Name:	
Roll Number:	_

(Odd Semester 2023/24, IIT Kanpur)

INSTRUCTIONS

- 1. Write your \mathbf{Name} and \mathbf{Roll} \mathbf{number} above.
- 2. This exam contains $\mathbf{6} \, + \, \mathbf{1}$ questions and is worth $\mathbf{60\%}$ of your grade.
- 3. Answer **ALL** questions.

Page 2 MTH301A

Question 1. $[5 \times 2 \text{ Points}]$

For each of the following statements, determine whether it is **true or false**. No justification required.

- (i) Every compact metric space is separable.
- (ii) There exists a function $f: \mathbb{R} \to \mathbb{R}$ which is everywhere differentiable and f'(x) is discontinuous at every irrational x.
- (iii) If $f:[a,b]\to\mathbb{R}$ is a bounded Riemann integrable function and $\int_a^b |f(x)|dx=0$, then f is identically zero on [a,b].
- (iv) The sequence of functions $\langle nx^n : n \geq 1 \rangle$ uniformly converges to 0 on [0, 0.9].
- (v) The set $\{p(x^2): p(x) \text{ is a polynomial with rational coefficients}\}$ is dense in $C([-1,1],d_{\infty})$.

Solution

- (i) **True**. HW 67(b).
- (ii) **False**. f' is a Baire class one function. Hence the set of points of continuity of f' is a countable intersection of open dense subets of [a, b] which is not equal to $[a, b] \setminus \mathbb{Q}$
- (iii) **False**. Let f:[0,1] be the characteristic function of $\{0.5\}$.
- (iv) True.
- (v) **False**. Consider $f(x) = \sin x$ (or any function that is not even on [-1, 1]).

Page 3 MTH301A

Question 2. [10 Points]

(a) [5 Points] Let $f:[0,1] \to \mathbb{R}$ be a bounded Riemann integrable function. Let $g:[0,1] \to \mathbb{R}$ be a function such that $\{x \in [0,1]: f(x) \neq g(x)\}$ is finite. Show that g is Riemann integrable and $\int_0^1 f(x)dx = \int_0^1 g(x)dx$.

(b) [5 Points] Suppose $f: [-1,1] \to \mathbb{R}$ is continuous. Assume that for every $-1 \le a < b \le 1$, if $b-a < 2^{-10}$, then $\int_a^b f(x)dx = 0$. Show that f is identically zero on [-1,1].

Solution

(a) For $c \in [0,1]$, let $h_c : [0,1] \to \mathbb{R}$ be defined by $h_c(x) = 1$ if x = c and 0 otherwise. Show that h_c is Riemann integrable and $\int_0^1 h_c(x) dx = 0$. Let $\{c_1, \dots, c_N\}$ list $\{x \in [0,1] : f(x) \neq g(x)\}$. Put $a_k = g(c_k) - f(c_k)$ for $1 \le k \le N$. Then $g = f + \sum_{k=1}^N a_k h_{c_k}$. Since f and each h_{c_k} is Riemann integrable, we get g is Riemann integrable. Also

$$\int_0^1 g(x)dx = \int_0^1 f(x)dx + \sum_{k=1}^N \int_0^1 a_k h_{c_k}(x)dx = \int_0^1 f(x)dx + \sum_{k=1}^N 0 = \int_0^1 f(x)dx.$$

(b) (Compare with HW 55) Suppose not and fix $c \in [-1,1]$ such that $f(c) \neq 0$. Assume f(c) = h > 0 (the other case is similar). As f is continuous at c, we can find an interval $[a_1,b_1]$ around c such that $f(x) \geq h/2$ for every $x \in [a_1,b_1]$. Let $[a,b] \subseteq [a_1,b_1]$ be an interval around c of length $c \in [a_1,b_1]$. It follows that

$$0 = \int_{a}^{b} f(x)dx \ge \int_{a}^{b} h/2dx = h(b-a)/2 > 0$$

which is a contradiction. \Box

Page 4 MTH301A

Question 3. [10 Points]

Let $f_n: \mathbb{R} \to \mathbb{R}$ be defined by

$$f_n(x) = \cos\left(\frac{1+x}{n(\pi+x^4)}\right).$$

- (a) [4 Points] Show that $\langle f_n : n \geq 1 \rangle$ is uniformly convergent on \mathbb{R} .
- (b) [6 Points] Compute $\lim_{n\to\infty}\int_0^1 e^x f_n(x)dx$. Justify all of your steps.

Solution

(a) We will show that $f_n \xrightarrow{\text{uniformly}} 1$ on \mathbb{R} .

