Grundbegriffe der Informatik Aufgabenblatt 4

Matr.nr.:	
Nachname:	
Vorname:	
Tutorium:	Nr. Name des Tutors:
Ausgabe:	14. November 2013
Abgabe:	22. November 2013, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet abgegeben werden.	
Vom Tutor au	eszufüllen:
erreichte Punkte	
Blatt 4:	/ 18
Blätter 1 – 4:	/ 72

Aufgabe 4.1 (5 Punkte)

Es sei $A = \{a, b\}$. Eine Folge L_n formaler Sprachen sei wie folgt definiert:

$$L_0 = \{\varepsilon\}$$

$$\forall n \in \mathbb{N}_0 \colon L_{n+1} = \{\mathtt{a}\} \cdot L_n \cdot \{\mathtt{b}\}$$

Außerdem sei $L = \bigcup_{n=0}^{\infty} L_n$.

Beweisen Sie (im Kern durch vollständige Induktion) die Aussage

$$\forall w \in L \colon \exists i \in \mathbb{N}_0 \colon w = \mathbf{a}^i \mathbf{b}^i$$

Aufgabe 4.2 (1+1+4=6 Punkte)

Gegeben sei das Alphabet $A = \{a, b\}$. Für jedes $y \in A$ wird eine Abbildung U_y wie folgt definiert:

$$U_{y}(\varepsilon) = \varepsilon$$
$$\forall w \in A^{*} \colon \forall x \in A \colon U_{y}(wx) = yU_{y}(w)$$

- a) Geben U_a (babbba) explizit an und beschreiben Sie anschaulich, was im allgemeinen U_y als Ergebnis liefert.
- b) Geben Sie eine explizite Formel für $U_y(w)$ an.
- c) Beweisen Sie die Richtigkeit Ihrer Formel aus Teilaufgabe b) durch vollständige Induktion über die Wortlänge (was das ist, wird in der großen Übung am 15.11. erklärt).

Aufgabe 4.3 (1+1+1+1+3=7 Punkte)

Die beiden Funktionen inc und dec von \mathbb{N}_0 nach \mathbb{N}_0 seien wie folgt definiert:

$$\mathbf{inc}(0) = 1$$
 $\mathbf{dec}(0) = 0$ $\forall x \in \mathbb{N}_0 \colon \mathbf{inc}(x+1) = \mathbf{inc}(x) + 1$ $\mathbf{dec}(x+1) = x$

Außerdem sei die binäre Operation $\div \colon \mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$ für alle $x,y \in \mathbb{N}_0$ definiert durch die Feslegung

$$x - y = \begin{cases} x - y & \text{falls } x > y \\ 0 & \text{falls } x \le y \end{cases}.$$

- a) Drücken Sie die Funktion **dec** mit Hilfe der Operation ∸ aus.
- b) Welche Funktion wird durch den Ausdruck $1 \div (x \div y)$ berechnet?
- c) Geben Sie einen "arithmetischen" Ausdruck an, in dem nur Konstanten, die Variablen x und y und die binären Operationen + und \div vorkommen, und der als Wert min(x,y) liefert.
- d) Rechnen Sie nach, dass stets (a z) 1 = a (z + 1) ist (für alle $a, z \in \mathbb{N}_0$). Hinweis: Es ist unter Umständen hilfreich, die Definition von mit Hilfe einer Fallunterscheidung aufzuschreiben.

e) Im folgenden Algorithmus seien $a \in \mathbb{N}_0$ und $b \in \mathbb{N}_0$ beliebige nichtnegative ganze Zahlen.

$$x \leftarrow a$$
 $z \leftarrow 0$

// Z_1

for $i \leftarrow 0$ to $b - 1$ do

// Z_2
 $x \leftarrow dec(x)$
// Z_3
 $z \leftarrow inc(z)$
// Z_2

od

// $Z_4 : x = a - b$

Finden Sie Zusicherungen für die Stellen Z_1 , Z_2 und Z_3 (also Aussagen, die an den betreffenden Stellen wahr sind) aus denen man ablesen kann, dass am Ende des Algorithmus Zusicherung Z_4 wahr ist.

Hinweis: Gehen Sie davon aus, dass im Fall b=0 die Schleife überhaupt nicht durchlaufen wird. Dann muss "sofort" Z_4 gelten.