XI. ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

§1. Parametrické rovnice přímky

Pozn.: Předpokládejme, že v množině E_3 , resp. E_2 (množina všech bodů v prostoru, resp. v rovině) je dána pevná ASS (afinní soustava souřadnic), která je dána 1 bodem (počátkem) a trojicí, resp. dvojicí lineárně nezávislých vektorů. Tzn., jestliže zvolíme umístění těchto vektorů tak, aby počátek ASS byl jejich počátečním bodem, pak přímky, které tyto vektory určují, jsou souřadné osy.

Def.: Nechť p je přímka, $\vec{u} \neq \vec{o}$ volný vektor takový, že existuje jeho umístění \overrightarrow{AB} s vlastnostmi $A \in p, B \in p$. Pak vektor \vec{u} nazýváme <u>směrovým vektorem přímky p</u>.

Pozn.: Místo přesného zápisu $\overrightarrow{AB} \in \overrightarrow{u}$ se z tradičních důvodů užívá nepřesný zápis $\overrightarrow{AB} = \overrightarrow{u}$.

Pozn.: a) Směrový vektor přímky *p* není jediný, existuje jich nekonečně mnoho, všechny jsou navzájem rovnoběžné a nenulové.

b) Bude-li přímka zadána směrovým vektorem \vec{u} a bodem A , zapíšeme to symbolem $p(A, \vec{u})$.

V.1.1.: Nechť $p(A, \vec{u})$ je přímka. Pak platí:

Bod
$$X \in E_3(E_2)$$
 leží na $p \Leftrightarrow \exists t \in R : \overrightarrow{AX} = t \cdot \overrightarrow{u}$.

Pozn.: Nechť $A[a_1,a_2,a_3], B[b_1,b_2,b_3] \in E_3; \vec{u}(u_1,u_2,u_3) = \overrightarrow{AB}$. V X. kapitole ve V.7.2 jsme dokázali, že $u_i = b_i - a_i, \ i \in \{1,2,3\}$. Místo přesného zápisu $\overrightarrow{AB} = \overrightarrow{PB} - \overrightarrow{PA}$ se

z tradičních důvodů užívá zápis $\overrightarrow{AB} = B - A$, neboť P[0;0;0].

V.1.2.: Nechť $p(A, \vec{u})$ je přímka, $A[a_1, a_2, a_3], \vec{u}(u_1, u_2, u_3)$.

Pak platí:
$$X[x, y, z] \in p \Leftrightarrow \exists t \in R : X = A + t\vec{u}$$

v souřadnicích: $x = a_1 + tu_1$

$$y = a_2 + tu_2 \quad (*)$$

$$z = a_3 + tu_3$$

[Dk.: Podle V.1.1 $X \in p \Leftrightarrow \exists t \in R : \overrightarrow{AX} = t\overrightarrow{u}$, tzn. $x_i - a_i = tu_i$, $i \in \{1,2,3\}$ $x_i = a_i + tu_i$]

Def.: Rovnici $X = A + t\vec{u}$, kde $t \in R$, $\vec{u} \neq \vec{o}$, nazýváme <u>parametrickou rovnicí přímky</u> v E_3 , resp. E_2 , číslo t – parametr.

Soustavu (*) nazýváme <u>parametrickými rovnicemi přímky (v souřadnicích)</u> v E_3 (v E_2 by byly rovnice jen 2).

Pozn.: Přímku $p(A, \vec{u})$ lze v E_3 zapsat: $p = \{[a_1 + tu_1, a_2 + tu_2, a_3 + tu_3]; t \in R\}$ v E_2 : $p = \{[a_1 + tu_1, a_2 + tu_2]; t \in R\}$

Př.: a) Napište rovnici přímky p; $p(A, \bar{u})$:

$$A[1;-1;2], \vec{u}(0;1;2)$$

$$\Rightarrow x = a_1 + tu_1 = 1$$

$$y = a_2 + tu_2 = -1 + t$$

$$z = a_3 + tu_3 = 2 + 2t$$

$$\Rightarrow p = \{[1; -1+t; 2+2t], t \in R\}$$

b) Napište rovnici přímky p; $p = \overrightarrow{AB}$:

$$A[0;-1;2]$$

$$B[2;3;-1]$$

$$\vec{u} = B - A = (2;4;-3)$$

$$\Rightarrow x = 2t$$

$$y = -1 + 4t$$

$$z = 2 - 3t$$

$$\Rightarrow p = \{[2t; -1 + 4t; 2 - 3t], t \in R\}$$

- c) Napište rovnici úsečky AB z př. b):
 - -parametrická rovnice stejná

-určení
$$t$$
: bod A : $x = 2t = a_1 = 0 \Rightarrow t = 0$

bod B:
$$x = 2t = b_1 = 2 \implies t = 1$$

$$\Rightarrow AB = \{ [2t; -1 + 4t; 2 - 3t], t \in <0; 1 > \}$$

- d) Napište rovnici polopřímky $\mapsto AB$ z př. b):
 - ⇒ dolní mez intervalu pro t stejná, horní mez jde k nekonečnu

$$\Rightarrow \mapsto AB = \{[2t; -1+4t; 2-3t], t \in <0; \infty\}$$

e) Napište rovnici polopřímky opačné k polopřímce $\mapsto AB$:

$$\{[2t; -1+4t; 2-3t], t \in (-\infty; 0>\}$$

f) Napište rovnici polopřímky $\mapsto BA$:

$$\mapsto BA = \{ [2t; -1 + 4t; 2 - 3t], t \in (-\infty; 1 > \} \}$$

g) Napište rovnici polopřímky opačné k polopřímce $\mapsto BA$:

$$\{[2t; -1+4t; 2-3t], t \in <1; \infty\}$$

§2. Vzájemná poloha dvou přímek

A) v E_2

Pozn.: <u>Určení vzájemné polohy přímek:</u>

Dáno:
$$p(A, \vec{u}), q(B, \vec{v}) \Rightarrow p = \{[a_1 + tu_1, a_2 + tu_2], t \in R\},\$$

$$q = \{[b_1 + rv_1, b_2 + rv_2], r \in R\}$$

<u>I. způsob</u>: určíme průnik $p \cap q$:

$$a_1 + tu_1 = b_1 + rv_1$$

 $a_2 + tu_2 = b_2 + rv_2$ -soustava 2 rovnic s neznámými t , r

Soustava má: 1) 0 řešení $\Rightarrow p, q$ - různé rovnoběžky

- 2) *I řešení* $\Rightarrow p,q$ různoběžky s průsečíkem P: $P[a_1 + t'u_1, a_2 + t'u_2]$ nebo $P[b_1 + r'v_1, b_2 + r'v_2]$
- 3) nekonečně mnoho řešení $\Rightarrow p,q$ jsou totožné přímky

<u>II. způsob</u>: určíme, zda \vec{u}, \vec{v} jsou rovnoběžné (lineárně závislé):

- 1) $\forall k \in R : \vec{u} \neq k \cdot \vec{v} \Rightarrow p \nmid q \Rightarrow B \in p \Rightarrow p, q$ různoběžky
- 2) $\exists k \in R : \vec{u} = k \cdot \vec{v} \Rightarrow p \parallel q \Rightarrow$ a) $B \in p \Rightarrow p, q$ totožné rovnoběžky
 - b) $B \notin p \Rightarrow p, q$ různé rovnoběžky.

Př.: Rozhodněte o vzájemné poloze přímek \overrightarrow{AB} , \overrightarrow{CD}

A[3;2]
$$C[-4;5]$$

B[4;-1] $D[-1;-2]$
 $\Rightarrow p([3;2], (1;-3)); \vec{u}(1;-3)$
 $q([-4;5], (3;-7)); \vec{v}(3;-7)$

I. způsob:

$$3+t = -4 + 3u / 3$$

$$2-3t = 5-7u$$

$$9+3t = -12+9u (1)$$

$$2-3t = 5-7u (2)$$

$$(1)+(2):11 = -7+2u$$

$$\Rightarrow u = 9$$

$$t = \frac{5-63-2}{-3} = 20 \Rightarrow p \not \mid q$$

II. způsob:

$$\begin{pmatrix} 1 & -3 \\ 3 & -7 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 \\ 0 & 2 \end{pmatrix} \Rightarrow \text{lineárně nezávislé} \Rightarrow \underline{p \nmid q}$$

$\underline{\mathbf{B}}$) v $\underline{\mathbf{E}}_3$

Pozn.: <u>Určení vzájemné polohy přímek:</u>

$$p(A, \vec{u}), q(B, \vec{v}) \Rightarrow p = \{[a_1 + tu_1, a_2 + tu_2, a_3 + tu_3]\}$$

$$q = \{[b_1 + rv_1, b_2 + rv_2, b_3 + rv_3]\}$$

<u>I. způsob</u>: Porovnáním odpovídajících souřadnic získáme 3 rovnice o 2 neznámých *t*, *r*.

-soustava má 0 řešení $\Rightarrow p, q$ – různé rovnoběžky nebo mimoběžky (rozlišení provedeme na základě lineární závislosti nebo nezávislosti obou vektorů) -ostatní – obdobně jako v E_2

II. způsob:

1)
$$\forall k \in R : \vec{u} \neq k \cdot \vec{v} \Rightarrow p \not\parallel q$$
: a) $p \cap q \neq \emptyset \Rightarrow p, q - r$ ůznoběžky
b) $p \cap q = \emptyset \Rightarrow p, q - mimoběžky$
2) $\exists k \in R : \vec{u} = k \cdot \vec{v} \Rightarrow p \mid\mid q :$ a) $B \in p \Rightarrow p = q - totožné rovnoběžkyb) $B \notin p \Rightarrow p, q - r$ ůzné rovnoběžky$

V případě 1) lze o vzájemné poloze přímek p, q rozhodnout též vyšetřením toho, zda trojice vektorů $\vec{u}, \vec{v}, \overrightarrow{AB}$ je, resp. není lineárně závislá.

V.2.1.: Věta o vzájemné poloze dvou přímek

Nechť $p(A, \vec{u}), q(B, \vec{v})$ jsou dvě přímky. Pak platí:

1)
$$p \parallel q \land p = q \Leftrightarrow \dim(\vec{u}, \vec{v}, \overrightarrow{AB}) = 1$$

2)
$$p \parallel q \land p \neq q \Leftrightarrow \dim\langle \vec{u}, \vec{v}, \overrightarrow{AB} \rangle = 2 \land \dim\langle \vec{u}, \vec{v} \rangle = 1$$

3)
$$p, q$$
 – různoběžné $\Leftrightarrow \dim(\vec{u}, \vec{v}, \overrightarrow{AB}) = 2 \land \dim(\vec{u}, \vec{v}) = 2$

4)
$$p, q - \text{mimoběžn\'e} \Leftrightarrow \dim(\vec{u}, \vec{v}, \overrightarrow{AB}) = 3$$

Př.!: Rozhodněte o vzájemné poloze přímek p, q

$$p = \{[t; -1 + 2t; -2 + 2t], t \in R\}$$
$$q = \{[1 + r; 1; r], r \in R\}$$

I. způsob:

$$t = 1 + r$$

$$2t - 1 = 1$$

$$2t - 2 = r$$

$$\Rightarrow$$
 1 řešení: $t = 1$; $r = 0 \Rightarrow \underline{\text{různoběžky}}$

II. způsob:

$$\vec{u}(1;2;2)$$

$$\vec{v}(1;0;1)$$

$$\Rightarrow \vec{u}, \vec{v}$$
 - lineárně nezávislé \Rightarrow různoběžky

III. způsob:

$$\frac{\vec{u}}{\vec{AB}} \begin{pmatrix} 1 & 2 & 2 \\ 1 & 0 & 1 \\ 1 & 2 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 2 \\ 0 & -2 & -1 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \dim = 2 \Rightarrow \frac{\text{různoběžky}}{\text{různoběžky}}$$

§3. Další typy rovnice přímky v E_2

Pozn.: Předpokládejme, že v E_2 je pevně dána kartézská soustava souřadnic, která je dána jedním bodem (počátkem) a dvěma kolmými jednotkovými vektory.

Pozn.!: Obecná rovnice přímky v *E*₂

Nechť
$$p(A, \vec{u})$$
 je přímka v $E_2 \Rightarrow p$: $x = a_1 + tu_1 / u_2$

$$\frac{y = a_2 + tu_2 / \cdot (-u_1)}{u_2 x - u_1 y = a_1 u_2 - a_2 u_1}$$

$$\underbrace{u_2}_{a} x - \underbrace{u_1}_{-b} y + \underbrace{a_2 u_1 - a_1 u_2}_{c} = 0$$

$$\Rightarrow ax + by + c = 0$$
, $[a,b] \neq [0;0]$

Def.: Rovnici ax + by + c = 0, kde $[a,b] \neq [0;0]$ nazýváme obecnou rovnicí přímky v E_2 .

Pozn.: Obecná rovnice přímky v E_2 není určena jednoznačně, každý její nenulový násobek je rovnicí téže přímky.

Pozn.: Koeficienty a, b lze považovat za souřadnice vektoru kolmého ke směrovému vektoru přímky p.

[Dk.: Nechť přímka p má směrový vektor \vec{u} a nechť vektor $\vec{n}=(a,b)$. Pak platí: $\vec{n}\cdot\vec{u}=au_1+bu_2\Rightarrow (\textit{podle pozn.})\ a\cdot(-b)+b\cdot a=0\Rightarrow \vec{n}\perp\vec{u}$]

Def.: Vektor kolmý ke směrovému vektoru přímky p se nazývá <u>normálový vektor přímky</u> p a značí se \vec{n} .

Př.: Napište obecnou rovnici přímky p $p = \{[2-3t; 4-5t], t \in R\}$

I. Vyloučením parametru ze soustavy rovnic

$$x = 2-3t / 5$$

$$y = 4-5t / (-3)$$

$$5x-3y=10-12$$

$$5x-3y+2=0$$

II. Pomocí normálového vektoru přímky

$$A = [2;4]$$

směrový vektor $\vec{u} = (3;5)$
 \Rightarrow normálový vektor $\vec{n} = (5;-3)$
obecná rovnice: $5x - 3y + c = 0$
 $A \in p \Rightarrow 5 \cdot 2 - 3 \cdot 4 + c = 0 \Rightarrow c = 2 \Rightarrow p : 5x - 3y + 2 = 0$

Př.: Napište parametrickou rovnici přímky p: x-2y+1=0

I. Substitucí (1 neznámá = parametr)

$$y = t; t \in R$$

 $x = 2t - 1$
 $\Rightarrow p = \{[-1 + 2t; t], t \in R\}$

II. Pomocí směrového vektoru

$$\vec{n} = (1; -2)$$

$$\vec{u} = (2; 1)$$

$$A: y = 0 \Rightarrow x - 2 \cdot 0 + 1 = 0 \Rightarrow x = -1 \Rightarrow A[-1; 0]$$

$$\Rightarrow p = \{[-1 + 2t; t], t \in R\}$$

Pozn.: Směrnicový tvar rovnice přímky v E_2 Nechť $p: ax + by + c = 0, b \neq 0$.

$$\Rightarrow y = -\frac{a}{b}x - \frac{c}{b}$$
.

Označme
$$-\frac{a}{b} = k; -\frac{c}{b} = q$$

$$\Rightarrow y = kx + q$$

Rovnice y = kx + q se nazývá směrnicovým tvarem rovnice přímky v E_2 , k je Def.: směrnice přímky.

a) Geometrický význam čísel k, q: Pozn.:

$$p: y = kx + q$$

$$k = \operatorname{tg} \alpha$$

 $\overline{\text{průsečík}}$ přímky p s osou y v bodě [0;q]

$$k = \frac{u_2}{u_1}$$
, kde $\vec{u}(u_1, u_2)$ je směrový vektor přímky p .

b) Směrnicový tvar neexistuje pro přímky rovnoběžné s osou y.

$$(\alpha = 90^{\circ}, \text{ tg } 90^{\circ} \text{ neexistuje})$$

c) Přímka p je dána směrnicí k a bodem $[x_1, y_1]$

$$y = kx + q$$

$$[x_1, y_1] \in p \Rightarrow y_1 = kx_1 + q$$

$$q = y_1 - kx_1$$

$$y = kx + y_1 - kx_1$$

$$y = kx + y_1 - kx_1$$

$$y = k(x - x_1) + y_1$$

d) Přímka
$$p$$
 je určena dvěma body $[x_1, y_1], [x_2, y_2]$
 $y = kx + q$

$$k = \frac{u_2}{u_1} = \frac{y_2 - y_1}{x_2 - x_1}$$
$$y = \frac{y_2 - y_1}{x_2 - x_1} \cdot (x - x_1) + y_1$$

Úsekový tvar rovnice přímky v
$$E_2$$

Nechť $p: ax + by + c = 0; a \neq 0; b \neq 0; c \neq 0$

$$\Rightarrow \frac{a}{c}x + \frac{b}{c}y + 1 = 0$$

$$-\frac{a}{c}x - \frac{b}{c}y = 1$$

$$\frac{x}{-\frac{c}{a}} + \frac{y}{-\frac{c}{b}} = 1.$$

Označme
$$-\frac{c}{a} = p; -\frac{c}{b} = q \Rightarrow \sqrt{\frac{x}{p} + \frac{y}{q}} = 1$$
; $p, q \neq 0$.

Rovnici $\frac{x}{p} + \frac{y}{q} = 1$; $p, q \neq 0$ nazýváme <u>úsekovým tvarem rovnice přímky</u> v E_2 . Def.:

a) Geometrický význam čísel p, q: Pozn.:

b) Úsekový tvar neexistuje pro přímky rovnoběžné s osou x, rovnoběžné s y, procházející počátkem soustavy souřadnic.

Př.: Dáno: A[0,2], B[3,0]. Napište obecnou rovnici, úsekový, směrnicový a parametrický tvar rovnice přímky.

-úsekový tvar:

$$\frac{x}{3} + \frac{y}{2} = 1$$

-obecná rovnice:

$$\frac{x}{3} + \frac{y}{2} = 1$$

$$2x - 3y = 6$$

$$2x + 3y - 6 = 0$$

-směrnicový tvar:

$$y = kx + q$$

$$2x + 3y - 6 = 0$$

$$3y = -2x + 6 \quad /:3$$

$$y = -\frac{2}{3}x + 2$$

-parametrická rovnice:

$$\vec{u} = \overrightarrow{AB} = (3; -2)$$

$$\Rightarrow p = \{[3t; 2-2t], t \in R\}$$

§4. Rovnice roviny v E_3

Pozn.: Předpokládejme, že rovina $\rho \subseteq E_3$ je zadána bodem A a dvojicí lineárně nezávislých vektorů \vec{u} , \vec{v} . Zapisujeme $\rho(A, \vec{u}, \vec{v})$.

Def.: Nechť ρ je rovina, \vec{u}, \vec{v} nenulové lineárně nezávislé volné vektory takové, že existuje jejich umístění $\overrightarrow{AB}, \overrightarrow{AC}$ takové, že $A, B, C \in \rho$. Pak vektory \vec{u}, \vec{v} nazýváme <u>zaměřením roviny</u> ρ .

V.4.1.: Nechť $\rho(A, \vec{u}, \vec{v})$ je rovina. Pak platí: Bod $X \in E_3$ leží v rovině $\rho \Leftrightarrow \overrightarrow{AX} \in \langle \vec{u}, \vec{v} \rangle \Leftrightarrow \exists r, s \in R : \overrightarrow{AX} = r \cdot \vec{u} + s \cdot \vec{v}$.

V.4.2.: Nechť $\rho(A, \vec{u}, \vec{v})$ je rovina, $A[a_1, a_2, a_3], \vec{u}(u_1, u_2, u_3), \vec{v}(v_1, v_2, v_3)$. Pak platí: Bod $X[x, y, z] \in \rho \Leftrightarrow \exists r, s \in R : \boxed{X = A + r \cdot \vec{u} + s \cdot \vec{v}}$ v souřadnicích: $x = a_1 + r \cdot u_1 + s \cdot v_1$ $y = a_2 + r \cdot u_2 + s \cdot v_2$ (*) $z = a_3 + r \cdot u_3 + s \cdot v_3$; $r, s \in R$.

Def.: Rovnici $X = A + r \cdot \vec{u} + s \cdot \vec{v}$; $r, s \in R$; $\vec{u}, \vec{v} \neq \vec{o}$ nazveme parametrickou rovnicí roviny v E_3 , čísla r, s parametry. Soustavu (*) nazýváme parametrickými rovnicemi roviny (v souřadnicích).

Pozn.: Parametrickou rovnici roviny $\rho(A, \vec{u}, \vec{v})$ též zapisujeme $\rho = \{ [a_1 + ru_1 + sv_1, a_2 + ru_2 + sv_2, a_3 + ru_3 + sv_3]; r, s \in R \}.$

Př.: Napište parametrickou rovnici roviny ρ určenou body A[1;1;1], B[2;0;-1], C[1;0;0].

$$\vec{u} = \overrightarrow{AB} = (1; -1; -2)$$

$$\vec{v} = \overrightarrow{AC} = (0; -1; -1)$$

$$\Rightarrow \rho = \{ [1+r; 1-r-s; 1-2r-s]; r, s \in R \}$$

Pozn.: Obecná rovnice roviny

Necht' $\rho(A, \vec{u}, \vec{v})$ je rovina, $A[a_1, a_2, a_3], \vec{u}(u_1, u_2, u_3), \vec{v}(v_1, v_2, v_3)$.

Pak rovina ρ má tyto rovnice: $x = a_1 + ru_1 + sv_1$

$$y = a_2 + ru_2 + sv_2$$

$$z = a_3 + ru_3 + sv_3 \quad ; r, s \in R.$$

Eliminací parametrů r,s a vhodným označením koeficientů A,B,C,D (analogie odvození obecné rovnice přímky) získáme tvar

$$Ax + By + Cz + D = 0$$
, kde $[A, B, C] \neq [0, 0, 0]$.

Def.: Rovnici Ax + By + Cz + D = 0, kde $[A, B, C] \neq [0;0;0]$ nazýváme <u>obecnou rovnicí roviny</u>.

Pozn.: Koeficienty A,B,C lze považovat za souřadnice vektoru kolmého k rovině ρ , tzn. normálového vektoru roviny $\rho: \vec{n} = (A,B,C), \vec{n} \perp \vec{u}, \vec{n} \perp \vec{v}$.

Př.: Napište obecnou rovnici roviny ρ :

$$\rho: x = 1 + r$$

$$y = 1 - r - s$$

$$z=1-2r-s$$
; $r,s\in R$.

I. Pomocí normálového vektoru

-z parametrické rovnice: A = [1;1;1]

$$\vec{u} = (1; -1; -2)$$

$$\vec{v} = (0; -1; -1)$$

$$\vec{n} = \vec{u} \times \vec{v} = \begin{pmatrix} -1 & -2 \\ -1 & -1 \end{pmatrix}; \begin{vmatrix} -2 & 1 \\ -1 & 0 \end{pmatrix}; \begin{vmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} = (-1;1;-1) \sim (1;-1;1)$$

obecná rovnice: ρ : x - y + z + d = 0

$$A = [1;1;1] \in \rho \Rightarrow 1-1+1+d=0$$

$$d = -1$$

$$\Rightarrow \rho: x - y + z - 1 = 0$$

II. Vyloučením parametrů r,s ze soustavy rovnic

$$x = 1 + r$$

$$y=1-r-s z=1-2r-s$$
 $z-y=-r$

$$\Rightarrow x + z - y = 1$$

$$x - y + z - 1 = 0$$

Př.: Napište parametrické rovnice roviny ρ , která má obecnou rovnici x + 2y - z + 1 = 0.

Pomocí substituce:
$$y = r$$

$$x = -1 + s - 2r$$

$$z = s$$
 $\Rightarrow y = r$

$$x = -1 + s - 2r$$
 $z = s$; $r, s \in R$

$$\rho = \{[-1-2r+s, r, s]; r, s \in R\}$$

§5. Vzájemná poloha dvou rovin

V.5.1.: Věta o vzájemné poloze dvou rovin daných obecnými rovnicemi

Necht' ρ : ax + by + cz + d = 0, σ : ex + fy + gz + h = 0 isou roviny.

Pak platí: I. $\rho = \sigma \Leftrightarrow \exists k \in R : (a,b,c,d) = k \cdot (e,f,g,h)$

II.
$$\rho \parallel \sigma \land \rho \neq \sigma \Leftrightarrow \exists k \in R : (a,b,c) = k \cdot (e,f,g) \land d \neq k \cdot h$$

III. $\rho \not\parallel \sigma \Leftrightarrow \forall k \in R : (a,b,c) \neq k \cdot (e,f,g)$.

nebo neexistuje takové $k \in R$: $(a,b,c) = k \cdot (e,f,g)$

Určete vzájemnou polohu dvou rovin Př.:

$$\rho$$
: 2 x + 3 y + 4 z + 5 = 0

$$\sigma: x - y - z + 1 = 0$$

$$\vec{n}_{\rho} = (2;3;4)$$

 $\vec{n}_{\sigma} = (1;-1;-1)$ \Rightarrow vektory nejsou lineárně závislé $\Rightarrow \rho \not \mid \sigma$.

Určení průsečnice rovin ρ , σ (hledáme parametrickou rovnici přímky v E_3):

volíme
$$z = t; t \in R$$

$$2x + 3y + 4t + 5 = 0$$

$$x-y-t+1=0 \quad /\cdot 3$$

$$5x + t + 8 = 0$$

$$\Rightarrow x = \frac{-8 - t}{5} = -\frac{8}{5} - \frac{1}{5}t$$

$$y = x - t + 1 \Rightarrow y = -\frac{8}{5} - \frac{1}{5}t - t + 1 = -\frac{3}{5} - \frac{6}{5}t$$

$$\Rightarrow$$
 rovnice průsečnice: $x = -\frac{8}{5} - \frac{1}{5}t$

$$y = -\frac{3}{5} - \frac{6}{5}t$$

$$z = t$$
 , $t \in R$

V.5.2.: Věta o vzájemné poloze dvou rovin daných parametrickými rovnicemi

Nechť $\rho(A, \vec{u}, \vec{v}), \sigma(B, \vec{k}, \vec{l})$ jsou roviny.

Pak platí: I. $\rho = \sigma \Leftrightarrow \dim(\vec{u}, \vec{v}, \vec{k}, \vec{l}) = 2 \land \dim(\vec{u}, \vec{v}, \vec{k}, \vec{l}, \overrightarrow{AB}) = 2$

II.
$$\rho \parallel \sigma \land \rho \neq \sigma \Leftrightarrow \dim(\vec{u}, \vec{v}, \vec{k}, \vec{l}) = 2 \land \dim(\vec{u}, \vec{v}, \vec{k}, \vec{l}, \overrightarrow{AB}) = 3$$

III.
$$\rho \nmid \sigma \Leftrightarrow \dim \langle \vec{u}, \vec{v}, \vec{k}, \vec{l} \rangle = 3$$
.

Př.: Rozhodněte o vzájemné poloze rovin ρ a σ :

$$\rho = \{[4+t_1+2t_2; 5+2t_1; 3+2t_1+2t_2]; t_1, t_2 \in R\}$$

$$\sigma = \{ [1 + 2r_1 + r_2; -2 - 2r_1 - 2r_2; 1 + r_1]; r_1, r_2 \in R \}$$

$$\Rightarrow \rho: A = [4;5;3], \qquad \sigma: B = [1;-2;1]$$

$$\vec{u} = (1; 2; 2),$$
 $\vec{k} = (2; -2; 1),$

$$\vec{v} = (2;0;2) \sim (1;0;1)$$
 $\vec{l} = (1;-2;0)$

$$\Rightarrow \overrightarrow{AB} = (-3; -7; -2)$$

$$\overrightarrow{AB} = (-3, -7, -2)$$

$$\overrightarrow{U} \begin{pmatrix} 1 & 2 & 2 \\ 1 & 0 & 1 \\ 2 & -2 & 1 \\ 1 & -2 & 0 \\ -3 & -7 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ 0 & 6 & 3 \\ 0 & 4 & 2 \\ 0 & -1 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 9 \end{pmatrix}$$

$$\Rightarrow \dim\langle \vec{u}, \vec{v}, \vec{k}, \vec{l} \rangle = 2, \dim\langle \vec{u}, \vec{v}, \vec{k}, \vec{l}, \overrightarrow{AB} \rangle = 3$$

⇒ roviny jsou rovnoběžné různé.

Př.: Určete vzájemnou polohu rovin ρ a σ :

$$\rho = \{ [1 + t_1 + 2t_2; 2t_1 + 3t_2; -2 - 2t_1 + t_2]; t_1, t_2 \in R \}$$

$$\sigma = \{ [r_1; -3 + r_2; 1 + 4r_1 - r_2]; r_1, r_2 \in R \}$$

$$\Rightarrow \rho: A = [1;0;-2], \quad \sigma: B = [0;-3;1]$$

$$\vec{u} = (1; 2; -2), \qquad \qquad \vec{k} = (1; 0; 4),$$

$$\vec{v} = (2;3;1)$$
 $\vec{l} = (0;1;-1)$

$$\Rightarrow \overrightarrow{AB} = (-1; -3; 3)$$

$$\frac{\vec{u}}{\vec{v}} \begin{pmatrix} 1 & 2 & -2 \\ 2 & 3 & 1 \\ 1 & 0 & 4 \\ 0 & 1 & -1 \\ -1 & -3 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -2 \\ 0 & -1 & 5 \\ 0 & -2 & 6 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -2 \\ 0 & -1 & 5 \\ 0 & 0 & -4 \\ 0 & 0 & 4 \\ 0 & 0 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -2 \\ 0 & -1 & 5 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Rightarrow \dim \langle \vec{u}, \vec{v}, \vec{k}, \vec{l} \rangle = 3$$

⇒ roviny jsou různoběžné.

Rovnice průsečnice ρ , σ :

-porovnání souřadnic ρ a σ :

$$1 + t_1 + 2t_2 = r_1$$

$$2t_1 + 3t_2 = -3 + r_2$$

$$-2 - 2t_1 + t_2 = 1 + 4r_1 - r_2$$

-soustava 3 rovnic o 4 neznámých, po vyjádření z 2. a 3.rovnice $t_2 = r_1 = t$, odsud a

z 1. rovnice
$$t_1 = -1 - t$$
, $r_2 = t + 1$

Dosazením do rovnice roviny ρ :

$$p = \{[t; -2 + t; 3t], t \in R\}$$

§6. Vzájemná poloha přímky a roviny

V.6.1.: Věta o vzájemné poloze přímky a roviny dané parametrickými rovnicemi Nechť $p(A, \vec{u})$ je přímka, $\rho(B, \vec{v}, \vec{w})$ rovina.

Pak platí: I. $p \subseteq \rho \Leftrightarrow \dim(\vec{v}, \vec{w}, \vec{u}) = 2 \wedge \dim(\vec{v}, \vec{w}, \vec{u}, \overrightarrow{AB}) = 2$

II.
$$p \parallel \rho \land p \not\subset \rho \Leftrightarrow \dim(\vec{v}, \vec{w}, \vec{u}) = 2 \land \dim(\vec{v}, \vec{w}, \vec{u}, \overrightarrow{AB}) = 3$$

III. $p \not\parallel \rho \Leftrightarrow \dim \langle \vec{v}, \vec{w}, \vec{u} \rangle = 3$.

Př.: Rozhodněte o vzájemné poloze přímky p a roviny ρ :

 $p = \{[3+t; 1+2t; 2-t], t \in R\}$

$$\rho = \{[1-3r+s; 2r-s; 1+4r-s]; r, s \in R\}$$

 $p: A = [3;1;2], \vec{u} = (1;2;-1)$

$$\rho: B = [1;0;1], \vec{v} = (-3;2;4), \vec{w} = (1;-1;-1)$$
 $\overrightarrow{AB} = (-2;-1;-1)$

$$\vec{w} \begin{pmatrix} 1 & -1 & -1 \\ -3 & 2 & 4 \\ 1 & 2 & -1 \\ -2 & -1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 \\ 0 & -1 & 1 \\ 0 & 3 & 0 \\ 0 & -3 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$$

 $\dim\langle v, \vec{w}, \vec{u} \rangle = 3 \Rightarrow$ přímka je různoběžná s rovinou.

Určení průsečíku p, ρ :

-porovnáváme souřadnice p a ρ :

3 + t = 1 - 3r + s

$$1 + 2t = 2r - s$$

$$2 - t = 1 + 4r - s$$

 \Rightarrow soustava 3 rovnic o 3 neznámých, vyřešením dostáváme t = -2; s = 9; r = 3.

Dosazením t = -2 do rovnice přímky p dostáváme souřadnice průsečíku:

P = [1; -3; 4].

V.6.2.: Věta o vzájemné poloze přímky a roviny dané obecnou rovnicí

Nechť $p(A, \vec{u})$ je přímka, $\rho : ax + by + cz + d = 0, [a, b, c] \neq [0; 0; 0]$ rovina. Nechť $\vec{n} = (a, b, c)$.

Pak platí: I. $p \subseteq \rho \Leftrightarrow \vec{u} \cdot \vec{n} = 0 \land A \in \rho$

II.
$$p \parallel \rho \land p \not\subset \rho \Leftrightarrow \vec{u} \cdot \vec{n} = 0 \land A \notin \rho$$

III. $p \not\parallel \rho \Leftrightarrow \vec{u} \cdot \vec{n} \neq 0$.

Př.: Rozhodněte o vzájemné poloze přímky p a roviny ρ :

a)
$$p = \{[1-t; 1+3t; -2], t \in R\}, \rho: 3x + y + 5z + 7 = 0$$

 $\Rightarrow \vec{u} = (-1; 3; 0),$

$$\vec{n} = (3;1;5)$$

 $\vec{u} \cdot \vec{n} = -3 + 3 + 0 = 0 \implies \text{přímka je s rovinou rovnoběžná}$

Rozhodneme, jestli přímka p leží v rovině ρ , tzn. jestli $A \in \rho$:

b)
$$p = \{[3+t;1-t;2t], t \in R\}, \rho : x-2y+z-3=0$$

 $\Rightarrow \vec{u} = (1;-1;2)$
 $\vec{n}_{\rho} = (1;-2;1)$
 $\vec{u} \cdot \vec{n} = 1+2+2=5 \neq 0 \Rightarrow p \not\parallel \rho$

Určení průsečíku p, ρ :

-dosadíme rovnici přímky p do rovnice roviny ρ :

$$3 + t - 2 + 2t + 2t - 3 = 0$$

$$5t = 2$$

$$t = \frac{2}{5}$$

$$\Rightarrow P = \left[\frac{17}{5}; \frac{3}{5}; \frac{4}{5}\right]$$