# CSCI567 Machine Learning (Spring 2023) Week 2: Linear Regression, LR with nonlinear basis, Overfitting

Prof. Yan Liu

University of Southern California

#### Outline

- Review of last lecture
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- Overfitting and Preventing Overfitting

#### Outline

- Review of last lecture
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- Overfitting and Preventing Overfitting

#### Multi-class classification

#### Training data (set)

- N samples/instances:  $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{N}}, y_{\mathsf{N}})\}$
- ullet Each  $x_n \in \mathbb{R}^{\mathsf{D}}$  is called a feature vector.
- Each  $y_n \in [C] = \{1, 2, \dots, C\}$  is called a label/class/category.
- They are used for learning  $f: \mathbb{R}^{D} \to [C]$  for future prediction.

#### Special case: binary classification

- Number of classes: C=2
- Conventional labels:  $\{0,1\}$  or  $\{-1,+1\}$

**K-NNC**: predict the majority label within the K-nearest neighbor set



#### **Datasets**

#### **Training data**

- N samples/instances:  $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{N}}, y_{\mathsf{N}})\}$
- $\bullet$  They are used for learning  $f(\cdot)$

#### Test data

- ullet M samples/instances:  $\mathcal{D}^{ ext{TEST}} = \{(oldsymbol{x}_1, y_1), (oldsymbol{x}_2, y_2), \cdots, (oldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used for assessing how well  $f(\cdot)$  will do.

#### **Development/Validation data**

- L samples/instances:  $\mathcal{D}^{ ext{DEV}} = \{(m{x}_1, y_1), (m{x}_2, y_2), \cdots, (m{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyper-parameter(s).

These three sets should *not* overlap!



#### S-fold Cross-validation

#### What if we do not have a development set?

- Split the training data into S equal parts.
- Use each part in turn as a development dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best average performance.

 $\mathsf{S}=5$ : 5-fold cross validation



*Special case:* S = N, called leave-one-out.

# Expected risk

For a loss function L(y', y),

- e.g.  $L(y',y) = \mathbb{I}[y' \neq y]$ , called *0-1 loss*.
- many more other losses as we will see.

the *expected risk* of f is defined as

$$R(f) = \mathbb{E}_{(\boldsymbol{x},y) \sim \mathcal{P}} L(f(\boldsymbol{x}), y)$$

- expectation of test error is the expected risk
- training error can sometimes be a good proxy of expected risk



# High level picture

#### **Typical steps** of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

# High level picture

#### **Typical steps** of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

#### Outline

- Review of last lecture
- 2 Linear regression
  - Motivation
  - Setup and Algorithm
  - Discussions
- Linear regression with nonlinear basis
- 4) Overfitting and Preventing Overfitting

# Regression

#### Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

# Regression

#### Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

#### **Key difference from classification**

- continuous vs discrete
- measure prediction errors differently.
- lead to quite different learning algorithms.

# Regression

#### Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

#### **Key difference from classification**

- continuous vs discrete
- measure prediction errors differently.
- lead to quite different learning algorithms.

#### Linear Regression: regression with linear models



# Ex: Predicting the sale price of a house

#### Retrieve historical sales records (training data)



# Features used to predict



# Correlation between square footage and sale price





# Possibly linear relationship

 ${\sf Sale \ price} \approx {\sf price\_per\_sqft} \times {\sf square\_footage} + {\sf fixed\_expense}$ 



# Possibly linear relationship

Sale price  $\approx$  price\_per\_sqft  $\times$  square\_footage + fixed\_expense (slope) (intercept)



#### How to measure error for one prediction?

• The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.

#### How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
  - *absolute* error: | prediction sale price |

#### How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
  - absolute error: | prediction sale price |
  - or squared error: (prediction sale price) $^2$  (most common)

#### How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
  - absolute error: | prediction sale price |
  - or *squared* error: (prediction sale price)<sup>2</sup> (**most common**)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error,

#### How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
  - absolute error: | prediction sale price |
  - or *squared* error: (prediction sale price)<sup>2</sup> (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

#### How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
  - absolute error: | prediction sale price |
  - or *squared* error: (prediction sale price)<sup>2</sup> (**most common**)

# Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

• test set, ideal but we cannot use test set while training

#### How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
  - absolute error: | prediction sale price |
  - or *squared* error: (prediction sale price)<sup>2</sup> (most common)

# Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

- test set, ideal but we cannot use test set while training
- training set?

#### How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
  - absolute error: | prediction sale price |
  - or *squared* error: (prediction sale price)<sup>2</sup> (**most common**)

# Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

- test set, ideal but we cannot use test set while training
- training set? (for now)

# Example

Predicted price =  $price_per_sqft \times square_footage + fixed_expense$ one model:  $price_per_sqft = 0.3K$ ,  $fixed_expense = 210K$ 

| sqft  | sale price (K) | prediction (K) | squared error                       |
|-------|----------------|----------------|-------------------------------------|
| 2000  | 810            | 810            | 0                                   |
| 2100  | 907            | 840            | $67^2$                              |
| 1100  | 312            | 540            | $228^{2}$                           |
| 5500  | 2,600          | 1,860          | $740^2$                             |
|       | • • •          | • • •          | • • •                               |
| Total |                |                | $0 + 67^2 + 228^2 + 740^2 + \cdots$ |

Adjust price\_per\_sqft and fixed\_expense such that the total squared error is minimized.

Input:  $x \in \mathbb{R}^{D}$  (features, covariates, context, predictors, etc.)

**Output**:  $y \in \mathbb{R}$  (responses, targets, outcomes, etc)

**Training data**:  $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$ 

**Input**:  $x \in \mathbb{R}^{D}$  (features, covariates, context, predictors, etc)

**Output**:  $y \in \mathbb{R}$  (responses, targets, outcomes, etc)

Training data:  $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$ 

**Linear model**:  $f: \mathbb{R}^D \to \mathbb{R}$ , with  $f(x) = w_0 + \sum_{d=1}^D w_d x_d$ 

Input:  $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$  (features, covariates, context, predictors, etc)

**Output**:  $y \in \mathbb{R}$  (responses, targets, outcomes, etc)

Training data:  $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$ 

**Linear model**:  $f: \mathbb{R}^D \to \mathbb{R}$ , with  $f(\boldsymbol{x}) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \boldsymbol{w^T} \boldsymbol{x}$  (superscript  $^T$  stands for transpose),

Input:  $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$  (features, covariates, context, predictors, etc)

**Output**:  $y \in \mathbb{R}$  (responses, targets, outcomes, etc)

Training data:  $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$ 

**Linear model**:  $f: \mathbb{R}^D \to \mathbb{R}$ , with  $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T x$  (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_D]^T$  (weights, weight vector, parameter vector, etc)
- bias  $w_0$

**Input**:  $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$  (features, covariates, context, predictors, etc)

**Output**:  $y \in \mathbb{R}$  (responses, targets, outcomes, etc)

Training data:  $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$ 

**Linear model**:  $f: \mathbb{R}^{D} \to \mathbb{R}$ , with  $f(x) = w_0 + \sum_{d=1}^{D} w_d x_d = w_0 + \mathbf{w}^T x$  (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$  (weights, weight vector, parameter vector, etc)
- bias  $w_0$

NOTE: for notation convenience, very often we

ullet append 1 to each x as the first feature:  $\tilde{\pmb{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}$ 



Input:  $x \in \mathbb{R}^{D}$  (features, covariates, context, predictors, etc.)

**Output**:  $y \in \mathbb{R}$  (responses, targets, outcomes, etc)

Training data:  $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$ 

Linear model:  $f: \mathbb{R}^D \to \mathbb{R}$ , with  $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T \mathbf{x}$ (superscript T stands for transpose), i.e. a hyper-plane parametrized by

- $w = [w_1 \ w_2 \ \cdots \ w_D]^T$  (weights, weight vector, parameter vector, etc)
- bias  $w_0$

*NOTE:* for notation convenience, very often we

- append 1 to each x as the first feature:  $\tilde{x} = \begin{bmatrix} 1 & x_1 & x_2 & \dots & x_D \end{bmatrix}^T$
- let  $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$ , a concise representation of all D+1parameters

4 D > 4 B > 4 E > 4 E > 9 Q P

Input:  $x \in \mathbb{R}^{\mathsf{D}}$  (features, covariates, context, predictors, etc)

**Output**:  $y \in \mathbb{R}$  (responses, targets, outcomes, etc)

Training data:  $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$ 

**Linear model**:  $f: \mathbb{R}^{D} \to \mathbb{R}$ , with  $f(x) = w_0 + \sum_{d=1}^{D} w_d x_d = w_0 + \mathbf{w}^T x$  (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$  (weights, weight vector, parameter vector, etc)
- bias  $w_0$

NOTE: for notation convenience, very often we

- ullet append 1 to each x as the first feature:  $\tilde{\pmb{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}$
- let  $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$ , a concise representation of all D+1 parameters
- ullet the model becomes simply  $f(oldsymbol{x}) = ilde{oldsymbol{w}}^{\mathbf{T}} ilde{oldsymbol{x}}$

4D > 4A > 4B > 4B > B 990

Input:  $x \in \mathbb{R}^{D}$  (features, covariates, context, predictors, etc.)

**Output**:  $y \in \mathbb{R}$  (responses, targets, outcomes, etc)

Training data:  $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$ 

Linear model:  $f: \mathbb{R}^D \to \mathbb{R}$ , with  $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T \mathbf{x}$ (superscript T stands for transpose), i.e. a hyper-plane parametrized by

- $w = [w_1 \ w_2 \ \cdots \ w_D]^T$  (weights, weight vector, parameter vector, etc)
- bias  $w_0$

*NOTE:* for notation convenience, very often we

- append 1 to each x as the first feature:  $\tilde{x} = [1 \ x_1 \ x_2 \ \dots \ x_D]^T$
- let  $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$ , a concise representation of all D+1parameters
- the model becomes simply  $f(x) = \tilde{w}^T \tilde{x}$
- sometimes just use w, x, D for  $\tilde{w}, \tilde{x}, D+1!$

#### Goal

#### Minimize total squared error

$$\sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

#### Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of  $ilde{w}$ 

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

#### Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of  $ilde{w}$ 

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

 $oldsymbol{ar{w}}$  find  $ilde{oldsymbol{w}}^* = \mathop{\mathrm{argmin}}_{ ilde{oldsymbol{w}} \in \mathbb{R}^{\mathsf{D}+1}} \mathrm{RSS}( ilde{oldsymbol{w}})$ , i.e. least (mean) squares solution (more generally called empirical risk minimizer)

#### Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of  $ilde{w}$ 

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

- ullet find  $ilde{m{w}}^* = rgmin_{ ilde{m{w}} \in \mathbb{R}^{\mathsf{D}+1}} \mathrm{RSS}( ilde{m{w}})$ , i.e. least (mean) squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization

#### Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of  $ilde{w}$ 

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

- $oldsymbol{ar{w}}$  find  $ilde{oldsymbol{w}}^* = \mathop{\mathrm{argmin}}_{ ilde{oldsymbol{w}} \in \mathbb{R}^{\mathsf{D}+1}} \mathrm{RSS}( ilde{oldsymbol{w}})$ , i.e. least (mean) squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization
- in principle can apply any optimization algorithm, but linear regression admits a closed-form solution



Only one parameter  $w_0$ : constant prediction  $f(x) = w_0$ 



f is a horizontal line, where should it be?

$$RSS(w_0) = \sum_{n} (w_0 - y_n)^2$$

(it's a quadratic 
$$aw_0^2 + bw_0 + c$$
)

$$ext{RSS}(w_0) = \sum_n (w_0 - y_n)^2$$
 (it's a quadratic  $aw_0^2 + bw_0 + c$ ) 
$$= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \text{cnt.}$$

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a } \textit{quadratic } aw_0^2 + bw_0 + c) \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \mathrm{cnt.} \end{split}$$

#### Optimization objective becomes

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a } \textit{quadratic } aw_0^2 + bw_0 + c) \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \mathrm{cnt.} \end{split}$$

It is clear that  $w_0^* = \frac{1}{N} \sum_n y_n$ , i.e. the average

#### Optimization objective becomes

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a } \textit{quadratic } aw_0^2 + bw_0 + c) \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \mathrm{cnt.} \end{split}$$

It is clear that  $w_0^* = \frac{1}{N} \sum_n y_n$ , i.e. the average

Exercise: what if we use absolute error instead of squared error?

