Harshda Saxena

Manifolds

Transversality

Manifolds wit Boundary

Intersection

Theory

Jordan-Brouwer Separatio

Consequences

From Transversality to the Jordan-Brouwer Separation Theorem and its Consequences

Harshda Saxena

Mentor: Prof. Sugata Mondal VSRP 2021, School of Mathematics

June 15, 2021

Preliminaries

Harshda Saxena

Manifolds

Fransversality

rransversancy

Intersection

Jordan-Brouwer Separation Theorem

Consequences

We will be dealing with only manifolds as subsets of Euclidean space, thereby avoiding charts and atlases (works because of Whitney's Embedding Theorem!)

Smooth maps

- A mapping f of an open set $U \subseteq \mathbb{R}^n$ into \mathbb{R}^m is called *smooth* if it has continuous partial derivatives of all orders.
- Maps on arbitrary subsets are smooth if they can be locally extended to a smooth map on open sets.
- A smooth map $f:X \to Y$ of subsets of two Euclidean spaces is a *diffeomorphism* if it is one to one and onto, and if the inverse map $f^{-1}:Y \to X$ is also smooth.

Manifold

X is a k-dimensional manifold if it is locally diffeomorphic to \mathbb{R}^k .

A diffeomorphism $\phi: U(\subset \mathbb{R}^k) \to V$ is called a *parametrization* of the neighborhood V. The inverse diffeomorphism $\phi^{-1}: V \to U$ is called a *coordinate system* on V.

Immersing Ourselves in Derivative Maps

Harshda Saxena

Manifolds

Transversality

Ť

Intersection

Jordan-

Brouwer Separation Theorem

Consequences

Tangent Spaces

Let $\phi: U \to X$ be a local parametrization around x, where $\phi(0) = x$ and define the tangent space of X at x to be the image of the map $d\phi_0: \mathbb{R}^k \to \mathbb{R}^n$. It is denoted by $T_x(X)$.

We can prove that $T_x(X)$ is well defined, and with the same dimension k of X.

Immersion

If dim $X \le \dim Y$, and $df_x : T_x(X) \to T_y(Y)$ is injective, then f is called an *immersion* at x. The *cannonical immersion* is an inclusion map. For an immersion f, it is locally equivalent to the canonical immersion near x.

An immersion which is injective and proper is an *embedding*, and maps X diffemomorphically onto a submanifold of Y.

Immersing wasn't enough, let's submerse!

Harshda Saxena

Manifolds

Transversality

Intersection

Theory

Jordan-

Brouwer Separation Theorem

Consequences

Definition

Let $\dim X \ge \dim Y$, and $f: X \to Y$ such that $df_x: T_x(X) \to T_y(Y)$ is surjective, then f is called a *submersion* at x. The *canonical submersion* is the standard projection, and similarly, a submersion f is locally equivalent to the canonical submersion near x.

Regular Values

For smooth map $f: X \to Y$, a point $y \in Y$ is called a *regular value* if $df_x: T_x(X) \to T_y(Y)$ is surjective for every point x such that f(x) = y, meanwhile x is a *regular point*.

Pre-Image Theorem

If y is a regular value of $f: X \to Y$, then $f^{-1}(y)$ is a submanifold of X, with $\dim f^{-1}(y) = \dim X - \dim Y$. Also note that if Z is the preimage of a regular value y in Y under smooth $f: X \to Y$, then the kernel of the derivative $df_X: T_X(X) \to T_Y(Y)$ at any point $X \in Z$ is the tangent space $T_X(Z)$ to Z at X.

Regular values have beautiful properties, which we shall see soon.

Some much needed pictures

Harshda

Manifolds

${\sf Transversality}$

Intersection

Intersection Theory

Jordan-Brouwer Separation

Consequences

Maps transversal to a submanifold of Y

A smooth map $f:X\to Y$ is transversal to submanifold $Z\subset Y$ $(f\ \overline{\pitchfork}\ Z)$ if at every preimage point of Z, $\operatorname{im}(df_X)+T_Y(Z)=T_Y(Y)$. Also, $f^{-1}(Z)$ is a submanifold of X. The codimension of $f^{-1}(Z)$ in X is same as the codimension of Z in Y.

