒドロー2H-イソキノリンー<math>1-オン、
- 6-ヒドロキシー2- (2-(4-ヒドロキシフェニル) エチル) 5-ペンチルオキシー3, 4-ジヒドロー2 H-イソキノリン-1-オン、
- $2-\{2-(4-メチルフェニル)$  エチル $\}-6-メトキシ-5-ペンチルオキシ-3, 4-ジヒドロ-2H-イソキノリン-1-オン、$
- 2-[2-(4-アミノフェニル) エチル]-6-メトキシー5-ペンチルオキシー3, <math>4-ジヒドロ-2H-イソキノリン-1-オン、
- 6-メトキシー5-ペンチルオキシー2- (2-(4-ピリジル) エチル)-3, 4-ジヒドロー2 H-イソキノリンー1-オン、
- 6-メトキシー1-オキソー5-ペンチルオキシー3, 4-ジヒドロー1 H-イソキノリンー2-カルボン酸 N-(4-アミノフェニル)アミド、

6-メトキシ-1-オキソ-5-ペンチルオキシ-3, 4-ジヒドロ-1 H-イソキノリン-2-カルボン酸 N-〔(4-アミノフェニル)メチル〕アミド、および

- 6-メトキシー1-オキソー5-ペンチルオキシー3, 4-ジヒドロー1 H-イソキノリンー2-カルボン酸 N- (4-ニトロフェニル) アミドから選ばれる請求の範囲28記載の化合物またはその医薬上許容される塩。
- 30.~Zが-CO-であり、Qが $-NHCR^2$ 8( $CH_2$ )、-であり、 $R^2$ 8が酸素原子であり、v が0である請求の範囲1.7記載の化合物またはその医薬上許容される塩。
- 3 1.  $R^2$  が $-OR^{-5}$ 、Wが-O-、 $-NR^7$  -または $-NR^7$  CO-であり、 $R^2$  の置換位置がベンゼン環上の i 位、 $-WR^-$  の置換位置がベンゼン環上の j 位である請求の範囲 3 0 記載の化合物またはその医薬上許容される塩。
- 32. R が炭素数  $4\sim6$  のアルキルである請求の範囲 31 記載の化合物またはその医薬上許容される塩。
- 33.7-メトキシー3-[2-(4-ニトロフェニル) エチル) -8-ペンチルオキシー(1H, 3H) -キナゾリンー2, 4-ジオン、
- 7-メトキシー3-[2-(4-ピリジル) エチル] -8-ペンチルオキシー (1 H, 3 H) -キナゾリン-2, 4-ジオン、
- 3-(2-(4-r)) エチル) エチル) -7-yトキシー8-ペンチルオキシー(1H, 3H) ーキナゾリンー2, 4-ジオン、
- 3-[2-(4-ヒドロキシフェニル) エチル]-7-メトキシ-8-ペンチルオキシ-(1H, 3H)-キナゾリン-2, 4-ジオン、
- 3-[2-(4-)+) アン・カー 3-[2-(4-)+] アン・カー 3-[
- $3-\{2-(4-ジメチルアミノフェニル)$  エチル $\}-7-メトキシ-8-ペンチルオキシー(1H,3H)-キナゾリン-2,4-ジオン、$

から選ばれる請求の範囲32記載の化合物またはその医薬上許容される塩。

## 3 4. 式 (ld)



〔式中、XはCHまたはNを示し、

W' は-O-、-S (O) , -、-CR  5  R  6  - 、-NR  7  - 、-NR  7  CO- 、-CONR  7  - 、-COO- または-OCO- (R  5  、R  6  は同一または異なってそれぞれ水素原子またはアルキルを、R  7  は水素原子またはアルキルを、t は 0 , 1 , 2 を示す)を示し、

R^{II} はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R^{II} における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 $R^2$  は水素原子、アルキル、 $-OR^{1s}$ ( $R^{1s}$ は水素原子、アルキル、アルケニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、フリール、アリールアルキルを示す)、 $-NR^8$   $R^8$  ( $R^8$  、 $R^9$  は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリール、ヘテロアリールでルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または $R^8$  と $R^9$  が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$  。S(O) 。 $R^{12}$  ( $R^{12}$  は水素原子、アルキル、アルケニルまたはアルキニルを、ロは0, 1, 2 を、1 ない。当該1 における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、、大酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオ

キシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

 $W'(R^{"})$ 、 $R^{"}$ 、 $R^{"}$ の置換位置はA環、B環のいずれの位置であってもよく、B環はベンゼン環、ピリジン環またはフラン環を示し、

