

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Методы машинного обучения

Отчёт по лабораторной работе № 5

«Линейные модели, SVM и деревья решений»

Выполнил: студент группы ИУ5 – 23М Кругов Т.Ю.

Преподаватель: Гапанюк Ю.Е.

```
import pandas as pd
pd.set_option('display.max.columns', 100)
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_digits, load_wine, load_diabetes
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
from sklearn.metrics import accuracy score, balanced accuracy score
from sklearn.metrics import precision score, recall score, f1 score, classification report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_erro
from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import SGDRegressor
from sklearn.linear_model import SGDClassifier
from sklearn.svm import SVC, NuSVC, LinearSVC, OneClassSVM, SVR, NuSVR, LinearSVR
%matplotlib inline
sns.set(rc={'figure.figsize':(16,8)})
df = pd.read_csv('titanic.csv', error_bad_lines=False, comment='#')
#df.drop(columns='id', inplace = True);
df.drop(columns='Cabin', inplace= True)
for col in df.columns:
    count = df[df[col].isnull()].shape[0]
    print('{} - {}'.format(col, count))
print ('{} - размер датасета'.format(df.shape))
 r⇒ PassengerId - 0
     Survived - 0
     Pclass - 0
     Name - 0
     Sex - 0
     Age - 177
     SibSp - 0
     Parch - 0
     Ticket - 0
     Fare - 0
     Embarked - 2
     (891, 11) - размер датасета
df = df.dropna(axis=0, how='any')
(df.shape)
 ┌→ (712, 11)
#df.drop(columns=['Ticket', 'Name'], inplace= True)
df.reset_index(drop= True, inplace=True)
df
 \Box
```

	PassengerId	Survived	Pclass	Name	Sex
0	1	0	3	Braund, Mr. Owen Harris	male
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female
2	3	1	3	Heikkinen, Miss. Laina	female
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female
4	5	0	3	Allen, Mr. William Henry	male
707	886	0	3	Rice, Mrs. William (Margaret Norton)	female
708	887	0	2	Montvila, Rev. Juozas	male
709	888	1	1	Graham, Miss. Margaret Edith	female
710	890	1	1	Behr, Mr. Karl Howell	male
711	891	0	3	Dooley, Mr. Patrick	male

▼ Закодируем категориальные признаки

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
le = LabelEncoder()
ohe = OneHotEncoder()
sex = le.fit_transform(df['Sex'])
sex = pd.DataFrame({'Sex':sex.T})
Embarked = le.fit_transform(df['Embarked'])
Embarked = pd.DataFrame({'Embarked' : Embarked.T })
sex
```

₽

```
Sex
```

```
del df['Sex']
del df['Embarked']
df = df.join(sex)
df = df.join(Embarked)
df
```

₽		PassengerId	Survived	Pclass	Name	Age :
	0	1	0	3	Braund, Mr. Owen Harris	22.0
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	38.0
	2	3	1	3	Heikkinen, Miss. Laina	26.0
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	35.0
	4	5	0	3	Allen, Mr. William Henry	35.0
	707	886	0	3	Rice, Mrs. William (Margaret Norton)	39.0
	708	887	0	2	Montvila, Rev. Juozas	27.0
	709	888	1	1	Graham, Miss. Margaret Edith	19.0
	710	890	1	1	Behr, Mr. Karl Howell	26.0
	711	891	0	3	Dooley, Mr. Patrick	32.0

712 rows × 11 columns

df.drop(columns=['Ticket', 'Name'], inplace= True)

```
fig, ax = plt.subplots(figsize=(15,7))
sns.heatmap(df.corr(method='pearson'), ax=ax, annot=True, fmt='.2f')
```

C→

<matplotlib.axes. subplots.AxesSubplot at 0x7f389d8e04e0>

Passengerld	1.00	0.03	-0.04	0.03	-0.08	-0.01	0.01	0.02
Survived	0.03	1.00	-0.36	-0.08	-0.02	0.10	0.27	-0.54
Pclass	-0.04	-0.36	1.00	-0.37	0.07	0.02	-0.55	0.15
Age	0.03	-0.08	-0.37	1.00	-0.31	-0.19	0.09	0.10
SibSp	-0.08	-0.02	0.07	-0.31	1.00	0.38	0.14	-0.11
Parch	-0.01	0.10	0.02	-0.19	0.38	1.00	0.21	-0.25
Fare	0.01	0.27	-0.55	0.09	0.14	0.21	1.00	-0.18
Sex	0.02	-0.54	0.15	0.10	-0.11	-0.25	-0.18	1.00
Embarked	-0.00	-0.18	0.24	-0.03	0.03	0.01	-0.28	0.11

X = df.drop(columns='Survived')

Y = df.Survived

Логистическая регрессия

