Roni Koskinen
Miten äly- ja urheilukellot suoriutuvat niille sunnitelluista tehtävistä
Tietotekniikan Template and manual for a thesis document class
3. huhtikuuta 2023

Jyväskylän yliopisto

Informaatioteknologian tiedekunta

Tekijä: Roni Koskinen

Yhteystiedot: rpkoskin@student.jyu.fi

Ohjaaja: Tytti Saksa

Työn nimi: Miten äly- ja urheilukellot suoriutuvat niille sunnitelluista tehtävistä

Title in English: LATEX-tutkielmapohjan gradu3 käyttö

Työ: Template and manual for a thesis document class

Opintosuunta: Mathematical Information Technology

Sivumäärä: 22+0

Tiivistelmä: tiivistelmä sama kuin eng abstract

Avainsanat: LATEX, gradu3, pro gradu -tutkielmat, kandidaatintutkielmat, käyttöohje

Abstract: Tiivistelmä in english

Keywords: LATEX, gradu3, Master's Theses, Bachelor's Theses, user's guide

Jyväskylä, 3. huhtikuuta 2023

The Author

Taulukot

Taulukko 1. Älykellojen sykemittauksen tarkkuuden korrelaatio elektrodiagrammin	
sykemittaukseen (Wang ym. 2017)	5
Taulukko 2. Apple Watch 3 ja Fitbit Charge 2 sykemittauksen ero EKG mittarin tulok-	
siin. Arvot kuvaavat Suhteellisen virheen keskimääräistä arvoa (MAPE). Lähde:	
Nelson ja Allen (2019)	6

Sisällys

1	JOH	HDANTO	
2		ETTAVAT TEKNOLOGIAT	
	2.1	Puettavan teknologian määritelmä	2
	2.2	Äly- ja urheilukellot	2
3		KELLOJEN MITTAUKSET	
	3.1	Syke	4
	3.2	Uni	7
	3.3	Paikanninjärjestelmä	8
	3.4	Korkeudenmittaus	9
		Askeleet	
	3.6	VO2 max	11
4	JOH	ITOPÄÄTÖKSET	12
LÄ	НТЕЕ'	Γ	13

1 Johdanto

Teknologian kehitys on johtanut liikunnan vähenemiseen ja vapaa-ajan aktiviteetit on korvautunut aktiviteetteihin, joissa liikunta on vähäistä (Petrusevski ym. 2021). Aktiivisuutta mittaavat laitteet ovat kuitenkin poikkeus. Aktiivisuutta mittaavaavien laitteiden kerrotaan edistävän terveellisempiä elämäntapoja, tekemällä aktiivisuusdatasta näkyvän, kerrotaan Shinin ym. artikkelissa (2015) (Shin, Cheon ja Jarrahi 2015). Puettavat teknologiat ovat yleistyneet viimeisen kymmenen vuoden aikana tavallisten kuntoilijoiden käyttöön, sillä teknologia on kehittynyt nopeasti. Teknologian nopea kehittyminen on tuonut hinnat alas, ja laitteiden fyysinen koko on pienentynyt, joten niiden käyttö ja hankkiminen on mahdollista suuremmalle joukolle ihmisiä. Teknologian kehittyminen on tehnyt laitteista aiempaa tarkempia ja parempia melkein kaikilla osa-alueilla. Niihin on myös kehitetty paljon uusia ominaisuuksia. Kellot muunmuassa seuraavat unta, mittaavat sykettä, mittaavat kuljettua matkaa sekä noustua korkeutta.

Kanditutkielmassani tutkitaan sitä, miten puettavat hyvinvointiteknologiat suoriutuvat ja soveltuvat siihen, mitä toimintoja ne on suunniteltu tekemään. Valitsin aiheen siksi, että puettavat teknologiat ovat mielestäni kiinnostavia. Käytän päivittäisessä elämässäni älykelloa, ja haluaisin tietää mitä tutkimukset kertovat siitä, miten hyvin nämä teknologiat soveltuvat ja suoriutuvat tarkoituksestaan hyvinvointia edistävinä laitteina.

Tutkimus tehdään kirjallisuuskatsauksena. Kirjallisuuskatsaus valittiin tutkimussuunnitelmaksi siksi, sillä puettavista teknologioista on tehty paljon tutkimusta. Tutkimusstrategia on myös soveltuva siksi, että aihe on laaja, ja siinä on yhdisteltävä useita eri lähteitä. Yhden tutkimuksen tekeminen aiheesta on käytännössä mahdotonta, sillä aihe sisältää tutkimuksia useista eri mittaustavoista ja mittaustilanteista.

2 Puettavat teknologiat

2.1 Puettavan teknologian määritelmä

Puettavat teknologiat tarkoittavat laitteita, jotka ovat suoraan suoraan tai irtonaisesti kiinni ihmisessä (Godfrey ym. 2018). Suoraan kiinni olevat laitteet ovat esimerkiksi uhreilukelloja ja Irtonaiset puettavat teknologiat tarkoittavat yleensä puhelimia (Godfrey ym. 2018). Puettavia teknologioita voi olla monessa eri muodossa, ne voivat olla esimerkiksi koruja, lisävarusteita, lääketieteellisiä laitteita, vaatteita tai vaatteisiin liitettäviä laitteita muodossa (Yasar 2022).

