(INTRODUCTION)

- "Panel Data" or "Python Data Analysis"
- Used for analyzing, cleaning, exploring and manipulation of data
- It can work with CSV,Text,Json,Zip,etc Files.

Types of Data Structures:-

1. Series: 1D Labeled arrays pd.Series(data).

2. Dataframes : 2D data structures of colums just like tables.

3. Panel: 3D container of data.

Series 2

Apple

Series 1

For installation of pandas: -

Write command in cmd : pip install pandas

For importing pandas in python: import pandas as pd

Importance of Pandas:-

- **1.** Pandas allows us to analze big data and make connclusions based on statical theories.
- 2. Pandas can clean messy data set ,make them reliable and relevant.
- 3. Eassily handling of missing data (NaN) in floating as well as non-floating.
- **4.** Size Mutability: Can insert and delete data from dataframe and higher dimensional objects.
- **5.** Provide Data set merging and joining.

(DATA STRUCTURES)

Series(): It is defined as the 1Darray capable of storing various types of data.

```
import pandas as pd
                                 24
A = pd.Series(24)
                            dtype: int64
print(A)
import pandas as pd
                                 2
X = [1,2,3,4,5,6]
                             2
                                 3
                             3
A = pd.Series(X)
print(A)
print(type(A)) # <class 'pandas.core.series.Series'>
print(A[1])
                    2.
                 #
```

For Changing the index number

```
import pandas as pd
X = [1,2,3,4,5,6]
A = pd.Series(X,index=['a','b','c','d','e','f'])
print(A)
print( A['a'])
import pandas as pd
                                                      1.0
                                               b
                                                     2.0
X = [1,2]
                                               Name: ishu, dtype: float64
A =
pd.Series(X,index=['a','b'],dtype="float",name="ishu")
print(A)
                                                              [love, is, rem]
                                                     name
                                                     rank
                                                                    [3, 1, 2]
import pandas as pd
                                                     dtype: object
Dic = {"name":["love","is","rem"],"rank":[3,1,2]}
A = pd.Series(Dic)
print(A)
   name or rank can have more values .Here, the size of the of the list does not matter.
                                                                       Ishu Agrawal CA
```

```
import pandas as pd
A = pd.Series(24,index=['a','b'])
print(A)

a 24
b 24
dtype: int64
```

We can use direct operation without the use of broadcasting rule.

```
import pandas as pd
A = pd.Series(24,index=['a','b'])
B = pd.Series(3,index=['a','b','c'])
print(A+B)
```

a 27.0 b 27.0 c NaN dtype: float64

NaN : Not a Number

Here you can see it is working with the missing data.

(DataFrame)

2D Data Structure is the **DataFrame**. (Eiher List or Dictionary)

```
import pandas as pd

A = [1,2,3,4]

Var = pd.DataFrame(A)

print(Var)

0
1
2
3
4
```

print(type(Var)) # <class 'pandas.core.frame.DataFrame'>

```
import pandas as pd
D = {"a":[1,2,3],"b":[5,6,7]}
Var = pd.DataFrame(D)
print(Var)
print(type(Var))
```

```
a b
0 1 5
1 2 6
2 3 7
<class 'pandas.core.frame.DataFrame'>
```

- # Data must be of same length. In above you cannot put more than 2 element in a list.
- **#** Values passed in a dictionary must be in list or tuple

To get a particular column data . Eg:- We need the column named as "a" .

```
import pandas as pd
D = {"a":[1,2,3],"b":[5,6,7]}
Var = pd.DataFrame(D,columns=["a"])
print(Var)

a
0 1
1 2
2 3
```

```
import pandas as pd
D = {"a":[1,2],"b":[5,6],"c":[9,10]}
Var = pd.DataFrame(D,columns=["a","c"])
print(Var)
```


To get the value from a DataFrame.

```
import pandas as pd
D = {"a":[1,2],"b":[5,6],"c":[9,10]}
Var = pd.DataFrame(D,columns=["a","c"]) # It will take only "a" and "c" data.
print(Var["a"][0]) # 1
```

Note: we have to first specify the column then indexing of that data.

