YUAN LI

Address: George Washington University SEH 5750, 800 22nd Street NW, Washington, DC 20052

Email: liyuan5859@gwu.edu Website: http://liyuan.me Telephone: +1 (202) 710-3327

RESEARCH INTERESTS

My research focuses on delivering efficient and flexible communication support in heterogeneous manycores, specialized accelerators, and chiplet-based systems by incorporating network architectural innovation and emerging interconnection technologies such as silicon photonics.

EDUCATION

George Washington University

Ph.D. in Computer Engineering Department of Electrical and Computer Engineering

Washington, D.C. August 2017 - Present

University of Newcastle upon Tyne

M.S. in Microelectronics School of Electrical, Electronic and Computer Engineering

Newcastle upon Tyne, U.K. September 2010 – December 2011

University of Science and Technology of China (USTC)

B.S. in Physics

Department of Physics

Hefei, China September 2006 – June 2010

PUBLICATIONS

- [1] Yuan Li, Ahmed Louri, and Avinash Karanth. "SPACX: Silicon Photonics-based Chiplet Accelerator for DNN Inference." in Proceedings of the 28th IEEE International Symposium on High-Performance Computer Architecture (HPCA), 2022.
- [2] Yuan Li, Ahmed Louri, and Avinash Karanth. "Scaling Deep Learning Inference with Chiplet-based Architecture and Photonic Interconnects." in Proceedings of the 58th ACM/IEEE Design Automation Conference (DAC), 2021.
- [3] Yuan Li, Ke Wang, Hao Zheng, Ahmed Louri, and Avinash Karanth. "ASCEND: A Scalable and Energy-Efficient Deep Neural Network Accelerator with Photonic Interconnects." in IEEE Transactions on Circuits and Systems I (TCAS-I), 2022.
- [4] Yuan Li, Ahmed Louri, and Avinash Karanth. "SPRINT: A High-Performance, Energy-Efficient, and Scalable Chiplet-based Accelerator with Photonic Interconnects for CNN Inference." in IEEE Transactions on Parallel and Distributed Systems (TPDS), 2021.
- [5] Yuan Li and Ahmed Louri. "ALPHA: A Learning-Enabled High-Performance Network-on-Chip Router Design for Heterogeneous Manycore Architectures." in IEEE Transactions on Sustainable Computing (TSUSC), 2020.
- [6] Ke Wang, Hao Zheng, Yuan Li, Jiajun Li, and Ahmed Louri. "AGAPE: Anomaly Detection with Generative Adversarial Network for Improved Performance, Energy, and Security in Manycore Systems." in Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), 2022.
- [7] Ke Wang, Hao Zheng, **Yuan Li**, and Ahmed Louri. "SecureNoC: A Learning-Enabled, High-Performance, and Secure On-Chip Communication Framework Design." in IEEE Transactions on Sustainable Computing (TSUSC), 2021.

HONORS AND AWARDS

Lin Wen Graduate Scholarship, George Washington University	2021
NSF I-Corps Site Grant Award, George Washington University	2019
EECE Postgraduate Scholarship, University of Newcastle upon Tyne	2010
Outstanding Freshman Scholarship, University of Science and Technology of China	2006

Teaching Assistant 2021

- Data Structures and Algorithms (ECE 1125.30)
- Computer Architecture and Design (ECE 4535.81 / 6005.81)

Teaching Assistant 2020

- Data Structures and Algorithms (ECE 1125.30)
- Computer Architecture and Design (ECE 4535.81 / 6005.81)

RESEARCH EXPERIENCE

Silicon Photonics and Chiplet based Deep Neural Network (DNN) Hardware Accelerators

2020 - present

- Explored the use of silicon photonics technology to overcome the communication challenges in DNN hardware accelerators
- Designed and simulated photonic interconnection networks that adapt to various general and tailored dataflows for high-performance and energy-efficient communication in DNN hardware accelerators, with a collection of simulators and tools including *Timploop*, *MAESTRO*, *DRAMSim*, *CACTI*, *DSENT*, and *Synopsys Design Compiler*
- Delivered two conference papers (HPCA' 22 and DAC' 21) and two journal papers (TCAS-I and TPDS)

DRAM and Non-Volatile Memory (NVM) Integration and Management in Chiplet based Systems