Puettavat teknologiat voidaan jakaa kahteen kategoriaan. Ensisijaisiin, eli laitteisiin jotka toimivat itsenäisesti ja yhdistävät muita laitteita toisiinsa (Godfrey ym. 2018). Tällaisia ovat esimerkiksi sykemittarit, puhelimet ja älysormukset. Toinen kategoria on toissijaiset, eli sellaiset laitteet jotka tarvitsevat toimiakseen ensisijasen laitteen, johon ne lähettävät dataa, nämä mittaavat jotain tiettyä arvoa. Tällaisia ovat esimerkiksi rinnan ympärillä puettava sykevyö (Godfrey ym. 2018)

2.2 Äly- ja urheilukellot

Älykellot ovat suosituin laite puettavien teknologioiden kategoriassa (Godfrey ym. 2018). Britannica tietosanakirjan artikkelissa älyjellojen tarkoittavan puhelimenkaltaisia laitteita, joita puetaan ranteessa (*Watch - Electric-powered and electronic watches* | *Britannica* 2023). Älykelloissa on myös yleensä joukko erilaisia antureita (Rawassizadeh, Price ja Petre 2014).

The free dictionary määrittelee urheilukellon tarkoittavan tietokonepohjaista älykelloa, joka on kestävästi valmistettu, vedenkestävä ja siinä on ominaisuuksia kuten sykemittari sekä muita urheiluun, liikkumiseen ja tervetyteen liittyviä seuranta ominaisuuksia. (*sports watch*,). Urheilukellojen ero älykelloon on siis se, että nämä ovat usein kestävämmin valmistettu, ja tarjoavat ensisijaisesti hyvinvoinnin ja urheilun seuraamiseen liittyviä ominaisuuksia. Erot

ovat siis pienet, ja esimerkiksi urheilukelloja valmistava Garmin käyttää sivuillaan kelloistaan "smart watch"termiä (*Garmin* 2023).

Hyvinvoinnin määritelmä lyhyesti.

3 Älykellojen mittaukset

Tässä luvussa käydään läpi älykellojen sykkeen, matkan pituuden, korkeuden, unen sekä askelmittaamisen tarkkuuksia. Älykellot suorittavat myös muita mittauksia, mutta niitä ei ole sisällytetty tähän tutkielmaan.

3.1 Syke

Sykkeen mittaamisen tarkkuuteen äly- ja urheilukelloissa löytyy eniten tutkimusta verrattuna muihin mitattaviin arvoihin. Sykkeen mittaamiseen käytetään pääosin kahta erilaista teknologista menetelmää. Ensimmäinen metodi on elektrokardiografia (EKG, eng. ECG), jossa mitataan sydämmen lyönnin synnyttämiä sähköaaltoja (*Heart Rate Monitors* 2023). Käytän tässä tutkielmassa jatkossa mittaustavasta lyhennettä EKG. Toinen metodi taas on fotopletysmografinen (Optinen, FPG, eng. PPG), jossa mitataan infrapunavaloa käyttäen valtimoiden supistumista ja laajenemista (*Heart Rate Monitors* 2023). Käytän tässä tutkielmassa jatkossa termiä optinen viitaten fotopletysmografiseen mittaukseen. Nelson ja Allen (2019) mukaan älykellojen valmistajat käyttävät omia patentoituja algoritmeja optisen sensorin signaalien kääntämiseksi syke arvoiksi. Tämä vaikuttaa myöskin siihen, miksi eri valmistajien kelloilla saattaa olla isojakin eroja sykemittauksen tarkkuudessa. Optisen mittauksen hyöty on myös, että valon avulla voidaan arvioida veren happipitoisuuden määrää (*Heart Rate Monitors* 2023). Tämä onkin ollut viimevuosina suosittu tutkimuksen kohde.

EKG mittaamista käytetään yleensä rinnan ympärillä puettavissa sykevöissä, kun taas optista tekniikkaa ranteesessa puettavissa laitteissa (*Heart Rate Monitors* 2023). Optisten sensoreiden tarkkuutta tutkiessa vertailukohtana käytetään usein Polarin EKG mittausta hyödyntäviä sykevöitä, sillä ne ovat todettu olevan hyvin lähellä lääketieteessä käytettävien elektrodiagrammin mittauksia, varsinkin alhaisen, keskisuuren ja jopa suuren harjoitteluintensiteetin aikana (Gilgen-Ammann, Schweizer ja Wyss 2019; Nelson ja Allen 2019).

Wang ym. (2017) tutkivat miten Polar H7 sykevyö, sekä neljä erilaisen älykellon sykemit-

taukset vertautuivat lääketieteessä käytettävään elektrodiagrammin sykemittaukseen. Osallistujien sykettä mitattiin elektrodiagrammin avulla siten, että heillä oli neljä johtoa kiinnitettyinä elektrodeihin jokaisessa raajassa. Polar H7 sykevyön sekä kaksi satunnaista älykelloa molemmissa ranteissa. Osallistujat juoksivat matolla 2, 3, 4, 5 ja 6 mailin nopeuksilla, jokaisella nopeudella kolmen minuutin ajan (Wang ym. 2017). Tutkimuksen mukaan laitteet korreloivat elektrodiagrammin mittauksiin seuraavan kaavion mukaisesti.

