GATE 2022-PH

EE23BTECH1205 - Avani Chouhan*

Question: 11

For the Op-Amp circuit shown below, choose the correct output waveform corresponding to the input $V_{\rm in}=1.5\sin(20\pi t)$ (in Volts). The saturation voltage for this circuit is $V_{\rm sat}=\pm10$ V.

- (A)
- (B)
- (C)
- (D)

(GATE PH 2022)

Solution:

Given circuit is a Schmitt Trigger circuit. In this output will be always saturated, i.e., limited between

$$+V_{\rm sat}$$
 to $-V_{\rm sat}$.

Let's assume initially the output is at its negative saturation voltage $(-V_{\rm sat})$. As the input voltage $(V_{\rm in})$ increases, it eventually exceeds $V_{\rm TH}$, causing the output of the op-amp to switch to its positive saturation voltage $(+V_{\rm sat})$. As $V_{\rm in}$ decreases, it eventually falls below $V_{\rm TL}$, causing the output of the op-amp to switch back to its negative saturation voltage $(-V_{\rm sat})$. This process repeats as the input voltage oscillates sinusoidally. Each time $V_{\rm in}$ crosses one of the threshold levels, the output switches between $+V_{\rm sat}$ and $-V_{\rm sat}$.

So, the correct answer is (A).

