Lecture 17 Domain-Specific Architectures

Krste Asanovic

Electrical Engineering and Computer Sciences
University of California at Berkeley

http://www.eecs.berkeley.edu/~krste

http://inst.eecs.berkeley.edu/~cs152

Moore's Law

"Cramming more components onto integrated circuits", Gordon E. Moore, Electronics, 1965

End of Dennard (Voltage) Scaling

Data courtesy S. Borkar/Intel 2011

Single-Thread Processor Performance

year

Domain-Specific Architectures

In early 2000s, microprocessors moved to manycore architecture (multiple general-purpose cores per die) to improve energy efficiency for parallel workloads.

Now, great interest in more specialized architectures to further improve energy efficiency on certain workloads

Four examples:

Google TPU

Microsoft Catapult

Intel Crest (now Nervana)

Google Pixel Visual Core

Guidelines for DSAs

- Use dedicated memories to minimize data movement
- Invest resources into more arithmetic units or bigger memories
- Use the easiest form of parallelism that matches the domain
- Reduce data size and type to the simplest needed for the domain
- Use a domain-specific programming language

Guidelines for DSAs

Guideline	TPU	Catapult	Crest	Pixel Visual Core
Design target	Data center ASIC	Data center FPGA	Data center ASIC	PMD ASIC/SOC IP
Dedicated memories	24 MiB Unified Buffer, 4 MiB Accumulators	Varies	N.A.	Per core: 128 KiB line buffer, 64 KiB P.E. memory
Larger arithmetic unit	65,536 Multiply- accumulators	Varies	N.A.	Per core: 256 Multiply- accumulators (512 ALUs)
Easy parallelism	Single-threaded, SIMD, in-order	SIMD, MISD	N.A.	MPMD, SIMD, VLIW
Smaller data size	8-Bit, 16-bit integer	8-Bit, 16-bit integer 32-bit Fl. Pt.	21-bit Fl. Pt.	8-bit, 16-bit, 32-bit intege
5. Domain- specific lang.	TensorFlow	Verilog	TensorFlow	Halide/TensorFlow

Example: Deep Neural Networks

- Inpired by neuron of the brain
- Computes non-linear "activiation" function of the weighted sum of input values
- Neurons arranged in layers

Name	DNN layers	Weights	Operations/Weight	
MLP0	5	20M	200	
MLP1	4	5M	168	
LSTM0	58	52M	64	
LSTM1	56	34M	96	
CNN0	16	8M	2888	
CNNI	89	100M	1750	

Example: Deep Neural Networks

- Most practitioners will use existing design
 - Topology
 - Data type
- Training (learning):
 - Calculate weights using backpropagation algorithm
 - Supervised learning: stochastic gradient descent 随机梯度下降

Type of data	Problem area	Size of benchmark's training set	DNN architecture	Hardware	Training time
text[1]	Word prediction (word2vec)	100 billion words (Wikipedia)	2-layer skip gram	1 NVIDIA Titan X GPU	6.2 hours
audio [2]	Speech recognition	2000 hours (Fisher Corpus)	11-layer RNN	1 NVIDIA K1200 GPU	3.5 days
images [3]	Image classification	1 million images (ImageNet)	22-layer CNN	1 NVIDIA K20 GPU	3 weeks
video [4]	activity recognition	1 million videos (Sports-1M)	8-layer CNN	10 NVIDIA GPUs	1 month

 Inference: use neural network for classification Copyright © 2019, Elsevier Inc. All rights Reserved

Multi-Layer Perceptrons

Parameters:

- Dim[i]: number of neurons
- Dim[i-1]: dimension of input vector
- Number of weights: Dim[i-1] x Dim[i]
- Operations: 2 x Dim[i-1] x Dim[i]
- Operations/weight: 2

Convolutional Neural Network

- Computer vision
- Each layer raises the level of abstraction
 - First layer recognizes horizontal and vertical lines
 - Second layer recognizes corners
 - Third layer recognizes shapes
 - Fourth layer recognizes features, such as ears of a dog
 - Higher layers recognizes different breeds of dogs

