Universidad de San Carlos de Guatemala Facultad de Ingeniería Organización Computacional Sección B

Práctica #2

LogicCalc

Integrantes

Grupo 4

Nombre	Carné
Oswaldo Antonio Choc Cuteres	201901844
Javier Andrés Monjes Solórzano	202100081
Jencer Hamilton Hernández Alonzo	202002141
Juan Pascual Itzep Coguox	202202161

INTRODUCCIÓN

En el ámbito de la electrónica digital, los bloques MSI (Medium Scale Integration) desempeñan un papel crucial en la construcción de circuitos complejos. En particular, los bloques MSI tipo aritmético son esenciales para realizar operaciones básicas eficientes y confiables.

Este Proyecto, encomendado por Intel Corporation, tuvo como objetivo construir una Unidad Aritmética Lógica Básica (ALU) para una calculadora llamada "LogicCalc".

La ALU es capaz de realizar operaciones aritméticas y lógicas con números binarios de 4 bits. Los bloques digitales combinaciones MSI tipo aritmético fueron diseñados para realizar operaciones matemáticas utilizando compuertas lógicas, registros y otros componentes digitales. Se establecen objetivos específicos, como el aprender el correcto funcionamiento de Multiplexores, Demultiplexores, Comparadores y Decodificadores, así como construir un diseño optimo utilizando la menor cantidad de equipo y dispositivos posibles.

La descripción detalla las operaciones que la ALU debe llevar a cabo, incluyendo suma, resta, multiplicación, elevar al cuadrado o al cubo, y operaciones lógicas como AND, OR, XOR, y NOT. También se especifican requisitos como la presentación de resultados en Displays de 7 Segmentos y LEDs, según la unidad (aritmética, lógica o comparativa) que esté ejecutando la operación.

La metodología de trabajo establece pautas para la documentación, simulación en Proteus, implementación física en placa, y la presentación de la práctica. Se enfatizó la importancia del orden y claridad en el circuito, y se establecen consideraciones sobre penalizaciones por incumplimiento de reglas o normativas.

OBJETIVOS

General

Desarrollar una Unidad Aritmética Lógica Básica (ALU) eficiente y versátil, cumpliendo con los requisitos especificados para la calculadora "LogicCalc" de Intel Corporation.

Específicos

- Aprender el funcionamiento detallado de los Multiplexores, Demultiplexores, Comparadores y Decodificadores en el contexto de la electrónica digital, para optimizar su implementación en la ALU. Diseñar el esquema electrónico del circuito.
- 2. Construir un diseño óptimo de la ALU, minimizando la cantidad de dispositivos utilizados, para lograr eficiencia y reducir la complejidad del circuito.
- 3. Comprender y aplicar de manera efectiva las funciones booleanas y los Mapas de Karnaugh en la formulación de las operaciones aritméticas y lógicas, garantizando una implementación coherente y precisa en la ALU.

DESCRIPCION DEL PROBLEMA

En el marco de la electrónica digital, se plantea el desarrollo de una Unidad Aritmética Lógica Básica (ALU) para la calculadora "LogicCalc", bajo el encargo de Intel Corporation. La ALU debe ser capaz de ejecutar operaciones aritméticas y lógicas con números binarios de 4 bits, desempeñando un papel fundamental en la construcción de circuitos complejos. Este proyecto se presenta como un desafío técnico y conceptual, con requisitos específicos para garantizar la eficiencia y confiabilidad de las operaciones.

La necesidad de construir un diseño óptimo, minimizando la cantidad de dispositivos, agrega un nivel adicional de complejidad y desafío al proyecto.

Los requisitos detallados incluyen la implementación de operaciones como suma, resta, multiplicación, elevar al cuadrado o al cubo, y operaciones lógicas como AND, OR, XOR y NOT. Además, se especifica la presentación de resultados en Displays de 7 Segmentos y LEDs, según la unidad (aritmética, lógica o comparativa) que esté ejecutando la operación. La ALU debe ser capaz de manejar la validación de resultados, considerando condiciones especiales para la resta y la multiplicación, y mostrar mensajes de error en caso necesario.

