Modern Cryptography and Its Applications

4 triple-DES and AES

ch4~6 & Sec7.1 in textbook

Yanwei Yu

E-mail: ywyu@ustc.edu.cn

Outline

- 2DES, 3DES
- AES History
- Mathematical Basis —— GF(2ⁿ)
- AES Principle
- AES Security Analysis
- Implementation of AES

Example of Symmetric Block Cipher

Assume M={m1,m2,m3}, C={c1,c2,c3},
 K={1,2,3,4,5,6} and C=E_k(M), M=D_k(C)

Number of substitution table: 3!= 6 number of key: 6

For one plaintext-ciphertext pair (mi, cj), two correct keys exist. So, "real" correct key is determined for two pairs of plaintext-ciphertext.

- DES: C=E_k(M)
 - Plaintext block M: 64 bits
 - Key k: 56 bits
 - Cipher-text block C: 64 bits
- Theoretically, (2⁶⁴)! mappings exist from plaintext block to cipher-text block.
- In fact, only (2^{56}) mappings are used because key size $=2^{56}$.
- Q: For one plaintext-ciphertext pair (mi, cj), How many correct keys exist?

Outline

- 2DES, 3DES
- AES History
- Mathematical Basis —— GF(2ⁿ)
- AES Principle
- AES Security Analysis
- Implementation of AES

Review of DES

- 1973: NBS issued a request for proposals for a national cipher standard
- 1977: adopted IBM's submission as the Data Encryption Standard
- 1994: use DES for another five years; NIST recommended the use of DES for applications other than the protection of classified information.
- 1999: use DES for legacy systems and use triple DES (which in essence involves repeating the DES algorithm three times on the plaintext using two or three different keys to produce the ciphertext) instead.

Selfware For

Multiple Encryption & DES

- A replacement for DES was needed
 - potential vulnerability of DES to a bruteforce attack: O (2⁵⁵)
 - O (2⁵⁴) under the chosen plaintexts (if $C=E_K(P)$, then $\overline{C}=E_{\overline{K}}(\overline{P})$)
- Two alternatives
 - design a completely new algorithm: AES
 - use multiple encryption with DES and multiple keys to preserve the existing investment in software and equipment:
 Double-DES, Triple-DES

Double-DES?

- could use two encryption stages and two keys (2DES) on each block
 - Encrypt: $C = E_{K2}(E_{K1}(P))$
 - Decrypt: $P = D_{K1} (D_{K2} (C))$
- issue of reduction to single stage
 - $E_{\rm K2}$ (E_{\rm K1} (P)) = $E_{\rm K3}$ (P) $\,$?? not likely but only finally proved in 1992
- "meet-in-the-middle" attack: O (2⁵⁶)
 - Assume pair (P,C), have $C=E_{K2}E_{K1}$ (P)
 - $X = E_{K1}(P) = D_{K2}(C)$
 - attack by encrypting P with all keys and store
 - then decrypt C with keys and match X value
 - two blocks of known plaintext-ciphertext will succeed against double DES

Triple-DES

- use three stages of encryption
- cost of the known-plaintext attack: $O(2^{112})$
- Two forms:
 - use two keys with E-D-E sequence
 - use Three Keys with E-D-E sequence

Triple-DES with Two-Keys

- use two keys with E-D-E sequence
 - $C = E_{K1} (D_{K2} (E_{K1} (P)))$
 - encrypt & decrypt equivalent in security
 - if K1==K2 then can work with single DES
- standardized in ANSI X9.17 & ISO8732
- no current known practical attacks
- Key length: 112 bits

Triple-DES with Three-Keys

- using two-key 3DES may feel some concern although are no practical attacks on two-key Triple-DES
- three-key 3DES is the preferred alternative: key length is 168bits
 - $C = E_{K3} (D_{K2} (E_{K1} (P)))$
 - if K1==K2 or K2 ==K3 then can work with single DES
- has been adopted by some Internet applications, including PGP, S/MIME.

Triple-DES summary

Attractions:

- its key of 168-bit length overcomes the vulnerability to brute-force attack of DES.
- Security of algorithm. the underlying encryption algorithm in 3DES is the same as in DES.
 - DES is very resistant to cryptanalysis.
 - since 1977, no effective cryptanalytic attack based on DES rather than brute force has been found after until 1999.
- 3DES would be an appropriate choice for a standardized encryption algorithm for decades to come.

internal Engineering

Drawbacks

- relatively less effective in software. The original DES was designed for mid-1970s hardware implementation and does not produce efficient software code. 3DES, which has three times as many rounds as DES, is correspondingly slower.
- Short block size. both DES and 3DES use a 64-bit block size. For reasons of both efficiency and security, a larger block size is desirable.
- 3DES is not a reasonable candidate for longterm use

Outline

- 2DES, 3DES
- AES History
- Mathematical Basis —— GF(2ⁿ)
- AES Principle
- AES Security Analysis
- Implementation of AES

Origins

- clear a replacement for DES was needed
 - potential vulnerability of DES to a brute-force attack: 0 (2⁵⁵)
- can use 3DES(Triple-DES), but 3DES is slow and has small blocks
- US NIST issued call for ciphers in 1997
- 15 candidates accepted in Jun 98
- 5 were shortlisted in Aug-99
- Rijndael was selected as the AES in Oct-2000
- issued as FIPS PUB 197 standard in Nov-2001

AES Requirements

- private key symmetric block cipher
- 128-bit block, 128/192/256-bit keys
- stronger & faster than Triple-DES
- active life of 20-30 years (+ archival use)
- provide full specification & design details
- both C & Java implementations
- NIST have released all submissions & unclassified analyses

AES Evaluation Criteria

initial criteria:

- security effort for practical cryptanalysis
- cost in terms of computational efficiency
- algorithm & implementation characteristics

final criteria:

- general security
- ease of software & hardware implementation
- Attacks to implementation
 - E.g, Timing attacks.
- flexibility (in en/decrypt, keying, other factors)

AES Shortlist(候选者)

- after testing and evaluation, shortlist in Aug-99:
 - MARS (IBM) complex, fast, high security
 - RC6 (USA) simple, fast, low security
 - Rijndael (Belgium) clean, fast, good security
 - Serpent (Euro) clean, slow, high security
 - Twofish (USA) complex, fast, high security

Outline

- 2DES, 3DES
- AES History
- Mathematical Basis —— GF(2ⁿ)
 - Chapter 5
- AES Principle
- AES Security Analysis
- Implementation of AES

Learning Objectives

- Distinguish among groups, rings, and fields.
- Define finite fields of the form GF(p).
- Explain the differences among three classes of polynomial(多项式) arithmetic as bellows:
 - ✓ ordinary polynomial arithmetic
 - ✓ polynomial arithmetic with coefficients in Zp
 - ✓ modular polynomial arithmetic in GF(2ⁿ).
- Define finite fields of the form GF(2ⁿ).
- Explain the two different uses of the mod operator.

