

Introducción a las cargas de trabajo de Kubernetes

Aprenderá a realizar estas tareas:

Trabajar con el comando de kubectl.

Comprender cómo se usan los objetos Deployment en Kubernetes.

Comprender la arquitectura de red de los Pods.

Comprender las abstracciones de almacenamiento de Kubernetes.

Temario

El comando de kubectl

Objetos Deployment

Lab: Cómo crear implementaciones de Google Kubernetes Engine

Redes de Pods

Volumes

Lab: Cómo configurar un almacenamiento persistente para Google Kubernetes Engine

Cuestionario

Resumen

Kubectl transforma las entradas de la línea de comandos en llamadas a la API

Usa kubectl para ver una lista de Pods en un clúster

Primero se debe configurar kubectl

- Se basa en un archivo de configuración: \$HOME/.kube/config.
- El archivo de configuración contiene lo siguiente:
 - El nombre del clúster de destino
 - Las credenciales del clúster
- Configuración actual: kubectl config view.
- Acceso a un Pod de forma interactiva.

Conéctese a un clúster de Google Kubernetes Engine

```
$ gcloud container clusters \
  get-credentials [CLUSTER_NAME] \
  --zone [ZONE_NAME]
```

La sintaxis del comando de kubectl tiene varias partes

La sintaxis del comando de kubectl tiene varias partes

kubectl get pods

kubectl get pod my-test-app

kubectl get pod my-test-app -o=yaml

kubectl get pods -o=wide

El comando de kubectl tiene muchos usos

- Crear objetos de Kubernetes
- Ver objetos
- Borrar objetos
- Visualizar y exportar opciones de configuración

Temario

El comando de kubectl

Objetos Deployment

Lab: Cómo crear implementaciones de Google Kubernetes Engine

Redes de Pods

Volumes

Lab: Cómo configurar un almacenamiento persistente para Google Kubernetes Engine

Cuestionario

Resumen

Los objetos Deployment declaran el estado de los Pods

Aplicación de actualizaciones a los Pods

Reversión de los Pods a la revisión anterior

Escalamiento o ajuste de escala automático de los Pods

Ideales para aplicaciones sin estado

El proceso de los objetos Deployment consta de dos partes

Archivo de objeto Deployment en formato YAML

```
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-app
spec:
  replicas: 3
  template:
    metadata:
      labels:
        app: my-app
    spec:
      containers:
      - name: my-app
        image: gcr.io/demo/my-app:1.0
        ports:
          containerPort: 8080
```

El objeto Deployment tiene tres estados distintos de ciclo de vida

Existen tres formas de crear un objeto Deployment

1

```
$ kubectl apply -f [DEPLOYMENT_FILE]
```

2

```
$ kubectl create deployment \
[DEPLOYMENT_NAME] \
--image [IMAGE]:[TAG] \
--replicas 3 \
--labels [KEY]=[VALUE] \
--port 8080 \
--generator deployment/apps.v1 \
--save-config
```

Existen tres formas de crear un objeto Deployment

Usa kubectl para inspeccionar tu objeto Deployment, o bien obtén el resultado de la configuración del objeto Deployment en formato YAML

```
$ kubectl get deployment [DEPLOYMENT_NAME]
```

```
master $ kubectl get deployment nginx-deployment

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

nginx-deployment 3 3 3m
```

```
$ kubectl get deployment [DEPLOYMENT_NAME] -o yaml > this.yaml
```

Use el comando "describe" para obtener información detallada

\$ kubectl describe deployment [DEPLOYMENT_NAME]

```
master $ kubectl describe deployment nginx-deployment
                        nginx-deployment
Name:
                        default
Namespace:
                        Fri, 12 Oct 2018 15:23:46 +0000
CreationTimestamp:
Labels:
                        app=nginx
Annotations:
                        deployment.kubernetes.io/revision=1
Selector:
                        app=nginx
                        3 desired | 3 updated | 3 total | 3 available | 0 unavailable
Replicas:
StrategyType:
                        RollingUpdate
MinReadySeconds:
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
  Labels: app=nginx
  Containers:
  nginx:
                 nginx:1.15.4
   Image:
   Port:
                  80/TCP
   Host Port:
                  0/TCP
```

O usa la consola de Cloud

Puede escalar el objeto Deployment de forma manual

\$ kubectl scale deployment
[DEPLOYMENT_NAME] -replicas=5

También puede escalar automáticamente el objeto Deployment

```
$ kubectl autoscale deployment [DEPLOYMENT_NAME] --min=1 --max=3
--cpu-percent=80
```

Autoscale Automatically scale

Automatically scale the number of pods.