Polar H7	Apple Watch	Mio Fuse	Fitbit Charge HR	Basis Peak
.99 (.987991)	.91 (.884929)	.91 (.882929)	.84 (.791872)	.83 (.779865)

Taulukko 1. Älykellojen sykemittauksen tarkkuuden korrelaatio elektrodiagrammin sykemittaukseen (Wang ym. 2017)

Laitteet olivat levossa tarkempia kuin harjoittelun aikana (Wang ym. 2017). Tämän näkee kuviosta vertaamalla korrelaation ylärajaa sen alarajaan. Polar H7 sykevyön mittasi siis sykettä tutkimuksen mukaan hyvin tarkasti, korreloiden .99 elektrodiagrammin mittauksiin (Wang ym. 2017). Kuten taulukosta huomataan, kahden kellon mittausten korrelaatio oli keskimäärin jopa alle .85, joten niiden sykemittaukset eivät olleet kovin tarkkoja.

Nelson ja Allen (2019) tutkivat miten tarkasti Apple Watch 3, sekä Fitbit Charge 2 mittasivat sykettä jokapäiväisessä elämässä. Tutkimuksessa osallistuja pitivät kelloa 24 tunnin ajan ranteessaan eläen normaalia arkea, ja mittauksia verrattiin "Golden standard"EKG vertailulaitteen tuloksiin (Nelson ja Allen 2019). Tulokset on esitetty edellä olevassa taulukossa.

Aktiviteetti	Apple Watch 3	Fitbit Charge 2
24H keskiverto	5,86	5,96
Istuminen	7,21	6,93
Juoksu	3,01	9,88
Kävely	4,64	9,21
Nukkuminen	3,12	3,36

Taulukko 2. Apple Watch 3 ja Fitbit Charge 2 sykemittauksen ero EKG mittarin tuloksiin. Arvot kuvaavat Suhteellisen virheen keskimääräistä arvoa (MAPE). Lähde: Nelson ja Allen (2019)

Tulokset eroavat Wang ym. (2017) tutkimuksen tuloksiin siten, että Apple Watchin tarkkuus parani juostessa, verrattuna siihen mitä se oli istuessa. Wang ym. (2017) tutkimuksessa mittausten tarkkuus heikkeni intensiivisemmän harjoittelun aikana. Tämä voi johtua monesta eri syystä, sillä sykkeenmittauksen tarkkuuteen vaikuttaa yksilölliset tekijät (Koerber ym. 2022; Pasadyn ym. 2019; Hochstadt ym. 2020). Tutkimuksissa käytettiin myöskin eri laitteita. Apple Watch ja Apple Watch 3

Pasadyn ym. (2019) tutkivat neljän eri äly- sekä urheilukellon tarkkuutta juoksumatolla juosten kuudella eri nopeudella. Tässäkin tutkimuksessa tuloksia verrattiin Polar H7 sykevyön mittaustuloksiin. Tutkimukesssa Apple Watch 3:n korrelaatio ECG mittauksiin oli .96, Fitbit iconic, Garmin Vivosmart HR ja Tom Tom Spark 3 kellojen korrelaatio ECG tuloksiin oli sama .89 (Pasadyn ym. 2019). Apple Watch oli siis huomattavasti tarkempi kello sykkeen mittaukseen, kuin muut kellot joita tutkimuksessa käytettiin (Pasadyn ym. 2019). Tutkimuksen mukaan laitteiden sykeen mittaamisen tarkkuus laski harjoitteluintensiteetin noustessa (Pasadyn ym. 2019). Tämä tulos on yhtenäinen Wang ym. (2017) tutkimuksen kanssa.

On myös huomioitava, että sykkeen mittaukseen vaikuttaa erilaiset yksilölliset tekijät. Tällaisia eroja on todettu olevan esimerkiksi ihonvärin tummuus ja sukuopuoli (Shcherbina ym. 2017; Hochstadt ym. 2020.) Yksilöllisten tekijöiden vaikutuksesta on kuitenkin saa-

tu ristiriitaisia tutkimustuloksia (Pasadyn ym. 2019). Esimerkiksi Sañudo ym. 2019; Bent ym. 2020 mukaan ihonvärin tummuudella ei ollut merkittävää vaikutusta sykemittauksen tarkkuuteen.

Sykkeenmittauksen voidaan siis sanoa olevan suhteellisen tarkkaa. Tarkkuudessa on kuitenkin eroja laitteiden välillä, eikä laitteet kykene täysin tarkkoihin sykkeen mittauksiin (Pasadyn ym. 2019; Wang ym. 2017; Nelson ja Allen 2019.)

