

C4 : Modélisation cinématique des systèmes composés de chaines de solides
C4-4 : Cinématique du solide

Émilien DURIF

Lycée La Martinière Monplaisir Lyon Classe de MPSI 5 Janvier 2021

Plan

- Champ cinématique des solide
 - Torseur cinématique
 - Propriétés
 - Composition des champs cinématiques
 - Champ de vecteur accélération des points d'un solide
- Mouvements particuliers
 - Mouvement de translation
 - Mouvement de rotation
 - Mouvement de translation/rotation hélicoïdale
 - Mouvement plan

Plan

- Champ cinématique des solide
 - Torseur cinématique
 - Propriétés
 - Composition des champs cinématiques
 - Champ de vecteur accélération des points d'un solide
- - Mouvement de translation
 - Mouvement de rotation
 - Mouvement de translation/rotation hélicoïdale
 - Mouvement plan

Émilien DURIE

$$\overrightarrow{\Omega}(R_1/R_0) = \overrightarrow{\Omega}(S_1/R_0).$$

$$\left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_1} = \overrightarrow{0}.$$

0

$$\left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_0} = \left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_0} + \overrightarrow{\Omega}(S_1/R_0) \wedge \overrightarrow{AB}$$

•

$$\begin{bmatrix} d\overrightarrow{AB} \\ dt \end{bmatrix}_{R_0} = \begin{bmatrix} d\overrightarrow{OB} \\ dt \end{bmatrix}_{R_0} - \begin{bmatrix} d\overrightarrow{OA} \\ dt \end{bmatrix}_{R_0}$$
$$= \overrightarrow{V}(B/R_0) - \overrightarrow{V}(A/R_0)$$

•

$$\left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_1} = \overrightarrow{0}.$$

0

$$\left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_0} = \left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_1} + \overrightarrow{\Omega}(S_1/R_0) \wedge \overrightarrow{AB}.$$

•

$$\begin{bmatrix} \frac{d\overrightarrow{AB}}{dt} \end{bmatrix}_{R_0} = \begin{bmatrix} \frac{d\overrightarrow{OB}}{dt} \end{bmatrix}_{R_0} - \begin{bmatrix} \frac{d\overrightarrow{OA}}{dt} \end{bmatrix}_{R}$$
$$= \overrightarrow{V}(B/R_0) - \overrightarrow{V}(A/R_0)$$

•

$$\left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_1} = \overrightarrow{0}.$$

•

$$\left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_0} = \left[\frac{d\overrightarrow{AB}}{dt}\right]_{R_1} + \overrightarrow{\Omega}(S_1/R_0) \wedge \overrightarrow{AB}.$$

•

$$\begin{bmatrix} \frac{d\overrightarrow{AB}}{dt} \end{bmatrix}_{R_0} = \begin{bmatrix} \frac{d\overrightarrow{OB}}{dt} \end{bmatrix}_{R_0} - \begin{bmatrix} \frac{d\overrightarrow{OA}}{dt} \end{bmatrix}_{R_0}$$
$$= \overrightarrow{V}(B/R_0) - \overrightarrow{V}(A/R_0)$$

Changement de point

 On obtient alors la relation fondamentale de changement de point pour le champ cinématique pour deux points A et B appartenant à un solide quelconque S :

$$\overrightarrow{V}(B/R_0) = \overrightarrow{V}(A/R_0) + \overrightarrow{\Omega}(S/R_0) \wedge \overrightarrow{AB} = \overrightarrow{V}(A/R_0) + \overrightarrow{BA} \wedge \overrightarrow{\Omega}(S/R_0).$$

 On peut étendre cette formule à deux points quelconques A et B (n'appartenan pas forcément à S) avec l'utilisation des vitesses d'entrainement :

$$\overrightarrow{V}(B \in S/R_0) = \overrightarrow{V}(A \in S/R_0) + \overrightarrow{BA} \wedge \overrightarrow{\Omega}(S/R_0).$$
 (1)

On peut parfois appeler cette relation. la formule de Varignon

Remarque

On remarque alors que les vecteurs vitesses des points d'un solide indéformable vérifient la relation de changement de point du moment d'un torseur. Nous pouvons alors définir le torseur cinématiques.

