Logika - Bizonyításelmélet

$$(A1)$$
 $A\supset (B\supset A)$

$$(A2) (A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$$

$$(A3) (\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$$

Levezetési szabály (modus ponens)

$$(MP) \frac{A; (A \supset B)}{B}$$

$$vagy$$

$$\{A, A \supset B\} \vdash B$$

$$(A1) \qquad A\supset (B\supset A)$$

$$(A2) \qquad (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$$

$$(A3) \qquad (\neg A\supset B)\supset ((\neg A\supset \neg B)\supset A)$$

$$(A3) \qquad (\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$$

Levezetési szabály (modus ponens)

$$\{A\supset B,A\}\vdash B$$

Egy egyszerű levezetés

$$\{A\} \vdash B \supset A$$

- 1. $A \supset (B \supset A)$ [A1] 2. A [hip] 3. $B \supset A$ [MP(1,2)]

Helyesség (Soundness)

Tetszőleges A esetén,

 $Ha \vdash A$, akkor $\models A$.

Teljesség (Completeness)

Tetszőleges A esetén,

 $\mathsf{Ha} \models A$, $\mathsf{akkor} \vdash A$.

- (A1)
- $A\supset (B\supset A)$ (A2) $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$
- $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$ (A3)

Levezetési szabály (modus ponens)

$$\{A\supset B,A\}\vdash B$$

0. Feladat

Mutassuk meg, hogy:

1.
$$A \supset B$$

2.
$$B\supset C$$

$$K. A \supset C$$

másképp:

$${A\supset B, B\supset C} \models A\supset C$$

A teljesség miatt, tehát:

$${A\supset B, B\supset C}\vdash A\supset C$$

- $A\supset (B\supset A)$
- (A2)
 - $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$ $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$

Levezetési szabály (modus ponens)

$$\{A \supset B, A\} \vdash B$$

0. Feladat

(A3)

Mutassuk meg, hogy:

$${A\supset B, B\supset C}\vdash A\supset C$$

- 1. $(A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$
- 2. $(B\supset C)\supset (A\supset (B\supset C))$
- 3. $B \supset C$
- 4. $(A\supset (B\supset C))$
- 5. $(A \supset B) \supset (A \supset C)$
- 6. $A \supset B$
- $7 A \supset C$

- - [A2]
 - [A1, ahol $A||B \supset C$, B||A]
 - [hip]
 - [MP(2,3)]
 - [MP(1,4)]
 - [hip]
 - [MP(5,6)]

- (A1) $A\supset (B\supset A)$
- $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$ (A2)
- (A3) $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$

Levezetési szabály (modus ponens)

$$\{A\supset B,A\}\vdash B$$

1. Feladat

Mutassuk meg, hogy:

$$\{A\supset (B\supset C), B\}\vdash A\supset C$$

[A2]

- 1. $(A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$
- 2. $A\supset (B\supset C)$ [hip]
- 3. $(A \supset B) \supset (A \supset C)$ [MP(1,2)]
- 4. $B \supset (A \supset B)$ [A1, ahol A||B, B||A]
- 5. B [hip]
- 6. $(A \supset B)$ [MP(4,5)]
- $7 A \supset C$ [MP(3,6)]

$$\begin{array}{ll} (A1) & A\supset (B\supset A) \\ (A2) & (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C)) \\ (A3) & (\neg A\supset B)\supset ((\neg A\supset \neg B)\supset A) \end{array}$$

Levezetési szabály (modus ponens)

$$\{A\supset B,A\}\vdash B$$

Dedukciós tétel

$$\{A_1,A_2,...,A_n\} \vdash B$$
 akkor és csak akkor, ha $\{A_1,A_2,...,A_{n-1}\} \vdash A_n \supset B$

2. Feladat

$$\{A \supset B, B \supset C\} \vdash A \supset C \qquad \qquad \downarrow D \{A \supset B, B \supset C, A\} \vdash C$$

1.
$$A \supset B$$
 [hip]
2. $B \supset C$ [hip]
3. A [hip]
4. B [MP(1,3)]
5. C [MP(2,4)]

- $A\supset (B\supset A)$ (A1)
- (A2) $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$ $(\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A)$ (A3)
- (B1) $A \supset A$

