```
#1.download the dataset
```

```
import pandas as pd
df = pd.read csv("/content/Mall Customers.csv")
```

#2.load the dataset

df

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-
100) 0 39	1	Male	19	15	
1	2	Male	21	15	
81 2 6	3	Female	20	16	
6 3	4	Female	23	16	
77 4 40	5	Female	31	17	
	• • • •			• • •	
195 79	196	Female	35	120	
196 28	197	Female	45	126	
197 74	198	Male	32	126	
198 18	199	Male	32	137	
199 83	200	Male	30	137	

[200 rows x 5 columns]

#3. Visualization · Univariate, Bi- Variate, Multi-Variate Analysis

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import rcParams

sns.countplot(df.Gender)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an

error or misinterpretation.
FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f3d5cfa6090>

sns.distplot([df.Age])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3d5cf2bd90>

sns.distplot(df.CustomerID)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3d5ce549d0>

sns.lineplot(x=df.Age,y=df.CustomerID)
<matplotlib.axes._subplots.AxesSubplot at 0x7f3d5cdde650>

sns.scatterplot(x=df.Age,y=df.CustomerID)
<matplotlib.axes._subplots.AxesSubplot at 0x7f3d5cd724d0>


```
plt.pie(df.Gender.value_counts(),
  [0.2,0],labels=['Female','Male'],autopct="%1.1f%
%",colors=['green','red'])
plt.title('Gender')
```

Text(0.5, 1.0, 'Gender')

sns.barplot(x=df.Age.value_counts().index,y=df.Age.value_counts())

df.hist(figsize=(8,8))

array([[<matplotlib.axes._subplots.AxesSubplot object at
0x7f3d5c83dc50>,

<matplotlib.axes._subplots.AxesSubplot object at
0x7f3d5c7fb1d0>],

[<matplotlib.axes._subplots.AxesSubplot object at 0x7f3d5c7af7d0>,

dtype=object)

sns.pairplot(df)

<seaborn.axisgrid.PairGrid at 0x7f3d5c59ffd0>

#4.Perform descriptive statistics on the dataset.

df.describe()

100)	CustomerID	Age	Annual Income (k\$)	Spending Score (1-
100) count	200.000000	200.000000	200.000000	
200.000 mean	0000 100.500000	38.850000	60.560000	
50.200	900			
std 25.823	57.879185 522	13.969007	26.264721	
min 1.0000	1.000000	18.000000	15.000000	
25%	50.750000	28.750000	41.500000	
34.750 50%	100.500000	36.000000	61.500000	

```
50.000000
75%
       150.250000
                     49.000000
                                           78.000000
73.000000
       200,000000
                     70.000000
                                          137,000000
max
99.000000
#5.Handle the Missing values.
df.head()
   CustomerID
                Gender
                              Annual Income (k$)
                                                    Spending Score (1-100)
                        Age
0
                  Male
                          19
                                                                         39
             1
                                               15
             2
                  Male
                          21
                                               15
                                                                         81
1
2
             3
                Female
                          20
                                               16
3
             4
                Female
                          23
                                               16
                                                                         77
4
             5
                Female
                          31
                                               17
                                                                         40
df.shape
(200, 5)
df.isnull().any()
CustomerID
                            False
Gender
                            False
Age
                            False
Annual Income (k$)
                            False
Spending Score (1-100)
                            False
dtype: bool
df.isnull().sum()
CustomerID
                            0
Gender
                            0
                            0
Age
Annual Income (k$)
                            0
Spending Score (1-100)
                            0
dtype: int64
FillNa
d1=df.fillna(100)
d1
     CustomerID
                  Gender
                           Age Annual Income (k$)
                                                      Spending Score (1-
100)
0
               1
                    Male
                            19
                                                  15
39
1
               2
                    Male
                            21
                                                  15
81
2
               3
                  Female
                            20
                                                  16
6
3
                            23
                  Female
                                                  16
```

