Entrega 1 - Álgebra Linear, Vetores e Geometria Analítica

Descrição da Entrega

Tema: Representação e Manipulação de Dados

Formato de Entrega: Código-Fonte, Relatório com Capturas de Tela e Explicação Matemática.

Objetivo: Estruturar um conjunto de dados relevante para um problema prático e representá-lo usando vetores e matrizes.

Atividades:

- Escolher ou coletar um conjunto de dados relevante para uma aplicação de IA.
- Representar esses dados na forma de vetores e matrizes, utilizando Python e NumPy.
- Implementar operações básicas de adição, multiplicação e/ou transposição de matrizes ou outra operação utilizada em sala.

Estrutura do Relatório

Este relatório contém explicações detalhadas sobre cada célula de código implementada no notebook, além de exemplos práticos com vetores e matrizes em Python. O relatório está organizado da seguinte forma:

- Importação de Bibliotecas
- Definição de Vetores e Matrizes
- Operações Matemáticas
- Agrupamento por Categoria
- Cálculo de Coeficientes de Regressão
- Centralização e Correlação pelo Cosseno
- Projeção Linear
- Conclusão

Explicação das Células de Código

1. Importação de Bibliotecas

Nesta parte do código, foi feita a importação da biblioteca NumPy, que é essencial para a manipulação de arrays, vetores e matrizes em Python. O NumPy permite realizar operações matemáticas de forma otimizada.

```
1 import numpy as np
2 import pandas as pd
3 from IPython.display import display

4
5
6 print("OK: NumPy e Pandas carregados.")
7
OK: NumPy e Pandas carregados.
```

2. Definição de Vetores e Matrizes

Aqui foram criados vetores e matrizes representando os dados escolhidos. Essas estruturas são fundamentais para representar informações em IA e aplicações matemáticas. Os vetores são listas unidimensionais, enquanto as matrizes são representadas como tabelas bidimensionais.

3. Operações Matemáticas

Foram implementadas operações como:

- Adição de matrizes: soma elemento a elemento.
- Multiplicação de matrizes: combina informações de duas matrizes em uma nova matriz.
- Transposição: troca linhas por colunas.

```
1 some_taxid = float(np.sum(y))
2 media_taxid = float(np.sen(y))
3 some_status = float(np.sum(y_status))
4 media_status = float(np.mean(y_status))
5
6 print(f"Some_taxid: (some_taxid: 22f")
7 print(f"Some_status: (some_taxid: 22f")
8 print(f"Some_status: (some_status: 27f")
9 print(f"Media_status: (media_taxid: .2f")

$ some_taxid: 2843.ee

Media_status: 490.22

Some_status: 31.06

Media_status: 0.33
```

4. Agrupamento por Categoria

O código converte a coluna taxid em um vetor numérico e identifica as categorias únicas da coluna gender. Em seguida, cria uma matriz binária (one-hot) para representar cada gênero. Usando multiplicação matricial, calcula a soma de taxid para cada categoria de gênero. Por fim, organiza os resultados em um DataFrame e exibe o total de vendas por gênero de forma ordenada.

```
1 y = df_cleaned("taxid").to_numpy().reshape(-1, 1)
2 3 cats = df_cleaned("gender").astype(str).unique()
4 r = len(cats)
5 R = np.zeros((df_cleaned.shape[0], r))
6 for i, c in enumerate(df_cleaned("gender").astype(str)):
7 | j = np.where(cats = c)[0][0]
8 | k[1, j] = 1
9
10 vendas_por_genero = (R.T @ y).flatten()
11 agg_gender = pd.tastrame(("gender": cats, "totalAmount_sum": np.round(vendas_por_genero, 2))).sort_values("totalAmount_sum", ascending=False)
12 display(agg_gender)
13
22 gender totalAmount_sum
10 0 92750
4 N 7838.0
5 F 5916.0
2 M 5304.0
1 nan 100.0

Proximas etapas: Gerar código com agg_gender) (New interactive sheet)
```

5. Cálculo de Coeficientes de Regressão

O código calcula os coeficientes de uma regressão linear. Primeiro, monta os produtos matriciais X^TX e X^Ty para usar no método da eliminação de Gauss, obtendo beta_gauss. Caso haja erro, o cálculo é ignorado. Em seguida, utiliza np.linalg.lstsq como alternativa para encontrar os coeficientes beta_np de forma robusta. Por fim, exibe os coeficientes calculados com seus respectivos rótulos.

```
1 XXX = X.T @ X
2 XXY = X.T @ Y
3
4 labels = (f^p(1)^* for i in range(X.shape[1]))
5
6 try:
9 beta_gauss = gauss_elimination(XXX, XXy, pivot=True)
7 beta_gauss_beta_gauss_reshape(-1) = garante vetor 1D
9 slibs_mbetas_beta_gauss_, labels_abols_i, title="coefficientes via Método de Gauss")
18 except Valuerron a_tlainiacado de Gauss:", e)
12 print("Tentando np.linalg.lstsq como alternativa robusta.")
19 beta_gauss = None
10 beta_gauss = None
11 beta_gauss = None
12 print("Tentando np.linalg.istsq(X, y, rond=None)
13 beta_np, "= np.linalg.istsq(X, y, rond=None)
14 15 beta_np = beta_np-reshape(-1) = garante vetor 1D
17 show_betas_(beta_np, labels_labels, title="validação via np.linalg.lstsq")

3 Coefficientes via Método de Gauss

4 Poi: 475.383710
```

6. Centralização & Correlação (Cosseno do Ângulo)

O código calcula a **relação entre duas variáveis** usando a correlação de cosseno. Primeiro, centraliza os vetores subtraindo a média, depois calcula o cosseno do ângulo entre eles para medir a similaridade. Funções auxiliares interpretam o resultado em termos de **sinal** (positiva, negativa ou nula) e **intensidade** (fraca, moderada, forte). Por fim, exibe um resumo simples indicando a tendência entre status e taxid.

7. Projeção Linear

O código calcula como a variável taxid pode ser **projetada sobre** status, ou seja, quanto da variação de taxid pode ser explicada por status. Primeiro centraliza os vetores e calcula o **coeficiente de escala** α para a projeção. Depois, obtém a **norma da projeção**, da variável original e do **resíduo** (parte não explicada). Por fim, calcula a **percentagem da variação explicada** e classifica a intensidade da relação como baixa, moderada ou alta.

8. Conclusão

A análise realizada mostra diferentes aspectos da relação entre as variáveis taxid e status no conjunto de dados. Inicialmente, observou-se que os valores podem ser resumidos com soma e média, oferecendo uma visão geral da distribuição.

O agrupamento por categoria revelou diferenças claras entre gêneros no total de taxid, destacando quais grupos tiveram maior impacto nas vendas.

O cálculo de coeficientes de regressão permitiu modelar a relação linear entre variáveis explicativas e taxid, com validação tanto pelo método de Gauss quanto por np.linalg.lstsq.

A correlação de cosseno indicou uma relação positiva, embora de intensidade moderada, sugerindo que status e taxid tendem a variar de forma alinhada, mas não de maneira perfeita. Por fim, a projeção linear mostrou que uma parte relevante da variação de taxid pode ser explicada por status, reforçando a existência de uma relação significativa, ainda que não absoluta.

Em resumo, os resultados indicam que status tem influência perceptível sobre taxid, as diferenças por gênero são notáveis, e as ferramentas de regressão e correlação fornecem insights consistentes sobre as tendências do conjunto de dados.