

Your one-stop center

Go-Get project

By: Daniel Chow

What is Go-Get project?

Background

- Officework Supplies tested on one telemarketing campaign recently.
- Test results are analyzed to review any insights that can be leveraged for future similar campaign(s).

Our objectives are to:-

- understand the characteristics of customers who responded to the campaign;
- leverage the results and enhance customer
 targeting using a 'two-stage' model (i.e. predict the
 likelihood to response and estimate sales values);
- evaluate and maximise profit with model vs. random targeting.

High Level Approach

Methodology

Get Cleanse Explore Model Result

Get

Cleanse

Explore

Acquire data

- Identify & remove any invalid / duplicate records
- Treat missing values using standard data imputation method
- **Identify** strength of relationship between variables (aka features)
- Manage highly correlated variables using dimension reduction technique
- Drop outliers / anomalies records
- **Create** new feature(s)
- Analyse each data variable and detect any patterns/trends

- Select & Transform features for model development
- **Split** 50:50 data for model development / test
- Select appropriate algorithm model(s)
- Develop 'two-stage' models:-
 - 'first' propensity model to predict customer's likelihood to response
 - 'second' model to estimate customer's transaction spend size(\$)
- Compute expected profit from models
- Rank profit from highest to lowest values and categorize them into 10 equalled subgroups

Explore

Mode

Result

A Quick Glance

What do we know about the data?

- 1. Test results consist of **16,172** customers.
- There are 21 features but can be grouped into7 broad category as below:-

3. 10 customers with negative campaign sales value / historical sales which probably due to refund from previous sale.

- 4. Approximately **1.5K** customers explicitly do not want to be contacted via Telemarketing but were targeted. Surprisingly, **452** actually responded.
- 5. Some other findings include :
 - i. invalid record / typo errors
 - ii. missing values

Features	# of Missing Records	% of Missing Records
Language	4,467	27.64%
Number of Employees	3,744	23.17%
Last Transaction Channel	442	2.73%
Toner	2	0.01%
Insurance	2	0.01%
Printer	1	0.01%
Monitor	1	0.01%
Standard Chair	1	0.01%
Executive Chair	1	0.01%

Next step, data cleaning process!

Step 1 Step 3 Step 2 **IMPROVE DATA INCREASE** 3-STEPS **QUALITY INTEGRITY CLARITY** 1. Fix data errors 1. Assess strength of 1. Design new features: **DETAILS** - Tenure relationship 2. Remove records between variables - Product Mix - Contact Channel with negative 2. Group/Combine sales values - Average Sales/Tran correlated features using dimension 2. Create standard 3. Impute missing reduction process data as shown buckets for analysis review: in page 5 3. Remove outliers / - Historical Sales anomalies - Prior Sales Trans - Tenure

**** PERSONAS ****

RESPONDENTS' PROFILES

- lower Historical Sales
- higher Prior Year Transactions
- · longer Tenure
- specific Number of employees size
- specific Language, other than English

Non-Respondents
Respondents

27.1%

For details of dashboard, please refer Appendix

HISTORICAL SALES

Relatively lower historical sales

<= \$150K

Historical Sales Band	Relative Index
>= \$1.5M	76
\$800k- \$1.5M	88
\$500K-\$800K	90
\$300K-\$500K	99
\$150K-\$300K	113
\$50K-\$150K	119
< \$50K	111

PRIOR YEAR TRANSACTIONS

Relatively higher number of prior year transactions

>= 15

Prior Yr	Relative
Trans Band	Index
>=40	451
30-39	563
20-29	120
15-19	117
5-14	82
<5	53

TENURE (length of relationship)

Relatively longer tenure

>=25 *years*

Tenure Band	Relative Index
>=50 Yrs	1539
40-49 Yrs	985
30-39 Yrs	47
25-29 Yrs	172
20-24 Yrs	8
10-19 Yrs	79
5-9 Yrs	73
<5 Yrs	101

EMPLOYEES SIZE

Either customers with smaller staff size or very large base

Num of	Relative
Employees	Index
1-5	112
6-10	93
11-50	114
51-100	61
101-500	115
500+	133

LANGUAGE

Language	Relative
Language	Index
Arabic	103
Chinese	54
English	102
French	44
German	95
Greek	123
Hebrew	38
Hindi	36
Italian	54
Japanese	134
Korean	0
Pashto	90
Polish	54
Portuguese	87
Russian	67
Spanish	72
Thai	269
Vietnamese	77

Relative Index measures the strength/weakness within each features and compare them between respondents and non-respondents.

