Name: Caleb McWhorter — Solutions

MATH 108 Fall 2023

HW 15: Due 12/12

"The linear programming was—and is—perhaps the single most important real-life problem."

-Keith Devin

Problem 1. (10pt) Consider the function $z = 5x_1 - 6x_2$ on the region \mathcal{R} shown below. Does z have a maximum or minimum value on \mathcal{R} ? Explain. If the function has a maximum or minimum value on \mathcal{R} , find the maximum and minimum value.

Solution. Observe that the function $z = 5x_1 - 6x_2$ is linear in x_1, x_2 . The region \mathcal{R} is nonempty and bounded. Therefore, the Fundamental Theorem of Linear Programming states that z must have a maximum and minimum value on \mathcal{R} and these values occurs at a corner point for \mathcal{R} . So we need only evaluate z at the corner points of \mathcal{R} .

$z(x_1, x_2)$
z(2,0) = 5(2) - 6(0) = 10 - 0 = 10
z(7,0) = 5(7) - 6(0) = 35 - 0 = 35
z(9,4) = 5(9) - 6(4) = 45 - 24 = 21
z(3,6) = 5(3) - 6(6) = 15 - 36 = -21
z(0,3) = 5(0) - 6(3) = 0 - 18 = -18

Therefore, the maximum value for z is 35 and occurs at (7,0) and the minimum value for z is -21 and occurs at (3,6).

Problem 2. (10pt) Consider the function $z = -3x_1 + 8x_2$ on the region \mathcal{R} shown below. Does z have a maximum or minimum value on \mathcal{R} ? Explain. If the function has a maximum or minimum value on \mathcal{R} , find the maximum and minimum value.

Solution. The function $z = -3x_1 + 8x_2$ is linear in x_1, x_2 . The region \mathcal{R} is nonempty. However, the region \mathcal{R} is unbounded. Therefore, the Fundamental Theorem of Linear Programming does not apply. There may or may not be a maximum or minimum value for z on \mathcal{R} .

Observe that the larger the value of x_1 , the smaller the value of z. If (x_1, x_2) is a point in the region \mathcal{R} , increasing x_1 moves the point to the right. But there is no limit on how far one can move to the point (x_1, x_2) in \mathcal{R} to the right and remain in \mathcal{R} . Therefore, there is no limit to how much one can decrease z. This shows that z has no minimum value.

Observe that increasing x_1 , i.e. decreasing x_1 increases z, and increasing x_2 increases z. If (x_1, x_2) is a point in the region \mathcal{R} , decreasing x_1 moves the point to the left and increasing x_2 moves the point upwards. However, there is a limit to how much one can move a point upwards and to the left and stay in the region. Therefore, z has a maximum value and it must occur at the point (0,6). The maximum value of z is then z(0,6) = -3(0) + 8(3) = 0 + 24 = 24.

Problem 3. (10pt) Consider the function $z = x_1 - 9x_2$ on the region \mathcal{R} shown below. Does z have a maximum or minimum value on \mathcal{R} ? Explain. If the function has a maximum or minimum value on \mathcal{R} , find the maximum and minimum value.

Solution. The function $z = x_1 - 9x_2$ is linear in x_1, x_2 . The region \mathcal{R} is nonempty and bounded. By the Fundamental Theorem of Linear Programming, the function z has a maximum and minimum value on \mathcal{R} and occurs at a corner point of \mathcal{R} . So we need only evaluate z at the corner points of \mathcal{R} .

Corner Point	$z(x_1, x_2)$
(0,0)	z(0,0) = 0 - 9(0) = 0 - 0 = 0
(9,0)	z(9,0) = 9 - 9(0) = 9 - 0 = 9
(6, 6)	z(6,6) = 6 - 9(6) = 6 - 54 = -48
(0,9)	z(0,9) = 0 - 9(9) = 0 - 81 = -81

Therefore, the maximum value for z is 9 and occurs at (9,0) and the minimum value for z is -81 and occurs at (0,9).

Problem 4. (10pt) Find the dual problem for the minimization problem shown below.

$$\min w = 4y_1 + 6y_2 - 9y_3
\begin{cases}
7y_1 + 3y_2 + 8y_3 \ge 37 \\
4y_1 - y_2 + 5y_3 \ge 55 \\
y_1 - y_2 + 3y_3 \le 18 \\
y_1, y_2, y_3 \ge 0
\end{cases}$$

Solution. First, we need every inequality to be of the form ' \geq ' an integer. We multiply both sides of the third inequality by -1 to place this inequality in this form. This gives us the following inequalities (ignoring the non-negativity inequalities):

$$\begin{cases} 7y_1 + 3y_2 + 8y_3 \ge 37 \\ 4y_1 - y_2 + 5y_3 \ge 55 \\ -y_1 + y_2 - 3y_3 \ge -18 \end{cases}$$

We then form a matrix M from these inequalities with the function $w = 4y_1 + 6y_2 - 9y_3$ as the bottom row. This gives us the following matrix:

$$M = \begin{pmatrix} 7 & 3 & 8 & 37 \\ 4 & -1 & 5 & 55 \\ -1 & 1 & -3 & -18 \\ 4 & 6 & -9 & 0 \end{pmatrix}$$

We then compute the transpose of this matrix:

$$M^T = \begin{pmatrix} 7 & 4 & -1 & 4 \\ 3 & -1 & 1 & 6 \\ 8 & 5 & -3 & -9 \\ 37 & 55 & -18 & 0 \end{pmatrix}$$

This is the 'matrix of coefficients' for the inequalities for the corresponding dual maximization problem—the bottom row representing the function. The dual problem is a maximization problem so that the inequalities are ' \leq .' Because there are 4 columns, there are 4-1=3 variables in this system. [The last column corresponds to the 'opposite' side of the inequalities.] Therefore, the dual maximization problem is...

$$\max z = 37x_1 + 55x_2 - 18x_3$$

$$\begin{cases} 7x_1 + 4x_2 - x_3 \le 4\\ 3x_1 - x_2 + x_3 \le 6\\ 8x_1 + 5x_2 - 3x_3 \le -9\\ x_1, x_2, x_3 \ge 0 \end{cases}$$