Tutorial #3.2: Cyclic Group

1 Exercise 1:

All cyclic subgroups of $G = (\mathbb{Z}_7, *)$

$$<1>= \{1\}$$

$$<2>= \{1,2,4\}$$

$$<3>= \{1,2,3,4,5,6\}$$

$$<4>= \{1,2,4\}$$

$$<5>= \{1,2,3,4,5,6\}$$

$$<6>= \{1,6\}$$

2 Exercise 2:

Let a be the generator of cyclic group G. Thus, $G = \langle a \rangle$

- a) G be a cyclic group of order 6 ($C_6 = \{1, a, a^2, a^3, a^4, a^5\}$). There only a and a^5 generates C_6 .
- b) G be a cyclic group of order 5 ($C_5 = \{1, a, a^2, a^3, a^4\}$). All elements excepts 1 can generate C_5 .
- c) G be a cyclic group of order 8 ($C_8 = \{1, a, a^2, a^3, a^4, a^5, a^6, a^7\}$). There are a, a^3, a^5, a^7 generates C_8
- d) G be a cyclic group of order 10 ($C_{10} = \{1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9\}$). There are a, a^3, a^7, a^9 generates C_{10}

3 Exercise 3:

In general, to determines if G is a cyclic group, we must find a generator g such $\langle g \rangle = G$. g is an element in G and is a co-prime.

For example, to determines whether if Z_6^* is a cyclic group, we only needs to test $g \in \{1, 5\}$

- a) $G = \mathbb{Z}_7^* = \langle 3 \rangle$. Thus, G is cyclic
- b) $G = \mathbb{Z}_{12}^*$. Since there exists no such $g \in \{1, 5, 7, 11\}$ that generates \mathbb{Z}_{12}^* , G is not cyclic.

4 Exercise 4:

- a) $U(18) = \{1, 5, 7, 11, 13, 17\}$. The subgroup generated by 5 in U(18) is $\{1, 5, 7, 11, 13, 17\}$.
- b) $U(20) = \{1, 3, 5, 7, 9, 11, 13, 17, 19\}$. The subgroup generated by 3 in U(20) is $\{1, 3, 7, 9\}$

5 Exercise 5:

- a) As $< 3 >= \{1, 3, 7, 9\}$, < 3 > is a cyclic subgroup of order 4 in $G = \mathbb{Z}_{20}^*$.
- b) Let $G_{non-cyclic}$ be $\{1,2,3,4\}$ is a subgroup of Z_{20}^* . While possible generator of $G_{non-cyclic}$ is $g \in \{1,2,3,4\}$, there exist no such g generates $G_{non-cyclic}$. Thus, $G_{non-cyclic}$ is a non-cyclic subgroup of G

6 Exercise 6:

Prove that: b is generator of G. Given that $G = \langle a \rangle$ and $b \in G$ such that $a = b^k$.

Proof: As $G = \langle a \rangle$, it's trivial that $G = \{1, a, a^2, ...a^n\}$. While we having $a = b^k$, we can derive G as $G = \{1, b^k, b^{2k}, ..., b^{nk}\}$. Hence, b is a generator of G.