Every program needs a test

```
function y = mysin(x, tol)
 % Computes sin by folding input into domain 0 <= x <= 2*pi
 % Then computes value using polynomial approximation
 % Initialize some constants. Do this once instead of doing
 % it multiple times in the program in order to improve performance.
 piover2 = pi/2;
  pitimes2 = 2*pi;
 s = mod(x, pitimes2);
                                                          test_mysin.m
 % Do folding
 if (s < piover2)
   y = P(s, tol);
    return
 elseif (s < pi)
    y = P(pi-s, tol);
    return
                                                             mysin.m
 elseif (s < 3*piover2)</pre>
   y = -P(s-pi, tol);
    return
 elseif (s < pitimes2)</pre>
   y = -P(pitimes2-s, tol);
    return
 else
    error('We failed! x = %15.12e, s = %15.12e\n', x, s)
   y = nan;
    return
 end
```

Example test program

```
function test mysin()
 % This runs the function mysin for inputs over a range, and
 % checks its return against that from MATLAB. If the difference
 % is larger than 1 ULP, then it errors out.
                                               Get return from my program
 for x = 0:2:100
   tol = 1*eps(x);
   y comp = mysin(x, tol);
                                          Get "true", analytic result
   y true = sin(x);
   diff = abs(y comp - y true);
   fprintf('x = 20.18e, y comp = 20.18e, y true = 20.18e, diff = 20.18en', x,
y comp, y true, diff)
                                          Check result here
   error('Error is too large!!!\N')
   end
 end
 % If we get here, it's because all comparisons passed.
 fprintf('--- Test passed! Success! ----\n')
end
```

When I run it.....

- I will run your test program when grading your HW
- Please make sure your test runs and passes.
- Please zip up fcn and test into one .zip package one per HW problem
- Testing is an important real-world practice

Next: Computer internals

- CPU
- RAM accessed through controller
- Video memory separate from RAM.
- Note busses
- PCI slots

- CPU
- Cache next to CPU
- RAM accessed through controller
- Video memory separate from RAM.
- Note busses
- PCI slots

System bus

- Bus is how data goes from memory and peripherals to CPU.
- When people talk about 32 or 64 bit computers, they are talking about the computer's word size, usually the same as the bus width.

Max memory size is dictated by bus width

- 32 bit address => 2^32 = 4GB of addressable RAM.
 - Equivalent to 23K x 23K matrix of doubles.
- 64 bit address => 2^64 = 1.8e19 bytes of addressable RAM.

CPU

- How instructions are executed.
- Logic to fetch and execute instructions (primitive machine code).
- Registers onboard memory locations.
- ALU Arithmetic & logic unit. Unary and binary operations on different types of data.
- On-chip cache (fast memory).

Very simple view of CPU

- Instruction fetch and decode
- ALU (actually, there are more than 1)
- Registers
- Memory interface

Cache

- High-speed memory on-board CPU
- Up to 3 "levels" in modern computers.
- Closer to CPU -> faster & smaller, away from CPU -> slower & larger.

Itanium Caches

Intel Itanium II

2 L1: (16kB+ 16 kB)

- L2: 256kB

- L3: 3072kB

Hierarchy of Storage

Important pieces to remember

- CPU
- Cache
- Bus
- Memory (RAM)
- Peripherals disk drives, mouse, keyboard, sound card, display screen, USB stuff, etc.

New topic: Software Compilation of code – the old way

Example C code

```
case(GET BYTE START):
  // Now wait here until we get a zero
  rcv bit ctr = 0 \times 00;
  byte ctr = 0 \times 00;
  if (rcv bit == 0 \times 00) {
    rcv state = GET BYTE;
  } else {
    rcv state = GET BYTE START;
  break;
case(GET BYTE):
  rcv byte = (rcv byte << 1) | rcv bit; // shift bit into rcv byte
  if (rcv bit ctr == 8) {
    bytes[byte ctr] = rcv byte;
    byte ctr++;
    if (byte ctr > 6) {
      rcv state = REFRAME; // Error -- we need to reframe
                                 // We're done. Clear out rcv byte
    rcv byte = 0x00;
    rcv state = GET PACKET END;
  } else {
    rcv state = GET BYTE; // Go back and get next bit.
  break;
```

