Cryptographie

PLAN

SURVOL DES PRIMITIVES CRYPTOGRAPHIQUES

CHIFFREMENT ASYMÉTRIQUE

SIGNATURE DIGITALE

FONCTION DE HACHAGE

CHIFFREMENT SYMÉTRIQUE

Cryptographie *vs.* Contrôle d'accès

CONTRÔLE D'ACCÈS

- une politique
- un mécanisme d'application doit mettre en œuvre cette politique
- mécanisme applicable uniquement sur des composants qu'on maîtrise

CRYPTOGRAPHIE

- transformations de données
- les propriétés obtenues sont indépendantes de la localisation de ces données
- permet la communication de données en dehors des composants maîtrisés

PRIMITIVES CRYPTOGRAPHIQUES

PRIMITIVES?

- type d'opérations sur les messages/textes
- classement en fonction de leur effet

GRANDS TYPES DE PRIMITIVES

- fonctions de hachage (pour la sûreté et la sécurité)
- chiffrement symétrique (2 personnes, 1 clef partagée pour le chiffrement et le déchiffrement)
- chiffrement asymétrique (1 personne, 2 clefs, une pour le chiffrement, une pour le déchiffrement)
- signature digitale (1 personne, 2 clefs, une pour la signature, une pour la validation des signatures)

BASE DE LA CRYPTOGRAPHIE

INGRÉDIENTS ESSENTIELS

- toutes les primitives robustes nécessitent un générateur aléatoire
- toutes les primitives robustes partent d'un problème à "porte dérobée" :
 - ll est facile d'effectuer un calcul dans un sens
 - l est très difficile d'inverser ce calcul
 - sauf si on peut passer par une porte dérobée

ÉVALUATION

Pour chaque primitive :

- certaines opérations faciles, généralement implémentées dans des librairies
- la robustesse est définie par un devinette qui conclut que sans porte dérobée, il n'est pas possible de faire mieux que deviner au hasard la réponse

PLAN

SURVOL DES PRIMITIVES CRYPTOGRAPHIQUES

CHIFFREMENT ASYMÉTRIQUE

SIGNATURE DIGITALE

FONCTION DE HACHAGE

CHIFFREMENT SYMÉTRIQUE

CHIFFREMENT ASYMÉTRIQUE

CONTEXTE

- découverte au début des années 70
- exemple connu historiquement : RSA
- chaque personne dispose de deux clefs :
 - une clef distribuée à tout le monde, qui sert à chiffrer des messages
 - une clef gardée secrète, qui permet de déchiffrer des messages

Dans la vie de tous les jours

laisser un message sur la messagerie d'une personne :

- avec un annuaire, tout le monde peut connaître le numéro de téléphone de cette personne et laisser un message
- seule la personne ayant le téléphone pourra connaître le contenu des messages sur sa messagerie

CYCLE D'UTILISATION: INITIALISATION

PROCÉDURE

- un paramètre de difficulté (un nombre de bits)
- ▶ une personne A crée un couple (KA, KA⁻¹) de clefs à partir d'un générateur aléatoire
- pour simplifier, KA est distribuée à tout le monde, et KA⁻¹ reste connue de A seul

RISQUES

- ▶ si le générateur aléatoire marche mal, une personne extérieure peut tenter de deviner les clefs qui seront produites
- réutilisation de paramètres d'une application à l'autre
- réseaux : pour le Web, supporter de vieux navigateurs signifie en général accepter des communications avec des paramètres trop faibles

CYCLE D'UTILISATION: UTILISATION

OPÉRATIONS FACILES

- en connaissant un message m et une clef publique k, il est **facile** d'obtenir c = encp(m, k), le chiffré de m par k
- en connaissant un message chiffré c = encp(m, k) et la clef privée correspondante k^{-1} , il est **facile** de déchiffrer c pour calculer m

MODÈLE LOGIQUE

$$(m,k \rightarrow encp(m,k))$$

$$encp(m,k),k^{-1} \rightarrow m$$

CYCLE D'UTILISATION: ROBUSTESSE

JEU DE BASE

- 1. le joueur choisit deux messages de même longueur m et m'
- 2. il reçoit en retour soit encp(m, k), soit encp(m', k)
- 3. le joueur doit deviner lequel des deux messages il a reçu

