Relativer Fehler

5 Rechnen mit Fehlern

5.1 Fehlerfortpflanzung

Lemma 5.1. Es seien $x, y \in \mathbb{R}$ und \tilde{x}, \tilde{y} Näherungen mit $\varepsilon_x = \frac{x-\tilde{x}}{x}$ und $\varepsilon_y = \frac{y-\tilde{y}}{y}$. Für $0 \in \{+, -, \cdot, \div\}$ mit $x \circ y \neq 0$ und $\varepsilon_\circ := \frac{(x \circ y) - (\tilde{x} \circ \tilde{y})}{x \circ y}$ gilt dann:

$$\varepsilon_{+} = \varepsilon_{x} \cdot \frac{x}{x+y} + \varepsilon_{y} \cdot \frac{y}{x+y}$$

$$\varepsilon_{-} = \varepsilon_{x} \cdot \frac{x}{x-y} + \varepsilon_{y} \cdot \frac{y}{x-y}$$

$$\varepsilon_{-} = \varepsilon_{x} + \varepsilon_{y} - \varepsilon_{x} \cdot \varepsilon_{y}$$

$$\varepsilon_{+} = \frac{\varepsilon_{x} - \varepsilon_{y}}{1 - \varepsilon_{y}}$$

Beweis. Es gilt für $\tilde{x} = x \cdot (1 - \varepsilon_x)$ und für $\tilde{y} = y \cdot (1 - \varepsilon_y)$. Dann ausrechnen.

Bemerkung. ε_+ und ε_- können sehr groß werden, während ε_- und ε_+ eher klein bleiben.

Beispiel. Lösung eines Linearen Gleichungssystems. Betrachte das folgende LGS:

$$10^{-20}x + 2y = 1$$
$$10^{-20}x + 10^{-20}y = 10^{-20}$$

Durch Subtraktion der beiden Gleichungen folgt:

$$(2 - 10^{-20})y = (1 - 10^{-20})$$

Runden auf die nächste darstellbare Zahl:

$$2y = 1$$

Also $y=\frac{1}{2}.$ Einsetzen in die erste Gleichung liefert x=0. Die korrekte Lösung wäre:

$$x = \frac{1}{2 - 10^{-20}} = 0.5000..., y = \frac{1 - 10^{-20}}{2 - 10^{-20}} = 0.4999...$$

5.2 Binäre Suche

 $f: \mathbb{R} \to \mathbb{R}$ monoton steigend, $\mathcal{U}, \mathcal{L} \in \mathbb{R}, x \in \mathbb{R}$. Ziel: Berechne $f^{-1}(x) \in \mathbb{R}$.

Beispiel. Es sei $f: \mathbb{R}_{\leq 0} \to \mathbb{R}_{\leq 0}$ mit $f(x) := x^2$; gesucht ist $f^{-1}(3) \approx 1.73205$ Beachte: f ist monoton wachsend.

- Da $f(1) = 1^2 = 1 < 3$ und $f(2) = 2^2 = 4 > 3$, ist $\sqrt{3} \in [1, 2]$
- Da $f(1.5) = 1.5^2 = 2.25 < 3$, ist $\sqrt{3} \in [1.5, 2]$
- Da $f(1.75) = 1.75^2 = 3.0625 > 3$, ist $\sqrt{3} \in [1.5, 1.75]$
- Da $f(1.625) = 1.625^2 = 2.640625 < 3$, ist $\sqrt{3} \in [1.625, 1.75]$

Es sei $[\ell_i, u_i]$ das Intervall in der *i*-ten Iteration und $m_i = \frac{\ell_i + u_i}{2}$.

Bemerkung. • Offenbar ist

$$\lim_{i \to \infty} \ell_i = \lim_{i \to \infty} m_i = \lim_{i \to \infty} u_i = \sqrt{3}$$

• Denn wir wissen a priori, dass

$$|m_i - \sqrt{3}| \le \frac{1}{2}(u_i - \ell_i) = 2^{-i}(u_1 - \ell_1) = 2^{-i}$$

- Also ist zum Beispiel $|m_6 \sqrt{3}| \le 2^{-6} = \frac{1}{64}$
- A posteriori stellen wir fest, dass

$$|m_i - \sqrt{3}| = \frac{|m_i^2 - 3|}{m_i + \sqrt{3}} \le \frac{|m_i^2 - 3|}{m_i + \ell_i}$$

• Für i = 6 ergibt sich bspw.

$$|m_6 - \sqrt{3}| \le \frac{0.008056640625}{3.453125} \approx 0.002333$$

5.3 Diskrete binäre Suche

```
Algorithm 1: Binäre Suche
```

Input: Orakel für monoton wachsende Funktion $f : \mathbb{Z} \to \mathbb{R}$, Zahlen $\mathcal{L}, \mathcal{U} \in \mathbb{Z}$ mit $\mathcal{L} < \mathcal{U}$ sowie $y \in \mathbb{R}$ mit $y \geq f(\mathcal{L})$

Output: Das maximale $n \in \{\mathcal{L}, \dots, \mathcal{U}\}$ mit $f(n) \leq y$

 $1 \ \ell \leftarrow 2, u \leftarrow \mathcal{U} + 1$

2 while $u - 1 < \ell \, \, \mathbf{do}$

 $\mathbf{3} \qquad m \leftarrow \lfloor \tfrac{\ell+u}{2} \rfloor$

4 if f(m) > y then

 $u \leftarrow m$

6 end

7 else

8 $\ell \leftarrow m$

9 end

10 end

11 return ℓ

Satz 5.2. Der Algorithmus liefert das korrekte Ergebnis nach $\mathcal{O}(\log(\mathcal{U}-\mathcal{L}+2))$ Iterationen. Beweis. Zeige durch Induktion, dass jederzeit

(i)
$$\mathcal{L} \leq \ell \leq u - 1 \leq \mathcal{U}$$

Relativer Fehler

14. November 2024

(ii)
$$f(\ell) \leq y$$

(iii)
$$u > \mathcal{U}$$
 oder $f(u) > y$

Also liegt korrektes n stets in $\{\ell,\ldots,u-1\}$. Terminiert der Algorithmus, ist der Output korrekt.

Laufzeit: In jeder Iteration verringert sich $u-\ell-1$ auf höchstens

$$\max\left\{ \left\lfloor \frac{\ell+u}{2} \right\rfloor - \ell - 1, u - \left\lfloor \frac{\ell+u}{2} - 1 \right\rfloor \right\}$$

$$\leq \max\left\{ \frac{\ell+u}{2} - \ell - 1, u - \frac{\ell+u-1}{2} - 1 \right\}$$

$$= \frac{u - \ell - 1}{2}$$