PABLO CAMPAZ USUGA NATALIA VILLEGAS AGUIRRE LENGUAJES DE PROGRAMACIÓN

Figura 1. (Descripción en plano del movimiento parabólico)

MOVIMIENTO DE UN PROYECTIL SIN RESISTENCIA DEL AIRE

 V_0 = Velocidad Inicial Θ = ángulo de disparo g = gravedad

De V_0 se sacan las componentes de la velocidad en "x" y en "y" $vx = v_0^* cos(\Theta)$ $vy = v_0^* sin(\Theta) - g^*t$

Ecuaciones para hallar el desplazamiento del proyectil en "x" y para hallar la altura de "y" $x = v_0 * cos(\Theta) * t$ $y = y_0 + v_0 * sin(\Theta) * t - \frac{1}{2} * g * t^2$

MOVIMIENTO DE UN PROYECTIL CON RESISTENCIA DEL AIRE

K= coeficiente de fricción r = radio de la masa m = masa del objeto

 $\alpha = tan^{-1}(vx/vy)$ fuerza de fricción)

(ángulo que forma el vector velocidad y el vector de

 $Vm = \sqrt{vx^2 + vy^2}$

(magnitud de la velocidad)

$$ax = -\frac{k*Vm^2*r^2}{m}*cos(\alpha)$$

(aceleración en x)

$$ay = -\frac{k*Vm^2*r^2}{m}*sin(\alpha)-g$$

(aceleración en y)

$$vxf = v_0 * cos(\Theta) + (ax*t)$$

(velocidad final en componente x)

$$vyf = v_0*sin(\Theta) + (ay*t)$$

(velocidad final en componente y)

$$xf = v_0 * cos(\Theta) * t + \frac{1}{2} * ax * t^2$$

(posición final, distancia en x)

yf= y₀ + v₀*sin(
$$\Theta$$
)*t + $\frac{1}{2}$ * ay * t^2

(posición final, altura en y)

DESCRIPCIÓN DEL DISEÑO DE ORIENTACIÓN OBJETOS

Funciones:

Movimiento parabólico con y sin fricción: Para estas funciones se crean una clase que contiene los parámetros para la descripción del movimiento realizado por la partícula, para ambos movimientos se crean funciones a través de las cuales se adquieren los datos para la simulación del movimiento y se implementan en las ecuaciones anteriormente escritas.

Partícula: Se crea una clase que describe la posición, velocidad y tamaño de la partícula para la simulación del movimiento.

MainWindow: En esta función se diseña la interfaz gráfica creando los espacios en ventana y los elementos funcionales del programa; asociando cada uno de los parámetros de los movimientos y la partícula a la creación del gráfico.

Velocidad incial	200.00	-
Ángulo	1,00	-
Posición en x	20	•
Posicón en y	20	•
Radio particula	15	•
Tiempo inicial	0,50	÷

Figura 2. (Datos movimiento parabolico)

Figura 3. (Movimiento parabolico)

Introduzca Dato	os de Movimiento co	n Friccion
Velocidad incial	220,00	÷
Ángulo	1,00	•
Posición en x	20	*
Posicón en y	20	×
Radio particula	10	-
Tiempo inicial	0,20	÷
friccion	0,80	-
	Aceptar	1

Figura 4. (Datos movimiento parabolico con fricción)

Figura 5. (Movimiento parabolico con fricción)

REFERENCIAS

http://farside.ph.utexas.edu/teaching/336k/Newtonhtml/node29.html http://www.sc.ehu.es/sbweb/fisica/dinamica/stokes2/stokes2.htm http://www.sc.ehu.es/sbweb/fisica3/fluidos/viento/parabolico.html http://hyperphysics.phy-astr.gsu.edu/hbasees/elacol.html