Artificial Intelligence Assignment 5

Mete Harun Akcay

1.

a. Give the complete probability tables for the model. Assume S as a prior.

S_0	$P(S_0)$
S	0.6
$\neg s$	0.4

R_t	S_t	$P(R_t S_t)$
r	S	0.1
$\neg r$	S	0.9
r	$\neg s$	0.7
$\neg r$	$\neg s$	0.3

S_{t+1}	S_t	$P(S_{t+1} S_t)$
s_{t+1}	s_t	0.9
$\neg s_{t+1}$	s_t	0.1
s_{t+1}	$\neg s_t$	0.2
$\neg s_{t+1}$	$\neg s_t$	0.8

C_t	S_t	$P(C_t S_t)$
С	S	0.2
$\neg c$	S	0.8
С	$\neg s$	0.4
$\neg c$	$\neg s$	0.6

b. Given evidence:

- $e = \neg r1$, $\neg c1$ = not red eyes, not sleeping in class
- e = r2, $\neg c2 = red$ eyes, not sleeping in class
- e = r3,c3 = red eyes, sleeping in class, perform the following computations:

(i) State estimation: compute P(St|e : 1:t) for each of t = 1; 2; 3.

$$t = 1 \rightarrow P(S_1 \mid e_{1:1}) = <0.867, 0.132>$$

i)
$$t=1 \rightarrow P(S_1 \mid e_1) = P(S_1 \mid Te_1, Te_1)$$

$$P(S_1) = P(S_2) \cdot P(S_1 \mid S_2) + P(Te_1, Te_2)$$

$$P(S_1) = 0.6 \times 0.3 + 0.4 \times 0.2 = 0.62$$

$$P(Te_2) = 1 - 0.62 = 0.38$$

$$P(S_1 \mid e_1) = \alpha \cdot P(e_1 \mid S_1) \cdot P(S_1) = \alpha \cdot 0.9 \times 0.8 \times 0.62 = \alpha \cdot 0.4464$$

$$P(Te_2 \mid e_1) = \alpha \cdot P(e_1 \mid Te_2) \times P(Te_2) = \alpha \cdot 0.6 \times 0.3 \times 0.38 = \alpha \cdot 0.0684$$

$$P(S_1 \mid e_1) + P(Te_2 \mid e_1) = 1$$

$$x \cdot (0.4464 + 0.0684) = 1$$

$$0.5148$$

$$P(S_1 \mid e_1) = 0.4464 / 0.5148 = 0.867$$

$$P(Te_2 \mid e_1) = 0.0684 / 0.5148 = 0.132$$

$$t = 2 \rightarrow P(S_2 \mid e_{1:2}) = <0.4432, 0.5568>$$

$$P(S_{2}|e_{1}) = P(S_{2}|s_{1}) \times P(S_{1}|e_{1}) = 0.9 \times 0.867 + 0.2 \times 0.133 = 0.8069$$

$$P(7S_{2}|e_{1}) = 0.1931$$

$$P(S_{2}|e_{1}) = \alpha \cdot P(e_{2}|S_{2}) \cdot P(S_{2}|e_{1}) = \alpha \times 0.1 \times 0.8 \times 0.269 = \alpha \cdot 0.264$$

$$P(7S_{2}|e_{1}) = \alpha \cdot P(e_{2}|S_{2}) \cdot P(S_{2}|e_{1}) = \alpha \times 0.7 \times 0.6 \times 0.1931 = \alpha \cdot 0.081102$$

$$P(7S_{2}|e_{1}:z) = \alpha \cdot P(e_{2}|T_{S_{2}}) \cdot P(T_{S_{2}}|e_{1}) = \alpha \times 0.7 \times 0.6 \times 0.1931 = \alpha \cdot 0.081102$$

$$\alpha \cdot (0.06456 + 0.081102) = 1 \rightarrow \alpha = 1/0.145662$$

$$P(S_{2}|e_{1}:z) = 0.06456 = 0.4432 \quad P(T_{S_{2}}|e_{1}:z) = 0.081102 \quad 0.5568$$

$$0.145662 \quad 0.145662$$

$$F(S_3|e_{1:2}) = \sum_{S_2} P(S_3|S_2) \cdot P(S_2|e_{1:2}) = 0.9 \times 0.4432 + 0.2 \times 0.5568$$

$$= 0.51024$$

$$P(T_{S_3}|e_{1:2}) = \sum_{S_2} P(T_{S_3}|S_2) \cdot P(S_2|e_{1:2}) = 0.1 \times 0.4432 + 0.8 \times 0.5568$$

$$= 0.48976$$

$$P(S_3|e_{1:3}) = \times \cdot P(e_3|S_3) \cdot P(S_3|e_{1:2}) = \times \times 0.1 \times 0.2 \times 0.51024 = \times 0.0102$$

$$P(T_{S_3}|e_{1:3}) = \times \cdot P(e_3|S_3) \cdot P(T_{S_3}|e_{1:2}) = \times \times 0.7 \times 0.4 \times 0.48976 = \times \times 0.1371$$

$$\times \cdot (0.0102 + 0.1371) = 1 \rightarrow \times = 0.1473$$

$$P(S_3|e_{1:3}) = 0.0102 = 0.0692$$

$$P(T_{S_3}|e_{1:3}) = 0.0102 = 0.0692$$

$$P(T_{S_3}|e_{1:3}) = 0.1371 = 0.9308$$

$$0.1473 = 0.9308$$

(ii) Smoothing: compute P(St|e 1:3), for each t = 1; 2; 3.

$$t = 3 \rightarrow P(S_3 \mid e_{1:3}) = <0.0692, 0.9308>$$

$$t = 2 \rightarrow P(S_2 \mid e_{1:3}) = <0.138, 0.862>$$

$$F(e_{3}|s_{2}) = \sum_{S_{3}} P(e_{3}|S_{3}) \times P(s_{2}|e_{1};2) \times P(e_{3}|s_{2})$$

$$P(e_{3}|s_{2}) = \sum_{S_{3}} P(e_{3}|S_{3}) \times P(s_{3}|s_{2}) = 0.02 \times 0.9 + 0.28 \times 0.1 = 0.046$$

$$P(e_{3}|r_{3}) = \sum_{S_{3}} P(e_{3}|S_{3}) \times P(s_{3}|r_{3}) = 0.02 \times 0.2 + 0.28 \times 0.8 = 0.228$$

$$P(s_{2}|e_{1};3) = \alpha \times P(s_{2}|e_{1};3) \times P(e_{3}|s_{2}) = \alpha \times 0.4432 \times 0.046 = \alpha \times 6.0204$$

$$P(r_{2}|e_{1};3) = \alpha \times P(r_{3}|e_{1};2) \times P(e_{3}|r_{3};2) = \alpha \times 0.5568 \times 0.228 = 0.1269$$

$$\alpha \cdot (0.0204 + 0.1269) = 1 \longrightarrow \alpha = 1/0.1473$$

$$P(s_{2}|e_{1};3) = 0.0204 = 0.138 + P(r_{3}|e_{1};3) = 0.1269 = 0.864$$

$$0.1473 = 0.864$$

$$\begin{aligned} & + = 1 - P(S_1|e_{1:3}) \\ & P(S_1|e_{1:3}) = \alpha \times P(S_1|e_{1}) \times P(e_{2:3}|s_{1}) \\ & P(S_1|e_{1}:3) = 0.867 \quad P(7s_1|e_{1}) = 0.133 \\ & P(e_{2:3}|s_{1}) = \sum_{S_{2}} P(e_{2}|s_{2}) \times P(e_{3}|s_{2}) \times P(s_{2}|s_{1}) \\ & P(e_{2:3}|s_{1}) = 0.1 \times 0.8 \times 0.046 \times 0.9 + 0.7 \times 0.6 \times 0.228 \times 0.1 = 0.012888 \\ & P(e_{2:3}|7s_{1}) = 0.1 \times 0.8 \times 0.046 \times 0.2 + 0.7 \times 0.6 \times 0.228 \times 0.8 = 0.079994 \\ & P(s_{1}|e_{1:3}) = \alpha \times 0.867 \times 0.012888, \quad P(7s_{1}|e_{1:3}) = \alpha \times 0.33 \times 0.079994 \\ & \alpha \cdot (0.867 \times 0.012888 + 0.133 \times 0.079994) = 1 \rightarrow \alpha = 1/0.0218 \end{aligned}$$

$$P(s_{1}|e_{1:3}) = 0.512564 \qquad P(7s_{1}|e_{1:3}) = 0.488037$$

2. For the 4×3 world shown in the figure below, calculate which squares can be reached from (1,1) by the action sequence [Up, Up] and with what probabilities, by filling in the table on the next page.

	Up	Up
(1,1)	0.1	0.02
(1,2)	0.8	0.24
(1,3)	0	0.64
(2,1)	0.1	0.09
(2,3)	0	0
(3,1)	0	0.01
(3,2)	0	0
(3,3)	0	0
(4,1)	0	0
(4,2)	0	0
(4,3)	0	0

JUT UP	2°2 Up
(1,1) 0.1	$0.1 \times 0.1 + 0.1 \times 0.1 = 0.02$
(1,2) 0.8	0.1 x0.8 + 0.8 x 0.2 = 0.24
(1,3) 0	08×0.8 = 0.64
(2.1) 0.1	0.1×0.1+ 0.1×0.8 = 0.09
(2,3) 0	0
(3,1) (0.1x0.1 = 0.01
(3,2)	0
(3,3)	0
(4,1)	0
(4 ₁ 2) 0	0
(4,3)	0.