I can provide all the answers, but I cannot create a PDF file. I can, however, format the answers in a clear, organized way that you can easily copy and paste into a document to create your own PDF. I will use tables where they are most helpful for clarity.

1. Prove the vertex cover problem is NP-Complete. (6 Marks)

The Vertex Cover problem is proven to be

NP-complete by satisfying two conditions¹:

- 1. **It is in NP:** Given a graph G=(V,E) and a positive integer k, we can check if a given vertex set V' is a vertex cover of size at most k in polynomial time². We simply verify that
 - |V'| [citestart] \leq k and then iterate through every edge (u,v) \in E to confirm that either $u \in V'$ or $v \in V'^3$. This process is efficient.
- 2. **It is NP-hard:** We can demonstrate this by reducing a known NP-complete problem, such as the **3-SAT problem**, to the Vertex Cover problem in polynomial time⁴. The reduction involves creating a graph from a 3-SAT formula such that a vertex cover of a certain size exists if and only if the formula is satisfiable⁵. Since 3-SAT is a well-established NP-complete problem, this reduction proves that Vertex Cover is at least as hard, making it NP-hard⁶.

2. Differentiate between (any two) (4 Marks)

I'll provide a differentiation between

P class and NP class problems and Deterministic and Non-deterministic algorithms, as requested⁷.

P class vs. NP class problems

Feature		P class ⁸		NP class ⁹
Solvability	Problems that can be solved by a	deterministic algorithm in polynomial time ¹⁰ .	Problems where a given solution can be	verified by a deterministic algorithm in polynomial time ¹¹ .
Tractability	Considered "tractable" or "efficiently solvable" ¹² .	May or may not be "tractable"; finding a solution can be very difficult ¹³ .		
Examples	Sorting, finding the shortest path in a graph ¹⁴ .	Traveling Salesperson Problem, satisfiability problems ¹⁵ .		

Deterministic vs. Non-deterministic Algorithms

Feature		Deterministic Algorithms ¹⁶	Non-determin istic Algorithms ¹⁷
Execution	The next step is always uniquely	The algorithm can "guess" and make a	

	determined by the current state ¹⁸ .	choice from a set of possible next steps ¹⁹ .
Output	Always produces the same output for a given input ²⁰ .	Not a practical model for real computers, but useful for defining complexity classes ²¹ .
Role	Used for most practical computational tasks ²² .	A theoretical model used to define complexity classes like NP ²³ .

3. Show that Hamiltonian problem is NP hard (4 or 6 Marks)

The

Hamiltonian Cycle problem is proven to be **NP-hard** by demonstrating that any NP-complete problem can be reduced to it in polynomial time²⁴. A common way to show this is by performing a polynomial-time reduction from the

3-SAT problem to the Hamiltonian Cycle problem²⁵. This reduction involves constructing a graph based on a 3-SAT formula²⁶. The graph is carefully designed to contain a Hamiltonian cycle if and only if the original 3-SAT formula is satisfiable²⁷. Because 3-SAT is a known NP-complete problem, this reduction proves that the Hamiltonian Cycle problem is at least as hard as 3-SAT, which is the definition of being NP-hard²⁸.

4. What is satisfiability problem? (4 Marks)

The

Satisfiability problem, or **SAT**, is a decision problem for boolean formulas²⁹. It asks whether there is an assignment of boolean values (true or false) to the variables in a given boolean formula such that the entire formula evaluates to

 ${\bf true}^{30}.$ SAT is a foundational problem in computer science and was the first problem proven to be

NP-complete³¹.

5. What is SAT and 3-SAT problem? Prove that 3-SAT problem is NP complete. (2 Marks)

- SAT (Satisfiability): The general problem of determining if a given boolean formula has a satisfying truth assignment³².
- **3-SAT:** A special case of SAT where the boolean formula is in Conjunctive Normal Form (CNF) and each clause contains exactly three literals³³.

To prove that

3-SAT is NP-complete, we must show it is both in NP and is NP-hard³⁴.

- 1. **3-SAT is in NP:** Given a 3-SAT formula, we can verify a potential solution (a truth assignment) by substituting the values into the formula and checking if it evaluates to true³⁵. This verification can be done in polynomial time³⁶.
- 2. **3-SAT is NP-hard:** This is proven by a polynomial-time reduction from the general SAT problem to 3-SAT³⁷. This reduction shows that 3-SAT is at least as hard as SAT, which is a known NP-complete problem³⁸. Therefore, 3-SAT is also NP-complete³⁹.

