Convex optimization exercise sheet

Mathurin Massias

Contents

1	Convexity	1
2	Least squares	2
3	Gradient	3
4	Convexity inequalities	3
5	Gradient descent	4
6	Constrained optimization	4
7	Subdifferential and subgradients	5
8	Continuous time	5
9	Bregmaneries	5
10	Sparsity	6
11	Logistic regression	6
12	Fixed point schemes	6
13	Fenchel transforms	7

Notation

For a linear operator A, its adjoint is A^* and its Moore-Penrose pseudoinverse is A^{\dagger} . \mathcal{X} and \mathcal{Y} are two Hilbert spaces. Number of coffee cups (\clubsuit) indicates difficulty of exercise.

1 Convexity

Exercise 1.1. • Show that local minimizers of convex functions are global minimizers.

Exercise 1.2 (Pointwise supremum preserves convexity). \clubsuit Let $(f_i)_I$ be a family of convex functions (not necessarily countable). Show that $x \mapsto \sup_{i \in I} f_i(x)$ is convex.

Exercise 1.3 (Precomposition by linear operator preserves convexity). \clubsuit Let $f: \mathcal{Y} \to \mathbb{R}$ be a convex function and $A: \mathcal{X} \to \mathcal{Y}$ a linear operator. Show that f(A) is convex (on \mathcal{X}).

Exercise 1.4 (Misconceptions on existence of minimizers). * Provide an example of convex function which does not admit a minimizer.

What if the function is continuous and lower bounded?

Exercise 1.5. • Show that a strictly convex function has at most one minimizer.

Exercise 1.6 (Jensen's inequality). \clubsuit Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex. Let $n \in \mathbb{N}, x_1, \ldots, x_n \in \mathbb{R}^d$, and let $\lambda_1, \ldots, \lambda_n$ be positive scalars summing to 1. Show that $f(\sum_{i=1}^n \lambda_i x_i) \leq \sum_{i=1}^n \lambda_i f(x_i)$.

Exercise 1.7. Show that the sublevel sets of a convex function are convex. Find a function with convex sublevel sets which is not convex.

Exercise 1.8 (First order characterization of convex functions). $\blacksquare \blacksquare$ Let $f : \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. Show that the following are equivalent:

- 1. f is convex
- 2. f lies above its tangents: $\forall x, y \in \mathbb{R}^d, f(x) \geq f(y) + \langle \nabla f(y), x y \rangle$
- 3. ∇f is monotone: $\forall x, y \in \mathbb{R}^d, \langle \nabla f(x) \nabla f(y), x y \rangle \geq 0$

Exercise 1.9 (Continuity). Show that a convex function is locally Lipschitz (hence continuous) on the interior of its domain.

Exercise 1.10 (Characterization of strongly convex functions in the Euclidean case). \clubsuit Show that f is μ -strongly convex with respect to the Euclidean norm if and only if $f - \frac{\mu}{2} \| \cdot \|^2$ is convex.

Exercise 1.11. • Show that a strongly convex function admits exactly one minimizer.

2 Least squares

Exercise 2.1. \clubsuit Let $A \in \mathbb{R}^{n \times d}$. Show that $\operatorname{Ker} A = \operatorname{Ker} A^*A$.

Show that for any $b \in \mathbb{R}^n$ there exist a solution to $A^*Ax = A^*b$.

Show that there does not always exist a solution to $A^*Ax = A^*b$ in the infinite dimensional case (when A is a bounded linear operator between infinite dimensional Hilbert spaces.)

Exercise 2.2. \clubsuit Let $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$. Show that solving Ordinary Least Squares:

$$\min \frac{1}{2} ||Ax - b||^2 , \qquad (2.1)$$

amounts to solving $A^*Ax = A^*b$ (aka the normal equations).

Show that the set of solutions is:

$$A^{\dagger}b + \operatorname{Ker} A$$
.

Exercise 2.3. \clubsuit When is $x \mapsto ||Ax - b||^2$ strictly convex? Strongly convex?

Exercise 2.4 (Least squares with intercept). $\blacksquare \blacksquare$ An intercept x_0 is a constant scalar term in the linear prediction function, that becomes $a \mapsto a^{\top}x + x_0$. Fitting an intercept can be done by adding a column of 1s to A. Alternatively, show that the solution of least squares with intercept,

$$(\hat{x}, \hat{x}_0) \in \underset{x \in \mathbb{R}^d, x_0 \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{2} ||Ax - b - x_0 \mathbf{1}||^2$$
 (2.2)

is given by:

$$\hat{x} = \hat{x}_c \quad , \tag{2.3}$$

$$\hat{x}_0 = \frac{1}{n} \sum_{i=1}^{n} (a_i^{\top} \hat{x} - b_i) , \qquad (2.4)$$

where \hat{x}_c is the solution of least squares without intercept on centered data A_c and b_c (versions of A and b where the rowwise mean has been subtracted).

