# Table of Contents

- STAT 333 Course Note
- Table of Contents
- 1. Fundamental of Probability
  - 1.1 What's Probability
    - 1.1.1 Examples
      - Example 1
  - 1.2 Probability Models
    - 1.2.1 Examples
      - 1.2.1.1 Example 2
    - 1.2.2 Remark: why do we need the notion of event?
  - 1.3 Conditional Probability
  - 1.4 Independence
  - 1.5 Bayes' rule and law of total probability
    - 1.5.1 Bayes' rule
- 2 Random variables and distributions
  - 2.1 Random variables
  - 2.2 Discrete random variables and distributions
    - 2.2.1 Examples of discrete distributions
      - 1. Bemoulli distribution
      - 2.Binomial distribution
      - 3.Geometric distribution
      - 4. Poisson distribution
  - 2.3 Continuous random variables and distributions
    - 2.3.1 Example of continuous distribution
  - o 2.4 Joint distribution of r.v's
  - 2.5 Expectation
    - 2.5.1 Properties of expectation
    - 2.5.2 Definitions
  - o 2.6 Indicator
    - 2.6.1 Example
    - 2.6.1 Example 3
  - 2.7 Moment generating function
    - 2.7.1 Properties of mgf
    - 2.7.2 Joint mgf
      - 2.7.2.1 Properties of the joint mgf
- 3. Conditional distribution and conditional expectation
  - 3.1 Conditional distribution
    - 3.1.1 Discrete case
      - 3.1.1.1 Example
    - 3.1.2 Continuous case
      - 3.1.2.1 Example
      - **3.1.2.1. Example 2**
  - 3.2 Conditional expectation
    - 3.2.1 What is  $\mathbb{E}(X|Y)$  ?
    - 3.2.2 Properties of conditional expectation
  - 3.3 Decomposition of variance (EVVE's low)
- 4. Stochastic Processes
  - 4.1 Markov Chain
    - 4.1.1 Simple Random Walk
    - 4.1.2 Markov Chain
      - 4.1.2.1 Discrete-time Markov Chain
        - Definition and Examples
        - Example: simple random walk

- 4.1.3 One-step transition probability matrix
  - Example 1 : simple random walk
  - Example 2: Ehrenfest's urn
  - Example 3: Gambler's ruin
  - Example 4: Bonus-Malus system
- 4.2 Chapman-Kolmogorov equations
  - 4.2.1 Conditional Law of total probability
  - 4.2.2 Distribution of  $X_n$
- 4.3 Stationary distribution (invariant distribution)

# 1. Fundamental of Probability

# 1.1 What's Probability

#### 1.1.1 Examples

- 1. Coin toss
  - "H" head
  - ∘ "T" tail
- 2. Roll a dice
  - $\circ$  every number in the set:  $\{1, 2, 3, 4, 5, 6\}$
- 3. Tomorrow weather
  - {sunny, rainy, cloudy,...}
- 4. Randomly pick a number in [0,1]

Although things are random, they are not haphazard/arbitrary. There are "patterns"

#### Example 1

If we repeat tossing a coin, then the fraction of times that we get a "H" goes to  $\frac{1}{2}$  as the number of toss goes to infinity.

$$\frac{\#\ of\ "H"}{total\ \#\ of\ toss} = \frac{1}{2}$$

This number 1/2 reflects how "likely" a "H" will appear in one toss (if the experiment is not repeated)

# 1.2 Probability Models

The Sample space  $\Omega$  is the set consisting of all the possible outcomes of a random experiment.

#### 1.2.1 Examples

- 1.  $\{H, T\}$  $2. \{1, 2, 3, 4, 5, 6\}$
- $3. \{sunny, rainy, cloudy, ...\}$
- 4. [0, 1]

An event  $E \in \Omega$  is a subset of  $\Omega$ 

for which we can talk about "likelihood of happening"; for example

- in 2:
  - {getting an even number} = {2, 4, 6}
- in 4:
  - $\{the\ point\ is\ between\ 0\ and\ 1/3\}=[0,\frac{1}{3}]\ is\ an\ event$
  - oomega {the point is rational} =  $Q \cap [0, 1]$

We say an event E "happens", if the result of the experiment turns out to belong to E (a subset of  $\Omega$ )

A probability P is a set function ( a mapping from events to real numbers)

$$P: \xi \to R$$
 $E \to P(E)$ 

which satisfies the following 3 properties:

1. 
$$\forall E \in \xi, 0 \leq P(E) \leq 1$$
  
2.  $P(\Omega) = 1$ 

3. For

- $\circ$  countably many disjoint events  $E_1, E_2, ...,$  we have  $P(U_{i=1}^\infty E_i) = \sum_{i=1}^\infty P(E_i)$
- $\circ$  countable:  $\exists$  1-1 mapping to natural numbers 1, 2, 3, ...

Intuitively, one can think the probability of an event as the "likelihood/chance" for the event happens. If we repeat the experiment for a large number of events, the probability is the fraction of time that the event happens

$$P(E) = \lim_{n \to \infty} \frac{\# \text{ of times the E happens in n trials}}{n}$$

#### 1.2.1.1 Example 2

$$P(\{1\}) = P(\{2\}) = \dots = P(\{6\}) = \frac{1}{6}$$
 $E = \{\text{even number}\} = \{2, 4, 6\}$ 
 $\Rightarrow P(E) = P(\{2\} \cup P(\{4\})) \cup P(\{6\}) = \frac{1}{2}$ 

Properties of probability:

1. 
$$P(E) + P(E^c) = 1$$

2. 
$$P(\emptyset) = 0$$

3. 
$$E_1 \subseteq E_2 \Rightarrow P(E_1) \leq P(E_2)$$

4. 
$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$
 - $P(E_1 \cap E_2)$ :  $E_1$  and  $E_2$  happen

1.2.2 Remark: why do we need the notion of event?

If the sample space  $\Omega$  is **discrete**, then everything can has at most countable elements be built from the "atoms"

$$\Omega = \{w_1, w_2, \ldots\} \ P(w_1) = P_i \ P_i \in [0,1], \sum_{i=1}^{\infty} P_i = 1$$

Then for any event  $E = \{w_1, i \in I\}$ ,  $P(E) = \sum_{i \in I} P_i$ 

However, if the sample space  $\Omega$  is continuous; e.g, [0,1] in Example 4, then such a construction can not be done for any  $x \in [0,1]$  we get  $P(\{x\} = 0 \text{ } (x: \text{the point is exactly } x)$ 

We can not get  $P([0,\frac{1}{3}])$  by adding  $P(\{x\})$  for  $x\leq \frac{1}{3}$ .

This is why we need the notion of event; and we define P as a set function from  $\xi$  to R rather than a function from  $\Omega$  to R

To summarize: A **Probability Space** consists of a triplet  $(\Omega, \xi, P)$ :

- $\Omega$ : sample space,
- $\xi$ : collection of events
- P: probability

# 1.3 Conditional Probability

If we know some information, the probability of an event can be updated

Let E , F be two events P(F)>0

The conditional probability of E, given F is

$$P(E \mid F) = rac{P(E \cap F)}{P(F)}$$

Again, think probability as the long-run frequency:

$$P(E \cap F) = \lim_{n o \infty} rac{\#of \ times \ E \ and \ F \ happen \ in \ n \ trails}{n} \ P(F) = \lim_{n o \infty} rac{\#of \ times \ F \ happen \ in \ n \ trails}{n} \ \Rightarrow rac{P(E \cap F)}{P(F)} = \lim_{n o \infty} rac{\#of \ times \ E \ and \ F \ happen}{\#of \ times \ F \ happen} \ rac{\#of \ times \ F \ happen}{\#of \ times \ F \ happens}$$

By definition

$$P(E \cap F) = P(E \mid F) \cdot P(F)$$

# 1.4 Independence

**Def**: Two events E and F are said to be independent, if  $P(E \cap F) = P(E) \cdot P(F)$ ; denoted as  $E \perp \!\!\! \perp F$ . **This is different rom disjoint.** 

Assume P(F)>0, then  $E\perp\!\!\!\perp F\Leftrightarrow P(E|F)=P(E)$ ; intuitively, knowing F does not change the probability of E.

Proof:

$$E \perp \!\!\!\perp F \Leftrightarrow P(E \cap F) = P(E) \cdot P(F)$$
$$\Leftrightarrow \frac{P(E \cap F)}{P(F)} = P(E)$$
$$\Leftrightarrow P(E|F)) = P(E)$$

More generally, a sequence of events  $E_1, E_2, \ldots$  are called independent if for **any** finite index set I,

$$P(igcap_{i\in I} E_i) = \prod_{i\in I} P(E_i)$$

# 1.5 Bayes' rule and law of total probability

**Theorem**: Let  $F_1, F_2, \ldots$  be disjoint events, and  $\bigcap_{i=1}^\infty F_i = \Omega$ , we say  $\{F_i\}_{i=1}^\infty$  forms a "partition" of the sample space  $\Omega$ 

Then 
$$P(E) = \sum_{i=1}^{\infty} P(E|F_i) \cdot P(F_i)$$

Proof: Exercise

Intuition: Decompose the total probability into different cases.

$$P(E \cap F_2) = P(E|F_2) \cdot P(F_2)$$

1.5.1 Bayes' rule

$$P(F_i|E) = \frac{P(E|F_i) \cdot P(F_i)}{\sum_{j=1}^{\infty} P(E|F_j) \cdot P(F_j)}$$

Bayes' rule tells us how to find conditional probability by switching the role of the event and the condition.

Proof:

$$P(F_i|E) = rac{P(F_i \cap E)}{P(E)}$$
 definition of condition probability  $P(F_i|E) = rac{P(E|F_i)P(F_i)}{P(E)}$  definition of condition probability  $P(E) = rac{P(E|F_i)P(F_i)}{\sum_{j=1}^{\infty} P(E|F_j)P(F_j)}$  law of total probability

# 2 Random variables and distributions

## 2.1 Random variables

 $(\Omega, \xi, P)$ : Probability space.

**Definition**: A random variable X (or r.v.) is a mapping from  $\Omega$  to  $\mathbb R$ 

$$X:\Omega o\mathbb{R} \ \omega o X(\omega)$$

A random variable transforms arbitrary "outcomes" into numbers.

X introduces a probability on R. For  $A\subseteq R$ , define

$$egin{aligned} P(X \in A) &:= P(\{X(\omega) \in A\}) \ &= P(\{\omega : X(\omega) \in A\}) \ &= P(X^{-1}(A)) \end{aligned}$$

From now on, we can often "forget" te original probability space and focus on the random variables and their distributions.

**Definition**: let X be a random variable. The **CDF**(cumulative distribution function) F of X is defined by

$$F(x) = P(X \le x) = P(X \in (-\infty, x])$$
  
  $X : \text{random variable}, x : \text{number}$ 

Properties of cdf:

- 1. F is non-decreasing.  $F(x_1) \leq F(x_2), x_1 < x_2$
- 2. limits
  - $\circ \lim_{x \to -\infty} F(x) = 0$
  - $\circ \lim_{x \to \infty} F(x) = 1$
- 3. F(x) is right continuous
  - $\circ \ \ lim_{x\downarrow a}F(x)=F(a)$  : x decreases to a (approaching from the right)
  - $\circ$  Hint:  $\{x \leq a\} = igcap_{i=1}^\infty \{X \leq a_i\}$  for  $a_i \downarrow a$

# 2.2 Discrete random variables and distributions

A random variable X is called **discrete** if it only takes values in an **at most countable** set  $\{x_1, x_2, \ldots\}$  (finite or countable).

The distribution of a discrete random variable is fully characterized by its probability mass function(p.m.f)

$$p(x) := P(X = x); x = x_1, x_2, \dots$$

Properties of pmf:

1. 
$$p(x) \geq 0, \ \ \forall x$$

2. 
$$\sum_{i} p(x_i) = 1$$

Q: what does the cdf of a discrete random variable look like?

## 2.2.1 Examples of discrete distributions

#### 1. Bemoulli distribution

$$p(1) = P(X = 1) = p$$
  
 $p(c) = P(X = c) = 1 - p$   
 $p(x) = 0$  otherwise

Denote  $X \sim Ber(p)$ 

## 2.Binomial distribution

$$p(k) = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

- $X \sim Bin(n,p)$  to choose k successes.
- ullet Binomial distribution is the distribution of number of successes in n independent trials; each having probability p of success.

## 3.Geometric distribution

$$p(k) = P(X = k) = (1 - p)^{k-1}p$$

 $(1-p)^{k-1}$ : the first k-1 trials are all failures, p: success in  $k^{th}$  trial

- $X \sim Geo(p)$
- ullet X is the number of trials needed to get the first success in n independent trials with probability p of success each
- X has the memoryless property P(X>n+m|X>m)=P(x>n)  $n,m=0,1,\ldots$

Memoryless property:

$$p(X > n + m|X > m) = P(X > n)$$

Proof:

$$\begin{split} P(X > k) &= \sum_{j=k+1}^{\infty} P(X = j) \\ &= \sum_{j=k+1}^{\infty} (i - p)^{j-1} p \\ &= (1 - p)^k p \cdot \frac{1}{1 - (1 - p)} \\ &= (1 - p)^k \\ P(X > n + m | x > m) &= \frac{P(X > n + m), X > m}{P(X > m)} \\ &= \frac{P(X > n + m)}{P(X > m)} = \frac{1 - p)^{n+m}}{(1 - p)^m} = (1 - p)^n = P(X > n) \end{split}$$

Intuition: The failures in the past have no influence on how long we still need to wait to get the first success in the future

#### 4. Poisson distribution

$$p(k)=P(X=k)=rac{\lambda^k e^{-\lambda}}{k!}, k=0,1,2,\ldots,\lambda>0$$

Other discrete distributions:

- · negative binomial
- · discrete uniform

# 2.3 Continuous random variables and distributions

**Definition**: A random variable X is called **continuous** if there exists a non-negative function f, such that for any interval [a,b], (a,b) or [a,b):

$$P(X \in [a,b]) = \int_a^b f(x) dx$$

The function f is called the *probability density function(pdf)* of X

**Remark**: probability density function(pdf) is not probability. P(X = x) = 0 if X is continuous. The probability density function f only gives probability when it is integrated.

If X is continuous, then we can get cdf by:

$$F(a) = P(X \in (-\infty, a]) = \int_{0}^{a} f(x)dx$$

hence, F(x) is continuous, and differentiable "almost everywhere".

We can take f(x) = F'(x) when the derivative exists, and f(x) =arbitrary number otherwise often to choose a value to make f have some continuity.

Property of pdf:

1. 
$$f(x)\leq 0$$
 ,  $x\in R$   
2.  $\int_{-\infty}^{\infty}f(x)dx=1$   
3. For  $A\subseteq R$  ,  $P(X\in A)=\int_{A}f(x)dx$ 

# 2.3.1 Example of continuous distribution

#### **Exponential distribution**

$$f(x) = egin{cases} \lambda e^{-\lambda x} &, x \geq 0 \ 0 &, x \leq 0 \ X \sim Exp(x) \end{cases}$$

Other continuous distributions:

- Normal distribution
- · Uniform distribution

Exercises:

- 1. Find the cdf of  $X \sim Exp(x)$
- 2. Show that the exponential distribution has the memoryless property:

$$P(X > t + s | x > t) = P(X > s)$$

# 2.4 Joint distribution of r.v's

Let X and Y be two r.v's. defined on the same probability space  $(\Omega, \xi, P)$ 

For each  $\omega\in\Omega$  , we have at the same time  $X(\omega)$  and  $Y(\omega)$ . Then we can talk about the joint behavior of X and Y

Two joint distribution of r.v's is characterized by joint cdf, joint pmf(discrete case) or joint pdf(continuous case).

· Joint cdf:

$$\circ F(x,y) = P(X < x, Y < y)$$

- Joint pmf:
  - f(x,y) = P(X = x, Y = y)
- ullet joint pdf f(x,y) such that for a < b, c < d

$$\circ \ P(X,Y) \in (a,b] imes (c,d] = P(X \in (a,b], Y \in (c,d]) = \int_a^b \int_c^d f(x,y) dy dx$$

Equivalently:

1. 
$$F(x,y)=\int_{-\infty}^x\int_{-\infty}^yf(s,t)dtds$$
  $f(x,y)=rac{\partial^2}{\partial x\partial y}F(x,y)$  2.  $P((X,Y)\in A)=\int\int_Af(x,y)dxdy$  for  $A\subseteq R^2$ 

**Definition**: Two r.v's X and Y are called independent, if for all sets  $A,B\subseteq R$ ,

$$P(X < A, Y < B) = P(X \in A)P(Y \in B)$$

( $\{X\in A\}$  and  $\{Y\in B\}$  are independent events)

**Theorem**: Two r.v's  $\boldsymbol{X}$  and  $\boldsymbol{Y}$  are

- 1. independent, if and only if
- 2.  $F(x,y) = F_x(x)F_y(y); x,y \in R$ ; where  $F_x$ : cdf of x;  $F_y$ : cdf of y
- 3.  $f(x,y)=f_x(x)f_y(y); x,y\in R$ ; where f is the joint pmf/pdf of X and Y;  $f_x$ ,  $f_y$  are marginal pmf/pdf of X and Y, respectively

Proof:

 $1.\Rightarrow 2.$ 

If  $X \perp Y$ , then by definition,

$$F(x,y) = P(X \in (-\infty,x], Y \in (-\infty,y]) = P(X \in (-\infty,x]) \cdot P(Y \in (-\infty,y]) = F_x(x)F_y(y)$$

2.⇒ 3.

Assume  $F(x,y) = F_x(x) \cdot F_y(y)$ ,

$$egin{aligned} f(x,y) &= rac{\partial^2}{\partial x \partial y} F(x,y) = rac{\partial^2}{\partial x \partial y} F_x(x) F_y(y) \ &= (rac{\partial}{\partial x} F_x(x)) (rac{\partial}{\partial y} F_y(y)) \ &= f_x(x) f_y(y) \end{aligned}$$

Assume  $f(x,y)=f_x(x)f_y(y)$ ; For  $A,B\subseteq R$ ,

$$egin{aligned} P(X \in A, Y \in B) &= \int_{y \in B} \int_{x \in A} f(x,y) dx dy \ &= \int_{y \in B} \int_{x \in A} f_x(x) f_y(y) dx dy \ &= (\int_{x \in A} f_x(x) dx) (\int_{y \in B} f_y(y) dy) \ &= P(X \in A) P(Y \in B) \end{aligned}$$

# 2.5 Expectation

**Definition**: For a r.v X, the expectation of g(x) is defined as

$$\exists (g(x)) = egin{cases} \sum_{i=1}^{\infty} g(x_i) P(X=x_i) & ext{ for discrete } X \ \int_{-\infty}^{\infty} g(x) f(x) dx & ext{ for continuous} X \end{cases}$$

Let X,Y be two r.v's; then the expectation of g(X,Y) is defined in a similar way.

$$\exists (g(x,y)) = \left\{ egin{aligned} \sum \sum g(x_i,y_j)P(X=x_i,Y=y_j) \ \int \int g(x_i,y_j)f(x,y)dxdy \end{aligned} 
ight.$$

## 2.5.1 Properties of expectation

1. Linearity:expectation of 
$$X$$
:  $\mathbb{E}(X)=\left\{egin{align*} \sum\limits_{-\infty}X_i\mathbb{P}(X=x_i) \ \int_{-\infty}^{x_1}xf(x)dx \end{array}
ight.$  ,  $g(X)=x$ 

$$\circ \ \mathbb{E}(ax+b) = a\mathbb{E}(x) + b$$

$$\circ \ \mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

2. If  $X \perp \!\!\! \perp Y$ , then  $\mathbb{E}(g(X)h(Y)) = \mathbb{E}(g(X)) \cdot \mathbb{E}(h(Y))$ 

o proof: (continuous case)

$$egin{aligned} \mathbb{E}(g(X)h(Y)) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f(x,y)dxdy \ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x)h(y)f_X(f)f_Y(y)dxdy \ &= \int_{-\infty}^{\infty} g(x)f_X(x) \cdot \int_{-\infty}^{\infty} h(y)f_Y(y)dy \end{aligned}$$

 $\circ$  In particular,  $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$  if  $X \perp \!\!\! \perp Y$ 

## 2.5.2 Definitions

**Definition**: The expectation  $\mathbb{E}(X^n)$  is called the n-th moment of X:

• 1st moment:  $\mathbb{E}(X)$ 

• 2st moment:  $\mathbb{E}(X^2)$ 

**Definition**: The variance of a r.v X is defined as:

$$Var(x) = \mathbb{E}((X - \mathbb{E}(X))^2)$$
 also denoted as  $\sigma^2, \sigma_x^2$ 

**Definition**: the covariance of the r.v's X and Y is defined as:

$$Cov(X,Y) = \mathbb{E}((X - \mathbb{E}(X)))\mathbb{E}((Y - \mathbb{E}(Y)))$$

Thus 
$$Var(X) = Cov(X, X)$$

**Definition**: the correlation between X and Y is defined as:

$$Cor(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

Fact:  $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$ 

Proof:

$$egin{aligned} Var(X) &= \mathbb{E}((X - \mathbb{E}(X))^2) \ &= \mathbb{E}(X^2 - 2X\mathbb{E}(X) + (\mathbb{E}(X)^2)) \ &= \mathbb{E}(X^2) - 2\mathbb{E}(X\mathbb{E}(X)) + (\mathbb{E}(X))^2 \ &= \mathbb{E}(X^2) - 2(\mathbb{E}(X))^2 + (\mathbb{E}(X))^2 \ &= \mathbb{E}(X^2) - (\mathbb{E}(X))^2 \end{aligned}$$

Fact:  $Cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$ 

Proof: similar to previous

Variance and covariance are translation invariant. Variance is quadratic, covariance is bilinear.

$$Var(aX+b) = a \cdot Var(X)$$
  $Cov(aX+b,cY+d) = ac \cdot Cov(X,Y)$ 

Proof:

$$egin{aligned} Var(aX+b) &= \mathbb{E}((aX+b0\mathbb{E}(aX+b)^2)) \ &= \mathbb{E}([a(X-\mathbb{E}(X))]^2) \ &= a^2\mathbb{E}((X-\mathbb{E}(X)^2)) \ &= a^2\mathbb{E}(X) \end{aligned}$$

Proof: Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

Exercise

If  $X \perp \!\!\! \perp Y$ , then Cov(X,Y) = 0 and Var(X+Y) = Var(X) + Var(Y)

Proof:

$$Cov(X,Y)=\mathbb{E}(XY)-\mathbb{E}(X)\mathbb{E}(Y)$$
 we know:  $X\mid Y\Rightarrow \mathbb{E}(XY)=\mathbb{E}(X)\mathbb{E}(Y)$  Thus,  $Cov(X,Y)=0\Rightarrow Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)$  So we see independence  $\Rightarrow$  Covariance is 0: "uncorrelated" the converse is not true.  $Cov(X,Y)=0\Rightarrow$  independence

#### Remarks

We have  $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$ .

If  $X \perp\!\!\!\perp Y$  , we also have:

- $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ , and
- Var(X + Y) = Var(X) + Var(Y)

It's important to remember that the first result and the other two results are of very different nature. While  $\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$  is a property of expectation and holds unconditionally;

the other two,  $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$  and Var(X+Y) = Var(X) + Var(Y), only hold if  $X \perp \!\!\! \perp Y$ .

It is more appropriate to consider them as properties of independence rather than properties of expectation and variance

# 2.6 Indicator

A random variable  $\boldsymbol{I}$  is called an indicator, if

$$I(w) = egin{cases} 1 & \omega \in A \ 0 & \omega \in A \end{cases}$$
  $P(I_A) = P(A)$ 

for some event  $\boldsymbol{A}$ 

For A given, I is also elevated as  $I_A$ 

The most important property of indicator is its expectation gives the probability of the event  $\mathbb{E}(I_A)=\mathbb{P}(A)$ 

Proof:

$$egin{aligned} \mathbb{P}(I_A=1) &= \mathbb{P}(\omega:I_A(\omega=1)) \ &= \mathbb{P}(\omega:\omega\in A) \ &= \mathbb{P}(A) \end{aligned}$$

$$\mathbb{P}(I_A=0)=1-\mathbb{P}(A)\Rightarrow \mathbb{E}(I_A)=1\cdot \mathbb{P}(A)+c\cdot (1-\mathbb{P}(A))=\mathbb{P}(A)$$

#### 2.6.1 Example

we see  $I_A \sim Ber(\mathbb{P}(A))$ 

Let  $X \sim Bin(n,p)$ , X is number of successes in n Bernoulli trials, each with probability p of success

$$\Rightarrow X = I_1 + \cdots + I_n$$

where  $I_1,\cdots,I_n$  are indicators for independent events.  $I_i=1$  if th i the trial is a success.  $I_i=0$  if the i th trial is a failure.

Hence  $I_i$  are **i.d.** (independent and identically distributed) r.v's

$$\Rightarrow \mathbb{E}(X) = \mathbb{E}(I_1 + \cdot, I_N)$$

$$= \mathbb{E}(I_1) + \cdots | \mathbb{E}(I_n)$$

$$= p + \cdots + p = n \cdot p$$

$$Var(X) = Var(I_1 + \cdots + I_n)$$
  
=  $Var(I_1) + \cdots + Var(I_n)$   
=  $n \cdot Var(I_i)$   
=  $n \cdot p(1 - p)$ 

$$Var(I_1) = \mathbb{E}(I_1^2) - (\mathbb{E}(I_1))^2 = \mathbb{E}(I_1) - (\mathbb{E}(I_1))^2 = p - p^2 = p(1-p)$$

## 2.6.1 Example 3

Let X be a r.v. taking values in non-negative integers, then

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} P(X > n)$$

Proof:

Note that  $X = \sum_{n=0}^{\infty} I_n$  where  $I_n = I_{x>n}.$  (x>n is an event)

$$egin{aligned} \mathbb{E}(X) &= \mathbb{E}(\sum_{n=0}^{\infty} I_n) \ &= \sum_{n=0}^{\infty} \mathbb{E}(I_n) \ &= \sum_{n=0}^{\infty} P(X > n) \end{aligned}$$

In particular, let  $X \sim Geo(p)$ . As we have seen,  $P(X>n)=(1-p)^n \Rightarrow$ 

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} P(X > n)$$
$$= \sum_{n=0}^{\infty} (1-p)^n$$
$$= \frac{1}{1-(1-p)} = \frac{1}{p}$$

# 2.7 Moment generating function

**Definition**: Let X be a r.v. Then the function  $M(t)=\mathbb{E}(e^{tx})$  is called the *moment generating function(mgf)* of X, if the expectation exists for all  $t \in (-h, h)$  for some h > 0.

Remark: The mgf is not always well-defined. It is important to check the existence of the expectation.

## 2.7.1 Properties of mgf

- 1. Moment Generating Function generates moments
  - - M(0) = 1
    - $M^{(k)}(0) = \mathbb{E}(X^k), k = 1, 2, \dots (M^{(k)} = rac{d^k}{dt^k} M(t)|_{t=0})$

$$egin{aligned} M(0) &= \mathbb{E}(e^{0 \cdot X}) = \mathbb{E}(1) = 1 \ M^{(k)}(0) &= rac{d^k}{dt^k} \mathbb{E}(e^{t \cdot X)})|_{t=0} \ &= \mathbb{E}(rac{d^k}{dt^k} e^{t X}|_{t=0}) \ &= \mathbb{E}(X^k) \end{aligned}$$

- As a result, we have:  $M(t)=\sum_{k=0}^{\infty}\frac{M^{(k)}(0)}{k!}t^k=\sum_{k=0}^{\infty}\frac{E*X^k}{k!}t^k$  (a method to get moment of a r.v) 2.  $X\perp\!\!\!\perp Y$ , with mgf's  $M_x,M_y$ . Let  $M_{X+Y}$  be the mgf of X+Y. then

$$M_{X+Y}(t) = M_X(t)M_Y(y)$$

o Proof:

$$egin{aligned} M_{X+Y}(t) &= \mathbb{E}(e^{t(X+Y)}) \ &= \mathbb{E}(e^{tx}e^{ty}) \ &= \mathbb{E}(e^{tx})\mathbb{E}(e^{ty}) \ &= M_X(y)M_Y(t) \end{aligned}$$

- 3. The mgf completely determines the distribution of a r.v.
  - $M_X(t)=M_Y(t)$  for all  $t\in (-h,h)$  for some h>0 , then  $X\stackrel{d}{=}Y$  . ( $\stackrel{d}{=}$ : have the smae distribution)
  - $\circ$  Example: Let  $X\sim Poi(\lambda_1)$  ,  $Y\sim Poi(\lambda_2)$  .  $X\perp\!\!\!\perp Y$  . Find the distribution of X+Y
    - First, derive the mgf of a Poisson distribution.

the mgf of a Poisson distribution. 
$$M_X(t) = \mathbb{E}(e^{tX})$$

$$= \sum_{n=0}^{\infty} e^{tn} \cdot P(X=n)$$

$$= \sum_{n=0}^{\infty} e^{tn} \cdot \frac{\lambda_1^n}{n!} e^{-\lambda_1}$$

$$= \sum_{n=0}^{\infty} \frac{(e^t \cdot \lambda_1)^n}{n!} \cdot e^{-\lambda_1}$$
we know that  $\sum_{n=0}^{\infty} \frac{(e^t \lambda_1)^n}{n!} = e^{e^t \cdot \lambda_1}$ . (Since  $\frac{(e^t \lambda_1^n)}{n!} e^{-e^t \lambda_1}$  is the pmf of  $Poi(e^t \lambda_1)$ )
$$\Rightarrow M_X(t) = e^{e^t \lambda_1} e^{-\lambda_1} = e^{\lambda_1(e^t - 1)}, t \in \mathbb{R}. (e^{\lambda_1(e^t - 1)} \text{ is mgf of } Poi(\lambda_1))$$
Similarly,  $M_Y(t) = e^{\lambda_2(e^t - 1)}$ .

We know that

$$egin{aligned} M_{X+Y}(t) &= M_X(t) M_Y(t) \ &= e^{\lambda_1 (e^t-1)} e^{\lambda_2 (e^-1)} \ &= e^{(\lambda_1 + \lambda_2) (e^t-1)} \end{aligned}$$

This is the mgf of  $Poi(\lambda_1 + \lambda_2)!$ 

Since the mgf uniquely determines the distribution  $X+Y \sim Poi(\lambda_1 + \lambda_2)$ 

In general, if  $X_1, X_2, \dots, X_n$  independent,  $X_i \sim Poi(\lambda_i)$ , then  $\sum X_i \sim Poi(\sum \lambda_i)$ 

## 2.7.2 Joint mgf

**Definition**: Let X,Y be r.v's. Then  $M(t_1,t_2):=\mathbb{E}(e^{t_1X+t_2Y})$  is called the joint mgf of X and Y, if the expectation exists for all  $t_1\in(-h_1,h_1)$ ,  $t_2\in(-h_2,h_2)$  for some  $h_1,h_2>0$ .

More generally, we can define  $M(t_1,\ldots,t_n)=\mathbb{E}(exp(\sum_{i=1}^n t_iX_i))$  for r.v's  $X_1,\cdots,X_n$ , if the expectation exists for  $\{(t_1,\cdots,t_n):t_i\in(-h_i,h_i),i=1,\cdots,n\}$  for some  $\{h_i>0\},i=1,\cdots,n\}$ 

#### 2.7.2.1 Properties of the joint mgf

1.  $M_X(t)=\mathbb{E}(e^{tX}) \ =\mathbb{E}(e^{tX+oY}) \ =M(t,o) \ M_Y(t)=M(o,t)$ 

2.  $rac{\partial^{m+n}}{\partial t_1^m \partial t_2^n} M(t_1,t_2)|_{(0,0)} = \mathbb{E}(X^m Y^n)$ 

the proof is similar to the single r.v. case

3. If  $X \perp\!\!\!\perp Y$  , then  $M(t_1,t_2) = M_X(t_1) M_Y(t_2)$ 

o Proof:

$$egin{aligned} M(t_1,t_2) &= \mathbb{E}(e^{t_1X+t_2Y}) \ (X \perp\!\!\!\perp Y) &= \mathbb{E}(e^{t_1X}e^{t_2Y}) \ &= \mathbb{E}(e^{t_1X}) \cdot \mathbb{E}(e^{t_2Y}) \ &= M_X(t_1) \cdot M_Y(t_2) \end{aligned}$$

- $\circ$  **Remark**: Don't confuse this with the result  $X \perp\!\!\!\perp Y \Rightarrow M_{X+Y}(t) = M_X(t) M_Y(t)$ .
  - $M_{X+Y}(t) o \mathsf{mgf}$  of X+Y; single argument function t
  - $lacksquare M(t_1,t_2) 
    ightarrow$  joint mgf of (X,Y); two arguments  $t_1,t_2$

# 3. Conditional distribution and conditional expectation

## 3.1 Conditional distribution

## 3.1.1 Discrete case

**Definition** Let X and Y be discrete r.v's. The conditional distribution of X given Y is given by:

$$P(X=x|Y=y) = \frac{(P(X=x,Y=u))}{P(Y=y)}$$

 $P(X = x | Y = y) : f_{X|Y} = y(x), f_{X|Y}(x|y) \leftarrow \text{conditional probability mass function})$ 

Conditional pmf is a legitimate pmf: given any y ,  $f_{X|Y=y}(x) \geq 0, orall x$ 

$$\sum_x f_{X|Y=y}(x) = 1$$

Note that given Y=y, as x changes, the value of the function  $f_{X|Y=y}(x)$  is proportional to the joint probability.

$$f_{X|Y=y}(x) \propto P(X=x,Y=y)$$

This is useful for solving problems where the denominator P(Y=y) is hard to find.

#### 3.1.1.1 Example

$$X_1 \sim Poi(\lambda_1), X_2 \sim Poi(\lambda_2). \ X_1 \perp\!\!\!\perp X_2, Y = X_1 + X_2$$

Q: 
$$P(X_1 = k | Y = n)$$
 ?

Note 
$$P(X_1=k|Y=u)=f_{X_1|Y=n}(k)$$

A:  $P(X_1=k|Y=n)$  can only be non-zero for  $k=0,\cdots,n$  in this case,

$$egin{aligned} P(X_1 = k | Y = n) &= rac{P(X_1 = k, Y = n)}{P(Y = n)} \ &\propto P(X_1 = k, Y = n) \ &= P(X_1 = k, X_2 = n - k) \ &= e^{-\lambda_1} rac{\lambda_1^k}{k!} \cdot e^{-\lambda_2} rac{\lambda_2^{n-k}}{(n-k)!} \ &\propto (rac{\lambda_1}{\lambda_2})^k / k! (n-k)! \end{aligned}$$

we can get P(X = k|Y = n) by normalizing the above expression.

$$P(X_1=k,Y=n)=rac{(rac{\lambda_1}{\lambda_2})^k/k!(n-k)!}{\sum_{k=0}^n(rac{\lambda_1}{\lambda_2})^k/k!(n-k)!}$$

but then we will need to fine  $\sum_{k=0}^n (\frac{\lambda_1}{\lambda_2})^k/k!(n-k)!$ 

An easier way is to compare  $\sum_{k=0}^n (\frac{\lambda_1}{\lambda_2})^k/k!(n-k)!$  with the known results for common distribution. In particular, if  $X \sim Bin(n,p)$ 

$$P(X = k) = {n \choose k} p^k (1 - p)^{n-k}$$
  
  $\propto (\frac{p}{1-p})^k / k! (n-k)!$ 

 $\Rightarrow P(X_1=k|Y=n)$  follows a binomial distributions with parameters n and p given by  $rac{p}{1-p}=rac{\lambda_1}{\lambda_2}\Rightarrow p=rac{\lambda_1}{\lambda_1+\lambda_2}$ 

Thus, given  $Y=X_1+X_2=n$ , the conditional distribution of  $X_1$  is binomial with parameter n and  $rac{\lambda_1}{\lambda_1+\lambda_2}$ 

## 3.1.2 Continuous case

**Definition**: Let X and Y be continuous r.v's. The conditional distribution of X given Y is given by

$$f_{X|Y}(x|y)=f_{X|Y=y}(x)=rac{f(x,y)}{f_Y(y)}$$

A conditional pdf is a legitimate pdf

$$egin{aligned} f_{X|Y}(x|y) &\geq 0 & x,y \in \mathbb{R} \ \int_{-\infty}^{\infty} f_{X|Y}(x|y) dx &= 1, & y \in \mathbb{R} \end{aligned}$$

#### 3.1.2.1 Example

Suppose  $X \sim Exp(\lambda)$ ,  $Y|X = x \sim Exp(x) = f_{Y|X}(y|x) = xe^{-xy}, y = e \leftarrow$  conditional distribution of Y given X = x

Q: Find the condition pdf  $f_{X|Y}(x|y)$ 

A:

$$egin{aligned} f_{X|Y}(x|y) &= rac{f(x,y)}{f_Y(y)} \ &\propto f(x,y) \ &= f_{Y|X}(y|x) \cdot f_X(x) \ &= xe^{xy} \lambda e^{-\lambda x a} \ &\propto xe^{-x(y+\lambda)}, \qquad x>0,y>0 \end{aligned}$$

Normalization (make the total probability 1)

$$f_{X|Y}(x|y) = rac{xe^{-x(y+\lambda)}}{\int_0^\infty xe^{-x(y+\lambda)}dx} \ \int_0^\infty xe^{-x(y+\lambda)}dx = rac{1}{\lambda+t}^2 \leftarrow ext{integration by parts}$$

Thus, 
$$f_{X|Y}(x|y)=(\lambda+y)^2xe^{-x(y+\lambda)}$$
 ,  $x>0$  .

This is a gamma distribution with parameters  $\gamma$  and  $\lambda+y$ 

#### 3.1.2.1. Example 2

Find the distribution of z = XY.

Attention: the following method is wrong:

$$f_Z(z) = \int_0^\infty f_{Y|X}(rac{z}{x}|x) \cdot f_X(x) dx$$

If we want to directly work with pdf's, we will need to use the change of variable formula for multi-variables. The right formula have turns out to be

$$egin{aligned} f_Z(z) &= \int_0^\infty f_{X,Z}(x,z) dx = \int_0^\infty f_{Z|X}(z|x) f_X(x) dx \ &= \int_0^\infty f(x,rac{z}{x}) \cdot rac{1}{x} dx \ &= f_{Y|X}(rac{z}{x}|x) f_X(x) \cdot rac{1}{x} dx \end{aligned}$$

As an easier way is to use cdf, which gives probability rather than density:

$$egin{aligned} P(Z=z) &= P(XY \leq z) \ &= \int_0^\infty P(XY \leq z | X=x) f_X(x) dx \qquad ext{(law of total probability)} \ &= \int_0^\infty P(Y \leq rac{z}{x} | X=x) \cdot f_X(x) dx \end{aligned} \ Y|X=x \sim Exp(x) \ &= \int_0^\infty (1-e^{-x\cdot rac{z}{x}}) \cdot \lambda e^{-\lambda x} dx \ &= 1-e^{-z} \int_0^\infty \lambda e^{-\lambda x} dx \end{aligned} \ \Rightarrow Z \sim Exp(1)$$

Notation  $X,Y|\{Z=k\}\stackrel{iid}{\sim}\cdots$  means that given Z=k, X and Y are conditionally independent, and they follow certain distribution.

(the conditional joint cdf/pmf/pdf equals the predict of the conditional cdf's/pmf's/pdf's)

# 3.2 Conditional expectation

We have seen that conditional pmf/pdf are legitimate pmf/pdf. Correspondingly, a conditional distribution is nothing else but a probability distributions. It is simply a (potentially) different distribution, since it takes more information into consideration.

As a result, we can define everything which are previously defined for unconditional distributions also for conditional distributions.

In particular, it is natural to define the conditional expectation.

**Definition**. The conditional expectation of g(X) given Y=y is defined as

$$\mathbb{E}(g(X)|Y=y) = egin{cases} \sum_{i_1}^\infty g(x_i) P(X=x_u|Y=y) & & ext{if } X|Y=y ext{ is discrete} \ \int_{-\infty}^\infty g(x) f_{X|Y}(x|y) dx & & ext{if } X|X=y ext{ is continuous} \end{cases}$$

Fix y, the conditional expectation is nothing but the expectation taken under the conditional distribution.

