Einführung in die Computerlinguistik und Sprachtechnologie

WiSe 2018/2019 (B-GSW-12)

Udo Hahn

http://www.julielab.de

Grundlagen des Information Retrieval

Sammeln von Dokumentkollektionen vs. Erschließung von Dokumentinhalten

Grundlagen des Information Retrieval

Information Retrieval: Dokumenten-Retrieval

Grundlagen des **Information Retrieval**

Information Retrieval:

Flavors of Information (Document) Retrieval (1/2)

Flavors of Information (Document) Retrieval (2/2)

 Categorization/Clustering: Group documents into predefined classes/ adaptive clusters Topic Detection and Tracking: Cluster news in stream

INDEXING

- ◆ Indexing by Derivation
 - Index terms are derived from the document (and possibly morphologically normalized)
- ◆ Indexing by Assignment
 - Index terms are assigned to a document using an authoritative terminology (usually, a thesaurus)

INDEX TERMS

- ◆ Nouns (singletons, compounds)
 - Cell, dataset,
- ♦ Noun phrases
 - Hot spot, regulation of cells
- ◆ Avoid too complex terms (pre-coordination)
 - The regulation of cells under laser beam exposure in vitro

MANUAL INDEXING

- ◆ Determine main topic(s)
- ◆ What's a relevant issue?
- ◆ Based on human (speed) reading and understanding of the document

AUTOMATIC INDEXING

- ◆ Absolute vs. relative frequency
 - Per document
 - Relative to document collection
 - Bag-of-words (BOW)

BAG OF WORDS

◆ Eliminate sequential structure of texts

AUTOMATIC INDEXING

- ◆ Absolute vs. relative frequency
 - Per document
 - Relative to document collection
 - Bag-of-words (BOW)
 - Eliminate stop words (high occurrence frequency!)

Lexikalische Frequenzanalyse: Stoppwörter höchstfrequent

http://www1.ids-mannheim.de/fileadmin/lexik/lehre/engelberg/

Webseite_Korpusanalyse/Korpusanalyse_4_Methoden_AntConc.pdf

Zipf's Law

AUTOMATIC INDEXING

- ◆ Absolute vs. relative frequency
 - Per document
 - Relative to document collection
 - Eliminate stop words (high occurrence frequency!)
- ◆ Assumption: frequency is positively correlated with relevance (denotation of main topics)
- ◆ Term frequency inverse document frequency metric (TF-IDF)

 w_{ij} = weight of term t_j in document d_i tf_{ij} = frequency of term t_j in document d_i N = number of documents in collection n = number of documents where term t_j occurs at least once

$$w_{ij} = tf_{ij} * \log_2 \frac{N}{n}$$

VECTORIZATION OF TEXTS

◆ Transform text into n-dim vector (n=size of *collection* vocabulary)

AUTOMATIC INDEXING (Vector Space Model)

- ◆ Bag of words: remove all stop words from a doc and normalize all terms morphologically
- ◆ Create a document term matrix from the remaining terms for each document (*n* being the max number of terms in the document collection)
 - $-\operatorname{doc}_{i} = (\operatorname{term}_{i1}, \operatorname{term}_{i2}, \operatorname{term}_{i3}, ..., \operatorname{term}_{in})$
 - Each component term_{ik} is either ,0' (absent) or ,1' (realized)
- Compute the association between a document term and a query term vector (query = (query₁, query₂, query₃, ..., query_n), n as above), e.g., using the cosine measure

$$SIM(doci, query) = \frac{\sum_{k=1}^{t} (term_{ik} \bullet query_k)}{\sqrt{\sum_{k=1}^{t} (term_{ik})^2 \bullet \sum_{k=1}^{t} (query_k)^2}}$$

GRAPHICAL INTERPRETATION

CLASSIFICATION

- ◆ Manual classification
 - Manual assignment of docs to pre-defined categories (classes)
- ◆ Automatic classification
 - Automatic assignment of docs to pre-defined categories (classes)
 - Grouping of docs around automatically determined (unnamed) clusters

Clustering

- (Document) clustering is the process of grouping a set of documents into clusters of similar documents.
- Documents within a cluster should be similar.
- Documents from different clusters should be dissimilar.
- Clustering is the most common form of unsupervised learning.
- Unsupervised = there are no labeled or annotated data.

Data Set with Clear Clustering Structure

Cluster-Modelle

- k-Means Clustering
 - flaches Clustering
 - k ist vorher bekannt
 - Dokumente werden als Vektoren repräsentiert
 - Ziel: Abstand zum Cluster-Zentrum minimieren
- Centroid
 - künstliches Zentrum eines Clusters Mittelwert der Vektoren der Dokumente im Cluster

- Initialisierung: wähle zufällig k Dokumente als Centroiden
- Iteration: ordne Dokumente nächstem Centroid zu, Centroid im Cluster neu berechnen

Quelle: Manning, Raghavan, Schütze, Introduction to Information Retrieval, 2008.

K-means Clustering

- Each cluster in K-means is defined by a centroid.
- Objective/partitioning criterion: minimize the average squared difference from the centroid
- Recall definition of centroid:

$$\vec{\mu}(\omega) = \frac{1}{|\omega|} \sum_{\vec{x} \in \omega} \vec{x}$$

where we use ω to denote a cluster.

- We try to find the minimum average squared difference by iterating two steps:
 - reassignment: assign each vector to its closest centroid
 - recomputation: recompute each centroid as the average of the vectors that were assigned to it in reassignment

K-means Clustering Algorithm

```
K-MEANS(\{\vec{x}_1,\ldots,\vec{x}_N\},K)
  1 (\vec{s}_1, \vec{s}_2, \dots, \vec{s}_K) \leftarrow \text{SELECTRANDOMSEEDS}(\{\vec{x}_1, \dots, \vec{x}_N\}, K)
   2 for k \leftarrow 1 to K
   3 do \vec{\mu}_k \leftarrow \vec{s}_k
   4 while stopping criterion has not been met
   5 do for k \leftarrow 1 to K
   6 do \omega_k \leftarrow \{\}
   7 for n \leftarrow 1 to N
      \mathbf{do}\ j \leftarrow \operatorname{arg\,min}_{i'} |\vec{\mu}_{i'} - \vec{x}_n|
                   \omega_i \leftarrow \omega_i \cup \{\vec{x}_n\} (reassignment of vectors)
        for k \leftarrow 1 to K
 10
              do \vec{\mu}_k \leftarrow \frac{1}{|\omega_k|} \sum_{\vec{x} \in \omega_k} \vec{x} (recomputation of centroids)
 11
        return \{\vec{\mu}_1,\ldots,\vec{\mu}_K\}
```

Idee des Relevance Feedback

- Relevance feedback: user feedback on relevance of docs in initial set of results
 - User issues a (short, simple) query
 - The user marks some results as relevant or non-relevant.
 - The system computes a better representation of the information need based on feedback.
 - Relevance feedback can go through one or more iterations.
- Idea: it may be difficult to formulate a good query when you don't know the collection well, so iterate

Relevance Feedback (Rocchio-Algorithmus)

- unterschiedliche Gewichtung positiver und negativer Beispiele
- Berücksichtigung der ursprünglichen Anfrage

$$\vec{q}_{k}' = \vec{q}_{k} + \alpha \frac{1}{|D_{k}^{R}|} \sum_{d_{j} \in D_{k}^{R}} \vec{d}_{j} - \beta \frac{1}{|D_{k}^{N}|} \sum_{d_{j} \in D_{k}^{N}} \vec{d}_{j}$$

 α , β — positive Konstanten, heuristisch festzulegen (z.B. $\alpha = 0.75$, $\beta = 0.25$)

Vorgehensweise:

- 1. Retrieval mit Fragevektor \vec{q}_k vom Benutzer
- 2. Relevanzbeurteilung der obersten Dokumente der Rangordnung
- 3. Berechnung eines verbesserten Fragevektors \vec{q}_k aufgrund der Feedback-Daten
- 4. Retrieval mit dem verbesserten Vektor
- Evtl. Wiederholung der Schritte 2-4

Idee des Relevance Feedback (Rocchio-Algorithmus)

unterschiedliche Gewichtung positiver und negativer Beispiele:

Rechenbeispiel zum Relevance Feedback

Beispiel:

ANTWORTEN VON INFORMATIONSSYSTEMEN

Datenbanksysteme liefern stets korrekte und vollständige Antwort auf Anfragen

- im Sinne eines Beweisverfahrens
- ▶ i.a. nicht bezüglich der realen Welt
- → Betrachtung von Effektivität hier nicht sinnvoll

IR-Systeme können wegen Vagheit und Unsicherheit i.a.

