

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

1. A therapeutic peptide comprising between seven and ten amino acid residues, inclusive, said peptide being an analog of one of the following naturally occurring peptides terminating at the carboxy-terminus with a Met residue: (a) litorin; (b) the ten amino acid carboxy-terminal region of mammalian gastrin releasing peptide; and (c) the ten amino acid carboxy-terminal region of amphibian bombesin; said therapeutic peptide being of the formula:

wherein

A^0 = Gly, Nle, α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO_2 , OH, H or CH_3), Trp, Cys, or β -Nal, or is deleted;

A^1 = the D or L-isomer of any of pGlu, Nle, or α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO_2 , OH, H or CH_3), F₅-Phe, Trp, Cys, or β -Nal, or is deleted;

A^2 = pGlu, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO_2 , OH, H or CH_3), Trp, Cys, β -Nal, His, 1-methyl-His, or 3-methyl-His;

A^4 = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle, α -aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO_2 , OH, H or CH_3), Trp, Cys, or β -Nal;

A⁵ = Gln, Asn, Gly, Ala, Leu, Ile, Nle, α -aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃), Trp, Thr, or β -Nal;

A⁶ = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

A⁷ = 1-methyl-His, 3-methyl-His, or His;

provided that, if A⁰ is present, A¹ cannot be pGlu; further provided that, if A⁰ or A¹ is present, A² cannot be pGlu; further provided that, when A⁰ is deleted and A¹ is pGlu, R₁ must be H and R₂ must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I):

wherein R₃ is CHR₂₀-(CH₂)_{n1} (where R₂₀ is either of H or OH; and n1 is either of 1 or 0), or is deleted, and z₁ is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH, or CH₃), F₅-Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or β -Nal; and V is either OR₄, or

where R_4 is any of C_{1-20} alkyl, C_{3-20} alkenyl, C_{3-20} alkynyl, phenyl, naphthyl, or C_{7-10} phenylalkyl, and each R_5 , and R_6 , independently, is any of H, C_{1-12} alkyl, C_{7-10} phenylalkyl, lower acyl, or,

where R_{22} is any of H, C_{1-12} alkyl, C_{7-10} phenylalkyl, or lower acyl; provided that, when one of R_5 or R_6 is $-NHR_{22}$, the other is H;

(II):

wherein Z_1 is the identifying group of any one of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, β -Nal, Gln, p-X-Phe

(wherein X = H, F, Cl, Br, NO₂, OH or CH₃), F₅-Phe, Trp, Cys, Met, Pro, or HyPro; and each Z₂, Z₃, and Z₄, independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or

(III):

wherein each Z₂₀ and Z₃₀, independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of Z₂₀ or Z₃₀ is other than H, A⁷ is His, A⁶ is Gly, A⁵ is Val, A⁴ is Ala, A² is His, and either of R₁ or R₂ is other than H, A¹ must be other than deleted; further provided that, for the formulas (I) through (IID), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R₁ and R₂, independently, is H, C₁₋₁₂ alkyl, C₇₋₁₀ phenylalkyl, COE₁ (where E₁ is C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl, C₃₋₂₀ alkinyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl), or lower acyl, and R₁ and R₂ are bonded to the N-terminal amino acid of said peptide, and further provided that when one of R₁ or R₂ is COE₁, the other must be H, or a pharmaceutically acceptable salt thereof.

2. The therapeutic peptide of claim 1 wherein

A⁰ = Gly, D-Phe, or is deleted;

A¹ = p-Glu, D-Phe, D-Ala, D-β-Nal, D-Cpa, or D-Asn;

A² = Gln, His, 1-methyl-His, or 3-methyl-His;

A⁴ = Ala;

A⁵ = Val;

A⁶ = Sar, Gly, D-Phe, or D-Ala;

A⁷ = His;

and, where W is (I) and R₃ is CH₂ or CH₂-CH₂, Z₁ is the identifying group of Leu or Phe, where W is (I) and R₃ is CHOH-CH₂, Z₁ is the identifying group of Leu, cyclohexyl-Ala, or Phe and each R₅ and R₆ is H; and where W is (I), V is NHR₆, and R₆ is NH₂; where W is (II), Z₁ is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO₂, OH or CH₃); and each Z₂, Z₃ and Z₄, independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each Z₂₀ and Z₃₀, is H; and each R₁ and R₂, independently, is H, lower alkyl, or lower acyl.

3. The therapeutic peptide of claim 2 of the formula:

D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.

4. The therapeutic peptide of claim 2 of the formula:

p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide. (4)

5. The therapeutic peptide of claim 2 of the formula:

6. The peptide of claim 1 wherein W is (I), V is OR₄, and R₄ is any of C₁₋₂₀ alkyl, C₃₋₂₀ alkenyl, C₃₋₂₀ alkinyl, phenyl, naphthyl, or C₇₋₁₀ phenylalkyl, and A⁶ is N-methyl-D-Ala or A¹ is D-F₅-Phe.

7. The therapeutic peptide of claim 6 of the formula:

8. The therapeutic peptide of claim 2 of the formula:

