REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is astimated to average 1 hour per responsa, including the time for reviewing instructions, searching existing data sources, gethering and maintaining the data needed, and complating and reviewing the oblection of information, send commenta reparding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defanse, Washington Headquarters Services, Directorate for Information Operations and Reports 10704-0188/j. 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, Respondents should be aware that notwithstanding any other prevision of law, no person shall be subject to any penalty for failing to comply with a collection of information if t does not display a currently valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

O6/15/09

Final Technical Report

5a. CONTRACT NUMBER

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9550-06-1-0238 Curse-of-Dimensionality-Free Computing, Information-Savvy Controllers and **UAV** Operations 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 6. AUTHOR(S) William McEneaney, PhD 5e. TASK NUMBER 5f. WORK UNIT NUMBER 8. PERFORMING ORGANIZATION 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) REPORT NUMBER The Regents of the Univ. of Calif., U.C. San Diego 27751A 9500 Gilman Drive, MC 0934 La Jolla, CA 92093-0934 10. SPONSOR/MONITOR'S ACRONYM(S) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AFOSR/PKA USAF, AFRI. 11. SPONSOR/MONITOR'S REPORT AF Office of Scientific Research NUMBER(S) 875 N. Randolph St., Room 3112

Arlington, VA 22203

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved For Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT

See attached

15. SUBJECT TERMS

max-plus, nonlinear, control, sensor tasking, idempotent, tropical algebra

1	16. SECURITY CLASSIFICATION OF:				18. NUMBER	19a. NAME OF RESPONSIBLE PERSON
1	a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF PAGES	William McEneaney
	Unclassified	Unclassified	Unclassified	UU		19b. TELEPHONE NUMBER (Include area code) 858-822-5835

SR-VH-TR-201**2** -0148

Final Technical Report Grant#: FA9550-06-1-0238

#14 Abstract:

We investigated the use of idempotent (e.g., max-plus) algebraic methods for solution of nonlinear control problems. The main effort used deterministic infinite time-horizon optimal control problems as the vehicle for development of the approach, i.e, we developed the methods for that class of problems as a demonstration of the general approach. We obtained a curse-of-dimensionality-free max-plus numerical method. Combining this new theory with some convex programming based pruning, we demonstrated solution of a particular class on nonlinear problems over six-dimensional space. Standard solution methods would take computational time on the order of decades to solve such a problem, whereas we were able to obtain a solution in under an hour on a desktop machine for the example problem.

We also investigated sensing UAV tasking algorithms. We demonstrated that the correct criterion for success, expected reduction of troop losses, took the specific form of a piece-wise linear concave function over a probability simplex. We further found that this class of problems could also be solved efficiently with idempotent methods. This was unexpected, as previously it was believed that one needed idempotent linearity of the associated semigroup for application of such techniques. The key was found to lie in the idempotent distributive property.

Final Report: AFOSR Grant FA9550-06-1-0238

Curse-of-Dimensionality-Free Computing, Information-Savvy Controllers and UAV Operations

William M. McEneaney

Dept. of Mechanical and Aerospace Engineering
University of California San Diego
La Jolla, CA 92093-0411
USA
wmceneaney@ucsd.edu

1 Introduction

Multiple breakthroughs were made during the period of the effort. We divide them up according to the two main areas.

2 Curse-of-Dimensionality-Free Methods for HJB PDEs

At the outset of the project, we had the basic algorithm in hand for a curse-of-dimensionality-free approach for a class of first-order HJB PDEs where the Hamiltonian is written (or approximated) as a pointwise maximum over a finite set of quadratic forms. Although the approach is generally applicable to such problems, for the purposes of demonstration we needed to choose a particular form. We chose the class of HJB PDEs corresponding to infinite time-horizon, average cost per unit time, deterministic control problems. More exactly, we consider HJB PDEs of the form

$$0 = H(x, \nabla V) \quad \forall x \in \mathbb{R}^n \setminus \{0\},$$

$$V(0) = 0,$$

where

$$H(x,p) = \max_{m \in \mathcal{M}} H^m(x,p),$$

with $\mathcal{M} \doteq]1, M[\doteq \{1, 2 \dots M\}$ and

$$H^{m}(x,p) = \frac{1}{2}x'D^{m}x + \frac{1}{2}p'\Sigma^{m}p + (A^{m}x)'p + (l_{1}^{m})'x + (l_{2}^{m})'p + \alpha^{m} \quad \forall m \in \mathcal{M}.$$

Note that the solution is **not** a piece-wise linear-quadratic function, but is fully nonlinear.

