

KORE POWER

Mark 1 Technical Datasheet

Document Number: KORE-M1-DAS-0002

Product Name: Mark 1 Energy Storage System

Copyright © KORE Power, Inc.

This document is the property of KORE Power, Inc., and this document and its contents are KORE Power's confidential and proprietary information. This document is for the internal use only of KORE Power and those individuals and entities that KORE Power has expressly authorized to receive and use this document. Do not copy, use, publish, distribute, or otherwise exploit this document or any of its contents without KORE Power's express written permission. All rights reserved.

The information set out herein is subject to change and may be altered without notice. Consult with KORE Power for the latest revision of this document.

Revision History

Rev.	Description	Date	Prepared	Reviewed	Approved
Α	Approved for use	9/13/2019	D.K.	M.Z.	N.W.
В	Changed document format	10/12/2019	D.K.	M.Z.	N.W.
С	Information update	6/1/2020	D.K.	M.Z.	N.W.
D	Information update / add MsBMS	1/12/2021	M.Z.	B.B.	N.W.
Е	Add 9540A, fuse kAIC ratings,	5/25/2021 M.Z.	B.B.	N.W.	
-	Updated Table 6				
F	Updated Table 7 & 8	6/16/2021	B.B.	M.Z.	N.W.
G	Add KP-MC	1/24/2022	J.H.	M.Z.	B.B.

Reference Documents

Number	Title/Description

KORE Power, Inc.

1875 N Lakewood Dr, Suite 200, Coeur d'Alene, ID 83814, USA

Table of Contents

1	A	ACRONYMS AND ABBREVIATIONS	6
2	C	CELL	7
3	В	BATTERY MODULE	8
4	R	RACK MANAGEMENT SYSTEM CONTROLLER	10
	4.1	RMSC MAIN COMPONENTS	11
	4.2	RMSC PROTECTION FUNCTIONS	12
		BATTERY RACK	
		AUXILIARY POWER SUPPLY	
	5.2	HEAT RELEASE ESTIMATES	14
6	K	OREPOINT MANAGEMENT CONTROLLER	14
7	S	SYSTEM TOPOLOGY	16

List of Figures

Figure 1. Battery Cell	7
Figure 2. Charge: 1C, CC&CV Mode; Discharge: 1C, CC Mode	8
Figure 3. Battery Module	8
Figure 4. Rack Management System Controller	10
Figure 5. RMSC Main Components	11
Figure 6. Battery Rack	12
Figure 7. KOREPoint Management Controller	15
Figure 8. Mark 1 System Topology	16
List of Tables	
Table 1. Acronyms and Abbreviations	6
Table 2. Battery Cell Specifications	7
Table 3. Battery Module Specifications	g
Table 4. RMSC Specifications	10
Table 5. RMSC Protection Functions	12
Table 6. Battery Rack Specifications	13
Table 7. Auxiliary Power Consumption	13
Table 8. Thermal Management Estimates	14
Table 9 KP-MC Specifications	15

1 ACRONYMS AND ABBREVIATIONS

Table 1. Acronyms and Abbreviations

Abbreviation	Meaning	
BMS	Battery Management System	
BOL	Beginning of Life	
CAN	Controller Area Network	
EMS	Energy Management System	
KP-MC	KOREPoint Management Controller	
MBMS	Module Battery Management System	
MsBMS	Master Battery Management System	
PCS	Power Conversion System	
PWM	Pulse-Width Modulation	
RBMS	Rack Battery Management System	
RMSC	Rack Management System Controller	
SOC	State of Charge	
SOH	State of Health	

2 CELL

KORE Power cell specifically designed for energy storage.

