REFORMER: The efficient Transformer

Blog: https://ai.googleblog.com/2020/01/reformer-efficient-transformer.html

Paper: https://arxiv.org/abs/2001.04451

Openreview: https://openreview.net/forum?id=rkgNKkHtvB

Oral paper at ICLR 2020, spotlight

Slide index

- Some background on state of the art NLP and the issues : quadratic memory growth
- 2) Reduce memory usage using hash and divide-and-conquer
- 3) Reduce more memory by implementing reversible transformer
- 4) Ablation study results
- 5) Summary
- 6) Reference

The Cool kids in Natural Language Processing

The Cool kids in Natural Language Processing

Figure 1: The Transformer - model architecture.

Me: I want to be the cool kids

Try to run XLM model in GTX 1080, get out of memory errors instead

```
tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-100-1280')
model = XLMWithLMHeadModel.from_pretrained('xlm-mlm-100-1280')
args.length = adjust_length_to_model(args.length, max_sequence_length=
model.to('cuda')
preprocessed_prompt_text = prepare_xlm_input(args, model, tokenizer, for encoded_prompt = tokenizer.encode(preprocessed_prompt_text, add_special encoded_prompt = encoded_prompt.to('cuda')
```

```
in linear
   output = input.matmul(weight.t())
RuntimeError: CUDA out of memory. Tried to allocate 1.6
8 GiB (GPU 0; 7.80 GiB total capacity; 2.17 GiB already allocated; 1.08 GiB free; 2.21 GiB reserved in total b y PyTorch)
(env) theblackcat102@lab:~/Documents/HW2$
```


Why?

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$
 $O(n^2)$

- 1. Self attention matrix grows quadratic with input length
- 2. Existing backpropagation strategy stores inputs and outputs of before each activation (memory x 2)

Solution 1 : Sparse operation

Self attention between query and key vector is normally a sparse matrix. We can use sparse operation to save memory footprint.

But, sparse operation require cool kids toys fancy hardware support (ie: TPU) for fast performance; software implementation is slow as he**

List of sparse transformer

- Sparse Sinkhorn Attention google
- Generating Long Sequences with Sparse Transformers openai
- Adaptive Attention Span in Transformers facebook

Solution 2: Recursive operation

A lite BERT (ALBERT): recursive transformer layers and matrix factorized embedding to save memory.

But backpropagation still need to store inputs, outputs for each recursive iteration.

And the "real" culprit: self attention matrix size = length x length

Trade computation for memory: LSH Attention

- 1. Share matrix for query and key (follow up later)
- 2. Split self attention matrix into buckets, only calculate attention similar vectors

But similarity calculation can be expensive

One way to do this is hashing:

Locality Sensitive Hashing!

As with the problem of hashing, there maybe collision

Multiple random rotation hashing

Multiple random rotation hashing

suppose we want to split vector into b buckets, given a vector x we can find the hash code as follows

R : random matrix with size of $[d_k,b/2]$

$$h(x) = argmax([xR; -xR])$$

we can use the max value of i-th index as bucket id

Full illustration of LSH attention

Query matrix = Key matrix

Number of queries and numbers of keys within a bucket maybe unequal.

Let Q matrix = K matrix and set key vector as the normalized version of query vector

$$h(k_j) = h(q_j)$$
 by setting $k_j = \frac{q_j}{\|q_j\|}$

Imbalance issues if use different matrix for query, key $q_1 q_2 q_3 q_4 q_5 q_6$ k_2 k_3 k, k, k, (a) Normal (b) Bucketed q_1 q_2 q_4 q_3 q_6 q_5 $q_1 q_2 q_4 q_3 q_6 q_5$ (c) Q = K(d) Chunked

Leave out self attention, otherwise it will be largest value

But LSH lose some "information" in each layers

Backpropagation updates for a given weight need its own input and output to compute.

