NASA Technical Memorandum 85668

Comparison of Low-Altitude Wind-Shear Statistics Derived From Measured and Proposed Standard Wind Profiles

J. W. Usry

FOR REFERENCE

NOT TO BE TAKEN FROM THIS BOOM

NOVEMBER 1983

LIBRARY COPY

UEU 1 := 1983

LANGLEY RESEARCH CEMTER LIBRARY, NASA HAMPTON, VIRGINIA

NASA Technical Memorandum 85668

Comparison of Low-Altitude Wind-Shear Statistics Derived From Measured and Proposed Standard Wind Profiles

J. W. Usry
Langley Research Center
Hampton, Virginia

Scientific and Technical Information Branch

SUMMARY

In 1977 NASA Langley Research Center collected data onboard wide-body jet transports to determine the feasibility of measuring winds and wind shear during landings and takeoffs. From these data a measured set of wind profiles was determined and wind-shear statistical parameters were estimated for over 640 landings and takeoffs. Another set of wind profiles was simulated using a wind field data base proposed by the Federal Aviation Administration. Over 640 profiles were determined for ascent and descent trajectories through the proposed two-dimensional wind fields assuming a 3° glide slope on approach and a 6° climbout on takeoff. From these data sets, wind shears were calculated and grouped in 100-ft altitude bands from 100 to 1400 ft and in 0.025-knot/ft wind-shear intervals between ±0.600 knot/ft. Frequency distributions, means, and standard deviations were derived for each altitude band and compared. Also, relative and cumulative frequency distributions were derived for the total sample (all altitudes) and compared. For the measured data set no wind-shear values existed outside ±0.200 knot/ft.

Frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Distributions for both data sets, however, were practically symmetrical for all altitudes. Total sample frequency of occurrence for the two data sets was about equal for wind-shear values between $\pm 0.075 \, \text{knot/ft}$, but the simulated data set had significantly higher frequency of occurrence values for all wind shears outside these boundaries. Normal distribution fits of both data sets showed that neither data set was normally distributed. Similar results were observed from the cumulative frequency distributions.

INTRODUCTION

Safe and reliable air transportation systems are essential to the United States economy and security. For this reason, a continuous, vigorous effort is maintained to improve these systems and to understand the environments in which they operate. For example, wind shear, defined as the local variation of the wind vector or its components in a given direction and distance (ref. 1), has been identified as being especially hazardous during the landing and takeoff of aircraft, and the Federal Aviation Administration (FAA) has instituted a major programmatic effort to study this problem (ref. 2). As part of this effort, a wind profile data base is being defined for use in flight simulation studies. These studies should improve the scientific understanding of the wind-shear hazard and should aid in definition of aircraft response requirements and in the design of systems to help the pilot cope with this hazard.

Since various government agencies and industrial interests are involved, the FAA has sponsored several studies to define standard wind profiles for use in simulation studies. In reference 2, 21 profiles selected for use in piloted simulator tests are presented, and 7 of the 21 are suggested for use in simulators to demonstrate methods and systems that will enable the pilot to cope successfully with wind shear. Reference 3 presents a comprehensive set of wind profiles and associated wind-shear

characteristics, which encompass many of the wind-shear environments that aircraft could potentially encounter in the terminal area. Some of these were used to formulate the models of reference 2. Reference 4 summarizes the development and testing of airborne displays, instrumentation, and procedures for aiding jettransport pilots in coping with wind-shear effects. These tests used the seven candidate standard wind-shear profiles suggested in reference 2. Finally, in reference 5, the reference 2 data base was used in real-time aircraft simulation studies of NASA's Terminal Configured Vehicle (TCV), and potential areas for improvement in the data base were pointed out. These references indicate that the profiles suggested in reference 2 provide a reasonable data base for studying the wind-shear hazard. Generally, however, further studies, both analytical and experimental, are recommended to improve the data base.

NASA has been collecting and analyzing data on the operating environment of aircraft for many years. In reference 6, for example, wind and wind-shear data were obtained from parameters recorded onboard wide-body jet transports during landing and takeoff. This study was made to determine the feasibility of measuring winds and wind shears during normal commercial aircraft operations. These parameters were recorded over a 2-week period during a total of 641 takeoffs and landings, from which 6300 wind samples were obtained. From these wind samples, wind-shear values were calculated and grouped in 100-ft altitude bands from 100 to 1400 ft. In addition, shear values in each altitude band were grouped and plotted as histograms. From these histograms, frequency distributions, means, and standard deviations of the wind shear were calculated. Finally, probability of occurrence of wind shear of a specific magnitude for any operation and altitude was presented.

The purpose of the present study was to compute statistical parameters from wind-shear data generated using the 21 proposed standard wind profiles of reference 2 and to compare these parameters with those of reference 6. Specifically, comparisons were made of frequency distributions, means, and standard deviations of wind shear in each altitude band and of relative and cumulative frequency distributions for the total sample. It should be noted, however, that the statistical distributions from the two data sources depended on the characteristics of each data set. For example, more than half of the 21 profiles of reference 2 represented thunderstorm environments, whereas the data of reference 6 were apparently collected during more moderate weather conditions. Also, wind shear due to changes in wind direction was not considered in the estimates of the total wind-shear distributions.

DESCRIPTION OF DATA SETS

Proposed Standard Wind Profiles

Standard wind profiles and associated turbulence parameters proposed by the FAA for use in piloted simulation tests and in training and system qualification tests are discussed in reference 2. Wind profiles are identified and listed in table I. For convenience, the profiles were numbered 1 to 21 for this study as listed in the first column. The last three columns list the profile numbers assigned in reference 2 and those used in aircraft simulation studies in reference 2 to determine relative wind profile severity. These numbers are not used in this report, but are listed here for continuity.

