# Limbaje formale, automate şi compilatoare

Curs 8

### Recapitulare

- Paşii compilării
- Analiza lexicală
  - Descriere lexicală
  - Interpretare
  - Interpretare orientată dreapta
  - Descriere lexicală bine formată

# Cuprins

- Analiza sintactică ascendentă
  - Parser ascendent general
  - Analiză LR
  - LR(0)
  - SLR(1)
- FIRST
- FOLLOW

# Compilare



# Parser ascendent general



# Configurații

- O configurație ( $\#\gamma$ , u#,  $\pi$ ) este interpretată în felul următor:
  - #γ este conţinutul stivei, cu simbolul # la baza.
  - –u# este conţinutul intrării.
  - $-\pi$  este conținutul ieșirii.
- $C_0 = \{(\#, w\#, \varepsilon) | w \in T^*\}$  mulţimea configuraţiilor iniţiale.

### Tranziții

- Parserul ascendent atașat gramaticii G este perechea  $(C_0, \vdash)$  unde  $C_0$  este mulțimea configurațiilor inițiale, iar  $\vdash$  este o relație de tranziție definită astfel:
  - $(\# \gamma, au\#, \pi) \vdash (\# \gamma a, u\#, \pi)$  (*deplasare*) pentru orice  $\gamma \in \Sigma^*$ , a  $\in T$ ,  $u \in T^*$ ,  $\pi \in P^*$ .
  - $(\#\alpha\beta, u\#, \pi) \vdash (\#\alpha A, u\#, \pi r) \text{ dacă } r = A \rightarrow \beta \text{ (reducere)}.$
  - Configurația (#S, #,  $\pi$ ) unde  $\pi \neq \varepsilon$ , se numește *configurație de acceptare*.
  - Orice configurație, diferită de cea de acceptare, care nu este în relația ⊢ cu nici o altă configurație este o configurație eroare.
- Parsere de deplasare/reducere.

### Exemplu

- Fie gramatica  $S \rightarrow aSb | \epsilon$ . Tranzițiile sunt:
  - $(\#\gamma, u\#, \pi) \vdash (\#\gamma S, u\#, \pi 2)$
  - $(\# \gamma aSb, u\#, \pi) \vdash (\# \gamma S, u\#, \pi 1)$
  - $(\#\gamma, au\#, \pi) \vdash (\#\gamma a, u\#, \pi)$
  - $(\#\gamma, bu\#, \pi) \vdash (\#\gamma b, u\#, \pi)$
- O succesiune de tranziţii se numeşte calcul
  - $(\#, \#, \epsilon) \vdash (\#S, \#, 2)$
  - $(\#, aabb\#, \epsilon) \vdash (\#a, abb\#, \epsilon) \vdash (\#aa, bb\#, \epsilon) \vdash (\#aaS, bb\#, 2) \vdash (\#aaSb, b\#, 2) \vdash (\#aS, b\#, 21) \vdash (\#aSb, \#, 21) \vdash (\#S, \#, 211)$

### Conflicte

- Parserul este nedeterminist:
  - Pentru o configurație de tipul ( $\#\alpha\beta$ , au#,  $\pi$ ),  $S \rightarrow \beta$ , există două posibilități (conflict **deplasare/reducere**):
    - $(\#\alpha\beta, au\#, \pi) \vdash (\#\alpha S, au\#, \pi r)$  (reducere cu  $S \rightarrow \beta$ )
    - $(\#\alpha\beta, au\#, \pi) \vdash (\#\alpha\beta a, u\#, \pi)$  (deplasare)
  - Pentru o configurație (# $\gamma$ , u#,  $\pi$ ) cu  $\gamma = \alpha_1 \beta_1 = \alpha_2 \beta_2$  și  $A \rightarrow \beta_1$ ,  $B \rightarrow \beta_2$ , reguli (conflict **reducere/reducere**)
    - $(\#\alpha_1\beta_1, u\#, \pi) \vdash (\#\alpha_1A, au\#, \pi r_1)$
    - $(\#\alpha_2\beta_2, u\#, \pi) \vdash (\#\alpha_2B, au\#, \pi r_2)$

### Corectitudine

- Spunem că un cuvânt w ∈ T\* este acceptat de un parser ascendent dacă există măcar un calcul de forma
  - $(\#, \text{ w}\#, \epsilon) \vdash^+ (\#S, \#, \pi)$
- Pentru ca parserul descris să fie corect, trebuie ca el să accepte toate cuvintele din L(G) și numai pe acestea.