• Some features were **correlated**¹ to each other. Two aspects identified as below.

Get

- These features will distort some of the models (e.g. logistic/linear regression) if untreated.
- Apply dimensions reduction technique to overcome this issue.

Aspect #1 | Products purchased previously

Monitor, Computer, Printer, Standard Chair & Product Mix

Features	Monitor	Printer	Computer	Std_Chair	Prod_Mix
Monitor	1				
Printer	0.549	1			
Computer	0.727	0.55	1		
Standard_Chair	0.640	0.466	0.570	1	
Product_Mix	0.625	0.556	0.625	0.573	1

Based on the scree plot² below, all features can be combined under **1 component** as it explained most of the variance.

All features can be combined into 1 component and each feature contributed approximate equal weight.

Weights	Monitor	Printer	Computer	Std_Chair	Prod_Mix	
PCA_Prt_Mon_Com_Chr	21%	18%	21%	19%	20%	

Aspect #2 | Do Not Contact Register(s)

Do Not Email, Do Not Mail Solicit and Do Not Telemarket

Features	Do_Not_Direct Mail_Solicit	Do_Not Email	Do_Not Telemarket
Do_Not_Direct Mail_Solicit			
Do_Not Email	0.544	1	
Do_Not Telemarket		0.572	1

- i. Do Not Mail Solicit & Do Not Telemarket have more weights on first component.
- ii. Do Not Email takes 55% weights on the second component.

Weights	Do_Not_Direct Mail_Solicit	Do_Not Email	Do_Not Telemarket
PCA_1_DM_Tele	36%	28%	36%
PCA_2_Email	24%	55%	21%

Precision Recall F1-Score Support

0.91

0.74

0.87

0.83

0.87

5840

2107

7947

7947

7947

0.93

0.72

0.82

0.87

'Two-Stage' Model Review - First Propensity Model

Get

SUMMARY	Test Dataset			
Classification Model	Accuracy	AUC		
	Score	Score		
Logistic Regression	0.785	0.631		
Random Forest	0.868	0.820		
XGBoost	0.870	0.821		

		Ens	sembi	le	XGBoost	
Accur	racy Scor	e on Train	1	:	0.882	
AUC Score on Train				:	0.838	
Log L	oss on Tr	ain		:	4.090	
Accu	racy Me	asures o	n Test			
Confu	usion Ma	trix :				
]]	5403	437				
	598	1509]]			
Accui	racy Scor	e on Test		:	0.870	
AUC Score on Test				:	0.821	
Log Loss on Test			:	4.498		
_	_					

0.90

0.78

0.84

0.87

Engamble VCDaga

- Comparison made based on two measures:
 - **Accuracy** how well the mod
 - how well the model predicts the outcome correctly as a total.
 - **AUC** (aka AUROC) how well the model distinguishes positive and negative outcomes, which can be easily visualised in the ROC diagram above. The bigger the area under curve, the better the model.

Classification Report

0.0

1.0

accuracy macro avg

weighted avg

WHY IS THIS IMPORTANT?

- A good model leads to better targeting which can generate more revenue and lowering marketing expenses.
- In this specific case, will focus on AUC score as it helps to maximise conversion rate.

