BAB 1 PENDAHULUAN

1.1 Latar Belakang

Sejak akhir tahun 2019, dapat diketahui seluruh dunia telah digemparkan dengan semakin meningkatnya wabah *Corona Virus -19 (Covid-19)* tak terkecuali pada Indonesia. Penyakit ini tidak hanya membuat kepanikan, namun banyak memakan korban jiwa.

Akibat pandemi virus *covid-19* ini memaksa pemerintah pusat maupun daerah untuk mencari solusi agar perekonomian tidak terlalu tertekan akibat daya beli masyarakat yang menurun karena pandemi tersebut. Sistem kenormalan baru menjadi salah satu solusi paling nyata untuk membuat status perekonomian tidak terlalu tertekan. Penerapan kenormalan baru diharapkan bisa memutar roda perekonomian masyarakat agar dapat berjalan seperti sedia kala, meskipun dengan menerapkan protokol kesehatan yang telah ditetapkan. Masyarakat diwajibkan untuk mematuhi protokol kesehatan yang ditetapkan guna menghindari penyebaran virus *covid-19* yang lebih luas.

Sistem kenormalan baru tak hanya berfokus pada masyarakat yang melakukan aktifitas di luar ruangan, namun juga harus dipatuhi oleh perusahaan yang melakukan aktifitas di dalam suatu tempat. berdasarkan data yang dihimpun oleh Kemenkes RI, penularan virus covid-19 cepat menyebar pada tempat yang dijadikan kerumunan manusia. agar aktifitas yang dilakukan tak menjadi sumber penularan virus yang baru, suatu instansi seperti kampus, sekolah dan perusahaan diharuskan buat menerapkan protokol kesehatan yang sebagai bagian berasal sistem kenormalan baru. Penerapan protokol kesehatan yang menjadi bagian dari sistem kenormalan baru tentunya mengubah cara perusahaan dalam pengelolaan sumber daya manusia yang dimiliki. Mereka diharuskan untuk mengubah pengelolaan sumber daya manusia agar tak terjadi kerumunan yang bisa meningkatkan resiko penularan virus covid-19.

Dengan perkembangan zaman pada saat ini, pada ilmu Kecerdasan buatan (*Artificial Intelligence*) merupakan salah satu bagian dari ilmu komputer yang mempelajari bagaimana membuat mesin (komputer) dapat melakukan pekerjaan seperti dan sebaik yang dilakukan oleh manusia bahkan bisa lebih baik dari pada yang dilakukan manusia (John McCarthy. 1956).

Kemudian pada domain computer vision semakin banyak diimplementasikan pada kehidupan sehari-hari dan itu menjadi kenyataan. salah satu teknologi *computer vision* yang dikembangkan hingga saat ini adalah *human counting system* berdasarkan fitur orang yang berada pada video yang diambil dari kamera cctv. Sistem tersebut sangat bermanfaat dalam mengestimasikan jumlah orang yang berada pada suatu area dan mengetahui kepadatan suatu tempat. Jika sistem tersebut digunakan pada ruangan, sistem tersebut sangat bermanfaat untuk mengevaluasi kapasitas tempat umum dan dapat menjadi faktor penentu dalam pengadaan fasilitas. agar suatu tempat tersebut tidak memenuhi ruangan yang menyebabkan kepadatan dalam suatu ruangan karena dapat memicu penularan virus *covid-19* mudah untuk menyebar.

Salah satu alat pendeteksi objek adalah menggunakan sensor kamera. dengan memanfaatkan kamera akan ditangkap gambar atau video yang akan dianalisa dan lalu dapat dilakukan perhitungan berasal akibat berupa sejumlah objek yang dideteksi. Deteksi anggota tubuh adalah salah satu hal penting pada interaksi manusia dengan komputer dan penelitian pengenalan pola. Ini juga adalah langkah awal pada proses pengenalan anggota tubuh. kepala merupakan salah satu bagian tubuh yang sering digunakan sebagai objek yang ingin dideteksi. dengan menggunakan algoritma *Haar Cascade Classifier* dan algoritma *YOLO* akan dihasilkan suatu metode pendeteksian objek anggota tubuh manusia dan bisa meningkatkan ketelitian pada proses klasifikasi pada kepala manusia yang selama ini menjadi objek yang paling sering digunakan sebagai model pendeteksian pada wajah.

