Automated Metrics for MT Evaluation

11-731: Machine Translation Alon Lavie February 20, 2014

Automated Metrics for MT Evaluation

 Idea: compare output of an MT system to a "reference" good (usually human) translation: how close is the MT output to the reference translation?

Advantages:

- Fast and cheap, minimal human labor, no need for bilingual speakers
- Can be used on an on-going basis during system development to test changes
- Minimum Error-rate Training (MERT) for search-based MT approaches!

Disadvantages:

- Current metrics are rather crude, do not distinguish well between subtle differences in systems
- Individual sentence scores are not very reliable, aggregate scores on a large test set are often required
- Automatic metrics for MT evaluation are an active area of current research

Similarity-based MT Evaluation Metrics

- Assess the "quality" of an MT system by comparing its output with human produced "reference" translations
- Premise: the more similar (in meaning) the translation is to the reference, the better
- Goal: an algorithm that is capable of accurately approximating this similarity
- Wide Range of metrics, mostly focusing on exact wordlevel correspondences:
 - Edit-distance metrics: Levenshtein, WER, PIWER, TER & HTER, others...
 - Ngram-based metrics: Precision, Recall, F1-measure, BLUE, NIST, GTM...
- Important Issue: exact word matching is very crude estimate for sentence-level similarity in meaning

Desirable Automatic Metric

- High-levels of correlation with quantified human notions of translation quality
- Sensitive to small differences in MT quality between systems and versions of systems
- Consistent same MT system on similar texts should produce similar scores
- Reliable MT systems that score similarly will perform similarly
- General applicable to a wide range of domains and scenarios
- Fast and lightweight easy to run

Automated Metrics for MT

- Variety of Metric Uses and Applications:
 - Compare (rank) performance of different systems on a common evaluation test set
 - Compare and analyze performance of different versions of the same system
 - Track system improvement over time
 - Which sentences got better or got worse?
 - Analyze the performance distribution of a single system across documents within a data set
 - Tune system parameters to optimize translation performance on a development set
- It would be nice if **one single metric** could do all of these well! But this is not an absolute necessity.
- A metric developed with one purpose in mind is likely to be used for other unintended purposes

History of Automatic Metrics for MT

- 1990s: pre-SMT, limited use of metrics from speech WER, PI-WER...
- 2002: IBM's BLEU Metric comes out
- 2002: NIST starts MT Eval series under DARPA TIDES program, using BLEU as the official metric
- 2003: Och and Ney propose MERT for MT based on BLEU
- 2004: METEOR first comes out
- 2006: TER is released, DARPA GALE program adopts HTER as its official metric
- 2006: NIST MT Eval starts reporting METEOR, TER and NIST scores in addition to BLEU, official metric is still BLEU
- 2007: Research on metrics takes off... several new metrics come out
- 2007: MT research papers increasingly report METEOR and TER scores in addition to BLEU
- 2008: NIST and WMT introduce first comparative evaluations of automatic MT evaluation metrics
- 2009-2012: Lots of metric research... No new major winner

Automated Metric Components

• Example:

- Reference: "the Iraqi weapons are to be handed over to the army within two weeks"
- MT output: "in two weeks Iraq's weapons will give army"
- Possible metric components:
 - Precision: correct words / total words in MT output
 - Recall: correct words / total words in reference
 - Combination of P and R (i.e. F1= 2PR/(P+R))
 - Levenshtein edit distance: number of insertions, deletions, substitutions required to transform MT output to the reference

Important Issues:

- Features: matched words, ngrams, subsequences
- Metric: a scoring framework that uses the features
- Perfect word matches are weak features: synonyms, inflections: "Iraq's" vs. "Iraqi", "give" vs. "handed over"

BLEU Scores - Demystified

- BLEU scores are NOT:
 - The fraction of how many sentences were translated perfectly/acceptably by the MT system
 - The average fraction of words in a segment that were translated correctly
 - Linear in terms of correlation with human measures of translation quality
 - Fully comparable across languages, or even across different benchmark sets for the same language
 - Easily interpretable by most translation professionals

BLEU Scores - Demystified

- What is TRUE about BLEU Scores:
 - Higher is Better
 - More reference human translations results in better and more accurate scores
 - General interpretability of scale:

- Scores over 30 generally reflect understandable translations
- Scores over 50 generally reflect good and fluent translations

