Simon King, FSU Jena Fakultät für Mathematik und Informatik Daniel Max

Numerische Mathematik

Sommersemester 2022

Übungsblatt 5

Hausaufgaben (paarweise Abgabe bis 17.05.2022 10⁰⁰ Uhr)

Hausaufgabe 5.1: Wertebereich des Newton-Verfahrens (2 P.) Beweisen Sie Lemma 3.15. **Hinweise:** Kurvendiskussion für $N_f(x)$. Drücken Sie $N'_f(x)$ durch f(x), f'(x), f''(x) aus.

Hausaufgabe 5.2: Hohe Konvergenzordnungen

(4 P.) Sei $D \subset \mathbb{R}$ ein offenes Intervall, $f \in \mathscr{C}^k(D,\mathbb{R})$ mit $k \in \mathbb{N}^*$, $m_1(f) > 0$ und $x^* \in D$ mit $f(x^*) = 0$. Ferner sei $\phi \colon D \to D$ stetig differenzierbar und $T_{k-1}(\phi(x); x) \in \mathcal{O}(|\phi(x) - x|^k)$ für $x \to x^*$. Zeigen Sie, dass ϕ lokale Konvergenzordnung mindestens k in x^* hat. **Hinweise:** Wie wächst $\phi(x) - x^*$ verglichen mit $f(\phi(x))$? Wie wächst $\phi(x) - x$ verglichen mit $x - x^*$?

Hausaufgabe 5.3: Fehlerabschätzung des Newton-Verfahrens

- a) (1 P.) Sei $f \in \mathcal{C}^2([a, b], \mathbb{R}), a < x^* < b \text{ mit } f(x^*) = 0 \text{ und } m_1(f) > 0.$ Ferner sei $\forall x \in [a,b]: N_f(x) \in [a,b]$ und $C := \frac{M_2(f)}{2m_1(f)}$. Zeigen Sie: Wenn $(x_{\nu})_{\nu\in\mathbb{N}}$ die durch N_f gegebene Fixpunktiteration zum Startwert $x_0\in[a,b]$ ist, dann gilt $\forall \nu \in \mathbb{N}$: $|x_{\nu} - x^*| \leq \frac{1}{C} \cdot (C \cdot (b - a))^{2^{\nu}}$.
- b) Sei nun $f: [0.5, 1] \to \mathbb{R}$ gegeben durch $f(x) := x e^{-x^2}$. Sie dürfen verwenden, dass f eine eindeutige Nullstelle $x^* \in [0.5, 1]$ hat und dass $\forall x \in$ $[0.5, 1]: N_f(x) \in [0.5, 1].$
 - (4 P.) Finden Sie mit der Fehlerabschätzung aus der vorigen Teilaufgabe ein $\nu \in \mathbb{N}$, so dass für jeden Startwert $x_0 \in [0.5, 1]$ gilt $|x_{\nu} - x^*| < 10^{-5}$.

Programmieraufgabe 5.4: Implizite Funktionen
Sei
$$F: \mathbb{R}^3 \to \mathbb{R}^2$$
 gegeben durch $F(x, y, z) := \begin{pmatrix} x^2 + 10 yz \\ 20 y^2 z + 3 xy - 5 \end{pmatrix}$.

(5 P.) Schreiben Sie ein Programm, dass für jedes $x \in [-3, -0.5]$ mit dem Newton-Verfahren jeweils y(x), z(x) so berechnet, dass $|F_1(x, y(x), z(x))| < 10^{-8}$ und $|F_2(x,y(x),z(x))| < 10^{-8}$. Geben Sie die Iterationsvorschrift des Newton-Verfahrens explizit an. Stellen Sie $\{(y(x), z(x)) \mid x \in [-3, -0.5]\} \subset \mathbb{R}^2$ graphisch dar.

Zur Klarstellung: Für jedes feste x ist $f: \mathbb{R}^2 \to \mathbb{R}^2$ definiert durch f(y,z) :=F(x,y,z). Die Rede ist vom Newton-Verfahren für f, also $N_f \colon \mathbb{R}^2 \to \mathbb{R}^2$.

Erreichbare Punktzahl: