定时器 (Timer)

本节内容

- 定时器的基本工作模式
- MSP430定时功能及其实现
- 看门狗定时器
 - -WDT的操作
 - 看门狗定时器的中断控制功能
 - 看门狗应用举例
- 16位定时器 A
 - 定时器A的特性
 - Timer_A结构
 - Timer_A工作原理
 - Timer A典型应用

定时器 ——工作模式 (1/1)

MSP430X5XX / 6XX系列单片机的通用定时器共有4种计数模式,以定时器A为例, (TAxCTL 寄存器中的 MCx 位)

MCx	模式	说明
00	停止模式	定时器停止
01	增计数模式	定时器重复从 0 计数到 TAxCCRO
10	连续计数模式	定时器器重复从 0 计数到 0FFFFh
11	增/减计数模式	定时器重复从 0 增计数到 TAxCCRO 再减计数到 0

定时器工作模式 —— 停止模式 (1/1)

- ◆ 停止模式
 - ▶用于定时器暂停,并不发生复位,所有寄存器现行的内容在停止模式结束后都可用。
 - 当定时器暂停后重新计数时,计数器将从暂停时的值开始以暂停前的计数方向计数。
 - 》例如,停止模式前,Timer_A工作于增/减计数模式并且处于下降计数方向,停止模式后,Timer_A仍然工作于增/减计数模式。重新计数时,从暂停前的状态开始继续沿着下降方向开始计数。

定时器工作模式 ——增计数模式 (1/3)

- ▶捕获/比较寄存器TAxCCR0用作Timer_A增计数模式的周期寄存器。
- ➤ 计数器TAxR与TAxCCR0的值相等(或TAxR大于TAxCCR0的值)时,定时器 TAxR将立即重新从 0 开始计数。
- >下图说明了增计数模式的计数过程。

定时器工作模式 ——增计数模式 (2/3)

运行时改变捕获/比较寄存器TAxCCR0

- ▶如果新的计数周期大于或者等于旧的计数周期或者大于当前计数值,定时器将一直计数到新的计数周期。
- ➤如果新的计数周期小于当前计数值,计数值将减至 0。但是,在定时器回到 0 之前会有一次计数。

定时器工作模式 ——增计数模式 (3/3)

▶当定时器计数到 TAxCCR0 时,设置标志位TAxCCR0 CCIFG (捕获比较中断标志) 为1,而当定时器从TAxCCR0 计数到0时,设置标志位TAIFG (定时器溢出标志) 位为1。中断标志位的设置过程,如下图所示。

定时器工作模式 ——连续数模式 (1/3)

- ➤此模式下,定时器从当前值计数到OFFFFH后,又从O开始 重新计数。
- ➤如下图所示,此时捕获/比较寄存器 TAxCCR0 和其它捕获/比较寄存器的工作方式相同。

定时器工作模式 ——连续数模式 (2/3)

▶标志位的设置过程,如下图所示:当定时器从 OFFFFh 计数到 0 时,中断标志 TAIFG 置位。

定时器工作模式 ——连续数模式 (3/3)

▶连续计数模式的典型应用:产生多个定时信号:通过中断处理程序在相应的比较寄存器TAxCCRx上加上一个时间差来实现。这个时间差是当前时刻(即相应的TAxCCRx中的值)到下一次中断发生时刻所经历的时间,如下图所示。

定时器工作模式 ——增/减计数模式 (1/3)

- ▶该模式下,定时器先增计数到TAxCCR0的值,然后反向减计数到0。
- ▶计数周期仍由TAxCCR0定义,它是TAxCCR0计数器数值的2倍。
- >增/减计数模式时计数器中数值的变化情况如图所示。

定时器工作模式 ——增/减计数模式 (2/3)

运行时改变寄存器 TAxCCR0周期

- ▶当计数器正在运行且在减计数方向时改变 TAxCCR0 的值, 定时器将会继续减计数方向到 0。定时器减到 0 后, 新的周期才有效。
- ▶当定时器在增计数方向时。

如果新的计数周期大于或者等于原来的计数周期,或者 比当前的计数值大,定时器会增计数到新的计数周期,再反 向计数。

如果新的计数周期小于当前的计数值,则定时器将立即 开始减计数。但是,在定时器减计数之前有一个额外的计数 (即当前计数器的值加1后再进行减计数)。

定时器工作模式 ——增/减计数模式 (3/3)

