SESSION 2015 MPMA102



## **EPREUVE SPECIFIQUE - FILIERE MP**

\_\_\_\_\_

# **MATHEMATIQUES 1**

Durée : 4 heures

.....

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont interdites

Le sujet est composé de deux exercices et d'un problème tous indépendants.

### EXERCICE I.

**I.1.** Soit X une variable aléatoire qui suit une loi de Poisson de paramètre  $\lambda > 0$ . Déterminer sa fonction génératrice, puis en déduire son espérance et sa variance.

# **EXERCICE II.**

On note  $I = ]0, +\infty[$  et on définit pour n entier naturel non nul et pour  $x \in I$ ,  $f_n(x) = e^{-nx} - 2e^{-2nx}$ .

**II.1.** Justifier que pour tout entier naturel non nul n, les fonctions  $f_n$  sont intégrables sur I et calculer  $\int_0^{+\infty} f_n(x) dx$ . Que vaut alors la somme  $\sum_{n=1}^{+\infty} \left( \int_0^{+\infty} f_n(x) dx \right) ?$ 

II.2. Démontrer que la série de fonctions  $\sum_{n\geq 1} f_n$  converge simplement sur I. Déterminer sa fonction

somme 
$$S$$
 et démontrer que  $S$  est intégrable sur  $I$ . Que vaut alors  $\int_0^{+\infty} \left(\sum_{n=1}^{+\infty} f_n(x)\right) dx$ ?

**II.3.** Donner, sans aucun calcul, la nature de la série 
$$\sum_{n\geq 1} \left( \int_0^{+\infty} |f_n(x)| \mathrm{d}x \right)$$
.

## PROBLEME.

Toutes les fonctions étudiées dans ce problème sont à valeurs réelles. On pourra identifier un polynôme et la fonction polynomiale associée.

On rappelle le théorème d'approximation de Weierstrass pour une fonction continue sur [a,b]: si f est une fonction continue sur [a,b], il existe une suite de fonctions polynômes  $(P_n)$  qui converge uniformément vers la fonction f sur [a,b].

Le problème aborde un certain nombre de situations en lien avec ce théorème qui sera démontré dans la dernière partie.

# Partie 1. Exemples et contre-exemples

**III.1.** Soit *h* la fonction définie sur l'intervalle 
$$]0,1]$$
 par :  $\forall x \in ]0,1]$ ,  $x \mapsto \frac{1}{x}$ .

Expliquer pourquoi h ne peut être uniformément approchée sur l'intervalle ]0,1] par une suite de fonctions polynômes. Analyser ce résultat par rapport au théorème de Weierstrass.

**III.2.** Soit N entier naturel non nul, on note  $\mathscr{P}_N$  l'espace vectoriel des fonctions polynômiales sur [a,b], de degré inférieur ou égal à N. Justifier que  $\mathscr{P}_N$  est une partie fermée de l'espace des applications continues de [a,b] dans  $\mathbb{R}$  muni de la norme de la convergence uniforme.

Que peut-on dire d'une fonction qui est limite uniforme sur [a,b] d'une suite de polynômes de degré inférieur ou égal à un entier donné?

III.3. Cette question illustre la dépendance d'une limite vis-à-vis de la norme choisie.

Soit  $\mathbb{R}[X]$  l'espace vectoriel des polynômes à coefficients réels. Soient  $N_1$  et  $N_2$  deux applications définies sur  $\mathbb{R}[X]$  ainsi :

pour tout polynôme 
$$P$$
 de  $\mathbb{R}[X]$ ,  $N_1(P) = \sup_{x \in [-2, -1]} |P(x)|$  et  $N_2(P) = \sup_{x \in [1, 2]} |P(x)|$ .

**III.3.a.** Vérifier que  $N_1$  est une norme sur  $\mathbb{R}[X]$ . On admettra que  $N_2$  en est également une.

**III.3.b.** On note f la fonction définie sur l'intervalle [-2,2] ainsi :

pour tout 
$$x \in [-2, -1]$$
,  $f(x) = x^2$ , pour tout  $x \in [-1, 1]$ ,  $f(x) = 1$  et pour tout  $x \in [1, 2]$ ,  $f(x) = x^3$ .

Représenter graphiquement la fonction f sur l'intervalle [-2,2] et justifier l'existence d'une suite de fonctions polynômes  $(P_n)$  qui converge uniformément vers la fonction f sur [-2,2].

2/4

Démontrer que cette suite de polynômes  $(P_n)$  converge dans  $\mathbb{R}[X]$  muni de la norme  $N_1$  vers  $X^2$  et étudier sa convergence dans  $\mathbb{R}[X]$  muni de la norme  $N_2$ .

# Partie 2. Application : un théorème des moments

**III.4.** Soit f une fonction continue sur [a,b]. On suppose que pour tout entier naturel k,  $\int_a^b x^k f(x) dx = 0 \qquad \left( \int_a^b x^k f(x) dx \text{ est le moment d'ordre } k \text{ de } f \text{ sur } [a,b] \right).$ 

**III.4.a.** Si *P* est une fonction polynôme, que vaut l'intégrale 
$$\int_a^b P(x)f(x)dx$$
?

**III.4.b.** Démontrer, en utilisant le théorème de Weierstrass, que nécessairement f est la fonction nulle. On pourra utiliser sans le démontrer le résultat suivant : si  $(g_n)$  est une suite de fonctions qui converge uniformément vers une fonction g sur une partie I de  $\mathbb{R}$  et si f est une fonction bornée sur I, alors la suite de fonctions  $(f,g_n)$  converge uniformément sur I vers la fonction f,g.

