

《课程名称》标题 子标题

November 23, 2019 at 20:51pm

Professor: 教授

学生

《课程名称》:标题 学生

背景介绍

Problem 1

Give an appropriate positive constant c such that $f(n) \leq c \cdot g(n)$ for all n > 1.

1.
$$f(n) = n^2 + n + 1$$
, $g(n) = 2n^3$

2.
$$f(n) = n\sqrt{n} + n^2$$
, $g(n) = n^2$

3.
$$f(n) = n^2 - n + 1$$
, $g(n) = n^2/2$

Solution

We solve each solution algebraically to determine a possible constant c.

Part One

$$n^{2} + n + 1 =$$

$$\leq n^{2} + n^{2} + n^{2}$$

$$= 3n^{2}$$

$$\leq c \cdot 2n^{3}$$

Thus a valid c could be when c = 2.

Part Two

$$n^{2} + n\sqrt{n} =$$

$$= n^{2} + n^{3/2}$$

$$\leq n^{2} + n^{4/2}$$

$$= n^{2} + n^{2}$$

$$= 2n^{2}$$

$$\leq c \cdot n^{2}$$

Thus a valid c is c = 2.

Part Three

$$n^2 - n + 1 =$$

$$\leq n^2$$

$$\leq c \cdot n^2/2$$

Thus a valid c is c = 2.

Problem 2

Let $\Sigma = \{0, 1\}$. Construct a DFA A that recognizes the language that consists of all binary numbers that can be divided by 5.

Let the state q_k indicate the remainder of k divided by 5. For example, the remainder of 2 would correlate to state q_2 because 7 mod 5 = 2.

图 1: DFA, A, this is really beautiful, ya know?

Justification

Take a given binary number, x. Since there are only two inputs to our state machine, x can either become x0 or x1. When a 0 comes into the state machine, it is the same as taking the binary number and multiplying it by two. When a 1 comes into the machine, it is the same as multiplying by two and adding one.

Using this knowledge, we can construct a transition table that tell us where to go:

	$x \mod 5 = 0$	$x \mod 5 = 1$	$x \mod 5 = 2$	$x \mod 5 = 3$	$x \mod 5 = 4$
x_0	0	2	4	1	3
x1	1	3	0	2	4

Therefore on state q_0 or $(x \mod 5 = 0)$, a transition line should go to state q_0 for the input 0 and a line should go to state q_1 for input 1. Continuing this gives us the Figure 1.

Problem 3

伪代码、算法示例,如算法 1所示:

Algorithm 1 Reliable Negative Instances Selection

Input: Positive Instance Set P, Unlabeled Instance Set U, Sample Ratio s.

Output: Reliable Negative Instance Set RN.

- 1: $setRN = \emptyset$
- 2: Sample s of the instances from P as S
- 3: Set $P_s = P S$ with label 1, $U_s = U \cup S$ with label -1
- 4: Train a classifier g with P_s and U_s
- 5: Classify instances in U using g, output the class-conditional-probability
- 6: Select a threshold θ according to the class-conditional-probability of instances in S
- 7: for $d \in U$ do do
- 8: if $Pr(1|d) \leq \theta, RN = RN \cup d$ then
- 9: end if
- 10: end for
- 11: Output RN

《课程名称》:标题

Problem 4

Suppose we would like to fit a straight line through the origin, i.e., $Y_i = \beta_1 x_i + e_i$ with i = 1, ..., n, $E[e_i] = 0$, and $Var[e_i] = \sigma_e^2$ and $Cov[e_i, e_j] = 0, \forall i \neq j$.

学生

Part A

Find the least squares esimator for $\hat{\beta}_1$ for the slope β_1 .

Solution

To find the least squares estimator, we should minimize our Residual Sum of Squares, RSS:

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
$$= \sum_{i=1}^{n} (Y_i - \hat{\beta}_1 x_i)^2$$

By taking the partial derivative in respect to $\hat{\beta}_1$, we get:

$$\frac{\partial}{\partial \hat{\beta}_1}(RSS) = -2\sum_{i=1}^n x_i(Y_i - \hat{\beta}_1 x_i) = 0$$

This gives us:

$$\sum_{i=1}^{n} x_i (Y_i - \hat{\beta}_1 x_i) = \sum_{i=1}^{n} x_i Y_i - \sum_{i=1}^{n} \hat{\beta}_1 x_i^2$$
$$= \sum_{i=1}^{n} x_i Y_i - \hat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

Solving for $\hat{\beta}_1$ gives the final estimator for β_1 :

$$\hat{\beta_1} = \frac{\sum x_i Y_i}{\sum x_i^2}$$

Part B

Calculate the bias and the variance for the estimated slope $\hat{\beta}_1$.

