CSCI 2021: Program Performance Micro-Optimizations

Chris Kauffman

Last Updated: Tue Apr 16 09:25:06 CDT 2019

Logistics

Date	Event
Fri 4/12	Lec: Micro-opts
Mon 4/15	Lec: Micro-opts,
Tue 4/16	A4 DUE
Wed 4/17	Lec/Lab11: Review
Fri 4/19	Exam 3

Reading Bryant/O'Hallaron

Ch 5: Optimizing Program Performance

Goals

- What to Optimize First
- ► First-best Optimzations
- Micro-optimization Techniques

Assignment 4

Questions?

Lab 10

- Comparing micro-optimizations
- Memory optimizations

Caution: Should I Optimize?

- Optimizing program execution time usually costs human time
- Human time is valuable, don't waste it
- Determine if there is a NEED to optimize
- Benchmark your code if it is fast enough, move on
- If not fast enough, use a profiler to determine where your efforts are best spent
- Never sacrifice correctness for speed

First make it work, then make it right, then make it fast.

- Kent Beck

What to Optimize First

In order of impact

- Algorithms and Data Structure Selection
- 2. Elimination of unneeded work/hidden costs
- 3. Memory Utilization
- 4. Micro-optimizations

"Premature optimization is the root of all evil" - Donald Knuth

Programmers waste enormous amounts of time thinking about, or worrying about, the speed of noncritical parts of their programs, and these attempts at efficiency actually have a strong negative impact when debugging and maintenance are considered. We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%.

Donald Knuth

4

Exercise: Optimize This

- Prema Turopt is tasked by her boss to optimize the performance function get_min()
- The current version of the function code looks like the code to the right.
- Prema immediately jumps to the code for bubble_sort() and alters the code to enable better processor pipelining.
- ► This leads to a 3% improvement in speed.

```
int get min(storage t *st){
      int *arr =
       malloc(sizeof(int)*get_size(st));
      for(int i=0; i<get_size(st); i++){</pre>
        arr[i] = get_element(st,i);
7
8
9
      bubble_sort(arr, get_size(st));
10
      int ans = arr[0]:
11
12
      free(arr):
13
      return ans:
14
15
```

Answers: Optimize This

- 1. Don't use bubblesort: $O(N^2)$. Use an $O(N \log N)$ sort like Quicksort, Heapsort, Mergesort
- 2. Why sort at all? Determine the minimum element with the "get" loop.
- 3. What is the cost of get_element() and get_size()? Is there a more efficient iterator or array-extraction mechanism?
- 4. What data structure is used in storage_t? If it is already sorted such as a binary search tree or binary heap, there may be a more efficient way to determine the minimum element.

```
int get_min(storage_t *st){
      int *arr =
       malloc(sizeof(int)*get_size(st));
5
      for(int i=0; i<get_size(st); i++){</pre>
        arr[i] = get_element(st,i);
8
9
      bubble_sort(arr, get_size(st));
10
11
      int ans = arr[0];
12
      free(arr):
13
      return ans;
14 }
```

 Might be able to arrange for minimum elements to be tracked automatically in the data structure for storage_t if other code can be modified -O(1) get_min() method.

Exercise: Eliminating Unnecessary Work

- Bryant/O'Hallaron Figure 5.7
- ► Two versions of a lower-casing function
- ► Lowercase by subtracting off constant for uppercase characters: alters ASCII code
- Examine them to determine differences
- Project speed differences and why one will be faster

Answers: Eliminating Unnecessary Work

- ▶ strlen() is O(N): searches for \0 character in for() loop
- ▶ Don't loop with it if possible

```
long strlen(char *s) {
  long len = 0;
  while(s[len] != '\0'){
     len++;
  }
  return len;
}
```


Exercise: Allocation and Hidden Costs

Consider the following Java code

```
public class StringUtils{
  public static
  String repString(String str, int reps)
    String result = "";
    for(int i=0; i<reps; i++){
      result = result + str;
    return result;
```

- ► Give a Big-O estimate for the runtime
- Give a Big-O estimate for the memory overhead