#### Teorema

 Parserul ascendent general ataşat unei gramatici G este corect: pentru orice w ∈ T\*, w ∈ L(G) dacă şi numai dacă în parser are loc calculul (#, w#, ε) ⊢⁺(#S, #, π).

### Analiza sintactică LR

- Gramatici LR(k):Left to right scanning of the input, constructing a Rightmost derivation in reverse, using k symbols lookahead
- Definiţie
  - O gramatică G se numește gramatică LR(k), k≥0, dacă pentru orice două derivări de forma:
    - S' $\Rightarrow$  S  $_{dr}$  $\Rightarrow$ \*  $\alpha$ Au  $_{dr}$  $\Rightarrow$   $\alpha\beta$ u =  $\delta$ u
    - S' $\Rightarrow$  S dr  $\Rightarrow$  \*  $\alpha$ 'A'u' dr  $\Rightarrow$   $\alpha$ ' $\beta$ 'u' =  $\alpha\beta v = \delta v$
  - pentru care k:u = k:v, are loc  $\alpha = \alpha'$ ,  $\beta = \beta'$ , A = A'

### Analiza sintactică LR

#### • Teorema 1

- Dacă G este gramatică LR(k), k≥0, atunci G este neambiguă.
- Un limbaj L este (în clasa)  $\mathcal{LR}(k)$  dacă există o gramatică LR(k) care îl generează

#### Teorema 2

• Orice limbaj  $\mathcal{LR}(k)$  este limbaj de tip 2 determinist.

#### Teorema 3

• Orice limbaj de tip 2 determinist este limbaj LR(1).

#### • Teorema 4

• Pentru orice limbaj  $\mathcal{LR}(k)$ ,  $k \ge 1$ , există o gramatică LR(1) care generează acest limbaj, adică  $LR(0) \subset LR(1) = LR(k)$ ,  $k \ge 1$ .

# Gramatici LR(0)

### Definiție

• Fie G = (V, T, S, P) o gramatică independentă de context redusă. Să presupunem că simbolul • nu este în  $\Sigma$ . Un **articol** pentru gramatica G este o producție  $A \rightarrow \gamma$  în care s-a adăugat simbolul • într-o anume poziție din  $\gamma$ . Notăm un articol prin  $A \rightarrow \alpha \cdot \beta$  dacă  $\gamma = \alpha \beta$ . Un articol în care este pe ultima poziție se numește **articol complet**.

### • Definiție

• Un **prefix viabil** pentru gramatica G este orice prefix al unui cuvânt  $\alpha\beta$  dacă S  $_{dr} \Rightarrow * \alpha Au _{dr} \Rightarrow \alpha \beta u$ . Dacă  $\beta = \beta_1 \beta_2$  și  $\phi = \alpha \beta_1$  spunem că articolul  $A \rightarrow \beta_1 \cdot \beta_2$  este **valid** pentru **prefixul viabil**  $\phi$ .

### Exemplu

- Exemplu  $S \rightarrow A$ ,  $A \rightarrow aAa \mid bAb \mid c \mid \epsilon$ .
  - Articole:  $S \rightarrow A$ ,  $S \rightarrow A$ ,  $A \rightarrow b$ ,  $A \rightarrow c$ ,  $A \rightarrow c$ ,  $A \rightarrow c$ .
- Articole valide pentru prefixe viabile:

| Prefixul viabil | Articole valide | Derivarea corespunzătoare       |  |
|-----------------|-----------------|---------------------------------|--|
| ab              | A→b•Ab          | S⇒A⇒aAa⇒abAba                   |  |
|                 | A→•aAa          | S⇒A⇒aAa⇒abAba⇒abaAaba           |  |
|                 | A→•bAb          | S⇒A⇒aAa⇒abAba⇒abbAbba           |  |
| 3               | S→•A            | S⇒A                             |  |
|                 | A→•bAb          | S⇒A⇒bAb                         |  |
|                 | A→•c            | $S \Rightarrow A \Rightarrow_C$ |  |

# Gramatici LR(0)

#### Lema

- Fie G o gramatică şi  $A \rightarrow \beta_1 \cdot B\beta_2$  un articol valid pentru prefixul viabil  $\gamma$ . Atunci, oricare ar fi producția  $B \rightarrow \beta$ , articolul  $B \rightarrow \beta$  este valid pentru  $\gamma$ .
- **Teorema** (caracterizare LR(0))
  - Gramatica G este gramatică LR(0) dacă și numai dacă, oricare ar fi prefixul viabil γ, sunt îndeplinite condițiile:
    - 1.nu există două articole complete valide pentru γ.
    - 2.dacă articolul  $A \rightarrow \beta$  este valid pentru  $\gamma$ , nu există nici un articol  $B \rightarrow \beta_1 \cdot a\beta_2$ ,  $a \in T$ , valid pentru  $\gamma$ .

