

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA Segundo Semestre de 2019

Variable Compleja - MAT2705

Índice

Ι		2
1.	Números Complejos	2
	1.1. Proyección Esterográfica	2
	1.2. Funciones en \mathbb{C}	3
	1.3. Funciones Analíticas	3
	1.4. Mapeos Conformes	5

Preliminares

Evaluaciones

- 3 Interrogaciones (27 Sept, 22 Oct, 20 Nov)
- 4 Tareas
- 1 Examen

Eximición con promedio 5.5

$$NF := \frac{I_1 + I_2 + I_3 + PT + E}{5}$$

Textos

Libro: Gamelin: Complex Analysis

Parte I

1. Números Complejos

Se identifica $z=x+iy\in\mathbb{C}$ ssi $(x,y)\in\mathbb{R}^2$ ($\mathbb{C}\iff\mathbb{R}^2$). En este contexto se define $i^2=-1$, se definen las operaciones decentes dado $\mathbb{C}\simeq\mathbb{R}[x]/(x^2+1)$ como cuerpo. También se puede identificar $z=r\exp(i\theta)\in\mathbb{C}$, donde $r=|z|=\sqrt{x^2+y^2}$ y tan $\theta=\frac{y}{x}$

Definición 1.1 (Conjugado). El conjugado de z se anota \bar{z} y se define $\bar{z} = a - ib$ si z = a + ib, $\bar{z} = r \exp(i\theta)$.

1.1. Proyección Esterográfica

Definición 1.2 (Proyección Estereográfica). Cada $z \in \mathbb{C}$ identificarlo con un punto en S^2 (la esfera)

Teorema 1.1. Bajo proyección estereográfica círculos y rectas en el plano corresponden a intersecciones de planos en S^2 (círculos en la esfera)

1.2. Funciones en \mathbb{C}

La topología en \mathbb{C} es la heredada de \mathbb{R}^2 y bajo esta tenemos nociones de convergencia y continuidad.

Ejemplo: 1.1.

- 1) $f(z) = a_n z^n + \cdots + a_0$ es continua
- 2) $f(z) = \bar{z}$ continua
- 3) $f(z) = \exp(z)$ continua
- 4) Definiendo $\ln(z) = \ln(r \exp(i\theta)) = \ln(r) + i\theta)$ con $\theta \in (-\pi, \pi]$ (la rama principal), la función no es continua en todo el eje $\{y \leq 0\}$
- 5) Definiendo $\sqrt{z} = \exp(\frac{1}{2}\ln(z))$ no es continua.

1.3. Funciones Analíticas

Observación 1.1. Dado $f: \mathbb{C} \to \mathbb{C}$, tal que $((x,y) \mapsto (u(x,y),v(x,y)))$, $x+iy \mapsto u(z)+iv(z)$. Esta función es diferenciable en $\Omega \subseteq \mathbb{R}^2$ en el sentido de CVV ssi $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ existen y son continuas en Ω . El diferencial es:

$$\begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}$$

Definición 1.3. Decimos que $f: \Omega \subseteq \mathbb{C} \to \mathbb{C}$ es diferenciable en z_0 ssi $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0)$ existe. f se dice analítica en Omega ssi f es diferenciable en el sentido anterior para todo $z_0 \in \Omega$ y f'(z) es continua en Ω .

Ejemplo: 1.2.
$$f(z) = z^m$$
, dado $\Delta z = z - z_0$, $\frac{f(z) - f(z_0)}{z - z_0} = \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$. Por lo que

$$\frac{(z_0 + \Delta z)^m - z_0^m}{\Delta z} = \frac{\sum_{j=0}^m {m \choose j} z_0^{m-j} (\Delta z)^j - z_0^m}{\Delta z}$$
$$= \sum_{j=1}^m {m \choose j} (\Delta z)^{j-1} z_0^{m-j}$$
$$\xrightarrow{\Delta z \to 0} m z_0^{m-1}$$

Entonces f es diferenciable en \mathbb{C} y la derivada es la usual.

Ejemplo: 1.3. $f(z) = \bar{z}$

$$\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{\overline{x_0 + iy_0 + \Delta x + i\Delta y} - \overline{x_0 + iy_0}}{\Delta x + i\Delta y}$$
$$= \frac{\Delta x - i\Delta y}{\Delta x + i\Delta y}$$

Si se toma $\Delta z = \varepsilon$, entonces el límite es 1, por otro lado si $\Delta z = i\varepsilon$ el límite es -1.

Por lo que no es diferenciable en este contexto, pero si es diferenciable como función de \mathbb{R}^2 a \mathbb{R}^2 .

Veamos ahora, como relacionar ambos conceptos. Si existe el límite, este tiene que ser igual independiente de la dirección. Por lo que, notamos que si $\Delta z = \varepsilon$, el límite es $\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$, en cambio si $\Delta z = i\varepsilon$, el límite es $-i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$. Por lo que una condición necesaria para la diferenciabilidad en sentido complejo es¹:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$$

Teorema 1.2. f es analítica en Ω ssi las derivadas parciales existen, son continuas y se tiene CR.

 $Demostración. \implies$: Se hizo anteriormente

← : Se reescribe de la siguiente forma:

$$\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0)}{(\Delta x)^2 + (\Delta y)^2} (\Delta x - i\Delta y) + i \frac{v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0)}{(\Delta x)^2 + (\Delta y)^2} (\Delta x - i\Delta y)$$

Por Taylor, se puede reescribir el límite usando harta matraca, y usando CR se tiene lo pedido. $\hfill\Box$

Teorema 1.3. Si f, g analíticas

1)
$$(f+g)' = f'+g'$$

2)
$$(f \cdot g)' = f'g + fg'$$

3)
$$(cf)' = cf' \ con \ c \in \mathbb{C}$$

¹Condiciones de Cauchy-Riemann

4)
$$(f/g)' = \frac{f'g - g'f}{g^2}$$
 si $g \neq 0$

Teorema 1.4. Si f es analítica y f'(z) = 0 entonces f es constante

Demostración. Si f'(z) = 0 las derivadas parciales son cero, por lo que $u = c_1, v = c_2 \implies f = c_1 + ic_2$

Teorema 1.5. Si f analítica y $f(z_0) \neq 0$, f es localmente invertible en una vecindad de z_0 y f^{-1} es analítica

$$(f^{-1})'(z_0) = \frac{1}{f'(f^{-1}(z_0))}$$

1.4. Mapeos Conformes

Definición 1.4. Sean v_1, v_2 vectores de \mathbb{R}^2 , entonces $\cos(\theta) = \frac{\langle v_1, v_2 \rangle}{\|v_1\| \|v_2\|}$, donde θ es el ángulo entre v_1, v_2 . Luego, sean γ_1, γ_2 curvas diferenciables en \mathbb{R}^2 que se intersectan en el punto P en t_1, t_2 correspondientemente, entonces el ángulo entre γ_1, γ_2 en P esta dado por:

$$\cos \theta = \frac{\langle \gamma_1'(t_1), \gamma_2'(t_2) \rangle}{\|\gamma_1'\| \|\gamma_2'\|}$$

Definición 1.5. Decimos que $f: \mathbb{R}^2 \to \mathbb{R}^2$ es conforme si γ_1, γ_2 son curvas que se intersectan en P y forman un ángulo θ , entonces $f \circ \gamma_1, f \circ \gamma_2$ forman el mismo ángulo θ en f(P). Es decir, f preserva ángulos. (No necesariamente el largo)