6

//				
4	5	Female	31	17
40				
• •		• • • •	• • •	• • • • • • • • • • • • • • • • • • • •
 195	196	Female	35	120
79				
196	197	Female	45	126
28				
197	198	Male	32	126
74				
198	199	Male	32	137
18		_		
199	200	Male	30	137
83				

[200 rows x 5 columns]

Forward fill

d2=df.fillna(method='ffill')
d2

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-
100) 0 39	1	Male	19	15	
1	2	Male	21	15	
81 2 6	3	Female	20	16	
3	4	Female	23	16	
77 4 40	5	Female	31	17	
 195 79	196	Female	35	120	
196 28	197	Female	45	126	
197 74	198	Male	32	126	
198 18	199	Male	32	137	
199 83	200	Male	30	137	

[200 rows x 5 columns]

backwardfill

d3=df.fillna(method='bfill')
d3

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-
100) 0 39	1	Male	19	15	
1	2	Male	21	15	
81 2	3	Female	20	16	
6 3	4	Female	23	16	
77 4 40	5	Female	31	17	
195 79	196	Female	35	120	
196	197	Female	45	126	
28 197 74	198	Male	32	126	
198	199	Male	32	137	
18 199 83	200	Male	30	137	

[200 rows x 5 columns]

fill with mean

df.fillna(df.mean())

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

100)	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-
0 39	1	Male	19	15	
1	2	Male	21	15	
81 2	3	Female	20	16	
6 3 77	4	Female	23	16	

4 40	5	Female	31	17
				• • • • • • • • • • • • • • • • • • • •
195 79	196	Female	35	120
196 28	197	Female	45	126
197 74	198	Male	32	126
198 18	199	Male	32	137
199 83	200	Male	30	137

[200 rows x 5 columns]

Dropna

df.dropna

			dropna of	CustomerID	Gender	Age	Annual
Income (k\$)	1	Male	ore (1-100) 19	15			
39 1	2	Male	21	15			
81 2	3	Female	20	16			
6	4	Female	23	16			
77 4 40	5	Female	31	17			
195	196	Female	35	120			
79 196	197	Female	45	126			
28 197	198	Male	32	126			
74 198	199	Male	32	137			
18 199 83	200	Male	30	137			

[200 rows x 5 columns]>

#6.Find the Outliers and replace the outliers

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import rcParams
```

df.head()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

outliers

sns.boxplot(df.Age)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f3d5cbc2ad0>

Outliers removal using IQR

```
q1=df.Age.quantile(0.25) #(Q1)
q3=df.Age.quantile(0.75) #(Q3)
IQR=q3-q1
upper_limit= q3 + 1.5*IQR
lower_limit= q1 - 1.5*IQR
df=df[df.Age<upper_limit]
sns.boxplot(df.Age)</pre>
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7f3d57e31710>

Replacement of outliers-median

sns.boxplot(df.Age)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f3d57da9750>


```
q1=df.Age.quantile(0.25) #(Q1)
q3=df.Age.quantile(0.75) #(Q3)
IQR=q3-q1
upper_limit= q3 + 1.5*IQR
lower_limit= q1 - 1.5*IQR
upper_limit
```

df.median()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

"""Entry point for launching an IPython kernel.

```
CustomerID 100.5
Age 36.0
Annual Income (k$) 61.5
Spending Score (1-100) 50.0
dtype: float64

df['Age']= np.where(df['Age']>upper_limit,30,df['Age'])
sns.boxplot(df.Age)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From

version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f3d57d1d1d0>

#7.Check the Categorical columns and perform encoding

Categorical columns

df.Age.value_counts

```
<bound method IndexOpsMixin.value counts of 0</pre>
                                                        19
       21
1
2
       20
3
       23
4
       31
195
       35
       45
196
197
       32
198
       32
       30
199
Name: Age, Length: 200, dtype: int64>
df.CustomerID.value_counts
```