### Gramatici LR(0)

#### Teorema

• Fie G = (V, T, S, P) o gramatică independentă de context. Mulțimea prefixelor viabile pentru gramatica G este limbaj regulat.

#### • Demonstrație

- G' este G la care se adaugă  $S' \rightarrow S$ .
- $M = (Q, \Sigma, \delta, q_0, Q)$ , unde:
  - Q este mulțimea articolelor gramaticii G',
  - $\Sigma = V \cup T$ ,  $q_0 = S' \rightarrow S$
  - $\delta: Q_X(\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$  definită astfel:
    - $\delta(A \rightarrow \alpha \cdot B\beta, \epsilon) = \{B \rightarrow \gamma \mid B \rightarrow \gamma \in P\}.$
    - $\delta(A \rightarrow \alpha \cdot X\beta, X) = \{A \rightarrow \alpha X \cdot \beta\}, X \in \Sigma.$
    - $\delta(A \rightarrow \alpha \cdot a\beta, \epsilon) = \emptyset, \forall a \in T.$
    - $\delta(A \rightarrow \alpha \cdot X\beta, Y) = \emptyset, \forall X, Y \in \Sigma \text{ cu } X \neq Y.$
- Se arată că are loc:
  - $(A \rightarrow \alpha \cdot \beta \in \delta (q_0, \gamma) \Leftrightarrow \gamma \text{ este prefix viabil } \hat{q} A \rightarrow \alpha \cdot \beta \text{ este valid pentru } \gamma.$

# Exemplu

• S'  $\rightarrow$  S, S  $\rightarrow$  aSa | bSb  $\mid c$ S  $S' \rightarrow \bullet S$  $S' \rightarrow S \bullet$ S → •bSb S → •c S → •aSa а S → b•Sb S <del>→</del> a∙Sa  $S \rightarrow c \bullet$ S S → bS•b S → aS•a а S → aSa•  $S \rightarrow bSb \bullet$ 

### Automatul LR(0)

- Algoritmul 1(procedura închidere(t))
- Intrare:
  - Gramatica G = (V, T, S, P);
  - Mulțimea t de articole din gramatica G;
- Ieşire: t'=închidere(t)={q $\in$ Q| $\exists$ p $\in$ t, q $\in$ \delta(p, $\varepsilon$ )} =  $\delta$ (t, $\varepsilon$ )

### Automatul LR(0)

```
• t' = t; flag = true;
• while(flag) {
    • flag = false;
    • for (A \rightarrow \alpha \cdot B\beta \in t') {
        • for (B \rightarrow \gamma \in P)

    if (B→•γ∉t') {

            • t' = t' \cup \{B \rightarrow \cdot \gamma\};
            • flag = true;
            • }//endif
        }//endforB
    • }//endforA
```

- }//endwhile
- return t';

### Automatul LR(0)

- Algoritmul 2 Automatul LR(0)
  - Intrare: Gramatica G = (N, T, S, P) la care s-a adăugat  $S' \rightarrow S$ ;
  - Ieşire: Automatul determinist  $M = (T, \Sigma, g, t_0, T)$  echivalent cu M.

- t0=închidere(S'  $\rightarrow$  S);  $T=\{t_0\}$ ; marcat( $t_0$ )=false;
- while( $\exists t \in T \&\& !marcat(t)$ ) { // marcat(t) = false
  - for(  $X \in \Sigma$ ) {//  $\Sigma = N \cup T$ 
    - $t' = \emptyset$ ;
    - for( $A \rightarrow \alpha \cdot X\beta \in t$ )
      - $t' = t' \cup \{B \rightarrow \alpha X \cdot \beta \mid A \rightarrow \alpha \cdot X \beta \in t\};$
      - if( t'≠Ø){
        - o t' = închidere(t');
        - o if( t'∉T ) {
          - $T = T \cup \{ t' \};$
          - marcat( t') = false;
        - o }//endif
      - g(t, X) = t';
      - }//endif
    - }//endfor
  - }//endfor
  - marcat(t) = true;
- }// endwhile

### Automatul LR(0) - Exemplu

• S'  $\rightarrow$  S, S  $\rightarrow$  aSa | bSb | c



### Test LR(0)

- **Definiție** Fie G o gramatică și M automatul LR(0) atașat lui G.
  - Spunem că o stare a lui M are un conflict **reducere/reducere** dacă ea conține două articole complete distincte  $A \rightarrow \alpha$ ,  $B \rightarrow \beta$ .
  - Spunem că o stare a lui M are un conflict **deplasare/reducere** dacă ea conține un articol complet  $A \rightarrow \alpha$  și un articol cu terminal după punct de forma  $B \rightarrow \beta$ •a $\gamma$ .
  - Spunem că o stare este **consistentă** dacă ea nu conține conflicte și este **inconsistentă** în caz contrar.
- **Teorema** Fie G o gramatică și M automatul său LR(0). Gramatica G este LR(0) dacă și numai dacă automatul M nu conține stări inconsistente

• S  $\rightarrow$  aAd | bAB, A  $\rightarrow$  cA | c, B  $\rightarrow$  d



# Algoritmul de analiză LR(0)

- Tabela de parsare coincide cu automatul LR(0), M.
- Configurație:  $(\sigma, u\#, \pi)$  unde  $\sigma \in Q^*$ ,  $u \in T^*$ ,  $\pi \in P^*$ .
- Configurația inițială este  $(t_0, w#, \varepsilon)$ ,
- Tranziţiile:
  - Deplasare:  $(\sigma t, au\#, \pi) \vdash (\sigma tt', u\#, \pi) dacă g(t, a) = t'$ .
  - Reducere:  $(\sigma t \sigma' t', u \#, \pi) \vdash (\sigma t t'', u \#, \pi r) dacă A \rightarrow \beta \in t',$  $r = A \rightarrow \beta, |\sigma' t'| = |\beta|$ \$\si t'' = g(t, A).
  - Acceptare:  $(t_0t_1, \#, \pi)$  este configurația de acceptare dacă  $S' \to S' \in t_1, \pi$  este parsarea acestuia.
  - Eroare: o configurație căreia nu i se poate aplica nici o tranziție

### Algoritmul de analiză LR(0)

```
char ps[]= "w#"; //ps este sirul de intrare w
 i = 0; // pozitia in sirul de intrare
 STIVA.push(t0); // se initializeaza stiva cu t0
while(true) { // se repeta pana la succes sau eroare
 • t = STIVA.top();
 • a = ps[i] // a este simbolul curent din intrare
 • if (q(t, a) \neq \emptyset \{ //deplasare \}
    STIVA.push(g(t, a));
    • i++; //se inainteaza in intrare
 • else {
 • if (A \rightarrow X_1X_2...X_m \cdot \in t) {
    • if (A == ...S'')
       • if (a == "#") exit( "acceptare");
       else exit ("eroare");
    • else // reducere
       • for( i = 1; i <= m; i++) STIVA.pop();
          o STIVA.push(g(top(STIVA), A));
    } //endif
 else exit("eroare");
 • }//endelse
 }//endwhile
```

### Exemplu

• S'  $\rightarrow$  S S  $\rightarrow$  E\$ E  $\rightarrow$  E+TT  $\rightarrow$ (E) E  $\rightarrow$  TT  $\rightarrow$  a 1  $S' \rightarrow \bullet S$  $S' \rightarrow S \bullet$  $E \rightarrow T \bullet$  $S \rightarrow \bullet E\$$ S  $E \rightarrow \bullet E + T$  $E \rightarrow \bullet T$ 2  $T \rightarrow \bullet(E)$  $S \rightarrow E \bullet \$$  $T \rightarrow (\bullet E)$  $T \rightarrow \bullet a$  $\mathsf{E} \to \mathsf{E} {\bullet} {+} \mathsf{T}$  $E \rightarrow \bullet E + T$  $E \rightarrow \bullet T$  $T \rightarrow \bullet(E)$  $T \rightarrow \bullet a$ \$ а 5 а  $T \rightarrow a \bullet$  $S \to E\$ \bullet$ Е 8  $T \rightarrow (E_{\bullet})$  $E \rightarrow E \bullet + T$  $\mathsf{E} \to \mathsf{E}\text{+}{}_{\bullet}\mathsf{T}$ 9  $T \rightarrow \bullet(E)$  $E \rightarrow E + T \bullet$  $T \rightarrow \bullet a$ 10  $T \rightarrow (E) \bullet$ 

