Martingales

Martingales are a key concept in probability and in mathematical finance. The term 'martingale' may refer to very different ideas e.g. a stochastic process that has no drift. Essentially, this is the idea of a fair (random) game. We encounter Martingales through three distinct, but closely connected ideas:

- 1. Martingales as a class of stochastic process; focus on this today
- 2. Exponential martingales, which are a specific and extremely useful example of a martingale; finish with Ms, use extensively in mod. 3

 $\begin{cases} \begin{cases} \begin{cases}$

Discrete Time Martingales

A discrete time stochastic process $\{M_t: t=0,\ldots,T\}$ such that M_t is \mathcal{F}_{t} measurable for $\mathbb{T}=\{\mathbf{0},\ldots,T\}$ is a **martingale** if $\mathbb{E}\left|M_t\right|<\infty$ and

$$\mathbb{E}\left[M_{t+1}|\mathcal{F}_t\right] = M_t \tag{1}$$

On average M in the future it conditional upon everything we know up to that point

- · Coin example: [E[S6|R1,...,Rs] = S5 · Mean of a martingale Edoesn't donge

The first equation represents a standard integrability condition. "finiteness"

The second equation tells you that the expected value of M at time t+1 conditional on all the information available up to time t is the value of M at time t. In short, a Martingale is a **driftless process**. process with zero mean always constant

If we take expectation on both sides of eqn. 1, then

Expectation remains the same
$$\mathbb{E}[M_{t+1}] = \mathbb{E}[M_t] = \mathbb{E}[M_{t-1}] = \mathbb{E}[M_0]$$
 throughout : martingale

This is due to the **Tower Property** of conditional expectations.

Martingales are a very nice mathematical object. They "get rid of the drift" and enable us to focus on what probabilists consider is the most interesting part: the statistical properties of purely random processes.

In addition, Doob and Meyer have developed a powerful theory centred around martingales.

Continuous Time Martingales

Next, we generalize our definitions to continuous time: A continuous time stochastic process

Continous time stochastic process:
$$\left\{M_t:t\in\mathbb{R}^+
ight\}$$

such that M_t is \mathcal{F}_t -measurable for $t \in \mathbb{R}^+$ is a **martingale** if

$$\mathbb{E}|M_t|<\infty$$

and

$$\mathbb{E}_{\frac{1}{5}}[M_t|\mathcal{F}_s] = M_s, \quad 0 \le s \le t.$$

Lévy's Martingale Characterisation: Let X_t , t > 0 be a stochastic process and let \mathcal{F}_t be the filtration generated by it. X_t is a Brownian motion iff the following conditions are satisfied:

$$X_0 = 0$$
 a.s.;

$$E[X_t - X_s + X_s | \mathcal{F}_s]$$

$$E[X_t - X_s | \mathcal{F}_s] + E[X_s | \mathcal{F}_s] = X_s$$

$$= 0$$

$$= X_s$$

continuous a.s.;

$$E[X_t | F_s] = X_s$$

3. X_t is a martingale with respect to the filtration \mathcal{F}_t ;

$$\mathbb{E}[|X_t|^2] = t$$

4. $|X_t|^2 - t$ is a martingale with respect to the filtration \mathcal{F}_t . Quadratic Variation

The Lévy characterization can be contrasted with the classical definition of a Brownian motion as a stochastic process X_t satisfying:

1.
$$X_0 = 0$$
 a.s.;

- 2. the sample paths $t \mapsto X(t)$ are continuous a.s.;
- 3. **independent increments**: for $t_1 < t_2 < t_3 < t_4$ the increments $X_{t_4} X_{t_3}$, $X_{t_2} X_{t_1}$ are independent;
- 4. normally distributed increments: $X_t X_s \sim N(0, |t s|)$.

Lévy's characterization neither mentions independent increments nor normally distributed increments.

Instead, Lévy introduces two easily verifiable martingale conditions.

$$\mathbb{E}[X_t] = 0$$

$$\mathbb{V}[X_t] = \mathbb{E}[X_t^2] = dt$$

Itô Integrals and Martingales

Next, we explore the link between Itô integration and martingales.

