

**Organizers:** Moses Charikar, Anay Mehrotra, Charlotte Peale, Chirag Pabbaraju, Grigoris Velegkas

#### Validity-Breadth Trade-Off (Part II)

#### This Talk:

- ➤ Lower Bound Proof for "Uniqueness Property"
- ➤ Algorithm for Achieving Breadth Infinitely Often

#### Lower Bound on Breadth

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

#### Lower Bound on Breadth

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

#### Lower Bound on Breadth

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

Uniqueness condition: if a generator satisfies P for some L, it cannot satisfy P for some other L'

#### **Angluin's Condition**[Angluin'80]:

Any collection  $\mathcal{L}$  is identifiable in the limit iff every  $L \in \mathcal{L}$  has a *finite* tell-tale subset  $T_L \subseteq L$ , i.e.,

#### **Angluin's Condition** [Angluin'80]:

Any collection  $\mathcal{L}$  is identifiable in the limit iff every  $L \in \mathcal{L}$  has a *finite* tell-tale subset  $T_L \subseteq L$ , i.e.,

#### **Angluin's Condition** [Angluin'80]:

Any collection  $\mathcal{L}$  is identifiable in the limit iff every  $L \in \mathcal{L}$  has a *finite* tell-tale subset  $T_L \subseteq L$ , i.e.,

#### **Angluin's Condition** [Angluin'80]:

Any collection  $\mathcal{L}$  is identifiable in the limit iff every  $L \in \mathcal{L}$  has a *finite* tell-tale subset  $T_L \subseteq L$ , i.e.,



#### **Angluin's Condition** [Angluin'80]:

Any collection  $\mathcal{L}$  is identifiable in the limit iff every  $L \in \mathcal{L}$  has a *finite* tell-tale subset  $T_L \subseteq L$ , i.e.,



#### **Angluin's Condition** [Angluin'80]:

Any collection  $\mathcal{L}$  is identifiable in the limit iff every  $L \in \mathcal{L}$  has a *finite* tell-tale subset  $T_L \subseteq L$ , i.e.,



#### **Angluin's Condition** [Angluin'80]:

Any collection  $\mathcal{L}$  is identifiable in the limit iff every  $L \in \mathcal{L}$  has a *finite* tell-tale subset  $T_L \subseteq L$ , i.e.,



• If  $L^*$  doesn't have a tell-tale, for every T (finite subset of  $L^*$ ), there is some L such that: i) T is subset of L, and ii) L is proper subset of  $L^*$ 



Inspiration from Gold's negative result for identification

- Inspiration from Gold's negative result for identification
- Goal: given a generator choose enumeration E and target K s.t. generator doesn't achieve P infinitely often

- Inspiration from Gold's negative result for identification
- Goal: given a generator choose enumeration E and target K s.t. generator doesn't achieve P infinitely often
- Collection isn't identifiable, there's *L*\* violating Angluin's condition

- Inspiration from Gold's negative result for identification
- Goal: given a generator choose enumeration E and target K s.t. generator doesn't achieve P infinitely often
- Collection isn't identifiable, there's  $L^*$  violating Angluin's condition
- E, K are chosen via *diagonalization* by applying the (negation of) Angluin's condition on  $L^*$  repeatedly

















- Goal:
  - 1. Present enumeration of some language *K* from the collection
  - 2. Make the generator miss *P* infinitely often

- •
- •

#### Lower Bound on Generation with Breadth [CP'25], [KMV'24]. If a notion of breadth P satisfies the *uniqueness condition* and $\mathcal{L}$

isn't identifiable, no generator can achieve P.

• Since  $\mathcal{L}$  isn't identifiable there's  $L^*$  that violates Angluin's condition

Lower Bound on Generation with Breadth [CP'25], [KMV'24]. If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$ 

isn't identifiable, no generator can achieve P.

• Since  $\mathcal{L}$  isn't identifiable there's  $L^*$  that violates Angluin's condition

• Adversary starts enumerating  $L^*$ 

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

- Since  $\mathcal{L}$  isn't identifiable there's  $L^*$  that violates Angluin's condition
- Adversary starts enumerating  $L^*$

 $E^* \mid x_1 \mid x_2 \mid x_3 \mid x_4 \mid x_5 \mid x_6 \mid x_7 \mid \dots$ 

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

- Since  $\mathcal{L}$  isn't identifiable there's  $L^*$  that violates Angluin's condition
- Adversary starts enumerating  $L^*$

 $E^*$   $x_1$   $x_2$   $x_3$   $x_4$   $x_5$   $x_6$   $x_7$  ...

