10.0 Speech-based Information Retrieval

Speech-based Information Retrieval

- User instructions and/or network content can be in form of voice
 - text queries/spoken content : spoken document retrieval, spoken term detection
 - spoken queries/text content : voice search
 - spoken queries/spoken content : query by example spoken content

Text/Speech-based Information Retrieval

Text-based information retrieval extremely successful

- information desired by the users can be obtained very efficiently
- all users like it
- producing very successful industry
- All roles of texts can be accomplished by voice
 - spoken content or multimedia content with voice in audio part
 - voice instructions/queries via handheld devices
- · Speech-based information retrieval

Wireless and Multimedia Technologies are Creating An Environment for Speech-based Information Retrieval

- Many hand-held devices with multimedia functionalities available
- Unlimited quantities of multimedia content fast growing over the Internet
- User-content interaction necessary for retrieval can be accomplished by spoken and multi-modal dialogues
- Network access is primarily text-based today, but almost all roles of texts can be accomplished by voice

Basic Approach for Spoken Content Retrieval

Recognition Language Acoustic Lexicon Engine Models Model Spoken Content **Retrieval Results** (list of spoken Text-based documents/utterances) Search **Transcriptions** Query Q **Engine** (text or transcribed if in voice)

- Transcribe the spoken content
- Search over the transcriptions as they are texts
- Recognition errors cause serious performance degradation

Lattices for Spoken Content Retrieval

- Low recognition accuracies for spontaneous speech including Out-of-Vocabulary (OOV) words under adverse environment
 - considering lattices with multiple alternatives rather than 1-best output

- > higher probability of including correct words, but also including more noisy words
- > correct words may still be excluded (OOV and others)
- ➤ huge memory and computation requirements

Other Approach Examples in addition to Lattices OOV or Rare Words Handled by Subword Units

- Confusion Matrices
 - use of confusion matrices to model recognition errors and expand the query/document, etc.
- Pronunciation Modeling
 - use of pronunciation models to expand the query, etc.
- Fuzzy Matching
 - query/content matching not necessarily exact

- OOV Word $W=w_1w_2w_3w_4$ can't be recognized and never appears in lattice
 - w_i: subword units: phonemes, syllables...
 - a, b, c, d, e : other subword units

- $W=w_1w_2w_3w_4$ hidden at subword level
 - can be matched at subword level without being recognized
- Frequently Used Subword Units
 - Linguistically motivated units: phonemes, syllables/characters, morphemes, etc.
 - Data-driven units: particles, word fragments, phone multigrams, morphs, etc.

Performance Measures (1/2)

• Recall and Precision Rates

Precision rate =
$$\frac{A}{A+B}$$

Recall rate =
$$\frac{A}{A+C}$$

- recall rate may be difficult to evaluate, while precision rate is directly perceived by users
- recall-precision plot with varying thresholds

Performance Measures (2/2)

- MAP (mean average precision)
 - area under recall-precision curve
 - a performance measure frequently used for information retrieval

References

• General or basic Spoken Content Retrieval

- http://www.superlectures.com/asru2011/lecture.php?lang=en&id=5
 Spoken Content Retrieval Lattices and Beyond (Lin-shan Lee's talk at ASRU 2011)
- Chelba, C., Hazen, T.J., Saraclar, M., "Retrieval and browsing of spoken content," Signal Processing Magazine, IEEE, vol.25, no.3, pp.39-49, May 2008
- Martha Larson and Gareth J. F. Jones (2012) "Spoken Content Retrieval: A Survey of Techniques and Technologies", Foundations and Trends in Information Retrieval: Vol. 5: No 4-5, pp 235-422
- "An Introduction to Voice Search", Signal Processing Magazine, IEEE, Vol. 25, 2008

• Text-based Information Retrieval

http://nlp.stanford.edu/IR-book/
 Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze,
 Introduction to Information Retrieval, Cambridge University Press. 2008.

Vector Space Model

• Vector Representations of query Q and document d

- for each type j of indexing feature (e.g. syllable, word, etc.) a vector is generated - each component in this vector is the weighted statistics z_{jt} of a specific indexing term t (e.g. syllable s_i)

$$z_{jt} = \underbrace{\left(1 + \ln[c_t]\right)}_{\text{Term Frequency}} \underbrace{\frac{\ln(N/N_t)}{\ln\text{verse Document Frequency}}_{\text{(IDF)}}$$

c_t: frequency counts for the indexing term t present in the query q or document d (for text), or sum of normalized recognition scores or confidence measures for the indexing term t (for speech)

N: total number of documents in the database

N_t: total number of documents in the database which include the indexing term t IDF: the significance (or importance) or indexing power for the indexing term t

• The Overall Relevance Score is the Weighted Sum of the Relevance Scores for all Types of Indexing Features $R_{j}(Q_{j}, d_{j}) = Q_{j} \bullet d_{j} \qquad Q_{j} \parallel \cdot \parallel d_{j} \parallel$

 $\overrightarrow{q}_{j}, \overrightarrow{d}_{j}$: vector representations for query q and document d with type j of indexing feature $S(Q, d) = \sum w_{j} \cdot R_{j}(\overrightarrow{Q}_{j}, \overrightarrow{d}_{j})$

 w_i : weighting coefficients

10

Vector Space Model

Difficulties in Speech-based Information Retrieval for Chinese Language

- Even for Text-based Information Retrieval, Flexible Wording Structure Makes it Difficult to Search by Comparing the Character Strings Alone
 - 李登輝→李前總統登輝,李前主席登輝(President T.H Lee) -name/title
 - 北二高→北部第二高速公路(Second Northern Freeway) - arbitrary abbreviation
 - 華航→中華航空公司(China Airline)
 - 中華文化→中國文化(Chinese culture) - similar phrases
 - 巴塞隆那→巴瑟隆納(Barcelona) - translated terms
- Word Segmentation Ambiguity Even for Text-based Information Retrieval
 - 腦科(human brain studies) →電腦科學(computer science)
 - 土地公(God of earth) →土地公有政策(policy of public sharing of the land)
- Uncertainties in Speech Recognition
 - errors (deletion, substitution, insertion)
 - out of vocabulary (OOV) words, etc.
 - -very often the key phrases for retrieval are OOV

Syllable-Level Indexing Features for Chinese Language

A Whole Class of Syllable-Level Indexing Features for Better **Discrimination**

- Overlapping syllable segments with length N

Syllable Segments	Examples
S(N), N=1	(s ₁) (s ₂)(s ₁₀)
S(N), N=2	(S ₁ S ₂) (S ₂ S ₃)(S ₉ S ₁₀)
S(N), N=3	(S ₁ S ₂ S ₃) (S ₂ S ₃ S ₄)(S ₈ S ₉ S ₁₀)
S(N), N=4	(S ₁ S ₂ S ₃ S ₄) (S ₂ S ₃ S ₄ S ₅)(S ₇ S ₈ S ₉ S ₁₀)
S(N), N=5	(S1 S2 S2 S4 S5) (S2 S2 S4 S5 S6)(S6 S7 S8 S0 S10)

- Syllable pairs separated by M syllables

	Syllable Pair Separated by M syllables	Examples
	P(M), M=1	(S ₁ S ₃) (S ₂ S ₄)(S ₈ S ₁₀)
	P(M), M=2	(S ₁ S ₄) (S ₂ S ₅)(S ₇ S ₁₀)
Cha	P(M), M=3 racter- or Word- P(M), M=4	(\$ ₁ \$ ₂) (\$ ₂ \$ ₂)(\$ ₆ \$ ₁₀) Level Features ca (\$ ₁ \$ ₆) (\$ ₂ \$ ₇)(\$ ₅ \$ ₁₀)

Syllable-Level Statistical Features

Single Syllables

- all words are composed by syllables, thus partially handle the OOV problem
- very often relevant words have some syllables in common
- each syllable usually shared by more than one characters with different meanings, thus causing ambiguity
- Overlapping Syllable Segments with Length N
 - capturing the information of polysyllabic words or phrases with flexible wording structures
 - majority of Chinese words are bi-syllabic
 - not too many polysyllabic words share the same pronunciation

• Syllable Pairs Separated by M Syllables

- tackling the problems arising from the flexible wording structure, abbreviations, and deletion, insertion, substitution errors in speech recognition

Improved Syllable-level Indexing Features

• Syllable-aligned Lattices and syllable-level utterance verification

- Including multiple syllable hypothesis to construct syllable-aligned lattices for both query and documents
- Generating multiple syllable-level indexing features from syllable lattices
- filtering out indexing terms with lower acoustic confidence scores

• Infrequent term deletion (ITD)

 Syllable-level statistics trained with text corpus used to prune infrequent indexing terms

• Stop terms (ST)

- Indexing terms with the lowest IDF scores are taken as the stop terms

Expected Term Frequencies

• E(t,x): expected term frequency for term t in the lattice of an utterance x

$$E(t,x) = \sum_{u \in L(x)} N(t,u) P(u \mid x)$$

- u: a word sequence (path) in the lattice of an utterance x
- P(u|x): posterior probability of the word sequence u given x
- N(t,u): the occurrence count of term t in word sequence u

 L(x): all the word sequences (paths) in the lattice of an utterance x

WFST for Retrieval (1/4)

Factor Automata

 The finite state machines accepting all substrings of the original machine

 retrieval is to have all substrings considered

WFST for Retrieval (2/4)

- The index transducer of text document
 - Every substring of the document is transduced to the corresponding document ID (e.g., 3014)
- For spoken documents, the index transducers are generated from lattices directly
- The index transducer of the whole corpus
 - Union of all transducers of all utterances

WFST for Retrieval (3/4)

Query Transducer

- Split the guery string into words, characters, syllables, etc.
- Generate the query transducer
- Factorize the automaton
- Distribute weights over different transitions

WFST for Retrieval (4/4)

Improved Retrieval by Training

- Improve the retrieval with some training data
 - Training data: a set of queries and associated relevant/irrelevant utterances

- Can be collected from user data
 - > e.g. click-through data
- Improve text-based search engine
 - e.g. learn weights for different clues (such as different recognizers, different subword units ...)
- Optimize the recognition models for retrieval performance
 - Considering retrieval and recognition processes as a whole
 - Re-estimate HMM parameters

HMM Parameter Re-estimation

- Retrieval considered on top of recognition output in the past
 - recognition and retrieval as two cascaded stages
 - retrieval performance relying on recognition accuracy
- Considering retrieval and recognition processes as a whole
 - acoustic models re-estimated by optimizing retrieval performance
 - acoustic models better matched to each respective data set

HMM Parameter Re-estimation

• Objective Function for re-estimating HMM

$$\hat{\lambda} = \arg\max_{\lambda} \sum_{Q \in Q_{train}} \sum_{x_t, x_f} \left[S(Q, x_t \mid \lambda) - S(Q, x_f \mid \lambda) \right]$$

 λ : set of HMM parameters, $\hat{\lambda}$: re-estimated parameters for retrieval

 Q_{train} : training query set

 x_t , x_f : positive/negative examples for query Q

 $S(Q,x|\lambda)$: relevance score of utterance x given query Q and model parameters set λ (Since S(Q,x) is obtained from lattice, it depends on HMM parameters λ .)

Find new HMM parameters for recognition

such that the relevance scores of positive and negative examples are better separated.

References

WFST for Retrieval

- Cyril Allauzen, Mehryar Mohri, and Murat Saraclar, "General indexation of weighted automata: application to spoken utterance retrieval," in Proceedings of the Workshop on Interdisciplinary Approaches to Speech Indexing and Retrieval at HLT-NAACL, Stroudsburg, PA, USA, 2004, SpeechIR '04, pp. 33–40, Association for Computational Linguistics.
- D. Can and M. Saraclar, "Lattice indexing for spoken term detection," IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 8, pp. 2338–2347, 2011.

References

Spoken Content in Mandarin Chinese

 "Discriminating Capabilities of Syllable-based Features and Approaches of Utilizing Them for Voice Retrieval of Speech Information in Mandarin Chinese", IEEE Transactions on Speech and Audio Processing, Vol.10, No.5, July 2002, pp.303-314.

• Training Retrieval Systems

- Click-through data
 - Thorsten Joachims. 2002. Optimizing search engines using clickthrough data.
 In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (KDD '02)
- Improve text-based search engine
 - "Improved Lattice-based Spoken Document Retrieval by Directly Learning from the evaluation Measures", IEEE International Conference on Acoustics, Speech and Signal Processing, 2009
- Re-estimate HMM parameters
 - "Integrating Recognition and Retrieval With Relevance Feedback for Spoken Term Detection," *Audio, Speech, and Language Processing, IEEE Transactions on*, vol.20, no.7, pp.2095-2110, Sept. 2012

Pseudo-relevance Feedback (PRF) (1/3)

- Collecting training data can be expensive
- Pseudo-relevance feedback (PRF):
 - Generate training data automatically
 - Procedure:
 - Generate first-pass retrieval results
 - assume the top N objects on the first-pass retrieval results are relevant (pseudo relevant)
 - assume the bottom M objects on the first-pass retrieval results are irrelevant (pseudo irrelevant)
 - Re-ranking: scores of objects similar to the pseudo-relevant/irrelevant objects increased/decreased

26

Pseudo-relevance Feedback (PRF) (2/3)

Query Q Final Results Search Spoken Engine archive Top N "assumed" time 1:01 time 1:01 relevant time 2:16 Compute time 2:05 (pseudo-relevant) time 7:22 time 1:45 acoustic similarity **Bottom N** time 2:16 time 2:05 time 7:33 "assumed" time 1:45 time 9:91 time 9:01 irrelevant (pseudo-irrelevant) First-pass Re-rank Retrieval Results Re-rank: increase/decrease the score of utterances having higher **acoustic similarity** with pseudo-relevant/-irrelevant utterances

Pseudo-relevance Feedback (PRF) (3/3)

• Acoustic similarity between two utterances x_i and x_i

Improved PRF – Graph-based Approach (2/4)

- Graph-based approach
 - only the top N/bottom N utterances are taken as references in PRF

Improved PRF – Graph-based Approach (1/4)

- not necessarily reliable
- considering the acoustic similarity structure of all utterances in the first-pass retrieval results globally using a graph
- Construct a graph for all utterances in the first-pass retrieval results
 - nodes : utterances
 - edge weights: acoustic similarities between utterances

Improved PRF – Graph-based Approach (3/4)

Improved PRF – Graph-based Approach (3/4)

- high relevance scores should have relevance scores increased
- Utterances strongly connected to (similar to) utterances with Utterances strongly connected to (similar to) utterances with low relevance scores should have relevance scores reduced

Improved PRF – Graph-based Approach (4/4)

PageRank and Random Walk (1/2)

• Object ranking by their relations

- Rank web pages for Google search

Relevance scores propagate on the graph

- relevance scores smoothed among strongly connected nodes

Basic Idea

- Objects having high connectivity to other high-score objects are popular (given higher scores)

PageRank and Random Walk (2/2)

- The score of each object is related to the score of its neighbors and its prior score
- Final steady state

• In matrix form

$$\overrightarrow{s} = \alpha P \overrightarrow{s} + (1 - \alpha) \overrightarrow{v} = \alpha P \overrightarrow{s} = \{s(1 + s_2 \alpha) \overrightarrow{v} e^T \overrightarrow{s} \overrightarrow{v} = [v_1, v_2, \cdots]^T \\ = [\alpha P + (1 - \alpha) \overrightarrow{v} e^T] \overrightarrow{s} = P' \overrightarrow{s}, \\ e^T = [1, 1, 1, \cdots, 1], e^T \overrightarrow{s} = \sum_i s_i = 1 \\ - \overrightarrow{s} \text{ is the solution to the eigenvalue problem}$$

References

For Graph and Random walk

- Kurt Bryan¹, Tanya Leise, "The \$25,000,000,000 eigenvector: the linear algebra behind google"
- Amy. N. Langville, Carl.D. Meyer, "Deeper inside PageRank", Internet Mathematics, Vol. 1
- "Improved Spoken Term Detection with Graph-Based Re-Ranking in Feature Space", in ICASSP 2011
- "Open-Vocabulary Retrieval of Spoken Content with Shorter/ Longer Queries Considering Word/Subword-based Acoustic Feature Similarity", Interspeech, 2012

Support Vector Machine (SVM) (1/2)

- Problem definition
 - suppose there are two classes of objects (positive and negative)
 - goal: classify new objects given training examples
- Represent each object as an Ndimensional feature vector
 - o: positive example
 - x: negative example
- Find a hyperplane separating positive and negative examples
- Classify new objects by this hyperplane
 - point A is positive, point B is negative

Support Vector Machine (SVM) (2/2)

- Many hyperplanes can separate positive and negative examples
- Choose the one maximizing the "margin"
 - margin: the minimum distance between the examples and the hyperplane
- Some noise may change the feature vectors of the testing objects
 - large margin may minimize the chance of misclassification

SVM – Feature Mapping

- Original feature vectors (Non-separable)
- Map original feature vectors onto a higher-dimensional space

 $\begin{bmatrix} x^2 \\ y^2 \end{bmatrix} \xrightarrow{B(1,1,-1)} A(1,1,1)$ C(1,1,1) D(1,1,-1)(Can be separated by hyperplane z-xy=0)

- Hard Margin:
 - If some training examples are outliers, separating all positive/ negative examples may not be the best solution
- Soft Margin:
 - Tolerate some non-separable cases (outliers)

 If positive and negative examples are not linearly separable in the original feature vector form, map their feature vectors onto a higher-dimensional space where they may become separable

Improved PRF – SVM(1/3)

Query Q **Final Results** Search Spoken Engine archive Top N "assumed" **Positive examples** time 1:01 time 1:01 relevant Feature time 2:16 time 2:05 Extraction First-pass time 7:22 time 1:45 retrieval results time 2:05 time 2:16 time 7:33 time 1:45 SVM **Negative examples** ti<u>me 8:47</u> time 9:01 irrelevant Feature Re-ranking Extraction Train an SVM for each query

Improved PRF – SVM (2/3)

Representing each utterance by its hypothesized region segmented by HMM states, with feature vectors in each state averaged and concatenated

Improved PRF – SVM (3/3)

Context consistency

- the same term usually have similar context; while quite different context usually implies the terms are different

Feature Extraction

References

Pseudo-relevance Feedback (PRF)

- "Improved Spoken Term Detection by Feature Space Pseudo-Relevance Feedback", Annual Conference of the International Speech Communication Association, 2010

SVM-based Reranking

- "Improved Spoken Term Detection Using Support Vector Machines Based on Lattice Context Consistency", International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, May 2011, pp. 5648-5651.
- "Improved Spoken Term Detection Using Support Vector Machines with Acoustic and Context Features From Pseudo-Relevance Feedback", IEEE Workshop on Automatic Speech Recognition and Understanding, Hawaii, Dec 2011, pp. 383-388.
- "Enhanced Spoken Term Detection Using Support Vector Machines and Weighted Pseudo Examples", IEEE Transactions on Audio, Speech and Language Processing, Vol. 21, No. 6, Jun 2013, pp. 1272-1284

References

SVM

- http://cs229.stanford.edu/materials.html (Lecture notes 3)

- "A Tutorial on Support Vector Machines for Pattern Recognition," Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121-167, 1998.
- Bishop, C.M.
 - http://library.wur.nl/WebQuery/clc?achternaam==Bishop, "Pattern recognition and machine learning." Chapter 7.
- Nello Cristianini and John Shawe-Taylor. "An Introduction to Support Vector Machines: And Other Kernel-Based Learning Methods."

SVM Toolkit

- http://www.csie.ntu.edu.tw/~cjlin/libsvm/ LibSVM
- http://svmlight.joachims.org/ **SVMlight**

Language Modeling Retrieval Approach (Text or Speech)

- Both query Q and spoken document d are represented as language models $\theta_{\rm Q}$ and θ_d (consider unigram only below, may be smoothed (or interpolated) by a background model θ_h)
- Given query Q, rank spoken documents d according to $S_{LM}(Q,d)$ $S_{IM}(Q,d) = -KL(\theta_Q \mid \theta_d)$
 - Inverse of KL divergence (KL distance) between θ_0 and θ_d
 - The documents with document models θ_d similar to query model θ_0 are more likely to be relevant

N(t, Q): Occurrence count or expected term frequency for term t in query Q Query model

Document N(t, d): Occurrence count or expected term model frequency for term t in document d

 $N(t,d) = \sum_{x} E(t,x)$ E(t, x): Expected term frequency for term t in the lattice of utterance x (for speech)

Semantic Retrieval by Query Expansion

Semantic Retrieval by Query Expansion

- Concept matching rather than Literal matching
- Returning utterances/documents semantically related to the query (e.g. Obama)
 - not necessarily containing the query (e.g. including US and White House, but not Obama)
- Expand the query (Obama) with semantically related terms (US and White House)
- Query expansion with language modeling retrieval approach
 - Realized by PRF
 - Find common term distribution in pseudo-relevant documents and use it to construct a new query for 2nd-phase retrieval

Semantic Retrieval by Query Expansion

Semantic Retrieval by Query Expansion

Semantic Retrieval by Document Expansion

- Document expansion
 - Consider a document only has terms US and White House
 - Add some semantically related terms (Obama) into the document model
- Document expansion for language modeling retrieval approach

$$P(t \mid \theta_d') = \alpha P(t \mid \theta_d) + (1 - \alpha) \sum_{i=1}^K P(t \mid T_i) P(T_i \mid d)$$

 $P(T_i|d)$: probability of observing topic T_i given document d $P(t|T_i)$: probability of observing term t given topic T_i

Obtained by latent topic analysis (e.g. PLSA)

 θ_d : original document model

α: interpolation weight

 θ_d : expanded document model

Latent Topic Analysis

- An example: Probabilistic Latent Semantic Analysis (PLSA)
- Creating a set of latent topics between a set of terms and a set of documents

