TRIGONOMÉTRIE

1 Congruence

Définition 1.1 Congruence

Soient a, b et m trois réels. On dit que a et b sont **congrus modulo** m s'il existe $k \in \mathbb{Z}$ tel que a = b + km. On note alors $a \equiv b[m]$.

Remarque. En pratique, on a souvent $\mathfrak{m} = r\pi$ avec $r \in \mathbb{Q}$.

Exemple 1.1

 $\frac{3\pi}{2} \equiv \frac{\pi}{2} [\pi].$

Proposition 1.1 Propriétés de la congruence

Réflexivité Soit $a \in \mathbb{R}$. Alors $a \equiv a[m]$.

Symétrie Soit $(a, b, m) \in \mathbb{R}^3$. Alors $a \equiv b[m] \iff b \equiv a[m]$.

Transitivité Soit $(a, b, c, m) \in \mathbb{R}^4$. Si $a \equiv b[m]$ et $b \equiv c[m]$, alors $a \equiv c[m]$.

 $\mathbf{Somme} \ \operatorname{Soit} \ (a,b,c,d,m) \in \mathbb{R}^5. \ \operatorname{Si} \ a \equiv b[m] \ \operatorname{et} \ c \equiv d[m], \ \operatorname{alors} \ a+c \equiv b+d[m].$

Multiplication/division Soient $(a, b, m) \in \mathbb{R}^3$ et $k \in \mathbb{R}^*$. Alors $a \equiv b[m] \iff ka \equiv kb[km]$.

Projection Soient $(a, b, m) \in \mathbb{R}^3$ et $k \in \mathbb{N}^*$. Si $a \equiv b[km]$, alors $a \equiv b[m]$.

ATTENTION! Si $a \equiv b[m]$ et $c \equiv d[m]$, on n'a pas nécessairement $ac \equiv bd[m]$.

Exemple 1.2

Si $a \equiv b[2\pi]$, alors $a \equiv b[\pi]$ mais la réciproque est fausse.

Exercice 1.1

- 1. Déterminer un réel $\alpha \in]-\pi,\pi]$ tel que $\frac{251\pi}{4}\equiv \alpha[2\pi].$
- 2. Déterminer un réel $\beta \in [0,\pi[$ tel que $-\frac{37\pi}{3} \equiv \beta[\pi].$

2 Fonctions trigonométriques

Définition 2.1 Cercle trigonométrique et fonctions trigonométriques

On suppose le plan euclidien muni d'un repère orthonormé $(0, \vec{\imath}, \vec{\jmath})$.

On appelle cercle trigonométrique le cercle $\mathcal C$ de centre $\mathsf O$ et de rayon 1.

Pour $\alpha \in \mathbb{R}$, on note $(\cos \alpha, \sin \alpha)$ les cordonnées de l'unique point M de C tel que $(\vec{\iota}, \overrightarrow{OM}) \equiv \alpha[2\pi]$.

Proposition 2.1 Périodicité

Les fonctions sin et cos sont 2π -périodiques :

$$\forall (\alpha,k) \in \mathbb{R} \times \mathbb{Z}, \; \begin{cases} \cos(\alpha+2k\pi) = \cos(\alpha) \\ \sin(\alpha+2k\pi) = \sin(\alpha) \end{cases}$$

Proposition 2.2 Symétries

$$\begin{split} \cos(-\alpha) &= \cos(\alpha) & \sin(-\alpha) &= -\sin(\alpha) \\ \cos(\alpha + \pi) &= -\cos(\alpha) & \sin(\alpha + \pi) &= -\sin(\alpha) \\ \cos(\pi - \alpha) &= -\cos(\alpha) & \sin(\pi - \alpha) &= \sin(\alpha) \end{split}$$

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin(\alpha) \quad \sin\left(\frac{\pi}{2} + \alpha\right) = \cos(\alpha)$$
$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha) \quad \cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$$

Corollaire 2.1 Parité

Les fonctions cos et sin sont donc respectivement paire et impaire.

Remarque. On retiendra en particulier que pour tout $(\alpha, n) \in \mathbb{R} \times \mathbb{Z}$,

$$\cos(\alpha+n\pi)=(-1)^n\cos(\alpha)$$

$$\sin(\alpha + n\pi) = (-1)^n \sin \alpha$$

On a alors évidement $\cos(n\pi) = (-1)^n$ et $\sin(n\pi) = 0$.

Définition 2.2 La fonction tangente

Soit α un réel non congru à $\frac{\pi}{2}$ modulo $\pi.$

On pose $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$.

Proposition 2.3 Ensemble de définition, périodicité et parité

La fonction tan est définie sur $I = \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$.

Elle est π -périodique :

$$\forall (\alpha, k) \in I \times \mathbb{Z}, \ \tan(\alpha + k\pi) = \tan \alpha$$

La fonction tan est impaire.

- Angles usuels -

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞	0

Exercice 2.1

Calculer les quantités suivantes :

$$\cos \frac{217\pi}{6}$$

$$\sin\frac{2351\pi}{4}$$

$$\tan \frac{15548\pi}{3}$$

- La fonction cotangente -

 $\begin{array}{l} \operatorname{Pour} \ \alpha \in \mathbb{R} \setminus \pi \mathbb{Z}, \ \operatorname{on} \ \operatorname{pose} \ \cot(\alpha) = \frac{\cos \alpha}{\sin \alpha}. \\ \operatorname{La} \ \operatorname{fonction} \ \operatorname{cot} \ \operatorname{est} \ \operatorname{\acute{e}galement} \ \pi\text{-p\acute{e}riodique}. \\ \operatorname{Pour} \ \alpha \in \mathbb{R} \setminus \frac{\pi}{2} \mathbb{Z}, \end{array}$