Groups, Rings, and Fields

- A number of cryptographic algorithms rely heavily on properties of finite fields
 - the Advanced Encryption Standard (AES) :GF(2ⁿ)
 - elliptic curve cryptography: GF(P) and GF(2ⁿ)
- Finite field: a field with a finite number of elements
- concern operations on "numbers"
 - combine two elements of the set, perhaps in some operation, to obtain a third element of the set
- Operation:
 - Basis operation: +, •
 - Derived operation: -, ÷

Groups, Rings, and Fields

Figure 5.1 Groups, Rings, and Fields

Groups, Rings, and Fields

Figure 5.2 Properties of Groups, Rings, and Fields

Software Enginee

Fields

Figure 5.3 Types of Fields

Galois Fields

- finite fields play a key role in cryptography
- in particular often use the fields:
 - GF(p):
 - p is a prime
 - number of elements in a finite field is P
 - **GF(2**ⁿ)
 - number of elements in a finite field must be a power of a prime, pⁿ
 - known as Galois fields, denoted GF(pⁿ)

Finite Fields of the form GF(p)

• **GF(2)**

The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

+	0	1					
0	0	1					
1	1	0					
	Addition						

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and multiplication is equivalent to the logical AND operation.

Finite Fields of the form GF(p)

• **GF(7)**: using modular arithmetic modulo 7

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

(d) Addition modulo 7

(e) Multiplication modulo 7

w	0	1	2	3	4	5	6
-w	0	6	5	4	3	2	1
w ⁻¹	_	1	4	5	2	3	6

(f) Additive and multiplicative inverses modulo 7

Finite Fields of the form GF(p)

set Z₈: using modular arithmetic modulo 8

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

						- (b) M	ultied	icatio	n mo	dulo	8
2	3	4	5	6	7	0	7	6	5	4	3	2
1	2	3	4	5	6	0	6	4	2	0	6	4
0	1	2	3	4	5	0	5	2	7	4	1	6
7	0	1	2	3	4	0	4	0	4	0	4	0

0

(a) Addition modulo 8

3

w	0	1	2	3	4	5	6	7
-w	0	7	6	5	4	3	2	1
w^{-1}	_	1	_	3	_	5	_	7

(c) Additive and multiplicative inverses modulo 8

set Z₈ is not a field!

0

0

Finite Fields of the form GF(2³)

- Motivation

- wish to work with integers in the range 0 through 2ⁿ-1, which fit into an n-bit word
- But, the set of integers modulo 2ⁿ for n>1, is not a field
 - 2ⁿ is not a prime

Example GF(2³)

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

	+	000	001 1	010 x	$\begin{array}{c} 011 \\ x + 1 \end{array}$	100 x ²	$x^2 + 1$	$\frac{110}{x^2 + x}$	$x^2 + x + 1$
000	0	0	1	Х	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	X	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	x	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x+1	x	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	X	x+1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	X
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	х	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x^2	x+1	x	1	0

(a) Addition

	×	000	001 1	010 x	$011 \\ x + 1$	100 x ²	$x^2 + 1$	$\frac{110}{x^2 + x}$	111 $x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	X	0	х	x^2	$x^2 + x$	x+1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	X
100	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^{2} + x$	х	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	x	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^{2} + x$	0	$x^{2} + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	X	x ²
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	X	1	$x^{2} + x$	x^2	x + 1

(b) Multiplication

choose an irreducible polynomial of degree 3: $(x^3 + x + 1)$

Table 5.1. Arithmetic Modulo 8

+	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

(a) Addition modulo 8

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

⁽b) Multiplication modulo 8

w	-w	w^{\perp}
0	0	_
1	7	1
2	6	_
3	5	3
4	4	0 <u>0_3</u> 2
5	3	5
6	2	-
7	1	7

(c) Additive and multiplicative inverses modulo 8

GF(2ⁿ)

- A set of integers in the range 0 through 2ⁿ-1, which fit into an n-bit word
- Operations: +, ; -, ÷
- attractions for cryptographic algorithms
 - provides a uniform mapping (mapping the integers evenly onto themselves)

Example of Operations in GF(2ⁿ)

- Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(2⁸), with the irreducible polynomial m(x) = x⁸ + x⁴ +x³ + x + 1.
- Consider $f(x) = x^6 + x^4 + x^2 + x + 1$ and $g(x) = x^7 + x + 1$. Then
 - Addition:

$$(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + = x^7 + x^6 + x^6 + x^4 + x^2$$
 (polynomial notation)
1)
$$(01010111) \bigoplus (10000011) = (11010100)$$
 (binary notation)

- Multiplication:

•
$$f(x) - g(x) = x^{13} + x^{11} + x^9 + x^8 + x^7 + x^7 + x^5 + x^3 + x^2 + x + x^6 + x^4 + x^2 + x + 1$$

= $x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$

• $f(x) - g(x) \mod m(x) = x^7 + x^6 + 1$

$$x^{5} + x^{3}$$

$$x^{8} + x^{4} + x^{3} + x + 1 / x^{13} + x^{11} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + + 1$$

$$x^{13} + x^{9} + x^{8} + x^{6} + x^{5}$$

$$x^{11} + x^{4} + x^{3}$$

$$x^{11} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$x^{7} + x^{6} + x^{4} + x^{3} + 1$$