Changement de point

 On obtient alors la relation fondamentale de changement de point pour le champ cinématique pour deux points A et B appartenant à un solide quelconque S :

$$\overrightarrow{V}(B/R_0) = \overrightarrow{V}(A/R_0) + \overrightarrow{\Omega}(S/R_0) \wedge \overrightarrow{AB} = \overrightarrow{V}(A/R_0) + \overrightarrow{BA} \wedge \overrightarrow{\Omega}(S/R_0).$$

ullet On peut étendre cette formule à deux points quelconques A et B (n'appartenant pas forcément à S) avec l'utilisation des vitesses d'entrainement :

$$\overrightarrow{V}(B \in S/R_0) = \overrightarrow{V}(A \in S/R_0) + \overrightarrow{BA} \wedge \overrightarrow{\Omega}(S/R_0).$$
 (1)

On peut parfois appeler cette relation, la formule de Varignon

Remarque

On remarque alors que les vecteurs vitesses des points d'un solide indéformable vérifient la relation de changement de point du moment d'un torseur. Nous pouvons alors définir le torseur cinématiques.

Changement de point

 On obtient alors la relation fondamentale de changement de point pour le champ cinématique pour deux points A et B appartenant à un solide quelconque S :

$$\overrightarrow{V}(B/R_0) = \overrightarrow{V}(A/R_0) + \overrightarrow{\Omega}(S/R_0) \wedge \overrightarrow{AB} = \overrightarrow{V}(A/R_0) + \overrightarrow{BA} \wedge \overrightarrow{\Omega}(S/R_0).$$

ullet On peut étendre cette formule à deux points quelconques A et B (n'appartenant pas forcément à S) avec l'utilisation des vitesses d'entrainement :

$$\overrightarrow{V}(B \in S/R_0) = \overrightarrow{V}(A \in S/R_0) + \overrightarrow{BA} \wedge \overrightarrow{\Omega}(S/R_0).$$
 (1)

• On peut parfois appeler cette relation, la formule de Varignon.

Remarque

On remarque alors que les vecteurs vitesses des points d'un solide indéformable vérifient la relation de changement de point du moment d'un torseur. Nous pouvons alors définir le torseur cinématiques.

On définit le torseur cinématique du mouvement d'un solide indéformable S par rapport à un repère R_0 , le torseur qui a pour résultante, le vecteur de rotation instantané $\overrightarrow{\Omega}(S/R_0)$ et pour moment la vitesse en un point donné A, dans le mouvement de S par rapport à R_0 , $\overrightarrow{V}([\in A/])SR_0$. On le note alors :

$$\left\{ \mathscr{V}_{\left(S/R_{0}\right)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega_{\left(S/R_{0}\right)}} \\ \overrightarrow{V}\left([\in A/]\right)SR_{0} = \overrightarrow{V}_{A}\left(S/R_{0}\right) \end{array} \right\}$$
 (2)

Torseu

Une résultante qui est indépendante du point où on l'exprime et que l'on note R = Ω(S/R₀).
 Un moment qui dépend du point où on l'exprime par la formule fondamental de changement de point et que l'on note M_A(R) = V ((∈ A/))SR₀ = V_A(S/R₀).

On définit le torseur cinématique du mouvement d'un solide indéformable S par rapport à un repère R_0 , le torseur qui a pour résultante, le vecteur de rotation instantané $\overrightarrow{\Omega}(S/R_0)$ et pour moment la vitesse en un point donné A, dans le mouvement de S par rapport à R_0 , $\overrightarrow{V}([\in A/])SR_0$. On le note alors :

$$\left\{ \mathscr{V}_{(S/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega}_{(S/R_0)} \\ \overrightarrow{V}([\in A/])SR_0 = \overrightarrow{V}_A(S/R_0) \end{array} \right\}$$
 (2)

Torseur

Un torseur est un outil mathématique qui présente deux composantes vectorielles :

- Une résultante qui est indépendante du point où on l'exprime et que l'on note $\overrightarrow{R} = \Omega_{(S/R_0)}$.
- Un moment qui dépend du point où on l'exprime par la formule fondamental de changement de point et que l'on note $\overrightarrow{M}_A(\overrightarrow{R}) = \overrightarrow{V}([\in A/])SR_0 = \overrightarrow{V}_A(S/R_0)$.

