EVALUATION DES MODÈLES SUPERVISÉS

RÉGRESSION - RAPPELS

Dans le cadre d'une régression, Y prend des valeurs continues. On cherche à comparer les vrais yi de l'ensemble de test avec les ŷi prédits :

Уi	ŷi
3.0	2.5
-0.5	0.0
2.0	2.0
7.0	8.0

Erreur Quadratique Moyenne (MSE)

Mean Squared Error (MSE) : moyenne des carré des différences entre les vraies valeurs et les valeurs prédites :

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Correspond à la moyenne des distances des points de test à la droite de régression.

Plus cette valeur est petite, meilleur est le modèle.

```
from sklearn.metrics import mean_squared_error
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
mean_squared_error(y_true, y_pred)
0.375
```

Erreur absolue moyenne (MAE)

Mean Absolute Error : moyenne des valeurs absolues des différences entre les vraies valeurs et les valeurs prédites :

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Plus cette valeur est petite, meilleur est le modèle.

from sklearn.metrics import mean_absolute_error
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
mean_absolute_error(y_true, y_pred)
0.5

CLASSIFICATION - RAPPELS

Dans le cadre d'une classification, Y prend des valeurs discrètes (dans cet exemple, 3 classes possibles). On cherche à comparer les vrais y de l'ensemble de test avec les ŷ prédits :

Уi	ŷi
0	0
1	2
2	2
1	0

TAUX DE BONNE CLASSIFICATION

Accuracy: pourcentage des observations pour lesquelles le modèle a bien prédit.

$$acc = \frac{1}{n} \sum_{i=1}^{n} \delta(\hat{y}_i = y_i)$$

Plus cette valeur est grande (entre 0 et 1), meilleur est le modèle.

```
from sklearn.metrics import accuracy_score
y_pred = [0, 1, 2, 1]
y_true = [0, 2, 2, 0]
accuracy_score(y_true, y_pred)
0.5
```

MATRICE DE CONFUSION - CAS BINAIRE

Permet en un coup d'oeil de diagnostiquer les erreurs faites par

l'algorithme.

		Prédit		
		0	1	
Vrai	0	TN (Vrais négatifs)	FP (faux positifs)	
	1	FN (faux négatifs)	TP (Vrais positifs)	

```
from sklearn.metrics import confusion_matrix y_{true} = [1, 0, 1, 0, 0, 1] y_{pred} = [0, 0, 1, 1, 1, 1] confusion_matrix(y_{true}, y_{pred}) array([[1, 1], ...])
```

MATRICE DE CONFUSION MULTICLASSES

		Prédit		
		1	2	3
Vrai	1	Vrais 1	1 prédits 2	1 prédits 3
	2	2 prédits 1	Vrais 2	2 prédits 3
	3	3 prédits 1	3 prédits 2	Vrais 3

TAUX DE VRAIS POSITIFS

Seulement valable dans le cas binaire.

True Positive Rate (TPR): pourcentage des observations positives

prédites positives. Positifs prédits positifs

$$TPR = \frac{\overbrace{TP}}{\underbrace{TP + FN}}$$

Tous les positifs de l'ensemble import numpy as np

y_pred = np.array([0, 1, 1, 0])
y_true = np.array([0, 1, 0, 0])

 $tpr = (y_true + y_pred == 2).sum()*1.0 / (y_true == 1).sum()$ tpr

>> 1.0

TAUX DE VRAIS NÉGATIFS

Seulement valable dans le cas binaire.

True Negative Rate (TNR) : pourcentage des observations négatives prédites

Négatifs prédits négatifs négatives.

$$TNR = \frac{\overbrace{TN}}{\underbrace{TN + FP}}$$

import numpy as np Tous les négatifs de l'ensemble $y_{pred} = np.array([0, 1, 1, 0])$

 $y_{true} = np.array([0, 1, 0, 0])$

 $tnr = (y_true + y_pred == 0).sum()*1.0 / (y_true == 0).sum()$ tnr

>> 0.6666667

TAUX DE BONNE CLASSIFICATION

ÉQUILIBRÉ

Seulement valable dans le cas binaire.

Balanced Accuracy: moyenne du TPR et du TNR. Utile en cas de

classes très déséquilibrées.

$$bal_{acc} = rac{TPR + TNR}{2}$$

import numpy as np

 $y_{pred} = np.array([0, 1, 1, 0])$ $y_{true} = np.array([0, 1, 0, 0])$

 $tpr = (y_true + y_pred == 2).sum()*1.0 / (y_true == 1).sum()$ $tnr = (y_true + y_pred == 0).sum()*1.0 / (y_true == 0).sum()$ $bal_acc = (tpr + tnr) / 2$

bal_acc >> 0.8333333333333333

PRÉCISION ET RECALL

Precision : taux de réels positifs parmi les positifs prédits.

$$precision = rac{TP}{TP + FP}$$

Recall: taux de positifs prédits parmi les réels positifs = TPR

$$recall = rac{TP}{TP + FN}$$

from sklearn.metrics import precision_score, recall_score
y_pred = np.array([0, 1, 1, 0])
y_true = np.array([0, 1, 0, 0])
precision_score(y_true, y_pred)

>>> 0.5
recall_score(y_true, y_pred)
>>> 1.0

F₁-SCORE

F₁-score : moyenne harmonique du recall et de la précision.

$$f_1 = 2 \times \frac{precision \times recall}{precision + recall}$$

Plus cette valeur est grande (entre 0 et 1), meilleur est le modèle.

```
from sklearn.metrics import f1_score
y_pred = np.array([0, 1, 1, 0])
y_true = np.array([0, 1, 0, 0])
f1_score(y_true, y_pred)
>>> 0.66666666666
```

COURBE ROC

ROC (Receiver Operating Characteristics): progrès de l'algorithme lorsqu'on fait varier le seuil de discrimination (valeur à partir de laquelle ŷ vaut 1). Cette courbe est forcément croissante.

Source: jxieeducation.com

COURBE PRÉCISION-RECALL

Progrès de l'algorithme lorsqu'on fait varier le seuil de discrimination (valeur à partir de laquelle ŷ vaut 1). La meilleure courbe est celle qui permet d'obtenir le meilleur compromis précision/recall.

Source: classval.wordpress.com