Submanifolds transversal to each other

2 submanifolds X and Z of Y are said to be transversal $(X \overline{\pitchfork} Z)$, iff for every $x \in X \cap Z$, $T_x(X) + T_x(Z) = T_x(Y)$. The intersection of 2 transversal submanifolds of Y is another submanifold and $\operatorname{codim}(X \cap Z) = \operatorname{codim} X + \operatorname{codim} Z$.

Let's set some boundaries!

Harshda Saxena

.....

Transversality

Manifolds with Boundary

Intersection

Jordan-Brouwer Separation Theorem

Consequences

Definitions

Let the upper half space in \mathbb{R}^k be \mathbb{H}^k . We call a subset X of \mathbb{R}^n a k-dimensional manifold-with-boundary if every point of X possesses a neighbourhood diffeomorphic to an open set in \mathbb{H}^k . If X is a k-dimensional manifold with a boundary, then ∂X is a k-1 dimensional manifold without a boundary.

A useful theorem

Let f be a smooth map from manifold X with boundary to boundaryless manifold Y. Suppose that both f and ∂f are transversal with respect to a boundaryless submanifold Z in Y. Then preimage $f^{-1}(Z)$ is a manifold with the boundary $\partial (f^{-1}(Z)) = f^{-1}(Z) \cap \partial X$, and the codimension of $f^{-1}(Z)$ in X equals codimension of Z in Y.

The Classification of One Manifolds

Every compact, connected 1D manifold with a boundary is diffeomorphic to [0,1] or S^1 .

Transversality Homotopy Theorem

For any smooth map $f:X\to Y$ and any boundaryless submanifold Z of the boundaryless manifold Y, there exists a smooth map $g:X\to Y$ homotopic to f such that $g\overline{\pitchfork}Z$ and $\partial g\overline{\pitchfork}Z$.

Everything's black or white - Intersections in Binary

Harshda Saxena

Manifold

Transversality

Intersection

Theory

Jordan-Brouwer Separation Theorem

Consequence

Mod 2 intersection of a map with a submanifold

If X is a compact manifold and $f: X \to Y$ is a smooth map transversal to closed Z in Y and $\dim X + \dim Z = \dim Y$, then by codimension summing, $f^{-1}(Z)$ is a closed 0 dimensional submanifold and hence a finite set. The mod 2 intersection number $l_2(f,Z)$ of the map f with Z is the number of points in $f^{-1}(Z)$ modulo 2. For arbitrary smooth g, select homotopic map f transversal to Z and define $l_2(f,Z) = l_2(g,Z)$.

Mod 2 intersection of 2 submanifolds

If X is a compact submanifold of Y and Z is a closed submanifold of complementary dimension, define the mod 2 intersection number of X with Z by $I_2(X,Z) = I_2(i,Z)$ where $i:X\hookrightarrow Y$ is the inclusion. If X $\overline{\pitchfork}$ Z, then $I_2(X,Z) = \#\{X\cap Z\} \mod 2$.

Boundary Theorem

If X is the boundary of some compact manifold W and $g:X\to Y$ is a smooth map. If g may be extended to all of W, then $h_2(g,Z)=0$ for any closed submanifold Z in Y of complementary dimension.

Mod 2 degree of a function

If $f: X \to Y$ is a smooth map of compact X into connected Y such that $\dim X = \dim Y$, then $l_2(f, \{y\})$ is the same for all y in Y, and called the mod 2 degree of f denoted as $\deg_2(f)$.

A much needed unwind

Harshda Saxena

iviaiiiioius

Manifolds wit

Intersection Theory

Jordan-Brouwer Separation Theorem

Consequences

A hypersurface in a manifold is a submanifold of codimension one.

Definition

Let X be a compact connected hypersurface and $f: X \to \mathbb{R}^n$ a smooth map. Take any point z in \mathbb{R}^n not in f(X). Define $u(x) = \frac{f(x) - z}{|f(x) - z|}$ as a map from X to S^{n-1} . Define the mod 2 winding number of f around z to be $W_2(f,z) = deg_2(u)$.

We use $W_2(X, z)$ for the winding number of the inclusion map of X around z.

