Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

КУРСОВАЯ РАБОТА

по дисциплине «Современные проблемы программной инженерии»

по теме:

«Применение СППР для выбора инструментария для систем оркестрации и IaC»

Выполнил студент: гр. № 3540904/10101

Томилин И. С.

Руководитель:

к.т.н. Амосов В. В.

ОГЛАВЛЕНИЕ

1. Введение	3
2. Исходные данные для проверки	
Варианты	4
Предпочтения	4
Бинарные отношения	5
3. Результаты работы программы по теме «Применение СППР для выбора инструментария для систем оркестрации и IaC»	
Результат работы на основе тестовых данных:	6
Результат работы на основе собственных данных:	9
Выбор системы IaC:	9
Выбор оркестратора:	12
4. Вывод	17
5. Листинг программы	18

1. Введение

Качественный подход к принятию решения подразумевает формализацию ситуации с использованием аппарата бинарных отношений или предпочтений, задание для каждого бинарного отношения весового коэффициента, проведение выбора решений с помощью аппарата функций выбора, поиск оптимальных вариантов решений для каждого бинарного отношения и сведение полученных результатов в обобщающую таблицу для наглядности и автоматизации выбора лицом, принимающим решение.

В системе применяются для оценки предпочтений бинарные отношения «больше» и «меньше»

Аппарат функций выбора задаётся для каждого бинарного отношения механизмами доминирования, блокировки, турнирным механизмом и механизмом определения К - максимальных вариантов. Для каждого бинарного отношения задаются весовые коэффициенты. Полученные по каждому механизму результаты ранжируются с учётом весовых коэффициентов бинарных отношений.

2. Исходные данные для проверки

Для тестирования системы используются данные, загружаемые из файлов, как стандартные тестовые данные шаблона системы поддержки принятия решения на основе качественного подхода, так и приведенные ниже данные.

В качестве тестирования корректности расчета и вывода результатов был взят шаблон выбора наилучшей модели автомобиля LADA (BA3). Цель тестирования, убедиться в корректности работы приложения.

Варианты

Сравниваются три автомобиля:

LADA (BA3) Priora I, 2008 (1вариант)	LADA (ВАЗ) Priora I, 2009 (2 вариант)	LADA (BA3) Priora I, 2009 (3 вариант)	
		1	
143000 руб.	150000 руб.	148000 руб.	
Пробег 170000 км	Пробег 140000 км	Пробег 150000 км	
1.6 л / 98 л. с. / Бензин	1.6 л / 81 л. с. / Бензин	1.6 л / 81 л. с. / Бензин	
Механическая	Леханическая Механическая		
Серый, Передний, Седан	Серый, Передний, Се- дан	Белый, Передний, Хэтчбек 5 дверей	

Названия вариантов вводим в файл следующим образом:

```
1 lada_1_variant
2 lada_2_variant
3 lada_3_variant
```

Каждый вариант с новой строки через нижнее подчеркивание.

Предпочтения

Выбраны следующие данные о предпочтениях:

Поля для ввода предпочтений						
Цена	Год выпуска	Пробег				
Ввести предпочтения	Добавить предпочте- ние	Обработать добавле- ние				
Поля для ввода весовых коэффициентов предпочтений						
0.3	0.3	0.4				
Ввести весовые коэффициенты						

Файл для ввода предпочтений нужно ввести в файл следующим образом:

```
1 Цена 0.3
2 Год_выпуска 0.3
3 <u>П</u>робег 0.4
```

Названия предпочтений вводим через нижнее подчеркивание, затем через пробел вводим коэффициент.

Чтение коэффициентов и вариантов указывается в коде, количество бинарных отношений и вариантов нужно также задать:

```
#ifdef TEST
const char PATH_TO_Power_DATA[] = "./data/lada_power.txt";
const std::string PROD_NAMES = "./data/lada_names.txt";

const int VARIANT = 3;
const int B0 = 3;
#endif
```

Бинарные отношения

Матрицы бинарных отношений генерируются автоматически, нужно только ввести два вектора:

- 1) варианты предпочтения;
- 2) вектор определяющий преобладание предпочтения (например чем новее год выпуска автомобиля тем лучше, 2009 предпочтительнее чем 2008 или наоборот чем меньше пробег тем лучше, 170000км менее предпочтительней чем 140000км)

Таблица предпочтений вариантов					
	Цена	Год выпуска	Пробег		
LADA Priora 1	143000	2008	170000		
LADA Priora 2	150000	2009	140000		
LADA Priora 3	148000	2009	150000		
Создать таблицу	Ввести данные таблицы		Удалить таблицу		

3. Результаты работы программы по теме «Применение СППР для выбора инструментария для систем оркестрации и IaC»