4 D > 4 D > 4 E > 4 E > E 9 9 0

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

#### Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0\\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \sum_n (w_0 + w_1 x_n - y_n) = 0\\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0$$

#### Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0\\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \begin{cases} \sum_n (w_0 + w_1 x_n - y_n) = 0\\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

$$\Rightarrow \begin{array}{ll} Nw_0 + w_1 \sum_n x_n &= \sum_n y_n \\ w_0 \sum_n x_n + w_1 \sum_n x_n^2 &= \sum_n y_n x_n \end{array} \quad \text{(a linear system)}$$



#### Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{w})}{\partial w_0} = 0 \\ \frac{\partial \text{RSS}(\tilde{w})}{\partial w_1} = 0 \end{cases} \Rightarrow \begin{cases} \sum_n (w_0 + w_1 x_n - y_n) = 0 \\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

$$\Rightarrow \begin{array}{ll} Nw_0 + w_1 \sum_n x_n &= \sum_n y_n \\ w_0 \sum_n x_n + w_1 \sum_n x_n^2 &= \sum_n y_n x_n \end{array}$$
 (a linear system)

$$\Rightarrow \left(\begin{array}{cc} N & \sum_{n} x_{n} \\ \sum_{n} x_{n} & \sum_{n} x_{n}^{2} \end{array}\right) \left(\begin{array}{c} w_{0} \\ w_{1} \end{array}\right) = \left(\begin{array}{c} \sum_{n} y_{n} \\ \sum_{n} x_{n} y_{n} \end{array}\right)$$

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

Are stationary points minimizers?

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

#### Are stationary points minimizers?

ullet yes for **convex** objectives (RSS is convex in  $ilde{w})$ 



$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

#### Are stationary points minimizers?

- ullet yes for **convex** objectives (RSS is convex in  $ilde{w}$ )
- not true in general

#### **Objective**

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

#### **Objective**

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n})$$

#### **Objective**

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$

#### **Objective**

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$
$$= (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y}$$

where

$$m{ ilde{X}} = \left(egin{array}{c} m{ ilde{x}}_1^{
m T} \ m{ ilde{x}}_2^{
m T} \ dots \ m{ ilde{x}}_{
m N}^{
m T} \end{array}
ight) \in \mathbb{R}^{{\sf N} imes(D+1)}, \quad m{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_{
m N} \end{array}
ight) \in \mathbb{R}^{{\sf N}}$$

#### **Objective**

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2 \sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left( \sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}} \right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$
$$= (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y} = \boldsymbol{0}$$

where

$$m{ ilde{X}} = \left(egin{array}{c} m{ ilde{x}}_1^{
m T} \ m{ ilde{x}}_2^{
m T} \ dots \ m{ ilde{x}}_{
m N}^{
m T} \end{array}
ight) \in \mathbb{R}^{{\sf N} imes(D+1)}, \quad m{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_{
m N} \end{array}
ight) \in \mathbb{R}^{{\sf N}}$$

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming  $ilde{X}^{\mathrm{T}} ilde{X}$  (covariance matrix) is invertible for now.

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming  $\tilde{X}^{\mathrm{T}}\tilde{X}$  (covariance matrix) is invertible for now.

Again by convexity  $\tilde{w}^*$  is the minimizer of RSS.

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming  $ilde{X}^{\mathrm{T}} ilde{X}$  (covariance matrix) is invertible for now.

Again by convexity  $\tilde{w}^*$  is the minimizer of RSS.

#### Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming  $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$  (covariance matrix) is invertible for now.

Again by convexity  $\tilde{w}^*$  is the minimizer of RSS.

#### Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

when D = 0: 
$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}=\frac{1}{N}$$
,  $\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}=\sum_{n}y_{n}$ 

4 D > 4 D > 4 E > 4 E > E 990

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = ||\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}||_{2}^{2}$$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{T} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = ||\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}||_{2}^{2}$$
$$= (\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y})^{T} (\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y})$$

$$egin{aligned} & ext{RSS}( ilde{oldsymbol{w}}) = \sum_n ( ilde{oldsymbol{w}}^{ ext{T}} ilde{oldsymbol{x}}_n - y_n)^2 = \| ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{y}\|_2^2 \ &= \left( ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{y} 
ight)^{ ext{T}} \left( ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{y} 
ight) \\ &= ilde{oldsymbol{w}}^{ ext{T}} ilde{oldsymbol{X}}^{ ext{T}} ilde{oldsymbol{X}} ilde{oldsymbol{w}} - oldsymbol{oldsymbol{y}}^{ ext{T}} ilde{oldsymbol{X}}^{ ext{T}} oldsymbol{y} + ext{cnt.} \end{aligned}$$

$$\begin{split} &\mathrm{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \mathrm{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \mathrm{cnt.} \end{split}$$

#### RSS is a quadratic

$$\begin{split} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \mathrm{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \mathrm{cnt.} \end{split}$$

Note: 
$$\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u}=\left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u}=\|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2}\geq0$$
 and is  $0$  if  $\boldsymbol{u}=0$ .

