CSCI 360 Class Notes

Introduction to Public Key Cryptography

- Cryptography can be broken down into 2 main categories
 - Symmetric Key
 - o Public Key
- Cryptography aims to provide certain services, including
 - Confidentiality
 - o Privacy
 - Integrity
 - Non-repudiability
 - Authenticity
- What makes public key cryptography public key cryptography
 - o In a symmetric infrastructure, only one key is shared among communicating parties
 - \circ In *public key* cryptography, there is both a public key, k_{pub} , and a private key, k_{priv}
 - k_{pub} is publicly accessible
 - k_{priv} is only known by you
 - *Digital Signatures* in public key cryptography serve a similar purpose to real signatures and provides integrity *and* non-repudiability to public key cryptography
- Example of a student communication network at JJC using public key cryptography

- For 14,000 students, each possible communication pair must have their own key when using *symmetric key* cryptography
 - Total keys $\approx 14,000^2/2 \approx 100,000,000$
- In *public key* cryptography, each individual has one public key, and each individual can utilize their own private key.
 - Total keys = (14,000*1) + (14,000*1) = 28,000
- Public key cryptography alleviates the *key distribution problem* present in symmetric key cryptography
- *Downsides* to public key cryptography
 - 100x-1000x slower than symmetric key cryptography
 - Much larger key size
 - Quantum computers present a large threat to public key cryptography
- Every secure public key cryptography algorithm is based on one of the following
 - Integer factorization
 - Discrete Logarithms
 - Integer Lattices
 - less proven, but less susceptible to quantum computer attack

0