

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОМУ ПРОЕКТУ

HA TEMY:

«Мультисерверный видеостриминг с множественными источниками»

Студент <u>ИУ7-31М</u> (Группа)	(Подпись, дата)	<u>Е. В. Брянская</u> (И.О.Фамилия)
Студент <u>ИУ7-31М</u> (Группа)	(Подпись, дата)	В. А. Иванов (И.О.Фамилия)
Руководитель	(Подпись, дата)	A.M. Никульшин (И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

		УТВЕРЖДАЮ
	Заведун	ющий кафедройИУ7
		(Индекс) И.В.Рудаков
		(И.О.Фамилия)
		«»20г.
ЗАЛ	АНИЕ	
на выполнение і		екта
по дисциплине Протоколы вычислит	ельных сетей	
Студенты группы ИУ7-31М		
Студенты группы из 7-этм		
-	атерина Вадимовна	
	имя, отчество)	
	олод Алексеевич имя, отчество)	
	,	
Тема курсового проекта Мультисерверный видеострин	минг с множественным	и источниками
Направленность КП (учебный, исследовательский, пра	ктический, производст	венный, др.)
учебный		
Источник тематики (кафедра, предприятие, НИР) <u>Каф</u>	едра	 -
График выполнения проекта: 25% к <u>4</u> нед., 50% к <u>7</u>	нед., 75% к <u>11</u> нед., 100)% к <u>14</u> нед.
Задание Разработать протокол для мультлисерверного	отриминго Проснедног	торот, предметную общест
выделить целевую аудиторию и сценарии его примо		
видеорядов, обосновать выбор используемого форм		
участников видеостриминга и их функции. Определи		
соответствующих сообщений протокола и их содер:		
целостности данных, повторный запрос потерянных	_	
механизм перераспределения трафика между источн	иками и управления с	коростью передачи данных.
Реализовать и протестировать клиент-серверное прило	жение, использующее	данный протокол.
Оформление курсового проекта:		
Расчетно-пояснительная записка на 20-30 листах форм	ата А4.	
Расчетно-пояснительная записка должна содержат		, введение, аналитическую,
конструкторскую, технологическую части, заключение		
Дата выдачи задания «11» <u>октября</u> 2023 г.		
Руководитель курсового проекта		А.М.Никульшин
туководитсяв курсового проскта	(Подпись, дата)	(И.О.Фамилия)
Студент		В.А.Иванов
	(Подпись, дата)	(И.О.Фамилия)
Студент		Е.В.Брянская
	(Подпись, дата)	(И.О.Фамилия)

СОДЕРЖАНИЕ

BE	ВВЕДЕНИЕ		4	
1	Ана	литическая часть	5	
	1.1	Основные понятия	5	
	1.2	Возможные сферы применения и целевая аудитория	7	
	1.3	Форматы видеорядов	8	
3 <i>A</i>	КЛЮ	очение	10	
CI	ІИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	11	
ПІ	РИЛО	ОЖЕНИЕ А	13	

ВВЕДЕНИЕ

По данным журнала Market Research Report [1] рынок видеостриминга сейчас оценивается более, чем 500 миллиардов долларов, и, предполагается, что к 2030 году эта сумма достигнет 1.9 триллионов долларов. Согласно статистике по всему миру насчитывается около 1.8 миллиарда подписок на сервисы потоковой передачи видео, примерно 26% пользователей которых признаются, что пользуются подпиской на постоянной основе не реже одного раза в неделю.

Потоковая передача видео в настоящее время более популярна и составляет более, чем 38.1% от общего объёма использования, чем кабельное или широковещательное телевидение, на долю которых приходится 30.9% и 24.7%.

Соответственно, ввиду непрекращающегося спроса на видеоплатформы, необходимо обеспечить эффективный способ взаимодействия многочисленных пользователей и этих сервисов для обеспечения наиболее качественной передачи информации.

Цель работы – разработать протокол для мультисерверного стриминга, обеспечивающий высокую производительность и масштабируемость.

Для достижения цели необходимо решить следующие задачи:

- проанализировать предметную область и выделить целевую аудиторию;
- определить сценарии взаимодействия участников передачи данных, составить набор соответствующих сообщений и их содержание;
- провести обзор существующих форматов видеорядов и обосновать выбор используемого формата в разрабатываемом протоколе;
- идентифицировать и сформулировать основные требования для мультисерверного стриминга;
- разработать протокол в соответствии с выделенным и требованиями;
- реализовать и протестировать прототип, позволяющий проверить правильность работы и эффективность протокола.