3.2.1 What is  $\mathbb{E}(X|Y)$  ?

Different ways to understand conditional expectation

- 1. Fix a value y ,  $\mathbb{E}(g(X)|Y=y)$  is a number
- 2. As y changes  $\mathbb{E}(g(x)|Y=y)$  becomes a function of y (that each y gives a value):  $h(y)=:\mathbb{E}(g(x)|Y=y)$
- 3. since y is actually random, we can define  $\mathbb{E}(g(x)|Y)=h(Y)$ . This is a random variable

$$\mathbb{E}(g(x)|Y))_{(\omega)} = \mathbb{E}(g(x)|Y = Y(\omega)$$

 $\omega \in \Omega$  this random variable takes value  $\mathbb{E}(g(x)|Y=y)$  When Y=y

$$egin{aligned} \Omega &
ightarrow \mathbb{R} \ h(Y)_{(\omega)} &= h(Y(\omega)) \end{aligned}$$

## 3.2.2 Properties of conditional expectation

1. Linearity (inherited from expectation)

$$\mathbb{E}(aX+b|Y=y) = a\mathbb{E}(X|Y=y) + b$$
  $\mathbb{E}(X+Z|Y=y) = \mathbb{E}(X|Y=y) + \mathbb{E}(Z|Y=y)$ 

2.  $\mathbb{E}(g(X,Y)|Y=y)=\mathbb{E}(g(X,y)|Y=y)\neq\mathbb{E}(g(X,y))$  when X and Y are not independent

Proof (Discrete):

$$\mathbb{E}(g(X,Y)|Y=y) = \sum_{x_i} \sum_{y_j} g(x_i,y_j) \cdot P(X=x_i,Y=y_j|Y=y)$$
 if  $y_j \neq y$   $P(X=x_i,Y=y_j|Y=y) = egin{cases} 0 & ext{if } y_j 
eq y \ P(X=x_i,Y=y_j|Y=y) = P(X=x_i|Y=y) & ext{if } y_j = y \end{cases}$ 

$$egin{aligned} &\Rightarrow \mathbb{E}(g(X,Y)|Y=y) = \sum_{x_i} g(x_i,y) \cdot P(X=x_i|Y=y) \ &= \mathbb{E}(g(X,y)|Y=y) \end{aligned}$$
  $g(X,y)$  regarded as a function of  $x$ 

In particular,

$$\mathbb{E}(g(X) \cdot h(Y)|Y = y) = h(y)\mathbb{E}(g(X)|Y = y)$$
$$\mathbb{E}(g(X) \cdot h(Y)|Y) = h(Y)\mathbb{E}(g(X)|Y)$$

3. If  $X \perp Y$  , then  $\mathbb{E}(g(X)|Y=y) = \mathbb{E}(g(X))$ 

**Fact**: If  $X \perp Y$ , then conditional distribution of X given Y = y is the same as the unconditional distribution of X

Proof(Discrete):

$$egin{aligned} & ext{if } X \perp Y \ & P(X = x_i | Y = y_j) \ & = P(X = x_i | Y = y_j) / P(Y = y_j) \ & = P(X = x_i) P(Y = y_j) / P(Y = y_j) \ & = P(X = x_i) \end{aligned}$$

4. Law of iterated expectation (or double expectation): Expectation of conditionally expectation is its unconditional expectation

$$\mathbb{E}(\mathbb{E}(X|Y))) = \mathbb{E}(X)$$

 $\mathbb{E}(X|Y)$  is a r.v, a function of Y.

Proof(Discrete):

When 
$$Y=y_j$$
 , the r.v.  $\mathbb{E}(X|Y)=\mathbb{E}(X|Y=y_j)=\sum_{x_i}x_iP(X=x_i|Y=y_j)$  . This happens with probability  $P(Y=y_j)$ 

$$egin{aligned} \mathbb{E}(\mathbb{E}(X|Y)) &= \sum_{y_j} (\sum_{x_i} x_i P(X=x_i|Y=y_j)) P(Y=y_j) \ &= \sum_{x_i} \sum_{y_j} P(X=x_i|Y=y_j) P(Y=y_j) \ &= \sum_{x_i} x_i \sum_{y_j} P(X=x_i|Y=y_j) P(Y=y_2) \quad ext{ law of total probability} \ &= \sum_{x_i} x_i P(X=x_i) = \mathbb{E}(X) \end{aligned}$$

Alternatively,

$$egin{aligned} \sum_{x_i} \sum_{y_j} x_i P(X=x_i|Y=y_j) P(Y=y_j) \ &= \sum_{x_i} \sum_{y_j} x_i P(X=x_i,Y=y_j) \ &= \mathbb{E}(X) \end{aligned} \qquad g(X,Y) = X ext{ at } (x_i,y_j)$$

#### Example:

Y: # of claims receive by insurance company

X: some random parameter

$$Y|X \sim Poi(X), X \sim Exp(\lambda)$$

a) 
$$\mathbb{E}(Y)$$
 ?  
b)  $P(Y=n)$  ?

a)

$$egin{aligned} Y|X \sim Poi(X) &\Rightarrow \mathbb{E}(Y|X=x) = x \Rightarrow \mathbb{E}(Y|X) = X \ &\therefore \mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y|X)) \ &= \mathbb{E}(X) = rac{1}{\lambda} \end{aligned}$$

b)

$$\begin{split} P(Y=n) &= \int_0^\infty P(Y=n|X=x) f_x(x) dx \\ &= \int_o^\infty \frac{e^{-x} x^n}{n!} \cdot \lambda e^{-\lambda x} dx \\ &= \frac{\lambda}{n!} \int_0^\infty x^n e^{-(\lambda+1)x} dx \\ &= \frac{\lambda}{(\lambda+1)^{n+1} n!} \int_0^\infty ((\lambda+1)x)^n e^{-(\lambda+1)x} d(\lambda+1)x \\ &= \frac{\lambda}{(\lambda+1)^{n+1} n!} \Gamma(n+1) & \Gamma(n+1) = n! \text{ ; formula for gamma function or integration by parts} \\ &= \frac{\lambda}{(\lambda+1)^{n+1}} = (\frac{1}{\lambda+1})^n \cdot \frac{1}{\lambda+1} \\ &\Rightarrow Y+1 \sim \operatorname{Geo}(\lambda/(\lambda+1)) \end{split}$$

We verify that  $\mathbb{E}(Y) = rac{\lambda+1}{\lambda} - 1 = rac{1}{\lambda}$ 

# 3.3 Decomposition of variance (EVVE's low)

**Definition**: The conditional variance of Y given X=x is defined as

$$Var(Y|X=x)=\mathbb{E}((Y-\mathbb{E}(Y|X=x))^2|X=x)$$
  $Var(Y|X)_{(\omega)}=Var(Y|X=X_{(\omega)})$   $Var(Y|X)_{(\omega)}$ : a r.v, a function of  $X$ 

The conditional variance is simply the variance taken under the conditional distribution

$$\Rightarrow V(Y|X=x) = \mathbb{E}(Y^2|X=x) - (\mathbb{E}(Y|X=x))^2$$

Thus

$$Var(Y) = \mathbb{E}(Var(Y|X)) + Var(\mathbb{E}(Y|X))$$

 $\mathbb{E}(Var(Y|X))$ : "intra-group variance"  $Var(\mathbb{E}(Y|X))$ : "inter-group variance"

Proof:

$$\begin{split} RHS &= E(E(Y^2|X) - (E(Y|X))^2) + E((E(Y|X))^2) - (E(E(Y|X)))^2 \\ &= E(E(Y^2|X)) - \frac{E((E(Y|X))^2)}{E((E(Y|X))^2)} + \frac{E((E(Y|X))^2)}{E(E(Y|X))^2} - (E(E(Y|X)))^2 \\ &= E(Y^2) - (E(Y))^2 \\ &= Var(Y) \end{split}$$

# 4. Stochastic Processes



- 1. sequence / family of random variables
- 2. a random function (hard to formulate)

**Definition**: A **stochastic process**  $\{X_t\}_{t\in T}$  is a collection of random variables, defined on a common probability space.

T: index set. In most cases, T corresponds to time, and is either discrete  $\{0,1,2,\cdots\}$  or continuous  $[0,\infty)$ 

In discrete case, we writes  $\{X_n\}_{n=0,1,2,\ldots}$ 

This **state space** S os a stochastic process is the set of all possible value of  $X_t, t \in T$ 

S can also be either discrete or continuous. In this course, we typically deal with **discrete** stat space. Then we relabel the stats so that  $S=\{0,1,2,\cdots\}$  (countable state space) or  $S=\{0,1,2,\cdots,M\}$  (finite state space)

**Remark**: As in the case of the joint distribution, we need the r.v's in a stochastic process to be defined on a common probability space, because we want to discuss their joint behaviours, i.t, how things change over time.





Thus, we can identify each point  $\omega$  in the sample space  $\Omega$  with a function defined on T and taking value in S. Each function is called a **path** of this stochastic process

**Example** Let  $X_0, X_1, \cdots$  be independent and identical r.v's following some distribution. Then  $\{X_n\}_{n=0,1,2,\dots}$  is a stochastic process



**Example** Let  $X_1,X_2,...$  be independent and identical r.v.'s.  $P(X_1=1)=p$ , and  $P(X_1=-1)=1-p$ . Define  $S_0=0,S_n=\sum_{i=1}^n X_i,n\leq 1$ ,

- $S_0 = 0$
- $S_1 = X_1$   $S_2 = X_1 + X_2$

Then  $\{S_n\}_{n=0,1,\dots}$  is a stochastic process, with state space  $S=\mathbb{Z}$  (integer)

Sn



## 4.1 Markov Chain

#### 4.1.1 Simple Random Walk

 $\{S_n\}_{n=0,1,\dots}$  is called a "simple random walk". ( $S_n=S_{n-1}+X_n$ )

$$S_n = egin{cases} S_{n-1}+1 \ S_{n-1}-1 \end{cases}$$

**Remark**: Why we need the concept of "stochastic process"? Why don't we just look at the joint distribution of  $(X_0, X_1, ..., X_n)$ ?