Exercise 2.5 (Gradient descent on isotropic parabola). \clubsuit Let $A \in \mathbb{R}^{n \times d}$ be such that the condition number of $A^{\top}A$ is equal to 1. Show that gradient descent with stepsize 1/L converges in a single iteration for the problem $\min \frac{1}{2} ||Ax - b||^2$.

3 Gradient

Exercise 3.1. Provide an example of setting where the gradient is not equal to the vector of partial derivatives.

Exercise 3.2. • Show that the gradient of a function is orthogonal to the level lines of that function.

Exercise 3.3. \clubsuit Compute the gradients and Hessians of $x \mapsto ||x||^2$, $x \mapsto ||x||$, $x \mapsto a^\top x$. Is it true that the gradient of $x \mapsto \frac{1}{2}x^\top Ax$ is equal to Ax?

Exercise 3.4. \clubsuit Let $A \in \mathbb{R}^{n \times d}$, $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^d \to \mathbb{R}$ defined as g(x) = f(Ax) for all $x \in \mathbb{R}^d$. Show that

$$\nabla g(x) = A^* \nabla f(Ax) ,$$

$$\nabla^2 g(x) = A^* \nabla^2 f(Ax) A .$$

Exercise 3.5. $\blacksquare \blacksquare$ Compute the gradient of the logdet function, $M \mapsto \log \det(M)$.

4 Convexity inequalities

Exercise 4.1. $\clubsuit \clubsuit$ Let f be a convex and differentiable function. Let L > 0. Show that the following properties are equivalent:

- 1. $\forall x, y, \|\nabla f(x) \nabla f(y)\| \le L\|x y\|$
- 2. $\forall x, y, f(x) \le f(y) + \langle \nabla f(y), x y \rangle + \frac{L}{2} ||x y||^2$
- 3. $\forall x, y, \frac{1}{L} \|\nabla f(x) \nabla f(y)\|^2 \le \langle x y, \nabla f(x) \nabla f(y) \rangle$

Exercise 4.2. Let f be a twice differentiable L-smooth function. Show that for all $x \in \mathbb{R}^d$, $\nabla^2 f(x) \leq L \operatorname{Id}$.

Exercise 4.3. Let f be a differentiable function. Show that the following properties are equivalent:

- 1. f is μ -strongly convex
- 2. $\forall x, y, f(x) \ge f(y) + \langle \nabla f(y), x y \rangle + \frac{\mu}{2} ||x y||^2$
- 3. $\forall x, y, \mu ||x y||^2 \le \langle x y, \nabla f(x) \nabla f(y) \rangle$

¹i.e. the ratio between the largest and the smallest eigenvalues of $A^{\top}A$.

Exercise 4.4. Let f be a twice differentiable μ -strongly convex function. Show that for all $x \in \mathbb{R}^d$, $\mu \operatorname{Id} \preceq \nabla^2 f(x)$.

Exercise 4.5 (Polyak-Łojasiewicz inequality). $\blacksquare \blacksquare$ Let f be a μ -strongly-convex and differentiable function. Let $x^* = \operatorname{argmin} f(x)$. Show that f satisfies the Polyak-Łojasiewicz inequality:

$$\mu(f(x) - f(x^*)) \le \frac{1}{2} \|\nabla f(x)\|^2$$
.

Provide an example of function which is not strongly convex, but satisfies the inequality.

Exercise 4.6. Let f be a L-smooth μ -strongly convex function. Show that for any x, y,

$$\frac{\mu L}{\mu + L} \|x - y\|^2 + \frac{1}{L + \mu} \|\nabla f(x) - \nabla f(y)\|^2 \le \langle x - y, \nabla f(x) - \nabla f(y) \rangle.$$

Exercise 4.7 (3 point descent lemma). \clubsuit Let f be convex and L-smooth. Show that for any triplet (x, y, z),

$$f(x) \le f(y) + \langle \nabla f(z), x - y \rangle + \frac{L}{2} ||x - z||$$
.

