Ordenação em tempo linear

Professora:

Fátima L. S. Nunes

- Algoritmos de ordenação que já conhecemos e suas complexidades:
 - Insertion Sort (Ordenação por Inserção) O(n²)
 - Selection Sort (Ordenação por Seleção) O(n²)
 - Bubble Sort (Ordenação pelo método da Bolha) O(n²)
 - MergeSort (Ordenação por intercalação) O(n lg n)
 - QuickSort (Ordenação rápida) O(n lg n) no caso médio
 - HeapSort (Ordenação por monte) O(n lg n)

- Algoritmos de ordenação que já conhecemos e suas complexidades:
 - Insertion Sort (Ordenação por Inserção) O(n²)
 - Selection Sort (Ordenação por Seleção) O(n²)
 - Bubble Sort (Ordenação pelo método da Bolha) O(n²)
 - MergeSort (Ordenação por intercalação) O(n lg n)
 - QuickSort (Ordenação rápida) O(n lg n) no caso médio
 - HeapSort (Ordenação por monte) O(n lg n)

Todos são algoritmos por

- Algoritmos de ordenação que já conhecemos e suas complexidades:
 - Insertion Sort (Ordenação por Inserção) O(n²)
 - Selection Sort (Ordenação por Seleção) O(n²)
 - Bubble Sort (Ordenação pelo método da Bolha) O(n²)
 - MergeSort (Ordenação por intercalação) O(n lg n)
 - QuickSort (Ordenação rápida) O(n lg n) no caso médio
 - HeapSort (Ordenação por monte) O(n lg n)
 - Todos são algoritmos por COMPARAÇÃO

 Será que teria outra forma de ordenar conjuntos de valores?

- Ordenação por contagem (Counting Sort):
 - pressupõe que cada um dos n elementos de entrada é um inteiro no intervalo de 1 a k, para algum inteiro k.
 - ideia básica:
 - para cada elemento de entrada x, determinar o número de elementos menores que x;
 - a informação pode ser usada para inserir o elemento *x* diretamente em sua posição no arranjo de saída.
 - Exemplo: se há 5 elementos menores que x, então x será inserido na 6ª posição.

Algoritmo:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
      C[i] \leftarrow 0
fim para
para j \leftarrow 1 até tamanho(A)
      C[A[j]] \leftarrow C[A[j]] + 1 // c[i] contém número de elementos iguais a i
fim para
para i \leftarrow 2 até k
      C[i] \leftarrow C[i] + C[i-1]
      // c[i]contém número de elementos menores ou iquais a i
fim para
para j \leftarrow tamanho(A) até 1
      B[C[A[j]]] \leftarrow A[j]
      C[A[j]] \leftarrow C[A[j]] - 1
fim para
```


• Algoritmo:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
       C[i] \leftarrow 0
fim para
para j \leftarrow 1 até tamanho(A)
       C[A[j]] \leftarrow C[A[j]] + 1
// c[i]contém número de elementos
iquais a i
fim para
para i \leftarrow 2 até k
       C[i] \leftarrow C[i] + C[i-1]
       // c[i]contém número de
elementos menores ou iguais a i
fim para
para j \leftarrow tamanho(A) até 1
       B[C[A[j]]] \leftarrow A[j]
       C[A[i]] \leftarrow C[A[i]] - 1
fim para
```


Algoritmo:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
       C[i] \leftarrow 0
fim para
para j \leftarrow 1 até tamanho (A)
       C[A[j]] \leftarrow C[A[j]] + 1
// c[i]contém número de elementos
iquais a i
fim para
para i \leftarrow 2 até k
       C[i] \leftarrow C[i] + C[i-1]
       // c[i]contém número de
elementos menores ou iguais a i
fim para
para j \leftarrow tamanho(A) até 1
       B[C[A[j]]] \leftarrow A[j]
       C[A[i]] \leftarrow C[A[i]] - 1
fim para
```

```
3
```


Algoritmo:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
      C[i] \leftarrow 0
                                            Α
                                                                                 3
fim para
para j \leftarrow 1 até tamanho (A)
       C[A[i]] \leftarrow C[A[i]] + 1
                                           C
// c[i]contém número de elementos
iquais a i
fim para
para i \leftarrow 2 até k
      C[i] \leftarrow C[i] + C[i-1]
       // c[i]contém número de
elementos menores ou iguais a i
fim para
                                            B
para j ← tamanho(A) até 1
      B[C[A[j]]] \leftarrow A[j]
      C[A[j]] \leftarrow C[A[j]] - 1
fim para
                                Iteração 1
```

