Практическая эконометрика. Разность разностей и синтетический контроль

авторы: Георгий Калашнов, Ольга Сучкова, преподаватели 2022: Ольга Сучкова, Алексей Замниус, Анна Ставнийчук

25 ноября 2022 г.

План на сегодня

Разность разностей

Примеры Предположения о данных Примеры в линейной регрессии

Синтетический контроль

Примеры

Table of Contents

Разность разностей

Примеры

Предположения о данных

Примеры в линейной регрессии

Синтетический контроль

Примеры

Разница в доходе женщин с ребенком и мужчин с ребенком (Kleven, Landais и Søgaard 2019)

B: Men Who Have Children vs Men Who Don't Earnings Impact

Source: Henrik Kleven, Camille Landais, and Jakob Egholt Segaard (2018) - Children and Gender Inequality: Evidence from Denmark. NBER Working Paper No. 24219

Разность разностей

Обозначения данных и предположения

- Как обычно, потенциальные исходы, ковариаты: $(Y(0), Y(1), X)_{it}$
- ▶ Переменная воздействия: T_i
- lacktriangle Наблюдаемый Y = Y(0) + T(t>0)(Y(1)-Y(0))

Предпосылки идентификации:

 \blacktriangleright $(\Delta Y(1), \Delta Y(0)) \perp T|X$

Альтернативная формулировка предпосылок

Общий тренд условно на Х

$$(\Delta Y(1), \Delta Y(0)) \perp T|X$$

Важно: претренды должны быть параллельными

 $E[Y_{t=1}(0) - Y_{t=0}(0)|T=0]$

▶ Именно эта предпосылка позволяет предполагать, что за два периода t=0,1 динамика Y в тритмент-группе,

если бы она не подверглась воздействию, была бы

такой же, как динамика Y в контрольной группе $E[Y_{t=1}(0) - Y_{t=0}(0)|T=1] =$

Пример - Khvan, Yakovlev, 2021

«Число погибших от ценовых ограничений и протекционизма на российском фармацевтическом рынке»: В 2012 г. в России были введены протекционистские правила для ряда российских лекарственных препаратов и ограничен ввоз аналогов.

Разность разностей - эффект

```
\begin{split} &\tau(T=1) = E[Y_{t=1}(1)|T=1] - E[Y_{t=1}(0)|T=1] \\ &= E[Y_{t=1}(1)|T=1] - E[Y_{t=0}(0)|T=1] \\ &- E[Y_{t=1}(0)|T=1] + E[Y_{t=0}(0)|T=1] \\ &= E[Y_{t=1}(1)|T=1] - E[Y_{t=0}(1)|T=1] \\ &- E[Y_{t=1}(0)|T=1] + E[Y_{t=0}(0)|T=1] \\ &= E[Y_{t=1}|T=1] - E[Y_{t=0}|T=1] \\ &- E[Y_{t=1}(0) - Y_{t=0}(0)|T=1] \\ &= (E[Y_{t=1}|T=1] - E[Y_{t=0}|T=1]) \\ &- (E[Y_{t=1}|T=0] - E[Y_{t=0}|T=0]) \end{split}
```

Способ расчета

Расчет способом разность разностей:

$$\hat{\tau} = \left(\bar{Y}_{T=1,t \geq c} - \bar{Y}_{T=0,t \geq c}\right) - \left(\bar{Y}_{T=1,t < c} - \bar{Y}_{T=0,t < c}\right)$$

Расчет способом линейной регрессии:

- ightharpoonup Раньше мы всегда оценивали модель: $Y = \alpha + \tau T$
- lacktriangle Теперь мы будем оценивать: $Y_{i1} Y_{i0} = \Delta Y_i = \alpha + \tau \, T_i$

⁰Angrist и Pischke 2008, Разделы 5.1, 5.2.

Разность разностей - регрессия

Модель:

$$Y_{it} = \alpha + \beta * treat_{it} + \gamma * post_{it} + \tau * treat_{it} * post_{it} + \varepsilon_{it}$$

- ightharpoonup $treat_{it}=1$ для объектов из группы воздействия, =0 для объектов из экспериментальной группы
- $ightharpoonup post_{it} = 1$ для периодов после воздействия, =0 до
- $treat_{it} * post_{it} = 1$ только для объектов из группы воздействия после воздействия

Placebo test

https://diff.healthpolicy datascience.org/

- ▶ Что если нужно измерить эффект за несколько

периодов после "воздействия"?

объект, который «подвергся воздействию»?

- ▶ А если нет общего тренда? Если никто не похож на

Table of Contents

Разность разностей

Примеры
Предположения о данных
Примеры в линейной регрессии

Синтетический контроль

Примеры

Что если общего тренда нет: ограничения продажи табака в Калифорнии¹

¹Abadie, Diamond и Hainmueller 2010.

Обсуждение предпосылок

- Пока будем рассматривать кейс с одним объектом воздействия
- ▶ Почему тренды различаются?
- ightharpoonup Наблюдаемые факторы X_i меняются
- ightharpoonup Ненаблюдаемые факторы μ_i тоже меняются

Итоговая модель:

$$Y_{it}^{0} = \delta_i + X_i^T \beta_t + \lambda_t^T \mu_i + \varepsilon_{it}$$

Чем она отличается от модели из diff-in-diff?

Синтетический контроль

найти веса:

$$\hat{Y}_{0t} = \sum_{i}^{N} w_{i} Y_{it} = \delta_{0} \sum_{i}^{N} w_{i} + \left(\sum_{i}^{N} w_{i} X_{i}\right)^{T} \beta_{t} + (1)$$

$$\lambda_{t}^{T} \left(\sum_{i}^{N} w_{i} \mu_{i}\right) + \sum_{i}^{N} w_{i} \varepsilon_{it}$$
(2)

Поиск весов

- $\sum_{i}^{N} w_i = 1$
- $\sum_{i}^{N} w_i X_i = X_0$
- $\triangleright \sum_{i}^{N} w_{i} \mu_{i} = \mu_{0}$
- ▶ или
- $\sum_{i}^{N} w_i = 1$

Синтетический контроль

Для других штатов

Table of Contents

Разность разностей

Примеры

Предположения о данных

Примеры в линейной регрессии

Синтетический контроль

Примеры

Пример - эффективность бюджетного правила в Панаме (IDB, 2021)

Пример - приложение «Моя Москва»

Meetup по Causal inference 7/09/22. Кейс применения Synthetic Control для оценки инициатив, Артем Александрин, Дата-аналитик мобильного приложения «Моя Москва» (канал)

Еще пример: объединение Германии²

²Abadie, Diamond и Hainmueller 2015.

Плацебо тест 1

FIGURE 5 Ratio of Postreunification RMSPE to Prereunification RMSPE: West Germany and Control Countries

Плацебо тест 2

Литература: книжки и образовательные материалы I

Angrist, Joshua D и Jörn-Steffen Pischke (2008). Mostly harmless econometrics: An empiricist's companion. Princeton university press.

Литература: статьи I

- Abadie, Alberto, Alexis Diamond u Jens Hainmueller (2010). «Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program». B: Journal of the American statistical Association 105.490, c. 493—505.
- (2015). «Comparative politics and the synthetic control method». B: American Journal of Political Science 59.2, c. 495—510.
- Kleven, Henrik, Camille Landais и Jakob Egholt Søgaard (2019). «Children and gender inequality: Evidence from Denmark». Β: American Economic Journal: Applied Economics 11.4, с. 181—209.