MATH 324 - Algebra II Final Project Calculating Galois Groups of Polynomials of Degree 7

Bilge Köksal

1 Introduction

The Galois group of a separable polynomial $f(x) \in \mathbf{F}[x]$ is defined to be the Galois group of the splitting field of f(x) over \mathbf{F} . In our case we will take $\mathbf{F} = \mathbb{Q}$ and all the polynomials will be separable polynomials of degree 7.

Here are some general facts to narrow down the search and make the results easier to interpret. Given a polynomial $p(x) \in \mathbb{Q}[x]$ of degree seven.

- If p(x) is irreducible in $\mathbb{Q}[x]$ than Gal(p) is a transitive subgroup of S_7 since Gal(p) will be permuting all roots of p(x).¹ Transitive subgroups of S_7 are S_7 , F_7 , F_{21} , F_{42} , $GL_3(\mathbb{F}_2)$, D_{14} and A_7 .
- D(p), the discriminant of of p(x) is a square if and only if $Gal(p) \subseteq A_7$.
- The transitive subgroups of A_7 are, A_7 , $GL_3(\mathbb{F}_2)$ and F_{21} .
- D(p) = 0 if and only if p(x) is not separable.³
- We will also use the following table to interpret our results.

Brief Summary of the Algorithm: Let f(x) be an irreducible polynomial in $\mathbb{Z}[x]$ of degree 7.

- Compute the discriminant D of f(x).
- Factor the polynomial in $\mathbb{Z}/p\mathbb{Z}$ where p is one of the first 1000 primes and p does not divide D.
- For each factorization we will have a different cycle type, we will record the frequencies of each cycle type.
- Compare the results with Table 1 and determine the Galois group.

¹p. 611

²p. 611

³p. 610

Cycle Type	1	2	(2,2)	(2,2,2)	(2,2,3)	(2,3)	(2,4)	(2,5)	3	(3,3)	(3,4)	4	5	6	7
F_7	1	-	-	-	-	-	-	-	-	-	-	-	-	-	6
D_{14}	1	ı	ı	7	-	-	-	-	-	-	-	-	-	-	6
F_{21}	1	-	-	-	-	-	-	-	-	14	-	-	-	-	6
F_{42}	1	ı	ı	7	-	-	-	ı	-	14	-	-	-	14	6
$GL_3(\mathbb{F}_2)$	1	-	21	-	-	-	42	-	-	56	-	-	-	-	48
A_7	1	-	105	-	210	-	630	-	70	280	-	-	504	-	720
S_7	1	21	105	105	210	420	630	504	70	280	420	210	504	840	720

Table 1: Cycle Type Frequencies for Transitive Subgroups of S_7

2 Examples

1 -
$$p(x) = x^7 + 3x^4 - 6 \in \mathbb{Q}[x]$$

We have that p(x) is irreducible in $\mathbb{Q}[x]$ by Eisenstein's criterion, hence the Galois group of Gal(p) is isomorphic to a transitive subgroup of S_7 . Discriminant D of p(x) is D = -35158048704. When we compute the cycle type frequencies of Gal(p), we find Figure 1.

Figure 1: Cycle Type Frequencies for Gal(p)

We can verify from Table 1 that the only transitive subgroup of S_7 having all the cycle types is S_7 itself. Hence We have to have $Gal(p) = S_7$

2 -
$$f(x) = x^7 + 5 \in \mathbb{Q}[x]$$

f(x) is clearly irreducible in $\mathbb{Q}[x]$. The determinant of f is $D = -12867859375 = (-1) \cdot 5^6 \cdot 7^7$, not a square in \mathbb{Q} . Hence Gal(f) is not a subgroup of A_7 , this leaves us with the groups S_7 , F_7 , F_{42} , and D_{14} .

When we compute the cycle type frequencies of Gal(f), we find Figure 2.

