

BEST AVAILABLE COPY

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ :		A2	(11) International Publication Number:	WO 00/52905
H04L 29/06			(43) International Publication Date: 8 September 2000 (08.09.00)	
(21) International Application Number:		PCT/US00/05520		
(22) International Filing Date:		1 March 2000 (01.03.00)		
(30) Priority Data:		60/122,481 1 March 1999 (01.03.99) US 60/129,476 15 April 1999 (15.04.99) US		
(71) Applicant:		AT & T CORP. [US/US]; 32 Avenue of the Americas, New York, NY 10013-2412 (US).		
(72) Inventors:		AJELLO, William, A.; 54 Maple Avenue, Madison, NJ 07940 (US). BELLOVIN, Steven, Michael; 710 Castleman Drive, Westfield, NJ 07090 (US). KALMANEK, Charles, Robert, Jr.; 86 Great Hills Road, Short Hills, NJ 07078 (US). MARSHALL, William, Todd; 113 North Summit Avenue, Chatham, NJ 07928 (US). RUBIN, Aviel, D.; 1 Rubino Road, West Caldwell, NJ 07006 (US).		
(74) Agents:		CONOVER, Michele, L. et al.; AT & T Corporation, P.O. Box 4110, Middletown, NJ 07748-4110 (US).		
(81) Designated States: BR, CA, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).				
Published <i>Without international search report and to be republished upon receipt of that report.</i>				

(54) Title: METHOD AND APPARATUS FOR ENHANCED SECURITY IN A BROADBAND TELEPHONY NETWORK

(57) Abstract

The broadband telephony interface is provisioned by receiving information authenticating a provisioning server, establishing a communication channel between the user and the provisioning server over which is transmitted authorization information from the user to the provisioning server, and encrypting and transmitting a cryptographic key associated with the user to the provisioning server. The cryptographic key can be a symmetric key or a public key corresponding to a private key stored in the broadband telephony interface. The cryptographic key can be utilized to generate other keys which are utilized to secure communication channels for the telephony service. The broadband telephony interface advantageously can be implemented as untrusted hardware or software that is installed by a customer.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon	KR	Republic of Korea	PL	Poland		
CN	China	KZ	Kazakhstan	PT	Portugal		
CU	Cuba	LC	Saint Lucia	RO	Romania		
CZ	Czech Republic	LI	Liechtenstein	RU	Russian Federation		
DE	Germany	LK	Sri Lanka	SD	Sudan		
DK	Denmark	LR	Liberia	SE	Sweden		
EE	Estonia			SG	Singapore		

METHOD AND APPARATUS FOR ENHANCED SECURITY IN A BROADBAND TELEPHONY NETWORK

Field of the Invention

5 The present invention relates generally to communication networks, and more particularly to enhanced security in a broadband telephony network.

Background of the Invention

10 Broadband communication networks provide a viable alternative to present local exchange carrier (LEC) loops in providing both voice and data transmission services. A variety of broadband network architectures have emerged as supporting Internet and telephony access: including cable distribution networks, ISDN (Integrated Services Digital Network), broadband ISDN, DSL
15 ("Digital Subscriber Line"), ADSL, etc.

A major concern for such broadband communication networks is the need for adequate security measures. The system architecture must ensure user privacy across the network medium and prevent unauthorized access to services. For example, in the case of cable modems based on the Data Over Cable Service Interface Specification ("DOCSIS", a term referring to the ITU-T J.112 Annex B standard for cable modem systems), security is provided by the DOCSIS Baseline Privacy Interface ("BPI") which addresses some of the vulnerability presented by the shared cable network. BPI provides security mechanisms, including encryption using the Cipher Block Chaining (CBC) mode of the Data Encryption System (DES) and key exchange based on RSA encryption, that defend against an eavesdropping threat in the cable network. The successor to BPI, DOCSIS 1.1 Baseline Privacy Interface Plus ("BPI+") adds authentication based on digital certificates that binds media access control addresses for cable modems to RSA public keys. DOCSIS cable modems must be pre-certified with cryptographic keys and/or certificates installed in the hardware at manufacturing time. DOCSIS cable modems undergo a registration process and a baseline

privacy key exchange procedure that is used to establish a secure channel with the cable modem termination system ("CMTS") at the head end. The CMTS verifies a cable modem's public key by verifying the authenticity of the certificate. Use of
35 encryption such as provided by BPI+ is essential for a shared medium access network such as cable.

