

Cursuri Statistică

Facultatea de Matematică și Informatică, Universitatea din București

Lect. dr. Alexandru Amărioarei Anul universitar 2022-2023 Domeniul Matematică, Seriile 30, 31, 32

Redactori:

- Ioana-Cătălina Onea (grupa 322) Cursurile 3, 5, 7, 9, 11, 13
- Liviu-Dumitru Păun (grupa 322) -Cursurile 1, 2, 4, 6, 8, 10, 12

link Overleaf - LaTeX

Cuprins

1	Cur	rsul 1	3
	1.1	Notarea:	3
	1.2	Structura cursului:	3
2	Cur	rsul 2	6
3	Cur	rsul 3	11
	3.1	Funcția de repartiție	11
	3.2	Teorema fundamentală a simulării	12
4	Cursul 4		
	4.1	Simulare prin metoda respingerii	15
5	Cursul 5		
	5.1	Simulare prin metoda respingerii dintr-o variabila aleatoare care admite densitate	19
6	Cur	rsul 6	25
	6.1	Tipuri de convergență a variabilelor aleatoare	25
	6.2	Media, Varianța și momentele empirice	28
7	Cursul 7		
	7.1	Eșantionare dintr-o populație normală	34
8	Cur	esul 8	37

	8.1	Repartiții derivate din repartiția normală	40		
		8.1.1 Repartiția t-Student - W. Gosset	40		
		8.1.2 Repartiția Fisher-Snedecor	41		
	8.2	Statistica de ordine	41		
9	Curs	sul 9	43		
	9.1	Funcția de repartiție empirică și cuantile empirice	44		
	9.2	Convergența și normalitatea asimptotică a repartiției empirice $$. $$.	45		
10	.0 Estimare punctuală și proprietăți ale eșantioanelor				
	10.1	Nedeplasarea	48		
	10.2	Consistența	50		
	10.3	Eroarea pătratică medie	51		
11	11 Curs 11				
	11.1	Metoda Momentelor	52		
	11.2	Metoda verosimilității maxime	54		
12	Curs	s 12	57		
	12.1	Proprietăți ale MLE	59		
		12.1.1 Invarianța EVM	59		
		12.1.2 Consistență MLE	60		
13	Curs	sul 13	63		
	13.1	Proprietăți ale estimatorilor de verosimilitate maximă	63		

1.1 Notarea:

- 30% activități laborator/ seminar (unde se va folosi limbajul R)
- 20% proiect în R
 - în echipe de 2-3 persoane
 - se prezintă laborantului în sesiune
- 50% examen scris
 - cu probleme în valoare de 100 de puncte
 - -3 ore
 - 2 coli A4 cu materiale la alegerea studenților
 - conține limbaj R
- Bonus: maxim 1.5 puncte scriere cursuri în LaTeX

Criterii de promovare:

- nota totală ≥ 4.5
- nota examen ≥ 4.5

Statistică (matematică)

1.2 Structura cursului:

- 1. Simulare (înțelegerea datelor)
- 2. Estimare punctuală
- 3. Estimare prin intervale
- 4. Testare de ipoteze

Exercițiu 1. O urnă cu bile roșii și verzi într-o proporție $\theta \in (0,1)$ necunoscută. Știm că proporția bilelor verzi este de $\theta=17\%$. Extragem 20 de bile cu revenire. Care este probabilitatea ca 5 dintre cele 20 să fie roșii?

 $\frac{5}{20}$ = un estimator punctual

 $\frac{2}{20} = \pm 3\%$ acest interval conține parametrul necunoscut

Definiție 1. Se numește model stocastic (parametric) un spațiu măsurabil (Ω, \mathcal{F}) împreună cu o familie de probabilități $\mathbb{P}_{\theta}, \theta \in \Theta$ și Θ se numește spațiul parametrilor

$$\xi = (\Omega, \{ \mathbb{P}_{\theta}, \theta \in \Theta \})$$

 $\Omega = \text{spațiul total}$

= mulțimea tuturor evenimentelor elementare

 $\mathcal{F} = \text{mul}$ țimea evenimentelor posibile $\subseteq \mathcal{P}$

 $\mathcal{A}\subset\mathcal{P}$ (Ω) se numește algebră dacă

$$i \Omega \in A$$

ii
$$A \in \mathcal{A} \Rightarrow \mathcal{A}^{\mathcal{C}} \in \mathcal{A}$$

iii A, B
$$\in \mathcal{A} \Rightarrow \mathcal{A} \cup \mathcal{B} \in \mathcal{A}$$

$$\Omega = \{1,2,3,\dots \} = \mathbb{N}^*$$

$$A = \{2,4,6, \dots \}$$

$$(A_n)_n \in \mathcal{F} = \bigcup_{n \ge 1} (A_n) \in \mathcal{F}$$

Observație 1. $x_1, x_2, ..., x_n$ și $X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}$

Rem: Variabilă aleatoare = funcție a cărei valoare o aflăm $\underline{\text{după}}$ experimentul aleator

Avem n bile
$$\begin{cases} k \text{ bile roșii } \mathbf{R} \\ n\text{-k bile verzi } \mathbf{V} \end{cases}$$

$$\theta \in \Theta \ \theta = \frac{k}{n}$$

$$\xi = (\Omega, \{ \mathbb{P}_{\theta}, \theta \in \Theta \})$$

$$\Omega = \{(b_1, b_2, ..., b_n \mid b_i \in \{r, v\}\} = \{r, v\}^n$$

$$\Theta = \left\{ \left\{ \frac{l}{N} \mid l \geq 0 \right\} \text{ N-nr de bile din urnă (cunoscut)} \right.$$
$$\left[[0,1] \cap \mathbb{Q} \right]$$

$$\mathcal{F} = \mathcal{P}(\Omega)$$

 $\mathbb{P}_{\theta}: \mathcal{F} \longrightarrow [0,1]$ reprezintă extragerile independente (probabilitatea să extrag o bilă roșie)

$$\mathbb{P}(\{\omega\}) = \theta^s (1-\theta)^{n-s}$$
unde $\omega = (b_1, b_2, ..., b_n \in \text{și s=nr bile roșii}$

n=5, atunci

$$RVVRR \longrightarrow \theta^3 (1-\theta)^2$$

Definiție 2. $X_i \sim \mathcal{B}(\theta)$ - variabila Bernoulli pentru parametrul θ

$$X_i = \begin{cases} 1 & la \ a \ i\text{--}a \ extragere \ am \ obținut \ roșu \\ 0 & alfel \end{cases}$$

$$M_n = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{S_n}{n} \text{ cu } S_n \sim (n,)$$

Rem: $(\Omega, \mathcal{F}, \mathbb{P}_{\theta})$ câmp de probabilitate X: $\Omega \longrightarrow \mathbb{R}$

$$\mathbb{P}_X:\mathcal{B}_{\mathbb{R}}\longrightarrow [0,1]$$

$$\mathbb{P}_X(A) = \mathbb{P}(X \in A) = (\mathbb{P} \circ X^{-1})(A)$$

$$\mathbb{P}_{\theta}\left(M_n = \frac{k}{n}\right) = \mathbb{P}_{\theta}(S_n = k) = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$$

Media
$$\mathbb{E}[M_n] = \frac{1}{n}\mathbb{E}[S_n] = \frac{1}{n}n\theta = \theta$$

Ce este un eșantion dintr-o populație?

Vedem populația drept probabilitate.

Definiție 3. Fie $(\Omega, \mathcal{F}, \mathbb{P})$ un câmp de probabilitate. Spunem că $X_1, X_2, ..., X_n$ este un eșantion de volum n din populația Q dacă $X_1, X_2, ..., X_n$ sunt v.a. independente și identic repartizate cu repartiția comună $\mathbb{P} \circ X_i^{-1} = Q$

Notații
$$X_1, X_2, ..., X_n \sim Q$$

 $X_1, X_2, ..., X_n \sim F$
 $X_1, X_2, ..., X_n \sim f$

$$X = X_1, X_2, ..., X_n$$

$$\{\Omega_n, (\mathbb{P}_{\theta})_{\theta \in \Theta}\}$$

$$\Omega_n = \Omega^n$$

$$\mathcal{F}_n = \sigma(\{A_1 \times A_2 ... \times A_n \mid A_i \in \mathcal{F}\})$$
$$= \mathcal{F} \otimes \mathcal{F} \otimes ... \otimes \mathcal{F}$$

$$(\Omega_1, 1, (\mathbb{P}_{\theta})_1)$$
 și $(\Omega_2, 2, (\mathbb{P}_{\theta})_2)$

$$\Omega = \Omega_1 \times \Omega_2$$

$$\mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2 = \sigma(\{A_1 \times_2 \mid A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2\})$$

$$\mathbb{P} = \mathbb{P}_1 \times \mathbb{P}_2 : \mathcal{F} \longrightarrow [0,1]$$

$$\mathbb{P}(A_1 \times_2) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2)$$

Teoremă 1. Fie $(\mu_n)_{n\geq 1}$ un șir de probabilități pe $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. Atunci $\exists (\Omega, \mathcal{F}, \mathbb{P})$ și $(x_n)_{n\geq 1}$ independente astfel încât $\mathbb{P} \circ X_i^{-1} = \mu_i$

Demonstrație. Pasul 1 Vom considera că μ_n este Bernoulli

$$\mu_n(\{0\}){=}p_n$$
 și $\mu_n(\{1\}){=}q_n$ cu $p_n+q_n=1$

$$\Omega = [0,1], \ \mathcal{F} = \mathcal{B}_{[0,1]}, \ \mathbb{P} = \lambda_{[0,1)}$$

Definim $X_1(\omega)$

$$\mathrm{Definim} X_1(\omega) = \begin{cases} 0 \text{ dacă } \omega \in I_0 \\ 1 \text{ dacă } \omega \in I_1 \end{cases}$$

$$\mathbb{P}(X_1 = 0) = \lambda_{[0,1)}(I_0) = p_1$$

$$\mathbb{P}(X_1 = 1) = \lambda_{[0,1)}(I_1) = q_1$$

$$\mathbb{P} \circ X_1^{-1} = \mu_1$$

$$\mathrm{Definim} X_2(\omega) = \begin{cases} 0 \text{ dacă } \omega \in I_{00} \cup I_{10} \\ 1 \text{ dacă } \omega \in I_{01} \cup I_{11} \end{cases}$$

$$\mathbb{P}(X_1 = 0, X_2 = 0) = \mathbb{P}(X_1 = 0) \cdot \mathbb{P}(X_2 = 0) = p_1 p_2$$

$$\mathbb{P}(X_2 = 0) = \lambda_{[0,1)}(I_{00} \cup I_{10}) = p_1 p_2 + q_1 p_2 = p_2$$

$$X_1 \perp \!\!\! \perp X_2 \text{ (indep)} \Rightarrow \mathbb{P}(X_1 \cap X_2) = \mathbb{P}(X_1) \cdot \mathbb{P}(X_2)$$

$$\mathbb{P}(X_1 \in A, X_2 \in B) = \mathbb{P}(X_1 \in A) \cdot \mathbb{P}(X_2 \in B)$$

Dacă
$$p_{11} = q_{11} = \frac{1}{2} \exists (\Omega, \mathcal{F}, \mathbb{P}_{\theta})$$

$$(x_n)_{n\geq 1} \sim \mathcal{B}\left(\frac{1}{2}\right)$$
 indep

Pasul 2 Putem constui un șir de v.a. $(\mathcal{U}_n)_{n\geq 1} \sim \mathcal{U}([0,1])$ indep?

Vrem să arătăm că șirul $(x_n)_{n\geq 1}$ sub forma unui tablou bidimensional

$$U_1 X_{11}X_{12}, \dots$$

$$U_2 X_{21}X_{22}, \dots$$

Asociativitatea independenței

Dacă avem $(\mathcal{F}_t)_{t\in T}$ o familie de σ -algebre independente $\forall J\in T; |J|<\infty$; $(\mathcal{F}_t)_{t\in J}$ indep și \mathcal{G} o mulțime de indici $(T_g)_{g\in\mathcal{G}}$ partiție a lui T, atunci $(\mathcal{F}_t)_{t\in T_g}$ independente

Vrem să verificăm că $U_n \sim \mathcal{U}([0,1])$

x - v.a. F: $\mathbb{R} \longrightarrow [0,\!1]$ $\mathcal{F}(x) = \mathbb{P}(X \leq x)$ - funcția de repartiție

În general, funcția de repartiție indusă de $\mathbb{P} \colon \mathbf{F}(x) = \mathbb{P}((-\infty,x])$

$$U \sim \mathcal{U}([0,1])([0,1))$$

$$\mathbb{P}(U_n \le x) = x \forall x \in [0, 1)$$

$$S_{n,k} = \sum_{i=1}^{k} \frac{x_{n,i}}{2^i} \in \left\{0, ..., \frac{j}{2^k}, ..., \frac{2^k - 1}{2^k}\right\}$$

$$S_{n,k} \nearrow U_n \ (k \longrightarrow \infty$$

$$\{S_{n,k} \le x\} \searrow \{U_n \le x\}$$

$$\mathbb{P}(U_n \le x) = \mathbb{P}(\lim_k \{S_{n,k} \le x\}) = \lim_k \mathbb{P}(S_{n,k} \le x)$$

$$\mathbb{P}(S_{n,k} \le x) = \frac{\#\left\{\frac{j}{2^k} \le x\right\}}{2^k} = \frac{[x2^k] + 1}{2^k}$$

Vom continua demonstrația de la cursul trecut după ce definim câteva noțiuni ajutătoare.

3.1 Funcția de repartiție

Funcția de repartiție poate fi exprimată în următoarele moduri:

- când este cunoscută densitatea lui f
: $F(x) = \int_{-\infty}^x f(t) \, dt$
- când densitatea lui f este necunoscută: $\mathbb{P} \circ X^{-1}$ Fie câmpul de probabilitate $(\Omega, \mathcal{F}, \mathbb{P}), X : \Omega \longrightarrow \mathbb{R}$ o variabilă aleatoare și $\mathcal{B}_{\mathbb{R}}$ σ -algebră generată de mulțimile deschise. Atunci $\mathbb{P} \circ X^{-1} : \mathcal{B}_{\mathbb{R}} \longrightarrow [0, 1]$ este repartiția lui X si $\mathbb{P} \circ X^{-1}((-\infty, x]) = F(x) = \mathbb{P}(X \leq x)$.

Proprietățile funcției de repartiție

$$F: \mathbb{R} \longrightarrow [0,1], F(x) = \mathbb{P}(X \leq x)$$
 este:

- 1. crescătoare
- 2. $\lim_{x\to-\infty} F(x) = 0$ si $\lim_{x\to\infty} F(x) = 1$
- 3. F este continuă la dreapta ($\lim_{\substack{x\to a\\x< x_0}} F(x) = F(x_0)$

Definiție 4. Fie F o funcție de repartiție. Se numește funcția cuantilă asociată lui F funcția $F^{-1}: [0,1] \longrightarrow \mathbb{R}$ definită prin $F^{-1}(u) = \inf\{x \in \mathbb{R} | F(x) \ge u\}$

Observație 2. În general, pentru F(x) = u avem o soluție, niciuna sau o infinitate.

Figura 1: Grafice pentru observația de mai sus

3.2 Teorema fundamentală a simulării

Teoremă 2 (de universalitate a repartiției uniforme, teorema fundamentală a simulării). $Fie(\Omega, \mathcal{F}, \mathbb{P})$ un câmp de probabilitate și X o variabilă aleatoare cu funcția de repartiție F: Atunci:

- 1. Dacă $U \sim \mathcal{U}([0,1])$ avem că $F^{-1}(U)$ și X au aceeași repartiție.
- 2. $F(X) \sim \mathcal{U}([0,1])$

Demonstrație. Pentru a demonstra 1 vrem să verificăm că $\mathbb{P}(F^{-1}(U) \leq x) = F(x) = \mathbb{P}(X \leq x), \forall x.$

Presupunem că $U \sim \mathcal{U}((0,1])$.

$$\mathbb{P}(U \le y) = \begin{cases} 0, & y \le 0 \\ y, & 0 < y < 1 \\ 1, & y \ge 1 \end{cases}$$

$$F(x) = \mathbb{P}(U \le F(x)) \iff \{F^{-1} \le x\} = \{U \le F(x)\}$$

Este suficient să verificăm că $F^{-1}(u) \leq x \iff u \leq F(x)$, unde știm că $F^{-1}(u) = \inf\{x | F(x) \geq u\}$.

Fie $u \in (0,1)$ si $I_n = \{x | F(x) \ge u\}.$

Cum u < 1 și $\lim_{x\to\infty} F(x)=1 \implies$ pentru x suficient de mare $F(x)>u \implies x\in I_n \implies I_n\neq\emptyset$.

Dacă $x \in I_n$ si y > x atunci cum F este crescătoare $\Longrightarrow F(y) \ge F(x) \ge u \Longrightarrow y \in I_n \Longrightarrow [x,\infty) \subset I_n$ pentru $\forall x \in I_n \Longrightarrow I_n$ este un interval de forma (a,∞) sau $[a,\infty)$.

Presupunem că $a=-\infty$ $(I_n=\mathbb{R}).$ u>0 și $\lim_{x\to -\infty}F(x)=0\implies$ există x astfel încât $x\notin I_n\implies a\neq -\infty$ $a\in I_n$? $x>a\implies x\in I_n\implies F(x)\geq u$ F este continuă la dreapta $\implies F(a)=\lim_{x\to a\atop x>a}F(x)\geq u\implies a\in I_n$

$$a = \inf I_n = F^{-1}(u)$$

Demonstrația pentru 2 este una mult mai scurtă:

$$F(X) \sim \mathcal{U}((0,1]))$$

$$\mathbb{P}(Y \le y) = y = \mathbb{P}(U \le y)$$

$$\mathbb{P}(F(X) \le y) = \mathbb{P}(X \le F^{-1}(y)) = F(F^{-1}(Y)) = Y$$

Acum, pentru că am demonstrat teorema 2 putem să ne întoarcem la demonstrația începută cursul trecut.

