Management Sciences Topics: Convex Optimization Midterm

1. Problem 1.

(a)
$$f(x,y) = \log(x^2 + xy + y^2 + 1), \ x, y \in \mathbb{R}.$$

Not convex.

(b)
$$f(x) = \exp(-\|Ax + b\|_2^2)$$

Not convex.

(c)
$$f(x) = \exp(\|Ax + b\|_2^2)$$

Convex. Let $f(x) = h \circ g(x)$, where $h(x) = \exp(x)$ is convex and increasing, and $g(x) = \|Ax + b\|_2^2$ is convex. Hence f is convex.

2. Problem 2.

The Lagrange dual function is

$$g(\lambda, \nu) = \inf_{x \in \mathbb{R}^n_+} \sum_{i=1}^n x_i \ln(x_i/y_i) + \sum_{i=1}^n \lambda_i(x_i - b_i) + \sum_{i=1}^n \lambda_i'(a_i - x_i) + \nu(\sum_{i=1}^n x_i - 1),$$

where $\lambda = (\lambda_i, \lambda_i') \in \mathbb{R}^{2n}$. Then

$$\frac{\partial}{\partial x_i}g = \ln(x_i/y_i) + y_i + \lambda_i - \lambda_i' + \nu,$$

so in order to get the minimum value for g,

$$x_i = y_i \exp(-y_i - \lambda_i + \lambda_i' - \nu).$$

Then

$$g(\lambda, \nu) = \sum_{i=1}^{n} y_{i}(-y_{i} - \lambda_{i} + \lambda'_{i} - \nu) \exp(-y_{i} - \lambda_{i} + \lambda'_{i} - \nu)$$

$$+ \sum_{i=1}^{n} \lambda_{i}(y_{i} \exp(-y_{i} - \lambda_{i} + \lambda'_{i} - \nu) - b_{i})$$

$$+ \sum_{i=1}^{n} \lambda'_{i}(a_{i} - y_{i} \exp(-y_{i} - \lambda_{i} + \lambda'_{i} - \nu))$$

$$+ \nu(\sum_{i=1}^{n} y_{i} \exp(-y_{i} - \lambda_{i} + \lambda'_{i} - \nu) - 1)$$

$$= -\sum_{i=1}^{n} y_{i}^{2} e^{-y_{i} - \lambda_{i} + \lambda'_{i} - \nu} - \sum_{i=1}^{n} \lambda_{i} b_{i} + \sum_{i=1}^{n} \lambda'_{i} a_{i} - \nu.$$

Hence, the dual problem is

$$\begin{array}{ll} \text{maximize} & -\sum_{i=1}^n y_i^2 e^{-y_i-\lambda_i+\lambda_i'-\nu} - \sum_{i=1}^n \lambda_i b_i + \sum_{i=1}^n \lambda_i' a_i - \nu \\ \text{subject to} & \lambda_i \geq 0, \lambda_i' \geq 0. \end{array}$$

The KKT condition is

$$x_{i} - b_{i} \leq 0, \quad i = 1, \dots, n$$

$$-x_{i} + a_{i} \leq 0, \quad i = 1, \dots, n$$

$$\lambda_{i} \geq 0, \quad i = 1, \dots, n$$

$$\lambda'_{i} \geq 0, \quad i = 1, \dots, n$$

$$\lambda_{i}(x_{i} - b_{i}) = 0, \quad i = 1, \dots, n$$

$$\lambda'_{i}(-x_{i} + a_{i}) = 0, \quad i = 1, \dots, n$$

$$\ln(x_{i}/y_{i}) + y_{i} + \lambda_{i} - \lambda'_{i} + \nu_{i} = 0, \quad i = 1, \dots, n$$

(I omitted the * for each variable $x_i^*, \lambda_i^*, \lambda_i^{\prime *}, \nu_i^*.$)

3. Problem 3.

Proof. By definition,

$$\operatorname{Prox}_{h}(z) = \operatorname*{arg\,min}_{x \in \mathbb{R}^{d}} \frac{1}{2} \|x - z\|_{2}^{2} + \lambda \|x\|_{2}.$$

Let

$$f(x) = \frac{1}{2} ||x - z||_2^2 + \lambda ||x||_2,$$

then by definition of subgradients,

$$\partial f = \begin{cases} x - z + \lambda \frac{x}{\|x\|_2}, & x \neq 0, \\ -z + \lambda \bar{B}(0, 1), & x = 0, \end{cases}$$

where $\bar{B}(0,1)$ is the closed unit ball. Then

(a) If $||z||_2 > \lambda$, then $0 \notin -z + \lambda \bar{B}(0,1)$. In this case, the optimal x satisfies $x \neq 0$ and

 $x - z + \lambda \frac{x}{\|x\|_2} = 0.$

By solving this, we get

$$x^* = (\|z\|_2 - \lambda) \frac{z}{\|z\|_2}.$$

Since $x^* \neq 0$, this holds when $||z||_2 > \lambda$.

(b) When $\|z\| \le \lambda$, $0 \in -z + \lambda \bar{B}(0,1)$, while there's no such x s.t. $x-z+\lambda \frac{x}{\|x\|_2}=0$. Hence $x^*=0$. Thus we have proved the statement.

4. Problem 4.

The code for this problem are accelerated_proximal_gradient.m and elastic_net_regularized_logistic_regression.m. The problem is formatted as

$$f(x) = g(x) + h(x),$$

where

$$g(x) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-b_i a_i^{\top} x) + \frac{\lambda_2}{2} ||x||_2^2,$$

and $h(x) = \lambda_1 ||x||_1$, so as to guarantee the strongly convexity of g.

However, if I choose $x_0 = 0$, I have $x_1 = x_0$ exactly, so the iteration cannot continue, which does not agree with the properties.

5. Problem 5.

The code for this problem are stochastic_subgradient.m and sparse_hinge_loss.m.

Figure 1: Convergence plot for SSG