Solving parity games in quasi-polynomial time – the modal μ way

Karoliina Lehtinen

University of Kiel

January 2018

Solving parity games in quasi-polynomial time – by playing with registers

Karoliina Lehtinen

University of Kiel

January 2018

Parity Games

Priority assignement

Priority assignement

Structural complexity of graph tree-width, Kelly-width, entanglement...

Structural complexity of graph tree-width, Kelly-width, entanglement...

Priority assignement

Structural complexity of graph tree-width, Kelly-width, entanglement...

Introducing... register-index

Definition (Register-index)

A measure capturing the complexity of priority assignments.

Definition (Register-index)

A measure capturing the complexity of priority assignments.

Lemma

Solving parity games of fixed register-index is in Ptime.

Definition (Register-index)

A measure capturing the complexity of priority assignments.

Lemma

Solving parity games of fixed register-index is in Ptime.

Theorem

Register-index is $O(\log n)$ in the size of the graph.

Definition (Register-index)

A measure capturing the complexity of priority assignments.

Lemma

Solving parity games of fixed register-index is in Ptime.

Theorem

Register-index is $O(\log n)$ in the size of the graph.

Corollary

Quasi-polynomial algorithm for solving parity games.

Definition (Register-index)

A measure capturing the complexity of priority assignments.

Lemma

Solving parity games of fixed register-index is in Ptime.

Theorem

Register-index is $O(\log n)$ in the size of the graph.

Corollary

Quasi-polynomial algorithm for solving parity games.

Theorem

Parity games of bounded register-index have bounded descriptive complexity.

Parity Game

Figure: A parity game

- Even vs. Odd
- Circles belong to Odd;
 Boxes to Even.
- Priorities from {0, ..., 5}
- Even wins if the highest priority seen infinitely often is even.

Definition (Big picture)

- Parity game,
- Registers record highest priority seen since last reset,
- Even uses registers to produce an output sequence.

Winning condition on the sequence of outputs.

Definition

- Registers contain max priority since last reset.
- Registers are ranked by last reset time.

Definition

- Registers contain max priority since last reset.
- Registers are ranked by last reset time.

Definition

- Registers contain max priority since last reset.
- Registers are ranked by last reset time.

At every turn Even can reset a register of rank r, for any r. Let v be the content of this register. Then:

■ If v is even, output 2r; else output 2r + 1.

Definition

- Registers contain max priority since last reset.
- Registers are ranked by last reset time.

- If v is even, output 2r; else output 2r + 1.
- New register content: 0

Definition

- Registers contain max priority since last reset.
- Registers are ranked by last reset time.

- If v is even, output 2r; else output 2r + 1.
- New register content: 0
- New register rank: 1

Definition

- Registers contain max priority since last reset.
- Registers are ranked by last reset time.

- If v is even, output 2r; else output 2r + 1.
- New register content: 0
- New register rank: 1
- +1 to the rank of all registers of rank < r.

Definition

- Registers contain max priority since last reset.
- Registers are ranked by last reset time.

At every turn Even can reset a register of rank r, for any r. Let v be the content of this register. Then:

- If v is even, output 2r; else output 2r + 1.
- New register content: 0
- New register rank: 1
- \blacksquare +1 to the rank of all registers of rank < r.

Even wins if the maximal output occurring infinitely often is Even.

 $r_1:0$

 $r_1:1$

 $r_1: 10$

 $r_1:1/02$

 $r_1:1/0/2 0$

 $r_1:1/02/01$

 $r_1:1/0/2/01/0$

 $r_1:1/0/2/01/0...$

output: 323232323...

 $r_2:0$

 $r_1 : 0$

 $r_2:1$

 $r_1 : 1$

 $r_2: 1$ $r_1: 1 0$

 $r_2: 1/2$ $r_1: 1/0/2$

 $r_2: 1/2/2$ $r_1: 1/0/2/0$

 $r_2: 1/2 2$ $r_1: 1/0/2/0 1$

 $r_2: 1/2 2$ $r_1: 1/0/2/0/1 0$

Example

 $r_2: 1/2 2...$ $r_1: 1/0/2/01 0...$

output: 343434343...

Register-index

Definition

A parity game has register-index k if its winner also wins the k register-index.

■ The number of priorities is an upper bound on register-index.

Algorithmic complexity

Theorem

Solving parity games of k-bounded register-index is in P.

Proof.

Given parity game G with priorities from I, solve this parity game with 2k+1 priorities:

Algorithmic complexity

$\mathsf{Theorem}$

Solving parity games of k-bounded register-index is in P.

Proof.

Given parity game G with priorities from I, solve this parity game with 2k+1 priorities:

- States: (p, \bar{x}, i) where:
 - $p \in G$: current position in G,
 - $\bar{x} \in I^k$: recorded priorities,
 - $i \in \{0,1\}$: time to summon detectives or turn in parity game.
- Edges represent moves in *G* and detective summons.
- Edges inherited from G have priority 1,
- Edge representing summon has priority of the output.

Descriptive complexity

Theorem

- There is a L_{μ} formula **Win**^I_k which holds in a parity game G with priorities I if and only if Even wins the k-register game.
- The alternation-depth of this formulas depends on k, not l.

Recap

So far:

■ Low register-index ⇒ low complexity.

Next:

- Examples
- Register-index is $O(\log n)$ in the size n of the parity game.

Examples of constant register-index: 1

Examples of high register-index: 2

Examples of high register-index: 3

Examples of high register-index: 4

Parity games of growing register-index: 5

• Game G with max priority q = 8

- Game G with max priority q = 8
- Subgames G_i with max priority q 2 = 6
- \blacksquare Register indices r_i
 - r_{max}

Case: Unique $r_{\text{max}} > 1$ Then $r = r_{\text{max}}$.

Case: 2 or more r_{max} Then $r = r_{\text{max}} + 1$.

Theorem

The register-index of a parity game of size n is $O(\log n)$.

Corollary

Parity games are solvable in quasi-polynomial time.

Proof.

Solve the k-register game on G instead of G, with $k = 1 + \log n$.

Size: $O(kn^{k+1})$

Priorities: 2k + 1

Complexity: $2^{O((\log n)^3)}$

Theorem

The register-index of a parity game of size n is $O(\log n)$.

Corollary

Parity games are solvable in quasi-polynomial time.

Proof.

Model check a modal μ formula of size $O(kn^k)$ with alternation depth k, with $k=1+\log n$.

Summary

- Register-index measures the complexity of the priority assignment.
- Solving parity games of bounded register-index is in Ptime.
- Register-index is $O(\log n)$ in the size of parity games.
- Alternative quasi-polynomial algorithm.
- Modal μ -account.

Summary

- Register-index measures the complexity of the priority assignment.
- Solving parity games of bounded register-index is in Ptime.
- Register-index is $O(\log n)$ in the size of parity games.
- Alternative quasi-polynomial algorithm.
- Modal μ -account.

Open questions:

- Practical parametrised algorithm?
- What about node ownership?