Consider the stochastic process $Y(t) = X^2(t)$. By Itô, we have

Consider the stochastic process
$$T(t)=X(t)$$
. By ito,
$$X^2(T)=T+\int_0^T 2X(t)dX(t)$$
 Taking the expectation, we get

$$\mathbb{E}[X^{2}(T)] = T + \mathbb{E}\left[\int_{0}^{T} 2X(t)dX(t)\right]$$

Now, the quadratic variation property of Brownian motions implies that

$$\mathbb{E}[X^2(T)] = T$$

and hence

$$\mathbb{E}\left[\int_0^T 2X(t)dX(t)\right] = 0$$
It ô integral

Anything we integrate w.r.t a B.M. process

Therefore, the Itô integral

$$\int_0^T 2X(t) dX(t)$$

is a martingale.

In fact, this property is shared by all Itô integrals.

The Itô integral is a martingale

_7 All Ito integrals ore martingales

Let $g(t, X_t)$ be a function on [0, T] and satisfying the technical condition. Then the Itô integral

is a martingale. $\int_0^T g(t,X_t)dX_t$

So, Itô integrals are martingales. .. E value & Itô integral = 0

But does the converse hold? Can we represent any martingale as an Itô integral?

The answer is yes!

Martingale Representation Theorem: If M_t is a martingale, then there exists a function $g(t, X_t)$ satisfying the technical condition such that

$$M_T = M_0 + \int_0^T g(t, X_t) dX_t$$
Ito integral representation

Example Using only Itô and the fact that Itô integrals are martingales, we will show that

$$\mathbb{E}\left[X^2(T)\right] = T.$$

Consider the function $F(t,X_t)=X_T^2$, then by Itô's lemma, $Z_t o^1 Z$

$$X_T^2 = X_0^2 + \frac{1}{2} \int_0^T 2dt + \int_0^T 2X_t dX_t$$
$$= \int_0^T dt + 2 \int_0^T X_t dX_t$$

since $X_0 = 0$

Taking the expectation,

$$\mathbb{E}\left[X_T^2\right] = \mathbb{E}\left[\int_0^T dt\right] + 2\mathbb{E}\left[\int_0^T X_t dX_t\right]$$

Now,

$$\int_0^T X_t dX_t \qquad \text{use the sock that an Itô integral} \\ \text{is a martingale}$$

is an Itô integral and as a result $\mathbb{E}\left[\int_0^T X_t dX_t\right] = \mathbf{0}$

Moreover,

$$\mathbb{E}\left[\int_0^T dt\right] = \mathbb{E}\left[T\right] = T$$

We can conclude that

$$\mathbb{E}\left[X^2(T)\right] = T$$

As an aside, we can usually exchange the order of integration between the time integral and the expectation so that

$$\mathbb{E}\left[\int_0^T f(X_t)dt\right] = \int_0^T \mathbb{E}\left[f(X_t)\right]dt$$

This is due to an analysis result known as Fubini's Theorem.

Take as a definition

Itô Integral

Recall the usual Riemann definition of a definite integral

which represents the area under the curve between x=a and x=b, where the curve is the graph of f(x) plotted against x.

Assuming f is a "well behaved" function on [a, b], there are many different ways (which all lead to the same value for the definite integral).

Start by partitioning [a,b] into N intervals with end points $x_0 = a < x_1 < x_2 < \dots < x_{N-1} < x_N = b$, where the length of an interval $dx = x_i - x_{i+1}$ tends to zero as $N \to \infty$. So there are N intervals and N+1 points x_i .

Discretising x gives

$$x_i = a + idx$$

Now consider the definite integral

$$\int_0^T f(t) dt.$$

With Riemann integration there are a number of ways we can approximate this:

1. left hand rectangle rule;

$$\int_{0}^{T} f(t) dt = \lim_{N \to \infty} \sum_{i=0}^{N-1} f(t_i) \left(\underbrace{t_{i+1} - t_i} \right)$$

2. right hand rectangle rule;

$$\int_{0}^{T} f(t) dt = \lim_{N \to \infty} \sum_{i=0}^{N-1} f(t_{i+1}) \underbrace{(t_{i+1} - t_i)}_{\text{dt}}$$