- Proposed by IBM [Papineni et al, 2002]
- Main ideas:
 - Exact matches of words
 - Match against a set of reference translations for greater variety of expressions
 - Account for Adequacy by looking at word precision
 - Account for Fluency by calculating n-gram precisions for n=1,2,3,4
 - No recall (because difficult with multiple refs)
 - To compensate for recall: introduce "Brevity Penalty"
 - Final score is weighted geometric average of the n-gram scores
 - Calculate aggregate score over a large test set
 - Not tunable to different target human measures or for different languages

• Example:

- Reference: "the Iraqi weapons are to be handed over to the army within two weeks"
- MT output: "in two weeks Iraq's weapons will give army"

BLUE metric:

- 1-gram precision: 4/8
- 2-gram precision: 1/7
- 3-gram precision: 0/6
- 4-gram precision: 0/5
- BLEU score = 0 (weighted geometric average)

- Clipping precision counts:
 - Reference1: "the Iraqi weapons are to be handed over to the army within two weeks"
 - Reference2: "the Iraqi weapons will be surrendered to the army in two weeks"
 - MT output: "the the the"
 - Precision count for "the" should be "clipped" at two: max count of the word in any reference
 - Modified unigram score will be 2/4 (not 4/4)

Brevity Penalty:

- Reference1: "the Iraqi weapons are to be handed over to the army within two weeks"
- Reference2: "the Iraqi weapons will be surrendered to the army in two weeks"
- MT output: "the Iraqi weapons will"
- Precision score: 1-gram 4/4, 2-gram 3/3, 3-gram 2/2, 4-gram 1/1 → BLEU = 1.0
- MT output is much too short, thus boosting precision, and BLEU doesn't have recall...
- An exponential Brevity Penalty reduces score, calculated based on the aggregate length (not individual sentences)

Formulae of BLEU

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}.$$

Then,

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
.

log BLEU =
$$\min(1 - \frac{r}{c}, 0) + \sum_{n=1}^{N} w_n \log p_n$$
.

Weaknesses in BLEU

- BLUE matches word ngrams of MT-translation with multiple reference translations simultaneously → Precision-based metric
 - Is this better than matching with each reference translation separately and selecting the best match?
- BLEU Compensates for Recall by factoring in a "Brevity Penalty" (BP)
 - Is the BP adequate in compensating for lack of Recall?
- BLEU's ngram matching requires exact word matches
 - Can stemming and synonyms improve the similarity measure and improve correlation with human scores?
- All matched words weigh equally in BLEU
 - Can a scheme for weighing word contributions improve correlation with human scores?
- BLEU's higher order ngrams account for fluency and grammaticality, ngrams are geometrically averaged
 - Geometric ngram averaging is volatile to "zero" scores. Can we account for fluency/grammaticality via other means?

BLEU vs Human Scores

METEOR

- METEOR = Metric for Evaluation of Translation with Explicit Ordering [Lavie and Denkowski, 2009]
- Main ideas:
 - Combine Recall and Precision as weighted score components
 - Look only at unigram Precision and Recall
 - Align MT output with each reference individually and take score of best pairing
 - Matching takes into account translation variability via word inflection variations, synonymy and paraphrasing matches
 - Addresses fluency via a direct penalty for word order: how fragmented is the matching of the MT output with the reference?
 - Parameters of metric components are tunable to maximize the score correlations with human judgments for each language
- METEOR has been shown to consistently outperform BLEU in correlation with human judgments

METEOR VS BLEU

- Highlights of Main Differences:
 - METEOR word matches between translation and references includes semantic equivalents (inflections and synonyms)
 - METEOR combines Precision and Recall (weighted towards recall) instead of BLEU's "brevity penalty"
 - METEOR uses a direct word-ordering penalty to capture fluency instead of relying on higher order n-grams matches
 - METEOR can tune its parameters to optimize correlation with human judgments
- Outcome: METEOR has significantly better correlation with human judgments, especially at the segment-level

METEOR Components

- Unigram Precision: fraction of words in the MT that appear in the reference
- Unigram Recall: fraction of the words in the reference translation that appear in the MT
- F1 = P*R/0.5*(P+R)
- Fmean = P*R/(a*P+(1-a)*R)
- Generalized Unigram matches:
 - Exact word matches, stems, synonyms, paraphrases
- Match with each reference separately and select the best match for each sentence