1 Аналитическая часть

1.1 Основные понятия

Потоковый трафик – тип трафика, для которого характерен просмотр и/или прослушивание информации по мере её поступления на конечное оборудование (мобильный телефон, компьютер, телевизор с доступом в Интернет и т.д.). Основную часть потокового трафика составляет потоковое видео (или видеопоток).

Видеостриминг (или стриминг видео) — технология передачи видеоконтента через Интернет в режиме реального времени, при этом пользователь не должен ждать полной загрузки файла для просмотра. Видео транслируется непрерывным потоком в виде последовательных кадров в специальном формате. Просмотр начинается в момент достаточной буферизации, обеспечивая при этом равномерное отображение данных.

Основой для передачи мультимедийной информации в настоящее время становятся мультисерверные платформы. Они способны отправлять данные разных типов и поддерживать трафик с различными характеристиками. Наибольшее распространение получили два варианта передачи потокового видео по сети.

- Видео реального времени (real-time streaming), запись которого осуществляется одновременно с его просмотром, например, видеоконференции, прямые эфиры.
- *Budeo no запросу* (progressive streaming). Предварительно записанные видеоряды хранятся на сервере, запрашиваются приложениями конечного пользователя и воспроизводятся при получении.

Привлечение мультипоточной загрузки, при которой данные загружаются сразу с нескольких серверов или источников, имеет следующие преимущества по сравнению с загрузкой только с одного сервера.

• Увеличение скорости загрузки. Мультипоточная загрузка позволяет ис-

пользовать полную пропускную способность нескольких серверов одновременно, ускоряя процесс передачи видеоконтента. Это особенно полезно при работе с большими файлами, например, с видео высокого разрешения.

- Улучшение стабильности и отказоустойчивости. Если один из источников недоступен или работает медленно по какой-то причине, то другие могут продолжать предоставлять необходимые данные. Это минимизирует возможные проблемы с недоступностью серверов.
- Оптимизация использования сетевых ресурсов. Разделение загрузки данных между несколькими серверами помогает избежать перегрузки одного сервера и эффективно использовать сетевые ресурсы.
- Адаптация к сетевым ограничениям. При привлечении нескольких серверов можно адаптировать процесс загрузки к изменениям сетевых условий (например, изменение скорости интернет-соединения), что помогает поддерживать стабильное и качественное воспроизведение.

Все эти преимущества делают мультисерверную загрузку более предпочтительной, особенно в случаях, если важна скорость передачи данных, стабильности и отказоустойчивость системы.

Как правило, система трансляции потоковых видео состоит из четырёх подсистем:

- 1) **Устройство кодирования** для сжатия видеопотока и загрузки его на медиасервер.
- 2) **Медиасервер**, отвечающий за хранение видеорядов и передачу пользователям. Он является ключевой единицей во всём процессе передачи. Основная его задача взаимодействие с транспортной сетью при отправке пакетов в нужное время. Как правило, состоит из трёх компонентов механизма трансляции: *транспортный протокол*, *операционная система и система хранения*.
- 3) Транспортная сеть, которая транслирует пакеты от медиасервера до кли-

ентского устройства с помощью специально разработанных и стандартизированных протоколов. Последние обеспечивают такие услуги связи, как сетевая адресация, транспортировка и контроль за сеансом связи.

4) **Клиентское приложение**, декодирующее и воспроизводящее мультимедиапоток. Также опционально может присутствовать механизм синхронизации аудио и видео.

Действующий протокол между клиентом и сервером определяет:

- 1) синтаксис и формат данных
 - Фиксируется чёткая структура сообщений или пакетов данных, которые передаются между устройствами. Как правило, это описание формата заголовков и тела сообщения.
- способ установления соединения
 Протокол может определять процедуру процессов установления, поддержания и завершения соединения между устройствами.
- основные операции и команды
 Описывается множество доступных операций, команд или запросов, которые могут быть выполнены в рамках существующего протокола.
- 4) обработку ошибок и контроль целостности данных Определяются методы и сценарии обработки некорректных ситуаций, способы контроля целостности данных.
- 5) управление потоком данных

Может также описываться алгоритм регулирования скорости передачи потока информации.