Answers: Allocation and Hidden Costs

- Strings are immutable in Java (Python, many others)
- ► Each iteration must
 - allocate new memory for a
 new string sized
 result.length +
 str.length
 - Copy result to the first part
 - ► Copy str to the second part
- ► Leads to $O(N^2)$ complexity
- Much worse memory usage: as much as O(N²) wasted memory for garbage collector to clean up

```
public class StringUtils{
  public static
 String repString(String str, int reps)
    String result = "";
    for(int i=0; i<reps; i++){</pre>
      result = result + str:
    return result;
  // Efficient version
 public static
 String repString2(String str, int reps)
    StringBuilder result =
      new StringBuilder();
    for(int i=0; i<reps; i++){
      result.append(str);
    return result.toString();
```

Exercise: Do Memory References Matter?

- What is the primary difference between the two routines above?
- What effect if any will this have on runtime?

Answers: Do Memory References Matter?

sum_range2() uses a local
variable with only a couple
memory references

- Must determine if memory references matter for performance
- Guesses?

Memory References Matter, Compiler May Change Them

```
lila> gcc -Og sum_range.c
                           # No opt
lila> ./a.out 0 1000000000
sum range1: 1.9126e+00 secs
sum_range2: 2.6942e-01 secs
```

- Minimal optimizations
- Memory reference definitely matters

```
lila> gcc -01 sum_range.c # Opt plz
lila> ./a.out 0 1000000000
sum_range1: 2.8972e-01 secs
sum range2: 2.7569e-01 secs
```

- Observe code differences between -Og and -O1
- Why is performance improved so much?

```
### Compiled with -Og: minimal opt
sum range1:
 Tvom
          $0. (%rdx)
                       # write to memory
          . I.00T0P
 jmp
. BODY:
 addl
          %edi. (%rdx) # memory write
 addl
          $1, %edi
                       # in loop
. I.OOPTOP:
 cmpl
          %esi, %edi
          . BODY
 jl
 ret
### Compiled with -01: some opt
sum range1:
          $0, (%rdx)
                       # mem write
 movl
         %esi, %edi
 cmpl
 jge
          .END
          $0, %eax
 movl
                       # 0 to reg
.LOOP:
 addl
          %edi, %eax
                       # add to reg
 addl
          $1, %edi
                       # no mem ref
 cmpl
          %edi, %esi
 jne
          .LOOP
          %eax. (%rdx) # write at end
 Tvom
. END:
 ret.
```

Dash-O! Compiler Optimizes for You

- gcc like, many compilers, can perform some memory and micro-optimizations for you
- Series of -OX options to enable different techniques
- ▶ We will use -0g at times to disable many optimizations
 - Og: Optimize debugging.
 ... optimization level of choice for the standard edit-compile- debug cycle
- Individual optimizations can be enabled and disabled

- -0 or -01: Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a large function.
 With -O, the compiler tries to reduce code size and execution time, without performing any optimizations that take a great deal of compilation time.
- ► -02: Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-speed tradeoff. As compared to -0, this option increases both compilation time and the performance of the generated code.
- -03: Optimize yet more. -03 turns on all optimizations specified by -O2 and also...
- -Ofast: Disregard strict standards compliance. (!)

Compiler Optimizations

-0 turns on the following optimization flags:

```
-fauto-inc-dec -fbranch-count-reg -fcombine-stack-adjustments
--fcompare-elim fcprop-registers -fdce -fdefer-pop -fdelayed-branch
--fdse -fforward-propagate fguess-branch-probability -fif-conversion2
--fif-conversion finline-functions-called-once -fipa-pure-const
--fipa-profile -fipa-reference fmerge-constants -fmove-loop-invariants
--freorder-blocks -fshrink-wrap fshrink-wrap-separate
--fsplit-wide-types -fssa-backprop -fssa-phiopt -ftree-bit-ccp
-ftree-ccp -ftree-ch -ftree-coalesce-vars -ftree-copy-prop -ftree-dce
-ftree-dominator-opts -ftree-dse -ftree-forwprop -ftree-fre
--ftree-phiprop -ftree-sink ftree-slsr -ftree-sra -ftree-pta
--ftree-ter -funit-at-a-time
```

- ► Some combination of these enables sum_range2() to fly as fast as sum_range1()
- We will look at some "by-hand" versions of these optimizations but whenever possible, let the compiler do it

