Topic 8: Vector Algebra

(a) Physical Significance of Dot product

$$\overrightarrow{A}.\overrightarrow{B}=|\overrightarrow{A}||\overrightarrow{B}|cos\theta$$
 $\overrightarrow{A}.\overrightarrow{B} o$ Projection of \overrightarrow{A} on \overrightarrow{B}

Note: $\vec{A} \cdot \vec{B} = 0$ represents that, \vec{A} and \vec{B} are perpendicular to each other.

(b) Physical Significance of Cross product

$$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin\theta \hat{n}$$

 $|\vec{a} \times \vec{b}| \rightarrow$ area of a parallelogram

<u>Note</u>: $\vec{a} \times \vec{b} = \vec{0}$ represents that, \vec{a} and \vec{b} are parallel to each other.

(c) Physical Significance of Box product

$$\left[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}\right] = \left| \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) \right|$$

 $\left[\overrightarrow{a}\ \overrightarrow{b}\ \overrightarrow{c}\right] \rightarrow \text{volume of a parallelepiped}$

(d) Triangle Law for Vectors

$$\vec{a} = \vec{b} + \vec{c}$$

Solved Problems

1. Show that the vectors $\vec{A}=3\hat{\imath}-2\hat{\jmath}+\hat{k}$, $\vec{B}=\hat{\imath}-3\hat{\jmath}+5\hat{k}$, $\vec{C}=2\hat{\imath}+\hat{\jmath}-4\hat{K}$ form a triangle. Determine whether ΔABC is right-angled or not.

Solution:

Given,

$$\vec{A} = 3\hat{\imath} - 2\hat{\jmath} + \hat{k}$$

$$\vec{B} = \hat{\imath} - 3\hat{\jmath} + 5\hat{k}$$

$$\vec{C} = 2\hat{\imath} + \hat{\jmath} - 4\hat{k}$$

1st part:

$$\vec{A} = \vec{B} + \vec{C}$$

$$\Rightarrow 3\hat{\imath} - 2\hat{\jmath} + \hat{k} = 3\hat{\imath} - 2\hat{\jmath} + \hat{k}$$

 \therefore The vectors \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} form a triangle .

2nd part:

$$\vec{A} \cdot \vec{B} = 14$$

$$\vec{B} \cdot \vec{C} = -21$$

$$\vec{C} \cdot \vec{A} = 0$$

So, $\triangle ABC$ is a right-angled triangle.

2. Find the area of the triangle having vertices at P(1, 3, 2), Q(2, -1, 1), R(-1, 2, 3).

Solution:

Now

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$$

$$= \hat{\imath} - 4\hat{\jmath} - \hat{k}$$

$$\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP}$$

$$= -2\hat{\imath} - \hat{\jmath} + \hat{k}$$

$$\therefore \overrightarrow{PQ} \times \overrightarrow{PR} = -5\hat{\imath} + \hat{\jmath} - 9\hat{k}$$

∴ Required area of the triangle

$$=\frac{1}{2} \times |\overrightarrow{PQ} \times \overrightarrow{PR}| = \sqrt{107}/2 \ unit^2$$

3. Determine a unit vector perpendicular to the plane of $\vec{A} = 2\hat{\imath} - 6\hat{\jmath} - 3\hat{k}$ and $\vec{B} = 4\hat{\imath} + 3\hat{\jmath} - \hat{k}$.

Solution:

$$|\vec{A} \times \vec{B}| = 15\hat{\imath} - 10\hat{\jmath} + 30\hat{k}$$
$$|\vec{A} \times \vec{B}| = 35$$

Required unit vector =
$$\frac{\vec{A} \times \vec{B}}{|\vec{A} \times \vec{B}|}$$

= $\frac{3}{7}\hat{\imath} - \frac{2}{7}\hat{\jmath} + \frac{6}{7}\hat{k}$

Homework Problems

- **1.** Find the volume of the parallelepiped whose edges are represented by $\vec{a}=2\hat{\imath}-3\hat{\jmath}+4\hat{k}$, $\vec{b}=\hat{\imath}+2\hat{\jmath}-\hat{k}$, $\vec{c}=3\hat{\imath}-\hat{\jmath}+2\hat{k}$.
- **2.** The position vectors of A, B, C and D are $2\hat{\imath} + 4\hat{k}$, $5\hat{\imath} + 3\sqrt{3}\hat{\jmath} + 4\hat{k}$, $-2\sqrt{3}\hat{\jmath} + \hat{k}$ and $2\hat{\imath} + \hat{k}$ respectively. Show that \overrightarrow{AB} and \overrightarrow{CD} are parallel and $CD = \frac{2}{3}AB$.
- **3.** Find the angles α , β , γ , which the vector $\vec{A}=3\hat{\imath}-6\hat{\jmath}+2\hat{k}$ makes with the coordinates axes and also show that $\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1$.
- **4.** If the position vectors of the three points A, B and C are (2, 4, -1), (1, 2, -3) and (3, 1, 2) respectively. Find a vector perpendicular to the plane ABC.