```
2
         3
3
         4
         5
195
       196
196
       197
197
       198
198
       199
199
       200
Name: CustomerID, Length: 200, dtype: int64>
df.CustomerID.value counts
<bound method IndexOpsMixin.value counts of 0</pre>
                                                         1
         3
2
         4
3
         5
4
195
       196
196
       197
197
       198
198
       199
199
       200
Name: CustomerID, Length: 200, dtype: int64>
df['Annual Income (k$)'].value counts
<bound method IndexOpsMixin.value_counts of 0</pre>
                                                        15
1
        15
2
        16
3
        16
4
        17
195
       120
196
       126
197
       126
198
       137
199
       137
Name: Annual Income (k$), Length: 200, dtype: int64>
df.Age.unique()
array([19, 21, 20, 23, 31, 22, 35, 64, 30, 67, 58, 24, 37, 52, 25, 46,
54,
       29, 45, 40, 60, 53, 18, 49, 42, 36, 65, 48, 50, 27, 33, 59, 47,
51,
       69, 70, 63, 43, 68, 32, 26, 57, 38, 55, 34, 66, 39, 44, 28, 56,
41])
df['Annual Income (k$)'].unique()
```

```
29,
                  17,
                        18,
                             19,
                                  20,
                                       21,
                                            23,
                                                  24,
                                                       25,
                                                            28,
array([ 15,
             16,
30,
        33,
             34,
                  37,
                        38,
                             39,
                                  40,
                                       42,
                                             43,
                                                  44,
                                                       46,
                                                            47,
                                                                  48,
49,
        50.
             54.
                  57.
                        58.
                             59,
                                  60,
                                       61.
                                             62.
                                                  63.
                                                       64.
                                                            65.
                                                                  67.
69,
        70.
                  72.
                        73.
                             74.
                                  75.
                                       76.
                                            77.
                                                  78.
                                                       79.
                                                                 85,
             71.
                                                            81.
86,
        87.
             88.
                  93,
                        97,
                             98,
                                  99, 101, 103, 113, 120, 126, 137])
df['Spending Score (1-100)'].unique()
array([39, 81, 6, 77, 40, 76, 94, 3, 72, 14, 99, 15, 13, 79, 35, 66,
29,
       98, 73, 5, 82, 32, 61, 31, 87, 4, 92, 17, 26, 75, 36, 28, 65,
55,
       47, 42, 52, 60, 54, 45, 41, 50, 46, 51, 56, 59, 48, 49, 53, 44,
57,
       58, 43, 91, 95, 11, 9, 34, 71, 88, 7, 10, 93, 12, 97, 74, 22,
90,
       20, 16, 89, 1, 78, 83, 27, 63, 86, 69, 24, 68, 85, 23,
18])
perform encoding.
1.Label encoding
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
df.IsActiveMember=le.fit transform(df['Annual Income (k$)'])
df.Tenure=le.fit transform(df.Age)
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:3:
UserWarning: Pandas doesn't allow columns to be created via a new
attribute name - see
https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-
  This is separate from the ipykernel package so we can avoid doing
imports until
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:4:
UserWarning: Pandas doesn't allow columns to be created via a new
attribute name - see
https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute-
access
  after removing the cwd from sys.path.
df.head()
                             Annual Income (k$)
                                                  Spending Score (1-100)
   CustomerID
               Gender
                        Age
0
                 Male
                                                                       39
            1
                         19
                                              15
            2
                                              15
                 Male
                         21
                                                                       81
1
2
            3
               Female
                         20
                                              16
                                                                        6
```