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

- Since  $\mathcal{L}$  isn't identifiable there's  $L^*$  that violates Angluin's condition
- Adversary starts enumerating  $L^*$

#### I C :

#### Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

#### Lower Bound Proof

- Since  $\mathcal{L}$  isn't identifiable there's  $L^*$  that violates Angluin's condition
- Adversary starts enumerating  $L^*$



• If generator never satisfies P for  $L^*$  then lower bound holds

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

- Since  $\mathcal{L}$  isn't identifiable there's  $L^*$  that violates Angluin's condition
- Adversary starts enumerating  $L^*$

```
E^* x_1 x_2 x_3 x_4 x_5 x_6 x_7 ...
```

- If generator never satisfies *P* for *L*\* then lower bound holds
- Generator achieves P at  $t_1$  for  $L^*$ ; let  $S_{t_1}$  be enumerated elements

#### Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

#### Lower Bound Proof

- Since  $\mathcal{L}$  isn't identifiable there's  $L^*$  that violates Angluin's condition
- Adversary starts enumerating  $L^*$



• If generator never satisfies *P* for *L*\* then lower bound holds

• Generator achieves P at  $t_1$  for  $L^*$ ; let  $S_{t_1}$  be enumerated elements



**Lower Bound on Generation with Breadth** [CP'25], [KMV'24]. If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

**Lower Bound on Generation with Breadth** [CP'25], [KMV'24]. If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

At time  $t_1$ 

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

#### At time $t_1$

1. Generator cannot achieve P for  $L'_1$  at  $t_1$  (uniqueness + strict subset of  $L^*$ )

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

#### At time $t_1$

- 1. Generator cannot achieve P for  $L'_1$  at  $t_1$  (uniqueness + strict subset of  $L^*$ )
- 2. Adversary switches to enumerating  $L'_1$  ("valid" move!)

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

#### At time $t_1$

- 1. Generator cannot achieve P for  $L'_1$  at  $t_1$  (uniqueness + strict subset of  $L^*$ )
- 2. Adversary switches to enumerating  $L'_1$  ("valid" move!)

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

#### At time $t_1$

- 1. Generator cannot achieve P for  $L'_1$  at  $t_1$  (uniqueness + strict subset of  $L^*$ )
- 2. Adversary switches to enumerating  $L'_1$  ("valid" move!)

$$S_{t_1+1} \begin{bmatrix} x_1 & \dots & x_{t_1} & x_{t_1+1} & x_{t_1+2} & x_{t_1+3} & x_{t_1+4} \end{bmatrix} \cdots$$

If generator achieves P at  $t_2 > t_1$  for  $L'_1$ : swap back to  $L^*$ 

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

#### At time $t_1$

- 1. Generator cannot achieve P for  $L'_1$  at  $t_1$  (uniqueness + strict subset of  $L^*$ )
- 2. Adversary switches to enumerating  $L'_1$  ("valid" move!)

If generator achieves P at  $t_2 > t_1$  for  $L'_1$ : swap back to  $L^*$ 

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

#### At time $t_1$

- 1. Generator cannot achieve P for  $L'_1$  at  $t_1$  (uniqueness + strict subset of  $L^*$ )
- 2. Adversary switches to enumerating  $L'_1$  ("valid" move!)

If generator achieves P at  $t_2 > t_1$  for  $L'_1$ : swap back to  $L^*$ 

$$S_{t_2+1} x_1 \dots x_{t_1} x_{t_1+1} x_{t_1+2} x_{t_1+3} \dots$$

1. Generator cannot achieve P for  $L^*$  at  $t_2$ 

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

#### At time $t_1$

- 1. Generator cannot achieve P for  $L'_1$  at  $t_1$  (uniqueness + strict subset of  $L^*$ )
- 2. Adversary switches to enumerating  $L'_1$  ("valid" move!)

If generator achieves P at  $t_2 > t_1$  for  $L'_1$ : swap back to  $L^*$ 

- 1. Generator cannot achieve P for  $L^*$  at  $t_2$
- 2. This is again a valid move

#### Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

• If generator doesn't satisfy P for  $L^*$  at  $t_3 > t_2$  lower bound witnessed

•

•

lacktrian

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

#### Lower Bound on Generation with Breadth [CP'25], [KMV'24].

If a notion of breadth P satisfies the *uniqueness condition* and  $\mathcal{L}$  isn't identifiable, no generator can achieve P.

