অজানা রাশির উৎপাদক, গসাগু ও লসাগু

বীজগণিতীয় রাশির উৎপাদক নির্ণয় (Factorization of Algebraic Expression)

আমরা ইতিপূর্বে বীজগণিতীয় রাশির গুণ ও ভাগ, দ্বিপদী ও ত্রিপদী রাশির বর্গ নির্ণয় করা শিখেছি। এ পর্বে আমরা বীজগণিতীয় রাশির উৎপাদক নির্ণয় করা শিখব।

তোমাদের প্রত্যেকের হাতে একটি করে কাগজ/ পৃষ্ঠা নাও। এবার পৃষ্ঠাটি মেপে এর দৈর্ঘ্য ও প্রস্থ নিয়ে ক্ষেত্রফল বের করো। তোমরা পূর্বেই শিখেছ আয়তক্ষেত্রের ক্ষেত্রফল= দৈর্ঘ্য ও প্রস্থ এর গুণফল।

ধরে নাও, আয়তক্ষেত্রের ক্ষেত্রফল 12 বর্গমিটার। তাহলে উহার দৈর্ঘ্য ও প্রস্থ কত হতে পারে?

তোমরা হয়তো ভাবছো উপরের কোনটি উত্তর হতে পারে? তোমরা ঠিকই ভাবছ। উপরের প্রত্যেকটি বিকল্পই সঠিক হতে পারে। যেহেতু 1, 2, 3, 4, 6ও 12 এর প্রত্যেকটি সংখ্যা দিয়েই 12 কে ভাগ করলে কোন ভাগ শেষ পাওয়া যায় না কাজেই 1, 2, 3, 4, 6ও 12 এর প্রত্যেকটি সংখ্যাই 12 এর ভাঁজক বা উৎপাদক (Factor).

এবার, আমরা ধরে নেই, 12 এর ভাঁজক বা উৎপাদক দুইটি হলো যথাক্রমে 3 ও 4 অর্থাৎ 12 বর্গ মি. ক্ষেত্রফল বিশিষ্ট আয়তক্ষেত্রের দৈর্ঘ্য ও প্রস্থ যথাক্রমে 4 ও 3 মি.

এবার যদি আয়তক্ষেত্রটির দৈর্ঘ্য x মি.বাড়ানো হয় তবে, ক্ষেত্রফল হবে নূতন দৈর্ঘ্যx প্রস্থ অর্থাৎ (x+4)3=(3x+12) বর্গমিটার .

এখন যদি বলি (3x+12) এর উৎপাদক কত?

এবার চলো (3x+12) কে একটি আয়তক্ষেত্রের ক্ষেত্রফল ধরে উহার দৈর্ঘ্য ও প্রস্থ নির্ণয় করি।

এখানে, 3 এর উৎপাদক =1, 3

12 এর উৎপাদক =1, 2, 3, 4, 6, 12

সবচেয়ে বড় সাধারণ উৎপাদক হলো 3

প্রদত্ত চিত্র থেকে পাই, প্রস্থ =3 মিটার হলে

দৈর্ঘ্য
$$=(x+4)$$
মিটার

অর্থাৎ (3x+12) এর উৎপাদক দু'টি হলো যথাক্রমে 3 এবং (x+4)

উদাহর ১ঃ একটি আয়তক্ষেত্রের ক্ষেত্রফল $(9x^4+6x^3+12x^2)$ বর্গমিটার হলে উহার দৈর্ঘ্য ও প্রস্থ কত? সমাধানঃপ্রদত্ত তথ্যের মাধ্যমে আয়তক্ষেত্রের ক্ষেত্রফল $(9x^4+6x^3+12x^2)$ এর একটি চিত্র অঞ্জণ করি।

এখানে,
9 এর উৎপাদক =1, 3, 9
6 এর উৎপাদক =1, 2, 3, 6
12 এর উৎপাদক =1, 2, 3, 4, 6, 12
সবচেয়ে বড় সাধারণ উৎপাদক হলো 3

এখানে, $9x^4$, $6x^3$, $12x^2$ এর সবচেয়ে বড় সাধারণ উৎপাদক হলো $3x^2$ প্রদত্ত চিত্র থেকে পাই, প্রস্থ = $3x^2$ মিটার হলে

