Introduction to Fatigue
S- static loading (Failure theories) - slow speeds - light loads - large factor of safety
- Dynamic loading [Fatigue] - fast speeds - high loeds - low factor of safety industrial revolution e.g. steam engine, water-wheel, turbines
Fatigue - repeated high/low stresses
- failure occurs at much lower strength (lower ham yield strength)
- Failure due to cyclic stresses is Fatigue Failure.

Lec17 Page 1

Fatigne - Life methods

The goal is to predict the number of agels to failure for a specific level of loading

Methods

- Strain-Life method: Uses crack cyles nucleation (growth) to predict failure n
- Dinear elastic fracture mechanics

 THEORY Uses crack propagation to predict failure

 DRZVEN Cycles

3) Stress-Life method: Uses emperical tests on test specimens to predict failure cycles [DATA DRIVEN]

0, 2 - Advanced Solid Mechanics
3 - We will use this approach

Fatigue Test

Test specimen

$$6x = (F_0 ay) \sin wt = 60 \sin(wt) j 60 = F_0 ay$$

$$I$$

SN experimental

- 1 Choose 60
- 2) Keep increasing N till speimen bails

3) keep repeating (1) and (2) and plotting on strength vs. log N plot shown above.

S-N aurre; Wöhler aurre; stren-like aurre

Idealized SN curve

$$I$$
 $0 \le N \le 10^3$
Sut $\le S \le F Sut$

f = 0.8 - 0.9 (eugerical)

Se - endurance limit

1) Se is found emperically

For steel
$$S_{e}' = \begin{cases} 0.5 \text{ Sut} \\ 100 \text{ Kps}; \end{cases}$$

- Se endurance strength of the lab specimen
- Se endurance strength of actual moderial in the field.

Se + Se due to împerfections in actual material in the field.

 $f = 1.06 - 4.1(15^6)$ Sut $+ 1.5(15^7)$ Sut +

f = 0,8 or 0.9 i) graph (ii) tornula (îii) f=0.8 or 0.9 Conjute the constant a, b in $S_f = a N^b$

We know that the curre passes through (103, f Sut) and (106, Se)

$$- + (f Sut) = a (103)b - (I)$$

$$- (Se) = a (10^6)^b - 1$$

$$\frac{\text{I}}{\text{I}} \frac{\text{f Suk}}{\text{Se}} = \frac{10^{3b}}{10^{6b}} = 10^{-3b}$$

taking log10

$$logio\left(\frac{Se}{fSut}\right) = logio\left(\frac{3b}{10}\right) = 3b$$

$$Se = a (10)^{6b} \qquad b = \frac{1}{3} \log_{10} \frac{Se}{fSut}$$

$$\log_{10} Se = \log_{10} a + 66 \log_{10} 10$$

$$\log_{10} Se = \log_{10} a + 2\log_{10} \frac{Se}{fSut}$$

$$\log_{10} a = \log_{10} Se - \log_{10} \left(\frac{Se}{fSut}\right)^{2}$$

$$\log_{10} a = \log_{10} \left(\frac{Se}{fSut}\right)^{2}$$

$$\log_{10} a = \log_{10} \left(\frac{Se}{fSut}\right)^{2}$$

$$a = \frac{f^{2} Sut}{Se}$$

$$S_f = a N^b$$
; $a = \frac{f^2 Sut}{Se}$; $b = \frac{1}{3} \log_{10} \left(\frac{Se}{f Sut} \right)$

$$\Rightarrow N = \left(\frac{6}{a}\right)^{1/b}$$

=) $N = \left(\frac{6}{a}\right)^{1/b}$ a, b are computed using formulae given earlier.

Given a 1050 HR steel, estimate

(a) the rotating-beam endurance limit at 10^6 cycles.

(b) the endurance strength of a polished rotating-beam specimen corresponding to 10^4

cycles to failure. S *f*(c) the expected life of a polished rotating-beam specimen under a completely reversed stress of 55 kpsi. 6 = 55 kpsi ; N = 2

	n
	I :
	J= aNb
\perp	
ı	

1	2	3	4 Suf Tensile	5 Yield	6	7	8
UNS No.	SAE and/or AISI No.	Process- ing	Strength MPa (kpsi)	Strength, MPa (kpsi)	Elongation in 2 in, %	Reduction in Area, %	Brinell Hardness
G10060	1006	HR	300 (43)	170 (24)	30	55	86
		CD	330 (48)	280 (41)	20	45	95
G10100	1010	HR	320 (47)	180 (26)	28	50	95
		CD	370 (53)	300 (44)	20	40	105
G10150	1015	HR	340 (50)	190 (27.5)	28	50	101
		CD	390 (56)	320 (47)	18	40	111
G10180	1018	HR	400 (58)	220 (32)	25	50	116
		CD	440 (64)	370 (54)	15	40	126
G10200	1020	HR	380 (55)	210 (30)	25	50	111
		CD	470 (68)	390 (57)	15	40	131
G10300	1030	HR	470 (68)	260 (37.5)	20	42	137
		CD	520 (76)	440 (64)	12	35	149
G10350	1035	HR	500 (72)	270 (39.5)	18	40	143
		CD	550 (80)	460 (67)	12	35	163
G10400	1040	HR	520 (76)	290 (42)	18	40	149
		CD	590 (85)	490 (71)	12	35	170
G10450	1045	HR	570 (82)	310 (45)	16	40	163
		CD	630 (91)	530 (77)	12	35	179
G10500	1050	HR	620 (90)	340 (49.5)	15	35	179
		CD	690 (100)	580 (84)	10	30	197
G10600	1060	HR	680 (98)	370 (54)	12	30	201
G10800	1080	HR	770 (112)	420 (61.5)	10	25	229
G10950	1095	HR	830 (120)	460 (66)	10	25	248

(a) Sut = 90 kps; for 1050 HR steel

Since Sut < 200 kps;

Se = 0.5 Sut
Se = 0.5 (90)

E = 45 kps;

(b)
$$N = 10^4$$
; $S_F = ?$

$$S_F = \stackrel{?}{a} \stackrel{?}{N_F}$$

$$a = \frac{(F Sut)^2}{Se V}$$

$$a = \frac{([0.655])(90)^2}{45} \implies a = 131.58$$

$$b = \frac{1}{3} \frac{1.9}{1.9} = \frac{(S_F Sut)^2}{F Sut}$$

$$b = \frac{1}{3} \log_{10} \left(\frac{Se}{FSut} \right)$$

$$b = \frac{1}{3} \log_{10} \left(\frac{45}{(0.855)(90)} \right) = b = -0.0776$$

$$S_{F} = a N^{b}$$

 $S_{F} = (131.58)(164)^{-0.0776}$
 $S_{F} = 64.39 \text{ Kpsi}$

(1)
$$S_F = \delta = a N^b$$

 $55 = (137.58) N (-0.0776)$
 $N = \left(\frac{SS}{131.58}\right) \frac{1}{-0.0776}$
 $N = 7.62 (104)$

 $N \approx 76000$ cycles