Algoritma *Haar Cascade Classifier* dan algoritma *YOLO* dapat diimplementasikan dalam dunia kerja. Salah satunya adalah untuk digunakan dalam melakukan perhitungan pada objek manusia yang dideteksi agar bisa diketahui jumlah pengunjung dari suatu ruangan atau pengunjung yang datang pada suatu ruangan. Ruangan yang ada dapat berupa ruangan sekolah, kampus dan pameran, ruang kerjanya ataupun pertokoan dan sebagainya, maka pada penelitian ini dilakukan pendeteksian dan penghitungan kepala manusia yang ditangkap oleh kamera yang terhubung ke komputer (*CCTV*) dan kemudian diproses menggunakan Algoritma *Haar Cascade Classifier* dan *YOLO*.

Penelitian tentang algoritma *Haar Cascade Classifier* yang didalamnya juga terdapat algoritma adaboost sudah banyak dilakukan salah satunya adalah *Haar Cascade Classifier* dan algoritma adaboost untuk deteksi banyak wajah dalam ruang kelas yang dilakukan oleh

(Santoso et al, 2013) yang melakukan penelitian dibidang computer vision untuk deteksi banyak wajah dalam ruang kelas. Selain itu Haar Cascade Classifier untuk deteksi multiface dan menghitung jumlah orang (Kusumanto, R.D, et al 2012). Melihat latar belakang masalah di atas, maka penulis mengangkat judul penelitian ini dengan "Implementasi Algoritma Haar Cascade Classifier dan Algoritma YOLO Untuk Mendeteksi Dan Menghitung Jumlah Manusia Di Dalam Ruangan (Human Counting)", yang nantinya akan di deploy ke dalam bentuk website menggunakan salah satu library python yaitu flask.

1.2 Perumusan Masalah

Berdasarkan latar belakang yang disebutkan sebelumnya, masalah utama yang akan dibahas dalam tugas akhir ini adalah sebagai berikut:

- Bagaimana cara melakukan implementasi Deep Learning dalam pembuatan aplikasi
 Human Counting dengan menggunakan algoritma Haar Cascade Classifier dan algoritma
 YOLO.
- Bagaimana mengimplementasikan model *computer vision* yang dihasilkan dalam bentuk berbasis aplikasi *website*.

1.3 Tujuan Penelitian

Berikut merupakan tujuan dari penulisan tugas akhir ini, yaitu:

- Menganalisa hasil akurasi ketepatan deteksi yang dilakukan dengan algoritma Haar
 Cascade Classifier dan algoritma YOLO.
- Melakukan implementasi *Deep Learning* dalam pembuatan aplikasi *Human Counting* dengan menggunakan algoritma *Haar Cascade Classifier* dan algoritma *YOLO*.

1.4 Batasan Masalah

Agar pengerjaan tugas akhir ini menjadi lebih terarah dan mendapatkan hasil yang lebih spesifik, maka sistem yang dirancang akan dibatasi dalam batasan masalah sebagai berikut:

- Dataset yang digunakan dalam pembuatan model Deep Learning aplikasi Human Counting adalah dataset tidak disiarkan secara langsung (real-time) dari hasil kamera karena hanya menggunakan hasil rekaman video orang masuk kedalam ruangan yang di akses melalui kamera.
- Sistem tidak mendeteksi suhu tubuh , dan penggunaan masker.
- Bagian tubuh atas yang dideteksi untuk menghitung jumlah manusia adalah wajah.
- Sistem menggunakan library flask untuk diaplikasikan ke website.
- Hasil akhir dari sistem ini adalah sebuah aplikasi human counting ini adalah untuk menghitung jumlah orang yang masuk kedalam ruangan agar tidak membuat kerumunan untuk membantu menerapkan protokol kesehatan agar mencegah mudah nya penularan virus covid-19.

