

Description

The Power MOSFET is fabricated using the advanced planar VDMOS technology. The resulting device has low conduction resistance, superior switching performance and high avalance energy.

Features

- ♦ Low R_{DS(on)}
- ◆ Low gate charge (typ. Q_g = 12.8 nC)
- 100% UIS tested
- RoHS compliant

Applications

- Power faction correction.
- Switched mode power supplies.
- LED driver.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	600	V
Continuous drain current (T _C = 25°C)	I _D	4	А
(T _C = 100°C)		2.5	Α
Pulsed drain current 1)	I _{DM}	16	А
Gate-Source voltage	V _{GSS}	±30	V
Avalanche energy, single pulse 2)	Eas	245	mJ
Peak diode recovery dv/dt 3)	dv/dt	5	V/ns
Power Dissipation C TO-220F(T _C = 25°C)		32	W
Derate above 25°C		0.26	W/°C
Power Dissipation	P _D		
C TO-220\TO-251\TO-252\TO-262(T _C = 25°C)		77	W
Derate above 25°C		0.61	W/°C
Operating juncition and storage temperature range	T _J , T _{STG}	-55 to +150	°C
Continuous diode forward current	Is	4	Α
Diode pulse current	I _{S,pulse}	16	Α

Thermal Characteristics

Parameter	Cumbal	Value		l leit	
	Symbol	C TO-220F	C TO-220\TO-251\TO-252\TO-262	Unit	
Thermal resistance, Junction-to-case	R _{eJC}	3.8	1.62	°C/W	
Thermal resistance, Junction-to-ambient	R _{0JA}	62.5	110	°C/W	

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Tube	Units/Reel
VSM4N60-T62	TO-262	VSM4N60-T62	50	
VSM4N60-T1	TO-251	VSM4N60-T1	50	
VSM4N60-T2	TO-252	VSM4N60-T2		2500
VSM4N60-TF	TO-220F	VSM4N60-TF	80	
VSM4N60-TC	TO-220C	VSM4N60-TC	50	

Electrical Characteristics T_c = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						•
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =0.25 mA	600	-	-	V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =0.25 mA	2	-	4	V
Drain cut-off current	I _{DSS}	V _{DS} =600 V, V _{GS} =0 V,				
		T _j = 25°C	-	-	1	μA
		T _j = 125°C	-		100	
Gate leakage current, Forward	I _{GSSF}	V _{GS} =30 V, V _{DS} =0 V	-	-	100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-30 V, V _{DS} =0 V	-	-	-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =2 A	-	2.0	2.4	Ω
Dynamic characteristics			'			•
Input capacitance	Ciss	V _{DS} = 25 V, V _{GS} = 0 V,	-	580	-	
Output capacitance	Coss	f = 1 MHz	-	50	-	pF
Reverse transfer capacitance	Crss		-	3	-	
Turn-on delay time	t _{d(on)}	V _{DD} = 300 V, I _D = 4 A	-	13	-	
Rise time	t _r	$R_G = 10 \Omega, V_{GS} = 15 V$	-	31	-	ns
Turn-off delay time	t _{d(off)}		-	38	-	
Fall time	t _f	_	-	17	-	
Gate charge characteristics			'			
Gate to source charge	Q _{gs}	V _{DD} =480 V, I _D =4 A,	-	3.1	-	
Gate to drain charge	Q _{gd}	V _{GS} =0 to 10 V	-	5.5	-	nC
Gate charge total	Qg		-	12.8	-	
Gate plateau voltage	V _{plateau}		-	5	-	V
Reverse diode characteristics						
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =4 A	-	-	1.5	V
Reverse recovery time	t _{rr}	V _R =400 V, I _F =4 A,	-	275	-	ns
Reverse recovery charge	Qrr	dl _F /dt=100 A/μs	-	1.43	-	μC
Peak reverse recovery current	Irrm		_	10.4		Α

Notes:

- 1. Pulse width limited by maximum junction temperature.
- 2. L=10mH, I_{AS} = 7A, Starting T_j = 25°C.
- 3. I_{SD} = 4A, di/dt \leq 100A/us, V_{DD} \leq BV_{DS}, Starting T_j= 25°C.

Electrical Characteristics Diagrams

Figure 1. Typical Output Characteristics

Figure 3. On-Resistance Variation vs. Drain Current

Figure 5. Breakdown Voltage vs. Temperature

Figure 2. Transfer Characteristics

Figure 4. Threshold Voltage vs. Temperature

Figure 6. On-Resistance vs. Temperature

Figure 7. Capacitance Characteristics

Figure 9. Maximum Safe Operating Area C C TO-220F

Figure 11. Power Dissipation vs. Temperature C C TO-220F

Figure 8. Gate Charge Characterist

V_{GS}, Gate-Source Voltage (V)

Q_G ,Total Gate Charge (nC)

Figure 10. Maximum Safe Operating Area C C TO-220/TO-251/TO-252/TO-262

Figure 12. Power Dissipation vs. Temperature C C TO-220/TO-251/TO-252/TO-262

T_c,Case temperature (°C)

Figure 13. Continuous Drain Current vs. Temperature

Figure 14. Body Diode Transfer Characteristics

Figure 15 Transient Thermal Impendance, Junction to Case C TO-220F

Figure 16. Transient Thermal Impendance, Junction to CaseC TO-220/TO-251/TO-252/TO-262

Gate Charge Test Circuit & Waveform

Unclamped Inductive Switching Test Circuit & Waveforms

