

Facultad de Ingeniería Ingeniería Aplicada Modelación y Simulación Ing. César Rojas

PRÁCTICA 6

Nombre:	Carné:
Nombre:	Carné:
Nombre:	Carné:
Nombre:	Carné:

SECCIÓN ÚNICA

Una Laboratorio Médico desea realizar un análisis del funcionamiento de sus instalaciones debido a que han recibido constantes quejas de los clientes que no han sido eficientes.

Los clientes llegan al Laboratorio bajo la siguiente tabla:

Hora Inicio	Hora Fin	Porcentaje	
05:00	07:00	40	
07:00	10:00	25	
10:00	14:00	20	
14:00	19:00	10	
19:00	20:00	5	

En un día llega<mark>n 120 pacientes</mark> y se estima que se ha utilizado una distribución de Poisson.

Los pacientes llegan a una sala de espera con una capacidad de 15 personas, luego pasan a un espacio de tres cajas de cobro, en las cuales se atiende a un paciente bajo la siguiente tabla:

Cajero	Tiempo de Atención a un Paciente
Caja 1	7 minutos
Caja 2	6 minutos
Caja 3	9 minutos

Posteriormente se trasladan a una nueva sala de espera de 20 personas donde esperan para ser atendidos en una de los cubículos de atención.

Hay 2 cubículos de atención en los cuales se atiende a un paciente en un lapso de 10 y 11 minutos, respectivamente.

Los cajeros tienen un tiempo de descanso cronometrado de 5 minutos cada hora.

Los laboratoristas tienen un tiempo de descanso de 2 minutos después de atender a cada paciente.

Realice un proceso de modelación y simulación de 20 días hábiles. -> ciclos de arrivo

Según la encuesta, los clientes dicen que pasan el 2/3 del tiempo del proceso solo en espera. ¿Esta hipótesis se cumple?

¿Cuánto tiempo pasa un paciente de promedio en el sistema?

Concluya si considera el sistema eficiente o no, justifique su respuesta.

Identifique el mayor cuello de botella del sistema y coloque una nueva locación que permita desbloquear y determine cuál es el resultado.