Lecture 18: Numerical Linear Algebra (UMA021): Interpolation

Dr. Meenu Rani

Department of Mathematics TIET, Patiala Punjab-India

Newton Forward Difference Formula

Newton Forward Difference Formula:

$$P_n(x) = f(x_0) + \sum_{k=1}^n {s \choose k} \triangle^k f(x_0)$$
, where $x_2 = x_0 + sh$.

Newton Backward Difference Formula

Newton Backward Difference Formula:

$$P_n(x) = f(x_n) + \sum_{k=1}^n (-1)^k \binom{s}{k} \nabla^k f(x_n)$$
, where $x_k = x_n + sh$.

840

Example:

Given the following data, estimate f(1.83), f(3.5) using Newton forward and backward difference interpolating polynomial:

	No	74	a/2	2/3	Key	
X		3	5	7	9	h= 2
f(x)	0	1.10	1.61	1.95	2.20	ny = 1.83

Solution:
$$\frac{2}{\sqrt{83}} = \frac{26 + 8h}{1 + 8(2)} = 1 + 8(2)$$

$$\int_{S} = 0.415$$

$$f(xi) \qquad \Delta f(xi) = \nabla f(xi+1)$$

$$D^{2}f(nc)$$
 $0.51-1.10 = -0.59$

= Office;

$$\frac{8!}{(8-1)!} = \frac{8!}{(1-1)!} = \frac{1}{(1-1)!} = \frac$$

Using Newton brokenand Difference to find
$$f(3.5)$$
 $x_3 = 3.5$
 $3.5 = x_4 + 3h$
 $3.5 = 9 + 8(1)$
 $3.5 - 9 = 23$
 $8 = -3.75 \rightarrow -ne$

N.S.D. fermula is

 $f_4(x_3) = f_4(3.5) = f(x_4) + \sum_{k=1}^{4} (-1)^k {\binom{-3}{k}} \nabla^k f(x_4)$
 $= f(x_4) - {\binom{-3}{1}} \nabla^k f(x_4)$
 $+ {\binom{-3}{4}} \nabla^k f(x_4)$

$$= 2.20 - \left(2.75\right)(0.25) + \left(2.75\right)(-0.09) - \left(2.75\right)(0.08) + \left(2.75\right)(-0.34) = ?$$

Example:

For a function f, the forward-divided-differences are given by

	= 30/7					
	$f(x_0)=?$		$\triangle^2 f(x_0) = \frac{50}{7}$			
$x_1 = 0.4$	$-4 \circ f(x_1) = ? \left(\triangle f(x_1) \right)$	$(1) = 10^{-1}$				
$x_2 = 0.4$	$f(x_2)=6$					

Determine the missing entries in the table.

$$0^{2}f(n_{0}) = 0f(n_{1}) - 0f(n_{0}) = \frac{50}{7}$$

$$10 - 0f(n_{0}) = \frac{50}{7}$$

$$0f(n_{0}) = 10 - \frac{50}{7} = \frac{20}{7}$$

$$f = f(x) = f(x) - f(x)$$

$$10 = 6 - f(x) = f(x) = -y$$

$$\frac{20}{7} = f(n_1) - f(n_0) \\
 -4 - f(n_0) \\
 -(\frac{20}{7} + 4) = f(n_0)$$

An

Exercise:

1 Construct the interpolating polynomial that fits the following data using Newton's forward and backward difference interpolation. Hence find the values of f(x) at x = 0.15 and 0.45.

~							
X	0	0.1	0.2	0.3	0.4	0.5	
f(x)	-1.5	-1.27	-0.98	-0.63	-0.22	0.25	

The following data are given for a polynomial P(x) of unknown degree.

X	0	1	2	3	4	5	6	17	L
f(x)	4	9	15	18	-	-	-	, ~	

Determine the coefficient of x^3 in P(x) if all fourth-order forward differences are 1.

of flai) Dfin) Ofine) Ofini) offini) f(ni) 6 3 10 O 0 fluo) + \(\frac{\x}{\x} \) \(\frac{\x}{\x}{\x} \) \(\frac{\x}{\x} \) \(\frac{\x}{\x} \) \(\frac{\x}{\ (| Ns) =

Exercise:

3 Suppose that $f(x) = \cos x$ to be approximated on [0, 1] by an interpolating polynomial on n+1 equally spaced points. What step size h ensure that linear interpolation gives an absolute error of at most 10^{-6} for all $x \in [0, 1]$.