SPOT-RNA: RNA Secondary Structure Prediction using an Ensemble of Two-dimensional Deep Neural Networks and Transfer Learning

- Ensemble of 5 models (more and more convolutions from model 0-4)
- BiLSTM in Model 3
- Currently only code for prediction is public
- The goal of the model is to predict the pairing probability of each base pairs
- Use the RNA structures from bpRNA database for initial training, then use the structures from the PDB database for transfer training.

	training	validation	testing
bpRNA	10815	1301	1306
PDB	121	68+40	31

bpRNA median: ~100nt

PDB median: ~70nt

Models can be visualized with tensorboard

model 0 logistic_loss output_FC → OptimizeLo... shape O→ boolean_ma. Hidden_FC... boolean_m... outputactno... conv31 dropout conv30 → OptimizeLo. conv29 → COOC OptimizeLo... dropout

Derive the dimensions for each pathway

Model structure of SPOT-RNA

A loss function to give more gradient for paired bases (FN samples)

 \hat{y} is the input for sigmoid activation function

$$Loss = (1 - y) \cdot \hat{y} + (4 \cdot y + 1) \cdot [relu(-\hat{y}) + \log(1 + e^{-|\hat{y}|})]$$

设
$$\xi = \log(1 + e^{-|\hat{y}|}) > 0$$

Classes imbalance problem:

Ratio of positive samples=
$$\frac{\frac{\frac{2}{3}N}{2}}{\frac{(N-1)\times(N-2)}{2}} \approx \frac{2}{3N}$$

 $|\hat{y}|$ 越大,则 ξ 越小

underflow

The longer the sequence, the less the proportion of positive samples

村度= $\frac{\partial L}{\partial \hat{y}}$ 的 $\frac{\partial L}{\partial \hat{y}}$ \frac

Loss function

$$Loss = (1 - y) \cdot \hat{y} + (4 \cdot y + 1) \cdot [relu(-\hat{y}) + \log(1 + e^{-|\hat{y}|})]$$

ŷ是Final FC输出的sigmoid之前的数

设 $\xi = \log(1 + e^{-|\hat{y}|}) > 0$

 $\frac{\partial \mathbf{L}}{\partial \hat{\mathbf{y}}}$

 $|\hat{y}|$ 越大,则 ξ 越小

①
$$y = 1; \ \hat{y} > 0$$

$$Loss = 0 + (4+1)[0+\xi] = 5 \cdot \xi \qquad \hat{y} \to +\infty \text{则Loss越小}$$

②
$$y = 1; \ \hat{y} < 0$$

 $Loss = 0 + (4+1)[-\hat{y} + \xi] = 5 \cdot (-\hat{y} + \xi) \ \hat{y} \to 0$ 则Loss越小、

③
$$y=0; \ \hat{y}>0$$

$$Loss=\hat{y}+1\cdot[0+\xi]=\hat{y}+\xi \qquad \hat{y}\to 0$$
则Loss越小、

④
$$y = 0$$
; $\hat{y} < 0$

$$Loss = \hat{y} + 1 \cdot [-\hat{y} + \xi] = \xi \qquad \hat{y} \to -\infty$$
则Loss越小、

Parameter configuration of five models

	#convblocks	#channels	lpha in loss function	LSTM	#Hidden layer
Model 0	16	48	4	×	2
Model 1	20	64	4	X	1
Model 2	30	64	4	X	1
Model 3	30	64	0	V	0
Model 4	30	64	0	×	1

$$Loss = (1 - y) \cdot \hat{y} + (\alpha \cdot y + 1) \cdot [relu(-\hat{y}) + \log(1 + e^{-|\hat{y}|})]$$

The larger the alpha, more gradient for False Negative samples

Input layer: Let a convolution get the information of the clip pairing

Input: 8 channels

Example: Channel 3 Α U

	8 Channels
A-A	10001000
A-U	10000100
A-C	10000010
A-G	10000001
U-A	01001000
U-U	01000100
U-C	01000010
U-G	01000001

Model output: an intuitive display

Obtain a valid secondary structure from a pairing probability matrix using a greedy algorithm

```
Input: Probability matrix X: L \times L, L is the length of sequence

Output: Resolved valid secondary structure S: \{(x_i, x_j) | (x_i, x_j) \in S\}

Process:

Collect base pairs with probability greater than 0.335

P = \{(x_i, x_j) | X(x_i, x_j) \geq 0.335\}
Ambiguous base pair list: ABPlist = get\_ambiguous\_basepairs(P)

while ABPlist \neq \emptyset:
for \ list \ l \in ABPlist:
(x_i, x_j) := \underset{i,j}{argmin} \{X(x_i, x_j) | (x_i, x_j) \in l\}
remove (x_i, x_j) \ from \ P
ABPlist = get\_ambiguous\_basepairs(P)
```

process get_ambiguous_basepairs_list(P):

