Álgebra Linear 1 - 08.013-6 Turma C Lista 0 - Matrizes Segundo Semestre de 2017

Iniciamos nosso curso, relembrando que uma $m \times n$ matriz com entradas em \mathbb{K} (para $nós \mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) é uma função $a : \{1, 2, ..., m\} \times \{1, 2, ..., n\} \to \mathbb{K}$. Os elementos da matriz a são os elementos da imagem da função a e são denotados por $a(i, j) = a_{ij}$. Uma matriz a sobre \mathbb{K} é completamente determinada por m, n e por seus elementos, por isso é conveniente descrever uma matriz a exibindo seus elementos numa tabela retangular com m linhas e n columas:

$$a = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Assim, podemos denotar de modo sucinto a matriz a por $a = (a_{ij})_{m \times n}$. Denotamos por $M(m, n, \mathbb{K})$ ao conjunto de todas as $m \times n$ matrizes com entradas em \mathbb{K} .

Por exemplo, se $\mathbb{K} = \mathbb{R}$, m = 4, n = 3 e

$$a = \begin{pmatrix} -1 & \sqrt{5} & 0\\ 3 & 19,87 & -5\\ 1 & 2 & 3\\ \frac{7}{8} & 0 & -3,1415 \end{pmatrix}$$

temos que $a_{11} = -1, a_{12} = \sqrt{5}, a_{13} = 0, a_{21} = 3, a_{22} = 19, 87, a_{23} = -5, a_{31} = 1, a_{32} = 2, a_{33} = 3, a_{41} = \frac{7}{8}, a_{42} = 0$ e $a_{43} = -3, 1415$.

A i-ésima linha da matriz $a=(a_{ij})_{m\times n}$ é a $1\times m$ matriz $L_i(a)=(a_{i1}\ a_{i2}\ \cdots\ a_{in})$. A

j-ésima coluna da matriz
$$a = (a_{ij})_{m \times n}$$
 é a $m \times 1$ matriz $C_j(a) = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$.

Utilizando o exemplo acima, temos que

$$L_1(a) = (-1, \sqrt{5}, 0), L_2(a) = (3, 19, 87, -5), L_3(a) = (1, 2, 3), L_4(a) = (\frac{7}{8}, 0, -3, 1415)$$
 e

$$C_1(a) = \begin{pmatrix} -1\\3\\1\\\frac{7}{8} \end{pmatrix}, \quad C_2(a) = \begin{pmatrix} \sqrt{5}\\19,87\\2\\0 \end{pmatrix}, \quad C_3(a) = \begin{pmatrix} 0\\-5\\-3,1415 \end{pmatrix}$$

As operações de soma de matrizes, $+: M(m,n,\mathbb{K}) \times M(m,n,\mathbb{K}) \to M(m,n,\mathbb{K})$, produto de matrizes $\cdot: M(m,k,\mathbb{K}) \times M(k,n,\mathbb{K}) \to M(m,n,\mathbb{K})$ e produto de escalar por matriz, $\cdot: \mathbb{K} \times M(m,n,\mathbb{K}) \to M(m,n,\mathbb{K})$, são definidas respectivamente por,

$$(a_{ij}) + (b_{ij}) = (c_{ij})_{m \times n} = (a_{ij} + b_{ij})_{m \times n} \quad \forall \ (i, j) \in \{1, 2, \dots, m\} \times \{1, 2, \dots, n\}$$

$$(a_{ij}) \cdot (b_{ij}) = (d_{ij})_{m \times n} = \left(\sum_{r=1}^{k} a_{ir} \cdot b_{rj}\right)_{m \times n} \quad \forall \ (i, j) \in \{1, 2, \dots, m\} \times \{1, 2, \dots, n\}$$

$$\lambda \cdot (a_{ij}) = (\lambda \cdot a_{ij})_{m \times n} \quad \forall \ (i, j) \in \{1, 2, \dots, m\} \times \{1, 2, \dots, n\}$$

- 1. Mostre que a operação de soma de matrizes é associativa, comutativa, possui elemento neutro $0_{m\times n}$, chamada **matriz nula**, e para toda matriz $a = (a_{ij})_{m\times n}$ existe uma matriz b, tal que $a + b = 0_{m\times n}$.
- 2. Mostre que o produto de matrizes é associativo, ou seja, dadas matrizes $a = (a_{ir})_{m \times p}$, $b = (b_{rs})_{p \times q}$ e $c = (c_{sj})_{q \times n}$ tem-se $a \cdot (b \cdot c) = (a \cdot b) \cdot c$. Prove também, que o produto de matrizes não é comutativo em geral.
- 3. Prove a distributividade das operações de produto e soma de matrizes, ou seja, dadas matrizes $a = (a_{ir})_{m \times p}$, $b = (b_{rj})_{p \times n}$ e $c = (c_{rj})_{p \times n}$, tem-se $a \cdot (b+c) = a \cdot b + a \cdot c$.
- 4. Dê exemplo de matrizes não nulas a e b com entradas reais ou complexas tais que o produto de a por b seja a matriz nula.
- 5. Prove que
 - a) $1 \cdot a = a$ $1 \in \mathbb{K} \in \forall a \in M(m, n, \mathbb{K});$
 - b) $\alpha \cdot (\beta \cdot a) = (\alpha \cdot \beta) \cdot a \quad \forall \alpha, \beta \in \mathbb{K} \text{ e } \forall a \in M(m, n, \mathbb{K}) \text{ (observe que, na expressão à direita da igualdade o primeiro produto é a multiplicação em <math>\mathbb{K}$ e o segundo produto é o produto de escalar por matriz);
 - c) $\alpha \cdot (a+b) = \alpha \cdot a + \alpha \cdot b$ $\forall \alpha \in \mathbb{K} \ e \ \forall a, b \in M(m, n, \mathbb{K});$
 - d) $(\alpha + \beta) \cdot a = \alpha \cdot a + \beta \cdot a \quad \forall \alpha, \beta \in \mathbb{K} \in \mathcal{M}(m, n, \mathbb{K});$

