Señales Discretas

- La transformaciones de una señal en el mundo discreto son similares a transformaciones en el mundo continuo
 - Reflexión funciona igual (inversión).
 - Los corrimientos deben ser enteros.
 - ▶ El escalamiento funciona de manera diferente, debido al hecho de que la señal original solo está definida para valores enteros de la variable independiente.

Ejemplo

- \bullet Dada x[n] en la figura, hallar $y_1[n] = x[2n]$
 - $y_1[-3] = x[2(-3)] = x[-6] = 2$
 - $y_1[-2] = x[2(-2)] = x[-4] = 2$
 - $y_1[-1] = x[2(-1)] = x[-2] = 2$

Señales Periódicas

• Para señales discretas:

$$x[n] = x(n+N), \forall n \quad (*)$$

- N es el período de la señal
- Si una señal es periódica con período N entonces es periódica con período mN para m entero.
- El menor valor de N que cumple (*) es el período fundamental de la señal

Exponencial Real Discreta

Sinusoidal Discreta

- Sea $|\alpha| = 1$, $\beta = j\omega_0 \to x[n] = e^{j\omega_0 n}$
- Por la relación de Euler:

$$e^{j\omega_0 n} = \cos(\omega_0 n) + j\sin(\omega_0 n)$$

$$A\cos(\omega_0 n + \phi) = \frac{A}{2}e^{j\omega_0 n + \phi} + \frac{A}{2}e^{-j\omega_0 n + \phi}$$

• Son señales de potencia.

Exponenciales Complejas Generales

$$x[n] = |C||\alpha|^n \cos(\omega_0 n + \theta) + j|C||\alpha|^n \sin(\omega_0 n + \theta)$$

- $\alpha = 1$, Las partes real e imaginaria de x[n] son sinusoidales.
- $\alpha > 1$, Las partes real e imaginaria de x[n] son sinusoidales que crecen exponencialmente.
- $|\alpha| < 1$, Las partes real e imaginaria de x[n] son sinusoidales amortiguadas.

Exponenciales Complejas Generales

$$|\alpha| = 1$$

$e^{j\omega_0 t}$	$e^{j\omega_0 n}$
Señales distintas para valores	Señales iguales para frecuen-
distintos de ω_0	cias de la forma $\omega_0 \pm 2\pi k$
Periódica para cualquier ω_0	Periódica para $\omega_0 = 2\pi \frac{nm}{N}$
Frecuencia fundamental ω_0	Frecuencia fundamental
	ω_0/m_0
Período fundamental $T_0 = \frac{2\pi}{\omega_0}$	Período fundamental $N_0 =$
	$m_0 rac{2\pi}{\omega_0}$

Para el cálculo de ω_0 y N_0 se asume que $\mathrm{MCD}(m_0.N_0)=1$

Exponenciales Complejas Relacionadas Armónicamente

• Solo existen N_0 exponenciales complejas discretas relacionadas armónicamente.

$$\begin{split} \phi_0[n] &= 1 \qquad \phi_1[n] = e^{j\frac{2\pi}{N_0}n} \qquad \phi_2[n] = e^{j2\frac{2\pi}{N_0}n} \\ \phi_{N_0-2}[n] &= e^{j(N_0-2)\frac{2\pi}{N_0}n} \qquad \phi_{N_0-1}[n] = e^{j(N_0-1)2\frac{2\pi}{N_0}n} \end{split}$$

• Se define: $\phi_k[n] = e^{jk\frac{2\pi}{N_0}n}$, $k \in \mathbb{Z}$ como la k-ésima armónica de $e^{j\frac{2\pi}{N_0}n}$

$$\begin{array}{rcl} \phi_{k+N_0}[n] & = & e^{j(k+N_0)\frac{2\pi}{N_0}n} \\ & = & e^{jk\frac{2\pi}{N_0}n} e^{j(N_0)\frac{2\pi}{N_0}n} \\ & = & e^{jk\frac{2\pi}{N_0}n} = \phi_k[n] \end{array}$$

Función Impulso Unitario en Tiempo Discreto

$$\delta[n] = \left\{ \begin{array}{ll} 0 & n \neq 0 \\ 1 & n = 0 \end{array} \right.$$

Muestra Unitaria

Función Escalón Unitario en Tiempo Discreto

$$u[n] = \begin{cases} 0 & n < 0 \\ 1 & n \ge 0 \end{cases}$$

Paso Unitario

Funciones Impulso y Paso Discretas

• Las funciones impulso y paso están relacionadas:

Funciones Impulso y Paso

Haciendo
$$m = n - k$$
: $u[n] = \sum_{k=-\infty}^{n} \delta[k]$

Propiedad de Selección del Impulso

- Dada una función x[n], que ocurre cuando se multiplica por $\delta[n]$?
- $x[n]\delta[n] = x[0]\delta[n]$
- $x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0]$