On définit le torseur cinématique du mouvement d'un solide indéformable S par rapport à un repère R_0 , le torseur qui a pour résultante, le vecteur de rotation instantané $\overrightarrow{\Omega}(S/R_0)$ et pour moment la vitesse en un point donné A, dans le mouvement de S par rapport à R_0 , $\overrightarrow{V}([\in A/])SR_0$. On le note alors :

$$\left\{ \mathcal{V}_{\left(S/R_{0}\right)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega}(S/R_{0}) \\ \overrightarrow{V}([\in A/])SR_{0} = \overrightarrow{V}_{A}(S/R_{0}) \end{array} \right\}$$
 (2)

Torseur

Un torseur est un outil mathématique qui présente deux composantes vectorielles :

- Une résultante qui est indépendante du point où on l'exprime et que l'on note $\overrightarrow{R} = \overrightarrow{\Omega_{(S/R_0)}}$.
- Un moment qui dépend du point où on l'exprime par la formule fondamental de changement de point et que l'on note $\overrightarrow{M}_A(\overrightarrow{R}) = \overrightarrow{V}([\in A/])SR_0 = \overrightarrow{V}_A(S/R_0)$.

On définit le torseur cinématique du mouvement d'un solide indéformable S par rapport à un repère R_0 , le torseur qui a pour résultante, le vecteur de rotation instantané $\overrightarrow{\Omega}(S/R_0)$ et pour moment la vitesse en un point donné A, dans le mouvement de S par rapport à R_0 , $\overrightarrow{V}([\in A/])SR_0$. On le note alors :

$$\left\{ \mathscr{V}_{\left(S/R_{0}\right)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega}(S/R_{0}) \\ \overrightarrow{V}([\in A/])SR_{0} = \overrightarrow{V}_{A}(S/R_{0}) \end{array} \right\}$$
 (2)

Torseur

Un torseur est un outil mathématique qui présente deux composantes vectorielles :

- Une résultante qui est indépendante du point où on l'exprime et que l'on note $\overrightarrow{R} = \overrightarrow{\Omega_{(S/R_0)}}$.
- Un moment qui dépend du point où on l'exprime par la formule fondamental de changement de point et que l'on note $\overrightarrow{M}_A(\overrightarrow{R}) = \overrightarrow{V}([\in A/])SR_0 = \overrightarrow{V}_A(S/R_0)$.

Remarque

Le point A est lié au solide S. Deux cas peuvent se présenter.

- Lorsque le point appartient physiquement au solide (S), il est lié à tout instant à ce solide. On peut alors calculer sa vitesse avec le vecteur vitesse ou par dérivation vectorielle. On parlera alors de point matériel.
- Lorsque le point considéré est lié uniquement au solide à l'instant t où on calcule son vecteur vitesse, on ne peut calculer sa vitesse qu'en utilisant la loi de composition des vitesses. On parlera alors de point géométrique.

Remarque

Le point A est lié au solide S. Deux cas peuvent se présenter.

- Lorsque le point appartient physiquement au solide (S), il est lié à tout instant à ce solide. On peut alors calculer sa vitesse avec le vecteur vitesse ou par dérivation vectorielle. On parlera alors de point matériel.
- Lorsque le point considéré est lié uniquement au solide à l'instant *t* où on calcule son vecteur vitesse, on ne peut calculer sa vitesse qu'en utilisant la loi de composition des vitesses. On parlera alors de **point géométrique**.

Equiprojectivité

$$\overrightarrow{V}([\in A/])S_1R_0 \cdot \overrightarrow{AB} = \overrightarrow{V}([\in B/])S_1R_0 \cdot \overrightarrow{AB}$$
(3)

Remarque

Utile nour les problèmes de cinématique graphique

Equiprojectivité

$$\overrightarrow{V}([\in A/])S_1R_0 \cdot \overrightarrow{AB} = \overrightarrow{V}([\in B/])S_1R_0 \cdot \overrightarrow{AB}$$
(3)

Remarque

Utile pour les problèmes de cinématique graphique.

