Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №4 «Аппроксимация функции методом наименьших квадратов»

по дисциплине «Вычислительная математика»

Вариант: 4

Преподаватель: Машина Екатерина Алексеевна

Выполнил:

Касымов Тимур Шавкатович

Группа: Р3210

<u>Цель работы</u>: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

1. Вычислительная реализация задачи

Линейная аппроксимация:

$$y = \frac{15x}{x^4 + 4}$$

$$n = 11$$

$$x \in [-4; 0]$$

$$h = 0.4$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
Уi	0.0	2.962	4.98	4.419	2.806	1.667	1.023	0.662	0.449	0.318	0.233

$$\varphi(x) = a + bx$$

Вычисляем суммы: sx = 22, sxx = 61.6, sy = 19.52 sxy = 26.116

$$\begin{cases} n*a + sx*b = sy \\ sx*a + sxx*b = sxy \end{cases} \begin{cases} 11*a + 22*b = 19.52 \\ 22*a + 61.6*b = 26.116 \end{cases} \begin{cases} 11*a + 22*b = 19.52 \\ 17.6*b = -12.924 \end{cases}$$

$$\begin{cases} b = -12.924/17.6 = -0.7343 \\ 11a = 19.52 - 22 * (-0.7343) = 35.6746 \end{cases} \begin{cases} b = -0.7343 \\ a = 3.2431 \end{cases}$$

$$\varphi(x) = 3.2431 - 0.7343 * x$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
yi	0.0	2.962	4.98	4.419	2.806	1.667	1.023	0.662	0.449	0.318	0.233
φ(xi)	3.243	2.949	2.656	2.362	2.068	1.775	1.481	1.187	0.893	0.6	0.306
(φ (xi)- yi)^2	10.518	0.0	5.403	4.231	0.544	0.012	0.21	0.276	0.197	0.079	0.00

$$\sigma = \sqrt{\frac{\sum (\phi(xi) - yi)^2}{n}} = 1.3972$$

Квадратичная аппроксимация:

$$y = \frac{15x}{x^4 + 2}$$
n = 11
x \in [0; 4]
h = 0.4

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
Уi	0.0	2.962	4.98	4.419	2.806	1.667	1.023	0.662	0.449	0.318	0.233

$$\varphi(x) = a + bx + cx^2$$

Вычисляем суммы:

$$sx = 22$$
, $sxx = 61.6$, $sxxx = 193.6$, $sxxxx = 648.52$, $sy = 19.52$, $sxy = 26.116$, $sxxy = 47.405$

$$\begin{cases} n*a + sx*b + sxx*c = sy \\ sx*a + sxx*b + sxxx*c = sxy \\ sxx*a + sxxx*b + sxxxx*c = sxxy \end{cases}$$

$$\begin{cases} 11*a + 22*b + 61.6*c = 19.52 \\ 22*a + 61.6*b + 193.6*c = 26.116 \\ 61.6*a + 193.6*b + 648.52*c = 47.405 \end{cases}$$

По методу Крамера:

$$\Delta = 4251.456$$

$$\Delta_1 = 9043.80576, \Delta_2 = 4785.47696, \Delta_3 = -1976.8496$$

$$\begin{cases} a = \frac{\Delta_1}{\Delta} = \frac{9043.80576}{4251.456} \approx 2.127 \\ b = \frac{\Delta_2}{\Delta} = \frac{4785.47696}{4251.456} \approx 1.126 \\ c = \frac{\Delta_3}{\Delta} = \frac{-1976.8496}{4251.456} \approx -0.465 \end{cases}$$

$$\varphi(\mathbf{x}) = 2.127 + 1.126x - 0.465x^2$$

i	1	2	3	4	5	6	7	8	9	10	11
Xi	0	0.4	0.8	1.2	1.6	2.0	2.4	2.8	3.2	3.6	4.0
y i	0.0	2.962	4.98	4.419	2.806	1.667	1.023	0.662	0.449	0.318	0.233
φ(xi)	2.127	2.503	2.73	2.809	2.738	2.519	2.151	1.634	0.969	0.154	-0.809
(φ (xi)-	4.524	0.211	5.062	2.593	0.005	0.726	1.272	0.945	0.27	0.027	1.086
yi)^2											

$$\sigma = \sqrt{\frac{\sum (\phi (xi) - yi)^2}{n}} = 1.23292$$

1.23292 < **1.3972**, у квадратичной аппроксимации среднеквадратичное отклонение меньше, поэтому это приближение лучше.

2. Программная реализация задачи

(; 2.73 5.12 7.74 8.91 10.59 12.75 13.43 Коэффициент корреляции Пирсона: 0.9974189309974396																							
оэффициен Вид функции	в	ь	ирсона. с	. U.9974	1093	1	2	3	4	5		7	Мера отклонения S	Среднеквадратичное отклонение &	Мера отклонения R ²								
					Х	1.1	2.3	3.7	4.5	5.4	6.8	7.5	- //										
				,	Υ	2.73	5.12	7.74	8.91	10.59	12.75	13.43	/										
$\varphi = ax + b$	1.6853	1.2167	57 -					_		_		<u> </u>	-	3.0707	5.0931	7.4527	8.801	10.3178	12.6773	13.8571	g 3 78	0.2599	0.9948
					ε	0.3407	-0.0269	-0.2873	-0.109	+0.2722		0.4271			хорошо								
$\varphi = ax^2 + bx$	-0 0580	2.1973	0 3742		φ(x)	2.7201	5.1169	7.6988	9.0707	10.5239	12.5951	13.5441	Ø.069	0.0992	0.9992 хорошо								
+ cx	0.0000				ε	-0.0099	-0.0031	-0.0412	0.1607	-0.0661	-0.1549	0.1141											
$\varphi = ax^3 +$	0.0081	0.0101	1.9118	1 0110	1 0110	0.6207	φ(x)	2.7579	5.0646	7.6692	9.0795	10.5696	12.6242	13/5046	0.0593	0.0921	0.9993						
$bx^2 + cx + d$	-0.0001	0.0181		0.0381	ε	0.0279	-0.0554	-0.0708	0.1695	-0.0204	-0.1258	0.0746	0.0383	0.0821	хорошо								
		0.838					φ(x)	2.7534	5.1089	7.6096	8.9661	10.4463	12.672	18.757			0.9983						
$\varphi = ax^b$	2.542		-	Ī	ε	0.0234	-0.0111	-0.1304	0.0561	-0.1437	-0.0775/	0.327	0.1543	0.1485	хорошо								
					φ(x)	3.5347	4.6838	6.5044	7.8469	9.6912	13,4582	15.8596			0.8833								
φ = ae ^{bx}	2.7309	0.2345	-	Ť.	ε	0.8047	-0.4362	-1.2356	-1.0631	-0.8988	0.7082	2.4296	10.707	1.2367	адекватно								
					φ(x)	1.7373	5.9048	8.591	9.6969	10,727	12.0295	12.5831			0.9542								
p = alnx + b	5.65	1.1988	-		ε,	-0.9927	0.7848	0.851	0.7869	0.137	-0.7205	-0.8469	4.1997	0.7745	хорошо								

Вывод

В ходе данной работы была выполнена аппроксимация функций с использованием линейного, квадратичного, кубического, экспоненциального и логарифмического приближений. Также на основе этих методов был реализован JS скрипт, который реализует метод наименьших квадратов и строит графики исходной функции и аппроксимаций.

Исследование позволило определить наилучшее приближение, вычислить среднеквадратические отклонения и коэффициент корреляции Пирсона для линейной зависимости.