Elements of Information Theory

Bilingual course (Chinese taught course) Information and Communication Eng. Dept. Deng Ke

Introduction

- · Homework and Exam
 - _ 4~5 homework
 - _ Final exam
- · Prerequisite Courses
 - _ Probability Theory
 - Stochastic Process
- Web Pages
 - http://unit.xjtu.edu.cn/dengke
- Office
 - _ 605

Xi'an Jiaotong University

Introduction to the content

Introduction

- · Course Name
 - Elements of Information Thoery
- Period
- 40 class hours/10 weeks
- Credits
 - 2.5
- · Reference Books
 - Elements of Information Thoery
 - Information Theory and Reliable Communication
 - 信息论——基础理论与应用

Ki'an Jiaotong University

Introduction

- · Telephone number
 - 82668714
- Reason
- Strategy
- · Difference with another course
 - _ Language
 - _ Makeup exam
 - _ Concept

Xi'an Jiaotong University

The History of Communication

- Origins -Practice and Theory
- Morse 1837
 - Telegraph (wired) and Morse code
- Bell 1876
 - Telephone (wired)
- Marconi 1901
 - Radio transmission across the Atlantic.
- Radio telegraph(about 1910)
- Shortwave Television(1927-1929)

Xi'an Jiaotong University

The History of Communication

- Radar (1943)
- · Modern Digital Communication
 - _ Cell phone
 - Satellite communication
 - Optic fiber communication
 - _ Twisted Pair
 - _ GPS

....

Xi'an Jiaotong University

Founder, Claude E. Shannon

- Claude E. Shannon, 1916-2001
 - Graduated in 1936 from University of Michigan with two bachelor's degrees, one in electrical engineering and one in mathematics
 - Got his master's degree from M.I.T. in 1937
 - $_{-}$ Got his PhD in mathematics from M.I.T. in 1940
 - _ Joined Bell Labs.
 - Spent the rest of his life in Bell Labs and M.I.T.
 - Found Information Theory in 1948

Xi'an Jiaotong University

Information Theory

- "A Mathematical Theory of Communication" in Bell System Technical Journal, 1948
- Research on the transmission of information over a noisy channel.
- \cdot Focus on the quantification of information.
- Find the fundamental quantification limits on signal processing operations such as compressing data and on reliably storing and communicating data.

Xi'an Jiaotong University

Information Theory

- · More than Communications
 - Mathematics (Probability theory and statistics)
 - Physics (Thermo-dynamics)
 - _ Computer science (Kolmogorov complexity)
 - Economics (Investment)
- Mainly research on the <u>statistics</u> <u>characteristic</u> of the information quantificationally

Of course, we only focus on the aspect of communications in this course.

Xi'an Jiaotong University

Chapters

- Chapter 1
- Introduction, Measurement of information
- Chapter 2
 - Entropy and Mutual Information
- Chapter 3
 - Asymptotic EquipartitionProperty (AEP)
- Chapter 4
- Source Coding(Data Compression)
- Chapter 5
- Channel Capacity and Channel Coding Theorem
- Chapter 6
- _ Differential Entropy and the Gaussian Channel

Xi'an Jiaotong Universit

Xi'an Jiaotong Universit

Modern Digital Communication

- Analog signal \rightarrow Digital signal
 - _ Sampling -Time discretization
 - Quantizing -Amplitude discretization
- · In this Course
 - _ Time discretization
- Analog: waveforms directly transmitted through channel.

 Infinite possibilities
- Digital: Using a finite waveform → finite possibilities
- · Reason: Moore's Law

Xi'an Jiaotong University

System Model

Think→Write→Pack→Post→Unpack→Read→Act

Xi'an Jiaotong University

Modern Digital Communication

- Source Encoder
 - Eliminate as much redundancy from source as possible.
- · Channel encoder
 - Introduce controlled redundancy to protect form errors in channel.
- The separation between source and channel coding is a essential characteristic in modern digital communications

Xi'an Jiaotong University

Source Encoding

- Text
 - ASCII, GB2312, GBK
- Sound
 - _ MP3(MPEG1 Layer-3)
- Voice
- _ PCM
- Image
 - BMP, JPG,
- Video
 - AVI(divx, xvid, H.264), RMVB, FLV

Xi'an Jiaotong University

Channel Encoding

- 1950 Hamming block code
- 1960 Reed Solomon code
- 1967 Viterbi decoding
- 1993 Turbo code
- 1963 Low-density parity-check code (LDPC)
- 1996 rediscovered (another efficient decoding algorithm)

Xi'an Jiaotong University

The Definition of Information

- Two fundamental questions in communication theory
 - How much a source can be compressed?
 - How much information can be sent through a given channel?

More power, more faster communications.

- · How to define information?
- Message
 - _ Text, Voice, Image
 - _ Knowledge with transmission

Xi'an Jiaotong University

The Definition of Information

- · Knowledge in the Message
 - $_{-}$ fixed
 - _ Huge
 - not able to transmission completely
- The Measurement of the difference of the receiver
- Not able to define the absolute value of the knowledge in the mesage
- Associated with the priori knowledge of the receiver

Xi'an Jiaotong University

The Definition of Information

- · Example 1
 - 32 teams are in the final of FIFA World Cup $20\,02$
 - Brazil, England, France, Germany, Argentina,, China!
 - Which will be the champion?
 - Brazil is the champion -not so surprise -less information
 - China is the champion !!!! -great surprise -more information
- Analysis
 - not so surprise →big probability→less information
 - great surprise →small probability→more information

(i'an Jiaotong University

The Measurement of Information

- · Information is associated with probability
- Example 2
 - dicing
- · Probability reflect the prior knowledge
- Therefore, <u>information is defined as a function of probability</u>
- $I_{y} = f(P_{y})$
- f: What function?
- · Three requirements

Xi'an Jiaotong University

The Measurement of Information

1. f(1)=0

2. $f(P_s)$ decreases with P_s

3.If message z contains two independent messages,

 $x, y, I_z = I_x + I_y$

- 1.To determine the function, rewrite the last requirement, $f(P_z) = f(P_x) + f(P_y)$, and we have $P_z = P_x P_y$, then, $f(P_x P_y) = f(P_x) + f(P_y)$.
- 2.The logarithm function occurs to us, which satisfy 1 and 3. For requirement 2, we must use

Xi'an Jiaotong University

The Measurement of Information

$$I_x \triangleq \log_a \frac{1}{p_x} = -\log_a p_x \qquad (a>1)$$

• Where a is an arbitrary number, for easy to use, a is usually selected as

1. a=2, the unit of the information is bit 2. a=e, the unit of the information is nat

• The features of I_x

 $-I_x \ge 0$, If and only if $P_x = 1$, $I_x = 0$

 $I.I_{\rm r}>I_{\rm v}$, when $P_{\rm r}< P_{\rm v}$

 $2.I_{x+y} = I_x + I_y$, when x and y are independent

Xi'an Jiaotong University