Uniconf v.1.0.0

Copyright: Yury Minenkov N.N. Semenov Federal Research Center of Chemical Physics RAS 119991 Moscow, The Russian Federation Kosygina street, 4

 $E\text{-mail: }\underline{Yury.Minenkov@chph.ras.ru, }\underline{Yury.Minenkov@gmail.com}$

Table of Contents

1. Brief theoretical introduction.	2
2. Quick start	
2.1 Prerequisites	
2. Main Keywords	
2.1 Input file general design	
2.2 Group \$BOND	
2.3 Group \$MOLECULE	
Cartesian coordinates of all atoms should be provided in this section	
2.4 Group \$CHARGE	
Atomic charges for each atom in \$MOLECULE group should be provided here	
2.2 Group \$ALGO	
2. Detailed documentation (advanced keywords)	

1. Brief theoretical introduction

```
Uniconf generator algorithm
Input: Starting cluster geometry {X,Y,Z}0, atomic charges {Zi}, rotatable bonds NROT
Output: N<sub>CONF</sub> cluster geometries {X,Y,Z}<sub>i</sub>
// determination of connectivity in the molecule
Connectivity: write (automatic) or read
Initialization:
for i in range(N_{CONF}) do:
   // setting up random values
    6N_{FRG} + N_{ROT} \leftarrow rand()
Procedure: preliminary generation
for i in range(N_{CONF}) do:
   // optimization with N<sub>ITER1</sub> steps
   \{X,Y,Z\}_i \leftarrow min(6N_{FRG} + N_{ROT}, N_{ITER1})
   // shortest non-bonded distance check
   if mindist (\{X,Y,Z\}_i) < thld:
        remove ({X,Y, Z}<sub>i</sub>)
    else:
        pass
Clustering (\{X,Y,Z\}_1,k_1)
N<sub>CONF</sub>=k<sub>1</sub>
End Procedure
Procedure: final generation
for i in range(N_{CONF}) do:
   // optimization with N<sub>ITER2</sub> steps
    \{X,Y,Z\}_i \leftarrow min(6N_{FRG} + N_{ROT}, N_{ITER2})
for i in range(N_{CONF}) do:
       for j in range(N_{CONF}-1) do:
            // close in energies?
            if |E(\{X,Y,Z\}_i) - E(\{X,Y,Z\}_i)| < thld:
               if RSMD(\{X,Y,Z\}_i - \{X,Y,Z\}_i) < thld:
                   N_{CONF}=N_{CONF}-1
                   remove (\{X,Y,Z\}_i)
Clustering (\{X,Y,Z\}_1,k_2)
N<sub>CONE</sub>=k<sub>2</sub>
End Procedure
return N<sub>CONF</sub> {X,Y, Z}<sub>I</sub>
```

Scheme 1. Pseudo code of the *uniconf* spatial structure generator.

2. Quick start

2.1 Prerequisites

- 64bit Linux OS
- Conformer generator binary (uniconf) & input file (filename.inp)
- Input file should contain:
 - **x** Rotatable bonds (if any)
 - **✗** Initial Cartesian coordinates of the (super-)molecule
 - **x** Atomic charges
- download the code and change the permission: chmod u=x uniconf
- Running the code: "/path/to/program/uniconf filename.inp", e.g. ~/Isomers/128/uniconf m1_01_Li_VC_N3.inp

2. Main Keywords

2.1 Input file general design

Each keyword group starts with "\$" symbol and should be closed with "\$END" expression.

```
$BOND
28 29 120 240 15
$END
$ALGO
$END
$MOLECULE
    -3.118257632
Li
                  1.717973895
                                0.890951148
C
     0.543523281
                  0.285069258
                               -0.272235148
$END
$CHARGE
1.0
0.778632
$END
```

2.2 Group \$BOND

Here the rotational bonds should be specified in the following format:

```
Atom1 Atom2 Angle_Increment Angle_MAX_value Angle_MAX_deviation
1 2 120 240 15
```

In the example above the rotational bond is between atom 1 and atom 2. This torsion is specified to have three values: 0, 120, 240. With 0 value here the starting torsion angle value is meant.

In case of no rotatable bonds, leave this group empty.

