VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.

LAB REPORT on

Machine Learning (23CS6PCMAL)

Submitted by

Abhishek Yadav (1BM22CS009)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019

Feb-2025 to June-2025

B.M.S. College of Engineering,

Bull Temple Road, Bangalore 560019;;

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering

CERTIFICATE

This is to certify that the Lab work entitled "Machine Learning (23CS6PCMAL)" carried out by **Abhishek Yadav (1BM22CS009),** who is bonafide student of **B.M.S. College of Engineering.** It is in partial fulfillment for the award of **Bachelor of Engineering in Computer Science and Engineering** of the Visvesvaraya Technological University, Belgaum. The Lab report has been approved as it satisfies the academic requirements in respect of an Machine Learning (23CS6PCMAL) work prescribed for the said degree.

Dr. Seema Patil	Dr. Kavitha Sooda
Assistant Professor	Professor & HOD
Department of CSE, BMSCE	Department of CSE, BMSCE

Index

Sl. No.	Date	Experiment Title	Page No.
1	4-03-2025	Write a python program to import and export data using Pandas library functions	1-4
2	4-03-2025	Demonstrate various data pre-processing techniques for a given dataset	5-7
3	11-3-2025	Implement Linear and Multi-Linear Regression algorithm using appropriate dataset	8-16
4	18-3-2025	Build Logistic Regression Model for a given dataset	17-20
5	25-3-2025	Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample.	21-22
6	01-4-2025	Build KNN Classification model for a given dataset.	23-24
7	08-4-2025	Build Support vector machine model for a given dataset	25-27
8	15-5-2025	Implement Random forest ensemble method on a given dataset.	28-30
9	15-5-2025	Implement Boosting ensemble method on a given dataset.	31-33
10	29-5-2025	Build k-Means algorithm to cluster a set of data stored in a .CSV file.	34-36
11	29-5-2025	Implement Dimensionality reduction using Principal Component Analysis (PCA) method.	37-41

Github Link:

Write a python program to import and export data using Pandas library functions.

Code:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from scipy import stats
df=pd.read csv('/content/Dataset of Diabetes .csv')
df.head()
df.shape
print(df.info())
# Summary statistics
print(df.describe())
missing values=df.isnull().sum()
categorical cols = df.select dtypes(include=['object']).columns
print("Categorical columns identified:", categorical_cols)
if len(categorical_cols) > 0:
  df = pd.get_dummies(df, columns=categorical_cols, drop_first=True)
  print("\nDataFrame after one-hot encoding:")
  print(df.head())
else:
  print("\nNo categorical columns found in the dataset.")
from sklearn.preprocessing import MinMaxScaler, StandardScaler
import pandas as pd
numerical_cols = df.select_dtypes(include=['number']).columns
scaler = MinMaxScaler()
df_minmax = df.copy() # Create a copy to avoid modifying the original
df_minmax[numerical_cols] = scaler.fit_transform(df[numerical_cols])
scaler = StandardScaler()
df_standard = df.copy()
df_standard[numerical_cols] = scaler.fit_transform(df[numerical_cols])
print("\nDataFrame after Min-Max Scaling:")
print(df_minmax.head())
print("\nDataFrame after Standardization:")
print(df standard.head())
df1=pd.read_csv('/content/adult.csv')
df1.head()
```

from sklearn.preprocessing import MinMaxScaler, StandardScaler

```
import pandas as pd

numerical_cols = df1.select_dtypes(include=['number']).columns

scaler = MinMaxScaler()
    df_minmax = df1.copy() # Create a copy to avoid modifying the original
    df_minmax[numerical_cols] = scaler.fit_transform(df1[numerical_cols])

scaler = StandardScaler()
    df_standard = df1.copy()
    df_standard[numerical_cols] = scaler.fit_transform(df1[numerical_cols])
    print("\nDataFrame after Min-Max Scaling:")
    print(df_minmax.head())
    print("\nDataFrame after Standardization:")
    print(df_standard.head())
```

	Date: Page:
	Date - 4/3/2025 ML LAB-1
	write python code, compider gilename up "housing.csv"
	"import pandos as pd
	# load csv file into the Dataframe file name = 'bouring.csv' houring-data = pd. read csv (filename)
11	# Display information of all columns :") print I Information of all columns :") print I bousing data info (1)
111	the Display statistical information of all numerical scalum no describe()
iv	# Display the column of unique labels for 'ocean proximity' column: ") print I 'In Count of unique labels for 'ocean proximity ' column: ")
	the second of th
	## Display which attributes (valumns) have missing values count greater than zero print "In column with missing values count greater than zero:")
telo	Bafna Gold

	Date: Page:
	missing values = bousing data is nell sum!
	missing - columns = missing - values [missing - values >0]
	print (missing column)
	Ottlbut:
_1	Information of all columns:
	Range Index: 20140 entries, 0 to 20139
	Data columns 1 stotal la colums):
	# column Non-Null count Dtype
	O longitude 20140 non-null floor +4
	direction about the
	dtype: float 6410) object (1)
-	memory usage: 1.6 + MB
٥.	Statistical information of all numerical column.
	count longitude latitud housing median
	30140 30140
	total-bedroom population household
	20133 30640
-	
	total rooms media incom median volu
	20140 30140 30140
3.	count of unique labels for 'econ proximity'
	Column: ocean proximity
	LIM BRIOM 9136 ISLAND G
	INLAND 6551
	Near Aciam 2158
	Near Bay 2290

Demonstrate various data pre-processing techniques for a given dataset.