4 日 × 4 周 × 4 3 × 4 3 × 3 3

 $RSS(\tilde{\boldsymbol{w}}) = \sum (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n - y_n)^2 = ||\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}||_2^2$ 

## Another approach

$$\begin{split} &= \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} + \mathrm{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}\right) + \mathrm{cnt.} \end{split}$$

Note: 
$$\mathbf{u}^{\mathrm{T}}\left(\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{X}}\right)\mathbf{u} = \left(\tilde{\mathbf{X}}\mathbf{u}\right)^{\mathrm{T}}\tilde{\mathbf{X}}\mathbf{u} = \|\tilde{\mathbf{X}}\mathbf{u}\|_{2}^{2} \geq 0$$
 and is  $0$  if  $\mathbf{u} = 0$ . So  $\tilde{\mathbf{w}}^{*} = (\tilde{\mathbf{X}}^{\mathrm{T}}\tilde{\mathbf{X}})^{-1}\tilde{\mathbf{X}}^{\mathrm{T}}\mathbf{y}$  is the minimizer.



## Computational complexity

#### **Bottleneck** of computing

$$ilde{m{w}}^* = \left( ilde{m{X}}^{ ext{T}} ilde{m{X}}
ight)^{-1} ilde{m{X}}^{ ext{T}}m{y}$$

is to invert the matrix  $\tilde{{m X}}^{\rm T} \tilde{{m X}} \in \mathbb{R}^{({\sf D}+1) \times ({\sf D}+1)}$ 

ullet naively need  $O({\rm D}^3)$  time

## Computational complexity

#### **Bottleneck** of computing

$$ilde{m{w}}^* = \left( ilde{m{X}}^{ ext{T}} ilde{m{X}}
ight)^{-1} ilde{m{X}}^{ ext{T}}m{y}$$

is to invert the matrix  $\tilde{{m X}}^{\rm T} \tilde{{m X}} \in \mathbb{R}^{({\sf D}+1) \times ({\sf D}+1)}$ 

- ullet naively need  $O(\mathsf{D}^3)$  time
- there are many faster approaches (such as conjugate gradient)

# What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

Why would that happen?

# What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

#### Why would that happen?

One situation: N < D+1, i.e. not enough data to estimate all parameters.

# What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

#### Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

**Example:** 
$$D = N = 1$$

| sqft | sale price |  |
|------|------------|--|
| 1000 | 500K       |  |

# What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

#### Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

**Example:** 
$$D = N = 1$$

| sqft | sale price |  |
|------|------------|--|
| 1000 | 500K       |  |

Any line passing this single point is a minimizer of RSS.

$$\mathsf{D}=1, \mathsf{N}=2$$

| sqft | sale price |  |
|------|------------|--|
| 1000 | 500K       |  |
| 1000 | 600K       |  |

$$\mathsf{D}=1,\mathsf{N}=2$$

| sqft | sale price |
|------|------------|
| 1000 | 500K       |
| 1000 | 600K       |

Any line passing the average is a minimizer of RSS.

$$D = 1, N = 2$$

| sqft | sale price |
|------|------------|
| 1000 | 500K       |
| 1000 | 600K       |

Any line passing the average is a minimizer of RSS.

$$D = 2, N = 3$$
?

| sqft | #bedroom | sale price |
|------|----------|------------|
| 1000 | 2        | 500K       |
| 1500 | 3        | 700K       |
| 2000 | 4        | 800K       |

$$\mathsf{D}=1,\mathsf{N}=2$$

| sqft | sale price |
|------|------------|
| 1000 | 500K       |
| 1000 | 600K       |

Any line passing the average is a minimizer of RSS.

$$D = 2, N = 3$$
?

| sqft | #bedroom | sale price |
|------|----------|------------|
| 1000 | 2        | 500K       |
| 1500 | 3        | 700K       |
| 2000 | 4        | 800K       |

Again infinitely many minimizers.



#### How to resolve this issue?

**Intuition:** what does inverting  $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$  do?

eigendecomposition: 
$$\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}} = m{U}^{\mathrm{T}} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} \end{bmatrix} m{U}$$

where  $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$  are **eigenvalues**.

#### How to resolve this issue?

**Intuition:** what does inverting  $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$  do?

where  $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$  are **eigenvalues**.

i.e. just inverse the eigenvalues

4 D > 4 D > 4 E > 4 E > E 990

## How to solve this problem?

Non-invertible  $\Rightarrow$  some eigenvalues are 0.

