Hollows

Sidi-Hich

No.0664 64 32 10

دورة جوان 2008:

التعرين الثاني (5 نقط)

 $u_n = 3n + 1$: کما یلی \mathbb{N} متتالیة معرفة علی (u_n)

 $u_2, u_1, u_0 + 1$

. (u_n) عين اتجاه تغير (u_n) عين اتجاه تغير (u_n)

رتبته؟ (u_n) ما رتبته من حدود المتتالية (u_n) ما رتبته 3

 $S = u_0 + u_1 + u_2 + ... + u_{669}$: $= u_0 + u_1 + u_2 + ... + u_{669}$

التمرين الأول (6 نقط)

 $u_{n+1} = 2u_n + 1$: n متتالية عددية معرفة بحدها الأول n = 1 و من اجل كل عدد طبيعي غير معدوم $u_n = 1$

· u4 · u3 · u, - - (1

 $v_n = u_n + 1$: كما يأتي : (v_n) كما المتتالية (v_n) كما يأتي غير معدوم (v_n) من اجل كل عدد طبيعي غير معدوم

اً - أثبت أن (v_n) متتالية هندسية يطلب تعيين أساسها q وحدها الأول v_1

 $\cdot n$ بدلالة u_n بدلالة n ثم استنتج بدلالة u_n بدلالة u_n

.n بدلاله $S_n = v_1 + v_2 + ... + v_n$ بدلاله -

 $S_n = 1016$ أن n = -3

<u>دورة جوان 2009:</u>

وين الأول: (06 نقاط)

$$u_2 - 2u_5 = 19$$
 و بالعلاقة $u_1 = 2$ متتالية حسابية معرفة على \mathbb{N}^* بحدها الأول $u_1 = 2$

1) - أحسب الأساس r للمتتالية (un).

ب- أحسب الحد العاشر

n اُکتب عبارة u_n بدلالة (2

(3) u_n) محدد (2008) هو حدا من حدود (u_n). محددا رتبته.

 $S = u_1 + u_2 + \dots + u_{671}$: (4)

التمرين الثاني: (07 نقاط)

- متتالية هندسية معرفة على $\mathbb N$ و أساسها موجب. (u_n)
- $u_5 = 576$ و $u_6 = 144$ أن: u_6 و حدها الأول u_6 إذا علمت أن: $u_6 = 576$ و $u_7 = 576$
 - $u_n = 18 \times 2^n$: n عدد طبیعی عدد أجل كل عدد أجل أبد من أجل كل عدد عدد العدد العدد أجل العدد أبد العدد الع
- $S_n = 1134$: مراكب بدلالة n المجموع: $u_0 + u_1 + ... + u_n + ... + u_n$ محيث: $S_n = u_0 + u_1 + ... + u_n$

<u>دورة جوان2010:</u>

التمرين الثاني: (05 نقاط)

- $u_{15} = 46$ و $u_{10} = 31$ بالحدين: $\mathbb N$ متتالية حسابية معرفة على الحدين: (u_n) (I
 - 1- عين أساسها و حدّها الأول u.
 - 2- أكتب _u بدلالة n.
 - (u_n) جن أن 6028 حد من حدود المتتالية -3
 - $S = u_0 + u_1 + ... + u_{2009} : S \in -4$
 - . $v_n = 2 \times 8^n$ بــ: N بــ المعرفة على (v_n) المعرفة على (II
- -1 بين أن (v_{n}) متتالية هندسية يطلب تعيين أساسها وحدها الأول v_{n}
 - $S' = v_0 + v_1 + ... + v_n : S' = v_0 + v_1 + ... + v_n = -2$

التعرين الثالث: (07 نقاط)