3. trapezium rule;

$$\int_{0}^{T} f(t) dt = \lim_{N \to \infty} \sum_{i=0}^{N-1} \frac{1}{2} (f(t_{i}) + f(t_{i+1})) (t_{i+1} - t_{i})$$

$$f_{i} \qquad \qquad \qquad A = \left(\frac{a+b}{2}\right)h$$
15

duced with a Trial Version of PDF Annotator - www.PDFAnngtator.com
$$F = X \qquad Use \qquad Ito \qquad I$$

$$dX$$

$$dF = \frac{\partial f}{\partial X} dX + \frac{1}{2} \frac{\partial^2 F}{\partial X^2} dt$$

$$dF = 3x^{2}dX + 3xdt$$

$$dF = 3x dt + 3x^{2}dX$$

$$dipt = 3x \neq 0 : not a matingale$$

$$\frac{\partial F}{\partial x} = 3x^2 \qquad \frac{\partial^2 F}{\partial x^2} = 6x$$

4. midpoint rule

$$\int_{0}^{T} f(t) dt = \lim_{N \to \infty} \sum_{i=0}^{N-1} f\left(\frac{1}{2}(t_{i} + t_{i+1})\right) (t_{i+1} - t_{i})$$

In the limit $N \to \infty$, f(t) we get the same value for each definition of the definite integral, provided the function is integrable.

Now consider the stochastic integral of the form

$$\int_0^T f(t, X) dX = \int_0^T f(t, X(t)) dX(t)$$

where X(t) is a Brownian motion. We can define this integral as

$$\lim_{N o \infty} \sum_{i=0}^{N-1} f(t_i, X_i) \left(\underbrace{X_{i+1} - X_i} \right),$$
 similar to left hand rule

where $X_i = X(t_i)$, or as

$$\lim_{N o\infty}\sum_{i=0}^{N-1}f\left(t_{i+1},X_{i+1}
ight)\left(X_{i+1}-X_{i}
ight),$$
 right hand rule

or as

$$\lim_{N\to\infty}\sum_{i=0}^{N-1}f\left(t_{i+\frac{1}{2}},X_{i+\frac{1}{2}}\right)\left(\underbrace{X_{i+1}-X_{i}}\right),\quad \text{and point rule}$$

where $t_{i+\frac{1}{2}}=\frac{1}{2}(t_i+t_{i+1})$ and $X_{i+\frac{1}{2}}=X\left(t_{i+\frac{1}{2}}\right)$ or in many other ways. So clearly drawing parallels with the above Riemann form.

Very Important: In the case of a stochastic variable dX(t) the value of the stochastic integral **does** depend on which definition we choose.

In the case of a stochastic integral, the definition

$$I = \lim_{N o \infty} \sum_{i=0}^{N-1} f(t_i, X_i) (X_{i+1} - X_i),$$
 /to Integral = LH rule

is special. This definition results in the **Itô Integral**.

ightharpoonup It is special because it is **non-anticipatory**; given that we are at time t_i we know $X_i = X(t_i)$ and therefore we know $f(t_i, X_i)$. The only uncertainty is in the $X_{i+1} - X_i$ term.

but it -> 0

Compare this to a definition such as

$$\lim_{N \to \infty} \sum_{i=0}^{N-1} f(t_{i+1}, X_{i+1}) (X_{i+1} - X_i),$$

which is **anticipatory**; given that at time t_i we know X_i but are uncertain about the future value of X_{i+1} . Thus we are uncertain about both the value of

$$f(t_{i+1}, X_{i+1})$$

and the value of $(X_{i+1} - X_i)$ – there exists uncertainty in both of these quantities. That is, evaluation of this integral requires us to anticipate the future value of X_{i+1} so that we may evaluate $f(t_{i+1}, X_{i+1})$.

The main thing to note about Itô integrals is that I is a random variable (unlike the deterministic case). Additionally, since I is essentially the limit of a sum of normal random variables, then by the CLT I is also normally distributed, and can be characterized by its mean and variance.

