

Steven Labalme

February 1, 2022

Contents

1	Differentiation	-
2	Differentiation II / Integration	4
Re	eferences	ç

1 Differentiation

From Rudin (1976).

Chapter 5

1. Let f be defined for all real x, and suppose that

$$|f(y) - f(x)| \le (y - x)^2$$

for all real x and y. Prove that f is constant.

Proof. To prove that f is constant, Theorem 5.11b tells us that it will suffice to show that f is differentiable on \mathbb{R} with derivative f'=0. Let $x\in\mathbb{R}$ be arbitrary. We want to show that for all $\epsilon>0$, there exists a δ such that if $y\in\mathbb{R}$ and $0<|y-x|<\delta$, then $|[f(y)-f(x)]/(y-x)-0|<\epsilon$. Let ϵ be arbitrary. Choose $\delta=\epsilon$. Then we have that

$$\left| \frac{f(y) - f(x)}{y - x} - 0 \right| = \frac{|f(y) - f(x)|}{|y - x|}$$

$$\leq \frac{(y - x)^2}{|y - x|}$$

$$\leq |y - x|$$

$$< \epsilon$$

as desired. \Box

2. Suppose f'(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b) and let g be its inverse function. Prove that g is differentiable, and that

$$g'(f(x)) = \frac{1}{f'(x)}$$

for a < x < b.

Proof. To prove that f is strictly increasing on (a,b), it will suffice to show that x < y implies f(x) < f(y) for all $x, y \in (a,b)$. Let $x,y \in (a,b)$ satisfy x < y. Since f is differentiable on (a,b), it is differentiable on $(x,y) \subset (a,b)$ and (by Theorem 5.2) continuous on $[x,y] \subset (a,b)$. Thus, by the MVT, there exists $c \in (x,y)$ such that

$$f(y) - f(x) = (y - x)f'(c)$$

But since x < y, y - x > 0. This combined with the fact that f'(c) > 0 by definition implies that (y - x)f'(c) > 0. Consequently,

$$f(x) < f(x) + (y - x)f'(c) = f(y)$$

as desired.

Since f is strictly increasing (and hence 1-1) on (a, b), we may construct a well-defined inverse function $g: f[(a, b)] \to (a, b)$ for it by

$$g(f(x)) = x$$

for all $f(x) \in f[(a,b)]$. It follows by the fact that f'(x) > 0 for all $x \in (a,b)$, the definitions of f'(x) and g'(f(x)), and Theorem 3.3d that

$$\frac{1}{f'(x)} = \frac{1}{\lim_{y \to x} \frac{f(y) - f(x)}{y - x}}$$

$$= \lim_{y \to x} \frac{1}{\frac{f(y) - f(x)}{y - x}}$$

$$= \lim_{y \to x} \frac{y - x}{f(y) - f(x)}$$

$$= \lim_{y \to x} \frac{g(f(y)) - g(f(x))}{f(y) - f(x)}$$

$$= g'(f(x))$$

as desired.

3. Suppose g is a real function on \mathbb{R}^1 , with bounded derivative (say $|g'| \leq M$). Fix $\epsilon > 0$ and define $f(x) = x + \epsilon g(x)$. Prove that f is one-to-one if ϵ is small enough. (A set of admissable values of ϵ can be determined which depends only on M.)

Proof. Neglecting the trivial case where M=0, take $\epsilon=1/2M$. It follows that

$$0 < 1 - \frac{1}{2}$$

$$= 1 + \frac{1}{2M} \cdot -M$$

$$\leq 1 + \epsilon g'(x)$$

$$= \frac{d}{dx}(x) + \frac{d}{dx}(\epsilon g)$$

$$= f'(x)$$

Therefore, by Problem 5.2, f is strictly increasing and, hence, one-to-one.

4. If

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0$$

where C_0, \ldots, C_n are real constants, prove that the equation

$$C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$$

has at least one real root between 0 and 1.