- u_0 متتالية هندسية معرفة على مجموعة الأعداد الطبيعية $\mathbb N$ ، أساسها q وحدها الأول u_n
 - $u_4 = 48$ و $u_1 = 6$
 - 1. أ أحسب الأساس والحدّ الأوّل للمتتالية (u_n) .
 - $u_n = 3 \times 2^n$: هي (u_n) هي المتتالية العام المتتالية العام المتتالية العام الع
 - (u_n) بين أنّ العدد 768 هو حدّ من حدود المتتالية (u_n) علماً أنّ 256 = 256 بين أنّ العدد 968 هو حدّ من حدود المتتالية (
 - $S = u_0 + u_1 + ... + u_7$ حيث: $S = u_0 + u_1 + ... + u_7$
- $v_{n+1} = 2 v_n 1 : n$ عدد طبیعی $v_0 = 4 : -1 = 2 v_n 1 : n$ عدد طبیعی $v_0 = 4 : -1 = 2 v_n 1 : n$ متتالیة عددیة معرفة ب $v_0 = 4 : -1 = 2 v_n 1 : n$ متتالیة عددیة معرفة ب $v_0 = 4 : -1 = 2 v_n 1 : n$ متتالیة عددیة معرفة ب $v_0 = 4 : -1 = 2 v_n 1 : n$ متتالیة عددی معرفة ب $v_0 = 4 : -1 = 2 v_n 1 : n$ متتالیة عددی معرفة ب $v_0 = 4 : -1 = 2 v_n 1 : n$ متتالیة عددی معرفة ب $v_0 = 4 : -1 = 2 v_n 1 : n$ متتالیة عددی معرفة ب $v_0 = 4 : -1 = 2 v_n 1 : n$ متتالیة عددی معرفة ب $v_0 = 4 : -1 = 2 v_n 1 : n$ متتالیة عددی معرفة ب $v_0 = 4 : -1 = 2 v_n 1 : n$ متتالیة عددی معرفة ب $v_0 = 4 : -1 = 2 v_n 1 : n$ متتالیة عددی معرفة ب $v_0 = 4 : -1 = 2 v_n 1 : n$
 - $v_n = 3 \times 2^n + 1$: n عدد طبیعی $n = 3 \times 2^n + 1$
 - $S' = v_0 + v_1 + ... + v_7$ $S' = v_0 + v_1 + ... + v_7$

التمرين الثاني: (05 نقاط)

$$u_{15} = 46$$
 و $u_{10} = 31$ و الحدين: $u_{10} = 31$ و الحديث (u_{n}) (I

- u_0 عين أساسها و حدها الأول -1
 - n اکتب u_n بدلالة -2
- (u_n) حدّ من حدود المنتالية -3
- $S = u_0 + u_1 + ... + u_{2009} : S = u_0 + u_1 + ... + u_{2009} = -4$
- . $\nu_n = 2 \times 8^n$ بــ: \mathbb{N} بــنبر المتتالية (ν_n) المعرفة على (II
- . v_0 منتالية هندسية يطلب تعيين أساسها وحدّها الأول v_0 -1
 - $S' = v_0 + v_1 + ... + v_n : S'$ المجموع -2

$$(u_n)$$
 علماً أنّ $2^8 = 256$ ؛ بيّن أنّ العدد 768 هو حدّ من حدود المنتالية (2).

 $S = u_0 + u_1 + ... + u_7$ = $u_0 + u_1 + ... + u_7$

$$v_{n+1} = 2 v_n - 1 : n$$
 عدد طبیعي $v_0 = 4 : v_0 = 4$ عدد عددیة معرفة بـــ: $v_0 = 4 : v_0 = 4$ عدد طبیعي $v_0 = 4 : v_0 =$

 $v_n = 3 \times 2^n + 1$: n عدد طبیعی $s' = 3 \times 2^n + 1$: $s' = v_0 + v_1 + ... + v_n$ حیث: $s' = v_0 + v_1 + ... + v_n$

دورة جوان 2011:

التمرين الثاني: (06 نقاط)

