International Rectifier

HEXFET® Power MOSFET

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

Fifth Generation HEXFET® power MOSFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

IRFZ24N

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	17	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	12	A
I _{DM}	Pulsed Drain Current ①	68	
P _D @T _C = 25°C	Power Dissipation	45	W
	Linear Derating Factor	0.30	W/°C
V_{GS}	Gate-to-Source Voltage	±20	V
E _{AS}	Single Pulse Avalanche Energy ②	71	mJ
I _{AR}	Avalanche Current①	10	A
E _{AR}	Repetitive Avalanche Energy①	4.5	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case			3.3	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface		0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient			62	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions		
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$		
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.052		V/°C	Reference to 25°C, I _D = 1mA		
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.07	Ω	V _{GS} = 10V, I _D = 10A ④		
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$		
9 _{fs}	Forward Transconductance	4.5			S	$V_{DS} = 25V, I_{D} = 10A$		
1	Drain to Course Leekage Current			25	μA	$V_{DS} = 55V, V_{GS} = 0V$		
I _{DSS}	Drain-to-Source Leakage Current			250	μΑ	V _{DS} = 44V, V _{GS} = 0V, T _J = 150°C		
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V		
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -20V		
Qg	Total Gate Charge			20		I _D = 10A		
Q _{gs}	Gate-to-Source Charge			5.3	nC	$V_{DS} = 44V$		
Q _{gd}	Gate-to-Drain ("Miller") Charge			7.6		V _{GS} = 10V, See Fig. 6 and 13 ④		
t _{d(on)}	Turn-On Delay Time		4.9			V _{DD} = 28V		
t _r	Rise Time		34			$I_D = 10A$		
t _{d(off)}	Turn-Off Delay Time		19		ns	$R_G = 24\Omega$		
t _f	Fall Time		27			$R_D = 2.6\Omega$, See Fig. 10 $ ext{ } e$		
L _D	Internal Drain Inductance		- 4.5		Between lead,			
					nH	6mm (0.25in.)		
	Internal Source Inductance —	7.5			111	from package		
L _S			7.5			and center of die contact		
C _{iss}	Input Capacitance		370			V _{GS} = 0V		
C _{oss}	Output Capacitance		140		pF	$V_{DS} = 25V$		
C _{rss}	Reverse Transfer Capacitance		65			f = 1.0MHz, See Fig. 5		

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions			
Is	Continuous Source Current			17		MOSFET symbol			
	(Body Diode)			17	Α	showing the			
I _{SM}	Pulsed Source Current			68	, ,	integral reverse			
	(Body Diode) ①				- 00	- 00	00		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 10$ A, $V_{GS} = 0$ V ④			
t _{rr}	Reverse Recovery Time		56	83	ns	$T_J = 25$ °C, $I_F = 10$ A			
Q _{rr}	Reverse RecoveryCharge		120	180	nC	di/dt = 100A/µs ④			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} @V_{DD}=25V, \ starting \ T_J=25^{\circ}C, \ L=1.0mH\\ R_G=25\Omega, \ I_{AS}=10A. \ (See \ Figure \ 12) \\ \end{tabular}$
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

International

TOR Rectifier

IRFZ24N

Fig 1. Typical Output Characteristics, $T_J = 25^{\circ}C$

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics, $T_J = 175^{\circ}C$

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International

TOR Rectifier

IRFZ24N

 $V_{DS} \longrightarrow V_{DS}$ $V_{GS} \longrightarrow D.U.T.$ $R_{G} \longrightarrow D.U.T.$ $V_{DD} \longrightarrow V_{DD}$ $V_{DS} \longrightarrow D.U.T.$ $V_{DD} \longrightarrow V_{DD}$ $V_{DS} \longrightarrow D.U.T.$ $V_{DD} \longrightarrow V_{DD}$ $V_{DS} \longrightarrow V_{DS}$ $V_{DS} \longrightarrow V_$

Fig 10a. Switching Time Test Circuit

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 14. For N-Channel HEXFET® power MOSFETs

IRFZ24N International Rectifier

Package Outline

TO-220AB

Dimensions are shown in millimeters (inches)

NOTES:

- 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 2 CONTROLLING DIMENSION : INCH
- 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220-AB.
 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

Part Marking Information TO-220AB

EXAMPLE: THIS IS AN IRF1010

WITH ASSEMBLY LOT CODE 9B1M

International **Example Rectifier**

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 9/99

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.