Graphs

Outline for Today

- Navigating a Graph
- Undirected Connectivity
- Planar Graphs
- Graph Coloring
- An Overarching Question
 - How exactly do you "do" math?

A *graph* is a mathematical structure for representing relationships.

A graph consists of a set of *nodes* (or *vertices*) connected by *edges* (or *arcs*)

A *graph* is a mathematical structure for representing relationships.

A graph consists of a set of *nodes* (or *vertices*) connected by *edges* (or *arcs*)

A *graph* is a mathematical structure for representing relationships.

A graph consists of a set of *nodes* (or *vertices*) connected by *edges* (or *arcs*)

Formalizing Graphs

- Formally, a *graph* is an ordered pair G = (V, E), where
 - V is a set of nodes.
 - E is a set of edges, which are either ordered pairs or unordered pairs of elements from V.

Undirected Connectivity

 $PT \rightarrow VC \rightarrow PC \rightarrow CC \rightarrow SC \rightarrow CDC$

 $PT \rightarrow VC \rightarrow VEC \rightarrow SC \rightarrow CDC$

 $PT \rightarrow CI \rightarrow FC \rightarrow CDC$

A *path* from v_1 to v_n is a sequence of nodes $v_1, v_2, ..., v_n$ where $(v_k, v_{k+1}) \in E$ for all natural numbers in the range $1 \le k \le n - 1$.

The *length* of a path is the number of edges it contains, which is one less than the number of nodes in the path.

A *path* from v_1 to v_n is a sequence of nodes $v_1, v_2, ..., v_n$ where $\{v_k, v_{k+1}\} \in E$ for all natural numbers in the range $1 \le k \le n - 1$.

The *length* of a path is the number of edges it contains, which is one less than the number of nodes in the path.

$$PC \rightarrow CC \rightarrow VEC \rightarrow VC \rightarrow PC$$

 $PC \rightarrow CC \rightarrow VEC \rightarrow VC \rightarrow PC \rightarrow CC \rightarrow VEC \rightarrow VC \rightarrow PC$

 $PT \rightarrow VC \rightarrow PC \rightarrow CC \rightarrow VEC \rightarrow VC \rightarrow IP$

A *cycle* in a graph is a path from a node to itself.

The *length* of a cycle is the number of edges in that cycle.

A *simple path* in a graph is a path that does not revisit any nodes or edges.

A **simple cycle** in a graph is a cycle that does not revisit any nodes or edges (except the start/end node).

In an undirected graph, two nodes u and v are called **connected** if there is a path from u to v.

We denote this as $u \leftrightarrow v$.

If u is not connected to v, we write $\mathbf{u} \leftrightarrow \mathbf{v}$.

Properties of Connectivity

- Theorem: The following properties hold for the connectivity relation ↔:
 - For any node $v \in V$, we have $v \leftrightarrow v$.
 - For any nodes $u, v \in V$, if $u \leftrightarrow v$, then $v \leftrightarrow u$.
 - For any nodes u, v, $w \in V$, if $u \leftrightarrow v$ and $v \leftrightarrow w$, then $u \leftrightarrow w$.
- Can prove by thinking about the paths that are implied by each.

Connected Components

An Initial Definition

- Attempted Definition #1: A piece of an undirected graph G = (V, E) is a set $C \subseteq V$ such that for any nodes $u, v \in C$, the relation $u \leftrightarrow v$ holds.
- Intuition: a piece of a graph is a set of nodes that are all connected to one another.

This definition has some problems; please don't use it as a reference.

An Updated Definition

- Attempted Definition #2: A piece of an undirected graph G = (V, E) is a set $C \subseteq V$ where
 - For any nodes $u, v \in C$, the relation $u \leftrightarrow v$ holds.
 - For any nodes $u \in C$ and $v \in V C$, the relation $u \nleftrightarrow v$ holds.
- Intuition: a piece of a graph is a set of nodes that are all connected to one another that doesn't "miss" any nodes.

This definition still has problems; please don't use it as a reference.

A Final Definition

- Definition: A connected component of an undirected graph G = (V, E) is a nonempty set $C \subseteq V$ where
 - For any nodes $u, v \in C$, the relation $u \leftrightarrow v$ holds.
 - For any nodes $u \in C$ and $v \in V C$, the relation $u \nleftrightarrow v$ holds.
- Intuition: a connected component is a nonempty set of nodes that are all connected to one another that includes as many nodes as possible.