Axe central

- Un point central d'un torseur est un point où le moment résultant a même direction que la résultante générale.

$$\left\{ \mathscr{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega_{(S_1/R_0)}} \\ \overrightarrow{V}([\in A/])S_1R_0 \end{array} \right\}$$

$$\overrightarrow{AH} = \frac{\overrightarrow{\Omega_{(S_1/R_0)}} \wedge \overrightarrow{V}([\in A/])S_1R_0}{\overrightarrow{\Omega_{(S_1/R_0)}}^2}$$
(4)

Émilien DURIE

Axe central

- Un point central d'un torseur est un point où le moment résultant a même direction que la résultante générale.
 - L'axe central d'un torseur est la droite constituée par l'ensemble des points centraux. Il
 a même direction que la résultante du torseur. L'axe central n'existe que si la résultante
 du torseur n'est pas nulle.
- Supposons un torseur défini en un point A du mouvement de S_1/R_0 :

$$\left\{ \mathscr{V}_{\left(S_{1}/R_{0}\right)}\right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega_{\left(S_{1}/R_{0}\right)}} \\ \overrightarrow{V}\left(\left[\in A/\right]\right)S_{1}R_{0} \end{array} \right\}$$

• La projection du point A sur l'axe central H est obtenu par la relation suivante

$$\overrightarrow{AH} = \frac{\overrightarrow{\Omega_{(S_1/R_0)}} \wedge \overrightarrow{V}([\in A/])S_1R_0}{\overrightarrow{\Omega_{(S_1/R_0)}}^2}$$
(4)

Axe central

- Un point central d'un torseur est un point où le moment résultant a même direction que la résultante générale.
 - L'axe central d'un torseur est la droite constituée par l'ensemble des points centraux. Il
 a même direction que la résultante du torseur. L'axe central n'existe que si la résultante
 du torseur n'est pas nulle.
- ullet Supposons un torseur défini en un point A du mouvement de S_1/R_0 :

$$\left\{ \mathscr{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega_{(S_1/R_0)}} \\ \overrightarrow{V}([\in A/])S_1R_0 \end{array} \right\}$$

• La projection du point A sur l'axe central H est obtenu par la relation suivante

$$\overrightarrow{AH} = \frac{\overrightarrow{\Omega_{(S_1/R_0)}} \wedge \overrightarrow{V}([\in A/])S_1R_0}{\overrightarrow{\Omega_{(S_1/R_0)}}^2}$$
(4)

Axe central

- Un point central d'un torseur est un point où le moment résultant a même direction que la résultante générale.
 - L'axe central d'un torseur est la droite constituée par l'ensemble des points centraux. Il a même direction que la résultante du torseur. L'axe central n'existe que si la résultante du torseur n'est pas nulle.
- ullet Supposons un torseur défini en un point A du mouvement de S_1/R_0 :

$$\left\{ \mathscr{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega_{(S_1/R_0)}} \\ \overrightarrow{V}([\in A/])S_1R_0 \end{array} \right\}$$

• La projection du point A sur l'axe central H est obtenu par la relation suivante :

$$\overrightarrow{AH} = \frac{\overrightarrow{\Omega_{(S_1/R_0)}} \wedge \overrightarrow{V}([\in A/])S_1R_0}{\overrightarrow{\Omega_{(S_1/R_0)}}^2}$$
(4)

Axe central

$$\overrightarrow{AH} = \frac{\overrightarrow{\Omega_{(S_1/R_0)}} \wedge \overrightarrow{V}([\in A/])S_1R_0}{\overrightarrow{\Omega_{(S_1/R_0)}}^2}$$

Cinématique du solide : composition des champs cinématiques

Composition des champs cinématiques] On peut décomposer un champ cinématique à l'aide des torseurs en effectuant une relation de Chasles par des solides successifs. Soit $S_1, S_2, \dots S_n$ un ensemble de solides indéformables :

$$\left\{ \mathcal{Y}_{\left(S_{n}/S_{0}\right)} \right\} = \left\{ \mathcal{Y}_{\left(S_{n}/S_{n-1}\right)} \right\} + \left\{ \mathcal{Y}_{\left(S_{n-1}/S_{n-2}\right)} \right\} + \cdots \left\{ \mathcal{Y}_{\left(S_{1}/S_{0}\right)} \right\}$$
 (5)

Il en découle une décomposition en :

Vecteur rotation instantané :

$$\overrightarrow{\Omega}(S_n/S_0) = \overrightarrow{\Omega}(S_n/S_{n-1}) + \overrightarrow{\Omega}(S_{n-1}/S_{n-2}) + \cdots \overrightarrow{\Omega}(S_1/S_0)$$
 (6)

• Vecteur vitesse en un même point quelconque A :

$$\overrightarrow{V}(A \in S_n/S_0) = \overrightarrow{V}(A \in S_n/S_{n-1}) + \overrightarrow{V}(A \in S_{n-1}/S_{n-2}) + \cdots \overrightarrow{V}(A \in S_1/S_0)$$
(7)

Champ d'accélération

Le relation de changement de point entre A et B pour un champ d'accélération d'un solide S_1 par rapport à un repère R_0 est donnée par :

$$\overrightarrow{a}(B/R_0) = \overrightarrow{a}(A/R_0) + \left[\frac{d}{dt}\overrightarrow{\Omega}(S_1/R_0)\right]_{R_0} \wedge \overrightarrow{AB} + \overrightarrow{\Omega}(S_1/R_0) \wedge \left(\overrightarrow{\Omega}(S_1/R_0) \wedge \overrightarrow{AB}\right).$$

Attention

Un champ d'accélération n'est pas un champ de moment, c'est à dire qu'il ne vérifie

Cinématique du solide : champ d'accélération

Champ d'accélération

Le relation de changement de point entre A et B pour un champ d'accélération d'un solide S_1 par rapport à un repère R_0 est donnée par :

$$\overrightarrow{a}(B/R_0) = \overrightarrow{a}(A/R_0) + \left[\frac{d}{dt}\overrightarrow{\Omega}(S_1/R_0)\right]_{R_0} \wedge \overrightarrow{AB} + \overrightarrow{\Omega}(S_1/R_0) \wedge \left(\overrightarrow{\Omega}(S_1/R_0) \wedge \overrightarrow{AB}\right).$$

Attention

Un champ d'accélération n'est pas un champ de moment, c'est à dire qu'il ne vérifie pas les propriétés d'équiprojectivité et il ne peut pas être décrit par un torseur.

Plan

- Champ cinématique des solide
 - Torseur cinématique
 - Propriétés
 - Composition des champs cinématiques
 - Champ de vecteur accélération des points d'un solide
- Mouvements particuliers
 - Mouvement de translation
 - Mouvement de rotation
 - Mouvement de translation/rotation hélicoïdale
 - Mouvement plan

Mouvements particuliers des solides : mouvement de translation

Mouvement de translation

Un solide S_1 est en mouvement de **translation** par rapport à R_0 si l'ensemble des points de S_1 ont la même vitesse à l'instant t par rapport à R_0 .

Le vecteur de rotation instantané associé à ce torseur est nul : $\overline{\Omega(S_1/R_0)} = \overline{0}$. Il s'agit donc d'un **torseur couple** qui est indépendant du point où on l'exprime :

$$\left\{ \mathcal{Y}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \overrightarrow{V}([\in A/])S_1R_0 \end{array} \right\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \overrightarrow{V}([\in B/])S_1R_0 \end{array} \right\}$$
(8)

Émilien DURIF 15/2:

Mouvements particuliers des solides : mouvement de translation

translation rectiligne

Un mouvement de translation de S_1 par rapport à R_0 est dit de **translation rectiligne** si la trajectoire de tous les points de S_1 par rapport à R_0 est une **droite**. Dans ce cas $\overrightarrow{V}([\in A/])S_1R_0$ a pour direction la trajectoire du point A.

Mouvement de translation circulaire

Un mouvement de S_1 par rapport à R_0 est dit de translation circulaire si la trajectoire de tous les points de S_1 sont des cercles.

Translation rectiligne

Translation circulaire

Mouvements particuliers des solides : mouvement de translation

translation rectiligne

Un mouvement de translation de S_1 par rapport à R_0 est dit de **translation rectiligne** si la trajectoire de tous les points de S_1 par rapport à R_0 est une **droite**. Dans ce cas $\overrightarrow{V}([\in A/])S_1R_0$ a pour direction la trajectoire du point A.

Mouvement de translation circulaire

Un mouvement de S_1 par rapport à R_0 est dit de **translation circulaire** si la trajectoire de tous les points de S_1 sont des **cercles**.

