Исследование спайкового кода

Содержание

1	Спа	айковый код			
2	Спа	айковый нейрон	нейрон		
	2.1	Модель Integrate-and-fire			
	2.2				
	2.3	Кодирование спайковым кодом			
		2.3.1 Линейная кривая настройки			
		2.3.2 Сигмоидная кривая настройки			
		2.3.3 Критерий оценки			
	2.4	Задание			
	2.5	Материалы			

1 Спайковый код

Спайк - элементарная единица информации, которой обмениваются биологические нейроны. Соединённые синаптическими связями, нейроны, сложно и нелинейно перерабатывая вход с синапсов, вырабатывают на своём выходе (аксон нейрона), короткие электрохимические импульсы. В анализе удобно рассматривать спайки, как бинарные события (рис. 1).

Рис. 1: Спайковый нейрон

То как нейроны кодируют информацию в спайках, очень живой и трепещущий вопрос для современного научного сообщества. Важный нюанс спайкового кода в том, что он не надёжен. Исследования показали, что на один и тот же стимул популяция нейронов может дать разный ответ, что даёт огромное пространство для интерпретаций.

На протяжении 20-ого века большинство нейрофизиологов было убеждено, что ненадёжность разрешается, если усреднять спайки на некотором промежутке времени (около 100 мс), и вся информация хранится в средних активностях нейронов. Однако, в конце 20-ого века было проведено множество исследований, показавших, что достаточно много информации хранится в самих временах спайков, и что усреднение, только ухудшает декодирование информации полученной от нейронов.

В данном задании будет возможность закодировать сигнал в виде спайкового кода, через симуляцию популяции нейронов. Получив ответ в виде спайков, мы его декодируем, и необходимо будет сделать анализ полученных результатов, при помощи инструментов данных в этом руководстве.

2 Спайковый нейрон

На рис. 1, также, показан типичный профиль активности нейрона, основные свойство которого:

- интеграция входного сигнала (integration);
- угасание этого сигнала на нейроне со временем, или иначе говоря "утечка" (leakage);
- рефракторный период, нейрон переживает его после выработки спайка, как следствие сложных химических реакций, некоторое время (от 2-10 мс) неработоспособен.

Моделирование спайковых нейронов в виде наиболее приближенном к биологии, насколько позволяет современная нейронаука, возможно, но очень

трудозатратно с точки зрения ресурсов компьютера. Существует модели, более менее, приближенные к биологическому аналогу и которые не так сложно моделировать. Две из них будут рассмотрены в задании.

2.1 Модель Integrate-and-fire

Самая простая спайковая модель, основанная на RC цепи, записывается в виде дифференциального уравнения

$$\tau_m \frac{du}{dt} = -u + RI(t),\tag{1}$$

при $u \geq \vartheta$ потенциал мембраны сбрасывается и на τ_{ref} держится в сброшенном состоянии

$$u \leftarrow u_r$$
 в течении τ_{ref} , (2)

где ϑ - порог напряжения, временная константа мембраны $\tau_m=RC,\,R$ и C - сопротивление и ёмкость RC-цепи соответственно, τ_{ref} - рефракторное время, I(t) - приложенный ток извне, u_r - константа описывающая потенциал мембраны покоя нейрона.

Пример работы такого нейрона можно посмотреть на рис.2.

Рис. 2: Напряжение на мембране IaF, при $u_r=0, \vartheta=1, au_{ref}=2$ мс, $au_m=20$ мс

2.2 Модель Adaptive Exponential Integrate-and-fire

Более сложная, но более приближенная к биологии модель спайкового нейрона, описывается системой дифференциальных уравнений с двумя переменными. Основная особенность поведения системы, в том, что нейрон адаптируется, т.е. со временем показывает меньшую активность при одинаковой характеристике входа

$$C\frac{du}{dt} = -g_L(V - E_L) + g_L \Delta_T exp\left(\frac{V - V_T}{\Delta_T}\right) - w + I(t)$$

$$\tau_w \frac{dw}{dt} = a(V - E_L) - w \tag{3}$$

Генерация спайка происходит аналогично обычной модели IaF:

$$u \leftarrow u_r$$
 в течении τ_{ref} , (4)