# Exemplu

• S'  $\rightarrow$  S S  $\rightarrow$  E\$ E  $\rightarrow$  E+TT  $\rightarrow$ (E) E  $\rightarrow$  TT  $\rightarrow$  a

| Stiva     | Intrare    | Acţiune   | <b>Ie</b> şire        |
|-----------|------------|-----------|-----------------------|
| 0         | a+(a+a)\$# | deplasare |                       |
| 05        | +(a+a)\$#  | reducere  | $T \rightarrow a$     |
| 03        | +(a+a)\$#  | reducere  | $E \rightarrow T$     |
| 02        | +(a+a)\$#  | deplasare |                       |
| 027       | (a+a)\$#   | deplasare |                       |
| 0274      | a+a)\$#    | deplasare |                       |
| 02745     | +a)\$#     | reducere  | $T \rightarrow a$     |
| 02743     | +a)\$#     | reducere  | $E \rightarrow T$     |
| 02748     | +a)\$#     | deplasare |                       |
| 027487    | a)\$#      | deplasare |                       |
| 0274875   | )\$#       | reducere  | $T \rightarrow a$     |
| 0274879   | )\$#       | reducere  | $E \rightarrow E + T$ |
| 02748     | )\$#       | deplasare |                       |
| 02748'10' | \$#        | reducere  | $T \rightarrow (E)$   |
| 0279      | \$#        | reducere  | $E \rightarrow E+T$   |
| 02        | \$#        | deplasare |                       |
| 026       | #          | reducere  | $S \rightarrow E\$$   |
| 01        | #          | acceptare |                       |

# Corectitudinea parserului LR(0)

• Lema 1, 2 Fie G = (N, T, S, P) o gramatică LR(0),  $t_0\sigma$ ,  $t_0\tau$  drumuri în automatul LR(0) etichetate cu  $\varphi$  respectiv  $\gamma$  și u,  $v \in T^*$ . Atunci, dacă în parserul LR(0) are loc  $(t_0\sigma, uv\#, \varepsilon) \vdash^+(t_0\tau, v\#, \pi)$ , atunci în G are loc derivarea  $\varphi_{dr} \Rightarrow_{\pi} u$  și reciproc.

# Corectitudinea parserului LR(0)

• **Teoremă** Dacă G este gramatică LR(0) atunci, oricare ar fi cuvântul de intrare  $w \in T^*$ , parserul LR(0) ajunge la configurația de acceptare pentru w, adică  $(t_0\sigma, uv\#, \varepsilon) \vdash^+(t_0\tau, v\#, \pi)$  dacă și numai dacă  $\phi_{dr} \Rightarrow_{\pi} u$ 

# Mulțimile FIRST și FOLLOW

• FIRST( $\alpha$ ) = {a|a  $\in$  T,  $\alpha_{st} \Rightarrow *$  au }  $\cup$  if ( $\alpha_{st} \Rightarrow *$   $\epsilon$ ) then { $\epsilon$ } else  $\emptyset$ .

• FOLLOW(A) = {a|a ∈ T ∪ { $\varepsilon$ }, S  $_{st}$  ⇒\* uA $\gamma$ , a ∈ FIRST ( $\gamma$ ) }

### **Determinare FIRST**

```
• 1.for (X \in \Sigma)
    • 2.if(X \in T)FIRST(X)={X} else FIRST(X)=\emptyset;
  3.for (A\rightarrowa\beta \in P)
    • 4.FIRST(A)=FIRST(A)∪{a};
  5.FLAG=true;
  6.while(FLAG){
    • 7.FLAG=false;
    • 8.for (A \rightarrow X<sub>1</sub>X<sub>2</sub>...X<sub>n</sub> \in P) {
        • 9.i=1;
        • 10.if((FIRST(X1) ⊈ FIRST(A)){
           • 11.FIRST(A)=FIRST(A) U(FIRST(X1)-\{\epsilon\});
           • 12.FLAG=true;
       • 13.}//endif
        • 14.while (i<n && X_{i,st} \Rightarrow * \varepsilon)
           • 15.if((FIRST(X<sub>i+1</sub>) ⊈ FIRST(A)){
               o 16.FIRST (A) = FIRST (A) U FIRST (X_{i+1});
               0 17.FLAG=true; i++;
           }//endif
        • }//endwhile
    • }//endfor
   }//endwhile
   for (A \in N)
```