Результат работы на основе тестовых данных:

```
Предпочтения:
Цена: 0.3
Год_выпуска: 0.3
Пробег: 0.4
Цена
- 1
     1
          1
         Θ
     -1
0
     1
          - 1
Kopt
[0] = 4
[1] = -1
[2] = -1
К-тах механизм
     2
           2
                2
                      строго наибольший
     Θ
          Θ
               Θ
     1
           1
Доминирующий механизм
Блокирующий механизм
Турнирный механизм
0.6
Θ
0.3
Год_выпуска
    Θ
           Θ
-1
     -1
           1
     1
          - 1
[0] = -1
[1] = -1
[2] = -1
К-тах механизм
     Θ
                Θ
          2
     1
                1
     1
           2
Доминирующий механизм
Блокирующий механизм
Турнирный механизм
0.45
0.45
```

```
Пробег
        Θ
                Θ
-1
        -1
                1
                -1
Kopt
[0] = -1
[1] = 4
[2] = -1
К-тах механизм
        Θ
                Θ
                        Θ
        2
                                строго наибольший
                2
                        2
        1
                1
Доминирующий механизм
Блокирующий механизм
Турнирный механизм
0.8
0.4
    Механизм доминирования
Баллы вариантов с учетом весовых коэффициентов и места вариантов
lada_1_variant
                      0.3
                                2
                      0.7
                                 1
lada_2_variant
                                 2
lada_3_variant
                      0.3
    Механизм блокировки
Баллы вариантов с учетом весовых коэффициентов и места вариантов
lada_1_variant
                      0.3
                                2
lada_2_variant
                      0.4
                                1
lada 3 variant
                        Θ
                                3
    _Турнирный механизм
Баллы вариантов с учетом весовых коэффициентов и места вариантов
lada_1_variant
                      0.6
                                3
                                1
lada_2_variant
                     1.25
lada_3_variant
                     1.15
                                2
     Механизм К-МАХ
Баллы вариантов с учетом весовых коэффициентов и места вариантов
lada_1_variant
                      2.4
                                3
                                       2.4
                                                 2
                        5
                                 1
                                                 1
lada_2_variant
                                       3.2
lada 3 variant
                      4.6
                                 2
                                         Θ
                                                 3
     Бальная система
             П
                 Блок
                       Ш
                           Дом ||
                                     Тур ||
                                              Sjp ||
                                                       SjM ||
                                                                 Сумма баллов
lada_1_variant
                   2
                                                       2
                                                                     8
                           2
                                     1
                                              1
                                                                    15
lada_2_variant
                   1
                           2
                                     2
                                              2
                                                       1
                                                                     8
lada_3_variant
```

Результат работы на основе собственных данных:

Выбор системы ІаС:

```
Предпочтения:
Синтаксис_yaml: 0.2
Поддержка_сооществом: 0.3
Безагентнотсь: 0.2
Идемпотентность: 0.1
Качество_документации: 0.2
./data/iac_l_file_type.txt
      1
                             1
Θ
Θ
       Θ
              -1
                             Θ
Θ
       Θ
              Θ
                     -1
                             Θ
Θ
       Θ
              Θ
                      Θ
Kopt
[0] = 4
[1] = -1
[2] = -1
[3] = -1
[4] = -1
К-тах механизм
       4
              4
                      4
                             строго наибольший
       Θ
              Θ
                      Θ
Θ
       Θ
                      Θ
              Θ
Θ
       Θ
              Θ
                      Θ
Θ
       Θ
Доминирующий механизм
Блокирующий механизм
Турнирный механизм
0.8
Θ
Θ
Θ
./data/iac_2_com.txt
-1
                             1
                     1
       -1
              1
                             1
Θ
Θ
       Θ
              -1
                     Θ
                             1
Θ
              Θ
       1
                      -1
Θ
       Θ
              Θ
                      Θ
                              -1
Kopt
[0] = 4
[1] = -1
[2] = -1

[3] = -1

[4] = -1
++++++
К-тах механизм
                             строго наибольший
1
       1
              1
                      1
       1
              2
                      1
Θ
       Θ
              Θ
                      Θ
Доминирующий механизм
Блокирующий механизм
Турнирный механизм
```

```
1.2
0.75
0.3
0.45
Θ
./data/iac_3_noagent.txt
      1
                   1
-1
             1
                           1
Θ
      -1
              1
                    Θ
                           1
Θ
      Θ
             -1
                   Θ
                           Θ
Θ
             1
                           1
      1
                   -1
Θ
      Θ
             Θ
                    Θ
                           -1
Kopt
[0] = 4
[1] = -1
[2] = -1
[3] = -1
[4] = -1
++++++
К-тах механизм
     4
                    4
             4
                          строго наибольший
2
      2
             2
                    2
      Θ
             Θ
                    Θ
3
             3
                    3
      Θ
             Θ
                    Θ
____
Доминирующий механизм
Блокирующий механизм
Турнирный механизм
0.8
0.4
Θ
0.6
Θ
./data/iac_4_iden.txt
          1
                    1
                           1
- 1
1
      - 1
             1
                    1
                           1
            -1
Θ
      Θ
                           Θ
Θ
      1
             Θ
                    - 1
                           Θ
Θ
       Θ
                    Θ
             Θ
Kopt
[\Theta] = -1
[1] = -1
[2] = -1
[3] = -1
[4] = -1
++++++
К-тах механизм
      3
                    3
             4
       2
             4
                    2
1
      1
             1
                    1
1
      Θ
              1
                    Θ
Θ
              Θ
      Θ
                    Θ
Доминирующий механизм
Θ
Блокирующий механизм
Турнирный механизм
0.35
```

```
0.05
         Θ
          /data/iac_5_doc.txt
                1
                        1
          -1
                                       1
                        1
                -1
                               1
                Θ
                        -1
                               Θ
                                       0
                        1
                Θ
                               -1
                                       Θ
                               1
                                       -1
                 Θ
                        Θ
         Kopt
         [0] = -1
[1] = -1
         [2] = -1
         [3] = -1
          [4] = -1
          ++++++
          К-тах механизм
                 2
                        4
                 3
                        4
                               3
                               Θ
         Θ
                 Θ
         2
                 1
                        2
                               1
                 1
                        1
         Доминирующий механизм
         Блокирующий механизм
         Турнирный механизм
         0.6
         0.7
         Θ
         0.3
         0.2
             _Механизм доминирования_
         Баллы вариантов с учетом весовых коэффициентов и места вариантов
         ansible
                               1
         salt
                              0.3
                                       2
         puppet
                               Θ
                                       3
         chef
                               Θ
                                       3
         pulumi
             Механизм блокировки_
         Баллы вариантов с учетом весовых коэффициентов и места вариантов
         ansible
                              0.7
                                       1
          salt
                               Θ
                               Θ
                                       2
         puppet
         chef
                               Θ
         pulumi
                               Θ
                                       2
               Турнирный механизм_
         ansible
                             3.75
         salt
                             2.15
         puppet
                              0.4
         chef
                              1.4
         pulumi
                              0.2
              Механизм К-МАХ
         Баллы вариантов с учетом весовых коэффициентов и места вариантов
         ansible
                              15
                                      1
                                           11.2
                                                      1
         salt
                              8.6
                                       2
                                              Θ
                                                      2
                                       4
                              1.6
                                              Θ
         puppet
         chef
                              5.6
                                              Θ
         pulumi
                              0.8
                                              Θ
     Бальная система
            || Блок
                        Дом || Тур || Sjp || SjM || Сумма баллов
ansible
                 4
                        4
                                 4
salt
                                         4
                                                 4
                                                            20
                 4
                        3
                                         2
                                                            15
                                                 4
puppet
chef
                 4
                        3
                                 3
                                         3
                                                 4
                                                            17
pulumi
                         3
                                 1
                                         1
                                                            13
                                      10
```

