What does classification tell us about the brain? Statistical inference through machine learning

Charles Zheng

Stanford University

October 27, 2016

(Joint work with Yuval Benjamini.)

Research interests

Statistical analysis of neuroimaging data

Applications of machine learning in statistical inference

Functional neuroimaging

Functional neuroimaging

Functional neuroimaging

Classification/Decoding

- Response $Z = \{0 \text{ (apple)}, 1 \text{ (banana)}\}.$
- Predictors $Y_1, ..., Y_p$ (voxels)
- ullet Classifier $f:(Y_1,...,Y_p)
 ightarrow \{0,1\}$ guesses the class.
- Generalization accuracy

$$A(f) = Pr[f(Y_1, ..., Y_p) = Z].$$

What's the parameter?

• The classifier is chosen from some class \mathcal{F} , e.g. maximizing empirical accuracy

$$\hat{f} = \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} I\{\hat{f}(X_1^{(i)}, ..., X_p^{(i)}) = Z^{(i)}\}.$$

• Generalization accuracy $A(\hat{f})$ varies depending on data.

What's the parameter?

Define Bayes accuracy

$$BA = \sup_{f} A(f).$$

• Under smoothness conditions on p(x, y),

$$\lim_{n \to \infty} \mathsf{A}(\hat{f}) o \mathsf{BA}(\hat{f})$$

for a variety of classifiers, e.g. k-nearest neighbors (Fukunaga 2009.)

Inferring Bayes accuracy

• Given *m* test observations,

$$\underline{\mathsf{GA}}_{lpha}(\hat{f}) = \mathsf{TA} - z_{lpha} \sqrt{\frac{\mathsf{TA}(1 - \mathsf{TA})}{m}}$$

is a an $(1 - \alpha)$ lower confidence bound for BA.

Inferring Bayes accuracy

• Since $BA \ge GA$ by definition,

$$\underline{\mathsf{BA}}_{\alpha} = \underline{\mathsf{GA}}(\hat{f})$$

is an $(1 - \alpha)$ lower confidence bound for BA.

Inferring Bayes accuracy under model selection

• Or, if $\hat{f}_1, ..., \hat{f}_d$ result from d different procedures,

$$\underline{\mathsf{BA}}_{\alpha} = \min_{i=1}^{d} \underline{\mathsf{GA}}_{\frac{\alpha}{d}}(\hat{f}_{i})$$

is also an $(1-\alpha)$ lower confidence bound for BA (using Bonferroni's inequality).

Dependence of classification accuracy on stimuli

• Different stimuli sets lead to different Bayes accuracy.

Generalizing beyond the design

Scientists are not innately interested in the Bayes accuracy of a *particular* stimuli set, which is often chosen arbitrarily...

Generalizing beyond the design

But it would be more interesting to be able to make inferences from the data about a *larger* class of stimuli...

Section 2

Randomized classification and Average Bayes accuracy

Randomized classification

1. Population of stimuli p(x)

3. Data

- 4. Train a classifier
- 5. Estimate generalization accuracy (which is lower bound for the random Bayes accuracy BA_k)

Average Bayes accuracy

	Experiment 1	Experiment 2	Experiment 3		
Bayes accuracy	0.55	0.65	0.52		

- Bayes accuracy depends on the stimuli drawn.
- Therefore, define k-class average Bayes accuracy as the expected Bayes accuracy for $X_1,...,X_k \stackrel{iid}{\sim} p(x)$.

$$\mathsf{ABA}_k = \mathbf{E}[\mathsf{BA}(X_1,...,X_k)]$$

Average Bayes accuracy

Inferring average Bayes accuracy

• $BA_k \stackrel{def}{=} BA(X_1,..,X_k)$ is unbiased estimate of

$$ABA_k = \mathbf{E}[BA_k]$$

by definition.

• But what is the variance?

$$Var[BA(X_1,...,X_k)]$$

- Theoretical result. Maximal variability is of order 1/k.
- Therefore, it is feasible to get a good idea of ABA_k by choosing a sufficiently large sample size k.