The Alignment Matcher

- Find the best word-to-word alignment match between two strings of words
 - Each word in a string can match at most one word in the other string
 - Matches can be based on generalized criteria: word identity, stem identity, synonymy...
 - Find the alignment of highest cardinality with minimal number of crossing branches
- Optimal search is NP-complete
 - Clever search with pruning is very fast and has near optimal results
- Earlier versions of METEOR used a greedy three-stage matching: exact, stem, synonyms
- Latest version uses an integrated single-stage search

Matcher Example

the sri lanka prime minister criticizes the leader of the country

President of Sri Lanka criticized by the country's Prime Minister

The Full METEOR Metric

- Matcher explicitly aligns matched words between MT and reference
- Matcher returns fragment count (frag) used to calculate average fragmentation
 - (frag -1)/(length-1)
- METEOR score calculated as a discounted Fmean score
 - Discounting factor: DF = γ * (frag** β)
 - Final score: Fmean * (1- DF)
- Original Parameter Settings:
 - $a = 0.9 \beta = 3.0 \gamma = 0.5$
- Scores can be calculated at sentence-level
- Aggregate score calculated over entire test set (similar to BLEU)

METEOR Metric

Effect of Discounting Factor:

Fragmentation Factor

METEOR Example

- Example:
 - Reference: "the Iraqi weapons are to be handed over to the army within two weeks"
 - MT output: "in two weeks Iraq's weapons will give army"
- Matching: Ref: Iraqi weapons army two weeks
 MT: two weeks Iraq's weapons army
- P = 5/8 = 0.625 R = 5/14 = 0.357
- Fmean = 10*P*R/(9P+R) = 0.3731
- Fragmentation: 3 frags of 5 words = (3-1)/(5-1) = 0.50
- Discounting factor: DF = 0.5 * (frag**3) = 0.0625
- Final score:

Fmean * (1-DF) = 0.3731 * 0.9375 = 0.3498

METEOR Parameter Optimization

- METEOR has three "free" parameters that can be optimized to maximize correlation with different notions of human judgments
 - Alpha controls Precision vs. Recall balance
 - Gamma controls relative importance of correct word ordering
 - Beta controls the functional behavior of word ordering penalty score
- Optimized for Adequacy, Fluency, A+F, Rankings, and Post-Editing effort for English on available development data
- Optimized independently for different target languages
- Limited number of parameters means that optimization can be done by full exhaustive search of the parameter space

METEOR Analysis Tools

 METEOR v1.2 comes with a suite of new analysis and visualization tools called

METEOR Scores - Demystified

- What is TRUE about METEOR Scores:
 - Higher is Better, scores usually higher than BLEU
 - More reference human translations help but only marginally
 - General interpretability of scale:
 - 0 10 20 30 40 50 60 70 80 >90
 - Scores over 50 generally reflect understandable translations
 - Scores over 70 generally reflect good and fluent translations

TER

- Translation Edit (Error) Rate, developed by Snover et. al. 2006
- Main Ideas:
 - Edit-based measure, similar in concept to Levenshtein distance: counts the number of word insertions, deletions and substitutions required to transform the MT output to the reference translation
 - Adds the notion of "block movements" as a single edit operation.
 - Only exact word matches count, but latest version (TERp) incorporates synonymy and paraphrase matching and tunable parameters
 - Can be used as a rough post-editing measure
 - Serves as the basis for HTER a partially automated measure that calculates TER between pre and post-edited MT output
 - Slow to run and often has a bias toward short MT translations

BLEU vs METEOR

- How do we know if a metric is better?
 - Better correlation with human judgments of MT output
 - Reduced score variability on MT outputs that are ranked equivalent by humans
 - Higher and less variable scores on scoring human translations against the reference translations

Correlation with Human Judgments

- Human judgment scores for adequacy and fluency, each [1-5] (or sum them together)
- Pearson or spearman (rank) correlations
- Correlation of metric scores with human scores at the system level
 - Can rank systems
 - Even coarse metrics can have high correlations
- Correlation of metric scores with human scores at the sentence level
 - Evaluates score correlations at a fine-grained level
 - Very large number of data points, multiple systems
 - Pearson or Spearman correlation
 - Look at metric score variability for MT sentences scored as equally good by humans

