Pozo Cuadrado Infinito

Se considera una partícula cuyo movimiento está limitado estrictamente a una región finita unidimensional. La partícula se mueve libremente dentro de esa región, pero no puede salir.

La expresión matemática para el potencial, es:

$$V(x) = \left\{ \begin{array}{ll} 0 & : 0 > x > a0 \\ \infty & : x < 0, x > a, x \notin [0,a] \end{array} \right.$$

La ecuación estacionaria de Schrödinger :

$$\frac{-\hbar^2}{2m}\frac{d^2}{dx^2}\Psi = E\Psi\tag{1}$$

Reescribiendo, se obtiene:

$$\frac{d^2}{dx^2}\Psi + \frac{2m}{\hbar^2}E\Psi = 0\tag{2}$$

Teniendo que

$$k^2 = \frac{2m}{\hbar^2}E\tag{3}$$

Entonces

$$\frac{d^2}{dx^2}\Psi + k^2\Psi = 0\tag{4}$$

La solución a esta ecuación se expresa como

$$\Psi = A\sin(kx) + B\cos(kx) \tag{5}$$

Usando el requisito de que Ψ sea contínua en todo punto, lleva a que las condiciones de frontera sean :

1.
$$\Psi(0) = 0$$

$$2. \ \Psi(a) = 0$$

De la primera condición, se obtiene el valor de la constante ${\bf B}$:

$$0 = A\sin(k0) + B\cos(k0) \tag{6}$$

vemos que $\sin(k0)$ es igual a cero, y que $\cos(k0)$ es igual a 1. Esto nos dice que **A** toma un valor, y que

$$B = 0 (7)$$

Ahora, de la segunda condición, y sabiendo el valor de B, se tiene :

$$0 = A\sin(ka) \tag{8}$$

y si tomamos en cuenta que $ka=n\pi$, con $ka=0,\pm\pi,\pm2\pi,\pm3\pi$, entonces

$$k = \frac{n\pi}{a} \tag{9}$$

y al sustituir ${\bf k}$ en la expresión para ${\bf E}$ (Ecuación (3).), se obtiene la igualdad

$$\frac{n^2\pi^2}{a^2} = \frac{2m}{\hbar^2}E\tag{10}$$

y de aquí obtenemos los valores de la energía en función del estado en el que se encuentre la función

$$E_n = \frac{\hbar^2 \pi^2}{2ma^2} n^2 \tag{11}$$

con
$$\{n=1,2,3,...\}$$

La función $\Psi(x)$ queda como :

$$\Psi(x)_n = A\sin(\frac{n\pi}{a})x\tag{12}$$

donde ${\bf A}$ puede obtenerse a partir de la consideración de normalización

$$\int_{-\infty}^{\infty} \Psi(x)^2 = 1 \tag{13}$$

y sustituyendo la ec. (12) en la ec. (13), se tiene que

$$A^2 \int_0^a \sin^2(\frac{n\pi}{a}x) dx = 1 \tag{14}$$

Ahora, usando en la ec. (14) la identidad trigonométrica

$$\sin^2 x = \frac{1}{2} - \frac{1}{2}\cos 2x$$

Podemos expresarla como

$$A^{2} \int_{0}^{a} \left[\frac{1}{2} - \frac{1}{2}\cos(\frac{2n\pi}{a}x)\right] = 1$$

Factorizando $\frac{1}{2}$:

$$A^{2} \int_{0}^{a} \frac{1}{2} [1 - \cos(\frac{2n\pi}{a}x)] = 1 \tag{15}$$

Ahora, para resolver esta integral usaremos un cambio de variable

$$u = \frac{2n\pi}{a}x; du = \frac{2n\pi}{a}dx$$
$$dx = \frac{a}{2n\pi}du; x = \frac{au}{2n\pi}$$

y podemos expresar la ec. (15) como

$$\frac{aA^2}{4n\pi} \int_0^{2n\pi} (1 - \cos u) du \tag{16}$$

Ahora resolvemos la integral

$$\frac{aA^2}{4n\pi} \int_0^{2n\pi} (1 - \cos u) du = \frac{aA^2}{4n\pi} [u - \sin u]_0^{2n\pi}$$

$$\frac{aA^2}{4n\pi}[(2n\pi - 0) - (0 - 0)] = \frac{aA^2}{2} = 1$$

v obteniendo el valor de A

$$A = \sqrt{\frac{2}{a}} \tag{17}$$

٠.

$$\Psi(x) = \sqrt{\frac{2}{a}} \sin^2(\frac{n\pi}{a}x) dx \tag{18}$$

En el siguiente diagrama se muestra el comportamiento de la Energía (E_n) , la función $\Psi_n(x)$, y la densidad de probabilidad (ρ) respectivamente.

