Enseignant·e·s: Blanche Buet, Dominique Hulin et Thomas Letendre.

Feuille 7 – Transformation de Fourier au sens des distributions

Exercice 1 (Convergence dans S' et D'). Soit $(T_n)_{n\in\mathbb{N}}$ une suite à valeurs dans $S'(\mathbb{R}^d)$ telle que $T_n \xrightarrow[n \to +\infty]{D'} 0$. Est-ce que $(T_n)_{n\in\mathbb{N}}$ converge dans $S'(\mathbb{R}^d)$ en général?

Exercice 2 (Propriétés fonctionnelles de \mathcal{F} dans $\mathcal{S}'(\mathbb{R}^d)$). Soient $a \in \mathbb{R}^d$ et $\lambda > 0$, on rappelle que pour tout $\varphi \in \mathcal{S}(\mathbb{R}^d)$ on a défini $\tau_a \varphi : x \mapsto \varphi(x-a)$ et $\varphi_\lambda : x \mapsto \varphi(\lambda x)$, et pour tout $T \in \mathcal{S}'(\mathbb{R}^d)$, on a défini $\tau_a T : \varphi \mapsto \langle T, \tau_{-a} \varphi \rangle$ et $\operatorname{dil}_{\lambda} T : \varphi \mapsto \frac{1}{\lambda^d} \langle T, \varphi_{\frac{1}{\lambda}} \rangle$. On note aussi $e_a : \xi \mapsto e^{ia \cdot \xi}$.

Soit $T \in \mathcal{S}'(\mathbb{R}^d)$, exprimer les distributions tempérées suivantes en fonction de \widehat{T} .

- 1. $\mathcal{F}(\partial^{\alpha}T)$, où $\alpha \in \mathbb{N}^d$.
- 2. $\mathcal{F}(X^{\alpha}T)$, où $\alpha \in \mathbb{N}^d$.
- 3. $\mathcal{F}(\tau_a T)$.
- 4. $\mathcal{F}(e_aT)$.
- 5. $\mathcal{F}(\operatorname{dil}_{\lambda} T)$.

Exercice 3 (Transformation de Fourier dans S', calculs élémentaires). Justifier que les distributions suivantes sont tempérées et calculer leurs transformées de Fourier.

- 1. $\partial^{\alpha} \delta_a$ pour tout $\alpha \in \mathbb{N}^d$ et $a \in \mathbb{R}^d$.
- 2. $\cos : \mathbb{R} \to \mathbb{R}$.
- 3. $f = \mathbf{1}_{[-1,1]}$, la fonction indicatrice de [-1,1].
- 4. (facultatif) $g_{ab} = \mathbf{1}_{[a,b]}$, la fonction indicatrice de [a,b], où $-\infty < a < b < +\infty$.

Exercice 4 (Parité et transformée de Fourier). Rappellons que $\check{\varphi}: x \mapsto \varphi(-x)$ pour tout $\varphi: \mathbb{R}^d \to \mathbb{C}$ et $\check{T}: \varphi \mapsto \langle T, \check{\varphi} \rangle$ pour tout $T \in \mathcal{D}'(\mathbb{R}^d)$. On dit que T est paire si $\check{T} = T$ et impaire si $\check{T} = -T$.

- 1. Montrer que $\delta_0 \in \mathcal{D}'(\mathbb{R})$ est paire et que $\operatorname{vp}\left(\frac{1}{x}\right) \in \mathcal{D}'(\mathbb{R})$ est impaire.
- 2. Soit $\varphi \in \mathcal{S}(\mathbb{R}^d)$, montrer que $\check{\widehat{\varphi}} = \hat{\check{\varphi}}$.
- 3. Soit $S \in \mathcal{S}'(\mathbb{R}^d)$, montrer que $\dot{\hat{S}} = \hat{\check{S}}$.

Exercice 5 (Transformation de Fourier dans S', calculs moins élémentaires). On note $H = \mathbf{1}_{[0,+\infty[}$ la fonction de Heaviside et S la fonction signe, définie par S(x) = -1 si x < 0 et S(x) = 1 si $x \ge 0$.

- 1. Justifier que S définit une distribution tempérée sur $\mathbb R$ et montrer que $x\widehat S=-2i.$
- 2. En déduire que $\widehat{S} = -2i \operatorname{vp}\left(\frac{1}{x}\right)$.

 Indication. Montrer que $\widehat{S} + 2i \operatorname{vp}\left(\frac{1}{x}\right)$ est un multiple de δ_0 et utiliser un argument de parité.
- 3. Calculer \widehat{H} dans $\mathcal{S}'(\mathbb{R})$.
- 4. Justifier que $\operatorname{vp}\left(\frac{1}{x}\right) \in \mathcal{S}'(\mathbb{R})$ et calculer sa transformée de Fourier.

Exercice 6 (Transformée de Fourier des distributions de \mathcal{E}' , analyticité). Soient $T \in \mathcal{E}'(\mathbb{R}) \subset \mathcal{S}'(\mathbb{R})$ et R > 0 tel que $\sup(T) \subset]-R$, R[. Soit $\chi \in \mathcal{D}(\mathbb{R})$ tel que $\chi \equiv 1$ sur [-R, R] et $\sup(\chi) \subset [-2R, 2R]$. On rappelle que \widehat{T} est continue sur \mathbb{R} et que $\widehat{T}(\xi) = \langle T, e_{-\xi} \rangle = \langle T, \chi e_{-\xi} \rangle$ pour tout $\xi \in \mathbb{R}$.

