Finite Elements for Dynamic Analysis

Prof. P. Seshu IIT Bombay

Typical Dynamic Problems

Automobile Crash

Typical Dynamic Problems

Crank Shaft Vibration

Building Vibrations

CONCEPTS IN DYNAMIC ANALYSIS

Simple spring mass system

$$|MF| = \frac{1}{1 - \left(\frac{\Omega}{\omega_n}\right)^2}$$

$$\Omega = \frac{1}{3} \omega_n, |MF| = 1.125$$

$$\omega_{\rm d} = \omega_{\rm n} \sqrt{1 - \xi^2}$$

Damped Forced Vibration

Step and Impulse Response

$$\frac{F_0}{k} \left[1 - e^{-\zeta \omega_n t} (\cos \omega_d t + \zeta \sin \omega_d t) \right]$$

$$\frac{F_0 \Delta t}{m \omega_d} e^{-\zeta \omega_n t} \sin \omega_d t$$

General Excitation - Response

Two D.o.F. System

2-d.o.f. system

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{bmatrix} \vdots \\ x_1 \\ \vdots \\ x_2 \end{bmatrix} + \begin{bmatrix} K_1 + K_2 & -K_2 \\ -K_2 & K_2 + K_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$
$$\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} \vdots \\ x \end{bmatrix} + \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} X \\ X \end{bmatrix} = 0$$

$$\begin{bmatrix} m_1 \omega^2 & 0 \\ 0 & m_2 \omega^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} K_1 + K_2 & -K_2 \\ -K_2 & K_2 + K_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$$

$$\begin{bmatrix} K_1 + K_2 - m_1 \omega^2 & -K_2 \\ -K_2 & K_2 + K_3 - m_2 \omega^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \qquad \begin{vmatrix} K_1 + K_2 - m_1 \omega^2 & -K_2 \\ -K_2 & K_2 + K_3 - m_2 \omega^2 \end{vmatrix} = 0$$

Orthogonality of mode shapes

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2k & -k \\ -k & 2k \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2k & 0 \\ 0 & 6k \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2m & 0 \\ 0 & 2m \end{bmatrix}$$

Forced vibration - 2 dof

Distributed Parameter System

Model of a Vehicle

Multi degree of freedom system

Frequency

Dynamic response of a multi d.o.f. system.

Piecewise Curve Fit – One Dimensional Case

Piecewise Curve Fit – Two Dimensional Case

Evaluation of Weighted Residual

$$\int_0^L W_i(X) R_d(X) dX = \sum_1^n \int_0^l W_i(x) R_d(x) dx$$

Where, n == the number of segments/pieces

Thus we evaluate over each segment and then sum up

Shape functions over each segment are same/similar and hence calculations easy

Essence of Finite element method

- Evaluate the sub-domain level contributions to the weighted residual by merely computing the integral $\int W(x)R_d(x)dx$ or its weak form, just once for the kth sub-domain
- Build—up the entire coefficient matrices [A] & {b} by appropriately placing these sub—domain level contributions in the appropriate rows and columns.
- Solve the (n+1) algebraic equations to determine the unknowns viz., function values f_k at the ends of the subdomains.

Piecewise Approximation

- Each of the sub-domains is called a "finite element" to be distinguished from the "differential element" used in continuum mechanics.
- The ends of the sub-domain are referred to as the "nodes" of the element.
- Later on we see elements with nodes not necessarily located at only the ends e.g. an element can have mid—side nodes, internal nodes etc.
- The unknown function values fk at the ends of the sub-domains are known as the "nodal degrees of freedom (d.o.f)".

Finite Element Formulation

- A general finite element can admit the function values as well as its derivatives as nodal d.o.f.
- The sub-domain level contributions to the weak form are typically referred to as "element level equations".
- The process of building-up the entire coefficient matrices [A] & {b} is known as the process of "assembly" i.e. assembling or appropriately placing the individual element equations to generate the system level equations.

Three Key Ideas in FEM

- Weighted Residual Method assume a solution and minimise residual
- Weak form of WR Method to reduce continuity demand so that lower order trial solution can be used
- Piecewise curve fit divide and assemble

EQUATIONS OF MOTION BASED ON WEAK FORM

AXIAL VIBRATION OF A ROD

$$AE\frac{\partial^2 u}{\partial x^2} = \rho A\frac{\partial^2 u}{\partial t^2}$$

$$AE\frac{d^2U}{dx^2} + \rho A\omega^2 U = 0$$

The Weighted–Residual statement

$$\int_0^L W(x) \left(AE \frac{d^2U}{dx^2} + \rho A\omega^2 U \right) dx = 0$$

$$\left[W(x)AE\frac{dU}{dx}\right]_0^L - \int_0^L AE\frac{dU}{dx} \frac{dW}{dx} dx + \int_0^L W(x) \rho A\omega^2 U(x) dx = 0$$

Contd..

$$U(x) = \left(1 - \frac{x}{\ell}\right) U_1 + \left(\frac{x}{\ell}\right) U_2$$

$$W_1(x) = 1 - \frac{x}{\ell} \qquad W_2(x) = \frac{x}{\ell}$$

$$\frac{AE}{\ell} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix} = \begin{bmatrix} -P_0 \\ P_\ell \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \frac{\rho AL \omega^2}{6} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$$

$$[K]^e = \begin{array}{cc} AE \\ \ell \end{array} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$[K]^e = \frac{AE}{\ell} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \qquad [M]^e = \frac{\rho A\ell}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

TRANSVERSE VIBRATION OF A BEAM

The governing equation for free transverse vibration of a beam

$$EI\frac{\partial^4 v}{\partial x^4} + \rho A\frac{\partial^2 v}{\partial t^2} = 0 \qquad V(x,t) = V(x) e^{i\omega t}$$

$$EI\frac{d^4V}{dx^4} - \rho A\omega^2 V = 0$$

Weighted-Residual statement

$$\int_0^L W(x) \left[EI \frac{d^4V}{dx^4} - \rho A\omega^2 V \right] dx = 0$$

Contd...

Performing integration by parts

$$\left[W(x) EI \frac{d^3V}{dx^3}\right]_0^L - \left[\frac{dW}{dx} EI \frac{d^2V}{dx^2}\right]_0^L + \int_0^L EI \frac{d^2V}{dx^2} \frac{d^2W}{dx^2} dx$$
$$- \int_0^L \rho A\omega^2 W(x)V(x) dx = 0$$

$$V(x) = N_1 V_1 + N_2 \theta_2 + N_3 V_3 + N_4 \theta_4$$

$$N_{1} = 1-3x^{2}/L^{2} + 2x^{3}/L^{3}$$

$$N_{2} = x-2x^{2}/L + x^{3}/L^{2}$$

$$N_{3} = 3x^{2}/L^{2} - 2x^{3}/L^{3}$$

$$N_{4} = -x^{2}/L + x^{3}/L^{2}$$

Contd...

$$[m]^{e} = \frac{\rho A \ell}{420} \begin{bmatrix} 156 & sym. \\ 22\ell & 4\ell^{2} \\ 54 & 13\ell & 156 \\ -13\ell & -3\ell^{2} & -22\ell & 4\ell^{2} \end{bmatrix}$$

CONSISTENT MASS MATRICES FOR VARIOUS ELEMENTS

Bar element

$$[m]^{e} = \int_{v} \rho[N]^{T}[N] dv$$

$$= \rho A \int_{0}^{\ell} \begin{bmatrix} 1 - \frac{x}{\ell} \\ \frac{x}{\ell} \end{bmatrix} \left[1 - \frac{x}{\ell} \quad \frac{x}{\ell} \right] dx$$

$$= \frac{\rho A \ell}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Beam element

$$[\mathbf{m}]^{e} = \int_{\mathbf{v}} \rho[\mathbf{N}]^{T}[\mathbf{N}] d\mathbf{v}$$

$$= \rho A \int_{0}^{\ell} \begin{bmatrix} N_{1} \\ N_{2} \\ N_{3} \\ N_{4} \end{bmatrix} [N_{1} \quad N_{2} \quad N_{3} \quad N_{4}] d\mathbf{x}$$

Contd...

$$[m]^{e} = \frac{\rho A \ell}{420} \begin{bmatrix} 156 & sym. \\ 22\ell & 4\ell^{2} \\ 54 & 13\ell & 156 \\ -13\ell & -3\ell^{2} & -22\ell & 4\ell^{2} \end{bmatrix}$$

Lumped mass matrices:

Example: natural freq. of uniform cross section bar

One element solution – lumped & cons. mass

$$\frac{AE}{\ell} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix} = \omega^2 \rho A \ell \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix}$$

$$\frac{AE}{L} u_2 = \omega_{lump}^2 \frac{\rho AL}{2} u_2 \qquad \qquad \omega_{lump} = \sqrt{\frac{2E}{\rho L^2}} = \frac{1.414}{L} \sqrt{\frac{E}{\rho}}$$

$$\frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix} = \omega^2 \frac{\rho AL}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix}$$

$$\omega_{\text{cons.}} = \sqrt{\frac{3E}{\rho L^2}} = \frac{1.732}{L} \sqrt{\frac{E}{\rho}}$$

Two element solution – lumped mass

$$\frac{AE}{\left(\frac{L}{2}\right)} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1+1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \rho A \left(\frac{L}{2}\right) \omega^2 \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/2+1/2 & 0 \\ 0 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

$$\begin{bmatrix} 2-\lambda & -1 \\ -1 & 1-(\lambda/2) \end{bmatrix} \begin{Bmatrix} u_2 \\ u_3 \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}$$

$$\begin{vmatrix} 2-\lambda & -1 \\ -1 & 1-(\lambda/2) \end{vmatrix} = 0$$

Natural frequencies of a fixed-free bar

 $(L = 1m, E = 2 \times 10^{11} \text{ N/m}^2, \rho = 7800 \text{ kg/m}^3, A = 30 \times 10^{-6} \text{ m}^2)$

No.of	1	2	3	4	8	16	Exact
element							
Mode							
1	1140.0	1234.0	1252.0	1258.0	1264.0	1265.0	1265.9
	1396.0	1299.0	1280.0	1274.0	1268.0	1266.0	
2		2978.0	3420.0	3582.0	3743.0	3784.0	3797.8
		4537.0	4188.0	4019.0	3853.0	3812.0	
3			4670.0	5366.0	6078.0	6266.0	6329.6
			7597.0	7301.0	6586.0	6393.0	
4				6319.0	8180.0	8688.0	8861.5
				10560.0	9563.0	9037.0	
5					10000.0	11030.0	11393.3
					12850.0	11770.0	

Natural frequencies (Hz) of a simply supported beam

No.of	2	3	4	8	Exact	
element						
Mode						
1	14.42	14.52	14.52	14.52		
	14.21	14.46	14.51	14.52	14.52	
	14.58	14.53	14.52	14.52		
2		57.67	58.07	58.09		
	104.3	56.84	57.84	58.03	58.11	
	64.47	58.32	58.11	58.09		
3		122.4	130.5	130.7	130.75	
	148.2	120.2	129.3	130.4		
	162.1	133.1	130.9	130.7		
4			230.7	232.3	232.45	
	180.0	416.2	227.4	231.4		
	295.5	257.9	233.3	232.4		
			354.7	362.8		
5		481.3	348.0	360.6	363.20	
		408.9	366.4	363.3		

FORM OF FINITE ELEMENT EQUATIONS FOR VIBRATION PROBLEMS

Governing equation

$$[M]{\ddot{X}} + [C]{\dot{X}} + [K]{X} = {F(t)}$$

For un damped free vibration problems

$$[M]{\ddot{X}} + [K]{X} = 0$$

Assuming harmonic vibration at a frequency ω_i

$$\{X_i\} = \{U_i\} \sin \omega_i t$$

$$[K]_{n \times n} \{U_i\}_{n \times 1} = \omega_i^2 [M]_{n \times n} \{U_i\}_{n \times 1}$$

Eigenvalue problem

$$[K]_{n \times n} \{U_i\}_{n \times 1} = \omega_i^2 [M]_{n \times n} \{U_i\}_{n \times 1}$$

re-writing
$$[M]^{-1}[K] \{U_i\}$$

$$[M]^{-1}[K] \{U_i\} = \omega_i^2 \{U_i\}$$
 or $\frac{1}{\omega_i^2} \{U_i\} = [K]^{-1}[M] \{U_i\}$

$$[A] \{U_i\} = \lambda_i \{U_i\}$$

$$[A] = [M]^{-1}[K] \qquad \lambda_{i} = \omega_{i}^{2}$$

$$\lambda_{\rm i} = \omega_{\rm i}^2$$

$$[A] = [K]^{-1}[M]$$

$$\lambda_{i} = \frac{1}{\omega_{i}^{2}}$$

SOLUTION OF EIGENVALUE PROBLEMS

Methods of solution:

- Determinant based methods
- Transformation based methods
- Vector iteration based method