Reversible Layers

RevNet tries to recover inputs from the next layers (recover y from z)

We can make transformer reversible as well

as well

(a)
$$x \xrightarrow{\text{Layer1}} y \xrightarrow{\text{Layer2}} x$$

(b)
$$x_1 \longrightarrow y_1 \longrightarrow y_2 \longrightarrow z_1$$
 $x_2 \longrightarrow y_2 \longrightarrow z_2$

(c)
$$x1 \leftarrow y1 \leftarrow y1 \leftarrow z$$
 $x2 \leftarrow - y2 \leftarrow y2 \leftarrow z$

$$Y_1 = X_1 + \operatorname{Attention}(X_2)$$
 $Y_2 = X_2 + \operatorname{FeedForward}(Y_1)$ (9)

$$Y_2 = \left[Y_2^{(1)}; \dots; Y_2^{(c)} \right] = \left[X_2^{(1)} + \text{FeedForward}(Y_1^{(1)}); \dots; X_2^{(c)} + \text{FeedForward}(Y_1^{(c)}) \right]$$
(10)

RevNet: The reversible residual network: Backpropagation without storing activations Implementation here: https://github.com/lucidrains/reformer-pytorch/blob/master/reformer-pytorch/reversible.py

Ablation study for Q=K, Reversibility

Bpd: bits per dim, basically negative log likelyhood of outputs

Ablation study for Q=K, Reversibility

Memory, Time complexity

Table 3: Memory and time complexity of Transformer variants. We write d_{model} and d_{ff} for model depth and assume $d_{ff} \ge d_{model}$; b stands for batch size, l for length, n_l for the number of layers. We assume $n_c = l/32$ so $4l/n_c = 128$ and we write $c = 128^2$.

Model Type	Memory Complexity	Time Complexity
Transformer	$\max(bld_{ff}, bn_h l^2)n_l$	$(bld_{ff} + bn_h l^2)n_l$
Reversible Transformer	$\max(bld_{ff},bn_hl^2)$	$(bn_h ld_{ff} + bn_h l^2)n_l$
Chunked Reversible Transformer	$\max(bld_{model}, bn_h l^2)$	$(bn_h ld_{ff} + bn_h l^2)n_l$
LSH Transformer	$\max(bld_{ff}, bn_h ln_r c)n_l$	$(bld_{ff} + bn_h n_r lc)n_l$
Reformer	$\max(bld_{model}, bn_h ln_r c)$	$(bld_{ff} + bn_h n_r lc)n_l$

Ablation study for number of hashing rounds

Table 2: Accuracies on the duplication task of a 1-layer Transformer model with full attention and with locality-sensitive hashing attention using different number of parallel hashes.

Eval Train	Full Attention	LSH-8	LSH-4	LSH-2	LSH-1
Full Attention	100%	94.8%	92.5%	76.9%	52.5%
LSH-4	0.8%	100%	99.9%	99.4%	91.9%
LSH-2	0.8%	100%	99.9%	98.1%	86.8%
LSH-1	0.8%	99.9%	99.6%	94.8%	77.9%

Performance and speed scale vs input length, layers

Take away

- This paper use hashing to approximate attention matrix and introduce reversible layers to save memory at the expensive of additional computation
- 2. Pointed out in openreview, bucket size affects the model performance
- 3. Resource efficient (less training time, run in CPU) is a rising area in NLP as supervised natural language understanding performance close to near human level
 - SuperGLUE: promote the development of effective, energy-efficient models for difficult NLU tasks.
- 4. This paper only shows result from auto regressive training, other existing training method such as masking, masking in sequence-to-sequence learning need to evaluate as well to obtain the full view

Questions

- 1. Why is shared query, key projection matrix required?
- 2. How do this paper reduce the self attention matrix complexity?

References

- [2001.04451] Reformer: The Efficient Transformer
- Reformer: The Efficient Transformer
- Reformer the efficient transformer Youtube

Code implementation : <u>reformer-pytorch/reformer_pytorch at master · lucidrains/reformer-pytorch</u>