INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO

MARCOS VINICIUS DE SOUZA PEREIRA

SISTEMA PARA AGENDAMENTO DE LAVAGENS DE VEÍ-CULOS AUTOMOTIVOS

CAMPOS DO JORDÃO 2024

MARCOS VINICIUS DE SOUZA PEREIRA

SISTEMA PARA AGENDAMENTO DE LAVAGENS DE VEÍ-CULOS AUTOMOTIVOS

Pesquisa final etapa 1 elaboração de um sistema de agendamento de lavagem veículos automotivos para disciplina de banco de dados 1.

Prof. Paulo Giovani De Faria Zeferino

CAMPOS DO JORDÃO 2024 RESUMO

Este trabalho se propõe a realizar o desenvolvimento de um sistema de agendamento digital para a lavagem de veículos, visando otimizar a gestão de serviços e melhorar a experiência dos clientes que buscam este tipo de serviço. O objetivo principal é criar uma solução tecnológica que permita aos usuários agendar serviços de maneira prática e rápida, enquanto o estabelecimento organiza sua operação com maior eficiência. Além de atender as demandas de forma ágil, sistema busca reduzir tempo de espera, evitar a sobreposição de horários agendados e melhorar o uso de recursos que possam contribuir para a sustentabilidade do setor. As etapas realizadas foram o levantamento de requisitos, modelagem, prototipação, desenvolvimento e validação. Inicialmente foi feita uma pesquisa com clientes e gestores da área em questão para poder então identificar as funcionalidades essenciais. Os resultados obtidos demonstraram que o sistema é capaz de suprir as demandas dos clientes permitindo agendamentos rápidos, notificações rápidas e personalização de serviços. Para os gestores pode-se criar relatórios que auxiliam no planejamento e monitoramento da operação no dia a dia. Com isso podemos concluir que a modernização dos processos de lavagem de veículos, oferece uma solução que junta eficiência operacional e experiencia aprimorara para os clientes.

Palavras-Chave: sistema; agendamento; lavagem; veículos; operacional; sustentabilidade **ABSTRACT**

This work aims to develop a digital scheduling system for vehicle washing, with the

goal of optimizing service management and improving the experience of customers

seeking this type of service. The primary objective is to create a technological soluti-

on that allows users to schedule services in a practical and quick manner, while ena-

bling establishments to organize their operations more efficiently. In addition to ad-

dressing demands swiftly, the system seeks to reduce waiting times, prevent overlap-

ping appointments, and enhance resource usage, contributing to the sector's sustai-

nability.

The stages carried out included requirements gathering, modeling, prototyping, deve-

lopment, and validation. Initially, a survey was conducted with customers and mana-

gers in the field to identify essential functionalities. The results demonstrated that the

system successfully meets client demands by enabling fast scheduling, instant notifi-

cations, and service customization. For managers, it provides reports that assist in

the daily planning and monitoring of operations.

Thus, it can be concluded that modernizing vehicle washing processes offers a solu-

tion that combines operational efficiency with an enhanced customer experience.

Keywords: system; Scheduling; washing;

SUMÁRIO

1 Introdução	6
1.1 Objetivos	6
1.2 Justificativa	6
1.3 Aspectos Metodológicos	7
1.4 Aporte Teórico	8
2 FUNDAMENTAÇÃO TEÓRICA	g
3 METODOLOGIA	10
CONCLUSÃO	14

1 INTRODUÇÃO

A crescente expansão da urbanização e o ritmo acelerado da população em adquirir automóveis afeta diretamente a rotina das pessoas, com a avanço da modernização, os serviços de lavagem se tornam cada vez mais demandados. Neste contexto os serviços de lavagem de veículos como carros e motos são cadas vez mais essenciais para a conservação e valorizam dos veículos a longo prazo, trazendo também o conforto e higiene no presente momento em que se finaliza a lavagem. No entanto, a gestão do tempo para realizar este tipo de manutenção se torna um desafio recorrente para os donos de estéticas automotivas, especialmente quando se trata de horários limitados e falta de disponibilidade de serviços especializados. Esta pesquisa se propõe a elaboração de um sistema de agendamento de lavagem de carros e motos, com a finalidade de proporcionar facilidade aos usuários, otimização e organização dos estabelecimentos que oferecem este tipo de serviço.

1.1 Objetivos

Este trabalho tem por objetivo desenvolver um sistema digitalizado e eficiente que permita o agendamento prévio de serviços de lavagem de veículos, promovendo a organização das demandas dos clientes e a otimização dos recursos disponíveis.

