In this tests are considered 4 types of combinations:

• c1

• *c*2

• c3

• c4

$\epsilon = 0$ – uniform mesh

Table 1: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 + (c1); uniform mesh; $\epsilon = 0$).

	Ι	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	6.48E+02	\checkmark	8.76E-04		5.66E-04	_	7.61E-04	_
\mathbb{P}_1	40	2.59E+03	\checkmark	2.14E-04	2.03	1.42E-04	2.00	1.92E-04	1.99
	80	1.04E+04	\checkmark	5.28E-05	2.02	3.54E-05	2.00	4.82E-05	1.99
	20	8.25E+02	✓	7.53E-05		1.40E-04	_	3.33E-04	
\mathbb{P}_2	40	3.30E+03	\checkmark	9.55E-06	2.98	3.61E-05	1.95	8.64E-05	1.95
	80	1.32E+04	✓	1.20E-06	2.99	9.19E-06	1.97	2.20E-05	1.97
	20	1.02E+03	\checkmark	4.41E-06	_	6.53E-07	_	7.67E-07	_
\mathbb{P}_3	40	4.08E+03	\checkmark	2.78E-07	3.99	4.07E-08	4.01	5.30E-08	3.86
	80	1.63E+04	\checkmark	1.75E-08	3.99	2.53E-09	4.01	3.47E-09	3.93
	20	1.18E+03	✓	2.00E-07		2.39E-08	_	5.60E-08	_
\mathbb{P}_4	40	4.74E+03	\checkmark	6.36E-09	4.98	2.07E-09	3.53	5.53E-09	3.34
	80	1.89E+04	✓	2.01E-10	4.99	1.59E-10	3.70	4.07E-10	3.77
	20	1.35E+03	✓	8.78E-09	_	1.80E-09	_	2.09E-09	_
\mathbb{P}_5	40	5.42E+03	\checkmark	1.40E-10	5.97	2.70E-11	6.06	3.07E-11	6.09
	80	2.17E+04	✓	2.24E-12	5.96	1.53E-13	7.47	8.86E-13	5.11

Table 2: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c2; uniform mesh; $\epsilon = 0$).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	O _{c,1}	E ₁	O ₁	E_{∞}	O_{∞}
	20	5.52E+03	×	9.62E-03		8.66E-01	_	5.81E+00	
\mathbb{P}_1	40	1.84E+07	×	2.45E-03	1.97	3.45E+02	\uparrow	4.60E+03	\uparrow
	80	2.03E+14	×	6.20E-04	1.98	4.68E+08	↑	1.25E+10	<u> </u>
	20	6.10E+02	✓	1.89E-04		3.70E-04		8.59E-04	_
\mathbb{P}_2	40	2.44E+03	\checkmark	2.48E-05	2.93	1.00E-04	1.89	2.36E-04	1.87
	80	9.75E+03	\checkmark	3.18E-06	2.96	2.59E-05	1.95	6.16E-05	1.94
	20	6.74E+02	\checkmark	1.08E-05	_	1.75E-06	_	2.67E-06	_
\mathbb{P}_3	40	2.70E+03	\checkmark	6.80E-07	3.99	1.25E-07	3.81	1.88E-07	3.83
	80	1.08E+04	✓	4.27E-08	3.99	1.00E-08	3.64	1.70E-08	3.46
	20	7.97E+02	\checkmark	9.17E-07	_	4.81E-07		1.14E-06	_
\mathbb{P}_4	40	3.19E+03	\checkmark	2.98E-08	4.95	4.13E-08	3.54	9.76E-08	3.55
	80	1.28E+04	✓	9.51E-10	4.97	2.91E-09	3.82	6.92E-09	3.82
	20	8.36E+02	✓	5.19E-08	_	1.13E-08	_	2.40E-08	_
\mathbb{P}_5	40	3.34E+03	\checkmark	8.21E-10	5.98	3.77E-10	4.91	8.49E-10	4.82
	80	1.34E+04	\checkmark	1.30E-11	5.99	1.22E-11	4.95	2.82E-11	4.91

$\epsilon = \frac{h^2}{2}$ – uniform mesh

Table 3: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and $u(x) = 0 + (c1; uniform mesh; <math>\epsilon = \frac{h^2}{2})$.