C program written for AVR microcontroller

Assembly code

```
// Sampled first part of 0 bit. Set bit ready, then set timer to skip next
    // comparator interrupt.
    bit ready = 0 \times 01;
                     ldi
                            r24, 0x01
104: 81 e0
                                            ; 1
106: 80 93 86 00
                            0x0086, r24
                     sts
    0CR0A = 60;
10a: 8c e3
                     ldi
                            r24, 0x3C
                                            ; 60
10c: 86 bf
                     out
                            0x36, r24
                                         : 54
    TCNT0 = 0x00;
                               // Set timer 0 count to 0
      12 be
10e:
                            0x32. r1 : 50
                     out
    TIMSK \mid = (1 \ll OCIE0A);
                            // Re-enable timer 0 A interrupts
110:
      89 b7
                            r24, 0x39
                                            : 57
                     in
112: 81 60
                     ori
                          r24, 0x01
114:
      89 bf
                            0x39, r24
                                            ; 57
                     out
    TCCR0B = (1 << CS01);
                           // Turn on timer 0, use /8 prescalar
116:
      83 b7
                     in
                          r24, 0x33
                                            ; 51
118: 82 60
                     ori
                         r24, 0x02
11a: 83 bf
                     out
                            0x33, r24
// turn the comparator interrupt back on again.
ACSR |= (1<<ACI); // clear Analog Comparator interrupt
ACSR |= (1<<ACIE); // Re-enable Analog Comparator interrupt
```

C program written for AVR microcontroller – assembler statements in .lst file.

Machine code

```
:1000000023C032C031C030C02FC02EC02DC02CC084
:100010002BC02AC02AC028C027C041C025C024C088
:1000200023C022C021C020C01FC07BC268C2BEC284
:10003000AFC2A1C27DC215C3D0C274C133C2EBC16D
:10004000E1C1D2C1BFC1F1C211241FBECFE5D1E0D1
:10005000DEBFCDBF10E0A0E6B0E001C01D92A73822
:10006000B107E1F74BD1E6C4CBCF1F920F920FB689
:100070000F9211248F934398109284001092830062
:1000800012BE89E186BF89B7816089BF83B782606C
:1000900083BF8F910F900FBE0F901F9018951F92E6
:1000A0000F920FB60F9211248F939F9389B78E7F73
:1000B00089BF83B78D7F83BF98B18091830095FB03
:1000C000992790F9880F892B809383008091840071
:1000D0008F5F8093840080918400813069F18091EA
:1000E0008400823049F0449A439A9F918F910F90F7
:1000F0000FBE0F901F9018958091830083708150E0
:10010000823098F081E0809386008CE386BF12BE37
:1001100089B7816089BF83B7826083BF9F918F91C8
:100120000F900FBE0F901F90189581E0809386006E
:1001300012BE449A439AD9CF87E3E8CF82E090E099
```

C program written for AVR microcontroller – Hex values in .hex programming file

Edit-Compile-Link-Test Loop

Matlab: Interpreted Language

- Advantage: Interactive
- Disadvantage: Slow

A modern approach: runtime engines

What you need to remember

- Basic properties of numerical computing are determined by hardware considerations. (Example: Size of ints: 8, 16, 32, and 64 bit.)
- Knowing where your data is held is often important for performance (cache).
- Integer and floating point arithmetic occur in hardware – in the CPU's ALU.

New topic: Integers

- Numeric type supported in hardware
- Audio
- Images
- Sampled data (real time data acquisition)
 - Often handled as "fixed point" data.

The higher the bits, the closer to the original waveform the picture becomes.