Example: Show that Itô's lemma implies that

$$3\int_0^T X^2 dX = X(T)^3 - X(0)^3 - 3\int_0^T X(t) dt.$$

Show that the result also can be found by writing the integral

$$3\int_0^T X^2 dX = \lim_{N\to\infty} 3\sum_{i=0}^{N-1} X_i^2 \left(X_{i+1} - X_i\right) \stackrel{\text{definition of Ito}}{=} 150$$
 Hint: use $3b^2 \left(a-b\right) = a^3 - b^3 - 3b\left(a-b\right)^2 - (a-b)^3$. \longrightarrow Binomial expansion using Pascal's triangle

Hint: use
$$3b^2(a-b) = a^3 - b^3 - 3b(a-b)^2 - (a-b)^3$$
. \longrightarrow By nomial expansion using fascal is triangle

The Itô integral here is defined as

$$\int_{0}^{T} 3X^{2}(t) dX(t) = \lim_{N \to \infty} \sum_{i=0}^{N-1} 3X_{i}^{2}(X_{i+1} - X_{i})$$

Now note the hint:

$$3b^{2}(a-b) = a^{3} - b^{3} - 3b(a-b)^{2} - (a-b)^{3}$$

hence

$$3b^{2}(a-b)$$

$$\equiv 3X_{i}^{2}(X_{i+1}-X_{i})$$

$$= X_{i+1}^{3}-X_{i}^{3}-3X_{i}(X_{i+1}-X_{i})^{2}-(X_{i+1}-X_{i})^{3},$$

so that

$$\left(\chi_{i}^{2} + \chi_{2}^{2} + \dots + \chi_{N}^{3} \right) \sum_{i=0}^{N-1} 3X_{i}^{2} (X_{i+1} - X_{i}) =$$

$$\left(\chi_{i}^{3} + \chi_{N-1}^{3} \right) \sum_{i=0}^{N-1} X_{i+1}^{3} - \sum_{i=0}^{N-1} X_{i}^{3} - \sum_{i=0}^{N-1} 3X_{i} (X_{i+1} - X_{i})^{2}$$

$$= \chi_{N}^{3} - \chi_{0}^{3} \qquad - \sum_{i=0}^{N-1} (X_{i+1} - X_{i})^{3} = \lambda + 1$$

$$= 0$$

Now the first two expressions above give

$$\sum_{i=0}^{N-1} X_{i+1}^3 - \sum_{i=0}^{N-1} X_i^3 = X_N^3 - X_0^3$$
$$= X(T)^3 - X(0)^3.$$

In the limit $N \to \infty$, i.e. $dt \to 0$, $(X_{i+1} - X_i)^2 \to dt$, so

$$\lim_{N \to \infty} \sum_{i=0}^{N-1} 3X_i (X_{i+1} - X_i)^2 = \int_0^T 3X(t) dt$$

Finally $(X_{i+1} - X_i)^3 = (X_{i+1} - X_i)^2 \cdot (X_{i+1} - X_i)$ which when $N \to \infty$ behaves like $dX^2 dX \sim O\left(dt^{3/2}\right) \longrightarrow 0$.

Hence putting together gives

$$X(T)^3 - X(0)^3 - \int_0^T 3X(t) dt$$

which is consistent with Itô's lemma.

The other important property that the Itô integral has is that it is a martingale. We know that

$$X_{i+1} - X_i$$

is a martingale; i.e. in the context

 $\mathbb{E}\left[X_{i+1}-X_i
ight]=0.$ This case 1)

Since

$$\mathbb{E}\left[\sum_{i=0}^{N-1} f(t_i, X_i) (X_{i+1} - X_i)\right] = \sum_{i=0}^{N-1} f(t_i, X_i) \mathbb{E}\left[X_{i+1} - X_i\right] = 0$$

Thus

$$\mathbb{E}\left[\int_{0}^{T} f\left(t, X\left(t\right)\right) dX\left(t\right)\right] = 0.$$

This is, essentially a consequence of the Itô integral being non-anticipatory, as discussed earlier. No other stochastic integral has this property.