Demonstrație. Să continuăm cu Pasul 3. Fie $(\mu_n)_n$ un șir de măsuri de probabilitate. Arătăm că există $(\Omega, \mathcal{F}, \mathbb{P})$ și $(X_n)_n$ un șir de variabile independente astfel încât $\mathbb{P} \circ X_n^{-1} \equiv \mu_n$.

$$(\Omega,\mathcal{F},\mathbb{P}):([0,1],\mathcal{B}_{[0,1]},\lambda_{[0,1]})$$

Din Pasul 2 știm că $\exists !(U_n)_n$ șir de variabile aleatoare independente $\sim \mathcal{U}([0,1])$.

Fie $F_n(x) = \mu_n((-\infty, x])$ funcțiile de repartiție induse și F_n^{-1} funcțiile cuatile corespunzătoare.

Din Teorema de Universalitate a repartițiilor uniforme $?? \implies F_n^{-1}(U_n)$ sunt repartizate ca mu_n și cum μ_n sunt independente $\implies F_n^{-1}(U_n)$ independente $\implies X_n$ independente.

Exemplu 1.
$$X \sim Exp(\lambda), \lambda > 0, \ f(x) = \lambda e^{-\lambda x}, x \ge 0, \ F(x) = 1 - e^{-\lambda x}$$

$$F(x) = u \iff 1 - e^{-\lambda x} = u \iff x = -\frac{\ln(1 - u)}{\lambda} \implies$$

$$F^{-1}(u) = -\frac{\ln(1-u)}{\lambda}$$

Algoritm 1. 1. Generează $U \sim \mathcal{U}([0,1])$

2.
$$-\frac{ln(1-u)}{\lambda} \sim Exp(\lambda)$$

4.1 Simulare prin metoda respingerii

A. Simularea observațiilor dintr-o repartiție uniformă pe o mulțime

Definiție 5. Fie $((\Omega, \mathcal{F}, \mathbb{P}))$ un câmp de prob, $B \subseteq \mathbb{R}^d$ cu $0 \ge \lambda_d(B) < \infty$ unde λ_d - măsura Lebesgue pe \mathbb{R}^d

Spunem că vectorul aleator $M:\Omega\longrightarrow\mathbb{R}^d$ este repartiție uniformă pe B și notăm $M\sim\mathcal{U}(B)$ dacă repartiția lui M și $\mathbb{P}\circ M^{-1}$ verifică $\forall A\in B_{\mathbb{R}^d}$ avem $\mathbb{P}\circ M^{-1}(A)=\frac{\lambda_d(A\cap B)}{\lambda_d(B)}$

Observație 3. d = 1 B = [a, b]

$$\mathbb{P} \circ M^{-1}(A) = \frac{\lambda_d(A \cap [a, b])}{\lambda_d(b - a)}$$

Observație 4. Dacă $M \sim \mathcal{U}(B)$ atunci admite densitate de repartiție

$$f_M(x) = \frac{1}{\lambda_d(B)} \mathbb{1}(x)$$

$$\mathbb{P} \circ M^{-1}(A) = \int_A f_M(x) \underbrace{d\lambda_d(x)}_{dx}$$

Fie
$$C = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_n, b_n]$$

Fie $U_1, U_2, ... U_d \sim \mathcal{U}([0, 1])$ indep și definim:

$$v_1 = a_1 + (b_1 - a_1)U_1 \sim \mathcal{U}[a_1, b_1]$$

$$v_2 = a_2 + (b_2 - a_2)U_2 \sim \mathcal{U}[a_2, b_2]$$

:

$$v_d = a_d + (b_d - a_d)U_d \sim \mathcal{U}[a_d, b_d]$$

$$v_1, v_2, ..., v_d$$
 indep

Fie $M = (v_1, v_2, ..., v_d)$ atunci $M \sim \mathcal{U}(C)$

$$f_M(x) = f_{v_1}(x) \times \dots \times f_{v_d}(x)$$

$$= \frac{1}{b_1 - a_1} \mathbb{1}_{[a_1, b_1]}(x1) \times \dots \times \frac{1}{b_d - a_d} \mathbb{1}_{[a_d, b_d]}(x_d)$$

$$= \frac{1}{\lambda_d(C)} \mathbb{1}_C(x)$$

Proproziție 1. Fie $(\Omega, \mathcal{F}, \mathbb{P})$ un câmp de probabilitate și $(M_n)_n$ un șir de vectori aleatori $M_n : \Omega \longrightarrow \mathbb{R}^d$, independenți și cu repartiția comună μ ($\mathbb{P} \circ M^{-1} = \mu$). Fie $B \subseteq \mathcal{B}_{\mathbb{R}^d}$ a.î. $\mu(B) > 0$ pentru $\omega \in \Omega$ avem:

$$T(\omega) = \inf\{n \in \mathbb{N}^* \mid M_n(\omega) \in B\}$$

Definim: $M_T: \Omega \longrightarrow \mathbb{R}^d$

$$M_T(\omega) = \begin{cases} M_{T(\omega)}(\omega), \ T(\omega) < \infty \\ 0, \ T(\omega) = +\infty \end{cases}$$

Atunci:

 $T<\infty$ aproape sigur, i.e. $\mathbb{P}(T<\infty)=1$ și fie $T'\sim Geom(\mu(B)),$ unde $T'=T\cdot\mathbbm{1}_{\{T<\infty\}}$

b) M_T este un vector aleator de repartitie $\nu = \mathbb{P} \circ M_T^{-1}$ și $\nu(A) = \frac{\mu(A \cap B)}{\mu(B)}$

Observație 5. $(M_n)_n \sim \mathcal{U}(C)$

$$B \subseteq C \ \mu(A) = \frac{\lambda_d(A \cap C)}{\lambda_d(C)}$$

$$\nu(A) = \frac{\mu(A \cap B)}{\mu(B)} = \frac{\frac{\lambda_d(A \cap B \cap C)}{\lambda_d(C)}}{\frac{\lambda_d(B \cap C)}{\lambda_d(C)}} = \frac{\lambda_d(A \cap B)}{\lambda_d(B)}$$

Demonstrație. $T:\Omega\longrightarrow \overline{\mathbb{N}^*}=\{1,\,2,\,...,\,\infty\}$

$$T:\Omega\longrightarrow\mathbb{N}$$

$$T'(\omega) = T(\omega) \mathbb{1}_{\{T < \infty\}}(\omega)$$

$$T^{-1}(\{k\}) = \{\omega \mid T(\omega) = k\}$$

$$= \{\omega \mid M_i(\omega) \notin B, \ i < k, \ M_k(\omega) \in B\}$$

$$= \bigcap_{i < k} \{M_i \notin B\} \cap \{M_k \in B\}$$

$$= \bigcap_{i < k} \{M_i \in B^c\} \cap \{M_k \in B\}$$

$$= \bigcap_{i < k} \underbrace{M_i^{-1}(B^c)}_{\in \mathcal{F}} \cap \underbrace{M_k^{-1}(B)}_{\in \mathcal{F}} \in \mathcal{F}$$

$$\mathbb{P}(T = k) = \prod_{i < k} \mathbb{P}(M_i^{-1}(B^C)) \times \mathbb{P}((M_k^{-1}(B)))$$
$$= \prod_{i < k} (1 - \mu(B)) \times \mu(B)$$
$$= (1 - \mu(B))^{k-1} \times \mu(B)$$

Dacă k=
$$\infty$$
 $T^{-1}(\{+\infty\}) = \{\omega \mid T(\omega) = +\infty\} = \bigcap_{n \ge 1} M_n^{-1}(B^c) \in \mathcal{F}$

$$\bigcap_{n \ge 1} M_n^{-1}(B^c) \le \bigcup_{n=1}^m M_n^{-1}(B^c) \ \forall \ m \ge 1$$

$$\begin{split} \mathbb{P}(T = +\infty) &\leq \mathbb{P}\bigg(\bigcup_{n=1}^m M_n^{-1}(B^c)\bigg) = \prod_{n=1}^m \mathbb{P}\big(M_n^{-1}(B^C)\big) \\ &= (1 - \mu(B))^m \longrightarrow 0 \ \forall \ m \geq 1 \end{split}$$

b)
$$k \in B_{\mathbb{R}^d}$$

$$M_T^{-1}(A) \in \mathcal{F}$$

$$\Omega = \bigcup_{k \in \overline{\mathbb{N}^*}} T^{-1}(\{k\})$$

$$\begin{split} M_T^{-1}(A) &= M_T^{-1}(A) \cap \Omega \\ &= \bigcup_{k \in \overline{\mathbb{N}^*}} \left(M_T^{-1}(A) \cup T^{-1}(\{k\}) \right) \end{split}$$

Dacă $k \in \mathbb{N}^*$

$$M_T^{-1}(A) \cup T^{-1}(\{k\}) = \left\{ \omega \mid M_{T(\omega)}(\omega) \in A, \ T(\omega) = k \right\}$$

$$= \left\{ \omega \mid M_k(\omega) \in A, \ T(\omega) = k \right\}$$

$$= \left\{ \omega \mid M_i(\omega) \in B^C, \ i < k, \ M_k(\omega) \in B, \ M_k(\omega) \in A \right\}$$

$$= \bigcup_{i < k} \left(M_i^{-1}(B^C) \cap M_k^{-1}(A \cup B) \right) \in \mathcal{F}$$

$$\begin{split} M_T^{-1}(A) \cup T^{-1}(+\infty) &= \left\{ \omega \mid M_{T(\omega)}(\omega) \in A, \ T(\omega) = +\infty \right\} \\ &= \left\{ \omega \mid M_{\infty}(\omega) \in A, \ T(\omega) = k \right\} \\ &= \bigcup_{n \geq 1} \left(M_i^{-1}(B^C) \cap \{M_{\infty} \in A\} \right) \end{split}$$

$$M_{\infty} = \begin{cases} \Omega, & 0 \in A \\ \varnothing & 0 \notin A \end{cases}$$

$$\nu(A) = (\mathbb{P} \circ M_T^{-1})(A)$$

$$\mathbb{P}(T = +\infty) = 0 = \sum_{k \ge 1} \mathbb{P}(M_T^{-1})(A) \cap T^{-1}(\{k\}) = \sum_{k \ge 1} (1 - \mu(B))^{k-1} \mu(A \cap B)$$

5.1 Simulare prin metoda respingerii dintr-o variabila aleatoare care admite densitate

(Notam $Z \sim f$)

Presupunem că știm să generăm X dintr-o repartiție care admite densitatea g. $(X \sim g)$ și că există c>0 (în realitate ne interesează c>1) astfel încât $f \leq cg$

Ideea:

- 1. generăm punctele uniforme $M' \sim \mathcal{U}(H)$, unde $H = \{(x,y) \in \mathbb{R}^d \times \mathbb{R} \mid 0 \le y \le cg(x)\}$ este subgraful lui cg.
- 2. știm să generam punctele $M \sim \mathcal{U}(G)$, unde $G = \{(x,y) \in \mathbb{R}^d \times \mathbb{R} \mid 0 \leq y \leq f(x)\}$

Proproziție 2. Fie f o densitate de repartiție și $G = \{(x,y) \in \mathbb{R}^d \times \mathbb{R} \mid 0 \leq y \leq f(x)\}$ subgraful sau hipograful lui f. Considerăm $M = (Z,Y) \sim \mathcal{U}(G)$. Atunci $Z \sim f$ (Z admite densitatea f) în raport cu măsura Lebesque.

Proproziție 3. Fie g o densitate de repartiție și X o variabilă aleatoare astfel încât $X \sim g$. Pentru c > 0 considerăm $H = \{(x,y) \in \mathbb{R}^d \times \mathbb{R} \mid 0 \leq y \leq cg(x)\}$ subgraful lui cg. Dacă $U \sim \mathcal{U}([0,1])$ independent de X, atunci punctul $M = (X, cg(X)U) \sim \mathcal{U}(H)$

Reamintim:

Fie $(\Omega_1, \mathcal{F}_1, \mathbb{P}_1)$ și $(\Omega_2, \mathcal{F}_2, \mathbb{P}_2)$ 2 corpuri de probabilitate. Spațiul produs va fi:

 $\Omega = \Omega_1 \times \Omega_2, \ \mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2 = \sigma(A_1 \times A_2 \mid A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2) \text{ si } \mathbb{P} = \mathbb{P}_1 \otimes \mathbb{P}_2$ fiind unica măsură de probabilitate care verifică $\mathbb{P}(A_1 \times A_2) = \mathbb{P}_1(A_1) \cdot \mathbb{P}_2(A_2)$

În general, dacă $E \in \mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$:

$$\mathbb{P}(E) = \int \mathbb{P}_1(E_{\omega_2}) \, d\mathbb{P}_2(\omega_2) = \int \mathbb{P}_2(E_{\omega_1}) \, d\mathbb{P}_1(\omega_1)$$

unde $E_{\omega_1} = \{\omega_2 \in \Omega_2 | (\omega_1, \omega_2) \in E\}$ și $E_{\omega_2} = \{\omega_1 \in \Omega_1 | (\omega_1, \omega_2) \in E\}$ sunt secțiunile lui E prin ω_1 , respectiv prin ω_2 .

<u>Remarcă:</u> $\lambda_{d+1} = ?$ (măsura Lesbesque în \mathbb{R}^{d+1} Dacă $d=1 \implies \lambda_2(G)=1$. Apare întrebarea: $\lambda_{g+1}=1$?

$$\lambda_{d+1} = \lambda_d \otimes \lambda_1 \implies \lambda_{d+1}(G) = \int \lambda_1(G_\lambda) d\lambda_d(x) = \int f(x) d\lambda_d(x) = 1$$
 unde $G_\lambda = \{y \in \mathbb{R} | (x, y) \in G\} = \{y \in \mathbb{R} | 0 \le y \le f(x)\} = [0, f(x)]$

Demonstrație. Pentru a demonstra propoziția 2, vom considera două cazuri.

<u>Cazul d = 1</u> Vrem să calculăm $\mathbb{P}(Z \in [a, b]), \forall [a, b] \subset \mathbb{R}$.

$$\mathbb{P}(Z \in [a, b]) = \mathbb{P}((Z, Y) \in [a, b] \times \mathbb{R}) = \frac{\lambda_2(G \cap [a, b] \times \mathbb{R})}{\lambda_2(G)}$$

Am observat mai sus că $\lambda_2(g) = 1 \implies$

$$\implies \mathbb{P}(Z \in [a,b]) = \lambda_2(G \cap [a,b] \times \mathbb{R}) = \int_a^b f(x) \, dx, \forall [a,b] \implies Z \sim f$$

<u>Cazul genereal:</u> Vrem să calculăm $\mathbb{P}(Z \in B)$ pentru $\forall B \in \mathcal{B}_{\mathbb{R}^d}$

$$\mathbb{P}(Z \in B) = \mathbb{P}((Z, Y) \in B \times \mathbb{R}) = \frac{\lambda_{d+1}(G \cap B \times \mathbb{R})}{\lambda_{d+1}(G)} =$$
$$= \lambda_{d+1}(G \cap B \times \mathbb{R}) =$$
$$= \int \lambda_1((G \cap B \times \mathbb{R})_x) d\lambda_d(x)$$

Cum $(G \cap B \times \mathbb{R})_x = G_{B_x} = \{y \in \mathbb{R} \mid (x,y) \in G \cap B \times \mathbb{R}\}$ avem două cazuri:

- Dacă $x \notin B \implies (G \cap B \times \mathbb{R})_x = \emptyset$
- Dacă $x \in B \implies (G \cap B \times \mathbb{R})_x = [0, F(X)]$ unde $G = \{(x, y) \mid 0 \le y \le f(x)\}$

$$\implies \lambda_1((G \cap B \times \mathbb{R})_x) = f(x) \cdot \mathbb{1}_B(x)$$

$$\implies \int \lambda_1((G \cap B \times \mathbb{R})_x) \, d\lambda_d(x) = \int_B f(x) \, d\lambda_d(x) \implies Z \sim f$$

Demonstrație. Începem acum demonstrația propozitiei 3.

$$M = (x, cg(x)U) \sim \mathcal{U}(H)$$
, unde $H = \{(x, y) \in \mathbb{R}^d \times \mathbb{R} \mid 0 \le y \le cg(x)\}$

Vom arăta că
$$\mathbb{P}(M \in A \times B) = \mu(A \times B)$$
 unde $\mu(A) = \frac{\lambda_{d+1}(A \cap H)}{\lambda_{d+1}(H)}$.

