

INFORMATIKA FAKULTATEA FACULTAD DE INFORMÁTICA

Grounding Language Models for Compositional and Spatial Reasoning

Master Thesis: Master in Language Analysis and Processing

Author: Julen Etxaniz

Advisors: Oier Lopez de Lacalle & Aitor Soroa

Departments: Computer Systems and Languages &

Computational Science and Artificial Intelligence

Date: October 2022

1 Introduction

- Language models (LMs) have impressive capabilities in many tasks
- Pre-train and fine-tune to avoid training from scratch
- However, LMs criticized for lack of meaning
- Grounding necessary for human-like language understanding
- Compositional and spatial reasoning are challenging for LMs
- Vision and Language Models (VLMs) are pre-trained on image-text pairs
- VLMs better than LMs, but still struggle to ground spatial concepts
- Text-to-image diffusion models have some visual reasoning skills
- Diffusion models struggle to ground composition
- Mistakes: attribute leakage, interchanged attributes, missing objects

1.1 Objectives

- Three main objectives and sections
- Improve the state-of-the-art in compositional reasoning
 - Winoground zero-shot models not much better than chance, far from humans
 - We extend experiments with more pre-trained and fine-tuned models
- Perform zero-shot experiments in spatial reasoning
 - VSR fine-tuning large performance gap between models and humans
 - We extend experiments with zero-shot fine-tuned on NLVR2
- Investigate the use of synthetic datasets to overcome the lack of data
 - Text-to-image Stable Diffusion to generate images from Winoground captions
 - Image captioning models to generate captions for Winoground images
 - Image retrieval systems to retrieve images of interest from a large dataset

2 Winoground Zero-shot Experiments

- The Winoground paper only included zero-shot experiments with pre-trained models
- We test more pre-trained models and get better results
- We test models fine-tuned for specific tasks such as image-text retrieval and visual reasoning
- We prove that fine-tuning helps to obtain better results than previous experiments

2.1 Winogrond Dataset

- 400 test examples to probe visio-linguistic compositional reasoning
- Each one contains two images and captions, the goal is to match them
- Both captions contain the same words in a different order
- All examples are labelled with linguistic tags. 65 total, 3 main groups:
 - Object swaps consist in swapping noun phrases that refer to objects.
 - Relation swaps reorder words that refer to objects such as verbs, adjectives...
 - Both swaps involve changing both relations and objects.
- Linguistic swap independent: 1 or 2 main predicates
- Some examples have visual tags:
 - Pragmatics tag includes images that need to be interpreted non-literally
 - Series tag contains examples where both images come from the same photo series
 - Symbolic tag represents that the images include a symbolic representation

(a) [some plants] surrounding [a light-bulb]

(c) a [brown] dog is on a [white] couch

(e) [circular] food on [heart-shaped] wood

(b) [a lightbulb] surrounding [some plants]

(d) a [white] dog is on a [brown] couch

(f) [heart-shaped] food on [circular] wood

Object Relation Relation

Figure 3.1: Examples from the Winoground dataset for the swap-dependent linguistic tags *Object*, *Relation* and *Relation* from left to right. They are additionally tagged with 1 main predicate.

Figure 3.2: Examples from the Winoground dataset for the swap-dependent linguistic tags *Object*, *Relation* and *Both* from left to right. They are additionally tagged with 1, 2 and 1 main predicates from left to right.

(a) the kid [with the magnifying glass] looks at them []

(b) the kid [] looks at them [with the magnifying glass]

(c) the person with the ponytail [packs] stuff and other [buys] it

(d) the person with the ponytail [buys] stuff and other [packs] it

(e) there are [three] people and [two] windows

(f) there are [two] people and [three] windows

Pragmatics

Series

Symbolic

Figure 3.3: Examples from the Winoground dataset for the visual tags *Pragmatics*, *Series* and *Symbolic* from left to right. They are additionally tagged with the *Relation* tag, and 1, 2, and 1 main predicate from left to right.

