UFLA – Universidade Federal de Lavras Departamento de Ciência da Computação COM162 – Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos

Segunda Lista de Exercícios – 2004/2

.....

Exercício 1

a. Mostre que a linguagem $A = \{a \ b^n c^n \mid n \ge 0\}$ não é regular.

RESPOSTA = Por contradição, suponha que A é regular. Escolha $s=ab^pc^p$, onde p é de acordo com o lema da iteração.

Como s \in A e $|s| \ge p$, podemos escrever s = xyz, onde para cada $i \ge 0$, $xy^iz \in A$. Consideraremos os seguintes casos:

- 1 y consiste apenas de um tipo de símbolo (ou a, ou b, ou c). Neste caso, xyyz tem mais deste tipo de símbolo do que dos demais. Logo xyyz NÃO pertence a A.
- 2 y contém a. Neste caso, xyyz tem mais de um símbolo a. Logo, xyyz NÃO pertence a A.
- 3 y consiste de b's e c's. Neste caso, xyyz pode até ter o mesmo número de b's e c's, mas estarão fora de ordem. Logo, xyyz NÃO pertence a A.

Contradição. Logo, A não é regular.

b. Mostre que a linguagem $B = \{a^i b^j c^k \mid i,j,k \ge 0 \text{ e se } i=1 \text{ então } j=k\}$ não é regular.

RESPOSTA = Por contradição, suponha que B é regular. Neste caso, não vamos utilizar o lema da iteração e sim o fato de que a classe de linguagens regulares é fechada sob interseção.

Se B é regular, então B \cap {ab c } = {ab c , n \geq 0}, já que as linguagens regulares s ão fechadas sob interseção, e ab c é regular. Como A = {ab c , n \geq 0} não é regular, contradição.

c. Mostre que a linguagem B satisfaz as três condições do lema da iteração.

RESPOSTA = Vamos mostrar que B satisfaz as 3 condições do lema da iteração. Para isso, tome para todo s \in B, $|\mathbf{s}| \ge \mathbf{p}$ e $\mathbf{p} = 3$. Vamos dividir $\mathbf{s} = \mathbf{x}\mathbf{y}\mathbf{z}$ tal que $\mathbf{s} \in \{a^ib^jc^k \mid i,j,k \ge 0 \text{ } e \text{ } se \text{ } i = 1 \text{ } então \text{ } j = k\}$:

 $1 - se \ i > 0$. Nesse caso, vamos considerar que se i é par, $x = \epsilon$, y = aa e z é o restante de s; se i é ímpar, $x = \epsilon$, y = a e z é o restante de s.

2 - se i = 0 e j > 0. Nesse caso, $x = \varepsilon$, y = b, e a é o restante de s.

3 - se i = 0, j = 0 e k > 0. Neste caso, $x = \varepsilon$, y = c e z é o restante de s.

Logo, $xy^iz \in B$ ($i \ge 0$). CONDIÇÃO 1 é satisfeita.

Como |y| > 0 em quaisquer casos, CONDIÇÃO 2 é satisfeita.

Como p = 3, $|xy| \le p = 3$. CONDIÇÃO 3 é satisfeita.

Logo, B satisfaz as TRÊS condições do lema da iteração.

d. Explique porque isso não c ontradiz o lema da iteração.

RESPOSTA = Isso se deve ao fato do lema da iteração ser do tipo *se...então*. Logo, podemos dizer apenas que se uma linguagem é regular, então são satisfeitas as condições do lema, e não que se são satisfeitas as mesmas, a linguagem é regular.

.....

Exercício 2 Descreva gramáticas Livres de Contexto que geram as seguintes linguagens, todas sobre o alfabeto $\{0, 1\}$.

a. $\{w \mid w \text{ contém pelo menos três 0s}\}$

$$RESPOSTA = G = (\{S,A\},\{0,1\},R,S), onde: \\ \bullet \quad R: S \rightarrow A0A0A0A \\ A \rightarrow A0 \mid A1 \mid \epsilon$$

b. $\{w \mid |w| \text{ \'e impar e o s\'embolo do meio \'e o 1}\}$

RESPOSTA =
$$G = (\{S, A\}, \{0, 1\}, R, S), \text{ onde:}$$

• $R: S \to ASA$
 $A \to 0 \mid 1$

c.
$$\{0^{r}1^{s}0^{t} \mid r, s, t \ge 0 \text{ e } s = r+t\}$$

RESPOSTA =
$$G = (\{S, A, B\}, \{0, 1\}, R, S), \text{ onde:}$$

$$\bullet \quad R: S \rightarrow AB$$

$$A \rightarrow 0A1 \mid \epsilon$$

$$B \rightarrow 1B0 \mid \epsilon$$

Obs)
$$0^{r}1^{s}0^{t} = 0^{r}1^{r+t}0^{t} = 0^{r}1^{r}1^{t}0^{t}$$

d. $\{w \mid w = w^{R}, \text{ isto \'e}, w \'e \text{ um palíndromo}\}\}$

RESPOSTA =
$$G = (\{S\}, \{0, 1\}, R, S), \text{ onde:} \\ \bullet \quad R: S -> 0S0 \mid 1S1 \mid 0 \mid 1 \mid \epsilon$$

e. $\{w \mid \text{o número de 0s em } w \text{ \'e o dobro do número de 1s}\}$

$$RESPOSTA = G = (\{S\}, \{0, 1\}, R, S), onde: \\ \bullet \quad R: S -> 1S0S0 \mid 0S1S0 \mid 0S0S1 \mid \epsilon$$

.....

Exercício 3 Represente autômatos com pilha para as linguagens do Exercício 2 através de diagramas de estados.

RESPOSTA =

Exercício 4 [2.2 Sipser]

a. Use as linguagens $A = \{a^m b^n c^n \mid m, n \ge 0\}$, $B = \{a^n b^m c^n \mid m, n \ge 0\}$ e $C = \{a^n b^n c^n \mid n \ge 0\}$ para mostrar que a classe de linguagens livre de contexto não é fechada sob intersecção. (Você pode usar sem prova que C não é livre de contexto).

RESPOSTA = Dadas as linguagens A, B e C. Vamos mostrar que a classe de linguagens livre de contexto não é fechada sob interseção, usando o fato de que C não é livre de contexto.

Primeiramente, vamos mostrar que as linguagens A e B são livres de contexto.

1 – Queremos construir uma gramática que gera A:

$$\begin{split} G_A &= (\{S_A,\,S_1,\,S_2\},\,\{a,\,b,\,c\},\,R_A,\,S_A),\,\text{onde:} \\ \bullet \quad R_A &:\,S_A -> S_1S_2 \\ S_1 -> aS_1 \mid \epsilon \\ S_2 -> bS_2c \mid \epsilon \end{split}$$

Como G_A gera A e G_A é livre de contexto, então A é livre de contexto.

2 – Queremos construir uma gramática que gera B:

$$\begin{split} G_A = (\{S_B, \, B\}, \, \{a, \, b, \, c\}, \, R_B, \, S_B), \, \text{onde:} \\ \bullet \quad R_B \colon S_B \to a S_B c \mid B \\ \quad B \to B b \mid \epsilon \end{split}$$

Como G_B gera B e G_B é livre de contexto, então B é livre de contexto.

3 – Agora, vamos verificar A \cap B:

Como C não é livre de contexto, $A \cap B$ não é livre de contexto. Portanto, a classe de linguagens livre de contexto não é fechada sob interseção.

b. A Lei de Morgan diz que para quaisquer dois conjuntos vale que o complemento da união é a intersecção dos complementos. Use esse fato para mostrar que a classe das linguagens livres de contexto não é fechada sob complementação.

RESPOSTA = Tome linguagens livre de contexto A e B. Pela lei de Morgan, $A \cup B = A \cap B$. Como será mostrado no exercícios 5 desta lista, a classe de linguagens livre de contexto é fechada sob união. Logo, A \cup B é livre de contexto. No entanto, ao tomarmos o complemento dessa união, ó obtida uma interseção dos complementos de cada linguagem. Mas como foi mostrado no item a deste exercício, a classe de linguagens livre de contexto não é fechada sob interseção. Logo:

 $\overline{A} \cap \overline{B}$ pode não ser livre de contexto.

.....

Exercício 5 [2.15 Sipser] Mostre que a classe de linguagens livres de contexto é fechada sob as operações de união, concatenação e estrela.

RESPOSTA = Seja A uma linguagem livre de contexto. Portanto, existe uma gramática livre de contexto $G_A = (V_A, \Sigma, R_A, S_A)$ que gera A.

Seja B uma linguagem livre de contexto. Portanto, existe uma gramática livre de contexto $G_B = (V_B, \Sigma, R_B, S_B)$ que gera B.

Tome $V_A \cup V_B = \emptyset$.

Queremos mostrar que a classe de linguagens livre de contexto é fechada sob as operações de união, interseção e estrela. Para tal, vamos usar A e B:

1 – Seja uma linguagem C tal que C = A \cup B. Vamos construir uma gramática G_C que gera C:

 $G_C = (V_C, \Sigma, R_C, S_C)$, onde:

- $\bullet \quad V_C = V_A \cup V_B \cup \{S_C\}$
- $R_C: R_A \cup R_B \cup \{S_C \rightarrow S_A \mid S_B\}$
- $S_C \rightarrow S_A | S_B$

Logo, como $C = A \cup B$, G_C gera C e G_C é livre de contexto, então $A \cup B$ é livre de contexto.

2 – Seja uma linguagem D tal que D = A • B. Vamos construir uma gramática G_D que gera D:

 $G_D = (V_D, \Sigma, R_D, S_D)$, onde:

- $\bullet V_D = V_A \cup V_B \cup \{S_D\}$
- $R_D: R_A \cup R_B \cup \{S_D \rightarrow S_A S_B\}$
- $S_D \rightarrow S_A S_B$

Logo, como $D = A \cdot B$, G_D gera $D \in G_D$ é livre de contexto, então $A \cdot B$ é livre de contexto.

3 – Seja uma linguagem E tal que $E = A^*$. Vamos construir uma gramática G_E que gera E:

 $G_E = (V_E, \Sigma, R_E, S_E)$, onde:

- $\bullet V_E = V_A \cup \{S_E\}$
- $R_E: R_A \cup \{S_E \rightarrow S_A S_E \mid \epsilon\}$
- $S_E \rightarrow S_A S_E | \epsilon$

Logo, como $E = A^*$, G_E gera E e G_E é livre de contexto, então A^* é livre de contexto.

.....

Exercício 6(!) Mostre que se G é uma gramática livre de contexto na Forma Normal de Chomsky, então qualquer derivação de uma palavra $w \in L(G)$ de comprimento $n \ge 1$ utiliza exatamente 2n-1 passos.

RESPOSTA = Seja G uma gramática livre de contexto na forma normal de Chomsky. Queremos provar que qualquer derivação de uma palavra $w \in L(G)$ de comprimento $n \ge 1$ utiliza exatamente 2n - 1 passos.

Como cada variável gera uma única derivação, então o número de derivações é o número de variáveis que surgem nas derivações.

Como G está na forma normal de Chomsky, as variáveis só podem surgir a partir de regras do tipo $A \rightarrow BC$, pois $S \rightarrow \epsilon$ e $A \rightarrow a$ não geram variáveis.

Se cada variável gera duas, temos uma estrutura semelhante a uma árvore binária. As folhas dessa árvore binária de variáveis geram terminais pela regra A -> a. Logo, o número de folhas dessa árvore binária de variáveis é o número de terminais, que é o comprimento n de w.

Em analogia à teoria dos grafos, temos que, por teorema, o número de nós de uma árvore binária está relacionado com seu número de nós folhas por:

 n° de nós = 2n - 1, onde n é o número de nós-folha

A estrutura de derivação A -> BC descreve uma árvore binária.

Como o número de passos de derivação é igual ao número de variáveis que surgem durante a derivação, isso é igual ao número de nós da árvore binária de variáveis.

Como o comprimento de w é igual ao número de literais da palavra, que são gerados pela regra A - > a, então esse número é igual ao número de nós-folhas da árvore binária de variáveis.

Assim:

 $n = n^{\circ}$ de nós-folha da árvore binária de variáveis = |w|

Logo:

 n° de passos de derivação = n° de nós da árvore binária de variáveis = 2n - 1

Exercício 7(!) [5.1.8 Hopcroft] Considere a gramática livre de contexto G definida pelas produções: $S \rightarrow 0S1S \mid 1S0S \mid \epsilon$. Prove que G gera apenas palavras com mesmo número de 0s e 1s e que todo palavra assim é gerado por G.

RESPOSTA = Seja G uma gramática livre de contexto definida pelas produções $S \rightarrow 0S1S \mid 1S0S \mid \epsilon$.

Queremos provar que G gera apenas pelavras com mesmo número de 0's e 1's e que toda palavra assim é gerada por G. Para isso, vamos dividir a prova em DUAS partes (prova tipo *se e somente se...*):

1 – G gera apenas palavras com mesmo número de 0's e 1's.

Podemos provar este fato com o argumento de que a cada derivação de S em G, a ocorrência de um 0 implica na ocorrência de um 1 e voce-versa. Logo, toda palavra derivada de S tem o mesmo número de 0's e 1's.

2 – Toda palavra que contém o mesmo número de 0's e 1's é gerada por G.

Seja P a propriedade de uma palavra ter o mesmo número de 0's e 1's.

Tome $w=w_1w_2...w_n$. Sem perda de generalidade, vamos supor que w começa com 0. Então, deve existir uma posição i ocupada por um caracter em w tal que $w_i=1$ e w=0x1y, onde x e y têm a propriedade P.

CASO BASE: $n = 1 \Rightarrow w = \varepsilon$ (é gerada por G. Logo, OK)

HIPÓTESE DE INDUÇÃO: para todo w, |w| < n, G gera w

<u>PASSO DA INDUÇÃO:</u> Como w=0x1y, x e y têm a propriedade P e |x|, |y|< n, pela hipótese de indução, G gera x e y.

Logo	, x e y são deriv	dos de S e w p	ode ser derivad	a de OS1S.		
						ı