# Universidade Federal de Goiás – UFG Instituto de Informática – INF

Turmas: INF0286/INF0447

# Algoritmos e Estruturas de Dados 1 – 2024/2

# Lista de Exercícios – Algoritmos de Busca e Ordenação Interna

Prof. Wanderley de Souza Alencar adaptado por Prof. Raphael Guedes

## Sumário

| 1 | Definindo conceitos 1              | 2 |
|---|------------------------------------|---|
| 2 | Definindo conceitos 2              | 2 |
| 3 | Lápis e Papel                      | 2 |
| 4 | Busca Binária Aproximada           | 2 |
| 5 | Ordenando a Bicharada              | 3 |
| 6 | Separando Números Pares de Ímpares | 3 |
| 7 | Placars – Quem vai ser reprovado?  | 5 |
| 8 | Insertion versus Selection         | 7 |

## 1 Definindo conceitos 1



Defina, usando as suas palavras, o problema de ordenação.

### 2 Definindo conceitos 2



(+)

Defina, usando as suas palavras, o problema de encontrar o menor valor em um vetor.

## 3 Lápis e Papel



(++)

Para cada sequência de números abaixo, faça um teste de mesa com os seguintes métodos de ordenação: *Bubble Sort, Insertion Sort, Merge Sort* e *Quick Sort*.

Mostre o número de comparações e trocas realizadas por cada método:

- A. 21, 19, 17, 9, 5, 1.
- B. 2, 4, 6, 8, 10, 12, 11, 9, 7, 5, 3, 1.
- C. 18, 29, 17, 29, 23, 21, 23, 8, 14, 6.

# 4 Busca Binária Aproximada



(++)

Considere um vetor de inteiros cujos valores estão armazenados em ordem crescente. Usando como base o algoritmo de **busca binária**, escreva uma função que, dado o vetor e um valor inteiro x, retorne o elemento do vetor que possua o valor mais próximo de x. Caso x seja equidistante de dois elementos do vetor, sua função deve retornar o valor do menor deles  $min(x_1,x_2)$ . Por exemplo, considerando o vetor  $\{3,7,10,14,16\}$ , sua função deve retornar os valores indicados a seguir para os diferentes casos listados:

| Valor de <i>x</i> | Valor retornado |
|-------------------|-----------------|
| 11                | 10              |
| 5                 | 3               |
| 14                | 14              |
| 13                | 14              |

### 5 Ordenando a Bicharada



O zoológico de Magravanópoolis está passando por uma grande reforma! Para facilitar o manejo dos animais e a vida dos funcionários, a administração decidiu organizar a lista de animais em ordem alfabética. Para isso, contrataram você, um(a) programador(a) experiente, para desenvolver um sistema de ordenação.

Modifique o algoritmo *bubble sort* para que ele possa ordenar um conjunto  $n \in \mathbb{N}^*$  de animais em um zoológico por seu nome. Cada animal é representado por uma estrutura contendo seu código identificador numérico, nome, classe (mamífero, ave, réptil, etc).

# 6 Separando Números Pares de Ímpares



(++)

Tales, um menino muito levado, pegou na escola uma caixa repleta de números naturais impressos em cartelas de EVA (*Espuma Vinílica Acetinada*) e derrubo-os sobre o chão da sala de aula.

Por estranho que pareça, ao cairem os números formaram uma *fila indiana* de tal maneira que ficaram com seus valores distribuídos aleatoriamente nesta fila.

Sabe-se que na caixa havia  $n \in \mathbb{N}^*$  números, com  $(1 < n \le 100)$ , mas seus valores são desconhecidos. Sua tarefa é conceber um programa  $\mathbb{C}$  que seja capaz de ordenar esta fila, segundo as seguintes regras:

- primeiro devem vir todos os números pares, em ordem crescente;
- depois devem vir os números ímpares, em ordem decrescente.

#### **Entrada**

A primeira linha de entrada contém o número n, quantidade de números existente na caixa que Tales derrubou.

A segunda linha contém os n números naturais, na ordem em que formaram a fila indiana, sempre separados por um único espaço em branco entre eles.

#### Saída

A saída deverá ter duas linhas. Na primeira são apresentados os números pares e na segunda os números ímpares, sempre separados por um único espaço em branco entre eles, conforme a ordem definida anteriormente.

#### **Exemplos**

| Entrada                             | Saída               |
|-------------------------------------|---------------------|
| 10                                  | 4 32 34 98 654 3456 |
| 4 32 34 543 3456 654 567 87 6789 98 | 6789 567 543 87     |

**Observação**: Note que se, como exceção, a saída poderá ter uma única linha, se os números inicialmente fornecidos forem todos pares ou todos ímpares.

| Entrada              | Saída        |
|----------------------|--------------|
| 7                    | 2 6 512      |
| 2 5 6 51 512 913 375 | 913 375 51 5 |

| Entrada                     | Saída                  |
|-----------------------------|------------------------|
| 8<br>6 2 8 12 202 304 18 10 | 2 6 8 10 12 18 202 304 |

| Entrada                  | Saída             |
|--------------------------|-------------------|
| 8<br>1 3 5 7 11 23 45 81 | 81 45 23 11 7 5 3 |
|                          |                   |

| Entrada    | Saída      |
|------------|------------|
| 5          | 2 4 6 8 10 |
| 10 8 6 4 2 |            |
|            |            |

## 7 Placar – Quem vai ser reprovado?



O professor Charles Francis Xavier, *Professor X*, aplicou para seus(suas) alunos(as) uma *Lista de Exercícios* contendo um conjunto de 10 (dez) "*problemas*" e concedeu o prazo de um mês para que eles(as) os resolvessem.

