## CLAIMS

- 1. A magnetic field sensor characterized by
- 2 comprising a substrate, a stacked coil formed on said
- 3 substrate, and a strip line formed on said substrate to
- 4 continue to said stacked coil, wherein
- 5 said stacked coil comprises coil forming
- 6 elements respectively formed of at least two conductor
- 7 layers on said substrate, and contact means, formed in
- 8 an interlayer dielectric film interposed between said
- 9 conductor layers, for bringing said coil forming
- 10 elements on and under said interlayer dielectric film
- 11 into contact with each other through a via hole,
- said strip line comprises a structure in which
- 13 a lower grounding layer, a lower interlayer dielectric
- 14 film, a strip conductor, an upper interlayer dielectric
- 15 film, and an upper grounding layer are stacked on said
- 16 substrate in an order named,
- the number of turns of said stacked coil is
- 18 larger than 1,
- one end of said stacked coil continues to
- 20 either one grounding layer of said lower grounding layer
- 21 and said upper grounding layer, and
- 22 the other end of said stacked coil continues
- 23 to said strip conductor.
  - A magnetic field sensor according to claim 1,
- 2 characterized in that the number of turns of said

- 3 stacked coil is not less than the total number of said
- 4 coil forming elements.
  - 3. A magnetic field sensor according to claim 1,
- 2 characterized in that an outline shape of said stacked
- 3 coil when seen from the top is rectangular.
  - 4. A magnetic field sensor according to claim 1,
- 2 characterized in that the total number of said coil
- 3 forming elements is one of 2 and 3.
  - 5. A magnetic field sensor according to claim 4,
- 2 characterized in that of said coil forming elements,
- 3 with reference to said substrate, one of said coil
- 4 forming element which corresponds to a lowermost layer
- 5 and said coil forming element which corresponds to an
- 6 uppermost layer continues to said one grounding layer,
- 7 and the remaining one continues to said strip conductor.
  - 6. A magnetic field sensor according to claim 4,
- 2 characterized in that
- 3 said one grounding layer and said coil forming
- 4 element which continues thereto are formed of one
- 5 conductor layer, and
- 6 said strip conductor and said coil forming
- 7 element which continues thereto are formed of another
- 8 conductor layer.
  - 7. A magnetic field sensor according to claim 1,
- 2 characterized in that the total number of said coil
- 3 forming elements is 4.
  - A magnetic field sensor according to claim 7,

- 2 characterized in that
- of said coil forming elements, with reference
- 4 to said substrate, one of said coil forming element
- 5 which corresponds to a lowermost layer and said coil
- 6 forming element which corresponds to an uppermost layer
- 7 continues to said one grounding layer,
- 8 extending means which continues to said strip
- 9 conductor is formed close to one of said three remaining
- 10 coil forming elements which is located at the middle,
- 11 and
- the remaining one of said coil forming element
- 13 which corresponds to said lowermost layer and said coil
- 14 forming element which corresponds to said uppermost
- 15 layer is in contact with said extending means through a
- 16 via hole.
  - 9. A magnetic field sensor according to claim 1,
  - 2 characterized in that each of said lower grounding layer
  - 3 and said upper grounding layer comprises a T-shaped
  - 4 planar shape in which a line width at an end on a
  - 5 stacked coil side is larger than a line width at another
  - 6 region to form a rectangular region.
    - 10. A magnetic field sensor according to claim 9,
  - 2 characterized in that said strip conductor extends
  - 3 through a middle point of a long side on a proximal
  - 4 portion side of said rectangular region and a central
  - 5 point of said rectangular region, switches a direction
  - 6 thereof by 90° at the central point to extend along a

- 7 central line which extends through a middle point of a
- 8 short side of said rectangular region, switches a
- 9 direction thereof again by 90° toward said stacked coil
- 10 before reaching said short side, and reaches a long side
- 11 on a stacked coil side of said rectangular region.
  - 11. A magnetic field sensor according to claim 9,
  - 2 characterized in that a length of a short side of said
  - 3 rectangular region is 4 to 8 times a line width of said
  - 4 strip conductor.
    - 12. A magnetic field sensor according to claim 11,
  - 2 characterized in that a gap between an end of said strip
  - 3 conductor on said stacked coil side and a short side
  - 4 among short sides of said rectangular region which is
  - 5 the closest to said end is not less than twice the line
  - 6 width of said strip conductor.
    - 13. A magnetic field sensor according to claim 1,
  - 2 characterized in that each of said lower grounding layer
  - 3 and said upper grounding layer comprises a band-like
  - 4 planar shape.
    - 14. A magnetic field sensor according to claim 1,
  - 2 characterized in that a thickness of said upper
  - 3 interlayer dielectric film on said strip conductor is
  - 4 substantially equal to that of said lower interlayer
  - 5 dielectric film under said strip conductor.
    - 15. A magnetic field sensor according to claim 1,
  - 2 characterized in that said strip line comprises a shield
  - 3 type strip line region with an outer surface which is

- 4 formed of said lower grounding layer and said upper
- 5 grounding layer.
  - 16. A magnetic field sensor according to claim 1,
- 2 characterized in that a characteristic impedance of said
- 3 strip line is equal to that of a high-frequency cable
- 4 which connects to one end of said strip line.
  - 17. A magnetic field sensor according to claim 1,
- 2 characterized in that a characteristic impedance of said
- 3 strip line is equal to that of a transmission line that
- 4 relays said strip line to a high-frequency cable.
  - 18. A magnetic field sensor according to claim 1,
- 2 characterized in that all said coil forming elements are
- 3 wound in one direction.