الأستاذ : تبانح خالد المستوى : السنة الثانية بكالوريا علوم تجريبية

الدوال اللوغاريتمية

نيابة ثانوية المنصور الذهبي التأميلية سيدي البرنوصي – زناتة أكاديمية: الدار البيضاء الكبري

الدرس محتوى الدرس

- حالة اللوغاريتم النيبري : I.
- دالة اللوغاريتم الأساس α ودالة اللوغاريتم العشري: II.

القدرات المنتظرة

- ✓ التمكن من حساب اللوغاريتميات
- ✓ حل معادلات و متراجدات لوغاريتمية
 - ✓ معرفة و تطبيق اللوغاريتو العشري
- ✓ معرفة النمايات اللوغاريتمية الأساسية و توظيفها
 - ✓ دراسة دوال تحتوي غلى لو غاريتميات

الأستاذ : تبائح خالد المستوى : السنة الثانية بكالوريا علوم تجريبية

الدوال اللوغاريتمية

ثانوية المنصور الذهبي التأميلية نيابة سيدي البرنوصي – زناتة أكاديمية: الدار البيضاء الكبرى

دالة اللوغاريتم النيبرى: .1

تعريف: دالة اللوغاريتم النيبري هي الدالة الأصلية للدالة $x o rac{1}{x}$ على المجال $]0;+\infty[$ والتي تنعدم فى 1 ونرمز لها ب ln.

2. نتائج:

- مجموعة تعريف الدالة \ln هي المجال: $]\infty+\infty[$.
 - $. \ln 1 = 0$ •
- الدالة \ln تزايدية قطعا على $]0; +\infty$ ولدينا $\frac{1}{x}=\frac{1}{x}=0$ الدالة \ln تزايدية قطعا على $0; +\infty$
 - : ليكن ∞ إذن لدينا $x \in (0; +\infty)$ إذن لدينا

$$\ln x = \ln y \iff x = y \checkmark$$

$$\ln x > \ln y \iff x > y \checkmark$$

 $x \in]0; +\infty[$ فيكن $x \in]0; +\infty[$

$$\ln x = 0 \Leftrightarrow x = 1 \checkmark$$

$$\ln x > 0 \Leftrightarrow x > 1 \checkmark$$

$$\ln x < 0 \Leftrightarrow 0 < x < 1 \checkmark$$

 $\ln(x \times y) = \ln x + \ln y$: إذن لدينا $y \in (0; +\infty)$ و $x \in (0; +\infty)$: نتائج : ليكن $x \in \mathbb{Q}$ و $y \in [0; +\infty[$ و $x \in [0; +\infty[$ نتائج

$$\ln\left(\frac{1}{x}\right) = -\ln x \quad \blacksquare$$

$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y$$

$$ln(x^r) = r . ln x$$

: اذن لدينا $x \in]0; +\infty$ الإن الدينا

$$\ln(\sqrt{x}) = \frac{1}{2} \cdot \ln x \quad \blacksquare$$

$$\ln(\sqrt[3]{x}) = \frac{1}{3} \cdot \ln x \quad \blacksquare$$

4. ملاحظات هامة : x.y>0 بحیث x.y>0 بحیث x.y>0 بخیث x.y>0 بخیث x.y>0 بخیرین من x.y>0 بخیرین من بخیرین من بخیرین بخیرین من بخیرین بخیرین من بخیر

$$\ln(x \times y) = \ln|x| + \ln|y| \checkmark$$

$$\ln\left(\frac{x}{y}\right) = \ln|x| - \ln|y| \checkmark$$

$$\ln(x^2) = 2.\ln|x| \checkmark$$

5. دراسة الدالة ln:

 $\lim_{x \to +\infty} \ln x = +\infty$; $\lim_{x \to 0^+} \ln x = -\infty$: مبر هنة نقبلها

ملاحظة : الدالة ln متصلة وتزايدية قطعا على]∞+;0[إذن فهي تقبل دالة عكسية معرفة من نحو $[0;+\infty[$ و بما أن $\mathbb{R} \to 1$ أي $\ln(]0;+\infty[) \to 1$ فإن المعادلة $\ln(]0;+\infty[) = \mathbb{R}$ ا تقبل حلا وحيدا في $[0;+\infty]$ ونرمز لهذا الحل بe . العدد e عدد لا جذري وقيمته المقربة $\ln x=1$ $| \ln e = 1 :$ ولدينا $| e \approx 2,718 |$ هي $| e \approx 2,718 |$

الفروع اللانهائية:

لدينا x=0 الأراتيب) المستقيم ذو المعادلة ال $\lim_{x \to 0^+} \ln x = -\infty$ الأراتيب) الدينا $\sqrt{}$ عمودي للمنحنى (C_{ln}) .

