MODELOS DE APRENDIZAJE AUTOMÁTICO PARA MANTENIMIENTO PREDICTIVO

ANDRÉS VICENTE MARTÍNEZ
SEPTIEMBRE 2025

CONTENIDOS

- I. Mantenimiento predictivo y Machine Learning
- 2. Caso I: Aprendizaje Supervisado
- 3. Caso 2: Aprendizaje No Supervisado
- 4. Conclusiones y Futuros Trabajos

MANTENIMIENTO PREDICTIVO

- Fase crítica: mantenimiento, reparación y revisión mayor.
- Impacto en seguridad operacional.
- Representa el 8,4 % de los costes de las aerolíneas (IATA, 2020).

¿QUÉ ES EL MANTENIMIENTO PREDICTIVO?

- Estrategias según momento de reparación
- Reactivo: tras fallo.
 Solo en piezas no críticas.
- Preventivo: antes del fallo.
 Riesgo de revisiones innecesarias
- Predictivo: en el momento óptimo.
 Equilibrio entre costes y seguridad

APRENDIZAJE AUTOMÁTICO

- Machine Learning → procesar grandes volúmenes de datos de sensores.
- Permite diagnosticar fallos y degradación con fiabilidad.
- Dos enfoques principales:
 - Supervisado: → requiere datos etiquetados
 → clasificación o regresión
 - No supervisado: → identifica patrones sin etiquetas
 → clustering

CASO I: APRENDIZAJE SUPERVISADO OBJETIVO Y DATOS

- Dataset: 1372 entradas de señales
- Cuatro variables estadísticas:
 - Varianza
 - Skewness
 - Curtosis
 - Entropía
- Clase binaria: normal (1) y fallo (0)
- Objetivo: predecir clase usando decision trees, random forest y k-NN.

	Variance	Skewness	Curtosis	Entropy	Class
count	1372,000	1372,000	1372,000	1372,000	1372,000
mean	$0,\!434$	1,922	1,398	-1,192	$0,\!445$
std	$2,\!843$	$5,\!869$	4,310	$2,\!101$	$0,\!497$
\min	-7,042	-13,773	-5,286	$-8,\!548$	0,000
25%	-1,773	-1,708	-1,575	-2,413	0,000
50%	$0,\!496$	$2,\!320$	0,617	-0,587	0,000
75%	2,821	6,815	3,179	$0,\!395$	1,000
max	6,825	$12,\!952$	17,927	$2,\!450$	1,000

Variance	Skewness	Curtosis	Entropy	Class
3.6216	8.6661	-2.8073	-0.4470	0
4.5459	8.1674	-2.4586	-1.4621	0
3.8660	-2.6383	1.9242	0.1065	0
3.4566	9.5228	-4.0112	-3.5944	0
0.3292	-4.4552	4.5718	-0.9888	0

CASO I: APRENDIZAJE SUPERVISADO ALGORITMOS: K – NEAREST NEIGHBORS

- Parámetro clave: número de vecinos k
- **Distancia euclídea** para clasificar un nuevo punto.
- Los resultados empeoran al aumentar la dimensionalidad

CASO I: APRENDIZAJE SUPERVISADO ALGORITMOS: DECISION TREE

- Clasificación mediante reglas secuenciales
- Ventaja: visualización gráfica
- Riesgo: overfitting si demasiada profundidad.

CASO I: APRENDIZAJE SUPERVISADO ALGORITMOS: RANDOM FOREST

- Serie de Decision Trees
- Selección del **número de** árboles ($N_{árboles} = 100$)
- Votación final

CASO I: APRENDIZAJE SUPERVISADO PREPOCESADO Y NORMALIZACIÓN

Normalización con Standard
 Scaler:

$$x_{scaled} = \frac{x - \bar{x}}{s}$$

- División del dataset
 - 70 % Entrenamiento
 - 30 % Test
- Primera clasificación única
- Validación cruzada (k-fold)

CASO I: APRENDIZAJE SUPERVISADO RESULTADOS: CLASIFICACIÓN ÚNICA

- k-NN alcanza precisión del 100%
- Rendimiento general muy elevado
- Validación con k-Folds para comprobar generalización

CASO I: APRENDIZAJE SUPERVISADO RESULTADOS: VALIDACIÓN EN K-FOLDS Y COMPARACIÓN CON ESTUDIO ORIGINAL

- 5 particiones del dataset: 4 para entrenamiento y una para test
- Media entre resultados
- Accuracy, Precision, Recall y FI > 97 %

Modelo	Accuracy	Precisión	Recall	F1-score
Decision Tree	0.9811 ± 0.0071	0.9756 ± 0.0087	0.9820 ± 0.0120	0.9787 ± 0.0080
Random Forest	0.9956 ± 0.0015	0.9903 ± 0.0032	1.0000 ± 0.0000	0.9951 ± 0.0016
KNN	0.9985 ± 0.0018	0.9967 ± 0.0040	1.0000 ± 0.0000	0.9984 ± 0.0020

	Aco	curacy	Tiempo de Predicción (
	Referencia Experimental		Referencia	Experimental	
Decision Tree	0.976	0.981	0.864	0.0002	
Random Forest	0.984	0.996	4.245	0.0096	
KNN	0.989	0.998	3.251	0.0035	

CASO I: APRENDIZAJE SUPERVISADO CONCLUSIONES

- Representación 2D entre variables
- Separación clara entre clases
- Dificultad reducida
- Métricas elevadas
- Limitación: dependencia de datos etiquetados

CASO 2: APRENDIZAJE NO SUPERVISADO OBJETIVO Y DATOS

- Datos CMAPSS (NASA)
- Turbofán simulado
- Datasets disponibles:
 - Entrenamiento
 - Test: 100 motores
 - Vida útil remanente (RUL)
- Limitación: Motores con diferente número de ciclos
- Objetivo: clasificación de motores según estado de salud

Variable	Media	Desv. Típica	Mínimo	Máximo	Constante
$op_setting_1$	0,000	0,002	-0,0087	0,0087	No
$op_setting_2$	0,000	0,0003	-0,0006	0,0006	No
$op_setting_3$	100,000	0,000	100,000	100,000	Sí
${ m sensor}_{-1}$	518,670	0,000	518,670	518,670	Sí
$sensor_2$	642,681	0,500	641,210	644,530	No
$sensor_3$	1590,523	6,131	1571,040	1616,910	No
$sensor_{-4}$	1408,934	9,001	1382,250	1441,490	No
sensor_5	14,620	0,000	14,620	14,620	Sí
$sensor_6$	21,610	0,000	21,610	21,610	Sí
${ m sensor}_{-7}$	555,277	1,272	550,500	561,000	No
sensor_8	2388,000	0,000	2388,000	2388,000	Sí
sensor_9	9046,430	22,705	8980,370	9165,500	No
$sensor_{-}10$	1,300	0,000	1,300	1,300	Sí
$sensor_{-}11$	47,590	0,014	47,530	47,650	No
${\rm sensor}_12$	$521,\!413$	0,738	518,690	523,380	No
$sensor_13$	2388,096	0,072	2387,880	$2388,\!560$	No
$sensor_{-}14$	8143,753	19,076	8099,940	8293,720	No
$sensor_{-}15$	8,442	0,038	8,3249	8,5848	No
$sensor_{-}16$	0,030	0,000	0,030	0,030	Sí
${ m sensor}_{-}17$	393,211	1,549	388,000	400,000	No
sensor_18	2388,000	0,000	2388,000	2388,000	Sí
$sensor_{-}19$	100,000	0,000	100,000	100,000	Sí
sensor_20	38,816	0,181	38,140	39,430	No
sensor_21	23,290	0,108	22,8942	23,6184	No

CASO 2: APRENDIZAJE NO SUPERVISADO METODOLOGÍA

CASO 2: APRENDIZAJE NO SUPERVISADO ENTRENAMIENTO DEL AUTOENCODER

- Proceso iterativo
- Necesidad de menos neuronas
- Artículo original: data set con datos reales y número más elevado de dimensiones

Capa	Tipo	# Neuronas (Real)	# Neuronas (CMAPSS)
1	Input	86	24
2	Encoder	(2x)128	32
3	Espacio Latente	32	8
4	Decoder	(2x)128	32
5	Output	86	24

CASO 2: APRENDIZAJE NO SUPERVISADO ENTRENAMIENTO DEL AUTOENCODER

Parámetros de iteración:

- Neuronas capa latente (BN)
- Neuronas capas densas (N)
- Ratio de dropout (DO)
- Número de épocas (EP)

CASO 2: APRENDIZAJE NO SUPERVISADO METODOLOGÍA

CASO 2: APRENDIZAJE NO SUPERVISADO CONSTRUCCIONES DE MATRIZ GMM

- Espacio latente de 8 dimensiones
- Cada motor tiene ciclos diferentes
- Objetivo: crear un único vector por motor
- Estrategias:
 - Agregación Estadística
 - Zero Padding
 - Muestreo Fijo (75 ciclos)

	$\mathbf{C_1}$	C_2	C_3	$\mathbf{C_4}$	C_5	C_6	C_7	C_8	C_9	C ₁₀
Motor 1	$M_1^{(1)}$	$M_1^{(2)}$	$M_1^{(3)}$	$M_1^{(4)}$	$M_1^{(5)}$	ZP	ZP	ZP	ZP	ZP
Motor 2	$M_{2}^{(1)}$	$M_{2}^{(2)}$	$M_{2}^{(3)}$	\mathbf{ZP}	\mathbf{ZP}	ZP	\mathbf{ZP}	ZP	ZP	\mathbf{ZP}
Motor 3	$M_3^{(1)}$	$M_3^{(2)}$	$M_3^{(3)}$	$M_3^{(4)}$	$M_3^{(5)}$	$M_3^{(6)}$	$M_3^{(7)}$	$M_3^{(8)}$	\mathbf{ZP}	\mathbf{ZP}
					:					
Motor 98	$M_{98}^{(1)}$	$M_{98}^{(2)}$	$M_{98}^{(3)}$	$M_{98}^{(4)}$	$M_{98}^{(5)}$	$M_{98}^{(6)}$	$M_{98}^{(7)}$	$M_{98}^{(8)}$	$M_{98}^{(9)}$	$M_{98}^{(10)}$
Motor 99	$M_{99}^{(1)}$	$M_{99}^{(2)}$	$M_{99}^{(3)}$	$M_{99}^{(4)}$	$M_{99}^{(5)}$	$M_{99}^{(6)}$	$M_{99}^{(7)}$	$M_{99}^{(8)}$	\mathbf{ZP}	\mathbf{ZP}
Motor 100	$M_{100}^{(1)}$	$M_{100}^{(2)}$	$M_{100}^{(3)}$	$M_{100}^{(4)}$	\mathbf{ZP}	\mathbf{ZP}	\mathbf{ZP}	\mathbf{ZP}	\mathbf{ZP}	\mathbf{ZP}

ID	Media		Desv. Típica		Valor Máximo				
			-	_		_	$m_1^{(1)}$		-
2	$\bar{x}_{2}^{(1)}$		$\bar{x}_2^{(8)}$	$\sigma_2^{(1)}$		$\sigma_2^{(8)}$	$m_2^{(1)}$		$m_2^{(8)}$
÷	:	٠.	÷	:	٠.	÷	:	٠.	÷
100	$\bar{x}_{100}^{(1)}$		$\bar{x}_{100}^{(8)}$	$\sigma_{100}^{(1)}$		$\sigma_{100}^{(8)}$	$m_{100}^{(1)}$		$m_{100}^{(8)}$

CASO 2: APRENDIZAJE NO SUPERVISADO MODELOS DE MEZCLA GAUSSIANA

- Clasificación probabilística
- Se escoge el número de clusters deseados
- $\sum_{i=0}^{2} p_i = 1 \rightarrow \text{la suma de}$ probabilidades de pertenencia para cada punto es uno
- Se realiza para cada estrategia

CASO 2: APRENDIZAJE NO SUPERVISADO RESULTADOS: ANÁLISIS DE COMPONENTES PRINCIPALES

Análisis de varianzas y representación 2D

CASO 2: APRENDIZAJE NO SUPERVISADO METODOLOGÍA

CASO 2: APRENDIZAJE NO SUPERVISADO RESULTADOS: ANÁLISIS RUL

- Comparación con datos de RUL real
- Muestreo fijo y agregación estadística no muestran clusters muy diferenciados

CASO 2: APRENDIZAJE NO SUPERVISADO RESULTADOS: ZERO PADDING

CASO 2: APRENDIZAJE NO SUPERVISADO RESULTADOS: ZERO PADDING

- Comparación con RUL real
- Mejor resultado: Zero Padding
- Tres clusters bien diferenciados
- Presencia de datos anómalos

Cluster	Motores	Media	Mediana	Min	Max
0	45	53.71	47.0	7	136
1	25	111.84	112.0	77	145
2	30	77.97	83.0	15	137

CASO 2: APRENDIZAJE NO SUPERVISADO CONCLUSIONES

- Zero padding obtuvo resultados similares a los del estudio original
- Grandes variaciones en cuanto a metodología
- Construcción de la matriz:
 - Adición de ruido (zero padding)
 - Pérdida de temporalidad (muestreo fijo y agregación estadística)

CONCLUSIONES Y FUTUROS TRABAJOS

- Aplicabilidad de los métodos a sistemas complejos
- Limitada por falta de datos reales
- Uso de banco de pruebas para obtener datos
- Mejoras:
 - Iteración de nuevos parámetros
 - Prueba de otros algoritmos
 - Aplicación a conjuntos de datos más complejos
 - Estimación del RUL mediante LSTM

MUCHAS GRACIAS POR SU ATENCIÓN

DOI 10.5281/zenodo.16970727

BACKUP SLIDES DISTRIBUCIONES CRUZADAS (CASO I)

Señales 0: mayor variación estadística, sobre todo en skewness y curtosis, lo que significa distribuciones asimétricas y colas más pesadas. Distribución asociadas al fallo.

SUPPORT SLIDES → BACKUP PARA POSIBLES PREGUNTAS

- Adam:
- Adam (Adaptive Moment Estimation) es uno de los algoritmos de optimización más usados en deep learning.
 Combina lo mejor de:
 - Momentum → acumula gradientes pasados para acelerar la convergencia y suavizar oscilaciones.
 - RMSProp → ajusta dinámicamente la learning rate para cada parámetro, evitando que decaiga demasiado rápido.
 - Resultado: Adam es rápido, estable y robusto frente a datos ruidosos o gradientes dispersos.
 En nuestro caso práctico se utiliza porque entrenamos redes neuronales con muchos parámetros, y Adam ofrece la mejor combinación de velocidad y fiabilidad para optimizar este tipo de modelos.

BACKUP SLIDES VALIDACIÓN EN K-FOLDS

- Ejemplo con 5 folds
- Azul \rightarrow Test
- Naranja → Entrenamiento

| Partición I |
|-------------|-------------|-------------|-------------|-------------|
| Partición 2 |
| Partición 3 |
| Partición 4 |
| Partición 5 |

Resultados (media de cada caso)

TEORÍA A EXPLICAR PARA CADA MÉTODO

Caso I:

- Escalado: standard scaler -> normaliza con la media y la desviación típica de cada variable, creando unaa distribución de media cero y varianza unidad.
 - Varianza es la media de los cuadrados de las diferencias respecto a la media
 - Desviación típica es la raíz de la varianza
- kNN
- Decission Trees y Random Forests
- Matriz de confusión clara con ejemplo
- Explicar con pairplot los resultados obtenidos, alta accuracy por la facil separación de los datos por clase

Caso 2

- ANNs, retropropagación y optimización.
- No interesa tanto el algoritmo usado (adam), tenerlo en las backup slides. Por qué se usa?
- GMM: "Los GMMs son modelos probabilísticos que permiten identificar clusters cuando no hay fronteras claras entre estados. En mantenimiento predictivo, son muy útiles porque permiten detectar fases intermedias de degradación, dando una probabilidad de pertenencia en lugar de una clasificación tajante."

APRENDIZAJE SUPERVISADO Y NO SUPERVISADO

- Supervisado: datos etiquetados
- No Supervisado: sin etiquetas

Aprendizaje Supervisado Aprendizaje No Supervisado

- k-NN
- Decision Trees
- Random Forests
- • •

- Autoencoders
- GMMs
- Reducción de dimensionalidad