Time-Out for Announcements!

Announcements

- Problem Set 1 solutions released at end of today's lecture.
 - Aiming to return problem sets no later than Wednesday.
- Problem Set 2 out, due Friday at the start of lecture.
 - Checkpoints due at the start of this lecture, will be returned by Wednesday.
 - Have questions? Ask on Piazza, stop by office hours, or email the staff list at cs103-aut1415-staff@lists.stanford.edu.

Scoryst Signup

- We will be retroactively grouping PS1 submissions so that everyone in the group can view feedback.
- Please do not resubmit PS1 as a group. The people who run Scoryst will automatically reassign everyone.
- Please register for Scoryst as soon as possible. Click the "Assignment Submissions" link on the CS103 website to get into the system.

Logistical Updates

- For this week only, I'll be moving my office hours to two one-hour blocks on Tuesday:
 - 4:00 5:00 and 5:45 6:45, Gates 415.
- Maesen and I will be out of town later this week at the Grace Hopper Conference.
 Stephen Macke will be the acting head TA.
 - Going to GHC? Want to meet up there? Let us know!

Your Questions

"How can programs be written to create proofs? For many of these problems, you've told us that solving them is a matter of developing an 'intuition,' but how can we add 'intuition' to a program rather than using brute force?"

"What is so special about the number 137?"

"How many questions per problem is too many questions? Sometimes I hesitate to ask a question on a problem if I've already asked one before on the same problem because I might not be doing enough to solve it on my own."

"Is this statement false?"

"Why are most computer science majors socially un-developed? Does coding/starting at a computer on hours a day re-wire your brain to negatively impact this part of your life?"

Back to CS103!

Manipulating our Definition

Proving the Obvious

- **Theorem:** If G = (V, E) is a graph, then every node $v \in V$ belongs to exactly one connected component.
- How exactly would we prove a statement like this one?
- Use an existence and uniqueness proof:
 - Prove there is at least one object of that type.
 - Prove there is *at most* one object of that type.
- These are usually separate proofs.

Part 1: Every node belongs to at least one connected component.

Proving Existence

- Given an arbitrary graph G = (V, E) and an arbitrary node $v \in V$, we need to show that there exists some connected component C where $v \in C$.
- The key part of this is the existential statement
 - There exists a connected component C such that $v \in C$.
- The challenge: how can we find the connected component that *v* belongs to given that *v* is an arbitrary node in an arbitrary graph?

The Conjecture

- Conjecture: Let G = (V, E) be an undirected graph. Then for any node $v \in V$, the set $\{x \in V \mid v \leftrightarrow x\}$ is a connected component and it contains v.
- If we can prove this, we have shown *existence*: at least one connected component contains *v*.

Lemma 1: Let G = (V, E) be an undirected graph. For any node $v \in V$, the set $C = \{ x \in V \mid v \leftrightarrow x \}$ contains v.

Lemma 1: Let G = (V, E) be an undirected graph. For any node $v \in V$, the set $C = \{ x \in V \mid v \leftrightarrow x \}$ contains v.

Proof: The relation $v \leftrightarrow v$ holds for any $v \in V$.

- **Lemma 1:** Let G = (V, E) be an undirected graph. For any node $v \in V$, the set $C = \{ x \in V \mid v \leftrightarrow x \}$ contains v.
- **Proof:** The relation $v \leftrightarrow v$ holds for any $v \in V$. Therefore, by definition of C, we see that $v \in C$.

- **Lemma 1:** Let G = (V, E) be an undirected graph. For any node $v \in V$, the set $C = \{ x \in V \mid v \leftrightarrow x \}$ contains v.
- **Proof:** The relation $v \leftrightarrow v$ holds for any $v \in V$. Therefore, by definition of C, we see that $v \in C$.

Lemma 1: Let G = (V, E) be an undirected graph. For any node $v \in V$, the set $C = \{ x \in V \mid v \leftrightarrow x \}$ contains v.

Proof: The relation $v \leftrightarrow v$ holds for any $v \in V$. Therefore, by definition of C, we see that $v \in C$.

The Tricky Part

- We need to show for any $v \in V$ that the set $C = \{ x \in V \mid v \leftrightarrow x \}$ is a connected component.
- Therefore, we need to show
 - $C \neq \emptyset$;
 - for any $x, y \in C$, the relation $x \leftrightarrow y$ holds; and
 - for any $x \in C$ and $y \notin C$, the relation $x \nleftrightarrow y$ holds.

