Trabajo Práctico 1

Conjuntos

- Ejercicios sugeridos: 1a, 1e, 1i, 1m, 2b, 2f, 3a, 4a, 5a, 5g, 5l, 5o, 6a, 8b, 9a, 9g, 9l, 10a, 11, 14, 17a y 18.
- 1. En los siguientes ítems considere como universo el conjunto $\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Sean $A = \{1, 4, 7, 10\}$, $B = \{1, 2, 3, 4, 5\}$ y $C = \{2, 4, 6, 8, 10\}$. Escriba por extensión los siguientes conjuntos

 $a) A \cup B$

 $q) \overline{\mathcal{U}}$

 $m) \ \overline{B} \cap (C \backslash A)$

b) $B \cap C$

 $h) A \cup \emptyset$

 $n) (A \cap B) \setminus C$

 $c) A \backslash B$ $d) B \backslash A$

 $i) \ B \cap \varnothing$ $j) \ A \cup \mathcal{U}$

 \tilde{n}) $\overline{A \cap B} \cup C$

 $e) \overline{A}$

 $k) B \cap \mathcal{U}$

,

 $f) \ \mathcal{U} \backslash C$

l) $A \cap (B \cup C)$

 $o) (A \cup B) \setminus (C \setminus B)$

2. En los siguientes ítems dibuje un diagrama de Venn y sombree el conjunto indicado.

 $a) A \cup \overline{B}$

e) $B \cap \overline{C \cup A}$

b) $\overline{A} \backslash B$

 $f) \ (\overline{A} \cup B) \setminus (\overline{C} \setminus A)$

 $c) A \cup (B \backslash A)$

 $g) \left((C \cap A) \setminus (\overline{B \setminus A}) \right) \cap C$

 $d) (A \cup B) \backslash B$

- $h) (B \setminus \overline{C}) \cup ((B \setminus \overline{A}) \cap (C \cup B))$
- 3. En los siguientes ítems sean $X=\{1,2\}$ e $Y=\{a,b,c\}$. Escriba por extensión cada conjunto

 $a) X \times Y$

 $c) X \times X$

b) $Y \times X$

- $d) Y \times Y$
- 4. En los siguientes ítems sean $X=\{1,2\},\ Y=\{a,b,c\}$ y $Z=\{\alpha,\beta,\gamma\}.$ Escriba por extensión cada conjunto

a) $X \times Y \times Z$

c) $X \times X \times X$

b) $X \times Y \times Y$

- $d) Y \times X \times Y \times Z$
- 5. En los siguientes ítems decidir si las afirmaciones son VERDADERAS o FALSAS.

 $a) \{x\} \subset \{x\}$

 $g) \varnothing \subset \{x, \{x\}\}$

 $l) \varnothing \in \{\varnothing, \{\varnothing\}, x, \{x\}\}$

 $b) \{x\} \in \{x\}$

 $h) \varnothing \in \{x, \{x\}\}$

 $m) \ \{\varnothing\} \subset \{\varnothing, x, \{x\}\}$

c) $\{x\} \subset \{x, \{x\}\}$

 $i) \varnothing \subset \{\varnothing, x, \{x\}\}$

 $n) \{\emptyset\} \in \{\emptyset, x, \{x\}\}$

d) $\{x\} \in \{x, \{x\}\}$ e) $x \subset \{x, \{x\}\}$

 $j) \varnothing \in \{\varnothing, x, \{x\}\}$

 \tilde{n}) $\{\varnothing\} \subset \{\varnothing, \{\varnothing\}, x, \{x\}\}$

 $f) \ x \in \{x, \{x\}\}$

 $k) \varnothing \subset \{\varnothing, \{\varnothing\}, x, \{x\}\}$

 $o) \{\varnothing\} \in \{\varnothing, \{\varnothing\}, x, \{x\}\}$

- 6. a) Si #X = 3, entonces ¿cuántos subconjuntos propios tiene X?
 - b) Si #X = 5, entonces ¿cuántos subconjuntos propios tiene X?
 - c) En general, sea $n \in \mathbb{N}$. Si #X = n, entonces ¿cuántos subconjuntos propios* tiene X?
 - d) En general, sea $n \in \mathbb{N}$. Si #X = n, entonces ¿cuántos subconjuntos propios* no vacíos tiene X?

*Un subconjunto propio es un subconjunto que difiere del cojunto original.