Every pixel is a triples of 24 bit integers corresponding to RGB value

Unsigned integers

- Uint16: 0 -> 65535
- Uint32: 0 -> 4294967295
- Uint64: 0 -> big

- Ints have max and min values
- Intmax('type')

Signed integers

Data Types, Sizes, and Representations

Conventions: byte 0 is the most significant byte (MSB)

bit 0 is the least significant bit (lsb)

S = the sign bit

minimum value = 0 maximum value = 255

short integer

minimum value = -32768 maximum value = 32767

minimum value = maximum value = -2147483648 2147483647

Two's complement representation of signed ints

MSB is sign bit

$$-0 = pos$$

$$-1 = neg$$

- Take positive value
- Invert all bits
- Add 1
- Example on blackboard

Decimal value	Binary
127	0111 1111
4	0000 0100
3	0000 0011
2	0000 0010
1	0000 0001
0	0000 0000
-1	1111 1111
-2	1111 1110
-3	1111 1101
-4	1111 1100
-127	1000 0001

Integer ALU

- Integer arithmetic is fast.
- Always supported in hardware.
- Very common in applications:
 - Sound.
 - Images.
 - Real-world signals from an A/D.

Integer roll-over vs. saturation

Matlab: ints saturate

```
>> int8(23)
ans =
    23
>> int8(233)
ans =
    127
```

 Python/NumPy: ints roll over.

```
In [11]: import numpy
```

In [12]: numpy.int8(23)

Out[12]: 23

In [13]: numpy.int8(233)

Out[13]: -23

Why do we care about computer architecture?

- Operations performed in hardware are fast.
 - Integer computation.
 - Floating point computation (32 and 64 bit).
- Memory accesses are slow. Cache accesses are fast.
- Performance is one of the themes of this class.

Recall structure of 32 bit float

Floats are of form s*2e*mantissa

```
s = sign bit
e = exponent
Mantissa (significand) = 1.xxx
```

Each group is encoded into some field in the 32 bit word as binary.

Advantage: Fast floating point

 IEEE 754 floating point computations occur using specialized hardware.

Fast!

But precision is fixed.

A floating point ALU

32 and 64 bit floating point operations are implemented in hardware (*fast*).

Next: Accuracy of computations

- Accuracy requirements for basic operations called out in IEEE spec.
- Spec defines "exactly rounded" operations.
 - Exactly rounded: Computed result must lie within ½ ULP of "true" result.
- Addition/Subtraction: Exactly rounded.
- Multiplication: Exactly rounded.
- Sqrt(): Exactly rounded.
- Other functions.

Accuracy depends upon the magnitude of your numbers

- Decimal numbers may not have exact representation in binary floating point.
- Error depends upon the ULP of your number.

```
octave:3 > x = single(1000000.1)
x = 1.0000e + 06
octave: 4 > y = single(1000000.2)
y = 1.0000e + 06
octave:5> x - y
ans = -0.062500
octave:6> x = single(1.1)
x = 1.1000
octave:7> y = single(1.2)
y = 1.2000
octave:8> x - y
ans = -0.10000
```

Floating point operations are *not* associative!

```
octave:85> x = single(1.000001)
x = 1.000000095367432
octave:86> y = single(1.000002)
y = 1.00000202655792
octave:87> z = single(1e-6)
z = 9.99999997475243e-07
octave:88> z+(x-y)
ans = -7.28836084817885e-08
octave:89> (z+x)-y
ans = -1.19209289550781e-07
```

- In general, this happens when your variables have different scale.
- Therefore, be careful about scaling your variables.

New Subject: Dealing with computational errors

- Sources of error:
 - Your mistakes (Not the subject of this section!)
 - Round-off error (Finite word size of computer.)
 - Truncation error (i.e. You stop a series summation before it has fully converged.)
 - Inherent conditioning of the function (e.g. Rapidly varying functions.)
 - Stability of your algorithm (Build-up of errors due to bad algorithm.)
- The following are a bunch of techniques to deal with the imprecision of computer numerics

Round-off error

 Finite word length acts as source of error by forcing values to lie on the floating point grid.

```
octave:28> format long
octave:29> single(1.1)
ans = 1.10000002384186
```

- Can be interpreted as an error or noise source in your computation.
- The non-uniform floating point grid makes things more complicated....

Example round-off error effect

```
octave:85> x = single(1.000001)
x = 1.00000095367432
octave:86> y = single(1.000002)
y = 1.00000202655792
octave:87> z = single(1e-6)
z = 9.9999997475243e-07
octave:88> z+(x-y)
ans = -7.28836084817885e-08
octave:89> (z+x)-y
ans = -1.19209289550781e-07
```

Floating point arithmetic is not associative!