কাজেই, ক্ষেত্রফল $(9x^4+6x^3+12x^2)$ বর্গমিটার

একক কাজ:

ছবির মাধ্যমে উৎপাদকে বিশ্লেষণ করো।

- 1.20x + 4y
- 2.28a+7b

- $3.15y-9y^2$
- $4.5a^2b^2-9a^4b^2$

এবার আমরা উৎপাদক নির্ণয়ের কাগজকাটা কাজ আলোচনা করি।

 $x^2 + 5x + 6$ এর উৎপাদক নির্ণয় করি।

প্রথমে কতগুলো কাগজ কেটে নিচের মত ব্লক বা মডেল তৈরি করি ও ইংরেজী বর্ণ দ্বারা চিহ্নিত করি।

উপরের কাগজ গুলোকে এমনভাবে স্থাপন করি যেন একটি আয়তাকার আকৃতি গঠন করে।

গঠিত আয়তাকার ক্ষেত্রটির বাহদ্বয় যথাক্রমে (x+3) ও (x+2), যাহা নির্দেশ করে x^2+5x+6 এর উৎপাদক হলো (x+3)(x+2)।

উদাহরণ:

কাগজকাটা কাজের মাধ্যমে x^2+3x+2 এর উৎপাদক নির্ণয় করো।

ধাপ১:প্রথমে কাগজগুলো কেটে নিয়ে নিচের মত রঙ করি।

ধাপ ২: x²+3x+2 এর উৎপাদক নির্ণয়ের প্রয়োজনীয় কাগজগুলো হলো:

ধাপত:উৎপাদক অনুসারে বিভিন্ন আকৃতিতে সাজাতে চেষ্টা করি যেন একটি আয়তাকার আকৃতি গঠিত হয়।

ধাপ ৪: আয়তাকার ক্ষেত্রটির দৈর্ঘ্য ও প্রস্থ এর মাধ্যমে উহার ক্ষেত্রফল বের করি

ধাপ ৫: ক্ষেত্রটির দৈর্ঘ্য ও প্রস্থই উহার উৎপাদক নির্দেশ করবে।

কাজেই, x^2+3x+2 এর উৎপাদক হলো (x+1)(x+2)

একক কাজ: উপরে বর্ণিত একটিভিটির মাধ্যমে উৎপাদকে বিশ্লেষণ করো।

1. x ² +3x+2	6. x ² +2x+1
2. x ² -x-2	$7. x^2 + 5x + 6$
3. x ² -3x+2	$8. x^2 + x - 6$
4. x ² -4x+4	9. x²-5x+6
5. x ² -2x+1	10. x ² -6x+9

- 11.একটি আয়তক্ষেত্রের প্রস্থ 14xy এবং ক্ষেত্রফল 42xy³ হলে, উহার দৈর্ঘ্য কত?
- 12. যদি চিত্রে প্রদত্ত আয়তক্ষেত্রের দৈর্ঘ্যকে 2 একক বৃদ্ধি করা হয় এবং প্রস্থকে 1 একক হাস করা হয় তাহলে উহার পরিসীমা ও ক্ষেত্রফলে কী পরিবর্তন ঘটবে নির্ণয় করো।

13. যদি একটি আয়তক্ষেত্রের দৈর্ঘ্য ($\mathbf{x}+4$) মিটার এবং ইহার ক্ষেত্রফল $\mathbf{x}^2+7\mathbf{x}+12$ বর্গমিটার হয়, সেক্ষেত্রে প্রস্থ কত হবে?

x+4 মিটার প্রস্থ? x²+7x+12 বর্গমিটার

ক্ষেত্রটির প্রস্থ = ? মিটার

বীজগণিতীয় রাশিমালার গসাগ ও লসাগ

আমরা পাটিগণিতের লসাপু ও গসাপু সম্পর্কে পূর্ব থেকেই পরিচিত। ইতিমধ্যেই আমরা বীজগণিতীয় রাশির বর্গ, ঘন, উৎপাদকে বিশ্লেষণ, গুণ এবং ভাগ নির্ণয় শিখেছি। এ অধ্যায়ে আমরা বীজগণিতীয় রাশিমালার লসাপু ও গসাপু নির্ণয় করা শিখব।