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	6.48E+02	\checkmark	9.92E-04	_	1.19E-03		2.55E-03	_
\mathbb{P}_1	40	2.59E+03	\checkmark	2.28E-04	2.12	2.97E-04	2.00	6.47E - 04	1.98
	80	1.04E+04	✓	5.46E-05	2.06	7.42E-05	2.00	1.63E-04	1.99
	20	8.27E+02	✓	7.05E-05	_	9.70E-05		2.50E-04	_
\mathbb{P}_2	40	3.30E+03	\checkmark	9.24E-06	2.93	3.08E-05	1.65	7.59E-05	1.72
	80	1.32E+04	✓	1.18E-06	2.97	8.53E-06	1.85	2.07E-05	1.88
	20	1.02E+03	\checkmark	4.25E-06	_	1.41E-06		2.19E-06	_
\mathbb{P}_3	40	4.08E+03	\checkmark	2.73E-07	3.96	8.88E-08	3.99	1.40E-07	3.97
	80	1.63E+04	✓	1.73E-08	3.98	5.58E-09	3.99	8.85E-09	3.99
	20	1.19E+03	\checkmark	1.95E-07		2.28E-08		4.92E-08	
\mathbb{P}_4	40	4.74E+03	\checkmark	6.27E-09	4.96	1.92E-09	3.57	5.18E-09	3.25
	80	1.90E+04	✓	1.99E-10	4.98	1.53E-10	3.65	3.94E-10	3.72
	20	1.36E+03	✓	8.57E-09		1.07E-09	_	4.89E-09	_
\mathbb{P}_5	40	5.42E+03	\checkmark	1.38E-10	5.96	1.84E-11	5.86	8.81E-11	5.79
	80	2.17E+04	✓	2.22E-12	5.95	5.11E-13	5.17	1.87E-12	5.56

Table 4: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c2; uniform mesh; $\epsilon = \frac{h^2}{2}$).

	Ι	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	4.68E+03	×	9.52E-03		8.66E-01	_	5.82E+00	
\mathbb{P}_1	40	1.56E+07	×	2.41E-03	1.98	3.45E+02	\uparrow	4.60E+03	\uparrow
	80	1.71E+14	×	6.06E-04	1.99	4.68E+08	\uparrow	1.25E+10	\uparrow
	20	5.25E+02	√	3.51E-04	_	4.89E-04	_	1.20E-03	
\mathbb{P}_2	40	2.09E+03	\checkmark	4.56E-05	2.94	1.41E-04	1.79	3.41E-04	1.81
	80	8.36E+03	\checkmark	5.81E-06	2.97	3.77E-05	1.91	9.04E-05	1.91
	20	5.99E+02	✓	1.52E-05		6.12E-06		1.12E-05	_
\mathbb{P}_3	40	2.39E+03	\checkmark	9.77E - 07	3.96	4.35E-07	3.82	8.10E-07	3.79
	80	9.56E+03	✓	6.20E-08	3.98	3.14E-08	3.79	6.03E-08	3.75
	20	7.52E+02	✓	1.16E-06	_	8.60E-07	_	2.02E-06	_
\mathbb{P}_4	40	3.00E+03	\checkmark	3.84E-08	4.92	6.80E - 08	3.66	1.59E-07	3.66
	80	1.20E+04	✓	1.24E-09	4.96	4.65E-09	3.87	1.10E-08	3.86
	20	7.99E+02	✓	5.47E-08	_	2.72E-08	_	5.72E-08	_
\mathbb{P}_5	40	3.19E+03	\checkmark	8.76E-10	5.96	7.88E-10	5.11	1.77E-09	5.01
	80	1.27E+04	\checkmark	1.39E-11	5.98	2.35E-11	5.07	5.45E-11	5.03