Figure 1. Battery Cell

Table 2. Battery Cell Specifications

Item	Specification	
Chemistry	NMC/G	
Dimensions (W x D x H)	313 mm x 11.6 mm x 102 mm	
Weight	0.80 ± 0.015 kg	
Capacity ¹	55 Ah @ 25°C, 1/3C	
Nominal Voltage	3.73 V @ 25°C, 1/3C	
Voltage Range	2.8 ~ 4.35 V	
Energy Density	255 Wh/kg @ 25°C, 1/3C	
Cycle Life	80% SOH @ 4000 Cycles est.	
Housing	Aluminum-Plastic Film / Opposing tabs	
Certification/Compliance	UL 1973, IEC 62619, UN 38.3, UL 9540A	

¹Capacity varies with C rates

Figure 2. Charge: 1C, CC&CV Mode; Discharge: 1C, CC Mode

3 BATTERY MODULE

The battery module consists of 32 battery cells (2P16S) and a MBMS that:

- Communicates with the Rack BMS (RBMS)
- Provides operating information to the RBMS
- · Maintains cell voltage through passive cell balancing
- Monitors the module temperature and controls the cooling fan using PWM.

Figure 3. Battery Module

Table 3. Battery Module Specifications

Item		Specification	
Discoursions (M.: D.: II)	445 mm x 577 mm x 115 mm		
Dimensions (W x D x H)	483 mm x 577 mm x 115 mm with Mounting Bracket		
Weight		Approx. 41 kg	
Configuration		2P16S	
Capacity ¹		110 Ah @ 25°C, 1/3C	
Nominal Voltage		59.6 V @ 25°C, 1/3C	
Voltage Range		44.9 V – 69.5 V	
Energy		6.51 kWh @ 25°C, 1/3C	
Operating Ambient Temperature Range ^{2,3}		0 ~ 40°C	
Recommended Operating Ambient Temperature ²		23 ± 4°C, Average 23°C	
Maximum Charge Power		6.5 kW @ 23 ± 4°C	
Maximum Discharge Power	6.5 kW @ 23 ± 4°C		
Maximum Charge Current	30A @ 0 ~ 12°C Ambient		
Maximum Griarge Gurrent	100A @ 12 ~ 40°C Ambient		
Maximum Discharge Current	150A @ 0 ~ 35°C Ambient		
Maximum Discharge Current	100A @ 35 ~ 40°C Ambient		
Operating Humidity	5 ~ 85% RH (Non-Condensing)		
Application Altitude		≤ 2000m	
IP Rating		IP 20	
Communication	CAN 2.0B		
Cooling	Air-Cooled		
Bus Bar Connections	M8 Nut		
Storage and Transportation Temperature?	~7 days	-20 ~ 55°C	
Storage and Transportation Temperature ³	~6 months	-20 ~ 45°C	
Storage and Transportation Humidity	5 ~ 75% RH (Non-Condensing)		
Certification/Compliance	UL 1973, IEC 62619, UN 38.3, UL 9540A		

¹Capacity varies with C rates

²Measured at fan cold air intake

³Low/high temperatures and long storage times will impact product life and performance

4 RACK MANAGEMENT SYSTEM CONTROLLER

The Rack Management System Controller (RMSC) provides electrical connections to a DC bus system and contains a RBMS that:

- Provides a communication interface for external controllers
- Collects battery system information and estimates battery system status
- · Monitors battery system operating status
- Protects the battery system from abuse conditions

Figure 4. Rack Management System Controller

Table 4. RMSC Specifications

Item	Specification
Dimensions (W x D x H)	435 mm x 420 mm x 160 mm 483 mm x 420 mm x 160 mm with Mounting Bracket
Weight	Approx. 18 kg
Operating Voltage Range	40 ~ 1500 V
Current Rating	150 A
Auxiliary Power Voltage Source	24 VDC
Operating Temperature Range	-5 ∼ 55°C
Operating Humidity	5 ~ 85 % RH (Non-Condensing)

Application Altitude	≤ 2000 m	
Communications	CAN 2.0B	
Cooling	Air-Cooled	
Fuse Rating ¹	160 A - 50 kAIC	
Main DC Terminals	M8 Bolt	
Low Voltage Terminals	M3 Screw	
Storage Temperature	-20 ~ 55 ℃	
Storage and Transportation Humidity	5 ~ 75 % RH (Non-Condensing)	

¹250 kAIC option available, consult with KORE Power for availability

4.1 RMSC MAIN COMPONENTS

The RMSC consists of the following components:

Figure 5. RMSC Main Components

4.2 RMSC PROTECTION FUNCTIONS

Table 5. RMSC Protection Functions

Function	Description
Over/Under Voltage	BMS protects the system from operating outside of cell/rack voltage rating
Over Current BMS protects the system from operating outside of charge/discharge current	
Over Temperature BMS protects the system from operating outside of operating temperature	
Short Circuit Fuse protects the system in the event of a short circuit	
Inrush Current	Pre-charge circuit minimizes inrush current

5 BATTERY RACK

The Battery Rack consists of 17 battery modules and one RMSC, including all cables and connectors.