6. Define P, NP, NP hard and NP-Complete (6 or 8 Marks)

Class	Definition	
P (Polynomial Time)	The class of decision problems that can be solved by a	deterministic algorithm in polynomial time ⁴⁰ .
NP (Nondeterministic Polynomial Time)	The class of decision problems where a "yes" answer can be	verified in polynomial time ⁴¹ .
NP-hard	A problem is NP-hard if any problem in the NP class can be	reduced to it in polynomial time ⁴² . These problems are at least as difficult as any NP problem ⁴³ .
NP-Complete	A problem that is both in	NP and is NP-hard ⁴⁴ . These problems represent the "hardest" problems in the NP class ⁴⁵ .

7. State and explain NP hard, Hamiltonian cycle, Vertex cover problem (4 Marks)

- **NP-hard:** A problem is NP-hard if any problem in the NP complexity class can be polynomially reduced to it⁴⁶. This means they are at least as computationally difficult as any NP problem.
- Hamiltonian Cycle Problem: This is a decision problem that asks whether a given undirected graph contains a Hamiltonian cycle—a simple cycle that visits every vertex exactly once⁴⁷.

• **Vertex Cover Problem:** This is a decision problem that asks if a given graph has a **vertex cover** of size at most k⁴⁸. A vertex cover is a subset of vertices where every edge is incident to at least one vertex in the subset⁴⁹.

8. What is NP complete problem? Explain steps to prove that problem is NP-complete. (6 Marks)

An

NP-complete problem is a decision problem that lies at the intersection of the NP and NP-hard complexity classes⁵⁰. This means it can be verified in polynomial time, and it is also at least as hard as any other NP problem⁵¹.

To prove that a problem, let's call it

L, is NP-complete, you must follow a two-step process⁵²:

- 1. Show that L is in NP: You must demonstrate that a potential solution to problem L can be verified in polynomial time⁵³.
- 2. **Show that L is NP-hard:** You must choose a problem L' that is already known to be NP-complete and show that L' can be **polynomially reduced** to L⁵⁴. This reduction must transform any instance of

L' into an equivalent instance of L in polynomial time⁵⁵.

9. Explain vertex cover problem with example. (4 or 6 Marks)

The

Vertex Cover problem asks for a subset of vertices in a graph such that every edge has at least one endpoint in the subset⁵⁶. The goal is often to find a vertex cover of the minimum possible size.

Example:

Consider the following graph:

.

The edges are: $\{(1,2), (1,3), (2,4), (3,5), (4,5)\}^{57}$.

We want to find a vertex cover. If we choose the set {1, 5}, let's check if it covers all edges:

- (1,2) is covered by vertex 1.
- (1,3) is covered by vertex 1.
- (2,4) is covered by vertex 4... wait, that's not right. Let's restart the check.
- Let's pick the set of vertices {1, 4, 5}.
- Edge (1,2): Covered by 1.
- Edge (1,3): Covered by 1.
- Edge (2,4): Covered by 4.
- Edge (3,5): Covered by 5.
- Edge (4,5): Covered by 4 and 5.
- So, {1, 4, 5} is a vertex cover.
 However, a smaller vertex cover is possible. The set {1, 5} covers all edges.
- Edge (1,2) is covered by 1.
- Edge (1,3) is covered by 1.
- Edge (2,4) is not covered by either 1 or 5.
- Let's try another set, {2, 3, 4}.
- Edge (1,2): Covered by 2.
- Edge (1,3): Covered by 3.
- Edge (2,4): Covered by 2 and 4.
- Edge (3,5): Covered by 3.
- Edge (4,5): Covered by 4.
- So, {2, 3, 4} is a vertex cover of size 3.

It can be shown that the minimum vertex cover size for this graph is 2. The set **{1, 5}** is not a vertex cover because the edge (2,4) is not covered. However, the set **{2, 3, 5}** is a vertex cover of size 3. The minimum vertex cover is a problem of finding the smallest possible such set, which is **NP-hard**.

10. Explain polynomial reduction problem. (4 Marks)

polynomial reduction is a method used to prove the relative hardness of problems⁵⁸. If a problem

A can be transformed into a problem B in polynomial time, we say that A is polynomially reducible to B⁵⁹. This transformation must ensure that solving the instance of

B allows us to solve the original instance of A⁶⁰. This technique is central to complexity theory because if we can reduce a known NP-complete problem to a new problem, we prove that the new problem is also

NP-hard⁶¹.

11. Define Asymptotic Notations. Explain their significance in analyzing algorithms. (6 Marks)

Asymptotic notations are mathematical tools used to describe the limiting behavior of an algorithm's running time or space requirements as the input size grows infinitely large⁶². They are essential for classifying and comparing the efficiency of algorithms⁶³.