Para a consecução deste objetivo foram estabelecidos os objetivos específicos:

- Criar uma interface de fácil utilização para clientes realizarem agendamentos online.
- Integrar um sistema de notificação para lembretes de agendamentos e confirmações.
- Reduzir os tempos de espera e melhorar a experiência do cliente.
- Oferecer suporte à personalização de serviços (tipo de lavagem, adicionais de detalhamento, tempo de execução, desconto exclusivos para frequência de lavagem).

1.2 Justificativa

A implantação de um sistema de agendamento digital para lavagem de veículos se justifica pela necessidade do crescente setor de serviços estéticos automotivos. Muitos estabelecimentos ainda utilizam métodos manuais para realizar o gerenciamento de filas, por vezes causando atrasos e insatisfação dos clientes. Além disso, a concorrência nesse mercado que é novo e está desenvolvendo muito rápido, exige soluções tecnológicas para atrair e fidelizar os consumidores que só aumentam.

Visando questões ecológicas e ambientais, a organização antecipada dos serviços podem auxiliar na redução do uso excessivo de água e energia, contribuindo para uma operação mais sustentável. Assim, a proposta deste sistema atende tanto as necessidades do cliente quanto as demandas de eficiência e sustentabilidade do modelos de negócio

1.3 Aspectos Metodológicos

A elaboração do sistema será baseada na metodologia de desenvolvimento incremental dividida nas seguintes etapas.

Levantamento de requisitos: pesquisa junto a clientes e gestores de lava-rapidos para identificar as funcionalidades essenciais do sistema que será implementado.

Modelagem e prototipação: Criação de um prototipo funcional que simule o sistema de agendamento, seguido de teste com um público-alvo limitado.

Desenvolvimento do sistema: Implementação do sistema desenvolvido utilizando tecnologias de desenvolvimento web responsivo e banco de dados relacional.

Validação e ajustes: realização de testes finais e coleta de feedback para aprimorar o produto antes de ser lançado oficialmente.

Implementação e treinamento: lançamento do sistema e capacitação dos funcionários para utilizá-lo de forma eficiente.

1.4 Aporte Teórico

O trabalho será fundamentado em teorias de usabilidade e design de sistemas, abordando conceitos como experiência do usuário (UX) e interface do usuário (UI), além de princípios de gestão de filas e sistemas de controle de operações. Os conceitos de sistema de informação e banco de dados, com destaque para os estudos de Heuser (2009), que aborda a modelagem e a organização de dados em sistemas relacionais. Suas contribuições são essenciais para a contrução do banco de dados do sistema, com consistência, eficiência e escalabilidade no armazenamento e recuperação de informações de agendamentos. A obra de Heuser nos fornece diretrizes para a criação de estruturas robustas e alinhadas as necessidades de sistemas voltados para gestões.

Além disso, o trabalho se baseia também nos princípios de desenvolvimento de software apresentados por Pompilho (2002), que discute metodologias ágeis e praticas de design centrado no usuário. A abordagem de Pompilho sobre a integração de prototipação iterativa e validação com usuários que contribuiu para a elaboração de interfaces mais intuitivas e funcionais. Essas interfaces facilitam o uso do sistema por clientes e gestores, promovendo uma experiência de usabilidade clara e satisfatória.

A combinação das teorias de Heuser e Pompilho foram determinantes para a concepção do sistema, integrando uma base de dados bem estruturada a um design eficiente. Esse alinhamento reforça a importância de unir aspectos técnicos e práticos no desenvolvimento de soluções que atendam as demandas de mercado de maneira moderna e eficaz.

2 FUNDAMENTAÇÃO TEÓRICA

A fundamentação teórica deste trabalho baseia-se em conceitos de sistemas de informação, banco de dados e metodologias de desenvolvimento de software, que fornecem suporte ao planejamento e construção de soluções tecnológicas para a gestão de serviços. Conforme abordado por Heuser (2009) a modelagem de dados é um dos pilares fundamentais no desenvolvimento de sistemas de informação, sendo indispensável para garantir a consistência e a eficiência no armazenamento de dados. Ja com Pompilho(2002) a análise é uma etapa crucial para identificar e definir os processos de um sistema, garantindo que ele atenda as necessidades dos usuários e das prestadoras de serviços. A abordagem destaca a importância de compreender os requisitos de forma clara e objetiva, utilizando ferramentas como fluxogramas e diagramas de casa de uso. Esses conceitos serão aplicados no levantamento de requisitos do sistema de agendamento, permitindo a criação de uma solução alinhada ás expectativas de clientes e gestores.

O sistema também busca atender aos princípios de sustentabilidade, promovendo um uso mais consciente de recursos, como água e energia, por meio de agendamentos organizados. Essa perspectiva está alinhada às práticas modernas de gestão sustentável, que visam reduzir impactos ambientais sem comprometer a qualidade dos serviços oferecidos.

