May 26, 2014

Abstract

1

The subset U_k mentioned in last lemma, has more specific properties. In the following lemma, we use U_k to build a matrix.

Lemma 1. For each $k \ge 1$, suppose U_k is the subset of S_k mentioned in the last lemma, and construct a matrix UG_k in the following way:

• the element $b_i^{2^k}$ of the set U_k is the ith row of GH_k .

Then, this matrix has the following properties:

- The order of GH_k is k to 2^k ;
- All 2^k columns of GH_k are distinct;

Proof. For each k, consider the matrix UG_k . Since U_k has k elements which are the rows of UG_k , and since each element of U_k has 2^k components, the order of GH_k is k to 2^k . Now, suppose UC_k is the set of culomns of UG_k ; i.e.,

$$UC_k = \{u_i^{2^k}; u_i^{2^k} \text{ is the ith column of } UG_k\}$$

We want to prove $u_r^{2^k} = [(u_r^{2^k})_j]$ and $u_s^{2^k} = [(u_s^{2^k})_j]$ are distinct if $r \neq s$, where $1 \leq r \neq s \leq 2^k$, and $1 \leq j \leq k$. Toward a contradiction, suppose $r \neq s$ but $u_r^{2^k} = u_s^{2^k}$. Since $u_r^{2^k} = u_s^{2^k}$, then $(u_r^{2^k})_j = (u_s^{2^k})_j$ for each $1 \leq j \leq k$. We have $(u_r^{2^k})_k = (u_s^{2^k})_k$ implies $1 \leq r$, $s \leq 2^{k-1}$ or $2^{k-1} + 1 \leq r$, $s \leq 2^k$. With out loss of generality, suppose $1 \leq r$, $s \leq 2^{k-1}$.

Next, we have $(u_r^{2^k})_{k-1} = (u_s^{2^k})_{k-1}$ implies $1 \le r$, $s \le 2^{k-2}$ or $2^{k-2} + 1 \le r$, $s \le 2^{k-1}$. With out loss of generality, suppose $1 \le r$, $s \le 2^{k-2}$. If we continue in this way, we have last step as follow:

• Since $(u_r^{2^k})_1 = (u_s^{2^k})_1$, we have $1 \le r$, $s \le 2^{k-k} = 1$.

This is a contradiction because we suppose $r \neq s$; so, $u_r^{2^k} \neq u_s^{2^k}$. Hence, all columns of GH_k are distinct.

Now, consider the following lemma which is about the set UC_k mentioned in the last lemma.

Lemma 2. For each $k \ge 1$, the set UC_k , the set of culomns of UG_k , is an elementary abelian group of order 2^k under componentwise multiplication.

Proof. For each $k \ge 1$, from lemma 10, the rows of H_{2^k} can be permuted so that the i^{th} row of H_{2^k}' is $b_i^{2^k}$. Then the matrix UG_k is a submatrix of H_k' ; i.e., the matrix UG_k form the first k rows of H_{2^k}' . By remark 7, the columns of H_{2^k} form an elementary abelian group under componentwise multiplication. Therefore, the columns of H_{2^k}' also form an elementary abelian group under componentwise multiplication. This implies that UC_k is an elementary group under componentwise multiplication. By previous lemma, the order of this group is 2^k .

In the following lemma, we prove the existence of an isomorphism between S_k and UC_k .

Lemma 3. For each $k \ge 1$, there is an isomorphism Φ from S_k to UC_k defined as follow.

•
$$\Phi(a_i^{2^k}) = u_i^{2^k}$$
, where $1 \le i \le 2^k$.

Proof. For each $k \ge 1$, since the matrix UG_k forms the first k rows of H'_{2^k} , we can map each column of UG_k to each column of H'_{2^k} , in the natrual way. Hence, if

$$S'_{k} = \{a_{i}^{'2^{k}} : a_{i}^{'2^{k}} \text{ is the ith row of } H'_{2^{k}}, \text{ for each } 1 \leq i \leq 2^{k}\},$$

then let σ from S'_k to UC_k be the following mapping:

$$\sigma(a_i^{'2^k}) = u_i^{'2^k}, \ for \ each \ 1 \le i \le 2^k.$$

By considering the componentwise multiplication, this is an isomorphism. To complete the proof, we need the isomorphism σ from S_k to S'_k defined as follow:

$$\phi(a_i^{2^k}) = a_i'^{2^k}, \text{ for each } 1 \le i \le 2^k.$$

Indeed, σ is an isomorphism. Since H_{2^k} is symmetric, the set S_K can be consider as the set of columns of H_{2^k} as well, and σ can be considered as a permutation of the components of each $a_i^{2^k}$. Since the multiplication is componentwise, σ prevers the operations, and it is an isomorphism.