# Разработка и реализация нейросетевой системы для извлечения именованных сущностей генов и мутаций из медицинских текстов

## Сотников А.Д.

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Научный руководитель д.т.н. С. К. Дулин Научный консультант д.т.н. В. Ф. Хорошевский

> Москва, 2020 г.

## Озадаче

#### Мотивация

Существующие модели не способны одновременно находить в текстах сущности и генов, и мутаций. Кроме того, они не используют в полной мере контекстную информацию.

#### Поставленная задача

На вход подается корпус биомедицинских текстов, разбитый на предложения. Требуется найти в нем именованные сущности генов и мутаций, решив задачу разметки последовательности слов.

## Предлагается

Реализовать нейронную сеть, которая с помощью контекстной информации каждого слова способна извлекать из биомедицинских текстов рассматриваемые именованные сущности.

#### Сложности

Именованные сущности генов и мутаций могут быть записаны в разных форматах:

- Standard c.925delA; g.3912G>C; rs206437.
- Semi-standard 3992-9g->a mutation; codon 92, TAC->TAT.
- Natural language deletion of 10 and 8 residues from the N- and C-terminals.

Серьезные трудности возникают, когда сущность специфицируется на естественном языке.

# Существующие методы

#### Работы по Gene Mention

- Vocabulary-based (BLAST 2000)
- Rule-based (ProMiner 2005)
- ML-based (GNormPlus 2015)
- DL-based (CollaboNet 2018, BioBERT 2019)

#### Работы по Mutation Mention

- Rule-based (MutationFinder 2007, SETH 2016)
- Probabilistic-based (tmVar 2013, nala 2017)

## Постановка задачи

• Дана выборка и множество меток

$$\mathcal{D} = \{x_i, y_i\}_{i=1}^N, \quad \mathcal{K} = \{k_j\}_{j=1}^5$$

где  $x_i \in \mathbb{R}^{n_i}$  — последовательность слов в предложении длины  $n_i$ ,  $y_i \in \mathbb{R}^{n_i}$  — соответствующая им последовательность меток, а  $k_i \in [\mathrm{O, B-GENE, I-GENE, B-MUT, I-MUT}].$ 

• Требуется построить модель

$$a:(w,X)\to y,$$

 $w\in \mathbb{W}$  – параметры модели,  $X=igcup_{i=1}^Nigcup_{j=1}^{n_i}x_j, y=igcup_{i=1}^Nigcup_{j=1}^{n_i}y_j.$ 

• Функция ошибки

$$\mathcal{L}(y, X, w) = -\sum_{i=1}^{N} log(\mathbb{P}\{y_{ik}|x_i\}).$$

• Решается задача оптимизации:

$$\mathbf{w}^* = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{W}} ig( \mathcal{L}(\mathbf{w}) ig)$$

# Архитектура BiLSTM





## Принцип работы

LSTM помогает сохранять предыдущую относительно текущего слова информацию. При этом, можно параллельно обучить два таких слоя для прямого и обратного предложения, получив скрытое состояние BiLSTM конкатенаций двух состояний LSTM, т.е.

$$\forall x_t \in x \quad h_t = [\overrightarrow{h_t}, \overleftarrow{h_t}].$$

#### Важно

Такая архитектура позволяет запоминать и учитывать предыдущий и будущий контекст текущего слова.

# Условные случайные поля (CRF)

• Имеется  $\mathbf{x} = (x_1, x_2, \dots, x_n)$  – входное предложение,  $\mathbf{y} = (y_1, y_2, \dots, y_n)$  – наблюдаемые метки.



 $\Gamma$ раф CRF на шаге t

• Оценка последовательности меток у:

$$s(x,y) = \sum_{t=1}^{n+1} (A_{y_{t-1},y_t} + P_{t,y_t}),$$

 $\mathsf{P}_{t,y_t}$  вычисляет оценку соответствия метки  $y_t$  слову  $x_t$  (в нашем случае  $\mathsf{P}_{t,y_t} = \mathsf{W}_h \cdot \mathsf{h} + \mathsf{b}_h$ ), А – матрица транзитивности.

