DS $N^{0}1$ (le 20/09/2008)

PROBLÈME 1

E désigne un \mathbb{R} -espace vectoriel de dimension finie, et $\mathcal{P}(E)$ l'ensemble des projecteurs de E. On rappelle qu'un projecteur p de E est un endomorphisme de E caractérisé par : $p\mathbf{o}p = p$. Dans le cas où p est un projecteur de E, on a : $E = \operatorname{Ker} p \oplus \operatorname{Im} p$.

Pour f et g endomorphismes de E, on pose $\varphi_g(f) = f\mathbf{o}g - g\mathbf{o}f$. φ_g est un endomorphisme de $\mathcal{L}(E)$ (on ne demande pas de le vérifier).

Question préliminaire :

Soit \mathcal{R} la relation binaire définie sur $\mathcal{P}(E)$ par :

$$\forall (p,q) \in \mathcal{P}(E)^2$$
 , $p\mathcal{R}q \iff p\mathbf{o}q = q\mathbf{o}p = p$

Montrer que \mathcal{R} est une relation d'ordre sur $\mathcal{P}(E)$.

Première Partie:

Dans toute cette partie, on considère un couple (f, g) d'endomorphismes de E solution de $\varphi_g(f) = 0$.

- 1°) On suppose ici que f est élément de $\mathcal{P}(E)$.
 - a) Montrer que Im f et Ker f sont stables par g.
 - b) Montrer que cette condition est également suffisante, à savoir : Si g est un endomorphisme de E, si f est un élément de $\mathcal{P}(E)$, si ker f et $\mathrm{Im} f$ sont stables par g, alors $\varphi_g(f) = 0$.
- 2°) On suppose ici que f et g sont éléments de $\mathcal{P}(E)$.
 - a) Montrer que : $(f \circ g)$ et $(f + g f \circ g)$ sont deux éléments de $\mathcal{P}(E)$.
 - **b)** Montrer que : $(f\mathbf{o}g)\mathcal{R}f$ $(f\mathbf{o}g)\mathcal{R}g$ $f\mathcal{R}(f+g-f\mathbf{o}g)$ $g\mathcal{R}(f+g-f\mathbf{o}g)$
 - c) On rappelle qu'une partie A de $\mathcal{P}(E)$, ordonné par la relation \mathcal{R} , admet une borne inférieure m et une borne supérieure M dans $\mathcal{P}(E)$ si :
 - i) $\forall p \in A, \ m\mathcal{R}p \ \text{et} \ p\mathcal{R}M$
 - ii) $\forall q \in \mathcal{P}(E)$,
 - \diamond si, pout tout $p \in A$, $q\mathcal{R}p$, alors $q\mathcal{R}m$
 - \diamond si, pout tout $p \in A$, $p\mathcal{R}q$, alors $M\mathcal{R}q$

Montrer que l'ensemble $\{f,g\}$ admet dans $\mathcal{P}(E)$ une borne inférieure m et une borne supérieure M à préciser.

Seconde Partie:

Dans toute cette partie, on considère un couple (f, g) d'endomorphismes de E solution de $\varphi_q(f) = \alpha f + \beta g$, où α et β sont deux réels.

1°) On suppose ici $\beta = 0$ et $\alpha \neq 0$.

On veut montrer que f est nécessairement nilpotent, c'es-à-dire qu'il existe $n \in \mathbb{N}^*$ tel que $f^n = 0$ (f^n désigne $f \circ f \circ \ldots \circ f$ itéré n fois).