Two intuitions for variability result

Why does variability decrease with k?

- 1. Bayes accuracy behaves like an average of k i.i.d random variables. (Also gives correct 1/k rate.)
- ullet 2. Bayes accuracy behaves like a max of k i.i.d. random variables.

Intuition 1: averaging

Average of k gaussian probability integrals... (which are asympt. uncorrelated.)

Intuition 2: An identity

 It is a well-known result from Bayesian inference that the optimal classifier f is defined as

$$f(y) = \operatorname{argmax}_{i=1}^{k} p(y|x_i),$$

since the prior class probabilities are uniform.

• Therefore,

$$BA(x_1, ..., x_k) = \Pr[argmax_{i=1}^k p(y|x_i) = Z|x_1, ..., x_k]$$

$$= \frac{1}{k} \int \max_{i=1}^k p(y|x_i) \prod_{i=1}^k p(x_i) dx_i dy.$$

Intuition behind identity

Variability of Bayes accuracy

Theoretical result. In the max formulation of BA_k , we can apply Efron-Stein inequality to get

$$sd[BA_k] \leq \frac{1}{2\sqrt{k}}$$

Empirical results. (searching for worst-case stimuli).

k	2	3	4	5	6	7	8
$\frac{1}{2\sqrt{k}}$	0.353	0.289	0.250	0.223	0.204	0.189	0.177
Worst-case sd	0.25	0.194	0.167	0.150	0.136	0.126	0.118

Inferring average Bayes error

For now, return to the world of finite data...

- Experimental design: draw k stimuli $X_1, ..., X_k$ iid from p(x). Then collect data (X_i, Y_i^j) .
- ② Supervised learning: train a classifier and obtain a test accuracy TA_k .
- **3** Generalization accuracy: if n_{test} is the size of the test set,

$$\underline{\mathsf{GA}_k} = \mathsf{TA}_k - \frac{z_{\alpha/2}\sqrt{\mathsf{TA}_k(1 - \mathsf{TA}_k)}}{\sqrt{n_{\mathsf{test}}}}$$

is a lower confidence bound for GA_k

Bayes accuracy:

$$\underline{\mathsf{BA}}_k = \underline{\mathsf{GA}}_k$$

is a lower confidence bound for BA_k

Average Bayes accuracy

$$\underline{\mathsf{ABA}}_k = \underline{\mathsf{BA}}_k - \frac{1}{2\sqrt{\alpha k}}$$

is a lower confidence bound for ABA_k .

Extension: Undersampled regime

Given data from k classes, can we infer ABA_M for M > k? See Z., Achanta and Benjamini (2016).

Section 3

Relationship between mutual information and average Bayes accuracy

Mutual information

- Invented by Claude Shannon; central to information theory.
- Given (X, Y) with joint density p(x, y),

$$I(X;Y) = \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy$$

where p(x) and p(y) are marginal densities.

Mutual information

- $I(X; Y) \in [0, \infty]$. (0 if $X \perp Y$, ∞ if X = Y and X continuous.)
- Symmetry: I(X; Y) = I(Y; X).
- Data-processing inequality

$$I(X; Y) \ge I(\phi(X); \psi(Y))$$

equality for ϕ , ψ bijections

• Additivity. If $(X_1, Y_1) \perp (X_2, Y_2)$, then

$$I((X_1,X_2);(Y_1,Y_2))=I(X_1;Y_1)+I(X_2;Y_2).$$

Image credit Kinney et al. 2014.

Informativity of predictor sets

Consider predicting binary Y with:

- X₁ only
- X_1 and X_2
- $X_1, ..., X_k$

Mutual information

Bayes accuracy

Two measures of informativity: ABA and mutual information

Both are:

- measures of informativity between X and Y
- invariant to bijective transformations of either X or Y
- defined with reference to a population of stimuli and either a single subject or population of subjects

Question

Given that mutual information and average Bayes error are both means of measuring "informativity", can we "convert" our lower bound for ABA_k into a lower bound for I(X; Y)?