আমরা প্রথমে দুইটি খেলার মাঠের আকৃতি নিয়ে চিন্তা করি। প্রথম মাঠের দৈর্ঘ্য ও প্রস্থ যথাক্রমে মমিটার ও y মিটার এবং দ্বিতীয় মাঠের দৈর্ঘ্য ও প্রস্থ যথাক্রমে মমিটার ও z মিটার ধরি। এবার তোমরা কি বলতে পার কোন মাঠের ক্ষেত্রফল কত? চলো মাঠ দুইটিকে চিত্রে দেখি।

	X		X	
У	x y	Z	X Z	
বলতো এই মাঠের ক্ষেত্রফল কত? এখানে দৈর্ঘ্য 🗴 প্রস্থ=ক্ষেত্রফল <mark>X</mark> Y			এই মাঠের ক্ষেত্রফল কত? এখানে দৈর্ঘ্য 🗶 প্রস্থ=ক্ষেত্রফল 💥 Z	
এখানে, x ও y এর প্রত্যেকটি হলো উৎপাদক বা ভাঁজক বা গুণনীয়ক কারন xy রাশিটি x বা y বা xy দ্বারা নিঃশেষে বিভাঁজ্য। এবং xy হলো xবাy বা xy গুণিতক		এখানে, x	ও Z এর প্রত্যেকটি হলো উৎপাদক বা বা গুণনীয়ক এবং xz হলো গুণিতক	

লক্ষ কর দুইটি খেলার মাঠের দৈর্ঘ্যই পরস্পর সমান। তোমরা কি বলতে পার উভয় মাঠের ক্ষেত্রফলের মধ্যেই আছে এমন পদ কোনটি?হ্যাঁ, উভয় মাঠের ক্ষেত্রফলের মধ্যেই আছে এমন পদ \mathbf{x} . তাহলে এই \mathbf{x} কে আমরা কি বলতে পারি? উভয় মাঠের ক্ষেত্রফলের অর্থাৎ $\mathbf{x}\mathbf{y}$ এবং $\mathbf{x}\mathbf{z}$ এর সাধারণ উৎপাদক বলতে পারি।

সাধারণ গুণনীয়ক বা সাধারণ উৎপাদক (Common Factor):- দুই বা ততোধিক বীজগাণিতিক রাশি অপর কোনো রাশি দ্বারা সম্পূর্ণ বিভাজ্য হলে শেষোক্ত রাশিটিকে ওই দুই বা ততোধিক বীজগণিতীয় রাশির সাধারণ গুণনীয়ক বা সাধারণ উৎপাদক বলে।

গরিষ্ঠ সাধারণ গুণনীয়ক বা গ.সা.গু. (Highest Common Factor or H.C.F):- দুই বা ততোধিক রাশির মধ্যে যতগুলি সাধারণ মৌলিক গুণনীয়ক থাকে, তাদের গুণফলকে পূর্বোক্ত রাশিগুলোর গরিষ্ঠ সাধারণ গুণনীয়ক বা গ.সা.গু. (Highest Common Factor or H.C.F) বলে। উদাহরণ-১:গরিষ্ঠ সাধারণ গুণনীয়ক বা গ.সা.গু. নির্ণয় কর: xyz, 5x, 3xp

সমাধান:প্রথমে প্রদত্ত রাশিগুলোর সাংখ্যিক সহগের গ.সা.গু. নির্ণয় করি। এখানে xyz, 5x এবং 3xp এর সাংখ্যিক সহগ যথাক্রমে 1,5 এবং 3 যাদের গ.সা.গু. 1

• এবার প্রদত্ত রাশি তিনটির মৌলিক উৎপাদক/ গুণনীয়কগুলো খুজেঁ বের করি

xyz এর মৌলিক গুণনীয়কগুলো যথাক্রমে x, y, z

5x এর মৌলিক গুণনীয়কগুলো যথাক্রমে 5, x

3xp এর মৌলিক গুণনীয়কগুলো যথাক্রমে 3, x, p

• প্রদত্ত রাশি তিনটির মৌলিক উৎপাদক থেকে সাধারণ উৎপাদক চিহ্নিত করি

$$x y z = (x) \cdot y \cdot z$$

$$5x = 5.(x)$$

$$3 \times p = 3 \cdot x \cdot p$$

এবার তিনটি বৃত্তে উৎপাদকগুলোকে উপস্থাপন করি

রাশিগুলোর গ.সা.গু. x এবং ল.সা.গু =(y.z).(x).(5).(3.p) = 15xyzp

একক কাজ:

- ১. যে সকল বীজগণিতীয় রাশি দ্বারা গ.সা.গু. x গঠিত, আমরা কি সেই সকল রাশিগুলিকে গ.সা.গু. x দ্বারা ভাগ করতে পারি?
- ২. যে সকল বীজগণিতীয় রাশি দ্বারা ল.সা.গু 15xyzp গঠিত, আমরা কি সেই সকল বীজগণিতীয় রাশি দ্বারা ল.সা.গু 15xyzp কে ভাগ করতে পারি-ব্যাখ্যা করো।

উদাহরণ : ২: $8x^2yz^2$ এবং $10x^3y^2z^3$ এর গ.সা.গু. নির্ণয় করো।

সমাধান:প্রদত্ত রাশিগুলোর সাংখ্যিক সহগের গ.সা.গু. নির্ণয় করি। এখানে $8x^2yz^2$ এবং $10x^3y^2z^3$ এর সাংখ্যিক সহগের যথাক্রমে 8 এবং 2 যাদের গ.সা.গু.2

8x²yz² ও 10x³y²z³ রাশি দুইটির মৌলিক উৎপাদক খুজেঁ বের করি

 $8x^2yz^2 = 2.2.2.x.x.y.z.z$

 $10x^3y^2z^3 = 2.5.x.x.x.y.y.z.z.z$

রাশি দুইটির মৌলিক উৎপাদক থেকে সাধারণ উৎপাদক চিহ্নিত করি

 $8 x^2yz^2 = 2.2.2xxyzz$

 $10x^3y^2z^3 = (2.5).(x)(x)(x)(y)(y.z).(z.)(z)$

এবার দু'টি বৃত্তে উৎপাদকগুলোকে উপস্থাপন করি

উভয়বৃত্তে সাধারণ উৎপাদক/গুণনীয়ক

এখন, গ.সা.গু=2 x²yz²

এবং ল.সা.পু = (2.2)(2.x.x.y.z.z)(5.x.y.z) = $40x^3y^2z^3$

গ.সা.গু.নির্ণয়ের নিয়ম

- পাটিগণিতের নিয়মে প্রদত্ত রাশিগুলোর সাংখ্যিক সহগের গ.সা.গু. নির্ণয় করতে হবে।
- ২. বীজগণিতীয় রাশিগুলোর মৌলিক উৎপাদক বের করতে হবে।
- ৩. সাংখ্যিক সহগের গ.সা.গু. এবং প্রদত্ত রাশিগুলোর বীজগণিতীয় সাধারণ মৌলিক উৎপাদকগুলোর ধারাবাহিক গুণফল হচ্ছে নির্ণেয় গ.সা.গু.।

কাজ: গ.সা.গু নির্ণয় কর:

1.
$$3x^3y^2$$
, $2x^2y^3$

2.
$$3xy$$
, $6x^2y$, $9xy^2$

3.
$$(x^2-25)$$
, $(x-5)^2$

3.
$$(x^2-25)$$
, $(x-5)^2$ 4. x^2+9 , $x^2+7x+12$, $3x+9$

এবার আমরা দুইটি বাক্সের আয়তন নিয়ে চিন্তা করি। প্রথম বাক্সের দৈর্ঘ্য, প্রস্থ ও উচ্চতা যথাক্রমে x মিটার,

y মিটার ও z মিটার এবং দ্বিতীয় বাক্সের দৈর্ঘ্য, প্রস্থ ও উচ্চতা যথাক্রমে x মিটার, y মিটার ও p মিটার ধরি। এবার তোমরা কি বলতে পার কোন বাক্সের আয়তন কত?