No final do mês os(as) alunos(as) enviaram, para o *Profesor X*, o número de problemas resolvidos corretamente.

A promessa do professor era reprovar, sumariamente, o(a) último(a) colocado(a) desta competição, onde os(as) alunos(as) seriam ordenados(as) conforme o número de problemas resolvidos, com empates resolvidos de acordo com a ordem alfabética dos nomes<sup>1</sup>.

Este padrão fez com que alunos(as) com nomes iniciados nas últimas letras do alfabeto se esforçassem muito nas tarefas, e não compartilhassem suas soluções com colegas, especialmente aqueles(as) cujos nomes começassem com letras anteriores às deles(as).

Você é o(a) "monitor(a)" do Professor X e sua tarefa, é escrever um programa  $\mathbb{C}$  que leia os resultados dos(as) alunos(as) e imprima a classificação final, marcando com a hashtag #reprovado(a) aquele(a) estudante que deverá ser reprovado(a).

#### **Entrada**

A primeira linha de cada contém um número natural n,  $1 \le n \le 100$ , que indica a quantidade estudantes na competiação.

Cada uma das n linhas seguintes contém o nome do(a) aluno(a) – sem espaço entre as suas palavras formadoras de seu nome – e o número de problemas resolvidos por ele(a). O número de problemas resolvidos está, obviamente, entre 0 e 10, inclusive extremos.

#### Saída

O programa de computador criado por você deverá imprimir o nome do(a) aluno(a) e o número de exercícios realizados, ordenadamente. Além disso, o(a) último(a) colocado deverá ser seguido pela *hashtag* #reprovado(a).

### Exemplos

<sup>&</sup>lt;sup>1</sup>Suponha, para simplificação, que não há homônimos na turma e que todos os nomes dos(as) estudantes são escritos utilizando uma única palavra, sem espaços em branco entre elas, e que terá, no máximo, 20 símbolos. Por exemplo: AnaLuiza, Guilherme, Alice, LuizFelipe, Marcelo, PedroAugusto, etc.

| Entrada     | Saída                 |
|-------------|-----------------------|
| 10          | andre 10              |
| joaozinho 9 | beatriz 10            |
| marcela 8   | jailson 10            |
| marcos 9    | ana 9                 |
| frodo 7     | joaozinho 9           |
| jailson 10  | marcos 9              |
| jolei 8     | jolei 8               |
| andre 10    | marcela 8             |
| maria 8     | maria 8               |
| beatriz 10  | frodo 7 #reprovado(a) |
| ana 9       |                       |
|             |                       |

| Entrada          | Saída                 |
|------------------|-----------------------|
| 3                | arnaldo 3             |
| pedro 3          | jose 3                |
| jose 3 arnaldo 3 | pedro 3 #reprovado(a) |
| allialuo 5       |                       |

| Entrada    | Saída                    |
|------------|--------------------------|
| 5          | abadia 10                |
| amanda 10  | amanda 10                |
| ananda 10  | ananda 10                |
| abadia 10  | andreia 10               |
| andreia 10 | andubio 10 #reprovado(a) |
| andubio 10 |                          |
|            |                          |

| Entrada            | Saída                            |
|--------------------|----------------------------------|
| 4                  | cardonha 9                       |
| cardonha 9         | marcel 9                         |
| infelizreprovado 3 | infelizaprovado 3                |
| marcel 9           | infelizreprovado 3 #reprovado(a) |
| infelizaprovado 3  |                                  |
|                    |                                  |

## **8** Insertion versus Selection



(+)

Escreva um programa  $\mathbb{C}$  que, a partir de um vetor de números naturais fornecido como entrada, calcule a diferença entre o número de trocas realizadas pelos algoritmos insertionSort e selectionSort, nesta ordem.

Cada movimentação efetiva de um número no vetor deve ser contabilizada. Os algoritmos devem ser implementados de maneira a realizar o menor número de trocas possível.

#### Entrada

A primeira entrada é um número natural n,  $1 \le n \le 1000$ , que representa o tamanho do vetor de entrada. A próxima linha contém os elementos do vetor, sempre fornecidos da primeira posição até a última, e separados por um único espaço em branco entre si.

#### Saída

A saída consiste de uma única linha que contém a diferença entre o número de trocas realizadas pelo insertionSort e pelo selectionSort, nesta ordem.

#### **Exemplos**

| Entrada |                                                       |    |  |
|---------|-------------------------------------------------------|----|--|
| 20      |                                                       | 19 |  |
| 33 34   | 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |    |  |
|         |                                                       |    |  |

| Entrada                                                     | Saída |
|-------------------------------------------------------------|-------|
| 20                                                          | 199   |
| 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 |       |

| Entrada                    | Saída |
|----------------------------|-------|
| 10<br>8 6 4 3 2 1 7 9 5 10 | 23    |