```
Female
                         23
                                               16
3
            4
4
            5
                         31
                                               17
                Female
2.One hot encoding
df main=pd.get dummies(df,columns=['Gender'])
df main.head()
   CustomerID
                Age Annual Income (k$) Spending Score (1-100)
Gender_Female
                 19
                                      15
                                                                39
0
1
            2
                                                                81
                 21
                                      15
0
2
            3
                 20
                                                                 6
                                      16
1
3
                 23
                                                                77
            4
                                      16
1
4
            5
                 31
                                      17
                                                                40
1
   Gender_Male
0
1
              1
2
              0
3
              0
4
              0
df main.corr()
                         CustomerID
                                            Age
                                                 Annual Income (k$)
CustomerID
                            1.000000 -0.026763
                                                            0.977548
                           -0.026763
                                                           -0.012398
Aae
                                      1.000000
Annual Income (k$)
                            0.977548 -0.012398
                                                            1.000000
Spending Score (1-100)
                            0.013835 -0.327227
                                                            0.009903
Gender Female
                           -0.057400 -0.060867
                                                           -0.056410
Gender_Male
                            0.057400
                                     0.060867
                                                            0.056410
                         Spending Score (1-100)
                                                   Gender Female
Gender Male
CustomerID
                                        0.013835
                                                        -0.057400
0.057400
                                        -0.327227
                                                        -0.060867
Age
0.060867
Annual Income (k$)
                                        0.009903
                                                        -0.056410
0.056410
Spending Score (1-100)
                                         1.000000
                                                         0.058109
0.058109
Gender Female
                                        0.058109
                                                         1.000000
1.0000\overline{00}
```

77

40

Gender_Male -0.058109 1.000000

plt.figure(figsize=(10,8))
sns.heatmap(df_main.corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3d5750c150>

-1.000000

df_main.corr().Age.sort_values(ascending=False)

Age 1.000000
Gender_Male 0.060867
Annual Income (k\$) -0.012398
CustomerID -0.026763
Gender_Female -0.060867
Spending Score (1-100) -0.327227
Name: Age, dtype: float64

df_main.head()

CustomerID Age Annual Income (k\$) Spending Score (1-100) Gender_Female \
0 1 19 15 39

0				
1	2	21	15	81
2	3	20	16	6
1	4	23	16	77
1 4	5	31	17	40
1				
	Gender_Male			
0	_ 1			
1	1			
2	0			
3	0			
4	0			
0 0	coling the date			

8.Scaling the data

from sklearn.preprocessing import scale
w=df.drop(df['Annual Income (k\$)'],axis=0)
w

100)	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-
100)	1	Male	19	15	
39 1	2	Male	21	15	
81 2	3	Female	20	16	
6 3 77	4	Female	23	16	
4 40	5	Female	31	17	
195 79	196	Female	35	120	
196 28	197	Female	45	126	
197 74	198	Male	32	126	
198 18	199	Male	32	137	
199 83	200	Male	30	137	

[136 rows x 5 columns]

 $9. Perform\ any\ of\ the\ clustering\ algorithms$

```
import pandas as pd
import numpy as np
df = pd.read csv('/content/Mall Customers.csv')
df.head()
   CustomerID
               Gender
                             Annual Income (k$)
                                                  Spending Score (1-100)
                        Age
0
                 Male
                         19
            1
                                              15
                                              15
            2
1
                 Male
                         21
                                                                       81
2
            3
                                              16
              Female
                         20
                                                                        6
3
                                              16
                                                                       77
            4
               Female
                         23
            5
4
               Female
                         31
                                              17
                                                                       40
new df =df.iloc[:,:-1]
new_df.head()
   CustomerID
               Gender
                        Age
                             Annual Income (k$)
0
            1
                 Male
                         19
                                              15
1
            2
                 Male
                         21
                                              15
2
            3
               Female
                         20
                                              16
3
            4
               Female
                         23
                                              16
4
                                              17
               Female
                         31
new_df.shape
(200, 4)
from sklearn import cluster
error =[]
for i in range(1,11):
    kmeans=cluster.KMeans(n clusters=i,init='k-means+
+',random state=0)
error
[]
import matplotlib.pyplot as plt
plt.plot(range(1,11))
plt.title('Elbow method')
plt.xlabel('no of clus')
plt.ylabel('error')
plt.show()
```


10.Add the cluster data with the primary dataset