Știm că $\lambda_{d+1}(h) = c$ întrucât am scalat densitatea g cu scalarul c. Considerăm vectorul (X, U) cu densitatea $v(x, u) = g(x) \cdot \mathbb{1}_{[0,1]}(u)$. Atunci putem vedea M ca M = (x, cg(x)U) = h(X, U).

$$\mathbb{P}(M \in A \times B) = \int \mathbb{1}_{A \times B}(x, cg(x)u) \cdot v(u, x) \, d\lambda_{d+1}(x, u) =$$

$$= \int \mathbb{1}_{A}(x) \cdot \mathbb{1}_{B}(x, cg(x)u)g(x) \cdot \mathbb{1}_{[0,1]}(u) \, d\lambda_{d+1}(x, u) =$$

$$= \int \mathbb{1}_{A}(x) \int \mathbb{1}_{B}(x, cg(x)u)g(x) \cdot \mathbb{1}_{[0,1]}(u) \, d\lambda_{1}(u) \, d\lambda_{d}(x)$$

Fie
$$I(x) = \int \mathbb{1}_{B}(x, cg(x)u)g(x) \cdot \mathbb{1}_{[0,1]}(u) du$$

- Dacă $g(x) = 0 \implies I(x) = 0$
- Dacă $g(x) \neq 0$, recurgem la schimbarea de variabilă $t = cg(x)u \iff u = \frac{t}{cg(x)} \iff du = \frac{1}{cg(x)}dt \implies$

$$I(x) = \int \mathbb{1}_{B}(t)g(x)\mathbb{1}_{[0,1]}\left(\frac{t}{cg(x)}\right) \cdot \frac{1}{cg(x)} dt = \frac{1}{c}\int \mathbb{1}_{B}(t) \cdot \mathbb{1}_{[0,cg(x)]}(t) dt = \frac{1}{c}\lambda_{1}(B \cap [0,cg(x)])$$

Am gasit că

$$\mathbb{P}(M \in A \times B) = \frac{1}{c} \int \mathbb{1}_{A}(x) \lambda_{1}(B \cap [0, cg(x)]) \ d\lambda_{d}(x)$$

$$\mu(A \times B) = \frac{\lambda_{d+1}(A \times B \cap H)}{\lambda_{d+1}(H)} = \frac{1}{c} \lambda_{d+1}(H \cap A \times B) =$$

$$= \frac{1}{c} \int \lambda_{1}((H \cap A \times B)_{x}) \ d\lambda_{d}(x)$$

$$- \text{Dacă } x \notin A \implies (H \cap A \times B)_{x} = \emptyset$$

$$- \text{Dacă } x \in A \implies (H \cap A \times B)_{x} = [0, cg(x)] \cap B \implies \lambda_{1}((H \cap A \times B)_{x}) =$$

$$\mathbb{1}_{A}(x) \lambda_{1}([0, cg(x)] \cap B)$$

$$\implies \mathbb{P}(M \in A \times B) = \frac{1}{c} \int \lambda_{1}((H \cap A \times B)_{x}) \ d\lambda_{d}(x) = \frac{1}{c}$$

Exponențială: Z ~ N(0,1),
$$f(x) = \frac{1}{\sqrt{2\pi} \cdot e^{-\frac{x^2}{2}}}, x \in \mathbb{R}$$

Pentru început ne propunem să simulăm într-o jumătate de N(0,1). Fie $f(x) = \frac{2}{\sqrt{2\pi} \cdot e^{-\frac{x^2}{2}}}, x \geq 0 \text{ densitatea țintă}.$

Presupunem X ~ Exp(λ). $g(x) = \lambda e^{-\lambda x}, x > 0$

Vrem să determinăm c astfel încât $f(x) \leq cg(x)$.

$$\frac{f(x)}{g(x)} = \frac{\frac{1}{\sqrt{2\pi}e^{-\frac{x^2}{2}}}}{\lambda e^{-\lambda x}} = \frac{1}{\lambda \sqrt{2\pi}}e^{-\frac{x^2}{2} + \lambda x}$$

pentru care avem valoarea maximă $c=\frac{2}{\lambda\sqrt{2\pi}}e^{\frac{\lambda^2}{2}}$

Algoritm 2. Repetăm următorii pași:

- $generăm\ X \sim f(x)\ Exp(\lambda)$
- generăm $U \sim \mathcal{U}([0,1])$
- repetăm până când $cg(x)U \le f(x) \iff U \le \exp\left\{\frac{-x^2}{2} + \lambda x \frac{-\lambda^2}{2}\right\} \exp\left\{\frac{-1}{2}(x-\lambda)^2\right\}$
- alegem $\mid X \mid$ (Pentru Normală, dăm cu banul $\left(probabilitate \ \frac{1}{2} \right)$ și alegem X sau -X)

6.1 Tipuri de convergență a variabilelor aleatoare

Definiție 6. Convergența în probabilitate

Fie $(\Omega, \mathcal{F}, \mathbb{P})$ un câmp de probabilitate și $(X_n)_{n\geq 1}$ un șir de variabile aleatoare și X o variabilă aleatoare. Spunem că X_n converge în probabilitate la X, i.e. $X_n \xrightarrow{\mathbb{P}} X$ dacă $\forall \varepsilon > 0 \ \mathbb{P}(|X_n - X| > \varepsilon) \xrightarrow{n \to \infty} 0$.

Definiție 7. Convergența aproape sigură

Fie $(\Omega, \mathcal{F}, \mathbb{P})$ un câmp de probabilitate și $(X_n)_{n\geq 1}$ un șir de variabile aleatoare și X o variabilă aleatoare. Spunem că X_n converge aproape sigur la X, i.e. $X_n \xrightarrow[apt]{a.s.} X$ dacă $\forall \varepsilon > 0 \ \mathbb{P}_n(\lim_n X_n = X) = \mathbb{P}\big(\big\{\omega \in \mathbb{R} \mid \lim_n X_n(\omega) = X(\omega)\big\}\big) = 1.$

Observație 6. Convergența aproape sigură o implică pe cea în probabilitate, i.e. $X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{\mathbb{P}} X$.

Definiție 8. Convergența în distribție (repartiție)

Fie $(\Omega, \mathcal{F}, \mathbb{P})$ un câmp de probabilitate și $(X_n)_{n\geq 1}$ un șir de variabile aleatoare și X o variabilă aleatoare. Spunem că X_n converge în distribție (repartiție) la X, i.e. $X_n \xrightarrow{d/r} X$ dacă are loc relația $F_{X_n}(x) \xrightarrow{n \to \infty} F_X(x) \ \forall \ x$ -punct de continuitate și F_X este funcția de repartiție a lui X.

Proproziție 4. $X_n \xrightarrow{d} X \iff \mathbb{E}[\varphi(X_n)] \longrightarrow \mathbb{E}[\varphi(X)] \ \forall \ \varphi \ continuă \ si \ mărginită.$

Observație 7. Convergența în probabilitate o implică pe cea în distribuție, i.e. $X_n \xrightarrow{\mathbb{P}} X \Rightarrow X_n \xrightarrow{d} X$.

Reciproca nu este adevărată, cu excepția cazului în care X este constantă a.s., X - const a.s. $\Rightarrow X_n \xrightarrow{d} X \Rightarrow X_n \xrightarrow{\mathbb{P}} X$.

Teoremă 3. Legea numerelor mari - varianta tare (LNM)

Fie $(X_n)_{n\geq 1}$ un șir de v.a. iid (independente și identic distribuite) cu media modulului finită, i.e. $\mathbb{E}[|X_1|] < \infty$, atunci:

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{a.s.} \mathbb{E}[X_i]$$

Teoremă 4. Teorema limită centrală (TLC)

Fie $(X_n)_{n\geq 1}$ un șir de v.a. iid de medie $\mathbb{E}[X_1] = \mu$ și varianță $Var(X) = \sigma^2 < \infty$. Notăm $S_n = \sum_{i=1}^n X_i$ Atunci:

$$\frac{S_n - \mathbb{E}[S_n]}{\sqrt{Var(S_n)}} \xrightarrow{d} N(0,1)$$

Observație 8.
$$\frac{S_n - \mathbb{E}[S_n]}{\sqrt{Var(S_n)}} = \frac{\displaystyle\sum_{i=1}^n X_i - n\mu}{\sqrt{n\sigma^2}} = \sqrt{n} \ \frac{\displaystyle\frac{1}{n} \ \displaystyle\sum_{i=1}^n X_i - \mu}{\sigma}$$

Teoremă 5. Teorema aplicațiilor continue (Th. apl. cont.)

Fie $(X_n)_{n\geq 1}$ un șir de variabile aleatoare și X o variabilă aleatoare. Fie g o funcție pentru care mulțimea punctelor de discontinuitate D_g verifică $\mathbb{P}(D_g) = 0$.

Atunci $g(X_n)$ converge la g(X) în același mod în care X_n converge la X, adică:

a) dacă
$$X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$$

b)
$$dac \ X_n \xrightarrow{\mathbb{P}} X \Rightarrow g(X_n) \xrightarrow{\mathbb{P}} g(X)$$

c) dacă
$$X_n \xrightarrow{d} X \Rightarrow g(X_n) \xrightarrow{d} g(X)$$

Teoremă 6. Teorema lui Slutsky

Fie $(X_n)_{n\geq 1}$ un şir de v.a. care converge în distribuție la X, i.e. $X_n \xrightarrow{d} X$ și $(Y_n)_{n\geq 1}$ un şir de v.a. care converge în probabilitate la o constantă a, i.e. $Y_n \xrightarrow{\mathbb{P}} a$.

 $Dac\breve{a}\ h: \mathbb{R}^2 \to \mathbb{R}\ continu\breve{a},\ atunci\ h(X_n, Y_n) \stackrel{\mathbb{P}}{\longrightarrow} h(X, a)$

Observație 9. $h(X,Y) = X + Y \implies X_n + Y_n \xrightarrow{d} X + a$

$$h(X,Y) = X \cdot Y \implies X_n \cdot Y_n \xrightarrow{d} X \cdot a$$

Exercițiu 2. Demonstrați că dacă $\sqrt{n}(X_n - a) \xrightarrow{d} X \implies X_n \xrightarrow{\mathbb{P}} a$

 $Consider \breve{a}m$

$$\left. \begin{array}{l} X_n = \sqrt{n}(X_n - a) \xrightarrow{d} X \\ Y_n = \frac{1}{\sqrt{n}} \xrightarrow{\mathbb{P}} 0 \end{array} \right\} \xrightarrow{\frac{Th.Slutsky}{h(x,y) = xy}} h(X_n, Y_n) \xrightarrow{d} h(X, 0) \implies$$

$$\implies X_n - a \xrightarrow{d} 0 \ const. \iff X_n - a \xrightarrow{\mathbb{P}} 0 \ const. \iff X_n \xrightarrow{\mathbb{P}} a$$

Teoremă 7. Metoda Delta

Fie $(X_n)_{n\geq 1}$ un șir de v.a. și X o v.a., a o constantă și $(\mathcal{V}_n)_n$ un șir de numere reale care verifică $\mathcal{V}_n \xrightarrow{n\to\infty} \infty$

Presupunem că avem cunoscută relația $\mathcal{V}_n(X_n-a) \stackrel{d}{\longrightarrow} X$

Dacă q este o funcție derivabilă în a, atunci:

$$\mathcal{V}_n(g(X_n) - g(a)) \xrightarrow{d} g'(a) \cdot X$$

În particular,
$$\mathcal{V}_n = \sqrt{n}$$
, $X = N(0, \sigma^2)$, în TLC: $\sqrt{n}(X_n - a) \xrightarrow{d} N(0, \sigma^2)$
g derivabilă în a, atunci $\sqrt{n}(g(X_n) - g(a)) \xrightarrow{d} N(0, (g'(a) \cdot \sigma)^2)$

Demonstrație. Din ip $\mathcal{V}_n(X_n - a) \xrightarrow{d} X \xrightarrow{\text{Th.Slutsky}} X_n \xrightarrow{\mathbb{P}} X$

$$g(x) = g(a) + (x - a)g'(a) + (x - a)r(x)$$

Luăm r a.î. $\lim_{x\to a} r(x) = 0$ și r(a) = 0, iar funcția se poate prelungi prin coninuitate

Din Th. apl. cont.
$$\Rightarrow X_n \xrightarrow{\mathbb{P}} a \Rightarrow r(X_n) \xrightarrow{\mathbb{P}} r(a) = 0$$

$$g(X_n) - g(a) = (X_n - a)(g'(a) + r(X_n)) \mid \cdot \mathcal{V}_n$$

$$\mathcal{V}_n(g(X_n) - g(a)) = \mathcal{V}_n(X_n - a)(g'(a) + r(X_n))$$

$$\mathcal{V}_n(X_n - a) \xrightarrow{d} X$$

$$r(X) \xrightarrow{\mathbb{P}} 0 \Rightarrow g'(X) + r(X_n) \xrightarrow{\mathbb{P}} g'(a)$$

$$\xrightarrow{Th.Slutsky} \mathcal{V}_n(X_n - a)(g'(a) + r(X_n)) \xrightarrow{d} g'(a) \cdot X$$

$$\mathcal{V}_n(g(X_n) - g(a))$$

6.2 Media, Varianța și momentele empirice

Definiție 9. Fie $X_1, X_2, ..., X_n$ un eșantion de volum n dintr-o populație $F_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^2$. Se numește **statistică** variabila aleatoare $T_n = h(X_1, X_2, ..., X_n)$, unde h este o funcție măsurabilă care nu depinde de θ

Exemplu 2.
$$T_n = \sum_{i=1}^n X_i$$

$$T_n = \prod_{i=1}^n X_i$$

$$T_n = \max(X_1, X_2, ..., X_n)$$

$$T_n = \sum_{i=1}^n X_i + \theta$$

Definiție 10. Fie $X_1, X_2, ..., X_n$ un eșantion de volum n dintr-o populație $F_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^2$. Se numește **media eșantionului** sau **media empirică** statistica

$$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$$

Definiție 11. Fie $X_1, X_2, ..., X_n$ un eșantion de volum n dintr-o populație $F_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^2$. Se numește **varianța empirică** statistica

$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X_n})^2$$

și varianța eșantionului este:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2$$

Proproziție 5. Fie $X_1, X_2, ..., X_n$ un eșantion de volum n dintr-o populație de medie μ și dispersie σ^2 , atunci:

a)
$$\mathbb{E}[\overline{X_n}] = \mu$$
 $Var(\overline{X_n}) = \frac{\sigma^2}{n}$

b)
$$\overline{X_n} \xrightarrow{a.s.} \mu \qquad \sqrt{n}(\overline{X_n} - \mu) \xrightarrow{d} N(0, \sigma^2)$$

$$Demonstrație. \ \mathbb{E}[\overline{X_n}] = \mathbb{E}\left[\frac{1}{n} \ \sum_{i=1}^n X_i\right] = \frac{1}{n} \ \sum_{i=1}^n \mathbb{E}[X_i] = \frac{1}{\varkappa} \cdot \varkappa \cdot \mu = \mu$$

$$Var[\overline{X_n}] = Var\left(\frac{1}{n} \sum_{i=1}^n X_i\right) = \frac{1}{n^2} \sum_{i=1}^n Var[X_i] = \frac{1}{n^2} \cdot \varkappa \cdot \sigma^2 = \frac{\sigma^2}{n} \qquad \qquad \Box$$

Reamint im

$$\begin{split} Var(a+bX) &= b^2 Var(X) \\ Var(X+Y) &= Var(X) + Var(Y) + 2 \ Cov(X,Y) \\ X \perp\!\!\!\perp Y \ \Rightarrow \ Cov(X,Y) = 0 \end{split}$$

Reamintim următoarele formule din cursul 6:

Media eșantionului sau media empirică: $\overline{X_n} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Varianța empirică: $V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X_n})^2$

Varianța eșantionului: $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2$

Continuăm cu două propoziții conțiând noțiunile de mai sus.

Proproziție 6. Fie $X_1, X_2, \dots X_n \sim F_{\theta}$, $cu \mathbb{E}[X_i] = \mu \ si \ Var(X_i) = \sigma^2$. Dacă:

1.
$$\mathbb{E}[\overline{X_n}] = \mu \ \text{si } Var(\overline{X_n}) = \frac{\sigma^2}{n}$$

2.
$$\overline{X_n} \xrightarrow{a.s.} \mu (LNM)$$

Atunci avem că

$$\sqrt{n} \cdot \frac{\overline{X_n} - \mu}{\sigma} \xrightarrow{d} N(0, 1) \ (TLC)$$

Proproziție 7. Fie $X_1, X_2, \dots X_n \sim F_\theta$, $cu \mathbb{E}[X_i] = \mu < \infty \ si \ Var(X_i) = \sigma^2 < \infty$. Atunci avem că

$$\mathbb{E}[V_n^2] = \frac{n-1}{n}\sigma^2$$

 $\dot{s}i$

$$\mathbb{E}[S_n^2] = \sigma^2$$

Demonstrație. Pentru propoziția 7:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2 = \frac{n}{n-1} \cdot \underbrace{\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X_n})^2}_{V_n^2}$$

$$\implies S_n^2 = \frac{n}{n-1} \cdot V_n^2$$

$$V_{n}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X_{n}})^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu + \mu - \overline{X_{n}})^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} [(X_{i} - \mu)^{2} - 2(X_{i} - \mu)(\overline{X_{n}} - \mu) + (\overline{X_{n}} - \mu)^{2}]$$

$$= \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2} - \frac{2}{n} (\overline{X_{n}} - \mu) \sum_{i=1}^{n} ((X_{i} - \mu) + (\overline{X_{n}} - \mu)^{2})$$

$$= \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \mu)^{2} - (\overline{X_{n}} - \mu)^{2}$$

$$\mathbb{E}[V_{n}^{2}] = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\mathbb{E}[(X_{i} - \mu)^{2}]}_{Var(X_{i}) = \sigma^{2}} - \underbrace{\mathbb{E}[(\overline{X_{n}} - \mu)^{2}]}_{Var(\overline{X_{n}}) = \frac{\sigma^{2}}{n}} = \frac{n-1}{n} \sigma^{2}$$

$$\mathbb{E}[V_{n}^{2}] = \sigma^{2}$$

Proproziție 8. Fie $X_1, X_2, \dots X_n \sim F_\theta$, $cu \mathbb{E}[X_i] = \mu < \infty$ și $Var(X_i) = \sigma^2 < \infty$. Atunci,

$$V_n^2 \xrightarrow{a.s.} \sigma^2$$

,

și

$$S_n^2 \xrightarrow{a.s.} \sigma^2$$

$$\sqrt{n}(V_n^2 - \sigma^2) \xrightarrow{d} N(0, v^2)$$

$$\sqrt{n}(S_n^2 - \sigma^2) \xrightarrow{d} N(0, v^2)$$

$$unde\ v^2 = Var((X_1 - \mu)^2) = \mathbb{E}[(X_1 - \mu)^4] - \sigma^4$$

Demonstrație. $S_n^2 = \frac{n}{n-1} \cdot V_n^2$

$$v_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{x_n})^2 = \frac{1}{n} \sum_{i=1}^n (X_i^2 - 2X_i \overline{X_n} + \overline{x_n})^2 =$$
$$= \frac{1}{n} \sum_{i=1}^n X_i^2 - \frac{2}{n} \overline{X_n} \sum_{i=1}^n X_i + \overline{X_n^2}$$

$$\begin{array}{ccc} Stim \; din \; \underbrace{LNM} \; : \; \overline{X_n} \; \xrightarrow{a.s.} \; \mu \\ g(x) = x^2 \; continua \end{array} \right\} \xrightarrow{\begin{array}{c} Th.apl.cont. \\ \end{array}} \begin{array}{c} g(\overline{X_n}) \xrightarrow{a.s.} g(\mu) \\ \overline{X_n}^2 \xrightarrow{a.s.} \mu^2 \end{array}$$

$$Din \ \underline{LNM} : \frac{1}{n} \sum_{i=1}^{n} X_i^2 \xrightarrow{a.s.} \mathbb{E}[X_1^2]$$

$$\implies V_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X_n}^2 \xrightarrow{a.s.} \mathbb{E}[X_1^2] - \mu^2 = \sigma^2$$