- a) Montrer que : $\forall k \in \mathbb{N}^*, f^k \mathbf{o} g g \mathbf{o} f^k = \alpha k f^k$.
- **b)** On raisonne par l'absurde, et on suppose donc que : $\forall k \in \mathbb{N}^*, f^k \neq 0$. Montrer que la famille $(f^k)_{k \in \mathbb{N}^*}$ est une famille libre de $\mathcal{L}(E)$.
- c) Conclure.
- d) Quels sont tous les couples (f,g) avec $g \in \mathcal{L}(E)$ et $f \in \mathcal{P}(E)$ solutions de $\varphi_g(f) = \alpha f$ avec $\alpha \neq 0$?
- **2°)** On suppose maintenant que f et g sont deux éléments distincts non nuls de $\mathcal{P}(E)$ et que α et β sont deux réels.
 - a) On suppose dans cette question $\alpha \neq 0$ et $\alpha \neq 1$.
 - i) Montrer que : $2\alpha g \circ f + \beta (1+\alpha)g = \alpha (1-\alpha)f$.
 - ii) En déduire : $\operatorname{Im}(f) \subset \operatorname{Im}(g)$ puis : $g \circ f = f$.
 - iii) En déduire : $\alpha + \beta = 0$, puis $\alpha = -1$, puis Im(f) = Im(g).
 - iv) Réciproquement, vérifier qu'un couple (f,g) de projecteurs de E tels que :

$$g\mathbf{o}f = f \text{ et } \operatorname{Im}(g) \subset \operatorname{Im}(f)$$

est solution de l'équation : $\varphi_q(f) = -f + g$.

- b) On suppose dans cette question $\alpha \neq 0$ et $\alpha \neq -1$.
 - i) Montrer successivement les résultats suivants : $\operatorname{Ker}(g) \subset \operatorname{Ker}(f)$, $f \circ g = f$, $\alpha + \beta = 0$, $\alpha = 1$, $\operatorname{Ker}(f) = \operatorname{Ker}(g)$.
 - ii) Réciproquement, vérifier qu'un couple (f,g) de projecteurs de E tels que :

$$f \circ g = f \text{ et } \operatorname{Ker}(f) \subset \operatorname{Ker}(g)$$

est solution de l'équation : $\varphi_q(f) = f - g$.

c) Conclure de ce qui précède que, si f, g sont deux projecteurs vérifiant $\varphi_g(f) = \alpha f + \beta g$ et $\varphi_g(f) \neq 0$, le couple (α, β) ne peut prendre que l'une des deux valeurs (-1, 1) ou (1, -1).

Extrait de ENSAIT 1992

PROBLÈME 2

Nombres algébriques et nombres transcendants. Constructions à la règle et au compas

Seule la <u>première partie</u> fait partie du D.S; la seconde partie est pour votre culture personnelle!

Dans tout le problème, \mathbb{K} est un sous-corps du corps des réels \mathbb{R} et $\mathbb{K}[X]$ le \mathbb{K} -espace vectoriel des polynômes à coefficients dans \mathbb{K} .

On dit qu'un polynôme de degré > 0 est <u>irréductible dans $\mathbb{K}[X]$ </u> s'il ne peut pas s'écrire comme produit de deux polynômes de degrés > 0.

Un polynôme non nul est dit <u>normalisé</u> si le coefficient de son terme de plus haut degré est égal à 1.

Par définition, un réel α est <u>algébrique sur le corps</u> \mathbb{K} si et seulement si le réel α est racine d'un polynôme P, autre que le polynôme nul, appartenant à $\mathbb{K}[X]$. Dans le cas contraire, le réel α est transcendant sur le corps \mathbb{K} .

Le but de ce problème est d'établir des propriétés simples des nombres algébriques et transcendants sur un corps \mathbb{K} , d'en donner des exemples lorsque le corps \mathbb{K} est celui des rationnels, puis d'appliquer les résultats obtenus pour caractériser des figures géométriques constructibles "à la règle et au compas".

