ADVANCED PLACEMENT PHYSICS C: ELECTRICITY AND MAGNETISM TABLE OF INFORMATION

CONTOTANTE	ANTO	CONVERSION FACTORS
CONSTANTS	AINI	CONVERSION FACIORS

Coulomb constant,	$k = \frac{1}{1} = 9.0 \times 10^9$	$N \cdot m^2$
Couronia constant,	$\kappa = \frac{\kappa - 4\pi\varepsilon_0}{4\pi\varepsilon_0} = 9.0 \times 10^{-10}$	C^2

Vacuum permittivity,
$$\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$$

Vacuum permeability,
$$\mu_0 = 4\pi \times 10^{-7} \text{ (T} \cdot \text{m)/A}$$

Proton mass,
$$m_p = 1.67 \times 10^{-27} \text{ kg}$$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$
Electron mass, $m_p = 9.11 \times 10^{-31} \text{ kg}$

Elementary charge,
$$e = 1.60 \times 10^{-19} \text{ C}$$

1 electron volt,
$$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$$

Speed of light,
$$c = 3.00 \times 10^8 \text{ m/s}$$

1 unified atomic mass unit,
$$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$$

Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/(\text{kg} \cdot \text{s}^2) = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

Magnitude of the acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$

Magnitude of the gravitational field strength at Earth's surface, g = 9.8 N/kg

UNIT SYMBOLS		
ampere,	A	
coulomb,	С	
electron volt,	eV	
farad,	F	
henry,	Н	
hertz,	Hz	
joule,	J	
kilogram,	kg	
meter,	m	
newton,	N	
ohm,	Ω	
second,	S	
tesla,	T	
volt,	V	
watt,	W	

PREFIXES			
Factor	Prefix	Symbol	
10 ¹²	tera	Т	
109	giga	G	
10^{6}	mega	M	
10^{3}	kilo	k	
10^{-2}	centi	c	
10^{-3}	milli	m	
10^{-6}	micro	μ	
10 ⁻⁹	nano	n	
10^{-12}	pico	p	

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam:

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- The electric potential is zero at an infinite distance from an isolated point charge.
- The direction of current is the direction in which positive charges would drift.
- All batteries, wires, and meters are assumed to be ideal unless otherwise stated.

ELECTRICITY AND MAGNETISM

A = area

C = capacitance

E = electric field

J = current density

d = distance

I = current

 $\ell = length$

P = power

q = charge

Q = charge

t = time

position

volume

density

 $\Phi = \text{flux}$

 κ = dielectric constant

U = potential energy

R = resistance

F =force

$ \vec{F}_E = \frac{1}{4\pi\varepsilon_0} \frac{ q_1 q_2 }{r^2} = k \frac{ q_1 q_2 }{r^2}$
$\vec{E} = \frac{\vec{F}_E}{q}$
$\vec{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r^2} \hat{r}$
$\Phi_E = \int \vec{E} \cdot d\vec{A}$
$\oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{enc}}}{\varepsilon_{\text{o}}}$
$Q_{\text{total}} = \int \rho(r) dV$
$U_E = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$
$V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r}$
$\Delta V = -\int_{a}^{b} \vec{E} \cdot d\vec{r}$
$E_{x} = -\frac{dV}{dx}$
$\Delta U_E = q\Delta V$
$C = \frac{Q}{\Delta V}$
$C = \frac{\kappa \varepsilon_0 A}{d}$
$U_C = \frac{1}{2}Q\Delta V$
$\kappa = \frac{\varepsilon}{\varepsilon_0}$
$I = \frac{dq}{dt}$
$I = \int \vec{J} \cdot d\vec{A}$
$\vec{E} = \rho \vec{J}$
$R = \frac{\rho \ell}{A}$
$I = \frac{\Delta V}{R}$