В текущей работе будет рассматриваться протокол мультисерверного видеостриминга для передачи данных по запросу.

1.2 Возможные сферы применения и целевая аудитория

Подобный протокол может быть применён в рамках высоконагруженных систем, позволяя увеличивать скорость загрузки данных путём одновременного

запроса и получения разных частей контента с разных серверов. Такой подход позволяет не только ускорить загрузку видео, но и обеспечивает более плавное воспроизведение, поскольку некоторые части запрашиваются заранее и в случае потери, могут быть получены повторно.

1.3 Форматы видеорядов

высоконагруженные системы

Рисунок 1.1 – Установка соединения.

В случае успешного завершения «рукопожатия» соединение устанавливается, и начинают передаваться данные.

ЗАКЛЮЧЕНИЕ

Таким образом, в рамках текущей научно-исследовательской работы было определено понятие SYN-атаки, её особенности. Также был сделан обзор существующих методов смягчения. На основе этого анализа можно сделать следующие выводы.

- В процессе установки соединения создаются такие структуры ядра, как: struct sk_buff, struct request_sock, struct sock, struct tcp_timewait_sock, struct inet_request_sock, struct inet_connection_sock и некоторые другие.
- Атаки такого вида направлены на переполнение SYN-очереди, ведущей к затормаживанию и неработоспособности всей системы в целом, поскольку при заполненной очереди сервер не может принимать никакие пакеты, в том числе и ACK на уже принятые SYN-запросы.
- Одним из наиболее распространённых подходов к смягчению SYN-атак является комплексный метод на основе заранее заданных правил, с помощью которых можно вручную отслеживать параметры сети, и при необходимости обосновать почему произошёл тот или иной сигнал тревоги, также привлекается динамическое изменение параметров системы: время ожидания и размер очереди.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Video Streaming Market Size, Market Research Report [Электронный ресурс].
 - Режим доступа: https://www.fortunebusinessinsights.com/video-streaming-market-103057 (Дата обращения: 02.12.2023)
- 2. Боршевников, А. Е. Сетевые атаки. Виды. Способы борьбы / А. Е. Боршевников. Текст: непосредственный // Современные тенденции технических наук: материалы I Междунар. науч. конф. (г. Уфа, октябрь 2011 г.). Уфа: Лето, 2011. С. 8-13. URL: https://moluch.ru/conf/tech/archive/5/1115/ (дата обращения: 22.10.2022).
- 3. Maroofi S. et al. Adoption of email anti-spoofing schemes: a large scale analysis //IEEE Transactions on Network and Service Management. 2021. T. 18. №. 3. C. 3184-3196.
- 4. Как работает DDoS-атака [Электронный ресурс]. Режим доступа:
- 5. Debar H., Dacier M., Wespi A. Towards a taxonomy of intrusion-detection systems // Computer Networks. 1999.
- Thakkar A., Lohiya R. Attack classification using feature selection techniques: a comparative study //Journal of Ambient Intelligence and Humanized Computing.

 2021. T. 12. №. 1. C. 1249-1266.
- 7. Awan M. J. et al. Real-time DDoS attack detection system using big data approach //Sustainability. − 2021. − T. 13. − №. 19. − C. 10743.
- 8. Wang B., Lu K., Chang P. Design and implementation of Linux firewall based on the frame of Netfilter/IPtable //2016 11th International Conference on Computer Science & Education (ICCSE). IEEE, 2016. C. 949-953.
- 9. Xuan L., Wu P. The optimization and implementation of iptables rules set on

linux //2015 2nd International Conference on Information Science and Control Engineering. – IEEE, 2015. – C. 988-991.

- 10. Руководство по iptables (Iptables Tutorial 1.1.19) [Электронный ресурс].
 Режим доступа: http://www.opennet.ru/docs/RUS/iptables/ (Дата обращения: 01.05.2023)
- 11. SYN cookies [Электронный ресурс]. Режим доступа: https://cr.yp.to/syncookies.html (Дата обращения: 17.06.2023)
- 12. SYN cookies source code [Электронный ресурс]. Режим доступа: https://elixir.bootlin.com/linux/v6.2/source/net/ipv4/syncookies.c (Дата обращения: 02.09.2023)

ПРИЛОЖЕНИЕ А

Структуры ядра, содержащие информацию о сокетах