Рис. 3: Поведение переменных AdEx IaF

2.3 Кодирование спайковым кодом

Задача кодирования спайковым кодом временного ряда X(t) популяцией N нейронов, заключается в том, чтобы найти такое преобразование $X(t) \to I_i(t)$, для, $i \in \{1,..,N\}$, которое является наиболее оптимальным по данному критерию оценки.

В качестве критерия оценки возьмём качество линейного восстановления сигнала X(t) из спайкового кода.

2.3.1 Линейная кривая настройки

Под линейной кривой настройки понимается, что нейрон чувствителен к определённому значению временного ряда, причём частота его спайков, линейно возрастает с возрастанием или убыванием значения

Рис. 4: Линейная кривая настройки

Как для IaF, так и для AdEx IaF, такая кривая настройки задаётся преобразованием

$$I_i(t) = g_i X(t) + b_i \tag{5}$$

где $g_i, b_i \in \mathbb{R}$ — усиление и смещение преобразования, соответственно.

2.3.2 Сигмоидная кривая настройки

Сигмодная кривая настройки получается преобразованием вида

$$I_i(t) = g_i^s exp\left(-\frac{(X(t) - C_i)^2}{2\sigma_i^2}\right)$$
 (6)

где $g_i^s, C_i, \sigma_i \in \mathbb{R}$ — усиление, центр и разброс сигмоидной кривой, соответственно

На рисунке показан типичной профиль этой кривой настройки

Рис. 5: Сигмоидная кривая настройки

2.3.3 Критерий оценки

В качестве критерия оценки возьмём качество линейного восстановления исходного сигнала X(t). Фильтр Винера — один из самых известных и простых линейных фильтров. После обучения фильтра, фильтр с тем или иным качеством восстанавливает сигнал, и это качество можно выразить отношением сигнал-шум:

$$SNR = \frac{X(w)}{X(w) - X'(w)},\tag{7}$$

где X'(w), X(w) — восстановленный сигнал и исходный сигнал в частотном домене.

В качестве базовой метрики качества спайкового кодирования возьмум информацию на каждый частотный канал:

$$Info = \frac{1}{2}log_2(1 + SNR) \tag{8}$$

2.4 Задание

Основная задача состоит в исследовании влияения параметров кривых настроек и нейрона на критерий оценки (8). Провести мета-оптимизацию по параметрам для максимизации критерия.

Вариант 1. Исследование линейных кривых настроек для определенных данных. Мета-оптимизация методом *cma-es*.

Вариант 2. Исследование сигмоидных кривых настроек и настроек нейрона для определенных данных. Мета-оптимизация методом GP.

2.5 Материалы

Нейронные модели, кривые настройки, оптимизация фильтров Винера находятся в репозитории:

https://github.com/alexeyche/snn_sim.git

Репозиторий содержит научный проект в виде библиотеки на C, который имеет, как обычную точку входа в виде программ, так и пакет для языка \mathbf{R} .

Для того чтобы собрать пакет для ${f R}$, необходимо собрать и установить библиотеку:

```
$ git clone https://github.com/alexeyche/snn_sim.git
$ mkdir snn_sim/build
$ cd snn_sim/build
$ cmake ../sources
$ make -j8
$ sudo make install
```

далее, для сборки пакета **R** необходимо выполнить скрипт:

```
1 $ cd ../r_package
2 $ ./build.sh
```

Примеры построения кривых настроек можно посмотреть в скриптах, для линейных кривых:

```
1 snn_sim/r_package/r_scripts/linear_curves_test.R
```

для сигмоидных кривых:

```
1 snn_sim/r_package/r_scripts/sigma_curves_test.R
```