Alk' は-CH=CH-、 $-CH_2$   $CH_2$  -または-C=C-を示し、

 $R^{10d}$  は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよく、

 $Alk^2$  はアルキレン、アルケニレン、 $-COCH_2$  - または-CONH ( $CH_2$ ) 、- (vは0, 1, 2を示す)を示し、当該 $Alk^2$  におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$   $R^{11}$  ( $R^{13}$ 、 $R^{11}$ は同一または異なってそれぞれ水素原子またはアルキルを示すか、または $R^{13}$ と $R^{11}$ が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

p、rはそれぞれ独立して0または1を示す。

なお、r=0のとき、 $R \ge R^{100}$ が隣接する窒素原子と一緒になってヘテロアリ

## ールを形成してもよい。〕

で表される化合物またはその医薬上許容される塩。

## 35. 式(ld)



〔式中、XはCHまたはNを示し、

W' は-O-、-S(O)、-、-CR  5  R  6  -、-NR  7  - または-NR  7  C O- (R  5  、R  6  は同一または異なってそれぞれ水素原子またはアルキルを、R  7  は水素原子またはアルキルを、R  1  は水素原子またはアルキルを、R  1  は水素原子またはアルキルを、R

R¹ はアルキルを示し、

 $R^{2}$  は水素原子、アルキルまたは $-OR^{15}$  ( $R^{15}$ は水素原子、アルキルを示す)を示し、

R³ は水素原子またはハロゲン原子を示し、

W' R  1  、R  2  、R  3  の置換位置はA環、B環のいずれの位置であってもよく、B環はベンゼン環またはフラン環を示し、

Alk' はーCH=CH-または-CH2 CH2 - を示し、

R^{10d} は水素原子を示し、

Alk² はアルキレンを示し、

Rはアリールまたはヘテロアリールを示し、当該アリールおよびヘテロアリール はそれぞれ、水酸基、ニトロ、アミノで置換されていてもよく、

p、 r はそれぞれ独立して 0 または 1 を示す。]

で表される請求の範囲34記載の化合物またはその医薬上許容される塩。

- 36. XがNである請求の範囲35記載の化合物またはその医薬上許容される塩。
- 37. R37が水素原子、R27が-OR15であり、Wが-O-である請求の範囲3
- 6 記載の化合物またはその医薬上許容される塩。

3 8. R''が炭素数  $4 \sim 6$  のアルキルである請求の範囲 3 7 記載の化合物またはその医薬上許容される塩。

39.7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N- [2- (4-ピリジル) エチル] アミド、

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N- (2- (4-アミノフェニル) エチル) アミド、

7- メトキシー8-ペンチルオキシキノリンー3-カルボン酸 N- [2- (4-ニトロフェニル) エチル] アミド、および

7-メトキシ-8-ペンチルオキシキノリン-3-カルボン酸 N-  $\{2-$  (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2- (2-

から選ばれる請求の範囲38記載の化合物またはその医薬上許容される塩。40.式(le)



〔式中、Wは-O-、-S(O), -、-CR  5 R  6 -、-NR  7 -、-NR  7 CO-、-CONR  7 -、-COO-または-OCO-(R  5 、R  6  は同一または異なってそれぞれ水素原子またはアルキルを、R  7  は水素原子またはアルキルを、R  7  は水素原子またはアルキルを、R  7  は水素原子またはアルキル

 $R^-$  はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該 $R^-$  における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスル

ホニルで置換されていてもよく、

 $R^2$  は水素原子、アルキル、 $-OR^{15}$ ( $R^{15}$ は水素原子、アルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8$  R ( $R^8$  、 $R^9$  は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または $R^8$  と $R^9$  が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$  。S(O) 。 $R^{12}$ ( $R^{12}$ は水素原子、アルキル、アルケニルまたはアルキニルを、uは0,1,2を示す)を示し、当該 $R^2$  における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、水酸基、アルコキシ、アルコキシカルボニル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R°は式(i)

$$\begin{pmatrix} N \\ 0 \end{pmatrix}$$
 (i)

で表される基を示し、当該基は水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよい。〕

で表される化合物またはその医薬上許容される塩。

4 1. 式 (le)



〔式中、Wは-O-または-S(O), -を、 tは0, 1, 2を示す)を示し、 $R^1$  はアルキルを示し、

 $R^{3}$  は水素原子、アルコキシ、アルキル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルは水酸基で置換されていてもよく、

R°は式(i)

で表される基を示し、当該基はアルキル、ピリジルで置換されていてもよい。〕 で表される請求の範囲40記載の化合物またはその医薬上許容される塩。

 $42. R^2$  が $-OR^{15}$ または $-(CH_2)$   $_{\parallel}S(O)$   $_{\parallel}R^{12}$ であり、ベンゼン環上の $-R^{\circ}$  の結合位置に対して、 $R^2$  の置換位置がパラ位、 $-WR^{\dagger}$  の置換位置がメタ位である請求の範囲 41 記載の化合物またはその医薬上許容される塩。

