Informe de Laboratorio 5 Tema: PYTHON

Nota	

${f Estudiante}$	Escuela	Asignatura
Sergio Hancco Mullisaca	Escuela Profesional de	Programacion Web 2
shanccom@unsa.edu.pe	Ingeniería de Sistemas	Semestre: II
		Código:

Laboratorio	Tema	Duración
5	PYTHON	04 horas

Semestre académico	Fecha de inicio	Fecha de entrega
2024 - A	Del 20 Mayo 2024	Al 25 Mayo 2024

1. Tarea

- Informe de laboratorio
- Video en Flip
- Ejercicios Propuestos

2. Equipos, materiales y temas utilizados

- \blacksquare VS
- Git 2.39.2.
- Cuenta en GitHub con el correo institucional.

3. URL de Repositorio Github

- URL del video en yt.
- https://youtu.be/9gy3cyhix1s
- URL del video en flip.
- https://flip.com/s/sdWGsD28pRbD
- URL del GITHUB.
- https://github.com/shanccom/Programacion_Web_2.git

4. Actividades

4.1. EJERCICIO I

Listing 1: EJERCICIOS I

```
from colors import *
class Picture:
 def __init__(self, img):
   self.img = img
 def __eq__(self, other):
   return self.img == other.img
 def _invColor(self, color):
   if color not in inverter:
     return color
   return inverter[color]
 def verticalMirror(self):
   imgVertical = [fila for fila in reversed(self.img)]
   return Picture(imgVertical)
 def horizontalMirror(self):
   imgHorizontal = [fila[::-1] for fila in self.img]
   return Picture(imgHorizontal)
 def negative(self):
   imgInvertida = []
   for fila in self.img:
       filaInvertida = ''.join([self._invColor(char) for char in fila])
       imgInvertida.append(filaInvertida)
   return Picture(imgInvertida)
 def join(self, p):
   imgNueva = []
   for x in range(len(self.img)):
     imgNueva.append(self.img[x] + p.img[x])
   return Picture(imgNueva)
 def up(self, p):
   superposicion = []
```



```
for i in range(max(len(self.img), len(p.img))):
   if i < len(p.img):</pre>
     if i < len(self.img):</pre>
       {\tt superposicion.append(,,join([self.img[i][j] \ if \ self.img[i][j] \ != , , else}
            p.img[i][j] for j in range(max(len(self.img[i]), len(p.img[i]))) ]))
     else:
       superposicion.append(p.img[i])
     superposicion.append(self.img[i])
 return Picture(superposicion)
def under(self, p):
  imgNueva = []
  imgNueva = self.img + p.img
  return Picture(imgNueva)
def horizontalRepeat(self, n):
  if n <= 0:
     return Picture([])
  imgNueva = [row * n for row in self.img]
 return Picture(imgNueva)
def verticalRepeat(self, n):
  if n <= 0:
     return Picture([])
 imgNueva = self.img * n
  return Picture(imgNueva)
```

4.2. Ejercicio II

■ EJERCICIO 2 - A

Listing 2: EJERCICIO 2-A

```
from interpreter import draw
from chessPictures import *

filaPrimera = knight.join(knight.negative())
filaSegunda = knight.negative().join(knight)

final = filaPrimera.under(filaSegunda)

draw(final)
```


■ EJERCICIO 2 - B

Listing 3: EJERCICIO 2-B

```
from interpreter import draw
from chessPictures import *

filaPrimera = knight.join(knight.negative())
filaSegunda = knight.negative().horizontalMirror().join(knight.horizontalMirror())

final = filaPrimera.under(filaSegunda)

draw(final)
```

■ EJERCICIO 2 - C

Listing 4: EJERCICIO 2-C

```
from interpreter import draw
from chessPictures import *

final = queen.horizontalRepeat(4)

draw(final)
```


■ EJERCICIO 2 - D

Listing 5: EJERCICIO 2-D

```
from interpreter import draw
from chessPictures import *

bloque = square.join(square.negative())

final = bloque.horizontalRepeat(4)

draw(final)
```


■ EJERCICIO 2 - E

Listing 6: EJERCICIO 2-E

```
from interpreter import draw
from chessPictures import *

bloque = square.join(square.negative())

final = bloque.horizontalRepeat(4)

draw(final.negative())
```


