OSICS Multifunction Platform

8-Channel Modular Platform

Programming Guide

About This Manual

Subject

This manual specifies the remote interfaces of the OSICS Mainframe and modules and the corresponding remote commands.

Application

Information in this document applies to the OSICS Mainframe version 3.04 (and later) and the following versions of OSICS modules:

- OSICS ATN v. 1.06
- OSICS BKR v. 1.06
- OSICS DFB v. 2.37
- OSICS ECL v. 3.04
- OSICS SLD v. 1.02
- OSICS SWT v. 1.06
- OSICS SWT-APC v. 1.10
- OSICS T100 v. 3.04
- OSICS TLS-50 v. 3.11
- OSICS TLS-AG v. 3.11

Intended Readers Users of this manual must be familiar with:

- Fiber optic technology
- The RS-232C and/or IEEE-488.1 interfaces used to operate the OSICS in remote mode
- The use of the OSICS multifunction platform (see OSICS User Manual)

Date

27 January 2017

Manual Reference OSICS_PG_3v1.8

Typographical Conventions	bold	Identifies graphical interface objects such as menu names, labels, buttons and icons.
	italic	Identifies references to other sections or other guides.
	monospace	Identifies portions of program codes, command lines, or messages displayed in command windows.
	IMPORTANT	Identifies important information to which you must pay particular attention.
Command Syntax		
Notation Conventions	Notation	Meaning
Conventions	[]	The content between square brackets is optional.
	<>	The content between angled brackets indicates the type of information that you must enter as parameter (command) or that is received (response).
		Indicates an alternative. Equivalent to "or".
	#	Represents a numeric suffix, for example an OSICS slot number.

3 OSICS Programming Guide

Symbols

Identifies conditions or practices that could result in injury or loss of life.

Identifies conditions or practices that could result in damage to the product or other property.

Abbreviations Used

Abbreviation	Meaning
GPIB	General Purpose Interface Bus
LF	line feed
CR	carriage return
EOI	End-Or-Identify
LSB	Least Significant Bit

Legal Notice

Copyright

Copyright © 2013–2016 by Yenista Optics. Published by Yenista Optics. All rights reserved. This documentation is provided as a user manual to Yenista Optics' customers and potential customers only. The contents of this document may not be reproduced in any part or as a whole, transcribed, stored in a retrieval system, translated into any language, or transmitted in any form or by any means (electronic, mechanical, magnetic, optical, chemical, photocopying, manual, or otherwise) without the prior written permission of Yenista Optics.

Trademarks

"Yenista Optics", "Yenista" and "TUNICS" are registered trademarks of Yenista Optics. Other trademarks mentioned in this publication are used for identification purposes only.

Product Warranty and Limitation of Warranty

This Yenista Optics instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Yenista will repair products that prove to be defective. For warranty service or repair, such product must be returned to Yenista. Please contact Yenista support services for the appropriate procedure. Yenista does not accept any equipment shipped back without following the procedure.

Yenista Optics warrants that its software and firmware designated by Yenista for use with an instrument will execute its programming instructions when properly installed on that instrument. Yenista does not warrant that the operation of the instrument, software, or firmware will be uninterrupted or error-free.

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

Disclaimers

No Warranties: This documentation is provided "as is" without any ex-touch or implied warranty of any kind. **Limitation of Liability**: Yenista Optics does not assume any liability arising out of the application or use of any products, or software described herein. In no event shall Yenista Optics or its affiliate companies be liable for any damages whatsoever (including, without limitation, consequential or incidental damages, damages for loss of profits, or otherwise) arising out of the use of the information provided in this documentation.

The contents of this publication have been carefully checked for accuracy. However, Yenista Optics makes no warranty as to the completeness, correctness, or accuracy of the information contained within this documentation. In the interest of continued product improvement, Yenista Optics further reserves the right to make changes to any products described herein without notice. This publication is subject to change without notice.

Contact Information

Headquarters

Yenista Optics

4 rue Louis de Broglie 22300 Lannion FRANCE

Phone: +33 2 96 48 37 16 Fax: +33 2 96 48 73 04 Website: <u>www.yenista.com</u>

North American Office

Yenista Optics Inc.

2393 Teller Road, Suite 102 Newbury Park, CA 91320-6089 USA

Phone: +1 805 367 4075 Fax: +1 609 423 0891

China Office

Yenista Optics

No.555 WuDing Road, Room 834 Jing'an District Shanghai 200040 CHINA

Phone: +86 21 3251 7155

Sales

Sales Americas

Email: sales-am@yenista.com
Phone: +1 805 367 4075

Sales China

Email: sales-china@yenista.com
Phone: +86 21 3251 7155

Sales Europe, Middle East and Africa

Email: sales-emea@yenista.com
Phone: +33 296 483 716

Sales Asia and Pacific

Email: sales-apac@yenista.com

Customer Support and Repair Services

Americas

Email: support-am@yenista.com

China

Email: support-china@yenista.com

Europe, Middle East and Africa

Email: support-emea@yenista.com

Asia and Pacific

Email: support-apac@yenista.com

Table of Contents

Ab	out T	his Manual	3
Leg	gal No	otice	5
Co	ntact	Information	6
Tal	ole of	Contents	7
1.	Rem	notely Controlling the OSICS Multifunction Platform	11
	1.1	Switching Between Remote and Local Mode	
	1.2	Remotely Controlling the OSICS via IEEE 488	
	1.3	Remotely Controlling the OSICS via USB-B (RS-232C Protocol)	
2.	Gen	eral System and Status Control	17
	2.1	Communication Principles	
	2.2	Standard IEEE Status Register Commands and Queries	19
	2.3	RS-232C Common Commands	23
3.	OSIO	CS Mainframe Control	25
	3.1	Optical-Output Control	26
	3.2	Spectral Unit Selection	27
	3.3	Output Power Control	28
	3.4	Modulation Control	30
	3.5	Working Configuration Control	31
	3.6	OSICS System Management Control	32
4.	OSIO	CS ATN-HP Control	33
	4.1	Unit Selection	34
	4.2	Attenuation Setting	35
	4.3	Wavelength Setting	36
	4.4	Offset Setting	37
	4.5	Module System-Version Information	38
5.	OSIO	CS BKR Control	39
	5.1	Unit Selection	40
	5.2	Reflectance Setting	41
	5.3	Wavelength Setting	42
	5.4	Offset Setting	
	5.5	Module System-Version Information	44
6.	OSIO	CS DFB Control	45
	6.1	Optical-Output Control	46
	6.2	Unit Selection	47
	6.3	Output-Power Setting	
	6.4	Diode-Current Setting	
	6.5	Optical Emission-Wavelength/Frequency Setting	
	6.6	Modulation Control	
	6.7	Calibration Control	57

	6.8	Module Parameter-Monitoring with the OUT 1 Output	59
	6.9	Module System-Version Information	60
7.	OSIC	S ECL Control	61
	7.1	Optical-Output Control	62
	7.2	Unit Selection	63
	7.3	Output-Power Setting	65
	7.4	Diode-Current Setting	66
	7.5	Optical Emission-Wavelength/Frequency Setting	67
	7.6	Coherence Control	
	7.7	Auto-peak Find Control	69
	7.8	Modulation Control	70
	7.9	Calibration Control	72
	7.10	Module Parameter-Monitoring with the OUT 1 Output	75
	7.11	Module System-Version Information	76
8.	OSIC	S SLD Control	77
	8.1	Unit Selection	77
	8.2	Optical-Output Control	79
	8.3	Optical Output Settings	80
	8.4	Module System-Version Information	81
9.	OSIC	S SWT Control	83
	9.1	Input/Output Selection	83
	9.2	Module System-Version Information	
10.	OSIC	S SWT-APC Control	89
	10.1	Operating-Mode Selection and Configuration	
	10.2	Input/Output Channel Selection	
	10.3	Unit Selection	
	10.4	Optical-Output Control	93
	10.5	Output-Power Setting	
	10.6	Optical Emission-Wavelength/Frequency Setting	
	10.7	Coherence Control	96
	10.8	Auto-peak Find Control	97
	10.9	Modulation Control	98
	10.10	Module System-Version Information	100
11.	OSIC	S T100 Control	101
	11.1	Optical-Output Control	
	11.2	Unit Selection	103
	11.3	Output-Power Setting	105
	11.4	Diode-Current Setting	106
	11.5	Optical Emission-Wavelength/Frequency Setting	107
	11.6	Coherence Control	
	11.7	Auto-peak Find Control	
	11.8	Modulation Control	110
	11.9	Calibration Control	
	11.10	Module Parameter-Monitoring with the OUT 1 Output	115
	11.11	Module System-Version Information	116

12.	OSIC	OSICS TLS-50 Control		
	12.1	Optical-Output Control	118	
	12.2	Unit Selection	119	
	12.3	Output-Power Setting	121	
	12.4	Optical Emission-Wavelength/Frequency Setting	122	
	12.5	SBS Suppression Control	124	
	12.6	Module System-Version Information	127	
13.	OSIC	S TLS-AG Control	129	
	13.1			
	13.2	Unit Selection		
	13.3	Operating-Mode Control	133	
	13.4	Output-Power Setting	135	
	13.5	Optical Emission-Wavelength/Frequency Setting	136	
	13.6	SBS Suppression Control	141	
	13.7	Module System-Version Information	143	
14.	Error	· Codes	145	
15.	Prog	ram Example and Library	147	
		OSICS LabVIEW Library		
		OSICS LabVIEW Example		
Ind	ex	·	151	

1. Remotely Controlling the OSICS Multifunction Platform

You can remotely control the OSICS Mainframe through the following ports:

- IEEE-488.2 communication through the GPIB port
- RS-232C communication through the USB-B port

This section explains how to use these ports to remotely control the OSICS multifunction platform.

1.1 Switching Between Remote and Local Mode

Procedures

Entering the Remote Mode

• The OSICS multifunction platform automatically switches to remote mode if it receives a command (via the USB or GPIB port).

When the OSICS multifunction platform enters into remote mode, the Mode area displays **Mode: REMOTE** and the user interface control-panel is disabled.

The **System Status** screen remains active and displays the current module settings, such as operating wavelength (or frequency) or output power.

Switching Back to Local Mode

• To go back to local mode, select **LOCAL** by pressing the right control button (see the front panel description in the *OSICS User Manual*).

In GPIB, if the OSICS multifunction platform is set to local lockout condition, the message ${\tt LOCAL}$ ${\tt LOCKOUT}$ is displayed. This means that the OSICS multifunction platform is locked into GPIB remote-control operation: all OSICS front panel controls are disabled and local operating mode can no longer be restored using the **LOCAL** soft-key.

To restore the user interface control panel, send the "Go to local" instruction to the OSICS multifunction platform from the computer or GPIB controller (refer to the programming guide of your GPIB board to know the exact syntax for the "Go to local" instruction).

OSICS Programming Guide

1.2 Remotely Controlling the OSICS via IEEE 488

Subject

This section explains how to use the IEEE-488.2 GPIB interface to remotely operate the OSICS multifunction platform.

The GPIB port is located on the rear panel and is labeled **IEEE 488** (see *OSICS User Manual*).

Capabilities

The following table lists the OSICS GPIB capabilities.

Mnemonic	Function		
SH1	Complete source handshake		
AH1	Complete acceptor handshake		
T5	Complete talker		
L3	Complete listener		
SR1	Complete service request		
RL1	Complete remote/local		
PP0	No parallel poll		
DC1	Complete device clear		
DT0	No device trigger		
C0	No controller		

Table 1: GPIB Interface Capabilities

1.2.1 Setting the GPIB Address

Subject

The default GPIB address of the OSICS is factory-set to 10. This section explains how to modify it (possible values are 1 to 30).

Up to 15 devices may be connected on the same GPIB bus simultaneously. Each device has its own GPIB address in the range of 0 to 30. To avoid address conflicts, you must make sure that your OSICS GPIB address is different from the address of any other device already connected to the GPIB port.

Procedure

- 1. Access the Main Setup menu (see OSICS User Manual).
- **2.** Turn the rotary knob to put the cursor before the **GPIB address** menu and press the knob to enter it.

The GPIB Address sub-menu appears and displays the current GPIB address.

Figure 1: Main Setup - GPIB Address

3. Enter the wanted address as follows:

- a. Turn the rotary knob to put the cursor under the digit to modify and press the knob to highlight it.
- b. Turn the knob clockwise to increase the value or anticlockwise to decrease it and press the knob to validate the selected digit.
- c. Perform steps a. and b. for every digit you want to modify.
- d. Turn the rotary knob clockwise to put the cursor under **ENTER** and press the knob to validate the new address.

The new GPIB address is set and stored in memory. You do not need to restart the OSICS Mainframe.

Subject The GPIB port enables you to connect the OSICS Mainframe to a computer and to control

Before Starting Make sure you have a GPIB cable to link the OSICS Mainframe to an IEEE-488.2 controller (GPIB PCI card or GPIB-USB-HS module from National Instrument) connected to your computer.

1. Connect the GPIB port of the OSICS Mainframe to the IEEE-488.2 controller connected to your computer via the GPIB cable.

2. Use the authorized remote GPIB commands detailed in the present guide to remotely control the OSICS multifunction platform.

1.2.2 Connecting the OSICS to an IEEE 488 Controller

it via remote commands.

OSICS Programming Guide

Procedure

1.3 Remotely Controlling the OSICS via USB-B (RS-232C Protocol)

Subject

The USB 2.0-B port is located on the on the rear panel and is labeled **USB-B** (see OS/CS User Manual).

The OSICS multifunction platform can receive RS-232C commands at the USB-B port from a computer on which the appropriate USB driver is installed. To achieve this, you must install the OSICS USB Driver on your computer in order to make the USB port appear as an additional COM port available to the PC (see the following procedure). Application software can then access the USB port in the same way as it would access a standard COM port. Therefore, RS-232C commands can be sent to the OSICS using a serial-communication terminal.

The OSICS USB Driver is available on the USB key provided with the OSICS, or from the **Yenista Optics** website (download area).

This section explains how to connect your computer to the OSICS Mainframe and how to install the OSICS USB driver.

Before Starting

- Make sure your computer runs one of the following operating systems: Windows 10, Windows 8, Windows 7, Windows Vista or Windows XP.
 If not, the OSICS USB driver is not supported by your computer.
- Make sure you have the appropriate USB driver: the OSICS USB driver is provided on the USB key delivered with the OSICS Mainframe, or can be downloaded from the Yenista Optics website.
- Make sure you have a USB-A to USB-B cable to link the OSICS Mainframe to your computer.
- If your operating system is Windows 8 or Windows 10, unsigned drivers (such as the USB driver provided by **Yenista Optics**) can only be installed in a specific startup mode. Perform the following steps to start your Windows 8 or Windows 10 system in the appropriate mode:
 - a. Make sure you have administrative rights on you computer.
 - b. Start Windows.
 - c. On the log on screen, click the **Power** button located in the bottom right corner.
 - d. Press the **Shift** key while selecting the **Restart** option.
 - e. Wait for the Choose an Option screen.
 - f. On the Choose an Option screen, select the following options:
 Troubleshooting > Advanced Options > Startup Settings
 A page describing all possible restart modes is displayed.
 - g. Click the **Restart** button.
 - h. After Restart, select the "**Disable Driver Signature Enforcement**" mode. The system starts in "Disable Driver Signature Enforcement" Mode.
 - Log on and follow the installation procedure below.
 When the driver installation is finished, you can restart Windows 8 or Windows 10 to switch it back to "Normal" mode.

Procedure

- **1.** Do one of the following:
 - Connect the OSICS USB key to the USB-A port of your computer.

- From the **Yenista Optics** website (http://yenista.com/Download-area.html), download the OSICS USB Driver (OSICS USB Driver.zip) on your computer and unzip it to a temporary folder on your computer.
- 2. In the **OSICS USB Driver Installer** folder, double-click one of the following files, depending on you Windows platform (if you select the wrong file, a message appears, prompting you to select the other file):
 - 32-bit system: OSICSUSBInstaller_x86.exe
 - 64-bit system: OSICSUSBInstaller_x64.exe

A message may appear asking you to confirm the installation of an unsigned driver. Click **Install this driver anyway** to start the installation.

The OSICS USB Driver installation wizard appears.

- **3.** Follow the instructions displayed in the wizard window.
 - The OSICS USB Driver is now installed on your computer.
- **4.** Connect the USB-B port of the OSICS to the USB-A port of your computer using a USB-A to USB-B cable.
 - The OSICS USB-B port is recognized as a COM port by the computer.
- **5.** Use the authorized remote RS-232C commands (detailed in the present guide) to remotely control the OSICS multifunction platform.

Port Settings

On your computer, make sure the port settings are configured with the following values:

- Baud rate (bits per second): 9600 bauds
- Data bits: 8
- Parity: none
- Stop bits: 1
- Flow control (handshaking): none

2. General System and Status Control

2.1 Communication Principles

2.1.1 Format of Messages

Message Endings Command Message Ending

A command message must end with one of the following:

- USB (RS-232C): CR (or ASCII code 13 character)
- GPIB: LF (or ASCII code 10 character) or EOI message

Response Message Ending

All commands sent via RS-232C generate a response message from the OSICS
 Mainframe to inform the computer whether the order was successfully performed
 (OK) or that an error was produced (error messages are explained in the following
 Error Handling section, p 18).

A response message always ends with the end-of-message sequence composed of:

- the <CR> at the end of the message string
- a blank line
- the > sign placed on the next line followed by one white-space character, to separate messages from one another along the vertical layout.

Example:

```
P=0.5 <CR>
P=? <CR>
```

will generate the following two response messages if operation is successful:

```
OK <CR>
>
P=0.5 DBM <CR>
>
```

• Commands sent via GPIB follow the standard status model, see section *Standard Status Model*, p. 19.

Message Syntax Rules

Case

Commands are not case sensitive, you can type messages in upper-case or lower-case characters.

White Space

White spaces are allowed only before or after a command string, but not within a command mnemonic.

Multiple Commands

Compound commands are allowed and consist of a series of individual instructions separated from one another by a semicolon (;).

The commands are processed by the OSICS Mainframe in the order received.

Command Length

A single command string can be up to 255 characters long. A longer command string generates a command-error message and the buffer is cleared.

A new command cannot be sent until all the instructions of the command string already in the buffer are completed. This will otherwise clear the buffer and generate a command-error. Moreover all the previous commands will be lost.

Numeric Values

Numeric values are either integers or doubles depending on the definition of the parameter.

- A numeric value can start with a leading 0
 Example: P=01.2
- The = sign cannot be totally omitted but can be replaced by a white-space character. Example: P 1.2
- White spaces are allowed before and after the = sign.
- Unit notation cannot be used after a numeric value.
- A comma cannot be used in a dot-decimal notation.
- White spaces are not allowed within a numerical value.

Error Handling

The OSICS Mainframe performs error-checking on each command received and during command execution. Errors fall into three categories and may generate one of the following error messages:

Execution Error

The command syntax is valid but the data contained in the command parameter is out of valid range. The current parameter setting remains unchanged.

Command Error

An unknown command is received or the command string has a syntax error in it.

• Device Dependent Error

Some condition due to instrument malfunction or overload has been detected.

2.1.2 Command Applicability

Commands are based on a simple two-level hierarchy:

First-level commands affect the OSICS Mainframe only. To enter an OSICS
Mainframe command, simply type in the instruction string followed by the carriage
return character in RS-232C, as shown in the following example:

```
P=0.22 < CR >
```

This command sets the output power for all the modules installed in the OSICS Mainframe to 0.22 mW (if mW is the selected power unit).

 Second-level commands are used to control the operation and setting parameters of OSICS modules installed in the OSICS Mainframe.

Module commands require the CH#: specifier, where # is the slot number of the module to which the command applies (ranging from 1 to 8), as shown in the following example:

CH2:P=0.22 <CR>

This command sets the output power of the module installed in the channel-slot 2 to 0.22 mW (if mW is the selected power unit).

Similarly, the OSICS modules send a response statement to every command received and executed. Response messages are similar in syntax to programming commands' responses and feature the channel-specifier CH# in front of the message to differentiate between channels.

2.2 Standard IEEE Status Register Commands and Queries

2.2.1 Standard Status Model

Status Model

The status word is an 8-bit variable that relates to the status of the OSICS Mainframe and error reporting as well. It contains a number of binary indicators which can be used by the controller for an optimal synchronization between the OSICS Mainframe and the controller. They indicate to the controller the nature of the current operation as well as the errors encountered.

The following figure shows the standard IEEE status model.

Figure 2: Status Word Model

Two mask registers are associated with the Status Byte register (STB) and the standard Event Status Register (ESR). These masks are used to control the service request operation of the instrument.

In the status and standard event registers, individual bits are validated by setting to 1 the corresponding bit in the mask register. Once the required bits have been set in each mask register, the summary bit will be set to 1 when the corresponding status or event register bits are set to 1.

The summary bit is obtained by performing a logical AND operation between each register and the corresponding mask register, and then a logical OR operation between all individual bits of the result.

Status Byte Register

Bit Number	Name	Meaning	
7	OPC (OPeration Complete)	Set to 1 once the last command has been completed.	
6	RQS (ReQuest Service)	Set to 1 if a service request has been generated by the OSICS Mainframe. This bit remains activated until a serial poll has been performed.	
6	MSS (Master Summary Status)	Set to 1 together with the RQS bit. This bit remains activated as long as the condition that has lead to a service request is high.	
		It is cleared as soon as this condition ceases. This bit can be read by the *STB? command.	
5	ESB (Event Status Bit)	Set to 1 as soon as one or more bits in the Event Status Register (ESR) are activated.	
4	MAV (Message AVailable)	Set to 1 if a message is available and ready to be read in the output queue. This bit remains activated as long as the output queue has not been emptied.	

Event Status Register

The following table gives the meaning of each bit in the Event Status register (ESR).

Bit Number	Name	Meaning
7	PON (Power ON)	Set to ${\tt 1}$ once the instrument initialization routine has been completed.
6	URQ (User ReQuest)	Set to ${\tt 1}$ to indicate that an instrument front-panel key has been pressed.
5	CME (ComMand Error)	Set to ${\tt 1}$ to indicate a command syntax error or an unknown command.
4	EXE (EXecution Error)	Set to 1 when a parameter value is out of the valid range or when a command cannot be executed.
3	DDE (Device Dependent Error)	Set to ${\tt 1}$ if a malfunction has occurred on the instrument or an overload condition has been reached.
2	QYE (QuerY Error)	 Set to 1 in either of those two cases: The GPIB controller has attempted to read from the OSICS Mainframe while the output queue was empty. The data in the GPIB output queue has been overwritten and lost.
1	RQC (ReQuest Control)	This bit may not be set to 1, since the OSICS instrument does not work as an IEEE-488.2 bus controller.
0	OPC (OPeration Complete)	In most cases this bit is set to 1 as soon as a command has been completely executed.

The Event Status Register is cleared each time it is read by the controller. When the execution of a command line begins, the OPC bit is cleared.

Task Synchronization

The GPIB interface of the OSICS Mainframe performs tasks sequentially in the order received; it does not support overlapping tasks.

- The **OPC** (OPeration Complete) bit is cleared while the instruction is being processed and set to 1 once it has been completed. This is particularly useful when setting a channel to a new wavelength, as this operation may take a few seconds to complete. The computer should verify this flag until it is set to 1 and then only proceed to the next instruction. The status of the OPC flag is available through serial-polling the STB byte register. The OPC flag is contained in bit 7 of the STB byte register.
- The **MAV** (Message AVailable) bit indicates that messages are available in the output buffer and ready to be read. For instance, if a query command was sent, the computer must wait until the response message is placed in the output queue before reading it. If several queries were sent via a compound command, the MAV flag remains activated until all response messages have polled by the computer. The MAV flag is contained in bit 4 of the STB byte register.

To ensure a proper sequence of events, it may be useful to combine the use of the STatus Byte Register (STB) with the Event Status Register (ESR). The most relevant bit in the STB byte is bit 4 (MAV). The STB byte can be read either through a serial poll or as a response to the *STB? query.

Error Handling

If different types of errors occur, relevant bits in the Event Status Register (ESR) are set to 1. The following diagram shows the ESR error model:

The ESR byte can be read via the *ESR? query.

The relevant bits in this control byte are the following bits:

- 0 (OPeration Complete: OPC)
- 3 (Device Dependent Error: DDE)
- 4 (EXecution Error: EXE)
- 5 (CoMmand Error: CME).

We recommend reading the ESR bit each time a command is sent to help trace errors throughout programmed operation, identify possible causes for errors and make the necessary programming adjustments.

Reading the ESR byte with the *ESR? query command clears all the bits in the Event Status Register. Therefore, we recommend reading all significant bits at the time of query to ensure no relevant information is left out or lost.

2.2.2 Common IEEE Commands and Queries

To accelerate and secure the exchange of information between the controller and the OSICS Mainframe, we recommend checking the values of the Status Register and of the standard Event Status Register using the IEEE-488.2 common commands presented in the following table.

Command	Parameter	Action	OSICS Response
*CLS	none	Clears the Event Status Register and the output queue. Sets the OPC bit to 1. The CLS instruction is automatically sent to each module.	
*ESE	Integer value (0 to 255)	The standard event mask register is set to a value equal to the parameter of ESE command. If the parameter is out of the range of 0 to	
		255, this triggers the "Execution Error".	
*ESE?	none	The value of ESE is placed in the output queue.	Returns the value of ESE (0 to 255).
*ESR?	none	Standard Event Status Register query. The value of the standard event register is placed into the output queue and the standard event register is cleared.	Returns the value of the ESR byte (0 to 255).
*IDN?	none	IDeNtification query.	Yenista Optics, OSICS, <serial number="">, <software version=""> /<fpga version=""></fpga></software></serial>
*OPC	none	Waits until the pending command is completed, then sets the OPC bit in the Event Status Register.	
*OPC?	none	Waits until OPC bit is true, then places "1" in the output queue, followed by the LF character.	This command always returns 1.
*RST	none	The input buffer is cleared. The command interpreter is reset and a reset instruction is sent to every module. The status and event registers are cleared. Sets the OPC bit to 1.	OK
*SRE	Integer value (0 to 255)	Sets the value of the Service Request Enable Register. SRE determines which event triggers a serial poll. SRE is assigned the value of its parameter. For example, if bit 4 is set, this means that a service request will be generated when a message becomes available in the output queue. If the parameter is out of the range from 0 to 255, this triggers the "Execution Error".	

Command	Parameter	Action	OSICS Response
*SRE?	none	Reads the value of the SRE register.	Value of the SRE register (0 to 255).
*STB?	none	STatus Byte query. The value of the status byte register is sent to the output queue. STB contains the MAV flag that takes bit number 4. In the STB? query, bit 6 is assigned the MSS flag rather than the RQS flag, unlike the standard STB.	Value of the STB status byte (0 to 255).
*WAI	none	Does nothing but wait until the pending command has been completed.	

2.3 RS-232C Common Commands

Subject

This section describes the ECHON command, which is useful for viewing the characters keyed in at the terminal.

Setting the echo mode by using the ECHON command is needed for some terminals and terminal emulation programs that do not feature local echo, otherwise typed characters cannot be seen.

Before Starting

Make sure that the "echo" feature is enabled on the terminal emulation program you use.

Commands

Command/ Query	Parameter	Description	OSICS Mainframe Response
ECHON	none	Sets the OSICS Mainframe to echo each typed character received back to the terminal.	ОК
ECHOFF	none	Default setting. Cancels the echo mode on the OSICS Mainframe. If the local operating mode is restored using the front-panel LOCAL button, the echo mode is automatically switched off and restored to default: ECHOFF.	OK

OSICS Programming Guide 23

3. OSICS Mainframe Control

The following table gives an overview of all available commands and queries for OSICS Mainframe control.

	Command/Query	Corresponding Section
Optical-Output Control	DISABLE	DISABLE, p. 26
	ENABLE	ENABLE, p. 26
	ENABLE?	ENABLE?, p. 26
Spectral Unit Selection	GHZ	GHZ, p. 27
	NM	NM, p. 27
	NM?	NM?, p. 27
Output Power Control	DBM	Power Unit Selection, p. 28
	MW	
	MW?	
	P=	Power Setting, p. 29
	P?	
Modulation Control	MOD_SRC	MOD_SRC?, p. 30
	MOD_SRC?	MOD_SRC?, p. 30
	MOD_F=	MOD_F=, p. 30
	MOD_F?	MOD_F?, p. 30
Working Configuration Control	SAVE	SAVE, p. 31
	RECALL	RECALL, p. 31
OSICS System Management Control	*IDN?	*IDN?, p. 32
	*RST	*RST, p. 32
	INTERLOCK?	INTERLOCK?, p. 32
	PRESENT?	PRESENT?, p. 32

3.1 Optical-Output Control

3.1.1 DISABLE

Syntax DISABLE

Parameter None.

Description Default setting.

Disables the laser output on all installed OSICS modules.

OSICS Response • RS-232C: OK

• GPIB: none, see section Standard Status Model, p. 19.

3.1.2 ENABLE

Syntax ENABLE

Parameter None.

Description Enables the laser output on all installed OSICS modules.

OSICS Response • RS-232C: OK

• GPIB: none, see section Standard Status Model, p. 19.

3.1.3 **ENABLE?**

Syntax ENABLE?

Parameter None.

Description Returns the current state of the OSICS Mainframe laser output master control.

OSICS Response • ENABLED: the laser is set to **ENABLE**.

DISABLED: the laser is set to DISABLE.

3.2 Spectral Unit Selection

3.2.1 GHZ

Syntax GHZ

Parameter None.

Description Sets the frequency in **GHz** as the spectral unit on all modules throughout the system.

OSICS Response • RS-232C: OK

• GPIB: none, see section Standard Status Model, p. 19.

3.2.2 NM

Syntax NM

Parameter None.

Description Default setting.

Sets the wavelength in **nm** as the spectral unit on the OSICS Mainframe and all installed

OSICS modules.

OSICS Response • RS-232C: OK

• GPIB: none, see section Standard Status Model, p. 19.

3.2.3 NM?

Syntax NM?

Parameter None.

Description Returns the current spectral unit used on the OSICS Mainframe and all installed OSICS

modules.

OSICS Response • 1: the current spectral unit used is **nm**.

0: the current spectral unit used is GHz.

3.3 Output Power Control

3.3.1 Power Unit Selection

3.3.1.1 DBM

Syntax DBM

Parameter None.

Description Sets **dBm** as the power unit on all modules. All power-related functions throughout the

OSICS Mainframe now use **dBm** as power unit.

OSICS Response • RS-232C: OK

• GPIB: none, see section Standard Status Model, p. 19.

3.3.1.2 MW

Syntax MW

Parameter None.

Description Default setting.

Sets **mW** as the power unit on all modules. All power-related functions throughout the

OSICS Mainframe now use **mW** as power unit.

OSICS Response • RS-232C: OK

GPIB: none, see section Standard Status Model, p. 19.

3.3.1.3 MW?

Syntax MW?

Parameter None.

Description Returns the current power unit used on the OSICS Mainframe and all installed OSICS

modules.

OSICS Response • 1: the current power unit used is **mW**.

• 0: the current power unit used is **dBm**.

3.3.2 Power Setting

3.3.2.1 P=

Syntax

 $P=xx.xx|(\pm)xx.xx$

Parameter

- [±] xx.xx: optical output power in dBm, if the unit is set to dBm (see section *DBM*, p. 28). Possible values are given in the *Technical Specifications* section corresponding to the installed modules in the *OSICS User Manual*.
- xx.xx: optical output power in mW, if the unit is set to mW (see section MW, p. 28). Possible values are given in the Technical Specifications section corresponding to the installed modules in the OSICS User Manual.

Description

Sets the optical output power of all modules to the same value, depending on the selected power unit (see section *Power Unit Selection*, p. 28).

OSICS Response

- RS-232C: OK
- GPIB: none, see section Standard Status Model, p. 19.

3.3.2.2 P?

Syntax

P?

Parameter

None.

Description

Returns the optical output power value set for the modules, according to the selected power unit. The format of the response depends on the power unit selected (see section *Power Unit Selection*, p. 28).

The returned response is the value set using the P= command (see section P=, p. 29), it does not give the power of the installed modules.

OSICS Response

- P=xx.xx: output power value in mW.
- P=±xx.xx: output power value in dBm.

3.4 Modulation Control

3.4.1 MOD_SRC

Syntax

MOD SRC INT|EXT

Parameters

- INT: **INTERNAL** digital modulation signal. The internal source uses the OSICS Mainframe on-board modulation signal generator. To set the frequency of the OSICS internal TTL modulation, use the MOD_F command (see section MOD_F=, p. 30)
- EXT: **EXTERNAL** digital modulation signal. In this case, you must connect a TTL signal generator to the **Mod. In** BNC connector located at the rear panel of the OSICS Mainframe (see OSICS User Manual).

Description Sets the type of modulation source of the OSICS Mainframe.

OSICS Response

- RS-232C: OK
- GPIB: none, see section Standard Status Model, p. 19.

3.4.2 **MOD_SRC?**

Syntax

MOD SRC?

Parameter

None.

Description

Returns the type of digital (TTL) modulation source currently selected for the OSICS.

OSICS Response

- MOD SRC=INT: the modulation source is set to INTERNAL.
- MOD SRC=EXT: the modulation source is set to EXTERNAL.

3.4.3 MOD_F=

Syntax

MOD F=xxxxxx

Parameter

xxxxxxx: frequency in Hz, in the range 123 Hz to 1000000 Hz (1 MHz).

Default value: 200 Hz

Description

Sets the frequency of the OSICS Mainframe internal digital (TTL) modulation source. If the OSICS Mainframe is not able to generate the exact value of the frequency setting, it applies the nearest available frequency value, right under the value of the setting.

OSICS Response

- RS-232C: OK
- GPIB: none, see section Standard Status Model, p. 19.

3.4.4 **MOD_F?**

Syntax

MOD F?

Parameter

None.

Description

Returns the frequency of the OSICS internal digital (TTL) modulation source in Hz.

OSICS Response

MOD F=xxxxxx

3.5 Working Configuration Control

The commands detailed in this section enable you to load or save working configurations. For more details on working configuration, see OSICS User Manual.

3.5.1 **SAVE**

Syntax SAVE STARTUP|A|B|C|D

• STARTUP: configuration loaded at OSICS startup.

A: A configuration memory.
B: B configuration memory.
C: C configuration memory.

• D: **D** configuration memory.

Description Saves the current OSICS Mainframe and module configuration settings to the selected

configuration memory.

OSICS Response • RS-232C: OK

GPIB: none, see section Standard Status Model, p. 19.

3.5.2 **RECALL**

Syntax RECALL DEFAULT|STARTUP|A|B|C|D

• DEFAULT: factory-set **DEFAULT** configuration type.

• STARTUP: **STARTUP** configuration type.

A: **A** configuration memory.

• B: **B** configuration memory.

• C: **C** configuration memory.

D: **D** configuration memory.

Description Loads the selected configuration type.

OSICS Response • RS-232C: OK

GPIB: none, see section Standard Status Model, p. 19.

3.6 OSICS System Management Control

3.6.1 *IDN?

Syntax *IDN?

Parameter None.

Description Returns information about the OSICS Mainframe.

OSICS Response Yenista Optics, OSICS, <serial number>, <software version>/

<FPGA version>

3.6.2 *RST

Syntax *RST

Parameter None.

• Resets the OSICS Mainframe and all modules to the same state as after system turn-

on and initialization. Clears the input queue.

Sets the OPC bit to 1.

The command interpreter is reset and a reset instruction is sent to every module.

The status and event registers are cleared.

OSICS Response • RS-232C: OK

GPIB: none, see section Standard Status Model, p. 19.

3.6.3 INTERLOCK?

Syntax INTERLOCK?

Parameter None.

Description Returns the current state of the remote interlock mode.

1: the remote interlock is on (laser switched off).
0: the remote interlock is off (laser switched on).

3.6.4 PRESENT?

Syntax PRESENT? #

• #: slot number of the module, in the range 1 to 8.

Description Returns the type of OSICS module installed in channel-slot number #. Each type of OSICS

module has its own module code.

OSICS Response • -1: empty slot.

• 1: the module installed in the selected slot is an ECL or T100 module.

• 2: the module installed in the selected slot is a DFB or SLD module.

• 7: the module installed in the selected slot is an SWT module.

• 8: the module installed in the selected slot is an ATN or BKR module.

• 10: the module installed in the selected slot is a TLS module.

4. OSICS ATN-HP Control

The following table gives an overview of all available commands and queries for OSICS ATN-HP control.

	Command/Query
Unit Selection (p. 34)	CH#:GHZ
	CH#:NM
	CH#:NM?
Attenuation Setting (p. 35)	CH#:ATN
	CH#:ATN?
	CH#:ATN_MIN_MAX?
Wavelength Setting (p. 36)	CH#:L
	CH#:L?
	CH#:LREF?
Offset Setting (p. 37)	CH#:OFFSET
	CH#:OFFSET?
Module System-Version Information	CH#:FIRM?
(p. 38)	CH#:*IDN?
	CH#:TYPE?

4.1 Unit Selection

4.1.1 CH#:GHZ

Syntax CH#:GHZ

• #: slot number of the module, in the range 1 to 8.

Description Sets **GHz** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

4.1.2 CH#:NM

Syntax CH#:NM

• #: slot number of the module, in the range 1 to 8.

Description Sets **nm** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

4.1.3 CH#:NM?

Syntax CH#:NM?

Parameter

Description Returns the actual spectral unit.

OSICS Response • CH#: NM=TRUE: the selected unit is nm.

CH#:NM=FALSE: the selected unit is GHz.

4.2 Attenuation Setting

4.2.1 CH#:ATN

Syntax CH#:ATN xx.xx

• #: slot number of the module, in the range 1 to 8.

• xx.xx: total attenuation value, which must be set between minimum insertion loss value and the attenuation range value indicated in the *Technical Specifications* section of the module in the *OSICS User Manual*. To know the possible values, see section *CH#:ATN MIN MAX?*, p. 35.

Set the total attenuation in dB.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

4.2.2 CH#:ATN?

Description

Syntax CH#:ATN?

• #: slot number of the module, in the range 1 to 8.

Description Returns the value of the attenuation in dB.

OSICS Response CH#:ATN=xx.xx

4.2.3 **CH#:ATN MIN MAX?**

Syntax CH#:ATN_MIN_MAX? 1|2

• #: slot number of the module, in the range 1 to 8.

1: first wavelength value of the factory calibration:

on SMF: 1300 nm on PMF: 1550 nm

• 2: second wavelength value of the factory calibration:

on SMF: 1550 nmon PMF: 1625 nm

Description Returns the minimum and maximum attenuation setting in dB for the given wavelength

number (1|2).

