iv	目次
= '	

4.5	発展:否定パーサ	48
4.6	注意	49
4.7	演習問題	49
第5章	代数的データ型	51
5.1	構文	51
5.2	Haskell による正格評価	54
5.3	構文解析	59
5.4	実行テスト	62
5.5	設計上の選択	63
5.6	TypeScript による正格評価	64
5.7	構文解析	70
5.8	実行テスト	74
5.9	まとめ	76
第6章	遅延評価器	77
6.1	遅延評価とは何か	77
6.2	Haskell でグラフ簡約	80
6.3	Haskell と IORef による遅延評価器	83
6.4	TypeScript による遅延評価器	93
第7章	遅延評価パターンマッチ 1	03
7.1	パターンマッチは遅延した計算を駆動する	03
7.2	Haskell による case 式とパターンマッチの実現	05
7.3	Haskell による変数定義マッチの実現	08
7.4	実行テスト	10
7.5	TypeScript で遅延評価パターンマッチ	14
第8章	参考資料 1	21
8.1	先行事例	21
8.2	参考文献	22