Soluciones

4. Semana 4

- 4.1. Anillos de polinomios. Cuerpo de Galois. Operaciones en el algoritmo AES
 - $1. \quad a)$

$$\mathcal{P}_f(\mathbb{Z}_2) = \{0, 1, x, x+1\} = \{00, 01, 10, 11\}.$$

$$\mathcal{P}_g(\mathbb{Z}_2) = \{0, 1, x, x+1\} = \{00, 01, 10, 11\}.$$

- b) En $\mathcal{P}_f(\mathbb{Z}_2)$, $11^2 = 11$. En $\mathcal{P}_g(\mathbb{Z}_2)$, $11^2 = 10$.
- c) En $\mathcal{P}_f(\mathbb{Z}_2)$:

	00	01	10	11
00	00	00	00	00
01	00	01	10	11
10	00	10	10	00
11	00	11	00 10 10 00	11

En $\mathcal{P}_g(\mathbb{Z}_2)$:

- d) $\mathcal{P}_f(\mathbb{Z}_2)$ no es un cuerpo $(x^2+x$ no es irreducible). En $\mathcal{P}_f(\mathbb{Z}_2)$, 10 y 11 no tienen inverso.
- e) $\mathcal{P}_g(\mathbb{Z}_2)$ es un cuerpo $(x^2+x+1$ es irreducible). En $\mathcal{P}_g(\mathbb{Z}_2)$, $10^{-1}=11$ y $11^{-1}=10$.
- 2. $11010011 \cdot 00010010 = 00100010$.
- 3. a) $a1 \cdot 03 = f8$.
 - b) $(00,00,a1,00) \cdot (00,03,00,03) = (f8,00,f8,00).$
- 4. En GF(2⁸), $8d \cdot 02 = 10001101 \cdot 00000010 = 00000001 = 01$, de donde se deduce que $8d^{-1} = 02$.

4.2. El algoritmo AES

- 1. Transparencia 7 de "4-2AES".
- 2. Transparencia 8 de "4_2AES".
- 3. a) En la fila 8 y columna d se encuentra "5d". Por tanto, "8d" se transforma en "5d".

b) Por el problema 4 de la Sección 4.1, sabemos que $8d^{-1}=02$ (= 00000010).

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

01011101 en hexadecimal es "5d". Por tanto, "8d" se transforma en "5d".

4. Rcon(13) = (ab, 00, 00, 00).

5.

$$InvMixColumn(AddRoundKey(S, K_r))$$

$$= InvMixColumn([s_1 \oplus k_{r1} \quad s_2 \oplus k_{r2} \quad s_3 \oplus k_{r3} \quad s_4 \oplus k_{r4}])$$

$$= [d \cdot (s_1 \oplus k_{r1}) \quad d \cdot (s_2 \oplus k_{r2}) \quad d \cdot (s_3 \oplus k_{r3}) \quad d \cdot (s_4 \oplus k_{r4})].$$

 $AddRoundKey(InvMixColumn(S), InvK_r)$

 $= AddRoundKey(InvMixColumn(S), InvMixColumn(K_r))$

$$= AddRoundKey(\begin{bmatrix} d \cdot s_1 & d \cdot s_2 & d \cdot s_3 & d \cdot s_4 \end{bmatrix}, \begin{bmatrix} d \cdot k_{r_1} & d \cdot k_{r_2} & d \cdot k_{r_3} & d \cdot k_{r_4} \end{bmatrix})$$

$$= \begin{bmatrix} (d \cdot s_1) \oplus (d \cdot k_{r_1}) & (d \cdot s_1) \oplus (d \cdot k_{r_2}) & (d \cdot s_1) \oplus (d \cdot k_{r_3}) & (d \cdot s_1) \oplus (d \cdot k_{r_4}) \end{bmatrix}.$$

Por la propiedad distributiva de (\cdot) con respecto a \oplus , se tiene que, para $i=1,\ldots,4$,

$$d \cdot (s_i \oplus k_{ri}) = (d \cdot s_i) \oplus (d \cdot k_{ri})$$

y por tanto,

 $InvMixColumn(AddRoundKey(S, K_r)) = AddRoundKey(InvMixColumn(S), InvK_r).$

6. En primer lugar debemos expandir la clave K_0 hasta obtener las 3 subclaves de ronda K_1 , K_2 y K_3 .

A continuación, copiamos C sobre la matriz de estado y realizamos sobre ella las siguientes operaciones:

$$AK \mid ISR \mid IBS \mid AK \mid IMC \mid ISR \mid IBS \mid AK \mid IMC \mid ISR \mid IBS \mid AK$$
 (1)

donde

$$AK = AddRoundKey, \quad IBS = InvByteSub, \\ ISR = InvShiftRow, \quad IMC = InvMixColumn$$

y cada aplicación de la función AK en el esquema anterior utiliza una de las claves K_3, K_2, K_1, K_0 por este orden.

Como IBS opera en bytes mientras que ISR sólo los cambia de lugar, las dos operaciones pueden intercambiarse.

