

Review

- Binary multipliers have three blocks:
 - Partial-product generation (NAND or Booth)
 - Partial-product compression (ripple-carry array, CSA or Wallace)
 - Final adder
- Multipliers are often pipelined
- Constant multipliers can be optimized for size/speed
- Shifters and crossbars are common building blocks in digital systems
 - Often require customization

EECS151 L20 DIVIDERS

Nikolić Fall 2021

2 Berkeley @@@@

Administrivia

- Homework 8 due this week
 - In scope for midterm
- All labs need to be checked off by today!
- Project checkpoint 2 next week
- Midterm 2 is on November 4 at 7pm
 - Review session tomorrow
 - Up to today's lecture
 - 1 page of notes allowed

EECS151 L20 DIVIDERS

Nikolić Fall 20:

Berkeley © S S N N S

3

Pencil-And-Paper Division			
1512	quotient		
3 4537	dividend		
divisor 3000	divisor*q;*10i		
1537	partial remainder	Division is an iterative process:	
1500			
0037	-	$r(i) = r(i+1)-q_i^*D^*10^i$	
0030	_		
0007		We usually 'guess' q _i	9
0006			
0001	remainder		
EECS151 L20 DIVIDERS		Nikolić Fall 2021 5	Berkeley @@@@

Restoring Divider • Assume $q_i = 1$ • Subtract divisor from r; check if $r(i) \ge 0$ • if r(i) > 0, guess was good $(q_i = 1)$ • if r(i) < 0, restore the value by adding divisor, $q_i = 0$ • Shift divisor to right • Repeat *n* times More efficient to shift the reminder right divisor n shifts n subtractions n/2 restorations FSM Berkeley ©000 EECS151 L20 DIVIDERS Nikolić Fall 2021

6

Non-Restoring Divider

- Doesn't restore if r(i) < 0
- Instead, adds the divisor in the next iteration
 - n shifts
 - *n* additions/subtractions

EECS151 L20 DIVIDERS

Nikolić Fall 202

7 Berkeley @@@@

7

Faster Dividers

- Divide in a higher radix than 2 (typically 4, i.e. guess q_iq_{i+1})
- Keep the partial remainders in redundant form
- Sweeney-Robertson-Tocher (SRT) algorithm
 - Used in many processors

EECS151 L20 DIVIDERS

Nikolić Fall 2021

8 Berkeley @ 50

Review Binary division is a slow, iterative process Non-restoring division speeds it up SRT divider, higher radix, redundant number representation