Exercise We know from Itô's lemma that

$$4\int_{0}^{T} X^{3}(t) dX(t) = X^{4}(T) - X^{4}(0) - 6\int_{0}^{T} X^{2}(t) dt$$

Show from the definition of the Itô integral that the result can also be found by initially writing the integral

$$4\int_{0}^{T} X^{3} dX = \lim_{N \to \infty} 4\sum_{i=0}^{N-1} X_{i}^{3} (X_{i+1} - X_{i})$$

Hint: use $4b^3(a-b) = a^4 - b^4 - 4b(a-b)^3 - 6b^2(a-b)^2 - (a-b)^4$.

therap on the stathabaic integration formula derived in MIL3

Proving that a Continuous Time Stochastic Process is a Martingale $dY_t = f dt + g d \times_t$

Consider a stochastic process Y(t) solving the following SDE:

SDE Form:
$$dY(t) = f(Y_t, t)dt + g(Y_t, t)dX(t)$$
, $Y(0) = Y_0$ init conditional How can we tell whether $Y(t)$ is a martingale?
$$\frac{dY(t) = f(Y_t, t)dt + g(Y_t, t)dX(t)}{dY(t) = gdX}$$
 is a mattingale if diffess

The answer has to do with the fact that Itô integrals are martingales.

Y(t) is a martingale if and only if it satisfies the martingale condition

$$\mathbb{E}\left[Y_t|\mathcal{F}_s\right] = Y_s, \quad 0 \le s \le t$$

Let's start by integrating the SDE between s and t to get an exact form for Y(t):

Integral Form:
$$Y(t) = Y(s) + \int_s^t f(Y_u, u) du + \int_s^t g(Y_u, u) dX(u)$$

Taking the expectation conditional on the filtration at time s, we get

$$\mathbb{E}\left[Y_t|\mathcal{F}_s\right] = \mathbb{E}\left[Y(s) + \int_s^t f(Y_u, u)du + \int_s^t g(Y_u, u)dX(u)|\mathcal{F}_s\right]$$

$$= Y(s) + \mathbb{E}\left[\int_s^t f(Y_u, u)du|\mathcal{F}_s\right] = 0$$

where the last line follows from the fact that a Itô integral is a martingale, :.

$$\mathbb{E}\left[\int_{s}^{t}g(Y_{u},u)dX(u)|\mathcal{F}_{s}\right]=\int_{s}^{s}g(Y_{u},u)dX(u)=0.$$

So, Y(t) is a martingale iff

$$\mathbb{E}\left[\int_{s}^{t}f(u)du|\mathcal{F}_{s}
ight]=0$$

This condition is satisfied only if $f(Y_t, t) = 0$ for all t. Returning to our SDE, we conclude that Y(t) is a martingale iff it is of the form

$$dY(t) = g(Y_t, t)dX(t), Y(0) = Y_0$$

duced with a Trial Version of PDF Andreador - www.PDFAnnerator.compohastic processes

$$F(X+dX,Y+dY) = F(X,Y) + \frac{\partial F}{\partial X} dX + \frac{\partial F}{\partial Y} dY + \frac{1}{2} \frac{\partial^{2} F}{\partial X^{2}} dX^{2} + \frac{1}{2} \frac{\partial^{2} F}{\partial Y^{2}} dY^{2} + \frac{\partial^{2} F}{\partial X \partial Y} dX dY$$

LOOK at
$$F = XY$$
: $\frac{dF}{dX} = Y$; $\frac{dF}{dY} = X$; $\frac{\partial^2 F}{\partial X^2} = 0 = \frac{\partial F}{\partial Y^2}$; $\frac{\partial F}{\partial X \partial Y} = 1 = \frac{\partial F}{\partial Y \partial X}$

$$dF = YdX + XdY + \frac{1}{2}(0) + \frac{1}{2}(0) + 1(dXdY)$$

Exponential Martingales

Let's start with a motivating example.

Consider the stochastic process
$$Y(t)$$
 satisfying the SDE $f(t) \rightarrow dY(t) = f(t)dt + g(t)dX(t), \qquad Y(0) = Y_0$ (2)

where f(t) and g(t) are two time-dependent functions and X(t) is a standard Brownian motion.

Define a new process $Z(t) = e^{Y(t)}$.