5

10

2,4 2,3 2,2,3 2,2,2 2,2 2,2 2

Figure 2: Cycle Type Frequencies for Gal(f)

15

20

Percentage Frequency

25

30

35

Just by looking at the figure we can conclude that $Gal(f) \neq S_7$. Going back to Table 1, notice the only transitive subgroups of S_7 with (2,2,2) cycles aside from S_7 itself are D_{14} and F_{42} . Since Gal(f) contains (2,2,2) cycle structures, we can automatically eliminate F_7 which has no (2,2,2) cycles, so we are left with D_{14} and F_{42} .

Now notice that D_{14} contains no 6 cycles, while Gal(f) does, hence $Gal(f) \neq D_{14}$. And we are left with only F_{42} , so $Gal(f) = F_{42}$. Figure 3 shows the Cycle Type Frequencies of F_{42} , which is evidently coinciding with Figure 2.

Figure 3: Cycle Type Frequencies for F_{42}

3 -
$$g(x) = x^7 - 56x + 48 \in \mathbb{Q}[x]$$

We can easily verify that $g(x) = x^7 - 56x + 48$ is irreducible in $\mathbb{Q}[x]$. Computing the discriminant we obtain, $D = 70506920137457664 = 2^{24} \cdot 3^6 \cdot 7^8$. Hence, since D is a square in \mathbb{Q} , we can conclude that $Gal(g) \subseteq A_7$. So we have the candidates A_7 , $GL_3(\mathbb{F}_2)$ and F_{21} . Computing the cycle type frequencies for Gal(g), we have the following Figure.

Figure 4: Cycle Type Frequencies for Gal(g)

Again, looking back at Table 1 observe that no proper subgroup of A_7 , has cycle type (2,2,3). So we have to have $Gal(g) = A_7$. Figure 5 shows the cycle type frequencies of the group A_7 which is coinciding with that of Gal(g).

Figure 5: Cycle Type Frequencies for A_7

3 Sage Code

```
1 import numpy
2 import matplotlib.pyplot as plt
4 def percentage(cyc):
      c = 0
      for s in range(len(cyc)):
          c = c + cyc[s]
      g = []
      for i in range(len(cyc)):
          g.append(100*cyc[i]/c)
10
      return g
12
13 R. < x > = QQ[]
_{14} f = x^7-56*x+48;
disc = f.discriminant();
16 primes = []
18 for p in range(0,10000):
     primes.append(Primes()[p])
20 factors = list(disc.factor())
21
for i in range(len(factors)):
      if factors[i][0] in primes:
          primes.remove(factors[i][0])
26 cycletypes = [[1], [2], [2,2], [2,2,2], [2,2,3], [2,3],
27 [2,4], [2,5], [3], [3,3], [3,4],[4], [5], [6], [7]]
28 frequency = numpy.zeros(len(cycletypes))
29 Poly=[]
31 for p in primes:
      F.\langle x \rangle = GF(p)[]
      evaluate = F(f)
      Poly.append(list(factor(evaluate)))
35 ct_f = []
for i in range(len(Poly)):
     k = []
    for j in range(len(Poly[i])):
```

```
if Poly[i][j][0].degree() != 1:
40
              k.append(Poly[i][j][0].degree())
41
42
      if k == []:
          k = [1]
43
      ct_f.append(k)
44
for i in range(len(ct_f)-1):
      frequency[cycletypes.index(ct_f[i])] += 1
48 frequency=100*frequency/len(ct_f)
49 finfreq=[]
50 for t in frequency:
      finfreq.append(t)
52 c_chart = ['1','2','(2,2)','(2,2,2)','(2,2,3)','(2,3)','(2,4)',
53 (2,5), 3, (3,3), (3,4), 4, 5, 6, 7]
55 galois_g = plt.barh(c_chart, finfreq, color="red")
# actual_g = plt.barh(c_chart, convert_to_percentage([1,0,105,0,210,
# 0,630,0,70,280,0,0,504,0,720]))
58 plt.xlabel('Percentage Frequency')
59 plt.ylabel("Cycle Types")
60 plt.figure(figsize=(10, 10));
```