Self Supervision Techniques in CNNs

Varsha S 193079005

Outline

- 1. Motivation
- 2. Self supervision
- 3. Pretext Task
 - a. Inpainting
 - b. Jigsaw Puzzles

Deep learning + ImageNet

^{*} Image source:-Google images

^{*} Image source:-Google images

^{*} Image source:-Google images

Can the task be something else?

^{*} Image source:-Google images

Are the labels necessary?

^{*} Image source:-Google images

Self Supervision

- Data provides supervision
- Goal Learn good representations
- Task Design pretext

PRETEXT TASK

A. INPAINTING

Inpainting - Context encoders

^{*} Image source:-Google images

Inpainting - Context encoders

Inpainting - Context encoders

^{*} Image source:-Google images

Inpainting - Loss function

•
$$\mathcal{L} = \lambda_{rec} \mathcal{L}_{rec} + \lambda_{adv} \mathcal{L}_{adv}$$
.

•
$$\mathcal{L}_{rec}(x) = \|\hat{M} \odot (x - F((1 - \hat{M}) \odot x))\|_{2}^{2}$$

•
$$\mathcal{L}_{adv} = \max_{D} \mathbb{E}_{x \in \mathcal{X}}[\log(D(x)) + \log(1 - D(F((1 - \hat{M}) \odot x)))]$$

a) Masked Input

b) L2 Loss

c) L2 + adversarial loss

^{*} where x is the ground truth image, F is the context encoder, M is a binary mask corresponding to the dropped image region with a value of 1 wherever a pixel was dropped and 0 for input pixels.

^{*} Image source:- Deepak Pathak,et al, Context Encoders: Feature Learning by Inpainting. CVPR 2016

Inpainting - Masks

Center region

Random blocks

Random region

^{*} Image source:- Deepak Pathak,et al, Context Encoders: Feature Learning by Inpainting. CVPR 2016

Inpainting - Results

PRETEXT TASK

B. JIGSAW PUZZLES

Inpainting

^{*} Image source:-Google images

Inpainting

^{*} Image source:-Google images

Inpainting

^{*} Image source:-Google images

Jigsaw - Implementation

- Siamese network
- Permutations with large Hamming distance

^{*} Image source:- Noroozi et al - Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles, ECCV 2016

Jigsaw puzzle

The image from which the tiles (marked with green lines) are extracted

Puzzle obtained by shuffling the tiles

Expected output

^{*} Image source:- Noroozi et al - Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles, ECCV 2016

References

- Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell and Alexei A. Efros, "Context Encoders: Feature Learning by Inpainting", CVPR 2016.
- 2. Noroozi, M. and P. Favaro. "Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles", ECCV (2016).
- Carl Doersch, Abhinav Gupta, and Alexei A. Efros. "Unsupervised Visual Representation Learning by Context Prediction", ICCV 2015
- 4. Carl Doersch ICCV presentation http://videolectures.net/iccv2015_doersch_visual_representation/

Inpainting - Architecture

Context encoder trained with reconstruction loss for feature learning by filling in arbitrary region dropouts in the input.

^{*} Image source:- Deepak Pathak,et al, Context Encoders: Feature Learning by Inpainting. CVPR 2016

- 1) In motivation add label intensive data is not available
- Add how context helps in classification(beagle example from carl video)
- 3) How do these features get used later
- 4) Inpaintin
 - a) Encoder decoder diagram(shud make)
 - b)
 - c) maybe results(last slide)
- 5) Jigsaw
 - a) Siamese network(why it s needed n why it works)
 - b)
- 6)

Inpainting Jigşaw 4. Outli Pretext task not important) Neural croche ccroche Network learns useful presentations/ features) (a) Input context (b) Human artist e-processing ides or distorts a part of the input) (c) Context Encoder (d) Context Encoder (L2 loss)

(L2 + Adversarial loss)Input

The image from which the tiles (marked with green lines) are extracted

Puzzle obtained by shuffling the tiles

Expected output