```
Code:
```

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler, StandardScaler, LabelEncoder
from google.colab import files
# Upload Files Manually in Google Colab
uploaded = files.upload()
# Load the datasets (replace filenames accordingly after uploading)
diabetes_df = pd.read_csv("diabetes.csv")
adult_df = pd.read_csv("adult.csv")
# --- Data Cleaning ---
# Handling Missing Values: Fill numerical columns with median, categorical with mode
for df in [diabetes df, adult df]:
  for col in df.columns:
    if df[col].isnull().sum() > 0:
       if df[col].dtype == "object":
         df[col].fillna(df[col].mode()[0], inplace=True)
       else:
         df[col].fillna(df[col].median(), inplace=True)
# Handling Outliers: Capping values beyond 1.5*IQR
for df in [diabetes_df, adult_df]:
  for col in df.select_dtypes(include=np.number).columns:
     Q1, Q3 = df[col].quantile(0.25), df[col].quantile(0.75)
    IQR = Q3 - Q1
    lower, upper = Q1 - 1.5 * IQR, Q3 + 1.5 * IQR
    df[col] = np.clip(df[col], lower, upper)
# --- Handling Categorical Data ---
for df in [diabetes df, adult df]:
  categorical_cols = df.select_dtypes(include="object").columns
  for col in categorical_cols:
     df[col] = LabelEncoder().fit_transform(df[col])
# --- Data Transformations ---
scaler minmax = MinMaxScaler()
scaler_standard = StandardScaler()
for df in [diabetes_df, adult_df]:
  numerical_cols = df.select_dtypes(include=np.number).columns
  df[numerical_cols] = scaler_minmax.fit_transform(df[numerical_cols])
  df[numerical_cols] = scaler_standard.fit_transform(df[numerical_cols])
# Save processed datasets
```

```
diabetes_df.to_csv("processed_diabetes.csv", index=False)
adult_df.to_csv("processed_adult.csv", index=False)
# Download processed files
files.download("processed_diabetes.csv")
files.download("processed_adult.csv")
import pandas as pd
from google.colab import files
# Upload Files Manually in Google Colab
uploaded = files.upload()
# Load the datasets
diabetes_df = pd.read_csv("diabetes.csv")
adult_df = pd.read_csv("adult.csv")
# Check for missing values
missing diabetes = diabetes df.isnull().sum()
missing_adult = adult_df.isnull().sum()
# Display columns with missing values
print("Missing values in Diabetes Dataset:")
print(missing_diabetes[missing_diabetes > 0])
print("\nMissing values in Adult Income Dataset:")
print(missing_adult[missing_adult > 0])
print("Missing Values Count in Diabetes Dataset:")
print(missing_diabetes)
print("\nMissing Values Count in Adult Income Dataset:")
print(missing_adult)
categorical_diabetes = diabetes_df.select_dtypes(include="object").columns.tolist()
categorical_adult = adult_df.select_dtypes(include="object").columns.tolist()
# Display categorical columns
print("Categorical Columns in Diabetes Dataset:", categorical_diabetes)
print("\nCategorical Columns in Adult Income Dataset:", categorical_adult)
```