- weder korrekte (alle gefundenen Dokumente relevant)
- noch vollständige (alle relevanten Dokumente)

Antworten liefern.

→ Effektivität als wichtiges Qualitätskriterium

EVALUATIONSMETRIKEN

GEF: Menge der gefundenen Antwortdokumente

REL: Menge der relevanten Dokumente in der Datenbank

ALL: Menge aller Dokumente in der Datenbank

Precision
$$p = \frac{|REL \cap GEF|}{|GEF|}$$

Recall $r = \frac{|REL \cap GEF|}{|REL|}$

Fallout $f = \frac{|GEF - REL|}{|ALL - REL|}$

INTEGRATION IM F-MASS

Abbildung von (r, p)-Paar auf einzelnes Maß (definiert Kurve zur Aufteilung des 'Unentschieden-Bereichs')

Grundidee:

harmonisches Mittel aus Recall und Precision

$$F = \frac{2}{\frac{1}{p} + \frac{1}{r}}$$

Unterschiedliche Gewichtung von Recall und Precision: Gewichtungsfaktor β für Recall

$$F_{\beta} = \frac{1+\beta^2}{\frac{1}{p}+\beta^2\frac{1}{r}}$$

Trade-off between Precision and Recall

"NATURGESETZ" DER INVERSEN P-R-BEZIEHUNG

EVALUIERUNGSINITIATIVEN: TREC, CLEF, NTCIR, INEX, ...

Standardumgebung für die Evaluierung von IR-Methoden:

- Dokumentkollektionen im Umfang praktischer Anwendungen (z.B. Newsticker-, Zeitungs-, Magazinartikel, Web-Kollektionen)
- vordefinierte Anfragen (Topics)
- verschiedene Aufgaben (*Tracks*)

TREC EVALUATIONSMETRIKEN

Benutzerorientierte Maße:

- Prec@5, Prec@10, Prec@30, Prec@100
 (jeweils als Makro-Mittelwert über alle Fragen)
- Mean reciprocal rank:

Annahme: Benutzer ist nur an einem relevanten Dokument interessiert

- Bestimme Rang k des ersten relevanten Dokumentes
- 2. Bilde Kehrwert 1/k
- Mittele über alle Fragen

Systemorientiertes Maß: Mean average precision (MAP)

Mittelwert der Precision nach jedem relevanten Dokument einer Rangliste (anschließend arithmetisches Mittel über alle Fragen)

Wichtige Forschungsfragen (1/2)

Wichtige Forschungsfragen (2/2)

Multi-media Retrieval

- Text
- Grafiken
- Tabellen
- Fotos
- Filme
- Musik

TREC Medicine

- Genomics Track (2004-08)
 - Retrieving information about genes
- Clinical Decision Support Track (2014-16)
 - Retrieving information from the Electronic Health Record
 - Evidence- based information (in the form of full-text literature articles) to clinicians for a specific patient (represented as a case description or admission note)

TREC Precision Medicine

- Precision Medicine Track (2017-2018)
 - Precision medicine paradigm
 - Personalized treatment for patients based on their genetic, environmental and life style characteristics
 - Focus on genetic mutations of cancer
 - Retrieving scientific abstracts (Medline) relevant for patient's case
 - Retrieving clinical trials documents
 (ClinicalTrials.gov) most similar to patient's case

TREC PM 2017/2018

- TREC-PM 2017/2018
 - Initialized 2017, largely repeated in 2018
 - 30 synthetically created topics
 - each topic is described by 4 items
 - disease (e.g., type of cancer)
 - genetic variants (primarily the genetic variants in the tumors themselves as opposed to the patient's DNA)
 - demographic information (e.g., age, sex), and
 - other factors (which could impact certain treatment options)

