

Amazon Project

By Faiz Khan

First we have to import basic Libraries

```
In [9]: import pandas as pd
import numpy as np
import seaborn as sns
import plotly.express as px
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
```

Now we have to load DataSet

n [11]:	df														
Out[11]:		Region	Country	Item Type	Sales Channel	Order Priority	Order Date	Order ID	Ship Date	Units Sold	Unit Price	Unit Cost	Total Revenue	Total Cost	Tota Profi
	0	Australia and Oceania	Tuvalu	Baby Food	Offline	Н	5/28/2010	669165933	6/27/2010	9925	255.28	159.42	2533654.00	1582243.50	951410.5
	1	Central America and the Caribbean	Grenada	Cereal	Online	С	8/22/2012	963881480	9/15/2012	2804	205.70	117.11	576782.80	328376.44	248406.3
	2	Europe	Russia	Office Supplies	Offline	L	5/2/2014	341417157	5/8/2014	1779	651.21	524.96	1158502.59	933903.84	224598.7
	3	Sub- Saharan Africa	Sao Tome and Principe	Fruits	Online	С	6/20/2014	514321792	7/5/2014	8102	9.33	6.92	75591.66	56065.84	19525.8
	4	Sub- Saharan Africa	Rwanda	Office Supplies	Offline	L	2/1/2013	115456712	2/6/2013	5062	651.21	524.96	3296425.02	2657347.52	639077.5

Applying Python's Basic Funtions

TH [SA].	u1.1311a().34111()			
Out[20]:	Region	0		
	Country	0		
	Item Type	0		
	Sales Channel	0		
	Order Priority	0		
	Order Date	0		
	Order ID	0		
	Ship Date	0		
	Units Sold	0		
	Unit Price	0		
	Unit Cost	0		
	Total Revenue	0		
		0		
		0		
	dtype: int64			
In [18]:	df.Country.value_	counts()	
Out[18]:	The Gambia		4	

In [15]:	df.des	cribe()						
Out[15]:		Order ID	Units Sold	Unit Price	Unit Cost	Total Revenue	Total Cost	Total P
	count	1.000000e+02	100.000000	100.000000	100.000000	1.000000e+02	1.000000e+02	1.000000€
	mean	5.550204e+08	5128.710000	276.761300	191.048000	1.373488e+06	9.318057e+05	4.416820€
	std	2.606153e+08	2794.484562	235.592241	188.208181	1.460029e+06	1.083938e+06	4.385379€
	min	1.146066e+08	124.000000	9.330000	6.920000	4.870260e+03	3.612240e+03	1.258020€
	25%	3.389225e+08	2836.250000	81.730000	35.840000	2.687212e+05	1.688680e+05	1.214436€
	50%	5.577086e+08	5382.500000	179.880000	107.275000	7.523144e+05	3.635664e+05	2.907680€
	75%	7.907551e+08	7369.000000	437.200000	263.330000	2.212045e+06	1.613870e+06	6.358288€
	max	9.940222e+08	9925.000000	668.270000	524.960000	5.997055e+06	4.509794e+06	1.719922€
In [17]:	df.mea	n().round(2)					
Out[17]:	Order ID Units Sold Unit Price Unit Cost Total Revenue Total Cost Total Profit dtype: float64		5.550204e+0 5.128710e+0 2.767600e+0 1.910500e+0 1.373488e+0 9.318057e+0 4.416820e+0	3 2 2 6 5				

Visualisation With Python

```
In [31]: plt.figure(figsize=(12,8))
    df.Country.value_counts().head(20).plot(kind="pie",autopct="%1.1f%%")
    plt.legend()
    plt.title("Countries in Which Amazon Makes The Most Deliveries")
```

Out[31]: Text(0.5, 1.0, 'Countries in Which Amazon Makes The Most Deliveries')

