代数学基础习题课

1.	集合的大小	1
2.	关系的定义与理解	2
3.	求和号 ∑ 的使用	2
4.	群与环的验证	3
5.	算术基本定理	6
6.	线性不定方程与同余方程	8
7.	整数互素	8
8.	整数的同余性质	9
9.	欧拉函数	10
10.	多项式的欧式算法	11
11.	零点与重数	11
12.	群中元素的阶	12
13.	有限群元素之积	13
14.	有限生成	14
15.	置换群和交错群	14
16.	原根	16
17.	勒让德符号的计算	17
18.	同余方程解的个数	18
19.	有限域上多项式	18
20.	整系数多项式	19
21.	勘误	22

1. 集合的大小

集合包括有限集和无限集, 无限集又包括可数有限集和不可数有限集. 凡是能与 \mathbb{Z} 能建立一一对应的称为可数集. 例如 $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}^n$ 都是可数集合, 而 $\mathbb{R}, \mathbb{C}, \mathbb{R}^n$ 都是不可数集合. 集合的基数, 是用来描述集合的大小的, 一般记为 |A| 或 $\mathrm{card}(A)$. 利用反证法可以证明集合的幂集总是比自身大, 特别地, $|P(\mathbb{Z})| = |\mathbb{R}|$. 某些书上可数集的定义会包含有限集.

1.5. 注意集合大小的概念, 无限不等于可数.

由于 X 是无限集, $Y \subseteq X$ 有限, 因此 X - Y 无限. 设 $Y = \{a_1, \ldots, a_k\}$. 取 X - Y 中一串两两不同的元素 $a_{k+1}, \ldots, a_n, \ldots$ (可以用数学归纳法), 记 $A = \{a_{k+1}, \ldots, a_n, \ldots\}$, 令

$$\varphi: X - Y \to X$$

$$x \mapsto \begin{cases} a_{n-k}, & \text{ \'{x} } x = a_n \in A; \\ x, & \text{ \'{x} } x \notin A. \end{cases}$$

容易验证 φ 是双射.

2. 关系的定义与理解

什么是关系? 设 A 是一个集合, $R \subseteq A \times A$ 称为 A 上面的一个关系. 一个关系 总是定义在一个集合上, 就像一个映射总是定义在两个集合之间. 因而 \geq 并不是一个关系, 如同 $f: x \mapsto x^2$ 并不是一个映射. 关系的定义并不要求有什么实际的意义, 任意一个 $A \times A$ 的子集, 包括空集, 都是其上的一个关系. 例子:

- A 为任意集合, R = Ø 满足对称性, 传递性, 但不满足自反性.
- $A = \mathbb{R}, R = \{(a, b) \mid a, b \in A, a > b\}$, 满足传递性.
- $A = \mathbb{R}, R = \{(a, b) \mid a, b \in A, a \ge b\}$, 满足自反性, 传递性.
- $A = \mathbb{R}, R = \{(a, b) \mid a, b \in A, a \neq b\},$ 满足对称性.
- $A = \{\mathbb{R}^2 \text{ 中所有直线 }\}, R = \{(a,b) \in A \mid a//b\}, 满足对称性.$
- $A = \{\mathbb{R}^2 \text{ 中所有直线 }\}, R = \{(a,b) \in A \mid a \text{ 和 } b \text{ 有公共点 }\}, 满足自反性, 对称性.$
- $A = \{ \text{ 所有2维实向量 } \}, R = \{ (a,b) \in A \mid a//b \}, 满足自反性, 对称性.$
- $A = \mathbb{Z}_{>0}, R = \{(a, b) \in A \mid a \ \text{整除 } b\}, 满足自反性, 传递性.$
- **1.7.** 设这个关系为 \sim . 对任意 $a \in A$, 存在 $b \in A$, 使得 $a \sim b$. 由对称性 $b \sim a$, 由传递性 $a \sim a$. 因此 \sim 满足自反性, \sim 是等价关系.

3. 求和号 Σ 的使用

注意 \sum 的指标是没有实际意义的, 也就是说, 指标用 i 还是 j 表示本质上都是一样的.

1.11(4).

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (i+j)^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} (i^{2} + 2ij + j^{2})$$

$$= \sum_{i=1}^{n} i^{2} \sum_{j=1}^{n} 1 + 2 \sum_{i=1}^{n} i \sum_{j=1}^{n} j + \sum_{i=1}^{n} 1 \sum_{j=1}^{n} j^{2}$$

$$= 2n \times \frac{n(n+1)(2n+1)}{6} + 2(\frac{n(n+1)}{2})^{2}$$

$$= \frac{n^{2}(n+1)(2n+1)}{3} + \frac{n^{2}(n+1)^{2}}{2} = \frac{n^{2}(n+1)(7n+5)}{6}$$

或者

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (i+j)^2 = \sum_{k=1}^{n} (k-1)k^2 + \sum_{k=n+1}^{2n} (2n+1-k)k^2$$

$$= \sum_{k=1}^{n} (k-1-2n-1+k)k^2 + \sum_{k=1}^{2n} (2n+1-k)k^2$$

$$= 2\sum_{k=1}^{n} k^3 - 2(n+1)\sum_{k=1}^{n} k^2 + (2n+1)\sum_{k=1}^{2n} k^2 - \sum_{k=1}^{2n} k^3$$

$$= \frac{n^2(n+1)^2}{2} - \frac{n(n+1)^2(2n+1)}{3} + \frac{n(2n+1)^2(4n+1)}{3} - n^2(2n+1)^2$$

$$= \frac{7}{6}n^4 + 2n^3 + \frac{5}{6}n^2$$

2.1. 原题本意是要证明 2×2 的矩阵乘法满足结合律.

设 $A = (a_{ij})_{n \times m}, B = (b_{ij})_{m \times s}, C = (c_{ij})_{s \times t}$ 为3个矩阵,设 $AB = (d_{ij})_{n \times s},$ $BC = (e_{ij})_{m \times t}.$ 则由矩阵乘法,

$$d_{ik} = \sum_{j=1}^{m} a_{ij} b_{jk}, \quad e_{jl} = \sum_{k=1}^{s} b_{jk} c_{kl},$$

$$(AB)C \ \text{的} \ (i,l) \ \text{分量} = \sum_{k=1}^{s} d_{ik} c_{kl} = \sum_{k=1}^{s} \sum_{j=1}^{m} a_{ij} b_{jk} c_{kl}$$

$$= \sum_{j=1}^{m} \sum_{k=1}^{s} a_{ij} b_{jk} c_{kl} = \sum_{j=1}^{m} a_{ij} e_{jl} = A(BC) \ \text{的} \ (i,l) \ \text{分量}.$$

因此, 矩阵乘法满足结合律.

4. 群与环的验证

证明一个集合上的二元运算构成群,需要验证的一般只有3条.但是常常我们需要首先验证运算的封闭性,也就是验证它确实是一个二元运算.

由于大量已知群的存在, 我们常常可以把问题化为证明其是另一个群的子群, 这样可以节省大量的时间.

环的情形也与群类似.

2.7. (1) 首先容易看出 $X \triangle Y = Y \triangle X$.

$$(X \triangle Y) \triangle Z = (((X \cap Y^c) \cup (X^c \cap Y)) \cap Z^c) \cup (((X \cap Y^c) \cup (X^c \cap Y))^c \cap Z)$$
$$= (X \cap Y^c \cap Z^c) \cup (X^c \cap Y \cap Z^c) \cup (((X^c \cup Y) \cap (X \cup Y^c)) \cap Z)$$
$$= (X \cap Y^c \cap Z^c) \cup (X^c \cap Y \cap Z^c) \cup (X^c \cap Y^c \cap Z) \cup (X \cap Y \cap Z),$$

因此

$$\begin{split} X\triangle(Y\triangle Z) &= (Z\triangle Y)\triangle X \\ &= (Z\cap Y^c\cap X^c) \cup (Z^c\cap Y\cap X^c) \cup (Z^c\cap Y^c\cap X) \cup (Z\cap Y\cap X) \\ &= (X\triangle Y)\triangle Z. \end{split}$$

结合律满足.

(2)

$$\emptyset \triangle X = X \triangle \emptyset = (X \cap A) \cup (X^c \cap \emptyset) = X.$$

因此 ∅ 是幺元.

(3)

$$X \triangle X = (X \cap X^c) \cup (X^c \cap X) = \emptyset.$$

因此任意元素有逆.

因此命题得证.

2.9. (1) 设
$$y_i(x) = \frac{a_i x + b_i}{c_i x + d_i}, i = 1, 2,$$
 则

$$(y_1 \circ y_2)(x) = \frac{a_1 y_2(x) + b_1}{c_1 y_2(x) + d_1}$$

$$= \frac{a_1 (a_2 x + b_2) + b_1 (c_2 x + d_2)}{c_1 (a_2 x + b_2) + d_1 (c_2 x + d_2)}$$

$$= \frac{(a_1 a_2 + b_1 c_2) x + a_1 b_2 + b_1 d_2}{(c_1 a_2 + d_1 c_2) x + c_1 b_2 + d_1 d_2}$$

 $(a_1a_2+b_1c_2)(c_1b_2+d_1d_2)-(a_1b_2+b_1d_2)(c_1a_2+d_1c_2)=(a_1d_1-b_1c_1)(a_2d_2-b_2c_2)\neq 0,$ 因此该集合关于函数复合封闭.

显然函数复合满足结合律, 恒等映射 id(x) = x 是幺元.

$$(y \circ z)(x) = (z \circ y)(x) = x.$$

因此 z 是 y 的逆.

故该集合构成群.

(2) 令 G 为这样的函数全体,

$$H = \{ A \in \operatorname{GL}_2(\mathbb{R}) \mid \det A = \pm 1 \}.$$

则容易看出对任意 $A, B \in H$, $\det(AB^{-1}) = \pm 1$, $AB^{-1} \in H$, 故 $H \leq \operatorname{GL}_2(\mathbb{R})$. 令

$$\varphi: H \to G$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto y, \ y(x) = \frac{ax+b}{cx+d}.$$

对任意 $y \in G, y(x) = \frac{ax+b}{cx+d}$, 令 $\alpha = \sqrt{|ad-bc|}$, $A = \alpha^{-1}\binom{a\ b}{c\ d}$, 则 $A \in H$ 且 $\varphi(A) = y$. 因此 φ 是满射. φ 显然是单射, 从而是一一对应.

如果 $\binom{x'}{y'} = A\binom{x}{y}$, 则 $x'/y' = \varphi(A)(x/y)$. 因此设 $\binom{x_1}{y_1} = A\binom{x}{1}$, $\binom{x_2}{y_2} = B\binom{x_1}{y_1}$, 则 $\varphi(A)(x) = x_1/y_1$,

$$\varphi(B)(\varphi(A)(x)) = \varphi(B)(x_1/y_1) = x_2/y_2 = \varphi(BA)(x),$$

因此 φ 保持两边的二元运算. 由于 H 是群, 因此 G 是群.

2.4. (3) 由于

$$\left(\begin{smallmatrix} a_1 & b_1 \\ 0 & c_1 \end{smallmatrix} \right) \left(\begin{smallmatrix} a_2 & b_2 \\ 0 & c_2 \end{smallmatrix} \right)^{-1} = \left(\begin{smallmatrix} a_1 a_2^{-1} & (a_2 b_1 - a_1 b_2) a_2^{-1} c_2^{-1} \\ 0 & c_1 c_2^{-1} \end{smallmatrix} \right),$$

因此该集合是 $GL_2(\mathbb{R})$ 的子群.

2.5. 设 $x \in \mu_n, y \in \mu_m, 则$

$$(xy^{-1})^{mn} = (x^n)^m (y^m)^{-n} = 1^{m-n} = 1.$$

因此 $xy^{-1} \in \mu_{mn}$, $\bigcup_{n \geq 1} \mu_n$ 是 \mathbb{C}^{\times} 的子群.

2.10. 设 $a_1, b_1, a_2, b_2 \in \mathbb{Z}$, 则

$$(a_1 + b_1\sqrt{2}) - (a_2 + b_2\sqrt{2}) = (a_1 - a_2) + (b_1 - b_2)\sqrt{2} \in \mathbb{Z}(\sqrt{2}),$$

因此 $\mathbb{Z}(\sqrt{2})$ 是 \mathbb{R} 的加法子群.

又因为 $1 \in \mathbb{Z}(\sqrt{2})$,

$$(a_1 + b_1\sqrt{2})(a_2 + b_2\sqrt{2}) = (a_1a_2 + 2b_1b_2) + (a_1b_2 + a_2b_1)\sqrt{2} \in \mathbb{Z}(\sqrt{2}),$$

因此 $\mathbb{Z}(\sqrt{2})$ 是 \mathbb{R} 的子环.

注: 将 $\sqrt{2}$ 改成 \sqrt{d} 也构成环, 其中 $d \in \mathbb{Z}$.

2.8. 设 $a_1, b_1, a_2, b_2 \in \mathbb{Q}$, 则

$$(a_1 + b_1\sqrt{2}) - (a_2 + b_2\sqrt{2}) = (a_1 - a_2) + (b_1 - b_2)\sqrt{2} \in \mathbb{Q}(\sqrt{2}),$$

因此 $\mathbb{Q}(\sqrt{2})$ 是 \mathbb{R} 的加法子群.

又因为 $1 \in \mathbb{Q}(\sqrt{2})$, 且若 $a_2 + b_2\sqrt{2} \neq 0$.

$$\frac{a_1+b_1\sqrt{2}}{a_2+b_2\sqrt{2}} = \frac{(a_1a_2-2b_1b_2)+(-a_1b_2+a_2b_1)\sqrt{2}}{a_2^2-2b_2^2} \in \mathbb{Q}(\sqrt{2}),$$

因此 $\mathbb{Q}(\sqrt{2})$ 是 \mathbb{R} 的子域.

注: 将 $\sqrt{2}$ 改成 \sqrt{d} 也构成域, 其中 $d \in \mathbb{Q}$

2.17. (1)
$$\Leftrightarrow R = \{\frac{x+y\sqrt{-3}}{2} \mid x, y \in \mathbb{Z}, x+y \notin \mathbb{Z}\}, \mathbb{M}$$

$$\frac{x_1 + y_1\sqrt{-3}}{2} - \frac{x_2 + y_2\sqrt{-3}}{2} = \frac{(x_1 - x_2) + (y_1 - y_2)\sqrt{-3}}{2},$$

且 $(x_1-x_2)+(y_1-y_2)=(x_1+y_1)-(x_2+y_2)$ 是偶数. 因此 R 是 $\mathbb C$ 的加法子群. $1 = \frac{2+0\sqrt{-3}}{2} \in G$.

$$\frac{x_1 + y_1\sqrt{-3}}{2} \cdot \frac{x_2 + y_2\sqrt{-3}}{2} = \frac{x_1x_2 - 3y_1y_2}{4} + \frac{x_1y_2 + x_2y_1}{4}\sqrt{-3},$$

而

$$x_1x_2-3y_1y_2=(x_1+y_1)x_2-y_1(x_2+y_2)-2y_1y_2,$$

$$x_1y_2+x_2y_1=(x_1+y_1)y_2-y_1(x_2+y_2)$$
都是偶数, 因此 $\frac{x_1x_2-3y_1y_2}{2},\frac{x_1y_2+x_2y_1}{2}\in\mathbb{Z}.$

又

$$\frac{x_1x_2 - 3y_1y_2}{4} + \frac{x_1y_2 + x_2y_1}{4} = \frac{x_1 + y_1}{2} \cdot \frac{x_2 + y_2}{2} - y_1y_2 \in \mathbb{Z},$$

因此 $\frac{x_1x_2-3y_1y_2}{4}+\frac{x_1y_2+x_2y_1}{4}\sqrt{-3}\in R$. 从而 R 是 $\mathbb C$ 的子环. (2) 令该集合为 S, 其余略.

- (3) 令

$$\varphi: R \to S, \varphi(\frac{x + y\sqrt{-3}}{2}) = \frac{1}{2} \begin{pmatrix} x_1 & y_1 \\ -3y_1 & x_1 \end{pmatrix}.$$

验证单射/满射/同态即可.

实际上, $R=\mathbb{Z}+\mathbb{Z}\alpha=\mathbb{Z}[\alpha], \alpha=\frac{1+\sqrt{-3}}{2}$. 同理, 对于任意无平方因子非零整数 $d \equiv 1 \mod 4$, 均有环 $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ (习题).

2.18. 记该集合为 R, 容易看出这个集合关于加法构成阿贝尔群. 又因为 $1 \in R$, 且

$$\sum_{k=m_1}^{n_1} (a_k \cos kx + b_k \sin lx) \sum_{l=m_2}^{n_2} (a_l' \cos lx + b_l' \sin lx)$$

$$= \sum_{k=m_1}^{n_1} \sum_{l=m_2}^{n_2} (a_k a_l' \cos kx \cos lx + a_k b_l' \cos kx \sin lx)$$

$$+b_k a_l' \sin kx \cos lx + b_k b_l' \sin kx \sin lx$$
.

由于

$$\cos kx \cos lx = (\cos(k+l)x + \cos(k-l)x)/2$$
$$\cos kx \sin lx = (\sin(k+l)x - \sin(k-l)x)/2$$
$$\sin kx \sin lx = (-\cos(k+l)x + \cos(k-l)x)/2$$

因此该式最终可以化成 $\sin tx$ 和 $\cos tx$ 的线性组合, 也就是说, R 关于乘法封闭, 构成实函数整体环的子环.

- **2.7'.** 设 A 是集合, 则 $(P(A), \triangle, \cap)$ 是环. 若 A 为 n 元有限集, 则该环同构于 \mathbb{F}_2^n . 留作练习.
- 2.4. 判断一个命题是错的, 只需要举出反例即可.
 - (1) 由于 $\binom{1\ 0}{0\ 2}\binom{0\ 1}{1\ 0} = \binom{0\ 1}{2\ 0}$, 因此该集合关于乘法不封闭, 不构成群.
 - (2) 由于 $\binom{0.0}{0.0}\binom{0.0}{1.0} = \binom{1.0}{0.0}$, 因此该集合关于乘法不封闭, 不构成群.
- (3) 由于上三角方阵关于乘法封闭, 可逆矩阵的乘积还是可逆矩阵, 因此该集合关于乘法和矩阵的逆封闭, 因此构成 GL₂(ℝ) 的子群.
 - (4) 由于 (20) 在这个集合中没有逆, 因此该集合不构成群.
- **2.2.** 设 $f: \mathbb{R}^2 \to \mathbb{R}^2$ 为平面上的保距映射. 若 f(x) = f(y), 则 d(x,y) = d(f(x), f(y)) = 0, x = y, 因此 f 是单射. 这里 d(x,y) 表示 x 与 y 的距离.

任取平面上两个不同的点 A 和 B, 则 $f(A) \neq f(B)$. 对于平面上任意一点 D,

$$d(D, f(A)) + d(D, f(B)) \ge d(f(A), f(B)) = d(A, B) \ge |d(D, f(A)) - d(D, f(B))|,$$

因此以 A 和 B为圆心,d(D, f(A)) 和 d(D, f(B)) 为半径的两个圆相交于 $E = E_1, E_2$ 或相切于 E. 这些切点或交点的像 E' 满足 d(E', f(A)) = d(E, A) = d(D, f(A)), d(E', f(B)) = d(D, f(B)), 因此要么 E' = D, 要么 E' 为 D 关于 AB 的对称点 D', 总之 $f(\{E_1, E_2\}) \subset \{D, D'\}$ 或 f(E) = D. 若是第一种情形,由于 f 是单射,因此 $f(E_1)$ 或 $f(E_2) = D$. 故 f 是满射.显然保距映射的复合还是保距映射.由于映射满足结合律,因此保距映射也满足结合律.单位元为恒等映射.保距映射 f 的逆映射 f^{-1} 也保距.因此所有保距映射在复合意义下构成群.

5. 算术基本定理

算术基本定理的存在保证了利用素数分解来计算诸如公因子、公倍数、因子的 相关计算.

3.4. (1) 设
$$a = \prod_{p} p^{v_p(a)}, b = \prod_{p} p^{v_p(b)},$$
則
$$v_p((a^n, b^n)) = \min\{nv_p(a), nv_p(b)\} = n\min\{v_p(a), v_p(b)\}$$
$$= nv_p((a, b)) = v_p((a, b)^n),$$

因此 $(a^n, b^n) = (a, b)^n$.

$$c^n = ab = \prod_{p \in S} p^{v_p(a)} \prod_{q \in T} q^{v_q(b)},$$

因此 $v_p(a)$ 和 $v_q(b)$ 是 n 的倍数, 故 a,b 都是正整数的 n 次方幂. 设 $a=s^n,b=t^n,s,t>0$, 则 (s,t)=1,st=c,

$$a = s^n = (a, c)^n, \quad b = t^n = (b, c)^n.$$

一般地,若 a_1,\ldots,a_k 两两互素且 $\prod\limits_{j=1}^k a_j=c^n$,则对任意 $1\leq i\leq k,\ a_i$ 与 $\prod\limits_{j\neq i} a_j$ 互素,因此 a_i 是 n 次方幂.

- **3.12.** (1) 设 $n = \prod_{p} p^{v_p(n)}$, 则 $\sigma_0(n) = \prod_{p} (1 + v_p(n))$. 因此 n 是完全平方数等价于 $v_p(n)$ 全是偶数, 即 $\sigma_0(n)$ 是奇数.
 - (2) 对任意素数 p, 我们考虑 $f(v) = \frac{\sqrt{p^v}}{v+1}$ 的最小值, 其中 v 是自然数. 由于

$$f(v) \le f(v-1) \iff \frac{\sqrt{p}^v}{v+1} \le \frac{\sqrt{p}^{v-1}}{v} \iff v \le \frac{1}{\sqrt{p}-1},$$

$$f(v) \le f(v+1) \iff \frac{1}{\sqrt{p}-1} \le v+1,$$

因此

$$\min_{v \in \mathbb{N}} f(v) = f(\left[\frac{1}{\sqrt{p} - 1}\right]) = \begin{cases} f(2) = \frac{2}{3}, & \text{ if } p = 2; \\ f(1) = \frac{\sqrt{3}}{2}, & \text{ if } p = 3; \\ f(0) = 1, & \text{ if } p \ge 5, \end{cases}$$

这里 [] 表示取整. 故

$$\frac{\sqrt{n}}{\sigma_0(n)} = \prod_p \frac{\sqrt{p^{v_p(n)}}}{v_p(n) + 1} \ge \frac{2}{3} \times \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}},$$
$$\sigma_0(n) \le \sqrt{3n} \le 2\sqrt{n} + 1.$$

实际上, 我们用这种方法得到了 $\frac{\sqrt{n}}{\sigma_0(n)}$ 的最佳估计.

习题: 尝试给出 $\frac{n^{1/3}}{\sigma_0(n)}$ 的最佳估计.

(3)

$$\begin{split} \prod_{0 < d \mid n} d &= \prod_{p} (\prod_{i=0}^{v_{p}(n)} p^{i})^{\frac{\sigma_{0}(n)}{v_{p}(n)+1}} \\ &= \prod_{p} p^{\frac{\sigma_{0}(n)v_{p}(n)}{2}} \\ &= n^{\frac{\sigma_{0}(n)}{2}}. \end{split}$$

这道题也有其它解法.

$$\begin{split} \sigma_0(n) &= \sum_{0 < d \mid n} 1 \\ &= \sum_{0 < d \mid n, d < \sqrt{n}} 1 + \sum_{\sqrt{n} < d \mid n} 1 + \sum_{\sqrt{n} \mid n} 1 \\ &= \sum_{0 < d \mid n, d < \sqrt{n}} 1 + \sum_{0 < \frac{n}{d} \mid n, \frac{n}{d} < \sqrt{n}} 1 + \sum_{\sqrt{n} \mid n} 1 \\ &= 2 \sum_{0 < d \mid n, d < \sqrt{n}} 1 + \sum_{\sqrt{n} \mid n} 1 \\ &\leq 2\sqrt{n} + 1, \end{split}$$

且 $\sigma_0(n)$ 是奇数等价于 $\sqrt{n} \mid n$, 即 n 是完全平方数.

$$(\prod_{0 < d \mid n} d)^2 = \prod_{0 < d \mid n} d \prod_{0 < \frac{n}{d} \mid n} d = \prod_{0 < d \mid n} d \prod_{0 < d \mid n} \frac{n}{d} = \prod_{0 < d \mid n} n = n^{\sigma_0(n)},$$

故 n 的正约数之积等于 $n^{\frac{\sigma_0(n)}{2}}$.

6. 线性不定方程与同余方程

线性同余方程本质上用到的理论是Bezout等式、中国剩余定理、欧拉定理、费马小定理、也经常用到欧几里得算法(辗转相除法).

3.6. 由Bezout等式,存在整数 x_0, y_0 满足 $ax_0 + by_0 = (a, b) = 1$, 于是 (nx_0, ny_0) 是 ax + by = n 的一组特解,通解为 $(nx_0 - bt, ny_0 + at), t \in \mathbb{Z}$. 设有带余除法 $nx_0 = bq + r, 0 \le r \le b - 1$, 令 $s = ny_0 + aq$, 则 ar + bs = n, 且

$$s = \frac{n - ar}{b} > \frac{ab - a - b - a(b - 1)}{b} = -1,$$

故 $s \ge 0$, (r,s) 是 ax + by = n 的一组非负整数解.

若 n = ab - a - b = a(b-1) - b, 则 ax + by = n 的通解为 $(b-1-bt, -1+at), t \in \mathbb{Z}$. 若该解非负, 则 $1 > \frac{b-1}{b} \ge t \ge \frac{1}{a} > 0$, 这不可能, 因此 ax + by = n 无非负整数解.

4.8(2).

$$60 = 37 + 23, \ 37 = 23 + 14, \ 23 = 14 + 9, \ 14 = 9 + 5, \ 9 = 5 + 4, \ 5 = 4 + 1,$$

$$1 = 5 - 4 = 5 - (9 - 5) = 2 \times 5 - 9 = 2 \times (14 - 9) - 9 = 2 \times 14 - 3 \times 9$$

$$= 2 \times 14 - 3 \times (23 - 14) = 5 \times 14 - 3 \times 23 = 5 \times (37 - 23) - 3 \times 23$$

$$= 5 \times 37 - 8 \times 23 = 5 \times 37 - 8 \times (60 - 37) = 13 \times 37 - 8 \times 60,$$

或者

$$x \equiv \frac{7}{60} \equiv \frac{7}{-14} \equiv \frac{1}{-2} \equiv \frac{-36}{-2} \equiv 18 \pmod{37}.$$

 $x \equiv -8 \times 60 x \equiv -8 \times 7 \equiv 18 \pmod{37}$.

7. 整数互素

3.2. $(n+1)!+1 = (n+1)(n!+1)-n, n!+1 = n \times (n-1)!+1$, 因此 ((n+1)!+1, n!+1) = 1

3.3. 设
$$d = (2^m - 1, 2^n + 1)$$
, 则

$$2^{mn} \equiv (2^m)^n \equiv 1$$
$$\equiv (2^n)^m \equiv (-1)^m \equiv -1 \pmod{d},$$

从而 $d \mid 2$, 但是 $2^m - 1$ 是奇数, 因此 d = 1.

另证: 首先利用辗转相除法证明 $(2^x - 1, 2^y - 1) = 2^{(x,y)} - 1$, 于是

$$(2^{m} - 1, 2^{n} + 1)(2^{m} - 1, 2^{n} - 1) = (2^{m} - 1, 2^{2n} - 1) = 2^{(m,2n)} - 1$$
$$= 2^{(m,n)} - 1 = (2^{m} - 1, 2^{n} - 1),$$

因此 $(2^m - 1, 2^n + 1) = 1$.

3.9. (1) 若 m 不为 2 的方幂,则存在大于1的奇数 $d \mid m$,于是 $2^{m/d} + 1$ 是 $2^m + 1$ 的真因子, 从而 $2^m + 1$ 不是素数. (2) 由于 $F_m - 2 = 2^{2^m} - 1 = (2^{2^{m-1}} + 1)(2^{2^{m-1}} - 1) = F_{m-1}(F_{m-1} - 2)$, 因此

(2) 由于
$$F_m - 2 = 2^{2^m} - 1 = (2^{2^{m-1}} + 1)(2^{2^{m-1}} - 1) = F_{m-1}(F_{m-1} - 2)$$
, 因此

$$F_m - 2 = (F_n - 2) \prod_{k=n}^m F_k,$$

$$F_n \mid F_m - 2$$
.

(3)
$$(F_m, F_n) = (F_m - (F_m - 2), F_n) = (2, F_n) = 1.$$

3.10. 类似于习题3.9.

3.8. 由于 n! - 1 和 1, 2, ..., n 互素, 因此存在素数 $p \mid n! - 1$, 且 n , 命题得证.

这里的 n!-1 可以换成 $p_1\cdots p_k-1$, 其中 p_1,\ldots,p_k 为 $1,\ldots,n$ 中的所有素数. 如同证明素数个数无限中将 $p_1 \cdots p_n + 1$ 换成 $p_n! + 1$ 一样.

若素数个数有限, 设最大的为 n, 则 n 与 n!-1 之间存在素数, 矛盾! 因此素数个 数无限.

或者由 3,3!,(3!)!,((3!)!)!,... 两两之间存在素数知素数个数无限.

8. 整数的同余性质

利用同余的符号我们可以迅速得到一批计算整数的余数的方法.

4.2.
$$\mbox{if } n = \sum_{i=0}^{k} a_i \times 10^i, \ 0 \le a_i \le 9, \ \mbox{M}$$

$$T(n) = \sum_{i=0}^{k} a_i \times (-1)^i \equiv \sum_{i=0}^{k} a_i \times 10^i = n \pmod{11}.$$

类似地, 我们很容易得到

$$n \equiv \sum_{i=0}^{k} a_i \pmod{9},$$

$$n \equiv a_0 \pmod{2}$$
 $\not \equiv \pmod{5}$,

 $n \equiv \overline{a_2 a_1 a_0} - \overline{a_5 a_4 a_3} + \overline{a_8 a_7 a_6} - \overline{a_{11} a_{10} a_9} + \cdots \pmod{7 \times 11 \times 13}.$

4.4. (1)

$$n^2 \equiv 0^2, (\pm 1)^2 \equiv 0, 1 \pmod{3},$$

 $(2k)^2 \equiv 0 \pmod{4}, \quad (4k \pm 1)^2 \equiv 1 \pmod{4},$
 $n^2 \equiv 0^2, (\pm 1)^2, (\pm 2)^2 \equiv 0, \pm 1 \pmod{5}.$

(2)

$$(3k)^3 \equiv 0 \pmod{9}, \quad (3k \pm 1)^3 = 27k^3 \pm 27k^2 + 9k \pm 1 \equiv \pm 1 \pmod{9},$$

 $(2k)^4 = 16k^4 \equiv 0 \pmod{16}, \quad (4k \pm 1)^4 \equiv \pm 4 \times 4k + 1 \equiv 1 \pmod{16}.$

4.5. (1) 数学归纳法. n=1 时, 设 $a=4k\pm 1$, $a^2=(4k\pm 1)^2=16k^2\pm 8k+1\equiv 1\pmod 8$. 若 $a^{2^n}\equiv 1\pmod {2^{n+2}}$, 设 $a^{2^n}=1+2^{n+2}k$, 则

$$a^{2^{n+1}} = (1 + 2^{n+2}k)^2 = 1 + 2^{n+3}k + 2^{2n+4}k^2 \equiv 1 \pmod{2^{n+3}}.$$

因此由数学归纳法知原命题成立.

(2) 由于

$$a^{2^{n}} - 1 = (a - 1) \prod_{k=0}^{n-1} \frac{a^{2^{k+1}} - 1}{a^{2^{k}} - 1} = (a - 1) \prod_{k=0}^{n-1} (a^{2^{k}} + 1).$$

由于 a-1 和 $a^{2^k}+1$ 都是偶数, 且 a-1 和 a+1 有一个是4的倍数, 因此右边是 2^{n+2} 的倍数, 即 $a^{2^n}\equiv 1\pmod{2^{n+2}}$.

9. 欧拉函数

欧拉定理决定了欧拉函数在同余中的重要作用.

4.6. (1) 设
$$1 \le a \le n-1$$
. 如果 $(a,n)=1$, 则 $(n-a,n)=(-a,n)=(a,n)=1$. 令
$$A = \{a \mid 1 \le a < \frac{n}{2}, (a,n)=1\},$$

$$B = \{a \mid \frac{n}{2} < a \le n, (a,n)=1\} = \{n-a \mid a \in A\},$$

$$C = \{a \mid a = \frac{n}{2}, (a,n)=1\},$$

则

$$\varphi(n) = |A| + |B| + |C| = 2|A| + |C|.$$

若 C 非空, 则 n 是偶数, 且 $1=(\frac{n}{2},n)=\frac{n}{2},$ n=2, 与 $n\geq 3$ 矛盾. 因此 $C=\emptyset$, $\varphi(n)$ 是偶数. 或者: 若 n 有奇素因子 p, 且 $p^\alpha||n$. 设 $n=p^\alpha m$, 则

$$\varphi(n) = \varphi(p^{\alpha})\varphi(m) = p^{\alpha-1}(p-1)\varphi(m).$$

由于 p-1 是偶数, 因此 $\varphi(n)$ 是偶数. 若 n 没有奇素因子, 则 $n=2^k, k\geq 2, \varphi(n)=2^{k-1}$ 是偶数.

(2) 此即

$$\sum_{a \in A \cup B} a = \sum_{a \in A} a + \sum_{a \in A} (n - a) = \sum_{a \in A} n = n|A| = \frac{1}{2}n\varphi(n).$$

4.12.

$$\varphi(360) = \varphi(2^3 \times 3^2 \times 5) = 2^2 \times 3 \times (3-1) \times (5-1) = 96.$$

$$\varphi(429) = \varphi(3 \times 11 \times 13) = (3-1)(11-1)(13-1) = 240.$$

4.13. 由于 $\varphi(100) = \varphi(2^2 \times 5^2) = 2 \times 5 \times (5-1) = 40$, 由欧拉定理 $3^{40} \equiv 1 \pmod{100}$, 因此 $3^{400} \equiv 1 \pmod{100}$. 实际上由于 $\varphi(25) = 20$, $\varphi(4) = 2$, 因此对任意 (a,10) = 1, $a^{20} \equiv 1 \pmod{25}$ 且 $a^{20} \equiv 1 \pmod{4}$, 故 $a^{20} \equiv 1 \pmod{100}$. 此即习题4.15.

4.14. 由于

$$m^{\varphi(n)} \equiv 1 \pmod{n}, \quad n^{\varphi(m)} \equiv 1 \pmod{m},$$

因此

$$m^{\varphi(n)} + n^{\varphi(m)} \equiv 1 \pmod{n}, \quad m^{\varphi(n)} + n^{\varphi(m)} \equiv 1 \pmod{m},$$

从而

$$m^{\varphi(n)} + n^{\varphi(m)} \equiv 1 \pmod{mn}.$$

5.2(2).

$$x^{7} + 1 = (x^{6} + x^{5} + x^{4} + 1)(x + 1) + x^{4} + x,$$

$$x^{6} + x^{5} + x^{4} + 1 = (x^{4} + x)(x^{2} + x + 1) + x^{3} + x^{2} + x + 1,$$

$$x^{4} + x = (x^{3} + x^{2} + x + 1)(x + 1) + x + 1,$$

$$x^{3} + x^{2} + x + 1 = (x + 1)(x^{2} + 1),$$

因此 (f,g) = x + 1. 实际计算时, 可以在草稿纸上利用类似计算除法的长除式来计算多项式相除.

5.5(2). 我们想要寻找 v(x), 使得 $v(x)(1-x)^n-1$ 是 x^m 的倍数, 因此我们可以取得 $v(x)(1-x)^n$ 是 x^m 的多项式, 而且是 $(1-x)^n$ 的倍数, 例如取 $(1-x^m)^n$. 设 $v_0(x) = \frac{(1-x^m)^n}{1-x^n} \in \mathbb{Q}[x]$, 则

$$u_0(x) = -\frac{(1-x^m)^n - 1}{x^m} = \sum_{i=0}^{n-1} \binom{n}{i+1} (-x^m)^i \in \mathbb{Q}[x].$$

因此 (u_0, v_0) 是原方程的一组特解, 通解为

$$\begin{cases} u(x) = (1-x)^n f(x) + \sum_{i=0}^{n-1} \binom{n}{i+1} (-x^m)^i \\ v(x) = -x^m f(x) + \frac{(1-x^m)^n}{1-x^n}, \end{cases} f(x) \in \mathbb{Q}[x].$$

11. 零点与重数

$$(f(x), f'(x)) = (\sum_{k=0}^{n} \frac{x^k}{k!}, \sum_{k=0}^{n-1} \frac{x^k}{k!}) = (x^k, \sum_{k=0}^{n-1} \frac{x^k}{k!}) = 1,$$

因此 f(x) 无重根.

5.9.
$$\Leftrightarrow f(x) = x^{2n} - nx^{n+1} + nx^{n-1} - 1$$
, \mathbb{N}

$$f(1) = 1 - n + n - 1 = 0,$$

$$f'(1) = 2nx^{2n-1} - n(n+1)x^n + n(n-1)x^{n-2}|_{x=1}$$

$$= 2n - n(n+1) + n(n-1) = 0,$$

$$f''(1) = 2n(2n-1)x^{2n-2} - n^2(n+1)x^{n-1} + n(n-1)(n-2)x^{n-3}|_{x=1}$$

$$= 2n(2n-1) - n^2(n+1) + n(n-1)(n-2) = 0,$$

$$f'''(1) = 2n(2n-1)(2n-2)x^{2n-3} - n^2(n+1)(n-1)x^{n-2} + n(n-1)(n-2)(n-3)x^{n-4}|_{x=1}$$

$$= 2n(n^2 - 1) \neq 0.$$

因此 1 是 f 的3重零点.

5.10. 由于域上 2,3 次多项式不可约当且仅当它在域上没有零点, 因此我们设 $f(x) = x^2 + ax + b \in \mathbb{F}_2[x]$ 不可约, 则

$$f(0) = b \neq 0, f(1) = 1 + a + b \neq 0,$$

于是 $b=1, a=1, f(x)=x^2+x+1$. 类似地, 设 $f(x)=x^3+ax^2+bx+c\in \mathbb{F}_2[x]$ 不可约. 则

$$f(0) = c \neq 0, f(1) = 1 + a + b + c \neq 0,$$

于是 $c=1, a\neq b, \ f(x)=x^3+x^2+1, x^3+x+1.$ 同理, 域 \mathbb{F}_3 上面的2,3次首一不可约多项式为

$$x^{2} + 1$$
, $x^{2} \pm x - 1$,
 $x^{3} - x \pm (x^{2} + 1)$, $x^{3} - x \pm 1$,
 $x^{3} + x \pm (x^{2} - 1)$, $x^{3} \pm (x^{2} - 1)$.

5.12. 设 g(x) = xf(x) - 1, 则 $\deg g = p - 1$ 且 $g(1) = g(2) = \cdots = g(p - 1) = 0$, g(0) = -1, 因此

$$g(x) = a \prod_{i=1}^{p-1} (x - i) = a(x^{p-1} - 1),$$

$$-1 = g(0) = -a,$$

于是 $a = 1, g(x) = x^{p-1} - 1, f(x) = x^{p-2}$.

12. 群中元素的阶

6.1. 计算可知

$$A^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, A^{4} = I,$$

$$B^{2} = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, B^{3} = I,$$

因此 A, B 的阶分别为 4, 3. 由于 $AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, 归纳可知

$$(AB)^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix},$$

因此 AB 的阶为无穷大. 由于 $BA = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$, 归纳可知

$$(BA)^n = \begin{pmatrix} 1 & 0 \\ -n & 1 \end{pmatrix},$$

因此 BA 的阶为无穷大.

6.4. 设 x^k 的阶为 d. 则 $x^{kd} = 1$. 因此

$$n\mid kd, [n,k]\mid kd, \frac{[n,k]}{k}\mid d.$$

另一方面, $(x^k)^{\frac{[n,k]}{k}}=x^{[n,k]}=1$, 因此 $d=\frac{[n,k]}{k}$.

$$a^{k} = 1 \iff a^{-k} = 1 \iff (a^{-1})^{k} = 1,$$

因此 a 与 a^{-1} 的阶相同. 由于

$$(ab)^k = 1 \iff a(ba)^{k-1}b = 1 \iff ba(ba)^{k-1} = 1 \iff (ba)^k = 1,$$

因此 ab 与 ba 的阶相同.

6.8. 首先我们证明, 如果 $(I + pX)^q = I$, 那么 X = 0, 其中 q 是一个素数. 假如 $X \neq 0$. 设 X 的分量是 p^{t-1} 的倍数但不全是 p^t 的倍数, 那么存在 $Z \in M_2(\mathbb{Z}), X = p^{t-1}Z$. 如果 p = q,

$$I = (I + pX)^p = (I + p^t Z)^p = I + p^{t+1}Z + \sum_{i=2}^p \binom{p}{i} (p^t Z)^i = I + p^{t+1}Z + p^{t+2}Y,$$

其中 $Y \in M_2(\mathbb{Z})$; 如果 $p \neq q$,

$$I = (I + pX)^q = (I + p^t Z)^q = I + qp^t Z + \sum_{i=2}^q \binom{q}{i} (p^t Z)^i = I + qp^t Z + p^{t+1} Y,$$

其中 $Y \in M_2(\mathbb{Z})$, 因此总有 Z 的分量都是 p 的倍数, 这不可能! 所以 X=0. 回到原题, 由于 I+pX 的任意整数次方都是 I+pY 的形式, 因此若 I+pX 的阶为 d>1, 那么存在素数 $q\mid d$, 于是

$$((I+pX)^{\frac{d}{q}})^q = I \implies (I+pX)^{\frac{d}{q}} = I,$$

这与 d 的最小性矛盾! 因此 I + pX = I, X = 0.

这题也可以用特征多项式来做. 由于

$$\det(I + pX) = I + p\operatorname{Tr}X + p^2 \det(X),$$

因此 $p \mid \text{Tr}X$, $p^2 \mid (\text{Tr}(I+pX)-2)$. 由于 I+pX 阶有限, 它的特征值是单位根 $\alpha,\bar{\alpha}$, 对应的多项式为 $\lambda^2-2\text{Re}(\alpha)\lambda+1=0$, 于是

$$-2 \le \operatorname{Re}(\alpha) \le 2$$
, $-4 \le \operatorname{Tr}(I + pX) - 2 \le 0$,

而 $p^2 \mid (\text{Tr}(I+pX)-2)$, 因此 Tr(I+pX)=2, $\alpha=1$, I+pX=I.

- **6.18.** (1) 显然 d(G) 是 G 中所有元素的阶的倍数, 因此是它们阶的最小公倍数 d 的倍数. 而 $g^d=1, \forall g\in G$. 因此 $d(G)=d, d(G)\mid |G|$.
- (2) 设 $d(G) = \prod_{i=1}^{t} p_i^{k_i}$, 那么由最小公倍数的定义, 存在元素 x_i , 它的阶包含因子 $p_i^{k_i}$, 于是 x_i 的某个次方 y_i 的阶恰好为 $p_i^{k_i}$. 对于 G 中两个元素 a,b, 他们的阶 m,n 互素, 那么 $1 = (ab)^k = a^k b^k$ 当且仅当

$$a^{k} = b^{-k}, a^{kn} = b^{kn} = 1, b^{km} = a^{km} = 1, m \mid k, n \mid k, mn \mid$$

因此 ab 的阶为 mn. 于是 $y_1 \cdots y_t$ 的阶为 d(G).

(3) 由(1)知如果 G 是循环群, 存在 $g \in G$ 的阶为 |G|, 于是 d(G) = |G|. 由(2)知 如果 d(G) = |G|, 那么存在元素 $g \in G$ 的阶为 |G|, 于是 G 是循环群.

6.5. 设 $A = \{a \in G \mid a^2 = 1\}, B = G - A$, 则对任意 $b \in B, b \neq b^{-1}$, 因此 B 可以分拆为一些 $\{b_i, b_i^{-1}\}$ 的无交并. 于是

$$\prod_{g \in G} g = \prod_{a \in A} a \prod_i b_i \cdot b_i^{-1} = \prod_{a \in G, a^2 = 1} a.$$

- **6.6.** (1) 设 $x^2 \equiv 1 \mod p^k$, 则 $p^k \mid (x+1)(x-1)$, 由于 $(x+1,x-1) = (x+1,2) \mid 2$, 所以 $p^k \mid x+1$ 或 x-1, $x \equiv \pm 1 \mod p$. 因此 $(\mathbb{Z}/p^k\mathbb{Z})^{\times}$ 只有一个2阶元 -1.
 - (2) 由习题6.5和(1)立得.
 - (3) 在(2)中取 k=1 即可.
- **6.7.** (1) 设 $m = \prod_{i=1}^{k} p_i^{v_i}$. 如果 $x^2 \equiv 1 \mod m$, 则

$$x^2 \equiv 1 \mod p_i^{v_i}, \quad x \equiv \pm 1 \mod p_i^{v_i}.$$

对于每个 i, 选择 +1 或 -1 有两种取法, 一共有 2^k 中取法, 分别对应 $x \bmod m$ 的 2^k 个不同的解. 因此 $(\mathbb{Z}/m\mathbb{Z})^\times$ 有 2^k-1 个2 阶元.

(2) 设 $x \in \mathbb{Z}$ 使得 $x \mod m$ 为所有2阶元之积,则

$$x \equiv (-1)^{2^{k-1}} \equiv 1 \bmod p_i^{v_i},$$

因此 $x \equiv 1 \mod m$, 即所有2阶元之积为1.

或者: 若 $x^2=1$, 则 $(-x)^2=1$, 且由于 m 是奇数, $x\neq -x$. 于是所有2阶元之积为

$$\prod_{x} x \times (-x) = (-1)^{2^{k-1}} = 1.$$

14. 有限生成

6.15. 假设 $\mathbb Q$ 由有限个 $\frac{p_i}{q_i}, 1 \leq i \leq k$ 生成. 设 $M=q_1\cdots q_k,$ 则 $M\frac{p_i}{q_i}\in\mathbb Z$, 于是它们生成的元素 x 也满足 $Mx\in\mathbb Z$, 但是如果

$$\frac{1}{2M} = \sum_{i=1}^{k} \lambda_i \frac{p_i}{q_i},$$

$$\frac{1}{2} = \sum_{i=1}^{k} \lambda_i \frac{p_i M}{q_i} \in \mathbb{Z},$$

矛盾! 因此 Q 不是有限生成的.

6.16. 设 $G \in S^1$ 的一个 n 阶子群, 则对任意 $g \in G$, $g^n = 1$, 于是 $G \leq \mu_n = \{z \in \mathbb{C} \mid z^n = 1\}$. 但是 μ_n 的大小也是 n, 因此 $G = \mu_n = \langle e^{\frac{2\pi i}{n}} \rangle$ 是循环群.

15. 置换群和交错群

7.1. 因为置换可以看成是一个有限集合上的映射, 所以作用的时候是从右往左的.

$$\sigma = (456)(567)(71) = (16)(45).$$

7.3.
$$\sigma = (23)(412) = (1324), \ \sigma(f)(x_1, x_2, x_3, x_4) = f(x_3, x_4, x_2, x_1).$$

- **7.4.** $\ \ \mathcal{G} \leqslant S_3, \ \ \ |G| \ |S_3| = 6, \ |G| = 1, 2, 3, 6.$
 - (1) 如果 |G| = 1, $G = \{1\}$; 如果 |G| = 6, $G = S_3$.
 - (2) 如果 |G| = 2, $G = \{1, (12)\}, \{1, (13)\}, \{1, (23)\}.$
 - (3) 如果 |G| = 3, $G = \{1, (123), (132)\}$.
 - 设 $G \leq A_4$, 则 $|G| \mid |A_4| = 12$, |G| = 1, 2, 3, 4, 6, 12.
 - (1) 如果 |G| = 1, $G = \{1\}$; 如果 |G| = 12, $G = A_4$.
 - (2) 如果 |G| = 2, $G = \{1, (12)(34)\}, \{1, (13)(24)\}, \{1, (14)(23)\}.$
 - (3) 如果 |G|=3, $G=\langle (123)\rangle, \langle (124)\rangle, \langle (134)\rangle, \langle (234)\rangle$.
- (4) 如果 |G| = 4, 由于 A_4 不含4阶元且恰有3个2阶元, 所以 $G = \{1, (12)(34), (13)(24), (14)(23)\}$.
- (5) 如果 |G| = 6,由于 A_4 包含3个2阶元和8个3阶元,因此 G 一定包含3阶元.但是如果 G 只含3阶元和1,则 G 的阶为奇数,矛盾!因此 G 包含2阶元 σ 和3 阶元 τ .如果 G 是交换群,则 $\sigma\tau$ 是6阶元,这与 A_4 不含6阶元矛盾!因此 $G = \{1, \sigma, \tau, \sigma\tau, \tau^2, \sigma\tau^2\}$ 且 $\tau\sigma = \sigma\tau^2$.于是 G 包含3个2阶元 $\sigma, \sigma\tau, \sigma\tau^2$,即包含子群 $\{1, (12)(34), (13)(24), (14)(23)\}$,但是这与 $4 \nmid 6$ 矛盾!
- **7.2.** σ 可以写成 $\left[\frac{n}{2}\right]$ 个不交的对换之积, 因此它的奇偶性和 $\left[\frac{n}{2}\right]$ 的奇偶性相同, 即 σ 是偶置换如果 $n \equiv 0, 1 \mod 4$; σ 是奇置换如果 $n \equiv 2, 3 \mod 4$.
- **7.12.** 注意到 $\xi = (\sigma, 1) \times (1, \tau)$, 而 $(\sigma, 1)$ 可以写成 n 个型与 σ 相同的不交的置换 乘积, $\varepsilon((\sigma, 1)) = \varepsilon(\sigma)^n$. 同理 $\varepsilon((1, \tau)) = \varepsilon(\tau)^m$, 因此 $\varepsilon(\xi) = \varepsilon(\sigma)^n \varepsilon(\tau)^m$.
- **7.8.** 设 $\sigma = (123 \cdots n)$, 则 $\sigma^k(12)\sigma^{-k} = (k+1, k+2), 1 \le k \le n-2$, 而

$$(23)(12)(23) = (13),$$

$$(34)(13)(34) = (14),$$

:

$$(n-1,n)(1,n-1)(n-1,n) = (1n),$$

因此 (12), σ 可以生成 (1k), $2 \le k \le n$, 而后者生成 S_n , 故 (12), σ 生成 S_n .

7.11. 由于 σ 可以写成不交的轮换之积, 因此我们只需对 σ 是轮换的情形证明即可. 我们可以先对较小阶的轮换证明, 然后尝试计算

$$(12)(34)(56)\cdots(k, k+1)\times(23)(45)\cdots(k-1, k)$$

发现它是个轮换, 调整数字之间的顺序, 我们得到如下的做法:

不妨设 $\sigma = (12 \cdots k)$, 如果 k = 2a + 1 是奇数, 那么

$$\sigma = (2a+1,1)(2a,2)\cdots(a+3,a-1)(a+2,a)\times(1,2a)(2,2a-1)\cdots(a,a+1),$$

如果 k=2a 是偶数, 那么

$$\sigma = (2a, 1)(2a - 1, 2) \cdots (a + 2, a - 1)(a + 1, a) \times (1, 2a - 1)(2, 2a - 2) \cdots (a - 1, a + 1).$$

或者: 由于 $\sigma = \alpha\beta$, $\sigma^{-1} = \beta\alpha$, $\sigma = \alpha^{-1}\sigma^{-1}\alpha$, 而 σ^{-1} 和 σ 型相同, 因此如果 $\sigma = (12\cdots n)$, 我们可以构造 α 如同习题7.2一样.

7.9. 容易看出置换矩阵 A 把列向量 $(x_1,\ldots,x_n)^T$ 变成某个 $(x_{\sigma_A(1)},\ldots,x_{\sigma_A(n)})^T$. 于是 AB 把列向量 $(x_1,\ldots,x_n)^T$ 变成 $(x_{\sigma_A\sigma_B(1)},\ldots,x_{\sigma_A\sigma_B(n)})^T$. 令

$$\varphi: G \to S_n$$
$$A \mapsto \sigma_A$$

则 $\varphi(AB) = \sigma_A \sigma_B = \varphi(A)\varphi(B)$, 且任意 σ 有原像为 $(k, \sigma(k))$ 分量为 $1, 1 \le k \le n$, 其余分量为 0 的置换矩阵. 因此 φ 是满射, 而 $|G| = n! = |S_n|$, 因此 φ 是保持运算 的双射, 于是 G 是群且同构于 S_n .

7.6. 我们将这样的置换按照阶小的轮换放前面, 阶大的轮换放后面的顺序排好, 那 么这个置换对应了一个 n-排列, 因此有 n! 种. 但是相同型之间是可以任意交换的, 每个 k- 轮换也有 k 种不同的写法, 因此实际的个数为

$$\frac{n!}{\prod_{i=1}^n \lambda_i! i^{\lambda^i}}.$$

所有的置换个数之和为 n!, 因此

$$\sum \frac{n!}{\prod_{i=1}^{n} \lambda_i! i^{\lambda^i}} = n!,$$

$$\sum \frac{1}{\prod_{i=1}^{n} \lambda_i! i^{\lambda^i}} = 1.$$

16. 原根

原根就是 \mathbb{F}_p^{\times} 作为循环群的生成元.

8.1. 设 a,b 是模 p 的原根,则存在正整数 n 使得 $b=a^n$ 且 (n,p-1)=1. 于是 n是奇数, $ab = a^{n+1}$, $2 \mid (n+1, p-1)$, 因此 ab 不是原根. 或者: 由 $(a^{\frac{p-1}{2}})^2 = 1$ 知 $a^{\frac{p-1}{2}} = -1$, 同理 $b^{\frac{p-1}{2}} = -1$, $(ab)^{\frac{p-1}{2}} = 1$, ab 不是原根.

8.6. 注意到 q > 3,

$$(\pm 2)^2 \not\equiv 1 \bmod q$$

$$(\pm 2)^{2p} \equiv 1 \mod q$$

(1) 由于 $q \equiv 3 \mod 8$,

$$2^p = 2^{\frac{q-1}{2}} \equiv \left(\frac{2}{q}\right) = -1 \bmod q,$$

因此 2 是模 q 的原根.

(2) 由于 $q \equiv 7 \mod 8$,

$$(-2)^p = (-2)^{\frac{q-1}{2}} \equiv \left(\frac{-2}{q}\right) = -1 \mod q,$$

因此 -2 是模 q 的原根.

8.12.

$$\left(\frac{17}{23}\right) = \left(\frac{23}{17}\right) = \left(\frac{6}{17}\right) = \left(\frac{2}{17}\right) \left(\frac{3}{17}\right) = \left(\frac{17}{3}\right) = \left(\frac{2}{3}\right) = -1.$$

$$\left(\frac{19}{37}\right) = \left(\frac{37}{19}\right) = \left(\frac{-1}{19}\right) = -1.$$

$$\left(\frac{60}{79}\right) = \left(\frac{3}{79}\right) \left(\frac{5}{79}\right) = \left(\frac{79}{3}\right) \left(\frac{79}{5}\right) = -\left(\frac{1}{3}\right) \left(\frac{4}{5}\right) = -1.$$

$$\left(\frac{92}{101}\right) = \left(\frac{23}{101}\right) = \left(\frac{101}{23}\right) = \left(\frac{9}{23}\right) = 1.$$

8.7. (1) 由于 $\left(\frac{-1}{p}\right)=1$,因此 $\left(\frac{r}{p}\right)=1$ 等价于 $\left(\frac{p-r}{p}\right)=1$,于是

$$\sum_{r=1,\left(\frac{r}{p}\right)=1}^{p-1}r=\frac{1}{2}\sum_{r=1,\left(\frac{r}{p}\right)=1}^{p-1}r+(p-r)=\frac{p(p-1)}{4}.$$

(2) 由 (1) 知

$$\sum_{a=1}^{p-1} a\left(\frac{a}{p}\right) = \sum_{r=1, \left(\frac{r}{p}\right)=1}^{p-1} r - \sum_{r=1, \left(\frac{r}{p}\right)=-1}^{p-1} r = 2 \sum_{r=1, \left(\frac{r}{p}\right)=1}^{p-1} r - \sum_{r=1}^{p-1} r = 0.$$

(3)

$$\sum_{k=1}^{\frac{p-1}{2}} \left[\frac{k^2}{p} \right] = \sum_{k=1}^{\frac{p-1}{2}} \frac{k^2}{p} - \sum_{r=1, \left(\frac{r}{2}\right)=1}^{p-1} \frac{r}{p} = \frac{1}{6p} \cdot \frac{p-1}{2} \cdot \frac{p+1}{2} \cdot p - \frac{p-1}{4} = \frac{(p-1)(p-5)}{24}.$$

8.8. (1)

$$\sum_{r=1,\left(\frac{r}{2}\right)=1}^{p-1} r \equiv \sum_{k=1}^{\frac{p-1}{2}} k^2 = \frac{(p^2-1)p}{24} \equiv 0 \bmod p.$$

或者: 设 $\left(\frac{a}{p}\right) = -1$, 则

$$\sum_{r=1, (\frac{r}{p})=-1}^{p-1} r \equiv a \sum_{r=1, (\frac{r}{p})=1}^{p-1} r \bmod p,$$

$$(a+1)\sum_{r=1,\left(\frac{r}{2}\right)=1}^{p-1}r\equiv\sum_{r=1}^{p-1}r=\frac{p(p-1)}{2}\equiv 0 \bmod p.$$

由于 $p \equiv 3 \mod 4$, $\left(\frac{-1}{p}\right) = -1$, $a \not\equiv -1 \mod p$,

$$\sum_{r=1,\left(\frac{r}{p}\right)=1}^{p-1} r \equiv 0 \bmod p.$$

(2) 由于 $\sum_{r=1, (\frac{r}{p})=-1}^{p-1} r \equiv a \sum_{r=1, (\frac{r}{p})=1}^{p-1} r \equiv 0 \mod p$, 其中 a 是模 p 的二次非剩余,

因此

$$\sum_{a=1}^{p-1} a\left(\frac{a}{p}\right) = \sum_{r=1, \left(\frac{r}{p}\right)=1}^{p-1} r - \sum_{r=1, \left(\frac{r}{p}\right)=-1}^{p-1} r \equiv 0 \bmod p.$$

8.10. 我们将会用到习题8.9的结论. 设 $d = \frac{D}{4a^2}$, 则 $f(x) = a((x + \frac{b}{2a})^2 - d)$,

$$\sum_{x=0}^{p-1} \left(\frac{f(x)}{p} \right) = \left(\frac{a}{p} \right) \sum_{x=0}^{p-1} \left(\frac{x^2 - d}{p} \right).$$

而 $\sum_{r=0}^{p-1} (\left(\frac{x^2-d}{p}\right)+1)$ 是 \mathbb{F}_p 中方程 $y^2=x^2-d$ 的解的个数, 即

$$\sum_{x=0}^{p-1} \left(\left(\frac{x^2 - d}{p} \right) + 1 \right) = \begin{cases} p - 1, & \text{mm } p \nmid d, \\ 2p - 1, & \text{mm } p \mid d, \end{cases}$$

因此

$$\sum_{x=0}^{p-1} \left(\frac{f(x)}{p} \right) = \begin{cases} -\left(\frac{a}{p} \right), & \text{m果 } p \nmid D, \\ (p-1)\left(\frac{a}{p} \right), & \text{m果 } p \mid D. \end{cases}$$

18. 同余方程解的个数

- **8.9.** 我们不妨在 \mathbb{F}_p 中考虑. 如果 $a \neq 0$, 那么 (x+y)(x-y) = a, 设 $x+y=s \neq 0$, $x-y=as^{-1}$, $x=\frac{s+as^{-1}}{2}$, $y=\frac{s-as^{-1}}{2}$. 显然不同的 s 对应不同的解, 因此一共有 p-1 组解. 如果 $a=0, x=\pm y$, 所有的解为 $(0,0), (1,\pm 1), (2,\pm 2), \ldots, (p-1,\pm (p-1))$, 共 2p-1组.
- **8.11.** (1) 显然 $x \equiv 1 \mod 2$ 是解.
- (2) 由于对任意整数 x, $x^2 \equiv 0, 1 \mod 4$, 而 a 是奇数, 因此如果有解则 $a \equiv 1 \mod 4$. 反之, 如果 $a \equiv 1 \mod 4$, $x \equiv 1 \mod 4$, $x \equiv \pm 1$ 共两个解.
- (3) 由于对任意整数 $x, x^2 \equiv 0, 1, 4 \mod 8$, 而 a 是奇数, 因此如果有解则 $a \equiv 1 \mod 8$. 反之, 我们利用数学归纳法. 假设 $a \equiv 1 \mod 8$. 对于 $k = 3, x \equiv 1 \mod 8$, $x \equiv \pm 1, \pm 3$. 设 $x^2 \equiv a \mod 2^k$ 有解 x_0 . 如果 $x_0^2 a$ 是 2^{k+1} 的倍数, 则 x_0 是 $x^2 \equiv a \mod 2^{k+1}$ 的一个解. 如果 $x_0^2 a$ 不是 2^{k+1} 的倍数, 则 $(x_0 + 2^{k-1})^2 a \equiv x_0^2 a + 2^k x_0 \equiv x_0^2 a + 2^k \equiv 0 \mod 2^{k+1}$, 因此 $x_0 + 2^{k-1}$ 是 $x^2 \equiv a \mod 2^{k+1}$ 的一个解.

不妨设 x_0 满足 $x_0^2 \equiv a \mod 2^{k+1}$, 则 $x^2 \equiv x_0^2, 2^{k+1} \mid (x-x_0)(x+x_0)$, 而 x_0 是奇数, 因此 $x-x_0, x+x_0$ 不可能都是 4 的倍数, 于是 $2 \mid x \pm x_0, 2^k \mid x \mp x_0, x = \pm x_0, \pm x_0 + 2^k$.

19. 有限域上多项式

8.14. 如果 p = 2, 则 $x^2 - 15 = (x+1)^2$ 可约. 如果 p = 3, 5, 则 $x^2 - 15 = x^2$ 可约.

如果 $p \ge 7$, 则 $x^2 - 15$ 可约等价于有根, 即 $\left(\frac{15}{p}\right) = 1$. 而

$$\left(\frac{15}{p}\right) = \left(\frac{3}{p}\right)\left(\frac{5}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{p}{3}\right)\left(\frac{p}{5}\right).$$

因此

 $p \equiv 1 \mod 4$, $p \equiv 1 \mod 3$, $p \equiv \pm 1 \mod 5$,

或

 $p \equiv 1 \mod 4$, $p \equiv -1 \mod 3$, $p \equiv \pm 2 \mod 5$,

或

 $p \equiv -1 \mod 4$, $p \equiv -1 \mod 3$, $p \equiv \pm 1 \mod 5$,

或

 $p \equiv -1 \mod 4$, $p \equiv 1 \mod 3$, $p \equiv \pm 2 \mod 5$,

即 $p \equiv \pm 1, \pm 7, \pm 11, \pm 17 \mod 60$. 综上所述, p = 2, 3, 5 或 $p \equiv \pm 1, \pm 7, \pm 11, \pm 17 \mod 60$.

8.17. $x^2 + \alpha x + \beta = (x + \frac{\alpha}{2})^2 - \gamma, \gamma = \alpha^2/4 - \beta$, 该多项式不可约等价于没有根, 即 $\gamma \neq 0$ 且 $\left(\frac{\gamma}{p}\right) = -1$. 而这样的 γ 有 $\frac{p-1}{2}$ 个, α 任取, 因此一共有 $\frac{p(p-1)}{2}$ 个不可约多项式.

20. 整系数多项式

9.2. 数学归纳法. 首先注意到只需对非负整数 n 证明即可. n = 0, 1 显然.

设 $t = x + x^{-1}$. 如果对于 $0 \le n \le k$, $x^n + x^{-n} = f_n(t)$, f_n 是整系数多项式, 则

$$x^{k+1} + x^{-k-1} = (x^k + x^{-k})(x + x^{-1}) - (x^{k-1} + x^{1-k}) = tf_k(t) - f_{k-1}(t)$$

可以表示为 $t = x + x^{-1}$ 的整系数多项式.

9.4. 设 $g = c(g)g_1$, 则 $g_1 \in \mathbb{Z}[x]$ 本原, 于是 $f(x)g_1(x)$ 本原, $fg = c(g)fg_1$,

$$c(fg) = c(g)c(fg_1) = \pm c(g),$$

因此 $c(g) = \pm c(fg) \in \mathbb{Z}, g(x) \in \mathbb{Z}[x].$

9.5. 设 $3x^3 + 2x^2 - 1$ 的三个根为 a, b, c, 则

$$a+b+c=-rac{2}{3}, ab+ac+bc=0, abc=rac{1}{3}.$$

于是

$$a^{2} + b^{2} + c^{2} = (a + b + c)^{2} - 2(ab + bc + ca) = \frac{4}{9},$$

$$a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} = (ab + bc + ca)^{2} - 2abc(a + b + c) = \frac{4}{9},$$

$$a^2b^2c^2 = (abc)^2 = \frac{1}{9},$$

因此 a^2, b^2, c^2 是多项式 $f(x) = x^3 - \frac{4}{9}x^2 + \frac{4}{9}x - \frac{1}{9}$ 的三个根.

9.6. 由题设知在 $\mathbb{Q}[x]$ 中 $p(x) \mid f(x)$ 或 $p(x) \mid g(x)$. 不妨设在 $\mathbb{Q}[x]$ 中 $p(x) \mid f(x)$, 则存在 $q(x) \in \mathbb{Q}[x]$, f(x) = p(x)q(x). 但是 p(x) 是本原多项式, 由习题 9.4 知 $q(x) \in \mathbb{Z}[x]$, 因此在 $\mathbb{Z}[x]$ 中 $p(x) \mid f(x)$.

9.7. 由于它们都是首一的,因此只需证明在 $\mathbb{Z}[x]$ 中不可约. (1) 设 $f(x) = x^4 + 3x + 5$,由于对任意整数 n, f(n) 是奇数, f 没有整数解,所以如果 f 可约,必为两个2次整系数多项式之积. 设 $f(x) = (x^2 + ax + b)(x^2 - ax + c)$,则

$$b+c-a^2=0$$
, $a(c-b)=3$, $bc=5$.

由 bc = 5 知 $b - c = \pm 4 \nmid 3$, 矛盾! 因此 f 不可约.

(2) 设 $f(x) = x^5 + 4x^4 + 2x^3 + 6x^2 - x + 5$, 由于对任意整数 n, f(n) 是奇数, f 没有整数解, 所以如果 f 可约, 必为一个2次整系数多项式和一个3次整系数多项式之积. 设 $f(x) = (x^3 + ax^2 + bx + c)(x^2 + (4 - a)x + d)$, 则

$$a(4-a) + b + d = 2$$
, $6 = c + b(4-a) + ad$, $-1 = c(4-a) + bd$, $5 = cd$.

于是

$$4 - a = \frac{4d - 6 + c}{d - b},$$

$$-1 = c\frac{4d + c - 6}{d - b} + bd,$$

$$db^2 + (1 - d^2)b - d - 20 - c^2 + 6c = 0.$$

由 cd=5 知 $c\mid 5$. 如果 $c=5, d=1, b^2=16, b=\pm 4, a=5, 3, a(4-a)+b+d=0,$ 矛盾! 如果 $c=-5, d=-1, b^2=-74,$ 无解. 如果 $c=\pm 1, d=\pm 5, 5b^2-24b-20=0$ 或 $5b^2+24b+22=0,$ 无解! 因此 f 不可约.

$$yf(y+1) = (y+1)^p - 1 = y^p + \sum_{i=1}^{p-1} {p \choose i} y^i,$$

$$f(y+1) = y^{p-1} + \sum_{i=1}^{p-1} \binom{p}{i} y^{i-1},$$

由Eisenstein判别法知其不可约.

(2) 如果 n = ab 不是素数, a, b > 1, 则

$$(x-1)f(x) = x^{n} - 1 = (x^{a} - 1)\sum_{i=0}^{b-1} x^{ai},$$

$$f(x) = (\sum_{i=0}^{a-1} x^{i})(\sum_{i=0}^{b-1} x^{ai})$$

可约.

9.9. 假设 $f(x) = (x - a_1) \cdots (x - a_n) - 1$ 可约,由于 f 首一,存在首一的非常数整系数多项式 g(x), h(x), f(x) = g(x)h(x). 于是 $g(a_i) = \pm 1$. 不妨设 $g(a_1) = \cdots = g(a_t) = 1, g(a_{t+1}) = \cdots = g(a_n) = -1$,则 $\deg g \ge \max\{t, n-t\}$,同理 $\deg h \ge \max\{t, n-t\}$. 因此 $t = n-t = \deg g = \deg h$,

$$g(x) = (x - a_1) \cdots (x - a_t) + 1, \ h(x) = (x - a_1) \cdots (x - a_t) - 1,$$
$$f(x) = g(x)h(x) = (x - a_1)^2 \cdots (x - a_t)^2 - 1,$$

矛盾!

9.10. f 的常数项模长大于等于1, 因此存在根 $x_0, |x_0| \ge 1$. 设

$$g(x) = \frac{f(x)}{x - x_0} = x^{n-1} + \sum_{i=0}^{n-2} b_i x^i,$$

则

$$a_0 = -x_0 b_0,$$

$$a_i = -x_0 b_i + b_{i-1}, \quad 1 \le i \le n-2,$$

$$a_{n-1} = -x_0 + b_{n-2},$$

于是

$$\begin{split} |b_{n-2}| + |x_0| &\geq |b_{n-2} - x_0| = |a_{n-1}| \\ &> 1 + \sum_{i=0}^{n-2} |a_i| \\ &= 1 + \sum_{i=0}^{n-2} |x_0 b_i - b_{i-1}| \\ &\geq 1 + \sum_{i=0}^{n-2} (|x_0 b_i| - |b_{i-1}|) \\ &= (|x_0| - 1) \sum_{i=0}^{n-2} |b_i| + |b_{n-2}| + 1 \\ &(|x_0| - 1) (\sum_{i=0}^{n-2} |b_i| - 1) < 0, \end{split}$$

因此 $|x_0| > 1$, $\sum_{i=0}^{n-2} |b_i| < 1$. 设 $g(x) = (x - y_0)(x^{n-2} + \sum_{i=0}^{n-3} c_i x^i)$, 则类似地,我们有

$$1 > \sum_{i=0}^{n-2} |b_i| \ge (|y_0| - 1) \sum_{i=0}^{n-3} |c_i| + |y_0|,$$

$$(|y_0|-1)(\sum_{i=0}^{n-3}|c_i|+1)<0,$$

 $|y_0|<1$. 因此 f 只有一个根模长大于1, 其余模长均小于1. 如果 f=gh 可约, 则 g,h 的常数项均非零, 均存在模长大于等于1的根, 矛盾! 因此 f 不可约. 实际上, 如果我们利用复变函数中儒歇定理, 可以知道在 S^1 上 $|f-a_{n-1}x^{n-1}|<|a_{n-1}x^{n-1}|$, 从而 f 和 $a_{n-1}x^{n-1}$ 在 S^1 内部有相同多的根, 即 n-1 个.

9.11. (1)

$$x_1^2x_2 + x_2^2x_1 + x_1^2x_3 + x_3^2x_1 + x_2^2x_3 + x_3^2x_2$$

$$= x_1x_2(s_1 - x_3) + x_1x_3(s_1 - x_2) + x_2x_3(s_1 - x_1)$$

$$= (x_1x_2 + x_1x_3 + x_2x_3)s_1 - 3s_3$$

$$= s_1s_2 - 3s_3.$$

(2) 首先
$$x_1^2 + x_2^2 + x_3^2 = s_1^2 - 2s_2$$
.
 $x_1(x_2^3 + x_3^3) + x_2(x_1^3 + x_3^3) + x_3(x_1^3 + x_2^3)$
 $= x_1x_2(x_1^2 + x_2^2) + x_1x_3(x_1^2 + x_3^2) + x_2x_3(x_2^2 + x_3^2)$
 $= s_2(x_1^2 + x_2^2 + x_3^2) - x_1x_2x_3(x_1 + x_2 + x_3)$
 $= s_2(s_1^2 - 2s_2) - s_3s_1 = s_1^2s_2 - 2s_2^2 - s_1s_3$.

9.12. 数学归纳法. 设 $t_n=x_1^n+x_2^n+x_3^n$. n=0,1,2 时, $t_0=3,t_1=-a,t_2=a^2-2b$ 是整数. 设 $k\geq 2$, 如果对于 $n\leq k,$ $t_n=x_1^n+x_2^n+x_3^n$ 是整数, 则

$$\begin{split} t_{k+1} &= -at_k - x_1x_2(x_1^{k-1} + x_2^{k-1}) - x_2x_3(x_2^{k-1} + x_3^{k-1}) - x_3x_1(x_3^{k-1} + x_1^{k-1}) \\ &= -at_k - x_1x_2(t_{k-1} - x_3^{k-1}) - x_2x_3(t_{k-1} - x_1^{k-1}) - x_3x_1(t_{k-1} - x_2^{k-1}) \\ &= -at_k - bt_{k-1} - ct_{k-2} \end{split}$$

是整数.

21. 勘误

习题1.12: "分拆"改为"有序分拆".

习题1.17: z 是纯虚数当且仅当 $\bar{z} = -z$ 且 $z \neq 0$.

习题2.1: "矩阵"改为"2阶方阵".

习题2.4: "方阵"改为"实方阵".

习题2.10: " $\mathbb{Z}(\sqrt{2})$ "改为" $\mathbb{Z}[\sqrt{2}]$ ".

习题2.17: 两处"-30"改为"-3".

习题5.9: $n \ge 2$.

习题8.13: "素数"改为"奇素数".

习题9.11(1) 改为 $x_1^2x_2 + x_2^2x_1 + x_1^2x_3 + x_3^2x_1 + x_2^2x_3 + x_3^2x_2$.