- 6. Uma combinação linear das linhas da matriz $a = (a_{ij})_{m \times n}$ é uma $1 \times n$ matriz da forma $c_1 \cdot L_1(a) + c_2 \cdot L_2(a) + \cdots + c_m \cdot L_m(a)$, para certos $c_i \in \mathbb{K}$. Analogamente, uma combinação linear das colunas de a é uma $m \times 1$ matriz da forma $d_1 \cdot C_1(a) + d_2 \cdot C_2(a) + \cdots + d_n \cdot C_n(a)$, para certos $d_j \in \mathbb{K}$. Sejam $a = (a_{ij})_{m \times n}$, $b = (b_{ir})_{m \times q}$ e $c = (c_{rj})_{q \times n}$ matrizes com entradas num corpo \mathbb{K} . Mostre que
 - $a=b\cdot c \Leftrightarrow \text{cada linha de } a \text{ \'e combinação linear das linhas de } c \Leftrightarrow \text{cada coluna de } a \text{ \'e combinação linear das colunas de } b.$

Uma matriz $a = (a_{ij})_{m \times n}$ é chamada **matriz quadrada** de ordem n se m = n. Uma matriz quadrada $b = (b_{ij})_{n \times n}$ é uma **matriz diagonal** se $b_{ij} = 0$ para todos os índices i, j tais que $i \neq j$. Dentre as matrizes diagonais, uma que se destaca das demais é a **matriz identidade** de ordem n definida por $I_n = (\delta_{ij})$, sendo $\delta_{ij} = 1$ se i = j e $\delta_{ij} = 0$ se $i \neq j$.

- 7. Prove que uma matriz $a=(a_{ij})\in M(n,n,\mathbb{K})$ é da forma $\lambda\cdot I_n$ se, e somente se, $a\cdot b=b\cdot a$ para toda matriz $b\in M(n,n,\mathbb{K})$.
- 8. Sejam $a=(a_{ij})_{m\times n}$ e $b=(b_{ij})_{n\times k}$ matrizes sobre um corpo \mathbb{K} . Mostre que

$$a \cdot I_n = a$$
 e $I_n \cdot b = b$

- 9. Se a, b, c são matrizes tais que $a \cdot b = I_n$ e $c \cdot a = I_n$, mostre que a, b, c são todas matrizes quadradas de ordem n e que b = c. Uma tal matriz a é dita ser uma **matriz** invertível e b é chamada **matriz** inversa de a e é denotada por a^{-1} .
- 10. Se a e b são matrizes invertíveis de ordem n, mostre que a^{-1} e $a \cdot b$ são invertíveis, $(a^{-1})^{-1} = a$ e $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$.
- 11. Para cada matriz $a = (a_{ij}) \in M(m, n, \mathbb{K})$ podemos associar sua **matriz transposta**, $a^t = (a_{ji})_{n \times m}$. Mostre que
 - a) $(a^t)^t = a \quad \forall \ a \in M(m, n, \mathbb{K});$
 - b) $(a + b)^t = a^t + b^t \quad \forall \ a, b \in M(m, n, \mathbb{K});$
 - c) $(a \cdot b)^t = b^t \cdot a^t$ $\forall a \in M(m, k, \mathbb{K}), b \in M(k, n, \mathbb{K});$
 - d) Se $a = -a^t$ e \mathbb{K} é um corpo de característica diferente de 2 então a é uma matriz quadrada e $a_{ii} = 0$ para todo i.

- 12. Para cada matriz $a = (a_{ij}) \in M(m, n, \mathbb{C})$ podemos associar sua **matriz transposta conjugada**, $a^* = (\bar{a}_{ji})$ (a barra nos elementos de a^* significa conjugação complexa). Mostre que
 - a) $(a^*)^* = a \quad \forall \ a \in M(m, n, \mathbb{C});$
 - b) $(a+b)^* = a^* + b^* \quad \forall \ a, b \in M(m, n, \mathbb{C});$
 - c) $(a \cdot b)^* = b^* \cdot a^*$ $\forall a \in M(m, k, \mathbb{C}), b \in M(k, n, \mathbb{C}).$
 - d) Se $a=a^*$ então a é uma matriz quadrada e $a_{ii} \in \mathbb{R}$ para todo i.