Minimum number of Pods (Optional)

1

Maximum number of Pods

3

Target CPU utilization in percent (Optional)

80

Puedes actualizar un objeto Deployment de diferentes maneras

```
apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-app
spec:
  replicas: 3
  template:
    spec:
      containers:
      - name: my-app
        image: gcr.io/demo/my-app:1.0
        ports:
        - containerPort: 8080
```

```
$ kubectl apply -f [DEPLOYMENT_FILE]

$ kubectl set image deployment
[DEPLOYMENT_NAME] [IMAGE] [IMAGE]:[TAG]

$ kubectl edit \
    deployment/[DEPLOYMENT_NAME]
```

Puedes actualizar un objeto Deployment de diferentes maneras

El proceso que conlleva la actualización de un objeto Deployment

El Service es una representación de red estable de un conjunto de Pods

Una estrategia de implementación azul-verde garantiza que los servicios de la app permanezcan disponibles

Cómo aplicar una estrategia de implementación azul-verde

```
kind: Service
spec:
                                $ kubectl apply -f my-app-v2.yaml
    selector:
       app: my-app
       version: v1
[...]
        kind: Service
        spec:
                                $ kubectl patch service my-app-service -p \
             selector:
                                '{"spec":{"selector":{"version":"v2"}}}
               app: my-app
               version: v2
```

La implementación de versiones canary es una estrategia de actualización en la que el tráfico se cambia de forma gradual a la versión nueva

La implementación de versiones canary es una estrategia de actualización en la que el tráfico se cambia de forma gradual a la versión nueva

La implementación de versiones canary es una estrategia de actualización en la que el tráfico se cambia de forma gradual a la versión nueva

Cómo aplicar una implementación de versiones canary

```
[...]
kind: Service
spec:
    selector:
    app: my-app
[...]
```

```
$ kubectl apply -f my-app-v2.yaml
$ kubectl scale deploy/my-app-v2 -replicas=10
$ kubectl delete -f my-app-v1.yaml
```

La afinidad de sesión garantiza que todas las solicitudes de clientes se envíen al mismo Pod

Las pruebas A/B sirven para medir la eficacia de una funcionalidad en una aplicación

Las pruebas paralelas te permiten ejecutar una versión nueva y oculta

Cómo elegir la estrategia adecuada

Patrón de implementación o de prueba	Sin tiempo de inactividad	Pruebas de tráfico de producción real	Lanzamiento a los usuarios según las condiciones	Duración de la reversión	Impacto en el hardware y los costos de la nube
Recreación Se cancela la versión 1 y se lanza la versión 2.	×	×	×	Rápida pero perjudicial debido al tiempo de inactividad	No se requiere ninguna configuración adicional
Actualización progresiva La versión 2 se lanza de forma gradual y reemplaza a la versión 1.	✓	×	×	Lenta	Puede requerir configuración adicional para actualizaciones de aumento
Azul-verde La versión 2 se lanza junto con la versión 1. El tráfico se pasa a la versión 2 después de la prueba.	✓	×	×	Instantánea	Se deben mantener los entornos azul y verde en simultáneo
Versión canary La versión 2 se lanza a un subconjunto de usuarios y, luego, se realiza un lanzamiento completo.	✓	✓	×	Rápida	No se requiere ninguna configuración adicional
A/B La versión 2 se lanza, en condiciones específicas a un subconjunto de usuarios.	✓	✓	✓	Rápida	No se requiere ninguna configuración adicional
Paralela La versión 2 recibe tráfico real sin afectar las solicitudes de los usuarios.	✓	✓	×	No aplica	Se deben mantener entornos paralelos para capturar y volver a reproducir las solicitudes de los usuarios

Cómo revertir un objeto Deployment

```
$ kubectl rollout undo deployment [DEPLOYMENT_NAME]
```

```
$ kubectl rollout undo deployment [DEPLOYMENT_NAME] --to-revision=2
```

```
$ kubectl rollout history deployment [DEPLOYMENT_NAME] --revision=2
```

Política de limpieza:

- Predeterminado: 10 revisiones
- Para cambiar: .spec.revisionHistoryLimit

Se pueden aplicar distintas acciones a un objeto Deployment

Pausar \$ kubectl rollout pause deployment [DEPLOYMENT_NAME]

