Matematika

Polona Oblak

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

Zaporedja: prvo orodje za delo z neskončnostjo

Zaporedje je preslikava

$$\mathbb{N} \rightarrow \mathbb{R}$$
 $n \mapsto a_n$

Pišemo tudi:

$$(a_n)_n = (a_1, a_2, a_3, \ldots)$$

 $n \dots indeks$ $a_n \dots n-ti člen$

Zaporedja

Zaporedje lahko opišemo

- eksplicitno: $a_n = f(n)$
- ► rekurzivno:
 - $ightharpoonup a_0$, $a_{n+1}=f(a_n)$ za $n\geq 0$
 - $a_0, a_1, \ldots, a_{k-1}, a_{n+k} = f(a_n, \ldots, a_{n+k-1})$ za $n \ge 0$

Geometrijski prikaz

- ► Kot točke na številski premici,
- ▶ kot točke (n, a_n) v ravnini,

Limita zaporedja

Število a je limita zaporedja (a_n)

$$a=\lim_{n\to\infty}a_n,$$

če za vsak $\varepsilon>0$ obstaja tak indeks $N\in\mathbb{N}$, da za vsak $n\geq N$ velja $|a-a_n|<\varepsilon.$

Limita zaporedja

Zaporedje (a_n) je konvergentno, če ima limito. Sicer je divergentno.

Kaj to pomeni (s stališča računanja)?

- ► ε računska natančnost
- ▶ N od tu dalje so <u>vsi</u> členi pri tej natančnosti enaki *a*

Naraščanje ter padanje preko vseh meja

Zaporedje (a_n) narašča prek vsake meje, če za vsak $M \in \mathbb{N}$ obstaja indeks $N \in \mathbb{N}$, da za vsak $n \geq N$ velja $a_n \geq M$.Oznaka:

$$\lim_{n\to\infty}a_n=\infty.$$

POZOR: tako zaporedje ni konvergentno saj nima limite!!!

Zaporedje (a_n) pada prek vsake meje, če za vsak $M \in \mathbb{N}$ obstaja indeks $N \in \mathbb{N}$, da za vsak $n \geq N$ velja $a_n \leq -M$. Oznaka:

$$\lim_{n\to\infty}a_n=-\infty.$$

POZOR: tako zaporedje ni konvergentno saj nima limite!!!

Primeri

1. Za $a \in \mathbb{R}$ določimo $\lim_{n \to \infty} a^n$.

$$\lim_{n \to \infty} a^n = \left\{ \begin{array}{ll} \infty & \text{ \'e je } & a > 1 \\ 1 & \text{ \'e je } & a = 1 \\ 0 & \text{ \'e je } & -1 < a < 1 \\ \text{ ne obstaja } \text{ \'e je } & a \leq -1 \end{array} \right.$$

Primeri

2. Za $a \in \mathbb{R}$ določimo $\lim_{n \to \infty} n^a$.

$$\lim_{n \to \infty} n^{a} = \begin{cases} \infty & \text{če je} & a > 0\\ 1 & \text{če je} & a = 0\\ 0 & \text{če je} & a < 0 \end{cases}$$

Primeri

3.
$$b_n = (1 + 1/n)^n$$

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

$$e^{-1} = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$$

Računanje limit

Naj bo $\lim_{n\to\infty} a_n = a$ in $\lim_{n\to\infty} b_n = b$. $\lim_{n\to\infty} (a_n + b_n) = a + b$

- Če je $b_n \neq 0$ za vsak n in $b \neq 0$, je

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}.$$

Zgled:

$$\lim_{n\to\infty}\frac{(n+2)^2}{3n^2+n+1}$$

• Če je $a_n > 0$ za vsak n in a > 0, je

$$\lim_{n\to\infty}a_n^{b_n}=a^b.$$

V primerih ∞ ter deljenja z 0 lahko dobimo nedoločene izraze. Pri njih je potrebna opreznost.

Najbolj slasten matematični izrek

Izrek (o sendviču)

Če za vsak n velja $a_n \leq b_n \leq c_n$ in $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = a$, je tudi

$$\lim_{n\to\infty}b_n=a.$$

Izračunajmo $\lim_{n\to\infty}$

Pogoji za konvergenco zaporedij

Potreben pogoj za konvergenco zaporedja je *omejenost*: vsako konvergentno zaporedje je omejeno:

Definicija

Zaporedje $(a_n)_n$ je navzgor omejeno, če ima zgornjo mejo, to je tako število $M \in \mathbb{R}$, da je $a_n \leq M$ za vsak $n \in \mathbb{N}$.

Zaporedje $(a_n)_n$ je navzdol omejeno, če ima spodnjo mejo, to je tako število $m \in \mathbb{R}$, da je $a_n \geq m$ za vsak $n \in \mathbb{N}$.

Omejeno zaporedje je navzgor in navzdol omejeno.

Pogoji za konvergenco zaporedij

Zaporedje je *naraščajoče*, če je $a_n \le a_{n+1}$ za vsak n, in je *padajoče*, če je $a_n \ge a_{n+1}$ za vsak n.

Izrek

Naraščajoče zaporedje je konvergentno natanko takrat, kadar je navzgor omejeno.

Izrek

Padajoče zaporedje je konvergentno natanko takrat, kadar je navzdol omejeno.

Vrste

Vrsta je simbolična vsota:

$$a_0 + a_2 + a_3 + \cdots + a_n + \cdots = \sum_{n=0}^{\infty} a_n$$

Vrste

- m-ta delna vsota vrste: $S_m = a_0 + \cdots + a_m$,
- rekurzivna definicija zaporedja delnih vsot:

$$S_0 = a_0,$$

 $S_{m+1} = S_m + a_{m+1}$

- Vrsta $\sum_{n=0}^{\infty} a_n$ je *konvergentna*, če je konvergentno zaporedje delnih vsot S_m .
- ▶ *Vsota* vrste je limita $\lim_{m\to\infty} S_m = S$.
- ▶ Vrsta, ki ni konvergentna, je *divergentna*.

Geometrijska vrsta

$$\sum_{n=0}^{\infty} q^n = 1 + q + q^2 + \cdots + q^n + \cdots$$

- ► Konvergenca je odvisna od *kvocienta q*:
 - ▶ konvergira, če je |q| < 1,
 - divergira, če je $|q| \ge 1$.
- ▶ Za |*q*| < 1 je

$$\sum_{n=0}^{\infty} q^n = 1 + q + q^2 + \dots + q^n + \dots = \frac{1}{1-q}$$

$$\sum_{n=M}^{\infty} a \cdot q^n = aq^M + aq^{M+1} + \dots + aq^n + \dots = \frac{aq^M}{1-q}$$

Potreben pogoj za konvergenco vrste

Če je vrsta konvergentna, je $\lim_{n\to\infty} a_n = 0$.

- ▶ Pazi! Pogoj ni zadosten.
- ► Zgled: harmonična vrsta $\sum_{n=1}^{\infty} \frac{1}{n}$ ni konvergentna.
- Leibnizov kriterij: če zaporedje a_n monotono pada proti 0 in so vsi členi a_n pozitivni potem je $\sum_{n=1}^{\infty} (-1)^n \cdot a_n$ konvergentna.