Convert a nested list into a DataFrame.

```
import pandas as pd
Ls = [[1,2,3],[4,5,6]]
Var = pd.DataFrame(Ls)
print(Var)

0 1 2
0 1 2 3
1 4 5 6
```

To convert series of data into DataFrame.

```
import pandas as pd
Sr = {"s1":pd.Series([1,2]),"s2":pd.Series([3,4])}
Var = pd.DataFrame(Sr)
print(Var)
```

```
51 52
0 1 3
1 2 4
```

(ARITHMETIC OPERATIONS)

Operations on columns.

```
import pandas as pd
Var = pd.DataFrame({"a":[1,2],"b":[3,4]})
print(Var["a"]+Var["b"])
```

```
import pandas as pd
Var = pd.DataFrame({"a":[1,2],"b":[3,4]})
Var["c"] = Var["a"]+Var["b"]
print(Var)
```


import pandas as pd
Var = pd.DataFrame({"a":[1,2],"b":[3,4]})

Var["c"] = Var["a"]-Var["b"]
print(Var)

import pandas as pd
Var = pd.DataFrame({"a":[1,2],"b":[3,4]})
Var["c"] = Var["a"]/Var["b"]
print(Var)

import pandas as pd

 $Var = pd.DataFrame(\{"a":[1,2],"b":[3,4]\})$

Ishu_Agrawal_ CA

(DELETE / INSERT)

INSERT

```
import pandas as pd
Var = pd.DataFrame( { "A" : [1,2,3,4,5], "B" : [6,7,8,9,10] } )
# Object.insert( index_of_place, define_name, data_to_insert )
Var.insert( 1 , "C", [3,4,6,2,6] )
# Remember : Length of data must be equal
print( Var )
```

For copying the limited amount of data from a column

```
import pandas as pd
Var = pd.DataFrame({ "A" : [1,2,3,4,5],"B" : [6,7,8,9,10] })
Var["C"] = Var["B"][1:3]
print( Var )
```


6

9

10

3

2

1

1 2

DELETE (pop,del)

```
import pandas as pd
Var = pd.DataFrame({ "A" : [1,2,3,4,5], "B" : [6,7,8,9,10] })
Var1=Var.pop("A")
                                                          2
print(Var1)
                                                      1
                                                                                 6
                                                      2
                                          2
                                              7
                                                                            1
                                                                                 7
print(Var)
                                                      3
                                         3
                                              8
                                             10
                                                     Name: A, dtype: int64
                                       Var(Before)
                                                                          Var ( After )
                                                             Var1
```

Similarly: If you want to use del and want to remove column A . So, Use del Var["A"]

Excel File: Excel File have Binary Coded data.

CSV File: CSV File have comma separated values as plain text.

(WRITING CSV FILE)

CSV format is a plain text format in which values are separated by commas.

How to write CSV File

Before writing a CSV file first create dataframe.

```
import pandas as pd
dic={"A":[1,2,3,4],"B":[6,7,9,0],"C":[4,2,6,2]}
d=pd.DataFrame(dic)
d.to_csv("Writingcsv.csv")
```


∃ Menu │ 🖯 🕞 👂 🖯 🗸 🗸

Here, you can see indexes are also present in the file so to remove this we can set index to False.

```
import pandas as pd
dic={"A":[1,2,3,4],"B":[6,7,9,0],"C":[4,2,6,2]}
d=pd.DataFrame(dic)
d.to_csv("newfile.csv",index=False)
```

For changing the header

```
\label{eq:continuous_series} \begin{array}{l} import\ pandas\ as\ pd\\ dic=\{"A":[1,2],"B":[6,7],"C":[4,2],"D":[6,3],"E":[4,6]\}\\ d=pd.DataFrame(dic)\\ d.to\_csv("file.csv",index=False,header=["Aryan","Ishu","Gourav","Adesh","Priyanshu"]) \end{array}
```


(READING CSV FILE)

import pandas as pd
csfile=pd.read_csv("file.csv")
print(csfile)

	Aryan	Ishu	Gourav	Adesh	Priyanshu
0	1	6	4	6	4
1	2	7	2	3	6

Download link : StudensPerformance.csv file

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv")
print(rdcsv)

	gender	race/ethnicity	y parental	level of education	 math score	reading score	writing score
0	female	group B	В	bachelor's degree	 72.0	72.0	74.8
1	female	group (С	some college	 NaN	90.0	88.6
2	female	group B	В	master's degree	 90.0	NaN	93.6
3	male	group A	A	associate's degree	 47.0	57.0	44.6
4	male	group (С	some college	 76.0	78.0	Nai
• •		**	ė		 		• •
995	female	group B	E	master's degree	 88.0	99.0	95.6
996	male	group (С	high school	 62.0	55.0	55.6
997	female	group (С	high school	 59.0	71.0	65.6
998	female	group [D	some college	 68.0	78.0	77.6
999	female	group [D	some college	 77.0	86.0	86.

see here it only give fist and last five record only.

