

Kurs:Mathematik für Anwender/Teil I/39/Klausur

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \sum

Punkte 3323514240 4 3 0 4 0 4 5 1 4 52

 \equiv Inhaltsverzeichnis \vee

Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

1. Eine surjektive Abbildung

$$f:L\longrightarrow M.$$

2. Eine Folge reeller Zahlen.

- 3. Das *Cauchy-Produkt* zu zwei Reihen $\sum_{i=0}^{\infty} a_i$ und $\sum_{j=0}^{\infty} b_j$ reeller Zahlen.
- 4. Der Differenzenquotient zu einer Funktion $f:\mathbb{R} \to \mathbb{R}$ in einem Punkt $a \in \mathbb{R}$.
- 5. Die Integralfunktion zum Startpunkt $a \in I$ zu einer Riemann-integrierbaren Funktion $f{:}I \longrightarrow \mathbb{R}$

auf einem reellen Intervall $I\subseteq \mathbb{R}$.

6. Ein Eigenwert zu einer linearen Abbildung

$$\varphi : V \longrightarrow V$$

auf einem K-Vektorraum V.

Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Die Produktregel für reelle Folgen.
- 2. Der zweite Mittelwertsatz der Differentialrechnung.
- 3. Der Satz über Zeilenrang und Spaltenrang.

Aufgabe * (2 Punkte)

Finde einen möglichst einfachen aussagenlogischen Ausdruck, der die folgende tabellarisch dargestellte Wahrheitsfunktion ergibt.

p q r?

WWWW

wwf f

wf ww

wf f f

f ww f

f wf w

ffwf

fffw

Aufgabe (3 Punkte)

Erläutere das Prinzip Beweis durch Fallunterscheidung.

Aufgabe * (5 (3+2) Punkte)

Es seien M_1, \dots, M_k und N_1, \dots, N_k nichtleere Mengen und

$$arphi_i {:} M_i \longrightarrow N_i$$

Abbildungen für $i=1,\ldots,k$. Es sei $M=M_1 imes\cdots imes M_k$, $N=N_1 imes\cdots imes N_k$, und arphi die Produktabbildung, also

$$arphi \colon M \longrightarrow N, \, (x_1, \dots, x_k) \longmapsto (arphi_1(x_1), \dots, arphi_k(x_k)).$$

- a) Zeige, dass arphi genau dann surjektiv ist, wenn alle $arphi_i$ surjektiv sind.
- b) Zeige, dass a) nicht gelten muss, wenn die beteiligten Mengen leer sein dürfen.

Aufgabe * (1 Punkt)

Finde eine natürliche Zahl n derart, dass

$$\left(rac{8}{7}
ight)^n \geq 1000$$

ist.

Aufgabe * (4 Punkte)

Bestimme die ganzzahligen Lösungen $x \neq 0$ der Ungleichung

$$\frac{\frac{3}{x}}{\frac{-7}{4}} > -1.$$

Aufgabe * (2 Punkte)

Berechne

$$\left(rac{2}{5}-rac{3}{7}\sqrt{3}
ight)\cdot\left(rac{1}{4}-rac{2}{3}\sqrt{3}
ight).$$

Aufgabe * (4 Punkte)

Beweise den Satz, dass der Limes einer konvergenten Folge in $\mathbb R$ eindeutig bestimmt ist.

Aufgabe (0 Punkte)

Aufgabe * (4 Punkte)

Die beiden lokalen Extrema der Funktion

$$f(x) = x^3 - 6x^2 + 9x + 1$$

definieren ein achsenparalleles Rechteck, das vom Funktionsgraphen in zwei Bereiche zerlegt wird. Bestimme deren Flächeninhalte.

Aufgabe * (3 Punkte)

Bestimme die Ableitung der Sinus- und der Kosinusfunktion über ihre Potenzreihen (Satz 16.1 (Mathematik für Anwender (Osnabrück 2019-2020))).

Aufgabe (0 Punkte)

Aufgabe * (4 Punkte)

Zeige, dass für $x\in\mathbb{R}$, $x\geq 1$, die Gleichheit

$$\mathrm{arcosh}\;x=\ln\left(x+\sqrt{x^2-1}
ight)$$

gilt.

Aufgabe (0 Punkte)

Aufgabe * (4 Punkte)

Beweise das Eliminationslemma für ein inhomogenes lineares Gleichungssystem in $m{n}$ Variablen über einem Körper $m{K}$.

Aufgabe * (5 Punkte)

Es sei K ein Körper und es seien V und W Vektorräume über K der Dimension n bzw. m. Es sei

$$\varphi:V\longrightarrow W$$

eine lineare Abbildung, die bezüglich zweier Basen durch die Matrix $M \in \operatorname{Mat}_{m \times n}(K)$ beschrieben werde. Zeige, dass φ genau dann injektiv ist, wenn die Spalten der Matrix linear unabhängig in K^m sind.

Aufgabe * (1 Punkt)

Es seien $m{A}$ und $m{B}$ quadratische Matrizen über einem Körper $m{K}$. Zeige

$$\det\left(A\circ B\right)=\det\left(B\circ A\right)\,.$$

Aufgabe * (4 Punkte)

Beweise den Satz über die Beziehung zwischen geometrischer und algebraischer Vielfachheit.

Zuletzt bearbeitet vor einem Monat von Bocardodarapti

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 亿, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht