MATH 341 HW 3

Isaac Boaz

January 20, 2023

Problem 4

Measuring effectiveness of a treatment.

- RR: Relative Risk
- ARR: Absolute Risk Reduction
- T: Treatment Group $\implies \overline{T}$: Control Group
- \bullet B: 'Bad Outcome'
- a) $RR = P(B|T)/P(B|\overline{T})$

RR should be > 1 if the treatment increases chances of harm, and < 1 if it reduces the chances of harm. In this instance, the numerator represents the number of people harmed in total, with the treatment group

- b) $ARR = P(B|\overline{T}) P(B|T)$ As the paper explains how $P(B|\overline{T})$
- c) Is it possible to have a sutation where $RR \approx 0$, and $ARR \approx 0$? Consider a "Rare disease", where

$$P(B|\overline{T}) = 0.001$$

$$P(B|T) = \text{(smaller than above)}$$

$$ARR = P(B|\overline{T}) - P(B|T)$$

d) Show that $P(B|\overline{T}) = \frac{ARR}{1-RR}$

$$\begin{split} \frac{ARR}{1-RR} &= \frac{P(B|\overline{T}) - P(B|T)}{1 - [\frac{P(B|T)}{P(B|\overline{T})}]} \\ &= \frac{P(B|\overline{T})}{P(B|\overline{T})} \cdot \frac{P(B|\overline{T}) - P(B|\overline{T})}{1 - [\frac{P(B|T)}{P(B|\overline{T})}]} \end{split}$$