Θ.1

Выбор оркестратора:

```
Предпочтения:
Простота_использования: 0.2
Поддержка_сообществом: 0.1
Масштабируемость: 0.1
Интеграция_vault_из_коробки: 0.2
Документация: 0.3
Поддержка иі из коробки: 0.1
./data/orch_l_using.txt
      Θ
             Θ
                     Θ
                            0
- 1
      -1
1
              1
                     1
                           1
1
      1
             -1
                     1
                           1
             Θ
      Θ
                    -1
      Θ
             Θ
                     1
                            -1
Kopt
[0] = -1
[1] = -1
[2] = -1
[3] = -1
[4] = -1
++++++
К-тах механизм
Θ
      Θ
                     Θ
             Θ
4
      3
             4
                     3
4
             4
      3
                     3
2
       1
              2
                     1
2
      1
              2
                     1
Доминирующий механизм
Блокирующий механизм
Турнирный механизм
Θ.7
0.7
0.3
0.3
./data/orch_2_com.txt
-1
      1
             1
                     1
                            1
              1
                     1
                           1
      -1
Θ
      Θ
             -1
                     Θ
                           Θ
Θ
                    -1
      Θ
             Θ
                           1
Θ
       1
             1
                            -1
Kopt
[0] = -1
[1] = -1
[2] = -1
[3] = -1
[4] = -1
К-тах механизм
4
      3
                     3
             4
4
       2
                     2
             4
Θ
      Θ
             Θ
                     Θ
1
      Θ
             1
                     Θ
3
       1
              3
                     1
```

```
Доминирующий механизм
Θ
Блокирующий механизм
Турнирный механизм
0.35
0.3
Θ
0.05
0.2
<<<<<<<<<<<<<><>>>>>>>>>>>>>>
./data/orch_3_scaling.txt
       1
               1
                               1
-1
                       1
               1
                       1
                               1
Θ
       -1
Θ
       Θ
                               Θ
               -1
                       Θ
Θ
Θ
               1
       1
                       1
                               -1
Kopt
[0] = 4
[1] = -1
[2] = -1
[3] = -1
[4] = -1
К-тах механизм
       4
                       4
                               строго наибольший
       1
               3
                       1
       Θ
               Θ
                       Θ
               3
       1
                       1
       1
               3
                       1
Доминирующий механизм
Блокирующий механизм
Турнирный механизм
0.4
0.2
Θ
0.2
0.2
<<<<<<<<<<<<<><<<><<
./data/orch_4_vault.txt
- 1
       Θ
               Θ
                       Θ
                               Θ
       -1
               1
                       1
                               1
       Θ
               -1
                       Θ
                               Θ
Θ
       Θ
               Θ
                       -1
                               Θ
Θ
                       Θ
       Θ
               Θ
                               -1
Kopt
[0] = -1
[1] = 4
[2] = -1
[3] = -1
[4] = -1
++++++
К-тах механизм
Θ
       Θ
               Θ
                       Θ
4
0
0
       4
               4
                       4
                               строго наибольший
       Θ
               Θ
                       Θ
       Θ
               Θ
                       Θ
       Θ
                       Θ
```

```
[0] = -1
[1] = 4
[2] = -1
[3] = -1
[4] = -1
++++++
К-тах механизм
Θ
       Θ
               Θ
                       Θ
4
        4
                               строго наибольший
Θ
       Θ
               Θ
                       Θ
Θ
       Θ
               Θ
                       Θ
Θ
       Θ
Доминирующий механизм
Блокирующий механизм
Турнирный механизм
0.8
Θ
Θ
Θ
./data/orch_5_doc.txt
              Θ
                       Θ
                               Θ
       Θ
       -1
               1
                       1
Θ
       Θ
                       Θ
                               Θ
               - 1
       Θ
               1
                       -1
                               Θ
1
       1
               1
                       1
                                -1
Kopt
[0] = -1
[1] = -1
[2] = -1
[3] = -1
[4] = -1
++++++
К-тах механизм
Θ
       Θ
               Θ
                       Θ
4
       3
               4
                       3
Θ
       Θ
               Θ
                       Θ
2
        2
                       2
                2
4
        3
               4
                       3
Доминирующий механизм
Блокирующий механизм
Турнирный механизм
1.05
Θ
0.6
1.05
./data/orch_6_ui.txt
- 1
       Θ
               Θ
                       Θ
                               Θ
        -1
                1
                       1
                               1
Θ
        Θ
                               1
                        1
                -1
        1
                1
                       -1
        1
                1
                       1
                                -1
```

```
Kopt
[0] = -1
[1] = -1
[2] = -1
[3] = -1
[4] = -1
К-тах механизм
Θ
        Θ
                Θ
                        Θ
        2
                4
                        2
2
        Θ
                        Θ
                2
        1
                        1
                4
        1
Доминирующий механизм
Блокирующий механизм
Турнирный механизм
0.3
0.1
0.25
0.25
    Механизм доминирования
Баллы вариантов с учетом весовых коэффициентов и места вариантов
                     0.2
k8s
                             3
                      0.9
                                1
Nomad
                      0.2
                                3
docker_swarm
                      0.1
                                4
mesos
openshift
                                2
                      0.4
_____Механизм блокировки_____
Баллы вариантов с учетом весовых коэффициентов и места вариантов
                      0.1
k8s
                                2
Nomad
                      0.2
                                1
docker_swarm
                        Θ
                                3
mesos
                        Θ
                                3
openshift
                        Θ
                                3
 ____Турнирный механизм__
Баллы вариантов с учетом весовых коэффициентов и места вариантов
k8s
                   0.75
                                5
Nomad
                     3.35
                                1
docker_swarm
                      0.8
                                4
mesos
                      1.4
                                3
openshift
                       2
                                2
 Механизм К-МАХ
Баллы вариантов с учетом весовых коэффициентов и места вариантов
k8s
                       3 5
                                   1.6
                                                2
Nomad
                     13.4
                                      3.2
                                                1
docker_swarm
                      3.2
                               4
                                                3
                      5.6
                                3
                                        Θ
                                                 3
mesos
                        8
                                2
                                        Θ
                                                 3
openshift
   Бальная система
                 Блок || Дом || Тур || Sjp || SjM || Сумма баллов ||
                           3
                                    1
Nomad
                                                                   25
                                    2
                                             2
                                                       3
docker_swarm
                   3
                           3
                                                                   13
mesos
                   3
                           2
                                    3
                                             3
                                                       3
                                                                   14
openshift
                                                                   18
```

4. Вывод

Произведена модификация исходного кода студента гр. в3530904/00030 О.С. Клабукова, исправлена часть недочетов, введены новые возможности. Работа программы протестирована на данных шаблона СППР, в результате работы приложения, были получены данные как в шаблоне, что может сказать о правильности работы программы.