 $u_0 + u_3 = 28$:متتالية هندسية أساسها 3 وحدّها الأول u_0 بحيث (u_n) أ

- 1. احسب ، ثمّ اكتب الحد العام , u بدلالة n
 - . $S_1 = u_0 + u_1 + \dots + u_9$.2. احسب المجموع:
- $v_n = 1 5n$ بانتالیة عددیة معرفة علی \mathbb{N} بحد ها العام: (v_n)
- 1. بين أن (سنتج اتجاه تغير ها. عبين أساسها ثمّ استنتج اتجاه تغير ها.
 - . $S_2 = v_0 + v_1 + \dots + v_9$: د احسب المجموع
- $k_n = 1 + 3^n 5n$: نعتبر المنتالية $\binom{k_n}{n}$ المعرّفة على $\mathbb N$ بحدَها العام
- $S = k_0 + k_1 + \dots + k_9$ ثمّ احسب المجموع: $k_n = u_n + v_n$

سلسلة عكرون مازيغ تمارين أمتنايات من بكاوريا 2018 و2018 سلسلة

التمرين الثالث: (06 نقاط)

 $v_n = 3^{-2n}$ و $u_n = -2n$: بحديهما العام \mathbb{N} بعديها العدديتان العدديتان المعرفتان على \mathbb{N} بعديهما العام $u_n = 3^{-2n}$ و $u_$

Nicorcal National	اقتراح 1	اقتراح 2	اقتراح 3
(u _n) هي منتالية	هندسية	حسابية	لا حسابية ولا هندسية
u_n الحد الخامس والأربعون للمتتالية u_n) يساوي	-90	-92	-88
$u_0 + u_1 + \dots + u_n$ يساوي	n^2+1	$-n^2-n$	$-n^2-1$
4 (٧, هي متتالية هندسية أساسها	$\frac{1}{9}$	9	-9
5 المنتالية (v")	متزايدة	متناقصة	ليست رتبية

دورة جوان 2012:

التمرين الثاني: (06 نقاط)

a+b+c=9 : حيث r أساسها c ، b ، a

$$r$$
 أ) احسب b ثم اكتب a و a بدلالة b

$$a \times c = -16$$
: غلمًا أنّ (ب

$$-$$
 عين الأساس r ثم استنتج $-$

. 5 منتالية حسابية حدها الأول
$$u_{\scriptscriptstyle 0}=-2$$
 و أساسها $(u_{\scriptscriptstyle n}).2$

$$S = u_0 + u_1 + \dots + u_{15}$$
: المجموع u_{15} الحسب u_{15} الحسب (ب

$$8 \, v_n - u_n = 0$$
 : بالعلاقة بالعادية معرفة على متتالية عددية معرفة على (v_n) .3

$$S' = v_0 + v_1 + \dots + v_{15} : -$$

سلسلة عكرون مازيغ تمارين أمتنايات من بكاوريا 2018 و2018 ملسلة

التمرين الثاني: (06 نقاط)

$$u_{3}=7$$
 و u_{1} متتالية حسابية متزايدة ، أساسها r متالية حسابية متزايدة ، أساسها

$$T_2=u_2\times u_4$$
 و $T_1=u_1\times u_5$: الجدائين $T_1=u_1\times u_5$ و الجدائين (1.1)

$$T_2 - T_1 = 27$$
 : بحيث r بحيث الأساس عيّن الأساس

r = 3 نضع 2

أ) اكتب عبارة الحدّ العام "u بدلالة n

$$S_n=u_1+u_2+\cdots+u_n$$
 : غير معدوم عدد طبيعي n غير عدد طبيعي $S_n=\frac{3n^2-n}{2}$: بيّن أنْ :

$$S_n = 145 : 2$$
 بحیث : العدد الطبیعی n بحیث :

. n بدلالة العدد الطبيعي u_{n+5} أكتب الحد الطبيعي . 3

$$\frac{u_{n+5}}{n} = 3 + \frac{13}{n}$$
 : غير معدوم عدد طبيعي n غيد عدد طبيعي أيّه من أجل كل عدد طبيعي

. التنتج الأعداد الطبيعية
$$n$$
 التي يكون من أجلها العدد $\frac{u_{n+5}}{n}$ طبيعيا (ج

