Digital Logic Chapter 3

Chapter 3

• 1)

• 5)

A	Out
000	00000001
001	00000010
010	00000100
011	00001000
100	00010000
101	00100000
110	01000000
111	10000000

• 6) $\overline{SelAB} + Sel\overline{A}B$ Where A and B are 8 bit data paths and Sel is a one bit data path selector.

• 7)

– а) 10110111

- b) 10111000
- c) 01001000
- d) 01001001

• 8)

- 9) If $(Op_2 == 00)$ then K_2 If $(Op_2 == 01)$ then $K_2 + 1_2$ If $(Op_2 == 10)$ then $Inv.ofK_2$ If $(Op_2 == 11)$ then $(Inv.ofK_2) + 1_2$
- \bullet 10) You would need 2 bits, but only need three of the four permutations of the binary bits.

A	B	C	sel	Out
\boldsymbol{x}	y	z	00	x
\boldsymbol{x}	y	z	01	y
\boldsymbol{x}	y	z	10	z
\boldsymbol{x}	y	z	11	undefined

- 11) 3 select bits are needed for an 8 to 1 multiplexer. This multiplexer will contain an octal decoder.
- 12) There is no problem 12.