**Answer**: The joint distribution of a large number of r.v's is very complicated, because it does not take advantage of the special structure of T (time).

For example, simple random walk. The full distribution of  $(S_0, S_1, ..., S_n)$  is complicated or n large. However, the structure is actually simple if we focus on the adjacent times:

$$S_{n+1} = S_n + X_{n+1}$$

 $S_n$ : last value.  $X_{n+1}$ : related to Ber(p). They are independent

By introducing time into the framework, we can greatly simplify many things.

More precisely, we fine that for simple random walk,  $\{S_n\}_{n=0,1,\dots}$ , if we know  $S_n$  the distribution of  $S_n+1$  will not depend on the history  $(S_0,\dots,S_n-1)$ . This is a very useful property

In general for a stochastic process  $\{X_n\}_{n=0,1,...}$ , at time n, we already know  $X_0, X_1, ..., X_n$ ,  $S_0$  our best estimate of the distribution of  $X_{n+1}$  should be the conditional distribution:

$$X_{n+1}|X_n,...,X_n$$

given by:

$$P(X_{n+1} = x_{n+1} | X_n = x_n, ..., X_0 = x_0)$$

As time passes, the expression becomes more and more complicated  $\rightarrow$  impossible to handle.

However, if we know that this conditional distribution is actually the same as the conditional distribution only given  $X_n$ , then the structure will remain simple for any time. This motivates the notion of *Markov chain*.

## 4.1.2 Markov Chain

## 4.1.2.1 Discrete-time Markov Chain

#### **Definition and Examples**

**Definition**: A discrete-time Stochastic process  $\{X_n\}_{n=0,1,\dots}$  is called a **discrete-time Markov Chain (DTMC)**, if its state space S is discrete, and it has the Markov property:

$$P(X_{n+1} = x_{n+1} | X_n = x_n, ..., X_o = x_o)$$
  
=  $P(X_{n+1} = x_{n+1} | X_n = x_n)$ 

for all  $n, x_0, ..., x_n, x_{n+1} \in S$ 

If  $X_{n+1}|\{x_n=i\}$  does not change over time,  $P(X_{n+1}=j|N_n=i)=P(X_1=j|X_0=i)$ , then we call this Markov chain **time-homogeneous** (default setting for this course).

$$P(X_{n+1}=x_{n+1}|X_n=x_n,...,X_0=x_0) \hspace{1cm} X_{n+1}=x_{n+1} ext{: future; } X_n=x_n ext{: present(state)} \ = P(X_{n+1}=x_{n+1}|X_n=x_n) \hspace{1cm} X_{n-1}=x_{n-1},...,X_0=x_0 ext{: past(history)}$$

**Intuition**: Given the present state, the past and the future are independent. In other words, the future depends on the previous results only through the current state.

## Example: simple random walk

The simple random walk  $\{S_n\}_{n=0,1,...}$  is a Markov chain

Proof:

Recall that  $S_{n+1} = S_n + X_{n+1}$ 

$$egin{aligned} &P(S_{n+1}=s_{n+1}|S_n=s_n,...,S_0=s_0)\ &=0\ &=P(S_{n+1}=s_{n+1}|S_n=s_n)s \end{aligned}$$

if  $s_{n+1} 
eq s_n \pm$ 

$$egin{aligned} &P(S_{n+1}=s_n+1|S_n=s_n,...,s_0=0)\ &=P(X_{n+1}|S_n=s_n,...,S_0=0)\ &=P(X_{n+1}=1) & X_{n+1}\perp(X_1,...,X_n) ext{ hence also } (S_0,...,S_n) \end{aligned}$$

Similarly,

$$P(S_{n+1} = s_n + 1 | S_n = s_n)$$
  
=  $P(X_{n+1} = 1 | S_n = s_n)$   
=  $P(X_{n+1} = 1)$   
 $\Rightarrow P(S_{n+1} | S_n = s_n, ..., S_0 = s_0)$ 

Similarly,

$$egin{aligned} &P(S_{n+1}=s_n-1|S_n=s_n,...,S_0=0)\ &=P(S_{n+1}=s_n-1|S_n=s_n)\ &=P(X_{n+1}=-1)\ &\Rightarrow\{S_n\}_{n=0,1,...} ext{ is a DTMC } \ \blacksquare \end{aligned}$$

#### 4.1.3 One-step transition probability matrix

For a time-homogeneous DTMC, define

$$P_{ij} = P(X_1 = j | X_0 = i)$$
  
=  $P(X_{n+1} = j | X_n = i)$   $n = 0, 1, ...$ 

 $P_{ij}$ : one step transition probability

The collection of  $P_{ij}$ ,  $i, j \in S$  governs all the one-step transitions of the DTMC. Since it has two indices i and j; it naturally forms a matrix  $P = \{P_{ij}\}_{i,k \in S}$ , called the **(one-setp) transition (probability) matrix** or **transition matrix** 

Property of a transition matrix  $P = \{P_{ij}\}_{i,j \in S}$ :

$$egin{aligned} P_{ij} \geq 0 & orall i, j \in S \ & \sum_{j \in S} P_{ij} = 1 & orall i \in S & 
ightarrow ext{ the row some of } P ext{are all } 1 \end{aligned}$$

Reason:

$$egin{aligned} \sum_{j \in S} P_{ij} &= \sum_{j \in S} P(X_1 = j | X_0 = i) \ &= P(X_1 \in S | X_o = i) \ &= 1 \end{aligned}$$

## Example 1 : simple random walk

There will be 3 cases:

$$P_{i,i+1} = P(S_1 = i+1|S_0 = i) = P(X_1 = 1) = p$$
  
 $P_{i,i-1} = P(S_1 = i-1|S_0 = i) = P(X_1 = -1) = 1 - p =: q$   
 $P_{i,j} = 0$  for  $j \neq i \pm 1$ 

$$\Rightarrow ( ext{infinite dimension}) p = egin{cases} ... & ... & ... & ... & ... & ... & ... & ... & ... \ ... & q & 0 & p & ... & ... & ... \ ... & ... & q & 0 & p & ... & ... \ ... & ... & ... & q & 0 & p & ... & ... \ ... & ... & ... & q & 0 & p & ... \ ... & ... & ... & ... & ... & ... \ \end{pmatrix}$$

#### Example 2: Ehrenfest's urn

Two urns A, B, total M balls. Each time, pick one ball randomly (uniformly), and move it to the opposite urn.

 $X_n: \#$  of balls in Aafter step n

$$S=\{0,1,...,M\}$$
  $P_{ij}=P(X_1=j|X_0=j) \qquad (i ext{ balls in }A,M-i ext{ balls in }B)$   $=egin{cases} i/M & j=i-1 \ (M-i)/M & j=i+1 \ 0 & j
eq i\pm 1 \end{cases}$ 

#### Example 3: Gambler's ruin

A gambler, each time wins 1 with probability p, losses 1 with probability 1-p=q. Initial wealth  $S_0=a$ ; wealth at time n:  $S_n$ . The gambler leaves if  $S_n=0$  (loses all money) or  $S_n=M>a$  (wins certain amount of money and gets satisfied)

This is a variant of the simple random walk, where we have absorbing barriers( $P_{ii}=1$ ) at 0 and M

$$S = \{0,...,M\}$$
 
$$P_{ij} = \begin{cases} p & j = i+1, i = 1,...,M-1 \\ q & j = i-1, i = 1,...,M-1 \\ 1 & i = j = 0 ext{ or } i = j = M \\ 0 & ext{otherwise} \end{cases}$$
 
$$p = \begin{cases} 1 & 0 & ... \\ q & 0 & p & ... \\ ... & q & 0 & p & ... \\ ... & q & 0 & p & ... \\ ... & q & 0 & p & ... \\ ... & ... & q & 0 & p & ... \\ ... & ... & q & 0 & p & ... \\ ... & ... & q & 0 & p & ... \\ ... & ... & 0 & 1 \end{cases}$$