In an earlier example, we showed that for $f(x) = x^6 + x^4 + x^2 + x + 1$, $g(x) = x^7 + x + 1$, and $m(x) = x^8 + x^4 + x^3 + x + 1$, $f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1$. Redoing this in binary arithmetic, we need to compute (01010111) \times (10000011). First, we determine the results of multiplication by powers of x:

$$\mathbf{x} * \mathbf{f}(\mathbf{x}) = (01010111) \times (00000001) = (10101110)$$
 $\mathbf{x}^{2} * \mathbf{f}(\mathbf{x}) = (01010111) \times (00000100) = (01011100) \bigoplus (00011011) = (01000111)$
 $\mathbf{x}^{3} * \mathbf{f}(\mathbf{x}) = (01010111) \times (00001000) = (10001110)$
 $\mathbf{x}^{4} * \mathbf{f}(\mathbf{x}) = (01010111) \times (00010000) = (00011100) \bigoplus (00011011) = (00000111)$
 $\mathbf{x}^{5} * \mathbf{f}(\mathbf{x}) = (01010111) \times (00100000) = (00001110)$
 $\mathbf{x}^{6} * \mathbf{f}(\mathbf{x}) = (01010111) \times (01000000) = (00011100)$
 $\mathbf{x}^{7} * \mathbf{f}(\mathbf{x}) = (01010111) \times (10000000) = (00111000)$
So,

20

$$(01010111) \times (10000011) = (01010111) \times [(00000001) \times (00000010) \times (10000000)]$$

$$= (01010111) \bigoplus (10101110) \bigoplus (00111000) = (11000001)$$
which is equivalent to $x^7 + x^6 + 1$.

Computational Example

- in GF(2³) have: (x^2+1) is $(101)_2$ & (x+1) is $(011)_2$
- in the finite field $GF(2^3)$, with the irreducible polynomial $m(x) = x^3 + x + 1$.
- so addition is
 - $-(x^2+1)+(x+1)=x^2+x$
 - $(101)_2 XOR (011)_2 = 110_2$
- and multiplication is
 - $(x+1)\cdot(x^2+1) = x\cdot+1) + 1\cdot(x^2+1)$ $= x^3+x+x^2+1 = x^3+x^2+x+1$
 - $(011)_2 \cdot (101)_2 = (101)_2 <<1 \text{ XOR } (101)_2 <<0 =$ $(1010)_2 \text{ XOR } (101)_2 = (1111)_2$
- polynomial modulo reduction (get q(x) & r(x)) is
 - $(x^3+x^2+x+1) \mod (x^3+x+1) = 1 \cdot (x^3+x+1) + (x^2) = x^2$
 - $= (1111)_2 \mod (1011)_2 = (1111)_2 \text{ XOR } (1011)_2 = (0100)_2$

Summary: Operations of GF(2ⁿ)

- Any element of GF(2ⁿ) is represented as a polynomial
 - E.g. 1100: $x^3 + x^2$
- +(addition)
 - polynomial notation: adding corresponding coefficients based on modulo 2
 - binary notation: a bitwise XOR operation.
- -(multiplication)
 - polynomial notation: perform the ordinary rules of polynomial arithmetic and Arithmetic on the coefficients is performed modulo 2, then modulo some irreducible polynomial m(x) of degree
 - binary notation: multiplication is shift & XOR

Outline

- 2DES, 3DES
- AES History
- Mathematical Basis —— GF(2ⁿ)
- AES Principle
- AES Security Analysis
- Implementation of AES

The AES Cipher - Rijndael

- designed by Rijmen-Daemen in Belgium
- In Rijndael proposal for AES, block data and key length can have independently 128, 192, or 256 bits.

 AES has 128/192/256 bit keys, 128 bit block data

Table 5.3. AES Parameters

Key size (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Plaintext block size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Number of rounds	10	12	14
Round key size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Expanded key size (words/bytes)	44/176	52/208	60/240

Assume a key length of 128 bits in this section.

Parameters of AES

(a) Input, state array, and output

(b) Key and expanded key

- Input, State, Output of each block have 4 columns of 4 bytes(16*8=128bits)
- 128-bit (16-byte) key and expands into array of 44 32-bit words
- Note the ordering of bytes within a matrix is by column

An AES Example

Plaintext:	0123456789abcdeffedcba9876543210
Key:	0f1571c947d9e8590cb7add6af7f6798
Ciphertext:	ff0b844a0853bf7c6934ab4364148fb9

• Input:

01	89	fe	76
23	ab	dc	54
45	cd	ba	32
67	ef	98	10

Note the ordering of bytes within a matrix is by column

Software Engi

Start of Round	After SubBytes	After ShiftRows	After MixColumns	Round Key
01 89 fe 76				0f 47 0c af
23 ab dc 54				15 d9 b7 7f
45 cd ba 32				71 e8 ad 67
67 ef 98 10				c9 59 d6 98
0e ce f2 d9	ab 8b 89 35	ab 8b 89 35	b9 94 57 75	dc 9b 97 38
36 72 6b 2b	05 40 7f f1	40 7f f1 05	e4 8e 16 51	90 49 fe 81
34 25 17 55	18 3f f0 fc	f0 fc 18 3f	47 20 9a 3f	37 df 72 15
ae b6 4e 88	e4 4e 2f c4	c4 e4 4e 2f	c5 d6 f5 3b	b0 e9 3f a7
65 0f c0 4d	4d 76 ba e3	4d 76 ba e3	8e 22 db 12	d2 49 de e6
74 c7 e8 d0	92 c6 9b 70	c6 9b 70 92	b2 f2 dc 92	c9 80 7e ff
70 ff e8 2a	51 16 9b e5	9b e5 51 16	df 80 f7 c1	6b b4 c6 d3
75 3f ca 9c	9d 75 74 de	de 9d 75 74	2d c5 1e 52	b7 5e 61 c6
5c 6b 05 f4	4a 7f 6b bf	4a 7f 6b bf	b1 c1 0b cc	c0 89 57 b1
7b 72 a2 6d	21 40 3a 3c	40 3a 3c 21	ba f3 8b 07	af 2f 51 ae
b4 34 31 12	8d 18 c7 c9	c7 c9 8d 18	f9 1f 6a c3	df 6b ad 7e
9a 9b 7f 94	b8 14 d2 22	22 b8 14 d2	1d 19 24 5c	39 67 06 c0
71 48 5c 7d	a3 52 4a ff	a3 52 4a ff	d4 11 fe 0f	2c a5 f2 43
15 dc da a9	59 86 57 d3	86 57 d3 59	3b 44 06 73	5c 73 22 8c
26 74 c7 bd 24 7e 22 9c	f7 92 c6 7a 36 f3 93 de	c6 7a f7 92 de 36 f3 93	cb ab 62 37 19 b7 07 ec	65 0e a3 dd f1 96 90 50
f8 b4 0c 4c	41 8d fe 29 85 9a 36 16	41 8d fe 29	2a 47 c4 48	58 fd 0f 4c
67 37 24 ff ae a5 c1 ea	e4 06 78 87	9a 36 16 85 78 87 e4 06	83 e8 18 ba 84 18 27 23	9d ee cc 40 36 38 9b 46
e8 21 97 bc	9b fd 88 65	65 9b fd 88	eb 10 0a f3	eb 7d ed bd
72 ba cb 04	40 f4 1f f2	40 f4 1f f2	7b 05 42 4a	71 8c 83 cf
1e 06 d4 fa	72 6f 48 2d	6f 48 2d 72	1e d0 20 40	c7 29 e5 a5
b2 20 bc 65	37 b7 65 4d	65 4d 37 b7	94 83 18 52	4c 74 ef a9
00 6d e7 4e	63 3c 94 2f	2f 63 3c 94	94 c4 43 fb	c2 bf 52 ef
0a 89 c1 85	67 a7 78 97	67 a7 78 97	ec 1a c0 80	37 bb 38 f7
d9 f9 c5 e5	35 99 a6 d9	99 a6 d9 35	0c 50 53 c7	14 3d d8 7d
d8 f7 f7 fb	61 68 68 0f	68 Of 61 68	3b d7 00 ef	93 e7 08 a1
56 7b 11 14	b1 21 82 fa	fa b1 21 82	b7 22 72 e0	48 f7 a5 4a
db a1 f8 77	b9 32 41 f5	b9 32 41 f5	b1 1a 44 17	48 f3 cb 3c
18 6d 8b ba	ad 3c 3d f4	3c 3d f4 ad	3d 2f ec b6	26 1b c3 be
a8 30 08 4e	c2 04 30 2f	30 2f c2 04	0a 6b 2f 42	45 a2 aa 0b
ff d5 d7 aa	16 03 0e ac	ac 16 03 0e	9f 68 f3 b1	20 d7 72 38
f9 e9 8f 2b	99 1e 73 f1	99 1e 73 f1	31 30 3a c2	fd 0e c5 f9
1b 34 2f 08	af 18 15 30	18 15 30 af	ac 71 8c c4	0d 16 d5 6b
4f c9 85 49	84 dd 97 3b	97 3b 84 dd	46 65 48 eb	42 e0 4a 41
bf bf 81 89	08 08 0c a7	a7 08 08 0c	6a 1c 31 62	cb 1c 6e 56
cc 3e ff 3b	4b b2 16 e2	4b b2 16 e2		b4 ba 7f 86
a1 67 59 af	32 85 cb 79	85 cb 79 32		8e 98 4d 26
04 85 02 aa a1 00 5f 34	f2 97 77 ac	77 ac f2 97		f3 13 59 18
	32 63 cf 18	18 32 63 cf		52 4e 20 76
ff 08 69 64				
0b 53 34 14				
84 bf ab 8f				
4a 7c 43 b9				

(a) Input, state array, and output

(b) Key and expanded key

Figure 6.2 **AES Data Structures**

Structure of AES vs. Feister

2021/

Rijndael

- has 10 rounds in which state undergoes:
 - byte substitution (1 S-box used on every byte)
 - shift rows (permute bytes between groups/columns)
 - mix columns (subs using matrix multipy of groups)
 - add round key (XOR state with key material)
- Each round can be viewed as alternating(交替)
 XOR key & scramble data bytes
- Each step is invertible
- initial XOR key material & incomplete last round
- with fast XOR & table lookup implementation

2021/3/22

2021/3/22

47 a of USTC

AES Round— 4 transformations

(1) Byte Substitution

- a simple substitution of each byte
- uses one table of 16x16 bytes containing a permutation of all 256 8-bit values
- each byte of state is replaced by byte indexed by row (left 4-bits) & column (right 4-bits)
 - eg. byte {95} is replaced by byte in row 9 column 5
 - which has value {2A}
- S-box must be invertible and can be constructed using defined transformation of values in GF(28)
- designed to be resistant to all known attacks
 - has a low correlation between input bits and output
 bits

2021/3/2

Byte Substitution

2021/3/22

Atume Engi

(a) S-box

										y							
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	FI	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
	5	53	DI	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
x	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	Cl	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

an example of the SubBytes transformation:

EA	04	65	85
83	45	5D	96
5C	33	98	В0
F0	2D	AD	C5

									J	v							
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	СВ
	2	54	7B	94	32	A6	C2	23	3D	EE	4C	95	0B	42	FA	C3	4E
	3	08	2E	A1	66	28	D9	24	B2	76	5B	A2	49	6D	8B	D1	25
	4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	В6	92
	5	6C	70	48	50	FD	ED	B9	DA	5E	15	46	57	A7	8D	9D	84
	6	90	D8	AB	00	8C	BC	D3	0A	F7	E4	58	05	B8	В3	45	06
	7	D0	2C	1E	8F	CA	3F	0F	02	C1	AF	BD	03	01	13	8A	6B
x	8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	B4	E6	73
	9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
	A	47	F1	1A	71	1D	29	C5	89	6F	В7	62	0E	AA	18	BE	1B
	В	FC	56	3E	4B	C6	D2	79	20	9A	DB	C0	FE	78	CD	5A	F4
	С	1F	DD	A8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	A 9	19	B5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
	Е	A0	E0	3B	4D	AE	2A	F5	В0	C8	EB	BB	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	E1	69	14	63	55	21	0C	7D

(b) Inverse S-box

 ${4C} -> {5D}$

Software Engineering

(a) Calculation of byte at row y, column x of S-box

2021/3/22

Figure 6.6 Constuction of S-Box and IS-Box

(a) Calculation of byte at row y, column x of IS-box

How to Construct S-box?

