TEMA 4 – FUNCIONES ELEMENTALES I

DEFINICIÓN DE FUNCIÓN

EJERCICIO 1 : Indica cuáles de las siguientes representaciones corresponden a la gráfica de una función. Razona tu respuesta:

a)

b)

c)

Solución:

- a) y c) son funciones, porque para cada valor de "x" hay un único valor de "y".
- b) no es una función, porque para cada valor de "x" hay dos valores de "y".

DOMINIO

EJERCICIO 2 : Calcular el dominio de las siguientes funciones

a)
$$f(x) = x^2 - 4x + 3$$

b)
$$f(x) = \frac{2x+3}{x^2-4x+3}$$

c)
$$f(x) = \sqrt[3]{x^2 - 4x + 3}$$

d)
$$f(x) = \sqrt{x^2 - 4x + 3}$$

d)
$$f(x) = \sqrt{x^2 - 4x + 3}$$
 e) $f(x) = \frac{\sqrt{x^2 - 4x + 3}}{x + 1}$

f)
$$f(x) = \frac{x+1}{\sqrt{x^2 - 4x + 3}}$$

g)
$$f(x) = \sqrt{\frac{x+1}{x^2 - 4x + 3}}$$

a)
$$D(f) = R$$

b)
$$D(f) = R - \{x / x^2 - 4x + 3 = 0\}$$
 $x^2 - 4x + 3 = 0 \Rightarrow x = \frac{+4 \pm \sqrt{16 - 12}}{2} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \Rightarrow D(f) = R - \{1,3\}$

c)
$$D(f) = R$$

d)
$$D(f) = \{x / x^2 - 4x + 3 \ge 0\} \implies x^2 - 4x + 3 \ge 0$$

$$D(f) = (-\infty, 1] U [3, +\infty)$$

$$e) \begin{cases} x^2 - 4x + 3 \ge 0 \\ x + 1 \ne 0 \end{cases} \Rightarrow \begin{cases} x \in (-\infty, 1] \cup [3, +\infty) \\ x \ne -1 \end{cases} \Rightarrow x \in (-\infty, -1) \cup (-1, 1] \cup [3, +\infty)$$

$$f) \begin{cases} x^2 - 4x + 3 \ge 0 \\ x^2 - 4x + 3 \ne 0 \end{cases} \Rightarrow \begin{cases} x \in (-\infty, 1] \cup [3, +\infty) \\ x \notin \{1, 3\} \end{cases} \Rightarrow x \in (-\infty, 1) \cup (3, +\infty)$$

f)
$$\begin{cases} x^2 - 4x + 3 \ge 0 \\ x^2 - 4x + 3 \ne 0 \end{cases} \Rightarrow \begin{cases} x \in (-\infty, 1] \cup [3, +\infty) \\ x \notin \{1, 3\} \end{cases} \Rightarrow x \in (-\infty, 1) \cup (3, +\infty)$$

g)
$$\frac{x+1}{x^2 - 4x + 3} \ge 0 \Rightarrow \begin{cases} x+1 = 0 \\ x^2 - 4x + 3 = 0 \end{cases} \Rightarrow \begin{cases} x = -1 \\ x = \sqrt{1} \\ 3 \end{cases}$$

$$- \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad + \qquad \qquad + \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad + \qquad \qquad + \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad + \qquad \qquad \qquad \qquad \qquad$$

PROPIEDADES DE LAS FUNCIONES

EJERCICIO 3: Dada las gráficas de las siguientes funciones, estudia sus propiedades:

Solución:

a) Dom f = [-7, 5]

Rec f = [-3,4]

Puntos de corte con los ejes: OX: (-5,5;0); (-2,8,0), (0,0) OY: (0,0)

Simetría: No es simétrica Continuidad: Continua en [-7,5] Tendencia y periodicidad: No tiene

Monotonía: Creciente [-7,-4) U (-2,5]; Decreciente (-4,-2)

Extremos relativos: Máximo relativo (-4,4) y Mínimo relativo (-2,-2) Extremos absolutos: Máximo absoluto (-4,4) y Mínimo absoluto (-7,-3)

Curvatura: Cóncava (-6,-3) \cup (0,5] y Convexa [-7,-6) \cup (-3,0)