Related work

- Classically, Fano's inequality obtains a lower bound for mutual information from Bayes accuracy. (We do the same, but for average Bayes error).
- Treves (1997) proposes using the confusion matrix obtained from classification to estimate mutual information. This has been a popular approach; see Quiroga (2009).
- Gastpar et al (2010) develop nonparametric estimators of mutual information for the randomized classification setup (but does not involve using supervised learning.)

Functional formulation

Average Bayes accuracy $ABA_k[p(x, y)]$ and mutual information I[p(x, y)] are both *functionals* of p(x, y).

$$ABA_k[p(x,y)] = \frac{1}{k} \int p_X(x_1) \dots p_X(x_k) \max_{i=1}^k p(y|x_i) dx_1 \dots dx_k dy.$$

$$I[p(x,y)] = \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dx dy.$$

Problem formulation

Take $\iota > 0$, and fix $k \in \{2, 3, ...\}$. Let p(x, y) be a joint density (where (X, Y) could be random vectors of any dimensionality.) Supposing

$$I[p(x,y)] \le \iota,$$

then can we find an upper bound on $ABA_k[p(x, y)]$? In other words, can we compute the value of

$$C_k(\iota) = \sup_{p(x,y): \mathbb{I}[p(x,y)] < \iota} ABA_k[p(x,y)]$$
?

Preview

Yes we can, and this is what the resulting function $C_k(\iota)$ looks like:

As information increases, the maximal average Bayes accuracy goes to 1.

Reduced Problem

Rather than show the whole proof, we consider a simplified problem to illustrate the methods.

Actually, the simplified problem is equivalent to the full problem and we get the same answer (but this is non-trivial).

Reduced Problem

- p(x, y) on unit square with uniform marginals.
- The conditional distributions p(x|y) are just "shifted" copies of a common density, q(x), on [0,1]

$$p(x|y) = q(x - y + I\{x < y\})$$

• Furthermore, q(x) is increasing in x.

The information and average Bayes error can be written in terms of q(x).

$$I[p(x,y)] = \int_0^1 q(x) \log q(x) dx$$

$$ABA_k[p(x,y)] = \int_{[0,1]^k} \max_{i=1}^k q(x_i) dx_1 \cdots dx_k$$

Overload the notation and "redefine" information and average Bayes error as functionals of q(x).

$$I[q(x)] \stackrel{def}{=} \int_0^1 q(x) \log q(x) dx$$

$$ABA_k[q(x)] \stackrel{def}{=} \frac{1}{k} \int_{[0,1]^k} \max_{i=1}^k q(x_i) dx_1 \cdots dx_k$$

We can simplify the expression for ABA_k even more. Observe that since q(x) is increasing,

$$\max_{i=1}^k q(x_i) = q\left(\max_{i=1}^k x_i\right)$$

Therefore,

$$ABA_{k}[q(x)] = k^{-1} \int_{[0,1]^{k}} \max_{i=1}^{k} q(x_{i}) dx_{1} \cdots dx_{k}$$

$$= k^{-1} \int_{[0,1]^{k}} q\left(\max_{i=1}^{k} x_{i}\right) dx_{1} \cdots dx_{k}$$

$$= k^{-1} \mathbf{E} \left[q\left(\max_{i=1}^{k} X_{i}\right) \right] = k^{-1} \mathbf{E}[q(M)]$$

where $X_1, \ldots, X_k \stackrel{iid}{\sim} \text{Unif}[0,1]$ and $M = \max_{i=1}^k X_i$.

Recall that the max of k iid uniforms has density

$$f(m) = km^{k-1}.$$

Therefore,

$$ABA_{k}[q(x)] = k^{-1}\mathbf{E}[q(M)] = \int_{0}^{1} q(t)t^{k-1}dt.$$

Optimization problem

We now pose the question: how do we find q(x) which maximizes $ABA_k[q(x)]$ subject to $I[q(x)] \le \iota$?

