Valós függvények differenciálszámítása

Teljes függvényvizsgálat

Elméleti áttekintés

- **1. Tétel (Lokális minimum/maximum szükséges feltétele).** *Ha az f* : $]a,b[\to \mathbb{R}$ *függvénynek az x*₀ $\in]a,b[$ *pontban lokális minimuma/maximuma van, és f differenciálható az x*₀ *pontban, akkor f'* (x_0) = 0.
- **2. Tétel.** Ha az $f:]a,b[\rightarrow \mathbb{R}$ függvény k-szor differenciálható (ahol k > 1), és $f'(x_0) = \ldots = f^{(k-1)}(x_0) = 0$ és $f^{(k)}(x_0) \neq 0$, akkor
- (A) ha k páratlan, akkor $f(x_0)$ nem szélsőérték;
- (B) ha k páros, akkor
 - (i) ha $f^{(k)}(x_0) > 0$, akkor $f(x_0)$ szigorú lokális minimum;
 - (ii) ha $f^{(k)}(x_0) < 0$, akkor $f(x_0)$ szigorú lokális maximum.
- **3. Tétel (Monotonitás elegendő feltétele).** *Ha az f* :] $a,b[\rightarrow \mathbb{R}$ *függvény differenciálható, akkor*
- (A) ha $f'(x) \ge 0$ ($x \in]a, b[$), akkor f monoton növekedő]a, b[-n;
- (B) ha $f'(x) \le 0$ $(x \in]a, b[)$, akkor f monoton csökkenő]a, b[-n].
- **1. Definíció.** Legyen $I \subset \mathbb{R}$ nemüres intervallum. Azt mondjuk, hogy az $f: I \to \mathbb{R}$ függvény **konvex**, ha minden $x, y \in I$ és minden $\lambda \in [0, 1]$ esetén

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

teljesül. Azt mondjuk, hogy az $f: I \to \mathbb{R}$ függvény **konkáv**, ha minden $x, y \in I$ és minden $\lambda \in [0, 1]$ esetén

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$

teljesül.

- **4. Tétel (Konvexitás).** Az $f:]a, b[\to \mathbb{R}$ kétszer differenciálható függvény pontosan akkor konvex, ha minden $x \in]a, b[$ esetén $f''(x) \ge 0$ teljesül.
- **5. Tétel (Inflexiós pont).** $Az \ f :]a,b[\to \mathbb{R} \ differenciálható függvénynek az <math>x_0 \in]a,b[$ pont pontosan akkor inflexiós pontja, ha x_0 szélsőértékhelye az f' függvénynek.

Egy f függvény **teljes függvényvizsgálat**ánál az alábbiakat határozzuk meg:

- (i) f értelmezési tartományát (\mathcal{D}_f);
- (ii) f értékkészletét (\mathcal{R}_f);
- (iii) f páros, páratlan, periodikus függvény-e;
- (iv) f zérushelyeit;
- (v) \mathcal{D}_f azon részhalmazait, ahol f előjele állandó;
- (vi) f határértékeit \mathcal{D}_f határpontjaiban;

- (vii) \mathcal{D}_f azon részhalmazait, ahol f monoton növekedő/csökkenő;
- (viii) f szakadási helyeit;
- (ix) f derivált függvényeit;
- (x) f szélsőérték helyeit és szélsőértékeit;
- (xi) \mathcal{D}_f azon részhalmazait, ahol f konvex/konkáv;
- (xii) f aszimptotáit.

Feladatok

1. Feladat. Vizsgáljuk meg monotonitás szempontjából az alábbi függvényeket.

- (a) $2 + x x^2$
- (e) $x^{\alpha}e^{-x}$

(i) x^3e^x

 $(m) \frac{2x}{x^2 + 1}$

- (b) $3x x^3$
- (f) $(x+7)^3$
- (i) $x \sinh(x)$
- (n) $\sqrt{\frac{1+x}{1-x}}$

- (c) $x + \sin(x)$
- (g) $x^2 \sqrt{5-x}$
- $(k) \ln\left(x^2+x+1\right)$

- (d) $x^2 \ln(x^2)$
- (h) $x^4 8x^2 + 16$
- (1) $\frac{x+2}{x+1}$
- (o) $\frac{2}{x} + \ln(x^2)$

2. Feladat. Vizsgáljuk meg a következő függvényeket konvexitás szempontjából.

- (a) $3x^2 x^3$
- (c) $\sqrt{1+x^2}$
- (e) $ln(1 + x^2)$
- (g) $\frac{3x^2}{1-x}$

- (b) $\frac{1}{1+r^2}$
- (d) e^{-x^2}

- (f) $a(x-b)^4$
- (h) $3x \sqrt{x-3}$

3. Feladat. Határozzuk meg, hogy a következő függvényeknek mely pontokban van szélsőértékhelyük.

- (a) $2 + x x^2$
- (f) $x + \frac{1}{x}$

- (k) $\sqrt{x} \ln(x)$
- (p) $\arctan(x) \frac{1}{2} \ln(1 + x^2)$

- (b) $(x-1)^3$
- (g) $\sqrt[3]{x(1-x)^2}$
- (1) $e^x \sin(x)$
- $(q) \cos(x) + \cos(2x) +$

- (c) $(x-1)^{\alpha}$
- $(h) x^{\alpha} (1-x)^{\beta}$
- $(m) \frac{(x+3)^3}{(x+2)^2}$
- $(r) \frac{e^x}{\sin(x-a)}$

- (d) $2x^2 x^4$
- (i) $(x+10)^{10}e^{-x}$
- (n) $a(x-b)^4$

- (e) $x(x-1)^2(x-2)^3$
- (i) xe^{-x}

- (o) $\frac{x}{\ln(x)}$
- (s) $\frac{\ln^2(x)}{x}$

4. Feladat. Végezzünk **teljes függvényvizsgálat**ot az alábbi függvényekre.

- (a) $x^2 + x 6$
- $(f) x + \frac{1}{x}$

- (i) $\sqrt{2-x}$
- (n) e^{-x^2}

(b) $2x^2 - 3x - 4$

- (i) xe^x
 - (o) $\frac{x}{(1-x)^2(1+x)}$

- (c) $5x^3 4x^4$
- (g) $x^2 + \frac{1}{r^2}$
- (k) $x \ln(x)$

(d) $x^3 - 5x^2$

- (*l*) x + arctg(x)
- (e) $2x^3 6x^2 2x + 6$ (h) $\frac{3x 5}{x 2}$
- (m) 2x tg(x)
- (p) $\sin(x)\sin\left(\frac{1}{x}\right)$