To get the number of rows from starting

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv",nrows=6)
print(rdcsv)

```
gender race/ethnicity parental level of education ... math score reading score writing score
0 female group B bachelor's degree ...
1 female group C some college ...
                                                                         72.0
                                                                                          72.0
                                                                                                           74.0
                group C some college
group B master's degree
group A associate's degree
group C some college
group B associate's degree
                                                                                                           88.0
                                                                         NaN
                                                                                         90.0
2 female
                                                                         90.0
                                                                                          NaN
                                                                                                           93.0
3
                                                                         47.0
                                                                                          57.0
                                                                                                           44.0
    male
                                      associate's degree ...
                                                                         76.0
4
                                      some college ...
    male
                                                                                          78.0
                                                                                                            NaN
  female
                                                                         71.0
                                                                                          83.0
                                                                                                           78.0
[6 rows x 8 columns]
```

To get columns

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv",usecols=["math score","reading score"],nrows=3)
print(rdcsv)

Note: we can also use index instead of writing name of particular column.

Eg: For this we can use **usecols** = [5,6]

	math score	reading score
0	72.0	72.0
1	NaN	90.0
2	90.0	NaN

For skipping the Row/Rows

import pandas as pd

rdcsv=pd.read_csv("StudentsPerformance.csv",usecols=[5,6],nrows=3,skiprows=[2])
print(rdcsv)

math score reading score

	math	score	reading	score
0		72		72.0
1		90		NaN
2		47		57.0

To make a particular column as index

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv",index_col="gender",nrows=4)
print(rdcsv)

	race/ethnicit	y parental	level of education	lunch	ma	th score	reading score	writing score
gender								
female	group	В	bachelor's degree	standard		72.0	72.0	74
female	group	C	some college	standard		NaN	90.0	88
female	group	В	master's degree	standard		90.0	NaN	93
male	group	A	associate's degree	free/reduced		47.0	57.0	44

To make row as a Header

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv",nrows=4,header=2)
print(rdcsv)

	female	group C	some college	standard	Unnamed: 4	Unnamed: 5	90	88
0	female	group B	master's degree	standard	none	90	NaN	93.0
1	male	group A	associate's degree	free/reduced	none	47	57.0	44.0
2	male	group C	some college	standard	none	76	78.0	NaN
3	female	group B	associate's degree	standard	none	71	83.0	78.0

Ishu_Agrawal_ CA

To give name to header

import pandas as pd

rdcsv=pd.read_csv("StudentsPerformance.csv",nrows=4,names=["a","b","c","d","e","f","g"])
print(rdcsv)

	а	b	С	 e	f	g
gender	race/ethnicity	parental level of education	lunch	 math score	reading score	writing score
female	group B	bachelor's degree	standard	 72	72	74
female	group C	some college	standard	 NaN	90	88
female	group B	master's degree	standard	 90	NaN	93

Note: The names of columns must be unique.

To remove header

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv",nrows=4,header=None)
print(rdcsv)

```
0 gender race/ethnicity parental level of education ... math score reading score writing score
1 female
                group B
                           bachelor's degree ...
                                                              72
                group C
group B
2 female
                                      some college ...
                                                             NaN
                                                                            90
                                                                                          88
3 female
                                 master's degree ...
                                                              90
                                                                           NaN
                                                                                          93
[4 rows x 8 columns]
```

Note: When we remove header it will be replace by indexes of that particular column

You can change the type of a column by using dtype= {"column_name": "data_type"}

For adding something in adder before use rdcsv.add_prefix("a").

For adding something in adder before use rdcsv.add_suffix("ab").

		а6		a7
0	reading	score	writing	score
1		72		74
2		90		88
3		NaN		93
		6ab		7ab

		6ab		7ab
0	reading	score	writing	score
1		72		74
2		90		88
3		NaN		93

rdcsv.add_prefix("a")

rdcsv.add_suffix("ab")

(PANDAS FUCTION)

For printing index details: index

```
import pandas as pd
rdcsv = pd.read_csv("StudentsPerformance.csv",nrows=4)
print(rdcsv.index)
```

RangeIndex(start=0, stop=4, step=1)

For printing columns name: columns

```
import pandas as pd
rdcsv = pd.read_csv("StudentsPerformance.csv",nrows=4)
print(rdcsv.columns)
```

To find all the detail about data: describe()

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv")
print(rdcsv.describe())

	math score	reading score	writing score
count	999.000000	999.000000	999.000000
mean	66.086086	69.143143	68.047047
std	15.170395	14.584579	15.201677
min	0.000000	17.000000	10.000000
25%	57.000000	59.000000	57.500000
50%	66.000000	70.000000	69.000000
75%	77.000000	79.000000	79.000000
max	100.000000	100.000000	100.000000

If we use "nrows" then it will data according to those rows.