Table 5: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c3; uniform mesh; $\epsilon = \frac{h^2}{2}$).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	6.49E+02	\checkmark	8.71E-04		5.23E-04	_	6.77E - 04	
\mathbb{P}_1	40	2.59E+03	\checkmark	2.14E-04	2.03	1.36E-04	1.94	1.81E-04	1.90
	80	1.04E+04	\checkmark	5.28E-05	2.02	3.47E-05	1.97	4.69E-05	1.95
	20	8.27E+02	✓	7.52E-05		1.49E-04		3.52E-04	_
\mathbb{P}_2	40	3.30E+03	\checkmark	9.54E-06	2.98	3.75E-05	1.99	8.90E-05	1.98
	80	1.32E+04	✓	1.20E-06	2.99	9.36E-06	2.00	2.23E-05	2.00
	20	1.02E+03	\checkmark	4.40E-06		7.35E-07		3.10E-06	
\mathbb{P}_3	40	4.08E+03	\checkmark	2.78E-07	3.98	4.87E - 08	3.92	2.09E-07	3.89
	80	1.63E+04	✓	1.75E-08	3.99	3.13E-09	3.96	1.35E-08	3.95
	20	1.19E+03	✓	2.00E-07	_	7.86E-08		1.70E-07	_
\mathbb{P}_4	40	4.74E+03	\checkmark	6.36E-09	4.97	9.83E-10	6.32	1.96E-09	6.43
	80	1.90E+04	✓	2.01E-10	4.99	7.92E-11	3.63	2.36E-10	3.05
	20	1.36E+03	✓	8.77E-09	_	3.75E-09	_	1.12E-08	_
\mathbb{P}_5	40	5.42E+03	\checkmark	1.40E-10	5.97	6.42E - 11	5.87	1.92E-10	5.87
	80	2.17E+04	✓	2.24E-12	5.96	1.32E-12	5.61	3.56E-12	5.75

Table 6: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c4; uniform mesh; $\epsilon = \frac{h^2}{2}$).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	4.66E+03	×	9.36E-03		8.64E-01	_	5.74E+00	_
\mathbb{P}_1	40	1.55E+07	×	2.39E-03	1.97	3.58E+02	\uparrow	4.54E+03	\uparrow
	80	1.72E+14	×	6.03E-04	1.98	5.26E+08	\uparrow	1.23E+10	\uparrow
	20	5.25E+02	√	3.44E-04		5.59E-04	_	1.33E-03	_
\mathbb{P}_2	40	2.09E+03	\checkmark	4.51E-05	2.93	1.50E-04	1.89	3.58E-04	1.89
	80	8.36E+03	✓	5.78E-06	2.96	3.89E-05	1.95	9.28E-05	1.95
	20	5.99E+02	✓	1.57E-05	_	1.78E-06	_	5.84E-06	_
\mathbb{P}_3	40	2.39E+03	\checkmark	9.93E-07	3.98	1.07E-07	4.06	3.58E-07	4.03
	80	9.56E+03	✓	6.25E-08	3.99	8.90E-09	3.58	1.60E-08	4.49
	20	7.52E+02	✓	1.18E-06		6.57E-07		1.61E-06	_
\mathbb{P}_4	40	3.00E+03	\checkmark	3.88E-08	4.93	6.04E-08	3.44	1.45E-07	3.48
	80	1.20E+04	✓	1.24E-09	4.96	4.40E-09	3.78	1.05E-08	3.79
	20	7.99E+02	✓	5.62E-08	_	8.48E-09	_	2.40E-08	_
\mathbb{P}_5	40	3.19E+03	\checkmark	8.90E-10	5.98	4.67E-10	4.18	1.17E-09	4.36
	80	1.27E+04	\checkmark	1.40E-11	5.99	1.82E-11	4.68	4.43E-11	4.72

$\epsilon = \frac{h}{2}$ – uniform mesh

Table 7: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and $u(x) = 0 + (c1; uniform mesh; <math>\epsilon = \frac{h}{2})$.