On the first hop, security measures such as DOCSIS baseline privacy are likely to be adequate. However, the actual path traversed by packets is often complex, and BPI does not provide any data privacy beyond the cable
40 access network. The susceptibility of the public data networks such as the Internet to routing attacks – attacks where the enemy injects false route advertisements possibly to divert traffic to pass an eavesdropping station – is a concern. Quite simply, the science necessary to prevent such attacks does not exist, and it is expected to be a fair number of years before the Internet is
45 adequately protected. In a single, well-managed IP backbone network, it may be possible to take adequate precautions against eavesdropping through good design and rigorous security procedures, though there is still a risk as the equipment and network configuration changes. When traffic traverses more than one backbone (or gets routed over other regional networks of unknown security), however, the
50 potential for attack is greater. In the case of telephony service where ultimate delivery of packets could be via the Internet Protocol to a network not under the control of the service provider, privacy cannot be guaranteed over such paths.

Accordingly, a broadband telephony architecture with enhanced security features is needed, with the overall goals of protecting the privacy of
55 signaling and media traffic and of preventing theft of service.

Summary of the Invention

It is an object of the present invention to prevent theft of service. It should not be possible to steal another user's identification information by
60 electronic means or to sell unlimited service by compromising customer premises equipment or injecting messages into the system. Protections should be maintained to limit service to authorized usage subject to proper accounting.

It is another object of the present invention to protect the privacy and integrity of signaling and media traffic. It should not be possible to inject
65 signaling traffic into the network that appears to be from another source. It should also not be possible for unauthorized people to eavesdrop on traffic of other users. This includes traffic analysis by which, for example, an attacker can determine who is talking to whom.

It is another object of the present invention to protect the integrity of the called number. It should not be possible to force a called number to another number. This is necessary to prevent a range of attacks on the service, including one in which an attacker tries to steal business from a competitor by causing calls to be misrouted.

It is another object of the present invention to abide by government
75 wiretap laws, e.g., the Communications Assistance for Law Enforcement Act of 1994 ("CALEA"). This may include supplying signaling information and media streams to the authorities. If encryption keys are mediated by the service provider, they must also be supplied to the authorities.

It is another object of the present invention to discourage denial of
80 service attacks. It should not be easier than it is in the existing PSTN for one user or set of users to prevent other legitimate users from obtaining service.

It is another object of the present invention to provide the correct functionality of conventional telephony features. Subscriber features must function correctly. For example, caller ID information must be included in all
85 calls due to trace requirements. Only users that subscribe to the service should have access to the information. Users should not be able to forge such information in the case of a trace.

It is another object of the present invention to provide an administrative level. There should advantageously be at least two levels of
90 privilege to the system. This is so that decisions such as invoking emergency procedures or downloading new code to customer equipment cannot be performed by all users. For example, in an emergency, administrators must have the ability to preempt a call, while non-administrators should not have this ability.

Thus, in accordance with the present invention, an architecture for
95 using a broadband telephony interface ("BTI") is provided with enhanced security
features. The BTI registers itself with the network in a secure fashion, so that it
can be authenticated and known to the network from then on. A security
association is created by having the BTI generate a cryptographic key (symmetric
or otherwise) and send it to the network under the public key of the network
100 service provider. The two ends can then use this key to establish a secure
connection, and the BTI can send authorization information such as a credit card
number over the secure connection. The cryptographic key can then be used to
derive subsidiary keys that are used for subsequent communications. By having
the BTI generate its own cryptographic key, instead of having a certificate
105 installed at manufacturing time, this allows for the possibility of a BTI
implemented as software. The BTI advantageously need not be a trusted or
certified box; indeed, a software package executed on a personal computer can
fulfill the same functions. This is in contrast to the cable modem, for example,
which must be certified to ensure correct behavior and fair access to the medium.
110 These and other advantages of the invention will be apparent to
those of ordinary skill in the art by reference to the following detailed description
and the accompanying drawings.