Proof. Consider the polynomial

$$f(x) = C_0 x + \frac{C_1}{2} x^2 + \dots + \frac{C_n}{n+1} x^{n+1}$$

We have that f(0) = 0 (by direct substitution) and f(1) = 0 (by the constraint on the coefficients). Thus, since f is continuous on [0,1] and differentiable on (0,1) (as a polynomial), we have by the MVT that there exists $x \in (0,1)$ such that

$$f(1) - f(0) = (1 - 0)f'(x)$$
$$f'(x) = 0$$
$$C_0 + C_1 x + \dots + C_{n-1} x^{n-1} + C_n x^n = 0$$

as desired. \Box

5. Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to +\infty$. Put g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to +\infty$.

Proof. To prove that $\lim_{x\to\infty}g(x)=0$, it will suffice to show that for every $\epsilon>0$, there exists N>0 such that if x>N, then $|g(x)-0|<\epsilon$. Let $\epsilon>0$ be arbitrary. Since $\lim_{x\to\infty}f'(x)=0$ by hypothesis, we know that there exists N>0 such that if x>N, then $|f'(x)|<\epsilon$. Choose this N to be our N. Let x>N be arbitrary. Applying the MVT to f on the interval [x,x+1] proves the existence of a c within that closed interval such that

$$f(x+1) - f(x) = f'(c)(x+1-x) = f'(c)$$

Additionally, since c > x > N, we have that $|f'(c)| < \epsilon$. Therefore, we have that

$$|g(x)| = |f(x+1) - f(x)|$$
$$= |f'(c)|$$
$$< \epsilon$$

as desired. \Box

2 Differentiation II / Integration

From Rudin (1976).

Chapter 5

8. Suppose f' is continuous on [a,b] and $\epsilon>0$. Prove that there exists $\delta>0$ such that

$$\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \epsilon$$

whenever $0 < |t-x| < \delta$, $a \le x \le b$, $a \le t \le b$. (This could be expressed by saying that f is **uniformly** differentiable on [a, b] if f' is continuous on [a, b].) Does this hold for vector-valued functions, too?

Proof. By Theorem 2.40, [a,b] is compact. This combined with the fact that f' is continuous implies by Theorem 4.19 that f' is uniformly continuous. Thus, there exists $\delta > 0$ such that if $x,y \in [a,b]$ and $|y-x| < \delta$, then $|f'(y) - f'(x)| < \epsilon$. Choose this δ to be our δ . Let $x,t \in [a,b]$ be such that $0 < |t-x| < \delta$. Then since f is continuous on $[t,x] \subset [a,b]$ and differentiable on $(t,x) \subset [a,b]$, we have by the MVT that there exists $c \in (t,x)$ such that

$$f(t) - f(x) = (t - x)f'(c)$$
$$\frac{f(t) - f(x)}{t - x} = f'(c)$$

Additionally, since t < c < x and $|t - x| < \delta$, we must have $|c - x| < \delta$, meaning that

$$\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| = |f'(c) - f'(x)| < \epsilon$$

as desired.

And yes, this does hold for vector-valued functions, which we can treat component-wise.

17. Suppose f is a real, three times differentiable function on [-1,1] such that

$$f(-1) = 0$$
 $f(0) = 0$ $f(1) = 1$ $f'(0) = 0$

Prove that $f^{(3)}(x) \geq 3$ for some $x \in (-1,1)$. Note that equality holds for $\frac{1}{2}(x^3 + x^2)$. (Hint: Use Theorem 5.15 with $\alpha = 0$ and $\beta = \pm 1$ to show that there exist $s \in (0,1)$ and $t \in (-1,0)$ such that $f^{(3)}(s) + f^{(3)}(t) = 6$.)