4 3. R''が炭素数 4~6のアルキルである請求の範囲 4 2 記載の化合物または その医薬上許容される塩。

44.2-(4-)++>-3-ペンチルオキシフェニル)-4,4-ジメチル-4,5-ジヒドロオキサゾール、

2-(4-)++>-3-ペンチルチオフェニル)-4, 4-ジメチル-4, 5-ジヒドロオキサゾール、

2-(3, 4-ジペンチルオキシフェニル) - 4, 4-ジメチル- 4, 5-ジ

ヒドロオキサゾール、

- $2-(3-\mathcal{C})$   $2-(3-\mathcal{C})$  2-
- 2- (4-ペンチルオキシー3-ペンチルチオフェニル) -4, 4-ジメチル
- -4, 5-ジヒドロオキサゾール、および
  - 2-(4-メトキシ-3-ペンチルオキシフェニル)-5-(2-ピリジル)
- 4, 5-ジヒドロオキサゾール

から選ばれる請求の範囲43記載の化合物またはその医薬上許容される塩。

- 45. 請求の範囲3~44のいずれかに記載の化合物またはその医薬上許容される塩を有効成分として含有してなる医薬組成物。
- 46. カンナビノイドレセプターが末梢型カンナビノイドレセプターである請求の範囲1または2記載のカンナビノイドレセプター作動薬または拮抗薬。
- 47. 免疫調節剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- 48. 自己免疫疾患治療剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- 49. 抗炎症剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- 50. 抗アレルギー剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。
- 51. 腎炎治療剤である請求の範囲1、2、46のいずれかに記載のカンナビノイドレセプター作動薬または拮抗薬。

## INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/00291

		JP97/00291			
A. CLASSIFICATION OF SUBJECT MATTER I. 235/48, 235/50, 235/52, 235/	54, 235/56, 235/66, 237	/20, 237/22,			
237/32, 237/42, 255/60, 317/ According to International Patent Classification (IPC) or to	28, 323/62, CU/D2U9/14, both national classification and IPC	209/42,			
B. FIELDS SEARCHED		····			
Minimum documentation searched (classification system follow	red by classification symbols) Int. C16	C07C235/34.			
235/36, 235/46, 235/48, 235/ 237/20, 237/22, 237/32, 237/	50, 235/52, 235/54, 235	/56, 235/66,			
Documentation searched other than minimum documentation to	the extent that such documents are included in	the fields searched			
Electronic data base consulted during the international search (n CAS ONLINE	name of data base and, where practicable, search	terms used)			
C. DOCUMENTS CONSIDERED TO BE RELEVAN	· · · · · · · · · · · · · · · · · · ·				
Category* Citation of document, with indication, who		Relevant to claim No.			
A JP, 6-211867, A (F. Hoffi August 2, 1994 (02. 08. Claim; pages 4 to 9 & EP & US, 5315015, A & CA, 2	94), , 597333, A2	1 - 51			
X JP, 49-93335, A (Kissei 1 Ltd.), September 5, 1974 (05. 09 Claim; pages 4 to 6	_	3-5, 45			
A & BE, 809935, A & NL, 740 & DE, 2402398, A & FI, 74 & FR, 2214476, A & PT, 61 & HU, 10376, T & US, 3940 & AT, 7400443, A & GB, 14					
X US, 4743610, A (American May 10, 1988 (10. 05. 88) A Claims (Family: none)		10, 11, 45			
	EP, 176333, A2 (Ortho Pharmaceutical Corp.), September 23, 1985 (23. 09. 85),				
X Further documents are listed in the continuation of Box	C. See patent family annex.	30, 45			
<ul> <li>Special categories of cited documents:</li> <li>"A" document defining the general state of the art which is not considered to be of particular relevance.</li> </ul>	"T" later document published after the inte date and not in conflict with the appli the principle or theory underlying the	cation but cited to understand			
"E" earlier document but published on or after the international filing "L" document which may throw doubts on priority claim(s) or which cited to establish the publication date of another citation or o	ch is considered novel or cannot be consi	dered to involve an inventive			
special reason (as specified)  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is means  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination below to several terms of the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination					
"P" document published prior to the international filing date but later the priority date claimed	"&" document member of the same paten				
Date of the actual completion of the international search May 27, 1997 (27. 05. 97)  Date of mailing of the international search report  June 3, 1997 (03. 06. 97)					
Name and mailing address of the ISA/ Authorized officer					
Japanese Patent Office					
Telephone No.					
orm PCT/ISA/210 (second sheet) (July 1992)					

# INTERNATIONAL SEARCH REPORT

International application No.