Première partie:

- 1°) Démontrer que, si \mathbb{K} est un sous-corps de \mathbb{R} , alors \mathbb{K} contient \mathbb{Q} .
- **2°)** Soient \mathbb{K} un sous-corps de \mathbb{R} et α un réel algébrique sur le corps \mathbb{K} ; désignons par $I(\alpha)$ l'ensemble des polynômes P appartenant à $\mathbb{K}[X]$ qui admettent α comme racine : $I(\alpha) = \{P, \ P \in \mathbb{K}[X], P(\alpha) = 0\}.$
 - a) Démontrer que $I(\alpha)$ est un idéal de $\mathbb{K}[X]$. En déduire l'existence d'un polynôme M_{α} , normalisé, unique, tel que $I(\alpha)$ soit l'ensemble des polynômes de $\mathbb{K}[X]$ multiples de M_{α} .
 - b) Montrer que M_{α} est irréductible dans $\mathbb{K}[X]$.
 - c) Démontrer que, pour qu'un polynôme P, appartenant à $\mathbb{K}[X]$, normalisé et irréductible dans $\mathbb{K}[X]$, soit le polynôme M_{α} , il faut et il suffit que le réel α soit racine du polynôme P.

Par définition, le polynôme M_{α} est le <u>polynôme minimal de α sur \mathbb{K} , le degré du polynôme M_{α} , noté $d(\alpha, \mathbb{K})$, est le degré de α sur K.</u>

Soit $\mathbb{K}[\alpha]$ le \mathbb{K} -espace vectoriel engendré par la famille des réels $1,\alpha,\ldots,\alpha^q,\ldots$:

 $K[\alpha] = \{x, \ x = \sum_{p=0}^{q} x_p \alpha^p, \ q \in \mathbb{N}, \ x_p \in \mathbb{K}\}$. L'ensemble $\mathbb{K}[\alpha]$ est, pour les lois de composition somme et produit, un anneau (on ne demande pas de le démontrer).

3°) Le réel α et le corps $\mathbb K$ étant donnés, démontrer l'équivalence entre les affirmations suivantes :

- (i) le réel α appartient à \mathbb{K} ; (ii) le degré de α sur \mathbb{K} est égal à 1; (iii) $\mathbb{K}[\alpha]$ est égal à \mathbb{K} .
- 4°) Dans cette question, on suppose que le degré de α sur $\mathbb K$ est égal à 2.
 - a) Préciser la dimension de $\mathbb{K}[\alpha]$.
 - b) Démontrer que $\mathbb{K}[\alpha]$ est un corps (on pourra introduire la racine $\beta \neq \alpha$ du polynôme M_{α})
 - c) Démontrer qu'il existe un réel k > 0 appartenant au corps \mathbb{K} tel que les deux corps $\mathbb{K}[\alpha]$ et $\mathbb{K}[\sqrt{k}]$ soient égaux.

Par définition, dans ce cas $(d(\alpha, \mathbb{K}) = 2)$, $\mathbb{K}[\alpha]$ est une extension quadratique de \mathbb{K} .

- 5°) Dans cette question, le degré de α sur \mathbb{K} est égal à un entier $n \geq 2$:
 - a) Démontrer qu'à tout réel x appartenant à l'espace vectoriel $\mathbb{K}[\alpha]$ est associé de manière unique un polynôme R de degré inférieur ou égal à n-1 appartenant à $\mathbb{K}[X]$ tel que : $x=R(\alpha)$.

En déduire une base du K-espace vectoriel $K[\alpha]$ et sa dimension.

- b) Vérifier que, pour tout réel x (différent de 0) de $\mathbb{K}[\alpha]$, l'application \mathbb{K} -linéaire φ qui à tout y de $\mathbb{K}[\alpha]$ associe xy est injective. En déduire que $\mathbb{K}[\alpha]$ est un corps.
- c) Démontrer que l'ensemble $\mathbb{K}[\alpha]$ est le plus petit sous-corps de \mathbb{R} admettant α comme élément, contenant \mathbb{K} et contenu dans \mathbb{R} .

Pour toute la fin de cette partie, Le corps \mathbb{K} est maintenant le corps des rationnels \mathbb{Q} .

