

3 文法的形式化描述

杨策

3 文法的形式化描述

- 可计算性理论入门
- BNF范式
- 乔姆斯基文法

公理的形式化

- 欧几里德:几何原本
 - 第五公设
- 康托集合论
- 罗素悖论 需要避开这种定义方式
 - 符合某性质的元素总体是一个集合
- 希尔伯特纲领
 - 数学公理、证明形式化

- 自然数域N上的函数
- 基础函数
 - 常函数f(x)=0
 - 后继函数f(x)=x+1
 - 投影函数f(x₁, ..., x_n)=x_i

- 复合规则
 - · m元函数g, m个n元函数hi, 复合成n元函数
 - $f(x_1, ..., x_n) = g(h_1(x_1, ..., x_n), ..., h_m(x_1, ..., x_n))$
- 递归规则
 - f(0) = c
 - f(n+1)=h(n, f(n))

Primitive Recursive Functions

- 自然数域N上的函数
- •基础函数
 - 常函数f(x)=0
 - 后继函数f(x)=x+1
 - 投影函数f(x₁, ..., x_n)=x_i
 - 3个基础函数使用有限次复合和递归得到的函数为原始递归
 - 原始递归函数是可计算的

• 复合规则

- · m元函数g, m个n元函数hi, 复合成n元函数
- $f(x_1, ..., x_n) = g(h_1(x_1, ..., x_n), ..., h_m(x_1, ..., x_n))$
- 递归规则
 - k元函数g, k+2元函数h
 - $f(x_1, ..., x_k, 0) = g(x_1, ..., x_k)$
 - $f(x_1, ..., x_k, n+1)=$
 - $h(x_1, ..., x_k, n, f(x_1, ..., x_k, n))$

- 加法 f(x, y)=x+y
- g(x)=x 投影函数
- f(x, y) 递归
 - f(x, 0) = g(x) = x
 - f(x, y)=f(x, y-1)+1=...=f(x, 0)+y
 - f(x, y) = h(x, y-1, f(x, y-1))
 - h(x, y-1, f(x, y-1)) = f(x, y-1) + 1

- h(x, y, z) = z + 1
 - h(x, y, z)=p(q(x, y, z)) 复合
 - q(x, y, z)=z 投影函数
 - p(z)=z+1 后续函数

- 乘法 f(x, y)=x*y
- g(x)=0 常函数
- f(x, y)=f(x, y-1)+x 递归
 - f(x, 0)=g(x)=0
 - f(x, y)=f(x, y-1)+x=...=f(x, 0)+x*y
 - f(x, y)=h(x, y-1, f(x, y-1))
 - h(x, y-1, f(x, y-1))=f(x, y-1)+x

- h(x, y, z) = x + z
 - $h(x, y, z) = p(q_1(x, y, z), q_2(x, y, z))$
 - q₁(x, y, z)=x 投影函数
 - q₂(x, y, z)=z 投影函数
 - p(x, z)=x+z 加法函数

部分递归

- 原始递归的问题
 - 能覆盖的函数太少
 - 阿克曼函数不是原始递归函数
 - 增长比所有原始递归函数快

阿克曼函数 $A:\mathbb{N}^2\to\mathbb{N}$ 由如下定义:

$$egin{array}{lll} A(0,n) & = n+1 &$$
 对于 $n \geq 0 \ A(m+1,0) & = A(m,1) &$ 对于 $m \geq 0 \ A(m+1,n+1) & = A(m,A(m+1,n)) &$ 对于 $m,n \geq 0 \ \end{array}$

如果第一位参数是固定的:

$$A(1,n)=2+(n+3)-3, \ A(2,n)=2*(n+3)-3, \ A(3,n)=2^{n+3}-3, \ A(4,n)=2^{2^{n+3}-3},$$

部分递归

- 增加一条规则: µ规则
 - k+1元函数g, 对任意n₁, ..., n_k都有解x使得g(n₁, ..., n_k, x)=0
 - 得到新的k元函数f(n₁, ..., n_k)=min{x | g(n₁, ..., n_k, x)=0}
- 部分递归函数
 - 三种基本函数
 - 部分递归函数使用有限次复合、递归、μ规则进行构造
- 部分递归函数(哥德尔)=lambda演算(丘奇)=图灵机(图灵)

- 数据
 - 纸带
 - 内部状态
- 操作
 - 读/写
 - 左移/右移
- 通用图灵机

编译器/解释器

- 无穷集比大小
 - f(A) → B, f是单射,则认为|A|≤|B|
 - |A|≤|B| & |B|≤|A|, 则认为|A|=|B|
 - 可数集: |A|=|N|, N是自然数集合
 - 有理数集合可数