- First broad-scale open evaluation of automatic metrics for MT evaluation – 39 metrics submitted!!
- Evaluation period August 2008, workshop in October 2008 at AMTA-2008 conference in Hawaii
- Methodology:
 - Evaluation Plan released in early 2008
 - Data collected from various MT evaluations conducted by NIST and others
 - Includes MT system output, references and human judgments
 - Several language pairs (into English and French), data genres, and different human assessment types
 - Development data released in May 2008
 - Groups submit metrics code to NIST for evaluation in August 2008, NIST runs metrics on unseen test data
 - Detailed performance analysis done by NIST
- http://www.itl.nist.gov/iad/mig//tests/metricsmatr/2008/results/index.html

Origin	Source Language	Target Language	Genre(s)	Words (est.)	Systems
MT08	Arabic	English	NW, WB	15,000	10
	Chinese	English	NW, WB	15,000	10
GALE P2	Arabic	English	NW, WB	11,500	3
	Chinese	English	NW, WB	10,000	3
GALE P2.5	Arabic	English	BN	5,500	2
GALE P2.3	Chinese	English	BC, BN	10,000	3
Transtac, Jul 07	Arabic	English	Dialog	6,500	5
	Farsi	English	Dialog	4,500	5
Transtac, Jan 07	Arabic	English	Dialog	5,000	5

- Human Judgment Types:
 - Adequacy, 7-point scale, straight average
 - Adequacy, Yes-No qualitative question, proportion of Yes assigned
 - Preferences, Pair-wise comparison across systems
 - Adjusted Probability that a Concept is Correct
 - Adequacy, 4-point scale
 - Adequacy, 5-point scale
 - Fluency, 5-point scale
 - HTER
- Correlations between metrics and human judgments at segment, document and system levels
- Single Reference and Multiple References
- Several different correlation statistics + confidence

- Human Assessment Type: Adequacy, 7-point scale, straight average
- Target Language: English
- Correlation Level: segment

Single Reference Track							
	Metric Nam ¢	Spearman's Rho		Kendall's Tau		Pearson's R	
Rank		Value	95% confidence interval	Value≉	95% confidence interval	Value≉	95% confidence interval
1	TERp	-0.6840	(-0.6905, -0.6774)	-0.5246	(-0.5334, -0.5156)	-0.6737	(-0.6803, -0.6669)
2	METEOR-v0.6	0.6809	(0.6742, 0.6874)	0.5209	(0.5119, 0.5298)	0.6855	(0.6790, 0.6920)
3	METEOR- ranking	0.6691	(0.6622, 0.6758)	0.5132	(0.5041, 0.5222)	0.6527	(0.6456, 0.6597)
4	Meteor-v0.7	0.6652	(0.6583, 0.6720)	0.5107	(0.5016, 0.5198)	0.6789	(0.6722 , 0.6855)
5	CDer	-0.6535	(-0.6605, -0.6464)	-0.4994	(-0.5086, -0.4901)	-0.6536	(-0.6606, -0.6465)
19	BLEU-4	0.5813	(0.5731, 0.5894)	0.4307	(0.4207, 0.4407)	0.5168	(0.5077, 0.5257)

- Human Assessment Type: Adequacy, 7-point scale, straight average
- Target Language: English
- Correlation Level: segment

Multiple References Track							
	Metric Nam ¢	Spearman's Rho		Kendall's Tau		Pearson's R	
Rank		Value	95% confidence interval	Value≉	95% confidence interval	Value≉	95% confidence interval
1	METEOR-v0.6	0.7196	(0.7121, 0.7268)	0.5575	(0.5469, 0.5679)	0.7331	(0.7260, 0.7401)
2	SVM-Rank	0.7187	(0.7112, 0.7260)	0.5570	(0.5463, 0.5674)	0.7183	(0.7108, 0.7256)
3	Meteor-v0.7	0.7157	(0.7082, 0.7231)	0.5572	(0.5465, 0.5676)	0.7366	(0.7295, 0.7435)
4	CDer	-0.7130	(-0.7204, -0.7054)	-0.5518	(-0.5624, -0.5411)	-0.7199	(-0.7272, -0.7124)
5	TERp	-0.7127	(-0.7202, -0.7051)	-0.5488	(-0.5594, -0.5381)	-0.7216	(-0.7289, -0.7142)
19	BLEU-4	0.6203	(0.6108, 0.6297)	0.4650	(0.4529, 0.4769)	0.6064	(0.5966, 0.6159)

- Human Assessment Type: Adequacy, 7-point scale, straight average
- Target Language: English
- Correlation Level: document

