9. Koeficient teplotnej rozpínavosti vzduchu

Autor pôvodného textu: Peter Dieška

Úloha: Určiť koeficient teplotnej rozpínavosti vzduchu, meraním teplotnej závislosti tlaku vzduchu uzavretého v banke.

Pri zohrievaní plynu v uzavretej nádobe, keď sa nemôže meniť jeho objem, s rastúcou teplotou rastie tlak plynu. Aj z praktického hľadiska je dôležité poznať, ako prudko rastie tlak plynu s teplotou. Napríklad ak necháme tlakovú nádobu so stlačeným plynom stáť na slnku, je dôležité vedieť, či tlak v nádobe neprekročí dovolenú hodnotu.

Závislosť tlaku plynu p od teploty t sa pre väčšinu plynov - v oblasti izbových teplôt a mierne vyšších – vyjadruje lineárnou závislosťou

$$p = p_0(1 + \gamma t), \qquad (9.1)$$

kde t predstavuje Celziovu teplotu, p_0 tlak plynu pri 0 °C a γ koeficient teplotnej rozpínavosti plynu, ktorý je predmetom merania tejto úlohy.

Závislosť (9.1) je v súlade so stavovou rovnicou ideálnych plynov

$$pV = nRT, (9.2)$$

v ktorej V je objem plynu, n látkové množstvo (počet mólov plynu), R molárna plynová konštanta a T termodynamická teplota (jednotka – kelvin K). Medzi termodynamickou teplotou T a Celziovou teplotou t platí definičný vzťah

$$T = T_0 + t, (9.3)$$

v ktorom $T_0 = 273,15 \text{ K}$.

Ak sa plyn nachádza v nádobe, ktorej objem V_0 sa nemení, a pritom zvyšujeme jeho teplotu, mení sa len jeho tlak. Stavovú rovnicu napíšeme pri teplote T_o a potom pri inej l'ubovolnej teplote T:

$$p_0 V_0 = nRT_0$$
 , $pV_0 = nRT$.

Podielom týchto dvoch rovníc získame vzťah

$$\frac{p}{p_{\rm o}} = \frac{T}{T_{\rm o}} \quad \Rightarrow \quad p = \frac{p_{\rm o}}{T_{\rm o}}T = \frac{p_{\rm o}}{T_{\rm o}}(T_{\rm o} + t)$$
 Tento vzťah môžeme napísať v dvoch modifikáciách:

$$p = p_0 + \frac{p_0}{T_0}t$$
 (9.4), $p = p_0(1 + \frac{1}{T_0}t)$ (9.5)

Tvar (9.5) sa zhoduje so závislosťou (9.1), z čoho bezprostredne vidno, že medzi koeficientom rozpínavosti γ ideálneho plynu a termodynamickou teplotou T_0 platí vzťah

$$\gamma = 1/T_0 = (1/273,15) \text{ K}^{-1}.$$
 (9.6)

Metóda merania

Teplotný koeficient rozpínavosti určíme meraním závislosti tlaku vzduchu od teploty pri stálom objeme. Takéto meranie sa dá uskutočniť na zariadení znázornenom na obr. 9.1. Banka B, v ktorej je uzavretý vzduch, je spojená rúrkou s otvoreným kvapalinovým manometrom (kvapalinou môže byť ortuť, voda, alebo iná kvapalina so známou hustotou). Pri zahrievaní má vzduch v banke tendenciu zväčšovať svoj objem. Stálosť objemu sa zabezpečí udržiavaním výšky stĺpca h_1 , a to posúvaním zásobníka Z kvapaliny nahor, alebo nadol. Pritom sa súčasne mení výška h_2 kvapaliny v pravom ramene manometra.

Tlak vzduchu p v banke je súčtom atmosférického tlaku b a tlaku p_k stĺpca kvapaliny v manometri $p_k = (h_2 - h_1) sg$, kde s je hustota kvapaliny a g tiažové zrýchlenie:

$$p = b + p_k = b + (h_2 - h_1) sg$$
. (9,7)

Pri počítaní výsledného tlaku *p* treba dbať na to, aby sme atmosférický tlak, aj tlak kvapalinového stĺpca, vyjadrovali v rovnakých jednotkách. Hustota ortuti v blízkosti izbových teplôt *t* (v Celziovej stupnici) je vyjadrená vzťahom

$$s = (-0.0024 \ t + 13.595) \ \text{g/cm}^3$$
, (9.8)

pomocou ktorého určíme hustotu pri teplote v laboratóriu.

Prístroje a pomôcky: zariadenie na meranie rozpínavosti vzduchu, vodný kúpeľ, varič, teplomer, barometer.

Postup práce

Na začiatku merania zistíme atmosférický tlak b_1 , teplotu t_1 a polohy stĺpcov kvapaliny h_1 , h_2 . Varičom začneme zohrievať vodný kúpeľ, v ktorom je umiestnená banka B, pričom udržiavame hladinu h_1 na rovnakej úrovni. Postupne odčítavame a zapisujeme do tabuľky údaje rastúcej teploty t a výšku stĺpca h_2 . Treba si uvedomiť, že teplomerom meriame teplotu kúpeľa, nie vzduchu v banke. Preto pri meraní treba postupovať tak, aby sa teplota vzduchu v banke stačila vyrovnať s teplotou kúpeľa.

Namerané hodnoty vynesieme do grafu a preložíme nimi optimálnu priamku. Potom určíme smernicu priamky k a jej priesečník $p_{\rm o}$ s vertikálnou osou . Podľa vzťahu (9.4) smernicou priamky je podiel $k=p_{\rm o}/T_{\rm o}$, alebo v spojení so vzťahom (9.6) aj $k=\gamma\,p_{\rm o}$. To znamená, že koeficient teplotnej rozpínavosti vzduchu γ získame, keď z grafu vypočítanú smernicu vydelíme tlakom $p_{\rm o}$:

$$\gamma = k/p_o$$
.

Otázky

- 1. Dá sa využiť zariadenie na meranie koeficienta teplotnej rozpínavosti vzduchu aj na meranie koeficienta objemovej rozťažnosti?
- 2. Ako sa dá určiť molárny objem plynu v banke B?

Meno: Krúžok: Dátum merania:

Protokol laboratórnej úlohy 9 Koeficient teplotnej rozpínavosti vzduchu

Q4 Y /	•	4/1	•
Stručny	opis	metody	merania:

W7 49 W		V/ •/		,
Vzťahv	ktore sa	používajú	pri	merani:

Prístroje a pomôcky:

Meranie

Atmosférický tlak b = Teplota miestnosti: t =

Hustota ortuti podľa vzťahu (9.8) s =

Udržiavaná výška prvého stĺpca ortuti $h_1 =$

i	t	h_1	h_2	h_2 - h_1	$p_{ m k}$	p

Smernica lineárnej závislosti tlaku od teploty	k =
Tlak vzduchu v banke pri 0 °C	$p_0 =$
Koeficient teplotnej rozpínavosti vzduchu	γ =
Prevrátená hodnota koeficienta	1 / γ =
Rozdiel nameranej a skutočnej hodnoty $\Delta = \gamma_{\text{ham}} - \gamma_{\text{tab}}$	$\Delta =$
Relatívna chyba merania v percentách $\delta = (\Delta/\gamma_{tab}) \cdot 100$	δ =

S = (Δ/γ_{tab})·100

K protokolu treba pripojiť graf závislosti tlaku plynu od teploty

Slovné zhodnotenie výsledkov merania:

Dátum odovzdania protokolu:

Podpis študenta:

Podpis učiteľa: