Logică matematică și computațională

Model de examen

Nume:	
Prenume:	
Grupa:	

Indicații:

• În cazul exercițiilor cu forma normală prenex și forma normală Skolem, ipoteza este următoarea:

Fie \mathcal{L} un limbaj de ordinul întâi care conține:

- două simboluri de relații unare S, T și un simbol de relație binară R;
- un simbol de operație unară f și un simbol de operație binară g;
- trei simboluri de constante a, b, c.

Partea I. Probleme cu rezolvare clasică

(P1) [1 punct] Pentru orice Γ , $\Sigma \subseteq Form$, definim

$$\Gamma \vee \Sigma := \{ \varphi \vee \psi \mid \varphi \in \Gamma, \ \psi \in \Sigma \}.$$

Să se arate că, pentru orice Γ , $\Sigma \subseteq Form$,

$$Mod(\Gamma \vee \Sigma) = Mod(\Gamma) \cup Mod(\Sigma).$$

Demonstraţie: Fie Γ , $\Sigma \subseteq Form$.

Demonstrăm că $Mod(\Gamma \vee \Sigma) \subseteq Mod(\Gamma) \cup Mod(\Sigma)$. Fie $e \models \Gamma \vee \Sigma$ cu $e \not\models \Gamma$. Vrem să arătăm că $e \models \Sigma$. Fie $\psi \in \Sigma$. Cum $e \not\models \Gamma$, există $\varphi \in \Gamma$ cu $e \not\models \varphi$, deci $e^+(\varphi) = 0$. Cum $e \models \Gamma \vee \Sigma$ şi $\varphi \vee \psi \in \Gamma \vee \Sigma$, avem $e \models \varphi \vee \psi$, deci $e^+(\varphi \vee \psi) = 1$. Dar $e^+(\varphi \vee \psi) = e^+(\varphi) \vee e^+(\psi) = 0 \vee e^+(\psi)$, deci $e^+(\psi) = 1$, ceea ce trebuia demonstrat.

Demonstrăm că $Mod(\Gamma) \cup Mod(\Sigma) \subseteq Mod(\Gamma \vee \Sigma)$. Fie $e \in Mod(\Gamma) \cup Mod(\Sigma)$, Fără a restrânge generalitatea, considerăm $e \in Mod(\Gamma)$. Vrem să arătăm că $e \models \Gamma \vee \Sigma$. Fie $\chi \in \Gamma \vee \Sigma$. Din definiția lui $\Gamma \vee \Sigma$, există $\varphi \in \Gamma$ și $\psi \in \Sigma$ cu $\chi = \varphi \vee \psi$. Cum $e \in Mod(\Gamma)$, $e^+(\varphi) = 1$, deci și $e^+(\chi) = e^+(\varphi \vee \psi) = e^+(\varphi) \vee e^+(\psi) = 1 \vee e^+(\psi) = 1$, ceea ce trebuia demonstrat.

(P2) [1 punct] Fie $\varphi, \psi \in Form$. Să se demonstreze sintactic, fără a se face apel la Teorema de completitudine tare, că $\{\varphi, \psi\} \vdash \varphi \land \psi$.

Reamintim că $\varphi \wedge \psi = \neg(\varphi \rightarrow \neg \psi)$. De asemenea, oriunde folosim o Demonstrație: teoremă formală cunoscută, aplicăm implicit Propoziția 2.55.(ii).

- $\{\varphi, \psi, \neg \neg (\varphi \rightarrow \neg \psi)\} \vdash \varphi$ Propoziția 2.54.(ii)
- (2) $\{\varphi, \psi, \neg\neg(\varphi \to \neg\psi)\}$ $\vdash \psi$ Propoziția 2.54.(ii)
- (3) $\{\varphi, \psi, \neg \neg(\varphi \to \neg \psi)\}\$ $\vdash \neg \neg(\varphi \to \neg \psi)$ Propoziția (4) $\{\varphi, \psi, \neg \neg(\varphi \to \neg \psi)\}\$ $\vdash \neg \neg(\varphi \to \neg \psi) \to (\varphi \to \neg \psi)$ (S3.4).(iv) (5) $\{\varphi, \psi, \neg \neg(\varphi \to \neg \psi)\}\$ $\vdash \varphi \to \neg \psi$ (MP): (3), (6) $\{\varphi, \psi, \neg \neg(\varphi \to \neg \psi)\}\$ $\vdash \neg \psi$ (MP): (1), Propoziția 2.54.(ii)
- (MP): (3), (4)
- (MP): (1), (5)
- $\{\varphi,\psi\}$ $\vdash \neg(\varphi \to \neg\psi)$ (7)(2), (6) şi (S3.4).(iii).

(P3) [1 punct] Fie x o variabilă. Să se dea exemple de limbaj de ordinul I, \mathcal{L} , și de formule φ , ψ ale lui \mathcal{L} astfel încât $\exists x \varphi \land \exists x \psi \not\vDash \exists x (\varphi \land \psi)$.

Considerăm $\mathcal{L}_{ar} = (\dot{\mathbf{x}}, \dot{+}, \dot{\mathbf{x}}, \dot{S}, \dot{0}), \mathcal{L}_{ar}$ -structura $\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0)$ și Demonstrație: $e: V \to \mathbb{N}$ o evaluare arbitrară (să zicem, punem, pentru orice $v \in V$, e(v) := 7). Fie $\dot{2} := \dot{S}\dot{S}\dot{0}, \ \varphi := x\dot{<}\dot{2} \ \text{si} \ \psi := \neg(x\dot{<}\dot{2}).$

Avem că $\mathcal{N} \vDash (\exists x \varphi)[e] \iff \text{există } n \in \mathbb{N} \text{ cu } \mathcal{N} \vDash \varphi[e_{x \mapsto n}] \iff \text{există } n \in \mathbb{N} \text{ cu } n < 2, \text{ ceea}$ ce este adevărat (luând n := 1, de exemplu). Deci, $\mathcal{N} \models (\exists x \varphi)[e]$.

Avem $\mathcal{N} \vDash (\exists x \psi)[e] \iff \text{există } n \in \mathbb{N} \text{ cu } \mathcal{N} \vDash \psi[e_{x \mapsto n}] \iff \text{există } n \in \mathbb{N} \text{ cu } n \geq 2, \text{ ceea}$ ce este adevărat (luând n := 3, de exemplu). Deci, $\mathcal{N} \models (\exists x \psi)[e]$. Aşadar, $\mathcal{N} \models (\exists x \varphi \land \exists x \psi)[e]$.

Pe de altă parte, $\mathcal{N} \vDash (\exists x (\varphi \land \psi))[e] \iff \text{există } n \in \mathbb{N} \text{ cu } \mathcal{N} \vDash (\varphi \land \psi)[e_{x \mapsto n}] \iff \text{există}$ $n \in \mathbb{N}$ cu n < 2 şi $n \geq 2$, ceea ce nu este adevărat. Prin urmare, $\mathcal{N} \not\models (\exists x (\varphi \land \psi))[e]$.

(P4) [1 punct] Fie \mathcal{L}_{Graf} limbajul de ordinul I al grafurilor, precum și mulțimea de \mathcal{L}_{Graf} enunțuri $\Gamma := \{(IREFL), (SIM)\}$, definite precum în curs și seminar. Să se axiomatizeze clasa \mathcal{K}' a grafurilor în care orice două vârfuri sunt legate printr-un drum de lungime cel mult 2.

Demonstrație: Considerăm enunțul

$$\varphi := \forall v_1 \forall v_2 \left(v_1 = v_2 \lor \dot{E}(v_1, v_2) \lor \exists v_3 (\dot{E}(v_1, v_3) \land \dot{E}(v_3, v_2)) \right).$$

Atunci $\mathcal{K}' = Mod(\Gamma \cup \{\varphi_3\}) = Mod((IREFL), (SIM), \varphi_3).$

Partea II. Probleme de tip grilă

(P5) [1 răspuns corect] Fie următoarea mulțime de clauze:

$$\mathcal{S} = \{ \{\neg v_1, \neg v_2, \neg v_4\}, \{\neg v_2, \neg v_3\}, \{v_1, \neg v_3\}, \{v_1, v_4\}, \{v_3\} \}$$

Aplicând algoritmul Davis-Putnam pentru intrarea S și alegând succesiv $x_1 := v_1, x_2 := v_3$ $x_3 := v_2$ obtinem:

- \square A: $S_4 = \{\{v_2, \neg v_4\}\}.$
- \square B: $\mathcal{S}_4 = {\square}$.
- \boxtimes C: $\mathcal{T}_3^1 = \emptyset$.
- $\Box \text{ D: } \mathcal{S}_4 = \{ \{ \neg v_2, \neg v_4 \} \}.$ $\Box \text{ E: } \mathcal{T}_3^0 = \{ \{ v_4, \neg v_2, \neg v_4 \}, \{ \neg v_2 \}, \{ \neg v_2, \neg v_4 \} \}.$
- (P6) [2 răspunsuri corecte] Fie următoarea mulțime de clauze:

$$S = \{\{v_1, v_2, \neg v_4\}, \{\neg v_2, \neg v_3\}, \{\neg v_1, \neg v_3\}, \{v_1, v_4\}, \{v_3\}\}$$

Care dintre următoarele afirmații sunt adevărate?