Acum, pentru $\sqrt{n}(V_n^2 - \sigma^2)$, am vazut că $V_n^2 = \frac{1}{n}\sum_{i=1}^n (X_i - \mu)^2 - (\overline{X_n} - \mu)^2$. Vom

folosi notația
$$Y_i = X_i - \mu \implies \frac{1}{n} \sum_{i=1}^n Y_i = \frac{1}{n} \sum_{i=1}^n X_i - \mu = \overline{X_n} - \mu$$

$$\implies \overline{Y_n} = \overline{X_n} - \mu$$

$$\sqrt{n}(V_n^2 - \sigma^2) = \sqrt{n} \left[\frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2 - (\overline{X_n} - \mu)^2 \right] =$$

$$= \sqrt{n} \left[\frac{1}{n} \sum_{i=1}^n Y_i^2 - \sigma^2 - \overline{Y_n}^2 \right] =$$

$$= \sqrt{n} \left[\frac{1}{n} \sum_{i=1}^n Y_i^2 - \sigma^2 \right] - \overline{Y_n}(\sqrt{n}\overline{Y_n})$$

Folosind $\mathbb{E}[Y_i] = 0$, $Var(Y_i) = \sigma^2 = \mathbb{E}[Y_i^2]$ și din TLC:

$$\frac{\sqrt{(n)\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}^{2}-\sigma^{2}\right)}}{\sqrt{Var(Y_{i}^{2})}} \xrightarrow{d} N(0,1)$$

$$Var(Y_1^2) = \mathbb{E}[Y_1^4] - \mathbb{E}[Y_1^2]^2 = v^2 = \mathbb{E}[(X_1 - \mu)^4] - \sigma^4$$

$$\implies \sqrt(n) \left(\frac{1}{n} \sum_{i=1}^{n} Y_i^2 - \sigma^2\right) \xrightarrow{d} N(0, v^2)$$

$$V_n^2 = \sqrt{(n)} \left(\frac{1}{n} \sum_{i=1}^n Y_i^2 - \sigma^2 \right) - \overline{Y_n} (\sqrt{n} \overline{Y_n}) \implies V_n^2 \xrightarrow{d} N(0, v^2)$$

Proproziție 9. Fie $(\Omega, \mathcal{F}, \mathbb{P})$ un câmp de probabilitate și $X : \Omega \longrightarrow \mathbb{R}$ o variabila aleatoare care admite densitatea f_X continuă. Fie o funcție $h : \mathbb{R} \longrightarrow \mathbb{R}$ măsurabilă astfel încât Y = h(x). Fie $A = supp(f_X)$ și presupunem că $h : A \longrightarrow B$ $(B = h^{-1}(A))$ este inversabilă, h^{-1} este derivabilă și derivata nu se anulează pe B. Atunci, Y admite densitatea f_y :

$$f_Y(y) = \begin{cases} f_X(h^{-1}(y)) \left| \frac{dh^{-1}(y)}{dy} \right|, y \in B \\ 0, alt fel \end{cases}$$

Proproziție 10. (Versiune) Presupunem că există $A_1, A_2, \ldots A_r$ o partiție a lui A și fie $h_i = h|_{A_i} \longrightarrow B_i$, $B = \bigcup_{i=1}^k B_i$. Dacă h_i sunt inversabile și h_i^{-1} derivabilă cu derivata continuă pe B_i și nu se anulează, atunci

$$f_Y(y) = \sum_{i=1}^k f_X(h_i^{-1}(y)) \left| \frac{dh^{-1}(y)}{dy} \right| \mathbb{1}_{B_i}(y) \ cu \ y \in B$$

Exemplu 3. $X \sim f, Y = X^2, h(x) = x^2, h : \mathbb{R} \longrightarrow \mathbb{R}$. $A_1 = (-\infty, 0] \xrightarrow{h_1} B_1 = [0, \infty)$ $A_2 = (0, \infty) \xrightarrow{h_1} B_1 = (0, \infty)$ $h_1^{-1}(y) = -\sqrt{y} \implies \frac{d}{dy} h_1^{-1}(y) = -\frac{1}{2\sqrt{y}}, y > 0$ $h_2^{-1}(y) = -\sqrt{y} \implies \frac{d}{dy} h_2^{-1}(y) = -\frac{1}{2\sqrt{y}}, y > 0$ $f_Y(y) = \frac{1}{2\sqrt{y}} (f_X(-\sqrt{y}) + f_X(\sqrt{y})), y > 0$

Proproziție 11. Fie $(\Omega, \mathcal{F}, \mathbb{P})$ un câmp de probabilitate și X un vector aleator, $X: \Omega \longrightarrow \mathbb{R}^d$, f_X densitate și $h: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ măsurabilă, Y = h(X) vector aleator. Fie $A = supp(f_X)$ i $h: A \longrightarrow B(B = h(A))$ inversabilă având componentele $g_1(y), g_2(y), \ldots, g_d(y)$, i.e. $h^{-1}(y) = (g_1(y), g_2(y), \ldots, g_d(y))$. Presupunem că există $\frac{\partial g_i}{\partial y_i}$ și sunt continue. În plus, presupunem că matricea Jacobiana are determinantul nenul pe B.

$$J_{h^{-1}} = \begin{vmatrix} \frac{\partial g_1}{\partial y_1} & \frac{\partial g_1}{\partial y_2} & \dots & \frac{\partial g_1}{\partial y_r} \\ \vdots & \vdots & & \vdots \\ \frac{\partial g_d}{\partial y_1} & \frac{\partial g_d}{\partial y_2} & \dots & \frac{\partial g_d}{\partial y_r} \end{vmatrix} \neq 0$$

Atunci Y are densitatea $f_Y(y) = f_X(h^{-1}(y)) \left| J_{h^{-1}} \right|, y \in B$

7.1 Eșantionare dintr-o populație normală

Proproziție 12. Fie $X_1, X_2, \dots, X_n \sim N(\mu, \sigma^2)$. Atunci:

- 1. $\overline{X_n} \sim n(\mu, \sigma^2)$
- 2. $\overline{X_n} \perp \!\!\! \perp S_n^2$
- 3. $\frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2(n-1)$ (i.e. cu n-1 grade de libertate)

Reamintim: Fie
$$X \sim N(\mu, \sigma_1^2), Y \sim N(\mu, \sigma_2^2)$$
 cu $X \perp Y$, atunci $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Pentru demonstrația propoziției 12, avem nevoie și de următoarea:

Proproziție 13. Fie U și V doi vectori aleatori și presupunem că există g și h astfel încât $f_{(U,V)}(u,v) = g(u)h(v)$, $\forall u,v$. Atunci $U \perp V$.

Demonstrație. Acum putem începe cu : $\overline{X_n} \sim n(\mu, \sigma^2)$.

Am văzut că $\mathbb{E}[\overline{X_n}] = \mu$ și $Var(\overline{X_n}) = \frac{\sigma^2}{n}$. $\overline{X_n}$ este repartizat normal (fiind o sumă de normale independente). $\Longrightarrow \overline{X_n} \sim n(\mu, \sigma^2)$.

Pentru $\overline{X_n} \perp \!\!\! \perp S_n^2$ vom demonstra că $S_n^2 = u(X_2 - \overline{X_n}, X_3 - \overline{X_n}, \dots, X_n - \overline{X_n})$. și că $\overline{X_n} \perp \!\!\! \perp (X_2 - \overline{X_n}, X_3 - \overline{X_n}, \dots, X_n - \overline{X_n})$

Pas 1:
$$S_n^2 = u(X_2 - \overline{X_n}, X_3 - \overline{X_n}, \dots, X_n - \overline{X_n}).$$

Avem
$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2 = \frac{1}{n-1} \left[\sum_{i=2}^n (X_i - \overline{X_n})^2 + (X_1 - \overline{X_n})^2 \right]$$

Cum $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i \implies n\overline{X_n} = \sum_{i=1}^n X_i \implies \sum_{i=1}^n (X_i - \overline{X_n}) = 0 \implies$
 $\implies X_1 - \overline{X_n} = -\sum_{i=2}^n (X_i - \overline{X_n}) = 0$

Atunci

$$S_n^2 = \frac{1}{n-1} \left[\sum_{i=2}^n (X_i - \overline{X_n})^2 + (X_1 - \overline{X_n})^2 \right] =$$

$$= \frac{1}{n-1} \left[\sum_{i=2}^n (X_i - \overline{X_n})^2 + \left(\sum_{i=2}^n (X_1 - \overline{X_n}) \right)^2 \right] =$$

$$= u(X_2 - \overline{X_n}, X_3 - \overline{X_n}, \dots, X_n - \overline{X_n})$$

Pas 2:
$$\overline{X_n} \perp (X_2 - \overline{X_n}, X_3 - \overline{X_n}, \dots, X_n - \overline{X_n})$$

Considerăm vectorul $(\overline{X_n}, X_2 - \overline{X_n}, \dots, X_n - \overline{X_n}) = Y$. Știm că densitatea vectorului $X = (X_1, X_2, \dots, X_n)$ este

$$f_X(x_1, x_2, \dots, x_n) = f_{X_1}(x_1) \times \dots \times f_{X_n}(x_n) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x_1^2}{2}} \times \dots \frac{1}{\sqrt{2\pi}} e^{\frac{-x_n^2}{2}} =$$

$$= \left(\frac{1}{\sqrt{2\pi}}\right)^n \cdot e^{-\frac{1}{2} \sum_{i=1}^n x_i^2}$$

Fie $g: \mathbb{R}^n \longrightarrow \mathbb{R}^n$, $g(x_1, x_2, \dots, x_n) = (\overline{x_n}, x_2 - \overline{x_n}, \dots, x_n - \overline{x_n})$

$$g(x) = y \implies g^{-1} \implies$$

$$\begin{cases} y_1 = \overline{x_n} \\ y_2 = x_2 - \overline{x_n} \\ \vdots \\ y_n = x_n - \overline{x_n} \end{cases}$$

$$\sum_{i=1}^{n} y_i = \overline{x_n} - \sum_{i=2}^{n} x_i - (n-1)\overline{x_n} = n\overline{x_n} + \overline{x_n} - x_1 - (n-1)\overline{x_n} = 2\overline{x_n} - x_1 = y_1 - x_1 \Longrightarrow$$

$$\implies \begin{cases} x_1 = y_1 - y_2 - y_3 - \dots - y_n \\ x_2 = y_2 + y_1 \\ \vdots \\ x_n = y_n + y_1 \end{cases}$$

$$g^{-1}(y) = (y_1 - y_2 - \dots - y_n, y_2 + y_1, \dots, y_n + y_1)$$

$$J_{g^{-1}} = \begin{vmatrix} 1 & -1 & -1 & \dots & -1 \\ 1 & 1 & & & \\ \dots & & & & 1 \end{vmatrix} = n \ (demonstraia \ lsat \ ca \ tem)$$

$$f_Y(y) = f_X(g^{-1}(y)) \cdot n = T_1(y_1) T_2(y_2, \dots, y_n), \quad T_1 = e^{-\frac{ny_1^2}{2}}$$

$$\Longrightarrow \underbrace{Y_1 \perp (Y_2, Y_3, \dots, Y_n) \text{ adică } \overline{X_n} \perp (X_2 - \overline{X_n}, X_3 - \overline{X_n}, \dots, X_n - \overline{X_n})}_{X_n \perp S_n^2} \implies \Longrightarrow$$

8 Cursul 8

Reamintim următoarele formule din cursul 7:

Proproziție 14. $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$, atunci:

a)
$$\overline{X_n} \sim N(\mu, \sigma^2/n)$$

b)
$$\overline{X_n} \perp \!\!\!\perp S_n^2$$

$$c) \; \frac{(n-1)S_n^2}{\sigma^2} \; \sim \; \chi^2(n-1)$$

Repartiția $\chi^2(\nu)$, i.e. Hi pătrat cu ν grad de libertate

Fie
$$Z_1,Z_2,...,Z_n\sim N(0,1)$$
 independente. Atunci: $Q=Z_1^2+Z_2^2+...+Z_n^2~\sim~\chi^2(\nu)$

Definiție 12. O v.a. Q este repartizată $\chi^2(\nu), \nu > 0$ dacă admite

densitatea
$$f_Q(x) = \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} \cdot X^{\frac{\nu}{2}-1} \cdot e^{-\frac{x}{2}} cu \ x > 0$$

unde
$$\Gamma(x) = \int_0^\infty t^{x-1} \cdot e^{-t} dt$$

Proproziție 15. Dacă $Q \sim \chi^2(\nu)$ atunci $\mathbb{E}[Q] = \nu$ și $Var(Q) = 2\nu$

Idee:
$$Q_1 = Z_1^2 + Z_2^2 + ... + Z_{\nu}^2$$
 cu $Z_i \sim N(0, 1)$

$$\mathbb{E}[Q] = \mathbb{E}[Z_1^2] + \mathbb{E}[Z_2^2] + \dots + \mathbb{E}[Z_{\nu}^2]$$

$$= Var(Z_1) + Var(Z_2) + \dots + Var(Z_{\nu})$$

$$= 1 + 1 + \dots + 1$$

$$= \nu$$

$$Var(Q) = Var(Z_1^2) + Var(Z_2^2) + ... + Var(Z_{\nu}^2)$$

$$Var(Z_1^2) = \underbrace{\mathbb{E}[Z_1^4]}_{3} - \underbrace{\mathbb{E}[Z_1^2]^2}_{1} = 3 - 1 = 2$$

Proproziție 16. $Q_1 \sim \chi^2(\nu_1), \ Q_2 \sim \chi^2(\nu_2)$ și $Q_1 \perp \!\!\!\perp Q_2$ atunci $Q_1 + Q_2 \sim \chi^2(\nu_1 + \nu_2)$

Demonstrație.c) Vrem să arătăm că $\frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2(n-1)$

Vom pp că $X_1, X_2, ..., X_n \sim N(0, 1)$

 $Z_1,Z_2,...,Z_n \sim N(0,1)$ independente a.î. $X_i = \mu + \sigma Z_i$

$$\overline{X_n} = \sum_{i=1}^n \frac{\mu + \sigma Z_i}{n} = \mu + \sigma \overline{Z_n}$$

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2 = \frac{\sigma^2}{n-1} \sum_{i=1}^n (Z_i - \overline{Z_n})^2 = \sigma^2 S_Z^2$$
, unde $S_Z^2 = \frac{S_n^2}{\sigma^2}$

Avem de arătat că: $(n-1)S_n^2 \sim \chi^2(n-1)$

$$(n-1)S_n^2 = \sum_{i=1}^n (X_i - \overline{X_n})^2$$

$$\begin{split} X_i - \overline{X_n} &= X_i - \overline{X}_{n-1} + \overline{X}_{n-1} - \overline{X}_n \\ &= X_i - \overline{X}_{n-1} + \overline{X}_{n-1} - \frac{\displaystyle\sum_{i=11}^n X_i + X_n.}{n} \\ &= X_i - \overline{X}_{n-1} + \overline{X}_{n-1} - \frac{(n-1)}{n} \overline{X}_{n-1} - \frac{X_n}{n} \\ &= X_i - \overline{X}_{n-1} + \frac{\overline{X}_{n-1} - X_n}{n} \end{split}$$

$$(n-1)S_{n}^{2} = \sum_{i=1}^{n} (X_{i} - \overline{X}_{n})^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \overline{X}_{n-1} + \frac{\overline{X}_{n-1} - X_{n}}{n})^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \overline{X}_{n-1})^{2} + \frac{2}{n} \sum_{i=1}^{n} (X_{i} - \overline{X}_{n-1}) (\overline{X}_{n-1} - X_{n}) + \sum_{i=1}^{n} (\frac{\overline{X}_{n-1} - X_{1}}{n})^{2}$$

$$= (n-2) S_{n-1}^{2} + (X_{n} - \overline{X}_{n-1})^{2} + \frac{2}{n} (\overline{X}_{n-1} - X_{n}) (\sum_{i=1}^{n} X_{i} - n\overline{X}_{n-1}) + \frac{1}{n} (\overline{X}_{n-1} - X_{n})^{2}$$

$$= (n-2) S_{n-1}^{2} + (X_{n} - \overline{X}_{n-1})^{2} + \frac{2}{n} (\overline{X}_{n-1} - X_{n}) \cdot (n+1)(X_{n} - \overline{X}_{n-1}) + \frac{1}{n} (\overline{X}_{n-1} - X_{n})^{2}$$

$$= (n-2) S_{n-1}^{2} + \frac{n-1}{n} (X_{n} - \overline{X}_{n-1})^{2}$$

Vom arăta prin inducție că $(n-1)S_n^2 \sim \chi^2(n-1)$

Pentru n = 2:

$$X_1, X_2 \sim N(0,1) \Rightarrow X_2 - X_1 \sim \mathbb{N}(0,1)$$

$$\frac{X_2 - X_1}{\sqrt{2}} \sim N(0, 1)$$

$$S_2^2 = \left(\frac{X_2 - X_1}{2}\right)^2 \sim \chi^2(1)$$

Pp. relația adevărată pentru k
: $(k-1)S_k^2 \sim \chi(k-1)$

Vrem să demonstrăm pentru $kS_{k+1}^2 \sim \chi^2(k)$

$$kS_{k+1}^2 = (k-1)S_k^2 + \frac{k}{k+1} (x_{k+1} - \overline{X}_k)^2$$

$$\left. \begin{array}{c} \text{Ştim că } \overline{X}_k \perp \!\!\! \perp S_k^2 \\ X_{k+1} \perp \!\!\! \perp \overline{X}_k \\ X_{k+1} \perp \!\!\! \perp S_k^2 \end{array} \right\} \Rightarrow (k-1)S_k^2 \perp \!\!\! \perp \frac{k}{k+1}(X_{k+1} - \overline{X}_k)$$

4

$$\left. \begin{array}{l} \overline{X}_k \sim N\left(0, \frac{1}{k}\right) \\ X_{k+1} \sim N(0, 1) \\ X_{k+1} \perp \overline{X}_k \end{array} \right\} \Rightarrow \left(X_{k+1} - \overline{X}_k\right) \sim N\left(0, 1 + \frac{1}{k}\right) \Rightarrow \frac{X_{k+1} - \overline{X}_k}{\sqrt{\frac{k+1}{k}}} \sim N(0, 1) \Rightarrow$$

$$\Rightarrow \frac{k+1}{k}(X_{k+1} - \overline{X}_k)^2 \sim \chi^2(1)$$

Observație 10. $\frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2(n-1)$

$$Var\left(\frac{(n-1)S_n^2}{\sigma^2}\right) \sim \chi^2(n-1) = 2 (n-1) \Rightarrow Var(S_n^2) = \frac{2 \sigma^4}{n-1}$$

8.1 Repartiții derivate din repartiția normală

8.1.1 Repartiția t-Student - W. Gosset

$$X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$$

$$\overline{X_n} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \Rightarrow \frac{\overline{X_n} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

$$\frac{\overline{X_n} - \mu}{\frac{S_n}{\sqrt{n}}} \sim ?$$

$$\frac{\overline{X_n} - \mu}{\frac{S_n}{\sqrt{n}}} = \frac{\overline{X_n} - \mu}{\frac{\sigma}{\sqrt{n}}} \cdot \frac{\sigma}{S_n} = \frac{\frac{\overline{X_n} - \mu}{\frac{\sigma}{\sqrt{n}}}}{\sqrt{\frac{S_n^2}{\sigma^2}}} = \frac{\frac{\overline{X_n} - \mu}{\frac{\sigma}{\sqrt{n}}}}{\sqrt{\frac{(n-1)S_n^2}{(n-1)\sigma^2}}} \stackrel{d}{=} \frac{N(0,1)}{\sqrt{\frac{\chi^2(n-1)}{n-1}}}$$

Proproziție 17. Fie $Z \sim N(0,1)$ și $Q \sim \chi^2(\nu)$, $Z \perp \!\!\!\perp Q$.

$$T = \frac{Z}{\sqrt{\frac{Q}{\nu}}} \text{ atunci } T \sim t(\nu) \text{ \vec{s} is e cite$, te Student cu ν grad de libertate}$$

Definiție 13. O v.a. $T \sim t(\nu)$ dacă admite densitatea

$$f_T(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi\nu} \ \Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

$$f_c(x) = \frac{1}{\pi(1+x^2)}$$
 variabilă Cauchy care nu are medie

8.1.2 Repartiția Fisher-Snedecor

Fie $Q_1 \sim \chi^2(\nu_1), \ Q_2 \sim \chi^2(\nu_2), \ Q_1 \perp \!\!\!\perp Q_2$

$$F = \frac{Q_1/\nu_1}{Q_2/\nu_2} \sim F(\nu_1, \nu_2)$$

Observație 11. $T \sim t(\nu) \implies T^2 \sim F(1, \nu)$

Exercițiu 3. Fie $X_1,X_2,...,X_n \sim N(\mu,\nu_1^2)$ și $Y_1,Y_2,...,Y_n \sim N(\mu,\nu_2^2)$ independente între ele

Fie S_1^2, S_2^2 varianțele eșantioanelor 1, 2

$$\frac{\frac{(n_1 - 1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1 - 1)}{\frac{(n_2 - 1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2 - 1)} \Rightarrow \frac{\frac{\frac{(n_1 - 1)S_1^2}{\sigma_1^2}}{\frac{n_1 - 1}{(n_2 - 1)S_2^2}} = \frac{S_1^2}{S_2^2} \cdot \frac{\sigma_2^2}{\sigma_1^2} \sim F(n_1 - 1, n_2 - 1)}{\frac{\sigma_2^2}{n_2 - 1}}$$

8.2 Statistica de ordine

Definiție 14. Fie $X_1, X_2, ..., X_n \sim F$ și fie $h_k : \mathbb{R}^n \to \mathbb{R}$ o funcție care asociază n-uplului $(X_1, X_2, ..., X_n)$ a k-a valoare a șirului $(x_1, X_2, ..., X_n)$ ordonat crescător.

Se numește statistică de ordin $k: X_{(k)} = h_k(X_1,...,X_n)$.

Observație 12. $X_1 = min(X_1, X_2, ..., X_n)$ $X_n = max(X_1, X_2, ..., X_n)$

Observație 13. $R_n = X_{(n)} - X_{(1)}$ amplitudinea eșantionului (range).

Proproziție 18. Fie $X_1, X_2, ..., X_n$ cu densitatea f. Atunci:

a)
$$F_{X_{(k)}}(x) = \sum_{j=k}^{n} {n \choose 1} F(x)^{j} (1 - F(x))^{n-j}$$

b)
$$f_{X_{(k)}}(x) = k \binom{n}{k} F(x)^{k-1} (1 - F(x))^{n-k} f(x)$$

Demonstrație. a) Fie $x \in \mathbb{R}$ și fie Y(y(x)) v.a.

$$Y = \mathbb{1}_{\{X_1 < x\}} + \mathbb{1}_{\{X_2 < x\}} + \dots + \mathbb{1}_{\{X_n < x\}}$$

$$\mathbb{1}_{\{X_i \le x\}} \sim B(p) \ \ p = \mathbb{P}(\mathbb{1}_{\{X_1 \le x\}} = 1) = \mathbb{P}(X_i \le x) = F(x)$$

Deci
$$Y \sim B(n, F(x))$$

$$F_{X_{(k)}}(x) = \mathbb{P}(X_{(k)} \le x) = \mathbb{P}(Y \ge k) = \sum_{j=k}^{n} \mathbb{P}(Y = j)$$

$$\mathbb{P}(Y=j) = \binom{n}{j} F(x)^j (1 - F(x))^{n-j}$$

$$f_{X_{(k)}}(x) = \frac{d}{dx} F_{X_{(k)}}(x)$$

9 Cursul 9

Proproziție 19. Fie $X_1, X_2, \ldots, X_n \sim f$ (un eșantion cu funcția de densitate f), f(x) > 0 pe $a \le x \le b$. Considerăm statisticile de ordine corespunzătoare $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$. Atunci $g(y_1, \ldots, y_n)$ densitatea comună a $(X_{(1)}, \ldots, X_{(n)})$:

$$g(y_1, \dots, y_n) = \begin{cases} n! f(y_1) \dots f(y_n), & a \le y_1 < y_2 < \dots < y_n \le b \\ 0, & alt fel \end{cases}$$

Observație 14. În cazul în care $X_1, \ldots, X_n \sim \mathcal{U}([a,b])$:

$$g(y_1, \dots, y_n) = \begin{cases} \frac{n!}{(b-a)^n}, & a \le y_1 < y_2 < \dots < y_n \le b \\ 0, & alt fel \end{cases}$$

Observație 15. Plecând de la g putem determina (integrând g prin celelalte variabile) $f_{X_{(k)}}, f_{(X_{(i)}, X_{(j)})}, \ldots (f_{X_{(k)}} \text{ este densitatea lui } f_X \text{ de ordin } k)$

Temă: Determinați $f_{(X_{(i)},X_{(i)})}$. Găsiți densitatea $R=X_{(n)}-X_{(1)}$.

Demonstrație. Pentru a demonstra propoziția 19 vom considera cazul n=3.

$$\mathbb{P}(X_{i} = X_{j}) = \int \int_{\{x_{i} = x_{j}\}} f_{(X_{i}, X_{j})}(x_{i}, x_{j}) dx_{i} dx_{j} =
= \int \int_{\{x_{i} = x_{j}\}} f_{X_{i}}(x_{i}) f_{X_{j}}(x_{j}) dx_{i} dx_{j} =
= \int_{a}^{b} \underbrace{\int_{x_{i}}^{x_{i}} f_{X_{i}}(x_{i}) f_{X_{j}}(x_{j})}_{0} dx_{j} dx_{i} = 0 \implies \mathbb{P}(X_{i} = X_{j} = X_{k}) = 0$$

Fie
$$A = \{(x_1, x_2, x_3) | a \le x_1 \ne x_2 \ne x_3 \le b\}$$
 și $A_{ijk} = \{(x_i, x_j, x_k) \in A | x_i < x_j < x_k\}.$ $A_{123} = \{(x_1, x_2, x_3) \in A | x_1 < x_2 < x_3\} \implies h|_{A_{ijk}} : A_{ijk} \longrightarrow A_{123} \text{ bijectivă.}$

A_{ijk}	$h _{A_{ijk}}$	$(h _{A_{ijk}})^{-1}$	$det J_{(h _{A_{ijk}})^{-1}}$
A_{123}	$y_1 = x_1, \ y_2 = x_2, \ y_3 = x_3$	$x_1 = y_1, \ x_2 = y_2, \ x_3 = y_3$	I_3
A_{132}	$y_1 = x_1, \ y_2 = x_3, \ y_3 = x_2$	$x_1 = y_1, \ x_2 = y_3, \ x_3 = y_2$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$
A_{213}	$y_1 = x_2, \ y_2 = x_1, \ y_3 = x_3$	$x_1 = y_2, \ x_2 = y_1, \ x_3 = y_3$	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
A_{231}	$y_1 = x_2, \ y_2 = x_3, \ y_3 = x_1$	$x_1 = y_3, \ x_2 = y_1, \ x_3 = y_2$	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$
A_{312}	$y_1 = x_3, \ y_2 = x_1, \ y_3 = x_2$	$x_1 = y_2, \ x_2 = y_3, \ x_3 = y_1$	$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
A_{321}	$y_1 = x_3, \ y_2 = x_2, \ y_3 = x_1$	$x_1 = y_3, \ x_2 = y_2, \ x_3 = y_1$	$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

$$\implies \det J_{(h|A_{ijk})^{-1}} = 1.$$

$$f_{(Y_1,Y_2,Y_3)}(y_1, y_2, y_3) =$$

$$= \sum_{i,j,k} f_{(X_1,X_2,X_3)}((h|A_{ijk})^{-1}(y_1, y_2, y_3)) \cdot \underbrace{|\det J_{(h|A_{ijk})^{-1}}|}_{=1} \cdot \mathbb{1}_{A_{123}}(y_1, y_2, y_3)$$

$$\implies f_{(X_1, X_2, X_3)}(x_1, x_2, x_3) = f_{X_1}(x_1) f_{X_2}(x_2) f_{X_3}(x_3) = f(x_1) f(x_2) f(x_3) \qquad \Box$$

9.1 Funcția de repartiție empirică și cuantile empirice

Definiție 15. Fie $X_1, X_2, \ldots, X_n \sim F$. Se numește funcție de repartiție empirică și se notează $\hat{F}_n(x)$, funcția:

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{(-\infty,x]}(X_i)$$

Observație 16. $\hat{F}_n(x)$ este o funcție aleatoare

$$\left(i.e. \ \hat{F}_n(x)(\omega) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{(-\infty,x]}(X_i(\omega)), \ dac\ a \ fix\ am \ x, \ \hat{F}_n(x) \ depinde \ de \ \omega\right).$$

$$\begin{array}{l} \textbf{Observație 17. } \hat{F_n}(x) = \frac{|\{i \in \{1, \dots, n\} | X_i \leq x\}}{n} = \frac{|\{i \in \{1, \dots, n\} | X_{(i)} \leq x\}}{n} \\ Pentru \ i, \ X_{(i)} \leq x < X_{(i+1)} : \hat{F_n}(x) = \frac{i}{n}. \\ Prin \ urmare: \ \hat{F_n}(x) = \sum_{i=1}^n \frac{i}{n} \mathbb{1}_{[X_{(i)}, X_{(i+1)})}(x) \ cu \ condiția \ ca \ X_{(n+1)} = +\infty. \end{array}$$

9.2 Convergența și normalitatea asimptotică a repartiției empirice

Proproziție 20. (Convergența și normalitatea asimptotică a repartiției empirice) Fie $(X_n)_n$ un șir de variabile aleatoare i.i.d de funcție de repartitie F. Atunci:

1. Pentru $\forall x \in \mathbb{R}, \ \hat{F}_n(x) \xrightarrow{a.s.} F(x)$ (convergența punctuală, nu uniformă)

2.
$$\sqrt{n}(\hat{F}_n(x) - F(x)) \xrightarrow{d} N(0, F(x)(1 - F(x)))$$

Câteva mențiuni înainte de demonstrația propoziției: Pentru $x \in \mathbb{R}, \exists \Omega(x)$ astfel încât $\mathbb{P}(\Omega(x)) = 1, \ \forall \omega \in \Omega(x), \ \lim_{n \to \infty} \hat{F}_n(x)(\omega) = F(x)$

Teoremă 8. Glivenko-Cantelli: $||\hat{F}_n(x) - F(x)||_{\infty} \to 0$

Demonstrație. Începem demonstrația propoziției de mai sus. Pentru $x \in \mathbb{R}$ ne

uităm la
$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{(-\infty,x]}(X_i)$$
 și la

$$Y_i = \mathbb{1}_{(-\infty,x]}(X_i) = \begin{cases} 1, & X_i \le x \\ 0, & alt fel \end{cases}$$

Bernoulli: $\mathbb{P}(Y_i = 1) = \mathbb{P}(X_i \le x) = F(x)$

Pentru că X_1, X_2, \dots, X_n independente $\implies Y_1, Y_2, \dots, Y_n$ independente.

$$n\hat{F}_n(x) = \sum_{i=1}^n Y_i \sim B(n, F(x))$$

$$L.N.M: \hat{F}_n(x) = \overline{Y_n} = \frac{1}{n} \sum_{i=1}^n Y_i \xrightarrow{a.s.} \mathbb{E}[Y_i] = \mathbb{P}(Y_i = 1) = F(x)$$

Pentru a doua implicație vom folosi T.L.C. împreună cu egalitățile: $\mathbb{E}[Y_i] = F(x)$ si $\sqrt{Var(Y_i)} = F(x)(1 - F(x))$.

$$T.L.C.: \frac{\sqrt{n}(\overline{Y_n} - \mathbb{E}[Y_i]}{\sqrt{Var(Y_i)}} \xrightarrow{d.} N(0, 1)$$

$$\implies \sqrt{n}(\hat{F_n}(x) - F(x)) \xrightarrow{d.} N(0, F(x)(1 - F(x))$$

Definiție 16. Fie o funcție de repartiție și $p \in [0,1]$. Se numește cuantila de ordin p acea valoare x_p definită prin:

$$x_p = F^{-1}(p) = \inf\{x \in \mathbb{R} | F(x) \ge p\}$$

Observație 18. Dacă $p=\frac{1}{2}$ atunci $x_{\frac{1}{2}}$ se numește mediana repartiției.

 $Dac \breve{a}~p=\frac{1}{4}~sau~p=\frac{3}{4}~atunci~x_{\frac{1}{4}}~si~x_{\frac{3}{4}}~se~numesc~prima~cuartil\breve{a},~respectiv~a~treia~cuartil\breve{a}.$

Observație 19.
$$x_p = F^{-1}(p) \implies F(x_p) \ge p \iff \mathbb{P}(X \le x_p) \ge p$$

Amintim că $I = \{x | F(x) \ge p\} = [x_p, +\infty).$

Dacă $x' < x_p \implies F(x') < p$.

Pentru
$$p=\frac{1}{2} \implies \mathbb{P}(X \leq x_{\frac{1}{2}}) \geq 0, 5 \implies \mathbb{P}(X \geq x_{\frac{1}{2}}) \leq 0, 5$$

Definiție 17. Fie $X_1, X_2, \ldots, X_n \sim F$, $p \in [0, 1]$. Se numește cuantila empirică de ordin p și se notează $\hat{x_p}$:

$$\hat{x_p}(n) = \hat{F_n^{-1}}(p) = \inf\{x | \hat{F_n^{-1}}(x) \ge p\}$$

Proproziție 21. $\hat{x_p}(n) = X_{(\lceil np \rceil)}$, unde $\lceil \cdot \rceil$ reprezintă partea întreaga superioară.