Determinant based methods

Primarily based on

$$[A]{U} = \lambda{U}$$
$$[A] - \lambda[I] {U} = {0}$$

$$|A| - \lambda[I] = 0$$
 for a non-trivial $\{U\}$

- Take trial values of λ
- Compute determinant |[A]−λ[I]|.
- Not useful for practical implementation
- Heavy computational cost
- Evaluation of each determinant of size (n×n) requires of the order of n³ floating point operations

Transformation based methods

- Given $[A]{U} = \lambda {U}$
- Transform [A] into a diagonal matrix using a series of matrix transformations of the type $= [T]^T [A][T]$ where [T] is an orthogonal matrix i.e. $[T]^T = [T]^{-1}$
- Well known methods-
 - Givens method.
 - Householders method.
 - Jacobi method.
 - Lanczos method.

$$[\Phi] = [\{U_1\} \cdots \{U_n\}]$$

$$[\Phi]^{\mathsf{T}} [\mathsf{K}] [\Phi] = \begin{bmatrix} \lambda_1 & & & \\ & 0 & & \\ & 0 & & \lambda_n \end{bmatrix}$$

$$[\Phi]^{\mathsf{T}} [\mathsf{M}] [\Phi] = \begin{bmatrix} 1 & & & 0 \\ & 1 & & \\ & 0 & & 1 \end{bmatrix}$$

$$[A_1] = [A]$$

$$[A_2] = [T_1]^T [A_1] [T_1]$$

$$[A_3] = [T_2]^T [A_2] [T_2] = ([T_1] [T_2])^T [A] ([T_1] [T_2])$$

Jacobi Method

$$[T] = \begin{bmatrix} 1 & 0 & 0 & & & & & \\ & 1 & & & & & \\ & & \cos\theta & 0 & -\sin\theta & & & \\ & & & 1 & & & \\ & & & \cos\theta & & & & \\ & & & \sin\theta & \cos\theta & & \\ & & & & 1 & & \\ & & & & \ddots & & \\ & & & & 1 & & \\ & & & & \uparrow^{th} \ row & & \\ & & & & 1 & & \\ & & & & \uparrow^{th} \ row & & \\ & & & & 1 & & \\ & & & & \uparrow^{th} \ row & & \\ & & & & \uparrow^{th} \ row & & \\ & & & & \uparrow^{th} \ row & & \\ & & & & \uparrow^{th} \ row & & \\ & & & & \uparrow^{th} \ row & & \\ & & & & \uparrow^{th} \ row & & \\ & & & \uparrow^{th} \ row & &$$

$$[\mathbf{K}_1] = \begin{bmatrix} 0.360 \times 10^8 & -0.180 \times 10^8 & 0 \\ -0.180 \times 10^8 & 0.360 \times 10^8 & -0.180 \times 10^8 \\ 0 & -0.180 \times 10^8 & 0.180 \times 10^8 \end{bmatrix}$$

$$[\mathbf{M}_1] = \begin{bmatrix} 0.052 & 0.013 & 0\\ 0.013 & 0.052 & 0.013\\ 0 & 0.013 & 0.026 \end{bmatrix}$$

$$[T_1] = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$[K_2] = [T_1]^T [K_1] [T_1] = 10^8 \begin{bmatrix} 1.08 & 0 & 0.180 \\ 0 & 0.360 & -0.18 \\ 0.18 & -0.18 & 0.18 \end{bmatrix}$$

$$[\mathbf{M}_{2}] = [\mathbf{T}_{1}]^{\mathrm{T}} [\mathbf{M}_{1}] [\mathbf{T}_{1}] = \begin{bmatrix} 0.078 & 0 & -0.013 \\ 0 & 0.13 & 0.013 \\ -0.013 & 0.013 & 0.026 \end{bmatrix}$$

$$[T_2] = \begin{bmatrix} 1 & 0 & -0.309 \\ 1 & 0 & 0 \\ 1.24 & 1 & 0 \end{bmatrix}$$

$$[K_3] = [T_2]^T [K_2] [T_2] = 10^8 \begin{bmatrix} 1.80 & -0.222 & 0 \\ -0.222 & 0.36 & -0.18 \\ 0 & -0.18 & 0.172 \end{bmatrix}$$

$$[\mathbf{M}_{3}] = [\mathbf{T}_{2}]^{\mathsf{T}} \ [\mathbf{M}_{2}] \ [\mathbf{T}_{2}] = \begin{bmatrix} 0.0856 & 0.0161 & -0.694 \times 10^{-17} \\ 0.0161 & 0.130 & 0.013 \\ -0.694 \times 10^{-17} & 0.013 & 0.0415 \end{bmatrix}$$