Reanudar \$ kubectl rollout resume deployment [DEPLOYMENT_NAME]

Supervisar \$ kubectl rollout status deployment [DEPLOYMENT_NAME]

Borre una implementación

\$ kubectl delete deployment [DEPLOYMENT_NAME]

Temario

El comando de kubectl

Objetos Deployment

Lab: Cómo crear implementaciones de Google Kubernetes Engine

Redes de Pods

Volumes

Lab: Cómo configurar un almacenamiento persistente para Google Kubernetes Engine

Cuestionario

Resumen

Introducción al lab

Cómo crear implementaciones de Google Kubernetes Engine

Temario

El comando de kubectl

Objetos Deployment

Lab: Cómo crear implementaciones de Google Kubernetes Engine

Redes de Pods

Volumes

Lab: Cómo configurar un almacenamiento persistente para Google Kubernetes Engine

Cuestionario

Resumen

Un Pod es un grupo de contenedores con redes y almacenamiento compartidos

Su carga de trabajo no se ejecuta en un solo Pod

Comunicación entre Pods en el mismo nodo

Los nodos obtienen las direcciones IP del Pod de los rangos de direcciones asignados a su nube privada virtual

Temario

El comando de kubectl

Objetos Deployment

Lab: Cómo crear implementaciones de Google Kubernetes Engine

Redes de Pods

Volumes

Lab: Cómo configurar un almacenamiento persistente para Google Kubernetes Engine

Cuestionario

Resumen

Kubernetes ofrece opciones de abstracción de almacenamiento

Volumes

Son directorios a los que pueden acceder todos los contenedores de un Pod.

Algunos Volumes son efímeros.

Otros son persistentes.

PersistentVolumes

Permiten administrar almacenamiento durable en un clúster.

No dependen del ciclo de vida del Pod.

Se pueden aprovisionar de forma dinámica mediante PersistentVolumeClaims, o bien un administrador de clústeres los puede crear explícitamente.

Explicación de los tipos de Volumes efímeros

Efímero: Comparte el ciclo de vida del Pod.

Se puede hacer referencia a un objeto en un Volume.

Almacena información sensible, como las contraseñas.

Permite que los datos sobre los Pods estén disponibles para los contenedores.

Cuando se asigna un Pod a un nodo, se crea un Volume emptyDir

Cómo crear un Pod con un Volume emptyDir

```
apiVersion: v1
kind: Pod
metadata:
  name: web
spec:
  containers:
  - name: web
    image: nginx
    volumeMounts:
    - mountPath: /cache
      name: cache-volume
  volumes:
    name: cache-volume
    emptyDir: {}
```

Beneficios de los PersistentVolumes

Abstraen el aprovisionamiento de almacenamiento del consumo de almacenamiento.

Promueven la arquitectura de microservicios.

Permiten a los administradores de clústeres aprovisionar y mantener el almacenamiento.

Los desarrolladores pueden reclamar el almacenamiento aprovisionado para el consumo de apps.

Las PersistentVolumeClaims y los PersistentVolumes separan el consumo de almacenamiento del aprovisionamiento

Desarrolladores o propietarios Operaciones de apps Pod Clases de **PVClaim** almacenam iento Pod Persistent Volumes **PVClaim** Cloud neutral Implementación

Cómo crear un disco persistente de Compute Engine con un comando de gcloud

```
$ gcloud compute disks create
--size=100GB
--zone=us-central1-a demo-disk
```

Cómo crear un disco persistente de Compute Engine

Configurar Volumes en Pods dificulta la portabilidad

```
Volumes:
   pd-volume:
    Type: GCEPersistentDisk
   PDName: demo-disk
   FSType: ext4
   Partition: 0
```

La abstracción Persistent Volumes tiene dos componentes

PersistentVolume (PV)

PersistentVolumeClaim (PVC)

- No depende del ciclo de vida de un Pod.
- La administra Kubernetes.
- Se aprovisiona de forma manual o dinámica.
- GKE utiliza los discos persistentes como PersistentVolumes.