### How to solve this problem?

Non-invertible  $\Rightarrow$  some eigenvalues are 0.

#### One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where  $\lambda > 0$  and  $\boldsymbol{I}$  is the identity matrix.

### How to solve this problem?

Non-invertible  $\Rightarrow$  some eigenvalues are 0.

#### One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where  $\lambda > 0$  and  $\boldsymbol{I}$  is the identity matrix. Now it is invertible:

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1} + \lambda} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_{2} + \lambda} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \frac{1}{\lambda_{\mathsf{D}} + \lambda} & 0 \\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathsf{D}+1} + \lambda} \end{bmatrix} \boldsymbol{U}$$

## Fix the problem

The solution becomes

$$\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I}\right)^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

• not a minimizer of the original RSS

### Fix the problem

The solution becomes

$$\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I}\right)^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

not a minimizer of the original RSS

 $\lambda$  is a *hyper-parameter*, can be tuned by cross-validation.

### Comparison to NNC

#### Parametric versus non-parametric

- Parametric methods: the size of the model does not grow with the size of the training set N.
  - ullet e.g. linear regression, D + 1 parameters, independent of N.
- Non-parametric methods: the size of the model *grows* with the size of the training set.
  - e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.

#### Outline

- Review of last lecture
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- Overfitting and Preventing Overfitting

## What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data



### Solution: nonlinearly transformed features

#### 1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

### Solution: nonlinearly transformed features

#### 1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

### Solution: nonlinearly transformed features

#### 1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

**2.** Then apply linear regression (hope: linear model is a better fit for the new feature space).



## Regression with nonlinear basis

Model:  $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$  where  $\boldsymbol{w} \in \mathbb{R}^{M}$ 

## Regression with nonlinear basis

Model: 
$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$$
 where  $\boldsymbol{w} \in \mathbb{R}^{M}$ 

#### **Objective:**

$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n})^{2}$$

## Regression with nonlinear basis

**Model:**  $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$  where  $\boldsymbol{w} \in \mathbb{R}^{M}$ 

**Objective:** 

$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n})^{2}$$

Similar least square solution:

$$m{w}^* = \left(m{\Phi}^{\mathrm{T}}m{\Phi}
ight)^{-1}m{\Phi}^{\mathrm{T}}m{y} \quad ext{where} \quad m{\Phi} = \left(egin{array}{c} m{\phi}(m{x}_1)^{\mathrm{T}} \ m{\phi}(m{x}_2)^{\mathrm{T}} \ dots \ m{\phi}(m{x}_N)^{\mathrm{T}} \end{array}
ight) \in \mathbb{R}^{N imes M}$$

### Example

#### Polynomial basis functions for D=1

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

### Example

#### Polynomial basis functions for D=1

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Learning a linear model in the new space

= learning an M-degree polynomial model in the original space

## Example

### Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):







## Why nonlinear?

Can I use a fancy linear feature map?

$$oldsymbol{\phi}(oldsymbol{x}) = \left[egin{array}{c} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ dots \end{array}
ight] = oldsymbol{A} oldsymbol{x} \quad ext{ for some } oldsymbol{A} \in \mathbb{R}^{\mathsf{M} imes \mathsf{D}}$$

## Why nonlinear?

Can I use a fancy linear feature map?

$$m{\phi}(m{x}) = \left[egin{array}{c} x_1 - x_2 \ 3x_4 - x_3 \ 2x_1 + x_4 + x_5 \ dots \end{array}
ight] = m{A}m{x} \quad ext{ for some } m{A} \in \mathbb{R}^{\mathsf{M} imes \mathsf{D}}$$

No, it basically does nothing since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left( \boldsymbol{w}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w}' \in \mathsf{Im}(\boldsymbol{A}^{\mathsf{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left( \boldsymbol{w'}^{\mathsf{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

## Why nonlinear?

Can I use a fancy linear feature map?

$$m{\phi}(m{x}) = \left[egin{array}{c} x_1 - x_2 \ 3x_4 - x_3 \ 2x_1 + x_4 + x_5 \ dots \end{array}
ight] = m{A}m{x} \quad ext{ for some } m{A} \in \mathbb{R}^{\mathsf{M} imes \mathsf{D}}$$

No, it basically does nothing since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left( \boldsymbol{w}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w}' \in \mathsf{Im}(\boldsymbol{A}^{\mathsf{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left( \boldsymbol{w}'^{\mathsf{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

We will see more nonlinear mappings soon.

