U.H.B.C. Chlef Année Universitaire: 2018/2019 Faculté des Sciences Exactes et Informatique Niveau: $1^{\grave{e}re}$ Master/ Option: M.A.S. Département des Mathématiques Module: Processus Stochastiques 1.

EXAMEN FINAL

1. Questions de Cours.

(a) Montrer que la récurrence est une propriété de classe.

- (b) Montrer par absurde que toute classe récurrente est fermée.
- (c) "Toute loi invariante est stationnaire", discuter!

2. Chaîne de Markov à Temps discret.

(a) Soit $(X_n)_{n\geq 1}$ un processus de Bernoulli avec probabilité de succès p.

 N_n : le nombre de succès à l'instant $n, n \ge 0$

 T_n : l'instant du $n^{i\grave{e}me}$ succès, $n\geq 1$.

- (b) Exprimer X_n en fonction d'une indicatrice.
- (c) Donner la loi de l'état initial N_0 .
- (d) Montrer que la probabilité

$$\mathbb{P}(T_{k+1} = n/T_1 = t_1, T_2 = t_2, ..., T_{k-1} = t_{k-1}, T_k = a)$$

est indépendante de $T_1, T_2, ..., T_{k-1}$ en distinguant les deux cas $n \leq a$ et n > a.

- (e) En déduire que $(T_n)_{n\geq 1}$ est une Chaîne de Markov Homogène.
- (f) Déterminer la matrice stochastique de $(T_n)_{n\geq 1}$ et tracer le diagramme des transitions.
- (g) Classifier les états de la Chaîne.
- (h) Donner la loi du temps de séjour dans l'état "i" et en déduire le temps moyen de séjour dans l'état "1".
- (i) Quel est le temps moyen du retour à l'état "2"?
- (j) Donner le nombre moyen de visites de l'état "2".
- (k) Déterminer la loi limite si elle existe.

3. Chaîne de Markov à Temps Continu.

Un Modèle de Croissance Linéaire avec Immigration (A Linear Growth Model with Immigration)

C'est un processus de Naissance et de Mort dont les taux de naissance (λ_n) et de mort (μ_n) sont donnés par:

$$\begin{cases} \lambda_n = n\lambda + \theta, & n \ge 0\\ \mu_n = n\mu, & n \ge 1 \end{cases}$$
 (1)

Un tel processus est naturellement utilisé dans l'étude de la reproduction biologique et de la croissance des populations. Chaque individu de la population donne naissance avec un taux exponentiel λ ; de plus, il existe un taux exponentiel de croissance θ de la population du à une source externe comme l'immigration. La durée de vie de chaque individu de la population est exponentiellement distribuée de paramètre μ .

(a) Justifier les valeurs de λ_n et μ_n données dans (1). Soit $(X_t)_{t>0}$ la taille de la population à l'instant t. Supposons que X(0) = i et soit

$$M(t) = \mathbb{E}[X(t)]$$

le nombre moyen des individus à l'instant t. On cherche une équation différentielle satisfaite par M(t).

- (b) Pour h suffisemment petit, calculer les probabilités: $\mathbb{P}[X(t+h) X(t) = k]$ en fonction de θ , λ , μ , h, X(t) et o(h) selon les valeurs de $k \in \{-1, 0, 1\}$.
- (c) Montrer que (utiliser (b))

$$\mathbb{E}[X(t+h)/X(t) = x] = x + [\theta + \lambda x - \mu x]h + o(h).$$

- (d) En déduire $\mathbb{E}[X(t+h)/X(t)]$.
- (e) Sachant que $\mathbb{E}[\mathbb{E}(Y/Z)] = \mathbb{E}(Y)$, montrer que

$$M(t+h) = M(t) + (\lambda - \mu)M(t)h + \theta h + o(h).$$

- (f) En déduire l'équation différentielle satisfaite par M(t).
- (g) Déterminer l'expression de M(t) dans les cas: $\lambda \neq \mu$ et $\lambda = \mu$.
- (h) Ecrire l'expression de la loi invariante de la chaîne $(X(t))_{t\geq 0}$.
- (i) Montrer que la condition nécessaire pour l'existence de la loi limite est $\lambda < \mu$. (Utiliser le critère de D'Alembert pour les séries numériques).
- (j) Que peut-on dire concernant l'existence de la loi limite si $\lambda \geq \mu$.