Implement Linear and Multi-Linear Regression algorithm using appropriate dataset.


```
import numpy as np
# Given data
# x: Week numbers
# y: Sales in thousands
x = np.array([1, 2, 3, 4])
y = np.array([2, 4, 5, 9])
# Construct the design matrix X by adding a column of ones (for the intercept)
X = np.column\_stack((np.ones(x.shape[0]), x))
# Compute the coefficients using the formula: beta = (X^T X)^{-1} X^T y
XtX = X.T.dot(X)
                         # Compute X^T X
XtX inv = np.linalg.inv(XtX) # Invert X^T X
XtY = X.T.dot(y)
                         # Compute X^T y
beta = XtX_{inv.dot}(XtY) # Compute beta
# Display the computed coefficients
print("Computed coefficients (beta):", beta)
import matplotlib.pyplot as plt
# ... (previous code)
# Generate points for the regression line
x_{line} = np.linspace(x.min(), x.max(), 100) # Create 100 points for a smooth line
y \text{ line} = beta[0] + beta[1] * x \text{ line}
                                        # Calculate y-values for the line
# Plot the data points
plt.scatter(x, y, label='Data Points', color='blue')
# Plot the regression line
plt.plot(x_line, y_line, label='Linear Regression', color='red')
# Customize the plot
plt.xlabel('Week Number (x)')
plt.ylabel('Sales (thousands) (y)')
plt.title('Linear Regression Plot')
plt.legend() # Show the legend
plt.grid(True) # Show the grid
# Display the plot
plt.show()
```

```
import numpy as np
# Given data
x = np.array([8, 10, 12])
y = np.array([10, 13, 16])
# Construct the design matrix X (adding a column of ones for the intercept)
X = np.column stack((np.ones(x.shape[0]), x))
# Compute beta using the normal equation: beta = (X^T X)^{-1} X^T y
XtX = X.T.dot(X)
XtX_{inv} = np.linalg.inv(XtX)
XtY = X.T.dot(y)
beta = XtX_{inv.dot}(XtY)
# Extract coefficients
beta0, beta1 = beta
print("Intercept (beta0):", beta0)
print("Slope (beta1):", beta1)
# Predict the price for a 20-inch pizza
x new = 20
y_pred = beta0 + beta1 * x_new
print("Predicted price for a 20-inch pizza: $", y_pred)
import pandas as pd
from sklearn.linear_model import LinearRegression
# Load the data
income_data = pd.read_csv("canada_per_capita_income.csv")
# Assumed data columns: 'Year' and 'PerCapitaIncome'
print("Canada Income Data Head:")
print(income_data.head())
# Prepare feature and target
X_income = income_data[["year"]] # Predictor variable: Year
y_income = income_data["per capita income (US$)"] # Target variable: Per capita income
# Build and train the linear regression model
model income = LinearRegression()
model_income.fit(X_income, y_income)
# Predict per capita income for the year 2020
predicted_income = model_income.predict([[2020]])
print("\nPredicted per capita income for Canada in 2020:", predicted_income[0])
import matplotlib.pyplot as plt
# ... (previous code)
# Predict per capita income for the year 2020
```

```
predicted_income = model_income.predict([[2020]])
print("\nPredicted per capita income for Canada in 2020:", predicted_income[0])
# Plot the data points and the regression line
plt.scatter(X income, y income, color='blue', label='Actual Data')
plt.plot(X_income, model_income.predict(X_income), color='red', label='Regression Line')
# Plot the prediction for 2020
plt.scatter(2020, predicted_income[0], color='green', label='Prediction for 2020')
# Customize the plot
plt.xlabel('Year')
plt.ylabel('Per Capita Income (US$)')
plt.title('Canada Per Capita Income Prediction')
plt.legend()
plt.grid(True)
# Display the plot
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import LinearRegression
# Load the salary data
salary_data = pd.read_csv("salary.csv")
print(income data.head())
# Check for null values and handle them (e.g., imputation or removal)
if salary data.isnull().values.any():
  print("Null values found in the salary dataset. Handling null values...")
  # Example: Fill null values with the mean of the 'YearsExperience' column
  salary_data['YearsExperience'].fillna(salary_data['YearsExperience'].mean(), inplace=True)
  # Other options: Remove rows with nulls or use more sophisticated imputation methods
# Prepare feature and target
X_salary = salary_data[["YearsExperience"]] # Predictor variable: Years of Experience
v_salary = salary_data["Salary"]
                                        # Target variable: Salary
# Build and train the linear regression model
model salary = LinearRegression()
model_salary.fit(X_salary, y_salary)
# Predict salary for an employee with 12 years of experience
predicted_salary = model_salary.predict([[12]])
print("\nPredicted salary for an employee with 12 years of experience:", predicted_salary[0])
import matplotlib.pyplot as plt
# Plot the data points and the regression line
plt.scatter(X salary, y salary, color='blue', label='Actual Data')
```

```
plt.plot(X salary, model salary, predict(X salary), color='red', label='Regression Line')
# Plot the prediction for 12 years of experience
plt.scatter(12, predicted_salary[0], color='green', label='Prediction for 12 years')
# Customize the plot
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.title('Salary Prediction based on Experience')
plt.legend()
plt.grid(True)
# Display the plot
plt.show()
import pandas as pd
import numpy as np
from sklearn.linear model import LinearRegression
# Read the CSV file (ensure the file is uploaded in your Colab environment)
df = pd.read csv("hiring.csv")
# Rename columns for convenience
df.columns = ['experience', 'test_score', 'interview_score', 'salary']