2.3 Experiments and Results

- Previous: zero-shot experiments with pre-trained models
 - CLIP, FLAVA, LXMERT, UniT, UNITER, VILLA, VinVL, ViLT, VisualBERT and ViLBERT
- Ours: zero-shot with pre-trained and fine-tuned models
 - OFA, BLIP, CLIP, FLAVA and ViLT
- Humans around 90%, models close to or below random chance (25%)
- Fine-tuning for retrieval and visual reasoning helps
- BLIP better than previous models, 10% in text score, 4% in image score and 7% in group score
 - Text score: whether the model selects the correct caption given an image
 - Image score: whether the model selects the correct image given a caption
 - Group score: combines text and image score, all combinations correct
- Still very far from humans, 40% gap in text scores, and 64% in image and group scores

2.3 Experiments and Results

- Swap-dependent linguistic tags:
 - Humans highest scores on Object, followed by Relation and then Both
 - Models opposite, highest scores on Both, shortest and least compositional
- Swap-independent linguistic tags:
 - Humans are better on 2 main predicates, longer and more complicated
 - Models opposite, best on 1 main predicate
- Visual tags:
 - Humans (~95%) and models (40%) good at Symbolic
 - Humans very bad at Pragmatics (50%), good at Series (95%)
 - Models very bad on Pragmatics and Series (0% in image and group scores)

3 VSR Zero-shot Experiments

- Visual Spatial Reasoning contains training and validation splits to train models
- VSR authors train and test three popular VLMs: VisualBERT, LXMERT, and ViLT
- We do zero-shot experiments with ViLT and BLIP fine-tuned on NLVR2

3.1 VSR Dataset

- Aims to test spatial grounding on natural COCO images
- Given an image and a caption, predict true or false
- Captions cover 65 spatial relations
- Grouped into 7 meta categories: Adjacency, Directional, Orientation,
 Projective, Proximity, Topological and Unallocated
- Random split: Split randomly into train/dev/test with a ratio of 70%/10%/20%.
- Zero-shot split: Train/dev/test sets have no overlapping concepts with a ratio of 50%/20%/30%.

(a) Caption: The person is ahead of the cow. Label: True.

(b) Caption: The pizza is at the edge of the dining table. Label: True.

(c) Caption: The cat is behind the laptop. Label: True.

(d) Caption: The cat is behind the laptop. Label: False.

(e) Caption: The cat is inside the toilet. Label: False.

(f) Caption: *The person is touching the hair drier.* Label: True.

Topological

Adjacency Projective

Figure 4.1: Examples from the VSR dataset for the relation meta categories *Adjacency*, *Projective* and *Topological* from left to right.

(a) Caption: The potted plant is at the right side of the bench. Label: True.

(b) Caption: The cow is at the back of the car. Label: True.

Adjacency

(c) Caption: The bench is in front of the person. Label: True.

(d) Caption: The keyboard is below the cat. Label: True.

(e) Caption: The hair drier is facing away from the person. Label: False.

(f) Caption: The fire hydrant is facing away from the person. Label: True.

Orientation

Projective

Figure 4.2: Examples from the VSR dataset for the relation meta categories *Adjacency*, *Projective* and *Orientation* from left to right.

3.2 Experiments and Results

- VSR authors test three popular VLMs: VisualBERT, LXMERT and ViLT
- We also evaluate ViLT and BLIP fine-tuned on NLVR2
- Compared To Humans:
 - Random split: LXMERT and ViLT are the best over 70% accuracy. VisualBERT below 60%.
 - Zero-shot split: performance declines significantly. Best model 63%.
 - Compared to human performance, there is a more than 20% gap with the best models.
 - NLVR2 performance drop and dev/test difference is maintained.

	random split		zero-shot split			
$model \downarrow$	dev	test	dev	test		
human	95.4					
VisualBERT	60.1	55.1	56.8	50.8		
LXMERT	73.3	73.9	70.3	65.5		
ViLT	72.7	71.2	66.0	61.6		
ViLT NLVR2	57.9	59.1	56.4	52.8		
BLIP NLVR2	60.9	60.1	57.9	53.9		

3.2 Experiments and Results

- Some relations are harder, regardless of training examples
- Orientations and facing directions are very hard
- Left and right relations are difficult
- Examples can refer to either viewer's or object's reference frames
- Orientation worst on both splits, at chance level
- Proximity difficult on zero-shot, relative to concept and context

Figure 4.4: Our model performance by relation on the random (upper) and zero-shot (lower) split test sets. Relation order sorted by frequency (high to low from left to right). Only relations with more than 15 and 5 occurrences on the random and zero-shot tests respectively are shown.

Figure 4.6: Our model performance by meta categories of relations, on the random (left) and zero-shot (right) split test sets.

4 Synthetic Dataset Generation

- Winoground has no training data, annotating is time-consuming
- A solution could be to create a synthetic dataset for compositional reasoning
- Three options: Text-to-Image Generation, Image Captioning and Image Retrieval

4.1 Text-to-Image Generation

- We want to know if SD is good for synthetic dataset generation
- Stable Diffusion to generate images from Winogroud captions
- We also do a manual qualitative evaluation of the generated images
- 6 annotators in total and each one annotated 50 examples
- Total of 300 annotated examples and 600 images
- Conclusion is that SD is not good enough, most images are incorrect

	Caption 0	Caption 1	Both	None All
Caption 0	65	48	12	175 300 176 300
Caption 1	46	65	13	176 300
All	111	113	25	351 600

Figure 5.1: Stable Diffusion examples for the swap-dependent linguistic tags *Object*, *Relation* and *Relation* from left to right. They are additionally tagged with 1 main predicate. Correct examples are marked in green ✓ and incorrect ones in red X.