The 21 wind profiles of reference 2 were derived from measured data and from mathematical models representing a variety of atmospheric conditions. The FAA study used these data in an analytical simulation of an airplane with three rigid-body

degrees of freedom and with simplified pitch attitude and thrust control systems. These wind profiles were described as a function of altitude and range. Each profile was assigned a severity rank based on established performance criteria (see ref. 2). Profiles were compared, and potentially hazardous wind profiles were identified and designated as low, moderate, or high (see table I). As might be expected and as stated previously, 12 of the 21 wind profiles selected represent thunderstorm environments (profiles 7, 8, and 11 to 20), and the sources of wind data for 9 of these profiles were accident reconstruction reports. Wind data for the other three were obtained from tall meteorological tower measurements (profiles 7 and 8) and a mathematical model (profile 16). Accident reports were the source of profiles 5, 6, and 9, representing conditions preceding warm frontal systems. Profiles 10 and 21 represent conditions following cold fronts. (It is worth noting that in ref. 7, Goff concluded that air masses following strong cold fronts appear to rival thunderstorm outflows in terms of potential hazards to aviation.) The remaining four profiles (profiles 1 to 4) represent either neutral or stable atmospheric conditions (see ref. 2 for definitions). Profiles 1 to 16 were designed for studying the wind-shear hazard occurring during approach and landing, whereas profiles 17 to 21 were designed for takeoff and climbout.

Wind Profiles Measured During Commercial Aircraft Operations

In reference 6, information from digital flight data recorders interfaced with the aircraft integrated data system was used to derive 641 measured wind profiles. Data were collected for a 2-week period during the spring of 1977. Table II lists the location of 14 airports from which the operations were conducted and the number of profiles measured for each location. In reference 6 it was noted that the data set may be biased because 25 percent of the data were obtained during training flights at one airport and more than 60 percent of the data were obtained from operations at three airports. Also, no attempt was made to correlate the flight operations with existing meteorological conditions.

Measurement systems onboard the aircraft were activated so that a wind sample data point was obtained every 3 or 4 seconds (see ref. 6). From these measurements, plots of resultant wind velocity as a function of altitude up to 1400 ft were constructed for each operation. Wind shears were calculated from these profiles as the first derivative of resultant wind velocity with respect to altitude. A data point was obtained on the average at altitude increments of 30 to 50 ft for altitudes below 800 ft. Above 800 ft, however, vertical spacing between data points was nearly uniformly distributed between 0 to 100 ft, since for some operations the aircraft leveled off and for others it continued to climb. This created a bias in the distribution; however, Dunham (ref. 6) concluded that the data do reasonably characterize the distribution of wind shear and that this distribution was independent of altitude.

METHOD OF ANALYSIS

To compare statistical properties calculated in reference 6 with those for the data derived from the wind profiles of reference 2, ascent and descent trajectories were simulated through these wind profiles (two-dimensional wind fields). Using this technique, 645 operations (takeoffs and landings) were generated compared with 641 for the data set in reference 6. The operations are listed in table III.

The wind profiles of reference 2 were referenced to the glide-path intercept point (GPIP) of the runway coordinate system shown in figure 1. For a specific operation in this study the wind profile was determined from unpublished tables of the data used in reference 2 and from calculations of the altitude and range from

$$z = z + (V \sin \gamma) \Delta t$$

and

$$x = x_0 + (V \cos \gamma) \Delta t$$

where the subscript o indicates initial value. The time interval Δt was selected so that the altitude increment between data points ranged from 26 ft for the slowest descent rate to 83 ft for the fastest ascent rate. Typical aircraft velocity values V of 130 and 140 knots, respectively, were assumed during descent and ascent. Also, nominal glide-path and climbout angles of γ = 3° and 6°, respectively, were assumed, and additional operations were obtained by varying these parameters and the GPIP as indicated in table III.

Wind profiles 1 to 6, 9, and 16 (see table I) were described as a function of altitude only. For this reason, the nominal glide-path angle was used for these simulations to produce the first eight operations listed in table III. Wind profiles 7, 8, and 10 to 15, however, were derived as functions of altitude and range, so that unique profiles could be generated by varying either the glide-path angle or GPIP. Using this method, 392 operations were generated. Similarly, 245 operations were generated for the takeoff wind fields (profiles 17 to 21 in table I). Total or resultant wind speed was calculated as the root sum square of the three wind components, whereas in reference 6 it was calculated as the root sum square of the two horizontal components. A separate study, however, showed that the statistical comparisons were unaffected by including the vertical wind component. Wind shear for both data sets was calculated as the change in total wind velocity with altitude.

Wind-shear values were calculated for each profile and sorted in altitude bands of 100 ft for altitudes between 100 and 1400 ft. For example, all shear values occurring between 100 ± 50 ft comprised the 100-ft altitude band. In addition, in each altitude band, wind-shear values were grouped in constant class intervals of 0.025 knot/ft between ± 0.600 knot/ft. These groupings are shown in table IV.

The number of wind-shear values within each wind-shear interval were summed for all altitude bands. These results are listed in table V. For the 14 altitude bands and 48 wind-shear intervals there were 21 216 wind-shear values calculated. These values were used to calculate frequency distributions, means, and standard deviations for comparison with the results of reference 6.