Copyright © 2019, Elsevier Inc. All rights Reserved

Convolutional Neural Network

Parameters:

- DimFM[i-1]: Dimension of the (square) input Feature Map
- DimFM[i]: Dimension of the (square) output Feature Map
- DimSten[i]: Dimension of the (square) stencil
- NumFM[i-1]: Number of input Feature Maps
- NumFM[i]: Number of output Feature Maps
- Number of neurons: NumFM[i] x DimFM[i]²
- Number of weights per output Feature Map: NumFM[i-1] x DimSten[i]²
- Total number of weights per layer: NumFM[i] x Number of weights per output Feature Map
- Number of operations per output Feature Map: 2 x DimFM[i]² x Number of weights per output Feature Map
- Total number of operations per layer: NumFM[i] x
 Number of operations per output Feature Map = 2 x
 DimFM[i]² x NumFM[i] x Number of weights per output Feature Map = 2 x DimFM[i]² x Total number of weights per layer
- Operations/Weight: 2 x DimFM[i]²

Recurrent Neural Network

- Speech recognition and language translation
- Long short-term memory (LSTM) network

Copyright © 2019, Elsevier Inc. All rights Reserved

Recurrent Neural Network

Parameters:

- Number of weights per cell: 3 x (3 x Dim x Dim)+(2 x Dim x Dim) + (1 x Dim x Dim) = 12 x Dim²
- Number of operations for the 5 vector-matrix multiplies per cell: 2 x Number of weights per cell = 24 x Dim²
- Number of operations for the 3 element-wise multiplies and 1 addition (vectors are all the size of the output): 4 x Dim
- Total number of operations per cell (5 vector-matrix multiplies and the 4 element-wise operations): 24 x Dim² + 4 x Dim
- Operations/Weight: ~2

Convolutional Neural Network

Batches:

- Reuse weights once fetched from memory across multiple inputs
- Increases operational intensity

Quantization

Use 8- or 16-bit fixed point

Summary:

- Need the following kernels:
 - Matrix-vector multiply
 - Matrix-matrix multiply
 - Stencil
 - ReLU (Rectified Linear Unit = max(0,x))
 - Sigmoid
 - Hyperbolic tangent

Tensor Processing Unit

- Google's DNN ASIC
- 256 x 256 8-bit matrix-multiply unit
- Large software-managed scratchpad
- Coprocessor on the PCIe bus

Tensor Processing Unit

TPU ISA

- Read_Host_Memory
 - Reads memory from the CPU memory into the unified buffer
- Read_Weights
 - Reads weights from the Weight Memory into the Weight FIFO as input to the Matrix Unit
- MatrixMatrixMultiply/Convolve
 - Perform a matrix-matrix multiply, a vector-matrix multiply, an element-wise matrix multiply, an element-wise vector multiply, or a convolution from the Unified Buffer into the accumulators
 - takes a variable-sized B*256 input, multiplies it by a 256x256 constant input, and produces a B*256 output, taking B pipelined cycles to complete
- Activate
 - Computes activation function
- Write_Host_Memory
 - Writes data from unified buffer into host memory

TPU Implementation

TPU Operation

Copyright © 2019, Elsevier Inc. All rights Reserved

The TPU and the Guidelines

- Use dedicated memories
 - 24 MiB dedicated buffer, 4 MiB accumulator buffers
- Invest resources in arithmetic units and dedicated memories
 - 60% of the memory and 250X the arithmetic units of a server-class CPU
- Use the easiest form of parallelism that matches the domain
 - Exploits 2D SIMD parallelism
- Reduce the data size and type needed for the domain
 - Primarily uses 8-bit integers
- Use a domain-specific programming language
 - Uses TensorFlow

Needed to be general-purpose and power-efficient

- Uses FPGA PCle board with dedicated 20 Gbps network in 6 x 8 torus
- Each of the 48 servers in half the rack has a Catapult board
- Limited to 25 watts
- 32 MiB Flash memory
- Two banks of DDR3-1600 (11 GB/s) and 8 GiB DRAM
- FPGA (unconfigured) has 3962 18-bit ALUs and 5 MiB of on-chip memory
- Programmed in Verilog RTL
- Shell is 23% of the FPGA