Por fim, a metodologia incremental utilizada no desenvolvimento do sistema, conforme descrita por Pressman (2014), permite que o software seja construído e validado em ciclos iterativos, com a incorporação contínua de melhorias baseadas em feedback dos usuários. Essa abordagem facilita a adaptação do sistema às necessidades reais dos clientes e gestores, reduzindo riscos e promovendo a entrega de valor em curto prazo.

Assim, a fundamentação teórica deste trabalho combina conceitos técnicos e práticos, proporcionando uma base sólida para o desenvolvimento de um sistema eficiente e alinhado às demandas do mercado.

3 METODOLOGIA

O desenvolvimento do sistema de agendamento de lavagem de veículos teve como objetivo atender a uma necessidade crescente de otimização no processo de gestão de agendas em estabelecimentos do setor automotivo. O sistema foi projetado para ser uma solução intuitiva e eficiente, integrando funcionalidades de cadastro de clientes, agendamento de horários, gerenciamento de recursos (equipamentos e funcionários) e relatórios de desempenho.

Inicialmente, realizou-se uma análise detalhada dos fluxos operacionais típicos em lava-rápidos, a fim de identificar gargalos e requisitos essenciais. Dentre os desafios encontrados, destacaram-se: Altos índices de superposição de horários, causando atrasos; Falta de organização no registro de clientes e serviços; Necessidade de notificação automática para clientes e funcionários.

Ferramenta Utilizada na Modelagem e Requisitos

Para a etapa de modelagem, utilizou-se a notação de Heuser no desenvolvimento do modelo conceitual. Essa notação é amplamente utilizada por sua clareza na representação de entidades, atributos e relacionamentos. A ferramenta escolhida para construir os diagramas foi o BRModelo, uma aplicação prática e eficiente para elaboração de modelos de banco de dados.

Requisitos levantados:

· Funcionais:

- Permitir o cadastro de clientes, incluindo informações básicas (nome, telefone, e-mail).
- Gerenciar serviços de lavagem com especificação de tipos (simples, completa) e duração.
- Controlar agendas com horários disponíveis, evitando conflitos de agendamento.
- Enviar notificações automáticas para lembrar clientes do horário agendado.

Não Funcionais:

- 1. Interface amigável e acessível em dispositivos móveis e desktop.
- 2. Banco de dados robusto e escalável para suportar crescimento.
- 3. Garantia de segurança nos dados, com criptografia em informações sensíveis.

Projeto de Dados

O projeto de dados foi elaborado com base no modelo conceitual, que representa as principais entidades e relacionamentos do sistema. As entidades identificadas foram:

- Cliente: Representa o usuário final que agenda os serviços.
- Serviço: Define os tipos de lavagem disponíveis.
- Agendamento: Relaciona clientes, serviços e horários.
- Funcionário: Identifica os responsáveis pela execução dos serviços.

Modelo Conceitual (Notação de Heuser):

- Entidade Cliente (Atributos: ID_Cliente, Nome, Telefone, Email).
- Entidade Serviço (Atributos: ID_Serviço, Nome_Serviço, Duração).
- Entidade Funcionário (Atributos: ID Funcionário, Nome Funcionário, Cargo).
- Entidade Agendamento (Atributos: ID_Agendamento, Data_Hora, ID_Cliente, ID_Serviço, ID_Funcionário).
 - Relacionamento: "Realiza" entre Cliente e Agendamento (1:N).
 - Relacionamento: "Executa" entre Funcionário e Agendamento (1:N).
 - Relacionamento: "Inclui" entre Serviço e Agendamento (1:N).

Coleta das Regras de Negócio

A coleta das regras de negócio foi realizada por meio de entrevistas com gestores e funcionários de lava rápidos, além da observação in loco de suas operações. Algumas das regras levantadas foram: Cada cliente pode agendar apenas um serviço por horário; Um funcionário pode realizar múltiplos serviços, desde que não sejam simultâneos; Serviços têm tempo pré-determinado para execução, sendo necessário respeitar essa duração; Cancelamentos de agendamentos devem ser realizados com pelo menos 2 horas de antecedência.

Modelo Conceitual

O modelo conceitual foi desenvolvido utilizando a notação de Heuser, representando as principais entidades, atributos e relacionamentos identificados durante a fase de análise do sistema. Abaixo, segue a descrição detalhada das entidades e suas interações.

