Forecasting as business case

Florian Unger February 2019

- What does the customer want?
 - Various Business cases
- How did we get here?
 - N/As
 - Model Choice
- Business recommendations

What does the customer want?

Understanding

- Which appliances are used, for how long and when?
- Timing recommendations?

Forecast

Forecast appliance usage?

Forecast total spending?

Date	EUR
4.1.2010	31,4
11.1.2010	32,6
18.1.2010	32,1
25.12.2010	33,8
1.1.2011	32,6

Business Case I: Timing recommendations

Power consumption

3c savings by doing laundry at 4:30am

Intraday Price changes

Neighbors will complain Electricity comes from coal Really inconvenient

Timing recommendations are NOT a sustainable business case

Business Case II: Stats and F-Facts

Power consumption by appliance

Consumption in EUR

Adding understanding to the customer

Inform rather than recommend

Business_Case III: Forecasting

Forecasting_for_the_next_10_weeks

Date	EUR
4.1.2010	31,4
11.1.2010	32,6
18.1.2010	32,1
25.12.2010	33,8
1.1.2011	32,6
8.1.2011	33,0
15.1.2011	36,5
22.1.2011	35,4
29.1.2011	37,4
5.2.2011	36,5

How did we get here?

NAs

NA
NA<

Model choice

NAs_by_Year

- WHY are they here?
 - <1000 min: Power outages, SM errors</p>
 - >1000 min: Holidays, Power outages
- WHY do we treat them?
 - Distort our data and the trend
 - Improve forecasting ability
 - HOW do we treat them?
 - Plain Vanilla: mean, last forward
 - Computational: kalman

Test.Hybrid: MAE

Methodology I:

Last one forward for 'todos'

Methodology II:

Last one forward < 1000min + na.kalman

3.18 €

2.97 €

Decide on Forecasting models (I/II)

- Right model helps us to forecast more accurately, taking into account TREND, NOISE and SEASONALITY
- Accurate forecast -> higher customer satisfaction -> lower churn -> increasing profitability

Which models are available?

- Naive
 - ? Equal to the last observation
 - Too simple
 - Works well for unpredictable behavior
- Arima
 - ? does not assume knowledge of underlying model
 - Relies to much on past values
 - + Robust in short-run forecasting

- S-Naive
 - ? Last observation of previous season
 - Fails to account for big trend changes
 - Useful for data with strong seasonality
- Holt-Winters
 - ? finding the central value, then adding in the effects of slope and seasonality
 - More weighting to recent values
 - + Easy to apply and to understand

Decide on Forecasting models (II/II)

How to decide on the models?

- **Graphical representation**
 - Split time series into training and test set
 - Plot the models on the test set and compare with real values

Accuracy

Mean Absolute Error: average magnitude of errors, more appropriate for absolute values

- RMSE: large weighting to large errors
- Need to look into errors individually
- **Autocorrelation Function and ND plot**
 - ND plot: shows if the errors are normally distributed, otherwise trend would be still in errors
 - ACF plot: are the errors also uuncorrelated below the threshold? They should be.

Train on 2007 - 2009 & Test on 2010

Hybrid > S-Naive > HW > Arima > Naive

Accuracy plots

		ME	RMSE	MAE	MAE*		Reason
ADIMA	Training	-0,05	4,95	3,52	3,54		Q = = ===
ARIMA	Test	-0,83	5,03	3,66	3,61	X	Score
HW	Training	-0,43	4,75	3,05	3,10		Q = ====
11 00	Test	1,04	4,62	3,40	3,59	X	Score
Naive	Training	0,02	6,19	3,91	3,90	X	Overfitting
Naive	Test	-7,36	10,13	8,19	8,46		Overfitting
SNaive	Training	-0,44	6,09	4,32	4,38		
Bivarve	Test	0,40	4,43	3,01	3,16		
Hybrid	Training	-0,26	3,67	2,66	2,69		
11,0114	Test	0,34	4,00	2,97	3,18		

^{*} locf-treatment

Residual_plots: AFC

Forecasting_for_the_next_10_weeks

Date		EUR
------	--	-----

4.12.2010	31,4
11.12.2010	32,6
18.12.2010	32,1
25.12.2010	33,8
1.1.2011	32,6
8.1.2011	33,0
15.1.2011	36,5
22.1.2011	35,4
29.1.2011	37,4
5.2.2011	36,5

Recommendations

Understand Granularity

 Not all applications make sense from business and technical perspective

Understand models

Use different models for different use cases

Understand NAs

Different NA treatment impacts accuracy

THANK YOU FOR YOUR ATTENTION

QUESTIONS?