3.2 Uni

Riittävä unensaanti on tärkeä terveyden ja hyvinvoinnin ylläpitämiseksi. Unella on merkitystä niin fyysiseen kehitykseen, emootioiden hallintaan, kognitiiviseen suorituskykyyn ja muutenkin elämänlaatuun (Watson 2017). Urheilijat arvioivat unensa laatua ja kestoa heikosti (Watson 2017). Mahdollisuus unenmittaukseen on siis varsinkin urheilijoille tärkeä ominaisuus. Unen seurannan tarkkuutta tutkitaan vertaamalla tuloksia "gold standard"unenmittausmenetelmään eli polygrafiamittaukseen (PSG) (Zambotti ym. 2016; Rundo ja Downey 2019; Miller, Sargent ja Roach 2022)

Zambotti ym. (2016) mukaan Fitbit älykello yliarvioi unta keskimäärin 8 minuuttia pidemmäksi, aliarvioivat hereilläoloaikaa nukahtamisen jälkeen 5,6 minuuttia ja yliarvioivat unen tehokkuutta 1,8%. Fitbit kello tunnisti unen hyvin tarkasti (Zambotti ym. 2016). Kello ei kuitenkaan tunnistanut hereilläoloaikaa kovin tarkasti nukahtamisen jälkeen (Zambotti ym. 2016).

Liang ja Chapa Martell (2018) tutkivat Fitbit Charge 2 kellon unenseurannan tarkkutta ja saivat samankaltaisia tuloksia kuin Zambotti ym. (2016). Liang ja Chapa Martell (2018) mukaan Fitbit Charge 2 kello tunnisti unen keston ja unen tehokkuuden tarkasti. Hereillä olon tunnistaminen nukahtamisen jälkeen on kuitenkin epätarkkaa (Liang ja Chapa Martell 2018). Tämä tulos on yhtenäinen Zambotti ym. (2016) tutkimuksen tuloksien kanssa. Unen vaihdeiden, kuten kevyen, REM sekä syvän unen tunnistaminen oli kellolle myöskin haastavaa (Liang ja Chapa Martell 2018).

Chinoy ym. (2022) tutkimuksen mukaan Fitbit Inspire HR sekä Polar Vantage V Titanin unen seurannan tarkkuus oli samankaltainen edellisten tutkimustentulosten kanssa. Kellot mittasivat unen keston tarkasti, mutta hereilläoloajan mittaus nukahtamisen jälkeen oli epätarkkaa (Chinoy ym. 2022). Kellot arvioivat myöskin unenvaiheita epätarkasti (Chinoy ym. 2022).

Samanlaisia tuloksia siitä, että unen määrän mittaaminen on suhteellisen tarkkaa on saatu lukuisissa tutkimuksissa (Zambotti ym. 2016; Liang ja Chapa Martell 2018; Chinoy ym. 2022; Miller, Sargent ja Roach 2022). Voidaan siis luotettavasti todeta, että kellot suoriutuvat hyvin unen määrän mittauksesta. Voidaan myös todeta, että kellot eivät suoriudu tarkasti unen vaiheiden erottelusta (Chinoy ym. 2022; Zambotti ym. 2016; Liang ja Chapa Martell 2018).

3.3 Paikanninjärjestelmä

Niin ammatti kuin amatööri juoksijat nojautuvat pitkälti urheilukellon GNSS:n antamaan lukemaan juostun matkan pituudesta, ja urheilukellojen sijainnin tarkkuudesta on kuitenkin tehty vähän tieteellistä tutkimusta (Gilgen-Ammann, Schweizer ja Wyss 2020). GNSS mittaus on kuitenkin käytössä useassa lajissa, ja olisi tärkeä saada tietoa siitä, onko mittaukset luotettavia.

Aly- ja urheilukellot käyttävät sijainnin määrittämiseen Global navigation satellite system (GNSS) vastaanottimia (Gilgen-Ammann, Schweizer ja Wyss 2020). Sijaintimittausten avulla kello laskee urheilusuorituksen pituuden ja nopeuden. Jotkut kellot GNSS:ään lukeutuu Euroopan Galileo järjestelmä, Yhdysvaltojen Global Navigation System (GPS), Venäjän Glosnass sekä kiinan BeiDou satelliittipaikannusjärjestelmnät (Hofmann-Wellenhof, Lichtenegger ja Wasle 2007). Kelloissa on eroa siinä, mitä satelliittijärjestelmiä ne voivat käyttää (Ammann ym. 2016). Joissain tutkimuksissa puhutaan GPS paikantimen tarkkuudesta, toisissa GLOSNASS:ista, ja toisissa taas viitataan yleisesti GNSS:ään. Puhuttaessa GNSS:stä tai GPS:stä tarkoitetaan kuitenkin samaa älykellon paikannin sirua, ainostaan salliitit joihin yhdistetään muuttuvat.

GPS mittaamisen tarkkuuteen vaikuttaa lukuisia ulkopuolisia seikkoja. Tarkkuuteen vaikuttaa esimerkiksi laitteen päivitys frekvenssi. Mitä suurempi frekvenssi, sen tarkempi sensori on (Cummins ym. 2013). Tarkkuuteen vaikuttaa myös se, onko GPS sirun lähellä korkeita rakennuksia ja onko taivas selkeä (Baranski ja Strumillo 2012).

