Integração de Dados

Departamento de Engenharia Informática e de Sistemas Licenciatura em Engenharia Informática 2º ano/2º semestre

- 1

1

Resumo

- O que é a Integração de Dados
- Dificuldades da Integração de Dados
- Arquiteturas de Integração de Dados
- Componentes de um Sistema Integração de Dados
- Tarefas de um Sistema de Integração de Dados

2

Integração de Dados - para que serve?

- Permitir a extração, tratamento dos dados de múltiplas fontes de dados
 - Heterogéneas
 - Distribuídas
 - Autónomas
- Eliminar/corrigir redundâncias, conflitos, inconsistências

4

Integração de Dados

- Para que serve a integração de dados?
 - permitir pesquisas numa vista unificada e obter respostas válidas e consistentes
 - detectar correspondência entre conceitos similares
 - eliminar inconsistências
 - resolver conflitos
 - eliminar redundâncias

5

5

Integração de Dados: dificuldades

- Dificuldades da integração de dados?
 - ao nível dos sistemas
 - ao nível da lógica
 - ao nível administrativo e social
 - ao nível das expectativas

6

- Dificuldades da integração de dados?
 - ao nível dos sistemas
 - dados armazenados em sistemas com diferente hardware, diferente sistema operativo
 - dados armazenados em sistemas que usam linguagens de pesquisa diferentes
 - SQL, XPath, XQuery, ...
 - dados distribuídos: problemas no acesso
 - firewalls, protocolos de acesso/comunicação, autenticação, ...

7

Integração de Dados: dificuldades

- · ao nível da lógica
 - Organização dos dados
 - Tipos de dados e valores
 - Semântica

· ao nível da lógica

- Organização dos dados
 - Modelo relacional: esquemas (que podem ser diferentes!)
 - Outros modelos: tags XML, classes, propriedades
 - · Dados sem estrutura

-

9

Integração de Dados: dificuldades

· ao nível da lógica

- Tipos de dados e valores
 - dados incompletos e/ou inconsistentes
 - os mesmos dados, em fontes diferentes, podem ser representados de forma distinta:
 - tipo (e.g. datas representadas como String ou Date)
 - valor: F/M ou Feminino/Masculino; 8:00pm ou 20:00:00
 - valores numéricos representando moedas diferentes: 150 (EUR ou USD?)

· ao nível da lógica

- Semântica
 - Os mesmos atributos podem ter diferentes significados em origens distintas (e.g. titulo -- livro?, filme?, CD?, ...)
 - Os mesmos dados podem estar em atributos com nomes diferentes (nomeCli, nome)

11

11

Integração de Dados: dificuldades

- Dificuldades da integração de dados?
 - ao nível administrativo e social
 - autorizações, burocracia, dados não digitais, documentação
 - ao nível das expectativas
 - compromisso entre a situação ideal e o que é possível fazer

A Web revolucionou a forma como os dados são gerados e manipulados!

- Enorme quantidade de fontes de dados.
- Dados muito dinâmicos
- Dados bastante heterogéneos.
- Dados podem ser não estruturados ou semiestruturados

13

13

Integração de Dados: uma boa solução

- Uma boa solução de integração de dados deve:
 - Permitir:
 - uma interface uniforme para as diversas fontes de dados
 - transparência de localização, modelo de dados e linguagem de consulta
 - Evitar:
 - a interação com cada origem de dados de forma isolada
 - o tratamento manual dos dados vindos dessas múltiplas fontes

Integração de Dados: Arquitecturas

- Data warehousing (materializada)
 - Extrai os dados para uma fonte de dados comuns
- Centralizada (virtual)
 - Os dados permanecem nas suas fontes
 - abordagem que vamos aprofundar!