<u>دورة جوان 2013:</u>

التمرين الأول: (06 نقاط)

.3 متتالية هندسية حدّها الأول $v_0 = 2$ وأساسها

n بدلالة v_n عبر عن v_n بدلالة -1

 $\cdot (v_n)$ الفرق $\cdot v_{n+1} - v_n$ الفرق المتتالية $\cdot v_n$ المتتالية $\cdot v_n$

 $S_n = v_0 + v_1 + \cdots + v_{n-1} : n$ غير معدوم غير عدد طبيعي غير عدد طبيعي غير معدوم

أ) احسب بدلالة n المجموع S_n

 $S_n = 80$: بعين قيمة العدد الطبيعي n بحيث: العدد

ج) أثبت بالتراجع أنّه، من أجل كل عدد طبيعي n، العدد $1-3^n$ يقبل القسمة على 2.

سلسلة عكرون مازيغ تمارين امتيايات من بكاوريا 2008 ي 2018

التمرين الأول: (06 نقاط)

$$\cdot u_0 + u_1 + u_2 + u_3 = 34$$
 : حيث وأساسها وأساسها وأساسها حدّها الأول الأول وأساسها وأساسها والمتالية حسابية حدّها الأول

 $u_0 \leftarrow 1$

$$u_n = 5n + 1$$
 ، n عدد طبیعی عدد أنّه، من أجل كل عدد عدد طبیعی -2

$$u_{n+1} + u_n - 8n = 4033$$
: بحيث: n بحيث العدد الطبيعي n بحيث

$$S = u_0 + u_1 + u_2 + \dots + u_{2013}$$
 := -4

$$v_n = 2u_n + 1$$
: المتتالية العددية $v_n = 2u_n + 1$ معرّفة على $v_n = 2u_n + 1$

أ) ادرس اتجاه تغيّر المتتالية
$$(v_n)$$
.

$$S' = v_0 + v_1 + v_2 + \dots + v_{2013}$$
 : $(-1)^2 + v_0 + v_1 + v_2 + \dots + v_{2013}$

دورة جوان 2014:

التمرين الثاني: (06 نقاط)

عين الاقتراح الصنحيح الوحيد من بين الاقتراحات الثلاثة، في كلّ حالة من الحالات الأربعة الآتية، مع التعليل:

: هو
$$(u_n)$$
 متتالية حسابية أساسها 3 وحدّها $u_2=1$ الحد العام للمتتالية (u_n) هو (1

$$u_n = -5 + 3n$$
 ($u_n = 7 + 3n$ ($u_n = 1 + 3n$ ()

$$2$$
 عدد طبیعی . المجموع $n+2+3+\cdots+n$ یساوی :

$$\frac{n^2+1}{2} \quad (\Rightarrow \qquad \frac{n(n-1)}{2} \quad (\because \qquad \frac{n^2+n}{2} \quad ()$$

x+1 ، x ، x-2 الأعداد x+1 ، x ، x-2 الترتيب حدودا متعاقبة لمتثالية هندسية x+1 ، x ، x-2

$$x = -2$$
 ($x = 5$ ($x = 3$ ($x =$

$$(v_n)$$
 متتالیة هندسیة معرفة علی ۱۸، حدّها العام $v_n = 2 \times 3^{n+1}$ العام المتتالیة (v_n) هو:

سلسلة عكرون مازيغ تمارين امتايات من بكاوريا 2008 ي 2018

التمرين الأول: (06 نقاط)

$$v_{n+1} = 5v_n + 4$$
 ! n are declarated and $v_0 = 1$. $v_0 = 1$. $v_0 = 1$. $v_0 = 1$.