## III.5. Application

Soit E l'espace vectoriel des applications continues de [a,b] dans  $\mathbb R$  muni du produit scalaire défini pour tout couple (f,g) d'éléments de E par  $(f|g)=\int_a^b f(x)g(x)\mathrm{d}x$ .

On note F le sous-espace vectoriel de E formé des fonctions polynômes définies sur [a,b] et  $F^{\perp}$  l'orthogonal de F. Déterminer  $F^{\perp}$ . A-t-on  $E = F \oplus F^{\perp}$ ?

#### **III.6.**

**III.6.a.** Pour tout entier naturel n, on pose  $I_n = \int_0^{+\infty} x^n e^{-(1-i)x} \, dx$ . Après avoir démontré l'existence de ces intégrales, établir une relation entre  $I_{n+1}$  et  $I_n$  et démontrer que, pour tout n non nul,  $I_n = \frac{n!}{(1-i)^{n+1}}$ .

**III.6.b.** En déduire que, pour tout entier naturel 
$$k$$
,  $\int_0^{+\infty} x^{4k} e^{-x} x^3 \sin x \, dx = 0$ .

**III.6.c.** Proposer une fonction f continue sur  $[0, +\infty[$ , non nulle et vérifiant : pour tout entier naturel k,  $\int_0^{+\infty} u^k f(u) du = 0$ .

**III.6.d.** Expliquer pourquoi la fonction f proposée à la question précédente ne peut être uniformément approchée sur  $[0, +\infty[$  par une suite de polynômes.

# Partie 3. Exemple via un théorème de Dini

#### III.7. Question préliminaire

Soit  $x \in [0,1]$ , on note  $I = ]-\infty, \sqrt{x}]$  et on pose, pour tout  $t \in I$ ,  $g_x(t) = t + \frac{1}{2}(x - t^2)$ . On définit la suite  $(u_n)$  par  $u_0 = 0$  et la relation de récurrence valable pour tout entier naturel n par :

$$u_{n+1} = u_n + \frac{1}{2} \left( x - (u_n)^2 \right) = g_x(u_n).$$

Démontrer que la suite  $(u_n)$  converge et déterminer, en fonction du réel x, sa limite.

III.8. Proposer un exemple de suite  $(f_n)$  de fonctions continues sur [a,b] qui converge simplement mais non uniformément sur [a,b] vers une fonction f qui est continue. Il sera possible de s'appuyer sur une représentation graphique sans nécessairement donner  $f_n$  sous forme analytique.

Pour traiter la suite de cette partie, on pourra admettre le résultat suivant. Soit  $(f_n)$  une suite de fonctions continues sur [a,b] qui converge simplement vers une fonction f elle même continue sur [a,b]. Si la suite  $(f_n)$  est croissante, c'est-à-dire: pour tout entier naturel n et pour tout  $t \in [a,b]$ ,  $f_n(t) \le f_{n+1}(t)$ , alors la suite  $(f_n)$  converge uniformément vers la fonction f sur [a,b].

# III.9. Application

Soit  $(P_n)$  la suite de fonctions polynômes définie par :

$$P_0(x) = 0$$
 et pour tout entier naturel  $n$ ,  $P_{n+1}(x) = P_n(x) + \frac{1}{2}\left(x - (P_n(x))^2\right)$ .

**III.9.a.** Justifier que la suite  $(P_n)$  converge simplement vers la fonction  $x \mapsto \sqrt{x}$  sur l'intervalle [0,1].

**III.9.b.** Démontrer que la suite  $(P_n)$  converge uniformément vers la fonction  $x \mapsto \sqrt{x}$  sur l'intervalle [0,1].

# Partie 4. Démonstration du théorème d'approximation de Weierstrass

On propose dans cette partie une démonstration probabiliste du théorème d'approximation de Weierstrass pour une fonction continue sur [0,1].

Dans toute cette partie,  $f:[0,1] \to \mathbb{R}$  est une fonction continue, n un entier naturel non nul et  $x \in [0,1]$ . On pose:  $B_n(f)(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$  (polynôme de Bernstein).

**III.10.** Soit  $S_n$  une variable aléatoire réelle suivant une loi binomiale  $\mathcal{B}(n,x)$ .

**III.10.a.** Démontrer que, pour tout réel 
$$\alpha > 0$$
,  $P(|S_n - nx| > n\alpha) \le \frac{1}{4n\alpha^2}$ .

**III.10.b.** Soit la variable aléatoire  $f\left(\frac{S_n}{n}\right)$ , démontrer que son espérance vérifie :  $E\left[f\left(\frac{S_n}{n}\right)\right] = B_n(f)(x)$ .

## III.11.

**III.11.a.** Soit  $\varepsilon > 0$ , justifier simplement qu'il existe  $\alpha > 0$  tel que pour tout couple  $(a,b) \in [0,1]^2$ ,  $|a-b| \le \alpha$  entraı̂ne  $|f(a)-f(b)| < \varepsilon$ , puis majorer  $|f(\frac{k}{n})-f(x)|$ , pour tout entier k entre 0 et n vérifiant  $\left|\frac{k}{n}-x\right| \le \alpha$ .

**III.11.b.** Justifier que 
$$\left| \sum_{\left| \frac{k}{n} - x \right| > \alpha} \left( f\left(\frac{k}{n}\right) - f(x) \right) P(S_n = k) \right| \le 2 \|f\|_{\infty} P\left( \left| \frac{S_n}{n} - x \right| > \alpha \right).$$

**III.11.c.** Démontrer qu'il existe un entier naturel  $n_0$  tel que pour tout  $n \ge n_0$  et tout réel  $x \in [0,1]$ ,  $|B_n(f)(x) - f(x)| \le 2\varepsilon$ , puis conclure.

#### Fin de l'énoncé