Lecture Notes for Neural Networks and Machine Learning

Fully Convolutional Learning I: Introduction to Semantic Segmentation

Logistics and Agenda

- Logistics
 - Lab Grading Update
 - Office Hours
- Agenda
 - Segmentation
 - Intro to Semantic (this time)
 - Object (partially this time)
 - Instance (next time)

Types of Fully Convolutional Problems

- Semantic Segmentation
- Object Detection
- Instance Segmentation

medium.con

Introduction to Semantic Segmentation

Karandeep Singh @kdpsinghlab · 10h · · · · Statistician: Do you ever use statistics?

ML researcher: Nope. Never.

Statistician: What about when reading a

paper?

ML: Nope. Never.

Statistician: Ok. So if you're reading an ML paper comparing lots of models, how do you know which one is the best?

ML: Bold font.

Semantic Segmentation

 Given a set of pixels, classify each pixel according to what instance it belongs

Popular Semantic Segmentation Datasets

COCO http://cocodataset.org/ Common Objects in Context

Early Training Methods (Pre 2018)

- Init Encoder with traditional CNN (like VGG or DarkNet)
- Freeze encoder and train decoder with segmented image maps
- Unfreeze encoder and fine tune
 - Repeat tuning as needed

Putting it all together

Putting it all together

Self Test:

Does it change the architecture if the Image input size changes?

Measuring Performance

- MAP(IoU=x%)
 - if IoU > X%, check if correct
 - else not correct
 - Usually~50%, 75%, 90%
 - Define precision for each class, take average
- mAP(%), sometimes just AP
 - Formulate precision/recall curve for a class at varying levels of confidence (for given IoU)
 - Calculate dominating points
 - Take area under precision recall curve (AUPRC)
 - Take average AUPRC over all classes (macro or micro, usually macro)

COCO Evaluation

Rank	Model	box 🛊	FPS (V100, b=1)	FPS	Extra Training Data	Paper	Code	Result	Year	Tags 👺
1	YOLOv6-L6 (1280)	57.2	26	26	×	YOLOv6 v3.0: A Full-Scale Reloading	0	Ð	2023	YOLO
2	PRB-FPN6-E-ELAN	56.9	31	31	×	Parallel Residual Bi-Fusion Feature Pyramid Network for Accurate Single- Shot Object Detection	С	Ð	2020	
3	YOLOv7-E6E (1280)	56.8	36	36	×	YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors	C	Ð	2022	
4	YOLOv7-D6 (1280)	56.6	44	44	×	YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors	O	Ð	2022	
5	RT-DETR-H (640)	56.3		40(T4)	×	DETRs Beat YOLOs on Real-time Object Detection	O	Ð	2023	DETR
	AK		1	AR c	TOL T	arge objects: area > 3	0-			

1. Unless otherwise specified, AP and AR are averaged over multiple Intersection over Union (IoU) values. Specifically we use 10 IoU thresholds of .50:.05:.95. This is a break from tradition, where AP is computed at a single IoU of .50 (which corresponds to our metric AP^{IoU=.50}). Averaging over IoUs rewards detectors with better localization.

https://cocodataset.org/#detection-eval

Basics: Upsampling Layers

Shit Academics Say @Academi... · 22h · · · · not wrong

monstera adansonii @yourn... · 2d

everything is peer reviewed if your friends are judgmental enough

Decoder Network

Some researcher started calling this **deconvolution**.

If you use that term in this class, you fail.

This is upsampling and then convolution, but **now the interpolation filters are learned**!!

Integer Upsampling via Interpolation

Image Upsampling, Integer Factor

- Insert Zeros
- Convolve

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15	16	

0.25	0.5	0.25
0.5	1	0.5
0.25	0.5	0.25

Bilinear Filtering

Image Upsampling, Integer Factor

Nearest Neighbor
UpSampling2D()

UpSampling2D(interpolation='bilinear')

Upsample 2D activations, Cx(uH)x(uW)

Bicubic

Many Types of Upsampling, with varying computational cost:

area, bicubic, gaussian, lanczos3, lanczos5, mitchellcubic

What about transpose convolution?

Transpose Convolution: Strides

Strided Convolution as Matrix Multiplication

Transpose

 $\begin{vmatrix} a \\ b \\ c \end{vmatrix} = \begin{vmatrix} ay \\ ax+bz \\ by \\ bx+cz \\ cy \end{vmatrix}$

18

Stride=2

Χ

Convolution after zero insertion

Kernel size should be a symmetric multiple of the stride

Bias needs to account for both when different numbers of pixels overlap with the kernel

Multiple of stride ensures that same number of active pixels overlap the kernel.

Stride = 2

DeepLabV3+

REFERENCE SLIDE

	Encoder	. /	1x1 Cor	 _	-A\		100		
Rank	Model	Mean † FLOPS	Ext Params Train Da		Paper	Code	Result	Year Tags	s 12°
1	DeepLahv3+ (Xception-65-JFT)	89.0%		J	Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation	0	Ð	2018	
2	DeepLabv3+ (Xception-JFT)	89.0%		✓	Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation	O	Ð	2018	
3	DeepLahv3-JFT	86.9%	,	•/	Rethinking Atrous Convolution for Semantic Image Segmentation	O	Ð	2017	
4	CASIA_IVA_SDN	86.6%		×	Stacked Deconvolutional Network for Semantic Segmentation		Ð	2017	
5	Smooth Network with Channel Attention Block	86.2%		Y.	Learning a Discriminative Feature Network for Semantic Segmentation	O	Ð	2018	
					V	Dy 4			

https://github.com/tensorflow/models/tree/master/research/deeplab

https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-and-code-e52fc8958823

Lecture Notes for Neural Networks and Machine Learning

FCN Learning

Next Time:

Fully Convolutional Objects

Reading: None

That show is the best illustration that sentience in machines won't lead to mass

displacement of human workers

uli 740

Back up Slides for Semantic Segmentation

Some Examples

REFERENCE SLIDE

Pyramid Scene Parsing Network (PSPNet)

https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-and-code-e52fc8958823

Dilated Convolution (Atrous) REFERENCE SLIDE

Outputs of convolution are the same size, except for edge effects! But have advantage of processing at a different scale.

https://towardsdatascience.com/review-dilated-convolution-semantic-segmentation-9d5a5bd768f5

DeepLabV3+

REFERENCE SLIDE

https://github.com/tensorflow/models/tree/master/research/deeplab

https://towardsdatascience.com/semantic-segmentation-with-deep-learning-a-guide-and-code-e52fc8958823

Gated-SCNN (Gate Shape CNN) REFERENCE SLIDE

Shape stream employs Traditional Uses activations to "gate" the Image Processing for edge detection (image gradients) image gradient. $\sigma(A) \odot I_{grad}$ Regular Stream **Fusion Module** seamentation **ASPP** comv conv conv gradients 1x1 dualtask loss Residual Block conv Gated Conv Laver edge

Figure 2: **GSCNN** architecture. Our architecture constitutes of two main streams. The regular stream and the shape stream. The regular stream can be any backbone architecture. The shape stream focuses on shape processing through a set of residual blocks, Gated Convolutional Layers (GCL) and supervision. A fusion module later combines information from the two streams in a multi-scale fashion using an Atrous Spatial Pyramid Pooling module (ASPP). High quality boundaries on the segmentation masks are ensured through a Dual Task Regularizer.

2

- Also uses Labeled Boundaries in BCE Edge Loss Function
- Merges segmentation with edges for finer masks. Concatenate + atrous convolution

Shape Stream

Performance

REFERENCE SLIDE

Figure 3: Illustration of the crops used for the distance-based evaluation.

Figure 4: Predictions at diff. crop factors.

Figure 5: **Distance-based evaluation**: Comparison of mIoU at different crop factors.

Method	road	s.walk	build.	wall	fence	pole	t-light	t-sign	veg	terrain	sky	person	rider	car	truck	bus	train	motor	bike	mean
LRR [18]	97.7	79.9	90.7	44.4	48.6	58.6	68.2	72.0	92.5	69.3	94.7	81.6	60.0	94.0	43.6	56.8	47.2	54.8	69.7	69.7
DeepLabV2 [9]	97.9	81.3	90.3	48.8	47.4	49.6	57.9	67.3	91.9	69.4	94.2	79.8	59.8	93.7	56.5	67.5	57.5	57.7	68.8	70.4
Piecewise [32]	98.0	82.6	90.6	44.0	50.7	51.1	65.0	71.7	92.0	72.0	94.1	81.5	61.1	94.3	61.1	65.1	53.8	61.6	70.6	71.6
PSP-Net [58]	98.2	85.8	92.8	57.5	65.9	62.6	71.8	80.7	92.4	64.5	94.8	82.1	61.5	95.1	78.6	88.3	77.9	68.1	78.0	78.8
DeepLabV3+[11]	98.2	84.9	92.7	57.3	62.1	65.2	68.6	78.9	92.7	63.5	95.3	82.3	62.8	95.4	85.3	89.1	80.9	64.6	77.3	78.8
Ours (GSCNN)	98.3	86.3	93.3	55.8	64.0	70.8	75.9	83.1	93.0	65.1	95.2	85.3	67.9	96.0	80.8	91,2	83.3	69.6	80.4	80.8

Table 1: Comparison in terms of IoU vs state-of-the-art baselines on the Cityscapes val set.

mIoU == mean Intersection over Union = Area of Overlap

Area of Union

Lecture Notes for Neural Networks and Machine Learning

FCN Learning

Next Time:

Fully Convolutional Objects

Reading: None

