X24 — Проводники в магнитном поле

Если проводник находится в переменном магнитном поле, либо движется в неоднородном магнитном поле – в нём возникает электрический ток. Возникновение электрического тока в проводниках является следствием явления электромагнитной индукции и достаточно хорошо изучено. В частности, эффект возникновения электрического тока в проводниках приводит к эффекту так называемого "магнитного торможения", который многим из вас наверняка приходилось наблюдать вживую.

В данной задаче изучаются колебания проводящих тел с учётом влияния магнитного поля. Мы изучим два предельных перехода, соответствующие проводящим телам:

Часть А. Свободные колебания с затуханием (1.2 балла).

Рис. 1:

Рассмотрим вертикальный пружинный маятник, состоящий из невесомой пружины с коэффициентом жёсткости k, один конец которой закреплён, а к другому концу прикреплён груз массой m. При движении со скоростью \vec{v} на него действует сила сопротивления $\vec{F}_{\rm c} = -\beta \vec{v}$, где β - известная постоянная величина. Введём ось x, направленную вдоль пружины так, что при увеличении координаты x груза длина пружины уменьшается, а в положении равновесия координата груза $x_0 = 0$. Во всех пунктах частей A - C шар перемещается только по вертикали. Также введём обозначения:

$$y = \frac{\beta}{2m} \qquad \omega_0 = \sqrt{\frac{k}{m}} \quad y < \omega_0.$$

А1^{0.60} Пусть момент времени $t_0 = 0$ груз находится в начале координат, а проекция его скорости на ось x равна v_0 . Определите зависимости координаты x(t) и скорости $v_x(t)$ груза от времени t. Ответ выразите через v_0 , y, ω_0 и t.

Пусть E_0 - кинетическая энергия груза при прохождении начала координат, а E_1 - кинетическая энергия груза при последующем прохождении начала координат с тем же направлением скорости. Определим добротность Q колебательной системы следующим образом:

$$Q=\frac{2\pi E_0}{E_0-E_1}.$$

A2^{0.40} Получите точное выражение для Q. Ответ выразите через ω_0 и γ .

A3^{0,20} Получите приближённое выражение для добротности Q при слабом затухании ($\gamma \ll \omega_0$). Ответ выразите через m, k и β .

с Страница 1 из 7 ≈

Часть В. Вынужденные колебания (1.2 балла).

Рис. 2:

Рассмотрим пружинный маятник из части A задачи. Координата x_1 второго конца пружины (к которому не прикреплён груза) изменяется по следующему закону:

$$x_1(t) = x_{1(0)} + A_0 \sin \Omega t$$

где $A_0>0$, а $x_{1(0)}$ соответствует состоянию покоя груза. Далее рассматривайте только установившийся режим движения под действием вынуждающей силы. Используйте введённые ранее величины ω_0 и γ .

В1 $^{0.60}$ Отклонение *х* груза от положения зависит от времени *t* следующим образом:

$$x(t) = A \sin (\Omega t + \varphi_0)$$

Найдите A и φ_0 . Ответы выразите через A_0 , Ω , ω_0 и γ .

Будем называть резонансной такую циклическую частоту колебаний $\Omega_{\rm pes}$, при которой амплитуда колебаний системы максимальна и обозначается как $A_{\rm pes}$.

B2^{0.30} Получите точные выражения для резонансной циклической частоты $\Omega_{\rm pes}$ и соответствующей ей амплитуды колебаний $A_{\rm pes}$. Ответы выразите через ω_0 , γ и A_0 . Считайте, что $\gamma\sqrt{2}<\omega_0$.

Шириной резонансной кривой $\Delta \omega$ называется разность максимальной и минимальной циклических частот Ω_{max} и Ω_{min} соответственно, при которых амплитуда колебаний меньше резонансной в $\sqrt{2}$ раз.

B3^{0.30} Получите приближённые выражения для $\Omega_{\rm pes}$, $A_{\rm pes}$ и Δω при слабом затухании ($\gamma \ll \omega_0$). Ответы выразите через A_0 , ω_0 и γ .

Часть С. Влияние поля кольца на движение шара (4.2 балла).

Сплошной однородный шар массой m и радиусом R_0 изготовлен из материала с большим удельным сопротивлением ρ . Его центр может перемещаться вдоль оси вращения кольца радиусом R, плоскость которого горизонтальна. Силу тока в кольце медленно увеличивают до I и далее поддерживают постоянной. Для определения положения центра шара введём ось x с началом в центре кольца, направленную вверх. Считайте, что диэлектрическая и магнитная проницаемости шара ε и μ соответственно равны единице, а радиус шара R_0 удовлетворяет условиям:

$$R_0 \ll R, x$$
.

Из общефизических соображений ясно, что при движении шара со скоростью \vec{v} вдоль оси вращения кольца действующая на него со стороны кольца сила имеет вид:

$$\vec{F} = -\beta(x)\vec{v},$$

с Страница 2 из 7 ∞

где $\beta(x)$ - коэффициент пропорциональности, зависящий от координаты x центра шара. Начнём с изучения магнитного поля кольца.

C1^{0.30} Найдите индукцию B_x магнитного поля кольца на его оси в точке с координатой x. Ответ выразите через x, R, I и магнитную постоянную μ_0 .