5 Gradient descent

Exercise 5.1 (Exercise 8.2 in discrete time). $\clubsuit \clubsuit$ Let $f : \mathbb{R}^d \to \mathbb{R}$ be a convex, twice differentiable L-smooth function.

Show that the iterates of gradient descent on f with step size $0 < \alpha < 2/L$ have decreasing gradient norm.

Can you show it if f is not twice differentiable?

Is it still true when f is not convex?

Exercise 5.2. Provide a finite dimensional example of convex L-smooth function f such that gradient descent with stepsize < 2/L diverges.

Exercise 5.3 (Gradient descent on Lipschitz function without knowing the horizon). $\clubsuit \clubsuit$ For gradient descent on a Lipschitz differentiable objective, the classical proof assumes that the total number of iterations t is known in advance, to set the fixed stepsize $\eta \propto 1/\sqrt{t}$.

Show that using a decreasing stepsize $\eta_k \propto 1/\sqrt{k}$ leads to a rate of order $\log k/\sqrt{k}$ on the ergodic or best iterate.

6 Constrained optimization

Exercise 6.1. \clubsuit Show that the indicator function ι_C is convex (resp. lower semicontinuous, resp. proper) if C is convex (resp. closer, resp. nonempty).

Exercise 6.2 (Global optimality condition for constrained convex optimisation). \clubsuit Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex differentiable function, let C be a convex subset of \mathbb{R}^d . Show that $x^* \in \operatorname{argmin}_{x \in C} f(x)$ if and only if

$$\forall x \in C, \langle \nabla f(x^*), x - x^* \rangle \ge 0$$
.

Exercise 6.3. $\blacksquare \blacksquare$ Let C be a non-empty closed convex set. Show that for all $x \in C, y \in \mathbb{R}^d$,

$$||x - y||^2 \ge ||x - \Pi_C(y)||^2 + ||y - \Pi_C(y)||^2$$
.

In particular this shows that $||y-x|| \ge ||x-\Pi_C(y)||$, which says that projection can only get you closer to optimum (taking $x = x^*$, if your current iterate is y).

7 Subdifferential and subgradients

Exercise 7.1. • Provide an example of convex function which has an empty subdifferential at some point of its domain.

Exercise 7.2. Let $f: \mathbb{R}^d \to \mathbb{R}$ be separable: $f(x) = \sum_{i=1}^d f_i(x_i)$ where the f_i 's are functions of the real variable.

Show that $\partial f(x) = \partial f_1(x_1) \times \ldots \times f_d(x_d)$.

Compute the subdifferential of the ℓ_1 -norm.

Exercise 7.3. \clubsuit Show that the subdifferential of a function at a point writes as an intersection of half-spaces. Show that it is convex and closed.

Exercise 7.4. \clubsuit Show that the subdifferential of ι_C at $x \in C$ is equal to the normal cone of C at x, that is:

$$\mathcal{N}_C(x) = \{ u : \forall z \in C, \langle u, z - x \rangle \le 0 \}$$

Exercise 7.5. $\blacksquare \blacksquare$ Compute the subdifferential of the Euclidean norm at any point in \mathbb{R}^d .

Exercise 7.6 (Exercise 6.2 revisited). • Show that the first order optimality condition for differentiable convex constrained optimization rewrites:

$$x^* \in \underset{\mathcal{C}}{\operatorname{argmin}} f(x) \Leftrightarrow -\nabla f(x^*) \in \mathcal{N}_C(x^*)$$
.

Exercise 7.7 (Non emptiness of subdifferential). $\blacksquare \blacksquare \blacksquare$ Let $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ be convex. Show that if $x \in \operatorname{int}(\operatorname{dom} f)$, $\partial f(x)$ is non empty and compact.

Show that if x lies on the boundary of dom f, $\partial f(x)$ is either empty or unbounded.

Exercise 7.8. \clubsuit This exercise is in dimension 2. Let C_1 and C_2 be two closed balls of strictly positive radius, that share a single point. Show that $\partial(\iota_{C_1} + \iota_{C_2})$ is a strict superset of $\partial\iota_{C_1} + \iota_{C_2}$ at this point.

8 Continuous time

Exercise 8.1 (Preliminaries). \clubsuit Let $f: \mathcal{X} \to \mathbb{R}$ be twice differentiable. Let $\theta: \mathbb{R}_+ \to \mathcal{X}$ be differentiable. Show that

$$\frac{d}{dt}f(\theta(t)) = \langle \nabla f(\theta(t)), \dot{\theta}(t) \rangle ,$$

$$\frac{d}{dt}\nabla f(\theta(t)) = \nabla^2 f(\theta(t))\dot{\theta}(t) .$$

Exercise 8.2 (Everything decreases in gradient flow). \clubsuit Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex twice differentiable function. Let x(t) be the gradient flow on f, defined as a solution of $\dot{x}(t) = -\nabla f(x(t))$.