Demonstrație.

$$\hat{F}_{n}(x) = \begin{cases} 0, & x < X_{(1)} \\ \frac{1}{n}, & X_{(1)} \le x < X_{(2)} \\ \vdots & & \\ \frac{i}{n}, & X_{(i)} \le x < X_{(i+1)} \\ \vdots & & \\ 1, & x > X_{(n)} \end{cases} \implies \hat{F}_{n}^{-1}(u)(\omega) = \begin{cases} X_{(1)}(\omega), & 0 < u \le \frac{1}{n} \\ X_{(2)}(\omega), & \frac{1}{n} < u \le \frac{2}{n} \\ \vdots & & \\ X_{(i)}(\omega), & \frac{i-1}{n} < u \le \frac{i}{n} \\ \vdots & & \\ 1, & \frac{n-1}{n} < u \le 1 \end{cases}$$

$$\hat{x}_p(n) = \hat{F}_n(p) = X_{(i)}, \ si \ \frac{i-1}{n}$$

Proproziție 22. Fie $X_1, X_2, \ldots, X_n \sim f$, $p \in [0, 1)$. Fie x_p cuantila de ordin p și $\hat{x}_p(n)$ cuantila empirică de ordin p. Atunci:

- 1. Dacă F este strict crescătoare în x_p , atunci $\hat{x_p}(n) \xrightarrow{a.s.} x_p$
- 2. Dacă F este derivabilă în x_p si $F'(x_p) = f(x_p) > 0$, atunci

$$\sqrt{n}(\hat{x_p}(n) - x_p) \xrightarrow{d} N(0, \underbrace{\frac{p(1-p)}{f^2(x_p)}}_{varianta})$$

10 Estimare punctuală și proprietăți ale eșantioanelor

Definiție 18. Fie $X_1, X_2, ..., X_n \sim F_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^d$. Se numește **eșantion pentru** θ orice statistică, i.e. o funcție de eșantion $\hat{\theta}_n = \hat{\theta}_n(X_1, X_2, ..., X_n)$ pentru care $\hat{\theta}_n(X_1, X_2, ..., X_n) \in \Theta$.

Exemplu 4. $X_1, X_2, ..., X_n \sim N(\theta, 1)$ $\theta \in \Theta = \mathbb{R}$

$$a) \hat{\theta}_1 = \hat{X}_n$$

$$b) \ \hat{\theta}_2 = \hat{X}_n(\frac{1}{2})$$

c)
$$\hat{\theta}_3 = \frac{X_{(1)} + X_{(n)}}{2}$$

d)
$$\hat{\theta}_4 = 373$$

Exemplu 5. $X_1, X_2, ..., X_n \sim B(p)$ $p = \theta, \theta \in \Theta = [0, 1)$

$$X_1, X_2, ..., X_n \sim Pois(\theta) \quad \Theta = \mathbb{R}_+^*$$

$$X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$$
 $\theta = (\mu, \sigma^2), \Theta = \mathbb{R} \times [0, \infty)$

10.1 Nedeplasarea

Definiție 19. Fie $X_1, X_2, ..., X_n \sim F_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^d$ și $\hat{\theta}_n$ un eșantion pentru θ . Se numește deplasarea lui $\hat{\theta}_n$ față de θ :

$$b_{\theta}(\hat{\theta}_n) = \mathbb{E}[\hat{\theta}_n] - \theta \ \forall \ \theta$$

Spunem că eșantionul $\hat{\theta}_n$ pentru θ este **nedeplasat** dacă $b_{\theta}(\hat{\theta}_n) = 0 \iff \mathbb{E}[\hat{\theta}_n] = \theta \ \forall \ \theta$

Exemplu 6. Fie $X_1, X_2, ..., X_n$ dintr-o populație de medie μ și dispersie σ^2

Media eșantionului:
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
Dispersia: $S_n^2 = \frac{1}{n+1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ sunt estimatori nedeplasați pentru μ și σ^2

Varianța
$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X_n})^2 = \frac{n-1}{n} S_n^2$$

$$\mathbb{E}[V_n^2] = \frac{n-1}{n}\sigma^2 \implies b_{\theta}(V_n^2) = -\frac{\sigma^2}{n} \ estimator \ deplasat$$

Exemplu 7. $X_1, X_2, ..., X_n \sim F_{\theta}$

$$\hat{\theta}_n = \{\theta - 10^{70}, \theta + 10^{70}\}\$$

$$\mathbb{P}_{\theta}(\hat{\theta}_n = \theta - 10^{70}) = \mathbb{P}_{\theta}(\hat{\theta}_n = \theta + 10^{70}) = \frac{1}{2}$$

$$\mathbb{E}[\hat{\theta}_n] = \theta \Rightarrow \hat{\theta}_n \ este \ nedeplasat$$

Observație 20. Dacă $\hat{\theta}_n$ este un esimator nedeplasat pentru θ , g o funcție.

În genereal $g(\hat{\theta}_n)$ nu este un estimator nedeplasat pentru $g(\theta)$: $\mathbb{E}[g(X)] \neq g(\mathbb{E}[X])$.

Exemplu 8. Eșantion de volum 1 din $Pois(\theta)$. $X \sim Pois(\theta)$

$$\eta = g(\theta) = e^{-2\theta}$$

$$\hat{\theta}_n = e^{-2X}$$

$$\hat{\theta}_2 = (-1)^X$$

$$\mathbb{E}_{\theta}[\hat{\theta}_n] = \sum_{k \ge 0} e^{-2k} e^{-\theta} \frac{\theta^k}{k!} = e^{-\theta} e^{\theta e^{-2}} \ne e^{-2\theta}$$

Exemplu 9. $X_1, X_2, ..., X_n \sim B(\theta)$

$$\eta = \frac{\theta}{1 - \theta} \ (odds \ ratio = raport \ de \ sanse)$$

Pp. că
$$\exists \hat{\eta} = \hat{\eta}(X_1, X_2, ..., X_n)$$
 nedeplasat pentru η

$$\mathbb{E}_{\theta}[\hat{\eta}] = \eta \ \forall \theta \Leftrightarrow (1 - \theta)\mathbb{E}[\hat{\eta}] - \theta = 0 \forall \theta$$

$$\mathbb{E}_{\theta}[\hat{\eta}] = \sum_{x_1, \dots, x_n \in \{0, 1\}} \hat{\eta}(x_1, \dots, x_n) \mathbb{P}_{\theta}(X_1 = x_1, \dots, X_n = x_n)$$

$$= \sum_{x_1, \dots, x_n \in \{0, 1\}} \hat{\eta}(x_1, \dots, x_n) \theta^{\sum x_i} (1 - \theta)^{n - \sum x_i}$$

$$\mathbb{P}_{\theta}(X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}_{\theta}(X_1 = x_1) \cdot \dots \cdot \mathbb{P}(X_n = x_n)$$

$$= \underbrace{\theta^{x_1}(1 - \theta)^{1 - x_1}}_{Bernoulli} \cdot \dots \cdot \theta^{x_n}(1 - \theta)^{1 - x_n}$$

$$(1-\theta)\mathbb{E}[\hat{\eta}] - \theta = (1-\theta)\sum \hat{\eta}(x_1,...,x_n)\theta^{\sum x_i}(1-\theta)^{n-\sum x_i} - \theta = 0 \ \forall \theta \ contradic \ tie$$

10.2 Consistența

Definiție 20. Fie $X_1, X_2, ..., X_n \sim F_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^d$ și $\hat{\theta}_n$ un eșantion pentru θ . Spunem că $\hat{\theta}_n$ est:e

consistent (slab) dacă $\hat{\theta}_n \xrightarrow{\mathbb{P}_{\theta}} \theta$ **consistent** (tare) dacă $\hat{\theta}_n \xrightarrow{a.s.} \theta$

Exemplu 10. $X_1, X_2, ..., X_n$ de medie μ și dispersie σ^2

 \overline{X}_n este un estimator consistent pentru μ

 S_n^2 este un estimator consistent pentru σ^2

Exemplu 11. $X_1, X_2, ..., X_n \sim Pois(\theta)$

 \overline{X}_n este un estimator consistent pentru θ

 S_n^2 este un estimator consistent pentru θ

$$\begin{split} \hat{\theta}_n &= \sqrt{\overline{X}_n \cdot S_n^2} \ estimator \ consistent \ pentru \ \theta \\ g(x_1, x_2) &= \sqrt{x_1 x_2} \ continu pe \ (0, \infty)^2 \ \xrightarrow{din \ th \ aplicațiilor \ continue} \ g(\overline{X}_n, S_n^2) \xrightarrow{\mathbb{P}_{\theta}} \theta \ \Rightarrow \\ g(\overline{X}_n, S_n^2) \ - \ estimator \ consistent \end{split}$$

Exemplu 12. $X_1, X_2, ..., X_n \sim N(\mu, \sigma^2)$ cu σ^2 cunoscut

$$\hat{\theta}_n = \begin{cases} 7347, & n < 10^{200} \\ \overline{X}_n, & n \ge 10^{200} \end{cases}$$

 $\hat{\theta}_n$ e consistent de la un rang încolo.

10.3 Eroarea pătratică medie

Definiție 21. Fie $X_1, X_2, ..., X_n \sim F_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^d$ și $\hat{\theta}_n$ un eșantion pentru θ . Numim $MS\mathbb{E}_{\theta}(\hat{\theta}_n) = \mathbb{E}_{\theta}[||\hat{\theta}_n - \theta||^2]$ eroarea pătratică medie (mean squared error/deviation).

Observație 21. Fie $\hat{\theta}_1$ și $\hat{\theta}_2$ doi estimatori. Spunem că $\hat{\theta}_1$ este **mai bun decât** (îl domină pe) $\hat{\theta}_2$ în sensul erorii pătratice medii dacă $MSE_{\theta}(\hat{\theta}_1) < MSE_{\theta}(\hat{\theta}_2)$

Proproziție 23.
$$MS\mathbb{E}_{\theta}(\hat{\theta}_n) = Var_{\theta}(\hat{\theta}_n) + b_{\theta}(\hat{\theta}_n)^2$$

Demonstrație.

$$MS\mathbb{E}_{\theta}(\hat{\theta}_{n}) = \mathbb{E}_{\theta}[(\hat{\theta}_{n} - \theta)^{2}]$$

$$= \mathbb{E}_{\theta}[(\hat{\theta}_{n} - \mathbb{E}_{\theta}[\hat{\theta}_{n}] + \mathbb{E}_{\theta}[\hat{\theta}_{n}] - \theta)^{2}]$$

$$= Var_{\theta}(\hat{\theta}_{n}) - b_{\theta}(\hat{\theta}_{n})^{2} + 2 \cdot \mathbb{E}_{\theta}[(\hat{\theta}_{n} - \mathbb{E}_{\theta}[\hat{\theta}_{n}])(\mathbb{E}_{\theta}[\hat{\theta}_{n}] - \theta)]$$

$$= Var_{\theta}(\hat{\theta}_{n}) - b_{\theta}(\hat{\theta}_{n})^{2} + 2 \cdot b_{\theta}(\hat{\theta}_{n}) \underbrace{\mathbb{E}_{\theta}[\hat{\theta}_{n} - \mathbb{E}_{\theta}[\hat{\theta}_{n}]]}_{0}$$

$$= Var_{\theta}(\hat{\theta}_{n}) - b_{\theta}(\hat{\theta}_{n})^{2}$$

Proproziție 24. $MS\mathbb{E}_{\theta}(\hat{\theta}_n)n \to \infty$ atunci $\hat{\theta}_n$ nu este consistent. Atenție! Propoziția nu este adevărată și invers. $MS\mathbb{E}_{\theta}(\hat{\theta}_n)n \to 0 \implies \hat{\theta}_n$ este consistent.

Demonstrație. Fie $\varepsilon > 0$

$$\mathbb{P}_{\theta}(|\hat{\theta}_n - \theta| \ge \varepsilon) = \mathbb{P}_{\theta}((\hat{\theta}_n - \theta)^2 \ge \varepsilon^2) \overset{inegMarkov}{\le} \frac{\mathbb{E}_{\theta}[(\hat{\theta}_n - \theta)^2]}{2}$$

Rem: Ineg Markov> $\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a}$

11 Curs 11

Metode de construcție a estimatorilor

11.1 Metoda Momentelor

Fie $X \sim f_{\theta}, X_1, \dots, X_n \sim f_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^d$.

$$\mathbb{E}_{\theta}[X^{j}] = \begin{cases} \sum_{x} x^{j} f_{\theta}(x), & X \text{ discretă cu funcția de masă} & f_{\theta}, & j \in \{1, 2, \dots\} \\ \int_{x} x^{j} f_{\theta}(x) dx, & X \text{ continuă cu densitatea} & f_{\theta}, & j \in \{1, 2, \dots\} \end{cases}$$

Observație 22. Pentru $\mathbb{E}_{\theta}[X^j]$ putem asocia un estimator nedeplasat și consistent $\frac{1}{n}\sum_{i=1}^{n}X_i^j$

Observație 23. Pentru repartițiile Student și Cauchy nu există media $\mathbb{E}[\dots]$.

Pentru a aplica metoda momentelor este necesar ca toate momentele să existe.

Exemplu 13. Pentru $\theta = (\theta_1, \theta_2, \dots, \theta_d) \in \Theta$, trebuie să existe momentele

$$\begin{cases}
\mathbb{E}_{\theta}[X] = g_1(\theta_1, \dots, \theta_d) \\
\mathbb{E}_{\theta}[X^2] = g_2(\theta_1, \dots, \theta_d) \\
\vdots \\
\mathbb{E}_{\theta}[X^d] = g_d(\theta_1, \dots, \theta_d)
\end{cases}$$

Ideea din spatele metodei momentelor este să rezolvăm sistemul cu d ecuații și d necunoscute:

$$\begin{pmatrix}
\frac{1}{n} \sum_{i=1}^{n} X_i = g_1(\theta_1, \dots, \theta_d) \\
\frac{1}{n} \sum_{i=1}^{n} X_i^2 = g_2(\theta_1, \dots, \theta_d) \\
\vdots \\
\frac{1}{n} \sum_{i=1}^{n} X_i^d = g_d(\theta_1, \dots, \theta_d)
\end{pmatrix}$$

dacă sistemul (*) adminte soluție unică, atunci aceasta soluție se numește estimatorul obținut prin metoda momentelor.

Exemplu 14. $X_1, \ldots, X_n \sim Exp(\lambda), \ f_{\lambda}(x) = \lambda e^{-\lambda x}, \ x \geq 0, \ \lambda \geq 0, \ \mathbb{E}[X_1] = \frac{1}{\lambda}$

$$\underbrace{\frac{1}{n}\sum_{i=1}^{n}X_{i}}_{\text{ord. 1}} = \underbrace{\frac{1}{\lambda}}_{\text{mom. teoretic de ord. 1}} \implies \lambda = \frac{1}{\overline{X_{n}}}$$

 $\implies \hat{\lambda}_n = \frac{1}{X_n}$ este estimatorul obținut prin metoda momentelor.

Exemplu 15. $x_1 = 0.42, \ x_2 = 0.1, \ x_3 = 0.65, \ x_4 = 0.23, \ f_{\theta}(x) = \theta x^{\theta-1}, \ 0 \le x \le 1 \ Metoda \ momentelor: \frac{1}{n} \sum_{i=1}^{n} X_i = \mathbb{E}_{\theta}[X]$

$$\mathbb{E}_{\theta}[X] = \int x f_{\theta}(x) dx = \int x \theta x^{\theta-1} \mathbb{1}_{[0,1)}(x) dx = \theta \int_0^1 x^{\theta} dx = \frac{\theta x^{\theta+1}}{\theta+1} \Big|_0^1 = \frac{\theta}{\theta+1}$$

$$\overline{X_n} = \frac{\theta}{\theta + 1} \implies \hat{\theta_n} = \frac{\overline{X_n}}{1 - \overline{X_n}} \longrightarrow estimator \ obținut \ prin \ metoda \ momentelor$$

Exemplu 16.
$$X_1, \ldots, X_n \sim N(\mu, \sigma^2), \ \theta = (\mu, \sigma^2) \in \Theta \subseteq \mathbb{R}^2$$

Metoda momentelor:

$$\begin{cases} \overline{X_n} = \mathbb{E}_{\theta}[X] \\ \frac{1}{n} \sum_{i=1}^n X_i^2 = \mathbb{E}_{\theta}[X^2] \end{cases}$$

Vrem să rezolvam sistemul de 2 ecuații și 2 necunoscute.

$$\begin{cases} \mathbb{E}_{\theta}[X] = \mu \\ \mathbb{E}_{\theta}[X^2] = Var_{\theta}(X) + \mathbb{E}_{\theta}[X]^2 = \sigma^2 + \mu^2 \end{cases}$$

$$\begin{cases} \overline{X_n} = \mu \\ \frac{1}{n} \sum_{i=1}^n X_i^2 = \sigma^2 + \mu^2 \end{cases} \implies \begin{cases} \hat{\mu_n} = \overline{X_n} \\ \hat{\sigma_n}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X_n}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X_n})^2 \\ = V_n^2(var.\ empirica) \end{cases}$$

 $\implies (\overline{X_n}, V_n^2) = \hat{\theta_n}$ estimatorul obținut prin metoda momentelor.