Countries in Which Amazon Makes The Most Deliveries

We can clearly see that in The Gambia amazon deliver most products so they shoould target more to the people of The Gambia and then Diibouti. Australia. Mexico. Sao Tome and Principe. Sierra Leone

```
1 [32]: df.Region.value_counts().head(25).plot(kind="bar",color="Red")
        plt.title("Regions in which Amazon is Most Famous")
        plt.xlabel("Regions")
        plt.ylabel("Value Count of Regions")
```



```
In [47]: df.item_type.value_counts().head(15).plot(kind="bar",color="green")
         plt.title("Most Demanding Thing On Amazon")
         plt.ylabel("Counts Of The Product")
         plt.xlabel("Products")
```

Out[47]: Text(0.5, 0, 'Products')


```
In [51]: df.sales_channel.value_counts().plot(kind="pie",autopct="%1.1f%%")
Out[51]: <Axes: ylabel='sales_channel'>
```


Amazon uses both Online Offline mode equally as their Sales Channel

In [60]: df["total_sales"]=df.total_revenue-df.total_cost

In [61]: df

Out[61]:

]: _		Region	Country	item_type	sales_channel	order_priority	order_date	order_id	ship_date	units_sold	unit_price	unit_cost	total_revenue	total_
	0	Australia and Oceania	Tuvalu	Baby Food	Offline	Н	5/28/2010	669165933	6/27/2010	9925	255.28	159.42	2533654.00	158224
	1	Central America and the Caribbean	Grenada	Cereal	Online	С	8/22/2012	963881480	9/15/2012	2804	205.70	117.11	576782.80	32837
	2	Europe	Russia	Office Supplies	Offline	L	5/2/2014	341417157	5/8/2014	1779	651.21	524.96	1158502.59	93390
	3	Sub- Saharan Africa	Sao Tome and Principe	Fruits	Online	С	6/20/2014	514321792	7/5/2014	8102	9.33	6.92	75591.66	5606
	4	Sub- Saharan Africa	Rwanda	Office Supplies	Offline	L	2/1/2013	115456712	2/6/2013	5062	651.21	524.96	3296425.02	265734
!	95	Sub- Saharan Africa	Mali	Clothes	Online	М	7/26/2011	512878119	9/3/2011	888	109.28	35.84	97040.64	3182
	96	Asia	Malaysia	Fruits	Offline	L	11/11/2011	810711038	12/28/2011	6267	9.33	6.92	58471.11	4336
	97	Sub- Saharan	Sierra Leone	Vegetables	Offline	С	6/1/2016	728815257	6/29/2016	1485	154.06	90.93	228779.10	13503

1]: plt.figure(figsize=(30,10)) sns.lineplot(x=df.Country.head(20),y=df.total_sales.head(20),hue=df.sales_channel.head(20),marker="o",markersize=

1]: <Axes: xlabel='Country', ylabel='total_sales'>

In [23]: px.bar(x=df.Country.head(25),y=df.total_revenue.head(25),color=df.sales_channel.head(25))


```
1 [92]: c=df.groupby("Country")["total_revenue"].unique().reset_index()
ı [95]: c
ıt[95]:
                     Country
                                                          total revenue
                     Albania
                                                             [247956.32]
                      Angola
                                                            [2798046.49]
           2
                                         [1904138.04, 140287.4, 445508.05]
                    Australia
           3
                      Austria
                                                             [1244708.4]
                   Azerbaijan
                                                  [3162704.8, 1316095.41]
           4
           ...
```

The Gambia [1583799.9, 2011149.63, 435466.9, 1419101.52]

[2559474.1, 3262562.1]

[2533654.0]

71

72

73

Turkmenistan

Tuvalu

```
In [113]: df.order_priority.value_counts().plot(kind="pie",autopct="%1.1f%%")
   plt.legend()
   plt.title("Order Priority")
```

Out[113]: Text(0.5, 1.0, 'Order Priority')

H is the highest order Prioprity of People in diffrent Countries

In [24]: px.bar(x=df.Country.head(25),y=df.total_cost.head(25),color=df.sales_channel.head(25),text=df.item_type.head(25))

In [26]: px.scatter(x=df.total_revenue,y=df.units_sold,color=df.sales_channel)


```
In [140]: sns.regplot(x=df.total_revenue,y=df.units_sold)
```

Out[140]: <Axes: xlabel='total_revenue', ylabel='units_sold'>

In [143]: sns.heatmap(df.corr(numeric_only=True),annot=True)