➤定时器TAxCCR的值从TAxCCR0 - 1增计数到TAxCCR0时,中断标志TAxCCR0 CCIFG置位;当定时器从0001h减计数到0000h时,中断标志TAIFG置位。标志位的设置情况如图所示。

MSP430定时功能及其实现 (1/2)

- ➤ 定时功能模块是MSP430应用系统中经常用到的重要部分,可用来实现定时控制、延迟、频率测量、脉宽测量和信号产生、信号检测等等。
- ▶一般来说,MSP430所需的定时信号可以用软件和硬件两种方法来获得。
- ➤MSP430系列有丰富定时器资源:看门狗定时器(WDT),定时器A(Timer_A),定时器B(Timer_B)和定时器D(Timer_D)等。

MSP430定时功能及其实现(2/2)

MSP430系列定时器部件功能,如下表所示:

定时器	功能
看门狗定时器	基本定时、当程序发生错误时执行一个受控的 系统重启动
基本定时器	基本定时、支持软件和各种外围模块工作在低频率、低功耗条件下
定时器A	基本定时、支持同时进行的多种时序控制、多个捕获/比较功能和多种输出波形(PWM),可以以硬件方式支持串行通信。
定时器B	基本定时、功能基本同定时器A,但比定时器A 灵活,功能更强大
定时器D	基本定时、功能基本同定时器A,但比定时器A 灵活,功能更强大

看门狗定时器 —— 概述 (1/1)

◆ 看门狗定时器, 主要作用:

用于在"程序跑飞"时,WDT就会产生溢出,从而产生系统复位,CPU需要重新运行用户程序,这样程序就可以又回到正常运行状态。

- ◆ MSP430x5xx 看门狗模块具有以下特性:
 - >32种软件可选的定时时间
 - >看门狗工作模式
 - ▶定时器工作模式
 - ▶ 带密码保护的 WDT 控制寄存器
 - >时钟源可选择
 - >为降低功耗,可停止
 - >时钟失效保护

看门狗

MSP430 X5XX / 6XX系机角门门路外看门路,加京的定理图

看门狗定时器 —— WDT的操作 (2/3)

用户可以通过 WDTCTL 寄存器中的 WDTTMSEL 和WDTHOLD 控制位设置 WDT 工作在看门狗模式、定时器模式和低功耗模式。

- ◆ 看门狗模式
 - ▶PUC后,WDT 进入默认状态。如果系统不用看门狗功能, 应该在程序开始处禁止看门狗功能。
 - ▶在看门狗模式下,如果计数器超过了定时时间,就会产生复位和激活系统上电清除信号。
 - >用户软件一般都需要进行如下操作:
 - ▼ 进行WDT的初始化:设置合适的时间。
 - ▼ 周期性地对WDTCNT清零: 防止WDT溢出。

看门狗定时器 —— WDT的操作 (3/3)

◆ 定时器模式

WDTTMSEL 设置为 1 时, WDT 工作在定时器模式。 在定时器模式下, 定时间隔到以后, WDTIFG 标志位置 1

◆ 低功耗模式

当不需要看门狗定时器时,可使用 WDTHOLD 位来停止看门狗计数器 WDTCNT,以降低功耗。

看门狗定时器 —— WDT应用举例 (1/2)

例,使用看门狗定时功能产生一个方波(周期性的取反P1.0)

程序代码如下:

```
# include <msp430.h>
void main(void)
 WDTCTL = WDT_MDLY_32; // 定时周期为32ms
 SFRIE1 |= WDTIE;
                 // 使能WDT中断
 P1DIR |= BIT0;
                       // P1.0输出
 ___enable_interrupt(); // 系统中断允许
 for (;;)
                                 MSP430F5529
    // 进入 LPM0
    bis_SR_register(LPM0_bits);
    no_operation();
                                      P1.0
```

看门狗定时器 —— WDT应用举例 (2/2)

```
// 看门狗中断服务子程序
#pragma vector= WDT_VECTOR
__interrupt void watchdog_timer (void)
{
    P1OUT ^= 0x01;  // P1.0取反
}
```

