

B. Tech. Degree IV Semester Supplementary Examination **April 2021**

CE/CS/EC/EE/TT/ME/SE-AS 15-1401 COMPLEX VARIABLES AND PARTIAL DIFFERENTIAL EQUATIONS (2015 Scheme)

Time: 3 Hours Maximum Marks: 60

PART A (Answer ALL questions)

 $(10 \times 2 = 20)$

- I. Verify Cauchy Riemann equations for an analytic function.
 - Prove that real and imaginary parts of an analytic function are harmonic.
 - Test the analyticity of the function f(z) = z.
 - Evaluate $\int_{C} \frac{\sin(3z)}{z + \frac{\pi}{2}} dz$ if C is the circle |z| = 5.
 - Show that $\frac{1}{z^2} = \frac{1}{4} \sum_{n=0}^{\infty} (-1)^n (n+1) \left(\frac{z-2}{2} \right)^n when |z-2| < 2.$
 - Form the partial differential equation by eliminating the arbitrary function g from the relation $g(x + y + z, x^2 + y^2 + z^2) = 0$.
 - (g) Solve $z = p^2 + q^2$.
 - Solve $q^2 p = y x$. (h)
 - Using the method of separation of variables solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x,0) = 6e^{-3x}$
 - Derive one dimensional wave equation. (j)

PART B

 $(4 \times 10 = 40)$

- II. Find an analytic function whose imaginary part is $3x^2y - y^3$ also find its harmonic conjugate.
 - Find the image of the circle |z-1|=1 in the complex plane under the mapping $\omega = \frac{1}{2}$.

OR

- III. Show that $\omega = \sin z$ transform the semi infinite strip $0 \le x \le \frac{\pi}{2}$, $y \ge 0$ ONTO the first quadrant of the ω – plane.
 - Find the bilinear transformation which maps the points $z_1 = 2$, $z_2 = i$ and $z_3 = -2$ into the points $\omega_1 = 1, \omega_2 = i$ and $\omega_3 = -1$.

(P.T.O.)

BTS-IV(S)-04.21-0246

- IV. (a) Using cauchy's integral formula, find the value of $\int_{C} \frac{z+4}{z^2+2z+5} dz$ where C is the circle |z+1-i|=2.
 - (b) Find the residue of $f(z) = \frac{\sin(z)}{z \cos(z)}$ at each of its poles inside the circle-|z| = 2.

OR

- V. (a) Using residue theorem, evaluate $\int_{C} \frac{dz}{\left(z^2+4\right)^2}$ where C is the circle |z-i|=2.
 - (b) Using contour integration, evaluate $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos(\theta)}$.
- VI. Solve
 - (i) $x^2p^2 + y^2q^2 = z^2$
 - (ii) (x-y)p+(y-x-z)q=z

OR

VII. Solve

- (i) $(D^2 2DD')(z) = e^{2x} + x^3y$
- (ii) $(D^2 + DD' 6D^{2})(z) = y\cos(x)$
- VIII. (a) Derive one dimensional heat equation.
 - (b) Obtain the solution of the Laplace equation by the method of separation of the variables.

OR

IX. (a) A string is stretched and fastened to two points x = 0 and x = l apart. Motion is started by displacing the string in to the form $y = k(lx - x^2)$ from which it is released at time t = 0. Find the displacement of any point on the string at a distance x from one end at time in the form of fourier scries.