AMÉLIORATIONS

- à tout moment, le joueur peut demander à déchiffrer n'importe quel message qu'il construit tant que ce n'est pas le message qu'il a reçu à l'étape 2
- ▶ la chiffrement est robuste si la probabilité qu'il a deviné correctement est ¹/₂, quelque soit le message renvoyé

EXEMPLE

RSA

- 1. publique : un module N, un entier k
- 2. privé : un entier k^{-1} tel que :

$$\forall 0 \le m < N, \left(m^k\right)^{k^{-1}} = m \mod N$$

- 3. chiffrement : $encp(m, k) = m^k \mod N$
- 4. déchiffrement $c^{k-1} \mod N$

NOTE

- propriété importante : le déchiffrement "réussit" toujours, mais si on utilise la mauvaise clef on obtient un message sans signification
- pirmitive pas robuste (pourquoi ?)

MORALITÉ

lorsqu'on chiffre deux fois un même message, on doit obtenir deux résultats indépendants

PLAN

SURVOL DES PRIMITIVES CRYPTOGRAPHIQUES

CHIFFREMENT ASYMÉTRIQUE

SIGNATURE DIGITALE

FONCTION DE HACHAGE

CHIFFREMENT SYMÉTRIQUE

SIGNATURE DIGITALE

CONTEXTE

- historiquement basée sur le chiffrement asymétrique
- exemple connu historiquement : DSA (signature RSA)
- chaque personne dispose de deux clefs :
 - une clef distribuée à tout le monde, qui sert à valider des signatures
 - une clef gardée secrète, qui permet de signer des messages

DANS LA VIE DE TOUS LES JOURS

affichage du numéro d'un correspondant :

- avec un annuaire/liste de contact, tout le monde peut connaître la personne ayant le numéro appelant
- seule la personne ayant le téléphone pourra appeler avec ce numéro
- ne pas montrer son numéro revient à ne pas signer son coup de fil

CYCLE D'UTILISATION: INITIALISATION

PROCÉDURE (IDEM CHIFFREMENT

- un paramètre de difficulté (un nombre de bits)
- ▶ une personne A crée un couple (KA, KA⁻¹) de clefs à partir d'un générateur aléatoire
- pour simplifier, KA est distribuée à tout le monde, et KA⁻¹ reste connue de A seul

RISQUES

idem chiffrement

CYCLE D'UTILISATION: UTILISATION

OPÉRATIONS FACILES

- en connaissant un message m et la clef de signature publique k^{-1} , il est facile d'obtenir $c = sigp(m, k^{-1})$, la signature digitale de m par k^{-1}
- en connaissant un message signé $s = sigp(m, k^{-1})$ et la clef de validation correspondante k, il est **facile** de vérifier que s est la signature de m

MODÈLE LOGIQUE

$$\begin{cases}
m, k^{-1} \rightarrow sigp(m, k^{-1}) \\
m, sigp(m, k^{-1}), k \rightarrow \top
\end{cases}$$

CYCLE D'UTILISATION: ROBUSTESSE

JEU DE BASE

- 1. le joueur demande la signature de messages de son choix
- 2. le joueur gagne s'il peut produire un couple (m, σ) où $\sigma = sigp(m, k^{-1})$

AMÉLIORATIONS

- la signature est robuste si la probabilité de produire un couple correct est négligeable (zéro)
- (multiplication) utiliser la même mécanisme que pur RSA n'est pas très robuste
- on utilise en général une fonction de hachage pour rendre la signature robuste

PLAN

SURVOL DES PRIMITIVES CRYPTOGRAPHIQUES

CHIFFREMENT ASYMÉTRIQUE

SIGNATURE DIGITALE

FONCTION DE HACHAGE

CHIFFREMENT SYMÉTRIQUE

FONCTION DE HACHAGE

CONTEXTE

- vient des codes correcteurs d'erreur
- exemples connus : SHA1, MD5
 - une fonction qui calcule un message de taille fixée en fonction d'un message de taille quelconque

