Thesis outline

Victor Wang

For $n, X \in \mathbb{Z}_{\geq 0}$, let $r_3(n) := \#\{x, y, z \in \mathbb{Z}_{\geq 0} : x^3 + y^3 + z^3 = n\}$ and $M_2(X) := \sum_{a \leq X^3} r_3(a)^2$. Conditionally on Langlands-type hypotheses and GRH (for certain Hasse–Weil *L*-functions), Hooley (1997) and Heath-Brown (1998) proved $M_2(X) \ll_{\epsilon} X^{3+\epsilon}$. Furthermore, Hooley (1986) conjectured $M_2(X) \sim c_{\text{HLH}} X^3$ (as $X \to \infty$) for a specific constant $c_{\text{HLH}} \in \mathbb{R}_{>0}$, which is strictly greater than the Hardy–Littlewood constant $c_{\text{HL}} \in \mathbb{R}_{>0}$.

My thesis consists of three parts:

- 1. Paper I: Diagonal cubic forms and the large sieve (42 pages).

 This shows that Hooley's (and Heath-Brown's) hypotheses can be replaced with a large sieve hypothesis a la Bombieri-Vinogradov.
- Paper II: Isolating special solutions in the delta method: The case of a diagonal cubic equation in evenly many variables over ℚ (34 pages).
 Heath-Brown's work, and morally also Hooley's work, is based on the "delta method" for M₂(X). One can easily "extract" c_{HL}X³ from the delta method. Paper II extracts (c_{HLH} − c_{HL})X³ in a natural way.
- 3. Paper III: Approaching cubic Diophantine statistics via mean-value L-function conjectures of Random Matrix Theory type (136 pages).
 Building on Paper II, we prove (i) a general localized form of Hooley's conjecture and (ii) that asymptotically 100% of integers a ≠ ±4 mod 9 are sums of three cubes, conditionally on some standard number theory conjectures—the main additions (relative to Hooley and Heath-Brown) being conjectures of Random Matrix Theory and Square-free Sieve type. To reduce Hooley's conjecture to these conjectures, we introduce several new unconditional ingredients. For example, certain complete exponential sums "fail square-root cancellation" quite badly—and thus do not fall under standard conjectural frameworks—and we prove new results that help to "control" such behavior.

(Thanks to Nicholas Katz for helpful suggestions on wording.)