Computer Architecture Computer Engineering Track Tutorial 13

The Comparison of Memory Types: SRAM and DRAM

Artem Burmyakov, Alexander Tormasov

November 18, 2021

Recap of Hardware Building Blocks

Multiplexor

Sets a specific output to one of its inputs, based on selector signals

Demultiplexor

Decoder

Sets to "1" exactly one output pin, which corresponds to the signals of input pins; All other pins are set to "0" $^{\circ}$

Encoder

The opposite function of a decoder; Only one input pin can be set to "1", while all others – "0"

Memory Hierarchy – the Fundamental Idea of Computer Architecture

The Comparison of DRAM and SRAM Memory Types

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop (Latch)	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage	Not present	Significant
Chip Reliability	More reliable	Less reliable
Volatility	Both are volatile (require electrical power to keep data)	
Memory Cell Access	Each cell is accessed directly, unlike Sequential Access Memory (SAM)	

The Comparison of DRAM and SRAM Memory Types

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop (Latch)	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage	Not present	Significant
Chip Reliability	More reliable	Less reliable
Volatility	Both are volatile (require electrical power to keep data)	
Memory Cell Access	Each cell is accessed directly, unlike Sequential Access Memory (SAM)	

Transistor Recap

Transistor is a fast switch:

If there is voltage at the Base terminal (Base = "1"), then current flows between Emitter and Collector; Otherwise (Base = "0"), there is no current

Transistor Recap

Note: Current direction depends on the transistor type (e.g. NPN or PNP)

Transistor is a fast switch:

If there is voltage at the Base terminal (Base = "1"), then current flows between Emitter and Collector; Otherwise (Base = "0"), there is no current

Transistor Recap

Transistor is a fast switch:

If there is voltage at the Base terminal (Base = "1"), then current flows between Emitter and Collector; Otherwise (Base = "0"), there is no current

Capacitor: a physical device to store electrical charge

DRAM memory cell: capacitor + transistor

Bitline *k*:

for write operation: transfers data to be stored ("0" or "1"); for read operation: returns stored data ("0" or "1")

Wordline i

activates memory cell for read/write operations:

Input "1" – line selected for operation, and thus, transistor is "ON";

Input "0" – line is deactivated

Bitline *k*:

for write operation: transfers data to be stored ("0" or "1"); for read operation: returns stored data ("0" or "1")

Wordline *i*

activates memory cell for read/write operations:

Input "1" – line selected for operation, and thus, transistor is "ON";

Input "0" – line is deactivated

1) Activation of the wordline, corresponding to the address of a memory cell;

Wordline i

activates memory cell for read/write operations:

Input "1" – line selected for operation, and thus, transistor is "ON";
Input "0" – line is deactivated

Bitline *k*:

for write operation: transfers data to be stored ("0" or "1"); for read operation: returns stored data ("0" or "1")

3) Transfering data bit over the bitline, to be stored;

If "1" – capacitor gets charged (however, some time for charging is needed)

3) Transfering data bit over the bitline, to be stored;

If "1" – capacitor gets charged (however, some time for charging is needed);

Else if "0" - capacitor is discharged

3) Transfering data bit over the bitline, to be stored;

If "1" – capacitor gets charged (however, some time for charging is needed);

Else if "0" - capacitor is discharged

Reading from DRAM memory cell

Reading from DRAM memory cell

3) Transfering data bit from capacitor over the bitline

A More Compact Graphical Notation for Electrical Circuits

A More Compact Graphical Notation for Electrical Circuits

A More Compact Graphical Notation for Electrical Circuits

DRAM memory – a set of memory cells (each cell contains 1 bit of data)

DRAM Memory: the Work Principle

DRAM memory – a set of memory cells (each cell contains 1 bit of data)

DRAM Memory: the Work Principle

Several memory cells are connected to the same wordline

DRAM Memory: the Work Principle

Memory controller operates with memory cells, by using demultiplexors, encoders, etc.

Bus

DRAM Memory: the Work Principle

Bus

DRAM Memory: the Work Principle

Latch Recap: an electronic circuit to store one bit of information

S	R	Q
1	0	1
0	1	0
0	0	Q ^{prev}
1	1	Illegal inputs

Latch Recap: multiple logic implementations are available

1) Implementation by using NOR logic gates:

2) by using NAND logic gates:

Latch Logical representation:

Electrical circuit implementation (one of many):

Before usage, latch is initialized by one of these input combinations: either R = 1 & S = 0, or S = 1 & R = 0;

Latch hardware implementation should be such, that one of these input combinations results into Q and \overline{Q} according to a latch specification

Latch Logical representation:

Electrical circuit implementation (one of many):

There is an external power supply, to support latch functioning

Before usage, latch is initialized by one of these input combinations either R = 1 & S = 0, or S = 1 & R = 0;

Latch hardware implementation should be such, that one of these input combinations results into Q and \overline{Q} according to a latch specification

Switch to control the input values of *S* and *R* (assumed to have 3 positions)

State Transition Diagram for a Latch

Recap: A Synchronous Flip-Flop Constructed of S/R Latches

Characteristic	SRAM	DRAM
Access Speed		
Storage Capacity		
Storage Element		
Usage		
Cost		
Power Consumption		
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity		
Storage Element		
Usage		
Cost		
Power Consumption		
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element		
Usage		
Cost		
Power Consumption		
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage		
Cost		
Power Consumption		
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost		
Power Consumption		
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption		
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation		
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage		
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage	Not present	Significant
Chip Reliability		
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage	Not present	Significant
Chip Reliability	More reliable	Less reliable
Volatility		
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage	Not present	Significant
Chip Reliability	More reliable	Less reliable
Volatility	Both are volatile (loose	data if power is off)
Memory Cell Access		

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage	Not present	Significant
Chip Reliability	More reliable	Less reliable
Volatility	Both are volatile (require electrical power to keep data)	
Memory Cell Access	Each cell is accessed directly, unlike Sequential Access Memory (SAM)	

Characteristic	SRAM	DRAM
Access Speed	Faster	Slower
Storage Capacity	Smaller	Larger
Storage Element	Flip-flop	Capacitor
Usage	CPU cache, registers	System memory
Cost	Expensive	Cheaper
Power Consumption	Lower	Higher
Organisation	Complex	Simpler
Power Leakage	Not present	Significant
Chip Reliability	More reliable	Less reliable
Volatility	Both are volatile (require electrical power to keep data)	
Memory Cell Access	Each cell is accessed directly, unlike Sequential Access Memory (SAM)	