SISTEMAS DE

Algoritmo:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
      C[i] \leftarrow 0
                                            Α
                                                                                 3
fim para
para j \leftarrow 1 até tamanho (A)
       C[A[i]] \leftarrow C[A[i]] + 1
                                           C
// c[i]contém número de elementos
iquais a i
fim para
para i \leftarrow 2 até k
      C[i] \leftarrow C[i] + C[i-1]
       // c[i]contém número de
elementos menores ou iguais a i
fim para
                                            B
para j ← tamanho(A) até 1
      B[C[A[j]]] \leftarrow A[j]
      C[A[j]] \leftarrow C[A[j]] - 1
fim para
                                           C
                                Iteração 2
```

SISTEMAS DE

Algoritmo:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
      C[i] \leftarrow 0
                                            Α
                                                                                 3
fim para
para j \leftarrow 1 até tamanho (A)
       C[A[i]] \leftarrow C[A[i]] + 1
                                           C
// c[i]contém número de elementos
iquais a i
fim para
para i \leftarrow 2 até k
      C[i] \leftarrow C[i] + C[i-1]
       // c[i]contém número de
elementos menores ou iguais a i
fim para
                                            B
para j ← tamanho(A) até 1
      B[C[A[j]]] \leftarrow A[j]
      C[A[j]] \leftarrow C[A[j]] - 1
fim para
                                           C
                                Iteração 3
```


Algoritmo:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
      C[i] \leftarrow 0
                                            Α
                                                                                 3
fim para
para j \leftarrow 1 até tamanho (A)
       C[A[i]] \leftarrow C[A[i]] + 1
                                           C
// c[i]contém número de elementos
iquais a i
fim para
para i \leftarrow 2 até k
      C[i] \leftarrow C[i] + C[i-1]
       // c[i]contém número de
elementos menores ou iguais a i
fim para
                                            B
para j ← tamanho(A) até 1
      B[C[A[j]]] \leftarrow A[j]
      C[A[j]] \leftarrow C[A[j]] - 1
fim para
                                           C
                                Iteração 4
```


Algoritmo:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
      C[i] \leftarrow 0
                                            Α
fim para
para j \leftarrow 1 até tamanho (A)
       C[A[i]] \leftarrow C[A[i]] + 1
                                            C
// c[i]contém número de elementos
iquais a i
fim para
para i \leftarrow 2 até k
      C[i] \leftarrow C[i] + C[i-1]
       // c[i]contém número de
elementos menores ou iguais a i
fim para
                                            B
para j ← tamanho(A) até 1
                                                0
      B[C[A[j]]] \leftarrow A[j]
      C[A[j]] \leftarrow C[A[j]] - 1
fim para
                                            C
                                Iteração 5
```


Algoritmo:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
      C[i] \leftarrow 0
                                            Α
fim para
para j \leftarrow 1 até tamanho (A)
       C[A[i]] \leftarrow C[A[i]] + 1
                                            C
// c[i]contém número de elementos
iquais a i
fim para
para i \leftarrow 2 até k
      C[i] \leftarrow C[i] + C[i-1]
       // c[i]contém número de
elementos menores ou iguais a i
fim para
                                            B
para j ← tamanho(A) até 1
                                                0
      B[C[A[j]]] \leftarrow A[j]
      C[A[j]] \leftarrow C[A[j]] - 1
fim para
                                            C
                                Iteração 6
```

SISTEMAS DE

Algoritmo:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
      C[i] \leftarrow 0
                                            Α
fim para
para j \leftarrow 1 até tamanho (A)
       C[A[i]] \leftarrow C[A[i]] + 1
                                            C
// c[i]contém número de elementos
iquais a i
fim para
para i \leftarrow 2 até k
      C[i] \leftarrow C[i] + C[i-1]
       // c[i]contém número de
elementos menores ou iguais a i
fim para
                                            B
para j ← tamanho(A) até 1
                                                0
      B[C[A[j]]] \leftarrow A[j]
      C[A[j]] \leftarrow C[A[j]] - 1
fim para
                                            C
                                Iteração 7
```