$$u_n = v_n + 1$$
 نضع من أجل كل عدد طبيعي n عدد المبيعي (2

$$u_0 = 2$$
 وحدها الأول $q = 5$ أ- بيّن أنّ (u_n) متتالية هندسية أساسها

$$(u_n)$$
 أوليّة واستنتج أنّه حد من حدود المتتالية (u_n) جداء عوامل أوليّة واستنتج أنّه حد من حدود المتتالية

$$S_n = u_0 + u_1 + \dots + u_{n-1}$$
: حيث: $S_n = u_0 + u_1 + \dots + u_{n-1}$ (3)

$$S'_{n} = v_{0} + v_{1} + \dots + v_{n-1} : C'_{n} = S'_{n}$$
 large n large n $+ v_{n-1} + v_{n-1} = S'_{n} = S$

<u>دورة جوان 2015:</u>

التمرين الثاني: (07 نقاط)

$$u_0=3$$
 و $u_0=2$ حيث: $u_0=0$ وأساسها u_0 وأساسها $u_0=0$ و $u_0=0$

$$(u_n)$$
عيّن اتجاه تغيّر المتتالية (3

$$S_n = u_0 + u_1 + u_2 + ... + u_{n-1}$$
 : حيث S_n المجموع S_n المجموع (أ (4

$$3^{3}$$
 ، 3^{2} ، 3^{2} ، 3^{3} ، 3^{2} ، 3^{3} ، 3^{2} ، 3^{3} ، $3^{$

$$.3^{4k} = 1[5] : \mathbb{N}$$
 من k استنج أنه لكل k

التمرين الأول: (06 نقاط)

$$u_1 - u_3 = 5$$
 و $u_2 = \frac{1}{2}$ حيث: r وأساسها u_1 وأساسها متثالية حسابية حدّها الأول u_1

$$u_1 + u_3 = 1$$
 (1) بين أنّ (1

$$r=-rac{5}{2}$$
 ب عيّن الحدّ الأولّ u_{I} ؛ ثمّ استنتج أنّ

$$n$$
 اکتب u_n بدلالة (2

.
$$S_n = u_1 + u_2 + ... + u_n$$
 حيث: S_n المجموع S_n المجموع (أ (3

$$S_n = -\frac{657}{2}$$
 بعين قيمة العدد الطبيعي n التي يكون من أجلها

$$T_n = u_1 + 2u_2 + 3u_3 + ... + nu_n$$
 عند طبیعي غیر معدوم ، نضع n (4

$$(n+2)(9-5n) = -5n^2 - n + 18$$
 : \mathbb{N}^* من n لكل من أنه لكل n أنحقَق أنه لكل الم

$$T_n = \frac{1}{6}n(n+1)(14-5n)$$
 : \mathbb{N}^* من \mathbb{N}^* من الستدلال بالتراجع ، أثبت أنّه لكل n من الستعمال الاستدلال بالتراجع

دورة جوان 2016:

التمرين الثاني: (07 نقاط)

 $u_n = 3n-2$: بتكالية عدية معرفة من أجل كلّ عدد طبيعي $u_n = 3n-2$

- $u_3 = u_2 \cdot u_1 \cdot u_0$ (1
- بين أن المتتالية (u,) حسابية و عين أساسها.
 - ادرس اتجاه تغير المتتالية (١٠).
- 4) بين أن العدد 1954 حد من حدود المنتالية (u_n) و عين رتبته.
- $S_n = u_0 + u_1 + u_2 + ... + u_n$: Expand n = 1 (5)
 - ب) عين العدد n بحيث يكون : 328 = 328.

التمرين الثاني: (06 نقاط)

 $u_0 + u_1 + u_2 + u_3 = 10$: نعتبر المتتالية الحسابية (u_n) التي أساسها 3 وحدّها الأول u_0 وتحقّق

- 1) احسب الحد الأوّل 10.
- 2) اكتب الحد العام " بدلالة n.
- $u_n = 145$ عين العدد الطبيعي n بحيث: (3
- . $S = u_0 + u_1 + ... + u_{49}$: حسب المجموع S بحيث (4
- . $v_n = 2u_n + 3$ نعتبر المتالية (v_n) المعرّفة على \mathbb{N} بالعبارة: $S! = v_0 + v_1 + ... + v_{49}$ احسب المجموع $S! = v_0 + v_1 + ... + v_{49}$