Exercise: Loop Unrolling

6

7

```
Have seen copying loop
                                           void sum_rangeB(long stop, long *ans){
                                       10
                                             long sum = 0, i;
   iterations manually may lead to
                                       11
                                             for(i=0; i<stop-3; i+=3){
   speed gains
                                       12
                                               sum += (i+0);
                                       13
                                               sum += (i+1);
▶ Why? Which of the following
                                       14
                                               sum += (i+2);
   unrolled versions of
                                       15
                                       16
                                             for(; i<stop; i++){
   sum rangeX() seems fastest?
                                       17
                                               sum += i;
                                       18
Why the second loop in
                                       19
                                             *ans = sum;
   sum_rangeB() and
                                       20
                                       21
   sum_rangeC()?
                                           void sum_rangeC(long stop, long *ans){
                                       22
                                       23
                                             long sum0=0, sum1=0, sum2=0, i;
 void sum_rangeA(long stop, long *ans){ 24
                                             for(i=0; i<stop-3; i+=3){
  long sum=0, i;
                                               sum0 += (i+0):
                                       25
  for(i=0; i<stop; i++){
                                               sum1 += (i+1):
                                       26
    sum += i+0:
                                       27
                                               sum2 += (i+2):
                                       28
                                       29
  *ans = sum:
                                             for(; i<stop; i++){
                                       30
                                               sum0 += i;
                                       31
                                       32
                                             *ans = sum0 + sum1 + sum2:
                                       33
                                                                              16
```

Exercise: Loop Unrolling

Expectations

Version	Notes	Performance
<pre>sum_rangeA()</pre>	Not unrolled	Baseline
<pre>sum_rangeB()</pre>	Unroll x3, same destinations for sum	Less good
<pre>sum_rangeC()</pre>	Unroll x3, different destinations sum add	Expected Best

Actual Performance

apollo> gcc -Og unroll.c apollo> ./a.out 1000000000 sum_rangeA: 1.0698e+00 secs sum_rangeB: 6.2750e-01 secs sum rangeC: 6.2746e-01 secs

phaedrus> ./a.out 1000000000 sum_rangeA: 2.8913e-01 secs sum_rangeB: 5.3285e-01 secs sum_rangeC: 2.6774e-01 secs

Unrolling is Unpredictable

- Performance Gains vary from one compiler+processor to another
- All unrolling requires cleanup loops like those in the B/C versions: add on remaining elements

GCC Options to Unroll

- gcc has options to unroll loops during optimization
- Unrolling has unpredictable performance implications so unrolling is **not enabled** for -01, -02, -03
- Can manually enable it with compiler options like
 funroll-loops to check for performance bumps

```
apollo> gcc -Og unroll.c
                                              apollo> gcc -03 unroll.c
apollo> ./a.out 1000000000
                                              apollo> ./a.out 1000000000
sum_rangeA: 1.0698e+00 secs
                                              sum_rangeA: 9.4124e-01 secs
sum_rangeB: 6.2750e-01 secs
                                              sum_rangeB: 4.1833e-01 secs
sum rangeC: 6.2746e-01 secs
                                              sum_rangeC: 4.1832e-01 secs
                                              # manual unroll + compiler opt
apollo > gcc -Og -funroll-loops unroll.c
apollo> ./a.out 1000000000
sum rangeA: 7.0386e-01 secs
                               # loop unrolled by compiler
sum rangeB: 6.2802e-01 secs
sum rangeC: 6.2797e-01 secs
apollo > gcc -Og -funroll-loops -fvariable-expansion-in-unroller unroll.c
apollo> ./a.out 1000000000
sum rangeA: 5.2711e-01 secs
                               # unroll + multiple intermediates used
sum rangeB: 6.2759e-01 secs
sum rangeC: 6.2750e-01 secs
```

Do Conditionals Matter?