Exemplu 17. $X_1, ..., X_n \sim B(k, p), \ \theta = (k, p)$

Metoda momentelor:

$$\begin{cases}
\overline{X_n} = \mathbb{E}_{\theta}[\overline{X}] = kp \\
\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \mathbb{E}_{\theta}[X^2] = Var_{\theta}(X) + \mathbb{E}_{\theta}[X]^2 = kp(1-p) + k^2p^2
\end{cases}$$

$$\begin{cases}
\overline{X_n} = kp \\
\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \overline{X_n}(1-p) + \overline{X_n}^2 \implies \hat{p_n} := 1 - \frac{\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \overline{X_n}}{\overline{X_n}} = 1 - \frac{V_n^2}{\overline{X_n}}
\end{cases}$$

 $\begin{array}{l} \textit{Cum } \overline{X_n} = \hat{k_n} \hat{p_n}, \ \hat{k_n} = \left(\frac{\hat{p_n}}{\overline{X_n}}\right)^{-1} \implies \hat{k_n} = \frac{\overline{X_n} \overline{X_n}}{\overline{X_n} - V_n^2} = \frac{\overline{X_n}^2}{\overline{X_n} - V_n^2} \textit{Considerând condițiile} \\ \hat{p_n} \in (0,1] \ \textit{șik}_n \in \mathbb{N}^* \ \textit{ajungem la rezultatul final:} \ \hat{\theta_n} = \left(\frac{\overline{X_n}^2}{\overline{X_n} - V_n^2}, 1 - \frac{V_n^2}{\overline{X_n}}\right) \end{array}$

11.2 Metoda verosimilității maxime

Fie $X_1, X_2, \ldots, X_n \sim f_\theta$, $\theta \in \Theta \subseteq \mathbb{R}^d$. Presupunem că putem calcula masa/densitatea comună:

$$f_{\theta}(x_1, x_2, \dots, x_n) = \begin{cases} \mathbb{P}_{\theta}(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) & \text{indep.} \\ f_{\theta}(x_1, x_2, \dots, x_n) & = \end{cases}$$

$$= \begin{cases} \prod_{i=1}^{n} \mathbb{P}_{\theta}(X_i = x_i) = \prod_{i=1}^{n} f_{\theta}(x_i) \\ \prod_{i=1}^{n} f_{\theta}(x_i) & = \end{cases}$$

Vom discuta doar cazul independent.

Definiție 22. Fie $X_1, X_1, \ldots, X_n \sim f_{\theta}$. Se numește funcție de verosimilitate funcția $L_n(\theta, x_1, x_2, \ldots, x_n) = f_{\theta}(x_1, x_2, \ldots, x_n)$

Notații:
$$L(\theta, x_1, x_2, \dots, x_n)$$
, $L(\theta, x)$, $L_n(\theta, x)$, $L(\theta)$, $L_n(\theta)$

Observație 24. $L_n(\theta, x)$ nu este în general o densitate/ funcție de masă pentru θ .

 $f_{\theta_1}=L_n(\theta_1,x)>L_n(\theta_2,x)\longrightarrow$ înțelegem că parametrul θ_1 îl domină pe θ_2

$$\mathbb{P}_{\theta_1}(X_1 = x_1, \dots, X_n = x_n) > \mathbb{P}_{\theta_1}(X_1 = x_1, \dots, X_n = x_n), \text{ deci}$$
$$\mathbb{P}_{\theta_0}(L_n(\theta_0, X) > l_n(\theta, X)) \longrightarrow \mathbb{1} \text{ pentru } \theta \neq \theta_0.$$

Definiție 23. Se numește estimatorul de verosimilitate maximă pentru θ :

$$\hat{\theta_n} = \hat{\theta_n}(x_1, \dots, x_n) = \hat{\theta_n}(X_1, \dots, X_n) = \underset{\theta \in \Theta}{\operatorname{arg max}} L_n(\theta, x_1, \dots, x_n) =$$

$$= \underset{\theta \in \Theta}{\operatorname{arg max}} \prod_{i=1}^n f_{\theta}(x_i)$$

unde argmax determină argumentul care maximizează funcția $L_n(\theta, x)$.

se noteaza cu $l_n(\theta, x_1, \dots, x_n) = \log L_n(\theta, x_1, \dots, x_n)$ logaritmul(natural) functiei de verosimilitate.

Observație 25.

$$\hat{\theta_n} = \underset{\theta \in \Theta}{\operatorname{arg max}} L_n(\theta, x_1, \dots, x_n) = \underset{\theta \in \Theta}{\operatorname{arg max}} l_n(\theta, x_1, \dots, x_n)$$

- 1. Vrem să rezolvăm sistemul de ecuații de verosimilitate $\nabla L_n(\theta,x_1,\ldots,x_n)=0$
- 2. Matricea Hessiană simetrică

$$H_n = \left| \frac{\partial^2 L_n(\theta,x)}{\partial \theta \partial \theta^T} \right|_{\hat{\theta_n}} = \left(\frac{\partial^2 L_n(\theta,x_1,\dots,x_n)}{\partial \theta_i \partial \theta_j} \right)_{i,j=\overline{1,d}} \text{ să fie negativ definită.}$$

Observație 26. O matrice H simetrică este negativ definită dacă $\forall x \in \mathbb{R}^n \ \{0\}$ avem $xHx^T < 0$ (SAU: valorile proprii să fie negative)

Exemplu 18.
$$X_1, \ldots, X_n \sim Bern(\theta), \ \theta \in [0, 1), \ f_{\theta}(x) = \theta^x (1 - \theta)^{1 - x}, x \in \{0, 1\}$$

1. Scriem functia de verosimilitate:

$$L_n(\theta, x_1, \dots, x_n) = \prod_{i=1}^n f_{\theta}(x_i) = \prod_{i=1}^n \theta^{x_i} (1 - \theta)^{1 - x_i} = \theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i}$$

→ logaritmul funcției de verosimilitate:

$$l_n(\theta, x_1, \dots, x_n) = \log L_n(\theta, x_1, \dots, x_n) = \sum_{i=1}^n x_i \log(\theta) + (n - \sum_{i=1}^n x_i) \log(1 - \theta)$$

$$dac\check{a} \ 0 < \sum_{i=1}^n x_i < n \ atunci \ \frac{d}{d\theta} l_n(\theta, x_1, \dots, x_n) = \frac{\sum_{i=1}^n x_i}{\theta} - \frac{n - \sum_{i=1}^n x_i}{1 - \theta} = 0$$

$$(1 - \theta) \sum_{i=1}^n x_i - \theta (n - \sum_{i=1}^n x_i) = 0 \iff$$

$$\iff \sum_{i=1}^n x_i - \theta \sum_{i=1}^n x_i - \theta n + \theta \sum_{i=1}^n x_i = 0 \iff$$

$$\iff \hat{\theta_n} - \frac{\sum_{i=1}^n x_i}{n} = \overline{x_n}$$

$$dac\check{a} \sum_{i=1}^{n} x_{i} = 0, \ l_{n}(\theta, x) = n \log(1 - \theta) \implies \hat{\theta_{n}} = 0 = \frac{\sum_{i=1}^{n} x_{i}}{n}. \ dac\check{a}$$

$$\sum_{i=1}^{n} x_{i} = n, l_{n}(\theta, x) = n \log(\theta) \implies \hat{\theta_{n}} = 1 = \frac{\sum_{i=1}^{n} x_{i}}{n} \implies$$

$$\implies soluția este \hat{\theta_{n}} = \overline{X_{n}}$$

12 Curs 12

Exemplu 19. Fie $X_1, X_2, ..., X_n \sim f_{\theta}$ cu $f_{\theta}(x) = e^{(x-\theta)}$, unde $x > \theta$ și $\theta > 0$.

$$L_{n}(\theta, x) = f_{\theta}(x_{1}, ..., x_{n}) = \prod_{i=0}^{n} f_{\theta}(x_{i}) = \prod_{i=0}^{n} e^{(x_{i} - \theta)} \mathbb{1}_{[0, \infty)}(x_{i})$$

$$= e^{-\sum_{i=0}^{n} (x_{i} - \theta)} \prod_{i=0}^{n} \mathbb{1}_{[0, \infty)}(x_{i})$$

$$\prod_{i=0}^{n} \mathbb{1}_{[0, \infty)}(x_{i}) = \begin{cases} 1 & x_{1} \geq \theta, x_{2} \geq \theta, ..., x_{n} \geq \theta \iff x_{(\cdot)} \geq \theta \\ 0 & alt fel \end{cases}$$

$$Deci L_{n}(\theta, x) = e^{-\sum_{i=0}^{n} x_{i}} \mathbb{1}_{[0, \infty)}(x_{(\cdot)}) = e^{-\sum_{i=0}^{n} x_{i}} \mathbb{1}_{[0, x_{(\cdot)})}(\theta)$$

Exemplu 20. Fie $X_1, X_2, ..., X_n \sim f_{\theta} \ cu \ f_{\theta}(x) = \frac{1}{2c} e^{\frac{-|x-\theta|}{c}}$

$$L_n(\theta, x) = f_{\theta}(x_1, ..., x_n) = \prod_{i=0}^n f_{\theta}(x_i) = \prod_{i=0}^n \frac{1}{2c} e^{\frac{-|x_i - \theta|}{c}} = \frac{1}{(2c)^n} e^{\frac{-\sum_{i=1}^n |x_i - \theta|}{c}}$$

Punctul care maximizează $L_n(\theta, x)$ minimizează $M(\theta) = \sum_{i=1}^n |x_i - \theta| = \sum_{i=1}^n |x_{(i)} - \theta|$, unde $x_{(i)}$ e statistică de ordine.

 $dac\breve{a}\ \theta \in (x_{(m)},x_{(m+1)}]$

 $dac i < m \Rightarrow x_{(i)} \le x_{(m)} < \theta$

$$dac\check{a} \ i > m \Rightarrow x_{(i)} \ge x_{(m)} \ge \theta$$

$$M(\theta) = \sum_{i=1}^{m} |x_{(i)} - \theta| + \sum_{i=m+1}^{n} |x_{(i)} - \theta|$$

$$= \sum_{i=1}^{m} \theta - x_{(i)} + \sum_{i=m+1}^{n} x_{(i)} - \theta$$

$$= (2m - n)\theta + \sum_{i=m+1}^{n} x_{(i)} - \sum_{i=1}^{m} x_{(i)}$$

$$n = 2k \Rightarrow \hat{\theta}_n = x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}$$

$$n = 2k + 1 \Rightarrow m = k + 1$$

$$\theta < x_{(m+1)} \Rightarrow M(\theta) \searrow$$

$$\theta > x_{(m+1)} \Rightarrow M(\theta) \nearrow$$

$$\frac{\partial}{\partial \theta} M(\theta) = 0 \Rightarrow 2m - n = 0 \Rightarrow m = \frac{n}{2}$$

$$\hat{\theta}_n = \begin{cases} x_{(\frac{n}{2})+1} & n - impar \\ \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2} & n - par \end{cases}$$

12.1 Proprietăți ale MLE

12.1.1 Invarianța EVM

Presupunem că avem o populație f_{θ} și vrem să găsim un estimator pentru o funcție de θ , $\tau(\theta)$.

Considerăm $\eta=\tau(\theta)$ și $\hat{\eta}=argmaxL_n^*(\eta,x)$ estimatorul de verosimilitate maximă pentru $\eta=\tau(\theta)$

În cazul în care funcția τ este bijectivă avem:

$$\sup_{\eta} L^*(\eta; x) = \sup_{\eta} L(\tau^{-1}(\eta); x) = \sup_{\theta} L(\theta; x) = L(\hat{\theta}; x)$$

 $L^*(\eta;x) = \sup_{\{\theta \mid \tau(\theta) = \eta\}} L_n(\theta;x)$ e funcția de verosimilitate indusă

Teoremă 9. Dacă $\hat{\theta}_n$ este MLE pentru θ atunci $\tau(\hat{\theta}_n)$ este MLE pentru $\tau(\theta)$

Demonstrație. Fie $\hat{\eta}$ valoarea care maximizează funcția de verosimilitate indusă $L_n^*(\eta, x)$. Vrem să demonstrăm că $L_n^*(\eta, x) = L_n^*(\tau(\hat{\theta}); x)$.

$$L_n^*(\hat{\eta};x) = \sup_{\eta} L_n^*(\eta,x) = \sup_{\eta} \sup_{\{\theta \mid \tau(\theta) = \eta\}} L_n(\theta,x) = \sup_{\theta} L_n(\hat{\theta},x) = L_n(\hat{\theta},x)$$

Mai mult, avem că
$$L_n(\hat{\theta}, x) = \sup_{\{\theta \mid \tau(\theta) = \tau(\hat{\theta})\}} = L_n^*(\tau(\hat{\theta}_n), x)$$

Exemplu 21. Fie $X_1, X_2, ..., X_n \sim B(\theta)$

$$\eta = \frac{\theta}{1-\theta}$$
 $\hat{\theta_n} = \overline{X}_n$ $\hat{\eta_n} = \frac{\overline{X}_n}{1-\overline{X}_n}$

$$\mathbb{E}[f(x)] = \sum_{i=1}^{n} f(x)\mathbb{P}(X=x) = \int f(x)g(x)dx$$

12.1.2 Consistență MLE

- (R_0) identifiabilitatea modelului: dacă $\theta \neq \theta' \ \Rightarrow \ f_\theta \neq f_{\theta'}$
- (R_1) Suportul lui f_θ nu depinde de θ : $supp(f_\theta) = \{x | f_\theta(x) > 0\}$
- (R_2) Fie θ^* parametrul real care generează propoziția următoare

Proproziție 25. Fie $X_1, X_2, ..., X_n \sim f_{\theta}, \theta \in \Theta$. Fie θ^* parametrul adevărat care a generat eșantionul.

$$dac\check{a}(R_0) + (R_1) sunt \ adev\check{a}rate \Rightarrow \lim_n \mathbb{P}_{\theta^*}(L_n(\theta^*, X) > L_n(\theta, X)) = 1$$

Demonstrație. Fie $A_n=\{w\mid L\left(\theta^*;X(w)\right)>L(\theta;X(w))\}$. Vrem să arătăm că $\lim_{n\to\infty}\mathbb{P}_{\theta^*}\left(A_n\right)=1$.

$$w \in A_n \Leftrightarrow w \in \left\{ w \mid \frac{L(\theta^*; X(\omega))}{L(\theta; X(\omega))} > 1 \right\}$$

$$\Leftrightarrow w \in \left\{ w \mid \log\left(\frac{L\left(\theta^*; X(\omega)\right)}{L(\theta; X(\omega))}\right) > 0 \right\}$$

$$\Leftrightarrow w \in \left\{ w \mid \log \left(\frac{\prod\limits_{i=1}^{n} f_{\theta^{*}(X_{i}(\omega))}}{\prod\limits_{i=1}^{n} f_{\theta}(X_{i}(\omega))} \right) > 0 \right\}.$$

$$\Leftrightarrow w \in \left\{ w \mid \sum_{i=1}^{n} \log \left(\frac{f_{\theta^*}(x_i(\omega))}{f_{\theta}(x_i(\omega))} \right) > 0 \right\}$$

$$\Leftrightarrow \omega = \left\{ \omega \mid \frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{f_{\theta^*} (x_i(\omega))}{f_{\theta} (x_i(\omega))} \right) > 0 \right\}$$

Fie
$$K_n(\theta, \theta^*) = \frac{1}{n} \sum_{i=1}^n \log \left(\frac{f_{\theta^*}(x_i(\omega))}{f_{\theta}(x_i(\omega))} \right).$$

Arătăm că $\mathbb{P}_{\theta^*}(K_n(\theta^*, \theta) > 0) \xrightarrow{n \to \infty} 1.$

Din Legea Numerelor Mari:

$$K_n(\theta, \theta^*) = \frac{1}{n} \sum_{i=1}^n \log \left(\frac{f_{\theta^*}(x_i(\omega))}{f_{\theta}(x_i(\omega))} \right) \xrightarrow{a.s.} \mathbb{E}_{\theta^*} \left[\log \frac{f_{\theta^*}(x)}{f_{\theta}(x)} \right].$$

Notăm cu $K_n(\theta, \theta^*) = \mathbb{E}_{\theta^*} \left[\log \frac{f_{\theta^*}(x)}{f_{\theta}(x)} \right]$. - divergența Kullback Leibler a repartițiilor f_{θ^*}, f_{θ}

$$K_n(\theta, \theta^*) \xrightarrow{a.s.} K(\theta, \theta^*)$$

Inegalitatea lui Jensen: Dacă X este o v.a. integrabilă și φ o funcție convexă atunci există o relație

$$\varphi(\mathbb{E}[x]) \le \mathbb{E}[\varphi(x)]$$

$$\operatorname{Cum} \varphi = -\log(\mathbf{x}) \text{ este convexă: } K(\theta, \theta^*) = \mathbb{E}_{0^*} \left[-\log \frac{f_{\theta}(x)}{f_{\theta^*}(x)} \right] \ge -\log \left(\mathbb{E}_{0^*} \left[\frac{f_{\theta}(x)}{f_{\theta^*}(x)} \right] \right)$$
$$= -\log \left(\int \frac{f_{\theta}(x)}{f_{\theta^*}(x)} \cdot f_{\theta^*}(x) dx \right) = -\log \left(\int f_{\theta}(x) dx \right) = 0$$

Deci $K(\theta, \theta^*) \geq 0$ - cu egalitate cu 0 doar dacă $\theta = \theta^*$ ceea ce nu este posibil $\implies K(\theta, \theta^*) > 0$. Avem că $K_n(\theta, \theta^*) \xrightarrow{a.s.} K(\theta, \theta^*) > 0$ și vream să arătăm că:

$$\mathbb{P}_{\theta^*} K_n(\theta, \theta^*) > 0 \xrightarrow{n \to \infty} 1.$$

Din convergența în probabilitate avem că $\forall \varepsilon > 0 \ \mathbb{P}_{\theta^*}(|K_n(\theta^*,\theta) - K(\theta,\theta^*)| \ge \varepsilon) \xrightarrow{n\to\infty} 1.$

Fie
$$\varepsilon > 0$$
 a.î. $K(\theta, \theta^*) - \varepsilon > 0$ și avem că $1 = \{|K_n(\theta, \theta^*) - K(\theta, \theta^*)| \ge \epsilon\} \le \{K_n(\theta, \theta^*) \ge K(\theta, \theta^*) - \epsilon\} \le \{K_n(\theta, \theta^*) > 0\} = 1.$

13 Cursul 13

13.1 Proprietăți ale estimatorilor de verosimilitate maximă

Teoremă 10. (Consistența MLE/EVM) $X_1, \ldots, X_n \sim f_{\theta}, \ \theta \in \Theta \subseteq \mathbb{R}, \ f_{\theta} \ verifică$ R_0 - R_2 , adică:

- $identifiabilitatea (R_0)$
- supp nu depinde de θ (R_1)
- $\theta^* \in \overset{\circ}{\Theta}(R_2)$

și în plus f_{θ} este derivabilă în θ , $\forall x$, atunci ecuația de verosimilitate admite un șir de soluții $(\theta_n)_n$ care verifica $\theta_n \stackrel{\mathbb{P}}{\longrightarrow} \theta^*$

Informația lui Fisher și Marginea Rao-Cramer

Fie
$$X_1, \ldots, X_n \sim f_{\theta}, \ \theta \in \Theta \subseteq \mathbb{R}, \ \hat{\theta_n} = \arg \max_{\theta} L_n(\theta, x)$$

Ecuația de verosimilitate: $\frac{\partial}{\partial \theta} L_n(\theta, x) = 0 \iff \frac{\partial}{\partial \theta} \underbrace{l_n(\theta, x)}_{log. lui L_n(\theta, x)} = 0$ (*)

$$ln(\theta, x) = \log L_n(\theta, x) = \log \prod_{i=1}^n f_{\theta}(x_i) = \sum_{i=1}^n \log f_{\theta}(x_i)$$

Din (*)
$$\Longrightarrow \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f_{\theta}(x_i) = 0$$

Definiție 24. Variabilele aleatoare $Y_i = \frac{\partial}{\partial \theta} \log f_{\theta}(x_i)$ se numesc variabile de scor, Y_i fiind scorul lui X_i .