Также результат работы программы проверен на собственных примерах для принятия решения в выборе инструментария оркестратора и системы IaC.

5. Листинг программы

Файл сборки CMakeLists.txt:

```
cmake_minimum_required(VERSION 3.5)
project(sppr LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
option(USE_IAC "IAC SPPR" OFF)
option(USE_ORCH "ORCH SPPR" OFF)
option(USE_TEST "TEST SPPR" OFF)
if (USE_IAC)
  add_definitions(-DIAC)
endif()
if (USE_ORCH)
  add_definitions(-DORCH)
endif()
if (USE_TEST)
  add_definitions(-DTEST)
endif()
add_executable(sppr main.cpp)
                         Сценарий запуска build.sh:
#!/usr/bin/env bash
set -e
MODE=$1
if [[ -z $MODE ]]; then
  echo "[ ERROR ] First arg must be a mode (IAC|ORCH)."
  exit 1
fi
rm -Rf ./build
mkdir build && cd build
if [[ $MODE == "IAC" ]]; then
  cmake -DUSE_IAC=ON .. && make
elif [[ $MODE == "ORCH" ]]; then
  cmake -DUSE ORCH=ON .. && make
elif [[ $MODE == "TEST" ]]; then
  cmake -DUSE_TEST=ON .. && make
else
  echo "[ ERROR ] Not handled mode."
  exit 1
fi
```

```
cp sppr ../
cd ..
./sppr
                      Исходный код программы main.cpp:
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <algorithm>
#include <iomanip>
#include <numeric>
#include <cmath>
#ifdef TEST
const char PATH_TO_Power_DATA[] = "./data/lada_power.txt";
const std::string PROD_NAMES = "./data/lada_names.txt";
const int VARIANT = 3;
const int BO = 3;
#endif
//выделение памяти дл¤ динамического двумерного массива
double** createArr(int n, int m);
//подсчет весовые коэффициенты
void readPower(double* arr, double n, std::ifstream& in,
        std::vector<std::string> &pref_names);
//посчитать массив размером NxM из вход¤щего потока
void readFile(double** arr, double n, double m, std::ifstream& in);
//определение доминирующего варианта
std::vector<int> dominate(double** arr, double n, double m);
//определение блокирующего варианта
std::vector<int> block(double** arr, double n, double m);
//определение турнирного варианта
std::vector<double> turnir(double** arr, const double power[BO], double n,
               double m, int number);
//составление массива дл¤ варианта в случае механизма K-max
double** createKarray(double** arr, double n, double m);
//определение К-орt вариантов
void createKopt(double** arr, double n, int* kopt_Array);
//вывести двумерный массив
void writeArr(double** arr, double n, double m);
//вывести двумерный массив K-opt механизм
void writeArrKopt(double** arr, double n, double m, int* opt);
//уничтожить двумерный массив
void distractionArray(double** arr, int n);
//расстановка мест
void placeRating(const double arr[VARIANT], int A[VARIANT]);
void read_from_file( std::vector<std::string> &vec, std::ifstream& in )
{
```

```
std::string data {};
  while(in >> data)
     vec.emplace_back( data );
}
void build_matrix( std::vector<int> vars, bool greater, double** matrix )
  for ( int i = 0; i < vars.size(); ++i )
     for ( int j = 0; j < vars.size(); ++j)
     {
       if (i == j)
         matrix[i][j] = -1;
          continue;
       }
       if ( !greater && vars.at(i) <= vars.at(j) )</pre>
          matrix[i][j] = 1;
          continue;
       }
       if ( greater && vars.at(i) \geq vars.at(j) )
          matrix[i][j] = 1;
  }
}
int main()
  setlocale(LC_ALL, "RUS");
  double rating[VARIANT] = { 0 };
  double ratingBlock[VARIANT] = { 0 };
  double ratingTurnir[VARIANT] = { 0 };
  double kmax[VARIANT] = { 0 };
  double kopt[VARIANT] = { 0 };
  std::vector<std::vector<int>> prep
  {
     { 143000, 150000, 148000 },
     { 2008, 2009, 2009 },
     { 170000, 140000, 150000 },
  };
  // false если меньшее значение преобладает над большим.
  // true если большее значение предобладает над меньшим.
  std::vector<bool> prep_bm
```

```
false,
    true,
    false,
  };
  // Read names.
  std::vector<std::string> names;
  std::ifstream in names;
// in_names.exceptions(std::ios::failbit | std::ios::badbit);
  in_names.open(PROD_NAMES.c_str());
  read from file( names, in names );
  //считывание весовых коэффициентов
  std::ifstream in_power;
  in_power.exceptions(std::ios::failbit | std::ios::badbit);
  in_power.open(PATH_TO_Power_DATA);