Thus, the winding number modulo 2 counts the number of times a function map winds around a specific point not in the image of the map.

Obvious? Apparently not!

Harshda Saxena

Manifolds

Transversality

Manifolds v Boundary

Intersection

Jordan-Brouwer Separation Theorem

Consequences

The Jordan Brower Seperation Theorem

The complement of the compact connected hypersurface X in \mathbb{R}^n consists of 2 connected open sets,

the "outside"
$$D_0 = \{z : W_2(X, z) = 0\}$$

and "inside"
$$D_1 = \{z : W_2(X, z) = 1\}$$

where $z \in \mathbb{R}^n - X$. Further, $\bar{D_1}$ is a compact manifold with

boundary with $\partial D_1 = X$.

Onto a proof

Harshda

Manifolds

Transversality

Manifolds with

Intersection Theory

Jordan-Brouwer Separation Theorem

Consequences

Claim 1

Let x is any point of X and U is any neighbourhood of x in \mathbb{R}^n and z is any point of $\mathbb{R}^n - X$, then there is a point of U that can be joined to z by a curve not intersecting X.

Proof

Fix z in \mathbb{R}^n-X , and let S be the set of points in X such that the above is true. We aim to show that S is both open and closed, thus making it the entirety of X by connectedness (it is non empty, see the straight line joining the closest point to z in X).

Onto a proof

Harshda

Manifolds

Transversality

Manifolds with

Intersection Theory

Jordan-Brouwer Separation Theorem

Consequences

Claim 1

Let x is any point of X and U is any neighbourhood of x in \mathbb{R}^n and z is any point of $\mathbb{R}^n - X$, then there is a point of U that can be joined to z by a curve not intersecting X.

Proof

Fix z in \mathbb{R}^n-X , and let S be the set of points in X such that the above is true. We aim to show that S is both open and closed, thus making it the entirety of X by connectedness (it is non empty, see the straight line joining the closest point to z in X). Let s_i be a sequence of points in S, which converge to some s_i and let $s \notin S$. Let U be any nbd of s_i and we must have some s_i in U, consider U_i nbd of s_i . WLOG we can assume $U_i \subset U$, and must have a point z_i . This point is also in U, and we have a contradiction. Hence S is closed

Onto a proof

Harshda

Manifolds

Transversality

Manifolds witl

Intersection

Jordan-Brouwer Separation Theorem

Consequence

Claim 1

Let x is any point of X and U is any neighbourhood of x in \mathbb{R}^n and z is any point of $\mathbb{R}^n - X$, then there is a point of U that can be joined to z by a curve not intersecting X.

Proof

Hence S is closed

Fix z in \mathbb{R}^n-X , and let S be the set of points in X such that the above is true. We aim to show that S is both open and closed, thus making it the entirety of X by connectedness (it is non empty, see the straight line joining the closest point to z in X). Let s_i be a sequence of points in S, which converge to some s_i and let $s \notin S$. Let U be any nbd of s_i and we must have some s_i in U, consider U_i nbd of s_i . WLOG we can assume $U_i \subset U$, and must have a point z_i . This point is also in U, and we have a contradiction.

Let s be any point in S, then there is a nbd U around s (from the Local Immersion theorem) such that $U \cap X$ is a cannonical immersion of the form $(u_1, \ldots, u_{n-1}, 0)$. For this U let $y = (v_1, \ldots, v_n)$ $(v_n \neq 0$, let it be positive) be the point connecting to z w/o intersecting X. Take any $s_1 \neq s$, with $s_1 \in U \cap X$, take any nbd V of s_1 and note that $V \cap U \neq \emptyset$. Thus, there exists some $v' \in V \cap U$ such that v'_n is positive, thus there is a curve joining v'_n to v_n and hence to z. Since $U \cap X \subset S$ is open in X, s is an interior point, and hence S is open.

Some connections?

lordan-Brouwer Separation Theorem

Claim 2

 $\mathbb{R}^n - X$ has atmost 2 connected components.