2019 - 2020

- Explored integration of DRAM and NVM stacks in 2.5D systems with heterogeneous chiplets
- Developed a data exchange mechanism between DRAM and NVM stacks and corresponding hardware modifications targeting
 actively moving memory pages with high access count yet short access time frame to DRAM stacks
- Simulated the data exchange mechanism and hardware architecture with Gem5-GPU, DRAMSim, CACTI, and DSENT

Efficient Network-on-Chip for Accelerator-Rich Heterogeneous Manycore Systems

2018 - 2019

- Developed a Network-on-Chip router microarchitecture and an artificial neural network (ANN) based mechanism to alleviate local and global contention for high-throughput and low-latency communication
- Simulated the router microarchitecture and ANN mechanism with Gem5, Gem5-GPU, DSENT, and Synopsys Design Compiler
- Delivered one journal paper (TSUSC)

Intelligent Hardware Trojan (HT) Detection in Secure Network-on-Chip Architectures

2021 – present

- Participated in developing runtime accurate HT detection modules in Network-on-Chip architectures using multilayer perceptron (MLP) and generative adversarial network (GAN) models
- Participated in power and area evaluation of HT detection modules with DSENT and Synopsys Design Compiler
- Delivered one conference paper (DATE' 22) and one journal paper (TSUSC)

RELEVANT TECHNICAL COURSEWORK

Computer Architecture Modeling

- Processor microarchitecture and memory hierarchy modeling with WinMIPS64, Dinero, SimpleScalar, and Gem5
- Network-on-Chip modeling with BookSim, Gem5, and DSENT

Embedded System Design

- Data acquisition and motion control system design with NI LabVIEW and NI PXI & CompactRIO
- Data acquisition system design with Microchip PIC18 controllers and MPLAB X IDE

Printed Circuit Board (PCB) Design

Signal processing, thermal control, and fiber-optic communication PCBs design with NI Multisim and Altium Designer

Design for Testability (DFT)

Multi-cycle MIPS processor scan flops synthesis and ATPG with Synopsys Design Vision and Synopsys TetraMAX

HDL Programming and Synthesis

- Digital filter implementation with VHDL and FLEX EPF10K70 FPGA
- Single-cycle MIPS processor design and implementation with Verilog and Cyclone IV EP4CE115 FPGA
- Multi-cycle MIPS processor design and synthesis with Verilog, Cadence SimVision, and Synopsys Design Vision
- Virtual channel Network-on-Chip router design and synthesis with Verilog, Cadence SimVision, and Synopsys Design Vision

Integrated Circuit Layout Design

- D flip-flop layout design with Cadence Virtuoso
- Multi-cycle MIPS processor layout design and routing with Cadence Virtuoso and Cadence Encounter

Device Simulation and Fabrication

- MOS transistor scaling and simulation with Synopsys TSUPREM-4
- Device fabrication training with 0.16 μm process technology at INEX Microtechnology Ltd.

PRESENTATIONS

[1] "SPACX: Silicon Photonics-based Chiplet Accelerator for DNN Inference", 28th IEEE International Symposium on High-Performance Computer Architecture (HPCA), Virtual Conference, April 2022.

[2] "Scaling Deep Learning Inference with Chiplet-based Architecture and Photonic Interconnects", 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, December 2021.

SERVICE AND TECHNICAL REVIEWING

Conference Reviewer/Sub-Reviewer

• ACM/IEEE International Symposium on Computer Architecture (ISCA) 2019, 2022

• IEEE International Symposium on High-Performance Computer Architecture (HPCA) 2020, 2021

• IEEE/ACM International Symposium on Networks-on-Chip (NOCS) 2018, 2019

• IEEE International Conference on Computer Design (ICCD) 2018

Journal Reviewer

• IEEE Transactions on Emerging Topics in Computing

2018

PROGRAMMING LANGUAGES AND DESIGN TOOLS EXPERIENCE

Programming Language

C/C++, Python, Visual Basic, MATLAB, HTML, ŁTEX, Bash, Assembly, Verilog/VHDL

Design Tool

Gem5, Gem5-GPU, SimpleScalar, Timeloop, MAESTRO, DRAMSim, Dinero, BookSim, WinMIPS64, CACTI, DSENT LabVIEW, MPLAB X IDE, NI Multisim, Altium Designer

Synopsys TetraMAX, Altera Quartus II, Cadence SimVision, Cadence Virtuoso/Encounter, Synopsys Design Vision, Synopsys TSUPREM-4