Brief Description of the Drawings

115 Fig. 1 is a diagram of a broadband communication network which
can be utilized with an embodiment of the present invention.

Fig. 2 is a block diagram of the components of a hardware
broadband telephony interface configured for use with a preferred embodiment of
the present invention.

120 Fig. 3 is an abstract diagram of a communication provisioning
protocol in accordance with a preferred embodiment of the present invention.

Detailed Description

With reference to Fig. 1, a diagram of a broadband communication network is shown which can be utilized with an embodiment of the present invention. A packet-switched IP backbone 100 is shown connected to access networks 150 and 151, here shown as cable distribution networks, and to a more conventional telephony network 135, here shown as the public switched telephone network ("PSTN"). A broadband telephony interface ("BTI") 170 is shown which provide a gateway between one or more telephones 190 and the packet-switched network. The BTI 170 may be physically integrated with a cable modem ("CM") 160, as shown in Fig. 1, to provide the necessary functions to interface between one or more phone lines and the depicted cable access network 150. The cable modem 160 can also be used by other communication devices 180 (in Fig. 1 shown for example as a personal computer) to connect to the access networks 150.

The access network 150 terminates on a cable modem termination system ("CMTS") 155 at a head end. The CMTS 155 interfaces to an Internet Protocol ("IP") edge router ("ER") 120 that connects to a managed IP backbone 100, which provides the connectivity to other BTIs (e.g. 171 with corresponding edge router 121, CMTS 156, access network 151, cable modem 161, communication device 181, and telephone 191) and to gateways 130 to the PSTN 135. A "gate controller" 110 provides authentication, authorization, and call routing functions for calls originated by BTIs. The authentication information used by the gate controller is made available to it by a provisioning process that is described in further detail below. The backbone provides connectivity to a provisioning server 140, which is involved in provisioning the BTI and other network elements.

The particular architecture set forth in Fig. 1 is for illustration purposes only and is further described in the following commonly assigned patent applications: Provisional Patent Application entitled "Telephony on a Broadband Network," Serial No. 60/071,346, filed on January 14, 1998; Provisional Patent Application entitled "Telephony Over Broadband Access Networks," Serial No. 60/073,251, filed January 30, 1998; Provisional Patent Application entitled "Distributed Open Signaling Architecture," Serial No. 60/095,288, filed August 4,

1998; and Provisional Patent Application entitled "Distributed Open Signaling
155 Architecture," Serial No. 60/104,878, filed October 20, 1998, the entire contents
—of which are incorporated herein by reference.

Note that although a limited number of network entities are shown
in Fig. 1 for simplicity of presentation, other network entities can obviously be
included in the network – such as additional interface units, routers, controllers,
160 and gateways. Although Fig. 1 sets forth a particular broadband telephony
architecture, one of ordinary skill in the art would recognize that the security
enhancements of the present invention are readily extendible to other
architectures. For example, the present invention can be utilized with broadband
communication networks that do not use cable access networks but rather use
165 digital subscriber line (DSL), Integrated Services Digital Network (ISDN), or
some other access architecture. Moreover, the present invention can be utilized
—with other packet-switched architectures or with a hybrid network architecture.

Fig. 2 sets forth a simplified block diagram of the components of a
—BTI, configured for use with the present invention. The BTI performs signaling
170 and call control functions and enables telephony service on the communication
network by digitizing, compressing, and packetizing analog signals from a
telephone 190 into data packets for transport over the communication network.
The functions of a BTI can be implemented in many different ways that would be
apparent to one of ordinary skill in the art, including as software executed on a
175 typical computer. Fig. 2 illustrates a hardware embodiment of a BTI 170 that can
be a stand-alone device, can be integrated with a telephone 190 to create a stand-
alone telephony device or can be integrated with an access device (e.g. the cable
modem 160 in Fig. 1 or a set top box) to form a general network interface unit.
The BTI in Fig. 2 comprises a processor 210 and hardware (here shown as a
180 subscriber line interface circuit 250, codec 260, and echo canceler 265) capable of
detecting changes in state information (e.g. hook state detection), collecting dialed
digits (e.g. dual tone multifrequency (DTMF) signals), and participating in the
implementation of telephone features. The processor 210 has access to memory
220 which stores data such as cryptographic keys 222 and the operating system

185 221 and program instructions necessary for the operation of the BTI. For security purposes, it is advantageous for the BTI also to have read only memory 230 which stores code_downloading_code_(“CDC”) 232 and the service provider’s public key 231, as further discussed below. It is also advantageous for some of the data and code in memory 220 to be stored in some form of non-volatile memory so that
190 such information is not erased if power to the BTI is turned off.

