

Master 1 SME

Rapport TP de base BE Capteur de température I2C : PMODTMP2

Réalisé par :

■ MEKHATRI Mehdi, groupe 17

Encadré par :

Thierry PERISSE

Année universitaire : 2021/2022

Schéma de câblage :

101620110

Analyse des données provenant du capteur via le picoscope :

1. Envoi de l'adresse du capteur de température 0x4B et réception de l'acknowledge OK

1ère trame: Adresse du capteur 0x4B + ACKNOWLEDGE OK

2ème **trame**: Adresse I2C de l'écran LCD 0x3E

Image zoomée de l'adresse du capteur + ACKNOWLEDGE OK sur le picoscope :

Image zoomée de l'adresse de l'écran LCD (0x3E)

2. Lecture de la valeur de température depuis le capteur PMODTMP2, analyse de la trame I2C

La trame est composée et structurée comme suit :

- A. Envoi de l'adresse 0x4B [STM32]
- B. Réception de l'ACK OK [PMODTMP2]
- C. Envoi de l'adresse 0x00 pour recevoir les données de température [STM32]
- D. Réception de deux octets MSB+LSB de la valeur de température [PMODTMP2]

Lecture de la valeur de température à l'intérieur de la salle TP :

Donnée reçue du capteur :

MSB: 0x0BLSB: 0xD0

Conversion en décimale : 0x0BD0 = 3024

Conversion en température :

Sachant que la résolution du capteur est de 0.0078 °C (Voir DataSheet ADT7420) https://www.analog.com/en/products/adt7420.html?ga=2.123510027.1494286685.1643971891#product-overview

Donc : $T = 3024 \times 0.0078 = 23.58$ °C

Liens utiles:

https://www.digikey.be/en/maker/projects/getting-started-with-stm32-i2c-example/ba8c2bfef2024654b5dd10012425fa23

https://www.mouser.fr/datasheet/2/609/ADT7420-878995.pdf

https://digilent.com/reference/pmod/pmodtmp2/reference-manual