What is claimed is:

1	1. A cryogenic medical system comprising:			
2.	a medical device;			
3	a console including accessories, the console connectable to the medical device			
4	at a connection point, the console controlling temperature of the medical device, and			
5	the console including			
6	a first cooling system directing coolant to the medical device at a first			
7	temperature along a coolant supply line; and			
8	a second cooling system chilling the coolant within the coolant supply			
9	line to a temperature below the first temperature before the coolant reaches the			
0	connection point.			
1	2. The system of claim 1, wherein the medical device includes a catheter.			
1	3. The system of claim 2, wherein the first cooling system includes a coolant			
2	return line leading from the medical device, and wherein the first cooling system and			
3	the medical device comprise a substantially closed-loop.			
1	4. The system of claim 3, wherein the first cooling system includes:			
2	a first compressor in fluid communication with a first condenser outputting			
3	coolant into the coolant supply line; and			
4	a vacuum pump in fluid communication with the first compressor that			
5	establishes a pressure within the coolant return line that is below ambient atmospheric			
6	pressure.			
1	5. The system of claim 3, wherein the second cooling system includes an			
2	enclosure having an inlet and an outlet; the enclosure defining a fluid path from the			
3	inlet to the outlet, and the enclosure enveloping a portion of the coolant supply line.			

6. The system of claim 5, further comprising a second compressor in fluid communication with a second condenser outputting coolant to the inlet of the enclosure and receiving coolant from the outlet of the enclosure.

- 7. The system of claim 2, wherein the first cooling system includes a coolant return line leading from the catheter to a coolant scavenging system, and wherein the first cooling system and the catheter comprise a substantially open-loop.
- 8. The system of claim 7, wherein the first cooling system includes:
 a coolant reservoir in fluid communication with the fluid supply line; and
 a vacuum pump interposed between the catheter and the coolant collection
 tank.
- 9. The system of claim 8, wherein the vacuum pump creates a pressure within the catheter that is below ambient atmospheric pressure.
- 10. The system of claim 7, wherein the second cooling system includes an enclosure having an inlet and an outlet; the enclosure defining a fluid path from the inlet to the outlet, and the enclosure enveloping a portion of the coolant supply line.
- 11. The system of claim 10, further comprising a compressor in fluid communication with a condenser outputting coolant to the inlet of the enclosure and receiving coolant from the outlet of the enclosure.

1	12.	The system of claim 10, further comprising:
2		a coolant reservoir in fluid communication with the fluid supply line;
3		a second fluid supply line in fluid communication with the coolant reservoir
4	and th	ne inlet of the enclosure.
1	13.	The system of claim 12, further comprising:
2		a temperature sensor for measuring the temperature within the enclosure; and
3	· ·	a coolant flow regulator responsive to the temperature sensor for controlling
4	fluid	flow from the second fluid supply line into the enclosure.
1	14.	The system of claim 12, further comprising a temperature sensor for
2	measi	aring the temperature within the fluid supply line; and
3		a coolant flow regulator responsive to the temperature sensor for controlling
4	fluid	flow from the second fluid supply line into the enclosure.

ĺ		15.	A cryogenic medical system comprising:	
2 [.]			a catheter;	
3			a console including accessories, the console connectable to the catheter at a	
4		conne	ction point, the console controlling temperature of the catheter, and the console	
5		including		
6			a first cooling system including	
7			a coolant supply line leading to the catheter,	
8	ì		a coolant return line leading from the catheter,	
9			a first compressor in fluid communication with a first condenser	
0		outputting coolant into the coolant supply line, and		
1			a vacuum pump in fluid communication with the first	
12		comp	ressor that establishes a pressure within the coolant return line that is below	
13		ambie	nt atmospheric pressure; and	
14			a second cooling system including	
15			an enclosure having an inlet and an outlet, wherein the	
16		enclos	sure defines a fluid path from the inlet to the outlet, and the enclosure envelops a	
17		portio	on of the coolant supply line of the first cooling system; and	
18			a second compressor in fluid communication with a second	
19		conde	enser outputting coolant to the inlet of the enclosure and receiving coolant from	
20		the o	utlet of the enclosure	