- modeling the relationships by probabilistic models trained with EM algorithm
- Other well-known approaches: Latent Semantic Analysis (LSA), Non-negative Matrix Factorization (NMF), Latent Dirichlet Allocation (LDA)

References

• Semantic Retrieval of Spoken Content

- "Improved Semantic Retrieval of Spoken Content by Language models Enhanced with Acoustic Similarity Graph", IEEE Workshop on Spoken Language Technology, 2012
- T. K. Chia, K. C. Sim, H. Li, and H. T. Ng, "Statistical lattice-based spoken document retrieval," ACM Trans. Inf. Syst., vol. 28, pp. 2:1–2:30, 2010.

Unsupervised Spoken Term Detection (STD) with Spoken Queries

- Search speech by speech no need to know which word is spoken
- No recognition, without annotated data, without knowledge about the language
- Bypass the difficulties of recognition: annotated data for the target domain, OOV words, recognition errors, noise conditions, etc.
 - \bullet relevance score \equiv highest similarity score within a document.

5

5

.

Two major approaches for Unsupervised STD

• Template matching (signal-to-signal matching)

- Dynamic Time Warping (DTW) based, matching the signals directly
- Precise but less compatible to signal variations (by different speakers, different acoustic conditions, etc.) with higher computation requirements

Model-based approach with automatically discovered patterns

- Representing signals by models and matching with these models
- Discovering acoustic patterns and training corresponding models without annotated data

Template Matching

• Dynamic time warping (DTW)

– Find possible speech regions that are similar to the query

57

Template Matching

Segment-based DTW

- divide signals into segments of consecutive similar frames
- segment-by-segment matching rather than frame-by-frame
- Segment-based DTW (much faster but less precise) followed by frame-based DTW (slow but precise)

Hierarchical Agglomerative Clustering (HAC)

Hierarchical Agglomerative Clustering (HAC)

• Initial Condition

- Each frame of signal (i.e. a MFCC vector) is a segment

Merge

- calculate the distance between each pair of adjacent segments
- merge the pair with minimum distance into a single segment
- represent the merged segment by a vector (e.g. the mean)
- repeat

Model-based approach

Unsupervised Pattern Discovery

Unsupervised Discovery

- without annotated data
- all patterns automatically learned from a set of corpora in unknown languages without linguistic knowledge

- Initializing Y_0
 - signal segmentation (based on waveform-level features) followed by segment clustering
- In each iteration i
 - train the best set of HMM models θ_i based on Y_{i-1} and then obtain a new set of labels Y_i based on θ_i

Unsupervised Automatic Discovery of Linguistic Structure

- Hierarchical Linguistic Structure Automatically Discovered
 - Subword-like pattern HMMs

Word-like pattern lexicon

- Word-like pattern language model

Search Based on Model of Acoustic patterns

• Apply recognition-like approach with discovered models

References

Mobile/Video Search

- "In-Car Media Search", IEEE Signal Processing Magazine, July 2011
- "Speech and Multimodal Interaction in Mobile Search", IEEE Signal Processing Magazine, July 2011
- "Reusing Speech Techniques for Video Semantic Indexing", IEEE Signal Processing Magazine, March 2013

Overall

 "Spoken Content Retrieval – Beyond Cascading Speech Recognition with Text Retrieval", IEEE/ACM Transactions on Audio, Speech and Language Processing, June 2015

References

Unsupervised Discovery of Acoustic Patterns

 "Unsupervised Discovery of Linguistic Structure Including Two-level Acoustic Patterns Using Three Cascaded Stages of Iterative Optimization," International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, May 2013.

Unsupervised Spoken Term Detection

- "Integrating Frame-Based and Segment-Based Dynamic Time Warping for Unsupervised Spoken Term Detection with Spoken Queries", International Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic, May 2011, pp. 5652-5655.
- "Toward Unsupervised Model-based Spoken Term Detection with Spoken Queries without Annotated Data," International Conference on Acoustics, Speech and Signal Processing, May 2013
- "Model-based Unsupervised Spoken Term Detection with Spoken Queries", IEEE Transactions on Audio, Speech, and Language Processing, Vol. 21, No. 7, Jul 2013, pp. 1330-1342.

HAC

 Unsupervised Optimal Phoneme Segmentation: Objectives, Algorithm and Comparisons, Yu Qiao, Naoya Shimomura, and Nobuaki Minematsu, ICASSP 2008