Let $\varepsilon > 0$. Since $\cos x$ is continuous at x = 0, we can find $\delta > 0$ such that

$$|x| < \delta \implies |\cos x - \cos 0| = |\cos x - 1| < \varepsilon$$

Next observe that $|1+x| \le 1 + |x| \le 2 + x^4$ for every $x \in \mathbb{R}$. So $\left| \frac{1+x}{n(\pi+x^4)} \right| \le \frac{1}{n}$ for every $x \in \mathbb{R}$. Fix $N \ge 1$ such that $1/N < \delta$. It follows that for every $n \ge N$ and $x \in \mathbb{R}$,

$$|f_n(x) - 1| = \left|\cos\left(\frac{1+x}{n(\pi + x^4)}\right) - 1\right| < \varepsilon$$

Hence $f_n \xrightarrow{\text{uniformly}} 1 \text{ on } \mathbb{R}$.

(b) As e^x is bounded on [0,1] and f_n 's uniformly converge to 1 on [0,1], it follows that $e^x f_n(x)$ uniformly converges to $(e^x)(1) = e^x$ on [0,1]. Therefore we can interchange limit and integral to get

$$\lim_{n \to \infty} \int_0^1 e^x f_n(x) dx = \int_0^1 e^x dx = e - 1.$$

Page 5 MTH301A

Question 4. [10 Points]

Consider the series

$$\sum_{n=0}^{\infty} \frac{n^3}{3^n} \cos(nx)$$

- (a) [2 Points] Show that this series is absolutely convergent for every $x \in \mathbb{R}$.
- (b) [2 Points] Show that this series is uniformly convergent on \mathbb{R} .
- (c) [6 Points] Define $f(x) = \sum_{n=0}^{\infty} \frac{n^3}{3^n} \cos(nx)$. Show that f is everywhere differentiable and

$$f'(x) = \sum_{n=1}^{\infty} \frac{-n^4}{3^n} \sin(nx)$$

Solution

(a) Let $a_n = \frac{n^3}{3^n}$. Then $\limsup_{n \to \infty} |a_n|^{1/n} = \lim_{n \to \infty} \frac{n^{3/n}}{3} = 1/3 < 1$. So by the root test, we get $\sum_{n=0}^{\infty} |a_n| < \infty$. It follows that for every $x \in \mathbb{R}$,

$$\sum_{n=0}^{\infty} \left| \frac{n^3}{3^n} \cos(nx) \right| \le \sum_{n=0}^{\infty} \left| \frac{n^3}{3^n} \right| < \infty.$$

(b) Put $s_n = \sum_{k=0}^n \frac{k^3}{3^k} \cos(kx)$. We need to show that $\langle s_n : n \geq 1 \rangle$ is uniformly convergent on \mathbb{R} . Let $\varepsilon > 0$. Choose $N \geq 1$ such that $\sum_{n=N}^{\infty} \frac{n^3}{3^n} < \varepsilon$. Then for every $m, n \geq N$ and $x \in \mathbb{R}$, we have

$$|s_n(x) - s_m(x)| \le \sum_{k=N}^{\infty} \left| \frac{k^3}{3^k} \cos(kx) \right| \le \sum_{k=N}^{\infty} \left| \frac{k^3}{3^k} \right| < \varepsilon.$$

It follows that $\langle s_n : n \geq 1 \rangle$ is uniformly convergent on \mathbb{R} .

(c) Put $s_n = \sum_{k=0}^n \frac{k^3}{3^k} \cos(kx)$. We already showed that $\langle s_n : n \geq 1 \rangle$ is uniformly convergent on \mathbb{R} . We need to check that s'_n is also uniformly convergent on \mathbb{R} . This is similar to the proof of (b) using the following

$$\frac{d}{dx}\left(\frac{n^3}{3^n}\cos(nx)\right) = \frac{-n^4}{3^n}\sin(nx)$$
$$\left|\frac{-n^4}{3^n}\sin(nx)\right| \le \frac{n^4}{3^n}$$
 and

$$\sum_{n=1}^{\infty} \frac{n^4}{3^n} < \infty \text{ (Use root test)}.$$

Page 6 MTH301A

Question 5. [10 Points]

Consider C([a,b]) under uniform metric $d_{\infty}(f,g) = ||f-g||_{\infty}$.

- (a) [2 Points] State Weierstrass approximation theorem.
- (b) [3 Points] Let $D = \{ f \in C([a,b]) : f \text{ is differentiable on } [a,b] \}$. Is D dense in $(C([a,b]), d_{\infty})$. Why?
- (c) [5 Points] Give an example of a uniformly bounded sequence of functions $\langle f_n : n \geq 1 \rangle$ in C([0,1]) such that $\lim_{n \to \infty} \int_0^1 |f_n(x)| dx = 0$ but $\lim_{n \to \infty} f_n(x)$ diverges for every $x \in [0,1]$.

Solution

(a) For every $f \in C([a,b])$ and $\varepsilon > 0$, there exists a polynomial p = p(x) such that

$$||f - p||_{\infty} < \varepsilon.$$

It follows that the set of all polynomials is dense in $(C([a,b]), d_{\infty})$.