The BTI 170 advantageously should be able to perform probabilistic computation, whether by hardware (e.g. a noisy diode), software (e.g. a pseudo-random generator with a good seed), or some combination. This is necessary for the BTI to be able to generate cryptographic keys and to perform
195 related cryptographic functions such as ElGamal signatures. Without a hardware source of randomness, it will likely be necessary for the BTI 170 to maintain about 200 bytes of state for the lifetime of the device, which will need to change often. One possible embodiment would be to keep the state data in RAM memory which gets copied to nonvolatile flash memory when there is a chance of a loss of
200 power.

As further elaborated on below, the BTI 170 need not necessarily be under the direct control of the service provider, e.g. the entity operating the communication network. The BTI, operated in accordance with the present invention, can be implemented as customer premises equipment that is untrusted and operates based on locally-stored software. The customer, in other words, can purchase the BTI at a local store or can have the device shipped to her home. Where the BTI is implemented as software, it can be simply downloaded and installed on a computer pre-configured for access to the communication network.
205

210 Provisioning

In accordance with a preferred embodiment of the present invention, Fig. 3 illustrates security protocols to be utilized in the provisioning of a user who wishes to utilize the network. The following notation and abbreviations are used in the discussion:
215

NOTATION	DEFINITION
SP	A service provider, such as AT&T.
PS	A provisioning server operated by the service provider and reachable over the access network and the backbone.
BTI	The customer premises equipment, namely the broadband telephony interface. The cable modem is not distinguished from the BTI for purposes of the following discussion.
GC	The gate controller. Every BTI communicates with an assigned gate controller on the back end.
U	Refers to the human user.
$\{X\}_{s_k}$	This notation means that the message X is signed with the private portion of public key, k . It is assumed that the public portion, $k+$, is used to verify the signature.
$\{X\}_k$	This indicates that X is encrypted under the key, k .
K_{p-}	This represents the private key of principal, P . So, for example, K_{SP} is the private key of the service provider.
K_{p+}	This represents the public key of principal, P .
$CERT(ID, k)_{s_{K_p}}$	This represents a public key certificate binding ID to the key k by the authority holding the private key, K_p . We use this notation because certificates can hold a lot of other information.
$A \rightarrow B : message$	This notation means that A sends <i>message</i> to B .
IKE	Internet Key Exchange. This is the Standard protocol for key management defined by the IETF.

In the case of a cable access network 150, it is assumed that the cable modem 160 has undergone DOCSIS registration and the baseline privacy key exchange prior to the provisioning process described below. The cable 220 modem 160 thus has a secure channel with the CMTS 155 at the head end. It is assumed that the network infrastructure beyond the head end is a managed

backbone for which reasonable security precautions have been taken, e.g. to secure servers. The provisioning server 140 itself, since it manages keys, must be very well secured. Nevertheless, it is assumed that the BTI-170 cannot trust
225 signals on the cable. That is, the threat model includes the possibility that a hostile intruder can masquerade as the cable head-end and fool the BTI into believing it is communicating with a legitimate service provider.

In accordance with an embodiment of the present invention, cryptographic means are advantageously utilized to authenticate the service provider. The objective of the provisioning process is for the service provider to securely establish an association between a customer account and a cryptographic key, where the key is available only to the BTI (and the provisioning server). The key can be used to authenticate key exchanges later. In practice, where the key is a symmetric key, this means that the two sides share a string of random bits that
230 can be used as encryption and keys for message authentication codes (MAC). It is common to use different keys to encrypt and MAC in each direction, so if a 128-bit cipher is used, the provisioning scenario will result in at least 512 bits of shared random bits. Note that the cryptographic key can be a public key rather than a symmetric key, where the corresponding private key is stored in the BTI.
235

