

Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia de Teleinformática Curso de Engenharia de Computação

BRUNO RICCELLI DOS SANTOS SILVA

IMPLEMENTAÇÃO E ANÁLISE DE UM FRAMEWORK DE DETECÇÃO DE ATAQUES DISTRIBUÍDOS DE NEGAÇÃO DE SERVIÇO

Fortaleza, Ceará 2017

BRUNO RICCELLI DOS SANTOS SILVA

IMPLEMENTAÇÃO E ANÁLISE DE UM FRAMEWORK DE DETECÇÃO DE ATAQUES DISTRIBUÍDOS DE NEGAÇÃO DE SERVIÇO

Monografia apresentada ao Curso de Engenharia de Computação da Universidade Federal do Ceará, como requisito parcial para obtenção do Título de Bacharel em Engenharia de Computação.

Orientador: Prof. Msc. Ricardo Jardel Nunes da Silveira

Co-Orientador: Prof. Msc. Marcelo Araújo

 Lima

Fortaleza, Ceará 2017

BRUNO RICCELLI DOS SANTOS SILVA

IMPLEMENTAÇÃO E ANÁLISE DE UM FRAMEWORK DE DETECÇÃO DE ATAQUES DISTRIBUÍDOS DE NEGAÇÃO DE SERVIÇO

	o Curso de Engenharia de Computação de parcial para obtenção do Título de Bacha	
Aprovada em://		
	BANCA EXAMINADORA	
	f. Msc. Ricardo Jardel Nunes da Silveira (Orientador) Jniversidade Federal do Ceará (UFC)	
	Prof. Msc. Marcelo Araújo Lima (Co-Orientador) Instituto Federal do Ceará (IFCE)	

Prof. Msc. Daniel Alencar Barros Tavares Instituto Federal do Ceará (IFCE)

Prof. Dr. Jarbas Aryel da Silveira Universidade Federal do Ceará (UFC)

Agradecimentos

Agradeço primeiramente a Deus, que iluminou meu caminho durante essa jornada, me dando saúde e força para superar as dificuldades.

À minha namorada, Luéline Elias, pelo amor, paciência, dedicação e companheirismo em todos os momentos.

À minha família, por sua capacidade de acreditar e investir em mim. Mãe, sua dedicação foi o que deu, em alguns momentos, a esperança para seguir.

Ao meu orientador, Prof. Ricardo Jardel Nunes da Silveira, pelo acompanhamento e estreitamento da relação professor-aluno e exemplo de profissional bem como pelo apoio, incentivo, sugestões e comentários durante a supervisão dos meus estudos.

Ao meu coorientador, Prof. Marcelo Araújo Lima, pelo apoio, incentivo, sugestões e tempo dedicado para me ajudar durante meus estudos.

Aos meus amigos da Universidade Federal do Ceará, 8086FC e 8086Team pela amizade e pelos momentos de descontração e estudo.

E a todos que direta ou indiretamente fizeram parte da minha formação, o meu muito obrigado.

Resumo

 ${\bf Palavras\text{-}chaves}:$ Detecção de ataques DDoS. Segurança em redes. Tempo real. Framework .

Abstract

 $\mathbf{Key\text{-}words} :$ DDoS attack detection. Network Security. Real-time. Framework.

Lista de ilustrações

Figura 3.1 – Estrutura de rede Base Aérea dos EUA	19
---	----

Lista de tabelas

Tabela 1 –	Exemplo base de dados D	OARPA		19
Tabela 2 –	Estrutura base de dados ((ALKASASSBEH et al.,	2016)	21

Lista de abreviaturas e siglas

DDOS Distributed Denial of Service

Lista de símbolos

X Vetor de entrada para correlação NaHiD

Sumário

1	INTRODUÇÃO	13
1.1	Objetivos	14
1.2	Organização da monografia	14
2	REVISÃO BIBLIOGRÁFICA	15
3	METODOLOGIA	16
3.1	Modelo de correlação NaHiD	16
3.2	Framework de detecção de ataques DDoS	16
3.2.1	Pré-Processamento	17
3.2.1.1	Entropia de IPs origem	17
3.2.1.2	Variação de IPs Origem	17
3.2.2	Módulo de Detecção	18
3.2.3	Gerenciador Offline	18
3.3	Detecção de Ataques DDoS usando NaHiD	18
3.3.1	DARPA - MIT	18
3.3.2	DataMining	20
4	RESULTADOS	22
5	CONCLUSÕES E TRABALHOS FUTUROS	23
	REFERÊNCIAS	24