```
import pandas as pd
import numpy as np
df = pd.read_csv('/content/Mall_Customers.csv')
df.head()
   CustomerID
                Gender
                              Annual Income (k$)
                                                    Spending Score (1-100)
                         Age
0
             1
                  Male
                          19
                                               15
                                                                         39
1
             2
                  Male
                          21
                                               15
                                                                         81
2
             3
                                               16
                          20
                Female
                                                                          6
3
             4
                Female
                          23
                                               16
                                                                         77
             5
                Female
                          31
                                               17
                                                                         40
new df =df.iloc[:,:-1]
new_df.head()
                              Annual Income (k$)
   CustomerID
                Gender
                         Age
0
                  Male
                          19
                                               15
             1
             2
                  Male
                                               15
1
                          21
2
             3
                                               16
                Female
                          20
3
                                               16
                Female
                          23
                Female
                          31
                                               17
new df =df.iloc[:,:-1]
new_df.head()
```

```
CustomerID Gender Age Annual Income (k$)
0
                  Male
                         19
                                               15
            1
            2
                                               15
1
                  Male
                          21
2
                                               16
             3
               Female
                          20
3
               Female
                          23
                                               16
             5
                Female
                          31
                                               17
from sklearn import cluster
error =[]
for i in range(1,11):
    kmeans=cluster.KMeans(n clusters=i,init='k-means+
+', random state=0)
km model=cluster.KMeans(n_clusters=3,init='k-means++',random_state=0)
new df['kclus'] = pd.Series
11. Split the data into dependent and independent variables.
dependent variables.
y=df_main['Age']
0
       19
1
       21
2
       20
3
       23
4
       31
195
       35
       45
196
       32
197
198
       32
199
       30
Name: Age, Length: 200, dtype: int64
independent variables
X=df_main.drop(columns=['Age'],axis=1)
X.head()
               Annual Income (k$) Spending Score (1-100)
   CustomerID
Gender Female
                                 15
                                                           39
0
1
             2
                                 15
                                                           81
0
2
             3
                                 16
                                                            6
1
```

```
3
             4
                                  16
                                                            77
1
4
             5
                                  17
                                                            40
1
   Gender Male
0
1
              1
2
              0
3
              0
              0
12. Split the data into training and testing
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test =
train_test_split(X,y,test_size=0.2,random_state=0)
X_train.shape
(160, 5)
y_train.shape
(160,)
X_test.shape
(40, 5)
y_test.shape
(40,)
X train
     CustomerID Annual Income (k$) Spending Score (1-100)
Gender_Female \
             135
134
                                    73
                                                               5
0
66
              67
                                    48
                                                              50
1
                                    28
26
              27
                                                              32
1
113
             114
                                    64
                                                              46
168
             169
                                    87
                                                              27
1
. .
             . . .
                                   . . .
                                                              . . .
                                    48
                                                              48
67
              68
1
192
             193
                                   113
                                                               8
```

```
0
117
            118
                                   65
                                                             59
1
47
             48
                                   40
                                                             47
1
172
            173
                                   87
                                                             10
0
     Gender_Male
134
                1
66
                0
26
                0
113
                1
                0
168
. .
67
                0
192
                1
117
                0
47
                1
172
[160 rows x 5 columns]
y_train
134
       20
       43
66
26
       45
       19
113
       36
168
       . .
67
       68
192
       33
117
       49
       27
47
172
       36
Name: Age, Length: 160, dtype: int64
X_test
     CustomerID Annual Income (k$) Spending Score (1-100)
Gender_Female \
             19
18
                                   23
                                                             29
0
170
            171
                                   87
                                                             13
0
107
            108
                                   63
                                                             46
0
98
             99
                                   61
                                                             42
                                                             69
177
            178
                                   88
```

•			
0 182	183	98	15
0 5 1	6	17	76
146	147	77	36
0 12 1	13	20	15
152 1	153	78	20
61 0	62	46	55
125 1	126	70	77
180 1	181	97	32
154 1	155	78	16
80 0	81	54	51
7 1	8	18	94
33 0	34	33	92
130	131	71	9
0 37 1	38	34	73
74 0	75	54	47
183 1	184	98	88
145 0	146	77	97
45 1	46	39	65
159 1	160	78	73
60 0	61	46	56
123 0	124	69	91
179 0	180	93	90
185 0	186	99	97
122	123	69	58
1 44	45	39	28

1 16	17	21	35
1 55	56	43	41
0 150	151	78	17
0 111 1	112	63	54
22 1	23	25	5
189 1	190	103	85
129 0	130	71	75
4 1	5	17	40
83 1	84	54	44
106 1	107	63	50
18 170 107 98 177 182 5 146 12 152 61 125 180 7 33 130 37 74 183 145 45 159 60 123 179	Gender_Male 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 0		

185 122 44 16 55 150 111 22 189 129 4 83 106		1 0 0 0 1 1 0 0 0 1 0 0
y_test 18 170 107 98 177 182 5 146 12 152 61 125 180 7 33 130 37 74 183 145 45 159 60 123 179 185 122 44 16 55 150 111 22	52 40 54 48 27 46 22 48 54 41 9 31 7 47 57 23 8 47 47 47 47 47 47 47 47 47 47 47 47 47	