• if  $(A_{st} \Rightarrow * \varepsilon)$  FIRST  $(A) = FIRST(A) \cup {\varepsilon}$ ;

32

### Determinare FIRST

```
Intrare: Gramatica G=(N,T,S,P).
                  Mulţimile FIRST(X),X \in \Sigma.
                  \alpha = X_1 X_2 ... X_n, X_i \in \Sigma, 1 \le i \le n.
   Ieşire: FIRST (\alpha).
• 1.FIRST (\alpha) =FIRST (X_1) -{\varepsilon}; i=1;
• 2.while (i<n && X_i \Rightarrow^+ \varepsilon) {
    • 3.FIRST(\alpha) =FIRST(\alpha) \cup (FIRST(X_{i+1}) -{\epsilon});
    • 4.i=i+1;
• }//endwhile
• 5.if (i==n && X_n \Rightarrow^+ \varepsilon)
    • 6.FIRST (\alpha) =FIRST (\alpha) U {\epsilon};
```

### Exemplu

- Fie gramatica:
- $S \rightarrow E \mid B, E \rightarrow \varepsilon, B \rightarrow a \mid begin SC end, C \rightarrow \varepsilon \mid ; SC$
- FIRST(S) =  $\{a, begin, \epsilon\}$  FIRST(E) =  $\{\epsilon\}$
- FIRST(B) =  $\{a, begin\}\ FIRST(C) = \{;, \epsilon\}.$
- FIRST(SEC) =  $\{a, begin, ;, \epsilon\},\$
- FIRST(SB)=  $\{a, begin\},\$
- $FIRST(;SC) = \{;\}.$

### Determinarea FOLLOW

- $\varepsilon \in FOLLOW(S)$ .
- Dacă  $A \rightarrow \alpha B\beta X\gamma \in P$  și  $\beta \Rightarrow^+ \epsilon$ , atunci FIRST(X) -{ $\epsilon$ }  $\subseteq$  FOLLOW (B).
  - $S \Rightarrow^* \alpha_1 A \beta_1 \Rightarrow \alpha_1 \alpha B \beta X \gamma \beta_1 \Rightarrow^* \alpha_1 \alpha B X \gamma \beta_1$  și atunci rezultă FIRST(X)- $\{\epsilon\} \subseteq FOLLOW(B)$ .
- Dacă  $A \rightarrow \alpha B\beta \in P$  atunci  $FIRST(\beta)$ - $\{\epsilon\} \subseteq FOLLOW$  (B).
- Dacă  $A \rightarrow \alpha B\beta \in P$  și  $\beta \Rightarrow^+ \epsilon$ , atunci FOLLOW(A)  $\subseteq$  FOLLOW(B).

### Determinarea FOLLOW

```
• 1. for (A \in \Sigma) FOLLOW (A) = \emptyset;
• 2.FOLLOW(S) = \{\varepsilon\};
• 3.for (A \rightarrow X_1X_2...X_n) {
• 4.i=1;
   • 5.while(i<n){
     • 6.while (X_i \notin N) + +i;
     • 7.if(i<n){
        • 8.FOLLOW(Xi) = FOLLOW(X_i) \cup
                               (FIRST (X_{i+1}X_{i+2}...X_n) - \{\epsilon\});
        • 9.++i;
     }//endif
   }//endwhile
}//endfor
```

### Determinarea FOLLOW

```
• 10.FLAG=true;
• 11.while (FLAG) {
   • 12.FLAG=false;
   • 13. for (A \rightarrow X_1X_2...X_n) {
     • 14.i=n;
     • 15.while(i>0 && X_i \in N) {
        • 16.if (FOLLOW(A) ⊄ FOLLOW(X;)){
           o 17. FOLLOW(Xi) = FOLLOW(X_i) U FOLLOW(A);
           o 18.FLAG=true;
        • 19.}//endif
        • 20.if (X_i \Rightarrow^+ \varepsilon) --i;
        • 21.else continue;
     • 22.}//endwhile
   • 23.}//endfor
• 24.}//endwhile
```

### Exemplu

- Fie gramatica:
- FOLLOW(S)=FOLLOW(E)=FOLLOW(B) =  $\{\varepsilon, ;, end\}$
- $FOLLOW(C) = \{end\}.$

### Bibliografie

- A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools, Second Edition. Addison-Wesley, 2007
- G. Grigoraș, *Construcția compilatoarelor. Algoritmi fundamentali*, Editura Universității "Alexandru Ioan Cuza", Iași, 2005