print("Original Data:")
print(df)
# Define a mapping for text to numeric conversion for the 'experience' column
num map = {
  "zero": 0,
  "one": 1,
  "two": 2,
  "three": 3,
  "four": 4,
  "five": 5,
  "six": 6,
  "seven": 7,
  "eight": 8,
  "nine": 9,
  "ten": 10,
  "eleven": 11,
  "twelve": 12
}
# Function to convert experience values to numeric
def convert_experience(x):
  try:
     return float(x)
  except:
```

```
x_lower = str(x).strip().lower()
     return num_map.get(x_lower, np.nan)
# Convert the 'experience' column using the mapping
df['experience'] = df['experience'].apply(convert_experience)
# Convert 'test_score', 'interview_score', and 'salary' to numeric (coerce errors to NaN)
df['test score'] = pd.to numeric(df['test score'], errors='coerce')
df['interview_score'] = pd.to_numeric(df['interview_score'], errors='coerce')
df['salary'] = pd.to numeric(df['salary'], errors='coerce')
print("\nData After Conversion:")
print(df)
# Fill missing values in numeric columns using the column mean
df['experience'].fillna(df['experience'].mean(), inplace=True)
df['test score'].fillna(df['test score'].mean(), inplace=True)
df['interview_score'].fillna(df['interview_score'].mean(), inplace=True)
print("\nData After Filling Missing Values:")
print(df)
# Prepare the feature matrix X and target vector y
X = df[['experience', 'test_score', 'interview_score']]
y = df['salary']
# Build and train the Multiple Linear Regression model
model = LinearRegression()
model.fit(X, y)
# Predict salaries for the given candidate profiles
# Candidate 1: 2 years of experience, 9 test score, 6 interview score
candidate1 = np.array([[2, 9, 6]])
predicted_salary1 = model.predict(candidate1)
# Candidate 2: 12 years of experience, 10 test score, 10 interview score
candidate2 = np.array([[12, 10, 10]])
predicted_salary2 = model.predict(candidate2)
import matplotlib.pyplot as plt
# Create the plot
plt.figure(figsize=(10, 6)) # Adjust figure size for better visualization
plt.scatter(df['experience'], y, color='blue', label='Actual Salary') #Plot actual salary against years of
experience
# Plot the regression line (this is an approximation since it's a multi-variable regression)
# You can visualize a single feature against the predicted salary
plt.plot(df['experience'], model.predict(X), color='red', label='Regression Line')
# Highlight predictions
plt.scatter(candidate1[0, 0], predicted salary1, color='green', label='Candidate 1 Prediction')
```

```
plt.scatter(candidate2[0, 0], predicted salary2, color='purple', label='Candidate 2 Prediction')
# Add labels and title
plt.xlabel("Years of Experience")
plt.ylabel("Salary")
plt.title("Salary Prediction based on Experience, Test Score, Interview Score")
# Add a legend
plt.legend()
plt.grid(True)
plt.show()
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
# Read the CSV file (ensure the file is uploaded in your Colab environment)
df = pd.read csv("1000 Companies.csv")
# Display the first few rows
print("Original Data:")
print(df.head())
# --- Data Preprocessing ---
# For numeric columns, fill missing values with the column mean
numeric_cols = ["R&D Spend", "Administration", "Marketing Spend", "Profit"]
for col in numeric cols:
  df[col].fillna(df[col].mean(), inplace=True)
# For the categorical column 'State', fill missing values with a placeholder
df["State"].fillna("Unknown", inplace=True)
# Confirm that missing values are handled
print("\nMissing Values After Processing:")
print(df.isnull().sum())
# Separate the features and target variable
features = ["R&D Spend", "Administration", "Marketing Spend"] + \
      [col for col in df_encoded.columns if col.startswith("State_")]
X = df encoded[features]
y = df_encoded["Profit"]
# --- Prediction for a New Company ---
# Given sample data:
# R&D Spend = 91694.48, Administration = 515841.3, Marketing Spend = 11931.24, State = 'Florida'
new_company = pd.DataFrame({
  "R&D Spend": [91694.48],
  "Administration": [515841.3],
  "Marketing Spend": [11931.24],
  "State": ["Florida"]
```

```
})
# One-hot encode the 'State' column using the same strategy as training data
new company encoded = pd.get dummies(new company, columns=["State"], drop first=True)
# Align the new data's columns with the training features (fill missing columns with 0)
new_company_encoded = new_company_encoded.reindex(columns=X.columns, fill_value=0)
# Predict the profit using the trained model
predicted_profit = model.predict(new_company_encoded)
print("\nPredicted Profit for the New Company: $", round(predicted profit[0], 2))
import matplotlib.pyplot as plt
# Assuming 'df_encoded', 'features', 'X', 'y', 'model', 'new_company_encoded', and 'predicted_profit' are
defined from the previous code
# Create the plot
plt.figure(figsize=(10, 6))
# Scatter plot of actual profits vs. R&D Spend
plt.scatter(df_encoded["R&D Spend"], y, color='blue', label='Actual Profit')
# Plot the regression line (approximation for visualization)
plt.plot(df_encoded["R&D Spend"], model.predict(X), color='red', label='Regression Line')
# Highlight the new company's prediction
plt.scatter(new company encoded["R&D Spend"], predicted profit, color='green', label='New
Company Prediction')
# Add labels and title
plt.xlabel("R&D Spend")
plt.ylabel("Profit")
plt.title("Profit Prediction based on R&D Spend")
# Add a legend
plt.legend()
plt.grid(True)
plt.show()
```