2019/3/1 21

定时器 A —— 主要内容

- ◆ 定时器A的特性
- ◆定时器A的结构
- ◆ 定时器A的工作原理
 - > 定时器工作模式
 - >捕获/比较模块
 - ▶輸出单元
 - ➤Timer_A中断
- ◆ 定时器A的典型应用

定时器 A —— 特性 (1/1)

- ◆ 定时器 Ax 由一个16位定时器和多路捕获/比较通道组成。
- ◆ MSP430X5XX / 6XX系列单片机的Timer _A有以下特性:
 - >带有 4 种操作模式的异步 16 位定时/计数器;
 - ➤输入时钟可以有多种选择,可以是慢时钟,快时钟以及 外部时钟;
 - >可配置捕获/比较寄存器数多达7个;
 - ➤可配置的PWM (脉宽调制) 输出;
 - > 异步输入和同步锁存。不仅能捕获外部事件发生的时间 还可锁定其发生时的高低电平;
 - ➤完善的中断服务功能。快速响应Timer_A中断的中断向量寄存器;
 - >8种输出方式选择;
 - >可实现串行通讯。

定时器 A —— 结构 (2/2)

- ◆ 从上图可以看出,Timer_A有以下部分组成:
 - ▶ 定时计数器: 16 位定时/计数寄存器——TAxR
 - ➤时钟源的选择和分频: 定时器时钟 TACLK 可以选择 ACLK, SMCLK 或者来自外部的 TAxCLK。选择的时钟源, 可以通过软件选择分频系数(2、3、4、5、6、7、8)。
 - ▶ 捕获/比较器:用于捕获事件发生的时间或产生时间间隔,捕获比较功能的引入主要是为了提高I/O 端口处理事务的能力和速度。
 - ▶输出单元:具有可选的8种输出模式,用于产生用户需要的输出信号,支持PWM。

2019/3/1 25

定时器 A —— 工作原理 (1/1)

- ◆定时器工作模式
 - ▶停止模式
 - ▶增计数模式
 - >连续计数模式
 - >增/减计数模式
- ◆捕获/比较模块
- ◆ 输出单元
- ◆ Timer_A中断

定时器 A —— 捕获/比较模块 (1/5)

- ➤ Timer_A有多个相同的捕获/比较模块,为实时处理提供灵活的手段,每个模块都可用于捕获事件发生的时间或产生定时间隔。
- ➤通过TACCTLx中的CAP位选择模式,该模块既可用于捕获模式,也可用于比较模式。
- > 当发生捕获事件或定时时间到都将引起中断。
- ▶捕获/比较模块的结构,如下图所示。

定时器 A —— 捕获/比较模块 (2/5)

捕获/比较模块的逻辑结构

定时器 A —— 捕获/比较模块 (3/5)

- ◆ 捕获模式
 - ▶当TACCTLx中的CAP = 1,该模块工作在捕获模式。
 - >每个捕获/比较寄存器可以用来记录时间事件,例如:
 - ▲ 测量软件程序所用时间
 - ▲ 测量硬件事件之间的时间
 - ▲ 测量系统频率
 - ▶用CM1和CM0 位选择捕获条件,可以选择禁止捕获、上升沿捕获、下降沿捕获或者上升沿下降沿都捕获。
 - ▶当捕获完成后,定时器的值被复制到 TAxCCRn 寄存器,并且中断标志 CCIFG 置位。如果总的中断允许位GIE允许,相应的中断允许位CCIE也允许,则将产生中断请求。如下图所示:

定时器 A —— 捕获/比较模块 (4/5)

捕获模式的信号

定时器 A —— 捕获/比较模块 (5/5)

- ◆ 比较模式
 - ▶当TACCTLx中的CAP = 0,该模块工作在比较模式。
 - ➤比较方式主要用于为软件或应用硬件产生定时,还可为 D/A转换功能或者马达控制等各种用途产生脉宽调制 (PWM) 输出信号。
 - ➤在计数器TAxR计数到TAxCCRn (n 代表具体的捕获比较寄存器)的值时:
 - ▲ 中断标志 CCIFG 置位
 - ▲ 内部信号 EQUx=1
 - ▲ EQUx 根据输出模式影响输出
 - ▲ 输入信号 CCI 被锁存在 SCCI

2019/3/1 31

定时器 A —— 输出单元 (1/5)