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.

Lemma 2: Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.

Proof: By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V C$, we know that $y \notin C$.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V C$, we know $x \nleftrightarrow y$.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V C$, we know $x \nleftrightarrow y$.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V C$, we know $x \nleftrightarrow y$.
- **Theorem:** Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to some connected component of G.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V C$, we know $x \nleftrightarrow y$.
- **Theorem:** Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to some connected component of G.
- **Proof:** Take any $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V C$, we know $x \nleftrightarrow y$.
- **Theorem:** Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to some connected component of G.
- **Proof:** Take any $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Lemma 1 tells us $v \in C$, so $C \neq \emptyset$.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V C$, we know $x \nleftrightarrow y$.
- **Theorem:** Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to some connected component of G.
- **Proof:** Take any $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Lemma 1 tells us $v \in C$, so $C \neq \emptyset$. By Lemmas 2 and 3, C is a connected component.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V C$, we know $x \nleftrightarrow y$.
- **Theorem:** Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to some connected component of G.
- **Proof:** Take any $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Lemma 1 tells us $v \in C$, so $C \neq \emptyset$. By Lemmas 2 and 3, C is a connected component. Therefore, v belongs to at least one connected component.

- **Lemma 2:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x, y \in C$, we have $x \leftrightarrow y$.
- **Proof:** By definition, since $x \in C$ and $y \in C$, we have $v \leftrightarrow x$ and $v \leftrightarrow y$. By our earlier theorem, since $v \leftrightarrow x$, we know $x \leftrightarrow v$. By the same theorem, since $x \leftrightarrow v$ and $v \leftrightarrow y$, we know $x \leftrightarrow y$, as required.
- **Lemma 3:** Let G = (V, E) be an undirected graph. Choose some node $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Then for any nodes $x \in C$ and $y \in V C$, we have $x \nleftrightarrow y$.
- **Proof:** By contradiction; assume $x \in C$ and $y \in V C$, but that $x \leftrightarrow y$. Since $x \in C$, we have $v \leftrightarrow x$. Because $v \leftrightarrow x$ and $x \leftrightarrow y$, we know $v \leftrightarrow y$. Therefore, we see $y \in C$. However, since $y \in V C$, we know that $y \notin C$. We have reached a contradiction, so our assumption was wrong. Therefore, if $x \in C$ and $y \in V C$, we know $x \nleftrightarrow y$.
- **Theorem:** Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to some connected component of G.
- **Proof:** Take any $v \in V$ and let $C = \{ x \in V \mid v \leftrightarrow x \}$. Lemma 1 tells us $v \in C$, so $C \neq \emptyset$. By Lemmas 2 and 3, C is a connected component. Therefore, v belongs to at least one connected component.

Part 2: Every node belongs to at most one connected component.

Uniqueness Proofs

• To show there is at most one object with some property *P*, show the following:

If x has property P and y has property P, then x = y.

• Rationale: *x* and *y* are just different names for the same thing; at most one object of the type can exist.

Uniqueness Proofs

- Suppose that C_1 and C_2 are connected components containing ν .
- We need to prove that $C_1 = C_2$.
- Idea: C_1 and C_2 are sets, so we can try to show that $C_1 \subseteq C_2$ and that $C_2 \subseteq C_1$.
 - Just because we're working at a higher level of abstraction doesn't mean our existing techniques aren't useful!

Proof: We prove both directions of implication.

(⇒) First, we prove that if $x \in C$, then $v \leftrightarrow x$.

(\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$.

Proof: We prove both directions of implication.

(⇒) First, we prove that if $x \in C$, then $v \leftrightarrow x$.

(\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$.

Proof: We prove both directions of implication.

(⇒) First, we prove that if $x \in C$, then $v \leftrightarrow x$.

(\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$.

When proving a biconditional, it is common to split the proof apart into two directions. The symbols (⇒) and (∈) denote where in the proof the two directions can be found.

Proof: We prove both directions of implication.

(⇒) First, we prove that if $x \in C$, then $v \leftrightarrow x$.

(\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$.

- (⇒) First, we prove that if $x \in C$, then $v \leftrightarrow x$. Since nodes $x, v \in C$ and C is a connected component, we have $v \leftrightarrow x$, as required.
- (\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$.