Catastrophic cancellation

 x – y can give wrong answer if x and y are close

```
octave: 24> x = single(1.000001)
x = 1.0000
octave: 25> y = single(1.000002)
y = 1.0000
octave: 26> x-y
ans = -1.0729e-06
```

 This phenomenon is also called "loss of significance".

Catastrophic cancellation is why we have the Matlab functions expm1 and logp1

• expm1: $\exp(x)-1=(1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+...)-1$

 $expm1(x) = x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots$

Catastrophic cancellation for small x

octave:34> format long

octave:35> **expm1(1e-10)**

ans = 1.0000000005000e-10

octave:36> exp(1e-10) - 1

ans = 1.00000008274037e - 10

• log1p = log(1+x)

More Effects of Round-off

octave:94> **sin(0)**

octave:95> **sin(pi)**

ans = 1.22464679914735e-16

Plot by: ill conditioned sin identity

ans = 0

```
octave:14> x = 5.123; n = 1; sin(x) - sin(x + 2*n*pi)
ans = -2.2204e-16
octave:15> x = 5.123; n = 10; sin(x) - sin(x + 2*n*pi)
ans = -7.7716e-16
octave:16> x = 5.123; n = 100; sin(x) - sin(x + 2*n*pi)
ans = -2.0317e-14
octave:17> x = 5.123; n = 1000; sin(x) - sin(x + 2*n*pi)
ans = 4.1933e-13
```

Comparisons when doing floating point math

```
Bad:
                          Bad!
     x = \sin(pi);
     if (x == 0)
       fprintf('sin(pi) == 0 \n');
     else
       fprintf('sin(pi) != 0\n');
     end
Good:
                                 Good
     tol = eps(1);
     if (abs(x) < tol)
       fprintf('sin(pi) == 0 \setminus n');
     else
       fprintf('sin(pi) != 0\n');
     end
```

Catastrophic cancellation -- Solving quadratics

$$ax^2 + bx + c = 0 \longrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- Don't! Can be inaccurate if the two subtracted terms in b are close (if 4ac << b²). This happens if two roots are far apart.
- Example: quadratic_test.m (x-2)(x+1.23e17)

The right way to compute roots of quadratics

Exploit the fact that $r_1 r_2 = \frac{c}{a}$

If b < 0:

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$r_2 = \frac{2c}{-b + \sqrt{b^2 - 4ac}}$$

Else:

Subtract positive from negative
$$r_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \qquad r_2 = \frac{2c}{-b - \sqrt{b^2 - 4ac}}$$

Add positive to positive

No catastrophic cancellation

The right way to compute roots of quadratics

```
function [x1, x2] = quadratic solve good(a, b, c)
  if b < 0
    % Compute temp using stable computation which avoids
    % large - large cancellation
    temp = -b + sqrt(b*b - 4*a*c);
    x1 = temp/(2*a);
    x2 = (2*c)/temp;
  else
    % Compute temp using stable computation which avoids
    % large - large cancellation
    temp = -b - sqrt(b*b - 4*a*c);
    x1 = temp/(2*a);
    x2 = (2*c)/temp;
  end
end
```

Caution when doing sums

- Common suggestion for summing a vector: sort vector first from lowest to highest. Then sum.
- Kahan summation.

Final topic: Error and numerical stability

- Concept of stability: Your algorithm might return a result with error, but only unavoidable error.
- We just looked at a bunch of techniques to deal with avoidable errors.
- Now some theoretical concepts dealing with how much error to expect, if your algorithm is stable.

Concept: Relative vs. Absolute error

You want to compute: y = f(x)

The mathematically "true" answer is: $y_{true} = f_{true}(x)$

The computer returns: $y_{computed} = f_{computed}(x)$

In general, $y_{true} \neq y_{computed}$ **Error!**

- Absolute error: $e_f = |y_{true} y_{computed}|$
- Relative error: $\epsilon_f = \frac{|y_{true} y_{computed}|}{|y_{true}|}$

Note one is e and one is epsilon

You want relative error to be on the order of "machine eps" = eps(1) in Matlab.