- ▶每个捕获/比较模块都包含一个输出单元,用于产生输出 信号。
- ➤每个输出单元有8种工作模式,可产生基于EQUx的多种信号。
- ➤除模式0外,其他模式的输出都在定时器时钟上升沿时 发生变化。
- ▶输出模式2,3,6,7不适合输出单元0,因为 EQUx=EQU0。
- ➤输出单元在输出控制位OUTMODx的控制下,有8种输出模式输出信号。这些模式与TAxR、TACCTLx、TAxCCR0的值有关,如下表所示。

定时器 A —— 输出单元 (2/5

OUTMODx	模式	说明		
000	输出模式0: 输出	输出信号取决与寄存器 TACCTLx 中的 OUT位。 当 OUT位更新时,输出信号立即更新。		
001	输出模式1: 置位	输出信号在TAxR等于TAxCCRn时置位,并保持置 位到定时器复位或选择另一种输出模式为止。		
010	输出模式2: 翻转/复位	输出在TAxR的值等于TAxCCRn时翻转,当TAxR的 值等于TAxCCR0时复位。		
011	输出模式3: 置位/复位	输出在TAxR的值等于TAxCCRn时置位,当TAxR的 值等于TAxCCR0时复位。		
100	输出模式4: 翻转	输出电平在TAxR的值等于TAxCCRn时翻转,输出 周期是定时器周期的2倍。		
101	输出模式5: 复位	输出在TAxR的值等于TAxCCRn时复位,并保持低 电平直到选择另一种输出模式。		
110	输出模式6: 翻转/置位	输出电平在TAxR的值等于TAxCCRn时翻转,当 TAxR值等于TAxCCR0时置位。		
111	输出模式7: 复位/置位	输出电平在TAxR的值等于TAxCCRn时复位,当 TAxR的值等于TAxCCR0时置位。		

2019/3/1 33

◆ 定时器在增/ 减计数模式的 输出实例

在增/减计数模 式下的输出实例, 如右图所示。 这时的各种输出 波形与定时器增 计数模式或连续 计数模式不同。 当定时器在任意 计数方向上等于 TAxCCRx时, OUTn信号都按 选择的输出模式 发生改变。

定时器 A —— 中断 (1/2)

- ◆ Timer_A中断可由计数器溢出引起,也可以来自捕获/比较寄存器。每个捕获/比较模块可独立编程,由捕获/比较外部信号以产生中断。
- ◆ Timer_A模块使用两个中断向量:
 - ▶ 一个单独分配给捕获/比较寄存器TAxCCR0;
 - > 另一个作为共用中断向量用于定时器和其他的捕获/比较寄存器(TAIV)。

◆ TAxCCR0中断如下图所示:

定时器 A —— 中断 (2/2)

- ◆ TAXCCR1 ~ TAXCCRX和定时器按照优先次序结合共用一个中断向量,属于多源中断。中断向量寄存器(TAIV)用于确定哪个标志请求中断。
- ◆ TAxCCR1 ~ TAxCCRx中断,如下图所示:

定时器 A典型应用——实现PWM (1/5)

◆ PWM信号是一种具有固定周期不定占空比的数字信号,如下图所示:

◆ 如果Timer_A定时器的计数器工作在增计数方式,输出采用输出模式7 (复位/置位模式),则可利用寄存器TAxCCR0控制PWM波形的周期,用某个寄存器TAxCCRx控制占空比。这样Timer_A就可以产生出任意占空比的PWM波形。如下图所示:

定时器 A典型应用——实现PWM (2/5)

- ◆ 可以随时间变化任意改变PWM信号的占空比,具体做法:
 - > 保持CCR0值(周期不变);
 - ➤ 改变CCRx值(改变占空比)。

如下图所示:

定时器 A典型应用——实现PWM (3/5)

◆ 如果PWM信号占空比随时间变化,那么经过滤波之后的输出信号就是幅度变化的模拟信号,因此通过控制PWM信号的占空比,就可以产生不同的模拟信号,实现D/A转换。如下图所示:

◆ PWM不需要修改占空比和时间时,CPU在做完Timer_A初始化工作之后,Timer_A就能自动输出PWM,而不需利用中断维持PWM输出,此时CPU就可以进入低功耗状态。