Gilgen-Ammann, Schweizer ja Wyss (2020) tutkivat Applen, Coroksen, Polarin ja Suunnon urheilukellojen GPS mittauksen tarkkuutta urheilusuorituksissa, jotka olivat piuudeltaan 400-4000 metriä. Lajeihin kuuluivat juoksu, kävely sekä pyöräily. Keskimäärin urheilukellojen GPS mittauksissa on noin 3-6% virhe (Gilgen-Ammann, Schweizer ja Wyss (2020).) Gilgen-Ammann, Schweizer ja Wyss (2020) mukaan urheilukellojen matkan pituuden mittaukset olivat kohtuullisia tai hyviä.

(Johansson ym. 2020) tutkivat urheilukellojen GPS:n tarkkuutta ultramaraton juoksuksissa. Juoksuretin pituus oli 56 kilometriä ja reitti sisälsi 800 nousumetriä (Johansson ym. 2020). GPS laitteiden tarkkuus oli tarkimmillaan $0.6\% \pm 0.3\%$ ja epätarkimmillaan $1.6\% \pm 0.9\%$ (Johansson ym. 2020). (Mediaani \pm IQR)(Kvartiiliväli, eng. Interquartile range) Johansson ym. (2020) mukaan urheilukellot ovat pätevä tapa mitata juostua matkaa.

Voidaan siis luotettavasti todeta, että äly- ja urheilukellot suoriutuvat hyvin juoksu, kävely sekä pyöräilysuoristen pituuden mittauksessa (Gilgen-Ammann, Schweizer ja Wyss 2020; Johansson ym. 2020). Koska kellot käyttävät nopeuden mittaamiseen paikanninjärjestelmän tuloksia, voidaan todeta kellojen suoriutuvan siitäkin hyvin.

3.4 Korkeudenmittaus

Noustut metrit treenin aikana on tärkeä osa urheilijan kokonais työmäärää, siksi älykellojen korkeuden mittaamisen tarkkuutta on hyvä tutkia (Ammann ym. 2016). Barometrien tarkkuudesta äly- tai urheilukelloissa on kuitenkin suppeasati tutkimusta. Äly- ja urheilukellot käyttävät korkeuden mittaamiseen barometristä sensoria tai GPS paikantimen antamaa informaatiota (Ammann ym. 2016). Barometrinen sensori arvioi korkeuden mittaamalla il-

manpainetta (Aroganam, Manivannan ja Harrison 2019). On myös mahdollista, että kello käyttää GPS:n ja barometrin kombinaatiota (Aroganam, Manivannan ja Harrison 2019). Tällä tavalla kello yrittää korjata barometrin mahdolliset ulkoisista asioista johtuvat mittausvirheet (Aroganam, Manivannan ja Harrison 2019).

Barometriä on aiemmin käytetty sään ennustamiseen (Manivannan ym. 2020). Barometrinen sensori onkin siis herkkä säätilojen muutoksille, jonka vuoksi sääolosuhteet tulee ottaa huomioon barometrin tarkkuutta tutkiessa (Manivannan ym. 2020; Ammann ym. 2016). Barometrin tarkkuuteen voi vaikuttaa myös ympäristö, korkeus ja sensorin tarkkuus (Manivannan ym. 2020, .)

f Ammann ym. (2016) tutkivat älykellojen korkeusmittauksen tarkkuutta erilaisilla juoksureiteillä. Reiti erosivat siinä, kuinka paljon niillä oli nousumetrejä (Ammann ym. 2016). Ensimmäinen reitti oli tasainen, toinen sellainen jossa nousua oli 90 metriä, ja kolmas reitti oli silmukka, jossa yhdellä kerralla oli nousua 30 metriä (Ammann ym. 2016, .). Tätä reittiä kutsuttiin "mäkiseksi reitiksi"Ammann ym. (2016) Testaamiseen käytettiin Garmin ForerunnerXT, Polar RS800XC, sekä Suunto Ambit2 urheilukelloja. Näistä kelloista Garmin ja Suunto käyttivät korkeuden mittaamiseen barometrin sekä GPS yhdistelmää. (Ammann ym. 2016, .) Kellojen kalibroitiin ennen jokaista testiä vastaamaan kyseistä korkeutta merenpinnan yläpuolella, jossa testaajat olivat (Ammann ym. 2016).

Tutkimuksen mukaan kellot aliarvioivat mäkisellä reitillä nousumetrejä alimmillaan 3,3% suurimmillaan 9,8%. Tasaisella reitillä mittaukset olivat suhteellisen tarkkoja. Mittaukset erosivat todellisiin nousumetreihin tasaisella reitillä alimmillaan 0,0% ja suurimmillaan 0,4%, joten mittaukset olivat todella tarkkoja tasaisella reitillä (Ammann ym. 2016). Ammann ym. (2016) totaa, että urheilukellot olivat melko tarkkoja nousumetrien mittaamisessa. Mittaukset eivät olleet kuitenkaan täysin tarkkoja, ja eri valmistajien kellojen välillä oli tarkkuus eroja (Ammann ym. 2016)

On myös otettava huomioon, että tutkimuksessa käytettävät kellot olivat julkaistu vuosina 2008, 2012 ja 2013. Tekniikka on voinut siis kehittyä tähän mennessä. Ammann ym. (2016)

ottivat tutkimuksessa huomioon ulkopuoliset vaikutukset mahdollisimman hyvin, mutta toteavat, että mittauksiin saattoi vaikuttaa esimerkiksi sääolosuhteiden muutos, tai gps signaalin vaihteleva vahvuus.

