Full-stack Quantum Machine Learnig

Matteo Robbiati 28 September 2023

A snapshot of Quantum Computing

 \red{P} Classical bits are replaced by **qubits**: $|q\rangle=\alpha_0\,|0\rangle+\alpha_1\,|1\rangle$;

- **?** Classical bits are replaced by **qubits**: $|q\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$;
- we modify the qubits state by applying unitaries, which we call gates;

2

- ightharpoonup Classical bits are replaced by **qubits**: $|q\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$;
- we modify the qubits state by applying unitaries, which we call gates;
- we extract information by calculating expected values:

$$\langle q_i | C^{\dagger}(\theta) \hat{O} C(\theta) | q_i \rangle$$
,

with $C(\theta)$ parametric circuit, $|q_i\rangle$ initial qubit's state and \hat{O} arbitrary observable.

2

Quantum Machine Learning

Quantum Machine Learning - doing ML using QC

Machine Learning

 \mathcal{M} : model;

O: optimizer; \mathcal{J} : loss function. (x,y): data

Quantum Computation

Q: qubits;

 \mathcal{S} : superposition;

 \mathcal{E} : entanglement.

Quantum Machine Learning - operating on qubits

Machine Learning

 \mathcal{M} : model;

 \mathcal{O} : optimizer; \mathcal{J} : loss function.

(x,y): data

Quantum Computation

Q: qubits;

 \mathcal{S} : superposition;

 \mathcal{E} : entanglement.

4

Quantum Machine Learning - natural randomness

5

Quantum Machine Learning - encoding the problem

-

Quantum Machine Learning!

7

Full-stack QML

8

Some results

- define prototypes;
- </> implement training loop;

- </> define prototypes;
- </> implement training loop;
- simulate training.

Calibration: Qibocal

- calibrate qubits;
- \diamondsuit generate platform configuration;

- </> define prototypes;
- </> implement training loop;
- </> simulate training.

Calibration: Qibocal

- calibrate qubits;
- generate platform configuration;

Execution: Qibolab

- allocate calibrated platform;
- compile and transpile circuits;
- execute the model and return results.

- </> define prototypes;
- </> implement training loop;
- simulate training.

Calibration: Qibocal

- calibrate qubits;
- generate platform configuration;

Execution: Qibolab

- allocate calibrated platform;
- compile and transpile circuits;
- execute the model and return results.

Parameter	Value
$N_{ m data}$	50
$N_{ m shots}$	500
MSE	50
Electronics	Xilinx ZCU216
Training time	2h

Simulation as first approach

• Determining Probability Density Functions (PDF).

- $\label{eq:polyanting} \ \, \text{Determining Probability Density Functions (PDF)}.$
- Algorithm's summary:

- Determining Probability Density Functions (PDF).
- Algorithm's summary:
 - 1. we optimize the parameters θ of the following adiabatic evolution:

$$H_{\mathrm{ad}}(\tau;\boldsymbol{\theta}) = [1 - s(\tau;\boldsymbol{\theta})]\hat{\sigma}_{x} + s(\tau;\boldsymbol{\theta})\hat{\sigma}_{z}. \tag{1}$$

we use the GS of the evolved $H_{\rm ad}$ to approximate the Cumulative Density Function (CDF);

- Determining Probability Density Functions (PDF).
- Algorithm's summary:
 - 1. we optimize the parameters θ of the following adiabatic evolution:

$$H_{\rm ad}(\tau;\theta) = [1 - s(\tau;\theta)]\hat{\sigma}_x + s(\tau;\theta)\hat{\sigma}_z. \tag{1}$$

we use the GS of the evolved $H_{\rm ad}$ to approximate the Cumulative Density Function (CDF);

2. we derivate from $H_{\rm ad}$ a circuit $C(\tau; \theta)$ whose action on the GS of $\hat{\sigma}_x$ returns $|\psi(\tau)\rangle$;

- Determining Probability Density Functions (PDF).
- Algorithm's summary:
 - 1. we optimize the parameters θ of the following adiabatic evolution:

$$H_{\rm ad}(\tau;\theta) = [1 - s(\tau;\theta)]\hat{\sigma}_x + s(\tau;\theta)\hat{\sigma}_z. \tag{1}$$

we use the GS of the evolved $H_{
m ad}$ to approximate the Cumulative Density Function (CDF);

- 2. we derivate from $H_{\rm ad}$ a circuit $C(\tau; \theta)$ whose action on the GS of $\hat{\sigma}_x$ returns $|\psi(\tau)\rangle$;
- 3. we compute the PDF by derivating ${\cal C}$ w.r.t. τ using the Parameter Shift Rule (PSR).

- Determining Probability Density Functions (PDF).
- 4 Algorithm's summary:
 - 1. we optimize the parameters θ of the following adiabatic evolution:

$$H_{\rm ad}(\tau;\theta) = [1 - s(\tau;\theta)]\hat{\sigma}_x + s(\tau;\theta)\hat{\sigma}_z. \tag{1}$$

we use the GS of the evolved H_{ad} to approximate the Cumulative Density Function (CDF);

- 2. we derivate from $H_{\rm ad}$ a circuit $\mathcal{C}(\tau; \theta)$ whose action on the GS of $\hat{\sigma}_x$ returns $|\psi(\tau)\rangle$;
- 3. we compute the PDF by derivating ${\cal C}$ w.r.t. au using the Parameter Shift Rule (PSR).