1.5 State of The Art

Jurnal	Kesimpulan	Persamaan	Perbedaan
Computer	Dalam penelitian ini,	Menggunaka	Menggunakan
Vision Implementatio	penulis menerapkan	n library dari	algoritma
n for	algoritma <i>Haar Cascade</i>	OpenCv yang	Haar Cascade
Detection and Counting the	Classifier dan di	memang	Classifier dan
Number of	kombinasikan dengan	difokuskan	algoritma
Humans	algoritma YOLO untuk	dalam hal	YOLO. Untuk
	mendapatkan hasil	pengolahan	memberikan
	akurasi yang tinggi dan	citra digital.	akurasi yang
	cepat pada objek yang	Dalam	tinggi dan
	bergerak seperti	pengimpleme	cepat pada
	manusia, lalu	ntasian	objek yang
	menggunakan libary dari	sistem	bergerak
	OpenCv yang memang di	perhitungan	(manusia)
	fokuskan dalam hal	ini digunakan	
	pengelolaan citra digital.	2 metode	
	Dalam	yaitu object	
	pengimplementasian	detection dan	
	sistem perhitungan ini	object	
	digunakan 2 metode	tracking.	
	yaitu object detection dan	Untuk	
	object tracking.	pendeteksian.	

IMPLEMENT ASI COMPUTER VISION Dalam penelitian ini penulis menerapkan system untuk mendeteksi peneletia	
COMPUTER penulis menerapkan	
	an
ALAT PENGHITUN manusia secara realtime • Algorit ini penu	lis
G TELUR dengan menggunakan ma <i>Haar</i> tidak	
BEBEK MENGGUN kamera webcam/kamera Cascade menggun	na
AKAN smartphone lalu akan di Classifier kan	
METODE deploy ke website dengan dengan Raspber	ry
HAAR CASCADE menggunakan salah satu bantuan Pi	
CLASSIFIER liblary python yaitu flask. library dilakuka	n
opencv menggu	1a
dapat kan Pi	
mendeteks Camera	
i yang	
keberadaa digunak	an
n manusia untuk	
secara memoni	tor
realtime. ing alat	
Algoritma penghitu	ng
Haar	5
Cascade	
ini	
merupakan	
algoritma	
pengolah	
citra	
dengan	
resolusi	
rendah,	
sehingga	
sangat	
Saligat	

mudah
untuk
digunakan,
hasil yang
didapat
memiliki
tingkat
keakuratan
sebesar
100%.

PENGEMBA	Dalam penelitian ini,	Menggunaka	● Dalam
NGAN	penulis menerapkan	n algoritma	penelitian
DETEKSI CITRA MOBIL	algoritma <i>Haar Cascade</i>	(Yolo)	ini penulis
	Classifier dan di	adalah	tidak
UNTUK MENGETAH	kombinasikan dengan	sebuah	menguji
UI JUMLAH TEMPAT	algoritma YOLO untuk	algoritma	untuk
PARKIR	mendapatkan hasil	yang	menghitun
MENGGUN AKAN	akurasi yang tinggi dan	dikembang	g mobil
CUDA DAN	cepat pada objek yang	kan untuk	tetapi
MODIFIED YOLO	bergerak seperti manusia.	mendeteksi	untuk
TOLO		sebuah	menghitun
		objek	g jumlah
		secara <i>real-</i>	orang yang
		time.	masuk ke
		Sistem	dalam
		pendeteksia	ruangan
		n yang	mengguna
		dilakukan	kan
		adalah	algoritma
		dengan	Haar
		menggunak	Cascade
		an	Classifier
		repurpose	dan
		classifier	algoritma
		atau	YOLO.
		localizer	
		untuk	
		melakukan	
		deteksi.	
		Sebuah	
		model	

diterapkan
pada
sebuah
citra di
beberapa
lokasi dan
skala.
Daerah
dengan
citra yang
diberi <i>score</i>
paling
tinggi akan
dianggap
sebagai
sebuah
pendeteksia
n