Funcția $x \longrightarrow \frac{\partial}{\partial \theta} \log f_{\theta}(x)$ se numește funcție de scor.

Definiție 25. Informația lui Fisher pentru întreg eșantionul:

$$I_n(\theta) = \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(x) \right)^2 \right]$$
 unde $X = (X_1, \dots, X_n)$

Informația lui Fisher pentru o observație:

$$I_1(\theta) = \mathbb{E}_{\theta}[\underbrace{\frac{\partial}{\partial \theta} \log f_{\theta}(x_1)}^2] = \mathbb{E}_{\theta}[Y_i^2]$$

Condiții de regularitate:

- f_{θ} este de 2 ori derivabilă în θ pentru $\forall x$ (R₃)
- $\int f_{\theta} dx$ este de 2 ori derivabilă în raport cu θ și putem interschimba integrala cu derivata (R₄)

Regula lui Leibniz

 $f(\theta, x), a(\theta), b(\theta)$ derivabile în raport cu θ .

$$\frac{d}{d\theta} \int_{a(\theta)}^{b(\theta)} f(\theta, x) \ dx = f\left(\theta, b(\theta) \frac{d}{d\theta} b(\theta)\right) - f\left(\theta, a(\theta) \frac{d}{d\theta} a(\theta)\right) + \int_{a(\theta)}^{b(\theta)} \frac{\partial}{\partial \theta} f(\theta, x) \ d\theta$$

Lemă 1. Media funcției de scor este nulă, adică

$$\mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log f_{\theta}(x) \right] = 0 \ (In \ conditiile \ R_3 - R_4)$$

Demonstrație.

$$f_{\theta}(x) \ densitate \implies \begin{cases} \int f_{\theta}(x) \ dx = 1 \\ f_{\theta}(x) \ge 1, \forall x \end{cases}$$
$$\frac{\partial}{\partial \theta} 1 = \frac{\partial}{\partial \theta} \int f_{\theta}(x) \ dx = \int \frac{\partial}{\partial \theta} f_{\theta}(x) \ dx = \int \underbrace{\frac{\partial}{\partial \theta} f_{\theta}(x)}_{\frac{\partial}{\partial \Omega} \log f_{\theta}(x)} \ f_{\theta}(x) \ dx \iff 0$$

$$\iff 0 = \int \frac{\partial}{\partial \theta} \log f_{\theta}(x) f_{\theta}(x) dx \iff 0 = \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log f_{\theta}(x) \right]$$

Observație 27. În condițiile $R_3 - R_4$, $\mathbb{E}_{\theta}[Y_i] = 0 \implies I_i(\theta) = Var(Y_i)$

Lemă 2. În condițiile $R_3 - R_4$, informația lui Fisher:

$$I_n(\theta) = \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(x) \right)^2 \right] = -\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta^2} \log f_{\theta}(x) \right]$$

Demonstrație. Știm că $\mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \log f_{\theta}(x) \right] = 0$ si $\int \frac{\partial}{\partial \theta} \log f_{\theta}(x) f_{\theta}(x) dx = 0$ (derivăm după θ)

$$0 = \frac{\partial}{\partial \theta} \int \frac{\partial}{\partial \theta} \log f_{\theta}(x) f_{\theta}(x) dx \stackrel{\mathbb{R}_{4}}{=} \int \frac{\partial}{\partial \theta} \left(\frac{\partial}{\partial \theta} \log f_{\theta}(x) f_{\theta}(x) \right) dx =$$

$$= \int \left(\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(x) f_{\theta}(x) + \frac{\partial}{\partial \theta} \log f_{\theta}(x) \frac{\partial}{\partial \theta} f_{\theta}(x) \right) dx =$$

$$= \int \left(\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(x) f_{\theta}(x) + \frac{\partial}{\partial \theta} \log f_{\theta}(x) \frac{\frac{\partial}{\partial \theta} f_{\theta}(x)}{f_{\theta}(x)} f_{\theta}(x) \right) dx =$$

$$= \int \left(\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(x) f_{\theta}(x) + \left(\frac{\partial}{\partial \theta} \log f_{\theta}(x) \right)^{2} f_{\theta}(x) \right) dx \implies$$

$$\implies - \int \left(\frac{\partial^{2}}{\partial \theta^{2}} \right) \log f_{\theta}(x) f_{\theta}(x) dx = \int \left(\frac{\partial}{\partial \theta} \log f_{\theta}(x) \right)^{2} f_{\theta}(x) dx =$$

$$\implies - \mathbb{E}_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(x) \right] = I_{n}(\theta)$$

Observație 28.

$$I_1(\theta) = -\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta^2} \log f_{\theta}(X_1) \right]$$

Proproziție 26. Pentru cazul i.i.d:

$$I_n(\theta) = nI_1(\theta)$$

Demonstrație. Știm că $I_n(\theta) = \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X) \right)^2 \right]$ și $f_{\theta}(X) = \prod_{i=1}^n f_{\theta}(X_i)$, atunci

$$I_n(\theta) = \mathbb{E}_{\theta} \left[\sum_{i=1}^n \left(\underbrace{\frac{\partial}{\partial \theta} \log f_{\theta}(X_i)}_{Y_i} \right)^2 \right] = \mathbb{E}_{\theta} \left[\left(\sum_{i=1}^n Y_i \right)^2 \right] =$$

$$= \sum_{i=1}^n \mathbb{E}_{\theta} \left[Y_i^2 \right] + 2 \sum_{i \le j} \underbrace{\mathbb{E}_{\theta} \left[Y_i, Y_j \right]}_{Y_i \perp Y_i = Y_j} \underbrace{\mathbb{E}_{\theta} \left[Y_i \right] \mathbb{E}_{\theta} \left[Y_j \right]}_{\Omega}$$

$$\implies I_n(\theta) = \sum_{i=1}^n \mathbb{E}_{\theta}[Y_i^2] = \sum_{i=1}^n I_i(\theta) = nI_1(\theta)$$

Teoremă 11. (Inegalitatea Rao-Cramer, în contextul condițiilor de regularitate)

Fie $X_1, X_2, \ldots, X_n \sim f_\theta$, $\theta \in \Theta \subseteq \mathbb{R}$, f_θ verifică condițiile de regularitate $R_0 - R_4$ si $T_n(X)$ un estimator pentru care $Var_\theta(T_n(X)) < \infty$ și care verifică

$$\frac{d}{d\theta} \mathbb{E}_{\theta}[T_n(X)] = \int \frac{\partial}{\partial \theta} \left(T_n(x) f_{\theta}(x) \right) dx$$

Atunci

$$Var_{\theta}(T_n(X)) \ge \frac{\left(\frac{d}{d\theta}\mathbb{E}_{\theta}[T_n(X)]\right)^2}{\mathbb{E}_{\theta}\left[\left(\frac{\partial}{\partial \theta}\log f_{\theta}(X)\right)^2\right]} = \frac{\left(\frac{\partial}{\partial \theta}\mathbb{E}_{\theta}[T_n(X)]\right)^2}{I_n(\theta)}$$

Observație 29. 1. Marginea $\frac{\left(\frac{\partial}{\partial \theta}\mathbb{E}_{\theta}[T_n(X)]\right)^2}{I_n(\theta)} \stackrel{\text{not.}}{=} MIRC$ (Marginea inegalitatii Rao-Cramer)

- 2. $T_n(X)$ este un estimator nedeplasat $\tau(\theta)$ (media lui $T_n(X)$).

 Atunci $MIRC = \frac{\left(\tau'(\theta)\right)^2}{I_n(\theta)}$
- 3. $Daca \ \tau(\theta) = \theta \implies MIRC = \frac{1}{I_n(\theta)} \ (adică \ atunci \ când \ estimatorul \ este \ nedeplasat)$

4. Un estimator $T_n(X)$ este eficient pentru $\tau(\theta)$ dacă $Var_{\theta}\left(T_n(X)\right) = MIRC$ (foarte util)

$$eff_{\theta}(T_n(X)) = \frac{MIRC}{Var_{\theta}(T_n)} (eficienta\ pentru\ T_n)$$

Demonstrație. (teoremă)

$$\left. \begin{array}{l} \text{Ineg.Cauchy-Schwartz: } \left| \mathbb{E}[XY] \right| \leq \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]} \\ X \longrightarrow X - \mathbb{E}[X] \\ Y \longrightarrow Y - \mathbb{E}[Y] \end{array} \right\} \implies$$

$$\implies Cov(X,Y) \le \sqrt{Var(X)Var(Y)} \iff Var(X) \ge \frac{Cov^2(X,Y)}{Var(Y)}$$

Pe postul lui X avem $T_n(X)$, iar pentru Y luăm $\frac{\partial}{\partial \theta} \log f_{\theta}(X) \implies$

$$Var_{\theta}(T_n(X)) \ge \frac{Cov^2(T_n(X), \frac{\partial}{\partial \theta} \log f_{\theta}(X))}{Var(\frac{\partial}{\partial \theta} \log f_{\theta}(X))} \implies$$

$$\begin{cases} Var\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right) = I_{n}(\theta) \\ Cov\left(T_{n}(X), \frac{\partial}{\partial \theta} \log f_{\theta}(X)\right) = \mathbb{E}_{\theta}\left[T_{n}(X)\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right] - \\ - \mathbb{E}_{\theta}\left[T_{n}(X)\right] \underbrace{\mathbb{E}_{\theta}\left[\frac{\partial}{\partial \theta} \log f_{\theta}(X)\right]}_{=0 \text{ media var. de scor}} \end{cases}$$

$$\implies Cov(T_n(X), \frac{\partial}{\partial \theta} \log f_{\theta}(X)) = \int T_n(X) \frac{\partial}{\partial \theta} \log f_{\theta}(X) f_{\theta}(x) dx =$$

$$= \int T_n(X) \frac{\partial}{\partial \theta} f_{\theta}(X) dx =$$

$$= \int T_n(X) \frac{\partial}{\partial \theta} f_{\theta}(X) dx =$$

$$= \int \frac{\partial}{\partial \theta} \left(T_n(X) f_{\theta}(X) \right) dx =$$

$$= \int T_n(X) f_{\theta}(X) dx = \frac{\partial}{\partial \theta} \mathbb{E}_{\theta} \left[T_n(X) \right]$$

Exemplu 22. Fie $X_1, \ldots, X_n \sim Bern(\theta)$. Vrem $I_n(\theta)$ și să verificăm dacă MEL este eficient.

<u>Solutie</u>: Știm că funcția de masă a distribuției Bernoulli este $f_{\theta}(x) = \theta^{x}(1-\theta)^{1-x}$, cu $x \in \{0, 1\}$ șsi am calculat într-un curs anterior că $\hat{\theta}_{n} = \overline{X_{n}}$. Atunci:

$$I_{n}(\theta) = \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X) \right)^{2} \right] = -\mathbb{E}_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(X) \right] =$$

$$= -\mathbb{E}_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \log \prod_{i=1}^{n} \theta^{X_{i}} (1 - \theta)^{1 - X_{i}} \right] =$$

$$= -\mathbb{E}_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \left(\log \theta^{i=1} \left(1 - \theta \right)^{n-1} \sum_{i=1}^{n} X_{i} \right) \right] =$$

$$= -\mathbb{E}_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \left(\sum_{i=1}^{n} X_{i} \log \theta + \left(n - \sum_{i=1}^{n} X_{i} \right) \log(1 - \theta) \right) \right] =$$

$$= -\mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \left(\sum_{i=1}^{n} X_{i} - \frac{n - \sum_{i=1}^{n} X_{i}}{(1 - \theta)} \right) \right] =$$

$$= -\mathbb{E}_{\theta} \left[-\frac{\sum_{i=1}^{n} X_{i}}{\theta^{2}} - \frac{n - \sum_{i=1}^{n} X_{i}}{(1 - \theta)^{2}} \right] =$$

$$= \frac{1}{\theta^{2}} \mathbb{E}_{\theta} \left[\sum_{i=1}^{n} X_{i} \right] + \frac{1}{(1 - \theta)^{2}} \mathbb{E}_{\theta} \left[n - \sum_{i=1}^{n} X_{i} \right] =$$

$$= \frac{1}{\theta^{2}} n\theta + \frac{1}{(1 - \theta)^{2}} n(1 - \theta) = \frac{n}{\theta} + \frac{n}{1 - \theta} = \frac{n}{\theta(1 - \theta)}$$

$$\implies I_{n}(\theta) = \frac{n}{\theta(1 - \theta)}$$

Alt fel:

$$I_{1}(\theta) = -\mathbb{E}_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(X_{1}) \right] = -\mathbb{E}_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \left(X_{1} \log(\theta) + (1 - X_{1}) \log(1 - \theta) \right) \right] =$$

$$= \frac{\mathbb{E}_{\theta}[X_{1}]}{\theta^{2}} + \frac{\mathbb{E}_{\theta}[1 - X_{1}]}{(1 - \theta)^{2}} = \frac{1}{\theta(1 - \theta)}$$

 $\hat{\theta_n} = \overline{X_n}$ (estimator nedeplasat)

$$MIRC = \frac{1}{I_n(\theta)} = \frac{\theta(1-\theta)}{n}$$

$$Var_{\theta}(\overline{X_n}) = \frac{Var_{\theta}(X_1)}{n} = \frac{\theta(1-\theta)}{n}$$

$$\implies Var_{\theta}(\overline{X_n}) = MIRC \implies \hat{\theta_n} \text{ este eficient}$$

Exemplu 23. Fie $X_1, \ldots, X_n \sim f_{\theta}$, $f_{\theta}(x) = \frac{1}{\theta}$, $0 < x < \theta$ (nu se respectă R_1

$$I_1(\theta) = \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f_{\theta}(X_1) \right)^2 \right] = \frac{1}{\theta^2} \implies I_n(\theta) = \frac{n}{\theta^2}$$

Dacă W_n ar fi un estimator nedeplasat pentru $\theta \implies MIRC = \frac{\theta^2}{n}$

 $MLE: \hat{\theta_n} = X_{(n)} \ (maximul \ eșantionului)$

$$\mathbb{E}_{\theta}[\hat{\theta}_n] = \frac{n}{n+1}\theta, \quad f_{X_{(n)}}(x) = \frac{nx^{n-1}}{\theta^n} \mathbb{1}_{(0,\theta)}(x)$$

 $W_n = \frac{n+1}{n}\hat{\theta_n}$ estimator nedeplasat pentru θ

$$Var_{\theta}(W_n) = \dots = \frac{\theta^2}{n(n+2)} < \frac{\theta^2}{n}$$

Normalitatea asimptotică a MLE

<u>Context:</u> $X_1, \ldots, X_n \sim f_\theta$, $\theta \in \Theta \subseteq \mathbb{R}$, f_θ este de 3 ori derivabilă în θ , pentru $\forall x$ și există c > 0, M(x) > 0, $\mathbb{E}_{\theta}[M(X_1, \ldots, X_n)] < \infty$ astfel încât este adevarată inegalitatea

$$\left| \frac{\partial^3}{\partial \theta^3} \log f_{\theta}(X) \right| \le M(x), \ \forall x, \ \forall \theta \in (\theta^* - c, \theta^* + c)$$

în conditiile în care θ^* este adevăratul punct care a generat esantionul.

Teoremă 12. Fie $X_1, \ldots, X_n \sim f_{\theta}$, $\theta \in \Theta \subseteq \mathbb{R}$ cu f_{θ} verificand condițiile de regularitate $R_0 - R_5$ si $I_1(\theta^*) \in (0, \infty)$. Atunci următoarea convergență în distribuție este adevarată pentru orice șir consistent de soluții $(\hat{\theta_n})_n$ ale ecuației de verosimilitate:

$$\sqrt{n}(\hat{\theta_n} - \theta^*) \stackrel{d}{\longrightarrow} N(0, \frac{1}{I_1(\theta^*)})$$