- Domain of the optimization: Recall that q(x) satisfies $q(x) \ge 0$, $\int_0^1 q(x) dx = 1$, and is increasing in x. Let $\mathcal Q$ denote the space of functions on $[0,1] \to [0,\infty)$ which are increasing in x.
- Constraints: We have two remaining constraints, $I[q(x)] \le \iota$ and $\int_0^1 q(x) dx = 1$.

Hence the problem is

$$\mathsf{maximize}_{q(x) \in \mathcal{Q}} \; \mathsf{ABA}_k[q(x)] \; \mathsf{subject} \; \mathsf{to} \; \int_0^1 q(x) dx = 1 \; \mathsf{and} \; \mathsf{I}[q(x)] \leq \iota.$$

Optimization problem

$$\mathsf{maximize}_{q(x) \in \mathcal{Q}} \; \mathsf{ABA}_k[q(x)] \; \mathsf{subject} \; \mathsf{to} \; \int_0^1 q(x) dx = 1 \; \mathsf{and} \; \mathsf{I}[q(x)] \leq \iota.$$

- Does a solution exist? Yes, because the space of measures with density q(x) satisfying $I[q(x)] \le \iota$ is tight, and both the constraints and objective are continuous wrt to the topology of weak convergence.
- Given a solution $q^*(x)$ exists, there exist Lagrange multipliers $\lambda \in \mathbb{R}$ and $\nu > 0$ such that q^* minimizes

$$\mathcal{L}[q(x)] = -\mathsf{ABA}_k[q(x)] + \lambda \int_0^1 q(x)dx + \nu \mathsf{I}[q(x)]$$

= $\int_0^1 (-t^{k-1} + \lambda + \nu \log q(x))q(x)dx$.

Functional derivatives

- Functional derivatives are essential to variational calculus.
- Let \mathcal{F} be a *Hilbert space* of functions with domain \mathcal{X} and range \mathbb{R} .
- Suppose F is a functional which maps functions f to the real line. Then the functional derivative $\nabla F[f]$ at f is a function in the space \mathcal{F} such that

$$\lim_{\epsilon \to 0} \frac{F(f + \epsilon \xi) - F(f)}{\epsilon} = \int_{\mathcal{X}} \nabla F[f](x) \xi(x) dx.$$

for all $\xi \in \mathcal{F}$.

Functional derivatives

- Taylor explansions are a useful trick for computing functional derivatives
- ullet We can compute the functional derivative of $\mathcal{L}[q(x)]$ by writing

$$\begin{split} \mathcal{L}[q(x) + \epsilon \xi(x)] \\ &= \int_0^1 (-t^{k-1} + \lambda + \nu \log(q(x) + \epsilon \xi(x)))(q(x) + \epsilon \xi(x)) dx. \\ &\approx \int (q(x) + \epsilon \xi(x))(-t^{k-1} + \lambda + \nu \{\log q(x) + \frac{\epsilon \xi(x)}{q(x)}\}) dx \\ &\approx \mathcal{L}[q(x)] + \int_0^1 (-t^{k-1} + \lambda + \nu (1 + \log q(x)) \epsilon \xi(x) dx. \end{split}$$

Hence

$$\nabla \mathcal{L}[q](x) = -t^{k-1} + \lambda + \nu(1 + \log q(x))$$

Variational magic!

Suppose we set the functional derivative to 0,

$$0 = \nabla \mathcal{L}[q](t) = -t^{k-1} + \lambda + \nu + \nu \log q(t).$$

Then we conclude that the optimal $q^*(t)$ takes the form

$$q^*(t) = \alpha e^{\beta t^{k-1}}$$

for some $\alpha > 0$, $\beta > 0$.

