Math 308 Assignment 7 Exercises 3.9

Nakul Joshi

February 13, 2014

4

The null hypothesis is that the difference in proportions is zero. However, performing the permutation test gave a p-value of 0.002, allowing us to reject the null at 1% confidence. Thus, the difference in proportions is statistically significant.

8

The p-value is 1, which does not let us reject the null hypothesis that the presence of competition has no value on the height change of the seedlings.

11

Null Hypothesis Voting preference is independent of age.

Alternative hypothesis Voting preference depends on age.

Age	Response				
rige	For	Against	All		
18-29	172	52	224		
30 - 49	313	103	416		
50 +	258	119	377		
All	743	274	1017		

Table 1: Observed values

Multiplying column marginal fractions by row marginal totals, we can get the expected values:

Age	Response			
	For	Against		
18-29	164	60		
30-49	304	112		
50 +	275	102		

Table 2: Expected values

Then, we calculate the χ^2 test statistic: $c = \sum_{i,j}^{\text{all cells}} \frac{(\text{observed}_{i,j} - \text{expected}_{i,j})^2}{\text{expected}_{i,j}} = 6.33$ Under the null, C follows a χ^2 distribution with

Under the null, C follows a χ^2 distribution with $(3-1)\times(2-1)=2$ degrees of freedom; i.e. $C\sim\chi^2_2$. So, the p-value is $P(C>c)=\int_c^\infty\frac{e^{-t/2}}{2}\,\mathrm{d}t\approx 0.042$. Thus, we can reject the null at 5% significance, but

Thus, we can reject the null at 5% significance, but not at 1% significance.

13

a)

We are testing for homogenity since we want to know whether the distribution of fin ray counts differs from lake to lake.

b)

Null hypothesis Fin ray distributions are the same from lake to lake.

Alternative hypothesis Fin ray distributions are different from lake to lake.

Habitat	Ray Count						19	
павна	36	35	34	33	32	31	All	_
Guadalupe	14	30	42	78	33	14	211	$\overline{22}$
Cedro	11	28	53	66	27	9	194	
San	10	17	61	53	22	10	173	25
Clemente	10	11	01	00	22	10	110	40
All	71	110	190	230	114	64	779	
								29

Habitat	Ray Count					
11001000	$\ge 36 35 34$		34	33	32	≤31
Guadalupe	19	30	51	62	31	17
Cedro	18	27	47	57	28	16
San Clemente	16	24	42	51	25	14

Table 3: Expected Values

$$\begin{array}{lll} c &=& \sum_{i,j}^{\rm all\ cells} \frac{({\rm observed}_{i,j} - {\rm expected}_{i,j})^2}{{\rm expected}_{i,j}} &=& 41.77, \\ {\rm where} & C &\sim& \chi^2_{10}. & {\rm So,} & p &=& P(C \ > \ c) &=& \\ \int_c^\infty \frac{t^{10/2-1}e^{-t/2}}{2^{10/2}\Gamma(10/2)} \, {\rm d}t &=& \int_c^\infty \frac{t^4e^{-t/2}}{768} \, {\rm d}t &=& 8 \times 10^{-6}. & {\rm So,} \\ {\rm we\ can\ reject\ the\ null.} \end{array}$$

17

Happiness			
TT	Female	Male	
Not too happy	109	61	
Pretty happy	406	378	
Very happy	205	210	

Table 4: Happiness against gender table