# Analyzing algorithms

# Vera Sacristán

Computational Geometry Facultat de Matemàtiques i Estadística Universitat Politècnica de Catalunya

## **Complexity**

- Time
- Space

Other important issues: understandability, robustness, etc.

## **Complexity**

- Time
- Space

Other important issues: understandability, robustness, etc.

Why is time so important?

## **Complexity**

- Time
- Space

Other important issues: understandability, robustness, etc.

## Why is time so important?

# Execution time, assuming a speed of 1 million instructions per second

| Cost       | n = 10     | n=20         | n = 100                        |  |
|------------|------------|--------------|--------------------------------|--|
| $\log n$   | 0.004 ms   | 0.005 ms     | 0.007 ms                       |  |
| n          | 0.01 ms    | 0.02 ms      | 0.1 ms                         |  |
| $n \log n$ | 0.033 ms   | 0.09 ms      | 0.66 ms                        |  |
| $n^2$      | 0.1 ms     | 0.4 ms       | 10 ms                          |  |
| $n^4$      | 10 ms      | 160 ms       | 1 min 40 sec                   |  |
| $2^n$      | 1 ms       | 1.05 sec     | $2.7 \times 10^6$ UA           |  |
| n!         | 3.6 sec    | 76 000 years | $2 \times 10^{134} \text{ UA}$ |  |
| $n^n$      | 2 h 48 min | 220 UA       | $2 \times 10^{176} \text{ UA}$ |  |

UA = age of the universe (15 thousand millions years)

## **Complexity**

- Time
- Space

Other important issues: understandability, robustness, etc.

## Why is time so important?

# Execution time, assuming a speed of 1 million instructions per second

| Cost       | n = 10     | n = 20       | n = 100                        | n = 18000    |
|------------|------------|--------------|--------------------------------|--------------|
| $\log n$   | 0.004 ms   | 0.005 ms     | 0.007 ms                       | 0.018 ms     |
| n          | 0.01 ms    | 0.02 ms      | 0.1 ms                         | 18 ms        |
| $n \log n$ | 0.033 ms   | 0.09 ms      | 0.66 ms                        | 254 ms       |
| $n^2$      | 0.1 ms     | 0.4 ms       | 10 ms                          | 5 min 24 sec |
| $n^4$      | 10 ms      | 160 ms       | 1 min 40 sec                   | 3 328 years  |
| $2^n$      | 1 ms       | 1.05 sec     | $2.7 	imes 10^6$ UA            |              |
| n!         | 3.6 sec    | 76 000 years | $2 \times 10^{134} \text{ UA}$ |              |
| $n^n$      | 2 h 48 min | 220 UA       | $2 \times 10^{176} \text{ UA}$ |              |

UA = age of the universe (15 thousand millions years)

## **Complexity**

- Time
- Space

Other important issues: understandability, robustness, etc.

## Why is time so important?

### Size of the problem that can be solved in 1 hour

| Cost  | Current<br>size | 100 times<br>faster | 1000 times<br>faster |
|-------|-----------------|---------------------|----------------------|
| n     | N               | 100N                | 1000N                |
| $n^2$ | N               | 10N                 | 31.6N                |
| $n^3$ | N               | 4.64N               | 10N                  |
| $2^n$ | N               | N + 6.64            | N + 9.97             |
| $3^n$ | N               | N + 4.19            | N + 6.29             |

## **Complexity**

- Time
- Space

Other important issues: understandability, robustness, etc.

### Model of computation

The Real RAM Model:

- Each memory unit can allocate one real number, without precision limit
- Access to one memory position has unit cost
- Unit cost operations are:
  - Comparisons  $(<, \leq, =\neq, >, \geq)$
  - Arithmetic operations (+, -, \*, :)

Analytic functions (such as  $\sqrt[k]{\log}, \log, \exp, \cos, \sin, \ldots$ ) do not have unit cost. Neither do functions floor and ceiling.

## **Complexity**

- Time
- Space

Other important issues: understandability, robustness, etc.

### Model of computation

The Real RAM Model:

- Each memory unit can allocate one real number, without precision limit
- Access to one memory position has unit cost
- Unit cost operations are:
  - Comparisons  $(<, \leq, =\neq, >, \geq)$
  - Arithmetic operations (+, -, \*, :)

Analytic functions (such as  $\sqrt[k]{\log, \exp, \cos, \sin, \ldots}$ ) do not have unit cost. Neither do functions floor and ceiling.

**Asymptotic analysis** studies the cost of an algorithm (i.e., the number of unit cost operations performed by the algorithm) in terms of the size  $n \in \mathbb{N}$  of the input of the problem.

#### **Notation**

Given  $f, g: \mathbb{N} \longrightarrow \mathbb{R}^+$  increasing functions,

$$g \in O(f) \Leftrightarrow \exists n_0 \in \mathbb{N} \ \exists c \in \mathbb{R}^+ \ \forall n \ge n_0 \ g(n) \le cf(n)$$

$$g \in \Omega(f) \Leftrightarrow \exists n_0 \in \mathbb{N} \ \exists c \in \mathbb{R}^+ \ \forall n \ge n_0 \ g(n) \ge cf(n)$$

$$g \in \Theta(f) \Leftrightarrow g \in O(f) \cap \Omega(f)$$

$$g \in o(f) \Leftrightarrow \lim_{n \to +\infty} \frac{g(n)}{f(n)} = 0$$

#### **Notation**

Given  $f, g: \mathbb{N} \longrightarrow \mathbb{R}^+$  increasing functions,

$$g \in O(f) \Leftrightarrow \exists n_0 \in \mathbb{N} \ \exists c \in \mathbb{R}^+ \ \forall n \ge n_0 \ g(n) \le cf(n)$$

$$g \in \Omega(f) \Leftrightarrow \exists n_0 \in \mathbb{N} \ \exists c \in \mathbb{R}^+ \ \forall n \ge n_0 \ g(n) \ge cf(n)$$

$$g \in \Theta(f) \Leftrightarrow g \in O(f) \cap \Omega(f)$$

$$g \in o(f) \Leftrightarrow \lim_{n \to +\infty} \frac{g(n)}{f(n)} = 0$$

## Complexity of an algorithm (in a given computation model)

The worst case running time of an algorithm is O(f) if the number of unit cost operations that it performs for **any** input of size n is O(f(n)).