Levezetési szabály (modus ponens)

$$\{A\supset B,A\} \, \vdash_0 B$$

3. Feladat

Mutassuk meg, hogy $\vdash \neg \neg A \supset A$ bizonyítható.

$$\vdash \neg \neg A \supset A$$

$$\Downarrow D$$

$$\{\neg \neg A\} \vdash A$$

- 1. $(\neg A \supset \neg A) \supset ((\neg A \supset \neg \neg A) \supset A)$ [A3; $A || A; B || \neg A$]
- 2. $\neg A \supset \neg A$
- 3. $(\neg A \supset \neg \neg A) \supset A$
- 4. $\neg \neg A \supset (\neg A \supset \neg \neg A)$
- 5. ¬¬*A*
- 6. $\neg A \supset \neg \neg A$

- [B1; *A*||¬*A*]
- [MP(1,2)]
 - [A1; $A||\neg\neg A; B||\neg A$]
 - [hip]
 - [MP(4.5)]
 - [MP(3.6)]

Ez után használható axiómaséma: B4 - $\neg \neg A \supset A$

- (A1) $A\supset (B\supset A)$
- (A2) $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$ $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$ (A3)
- $A \supset A$ (B1)
- (B3) $A \supset \neg \neg A$
- (B4) $\neg \neg A \supset A$

Levezetési szabály (modus ponens)

$$\{A\supset B,A\} \, \vdash_0 B$$

4. Feladat

Készítsük el a következő levezetést: $\{A \supset B\} \vdash_0 \neg \neg A \supset \neg \neg B$

Dedukciós tétel használata után a következő levezetés kell: $\{A \supset B, \neg \neg A\} \vdash_0 \neg \neg B$

- $B \supset \neg \neg B$ [B3; A || B]
 - 2. $A \supset B$ [hip]
 - 3. $\neg \neg A \supset A$ [B4; A||A|4. $\neg \neg A$ [hip]

 - 5. A [MP(3,4)]
 - $B \qquad [MP(2,5)]$
 - $\neg \neg B$ [MP(1.6)]

Ez után használható axiómaséma: B5 - $(A \supset B) \supset (\neg \neg A \supset \neg \neg B)$

5. Feladat

Egy bál szervezése a feladatod. Mikor a bejáratot ellenőrzöd, két feliratot látsz kiírva. 1. Ha Ön időben érkezett, akkor az üdvözlő italokat a bejárat melletti asztalon találja. 2. Ha az üdvözlő italokat nem találja a bejárat melletti asztalon, akkor Ön nem érkezett időben.

Bár az információ, amit hordoznak nem túl egyértelmű, téged mégis a redundancia zavar, amit felismersz bennük. Hirtelen eszedbe jut, hogy az ítéletkalkulus segítségével egyszerűen el tudnád dönteni, hogy a két állítás ugyanaz-e. Neki is állsz az állítások formalizálásának, és kiszámolod a két levezetést, amely az ekvivalencia megállapításához szükséges. Kérlek írd le a folyamatot!

Bizonyítani kell:

$${X\supset Y}\vdash_0 \neg Y\supset \neg X$$
, illetve ${\neg Y\supset \neg X}\vdash_0 X\supset Y$

- $A \supset (B \supset A)$ (A1)
- (A2) $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$
- $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$ (A3)
- (B1) $A \supset A$
- $A \supset \neg \neg A$ (B3) (B4) $\neg \neg A \supset A$
- $(A \supset B) \supset (\neg \neg A \supset \neg \neg B)$ (B5)

Levezetési szabály (modus ponens)

$$\{A\supset B,A\} \,\vdash_0 B$$

$$\{X\supset Y\}\vdash_0 \neg Y\supset \neg X$$

Dedukciós tétel alkalmazása után: $\{X \supset Y, \neg Y\} \vdash_0 \neg X$

- $(\neg \neg X \supset \neg Y) \supset ((\neg \neg X \supset \neg \neg Y) \supset \neg X)$ [A3; A||\neg X; B||\neg Y]
- 2. $\neg Y \supset (\neg \neg X \supset \neg Y)$
- $\neg Y$
- 4 $\neg \neg X \supset \neg Y$
- 5. $(\neg \neg X \supset \neg \neg Y) \supset \neg X$
- 6. $(X \supset Y) \supset (\neg \neg X \supset \neg \neg Y)$
- 7. $X \supset Y$
- $\neg\neg X \supset \neg\neg Y$
- $\neg X$ 9

