Τριγωνομετρικές συναρτήσεις

ΑΣΚΗΣΕΙΣ

Χάραξη γραφικής παράστασης

1. Δίνεται η συνάρτηση $f(x) = \eta \mu(2x)$ με $x \in \mathbb{R}$.

α. Να βρεθούν η περίοδος καθώς και τα ακρότατα της f.

β. Να χαράξετε τη γραφική παράσταση της f σε διάστημα μιας περιόδου.

2. Για καθεμία από τις παρακάτω συναρτήσεις, να βρεθεί η περίοδος, τα ακρότατα καθώς και να σχεδιαστεί η γραφική της παράσταση, σε διάστημα μιας περιόδου.

α.

$$\delta. \ f(x) = \operatorname{ouv}\left(\frac{x}{2}\right)$$

 β . $f(x) = \sigma v (3x)$

$$\epsilon. \ f(x) = \eta \mu(\pi x)$$

$$\gamma. \ f(x) = \eta \mu \left(\frac{x}{4}\right)$$

$$γ. f(x) = ημ\left(\frac{x}{4}\right)$$
 $στ. f(x) = συν\left(\frac{πx}{2}\right)$

΄Αρτιες - Περιττές

3. Να εξετάσετε αν οι παρακάτω συναρτήσεις είναι άρτιες ή περιττές.

$$\alpha. \ f(x) = \sqrt{x^2 - 1}$$

$$\delta. \ f(x) = \frac{\eta \mu x}{x}$$

$$\beta. \ f(x) = \sqrt{9 - x^2}$$

$$\alpha. \ f(x) = \sqrt{x^2 - 1}$$

$$\beta. \ f(x) = \sqrt{9 - x^2}$$

$$\delta. \ f(x) = \frac{\eta \mu x}{x}$$

$$\epsilon. \ f(x) = \frac{\sigma \upsilon v x}{|x| - 1}$$

$$f(x) = \frac{\eta \mu x}{x^2 + 3}$$
 $\sigma \tau. \ f(x) = \eta \mu (x^3 - x)$

στ.
$$f(x) = \eta \mu \left(x^3 - x\right)$$

1

Περιοδικότητα

4. Να αποδείξετε ότι καθεμία από τις παρακάτω συναρτήσεις είναι περιοδική, με περίοδο τον δοσμένο αριθμό Τ.

α.
$$f(x) = ημ(2x) + συν(4x)$$
, με $T = π$

β.
$$f(x) = ημ(4x) + εφ(2x)$$
, με $T = \frac{π}{2}$

$$y. f(x) = συν(4x) + εφ(4x), με T = \frac{\pi}{2}$$

δ.
$$f(x) = \text{συν}(2x) \cdot \text{σφ}x$$
, με $T = \pi$

ε.
$$f(x) = σφ(2x) + εφ(8x)$$
, με $T = \frac{\pi}{2}$

στ.
$$f(x) = ημ(2x) \cdot εφx$$
, με $T = π$

ζ.
$$f(x) = \text{sun}(3x) + \text{erf}(4x)$$
, με $T = \frac{2\pi}{3}$