

El saneamiento de cuerpos de agua: problemática, evaluación y estrategias

Anne M. Hansen DAngelo A. Sandoval Chacón

Noviembre 23-26, 2022

Carbono reactivo en cuerpos de agua

Carbono reactivo en cuerpos de agua

Carbono reactivo en cuerpos de agua

Situación de los cuerpos de agua en México

Entre 2012-2021 se monitorearon 334 ± 78 cuerpos de agua (CONAGUA, 2021)

CONAGUA (2021) https://www.gob.mx/conagua/articulos/calidad-del-agua-en-mexico

+70% sobrepasa el límite de P para agua en estado eutrófico (P_T>0.08 mg L⁻¹)

Salas y Martino (2001) https://iris.paho.org/bitstream/handle/10665.2/55330/OPSCEPISPUB01_spa.pdf?sequence=1&isAllowed=y

+50% se clasifican como (fuertemente) contaminados (DQO>40 mg/L) conagua 2021 up cit

Situación de los cuerpos de agua en México

Saneamiento de cuerpos de agua

Conjunto de acciones que tienen como objetivo alcanzar niveles de salud ambiental/equilibrio ecológico

Ley General del Equilibrio Ecológico y la Protección al Ambiente (Art.3, inc X)

Criterios Ecológicos de Calidad del Agua (PROFECO, 1989)

Límites máximos para la protección de la vida acuática: oxígeno disuelto (OD) de 5 a 8 mg L⁻¹ y P-PO4: 0.025 mg L⁻¹

Objetivos:

- Saturación de OD mediante suministro de O₂(g)
- Control de la carga interna (P_T < 0.04 mg L⁻¹)

Saneamiento de cuerpos de agua

Inactivación de P con adsorbente selectivo

Oxigenación en el fondo

Control de carga externa

Dilución de nutrientes

Cobertura de sedimentos

Dragado

Ultrasonido

Biorremediación

• • •

Saneamiento de cuerpos de agua

Oxigenación hipolimnética (HOS)

- $CH_2O + O_2 \rightarrow CO_2 + H_2O$
- Fe(OOH) \approx P (Fe:P >2) (Gächter y Müller, 2003)

Adsorbente selectivo de P (PHOS)

>La³⁺ + PO₄³⁻ → >LaPO₄ (100:1 w/w)

Phoslock, 2021

Zona de estudio

Presa Valle de Bravo, Estado de México

Área: 18 km²

Capacidad: 394 Mm³

6 m³/s suministro de agua para el VMX (Sistema Cutzamala)

Estado: Eutrófico (CONAGUA, 2021)

Balance de masas

Emisión de gases

(agua y biota)

Acumulación

Carga interna

Sedimentación (Alóctono y autóctono) Mineralización agua y sedimento

= f(Eh, pH, microorganismos)

Balance de masas

$$C_{\text{fin}} = C_{\text{agua}} + C_{\text{CE}} + C_{\text{CI}} - C_{\text{sed}} + C_{(\text{min-sed})} + C_{(\text{min-agua})} - C_{\text{emi}} - C_{\text{ext}}$$

Dalance de mas

C-DQO promedio en afluentes (estaciones hidrométricas)

Modelación de resultados de variaciones isotópicas (δ^{13} C)

Datación y COT en núcleos de sedimento (CONAGUA-IMTA, 2011)

[C_{afluentes}] - [C_{agua}] * extracción (~6 m³/s) - C_{biomasa extraída}

Datación y COT en el perfil de sedimento, respirometría

Situación actual: Aplicación de fórmula (estado estacionario)

balance de masas			
C _{agua}	C-DQO promedio para volumen promedio de agua (300 Mm³)		

 $[C_{aqua}]$ * extracción (~6 m³/s)

Posterior: proporcional a la mineralización

 C_{CE}

C_{min-agua}

Balance de masas

Evento de aplicación de gases y nutrientes

Escenarios de saneamiento

Escenario	Descripción	OD final (mg L ⁻¹)	GCEI (t año ⁻¹)
Situación actual	Estado estacionario	-5.0	2,573
HOS	Aplicación de 2 190 t año ⁻¹ de OD	8.0	3,890

Escenario Descripción

PHOS

HOS+PHOS

Aplicación de adsorbente de P para

reducir C_{CI}

Aplicación de 2 190 t año⁻¹ de OD y adsorbente de P para reducir C_{CI} 1.0

8.0

1,828

Calidad del agua en la presa Endhó: Hacia una solución compartida

Conclusiones

- Un número cada vez mayor de lagos y embalses que sufren eutroficación y deterioro en calidad del agua
- Es urgente dimensionar y solucionar este problema
- Las tecnologías adecuadas dependen de cada situación y no existe solución mágica
- Se deben de considerar las cargas contaminantes, las eficiencias, los tiempos de obtener resultados y los costos, que permitan mejorar de forma sostenible la calidad de los cuerpos de agua

Conclusiones

- Ese están agotando las reservas de fósforo en el mundo
- Sólo se debe inactivar el fósforo que se libera del sedimento
- Se debe combinar con métodos de separación de fósforo del agua, que permiten su reúso
- ¡Queremos que el fósforo fertilice a los cultivos y NO a los cuerpos de agua!

VII Congreso Nacional de Riego, Drenaje y Biosistemas

COMEII 2022 | Teziutlán, Puebla, México

Agradecimientos:

Vanessa G. Moreno Ayala Suhaila E. Díaz Valencia Nadia V. Martínez Villegas Denise Soares Freitas Roberto Romero Pérez Abel A. Ruiz Castro

