

Chapter 1-3

计算机图形学基础

Fundamentals of Computer Graphics

分享人

ACoTAI Lab, Dalian Maritime University

安泓郡

ICDC department, Dianhang Association

an.hongjun@foxmail.com

Chapter 1-3 目录 CONTENTS

- 3/ 图像的线性变换
- 4/ 图像的仿射变换
- 5/ OpenCV仿射变换

第三部分

Linear Trans

- 缩放变换
- ✓ 剪切变换

图像的线性变换

✓ 旋转变换

缩放变换

[1]

$$\begin{cases} x' = f_x \cdot x \\ y' = f_y \cdot y \end{cases}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} f_x & 0 \\ 0 & f_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Reference:

缩放变换

[1]

新图形与旧图形各像素点坐标存在如下关系:

$$\begin{cases} x' = f_x \cdot x \\ y' = f_y \cdot y \end{cases}$$

可以表示成如下形式:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} f_x & 0 \\ 0 & f_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Reference:

设计图像缩放算法(伪代码)

(200,400)

Input: src_image, dst_shape src_shape := src_image.shape

fx:= $dst_shape[0] / src_shape[0]$

fy):= dst_shape[1] / src_shape[1]

dst_image := zeros(shape=dst_shape)

For *h* **from** 0 **to** *src_shape*[0]:

For w from 0 to src shape[1]: (h, w)

 $trans\ matrix := [[fx, 0], [0, fy]]$

 (new_b, new_w) .T = trans_matrix * [h, w].T

 $dst_{image}[new_h, new_w] = src_{image}[h, w]$

Return dst_image

设计图像缩放算法 (伪代码)

```
Input: src_image, dst_shape
src_shape := src_image.shape
fx := dst_shape[0] / src_shape[0]
fy := dst_shape[1] / src_shape[1]
dst_image := zeros(shape=dst_shape)
For h from 0 to src_shape[0]:
    For w from 0 to src_shape[1]:
        trans_matrix := [[fx, 0], [0, fy]]
        [new_h, new_w].T = trans_matrix * [h, w].T
        dst_image[new_h, new_w] = src_image[h, w]
Return dst_image
```

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} f_x & 0 \\ 0 & f_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

设计图像缩放算法(伪代码)

$$\begin{pmatrix}
x' \\
y'
\end{pmatrix} = \begin{pmatrix}
f_x & 0 \\
0 & f_y
\end{pmatrix} \begin{pmatrix}
x \\
y
\end{pmatrix}$$

Input: src image, dst shape src shape := src image.shape $fx := dst \ shape[0] / src \ shape[0]$ $fy := dst_shape[1] / src shape[1]$ dst image := zeros(shape=dst shape) For h from 0 to src shape[0]:

For *w* **from** 0 **to** *src shape*[1]:

$$trans_matrix := [[fx, 0], [0, fy]]$$

 $[new_h, new_w].T = trans_matrix * [h, w].T$

dst image[new h, new w] = src image[h, w]

Return dst image

缩放变换

原变换为:

求其逆变换:
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} f_x & 0 \\ 0 & f_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
求其逆变换:
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f_x & 0 \\ 0 & f_y \end{pmatrix}^{-1} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\mathcal{Y} = \mathcal{A} \mathcal{X}$$

$$\begin{aligned}
\chi &= \int_{\mathcal{A}} \mathcal{Y} = \left(\mathcal{A}^{-1} \right) \mathcal{Y} \\
\begin{cases}
x' &= f_x \cdot x \\
y' &= f_y \cdot y
\end{aligned}
\Leftrightarrow \begin{cases}
x &= f_x^{-1} \cdot x' \\
y &= f_y^{-1} \cdot y'
\end{cases}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} f_x & 0 \\ 0 & f_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f_x^{-1} & 0 \\ 0 & f_y^{-1} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} f_x & 0 \\ 0 & f_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f_x & 0 \\ 0 & f_y \end{pmatrix}^{-1} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} f_x & 0 \\ 0 & f_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f_x & 0 \\ 0 & f_y \end{pmatrix}^{-1} \begin{pmatrix} x \\ y \end{pmatrix}$$