- (b) Since every polynomial is in D, it follows that D is also dense $(C([a,b]),d_{\infty})$.
- (c) Let $\langle J_n : n \geq 1 \rangle$ be an enumeration of all intervals of the form $\{[k2^{-n}, (k+1)2^{-n}] : n \geq 1 \text{ and } 0 \leq k < n-1\}$ in decreasing order of length. So

$$J_1 = [0, 1/2], J_2 = [1/2, 1], J_3 = [0, 1/8], \cdots$$

For each $n \geq 1$, say $J_n = [a_n - r_n, a_n + r_n] \subseteq [0, 1]$. Define $f_n : [0, 1] \to [0, 1]$ to be a piecewise linear function such that $f_n(x) = 1$ if $|x - a_n| \leq r_n$ and $f_n(x) = 0$ if $|x - a_n| \geq 2r_n$. It is easy to see that $\{f_n : n \geq 1\}$ is uniformly bounded by 1 and $\int_0^1 |f_n(x)| dx \leq 2 \operatorname{length}(J_n) \to 0$. Now check that for every $x \in [0, 1]$, $\lim_{n \to \infty} f_n(x) = 0$ and $\lim_{n \to \infty} \sup f_n(x) = 1$.

Page 7 MTH301A

Question 6. [10 Points]

- (a) [3 Points] State Arzela-Ascoli theorem.
- (b) [7 Points] Let $f_n:[0,1]\to\mathbb{R}$ be a bounded Riemann integrable function for each $n\geq 1$. Define $F_n:[0,1]\to\mathbb{R}$ by

$$F_n(x) = \int_0^x f_n(t)dt$$

Assume that there is a constant M > 0 such that for every $n \ge 1$, $\int_0^1 (f_n(x))^2 dx < M$. Show that $\langle F_n : n \ge 1 \rangle$ has a uniformly convergent subsequence.

Solution

- (a) Suppose (X,d) is a compact metric space and $\langle f_n : n \geq 1 \rangle$ is a uniformly bounded sequence of continuous functions from X to \mathbb{R} . Suppose that the family $\{f_n : n \geq 1\}$ is uniformly equicontinuous on X. Then $\langle f_n : n \geq 1 \rangle$ has a uniformly convergent subsequence.
- (b) Since [a, b] is compact, it suffices to check that $\langle F_n : n \geq 1 \rangle$ the hypotheses of Arzela-Ascoli theorem hold. First note that for any $a \geq 0$, $a \leq 1 + a^2$. Hence for any $x \in [0, 1]$,

$$|F_n(x)| \le \int_0^x |f_n(t)| dt \le \int_0^x (1 + (f_n(t))^2) dt \le \int_0^1 (1 + (f_n(t))^2) dt \le 1 + M$$

So $\langle F_n : n \geq 1 \rangle$ is uniformly bounded. Next fix $\varepsilon > 0$ and $0 \leq x < y \leq 1$. Then

$$|F_n(x) - F_n(y)| \le \int_x^y |f_n(t)| dt \le \left(\int_x^y (1)^2 dt\right)^{1/2} \left(\int_x^y (f_n(t))^2 dt\right)^{1/2} \le |x - y|^{1/2} M^{1/2}$$

where we used the following (see HW 58):

$$\int_{x}^{y} |g(t)h(t)|dt \le \left(\int_{x}^{y} (g(t))^{2} dt\right)^{1/2} \left(\int_{x}^{y} (h(t))^{2} dt\right)^{1/2}$$

Choose $\delta = \varepsilon^2/4M$. Then $|x-y| < \delta \implies |F_n(x) - F_n(y)| \le \varepsilon/2 < \varepsilon$. Therefore $\{F_n : n \ge 1\}$ is uniformly equicontinuous on [0,1] and we are done.

Page 8 MTH301A

Bonus Question [5 Points]

Let $f_n:[0,1]\to [0,1]$ be monotonically increasing for $n\geq 1$. Show that there is a subsequence $\langle f_{n_k}:k\geq 1\rangle$ of $\langle f_n:n\geq 1\rangle$ and a function $f:[0,1]\to [0,1]$ such that $f_n\xrightarrow{\mathsf{pointwise}} f$.

Solution sketch

Let D_0 be the set of all rationals in [0,1]. For $n \ge 1$, let D_n be the set of points of discontinuity of f_n . By HW 9, each D_n is countable. Put $D = \bigcup_{n \ge 0} D_n$. Then D is a countable dense subset of [0,1].

By a Lemma proved in class, there is a subsequence $\langle f_{n_k} : k \geq 1 \rangle$ of $\langle f_n : n \geq 1 \rangle$ such that for every $r \in D$, $\lim_{k \to \infty} f_{n_k}(r)$ exists (call it h(r)). Define $f : [0,1] \to [0,1]$ by $f(x) = \sup(\{h(r) : r \in D \text{ and } r \leq x\})$. Now check that for every $x \in [0,1]$, $\lim_{n \to \infty} f_n(x) = f(x)$.