定时器 A典型应用——PWM 例程 (4/5)

◆ 例: 设ACLK = TACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCOCLK = 32×ACLK = 1.048576MHz, 利用 Timer_A输出周期为512 /32768 = 15.625ms、占空比分别为75%和25%的PWM矩形波。

由程序知: P1.2—> CCR1 - 75% PWM, P1.3—> CCR2 - 25% PWM。周期 15.625mg。请用示波器验证波形。 P1.0/TA0CLK/ACLK £ 0000000 P1.1/TA0.0 P1.2/TA0.1 P1.3/TA0.2 P1.4/TA0.3 P1.5 P1.5/TA0.4 P1.6/TA1CLK/CB0 P1.7/TA1.0 P2.0 P2.0/TA1.1 P2.1 30 P2.1/TA1.2 P2.2 P2.2/TA2CLK/SM(P2.3 P2.3/TA2.0 P2.4 P2.4/TA2.1 P2.5 P2.5/TA2.2 P2.6 P2.6/RTCCLK/DMF P2.7/UCBØSTE/UCAØCLK P3.0 P3.0/UCB0SIMO/UCB0SDA P3.1/UCB0SOMI/UCB0SCL P3.2/UCB0CLK/UCA0STE

定时器 A典型应用——PWM 例程(5/5)

```
int main(void)
// stop watchdog timer
WDTCTL = WDTPW | WDTHOLD;
                                   #接左面
TA0CTL=____; // ACLK, 清除 TAR
                                      for (;;)
TA0CCR0 =___; // PWM周期
                                        TA0CCTL1 = ___; // 输出模式7
                                        _BIS_SR(LPM3_bits);
TA0CCR1 = ___; //占空比384/512=0.75
                                        _NOP();
TA0CCTL2 = ___; // 输出模式7;
TA0CCR2 = ; //占空比128/512=0.25
    _____; // P1.2 方向为输出
                                      return 0;
           ; // P1.2端口为外设
              // 定时器TA0.1
            // P1.3 方向为输出
           ; // P1.3端口为外设
              // 定时器TA0.2
TAOCTL |= MCO; // Timer_A 增计数模式
```

定时器 A典型应用——PWM 例程 (4/5)

看门狗定时器实验任务

课上实验1:

实验PPT例程,使用看门狗定时功能产生一个周期为64ms方波(周期性的取反P1.0)

要求(1)用示波器查看其波形;「

(2) 测量其频率。

• 课上实验2:

指导书,完成代码,包括IO初始化,中断服务程序语句等。

要求(1)观察LED1灯状态,按键S1在1s前后按下的实验现象;

看门狗定时器实验作业

VCC3.3

1N4148

蜂鸣器

Buzzer

R13

S8050

BZ1B

作业1:

指导书,完成课上实验2后,添加一个功能。 要求

(1) 蜂鸣器安装在P3.6引脚后,编程实现蜂鸣器发声,发声频率为1Hz,周期为1s。人耳听到的声音是类似钟表的滴答声。

- (2) 按键S1按下后,观察实验现象, 蜂鸣器发声情况。
- (3)编程实现改变发声频率为4Hz, 周期为250ms。

提示:

P8.1引脚在定时中断后翻转,LED1灯闪烁,那么P3.6引脚跟P8.1引脚功能一样,只不过驱动的是蜂鸣器。

定时器A实验任务

• 课上实验1:

定时器 A典型应用, 完成PWM 例程。

要求(1)用示波器查看P1.2、P1.3输出波形;

(2) 测量波形周期和频率

• 课上实验2:

指导书,完成代码,包括IO初始化,中断服务程序语句等。

要求:观察LED1灯状态,按键S1和S2按下的实验现象,蜂鸣器的鸣叫效果;

定时器A实验作业

作业1:

参考课上实验2,通过定时器设定改变蜂鸣器发声的音调(频率),高声调一个,低声调一个,做对比,分析蜂鸣器发生频率和定时器中断频率之间的关系。

接线部分引脚

17 Time	er_A	460
17.1	Timer_A Introduction	461
17.2	Timer_A Operation	463
	17.2.1 16-Bit Timer Counter	463
	17.2.2 Starting the Timer	463
	17.2.3 Timer Mode Control	464
	17.2.4 Capture/Compare Blocks	467
	17.2.5 Output Unit	469
	17.2.6 Timer_A Interrupts	
17.3	Timer_A Registers	475
	17.3.1 TAxCTL Register	
	17.3.2 TAxR Register	
	17.3.3 TAxCCTLn Register	
	17.3.4 TAxCCRn Register	
	17.3.5 TAxIV Register	
	17.3.6 TAxEX0 Register	481
16-1.	WDT_A Registers	458
16-2.	WDTCTL Register Description	459
17-1.		464
17-2.	Output Modes	469
17-3.	Timer_A Registers	475
17-4.	TAxCTL Register Description	476
17-5.	TAxR Register Description	477
17-6.	TAxCCTLn Register Description	478
17-7.	TAxCCRn Register Description	480
17-8.	TAxIV Register Description	480
17-9.		481
2019/3/1		51

16.3.1 WDTCTL Register

Watchdog Timer Control Register

Figure 16-2. WDTCTL Register

	15	14	13	12		11	10	9	8	
					WD.	TPW				
	7	6	5		4	3	2	1	0	
	WDTHOLD	WD	TSSEL		WDTTMSEL	WDTCNTCL		WDTIS		
	rw-0	rw-0	rw-0		rw-0	r0(w)	rw-1	rw-0	rw-0	
	6-5	WDTSSEL	RW	0h	1b = Watc	hdog timer is not s hdog timer is stopp timer clock source CLK	ped.			
					10b = VLC	01b = ACLK 10b = VLOCLK 11b = X_CLK; VLOCLK in devices that do not support X_CLK				
	4	WDTTMSEL	RW	0h	0b = Watc	timer mode select hdog mode val timer mode				
	3	WDTCNTCL	RW	0h	0000h. WI 0b = No a	OTCNTCL is auton		TCL = 1 clears the	count value to	
0.0	2-0	WDTIS	RW	4h	set the Will 000b = Wa 001b = Wa 010b = Wa 011b = Wa 100b = Wa	OTIFG flag and/or gatchdog clock sour atchdog clock sour	generate a PUC. ce /(2^31) (18h:12 ce /(2^27) (01h:08 ce /(2^23) (00h:04 ce /(2^19) (00h:00 ce /(2^15) (1 s at 3	,	lz) lz) lz)	
2 U	19/3/1				1010 - 008	atchdog clock sour	ce /(z. 13) (250 m	5 at 32.700 KHZ)	52	

Table 17-3. Timer_A Registers

Offset	Acronym	Register Name	Туре	Access	Reset	Section
00h	TAxCTL	Timer_Ax Control	Read/write	Word	0000h	Section 17.3.1
02h	TAxCCTL0	Timer_Ax Capture/Compare Control 0	Read/write	Word	0000h	Section 17.3.3
04h	TAxCCTL1	Timer_Ax Capture/Compare Control 1	Read/write	Word	0000h	Section 17.3.3
06h	TAxCCTL2	Timer_Ax Capture/Compare Control 2	Read/write	Word	0000h	Section 17.3.3
08h	TAxCCTL3	Timer_Ax Capture/Compare Control 3	Read/write	Word	0000h	Section 17.3.3
0Ah	TAxCCTL4	Timer_Ax Capture/Compare Control 4	Read/write	Word	0000h	Section 17.3.3
0Ch	TAxCCTL5	Timer_Ax Capture/Compare Control 5	Read/write	Word	0000h	Section 17.3.3
0Eh	TAxCCTL6	Timer_Ax Capture/Compare Control 6	Read/write	Word	0000h	Section 17.3.3
10h	TAxR	Timer_Ax Counter	Read/write	Word	0000h	Section 17.3.2
12h	TAxCCR0	Timer_Ax Capture/Compare 0	Read/write	Word	0000h	Section 17.3.4
14h	TAxCCR1	Timer_Ax Capture/Compare 1	Read/write	Word	0000h	Section 17.3.4
16h	TAxCCR2	Timer_Ax Capture/Compare 2	Read/write	Word	0000h	Section 17.3.4
18h	TAxCCR3	Timer_Ax Capture/Compare 3	Read/write	Word	0000h	Section 17.3.4
1Ah	TAxCCR4	Timer_Ax Capture/Compare 4	Read/write	Word	0000h	Section 17.3.4
1Ch	TAxCCR5	Timer_Ax Capture/Compare 5	Read/write	Word	0000h	Section 17.3.4
1Eh	TAxCCR6	Timer_Ax Capture/Compare 6	Read/write	Word	0000h	Section 17.3.4
2Eh	TAxIV	Timer_Ax Interrupt Vector	Read only	Word	0000h	Section 17.3.5
20h	TAxEX0	Timer_Ax Expansion 0	Read/write	Word	0000h	Section 17.3.6