设计图像缩放算法 (伪代码)

剪切变换

(板书)

$$\begin{cases}
x' = x + ay \\
y' = y
\end{cases}$$

$$(x') (1 a) (1)$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Reference:

剪切变换

http²//blog.csdn.neVgw8704149

新图形与旧图形各像素点坐标存在 如下关系:

$$\begin{cases} x' = x + ay \\ y' = y \end{cases}$$

可以表示成如下形式:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

逆变换:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

Reference:

[1] https://www.aiuai.cn/aifarm1946.html

[1]

(板书)

Reference:

剪切变换

新图形与旧图形各像素点坐标存在如下关系:

$$\begin{cases} x' = x \cdot \cos \theta - y \cdot \sin \theta \\ y' = x \cdot \sin \theta + y \cdot \cos \theta \end{cases}$$

可以表示成如下形式:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

逆变换:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

Reference:

[1] https://www.aiuai.cn/aifarm1946.html

[1]

小结

缩放变换

$$\begin{pmatrix} y' \end{pmatrix} = \begin{pmatrix} 0 & f_y \end{pmatrix} \begin{pmatrix} y \\ y \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f_x & 0 \\ 0 & f_y \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

剪切变换

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

旋转变换

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x' \\ y \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} f_x & 0 \\ 0 & f_y \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix} \qquad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix} \qquad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

线性变換
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

实验1: 图像的线性变换

第四部分

Linear Trans

图像的仿射变换

✓ 平移变换

剪切变换

(板书)

$$\begin{cases} x' = x + tx \\ y' = y + ty. \end{cases}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} tx \\ ty \end{pmatrix}$$

Reference:

剪切变换

新图形与旧图形各像素点坐标存在

[1] 如下关系:

$$\begin{cases} x' = x + t, \\ y' = y + t, \end{cases}$$

可以表示成如下形式:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

Reference:

仿射变换

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

仿射变换

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

这种形式,与之前的线性变换的形式不一致,这不完美。 经过前辈的尝试,发现可以用齐次坐标解决形式一致性问题。

$$\begin{pmatrix} \underline{x'} \\ \underline{y'} \\ \end{bmatrix} = \begin{pmatrix} \underline{a} & \underline{b} & \underline{t}_{A} \\ \underline{c} & \underline{d} & \underline{t}_{Y} \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

则逆变换可以表示为: 1

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}$$

小结

缩放变换

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} f_x & 0 & 0 \\ 0 & f_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} f_x & 0 & 0 \\ 0 & f_y & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}$$

旋转变换

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}$$

平移变换

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}$$

仿射变换

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix}$$

第五部分

使用OpenCV实现仿射变换

✓ OpenCV仿射变换

OpenCV实现图像仿射变换

- getAffineTransform 函数
 - 输入原始图像三个关键点坐标,和对应目标图像的三个关键点坐标
 - > 返回仿射变换矩阵 (前两行)

- warpAffine函数
 - > 输入原始图像,仿射变换矩阵,目标图像大小
 - > 返回经变换后的图像

Reference:

[1] https://www.cnblogs.com/xiaoniu-666/p/13322556.html

实验2: OpenCV仿射变换

实验3: OpenCV实现图像旋转

- getRotationMatrix2D 函数
 - ▶ 输入旋转中心、旋转角度 (角度制) 、缩放比例
 - ➤ 返回仿射变换矩阵(前两行),可配合warpAffine函数使用。

Reference:

[1] https://www.cnblogs.com/xiaoniu-666/p/13322556.html

实验4: OpenCV实现图像旋转

- resize 函数
 - ▶ 输入图像、目标大小
 - ▶ 返回目标图像

Reference:

[1] https://www.cnblogs.com/xiaoniu-666/p/13322556.html

THANKS!

ACoTAI Lab, Dalian Maritime University

分享人 安泓郡

ICDC department, Dianhang Association

an.hongjun@foxmail.com