Puntos de Inflexión: (-6,-1), (-3,2), (0,0)

b) Dom $f = [-4, \infty)$

Rec $f = [-2, \infty)$

Puntos de corte con los ejes: OX: (-2,7;0); (1,0), (5,5;0), (8,0), (13,0) y OY: (0;-1,2)

Simetría: No es simétrica Continuidad: Continua en [-4,∞)

Tendencia y periodicidad: Cuando x tiende a $+\infty$, la función tiende a $+\infty$

Monotonía: Creciente (-1,3) \cup (7,10) \cup (13,+ ∞) ; Decreciente [-4,-1) \cup (3,7) \cup (10,13) Extremos relativos: Máximos relativos (3,2), (10,1) y Mínimo relativo (-1,-2), (7,-1), (13,0)

Extremos absolutos: Máximo absoluto: No tiene y Mínimo absoluto (-1,-2)

Curvatura: Cóncava $[-4,-3) \cup (0;5,2) \cup (8,12)$ y Convexa $(-3,0) \cup (5,2;8) \cup (12,+\infty)$

Puntos de Inflexión: (-3;1,8), (5,2;0), (8,0), (12;0,8)

c) $Dom f = (-\infty, 10]$

Rec f = $(-\infty, 12]$

Puntos de corte con los ejes: OX: (-10,0) OY: (0,6)

Simetría: No es simétrica

Continuidad: Continua en (-∞,10]

Tendencia y periodicidad: Cuando x tiene a -∞, la función tiene a -∞

Monotonía: Creciente ($-\infty$,-6) \cup (4,10] ; Constante (-6,4)

Extremos relativos: No tiene

Extremos absolutos: Máximo absoluto (10,12) y Mínimo absoluto no tiene

Curvatura: No tiene

Puntos de Inflexión: No tiene

d) $Dom f = (-\infty, -1) \cup (-1, +\infty) = R - \{-1\}$

Rec f = R

Puntos de corte con los ejes: OX: (-3,5;0), (-1,3;0), (2,0) OY: (0,3)

Simetría: No es simétrica

Continuidad: Continua en $R - \{-1\}$. En x = -1 es discontinua inevitable de salto finito (Salto 2)

Tendencia y periodicidad: Cuando la x tiende a $-\infty$ la función tiende a $+\infty$. Cuando la x tiende a $+\infty$, la función tiende a $-\infty$.

Monotonía: Creciente (-2,5;-1) ; Decreciente (- ∞ ;-2,5) \cup (1,+ ∞) ; Constante (-1,1)

Extremos relativos: Máximo relativo: No tiene y Mínimo relativo (-2,5;-3) Extremos absolutos: Máximo absoluto: No tiene y Mínimo absoluto: No tiene

Curvatura: No tiene

Puntos de Inflexión: No tiene

e) Dom f = R Rec f = R

Puntos de corte con los ejes: OX: (-10,0), (-5,0), (-1,0), (1,0), (5,0) y OY: (0,1)

Simetría: No es simétrica Continuidad: Continua en R

Tendencia y periodicidad: Cuando la x tiende a $-\infty$, la función tiende a $-\infty$. Cuando x tiende a $+\infty$, la función tiende a $+\infty$

Monotonía: Creciente (- ∞ ,-7) \cup (-3,0) \cup (3,+ ∞) ; Decreciente (-7,-3) \cup (0,3)

Extremos relativos: Máximos relativos (-7,4), (0,1) y Mínimos relativos (-3,-3), (3,-2)

Extremos absolutos: Máximo absoluto: No tiene y Mínimo absoluto: No tiene

Curvatura: Cóncava $(-\infty,-5) \cup (-1,1)$ y Convexa $(-5,-1) \cup (1,+\infty)$

Puntos de Inflexión: (-5,0), (-1,0), (1,0)

f) Dom $f = (-\infty; 1, 5]$

Rec f = $(-\infty,3]$

Puntos de corte con los ejes: OX: (-1,5;0), (-0,5;0), (0,5;0), (1,5;0) y OY: (0,-3)

Simetría: No es simétrica

Continuidad: Continua en (-∞;1,5]

Tendencia y periodicidad: Cuando x tiende a $-\infty$, la función tiende a $-\infty$ Monotonía: Creciente $(-\infty,-1) \cup (0,1)$; Decreciente $(-1,0) \cup (1;1,5]$ Extremos relativos: Máximos relativos (-1,3), (1,3) y Mínimo relativo (0,-3) Extremos absolutos: Máximo absoluto: (-1,3) y Mínimo absoluto: No tiene