'Two-Stage' Model Review - First Propensity Model

Get

Result from Best Propensity Model | Variables Importance Plot

The model takes in each variable based on its significance and calculate the expected value. For example:

- **Tenure** the longer the tenure, the higher the expected value;
- **Number of Prior Year Transactions** the bigger prior year transactions, the higher the expected value;
- Historical Sales Volume the lower the historical sales, the higher the value;
- *Office Supplies* prior purchased of office supplies lower the value.

Illustration:

Two examples showed how do each variable is calculated towards expected value.

Get

'Two-Stage' Model Review - Second Regression Model

SUMMARY	Test Dataset				
Regression Model	R2 Score	RMSE			
Linear Regression	0.704	0.564			
Random Forest	0.803	0.460			
XGBoost	0.816	0.445			

WHAT DOES IT MEAN?

XGBoost has the lowest RMSE, which indicates the absolute fit of the model to actual data - the lower the RMSE value, the better the model.

A few key variables showed significant when calculating the expected sales value. For example:

- Office Supplies prior purchased of office supplies lower the expected value;
- **Average Sales per unit** the higher the value, the higher the expected value;
- **TenureYrs** the longer the tenure, the lower the expected value.

Result from Best Regression Model Variables Importance Plot

(Red = Positive Impact, Blue = Negative Impact)

Analysis Result - Let's combine them!

A few examples on how these models are applied:

Pred	iction	Ac	ctual		
Propensity Model	Regression Model	Test 1	Results		
Probability (Sale)	Estimated (Transaction Size)	Responded Campaig Period Sal			
0.7534	\$2,579.05	Yes	\$2,501.50		
0.1372	\$0.00	No	\$0.00		
0.0198	\$0.00	No	\$0.00		
0.9111	\$248.72	Yes	\$225.60		
0.9993	\$4,838.12	Yes \$5,560.1			

The two models, when combined, do project relatively strong predictive power by

- (i) calculating the probability if the customer will respond
- (ii) estimating the expected sales value.

Next stage, how to maximise profit using this!

Analysis Result – Expected Profit Calculation

Get

Relevant financials components:

Gross margin on sales : 22%
Campaign cost per business contacted : \$45.65
Transaction cost per transaction : \$8.40

E(Profit) = 0.22*Prob(Sale)*Est(Transaction Size) - \$8.40*Prob(Sale) - \$45.65

Take same examples from previous slide and calculate the expected profit using the financial model above.

Model 1	Model 2	Combined
Probability (Sale)	Estimated (Transaction Size)	Expected Profit \$
0.7534	\$2,579.05	\$375.50
0.1372	\$0.00	-\$46.80
0.0198	\$0.00	-\$45.82
0.9111	\$248.72	-\$3.45
0.9993	\$4,838.12	\$1,009.56

Apply this calculation onto the test dataset.

Analysis Result - Gain/Lift Chart

S				Actual						lr	ncr Proj Profit	То	tal Proj Profit	Cu	ıml Incr Profit	Cun	nl Total Profit
groups		Number of	F	Profitability	Li	ft Over				10	00k Cust Base	10	Ok Cust Base	10	00k Cust Base	10	Ok Cust Base
gro	Decile	Customers	Pe	er Customer	Α	verage	To	otal Profit	% of Profit		(\$K)		(\$K)		(\$K)		(\$K)
10	1	794	\$	325.72	\$	328.31	\$	258,622	1243%	\$	3,283	\$	3,257	\$	3,283	\$	3,257
	2	795	\$	31.57	\$	34.16	\$	25,099	121%	\$	342	\$	316	\$	3,625	\$	3,573
into	3	795	\$	(4.85)	\$	(2.26)	\$	(3,853)	-19%	\$	(23)	\$	(48)	\$	3,602	\$	3,524
sort	4	795	\$	(54.05)	\$	(51.46)	\$	(42,970)	-206%	\$	(515)	\$	(541)	\$	3,088	\$	2,984
	5	795	\$	(54.05)	\$	(51.46)	\$	(42,970)	-206%	\$	(515)	\$	(541)	\$	2,573	\$	2,443
t &	6	795	\$	(54.05)	\$	(51.46)	\$	(42,970)	-206%	\$	(515)	\$	(541)	\$	2,058	\$	1,903
profit	7	795	\$	(54.05)	\$	(51.46)	\$	(42,970)	-206%	\$	(515)	\$	(541)	\$	1,544	\$	1,362
pr	8	795	\$	(54.05)	\$	(51.46)	\$	(42,970)	-206%	\$	(515)	\$	(541)	\$	1,029	\$	822
n K	9	795	\$	(54.05)	\$	(51.46)	\$	(42,970)	-206%	\$	(515)	\$	(541)	\$	515	\$	281
Rank	10	793	\$	(54.05)	\$	(51.46)	\$	(42,862)	-206%	\$	(515)	\$	(541)	\$	-	\$	(259)
	Total	7947	\$	(2.59)	\$	-	\$	(20,811)	100%								