The worst case running time of an algorithm is  $\Omega(f)$  if the number of unit cost operations that it performs is  $\Omega(f(n))$  for **some** input of size n.

#### **Notation**

Given  $f, g: \mathbb{N} \longrightarrow \mathbb{R}^+$  increasing functions,

$$g \in O(f) \Leftrightarrow \exists n_0 \in \mathbb{N} \ \exists c \in \mathbb{R}^+ \ \forall n \ge n_0 \ g(n) \le cf(n)$$

$$g \in \Omega(f) \Leftrightarrow \exists n_0 \in \mathbb{N} \ \exists c \in \mathbb{R}^+ \ \forall n \ge n_0 \ g(n) \ge cf(n)$$

$$g \in \Theta(f) \Leftrightarrow g \in O(f) \cap \Omega(f)$$

$$g \in o(f) \Leftrightarrow \lim_{n \to +\infty} \frac{g(n)}{f(n)} = 0$$

## Complexity of an algorithm (in a given computation model)

The worst case running time of an algorithm is O(f) if the number of unit cost operations that it performs for **any** input of size n is O(f(n)).

The worst case running time of an algorithm is  $\Omega(f)$  if the number of unit cost operations that it performs is  $\Omega(f(n))$  for **some** input of size n.

## Complexity of a problem (in a given computation model)

The (time) complexity of a problem is O(f) if **there exists** an algorithm solving it in O(f) running time.

The (time) complexity of a problem is  $\Omega(f)$  all algorithms solving it run in  $\Omega(f(n))$  time.

#### **Lower bounds**

**Theorem (Ben-Or)**: Let X be a semi-algebraic subset of  $\mathbb{R}^d$  (i.e., X is the set of points in dimensions d satisfying a set of algebraic equations and/or inequations). The membership decision problem associated with X has the following lower bound:

$$\Omega(\log(\max(cc(X), cc(\mathbb{R}^d \setminus X))) - d),$$

where cc(Y) stands for the number of connected components of the set Y.

#### **Lower bounds**

**Theorem (Ben-Or)**: Let X be a semi-algebraic subset of  $\mathrm{R}^d$  (i.e., X is the set of points in dimensions d satisfying a set of algebraic equations and/or inequations). The membership decision problem associated with X has the following lower bound:

$$\Omega(\log(\max(cc(X), cc(\mathbb{R}^d \setminus X))) - d),$$

where cc(Y) stands for the number of connected components of the set Y.

**Some known lower bounds.** The following problems are  $\Omega(n \log n)$  in the Real RAM computation model:

- Sorting n real (integer) numbers.
- ullet Element uniqueness: deciding whether n given real (integer) numbers are all distinct.
- Max-gap: computing the maximum distance between two consecutive numbers from a set of n real (integer) numbers.
- Set disjointness: deciding whether two given sets of n real (integer) numbers are disjoint.
- ullet Set equality: deciding whether two given sets of n real (integer) numbers are equal.

**Lower bounds** 

#### **Lower bounds**



#### **Lower bounds**



#### **Lower bounds**



$$\left. \begin{array}{c} g \in \Omega(h(n)) \\ r_1, r_2 \in o(h(n)) \end{array} \right\} \Longrightarrow f \in \Omega(h(n))$$

**Lower bounds** 

Reduction example

### **Lower bounds**

## Reduction example

The convex hull problem is  $\Omega(n \log n)$ 

#### **Lower bounds**

## Reduction example

The convex hull problem is  $\Omega(n \log n)$ 

Input:  $p_1, \ldots, p_n \in \mathbb{R}^2$ 

#### **Lower bounds**

## Reduction example

The convex hull problem is  $\Omega(n \log n)$ 

Input:  $p_1, \ldots, p_n \in \mathbb{R}^2$ 

**Output:**  $v_1, \ldots, v_k$  the vertices of  $ch(\{p_1, \ldots, p_n\})$  in counterclockwise order

 $x_1, \ldots, x_n \in \mathbb{R}$ 

#### **Lower bounds**

## Reduction example

The convex hull problem is  $\Omega(n \log n)$ 

Input:  $p_1, \ldots, p_n \in \mathbb{R}^2$ 



#### **Lower bounds**

## Reduction example

The convex hull problem is  $\Omega(n \log n)$ 

Input:  $p_1, \ldots, p_n \in \mathbb{R}^2$ 



#### **Lower bounds**

## Reduction example

The convex hull problem is  $\Omega(n \log n)$ 

Input:  $p_1, \ldots, p_n \in \mathbb{R}^2$ 



#### **Lower bounds**

## **Reduction example**

The convex hull problem is  $\Omega(n \log n)$ 

Input:  $p_1, \ldots, p_n \in \mathbb{R}^2$ 



#### **Lower bounds**

## Reduction example

The convex hull problem is  $\Omega(n \log n)$ 

Input:  $p_1, \ldots, p_n \in \mathbb{R}^2$ 



#### **FURTHER READING**

F. P.Preparata and M. I Shamos Computational Geometry: An Introduction Springer-Verlag, 1985.

J-D. Boissonnat and M. Yvinec Algorithmic Geometry Cambridge University Press, 1997.