Representação do Modelo Conceitual:

Entidades:

- 1. Cliente
- 2. Serviço
- 3. Funcionário
- 4. Agendamento

Relacionamentos: "Realiza" (Cliente -> Agendamento) [1:N]: Um cliente pode realizar vários agendamentos, mas cada agendamento pertence a apenas um cliente. "Inclui" (Serviço -> Agendamento) [1:N]: Cada agendamento inclui um tipo de serviço. "Executa" (Funcionário -> Agendamento) [1:N]: Um funcionário pode executar vários agendamentos, mas cada agendamento é realizado por apenas um funcionário.

REGRAS DE NEGOCIO

- Cada cliente deve possuir informações de identificação (nome, telefone, email).
- 2. Um cliente só pode realizar um agendamento por horário disponível.
- Um funcionário pode realizar vários serviços em diferentes horários, mas nunca simultaneamente.
- Cada serviço possui uma duração fixa e deve ser concluído dentro do tempo estimado.
- 5. Cancelamentos devem ser realizados com no mínimo 2 horas de antecedência para evitar penalidades.

DICIONARIO DE DADOS

Para cada tabela representada no modelo conceitual, foi elaborado um dicionário de dados, contendo os atributos, seus tipos de dados, tamanho e descrição.

Tabela: cliente

Campo	Tipo	Tamanho	Descrição	
ID_Cliente	Inteiro	15.	Identificador único do cliente.	
Nome	Texto	100	Nome completo do cliente.	
Telefone	Texto	15	Telefone de contato.	
Email	Texto	50	Endereço de e-mail.	

Tabela: serviço

Campo	Tipo	Tamanho	Descrição
ID_Serviço	Inteiro	-	Identificador único do serviço.
Nome_Serviço	Texto	50	Nome do serviço (ex.: lavagem completa).
Duração	Inteiro	-	Duração do serviço (em minutos).

Tabela: funcionário

Campo	Tipo	Tamanho	Descrição
ID_Funcionário	Inteiro	(=)	Identificador único do funcionário.
Nome_Funcionário	Texto	100	Nome completo do funcionário.
Cargo	Texto	50	Cargo do funcionário (ex.: lavador).

Tabela: agendamento

Campo	Tipo	Tamanho	Descrição
ID_Agendamento	Inteiro	-	Identificador único do agendamento.
Data_Hora	Data/Hora		Data e horário do agendamento.
ID_Cliente	Inteiro	. 	Chave estrangeira que referencia o cliente.
ID_Serviço	Inteiro	-	Chave estrangeira que referencia o serviço.
ID_Funcionário	Inteiro	-	Chave estrangeira que referencia o funcionário.

CONCLUSÃO

Este projeto teve como objetivo desenvolver um Sistema de Agendamento de Lavagem de Veículos que otimize a gestão de serviços, horários e recursos em lava-rápidos, promovendo eficiência e organização. O sistema foi projetado para atender às necessidades de clientes, funcionários e gestores, garantindo uma experiência intuitiva e prática.

A modelagem conceitual, elaborada com a notação de Heuser, estruturou as principais entidades do sistema (Cliente, Serviço, Funcionário e Agendamento) e seus relacionamentos, como "Realiza", "Inclui" e "Executa". A estrutura de dados foi pensada para respeitar as regras de negócio identificadas, como a gestão de horários exclusivos por cliente e a definição de tempos de execução por serviço.

A implementação do sistema permitiu: cadastro de clientes e serviços com informações detalhadas; Agendamento de horários com prevenção de conflitos e notificação automática; Controle de funcionários para alocação eficiente de recursos.

O sistema atingiu os objetivos propostos, apresentando uma solução robusta e funcional. No entanto, durante o desenvolvimento, identificaram-se oportunidades de melhorias, incluindo: Integração com sistemas de pagamento online, para maior comodidade dos clientes notificações em múltiplos canais (SMS, e-mail, push), otimizando os lembretes de agendamento. Relatórios detalhados sobre frequência de serviços e desempenho operacional. Gestão de estoque e recursos, garantindo disponibilidade de materiais essenciais. Melhoria na interface mobile, para uma experiência ainda mais fluida. Sugestão automática de horários usando inteligência artificial, com base na disponibilidade de recursos.

Em conclusão, o projeto demonstrou a importância de um design bem planejado, aliado a ferramentas adequadas e à consideração das necessidades operacionais, para entregar um sistema eficiente e adaptável. Com as sugestões de melhoria implementadas, o sistema pode evoluir para oferecer funcionalidades ainda mais completas e alinhadas às demandas do mercado.

REFERÊNCIAS

Heuser, Carlos A. *Projeto de Banco de Dados.* 6ª edição. Porto Alegre: Bookman, 2009.

Pompilho, Sérgio L. *Análise Essencial: Guia Prático de Análise de Sistemas*. Rio de Janeiro: Ciência Moderna, 2002.