POLITECNICO DI TORINO Tesi di Laurea Magistrale

Station-level forecasting in bike sharing systems using data mining techniques

Relatori:

Prof.ssa Silvia Anna Chiusano *Prof.ssa* Tania Cerquitelli

Candidato:

Khalid Benihich

Sommario

- Bike Sharing Systems
- Predizione mediante Data Mining
- Formalizazione della procedura
- Validazione sperimentale
- Implementazione del framework
- Applicazione mobile

Bike Sharing Systems

Vantaggi:

- Riduzione traffico auto e riduzione inquinanti
- Maggior connesione tra altri mezzi pubblici
- Effetti benefici salute degli utilizzatori
- Riduzione superfici dedicate al parcheggio
- Basso costo

Diffusione e crescita

Funzionamento subottimale

Funzionamento subottimale

Data Mining

Classificazione

- Dati di Training: set di record (x, y)
 - x = attribute set (valori discreti e continui)
 - *y = etichetta di classe* (solo valori discreti)

La classificazione è l'operazione apprendimento della funzione target che mappa x con l'etichetta di classe y

funzione target = modello di classificazione

Classificatori Naive Bayes

Principali Algoritmi

Processo

Raw Dataset

Raccolta Dati

Training Dataset

Characterization

Windowing

Enrichment

Risultato Predizione

Applicazione Classificazione

Modello

Applicazione del modello su dati nuovi

Processo

Prove Sperimentali

- Applicazione del processo su dati reali della rete di New-York:
 - 8,4 milioni di abitanti
 - 10000 biciclette
 - 600 stazioni
- Tre differenti periodi dell'anno
 - Aprile Maggio
 - Giunio Lulio
 - Settembre Ottobre
- Tramite tre approcci differenti nella creazione dei modelli

Singola stazione

Singola Stazione più i Vicini

Generazione Modello Stazione X

Generazione Modello Stazione Y

Intera Rete

Generazione Modello Unico

Valutazione dei Modelli

		Predicted	
		Class = 1	Class = 0
Actual	Class = 1	f11 (TP)	f10 (FN)
	Class = 0	f01 (FP)	f00 (TN)

$$Precision, a = \frac{TP}{TP + FP}$$

$$Recall, r = \frac{TP}{TP + FN}$$

$$F1 - measure = \frac{1}{\frac{1}{p} + \frac{1}{r}}$$

Risultati 1° Approccio

Risultati 2° Approccio

Risultati 3° Approccio

Implementazione Framework

Caratteristiche tecniche

- Linguaggio di programmazione Java
 - Portabilità
- API RESTFUL per le comunicazioni client server
 - Adatto alla struttura modulare
- Contenitore Apache
 - Permette di far girare il framework come web app

Applicazione Mobile

- Scelta piattaforma mobile
 - Android
- Information Visualization
- Struttura semplice
 - Solo due Activity

Funzionamento App

Funzionamento App

Riepilogo

Bike Sharing Systems

- Vantaggi
- Criticità affrontata

Data Mining

- Cosa offre per la soluzione del problema
- Predizione tramite Classificazione
- Processo di elaborazione

Prove Sperimentali

- Dati reali di New-York
- Tre differenti approcci
- Risultato modello per singola stazione più vicini ma con raggio più ampio

Implementazioni

- Framework modulore tramite web app
- Applicazione mobile

Sviluppi Futuri

- Verifica dell'approcio «Single-Station & Neighbors» su altre città
- Integrazione di dati meteo e del traffico nella creazione dei modelli
- Estendere il framework per soluzione di problemi simili
 - Es. Consumi energetici, Car sharing, ecc.

Grazie per l'attenzione