Supplementary Information: Title

Joseph Heindel^{1,2}, Teresa Head-Gordon^{1,2,3} 2 ¹Kenneth S. Pitzer Theory Center and Department of Chemistry ²Chemical Sciences Division, Lawrence Berkeley National Laboratory ³Departments of Bioengineering and Chemical and Biomolecular Engineering University of California, Berkeley, CA, USA corresponding author: thg@berkeley.edu

1

8

Supplementary Figure 1: Projected dipole moment of water dimer O-H stretch The dipole moment of $(H_2O)_2$ is computed with $\omega B97X-V/def2-QZVPPD$ as a function of the O-H stretch distance. All other degrees of freedom are fixed. The dipole moment is projected along the O-H stretch unit vector. The second order polynomial fit allows us to read off the corresponding dipole derivatives needed in the evaluation of the field-dependent morse potential.

Supplementary References