- \boxtimes A: \mathcal{S} este nesatisfiabilă.
- \square B: \mathcal{S} nu este nici nesatisfiabilă, nici satisfiabilă.
- \boxtimes C: $\{\neg v_1\}$ este rezolvent al două clauze din \mathcal{S} .
- \square D: \mathcal{S} este satisfiabilă.
- \square E: $\{v_4\}$ este rezolvent al două clauze din \mathcal{S} .
- (P7) [2 răspunsuri corecte] Fie următoarea formulă:

$$\varphi := ((v_0 \wedge v_3) \to v_1) \to v_2$$

Care dintre următoarele afirmații este adevărată?

- \square A: $v_0 \wedge v_3 \wedge \neg v_1 \wedge v_2$ este FNC și FND a lui φ .
- \square B: $v_0 \lor (v_3 \land \neg v_1) \lor v_2$ este FND a lui φ .
- \boxtimes C: $(v_0 \land v_3 \land \neg v_1) \lor v_2$ este FND a lui φ .
- \square D: $v_0 \wedge (v_3 \vee v_2) \wedge (\neg v_1 \vee v_3)$ este FNC a lui φ .
- \boxtimes E: $(v_0 \lor v_2) \land (v_3 \lor v_2) \land (\neg v_1 \lor v_2)$ este FNC a lui φ .
- (P8) [2 răspunsuri corecte] Fie \mathcal{L} un limbaj de ordinul I. Care dintre următoarele afirmații sunt adevărate pentru orice formule φ , ψ ale lui \mathcal{L} ?

- \square A: $\forall x(\varphi \lor \psi) \vDash \forall x\varphi \lor \forall x\psi$, pentru orice variabilă x.
- \square B: $\exists x(\varphi \to \psi) \vDash \varphi \to \forall x\psi$, pentru $x \notin FV(\varphi)$.
- \boxtimes C: $\forall x(\varphi \lor \psi) \vDash \exists x\varphi \lor \exists x\psi$, pentru orice variabilă x.
- \square D: $\forall x(\varphi \wedge \psi) \vDash \varphi \vee \forall x\psi$, pentru $x \notin FV(\varphi)$.
- \boxtimes E: $\forall x(\varphi \land \psi) \vDash \varphi \lor \forall x\psi$, pentru $x \notin FV(\varphi)$.
- (P9) [1 răspuns corect] Fie următoarea formulă în \mathcal{L} :

$$\varphi := \forall x S(x) \land \neg \exists y S(y)$$

Care dintre următoarele afirmații este adevărată?

- \square A: $\forall x \forall y (\neg S(x) \land \neg S(y))$ este o formă normală prenex pentru φ .
- \square B: $\exists x \forall y (\neg S(x) \land \neg S(y))$ este o formă normală prenex pentru φ .
- \boxtimes C: $\forall x \forall y (S(x) \land \neg S(y))$ este o formă normală prenex pentru φ .
- \square D: $\exists x\exists y\neg (\neg S(x)\vee S(y))$ este o formă normală prenex pentru $\varphi.$
- \square E: $\exists x \exists y (S(x) \lor S(y))$ este o formă normală prenex pentru φ .

Demonstrație: Varianta corectă: C.

Avem:
$$\forall x S(x) \land \neg \exists y S(y) \exists \forall x S(x) \land \forall y \neg S(y) \exists \forall x \forall y (S(x) \land \neg S(y)).$$

(P10) [1 răspuns corect] Considerăm următoarea formulă în limbajul logicii propoziționale:

$$\psi := (v_1 \to (v_2 \to v_3)) \to (v_3 \lor \neg v_2 \lor \neg v_1)$$

Care dintre următoarele afirmații este adevărată (pentru orice evaluare e)?

- \square A: Dacă $e(v_2) = 1$ și $e^+(\neg v_3) = 1$, atunci $e^+(v_3 \lor \neg v_2 \lor \neg v_1) = 0$.
- \square B: Dacă $e^+(v_1 \to (v_2 \to v_3)) = 1$, atunci $e(v_1) = e(v_2) = 0$ și $e(v_3) = 1$.
- \square C: Dacă $e(v_1) = e(v_2) = 1$, atunci $e^+(\psi) = 0$.
- \boxtimes D: Dacă $e^+(v_3 \vee \neg v_2 \vee \neg v_1) = 0$, atunci $e(v_2) = 1$ și $e(v_3) = 0$.
- \square E: $e^+(\psi)=1$ numai dacă $e(v_1)=e(v_3)=1$ și $e(v_2)=0.$