Los PersistentVolumes deben reclamarse

Cómo crear un manifiesto de PersistentVolume

```
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pd-volume
spec:
  storageClassName: "standard"
  capacity:
     storage: 100G
  accessModes:
  - ReadWriteOnce:
  gcePersistentDisk:
     pdName: demo-disk
     fsType: ext4
```

```
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: standard
provisioner: kubernetes.io/gce-pd
parameters:
  type: pd-standard
  replication-type: none
  PVC StorageClassName
  debe coincidir con
  PV StorageClassName
```

Crea una StorageClass nueva para usar un disco persistente SSD

```
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pd-volume
spec:
  storageClassName: "ssd"
  capacity:
     storage: 100G
  accessModes:
  - ReadWriteOnce:
  gcePersistentDisk:
     pdName: demo-disk
     fsType: ext4
```

```
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
  name: ssd
provisioner: kubernetes.io/gce-pd
parameters:
  type: pd-ssd
```

El método moderno y más fácil de administrar es el uso de la abstracción PersistentVolumes

```
apiVersion: v1
kind: Pod
metadata:
  name: demo-pod
spec:
  containers:
   - name: demo-container
     image: gcr.io/hello-app:1.0
     volumeMounts:
     - mountPath: /demo-pod
     name: pd-volume
  volumes:
   - name: pd-volume
     PersistentVolumeClaim:
        claimName: pd-volume-claim
```

```
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: pd-volume-claim
spec:
  storageClassName: "standard"
  accessModes:
   - ReadWriteOnce:
  resources:
     requests:
        storage: 100G
```

Cómo visualizar la nueva clase de almacenamiento en la consola de Cloud

Temario

El comando de kubectl

Objetos Deployment

Lab: Cómo crear implementaciones de Google Kubernetes Engine

Redes de Pods

Volumes

Lab: Cómo configurar un almacenamiento persistente para Google Kubernetes Engine

Cuestionario

Resumen

Introducción al lab

Cómo configurar un almacenamiento persistente para Google Kubernetes Engine

Temario

El comando de kubectl

Objetos Deployment

Lab: Cómo crear implementaciones de Google Kubernetes Engine

Redes de Pods

Volumes

Lab: Cómo configurar un almacenamiento persistente para Google Kubernetes Engine

Cuestionario

Resumen

Pregunta no 1

Pregunta

¿Con qué componente del plano de control interactúa el comando de kubectl?

- A. etcd
- B. kubelet
- C. kube-apiserver
- D. La API de GKE

Pregunta no 1

Respuesta

¿Con qué componente del plano de control interactúa el comando de kubectl?

- A. etcd
- B. kubelet
- C. kube-apiserver
- D. La API de GKE

Pregunta nº 2

Pregunta

Desea usar kubectl para configurar su clúster, pero primero debe configurarlo. ¿Dónde almacena su archivo de configuración el comando de kubectl?

- A. kubectl siempre solicita las credenciales al usuario antes de ejecutar comandos.
- B. kubectl usa los mismos tokens de autorización y de credenciales que las utilidades de gcloud CLI.
- C. Cuando es necesario, la información de configuración se almacena en variables de entorno en la shell actual.
- D. La información de configuración se almacena en el archivo \$HOME/.kube/config.

Respuesta

Desea usar kubect1 para configurar su clúster, pero primero debe configurarlo. ¿Dónde almacena su archivo de configuración el comando de kubect1?

- A. kubectl siempre solicita las credenciales al usuario antes de ejecutar comandos.
- B. kubectl usa los mismos tokens de autorización y de credenciales que las utilidades de gcloud CLI.
- C. Cuando es necesario, la información de configuración se almacena en variables de entorno en la shell actual.
- D. La información de configuración se almacena en el archivo \$HOME/.kube/config.

Pregunta

Desea usar un comando kubectl get para identificar en qué nodo se está ejecutando cada Pod. ¿Qué comando debe ejecutar?

- A. kubectl get nodes
- B. kubectl get nodes -o=yaml
- C. kubectl get pods
- D. kubectl get pods -o=wide

Respuesta

Desea usar un comando kubectl get para identificar en qué nodo se está ejecutando cada Pod. ¿Qué comando debe ejecutar?

- A. kubectl get nodes
- B. kubectl get nodes -o=yaml
- C. kubectl get pods
- D. kubectl get pods -o=wide

Pregunta

¿Cuál es el propósito de Service? Elija todas las opciones verdaderas (en este caso, son 2).

- A. Permitirle seleccionar cómo se exponen los Pods.
- B. Permitirle restringir el consumo de recursos de los Pods.
- C. Proporcionar un extremo de red de balanceo de cargas para Pods.
- D. Proporcionar una manera de inspeccionar y diagnosticar el código que se ejecuta en un Pod.

Respuesta

¿Cuál es el propósito de Service? Elija todas las opciones verdaderas (en este caso, son 2).