Dans la vie de tous les jours

enregistrer ses contacts avec un surnom:

- peu de chances de connaître 2 personnes différentes ayant les mêmes nom etprénoms
- sans la liste de contacts, impossible de contacter une personne à partir du surnom
- si on choisit les surnoms au hasard, peu de chances que quelqu'un d'autre puisse trouver un des surnoms utilisés

CYCLE D'UTILISATION: UTILISATION

OPÉRATIONS FACILES

- en connaissant un message m et la fonction $h(\cdot)$, il est **facile** d'obtenir c = h(m), le haché de m
- en connaissant un message haché b = h(m) et le message original m, il est **facile** de vérifier si b est le haché de m

MODÈLE LOGIQUE

$$\{ m \rightarrow h(m) \}$$

CYCLE D'UTILISATION: ROBUSTESSE

RECHERCHE D'ANTÉCÉDENTS

du plus faible au plus dangereux

- il est possible de calculer x, y tels que h(x) = h(y)
- rightharpoonup connaissant x, h(x), il est possible de calculer y tel que h(x) = h(y)

NOTES

- Pour les fonctions de hachage communément utilisées, pas de critère basé sur des jeux
- (taille des espaces entrée/sortie) : il y a toujours une infinité de collisions, mais selon la fonction il sera plus ou moins dur d'en calculer

Variante : HMAC

HMAC = hash + nombre aléatoire partagé

HMAC ET SIGNATURE DIGITALE

- connaissant m, la valeur h(m,r) peut être produite par toute personne connaissant r
- connaissant m, c, toute personne connaissant r peut vérifier que c = h(m, r)
- signature light, symétrique, propre à un groupe de sujets
- avantage : très rapide à calculer

SIGNATURE DIGITALE ET H

- ▶ RSA avec application de la clef privée sur le haché de *m* est très sûr
- en plus les temps de calcul sont plus courts

PLAN

SURVOL DES PRIMITIVES CRYPTOGRAPHIQUES

CHIFFREMENT ASYMÉTRIQUE

SIGNATURE DIGITALE

FONCTION DE HACHAGE

CHIFFREMENT SYMÉTRIQUE

CHIFFREMENT SYMÉTRIQUE

CONTEXTE

- historiquement le seul chiffrement jusque dans les années 70
- chiffrement de César, de Vigenère, Enigma,
- notion de chiffrement parfait, mais pas de jeu difficile pour les chiffrements en pratique

CHIFFREMENT PARFAIT

- Vernam : un générateur aléatoire parfait k
- \blacktriangleright chiffrement : $m \oplus k$ (ou exclusif bit à bit)
- \blacktriangleright déchiffrement $(m \oplus k) \oplus k = m$

CYCLE D'UTILISATION: INITIALISATION

ENTENTE

- 2 personnes souhaitant communiquer s'entendent sur un nombre aléatoire (contexte de sécurité ou clef secrète)
- le contexte de sécurité est utilisé pour initialiser un générateur de nombre aléatoires (puis ou exclusif avec les nombres générés)
- la clef est utilisée pour chiffrer bloc par bloc un message avec chaînage entre les différents blocs

CYCLE D'UTILISATION: UTILISATION

OPÉRATIONS FACILES

- en connaissant un message m et la clef k, il est **facile** d'obtenir c = encs(m, k), le chiffré de m
- en connaissant un message chiffré c = encs(m, k) et la clef k, il est **facile** de calculer m

MODÈLE LOGIQUE

$$m, k \rightarrow encs(m, k)$$

 $encs(m, k), k \rightarrow m$

CYCLE D'UTILISATION: ROBUSTESSE

JEUX CRYPTOGRAPHIQUES

- des jeux peuvent être définis comme pour le chiffrement asymétrique
- mais les chiffrements utilisés en pratique ne sont pas montrés sûrs

NOTES

- le chiffrement par blocs est déterministe (ex : AES), donc moins sécurisé
- pour le rendre moins déterministe, on utilise en plus le bloc chiffré précédent pour calculer le chiffré du bloc courant
- vecteur d'initialisation : valeur utilisée pour chiffré le premier bloc