Consider two examples of adding even numbers in a range

```
// CONDITION version
    long sum_evensA(long start, long stop){
      long sum=0;
      for(int i=start; i<stop; i++){</pre>
5
        if((i \& 0x01) == 0){
6
          sum += i;
7
8
9
      return sum;
10
11
    // STRAIGHT-LINE version
12
    long sum_evensB(long start, long stop){
13
      long sum=0;
14
      for(int i=start; i<stop; i++){</pre>
15
        int odd = i & 0x01;
16
        int even mask = odd - 1;
17
        // 0x000000000  for odd
        // OxFFFFFFF for even
18
19
        sum += even mask & i:
20
21
      return sum:
22
```

Timings for these two are shown below at two levels of optimization.

```
lila> gcc -0g condloop.c
lila> a.out 0 400000000
sum_evensA: 1.1969e+00 secs
sum_evensB: 2.8953e-01 secs
# 4x speedup
lila> gcc -03 condloop.c
lila> a.out 0 400000000
sum_evensA: 2.3662e-01 secs
sum_evensB: 9.6242e-02 secs
# 2x speedup
```

Message is simple: **eliminate conditionals** whenever possible to improve performance

Exercise: Row Sums with Function v Macro

What is the difference between these two row sum functions?

```
int mget(matrix t mat,
                                                  #define MGET(mat,i,j) \
              int i. int i)
                                                    ((mat).data[((i)*((mat).cols)) + (j)
3
                                               3
4
      return
5
        mat.data[i*mat.cols + j];
6
                                                  #define VSET(vec.i.x) \
    int vset(vector_t vec,
8
              int i. int x)
                                              8
                                                    ((vec).data[(i)] = (x))
9
      return vec.data[i] = x:
10
                                             10
11
                                             11
12
    void row_sumsA(matrix_t mat,
                                             12
                                                  void row_sumsB(matrix_t mat,
13
                    vector t sums)
                                             13
                                                                  vector t sums)
14
                                             14
15
      for(int i=0; i<mat.rows; i++){</pre>
                                             15
                                                    for(int i=0; i<mat.rows; i++){</pre>
16
        int sum = 0;
                                             16
                                                      int sum = 0;
17
        for(int j=0; j<mat.cols; j++){</pre>
                                             17
                                                      for(int j=0; j<mat.cols; j++){</pre>
18
          sum += mget(mat,i,j);
                                             18
                                                        sum += MGET(mat,i,j);
19
                                             19
20
        vset(sums, i, sum);
                                                      VSET(sums, i, sum);
                                             20
21
                                             21
22
                                             22
```

Answers: Row Sums with Function v Macro

- row_sumsA() uses standard function calls to retrieve elements
- row_sumsB() uses macros to do the element retrieval
- ► A macro is a textural expansion done by the **preprocessor**: insert the literal text associated with the macro
- See macro results with gcc -E rowsums.c which stops after preprocessor step (early)

- Function calls cost some operations but not many
- Function calls prevent optimization across
 boundaries
- Cannot pipeline effectively when jumping around, using registers for arguments, restoring registers, etc
- Macros can alleviate this but they are a pain to write and notoriously buggy
- Better to let the compiler do this for us

Inlining Functions/Procedures

- Function Inlining inserts the body of a function where it would have been called
- ► Turned on fully partially at -02 and fully at -03
- Enables other optimizations blocked by function boundaries
- Can only be done if source code (C file) for function is available
- Like loop unrolling, function inlining has trade-offs
 - Enables pipelining
 - More predictable control
 - ► More register pressure
 - Increased code size

```
> FILES="rowsums.c matvec_util.c"

> gcc -0g $FILES

> ./a.out 8000 8000

row_sumsA: 1.3109e-01 secs

row_sumsB: 4.0536e-02 secs

> gcc -0g -finline-small-functions $FILES

> ./a.out 8000 8000

row_sumsA: 7.4349e-02 secs

row_sumsB: 4.2682e-02 secs
```

```
> gcc -03 $FILES
> ./a.out 8000 8000
row_sumsA: 2.1974e-02 secs
row_sumsB: 2.0820e-02 secs
```

 Inlining typically most effective for for small functions (getters/setters)