Host

CPU

Microsoft Catapult: CNN

CNN accelerator, mapped across multiple FPGAs

Microsoft Catapult: CNN

Microsoft Catapult: Search Ranking

- Feature extraction (1 FPGA)
 - Extracts 4500 features for every document-query pair, e.g. frequency in which the query appears in the page
 - Systolic array of FSMs
- Free-form expressions (2 FPGAs)
 - Calculates feature combinations
- Machine-learned Scoring (1 FPGA for compression, 3 FPGAs calculate score)
 - Uses results of previous two stages to calculate floating-point score
- One FPGA allocated as a hot-spare

Microsoft Catapult: Search Ranking

2-socket server blade

- Placed the FPGA between the CPU and NIC
- Increased network from 10 Gb/s to 40 Gb/s
- Also performs network acceleration
- Shell now consumes 44% of the FPGA
- Now FPGA performs only feature extraction

Catapult and the Guidelines

- Use dedicated memories
 - 5 MiB dedicated memory
- Invest resources in arithmetic units and dedicated memories
 - 3926 ALUs
- Use the easiest form of parallelism that matches the domain
 - 2D SIMD for CNN, MISD parallelism for search scoring
- Reduce the data size and type needed for the domain
 - Uses mixture of 8-bit integers and 64-bit floating-point
- Use a domain-specific programming language
 - Uses Verilog RTL; Microsoft did not follow this guideline

Intel Crest (now "Nervana")

- DNN training
- 16-bit fixed point
- Operates on blocks of 32x32 matrices
- SRAM + HBM2

Interposer

Google Pixel Visual Core

- Pixel Visual Core
 - Image Processing Unit
 - Performs stencil operations
 - Descended from Image Signal processor

Pixel Visual Core

- Software written in Halide, a DSL
 - Compiled to virtual ISA
 - vISA is lowered to physical ISA using application-specific parameters
 - pISA is VLSI
- Optimized for energy
 - Power Budget is 6 to 8 W for bursts of 10-20 seconds, dropping to tens of milliwatts when not in use
 - 8-bit DRAM access equivalent energy as 12,500 8-bit integer operations or 7 to 100 8-bit SRAM accesses
 - IEEE-754 floating-point operations require 22X to 150X of the cost of 8-bit integer operations
- Optimized for 2D access
 - 2D SIMD unit
 - On-chip SRAM structured using a square geometry

Pixel Core Layout

Figure 7.38 Floor plan of the 8-core Pixel Visual Core chip. A53 is an ARMv7 core. LPDDR4 is a DRAM controller. PCIE and MIPI are I/O buses. © 2019 Elsevier Inc. All rights reserved.

Pixel Core VLIW Format

Field	Scalar	Math	Memory	lmm	Memlmm
# Bits	43	38	12	16	10

Figure 7.35 VLIW format of the 119-bit pISA instruction.

Pixel Visual Core **Pixel Visual Core** Mem Mem Mem Mem Copyright © 2019, Elsevier Inc. All rights Reserved

Pixel Visual Core

Copyright © 2019, Elsevier Inc. All rights Reserved

Pixel Visual Core

Visual Core and the Guidelines

- Use dedicated memories
 - 128 + 64 MiB dedicated memory per core
- Invest resources in arithmetic units and dedicated memories
 - 16x16 2D array of processing elements per core and 2D shifting network per core
- Use the easiest form of parallelism that matches the domain
 - 2D SIMD and VLIW
- Reduce the data size and type needed for the domain
 - Uses mixture of 8-bit and 16-bit integers
- Use a domain-specific programming language
 - Halide for image processing and TensorFlow for CNNs

Computer Architecture in the future

- Explosion of interest in custom architectures due to end of transistor scaling
 - Full employment for computer architects!
- But need to learn about application domains
 - Cannot just work with precompiled binaries anymore!
- Get involved in research projects,
 - ADEPT microprocessor architecture and chip design
 - RISE machine learning, datacenter software, and security
- Research experience is the most important part of application to top grad schools!