# Multivariate Methods

**CLASSIFICATION & ORDINATION** 



### **GOALS:**

**Overview**: Normalization & Group Comparison

Moving Ahead - Multivariate

Methods: Supervised Learning &

Unsupervised Learning, Ordination
& Clustering

Ordination: PCA, PCoA & NMDS

**Grouping:** Clustering

#### **OVERVIEW**

- what are we upto?
- keywords

NORMALIZATION? GROUP COMPARISON? WHY ALL THE FUSS?

previously unclarified
 p-value, w-value, Bonferoni
 Correction T-Test, Benjamin
 Hochberger Correction T-Test

#### what are we upto?





#### why?

to visualize large amounts of complex data is easier than poring over spreadsheets or reports. ... Data visualization can also: Identify areas that need attention or improvement.

#### how?

#### **Statistical Tools** through **R**:

- Normalization
- Group Comparison (T-Test, PERMANOVA etc.)
- Multivariate Methods (Clustering, Ordination)

#### keyword: normalization



#### p-value

areas under the curve.

For example, the p-value for someone who is 142 cm tall is...

To calculate p-values, you

add up the percentages of



#### why bother?

- Robust visualization of a data or data variable possible to create null hypothesis and test them
- data normalization when seeking for relations
- as part of data preparation for machine learning. The goal of **normalization** is to change the values of numeric columns in the dataset to a common scale, without distorting differences in the ranges of values
- Easy to **compare** data or data variables

#### how?

= 0.05



| Name(ID)    | Age | <u>Height</u> | Gender<br>(1=f, 2=m, 3=other) | Education Level (0=Bachelor, 1= Master, 2= Post Doc) | Class Label :<br>Teacher(1) or<br>Student(0) |
|-------------|-----|---------------|-------------------------------|------------------------------------------------------|----------------------------------------------|
| Robert      | 30  | 6.1           | m(2)                          | Post Doc(2)                                          | Teacher(1)                                   |
| Julian      | 26  | 6.3           | m(2)                          | Master(1)                                            | Student(0)                                   |
| Danial      | 25  | 5.8           | m(2)                          | Master(1)                                            | Student(0)                                   |
| Max         | 26  | 5.9           | m(2)                          | Master(1)                                            | Student(0)                                   |
| Faizan      | 23  | 6.0           | m(2)                          | Master(1)                                            | Student(0)                                   |
| Abdullah    | 27  | 5.8           | m(2)                          | Master(1)                                            | Student(0)                                   |
| Ammar       | 26  | 5.9           | m(2)                          | Master(1)                                            | Student(0)                                   |
| Rahul       | 25  | 5.8           | m(2)                          | Master(1)                                            | Student(0)                                   |
| <u>Mean</u> | 26  | 5.95          | 2                             | 1.125                                                |                                              |

| Name(ID)    | Age |     | Height |     | Gender<br>(1=f, 2=m, 3=other) | Education Level (0=Bachelor, 1= Master, 2= Post Doc) | Class Label :<br>Teacher(1) or<br>Student(0) |
|-------------|-----|-----|--------|-----|-------------------------------|------------------------------------------------------|----------------------------------------------|
| Robert      | 30  | 1   | 6.1    | 3/5 | m(2)                          | Post Doc(2)                                          | Teacher(1)                                   |
| Julian      | 26  | 3/7 | 6.3    | 1   | m(2)                          | Master(1)                                            | Student(0)                                   |
| Danial      | 25  | 2/7 | 5.8    | 0   | m(2)                          | Master(1)                                            | Student(0)                                   |
| Max         | 26  | 3/7 | 5.9    | 1/5 | m(2)                          | Master(1)                                            | Student(0)                                   |
| Faizan      | 23  | 0   | 6.0    | 2/5 | m(2)                          | Master(1)                                            | Student(0)                                   |
| Abdullah    | 27  | 4/7 | 5.8    | 0   | m(2)                          | Master(1)                                            | Student(0)                                   |
| Ammar       | 26  | 3/7 | 5.9    | 1/5 | m(2)                          | Master(1)                                            | Student(0)                                   |
| Rahul       | 25  | 2/7 | 5.8    | 0   | m(2)                          | Master(1)                                            | Student(0)                                   |
| <u>Mean</u> | 26  | 3/7 | 5.95   | 0.3 | 2                             | 1.125                                                |                                              |



#### **Test for Normality: Shapiro-Wilk Test**

> shapiro.test(matrix\$BE\_03)

Shapiro-Wilk normality test

data: matrix\$BE\_03

W = 0.38432, p-value = 1.103e-14

- Using w-value, we create a NULL hypothesis
  - if W is very small then the distribution is probably not normally distributed
- If P < 0.05, we reject the NULL Hypothesis

#### Assumption Checks ▼

Test of Normality (Shapiro-Wilk) ▼

W p

W p
Difference 0.938 0.325

Note. Significant results suggest a deviation from normality.