- 7. Si X e Y son conjuntos no vacíos y $X \times Y = Y \times X$; Qué relación existe entre X e Y?
- 8. Demostrar las siguientes propiedades referidas a la inclusión (\subset):
 - a) $\varnothing \subset A$ para todo conjunto A.
 - b) $A \subset A$ para todo conjunto A.
 - c) Si $A \subset B$ y $B \subset C$, entonces $A \subset C$ (propiedad transitiva).
- 9. En los siguientes ítems, si la afirmación es verdadera, realice una demostración; en caso contrario de un contraejemplo. Los conjuntos X, Y y Z son subconjuntos del conjunto universal \mathcal{U} . Para los productos cartesianos use como universo el conjunto $\mathcal{U} \times \mathcal{U}$. Para todo $X,Y,Z \in \mathcal{U}$:

$$a) \ X \cap (Y \setminus Z) = (X \cap Y) \setminus (X \cap Z)$$

$$q) \ X \times (Y \cup Z) = (X \times Y) \cup (X \times Z)$$

$$b) \ (X\backslash Y)\cap (Y\backslash X)=\varnothing$$

$$h) \ \overline{X \times Y} = \overline{X} \times \overline{Y}$$

c)
$$X \setminus (Y \cup Z) = (X \setminus Y) \cup Z$$

$$i) \ X \times (Y \backslash Z) = (X \times Y) \backslash (X \times Z)$$

$$d) \ \overline{X \backslash Y} = \overline{Y \backslash X}$$

$$j) \ \ X \backslash (Y \times Z) = (X \backslash Y) \times (X \backslash Z)$$

$$e)$$
 $\overline{X \cap Y} \subset X$

$$k) \ X \cap (Y \times Z) = (X \cap Y) \times (X \cap Z)$$

$$f)$$
 $(X \cap Y) \cup (Y \setminus X) = X$

$$l) X \times \emptyset = \emptyset$$

10. Las siguientes identidades son **FALSAS**. en general, dar contraejemplos. Además buscar una condición, lo menos restrictiva posible, sobre los conjuntos A y B para que las identidades sean **VERDADERAS**.

$$a) A \cap B = A$$

$$c) \ \overline{B} \cap \mathcal{U} = \emptyset$$

$$b) \ A \cup B = A$$

$$d) \ \overline{A \cap B} = \overline{B}$$

- 11. Probar que $12\mathbb{Z} + 6 \subset 3\mathbb{Z}$ pero $3\mathbb{Z} \not\subset 12\mathbb{Z} + 6$.
- 12. Probar que $12\mathbb{Z} + 1 \subset 4\mathbb{Z} 3$ pero $4\mathbb{Z} 3 \not\subset 12\mathbb{Z} + 1$.
- 13. Sean $A_i = \{1, 2, 3, \dots, i\}$, con $i = 1, 2, 3, \dots$ Buscar

$$a) \bigcup_{i=1}^{n} A_i$$

b)
$$\bigcap_{i=1}^{n} A_i$$

14. Sean $A_i = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots, i\}$, con $i = 1, 2, 3, \ldots$ Buscar

$$a) \bigcup_{i=1}^{n} A_i$$

$$b) \bigcap_{i=1}^{n} A_i$$

2

15. Buscar

$$a) \bigcup_{i=1}^{n} A_i.$$

$$b) \bigcap_{i=1}^{n} A_i.$$

16. Buscar $\bigcup_{i=1}^{n} A_i$ y $\bigcap_{i=1}^{n} A_i$ si para todo $i = 1, 2, 3, \dots$

a)
$$A_i = \{i, i+1, i+2, \ldots\}.$$

e)
$$A_i = \{i, i+1, i+2, \ldots\}.$$

b)
$$A_i = \{0, i\}.$$

$$f) A_i = \{0, i\}.$$

c)
$$A_i = (0, i) := \{x \in \mathbb{R} : 0 < x < i\}.$$

$$(I) A_i = \{0, i\}.$$

c)
$$A_i = (0, i) := \{ x \in \mathbb{R} : 0 < x < i \}.$$

g)
$$A_i = (0, i) := \{x \in \mathbb{R} : 0 < x < i\}.$$

$$A_i = (i, +\infty)$$

:= $\{x \in \mathbb{R} : i < x < +\infty\}.$

$$A_i = (i, +\infty)$$

:= $\{x \in \mathbb{R} : i < x < +\infty\}.$

17. Probar por inducción. Si X_1, X_2, \dots, X_n y X son conjuntos, entonces

a)
$$X \cap (X_1 \cup X_2 \cup \ldots \cup X_n) = (X \cap X_1) \cup (X \cap X_2) \cup \ldots \cup (X \cap X_n).$$

b)
$$X \cup (X_1 \cap X_2 \cap \ldots \cap X_n) = (X \cup X_1) \cap (X \cup X_2) \cap \ldots \cap (X \cup X_n).$$

$$\overline{X_1 \cap X_2 \cap \ldots \cap X_n} = \overline{X_1} \cup \overline{X_2} \cup \ldots \cup \overline{X_n}.$$

$$\overline{X_1 \cup X_2 \cup \ldots \cup X_n} = \overline{X_1} \cap \overline{X_2} \cap \ldots \cap \overline{X_n}.$$

18. Probar por inducción. Si $X_1, X_2, \dots X_n$ son conjuntos, entonces

$$\#(X_1 \times X_2 \times \ldots \times X_n) = \#X_1 \cdot \#X_2 \ldots \cdot \#X_n.$$