La unidad comparativa, encargada de realizar cálculos comparativos entre las entradas de la ALU, añade otra dimensión al proyecto. La presentación visual mediante LEDs de diferentes colores para cada unidad operativa (aritmética, lógica) agrega una capa adicional de complejidad y requerimientos estéticos.

PROCESO TEORICO

- 1 Diseño de Operaciones: Para cada operación (suma, resta, multiplicación, etc.), realizar un análisis teórico de las funciones booleanas y las operaciones lógicas involucradas. Utilizar Mapas de Karnaugh para simplificar y optimizar las expresiones booleanas.
- 2 Selección de Componentes: Elegir los componentes adecuados para cada operación, como compuertas lógicas, registros, multiplexores, demultiplexores, comparadores, decodificadores, displays de 7 segmentos y LEDs. Asegurarse de que estos componentes cumplan con los requisitos del proyecto y estén permitidos según las especificaciones.
- 3 Diseño de Circuitos: Utilizar diagramas de bloques y esquemas para representar visualmente la estructura del ALU. Diseñar subcircuitos para cada operación, asegurándose de que los resultados se direccionen correctamente hacia los displays y LEDs según las especificaciones.
- 4 Implementación de Controladores: Diseñar controladores que manejen la selección de operaciones según la tabla de control proporcionada. Estos controladores deben dirigir las señales y habilitar los subcircuitos correspondientes en el momento adecuado.
- 5 Simulación en Proteus: Realizar simulaciones detalladas en Proteus para verificar el funcionamiento teórico del circuito. Asegurarse de que los resultados sean coherentes con las expectativas y que se cumplan los requisitos del proyecto.
- 6 Construcción en Placa de Circuito: Implementar físicamente el circuito en una placa de circuito, asegurándose de seguir el diseño teórico. Construir circuitos específicos, como sumadores y restadores, y conectarlos según el esquema general del ALU.

DIAGRAMAS DEL CIRCUITO

Circuito Unidad Aritmética

• SUMA

• RESTA (COMPLEMENTO A2)

MULTIPLICACIÓN

NÚMERO ELEVADO

• CIRCUITOS UNIDAD LÓGICA

Bloque Comparativo

CONTROLADOR

BINARIO-BCD

CIRCUITOS DE LA PLACA (SUMA-RESTA (COMPLEMENTO A2))

• SUMA

RESTA (COMPLEMENTO A2)

EQUIPO UTILIZADO

Equipo (componente)	Cantidad
Placas de Cobre	2
Leds	6
Displays	4
Cable	26
Compuerta Lógica AND	18
Compuerta Lógica OR	15
Compuerta Lógica XOR	5
Compuerta Lógica NOT	4
Dipswitch	3
Comparador	4
Decoder	4
Sumador	18
Multiplexores	18
Sockects para integrados	15
Protoboards	13

PRESUPUESTO

COMPONENTES	PRECIO-UNITARIO	CANTIDAD	TOTAL
Placa	Q18. ⁰⁰	2	Q36. ⁰⁰
Socket para	Q2. ⁰⁰	15	Q30. ⁰⁰
integrados			
Leds	Ya contábamos con el	6	-
	componente		
Displays 7	Q5. ⁰⁰	3	Q15. ⁰⁰
Segementos			
Cable	Q3. ⁰⁰	16	Q48. ⁰⁰ .
Compuerta Lógica	Q6. ⁰⁰	15	Q90. ⁰⁰
AND (7408)			
Compuerta Lógica OR	Q6. ⁰⁰	8	Q48. ⁰⁰
(7432)			
Compuerta Lógica	Ya contábamos con el	3	-
NOT (7404)	componente		
Compuerta Lógica	Q8. ⁰⁰	3	Q24. ⁰⁰
XOR (7486)			
Dipswitch	Q5. ⁰⁰		
Comparador (7485)	Q11. ⁵⁰	5	Q57. ⁵⁰
Decoder (7447)	Q12. ⁰⁰	4	Q48. ⁰⁰
Sumador (74283)	Q15. ⁵⁰	15	Q232. ⁵⁰
Multiplexores (74157)	Q7. ⁰⁰	20	Q140. ⁰⁰
Protoboards	Q17. ⁵⁰	4	Q70. ⁰⁰
	Total		Q790. ⁰⁰

APORTE DE CADA INTEGRANTE

Estudiante	Aporte						
Oswaldo Antonio Choc Cuteres	Compra de componentes, diagrama en proteus y						
	diseño de las placas (suma y complemento A2						
	segmentos en placa (suma y complemento A2) y						
	protoboard.						
Javier Andrés Monjes Solórzano	Compra de componentes, segmentos en placa,						
	protoboard (complemento A2 y binario a BCD) y						
	documentación						
Jencer Hamilton Hernández Alonzo	Compra de componentes, segmentos en						
	protoboard (multiplicación, controlador y						
	comparador)						
Juan Pascual Itzep Coguox	Compra de componentes, diagrama en proteus						
	(controlador), segmentos en protoboard (elevado						
	cuad-cubo, unidad lógica)						

Conclusiones

- Se destaco la importancia de combinar conocimientos en electrónica digital, lógica booleana y diseño de circuitos para desarrollar una Unidad Aritmética Lógica (ALU) efectiva. La comprensión detallada de componentes y funciones booleanas es clave.
- Se destaco la importancia de combinar conocimientos en electrónica digital, lógica booleana y diseño de circuitos para desarrollar una Unidad Aritmética Lógica (ALU) efectiva. La comprensión detallada de componentes y funciones booleanas es clave.
- La coherencia entre la simulación en Proteus y la implementación física en placa es crucial. En el circuito se destaca la importancia de una aproximación práctica.

ANEXOS

Circuito Completo en Proteus

Binario a BCD

Binario	BCD	BCD	BCD	BCD
0	0	0	0	0
1	1	0	0	0
10	2	0	0	0
11	3	0	0	0
100	4	0	0	0
101	5	0	0	0
110	6	0	0	0
111	7	0	0	0
1000	8	0	0	0
1001	9	0	0	0

Binario	Decimal
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9

Funcionamiento de:

	С	В	Α	
0	0	0	0	Infosuma
1	0	0	1	InfoResta
2	0	1	0	InfoMultiplicaion
3	0	1	1	InfoElevado
4	1	0	0	Not
5	1	0	1	and
6	1	1	0	Or
7	1	1	1	Xor

Unidad aritmética:

	Elegir la informacion en bits de cada operación con Multiplexores 74157											
Unidad Aritmetica	Si C es 0 se Muestran las operaciones aritmeticas											
	Si B es 0 se eligen los bits de la suma y la resta y Si A es 0 se eligira los bits de suma y si es 1 eligira los bits de resta				entre Suma-	Multiplicacio	Multiplexor o	ue elige entr	e la selecion	de los multiplex	xores anteri	rores
	Si B es 1 se eligen los bits de la multiplicacion y el elevado y si A es 0 se eligira los bits de multiplicacion, si A es 1 los bits de Elevado			Multiplexore	entre resta y	elevado						

Unidad Lógica:

Unidad Logica	Si C es 1 se muestran las operaciones aritmeticas											
	Si B es 0 se eligen los bits de la Noty la And y para separar las informaciones, Si A es 0 se eligira los bits de Noty si es 1 eligira los bits de And Mul						Not-Or	Multiplexor	que elige entr	e selección d	e los multiple:	xores anteriores
	Si B es 1 se eligen los bits de la Or y Xor y si A es 0 se eligira los bits de Or, si A es 1 los bits de Xor					Multiplexor entre	And-Xor					

Fotografías del Circuito en Físico

