

COURSE OUTLINE

Course Code	22541				
Course Title	Computer Architecture				
Course Prerequisite(s) /	22242 Computer Organization and Assembly				
Credit Hours	3 credit hours				
Course Type	Lecture				
Course Delivery Method	Face to Face				
Required or Elective	Required for Computer Science				
Semester	Spring 2022/2023				
Instructor Name	Dr. Awos Kanan				
Instructor's email	a.kanan@psut.edu.jo				
Instructor's Office Number	EE 453				
Course Schedule	12:00 p.m. –1:00 p.m.(M, V				
Office Hours	11:00 a.m12:00 p.m.(S,T				
Assessment Tools &	Assessment Tool	Weight		Additional Informa	tion
Grading Policy	First Exam	25%			
	Second Exam	25%			
	Final Exam	40%			
Catalog Description	Quizzes Computer Evolution, Computer Evolution, Computer Evolution	10%		3 Quizzes	
General Course Objectives	Computers (RISCs) architecture. A RISC assembly language. Single Cycle and Pipelined Processors. Pipelining Hazards. Memory & Storage Hierarchy: caches & performance, memory organization and virtual memory. Parallel Processing. SMPs, clusters, and NUMA systems. This course introduces advanced topics in CPU design and operation. Students				
	will learn the state-of-the-art techniques used in modern CPU designs. In addition, it will introduce the modern trends in parallel computing. Students will also learn the fundamentals of memory hierarchy especially caches and virtual memory, basic storage and I/O concepts.				
Textbook and Related	1- Computer Organization & Design RISC-V Edition: The Hardware/Software				
Course Materials	Interface, 2 nd Ed. David Patterson & John Hennessy, Morgan Kaufmann, 2020. 2- PSUT e-learning site: http://www.elearning.psut.edu.jo/				
Topics Covered and Level	Computer Evolution + Computer Performance			Week 1	
of Coverage	Computer Performance + MIPS Architecture			Week 2	
	MIPS assembly language -Part I			Week 3	
	MIPS assembly language -Part II + Floating-Point			Week 4	
	CPU Design + Single Cycle Processors			Week 5	
	Single Cycle Processors – Basic building blocks			Week 6	
	Single Cycle Processors – Data path Construction			Week 7	
	Pipelined Cycle Processors – Pipeline Stages				Week 8
	Pipelined Cycle Processors – Pipeline Construction				Week 9
	Pipelining Hazards + Memory & Storage				Week 10
	Memory Organization				Week 11
				Week 12	
	Virtual Memory				Week 13
	Parallel Processing + SMPs + GPUs			Week 14	
E-marka III 1 . C	Mathematics		Good		
Expected Level of	Physics		N/A		

Proficiency for Students	Technical writing	N/A		
Entering the Course	Computer programming	Good		
Materials Available to Instructor, Students &Department at End of Course		Students	Department	Instructor
	Course Outline	✓	✓	√
	Lecture Notes	✓	✓	✓
	Samples of Students' Work		✓	√
	Course Assessment by Students (CAS)		✓	✓
	Course Assessment by Faculty (CAF)		✓	✓

N o	Course Learning Outcomes (CLOs)	Student Outcomes (SOs)	
1	Evaluate computer performance.	1	
2	Analyze the execution of high-level code by CPUs	1	
3	Learn fundamentals of pipelined CPU design	1, 2	
4	Analyze the performance of memory hierarchy	1	
5	Understand the basics of parallel computing	1	

ABET – Student Outcomes (1-7)

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
- 3. an ability to communicate effectively with a range of audiences.
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.