A. Permitirle seleccionar cómo se exponen los Pods.

V

- B. Permitirle restringir el consumo de recursos de los Pods.
- C. Proporcionar un extremo de red de balanceo de cargas para Pods.

- V
- D. Proporcionar una manera de inspeccionar y diagnosticar el código que se ejecuta en un Pod.

Pregunta

Después de que se crea un objeto Deployment y de que se estén ejecutando sus Pods, ¿qué componente es responsable de garantizar que se inicie un Pod de reemplazo cuando un Pod falle o se expulse?

- A. DaemonSet
- B. Deployment
- C. ReplicaSet
- D. StatefulSet

Respuesta

Después de que se crea un objeto Deployment y de que se estén ejecutando sus Pods, ¿qué componente es responsable de garantizar que se inicie un Pod de reemplazo cuando un Pod falle o se expulse?

- A. DaemonSet
- B. Deployment
- C. ReplicaSet
- D. StatefulSet

Pregunta

¿Cuál es la relación entre los objetos Deployment y ReplicaSet?

- A. Un objeto Deployment configura un controlador de ReplicaSet para crear y mantener una versión específica de los Pods que especifica el objeto Deployment.
- B. Un objeto Deployment configura un controlador de ReplicaSet para crear y mantener todos los Pods que especifica el objeto Deployment, independientemente de su versión.
- C. Un ReplicaSet configura un controlador del objeto Deployment para crear y mantener una versión específica de los Pods que especifica el objeto Deployment.
- D. No hay relación; en el Kubernetes moderno, los controladores Replication normalmente se usan para mantener un conjunto de Pods en un estado de ejecución.

Respuesta

¿Cuál es la relación entre los objetos Deployment y ReplicaSet?

A. Un objeto Deployment configura un controlador de ReplicaSet para crear y mantener una versión específica de los Pods que especifica el objeto Deployment.

- B. Un objeto Deployment configura un controlador de ReplicaSet para crear y mantener todos los Pods que especifica el objeto Deployment, independientemente de su versión.
- C. Un ReplicaSet configura un controlador del objeto Deployment para crear y mantener una versión específica de los Pods que especifica el objeto Deployment.
- D. No hay relación; en el Kubernetes moderno, los controladores Replication normalmente se usan para mantener un conjunto de Pods en un estado de ejecución.

Pregunta

¿Qué tipo de aplicación es adecuada para usar con un objeto Deployment?

- A. Por lotes
- B. Con estado
- C. Sin estado
- D. Escrita en Go

Respuesta

¿Qué tipo de aplicación es adecuada para usar con un objeto Deployment?

- A. Por lotes
- B. Con estado
- C. Sin estado
- D. Escrita en Go

Pregunta

Realizó varias modificaciones en su implementación y aplicó los cambios. ¿Qué comando debe usar para revertir el entorno a la implementación identificada en el historial de implementaciones como la revisión 2?

- A. Debe ejecutar "kubectl apply -f DEPLOYMENT_FILE --to-revision=2".
- B. Debe ejecutar "kubectl rollout undo deployment" dos veces.
- C. Debe ejecutar "kubectl rollout undo deployment --to-revision=2".
- D. Debes seleccionar la revisión deseada de la lista del historial de revisión en la consola de Cloud.

Respuesta

Realizó varias modificaciones en su implementación y aplicó los cambios. ¿Qué comando debe usar para revertir el entorno a la implementación identificada en el historial de implementaciones como la revisión 2?

- A. Debe ejecutar "kubectl apply -f DEPLOYMENT_FILE --to-revision=2".
- B. Debe ejecutar "kubectl rollout undo deployment" dos veces.
- C. Debe ejecutar "kubectl rollout undo deployment --to-revision=2".
- V

D. Debes seleccionar la revisión deseada de la lista del historial de revisión en la consola de Cloud.

Pregunta

Estás resolviendo una variedad de problemas con un objeto Deployment y debes realizar una gran cantidad de cambios. ¿Qué comando puede ejecutar para agrupar estos cambios en un solo lanzamiento y, así, evitar aplicar una gran cantidad de lanzamientos?

- A. kubectl delete deployment
- B. kubectl rollout pause deployment
- C. kubectl rollout resume deployment
- D. kubectl stop deployment

Respuesta

Estás resolviendo una variedad de problemas con un objeto Deployment y debes realizar una gran cantidad de cambios. ¿Qué comando puede ejecutar para agrupar estos cambios en un solo lanzamiento y, así, evitar aplicar una gran cantidad de lanzamientos?