Proof. Since f is three times differentiable on [-1,1], we know that f'' is differentiable on [-1,1]. It follows by Theorem 5.2 that f'' is continuous on [-1,1]. Thus, since f is defined on [-1,1], $f \in \mathbb{N}$, f'' is continuous on [-1,1], $f^{(3)}$ is defined on (-1,1), $0,1 \in [-1,1]$ such that $0 \neq 1$, and we can define

$$P(t) = \sum_{k=0}^{2} \frac{f^{(k)}(0)}{k!} (t-0)^{k}$$

we have by Taylor's theorem that there exists $s \in (0,1)$ such that

$$f(1) = P(1) + \frac{f^{(3)}(s)}{3!} (1 - 0)^3$$

$$1 - \left[\frac{f(0)}{0!} (1 - 0)^0 + \frac{f'(0)}{1!} (1 - 0)^1 + \frac{f''(0)}{2!} (1 - 0)^2 \right] = \frac{f^{(3)}(s)}{3!}$$

$$1 - \left[\frac{f''(0)}{2} \right] = \frac{f^{(3)}(s)}{6}$$

$$6 - 3f''(0) = f^{(3)}(s)$$

Similarly, we have that there exists $t \in (-1,0)$ such that

$$f(-1) = P(-1) + \frac{f^{(3)}(t)}{3!}(-1 - 0)^3$$

$$0 - \left[\frac{f(0)}{0!}(-1 - 0)^0 + \frac{f'(0)}{1!}(-1 - 0)^1 + \frac{f''(0)}{2!}(-1 - 0)^2\right] = -\frac{f^{(3)}(t)}{3!}$$

$$-\left[\frac{f''(0)}{2}\right] = -\frac{f^{(3)}(t)}{6}$$

$$3f''(0) = f^{(3)}(s)$$

Thus,

$$f^{(3)}(s) + f^{(3)}(t) = 3f''(0) + 6 - 3f''(0) = 6$$

Now suppose for the sake of contradiction that for all $x \in (-1,1)$, we have $f^{(3)}(x) < 3$. Then $f^{(3)}(s) < 3$ and $f^{(3)}(t) < 3$. It follows that $f^{(3)}(s) + f^{(3)}(t) < 6$, a contradiction.

- **25.** Suppose f is twice differentiable on [a, b], f(a) < 0, f(b) > 0, $f'(x) \ge \delta > 0$, and $0 \le f''(x) \le M$ for all $x \in [a, b]$. Let ξ be the unique point in (a, b) at which $f(\xi) = 0$. Complete the details in the following outline of **Newton's method** for computing ξ .
 - (a) Choose $x_1 \in (\xi, b)$ and define $\{x_n\}$ by

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Interpret this geometrically, in terms of a tangent to the graph of f.

Answer. Since we can rearrange the above to $0 - f(x_n) = f'(x_n)(x_{n+1} - x_n)$, we know that x_{n+1} is the point at which the tangent to f at x_n crosses the x-axis. In other words, the zero of the tangent line

$$y - f(x_n) = f'(x_n)(x - x_n)$$

(b) Prove that $x_{n+1} < x_n$ and that

is $(x_{n+1}, 0)$.

$$\lim_{n\to\infty} x_n = \xi$$

Proof. To prove that $x_{n+1} < x_n$, it will suffice to show that $f(x_n), f'(x_n) > 0$. Since f'(x) > 0 for all $x \in [a,b]$ by hypothesis, we know that $f'(x_n) > 0$. As to $f(x_n)$, suppose for the sake of contradiction that $f(x_n) \le 0$. We know that $f(\xi) = 0$, f(b) > 0, and $\xi < x_n < b$. Since ξ is the *unique* point at which $f(\xi) = 0$ by hypothesis and $x_n \ne \xi$, we know that $f(x_n) \ne 0$. And if $f(x_n) < 0$, we have by the intermediate value theorem for f continuous that there exists $c \in (x_n, b)$ such that f(c) = 0. But since $\xi < x_n < c < b$, $c \ne \xi$, and thus we have a contradiction here, too.