OSICS Response CH#:ATN_MIN_MAX=+<minimum value>+<maximum value>

4.3 Wavelength Setting

4.3.1 CH#:L

Syntax

CH#:L 1|2

Parameters

- #: slot number of the module, in the range 1 to 8.
- 1: first wavelength value of the factory calibration:
 - on SMF: 1300 nm
 - on PMF: 1550 nm
- 2: second wavelength value of the factory calibration:
 - on SMF: 1550 nmon PMF: 1625 nm

•

Description

Sets the reference wavelength. Each module is factory-calibrated at different wavelengths depending on the module version (SMF or PMF).

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

4.3.2 CH#:L?

Syntax

CH#:L?

Parameter

Description

• #: slot number of the module, in the range 1 to 8.

Returns the number of the wavelength used (see section CH#:L, p. 36).

OSICS Response CH#:L=1|2

4.3.3 CH#:LREF?

Syntax

CH#:LREF? 1|2

Parameters

- #: slot number of the module, in the range 1 to 8.
- 1: first wavelength value of the factory calibration:
 - on SMF: 1300 nmon PMF: 1550 nm
- 2: second wavelength value of the factory calibration:
 - on SMF: 1550 nmon PMF: 1625 nm

Description

OSICS Response

Returns the wavelength in nanometer corresponding to the given wavelength number (1|2).

`

CH#:L(1|2)=<wavelength value>

4.4 Offset Setting

4.4.1 CH#:OFFSET

Syntax CH#:OFFSET 1|2 xx.xx

Parameters

- #: slot number of the module, in the range 1 to 8.
- 1: first wavelength value of the factory calibration:
 - on SMF: 1300 nmon PMF: 1550 nm
- 2: second wavelength value of the factory calibration:
 - on SMF: 1550 nmon PMF: 1625 nm
- xx.xx: offset value in dB, in the range -10 dB to +10 dB.

Description

Sets the attenuation **Offset** for the given wavelength number $(1 \mid 2)$.

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

4.4.2 CH#:OFFSET?

Syntax CH#:OFFSET? 1|2

Parameters

- #: slot number of the module, in the range 1 to 8.
- 1: first wavelength value of the factory calibration:
 - on SMF: 1300 nm on PMF: 1550 nm
- 2: second wavelength value of the factory calibration:
 - on SMF: 1550 nmon PMF: 1625 nm

Description Returns the **Offset** value in dB for the given wavelength number (1 | 2).

OSICS Response CH#:OFFSET(1|2)=+xx.xx

4.5 Module System-Version Information

4.5.1 CH#:FIRM?

Syntax CH#:FIRM=x.xx

• #: slot number of the module, in the range 1 to 8.

Description Returns the software version of the module.

OSICS Response CH#:FIRM=x.xx

4.5.2 CH#:*IDN?

Syntax CH#:*idn?

• #: slot number of the module, in the range 1 to 8.

Description Returns information about the ATN-HP module as follows: company name, module name,

serial number, software version number (FPGA version).

OSICS Response CH#: Yenista Optics, OSICS-<Module name>, <serial number>,

<software version>/<FPGA version>

4.5.3 CH#:TYPE?

Syntax CH#:TYPE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the ATN-HP module type version and options.

OSICS Response CH#:ATN-HP

5. OSICS BKR Control

The following table gives an overview of all available commands and queries for OSICS BKR control.

	Command/Query
Unit Selection (p. 40)	CH#:GHZ
	CH#:NM
	CH#:NM?
Reflectance Setting (p. 41)	CH#:ATN
	CH#:ATN?
	CH#:ATN_MIN_MAX?
Wavelength Setting (p. 42)	CH#:L
	CH#:L?
	CH#:LREF?
Offset Setting (p. 43)	CH#:OFFSET
	CH#:OFFSET?
Module System-Version Information (p. 44)	CH#:FIRM?
	CH#:*IDN?
	CH#:TYPE?

5.1 Unit Selection

5.1.1 CH#:GHZ

Syntax CH#:GHZ

• #: slot number of the module, in the range 1 to 8.

Description Sets **GHz** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

5.1.2 CH#:NM

Syntax CH#:NM

• #: slot number of the module, in the range 1 to 8.

Description Sets **nm** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

5.1.3 CH#:NM?

Syntax CH#:NM?

Parameter

Description Returns the actual spectral unit.

OSICS Response • CH#: NM=TRUE: the selected unit is nm.

CH#:NM=FALSE: the selected unit is GHz.

5.2 **Reflectance Setting**

CH#:ATN 5.2.1

Syntax CH#:ATN xx.xx

Parameters #: slot number of the module, in the range 1 to 8.

> xx.xx: total reflectance value, which must be set between minimum insertion loss value and the reflectance range value indicated in the *Technical Specifications* section of the module in the OSICS User Manual. To know the possible values, see section

CH#:ATN MIN MAX?, p. 41.

Description Set the total reflectance in dB.

OSICS Response RS-232C: CH#:OK

> GPIB: none, see section Standard Status Model, p. 19.

5.2.2 CH#:ATN?

Syntax CH#:ATN?

Parameter #: slot number of the module, in the range 1 to 8.

Description Returns the value of the reflectance in dB.

OSICS Response CH#:ATN=xx.xx

5.2.3 CH#:ATN MIN MAX?

Syntax CH#:ATN MIN MAX? 1|2

Parameters #: slot number of the module, in the range 1 to 8.

1: first wavelength value of the factory calibration:

on SMF: 1300 nm on PMF: 1550 nm

2: second wavelength value of the factory calibration:

on SMF: 1550 nm on PMF: 1625 nm

Returns the minimum and maximum reflectance setting in dB for the given wavelength **Description**

number (1|2).

OSICS Response CH#:ATN MIN MAX=+<minimum value>+<maximum value>

5.3 Wavelength Setting

5.3.1 CH#:L

Syntax

CH#:L 1|2

Parameters

- #: slot number of the module, in the range 1 to 8.
- 1: first wavelength value of the factory calibration:
 - on SMF: 1300 nm
 - on PMF: 1550 nm
- 2: second wavelength value of the factory calibration:
 - on SMF: 1550 nmon PMF: 1625 nm

•

Description

Sets the reference wavelength. Each module is factory-calibrated at different wavelengths depending on the module version (SMF or PMF).

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

5.3.2 CH#:L?

Syntax

CH#:L?

Parameter

• #: slot number of the module, in the range 1 to 8.

Description

Returns the number of the wavelength used (see section CH#:L, p. 42).

OSICS Response

CH#:L=1|2

5.3.3 CH#:LREF?

Syntax

CH#:LREF? 1|2

Parameters

- #: slot number of the module, in the range 1 to 8.
- 1: first wavelength value of the factory calibration:

on SMF: 1300 nmon PMF: 1550 nm

- 2: second wavelength value of the factory calibration:
 - on SMF: 1550 nmon PMF: 1625 nm

Description

Returns the wavelength in nanometer corresponding to the given wavelength number (1|2).

OSICS Response

CH#:L(1|2) = < wavelength value >

5.4 Offset Setting

5.4.1 CH#:OFFSET

Syntax CH#:OFFSET 1|2 xx.xx

Parameters

- #: slot number of the module, in the range 1 to 8.
- 1: first wavelength value of the factory calibration:
 - on SMF: 1300 nmon PMF: 1550 nm
- 2: second wavelength value of the factory calibration:
 - on SMF: 1550 nmon PMF: 1625 nm
- xx.xx: offset value in dB, in the range -10 dB to +10 dB.

Description

Sets the attenuation **Offset** for the given wavelength number $(1 \mid 2)$.

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

5.4.2 CH#:OFFSET?

Syntax CH#:OFFSET? 1|2

Parameters

- #: slot number of the module, in the range 1 to 8.
- 1: first wavelength value of the factory calibration:
 - on SMF: 1300 nm on PMF: 1550 nm
- 2: second wavelength value of the factory calibration:
 - on SMF: 1550 nmon PMF: 1625 nm

Description Returns the **Offset** value in dB for the given wavelength number (1 | 2).

OSICS Response CH#:OFFSET(1|2)=+xx.xx

TLS-AG

5.5 Module System-Version Information

5.5.1 CH#:FIRM?

Syntax CH#:FIRM=x.xx

• #: slot number of the module, in the range 1 to 8.

Description Returns the software version of the module.

OSICS Response CH#:FIRM=x.xx

5.5.2 CH#:*IDN?

Syntax CH#:*idn?

• #: slot number of the module, in the range 1 to 8.

Description Returns information about the BKR module as follows: company name, module name,

serial number, software version number (FPGA version).

OSICS Response CH#:Yenista_Optics,OSICS-<Module name>,<serial number>,

<software version>/<FPGA version>

5.5.3 CH#:TYPE?

Syntax CH#:TYPE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the BKR module type version and options.

OSICS Response CH#: BKR

6. OSICS DFB Control

The following table gives an overview of all available commands and queries for OSICS DFB control.

	Command/Query
Optical-Output Control (p. 46)	CH#:DISABLE
	CH#:ENABLE
	CH#:ENABLE?
Unit Selection (p. 47)	CH#:GHZ
	CH#:NM
	CH#:NM?
	CH#:DBM
	CH#:MW
	CH#:MW?
Output-Power Setting (p. 49)	CH#:P=
	CH#:P?
	CH#:LIMIT?
Diode-Current Setting (p. 50)	CH#:I?
	CH#:IMAX?
Optical Emission-Wavelength/	CH#:L=
Frequency Setting (p. 51)	CH#:L?
	CH#:LMAX?
	CH#:LMIN?
	CH#:F=
	CH#:F?
	CH#:FMAX?
	CH#:FMIN?
Modulation Control (p. 53)	CH#:MOD_CTRL
	CH#:MOD_CTRL?
	CH#:MOD_SRC
	CH#:MOD_F=
	CH#MOD_F?
	CH#:MOD_SRC?
	CH#:SIN_FREQ=
	CH#:SIN_RATE=
	CH#:SIN_OUT
	CH#:SIN_FREQ?
	CH#:SIN_RATE?
	CH#:SIN_OUT?

	Command/Query
Calibration Control (p. 57)	CH#:PCAL=
	CH#:PCAL?
	CH#:DL=
	CH#:DL?
Module Parameter-Monitoring with the OUT 1 Output (p. 59)	CH#:AOUT
	CH#:AOUT?
Module System-Version Information (p. 60)	CH#:FIRM?
	CH#:*IDN?
	CH#:TYPE?
	CH#:ERRORT?

6.1 Optical-Output Control

6.1.1 CH#:DISABLE

Syntax CH#:DISABLE

• #: slot number of the module, in the range 1 to 8.

Description Default setting.

Disables the laser output of the DFB module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

6.1.2 CH#:ENABLE

Syntax CH#:ENABLE

• #: slot number of the module, in the range 1 to 8.

Description Enables the laser output of the DFB module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

6.1.3 CH#:ENABLE?

Syntax CH#: ENABLE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the laser-output control on the DFB module.

OSICS Response • CH#:ENABLED: the laser output is set to **ENABLE**.

• CH#: DISABLED: the laser output is set to **DISABLE**.

6.2 Unit Selection

6.2.1 CH#:GHZ

Syntax CH#:GHZ

• #: slot number of the module, in the range 1 to 8.

Description Sets **GHz** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

6.2.2 CH#:NM

Syntax CH#:NM

• #: slot number of the module, in the range 1 to 8.

Description Sets **nm** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

6.2.3 CH#:NM?

Syntax CH#:NM?

• #: slot number of the module, in the range 1 to 8.

Description Returns the actual spectral unit.

OSICS Response • CH#:1: the selected unit is **nm**.

• CH#: 0: the selected unit is **GHz**.

6.2.4 CH#:DBM

Syntax CH#: DBM

• #: slot number of the module, in the range 1 to 8.

Description Sets **dBm** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

6.2.5 CH#:MW

Syntax CH#:MW

• #: slot number of the module, in the range 1 to 8.

Description Sets **mW** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

6.2.6 CH#:MW?

Syntax CH#:MW?

• #: slot number of the module, in the range 1 to 8.

Description Returns the actual power unit.

OSICS Response • CH#:1: the selected unit is **mW**.

• CH#: 0: the selected unit is **dBm**.

6.3 Output-Power Setting

6.3.1 CH#:P=

Syntax

 $CH#:P=[\pm]xx.xx|xx.xx$

Parameters

- #: slot number of the module, in the range 1 to 8.
- [±] xx.xx: optical output power in dBm, if the unit is set to dBm (see section *Unit Selection*, p. 47). Possible values are given in the module *Technical Specifications* section in the *OSICS User Manual*.
- xx.xx: optical output power in mW, if the unit is set to mW (see section *Unit Selection*, p. 47). Possible values are given in the module *Technical Specifications* section in the *OSICS User Manual*.

Description

Sets the optical output-power of the module depending on the selected power unit (see section *Unit Selection*, p. 47).

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

6.3.2 CH#:P?

Syntax

CH#:P?

Parameter

• #: slot number of the module, in the range 1 to 8.

Description

Returns the current value of the output power according to the selected power unit. The format of the response depends on the power unit selected (see section *Unit Selection*, p. 47).

The module optical-output must be enabled (see section Optical-Output Control, p. 46).

OSICS Response

- CH#:P=xx.xx: output-power value in mW.
- CH#:P=±xx.xx: output-power value in dBm.
- CH#: Disabled: the optical output is disabled; the output-power value cannot be returned.

6.3.3 **CH#:LIMIT?**

Syntax CH#:LIMIT?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the output power.

OSICS Response • CH#:1: the selected output power is not reached.

• CH#: 0: the selected output power is reached.

6.4 Diode-Current Setting

6.4.1 CH#:I?

Syntax CH#:I?

• #: slot number of the module, in the range 1 to 8.

Description Returns the present current level in mA.

The module optical output must be enabled (see section Optical-Output Control, p. 46).

OSICS Response • CH#:I=xxx.x

• CH#: Disabled: the optical output is disabled; the current level value cannot be returned.

6.4.2 CH#:IMAX?

Syntax CH#: IMAX?

• #: slot number of the module, in the range 1 to 8.

Description Returns the diode maximum current in mA.

OSICS Response CH#:IMAX=xxx.x

6.5 Optical Emission-Wavelength/Frequency Setting

6.5.1 CH#:L=

Syntax CH#:L=xxxx.xxx

• #: slot number of the module, in the range 1 to 8.

• xxxx.xxx: the emission wavelength value in nm. The possible wavelength range is available by using the CH#:LMIN? and CH#:LMAX? commands (see p. 51).

Description Sets the emission wavelength of the module in nm.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

6.5.2 CH#:L?

Syntax CH#:L?

• #: slot number of the module, in the range 1 to 8.

Description Returns the emission wavelength of the module in nm.

OSICS Response CH#:L=xxxx.xxx

6.5.3 CH#:LMAX?

Syntax CH#:LMAX?

• #: slot number of the module, in the range 1 to 8.

Description Returns the highest possible wavelength of the DFB module wavelength range in nm.

OSICS Response CH#=xxxx.xxx

6.5.4 CH#:LMIN?

Syntax CH#:LMIN?

• #: slot number of the module, in the range 1 to 8.

Description Returns the lowest possible wavelength of the DFB module wavelength range in nm.

OSICS Response CH#=xxxx.xxx

6.5.5 CH#:F=

Syntax CH#:F=xxxxxx.x

• #: slot number of the module, in the range 1 to 8.

• xxxxxx.x: the emission frequency value in GHz. The possible frequency range is available by using the CH#:FMIN? and CH#:FMAX? commands (see p. 52).

Description Sets the emission frequency of the module in GHz.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

6.5.6 CH#:F?

Syntax CH#:F?

• #: slot number of the module, in the range 1 to 8.

Description Returns the emission frequency of the module in GHz.

OSICS Response CH#:F=xxxxxx.x

6.5.7 CH#:FMAX?

Syntax CH#:FMAX?

• #: slot number of the module, in the range 1 to 8.

Description Returns the highest possible frequency of the DFB module frequency range in GHz.

OSICS Response CH#=xxxxxx.x

6.5.8 CH#:FMIN?

Syntax CH#:FMIN?

• #: slot number of the module, in the range 1 to 8.

Description Returns the lowest possible frequency of the DFB module frequency range in GHz.

OSICS Response CH#=xxxxxx.x

6.6 Modulation Control

6.6.1 CH#:MOD_CTRL

Syntax CH#:MOD_CTRL OFF|ON|ON_INV

Parameters

- #: slot number of the module, in the range 1 to 8.
- OFF (default setting): the digital modulation is turned off.
- ON: the digital modulation is turned on.
- ON INV: the reversed digital modulation is turned on.

Description

Sets the digital (TTL) modulation of the DFB module optical signal.

If you apply analog modulation directly via the SMB subclic connector at the module faceplate, you must set this function to disable all pending digital modulation.

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

6.6.2 CH#:MOD_CTRL?

Syntax CH#:MOD CTRL?

• #: slot number of the module, in the range 1 to 8.

Description Returns the selected modulation activation state.

OSICS Response

- CH#:MOD CTRL=OFF: the modulation signal is set to **OFF**.
- CH#:MOD CTRL=ON: the modulation signal is set to **ON**.
- CH#:MOD CTRL=ON INV: the modulation signal is set to ON INVERTED.

6.6.3 CH#:MOD_SRC

Syntax CH#:MOD SRC MAIN|INT

Parameters

- #: slot number of the module, in the range 1 to 8.
- MAIN: the modulation source is set to MAINFRAME.
- INT (default setting): the modulation source is set to INTERNAL.

Description

Sets the modulation source of the DFB module.

- The MAINFRAME modulation signal may be generated either by the OSICS Mainframe's own source, or by an external function generator connected to the Mainframe's **Mod. In** BNC connector. To set the frequency of the internal Mainframe generator, see section $MOD_F = 0.30$.
- The internal source uses the module's built-in modulation signal generator. To set the frequency of the internal TTL modulation, see the CH#:MOD_F= section of the module.

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

OSICS Programming Guide

6.6.4 CH#:MOD_F=

Syntax CH#:MOD_F=xxxxxx

Parameters #: slot number of the module, in the range 1 to 8.

• xxxxxx: frequency of the modulation signal in Hz, in the range 1 to 555000

(555 kHz).

Description Sets the frequency of the DFB module INTERNAL digital (TTL) modulation source.

If the module is not able to generate the exact value of the frequency setting, it applies the nearest available frequency-value right under the value of the original setting. To check the actual frequency of the INTERNAL modulation source see section

CH#:MOD_F=, p. 54.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

6.6.5 **CH#:MOD_F?**

Syntax CH#:MOD_F?

• #: slot number of the module, in the range 1 to 8.

Description Returns the frequency selected for the internal modulation generator in Hz.

OSICS Response CH#:MOD F=xxxxxx

6.6.6 CH#:MOD_SRC?

Syntax CH#:MOD SRC?

• #: slot number of the module, in the range 1 to 8.

Description Returns the selected modulation source.

OSICS Response • CH#:MOD SRC=INT: the modulation source is set to INTERNAL.

CH#:MOD SRC=MAIN: the modulation source is set to MAINFRAME.

DFB

6.6.7 CH#:SIN_FREQ=

Syntax CH#:SIN_FREQ=xxx.x

• #: slot number of the module, in the range 1 to 8.

• xx.x: frequency of the sinus modulation signal in kHz, in the range 10 kHz to

100 kHz.

Description Sets the frequency of the DFB module's internal sinus modulation signal.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

6.6.8 **CH#:SIN_RATE**=

Syntax CH#:SIN RATE=xx.x

• #: slot number of the module, in the range 1 to 8.

• xx.x: amplitude rate of the sinus modulation signal in %, in the range of 0 % to

15 %.

Description Sets the amplitude rate of the DFB module's internal sinus modulation signal as a

percentage of the diode bias-current. For more details, see OSICS User Manual.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

6.6.9 **CH#:SIN_OUT**

Syntax CH#:SIN OUT ON|OFF

• #: slot number of the module, in the range 1 to 8.

• ON: the sinus modulation function is set to on.

OFF: the sinus modulation function is set to off.

Description Turns on or off the sinus modulation function.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

6.6.10 CH#:SIN_FREQ?

Syntax CH#:SIN_FREQ?

• #: slot number of the module, in the range 1 to 8.

Description Returns the frequency setting of the DFB module's internal sinus modulation signal

in kHz.

OSICS Response CH#:SIN FREQ=xxx.x

6.6.11 CH#:SIN_RATE?

Syntax CH#:SIN RATE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the amplitude rate setting of the sinus modulation signal as a percentage of the

diode bias-current.

OSICS Response CH#:SIN RATE=xx.x

6.6.12 CH#:SIN_OUT?

Syntax CH#:SIN_OUT?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the sinus modulation

OSICS Response • CH#:SIN OUT=ON: the sinus modulation is turned on.

• CH#:SIN_OUT=OFF: the sinus modulation is turned off.

6.7 Calibration Control

6.7.1 CH#:PCAL=

Syntax

CH#:PCAL=xx.xxx

Parameters

- #: slot number of the module, in the range 1 to 8.
- xx.xxx: output power (in mW) corresponding to the following formula: PCAL=0.5 x ($P_{\text{real power masured on powermeter in mW}} / P_{\text{Set on DFB in mW}}$)
 - Default value: 0.5
 - Possible values: from 0.3 to 0.6 (with power value set to 1)

Description

Sets the power value of the one-point power calibration method to correct the discrepancies between the power displayed by the OSICS DFB module and the power measured at your reference power meter.

To perform a power calibration, proceed as follows (full detail on the power calibration method is given in *OSICS User Manual*):

- 1. Make sure the unit is set to mW.
- 2. Set the DFB module output-power to 1 mW (see section CH#:P=, p. 49).
- **3.** Connect a power-meter to the module optical-output port.
- **4.** Set the new PCAL value with the one measured by the power meter by applying the following formula: $0.5 \times (P_{real\ power\ masured}) / (P_{Set\ on\ DFB\ mW})$.

This value replaces the PCAL setting, which is internally updated for further optical-power display.

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

6.7.2 CH#:PCAL?

Syntax CH#: PCAL?

• #: slot number of the module, in the range 1 to 8.

Description Returns the power value used for the one-point power calibration. PCAL is the absolute

power-value measured on your reference power-meter.

OSICS Response CH#: PCAL=xx.xxx

6.7.3 CH#:DL=

Syntax CH#:DL=0.xxx

• #: slot number of the module, in the range 1 to 8.

• 0 . xxx: wavelength offset in nm, in the range -0.200 nm to +0.200 nm.

Description Sets the wavelength offset applied to the emission wavelength of the DFB module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

6.7.4 CH#:DL?

Syntax CH#:DL?

• #: slot number of the module, in the range 1 to 8.

Description Returns the value of the wavelength offset in nm.

OSICS Response • CH#:DL=0.xxx

6.8 Module Parameter-Monitoring with the OUT 1 Output

6.8.1 CH#:AOUT

Syntax

CH#:AOUT I|P|T

Parameters

- #: slot number of the module, in the range 1 to 8.
- I: the OUT 1 BNC port (corresponding to the # slot number) is assigned to monitor the diode's current signal.
- P: the OUT 1 BNC port (corresponding to the # slot number) is assigned to monitor the optical-power signal.
- T: the OUT 1 BNC port (corresponding to the # slot number) is assigned to monitor the laser-chip's temperature.

Description

Assigns the OUT 1 BNC port (corresponding to the # slot number) to monitor the selected signal or temperature.

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

6.8.2 CH#:AOUT?

Syntax

CH#:AOUT?

Parameter

• #: slot number of the module, in the range 1 to 8.

Description

Returns the parameter monitored by the OUT 1 BNC port (corresponding to the # slot number).

OSICS Response

- CH#: AOUT=P: the optical output-power is monitored.
- CH#:AOUT=I: the DFB module laser-diode's current is monitored.
- CH#: AOUT=T: the DFB module laser-chip's temperature is monitored.

6.9 Module System-Version Information

6.9.1 CH#:FIRM?

Syntax CH#:FIRM=x.xx

• #: slot number of the module, in the range 1 to 8.

Description Returns the software version of the module.

OSICS Response CH#:FIRM=x.xx

6.9.2 CH#:*IDN?

Syntax CH#:*idn?

• #: slot number of the module, in the range 1 to 8.

Description Returns information about the DFB module as follows: company name, module name,

serial number, software version number (FPGA version).

OSICS Response CH#:Yenista_Optics,OSICS-<Module name>,<serial number>,

<software version>/<FPGA version>

6.9.3 CH#:TYPE?

Syntax CH#:TYPE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the DFB module type version and options.

OSICS Response CH#:DFB/<Wavelength>/<Option 1>/<Option 2>

6.9.4 CH#:ERRORT?

Syntax CH#:ERRORT?

• #: slot number of the module, in the range 1 to 8.

Description Verifies the temperature of the module.

OSICS Response • CH#:1: temperature error.

CH#: 0: normal operation.

7. OSICS ECL Control

The following table gives an overview of all available commands and queries for OSICS ECL control.

	Command/Query
Optical-Output Control (p. 62)	CH#:DISABLE
	CH#:ENABLE
	CH#:ENABLE?
Unit Selection (p. 63)	CH#:GHZ
	CH#:NM
	CH#:NM?
	CH#:DBM
	CH#:MW
	CH#:MW?
Output-Power Setting (p. 65)	CH#:P=
	CH#:P?
	CH#:LIMIT?
Diode-Current Setting (p. 66)	CH#:I?
	CH#:IMAX?
Optical Emission-Wavelength/ Frequency Setting (p. 67)	CH#:L=
	CH#:L?
	CH#:F=
	CH#:F?
Coherence Control (p. 68)	CH#:CTRL
	CH#:CTRL?
Auto-peak Find Control (p. 69)	CH#:APF
	CH#:APF?
Modulation Control (p. 70)	CH#:MOD_CTRL
	CH#:MOD_CTRL?
	CH#:MOD_SRC
	CH#:MOD_F=
	CH#MOD_F?
	CH#:MOD_SRC?

	Command/Query
Calibration Control (p. 72)	CH#:WAVEREF
	CH#:LCAL1=
	CH#:LCAL2=
	CH#:LCAL1?
	CH#:LCAL2?
	CH#:PCAL1=
	CH#:PCAL2=
	CH#:PCAL1?
	CH#:PCAL2?
Module Parameter-Monitoring with the OUT 1 Output (p. 75)	CH#: AOUT
	CH#:AOUT?
Module System-Version Information (p. 76)	CH#:FIRM?
	CH#:*IDN?
	CH#:TYPE?

7.1 Optical-Output Control

7.1.1 CH#:DISABLE

Syntax CH#:DISABLE

• #: slot number of the module, in the range 1 to 8.

Description Default setting.

Disables the laser output of the ECL module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

7.1.2 CH#:ENABLE

Syntax CH#:ENABLE

• #: slot number of the module, in the range 1 to 8.

Description Enables the laser output of the ECL module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

7.1.3 CH#:ENABLE?

Syntax CH#:ENABLE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the laser-output control on the ECL module.

OSICS Response • CH#: ENABLED: the laser output is set to **ENABLE**.

CH#: DISABLED: the laser output is set to **DISABLE**.

7.2 Unit Selection

7.2.1 CH#:GHZ

Syntax CH#:GHZ

• #: slot number of the module, in the range 1 to 8.

Description Sets **GHz** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

7.2.2 CH#:NM

Syntax CH#:NM

• #: slot number of the module, in the range 1 to 8.

Description Sets **nm** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

7.2.3 CH#:NM?

Syntax CH#:NM?

• #: slot number of the module, in the range 1 to 8.

Description Returns the actual spectral unit.

OSICS Response • CH#:1: the selected unit is **nm**.

• CH#: 0: the selected unit is **GHz**.

ᄗ

7.2.4 CH#:DBM

Syntax CH#: DBM

• #: slot number of the module, in the range 1 to 8.

Description Sets **dBm** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

7.2.5 CH#:MW

Syntax CH#:MW

• #: slot number of the module, in the range 1 to 8.

Description Sets **mW** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

7.2.6 CH#:MW?

Syntax CH#:MW?

• #: slot number of the module, in the range 1 to 8.

Description Returns the actual power unit.

OSICS Response • CH#:1: the selected unit is **mW**.

• CH#: 0: the selected unit is dBm.

7.3 Output-Power Setting

7.3.1 CH#:P=

Syntax

 $CH#:P=[\pm]xx.xx|xx.xx$

Parameters

- #: slot number of the module, in the range 1 to 8.
- [±] xx.xx: optical output power in dBm, if the unit is set to dBm (see section *Unit Selection*, p. 63). Possible values are given in the module *Technical Specifications* section in the *OSICS User Manual*.
- xx.xx: optical output power in mW, if the unit is set to mW (see section *Unit Selection*, p. 63). Possible values are given in the module *Technical Specifications* section in the *OSICS User Manual*.

Description

Sets the optical output-power of the module depending on the selected power unit (see section *Unit Selection*, p. 63).

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

7.3.2 CH#:P?

Syntax

CH#:P?

Parameter

• #: slot number of the module, in the range 1 to 8.

Description

Returns the current value of the output power according to the selected power unit. The format of the response depends on the power unit selected (see section *Unit Selection*, p. 63).

The module optical-output must be enabled (see section Optical-Output Control, p. 62).

OSICS Response

- CH#:P=xx.xx: output-power value in mW.
- CH#: P=±xx.xx: output-power value in dBm.
- CH#: Disabled: the optical output is disabled; the output-power value cannot be returned.

7.3.3 **CH#:LIMIT?**

Syntax CH#:LIMIT?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the output power.

OSICS Response • CH#

- CH#:1: the selected output power is not reached.
- CH#: 0: the selected output power is reached.

7.4 Diode-Current Setting

7.4.1 CH#:I?

Syntax CH#:I?

• #: slot number of the module, in the range 1 to 8.

Description Returns the present current level in mA.

The module optical output must be enabled (see section Optical-Output Control, p. 62).

OSICS Response • CH#:I=xxx.x

• CH#: Disabled: the optical output is disabled; the current level value cannot be returned.

7.4.2 CH#:IMAX?

Syntax CH#:IMAX?

• #: slot number of the module, in the range 1 to 8.

Description Returns the diode maximum current in mA.

OSICS Response CH#:IMAX=xxx.x

7.5 Optical Emission-Wavelength/Frequency Setting

7.5.1 CH#:L=

Syntax CH#:L=xxxx.xxx

• #: slot number of the module, in the range 1 to 8.

• xxxx.xxx: the emission wavelength value in nm. The possible wavelength range is available in the module *Technical Specifications* section in the *OSICS User Manual*.

Description Sets the emission wavelength of the module in nm.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

7.5.2 CH#:L?

Syntax CH#:L?

• #: slot number of the module, in the range 1 to 8.

Description Returns the emission wavelength of the module in nm.

OSICS Response CH#:L=xxxx.xxx

7.5.3 CH#:F=

Syntax CH#:F=xxxxxx.x

• #: slot number of the module, in the range 1 to 8.

• xxxxxx.x: the emission frequency value in GHz. The possible frequency range is available in the module *Technical Specifications* section in the *OSICS User Manual*.

Description Sets the emission frequency of the module in GHz.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

7.5.4 CH#:F?

Syntax CH#:F?

• #: slot number of the module, in the range 1 to 8.

Description Returns the emission frequency of the module in GHz.

OSICS Response CH#:F=xxxxxx.x

7.6 Coherence Control

7.6.1 CH#:CTRL

Syntax CH#:CTRL OFF|ON

• #: slot number of the module, in the range 1 to 8.

• OFF (default setting): the **Coherence Control** function is disabled.

• ON: the **Coherence Control** function is enabled.

Description Default setting.

Enables/disables the **Coherence Control** function.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

7.6.2 CH#:CTRL?

Syntax CH#:CTRL?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the **Coherence Control** function.

OSICS Response • CH#:1: the **Coherence Control** function is set to **ON** (enabled).

• CH#: 0: the Coherence Control function is set to OFF (disabled).

7.7 Auto-peak Find Control

7.7.1 CH#:APF

Syntax CH#:APF OFF|ON

• #: slot number of the module, in the range 1 to 8.

• OFF (default setting): the **Auto-peak Find** function is disabled.

• ON: the **Auto-peak Find** function is enabled.

Description Enables/disables the **Auto-peak Find** function.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

7.7.2 CH#:APF?

Syntax CH#:APF?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the **Auto-peak Find** function.

OSICS Response • CH#:1: the **Auto-peak Find** function is set to **ON**.

CH#: 0: the Auto-peak Find function is set to OFF.

7.8 Modulation Control

7.8.1 CH#:MOD_CTRL

Syntax CH#:MOD CTRL OFF|ON|ON INV

Parameters #: slot number of the module, in the range 1 to 8.

• OFF (default setting): the digital modulation is turned off.

• ON: the digital modulation is turned on.

• ON_INV: the reversed digital modulation is turned on.

Description Sets the digital (TTL) modulation of the ECL module optical signal.

If you apply analog modulation directly via the SMB subclic connector at the module faceplate, you must set this function to disable all pending digital modulation.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

7.8.2 **CH#:MOD_CTRL?**

Syntax CH#:MOD CTRL?

• #: slot number of the module, in the range 1 to 8.

Description Returns the selected modulation activation state.

• CH#: MOD CTRL=OFF: the modulation signal is set to **OFF**.

• CH#:MOD CTRL=ON: the modulation signal is set to **ON**.

• CH#:MOD CTRL=ON INV: the modulation signal is set to **ON INVERTED**.

7.8.3 **CH#:MOD_SRC**

Syntax CH#:MOD SRC MAIN|INT

• #: slot number of the module, in the range 1 to 8.

• MAIN: the modulation source is set to **MAINFRAME**.

INT (default setting): the modulation source is set to INTERNAL.

Description Sets the modulation source of the ECL module.

• The MAINFRAME modulation signal may be generated either by the OSICS Mainframe's own source, or by an external function generator connected to the Mainframe's **Mod. In** BNC connector. To set the frequency of the internal Mainframe generator, see section $MOD_F = p$, 30.

• The internal source uses the module's built-in modulation signal generator. To set the frequency of the internal TTL modulation, see the CH#:MOD_F= section of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

CH#:MOD_F= 7.8.4

Syntax CH#:MOD F=xxxxx

Parameters #: slot number of the module, in the range 1 to 8.

> xxxxxx: frequency of the modulation signal in Hz, in the range 153 to 1000000 (1 Mhz).

Sets the frequency of the ECL module INTERNAL digital (TTL) modulation source. If the module is not able to generate the exact value of the frequency setting, it applies the nearest available frequency-value right under the value of the original setting. To check the actual frequency of the INTERNAL modulation source see section CH#:MOD_F=, p. 71.

OSICS Response

Description

RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

7.8.5 CH#:MOD F?

Syntax CH#:MOD F?

Parameter #: slot number of the module, in the range 1 to 8.

Description Returns the frequency selected for the internal modulation generator in Hz.

OSICS Response CH#:MOD F=xxxxx

7.8.6 CH#:MOD_SRC?

Syntax CH#:MOD SRC?

Parameter #: slot number of the module, in the range 1 to 8.

Returns the selected modulation source. **Description**

CH#: MOD SRC=INT: the modulation source is set to INTERNAL. **OSICS** Response

CH#: MOD SRC=MAIN: the modulation source is set to MAINFRAME.

7.9 Calibration Control

7.9.1 CH#:WAVEREF

Syntax CH#:WAVEREF

• #: slot number of the module, in the range 1 to 8.

Description Runs the internal wavelength referencing procedure.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

7.9.2 **CH#:LCAL1**=

Syntax CH#:LCAL1=xxxx.xxx

• #: slot number of the module, in the range 1 to 8.

• xxxx.xxx: first wavelength in nm of the two-point wavelength calibration method. Possible values are factory-set wavelength range values (±1 nm) given in the module *Technical Specifications* section in the *OSICS User Manual*.

Description Sets the first wavelength value of the two-point wavelength calibration method.

LCAL1 is the first factory calibration wavelength (in nm only). The value of LCAL1 corresponds to the value displayed on the wavemeter (see *OSICS User Manual* for more

details).

This value replaces the LCAL1 setting and is updated in the flash-memory for further wavelength display of the wavelength.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

7.9.3 CH#:LCAL2=

Syntax CH#:LCAL1=xxxx.xxx

• #: slot number of the module, in the range 1 to 8.

• xxxx.xxx: second wavelength in nm of the two-point wavelength calibration method. Possible values are factory-set wavelength range values (±1 nm) given in the module *Technical Specifications* section in the *OSICS User Manual*.

module recrimed specifications section in the Osics oser Mandat.

Description Sets the second wavelength value of the two-point wavelength calibration method.

LCAL2 is the second factory calibration wavelength (in nm only). The value of LCAL2 corresponds to the value displayed on the wavemeter (see OSICS User Manual for more

details).

This value replaces the LCAL2 setting and is updated in the flash-memory for further display wavelength of the wavelength.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

7.9.4 CH#:LCAL1?

Syntax CH#:LCAL1=xxxx.xxx

• #: slot number of the module, in the range 1 to 8.

Description Returns the first calibration wavelength of the two-point wavelength calibration method.

OSICS Response CH#:LCAL1=xxxx.xxx

7.9.5 **CH#:LCAL2?**

Syntax CH#:LCAL2=xxxx.xxx

• #: slot number of the module, in the range 1 to 8.

Description Returns the second calibration wavelength of the two-point wavelength calibration

method.

OSICS Response CH#:LCAL2=xxxx.xxx

7.9.6 **CH#:PCAL1**=

• #: slot number of the module, in the range 1 to 8.

• xx.xxx: output power (in mW) matching the lower limit of the ECL module wavelength-range, corresponding to the following formula:

PCAL1=0.5 x (<P_{real power masured on powermeter in mW}> / <P_{Set on ECL in mW>})

• Default value: 0.5

Possible values: from 0.3 to 0.6 (with power value set to 1)

corresponds to the lower limit of the ECL module wavelength-range.

Description Sets the first power value of the two-point power calibration method. This value

To perform a power calibration, proceed as follows (full detail on the power calibration method is given in OSICS User Manual):

1. Make sure the unit is set to mW.

2. Set the ECL module output-power to 1 mW (see section CH#:P=, p. 65).

3. Connect a power-meter to the module optical-output port.

4. Set the new PCAL1 value with the one measured by the power meter by applying the following formula: $0.5 \times (P_{\text{real power masured on powermeter in mW}} / (P_{\text{Set on DFB mW}})$.

This value replaces the PCAL1 setting, which is internally updated for further optical-power display.

OSICS Response

RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

딦

7.9.7 CH#:PCAL2=

Syntax CH#:PCAL2=xx.xxx

Parameter

- #: slot number of the module, in the range 1 to 8.
- xx.xxx: output power (in mW) matching the upper limit of the ECL module wavelength range, corresponding to the following formula:

PCAL2=0.5 x ($P_{Real power masured on powermeter in mW}$ / $P_{Set on ECL in mW}$)

- Default value: 0.5
- Possible values: 0.3 to 0.6 (with power value set to 1).

Description

Sets the second power-value of the two-point power calibration method. This value corresponds to the upper limit of the ECL module wavelength range.

To perform a power calibration proceed as follows (full detail on the power calibration method is given in *OSICS User Manual*):

- 1. Make sure the unit is set to mW.
- 2. Set the ECL module output-power to 1 mW (see section CH#:P=, p. 65).
- 3. Connect a power-meter to the module optical output port.
- **4.** Set the new PCAL2 value with the one measured by the power meter by applying the following formula: $0.5 \times (P_{real\ power\ masured\ on\ powermeter\ in\ mW}^2 / P_{Set\ on\ DFB\ mW}^2)$.

This value replaces PCAL2 setting, which is internally updated for further optical-power display.

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

7.9.8 **CH#:PCAL1?**

Syntax CH#: PCAL1?

• #: slot number of the module, in the range 1 to 8.

Description Returns the first power value used for the two-point power calibration. PCAL1 is the

absolute power-value measured on your reference power-meter for the first wavelength.

OSICS Response CH#:PCAL1=xx.xxx

7.9.9 CH#:PCAL2?

Syntax CH#: PCAL2?

• #: slot number of the module, in the range 1 to 8.

Description Returns the second power value used for the two-point power calibration. PCAL2 is the

absolute power-value measured on the user's reference power-meter for the second

wavelength.

OSICS Response CH#:PCAL2=xx.xxx

7.10 Module Parameter-Monitoring with the OUT 1 Output

7.10.1 CH#:AOUT

Syntax CH#:AOUT I|P

Parameters

- #: slot number of the module, in the range 1 to 8.
- I: the OUT 1 BNC port (corresponding to the # slot number) is assigned to monitor the diode's current signal.
- P: the OUT 1 BNC port (corresponding to the # slot number) is assigned to monitor the optical-power signal.

Description

Assigns the OUT 1 BNC port (corresponding to the # slot number) to monitor the selected signal.

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

7.10.2 CH#:AOUT?

Syntax CH#:AOUT?

• #: slot number of the module, in the range 1 to 8.

Description Returns the parameter monitored by the OUT 1 BNC port (corresponding to the # slot number).

OSICS Response

- CH#: AOUT=P: the optical output-power is monitored.
- CH#: AOUT=I: the ECL module laser-diode's current is monitored.

TLS-AG

7.11 Module System-Version Information

7.11.1 CH#:FIRM?

Syntax CH#:FIRM=x.xx

• #: slot number of the module, in the range 1 to 8.

Description Returns the software version of the module.

OSICS Response CH#:FIRM=x.xx

7.11.2 CH#:*IDN?

Syntax CH#:*idn?

• #: slot number of the module, in the range 1 to 8.

Description Returns information about the ECL module as follows: company name, module name,

serial number, software version number (FPGA version).

OSICS Response CH#: Yenista Optics, OSICS-<Module name>, <serial number>,

<software version>/<FPGA version>

7.11.3 CH#:TYPE?

Syntax CH#:TYPE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the ECL module type version and options.

OSICS Response CH#:ECL-1560/<Option 1>/<Option 2>

8. OSICS SLD Control

The following table gives an overview of all available commands and queries for OSICS SLD control.

	Command/Query
Unit Selection (p. 77)	CH#:GHZ
	CH#:NM
	CH#:NM?
	CH#:DBM
	CH#:MW
	CH#:MW?
Optical-Output Control (p. 79)	CH#:DISABLE
	CH#:ENABLE
	CH#:ENABLE?
Optical Output Settings (p. 80)	CH#:P=
	CH#:P?
	CH#:L?
Module System-Version Information (p. 81)	CH#:FIRM?
	CH#:*IDN?
	CH#:TYPE?

8.1 Unit Selection

8.1.1 CH#:GHZ

Syntax CH#:GHZ

• #: slot number of the module, in the range 1 to 8.

Description Sets **GHz** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

8.1.2 CH#:NM

Syntax CH#:NM

• #: slot number of the module, in the range 1 to 8.

Description Sets **nm** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

8.1.3 CH#:NM?

Syntax CH#:NM?

• #: slot number of the module, in the range 1 to 8.

Description Returns the actual spectral unit.

OSICS Response • CH#:1: the selected unit is **nm**.

• CH#: 0: the selected unit is **GHz**.

8.1.4 CH#:DBM

Syntax CH#: DBM

• #: slot number of the module, in the range 1 to 8.

Description Sets **dBm** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

8.1.5 CH#:MW

Syntax CH#:MW

• #: slot number of the module, in the range 1 to 8.

Description Sets **mW** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

8.1.6 CH#:MW?

Syntax CH#:MW?

• #: slot number of the module, in the range 1 to 8.

Description Returns the actual power unit.

OSICS Response • CH#:1: the selected unit is **mW**.

CH#: 0: the selected unit is dBm.

8.2 Optical-Output Control

8.2.1 CH#:DISABLE

Syntax CH#:DISABLE

• #: slot number of the module, in the range 1 to 8.

Description Default setting.

Disables the laser output of the SLD module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

8.2.2 CH#:ENABLE

Syntax CH#:ENABLE

• #: slot number of the module, in the range 1 to 8.

Description Enables the laser output of the SLD module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

8.2.3 **CH#:ENABLE?**

Syntax CH#:ENABLE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the laser-output control on the SLD module.

• CH#: ENABLED: the laser output is set to **ENABLE**.

• CH#: DISABLED: the laser output is set to **DISABLE**.

8.3 Optical Output Settings

8.3.1 CH#:P=

Syntax

CH#:P=high|low

Parameter

- #: slot number of the module, in the range 1 to 8.
- high: high power setting, which is 10 mW or +10dBm depending on the power unit setting.
- low: low power setting, which is 5 mW or +7 dBm depending on the power unit setting.

Description

Sets the optical output-power of the module depending on the selected power unit (see section *Unit Selection*, p. 77).

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

8.3.2 CH#:P?

Syntax

CH#: P?

Parameter

#: slot number of the module, in the range 1 to 8.

Description

Returns the actual power output level.

OSICS Response

- Disabled: the optical output is disabled. You must enable the optical output to get the selected power output level (see section CH#:ENABLE, p. 79)
- CH#: P=LOW: the power level is set to low.
- CH#: P=HIGH: the power level is set to high.

8.3.3 CH#:L?

Syntax

CH#:L?

Parameter

#: slot number of the module, in the range 1 to 8.

Description

Returns the emission wavelength of the module in nm.

OSICS Response

CH#:L=xxxx

8.4 Module System-Version Information

8.4.1 CH#:FIRM?

Syntax CH#:FIRM=x.xx

• #: slot number of the module, in the range 1 to 8.

Description Returns the software version of the module.

OSICS Response CH#:FIRM=x.xx

8.4.2 CH#:*IDN?

Syntax CH#:*idn?

• #: slot number of the module, in the range 1 to 8.

Description Returns information about the SLD module as follows: company name, module name,

serial number, software version number (FPGA version).

OSICS Response CH#: Yenista Optics, OSICS-<Module name>, <serial number>,

<software version>/<FPGA version>

8.4.3 CH#:TYPE?

Syntax CH#:TYPE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the SLD module type version and options.

OSICS Response CH#:SLD_<Module Type>

9. OSICS SWT Control

The following table gives an overview of all available commands and queries for OSICS SWT control.

	Command/Query
Input/Output Selection (p. 83)	CH#:SHUT
	CH#:OPEN
	CH#:SHUT?
	CH#:SHUTMODE
	CH#:SHUTMODE?
	CH#:BAR
	CH#:CROSS
	CH#:BAR?
	CH#:CH
	CH#:CH?
Module System-Version Information (p. 87)	CH#:FIRM?
	CH#:*IDN?
	CH#:TYPE?

9.1 Input/Output Selection

9.1.1 CH#:SHUT

Syntax CH#:SHUT

• #: slot number of the module, in the range 1 to 8.

Description Only on shutter SWT 1x1.

Shuts the shutter.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

9.1.2 CH#:OPEN

Syntax CH#:OPEN

• #: slot number of the module, in the range 1 to 8.

Description Only on shutter SWT 1x1.

Opens the shutter.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

9.1.3 CH#:SHUT?

Syntax CH#:SHUT?

• #: slot number of the module, in the range 1 to 8.

Description Only on shutter SWT 1x1.

Returns the state of the shutter.

OSICS Response • CH#: SHUT=TRUE: the shutter is shut.

• CH#:SHUT=FALSE: the shutter is open.

9.1.4 CH#:SHUTMODE

Syntax CH#:SHUTMODE 0|1 0|1

• #: slot number of the module, in the range 1 to 8.

• 0 | 1 (first digit): output mode of the A–B shutter:

• 0: closes the A–B shutter

• 1: opens the A–B shutter

• 0 | 1 (second digit): output mode of the 1–2 shutter

• 0: closes the 1–2 shutter

• 1: opens the 1–2 shutter

Description Only on 2x shutter SWT 2x(1x1).

Opens or closes the A–B and/or 1–2 shutters.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

Example CH6:SHUTMODE 0 1

means:

• 2x shutter is in slot 6.

Shutter A-B is closed.

Shutter 1-2 is open.

9.1.5 CH#:SHUTMODE?

Syntax CH#:SHUTMODE?

• #: slot number of the module, in the range 1 to 8.

Description Only on 2x shutter SWT 2x(1x1).

Returns the output mode of the A–B and 1–2 shutters.

OSICS Response CH#:SHUTMODE 0|1 0|1

9.1.6 CH#:BAR

Syntax CH#:BAR

• #: slot number of the module, in the range 1 to 8.

Description Only on SWT 2x2.

Sets the switch output mode to **Bar**:

A is linked to 1 B is linked to 2

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

9.1.7 **CH#:CROSS**

Syntax CH#:CROSS

• #: slot number of the module, in the range 1 to 8.

Description Only on SWT 2x2.

Default setting.

Sets the switch output mode to **Cross**:

A is linked to 2B is linked to 1

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

9.1.8 CH#:BAR?

Syntax CH#:BAR?

• #: slot number of the module, in the range 1 to 8.

Description Only on SWT 2x2.

Returns the output mode of the switch

A is linked to 1B is linked to 2

OSICS Response

- CH#:BAR=TRUE: the switch is set to Bar.
- CH#:BAR=FALSE: the switch is set to Cross.

9.1.9 CH#:CH

Syntax CH#:CH <channel number>

• #: slot number of the module, in the range 1 to 8.

• <channel number>: number of the channel you want to activate in the range 1 to 2

or 1 to 4 depending on the model of your switch.

Description Only on SWT 1x2 and 1x4.

Selects the channel through which the signal will be directed.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

9.1.10 CH#:CH?

Syntax CH#:CH?

• #: slot number of the module, in the range 1 to 8.

Description Only on SWT 1x2 and 1x4.

Returns the active channel through which the signal is directed.

OSICS Response CH#:CH=<channel number>

9.2 Module System-Version Information

9.2.1 CH#:FIRM?

Syntax CH#:FIRM=x.xx

• #: slot number of the module, in the range 1 to 8.

Description Returns the software version of the module.

OSICS Response CH#:FIRM=x.xx

9.2.2 CH#:*IDN?

Syntax CH#:*idn?

• #: slot number of the module, in the range 1 to 8.

Description Returns information about the SWT module as follows: company name, module name,

serial number, software version number (FPGA version).

OSICS Response CH#:Yenista_Optics,OSICS-<Module name>,<serial number>,

<software version>/<FPGA version>

9.2.3 CH#:TYPE?

Syntax CH#:TYPE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the SWT module type version and options.

OSICS Response Switch: CH#:SWT/<Model>

Shutter: CH#:2 X SHUTTER

10. OSICS SWT-APC Control

The following table gives an overview of all available commands and queries for OSICS SWT-APC control.

	Command/Query
Operating-Mode Selection and Configuration (<i>p. 90</i>)	CH#:MODE
	CH#:ACFG
	CH#:MODE?
Input/Output Channel Selection (p. 91)	CH#:CLOSE=
	CH#:CLOSE?
Unit Selection (p. 91)	CH#:GHZ
	CH#:NM
	CH#:NM?
	CH#:DBM
	CH#:MW
	CH#:MW?
Optical-Output Control (p. 93)	CH#:DISABLE
	CH#:ENABLE
	CH#:ENABLE?
Output-Power Setting (p. 94)	CH#:P=
	CH#:P?
	CH#:LIMIT?
Optical Emission-Wavelength/	CH#:L=
Frequency Setting (p. 95)	CH#:L?
	CH#:F=
	CH#:F?
Coherence Control (p. 96)	CH#:CTRL
	CH#:CTRL?
Auto-peak Find Control (p. 97)	CH#:APF
	CH#:APF?
Modulation Control (p. 98)	CH#:MOD_CTRL
	CH#:MOD_CTRL?
	CH#:MOD_SRC
	CH#:MOD_SRC?
Module System-Version Information (p. 100)	CH#:FIRM?
	CH#:*IDN?
	CH#:TYPE?

10.1 Operating-Mode Selection and Configuration

10.1.1 CH#:MODE

Syntax CH#:MODE SWT|ECL

• #: slot number of the module, in the range 1 to 8.

• SWT: the module is set to **Switch** mode.

• ECL: the module is set to **Full-band** mode.

Description Selects the SWT-APC module operating-mode.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

10.1.2 CH#:ACFG

Syntax CH#: ACFG

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Automatically detects the T100 and ECL modules connected to the SWT-APC module. If your module's software-version is older than v. 2.21, this function is not available. You must manually configure the T100 and ECL modules connected to the SWT-APC module

as explained in OSICS User Manual.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

10.1.3 CH#:MODE?

Syntax CH#:MODE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the operating-mode of the SWT-APC module.

• CH#:MODE=SWT: the SWT-APC module is set to **Switch** mode.

• CH#: MODE=ECL: the SWT-APC module is set to **Full-band** mode.

10.2 Input/Output Channel Selection

10.2.1 CH#:CLOSE=

Syntax CH#:CLOSE=<channel number>

• #: slot number of the module, in the range 1 to 8.

• x: number of the channel you want to activate in the range 1 to 4.

Description Selects the channel through which the signal will be directed.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

10.2.2 CH#:CLOSE?

Syntax CH#:CLOSE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the active channel through which the signal is directed.

OSICS Response CH#:CLOSE=<channel number>

10.3 Unit Selection

10.3.1 CH#:GHZ

Syntax CH#:GHZ

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Sets **GHz** as the spectral unit of the SWT-APC module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

10.3.2 CH#:NM

Syntax CH#:NM

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Sets **nm** as the spectral unit of the SWT-APC module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

10.3.3 CH#:NM?

Syntax CH#:NM?

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Returns the actual spectral unit of the SWT-APC module.

OSICS Response • CH#:1: the selected unit is **nm**.

• CH#: 0: the selected unit is **GHz**.

10.3.4 CH#:DBM

Syntax CH#: DBM

• #: slot number of the module, in the range 1 to 8.

Description Sets **dBm** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

10.3.5 CH#:MW

Syntax CH#:MW

• #: slot number of the module, in the range 1 to 8.

Description Sets **mW** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

10.3.6 CH#:MW?

Syntax CH#:MW?

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Returns the actual power unit of the SWT-APC module.

OSICS Response • CH#:1: the selected unit is **mW**.

• CH#: 0: the selected unit is **dBm**.

10.4 Optical-Output Control

10.4.1 CH#:DISABLE

Syntax CH#:DISABLE

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).
Default setting.

Disables the laser output of all the modules connected to the SWT-APC module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

10.4.2 CH#:ENABLE

Syntax CH#:ENABLE

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Enables the laser output of all the ECL and T100 modules connected to the SWT-APC

module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

10.4.3 CH#:ENABLE?

Syntax CH#:ENABLE?

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Returns the state of the laser-output control on the active channel of the SWT-APC

module.

OSICS Response • CH#:ENABLED: the laser output is set to **ENABLE**.

• CH#: DISABLED: the laser output is set to **DISABLE**.

OSICS Programming Guide

Output-Power Setting 10.5

10.5.1 CH#:P=

Syntax

 $CH#:P=[\pm]xx.xx|xx.xx$

Parameters

- #: slot number of the module, in the range 1 to 8.
- [±] xx.xx: optical output power in dBm, if the unit is set to dBm (see section *Unit* Selection, p. 91). Possible values are given in the module Technical Specifications section in the OSICS User Manual.
- xx.xx: optical output power in mW, if the unit is set to mW (see section *Unit* Selection, p. 91). Possible values are given in the module Technical Specifications section in the OSICS User Manual.

Description

Only available if the SWT-APC module to is set to **Full-band** mode (see section CH#:MODE, p. 90).

Sets the optical output-power of the module depending on the selected power unit (see section Unit Selection, p. 91).

OSICS Response

- RS-232C: CH#:OK
- none, see section Standard Status Model, p. 19. GPIB:

10.5.2 CH#:P?

Syntax

CH#:P?

Parameter

#: slot number of the module, in the range 1 to 8.

Description

Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Returns the current value of the output power according to the selected power unit. The format of the response depends on the power unit selected (see section Unit Selection,

The module optical-output must be enabled (see section Optical-Output Control, p. 93).

OSICS Response

- CH#: P=xx.xx: output-power value in mW.
- CH#: P=±xx.xx: output-power value in dBm.
- CH#: Disabled: the optical output is disabled; the output-power value cannot be returned.

10.5.3 CH#:LIMIT?

Syntax

CH#:LIMIT?

Parameter

#: slot number of the module, in the range 1 to 8.

Description

Only available if the SWT-APC module to is set to **Full-band** mode (see section CH#:MODE, p. 90).

Returns the state of the output power.

OSICS Response

- CH#:1: the selected output power is not reached.
- CH#: 0: the selected output power is reached.

10.6 Optical Emission-Wavelength/Frequency Setting

10.6.1 CH#:L=

Syntax CH#:L=xxxx.xxx

• #: slot number of the module, in the range 1 to 8.

• xxxx.xxx: the emission wavelength value in nm. The possible wavelength range is available in the module *Technical Specifications* section in the *OSICS User Manual*.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Sets the emission wavelength of the module in nm.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

10.6.2 CH#:L?

Syntax CH#:L?

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Returns the emission wavelength of the module in nm.

OSICS Response CH#:L=xxxx.xxx

10.6.3 CH#:F=

Syntax CH#:F=xxxxxx.x

• #: slot number of the module, in the range 1 to 8.

• xxxxxx.x: the emission frequency value in GHz. The possible frequency range is available in the module *Technical Specifications* section in the *OSICS User Manual*.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Sets the emission frequency of the module in GHz.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

10.6.4 CH#:F?

Syntax CH#:F?

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Returns the emission frequency of the module in GHz.

OSICS Response CH#:F=xxxxxx.x

10.7 Coherence Control

10.7.1 CH#:CTRL

Syntax CH#:CTRL OFF|ON

• #: slot number of the module, in the range 1 to 8.

• OFF (default setting): the **Coherence Control** function is disabled.

ON: the Coherence Control function is enabled.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90). Default setting.

Enables/disables the **Coherence Control** function on all T100 and ECL modules connected to the SWT-APC module and detected by it (see section *CH#:ACFG, p. 90*).

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

10.7.2 CH#:CTRL?

Syntax CH#:CTRL?

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Returns the state of the **Coherence Control** function.

OSICS Response • CH#:1: the **Coherence Control** function is set to **ON** (enabled).