Figure 5.2: Stable Diffusion examples for the swap-dependent linguistic tags *Object*, *Relation* and *Both* from left to right. They are additionally tagged with 1, 2 and 1 main predicates from left to right. Correct examples are marked in green ✓ and incorrect ones in red ✗.

(a) the kid [with the magnifying glass] looks at them [] X

(b) the kid [] looks at them [with the magnifying glass] **X**

Pragmatics

(c) the person with the ponytail [packs] stuff and other [buys] it X

(d) the person with the ponytail [buys] stuff and other [packs] it X

(e) there are [three] people and [two] windows X

(f) there are [two] people and [three] windows **X**

Series Symbolic

Figure 5.3: Stable Diffusion examples for the visual tags *Pragmatics*, *Series* and *Symbolic* from left to right. They are additionally tagged with the *Relation* tag, and 1, 2, and 1 main predicate from left to right. Correct examples are marked in green ✓ and incorrect ones in red ✗.

4.2 Image Captioning

- We evaluate image captioning for synthetic dataset creation
- OFA and BLIP models to generate captions for all Winoground images
- To evaluate, we calculated the BLEU score compared to real captions
- Captions are very different, but correct most of the times
- Generate accurate captions much faster than human annotation

Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4
OFA_{Tiny}	14.40	5.76	2.50	1.30
OFA_{Base}	16.68	7.12	3.26	1.58
OFA_{Medium}	16.28	6.47	2.84	1.39
OFA_{Large}	15.10	6.45	3.03	1.53
OFA_{Huge}	15.73	6.94	3.06	1.35
BLIP (ViT-B/16)	17.80	8.10	3.96	2.01
BLIP (ViT-L/16)	17.96	8.31	4.36	2.50

(a) a light bulb sitting on top of a pile of green leaves /

(b) a light bulb with a plant inside of it 🗸

(c) a black dog sitting on a couch in front of a christmas tree \(\strict{\sqrt{}}

(d) a white dog sitting on top of a brown couch \

(e) a woman sprinkling herbs on a plate of food \

(f) a heart shaped pizza sitting on top of a cutting board 🗸

Object

Relation

Relation

Figure 5.5: Image Captioning examples from the Winoground dataset for the swap-dependent linguistic tags Object, Relation and Relation from left to right. They are additionally tagged with 1 main predicate. Correct examples are marked in green \(\strict{\strain} \) and incorrect ones in red \(\times \).

(a) a cup of coffee sitting on top of a lush green field ✓

(b) a cup with a plant in it sitting on a table ✓

(c) a brown and white dog running in the sand ✓

(d) a man standing next to a dog in a kitchen ✓

(e) a red fire truck driving down a street ✓

(f) a car is on fire in a field ✓

Object

Relation

Both

Figure 5.6: Image Captioning examples from the Winoground dataset for the swap-dependent linguistic tags *Object, Relation* and *Both* from left to right. They are additionally tagged with 1, 2 and 1 main predicates from left to right. Correct examples are marked in green ✓ and incorrect ones in red ✗.

(a) a man holding a magnifying glass next to a young boy X

(b) a man and a little girl sitting at a table X

(c) a man and a woman wearing face masks in a store ✓

(d) a man and a woman in a grocery store ✓

(e) a child's drawing of a house with a rainbow ✓

(f) a child's drawing of a house and a girl ✓

Pragmatics Series Symbolic

Figure 5.7: Image Captioning examples from the Winoground dataset for the visual tags *Pragmatics*, *Series* and *Symbolic* from left to right. They are additionally tagged with the *Relation* tag, and 1, 2, and 1 main predicate from left to right. Correct examples are marked in green ✓ and incorrect ones in red ✗.