```
189    36
129    38
4     31
83     46
106    66
Name: Age, dtype: int64

13.Build the Model
from sklearn.linear_model import LinearRegression
model=LinearRegression() # initialzing the model
model.fit(X_train,y_train) # fitting the model on training data
LinearRegression()
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

14.train the model

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(X_train,y_train)
LinearRegression()
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org

```
15.test the model
```

```
p=model.predict(X test)
р
array([42.36050511, 43.1765722 , 39.0534294 , 39.98878139,
34.17795933,
       43.45353768, 35.05024728, 39.88461784, 44.44204676,
42.01767724,
       38.44771287, 33.87895033, 40.7207682, 42.51446339,
38.85995582,
       32.25529851, 32.86894674, 44.33717665, 35.59104097,
39.85147387,
       31.96952129, 30.48430521, 36.94147362, 33.36357095,
38.35443708,
       31.80875954, 31.40103978, 30.66924147, 36.89085787,
42.74265449,
       41.21318046, 40.62786794, 42.70532548, 37.46651178,
45.979031 ,
```

```
32.66805052, 34.16127762, 40.69631087, 39.6616389,
38.396188351)
y pred=lr.predict(X test)
y pred
array([42.36050511, 43.1765722 , 39.0534294 , 39.98878139,
34.17795933,
       43.45353768, 35.05024728, 39.88461784, 44.44204676,
42.01767724,
       38.44771287, 33.87895033, 40.7207682, 42.51446339,
38.85995582,
       32.25529851, 32.86894674, 44.33717665, 35.59104097,
39.85147387.
       31.96952129, 30.48430521, 36.94147362, 33.36357095,
38.35443708,
       31.80875954, 31.40103978, 30.66924147, 36.89085787,
42.74265449,
       41.21318046, 40.62786794, 42.70532548, 37.46651178,
45.979031
       32.66805052, 34.16127762, 40.69631087, 39.6616389,
38.39618835])
pred=model.predict(X test)
pred
array([42.36050511, 43.1765722 , 39.0534294 , 39.98878139,
34.17795933,
       43.45353768, 35.05024728, 39.88461784, 44.44204676,
42.01767724,
       38.44771287, 33.87895033, 40.7207682, 42.51446339,
38.85995582,
       32.25529851, 32.86894674, 44.33717665, 35.59104097,
39.85147387,
       31.96952129, 30.48430521, 36.94147362, 33.36357095,
38.35443708,
       31.80875954, 31.40103978, 30.66924147, 36.89085787,
42.74265449.
       41.21318046, 40.62786794, 42.70532548, 37.46651178,
45.979031
       32.66805052, 34.16127762, 40.69631087, 39.6616389,
38.396188351)
Sal= pd.DataFrame({'Annual Income (k$)': y test, 'Spending Score (1-
100)':pred})
Sal
     Annual Income (k$) Spending Score (1-100)
18
                     52
                                       42.360505
170
                     40
                                       43.176572
107
                     54
                                       39.053429
```

