P.P.4.7 We transform the dependent voltage source as shown in Fig. (a). We combine the two current sources in Fig. (a) to obtain Fig. (b). By the current division principle,

P.P.4.9 To find V_{Th}, consider the circuit in Fig. (a).

$$I_x = i_2$$

 $i_2 - i_1 = 1.5I_x = 1.5i_2 \longrightarrow i_2 = -2i_1$ (1)

For the supermesh,
$$-6 + 5i_1 + 7i_2 = 0$$
 (2)

From (1) and (2), $i_2 = 4/(3)A$

$$V_{Th} = 4i_2 = 5.333V$$

To find R_{Th}, consider the circuit in Fig. (b). Applying KVL around the outer loop,

$$5(0.5I_x) - 1 - 3I_x = 0$$
 $I_x = -2$

$$i = \frac{1}{4} - I_x = 2.25$$

$$R_{Th} = \frac{1}{i} = \frac{1}{2.25} = 444.4 \text{ m}\Omega$$

P.P.4.10 Since there are no independent sources, $V_{Th} = 0$

To find R_{Th}, consider Fig.(a). Using source transformation, the circuit is transformed to that in Fig. (b). Applying KVL,).

But
$$v_x = -5i$$
. Hence, $30i - 20i + 15i_0 = 0$ \longrightarrow $10i = -15i_0$

$$v_0 = (15i + 15i_0) = 15(-1.5i_0 + i_0) = -7.5i_0$$

 $R_{Th} = v_o/(i_o) = -7.5\Omega$ It needs to be noted that this negative resistance indicates we must have an active source (a dependent source).

P.P.4.12

To get R_N consider the circuit in Fig. (a). Applying KVL, $6i_x - 2v_x - 1 = 0$ But $v_x = 1$, $6i_x = 3 \longrightarrow i_x = 0.5$ $i = i_x + \frac{v_x}{2} = 0.5 + 0.5 = 1$ $R_N = R_{Th} = \frac{1}{i} = 1\Omega$

To find I_N , consider the circuit in Fig. (b). Because the 2Ω resistor is shorted, $v_x = 0$ and the dependent source is inactive. Hence, $I_N = i_{sc} = 10$ A.

P.P.4.13 We first need to find R_{Th} and V_{Th} . To find R_{Th} , we consider the circuit in Fig. (a).

Applying KCL at the top node gives

$$\frac{1 - v_o}{4} + \frac{3v_x - v_o}{1} = \frac{v_o}{2}$$

But $v_x = -v_o$. Hence

$$\frac{1 - v_o}{4} - 4v_o = \frac{v_o}{2} \longrightarrow v_o = 1/(19)$$

$$i = \frac{1 - v_o}{4} = \frac{1 - \frac{1}{19}}{4} = \frac{9}{38}$$

$$R_{Th} = 1/i = 38/(9) = 4.222\Omega$$

To find V_{Th}, consider the circuit in Fig. (b),

$$-9 + 2i_0 + i_0 + 3v_x = 0$$

But $v_x = 2i_o$. Hence,

$$9 = 3i_0 + 6i_0 = 9i_0 \longrightarrow i_0 = 1A$$

$$V_{Th} = 9 - 2i_o = 7V$$

$$R_L=R_{Th}=\textbf{4.222}~\boldsymbol{\Omega}$$

$$P_{\text{max}} = \frac{v_{\text{Th}}^2}{4R_L} = \frac{49}{4(4.222)} = 2.901 \text{ W}$$