1 Introdução

Ataques Distribuídos de Negação de Serviço (do inglês, DDoS) são uma ameaça a servidores de redes online, tais como servidores de sites web e servidores em nuvem. O objetivo desse tipo de ataque intencional é inundar o alvo com requisições e assim deixá-lo indisponível na rede. Existem essencialmente três tipos de ataques: Negação distribuída, Handshake e UDP. O primeiro caracteriza-se por requisições abertas por um grande número de computadores infectados. No segundo, faz-se uma comunicação inicial com o alvo que não é completada, mantendo assim o servidor esperando indefinidamente. Já no terceiro, fluxos falsos UDP são criados com o mesmo objetivo de tornar o serviço inoperante. Os métodos estatísticos existentes na literatura para análise de ataque DDoS falham principalmente devido às correlações de deslocamento, escala e deslocamento-escala ao longo de tráfegos de rede, gerando assim uma grande ocorrência de falsos positivos. Além disso, métodos estatísticos impõem alto overhead computacional quando um grande número de objetos é incluído para análise. Consequentemente, tais métodos falham em realizar detecção de ataque DDoS em tempo real. Algumas medidas de correlação tais como Pearson, Spearman e Kendall falham em identificar a diferença entre um pacote normal e um malicioso quando há valores correlacionados entre os pacotes. De fato, um método de detecção de ataques DDoS precisa considerar poucos parâmetros de tráfego durante a análise, tal como o método chamado NaHiDVERC (HOQUE; KASHYAP; BHATTACHARYYA, 2017), o qual analisa apenas entropia de IPs e taxa de pacote. Tendo em vista uma implementação em software e hardware, este método será utilizado em nosso trabalho, visto que é facilmente implementável em hardware. O método computa dois valores: a distância absoluta e o desvio entre A e B a partir da média e do desvio padrão. Se a entropia de IPs origem em um pequeno intervalo de tempo é alta e a taxa de pacote é também muito alta, a probabilidade de ataque é alta. Se a variação entre IPs origem é muito alta e a taxa de pacote também é alta, a probabilidade de ataque é alta. O framework tem como objetivo detectar ataques DDoS em tempo real no computador alvo. Trata-se de uma combinação entre aplicações em software e hardware, para classificar um tráfego como normal ou ataque com uma taxa aceitável de acertos. Tal arcabouço possui três componentes: pré-processamento, um módulo de hardware dedicado para detecção e um gerente de segurança. Neste trabalho os componentes um e três serão trabalhados. Além disso, é necessária a presença de um roteador para capturar tráfego e duas bases de dados. Amostras de tráfego serão capturadas de uma porta do roteador como um pacote TCP/IP, que são enviadas ao módulo de pré-processamento. Nessa fase, a cada segundo, os pacotes recebidos são agrupados e essa instância de tráfego é enviada para o módulo de detecção de ataque, que irá classificar a instância como normal ou ataque. O gerente

de segurança manterá um perfil normal e um valor limiar em sua base de perfis, para ser usado pelo módulo de detecção. Incrementalmente, o gerente recalcula o perfil normal e o limiar baseado nos valores anteriores. Existem duas abordagens durante a análise do tráfego: uma considerando apenas a informação no cabeçalho do pacote ou se o cabeçalho e dados estarão juntos. Nas duas formas os campos dos pacotes são analisados para detectar alguma anomalia na rede. IP e porta origem/destino, protocolos e flags do cabeçalho TCP são úteis para detectar pacotes maliciosos. Assim, a entropia e a variação entre IPs origem e taxa de pacotes são calculados para cada amostra de tráfego. O último módulo, que é o módulo de segurança irá operar offline e fará análises detalhadas dos logs de detecção usando técnicas de machine learning e estatística. Além disso, feedbacks de especialistas podem ser utilizados para validar os resultados. Inicialmente, o gerente vai calcular um perfil de tráfego normal que melhor representa instâncias desse tráfego para treinamento. Esses valores serão carregados na base de dados. Vale ressaltar que esses valores serão modificados dinamicamente de acordo com as amostras de tráfego.