• CH#: 0: the **Coherence Control** function is set to **OFF** (disabled).

10.8 Auto-peak Find Control

10.8.1 CH#:APF

Syntax CH#:APF OFF|ON

• #: slot number of the module, in the range 1 to 8.

• OFF (default setting): the **Auto-peak Find** function is disabled.

• ON: the **Auto-peak Find** function is enabled.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90)

Enables/disables the **Auto-peak Find** function on all T100 and ECL modules connected

to the SWT-APC module and detected by it (see section CH#:ACFG, p. 90).

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

10.8.2 CH#:APF?

Syntax CH#:APF?

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Returns the state of the **Auto-peak Find** function.

OSICS Response • CH#:1: the **Auto-peak Find** function is set to **ON**.

CH#: 0: the Auto-peak Find function is set to OFF.

10.9 Modulation Control

10.9.1 CH#:MOD_CTRL

Syntax CH#:MOD_CTRL OFF|ON|ON_INV

• #: slot number of the module, in the range 1 to 8.

• OFF (default setting): the digital modulation is turned off.

• ON: the digital modulation is turned on.

• ON_INV: the reversed digital modulation is turned on.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Sets the digital (TTL) modulation of all the ECL and T100 modules connected to the SWT-

APC module optical signal.

If you apply analog modulation directly via the SMB subclic connector at the ECL or T100 module faceplate, you must set this function to disable all pending digital modulation.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

10.9.2 CH#:MOD_CTRL?

Syntax CH#:MOD CTRL?

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Returns the selected modulation activation state of all the ECL and T100 modules connected to the SWT-APC module and detected by it (see section CH#:ACFG, p. 90).

OSICS Response

CH#:MOD CTRL=OFF: the modulation signal is set to OFF.

CH#:MOD CTRL=ON: the modulation signal is set to ON.

• CH#:MOD CTRL=ON INV: the modulation signal is set to **ON INVERTED**.

10.9.3 CH#:MOD_SRC

Syntax CH#:MOD SRC MAIN|INT

• #: slot number of the module, in the range 1 to 8.

• MAIN: the modulation source is set to **MAINFRAME**.

INT (default setting): the modulation source is set to INTERNAL.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Sets the modulation source of all the ECL and T100 modules connected to the SWT-APC

module.

- The MAINFRAME modulation signal may be generated either by the OSICS Mainframe's own source, or by an external function generator connected to the Mainframe's **Mod. In** BNC connector. To set the frequency of the internal Mainframe generator, see section $MOD_F = 0.30$.
- The internal source uses the ECL or T100 module's built-in modulation signal generator. To set the frequency of the internal TTL modulation, see the CH#:MOD_F= section of the module.

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

10.9.4 CH#:MOD_SRC?

Syntax CH#:MOD SRC?

• #: slot number of the module, in the range 1 to 8.

Description Only available if the SWT-APC module to is set to **Full-band** mode (see section

CH#:MODE, p. 90).

Returns the selected modulation source.

OSICS Response • CH#:MOD SRC=INT: the modulation source is set to **INTERNAL**.

CH#:MOD SRC=MAIN: the modulation source is set to MAINFRAME.

10.10 Module System-Version Information

10.10.1 CH#:FIRM?

• #: slot number of the module, in the range 1 to 8.

Description Returns the software version of the module.

OSICS Response CH#:FIRM=x.xx

10.10.2 CH#:*IDN?

Syntax CH#:*idn?

• #: slot number of the module, in the range 1 to 8.

Description Returns information about the SWT-APC module as follows: company name, module

name, serial number, software version number (FPGA version).

OSICS Response CH#: Yenista Optics, OSICS-<Module name>, <serial number>,

<software version>/<FPGA version>

10.10.3 CH#:TYPE?

Syntax CH#:TYPE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the SWT-APC module type version and options.

OSICS Response CH#:SWT-APC/<Model>

11. OSICS T100 Control

The following table gives an overview of all available commands and queries for OSICS T100 control.

	Command/Query
Optical-Output Control (p. 102)	CH#:DISABLE
	CH#:ENABLE
	CH#:ENABLE?
Unit Selection (p. 103)	CH#:GHZ
	CH#:NM
	CH#:NM?
	CH#:DBM
	CH#:MW
	CH#:MW?
Output-Power Setting (p. 105)	CH#:P=
	CH#: P?
	CH#:LIMIT?
Diode-Current Setting (p. 106)	CH#:I?
	CH#:IMAX?
Optical Emission-Wavelength/ Frequency Setting (p. 107)	CH#:L=
	CH#:L?
	CH#:F=
	CH#:F?
Coherence Control (p. 108)	CH#:CTRL
	CH#:CTRL?
Auto-peak Find Control (p. 109)	CH#:APF
	CH#:APF?
Modulation Control (p. 110)	CH#:MOD_CTRL
	CH#:MOD_CTRL?
	CH#:MOD_SRC
	CH#:MOD_F=
	CH#MOD_F?
	CH#:MOD_SRC?

	Command/Query
Calibration Control (p. 112)	CH#:WAVEREF
	CH#:LCAL1=
	CH#:LCAL2=
	CH#:LCAL1?
	CH#:LCAL2?
	CH#:PCAL1=
	CH#:PCAL2=
	CH#:PCAL1?
	CH#:PCAL2?
Module Parameter-Monitoring with the OUT 1 Output (p. 115)	CH#: AOUT
	CH#:AOUT?
Module System-Version Information (p. 116)	CH#:FIRM?
	CH#:*IDN?
	CH#:TYPE?

11.1 Optical-Output Control

11.1.1 CH#:DISABLE

Syntax CH#:DISABLE

• #: slot number of the module, in the range 1 to 8.

Description Default setting.

Disables the laser output of the T100 module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

11.1.2 CH#:ENABLE

Syntax CH#:ENABLE

• #: slot number of the module, in the range 1 to 8.

Description Enables the laser output of the T100 module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

11.1.3 CH#:ENABLE?

Syntax CH#:ENABLE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the laser-output control on the T100 module.

OSICS Response • CH#:ENABLED: the laser output is set to **ENABLE**.

• CH#: DISABLED: the laser output is set to **DISABLE**.

11.2 Unit Selection

11.2.1 CH#:GHZ

Syntax CH#:GHZ

• #: slot number of the module, in the range 1 to 8.

Description Sets **GHz** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

11.2.2 CH#:NM

Syntax CH#:NM

• #: slot number of the module, in the range 1 to 8.

Description Sets **nm** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

11.2.3 CH#:NM?

Syntax CH#:NM?

• #: slot number of the module, in the range 1 to 8.

Description Returns the actual spectral unit.

OSICS Response • CH#:1: the selected unit is **nm**.

CH#: 0: the selected unit is **GHz**.

11.2.4 CH#:DBM

Syntax CH#: DBM

• #: slot number of the module, in the range 1 to 8.

Description Sets **dBm** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

11.2.5 CH#:MW

Syntax CH#:MW

• #: slot number of the module, in the range 1 to 8.

Description Sets **mW** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

11.2.6 CH#:MW?

Syntax CH#: MW?

• #: slot number of the module, in the range 1 to 8.

Description Returns the actual power unit.

OSICS Response • CH#:1: the selected unit is **mW**.

• CH#: 0: the selected unit is **dBm**.

11.3 Output-Power Setting

11.3.1 CH#:P=

Syntax

 $CH#:P=[\pm]xx.xx|xx.xx$

Parameters

- #: slot number of the module, in the range 1 to 8.
- [±] xx.xx: optical output power in dBm, if the unit is set to dBm (see section *Unit Selection*, p. 103). Possible values are given in the module *Technical Specifications* section in the *OSICS User Manual*.
- xx.xx: optical output power in mW, if the unit is set to mW (see section *Unit Selection*, p. 103). Possible values are given in the module *Technical Specifications* section in the *OSICS User Manual*.

Description

Sets the optical output-power of the module depending on the selected power unit (see section *Unit Selection*, p. 103).

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

11.3.2 CH#:P?

Syntax

CH#:P?

Parameter

• #: slot number of the module, in the range 1 to 8.

Description

Returns the current value of the output power according to the selected power unit. The format of the response depends on the power unit selected (see section *Unit Selection*, p. 103).

The module optical-output must be enabled (see section Optical-Output Control, p. 102).

OSICS Response

- CH#:P=xx.xx: output-power value in mW.
- CH#:P=±xx.xx: output-power value in dBm.
- CH#: Disabled: the optical output is disabled; the output-power value cannot be returned.

11.3.3 CH#:LIMIT?

Syntax CH#:LIMIT?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the output power.

OSICS Response • CH#:1: the selected output power is not reached.

• CH#: 0: the selected output power is reached.

11.4 Diode-Current Setting

11.4.1 CH#:I?

Syntax CH#:I?

• #: slot number of the module, in the range 1 to 8.

Description Returns the present current level in mA.

The module optical output must be enabled (see section Optical-Output Control, p. 102).

OSICS Response • CH#:I=xxx.x

• CH#: Disabled: the optical output is disabled; the current level value cannot be returned.

11.4.2 CH#:IMAX?

Syntax CH#: IMAX?

• #: slot number of the module, in the range 1 to 8.

Description Returns the diode maximum current in mA.

OSICS Response CH#:IMAX=xxx.x

11.5 Optical Emission-Wavelength/Frequency Setting

11.5.1 CH#:L=

Syntax CH#:L=xxxx.xxx

• #: slot number of the module, in the range 1 to 8.

• xxxx.xxx: the emission wavelength value in nm. The possible wavelength range is available in the module *Technical Specifications* section in the *OSICS User Manual*.

Description Sets the emission wavelength of the module in nm.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

11.5.2 CH#:L?

Syntax CH#:L?

• #: slot number of the module, in the range 1 to 8.

Description Returns the emission wavelength of the module in nm.

OSICS Response CH#:L=xxxx.xxx

11.5.3 CH#:F=

Syntax CH#:F=xxxxxx.x

• #: slot number of the module, in the range 1 to 8.

• xxxxxx.x: the emission frequency value in GHz. The possible frequency range is available in the module *Technical Specifications* section in the *OSICS User Manual*.

Description Sets the emission frequency of the module in GHz.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

11.5.4 CH#:F?

Syntax CH#:F?

• #: slot number of the module, in the range 1 to 8.

Description Returns the emission frequency of the module in GHz.

OSICS Response CH#:F=xxxxxx.x

11.6 Coherence Control

11.6.1 CH#:CTRL

Syntax CH#:CTRL OFF|ON

• #: slot number of the module, in the range 1 to 8.

• OFF (default setting): the **Coherence Control** function is disabled.

• ON: the **Coherence Control** function is enabled.

Description Default setting.

Enables/disables the **Coherence Control** function.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

11.6.2 CH#:CTRL?

Syntax CH#:CTRL?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the **Coherence Control** function.

OSICS Response • CH#:1: the **Coherence Control** function is set to **ON** (enabled).

• CH#: 0: the Coherence Control function is set to OFF (disabled).

11.7 Auto-peak Find Control

11.7.1 CH#:APF

Syntax CH#:APF OFF|ON

• #: slot number of the module, in the range 1 to 8.

• OFF (default setting): the **Auto-peak Find** function is disabled.

• ON: the **Auto-peak Find** function is enabled.

Description Enables/disables the **Auto-peak Find** function.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

11.7.2 CH#:APF?

Syntax CH#:APF?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the **Auto-peak Find** function.

OSICS Response • CH#:1: the **Auto-peak Find** function is set to **ON**.

CH#: 0: the Auto-peak Find function is set to OFF.

11.8 Modulation Control

11.8.1 **CH#:MOD_CTRL**

Syntax CH#:MOD_CTRL OFF|ON|ON_INV

• #: slot number of the module, in the range 1 to 8.

• OFF (default setting): the digital modulation is turned off.

• ON: the digital modulation is turned on.

• ON INV: the reversed digital modulation is turned on.

Description Sets the digital (TTL) modulation of the T100 module optical signal.

If you apply analog modulation directly via the SMB subclic connector at the module faceplate, you must set this function to disable all pending digital modulation.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

11.8.2 CH#:MOD_CTRL?

Syntax CH#:MOD CTRL?

• #: slot number of the module, in the range 1 to 8.

Description Returns the selected modulation activation state.

• CH#: MOD CTRL=OFF: the modulation signal is set to **OFF**.

CH#:MOD CTRL=ON: the modulation signal is set to ON.

• CH#:MOD_CTRL=ON_INV: the modulation signal is set to **ON INVERTED**.

11.8.3 CH#:MOD_SRC

Syntax CH#:MOD SRC MAIN|INT

• #: slot number of the module, in the range 1 to 8.

• MAIN: the modulation source is set to **MAINFRAME**.

• INT (default setting): the modulation source is set to **INTERNAL**.

Description Sets the modulation source of the T100 module.

• The MAINFRAME modulation signal may be generated either by the OSICS Mainframe's own source, or by an external function generator connected to the Mainframe's **Mod. In** BNC connector. To set the frequency of the internal Mainframe generator, see section $MOD_F = p$, p. 30.

• The internal source uses the module's built-in modulation signal generator. To set the frequency of the internal TTL modulation, see the CH#:MOD_F= section of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

11.8.4 CH#:MOD_F=

Syntax CH#:MOD_F=xxxxxx

• #: slot number of the module, in the range 1 to 8.

• xxxxxx: frequency of the modulation signal in Hz, in the range 153 to 1000000

(1 Mhz).

Description Sets the frequency of the T100 module INTERNAL digital (TTL) modulation source.

If the module is not able to generate the exact value of the frequency setting, it applies the nearest available frequency-value right under the value of the original setting. To check the actual frequency of the INTERNAL modulation source see section

CH#:MOD_F=, p. 111.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

11.8.5 CH#:MOD_F?

Syntax CH#:MOD_F?

• #: slot number of the module, in the range 1 to 8.

Description Returns the frequency selected for the internal modulation generator in Hz.

OSICS Response CH#:MOD F=xxxxxx

11.8.6 CH#:MOD_SRC?

Syntax CH#:MOD SRC?

• #: slot number of the module, in the range 1 to 8.

Description Returns the selected modulation source.

OSICS Response • CH#:MOD SRC=INT: the modulation source is set to INTERNAL.

CH#:MOD SRC=MAIN: the modulation source is set to MAINFRAME.

11.9 Calibration Control

11.9.1 CH#:WAVEREF

Syntax CH#:WAVEREF

• #: slot number of the module, in the range 1 to 8.

Description Runs the internal wavelength referencing procedure.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

11.9.2 CH#:LCAL1=

Syntax CH#:LCAL1=xxxx.xxx

• #: slot number of the module, in the range 1 to 8.

• xxxx.xxx: first wavelength in nm of the two-point wavelength calibration method. Possible values are factory-set wavelength range values (±1 nm) given in the module *Technical Specifications* section in the *OSICS User Manual*.

Description Sets the first wavelength value of the two-point wavelength calibration method.

LCAL1 is the first factory calibration wavelength (in nm only). The value of LCAL1 corresponds to the value displayed on the wavemeter (see *OSICS User Manual* for more

details).

This value replaces the LCAL1 setting and is updated in the flash-memory for further wavelength display of the wavelength.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

11.9.3 CH#:LCAL2=

Syntax CH#:LCAL1=xxxx.xxx

• #: slot number of the module, in the range 1 to 8.

• xxxx.xxx: second wavelength in nm of the two-point wavelength calibration method. Possible values are factory-set wavelength range values (±1 nm) given in the module *Technical Specifications* section in the *OSICS User Manual*.

Description Sets the second wavelength value of the two-point wavelength calibration method.

LCAL2 is the second factory calibration wavelength (in nm only). The value of LCAL2 corresponds to the value displayed on the wavemeter (see *OSICS User Manual* for more details).

This value replaces the LCAL2 setting and is updated in the flash-memory for further display wavelength of the wavelength.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

11.9.4 CH#:LCAL1?

Syntax CH#:LCAL1=xxxx.xxx

• #: slot number of the module, in the range 1 to 8.

Description Returns the first calibration wavelength of the two-point wavelength calibration method.

OSICS Response CH#:LCAL1=xxxx.xxx

11.9.5 CH#:LCAL2?

Syntax CH#:LCAL2=xxxx.xxx

• #: slot number of the module, in the range 1 to 8.

Description Returns the second calibration wavelength of the two-point wavelength calibration

method.

OSICS Response CH#:LCAL2=xxxx.xxx

11.9.6 CH#:PCAL1=

Syntax CH#:PCAL1=xx.xxx

• #: slot number of the module, in the range 1 to 8.

• xx.xxx: output power (in mW) matching the lower limit of the T100 module wavelength-range, corresponding to the following formula:

PCAL1=0.5 x (<P_{real power masured} on powermeter in mW> / <P_{Set on T100 in mW>})

• Default value: 0.5

• Possible values: from 0.3 to 0.6 (with power value set to 1)

Description Sets the first power value of the two-point power calibration method. This value corresponds to the lower limit of the T100 module wavelength-range.

To perform a power calibration, proceed as follows (full detail on the power calibration method is given in OSICS User Manual):

1. Make sure the unit is set to mW.

- 2. Set the T100 module output-power to 1 mW (see section CH#:P=, p. 105).
- 3. Connect a power-meter to the module optical-output port.
- **4.** Set the new PCAL1 value with the one measured by the power meter by applying the following formula: $0.5 \times (P_{\text{real power masured on powermeter in mW}} / (P_{\text{Set on DFB mW}})$.

This value replaces the PCAL1 setting, which is internally updated for further optical-power display.

OSICS Response

RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

11.9.7 CH#:PCAL2=

Syntax CH#:PCAL2=xx.xxx

Parameter

- #: slot number of the module, in the range 1 to 8.
- xx.xxx: output power (in mW) matching the upper limit of the T100 module wavelength range, corresponding to the following formula:

PCAL2=0.5 x ($P_{Real power masured on powermeter in mW} / P_{Set on T100 in mW}$)

- Default value: 0.5
- Possible values: 0.3 to 0.6 (with power value set to 1).

Description

Sets the second power-value of the two-point power calibration method. This value corresponds to the upper limit of the T100 module wavelength range.

To perform a power calibration proceed as follows (full detail on the power calibration method is given in OSICS User Manual):

- 1. Make sure the unit is set to mW.
- 2. Set the T100 module output-power to 1 mW (see section CH#:P=, p. 105).
- **3.** Connect a power-meter to the module optical output port.
- **4.** Set the new PCAL2 value with the one measured by the power meter by applying the following formula: $0.5 \times (P_{real\ power\ masured\ on\ powermeter\ in\ mW}^2 / P_{Set\ on\ DFB\ mW}^2)$.

This value replaces PCAL2 setting, which is internally updated for further optical-power display.

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

11.9.8 CH#:PCAL1?

Syntax CH#: PCAL1?

• #: slot number of the module, in the range 1 to 8.

Description Returns the first power value used for the two-point power calibration. PCAL1 is the

absolute power-value measured on your reference power-meter for the first wavelength.

OSICS Response CH#:PCAL1=xx.xxx

11.9.9 CH#:PCAL2?

Syntax CH#: PCAL2?

• #: slot number of the module, in the range 1 to 8.

Description Returns the second power value used for the two-point power calibration. PCAL2 is the

absolute power-value measured on the user's reference power-meter for the second

wavelength.

OSICS Response CH#:PCAL2=xx.xxx

11.10 Module Parameter-Monitoring with the OUT 1 Output

11.10.1 CH#:AOUT

Syntax CH#:AOUT I|P

Parameters

- #: slot number of the module, in the range 1 to 8.
- I: the OUT 1 BNC port (corresponding to the # slot number) is assigned to monitor the diode's current signal.
- P: the OUT 1 BNC port (corresponding to the # slot number) is assigned to monitor the optical-power signal.

