Reinforcement Learning Fundamentals: MDPs and Policies

Last Updated April 22, 2025

Markov Decision Process (MDP)

An MDP models a sequential decision problem under uncertainty.

Definition: An MDP is a tuple (S, A, p, r, γ) .

- \mathcal{S} : Set of states s.
- \mathcal{A} : Set of actions a.
- p(s'|s,a): Transition probability kernel.

$$p(s'|s,a) = \mathbb{P}(S_{t+1} = s'|S_t = s, A_t = a)$$

- r(s, a) or r(s, a, s'): Reward function.

$$r(s, a) = \mathbb{E}[R_t | S_t = s, A_t = a]$$

$$r(s, a, s') = \mathbb{E}[R_t | S_t = s, A_t = a, S_{t+1} = s']$$

Note: $r(s, a) = \sum_{s'} p(s'|s, a) r(s, a, s')$.

 $- \gamma \in [0,1)$: Discount factor.

Markov Property: The future depends only on the current state and action, not the past history.

$$\mathbb{P}(S_{t+1}, R_t | S_t, A_t, S_{t-1}, \dots) = \mathbb{P}(S_{t+1}, R_t | S_t, A_t)$$

Policies

A policy specifies how an agent selects actions. **Definition**: A policy π is a sequence of decision rules π_t . **Decision Rule** π_t : Determines the distribution of action A_t given the history $H_t = (S_0, A_0, \ldots, S_t)$.

$$A_t \sim \pi_t(\cdot|H_t)$$

Types of Policies

- History-dependent: $\pi_t(\cdot|H_t)$.
- **Markovian** (Memoryless): Depends only on the current state S_t .

$$\pi_t(\cdot|H_t) = \pi_t(\cdot|S_t)$$

Often written as $\pi_t(a|s)$

- **Stationary**: The decision rule is time-independent.

$$\pi(\cdot|s) = \pi_t(\cdot|s) \quad \forall t$$

Often written as $\pi(a|s)$.

Deterministic: Maps each state (or history) to a single action.

$$\pi(s) = a$$

Or $\pi_t(H_t) = a$.

Induced Markov Chain: Given an MDP and a fixed stationary policy π , the state sequence (S_t) forms a Markov chain with transition kernel $p^{\pi}(s'|s)$:

$$p^{\pi}(s'|s) = \sum_{a \in \mathcal{A}} \pi(a|s)p(s'|s, a)$$

If π is deterministic, $p^{\pi}(s'|s) = p(s'|s, \pi(s))$.

Value Functions & Optimality

Evaluating how good states and policies are.

$$G_t^{\pi}(s) = \sum_{k=0}^{\infty} \gamma^k R_{t+k} \quad \begin{vmatrix} S_0 = s, \\ A_{t+k} \sim \pi_{t+k}, \\ S_{t+k+1} \sim p(\cdot|S_{t+k}, A_{t+k}), \\ R_{t+k} = r(S_{t+k}, A_{t+k}, S_{t+k+1}). \end{vmatrix}$$

if t = 0 (and rename k by t)

$$G^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^{t} R_{t} \quad \begin{vmatrix} S_{0} = s, \\ A_{t} \sim \pi_{t}, \\ S_{t+1} \sim p(\cdot|S_{t}, A_{t}), \\ R_{t} = r(S_{t}, A_{t}, S_{t+1}) \end{vmatrix}$$

This is a random variable depending on the policy and system dynamics.

