Building the Knowledge Graph Pipeline for Business Intelligence

Dr. Bambang Purnomosidi D. P.

Magister Teknologi Informasi Intelligent Software Systems Research Group Universitas Teknologi Digital Indonesia (https://www.utdi.ac.id/)

Agenda

- 1. On Business and Competitive Intelligence
- 2. Components of (Traditional) BI
- 3. Data and BI
- 4. Data Warehouse, Data Lake, and Data Lakehouse.
- 5. Graph Data Model
- 6. Graph Database
- 7. Knowledge Graph
- 8. Knowledge Graph and BI
- 9. Knowledge Graph Pipeline

On Business and Competitive Intelligence

- Harrison et. al. (2015): A business intelligence (BI) system is commonly known as a suite of technological solutions that facilitates organizations to amass, integrate and analyse vast stocks of data in order to understand their opportunities, strengths and weaknesses.
- A CI focuses on company's industry and industry rivals for better business decisions. CI is a subset of BI.
- BI == Decision Support System
- Primary purpose: to reduce uncertainties in decision making process. ranging from operational to strategic.

Components of (Traditional) BI

Data and BI

- Data consists of internal and external data
- Common data infrastructure:
 - Data Warehouse
 - Data Mart
- Problems:
 - Scattered data with so many formats (open specification - like XML, JSON, text file - or closed / proprietary - like MS Office file formats, PDF, etc).
 - Data models: SQL, NOSQL, etc.

Data Warehouse, Data Lake, and Data Lakehouse

- **Data Warehouse**: mostly internal structured data, stored in multidimensional data.
 - => ETL
- **Data Lake**: structured, semi-structured, and unstructured (big) data from internal and external.
 - => ELT
- **Data Lakehouse**: combination of DW and DL.

Graph Data Model

- Triple: RDF (Resource Description Framework)
- Property Graph

RDF

Source:

https://www.w3.org/T R/rdf11-primer/


```
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
        xmlns:dcterms="http://purl.org/dc/terms/"
         xmlns:foaf="http://xmlns.com/foaf/0.1/"
         xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
         xmlns:schema="http://schema.org/">
   <rdf:Description rdf:about="http://example.org/bob#me">
      <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
      <schema:birthDate rdf:datatype="http://www.w3.org/2001/XMLSchema#date">1990-07-04</schema:birthDate>
      <foaf:knows rdf:resource="http://example.org/alice#me"/>
      <foaf:topic interest rdf:resource="http://www.wikidata.org/entity/Q12418"/>
   </rdf:Description>
   <rdf:Description rdf:about="http://www.wikidata.org/entity/Q12418">
      <dcterms:title>Mona Lisa</dcterms:title>
      <dcterms:creator rdf:resource="http://dbpedia.org/resource/Leonardo da Vinci"/>
   </rdf:Description>
   <rdf:Description rdf:about="http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619">
      <dcterms:subject rdf:resource="http://www.wikidata.org/entity/Q12418"/>
   </rdf:Description>
</rdf:RDF>
```


Graph Database

- RDF Database: TripleStore. Query language: SPARQL.
- Property Graph Database:
 - Neo4J: Cypher OpenCypher
 - TinkerPop: Gremlin
 - Nebula Graph: nGQL
 - ArangoDB: AQL
 - Standard: GQL, evolved from OpenCypher

Knowledge Graph

- KG term has been used since 1972. Next: WordNet (semantic relationship between words and meanings - 1985), DbPedia (general purpose knowledge - 2007), Google Knowledge Graph (2012).
- Also known as Semantic Network.
- KG: graph model to store <u>interlinked</u> descriptions of <u>entities</u> objects, events, situations or abstract concepts while also encoding the <u>semantics</u> underlying the used terminology.

OpenCypher

CREATE
(n:Person {name:
'Bambang
Purnomosidi D.
P.', jobTitle:
'Researcher',
worksFor: 'UTDI'})

Person

A Schema.org Type

Thing > Person

A person (alive, dead, undead, or fictional).

Property	Expected Type	Description
Properties from Person		
additionalName	Text	An additional name for a Person, can be used for a middle name.
address	PostalAddress or Text	Physical address of the item.
affiliation	Organization	An organization that this person is affiliated with. For example, a school/university, a club, or a team.
alumniOf	EducationalOrganization or Organization	An organization that the person is an alumni of. Inverse property: alumni
award	Text	An award won by or for this item. Supersedes awards.
birthDate	Date	Date of birth.
birthPlace	Place	The place where the person was born.
brand	Brand or Organization	The brand(s) associated with a product or service, or the brand(s) main by an organization or business person.
callSign	Text	A callsign, as used in broadcasting and radio communications to ident people, radio and TV stations, or vehicles.
children	Person	A child of the person.
colleague	Person or URL	A colleague of the person. Supersedes colleagues.

Many schema available so that we can create entities, relationship between entities, and semantic for those entities.

Triple

- Data in RDF
- Semantic / Ontology in RDFS / OWL

Source:

https://en.wikipedia.org/wiki/RDF_Schema


```
@prefix rdf:
             <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs:
              <http://www.w3.org/2000/01/rdf-schema#> .
@prefix ex:
            <http://example.org/> .
@prefix zoo:
             <http://example.org/zoo/> .
                     ex:animal .
ex:dog1
          rdf:type
ex:cat1
          rdf:type ex:cat .
          rdfs:subClassOf ex:animal .
ex:cat
          rdfs:range
                         ex:animal
zoo:host
          zoo:host
                      ex:cat2 .
ex: zoo1
```


Knowledge Graph and BI

- Many use cases on how business can benefit from knowledge graph + graph analytics..
- In **marketing**: recommender system for social media influencer using PageRank useful to choose social media influencer in a specific product domain.
- Related products-services recommendation.
- Path analysis for lowest expenses product delivery.
- Supply chain optimization using shortest path analysis to optimize routes.
- Current position in competition
- Finding potential customers
- Finding financial fraud inside an organization
- /etc

Knowledge Graph Pipeline

Bird Eye View

Data Sources -> Transform Into Graph Data -> Combined with Semantic -> Knowledge Graph

Internal Data:

- Spreadsheet
- TPS (Transaction Processing System)
- SQL, NOSQL

External Data

- Endpoint data
- HTML page
- Text

The most complex information extraction: text to graph.