- 1. Soit $\xi \in \mathbb{R}$, pour tout $k \in \mathbb{N}$ on note $f_k : x \mapsto (-i\xi)^k \chi(x) \frac{x^k}{k!}$. Pour tout $p \in \mathbb{N}$, montrer que $\sum_{k \geq 0} f_k^{(p)}$ converge normalement sur \mathbb{R} .
- 2. En déduire que $\sum_{k=0}^{n} f_k \xrightarrow[n \to +\infty]{\mathcal{D}} \chi e_{-\xi}$.
- 3. Montrer que \hat{T} est la somme sur \mathbb{R} d'une série entière de rayon de convergence infini.

Définition. Soit $f \in \mathcal{C}^{\infty}(\mathbb{R}^d)$, on dit que la fonction f est à croissance lente si pour tout $\alpha \in \mathbb{N}^d$ il existe $C \geqslant 0$ et $k \in \mathbb{N}$ tels que $|\partial^{\alpha} f(x)| \leqslant C \langle x \rangle^k$ pour tout $x \in \mathbb{R}^d$, où on a noté $\langle x \rangle = \left(1 + \|x\|^2\right)^{\frac{1}{2}}$. On note $\mathcal{O}_M(\mathbb{R}^d)$ le sous-espace de $\mathcal{C}^{\infty}(\mathbb{R}^d)$ formé par les fonctions à croissance lente.

Exercice 7 (Produit de \mathcal{S}' par \mathcal{O}_M). Dans cet exercice, on prouve les énoncés du cours affirmant que $\mathcal{S}(\mathbb{R}^d)$ et $\mathcal{S}'(\mathbb{R}^d)$ sont stables par multiplication par un élément de $\mathcal{O}_M(\mathbb{R}^d)$.

- 1. Soient $\rho \in \mathcal{O}_M(\mathbb{R}^d)$ et $p \in \mathbb{N}$, montrer qu'il existe $C \geqslant 0$ et $q \geqslant p$ tels que $N_p(\rho \varphi) \leqslant CN_q(\varphi)$ pour tout $\varphi \in \mathcal{S}(\mathbb{R}^d)$.
- 2. Soient $T \in \mathcal{S}'(\mathbb{R}^d)$ et $\rho \in \mathcal{O}_M(\mathbb{R}^d)$, montrer que la forme linéaire sur $\mathcal{S}(\mathbb{R}^d)$ définie par $\varphi \mapsto \langle T, \rho \varphi \rangle$ est une distribution tempérée. On la notera $\rho T \in \mathcal{S}'(\mathbb{R}^d)$.

Exercice 8 (Transformation de Fourier et convolution dans S'). Dans cet exercice on s'intéresse aux interactions entre transformation de Fourier et convolution.

- 1. Soient $\rho \in \mathcal{S}(\mathbb{R}^d)$ et $p \in \mathbb{N}$, montrer qu'il existe C > 0 tel que $\forall \varphi \in \mathcal{S}(\mathbb{R}^d)$, $N_p(\varphi * \rho) \leqslant CN_p(\varphi)$.
- 2. Soient φ et $\rho \in \mathcal{S}(\mathbb{R}^d)$, montrer que $\varphi * \rho \in \mathcal{S}(\mathbb{R}^d)$ et que $\widehat{\varphi * \rho} = \widehat{\varphi}$ $\widehat{\rho}$.
- 3. Soient $S \in \mathcal{E}'(\mathbb{R}^d)$ et $\rho \in \mathcal{S}(\mathbb{R}^d)$, montrer que $S * \rho \in \mathcal{S}'(\mathbb{R}^d) \cap \mathcal{C}^{\infty}(\mathbb{R}^d)$ et que, pour tout $\varphi \in \mathcal{S}(\mathbb{R}^d)$, on a $\langle S * \rho, \varphi \rangle = \langle S, \check{\rho} * \varphi \rangle$.
- 4. Montrer que $\widehat{S*\rho} = \widehat{S}\widehat{\rho}$ et en déduire qu'en fait $S*\rho \in \mathcal{S}(\mathbb{R}^d)$.
- 5. Soient $S \in \mathcal{E}'(\mathbb{R}^d)$ et $p \in \mathbb{N}$, montrer qu'il existe $C \geqslant 0$ et $q \geqslant p$ tels que $N_p(S * \varphi) \leqslant CN_q(\varphi)$ pour tout $\varphi \in \mathcal{S}(\mathbb{R}^d)$.

Indication. Utiliser les questions précédentes et la continuité de $\mathcal{F}: \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$.

- 6. Soient $T \in \mathcal{S}'(\mathbb{R}^d)$ et $S \in \mathcal{E}'(\mathbb{R}^d)$, montrer que $T * S \in \mathcal{S}'(\mathbb{R}^d)$ et que $\langle T * S, \varphi \rangle = \langle T, \check{S} * \varphi \rangle$ pour tout $\varphi \in \mathcal{S}(\mathbb{R}^d)$.
- 7. Montrer que $\widehat{T*S} = \widehat{S}\widehat{T}$.

Exercice 9 (Distributions tempérées harmoniques). Soit $T \in \mathcal{D}'(\mathbb{R}^d)$ harmonique et bornée, montrer que T est constante.

Exercice 10 (Fonctions propres du laplacien). Dans cet exercice, on s'intéresse aux solutions de l'équation $\Delta T + \lambda T = 0$, où $\lambda \in \mathbb{C}$ et $T \in \mathcal{S}'(\mathbb{R}^d)$ est l'inconnue.

- 1. Soient $\lambda \in \mathbb{C}$ et $T \in \mathcal{S}'(\mathbb{R}^d)$ telle que $\Delta T + \lambda T = 0$, montrer que $T \in \mathcal{C}^{\infty}(\mathbb{R}^d)$.
- 2. Pour quels $\lambda \in \mathbb{C}$ existe-t-il $T \in \mathcal{S}'(\mathbb{R}^d)$ non nulle telle que $\Delta T + \lambda T = 0$.