6°) Exemples:

- a) Déterminer le polynôme minimal sur \mathbb{Q} de $\alpha = \sqrt{2}$
- **b)** Déterminer le polynôme minimal sur \mathbb{Q} de $\alpha = \sqrt[3]{2}$
- c) Déterminer le polynôme minimal sur \mathbb{Q} de $\alpha = \sqrt{\frac{1+\sqrt{5}}{2}}$

Considérons la suite des polynômes définis, pour tout réel x et pour tout entier naturel n, par les relations :

$$P_0(x) = 1$$
, $P_1(x) = 2x + 1$; $P_{n+2}(x) = 2xP_{n+1}(x) - P_n(x)$

Soit Q_n le polynôme défini par la relation : $Q_n(x) = P_n\left(\frac{x}{2}\right)$.

- 7°) Propriétés générales des polynômes P_n :
 - a) Déterminer le degré du polynôme P_n $(n \ge 0)$; préciser le coefficient du terme de plus haut degré et le terme constant. Déterminer les polynômes : P_2 , P_3 , P_4 . Démontrer que les coefficients des polynômes Q_n $(n \ge 0)$ sont des entiers relatifs.
 - b) Démontrer que les seules racines rationnelles possibles du polynôme Q_n sont les entiers 1 et -1. Exprimer l'expression $Q_{n+3}(x) + xQ_n(x)$ en fonction du polynôme $Q_{n+1}(x)$. En déduire que les racines rationnelles éventuelles des polynômes Q_{n+3} et Q_n sont les mêmes. Préciser les polynômes P_n qui ont une racine rationnelle.

8°) Racines du polynôme P_n :

Soit θ un réel donné compris strictement entre 0 et π . Considérons la suite $(u_n)_{n\geqslant 0}$ définie par la donnée de u_0 et de u_1 et la relation de récurrence :

pour tout entier naturel n, $u_{n+2} = 2u_{n+1}\cos\theta - u_n$.

- a) Déterminer l'expression du terme général u_n de la suite ci-dessus en fonction des réels n, θ et de deux scalaires λ et μ déterminés par θ , u_0 et u_1 .
- b) Utiliser les résultats précédents pour exprimer le réel $v_n = P_n(\cos \theta)$ en fonction des réels n et θ . En déduire toutes les racines du polynôme P_n , notées $x_{k,n}$, $1 \le k \le n$.
- c) Démontrer que les trois nombres réels $\cos\left(\frac{2\pi}{5}\right)$, $\cos\left(\frac{2\pi}{7}\right)$ et $\cos\left(\frac{2\pi}{9}\right)$ sont algébriques sur \mathbb{Q} . Déterminer leur polynôme minimal.
- **9°)** Dans cette question le réel α est le nombre algébrique sur \mathbb{Q} , $\cos\left(\frac{2\pi}{9}\right)$:
 - a) Démontrer que la dimension de l'espace vectoriel $\mathbb{Q}[\alpha]$ est 3 et qu'une de ses bases est $\mathcal{B} = (1, \alpha, \alpha^2)$. Donner l'expression dans cette base des réels $\cos\left(\frac{4\pi}{9}\right)$ et $\cos\left(\frac{8\pi}{9}\right)$.
 - b) Soit f un endomorphisme non nul de l'espace vectoriel $\mathbb{Q}[\alpha]$; supposons que, pour tout couple de réels x et y appartenant à $Q[\alpha]$, la relation f(x,y) = f(x).f(y) ait lieu. Déterminer les différentes images possibles des réels 1 et α dans la base \mathcal{B} . En déduire que l'ensemble de ces endomorphismes est, pour la loi de composition des endomorphismes, un groupe à trois éléments f_1, f_2, f_3 . Déterminer les matrices associées à ces endomorphismes f_1, f_2, f_3 dans la base \mathcal{B} .

${\bf 10}^{\circ})$ Exemple de nombres transcendants sur Q :

Soit S un polynôme, appartenant à $\mathbb{Q}[X]$, de degré $n \geq 2$, irréductible dans $\mathbb{Q}[X]$.