• 实数是否可数? 对角线法

	1	2	3	4	5	••••
1	0	1	1	0	1	
2	0	1	1	1	1	
3	1	0	0	1	1	
4	0	1	1	1	0	
• • • • •						

- 停机问题
 - 是否存在一个图灵机,判定其他任意一个图灵机在任意一种输入下是否 会停机
 - 图灵机:可数
 - 输入: 可数
 - 对角线法: 不存在通用算法判定停机

BNF范式

- <if语句> ::= if (<表达式>) 语句
- 产生式: *A* → *iES*
- 大写字母表示非终结符
- 小写字母表示终结符
- 同一个非终结符的多个产生式用|表示或
- $A \rightarrow iES | iESeS$

λ演算

$$x$$
 $(\lambda x. x)y = y$ 相当于 $f(x)=x$,求 $f(y)$ xy $(\lambda x. xy)z = zy$ $f(x)=xy$, $f(z)=xy$ $\lambda x. x$ $(\lambda x. xx)(\lambda y. y) = (\lambda y. y)(\lambda y. y) = (\lambda y. y)$ $\lambda y. \lambda x. xy$ $(\lambda x. xx)(\lambda x. xx) = (\lambda x. xx)(\lambda x. xx)$

applied λ演算

- 增加其他算符、类型
- 加法运算和数字
 - $(\lambda x \cdot x + 6)2 = 2 + 6 = 8$
 - $(\lambda x. x 100)(\lambda y. y + 1) = (\lambda y. y + 1)100 = 100 + 1 = 1$
- 布尔运算
- 条件语句

上下文无关文法

- 四元组 $G = (V_T, V_N, S, P)$
- ·终结符 A finite terminal vocabulary V_T
 - 不可再分
 - 如: 基本字、标识符、常数、算符和界符等
- ・非终结符 A finite set of nonterminal vocabulary V_N
 - 代表语法范畴, 也称语法变量, 一定符号串的集合
 - 如:表达式、赋值句、分程序、过程等

上下文无关文法

- 四元组 $G = (V_T, V_N, S, P)$
- ・开始符号 A start symbol $S \in V_N$ that starts all derivations
 - 特殊的非终结符
- 产生式 P, a finite set of productions (rewriting rules) of the form $P \to a \mid \beta$
 - 左部 P ∈ V_N, 右部 α, β ∈Σ*

 Σ^* 表示 Σ 上的所有可能符号串 $\Sigma = \mathbf{V_T} \cup \mathbf{V_N}$

符号记号

- 字母表∑
 - 符号的有限集
 - $\Sigma = \{a, 0, 1\}$
 - 空集Φ
- •符号串
 - 符号的有限序列
 - 空串ε

- 符号串连接操作
 - x=0, y=1, xy=01
 - $a^0 = \varepsilon$, $a^1 = a$, $a^2 = aa$
- 集合乘积
 - $XY = \{xy | x \in X \coprod y \in Y\}$
 - $A=\{a, b, c, d\}, B=\{0, 1\}, AB=?$

例子: 自然数集合

- 1位自然数: N={0, 1}
- 2位自然数: M={00, 01, 10, 11}={0, 1} {0, 1}=N N
- 3位自然数 L = N M 或者 L = M N
- 集合的幂 $N^0 = \{\epsilon\}$, $N^1 = N$, $N^k = N^{k-1}N = NN^{k-1}$ 递归定义
- 正闭包N+=N∪N2∪N3∪......
- 克林闭包N*=N⁰∪N+

上下文无关文法

- 它所定义的语法范畴(或语法单位)完全独立于这种范畴可能出现的环境之外
- 不宜描述自然语言
 - 自然语言中, 句子和词等往往与上下文紧密相关
- 四个组成部分
 - 一组终结符号,一组非终结符号
 - 一个开始符号,一组产生式

乔姆斯基文法

- 上下文无关文法的一般化
- 定义清晰自洽
 - 避免出现罗素悖论
- 语言描述能力强
 - 能描述大多数程序设计语言
- 递归定义

乔姆斯基文法

对任一产生式α→β

- 0型 短语文法
 - 递归可枚举
- 1型 上下文有关文法
 - 产生式左边可以有多个符号
- 2型 上下文无关文法
 - 大多数程序语言的语法
- 3型 正则/正规文法
 - 有限自动机可以识别

 $\alpha \in (V_N \cup V_T)^*$ 且至少含有一个非终结符 $\beta \in (V_N \cup V_T)^*$

除S \rightarrow ϵ 外,对任一产生式 $\alpha\rightarrow\beta$ 都有 $|\alpha|\leq|\beta|$ S不得出现在任何产生式的石部

 $\alpha \in V_{N} \\ \beta \in (V_{N} \cup V_{T})^{*}$

 $A \rightarrow a$ B或 $A \rightarrow a$ $A \in V_N$ $B \in V_N$ $a \in V_T$

随产的条渐文述的逐看生约件增法语能渐弱对式束逐强描言力减