# Στόχος του μαθήματος

• Συνολικός στόχος του μαθήματος είναι η κατανόηση και γνώση από τους φοιτητές της δομής και λειτουργίας των υποσυστημάτων των υπολογιστικών συστημάτων.

## Στόχος του εργαστηρίου

- Στους μικροεπεξεργαστές, η γλώσσα assembly του επεξεργαστή 8086 περιγράφεται και χρησιμοποιείται στην κατασκευή προγραμμάτων εφαρμογών. Μέσω των εντολών, ο φοιτητής κατανοεί τις προδιαγραφές του μικροεπεξεργαστή, τη δομή των καταχωρητών και της μνήμης, τύπους δεδομένων αλλά και τη λειτουργία της αριθμητική και λογικής μονάδας.
- Στους μικροελεγκτές γίνεται η γνωριμία με την πλακέτα arduino, το περιβάλλον IDE και η χρήση εντολών για προγραμματισμό χαμηλού επιπέδου του μικροελεγκτή.

## Πρόλογος

- Γνωστοί μικροεπεξεργαστές
- Βασικά μέτρα απόδοσης μικροεπεξεργαστών
- επεξεργαστής- λειτουργικό σύστημα 16-32-64 bit
- οικογένεια Intel 80x86
- Συμβατότητα (με άλλες εταιρίες ενδοεταιρική)
- θεσιακά συστήματα αρίθμησης
- 16αδικό σύστημα

# Δομή μικροεπεξεργαστή 8086



# Καταχωρητές γενικής χρήσης και δεδομένων (Data Registers)

Οι καταχωρητές αυτοί είναι τέσσερις:

- **AX (accumulator = συσσωρευτής)** Εργασίες εισόδου / εξόδου, διορθώσεις δεκαδικών, πολλαπλασιασμοί, διαιρέσεις.
- BX (base = βάσης)
   Δείκτης για έμμεσο τρόπο προσδιορισμού διευθύνσεων μνήμης (indirect addressing).
- CX (counter = μετρητής)
  Μετρητής είτε εντολών επαναλήψεων είτε εντολών περιστροφών μεταφοράς.
- **DX (data = δεδομένων)**Επέκταση του ΑΧ από 16 bits σε 32 bits για πολ/σμούς και διαιρέσεις, έμμεσο τρόπο προσδιορισμού διεύθυνσης εισόδου εξόδου.

# Καταχωρητές δείκτες

- SP (Stack Pointer =δείκτης σωρού) Δείχνει την πρώτη ελεύθερη θέση στο σωρό.
- **BP** (Base Pointer =δείκτης βάσης)
  Χρησιμοποιείται για προσπέλαση δεδομένων στο σωρό (τοπικές μεταβλητές, παράμετροι υποπρογραμμάτων).
- SI (Source Index =δείκτης προέλευσης)
  Δείκτης προέλευσης για μεταφορά χαρακτήρων από μια περιοχή μνήμης.
- DI (Destination Index =δείκτης προορισμού)
   Δείκτης προορισμού για μεταφορά χαρακτήρων σε μια περιοχή μνήμης.

## Δείκτης εντολών

Ο καταχωρητής **IP** (**Instruction Pointer** = δείκτης εντολών ) δείχνει την απόκλιση (offset) της διευθύνσεως της επόμενης προς εκτέλεση εντολής μέσα στο τμήμα του κώδικα. Ενημερώνεται από την BIU.

Ο μετρητής προγράμματος (Program Counter) της μηχανής von Neumann έχει αντικατασταθεί εδώ από το δίδυμο:

CS: IP

# Καταχωρητής κατάστασης ή σημαιών (SR)



# Δείκτες κατάστασης (6 bits)

#### CF (Carry Flag)

Χρησιμοποιείται σαν ένα επιπλέον δυαδικό ψηφίο σε αριθμητικές εντολές (ADD, SUB, ADC, SBC). Εάν προκύψει ένα κρατούμενο (πρόσθεση) ή απαιτηθεί δανεισμός (αφαίρεση), παίρνει τιμή 1 αλλιώς 0.

#### SF (Sign Flag)

Χρησιμοποιείται από αριθμητικές ή λογικές πράξεις.. Εάν το αποτέλεσμα είναι θετικό γίνεται 0, εάν είναι αρνητικό γίνεται 1.

#### ZF (Zero Flag)

Γίνεται 1 αν το αποτέλεσμα μιας αριθμητικής ή λογικής πράξης είναι 0, αλλιώς μένει 0.

#### OF (Overflow Flag)

Γίνεται 1 όταν το προσημασμένο αποτέλεσμα μιας πράξης (σε συμπλήρωμα του δύο) είναι πολύ μεγάλο ή πολύ μικρό για να χωρέσει στον τελεστή του αποδέκτη.

