

EXAMEN PARCIAL PYTHON

GBI6-2021II: BIOINFORMÁTICA

Apellidos, Nombres <--- CAMBIE POR LOS QUE CORRESPONDA A SUS DATOS

03-08-2022

Jaon-Rone Carda

Color de texto

REQUERIMIENTOS PARA EL EXAMEN

Utilice de preferencia Jupyter de Anaconda, dado que tienen que hacer un control de cambios en cada pregunta.

Para este examen se requiere dos documentos:

- 1. Archivo miningscience.py donde tendrá dos funciones:
- 2. Archivo 2022I_GBI6_ExamenPython donde se llamará las funciones y se obtendrá resultados.

Ejercicio 0 [0.5 puntos]

Realice cambios al cuaderno de jupyter:

- Agregue el logo de la Universidad
- Coloque sus datos personales
- Escriba una tabla con las características de su computador

Ejercicio 1 [2 puntos]

Cree el archivo miningscience.py con las siguientes dos funciones:

- i. download_pubmed : para descargar la data de PubMed utilizando el ENTREZ de Biopython. El parámetro de entrada para la función es el /keyword.
- ii. science_plots : la función debe
 - utilizar como argumento de entrada la data descargada por download_pubmed data bear o parder. BOU M
 - ordenar los conteos de autores por país en orden ascedente y
 - seleccionar los cinco más abundantes. Con esta selección debe graficar un pie_plot . Como guía para el conteo por países puede usar el ejemplo de MapOfScience (https://github.com/CSBbook/CSB/blob/master/regex/solutions/MapOfScience_solution.ipynb).

iii Cree un docstring para cada función.

localhost:8888/notabooks/GDrive/IKIAM/CLASES/2022I/2022I_GBI6/2022I_GBI6_Examen_Python/2022I_GBI6G01_ExamenPython.ipynb

8/5/22 1 23 PM 20221_GB|6G01_Examera_force

Luego de crear las funciones, cargue el módulo miningscience como msc e imprima docstring de ca función.

```
In [1]:
```

```
# Escriba aqui su código para el ejercicio 1
 import miningscience as msc.
 help consc. downloand - pubmed).
help (rec science-plost).
```

Ejercicio 2 [2 puntos]

Utilice dos veces la función download pubmed para

- Descargar la data, utilizando los keyword de su preferencia.
- Guardar el archivo descargado en la carpeta data

Para cada corrida, imprima lo siguiente:

'El número articulos para KEYWORD es: XX' # Que se carque con inserción de texto o valor que correspondea KEYWORD y XX

```
In [2]:
```

```
# Escriba aqui su codigo para el ejercicio 2
 import os
import re.
a = msc. downloand - pubmed ("cancer").
b = len (a)
print (" " "b")
with open ( dato / coner. +xt. w) ast +xt.
txt. write (a).
```

Ejercicio 3 [1.5 puntos]

Utilice dos veces la función science_plots para:

- Visualizar un pie_plot para cada data descargada en el ejercicio 2.
- Guardar los pie_plot en la carpeta img

[4]:

* Escriba aqui su código para el ejercicio 3

import matplotlib pyplot as ptt

import numpy as np.

y = np. anoy ([,])

plt pie (y)

ptt show().

Ejercicio 4 [1 punto]

Interprete los resultados de las figuras del ejercicio 3

Escriba la respuesta del ejercicio 5.

Ejercicio 5 [2 puntos]

Para algún gen de las enzimas que intervienen en la ruta metabolica de la gluconeogenesis (<u>Lista de genes por tipología (https://www.genome.jp/pathway/map00010+C00068</u>)), realice lo siguiente:

- 1. Una búsqueda en la página del NCBI nucleotide (https://www.ncbi.nlm.nih.gov/nucleotide/).
- 2. Descargue el Accession List de su búsqueda y guarde en la carpeta data .
- Cargue el Accession List en este notebook y haga una descarga de las secuencias de los quince primeros IDs de la accesión.
- 4. Arme un árbol filogenético para los resultados del paso 3.
- 5. Guarde su arbol filogénetico en la carpeta img
- 6. Interprete el árbol del paso 4.

5.4.2.2

1 9 11 .3

8/5/22, 1 23 PM

In [3]:

Escriba aqui su código para el ejercicio 6

Escriba aqui la interpretación del arbol

Ejercicio 6 [1 punto]

- 1 Cree en GitHub un repositorio de nombre 6816_ExamenPython.
- 2. Cree un archivo Readme, nd que debe tener lo siguiente:
- · Datos personales
- · Características del computador
- Versión de Python/Anaconda y de cada uno de los módulos/paquetes y utilizados
- · Explicación de la data utilizada
- Un diagrama de procesos del módulo miningscience
- Asegurarse que su repositorio tiene las carpetas data e img con los archivos que ha ido guardando en las preguntas anteriores.
- Realice al menos 1 control de la versión (commits) por cada ejercicio (del 1 al 5), con un mensaje que inicie como:

Carlitos Alimaña ha realizado el ejercicio 1 Carlitos Alimaña ha realizado el ejercicio 2

In []:

GBI6 – BIOINFORMÁTICA [2022I] Examen Final [Python]

):

Nombre [Apellido, Nombre]:

Construya las funciones del módulo miningscience.py

def download_pubmed(Yequical

en pubmed mediente palebies class.

busq = Entrez real Centrez escich (db = pobmed"

teim = Kayword

Usehistory = "y"

webeny = busq E'webenu?

query - Key = busq E'Querykey")

hand = Enticz . etct-ch (db = pubmed

rettype = medline

retmode = text"

wistert = 0

retmox = 543, - webon = webeny query - key = query - key)

do la = handle . reade)

do la = handle . reade)

do la = handle . reade)

return do to exp.