Translation rectiligne

Translation circulaire

Mouvements particuliers des solides : mouvement de rotation

Mouvement de rotation

- Un solide S_1 est en **mouvement de rotation** par rapport à R_0 autour d'un axe (A, \overrightarrow{u}) si tous les points appartenant à l'axe (A, \overrightarrow{u}) ont une vitesse nulle par rapport à R_0 .
- Le vecteur de rotation instantané $(\overline{\Omega}(S_1/S_0))$ est alors colinéaire à la direction \overrightarrow{u} :

$$\overrightarrow{\Omega}(S_1/S_0) \wedge \overrightarrow{u} = \overrightarrow{0}$$

$$\left\{ \mathscr{V}_{\left(S_{1}/R_{0}\right)}\right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega}\left(S_{1}/S_{0}\right) \\ \overrightarrow{0} \end{array} \right\}$$

$$\forall A \in \mathcal{U}$$
.

- Ce torseur est alors "un glisseur" car il existe des points pour lesquels le moment du torseur cinématique est nul
- Ces points appartiennent à l'axe de rotation qui est l'axe central du torseul cinématique associé

Mouvement de rotation

- Un solide S_1 est en mouvement de rotation par rapport à R_0 autour d'un axe (A, \overrightarrow{u}) si tous les points appartenant à l'axe (A, \overrightarrow{u}) ont une vitesse nulle par rapport à R_0 .
- Le vecteur de rotation instantané $(\overrightarrow{\Omega}(S_1/S_0))$ est alors colinéaire à la direction

$$\overrightarrow{\Omega}(S_1/S_0) \wedge \overrightarrow{u} = \overrightarrow{0}$$

$$\left\{ \mathscr{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega}(S_1/S_0) \\ \overrightarrow{0} \end{array} \right\}$$
 (9)

$$\forall A \in \overrightarrow{u}$$
.

Mouvements particuliers des solides : mouvement de rotation

Mouvement de rotation

- Un solide S_1 est en **mouvement de rotation** par rapport à R_0 autour d'un axe (A, \overrightarrow{u}) si tous les points appartenant à l'axe (A, \overrightarrow{u}) ont une vitesse nulle par rapport à R_0 .
- Le vecteur de rotation instantané $(\overrightarrow{\Omega}(S_1/S_0))$ est alors colinéaire à la direction \overrightarrow{u} :

$$\overrightarrow{\Omega}(S_1/S_0) \wedge \overrightarrow{u} = \overrightarrow{0}$$

$$\left\{ \mathcal{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega}(S_1/S_0) \\ \overrightarrow{0} \end{array} \right\}$$
 (9)

$$\forall A \in \overrightarrow{u}$$
.

- Ce torseur est alors "un glisseur" car il existe des points pour lesquels le moment du torseur cinématique est nul.
- Ces points appartiennent à l'axe de rotation qui est l'axe central du torseur cinématique associé

Mouvements particuliers des solides : mouvement de rotation

Mouvement de rotation

- Un solide S_1 est en mouvement de rotation par rapport à R_0 autour d'un axe (A, \overrightarrow{u}) si tous les points appartenant à l'axe (A, \overrightarrow{u}) ont une vitesse nulle par rapport à R_0 .
- Le vecteur de rotation instantané $(\overrightarrow{\Omega}(S_1/S_0))$ est alors colinéaire à la direction

$$\overrightarrow{\Omega}(S_1/S_0) \wedge \overrightarrow{u} = \overrightarrow{0}$$

$$\left\{ \mathscr{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega}(S_1/S_0) \\ \overrightarrow{0} \end{array} \right\}$$
 (9)

$$\forall A \in \overrightarrow{u}$$
.

- Ce torseur est alors "un glisseur" car il existe des points pour lesquels le moment du torseur cinématique est nul.
- Ces points appartiennent à l'axe de rotation qui est l'axe central du torseur cinématique associé.