#### So now that we have data(normalized), what next?



- check for Significant Differences (Group Comparison)
  - o between 2 or more groups
    - T-Test & U-Test
    - ANOSIM & PERMANOVA
    - ANOVA & Kruskal-Walis Test
- infer Knowledge out of dataset and/or prove hypothesis





# can DATA be NOT Normalized & still make sense??

# Multivariate Methods: Ordination & Classification

- unsupervised learning vs supervised learning
- Ordination
  - Grouping
    - Clustering
  - Dimension/Complexity Reduction
    - PCA
    - PCoA
    - NMDS
    - CCA

#### roadmap



#### types of Machine Learning

Figure 1: Types of Machine Learning with Examples of Respective Use





unsupervised learning vs/& supervised learning

# what is DATA to a Machine??

#### unsupervised learning

why? to find **Similarities** & grouping Recommendations Clustering reduction of Dimension and/or Complexity Principal Component Analysis (PCA) Principal Coordinate Analysis (PCoA) **Structure Discovery, Feature** Non Metric MultiDimensional Scaling Selection & Visualization (NMDS) **Canonical Correspondence Analysis** (CCA)

#### how?

#### ordination (an unsupervised approach)

Ordination is a collective term for multivariate techniques which summarize a multidimensional dataset in such a way that when it is projected onto a low dimensional space, any intrinsic pattern the data may possess becomes apparent upon visual inspection.



#### why?

Ordination can be used on the analysis of any set of multivariate objects.



#### **Ordination**

- Dimension Reduction
  - PCA (Principal Component Analysis)
  - PCoA (Principal Coordinates Analysis)
  - NMDS (Non metric Multidimensional Scaling)

#### **PCA (Principal Component Analysis)**



#### Steps (PCA)



#### importance(PCA)

PCA helps you discover correlations & interpret your data, but it will not always find the important patterns.

Principal component analysis (PCA) **simplifies the complexity in high-dimensional data while retaining trends and patterns.** It does this by transforming the data into fewer dimensions, which act as summaries of features



#### PCoA (Principal Component Analysis)/ metric multidimensional scaling



#### **PCoA vs PCA**



#### **Distance/ Proximity Measures**









#### **PCoA vs PCA**

#### IF we use Euclidean Distance in PCoA, the graph would be similar to a PCA graph

In other words, clustering based on minimizing the linear distances is the same maximizing the linear correlations.







#### importance(PCoA)

As with other ordination techniques such as PCA and CA, PCoA produces a set of uncorrelated (orthogonal) axes to summarise the variability in the data set.

While PCoA is suited to handling a wide range of data, information concerning the original variables cannot be recovered.

# How do I interpret a PCA/PCoA plot?

#### Interpreting the plots



- 1. There is Principal Component/Coordinate for each dimensions
  - a. If we have "n" variables, we would have "n" Principal Components/Coordinates
- 2. PC1/PCoA1 would span the direction of most variation PC2/PCoA2 would span in the direction of 2<sup>nd</sup> most variation

•

•

.

PC"n"/PCoA"n" would span in the direction of "n"<sup>th</sup> most variation

3. Each axis has an eigenvalue whose magnitude indicates the amount of variation captured in that axis

| Name(ID)    | Age |     | <u>Height</u> |     | Gender<br>(1=f, 2=m, 3=other) | Education Level (0=Bachelor, 1= Master, 2= Post Doc) | Class Label :<br>Teacher(1) or<br>Student(0) |
|-------------|-----|-----|---------------|-----|-------------------------------|------------------------------------------------------|----------------------------------------------|
| Robert      | 30  | 1   | 6.1           | 3/5 | m(2)                          | Post Doc(2)                                          | Teacher(1)                                   |
| Julian      | 26  | 3/7 | 6.3           | 1   | m(2)                          | Master(1)                                            | Student(0)                                   |
| Danial      | 25  | 2/7 | 5.8           | 0   | m(2)                          | Master(1)                                            | Student(0)                                   |
| Max         | 26  | 3/7 | 5.9           | 1/5 | m(2)                          | Master(1)                                            | Student(0)                                   |
| Faizan      | 23  | 0   | 6.0           | 2/5 | m(2)                          | Master(1)                                            | Student(0)                                   |
| Abdullah    | 27  | 4/7 | 5.8           | 0   | m(2)                          | Master(1)                                            | Student(0)                                   |
| Ammar       | 26  | 3/7 | 5.9           | 1/5 | m(2)                          | Master(1)                                            | Student(0)                                   |
| Rahul       | 25  | 2/7 | 5.8           | 0   | m(2)                          | Master(1)                                            | Student(0)                                   |
| <u>Mean</u> | 26  | 3/7 | 5.95          | 0.3 | 2                             | 1.125                                                |                                              |



31







# **Questions?**

#### NMDS (Non-metric Multidimensional Scaling)

# **Ordination Summary**

Which ordination method should you choose?