Рассмотрим исходный шар радиусом R_0 с удельным сопротивлением ρ , находящийся в однородном магнитном поле $\vec{B}=\vec{e}_x B$. Не изменяя направления, величину магнитного поля изменяют со скоростью $dB/dt=\dot{B}$. Выделим в шаре диск радиусом r_0 и толщиной $h\ll r_0$, основания которого перпендикулярны оси x.

 $\mathbf{C2^{1.00}}$ Определите магнитный момент \vec{m} диска. Ответ выразите через \vec{e}_x , r_0 , h, ho и \dot{B} .

 $\mathbf{C3^{0.50}}$ Определите магнитный момент \vec{m} шара. Ответ выразите через \vec{e}_x , R_0 , ρ и \dot{B} .

Теперь рассмотрим движение шара вдоль оси кольца со скоростью v_x .

С4 $^{0.40}$ Получите производную по времени индукции магнитного поля кольца в центре шара dB_x/dt , эквивалентную величине \dot{B} . Ответ выразите через v, I, R, x и магнитную постоянную μ_0 .

С5^{0.50} Найдите коэффициент пропорциональности $\beta(x)$. Ответ выразите через I, R, x, R_0, ρ и магнитную постоянную μ_0 .

Воспользуемся полученным результатом для $\beta(x)$ при определении удельного сопротивления шара по свободным колебаниям, а также по амплитудно-частотной характеристике вынужденных колебаний. Шар закрепили на одном из концов невесомой непроводящей пружины с коэффициентом жёсткости k. Другой конец пружины закреплён в точке с координатой $x_{1(0)}$. В положении равновесия центр шара расположен на высоте $H\gg R_0$ над центром кольца. Отклонение центра шара Δx от положения равновесия всегда удовлетворяет условию:

 $\Delta x \ll R,H;$

Рис. 3:

На первом графике представлена зависимость отклонения шара от положения равновесия при собственных колебаниях в некоторых условных единицах. Второй конец пружины при этом неподвижен.

страница 3 из 7 ∞

На втором графике представлена зависимость амплитуды вынужденных колебаний A от частоты Ω в некоторых условных единицах. Координата второго конца пружины начинает изменяется по закону:

$$x_1(t) = x_{1(0)} + A_0 \sin \Omega t.$$

Рис. 4:

Рис. 5:

С6^{0.80} Определите удельное сопротивление ρ шара, используемого в первом эксперименте. Ответ выразите через m, k, R_0, R, H, I и магнитную постоянную μ_0 .

С7^{0.70} Определите удельное сопротивление ρ шара, используемого во втором эксперименте. Ответ выразите через m, k, R_0, R, H, I и магнитную постоянную μ_0 .

Часть D. "Вмороженность" магнитного поля (3.4 балла).

Данная часть задачи посвящена изучению магнитного поля, возникающего в результате перемещения очень хороших проводников в них.

с Страница 4 из 7 ≈

Рассмотрим следующую конструкцию: Соосно полубесконечному круговому соленоиду радиусом R с плотностью намотки витков n и силой тока I в них расположен очень длинный хорошо проводящий цилиндр массой m радиусом $r \ll R$, концы которого расположены по разные стороны от основания соленоида и удалены от него на расстояния, во много раз превышающие его радиус. В изначальном положении цилиндра токи в нём отсутствуют. Из-за высокой проводимости вещества силовые линии индукции магнитного поля оказываются в него вморожены. Это означает, что при перемещении вещества силовые линии индукции магнитного поля будут перемещаться вместе с ним. В данном случае, соответствующем твёрдому телу, это приводит к тому, что индукция магнитного поля в каждой точке цилиндра будет сохраняться при его перемещении, что обусловлено возникновением в стержне круговых токов Фуко.

Решайте задачу в следующих приближениях:

- Возникающие в цилиндре токи текут только по его поверхности;
- Вне цилиндра индукция магнитного поля равна индукции магнитного поля соленоида;
- Цилиндр отклоняется от изначального положения на величину $x \ll R$;
- Взаимодействием цилиндра с подводящими проводами можно пренебречь;
- За времена, рассматриваемые в данной задаче, затуханием токов в цилиндре можно пренебречь.

Индукцию магнитного поля соленоида будем характеризовать осью z, направленную наружу соленоида вдоль его оси. Начало оси z совпадает с центром основания соленоида.

Рис. 7:

D1^{0.60} Определите индукцию B_z магнитного поля соленоида, а также её производную dB_z/dz в точке с координатой z. Ответ выразите через μ_0 , n, I, R и z.

Пусть цилиндр отклоняют на величину $x \ll R$ вдоль оси z от изначального положения.

D2^{1.00} Определите линейную плотность тока i на поверхности цилиндра в точке с координатой z. Ответ выразите через μ_0 , x и $dB_z(z)/dz$.

D3^{1.50} Определите силу F_x , действующую на цилиндр со стороны магнитного поля соленоида. Ответ выразите через μ_0 , r, R, n, I и x.

Пусть в изначальном положении цилиндру сообщили скорость v_0 , направленную вдоль оси z.

D4^{0.30} Получите зависимость перемещения стержня x от времени t. Ответ выразите через μ_0, r, R, n, I и m.