2.3 Group \$MOLECULE

Cartesian coordinates of all atoms should be provided in this section.

2.4 Group \$CHARGE

Atomic charges for each atom in \$MOLECULE group should be provided here.

2.2 Group \$ALGO

	P +1 .= 0 0	
CONNECT	=WRITE	// automatic connectivity detection that is written to filename.bond // filename.bond can be modified to adjust/correct the connectivity // (default)
	=READ	// connectivity is read from filename.bond // needed in cases when automatic connectivity fails
ALGO	=CONF	// generate conformers (default)
MK	=int	// integer number (e.g. 10) N of initially generated conformers on-the-fly; // initial NCONF value in the pseudo code above
	=0	// systematic conformational search with respect to provided torsions // see \$BOND group above
COM	=int	// what is considered to be center of coordinates // -1 center of mass of the whole cluster geometry specified in // \$MOLECULE (default)
SCALE	=float	// 0 N – center of mass of individual fragment in the cluster // numeration starts from 0. It is convenient when an ion needs to // be surrounded by molecules, e.g. Li+ // any float value from 0.0 to 0.99 (default: 0.75) // characterizes the maximum of individual fragment com from // the initial center. The lesser the value the closer to the inital
ORBSCALE	=FALSE =TRUE	// structure conformer is generated. // do not scale of orbital motion (default) // characterizes the maximum of individual fragment com from
LIBRARY	=NLOPT	// optimization library for potential energy optimization (default) // more at https://nlopt.readthedocs.io/en/latest/
OPTO	=nlop =nlop =nlop =nlop =nlop =nlop	

```
=nlopt_gn_mlsl
                     =nlopt gn mlsl lds
                     =nlopt_gn_isres
                     =nlopt_auglag
                     =nlopt_auglag_eq
                     =nlopt_gn_esch
       OPTLOC
                     =nlopt_ln_sbplx
                                          // local optimization method, must be specified! (default)
                     =nlopt_ln_praxis
                     =nlopt_ln_cobyla
                     =nlopt ln newuoa
                     =nlopt_ln_newuoa_bound
                     =nlopt ln neldermead
                     =nlopt_ln_sbplx
                     =nlopt_ln_auglag
                     =nlopt_ln_auglag_eq
                     =nlopt_ln_bobyga
ITER1
              =int
                            // number of iterations for the first (prelinimary) conformer generation
                            // (default: 10)
DIST
              =float
                            // minimal non-bonded distance threshold for conformer exclusion
                            // after preliminary and final conformer generation (default: 1.25)
                            // DIST related keyword. When searching for the minimal non-bonded
NONHD
              =FALSE
                            // distance, do not skip the pairs including hydrogens (e.g. C - H)
                            // (default)
              =TRUE
                            // skip the pairs that contain hydrogens
SORT
                            // after minimal distance test (see DIST) that occurs after preliminary
              =e
                            // and final conformer generation, all conformers are sorted based on
                            // certain property. E stands for sorting by energies (default)
              =d1
                            // sort by the average distance from each fragment's com to the whole
                            // molecule center of mass
                            // same as d1 but in case of COM!=-1 (i.e. when center is not the whole
              =d2
                            // molecule center of mass)
MAXCONF =int
                            // after sorting above, take that amount of conformer is taken
                            // for further treatment (default: 100)
KMEANS
              =int
                            // first clustering option (in the preliminary conformer generation)
                            // -3: K (number of clusters) is estimated K=Nconf/2
                            // -1: (default) no clustering
                            // 0: K = (Nconf/2)**0.5
                            // Any int number, e.g. 10
KMEANS1
                            // second clustering option (after the final conformer generation)
              =int
                            // only for STRATEGY=1, see below
                            // -3: K (number of clusters) is estimated K=Nconf/2
                            // -1: (default) no clustering
                            // 0: K = (Nconf/2)**0.5
                            // Any int number, e.g. 10
CLUSTERPROPERTY
                            =IXX // the clustering property; the whole molecule sorted principal
```