 \mathbb{Q} : How should we choose f(t) if we want the process Z(t) to be a martingale?

$$dY^{2} = \int_{-20}^{2} dt dt + 2fg dt dt + g^{2} dt = 7 dt = 9^{2} dt$$

Consider the process $Z(t) = e^{Y(t)}$. Applying Itô to the function we obtain:

Jiggieratial in
$$\mathcal{Z}$$
: $dZ(t) = \frac{dZ}{dY}dY(t) + \frac{1}{2}\frac{d^2Z}{dY^2}dY^2(t)$

$$\frac{d\mathcal{Z}}{dY} = \frac{d^2t}{dY^2} = \mathcal{C}^Y = \frac{dZ}{dY}(f(t)dt + g(t)dX(t)) + \frac{1}{2}\frac{d^2Z}{dY^2}g^2(t)dt$$

$$= e^{Y(t)}\left(f(t) + \frac{1}{2}g^2(t)\right)dt + e^{Y(t)}g(t)dX(t)$$

$$= Z(t)\left[\left(f(t) + \frac{1}{2}g^2(t)\right)dt + g(t)dX(t)\right]$$

Z(t) is a martingale if and only if it is a driftless process.

Therefore for Z(t) to be a martingale we must have

dript must = 0:
$$f(t) + \frac{1}{2}g^2(t) = 0$$

This is only possible if

$$f(t) = -\frac{1}{2}g^2(t)$$

$$dZ = g_t dX_t$$

if Z is to be a
martingale:
only random

Going back to the process Y(t), we must have

$$dY(t) = -\frac{1}{2}g^2(t)dt + g(t)dX(t), \qquad Y(0) = Y_0$$
 for e to be a martingale

implying that

$$Y(T) = Y_0 - \frac{1}{2} \int_0^T g^2(t) dt + \int_0^T g(t) dX(t)$$

$$dZ(t) = Z(t)g(t)dX(t).$$

Using the earlier relationship, we can write $Z(T)=e^{Y(T)}$. $Z_{T}=e^{Y(T)}$ Let's simplify this Z(T)=

$$\exp\left\{Y_0 - \frac{1}{2} \int_0^T g^2(t) dt + \int_0^T g(t) dX(t)\right\}$$

to give

$$Z(T) = Z_0 \exp \left\{ -\frac{1}{2} \int_0^T g^2(t) dt + \int_0^T g(t) dX(t) \right\}$$

Because the stochastic process Z(t) is the exponential of another process (namely Y(t)) and because it is a martingale, we call Z(t) an **exponential** martingale.

We have actually just stumbled upon a much more general and very important result.

Ly exp Martingules: used to change probability measure
from P to Q (real to now-neutral)

Key Condition (Novikov Condition)

A trading strategy $(\phi, \psi) = \{(\phi_t, \psi_t); t \in [0, ..., T]\}$ is a previsible process in that $\phi_t \in \mathcal{F}_{t-}$.

A stochastic process Y_t satisfies the *Novikov condition* if

$$\mathbb{E}\left[\exp\left(\frac{1}{2}\int_0^T \gamma_s^2 ds\right)\right] < \infty$$

where is a γ_t previsible process.

From Riaz extra Binomial notes:

Recap: A hedged approach as done by Paul Introduce: Binomial Model using replication

ψ: no. & bonds

Key Fact

Given a process γ_t satisfying the Novikov condition, then the process M_t^{γ} defined as we can define the probability measure $\mathbb Q$ on $(\Omega, \mathcal F)$ equivalent to $\mathbb P$ through the Radon Nikodým derivative

$$M_t^{\gamma} = \exp\left(-\int_0^t \gamma_s dX_s - \frac{1}{2}\int_0^t \gamma_s^2 ds\right), \quad t \in [0, T]$$

is a martingale.

In our earlier example $\gamma_t = -g(t)$; $M_t^{\gamma} = Z(t)$.

Key Fact (Girsanov's Theorem)

Given a process θ_t satisfying the Novikov condition, we can define the probability measure $\mathbb Q$ on $(\Omega, \mathcal F)$ equivalent to $\mathbb P$ through the Radon Nikodým derivative

$$rac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(-\int_0^t \gamma_s dX_s - rac{1}{2}\int_0^t \gamma_s^2 ds
ight), \quad t \in [0,T]$$

In this case, the process $X_t^{\mathbb{Q}}$ defined as

$$X_t^{\mathbb{Q}} = X_t^{\mathbb{P}} + \int_0^t \gamma_s dX_s$$

as is a standard Brownian motion on $(\Omega, \mathcal{F}, \mathbb{Q})$.