Además, la secuencia AK IMC puede cambiarse por IMC AK^I donde, si en AK se utiliza la clave K_r , en AK^I se utiliza $IMC(K_r)$ (ver Problema 5).

Por tanto, el descifrado puede llevarse a cabo también de la siguiente manera:

$$AK \mid IBS \quad ISR \quad IMC \quad AK^I \mid IBS \quad ISR \quad IMC \quad AK^I \mid IBS \quad ISR \quad AK$$
 (2)

donde las claves que se utilzan son K_3 , $IMC(K_2)$, $IMC(K_1)$, K_0 , en ese orden.

Veamos el descifrado completo sobre el bloque C:

Siguiendo el procedimiento (1):

$$\begin{array}{lll} C = S_3'' \oplus K_3 & = S \\ AK(S,K_3) & = S \oplus K_3 = S_3'' \oplus K_3 \oplus K_3 & = S_3'' \\ ISR(S_3'') & = ISR(SR(S_3')) & = S_3' \\ IBS(S_3') & = IBS(BS(S_2)) & = S_2 \\ AK(S_2,K_2) & = S_2''' \oplus K_2 \oplus K_2 & = S_2''' \\ IMC(S_2''') & = IMC(MC(S_2'')) & = S_2'' \\ ISR(S_2'') & = ISR(SR(S_2')) & = S_2' \\ ISR(S_2'') & = ISS(BS(S_1)) & = S_1 \\ AK(S_1,K_2) & = S_1''' \oplus K_1 \oplus K_1 & = S_1''' \\ IMC(S_1''') & = IMC(MC(S_1'')) & = S_1'' \\ ISR(S_1'') & = ISR(SR(S_1')) & = S_1'' \\ ISR(S_1'') & = ISR(SR(S_1')) & = S_1' \\ ISR(S_1'') & = ISR(SR(S_1')) & = S_1' \\ ISR(S_1'') & = IBS(BS(S_0)) & = S_0 \\ AK(S_0,K_0) & = S \oplus K_0 \oplus K_0 & = S = B. \end{array}$$

Siguiendo el procedimiento (2) y teniendo en cuenta que

$$IBS(ISR(S)) = ISR(IBS(S)),$$

$$IMC(AK(S, K_r)) = AK(IMC(S), IMC(K_r)) :$$

$$\begin{array}{lll} C = S_3'' \oplus K_3 & = S \\ AK(S,K_3) & = S \oplus K_3 = S_3'' \oplus K_3 \oplus K_3 & = S_3'' \\ IBS(S_3'') & = \hat{S}_3'' \\ ISR(\hat{S}_3'') & = ISR(IBS(S_3'')) = IBS(ISR(S_3'')) \\ & = IBS(ISR(SR(S_3'))) = IBS(S_3') \\ & = IBS(BS(S_2)) & = S_2 \\ IMC(S_2) & = \hat{S}_2 \\ AK(\hat{S}_2,IMC(K_2)) & = AK(IMC(S_2),IMC(K_2)) = IMC(AK(S_2,K_2)) \\ & = IMC(S_2'') = IMC(S_2''' \oplus K_2 \oplus K_2) \\ & = IMC(S_2''') = IMC(MC(S_2''')) & = S_2'' \\ IBS(S_2'') & = \hat{S}_2'' \\ ISR(\hat{S}_2'') & = ISR(IBS(S_2'')) = IBS(ISR(S_2'')) \\ & = IBS(ISR(SR(S_2'))) = IBS(S_2') \\ & = IBS(BS(S_1)) & = S_1 \\ IMC(S_1) & = \hat{S}_1 \\ AK(\hat{S}_1,IMC(K_1)) & = AK(IMC(S_1),IMC(K_1)) = IMC(AK(S_1,K_1)) \\ & = IMC(S_1''') = IMC(S_1''' \oplus K_1 \oplus K_1) \\ & = IMC(S_1''') = IMC(MC(S_1''')) & = S_1'' \\ IBS(S_1'') & = \hat{S}_1'' \\ ISR(\hat{S}_1'') & = \hat{S}_1'' \\ ISR(\hat{S}_1'') & = ISR(IBS(S_1'')) = IBS(ISR(S_1'')) \\ & = IBS(ISR(SR(S_1'))) = IBS(S_1') \\ & = IBS(ISR(SR(S_1'))) = IBS(S_1') \\ & = IBS(ISR(SR(S_1'))) = IBS(S_1') \\ & = IBS(BS(S_0)) & = S_0 \\ & = S = B. \end{array}$$

4.3. Primalidad. Factorización

- 1. a) s = 3, t = 111.
 - b) $2^{222} \equiv 540 \mod 889$, $2^{444} \equiv 8 \mod 889$.
 - c) Podemos asegurar que n = 889 es compuesto.
- 2. $221 = 13 \cdot 17$. Ha sido necesario calcular 4 elementos de la sucesión.
- 3. $2701 = 73 \cdot 37$; t = 55, s = 18.