Convolutional Neural Networks

Convolution Operation - Filter bringing out vertical lines

Convolution Operation - Filter bringing out horizontal lines

Demo

• 00-How convolutions and pooling works.ipynb

Convolutional Neural Network

Convolution operation

- The objective of the Convolution Operation is to extract the high-level features such as edges, from the input image.
- ConvNets need not be limited to only one Convolutional Layer.
- Conventionally, the first ConvLayer is responsible for capturing the Low-Level features such as edges, color, gradient orientation, etc.
- With added layers, the architecture adapts to the High-Level features as well, giving us a network which has the wholesome understanding of images in the dataset, similar to how we would.

Layer 1 Layer 2 Layer 3

Convolutions

Input

4	9	2	5	8	3
5	6	2	4	0	3
2	4	5	4	5	2
5	6	5	4	7	8
5	7	7	9	2	1
5	8	5	3	8	4

$$n_H x n_W = 6 x 6$$

Filter

	1	0	-1
	1	0	-1
-	1	0	-1

Parameters:

Size: f = 3

Stride: s = 1

Padding: p = o

Result

https://indoml.com

Convolutions

Input

$$n_H x n_W = 6 x 6$$

Filter

1	0	-1
1	0	-1
1	0	-1

Parameters:

Size:
$$f = 3$$

Stride: $s = 1$

Padding:
$$p = o$$

	!			
-	/			
/				
2	5*1	+ 6*0) + 2*() + 2*() + 5*(-1) +

https://indoml.com

Convolutions

The total number of multiplications to calculate the result above is $(4 \times 4) \times (3 \times 3) = 144$.

Convolutions - Strides

Convolutions: Stride = 2

The total number of multiplications to calculate the result above is $(2 \times 2) \times (3 \times 3) = 36$

Convolutions - Padding

Convolutions: Padding = 1

Input									Filter				Result
	0	0	0	0	0	0	0	0					
	0	4	9	2	5	8	3	0			_	4	-15
	0	5	6	2	4	0	3	0	ماد	1	0	-1	
	0	2	4	5	4	5	2	0	*	1	0	-1	
	0	5	6	5	4	7	8	0		1 D	0	-1	/
	0	5	7	7	9	2	1	0		Para Size:		f =	
	0	5	8	5	3	8	4	0		Stride Pade		s = : p =	0*1 + 9*0 + 6*(-1)
	0	0	0	0	0	0	0	0			_	_	= -15

Dimension: 6 x 6

https://indoml.com

Resultant dimensions

- (n-f+2p)/s + 1
 - n is the original dimension
 - f is the filter dimension
 - p is the padding
 - s is the strides
- For a 6x6 image, if we have a filter 3x3, padding =0, stride=1
 - Resultant dimensions will be: (6-3+2*0)/1+1=4
 - 4x4
- For a 6x6 image, if we have a filter 3x3, padding =1, stride=1
 - Resultant dimensions will be: (6-3+2*1)/1+1=6
 - 6x6
- "valid" padding: no padding
- "same" padding: output dimension does not change

Convolutions – Multiple Input Channels

Convolutions: Image with RGB channels (ch > 1)

The total number of multiplications to calculate the result is $(4 \times 4) \times (3 \times 3 \times 3) = 432$

Convolutions – Multiple Filters

Convolutions: Multiple channels, multiple filters

The total number of multiplications to calculate the result is $(4 \times 4 \times 2) \times (3 \times 3 \times 3) = 864$

A Convolution Layer

A Convolution Layer

A convolution layer is made up of:

- The convolution we saw earlier
- A bias is then added to this convolution
- An activation e.g. Relu is applied to this

A Convolution Layer

Convolution Layer – simpler representation

Multiple Convolution Layers

https://indoml.com

Pooling

Max Pooling

Avg Pooling

https://indoml.com

Max Pooling

Tensorflow Conv2D layer - params to learn

```
e.g.
model = Sequential()
model.add(Conv2D(64,(3,3), input_shape=input_shape)) #64 filters with 3*3 filter
Input_shape -> shape of the image input to the Conv2D layer
```

- If input_shape = (150,150,3), each of the 64 filters will be of size (3,3,3)
 - Note that each filter will have the same number of channels as the input image
- Thus, this Conv2D layer will need to learn 64 filters each of size (3,3,3), which means 1792 params

A Convolutional Network

Le-Net 5 Network