 $P = I\Delta V$

ELECTRICITY AND MAC

$$A = \text{area}$$
 $C = \text{capacitance}$
 $d = \text{distance}$
 $E = \text{electric field}$
 $F = \text{force}$
 $I = \text{current}$
 $J = \text{current density}$
 $\ell = \text{length}$
 $P = \text{power}$
 $q = \text{charge}$
 $Q = \text{charge}$
 $r = \text{radius, distance, or position}$
 $R = \text{resistance}$
 $t = \text{time}$
 $U = \text{potential energy}$
 $V = \text{electric potential or volume}$
 $\varepsilon = \text{electric permittivity}$
 $\rho = \text{resistivity or charge density}$
 $\kappa = \text{dielectric constant}$
 $\Phi = \text{flux}$
 $E = \text{flux}$

$$R_{\text{eq},s} = \sum_{i} R_{i}$$

$$R_{\text{eq},p} = \sum_{i} \frac{1}{R_{i}}$$

$$\frac{1}{C_{\text{eq},s}} = \sum_{i} \frac{1}{R_{i}}$$

$$\frac{1}{C_{\text{eq},s}} = \sum_{i} \frac{1}{R_{i}}$$

$$\frac{1}{C_{\text{eq},s}} = \sum_{i} \frac{1}{R_{i}}$$

$$\frac{1}{C_{\text{eq},s}} = \sum_{i} \frac{1}{C_{i}}$$

$$C_{\text{eq},p} = \sum_{i} C_{i}$$

$$T = R_{\text{eq}} C_{\text{eq}}$$

MECHANICS

	MECH
$\begin{aligned} v_x &= v_{x0} + a_x t \\ x &= x_0 + v_{x0} t + \frac{1}{2} a_x t^2 \\ v_x^2 &= v_{x0}^2 + 2 a_x \left(x - x_0 \right) \\ \Delta x &= \int v_x \left(t \right) dt \\ \Delta v_x &= \int a_x \left(t \right) dt \\ \vec{x}_{cm} &= \frac{\sum m_i \vec{x}_i}{\sum m_i} \\ \vec{r}_{cm} &= \frac{\int \vec{r} \ dm}{\int dm} \\ \lambda &= \frac{d}{d\ell} m(\ell) \\ \vec{a}_{sys} &= \frac{\sum \vec{F}}{m_{sys}} = \frac{\vec{F}_{net}}{m_{sys}} \\ \left \vec{F}_g \right &= G \frac{m_1 m_2}{r^2} \\ \left \vec{F}_f \right &\leq \left \mu \vec{F}_N \right \\ \vec{F}_s &= -k \Delta \vec{x} \\ a_c &= \frac{v^2}{r} = r \omega^2 \end{aligned}$	$a = \operatorname{acceleration}$ $E = \operatorname{energy}$ $f = \operatorname{frequency}$ $F = \operatorname{force}$ $h = \operatorname{height}$ $J = \operatorname{impulse}$ $k = \operatorname{spring} \operatorname{constant}$ $K = \operatorname{kinetic} \operatorname{energy}$ $\ell = \operatorname{length}$ $m = \operatorname{mass}$ $M = \operatorname{mass}$ $p = \operatorname{momentum}$ $P = \operatorname{power}$ $r = \operatorname{radius}$, distance, or position $t = \operatorname{time}$ $T = \operatorname{period}$ $U = \operatorname{potential} \operatorname{energy}$ $v = \operatorname{velocity} \operatorname{or} \operatorname{speed}$ $W = \operatorname{work}$ $v = \operatorname{position} \operatorname{or} \operatorname{distance}$ $v = \operatorname{height}$ $v = \operatorname{coefficient} \operatorname{of} \operatorname{friction}$
$T = \frac{1}{f}$ $K = \frac{1}{2}mv^{2}$ $W = \int_{a}^{b} \vec{F} \cdot d\vec{r}$ $\Delta K = \sum W_{i} = \sum F_{\parallel,i}d_{i}$ $\Delta U = -\int_{a}^{b} \vec{F}_{cf}(r) \cdot d\vec{r}$ $F_{x} = -\frac{dU(x)}{dx}$ $U_{s} = \frac{1}{2}k(\Delta x)^{2}$ $U_{G} = -G\frac{m_{1}m_{2}}{r}$ $\Delta U_{g} = mg\Delta y$	$P_{\text{avg}} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$ $P_{\text{inst}} = \frac{dW}{dt}$ $\vec{p} = m\vec{v}$ $\vec{F}_{\text{net}} = \frac{d\vec{p}}{dt}$ $\vec{J} = \int_{t_i}^{t_2} \vec{F}_{\text{net}}(t) dt = \Delta \vec{p}$ $\vec{v}_{\text{cm}} = \frac{\sum \vec{p}_i}{\sum m_i} = \frac{\sum m_i \vec{v}_i}{\sum m_i}$