4.3 Image Retrieval

- Retrieve images from LAION-5B using CLIP retrieval
- Retrieve similar images for each Winoground caption and image
- Use CLIP embedding similarity to retrieve similar images
- Remove non-aesthetic, duplicate and unsafe images
- Many images are wrong, would require filtering
- Could be combined with image captioning
- Low-effort dataset creation with minimal human work

(a) [some plants] surrounding [a light-bulb] ✓

(c) a [brown] dog is on a [white] couch

www.shutterstock.com - 557913640

(e) [circular] food on [heart-shaped] wood X

(b) [a lightbulb] surrounding [some plants] ✓

(d) a [white] dog is on a [brown] couch

(f) [heart-shaped] food on [circular] wood ✓

Object Relation Relation

Figure 5.9: CLIP Retrieval examples for the swap-dependent linguistic tags *Object*, *Relation* and *Relation* from left to right. They are additionally tagged with 1 main predicate. Correct examples are marked in green ✓ and incorrect ones in red ✗.

Figure 5.10: CLIP Retrieval examples for the swap-dependent linguistic tags *Object*, *Relation* and *Both* from left to right. They are additionally tagged with 1, 2 and 1 main predicates from left to right. Correct examples are marked in green ✓ and incorrect ones in red ✗.

(a) the kid [with the magnifying glass] looks at them [] X

(b) the kid [] looks at them [with the magnifying glass] **✗**

Pragmatics

(c) the person with the ponytail [packs] stuff and other [buys] it X

(d) the person with the ponytail [buys] stuff and other [packs] it ✗

(e) there are [three] people and [two] windows X

(f) there are [two] people and [three] windows **X**

Series Symbolic

Figure 5.11: CLIP Retrieval examples for the visual tags *Pragmatics*, *Series* and *Symbolic* from left to right. They are additionally tagged with the *Relation* tag, and 1, 2, and 1 main predicate from left to right. Correct examples are marked in green ✓ and incorrect ones in red ✗.

5 Conclusions

- 5 main objectives accomplished
- Improve the state-of-the-art in compositional reasoning
 - Better than previous, still very far from humans
- Perform zero-shot experiments in spatial reasoning
 - Zero-shot performance drop, fine-tuning necessary
- Investigate text-to-image models for synthetic dataset creation
 - Not robust enough, a better approach needed
- Investigate image captioning for synthetic dataset creation
 - Different but good captions, can be combined with retrieval
- Investigate image retrieval for synthetic dataset creation
 - Many wrong images, some filtering needed

6 Future Work

- Four additional ideas for synthetic dataset generation
- Ideas for extending current datasets to be multilingual

6.1 Synthetic Dataset Generation

- Four additional ideas: explicit verbalization, text-to-image, image-to-image and image captioning and retrieval
- Use synthetic datasets to train VLMs in a self-supervised way
- Use multi-tasking and multi-sourcing
- Multi-tasking: learn more than one task simultaneously
- Multi-sourcing: combine different synthetic datasets

6.1.1 Explicit Verbalization

- Collect images with spatial relations (COCO)
- Use an object detector to identify the entities in the images
- Create verbalization templates by hand to generate captions

6.1.2 Text-to-Image Generation

A red car and a white sheep.

Attribute leakage

A brown bench sits in front of an old white building Interchanged attributes

A blue backpack and a brown elephant

Missing objects

Figure 7.1: Three challenging phenomena in the compositional generation. Attribute leakage: The attribute of one object appears in another object. Interchanged attributes: the attributes of two or more objects are interchanged. Missing objects: one or more objects are missing.

Figure 7.2: With CycleDiffusion text-to-image diffusion models can be used as zero-shot image-to-image editors. Source images are displayed with a purple margin and others are generated target images. CycleDiffusion achieves minimal editing that includes replacing objects, adding objects, changing image styles, and modifying attributes.

Figure 7.3: Prompt-to-Prompt editing operations: tuning the level of influence of an adjective word (left), making a local modification in the image by replacing or adding a word (middle), or specifying a global modification (right).

Figure 7.4: Imagic can perform various text-based semantic edits on a single real input image, including highly complex non-rigid changes such as posture changes and editing multiple objects. Here, we show pairs of input images and edited outputs with their respective target texts.

Figure 7.5: Samples showing UniTune's ability to maintain semantic details even across broad visual changes, and to place edits in a logical manner.

6.1.4 Image Captioning and Retrieval

- Retrieve images of interest from a huge dataset
- Use image captioning to create a dataset
- Similar example: LAION-COCO 600M
- BLIP to generate captions
- CLIP to rank captions
- T0 to correct grammar and punctuation errors

6.2 Multilingual Datasets

- Extend Winoground and VSR to more languages and cultures
- Winoground translation difficult
 - Both captions must contain the same words
 - Very difficult, impossible in some cases
- VSR translation seems easier
 - No word conditions
 - Different spatial relations across languages
 - Different word order in languages
- Multilingual pre-training datasets
 - LAION-2B-multi and LAION-1B-nolang
 - LAION-translated

Thank you!