Riemann Surfaces

Winter semester 2017/2018 Dr. A. Haydys

3rd exercise sheet

Exercise 1 (1P). Denote $H := \{z \in \mathbb{C} \mid \operatorname{Re} z > 0\}$ and $D^* := \{z \in \mathbb{C} \mid 0 < |z| < 1\}$. Show that

$$\exp: H \to D^*, \exp(z) = e^z$$

is the universal covering of D^* .

Exercise 2 (2P).

- (i) Show that any holomorphic differential η on a Riemann surface is closed, i.e., $d\eta = 0$.
- (ii) Show that any holomorphic differential on S^2 vanishes. Hint: Take a holomorphic differential on $\mathbb C$ and analyse its behavior under coordinate change.

Exercise 3 (3P). Define $\omega \in \Omega^1(\mathbb{R}^2 \setminus \{0\})$ as follows: $\omega = \frac{x \, dy - y \, dx}{x^2 + y^2}$. Show that the following holds:

- 1. ω is closed.
- 2. ω is not exact, i.e. there is no smooth function $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ such that $\omega = df$.
- 3. For any closed $\eta \in \Omega^1(\mathbb{R}^2 \setminus \{0\})$ there is a unique number $a \in \mathbb{R}$ such that $\eta a\omega$ is exact.

Exercise 4 (4P). Let z=x+iy be a local holomorphic coordinate on a Riemann Surface Σ . A real-valued function f on Σ is called harmonic, if $\Delta f := \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$.

- 1. Show that the notion of harmonicity is coordinate-independent.
- 2. Let ω be a real 1-form on Σ . In coordinates (x,y) write $\omega = a\,dx + b\,dy$ and define $*\omega := -b\,dx + a\,dy$. Show that $*\omega$ does not depend on the choice of the holomorphic coordinate z.
- 3. We say that ω is harmonic, if locally $\omega = df$ for some harmonic function f (f does not need to exist globally on Σ). Show that ω is harmonic if and only if $d\omega = 0$ and $d(*\omega) = 0$. Check that the form ω defined in Exercise 3 is harmonic (but not exact).

Return: Friday, 2018/11/30, at 2 pm before the lecture.