#### Outline

- Review of last lecture
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- Overfitting and Preventing Overfitting

## Should we use a very complicated mapping?

#### Ex: fitting a noisy sine function with a polynomial:







### Should we use a very complicated mapping?

#### Ex: fitting a noisy sine function with a polynomial:









# **Underfitting and Overfitting**

 $M \leq 2$  is *underfitting* the data

- large training error
- large test error

 $M \geq 9$  is *overfitting* the data

- small training error
- large test error



# **Underfitting and Overfitting**

 $M \leq 2$  is *underfitting* the data

- large training error
- large test error

 $M \geq 9$  is *overfitting* the data

- small training error
- large test error



More complicated models ⇒ larger gap between training and test error

## **Underfitting and Overfitting**

 $M \leq 2$  is *underfitting* the data

- large training error
- large test error

 $M \geq 9$  is *overfitting* the data

- small training error
- large test error



More complicated models ⇒ larger gap between training and test error

How to prevent overfitting?

## Method 1: use more training data

#### The more, the merrier



## Method 1: use more training data

#### The more, the merrier





## Method 1: use more training data

#### The more, the merrier







## Method 1: use more training data

#### The more, the merrier







More data ⇒ smaller gap between training and test error

### Method 2: control the model complexity

For polynomial basis, the **degree** M clearly controls the complexity

ullet use cross-validation to pick hyper-parameter M

## Method 2: control the model complexity

For polynomial basis, the **degree** M clearly controls the complexity

ullet use cross-validation to pick hyper-parameter M

When M or in general  $\Phi$  is fixed, are there still other ways to control complexity?

## Magnitude of weights

Least square solution for the polynomial example:

|                  | M=0  | M = 1 | M = 3  | M = 9       |
|------------------|------|-------|--------|-------------|
| $\overline{w_0}$ | 0.19 | 0.82  | 0.31   | 0.35        |
| $w_1$            |      | -1.27 | 7.99   | 232.37      |
| $w_2$            |      |       | -25.43 | -5321.83    |
| $w_3$            |      |       | 17.37  | 48568.31    |
| $w_4$            |      |       |        | -231639.30  |
| $w_5$            |      |       |        | 640042.26   |
| $w_6$            |      |       |        | -1061800.52 |
| $w_7$            |      |       |        | 1042400.18  |
| $w_8$            |      |       |        | -557682.99  |
| $w_9$            |      |       |        | 125201.43   |

## Magnitude of weights

Least square solution for the polynomial example:

|                  | M=0  | M = 1 | M = 3  | M = 9       |
|------------------|------|-------|--------|-------------|
| $\overline{w_0}$ | 0.19 | 0.82  | 0.31   | 0.35        |
| $w_1$            |      | -1.27 | 7.99   | 232.37      |
| $w_2$            |      |       | -25.43 | -5321.83    |
| $w_3$            |      |       | 17.37  | 48568.31    |
| $w_4$            |      |       |        | -231639.30  |
| $w_5$            |      |       |        | 640042.26   |
| $w_6$            |      |       |        | -1061800.52 |
| $w_7$            |      |       |        | 1042400.18  |
| $w_8$            |      |       |        | -557682.99  |
| $w_9$            |      |       |        | 125201.43   |

Intuitively, large weights  $\Rightarrow$  more complex model

#### How to make w small?

Regularized linear regression: new objective

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

 $\mathsf{Goal:} \ \mathsf{find} \ \boldsymbol{w}^* = \mathrm{argmin}_w \, \mathcal{E}(\boldsymbol{w})$ 

#### How to make w small?

Regularized linear regression: new objective

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find  $w^* = \operatorname{argmin}_w \mathcal{E}(w)$ 

- ullet  $R: \mathbb{R}^{\mathsf{D}} o \mathbb{R}^+$  is the *regularizer* 
  - ullet measure how complex the model  $oldsymbol{w}$  is
  - common choices:  $\|\boldsymbol{w}\|_2^2$ ,  $\|\boldsymbol{w}\|_1$ , etc.

