Week 2

The Schrödinger Equation

2.1 Particle-Wave Duality and Uncertainty Relations

• Particle-wave duality (de Brogelie's original formulation):

$$\lambda \nu = c$$
 $E = h \nu$ $p = \frac{h}{\lambda}$

• Angular frequency: The quantity $\omega = 2\pi r$.

• Wavenumber: The quantity $k = 2\pi/\lambda$.

• We can create a symmetrical formulation of the de Broglie relation using these new quantities:

$$E = \hbar \omega \qquad \qquad p = \hbar k$$

• What is the wave that we might associate with a de Broglie particle?

$$\Psi(x) = Ae^{ikx - i\omega t}$$

• Probability:

- Classically, such a wave might be associated with EM radiation hitting a surface with intensity $I = |\Psi(x)|^2 = \Psi(x)\Psi^*(x)$.
- As soon as we associate a particle (photon) with the wave, the intensity may be re-interpreted as the number of particles reaching the surface or the probability of a particle being at the surface.
- Thus, the probability of finding a particle at the surface becomes $|\Psi(x)|^2$, as well.
- Following de Broglie, we also associate waves with particles such as electrons.
 - With the association of light as a particle, the particle wave duality leads to the appearance of probability.
- What is the probability of finding the particle at the origin?

$$Pr = \left| Ae^{ik \cdot 0} \right|^2$$
$$= |A|^2$$

- Since the probability is not dependent on position, it is the same everywhere.
- We also run into issues **normalizing** this unbounded wavefunction.

- We know this particle's momentum exactly, but we know nothing about its position.
- **Normalizing** (a wavefunction): Guaranteeing that the integral for the entire wavefunction is equal to 1.
- Free particle: A particle that does not have constraints on where it is more likely to be.
- Heisenberg's uncertainty relations are formalized in terms of matrix mechanics.
 - We can Fourier transform the wave function of particle to convert it from a function of position to a function of momentum.
 - The Fourier transform will yield one spike at $\hbar k$ and will be 0 everywhere else just like the Dirac delta function.
 - Thus,

$$\Psi(p) = \delta(p - \hbar k)$$

• Consider a Gaussian wave packet at p=0. Then

$$\phi(p) = Ce^{-\frac{p^2}{2(\Delta p)^2}}$$

- $-\Delta p$ is the standard deviation of the Gaussian/width of the distribution. It is a constant such that the probability drops to 1/e of its maximum at p=0.
- With the Fourier Transform of $\Psi(p)$, we obtain

$$\Psi(x) = De^{-\frac{(\Delta p)^2 x^2}{2\hbar^2}}$$

- Thus, a Gaussian quantum function produces a Gaussian position function via an FT as well, i.e.,

$$\Psi(x) = De^{-\frac{x^2}{2(\Delta x)^2}}$$

• Now if we set the last two equations equal to each other, we get

$$\frac{(\Delta p)^2}{2\hbar^2} = \frac{1}{2(\Delta x)^2}$$
$$(\Delta p)^2 (\Delta x)^2 = \hbar^2$$
$$\Delta p \Delta x = \hbar = \frac{h}{2\pi}$$

- This implies that the spread of the Gaussian in momentum times the spread of the Gaussian in position is a constant.
- If we make one Gaussian wave packet more specific, the other gets more spread out, and vice versa.
- Note that the above equality does satisfy the Heisenberg uncertainty principle, but it is not it itself.

2.2 The Schrödinger Equation and Particle in a Box

10/6: • Review:

- de Broglie describes an electron as a free particle.

$$\Psi(x) = Ae^{ikx}$$

- We can only observe the real part, but being able to access the complex part is important in quantum mechanics.

- Schrödinger was on vacation in the Swiss Alps with his mistress when he derived the wave equation.
 - Schrödinger realized that

$$\frac{d\Psi(x)}{dx} = Aike^{ikx}$$
$$-i\hbar \frac{d\Psi(x)}{dx} = Ape^{ikx}$$
$$= p\Psi(x)$$

- Let's introduce operators in quantum mechanics and let \hat{p} be an operator that when it acts on $\Psi(x)$, it gives the above. In other words,

$$\hat{p} = -i\hbar \frac{\mathrm{d}}{\mathrm{d}x}$$

- Thus,

$$\hat{p}\Psi(x) = p\Psi(x)$$

– But energy is more important than momentum, so let's introduce an energy operator \hat{T} related to \hat{p} by

$$\hat{T} = \frac{\hat{p}^2}{2m} = \frac{-\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2}$$

since $E = mv^2/2 = p^2/(2m)$.

- Thus, we have

$$\hat{T}\Psi(x) = \frac{p^2}{2m}\Psi(x)$$

– It follows from classical physics that the total energy operator \hat{H} (the Hamiltonian) is the sum of the kinetic and potential energy operators, i.e., $\hat{H} = \hat{T} + \hat{V}$. Therefore, we must have

$$\hat{H}\Psi(x) = E\Psi(x)$$

and that is the Schrödinger equation.

- The particle in a box is like a single electron in a one-dimensional chamber that runs from -a to a with L = 2a (Schrödinger figured this out a few days later, still in the Swiss Alps).
 - The walls are infinite and have infinite potential.
 - We need the boundary condition, though, to be able to solve a differential equation like the Schrödinger equation.
 - Fortunately, we know that at |x| = a, we have $\Psi(\pm a) = 0$.
 - Another important point is that $d\Psi(x)/dx$ at a is discontinuous.
 - So we have that

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\Psi_n(x) = E_n\Psi_n(x)$$
$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}\Psi(x) = -k^2\Psi(x)$$

where

$$k = \sqrt{\frac{2mE}{\hbar^2}}$$

- The solution of the differential equation will be of the form

$$\Psi(x) = A\cos(kx) + B\sin(kx)$$

- Boundary conditions 1 and 2, respectively:

$$0 = \Psi(a)$$

$$= A\cos(ka) + B\sin(ka)$$

$$0 = \Psi(-a)$$

$$= A\cos(ka) - B\sin(ka)$$

- Adding/subtracting the two equations yields

$$A\cos(ka) = 0 \qquad B\sin(ka) = 0$$

- We satisfy these equations with either of 2 classes of nontrivial solutions (the trivial solution being a = 0).
 - 1. B=0 and $\cos(ka)=0$, i.e., $k_n=\frac{n\pi}{2a}$ for $n\in 2\mathbb{N}+1$.
 - 2. A = 0 and $\sin(ka) = 0$, i.e., $k_n = \frac{n\pi}{2a}$ for $n \in 2\mathbb{N}$.
- Thus, either

$$\Psi_n(x) = \frac{1}{\sqrt{a}} \cos\left(\frac{n\pi x}{2a}\right)$$

for $n \in 2\mathbb{N} + 1$ are the **even solutions** (because cosine is an even function), and

$$\Psi_n(x) = \frac{1}{\sqrt{a}} \sin\left(\frac{n\pi x}{2a}\right)$$

for $n \in 2\mathbb{N}$ are the **odd solutions** (because sine is an odd function).

- Note that we derive the $1/\sqrt{a}$ coefficient by normalizing $\Psi(x)$ with

$$\int_{-a}^{a} |\Psi(x)|^2 dx = \int_{-a}^{a} \Psi^*(x) \Psi(x) = 1$$

- The energies come out to

$$E_n = \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2}{8m} \cdot \frac{\pi^2 n^2}{a^2}$$

with the substitution $k_n = \frac{n\pi}{2a}$.

■ Note that this means that the particle becomes more discrete the smaller the box gets (as uncertainty in position goes down, it acts more and more quantum mechanically).