Program 4
Build Logistic Regression Model for a given dataset.

	Data: Page:
	Date- 18/3/2025
	LAB-3
	Binary classification problem
	Civen a =-5
	9, = 0.8
	$\alpha = 3$
	2 = 90 + 0, x
	= (-5) +0.8x7 = D.P
ye beauty	
	4= 1 = 1 = 10-64
	y= 1 = 1 = D-64
0`	given threshold = 0:5
	0.44 >0.5
	· Hudand who studies for 7 hours will know
6)	deft mas function
E	2 = [7,1,0] for 3 classes
12 12 1	7 - C2X
	$Z_{X} = e^{ZX}$ $Z_{X} = e^{ZX}$
	Z1 = €3 = 3.39 ≈ 0.40 S
	e2+ c'+e0 7.39+ 2.73+1
	347 4-751
	1 April 1
	e216,460 1.30 + 5.13+1
	7 = 6° = 1
	23 = . C = 1 = 0 . D . D . D . D . D . D . D . D . D .
	Probabilities = 11-5%, 24.4%, 9.1%.

Hr.csv

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy score, classification report, confusion matrix
# Load dataset
df = pd.read_csv('HR_comma_sep.csv')
# Basic Info
print("Dataset Info:")
print(df.info())
print("\nFirst few rows:")
print(df.head())
plt.figure(figsize=(8, 6))
# sns.countplot(x='salary', hue='left', data=df)
sns.barplot(x='Department', y='satisfaction_level', data=df)
# plt.title('Salary vs Employee Retention')
plt.xlabel('Departments')
plt.ylabel('Satisfaction level')
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# Encode categorical variables (drop_first avoids dummy variable trap)
df_encoded = pd.get_dummies(df, columns=['salary', 'Department'], drop_first=True)
plt.figure(figsize=(15, 8))
sns.heatmap(df encoded.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')
plt.show()
plt.figure(figsize=(8, 5))
sns.countplot(x='salary', hue='left', data=df, order=['low', 'medium', 'high'])
plt.title('Impact of Salary on Employee Retention')
plt.xlabel('Salary Level')
plt.ylabel('Number of Employees')
plt.legend(title='Left', labels=['Stayed', 'Left'])
```

```
plt.show()
df_encoded = pd.get_dummies(df, columns=['Department', 'salary'], drop_first=True)
# Calculate the correlation matrix
correlation matrix = df encoded.corr()
# Extract the correlation with 'left' (employee retention)
correlation with left = correlation matrix['left'].sort values(ascending=False)
# Display the correlation
print(correlation_with_left)
plt.figure(figsize=(12, 6))
sns.countplot(x='Department', hue='left', data=df)
# Title and labels
plt.title('Impact of Department on Employee Retention')
plt.xlabel('Department')
plt.ylabel('Number of Employees')
plt.legend(title='Left', labels=['Stayed', 'Left'])
plt.xticks(rotation=45) # Rotate department names for readability
plt.show()
# Step 1: Preprocess the data
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear model import Logistic Regression
from sklearn.metrics import accuracy_score, classification_report
# Load the dataset
df = pd.read_csv('HR_comma_sep.csv')
# Select important features and encode categorical variable
df_encoded = pd.get_dummies(df, columns=['salary'], drop_first=True) # This encodes salary (low ->
low salary column)
# Step 2: Define features (X) and target (y)
X = df_encoded[['satisfaction_level', 'time_spend_company', 'salary_low']] # Using low salary as a
feature
y = df encoded['left'] # Target variable (whether the employee left or stayed)
# Step 3: Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Step 4: Build and train the logistic regression model
model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)
# Step 5: Make predictions
y pred = model.predict(X test)
```

Step 6: Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 100:.2f}%")
print("\nClassification Report:")
print(classification_report(y_test, y_pred))

Program 5
Use an appropriate data set for building the decision tree (ID3) and apply this knowledge to classify a new sample.

				Date: Page:
	Lo	b-15		Date = 26/2 200
	Building	Decision	Tres :	
8-3	Instance	Q a	a ₃	dassification ?
	1	Hot	High	No
	ລ	Hot	High	No
_	3	Cool	High	No
	74	110 t	High	No
	8	Hot	Normal	Yes
	Entropy	= -410	924-11	93 5
		a F .0 =	19	
•	for as	[1+ 3-]	= -1/1091	- 3 lng 3
			= b.8113	
	Scool	(-1, 40	= 0	
	Scraim	PIGE'S	- 4 XD.81	3-0=0.0715
	for o3:			
	Snign	(0+ 4	-3 = 0	
	Snorma	11+ 0-	J = 0	
	Scrain	fs as	b12E.0 = [
		(0	13)	
		/	Χ .	
		High	houng	
		NO	Yeb	

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
from sklearn.tree import plot tree
import matplotlib.pyplot as plt
data = {
  'a1': [True, True, False, False, False, True, True, True, False, False],
  'a2': ['Hot', 'Hot', 'Hot', 'Cool', 'Cool', 'Cool', 'Hot', 'Hot', 'Cool', 'Cool'],
  'a3': ['High', 'High', 'High', 'Normal', 'Normal', 'High', 'High', 'Normal', 'High'],
  'Classification': ['No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'No', 'Yes', 'Yes', 'Yes']
df = pd.DataFrame(data)
df.head()
label encoders = {}
for column in df.columns:
  le = LabelEncoder()
  df[column] = le.fit_transform(df[column])
  label encoders[column] = le
df.head()
X = df.drop('Classification', axis=1)
y = df['Classification']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
clf = DecisionTreeClassifier(criterion='entropy')
clf.fit(X train, y train)
y_pred = clf.predict(X_test)
accuracy = accuracy score(y test, y pred)
accuracy
```

Build KNN Classification model for a given dataset.

					Date: Pa	30: 9
			lab-6	,	Sate-1/4/2	260
8.8	KNN					
	lesson	Age	_yralas	Tax	get - Dist	town 3
	_A	18	So	N	52-8	
	3	23	SS	N	46-57	
		94	O F	N	31,95	5
	۵	41	h.0	Y	40.04	3
	3	43	70	У	31.04	١
	F	38	40	Y	40.07	
	Rank	Targel				
	E	. 7 0				
-	С	N	-			
	a	Υ.				
		Target				
	:. X	Α				
		-	11.			
				p 10	±11 d	
	10 64			308030		
	,		× ×	4		
V	Tulo					
	1-11					,
			-		- 171	
		,		1		
		1.00				
-	40.				Ar Section	
				1 113	-	
11						
					Bafna (

```
import pandas as pd
import numpy as np
from sklearn.model selection import train test split, GridSearchCV
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import OrdinalEncoder, StandardScaler
data = pd.read_csv("diabetes.csv")
data.head()
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
ss = StandardScaler()
X[["Pregnancies"]] = ss.fit_transform(X[["Pregnancies"]])
X[["Glucose"]] = ss.fit_transform(X[["Glucose"]])
X[["BloodPressure"]] = ss.fit transform(X[["BloodPressure"]])
X[["SkinThickness"]] = ss.fit_transform(X[["SkinThickness"]])
X[["Insulin"]] = ss.fit transform(X[["Insulin"]])
X[["BMI"]] = ss.fit\_transform(X[["BMI"]])
X[["DiabetesPedigreeFunction"]] = ss.fit transform(X[["DiabetesPedigreeFunction"]])
X[["Age"]] = ss.fit\_transform(X[["Age"]])
X.head()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
knn = KNeighborsClassifier()
param\_grid = \{"n\_neighbors": [1, 3, 5, 7, 9]\}
grid = GridSearchCV(estimator = knn, param_grid = param_grid, cv = 5, scoring = "accuracy")
grid.fit(X_train, y_train)
grid.best_params_
best = grid.best_estimator_
y_pred = best.predict(X_test)
accuracy_score(y_test, y_pred)
```

Build Support vector machine model for a given dataset.