Having established that $\{x_n\}$ is a monotonically decreasing sequence, Theorem 3.14 tells us that to show that it converges, it will suffice to show that it is bounded. Clearly, $\{x_n\}$ is bounded above by x_1 . And on the bottom side, $\{x_n\}$ is bounded by ξ : If there were $x_n < \xi$, this would imply that $f(x_n) < 0$ by a symmetric argument to the above, meaning that $f(x_n)/f'(x_n) < 0$ and implying that $x_{n+1} > x_n$, a contradiction. Furthermore, we know that the limit (call it x) equals ξ since

$$x = x - \frac{f(x)}{f'(x)}$$
$$f(x) = 0$$

so $x = \xi$ by the uniqueness of ξ .

(c) Use Taylor's theorem to show that

$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)}(x_n - \xi)^2$$

for some $t_n \in (\xi, x_n)$.

Proof. Since f is defined on [a,b], $2 \in \mathbb{N}$, f' is continuous on [a,b], f'' is defined on (a,b), $\xi, x_n \in [a,b]$ with $\xi \neq x_n$, and

$$P(t) = \sum_{k=0}^{1} \frac{f^{(k)}(x_n)}{k!} (t - x_n)^k$$

we have by Taylor's theorem that there exists $t_n \in (\xi, x_n)$ such that

$$f(\xi) = \left[\frac{f(x_n)}{0!} (\xi - x_n)^0 + \frac{f'(x_n)}{1!} (\xi - x_n)^1 \right] + \frac{f''(t_n)}{2!} (\xi - x_n)^2$$

$$0 = f(x_n) - f'(x_n)(x_n - \xi) + \frac{f''(t_n)}{2} (x_n - \xi)^2$$

$$x_n - \frac{f(x_n)}{f'(x_n)} - \xi = \frac{f''(t_n)}{2f'(x_n)} (x_n - \xi)^2$$

$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)} (x_n - \xi)^2$$

as desired.

(d) If $A = M/2\delta$, deduce that

$$0 \le x_{n+1} - \xi \le \frac{1}{A} [A(x_1 - \xi)]^{2n}$$

(Compare with Chapter 3, Exercises 16 and 18.)

Proof. We have from part (b) that $x_i > \xi$ for all $i \in \mathbb{N}$, so naturally $0 \le x_{n+1} - \xi$. As to the other part of the question, we induct on n. For the base case n = 1, we have that

$$x_{2} - \xi = \frac{f''(t_{1})}{2f'(x_{1})}(x_{1} - \xi)^{2}$$

$$\leq \frac{M}{2\delta}(x_{1} - \xi)^{2}$$

$$= \frac{2\delta}{M} \left[\frac{M}{2\delta}(x_{1} - \xi) \right]^{2}$$

$$= \frac{1}{4} [A(x_{1} - \xi)]^{2 \cdot 1}$$

Now suppose inductively that we have proven the claim for n-1; we now seek to prove it for n. Indeed, we have that

$$x_{n+1} - \xi = \frac{f''(t_n)}{2f'(x_n)} (x_n - \xi)^2$$

$$\leq \frac{M}{2\delta} (x_n - \xi)^2$$

$$\leq A \left(\frac{1}{A} [A(x_1 - \xi)]^{2(n-1)} \right)^2$$

$$= \frac{1}{A} [A(x_1 - \xi)]^{2n}$$

as desired. \Box

(e) Show that Newton's method amounts to finding a fixed point of the function g defined by

$$g(x) = x - \frac{f(x)}{f'(x)}$$

How does g'(x) behave for x near ξ ?

Proof. A fixed point of the function g is a point x such that

$$g(x) = x$$
$$x - \frac{f(x)}{f'(x)} = x$$
$$f(x) = 0$$

Thus, if we want to find a point x where f(x) = 0, it is equivalent to find a point x such that g(x) = x.