Observe that k(1,2) and m(1,2) have again become nonzero!

$$[K_{10}] = [T_9]^T [K_9][T_9] = 10^8 \begin{bmatrix} 1.96 & -0.216 \times 10^{-10} & 0.284 \times 10^{-17} \\ -0.216 \times 10^{-10} & 0.161 & 0.222 \times 10^{-22} \\ 0.416 \times 10^{-16} & 0.421 \times 10^{-16} & 0.424 \end{bmatrix}$$

$$[\mathbf{M}_{10}] = [\mathbf{T}_9]^{\mathrm{T}} \ [\mathbf{M}_9] \ [\mathbf{T}_9] = \begin{bmatrix} 0.0859 & 0.156 \times 10^{-11} & -0.204 \times 10^{-18} \\ 0.156 \times 10^{-11} & 0.248 & 0 \\ -0.195 \times 10^{-18} & 0.694 \times 10^{-17} & 0.0612 \end{bmatrix}$$

$$f_1 = \frac{1}{2\pi} \sqrt{\frac{k_{11}}{m_{11}}} = \frac{1}{2\pi} \sqrt{\frac{1.96 \times 10^8}{0.0859}} = 7597 \text{ Hz}$$

$$f_2 = \frac{1}{2\pi} \sqrt{\frac{k_{22}}{m_{22}}} = \frac{1}{2\pi} \sqrt{\frac{0.161 \times 10^8}{0.248}} = 1280.43 \ Hz$$

$$f_3 = \frac{1}{2\pi} \sqrt{\frac{k_{33}}{m_{33}}} = \frac{1}{2\pi} \sqrt{\frac{0.424 \times 10^8}{0.0612}} = 4187.64 \ Hz$$

$$[\overline{\Phi}] = [T_1][T_2] \cdots [T_9]$$

$$[\bar{\Phi}] = \begin{bmatrix} 0.697 & 0.745 & -0.886 \\ -1.21 & 1.29 & 0 \\ 1.39 & 1.49 & 0.886 \end{bmatrix}$$

Vector iteration based methods

- Assume a trial eigen vector
- Perform repeated matrix manipulations—
 to converge to the desired eigen vector
- Available in many commercial finite element software packages.

Basis of Vector Iteration Methods

$$\begin{split} \left\{ \mathbf{X}^{1} \right\} &= \mathbf{c}_{1} \{ \mathbf{U}_{1} \} + \mathbf{c}_{2} \{ \mathbf{U}_{2} \} + \mathbf{c}_{3} \{ \mathbf{U}_{3} \} + \cdots + \mathbf{c}_{n} \{ \mathbf{U}_{n} \} \\ \left\{ \mathbf{X}^{2} \right\} &= [\mathbf{A}] \left\{ \mathbf{X}^{1} \right\} = \mathbf{c}_{1} [\mathbf{A}] \left\{ \mathbf{U}_{1} \right\} + \mathbf{c}_{2} [\mathbf{A}] \left\{ \mathbf{U}_{2} \right\} + \cdots + \mathbf{c}_{n} [\mathbf{A}] \left\{ \mathbf{U}_{n} \right\} \\ &= \mathbf{c}_{1} \lambda_{1} \left\{ \mathbf{U}_{1} \right\} + \mathbf{c}_{2} \lambda_{2} \left\{ \mathbf{U}_{2} \right\} + \cdots + \mathbf{c}_{n} \lambda_{n} \left\{ \mathbf{U}_{n} \right\} \\ &= \mathbf{c}_{1} \lambda_{1}^{m} \left\{ \mathbf{U}_{1} \right\} + \mathbf{c}_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{m} \left\{ \mathbf{U}_{2} \right\} + \cdots + \mathbf{c}_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{m} \left\{ \mathbf{U}_{n} \right\} \\ &= \mathbf{c}_{1} \lambda_{1}^{m} \left[\left\{ \mathbf{U}_{1} \right\} + \mathbf{c}_{2} \left(\frac{\lambda_{2}}{\lambda_{1}} \right)^{m} \left\{ \mathbf{U}_{2} \right\} + \cdots + \mathbf{c}_{n} \left(\frac{\lambda_{n}}{\lambda_{1}} \right)^{m} \left\{ \mathbf{U}_{n} \right\} \right] \\ &= \mathbf{If} \lambda_{1} > \lambda_{2} > \lambda_{3} \cdots > \lambda_{n} \quad \text{i.e. } \left(\frac{\lambda_{2}}{\lambda_{1}} < 1, \frac{\lambda_{n}}{\lambda_{1}} < 1 \right) \\ &= \left\{ \mathbf{X}^{m+1} \right\} \approx \mathbf{c}_{1} \lambda_{1}^{m} \left\{ \mathbf{U}_{1} \right\} \end{split}$$