Category*	nuation). DOCUMENTS CONSIDERED TO BE RELEVANT	
	of document, with indication, where appropriate, of the releva	nt passages Relevant to clair
A	Claims; examples & AU, 8547698, A & NO, 8503730, A & DK, 8504311, A & PT, 81182, A & FI, 8503639, A & HU, 40087, T & US, 4639518, A & ES, 8701737, A & ZA, 8507302, A & SU, 1409129, A & KR, 9001181, B	31 - 3
x	WO, 91/14677, A1 (Otsuka Pharmaceutical Ltd.), October 3, 1991 (03. 10. 91), Cliam 18; example	Co., 34 - 3
A		37 - 39
	JP, 50-89363, A (Hoechst AG.), July 17, 1975 (17. 07. 75), Page 15, example	40 - 42
A	& BE, 823279, A & NL, 7415940, A & DE, 2458176, A & DK, 7406450, A & FR, 2254332, A & US, 3962259, A & GB, 1495286, A & AT, 7409883, A & CA, 1051886, A & IL, 46202, A & CH, 620214, A	43, 44
	LIN, J.H., et al. New Poly(amide-Imide)s Synthesis. XVII. Journal of Polymer Science Part A: Polymer Chemistry, April 1996, Vo No. 5, p. 747-754	16 - 21 01. 34,
T	Oatabase CA on STN, No. 118:226257 (1997)	16, 17, 22-25

#### INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/00291

## A. (Continuation) CLASSIFICATION OF SUBJECT MATTER

209/46, 209/48, 213/40, 217/24, 233/60, 233/64, 239/96, 249/18, 263/12, 275/04, 333/20, 401/06, 401/12, 403/06, 409/06, 413/04, A61K31/11, 31/165, 31/19, 31/215, 31/275, 31/38, 31/40, 31/415, 31/42, 31/425, 31/44, 31/47, 31/505

### B. (Continuation) FIELDS SEARCHED

CO7D209/14, 209/42, 209/46, 209/48, 213/40, 217/24, 233/60, 233/64, 239/96, 249/18, 263/12, 275/04, 333/20, 401/06, 401/12, 403/06, 409/06, 413/04, A61K31/11, 31/165, 31/19, 31/215, 31/275, 31/38, 31/40, 31/415, 31/42, 31/425, 31/44, 31/47, 31/505

#### 国際調査報告

#### 発明の属する分野の分類(国際特許分類(IPC))

Int. C1. C07C235/34, 235/36, 235/46, 235/48, 235/50, 235/52, 235/54, 235/56, 235/66, 237/20, 237/22, 237/32, 237/42, 255/60.317/28.323/62.C07D209/14.209/42.209/46.209/48.213/40.217/24.233/60.233/64.239/96.249/18.263/12. 275/04, 333/20, 401/06, 401/12, 403/06, 409/06, 413/04,

#### 調査を行った分野

#### 調査を行った最小限資料(国際特許分類(【PC))

Int. Cl. C07C235/34, 235/36, 235/46, 235/48, 235/50, 235/52, 235/54, 235/56, 235/66, 237/20, 237/22, 237/32, 237/42, 255/60, 317/28, 323/62, C07D209/14, 209/42, 209/46, 209/48, 213/40, 217/24, 233/60, 233/64, 239/96, 249/18, 263/12, 275/04.333/20.401/06.401/12.403/06.409/06.413/04.

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAS ONLINE

#### C. 関連すると認められる文献

引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Α	JP、6-211867, A (エフ・ホフマン-ラ ロシュ アーゲー)	1 - 5 1
	2. 8月. 1994 (02. 08. 94) 特許請求の範囲。第4-9頁	
	&EP, 597333, A2 &US, 5315015, A	
	&CA, 2108919, A	
İ		
X	│JP,49-93335,A(キッセイ薬品工業株式会社)	3 - 5, 45
	5.9月.1974(05.09.74)特許請求の範囲。第4-6頁	
A	&BE, 809935, A &NL, 7400754, A	6 — 9
	&DE, 2402398, A &FI, 7400145, A	
	&FR, 2214476, A &PT, 61195, A	
	& HU, 10376, T & US, 3940422, A	
	&AT, 7400443, A &GB, 1446141, A	
	&SU, 520041. A &CA, 1029744. A	
		i

## X C欄の続きにも文献が列挙されている。

「 パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」先行文献ではあるが、国際出願日以後に公表されたも
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

国際調査を完了した日 27.05.97	国際調査報告の発送日 <b>0</b> 3 06 <b>97</b>
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP)	特許庁審査官(権限のある職員) 4 H 9 5 4 7 柳 和子 印
郵便番号100 東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101 内線 3444