Mouvements particuliers des solides : mouvement de transaltion/rotation hélicoïdale

Mouvement de translation/rotation hélicoïdale

- Un mouvement de translation/rotation hélicoïdale est la superposition d'un mouvement de rotation autour d'un axe (A, \overrightarrow{u}) et de translation suivant la direction \overrightarrow{u} .
- Ces deux mouvement sont liés par le paramètre p qui représente le pas hélicoïdal et s'exprime en m.rad⁻¹.
- Le torseur cinématique associé à ce mouvement pour un solide S_1 par rapport à R_0 est donné par :

$$\left\{ \mathscr{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega}(S_1/S_0) = \Omega \cdot \overrightarrow{u} \\ \overrightarrow{V}([\in A/])S_1R_0 = p\Omega \cdot \overrightarrow{u} \end{array} \right\}$$
 (10)

Mouvements particuliers des solides : mouvement de transaltion/rotation hélicoïdale

Mouvement de translation/rotation hélicoïdale

- Un mouvement de translation/rotation hélicoïdale est la superposition d'un mouvement de rotation autour d'un axe (A, \overrightarrow{u}) et de translation suivant la direction \overrightarrow{u} .
- Ces deux mouvement sont liés par le paramètre p qui représente le pas hélicoïdal et s'exprime en m.rad⁻¹.
- Le torseur cinématique associé à ce mouvement pour un solide S_1 par rapport à R_0 est donné par :

$$\left\{ \mathcal{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega}(S_1/S_0) = \Omega \cdot \overrightarrow{u} \\ \overrightarrow{V}([\in A/])S_1R_0 = p\Omega \cdot \overrightarrow{u} \end{array} \right\}$$
 (10)

Mouvements particuliers des solides : mouvement de transaltion/rotation hélicoïdale

Mouvement de translation/rotation hélicoïdale

- Un mouvement de translation/rotation hélicoïdale est la superposition d'un mouvement de rotation autour d'un axe (A, \overrightarrow{u}) et de translation suivant la direction \overrightarrow{u} .
- Ces deux mouvement sont liés par le paramètre p qui représente le pas hélicoïdal et s'exprime en m.rad⁻¹.
- ullet Le torseur cinématique associé à ce mouvement pour un solide S_1 par rapport à R_0 est donné par :

$$\left\{ \mathcal{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{c} \overrightarrow{\Omega}(S_1/S_0) = \Omega \cdot \overrightarrow{u} \\ \overrightarrow{V}([\in A/])S_1R_0 = p\Omega \cdot \overrightarrow{u} \end{array} \right\}$$
 (10)

Émilien DURIF 18/23

Soit un solide S_1 , de repère lié R_1 , en mouvement dans un repère R_0 .

Mouvement plan

On dit que S_1 a un **mouvement plan** dans R_0 si chaque point $M \in S_1$ se déplace parallèlement à un plan P_0 lié à R_0 . Autrement dit, si \overrightarrow{n} est la normale à P_0 , alors :

$$\overrightarrow{V}([\in M/])S_1R_0\cdot\overrightarrow{n}=0$$

$$\forall M \in S_1$$

Remarque

Dans le cas d'un mouvement plan (par exemple dans le plan $(O, \overrightarrow{x_0}, \overrightarrow{y_0})$, le torseur cinématique de S_1 par rapport à R_0 se ramène à :

$$\left\{ \mathcal{Y}_{\left(S_{1}/R_{0}\right)}\right\} = \left\{ \begin{array}{ccc} 0 & V_{x} \\ 0 & V_{y} \\ \omega_{z} & 0 \end{array} \right\}_{R}$$

On remarquera ainsi que $\overrightarrow{\Omega_{(S_1/R_0)}} \perp \overrightarrow{V}([\in M/])S_1R_0$, et donc que ce torseur est un glisseur

Émilien DURIF 19,

Soit un solide S_1 , de repère lié R_1 , en mouvement dans un repère R_0 .

Mouvement plan

On dit que S_1 a un **mouvement plan** dans R_0 si chaque point $M \in S_1$ se déplace parallèlement à un plan P_0 lié à R_0 . Autrement dit, si \overrightarrow{n} est la normale à P_0 , alors :

$$\overrightarrow{V}([\in M/])S_1R_0\cdot\overrightarrow{n}=0$$

$$\forall M \in S_1$$

Remarque

Dans le cas d'un mouvement plan (par exemple dans le plan $(O, \overrightarrow{x_0}, \overrightarrow{y_0})$, le torseur cinématique de S_1 par rapport à R_0 se ramène à :

$$\left\{ \mathcal{V}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{cc} 0 & V_x \\ 0 & V_y \\ \omega_z & 0 \end{array} \right\}_{R_0}$$

On remarquera ainsi que $\overrightarrow{\Omega_{(S_1/R_0)}} \perp \overrightarrow{V}([\in M/])S_1R_0$, et donc que ce torseur est un glisseur.