From the constraint $\int q(t)dt = 1$, we get

$$q_{eta}(t) = rac{e^{eta t^{k-1}}}{\int e^{eta t^{k-1}} dt}.$$

Technical sidenote

For the optimal q(t), how do we know $\nabla \mathcal{L}[q](t) = 0$?

ullet Since ${\mathcal Q}$ has a monotonicity constraint, we cannot simply take for granted that

$$\nabla \mathcal{L}[q^*](t) = 0$$

However, we can show that assuming

$$\nabla \mathcal{L}[q^*](t) \neq 0$$

on a set of positive measure results in a contradiction.

• The contradiction is achieved by constructing a suitable perturbation ξ which is "localized" around a region where $\mathcal{L}[q^*](t) \neq 0$, such that $q^* + \epsilon \xi \in \mathcal{Q}$ and also so that $\int \xi(t) \nabla \mathcal{L}[q^*](t) dt < 0$. This implies that for ϵ sufficiently small, $\mathcal{L}[q^* + \epsilon \xi] < \mathcal{L}[q^*]$ —a contradiction, since we assumed that q^* was optimal.

Result

Theorem. For any $\iota > 0$, there exists $\beta_{\iota} \geq 0$ such that defining

$$q_{eta}(t) = rac{\exp[eta t^{k-1}]}{\int_0^1 \exp[eta t^{k-1}]},$$

we have

$$\int_0^1 q_{eta_\iota}(t) \log q_{eta_\iota}(t) dt = \iota.$$

Then,

$$C_k(\iota) = \int_0^1 q_{eta_\iota}(t) t^{k-1} dt.$$

Conclusion: Inferring mutual information from randomized classification

- Step 1: Apply machine learning to obtain test accuracy TA_k.
- Step 2: Obtain lower confidence bound ABA_k.
- Step 3: Obtain a lower confidence bound on I(X; Y) from ABA_k.

The end

The Importance of Experimental Design

Let's see if the subject responds to magnetic stimuli... ADMINISTER THE MAGNETI

Interesting...there seems to be a significant decrease in heart rate. The fish must sense the magnetic field.

(credit C. Ambrosino)

Does I large imply ABA_k close to 1?

Answer is **no**... per the following counterexample.

$$X \in [0,1], Y \in [0,1]$$

$$p(x,y) \propto (1-\alpha) + \alpha \left(\frac{e^{-\frac{x^2+y^2}{2\sigma^2}}}{2\pi\sigma^2}\right)$$

$$I[p(x,y)] \approx \alpha(\frac{1}{2}\log\frac{1}{\sigma^2} - 1 - \log(2\pi))$$

Taking $\alpha \to 0$ and $\sigma^2 \le e^{-\frac{1}{\alpha^2}}$, we get

$$I[p(x,y)] \to \infty$$
, $ABA_k[p(x,y)] \to \frac{1}{k}$.

This also answers "Does ABA_k close to 1/k imply I close to 0?" (Also no.)

Fun fact: "variational" proof of Fano's inequality

$$X \sim \mathsf{Unif}\{1,...,k\}, \ Y \sim \mathsf{Unif}[0,1].$$

$$I(X;Y) = \frac{1}{k} \sum_{x} \int p(y|x) \log p(y|x) dy,$$

$$\mathsf{BA} = \frac{1}{k} \int \max_{x} p(y|x) dy.$$

reduces to

$$\mathsf{maximize}_{q_i \geq 0} \ \max_{i=1}^k q_i$$

s.t.
$$\sum_{i=1}^k q_i = 1$$
 and $\log(k) + \sum_{i=1}^k q_i \log q_i \le \iota$.

Fun fact: "variational" proof of Fano's inequality

Optimum takes the form

$$q_1 = \beta, \ q_2 = \cdots = q_k = (1 - \beta)/(k - 1).$$

where $BA = \beta$. Hence,

$$I(X; Y) \ge \iota = \log(k) + \beta \log(\beta) + (1 - \beta) \log((1 - \beta)/(k - 1))$$

= $\log(k) - H(BA) - (1 - BA) \log(k - 1)$,

which is Fano's inequality.