TREC-PM Topics

Disease: Liposarcoma

Variant: CDK4 Amplification

Demographic: 38-year-old male

Other: GERD

Disease: Colon Cancer

Variant: KRAS (G13D), BRAF (V600E)

Demographic: 52-year-old male

Other: Type II Diabetes, Hypertension

Disease: Cervical Cancer

Variant: STK11

Demographic: 26-year-old female

Other: None

Disease: Cholangiocarcinoma

Variant: IDH1 (R132H)

Demographic: 64-year-old male

Other: Neuropathy

TREC PM 2017 Result Assessment

Roberts, Kirk, & Demner-Fushman, Dina, & Voorhees, Ellen M., & Hersh, William R., & Bredrik, Steven, & Lazar, Alexander J., & Pant, Shubham (2017). Overview of the TREC 2017 Precision Medicine Track. in: TREC 2017 – Proceedings of the 26th Text REtrieval Conference.

Gaithersburg, Maryland, USA, November 15-17, 2017, 1-13.

TREC PM 2018 Evaluation Criteria

Evaluation

The evaluation will follow standard TREC evaluation procedures for ad hoc retrieval tasks. Participants may submit a maximum of five automatic or manual runs for each corpus (scientific abstracts and clinical trials), each consisting of a ranked list of up to one thousand IDs (PMIDs for MEDLINE abstracts, provided IDs for extra abstracts (part of file name), and NCT IDs for trials). The highest ranked results for each topic will be pooled and judged by physicians trained in medical informatics.

Assessors will be instructed to judge abstracts and clinical trials according to each of the four topic dimensions (disease, gene, demographic). Each of these corresponds to 3-4 categories (e.g., a disease can be an "exact", "more general", "more specific", or "not disease" match). Please read the <u>Relevance Guidelines</u> for more details.

Scientific Abstracts: The goal of retrieving scientific abstracts is to identify relevant articles for the *treatment*, *prevention*, and *prognosis* of the disease under the specific conditions for the given patient. Abstracts discussing information not useful for these goals will not be considered relevant.

Clinical Trials: The goal of retrieving clinical trials is to identify trials for which the given patient is eligible to enroll, or would have been eligible to enroll had the trial been open. The timing and location of the trial are not factors in determining relevance, only the eligibility criteria.

As in past evaluations of medically-oriented TREC tracks, we are fortunate to have the assessment conducted by the Department of Medical Informatics of the Oregon Health and Science University (OHSU). We are extremely grateful for their participation.