Curvatura: Cóncava (-∞,-0,5) ∪ (0,5;1,5] y Convexa (-0,5;0,5)

Puntos de Inflexión: (-0,5;0), (0,5;0)

g) Dom f = R

Rec f = R

Puntos de corte con los ejes: OX: (-3,0), (2,0), (4,0) y OY: (0,3)

Simetría: No es simétrica Continuidad: Continua en R

Tendencia y periodicidad: Cuando x tiende a $-\infty$, la función tiende a $-\infty$. Cuando x tiende a $+\infty$, la función

tiende a +∞

Monotonía: Creciente $(-\infty,-2) \cup (3,+\infty)$; Constante (-2,0); Decreciente (0,3) Extremos relativos: Máximos relativos: No tiene y Mínimo relativo (3,-2)

Extremos absolutos: No tiene

Curvatura: Cóncava (0,3) y Convexa (3,+∞)

Puntos de Inflexión: (3,-2)

h) $Dom f = R - \{-3\}$

Rec f = $\{-4\} \cup [-2,+\infty)$

Puntos de corte con los ejes: OX: (-2,5;0); (-1,0), (1;0) y OY: (0,4)

Simetría: No es simétrica

Continuidad: Continua en R - {-3,1}. En x = -3 es discontinua inevitable de salto finito. En x = 1 es discontinua inevitable de salto finito (salto 4)

Tendencia y periodicidad: Cuando x tiende a $-\infty$, la función tiende a 0. Cuando x tiende a $+\infty$, la función

tiende a -4. Asíntotas: Asíntota vertical x = -3 (Se va al infinito). Asíntota horizontal y = 0 Monotonía: Creciente $(-\infty, -3) \cup (-1, 5, 0)$; Constante $(1, +\infty)$; Decreciente $(-3, -1, 5) \cup (0, 1]$

Extremos relativos: Máximos relativos (0,4) y Mínimo relativo (-1,5;-2)

Extremos absolutos: Máximo absoluto: No tiene y Mínimo absoluto $\{(x,-4) / x \in (1,+\infty)\}$

Curvatura: Cóncava (-1,1) y Convexa (- ∞ ,-3) \cup (-3,-1)

Puntos de Inflexión: (-1,0)

i) Dom $f = [-5, \infty)$

Rec $f = [0, \infty)$

Puntos de corte con los ejes: OX: (-5,0), (0,0) OY: (0,0)

Simetría: No es simétrica Continuidad: Continua en [-5,∞)

Tendencia y periodicidad: Cuando x tiende a $+\infty$, la función tiende a $+\infty$

Monotonía: Creciente $[-5,-3) \cup (0,+\infty)$; Decreciente (-3,0)

Extremos relativos: Máximos relativos (-3,3) y Mínimo relativo (0,0)

Extremos absolutos: Máximo absoluto: No tiene y Mínimo absoluto (-5,0), (0,0)

Curvatura: Convexa (-3,0) Puntos de Inflexión: No tiene

EJERCICIO 4: Observa la gráfica de la función y completa la siguiente tabla de valores:

Estudia sus propiedades.

Solución:

Completamos la tabla:

X	-4	-3	-1	1	3	5
y	8	5	2	2	0	0

Propiedades:

Dom $f = (-\infty, 5]$

Rec $f = [-4, +\infty)$

Puntos de corte con los ejes: OX: (1.5;0), (3,0), (5,0) y OY: (0,2)

Simetría: No es simétrica

Continuidad: Continua en (-∞,5]

Tendencia y periodicidad: Cuando x tiende a $-\infty$, la función tiende a $+\infty$

Monotonía: Creciente (2,4) ; Constante (-2,1) ; Decreciente (- ∞ ,-2) \cup (1,2) \cup (4,5]

Extremos relativos: Máximos relativos (4,4) y Mínimo relativo (2,-1) Extremos absolutos: Máximo absoluto: No tiene y Mínimo absoluto (2,-4)

Curvatura: No tiene

Puntos de Inflexión: No tiene

EJERCICIO 5: Representa gráficamente una función, f, que cumpla las siguientes condiciones:

- a) Dom (f) = [-5, 6]
- b) Crece en los intervalos (-5, -3) y (0, 6]; decrece en el intervalo (-3, 0).
- c) Es continua en su dominio.
- d) Corta al eje X en los puntos (-5, 0), (-1, 0) y (4, 0).
- e) Tiene un mínimo en (0, -2) y máximo en (-3, 3)

Solución:

<u>EJERCICIO 6</u>: Una función, *f*, cumple las siguientes condiciones:

- a) El dominio de definición son todos los valores de $x \le 3$.
- b) Es continua en su dominio.
- c) Crece en el intervalo (-2, 3).
- d) Pasa por los puntos (0, 0), (-2, -3) y (3, 4).
- e) Es constante para todos los valores de $x \le -2$.

