1° Etapa - Determinar W_{bragg}.

- Grade de bragg feita em SOI;
- Espessura de 220 nm;
- Largura de 500 nm com um δ =20 nm;
- Para comprimento de onda de ressonância em 1530 nm, foi achado $\Lambda_{\rm bragg} = 315,64$ nm.

2º Etapa -Variação de Temperatura.

- Pelo EME solver foi simulado as transmissões, para cada variação de temperatura, considerando o período da simulação igual a 150;
- Temperaturas de simulação consideradas iguais a 25°C a 75°C, em 11 passos iguais.

3º Etapa - Variação de Strain (S).

Para poder simular o efeito de compressão e extensão, foi tomada por base a seguinte equação:

$$l = l_0(1+S)$$

- Onde l_0 é o comprimento sem deformação e S são as deformações aplicadas;
- Cada dimensão foi multiplicada por um fator de (1+S);
- S foi variado de 0 a 2 milistrain, em 11 passos iguais.

4º Etapa – Análise de potência para variações de temperatura.

No Interconnect, foi gerado o seguinte ambiente de simulação:

- O laser superior foi fixado no comprimento de onda de ressonância considerando temperatura ambiente (25°C), já o laser inferior foi fixado no comprimento de onda de ressonância para a máxima variação (75°C), dessa forma obtendo a potência para cada excitação do laser, para cada variação de temperatura;
- Posteriormente um filtro foi centrado nos mesmos comprimentos de onda de excitação do laser.

4º Etapa – Análise de potência para variações de temperatura.

5º Etapa – Análise de potência para variações de deformação.

- Para o mesmo ambiente de simulação, o laser superior foi fixado no comprimento de onda de ressonância considerando deformação nula (S = 0), já o laser inferior foi fixado no comprimento de onda de ressonância para a máxima variação (S = 3 milistrain), dessa forma obtendo a potência para cada excitação do laser, para cada variação de temperatura;
- Posteriormente um filtro foi centrado nos mesmos comprimentos de onda de excitação do laser.

5º Etapa – Análise de potência para variações de deformação.

6º Etapa – Centrando o comprimento de onda dos lasers ₩IRTUSCC em outro ponto.

7º Etapa – Qual o máximo de deformação que é possível ₩/IRTUS CC aplicar mantendo a relação de potência linear?

- Note pela curva em azul, que o comportamento da potência se mantém crescendo até 3,43 milistrain e a partir disso perde a característica desejada;
- Isso ocorre pois agora está sendo feita a obtenção das potências dos lóbulos secundários;
- O comprimento de onda do laser centrado na reta vermelha não pode ser arbitrário;
- O dispositivo deve ser capaz de detectar deformações pequenas até um ponto onde o dispositivo "satura".

7º Etapa – Qual o máximo de deformação que é possível WIRTUS CC aplicar mantendo a relação de potência linear?

Note agora que apenas ajustando o comprimento de onda do laser, desde S = 0 a razão de potência é linear.

7º Etapa – Qual o máximo de deformação que é possível WIRTUS CC L aplicar mantendo a relação de potência linear?

8º Etapa – Variando o comprimento de onda do laser na WIRTUSCC faixa para obter o ponto ótimo.

8º Etapa – Variando o comprimento de onda do laser na WIRTUSCC faixa para obter o ponto ótimo.

	$\Delta \lambda = 1,00 \ nm$	$\Delta \lambda = 3,67 \ nm$	$\Delta \lambda = 4,44~nm$	$\Delta \lambda = 12,07~nm$
Erro Percentual Médio	0,12%	0,25 %	0,61 %	1,02 %
Desvio Padrão do Erro Percentual	0,10%	0,17 %	0,41 %	0,62 %
Sensibilidade	28,38/milistrain	104,92/milistrain	131,65/milistrain	-