WHAT IS CLAIMED IS:

1	1.	A bond strength tester for determining certain bond strength
2	parameters of	a bonded component, comprising:
3		an ultrasonic phaselocker;
4		an ultrasonic transducer;
5		a loading device that is capable of applying stress-loads to the bond
6		a controller for controlling the loading device;
7		a data recording device to acquire data; and
8		a computer device to analyze data calculating certain bond strength
9	parameters.	
1	2.	The bond strength tester of claim 1, wherein the phaselocker is a
2	pulsed-phase-	locked loop.
1	3.	The bond strength tester of claim 1, wherein the phaselocker is a
2	transmission/	reflection oscillator ultrasonic spectrometer.
1	4.	The bond strength tester of claim 1, wherein the phaselocker is
2	coupled to the	e bonded component via the ultrasonic transducer.
1	5.	The bond strength tester of claim 1, wherein the bond strength tester
2	is capable of a	altering a temperature of the bond.
1	6.	A bond strength tester for determining certain bond strength
2	parameters of	a bonded component, comprising:
3		a force reactor capable of being attached to at least a portion of the
4	bonded comp	onent;
5		a stressor capable of applying a force to the bonded component;
6		a coupler, wherein the coupler couples the force reactor and the
7	stressor, such	that at least the stressor is capable of being actuated and/or
8	manipulated b	by the controller to apply a force to the bonded component;

9	a transducer capable of converting electrical signals to acoustic waves	
10	and the inverse;	
11	a phaselocker that interfaces with the transducer, via a linked	
12	connection, through the input/output interface.	
1	7. The bond strength tester of claim 1, wherein the transducer is capable	
2	of generating a compressional or shear wave as a pulse, a tone burst, a continuous	
3	wave, or a guided wave.	
1	8. The bond strength tester of claim 1, wherein the transducer includes	
2	multiple transducers.	
1	9. The bond strength tester of claim 1, wherein the phaselocker includes	
2	at least some of:	
3	an input/output interface;	
4	a data monitoring and acquisition circuit that is capable of monitoring	
5	at least some incoming data and/or signal information from the transducer;	
6	a memory that is capable of storing at least some ultrasonic wave	
7	propagation data and determination software;	
8	an information database that is capable of data and/or signal	
9	processing, generation, interpretation, or analysis information;	
10	a controller coupled to the phaselocker, the input/output interface, the	
11	data monitoring and acquisition circuit, the memory, the information database, the	
12	display manager, and the display, and configured to be capable of managing reading	
13	data from and writing data to the memory, driving and managing the transmission of	
14	data and/or signal information to and the reception of data and/or signal information	
15	from the transducer, and driving and managing operation of the force reactor and the	
16	stressor.	

10. The bond strength tester of claim 1, wherein the phaselocker is one of a high-resolution ultrasonic interferometer system, a transmission/reflection

- oscillator ultrasonic spectrometer, a phase-locked-loop, or a pulsed-phase-lockedloop ultrasonic spectrometer.
- 1 11. The bond strength tester of claim 1, wherein the bond strength tester
 2 is capable of altering the temperature of the bond in a prescribed fashion while
 3 taking at least some temperature data to determine bond parameters as a function of
 4 temperature.
- 1 12. The bond strength tester of claim 1, wherein the bond strength tester
 2 is capable of altering the temperature of the bond in a prescribed fashion while
 3 taking at least some temperature data, load data, ultrasonic data, and ultrasonic
 4 frequency data to determine bond parameters as a function of temperature.
- 1 13. A method for testing the strength of a bond of a bonded component, 2 comprising:
- coupling a phaselocker, via a transducer, to a bonded component to create an ensemble system;
- acquiring at least some load data and ultrasonic frequency, initial conditions data for the ensemble system;
- applying a load to the bonded component during a load period by

 placing the bond under tension or compression, thereby applying stress to the bond;
- 9 acquiring at least some load data and ultrasonic frequency data from 10 the ensemble system during the load period;
- maintaining the load on the bonded component during a load-hold period;
- 13 acquiring at least some load data and ultrasonic frequency data from 14 the ensemble system during the load-hold period;
- removing the load on the bonded component during an unload period;
 acquiring at least some load data and ultrasonic frequency data from
 the ensemble system during the unload period;

18	acquiring at least some load data and ultrasonic frequency, final

- conditions data for the ensemble system after the load on the bonded component has
- 20 been removed during a relaxation period;
- determining a non-linearity parameter (N) from at least some of the
- 22 acquired data;
- determining a hysteresis parameter (H1) for the load-hold period from
- 24 at least some of the acquired data;
- determining a hysteresis parameter (H2) for the unload period from at
- least some of the acquired data;
- determining a plasticity parameter (P) for the relaxation period from
- at least some of the acquired data; and
- assessing the strength of the bond based on the determined
- parameters, N, H1, H2, and P and determined failure parameters.
- 1 14. The method of claim 13, wherein acquiring includes acquiring via a
- 2 data monitoring and acquisition circuit.
- 1 15. The method of claim 13, further including saving at least some of the
- 2 information and/or data regarding the acquired load data and ultrasonic frequency
- 3 data and/or at least some of the information and/or data regarding the determined
- 4 parameters, N, H1, H2, or P to a memory.
- 1 16. The method of claim 13, further including transmitting at least some
- 2 of the information and/or data regarding the acquired load data and ultrasonic
- 3 frequency data and/or at least some of the information and/or data regarding the
- 4 determined parameters, N, H1, H2, or P.
- 1 The method of claim 13, further including displaying at least some of
- the information and/or data regarding the acquired load data and ultrasonic
- 3 frequency data and/or at least some of the information and/or data regarding the
- 4 determined parameters, N, H1, H2, or P on a display.
- 1 18. The method of claim 13, further including:

2	altering a temperature of the bond in a prescribed fashion;
3	acquiring at least some temperature data for the ensemble system; and
4	assessing the strength of the bond based on the determined
5	parameters, N, H1, H2, and P and the temperature data.
1	19. The method of claim 13, further including:
2	comparing the determined parameters, N, H1, H2, and P to
3	determined parameters, N, H1, H2, and P from a prior test of a of a bond; and
4	assessing the strength of the bond based on the comparison of the
5	determined parameters.
1	20. A method for determining at least some bond strength parameters for
2	a bond of a bonded component, comprising:
3	coupling a phaselocker, via a transducer, to a bonded component to
4	create an ensemble system;
5	acquiring at least some load data and ultrasonic frequency, initial
6	conditions data for the ensemble system;
7	applying a load to the bonded component during a load period by
8	placing the bond under tension or compression, thereby applying stress to the bond;
9	acquiring at least some load data and ultrasonic frequency data from
10	the ensemble system during the load period;
11	maintaining the load on the bonded component during a load-hold
12	period;
13	acquiring at least some load data and ultrasonic frequency data from
14	the ensemble system during the load-hold period;
15	removing the load on the bonded component during an unload period
16	acquiring at least some load data and ultrasonic frequency data from
17	the ensemble system during the unload period;

18	acquiring at least some load data and ultrasonic frequency, final
19	conditions data for the ensemble system after the load on the bonded component has
20	been removed during a relaxation period;
21	determining a non-linearity parameter (N) from at least some of the
22	acquired data;
23	determining a hysteresis parameter (H1) for the load-hold period from
24	at least some of the acquired data;
25	determining a hysteresis parameter (H2) for the unload period from at
26	least some of the acquired data;
27	determining a plasticity parameter (P) for the relaxation period from
28	at least some of the acquired data.