Carefully and neatly document your answers. You may use a mathematical solver like Jupyter/iPython. Use plotting software for all plots.

1 Looking only at the surface

One method of determining the surface area of Pt catalysts is by surface titration with H_2 . H_2 is thought to adsorb dissociatively, one H atom per surface Pt:

$$H_2 + 2 * \rightleftharpoons 2H *$$

- 1.1 Derive the Langmuir isotherm for dissociative adsorption of H₂.
- 1.2 The data below were obtained for isothermal H_2 chemisorption on a 3% (w/w) Pt catalyst supported on γ -alumina (nominally Al_2O_3). Does the data conform to a dissociative Langmuir adsorption model?

Pressure (bar)	mass $H_2/catalyst (\mu g g^{-1})$
0.0759	1.30
0.152	1.82
0.228	2.30
0.304	2.44
0.378	2.55
1.518	4.51
1.896	4.59
2.276	4.95
2.662	5.21
3.035	5.35
3.408	5.50
3.781	5.65

2 Too hot to stick

Temperature-programmed desorption (TPD) is a common way to explore the kinetics of desorption of gases from solid surfaces. Bray et al explored models for the associative desorption of O_2 from a Pt(111) surface, a process that has an activation barrier that depends on the coverage (http://dx.doi.org/10.1016/j.susc.2013.12.005):

$$2O* \xrightarrow{k(\theta)} O_2(g) + 2*$$

Bray used a desorption prefactor of about $1 \times 10^{14} \,\mathrm{s}^{-1}$ and found the desorption activation energy to depend approximately linearly on oxygen coverage, from $2.5 \,\mathrm{eV}$ at zero coverage to $2.1 \,\mathrm{eV}$ at $0.3 \,\mathrm{ML}$.

2.1 Plot (on one graph) the O_2 desorption rate vs temperature, starting from 0.0.073, 0.093, 0.164, 0.194, and 0.5 ML O and using a temperature ramp rate of $8\,\mathrm{s}^{-1}$.

3 Langmuir, Hinshelwood, and company

Bob Davis and students (https://doi.org/10.1006/jcat.1999.2780) studied the reduction of nitrous oxide by carbon monoxide over a ceria-supported Rh catalyst. Following are rate data

obtained at 543 K.

$P_{\rm CO}$ (torr)	$P_{\rm N_2O} \ ({\rm torr})$	$TOF (s^{-1})$
30.4	7.6	0.005
30.4	15.2	0.0091
30.4	30.4	0.018
30.4	45.6	0.023
30.4	76	0.036
7.6	30.4	0.039
15.2	30.4	0.024
45.6	30.4	0.012
76	30.4	0.0078

- 3.1 What is the apparent rate order with respect to CO? With respect to N_2O ?
- 3.2 Following is a candidate mechanism. Derive a Langmuir-Hinshelwood rate expression assuming the first two reactions are quasi-equilibrated and the third reaction is rate-limiting.

$$N_{2}O + * \xrightarrow{k_{1}} N_{2}O^{*}$$

$$CO + * \xrightarrow{k_{2}} CO^{*}$$

$$N_{2}O^{*} \xrightarrow{k_{3}} N_{2} + O^{*}$$

$$CO^{*} + O^{*} \xrightarrow{k_{4}} CO_{2}$$

- 3.3 Use the observed data and regression to estimate the rate parameters. (*Hint*: Linearize to estimate the rate parameters, and use these as guesses for non-linear regression.)
- 3.4 The reaction rate is observed to be Arrhenius over the temperature range 500 to 550 K with apparent activation energy 140 kJ mol⁻¹. Can you rationalize this result with your model?

4 Peak performance

Ammonia synthesis ($N_2+3H_2 \rightleftharpoons 2NH_3$) is among the most important heterogeneous catalytic reactions and has been studied extensively. Mehta (https://doi.org/10.1021/acscatal.0c00684) following Grabow write a simple lumped model for the mechanism over a metal catalyst:

	E_a	$\Delta S^{\circ \ddagger}$	ΔE	ΔS°
	(eV)	(J/mol K)	(eV)	(J/mol K)
$N_2 + 2 * \Longrightarrow 2N^*$	$1.57E_N + 1.56$	-216.9	$2E_N$	-216.9
$N^* + \frac{3}{2}H_2 \Longrightarrow NH_3 + *$	$-0.39E_N + 1.24$	-5.6	$-0.55 - E_N$	-5.6

The activation energies for both steps are related through a Brønsted-Evans-Polanyi relationship to the binding energy of N, E_N . Those relationships are shown above, alone with some entropy data at 1 bar standard state. Note $k_B = 8.6173 \times 10^{-5} \,\mathrm{eV/K}$.

- 4.1 Determine and plot the log rate per site (turnover frequency) at $700 \,\mathrm{K}$, $100 \,\mathrm{bar}$, and a stoichiometric mixture of N_2 and H_2 at 1% conversion, as a function of E_N from -1.3 to 0 eV. (*Hint*: First apply quasi-steady-state approximation to θ_N , then back solve for rate.)
- 4.2 Typical catalysis Fe and Ru have binding energies -1.2 and -0.5 eV. Can you see why these are useful catalysts?