- a) Démontrer qu'il existe un entier naturel C_S (différent de 0) tel que pour tout rationnel $r=\frac{p}{q}$ (le couple (p,q) appartient à $\mathbb{Z}\times\mathbb{N}^*$), on ait : $|S(r)|\geqslant \frac{1}{C_Sq^n}$.
- b) Supposons que le réel α soit une racine de S. Déduire du résultat précédent l'existence d'une constante K, strictement positive, telle que pour tout rationnel $r=\frac{p}{q}$ appartenant à l'intervalle $[\alpha-1,\alpha+1]$, l'inégalité $|\alpha-r|\geqslant \frac{K}{q^n}$ ait lieu.
- c) Soit $(t_n)_{n\in\mathbb{N}}$ la suite des réels définis par la relation : $t_n = \sum_{k=0}^n 10^{-k!}$.

Démontrer que la suite $(t_n)_{n\in\mathbb{N}}$ est convergente; soit t sa limite. Établir l'inégalité : $|t-t_n| \leq 2.10^{-(n+1)!}$. En déduire que le réel t est transcendant sur \mathbb{Q} .

FIN DU D.S

Seconde partie

Le but de cette partie est d'appliquer les résultats précédents pour caractériser les points du plan qui peuvent être construits "à la règle et au compas".

Soit \mathcal{P} un plan affine euclidien orienté. Considérons un repère orthonormé Oxy et \mathbb{K} un sous-corps du corps des réels \mathbb{R} ; posons :

- ullet est l'ensemble des points du plan $\mathcal P$ dont chaque coordonnée appartient au corps $\mathbb K$.
- \mathcal{D} est l'ensemble des droites du plan \mathcal{P} qui joignent deux points de \mathcal{K} .
- \mathcal{C} est l'ensemble des cercles du plan \mathcal{P} centrés en un point de \mathcal{K} et de rayon égal à la distance de deux points de \mathcal{K} .

1°) Intersection de droites et de cercles appartenant à $\mathcal D$ ou à $\mathcal C$:

Démontrer les résultats suivants :

- Toute droite appartenant à \mathcal{D} et tout cercle appartenant à \mathcal{C} admettent au moins une équation cartésienne dont les coefficients sont dans \mathbb{K} .
- Le point commun à deux droites sécantes de \mathcal{D} appartient à \mathcal{K} .
- Un point commun à une droite de \mathcal{D} et à un cercle de \mathcal{C} est, soit un point de l'ensemble \mathcal{K} , soit un point dont chaque coordonnée appartient à une extension quadratique de \mathbb{K} . Que dire d'un point commun à deux cercles de \mathcal{C} ?

Points et réels constructibles :

i/ Soit E un ensemble fini de points du plan \mathcal{P} . Considérons toutes les droites passant par deux points de E et tous les cercles centrés en un de ces points de rayon égal à la distance de deux points quelconques de E. Les points d'intersection de ces droites et cercles deux à deux sont dits "points construits à partir de E à la règle et au compas" ou brièvement "construits à partir de E".

ii/ Considérons deux points O et I du plan \mathcal{P} . Un point M du plan \mathcal{P} est dit "constructible" à partir des points O et I s'il existe une suite finie de points $M_1, M_2, \ldots, M_n = M$ telle que :

- M_1 soit construit à partir de l'ensemble des deux points O et I
- M_i pour $2 \le i \le n$, soit construit à partir de l'ensemble $\{O, I, M_1, M_2, \dots, M_{i-1}\}$.

iii/ Dans la suite seuls le point O et le point I de l'axe Ox sont donnés; l'abscisse du point I est égale à 1; tout point M "constructible à partir des points O et I" est dit brièvement "constructible".

iv/ Un réel est dit "constructible" s'il est égal à l'abscisse d'un point constructible de l'axe Ox ou à l'ordonnée d'un point constructible de l'axe Oy.

