Py4Incompact3D Documentation

Release 0.0.0

Yorgos Deskos Paul Bartholomew

CONTENTS:

I	Introduction					
	1.1	Installation	1			
		Documentation				
	1.3	Contributing	1			
2	API		3			
Python Module Index						
In	dex		7			

CHAPTER

ONE

INTRODUCTION

Py4Incompact3D is a library for postprocessig data produced by Xcompact3D simulations. The aim of this project is to facilitate automated postprocessing of Xcompact3D simulations by providing, at first:

- Mesh class: this stores the domain data for the simulation
- Case class: this stores the information of the case: boundary conditions, fields etc.

With these building blocks, complex postprocessing tools may be built - for example, derivative calculateors to compute the vorticity and Q-criterion given the velocity field.

Installation

- Clone the git repository to a location on your \$ {PYTHONPATH}
- Test module can be imported by python interpreter: import Py4Incompact3D

Documentation

Documentation of functions can be found under doc/build/latex/.

To regenerate documentation, from the project root type make -C doc/ latexpdf (requires sphinx).

Contributing

It is hoped that users of Xcompact3D will find this library useful and contribute to its development, for instance by adding additional functionality.

CHAPTER

TWO

API

Py4Incompact3D.deriv.deriv.deriv(postproc, mesh, phi, axis)

Take the derivative of field 'phi' along axis.

Parameters

- postproc -
- \bullet mesh -
- **phi** (str) The name of the variable who's derivative we want.
- axis -

Py4Incompact3D.deriv.deriv.tdma (a, b, c, rhs)

The Tri-Diagonal Matrix Algorithm.

Solves tri-diagonal matrices using TDMA.

Parameters

- a (numpy.ndarray) -
- b -
- c -
- rhs -

Returns dphidx – the derivative

Return type numpy.ndarray

4 Chapter 2. API

PYTHON MODULE INDEX

d

deriv,3

р

Py4Incompact3D.deriv.deriv,3

6 Python Module Index

D
deriv (module), 3
deriv() (in module Py4Incompact3D.deriv.deriv), 3

P
Py4Incompact3D.deriv.deriv (module), 3

T
tdma() (in module Py4Incompact3D.deriv.deriv), 3