MATH 299Q: Homework 1 Quiver Representations

Let k denote an algebraically-closed field.

- 1. Suppose V and W are two finite-dimensional k-vector spaces, with $\dim V = n$ and $\dim W = m$. Let $T \in \operatorname{Hom}(V, W)$, that is $T : V \to W$.
 - (a) Define im T and ker T.
 - (b) What does it mean for T to be *injective*? What about *surjective*? What conditions on n and m must we have for T to be an isomorphism?
 - (c) Show that $\operatorname{Hom}(V,W)$ has a natural k-vector space structure. [Hint: For $f,g \in \operatorname{Hom}(V,W)$ show that $f+\lambda g \in \operatorname{Hom}(V,W)$ for $\lambda \in k$.]
- 2. (a) Draw your favorite (finite) quiver!
 - (b) Give a non-trivial representation of the quiver you drew in (a).
- 3. Let Q be the quiver

and consider the representations M and N:

Prove that $\operatorname{Hom}(M,N) \cong k^2$. [Hint: Draw a morphism between M and N.]