RANCANG	Dalam penelitian ini	Tujuan	● Dalam
BANGUN			
SISTEM	penulis menerapkan	penelitian	penelitian
PENGHITUN G JUMLAH	algoritma Haar Cascade	ini adalah	ini baru
PENGUNJU	Classifier dan di	untuk	sampai
NG	kombinasikan dengan	menghitung	tahap
PERPUSTAK AAN	algoritma YOLO untuk	dan	pembuatan
MENGGUNA	mendapatkan hasil	menjumlahk	model dan
KAN METODE	akurasi yang tinggi dan	an jumlah	mempersia
HAAR LIKE	cepat pada objek yang	orang yang	pkan
FEATURES (STUDI	bergerak seperti	masuk ke	dataset
KASUS	manusia, lalu	dalam suatu	yang akan
PADA PERPUSTAK	menggunakan libary dari	ruangan	digunakan.
AAN	OpenCv yang memang di	agar tidak	
UNIVERSIT AS	fokuskan dalam hal	memenuhi	
TADULAKO	pengelolaan citra digital.	tempat.	
)	Dalam		
	pengimplementasian		
	sistem perhitungan ini		
	digunakan 2 metode		
	yaitu object detection dan		
	object tracking.		
	a.		

SISTEM PENGHITUN G JUMLAH PENGUNJU NG DI RESTORAN MENGGUNA KAN KAMERA BERBASIS SINGLE SHOT DETECTOR (SSD)	Dalam penelitian ini penulis menggunakan sistem algoritma Haar Cascade Classifier dan di kombinasikan dengan algoritma YOLO untuk mendapatkan hasil akurasi yang tinggi dan cepat pada objek yang bergerak seperti manusia, lalu menjalankan secara realtime lalu di deploy ke dalam bentuk website.	• Dalam peneletian ini menggunak an dataset mobile_net SSD, yang di input dalam berupa video dari hasil tangkapan kamera.	● Dalam penelitian ini tidak menggunaka n metode Convolution al Neural Network (CNN) Deep Learning.
---	--	---	---

1.6 Sistematika Penulisan

Sistematika penulisan disusun untuk memberikan gambaran secara umum mengenai permasalahan dan pemecahannya. Penyusunan ini diuraikan dalam beberapa pokok permasalahan yang terbagi dalam beberapa bab. Sistematika penulisan Tugas Akhir ini adalah sebagai berikut:

Bab 1 Pendahuluan

Bab ini memuat pendahuluan penelitian yang terdiri dari latar belakang, rumusan masalah, tujuan dan manfaat penelitian, ruang lingkup penelitian, *state of the art*, serta sistematika penulisan penelitian.

Bab 2 Landasan Teori

Bab ini memuat landasan teori penelitian yang terdiri dari teori dasar mengenai sistem *Human Counting*, *Computer Vision* (CV), *Artificial intellegence* (AI), *Machine Learning*, *Deep Learning*, algoritma *Haar Cascade Classifier*, algoritma *YOLO*, library flask, Tensorflow, OpenCv.

Bab 3 Analisis dan Perancangan

Bab ini memuat tentang analisis dan perancangan mengenai aplikasi "Human Counting" dan juga pembuatan model mengenai algoritma optimasi akurasi dengan algoritma Haar Cascade Classifier dan algoritma YOLO, serta pengimplementasian Computer Vision.

Bab 4 Implementasi dan Pengujian

Bab ini membahas mengenai implementasi algoritma *Haar Cascade Classifier* dan algoritma *YOLO* pada aplikasi "*Human Counting*" dan Computer Vision (CV) dalam pembuatan sistem *Human Counting* yang meliputi hasil akurasi dari training algoritma dan melakukan pengujian ketepatan dari aplikasi *Human Counting*.

Bab 5 Kesimpulan dan Saran

Bab ini memuat kesimpulan dan saran dari pembuatan aplikasi *Human Counting* yang telah dibangun , dengan menggunakan algoritma *Haar Cascade Classifier* dan algoritma *YOLO*.

Daftar Referensi

Lampiran