Praktikum V Sommer 2024

Mathematik II

1. Bisektionsverfahren

Verwenden Sie das Bisektionsverfahren, um alle reelle Nullstellen der Funktion $f(x) = x^3 - 5x + 1$ mit einer Genauigkeit von 2 hinter dem Komma zu berechnen.

2. Newton-Iteration

Für eine differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$ betrachten wir die folgende rekursiv definierte Folge:

- $x_0 \in \mathbb{R}$ beliebig.
- x_{k+1} ist der Schnittpunkt der Tangente an den Graph von f im Punkt $(x_n, f(x_n))$.
- (a) Geben Sie eine Formel für x_{n+1} in Abhängigkeit von x_n , $f(x_n)$ und $f'(x_n)$ an.
- (b) Betrachten Sie erneut die Funktion $f(x) = x^3 + -5x + 1$ aus Aufgabe 1 und berechnen Sie jeweils 10 Folgeglieder für die Startwerte $x_0 = -3$, $x_0 = 0$ und $x_0 = +3$. Was stellen Sie fest? Vergleichen Sie die Ergebnisse mit denen aus Aufgabe 1.

3. Differentiation I

Berechnen Sie die Ableitung der folgenden Funktion (wo definiert).

- (a) $a(x) = x^2 \cdot \cos(\ln(x^2))$
- (b) $b(x) = e^{\sqrt{x}}$
- (c) $c(x) = 2^{2^x}$
- (d) $d(x) = \frac{2x}{\sqrt[3]{1+x^2}}$
- (e) $e(x) = x^{m/n}$

4. Differentiation II

(a) Zeigen Sie, dass die Funktion tan: $\mathbb{R} \setminus \{(2k+1)\pi/2 \colon k \in \mathbb{Z}\} \to \mathbb{R}, x \mapsto \frac{\sin x}{\cos x}$ die Menge $]-\pi/2,\pi/2[$ bijektiv auf $]-\infty,\infty[$ abbildet. Zeigen Sie dann, dass

$$(\tan x)' = \frac{1}{\cos^2 x} \tag{1}$$

und somit $\tan x$ auf $]-\pi/2,\pi/2[$ streng monoton wachsend ist. Berechnen Sie die Ableitung der Umkehrfunktion $\arctan x.$

(b) Bestimmen Sie die Ableitung von arcsin und arccos.

Version: 2024-06-13 04:28:44+02:00