- Το εύρος του διαύλου διευθύνσεων είναι 20 bit
- Επομένως ο 8086 έχει δυνατότητα προσπέλασης
   1 Megabyte θέσεων μνήμης
- Το σύνολο των δ/νσεων είναι από 00000h έως 0FFFFh
- Το περιεχόμενο κάθε θέσης μνήμης είναι 1 byte
- Στην μνήμη του μπορούμε να θεωρήσουμε τμήματα (segments) μνήμης καθένα από τα οποία είναι μεγέθους 64 Kbytes

- Η αρχή κάθε τμήματος από το επόμενο απέχει 16 bytes, δηλαδή τα τμήματα αρχίζουν από δ/νσεις μνήμης που διαιρούνται με το 16 και ονομάζονται παράγραφοι
- Επομένως έχουμε 64 Kbytes παραγράφους μνήμης
- Ο χωρισμός της μνήμης σε τμήματα (segmentation)
  προήλθε κύρια από το γεγονός ότι είναι αδύνατη η
  διευθυνσιοποίηση της διαθέσιμης μνήμης εσωτερικά
  με μόνον ένα από τους διαθέσιμους καταχωρητές
  των 16 bits του 8086

- Για την προσπέλαση σε μια θέση μνήμης πρέπει να τεθεί η φυσική διεύθυνση (physical address) των 20 bits στο δίαυλο των διευθύνσεων
- Για τον σχηματισμό της δ/νσης αυτής εσωτερικά στον 8086 χρησιμοποιούνται δύο καταχωρητές
- Σε έναν από τους καταχωρητές τμημάτων τοποθετείται ο αύξων αριθμός της παραγράφου αρχής ενός τμήματος μνήμης
- Ο δεύτερος καταχωρητής ο οποίος ονομάζεται κατά περίπτωση pointer ή index (δείκτης) περιέχει την απόσταση από την αρχή του τμήματος, η οποία ονομάζεται λογική διεύθυνση ή μετατόπιση ή ενεργός διεύθυνση (logical address, offset, effective address)

 Ο τελικός προσδιορισμός της φυσικής δ/νσης προκύπτει από την πρόσθεση της λογικής δ/νσης στην δ/νση αρχής του τμήματος σύμφωνα με την απλή σχέση:

< φυσική διεύθυνση > = < τμήμα > \* 16 + < μετατόπιση >

Ο καταχωρητής CS περιέχει την δ/νση αρχής του τμήματος όπου έχουν αποθηκευτεί οι κωδικοί των εντολών του προγράμματος (CODE). Η μετατόπιση στο τμήμα αυτό καθορίζεται αποκλειστικά και μόνο από τον καταχωρητή IP

Το δίδυμο δηλ. CS:IP αντικαθιστά τον μετρητή προγράμματος (PC) των άλλων επεξεργαστών Π.χ αν CS = 345Ah και IP = 712Ch, τότε η φυσική δ/νση της επόμενης εντολής είναι:

#### CS\*10h + IP= 345Ah\*10h + 712Ch= 345A0h + 712Ch= 3B6CCh

 Ο καταχωρητής SS περιέχει την δ/νση από όπου αρχίζει το τμήμα μνήμης της σωρού (STACK). Στην περίπτωση αυτή η λογική δ/νση της κορυφής της σωρού δίνεται αποκλειστικά και μόνο από τον καταχωρητή BP

Π.χ αν SS = 1ABCh και SP = 100h, τότε η φυσική δ/νση της κορυφής του σωρού είναι:

SS\*10h + SP= 1ABCh\*10h + 100h= 1ABC0h+ 100h= 1ACC0h

Οι καταχωρητές DS και ES περιέχουν την δ/νση στην οποία αρχίζει κάποιο τμήμα δεδομένων ( DATA ) απαραίτητων για την εκτέλεση του προγράμματος και παρέχουν ένα επιπλέον χώρο (EXTRA) που μπορεί να χρησιμοποιηθεί για αποθήκη δεδομένων





# ΤΟΠΟΘΕΤΗΣΗ - ΠΡΟΣΠΕΛΑΣΗ ΤΩΝ ΛΕΞΕΩΝ ΣΤΗΝ ΜΝΗΜΗ

 Το περιεχόμενο κάθε θέσης μνήμης είναι 1 byte. Οι λέξεις (word = 2 bytes) δεδομένα αποθηκεύονται με το περισσότερο σημαντικό byte στην χαμηλότερη δ/νση. Έτσι π.χ. ο αριθμός 3456h θα αποθηκευτεί, στις διαδοχικές δ/νσεις 678h και 679h σαν 5634h σύμφωνα με το σχήμα:

| 678h | 679h |  |
|------|------|--|
| 56h  | 34h  |  |

# ΤΟΠΟΘΕΤΗΣΗ - ΠΡΟΣΠΕΛΑΣΗ ΤΩΝ ΛΕΞΕΩΝ ΣΤΗΝ ΜΝΗΜΗ

• Οι διπλές λέξεις δεδομένων όπως αυτές που αφορούν πραγματικές διευθύνσεις (segment:offset) αποθηκεύονται σε διαδοχικές θέσεις μνήμης αντίστροφα. Π.χ. DS=1234h και SI=5678h η πραγματική διεύθυνση (pointer) DS:SI αποθηκεύεται σε διαδοχικές θέσεις μνήμης 0300h έως και 0303h ως εξής:

| 300h | 301h | 302h | 303h |
|------|------|------|------|
| 78h  | 56h  | 34h  | 12h  |