Description

Assigns the OUT 1 BNC port (corresponding to the # slot number) to monitor the selected signal.

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

11.10.2 CH#:AOUT?

Syntax CH#:AOUT?

• #: slot number of the module, in the range 1 to 8.

Description Returns the parameter monitored by the OUT 1 BNC port (corresponding to the # slot number).

OSICS Response

- CH#: AOUT=P: the optical output-power is monitored.
- CH#: AOUT=I: the T100 module laser-diode's current is monitored.

11.11 Module System-Version Information

11.11.1 CH#:FIRM?

Syntax CH#:FIRM=x.xx

• #: slot number of the module, in the range 1 to 8.

Description Returns the software version of the module.

OSICS Response CH#:FIRM=x.xx

11.11.2 CH#:*IDN?

Syntax CH#:*idn?

• #: slot number of the module, in the range 1 to 8.

Description Returns information about the T100 module as follows: company name, module name,

serial number, software version number (FPGA version).

OSICS Response CH#:Yenista_Optics,OSICS-<Module name>,<serial number>,

<software version>/<FPGA version>

11.11.3 CH#:TYPE?

Syntax CH#:TYPE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the T100 module type version and options.

OSICS Response CH#:T100/<Module Model>

12. OSICS TLS-50 Control

The following table gives an overview of all available commands and queries for OSICS TLS-50 control.

	Command/Query
Optical-Output Control (p. 118)	CH#:DISABLE
	CH#:ENABLE
	CH#:ENABLE?
Unit Selection (p. 119)	CH#:GHZ
	CH#:NM
	CH#:NM?
	CH#:DBM
	CH#:MW
	CH#:MW?
Output-Power Setting (p. 121)	CH#:P=
	CH#:P?
Optical Emission-Wavelength/	CH#:L?
Frequency Setting (p. 122)	CH#:CHN=
	CH#:CHN?
	CH#:CHN_MAX?
	CH#:F?
	CH#:F_MIN?
	CH#:F_MAX?
	CH#:ISL?
SBS Suppression Control (p. 124)	CH#:SBS_SUP
	CH#:SBS_SUP?
	CH#:SBS_MODE
	CH#:SBS_MODE?
	CH#:SBS_WAVEFORM
	CH#:SBS_WAVEFORM?
	CH#:SBS_AM
	CH#:SBS_AM?
	CH#:SBS_FM
	CH#:SBS_FM?
	CH#:SBS_RATE
	CH#:SBS_RATE?
Module System-Version Information	CH#:FIRM?
(p. 127)	CH#:*IDN?
	CH#:TYPE?

LS-AG

12.1 Optical-Output Control

12.1.1 CH#:DISABLE

Syntax CH#:DISABLE

• #: slot number of the module, in the range 1 to 8.

Description Default setting.

Disables the laser output of the TLS-50 module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

12.1.2 CH#:ENABLE

Syntax CH#:ENABLE

• #: slot number of the module, in the range 1 to 8.

Description Enables the laser output of the TLS-50 module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

12.1.3 CH#:ENABLE?

Syntax CH#: ENABLE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the laser-output control on the TLS-50 module.

OSICS Response • CH#: ENABLED: the laser output is set to **ENABLE**.

• CH#: DISABLED: the laser output is set to **DISABLE**.

12.2 Unit Selection

12.2.1 CH#:GHZ

Syntax CH#:GHZ

• #: slot number of the module, in the range 1 to 8.

Description Sets **GHz** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

12.2.2 CH#:NM

Syntax CH#:NM

• #: slot number of the module, in the range 1 to 8.

Description Sets **nm** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

12.2.3 CH#:NM?

Syntax CH#:NM?

• #: slot number of the module, in the range 1 to 8.

Description Returns the actual spectral unit.

• CH#:1: the selected unit is **nm**.

• CH#: 0: the selected unit is **GHz**.

12.2.4 CH#:DBM

Syntax CH#: DBM

• #: slot number of the module, in the range 1 to 8.

Description Sets **dBm** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

12.2.5 CH#:MW

Syntax CH#:MW

• #: slot number of the module, in the range 1 to 8.

Description Sets **mW** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

12.2.6 CH#:MW?

Syntax CH#:MW?

• #: slot number of the module, in the range 1 to 8.

Description Returns the actual power unit.

OSICS Response • CH#:1: the selected unit is **mW**.

• CH#: 0: the selected unit is **dBm**.

12.3 Output-Power Setting

12.3.1 CH#:P=

Syntax

 $CH#:P=[\pm]xx.xx|xx.xx$

Parameters

- #: slot number of the module, in the range 1 to 8.
- [±] xx.xx: optical output power in dBm, if the unit is set to dBm (see section *Unit Selection*, p. 119). Possible values are given in the module *Technical Specifications* section in the *OSICS User Manual*.
- xx.xx: optical output power in mW, if the unit is set to mW (see section *Unit Selection, p. 119*). Possible values are given in the module *Technical Specifications* section in the *OSICS User Manual*.

Description

Sets the optical output-power of the module depending on the selected power unit (see section *Unit Selection*, p. 119).

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

12.3.2 CH#:P?

Syntax

CH#:P?

Parameter

• #: slot number of the module, in the range 1 to 8.

Description

Returns the current value of the output power according to the selected power unit. The format of the response depends on the power unit selected (see section *Unit Selection*, p. 119).

The module optical-output must be enabled (see section Optical-Output Control, p. 118).

OSICS Response

- CH#:P=xx.xx: output-power value in mW.
 - CH#:P=±xx.xx: output-power value in dBm.
- CH#:Disabled: the optical output is disabled; the output-power value cannot be returned.

12.4 Optical Emission-Wavelength/Frequency Setting

12.4.1 CH#:L?

Syntax CH#:L?

• #: slot number of the module, in the range 1 to 8.

Description Returns the emission wavelength of the module in nm.

OSICS Response CH#:L=xxxx.xxx

12.4.2 CH#:CHN=

Syntax CH#:CHN=xxx

• #: slot number of the module, in the range 1 to 8.

• xxx: emission channel number of the TLS-50 module. The number of available channels is given in the module *Technical Specifications* section in the *OSICS User Manual* or using the *CH#:CHN_MAX?* command (see *p. 122*).

Description Sets the emission channel of the TLS-50 module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

12.4.3 CH#:CHN?

Syntax CH#:CHN?

• #: slot number of the module, in the range 1 to 8.

Description Returns the present emission channel number of the TLS-50 module.

OSICS Response CH#:CHN=xxx

12.4.4 CH#:CHN_MAX?

Syntax CH#:CHN MAX?

• #: slot number of the module, in the range 1 to 8.

Description Returns the highest valid channel of the TLS-50 module.

OSICS Response CH#:CHN MAX=xxx

12.4.5 CH#:F?

Syntax CH#:F?

• #: slot number of the module, in the range 1 to 8.

Description Returns the emission frequency of the module in GHz.

OSICS Response CH#:F=xxxxxx.x

12.4.6 CH#:F_MIN?

Syntax CH#:F_MIN?

• #: slot number of the module, in the range 1 to 8.

Description Returns the first frequency of the laser in GHz.

OSICS Response CH#:F MIN=xxxxxx.x

12.4.7 CH#:F MAX?

Syntax CH#:F_MAX?

• #: slot number of the module, in the range 1 to 8.

Description Returns the last frequency of the laser in GHz.

OSICS Response CH#:F MAX=xxxxxx.x

12.4.8 CH#:ISL?

Syntax CH#:ISL?

• #: slot number of the module, in the range 1 to 8.

Description Returns the grid spacing of the laser in GHz.

OSICS Response CH#:ISL=xxx.xx

12.4.9 CH#:LOCKED?

Syntax CH#:LOCKED?

• #: slot number of the module, in the range 1 to 8.

Description This command is only available from software version 3.07 and above.

Returns the laser status.

• CH#: 0: the laser is tuning (changing the laser output-power does not generate a tuning of the laser).

• CH#:1: the laser is locked on a wavelength.

OSICS Programming Guide

12.5 SBS Suppression Control

12.5.1 CH#:SBS_SUP

Syntax CH#:SBS SUP 0|1

• #: slot number of the module, in the range 1 to 8.

0: disables the SBS Suppression (Off).
1: enables the SBS Suppression (On).

Description Sets the state of the **SBS Suppression** mode.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

12.5.2 CH#:SBS SUP?

Syntax CH#:SBS SUP?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the **SBS Suppression** mode.

• CH#: 0: the SBS Suppression mode is disabled (Off).

CH#:1: the SBS Suppression mode is enabled (On).

12.5.3 **CH#:SBS_MODE**

Syntax CH#:SBS MODE 0|1

• #: slot number of the module, in the range 1 to 8.

0: amplitude modulation (AM).1: frequency modulation (FM).

Description Sets the **Modulation mode** of the **SBS Suppression**.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

12.5.4 CH#:SBS_MODE?

Syntax CH#:SBS MODE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the **Modulation mode** of the **SBS Suppression**.

OSICS Response • CH#: 0: amplitude modulation (**AM**).

• CH#:1: frequency modulation (**FM**).

12.5.5 CH#:SBS_WAVEFORM

Syntax CH#:SBS_WAVEFORM 0|1

• #: slot number of the module, in the range 1 to 8.

0: Sinusoidal shape.1: Triangular shape.

Description Sets the **SBS waveform** shape of the **SBS Suppression**.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

12.5.6 CH#:SBS_WAVEFORM?

Syntax CH#:SBS WAVEFORM?

• #: slot number of the module, in the range 1 to 8.

Description Returns the **SBS waveform** shape of the **SBS Suppression**.

OSICS Response • CH#: 0: **Sinusoidal** shape.

• CH#:1: Triangular shape.

12.5.7 CH#:SBS_AM

Syntax CH#:SBS_AM xx.x

• #: slot number of the module, in the range 1 to 8.

 $\times \times \times$: amplitude modulation deviation value in %, in the range 0.1 to 10 %.

Description Sets the **Amplitude deviation** in %.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

12.5.8 CH#:SBS AM?

Syntax CH#:SBS AM?

• #: slot number of the module, in the range 1 to 8.

Description Returns the **Amplitude deviation** in %.

OSICS Response CH#:AM=xx.x

12.5.9 CH#:SBS_FM

Syntax CH#:SBS_FM x.x

• #: slot number of the module, in the range 1 to 8.

• x.x: frequency modulation deviation value in GHz, in the range 0.1 to 1.

Description Sets the **Frequency deviation** in GHz.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

12.5.10 CH#:SBS_FM?

Syntax CH#:SBS FM?

• #: slot number of the module, in the range 1 to 8.

Description Returns the **Frequency deviation** in GHz.

OSICS Response CH#:FM=x.x

12.5.11 CH#:SBS_RATE

Syntax CH#:SBS_RATE xxx

• #: slot number of the module, in the range 1 to 8.

• xxx: modulation rate in kHz.

In AM modulation, the rate is between 10 and 500 kHz.
In FM modulation, the rate is between 10 and 100 kHz.

Description Sets the **SBS Rate** in kHz.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

12.5.12 CH#:SBS RATE?

Syntax CH#:SBS_RATE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the **SBS Rate** in kHz.

OSICS Response CH#:RATE=xxx

12.6 Module System-Version Information

12.6.1 CH#:FIRM?

Syntax CH#:FIRM=x.xx

• #: slot number of the module, in the range 1 to 8.

Description Returns the software version of the module.

OSICS Response CH#:FIRM=x.xx

12.6.2 CH#:*IDN?

Syntax CH#:*idn?

• #: slot number of the module, in the range 1 to 8.

Description Returns information about the TLS-50 module as follows: company name, module name,

serial number, software version number (FPGA version).

OSICS Response CH#:Yenista Optics, OSICS-<Module name>, <serial number>,

<software version>/<FPGA version>

12.6.3 CH#:TYPE?

Syntax CH#:TYPE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the TLS-50 module type version and options.

OSICS Response CH#:TLS/<Module Model>/<Module Type>/<Option 1>/<Option 2>

13. OSICS TLS-AG Control

The following table gives an overview of all available commands and queries for OSICS TLS-AG control.

	Command/Query
Optical-Output Control (p. 130)	CH#:DISABLE
	CH#:ENABLE
	CH#:ENABLE?
Unit Selection (p. 131)	CH#:GHZ
	CH#:NM
	CH#:NM?
	CH#:DBM
	CH#:MW
	CH#:MW?
Operating-Mode Control (p. 133)	CH#:MODE
	CH#:MODE?
	CH#:GRID START
	CH#:GRID START?
	CH#:GRID SPACING
	CH#:GRID SPACING?
Output-Power Setting (p. 135)	CH#:P=
1 34 ,	CH#:P?
Optical Emission-Wavelength/	CH#:L=
Frequency Setting (p. 136)	CH#:L?
	CH#:L MIN?
	CH#:L MAX?
	CH#:CHN=
	CH#:CHN?
	CH#:CHN MAX?
	CH#:F?
	CH#:F MIN?
	CH#:F MAX?
	CH#:ISL?
	CH#:LOCKED?
	CH#:FT L=
	CH#:FT L?
	CH#:FT F=
	CH#:FT F?

OSICS Programming Guide

	Command/Query
SBS Suppression Control (p. 141)	CH#:SBS_SUP
	CH#:SBS_SUP?
	CH#:SBS_FM
	CH#:SBS_FM?
	CH#:SBS_DITHER
	CH#:SBS_DITHER?
Module System-Version Information (p. 143)	CH#:FIRM?
	CH#:*IDN?
	CH#:TYPE?

13.1 Optical-Output Control

13.1.1 CH#:DISABLE

Syntax CH#:DISABLE

• #: slot number of the module, in the range 1 to 8.

Description Default setting.

Disables the laser output of the TLS-AG module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

13.1.2 CH#:ENABLE

Syntax CH#: ENABLE

• #: slot number of the module, in the range 1 to 8.

Description Enables the laser output of the TLS-AG module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

13.1.3 CH#:ENABLE?

Syntax CH#:ENABLE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the laser-output control on the TLS-AG module.

OSICS Response • CH#: ENABLED: the laser output is set to ENABLE.

CH#: DISABLED: the laser output is set to DISABLE.

13.2 Unit Selection

13.2.1 CH#:GHZ

Syntax CH#:GHZ

• #: slot number of the module, in the range 1 to 8.

Description Sets **GHz** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

13.2.2 CH#:NM

Syntax CH#:NM

• #: slot number of the module, in the range 1 to 8.

Description Sets **nm** as the spectral unit of the module.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

13.2.3 CH#:NM?

Syntax CH#:NM?

• #: slot number of the module, in the range 1 to 8.

Description Returns the actual spectral unit.

OSICS Response • CH#:1: the selected unit is **nm**.

• CH#: 0: the selected unit is **GHz**.

13.2.4 CH#:DBM

Syntax CH#: DBM

• #: slot number of the module, in the range 1 to 8.

Description Sets **dBm** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

OSICS Programming Guide

13.2.5 CH#:MW

Syntax CH#:MW

• #: slot number of the module, in the range 1 to 8.

Description Sets **mW** as the power unit of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

13.2.6 CH#:MW?

Syntax CH#:MW?

• #: slot number of the module, in the range 1 to 8.

Description Returns the actual power unit.

OSICS Response • CH#:1: the selected unit is **mW**.

• CH#: 0: the selected unit is **dBm**.

13.3 Operating-Mode Control

13.3.1 CH#:MODE

Syntax CH#:MODE 0|1|2

• #: slot number of the module, in the range 1 to 8.

• 0: Grid mode.

1: Manual mode.

2: High Resolution mode

Description Sets the operating mode of the module.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

13.3.2 CH#:MODE?

Syntax CH#:MODE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the operating mode of the module.

• CH#:MODE=0: the module is set to Grid mode.

• CH#: MODE=1: the module is set to Manual mode.

• CH#: MODE=2: the module is set to High Resolution mode.

13.3.3 CH#:GRID START

If the unit is set to nm: CH#:GRID START XXXX.XXX

If the unit is set to GHz: CH#: GRID START XXXXXX.X

• #: slot number of the module, in the range 1 to 8.

• xxxx.xxx: the first emission wavelength in nm. Wavelength range is given in the module *Technical Specifications* section in the *OSICS User Manual*.

• xxxxxx.x: the first emission frequency in GHz. Wavelength range is given in the module *Technical Specifications* section in the *OSICS User Manual*.

Description Sets the first channel emission wavelength in nm or frequency in GHz, depending on the current unit selected.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

OSICS Programming Guide

13.3.4 CH#:GRID_START?

• #: slot number of the module, in the range 1 to 8.

Description Returns the first channel emission wavelength in nm or frequency in GHz, depending on

the current unit selected

OSICS Response • CH#:GRID START=xxxx.xxx: the first emission wavelength in nm.

CH#:GRID START= xxxxxx.x: the first emission frequency in GHz.

13.3.5 CH#:GRID_SPACING

Syntax CH#:GRID SPACING xxxx.xx

• #: slot number of the module, in the range 1 to 8.

• xxxx.xx: the grid spacing in GHz, in the range 0.1 to 3281 Ghz.

Description Only available if the module is set to Grid mode (see section *CH#:MODE, p. 133*).

Sets the grid spacing of channels on the grid in GHz.

OSICS Response • RS-232C:

• CH#:OK

• CH#:NOT_GRID_MODE: the module is not set to Grid mode, the grid spacing cannot be set.

• GPIB: none, see section Standard Status Model, p. 19.

13.3.6 CH#:GRID_SPACING?

Syntax CH#:GRID SPACING?

• #: slot number of the module, in the range 1 to 8.

Description Only available if the module is set to Grid mode (see section *CH#:MODE, p. 133*).

Returns the grid spacing in GHz.

OSICS Response • CH#:GRID SPACING=xxxx.xx

• CH#:NOT_GRID_MODE: the module is not set to Grid mode, the grid spacing cannot

be returned.

13.4 Output-Power Setting

13.4.1 CH#:P=

Syntax

 $CH\#: P=[\pm] \times x. \times x \mid \times x. \times x$

Parameters

- #: slot number of the module, in the range 1 to 8.
- [±] xx.xx: optical output power in dBm, if the unit is set to dBm (see section *Unit Selection*, p. 131). Possible values are given in the module *Technical Specifications* section in the *OSICS User Manual*.
- xx.xx: optical output power in mW, if the unit is set to mW (see section *Unit Selection, p. 131*). Possible values are given in the module *Technical Specifications* section in the *OSICS User Manual*.

Description

Sets the optical output-power of the module depending on the selected power unit (see section *Unit Selection*, p. 131).

OSICS Response

- RS-232C: CH#:OK
- GPIB: none, see section Standard Status Model, p. 19.

13.4.2 CH#:P?

Syntax

CH#:P?

Parameter

- #: slot number of the module, in the range 1 to 8.
- Description

Returns the current value of the output power according to the selected power unit. The format of the response depends on the power unit selected (see section *Unit Selection*, p. 131).

The module optical-output must be enabled (see section Optical-Output Control, p. 130).

OSICS Response

- CH#:P=xx.xx: output-power value in mW.
 - CH#:P=±xx.xx: output-power value in dBm.
- CH#: Disabled: the optical output is disabled; the output-power value cannot be returned.

13.5 Optical Emission-Wavelength/Frequency Setting

13.5.1 CH#:L=

Syntax CH#:L=xxxx.xxx

• #: slot number of the module, in the range 1 to 8.