Iris.csv

```
import pandas as pd
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.preprocessing import OrdinalEncoder
data = pd.read_csv("iris (1).csv")
data.head()
oe = OrdinalEncoder()
data[["species"]] = oe.fit_transform(data[["species"]])
data.head()
y = data.iloc[:, -1]
X = data.iloc[:, :-1]
X train, X test, y train, y test = train test split(X, y, test size = 0.2, random state = 42)
rbf_model = SVC(kernel='rbf')
rbf model.fit(X train, y train)
rbf model.score(X test,y test)
v pred = rbf model.predict(X test)
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
linear model = SVC(kernel='linear')
linear_model.fit(X_train,y_train)
linear_model.score(X_test,y_test)
y pred = rbf model.predict(X test)
print(confusion_matrix(y_test, y_pred))
```

Digits.csv

```
import pandas as pd
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
digits = load_digits()
digits.target
dir(digits)
X_train, X_test, y_train, y_test = train_test_split(df.drop('target',axis='columns'), df.target, test_size=0.3)
rbf_model = SVC(kernel='rbf')
rbf_model.fit(X_train, y_train)
linear_model = SVC(kernel='linear')
linear_model.fit(X_train,y_train)
```

Implement Random forest ensemble method on a given dataset.

	Data:	bade: Irl
	lab-8 Dote-	15/11/2025
	the second secon	11
	Suestions	
	Difference between decipion tree and Rom	nd on forest
	clossifier	
	Rand	an forest
	· A decipion tru ip a . It is on ent	
_	Single tree Structure when method that be	uilds multiple
	decisions are made by decision trees	and combines
	apiliting the dataset at their results	
	each node	
	. These reduce everytiting . These reduct	overfitting by
	by overaging muliple overaging mul	hel dicision
	especially with complex trees, which	
	datases improves perjo	
	· A model has high · A models +x	
	variance and low bias low variance	
	bias as they	
	predictions from	
	2. Discuss all the forameters of rounds	m for est
	classifier	1
	1. n-chimators = The no of trees in the	
	a. iteration: The numbers of times to	icius.
	3- max - depth :- The max depth of the tree	
1	4. min- sample split: The main no of sar	mph required
	to split on internal node	
<u> </u>	So min- Lamples haf i The min no of son	no required
711	to be featured in light node	D (
b_	6. mar-features: The no of Jeatures to co	noides when
-	100 king for the best applit	
		Bafna Gold
EXPLICIT CO.	II .	

	Date: Page	
	notes production of the second with the second seco	Code
7	muter gråddertestand. 1211 et estherlar : durtestand	imp
	oob- score; whether to use out of tag samples	frenc
	the generalization of the start	free
0	n jobs: The no of jobs to run in foralle	1200
	Low Lot lid 1) and pread to	ma
10	random state - controls the randomness of the	for
10.	essimatry.	
		- 9}
3.	Algorithm	x
57	Such 1: The data set is divided into infall	<u> </u>
	Leohires IX) and the torget labors IX	10
7	stipa: For each tru, weat a bootstrop dample	
	drom the dataset	
7	Sty 3: for each tree, randomly beleet a subset	
131	of Jeanies. It is detarmined by max - featives	
1.94	bayametas	
->	Sup 11: Build a decision tree on the loop Stropped	
	dobset using the believed subset of Jeahres	
7	Jubs: once all trell are built, make	
	predictions by aggregating the predictions of all	
0.	the oxers	
7	step b: Diving training, the datas bains that	
	was not models generalization performance	
7	ship? - The final model is evaluated using	
	metric line accuracy, confusion matrix	
E. H.	and Auc score depending on the task of hand	1
		1 100
and the second	the state of the s	14/1
	A STATE OF THE STA	
		-
	Bafna Gold	DE TRANSPORT

```
import numpy as np
import pandas as pd
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
import matplotlib.pyplot as plt
from sklearn.preprocessing import OrdinalEncoder
data = pd.read csv("iris (2).csv")
data.head()
oe = OrdinalEncoder()
data[["species"]] = oe.fit transform(data[["species"]])
data.head()
y = data.iloc[:, -1]
X = data.iloc[:, :-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
rf = RandomForestClassifier(n estimators=10, random state=42)
rf.fit(X_train, y_train)
y pred = rf.predict(X test)
accuracy = accuracy_score(y_test, y_pred)
accuracy
n_{estimators\_list} = [10, 50, 100, 200, 500, 1000]
accuracies = []
for n in n estimators list:
  rf = RandomForestClassifier(n_estimators=n, random_state=42)
  rf.fit(X train, y train)
  y_pred = rf.predict(X_test)
  accuracy = accuracy score(y test, y pred)
  accuracies.append(accuracy)
  print(f"Accuracy with n_estimators={n}: {accuracy:.4f}")
plt.plot(n_estimators_list, accuracies, marker='o')
plt.xlabel('Number of Trees (n_estimators)')
plt.ylabel('Accuracy')
plt.title('Random Forest Accuracy vs Number of Trees')
plt.show()
optimal n estimators = n estimators list[np.argmax(accuracies)]
print(f"Best accuracy is obtained with n_estimators={optimal_n_estimators}")
```

Implement Boosting ensemble method on a given dataset.