1.1 Objetivos

1.2 Organização da monografia

Os estudos deste trabalho estão organizados da seguinte forma: No próximo capítulo será apresentado um estudo bibliográfico sobre ameaças de rede e ataques DDoS. No Capítulo 3, a modelagem do ambiente de simulação utilizado neste trabalho é descrita. No Capítulo 4, apresentamos o desempenho obtido pelo framework estudado por meio da taxa de acerto para cada janela de tráfego. Por fim, o último capítulo deste trabalho apresenta as conclusões realizadas a partir dos resultados obtidos e algumas perspectivas para a continuação deste trabalho.

2 Revisão Bibliográfica

Falar sobre ataques, definir objeto de tráfego, sniffer \dots

3 Metodologia

Nesse capítulo são apresentadas a medida de correlação utilizada no trabalho, além das principais características do *framework*, mostrando como a correlação é aplicada para a detecção de ataques DDoS e quais bases de dados são utilizadas para a avaliação do *framework*, destacando sua estrutura e ferramentas utilizadas para o tratamento dos dados.

3.1 Modelo de correlação NaHiD

Neste trabalho, o *framework* utilizado baseia-se na correlação proposta por (HO-QUE; KASHYAP; BHATTACHARYYA, 2017) chamada NaHiD (nome que possivelmente provém a partir das iniciais de cada autor), cujo objetivo é distinguir objetos de tráfego normais e maliciosos. Tal medida leva em consideração principalmente o desvio padrão e a média de cada objeto, ponderando cada elemento como mostrado na equação a seguir:

$$NaHiD(X,Y) = 1 - \frac{1}{n} \sum_{i=1}^{n} \frac{(|X(i) - Y(i)|)}{||\mu X - sX| - X(i)| + ||\mu Y - sY| - Y(i)|}$$
(3.1)

onde

- μX: Média aritmética do objeto de tráfego X.
- μX : Média aritmética do objeto de tráfego Y.
- sX: Desvio padrão do objeto de tráfego X.
- sY: Desvio Padrão do objeto de tráfego Y.

As provas de simetria e identidade da correlação podem ser encontradas em (HOQUE; KASHYAP; BHATTACHARYYA, 2017).

3.2 Framework de detecção de ataques DDoS

O framework tem como objetivo, detectar ataques DDoS em tempo real na rede monitorada, a partir de dados trafegados na rede com uma taxa

aceitável de erros. Tal arcabouço possui três módulos: pré-processamento, detecção e um de segurança. Amostras de tráfego são capturadas de uma porta do roteador na forma de um pacote TCP/IP e enviadas ao módulo de pré-processamento. Nessa fase, a cada segundo, os pacotes recebidos são agrupados e essa instância de tráfego é enviada para o módulo de detecção de ataques, que irá classificar a instância como normal ou maliciosa. O gerente de segurança manterá um perfil normal, como referência, e um valor limiar de correlação em sua base de perfis, para ser usado pelo módulo de detecção. Incrementalmente, o gerente recalcula o perfil normal baseado nos valores anteriores. O último módulo, que é o módulo de segurança irá operar offline e fará análises detalhadas dos logs de detecção usando técnicas simplificadas de machine learning e estatística. Os componentes citados acima são mais detalhados a seguir.

3.2.1 Pré-Processamento

Nessa etapa, os dados são coletados por um *sniffer* da rede, o qual analisa todos os pacotes trafegados e, a cada segundo, as métricas desejadas são calculadas para servirem de entrada para a correlação NaHiD.