If Euclidean distance and linear relationships are valid – PCA e.g., most geological data types

Other distance measure more appropriate, but still linear – PCoA e.g., biogeographic data

Other distance measure more appropriate; non-linear – NMDS e.g., abundance count data (especially of species)

# NMDS (Non-metric Multidimensional Scaling)

- Fundamentally different than PCA, CA (and DCA);
   more robust: produces an ordination based on a distance or dissimilarity matrix.
- Ordination based on ranks rather than distance rather than object A being 2.1 units distant from object B and 4.4 units distant from object C, object C is the "first" most distant from object A while object C is the "second" most distant.
- Avoids assumption of linear relationships among variables

## **Placing Objects Initially**

- Random Placement
- Placement according to a PCA result
- Placement according to geographic distances
- Placement by moving from high to low dimensionality

# Interpreting NMDS Plots

Like other ordination plots, you should qualitatively identify gradients corresponding to underlying processes



#### Differences from eigenanalysis:

- Does not extract components (based only on distance) so axes are meaningless\*
- Plot can be rotated, translated, or scaled as long as relative distances are maintained

\*metaMDS in vegan performs PCA rotation on the results so that axis 1 contains the greatest variance

# NMDS (Non-metric Multidimensional Scaling)

Stress

NMDS Maximizes rank-order correlation between distance measures and distance in ordination space. Points are iteratively moved to minimize "stress" Stress is a measure of the mismatch between the two kinds of distance.

Think of optimizing stress as: "Pulling on all points a little bit so no single point is completely wrong, all points are a little off compared to distances"

#### NMDS Goodness-of-Fit

Goodness-of-fit is measured by "stress" – a measure of rankorder disagreement between observed and fitted distances



Stress calculated from residuals around monotone regression line

Ideally, all points should fall on monotonic line (increasing ordination distance = increasing observed distance)

#### NMDS Goodness-of-Fit

Stress always decreases with increasing dimensionality k



Remember that a 2D solution is not a projection of higherdimensional solutions (as in PCA)

## **Shepard Diagram**

# NMDS (Non-metric Multidimensional Scaling)

# NMDS Goodness-of-Fit

As in PCA, can construct a scree plot of stress vs. dimensionality

In practice, people normally do ordination in 2 or 3 dimensions

# **Scree Plot**



# Grouping

- Clustering
  - Centroid Based
    - K-Means
  - Density Based
    - DBSCAN
  - Hierarchical
    - Agglomerative

# roadmap



#### **Clustering**

#### unsupervised learning







finding a *structure* in a collection of **unlabeled data** i.e. the process of **organizing objects into groups** whose members are similar in some way

### why?

#### finding representatives for

- homogeneous groups (data reduction),
- in finding "natural clusters" and describe their unknown properties ("natural" data types),
- in finding useful and suitable groupings ("useful" data classes) or
- in finding unusual data objects (outlier detection)

#### how?

- Centroid based :K-Means
- Density based : DBSCAN
- Hierarchical:Agglomerative

#### what?



# **Centroid Based Clustering**

**Unlabelled Data** 

K-means X = Centroid **Centroid** 

clustering goodness depends on

**K-Means** 

# why & why not?

The middle of a cluster i.e. a multidimensional

average of a

cluster

simple guarantees convergence

density

**Labelled Clusters** 

- + scales to large data set
  - initialization
- sensitive to outliers troubled with clusters of varying size &



how?

43





45





# **Questions?**

# **Density Based Clustering: DBSCAN**



- Arbitrary select a point p
- Retrieve all points density-reachable from p w.r.t. Eps and MinPts.
- If *p* is a core point, a cluster is formed.
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

# why & why not?

- does not work well at sin

good with outliers

can handle varying density

- does not work well at similar densities
- struggles with high dimensional data



MinPts = 5

# **Density Based Clustering: DBSCAN**



# **Density Based Clustering: DBSCAN**

epsilon: 0.5

minPts: 2



# **Hierarchical Clustering: Agglomerative**



## why & why not?

- + easy to do & understand
- + possibilities to choose from a hierarchy of clusters
- possible to misinterpret
- expensive





Hierarchical cluster analysis is an algorithmic approach to find discrete groups with varying degrees of (dis)similarity in a data set represented by a (dis)similarity matrix. These groups are hierarchically organised as the algorithms proceed and may be presented as a dendrogram

# **Hierarchical Clustering: Dendrogram**



