Weighted Clusterwise Linear Regression Based on Adaptive Quadratic Form Distance

Jovan Moris D CS23B2058, Dinesh Kumarun K CS23B2057

November 2, 2024

Outline

Introduction

Objective

Methodology
Optimization Criterion
Quadratic Form Distance

Optimization Algorithm

Experiments and Results

Conclusion

Introduction

- Introduction to regression and clustering in data analysis.
- Traditional single-model regression approaches may overfit or fail to capture local patterns.
- Objective: Improve clustering regression methods by developing a weighted Clusterwise Linear Regression (WCLR) approach.

Problem Definition

- ► Clusterwise Regression (CR) seeks to partition data into clusters, each with its own regression model.
- Challenges:
 - Standard CR may lead to data overfitting.
 - Limited capacity to distinguish clusters in the explanatory variable space.
- WCLR: Adds adaptive distance to account for variable correlation and cluster homogeneity.

Objective

- The aim of WCLR is to achieve homogeneous clusters with good regression fitting by minimizing an optimization criterion combining clustering and regression loss.
- ► This approach utilizes an adaptive quadratic form distance metric to weight variables based on relevance.

Optimization Criterion

Combined Criterion

$$J_{wclr} = \sum_{k=1}^{K} \sum_{i=1}^{n} V_{ik} \left[d_{W_k}^2(\mathbf{x}_i, \mathbf{g}_k) + \alpha (y_i - \tilde{\mathbf{x}}_i^{\top} \mathbf{b}_k)^2 \right]$$

where $d_{W_k}^2(\mathbf{x}_i, \mathbf{g}_k)$ is the adaptive quadratic distance, and α is a hyperparameter.

- Combines a clustering criterion with regression residual minimization.
- ightharpoonup Enables variable weighting through the matrix W_k .

Quadratic Form Distance

Distance Definition

$$d_{W_k}^2(\mathbf{x}_i, \mathbf{g}_k) = (\mathbf{x}_i - \mathbf{g}_k)^\top W_k(\mathbf{x}_i - \mathbf{g}_k)$$

where W_k is a positive definite matrix, enabling non-spherical clusters.

- \triangleright W_k adjusts based on the relevance of explanatory variables.
- Six constraint types explored for W_k matrices, including both local and global adaptive distances.

Optimization Algorithm - Overview

- ► The algorithm iteratively refines the cluster assignments and regression parameters.
- Steps include: Representation, Weighting, Modeling, and Assignment.
- ► Each step is designed to optimize the WCLR objective function iteratively until convergence.

Representation Step

- ► Goal: Update cluster centroids based on current assignments.
- ► Computation:

$$\hat{\mathbf{g}}_k = \frac{\sum_{i=1}^n V_{ik} \mathbf{x}_i}{\sum_{i=1}^n V_{ik}}, \quad \text{for each cluster } k.$$

Weighting Step

- ▶ Goal: Optimize the weight matrix W_k to reflect variable relevance.
- Computation involves constraints such as:

$$\det(W_k) = 1$$
 or $\sum_{i=1}^p w_{jk} = 1$.

Modeling Step

- ▶ Goal: Estimate regression coefficients \mathbf{b}_k for each cluster.
- ► Solution:

$$\hat{\mathbf{b}}_k = (\tilde{\mathbf{X}}_k^\top \tilde{\mathbf{X}}_k)^{-1} \tilde{\mathbf{X}}_k^\top \mathbf{y}_k,$$

where $\tilde{\mathbf{X}}_k$ is the augmented design matrix.

Assignment Step

- ▶ Goal: Reassign data points to clusters to minimize J_{wclr} .
- \triangleright For each observation *i*, assign to the cluster *k* that minimizes:

$$d_{W_k}^2(\mathbf{x}_i,\mathbf{g}_k) + \alpha(y_i - \tilde{\mathbf{x}}_i^{\top}\mathbf{b}_k)^2.$$

Algorithm Summary

- ▶ The algorithm iteratively updates \mathbf{g}_k , W_k , \mathbf{b}_k , and V_{ik} .
- ► Convergence: The objective function J_{wclr} is non-increasing, leading to a local optimum.
- ▶ Multiple initializations suggested to avoid local minima.

Experimental Evaluation

- ▶ Synthetic and benchmark datasets used for evaluation.
- ► Comparison with standard CR and K-plane methods.

Results - Performance Table

Method	Synthetic Data	Benchmark Data 1	Benchmark Data 2
WCLR	0.85	0.78	0.82
Standard CR	0.75	0.70	0.76
K-Plane	0.80	0.79	0.81

Table: Performance comparison of WCLR with other methods.

Conclusion

- WCLR effectively handles heterogeneous datasets in regression clustering tasks.
- Adaptive quadratic distance enhances clustering by considering variable relevance.
- ► Future work: Extensions to non-linear models and robustness to outliers.