15

15

Integração de Dados: Arquiteturas

• Data Warehouse: Extrai os dados para uma fonte de dados comuns

17

Integração de Dados: Arquiteturas

- Data Warehouse
 - Requere limpeza dos dados: diferentes formatos
 - ETL (Extract, Transform, Load)
 - Requere armazenamento dos dados em duplicado (BDs de origem e DW)
 - Requere atualizações periódicas dos dados:
 - As fontes de dados são autónomas o conteúdo pode ser alterado sem aviso
 - Processo custoso a nível de limpeza de dados e espaço de armazenamento

18

Integração de Dados: Arquiteturas

• Centralizada: usa um esquema global

19

Integração de Dados: Arquiteturas

- Integração Centralizada (virtual)
 - Os dados permanecem nas suas fontes
 - Quando uma pesquisa/query é executada:
 - Determinam-se as fontes relevantes para dar resposta à query
 - Divide-se a *query* em diferentes *sub-queries* para as fontes dados
 - Obtêm-se as diferentes respostas e combinam-se de forma apropriada
 - Os dados estão sempre atualizados

20

Integração de Dados: componentes

• Um Sistema de Integração de dados I consiste em:

| = <G, S, M>

G = Esquema Global

S = Esquemas das fontes de dados

M = Mapeamentos entre S e G

21

21

Integração de Dados: componentes (arquitectura virtual)

- S (Fontes de dados):
 - onde reside a informação (heterogénea, autónoma): bases de dados relacionais, ficheiros html, xml, txt, aplicações
 - cada fonte de dados possui o seu esquema
- G (Esquema global)
 - esquema usado pelo utilizador para obter dados das várias fontes
 - possui apenas os aspectos relevantes para a aplicação
 - não armazena informação, apenas a descrição lógica
- M (Mapeamento semântico)
 - como os atributos de S se relacionam com os atributos de G
 - como resolver diferenças de valores em fontes distintas
 - concretizados com Wrappers: enviam queries para as fontes de dados, processam as respostas, fazem transformações

Integração de Dados: tarefas - GLOBAL

I = <G, S, M>

- Analisar os modelos de dados de S
- Decidir como organizar os dados em G
- Definir os mapeamentos M
 - evitar inconsistências
 - evitar conflitos
 - eliminar redundâncias
 - permitir a execução de pesquisas

23

23

24

Integração de Dados: tarefas – 1.

Analisar **S**

- Resolver inconsistências/conflitos
 - ao nível dos esquemas (atributos, tabelas, ...)
 - Identificar atributos idênticos:
 - empregado, funcionario
 - disciplina, unidadeCurricular
 - cod, num
 - Atributos homónimos
 - Produtos(preco, ...) -> Preço sem IVA
 - Produtos(preco, ...) -> Preço com IVA
 - Tabelas/Ficheiros equivalentes
 - Escola(...) == Estabelecimento(...)
 - Cliente(...) == Pessoas(...)

Integração de Dados: tarefas – 1.

- Analisar S
 Resolver conflitos
 - ao nível dos valores
 - género: Masculino/Feminino M/F 0/1
 - identificação de pessoas: 11233445333 corresponde a BI, CC, NIF,
 - ao nível da semântica
 - preço = 10 --- USD, EUR, ... ?
 - peso = 30 --- Kg, libras, ... ?
 - temperatura = 25 --- centigrados, farhenheit?

25

25

Integração de Dados: tarefas – 1.

Analisar S

- Resolver conflitos
 - ao nível das chaves
 - Produto(<u>cod</u>, ...)
 - Produto(linha, cod, ...)

Integração de Dados: tarefas – 1.

Analisar S

• Resolver conflitos

• ao nível da dependência (cardinalidade) dos esquemas

EMPREGADO

PROJECTO

PROJECTO

1

PROJECTO

Integração de Dados: tarefas - 2.

Definir **G**

- Definir o Esquema Global
 - que tabelas/atributos interessam colocar em G
 - como organizar os dados
 - quantos esquemas?
 - como se relacionam?
 - que tipo de validação?

29

29

Integração de Dados: tarefas – 3.

Definir M

- Definir os Mapeamentos
 - Para cada esquema de G, onde estão os dados relevantes em S
 - que tabelas ou ficheiros?
 - Para cada atributo de G quais os atributos homónimos de S
 - Que projecções de S devem ser criadas em G

Integração de Dados: pesquisas

- Efetuar pesquisas (queries)
 - Reformulação da *query* para poder aceder aos dados de acordo com S: **Q = Q1 + Q2 + ...**
 - Optimização da query:
 - qual a ordem pela qual as fontes S devem ser acedidas,
 - · como são combinados os resultados
 - Execução da query:
 - Execução do plano: utilização dos **Wrappers** em S e junção dos dados obtidos