98	48	39.988781
177 182	27 46	34.177959 43.453538
5	22	35.050247
146	48	39.884618
12	58	44.442047
152	44	42.017677
61	19	38.447713
125	31	33.878950
180	37	40.720768
154	47	42.514463
80	57	38.859956
7	23	32.255299
33	18	32.868947
130	47	44.337177
37	30	35.591041
74	59	39.851474
183	29	31.969521
145	28	30.484305
45	24	36.941474
159	30	33.363571
60	70	38.354437
123	39	31.808760
179	35	31.401040
185	30	30.669241
122	40	36.890858
44	49	42.742654
16	35	41.213180
55	47	40.627868
150	43	42.705325
111	19	37.466512
22	46 26	45.979031
189	36	32.668051
129	38	34.161278
4	31 46	40.696311
83	46 66	39.661639
106	00	38.396188

16:. Measure the performance using Evaluation Metrics.

from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()

model.fit(X_train,y_train)

KNeighborsClassifier()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
y pred=model.predict(X test)
y pred1=model.predict(X train)
from sklearn.metrics import
accuracy_score,confusion_matrix,classification_report
print('Testing accuracy: ',accuracy score(y test,y pred))
print('Training accuracy: ',accuracy_score(y_train,y_pred1))
Testing accuracy:
                      0.025
                       0.24375
Training accuracy:
pd.crosstab(y test,y pred)
        18
             19
                20 21 23
                               25
                                    28
                                         29
                                              30
                                                   32
                                                       34
                                                            35
                                                                 36
                                                                      37
                                                                           40
                                                                               41
col 0
49
Age
18
         0
              0
                   0
                       1
                            0
                                 0
                                          0
                                                    0
                                                         0
                                                                  0
                                                                       0
                                      0
                                               0
                                                             0
                                                                            0
                                                                                0
0
19
         2
              0
                   0
                       0
                            0
                                 0
                                      0
                                          0
                                               0
                                                    0
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                            0
                                                                                0
0
22
         0
              0
                   0
                       1
                            0
                                 0
                                      0
                                          0
                                               0
                                                    0
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                            0
                                                                                0
0
23
         0
              0
                   0
                       0
                            0
                                 0
                                      0
                                          0
                                               0
                                                    0
                                                         0
                                                              1
                                                                  0
                                                                       0
                                                                            0
                                                                                0
0
24
         0
              0
                   1
                       0
                            0
                                 0
                                      0
                                          0
                                               0
                                                    0
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                            0
                                                                                0
0
27
         0
              0
                   0
                       0
                            0
                                 0
                                      1
                                          0
                                               0
                                                    0
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                            0
                                                                                0
0
28
         0
              0
                   0
                       0
                            0
                                 0
                                      0
                                          0
                                               0
                                                    1
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                            0
                                                                                0
0
29
         0
              0
                   0
                            0
                                 0
                                          0
                                               0
                                                    0
                                                         0
                                                                  0
                                                                       0
                                                                                0
                       0
                                      1
                                                             0
                                                                            0
0
30
         0
              0
                   0
                       1
                            0
                                 0
                                      0
                                          1
                                               1
                                                    0
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                            0
                                                                                0
0
31
         0
              1
                   0
                       0
                            0
                                 0
                                      0
                                          1
                                               0
                                                    0
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                            0
                                                                                0
0
35
         0
              1
                   0
                            0
                                 0
                                          0
                                               0
                                                    0
                                                         0
                                                                  0
                                                                       0
                                                                                0
                       0
                                      1
                                                             0
                                                                            0
0
36
                                 0
         0
              0
                   0
                       0
                            0
                                      0
                                          0
                                               0
                                                    1
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                            0
                                                                                0
0
37
         0
              0
                   0
                       0
                            0
                                 0
                                      0
                                          0
                                               0
                                                    0
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                            0
                                                                                 1
0
38
                                          1
         0
              0
                   0
                       0
                            0
                                 0
                                      0
                                               0
                                                    0
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                            0
                                                                                0
0
39
         0
              0
                   0
                       0
                            0
                                 0
                                      0
                                          0
                                               0
                                                    1
                                                         0
                                                             0
                                                                  0
                                                                       0
                                                                            0
                                                                                0
0
                   0
                                 0
                                                                  1
40
         1
              0
                       0
                            0
                                      0
                                          0
                                               0
                                                    0
                                                         0
                                                             0
                                                                       0
                                                                            0
                                                                                0
0
```

43 0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
44 0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
46 0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0
47 0	0	2	0	0	0	0	0	1	0	0	0	0	0	0	0	0
48 0	0	0	0	0	1	1	0	0	0	Θ	0	0	0	0	0	0
49 0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
52 0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
54 0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
57 0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
58 0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
59 0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
66 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
70 0	1	Θ	0	0	0	0	0	0	0	0	Θ	0	0	Θ	0	0

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
18	0.00	0.00	0.00	1
19	0.00	0.00	0.00	2
20	0.00	0.00	0.00	0
21	0.00	0.00	0.00	0
22	0.00	0.00	0.00	1
23	0.00	0.00	0.00	1
24	0.00	0.00	0.00	1
25	0.00	0.00	0.00	0
27	0.00	0.00	0.00	1
28	0.00	0.00	0.00	1
29	0.00	0.00	0.00	1
30	1.00	0.33	0.50	3
31	0.00	0.00	0.00	2
32	0.00	0.00	0.00	0
34	0.00	0.00	0.00	0
35	0.00	0.00	0.00	2
36	0.00	0.00	0.00	1
37	0.00	0.00	0.00	1
38	0.00	0.00	0.00	1

39	0.00	0.00	0.00	1
40	0.00	0.00	0.00	2
41	0.00	0.00	0.00	0
43	0.00	0.00	0.00	1
44	0.00	0.00	0.00	1
46	0.00	0.00	0.00	3
47	0.00	0.00	0.00	3
48	0.00	0.00	0.00	2
49	0.00	0.00	0.00	1
52	0.00	0.00	0.00	1
54	0.00	0.00	0.00	1
57	0.00	0.00	0.00	1
58	0.00	0.00	0.00	1
59	0.00	0.00	0.00	1
66	0.00	0.00	0.00	1
70	0.00	0.00	0.00	1
accuracy			0.03	40
macro avg	0.03	0.01	0.01	40
weighted avg	0.07	0.03	0.04	40