The method of moments for grouped data was used to calculate the means and standard deviations for the two data sets. For example, the rth moment is (see ref. 8)

$$\bar{w}^{r} = \frac{f_{1}w_{1}^{r} + f_{2}w_{2}^{r} + \dots + f_{k}w_{k}^{r}}{N} = \frac{1}{N} \sum_{j=1}^{k} f_{j}w_{j}^{r}$$

where $N = \sum_{j=1}^k f_j$. The first moment (r=1) is the arithmetic mean \bar{w} . The rth moment about the mean is

$$m_{r} = \frac{\sum_{j=1}^{k} f_{j}(W_{j} - \overline{W})^{r}}{N} = (W - \overline{W})^{r}$$

When r=1, $m_r=0$; and when r=2, $m_2=\sigma^2$, the variance, and $\sqrt{\sigma^2}$ is the standard deviation. For the simulated data set listed in table IV, the variable W_j represents the wind-shear value at the interval midpoint, f_j is the number of occurrences in the interval, k=48, the number of wind-shear intervals, and N=21 216, the total sample size. For the simulated data set (table V), the mean and standard deviation of the frequency distribution were 0.0004 and 0.052, and for the measured data set, they were 0.0029 and 0.033.

RESULTS AND DISCUSSION

The number of occurrences in each wind-shear interval listed in table IV are plotted as histograms in figure 2 and compared with similar data from reference 6. Each histogram represents 1 of the 14 altitude bands, and the number of data points (wind-shear values calculated) in each altitude band are given on figure 2 for both data sets. Also, the number of data points in the wind-shear class interval with the maximum number of occurrences is listed for both data sets and each distribution. No wind-shear values existed outside ± 0.200 knot/ft for the measured data set.

The distributions for the 100- and 300-ft altitude bands for the simulated data show the maximum number of occurrences in the interval from ± 0.025 to ± 0.050 knot/ft. For all other altitude bands, the maximum number of occurrences was within ± 0.025 knot/ft. Maximum number of occurrences for the measured data set occurred within ± 0.025 knot/ft for all altitude bands. This implies that an aircraft encountering the simulated wind fields in the 100- and 300-ft altitude bands would experience larger shears, creating an apparently more hazardous environment. For wind-shear bands outside ± 0.050 knot/ft, the simulated data were more broadly distributed than the measured data for altitudes from 100 to 800 ft. Above the 800-ft band this trend reversed and the wind-shear values for the measured data were more broadly distributed for all wind-shear increments; however, the number of occurrences in most wind-shear intervals had decreased to below 5 percent of the maximum.

Figure 3 shows the variation of the mean and standard deviation of wind shear with altitude for both data sets. The variation of standard deviation with altitude shows that the simulated data set had greater dispersions about the mean between 100 and 800 ft than the measured data set, but less above 900 ft. Standard deviations for the measured data set were practically constant up to an altitude of 1100 ft and decreased above 1100 ft, whereas those for the simulated data set decreased continuously with altitude. These results show that the reference 2 wind fields would provide a more hazardous environment due to wind shear below 800 ft than the measured data set. This would be expected, however, because some of the wind profiles of reference 2 were designed to represent severe wind-shear encounters which pilots would normally avoid (see table I).

Table VI summarizes the total sample statistics calculated for both data sets. Values for the relative frequency distributions are listed in table VI(a) and for cumulative frequency distributions in table VI(b). Number of occurrences in each wind-shear interval for the simulated data set is from table V. Simulated values of frequency of occurrence are compared with the measured values in figure 4, in which the number of occurrences in a given wind-shear interval has been divided by sample size (21 216 for the simulated data set and 6277 for the measured data set). the statistical properties of the distributions for each altitude band did not vary greatly with altitude for the measured data set (see ref. 6 and fig. 3), the total sample distribution in figure 4 also represents the frequency of occurrence of a given shear in each altitude band. This is not true for the simulated data set, however, because the statistical properties did vary significantly with altitude, as shown in figure 3. Total sample frequency of occurrence for the two data sets was about the same for wind-shear values between ± 0.075 knot/ft, but the simulated data set had significantly larger values for all wind-shear values outside these boundaries. Calculations of normal distribution fits of both data sets showed that neither the measured nor the simulated data set was normally distributed.

Cumulative frequencies of occurrence from table VI(b) for both data sets are shown in figure 5. Similar to figure 4, this comparison shows a broader distribution for the simulated data set and generally greater probabilities for given shear values for the simulated data set. Both distributions appear to be nearly symmetrical about zero.

As mentioned previously, the measured data set did not contain wind-shear values outside ± 0.200 knot/ft. The simulated data set, however, had 168 points, or about 1 percent of the total number of points, outside these boundaries. Table VII lists the distribution of these 168 points in the altitude bands and wind-shear intervals. This distribution shows that these wind-shear values are concentrated in the lower altitude bands. For example, 47 points (28 percent) occurred in the 100-ft band, 15 points (9 percent) in the 500-ft band, and only 1 point (0.6 percent) in the 1000-ft band. Similarly, the simulated wind-shear values outside ± 0.200 knot/ft occurred in the lower wind-shear intervals, 143 points (85 percent) being between ± 0.200 and ± 0.300 knot/ft.

CONCLUDING REMARKS

Wind-shear statistics derived from wind profiles generated from proposed standard wind fields have been compared with statistics derived from data measured onboard commercial aircraft. A large sample was used for each data set to calculate wind-shear values in 100-ft altitude bands from 100 to 1400 ft. Wind-shear values were grouped in increments of 0.025 knot/ft, and frequency distributions, means, and standard deviations were compared in each 100-ft altitude band. Similarly, wind-shear values were grouped for all altitude bands, and relative and cumulative frequency distributions were compared for the total sample.

Frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Distributions for both data sets, however, were practically symmetrical for all altitudes. Total sample frequency of occurrence for the two data sets was about the same for wind-shear values between ± 0.075 knot/ft, but the simulated data set had significantly larger values for all wind-shear values outside these boundaries. Normal distribution fits of both data sets showed that neither data set was normally distributed. Similar results were observed from the cumulative

frequency distributions. It should be noted that the statistical properties as presented in this paper for both data sets may be biased by such factors as sample size, data sampling rate, methods used for calculating wind shear, and the data base from which the distributions were derived.

