MBAD / DSBA 6201 - Business Intelligence & Analytics

Project: Predictive Modelling-Decision Trees

Project by:-

Aniket Amar Thopte

TASK: Predictive Modelling Using Decision Trees on Organics Dataset

CONSTRUCTING A DECISION TREE PREDICTIVE MODEL:

Use the ORGANICS data and fit two decision tree models in SAS Enterprise Miner. The diagram below shows the nodes that are needed to fit decision tree models. The steps include splitting the data into training and validation data sets using the Data Partition node, selecting useful inputs using Decision Tree nodes, and generating model assessment statistics and plots using the Model Comparison node.

Initial Data Exploration

A supermarket offers a new line of organic products. The supermarket's management wants to determine which customers are likely to purchase these products.

The supermarket has a customer loyalty program. As an initial buyer incentive plan, the supermarket provided coupons for the organic products to all of the loyalty program participants and collected data that includes whether these customers purchased any of the organic products.

The **ORGANICS** data set contains 13 variables and more than 22,000 observations. The variables in the data set are shown below with the appropriate roles and levels.

a) Create a new diagram named Organics (In our case Data Source created is named Organics and Diagram created is named **Decision Trees** for our convenience)

b) We have changed the variables for this data analysis. Set the target variables as TargetBuy and reject TargetAmt is rejected other input values are set with corresponding roles for interval and nominal.

To examine the distribution of the target variable we have explored the data. Using the exploration analysis, the proportion of individuals who purchased organic products are as follows:

The frequency of products bought is 5,505 and the frequency of products not bought is 16,718. The ratio of people who purchased the products is 24.7%.

The variable DemClusterGroup contains collapsed levels of the variable DemCluster. Presume that, based on previous experience, you believe that DemClusterGroup is sufficient for this type of modeling effort. Set the model role for DemCluster to Rejected.

The data clearly gives information that that variable TargetBuy is a binary variable and takes values 1 or 0 which indicates if the product was bought or not. TargetAmt gives information on the total amount of organic products which have been sold and is a dependent variable. Hence, we cannot use this to predict the target.

- c) We have added the ORGANICS data source to the Organics diagram workspace.
- d) Partition the data set into training and validation data sets.

Use the Properties panel to select the fraction of data devoted to the training, validation, and test partitions. By default, less than half the available data is used for generating the predictive models.

We have assigned 65% of the data for training and 35% for validation.

e) We have added a Decision Tree node to the workspace and connected it to the Data Partition node.

12	Variable	Summary			
13	, azzabzc	D GREENCE Y			
14		Measurement	Frequency		
15		Level			
16					
17	ID	NOMINAL	1		
18	INPUT	INTERVAL	4		
19	INPUT	NOMINAL	5		
20	REJECTED	INTERVAL	1		
21	REJECTED	NOMINAL	1		
22	TARGET	BINARY	1		
23					
24					
25					
26					
	Partition	Summary			
28					
29				Number of	
	Type	Data Set	0	bservations	
31					
		EMWS5.Ids_DATA			
33	TRAIN	EMWS5.Part_TRA	IN	14445	

34	VALIDATE EMWS5.Part_VALIDATE 7778
35	
36	
37	*
	*
38	* Score Output
39	*
	*
40	
41	
42	*
	*
43	* Report Output
44	*
	*
45	
46	
47	
48	
49	Summary Statistics for Class Targets
50	

51	Data=DATA				
52					
53		Numeric	Formatted	Frequency	
54	Variable	Value	Value	Count	Percent
	I	abel			
55					
56	TargetBuy	0	0	16718	75.2284
	Organics Pur	chase Indi	cator		
57	TargetBuy	1	1	5505	24.7716
	Organics Pur	chase Indi	cator		
58					
59					
60	Data=TRAIN				
61					
62		Numeric	Formatted	Frequency	

63	Variable	Value	Value	Count	Percent			
		Label						
64								
65	TargetBuy	0	0	10867	75.2302			
	Organics Pu		cator					
66	TargetBuy		1	3578	24.7698			
	Organics Pu		cator					
67	019411100 14							
68								
	Data=VALIDATE							
70	DUVU-TABIDAID							
71		Numeric	Formatted	Frequency				
			Value		Darcent			
, 2		Label	Value	Count	rereent			
73		Dusci						
	TargetBuy	0	0	5851	75.2250			
/ 4	Organics Pu			5051	70.2200			
75	TargetBuy		1	1927	24.7750			
/3	Organics Pu		_	1321	24.7730			
	organics Pu	ronase indi	Cator					

f) We create our first decision tree and add it to the node partition.

Output:

Optimal tree has 16 number of leaves.

Variable Name	Label	Number of Splitting Rules	Importance	Validation Importance	Ratio of Validation to Training Importance
DemAge	Age	2	1.0000	1.0000	1.0000
DemAffl	Affluence G	7	0.7806	0.7929	1.0158
DemGender	Gender	4	0.4090	0.5184	1.2674
PromSpend	Total Spend	0	0.0000	0.0000	
DemCluster	.Neighborho	0	0.0000	0.0000	
DemReg	Geographic	0	0.0000	0.0000	
PromTime	Loyalty Car	0	0.0000	0.0000	
PromClass	Loyalty Stat	0	0.0000	0.0000	
DemTVReg	Television	0	0.0000	0.0000	

Variables Age was used for the first split.

Variable Gender & Affluence Grade was used for second split.

The decision tree gives us an optimal result hence we can conclude that the model is good.

g) Add a second Decision Tree node to the diagram and connect it to the Data Partition node.

In the Properties panel of the new Decision Tree node, change the maximum number of branches from a node to 3 to allow for three-way splits.

Output:

Optimal tree has 14 number of leaves.

From the above output, by observing the ROC Curve we can say that the Decision Tree-2 performs slightly better.