  double* powerArr = new double[BO];
  //powerArr - массив с весовыми коэффициентами
  std::vector<std::string> pref_names;
  readPower(powerArr, BO, in_power, pref_names);
  double sum { 0 };
  sum = std::accumulate(powerArr, powerArr + BO, sum );
  std::cout << "Sum of weight coeff: " << sum << std::endl;
  std::cout << "Предпочтения:" << std::endl;
  for (int i = 0; i < BO; ++i)
    std::cout << pref_names[i] << ": " << powerArr[i] << std::endl;
  in power.close();
  for (int k = 0; k < prep.size(); k++)
  {
    std::cout <<
std::endl;
    std::cout << pref names[k] << std::endl;</pre>
    double** Dom_data = createArr(VARIANT, VARIANT);
    build_matrix( prep[k], prep_bm[k], Dom_data );
    //readFile(Dom_data, VARIANT, VARIANT, in);
    writeArr(Dom_data, VARIANT, VARIANT);
    //обработка данных
    std::vector<int> dom Array;
    std::vector<int> block_Array;
    std::vector<double> turnir_Array;
    //std::vector<int> kopt_Array;
    int* kopt_Array = new int[VARIANT];
    std::fill n(kopt Array, VARIANT, -1);
    double** Karray = createKarray(Dom_data, VARIANT, VARIANT);
```

```
createKopt(Karray, VARIANT, kopt_Array);
    std::cout << "Kopt" << std::endl;</pre>
    for (int i = 0; i < VARIANT; ++i)
       std::cout << '[' << i << "] = " << kopt Array[i] << std::endl;
    std::cout << "++++++" << std::endl;
    std::cout << "K-max механизм " << std::endl;
    writeArrKopt(Karray, VARIANT, 4, kopt_Array);
    std::cout << "====== " << std::endl;
    dom_Array = dominate(Dom_data, VARIANT, VARIANT);//определение
доминирующих вариантов
     block_Array = block(Dom_data, VARIANT, VARIANT);//определение
блокирующих вариантов
     turnir_Array = turnir(Dom_data, powerArr, VARIANT, VARIANT, k);//определение
турнирных вариантов
    std::cout << "Доминирующий механизм" << std::endl;
    for (int i = 0; i < dom\_Array.size(); ++i)
     {
       std::cout << dom_Array[i] << std::endl;</pre>
       rating[dom_Array[i]] += powerArr[k];
    std::cout << "Блокирующий механизм " << std::endl;
    for (int i = 0; i < block Array.size(); ++i)
       std::cout << block Array[i] << std::endl;</pre>
       ratingBlock[block Array[i]] += powerArr[k];
    //данные по турнирному механизму
    std::cout << "Турнирный механизм " << std::endl;
    for (int i = 0; i < turnir Array.size(); ++i)
     {
       std::cout << turnir_Array[i] << std::endl;</pre>
       ratingTurnir[i] += turnir_Array[i];
    //данные по К-тах механизму
    for (int i = 0; i < VARIANT; ++i)
       for (int j = 0; j < 4; j++)
         kmax[i] += Karray[i][j] * powerArr[k];
    //данные по K-opt
    for (int i = 0; i < VARIANT; ++i)
       if ((kopt_Array[i] == 1) || (kopt_Array[i] == 2) ||
            (kopt\_Array[i] == 3) \parallel (kopt\_Array[i] == 4))
         for (int j = 0; j < 4; j++)
            kopt[i] += Karray[i][j] * powerArr[k];
```

```
}
    distractionArray(Dom data, VARIANT);
    distractionArray(Karray, VARIANT);
  int rating_place[VARIANT] = { 0 };
  placeRating(rating, rating_place);
  std::cout << "_____ Механизм доминирования_____ " << std::endl;
  std::cout << "Баллы вариантов с учетом весовых коэффициентов и места вариантов"
<< std::endl;
  for (int i = 0; i < VARIANT; ++i)
  {
    std::cout << std::setw(0) << names[i] << std::setw(25 - names[i].size()) << rating[i] <<
            std::setw(8) << rating_place[i] << std::endl;</pre>
  int rating_place_block[VARIANT] = { 0 };
  placeRating(ratingBlock, rating_place_block);
  std::cout << " Meханизм блокировки " << std::endl;
  std::cout << "Баллы вариантов с учетом весовых коэффициентов и места вариантов"
<< std::endl;
  for (int i = 0; i < VARIANT; ++i)
    std::cout << std::setw(0) << names[i] << std::setw(25 - names[i].size()) <<
ratingBlock[i] <<
            std::setw(8) << rating_place_block[i] << std::endl;</pre>
  int rating_place_turnir[VARIANT] = { 0 };
  placeRating(ratingTurnir, rating_place_turnir);
  std::cout << "______Typнирный механизм_____" << std::endl;
  std::cout << "Баллы вариантов с учетом весовых коэффициентов и места вариантов"
<< std::endl;
  for (int i = 0; i < VARIANT; ++i)
  {
    std::cout << std::setw(0) << names[i] << std::setw(25 - names[i].size()) <<