Figure 6. Battery Rack

Table 6. Battery Rack Specifications¹

Item	Specific	cation
Dimensions (W x D x H) 520 mm x 655 mm x 2260 mm		nm x 2260 mm
Operating Ambient Temperature Range ²	0 ~ 40°C	
Recommended Operating Ambient Temperature ²	23 ± 4°C, Av	erage 23°C
Operating Humidity	5 ~ 85 % RH (No	on-Condensing)
Application Altitude	≤ 200	00m
Pollution Degree 2		
Communications	CAN 2.0B	
Certification/Compliance	IEEE 693³, UL 9540A³, UL 1973	
Configuration	17 modules + 1 RMSC	n modules + 1 RMSC
Nominal Voltage	1014 Vdc @ 23 ± 4°C	59.6*n Vdc @ 23 ± 4°C
Voltage Range	763 ~ 1181 Vdc	44.9*n ~ 69.5*n Vdc
Energy	110.7 kWh @ 23 ± 4°C	6.51*n kWh @ 23 ± 4°C
Maximum Charge Power	110 kW @ 23 ± 4°C	6.5*n kW @ 23 ± 4°C
Maximum Discharge Power	110 kW	6.5*n kW
Weight	Approx. 900 kg	Approx. 203 + (41*n) kg

¹Performance may vary based on use conditions and application.

5.1 AUXILIARY POWER SUPPLY

Table 7. Auxiliary Power Consumption

Input Voltage		24 VDC	
Battery Module Power Fan		17W	
Consumption (Max)	MBMS	2W	
RMSC Power Consumption	Fan	4W	
(Max)	RBMS	18W (40W inrush@100ms)	

²Measured at fan cold air intake

³Only valid with 17 modules

5.2 HEAT RELEASE ESTIMATES

Table 8. Thermal Management Estimates1

C Rate	Watts Per Module ²	Watts for 17 Modules ²
1	151.17	2569.81
0.75	85.03	1445.59
0.5	37.79	642.51
0.25	9.45	160.69
0.1	1.52	25.76

¹Recommendations based on 23°C at fan cold air intake and BOL, may vary based on project, please contact KORE for more information.

6 KOREPOINT MANAGEMENT CONTROLLER

The KOREPoint Management Controller (KP-MC) is a Bank Level Controller for monitoring and controlling multiple battery racks that:

- Provides a SunSpec Modbus TCP interface for external communications and control
- Provides a CAN interface for internal communication with the battery racks
- Provides a web-based interface for troubleshooting and configuration
- Capable of storing up to 30 days of data from the battery racks
- 35mm DIN Rail mount on back of enclosure
- 4 status LEDs indicate Power, Run, Alarm and Fault

²Values are based on DC I²R and battery nominal rating.

Figure 7. KOREPoint Management Controller

Table 9. KP-MC Specifications

Item	Specification	
Dimensions (W x D x H)	51 mm x 154 mm x 125 mm	
Weight	<1kg	
Operating Ambient Temperature Range	-40 ~ 85°C	
Operating Humidity	5~75% RH (Non-condensing)	
Communications	Modbus TCP and CAN 2.0B	
SunSpec Models	1, 64320, 802, 803, and 804	
Auxiliary Power Voltage Source	9-30VDC	
Maximum Power Consumption	15 W	
Storage and Transportation Temperature	-40 ~ 85°C	
Storage and Transportation Humidity	5~85% RH (Non-Condensing)	
Certification/Compliance	CE class A¹, FCC part 15 class A	

¹ See KORE Power's Declaration of Conformity for more information

Note: The KP-MC has replaced the MsBMS

7 SYSTEM TOPOLOGY

Figure 8. Mark 1 System Topology

End of Document