Show that f(x(t)) decreases.

Show that $\|\nabla f(x(t))\|$ decreases.

Show that $||x(t) - x^*||$ decreases for any minimizer x^* of f.

9 Bregmaneries

Exercise 9.1 (Some misconceptions). • Why is a Bregman divergence not "like a distance" in general? Is it "like a distance" in the Euclidean case?

Exercise 9.2 (KL is Bregman divergence of negative entropy). Show that the Bregman divergence associated to negative entropy $x \mapsto \sum_{i=1}^{d} x_i \log(x_i)$ is the Kullback-Leibler divergence:

$$D(x,y) = \sum_{1}^{d} y_i \log \left(\frac{x_i}{y_i}\right) .$$

Exercise 9.3. \clubsuit Let $x, y, z \in \mathbb{R}^d$ and D be a Bregman divergence associated to a differentiable convex function ϕ .

Show that

$$D(x,y) + D(z,x) - D(z,y) = \langle \nabla \phi(x) - \nabla \phi(y), x - z \rangle$$
.

How is this a generalization of Pythagoras theorem?

Exercise 9.4 (Exercise 6.3 for Bregman projection). $\clubsuit \clubsuit$ Let ϕ a differentiable convex function. Let D be the associated Bregman divergence. Let C be a non-empty closed and convex subset of \mathbb{R}^d , let $z \in \mathbb{R}^d$ and $y = \operatorname{argmin}_{y' \in C} D(y', z)$ its Bregman projection onto C. Show that for all $x \in C$:

$$D(x,z) \ge D(x,y) + D(y,z) .$$

This definitely shows that D is not "like a distance".

Exercise 9.5 (Bregman projection onto the simplex). Show that the Bregman projection of $x \in \mathbb{R}^d_+$ onto the simplex Δ , when the potential is the negative entropy, is $(x_i/\sum_1^d x_i)_i$. Compare to the Euclidean projection.

10 Sparsity

Exercise 10.1. \clubsuit It is often claimed that the ℓ_1 -norm is not differentiable at 0. Do you know a norm which is differentiable at 0?

Exercise 10.2 (Huber function). $\blacksquare \blacksquare$ Compute $\|\cdot\|_1 \square \frac{\rho}{2} \|\cdot\|^2$. In which sense is it a smooth approximation of the ℓ_1 -norm?

11 Logistic regression

Exercise 11.1. \clubsuit Let $b \in \{-1,1\}^n$, $A \in \mathbb{R}^{n \times d}$. Let $f(x) = \sum_{i=1}^n \log(1 + \exp(-b_i a_i^\top x))$. Compute ∇f , $\nabla^2 f$.

Is f convex? Strictly convex? Strongly convex?

 $\blacksquare \blacksquare Compute f^*.$

12 Fixed point schemes

Exercise 12.1. $\blacksquare \blacksquare$ Let $T: \mathcal{X} \to \mathcal{X}$ be a q-contractive operator, meaning that for all $x \in \mathcal{X}$,

$$||Tx|| \le q||x|| ,$$

with q < 1.

Show that T admits at most one fixed point.

Show that the sequence defined by $x_0 \in \mathcal{X}$, $x_{k+1} = Tx_k$ converges, and that the limit is a fixed point. Show that, denoting x^* this fixed point, the sequence x_k converges to x^* at linear speed.

Exercise 12.2. \clubsuit Show that the results of Exercise 12.1 do not hold when q=1.

13 Fenchel transforms

Exercise 13.1. Compute the Fenchel transform of the ℓ_p -norm for $p \in [1, +\infty]$.

Exercise 13.2. Let $f: \mathbb{R}^d \to \mathbb{R}$ be separable: $f(x) = \sum_{i=1}^d f_i(x_i)$ where the f_i 's are functions of the real variable.

Show that $f^*(u) = (f_i^*(u_i))_{i \in [d]}$.

Exercise 13.3 ("Lipschitzing trick"). Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex.

Show that f if M-Lipschitz if and only if the domain of f^* is included in the Euclidean ball of center 0 and radius M.

Exercise 13.4 (Convolution smoothing). Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex. Show that $f \square \frac{L}{2} ||\cdot||^2$ if L-smooth.