Smart Factory Energy Prediction — Final Report

Candidate: Abhiram Company: Mechademy. Role: Data Scientist Intern

Project: Forecasting equipment energy consumption using sensor and environmental

data to support energy-efficient manufacturing operations.

★ Objective

To develop a robust machine learning pipeline that accurately predicts equipment energy consumption (equipment_energy_consumption) based on multivariate sensor and environmental data from a factory. The final model should also offer insights into energy usage patterns and potential operational optimizations.

1. Data Overview

- **Source**: CSV file with 16,857 rows and 29 features.
- **Data Types**: A mix of environmental variables (temperature, humidity, pressure), operational readings, and sensor outputs across 9 factory zones.
- Target: equipment_energy_consumption (numeric).

Issues Found:

- Missing values in several columns, including the target.
- Some numeric values were incorrectly typed as object.
- Presence of noise/outliers in several features (e.g., humidity values below 0 or extreme negatives).

🚺 2. Exploratory Data Analysis (EDA)

- Distribution: Target variable is right-skewed; peak usage fluctuates during the day.
- **Correlation**: Top correlated features with energy usage include:
 - lighting_energy
 - zone1_temperature, zone2_humidity, outdoor_temperature

Random Variables:

- random_variable1 and random_variable2 had very high cardinality and weak correlation.
- Scatterplots showed no meaningful trend these were dropped.

Visuals Generated:

Distribution of Equipment Energy Consumption

Time Series of Energy Usage

Correlation Heatmap

Random Variable vs Energy Scatterplots

3. Data Preprocessing

- Converted object-type numeric columns to float.
- Extracted time features: hour, and day_part (morning, afternoon, etc.).
- Applied one-hot encoding for categorical time-based variables.
- Imputed missing values using **median strategy**.
- Scaled features using StandardScaler.

4. Feature Selection

- Used RandomForestRegressor to evaluate feature importance.
- Top 15 most important features were selected for final modeling.
- Visualization: Top 20 Important Features Bar Chart.

5. Model Development & Tuning

Models Trained:

- Random Forest Regressor
- XGBoost Regressor

Evaluation Metrics:

Model	RMSE	MAE	R^2
Random Forest	161.81	68.34	0.02
XGBoost (Initial)	167.80	78.66	-0.048

Best Model (after tuning):

• Model: XGBoost

Best Params: n_estimators=50, learning_rate=0.1, max_depth=4

• Cross-validated RMSE: 191.93

• Final RMSE: 158.08

• Final R²: 0.07

🙀 6. Model Insights

• Errors: Larger prediction errors occurred during peak hours.

Visuals:

- Distribution of Prediction Errors
- Boxplot: Errors by Hour of Day
- o Scatterplot: Outdoor Temperature vs Energy Consumption

Conclusion:

- o Energy usage increases during afternoon and evening time slots.
- Outdoor temperature impacts indoor energy consumption, especially in climate-sensitive zones.

7. Key Takeaways & Recommendations

🔍 Insights:

- Lighting energy, zone temperature, and outdoor temperature are key energy drivers.
- Time-of-day effects are clear in prediction error patterns.
- Random_variable1 and 2 added noise and were safely excluded.

Recommendations:

- Shift energy-heavy operations to low-demand hours (e.g., early morning).
- Optimize lighting systems in zones with high lighting_energy correlation.
- Enhance insulation or temperature regulation in high-impact zones to mitigate outdoor temperature influence.
- Consider using time-series specific models (e.g., LSTM or Prophet) in the future for improved temporal predictions.