Proof

Similarly, using the local immersion theorem, there is a nbd U of s such that $U \cap X$ is a cannonical immersion of the form $(u_1,\ldots,u_{n-1},0)$. Take any ball B_{ϵ} around s, and note that $B_{\epsilon} - X \cap B_{\epsilon}$ has 2 components. Take z_0, z_1 in these 2 components, and by the previous claim, any arbit point $v \in \mathbb{R}^n - X$ can be connected to some point in U, which can be connected to either z_0 or z_1 by a path not intersecting X.

Claim 3

If z_0 and z_1 belong to the same connected component of \mathbb{R}^n-X , then $W_2(X, z_0) = W_2(X, z_1)$

Proof

If z_0, z_1 belong to the same connected component of $\mathbb{R}^n - X$, define the path (from above) between the 2 points as $\gamma:[0,1]\to\mathbb{R}^n-X$, with $\gamma(0)=z_0$ and $\gamma(1)=z_1$, and define $U(x,t) = \frac{x-\gamma(t)}{|x-\gamma(t)|}$, a homotopy between u_0 and u_1 , hence $\deg_2(u_0) = \deg_2(u_1)$, and the relation on W2 follows.

Dont get wound up just yet!

Harshda Saxena

Manifolds

Transversality

Boundary

Intersection Theory

Jordan-Brouwer Separation Theorem

Consequences

Looking at rays from a point in the complement of X

Given a point z and a direction vector $\vec{v} \in S^{n-1}$, consider the ray r emanating from z in the direction of \vec{v} , that is $r = \{z + t\vec{v} : t \geq 0\}$. Let $g : \mathbb{R}^n - \{z\}$ such that $g(y) = \frac{y-z}{|y-z|}$, and note that $u : X \to S^{n-1}$ is just the composite of g and i. Hence $g \circ i \ \overline{\pitchfork} \ \{\vec{v}\} \iff i \ \overline{\pitchfork} \ r$, and hence we see the ray is transversal to X iff \vec{v} is a regular value of the map $u : X \to S^{n-1}$. As a consequence of Sards almost every ray from z intersects X transversally.

Relations between the winding numbers of 2 points

Suppose that r is a ray emanating from z_0 that intersects X transversally in a nonempty (necessarily finite) set. Suppose that z_1 is any other point on r (but not on X), and ℓ be the number of times r intersects X between z_0 and z_1 . Hence \vec{v} is a regular value for both u_0 and u_1 from above. From definition, we now conclude that $W_2(X,z_0)=\#\{u_0^{-1}(\vec{v})\}$ mod $2=(\#\{u_1^{-1}(\vec{v})\}+\ell)\mod 2=W_2(X,z_1)+\ell\mod 2$.

Almost done!

Harshda Saxena

Manifolds

Fransversality

Boundary Intercection

Intersection Theory

Jordan-Brouwer Separation Theorem

Consequence

Combining everything from above, we note that if r is a ray emanating from z_0 and is transveral to X (can always be chosen), and there exist 1 point of intersection of r and X between z_0 and z_1 , thus $W_2(X,z_0) \neq W_2(X,z_1)$, and from above, belong to the disconnected components $D_0 = \{z : W_2(X,z) = 0\}$ and $D_1 = \{z : W_2(X,z) = 1\}$ which form a partition on $\mathbb{R}^n - X$.

The "Outside"

Since X is compact, it fits in some ball B. Pick any $z \notin \mathbb{R}^n - B$, and a hyperplane H containing z disjoint from B. Then the half of S^{n-1} corresponding to the half-space determined by H that doesn't contain B is not hit by u at all; so $\deg_2 u = 0$.

$\overline{D_1}$ is a compact manifold and $\partial D_1 = X$

We see that $\overline{D_1}$ is a manifold (compactness is obvious from above) since the interior is locally diffeomorophic to \mathbb{R}^n , and points on both X and $\overline{D_1}$, from above X divides any neighbourhood of such points into 2 connected components, each of which can be seen to be diffeomorphic to \mathbb{H}^n , hence it is a manifold with boundary, the points of boundary are those of X from the above argument.

Harshda Saxena

Manifolds

Transversality

Boundary

Intersection Theory

Jordan-Brouwer Separation Theorem

Consequences

Borsuk Ulam theorem

If $f: S^k \to \mathbb{R}^{k-1}$ is a smooth map whose image does not contain the origin and if f satisfies f(-x) = -f(x) for all $x \in S^k$, then $W_2(f, 0) = 1$.

