Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 2.2.1

по курсу общей физики на тему: «Исследование взаимной диффузии газов»

> Работу выполнил: Баринов Леонид (группа Б02-827)

1 Аннотация

В работе будут рассчитаны коэффициенты взаимной диффузии, проведена оценка длины свободного пробега атомов гелия в воздухе $\lambda_{\mathrm{H}e}$ и эффективного сечения столкновений атомов гелия с молекулами воздуха $\sigma_{\mathrm{H}e-\mathrm{возд}}$.

2 Теоретические сведения

2.1 Диффузия

Диффузией называют самопроизвольное взаимное проникновение веществ друг в друга, происходящее вследствие хаотичного теплового движения молекул. При перемешивании молекул разного сорта говорят о взаимной (или концентрационной) диффузии.

2.2 Закон Фика

Диффузия в системе, состоящей из двух компонентов а и b (бинарная смесь), подчиняется закону Фика: плотности потока компонентов $j_{a,b}$ (количество частиц, пересекающих единичную площадку в единицу времени) пропорциональны градиентам их концентраций $\nabla n_{a,b}$, что в одномерном случае можно записать как

$$j_a = -D \frac{\partial n_a}{\partial x}, \quad j_b = -D \frac{\partial n_b}{\partial x},$$

где $D-\kappa o$ эффициент взаимной диффузии компонентов. Знак «минус» отражает тот факт, что диффузия идёт в направлении выравнивания концентраций. Равновесие достигается при равномерном распределении вещества по объёму сосуда.

В данной работе исследуется взаимная диффузия гелия и воздуха. Давление P и температура T в условиях опыта предполагаются неизменными:

$$P = (n_{He} + n_{\scriptscriptstyle B})k_{\scriptscriptstyle B}T = const$$

где n_{He} и $n_{\rm B}$ — концентрации (объёмные плотности) диффундирующих газов. Поэтому для любых изменений концентраций справедливо $\Delta n_{\rm B} = -\Delta n_{\rm He}$. Следовательно, достаточно ограничиться описанием диффузии одного из компонентов, например гелия n_{He} :

$$j_{He} = -D \frac{\partial n_{He}}{\partial x} \tag{1}$$

Приведём теоретическую оценку для коэффициента диффузии. В работе концентрация гелия, как правило, мала $(n_{He} \ll n_{\rm B})$. Кроме того, атомы гелия существенно легче молекул, составляющих воздух $(\mu_{He} \ll \mu_{N_2}, \mu_{O_2})$, значит и их средняя тепловая скорость велика по сравнению с остальными частицами. Поэтому перемешивание газов в работе можно приближенно описывать как диффузию примеси лёгких частиц Не на практически стационарном фоне воздуха. Коэффициент диффузии в таком приближении равен

$$D = \frac{1}{3}\lambda \overline{v} \tag{2}$$

где \overline{v} — средняя тепловая скорость частиц примеси, λ — их длина свободного пробега

$$\overline{v} = \sqrt{\frac{8RT}{\pi\mu}}, \qquad \lambda = \frac{1}{n_0\sigma}$$

 n_0 – концентрация рассеивающих центров (фона), σ – сечение столкновения частиц примеси с частицами фона.

В общем случае необходимо учитывать диффузию каждого из компонентов. Более подробное рассмотрение показывает, что для бинарной смеси формула (2) сохраняется, если под λ понимать величину

$$\lambda = \frac{1}{n\sigma}, \quad n = n_{He} + n_{\scriptscriptstyle B} = \frac{P}{k_{\scriptscriptstyle B}T}$$

под \overline{v} понимать среднюю относительную скорость частиц разных сортов.

Таким образом, теория предсказывает, что коэффициент диффузии бинарной смеси обратно пропорционален давлению в системе

$$D \propto \frac{1}{P}$$

и не зависит от пропорций компонентов, что и будет проверено в эксперименте

2.3 Схема эксперимента

Для исследования взаимной диффузии газов и измерения коэффициента взаимной диффузии D используется два сосуда объёмами V_1 и V_2 ($V_1 \approx V_2 \equiv V$), соединенные трубкой длины L и сечения S (Рис. 1). Предполагается, что сосуды заполнены смесью двух газов при

Предполагается, что сосуды заполнены смесью двух газов при одинаковом давлении, но с различной концентрацией компонентов. Вследствие взаимной диффузии, проходящей в соединительной трубке, концентрации компонентов в сосудах с течением времени выравниваются.