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 September 12, 1983

REFERENCES

- 1. Fujita, T. Theodore; and Caracena, Fernando: An Analysis of Three Weather-Related Aircraft Accidents. Bull. American Meteorol. Soc., vol. 58, no. 11, Nov. 1977, pp. 1164-1181.
- 2. Ellis, D. W.; and Keenan, M. G.: Development of Wind Shear Models and Determination of Wind Shear Hazards. Rep. No. FAA-RD-79-119, Jan. 1978. (Available from DTIC as AD A080 588.)
- 3. Frost, Walter; Camp, Dennis W.; and Wang, S. T.: Wind Shear Modeling for Aircraft Hazard Definition. Rep. No. FAA-RD-78-3, Feb. 1978. (Available from DTIC as AD A053 178; available as NASA TM-79523.)
- 4. Foy, W. H.: Airborne Aids for Coping With Low-Level Wind Shear. FAA-RD-79-117, July 1979. (Available from DTIC as AD A080 589.)
- 5. Dieudonne, James E.: Comments on a Proposed Standard Wind Hazard Environment and Its Use in Real-Time Aircraft Simulations. AIAA Paper 79-0324, Jan. 1979.
- 6. Dunham, R. Earl, Jr.: Low-Altitude Wind Measurements From Wide-Body Jet Transports. NASA TM-84538, 1982.
- 7. Goff, R. Craig: Analysis of Wind Vector Components in the Lower Troposphere: Applications to Aircraft Operations at Terminals. AIAA-81-0387, Jan. 1981.
- 8. Speigel, Murray R.: Schaum's Outline of Theory and Problems of Statistics. McGraw-Hill Book Co., c.1961.

TABLE I.- SUMMARY OF WIND PROFILES SUGGESTED FOR USE IN PILOTED SIMULATIONS (REF. 2)

	Τ	I	<u> </u>		<u> </u>	I
5 611	Relative		 Wataamalaa!aal	FAA derived	B-727 piloted	DC-10
Profile	wind profile	Source of wind data	Meteorological	wind profile	simulator tests,	simulator tests,
no.	severity		wind type	no.	wind profile no.	wind profile no.
!			Approach			
1	Low	Meteorological math model	Neutral	N2A	В1	D1
2		Meteorological math model	Stable	S1A	B2	
3		Meteorological math model	Stable	S2A	В3	
4		Tower measurements	Stable	S6A	B4	
5	Moderate	Logan accident reconstruction	Warm front	F1A	B5	D5
6	Moderate	Same as 5, rotated 40°	Warm front	F2A	B6	
7		Tower measurements	Thunderstorm	T8A	B7	D7
8		Tower measurements	Thunderstorm	T9A	B8	D8
9		Tokyo accident reconstruction	Warm front	F5A	1 10	D2
				1 311		"
10	High	Tower measurements	Cold front	F3A	В9	D9
11] 5	Philadelphia accident	Thunderstorm	T24A	B10	
		reconstruction				
12		Kennedy accident reconstruction	Thunderstorm	TOA	B11	
13		Kennedy accident reconstruction	Thunderstorm	тов	B12	D6
14		Kennedy accident reconstruction	Thunderstorm	TOC		D10
15		Philadelphia accident	Thunderstorm	T25A		D4
		reconstruction				
16		Math model	Thunderstorm	M1A		D3
			Takeoff			
17	High	Kennedy accident reconstruction	Thunderstorm	TOD		D11
18	111911	Philadelphia accident	Thunderstorm	T23A		D12
'°	1	reconstruction	Indirect acolin	1236		""
19	1	Philadelphia accident	Thunderstorm	T24B		D13
' -	1	reconstruction	Zirunder Beorin	12-10		1 713
20		Philadelphia accident	Thunderstorm	T25B		D14
– ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		reconstruction		12.55		1
21		Tower measurements	Cold front	F3B		D15
	1		1	- -	<u> </u>	L

TABLE II.- AIRPORTS AND NUMBER OF WIND PROFILES MEASURED AT EACH AIRPORT

[From ref. 6]

Airport	Number of profiles	Percent of total
Atlantic City, New Jersey	160	25.0
New York, New York	122	19.0
London, England	109	17.0
Madrid, Spain	48	7.5
Paris, France	45	7.0
Boston, Massachusetts	35	5.5
Rome, Italy	28	4.3
Chicago, Illinois	26	4.0
Los Angeles, California	17	2.6
Barcelona, Spain	13	2.0
Philadelphia, Pennsylvania	13	2.0
Milano, Italy	12	1.9
Algiers	11	1.7
Monaco	2	<1.0

TABLE III.- OPERATIONS DERIVED FROM SIMULATED FLIGHTS THROUGH THE WIND PROFILES OF REFERENCE 2

Operations	Profile numbers	Flight-path angle, γ, deg	Glide-path intercept point, x _o , ft	Inertial velocity, V _O , knots
1 to 8 (approach)	1 to 6, 9, 16	3	0	130
9 to 400 (approach)	7, 8, 10 to 15	3, 3 ± 0.25, 3 ± 0.50, 3 ± 0.75	0, ±3937, ±7874, ±11800	130
401 to 645 (takeoff)	17 to 21	6, 6 ± 0.25, 6 ± 0.50, 6 ± 0.75	0, ±3937, ±7874, ±11800	140

TABLE IV. - SIMULATED WIND-SHEAR VALUES GROUPED IN 100-FT ALTITUDE BANDS AND WIND-SHEAR INTERVALS OF 0.025 KNOT/FT

(a) 100-ft altitude band

Wind-shear	Number of	Percent
interval,		of
knot/ft	occurrences	maximum
-0.600 to -0.275	0	0
275 to250	1	•32
250 to225	4	1.28
225 to200	5	1.60
200 to175	11	3.51
175 to150	10	3.19
150 to125	10	3.19
125 to100	24	7.67
100 to075	27	8.63
075 to050	41	13.10
050 to025	69	22.04
025 to .000	234	74.76
.000 to .025	268	85.62
.025 to .050	^a 313	100.00
.050 to .075	47	15.02
.075 to .100	74	23.64
.100 to .125	61	19.49
.125 to .150	50	15.97
.150 to .175	34	10.86
.175 to .200	20	6.39
.200 to .225	12	3.83
•225 to •250	4	1.28
.250 to .275	5	1.60
•275 to •300	1	•32
.300 to .325	2	•64
•325 to •350	0	0
.350 to .375	3	•96
.375 to .400	2	•64
.400 to .425	1	•32
.425 to .450	3	•96
.450 to .475	1	•32
•475 to •500	0	0
.500 to .525	2	.64
•525 to •550	0	0
.550 to .575	0	0
.575 to .600	1	•32
Total	1340	

a Number of occurrences of maximum.

TABLE IV. - Continued

(b) 200-ft altitude band

Wind-shear	Number	Percent
interval,	of	of
knot/ft	occurrences	maximum
-0.600 to -0.575	0	0
575 to550	1	.19
550 to350	0	0
350 to325	1	.1 9
325 to300	2	•37
300 to275	1	•19
275 to250	2	•37
250 to225	3	•56
225 to200	7	1.31
200 to175	16	2.99
175 to150	17	3.17
150 to125	6	1.12
125 to100	21	3.92
100 to075	47	8.77
075 to050	91	16.98
050 to025	118	22.01
025 to .000	254	47.39
.000 to .025	^a 536	100.00
.025 to .050	138	25.75
.050 to .075	75	13.99
.075 to .100	54	10.07
.100 to .125	34	6.34
.125 to .150	14	2.61
.150 to .175	19	3.54
•175 to •200	19	3.54
.200 to .225	8	1.49
.225 to .250	3	•56
.250 to .275	1	•19
.275 to .300	2	•37
.300 to .325	1	•19
.325 to .350	3	•56
.350 to .600	0	0
Total	1494	

aNumber of occurrences of maximum.

TABLE IV. - Continued

(c) 300-ft altitude band

	1	<u> </u>
Wind-shear	Number	Percent
interval,	of	of
knot/ft	occurrences	maximum
-0.600 to -0.325	0	0
325 to300	1	•24
300 to275	1	•24
275 to250	0	0
250 to225	2	.48
225 to200	5	1.21
200 to175	17	4.12
175 to150	28	6.78
150 to125	32	7.75
125 to100	22	5.33
100 to075	35	8.47
075 to050	75	18.16
050 to025	144	34.87
025 to .000	253	61.26
.000 to .025	381	92.25
.025 to .050	^a 413	100.00
.050 to .075	54	13.08
.075 to .100	45	10.90
.100 to .125	29	7.02
.125 to .150	30	7.26
.150 to .175	30	7.26
.175 to .200	18	4.36
.200 to .225	7	1,.69
•225 to •250	3	. 73
•250 to •275	1	•24
.275 to .300	1	.24
.300 to .600	0	0
Total	1627	

a Number of occurrences of maximum.

TABLE IV. - Continued

(d) 400-ft altitude band

Wind-shear	Number	Percent
interval,	of	of
knot/ft	occurrences	maximum
<u> </u>		
-0.600 to -0.275	0	0
275 to250	1	•23
250 to225	0	0
225 to200	12	2.72
200 to175	9	2.04
175 to150	22	4.99
150 to125	26	5.90
125 to100	19	4.31
100 to075	25	5.67
075 to050	49	11.11
050 to025	83	18.82
025 to .000	265	60.09
.000 to .025	^a 441	100.00
.025 to .050	311	70.52
.050 to .075	85	19.27
.075 to .100	50	11.34
.100 to .125	43	9.75
•125 to •150	42	9.52
.150 to .175	17	3.85
.175 to .200	7	1. 59
.200 to .225	3	•68
.225 to .250	4	•91
.250 to .275	1	•23
.275 to .600	0	0
Total	1515	

 $^{^{\}mathrm{a}}\mathrm{Number}$ of occurrences of maximum.

TABLE IV. - Continued

(e) 500-ft altitude band

Wind-shear interval, knot/ft	Number of occurrences	Percent of maximum
-0.600 to -0.225	0	0
225 to200	4	1.04
200 to175	6	1.56
175 to150	19	4.94
150 to125	21	5.45
125 to100	30	7.79
100 to075	47	12.21
075 to050	190	49.35
050 to025	166	43.12
025 to .000	260	67.53
.000 to .025	^a 385	100.00
.025 to .050	90	23.38
.050 to .075	58	15.06
.075 to .100	65	16.88
.100 to .125	47	12.21
.125 to .150	16	4.16
.150 to .175	8	2.08
.175 to .200	7	1.82
.200 to .225	5	1.30
.225 to .250	3	.78
•250 to •275	2	•52
.275 to .300	0	0
.300 to .325	1	•26
•325 to •600	0	0
Total	1430	

^aNumber of occurrences of maximum.

TABLE IV. - Continued

(f) 600-ft altitude band

Wind-shear	Number	Percent
interval,	of	of
knot/ft	occurrences	maximum
-0.600 to -0.275	0	0
275 to250	1	.22
250 to225	0	0
225 to200	1	.22
200 to175	2	.44
175 to150	16	3.52
150 to125	30	6.59
125 to100	56	12.31
100 to075	96	21.10
075 to050	110	24.18
050 to025	141	30.99
025 to .000	408	89.67
.000 to .025	^a 455	100.00
.025 to .050	93	20.44
.050 to .075	72	15.82
.075 to .100	60	13. 19
•100 to •125	25	5.49
•125 to •150	12	2.64
•150 to •175	17	3.74
.175 to .200	4	•88
•200 to •225	7	1.54
•225 to •600	0	0
Total	1606	-

a Number of occurrences of maximum.

TABLE IV. - Continued

(g) 700-ft altitude band

Wind-shear	Number	Percent
interval,	of	of
knot/ft	occurrences	maximum
-0.600 to -0.275	0	0
275 to250	2	•48
250 to225	2	•48
225 to200	3	•72
200 to175	5	1.19
175 to150	11	2.63
150 to125	13	3.10
125 to100	37	8.83
100 to075	127	30.31
075 to050	130	31.03
050 to025	374	89.26
025 to .000	236	56.32
.000 to .025	^a 419	100.00
.025 to .050	66	15.75
.050 to .075	48	11.46
.075 to .100	46	10.98
.100 to .125	10	2.39
.125 to .150	7	1.67
.150 to .175	7	1.67
.175 to .200	3	•72
.200 to .225	3	•72
.225 to .250	1	.24
.250 to .600	0	0
Total	1550	

a Number of occurrences of maximum.

TABLE IV. - Continued

(h) 800-ft altitude band

Wind-shear interval, knot/ft	Number of occurrences	Percent of maximum
-0.600 to -0.225225 to200200 to175175 to150150 to125125 to100100 to075075 to050050 to025025 to .000 .000 to .025 .025 to .050 .050 to .075 .075 to .100 .100 to .125 .125 to .150 .150 to .175 .175 to .200 .200 to .225 .225 to .250	0 2 3 7 6 17 41 119 270 386 a416 59 50 10 5 4 4 1	0 .48 .72 1.68 1.44 4.09 9.86 28.61 64.90 92.79 100.00 14.18 12.02 2.40 1.20 .96 .96 .24 .24 .24
.250 to .275 .275 to .600	0	0
Total	1403	

aNumber of occurrences of maximum.

TABLE IV.- Continued

(i) 900-ft altitude band

Wind-shear	Number	Percent
interval,	of	of
knot/ft	occurrences	maximum
-0.600 to -0.225225 to200200 to175175 to150150 to125125 to100100 to075075 to050050 to025025 to .000 .000 to .025 .025 to .050 .050 to .075 .075 to .100 .100 to .125 .125 to .150 .150 to .175 .175 to .200	0 1 0 2 2 7 22 30 67 601 ^a 773 53 14 3 7	0 .13 0 .26 .26 .91 2.85 3.88 8.67 77.75 100.00 6.86 1.81 .39 .91 .39
.200 to .225	1	•13
.225 to .250	1	•13
.250 to .600	0	0
Total	1592	

 $^{^{\}mathrm{a}}\mathrm{Number}$ of occurrences of maximum.

TABLE IV. - Continued

(j) 1000-ft altitude band

	····	
Wind-shear	Number	Percent
interval,	of	of
knot/ft	occurrences	maximum
-0.600 to -0.200	0	0
200 to175	2	•28
175 to150	0	0
150 to125	0	0
125 to100	2	•28
100 to075	18	2.50
075 to050	22	3.06
050 to025	77	10.71
025 to .000	^a 719	100.00
.000 to .025	684	95 . 13
.025 to .050	45	6.26
.050 to .075	4	•56
.075 to .100	4	•56
.100 to .125	0	0
.125 to .150	3	•42
.150 to .175	3	.42
.175 to .200	1	.14
.200 to .225	1	.14
.225 to .600	0	0
Total	1585	

a Number of occurrences of maximum.

TABLE IV. - Continued

(k) 1100-ft altitude band

Wind-shear interval, knot/ft	Number of occurrences	Percent of maximum
-0.600 to -0.150150 to125125 to100100 to075075 to050050 to025025 to .000 .000 to .025 .025 to .050 .050 to .075 .075 to .100 .100 to .125 .125 to .150 .150 to .175 .175 to .200	0 1 1 9 23 58 ^a 682 613 29 3 0 1	0 •15 •15 1•32 3•37 8•50 100•00 89•88 4•25 •44 0 •15 •15 •15 •15
.200 to .600	0	0
Total	1424	

^aNumber of occurrences of maximum.

TABLE IV. - Continued

(1) 1200-ft altitude band

Wind-shear interval, knot/ft	Number of occurrences	Percent of maximum
-0.600 to -0.125	0	0
125 to100	1	•13
100 to075	5	•66
075 to050	30	3.94
050 to025	49	6.44
025 to .000	^a 761	100.00
.000 to .025	751	98.69
.025 to .050	34	4.47
.050 to .075	4	•53
•075 to •100	2	•26
.100 to .125	2	•26
•125 to •150	0 0	
.150 to .175	2	•26
.175 to .600	0	0
Total	1641	

 $^{^{\}mathrm{a}}\mathrm{Number}$ of occurrences of maximum.

TABLE IV. - Concluded

(m) 1300-ft altitude band

Wind-shear interval, knot/ft	Number of occurrences	Percent of maximum
-0.600 to -0.100100 to075075 to050050 to025025 to .000 .000 to .025 .025 to .050 .050 to .075 .075 to .100 .100 to .125 .125 to .150 .150 to .600	0 1 13 43 676 ^a 751 26 3 1 0	0 •13 1.73 5.73 90.01 100.00 3.46 •40 •13 0 •13
Total	1515	-

a Number of occurrences of maximum.

(n) 1400-ft altitude band

Wind-shear interval, knot/ft	Number of occurrences	Percent of maximum
-0.600 to -0.100	0	0
100 to075	2	.24
075 to050	8	•97
050 to025	31	3.76
025 to .000	606	73.54
.000 to .025	^a 824	100.00
.025 to .050	19	2.31
.050 to .075	4	.49
.075 to .600	0	0
Total	1494	

a Number of occurrences of maximum.