4	Date: Page:
	Lab-a "Adaboost"
7	Boosting is an empemble learning technique that
	combines multiple weak decision true to creak
	a strong learner It works by sequentially
	training models, where each new model focuses
	on mistakes made by previous ones. The model
	prediction are weighted based on their performance
	and the final prediction is made by combining the weighted predictions of this models
	6
	Parameters of AdaBoost dassifiers
*	best estimator labjed default = Non1) - based
	trees by default
*	n-estimatory (int) - the number of boosting
	rounds, or weak learners to train
*	learning rate (float) - Scaling factor for the
	contributor of each estimator lower volus make
ж	Algorithm 18 "SAMME, ISAMME - D.) old cult
1- 0	= 'SAMME - R' 1 booking algorith to use
	SAMME. P. Music probabilistic approaches
*	Jo remobras bostnos - (tri) Hold - mebras
×	dos [{1 lineax 1, bourn', caponential y) - loss
A.	Juner on to be used for boosting
7 5	6
7	Algorithm
	snitialize: bet the weights of all training
	samples equally
	Bafna Gold

	Osta: bada. VP
٦,	For each initialization In-estimators)
	Troin a base harner on weighted training
	det data
	calculate error of the model on training data
	compute models weight based on error
_	update Sample weight-increase weight of
	misdusified samples
3.	combine:
	The final model is the weighted burn of the
	basi harners, when learners with lower errors
	have higher weights

```
import numpy as np
import pandas as pd
from sklearn.model selection import train test split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
import matplotlib.pyplot as plt
from sklearn.preprocessing import OrdinalEncoder
data = pd.read csv("income.csv")
data.head()
y = data.iloc[:, -1]
X = data.iloc[:, :-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
rf = AdaBoostClassifier(n estimators=1000, random state=42)
rf.fit(X train, y train)
y_pred = rf.predict(X_test)
accuracy = accuracy score(y test, y pred)
accuracy
n estimators list = [10, 50, 100, 200, 500, 1000]
accuracies = []
for n in n_estimators_list:
  rf = AdaBoostClassifier(n_estimators=n, random_state=42)
  rf.fit(X train, y train)
  y_pred = rf.predict(X_test)
  accuracy = accuracy_score(y_test, y_pred)
  accuracies.append(accuracy)
  print(f"Accuracy with n_estimators={n}: {accuracy:.4f}")
plt.plot(n_estimators_list, accuracies, marker='o')
plt.xlabel('Number of Trees (n_estimators)')
plt.ylabel('Accuracy')
plt.title('Random Forest Accuracy vs Number of Trees')
plt.show()
optimal_n_estimators = n_estimators_list[np.argmax(accuracies)]
print(f"Best accuracy is obtained with n estimators={optimal n estimators}")
```

Build k-Means algorithm to cluster a set of data stored in a .CSV file.

	James Astronomy
>	ilbow method is a sectionique used to deterrise
	the ophimal numbers of clusters (x) in 1- means
	clustering. It involves plotting within elusion
	beene of Equates (wass) again the murchen
	of clusters and identifying the about pavis
-	when the decrease in west brain to live
4	of the abow point suggests the optimal
,	number of clubs ers
	· n-clusters: int defout = 8: numbered churte
	to form the well as the number of consider
	to general
	init: PK-mean, rondomy; chooses a method
	for initialization with different controld speed
•	max-ita: max number of iterations of
1	X-man algo for a single-run
·	tol, flow : Relative, tolirance with regards
-	to Probenive norms of the different in the
	clust a centre of two consecutive iterations
-	to declare convergend
-	verbose; verbosity made
<u> </u>	state making
	copy-X
1	Algorithm: & "lloyd", akor"

==Code:

```
# Import required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
# Load dataset
df = pd.read_csv("iris.csv")
# Use only petal_length and petal_width
X = df[["petal_length", "petal_width"]]
# Scale the features (helps with KMeans)
scaler = StandardScaler()
X_{scaled} = scaler.fit_transform(X)
# Elbow method to determine optimal K
inertia = \Pi
k_range = range(1, 11)
for k in k_range:
  kmeans = KMeans(n_clusters=k, random_state=42)
  kmeans.fit(X_scaled)
  inertia.append(kmeans.inertia_)
# Plot the elbow curve
plt.figure(figsize=(8, 5))
plt.plot(k_range, inertia, marker='o')
plt.title("Elbow Method for Optimal k")
plt.xlabel("Number of clusters (k)")
plt.ylabel("Inertia (Within-Cluster Sum of Squares)")
plt.grid(True)
plt.show()
# Find optimal k using "elbow" (visually)
optimal_k = 3 # for IRIS, elbow is usually at 3
print(f"Optimal number of clusters (k): {optimal_k}")
```

Implement Dimensionality reduction using Principal Component Analysis (PCA) method.