En (a) se ilustran los primeros niveles de energía del pozo infinito en unidades de la energía del estado base; en (b), las correspondientes amplitudes y en (c), la densidad esperada de electrones dentro del pozo. Debido a la repulsión infinita de los electrones por las paredes, no se encuentran electrones en su inmediata vecindad. Para estados altamente excitados (n) la distribución (de grano grueso) de electrones dentro del pozo tiende a confundirse con la continua, aunque hay rápidas oscilaciones, cuyo número crece indefinidamente.¹

Por último, se enuncian algunas propiedades de $\Psi(x)$:

- 1. Son, alternativamente, funciones pares e impares respecto al centro del pozo.
- Al aumentar la energía, cada estado sucesivo tiene un nodo adicional.
- 3. Son funciones mutuamente ortogonales

$$\int_0^a \Psi_m^*(x)\Psi_n(x)dx = 0 \tag{19}$$

- Probando para $m \neq n$:

$$\int_{-\infty}^{\infty} \Psi_m^*(x) \Psi_n(x) dx = \frac{2}{a} \int_0^a \sin(\frac{m\pi}{a}) \sin(\frac{n\pi}{a}) dx =$$

Usando la identidad trigonométrica

$$\sin x \sin y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

se tiene que

$$\frac{1}{a} \int_0^a \left[\cos\left(\frac{m+n}{a}\pi x\right) - \cos\left(\frac{m-n}{a}\pi x\right) \right] dx =$$

$$\frac{1}{a} \left[\frac{a}{(m+n)\pi} \sin(\frac{m+n}{a}\pi x) - \frac{a}{(m-n)\pi} \sin(\frac{m-n}{a}\pi x) \right]_0^a =$$

$$\left[\frac{1}{(m+n)\pi}\sin(\frac{m+n}{a}\pi a) - \frac{1}{(m-n)\pi}\sin(\frac{m-n}{a}\pi a)\right] - [0-0] =$$

$$\left[\frac{1}{(m+n)\pi}\sin((m+n)\pi) - \frac{1}{(m-n)\pi}\sin((m-n)\pi)\right] = 0$$

De aquí se sigue que, como el argumento (m+n) y (m-n) son siempre números enteros, el valor de $\sin(n\pi) = 0$. \therefore Existe una independencia lineal entre cada estado $\Psi_n(x)$.

- Probando para $\mathbf{m} = \mathbf{n}$:

En este caso, la integral es la normalización, de modo que se puede expresar ambos resultados en términos de una delta de Kronecker $[\delta_{mn}]$, de modo que

$$\int_0^a \Psi_m^*(x)\Psi_n(x)dx = \delta_{mn} \tag{20}$$

$$\delta_{mn} = \begin{cases} 0 & : n \neq m \\ 1 & : n = m \end{cases} \tag{21}$$

4. El conjunto de funciones $\{\Psi_n(x)\}$ forman un conjunto completo, de modo que cualquier otra función $\mathbf{f}(\mathbf{x})$, definida en el mismo espacio (en este caso de [0,a]), puede expresarse como combinación lineal de ellas

$$f(x) = \sum_{n=1}^{\infty} C_n \Psi_n(x)$$
 (22)

$$f(x) = \sqrt{\frac{2}{a}} \sum_{n=1}^{\infty} C_n \sin \frac{n\pi}{a} x \tag{23}$$

Los coeficientes \mathbf{C}_n se obtienen multiplicando esta última expresión por Ψ_m^* e integrando :

$$\int_{-\infty}^{\infty} \Psi_m^*(x) f(x) dx = \tag{24}$$

$$\sum_{n=1}^{\infty} C_n \int_{-\infty}^{\infty} \Psi_m^*(x) \Psi_n(x) dx =$$

$$\sum_{n=1}^{\infty} C_n \delta_{mn} \tag{25}$$

y si m=n

$$\sum_{n=1}^{\infty} C_n \delta_{mn} = C_m \tag{26}$$

Entonces se concluye que

$$\int_{-\infty}^{\infty} \Psi_m^*(x) f(x) dx = C_m \tag{27}$$

De esta manera, las funciones de onda quedan de la siguiente manera

$$\Psi_n(x,t) = \Psi_n(x)e^{\frac{-iE_n}{\hbar}t}$$
(28)

La función Ψ_n (28) son los estados estacionarios de la Ecuación de Schrödinger.

$$\Psi_n(x,t) = \sqrt{\frac{2}{a}} \sin(\frac{n\pi}{a}x) e^{\frac{-i\pi^2\hbar^2}{2ma^2}n^2t}$$
 (29)

con

$$\Psi_n(x,t) = \sqrt{\frac{2}{a}} \sin(\frac{n\pi}{a}x) e^{\frac{-i\pi^2\hbar^2}{2ma^2}n^2t}$$
 (30)

En forma general, la ec. (30) es la combinación lineal de estos estados estacionarios.

$$\Psi_n(x,t) = \sum_{n=1}^{\infty} C_n \sqrt{\frac{2}{a}} \sin(\frac{n\pi}{a}x) e^{\frac{-i\pi^2 \hbar^2}{2ma^2} n^2 t}$$
(31)

con

$$C_n = \sqrt{\frac{2}{a}} \int_0^a \sin(\frac{n\pi}{a}x) \Psi(x,0) dx \tag{32}$$

Referencias

- 1 Introducción a la mecánica cuántica Luis de la Peña, pag.67
- Introduction to Quantum Mechanics- David J. Griffiths