METHOD -1:
$$i=1, j=0$$

$$j=\frac{hD_{10}}{4\pi} N n_1 A_{10} \phi_0 \Rightarrow \text{emissivity} \quad \text{[eV cm}^3 \text{g}^{-1} \text{Hz}^{-1} \text{]}$$

$$j_0 = \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$j_0 = \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$j_0 = \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$j_0 = \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$j_0 = \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{for} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{[eV cm}^3 \text{g}^{-1} \text{]}$$

$$= \frac{hD_{10}}{4\pi} N n_1 A_{10} \Rightarrow \text{emissivity} \quad \text{[eV cm}^3 \text{g}^{-1} \text{$$

Results:

To (mean value) 10^4 K $L_{co} = 8.34 \times 10^{11} \text{ K km s}^{-1} \text{ pc}^2$ If I use, $L_{co} = (I_{10} \cdot c) \cdot (edge)^2$ Then $L_{co} = 2.127 \times 10^9 \text{ K km s}^{-1} \text{ pc}^2$


```
METHOD-2: 17- weing 1.4 regults
ju = horo Nn, Aro Øs - emissivity [eV cui38-1 HZ-1]
 Jio = horo Nn, A10 → integrated [ev cm<sup>3</sup>/<sub>8</sub>-1]
 To = \frac{100}{1=0} \text{ for B pdf ds = emissivity for each cell in the aim. [eV cm-3 s-1]
  dx = width of each cell in the zim - [cm]
  Lco = jo · (dx)3 - Luminosity of each [eV 8-1]
  Lco = \sum_{i=0}^{\text{all calls}} (lco)_i - Luminosity of the [eV s-1]
                                             Lo = 2.4342 x1045 eV&
 Result:
    Lco = 101.43 Lo
          = 6.487 ×1046 eV &
     In the paper,
    M=30

Kinetic Temp., Tk = 45K | M* = 100 Mo | Z=6
 - Leo vs log (NH) ]- attached
 - jio vs log (NH)
```


Sub-grid i=1, j=0 jo = hoio N n, A 10\$0 -0 [eV cm3 8-1 HZ-1] j10 = 2010 N M, A10 - [eV cm3 2-1] & Rue to & loo = jo. B. pdf. (dx)3 - [eV 5-1] Where, dx = mean-width of a cell in the sim. = \$ 3.5 × 1020 cm Result 1 Lco es log (NH) - attached (fio. B. pdf) us log (NH) - attached

Figure 2. Upper panel: initial lognormal volume-weighted density PDF (dashed line, $\mathcal{M}=5$), and the evolved density PDF (lognormal+tail hereafter, solid) after $t/t_{\rm ff}(\rho_0)=0.4$. Lower panel: specific CO(1–0) luminosity for the initial (dashed) and evolved (solid) cases shown in the upper panel.

Table 1. Parameters of the fiducial GMC.

$R_{\rm GMC}/({\rm pc})$	$n_0/({\rm cm^{-3}})$	$\rho_0/(\mathrm{gcm^{-3}})$	$M_{\rm GMC}/({ m M}_{\odot})$	$\log(Z/Z_{\bigodot})$	$\log G_0$
15	100	2.34×10^{-22}	4.9×10^4	0	2

ABSTRACT

We study the CO line luminosity ($L_{\rm CO}$), the shape of the CO spectral line energy distribution (SLED), and the value of the CO-to-H₂ conversion factor in galaxies in the Epoch of Reionization (EoR). For this aim, we construct a model that simultaneously takes into account the radiative transfer and the clumpy structure of giant molecular clouds (GMCs) where the CO lines are excited. We then use it to post-process state-of-the-art zoomed, high resolution (30 pc), cosmological simulation of a main-sequence ($M_* \approx 10^{10} \, {\rm M}_{\odot}$, SFR $\approx 100 \, {\rm M}_{\odot}$ yr⁻¹) galaxy, 'Althæa', at $z \approx 6$. We find that the CO emission traces the inner molecular disc ($r \approx 0.5 \, {\rm kpc}$) of Althæa with the peak of the CO surface brightness co-located with that of the [C II] 158 μ m emission. Its $L_{\rm CO(1-0)} = 10^{4.85} \, {\rm L}_{\odot}$ is comparable to that observed in local galaxies with similar stellar mass. The high ($\Sigma_{\rm gas} \approx 220 \, {\rm M}_{\odot} \, {\rm pc}^{-2}$) gas surface density in Althæa, its large Mach number ($M \approx 30$) and the warm kinetic temperature ($T_{\rm k} \approx 45 \, {\rm K}$) of GMCs yield a CO SLED peaked at the CO(7-6) transition, i.e. at relatively high-J and a CO-to-H₂ conversion factor $\alpha_{\rm CO} \approx 1.5 \, {\rm M}_{\odot}$ (K km s⁻¹ pc²)⁻¹ lower than that of the Milky Way. The Atacama Large Millimeter/submillimeter Array observing time required to detect (resolve) at 5σ the CO(7-6) line from galaxies similar to Althæa is $\approx 13 \, {\rm h}$ ($\approx 38 \, {\rm h}$).

Key words: ISM: clouds – ISM: molecules – galaxies: high-redshift – galaxies: ISM – infrared: ISM.