- 1. Ambiguous bases $B := \{x_i | x_i \in P \text{ and } count(P, x_i) > 1\}, count(P, x_i)$ is the number of times x_i occur in P
- 2. Ambiguous base pair lists ABPlist = list() for b in B: initialize list $l = list((x_i, x_j)|b \in (x_i, x_j) for(x_i, x_j) in P)$ ABPlist.push(l) return ABPlist

Intermediate layer

My implementation

Metrics

15 ConvBlock + 2 hidden FC 48 Channels Dropout=0.3 weight decay=0 Adam optimizer, Ir=0.003 50 Epochs

$$accuracy = \frac{TP + TN}{Total}$$

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

$$F1 \ score = 2 \times \frac{Precision * Recall}{Precision + Recall}$$

training data: bpRNA training

0.020

Systematic comparison of performance of these models

Maybe transfer learning changes

the model's preferences On bpRNA validation set **Distribution plot** Precision Recall F1 score model0 model0 1.75 model1 model1 model2 model2 1.50 model4 model4 1.25 logistic logistic logistic 1.00 0.8 1.0 0.75 0.6 0.50 0.4 0.5 0.25 0.2 -0.25 0.00 0.25 0.50 0.75 1.00 -0.25 0.00 0.25 0.50 0.75 -0.25 0.00 0.25 0.50 0.75 1.00 **Violin plot** 0.2 model1 model2 model3 model4

- Larger precision for BCE model; larger recall for BCE model
- My implement models have slightly higher F1 score than model 0

Systematic comparison of performance of these models (Cont'd)

On bpRNA test set

Distribution plot

Violin plot

What did the model learn?

Convblocks learn local pairing rules; FC learn to maximize base pairs (Cont'd)

Convblocks learn local pairing rules; FC learn to maximize base pairs (Cont'd)

SPOT-RNA highlights

- Learning the pairing pattern from known secondary structures
- Can predict psuedoknots
- Can predict non-canonical base-pairing

SPOT-RNA defects

- Limited by training data sets: length bias (≤500), RNA type bias, data quality, data size, ...
- Only one structure produced for one sequence: unable to predict structure under different conditions; unable to predict structure ensemble.

So, integrating experimental data to predict RNA secondary structure can greatly improve the scope of application of the model

Learning ensemble base pairing probability

A ConvBlock + B hidden FC C Channels
Dropout=0.3
weight_decay=0
Adam optimizer, Ir=0.001
100 Epochs

training data: bpRNA training

Leaving the model that minimizes the MAE of the **validation** set

testing data: bpRNA testing

Mean absolute error (MAE)= $\frac{1}{N}\sum_{i=1}^{N}|\hat{y}_i-y_i|$

Loss/A/B/C	testing MAE
MSELoss_15_2_48	0.17030
MSELoss_25_2_64	0.16358(60 epochs)
BCELoss_15_2_48	0.17058
MSELoss_15_2_64	0.16009

MAE=~0.16 is too large!

What to do next?

- 1. Make model more complex (more layers, more channels...)
- 2. Learning pairing probability is too hard for model, so give more input (DP middle matrix) to model.
- 3. Use other training data
- 4. ...

Can we integrate SCFG to deep learning?

Stochastic Context-Free Grammar

$$s \rightarrow C s_1 G$$

$$s_1 \rightarrow A s_s U$$

$$s_2 \rightarrow b_1 b_2 b_3$$

$$b_1 \rightarrow U$$

$$b_2 \rightarrow U$$

$$b_3 \rightarrow C$$

Each deviation can be assigned a prob (Stochastic grammar)

- SCFG is usually used in homologous structure modelling, this requires multiple similar sequences to be aligned
- But we need to predict the structure of a sequence without any prior knowledge

Base on this model (pairing probability) How to integrate?

Reinforcement learning

Problem:

- 1. action space is too large;
- 2. different environment for different RNA