In [2]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [44]: a=pd.read_csv(r"C:\Users\user\Downloads\11_winequality-red.csv")
a

Out[44]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	qua
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	
4507	<i>E</i> 0	0.645	0 40	2.0	0.075	30 A	44.0	0 00E47	2 57	O 74	10.0	

In [45]: a=a.head(50)
a

Out[45]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
5	7.4	0.660	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4	5
6	7.9	0.600	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	9.4	5
7	7.3	0.650	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	10.0	7
8	7.8	0.580	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	9.5	7
9	7.5	0.500	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	10.5	5
10	6.7	0.580	0.08	1.8	0.097	15.0	65.0	0.9959	3.28	0.54	9.2	5
11	7.5	0.500	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	10.5	5
12	5.6	0.615	0.00	1.6	0.089	16.0	59.0	0.9943	3.58	0.52	9.9	5
13	7.8	0.610	0.29	1.6	0.114	9.0	29.0	0.9974	3.26	1.56	9.1	5
14	8.9	0.620	0.18	3.8	0.176	52.0	145.0	0.9986	3.16	0.88	9.2	5
15	8.9	0.620	0.19	3.9	0.170	51.0	148.0	0.9986	3.17	0.93	9.2	5
16	8.5	0.280	0.56	1.8	0.092	35.0	103.0	0.9969	3.30	0.75	10.5	7
17	8.1	0.560	0.28	1.7	0.368	16.0	56.0	0.9968	3.11	1.28	9.3	5
18	7.4	0.590	80.0	4.4	0.086	6.0	29.0	0.9974	3.38	0.50	9.0	4
19	7.9	0.320	0.51	1.8	0.341	17.0	56.0	0.9969	3.04	1.08	9.2	6
20	8.9	0.220	0.48	1.8	0.077	29.0	60.0	0.9968	3.39	0.53	9.4	6
21	7.6	0.390	0.31	2.3	0.082	23.0	71.0	0.9982	3.52	0.65	9.7	5
22	7.9	0.430	0.21	1.6	0.106	10.0	37.0	0.9966	3.17	0.91	9.5	5
23	8.5	0.490	0.11	2.3	0.084	9.0	67.0	0.9968	3.17	0.53	9.4	5
24	6.9	0.400	0.14	2.4	0.085	21.0	40.0	0.9968	3.43	0.63	9.7	6
25	6.3	0.390	0.16	1.4	0.080	11.0	23.0	0.9955	3.34	0.56	9.3	5
26	7.6	0.410	0.24	1.8	0.080	4.0	11.0	0.9962	3.28	0.59	9.5	5
27	7.9	0.430	0.21	1.6	0.106	10.0	37.0	0.9966	3.17	0.91	9.5	5
28	7.1	0.710	0.00	1.9	0.080	14.0	35.0	0.9972	3.47	0.55	9.4	5
29	7.8	0.645	0.00	2.0	0.082	8.0	16.0	0.9964	3.38	0.59	9.8	6
30	6.7	0.675	0.07	2.4	0.089	17.0	82.0	0.9958	3.35	0.54	10.1	5
31	6.9	0.685	0.00	2.5	0.105	22.0	37.0	0.9966	3.46	0.57	10.6	6
32	8.3	0.655	0.12	2.3	0.083	15.0	113.0	0.9966	3.17	0.66	9.8	5
33	6.9	0.605	0.12	10.7	0.073	40.0	83.0	0.9993	3.45	0.52	9.4	6
34	5.2	0.320	0.25	1.8	0.103	13.0	50.0	0.9957	3.38	0.55	9.2	5
35	7.8	0.645	0.00	5.5	0.086	5.0	18.0	0.9986	3.40	0.55	9.6	6
36	7.8	0.600	0.14	2.4	0.086	3.0	15.0	0.9975	3.42	0.60	10.8	6

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
3	8.1	0.380	0.28	2.1	0.066	13.0	30.0	0.9968	3.23	0.73	9.7	7
3	5.7	1.130	0.09	1.5	0.172	7.0	19.0	0.9940	3.50	0.48	9.8	4
3	7. 3	0.450	0.36	5.9	0.074	12.0	87.0	0.9978	3.33	0.83	10.5	5
4	10 7.3	0.450	0.36	5.9	0.074	12.0	87.0	0.9978	3.33	0.83	10.5	5
4	i 1 8.8	0.610	0.30	2.8	0.088	17.0	46.0	0.9976	3.26	0.51	9.3	4
4	1 2 7.5	0.490	0.20	2.6	0.332	8.0	14.0	0.9968	3.21	0.90	10.5	6
4	3 8.1	0.660	0.22	2.2	0.069	9.0	23.0	0.9968	3.30	1.20	10.3	5
4	6.8	0.670	0.02	1.8	0.050	5.0	11.0	0.9962	3.48	0.52	9.5	5
4	4. 6	0.520	0.15	2.1	0.054	8.0	65.0	0.9934	3.90	0.56	13.1	4
4	16 7.7	0.935	0.43	2.2	0.114	22.0	114.0	0.9970	3.25	0.73	9.2	5
4	1 7 8.7	0.290	0.52	1.6	0.113	12.0	37.0	0.9969	3.25	0.58	9.5	5
4	18 6.4	0.400	0.23	1.6	0.066	5.0	12.0	0.9958	3.34	0.56	9.2	5
4	19 5.6	0.310	0.37	1.4	0.074	12.0	96.0	0.9954	3.32	0.58	9.2	5