■ EJERCICIO 2 - F

Listing 7: EJERCICIO 2-F

```
from interpreter import draw
from chessPictures import *

bloque = square.join(square.negative())
filaUno = bloque.horizontalRepeat(4)
filaDos = filaUno.negative()
union = filaUno.under(filaDos)
final = union.verticalRepeat(2)

draw(final)
```


■ EJERCICIO 2 - G

Listing 8: EJERCICIO 2-G

```
from interpreter import draw
from chessPictures import *

#Bloques

bloqueB = square
bloqueN = square.negative()

# Fila de Peones

bloquePeones = pawn.up(square).join(pawn.up(square.negative()))
filaPeonesBlancos = bloquePeones.horizontalRepeat(4)
```



```
filaPeonesNegros = filaPeonesBlancos.negative()
#Parte del medio (bloques solos)
bloque = square.join(square.negative())
filaUno = bloque.horizontalRepeat(4)
filaDos = filaUno.negative()
union = filaUno.under(filaDos)
finalCuadrados = union.verticalRepeat(2)
#Parte de Piezas importantes
torre = rock.up(bloqueN)
caballo = knight.up(bloqueB)
alfil = bishop.up(bloqueN)
reyna = queen.up(bloqueB)
rey = king.up(bloqueN)
alfil2 = bishop.up(bloqueB)
caballo2 = knight.up(bloqueN)
torre2 = rock.up(bloqueB)
filaPiezas = torre.join(caballo).join(alfil).join(reyna).join(rey).join(alfil2)
.join(caballo2).join(torre2)
filaPiezasNegras = filaPiezas.negative()
#Combinacion
final = filaPiezasNegras.under(filaPeonesNegros).under(finalCuadrados)
.under(filaPeonesBlancos).under(filaPiezas)
draw(final)
```


Universidad Nacional de San Agustín de Arequipa Facultad de Ingeniería de Producción y Servicios Departamento Académico de Ingeniería de Sistemas e Informática Escuela Profesional de Ingeniería de Sistemas **Programacion Web 2**

Rúbricas

5.1. **Entregable Informe**

Tabla 1: Tipo de Informe

Informe			
Latex	El informe está en formato PDF desde Latex, con un formato limpio (buena presentación) y facil de leer.		

Rúbrica para el contenido del Informe y demostración 5.2.

- El alumno debe marcar o dejar en blanco en celdas de la columna Checklist si cumplio con el ítem correspondiente.
- Si un alumno supera la fecha de entrega, su calificación será sobre la nota mínima aprobada, siempre y cuando cumpla con todos lo items.
- \blacksquare El alumno debe autocalificarse en la columna Estudiante de acuerdo a la siguiente tabla:

Tabla 2: Niveles de desempeño

	Nivel			
Puntos	Insatisfactorio 25%	En Proceso 50 %	Satisfactorio 75 %	Sobresaliente 100 %
2.0	0.5	1.0	1.5	2.0
4.0	1.0	2.0	3.0	4.0

Universidad Nacional de San Agustín de Arequipa Facultad de Ingeniería de Producción y Servicios Departamento Académico de Ingeniería de Sistemas e Informática Escuela Profesional de Ingeniería de Sistemas **Programacion Web 2**

Tabla 3: Rúbrica para contenido del Informe y demostración

	Contenido y demostración	Puntos	Checklist	Estudiante	Profesor
1. GitHub	Hay enlace URL activo del directorio para el laboratorio hacia su repositorio GitHub con código fuente terminado y fácil de revisar.	2	X	2	
2. Commits	Hay capturas de pantalla de los commits más importantes con sus explicaciones detalladas. (El profesor puede preguntar para refrendar calificación).	4	X	2	
3. Código fuente	Hay porciones de código fuente importantes con numeración y explicaciones detalladas de sus funciones.	2	X	2	
4. Ejecución	Se incluyen ejecuciones/pruebas del código fuente explicadas gradualmente.	2	X	1	
5. Pregunta	Se responde con completitud a la pregunta formulada en la tarea. (El profesor puede preguntar para refrendar calificación).	2	X	2	
6. Fechas	Las fechas de modificación del código fuente estan dentro de los plazos de fecha de entrega establecidos.	2	X	2	
7. Ortografía	El documento no muestra errores ortográficos.	2	X	2	
8. Madurez	El Informe muestra de manera general una evolución de la madurez del código fuente, explicaciones puntuales pero precisas y un acabado impecable. (El profesor puede preguntar para refrendar calificación).	4	X	4	
Total		20		17	