• A campaign without appropriate selection process can lead to losses

Random Targeting

• Selecting customers based on top decile(s) can maximise company's profit

Selective Targeting

Selective Targeting:

Expected to gain \$3.57M total profit by just selecting customers in top 2 deciles

■ Cuml Incremental Profit 100K Custs ■ Cuml Total Profit 100K

Recommendations

Test results showed **distinct characteristics** between respondents and non-respondents.

1

Both models have **more than 80% predictive capability** when calculating customer's likelihood to respond and estimating their expected sales values.

2

By adopting **selective targeting** on top deciles, we are able to maximise total profit or allowing the business to **choose the right decile(s)** based on their marketing objective / budget.

3

Propose to deploy using **test-and-control** groups (i.e. A/B testing) to gauge model effectiveness and constantly improve the model through adding various touch-points like digital side of things, geo-locations or creating bespoke **customer segmentation** via clustering.

Conclusions

If you interested on how the models are constructed, please find details in the following link:
https://github.com/ucdcsl55/projects

Appendix - Respondents' Characteristics Dashboard

RESPONDENTS' CHARACTERISTICS DASHBOARD

Repurchase	Relative
Method	Index
AUTO RENEW	117
NOTICE	94

Last Transaction	Relative
Channel	Index
AUTO RENEW	114
BILLING	123
BRANCH (PHONE)	116
BRANCH (POS)	98
IT	96
MAIL	96
PHONE	88
WEB	99

Language	Relative Index
Arabic	103
Chinese	54
English	102
French	44
German	95
Greek	123
Hebrew	38
Hindi	36
Italian	54
Japanese	134
Korean	0
Pashto	90
Polish	54
Portuguese	87
Russian	67
Spanish	72
Thai	269
Vietnamese	77

	Historical	Relative	
	Sales Band	Index	
	>= \$1.5M	76	
	\$800k- \$1.5M	88	
d	\$500K-\$800K	90	6
	\$300K-\$500K	99	Γ
	\$150K-\$300K	113	
	\$ 50K - \$150K	119	
	< \$50K	111	

Historical

Prior Yr

Trans Band

Relative

Index

451

563

120

117

82

53

	Tenure Band	Relative Index
	>=50 Yrs	1539
	40-49 Yrs	985
4	30-39 Yrs	47
	25-29 Yrs	172
•	20-24 Yrs	8
	10-19 Yrs	79
	5-9 Yrs	73
	<5 Yrs	101

Num of	Relative
Employees	Index
1-5	112
6-10	93
11-50	114
51-100	61
101-500	115
500+	133

Appendix - Machine Learning Cookbook

Machine Learning Process

Model Selection, Ingest Data Hyper-parameters Tuning Evaluate, Score & Check & Cross Validation & Review COMPLEXITY Clean, Impute, **Test Data** Learn & Manipulate, for validation **Improve Transform &** purpose **Feature Engineering**

Appendix - Model Diagnostics Review

Q-Q plot lies on a straight line except some outliers in lower and upper ends but insignificant

Predicted values plotted along straight line (assess how close it predicts against the actual value)