$$\cot\alpha = \frac{1}{\tan\alpha}$$

$$\tan\left(\frac{\pi}{2} + \alpha\right) = -\cot(\alpha)$$
 $\tan\left(\frac{\pi}{2} - \alpha\right) = \cot(\alpha)$

$$\tan\left(\frac{\pi}{2} - \alpha\right) = \cot(\alpha)$$

3 Formules usuelles

Proposition 3.1 Formules d'addition et de soustraction

Quand ces expressions ont un sens

$$\cos(\alpha+b)=\cos\alpha\cos b-\sin\alpha\sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

$$\cos(a - b) = \cos a \cos b + \sin a \sin b$$

$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

$$\tan(\alpha-b)=\frac{\tan\alpha-\tan b}{1+\tan\alpha\tan b}$$

Corollaire 3.1 Formules de linéarisation

$$\cos\alpha\cos b = \frac{1}{2}\left(\cos(\alpha+b) + \cos(\alpha-b)\right)$$

$$\sin a \cos b = \frac{1}{2} \left(\sin(a+b) + \sin(a-b) \right)$$

$$\sin a \sin b = \frac{1}{2} \left(\cos(a - b) - \cos(a + b) \right)$$

$$\cos a \sin b = \frac{1}{2} \left(\sin(a+b) - \sin(a-b) \right)$$

Corollaire 3.2 Formules de duplication

Quand ces expressions ont un sens

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$\sin 2\alpha = 2\sin \alpha\cos \alpha$$

$$\tan 2a = \frac{2\tan a}{1 - \tan^2 a}$$

$$= 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

$$\cos^2\alpha = \frac{1 + \cos 2\alpha}{2}$$

$$\sin^2\alpha = \frac{1-\cos 2\alpha}{2}$$

Corollaire 3.3 Formules de factorisation

$$\cos a + \cos b = 2\cos \frac{a+b}{2}\cos \frac{a-b}{2}$$

$$\cos a - \cos b = -2\sin \frac{a+b}{2}\sin \frac{a-b}{2}$$

$$\sin \alpha + \sin b = 2\sin \frac{\alpha + b}{2}\cos \frac{\alpha - b}{2}$$

$$\sin a - \sin b = 2\cos \frac{a+b}{2}\sin \frac{a-b}{2}$$

Proposition 3.2 Paramétrage rationnel du cercle trigonométrique

Soit $\theta \in \mathbb{R} \setminus (\pi + 2\pi\mathbb{Z})$ et $t = \tan \frac{\theta}{2}$. Alors

$$\cos\theta = \frac{1-t^2}{1+t^2}$$

$$\sin\theta = \frac{2t}{1+t^2}$$

REMARQUE. On parle de paramétrage rationnel puisque les coordonnées de tout point du cercle trigonométrique (excepté le point d'angle polaire π) s'expriment comme une fraction rationnelle (i.e. un quotient de polynômes) de la variable t.

Equations et inéquations trigonométriques 4

REMARQUE. Il est inutile d'apprendre par coeur les résultats précédents. La simple observation du cercle trigonométrique permet de les retrouver.

Exemple 4.1

Les solutions de l'équation $\cos x = \frac{1}{2}$ sont les réels de la forme $\frac{\pi}{3} + 2k\pi$ ou $-\frac{\pi}{3} + 2k\pi$ où $k \in \mathbb{Z}$. L'ensemble des solutions est donc $\left(\frac{\pi}{3} + 2\pi\mathbb{Z}\right) \cup \left(-\frac{\pi}{3} + 2\pi\mathbb{Z}\right)$.

Les solutions de l'équation $\sin x = -\frac{\sqrt{2}}{2}$ sont les réels de la forme $-\frac{\pi}{4} + 2k\pi$ ou $-\frac{3\pi}{4} + 2k\pi$ où $k \in \mathbb{Z}$. L'ensemble des solutions est donc $\left(-\frac{\pi}{4} + 2\pi\mathbb{Z}\right) \cup \left(-\frac{3\pi}{4} + 2\pi\mathbb{Z}\right)$.

Les solutions de l'équation $\tan x = -\frac{\sqrt{3}}{3}$ sont les réels de la forme $-\frac{\pi}{6} + k\pi$ où $k \in \mathbb{Z}$. L'ensemble des solutions est donc $-\frac{\pi}{6} + \pi \mathbb{Z}$.

Exercice 4.1

Résoudre de deux manières différentes l'équation $\cos(x) = \sin(2x)$.

- Inéquations trigonométriques -

La simple visualisation du cercle trigonométrique permet de résoudre des inéquations trigonométriques.

Exemple 4.2

L'ensemble des solutions de l'équation $\cos x \leqslant \frac{1}{2}$ est $\bigcup_{k \in \mathbb{Z}} \left[\frac{\pi}{3} + 2k\pi, \frac{5\pi}{3} + 2k\pi \right]$ ou encore $\left[\frac{\pi}{3}, \frac{5\pi}{3} \right] + 2\pi\mathbb{Z}$. L'ensemble des solutions de l'équation $\sin x > \frac{\sqrt{2}}{2}$ est $\bigcup_{k \in \mathbb{Z}} \left[\frac{\pi}{4} + 2k\pi, \frac{3\pi}{4} + 2k\pi \right]$ ou encore $\left[\frac{\pi}{4}, \frac{3\pi}{4} \right] + 2\pi\mathbb{Z}$. L'ensemble des solutions de l'équation $\tan x \geqslant -1$ est $\bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{4} + k\pi, \frac{\pi}{2} + k\pi \right]$ ou encore $\left[-\frac{\pi}{4}, \frac{\pi}{2} \right] + \pi\mathbb{Z}$.

Exercice 4.2

Résoudre l'inéquation $\cos x + \cos 3x \ge 0$.