State Value Function $v^{\pi}(s)$: Expected return starting from state s and following policy π .

$$v^{\pi}(s) = \mathbb{E}_{\pi}[G_t^{\pi}|S_t = s]$$
$$v^{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k} \middle| S_t = s\right]$$

Policy Value / Objective Function $J(\pi)$: Expected value starting from an initial state distribution ρ_0 .

$$J(\pi) = \mathbb{E}_{S_0 \sim \rho_0}[v^{\pi}(S_0)] = \mathbb{E}_{S_0 \sim \rho_0, \pi}[G_0]$$

Optimal Value Function $v^*(s)$: Maximum possible expected return from state s.

$$v^*(s) = \max_{\pi} v^{\pi}(s)$$

Optimal Policy π^* : A policy achieving the optimal value function for all states.

$$\pi^*$$
 is optimal $\iff v^{\pi^*}(s) = v^*(s) \quad \forall s \in \mathcal{S}$

Equivalently:

$$\pi^*$$
 is optimal $\iff v^{\pi^*}(s) > v^{\pi}(s) \quad \forall s \in \mathcal{S}, \forall \pi$

Policy Optimization Problem: Find π^* maximizing $J(\pi)$.

$$\pi^* \in \operatorname*{arg\,max}_{\pi} J(\pi)$$

If $\rho_0(s) > 0$ for all s, solving $\max_{\pi} J(\pi)$ is equivalent to finding a π^* such that $v^{\pi^*}(s) = v^*(s)$ for all s.

Existence of Optimal Policies

Theorem: For any MDP with a γ -discounted criterion ($\gamma < 1$) and infinite horizon, there exists at least one optimal policy π^* that is:

- Stationary
- Deterministic
- Memoryless (Markovian)

This means we can search for optimal policies of the form $\pi:\mathcal{S}\to\mathcal{A}.$

State Occupancy Measure

Alternative view of policy value based on state visitation frequency.

Expected Reward under π :

$$r^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s), s' \sim p(\cdot|s,a)}[r(s,a,s')]$$

$$r^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} p(s'|s, a) r(s, a, s')$$

State Visitation Probability: $p(S_t = s | S_0 \sim \rho_0, \pi)$ is the probability of being in state s at time t. For finite states, if ρ_0 is a row vector, this is the s-th element of $\rho_0(p^{\pi})^t$.

Discounted State Occupancy Measure $\rho_{\rho_0}^{\pi}(s)$: Expected total discounted time spent in state s.

$$\rho_{\rho_0}^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^t p(S_t = s | S_0 \sim \rho_0, \pi)$$

For finite states, $\rho_{\rho_0}^{\pi} = \rho_0 \sum_{t=0}^{\infty} (\gamma p^{\pi})^t = \rho_0 (I - \gamma p^{\pi})^{-1}$. Policy Value via Occupancy:

$$J(\pi) = \sum_{s \in S} \rho_{\rho_0}^{\pi}(s) r^{\pi}(s) = \langle \rho_{\rho_0}^{\pi}, r^{\pi} \rangle$$

Total Occupancy: Summing over all states:

$$\sum_{s \in S} \rho_{\rho_0}^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^t \sum_{s \in S} p(S_t = s | \dots) = \sum_{t=0}^{\infty} \gamma^t = \frac{1}{1 - \gamma}$$

Normalized Occupancy Distribution:

$$d_{qq}^{\pi}(s) = (1 - \gamma)\rho_{qq}^{\pi}(s)$$

This is a proper probability distribution $(\sum_{s} d_{\rho_0}^{\pi}(s) = 1)$.

$$J(\pi) = \frac{1}{1 - \gamma} \sum_{s} d^{\pi}_{\rho_0}(s) r^{\pi}(s) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi}_{\rho_0}}[r^{\pi}(s)]$$

Interpretation of Discount Factor γ

 γ can be seen as the probability of continuing the process at each step.

- Consider an MDP where each transition has a probability 1γ of ending in a terminal absorbing state (with 0 reward) and γ of continuing according to p.
- The probability of a trajectory lasting exactly h steps is $(1-\gamma)\gamma^{h-1}$ (for $h \ge 1$).
- The expected length of a trajectory (effective horizon) is $\frac{1}{1-\gamma}$.
- The value $v_{\gamma}^{\pi}(s)$ in the original MDP (discounted) is related to the value $v_{\gamma}^{\pi'}(s)$ in the modified MDP (total reward) by $v_{\gamma}^{\pi'}(s) \approx \gamma v_{\gamma}^{\pi}(s)$.