• xxxx.xxx: the emission wavelength value in nm. The possible wavelength range is available by using the CH#:L_MIN? and CH#:L_MAX? commands (see p. 136).

Description Only available if the TLS-AG module is set to Manual or High Resolution mode (see

section CH#:MODE, p. 133).

Sets the emission wavelength of the module in nm.

OSICS Response • RS-232C: CH#:OK: the wavelength is set.

CH#:GRID MODE: the mode is set to Grid mode

(see section CH#:MODE, p. 133), you cannot set the emission

wavelength.

• GPIB: none, see section Standard Status Model, p. 19.

13.5.2 CH#:L?

Syntax CH#:L?

• #: slot number of the module, in the range 1 to 8.

Description Returns the emission wavelength of the module in nm (the fine tune offset is not

integrated in this value).

OSICS Response CH#:L=xxxx.xxx

13.5.3 CH#:L_MIN?

Syntax CH#:L MIN?

• #: slot number of the module, in the range 1 to 8.

Description Returns the first wavelength of the laser in nm.

OSICS Response CH#:L MIN=xxxx.xxx

13.5.4 CH#:L_MAX?

Syntax CH#:L MAX?

• #: slot number of the module, in the range 1 to 8.

Description Returns the last wavelength of the laser in nm.

OSICS Response CH#:L_MAX=xxxx.xxx

13.5.5 CH#:CHN=

Syntax CH#:CHN=xxx

• #: slot number of the module, in the range 1 to 8.

• xxx: emission channel number of the TLS-AG module. The number of available channels depends on grid spacing (see section CH#:GRID_SPACING, p. 134) and is given using the CH#:CHN_MAX? command (see p. 137)

Description Only available if the module is set to Grid mode (see section *CH#:MODE*, *p. 133*).

Sets the emission channel of the TLS-AG module.

OSICS Response • RS-232C: CH#:OK

 $\mathtt{CH\#:NOT_GRID_MODE:} \ the \ module \ is \ not \ set \ to \ Grid \ mode; \ the \ emission$

channel cannot be set.

• GPIB: none, see section Standard Status Model, p. 19.

13.5.6 CH#:CHN?

Syntax CH#:CHN?

• #: slot number of the module, in the range 1 to 8.

Description Only available if the module is set to Grid mode (see section *CH#:MODE*, *p. 133*).

Returns the present emission channel number of the TLS-AG module.

OSICS Response CH#:CHN=xxx

CH#: NOT_GRID_MODE: the module is not set to Grid mode; the emission channel cannot

be set.

13.5.7 CH#:CHN MAX?

Syntax CH#:CHN MAX?

• #: slot number of the module, in the range 1 to 8.

Description Only available if the module is set to Grid mode (see section *CH#:MODE, p. 133*).

Returns the highest valid channel of the TLS-AG module.

OSICS Response CH#:CHN MAX=xxx

CH#:NOT GRID MODE: the module is not set to Grid mode; the channel cannot be

returned.

13.5.8 CH#:F=

Syntax CH#:F=xxxxxx.x

• #: slot number of the module, in the range 1 to 8.

• xxxxxx.x: the emission frequency value in GHz. The possible frequency range is available in the module *Technical Specifications* section in the *OSICS User Manual*.

Description Sets the emission frequency of the module in GHz.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

13.5.9 CH#:F?

Syntax CH#:F?

• #: slot number of the module, in the range 1 to 8.

Description Returns the emission frequency of the module in GHz (the fine tune offset is not

integrated in this value).

OSICS Response CH#:F=xxxxxx.x

13.5.10 CH#:F MIN?

Syntax CH#:F_MIN?

• #: slot number of the module, in the range 1 to 8.

Description Returns the first frequency of the laser in GHz.

OSICS Response CH#:F MIN=xxxxxx.x

13.5.11 CH#:F_MAX?

Syntax CH#:F_MAX?

• #: slot number of the module, in the range 1 to 8.

Description Returns the last frequency of the laser in GHz.

OSICS Response CH#:F MAX=xxxxxx.x

13.5.12 CH#:ISL?

Syntax CH#:ISL?

• #: slot number of the module, in the range 1 to 8.

Description Returns the grid spacing of the laser in GHz.

OSICS Response CH#:ISL=xxx.xx

13.5.13 CH#:LOCKED?

Syntax CH#:LOCKED?

• #: slot number of the module, in the range 1 to 8.

Description This command is only available from software version 3.07 and above.

Returns the laser status.

OSICS Response

- CH#: 0: the laser is tuning (changing the laser output-power does not generate a tuning of the laser).
- CH#:1: the laser is locked on a wavelength.

13.5.14 CH#:FT_L=

Syntax

 $CH#:FT_L=(\pm) \times x. \times x$

Parameter

- #: slot number of the module, in the range 1 to 8.
- xx.xx: fine tune value in pm, in the range -46.75 to +46.75.

Description

Only available if the module is set to Manual or Grid mode (see section CH#:MODE, p. 133).

Sets the fine tune in pm.

OSICS Response

- RS-232C:
 - CH#:OK: the fine tune is set.
 - CH#:HIGH_RES_MODE: the module is set to High resolution mode (see section CH#:MODE, p. 133), the fine tune value cannot be set.
- GPIB: none, see section Standard Status Model, p. 19.

13.5.15 CH#:FT_L?

Syntax

CH#:FT L?

Parameter

• #: slot number of the module, in the range 1 to 8.

Description

Only available if the module is set to Manual or Grid mode (see section CH#:MODE, p. 133).

Returns the offset value of the fine tuning in pm.

OSICS Response

- CH#:FT L=xx.xx.
 - CH#:HIGH_RES_MODE: the module is set to High resolution mode (see section CH#:MODE, p. 133), the fine tune value cannot be returned.

13.5.16 CH#:FT_F=

Syntax $CH#:FT F=(\pm) \times \times \times$

• #: slot number of the module, in the range 1 to 8.

• xxxx: fine tune value in MHz, in the range -6000 to +6000 MHz.

Description Only available if the module is set to Manual or Grid mode (see section CH#:MODE,

p. 133).

Sets the fine tune in MHz.

OSICS Response • RS-232C:

• CH#:OK: the fine tune is set.

• CH#:HIGH_RES_MODE: the module is set to High resolution mode (see section CH#:MODE, p. 133; the fine tune value cannot be set.

GPIB: none, see section Standard Status Model, p. 19.

13.5.17 CH#:FT_F?

Syntax CH#:FT F?

• #: slot number of the module, in the range 1 to 8.

Description Only available if the module is set to Manual or Grid mode (see section CH#:MODE,

p. 133).

Returns the offset value of the fine tuning in MHz.

OSICS Response • CH#:FT F=xxxx

• CH#:HIGH_RES_MODE: the module is set to High resolution mode (see section

CH#:MODE, p. 133); the fine tune value cannot be returned.

13.6 SBS Suppression Control

13.6.1 CH#:SBS_SUP

Syntax CH#:SBS SUP 0|1

• #: slot number of the module, in the range 1 to 8.

0: disables the SBS Suppression (Off).
1: enables the SBS Suppression (On).

Description Sets the state of the **SBS Suppression** mode.

OSICS Response • RS-232C: CH#:OK

GPIB: none, see section Standard Status Model, p. 19.

13.6.2 CH#:SBS SUP?

Syntax CH#:SBS SUP?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the **SBS Suppression** mode.

• CH#: 0: the SBS Suppression mode is disabled (**Off**).

• CH#:1: the SBS Suppression mode is enabled (**On**).

13.6.3 CH#:SBS_FM

Syntax CH#:SBS FM x.x

• #: slot number of the module, in the range 1 to 8.

• x.x: frequency modulation deviation value in GHz, in the range 0.1 to 1.

Description Sets the **Frequency deviation** in GHz.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

13.6.4 CH#:SBS_FM?

Syntax CH#:SBS FM?

• #: slot number of the module, in the range 1 to 8.

Description Returns the **Frequency deviation** in GHz.

OSICS Response CH#:FM=x.x

13.6.5 CH#:SBS_DITHER

Syntax CH#:SBS_DITHER 0|1

• #: slot number of the module, in the range 1 to 8.

• 0: disables the frequency control dither (**Off**).

• 1: enables the frequency control dither (**On**).

Description Sets the state of the **Frequency Control Dither**.

OSICS Response • RS-232C: CH#:OK

• GPIB: none, see section Standard Status Model, p. 19.

13.6.6 CH#:SBS_DITHER?

Syntax CH#:SBS_DITHER?

• #: slot number of the module, in the range 1 to 8.

Description Returns the state of the frequency control dither.

OSICS Response • CH#: 0: the **Frequency Control Dither** is disabled (**Off**).

• CH#:1: the Frequency Control Dither is enabled (On).

13.7 Module System-Version Information

13.7.1 CH#:FIRM?

Syntax CH#:FIRM=x.xx

• #: slot number of the module, in the range 1 to 8.

Description Returns the software version of the module.

OSICS Response CH#:FIRM=x.xx

13.7.2 CH#:*IDN?

Syntax CH#:*idn?

• #: slot number of the module, in the range 1 to 8.

Description Returns information about the TLS-AG module as follows: company name, module name,

serial number, software version number (FPGA version).

OSICS Response CH#:Yenista Optics, OSICS-<Module name>, <serial number>,

<software version>/<FPGA version>

13.7.3 CH#:TYPE?

Syntax CH#:TYPE?

• #: slot number of the module, in the range 1 to 8.

Description Returns the TLS-AG module type version and options.

OSICS Response CH#:TLS/<Module Model>/<Module Type>/<Option 1>/<Option 2>

14. Error Codes

Subject

This section describes specific errors of the instrument (-399 to -300).

All other command errors (range -199 to -100) and execution errors (range -299 to -200) are described in the *Standard Commands for Programmable Instruments (SCPI)* document available at the following URL http://www.ivifoundation.org/docs/scpi-99.pdf (URL valid in November 2016).

Instrument Specific Errors

Error Code	Error Description	
-300	OSICS-Specific Error	
	Generic instrument-dependent error for instruments that cannot detect more specific errors. This code indicates only that a device-dependent error as defined in IEEE 488.2 has occurred.	
-301	OSICS Scan-State Busy	
	The OSA is still scanning, analyzing, stopping or aborting and is not in an idle state.	
-302	OSICS Calibration-State Busy	
	The OSA is still calibrating and is not in an idle state.	
-303	OSICS Mode-State Busy	
	The OSA is still opening or closing a mode and is not in an idle state.	

OSICS Programming Guide 145

15. Program Example and Library

Subject

Yenista Optics provides the following tools to allow you to control the OSICS via GPIB and RS-232C:

- LabVIEW Virtual Instrument example OSICS_FBL_Example.vi
- LabVIEW library OSICS_LIB.lvlib

Compatibility

The Virtual Instrument OSICS_FBL_Example is part of the LabVIEW library OSICS_LIB.lvlib, developed for LabVIEW 2010 or later.

The example and library are compatible with 32- and 64-bits versions of LabVIEW.

15.1 OSICS LabVIEW Library

The OSICS_LIB.lvlib LabVIEW library is organized in three sub-folder:

Parameter Settings

This folder contains sub-Vis that allow to configure the settings of laser modules such as power, emission wavelength/frequency and to enable/disable the optical output.

Parameters Queries

This folder contains sub-Vis that collect current values of parameters and settings of laser modules such as power, emission wavelength/frequency, module identification and state of the laser output.

Communication

This folder contains the sub-Vis that allow write/read of commands/responses in both communication modes GPIB and RS 232C. Specific functionalities for each mode are available in the GPIB or RS-232C sub-folders.

OSICS Programming Guide

15.2 OSICS LabVIEW Example

This VI example controls an OSICS Full-band Laser (FBL) remotely.

The OSICS FBL consists of an OSICS SWT-APC module and up to four OSICS T100 laser modules (for more information about how to setup an OSICS Full-Band Laser, please see OSICS User Manual).

All commands and queries are sent to the OSICS SWT-APC module, which is configured to operate in "Full-band" mode.

The OSICS Mainframe can be connected to the computer via USB (for RS-232C communication) or GPIB.

15.2.1 Using the Front Panel to Remotely Control the OSICS SWT-APC in Full-band Mode

Front Panel Presentation

Figure 3: OSICS SWT-APC in Full-band mode Example – Front Panel

OSICS Functions

The VI example reproduces most of the functionalities of the OSICS SWT-APC in Fullband mode by emulating the following functions:

- **\(\lambda/f\)**: Wavelength/Frequency screen. Displays the wavelength/frequency value.
- P: Power screen. Displays the power value.
- **nm** and **dBm**: unit buttons. Display the unit used.
- DISABLED/ENABLED: Enable button. Enables/disables the laser output.

Busy/Idle LED

- Orange: remote access is performing a remote command.
- Green: remote access is ready for a new command.

Procedures

Opening and Initializing the Application Example

- **1.** To open the remote control example, double-click the OSICS_FBL_Example.vi file.
- **2.** In the **I/O** parameter on the top right of the application, set the correct communication mode and address.

3. Run the Vi by pressing the Run arrow, or using the shortcut CTRL+R.

The Vi first runs the OSICS_Openport.vi to establish communication with the OSICS Mainframe and modules used in the Full-band setup.

Next the OSICS_Get_Laser_Settings_SWT-APC.vi collects the laser output state, wavelength/frequency and power settings.

If the laser is DISABLED, NaN (Not a Number) is displayed in **P** and **I** parameters.

When the application is ready for remote control, the Busy/Idle LED becomes green.

Controlling the OSICS Full-band Laser

Modifying a Parameter

- a. Click on the **P** and **I** fields and type the desired value.
- b. Press the **Enter** key on the keyboard to confirm the typed value.

The instrument is set to the new value. If the value is outside of the allowed limits, the application resets the parameter to the previous value.

The application behavior reproduces the behavior displayed on the front panel of the instrument:

- When in "Idle" state, both wavelength/frequency and power are updated to the set values.
- When entering a new Current value, the APC and ACC are automatically turned OFF
- When entering a new Power value, the APC is automatically turned ON.

Changing Unit

To toggle between nm and GHz, or between mW and dBm, click on the unit buttons next to the parameter fields.

Enabling/Disabling the laser output

To enable or disable the output of the SWT-APC module, click on the DISABLED/ENABLED button.

15.2.2 Example Diagram

The LabVIEW diagram of OSICS_FL_Example.vi is composed of two sections:

- The first section is the initialization of the communication with the instrument using the OSICS_Openport.vi. The OSICS_Set_ESE.vi configures the OSICS Standard-Event-Status-Register for error-handling (for more detailed information, see section General System and Status Control, p. 17) and the OSICS_Get_Settings_SWT-APC.vi to collect the current settings.
- The second section consists of on an *Event Handler*. Comments in each relevant Event Case helps understand the structure of the program.

The program has been written to be easily exported or modified by the user in order to suit a particular need.

Index

Symbols	GRID_START?134
IDN?	I?50, 66, 106
CH#: 38, 44, 60, 76, 81, 87, 100, 116, 127, 143	IMAX?50, 66, 106
Mainframe32	ISL?123, 138
RST32	L36, 42
_	L_MIN?136
-	L?36, 42, 51, 67, 95, 107, 122, 136
CH#	L=51, 67, 95, 107, 136
*IDN? 38, 44, 60, 76, 81, 87, 100, 116, 127, 143	LCAL1?73, 113
ACFG90	LCAL1=72, 112
AOUT59, 75, 115	LCAL2?73, 113
AOUT?59, 75, 115	LCAL2=72, 112
APF69, 97, 109	LIMIT?49, 65, 94, 105
APF?69, 97, 109	LMAX?51
ATN35, 41	LMIN?51
ATN_MIN_MAX?35, 41	LOCKED?123, 138
ATN?35, 41	LREF?
BAR85	MOD_CTRL53, 70, 98, 110
BAR?85	MOD_CTRL?53, 70, 98, 110
CH86	MOD_F? 54, 71, 111
CH?86	MOD_F=54, 71, 111
CHN_MAX?122, 137	MOD_SRC53, 70, 98, 110
CHN?122, 137	MOD_SRC?54, 71, 99, 111
CHN=122, 137	MODE90, 133
CLOSE?91	MODE?90, 133
CLOSE=91	MW
CROSS85	MW?
CTRL68, 96, 108	NM34, 40, 47, 63, 77, 91, 103, 119, 131
CTRL?68, 96, 108	NM?34, 40, 47, 63, 78, 92, 103, 119, 131
DBM47, 64, 78, 92, 104, 119, 131	OFFSET
DISABLE46, 62, 79, 93, 102, 118, 130	OFFSET?
DL?58	OPEN84
DL=58	P?49, 65, 94, 105, 121, 135
ENABLE46, 62, 79, 93, 102, 118, 130	P=49, 65, 94, 105, 121, 135
ENABLE? 46, 63, 79, 93, 102, 118, 130	PCAL1?
ERRORT?60	PCAL1=57, 71, 111
F_MAX?123, 138	PCAL2?74, 114
F_MIN?123, 138	PCAL2=74, 114
F?52, 67, 95, 107, 123, 138	SBS_AM125
F=52, 67, 95, 107, 137	SBS_AM?125
FIRM? 38, 44, 60, 76, 81, 87, 100, 116, 127, 143	SBS_DITHER142
FMAX?52	SBS_DITHER?
FMIN?52	SBS_FM
GHZ34, 40, 47, 63, 77, 91, 103, 119, 131	SBS_FM?
GRID_SPACING134	SBS_MODE124
GRID_SPACING?134	SBS_MODE?124
GRID_START133	SBS RATE

OSICS Programming Guide 151

SBS_RATE?126	Example147
SBS_SUP124, 141	Library147
SBS_SUP?124, 141	Library147
SBS_WAVEFORM125	
SBS_WAVEFORM?125	M
SHUT83	MOD_F?
SHUT?84	CH#:54, 71, 111
SHUTMODE84	Mainframe30
SHUTMODE?85	MOD_F=
SIN_FREQ?56	CH#:54, 71, 111
= -	Mainframe30
SIN_FREQ=55	MOD SRC
SIN_OUT55	CH#:53, 70, 98, 110
SIN_OUT?56	Mainframe
SIN_RATE?56	MOD SRC?
SIN_RATE=55	CH#:54, 71, 99, 111
TYPE? 38, 44, 60, 76, 81, 87, 100, 116, 127, 143	Mainframe30
WAVEREF72, 112	MW
B	
DBM	CH#:48, 64, 78, 92, 104, 120, 132
	Mainframe28
CH#:47, 64, 78, 92, 104, 119, 131	MW?
Mainframe28	CH#:48, 64, 78, 92, 104, 120, 132
Diagram149	Mainframe28
DISABLE	N
CH#:46, 62, 79, 93, 102, 118, 130	NM
Mainframe26	CH#:34, 40, 47, 63, 77, 91, 103, 119, 131
E	Mainframe
E ENABLE	NM?
CH#:	CH#: 34, 40, 47, 63, 78, 92, 103, 119, 131
Mainframe26	Mainframe27
ENABLE?	Р
CH#:46, 63, 79, 93, 102, 118, 130	P?
Mainframe26	CH#:49, 65, 94, 105, 121, 135
G	Mainframe
GHZ	P=
CH#:34, 40, 47, 63, 77, 91, 103, 119, 131	CH#:49, 65, 94, 105, 121, 135
Mainframe27	Maintrame29
	PRESENT?
INTERLOCK?32	R
	RECALL
L	
LabVIEW	S
Diagram149	SAVE31