• Algoritmo:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
      C[i] \leftarrow 0
                                            Α
fim para
para j \leftarrow 1 até tamanho (A)
       C[A[i]] \leftarrow C[A[i]] + 1
                                            C
// c[i]contém número de elementos
iquais a i
fim para
para i \leftarrow 2 até k
      C[i] \leftarrow C[i] + C[i-1]
       // c[i]contém número de
elementos menores ou iguais a i
fim para
                                            B
para j ← tamanho(A) até 1
                                                0
      B[C[A[j]]] \leftarrow A[j]
      C[A[j]] \leftarrow C[A[j]] - 1
fim para
                                            C
                                Iteração 8
```


Analisando a complexidade:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
                                             O (k)
      C[i] \leftarrow 0
fim para
para j \leftarrow 1 até tamanho (A)
      C[A[j]] \leftarrow C[A[j]] + 1
// c[i]contém número de elementos
iquais a i
fim para
para i \leftarrow 2 até k
      C[i] \leftarrow C[i] + C[i-1]
       // c[i]contém número de
elementos menores ou iguais a i
fim para
para j ← tamanho(A) até 1
      B[C[A[j]]] \leftarrow A[j]
      C[A[j]] \leftarrow C[A[j]] - 1
fim para
```


Analisando a complexidade:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
                                            O (k)
      C[i] \leftarrow 0
fim para
para j \leftarrow 1 até tamanho (A)
      C[A[j]] \leftarrow C[A[j]] + 1
                                            O (n)
// c[i]contém número de elementos
iquais a i
fim para
para i \leftarrow 2 até k
      C[i] \leftarrow C[i] + C[i-1]
                                            O (k)
       // c[i]contém número de
elementos menores ou iguais a i
fim para
para j ← tamanho(A) até 1
      B[C[A[j]]] \leftarrow A[j]
                                            O (n)
      C[A[j]] \leftarrow C[A[j]] - 1
fim para
```


Analisando a complexidade:

```
CountingSort(A[], B[], k)
para i \leftarrow 0 até k
                                           O (k)
      C[i] \leftarrow 0
fim para
para j \leftarrow 1 até tamanho (A)
      C[A[i]] \leftarrow C[A[i]] + 1
                                           O (n)
// c[i]contém número de elementos
iquais a i
                                                                    \Theta(k+n)
fim para
para i \leftarrow 2 até k
      C[i] \leftarrow C[i] + C[i-1]
                                           O (k)
                                                         Em geral aplicamos este
      // c[i]contém número de
elementos menores ou iguais a i
                                                         método quando k=O(n).
fim para
                                                               Então: \Theta(n)
para j ← tamanho(A) até 1
      B[C[A[j]]] \leftarrow A[j]
                                           O (n)
      C[A[i]] \leftarrow C[A[i]] - 1
fim para
```


- Ordenação por contagem (Counting Sort):
 - supera o limite inferior de Ω(n lg n) da ordenação por comparação;
 - •propriedade importante: ordenação é estável ⇒
 números com mesmo valor aparecem no arranjo de
 saída na mesma ordem em que estavam no arranjo
 de entrada.
 - Quando isso é importante?

- Ordenação por contagem (Counting Sort):
 - •supera o limite inferior de $\Omega(n \mid g \mid n)$ da ordenação por comparação.
 - •propriedade importante: ordenação é estável ⇒
 números com mesmo valor aparecem no arranjo de
 saída na mesma ordem em que estavam no arranjo
 de entrada.
 - Quando isso é importante?
 - quando dados adicionais são transportados junto com os números. Exemplo: Bancos de Dados.

- Radix sort (ordenação da raiz):
 - considera um arranjo de n inteiros, onde cada inteiro é representado com no máximo d dígitos, onde d é constante.
 - Exemplo: CEP de localidades máximo 8 dígitos

1	2	3	4	5	6	7	8
0	3	3	1	8	0	0	1
1	7	1	0	0	0	0	0
1	9	1	1	0	3	3	1
0	1	0	2	0	2	6	5

Alguma sugestão para ordenar?

Algoritmo:

```
RadixSort(A[], d)
para i ← 1 até d
    ordenar os elementos de A pelo i-ésimo dígito
    usando um método estável
fim para
```


Algoritmo:

```
RadixSort(A[], d)
para i ← 1 até d
    ordenar os elementos de A pelo i-ésimo dígito
    usando um método estável
fim para
```

Por que tem que ser estável?

1	2	3	4	5	6	7	8
0	3	3	1	8	0	0	1
1	7	1	0	0	0	0	0
1	9	1	1	0	3	3	1
0	1	0	2	0	2	6	5

Algoritmo:

```
RadixSort(A[], d)
para i ← 1 até d
    ordenar os elementos de A pelo i-ésimo dígito
    usando um método estável
fim para
```

Por que tem que ser estável? Importante manter a ordem após ordenar cada coluna.

1	2	3	4	5	6	7	8
0	3	3	1	8	0	0	1
1	7	1	0	0	0	0	0
1	9	1	1	0	3	3	1
0	1	0	2	0	2	6	5

Algoritmo:

```
RadixSort(A[], d)
para i ← 1 até d
    ordenar os elementos de A pelo i-ésimo dígito
    usando um método estável
fim para
```

Por que tem que ser estável?
Importante manter a ordem após ordenar cada coluna.

ATENÇÃO: 1 é o elemento de mais baixa ordem e d é o elemento de mais alta ordem.

1	2	3	4	5	6	7	8
0	3	3	1	8	0	0	1
1	7	1	0	0	0	0	0
1	9	1	1	0	3	3	1
0	1	0	2	0	2	6	5

Algoritmo:

```
RadixSort(A[], d)
para i ← 1 até d
    ordenar os elementos de A pelo i-ésimo dígito
    usando um método estável
fim para
```


Analisando a complexidade:

Lema:

Dados n números de d dígitos em cada dígito pode assumir até k valores possíveis, o algoritmo RadixSort ordena corretamente esses números no tempo $\Theta(d(n+k))$

Prova:

- indução sobre a coluna que está sendo ordenada;
- análise do tempo de execução depende da ordenação estável usada;
- quando cada dígito está no intervalo de 0 a k-1, e k não é muito grande, costuma-se usar CountingSort;
- cada passagem sobre n números de d dígitos leva tempo $\Theta(n+k)$. Há d passagens: tempo = $\Theta(d(n+k))$

- Analisando a complexidade:
 - complexidade do RadixSort depende da complexidade do método estável usado como intermediário;
 - se o método estável apresentar tempo de execução em Θ(f(n)), então complexidade do RadixSort estará em Θ(d.f(n)).
 - Supondo d constante, complexidade será Θ(f(n))
 - Como visto, se usar o CountingSort como método de ordenação intermediário, a complexidade será Θ(n+k)
 - Se $k \in O(n)$, então complexidade será linear em n.

•O que significa a expressão in-place?

- O que significa a expressão in-place?
 - "no local"
- •O que seria um algoritmo de ordenação in-place?

- O que significa a expressão in-place?
 - "no local"
- •O que seria um algoritmo de ordenação in-place?
 - a memória adicional requerida é independente do tamanho do vetor que está sendo ordenado.
 - ✓ QuickSort e HeapSort são métodos in-place
 - ✓ MergeSort e CountingSort não são métodos inplace.

- · Aprendemos mais dois conceitos: estável e in-place
- Como escolher o melhor algoritmo de ordenação?

- Aprendemos mais dois conceitos: *estável* e *in-place*?
- Como escolher o melhor algoritmo de ordenação?
 - tentar conhecer o problema!

- Aprendemos mais dois conceitos: *estável* e *in-place*?
- Como escolher o melhor algoritmo de ordenação?
 - tentar conhecer o problema!
 - complexidade tempo de execução;
 - há algum conhecimento prévio sobre a ordenação? Dados quase ordenados?
 - há limitação do uso de memória? algoritmo por comparação (Ω(n lg n)) in-place pode ser melhor que algoritmo que apresenta O(n);
 - há necessidade de manter ordem original dos dados? algoritmo estável...

Referências

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein. Algoritmos Tradução da 2a. Edição Americana. Editora Campus, 2002.
- Nota de aulas do professor Delano Beder (EACH-USP).

Ordenação em tempo linear

Professora:

Fátima L. S. Nunes

