Logest common subsequence (LCS)	
Subsequence! A B B B B B B B B B B B B B B B B B B	
then B CBB is a subsequely	nee
- A segmence whose order is same as inthe They may not be consecutive.	Firen seguence
They may not be consecutive.	ABBBC
Common Rubsequence! X = BAABCBABC	ABCBAC
Y = ABBCBAC	Imgest.
ABC	- 18a common

A sequence that is subsequence to both x and y.

subsequence.

Logest! A common subsequence whose longth is largest possible.

A simple algorithm $|\gamma| = n$ |Y| < |X| \times \rightarrow |X| = mconsider and possible subsequences of y compare with X whether any of the subsequence is common to X return the largest one. summing time: 0 (m.2ⁿ)

$$\begin{array}{lll}
\chi = \chi_1 \chi_2 & \cdots & \chi_m \\
\chi = \chi_1 \chi_2 & \cdots & \chi_n
\end{array}$$

$$\begin{array}{lll}
\chi_i = \chi_1 \chi_2 & \cdots & \chi_i
\end{array}$$

$$\begin{array}{lll}
\chi_i = \chi_1 \chi_2 & \cdots & \chi_i
\end{array}$$

 $\chi_m = \chi_n$ Z_x is a member of LCS of X and Y

Zrx-, is a LCS of Xm-1
and Yn-1

 $\chi_m \neq \chi_n$

Zx #2m Zx 1/3 a L cs of Xm-1 and Yn

Zx + dn Zx is alcs of Xm and Yn-1

Recursive definition clib = optimum length of an LCS for Xi and Yi $C[i,i] = \begin{cases} 0 & \text{when } i = 0 & \text{or } j = 0 \\ 0 & \text{or } i = 0 \end{cases}$ $C[i,i] = \begin{cases} 0 & \text{or } i = 0 \\ \text{if } i,i > 0 \end{cases} \text{ and } x_i = y_i$ $\text{mark}[C[i-1,i], C[i,i-1] \quad \text{if } i,i > 0 \text{ and } x_i \neq y_i.$

Compute the value of the optimum solution L(S-longth (X, Y) m < length (x) in < length (Y) at Blo: moint be a new table. $\langle [i,6] \rangle = 0$ $fre_{j}=1$ to n. c[0,j]=0for i= 1 to m for i=1 to n $i + \chi_{i} = \chi_{i}$ c [i,i] = c[i-1,i-1]+1 b[i,i] = "K" else it c[i=1, i] > c[i, i-1] ()(i,j) = c(i-1,j)6[j] = "\\ " else $\epsilon [i,i] = ([i,i-1])$ b[i,i] = "=" return C, b

Ruming time: O(mn)

B A 2 6 **O** 2 B 3 3 3 B

BCBA