• Вероятность последовательности у :

$$\mathbb{P}\{y|x\} = \frac{\prod_{n} \exp(s(x,y))}{\sum_{\tilde{y} \in Y_{x}} \prod_{n} \exp(s(x,\tilde{y}))},$$

 $\mathsf{Y}_\mathsf{x}$  – всевозможные последовательности меток в предложении x.

• Окончательно,

$$y^* = \underset{\tilde{y} \in Y_x}{\operatorname{argmax}} s(x, \tilde{y})$$

#### Важно

CRF учитывают контекст на уровне предложений. Так, например, они предотвращают ситуации, когда метка I-MUT возникает перед B-MUT в пределах одной сущности или возникает сразу после B-GENE.

# Char-level embeddings

## Проблема

Много специфичных слов, не входящих в словарь  $V \to возникает$  проблема OOV (out of vocabulary) слов.

## Идея

- Отдельно, с помощью BiLSTM, обучать векторные представления для символов (char-level embeddings), из которых состоит очередное слово.
- Такой метод позволяет модели "приблизительно понять", какую смысловую нагрузку несёт неизвестное слово.

# Модель нейронной сети GMNet



Архитектура нейронной сети GMNet, реализованной в данной работе

# Вычислительный эксперимент

| Корпус         | Кол-во генов | Кол-во мутаций | Кол-во предложений |
|----------------|--------------|----------------|--------------------|
| JNLPBA         | 10589        | =              | 22562              |
| BC2GM          | 24583        | -              | 20510              |
| MutationFinder | =            | 5611           | 8176               |
| tmVar          | -            | 3702           | 5956               |

## Наборы данных

## Показатели качества

$$\begin{aligned} \textit{Precision} &= \frac{\textit{TP}}{\textit{TP} + \textit{FP}}, \\ \textit{Recall} &= \frac{\textit{TP}}{\textit{TP} + \textit{FN}}, \\ \textit{F-measure} &= \frac{2 \cdot \textit{Precision} \cdot \textit{Recall}}{\textit{Precision} + \textit{Recall}}. \end{aligned}$$



- ...pRSV-neo and pSVO-neo...
- ...present study G146A and G146V mutants...
- ...Human beta0-adrenergic receptor impart...

# Результаты обучения на 15 эпохах



Слева: График зависимости функции потерь от числа эпох; Справа: График зависимости F-меры от числа эпох

# Пример работы модели

```
...<mark>C - - > T transition at nucleotide 677</mark> — is one among them...
...<mark>C - - > T transition at nucleotide 677</mark> – is one among them...
...<mark>NF - kappaB</mark> DNA – protein binding and ICAM <mark>- 0</mark> promoter...
....NF - kappaB DNA - protein binding and ICAM - 0 promoter...
...pRSV-neo and pSV0-neo...
...pRSV-neo and pSVO-neo...
...present study G146A and G146V mutants...
...present study G146A and G146V mutants...
...Human beta0-adrenergic receptor impart...
...Human beta0-adrenergic receptor impart...
```

Предсказания модели обозначены желтым цветом, ground-truth разметка — зеленым

# Сравнение с существующими методами

| GMNet            | 81.59     | <b>79.13</b> | 80.34   |
|------------------|-----------|--------------|---------|
| Wang et al. 2018 | 81 11     | 78 91        | 80.00   |
| BioBERT          | 84.32     | 85.12        | 84.72   |
| Collabonet       | 79.70     | 77.47        | 78.56   |
| Модель           | Precision | Recall       | F-score |
|                  |           |              |         |

| Модель | Precision | Recall | F-score |
|--------|-----------|--------|---------|
| tmVar  | 94.96     | 79.01  | 86.25   |
| nala   | 86.32     | 92.20  | 89.16   |
| SETH   | 96.42     | 74.66  | 84.15   |
| GMNet  | 87.71     | 86.48  | 87.09   |

Сравнение результатов показателей качества существующих современных моделей с GMNet

# Выносится на защиту

#### Полученные результаты

- Разработана нейросетевая модель для решения задачи извлечения именованных сущностей генов и мутаций
- Модель дает качество, сравнимое с существующими современными методами
- Проведенные вычислительные эксперименты показывают состоятельность предложенного подхода

## Дальнейшие исследования

- Использовать дополнительную информацию на уровне n-gramm
- Использовать дополнительные признаки, такие как часть речи и регистр слова