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	6.48E+02	√	4.26E-03		3.38E-02	_	6.63E-02	_
\mathbb{P}_1	40	2.59E+03	\checkmark	1.06E-03	2.01	1.70E-02	1.00	3.36E-02	0.98
	80	1.04E+04	\checkmark	2.65E-04	2.00	8.49E-03	1.00	1.69E-02	0.99
	20	8.75E+02	√	1.15E-04	_	1.12E-03	_	2.13E-03	_
\mathbb{P}_2	40	3.40E+03	\checkmark	1.44E-05	3.00	2.81E-04	2.00	5.40E-04	1.98
	80	1.34E+04	✓	1.80E-06	3.00	7.03E-05	2.00	1.36E-04	1.99
	20	1.13E+03	✓	4.73E-06		3.86E-05		7.34E-05	
\mathbb{P}_3	40	4.29E+03	\checkmark	2.95E-07	4.00	4.82E-06	3.00	9.40E-06	2.96
	80	1.67E+04	✓	1.84E-08	4.00	6.02E-07	3.00	1.19E-06	2.98
	20	1.50E+03	×	1.91E-07	_	6.55E-07	_	1.26E-06	_
\mathbb{P}_4	40	5.40E+03	×	5.98E-09	5.00	4.12E-08	3.99	8.14E-08	3.95
	80	2.03E+04	×	1.87E-10	5.00	2.57E-09	4.00	5.15E-09	3.98
	20	2.47E+03	×	7.90E-09	_	2.97E-08	_	6.22E-08	
\mathbb{P}_5	40	7.96E+03	×	1.24E-10	6.00	1.10E-09	4.75	2.25E-09	4.79
	80	2.72E+04	×	1.96E-12	5.98	3.61E-11	4.93	7.28E-11	4.95

Table 8: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c2; uniform mesh; $\epsilon = \frac{h}{2}$).

	Ι	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	O _{c,1}	E ₁	O ₁	E_{∞}	O_{∞}
	20	4.68E+03	×	1.28E-02	_	8.69E-01	_	5.88E+00	_
\mathbb{P}_1	40	1.56E+07	×	3.24E-03	1.98	3.45E+02	\uparrow	4.60E+03	\uparrow
	80	1.73E+14	×	8.16E-04	1.99	4.68E+08	\uparrow	1.25E+10	\uparrow
	20	5.53E+02	✓	4.92E-04		1.16E-03		2.08E-03	_
\mathbb{P}_2	40	2.15E+03	\checkmark	6.40E - 05	2.94	2.80E-04	2.05	5.01E-04	2.05
	80	8.48E+03	✓	8.16E-06	2.97	6.89E-05	2.02	1.23E-04	2.03
	20	6.38E+02	\checkmark	2.19E-05	_	1.23E-04		2.32E-04	_
\mathbb{P}_3	40	2.47E+03	\checkmark	1.39E-06	3.98	1.57E-05	2.96	3.06E-05	2.93
	80	9.72E+03	✓	8.80E-08	3.99	1.99E-06	2.98	3.92E-06	2.96
	20	8.37E+02	√	1.27E-06		4.79E-06		9.36E-06	_
\mathbb{P}_4	40	3.18E+03	\checkmark	4.11E-08	4.94	3.25E-07	3.88	6.54E-07	3.84
	80	1.24E+04	✓	1.31E-09	4.97	2.10E-08	3.95	4.31E-08	3.92
	20	8.96E+02	✓	6.32E-08		4.13E-07	_	7.97E-07	_
\mathbb{P}_5	40	3.39E+03	\checkmark	9.99E-10	5.98	1.38E-08	4.90	2.73E-08	4.87
	80	1.32E+04	✓	1.57E-11	5.99	4.48E-10	4.95	8.93E-10	4.93

Table 9: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c3; uniform mesh; $\epsilon = \frac{h}{2}$).

