Object Recognition ...

The Problem

- Given an image, a computer is not able to recognise what is in that image.
- We want the computer to be able to determine what is in an image for various applications.

Applications

Applications for object recognition include:

- Identifying stop signs for self driving cars
- Finding Wally
- Character Recognition to read text
- Face Recognition to identify faces

The Motivation

Increase classification accuracy using less data

• Learn from other solutions to create our own object classification

Dataset

• We used the Caltech dataset where we took 4 categories to classify

Methodology

Pre-processing

- Resized images to be square and consistently sized
- Limited to 4 categories from the dataset
 - o Bear
 - o Dog
 - Leopard
 - Gorilla

Algorithm 1 - Overview

- A standard CNN
- Input size: 56x56x3
- Architecture inspired by VGG16 architecture
- Epochs: 10
- Accuracy: ~79%

Algorithm 1 - Architecture

	NAME	TYPE	ACTIVATIONS
1	imageinput 56x56x3 images with 'zerocenter' normalization	Image Input	56×56×3
2	conv_1 256 3x3x3 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	54×54×256
3	batchnorm_1 Batch normalization with 256 channels	Batch Normalization	54×54×256
4	relu_1 ReLU	ReLU	54×54×256
5	conv_2 256 3x3x256 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	52×52×256
6	batchnorm_2 Batch normalization with 256 channels	Batch Normalization	52×52×256
7	relu_2 ReLU	ReLU	52×52×256
8	maxpool_1 2x2 max pooling with stride [2 2] and padding [0 0 0 0]	Max Pooling	26×26×256
9	conv_3 256 3x3x256 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	24×24×256
10	batchnorm_3 Batch normalization with 256 channels	Batch Normalization	24×24×256
11	relu_3 ReLU	ReLU	24×24×256
12	conv_4 256 3x3x256 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	22×22×256
13	batchnorm_4 Batch normalization with 256 channels	Batch Normalization	22×22×256
14	relu_4 ReLU	ReLU	22×22×256
15	maxpool_2 2x2 max pooling with stride [2 2] and padding [0 0 0 0]	Max Pooling	11×11×256

	COTIV 4	Convolution	44^44^430
12	256 3x3x256 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	2222230
13	batchnorm_4 Batch normalization with 256 channels	Batch Normalization	22×22×256
14	relu_4 ReLU	ReLU	22×22×256
15	maxpool_2 2x2 max pooling with stride [2 2] and padding [0 0 0 0]	Max Pooling	11×11×256
16	conv_5 512 3x3x256 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	9×9×512
17	batchnorm_5 Batch normalization with 512 channels	Batch Normalization	9×9×512
18	relu_5 ReLU	ReLU	9×9×512
19	conv_6 512 3x3x512 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	7×7×512
20	batchnorm_6 Batch normalization with 512 channels	Batch Normalization	7×7×512
21	relu_6 ReLU	ReLU	7×7×512
22	CONV_7 512 3x3x512 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	5×5×512
23	batchnorm_7 Batch normalization with 512 channels	Batch Normalization	5×5×512
24	relu_7 ReLU	ReLU	5×5×512
25	maxpool_3 2x2 max pooling with stride [2 2] and padding [0 0 0 0]	Max Pooling	2×2×512
26	fc 4 fully connected layer	Fully Connected	1×1×4
27	softmax softmax	Softmax	1×1×4

Algorithm 1 - Results

- Validation Accuracy:79%
- Train Time: 45 sec

Demo - Basic CNN

```
%% Load Images
 2 -
       path = '4 AnimalCategories';
 3 -
        imds = imageDatastore(path, 'IncludeSubfolders', true, ...
            'LabelSource', 'foldernames');
 5
 6
       %% Pre-process images
 7 -
        aimds = augmentedImageDatastore([56, 56, 3], imdsTrain,...
            'ColorPreprocessing', 'gray2rgb');
 8
 9
10
        %% Read images
11 -
        img = read(aimds);
12
       %% Use CNN to classify images
13
14 -
        pred = predict(net, img(1:64,1));
```


Correct: 1

Correct: 1

Correct: 1

Correct: 0

Correct: 1

Correct: 0

Correct: 0

Algorithm 2 - Transfer Learning

- Transfer learning from AlexNet
- Modified final layers to classify our dataset
- 40 iterations, 20 epochs
- 92-95% accuracy consistently

Results - Transfer Learning

- Validation Accuracy: 95.1%
- Elapsed Time: 5 mins 30 secs (running on CPU)

Demo - Transfer Learning

- Still not perfect (8/9 accuracy)
- Incorrectly classified gorilla as bear

Algorithm 3 - CNN training using keras

- Regular CNN
- 2 convolution layers
- 1 Full connect layer
- Input shape (64, 64)
- Optimizing using gradient descent

```
# Initializing the CNN
classifier = Sequential()
# Convolution
classifier.add(Convolution2D(filters=64, kernel size=3, input shape=(64, 64, 3), activation='relu'))
classifier.add(MaxPooling2D(pool size=(2, 2)))
# Convolution
classifier.add(Convolution2D(filters=32, kernel size=3, activation='relu'))
classifier.add(MaxPooling2D(pool size=(2, 2)))
# Flattenina
classifier.add(Flatten())
# Full connected layer
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dropout(0.5))
classifier.add(Dense(units=4, activation='softmax'))
# Compiling
classifier.compile(optimizer='rmsprop', loss='categorical crossentropy', metrics=['accuracy'])
# Start training
# Image preprocessing
train datagen = ImageDataGenerator(
    rescale=1. / 255,
    shear range=0.2,
    zoom range=0.2,
    horizontal flip=True.
    vertical flip=True
```

```
5 # checkpoint
5 filepath="weights.best.hdf5"
7 checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
8 callbacks_list = [checkpoint]
```

Accuracy and loss

Best Accuracy: 78.33%

Result

Overfitting!!!

Other Approaches

- $\overline{\text{CNN} + \text{SVM}}$
 - Use CNN to extract features
 - Use SVM for classification