The service provider, SP , is assumed to have a public/private key pair. The private key is stored in a safe place and there are strict procedures for accessing this key. The public key, K_{SP+} , is stored in the memory of the BTI or built into the BTI, for example by burning the key into read only memory. If this public key turns out to be source of attack (e.g. attackers successfully substitute a rogue key into BTIs in a particular area and manage to spook the provisioning server), then the key can be further protected by storing it in tamper-resistant storage. It is advantageous that there be a public key infrastructure whereby the service provider issues public key certificates for the provisioning servers, e.g. PS . There can be several layers of hierarchy in practice. It is assumed that the private key for the provisioning server is stored somewhere inside the network, and that when the BTI sends a message to the provisioning server, it is communicating with a secure location inside the network.
240
245
250

The user obtains and installs the BTI, whether by merely plugging the device in or by installing software on a computer. The user picks up the phone
255 .. and dials a provisioning number.(e.g. 611).to.enable.registration. In accordance with a preferred embodiment of the present invention, the following messages, as illustrated in Fig. 3, then take place. It should be noted that, in addition to or in lieu of the signatures indicated in Fig. 3, the values of the messages can be
260 digitally signed or hashed, using a message authentication code (MAC) with each message. Different keys can be utilized in each direction with the protocol. Such details are not included for simplicity of exposition and would be known to one of ordinary skill in the art.

At step 301, the BTI 170 receives the provisioning number:

265 U → BTI : 611

The BTI issues a SETUP message to the gate controller 110, which routes the call to a provisioning server 140 and returns a SETUP_ACK message containing the IP address of the provisioning server. The authentication information in the
270 SETUP message from the BTI can be null.

At step 302, the BTI 170 announces its existence to the provisioning server 140

BTI → PS : yo!

275 and requests the certificate and public key from the provisioning server 140. At step 303, the provisioning server 140 provides its public key and certificate:

PS → BTI : $K_{PS+}, CERT(PS, K_{PS+})_{S_{K_{SP}}}$

280 Certificates are convenient here because they allow the BTI to store a public key, here the service provider's public key, and have confidence in another public key

(here, the provisioning server's public key) if it carries a certificate signed by the private key corresponding to the service provider's public key stored in the BTI.

285 At step 304, the BTI 170 generates random symmetric keys, SK , AK , and K and transmits the following message to the provisioning server 170:

$\text{BTI} \rightarrow \text{PS} : \{SK, AK, N_0\}_K, \{\text{info}\}_{SK}, \{K\}_{K_{ps}}$.

290 K is used to encrypt the message that is sent with a symmetric cipher. K itself is encrypted with the public key of PS to make sure nobody else can read it. SK is a session key that will be used for future communication with the provisioning server 170 for the remainder of the provisioning. AK is a symmetric key that is used to secure the audio channel. In practice, AK may actually be a master key
295 used to generate the actual keys used for encryption and to generate message authentication codes (MAC). N_0 is a random nonce (a one-time identifier) used to prevent replay attacks (it is possible to avoid using nonces by including a hash of the received (challenged) message in every response). The reply from PS will contain N_0 as well to link the two messages together. info contains the
300 information in the message, such as the network address (Media Access Control address, IP address, etc.) of the broadband telephony interface 170.

At step 305, the provisioning server 140 acknowledges the registration request and proves knowledge of the session key:

305 $\text{PS} \rightarrow \text{BTI} : \{ACK, N_0, N_1\}_{SK}$

At this point, the session key is "good" and the network associates it with the particular IP endpoint.

310 At step 306, the BTI 170 sets up a voice connection with the provisioning server 140 and uses the audio channel key, AK , to secure the voice path. In practice, the audio stream should be encrypted and protected using message authentication codes. For simplicity, the secure messages, M , on the

audio channel are represented as $\{M\}_{AK}$. At this point, the BTI 170 completes the setup of the voice connection to the provisioning server 140.

