學號:B06902017 系級:資工三 姓名:趙允祥

1. (2%) 從作業三可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份? (Collaborators:)

答:由下圖可看出來,在 saliency map 上的確是圖片的重點部分 (物件的輪廓等等) 會有高亮度。這說明了 CNN 真的可以抓取圖片的特色並進而分類。

2. (3%) 承(1) 利用上課所提到的 gradient ascent 方法,觀察特定層的 filter 最容易被哪種圖片 activate 與觀察 filter 的 output。(Collaborators:)

答:我選取第二層的 convolution,再將 128 個 filter 的 gradient 都計算出來後,觀察到 filter 最容易被輪廓清楚、鮮明的圖片 activate。另外,下圖中第一個 filter 的 gradient 是最高的,也可以看得出來經過它的輪廓是最清晰的。

3. (2%) 請使用 Lime 套件分析你的模型對於各種食物的判斷方式,並解釋為何你的模型在某些 label 表現得特別好 (可以搭配作業三的 Confusion Matrix)。

答:由下圖可知模型大部分是判斷出圖片當中最有特色的部分,像是湯品幾乎都有湯碗,因此在判斷上 confusion 的程度也比較低,同時,蛋的蛋黃、麵條的輪廓、飯食的顆粒也較容易分辨。而乳製品因為沒有一個明顯的特色,則很容易被判斷成甜點,五顏六色的甜點也有可能被認成蔬果。

4. (3%) [自由發揮] 請同學自行搜尋或參考上課曾提及的內容,實作任一種方式來 觀察 CNN 模型的訓練,並說明你的實作方法及呈現 visualization 的結果。

答:我使用 deep dream 來實作觀察 CNN 的訓練,在加強模型的效果後,能看出來在邊界上有許許多多模型認為是某項食物的小區塊,這也說明了 CNN 在判斷模型上的功效。

5. Appendix: 第二題的選擇是由下圖中 Gradient 較高的幾個來選

Grad: 137.332	Grad: 197.652	Grad: 52.879	Filters of o	conv2d_3 Grad: 466.045	Grad: 171.255	Grad: 167.156	Grad: 144.151
Grad: 97.913	Grad: 63.494	Grad: 151.178	Grad: 0.000	Grad: 113.755	Grad: 67.720	Grad: 205.074	Grad: 304.803
Grad: 142.188	Grad: 263.443	Grad: 94.773	Grad: 224.573	Grad: 189.758	Grad: 89.324	Grad: 107.478	Grad: 213.902
Grad: 47.844	Grad: 207.337	Grad: 146.045	Grad: 130.697	Grad: 62.593	Grad: 154.730	Grad: 23.686	Grad: 141.995
Grad: 163.691	Grad: 89.872	Grad: 129.852	Grad: 169.248	Grad: 137.410	Grad: 82.876	Grad: 108.710	Grad: 249.792
Grad: 89.498	Grad: 40.094	Grad: 82.610	Grad: 121.955	Grad: 139.278	Grad: 97.724	Grad: 31.912	Grad: 214.616
Grad: 117.696	Grad: 115.900	Grad: 63.284	Grad: 127.643	Grad: 278.453	Grad: 208.397	Grad: 106.679	Grad: 281.326
Grad: 89.446	Grad: 107.234	Grad: 215.307	Grad: 188.986	Grad: 73.962	Grad: 25.169	Grad: 60.463	Grad: 254.473
Grad: 354.554	Grad: 120.051	Grad: 193.977	Grad: 53.101	Grad: 125.233	Grad: 259.204	Grad: 100.055	Grad: 73.925
Grad: 191.353	Grad: 99.176	Grad: 44.218	Grad: 52.873	Grad: 76.555	Grad: 143.922	Grad: 216.100	Grad: 97.513
Grad: 275.493	Grad: 88.374	Grad: 270.812	Grad: 198.053	Grad: 190.467	Grad: 129.799	Grad: 61.050	Grad: 51.362
Grad: 160.295	Grad: 136.169	Grad: 279.819	Grad: 261.780	Grad: 25.002	Grad: 98.027	Grad: 124.024	Grad: 77.870
Grad: 23.466	Grad: 173.337	Grad: 180.844	Grad: 143.400	Grad: 142.707	Grad: 130.404	Grad: 183.129	Grad: 93.957
Grad: 75.424	Grad: 42.871	Grad: 82.193	Grad: 83.762	Grad: 86.069	Grad: 245.300	Grad: 264.945	Grad: 30.687
Grad: 49.654	Grad: 103.271	Grad: 50.086	Grad: 238.867	Grad: 132.132	Grad: 302.229	Grad: 177.422	Grad: 132.507
Grad: 125.208	Grad: 171.217	Grad: 242.887	Grad: 75.182	Grad: 59.664	Grad: 102.318	Grad: 181.087	Grad: 219.765