	Single Reference Track						
	Metric Nam∉	Spearman's Rho		Kendall's Tau		Pearson's R	
Rank		Value	95% confidence interval	Value≉	95% confidence interval	Value≉	95% confidence interval
1	Meteor-v0.7	0.8415	(0.8288, 0.8533)	0.6425	(0.6171, 0.6665)	0.8391	(0.8262, 0.8511)
2	METEOR- ranking	0.8395	(0.8267, 0.8515)	0.6403	(0.6148, 0.6644)	0.8297	(0.8162, 0.8424)
3	CDer	-0.8353	(-0.8475, -0.8221)	-0.6385	(-0.6628, -0.6130)	-0.8330	(-0.8455, -0.8197)
4	NIST-v11b	0.8143	(0.7997, 0.8280)	0.6137	(0.5868, 0.6392)	0.8096	(0.7946, 0.8236)
5	TERp	-0.8136	(-0.8273, -0.7989)	-0.6178	(-0.6432, -0.5912)	-0.8061	(-0.8203, -0.7909)
20	BLEU-4	0.7707	(0.7531, 0.7872)	0.5691	(0.5400, 0.5968)	0.7449	(0.7256, 0.7630)

NIST Metrics MATR 2008

• Human Assessment Type: Adequacy, 7-point scale, straight average

• Target Language: **English**

• Correlation Level: system

Single Reference Track							
Rank	Metric Nam ¢	Spearman's Rho		Kendall's Tau		Pearson's R	
		Value	95% confidence interval	Value≉	95% confidence interval	Value≉	95% confidence interval
1	CDer	-0.9037	(-0.9359, -0.8567)	-0.7360	(-0.8187, -0.6232)	-0.8805	(-0.9201, -0.8232)
2	Meteor-v0.7	0.8968	(0.8466, 0.9311)	0.7125	(0.5920, 0.8018)	0.8745	(0.8146, 0.9159)
3	invWer	-0.8921	(-0.9280, -0.8399)	-0.7222	(-0.8088, -0.6049)	-0.8530	(-0.9012, -0.7841)
4	METEOR- ranking	0.8906	(0.8376, 0.9269)	0.7074	(0.5853, 0.7981)	0.8729	(0.8123, 0.9148)
5	TER-v0.7.25	-0.8877	(-0.9250, -0.8336)	-0.7133	(-0.8024, -0.5932)	-0.8542	(-0.9020, -0.7857)
21	BLEU-4	0.8423	(0.7689, 0.8937)	0.6512	(0.5124, 0.7568)	0.8221	(0.7407, 0.8798)

NIST Metrics MATR 2008

- Human Assessment Type: Preferences, Pair-wise comparison across systems
- Target Language: English
- Correlation Level: segment

Single Reference Track							
Rank	Metric Nam€	Spearman's Rho		Kendall's Tau		Pearson's R	
		Value	95% confidence interval	Value≉	95% confidence interval	Value≉	95% confidence interval
1	TERp	-0.3597	(-0.3784, -0.3407)	-0.2569	(-0.2770, -0.2366)	-0.3403	(-0.3593, -0.3210)
2	METEOR- ranking	0.3585	(0.3394, 0.3772)	0.2550	(0.2346, 0.2751)	0.3240	(0.3045, 0.3432)
3	Meteor-v0.7	0.3551	(0.3361, 0.3739)	0.2526	(0.2322, 0.2727)	0.3409	(0.3216, 0.3599)
4	METEOR-v0.6	0.3543	(0.3352, 0.3731)	0.2520	(0.2316, 0.2721)	0.3373	(0.3180, 0.3563)
5	CDer	-0.3414	(-0.3604, -0.3222)	-0.2430	(-0.2632, -0.2225)	-0.3162	(-0.3356, -0.2966)
27	BLEU-4	0.2878	(0.2678, 0.3075)	0.2041	(0.1833, 0.2248)	0.2567	(0.2363, 0.2768)

Normalizing Human Scores

- Human scores are noisy:
 - Medium-levels of intercoder agreement, Judge biases
- MITRE group performed score normalization
 - Normalize judge median score and distributions
- Significant effect on sentence-level correlation between metrics and human scores

	Chinese data	Arabic data	Average
Raw Human Scores	0.331	0.347	0.339
Normalized Human Scores	0.365	0.403	0.384