C (続き).	関連すると認められる文献・	
用文献の  ファゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する
X	US, 4743610, A (American Cyanamid Company)	請求の範囲の番号
أ	10.5月.1988 (10.05.88) CLAIMS	
A	(ファミリーなし)	1 2 - 1 5
Х	EP, 176333, A2 (ORTHO PHARMACEUTICAL CORPORATION)	16, 17, 30
A	23. 9月. 1985 (23. 09. 85) CLAIMS. EXAMPLES & A U, 8547698, A & N O, 8503730, A	. 4 5
11	&DK. 8504311, A &PT, 81182, A	3 1 - 3 3
	&FI, 8503639, A &HU, 40087, T	
	&US, 4639518, A &ES, 8701737, A &ZA, 8507302, A &SU, 1409129, A	
	&KR. 9001181. B	
x	WO, 91/14677, A1 (大塚製薬株式会社)	2.4.0.6
	3. 10月. 1991 (03. 10. 91) 請求の範囲18, 実施例	3 4 - 3 6
A		37-39
x	JP, 50-89363, A (ヘキスト・アクチーエンゲゼルシャフト)	4 0 - 4 2
	17. 7月. 1975 (17. 07. 75) 第15頁, 実施例	
Α	&BE. 823279. A &NL. 7415940. A &DE. 2458176. A &DK. 7406450. A	43,44
	&FR, 2254332, A &US, 3962259, A	
	&GB. 1495286, A &AT, 7409883, A &CA, 1051886, A &IL, 46202, A	
	&CH, 620214, A	
İ	LIN, J. H., et al. New Poly(amide-Imide)s Synthesis. XVII. Journal of Polymer Science: Part A: Polymer Chemistry, April 1996, Vol. 34, No. 5, p. 747-754	1 6 - 2 1
т	Database CA on STN, No. 118:226257 (1997)	16, 17,
		2 2 - 2 5
•		
Ì		
ĺ		
-		
		1
Ì		1

国際調査報告	国際出願番号 PCT/JP97/00291
第 2 ページA 棚の続き A61K31/11, 31/165, 31/19, 31/215, 31/275, 31/38, 31/40, 3	1/415, 31/42, 31/425, 31/44, 31/47, 31/505
第 2 ページB欄の続き A61K31/11, 31/165, 31/19, 31/215, 31/275, 31/38, 31/40, 3	1/415, 31/42, 31/425, 31/44, 31/47, 31/505
,	
·	
	•

 $10^7$  個を皮内投与し( $40\mu1/foot$ )、動物を免疫した。5日後、オリーブオイルに溶解した被検化合物を<math>10m1/k gにて経口投与し、その1時間後、右足踵に $SRBC10^8$  個を皮内投与して反応を惹起した。惹起 24時間後に両足の容積を測定し、左足容積から右足容積を差し引いた値を浮腫率として算出した。

なお、〔II〕、〔III〕ともに被検化合物はDMSOに溶解し、オリーブオイルで希釈して用いた(DMSOの最終濃度は1%)。

上記[I]、[II]、[III]の結果を表148、149に示す。

表 148

	Ki 値 (nM)			ED50 (r	ED50 (mg/kg : po)		
実施例	中枢型レセプター (C)	末梢型レセプター (S)	C/S	カラゲニン 誘発足浮腫 モデル	ヒツジ赤血球 誘発遅延型 過敏症モデル		
1-1	230	4.8	48	1.00	1.52		
1-2	400	1.8	222	>1.00	0.48		
1-4	960	7.7	125	0.55	0.71		
1-5	450	4.4	102	1.20	2.45		
1-13	3700	44.0	84	0.25	9.20		
1-22	480	1.4	343	0.14	0.77		
1-34	930	1.1	845	0.59	1.95		
1-35	160	10	16	0.12	0.063		
2-1	1400	2.5	560	0.040	0.14		
2-2	1100	1.1	1000	0.51	0.90		
2-3	>3300	0.44	>8250	0.17	0.053		
2-5	330	3.6	92	0.40	3.25		
2-6	500	1.1	455	0.30	0.72		
2-7	>2500	9.5	263	2.28	2.35		
2-8	1000	3.7	270	0.73	1.45		
2-13	5600	6.6	849	3.20	5.60		
2-16	>4300	73	>59	1.10	1.95		

表 149

	Ki 値 (nM)			ED50 (mg/kg : po)		
実施例	中枢型レセプター (C)	末梢型レセプター (S)	C/S	カラゲニン 誘発足浮腫 モデル	ヒツジ赤血球 誘発遅延型 過敏症モデル	
2-26	>2500	18.0	>139	>10.0	3.75	
2-52	>4300	1.9	>2300	1.85	0.58	
6-4	650	11.0	59	0.25	10.0	
7-4	1000	7.3	137	1.60	1.60	
7-5	>2500	11.0	11.0 >227 0.014		. 0.038	
7-19-1	200	3.7	54	0.092	0.033	
7-20	400	8.4	48	0.195	0.084	
7-24	>2500	1.8	>1389	0.028	0.027	
7-30	2600	1.8	1440	<0.01	0.021	
7-31	11	0.088	125	0.012	0.08	
7-34	330	0.11	3000	0.29	0.012	
7-37	1300	14	93	0.49	0.058	
7-38	220	9.9	22	0.11	0.011	
7-40	109	<3.7	>30	0.016	-	
8-2	560	8.4	67	0.50	>10.0	

## [IV] 抗thy-1抗体誘発腎炎モデル (in vivo)

雄性Wistarラット(6週齢)を用い、被検化合物(プレドニゾロン、実施例7-35化合物)を経口投与し、その1時間後に抗thy-1抗体(ox-7,0.938mg/ml)を0.1ml/ラットにて尾静脈より投与した。被検化合物は、その後6日目まで1日1回投与した。6日目に8mlの水を強制負荷した後、絶水とし、その後連続16時間、尿を採取した。7日目に採血致死させ、腎臓を取り出し、その重量を測定後、ホルマリンで固定し、組織切片を作成した(PAS染色)。評価は、尿中タンパク量と腎糸球体内有核細胞数を測定することにより行った。なお、被検化合物は0.5%HPMCにて懸濁液とし、1回につき10ml/kg投与した。その結果を表150に示す。

