

Computing

Tutor: Kevin O'Brien

Tutorial: Maths for Computing

Overview of Tutorial

- First two chapter of Study Guide
 - Chapter 1 : Number Systems
 - Chapter 2 : Set Theory and Binary Operations
- Subject Matter for Tutorial
 - Selected end of chapter revision questions
 - Selected past paper questions
- Also
 - Questions and Queries
 - We will open the discussion now, and continue at the forthcoming onsite tutorial

Chapter 1: Number Systems

- Three main number systems
 - Decimal (i.e. 0,1,2,3,4,5,6,7,9)
 - Binary (i.e. 0,1)
 - Hexadecimal (i.e. 0,1)
- Key Objectives
 - Converting from one number system to another.
 - Performing arithmetic operations (e.g. binary addition and subtraction)

The Binary System

(1.1.2. pg 3)

- Task: Converting decimal numbers to binary
- "Express the decimal number (347)₁₀ in base 2"
 - Taken from 2010 Zone A Examination paper Q1c (2 Marks)
 - Worked Example on Next Slide
 - Correct Answer 101011011
 - Make a note of correct answer. I have a question at the end of the working!

Decimal to Binary Conversion

	Number	Divided by 2	Quotient	Remainder
1	347	173.5		
2				
3				
4				
5				
6				
7				
8				
9				
10				

The Binary System

(1.1.2. pg 3)

- Task: Converting binary numbers to decimal
- "Express the binary number (1011.011)2 as a decimal, showing all your workings."
 - Taken from 2010 Zone A Examination paper Q1b (2 Marks)
 - Worked Example on Next Slide
- Important points
 - Anything to the power of zero is 1.
 - Demonstration of Negative Powers

Decimal to Binary Conversion

Number	Power of 2	Component	Multiple
1	3	8	
0	2	4	
1	1	2	
1	0	1	
·			
0	-1	0.5	
1	-2	0.25	
1	-3	0.125	
		Total =	

Binary Addition

- Fundamental Operations
- All digits below are binary
- Two Basic Operations

$$-0+0=0$$

$$-1+0=1$$
 also $0+1=1$

- Two More Advanced Operations
 - 1 + 1 = 10 (i.e. 0 carry the 1)
 - 1 + 1 + 1 = 11 (i.e. 1 carry the 1)
- Task: carry out the following binary addition: 10101 + 11011
 - Taken from 2010 Zone A Q1a

Binary Addition (part of 2010 Q1a)

1	0	1	0	1
1	1	0	1	1

Binary Subtraction

- Use the concept of "borrowing"
- Use basic operations from binary addition, but in reverse.
- Important
 - 10 1 = 1
- Task: carry out the following binary addition: 110000 10111
 - Taken from Study guide Exercises Q5 pg 16
 - (Decimal Equivalent: 48-23)

Binary Subtraction

1	1	0	0	0	0
	1	0	1	1	1

Binary Multiplication

- Follows on from Binary Addition
- Additional Skill : Left Shifting
- Task: carry out the following binary addition: 1101 x 1101
 - Taken from Study guide Exercises Q5 pg 16
 - (Decimal Equivalent: 13 x 13)

Binary Multiplication

1	1	0	1
1	1	0	1

Binary Division

- Follows on from Binary Subtraction
- Task: carry out the following binary division: 111011 101
 - Taken from Study guide Exercises Q7 pg 17
 - (Decimal Equivalent: 59 5)

Binary Division

1 1 1 0 1 1

Hexadecimal Conversion

Convert a Hexadecimal to Decimal

Hex	Dec	Hex	Dec	Hex	Dec	Hex	Dec
0	0	4	4	8	9	С	12
1	1	5	5	9	9	D	13
2	2	6	6	Α	10	E	14
3	3	7	7	В	11	F	15

Hexadecimal Conversion

- Task: Converting hexadecimal numbers to decimal
- Convert the number (A5d)₁₆ to decimal form (Answer: 2653)
 - Based on Question 10, page 17
- (Recall anything to the power of zero is 1)

• $A \times 16$ + 5×16 + $D \times 16$

New Section: Set Theory and Binary Operations

- Membership Tables
- Venn Diagrams
- Power Sets
- Notation: Union "U" and Intersection "∩"
 - Relationship with Logical "AND" and "OR" in Chapter 3.
- Complement of A is denoted "A/"

Membership Tables

Α	В	С			
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Membership Tables: Set and Symmetric Difference

Α	В	A – B	B - A	A ⊕ B	
0	0				
0	1				
1	0				
1	1				

See Page 25: Definitions 2.15 and 2.16

Membership Tables: Set and Symmetric Difference

Α	В	С	А-В	В-А	В-С	(A-B)-C	A-(B-C)
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

See Page 31 Q 10 a