- 315 At step 307, the provisioning server 140 prompts the user for her authentication information:

PS → U : {"enter auth info"}_{AK}

- 320 The authentication information can be implemented in many different ways. For example, the authentication information can be a work order number that has been given to a customer (or to an installer) after the customer has subscribed for the service. The work order must be supplied when the BTI is provisioned to identify the customer account. As another example, the authentication information can be 325 a credit card number, address, etc. that is provided by the user who subscribes for the service during the provisioning call itself. The audio stream is secured using AK from the PS 140 to the BTI 170, which converts it to an analog voice for the user.

- At step 308, the user speaks or dials her authentication information
330 in response to the prompt:

U → BTI : *auth info*

- At step 309, the BTI 140 sends the authentication information over the secure
335 audio channel to the provisioning server 140:

BTI → PS : {auth info}_{AK}

- At step 310, the BTI 140 generates a public/private key pair for the
340 user and sends the public key, K_{U+} , to the provisioning server 140.

BTI → PS : { N_1, N_2, K_{U+} }_{SK}

The provisioning server 140 associates the authentication information sent over
345 the secure audio channel with the public key, K_{U+} , sent over the secure control
channel. The PS 140 can do this because (a) it is aware that both came from the
same network address and (b) it successfully authenticates and decrypts both the
audio and control channel information using the keys, AK and SK, which the PS
knows are associated with the same broadband telephony interface 170. The PS
350 140 stores the BTI's public key for later usage and acknowledges receipt:

$$\text{PS} \rightarrow \text{BTI} : \{ACK, N_2\}_{SK}$$

At this point, the user is provisioned. The BTI 170 and the provisioning server
355 140 share a long-term symmetric key that the provisioning server can associate
with the subscriber account. In practice, the BTI and PS may share up to 512
random bits to comprise four 128-bit encryption and MACing keys, as described
above. In future sessions, the BTI 170 can generate a session key, sign it, and
send it under the public key of the provisioning server 140 or the long-term key it
360 shares with the server in a similar manner. No interaction from the user is
necessary to establish these future session keys.

The foregoing Detailed Description is to be understood as being in
every respect illustrative and exemplary, but not restrictive, and the scope of the
365 invention disclosed herein is not to be determined from the Detailed Description,
but rather from the claims as interpreted according to the full breadth permitted by
the patent laws. It is to be understood that the embodiments shown and described
herein are only illustrative of the principles of the present invention and that
various modifications may be implemented by those skilled in the art without
370 departing from the scope and spirit of the invention.

What is claimed is:

- 1 1. A method of provisioning a user's broadband telephony
2 interface comprising the steps of:
3 receiving information authenticating a provisioning server;
4 establishing a communication channel between the user and the
5 provisioning server over which is transmitted authorization information from the
6 user to the provisioning server; and
7 encrypting and transmitting a cryptographic key associated with
8 the user to the provisioning server.

- 1 2. The method of claim 1 wherein the communication channel is a
2 voice channel connection.

- 1 3. The method of claim 2 wherein the communication channel is
2 encrypted using an audio channel key which is encrypted and transmitted to the
3 provisioning server prior to establishing the communication channel.

- 1 4. The method of claim 3 wherein the cryptographic key
2 associated with the user is encrypted using a session key which is encrypted and
3 transmitted to the provisioning server prior to establishing the communication
4 channel.

- 1 5. The method of claim 4 wherein the session key and the audio
2 channel key are encrypted using a cryptographic key that is encrypted using a
3 cryptographic key associated with the provisioning server and transmitted to the
4 provisioning server with the encrypted session and audio channel key.

- 1 6. The method of claim 5 wherein the cryptographic key
2 associated with the provisioning server is received with the information
3 authenticating the provisioning server.

- 1 7. The method of claim 6 wherein a random nonce is included
2 with the encrypted session key.

1 22. The broadband telephony interface of claim 12 wherein a hash
2 is included with each transmission.

1 23. A method of operating a provisioning server comprising the
2 steps of:
3 receiving a request to be provisioned from a broadband telephony
4 interface;
5 transmitting authentication information to the broadband telephony
6 interface;
7 receiving authorization information over a communication channel
8 established between a user of the broadband telephony interface and the
9 provisioning server; and
10 receiving an encrypted cryptographic key associated with the user
11 from the broadband telephony interface.

1 24. The method of claim 23 wherein the communication channel is
2 a voice channel connection.