Inverse Iteration Scheme

- Step 1: Formulate the global [K] and [M] for the structure
- Step 2: Assume a trial vector {X¹}
- **Step 3:** Compute $\{R\} = [M] \{X^1\}$
- **Step 4:** Solve $[K] \{ \overline{X} \} = \{ R \}$
- Step 5: Obtain {X²} from $\{\overline{X}\}$ such that $\{X^2\}^T$ [M] $\{X^2\}=1$ $\{X^2\}^T$ [M] $\{X^2\}=1$
- **Step 6:** Compute $\lambda = \{X^2\}^T [K] \{X^2\}$

Repeat steps (3) – (6) till λ converges to within a pre–set tolerance.

$$[K] = 10^8 \begin{bmatrix} 0.360 & -0.180 & 0 \\ -0.180 & 0.360 & -0.180 \\ 0 & -0.180 & 0.180 \end{bmatrix}$$

$$[M] = \begin{bmatrix} 0.052 & 0.013 & 0 \\ 0.013 & 0.052 & 0.013 \\ 0 & 0.013 & 0.026 \end{bmatrix}$$

Sub-space Iteration

Choose trial vector $\{\bar{X}_1\}_{n\times m}$ extract an orthonormal set of vectors $\{X_1\}_{n\times m}$ from $\{\bar{X}_1\}_{n\times m}$ i.e. $\{X_1\}^T[M]\{X_1\}=[I]$

$$\{R\}_{n\times m} = [M]_{n\times n} \{X_1\}_{n\times m}$$
$$[K]_{n\times n} \{\overline{X}_2\}_{n\times m} = \{R\}_{n\times m}$$
$$[\lambda]_{m\times m} = \{X_1\}^T [K] \{X_1\}$$

$$\begin{bmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & O & \\ & & 0 & \lambda_n \end{bmatrix}$$

Subspace

$$\begin{split} [\overline{\mathbf{K}}]_{\mathrm{m}\times\mathrm{m}} &= \ \{\overline{\mathbf{X}}\}_{\mathrm{m}\times\mathrm{n}}^{\mathrm{T}} [\mathbf{K}]_{\mathrm{n}\times\mathrm{n}} \{\overline{\mathbf{X}}\}_{\mathrm{n}\times\mathrm{m}} \\ [\overline{\mathbf{M}}]_{\mathrm{m}\times\mathrm{m}} &= \ \{\overline{\mathbf{X}}\}_{\mathrm{m}\times\mathrm{n}}^{\mathrm{T}} [\mathbf{M}]_{\mathrm{n}\times\mathrm{n}} \{\overline{\mathbf{X}}\}_{\mathrm{n}\times\mathrm{m}} \\ [\overline{\mathbf{K}}]_{\mathrm{m}\times\mathrm{m}} &\{\phi\}_{\mathrm{m}\times\mathrm{m}} = [\overline{\lambda}]_{\mathrm{m}\times\mathrm{m}} [\overline{\mathbf{M}}]_{\mathrm{m}\times\mathrm{m}} \{\phi\}_{\mathrm{m}\times\mathrm{m}} \\ \{\mathbf{X}\}_{\mathrm{n}\times\mathrm{m}} &= \{\overline{\mathbf{X}}\}_{\mathrm{n}\times\mathrm{m}} \{\phi\}_{\mathrm{m}\times\mathrm{m}} \end{split}$$

$$[K] = 10^8 \begin{bmatrix} 0.360 & -0.180 & 0 \\ -0.180 & 0.360 & -0.180 \\ 0 & -0.180 & 0.180 \end{bmatrix}$$

$$[M] = \begin{bmatrix} 0.052 & 0.013 & 0 \\ 0.013 & 0.052 & 0.013 \\ 0 & 0.013 & 0.026 \end{bmatrix}$$