表 1 5 0

実験群	尿中タンパク (mg/16hr)	腎糸球体内有核細胞数 (nuclei/glomerulus)		
Sham	$2.6 \pm 0.3$	67.6 ± 0.9		
Control	$31.9 \pm 4.0$	90.1 ± 1.4		
プレドニゾロン (3 mg/kg)	$20.9 \pm 2.7$	76.9 ± 0.9		
実施例7-35化合物(0.1 mg/kg)	$15.2 \pm 2.4$	84.8 ± 1.2		

 Sham
 : 抗 t h y - 1 抗体を投与せず、水の負荷を行い、

溶媒(HPMC)の経口投与を行ったもの

Control: 抗thy-1抗体を投与し、水の負荷を行い、

溶媒(HPMC)の経口投与を行ったもの

プレドニゾロン  $_1$ : 抗 t h y - 1 抗体を投与し、水の負荷を行い、

実施例7-35化合物 当該被験化合物の経口投与を行ったもの

抗 t h y - 1 抗体投与によって誘発される、尿中タンパク量および腎糸球体内 有核細胞数の増加の両方に対して、本発明の実施例7-35化合物は、0.1 m g / k g の投与量で有意な抑制効果を示した。

以下に製剤例を挙げるが、これに限定されるものではない。

## 製剤例

 (1) 実施例1-1の化合物
 10g

(2)乳糖 50g

(3) トウモロコシデンプン 15g

(4) カルボキシメチルセルロースナトリウム 44g

(5) ステアリン酸マグネシウム 1 g

(1)、(2)、(3)の全量、および(4)の30gを水で練合し、真空乾燥後、製粒を行う。この製粒末に14gの(4)および1gの(5)を混合し、打錠機で錠剤とすることにより、1錠あたり10mgの(1)を含有する錠剤1000個を製造する。

本発明の化合物(I)およびその医薬上許容される塩は、カンナビノイドレセプター、特に末梢型レセプターに選択的に作用し、中枢系の副作用が少なく、かつ優れた免疫調節作用、抗炎症作用、抗アレルギー作用および腎炎治療効果を有する。よって、カンナビノイドレセプター(特に末梢型カンナビノイドレセプター)作動薬および拮抗薬、免疫調節剤、自己免疫疾患治療剤、抗炎症剤、抗アレルギー剤および腎炎治療剤として有用である。

## 請求の範囲

## 1. 式(I)



〔式中、XはCHまたはNを示し、

R¹ はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該R¹ における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

ミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニル 、ハロゲン原子またはニトロ基を示し、当該アルキルはアルコキシ、水酸基で置 換されていてもよく、

R'は水素原子を示すか、またはR'とR'がA環と一緒になって式(II)



(式中、W'R'、R°、R°の置換位置はA環、B環のいずれの位置であって もよく、W'R'、R°、R°はそれぞれ前記WR'、R°、R°と同義であり 、B環はベンゼン環、ピリジン環またはフラン環を示す)

で表される縮合環を形成してもよく、

Alk' は-CH=CH-、-CH2 CH2 -または $-C\equiv C-$ を示し、

Yは一CONR¹⁰ー、-NR¹¹CO-、-COO-、-CH²NR¹⁰ーまたは-NHCONH-(R¹⁰、R¹¹は同一または異なってそれぞれ水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよい)を示し、

 $A1k^2$  はアルキレン、アルケニレン、 $-COCH_2$  - または-CONH( $CH_2$ )、-(vは 0, 1, 2 を示す)を示し、当該 $A1k^2$  におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$   $R^{14}$ ( $R^{13}$ 、 $R^{14}$ は同一または異なってそれぞれ水素原子またはアルキルを示すか、または $R^{13}$ と $R^{14}$ が隣接する窒素原子と一緒になってヘテロアリールを形成

してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジル、ピペリジノ、カルボキシル、アルコキシカルボニル、アシルアミノ、アミノカルボニル、シアノで置換されていてもよく、当該シクロアルキルは水酸基、アルコキシ、=〇で置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシで置換されていてもよく、

p、q、rはそれぞれ独立して0または1を示す。

なお、p=1かつq=1のとき、 $Alk^1$ が-CH=CH-を示し、かつYが<math>-CONR 10 -を示し、かつ $R^{3}$ が $R^{10}$ と一緒になって-NHCO-を示し、A環と縮合環を形成してもよく、