	Town page
	lob-11
	PCA
10	calculate the mean
2.	calculation of covariance matrix
3.	Eigen values of two covariance modific
1.	conversion of the eigen vector - Uniteigen vec
5	compedation of first principal component
	Geometrial marring of first principal
	companent
	a d
->	Reduce dimensions 2 to 1 using PCA
	Frature Gample 1 2 3 4
	X, 4 8 13 7
	X 3 11 4 5 14
Jich 1	· Calcular Mean
<u> </u>	x̄, = 8
	X2 = 8-c
Mch 3	· calculation of covariance media
	$\frac{\text{coverioner media}}{\text{cov}(X_1, X_2)} = \frac{\sum_{k=1}^{\infty} X_{1k} - \overline{X}_k ^2}{ X_{1k} - \overline{X}_k ^2}$
	= 1/1-8/2+18-8/2+113-8/2+17-8/2=17
	con (x, x2) = 1 (x, - x)(x2x - x2)
	N-1 K=1
	= -11
	$(\alpha y \mid x_0, x_1) = (\alpha y \mid x_1, x_2) = -11$
	(av x = / (ax , ax) ?
	N-1 K=1
	= 93
	$2 = [cov(x_1, x_1) cov(x_1, x_2)]$
	$\frac{(cov(x_0, x_1)) (cov(x_0, x_0))}{(cov(x_0, x_0))}$
	Bafna Gold

	Dete: Page: 1 d
Control of the San	
	Atteb 3: Eigen Values of the covariance thousis
4	matris in D = del (S-27)
	= 111-1 -11
	211 33-7
	= [14-7] (33-7) - (-11) 1/2 [-11)
	= 73 - 377 + 201
JE!	solving charmeristic equation we get
	λ=1 137 t- (SUS)
	- 30-3849, 6 bisi
	ma Caus
	step4: computation of the eigen vector
	larges ligen volu - 1,
	$\lambda = \lambda$
	V = [u] = V
	[0] = 15-7, 1) Y
	(0) = [14-71-11] = [41]
	[-11 a3-7,] (us)
a de la companya de l	> 114-1) u1 - 11 u2 = 0
	$-11\pi^{1} + (33 - 45) \Lambda^{3} = 0$
	11 1A-Y' P = 877 = 877
	4, =116, up = 114-2,1+ when & is any
	real number
1	Taking
	t=1, we get an eigen vector, corresponding
	to 7. 0. U1 = [1/4.7,]
	Bafna Gold

5' 1	Cola Paga
	11/1/1= (11/1/1/2) = (11/1/2) = (
	evilondes exos coss vegis vinu p. i. a.
	C1 = ["/ 11V,11]
	[VF22.0] = E0E8.0-]
	eigen vector is corresponding to eigen value 12 co = [2058.0] co = [0.820.0]
,	skps: compunison of JsI principal component
	$\begin{bmatrix} \overline{X} - y_1 X \end{bmatrix} \begin{bmatrix} 20E8 - d - PF22 \cdot d \end{bmatrix} \cdot \begin{bmatrix} 1X - X_1 X \end{bmatrix} \xrightarrow{T_1 Q}$
	= D.SS7 + (X, K - XT) -0-8303 (X - X - X - X -)
	code on neat tage:
	Bafna Gold

```
# Importing necessary libraries
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.model selection import train test split
from sklearn.svm import SVC
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn.decomposition import PCA
# Load dataset
df = pd.read csv("heart.csv")
# Separate features and target
X = df.drop("HeartDisease", axis=1)
y = df["HeartDisease"]
# Identify categorical columns
cat_cols = X.select_dtypes(include=['object']).columns.tolist()
# Label Encode binary categorical columns
label enc = LabelEncoder()
for col in cat_cols:
  if X[col].nunique() == 2:
    X[col] = label\_enc.fit\_transform(X[col])
    cat cols.remove(col)
# One-hot encode remaining categorical columns
X = pd.get_dummies(X, columns=cat_cols)
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Feature Scaling
scaler = StandardScaler()
X train scaled = scaler.fit transform(X train)
X_{test\_scaled} = scaler.transform(X_{test})
# Initialize models
models = {
  "Logistic Regression": LogisticRegression(max_iter=1000),
  "SVM": SVC(),
  "Random Forest": RandomForestClassifier()
```

```
# Store accuracy scores
accuracy_before_pca = { }
accuracy_after_pca = { }
# Training and evaluating models before PCA
for name, model in models.items():
  model.fit(X train scaled, y train)
  y_pred = model.predict(X_test_scaled)
  acc = accuracy score(y test, y pred)
  accuracy_before_pca[name] = acc
# Apply PCA
pca = PCA(n_components=0.95) # retain 95% variance
X_train_pca = pca.fit_transform(X_train_scaled)
X_{test_pca} = pca.transform(X_{test_scaled})
# Training and evaluating models after PCA
for name, model in models.items():
  model.fit(X train pca, y train)
  y_pred = model.predict(X_test_pca)
  acc = accuracy_score(y_test, y_pred)
  accuracy_after_pca[name] = acc
# Print accuracy comparison
print("Model Accuracy Comparison (Before vs After PCA):")
print(f"{'Model':<20} {'Before PCA':<15} {'After PCA':<15}")
for name in models.keys():
  print(f"{name:<20} {accuracy_before_pca[name]:<15.4f} {accuracy_after_pca[name]:<15.4f}")
```