For getting records from data

```
print(rdcsv.head())  # give first 5 rows
print(rdcsv.head(2))  # give first 2 rows
print(rdcsv.tail())  # give last 5 rows
print(rdcsv.tail(3))  # give last 3 rows
print(rdcsv[2:5])  # give rows from index 2 to 4
```

To print Indexes as array

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv")
print(rdcsv.index.array)

```
<NumpyExtensionArray>
[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
   ...
  990, 991, 992, 993, 994, 995, 996, 997, 998, 999]
Length: 1000, dtype: int64
```

To covert All recors into array

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv")
print(rdcsv.to_numpy())

```
[['female' 'group B' "bachelor's degree" ... 72.0 72.0 74.0]
['female' 'group C' 'some college' ... nan 90.0 88.0]
['female' 'group B' "master's degree" ... 90.0 nan 93.0]
...
['female' 'group C' 'high school' ... 59.0 71.0 65.0]
['female' 'group D' 'some college' ... 68.0 78.0 77.0]
['female' 'group D' 'some college' ... 77.0 86.0 86.0]]
```

To sort data in ascending order

```
import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv",nrows=4)
print(rdcsv.sort_index(axis=0,ascending=False))
axis = 0 : according to row.
```

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44
2	female	group B	master's degree	standard	none	90.0	NaN	93
1	female	group C	some college	standard	NaN	NaN	90.0	88
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74

axis = 1: according to column.

Q.) Change the gender from female to make of the first record.

Ans) rdcsv["gender"][0]="male"

This particular statement will work and also though error but this is the wrong way to change the particular thing in in a record.

Correct way : rdcsv.loc[0,"gender"]="male"

For getting multiple column data using loc.

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv",nrows=4)
print(rdcsv.loc[[1,2],["gender","parental level of education"]])

```
gender parental level of education
1 female some college
2 female master's degree
```

For getting all the rows:

rdcsv.loc[:,["gender","parental level of education"]]

For getting all the rows and columns:

rdcsv.loc[:,:]

Use of iloc: To get a particular data

in this we pass index number only

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv",nrows=4)
print(rdcsv.iloc[0,0]) # female

For multiple rows and columns using iloc

rdcsv.iloc[[0,1],[0,2]])

Use Of drop: For skipping rows and columns

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv",nrows=4)
print(rdcsv.drop("gender",axis=1))

if axis is 1 then we can skip columns otherwise rows for 0

For skipping multiple column

rdcsv.drop(["gender","lunch"],axis=1)

For skipping a row

rdcsv.drop(1,axis=0)

• For skipping multiple rows

rdcsv.drop([0,2,3],axis=0)

Last one will give only one row as record because we have select nrows=4, if you try to drop 4 or greater than 4 index data then it will through error.

(HANDLING MISSING VALUES)

Use of dropna(): It will remove the whole record if any NaN value or empty spaces found in that particular record.

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv",nrows=4)
print(rdcsv.dropna())

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44

In this drop is done along rows.

import pandas as pd
rdcsv=pd.read_csv("StudentsPerformance.csv",nrows=4)
print(rdcsv.dropna(axis=1))

	gender	race/ethnicity	parental level of education	lunch	writing score
0	female	group B	bachelor's degree	standard	74
1	female	group C	some college	standard	88
2	female	group B	master's degree	standard	93
3	male	group A	associate's degree	free/reduced	44

In this drop is done along columns.

Use of how parameter in drop

● For removing those rows which have any NaN value

rdcsv.dropna(axis=0,how="any")

 For removing those rows which have all NaN value not those which have some record

rdcsv.dropna(axis=0,how="all")

Use of subset parameter in drop:

It will remove the NaN record of a particular columns.

import pandas as pd

rdcsv=pd.read_csv("StudentsPerformance.csv",nrows=4)
print(rdcsv.dropna(axis=0,subset=["math score"]))

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74
2	female	group B	master's degree	standard	none	90.0	NaN	93
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44

rdcsv.dropna(axis=0,subset=["math score","reading score"])

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44

rdcsv.dropna(axis=1,subset=1)

	gender	race/ethnicity	parental level of education	lunch	reading score	writing score
0	female	group B	bachelor's degree	standard	72.0	74
1	female	group C	some college	standard	90.0	88
2	female	group B	master's degree	standard	NaN	93
3	male	group A	associate's degree	free/reduced	57.0	44

rdcsv.dropna(axis=1,subset=[1,2])

	gender	race/ethnicity	parental level of education	lunch	writing score
0	female	group B	bachelor's degree	standard	74
1	female	group C	some college	standard	88
2	female	group B	master's degree	standard	93
3	male	group A	associate's degree	free/reduced	44

• **Use of inplace in dropna:** To remove null values and convert into a new database.