For {xy}, compute its result {mn} after byte substitution transformation

- Step1: For {xy}, compute its multiplicative inverse {ab} in the finite field GF(2⁸); the value {00} is mapped to itself.
- Step2:
 - Assume {ab} == $(b_7, b_6, b_5, b_4, b_3, b_2, b_1, b_0)_2$, then {mn} = $(b'_7, b'_6, b'_5, b'_4, b'_3, b'_2, b'_1, b'_0)_2$

Example

- consider the input value {95}. The result is {2A}, which should appear in row {09} column {05} of the S-box
- The multiplicative inverse in GF(2⁸) is ${95}^{-1} = {8A} = (10001010)_2$

2A} ering of UST

RATIONALE for S-Box design

- resistant to known cryptanalytic attacks.
- has a low correlation between input and output
- the output is not a linear mathematical function of the input
 - due to the use of the multiplicative inverse.
- has no fixed points [S-box(a) = a] and no "opposite fixed points" $[S-box(a) = \overline{a}]$, where \overline{a} is the bitwise complement of a.
- must be invertible, but does not self-inverse
 - IS-box[S-box(a)]=a. S-box(a) \neq IS-box(a).
 - For example, $S-box({95})={2A}$, but $S-box({95})={AD}$.

(2) Shift Rows

- a circular byte shift in each each
 - 1st row is unchanged
 - 2nd row does 1 byte <u>circular</u> shift to left
 - 3rd row does 2 byte <u>circular</u> shift to left
 - 4th row does 3 byte <u>circular</u> shift to left
- decrypt inverts using shifts to right
- since state is processed by columns, this step permutes bytes between the columns

Shift Rows

- a row shift moves an individual byte from one column to another, which is a linear distance of a multiple of 4 bytes.
- •Also note that the transformation ensures that the 4 bytes of one column are spread out to four different columns

(3) Mix Columns

- each column is processed separately
- each byte is replaced by a value dependent on all 4 bytes in the column
- effectively a matrix multiplication in GF(28) using prime poly m(x)

$$=x^8+x^4+x^3+x+1$$

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}$$

2021/3/22

Mix Columns

each byte is replaced by a value dependent on all 4 bytes in the column.

$$\begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}$$

$$\begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

Mix Columns

- can express each col as 4 equations
 - to derive each new byte in col

$$s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$$

 $s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$
 $s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$
 $s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$

An Example of MixColumns

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	BC

$$(\{02\} \cdot \{87\}) \oplus (\{03\} \cdot \{6E\}) \oplus \{46\}$$

$$\oplus \{A6\} = \{47\}$$

$$\oplus$$
 ({02} · {6E}) \oplus ({03} · {46}) \oplus {A6}

$$\oplus (\{03\} \cdot \{46\}) \oplus \{A6\}$$

$$\oplus$$
 {6E} \oplus ({02} · {46}) \oplus ({03} · {A6}) = {94}

 $= \{37\}$

$$\oplus$$
 {6E}

$$\oplus$$
 ($\{02\} \cdot \{46\}$)

$$\oplus (\{03\},\{A0\}) = \{94\}$$

$$(\{03\} \cdot \{87\}) \oplus \{6E\}$$

$$\oplus$$
 {46}

$$(\{03\} \cdot \{87\}) \oplus \{6E\} \oplus \{46\} \oplus (\{02\} \cdot \{A6\}) = \{ED\}$$

For the first equation, we have $\{02\} \cdot \{87\} = (0000 \ 1110) \oplus (0001 \ 1011) =$ $(0001\ 0101)$ and $\{03\} \cdot \{6E\} = \{6E\} \oplus (\{02\} \cdot \{6E\}) = (0110\ 1110) \oplus (1701\ 1100) = (0110\ 1110) \oplus (1701\ 1100) = (0110\ 1110) \oplus (01701\ 1100) \oplus (01701\ 1100) = (0110\ 1110) \oplus (01701\ 1100) \oplus (017010\ 1100) \oplus (017010$ (1011 0010). Then,

$$\{02\} \cdot \{87\} = 0001\ 0101$$

$$\{03\} \cdot \{6E\} = 1011\ 0010$$

$$\{46\} = 0100\ 0110$$

2021/3/22
$$\{A6\}$$
 = $\underline{1010\ 0110}$

prime poly
$$m(x)$$

= $x^8+x^4+x^3+x+1$

Mix Columns

decryption requires use of inverse matrix

- with larger coefficients, hence a little harder

$$\begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

Can prove:

$$\begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix} \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{0,3} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}$$

which is equivalent to showing

$$\begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix} \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Choice of coefficients in MixColumns

- based on a linear code with maximal distance between code words, which ensures a good mixing among the bytes of each column.
- influenced by implementation considerations
 - All are {01}, {02}, or {03}.
 - multi-plication by these coefficients involves at most a shift and an XOR.

Coefficients in InvMixColumns

- But, the coefficients in InvMixColumns are more formidable to implement.
 - encryption was deemed more important than decryption for two reasons:
 - √ 1. For the CFB and OFB cipher modes (Figures 7.5 and 7.6; described in Chapter 7), only encryption is used.
 - √ 2. As with any block cipher, AES can be used to construct a message authentication code (Chapter 13), and for this, only encryption is used.

Another way of characterizing the MixColumns transformation

- have an alternate characterization, see Appendix 5A
 - each column a 4-term polynomial
 - with coefficients in GF(2⁸)
 - and polynomials multiplied modulo (x⁴+1)

(4) Add Round Key

- XOR state with 128-bits of the round key
- again processed by column (though effectively a series of byte operations)
- the only step which makes use of the key and obscures the result, hence MUST be used at start and end of each round
- inverse for decryption identical
 - since XOR own inverse, with reversed keys

Add Round Key

S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}
S _{1,0}	S _{1,1}	s _{1,2}	S _{1,3}
S _{2,0}	S _{2,1}	S _{2,2}	S _{2,3}
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}

Wi	W _{i+1}	W _{i+2}	W _{i+3}
----	------------------	------------------	------------------

s' _{0,0}	s' _{0,1}	s' _{0,2}	s' _{0,3}
s' _{1,0}	s' _{1,1}	s' _{1,2}	s' _{1,3}
s' _{2,0}	s' _{2,1}	s' _{2,2}	s' _{2,3}
s' _{3,0}	s' _{3,1}	s' _{3,2}	s' _{3,3}