#### How to make w small?

#### Regularized linear regression: new objective

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

 $\mathsf{Goal} \colon \mathsf{find}\ \boldsymbol{w}^* = \mathrm{argmin}_w\, \mathcal{E}(\boldsymbol{w})$ 

- $R: \mathbb{R}^{\mathsf{D}} \to \mathbb{R}^+$  is the *regularizer* 
  - ullet measure how complex the model  $oldsymbol{w}$  is
  - common choices:  $\|\boldsymbol{w}\|_2^2$ ,  $\|\boldsymbol{w}\|_1$ , etc.
- $\lambda > 0$  is the regularization coefficient
  - $\lambda = 0$ , no regularization
  - $\lambda \to +\infty$ ,  $\boldsymbol{w} \to \operatorname{argmin}_{\boldsymbol{w}} R(\boldsymbol{w})$
  - i.e. control trade-off between training error and complexity



### The effect of $\lambda$

#### when we increase regularization coefficient $\lambda$

|                  | $\ln \lambda = -\infty$ | $\ln \lambda = -18$ | $\ln \lambda = 0$ |
|------------------|-------------------------|---------------------|-------------------|
| $\overline{w_0}$ | 0.35                    | 0.35                | 0.13              |
| $w_1$            | 232.37                  | 4.74                | -0.05             |
| $w_2$            | -5321.83                | -0.77               | -0.06             |
| $w_3$            | 48568.31                | -31.97              | -0.06             |
| $w_4$            | -231639.30              | -3.89               | -0.03             |
| $w_5$            | 640042.26               | 55.28               | -0.02             |
| $w_6$            | -1061800.52             | 41.32               | -0.01             |
| $w_7$            | 1042400.18              | -45.95              | -0.00             |
| $w_8$            | -557682.99              | -91.53              | 0.00              |
| $w_9$            | 125201.43               | 72.68               | 0.01              |

### The trade-off

#### when we increase regularization coefficient $\lambda$







### The trade-off

#### when we increase regularization coefficient $\lambda$









Simple for 
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:

$$\mathcal{E}(w) = \text{RSS}(w) + \lambda ||w||_2^2 = ||\Phi w - y||_2^2 + \lambda ||w||_2^2$$

Simple for 
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:

$$\mathcal{E}(w) = \text{RSS}(w) + \lambda ||w||_2^2 = ||\Phi w - y||_2^2 + \lambda ||w||_2^2$$

$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

Simple for 
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

Simple for 
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1}\boldsymbol{\Phi}^{T}\boldsymbol{y}$$

Simple for 
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
: 
$$\mathcal{E}(\boldsymbol{w}) = \mathrm{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

$$\Rightarrow (\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi} + \lambda \mathbf{I}) \mathbf{w} = \mathbf{\Phi}^{\mathrm{T}}\mathbf{y}$$
$$\Rightarrow \mathbf{w}^{*} = (\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^{\mathrm{T}}\mathbf{y}$$

Note the same form as in the fix when  $X^TX$  is not invertible.

Simple for  $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$ :

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

Note the same form as in the fix when  $X^TX$  is not invertible!

For other regularizers, as long as it's **convex**, standard optimization algorithms can be applied.

### Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where  $\beta$  is some hyper-parameter.

### Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where  $\beta$  is some hyper-parameter.

Finding the solution becomes a constrained optimization problem.

### Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where  $\beta$  is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Choosing either  $\lambda$  or  $\beta$  can be done by cross-validation.

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

Important to understand the derivation than remembering the formula

$$oldsymbol{w}^* = \left(oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi} + \lambda oldsymbol{I}
ight)^{-1}oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

$$oldsymbol{w}^* = \left(oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi} + \lambda oldsymbol{I}
ight)^{-1}oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

**Preventing Overfitting**: more data + regularization

### Recall the question

#### **Typical steps** of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

- 1. Pick a set of **models**  $\mathcal{F}$ 
  - ullet e.g.  $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
  - ullet e.g.  $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$

- 1. Pick a set of **models**  $\mathcal{F}$ 
  - ullet e.g.  $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
  - ullet e.g.  $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)

- 1. Pick a set of **models**  $\mathcal{F}$ 
  - $\bullet$  e.g.  $\mathcal{F} = \{ f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
  - e.g.  $\mathcal{F} = \{ f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

- 1. Pick a set of **models**  $\mathcal{F}$ 
  - ullet e.g.  $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
  - ullet e.g.  $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$



- 1. Pick a set of models  $\mathcal{F}$ 
  - ullet e.g.  $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathrm{D}} \}$
  - ullet e.g.  $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}}oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$
- 2. Define **error/loss** L(y', y)
- Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

ML becomes optimization

