

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Домашнее работа №2

Дисциплина Логика и теория алгоритмов

Тема Математическая логика

Вариант 20

Преподаватель Белоусов Алексей Иванович

Задание №3

Условие:

Доказать в исчислении высказываний (буквы обозначают произвольные формулы):

$$(\neg C \rightarrow \neg (\neg A \& \neg B)) \equiv A \lor (B \lor C)$$

Решение:

Преобразуем правую часть формулы, используя определение дизъюнкции $\phi \lor \psi = \neg \phi \to \psi \ .$

$$A \lor (B \lor C) = \neg A \rightarrow (B \lor C) = \neg A \rightarrow (\neg B \rightarrow C)$$

Для доказательства эквивалентности необходимо доказать вывод в обе стороны:

1)
$$\neg C \rightarrow \neg (\neg A \& \neg B) \vdash \neg (\neg A \rightarrow B) \rightarrow C$$

2)
$$\neg(\neg A \rightarrow B) \rightarrow C \vdash \neg C \rightarrow \neg(\neg A \& \neg B)$$

1) Доказательство вывода правой части формулы из левой

$$\neg C \to \neg (\neg A \& \neg B) \mid \neg (\neg A \to B) \to C$$

Согласно теореме дедукции, достаточно доказать, что

$$\neg C \rightarrow \neg (\neg A \& \neg B), \neg (\neg A \rightarrow B) \mid \neg C$$

1.	$\neg C \to \neg (\neg A \& \neg B)$	гипотеза 1
2.	$\neg(\neg A \to B)$	гипотеза 2
3.	$(\neg A \& \neg B) \to C$	правило контрапозиции для (1)
4.	$A \to (\neg A \to B)$	секвенция 5
5.	$\neg(\neg A \to B) \to \neg A$	правило обратной контрапозиции для (4)
6.	$\neg A$	Modus ponens для (5) и (2)
7.	$B \to (\neg A \to B)$	аксиома 1
8.	$\neg(\neg A \to B) \to \neg B$	правило обратной контрапозиции для (7)
9.	$\neg B$	Modus ponens для (8) и (2)

Rah

R7 14

R7 (7)

10	$\neg A \& \neg B$	свойство конъюнкции для (6), (9)
11.	C	Modus ponens для (3) и (17)

Теперь так как доказан вывод $\neg C \to \neg (\neg A \& \neg B), \neg (\neg A \to B) \models C$, то используем теорему дедукции и получим, что $\neg C \to \neg (\neg A \& \neg B) \models \neg (\neg A \to B) \to C$.

2) Доказательство вывода левой части формулы из правой

$$\neg(\neg A \to B) \to C \vdash \neg C \to \neg(\neg A \& \neg B)$$

Согласно теореме дедукции, достаточно доказать, что

$$\neg(\neg A \rightarrow B) \rightarrow C, \neg C \vdash \neg(\neg A \& \neg B)$$

1.	$\neg(\neg A \to B) \to C$	гипотеза 1
2.	$\neg C$	гипотеза 2
3.	$\neg C \to \neg \neg (\neg A \to B)$	правило обратной контрапозиции для (1)
4.	$\neg \neg (\neg A \to B)$	Modus ponens для (3) и (2)
5.	$\neg A \rightarrow B$	правило снятия двойного отрицания для (4)
6.	$B \rightarrow \neg \neg B$	секвенция 4
7.	$\neg A \rightarrow \neg \neg B$	секвенция 1 для (5) и (6)
8.	$\neg \neg (\neg A \to \neg \neg B)$	правило введения двойного отрицания для (7).
9.	$\neg(\neg A \& \neg B)$	отрицание конъюнкции для (8)

Rylan Raluh

R4(2)

Вновь используя теорему дедукции для вывода $\neg (\neg A \to B) \to C, \neg C \vdash \neg (\neg A \& \neg B),$ получаем, что $\neg (\neg A \to B) \to C \vdash \neg C \to \neg (\neg A \& \neg B).$

Доказательство проведено в обе стороны, следовательно доказана требуемая эквивалентность.