$$\omega = \frac{d\theta}{dt} \qquad a = \operatorname{acceleration} \\ d = \frac{d\theta}{dt} \qquad d = \operatorname{distance} \\ f = \operatorname{frequency} \\ F = \operatorname{force} \\ I = \operatorname{rotational inertia} \\ k = \operatorname{spring constant} \\ K = \operatorname{kinetic energy} \\ \ell = \operatorname{length} \\ L = \operatorname{angular momentum} \\ m = \operatorname{mass} \\ M = \operatorname{sopition} \\ M = \operatorname{sopit$$

GEOMETRY AND TRIGONOMETRY				
Rectangle	Rectangular Solid		A = area	Right Triangle
A = bh	$V = \ell w h$		b = base $C = circumference$	$a^2 + b^2 = c^2$
Triangle	Cylinder	s	h = height	$\sin \theta = \frac{a}{2}$
$A = \frac{1}{2}bh$	$V = \pi r^2 \ell$ $S = 2\pi r \ell + 2\pi r^2$	θ	$\ell = \text{length}$ $r = \text{radius}$ $s = \text{arc length}$	$\cos \theta = \frac{b}{c}$
Circle	Sphere		S = surface area $V = $ volume	$\tan \theta = \frac{a}{b}$
$A = \pi r^2$ $C = 2\pi r$	$V = \frac{4}{3}\pi r^3$		$w = $ width $\theta = $ angle	$\frac{c}{\theta}$ 90° $\frac{a}{\theta}$
$s = r\theta$	$S = 4\pi r^2$			b

VECTORS	CALCULUS	IDENTITIES
$ \vec{A} \cdot \vec{B} = AB\cos\theta$ $ \vec{A} \times \vec{B} = AB\sin\theta$ $ \vec{r} = (A\hat{i} + B\hat{j} + C\hat{k})$	$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx}$ $\frac{d}{dx}(x^n) = nx^{n-1}$	$\log(a \cdot b^{x}) = \log a + x \log b$ $\sin^{2} \theta + \cos^{2} \theta = 1$ $\sin(2\theta) = 2\sin\theta\cos\theta$
$\vec{C} = \vec{A} + \vec{B}$ $\vec{C} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j}$	$\left \frac{d}{dx} \left(e^{ax} \right) = a e^{ax} \right $ $\left \frac{d}{dx} \left(\ln ax \right) = \frac{1}{x} \right $	$\frac{\sin\theta}{\cos\theta} = \tan\theta$
	$\frac{d}{dx} \left[\sin(ax) \right] = a \cos(ax)$ $\frac{d}{dx} \left[\cos(ax) \right] = -a \sin(ax)$	
	$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1$ $\int e^{ax} dx = \frac{1}{a} e^{ax}$	
	$\int \frac{dx}{x+a} = \ln x+a $ $\int \cos(ax) dx = \frac{1}{a} \sin(ax)$	
	$\int \sin(ax) dx = -\frac{1}{a} \cos(ax)$	