ratingTurnir[i] <<
            std::setw(8) << rating_place_turnir[i] << std::endl;</pre>
  int rating_place_kmax[VARIANT] = { 0 };
  int rating_place_kopt[VARIANT] = { 0 };
  placeRating(kmax, rating_place_kmax);
  placeRating(kopt, rating_place_kopt);
  std::cout << "_____ Mexaнизм K-MAX_____" << std::endl;
  std::cout << "Баллы вариантов с учетом весовых коэффициентов и места вариантов"
<< std::endl;
  for (int i = 0; i < VARIANT; ++i)
  {
    std::cout << std::setw(0) << names[i] << std::setw(25 - names[i].size()) << kmax[i] <<
            std::setw(8) << rating_place_kmax[i] << std::setw(8) << kopt[i] <<
            std::setw(8) << rating_place_kopt[i] << std::endl;</pre>
  }
  std::cout << "_____Бальная система_____" << std::endl;
```

```
std::cout <<
"=========
========= << std::endl;
                     || Блок || Дом || Тур || Sjp || SjM || Сумма баллов ||" <<
  std::cout << "
std::endl;
  std::cout <<
"-----
int winner = VARIANT + 1 - rating_place[0] +
         VARIANT + 1 - rating_place_block[0] +
      VARIANT + 1 - rating place turnir[0] +
      VARIANT + 1 - rating_place_kmax[0] +
      VARIANT + 1 - rating_place_kopt[0]
  int index { 0 };
  for (int i = 1; i < VARIANT; ++i)
  {
    int dom_value = VARIANT + 1 - rating_place[i];
    int block_value = VARIANT + 1 - rating_place_block[i];
    int turn_value = VARIANT + 1 - rating_place_turnir[i];
    int kmax_value = VARIANT + 1 - rating_place_kmax[i];
    int kopt_value = VARIANT + 1 - rating_place_kopt[i];
    int sum = dom_value + block_value + turn_value + kmax_value +
         kopt value:
    if ( winner < sum ) {</pre>
      winner = sum;
      index = i;
    }
  }
  for (int i = 0; i < VARIANT; ++i)
    int dom_value = VARIANT + 1 - rating_place[i];
    int block_value = VARIANT + 1 - rating_place_block[i];
    int turn_value = VARIANT + 1 - rating_place_turnir[i];
    int kmax_value = VARIANT + 1 - rating_place_kmax[i];
    int kopt value = VARIANT + 1 - rating place kopt[i];
    int sum = dom value + block value + turn value + kmax value +
         kopt_value;
    if (i == index) {
      // Unix only (light text).
      std::cout << "\033[1;31m" << std::setw(0) << names[i] << std::setw(20 -
names[i].size()) << block_value <<
             std::setw(8) << dom_value << std::setw(9) << turn_value << std::setw(9) <<
             kmax value << std::setw(9) << kopt value << std::setw(13) << sum << "\
033[0m" << std::endl;
      std::cout << std::setw(0) << names[i] << std::setw(20 - names[i].size()) <<
block value <<
             std::setw(8) << dom value << std::setw(9) << turn value << std::setw(9) <<
```

```
kmax_value << std::setw(9) << kopt_value << std::setw(13) << sum <<
std::endl;
     }
  }
  return 0;
//выделение памяти для динамического двухмерного массива
double** createArr(int n, int m)
  double^{**} A = new double^{*} [n];
  for (int i = 0; i < n; i++)
     A[i] = new double[m];
  }
  // Fill zeros.
  for (int i = 0; i < n; i++) {
     for (int j = 0; j < m; j++) {
       A[i][j] = 0;
     }
  }
  return A;
//считать весовые коэффициенты
void readPower(double* arr, double n, std::ifstream& in,
         std::vector<std::string> &pref_names)
{
  std::string name {""};
  for (int j = 0; j < n; j++)
    in >> name;
     pref_names.emplace_back( name );
    in >> arr[j];
  }
}
//считать массив размером NxM из входящего потока
void readFile(double** arr, double n, double m, std::ifstream& in)
{
  for (int i = 0; i < n; i++)
     for (int j = 0; j < m; j++)
       in >> arr[i][j];
  }
//определение доминирующего варианта
std::vector<int> dominate(double** arr, double n, double m)
  std::vector<int> dom_str_Array;
  bool dom str;
  for (int i = 0; i < n; i++)
```

```
dom_str = true;
     for (int j = 0; j < m; j++)
       if (i == j) continue;
       if (arr[i][j] != 1)
          dom_str = false;
          break;
     if (dom_str) dom_str_Array.push_back(i);
  return dom_str_Array;
//определение блокирующего варианта
std::vector<int> block(double** arr, double n, double m)
  std::vector<int> block_str_Array;
  bool block str;
  for (int i = 0; i < n; i++)
     block_str = true;