```
from sklearn.model_selection import train_test_split, KFold, cross_val_score, GridSearchCV
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2)
from sklearn.linear_model import LogisticRegression
clf_lr = LogisticRegression(max_iter=100000)
clf_lr.fit(X_train, y_train)

clf_lr.score(X_train, y_train)

_ 0.8031634446397188
```

from sklearn.metrics import accuracy score as acuracy, precision score as precision, recal

```
print('accuracy_score для обучающего набора:', acuracy(y_train, clf_lr.predict(X_train))) print('accuracy_score для тестового набора:', acuracy(y_test, clf_lr.predict(X_test)), '\ print('precission_score для обучающего набора:', precision(y_train, clf_lr.predict(X_train print('precission_score для тестового набора:', precision(y_test, clf_lr.predict(X_test)) print('recall_score для обучающего набора:', recall(y_train, clf_lr.predict(X_train))) print('recall_score для тестового набора:', recall(y_test, clf_lr.predict(X_test)), '\n')
```

 \Box

```
accuracy_score для обучающего набора: 0.8031634446397188 accuracy_score для тестового набора: 0.8181818181818182 precission_score для обучающего набора: 0.7788461538461539 precission_score для тестового набора: 0.8148148148148148 recall score для обучающего набора: 0.7105263157894737
```

- SVM

```
from sklearn.svm import SVC
clf_svc = SVC(kernel='rbf', C=1)
%time clf_svc.fit(X_train, y_train)
 \Gamma CPU times: user 17.6 ms, sys: 6 \mus, total: 17.6 ms
    Wall time: 22.2 ms
    SVC(C=1, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
         decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
         max_iter=-1, probability=False, random_state=None, shrinking=True,
         tol=0.001, verbose=False)
print('accuracy_score tдля обучающего наборатаin:', acuracy(y_train, clf_svc.predict(X_tra
print('accuracy_score для тестового набора :', acuracy(y_test, clf_svc.predict(X_test)), '
print('precission_score для обучающего набора:', precision(y_train, clf_svc.predict(X_trai
print('precission_score для тестового набора :', precision(y_test, clf_svc.predict(X_test)
print('recall_score для обучающего набора:', recall(y_train, clf_svc.predict(X_train)))
print('recall_score для тестового набора :', recall(y_test, clf_svc.predict(X_test)), '\n'
 r → accuracy train: 0.6467486818980668
    accuracy test : 0.6293706293706294
     precission train: 0.8
    precission test : 0.7692307692307693
     recall train: 0.15789473684210525
```

Деревья решений

GridSearchCV

▼ Используем функцию GridSearchCV для подбора гиперпараметров

```
from sklearn.model_selection import GridSearchCV, KFold
from sklearn.linear_model import LogisticRegression
params_1 = {'max_iter' : [50000], 'C' : [x \text{ for } x \text{ in } 10.0**np.arange(-5, 5)]}
grsrch_lr = GridSearchCV(estimator=LogisticRegression(), param_grid=params_1, cv=KFold(ran
grsrch_lr.fit(X_train, y_train)
   GridSearchCV(cv=KFold(n_splits=5, random_state=1, shuffle=True),
                  error_score=nan,
                  estimator=LogisticRegression(C=1.0, class_weight=None, dual=False,
                                               fit_intercept=True,
                                               intercept_scaling=1, l1_ratio=None,
                                               max_iter=100, multi_class='auto',
                                               n_jobs=None, penalty='12',
                                               random state=None, solver='lbfgs',
                                               tol=0.0001, verbose=0,
                                               warm start=False),
                  iid='deprecated', n_jobs=None,
                  param_grid={'C': [1e-05, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0,
                                    100.0, 1000.0, 10000.0],
                              'max_iter': [50000]},
                  pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                  scoring=None, verbose=0)
grsrch_lr.best_params_
 print('accuracy_score для обучаещего набора:', acuracy(y_train, grsrch_lr.best_estimator_.
print('accuracy_score для тестового набора :', acuracy(y_test, grsrch_lr.best_estimator_.p
```

print('precission_score для обучаещего набора:', precision(y_train, grsrch_lr.best_estimat