In [46]: a.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	50 non-null	float64
1	volatile acidity	50 non-null	float64
2	citric acid	50 non-null	float64
3	residual sugar	50 non-null	float64
4	chlorides	50 non-null	float64
5	free sulfur dioxide	50 non-null	float64
6	total sulfur dioxide	50 non-null	float64
7	density	50 non-null	float64
8	рН	50 non-null	float64
9	sulphates	50 non-null	float64
10	alcohol	50 non-null	float64
11	quality	50 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 4.8 KB

```
In [47]: a.columns
```

In [48]: a.head()

Out[48]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

In [49]: a.describe()

Out[49]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН
count	50.000000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000000	50.000000
mean	7.510000	0.552000	0.193200	2.644000	0.104140	15.560000	54.340000	0.996818	3.336600
std	1.085385	0.177546	0.167032	1.747203	0.067205	10.441597	34.769568	0.001177	0.146783
min	4.600000	0.220000	0.000000	1.200000	0.050000	3.000000	11.000000	0.993400	3.040000
25%	6.950000	0.415000	0.045000	1.800000	0.074000	9.000000	29.000000	0.996400	3.250000
50%	7.600000	0.585000	0.170000	2.000000	0.083500	13.000000	48.000000	0.996800	3.335000
75%	7.900000	0.653750	0.297500	2.475000	0.101750	17.000000	70.000000	0.997750	3.415000
max	11.200000	1.130000	0.560000	10.700000	0.368000	52.000000	148.000000	0.999300	3.900000

In [51]: sns.distplot(a['total sulfur dioxide'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarnin
g: `distplot` is a deprecated function and will be removed in a future version. Please
adapt your code to use either `displot` (a figure-level function with similar flexibil
ity) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[51]: <AxesSubplot:xlabel='total sulfur dioxide', ylabel='Density'>

In [53]: sns.heatmap(x1.corr())

Out[53]: <AxesSubplot:>


```
In [54]: x=a[['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
                  'chlorides', 'free sulfur dioxide', 'density',
                  'pH', 'sulphates', 'alcohol', 'quality']]
          y=a['total sulfur dioxide']
In [55]: from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [56]: from sklearn.linear model import LinearRegression
          lr=LinearRegression()
          lr.fit(x_train,y_train)
Out[56]: LinearRegression()
In [57]: print(lr.intercept )
          -4626.874052171854
In [58]: |coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
          coeff
Out[58]:
                           Co-efficient
               fixed acidity
                             -4.406215
              volatile acidity
                             19.838820
                 citric acid
                             66.739654
              residual sugar
                             -0.976906
                  chlorides
                            -55.642452
          free sulfur dioxide
                             2.443872
```

density

sulphates alcohol

quality

рΗ

4845.924668 -67.384856

-23.638588

14.543185

-13.410399

```
prediction=lr.predict(x_test)
In [59]:
         plt.scatter(y_test,prediction)
Out[59]: <matplotlib.collections.PathCollection at 0x22eadaa2910>
          140
          120
          100
           80
           60
           40
           20
                                               120
                  20
                        40
                              60
                                    80
                                         100
                                                     140
In [60]: print(lr.score(x_test,y_test))
         0.618163052939029
In [61]: from sklearn.linear_model import Ridge,Lasso
In [62]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[62]: Ridge(alpha=10)
In [63]: rr.score(x_test,y_test)
Out[63]: 0.4713149451319629
In [64]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[64]: Lasso(alpha=10)
In [65]: la.score(x test,y test)
Out[65]: 0.4142017292677008
In [66]: from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[66]: ElasticNet()
In [67]: print(en.coef_)
          [ 2.01602538 -0.
                                    1.19781769 1.06009876 -0.
                                                                         2.50526518
           -0.
                       -0.
                                                 4.02656888 -5.49531947]
```

```
In [68]: print(en.intercept_)
         -15.304938878432829
In [69]: print(en.predict(x_test))
         [ 21.16281322 56.61177189
                                     23.00937576 63.81902712 144.33601825
           53.57279247 39.52230902 66.08143049 45.39249435 50.96340153
           82.65133825 29.07083628 24.4600726
                                                  50.96340153 37.54315261]
In [70]: en.score(x_test,y_test)
Out[70]: 0.4647540720309572
In [71]: from sklearn import metrics
In [72]: | print("Mean Absolute Error", metrics.mean absolute error(y test, prediction))
         Mean Absolute Error 20.191042512307103
In [73]: print("Mean Squared Error", metrics.mean squared error(y test, prediction))
         Mean Squared Error 592.3665661925082
In [74]: | print(" Root Mean Squared Error", np.sqrt(metrics.mean_squared_error(y_test, prediction))
          Root Mean Squared Error 24.338581844316817
```