Profilers: gprof and Friends

- Profiler: a tool that monitors code execution to enable performance optimizations
- gprof is stock on Linux systems, interfaces with gcc
- Compile with profiling options: gcc -pg
- Run code to produce data file
- Examine with gprof
- Note: gcc version 6 and 7 contain a bug requiring use of -no-pie option, not a problem on apollo

```
# Compile
# -pg : instrument code for profiling
# -no-pie : bug fix for new-ish gcc's
> gcc -pg -no-pie -g -Og -o unroll unroll.c
> 1s
unroll unroll.c
> ./unroll 1000000000
sum rangeA: 2.9401e-01 secs
sum rangeB: 5.3164e-01 secs
sum_rangeC: 2.6574e-01 secs
# gmon.out now created with timing info
> 1s
gmon.out unroll unroll.c
> file gmon.out
gmon.out: GNU prof performance data
```

> gprof -b unroll

... output on next slide ...

gprof output for unroll

Flat p	of -b unrorofile:		0.01 se	conds.				
					self			
						ms/call		_
						544.06		
						282.11		
24.26	3 1.	09	0.26	1	261.95	261.95	sum_ra	ange(
	100.0	0.00 0.54 0.28 0.26	1.09 0.00 0.00	n c	1/1 1/1	name main [1] sum_ sum_	rangeB rangeA	[3]
[2]	50.0	0.54	0.00			main sum_rang		
[3]		0.28 0.28	0.00		1/1	main sum_rang		
[4]	24.1	0.26	0.00			main sum_rang		

gprof Example: Dictionary Application

- > ./dictionary < craft-67.txt
- ... Total time = 0.829561 seconds
- > gprof -b dictionary

Ci		,				
%	cumulative	self		self	total	
time	seconds	seconds	calls	ms/call	ms/call	name
50.07	0.18	0.18	1	180.25	180.25	sort_words
19.47	0.25	0.07	463016	0.00	0.00	find_ele_rec
13.91	0.30	0.05	2862749	0.00	0.00	Strlen
8.34	0.33	0.03	463016	0.00	0.00	lower1
2.78	0.34	0.01	463017	0.00	0.00	get_token
2.78	0.35	0.01	463016	0.00	0.00	h_mod
2.78	0.36	0.01	20451	0.00	0.00	save_string
0.00	0.36	0.00	463017	0.00	0.00	get_word
0.00	0.36	0.00	463016	0.00	0.00	insert_string
0.00	0.36	0.00	20451	0.00	0.00	new_ele
0.00	0.36	0.00	7	0.00	0.00	add_int_option
0.00	0.36	0.00	1	0.00	0.00	add_string_option
0.00	0.36	0.00	1	0.00	0.00	init_token
0.00	0.36	0.00	1	0.00	0.00	new_table
0.00	0.36	0.00	1	0.00	0.00	parse_options
0.00	0.36	0.00	1	0.00	0.00	show_options
0.00	0.36	0.00	1	0.00	360.50	word_freq

gprof Example Cont'd: Dictionary Application

- > ./dictionary < craft-67.txt ## After upgrading sort_words() to qsort()
 ... Total time = 0.624172 seconds</pre>
- > gprof -b dictionary

> gproi	-b dictio	nary				
% с	umulative	self		self	total	
time	seconds	seconds	calls	ms/call	ms/call	name
60.08	0.12	0.12	463016	0.00	0.00	find_ele_rec
15.02	0.15	0.03	2862749	0.00	0.00	Strlen
10.01	0.17	0.02	463016	0.00	0.00	lower1
5.01	0.18	0.01	463017	0.00	0.00	get_token
5.01	0.19	0.01	463016	0.00	0.00	h_mod
5.01	0.20	0.01	20451	0.00	0.00	save_string
0.00	0.20	0.00	463017	0.00	0.00	get_word
0.00	0.20	0.00	463016	0.00	0.00	insert_string
0.00	0.20	0.00	20451	0.00	0.00	new_ele
0.00	0.20	0.00	8	0.00	0.00	match_length
0.00	0.20	0.00	7	0.00	0.00	add_int_option
0.00	0.20	0.00	1	0.00	0.00	add_string_option
0.00	0.20	0.00	1	0.00	0.00	find_option
0.00	0.20	0.00	1	0.00	0.00	init_token
0.00	0.20	0.00	1	0.00	0.00	new_table
0.00	0.20	0.00	1	0.00	0.00	parse_options
0.00	0.20	0.00	1	0.00	0.00	show_options
0.00	0.20	0.00	1	0.00	0.00	sort_words ** was 0.18 **
0.00	0.20	0.00	1	0.00	200.28	word_freq