3.5 Askeleet

Aktiviteetit kuten käveleminen muodostaa suurimman osan terveydelle ja hyvinvoinnille suunnitelluista fyysisestä aktiviteetista (Gaz ym. 2018). Tämän vuoksi aktiivisuutta mittaavien laitteiden askelmittarin tarkkuus on tärkeä määrittää. Gaz ym. (2018) mukaan tutkimuksessa käytettyjen älykellojen askelmittarin tarkkuus oli kohtuullisen hyvä. Askeleiden mittaamisen tarkkuus vaihteli kuitenkin riippuen laitteesta ja kävelytilanteesta. Askelmittari oli tarkempi juoksumatolla, kuin maalla kävellessä (Gaz ym. (2018).)

Ahanathapillai ym. (2015) saivat samanlaisia tuloksia askelmittauksen tarkkuudesta Android älykelloissa, kuin Gaz ym. (2018). Ahanathapillai ym. (2015) mukaan Android käyttöjärjestelmää käyttävät älykellot askelmittaus oli tarkkaa. Normaalisti kävellessä älykellon keskimääräinen virhearvio oli 1,25%, kun älykellon päivitystaajus oli 50hz. Tarkkuus kuitenkin kärsi kävellessä portaissa tai päivitystaajuuden laskiessa (Ahanathapillai ym. (2015).)

Voidaan siis sanoa, että älykellojen tarkkuus mitata askeleita normaaleissa olosuhteissa on suhteellisen tarkka (Gaz ym. 2018; Ahanathapillai ym. 2015). On kuitenkin otettava huomioon, että mittareiden tarkkuudessa on eroja, jotka riippuvat olosuhteista ja älykellon mallista (Gaz ym. 2018).

3.6 **VO2** max

4 Johtopäätökset

Lähteet

Ahanathapillai, Vijayalakshmi, James D. Amor, Zoe Goodwin ja Christopher J. James. 2015. "Preliminary study on activity monitoring using an android smart-watch" [kielellä en]. _Eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1049/htl.2014.0091, *Healthcare Technology Letters* 2 (1): 34–39. ISSN: 2053-3713, viitattu 30. maaliskuuta 2023. https://doi.org/10.1049/htl.2014.0091.

Ammann, Rahel, Wolfgang Taube, Fabian Kummer ja Thomas Wyss. 2016. "Accuracy of elevation recording using sport watches while walking and running on hilly and flat terrain" [kielellä en]. Company: Springer Distributor: Springer Institution: Springer Label: Springer Number: 4 Publisher: Springer London, *Sports Engineering* 19, numero 4 (joulukuu): 283–287. ISSN: 1460-2687, viitattu 17. tammikuuta 2023. https://doi.org/10.1007/s12283-016-0207-9. https://link-springer-com.ezproxy.jyu.fi/article/10.1007/s12283-016-0207-9.

Aroganam, Gobinath, Nadarajah Manivannan ja David Harrison. 2019. "Review on wearable technology sensors used in consumer sport applications". *Sensors* 19 (9): 1983.

Baranski, Przemyslaw, ja Pawel Strumillo. 2012. "Enhancing Positioning Accuracy in Urban Terrain by Fusing Data from a GPS Receiver, Inertial Sensors, Stereo-Camera and Digital Maps for Pedestrian Navigation" [kielellä en]. Number: 6 Publisher: Molecular Diversity Preservation International, *Sensors* 12, numero 6 (kesäkuu): 6764–6801. ISSN: 1424-8220, viitattu 27. helmikuuta 2023. https://doi.org/10.3390/s120606764.

Bent, Brinnae, Benjamin A. Goldstein, Warren A. Kibbe ja Jessilyn P. Dunn. 2020. "Investigating sources of inaccuracy in wearable optical heart rate sensors" [kielellä en]. Number: 1 Publisher: Nature Publishing Group, *npj Digital Medicine* 3, numero 1 (helmikuu): 1–9. ISSN: 2398-6352, viitattu 31. maaliskuuta 2023. https://doi.org/10.1038/s41746-020-0226-6.

Chinoy, Evan D, Joseph A Cuellar, Jason T Jameson ja Rachel R Markwald. 2022. "Performance of Four Commercial Wearable Sleep-Tracking Devices Tested Under Unrestricted Conditions at Home in Healthy Young Adults". *Nature and Science of Sleep* 14 (maaliskuu): 493–516. ISSN: 1179-1608, viitattu 3. helmikuuta 2023. https://doi.org/10.2147/NSS. S348795.

Heart Rate Monitors: How They Work and Accuracy [kielellä en]. 2023. Read 28.2.2023. Viitattu 28. helmikuuta 2023. https://my.clevelandclinic.org/health/diagnostics/23429-heart-rate-monitor.