Although, we had an algorithm, we lacked a convergence analysis and error bounds. This was necessary for full acceptance of the approach. The resulting full analysis is spread across [16] and [15]. In order to give a sense of the results we note that at each step, the solution is represented by a pointwise maximum of quadratics, i.e., at step N, the approximation is

$$V^N(x) = \bigoplus_{k \in \mathcal{K}_N} U_k^N(x)$$

with each U_k^N represented by the coefficients of the quadratic, $(Q_k^N, \overline{x}_k^N, c_k^N)$. At the next step, one has an approximation of the form

$$V^{N+1}(x) = \bigoplus_{m \in \mathcal{M}} S_{\tau}^{m} \left[\bigoplus_{k \in \mathcal{K}_{N}} U_{k}^{N} \right](x)$$
$$= \bigoplus_{m \in \mathcal{M}} \bigoplus_{k \in \mathcal{K}_{N}} S_{\tau}^{m} \left[U_{k}^{N} \right](x) \doteq \bigoplus_{k \in \mathcal{K}_{N+1}} U_{k}^{N+1}(x),$$

where each semigroup, S_{τ}^{m} , approximates the action of a single linear-quadratic control problem associated with H^{m} . The computations are reduced to analytical (modulo a matrix inverse) operations on the set of coefficients. The computational growth in space dimension is only n^{3} , as opposed to D^{n} for grid-based methods, where D is the number of grid-points per space dimension, and the solution is only obtained over a finite region in the latter case. The time-step is τ , and the total time propagation at step N is $T = N\tau$. The errors go to zero as $\tau \downarrow 0$ and $T \to \infty$. The specific error bounds are as follows. For an error on the order of $\varepsilon(1+|x|^{2})$ over all of \mathbb{R}^{n} , it is sufficient to have $\tau \propto \varepsilon^{2}$ and $N \propto \varepsilon^{-3}$.

This elimination of the curse-of-dimensionality alone was significant, but there was a terrible price to be paid in the above basic algorithm in terms of what we call the curse-of-complexity. In particular, $K_N \doteq \# \mathcal{K}_N$ grows like M^N . However, it was quickly noticed that, in practice, the great majority of the quadratics, U_k^N , typically contributed little or nothing to the actual solution. Various pruning strategies were applied to attenuate this complexity growth through the elimination of less-valuable quadratics. (Essentially, these project the solution onto a lower-dimensional abstract space at each step.) However, during a visit with Dr. S. Gaubert at INRIA, we determined that certain tools from convex optimization could be applied to radically improve this pruning process. See [20]. With this tool in hand we demonstrated solution of an HJB PDE over all of \mathbb{R}^6 with M=6 in roughly 45 minutes on a desktop machine. This would require many years of CPU time with standard methods (solving only over a relatively large, but finite, region in the latter case). Of course, one cannot depict a solution over 6-dimensional space. However, some data along planes is depicted in Figures 1-2.

The above results require that the Hamiltonian take the form of a maximum of quadratic forms. In order to make the approach amenable to general nonlinear problems, one must determine a means for approximating a general (semiconvex) Hamiltonian as a maximum of quadratic forms. In order to

Figure 1: x_1 and x_2 partials on the x_1, x_2 plane

do this sensibly, one needs to determine a mapping from the approximation quality of the Hamiltonian to the resulting error in the solution. This will lead us to appropriate approximations of a general Hamiltonian. In [17], [18], we demonstrate such a mapping.

Value-Based Sensor Tasking

The correct measure for sensor UAV tasking is the expected payoff to the warfighters of the possible observational data returns. More typical approaches include entropy-based metrics, but these are not correct in the sense that they do not represent the actual value of the information to the warfighter. For example, one location might be a far more dangerous potential location for opposing forces to be firing from than another. In [23], McEneaney developed an object, $V_{\tau}(q)$ which describes the minimax, expected payoff for a game between Blue and Red at time t as a function of the Blue knowledge of the system state, specified as probability distribution q. (It is assumed that Red has perfect state information.)