     for (int j = 0; j < m; j++)
       if (i == j) continue;
       if (arr[j][i] != 0)
          block_str = false;
          break;
     if (block_str) block_str_Array.push_back(i);
  return block_str_Array;
//определение турнирного варианта
std::vector<double> turnir(double** arr, const double power[BO], double n,
                 double m, int number)
{
  std::vector<double> turnir_str_Array;
  bool turnir_str;
  for (int i = 0; i < n; i++)
     double sum = 0;
     for (int j = 0; j < m; j++)
       if (i == j) continue;
       if (arr[i][j] == 1)
          if (arr[j][i] == 0)
            sum += power[number];
```

```
}
          else if (arr[j][i] == 1)
            sum += power[number] / 2;
       }
     }
     turnir_str_Array.push_back(sum);
  return turnir_str_Array;
//оставление массива для варианта в случае механизма К-тах
double** createKarray(double** arr, double n, double m)
  double** A = createArr(VARIANT, 4);
  for (int i = 0; i < n; i++)
     double HR0 = 0;
     double ER = 0;
     double NK = 0;
     for (int j = 0; j < m; j++)
       if (i == j) continue;
       if (arr[i][j] == 1)
          if (arr[j][i] == 0)
          {
            HR0 += 1;
          else if (arr[j][i] == 1)
            ER += 1;
       if (arr[i][j] == -1)
          NK += 1;
     for (int j = 0; j < 4; j++)
       switch (j)
       case 0:
          A[i][j] = HR0 + ER + NK;
          break;
       case 1:
          A[i][j] = HR0 + NK;
          break;
       case 2:
          A[i][j] = HR0 + ER;
          break;
```

```
case 3:
          A[i][j] = HR0;
          break;
       default:
          break;
     }
  }
  return A;
};
//определение К-орт вариантов
void createKopt(double** arr, double n, int* kopt_Array)
{
  for (int i = 0; i < n; i++)
     for (int j = 0; j < 4; j++)
       switch (j)
       case 0:
          if (arr[i][j] == n)
          {
             kopt_Array[i] = 1;
          break;
       case 1:
          if ((arr[i][j] == (n - 1)) && (arr[i][j] > arr[i][j + 2]))
             kopt\_Array[i] = 2;
          }
          break;
       case 2:
          if ((arr[i][j] == n) && (arr[i][j] > arr[i][j + 1]))
          {
             kopt_Array[i] = 3;
          }
          break;
        case 3:
          if ((arr[i][j] == (n - 1)) && (arr[i][j] == arr[i][j - 1]) &&
               (arr[i][j] == arr[i][j - 2]))
             kopt_Array[i] = 4;
          break;
       default:
          kopt\_Array[i] = 0;
          break;
     }
  }
}
//вывести двумерный массив
```

```
void writeArr(double** arr, double n, double m)
  for (int i = 0; i < n; i++)
     for (int j = 0; j < m; j++)
       std::cout << arr[i][j] << "\t";
     std::cout << std::endl;</pre>
  }
//вывести двумерный массив К-орt механизм
void writeArrKopt(double** arr, double n, double m, int* opt)
  for (int i = 0; i < n; i++)
     for (int j = 0; j < m; j++)
       std::cout << arr[i][j] << "\t";
     switch (opt[i])
     case 0:
       break;
     case 1:
       std::cout << "максимальный" << "\t";
       break;
     case 2:
       std::cout << "строго максимальный" << "\t";
       break;
     case 3:
       std::cout << "наибольший" << "\t";
       break;
     case 4:
       std::cout << "строго наибольший" << "\t";
     default:
       break;
     std::cout << std::endl;</pre>
  }
//уничтожить двумерный массив
void distractionArray(double** arr, int n)
  for (int i = 0; i < n; ++i)
     delete[] arr[i];
  delete[] arr;
//расстановка мест
```

```
void placeRating(const double arr[VARIANT], int A[VARIANT])
  double place[VARIANT] = { 0 };
  int number[VARIANT];
  for (int i = 0; i < VARIANT; ++i)
     number[i] = i + 1;
  for (int i = 0; i < VARIANT; i++)
    place[i] = arr[i];
  }
  std::sort(std::begin(place), std::end(place));
  std::reverse(std::begin(place), std::end(place));
  int pl = 0;
  for (int i = 0; i < VARIANT; ++i)//по массиву place
    if ((place[i] == place[i - 1]) && (i!= 0))
     {
       continue;
    for (int j = 0; j < VARIANT; j++)//по массиву arr
       if (arr[j] == place[i])
       {
         //A[j] = i + 1;
         A[j] = number[pl];
     }
    pl++;
    if (place[i] == 0) break;
  }
}
```