1 25. The method of claim 24 wherein the communication channel is
2 encrypted using an audio channel key which is received from the broadband
3 telephony interface prior to establishing the communication channel.

1 26. The method of claim 25 wherein the cryptographic key
2 associated with the user is encrypted using a session key which is received from
3 the broadband telephony interface prior to establishing the communication
4 channel.

1 27. The method of claim 26 wherein a cryptographic key
2 associated with the provisioning server is transmitted to the broadband telephony
3 interface and the session key and the audio channel key are received encrypted
4 using the cryptographic key associated with the provisioning server.

1 28. The method of claim 27 wherein the cryptographic key
2 associated with the provisioning server is transmitted with the authentication
3 information to the broadband telephony interface.

1 29. The method of claim 28 wherein a random nonce is included
2 with encrypted session key and audio channel key.

1 30. The method of claim 23 wherein the authentication information
2 is a digital certificate.

1 31. The method of claim 23 wherein the cryptographic key
2 associated with the user is a symmetric key.

1 32. The method of claim 23 wherein the cryptographic key
2 associated with the user is a public key corresponding to a private key stored in
3 the broadband telephony interface.

1 33. The method of claim 23 wherein a hash is included with each
2 transmission.

1 8. The method of claim 1 wherein the information authenticating
2 the provisioning server is a digital certificate.

1 9. The method of claim 1 wherein the cryptographic key
2 associated with the user is a symmetric key.

1 10. The method of claim 1 wherein the cryptographic key
2 associated with the user is a public key corresponding to a private key stored in
3 the broadband telephony interface.

1 11. The method of claim 1 wherein a hash is included with each
2 transmission.

1 12. A broadband telephony interface comprising:
2 a first interface to a user telephone;
3 a second interface to a communication network with access to a
4 provisioning server;
5 memory for storing cryptographic keys;
6 a processor connected to the memory and the first and second
7 interfaces for executing program instructions, the program instructions causing the
8 processor to perform the steps of:
9 receiving information authenticating the provisioning
10 server;
11 establishing a communication channel between the user
12 telephone and the provisioning server over which is transmitted
13 authorization information from the user to the provisioning server; and
14 encrypting and transmitting a cryptographic key associated
15 with the user to the provisioning server.

1 13. The broadband telephony interface of claim 12 wherein the
2 communication channel is a voice channel connection.

1 14. The broadband telephony interface of claim 13 wherein the
2 communication channel is encrypted using an audio channel key which is
3 encrypted and transmitted to the provisioning server prior to establishing the
4 communication channel.

1 15. The broadband telephony interface of claim 14 wherein the
2 cryptographic key associated with the user is encrypted using a session key which
3 is encrypted and transmitted to the provisioning server prior to establishing the
4 communication channel.

1 16. The broadband telephony interface of claim 15 wherein the
2 session key and the audio channel key are encrypted using a cryptographic key
3 that is encrypted using a cryptographic key associated with the provisioning server
4 and transmitted to the provisioning server with the encrypted session and audio
5 channel key.

1 17. The broadband telephony interface of claim 16 wherein the
2 cryptographic key associated with the provisioning server is received with the
3 information authenticating the provisioning server.

1 18. The broadband telephony interface of claim 17 wherein a
2 random nonce is included with the encrypted session key.

1 19. The broadband telephony interface of claim 12 wherein the
2 information authenticating the provisioning server is a digital certificate.

1 20. The broadband telephony interface of claim 12 wherein the
2 cryptographic key associated with the user is a symmetric key.

1 21. The broadband telephony interface of claim 12 wherein the
2 cryptographic key associated with the user is a public key corresponding to a
3 private key stored in the broadband telephony interface.

Figure 1

170**Figure 2**

Figure 3

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
8 September 2000 (08.09.2000)

PCT

(10) International Publication Number
WO 00/52905 A3

(51) International Patent Classification⁷: **H04L 29/06**

William, Todd; 113 North Summit Avenue, Chatham, NJ 07928 (US). RUBIN, Aviel, D.; 1 Rubino Road, West Caldwell, NJ 07006 (US).