p=0 かつq=1 のとき、Yが $-CONR^{10}$  ーまたは $-CH_2$   $NR^{10}$  ーを示し、かつ $R^3$  が $R^{10}$ と一緒になって-CH=CH-、 $-CH_2$   $CHR^{27}$  ー、 $-CH_2$  ー、-S-、-CHOH-、-CO-、 $-CH_2$  CO-、 $-NHCR^{28}$  ( $CH_2$  ) v ー、 $-NHCR^{20}R^{30}$  ーまたは $-N=CR^{31}$  ー ( $R^{27}$ は水素原子または水酸基を、 $R^{28}$ は酸素原子または硫黄原子を、 $R^{29}$ 、 $R^{30}$ は同一または異なってそれぞれアルキルを、 $R^{31}$ はアルキルまたは水素原子を、v' は0または1を示す)を示し、A環と縮合環を形成してもよく、

r=0 かつ q=1 のとき、Yが $-CONR^{10}$  - または $-CH_2$   $NR^{10}$  - を示し、かつ R と  $R^{10}$  が隣接する窒素原子と- 緒になってヘテロアリールを形成してもよく、

p=q=r=0の時、Rは式(i)

で表される基を示し、当該基は水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピリジルで置換されていてもよい。〕

で表される化合物またはその医薬上許容される塩を有効成分として含有してなるカンナビノイドレセプター作動薬または拮抗薬。

## 2. 式(I)

$$R^{2} \xrightarrow{A} (A1k^{\prime})_{P} - (Y)_{q} - (A1k^{2})_{r} - R \qquad (1)$$

$$WR^{1} \qquad R^{3}$$

〔式中、XはCHまたはNを示し、

Wは-O-、-S(O), -、-CR  $^{\circ}$  R  $^{\circ}$  - 、-NR  $^{\prime}$  - 、-NR  $^{\prime}$  CO- または-CONR  $^{\prime}$  - (R  $^{\circ}$  、R  $^{\circ}$  は同一または異なってそれぞれ水素原子またはアルキルを、R  $^{\prime}$  は水素原子またはアルキルを、R  $^{\prime}$  は水素原子またはアルキルを、R  $^{\prime}$  はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該R  $^{\prime}$  における各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

 $R^2$  は水素原子、アルキル、 $-OR^{15}$ ( $R^{15}$ は水素原子、アルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示す)、-N  $R^8$   $R^9$  ( $R^8$  、 $R^9$  は同一または異なってそれぞれ水素原子、アルキルまたはアシルを示す)、または- ( $CH_2$ )  $_{u}$  S (O)  $_{u}$   $R^{12}$  ( $R^{12}$ はアルキルを、u は 0, 1, 2 を、u は 0, 1, 2 を示す)を示し、当該  $R^2$  における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、水酸基で置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、アルコキシカルボニル、ハロゲン原子 またはニトロ基を示し、当該アルキルは水酸基で置換されていてもよく、

R' は水素原子を示すか、またはR' とR' がA環と一緒になって式(II)



(式中、 $W'(R^1)$ 、 $R^2$ 、 $R^3$ の置換位置はA環、B環のいずれの位置であってもよく、 $W'(R^1)$ 、 $R^2$ 、 $R^3$  はそれぞれ前記 $WR^1$ 、 $R^2$ 、 $R^3$  と同義であり、B環はベンゼン環またはフラン環を示す)

で表される縮合環を形成してもよく、

Alk' はーCH=CH-またはーCH2 CH2 ーを示し、

Yは-CONR¹⁰-、-NR¹¹CO-、-COO-、-CH₂NR¹⁰-または-NHCONH-(R¹⁰、R¹¹は同一または異なってそれぞれ水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニル、アルコキシカルボニルで置換されていてもよく、当該アルケニルはフェニルチオで置換されていてもよい)を示し、

 $Alk^2$  はアルキレン、アルケニレン、 $-COCH_2$  -または-CONH ( $CH_2$ ) 、- (vは0, 1, 2を示す)を示し、当該 $Alk^2$  におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル; $-CONR^{13}$   $R^{14}$  ( $R^{13}$ 、 $R^{14}$ は同一または異なってそれぞれ水素原子またはアルキルを示す)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、アルキル、水酸基、アルコキシ、アルケニルオキシ、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、アラルキルオキシ、ピペリジノ、カルボキシル、アシルアミノ、アミノカルボニル、シアノで置換されていてもよく、当該シクロアルキルは水酸基、=Oで置換されていてもよく、当該ベンゼン縮合

シクロアルキルは水酸基で置換されていてもよく、

p、q、rはそれぞれ独立して0または1を示す。

なお、p=0かつq=1のとき、Yが $-CONR^{10}$ ーまたは $-CH_2$   $NR^{10}$ ーを示し、かつ $R^3$  が $R^{10}$ と一緒になって-CH=CH-、 $-CH_2$   $CHR^{27}$ ー、 $-CH_2$   $-CH_3$   $-CH_4$   $-CH_5$   $-CH_5$   $-CH_6$   $-CH_6$   $-CH_6$   $-CH_6$   $-CH_7$   $-CH_8$   r=0 かつ q=1 のとき、Yが $-CONR'^0-$ または $-CH_2NR'^0-$ を示し、かつRと $R'^0$ が隣接する窒素原子と一緒になってヘテロアリールを形成してもよく、

p=q=r=0の時、Rは式(i)

$$\stackrel{\mathsf{N}}{\longrightarrow}$$
 (i)