## Example 4: Bonus-Malus system

Insurance company has 4 premium levels: 1, 2, 3, 4

Let  $X_n \in \{1,2,3,4\}$  be the premium level for a customer at year n

$$Y_n \stackrel{iid}{\sim} Poi(\lambda)$$
: # of claims at year n

$$ullet$$
 If  $Y_n>0$   $\circ \ X_{n+1}=min(X_n+Y_n,4)$ 

Denote  $a_k=P(Y_n=k), k=0,1,...$ 

$$p = egin{cases} a_0 & a_1 & a_2 & (1-a_0-a_1-a_2) \ a_0 & 0 & a_1 & (1-a_0-a_1) \ 0 & a_0 & 0 & (1-a_0) \ 0 & 0 & a_0 & (1-a_0) \ \end{cases}$$

# 4.2 Chapman-Kolmogorov equations

**Q**: Given the (one-step) transition matrix,  $P=\{P_{ij}\}_{i,j\in S}$ , how can we decide the n-step transition probability

$$egin{aligned} P_{ij}^{(n)} &:= P(X_n = j | X_0 = i) \ &= P(X_{n+m} = j | X_m = i), \quad m = 0, 1, ... \end{aligned}$$

As a special case, let us start with  $P_{ij}^{(2)}$  and their collection  $p^{(2)}=\{P_{ij}^{(2)}\}_{i,j\in S}$  (also a square matrix, same dimension as P)

Condition on what happens at time 1:

$$egin{aligned} P_{ij}^{(2)} &= P(X_2 = j | X_0 = i) \ &= \sum_{j \in S} P(X_2 = j | X_0 = i, X_1 = k) \cdot P(X_1 = k | X_0 = i) \end{aligned} \quad ext{conditional law of total probability}$$

## 4.2.1 Conditional Law of total probability

$$\begin{split} &P(X_2=j|X_0=i)\\ &=\sum_{k\in S}P(X_2=j,X_1=k|X_0=i)\\ &=\sum_{k\in S}\frac{P(X_2=j,X_1=k,X_0=i)}{P(X_0=i)}\\ &=\sum_{k\in S}\frac{P(X_2=j,X_1=k,X_0=i)}{P(X_1=k,X_0=i)}\cdot\frac{P(X_1=k,X_0=i)}{P(X_0=i)}\\ &=\sum_{k\in S}P(X_2=j|X_0=i,X_1=k)\cdot P(X_1=k|X_0=i) \end{split}$$

continue on  $P_{ij}^{(2)}$ 

$$egin{aligned} P_{ij}^{(2)} &= P(X_2 = j | X_0 = i) \ &= \sum_{j \in S} P(X_2 = j | X_0 = i, X_1 = k) \cdot P(X_1 = k | X_0 = i) \quad ext{conditional law of total probability} \ &= \sum_{k \in S} P(X_2 = j | X_1 = k) \cdot P(X_1 = k | X_0 = i) \ &= \sum_{k \in S} P(X_1 = j | X_0 = k) \cdot P(X_1 = k | X_0 = i) \ &= \sum_{k \in S} P_{ik} \cdot P_{kj} \ &= (P \cdot P)_{ij} \end{aligned}$$

Thus,  $p^{(2)} = P \cdot P = p^2$ 

Using the smae idea, for n, m = 0, 1, 2, 3...:

$$\begin{split} P_{ij}^{(n+m)} &= P(X_{n+m} = j | X_0 = i) \\ &= \sum_{k \in S} P(X_{n+m} = j | X_0 = i, X_m = k) \cdot P(X_m = k | X_0 = i) \\ &= \sum_{k \in S} P(X_{n+m} = j | X_m = k) \cdot P(X_m = k | X_0 = i) \quad \text{Markov property} \\ &= \sum_{k \in S} P(X_n = j | X_0 = k) \cdot P(X_m = k | X_0 = i) \\ &= \sum_{k \in S} p_{ik}^{(m)} \cdot P_{kj}^{(n)} \\ &= (p^{(m)} \cdot p^{(n)})_{ij} \\ &\Rightarrow p^{(n+m)} = p^{(m)} \cdot p^{(n)} \quad (*) \end{split}$$

By definition,  $p^{(1)} = p$ 

$$\begin{array}{l} \bullet \ \, \Rightarrow p^{(2)} = p^{(1)} \cdot p^{(1)} = p^2 \\ \bullet \ \, \Rightarrow p^{(3)} = p^{(2)} \cdot p^{(1)} = p^3 \end{array}$$

$$\bullet \Rightarrow p^{(3)} = p^{(2)} \cdot p^{(1)} = p^{(3)}$$

• 
$$\Rightarrow p^{(n)} = p^n$$

Note:

• n from  $p^{(n)}$ : n-step transition probability matrix

$$\begin{array}{c} \circ \ p^{(n)}=\{p_{ij}^{(n)}\}_{i,j\in S}\\ p_{ij}^{(n)}=P(X_n=j|X_0=i)\\ \bullet \ n \ \text{from} \ p^n\text{: n-th power of the (one-step) transition matrix} \end{array}$$

$$egin{aligned} &\circ & p^n = p \cdot ... \cdot p \ & p = \{P_{ij}\}_{i,j \in S} \ & p_{ij} = P(X_1 = j | X_0 = i) \end{aligned}$$

(\*) is called the **Chapman-Kolmogorov equations** (c-k equation). Entry-wise:

$$P_{ij}^{n+m} = \sum_{k \in S} P_{ik}^{(m)} P_{kj}^{(n)}$$

Intuition:



"Condition at time m (on  $X_m$ ) and sum  ${\sf p}$  all the possibilities"

## 4.2.2 Distribution of $X_n$

So far, we have seen transition probability  $P_{ij}^{(m)}=P(X_n=j|X_0=i)$ . This is not the probability  $P(X_n=j)$ . In order to get this distribution, we need the information about which state the Markov chain starts with.

Let  $\alpha_{0,i}=P(X_0=i)$ . The row vector  $\alpha_0=(\alpha_0,0,\alpha_0,1,...)$  is called the **initial distribution** of the Markov chain. This is the distribution of the initial state  $X_0$ 

Similarly, we define distribution of  $X_n$ :  $lpha_n=(lpha_n,0,lpha_n,1,...)$  where  $lpha_{n,i}=P(X_n=i)$ 

Fact:  $\alpha_n = \alpha_0 \cdot p^n$ 

Proof:

$$egin{aligned} orall j \in S \ lpha_{n,j} &= P(X_n = j) \ &= \sum_{i \in S} P(X_n = j | X_0 = i) \cdot P(X_0 = i) \ &= \sum_{i \in S} lpha_{0,i} \cdot P_{ij}^{(n)} \ &= (lpha_0 \cdot P^{(n)})_j = (lpha_0 \cdot p^n)_j \ &\Rightarrow lpha_n = lpha 0 \cdot p^n \end{aligned}$$

- $\alpha_n$ : distribution of  $X_n$
- $\alpha_0$ : initial distribution
- p<sup>n</sup>: transition matrix

Remark: The distribution of a DTMC is completely determined by two things:

- the initial distribution  $\alpha_0$  (row vector), and
- the transition matrix p (square matrix)

# 4.3 Stationary distribution (invariant distribution)

**Definition**: A probability distribution  $\pi=(\pi_0,\pi_1,...)$  os ca;;ed a **stationary distribution**(invariant distribution) of the DTMC  $\{X_n\}_{n=0,1,...}$  with transition matrix P, if :

1. 
$$\underline{\pi}=\pi\cdot P$$
 2.  $\sum_{i\in S}\pi_i=1$  ( $\Leftrightarrow$   $\underline{\pi}\cdot 1$ ). ( $1\!\!\!\!\perp$ : a column of all 1's)

Why such  $\underline{\pi}$  is called stationary/invariant distribution?

$$\sum_{i \in S} \pi_i = 1, \pi_i \geq 0, i = 0, 1, ... \Rightarrow ext{distribution}$$
  $\underline{\pi} = \pi \cdot P \Rightarrow ext{invariant/stationary}.$ 

Assume the MC starts from the initial distribution  $lpha_0=\underline{\pi}$  hen the distribution of  $X_1$  is

$$\alpha_1 = \alpha_0 \cot P = \underline{\pi} \cdot P = \underline{\pi} = \alpha_0$$

The distribution of  $X_2$ :

$$lpha_2 = lpha_0 \cdot P^2 = \underline{\pi} \cdot P \cdot P = \underline{\pi} \cdot P = \underline{(\pi)} = lpha_0$$
 ......  $lpha_n = lpha_0$ 

Thus, if the MC starts from a stationary distribution, then its distribution will not change over time.