- [A1; $A||\neg Y$; $B||\neg \neg X$]
- [hip]
- [MP(2.3)]
- [MP(1,4)]
- [B5; A||X; B||Y]
- [hip]
- [MP(6.7)]
- [MP(5,8)]

$$(A1) \qquad A\supset (B\supset A)$$

$$(A2) \qquad (A\supset (B\supset A) (A2) \qquad (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$$

$$(A3) \qquad (\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$$

- (B1) $A \supset A$
- (B3) $A \supset \neg \neg A$ (B4) ¬¬A ⊃ A
- $(A \supset B) \supset (\neg \neg A \supset \neg \neg B)$ (B5)

Levezetési szabály (modus ponens)

$$\{A\supset B,A\} \vdash_0 B$$

$$\{\neg Y \supset \neg X\} \vdash_0 X \supset Y$$

Dedukciós tétel alkalmazása után: $\{\neg Y \supset \neg X, X\} \vdash_0 Y$

- $(\neg Y \supset X) \supset ((\neg Y \supset \neg X) \supset Y)$ [A3; A||Y; B||X]
- 2. $\hat{X} \supset (\neg Y \supset \hat{X})$ [A1; $A||X; B||\neg Y$]
 - [hip]
- 4. $\neg Y \supset X$ [MP(2,3)]
- 5. $(\neg Y \supset \neg X) \supset Y$ [MP(1,4)]
- 6 $\neg Y \supset \neg X$
 - [hip] [MP(5,6)]

Levezetési szabály (modus ponens)

 $\{A\supset B,A\}\vdash_{\mathsf{D}} B$

$$(A1) \qquad A \supset (B \supset A)$$

$$(A2) \qquad (A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C)$$

$$\begin{array}{ll} (A2) & (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))\\ (A3) & (\neg A\supset B)\supset ((\neg A\supset \neg B)\supset A) \end{array}$$

- (B1) A ⊃ A (B3) A ⊃ ¬¬A
- $(B4) \qquad \neg\neg A \supset A$ $(B5) \qquad (A \supset B) \supset (\neg\neg A \supset \neg\neg B)$

6. Feladat

Nyomozós példa (rövidített verzió): $\{F\supset K, K\supset A, \neg A\}\vdash_0 \neg F$

- 1. $(\neg \neg F \supset \neg A) \supset ((\neg \neg F \supset \neg \neg A) \supset \neg F)$ [A3; A|| $\neg F$; B|| $\neg A$]
- 2. $\neg A \supset (\neg \neg F \supset \neg A)$
- 3. *¬A*
- 4. $\neg \neg F \supset \neg A$
- 5. $(\neg \neg F \supset \neg \neg A) \supset \neg F$
- 6. $(F \supset A) \supset (\neg \neg F \supset \neg \neg A)$
- 7. $(F \supset (K \supset A)) \supset ((F \supset K) \supset (F \supset A))$ [A2; A||F; B||K; C||A|
- 8. $(K \supset A) \supset (F \supset (K \supset A))$
- 9. $K \supset A$
- 10. $F\supset (K\supset A)$
- 11. $(F\supset K)\supset (F\supset A)$
- 12. $F\supset K$
- 13. *F* ⊃ *A*
- 14. $\neg \neg F \supset \neg \neg A$
- 15. ¬*F*

- [A3; $A||\neg F$; $B||\neg A$] [A1; $A||\neg A$; $B||\neg \neg F$] [hip]
- [MP(2,3)]
- [MP(1,4)]
- [B5; A||F; B||A]
 - [A2; A||F; B||K; C||A $[A1; A||K \supset A; B||F]$
 - [hip]
 - [MP(8,9)]
 - [MP(7,10)]
 - [hip]
 - [MP(11,12)]
 - [MP(6,13)]
 - [MP(5,14)]