Your Title Here

Don Francisco

15 November, 2022

Background and Overview

This is a report on SARS-CoV-2, including some variant analysis (Koyama et al., 2020).

Methods

See the set of tutorials on the vcfR package website.

You may also want to use any of a range of different COVID data packages and data sources:

- https://kjhealy.github.io/covdata/
- https://github.com/como-ph/oxcovid19
- https://ropensci.org/blog/2020/10/20/searching-medrxivr-and-biorxiv-preprint-data/
- https://covidtracking.com/data/api
 - readr::read_csv("https://api.covidtracking.com/v1/states/daily.csv")

Subsections are ok too

Results and Discussion

Figures

Count of distinct SNPs in Named SARS-CoV-2 Genes

Figure 1: N and S genes have more unique SNPs in the set of samples analyzed.

Tables

Gene Name	Start	End	Length
\overline{S}	21563	25384	3821
ORF3a	25393	26220	827
E	26245	26472	227
M	26523	27191	668
ORF6	27202	27387	185
ORF7a	27394	27759	365
ORF7b	27756	27887	131
ORF8	27894	28259	365
N	28274	29533	1259
ORF10	29558	29674	116

 $\textbf{Table 1:} \ \ \textbf{Gene names, locations, and lengths in the SARS-CoV-2 genome.} \ \ \textbf{Higher SNP counts in the S and N genes may be related to the larger size of these genes.}$

Sources Cited

Koyama, T. et al. (2020) Variant analysis of sars-cov-2 genomes. Bulletin of the World Health Organization, 98, 495.