This object may be used to determine the value of sensing actions. For

Figure 2: Optimal switching and backsubstitution error on the x_1, x_2 plane

discussion purposes, suppose a simple, decomposed problem is given as follows. Suppose Blue will choose a sensing control action, ending at time, $t=\tau>0$, immediately followed by a combat action. At time, t=0, Blue knowledge is described by q_0 . Given a series of sensing actions, $\{u_t\}_{t=0}^{\tau}$, there is an associated set of possible observations, $\{y_t(u_t)\}_{t=0}^{\tau}$. Note that the y_t are random variables - the actual observation that will be obtained will be corrupted by noise. Given such a set of observations, one may update the distribution q_0 to q_{τ} by an estimator such as Bayes rule. Note that q_{τ} is a random variable. Let the resulting expected payoff assuming optimal future troop actions be denoted by $V(\tau, q_{\tau})$.

Based on an analysis of the combat actions, in the case where the opposing force stays fixed in their possibly hidden urban locations, we were able to show that this value will always take the form of a pointwise maximum of linear functionals over the probability simplex. That is, one has

$$V(\tau, q) = \max_{i \in \mathcal{I}_{\tau}} b_{\tau}^{i} \cdot q.$$

One also has the usual dynamic programming result that for $t \in \{0, 1, \dots \tau -$

$$V(t,q) = \max_{u \in \mathcal{U}} \mathbb{E}_y \left\{ V(t+1, \beta^{y,u}(q)) \right\}$$

where the expectation is over the set of possible observations.

Very interestingly, we found that if V(t+1,q) takes the form $V(t+1,q) = \max_{i \in \mathcal{I}_{t+1}} b_{t+1}^i \cdot q$ where $\mathcal{I}_{t+1} = \{1, 2, \dots I_{t+1}\}$. Then,

$$V(t,q) = \max_{i \in \mathcal{I}_t} b_t^i \cdot q$$

where $\mathcal{I}_t = \{1, 2, \dots I_t\}, I_t = N_u(I_{t+1})^{N_y},$

$$b_t^i = \sum_{y \in \mathcal{Y}} D(\mathbf{R}^{y,u}) b_{t+1}^{j_y} \tag{1}$$

where $(u, \{j_y\}) = \mathcal{M}^{-1}(i)$, and \mathcal{M} is a one-to-one, onto mapping from $\mathcal{U} \times \mathcal{P}^{N_y}(\mathcal{I}_{t+1}) \to \mathcal{I}_t$ (i.e., an indexing of $\mathcal{U} \times \mathcal{P}^{N_y}(\mathcal{I}_{t+1})$). Here, $D(\mathbf{R}^{y,u})$ is a Bayes rule updater; the linearity is a result of an expectation operation. Using this technology, we began solving sensing control problems. A very simple example of an optimal path can be seen in the right-hand image of Figure 3, where the blue path indicates movement of combat ground forces, and the green path indicates the optimal tasking path of a single supporting sensor platform. More information on this area of research appears in [25], [26].

At some later time, we realized the full implication of this result. It was that one essentially had a max-plus curse-of-dimensionality-free approach to a stochastic control problem. This was entirely unexpected, as it was previously believed that max-plus linearity was required for max-plus curse-of-dimensionality-free methods. However, in fact, what is actually required is quite a bit less. We are now exploring idempotent (max-plus and min-max) curse-of-dimensionality-free methods for stochastic control problems and certain games. This is the beginning of a new branch of research in application of idempotent methods to control, estimation, games and Hamilton-Jacobi PDEs; see [11], [12], [13], [14].

References

[1] M. Akian, S. Gaubert and A. Lakhoua, The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis, SIAM J. Control and Optim., 47 (2008), 817–848.

Figure 3: $-V_t(q)$ for a micro-action and optimal sensing-support route

- [2] M. Akian, S. Gaubert and A. Lakhoua, A max-plus finite element method for solving finite horizon deterministic optimal control problems, Proc. 16th International Symposium on Mathematical Theory of Networks and Systems (2004).
- [3] F.L. Baccelli, G. Cohen, G.J. Olsder and J.-P. Quadrat, Synchronization and Linearity, John Wiley, New York, 1992.
- [4] R.A. Cuninghame-Green, *Minimax Algebra*, Lecture Notes in Economics and Mathematical Systems 166, Springer, New York, 1979.
- [5] G. Cohen, S. Gaubert and J.-P. Quadrat, Duality and Separation Theorems in Idempotent Semimodules, Linear Algebra and Applications, 379 (2004), 395–422.
- [6] G. Cohen, S. Gaubert, J.-P. Quadrat and I. Singer, Max-Plus Convex Sets and Functions, Idempotent Mathematics and Mathematical Physics, G. L. Litvinov and V. P. Maslov (Eds.), Contemporary Mathematics, Amer. Math. Soc., 377 (2005), 105–129.