METEOR vs. BLEU Sentence-level Scores (CMU SMT System, TIDES 2003 Data)

R = 0.2466

R = 0.4129

BLEU

METEOR

METEOR vs. BLEU

Histogram of Scores of Reference Translations 2003 Data

Mean=0.3727 STD=0.2138

Mean=0.6504 STD=0.1310

BLEU METEOR

Testing for Statistical Significance

- MT research is experiment-driven
 - Success is measured by improvement in performance on a held-out test set compared with some baseline condition
- Methodologically important to explicitly test and validate whether any differences in aggregate test set scores are statistically significant
- One variable to control for is variance within the test data
- Typical approach: bootstrap re-sampling

Bootstrap Re-Sampling

- Goal: quantify impact of data distribution on the resulting test set performance score
- Establishing the true distribution of test data is difficult
- Estimated by a sampling process from the actual test set and quantifying the variance within this test set

Process:

- Sample a large number of instances from within the test set (with replacement) [e.g. 1000]
- For each sampled test-set and condition, calculate corresponding test score
- Repeat large number of times [e.g. 1000]
- Calculate mean and variance
- Establish likelihood that condition A score is better than B

Remaining Gaps

- Scores produced by most metrics are not intuitive or easy to interpret
- Scores produced at the individual segment-level are often not sufficiently reliable
- Need for greater focus on metrics with direct correlation with post-editing measures
- Need for more effective methods for mapping automatic scores to their corresponding levels of human measures (i.e. Adequacy)

Summary

- MT Evaluation is important for driving system development and the technology as a whole
- Different aspects need to be evaluated not just translation quality of individual sentences
- Human evaluations are costly, but are most meaningful
- New automatic metrics are becoming popular, but are still rather crude, can drive system progress and rank systems
- New metrics that achieve better correlation with human judgments are being developed

References

- 2002, Papineni, K, S. Roukos, T. Ward and W-J. Zhu, BLEU: a Method for Automatic Evaluation of Machine Translation, in Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL-2002), Philadelphia, PA, July 2002
- 2003, Och, F. J., Minimum Error Rate Training for Statistical Machine Translation. In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics (ACL-2003).
- 2004, Lavie, A., K. Sagae and S. Jayaraman. "The Significance of Recall in Automatic Metrics for MT Evaluation". In Proceedings of the 6th Conference of the Association for Machine Translation in the Americas (AMTA-2004), Washington, DC, September 2004.
- 2005, Banerjee, S. and A. Lavie, "METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments". In Proceedings of Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization at the 43th Annual Meeting of the Association of Computational Linguistics (ACL-2005), Ann Arbor, Michigan, June 2005. Pages 65-72.

References

- 2005, Lita, L. V., M. Rogati and A. Lavie, "BLANC: Learning Evaluation Metrics for MT". In Proceedings of the Joint Conference on Human Language Technologies and Empirical Methods in Natural Language Processing (HLT/EMNLP-2005), Vancouver, Canada, October 2005. Pages 740-747.
- 2006, Snover, M., B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul, "A Study of Translation Edit Rate with Targeted Human Annotation". In Proceedings of the 7th Conference of the Association for Machine Translation in the Americas (AMTA-2006). Cambridge, MA, Pages 223-231.
- 2007, Lavie, A. and A. Agarwal, "METEOR: An Automatic Metric for MT Proceedings of the Second Workshop on Statistical Machine Translation at the 45th Meeting of the Association for Computational Linguistics (ACL-2007), Prague, Czech Republic, June 2007. Pages 228-231.
- t". In Proceedings of the Third Workshop on Statistical Machine Translation at the 46th Meeting of the Association for Computational Linguistics (ACL-2008), Columbus, OH, June 2008. Pages 115-118.

References

- 2009, Callison-Burch, C., P. Koehn, C. Monz and J. Schroeder, "Findings of the 2009 Workshop on Statistical Machine Translation", In Proceedings of the Fourth Workshop on Statistical Machine Translation at EACL-2009, Athens, Greece, March 2009. Pages 1-28.
- 2009, Snover, M., N. Madnani, B. Dorr and R. Schwartz, "Fluency, Adequacy, or HTER? Exploring Different Human Judgments with a Tunable MT Metric", In Proceedings of the Fourth Workshop on Statistical Machine Translation at EACL-2009, Athens, Greece, March 2009. Pages 259-268.

Questions?