Figure 17-16. TAxCTL Register

15	14	13	12	11	10	9	8
		Rese	erved			TAS	SSEL
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
ll ll	D	M	IC	Reserved	TACLR	TAIE	TAIFG
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	w-(0)	rw-(0)	rw-(0)

Bit	Field	Туре	Reset	Description
15-10	Reserved	RW	0h	Reserved
9-8	TASSEL	RW	0h	Timer_A clock source select 00b = TAxCLK 01b = ACLK 10b = SMCLK 11b = INCLK
7-6	ID	RW	0h	Input divider. These bits along with the TAIDEX bits select the divider for the input clock. 00b = /1 01b = /2 10b = /4 11b = /8
5-4	MC	RW	0h	Mode control. Setting MCx = 00h when Timer_A is not in use conserves power. 00b = Stop mode: Timer is halted 01b = Up mode: Timer counts up to TAxCCR0 10b = Continuous mode: Timer counts up to 0FFFFh 11b = Up/down mode: Timer counts up to TAxCCR0 then down to 0000h
3	Reserved	RW	0h	Reserved
2	TACLR	RW	0h	Timer_A clear. Setting this bit resets TAxR, the timer clock divider logic, and the count direction. The TACLR bit is automatically reset and is always read as zero.
¹ 9/3/1	TAIE	RW	0h	Timer_A interrupt enable. This bit enables the TAIFG interrupt request. 0b = Interrupt disabled

Timer_Ax Capture/Compare Control n Register

Figure 17-18. TAxCCTLn Register

	15	14	13	12		11	10	9	8
		CM		CCIS		SCS	SCCI	Reserved	CAP
	rw-(0)	rw-(0)	rw-(0)	rw	-(0)	rw-(0)	r-(0)	r-(0)	rw-(0)
	7	6	5		4	3	2	1	0
		OUTMOD		C	CIE	CCI	OUT	cov	CCIFG
	rw-(0)	rw-(0)	rw-(0)	rw	-(0)	r	rw-(0)	rw-(0)	rw-(0)
	10	SCCI	RW	0h	Synchrowith the	onized capture/con EQUx signal and	npare input. The s can be read via t	selected CCI input his bit.	signal is latched
	9	Reserved	R	0h	Reserv	ed. Reads as 0.			
	8	CAP	RW	0h	1	e mode ompare mode apture mode			
	7-5	OUTMOD	RW	0h	= EQU(000b = 001b = 010b = 100b = 101b = 110b =	O. OUT bit value Set Toggle/reset Set/reset Toggle	, 6, and 7 are not	useful for TAxCCF	R0 because EQUx
	4	CCIE	RW	0h	corresp 0b = Int	e/compare interrup onding CCIFG flag terrupt disabled terrupt enabled		enables the interru	pt request of the
	3	CCI	R	0h	Capture	e/compare input. T	he selected input	signal can be read	by this bit.
20	² 19/3/1	OUT	RW	0h	0b = O	For output mode output low	0, this bit directly	controls the state of	of the output.
20					1b = 0	utput high			ψυ

17.3.4 TAxCCRn Register

Timer_A Capture/Compare n Register

Figure 17-19. TAxCCRn Register

			_		_		
15	14	13	12	11	10	9	8
			TAx	CCRn			
rw-(0)							
7	6	5	4	3	2	1	0
			TAx	CCRn			
rw-(0)							

Table 17-7. TAxCCRn Register Description

Bit	Field	Туре	Reset	Description
15-0	TAxCCR0	RW	0h	Compare mode: TAxCCRn holds the data for the comparison to the timer value in the Timer_A Register, TAR.
				Capture mode: The Timer_A Register, TAR, is copied into the TAxCCRn register when a capture is performed.