نقبل المبرهنة التالية : $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$ اإذن المنحنى (C_{ln}) يقبل فرعا شلجميا اتجاهه \checkmark محور الأفاصيل بجوار∞+ .

جدول تغيرات الدالة In هو كالتالي :

x	0	1	e	+ ∞
$(\ln x)'$		•	+	
ln x				

التقعر والتحدب:

$$\forall x \in]0; +\infty[: (\ln x)'' = \left(\frac{1}{x}\right)' = \frac{-1}{x^2} < 0$$
 لدينا: $[0; +\infty]$ مقعر على $[0; +\infty]$ مقعر على الم

التمثيل المبياني:

اء. نهایات هامه :
$$\lim_{x \to 0^+} x \cdot \ln x = 0$$
 •

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = 1 \quad \bullet$$

$$\lim_{x \to 0} \frac{\ln x}{x-1} = 1 \quad \bullet$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \quad \bullet$$

$$n \in \mathbb{N}^*$$
; $\lim_{x \to 0^+} x^n \cdot \ln x = 0$ •

$$n \in \mathbb{N}^*$$
; $\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$ •

7. المشتقة اللو غاريتمية:

خاصية و تعريف : U دالة معرفة و قابلة للاشتقاق على مجال I . إذا كانت U لا تنعدم على I فإن: . $\forall x \in I: (\ln |U(x)|)' = \frac{U'(x)}{U(x)}$: الدالة $X \to \ln |U(x)|$ قابلة للاشتقاق على I ولدينا

الدالة: $U ext{ المشتقة اللوغاريتمية للدالة } ext{ الدالة :}$ الدالة المشتقة اللوغاريتمية المشتقة ال

. $f(x) = \ln(x^2 + x + 1)$: تمرین تطبیقی : نعتبر الدالة العددیة f بحیث : تمرین تطبیقی : نعتبر الدالة العددیة

 $x \in D_f$ لكل f'(x) بين أنُ قابلة للاشتقاق على D_f ثم احسب

8. $\frac{U'(x)}{U(x)}$ للدوال الأصلية للدالة $\frac{U'(x)}{U(x)}$ دالة قابلة للاشتقاق على مجال I ولا تنعدم عليه فإن الدوال الأصلية خاصية : إذا كانت U دالة قابلة للاشتقاق للدالة $x o \ln |U(x)| + k$ على I هي الدوال $X o \ln |U(x)| + k$ عدد حقيقي ثابت.

. $\forall x \in \mathbb{R}: f(x) = \frac{6x}{3x^2+8}$: تمرین تطبیقي : نعتبر الدالة العددیة f بحیث

أ - حدد الدوال الأصلبة للدالة على ١٨ .

-1 . -1 التي تنعدم في الدالة f التي تنعدم في

دالة اللوغاريتم للأساس lpha ودالة اللوغاريتم العشرى: .11

1. دالة اللوغاريتم للأساس a:

تعريف : ليكن $x o rac{\ln x}{\ln a}$ عددا حقيقيا موجبا قطعا ومخالفا للعدد 1 . الدالة $x o rac{\ln x}{\ln a}$ تسمى دالة اللوغاريتم $\forall x \in]0; +\infty[: \log_a x = \frac{\ln x}{\ln a}$: للأساس a ونرمز لها ب

• الدالة مlog هي دالة اللوغاريتم النيبري لأن:

 $\forall x \in]0; +\infty[: \log_e x = \frac{\ln x}{\ln e} = \ln x$

 $\log_a 1 = 0$ و $\log_a a = 1$

. $\log_a a^r = r$ لکل $r \in \mathbb{Q}$ لکل •

: الدينا عامع $a \neq 1$ دينا الدينا عداد حقيقية موجبة قطعا مع $a \neq 1$ الدينا

 $\log_a(x \times y) = \log_a x + \log_a y \quad \bullet$

 $\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$

 $\log_a(x^r) = r \cdot \log_a x \; ; r \in \mathbb{Q} \quad \bullet$

2. <u>دالة اللوغاريتم العشري :</u> تعريف : دالة اللوغاريتم العشري هي دالة اللوغاريتم للأساس 10 ونرمز لها ب \log_{10} أو \log_{10}

. $\forall x \in]0; +\infty[: \log x = \frac{\ln x}{\ln 10}]$ ولدينا

. $\log 10^n = n$: لكل $n \in \mathbb{N}^*$ لدينا $n \in \mathbb{N}^*$