Out[143]: <Axes: >

Applying ML Algorithm

```
In [241]: from sklearn.model selection import train test split
In [259]: x=df.drop(["Region", "Country", "item_type", "sales_channel", "order_priority", "order_id", "order_date", "ship_date", "units_sold", "unit
In [260]: y=df.total_sales
In [262]: x.astype("int")
Out[262]:
                total revenue total cost total profit total sales
                     2533654
                               1582243
                                          951410
                                                     951410
                     576782
                               328376
                                          248406
                                                     248406
                     1158502
                               933903
                                          224598
                                                     224598
                      75591
                                56065
                                           19525
                                                     19525
                     3296425
                              2657347
                                          639077
                                                     639077
                      97040
                                31825
                                           65214
                                                      65214
                      58471
                                43367
                                           15103
                                                      15103
                               135031
                                           93748
                                                      93748
                      228779
                      471336
                               326815
                                          144521
                                                     144521
                     3586605
                              2697132
                                          889472
                                                     889472
            100 rows × 4 columns
In [263]: y.astype("int")
```

In [262]: x.astype("int")

Out[262]:

	total_revenue	total_cost	total_profit	total_sales
0	2533654	1582243	951410	951410
1	576782	328376	248406	248406
2	1158502	933903	224598	224598
3	75591	56065	19525	19525
4	3296425	2657347	639077	639077
95	97040	31825	65214	65214
96	58471	43367	15103	15103
97	228779	135031	93748	93748
98	471336	326815	144521	144521
99	3586605	2697132	889472	889472

100 rows × 4 columns

```
In [263]: y.astype("int")
```

Out[263]: 0

. . .

Name: total_sales, Length: 100, dtype: int32

```
In [264]: x train,x test,y train,y test=train test split(x,y,test size=0.25,random state=44)
In [265]: x_train.shape,x_test.shape
Out[265]: ((75, 4), (25, 4))
In [266]: from sklearn.preprocessing import MinMaxScaler
In [267]: norm=MinMaxScaler()
In [268]: norm
Out[268]: MinMaxScaler()
                              In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
                              On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [269]: x train=pd.DataFrame(norm.fit transform(x train))
In [270]: x test=pd.DataFrame(norm.fit transform(x test))
In [249]: x_train[["Region", "Country", "item_type", "sales_channel", "order_priority"]]=oe.fit_transform(x_train[["Region", "Country", "item_type", "item_typ
In [250]: x_test[["Region", "Country", "item_type", "sales_channel", "order_priority"]]=oe.fit_transform(x_test[["Region", "Country", "item_type")
In [271]: from sklearn.linear_model import LinearRegression
In [272]: lr=LinearRegression()
In [273]: lr
Out[273]: LinearRegression()
```

```
In [273]: lr
Out[273]: LinearRegression()
           In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
           On CitUub, the UTML representation is unable to render, please try loading this page with nbviewer.org.
click to expand output; double click to hide output
In [274]: lr.fit(x train,y train)
Out[274]: LinearRegression()
           In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
           On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [275]: y pred=lr.predict(x test)
In [276]: from sklearn.metrics import r2_score
In [277]: r2_score(y_pred,y_test)
Out[277]: 0.9984731605620133
```

Tableau'Dashboard of Amazon DataSet

Important Points

- We can clearly see that in The Gambia amazon deliver most products so they shoould target more to the people of The Gambia and then Djibouti, Australia, Mexico, Sao Tome and Principe, Sierra Leone.
- Sub-Saharan Africa is the region where Amazon delivers the most Products(182870 units sold).
- Clothes are most demanding product on Amazon that people prefer to buy.
- Amazon uses both Online Offline mode equally as their Sales Channel.
- H is the highest order Prioprity of People in diffrent Countries.
- Product with the Highest Total Cost Sold on Amazon is Office Supplies.
- · Amazon earns highest revenue from the country DJIBOUTI.
- Profit earn by Amazon in offine mode i.e of Rs 2,49,20,727 as compare to offline mode i.e of Rs 1,92,47,472.
- Highest Revenue that the Amazon gets is form Baby Food of Rs 1,03,50,328.