- A. kubectl delete deployment
- B. kubectl rollout pause deployment
- C. kubectl rollout resume deployment
- D. kubectl stop deployment

Pregunta

En GKE, ¿cuál es la fuente de las direcciones IP para Pods?

- A. Rangos de direcciones asignados a su nube privada virtual
- B. Direcciones de red arbitrarias por clúster
- C. Direcciones de red de bucle invertido

Respuesta

En GKE, ¿cuál es la fuente de las direcciones IP para Pods?

A. Rangos de direcciones asignados a su nube privada virtual

V

- B. Direcciones de red arbitrarias por clúster
- C. Direcciones de red de bucle invertido

Pregunta

Se reprogramó su Pod y ya no es posible acceder a la dirección IP que se le asignó cuando se programó originalmente. ¿Cuál puede ser el motivo?

- A. Un firewall bloquea la nueva dirección IP del Pod.
- B. El nuevo Pod recibió una dirección IP diferente.
- C. Un firewall bloquea la antigua dirección IP del Pod.
- D. Se agotó el rango de IP del Pod para el clúster.

Respuesta

Se reprogramó su Pod y ya no es posible acceder a la dirección IP que se le asignó cuando se programó originalmente. ¿Cuál puede ser el motivo?

- A. Un firewall bloquea la nueva dirección IP del Pod.
- B. El nuevo Pod recibió una dirección IP diferente.
- C. Un firewall bloquea la antigua dirección IP del Pod.
- D. Se agotó el rango de IP del Pod para el clúster.

Pregunta

¿Qué sucede si falla un Pod mientras está usando un volumen persistente?

- A. Se borran los volúmenes y se pierde su contenido.
- B. Los volúmenes se desactivan en el Pod que falla y se borra su contenido.
- C. Los volúmenes se desactivan en el Pod que falla y su contenido se revierte a lo que tenían antes de que el Pod se adjuntara a ellos.
- D. Los volúmenes se desactivan en el Pod que falla y continúan existiendo con su último contenido.

Respuesta

¿Qué sucede si falla un Pod mientras está usando un volumen persistente?

- A. Se borran los volúmenes y se pierde su contenido.
- B. Los volúmenes se desactivan en el Pod que falla y se borra su contenido.
- C. Los volúmenes se desactivan en el Pod que falla y su contenido se revierte a lo que tenían antes de que el Pod se adjuntara a ellos.
- D. Los volúmenes se desactivan en el Pod que falla y continúan existiendo con su último contenido.

Pregunta

¿Cómo puede un Pod solicitar almacenamiento persistente sin especificar los detalles de cómo se implementará dicho almacenamiento?

- A. CongcePersistentDisk
- B. Con PersistentVolume
- C. Con PersistentVolumeClaim
- D. Con emptyDir

Respuesta

¿Cómo puede un Pod solicitar almacenamiento persistente sin especificar los detalles de cómo se implementará dicho almacenamiento?

- A. CongcePersistentDisk
- B. Con PersistentVolume
- C. Con PersistentVolumeClaim
- D. Con emptyDir

Pregunta

El propietario de una aplicación creó un manifiesto de Pod mediante una PersistentVolumeClaim con un valor estándar de StorageClassName. ¿Qué tipo de almacenamiento se usa para este volumen en un clúster de GKE?

- A. Google Persistent Disk
- B. Volumen local en el nodo
- C. Con copia de seguridad de una memoria
- D. Almacenamiento de NFS

Respuesta

El propietario de una aplicación creó un manifiesto de Pod mediante una PersistentVolumeClaim con un valor estándar de StorageClassName. ¿Qué tipo de almacenamiento se usa para este volumen en un clúster de GKE?

A. Google Persistent Disk

- B. Volumen local en el nodo
- C. Con copia de seguridad de una memoria
- D. Almacenamiento de NFS

Temario

El comando de kubectl

Objetos Deployment

Lab: Cómo crear implementaciones de Google Kubernetes Engine

Redes de Pods

Volumes

Lab: Cómo configurar un almacenamiento persistente para Google Kubernetes Engine

Cuestionario

Resumen

Resumen

Trabajar con el comando de kubectl.

Comprender cómo se usan los objetos Deployment en Kubernetes.

Comprender la arquitectura de red de los Pods.

Comprender las abstracciones de almacenamiento de Kubernetes.

Google Cloud