

FAST CMOS OCTAL BUS TRANSCEIVERS (3-STATE)

IDT54/74FCT623T/AT/CT

FEATURES:

- Std., A and C speed grades
- Low input and output leakage ≤1μA (max.)
- CMOS power levels
- · True TTL input and output compatibility
 - -VOH = 3.3V (typ.)
 - -VOL = 0.3V (typ.)
- High drive outputs (-15mA IOH, 64mA IOL)
- Power off disable outputs permit "live insertion"
- Meets or exceeds JEDEC standard 18 specifications
- Product available in Radiation Tolerant and Radiation Enhanced versions
- Military product compliant to MIL-STD-883, Class B and DESC listed (dual marked)
- Available in DIP, SOIC, CERPACK and LCC packages

DESCRIPTION

The FCT623T/AT/CT is a non-inverting octal transceiver with 3-state bus-driving outputs in both the send and receive directions. The B bus outputs are capable of sinking 64mA and sourcing up to 15mA, providing very good capacitive drive characteristics.

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.

One important feature of the FCT623T/AT/CT is the Power Down Disable capability. When the GAB and $\overline{G}BA$ inputs are conditioned to put the device in high-Z state, the I/O ports will maintain high impedance during power supply ramps and when Vcc = 0V. This is a desirable feature in back-plane applications where it may be necessary to perform "live" insertion and removal of cards for on-line maintenance. It is also a benefit in systems with multiple redundancy where one or more redundant cards may be powered-off.

FUNCTIONAL BLOCK DIAGRAM

2563 drw 01

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

NOVEMBER 1995

PIN CONFIGURATIONS

DEFINITION OF FUNCTIONAL TERMS

Pin Names	Description			
GBA, GAB	Enable Inputs			
A1 - A8	A Bus Inputs or 3-State Outputs			
B1 - B8	B Bus Inputs or 3-State Outputs			

2563 tbl 01

2563 tbl 02

FUNCTION TABLE(1)

Enable		
GBA	GAB	Outputs
L	L	B data to A bus
Н	Н	A data to B bus
Н	L	Z
L	Н	B data to A bus A data to B bus

NOTES:

- 1. H = HIGH Voltage Level
- 2. L = LOW Volage Level
- 3. Z = High-Impedance (OFF) state

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Commercial	Military	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	>
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	with Respect to VCC +0.5		V
TA	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Tstg	Storage Temperature	-55 to +125	-65 to +150	°C
Рт	Power Dissipation	0.5	0.5	W
Іоит	DC Output Current	-60 to +120	-60 to +120	mA

NOTES:

2563 lnk 03

- Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.
- 2. Input and Vcc terminals only.
- 3. Outputs and I/O terminals only.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input	VIN = 0V	6	10	рF
	Capacitance				
Соит	Output	Vout = 0V	8	12	рF
	Capacitance				

NOTE:

2563 lnk 04

1. This parameter is measured at characterization but not tested.

6.19 2

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Commercial: TA = 0°C to +70°C, Vcc = $5.0V \pm 5\%$; Military: TA = -55°C to +125°C, Vcc = $5.0V \pm 10\%$

Symbol	Parameter	Test Conditions ⁽¹⁾			Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level				1	V
VIL	Input LOW Level	Guaranteed Logic LOW	Level	_	_	0.8	V
Iгн	Input HIGH Current ⁽⁵⁾	Vcc = Max., VI = 2.7V		_	_	±1	μΑ
lıL	Input LOW Current ⁽⁵⁾	Vcc = Max., Vı = 0.5V		_	_	±1	μΑ
lı .	Input HIGH Current ⁽⁵⁾	Vcc = Max., VI = Vcc (N	flax.)	_	-	±1	μΑ
VIK	Clamp Diode Voltage	Vcc = Min., IN = −18mA		_	-0.7	-1.2	V
los	Short Circuit Current	$Vcc = Max.^{(3)}, Vo = GN$	D	-60	-120	-225	mA
Voн	Output HIGH Voltage (A and B Bus)	Vcc = Min.		2.4	3.3	_	V
		IOH = -15mA COM'L.		2.0	3.0	-	V
Vol	Output LOW Voltage (A Bus)	VCC = Min. IOL = 32mA MIL. (4) VIN = VIH or VIL IOL = 48mA COM'L.		_	0.3	0.5	V
VoL	Output LOW Voltage (B Bus)	VCC = Min. IOL = 48mA MIL. (4) VIN = VIH or VIL IOL = 64mA COM'L.		_	0.3	0.55	V
IOFF	Input/Output Power Off Leakage ⁽⁶⁾			_	_	±1	μΑ
VH	Input Hysteresis	_		_	200	_	mV
Icc	Quiescent Power Supply Current	Vcc = Max., Vin = GND	or VCC	_	0.01	1	μΑ

NOTES:

2563 tbl 05

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second.
- 4. These are maximum IoL values per output, for 8 outputs turned on simultaneously. Total maximum IoL (all outputs) is 512mA for commercial and 384mA for military. Derate IoL for number of outputs exceeding 8 turned on simultaneously.
- 5. The test limit for this parameter is $\pm 5\mu A$ at $T_A = -55^{\circ}C$.
- 6. This parameter is guaranteed but not tested.

6.19 3

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Con	ditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
ΔICC	Quiescent Power Supply Current TTL Inputs HIGH	$VCC = Max.$ $VIN = 3.4V^{(3)}$		-	0.5	2.0	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open GBA = GAB = GND One Input Toggling 50% Duty Cycle	VIN = VCC VIN = GND		0.15	0.25	mA/ MHz
IC	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fi = 10MHz 50% Duty Cycle	VIN = VCC VIN = GND VIN = 3.4V	_	1.5	3.5 4.5	mA
		GBA = GAB = GND One Bit Toggling	VIN = GND				
		Vcc = Max. Outputs Open fi = 2.5MHz	VIN = VCC VIN = GND		3.0	6.0 ⁽⁵⁾	
		50% Duty Cycle GBA = GAB = GND Eight Bits Toggling	VIN = 3.4V VIN = GND	_	5.0	14.0 ⁽⁵⁾	

NOTES:

- 2563 tbl 07 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2 + fiNi)$

Icc = Quiescent Current

 Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)

fi = Input Frequency

Ni = Number of Inputs at fi

All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			54/74FCT623T			54/74FCT623T 54/74FCT623AT					54	4/74FC	T623C	T	
			Co	m'l.	M	il.	Coi	m'l.	М	il.	Co	m'l.	M	lil.	
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH tPHL	Propagation Delay An to Bn	$CL = 50pF$ $RL = 500\Omega$	1.5	7.5	1.5	9.0	1.5	5.5	1.5	6.3	1.5	4.8	1.5	5.4	ns
tPLH tPHL	Propagation Delay Bn to An		1.5	7.5	1.5	9.5	1.5	5.5	1.5	6.3	1.5	4.8	1.5	5.4	ns
tpzh tpzl	Output Enable Time GBA to An		1.5	9.0	1.5	10.0	1.5	7.0	1.5	8.0	1.5	6.1	1.5	6.9	ns
tPHZ tPLZ	Output Disable Time GBA to An		1.5	8.0	1.5	9.0	1.5	6.5	1.5	7.4	1.5	5.6	1.5	6.4	ns
tPZH tPZL	Output Enable Time GAB to Bn		1.5	9.0	1.5	10.5	1.5	7.0	1.5	8.0	1.5	6.1	1.5	6.9	ns
tPHZ tPLZ	Output Disable Time GAB to Bn		1.5	8.0	1.5	9.0	1.5	6.5	1.5	7.4	1.5	5.6	1.5	6.4	ns

NOTES:

2563 tbl 07

- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays

6.19

TEST CIRCUITS AND WAVEFORMS TEST CIRCUITS FOR ALL OUTPUTS

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
Lilable Low	
All Other Tests	Open

DEFINITIONS:

2563 lnk 09

5

CL= Load capacitance: includes jig and probe capacitance.

T = Termination resistance: should be equal to Zou⊤ of the Pulse Generator.

SET-UP, HOLD AND RELEASE TIMES

PULSE WIDTH

PROPAGATION DELAY

OPPOSITE PHASE

INPUT TRANSITION

SAME PHASE INPUT TRANSITION OUTPUT OUTPUT TPLH TPHL TPHL 3V 1.5V 0V VOH 1.5V VOL 3V

ENABLE AND DISABLE TIMES

NOTES:

1.5V

0V

2563 drw 08

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
- 2. Pulse Generator for All Pulses: Rate ≤ 1.0MHz; tr ≤ 2.5ns; tr ≤ 2.5ns

6.19

ORDERING INFORMATION