で表される基を示し、当該基はアルキル、ピリジルで置換されていてもよい。〕 で表される化合物またはその医薬上許容される塩を有効成分として含有してなる 請求の範囲1記載のカンナビノイドレセプター作動薬または拮抗薬。

## 3. 式 (la)

$$R^{2}$$
  $CH = CH - C - N - (A1k^{2}), -R$  (Ia)

〔式中、WはO-、-S(O)、-、-CR 5 R 6 -、-NR 7 -、-NR 7 CO-、-CONR 7 -、-COO-または-OCO-( $R^5$ 、 $R^6$ は同一また

は異なってそれぞれ水素原子またはアルキルを、 $R^{T}$  は水素原子またはアルキルを、t は 0 , 1 , 2 を示す)を示し、

 $R^+$  はアルキル、アルケニル、アルキニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示し、当該 $R^+$  における各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

 $R^2$  は水素原子、アルキル、 $-OR^{15}$ ( $R^{15}$ は水素原子、アルキル、アルケニル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリール、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示す)、 $-NR^8$  R ( $R^8$  、 $R^9$  は同一または異なってそれぞれ水素原子、アルキル、アルケニル、アルキニル、アシル、アリール、アリールアルキル、ヘテロアリール、ヘテロアリールアルキル、シクロアルキルまたはシクロアルキルアルキルを示すか、または $R^8$  と $R^9$  が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)、または $-(CH_2)$  。S(O) 。 $R^{12}$ ( $R^{12}$ は水素原子、アルキル、アルケニルまたはアルキニルを、uは0, 1, 2 を、u は0, 1, 2 を示す)を示し、当該 $R^2$  における水素原子を除く各基はそれぞれ、アルキル、アルキルアミノ、アミノ、水酸基、アルコキシ、アルコキシカルボニル、アシルオキシ、アシルチオ、メルカプト、アルキルチオ、アルキルスルフィニル、アルキルスルホニルで置換されていてもよく、

R³ は水素原子、アルコキシ、アルキル、カルボキシル、アルコキシカルボニルまたはハロゲン原子を示し、当該アルキルはアルコキシ、水酸基で置換されていてもよく、

R^{10a} は水素原子、アルキル、アルケニルまたはアミノ保護基を示し、当該アルキルはヘテロアリール、アリールスルフィニルで置換されていてもよく、

Alk 2  はアルキレン、アルケニレン、 $-COCH_2$  -または-CONH ( $CH_2$ 

)、-(vは0,1,2を示す)を示し、当該 $A1k^2$ におけるアルキレン、アルケニレンはそれぞれ、水酸基;カルボキシル;アルコキシカルボニル;水酸基、アルコキシまたはアルキルチオで置換されていてもよいアルキル: $-CONR^{13}R^{14}(R^{13},R^{14}$ は同一または異なってそれぞれ水素原子またはアルキルを示すか、または $R^{13}$ と $R^{14}$ が隣接する窒素原子と一緒になってヘテロアリールを形成してもよい)で置換されていてもよく、

Rはアリール、ヘテロアリール、シクロアルキルまたはベンゼン縮合シクロアルキルを示し、当該アリールおよびヘテロアリールはそれぞれ、水酸基で置換されていてもよいアルキル、水酸基、アルコキシ、アルケニルオキシ、アシル、アシルオキシ、ハロゲン原子、ニトロ、アミノ、スルホン酸アミド、アルキルアミノ、シアノ、アラルキルオキシ、ピリジルで置換されていてもよく、当該ベンゼン縮合シクロアルキルは水酸基、アルコキシ、=Oで置換されていてもよく、

rは0または1を示す。

なお、r=0 のとき、R と  $R^{10}$  が 隣接する 窒素原子と一緒になって ヘテロアリールを 形成してもよい。〕

で表される化合物またはその医薬上許容される塩。

## 4. 式 (la)

$$R^{2}$$
  $CH = CH - C - N - (A1k^{2}), -R$  (1a)  
 $R^{3}$   $R^{3}$ 

〔式中、Wは-O-、-S(O)、-、-CR  5 R  6  -または-NR  7  -(R  5   $\times$  R  6  は同一または異なってそれぞれ水素原子またはアルキルを、R  7  は水素原子またはアルキルを、R  7  は水素原子またはアルキルを、R  7   7   7   7   7   7   7   7   7   7   7   7   7   7   8   8   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   9   $^$ 

R' はアルキル、アルケニル、アルキニル、アリールアルキルまたはシクロアルキルアルキルを示し、当該R' における各基はそれぞれ、アルキル、アルキルア

		·	

ı