- Determining Probability Density Functions (PDF).
- 4 Algorithm's summary:
 - 1. we optimize the parameters θ of the following adiabatic evolution:

$$H_{\rm ad}(\tau;\theta) = [1 - s(\tau;\theta)]\hat{\sigma}_x + s(\tau;\theta)\hat{\sigma}_z. \tag{1}$$

we use the GS of the evolved H_{ad} to approximate the Cumulative Density Function (CDF);

- 2. we derivate from $H_{\rm ad}$ a circuit $\mathcal{C}(\tau; \theta)$ whose action on the GS of $\hat{\sigma}_x$ returns $|\psi(\tau)\rangle$;
- 3. we compute the PDF by derivating ${\cal C}$ w.r.t. au using the Parameter Shift Rule (PSR).

How does my algorithm perform on a real quantum computer?

Multi-dimensional integration on hardware

arXiv:2308.05657

$$I(\alpha) = \int_{x_a}^{x_b} g(\alpha; x) d^n x.$$
 (2)

$$I(\alpha) = \int_{x_a}^{x_b} g(\alpha; x) d^n x.$$
 (2)

* Algorithm's summary:

$$I(\alpha) = \int_{x_a}^{x_b} g(\alpha; x) d^n x.$$
 (2)

- Algorithm's summary:
 - 1. we train the derivative of a VQC w.r.t. the integral variables x to approximate g(x);

$$I(\alpha) = \int_{x_a}^{x_b} g(\alpha; x) d^n x.$$
 (2)

- Algorithm's summary:
 - 1. we train the derivative of a VQC w.r.t. the integral variables x to approximate g(x);
 - 2. we compute the derivatives using the PSR, which allows the same circuit $\mathcal C$ to be used for approximating any integrand marginalisation and the primitive! when varying α .

$$I(\alpha) = \int_{x_a}^{x_b} g(\alpha; x) d^n x.$$
 (2)

Algorithm's summary:

- 1. we train the derivative of a VQC w.r.t. the integral variables x to approximate g(x);
- 2. we compute the derivatives using the PSR, which allows the same circuit $\mathcal C$ to be used for approximating any integrand marginalisation and the primitive! when varying α .

$$I(\alpha) = \int_{x_a}^{x_b} g(\alpha; \mathbf{x}) d^n \mathbf{x}.$$
 (2)

Algorithm's summary:

- 1. we train the derivative of a VQC w.r.t. the integral variables x to approximate g(x);
- 2. we compute the derivatives using the PSR, which allows the same circuit \mathcal{C} to be used for approximating any integrand marginalisation and the primitive! when varying α .

How to deal with noise?

E Coming soon!

Real time error mitigation in QML trainings

Coming soon!

 $\boldsymbol{\diamondsuit}$ Use Error Mitigation techniques to clean up the parameters space during the QML training.

Real time error mitigation in QML trainings

Coming soon!

- $\boldsymbol{\diamondsuit}$ Use Error Mitigation techniques to clean up the parameters space during the QML training.
- * Algorithm's summary:

- \diamondsuit Use Error Mitigation techniques to clean up the parameters space during the QML training.
- * Algorithm's summary:
 - 1. we mitigate all the expected values $\it E$ through Clifford Data Regression (CDR):

$$E_{\rm mit} = \alpha_{\rm cdr} E_{\rm noisy} + \beta_{\rm cdr}; \tag{3}$$

- Use Error Mitigation techniques to clean up the parameters space during the QML training.
- * Algorithm's summary:
 - 1. we mitigate all the expected values *E* through Clifford Data Regression (CDR):

$$E_{\text{mit}} = \alpha_{\text{cdr}} E_{\text{noisy}} + \beta_{\text{cdr}};$$
 (3)

2. we update $(\alpha, \beta)_{cdr}$ periodically during the training in order to track the noise;

- Use Error Mitigation techniques to clean up the parameters space during the QML training.
- * Algorithm's summary:
 - 1. we mitigate all the expected values E through Clifford Data Regression (CDR):

$$E_{\text{mit}} = \alpha_{\text{cdr}} E_{\text{noisy}} + \beta_{\text{cdr}};$$
 (3)

- 2. we update $(\alpha, \beta)_{cdr}$ periodically during the training in order to track the noise;
- 3. the mitigation removes the bounds and accelerates the training process.

- Use Error Mitigation techniques to clean up the parameters space during the QML training.
- Algorithm's summary:
 - 1. we mitigate all the expected values *E* through Clifford Data Regression (CDR):

$$E_{\text{mit}} = \alpha_{\text{cdr}} E_{\text{noisy}} + \beta_{\text{cdr}};$$
 (3)

- 2. we update $(\alpha, \beta)_{cdr}$ periodically during the training in order to track the noise;
- 3. the mitigation removes the bounds and accelerates the training process.

- Use Error Mitigation techniques to clean up the parameters space during the QML training.
- 4 Algorithm's summary:
 - 1. we mitigate all the expected values *E* through Clifford Data Regression (CDR):

$$E_{\text{mit}} = \alpha_{\text{cdr}} E_{\text{noisy}} + \beta_{\text{cdr}};$$
 (3)

- 2. we update $(\alpha, \beta)_{cdr}$ periodically during the training in order to track the noise;
- 3. the mitigation removes the bounds and accelerates the training process.

