Einfürung in die Differentialgeometrie Hausaufgaben Blatt Nr. 1

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: April 25, 2024)

Aufgabe 1. Auf einem Kreis mit Radius 4 rollt innen ein Kreis mit Radius 1 ab. Die Kurve, die dabei ein fest gewählter Punkt auf dem kleineren Kreis beschreibt, heißt Astroide (dt. "sternähnliche Kurve").

- (a) Bestimmen Sie eine Parametrisierung der Astroide und fertigen Sie eine Skizze der Kurve an (oder visualisieren Sie sie auf Geogebra). An welchen Stellen ist Ihre Parametrisierung singulär?
- (b) Seien a, b mit a < b beliebige aus dem Definitionsbereich Ihrer Parametrisierung. Leiten Sie eine Formel für die Bogenlänge Ihrer parametrisierten Kurve auf dem Intervall [a, b] her.
- Beweis. (a) Der Schwerpunkt der Masse bewegt sich mit Winkelgeschwindigkeit ω . Der Kreis dreht deswegen mit Winkelgeschwindigkeit 3ω .

Ein Punkt hat die Parametrisierung

$$\vec{\mathbf{r}}(t) = (3\cos\omega t + \cos(3\omega t + \delta), 3\sin\omega t + \sin(3\omega t + \delta)).$$

OBdA ist $\omega = 1$ und in diesem Fall ist $t \in [0, 2\pi)$.

$$\vec{\mathbf{r}}(t) = (3\cos t + \cos(3t + \delta), 3\sin t - \sin(3t + \delta)).$$

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

(b) ...

Aufgabe 2. Betrachten Sie die *Traktrix* (dt. "Ziehkurve") $\alpha:(0,\pi)\to\mathbb{R}^2$,

$$\gamma(t) := \left(\cos t + \log\left(\tan\left(\frac{t}{2}\right)\right), \sin t\right), \qquad t \in (0, 2\pi).$$

- (a) Skizzieren Sie die gegebene parametrisierte Kurve (oder visualisieren Sie sie auf Geogebra).
- (b) Zeigen Sie, dass jede Tangente der Traktrix die *x*-Achse schneidet, und dass die Länge der Strecke der Tangente zwischen dem Berührungspunkt mit der Traktrix und dem Schnittpunkt mit der *x*-Achse für alle Tangenten der Traktrix gleich ist.