```
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/
classification.py:1318: UndefinedMetricWarning: Precision and F-score
are ill-defined and being set to 0.0 in labels with no predicted
samples. Use `zero division` parameter to control this behavior.
  warn prf(average, modifier, msg start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification
.py:1318: UndefinedMetricWarning: Recall and F-score are ill-defined
and being set to 0.0 in labels with no true samples. Use
zero division` parameter to control this behavior.
  warn prf(average, modifier, msg start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification
.py:1318: UndefinedMetricWarning: Precision and F-score are ill-
defined and being set to 0.0 in labels with no predicted samples. Use
zero division` parameter to control this behavior.
  _warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification
.py:1318: UndefinedMetricWarning: Recall and F-score are ill-defined
and being set to 0.0 in labels with no true samples. Use
zero division` parameter to control this behavior.
  warn prf(average, modifier, msg start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification
.py:1318: UndefinedMetricWarning: Precision and F-score are ill-
defined and being set to 0.0 in labels with no predicted samples. Use
zero division` parameter to control this behavior.
  warn prf(average, modifier, msg start, len(result))
/usr/local/lib/python3.7/dist-packages/sklearn/metrics/ classification
```

.py:1318: UndefinedMetricWarning: Recall and F-score are ill-defined

and being set to 0.0 in labels with no true samples. Use

`zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, msg_start, len(result))