Eg: rdscv.dropna(inplace=True)

• Use of thresh in dropna: We can specify no. Of NaN values rows to remove.

Eg: rdscv.dropna(thresh=2)

Use of fillna()

import pandas as pd

rdcsv=pd.read_csv("StudentsPerformance.csv",nrows=4)

print(rdcsv.fillna("ishu"))

		•							
		gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
	0	female	group B	bachelor's degree	standard	none	72.0	72.0	74
	1	female	group C	some college	standard	ishu	ishu	90.0	88
l	2	female	group B	master's degree	standard	none	90.0	ishu	93
	3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44

• For filling specific values in columns

import pandas as pd

rdcsv=pd.read_csv("StudentsPerformance.csv",nrows=4)
print(rdcsv.fillna({"math score":45,"reading score":69}))

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74
1	female	group C	some college	standard	NaN	45.0	90.0	88
2	female	group B	master's degree	standard	none	90.0	69.0	93
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44

• For filling the data according to forward/backward data

rdcsv.fillna(method="ffill") # for forward filling

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74
1	female	group C	some college	standard	none	72.0	90.0	88
2	female	group B	master's degree	standard	none	90.0	90.0	93
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44

rdcsv.fillna(method="bfill") # for backward filling

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74
1	female	group C	some college	standard	none	90.0	90.0	88
2	female	group B	master's degree	standard	none	90.0	57.0	93
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44

rdcsv.fillna(method="ffill",axis=1)

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74
1	female	group C	some college	standard	none	72.0	90.0	88
2	female	group B	master's degree	standard	none	90.0	90.0	93
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44

rdcsv.fillna(method="bfill",axis=1)

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74
1	female	group C	some college	standard	90.0	90.0	90.0	88
2	female	group B	master's degree	standard	none	90.0	93	93
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44

rdcsv.fillna(method="bfill",axis=0)

				,				
	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74
1	female	group C	some college	standard	none	90.0	90.0	88
2	female	group B	master's degree	standard	none	90.0	57.0	93
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44

rdcsv.fillna(method="ffill",axis=0)

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74
1	female	group C	some college	standard	none	72.0	90.0	88
2	female	group B	master's degree	standard	none	90.0	90.0	93
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44

CLASS NOTES

```
import pandas as pd
a=pd.read csv("student.csv")
print(a.info()) # gives the information of that data with its column name
print(a.head()) # give first five record by default
print(a.head(7)) # give first seven record
print(a.tail()) # give last 5 records by default
print(a.tail(7)) # give last seven record
print(pd.options.display.max_rows)# give how many records will be visible
pd.options.display.max rows=13 # defining we can only display 10 records as specified
print(a.head().isnull()) # give the result in which it will replace NaN to True
print(a.loc[0]) # give the zeroth index column data
print(a.loc[[0,2]]) # give the zeroth and second index column data
print(a.loc[1:11]) # give the rows of data from 1 to 11 included
print(a['math score'].loc[[0,1]]) # give only math score on 0 and 1 indexes records
print(a[['gender', 'math score',]].loc[[0,1]]) # give gender and math score of 0 and 1
indexes records
b=a.fillna(99) # It will fill Nan value to 99 in which variable data is returned
print(b.head()) # Note: it will not affect the original data in a
# a.fillna(99,inplace=True) # It will affect the original data
# print(a.head())
print("msmean",a["math score"].mean(),type(a["math score"].mean())) # gives mean of math
score as float
print("msmedian",a["math score"].median(),type(a["math score"].median())) # gives median
of math score as float
print("msmode",a["math score"].mode(),type(a["math score"].mode())) # gives mode of math
score as series
a["math score"].fillna(a["math score"].mean(),inplace=True) # it will replace Nan value
to corresponding statical method
print(a.head())
a["math score"].fillna(a["math score"].mode()[0],inplace=True) # we have to replace
zeroth position in order to change mode of the data
print(a.head())
print(a.describe()) # gives all statical record
a.dropna(inplace=True) # drop all Nan valued record
print(a.head())
c=pd.DataFrame([[1,2,3],[4,5,6],[7,8,9]])
print(c)
print(c.agg("cumsum",axis=1)) # give cumsum value row-wise
print(c.agg("cumsum",axis=0)) # give cumsum value column-wise
print(c.agg("sum",axis=1))
print(c.agg("sum",axis=0))
```