• If there are infinitely many phases  $K = L^*$ , valid enumeration for  $L^*$ 

#### Lower Bound on Generation with Breadth [CP'25], [KMV'24].

- If there are infinitely many phases  $K = L^*$ , valid enumeration for  $L^*$
- If there are j phases  $K = L'_j$ , valid enumeration for  $L'_j$

Lower Bound on Generation with Breadth [CP'25], [KMV'24].

- If there are infinitely many phases  $K = L^*$ , valid enumeration for  $L^*$
- If there are j phases  $K = L'_j$ , valid enumeration for  $L'_j$
- Infinitely many steps for which *P* isn't satisfied!

#### Lower Bound on Generation with Breadth [CP'25], [KMV'24].

- If there are infinitely many phases  $K = L^*$ , valid enumeration for  $L^*$
- If there are j phases  $K = L'_j$ , valid enumeration for  $L'_j$
- Infinitely many steps for which P isn't satisfied!
  - Either infinitely many transitions in the "bipartite graph"

#### Lower Bound on Generation with Breadth [CP'25], [KMV'24].

- If there are infinitely many phases  $K = L^*$ , valid enumeration for  $L^*$
- If there are j phases  $K = L'_j$ , valid enumeration for  $L'_j$
- Infinitely many steps for which P isn't satisfied!
  - Either infinitely many transitions in the "bipartite graph"
  - Or, if we stop at node, it is never satisfied from some point on for this node

#### Lower Bound on Generation with Breadth [CP'25], [KMV'24].

- If there are infinitely many phases  $K = L^*$ , valid enumeration for  $L^*$
- If there are j phases  $K = L'_j$ , valid enumeration for  $L'_j$
- Infinitely many steps for which P isn't satisfied!
  - Either infinitely many transitions in the "bipartite graph"
  - Or, if we stop at node, it is never satisfied from some point on for this node
    - Otherwise the adversary would have moved on

At step t, only consider  $L_1, \ldots, L_I$ 

 $L_{m_e}$ : critical language with highest index  $m_e \le t$ 

Generate a string from  $L_{m_1} \setminus S_1$ 

At step t, only consider  $L_1, \ldots, L_L$ 

L<sub>me</sub>: critical language with highest index me≤ t

Generate a string from  $L_{m_1} \setminus S_1$ 

#### **Proof sketch:**

For large enough t, target language K is critical and in  $L_1, \ldots, L_L$ 

At step t, only consider  $L_1, \ldots, L_L$ 

L<sub>me</sub>: critical language with highest index me≤ t

Generate a string from  $L_{n_1} \setminus S_1$ 

#### **Proof sketch:**

For large enough t, target language K is critical and in  $L_1, \ldots, L_L$ 

 $L_{m_t} \subseteq K$ , so any string from  $L_{m_t} \setminus S_t$  also belongs to  $K \setminus S_t$ 

- Alternative view: the KM algorithm produces indices  $i_1, i_2, \dots$ 
  - After finite t it satisfies  $L_{i_t} \subseteq K$

- Alternative view: the KM algorithm produces indices  $i_1, i_2, \dots$ 
  - After finite t it satisfies  $L_{i_t} \subseteq K$
- Goal: Modify the KM algorithm so that it achieves the previous and
  - For infinitely many t it satisfies  $L_{i_t} = K$

- Alternative view: the KM algorithm produces indices  $i_1, i_2, \dots$ 
  - After finite t it satisfies  $L_{i_t} \subseteq K$
- Goal: Modify the KM algorithm so that it achieves the previous and
  - For infinitely many t it satisfies  $L_{i_t} = K$
- Idea: The algorithm adds a "backtracking" step in a controlled way























After large enough *t*, the prefix of the chain of critical languages up to *K* stops changing

After large enough *t*, the prefix of the chain of critical languages up to *K* stops changing

After large enough *t*, if a critical language gets contradicted, then we know it appears after *K*, hence in the next round we can "backtrack" to the "previous" critical language!

At step t, only consider  $L_1, \ldots, L_L$ 

L<sub>me</sub>: critical language with highest index me≤ t

If all critical languages from l = 1 remain critical, output  $m_l$ 

Otherwise output the index of the critical language that appears

before the first contradicted language











#### References

```
[CP'25] Exploring Facets of Language Generation in the Limit, COLT'25
[HKMV'25] On Union-Closedness of Language Generation, arXiv'25
[KM'24] Language Generation in the Limit, NeurIPS'24
[KW'25] Density Measures for Language Generation, arXiv'25
[KMV'25] On the Limits of Language Generation: ... STOC'25
[KMV'24] Characterizations of Language Generation With Breadth, arXiv'24
[PRR'25] Representative Language Generation, ICML'25
```