- [7] W.H. Fleming, Max-plus stochastic processes, Applied Math. and Optim., 49 (2004), 159–181.
- [8] W.H. Fleming and W.M. McEneaney, A max-plus based algorithm for an HJB equation of nonlinear filtering, SIAM J. Control and Optim., 38 (2000), 683-710.
- [9] V.N. Kolokoltsov and V.P. Maslov, Idempotent Analysis and Its Applications, Kluwer, 1997.
- [10] G.L. Litvinov, V.P. Maslov and G.B. Shpiz, *Idempotent Functional Analysis: An Algebraic Approach*, Mathematical Notes, 69, No. 5 (2001), 696–729.
- [11] W.M. McEneaney, Idempotent Method for Dynamic Games and Complexity Reduction in Min-Max Expansions, Proc. IEEE CDC 2009, (to appear).
- [12] W.M. McEneaney, Idempotent Algorithms for Discrete-Time Stochastic Control through Distributed Dynamic Programming, Proc. IEEE CDC 2009, (to appear).
- [13] W.M. McEneaney, Distributed Dynamic Programming for Discrete-Time Stochastic Control, and Idempotent Algorithms, Automatica, (to appear).
- [14] W.M. McEneaney, Complexity Reduction, Cornices and Pruning, Proc. of the International Conference on Tropical and Idempotent Mathematics, G.L. Litvinov and S.N. Sergeev (Eds.), AMS, (to appear).
- [15] W.M. McEneaney, Convergence Rate for a Curse-of-Dimensionality-Free Method for HJB PDEs Represented as Maxima of Quadratic Forms, SIAM J. Control and Optim., (to appear).
- [16] W.M. McEneaney and L.J. Kluberg, Convergence rate for a curse-of-dimensionality-free method for a class of HJB PDEs, SIAM J. Control and Optim., (to appear).
- [17] W.M. McEneaney and A. Deshpande *Payoff Suboptimality Induced by Approximation of the Hamiltonian*, SIAM J. Control and Optim., (submitted).

- [18] W.M. McEneaney and A. Deshpande Payoff Suboptimality and Errors in Value Induced by Approximation of the Hamiltonian, Proc. IEEE CDC, 2008.
- [19] W.M. McEneaney, Max-Plus Methods for Nonlinear Control and Estimation, Birkhauser, Boston, 2006.
- [20] W.M. McEneaney, A. Deshpande, S. Gaubert, Curse-of-Complexity Attenuation in the Curse-of-Dimensionality-Free Method for HJB PDEs, Proc. ACC 2008, Seattle (2008).
- [21] W.M. McEneaney and P.M. Dower, A max-plus affine power method for approximation of a class of mixed l_{∞}/l_2 value functions, Proc. 42nd IEEE Conf. on Dec. and Control, Maui (2003), 2573–2578.
- [22] W.M. McEneaney, "A Curse-of-Dimensionality-Free Numerical Method for Solution of Certain HJB PDEs", SIAM J. Control and Optim., 46 (2007), 1239–1276.
- [23] W.M. McEneaney, "Some Classes of Imperfect Information Finite State Space Stochastic Games with Finite-Dimensional Solutions", Applied Math. and Optim., Vol. 50 (2004), 87–118.
- [24] W.M. McEneaney, Max-Plus Eigenvector Representations for Solution of Nonlinear H_{∞} Problems: Error Analysis, SIAM J. Control and Optim., Vol. 43 (2004), 379-412.
- [25] William M. McEneaney, Ali Oran and Andrew Cavender, *Value-Based Tasking Controllers for Sensing Assets*, Proc. AIAA Guidance, Nav. and Control Conf., Honolulu, (2008).
- [26] William M. McEneaney, Ali Oran and Andrew Cavender, Value-Based Control of the Observation-Decision Process, Proc. American Control Conf., Seattle, (2008).
- [27] I. Singer, Abstract Convex Analysis, Wiley-Interscience, New York, 1997.
- [28] A.M. Rubinov and I. Singer, Topical and Sub-Topical Functions, Downward Sets and Abstract Convexity, Optimization, 50 (2001), 307–351.