লক্ষ কর উভয় বাক্সের দৈর্ঘ্যও প্রস্থ পরস্পর সমান। তোমরা কি এবার বলতে পার উভয় বাক্সের আয়তনের মধ্যেই আছে এমন পদ x এবং y। তাহলে এই x ও y কে আমরা কি বলতে পারি? উভয় বাক্সের আয়তনের অর্থাৎ xyz এবং xyp এর সাধারণ উৎপাদক বলতে পারি।

আবার, xyz ও xyp এই দুইটি রাশির একটি সাধারণ গুণিতক হল xyzp কারণ xyzp এই দুইটি রাশির প্রত্যেকটি দ্বারা বিভাজ্য।

কোন একটি রাশি অপর একটি রাশি দ্বারা সম্পূর্ণরূপে বিভাজিত হলে প্রথম রাশিটিকে শেষের রাশির গুণিতক বলে। যেমন: x^3y রাশিটি x, x^2 , x^3 , xy, y ইত্যাদি রাশি দ্বারা বিভাজিত হয়। তাই x^3y রাশিটিকে x, x^2 , x^3 , xy, y ইত্যাদি রাশির গুণিতক বলে।

যদি কোন রাশি দুই বা ততোধিক রাশির প্রত্যেকটি দিয়ে সম্পূর্ণ বিভাজিত হয় তাহলে প্রথমোক্ত রাশিটিকে শেষোক্ত রাশি দুটির বা রাশিসমূহের সাধারণ গুণিতক বলে। যেমন: xy, x^2y , xy^2 এই তিনটি রাশির একটি সাধারণ গুণিতক হল x^2y^2 , কারণ x^2y^2 ওই তিনটি রাশির প্রত্যেকটি দ্বারা বিভাজ্য।

লসাগু নির্ণয়ের নিয়ম:

ল.সা.গু (Lowest Common Multiple or LCM) নির্ণয় — প্রত্যেক রাশিকে উৎপাদকে বিশ্লেষণ করে, উক্ত উৎপাদকগুলোর প্রত্যেকটির যে মাত্রা রাশিগুলোর মধ্যে সর্বোচ্চ, তাদের গুণফলই রাশিগুলোর ল. সা. গু. হবে। রাশিগুলোর সংখ্যা সহগগুলোর ল.সা.গু.ই নির্ণেয় ল .সা .গু.-র সংখ্যা সহগ হবে।

লসাগু নির্ণয় করো:

1.
$$3x^2y^3$$
, $9x^3y^2$ 3 $12x^2y^2$,

2.
$$3a^2 + 9$$
, $a^4 - 9$, $3a^4 + 16a^2 + 9$

$$3. x^2 + 10x + 21, x^4 - 49x^2$$

4.
$$a - 2$$
, $a^2 - 4$, $a^2 - a - 2$

লসাগু নির্ণয় কর:

ল.সা.গু (Lowest Common Multiple or LCM) এর পূর্ণরূপ— লঘিষ্ঠ সাধারণ গুণিতক:- দুই বা ততোধিক রাশি দিয়ে যে রাশি সম্পূর্ণ রূপে বিভাঁজ্য, তাদের মধ্যে সর্বনিম্ন মাত্রা বিশিষ্ট রাশিকে দুই বা ততোধিক রাশিগুলির লঘিষ্ঠ সাধারণ গুণিতক বা ল.সা.গু (Lowest Common Multiple or L.C.M) বলে।

একক কাজ:

গসাগু নির্ণয় কর:

 a^3-ab^2 , $a^4+2a^3b+a^2b^2$

 a^2 -16, 3a+12, a^2 +5a+4

 $xy-y, x^3y-xy, x^2-2x+1$

$3a^2b^2c^2$, $6ab^2c^2$	6a ³ b ² c, 9a ⁴ bd ²
$5ab^2x^2$, $10a^2by^2$	$5x^2y^2$, $10xz^3$, $15y^3z^4$
$3a^2x^2$, $6axy^2$, $9ay^2$	2p ² xy ² , 3pq ² , 6pqx ²
$16a^3x^4y$, $40a^2y^2x$, $28ax^3$	$(b^2-c^2), (b+c)^2$
a^2+ab, a^2-b^2	x^2+2x, x^2+3x+2
$x^{3}y-xy^{3}, (x-y)^{2}$	$9x^2-25y^2$, $15ax-25ay$
$x^2+7x+12, x^2+9x+20$	$x^2-3x-10, x^2-10x+25$

 $a^2-7a+12$, a^2+a-20 , $a^2+2a-15$