COMP4680/COMP8650: Advanced Topics in Machine Learning

Assignment #2: Convex Sets and Convex Functions

Due: 11:55pm on Friday 19 August, 2022.

Submit solutions (with working) as a single PDF file or Jupyter notebook via Wattle. Don't forget to include your name and student ID at the top of the submitted solutions.

THIS IS A HURDLE ASSESSMENT—YOU MUST PASS THIS ASSESSMENT TO PASS THE COURSE.

- 1. Norm Balls (10 marks). Consider the set $B_p = \{x \in \mathbb{R}^n \mid ||x a||_p \le 1\}$ for fixed $a \in \mathbb{R}^n$ and $p \ge 1$.
 - (a) Show that for n = 1 the set B_p defines a line segment and that the line segment is the same for any p. Give the end-points of the line segment in terms of a.
 - (b) Show that for $p = \infty$ the set B_p defines an intersection of half-spaces. List the half-spaces.
 - (c) Prove that B_p is a convex set.
- 2. Polyhedron (10 marks). Consider the polyhedron in \mathbb{R}^2 defined as the convex hull over the following set of points

$$\{(-4,2), (1,-3), (2,4), (5,7), (-2,-1), (0,3)\}.$$

Express the polyhedron in the form $Ax \leq b$. Is your solution unique?

- 3. Convex Sets (15 marks). Show that the following sets can be written as the intersection of half-spaces and then argue that they are all convex sets.
 - (a) A slab, i.e., a set of the form $\{x \in \mathbb{R}^n \mid \alpha \leq a^T x \leq \beta\}$.
 - (b) A wedge, i.e., a set of the form $\{x \in \mathbb{R}^n \mid a_1^T x \leq b_1, a_2^T x \leq b_2\}$.
 - (c) A disk, i.e., a set of the form $\{x \in \mathbb{R}^2 \mid ||x||_2 \le 1\}$.

Which of the following sets are also convex and why?

(d) The set of points closer to a given point than a given set, i.e.,

$$\{x \mid ||x - x_0||_2 \le ||x - y||_2 \text{ for all } y \in S\},\$$

where $S \subseteq \mathbb{R}^n$.

(e) The set of points closer to one set than another, i.e.,

$$\{x \mid \mathbf{dist}(x, S) \leq \mathbf{dist}(x, T)\},\$$

where $S, T \subseteq \mathbb{R}^n$, and

$$dist(x, S) = \inf\{||x - z||_2 \mid z \in S\}$$

- (f) The set $\{x \mid x + S_2 \subseteq S_1\}$, where $S_1, S_2 \subseteq \mathbb{R}^n$ with S_1 convex.
- (g) The set of points whose distance to a does not exceed a fixed fraction θ of the distance to b, i.e., the set $\{x \mid \|x-a\|_2 \le \theta \|x-b\|_2\}$. You can assume $a \ne b$ and $0 \le \theta \le 1$.
- 4. Sets of Probability Distributions (15 marks). Let x be a real-valued random variable that takes on finitely many values, with $\operatorname{prob}(x=a_i)=p_i$ for $i=1,\ldots n$, where $a_1 < a_2 < \ldots < a_n$. Of course $p \in \mathbb{R}^n$ lies in the standard probability simplex $\Delta = \{p \mid \mathbf{1}^T p = 1, p \succeq 0\}$. Which of the following conditions are convex in p? (That is, for which of the following conditions is the set of $p \in \Delta$ that satisfy the condition a convex set?) Justify your answer.
 - (a) $\alpha \leq \mathbf{E}x \leq \beta$, where $\mathbf{E}x$ is the expected value of x, i.e., $\mathbf{E}x = \sum_{i=1}^{n} p_i a_i$.
 - (b) $\operatorname{prob}(x \ge \alpha) \le \beta$.
 - (c) $\mathbf{E}x^2 \leq \alpha$.
 - (d) $\mathbf{var}(x) \leq \alpha$, where $\mathbf{var}(x) = \mathbf{E}(x \mathbf{E}x)^2$ is the variance of x.
 - (e) $\operatorname{median}(x) \leq \beta$, where $\operatorname{median}(x)$ is the value m such that $\operatorname{prob}(x \geq m) \geq \frac{1}{2}$ and $\operatorname{prob}(x \leq m) \geq \frac{1}{2}$.
- 5. Saddle Points (10 marks). We say the function $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is convex-concave if f(x, z) is a concave function of z, for each fixed x, and a convex function of x, for each fixed z. We also require its domain to have the product form $\operatorname{dom} f = A \times B$ where $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^m$ are convex.
 - (a) Give a second-order condition for a twice differentiable function $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ to be convex-concave, in terms of its Hessian $\nabla^2 f(x,z)$.
 - (b) Suppose that $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is convex-concave and differentiable, with $\nabla f(\tilde{x}, \tilde{z}) = 0$. Show that the saddle-point property holds: for all x, z, we have

$$f(\tilde{x}, z) \le f(\tilde{x}, \tilde{z}) \le f(x, \tilde{z})$$

Hint: Think of first- and second-order conditions for optimality.

- (c) With f defined as above, consider the function $g(z)=\inf_x f(x,z)$. Argue that $\sup_z g(z)\geq g(\tilde{z})$ and so $\sup_z \inf_x f(x,z)\geq f(\tilde{x},\tilde{z})$.
- (d) Likewise, consider the function $h(x) = \sup_z f(x, z)$. Argue that $\inf_x h(x) \leq h(\tilde{x})$ and so $\inf_x \sup_z f(x, z) \leq f(\tilde{x}, \tilde{z})$.
- (e) Prove that $\sup_z g(z) \leq \inf_x h(x)$.
- (f) Use the results from above to show that f satisfies the strong max-min property:

$$\sup_{z} \inf_{x} f(x, z) = \inf_{x} \sup_{z} f(x, z)$$

and that their common value is $f(\tilde{x}, \tilde{z})$.

- 6. Quasiconvexity (20 marks). For each of the following functions determine whether it is convex, concave, quasiconvex, or quasiconcave.
 - (a) $f(x) = e^x 1$ on \mathbb{R} .
 - (b) $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_+ .
 - (c) $f(x_1, x_2) = x_1^2/x_2$ on $\mathbb{R} \times \mathbb{R}_{++}$.
 - (d) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 < \alpha < 1$, on \mathbb{R}^2_{++} .
- 7. Conjugate Functions (15 marks). Derive the conjugates of the following functions:
 - (a) Max function. $f(x) = \max_{i=1,...,n} x_i$ on \mathbb{R}^n .
 - (b) Sum of largest elements. $f(x) = \sum_{i=1}^{r} x_{[i]}$ on \mathbb{R}^n .
 - (c) Negative geometric mean. $f(x) = -\left(\prod_{i=1}^{n} x_i\right)^{1/n}$ on \mathbb{R}^n_{++} .

8. **Optimisation (5 marks).** Solve the following optimisation problem over $x \in \mathbb{R}^2$,

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}x^TPx + q^Tx + r \\ \text{subject to} & a^Tx = b \end{array}$$

where
$$P = I$$
, $q = (-1,0)$, $r = 5$, $a = (1,-2)$ and $b = 1$.

How does your solution change if we add a further constraint that $x\succeq \mathbf{1}$?