- (⇒) First, we prove that if $x \in C$, then $v \leftrightarrow x$. Since nodes $x, v \in C$ and C is a connected component, we have $v \leftrightarrow x$, as required.
- (\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$. We proceed by contrapositive and instead prove that if $x \notin C$, then $v \nleftrightarrow x$.

- (⇒) First, we prove that if $x \in C$, then $v \leftrightarrow x$. Since nodes $x, v \in C$ and C is a connected component, we have $v \leftrightarrow x$, as required.
- (\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$. We proceed by contrapositive and instead prove that if $x \notin C$, then $v \nleftrightarrow x$. C is a connected component, so because $v \in C$ and $x \in V C$ we know $v \nleftrightarrow x$, as required.

Lemma: Let C be a connected component of an undirected graph G = (V, E) and $v \in V$ a node contained in C. Then for any $x \in V$, we have $x \in C$ iff $v \leftrightarrow x$.

Proof: We prove both directions of implication.

- (⇒) First, we prove that if $x \in C$, then $v \leftrightarrow x$. Since nodes $x, v \in C$ and C is a connected component, we have $v \leftrightarrow x$, as required.
- (\Leftarrow) Next, we prove that if $v \leftrightarrow x$, then $x \in C$. We proceed by contrapositive and instead prove that if $x \notin C$, then $v \nleftrightarrow x$. C is a connected component, so because $v \in C$ and $x \in V C$ we know $v \nleftrightarrow x$, as required. ■

Theorem: Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.

- Theorem: Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
- *Proof:* Let C_1 and C_2 be connected components containing some node $v \in V$.

- Theorem: Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
- *Proof:* Let C_1 and C_2 be connected components containing some node $v \in V$. We will prove that $C_1 = C_2$.

- Theorem: Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
- *Proof:* Let C_1 and C_2 be connected components containing some node $v \in V$. We will prove that $C_1 = C_2$. To do so, we will show that $C_1 \subseteq C_2$ and that $C_2 \subseteq C_1$.

- Theorem: Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
- *Proof:* Let C_1 and C_2 be connected components containing some node $v \in V$. We will prove that $C_1 = C_2$. To do so, we will show that $C_1 \subseteq C_2$ and that $C_2 \subseteq C_1$.

To show $C_1 \subseteq C_2$, consider any arbitrary $x \in C_1$. We will prove that $x \in C_2$.

- Theorem: Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
- *Proof:* Let C_1 and C_2 be connected components containing some node $v \in V$. We will prove that $C_1 = C_2$. To do so, we will show that $C_1 \subseteq C_2$ and that $C_2 \subseteq C_1$.

To show $C_1 \subseteq C_2$, consider any arbitrary $x \in C_1$. We will prove that $x \in C_2$. Since $x \in C_1$ and $v \in C_1$, by our lemma we know that $v \leftrightarrow x$.

- Theorem: Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
- *Proof:* Let C_1 and C_2 be connected components containing some node $v \in V$. We will prove that $C_1 = C_2$. To do so, we will show that $C_1 \subseteq C_2$ and that $C_2 \subseteq C_1$.

To show $C_1 \subseteq C_2$, consider any arbitrary $x \in C_1$. We will prove that $x \in C_2$. Since $x \in C_1$ and $v \in C_1$, by our lemma we know that $v \leftrightarrow x$. Similarly, by our lemma, since $v \in C_2$ and $v \leftrightarrow x$, we know that $x \in C_2$.

- Theorem: Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
- *Proof:* Let C_1 and C_2 be connected components containing some node $v \in V$. We will prove that $C_1 = C_2$. To do so, we will show that $C_1 \subseteq C_2$ and that $C_2 \subseteq C_1$.

To show $C_1 \subseteq C_2$, consider any arbitrary $x \in C_1$. We will prove that $x \in C_2$. Since $x \in C_1$ and $v \in C_1$, by our lemma we know that $v \leftrightarrow x$. Similarly, by our lemma, since $v \in C_2$ and $v \leftrightarrow x$, we know that $x \in C_2$. Since our choice of x was arbitrary, this means that $C_1 \subseteq C_2$.

- Theorem: Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
- *Proof:* Let C_1 and C_2 be connected components containing some node $v \in V$. We will prove that $C_1 = C_2$. To do so, we will show that $C_1 \subseteq C_2$ and that $C_2 \subseteq C_1$.