As to the other part of the question, we have by the rules of derivatives that

$$g'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{f'(x)^2}$$
$$= \frac{f(x)f''(x)}{f'(x)^2}$$
$$\leq \frac{M}{\delta^2} f(x)$$

Thus, since $f(x) \to 0$ as $x \to \xi$, $g'(x) \to 0$ as $x \to \xi$.

(f) Put $f(x) = \sqrt[3]{x}$ on $(-\infty, \infty)$ and try Newton's method. What happens?

Answer. We have by the power rule that

$$f'(x) = \frac{1}{3x^{2/3}}$$

Choose $x_1 = 1$. Then

$$x_2 = 1 - \frac{f(1)}{f'(1)} = -2$$

$$x_3 = 1 - \frac{f(-2)}{f'(-2)} = 7$$

$$x_4 = 1 - \frac{f(7)}{f'(7)} = -20$$

$$\vdots$$

It appears that the series is diverging to ∞ while alternating from positive to negative. In fact, since $x_3 > x_2$, contrary to part (b), we know that something must be wrong (i.e., one of our hypotheses must not be met). Upon further investigation, we can determine that on [-1,1], we have f''(1) = -2/9 < 0; thus, our last hypothesis is the issue with this function.

Chapter 6

1. Suppose α increases on [a,b], $a \leq x_0 \leq b$, α is continuous at x_0 , $f(x_0) = 1$, and f(x) = 0 if $x \neq x_0$. Prove that $f \in \mathcal{R}(\alpha)$ and that $\int f \, d\alpha = 0$.

Proof. Since f is bounded on [a,b] with only one discontinuity on [a,b] and α is continuous at the point at which f is discontinuous, Theorem 6.10 implies that $f \in \mathcal{R}(\alpha)$, as desired. It follows that inf $U(P,f,\alpha) = \sup L(P,f,\alpha) = \int f \, d\alpha$. But since $L(P,f,\alpha) = 0$ for all P (there is no infinite interval $[x_i,x_{i+1}] \subset [a,b]$ that does not contain 0, and f is bounded below by 0), we know that

$$\int f \, \mathrm{d}\alpha = \sup L(P, f, \alpha) = 0$$

as desired. \Box

2. Suppose $f \ge 0$, f is continuous on [a, b], and $\int_a^b f(x) dx = 0$. Prove that f(x) = 0 for all $x \in [a, b]$. (Compare this with Exercise 1.)

Proof. Suppose for the sake of contradiction that $f(x) \neq 0$ for some x. By the definition of f, this must mean that f(x) > 0. It follows since f is continuous that there exists some $N_r(x)$ such that f(y) > 0 for all $y \in N_r(x)$. Now consider the partition

$$P = \{a, x - r/2, x + r/2, b\}$$

of [a, b]. But since $m_2 > 0$, we have that

$$0 < m_1[(x-r/2)-a] + m_2[(x+r/2)-(x-r/2)] + m_3[b-(x+r/2)]$$

$$= L(P,f)$$

$$\leq \int_a^b f(x) dx$$
 Theorem 6.4

a contradiction. \Box

4. If f(x) = 0 for all irrational x and f(x) = 1 for all rational x, prove that $f \notin \mathcal{R}$ on [a, b] for any a < b.

Proof. Let P be an arbitrary partition of [a, b]. Since the rationals and irrationals are dense in the reals, we know that for any $[x_i, x_{i+1}]$, f(x) = 0 for some $x \in [x_i, x_{i+1}]$ and f(x) = 1 for some $x \in [x_i, x_{i+1}]$. Thus, we have that L(P, f) = 0 and U(P, f) = b - a. It follows that if a < b,

$$\sup L(P, f) = 0 \neq b - a = \inf U(P, f)$$

so $f \notin \mathcal{R}$, as desired.

References

Rudin, W. (1976). Principles of mathematical analysis (A. A. Arthur & S. L. Langman, Eds.; Third). McGraw-Hill.