

Process Engineering Simulation

Core chemical engineering doctrine – mass & energy balances

Modes

- Steady state simulation
- Dynamic simulation

Simulation program features

- Components / chemical species
 - Pure component data library
 - Non-library components
- Property models & methods
 - Thermodynamic models
 - Physical & transport properties
- Chemical reaction models & methods
- Unit operation models
- Flowsheet capabilities
 - Recycle loops
- Graphical interface

HYSYS as Process Engineering Tool

Owned & marketed by Aspen Tech

- Developed by Hyprotech.
- Initially DOS-based -- HYSIM

Core calculations for steady state mass & energy balances

Dynamic capabilities as add-on package

Historical orientation towards the oil & gas industry

- Components
 - Extensive pure component database of hydrocarbons
 - Generate pseudo-components from crude oil assay information
- Property models
 - Consistent with hydrocarbon systems relatively non-ideal mixtures
 - Capabilities for presence of typical nonhydrocarbons
 - o Simplified methods for mixtures with water
 - Acid gas components CO₂ & H₂S
- Unit operation models
 - Towers with pumparounds, side strippers, ...
- Reaction system models
 - CatCracker, Hydrocracker, Reformer

Composition

Pure component database

• Typically use a small number of light hydrocarbons $(C_1 - nC_5)$, CO_2 , H_2S , & H_2O

Pseudo/hypothetical components

- Narrow boiling point fractions from distillation analysis
- Assumption that all components in range will have the same split between vapor & liquid
 - Not a good assumption if chemical structure plays a big part in separation or reaction
- Correlations to generate "average" properties for the fraction
 - Empirical correlations based on boiling point, specific/API gravity, molecular weight
 - Group contribution methods

Electrolyte mixtures may require explicit definition of ionic species

Pure Components

Split the yield curve into boiling point ranges

Use the property curves to generate consistent with measured data

Use correlations to estimate unmeasured & unmeasurable properties

- Critical properties
- Accentric factor
- Binary interaction coefficients

Property Models & Methods

Typically use an equation of state (EOS) for properties

- Consistent properties for vapor, liquid, & transitions between
- Thermodynamic properties from the same set of equations
 - Equilibrium coefficients (fugacity)
 - Enthalpy
 - Entropy
 - Density
- Non-ideal behavior from binary interaction coefficients
 - Major effect on equilibrium coefficients
 - Very small effect on other properties

May use other properties for other thermodynamic properties

- Lee-Kesler for enthalpy
- COSTALD for liquid density

Property Models & Methods

Updated: July 5, 2017

Unit Operation Models

"Typical" unit operation models

- Valve
- Separators
- Heat exchangers
- Pumps
- Compressors
- Reactors CSTR & plug flow
- Towers with & without condenser & reboiler

	Without Condenser	With Condenser
Without Reboiler	Absorber	Refluxed Absorber
With Reboiler	Reboiled Absorber	Distillation Column

_ D X

Unit Operation Models for Refining

Complex tower configurations

- Pumparounds
- Side draws
- Side strippers
- Condenser with water draw
- Complex specifications
 - ASTM temperature spec

Typical Overall Efficiencies

Column Service	Typical No. of Actual Trays	Typical Overall Efficiency	Typical No. of Theoretical Trays
Simple Absorber/Stripper	20 – 30	20 – 30	
Steam Side Stripper	5 – 7		2
Reboiled Side Stripper	7 – 10		3 – 4
Reboiled Absorber	20 – 40	40 – 50	
Deethanizer	25 – 35	65 – 75	
Depropanizer	35 – 40	70 – 80	
Debutanizer	38 – 45	85 – 90	
Alky DeiC4 (reflux)	75 – 90	85 – 90	
Alky DeiC4 (no reflux)	55 – 70	55 – 65	
Naphtha Splitter	25 – 35	70 – 75	
C2 Splitter	110 – 130	95 – 100	
C3 Splitter	200 – 250	95 – 100	
C4 Splitter	70 – 80	85 – 90	
Amine Contactor	20 – 24		4 – 5
Amine Stripper	20 – 24	45 - 55	9 – 12
Crude Distillation	35 – 50	50 – 60	20 – 30
Stripping Zone	5 – 7	30	2
Flash Zone – 1 st draw	3 – 7	30	1 – 2
1 st Draw – 2 nd Draw	7 – 10	45 – 50	3 – 5
2 nd Draw – 3 rd Draw	7 – 10	50 – 55	3 – 5
Top Draw – Reflux	10 – 12	60 – 70	6 – 8
Vacuum Column (G.O. Operation)			
Stripping	2 – 4		1
Flash Zone – HGO Draw	2 – 3		1 – 2
HGO Section	3 – 5		2
LGO Section	3 – 5		2
FCC Main Fractionator	24 – 35	50 – 60	13 – 17
Quench Zone	5 – 7		2
Quench – HGO Draw	3 – 5		2 – 3
HGO – LCGO	6 – 8		3 – 5
LCGO – Top	7 – 10		5 – 7

Refinery Process Modeling Gerald Kaes, Athens Printing Company., 2000, pg. 32

Updated: July 5, 2017 Copyright © 2017 John Jechura (jjechura@mines.edu)

Viscosity	Maxwell	Drickamer & Bradford in Ludwig
сР	Ave Viscosity of liquid on plates	Molal Ave Viscosity of Feed
0.05		98
0.10	104	79
0.15	86	70
0.20	76	60
0.30	63	50
0.40	56	42
0.50	50	36
0.60	46	31
0.70	43	27
0.80	40	23
0.90	38	19
1.00	36	17
1.50	30	7
1.70	28	5

Rules of Thumb for Chemical Engineers, 4th ed. Carl Branan, Gulf Professional Publishing, 2005

> Engineering Data Book, 12th ed. Gas Processors Association, 2004

RELATIVE VOLATILITY OF KEY COMPONENT TIMES VISCOSITY OF FEED, CP (AT AVERAGE COLUMN CONDITIONS)

Unit Operations Results

Stream Results

Specialized Stream Reports

User Interface

Graphically build the flowsheet by dragging & dropping unit models

Calculations performed automatically as information is entered

Copy & paste capabilities

Pasting in from other locations limited

Aspen Simulation Workbook extends capabilities to put custom interface on top of simulation

HYSYS crude tower examples

Available from Aspen Tech web site

http://support.aspentech.com/ webteamasp/My/FrameDef.asp ?/webteamasp/My/product.asp ?id1=2674&id2="&id3=all

Additional problem developed specifically for this class.

Aspen HYSYS

Tutorials and Applications

Summary

HYSYS is a capable tool for performing mass & energy balances

Program features make it convenient for petroleum refining applications

- Pure component data library & psuedo-components from distillation analyses
- Property models & methods
- Thermodynamic, physical & transport property models appropriate for petroleum systems
- Chemical reaction models & methods
- Unit operation models
 - Specific configurations for complex equipment
- Flowsheet capabilities
- Unit operation & stream results
- Graphical interface