Solution

For the bias, we need to calculate the expected value $E[\hat{\beta}_1]$:

$$E[\hat{\beta}_1] = E\left[\frac{\sum x_i Y_i}{\sum x_i^2}\right]$$

$$= \frac{\sum x_i E[Y_i]}{\sum x_i^2}$$

$$= \frac{\sum x_i (\beta_1 x_i)}{\sum x_i^2}$$

$$= \frac{\sum x_i^2 \beta_1}{\sum x_i^2}$$

$$= \beta_1 \frac{\sum x_i^2 \beta_1}{\sum x_i^2}$$

$$= \beta_1$$

Thus since our estimator's expected value is β_1 , we can conclude that the bias of our estimator is 0.

For the variance:

$$\operatorname{Var}[\hat{\beta}_{1}] = \operatorname{Var}\left[\frac{\sum x_{i}Y_{i}}{\sum x_{i}^{2}}\right]$$

$$= \frac{\sum x_{i}^{2}}{\sum x_{i}^{2}} \operatorname{Var}[Y_{i}]$$

$$= \frac{\sum x_{i}^{2}}{\sum x_{i}^{2}} \operatorname{Var}[Y_{i}]$$

$$= \frac{1}{\sum x_{i}^{2}} \operatorname{Var}[Y_{i}]$$

$$= \frac{1}{\sum x_{i}^{2}} \sigma^{2}$$

$$= \frac{\sigma^{2}}{\sum x_{i}^{2}}$$

《课程名称》:标题

Problem 5

Prove a polynomial of degree k, $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ is a member of $\Theta(n^k)$ where $a_k \ldots a_0$ are nonnegative constants.

证明. To prove that $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$, we must show the following:

$$\exists c_1 \exists c_2 \forall n \geq n_0, \ c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

For the first inequality, it is easy to see that it holds because no matter what the constants are, $n^k \le a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n^1 + a_0 n^0$ even if $c_1 = 1$ and $n_0 = 1$. This is because $n^k \le c_1 \cdot a_k n^k$ for any nonnegative constant, c_1 and a_k .

Taking the second inequality, we prove it in the following way. By summation, $\sum_{i=0}^{k} a_i$ will give us a new constant, A. By taking this value of A, we can then do the following:

$$a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n^1 + a_0 n^0 =$$

$$\leq (a_k + a_{k-1} \dots a_1 + a_0) \cdot n^k$$

$$= A \cdot n^k$$

$$< c_2 \cdot n^k$$

where $n_0 = 1$ and $c_2 = A$. c_2 is just a constant. Thus the proof is complete.

《课程名称》:标题

学生

Problem 18

Evaluate $\sum_{k=1}^{5} k^2$ and $\sum_{k=1}^{5} (k-1)^2$.

Problem 19

Find the derivative of $f(x) = x^4 + 3x^2 - 2$

Problem 6

Evaluate the integrals $\int_0^1 (1-x^2) \mathrm{d}x$ and $\int_1^\infty \frac{1}{x^2} \mathrm{d}x$.

Problem 7

表格的示例,单元格内换行示例:

方法	特点	优点	缺点
有监督学习	对数据进行标注, 通过有监督学习的方式 来检测恶意 URL	更强的泛化能力	现实生活中很难获得 精准的标注数据。 在更多时候,我们可能 只得到一小部分恶意 URL 和大量未标记的 URL 样本, 缺乏足够可靠的负例样本
无监督学习	不需要对数据进行标注	无需标注的数据即可进行训练	已知恶意 URL 的标注信息 就难以充分利用,可能 无法达到令人满意的识别能力

Problem 8

插入图片的示例,图片强制在当前位置的示例,如图 2所示:

图 2: ucas-logo

Problem 9

代码的示例:

《课程名称》:标题 学生

1

scheme:[//[user[:password]@]host[:port]][/path][?query][#fragment]

Problem 10

引用文献示例:[1] 中提到 balabalabalhh

参考文献

[1] Pawan Prakash, Manish Kumar, Ramana Rao Kompella, and Minaxi Gupta. Phishnet: predictive blacklisting to detect phishing attacks. In 2010 Proceedings IEEE INFOCOM, pages 1–5. IEEE, 2010.