上海交通大為

报告 实 验

班级 电院2353

组别 实验指导教师 实验日期 成绩

姓名马铭康

实验名称

交流参数的测量

- 一. 实验目的
 - · 学习并掌握常用交流仪表的使用方法
 - ·掌握测量交流元件参数的基本方法
 - ·掌握单相调压器的原理 及使用方法
- 二. 实验原理和电路图

1.正弦量 三要基 : y(t) = Am cos (wt + e)

Am最大值 W角频率

4初祖位

2、 定义 有效 值

 $1 \stackrel{\text{def}}{=} \int_{-\tau}^{\tau} \int_{0}^{\tau} i^{2} t t / dt$

对于正弦电流、电压 ,有 U= jum , I= jum , I= jum

3. 相量变换

你! 为正弦量 ilt) 对应的相量 , 相量的模束示正弦量的有效值, 相量的幅角表示正弦量的初相位

同样 对 u(t) ←> Ù = U∠0

- 4. 三麦法:201量交流参数(电压表、电流表、功率表)
 - ① 电阻器、电容器参数的测量

低频时 , 前者可看作纯电阻 , 后者可看作纯电容

测量电路 图欠下页

实 验报告

姓名

班级 实验名称 组 别 实验指导教师 实验日期 成绩

对于电阻 , 稳态叶有 ü = Ri (同相位)

电压租量滞后电流租量90°,有 对于电容,

 $\dot{u} = -j \frac{1}{wc} \dot{I} = -j \times_c \dot{I} = \frac{\dot{I}}{wc} \angle -90^\circ$

平均。及收功率为 。 故可浏得电容器电容

四电感线圈参数 的侧定

低颗时,电感线圈的匝间分布电管可以忽略,其笔或参数由电感线 屬的早线电阻和电感 L组成

 $Z_L = R_L + jwL = R_L + jX_L = |Z_L| \angle \varphi_L$

苦仍沿用上面的电路,则由一至引公式可测量电感线圈电感,电阻

 $|Z_L| = \frac{U}{L}$, $P = UI \cos \varphi = [\cdot |Z_L| \cdot I \cos \varphi_L = I^2 R_L]$

 $\cos \varphi_L = \frac{P}{VI}$, $R_L = \frac{P}{I^2} = \frac{1}{2} \left[\cos \varphi_L\right]$

 $X_L = \sqrt{|z_L|^2 - R_L^2} = |Z_L| \sin \varphi_L$, $L = \frac{X_L}{\omega} = \frac{X_L}{2\pi f}$

简便起欠,可参考三角形表示

上海交通大学

报 实 验 告

姓名

班级 实验名称

组别 实验指导教师 实验日期 成绩

另可用三电压沙表法,电路图如下:

由一至別公司可求电感和电阻:

 $U^{2} = (U_{1} + U_{2} \cos \varphi_{L})^{2} + (U_{2} \sin \varphi_{L})^{2}$ $\cos \varphi_{L} = \frac{U^{2} - U_{1}^{2} - U_{2}^{2}}{2U_{1}U_{2}}, |Z_{L}|$

121 = 4

 $R_L = |Z_L| \cos \varphi_L = \frac{U_2}{T} \cos \varphi_L$

5. 阻抗参数与申抗性质的测定

RLC 复阻+元: Z = (R+R)+j(X2-Xc)=R'+jX=1Z120 通过三麦注 计算得到尺 和义。

三、实验内容和表格

1. 定值电阻器的测量

应用三表注义川电阻。调节变压器的输出电压,使电流表的读数 为0.50A、0.70A、0.90AB+, 2014U、P后, 分别由R=U/I及R=4 计算电阻并比较 (选1000)

实验报告

	班级
姓名	实验名称

组 别 实验指导教师 实验日期 成绩

LIA	u/v	P/W	R=4/1 /0	R=U1/PA
 0.50	48	24.9	96	92 93
 0.70	69	49.9	99	95
0.90	88	81.5	98	95

2. 次1 电容器电容值,并观察功率表有无读数

应用三表法 , 调节变压器输出电压 ,使电压表读数分别为1600、

180V、200V,沟量I和P,并计算电容器的电容值(选12,MF)

	7 (1 # 0 8 8				
u/v	I/A	PIW	CIMF		
160	0.63	0.3	12.53		
180	0.707	0.4	12.50		
200	0.768	0.4	12.22		

3. 浏发电感器的电感量

应用三表注 ,词书输出电压 ,使电流表读数分别为0.504、0.704、

0.90AB+。池1号U和P,计算电思器的阻抗值

I/A	u/v	P/W	RL/s	LIH
0.50	9	1.3	5.2	0.055
0.70	13	2.5	5.	0.057
0.90	16	4.2	5, 2	0.054

实验报告

班级

组 别

实验日期

姓名

实验名称

实验指导教师

成绩

4. 复阻抗的测定

RLC串耳关作为复阻抗,调节输出电压,使电流表的读数分别分 0.50A、0.70A、0.90A,沟量复阻抗的总功率、总电压、电阻器电

压、电容器电压和电感器电压

I/A	P/W	ulv	UR/V	UclV	ULIV	Z=R+jX
0.50	26.7	135	49	133	9	106.8-248.0j
0.70	52.5	189	69	186	13	107.1-247.89
0.90	87.1	244	89	242	16	107.5-248.8j

5. 用三电压表法汉川量电感器的电感量

调节输出电压使电流复的读数分别为·0.5A、0.7A、0.9A 时测量

调压器输出电压 4、电阻器电压 4、和电感器电压 4、

		C 1-27 C 1- C 1				
IIA	ulv	U. /V	U2/V	RL/ss	L/ It	
0.50	52	49	9	4.5	0.055	
0.70	71	68	13	4.1	0.058	
0.90	93	88	71	4.0	0.059	

四. 注意事项

- _ . 分清电源的相线和中线
 - · 电源台上前,调压器置塞;电源 断开前,调压器置零
- 严禁带电改接线路
 - 不要接触金属裸露部分

实验报告

班级 组 别 实验日期 姓名 马铭康 实验名称 实验指导教师 成绩 交流参数的测量课后 一. 实验数据知处理 久税习报告 二. 实验任务 尺附图表 三. 思考题 1. 可以,功率因数表测得结果乘以电压和电流值等于功率表次慢结果 2. 可以,通过并联电容值逐渐增大的电容,若电流先减小后增大则 为感性, 苦不断增大则为容性