31

31

Integração de Dados: exemplo Objetivo da pesquisa: • introduzir o id de um cliente • obter nome/contactos • obter lista de encomendas (datas, totais) ? Clientes1(bi, nome, morada, tlm) Clientes2(id, nome, apelido morada, contacto) Encomendas(id_enc. id_cli, data_enc, valor_enc)

Integração de Dados: exemplo

- S: 3 fontes de dados
 - S1: armazena informação sobre clientes
 - bi = identificação
 - nome = nome do cliente
 - morada = morada do cliente
 - tlm = contacto do cliente
 - S2: armazena informação sobre clientes
 - id = identificação (bi? Outra?)
 - nome + apelido = nome do cliente
 - morada = morada do cliente
 - contacto= contacto do cliente
 - S3: armazena informação sobre encomendas feitas pelos clientes
 - id_enc = identificação da encomenda
 - id cli = identificação do cliente que fez a encomenda
 - data_enc = quando foi realizada a encomenda
 - valor_enc = valor total da encomenda

33

33

Integração de Dados: exemplo

- •G: 1 tabela (haveria outras possibilidades?)
 - Clientes_Encomendas
 - id: conflitos, redundâncias
 - nome: conflitos, redundâncias
 - contacto: conflitos, redundâncias
 - $\bullet\ lista_encomendas$

Integração de Dados: exemplo

• M: Mapeamentos S – G

- Clientes_Encomendas construída a partir de S1, S2, S3
 - id:
 - bi de S1
 - id de S2
 - id_cli de S3
 - nome:
 - nome de S1
 - nome, apelido de S2
 - · morada:
 - morada de S1 e de S2
 - · contacto:
 - tlm de S1
 - contacto de S2
 - · lista_encomendas:
 - id_enc, data_enc, valor_enc de S3

>> extracção dos dados usando id_cli

Integração de Dados: Wrappers

- Como extrair dados das fontes?
 - Implementar Extractores/Wrappers
 - Usar linguagens de pesquisa específicas (SQL, Xquery, ...)
 - Usar Expressões regulares

37

37

Integração de Dados: Wrappers

- •Tipos de *Wrappers*:
 - manuais: construídos após análise das fontes de dados e dos mapeamentos; são específicos para o esquema nesse dado momento
 - automáticos: usam técnicas de aprendizagem automática para se adaptarem, corrigirem e verificarem se continuam funcionais

38

Integração de Dados: Wrappers

- Limitações dos Wrappers:
 - Manuais: se o esquema da fonte de dados mudar, o código do wrapper tem de ser actualizado
 - Automáticos: complexidade, tempo de execução

39

39

Integração de Dados: Wrappers

- Como implementar um Wrapper:
 - · Pesquisas em SQL
 - Expressões regulares
 - construir expressões que encontrem padrões
 - ex: encontrar datas, emails, nºs de identificação, ...
 - Tecnologias XML
 - uniformizar os diferentes formatos
 - visualizar os dados da forma desejada:
 - html
 - txt
 - xml
 - ...


```
Integração de Dados: Wrappers – exemplo 1

**Grant-Villa (Marie de Paris de Marie d
```



```
Integração de Dados: Wrappers — exemplo 1

### Optical Color Particle-Licente (1884) Attilés (1887) | polary traps (polary trap
```

Integração de Dados: Wrappers – exemplo 1

- Wrapper 1 // Wrapper 2
 - Ambos encontraram a informação solicitada?
 - Formatos ISBN são consistentes?
 - Há redundâncias / conflitos?

47

47

Integração de Dados: Wrappers - exemplo 1a Objectivo: Inserir ISBN e obter preço isbn, autor, editora, ano, preço, imagem de capa, ... isbn > isbn preço > preço S Wook: html I = <G, S, M>

Integração de Dados: Wrappers

- Programas que comunicam com as fontes de dados
 - Enviam as *queries* para as fontes de dados
 - Recebem a resposta
 - Executam transformações para que a resposta seja manipulável pelo sistema

WRAPPER

- transforma uma query em HTTP requests
- pesquisa nas fontes (HTML, XML, TXT, ...)
- transforma a resposta (dados não estruturados) em tuplos
- devolve a informação para ser tratada pelo sistema
 - HTML, XML, TXT, ...