	I	cond(A)	$A^{-1} \ge 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	6.87E+02	√	9.15E-04	_	7.72E-04	_	1.70E-03	_
\mathbb{P}_1	40	2.67E+03	\checkmark	2.19E-04	2.07	1.94E-04	1.99	4.35E-04	1.97
	80	1.05E+04	\checkmark	5.34E-05	2.03	4.87E-05	2.00	1.10E-04	1.99
	20	9.08E+02	✓	7.24E-05		3.45E-04		7.34E-04	_
\mathbb{P}_2	40	3.47E+03	\checkmark	9.36E-06	2.95	9.55E-05	1.85	2.04E-04	1.85
	80	1.35E+04	✓	1.19E-06	2.98	2.50E-05	1.93	5.35E-05	1.93
	20	1.24E+03	×	4.31E-06	_	3.26E-05	_	6.54E-05	_
\mathbb{P}_3	40	4.55E+03	×	2.75E-07	3.97	4.43E-06	2.88	8.87E-06	2.88
	80	1.73E+04	×	1.74E-08	3.98	5.77E-07	2.94	1.15E-06	2.94
	20	1.89E+03	×	1.96E-07	_	2.60E-06		5.08E-06	_
\mathbb{P}_4	40	6.31E+03	×	6.30E-09	4.96	1.73E-07	3.91	3.41E-07	3.90
	80	2.23E+04	×	2.00E-10	4.98	1.11E-08	3.95	2.21E-08	3.95
	20	3.62E+03	×	8.64E-09	_	1.83E-07	_	3.62E-07	_
\mathbb{P}_5	40	1.10E+04	×	1.38E-10	5.96	6.22E-09	4.88	1.24E-08	4.87
	80	3.48E+04	×	2.23E-12	5.96	2.02E-10	4.94	4.03E-10	4.94

Table 10: Numerical results of pure diffusion for $\phi(x) = \exp(x)$, $\kappa(x) = 1$, and u(x) = 0 (c4; uniform mesh; $\epsilon = \frac{h}{2}$).

	I	cond(A)	$A^{-1} \geq 0$	$E_{c,1}$	$O_{c,1}$	E_1	O_1	E_{∞}	O_{∞}
	20	4.66E+03	×	9.50E-03	_	9.81E-01	_	4.93E+00	_
\mathbb{P}_1	40	1.95E+07	×	2.41E-03	1.98	8.65E+02	\uparrow	4.50E+03	\uparrow
	80	4.59E+14	×	6.06E-04	1.99	4.06E+09	\uparrow	1.62E+10	\uparrow
	20	5.60E+02	√	3.52E-04	_	6.37E-04	_	1.48E-03	_
\mathbb{P}_2	40	2.16E+03	\checkmark	4.57E - 05	2.95	1.88E-04	1.76	4.31E-04	1.77
	80	8.51E+03	✓	5.82E-06	2.97	5.07E-05	1.89	1.16E-04	1.89
	20	6.56E+02	\checkmark	1.53E-05	_	2.74E-05	_	6.02E-05	_
\mathbb{P}_3	40	2.51E+03	\checkmark	9.80E-07	3.97	4.19E-06	2.71	8.77E-06	2.78
	80	9.80E+03	✓	6.21E-08	3.98	5.77E-07	2.86	1.18E-06	2.90
	20	8.76E+02	✓	1.16E-06		2.55E-06	_	4.95E-06	_
\mathbb{P}_4	40	3.26E+03	\checkmark	3.83E-08	4.92	1.76E-07	3.86	3.34E-07	3.89
	80	1.25E+04	✓	1.24E-09	4.95	1.17E-08	3.91	2.19E-08	3.93
	20	9.97E+02	✓	5.51E-08		2.15E-07		4.29E-07	
\mathbb{P}_5	40	3.61E+03	\checkmark	8.80E-10	5.97	7.80E-09	4.79	1.54E-08	4.80
	80	1.36E+04	\checkmark	1.40E-11	5.98	2.61E-10	4.90	5.15E-10	4.90