	Literature Articles			Clinical Trials		
		infNDCG		infNDCG		
	Team	Run	Score	Team	Run	Score
	Cat_Garfield	MSIIP_BASE	0.5621	hpi-dhe	hpictall	0.5545
2	hpi-dhe	hpipubnone	0.5605	Cat_Garfield	MSIIP_TRIAL1	0.5503
	UCAS	UCASSA5	0.5580	ims_unipd	IMS_TERM	0.5395
	MedIER	MedIER_sa13	0.5515	UCAS	UCASCT4	0.5347
	SIBTextMining	SIBTMlit4	0.5410	udel_fang	UDInfoPMCT1	0.5057
	imi_mug	imi_mug_abs2	0.5391	NOVASearch	NS_PM_5	0.4992
	udel_fang	UDInfoPMSA2	0.5081	Poznan	BB2_vq_noprf	0.4894
	RSA_DSC	RSA_DSC_LA_5	0.4855	UTDHLTRI	UTDHLTRI_NLT	0.4794
	UTDHLTRI	UTDHLTRI_NL	0.4797	RSA_DSC	RSA_DSC_CT_5	0.4743
	IKMLAB	IKMLAB_3	0.4710	IRIT	irit_prf_cli	0.4736
					•	
		R-prec			R-prec	
	Team	Run	Score	Team	Run	Score
	MedIER	MedIER_sa13	0.3684	Cat_Garfield	MSIIP_TRIAL1	0.4294
2	hpi-dhe	hpipubcommon	0.3658	ims_unipd	IMS_TERM	0.4128
	UCAS	UCASSA2	0.3654	Poznan	BB2_vq_noprf	0.4101
	imi_mug	imi_mug_abs1	0.3630	hpi-dhe	hpictphrase	0.4081
	SIBTextMining	SIBTMlit3	0.3574	UCAS	UCASCT4	0.4005
	udel_fang	UDInfoPMSA1	0.3289	udel_fang	UDInfoPMCT3	0.3967
	Cat_Garfield	MSIIP_PBPK	0.3257	NOVASearch	NS_PM_5	0.3931
	SINAI	SINAL Base	0.3082	UTDHLTRI	UTDHLTRLSST	0.3920
	FDUDMIIP	raw_medline	0.3072	RSA_DSC	RSA_DSC_CT_5	0.3721
	cbnu	cbnuSA1	0.2992	IRIT	irit_prf_cli	0.3658
		P @ 10			P @ 10	
	Team	Run	Score	Team	Run	Score
1	hpi-dhe	hpipubnone	0.7060	Cat_Garfield	MSIIP_TRIAL1	0.6260
	Cat_Garfield	MSIIP_BASE	0.6680	ims_unipd	IMS_TERM	0.5660
	SIBTextMining	SIBTMlit5	0.6320	Poznan	BB2_vq_noprf	0.5580
	UVA_ART	UVAEXPBSTEXT	0.6260	NOVASearch	NS_PM_5	0.5520
	MedIER	MedIER_sa11	0.6220	RSA_DSC	RSA_DSC_CT_3	0.5480
	UTDHLTRI	UTDHLTRI_NL	0.6160	UCAS	UCASCT1	0.5460
	imi_mug	imi_mug_abs2	0.6000	hpi-dhe	hpictphrase	0.5400
	UCAS	UCASSA5	0.5980	UTDHLTRI	UTDHLTRI_NLT	0.5380
	IKMLAB	IKMLAB_3	0.5960	udel_fang	UDInfoPMCT5	0.5240
	udel_fang	UDInfoPMSA2	0.5800	InfoLabPM	tinfolabBF	0.5240

		# Runs	
Team ID	Affiliation	Articles	Trials
ASU_Biomedical	Arizona State University	3	0
Brown	Brown University	5	5
$Cat_Garfield$	Tsinghua-iFlytek Joint Laboratory	5	5
cbnu	Chonbuk National University	3	3
CSIROmed	Commonwealth Scientific and Industrial Research Organisation	3	3
ECNUica	East China Normal University	5	5
FDUDMIIP	School of Computer Science, Fudan University	5	5
hpi-dhc	Hasso Plattner Institute Med. Universität Graz, JULIE Lab	5	5
IKMLAB	Institute of Medical Informatics of National Cheng Kung Univ.	5	5
imi_mug	Medical University of Graz	5	5
ims_unipd	Information Management Systems (IMS) Group	0	3
InfoLabPM	InfoLab, Faculty of Engineering, University of Porto	4	3
IRIT	Institut de Recherche en Informatique de Toulouse	0	1
KlickLabs	Klick Inc.	4	5
MayoNLPTeam	Mayo Clinic	4	3
MedIER	University of Michigan	5	0
NOVASearch	Universidade NOVA Lisboa	0	5
PM_IBI	Integrative Biomedical Informatics Group, Barcelona	3	0
Poznan	Poznan University of Technology	1	5
RSA_DSC	Research Studios Austria / Studio Data Science	5	5
SIBTextMining	SIB Text Mining Group (HES-SO)	5	4
SINAI	Universidad de Jaen	3	0
UCAS	University of Chinese Academy of Sciences	5	5
udel_fang	InfoLab at University of Delaware	5	5
UNTIIA	University of North Texas	5	0
UTDHLTRI	The University of Texas at Dallas	5	5
UVA_ART	University of Virginia Medical Center	5	0
Total	27 Teams	103	90

Table 5: Participating teams and submitted runs.

Literatur

- Ricardo Baeza-Yates, Berthier Ribeiro-Neto, Modern Information Retrieval, 1999.
 - der Klassiker
- Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, Introduction to Information Retrieval, 2008.
 - Online verfügbar unter: http://nlp.stanford.edu/IRbook/information-retrieval-book.html

Document Content Analysis Techniques I

Indexing and Classification

Udo Hahn