To show $C_1 \subseteq C_2$, consider any arbitrary $x \in C_1$. We will prove that $x \in C_2$. Since $x \in C_1$ and $v \in C_1$, by our lemma we know that $v \leftrightarrow x$. Similarly, by our lemma, since $v \in C_2$ and $v \leftrightarrow x$, we know that $x \in C_2$. Since our choice of x was arbitrary, this means that $C_1 \subseteq C_2$.

By using a similar line of reasoning and interchanging the roles of C_2 and C_1 , we also see that $C_2 \subseteq C_1$.

- Theorem: Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.
- *Proof:* Let C_1 and C_2 be connected components containing some node $v \in V$. We will prove that $C_1 = C_2$. To do so, we will show that $C_1 \subseteq C_2$ and that $C_2 \subseteq C_1$.

To show $C_1 \subseteq C_2$, consider any arbitrary $x \in C_1$. We will prove that $x \in C_2$. Since $x \in C_1$ and $v \in C_1$, by our lemma we know that $v \leftrightarrow x$. Similarly, by our lemma, since $v \in C_2$ and $v \leftrightarrow x$, we know that $x \in C_2$. Since our choice of x was arbitrary, this means that $C_1 \subseteq C_2$.

By using a similar line of reasoning and interchanging the roles of C_2 and C_1 , we also see that $C_2 \subseteq C_1$. Thus $C_1 \subseteq C_2$ and $C_2 \subseteq C_1$, so $C_1 = C_2$, as required.

Theorem: Let G = (V, E) be an undirected graph. Then every node $v \in V$ belongs to at most one connected component of G.

Proof: Let C_1 and C_2 be connected components containing some node $v \in V$. We will prove that $C_1 = C_2$. To do so, we will show that $C_1 \subseteq C_2$ and that $C_2 \subseteq C_1$.

To show $C_1 \subseteq C_2$, consider any arbitrary $x \in C_1$. We will prove that $x \in C_2$. Since $x \in C_1$ and $v \in C_1$, by our lemma we know that $v \leftrightarrow x$. Similarly, by our lemma, since $v \in C_2$ and $v \leftrightarrow x$, we know that $x \in C_2$. Since our choice of x was arbitrary, this means that $C_1 \subseteq C_2$.

By using a similar line of reasoning and interchanging the roles of C_2 and C_1 , we also see that $C_2 \subseteq C_1$. Thus $C_1 \subseteq C_2$ and $C_2 \subseteq C_1$, so $C_1 = C_2$, as required.

Why All This Matters

- I chose the example of connected components to
 - describe how to come up with a precise definition for intuitive terms;
 - see how to manipulate a definition once we've come up with one;
 - explore existence and uniqueness proofs, which we'll see more of later on; and
 - explore multipart proofs with several different lemmas.

Planar Graphs

This graph is sometimes called the *utility graph*.

A graph is called a *planar graph* if there is some way to draw it in a 2D plane without any of the edges crossing.

- An undirected graph G = (V, E) with no self-loops (edges from a node to itself) is called k-colorable iff the nodes in V can be assigned one of k different colors such that no two nodes of the same color are joined by an edge.
- The minimum number of colors needed to color a graph is called that graph's chromatic number.

Theorem (Four-Color Theorem): Every planar graph is 4-colorable.

- **1850s:** Four-Color Conjecture posed.
- 1879: Kempe proves the Four-Color Theorem.
- 1890: Heawood finds a flaw in Kempe's proof.
- 1976: Appel and Haken design a computer program that proves the Four-Color Theorem. The program checked 1,936 specific cases that are "minimal counterexamples;" any counterexample to the theorem must contain one of the 1,936 specific cases.
- 1980s: Doubts rise about the validity of the proof due to errors in the software.
- 1989: Appel and Haken revise their proof and show it is indeed correct. They publish a book including a 400-page appendix of all the cases to check.
- 1996: Roberts, Sanders, Seymour, and Thomas reduce the number of cases to check down to 633.
- 2005: Werner and Gonthier repeat the proof using an established automatic theorem prover (Coq), improving confidence in the truth of the theorem.

Next Time

- Propositional Logic
 - How do we formalize mathematical reasoning?
- (ITA) First-Order Logic, Part One
 - How do we reason about collections of objects?