(21) International Application Number: **PCT/US00/05520**

(74) Agents: CONOVER, Michele, L. et al.; AT & T Corporation, P.O. Box 4110, Middletown, NJ 07748-4110 (US).

(22) International Filing Date: 1 March 2000 (01.03.2000)

(81) Designated States (*national*): BR, CA.

(25) Filing Language: English

(84) Designated States (*regional*): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(26) Publication Language: English

Published:

— *With international search report.*

(30) Priority Data:

60/122,481 1 March 1999 (01.03.1999) US
60/129,476 15 April 1999 (15.04.1999) US

(88) Date of publication of the international search report:
28 December 2000

(71) Applicant: AT & T CORP. [US/US]; 32 Avenue of the

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Americas, New York, NY 10013-2412 (US).

(72) Inventors: AIELLO, William, A.; 54 Maple Avenue, Madison, NJ 07940 (US). BELLOVIN, Steven, Michael; 710 Castleman Drive, Westfield, NJ 07090 (US). KALMANEK, Charles, Robert, Jr.; 86 Great Hills Road, Short Hills, NJ 07078 (US). MARSHALL,

WO 00/52905 A3

(54) Title: METHOD AND APPARATUS FOR ENHANCED SECURITY IN A BROADBAND TELEPHONY NETWORK

(57) Abstract: The broadband telephony interface is provisioned by receiving information authenticating a provisioning server, establishing a communication channel between the user and the provisioning server over which is transmitted authorization information from the user to the provisioning server, and encrypting and transmitting a cryptographic key associated with the user to the provisioning server. The cryptographic key can be a symmetric key or a public key corresponding to a private key stored in the broadband telephony interface. The cryptographic key can be utilized to generate other keys which are utilized to secure communication channels for the telephony service. The broadband telephony interface advantageously can be implemented as untrusted hardware or software that is installed by a customer.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 00/05520

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H04L29/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H04L H04M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, IBM-TDB, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 44 16 595 A (DEUTSCHE BUNDESPOST TELEKOM) 16 November 1995 (1995-11-16) column 1, line 60 -column 2, line 66 claims 1-3 ---	1-33
A	DE 195 21 484 A (DEUTSCHE TELEKOM AG) 19 December 1996 (1996-12-19) column 2, line 23-43 column 3, line 15-34 column 5, line 14 -column 6, line 13 claim 6 ---	1-33
A	US 5 216 715 A (MARKWITZ WERNHARD) 1 June 1993 (1993-06-01) column 2, line 25-56 column 3, line 29-49 column 4, line 36 -column 5, line 2 --- -/--	1-33

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *Z* document member of the same patent family

Date of the actual completion of the international search

27 September 2000

Date of mailing of the international search report

06/10/2000

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentstaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Lázaro López, M.L.

1

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 00/05520

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages.	Relevant to claim No.
A	FR 2 709 903 A (THOMSON CSF) 17 March 1995 (1995-03-17) claims 1,4 page 7, line 28 -page 9, line 23 page 10, line 26 -page 11, line 25 page 13, line 21-35	1-33
A	CLAASSEN G J ET AL: "SECURE COMMUNICATION PROCEDURE FOR ISDN" PROCEEDINGS SOUTHERN AFRICAN CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING, US, IEEE, NEW YORK, NY, 24 June 1988 (1988-06-24), pages 165-170, XP002028403 page 167, left-hand column, line 23 -page 168, left-hand column, line 19 page 169, left-hand column, line 19 -page 170, left-hand column, line 32	1-33

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 00/05520

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
DE 4416595	A	16-11-1995	NONE		
DE 19521484	A	19-12-1996	AU	698086 B	22-10-1998
			AU	5892796 A	09-01-1997
			CA	2224315 A	27-12-1996
			WO	9642181 A	27-12-1996
			EP	0832542 A	01-04-1998
			JP	11507781 T	06-07-1999
			NO	975834 A	30-01-1998
US 5216715	A	01-06-1993	DE	3919734 C	06-12-1990
			CA	2062751 A	17-12-1990
			WO	9016124 A	27-12-1990
			DE	59006915 D	29-09-1994
			EP	0477180 A	01-04-1992
			JP	4506137 T	22-10-1992
FR 2709903	A	17-03-1995	NONE		

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.