Examenul de bacalaureat național 2019 Proba E. c)

Matematică M_mate-info

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$n=3^2-\left(i\sqrt{2}\right)^2=$	2p
	$=9-2i^2=11\in\mathbb{Z}$	3 p
2.	$f(a) = 3 \Rightarrow 2a + a = 3$	3 p
	a = 1	2 p
3.	$2019^{x} + 2019^{-x} - 2 = 0 \Leftrightarrow (2019^{x} - 1)^{2} = 0$	3p
	$2019^x = 1$, deci $x = 0$	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Mulțimea numerelor naturale de două cifre care au cifra unităților impară are 45 de elemente, deci sunt 45 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{45}{90} = \frac{1}{2}$	1p
5.	$m_{AB} = -1 \Rightarrow m_d = 1$	2p
	Ecuația dreptei d este $y - y_A = m_d (x - x_A)$, deci $y = x - 6$	3 p
6.	$\sin(a-b)\sin(a+b) = \sin^2 a \cdot \cos^2 b - \sin^2 b \cdot \cos^2 a =$	2p
	$= \sin^2 a (1 - \sin^2 b) - \sin^2 b (1 - \sin^2 a) = \sin^2 a - \sin^2 b = (\sin a - \sin b) (\sin a + \sin b), \text{ pentru}$	3 p
	orice numere reale $a ext{ } ext{$i$} ext{$b$}$	

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(a)) = \begin{vmatrix} a & 0 & -a \\ 0 & 2 & 0 \\ -a & 0 & a \end{vmatrix} =$	2 p
	$=2a^{2}+0+0-2a^{2}-0-0=0$, pentru orice număr real <i>a</i>	3 p
b)	$A(a)A(b) = \begin{pmatrix} 2ab & 0 & -2ab \\ 0 & 4 & 0 \\ -2ab & 0 & 2ab \end{pmatrix} =$	3 p
	$= 2 \begin{pmatrix} ab & 0 & -ab \\ 0 & 2 & 0 \\ -ab & 0 & ab \end{pmatrix} = 2A(ab), \text{ pentru orice numere reale } a \text{ şi } b$	2 p
c)	$B = 2^{13} A (\log_2 3 \cdot \log_3 4 \cdot \log_4 5 \cdot \dots \cdot \log_{15} 16) = 2^{13} A (\log_2 16) =$	3 p
	$=2^{13}A(4)$, care are toate elementele numere întregi	2 p

2.a)	$f(-1) = -m + n, \ f(0) = n$	2p
	$f(1) = 2 + m + n \Rightarrow f(-1) - 2f(0) + f(1) = -m + n - 2n + 2 + m + n = 2$, pentru orice	3р
	numere reale m și n	•
b)	f este divizibil cu $X^2 - 1 \Leftrightarrow f(-1) = 0$ și $f(1) = 0$	3 p
	m = -1, n = -1	2p
c)	$x_1 + x_2 + x_3 = -1$, $x_1 x_2 + x_1 x_3 + x_2 x_3 = m$, $x_1 x_2 x_3 = -n$, $x_1^3 + x_2^3 + x_3^3 = -1 + 3m - 3n$	3p
	$3(x_1x_2 + x_1x_3 + x_2x_3 + x_1x_2x_3) - (x_1^3 + x_2^3 + x_3^3) = 3(m-n) - (-1 + 3m - 3n) = 1$	2p

SUBIECTUL al III-lea (30 de puncte)

	•	,
1.a)	$f'(x) = 2xe^{-x} - x^2e^{-x} =$	3 p
	$= (2x - x^2)e^{-x} = x(2 - x)e^{-x}, x \in \mathbb{R}$	2 p
b)	$f'(x) = 0 \Leftrightarrow x = 0 \text{ sau } x = 2$	2p
	$f'(x) \le 0$, pentru orice $x \in (-\infty, 0]$, deci f este descrescătoare pe $(-\infty, 0]$, $f'(x) \ge 0$	
	pentru orice $x \in [0,2]$, deci f este crescătoare pe $[0,2]$ și $f'(x) \le 0$, pentru orice	3 p
	$x \in [2, +\infty)$, deci f este descrescătoare pe $[2, +\infty)$	
c)	$f(0) = 0 < a, f(2) = 4e^{-2} > a $ și $\lim_{x \to +\infty} f(x) = 0 < a, $ pentru orice $a \in (0, 4e^{-2})$	3 p
	Cum $\lim_{x\to-\infty} f(x) = +\infty$, f este continuă pe \mathbb{R} și f este strict monotonă pe $(-\infty,0)$, pe	2p
	$(0,2)$ și pe $(2,+\infty)$, ecuația $f(x)=a$ are exact trei soluții reale	-P
2.a)	$\int_{1}^{2} (f(x) - \ln x) dx = \int_{1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big _{1}^{2} =$	3p
	$=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}$	2p
b)	$g(x) = 2x + \ln x \Rightarrow \mathcal{A} = \int_{1}^{e} g(x) dx = \int_{1}^{e} (2x + \ln x) dx = x^{2} \Big _{1}^{e} + x \ln x \Big _{1}^{e} - \int_{1}^{e} x \cdot \frac{1}{x} dx =$	3 p
	$=e^2-1+e-0-(e-1)=e^2$	2 p
c)	$\int_{e^{-1}}^{1} x^{n} (f(x) - x^{2}) dx = \int_{e^{-1}}^{1} x^{n} \ln x dx = \left(\frac{x^{n+1}}{n+1} \ln x - \frac{x^{n+1}}{(n+1)^{2}} \right) \Big _{e^{-1}}^{1} = \frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)^{2}} + \frac{1}{(n+1)^{2}e^{n+1}} = \frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)e^{n+1}} = \frac{1}{(n+1)e^{n+1}} = \frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)e^{n+1}} = \frac{1}{(n+1)e^{n+1}} = \frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)e^{n+1}} = \frac{1}$	3p
	$\lim_{n \to +\infty} \int_{e^{-1}}^{1} x^{n} (f(x) - x^{2}) dx = \lim_{n \to +\infty} \left(\frac{1}{(n+1)e^{n+1}} - \frac{1}{(n+1)^{2}} + \frac{1}{(n+1)^{2} e^{n+1}} \right) = 0$	2p