Introduction to Energy Conservation & Waste Heat Recovery

Programme: B.Tech. (Mechanical Engineering) Course type: Program Elective

Credits: 3

Course Context and Overview (100 words):

The objective of the course is to provide the knowledge on the fundamental concepts and processes of Energy conservation and waste heat recovery

- 1. Learning the fundamental principles concept of waste heat and waste heat recovery
- 2. Learning the basics of power cycles
- 3. Understand the methods for recovery of waste heat using HXs
- 4. Energy conservation techniques and energy storage and energy economics

Prerequisite: Basic Thermodynamics, Laws of thermodynamics

Course outcomes (COs):

On completion of this course, the students will have the ability to:	
CO1: Illustrate and identify waste heat and need for waste heat recovery.	
C02: Efficiently use the heat in power cycles	
C03: Develop Heat Exchanger network for waste heat recovery	
C04: Understanding the energy storage techniques.	
C05: Demonstrate an understanding energy economics	

Course Topics:

UNIT - I Introduction to Waste Heat, Importance of Waste Heat Recovery, Review of Thermodynamics Introduction to First and Second Laws, Review of Thermodynamics – Entropy, Entropy Generation, First and Second Law efficiency.	6
Unit – II	7

Power Plant Cycles – Energy Cascading, Rankine Cycle, modification of Rankine cycle, examples, Gas Turbine Cycle, Combined Cycle, Combined Gas Turbine-Steam Turbine Power Plant, Heat Recovery Steam Generators.	
Unit - III Thermodynamic cycles for low temperature application, Cogenerations, Introduction to Heat Exchangers, Analysis – LMTD and ε-NTU method Analysis of Heat Exchanger – continued, Problem solving, Special Heat Exchangers for Waste Heat Recovery, Synthesis of Heat Exchanger Network.	7
Unit – IV Heat pipes & Vapor Chambers, Direct conversion technologies – Thermoelectric Generators. Thermoionic conversion, Thermo-PV, MHD	4
UNIT – V Heat Pump; Heat Recovery from Incinerators, Energy Storage – Introduction. Energy Storage Techniques – Pumped hydro, Compressed Air, Flywheel, and Superconducting Magnetic storage.	6
Unit – VI Energy Storage Techniques – Thermal storage (Sensible & Latent), Battery, Chemical Energy Storage, Fuel cells. Energy Economics	6

Textbook References:

- 1. Energy Conversion by D Yogi Goswami and Frank Kreith, CRC Press
- 2. Principles of Sustainable Energy Systems by Charles F. Kutscher, Jana B. Milford, Frank Kreith, CRC Press.

Additional Resources (NPTEL, MIT Video Lectures, Web resources etc.):

Evaluation Methods:

Item	Weightage
Midterm exam	30
Teacher's assessment (Assignment/ Presentation/ Project/ Quiz/ etc)	20
End term	50

Prepared By: Dr. Sandesh.S.Chougule

Last Update: 01/01/2018