3.2.1.1 Entropia de IPs origem

A entropia de IPs origem é uma medida do grau de desordem, onde ela é máxima caso todos os elementos sejam diferentes e o tamanho da entrada seja máximo, e será mínima (igual a 0) quando todos os elementos forem iguais, independentemente do tamanho. Assim, a entropia é dada pela seguinte fórmula:

$$H(X) = -\sum_{i}^{n} p(x_i)log_2(x_i)$$
 (3.2)

Onde X é a entrada e representa os IPs origem das requisições e n é o número total de valores possíveis para o IP origem. A Tabela $\ref{thm:para}$ mostra exemplos com valores de entrada para entropia, bem como o resultado do cálculo da função.

3.2.1.2 Variação de IPs Origem

Essa medida, diferentemente da entropia, trata-se da taxa de mudança dos IPs origem e é calculada da seguinte forma:

$$V_{Ip}(X) = \frac{\delta}{N} \tag{3.3}$$

Onde δ é o número de mudanças de IPs origem e N é o numero total de IPs de entrada. Neste trabalho consideramos uma variação cada troca de valores como no exemplo:

$$X = 1, 2, 1, 2, 3 \tag{3.4}$$

Assim, nesse vetor consideram-se 4 variações ainda que sejam para um valor que repetiuse. Assim se os IPs origem mudarem frequentemente, a variação será alta. (HOQUE; KASHYAP; BHATTACHARYYA, 2017)

A observação do comportamento de ataques por *flood* mostra que esse tipo de ameaça pode ser gerada por atacantes reais como zumbis. Se endereços de IP origem falsificados forem utilizados durante um ataque DDoS TCP SYN, a entropia e variação de IPs origem serão altas e esse comportamento também ocorre em um tráfego normal. (HOQUE; KASHYAP; BHATTACHARYYA, 2017). Assim faz-se necessário o uso da taxa de pacotes em bits como terceiro medida de entrada para o cálculo da correlação NaHiD.

3.2.2 Módulo de Detecção

O modulo de detecção consiste no uso da correlação NaHiD utilizando os três parâmetros de entrada:

- Variação de IPs origem
- Entropia de IPs origem
- Taxa de pacotes

Onde um tráfego normal deve ser fixado para a comparação com o tráfego a ser analisado. Além disso, define-se um limiar do resultado da correlação para distinguir pacotes normais de maliciosos

3.2.3 Gerenciador Offline

Nessa etapa, os *logs* são salvos e se o módulo de detecção identificar que o tráfego em questão é normal, este será atualizado com os valores do mesmo para a próxima análise

3.3 Detecção de Ataques DDoS usando NaHiD

Para a avaliação do trabalho, duas bases de tráfegos de rede foram escolhidas: DARPA e DataMining[escolher melhor esse nome] os quais são mais detalhados a seguir

3.3.1 DARPA - MIT

A base de dados DARPA foi produzida por pesquisadores do *Lincoln Laboratory* do Instituto de Tecnologia de Massachusetts nos Estados Unidos e tem por objetivo coletar dados de tráfego de rede da Força Aérea do país para encontrar vulnerabilidades em seu sistema bem como ser utilizado para avaliações futuras. Os dados foram coletados e passaram por uma fase de treinamento de 7 semanas com 38 tipos de ataques para simular

Fonte: Elaborada

ameaças internas a rede. O ambiente de rede era composto por duas partes: a rede interna da Força aérea e a rede externa que representava a Internet; ambos conectados por meio de um roteador como mostra a Figura 3.1

Base Aérea Roteador Internet

Figura 3.1 – Estrutura de rede Base Aérea dos EUA

pelo autor.

Tal banco de dados é disponibilizado pela DARPA em um arquivo de extensão tcpdump, sendo possível extrair informações acerca de cada pacote transmitido durante o período de aquisição dos dados como mostra o exemplo na Tabela 1.

