LC 2 Liaisons métalliques

Niveau: L3

Prérequis:

cristallographie : cristal parfaitCristal ionique : rayon ionique

- Tehrmodynamique : grandeurs de réactions
- Théorie des orbitales moléculaires
- Liaisons covalente,
- rayon covalent,
- rayon atomique

Objectifs:

- connaitre le modèle de la lions métallique
- Connaître l'ODG de l'énergie métallique et son évolution dans le tableau périodique
- Savoir expliquer les propriétés du métal

Difficulté:

- Modèle de gaz d'électrons libres
- Modèle des bandes

Biblio:

- Chimie^3
- Marucco : Chimie du solide
- Fosset PCSI
- L'indispensable en liaisons chimique
- Leçon Manon: http://perso.ens-lyon.fr/manon.leconte/pedago/fichiers/interactions/liaison metallique.pdf

Choix pédagogique :

On va présenter de manière globale la liaison métallique sans aller en profondeur dans cette partie au fur et à mesure de la leçon, on reviendra sur les points qui auront été abordé dans la première partir pour expliquer les propriétés du métal.

Introduction:

On va s'intéresser à une autre état de la matière : le solide et plus particulièrement le solide métallique.

- Métal : Espèces dont le solide corps présente plusieurs caractéristiques : conducteur malléable, ductible
- Montrer l'évolution du caractère métallique au sein de la classification périodique

Ce qui fait la particularité du solide métallique est interaction qui relie chaque atome : la liaisons métallique. C'est elle qui va permettre d'expliquer ses propriétés.

I. Modélisation de la liaison métallique

- 1. <u>Modèle du gaz électron libre</u> (permet d'expliquer la cohésion du solide mais ça on le dit pas encore)
- Modèle de Sommerfeld ou modèle de l'électron libre (1923) : modèle décrivant de mouvement des électrons de valence dans la structure cristalline métallique
- Hypothèses
- Explications
- => L'indispensable en liaisons chimique fiche n°16 p.72 (juste la définition)
- => Chimie^3 Chapitre 5 : Solides, 5.3 La liaison métallique p.232 (c'est bien expliqué et c'est imagé + illustrations)
- => Leçon Manon : http://perso.ens-lyon.fr/manon.leconte/pedago/fichiers/interactions/liaison_metallique.pdf
- => Marucco Chapitre 3 : Strucutre électronique des solide p.115 (tout le développement mathématiques qu'on voit pas ici)

Transition : le modèle n'est pas suffisant pour expliquer toutes les propriétés du métal. Il faut introduire un nouveau modèle basée sur la chimie orbiculaire

- 2. **Modèle des bandes** (permet de décrire la conductivité du solide, mais ça on le dit pas encore)
- Solide à N atomes = N OM
- Energie des orbitales
- Bande de valence
- Bande de conduction
- => L'indispensable en liaisons chimique fiche n°16 p.72 (juste la définition)
- => Chimie^3 Chapitre 5 : Solides, 5.3 La liaison métallique p.232 (c'est bien expliqué et c'est imagé + illustrations)
- => Leçon Manon : http://perso.ens-lyon.fr/manon.leconte/pedago/fichiers/interactions/liaison_metallique.pdf

Transition : maintenant qu'on a les modèles de la liaison métallique en tête, on va pouvoir les utiliser pour expliquer la nature des solides métalliques .

II. Cohésion du solide métallique

Le modèle de l'électron libre va nous permettre de comprendre la cohésion du solide métallique . Et grâce à lui, on va pouvoir comparer la différence de cohésion entre les différents métaux (alcalin VS métaux de transition)

1. Rayon métallique

On définit la taille des atomes engagée dans la lisions métallique pour mieux comprendre ses caractéristiques.

- Définition du rayon métallique : moitié de la distance entre les centres des deux atomes plus proches voisins
- Intervation du modèle gaz électron libre
- Représentation du rayon : cation au centre, électrons libre peu attaché autour
- Différences des valeurs des rayons métalliques (alcalin RM plus grand VS métaux de transition RM plus petit)
- => Marucco Chapitre n°1 Propriétés atomiques et moléculaire des éléments p.2 (reprendre le paragraphe tel quel il est très bien + illustrations + valeurs de Rm)
- => Leçon Manon : http://perso.ens-lyon.fr/manon.leconte/pedago/fichiers/interactions/liaison_metallique.pdf

2. Energie de cohésion

- Notion de la liaison métallique + ODG (leçon Manon)
- Notion + définition d'énergie de cohésion
- (alcalin EC plus faibles que les métaux de transitions)
- Valeurs d'énergie
- => Marucco Chapitre n°1 Propriétés atomiques et moléculaire des éléments p.2 (fais la différence de l'énergie de cohésion alcalin VS métal de transition)
- => Leçon Manon : http://perso.ens-lyon.fr/manon.leconte/pedago/fichiers/interactions/liaison_metallique.pdf
- => L'indispensable en liaisons chimique fiche n°16 p.72 (juste la définition)

Transition : On aimerait maintenant pouvoir expliquer les autres propriétés des métaux toujours avec les modèles vu dans la première partie

III.<u>Lien avec les propriétés des solides métalliques</u>

1. Propriétés métalliques

Propriétés que l'on peut expliquer avec le modèle gaz d'électrons libres

- Les métaux sont tenaces : du à la force de la liaison métallique
- Les métaux sont malléables et ductibles (gaz d'électrons libre)
- => Chimie^3 Chapitre 5 : Solides, 5.3 La liaison métallique p.232 (expliquation et c'est imagé + illustrations)
- => Fosset PCSI chapitre n°11 : Le solide cristallin : 3.2 Cristaux métalliques p.654 (explication + ODG)
- => Leçon Manon : http://perso.ens-lyon.fr/manon.leconte/pedago/fichiers/interactions/liaison metallique.pdf

2. Conductivité

On explique cette propriété avec le modèle des bandes

- Bande de valence bande de conduction
- Gap
- Lien avec la température (plus la température augmente, plus électrons passe d'une bande à une autre : conductivité augmente)
- Comparer la conductivité des différents métaux (alcalin, alcalino-terreux, métaux de transition
- => L'indispensable en liaisons chimique fiche n°16 p.72
- => Chimie^3 Chapitre 5 : Solides, 5.3 La liaison metallique p.232 (expliquation et c'est imagé + illustrations)

=> Marucco Chapitre n°4 Structure électronique des solides p.168 (présente les diagramme de bande des différents métaux : alcalin, alcalino-terreux, de transition)

=> Leçon Manon : http://perso.ens-lyon.fr/manon.leconte/pedago/fichiers/interactions/liaison_metallique.pdf

Ouverture: Triangle de Van Arkel Ketelaar