دورة جوان 2017:

التمرين الثاني: (06 نقاط)

 $u_{\scriptscriptstyle 1}=320$ و $u_{\scriptscriptstyle 1}=20$ حيث $\mathbb N$ حيث معرّفة على المعرّفة على معرّفة على المعرّفة على $(u_{\scriptscriptstyle n})$

- بيّن أنّ أساس المتتالية (u_n) هو 4 وحدها الأول هو 5. (1
- . اكتب عبارة الحد العام للمتتالية (u_n) بدلالة n ثم استنتج قيمة حدها السابع (2
- $S = u_0 + u_1 + \dots + u_n$ أ) احسب بدلالة العدد الطبيعي n المجموع $S = u_0 + u_1 + \dots + u_n$
 - $\cdot S' = u_0 + u_1 + \dots + u_6$ عيث S' عيمة المجموع (ب

التمرين الأول: (06 نقاط)

 $u_3+u_7=50$ و $u_0=-5$ و المجموعة $\mathbb N$ بحدّها الأوّل $u_0=-5$ و $u_0=-5$

- (u_n) عيّن الأساس r للمتتالية (1
- $u_n = 6n 5$ ، n بیّن أنّ: من أجل كل عدد طبیعي (2
- (3) اثبت أنّ العدد 2017 حد من حدود المتتالية (u_n) ، ماهي رتبته
- $S = u_0 + u_1 + \dots + u_n$ عيث S حيث n المجموع (4

دورة جوان 2018:

تمرين الموضوع الاول (6 نقاط):

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة في كل حالة من الحالات التالية، مع التبرير:

$$u_n = n^2 - 1$$
 بـ : $\mathbb N$ عددية معرفة على (u_n) (1

$$q=2$$
 متتالية هندسية حدها الأول $v_1=3$ و أساسها (2

عبارة الحد العام للمتتالية (v_n) هي:

$$v_n = 2 \times 3^n$$
 ($v_n = 3 \times 2^{n-1}$ ($v_n = 3 \times 2^n$ ($v_n = 3 \times 2^n$) ($v_n = 3 \times 2^n$ ($v_n = 3 \times 2^n$) ($v_n = 3 \times 2^n$ ($v_n = 3 \times 2^n$)

:
$$S_n = v_1 + v_2 + \dots + v_n$$
 Eules

$$2(3^{n}-1)$$
 ($=$ $(2^{n}-1)$ ($=$ $3(2^{n}-1)$ ($=$

3) صندوق به 10 كريات لانفرق بينها عند اللمس مرقمة من 11 إلى 20، نسحب عشوائيا كرية واحدة.

احتمال الحصول على كربة تحمل عددا مضاعفا لـ 3 هو:

$$\frac{7}{10}$$
 (ε $\frac{3}{10}$ (φ $\frac{1}{3}$ ($\frac{1}{3}$

احتمال الحصول على كرية تحمل عددا فرديا ومضاعفا لـ 3 هو:

$$\frac{1}{10}$$
 (ε $\frac{3}{10}$ (φ $\frac{9}{10}$ ()

تمرين الموضوع الثاني (6 نقاط):

حيث: q متتالية هندسية حدودها موجبة تماما، حدها الأول u_0 و أساسها q حيث:

$$u_0 + u_1 = 30$$
 $u_0 \times u_2 = 576$

- u_0 بين أنَ $u_1=24$ ، ثم استنتج قيمة (1
- n بين أنَ q=4 ، ثم اكتب عبارة الحد العام u_n بدلالة q=4
- (u_n) غير المتتالية ($u_{n+1} u_n = 18 \times 4^n$: n عدد طبيعي عدد طبيعي (3) أثبت أنّه من أجل كل عدد طبيعي
 - 4) احسب 4^4 ، ثم تحقق أن العدد 1536 حد من حدود المتتالية (u_n) و عين رتبته (4
 - . $S_n = u_1 + u_2 + \cdots + u_n$: المجموع n المجموع (5