Tabela 1 – Exemplo base de dados DARPA

Número	Tempo	Origem	Destino	Protocolo	Tamanho[bytes]
1	18:56:12.1386	192.168.0.20	192.168.0.30	TCP	60
2	18:56:12.1391	192.168.0.30	192.168.0.20	TCP	60
3	18:56:12.1588	192.168.0.30	192.168.0.20	TELNET	84
4	18:56:12.2099	192.168.0.20	192.168.0.30	TCP	60
5	18:56:13.0567	192.168.0.20	192.168.0.30	TELNET	69
6	18:56:13.0584	192.168.0.30	192.168.0.20	TELNET	66
7	18:56:13.0626	192.168.0.20	192.168.0.30	TELNET	72
8	18:56:13.0821	192.168.0.30	192.168.0.20	TCP	60

Fonte: Elaborada pelo autor, baseada em (LIPPMANN et al., 2000).

No presente trabalho ferramentas como edicap e tepdump foram utilizadas para o tratamento desse dataset. Assim, algumas considerações devem ser feitas:

- Janela de um segundo de tráfego
- Cálculo de entropia, variação de IPs origem e taxa de pacotes média
- Cálculo da correlação NaHiD

.

3.3.2 DataMining

Outra base de dados estudada no trabalho foi a desenvolvida por (ALKASASSBEH et al., 2016) a qual consta em sua totalidade por ataques DDoS de quatro tipos:

- SIDDoS
- HTTP Flood
- UDDP Flood
- Smurf

A Tabela 2 mostra os campos do dataset

Algumas considerações foram tomadas para a análise dessa base de dados:

- Para construir a janela de um segundo, considerou-se a soma de todos os atrasos por pacote:
 - Atraso de nó do pacote.
 - Atraso de pacote.
 - Tempo de pacote reservado.
- A média das taxas dos pacotes foi considerada dentro da janela de um segundo.
- Por ser um dataset composto apenas por ataques, a comparação com o limiar inverte-se para denotar o quanto dois pacotes são parecidos na correlação.

A base de dados é disponibilizada no formato Weka Attribute-relation (extensão arff), o qual é utilizado geralmente para compactar grandes massas de dados e processá-las utilizando técnicas de machine learning. Assim, para o processamento dos mesmos as ferramentas Weka e MATLAB foram utilizadas.

Tabela 2 – Estrutura base de dados (AL-KASASSBEH et~al.,~2016)

Número	Tempo	
1	Endereço IP origem	
2	Endereço IP destino	
3	Id do pacote	
4	Nó origem	
5	Nó destino	
6	Tipo de pacote	
7	Tamanho do pacote	
8	Flags	
9	Id da flag	
10	Número de sequência	
11	Número de pacotes	
12	Número de bytes	
13	Nome do nó origem	
14	Nome do nó destino	
15	Entrada de pacote	
16	Saída de pacote	
17	Taxa de pacotes Recebidos	
18	Atraso de nó do pacote	
19	Taxa de pacotes	
20	Taxa de bytes	
21	Tamanho médio do pacote	
22	Utilização	
23	Atraso de pacote	
24	Tempo de envio do pacote	
25	Tempo de pacote reservado	
26	Primeiro pacote enviado	
	Último pacote reservado	

Fonte: Elaborada pelo autor, baseada em (ALKASASSBEH $et\ al.,\ 2016$).

4 Resultados

5 Conclusões e Trabalhos Futuros

Referências

ALKASASSBEH, M. et al. Detecting Distributed Denial of Service Attacks Using Data Mining Techniques. v. 7, 01 2016. Citado 3 vezes nas páginas 9, 20 e 21.

HOQUE, N. et al. Real-time DDoS Attack Detection Using FPGA. Computer Communications, v. 110, n. Supplement C, p. 48 – 58, 2017. ISSN 0140-3664. Disponível em: http://www.sciencedirect.com/science/article/pii/S0140366416306442. Citado 3 vezes nas páginas 13, 16 e 18.

LIPPMANN, R. P. *et al.* Evaluating intrusion detection systems: the 1998 darpa off-line intrusion detection evaluation. In: **DARPA Information Survivability Conference and Exposition, 2000. DISCEX '00. Proceedings**. [S.l.: s.n.], 2000. v. 2, p. 12–26 vol.2.

Citado na página 19.