Figure 6.8 Inputs for Single AES Round

AES Key Expansion

- takes 128-bit (16-byte) key and expands into array of 44 32-bit words
- start by copying key into first 4 words
- then loop creating words that depend on values in previous & 4 places back
 - in 3 of 4 cases just XOR these together
 - 1st word in 4 has rotate + S-box + XOR round constant on previous, before XOR 4th back

AES Key Expansion

(b) Function g

AES Key Expansion

W₇

Plaintext:	0123456789abcdeffedcba9876543210
Key:	0f1571c947d9e8590cb7add6af7f6798
Ciphertext:	ff0b844a0853bf7c6934ab4364148fb9

 Table 6.3
 Key Expansion for AES Example

Key Words	Auxiliary Function
<pre>w0 = 0f 15 71 c9 w1 = 47 d9 e8 59 w2 = 0c b7 ad d6 w3 = af 7f 67 98</pre>	RotWord (w3) = 7f 67 98 af = x1 SubWord (x1) = d2 85 46 79 = y1 Rcon (1) = 01 00 00 00 y1 \oplus Rcon (1) = d3 85 46 79 = z1
$w4 = w0 \oplus z1 = dc \ 90 \ 37 \ b0$	RotWord (w7) = 81 15 a7 38 = x2
$w5 = w4 \oplus w1 = 9b \ 49 \ df \ e9$	SubWord (x2) = 0c 59 5c 07 = y2
$w6 = w5 \oplus w2 = 97 \ fe \ 72 \ 3f$	Rcon (2) = 02 00 00 00
$w7 = w6 \oplus w3 = 38 \ 81 \ 15 \ a7$	y2 \oplus Rcon (2) = 0e 59 5c 07 = z2
$w8 = w4 \oplus z2 = d2 c9 6b b7$	RotWord (w11) = ff d3 c6 e6 = x3
$w9 = w8 \oplus w5 = 49 80 b4 5e$	SubWord (x3) = 16 66 b4 83 = y3
$w10 = w9 \oplus w6 = de 7e c6 61$	Rcon (3) = 04 00 00 00
$w11 = w10 \oplus w7 = e6 ff d3 c6$	y3 ⊕ Rcon (3) = 12 66 b4 8e = z3
$w12 = w8 \oplus z3 = c0$ af df 39	RotWord (w15) = ae 7e c0 b1 = x4
$w13 = w12 \oplus w9 = 89$ 2f 6b 67	SubWord (x4) = e4 f3 ba c8 = y4
$w14 = w13 \oplus w10 = 57$ 51 ad 06	Rcon (4) = 08 00 00 00
$w15 = w14 \oplus w11 = b1$ ae 7e c0	y4 Rcon (4) = ec f3 ba c8 = 4

Table 6.3 Continued

Key Words	Auxiliary Function
$w16 = w12 \oplus z4 = 2c \ 5c \ 65 \ f1$	RotWord (w19) = 8c dd 50 43 = x5
$w17 = w16 \oplus w13 = a5 \ 73 \ 0e \ 96$	SubWord (x5) = 64 c1 53 1a = y5
$w18 = w17 \oplus w14 = f2 \ 22 \ a3 \ 90$	Rcon(5) = 10 00 00 00
$w19 = w18 \oplus w15 = 43 \ 8c \ dd \ 50$	y5 \oplus Rcon (5) = 74 c1 53 1a = z5
$w20 = w16 \oplus z5 = 58 \text{ 9d } 36 \text{ eb}$	RotWord (w23) = 40 46 bd 4c = x6
$w21 = w20 \oplus w17 = \text{fd ee } 38 \text{ 7d}$	SubWord (x6) = 09 5a 7a 29 = y6
$w22 = w21 \oplus w18 = 0 \text{f cc 9b ed}$	Rcon(6) = 20 00 00 00
$w23 = w22 \oplus w19 = 4 \text{c } 40 \text{ 46 bd}$	y6 Rcon(6) = 29 5a 7a 29 = z6
$w24 = w20 \oplus z6 = 71 \text{ c7 4c c2}$	RotWord (w27) = a5 a9 ef cf = x7
$w25 = w24 \oplus w21 = 8c 29 74 \text{ bf}$	SubWord (x7) = 06 d3 bf 8a = y7
$w26 = w25 \oplus w22 = 83 \text{ e5 ef 52}$	Rcon (7) = 40 00 00 00
$w27 = w26 \oplus w23 = \text{cf a5 a9 ef}$	y7 ⊕ Rcon(7) = 46 d3 df 8a = z7
$w28 = w24 \oplus z7 = 37 \ 14 \ 93 \ 48$	RotWord (w31) = 7d a1 4a f7 = x8
$w29 = w28 \oplus w25 = bb \ 3d \ e7 \ f7$	SubWord (x8) = ff 32 d6 68 = y8
$w30 = w29 \oplus w26 = 38 \ d8 \ 08 \ a5$	Rcon (8) = 80 00 00 00
$w31 = w30 \oplus w27 = f7 \ 7d \ a1 \ 4a$	y8 ⊕ Rcon(8) = 7f 32 d6 68 = z8
$w32 = w28 \oplus z8 = 48 \ 26 \ 45 \ 20$	RotWord (w35) = be 0b 38 3c = x9
$w33 = w32 \oplus w29 = f3 \ 1b \ a2 \ d7$	SubWord (x9) = ae 2b 07 eb = y9
$w34 = w33 \oplus w30 = cb \ c3 \ aa \ 72$	Rcon (9) = 1B 00 00 00
$w35 = w34 \oplus w32 = 3c \ be \ 0b \ 3$	y9 Rcon (9) = b5 2b 07 eb = z9
$w36 = w32 \oplus z9 = fd 0d 42 cb$	RotWord (w39) = 6b 41 56 f9 = x10
$w37 = w36 \oplus w33 = 0e 16 e0 1c$	SubWord (x10) = 7f 83 b1 99 = y10
$w38 = w37 \oplus w34 = c5 d5 4a 6e$	Rcon (10) = 36 00 00 00
$w39 = w38 \oplus w35 = f9 6b 41 56$	y10 \oplus Rcon (10) = 49 83 b1 99 = z10
$w40 = w36 \oplus z10 = b4 8e f3 52$ $w41 = w40 \oplus w37 = ba 98 13 4e$ $w42 = w41 \oplus w38 = 7f 4d 59 20$ $w43 = w42 \oplus w39 = 86 26 18 76$	