```
print('precission_score для тестового набора :', precision(y_test, grsrch_lr.best_estimato
print('recall_score для обучаещего набора:', recall(y_train, grsrch_lr.best_estimator_.pre
print('recall_score для тестового набора :', recall(y_test, grsrch_lr.best_estimator_.pred
 Г→ accuracy_score для обучаещего набора: 0.8031634446397188
     accuracy_score для тестового набора : 0.81818181818182
     precission_score для обучаещего набора: 0.7788461538461539
     precission_score для тестового набора : 0.8148148148148
     recall score для обучаещего набора: 0.7105263157894737
     recall_score для тестового набора : 0.73333333333333333
params_svc = {'kernel' : ['linear', 'poly']}
grsrch_svc = GridSearchCV(estimator=SVC(), param_grid=params_svc, cv=KFold(n_splits=5, ran
grsrch_svc.fit(X_train, y_train)
   GridSearchCV(cv=KFold(n_splits=5, random_state=1, shuffle=True),
                  error_score=nan,
                  estimator=SVC(C=1.0, break_ties=False, cache_size=200,
                                class_weight=None, coef0=0.0,
                                decision_function_shape='ovr', degree=3,
                                gamma='scale', kernel='rbf', max_iter=-1,
                                probability=False, random_state=None, shrinking=True,
                                tol=0.001, verbose=False),
                  iid='deprecated', n_jobs=None,
                  param_grid={'kernel': ['linear', 'poly']}, pre_dispatch='2*n_jobs',
                  refit=True, return_train_score=False, scoring=None, verbose=0)
print('accuracy_score для обучающего набора:', acuracy(y_train, grsrch_svc.best_estimator_
print('accuracy_score для тестового набора :', acuracy(y_test, grsrch_svc.best_estimator_.
print('precission_score для обучающего набора:', precision(y_train, grsrch_svc.best_estima
print('precission_score для тестового набора :', precision(y_test, grsrch_svc.best_estimat
print('recall_score для обучающего набора:', recall(y_train, grsrch_svc.best_estimator_.pr
print('recall_score для тестового набора :', recall(y_test, grsrch_svc.best_estimator_.pre
     accuracy score для обучающего набора: 0.7908611599297012
     accuracy_score для тестового набора : 0.7762237762237763
     precission score для обучающего набора: 0.7738693467336684
     precission score для тестового набора : 0.7592592592592593
     recall score для обучающего набора: 0.6754385964912281
     recall_score для тестового набора : 0.68333333333333333
params_dt = {'max_depth' : np.arange(10, 20, 2),
             'min_samples_split' : np.arange(2, 8, 1)}
grsrch dt = GridSearchCV(estimator=DecisionTreeClassifier(), param grid=params dt, cv=KFo
```

```
grsrch_dt.fit(X_train, y_train)
☐ GridSearchCV(cv=KFold(n_splits=5, random_state=1, shuffle=True),
                  error score=nan,
                  estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None,
                                                   criterion='gini', max_depth=None,
                                                   max features=None,
                                                   max_leaf_nodes=None,
                                                   min_impurity_decrease=0.0,
                                                   min_impurity_split=None,
                                                   min_samples_leaf=1,
                                                   min_samples_split=2,
                                                   min_weight_fraction_leaf=0.0,
                                                   presort='deprecated',
                                                   random_state=None,
                                                   splitter='best'),
                  iid='deprecated', n_jobs=None,
                  param_grid={'max_depth': array([10, 12, 14, 16, 18]),
                              'min_samples_split': array([2, 3, 4, 5, 6, 7])},
                  pre dispatch='2*n_jobs', refit=True, return_train_score=False,
                  scoring=None, verbose=0)
print('accuracy_score для обучающего набора:', acuracy(y_train, grsrch_dt.best_estimator_.
print('accuracy_score для тестового набора :', acuracy(y_test, grsrch_dt.best_estimator_.p
print('precission_score для обучающего набора:', precision(y_train, grsrch_dt.best_estimat
print('precission_score для тестового набора :', precision(y_test, grsrch_dt.best_estimato
print('recall_score для обучающего набора:', recall(y_train, grsrch_dt.best_estimator_.pre
print('recall_score для тестового набора :', recall(y_test, grsrch_dt.best_estimator_.pred
     accuracy_score для обучающего набора: 0.9824253075571178
     accuracy score для тестового набора : 0.7412587412587412
     precission_score для обучающего набора: 1.0
     precission_score для тестового набора : 0.7090909090909091
     recall_score для обучающего набора: 0.956140350877193
     recall_score для тестового набора: 0.65
```

Как видно из значений метрик качества, после примения метода GridSea улучшилось

```
y_1 = regr_1.predict(X_test)

# Вывод графика
fig, ax = plt.subplots(figsize=(15,7))
plt.scatter(X_train, y_train, s=20, edgecolor="black", c="darkorange", label="Данные")
plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=3", linewidth=2)
plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=10", linewidth=2)
plt.xlabel("Данные")
plt.ylabel("Целевой признак")
plt.title("Регрессия на основе дерева решений")
plt.legend()
plt.show()

Image(get_png_tree(boston_tree_regr, df_boston.columns), height="500")
```