TABLE V.- FREQUENCY DISTRIBUTION OF SIMULATED WIND-SHEAR DATA FOR ALL 14 ALTITUDE BANDS

Wind-shear interval,	Number of	Percent of
knot/ft	occurrences	maximum
0.500 to 0.575		0
-0.600 to -0.575	0	
575 to550	1	.005
550 to525	0	0
525 to500	0	0
500 to475	0	0
475 to450	0	0
450 to425	0	0
425 to400	0	0
400 to375	0	0
375 to350	0	0
350 to325	1	.005
325 to300	3	.014
300 to275	2	•009
275 to250	7	.033
250 to225	11	.052
225 to200	40	.1 89
200 to175	71	•335
175 to150	132	.622
150 to125	147	•693
125 to100	237	1.117
100 to075	502	2,366
075 to050	931	4.388
050 to025	1 690	7.966
025 to .000	6 341	29.882
.000 to .025	7 697	36.279
.025 to .050	1 689	7.961
•050 to •075	521	2.456
.075 to .100	414	1.951
.100 to .125	264	1.244
.125 to .150	183	.863
.150 to .175	145	•683
.175 to .200	84	•396
.200 to .225	48	•226
.225 to .250	20	.094
•250 to •275	11	•052
•275 to •300	4	.019
•300 to •325	4	.019
.325 to .350	3	.014
•350 to •375	3	.014
•375 to •400	2	•009
.400 to .425	1	•005
.425 to .450	3	.014
•450 to •475	1	•005
.475 to .500	0	0
•500 to •525	2	•009
•525 to •550	0	0
•550 to •575	o	0
.575 to .600	1	.005
	21 216	

TABLE VI.- SUMMARY OF THE TOTAL SAMPLE STATISTICS FOR BOTH DATA SETS

(a) Frequency distributions

1		Simulated	data	Frequency of	occurrencea
Wind-shear Interval interval, midpoint, knot/ft knot/ft	No. of occurrences,	Σf	Simulated data	Measured data	
-0.600 to -0.575	-0.5875	0	0	0	
575 to550	5625	1	1	•0000	
550 to525	5375	0	1	0	
525 to500	5125	0	1	0	
500 to475	4875	0	1	0	
475 to450	4625	0	1	0	
450 to425	4375	0	1	0	
425 to400	4125	0	1	0	
400 to375	3875	0	1	0	
375 to350	3625	0	1	0	
350 to325	3375	1	2	•0000	
325 to300	3125	3	5	.0001	
300 to275	2875	2	7	.0001	1
275 to250	2625	7	14	.0003	
250 to225	2375	11	25	•0005	
225 to200	2125	40	65	.0019	
200 to175	1875	71	136	.0033	0.00112
175 to150	1625	132	268	•0062	.00173
150 to125	1375	147	415	•0069	.00301
125 to100	1125	237	652	•0112	.00537
100 to075	0875	502	1 154	•0237	•00968
075 to050	0625	931	2 085	.0439	.02830
050 to025	0375	1690	3 775	.0797	.07138
025 to .000	0125	6341	10 116	.2989	.31484
.000 to .025	.0125	7697	17 813	•3628	.38370
.025 to .050	.0375	1689	19 502	.0796	.11188
.050 to .075	.0625	521	20 023	.0246	.03741
.075 to .100	•0875	414	20 437	•0195	.01391
•100 to •125	•1125	264	20 701	.0124	.00554
.125 to .150	.1375	183	20 884	.0086	.00206
.150 to .175	•1625	145	21 029	•0068	.00190
.175 to .200	. 1875	84	21 113	.0040	.00190
.200 to .225	•2125	48	21 161	.0023	
.225 to .250	-2375	20	21 181	.0009	
.250 to .275	•2625	11	21 192	•0005	
.275 to .300	.2875	4	21 196	•0002	
.300 to .325	•3125	4	21 200	.0002	1
.325 to .350	.3375	3	21 203	•0001	1
.350 to .375	.3625	3	21 206	•0001	
.375 to .400	•3875	2	21 208	.0001	
.400 to .425	.4125	1	21 209	•0000	
.425 to .450	•4375	3	21 212	•0001]
.450 to .475	.4625	1	21 213	•0000	
.475 to .500	.4875	0	21 213	0	
.500 to .525	.5125	2	21 215	•0001	1
.525 to .550	.5375	0	21 215	0	
.550 to .575	•5625	0	21 215	0	
.575 to .600	•5875	1	21 216	•0000	

 $^{^{\}mathrm{a}}$ Frequency of occurrence is obtained by dividing the number of occurrences in a given interval by total sample size.