	// moments of inertia (3)				
		=distcommol // distance from each individual fragment com to the // molecular COM			
		=ixxfrg // three sorted principal moments of the whole molecules // and each individual fragment (default)			
		=eixx // the whole molecule energy and three principal moments // of inertia			
		=trans // translational variables for each fragment			
		=rot // rotational variables for each fragment			
		=transrotbond // translational, rotational variables and torsion bonds			
		// for each fragments			
ITER2	=int	// number of iterations for the second (final) conformer generation			
		// (default: 10 000)			
EDIFF	=float	// energy difference floating point value below which the			
		// structure geometries are compared with quatit RMSD			
		// (default: 0)			
RMSD	=float	// RMSD criteria for difference between the two structures for discrarding			
		// at the DISCARDING procedure after final conformer generation			
		// utilized by Quatfit algorithm			
MAXCONFPRINT =int		// number of conformers for final priting to the file			
STRATEGY	=0	// strategies to treat the conformers after the final generation (default: 0)			
STRILLGT	J	// just print MAXCONFPRINT conformers to the file			
	=1	// clustering of all conformes after the final generation, followed by			
	1	// sorting. After that MAXCONFPRINT conformers are printed to file.			
		"" sorting, 1 que muit mi moorti i ruivi conformers are printed to fite.			

2. Detailed documentation (advanced keywords)

```
ALGO
              =OPTIMIZE
                                   // simple optimization of a given structures
                                   // no descrete values of bond torsions are allowed
       ITER2
                     =int
                            // the number of geometry optimization steps for ALGO=OPTIMIZE
                            // is given with ITER2
PAREN
              =FALSE
                            // Parallel mode for potential energy single-point calculation (default:
                            // FALSE)
                            // DO NOT USE THIS, NO SPEED UP IS OBSERVED
              =TRUE
ITER
              =int
                            // clustering-related interation number (default: 1)
TESTSIZE
              =float
                            // NLOPT optimization-related keyword (default: 1e-3)
              =float
                            // scaling coefficient for electrostatic energy (default: 1)
KEL.
                            // scaling coefficient for the DFT-D2 Grimme's dispersion
KGD
              =float
                            // sometimes it helps for stronger binding of the fragments (default 0)
KVW
                            // scaling coefficient for the van der Waals UFF energy (default: 1)
              =float
HB1
              =float
                            // A hydrogen bonding coefficient, see main article (default: 6.71)
              =float
                            // B hydrogen bonding coefficient, see main article (default: 3.55)
HB2
                            // alpha hydrogen bonding coefficientm, see main article (default: 0.75)
HB3
              =float
ALGO
              =FIT
                            // Fitting parameters to reproduce the initial geometry specified in
                            // $MOLECULE group
       FIT
              =false
                            // no fitting (default)
                            // fitting electrostatic energy coefficient
              =KEL
                            // fitting van der Waals non-bonded UFF energy
              =KVW
              =KELKVW
                            // fitting both electrostatic and van der Waals energies
                            // fitting the hydrogen bond coefficients
              =HBOND
                                   // number of iterations for fitting (default: 1000)
       ITERFIT
                            =int
                                   // number of geometry optimization steps inside fitting step
       ITERFIRGEOM
                            =int
                                   // (default 1000)
                                   // global optmization algorithm for fitting (default:
       OPTGLOBFIT
                            =str
                                   // nlopt_gn_orig_direct)
                                   // local optimiztion algorithm for fitting (default:
       OPTLOCFIT
                            =str
                                   // nlopt ln sbplx)
                                   // local optimization algorithm for geometry optimization
       OPTLOCFITGEOM =str
                                   // inside fitting (default: nlopt ln sbplx)
                            =K-MEANS
                                                 // (default) algorithms for clustering
CLUSTERALGORITHM
                            =K-MEDOIDS
                                                 // (memory intensive, use with caution)
PRINTDATA
                                   // (default) no detailed output for clusterization
                            =()
                            =1
                                   // detailed output for clusterization
                                   // (default) do not use the centroid center, use minimum E
CENTROIDCENTER
                            =()
                                   // structure
                                   // use the cluster centroid
                            =1
PRINTLEVEL
                            =0
                                   // (default: 0). Do not print coordinates after ITER1 & ITER2
```

=-1 // print all coordinates at the intermediate steps.