Cummins, Cloe, Rhonda Orr, Helen O'Connor ja Cameron West. 2013. "Global Positioning Systems (GPS) and Microtechnology Sensors in Team Sports: A Systematic Review" [kielellä en]. *Sports Medicine* 43, numero 10 (lokakuu): 1025–1042. ISSN: 1179-2035, viitattu 27. helmikuuta 2023. https://doi.org/10.1007/s40279-013-0069-2.

Garmin. 2023. Luettu 10-02-2023. Viitattu 10. helmikuuta 2023. https://www.garmin.com/en-US/c/wearables-smartwatches/.

Gaz, D.V., T.M. Rieck, N.W. Peterson, J.A. Ferguson, D.R. Schroeder, H.A. Dunfee, J.M. Henderzahs-Mason ja P.T. Hagen. 2018. "Determining the Validity and Accuracy of Multiple Activity-Tracking Devices in Controlled and Free-Walking Conditions" [kielellä English]. *American Journal of Health Promotion* 32 (8): 1671–1678. ISSN: 0890-1171. https://doi.org/10.1177/0890117118763273.

Gilgen-Ammann, Rahel, Theresa Schweizer ja Thomas Wyss. 2019. "RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise" [kielellä en]. *European Journal of Applied Physiology* 119, numero 7 (heinäkuu): 1525–1532. ISSN: 1439-6327, viitattu 9. maaliskuuta 2023. https://doi.org/10.1007/s00421-019-04142-5.

——. 2020. "Accuracy of Distance Recordings in Eight Positioning-Enabled Sport Watches: Instrument Validation Study". *JMIR mHealth and uHealth* 8, numero 6 (kesäkuu): e17118. ISSN: 2291-5222, viitattu 21. helmikuuta 2023. https://doi.org/10.2196/17118.

Godfrey, Alan, Victoria Hetherington, Hubert Shum, Paolo Bonato, NH Lovell ja Sam Stuart. 2018. "From A to Z: Wearable technology explained". *Maturitas* 113:40–47.

Hochstadt, Aviram, Ofer Havakuk, Ehud Chorin, Arie Lorin Schwartz, Ilan Merdler, Michal Laufer, Natan Lubman, Eihab Ghantous, Sami Viskin ja Raphael Rosso. 2020. "Continuous heart rhythm monitoring using mobile photoplethysmography in ambulatory patients" [kielellä en]. *Journal of Electrocardiology* 60 (toukokuu): 138–141. ISSN: 0022-0736, viitattu 30. maaliskuuta 2023. https://doi.org/10.1016/j.jelectrocard.2020.04.017.

Hofmann-Wellenhof, Bernhard, Herbert Lichtenegger ja Elmar Wasle. 2007. *GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more.* Springer Science & Business Media.

Johansson, Rebecca E, Steffen T Adolph, Jeroen Swart ja Mike I Lambert. 2020. "Accuracy of GPS sport watches in measuring distance in an ultramarathon running race" [kielellä en]. Publisher: SAGE Publications, *International Journal of Sports Science & Coaching* 15, numero 2 (huhtikuu): 212–219. ISSN: 1747-9541, viitattu 21. helmikuuta 2023. https://doi.org/10.1177/1747954119899880.

Koerber, Daniel, Shawn Khan, Tahmina Shamsheri, Abirami Kirubarajan ja Sangeeta Mehta. 2022. "Accuracy of Heart Rate Measurement with Wrist-Worn Wearable Devices in Various Skin Tones: a Systematic Review" [kielellä en]. Company: Springer Distributor: Springer Institution: Springer Label: Springer Publisher: Springer International Publishing, *Journal of Racial and Ethnic Health Disparities* (marraskuu): 1–9. ISSN: 2196-8837, viitattu 12. tammikuuta 2023. https://doi.org/10.1007/s40615-022-01446-9.

Liang, Zilu, ja Mario Alberto Chapa Martell. 2018. "Validity of consumer activity wristbands and wearable EEG for measuring overall sleep parameters and sleep structure in free-living conditions". *Journal of Healthcare Informatics Research* 2 (1-2): 152–178.

Manivannan, Ajaykumar, Wei Chien Benny Chin, Alain Barrat ja Roland Bouffanais. 2020. "On the Challenges and Potential of Using Barometric Sensors to Track Human Activity". *Sensors (Basel, Switzerland)* 20, numero 23 (marraskuu): 6786. ISSN: 1424-8220. https://doi.org/10.3390/s20236786.

Miller, Dean J., Charli Sargent ja Gregory D. Roach. 2022. "A Validation of Six Wearable Devices for Estimating Sleep, Heart Rate and Heart Rate Variability in Healthy Adults" [kielellä en]. Number: 16 Publisher: Multidisciplinary Digital Publishing Institute, *Sensors* 22, numero 16 (tammikuu): 6317. ISSN: 1424-8220, viitattu 25. maaliskuuta 2023. https://doi.org/10.3390/s22166317.

Nelson, Benjamin W., ja Nicholas B. Allen. 2019. "Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study" [kielellä EN]. Company: JMIR mHealth and uHealth Distributor: JMIR mHealth and uHealth Institution: JMIR mHealth and uHealth Label: JMIR mHealth and uHealth Publisher: JMIR Publications Inc., Toronto, Canada, *JMIR mHealth and uHealth* 7, numero 3 (maaliskuu): e10828. Viitattu 10. maaliskuuta 2023. https://doi.org/10.2196/10828.

