## Procesy stochastyczne Zestaw zadań nr 1

Zadanie 1. Dana jest funkcja

$$F(x) = 0 \cdot \mathbf{1}_{x \le 0} + (ax^2 + bx) \cdot \mathbf{1}_{0 < x \le 1} + 1 \cdot \mathbf{1}_{x \ge 1}.$$

Znajdź wszystkie pary liczb a,b dla których funkcja ta jest dystrybuantą. Dla jakich wartości dystrybuanta ta jest ciągła?

**Zadanie 2.** Dodatnia liczba naturalna I jest losowana zgodnie z rozkładem  $\mathbb{P}(I=n)=\left(\frac{1}{2}\right)^n, n=1,2,\ldots$  Jeśli liczba I przyjmie wartość n, wtedy rzucana jest moneta z prawdopodobieństwem wyrzucenia orła równym  $e^{-n}$ . Znajdź prawdopodobieństwo, że otrzymano orła.

**Zadanie 3.** Niech  $X_1, X_2, \ldots, X_n$  będą niezależnymi zmiennymi losowymi o tym samym rozkładzie z gęstością f i dystrybuntą F. Niech  $T_k$  będzie k-tą najmniejszą obserwacją. Znajdź rozkład  $T_k$  i wektora  $(T_1, T_2, \ldots, T_n)$ .

**Zadanie 4.** Niech X będzie zmienną losową przyjmującą dodatnie wartości oraz o gęstości f. Znajdź postać gęstości zmiennej losowej  $X^{-1}$ .

Zadanie 5. Rozkład Cauchy'ego ma następującą gestość

$$c_u(x) = \frac{1}{\pi} \frac{1}{u^2 + x^2}, x \in \mathbb{R}, u > 0.$$

- 1. Znajdź wartość oczekiwaną rozkładu Cauchy'ego.
- 2. Wykaż, że  $c_u * c_v = c_{u+v}$ .
- 3. Niech  $X_1, X_2, \ldots, X_n$  będą niezależnymi zmiennymi losowymi o rozkładzie  $c_u$ . Wykaż, że  $(X_1 + X_2 + \cdots + X_n)/n$  również ma rozkład  $c_u$ .
- 4. Niech X,Y będą niezależnymi zmiennymi losowymi o standardowym rozkładzie normalnym. Wykaż, że X/Y ma rozkład  $c_1$ .
- 5. Niech X ma rozkład jednostajny na przedziale  $(-\pi/2, \pi/2)$ . Wykaż, że  $\tan X$  ma rozkład Cauch'ego  $c_1$ .

Zadanie\* 6. Zbiór Cantora C to zbiór wszystkich liczb t postaci

$$t = \frac{t_1}{3} + \frac{t_2}{3^2} + \dots + \frac{t_n}{3^n} + \dots,$$

gdzie  $t_i \in \{0,2\}$ . Zauważmy, że każda liczba ze zbioru C ma jednoznaczną reprezentację. Określmy funkcję schodkową przekształcającą zbiór Cantora na odcinek [0,1]. Dla liczb t ze zbioru C połóżmy

$$\phi(t) = \frac{1}{2} \left( \frac{t_1}{2} + \frac{t_2}{2^2} + \dots + \frac{t_n}{2^n} + \dots \right).$$

Poza zbiorem Cantora kładziemy odpowiednie stałe tak, aby funkcja, o dziedzinie rozszerzonej z C do [0,1] była niemalejąca.

- 1. Wykazać, że jest to dystrybuanta ciągła, ale nie absolutnie ciągła (nie posiada gęstości).
- 2. Obliczyć wartość oczekiwaną zmiennej o tej dystrybuancie.

**Zadanie\* 7.** Udowodnij, że każde  $\sigma$ -ciało, jeśli jest nieskończone to musi być nieprzeliczalne.





**Zadanie 8.** Od jakiej wartość (ilości sumownaych składników) można powiedzieć, że działa centralne twierdzenie graniczne? Zaprojektuj eksperyment numeryczny, który dla kilku rodzin rozkładów pozwoli ocenić tą wartość.

**Zadanie 9.** Niech  $X_1, X_2, \ldots$  będzie ciągiem niezależnych zmiennych losowych takich, że  $X_n \tilde{B}(n, p_n)$ , gdzie  $p_n = \lambda/n$  dla pewnego  $\lambda > 0$ . Przy pomocy eksperymentu numerycznego zaproponuj rozkład graniczny tego ciągu.