Key Expansion Rationale

- designed to resist known attacks
- design criteria included
 - knowing part key insufficient to find many more
 - invertible transformation
 - fast on wide range of CPU's
 - use round constants to break symmetry
 - diffuse key bits into round keys
 - enough non-linearity to hinder analysis
 - simplicity of description

AES Decryption

- AES decryption is not identical to encryption since steps done in reverse
- but can define an equivalent inverse cipher with steps as for encryption
 - but using inverses of each step
 - with a different key schedule
- works since result is unchanged when
 - swap byte substitution & shift rows
 - swap mix columns & add (tweaked) roundkey

2021/3/22

InvMixColumns ($S_i \oplus w_j$) = [InvMixColumns (S_i)] \oplus [InvMixColumns (w_j)

Equivalent Decryption

Outline

- 2DES, 3DES
- AES History
- Mathematical Basis —— GF(2ⁿ)
- AES Principle
- AES Security Analysis
- Implementation of AES

AES Security Analysis

- AES is efficient and highly secure it is believed.
- AES are a series of XOR with key then scramble/permute block repeated
- Add Round Key stage is the only step which makes use of the key and obscures the result, hence MUST be used at start and end of each round, since otherwise could undo effect of other steps.
- But the other steps provide confusion/diffusion/non-linearity.
 - byte substitution (1 S-box used on every byte)
 - shift rows (permute bytes between groups/columns)
 - mix columns (subs using matrix multiply of groups)
 - Key Expansion

Plaintext:	0123456789abcdeffedcba9876543210
Key:	0f1571c947d9e8590cb7add6af7f6798
Ciphertext:	ff0b844a0853bf7c6934ab4364148fb9

 Table 6.5
 Avalanche Effect in AES: Change in Plaintext

Round		Number of Bits that Differ
	0123456789abcdeffedcba9876543210 0023456789abcdeffedcba9876543210	1
0	0e3634aece7225b6f26b174ed92b5588 0f3634aece7225b6f26b174ed92b5588	1
1	657470750fc7ff3fc0e8e8ca4dd02a9c c4a9ad090fc7ff3fc0e8e8ca4dd02a9c	20
2	5c7bb49a6b72349b05a2317ff46d1294 fe2ae569f7ee8bb8c1f5a2bb37ef53d5	58
3	7115262448dc747e5cdac7227da9bd9c ec093dfb7c45343d689017507d485e62	59
4	f867aee8b437a5210c24c1974cffeabc 43efdb697244df808e8d9364ee0ae6f5	61
5	721eb200ba06206dcbd4bce704fa654e 7b28a5d5ed643287e006c099bb375302	68
6	0ad9d85689f9f77bc1c5f71185e5fb14 3bc2d8b6798d8ac4fe36a1d891ac181a	64
7	db18a8ffa16d30d5f88b08d777ba4eaa 9fb8b5452023c70280e5c4bb9e555a4b	67
8	f91b4fbfe934c9bf8f2f85812b084989 20264e1126b219aef7feb3f9b2d6de40	65
9	cca104a13e678500ff59025f3bafaa34 b56a0341b2290ba7dfdfbddcd8578205	61
10	ff0b844a0853bf7c6934ab4364148fb9 612b89398d0600cde116227ce72433f0	58

key is 0e1571c947d9e8590cb7add6af7f6798

Table 6.6 Avalanche Effect in AES: Change in Key

Round		Number of Bits that Differ
	0123456789abcdeffedcba9876543210	0
	0123456789abcdeffedcba9876543210	
0	0e3634aece7225b6f26b174ed92b5588	1
	0f3634aece7225b6f26b174ed92b5588	
1	657470750fc7ff3fc0e8e8ca4dd02a9c	22
	c5a9ad090ec7ff3fc1e8e8ca4cd02a9c	
2	5c7bb49a6b72349b05a2317ff46d1294	58
	90905fa9563356d15f3760f3b8259985	
3	7115262448dc747e5cdac7227da9bd9c	67
	18aeb7aa794b3b66629448d575c7cebf	
4	f867aee8b437a5210c24c1974cffeabc	63
	f81015f993c978a876ae017cb49e7eec	
5	721eb200ba06206dcbd4bce704fa654e	81
	5955c91b4e769f3cb4a94768e98d5267	
6	0ad9d85689f9f77bc1c5f71185e5fb14	70
	dc60a24d137662181e45b8d3726b2920	
7	db18a8ffa16d30d5f88b08d777ba4eaa	74
	fe8343b8f88bef66cab7e977d005a03c	
8	f91b4fbfe934c9bf8f2f85812b084989	67
Ü	da7dad581d1725c5b72fa0f9d9d1366a	
9	cca104a13e678500ff59025f3bafaa34	59
	0ccb4c66bbfd912f4b511d72996345e0	
10	ff0b844a0853bf7c6934ab4364148fb9	53
	fc8923ee501a7d207ab670686839996b	

Engineering 81 of USTC

Outline

- 2DES, 3DES
- AES History
- Mathematical Basis —— GF(2ⁿ)
- AES Principle
- AES Security Analysis
- Implementation of AES

Implementation Aspects on 8-bit CPU

- can efficiently implement on 8-bit CPU
 - byte substitution works on bytes using a table of 256 entries
 - shift rows is simple byte shift
 - add round key works on byte XOR's
 - mix columns requires matrix multiply in GF(28) which works on byte values, can be simplified to use table lookups & byte XOR's

