南方冶金学院考试试题

考试科目		考试日期		
班级	学号	姓名	成绩	

一、基本题(每小题5分,共计50分)

1、下图(a)(b)(c)三个电路中,"D"为硅二极管,设其正向压降为0.7伏,反向开路,如果直流电流 V_i =12伏,试求 V_R 和 V_D 之值。

2、有两个稳压管 D_{E1} 和 D_{E2} ,其稳定电压分别为6伏和9伏,正向压降都是0.7伏,向如何连接才能得到9.7伏和1.4伏的稳定电压?画出稳压管连接电路。

- 3、输入正弦波小信号由固定偏置电路组成的单管交流电压放大器,其静态工作点调整合适后,若减小偏置电阻R_B,此时静态工作点"Q"将沿直流负载线向 偏移。输出信号可能产生 失真。输出电压的 半波可能被削顶。
 - 4、下图所示两个电路能否有放大作用?若不能,试指出问题所在。

5、射极输出器有哪些主要特点?

6、在典型差动放大器中	, 对差模信号电压放大倍数要求	愈好。对共摸信号放大倍数要求	愈
好。即CMRR要求	愈好。为此双端输出时,要求电路参数尽量		0

7、试判断图示(a)(b)放大电路中,有无交流级间反馈?指出反馈性质(正反馈还是负反馈);反馈方式(串联还是并联,电流还是电压)。

8、试判别以下电路是否满足自激振荡的相位条件,并指出反馈电压 V_f 取自哪一个元件两端。

9、图示电路,若输入交流电压 $U_i=20\sqrt{2}S$ inwt 伏, $R_L=100$ 欧,并设二极管D正向压降为零;反向电阻为无穷大,此时 R_L 两端电压 的平均值:

- 10、已知逻辑式F=A(B+C)+BC
- (1)画出与上式相对应的逻辑图
- (2)若用与非门实现上述逻辑关系,试写出与非门逻辑式,并画出相对应的逻辑图。
- 二、(10分)图示单管放大电路,已知 T_1 的 r_{be} = 1^k ; β =50; 其余参数如图中标示
- 1、用估算法求静态值。
- 2、当输入信号正弦电压有效值相量U_i=20mv时,求输出电压有效值相量 $U_0 = ?$

四、(10分)图示电路,求输出电压 $V_0=?$

五、(10分) J-K触发器如图(a)图(b)连接时,其逻辑功能如何?填写真值表。

六、(10分)图示电路为三个主从型J-K触发器组成,在工作时,均先经 S_D 置"1",而后同时给各CP端送入计数脉冲,试分析前八个脉冲期间,各触发器状态的变化,填写状态表,并判断此电路能完成的功能。

触发器状态表

) 1 米1- ロ子 ハーナ 米1-	触发器状态			7/4.>->-
计数脉冲数	Q ₃	Q_2	Q_1	附注
0				
1				
2				

3		
4		
5		
6		
7		
8		

判断: 此电路为 电路。

答案

一、基本题: (每小题5分, 共50分)

P DE1/

2.5' +2.5'

稳压值为9.7伏

稳压值为1.4伏

- 3、向上偏移。可能产生饱和失真。负半波。
- 4、a、无放大作用: 因为发射极反偏, 集电极正偏。

- b、无放大作用:因为输入信号被 C_B 短路。
- 2.5′ 1.3′
- 5、(1)电压放大倍数近似为1,但恒小于1。 (2)输出电压与输入电压同相,具有跟随作用。
- 1.3

1.6' +1.8' +1.6'

2.5'

(3)输入电阻高。

1.2

(4)输出电阻低。

- 1.2
- 6、愈大、愈小、愈大、对称、大一些
- +1' +1' +1' +1'
- 7、a、串联电流正反馈 b、并联电压负反馈
- 2.5 +2.5
- 8、a、不能产生,因为是负反馈,反馈信号取自 C_1 两端b、不能产生,因为是负反馈,反馈信号取自 R_2 两端
- 2.5 ' 2.5 '

9、V₀=0.45×20=9伏

2.5′

$$V_{DRM} > 20\sqrt{2} = 28.3$$
 (x)

2.5′

10、(1)

(2)
$$F = A(B + C) + BC = AB + AC + BC = AB \cdot AC \cdot BC$$
 1.5

$$\begin{array}{c} U_{\rm B} = \frac{11}{24 + 11} \times 12 = 3.77^{\rm V} & 2 \\ \\ I_{\rm C} \approx I_{\rm E} = \frac{3.77 - 0.6}{1.8} \approx 35 \mu A & 2' \\ \\ U_{\rm CE} = U_{\rm CC} - I_{\rm C} (R_{\rm C} + R_{\rm E}) = 12 - 1.76 \times 4.8 = 2.55^{\rm V} \end{array}$$

2\(\dot{A}_\nabla = -\beta \frac{R_L}{r_{be}} = -50 \frac{3//6}{1} = -100\)
$$\dot{U}_0 = -\dot{A}_\nabla \dot{U}_i = -100 \times 20 \times 10^{-3} = -2^\nabla \)
2'$$

6′

三、解:1、

2、

$$\begin{split} r_i &= R_B \, /\! \left[r_{bel} \! + \! (\beta_l + 1) R'_E \right] \qquad R'_E = 20 \, /\! / \, 20 \, /\! / \, 150 \, /\! / \, 2 = 1.65^k \\ &= 100 \, /\! / \left[2 + 51 \! \times \! 1.65 \right] \\ &= 100 \, /\! / \, 86.15 \approx 46^k \\ r_0 &= 4^k \end{split}$$

2′

2′

3.
$$\dot{A} v_1 = \frac{(1+\beta_1) \dot{R_E}}{r_{be1} + (\beta_1 + 1) \dot{R_E}} = \frac{2'}{51 \times 1.65} = 0.977$$

$$\dot{A} v_2 = -\beta_2 \frac{\dot{R_L}}{r_{be2}} = -50 \times \frac{4 \# 6}{2} = -50 \times \frac{2.4}{2} = -60$$

$$\therefore \text{ AV} = \text{AV}_1 \text{ AV}_2 = 0.977 \times (-60) = -58.62$$

四、解:

$$U_{01} = -\frac{R_{F}}{R^{1}}U_{i1} = -\frac{10}{2}0.2 = -1^{v}$$

$$U_{0} = (1 + \frac{R_{F}}{R_{1}})\frac{R_{3}}{R_{2} + R_{3}}U_{i2} - \frac{R_{F}}{R_{1}}U_{01}$$

$$= (1 + \frac{10}{2})\frac{10}{2 + 10}(-1) - \frac{10}{2}(-1)$$

$$= -6 \times \frac{10}{12} + \frac{10}{2}$$

五、

5′ 转换为 T′ 触发器 5′

Α	Q _{n+1}
0	Q.
1	Q _n

转换为 D 触发器

В	Q _{n+1}
0	0
1	1

六、

87 触发器状态表

2.1. *** F3. \n\+	触发器状态			1744 A-A-
计数脉冲数	Q ₃	Q ₂	Q_1	附注
0	1	1	1	
1	1	1	0	
2	1	0	1	
3	1	0	0	
4	0	1	1	
5	0	1	0	
6	0	0	1	
7	0	0	0	
8	1	1	1	

判断: 此电路为减法计数器电路。 2′