(b) Cumulative frequency distributions

TABLE VI.- Concluded

Wind-shear	Interval	Cumulat of occur		Cumulative of occur	
interval, knot/ft	midpoint, knot/ft	Negative wind shear	Positive wind shear	Simulated data	Measured data
-0.600 to -0.575	-0.5875	0		0	
575 to550	5625	1		.0000	
550 to525	5375	1		.0000	
525 to500	5125	1		.0000	
500 to475	4875	1		.0000	
475 to450	4625	1		.0000	
450 to425	4375	1		•0000	
425 to400	4125	1		.0000	
400 to375	~. 3875	1		.0000	İ
375 to350	3625	1		.0000	:
350 to325	3375	2		.0001	
325 to300	3125	5		.0002	
300 to275	2875	7		•0003	
275 to250	2625	14		•0007	
250 to225	2375	25		.0012	
225 to200	2125	65		•0031	
200 to175	1875	136		.0064	0.00112
175 to150	1625	268		.0126	•00285
150 to125	1375	415		.0196	•00585
125 to100	1125	652		•0307	•01123
100 to075	0875	1 154		.0544	•02091
075 to050	0625	2 085		•0983	•04921
050 to025	0375	3 775		•1779	•12060
025 to .000	0125	10 116		•4768	•43544
.000 to .025	•0125		11 100	•5232	•55830
.025 to .050	•0375		3 403	•1604	•17459
.050 to .075	.0625		1 714	•0808	•06271
.075 to .100	•0875		1 193	.0562	.02530
.100 to .125	.1125		779	.0367	.01139
.125 to .150	•1375		515	.0243	•00585
.175 to .200	•1625		332	.0156	.00379
.200 to .225	.1875 .2125		187 103	.0088 .0049	.00190
.200 to .223	.2375		55	.0026	
.250 to .275	•2625		35	.0026	
.275 to .300	·2023		24	.0010	
.300 to .325	•3125		20	.0009	
.325 to .350	•3375		16	.0008	
.350 to .375	.3625		13	.0006	
.375 to .400	•3875		10	.0005	
.400 to .425	•4125		.8	.0004	
.425 to .450	.4375		7	.0003	
.450 to .475	•4625		4	.0002	
.475 to .500	.4875		3	.0001	
•500 to •525	•5125		3	.0001	
•525 to •550	•5375		1	.0000	
.550 to .575	•5625		1	.0000	
•575 to •600	•5875		1	•0000	

 $^{^{\}rm a}\text{Cumulative}$ frequency of occurrence is obtained by dividing the cumulative number of occurrences in a given interval by the total sample size.

TABLE VII.- DISTRIBUTION OF WIND-SHEAR OCCURRENCES OUTSIDE ±0.200 KNOT/FT FOR SIMULATED DATA SET

Altitude Number band, ft ±0.200 to ±0.300	Number of occurrences in wind-shear interval, knot/ft, of -					
	±0.300 to ±0.400	±0.400 to ±0.500	±0.500 to ±0.600	Total		
100	32	7,	5	3	47	
200	27	7	0	1	35	
300	20	1	1	0	21	
400	21	0		1	21	
500	14	1			15	
600	9	0			9	
700	11				11	
800	5				5	
900	3		!		3	
^a 1000	1	 	+	†	1	
Total	143	16	5	4	168	

aNo wind shears outside ±0.200 knot/ft occurred above 1000 ft.

Figure 1.- Runway coordinate system and sign convention.

(a) 100-ft altitude band.

Figure 2.- Distribution of wind shears in 100-ft altitude bands.

Figure 2. - Continued.

(c) 300-ft altitude band.

Figure 2. - Continued.

(d) 400-ft altitude band.

Figure 2. - Continued.

(e) 500-ft altitude band.

Figure 2.- Continued.

(f) 600-ft altitude band.

Figure 2.- Continued.

(g) 700-ft altitude band.

Figure 2.- Continued.

(h) 800-ft altitude band.

Figure 2. - Continued.

(i) 900-ft altitude band.

Figure 2. - Continued.

(j) 1000-ft altitude band.

Figure 2. - Continued.

Figure 2. - Continued.

(1) 1200-ft altitude band.

Figure 2.- Continued.

(m) 1300-ft altitude band.

Figure 2.- Continued.

ii) 1400-it aititude band.

Figure 2.- Concluded.

Figure 3.- Variation of mean and standard deviation with altitude.

Figure 4.- Frequency of occurrence of wind shear (table VI(a)) based on total sample size.

Figure 5.- Cumulative frequency of occurrence of wind shear (table VI(b)).

1. Report No.	2. Government Accession	No.	3, Recip	ient's Catalog No.	
NASA TM-85668					
4. Title and Subtitle COMPARISON OF LOW-ALTITUD	E WIND-SHEAR STATIS	STICS	5. Report Date November 1983		
DERIVED FROM MEASURED AND		rming Organization Code			
PROFILES			505-43-03-01		
7. Author(s)		-	8. Perfo	rming Organization Report No.	
J. W. Usry			L-15	5619	
			10. Work	Unit No.	
9. Performing Organization Name and Addre	ss				
NASA Langley Research Cen	ter		11 Contr	ract or Grant No.	
Hampton, VA 23665	.001		, co		
			12 Type	of Report and Period Covered	
12. Sponsoring Agency Name and Address				nnical Memorandum	
National Aeronautics and	Space Administratio	n			
Washington, DC 20546	opace manifestacio	,11	14. Spons	soring Agency Code	
15. Supplementary Notes					
					
16. Abstract					
Wind-shear statistics wer	e calculated for a	simulat	ed set of wind	d profiles based on	
a proposed standard wind	field data base. T	hese st	atistics were	compared with	
statistics derived from w					
altitude bands of 100 ft					
0.025 knot/ft. The wind-					
and ±0.200 knot/ft for th standard deviations for e					
				ne total sample were	
derived for both sets and					
for the simulated data se	t were more dispers	ed belo	w 800 ft and 1	Less dispersed above	
900 ft than those for the					
practically symmetrical f the two data sets was abo					
the two data sets was about the simulated data set ha					
these boundaries. Normal	distribution fits	of both	data sets she	owed that neither	
data set was normally dis					
frequency distributions.					
17 Key Words (Suggested by Ausbaulit)	Τ.	O Diserible	on Centomore		
17. Key Words (Suggested by Author(s))		18. Distribution Statement Unclassified - Unlimited			
Wind shear Measured and simulated		one	rassilied - U	HITHH CEA	
Statistics					
			S	ubject Category 05	
19. Security Classif. (of this report)	20. Security Classif. (of this pa	ge)	21. No. of Pages	22. Price	
Unclassified	Unclassified		45	A0 3	

•		

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business
Penalty for Private Use, \$300

THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return