Problem 1

Addendum A - Exercise 2.21

- 1. Determine $P(\emptyset)$
- 2. Determine $P(\{1\})$
- 3. Determine $P(\{1,2,3\})$

Remember that:

$$\begin{array}{ll} |A|=n & number \ of \ elements \ in \ A \\ |\emptyset|=0 & number \ of \ elements \ in \ the \ empty \ set \\ |P(A)|=2^{|A|}=2^n & number \ of \ elements \ in \ the \ powerset \\ |P(\emptyset)|=2^0=1 & number \ of \ elements \ in \ the \ empty \ set \end{array}$$

- 1. $P(\emptyset) = {\emptyset}$
- 2. $P(\{1\}) = \{\emptyset, \{1\}\}$
- 3. $P(\{1,2,3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

Addendum A - Exercise 3.4

For each of the following functions determine the image of $S = \{x \in \mathbb{R}: 9 \le x^2\}$

- 1. $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = |x|.
- 2. $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = e^x$.
- 3. $h: \mathbb{R} \to \mathbb{R}$ defined by h(x) = x 9.

$$\therefore 9 \le x^2$$

$$\pm \sqrt{9} \le \sqrt{x^2}$$

$$\pm 3 \le x$$

 $x \ge 3 \text{ or } x \ge 3$

$$S = \{x \in \mathbb{R}: 9 \le x^2\}$$

$$S = \{x \in \mathbb{R}: x^2 \ge 9\}$$

$$S = \{x \in \mathbb{R}: x \le -3, x \ge 3\}$$

1.
$$f(x) = |x|$$

 $f(-3) = |-3| = 3$
 $f(3) = |3| = 3$
Therefore the Image of

Therefore, the Image of f is $\{x \in \mathbb{R}: f(x) \ge 3\}$

2.
$$g(x) = e^x$$

 $g(-3) = e^{-3}$
 $g(3) = e^3$

Therefore, the Image of g is $\{x \in \mathbb{R}: g(x) \le e^{-3}, g(x) \ge e^{3}\}$

3.
$$h(x) = x - 9$$

 $h(-3) = -3 - 9 = -12$
 $h(3) = 3 - 9 = -6$
Therefore, the Image of h is $\{x \in \mathbb{R}: h(x) \le -12, h(x) \ge -6\}$

Problem 2

Addendum A - Exercise 3.11

Consider the following two functions. Prove that both f and g are one-to-one correspondences.

- 1. $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 4x 15
- 1. $g: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 15x^3$

Let $f:A\to B$ be a one-to-one correspondence. Then to each $b\in B$ there corresponds a unique $a\in A$ such that f(a)=b. We define $f^{-1}:B\to A$ by $f^{-1}(b)=$ the unique a such that f(a)=b

A function $f:A\to B$ is said to be one-to-one correspondence if and only if f is both:

Injective (one-to-one): $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ and, Surjective (ONTO): for all $b \in B$ there is some $a \in A$ such that f(a) = b

1. Injectivity:

Take $x_1, x_2 \in \mathbb{R}$ and assume that $f(x_1) = f(x_1)$

Thus $4x_1 - 15 = 4x_2 - 15$

And $4x_1 = 4x_2$

So $x_1 = x_2$

We have shown if $f(x_1)=f(x2)$ then $x_1=x_2$. Therefore f is one-to-one, by definition of one-to-one.

Surjectivity:

We need to find an x that maps to y.

Suppose y = 5x + 11;

Now we solve for x in terms of y .

We find $x = \frac{y+15}{4}$

Proof:

Let y be any element of \mathbb{R} .

$$g(x) = g\left(\frac{y+15}{4}\right) = 4\left(\frac{y+15}{4}\right) - 15 = y + 15 - 15 = y$$

Thus, we have found an $x \in \mathbb{R}$ such that g(x) = y

2. Injectivity:

Take $x_1,x_2\in\mathbb{R}$ and assume that $f(x_1)=f(x_1)$ Thus $15x^3=15x^3$ And $(x_1)^3=(x_2)^3$ So $x_1=x_2$ We have shown if $f(x_1)=f(x2)$ then $x_1=x_2$. Therefore f is one-to-

Surjectivity:

We need to find an x that maps to y. Suppose y=5x+11; Now we solve for x in terms of y. We find Type equation here.

one, by definition of one-to-one.

Proof:

Let y be any element of \mathbb{R} . g(x) = Thus, we have found an $x \in \mathbb{R}$ such that g(x) = y

Addendum A - Exercise 3.12

Let $f: A \to B$ be a one-to-one correspondence.

- 1. Prove that f^{-1} is a function.
- 2. Prove that f^{-1} is a one-to-one.
- 3. Prove that f^{-1} is onto.
- 4. Conclude that $f^{-1}: B \to A$ is a one-to-one correspondence.
- 1. Let A and B be nonempty sets.

A function $f:A\to B$ is said to be invertible if it has an inverse function.

Proof:

Suppose $f:A \to B$ is an invertible function.

Then $f^{-1}(f(a)) = a$ for every $a \in A$;

 $f(f^{-1}(b)) = b$ for every $b \in B$;

 $f \circ f - 1 = IB \text{ and } f - 1 \circ f = IA.$

2. Injectivity:

A function $f^{-1}: A \to B$ is said to be one-to-one if

$$f^{-1}(x_1) = f^{-1}(x_2) \Rightarrow x_1 = x_2$$
 $x_1, x_2 \in A$

In other words, there is at most one $b \in B$ with f(b) = a.

We have proven that f^{-1} is a function (for all $a \in A$ there is at least one and never more than one) $b \in B$ with $f^{-1}(b) = a$

Thus f^{-1} is one-to-one/injective

3. Surjectivity:

Since $f^{-1}(x): B \to A$, and f^{-1} is the inverse of f.

Then $domain(f) = range(f^{-1}) = A$

Thus f^{-1} is onto/surjective

4. A function f^{-1} is bijective if and only if f^{-1} is:

Injective: $f^{-1}(x) = f^{-1}(y) \Rightarrow x = y$ and,

Surjective: for all $b \in B$ there is some $a \in A$ such that $f^{-1}(a) = b$

We have proven Injectivity in 2 and Surjectivity in 3

Thus, $f^{-1}: B \to A$ is a one-to-one correspondence/bijective