pre-Lab

Experiment No. 3 - Encoders, Decoders, Multiplexers, and Demultiplexers Logic Circuits.

- *Student name: Abdulrahman shaheen.
- * ID#: 1211753.
- * Instructor Name: Dr. Qadri Mayyala
- * Date: 4/11/2023.
- * Section: 2.

Q1) Design a circuit which uses an SN74151 to implement a sum-of-products expression, as follows:

Convert the following expression into summation form (i.e., F (A, B, C) = \sum (...): Y = f(A, B, C) = AB' + B'C

$$F=AB'C+AB'C'+AB'C+A'B'C$$
$$F=\sum (1,4,5)$$

	Inputs	Outputs	
A	В	C	х
0	0	o	0
O	0	1	1
0	1	o	0
0	1	1	0
1	O	o	1
1	O	1	1.
1	1	0	0
1	1	1	0

b) Sketch on Figure 3.1 the input connections necessary to implement the function in part (a). Observe that the inputs are connected to 0 or 1 depending on the value of the function for that min term.

B

Q2) Design a circuit which uses an SN74138 Demultiplexer to implement a sum- of-products expression, as follows: a) Convert the following expression into summation (Sum of Products –SOP-) form (i.e. $F(A,B,C)=\Sigma$ (...): Y = f(A,B,C) = A'BC + BC'

$$F=A'BC+ABC'+A'BC'$$
$$F=\sum(2,3,6)$$