Применим закон Фика в трубке, получим

$$j = -D \frac{\partial n}{\partial x} = const$$

Следовательно, распределение концентрации в трубке n(x) — линейная функция:

$$n(x) = \frac{\Delta n}{L}x\tag{3}$$

и плотность потока частиц всюду постоянна и равна

$$j = -D\frac{\Delta n}{L}$$
 Рис. 1:

где $\Delta n = n_2 - n_1$ – разность концентраций гелия на концах трубки.

Полное число частиц примеси в сосудах равно соответственно $N_1=n_1V$ и $N_2=n_2V$. Произведение плотности потока (4) на площадь сечения трубки S даёт

3 Оборудование

количество частиц, пересекающих в единицу времени любое поперечное сечение трубки. Поэтому

 $\frac{dN_1}{dt} = jS, \quad \frac{dN_2}{dt} = -jS. \tag{5}$

Выразим отсюда скорость изменения Δn . Вычитая из второго равенства первое и деля результат на объём сосуда V, с учетом (4) получим

$$\frac{d(\Delta n)}{dt} = -\frac{\Delta n}{\tau} \tag{6}$$

где введено обозначение

$$\tau = \frac{1}{D} \frac{VL}{2S} \tag{7}$$

Интегрируя (6), получаем, что разность концентраций будет убывать по экспоненциальному закону

$$\Delta n = \Delta n_0 e^{-t/\tau} \tag{8}$$

где Δn_0 — разность концентраций примеси в сосудах в начальный момент времени. Видно, что величина τ есть $xapa\kappa mephoe$ время выравнивания концентраций между сосудами. Оно определяется геометрическими размерами установки и коэффициентом диффузии.

Отметим, что для применимости квазистационарного приближения необходимо убедиться, что время процесса τ много больше характерного времени диффузии отдельной частицы вдоль трубки L, которое согласно закону Эйнштейна-Смолуховского по порядку величины равно

$$au_{\text{диф}} \sim \frac{L^2}{2D}$$
 (9)

3 Оборудование

3.1 Методика измерений

Для измерения разности концентраций в установке применяются датчики теплопроводности. При этом используется тот факт, что теплопроводность κ смеси зависит от её состава. В общем случае зависимость $\kappa(n)$ довольно сложна, однако при малой разности Δn концентраций в сосудах можно ожидать, что разность теплопроводностей будет изменяться прямо пропорционально Δn :

$$\Delta \kappa = \kappa(n_2) - \kappa(n_1) \approx const \cdot \Delta n$$

3.2 Датчики теплопроводности

Сами датчики теплопроводности устроены следующим образом. Тонкая платиновая проволочка, протянутая вдоль оси стеклянного цилиндра, нагревается током. Внутренняя полость датчика сообщается с объёмом камеры через отверстия, размеры которых таковы, что скорость диффузии из объёма сосуда в полость датчика значительно больше скорости диффузии из одного объёма в другой. Таким

4 Оборудование

образом, состав газа в датчике практически совпадает с составом газа в объёме. Тепло от проволочки к стенке цилиндра передаётся главным образом за счёт теплопроводности газа, находящегося внутри цилиндра. При заданной мощности нагревания приращение температуры проволочки и, следовательно, приращение её сопротивления пропорциональны теплопроводности газа

3.3 Мостовая схема

Для измерения сопротивлений используется мостовая схема, позволяющая определять разность показаний датчиков с высокой точностью. Мост балансируется при заполнении сосудов (и датчиков) одной и той же смесью. При заполнении сосудов смесями различного состава возникает «разбаланс» моста. При незначительном различии в составах смесей показания вольтметра, подсоединённого к диагонали моста, будут пропорциональны разности концентраций примеси: $U \propto \Delta \kappa \propto \Delta n$. В процессе диффузии разность концентраций убывает по закону (8), и значит по тому же закону изменяется напряжение:

$$U = U_0 e^{-t/\tau} \tag{10}$$

Рис. 2: Мостовая схема

де U_0 — показание гальванометра в начальный момент времени. Измеряя экспериментально зависимость U(t), можно получить характерное время процесса τ , откуда по формуле (7) определить коэффициент диффузии D.

Датчики теплопроводности $Д_1$ и Z_2 , расположенные в сосудах V_1 и V_2 соответственно, включены в мостовую электрическую схему согласно рис. 2. В одну из диагоналей моста включён высокочувствительный вольтметр (гальванометр) Γ , к другой подключается источник небольшого постоянного напряжения. Сопротивления проволок датчиков составляют одно из плеч моста. Второе плечо составляют переменные сопротивления R_1 , R_2 и R, служащие для установки показаний вольтметра Γ на нуль (балансировка моста). Сопротивления R_1 и R_2 спарены (их подвижные контакты находятся на общей оси) и изменяются одновременно при повороте ручки грубой регулировки. Точная балансировка выполняется потенциометром R. Балансировку необходимо проводить перед каждым экспериментом заново: при этом установка заполняется чистым газом (воздухом без гелия) при давлении, близком «рабочему» (при котором затем будут проводится измерения).