Proof

We use induction on k, and prove for base case of k=1. We can show that if this theorem is true, then it is equivalent to the following: if $f:S^k\to S^k$ carries antipodal to antipodal points, then $\deg_2(f)=1$. We can prove for S^1 as assuming such an f WLOG such that $f(\cos t,\sin t)=(\cos g(t),\sin g(t))$. Then the antipodal condition gives $g(s+\pi)=g(s)+\pi g$, where g is odd. We then note $\deg_3(f)=g$ mod g mod g.

Harshda Saxena

Manifolds

Transversality

Boundary

Intersection Theory

Jordan-Brouwer Separation Theorem

Consequences

Borsuk Ulam theorem

If $f: S^k \to \mathbb{R}^{k-1}$ is a smooth map whose image does not contain the origin and if f satisfies f(-x) = -f(x) for all $x \in S^k$, then $W_2(f, 0) = 1$.

Proof

We use induction on k, and prove for base case of k=1. We can show that if this theorem is true, then it is equivalent to the following: if $f:S^k\to S^k$ carries antipodal to antipodal points, then $\deg_2(f)=1$. We can prove for S^1 as assuming such an f WLOG such that $f(\cos t,\sin t)=(\cos g(t),\sin g(t))$. Then the antipodal condition gives $g(s+\pi)=g(s)+\pi q$, where q is odd. We then note $\deg_2(f)=q\mod 2=1$. Now, let S^{k-1} be the equator, embedded in S^k , and the restriction of f to the equator as g. Use Sard to select a unit vector \vec{a} which is a regular value for both $\frac{g}{|g|}:S^{k-1}\to S^k$ and $\frac{f}{|f|}:S^k\to S^k$. Regularity for g simply means that g never intersects the line ℓ along \vec{a} , and regularity for f leads to $f \cap \ell$.

Harshda Saxena

Manifolds

Transversality

Manifolds wi

Intersection

Jordan-Brouwer Separation Theorem

Consequences

Borsuk Ulam theorem

If $f: S^k \to \mathbb{R}^{k-1}$ is a smooth map whose image does not contain the origin and if f satisfies f(-x) = -f(x) for all $x \in S^k$, then $W_2(f, 0) = 1$.

Proof

We use induction on k, and prove for base case of k=1. We can show that if this theorem is true, then it is equivalent to the following: if $f:S^k\to S^k$ carries antipodal to antipodal points, then $\deg_2(f)=1$. We can prove for S^1 as assuming such an f WLOG such that $f(\cos t,\sin t)=(\cos g(t),\sin g(t))$. Then the antipodal condition gives $g(s+\pi)=g(s)+\pi q$, where q is odd. We then note $\deg_2(f)=q\mod 2=1$. Now, let S^{k-1} be the equator, embedded in S^k , and the restriction of f to the equator as g. Use Sard to select a unit vector \vec{a} which is a regular value for both $\frac{g}{|g|}:S^{k-1}\to S^k$ and $\frac{f}{|f|}:S^k\to S^k$. Regularity for g simply means that g never intersects the line ℓ along \vec{a} , and regularity for f leads to $f \vec{h} \ell$.

By definition $W_2(f,0) = \#\left(\frac{f}{|f|}\right)^{-1}(\vec{a}) \mod 2$. Note that $+\vec{a}$ and $-\vec{a}$ are hit same amount of times, and if f_+ is the restriction of f to the upper hemisphere, thus $\# f_+^{-1}(\ell)$.

Harshda Saxena

Manifolds

Transversalit

Boundary

Intersection Theory

Jordan-Brouwer Separation Theorem

Consequences

Borsuk Ulam theorem

If $f: S^k \to \mathbb{R}^{k-1}$ is a smooth map whose image does not contain the origin and if f satisfies f(-x) = -f(x) for all $x \in S^k$, then $W_2(f,0) = 1$.