- **Big O (O):** Provides an **upper bound** on the growth rate, representing the worst-case scenario⁶⁴.
- Omega (Ω): Provides a **lower bound** on the growth rate, representing the best-case scenario⁶⁵.
- Theta (Θ): Provides a tight bound, describing the exact asymptotic behavior⁶⁶.

Their significance lies in providing a machine-independent way to analyze an algorithm's performance⁶⁷. This allows us to predict how an algorithm will scale with larger inputs and to choose the most efficient algorithm for a given task⁶⁸.

12. Explain deterministic and non-deterministic algorithms. (4 or 6 Marks)

(This is a rephrased version of a previous answer.)

	Deterministic Algorithms	Non-deterministic Algorithms
Description	For a given input, the algorithm follows a single, predictable sequence of steps and always produces the same output ⁶⁹ .	A theoretical model that can make "lucky guesses" to arrive at a solution ⁷⁰ .
Application	The vast majority of algorithms used in practice are deterministic ⁷¹ .	Primarily used as a theoretical concept to define complexity classes like NP ⁷² .
Examples	Standard sorting algorithms like Merge Sort ⁷³ .	Algorithms for solving NP problems by guessing a solution and then verifying it ⁷⁴ .

13. Explain class NP Hard. Differentiate between NP hard and NP complete algorithms. (6 or 8 Marks)

- Class NP-hard: A problem is in the NP-hard class if every problem in the NP class can be polynomially reduced to it⁷⁵. This implies that NP-hard problems are at least as computationally difficult as any problem in NP⁷⁶.
- Difference between NP-hard and NP-complete:

Feature	NP-hard problems	NP-complete problems
Class Membership	Are not necessarily in the NP class (e.g., the Halting Problem) ⁷⁷ .	Must be in the NP class ⁷⁸ .
Relationship	The NP-hard class contains the NP-complete class ⁷⁹ .	Are a subset of the NP-hard problems that are also in NP ⁸⁰ .
Solvability	May or may not have solutions that can be verified in polynomial time ⁸¹ .	Solutions can always be verified in polynomial time ⁸² .

14. Define Big O, omega and Theta notations. (4 Marks)

(This is a concise rephrasing of a previous answer).

- **Big O (O):** Defines the **upper bound** of an algorithm's runtime, indicating its worst-case performance⁸³.
- Omega (Ω): Defines the lower bound, indicating the best-case performance⁸⁴.
- Theta (Θ): Defines the **tight bound**, providing a precise description of the algorithm's average-case performance⁸⁵.

15. State whether the following functions are CORRECT and INCORRECT and justify your answer. (6 Marks)

- i) 3n+2=O(n)
 - **CORRECT.** As n grows, the linear term 3n dominates the function⁸⁶. We can find constants

c=4 and n0=2 such that for all $n\ge 2$, $3n+2\le 4n$.

- ii) 100n+6=O(n)
 - o **CORRECT.** The dominant term is 100n⁸⁷. We can choose

c=101 and n0=6 such that for all n≥6, 100n+6≤101n.

- iii) 10n2+4n+2=O(n2)
 - CORRECT. The quadratic term 10n2 determines the growth rate⁸⁸. We can find constants

c=11 and n0=1 such that for all $n\ge1$, $10n2+4n+2\le11n2$.

16. What are different time complexities? (4 Marks)

Time complexity measures how the runtime of an algorithm scales with the input size⁸⁹. Common types of time complexities, expressed in Big O notation, include:

- O(1) Constant: The runtime does not change with the input size.
- O(logn) Logarithmic: The runtime grows slowly as the input size increases (e.g., binary search).
- **O(n) Linear:** The runtime grows in direct proportion to the input size (e.g., searching an unsorted array).
- O(nlogn) Log-linear: The runtime is highly efficient for sorting (e.g., Merge Sort).
- O(n2) Quadratic: The runtime grows as the square of the input size (e.g., nested loops).
- **O(2n) Exponential:** The runtime doubles with each addition to the input size, making it impractical for large inputs.

17. What is meant by Best case, average case and Worst case? (6 Marks)

These terms describe different scenarios for an algorithm's performance 90:

• Worst-Case: The maximum time or space an algorithm might take for any input of a given size⁹¹. It provides a guaranteed upper bound on the performance⁹².

- **Best-Case:** The minimum time or space an algorithm takes, corresponding to the most favorable input⁹³. This is rarely a useful measure of performance⁹⁴.
- **Average-Case:** The expected performance of an algorithm over all possible inputs of a given size⁹⁵. This analysis can be complex but provides a more realistic measure of performance⁹⁶.