3.4 Эксперементальная установка

Измерительная часть установки состоит из двух сосудов V_1 и V_2 , размещённых вертикально. Краны K_1 и K_2 служат для управления откачкой и подачей воздуха/гелия в сосуды. Диффузия осуществляется через тонкую короткую трубку, соединяющую сосуды, оснащённую краном K3. K соединительным трубкам подключен манометр M, измеряющий разность давлений между соединительными трубками и атмосферой, и позволяющий измерять давления в разных частях системы (в зависимости от положения кранов).

Рис. 3: Схема измерительной части установки с конструкцией системы откачки и напуска

Гелий содержится в баллоне под давлением, превышающим атмосферное. Для предотвращения избыточного расхода гелия и его неконтролируемого проникания в установку предусмотрен металлический кран K_7 , отделяющий её от баллона с гелием. Его открывают только на время непосредственного заполнения установки гелием, остальное время он должен быть закрыт. Для подачи малых порций гелия предусмотрен двухходовый кран с дозатором (рис. 4). При повороте рычажка P в положение I гелий в небольшом количестве поступает в дозатор (если открыт K_7), а при повороте P в положение II порция из дозатора поступает в установку.

Рис. 4: Двухходовый кран

4 Результаты измерений и обработка результатов

Для разных давлений снимем зависимость напряжения от времени. Результаты занесем в таблицу 1.

$P_1 = 40 \text{ Topp}$		$P_2 = 100 \text{ Topp}$		$P_3 = 150 \text{ ropp}$		$P_4 = 200 \text{ Topp}$	
t, c	$\ln \frac{U}{U_0}$	t, c	$\ln \frac{U}{U_0}$	t, c	$\ln \frac{U}{U_0}$	t, c	$\ln \frac{U}{U_0}$
0,00	0,000	0,00	0,000	0,00	0,000	0,00	0,000
11,85	0,033	10,48	0,016	10,62	0,008	10,53	0,004
23,71	0,067	20,96	0,028	21,24	0,013	21,05	0,004
35,56	0,098	31,44	0,040	31,85	0,020	31,58	0,008

$P_1 = 40 \text{ ropp}$		$P_2 = 10$	$00 \text{ ropp } P_3 = 150 \text{ rop}$		б0 торр	$P_4 = 200 \text{ Topp}$	
t, c	$\ln \frac{U}{U_0}$	t, c	$\ln \frac{U}{U_0}$	t, c	$\ln \frac{U}{U_0}$	t, c	$\ln \frac{U}{U_0}$
47,41	0,134	41,92	0,052	42,47	0,028	42,11	0,012
59,27	0,171	52,40	0,069	53,09	0,036	52,63	0,012
71,12	0,211	62,88	0,082	63,71	0,040	63,16	0,008
82,97	0,248	73,36	0,095	74,32	0,048	73,68	0,008
94,83	0,284	83,84	0,106	84,94	0,052	84,21	0,008
106,68	0,326	94,32	0,121	95,56	0,051	94,74	0,012
118,54	0,369	104,81	0,137	106,18	0,048	105,26	0,016
130,39	0,411	115,29	0,148	116,80	0,056	115,79	0,020
142,24	0,454	125,77	0,161	127,41	0,065	126,32	0,020
154,10	0,491	136,25	0,175	138,03	0,073	136,84	0,024
165,00	0,531	146,73	0,189	148,65	0,086	147,37	0,028
177,80	0,571	157,21	0,199	159,27	0,099	157,89	0,032
189,66	0,614	167,69	0,209	169,89	0,103	168,42	0,036
201,51	0,654	178,17	0,223	180,50	0,108	178,95	0,040
213,36	0,695	188,65	0,234	191,12	0,109	189,47	0,048
225,22	0,729	199,13	0,248	201,74	0,108	200,00	0,052
237,07	0,771	209,61	0,259	212,36	0,112	210,00	0,056
248,92	0,809	220,09	0,273	222,97	0,116	221,00	0,065
260,78	0,841	230,57	0,284	233,59	0,121	231,00	0,069
272,63	0,887	241,05	0,279	244,21	0,112	242,11	0,073

Таблица 1: Зависимость логарифма $\ln U/U_0$ от времени t при различных давлениях

По данным в Таблице 1 построим график зависимости логарифма отношения $\ln U/U_0$ от времени t для различных давлений. (Рис. 5). По наклону прямых рассчитаем характерное время выравнивания концентраций τ между сосудами по формуле (10). Далее рассчитаем коэффициент взаимной диффузии D по формуле (7). Результаты занесем в Таблицу 2.

P, $Topp$	τ , c	$\Delta \tau$, c	$D, cm^2/c$	$\Delta D, \text{cm}^2/\text{c}$
40	311,53	1,46	10,59	1,00
100	806,45	5,14	4,09	0,39
150	1855,29	36,83	1,78	0,17
200	4132,23	196,37	0,80	0,08

Таблица 2: Характерное время выравнивания концентраций τ и коэффициент вза-имной диффузии D для различных давлений P

Рис. 5: график зависимости логарифма $\ln U/U_0$ от времени t для различных давлений P

Построим график зависимости коэффициента диффузии от обратного давления по результатам в Таблице 2. (Рис. 6) Экстраполируя график к атмосферному давлению, оценим соответствующий коэффициент диффузии.

$$D_{\mathrm{atm}} = (0.71 \pm 0.07) \ \mathrm{cm}^2/\mathrm{c}$$

Проверим утверждения о независимости коэффициента взаимной диффузии от пропорций компонентов. Проведем измерение коэффициента диффузии примеси воздуха в гелии. Результаты занесем в Таблицу 3.

Построим график по данным из Таблицы 3 и сравним его с графиком, когда исследовалась примесь гелия в воздухе при P=40 торр (Рис. 7). По графику вычислим значение коэффициента взаимной диффузии.

$$D_{{
m {\tiny BO3}},He} = (12.3 \pm 1.2) {
m cm}^2/{
m c}$$

Оценим длину свободного пробега атомов гелия в воздухе, используя формулу (2)

$$\lambda \approx 10^{-7} \text{ M}$$

Произведем оценку эффективного сечения столкновений атомов гелия с молекулами воздуха.

$$\sigma_{He-{
m воз}{
m д}} pprox 10^{-19} \ {
m m}^2$$

Рис. 6: Зависимость коэффициента взаимной диффузии D от величины, обратной к давлению 1/P

t, c	0,00	9,61	19,22	28,83	38,44	48,05	57,67	67,28
$\ln \frac{U}{U_0}$	0,000	0,053	0,100	0,179	0,218	0,256	0,288	0,320
t, c	76,89	86,50	96,11	105,72	115,33	124,94	134,55	144,16
$\ln \frac{U}{U_0}$	0,348	0,376	0,400	0,426	0,454	0,483	0,510	0,530
t, c	153,78	163,39	173,00	182,61	192,22	201,83	211,44	221,05
$\ln \frac{U}{U_0}$	0,558	0,593	0,614	0,647	0,674	0,705	0,769	0,805

Таблица 3: Зависимость логарифма $\ln U/U_0$ от времени t при исследовании примеси воздуха в гелии (суммарное давление P=40 торр)

Рис. 7: Зависимость $\ln U/U_0$ от t, с при исследовании примеси He в воздухе и примеси воздуха в He

5 Обсуждение результатов и выводы

В работе были проведены измерения характерного времени выравнивания концентраций τ и коэффициента взаимной диффузии воздуха и гелия D. (Таблица 2)

Были проведены вычисления коэффициента диффузии при атмосферном давлении путем экстраполирования графика зависимости коэффициента взаимной диффузии D от величины, обратной к давлению 1/P (Puc. 6)

$$D_{\text{atm}} = (0.71 \pm 0.07) \text{ cm}^2/\text{c}$$

Значение с учетом погрешности попадает в табличное значение:

$$D_{\text{atm}}^{\text{\tiny T}} = 0.73 \text{ cm}^2/\text{c}$$

Также проведена оценка длины свободного пробега атомов гелия в воздухе λ и эффективного сечения столкновений атомов гелия с молекулами воздуха $\sigma_{He-возд}$ по порядку величины.

$$\lambda \approx 10^{-7} \text{ M}$$

$$\sigma_{He-{
m воз}{
m д}} pprox 10^{-19} \ {
m m}^2$$

Было проверено утверждения о независимости коэффициента взаимной диффузии от пропорций компонентов. (Рис 7)

$$D_{He-{
m BO3}{
m J}}=(10.6\pm1.0)~{
m cm}^2/{
m c}$$

$$D_{{
m {\tiny BO3}},He} = (12,3\pm1,2)~{
m cm}^2/{
m c}$$

С учетом погрешностей можно считать, что

$$D_{He-возд} \approx D_{возд-He}$$

Следовательно, утверждение верно.