Proof

We use induction on k, and prove for base case of k=1. We can show that if this theorem is true, then it is equivalent to the following: if $f:S^k\to S^k$ carries antipodal to antipodal points, then $\deg_2(f)=1$. We can prove for S^1 as assuming such an f WLOG such that $f(\cos t,\sin t)=(\cos g(t),\sin g(t))$. Then the antipodal condition gives $g(s+\pi)=g(s)+\pi q$, where q is odd. We then note $\deg_2(f)=q\mod 2=1$. Now, let S^{k-1} be the equator, embedded in S^k , and the restriction of f to the equator as g. Use Sard to select a unit vector \vec{a} which is a regular value for both $\frac{g}{|g|}:S^{k-1}\to S^k$ and $\frac{f}{|f|}:S^k\to S^k$. Regularity for g simply means that g never intersects the line ℓ along \vec{a} , and regularity for f leads to $f\widehat{\sqcap}\ell$.

By definition $W_2(f,0) = \#\left(\frac{f}{|f|}\right)^{-1}(\vec{a}) \mod 2$. Note that $+\vec{a}$ and $-\vec{a}$ are hit same amount of times, and if f_+ is the restriction of f to the upper hemisphere, thus $\#f_+^{-1}(\ell)$.

Let V be the orthogonal complement of ℓ , and $\pi: \mathbb{R}^{k+1} \to V$ be the projection. With g being anti-symmetric, so is the projection, and $\pi \circ g: S^{k-1} \to V$, and it can't be 0, since g doesn't intersect ℓ by hypothesis, thus by inductive hypothesis $W_2(\pi \circ g, 0) = 1$.

Harshda Saxena

Manifolds

Transversality

M - - 10 - 1.1 - - - -

Intersection

Theory

Jordan-Brouwer Separation Theorem

Consequences

Borsuk Ulam theorem

If $f: S^k \to \mathbb{R}^{k-1}$ is a smooth map whose image does not contain the origin and if f satisfies f(-x) = -f(x) for all $x \in S^k$, then $W_2(f,0) = 1$.

Proof

We use induction on k, and prove for base case of k=1. We can show that if this theorem is true, then it is equivalent to the following: if $f:S^k\to S^k$ carries antipodal to antipodal points, then $\deg_2(f)=1$. We can prove for S^1 as assuming such an f WLOG such that $f(\cos t,\sin t)=(\cos g(t),\sin g(t))$. Then the antipodal condition gives $g(s+\pi)=g(s)+\pi q$, where q is odd. We then note $\deg_2(f)=q\mod 2=1$. Now, let S^{k-1} be the equator, embedded in S^k , and the restriction of f to the equator as g. Use Sard to select a unit vector \vec{a} which is a regular value for both $\frac{g}{|g|}:S^{k-1}\to S^k$ and $\frac{f}{|f|}:S^k\to S^k$. Regularity for g simply means that g never intersects the line ℓ along \vec{a} , and regularity for f leads to $f \vec{h} \ell$.

By definition $W_2(f,0)=\#\left(\frac{f}{|f|}\right)^{-1}(\vec{a})\mod 2$. Note that $+\vec{a}$ and $-\vec{a}$ are hit same amount of times, and if f_+ is the restriction of f to the upper hemisphere, thus $\#f_+^{-1}(\ell)$. Let V be the orthogonal complement of ℓ , and $\pi:\mathbb{R}^{k+1}\to V$ be the projection. With g

being anti-symmetric, so is the projection, and $\pi: \mathbb{R} \longrightarrow V$ be the projection. With g being anti-symmetric, so is the projection, and $\pi \circ g: S^{k-1} \to V$, and it can't be 0, since g doesn't intersect ℓ by hypothesis, thus by inductive hypothesis $W_2(\pi \circ g, 0) = 1$. Since $f_+ \ \overline{\pitchfork} \ I$, thus $\pi \circ f_+$ is transversal to $\{0\}$. Therefore,

 $1 = W_2(\pi \circ g, 0) = \# (\pi \circ f_+)^{-1}(0) \mod 2 = \# f_+^{-1}(\ell) \mod 2 = W_2(f, 0).$

Thank You, and a meme

Harshda Saxena

Manifolds

Transversality

Manifolds wit

Intersectio

Theory

Brouwer Separatio

Consequences

THANK YOU!

You can find a detailed set of my notes of Differential Topology by Gullemin and Pollack here