latent heat of fusion	Q_m	334	${ m kJkg^{-1}}$
melting point	T_m	0	$^{\circ}\mathrm{C}$
latent heat of vaporization	Q_v	2264.705	${ m kJkg^{-1}}$
boiling point	T_v	100	$^{\circ}\mathrm{C}$
Heat Capacity at 25 °C	C_{25}	4.1813	$ m Jg^{-1}K^{-1}$
Heat capacity at 100 °C (steam)		2.080	$ m Jg^{-1}K^{-1}$
Desity of steam at 100 °C and 1atm pressure		0.6	${\rm kgm^{-3}}$

1 Some equations

Flow through opening goes with square-root of the pressure

$$q_m = \rho q_v = C A_2 \sqrt{2\rho(p_1 - p_2)} \tag{1}$$

Where C is the flow coefficient, A_2 is the area of the opening, and p_1 the pressure in the vessel with p_2 the external pressure.

Heat Capacity

$$\Delta T = \frac{\Delta H}{Cm} \tag{2}$$

or for a mixture

$$\Delta T = \frac{\Delta F}{C_1 m_1 + C_2 m_2} \tag{3}$$