1

EECS 16A Spring 2021

Reference: Inner products

For this course we will use a standard inner product definition from matrix-vector multiplication:

$$\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + x_2 y_2 + \ldots + x_n y_v$$
, for any $\vec{x}, \vec{y} \in \mathbb{R}^n$.

In general, any inner product $\langle \cdot, \cdot \rangle$ on a real vector space $\mathbb V$ is a bilinear function that satisfies the following three properties:

- (a) **Symmetry:** $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$.
- (b) **Linearity:** $\langle \vec{x}, \vec{y} + \vec{z} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}, \vec{z} \rangle$ and $\langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$, where $c \in \mathbb{R}$ is a real number.
- (c) **Non-negativity:** $\langle \vec{x}, \vec{x} \rangle \ge 0$, with equality if and only if $\vec{x} = \vec{0}$.

Here \vec{x} , \vec{y} , and \vec{z} can be any vectors in the vector space \mathbb{V} .

The norm (or length) of a vector $\vec{x} = [x_1, x_2, ..., x_n]^T$ is defined using the inner product as

$$\|\vec{x}\| = \sqrt{\langle \vec{x}, \vec{x} \rangle} \equiv \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

1. Inner Product Properties

For this question we will verify our coordinate definition of the inner product

$$\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + x_2 y_2 + \ldots + x_n y_v$$
, for any $\vec{x}, \vec{y} \in \mathbb{R}^n$

indeed satisfies the key properties required for all inner products, but presently for the 2-dimensional case. Suppose $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^2$ for the following parts:

(a) Show symmetry $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$:

(b) Show linearity $\langle \vec{x}, c\vec{y} + d\vec{z} \rangle = c \langle \vec{x}, \vec{y} \rangle + d \langle \vec{x}, \vec{z} \rangle$, where $c \in \mathbb{R}$ is a real number.

(c) Show non-negativity $\langle \vec{x}, \vec{x} \rangle \ge 0$, with equality if and only if $\vec{x} = \vec{0}$:

2. Geometric Interpretation of the Inner Product

In this problem we explore the geometric interpretation of the Euclidean inner product, restricting ourselves to vectors in \mathbb{R}^2 .

(a) Derive a formula for the inner product of two vectors in terms of their magnitudes and the angle between them. The figure below may be helpful:

- (b) For each sub-part, identify any two (nonzero) vectors $\vec{x}, \vec{y} \in \mathbb{R}^2$ that satisfy the stated condition and compute their inner product.
 - i. Identify a pair of parallel vectors:
 - ii. Identify a pair of anti-parallel vectors:
 - iii. Identify a pair of perpendicular vectors:

3. Correlation

We are given the following two signals, $s_1[n]$ and $s_2[n]$ respectively.

Find the cross correlations, $corr_{s_1}(s_2)$ and $corr_{s_2}(s_1)$ for signals s[n] and s[n]. Recall

$$\operatorname{corr}_{x}(y)[k] = \sum_{i=-\infty}^{\infty} x[i]y[i-k].$$

!=-∞													
$\operatorname{corr}_{ec{s_1}}(ec{s_2})[k]$													
\vec{s}_1	0	0	1	2	3	0	0						
$\vec{s}_2[n+2]$													
$\langle \vec{s}_1, \vec{s}_2[n+2] \rangle$	-	+	+	+	+	+	+ =						
\vec{s}_1	0	0	1	2	3	0	0						
$\vec{s}_2[n+1]$													
$\langle \vec{s}_1, \vec{s}_2[n+1] \rangle$	-	+	+	+	+	+	+ =						
	'												
\vec{s}_1	0	0	1	2	3	0	0						
$\vec{s}_2[n]$													
$\langle \vec{s}_1, \vec{s}_2[n] \rangle$	+	-	-	+ -	+ -	+ +	- =						
(1/ 2[]/													
\vec{s}_1	0	0	1	2	3	0	0						
$\vec{s}_2[n-1]$													
$\langle \vec{s}_1, \vec{s}_2[n-1] \rangle$	-	+	+	+	+	+	+ =						

$$\operatorname{corr}_{\vec{s_2}}(\vec{s_1})[k]$$

\vec{s}_2	0	0	2	2	4	3	0	0
$\vec{s}_1[n+2]$								
$\langle \vec{s}_2, \vec{s}_1[n+2] \rangle$	+	-	+	+	+	+	+	=