Forward and backward error

- Forward error: Difference between true and computed values: |y_{comp} - y_{true}|
- Backward error: $|x x^*|$ where x^* yields y_{comp}
- Forward error = output error, backward error = equivalent input error.
- You generally have access to forward error, but not backward error.

Condition number for scalar functions

 Condition number is defined to relate forward (relative) error to backward (relative) error.

Recall definition of backward error

$$y_{comp} = f_t(x + e_b)$$
 True function

Compute relative forward error

$$\frac{|y_{true} - y_{comp}|}{|y_{true}|} = \frac{|f_t(x) - f_t(x + e_b)|}{|f_t(x)|}$$

Mean value theorem $= \frac{|e_b f_t'(\xi)|}{|f_t(x)|}$

Relative backward error

$$\frac{|y_{true} - y_{comp}|}{|y_{true}|} \approx \left| \frac{x f'(x)}{f(x)} \right| \left| \frac{e_b}{x} \right|^{2}$$

Condition number

Condition number

$$\kappa(x) = \frac{\epsilon_f}{\epsilon_b} = \left| \frac{x f'(x)}{f(x)} \right|$$

- Relates relative backward error to relative forward error. Characterizes input error to output error!
- Characterizes how error will grow if you compute f(x)
 -- in best case.
- Ideally, you want k small for good results.
- High k means "watch out!"
- One says a problem is "well conditioned" vs. "badly conditioned".

Consider evaluating tan(x)

- Derivative approaches inf at pi/2, 3pi/2, etc.
- Badly conditioned at these points -> small error in x creates large error in y!
- Derivative in definition of condition number.

Another view: Expected error when evaluating a scalar function

$$\begin{aligned} e_f &= |f_{computed}(x) - f_{true}(x)| \\ &= |f_{true}(x + e_b) - f_{true}(x)| \\ &= \left| \frac{\Delta f_{true}(x)}{e_b} \right| |e_b| \\ &\approx C |f'(x)| eps(x) \end{aligned}$$

$$e_b = C eps(x)$$

- eps(x) is Matlab function which returns ULP.
- Identify C as a multiplier (hopefully close to 1) which measures the error of the algorithm.

Relationship to condition number

absolute error =
$$C|f'(x)|eps(x)$$
 $\kappa = \left|\frac{xf'(x)}{f(x)}\right|$

absolute error = $C \kappa |f(x)| eps(1)$

$$relative error = \frac{absolute \, error}{|f(x)|} = C \, \kappa \, eps(1)$$

- Stability: Algorithm's relative output error is close to theoretical value.
- Example: A good algorithm should have C near 1, so the relative error of a stable algorithm should be close to k*1e-16 (for doubles).

Conditioning and condition number for scalar functions

$$\kappa(x) = \frac{\epsilon_f}{\epsilon_b} = \left| \frac{x f'(x)}{f(x)} \right|$$

 $relative\ error = C \kappa \ eps(1)$

- One speaks of a "well conditioned" or "ill conditioned" problem. It is intrinsic property of the function f(x).
- Condition number k characterizes the expected growth of the computational error when the function f(x) is evaluated.
- However, k says nothing about the stability of your algorithm.
- If k is close to 1, and your algorithm is stable, relative error can be around eps(1) (1e-16 for doubles).

Consider evaluating tan(x)

- Derivative approaches inf at pi/2, 3pi/2, etc.
- Badly conditioned at these points -> small error in x creates large error in y!
- Libm implementation has C = 1, so relative error depends only upon condition number.

A word about the homework.....

- Write the assigned function using your favorite language (default Matlab).
- Important: Write a test which calls your function!
 - Loop over some input values and find way to verify the returns are correct.
 - Test a few "corner cases".
- Hand in both your function implementation and your test harness.

Major points to remember

- Computer architecture impacts numerics.
 - Performance
- Integer and floating point numbers
- Numerical stability and error
 - Beware of round-off error and "catastrophic cancellation".
 - The stability of the function you are computing is characterized by its "condition number".
- Always write a test for your function!