Solución:

EJERCICIO 7 : Representa gráficamente una función, f, que cumpla las siguientes condiciones:

- a) Está definida en todo R
- b) Es continua.
- c) Corta al eje Y en (0, 6), pero no corta al eje X.
- d) Crece en (-3, 0) y $(3, +\infty)$. Decrece en $(-\infty, -3)$ y (0, 3).
- e) Su mínimo es (3, 1), y pasa por el punto (-3, 2).

Solución:

EJERCICIO 8 : Haz la gráfica de una función que cumpla:

- a) Dominio de definición: R {-1}
- b) Corta al eje X en x = -2, x = 0 y x = 4.
- c) Crece en $(-\infty, -1)$ y (0, 2); y decrece en (-1, 0) y $(2, +\infty)$.
- d) Tiene un máximo relativo en (2, 3).

Solución:

<u>EJERCICIO 9</u>: Desde su casa hasta la parada del autobús, María tarda 5 minutos (la parada está a 200 m de su casa); espera durante 10 minutos, y al ver que el autobús tarda más de lo normal, decide ir andando a su lugar de trabajo, situado a 1 km de su casa. Al cuarto de hora de estar andando y a 300 m de su trabajo, se da cuenta de que el teléfono móvil se le ha olvidado en casa y regresa a buscarlo, tardando 10 minutos en llegar. Representa la gráfica *tiempo-distancia a su casa*.

<u>EJERCICIO 10</u>: Eduardo se va de vacaciones a una localidad situada a 400 km de su casa; para ello decide hacer el recorrido en coche. La primera parada, de 30 minutos, la hace al cabo de hora y media para desayunar, habiendo realizado la mitad del recorrido. Continúa su viaje sin problemas durante 1 hora, pero a 100 km del final sufre una parada de 15 minutos. En total tarda 4 horas en llegar a su destino. Representa la gráfica *tiempo-distancia recorrida*.

Solución:

<u>EJERCICIO 11</u>: Construye una gráfica que corresponda a los ingresos anuales que obtienen unos grandes almacenes, sabiendo que: Durante los dos primeros meses del año, aumentan paulatinamente debido a las ofertas; desde marzo hasta junio los ingresos van disminuyendo alcanzando, en ese momento, el mínimo anual. En julio y agosto vuelven a crecer los ingresos, alcanzando el máximo del año en agosto. A partir de entonces se produce un decrecimiento que llega a coincidir, en diciembre, con los ingresos realizados al comienzo del año.

Solución: Esta es una posible gráfica que describe la situación anterior:

<u>EJERCICIO 12</u>: Construye una gráfica que se ajuste al siguiente enunciado: A las 0 horas, la temperatura de una casa es de 15 ° C y, por la acción de un aparato que controla la temperatura, permanece así hasta las 8 de la mañana. En ese momento se enciende la calefacción y la temperatura de la casa va creciendo hasta que, a las 14:00 h, alcanza la temperatura máxima de 25 ° C. Paulatinamente, la temperatura disminuye hasta el momento en que se apaga la calefacción (a las 10 de la noche) volviendo a coincidir con la que había hasta las 8:00 horas.

<u>EJERCICIO 13</u>: Construye una gráfica que describa la siguiente situación: Rosa tardó, esta mañana, 20 minutos en llegar desde su casa al supermercado situado a 2 km de su casa; después de 40 minutos comprando, regresó en taxi a su casa tardando 10 minutos en llegar. Tras permanecer 50 minutos en su casa, cogíó el coche para ir a una cafetería situada a 6 km, para lo cual tardó un cuarto de hora. Al cabo de hora y cuarto, volvió a coger el coche y regresó a su casa, tardando en esta ocasión media hora debido al tráfico.

