Algèbre 3 TD 6 Déterminants

Licence 2 MAE 2020-2021 Université Paris Descartes Marc Briant

Dans tout ce TD, $(\mathbb{K}, +, .)$ désigne un corps commutatif.

Exercice 1 : Premières manipulations

Pour $x \in \mathbb{R}$ nous définissons les déterminants suivants

$$P = \left| \begin{array}{ccc|c} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{array} \right| \quad \text{et} \quad Q = \left| \begin{array}{ccc|c} 1 & x & x^2 & x^4 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ -7 & 2 & -1 & 3 \end{array} \right|.$$

Sans calculer les déterminants montrer que

- 1) P est une fonction polynôme en x divisible par x+3
- 2) Q est une fonction polynôme en x divisible par x-1

Exercice 2: Du calcul pur et simple

Pour $(a, b, c) \in \mathbb{K}^3$, calculer les déterminants suivant

1)
$$D_1 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix}$$
 2) $D_2 = \begin{vmatrix} a & a & b \\ a & b & a \\ b & a & a \end{vmatrix}$
3) $D_3 = \begin{vmatrix} a & c & c & b \\ c & a & b & c \\ c & b & a & c \\ b & c & c & a \end{vmatrix}$ 4) $D_4 = \begin{vmatrix} a^2 & (a+1)^2 & (a+2)^2 \\ (a+1)^2 & (a+2)^2 & (a+3)^2 \\ (a+2)^2 & (a+3)^2 & (a+4)^2 \end{vmatrix}$

Exercice 3 : Déterminants et matrices par blocs

Soit A, B, C, $D \in \mathcal{M}_n(\mathbb{R})$. Nous définissons les matrices par blocs suivantes

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 et $N = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$.

- 1) Calculer le produit $\begin{pmatrix} I_n & B \\ 0 & D \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & I_n \end{pmatrix}$. En déduire que $\det(N) = \det(A) \cdot \det(D)$.
- 2) [*] On suppose que les matrices C et D commutent et que D est inversible. Montrer que $\det(M) = \det(AD BC)$.

Exercice 4 : Des calculs plein de récurrence

Dans chacun des cas suivants les déterminants sont de taille n. Les calculer pour tout entier $n \ge 1$.

1) Soit
$$a \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$$
, $D_n = \begin{vmatrix} 2a & a & 0 \\ a & \ddots & \ddots \\ & \ddots & \ddots & a \\ 0 & a & 2a \end{vmatrix}$.

2) [*]Vandermonde. Soient
$$(a_1, ..., a_n) \in \mathbb{K}^n$$
, $V_n(a_1, ..., a_n) = \begin{vmatrix} 1 & 1 & ... & 1 \\ a_1 & a_2 & ... & a_n \\ a_1^2 & a_2^2 & ... & a_n^2 \\ \vdots & \vdots & \vdots & \vdots \\ a_1^{n-1} & a_2^{n-1} & ... & a_n^{n-1} \end{vmatrix}$

Exercice 5 : Motivons l'étude des polynômes et des valeurs propres

Soient E un \mathbb{R} -espace vectoriel de dimension n avec $\mathcal{B} = (e_1, e_2, e_3)$ une base de E. On définit $f \in L(E)$ par sa matrice relativement à la base \mathcal{B} :

1)
$$A = M_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 7 & -6 \\ -1 & 4 & 0 \\ 0 & 2 & -2 \end{pmatrix}$$
 2) $A = M_{\mathcal{B}}(f) = \begin{pmatrix} 2 & 2 & 2 \\ 4 & 4 & 4 \\ 5 & 5 & 5 \end{pmatrix}$.

Dans chacun des cas ci-dessus répondre au trois questions ci-dessus.

- a) Pour quelles valeurs de $\lambda \in \mathbb{K}$, a-t-on $\det(A \lambda I_3) = 0$? Nous les noterons λ_i .
- b) En étudiant les Ker $(f \lambda_i \mathrm{Id}_E)$ déterminer une base \mathcal{B}' de E telle que $M_{\mathcal{B}'}(f)$ soit diagonale.

Exercice 6 : Du déterminant caché

Soit E un \mathbb{K} -ev de dimension finie.

- 1. Montrer que s'il existe u et v dans L(E) inversibles tels que $u \circ v + v \circ u = 0$ alors dim (E) est paire.
- 2. Soient $u \in GL(E)$ et $v \in L(E)$. Montrer que si $v \circ u \circ v = u$ alors v est aussi inversible.