Simplified Implementation for mix columns

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix}$$

$$s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$$

$$s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$$

$$s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$$

$$s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$$

 $Tmp = s_{0,j} \oplus s_{1,j} \oplus s_{2,j} \oplus s_{3,j}$ $s'_{0,j} = s_{0,j} \oplus Tmp \oplus [2 \cdot (s_{0,j} \oplus s_{1,j})]$ $s'_{1,j} = s_{1,j} \oplus Tmp \oplus [2 \cdot (s_{1,j} \oplus s_{2,j})]$ $s'_{2,j} = s_{2,j} \oplus Tmp \oplus [2 \cdot (s_{2,j} \oplus s_{3,j})]$ $s'_{3,j} = s_{3,j} \oplus Tmp \oplus [2 \cdot (s_{3,j} \oplus s_{0,j})]$

$$Tmp = s_0, j \bigoplus s_1, j \bigoplus s_2, j \bigoplus s_3, j$$

$$s'_0, j = s_0, j \bigoplus \text{Tmp} \bigoplus X2[s_0, j \bigoplus s_1, j]$$

$$s'_1$$
, $c = s_1$, $j \oplus \mathsf{Tmp} \oplus \mathsf{X2}[s_1, j \oplus s_2, j]$

$$s_2',\ c=s_2,\ j \bigoplus \mathsf{Tmp} \bigoplus X2[s_2,\ j \bigoplus s_3,\ j]$$

$$s'_3, j = s_3, j \bigoplus \mathsf{Tmp} \bigoplus X2[s_3, j \bigoplus s_0, j]$$

Implementation Aspects on on 32-bit CPU

For some round: Input state a, Output state e.

SubBytes	$b_{i,j} = S[\underline{a_{i,j}}]$
ShiftRows	$\begin{bmatrix} c_{0,j} \\ c_{1,j} \\ c_{2,j} \\ c_{3,j} \end{bmatrix} = \begin{bmatrix} b_{0,j} \\ b_{1,j-1} \\ b_{2,j-2} \\ b_{3,j-3} \end{bmatrix}$
MixColumns	$\begin{bmatrix} d_{0,j} \\ d_{1,j} \\ d_{2,j} \\ d_{3,j} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} c_{0,j} \\ c_{1,j} \\ c_{2,j} \\ c_{3,j} \end{bmatrix}$
AddRoundKey	$\begin{bmatrix} e_{0,j} \\ e_{1,j} \end{bmatrix} = \begin{bmatrix} d_{0,j} \\ d_{1,j} \end{bmatrix} \bigoplus \begin{bmatrix} k_{0,j} \\ k_{1,j} \end{bmatrix}$ Round Key
Additionality	$\begin{bmatrix} a_{1,j} \\ e_{2,j} \\ e_{3,j} \end{bmatrix} = \begin{bmatrix} a_{1,j} \\ d_{2,j} \\ d_{3,j} \end{bmatrix} \oplus \begin{bmatrix} a_{1,j} \\ k_{2,j} \\ k_{3,j} \end{bmatrix}$ $\begin{bmatrix} a_{1,j} \\ k_{2,j} \\ k_{3,j} \end{bmatrix}$ Software Engineering

$$\begin{bmatrix} e_{0,j} \\ e_{1,j} \\ e_{2,j} \\ e_{3,j} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} S[a_{0,j}] \\ S[a_{2,j-2}] \\ S[a_{3,j-3}] \end{bmatrix} \oplus \begin{bmatrix} k_{0,j} \\ k_{1,j} \\ k_{2,j} \\ k_{3,j} \end{bmatrix} \qquad \mathbf{a} \rightarrow \mathbf{e}$$

$$= \begin{pmatrix} \begin{bmatrix} 02 \\ 01 \\ 01 \\ 03 \end{bmatrix} \cdot S[a_{0,j}] \end{pmatrix} \oplus \begin{pmatrix} \begin{bmatrix} 03 \\ 02 \\ 01 \\ 03 \end{bmatrix} \cdot S[a_{1,j-1}] \end{pmatrix} \oplus \begin{pmatrix} \begin{bmatrix} 01 \\ 03 \\ 02 \\ 01 \end{bmatrix} \cdot S[a_{2,j-2}] \end{pmatrix}$$

$$\oplus \begin{pmatrix} \begin{bmatrix} 01 \\ 01 \\ 03 \\ 02 \\ 01 \end{bmatrix} \cdot S[a_{3,j-3}] \end{pmatrix} \oplus \begin{bmatrix} k_{0,j} \\ k_{1,j} \\ k_{2,j} \\ k_{3,j} \end{bmatrix}$$

$$T_0[x] = \begin{pmatrix} \begin{bmatrix} 02 \\ 01 \\ 01 \\ 03 \\ 02 \end{bmatrix} \cdot S[x] \end{pmatrix} T_1[x] = \begin{pmatrix} \begin{bmatrix} 03 \\ 02 \\ 01 \\ 01 \end{bmatrix} \cdot S[x] \end{pmatrix} T_2[x] = \begin{pmatrix} \begin{bmatrix} 01 \\ 03 \\ 02 \\ 01 \end{bmatrix} \cdot S[x] \end{pmatrix} T_3[x] = \begin{pmatrix} \begin{bmatrix} 01 \\ 01 \\ 03 \\ 02 \\ 01 \end{bmatrix} \cdot S[x] \end{pmatrix}$$

 $\begin{vmatrix} s'_{0,j} \\ s'_{1,j} \\ s'_{2,j} \end{vmatrix} = T_0[s_{0,j}] \oplus T_1[s_{1,j-1}] \oplus T_2[s_{2,j-2}] \oplus T_3[s_{3,j-3}] \oplus \begin{vmatrix} k_{0,j} \\ k_{1,j} \\ k_{2,j} \end{vmatrix}$

Implementation Aspects on on 32-bit CPU

- can efficiently implement on 32-bit CPU
 - redefine steps to use 32-bit words
 - can precompute 4 tables of 256-words
 - then each column in each round can be computed using 4 table lookups + 4 XORs
 - at a cost of 4KB to store tables
- Rijndael designers believe this very efficient implementation was a key factor in its selection as the AES cipher

Summary

- have considered:
 - -3DES
 - the AES selection process
 - AES mathematical basis GF(2ⁿ)
 - the details of Rijndael the AES cipher
 - looked at the steps in each round
 - the key expansion
 - implementation aspects

Key Terms

Advanced Encryption
Standard (AES)
avalanche effect
field
field
field
finite field
irreducible
polynomial
key expansion
finite field
National Institute of Standards
and Technology (NIST)
Rijndael
S-box

Review Questions

- 6.3 What is the difference between Rijndael and AES?
- Why is Double DES not secure?

Thanks!