2°) Exemples de "points construits" et de "points et réels constructibles" :

Démontrer, en justifiant un dessin "effectué à l'aide d'une règle et d'un compas", les propriétés suivantes :

a) Soit E un ensemble de trois points A, B, C du plan \mathcal{P} ; ces points sont deux à deux distincts et ne sont pas alignés. Démontrer que le quatrième sommet D du parallélogramme ABCD est un "point construit" à partir de l'ensemble E.

En déduire que si A et Δ sont un point et une droite du plan \mathcal{P} donnés, la droite parallèle à la droite Δ passant par A peut être construite "à la règle et au compas".

- b) i) Démontrer que le point J symétrique du point I par rapport à O est constructible ainsi que le point K porté par l'axe Oy d'ordonnée égale à 1. Il est admis que tout point dont les coordonnées sont des entiers relatifs, est constructible.
 - ii) Soient α et β deux réels strictement positifs constructibles; démontrer que les réels $\alpha + \beta$, $\frac{\alpha}{\beta}$ et $\alpha\beta$ sont constructibles.
 - iii) Soit α un réel strictement positif constructible; démontrer que $\sqrt{\alpha}$ est constructible (on pourra considérer le cercle dont un diamètre est le segment joignant le point J au point $A(\alpha,0)$.

Une suite finie $(\mathbb{K}_i)_{0 \leq i \leq n}$ de sous-corps du corps des réels est dite <u>avoir la propriété (P)</u> si les deux relations ci-dessous ont lieu :

- $(P1) \ \mathbb{Q} = \mathbb{K}_0 \subset \mathbb{K}_1 \subset \mathbb{K}_2 \subset \cdots \subset \mathbb{K}_n$
- (P2) Pour tout entier $i, 1 \leq i \leq n$, le corps \mathbb{K}_i est une extension quadratique du corps \mathbb{K}_{i-1} .

3°) Une condition nécessaire et suffisante de constructibilité :

- a) Soit M un point constructible; démontrer qu'il existe une suite finie $(\mathbb{K}_i)_{0 \leq i \leq n}$ de souscorps du corps des réels \mathbb{R} ayant la propriété (P) telle que les coordonnées de M appartiennent au corps \mathbb{K}_n .
- b) Soit une suite finie $(\mathbb{K}_i)_{0 \leq i \leq n}$ ayant la propriété (P); démontrer par récurrence que tous les points M du plan dont les coordonnées appartiennent au corps \mathbb{K}_n sont constructibles.

4°) Une condition nécessaire de constructibilité :

- a) Soient F, G et H trois sous-corps du corps des réels $\mathbb R$ tels que les inclusions $F \subset G \subset H$ aient lieu. Faisons les hypothèses : G est un F-espace vectoriel, H un G-espace vectoriel, leurs dimensions sont finies et respectivement égales aux entiers q et r. Démontrer que H est un F-espace vectoriel de dimension finie. Préciser sa dimension.
- b) Considérons une suite finie $(\mathbb{K}_i)_{0 \leq i \leq n}$ de sous-corps du corps des réels ayant la propriété (P); quelle est la dimension du \mathbb{Q} -espace vectoriel \mathbb{K}_n ?
- c) En déduire que, si le réel α est constructible, le degré $d(\alpha, \mathbb{Q})$ est une puissance de l'entier 2.

5°) Polygones réguliers constructibles :

Considérons un polygone régulier à n côtés $(3 \le n \le 10)$ inscrit dans le cercle de centre O et de rayon 1. Désignons par A_1, A_2, \ldots, A_n ses sommets. Supposons le premier sommet A_1 confondu avec le point I. L'abscisse du deuxième sommet A_2 est alors égale à $\cos\left(\frac{2\pi}{n}\right)$.

Quels sont, parmi les polygones réguliers à n côtés $(3 \le n \le 10)$ inscrits dans le cercle de centre O et de rayon 1, ceux qui sont constructibles?

D'après: MINES-PONTS 1996

* * *