Émilien DURIF

exemple

cas d'un mouvement dans le plan $(O,\overrightarrow{x_0},\overrightarrow{y_0})$, le torseur cinématique de S_1 par rapport à R_0 est donné par :

exemple

cas d'un mouvement dans le plan $(O,\overrightarrow{x_0},\overrightarrow{y_0})$, le torseur cinématique de S_1 par rapport à R_0 est donné par :

$$\left\{ \mathcal{V}_{\left(\mathcal{S}_{1}/R_{0}\right)}\right\} = \left\{ \begin{array}{cc} 0 & V_{x} \\ 0 & V_{y} \\ \omega_{z} & 0 \end{array} \right\}_{R_{0}}$$

exemple

cas d'un mouvement dans le plan $(O, \overrightarrow{z_0}, \overrightarrow{x_0})$, le torseur cinématique de S_1 par rapport à R_0 est donné par :

exemple

cas d'un mouvement dans le plan $(O,\overrightarrow{x_0},\overrightarrow{y_0})$, le torseur cinématique de S_1 par rapport à R_0 est donné par :

$$\left\{ \mathscr{V}_{\left(S_{1}/R_{0}\right)}\right\} = \left\{ \begin{array}{ccc} 0 & V_{x} \\ \omega_{y} & 0 \\ 0 & V_{z} \end{array} \right\}_{R_{0}}$$

exemple

cas d'un mouvement dans le plan $(O, \overrightarrow{z_0}, \overrightarrow{x_0})$, le torseur cinématique de S_1 par rapport à R_0 est donné par :

exemple

cas d'un mouvement dans le plan $(O,\overrightarrow{y_0},\overrightarrow{z_0})$, le torseur cinématique de S_1 par rapport à R_0 est donné par :

$$\left\{ \mathcal{Y}_{(S_1/R_0)} \right\} = \left\{ \begin{array}{ccc} \omega_x & 0 \\ 0 & V_y \\ 0 & V_z \end{array} \right\}_{R_0}$$

Centre instantané de rotation (C.I.R.)

On appelle "centre instantané de rotation" (noté familièrement "C.I.R.") le point d'intersection entre l'axe central (Δ) et le plan du mouvement. On désignera par " I_{10} " le CIR du mouvement de S_1 par rapport à R_0 .

Remarqu

Pendant un instant Δt infiniment bref, le centre instantané de rotation représente le point autour duquel S_1 a un mouvement de rotation. Cependant, à l'instant suivant, il peut avoir changé de position.

Émilien DURIF 21/2:

Centre instantané de rotation (C.I.R.)

On appelle "centre instantané de rotation" (noté familièrement "C.I.R.") le point d'intersection entre l'axe central (Δ) et le plan du mouvement. On désignera par " I_{10} " le CIR du mouvement de S_1 par rapport à R_0 .

Remarque

Pendant un instant Δt infiniment bref, le centre instantané de rotation représente le point autour duquel S_1 a un mouvement de rotation. Cependant, à l'instant suivant, il peut avoir changé de position.

Propriétés

• Soit S_1 , un solide en mouvement dans un repère R_0 , et ayant pour CIR " I_{10} ". Alors, pour tout $P \in S_1$, on a :

$$\overrightarrow{V}([\in P/])S_1R_0 \cdot \overrightarrow{PI_{10}} = 0 \qquad \Leftrightarrow \qquad \overrightarrow{V}([\in P/])S_1R_0 \perp \overrightarrow{PI_{10}} \qquad (11)$$

- La norme des vecteurs vitesse est proportionnelle à la distance au CIR.
- On en déduit que la vitesse sur le CIR est nulle.

Mouvements particuliers des solides : cas des mouvements de translation

cas des mouvements de translation

Lorsque le mouvement relatif des deux solides est un translation, le CIR **n'existe pas**. Cependant, on peut considérer qu'il est comme rejeté à l'infini, perpendiculairement à la direction de la translation.