Pasadyn, Selena R., Mohamad Soudan, Marc Gillinov, Penny Houghtaling, Dermot Phelan, Nicole Gillinov, Barbara Bittel ja Milind Y. Desai. 2019. "Accuracy of commercially available heart rate monitors in athletes: a prospective study". *Cardiovascular Diagnosis and Therapy* 9, numero 4 (elokuu): 379–385. ISSN: 2223-3652, viitattu 9. maaliskuuta 2023. https://doi.org/10.21037/cdt.2019.06.05.

Petrusevski, Celeste, Silvana Choo, Michael Wilson, Joy MacDermid ja Julie Richardson. 2021. "Interventions to address sedentary behaviour for older adults: a scoping review". Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/09638288.2020.1725156, *Disability and Rehabilitation* 43, numero 21 (lokakuu): 3090–3101. ISSN: 0963-8288, viitattu 20. helmikuuta 2023. https://doi.org/10.1080/09638288.2020.1725156.

Rawassizadeh, Reza, Blaine A. Price ja Marian Petre. 2014. "Wearables: has the age of smartwatches finally arrived?" *Communications of the ACM* 58, numero 1 (joulukuu): 45–47. ISSN: 0001-0782, viitattu 10. helmikuuta 2023. https://doi.org/10.1145/2629633.

Rundo, Jessica Vensel, ja Ralph Downey. 2019. "Chapter 25 - Polysomnography" [kielellä en]. Teoksessa *Handbook of Clinical Neurology*, toimittanut Kerry H. Levin ja Patrick Chauvel, 160:381–392. Clinical Neurophysiology: Basis and Technical Aspects. Elsevier, tammikuu. Viitattu 20. maaliskuuta 2023. https://doi.org/10.1016/B978-0-444-64032-1.00025-4.

Sañudo, Borja, Moisés De Hoyo, Alejandro Muñoz-López, John Perry ja Grant Abt. 2019. "Pilot Study Assessing the Influence of Skin Type on the Heart Rate Measurements Obtained by Photoplethysmography with the Apple Watch" [kielellä en]. *Journal of Medical Systems* 43, numero 7 (toukokuu): 195. ISSN: 1573-689X, viitattu 31. maaliskuuta 2023. https://doi.org/10.1007/s10916-019-1325-2.

Shcherbina, Anna, C. Mikael Mattsson, Daryl Waggott, Heidi Salisbury, Jeffrey W. Christle, Trevor Hastie, Matthew T. Wheeler ja Euan A. Ashley. 2017. "Accuracy in Wrist-Worn, Sensor-Based Measurements of Heart Rate and Energy Expenditure in a Diverse Cohort" [kielellä en]. Number: 2 Publisher: Multidisciplinary Digital Publishing Institute, *Journal of Personalized Medicine* 7, numero 2 (kesäkuu): 3. ISSN: 2075-4426, viitattu 30. maaliskuuta 2023. https://doi.org/10.3390/jpm7020003.

Shin, Grace, Eun Jeong Cheon ja Mohammad Hossein Jarrahi. 2015. "Understanding quantified-selfers' interplay between intrinsic and extrinsic motivation in the use of activity-tracking devices". *IConference* 2015 *Proceedings*.

sports watch. Luettu 10-02-2023. Viitattu 10. helmikuuta 2023. https://encyclopedia2.thefre edictionary.com/sports+watch.

Wang, Robert, Gordon Blackburn, Milind Desai, Dermot Phelan, Lauren Gillinov, Penny Houghtaling ja Marc Gillinov. 2017. "Accuracy of Wrist-Worn Heart Rate Monitors". *JAMA Cardiology* 2, numero 1 (tammikuu): 104–106. ISSN: 2380-6583, viitattu 28. helmikuuta 2023. https://doi.org/10.1001/jamacardio.2016.3340.

Watch - Electric-powered and electronic watches | *Britannica* [kielellä en]. 2023. Luettu 10-02-2023, tammikuu. Viitattu 10. helmikuuta 2023. https://www.britannica.com/technology/smartwatch.

Watson, Andrew M. 2017. "Sleep and Athletic Performance" [kielellä en-US]. *Current Sports Medicine Reports* 16, numero 6 (joulukuu): 413. ISSN: 1537-8918, viitattu 27. helmikuuta 2023. https://doi.org/10.1249/JSR.000000000000018.

Yasar. 2022. "What is Wearable Technology? Definition, Uses and Examples" [kielellä en]. Luettu: 10-02-2023. Viitattu 10. helmikuuta 2023. https://www.techtarget.com/searchmobil ecomputing/definition/wearable-technology.

Zambotti, Massimiliano de, Fiona C. Baker, Adrian R. Willoughby, Job G. Godino, David Wing, Kevin Patrick ja Ian M. Colrain. 2016. "Measures of sleep and cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents" [kielellä en]. *Physiology & Behavior* 158 (toukokuu): 143–149. ISSN: 0031-9384, viitattu 2. helmi-kuuta 2023. https://doi.org/10.1016/j.physbeh.2016.03.006.