Matroid

Zhiwei Zhang

January 24, 2019

1 Matriod

Matriod M = (S, l) is an ordered pair such that:

- 1. S is non-empty and finite
- 2. $l \subseteq 2^S$ (*l* is a set containing subsets of *S*), and $\emptyset \in l$
- 3. **Downward Closure**: If $B \in l$, $A \in B$, then $A \in l$. Call B or any its subset an "independent set".
- 4. **Augmentation**: If $A \in l, B \in l$, and |A| < |B|, then $\exists x \in (B \setminus A)$ such that $A \cup x \in l$

2 Matriod in Graph

For an undirected graph G = (V, E), define Matroid $M_G = (S_G, l_G)$ as the following:

- 1. $S_G = E$, or the edge set of the graph
- 2. If A is a subset of E, $A \in l_C$ if and only if A doesn't contain circles. Or equivalently, a collection of edges A is an independent iff G(V, A) creates a **forest**.

Now we prove M_G satisfies all conditions of a matroid:

- 1. S_G is obviously non-empty and finite
- 2. **Downward Closure**: It's trivial that removing edges from a forest will also create a forest
- 3. Augmentation: It's easy to prove that a forest with k edges have |V| k trees (counting any isolated vertex also as a tree). Next, if G(V, A), G(V, B) are two forests of G, and |A| < |B|. Then G(V, A) has |V| |A| trees, more than the trees in G(V, B) which is |V| |B|. Since G(V, B) has less trees, there must be an edge $e \in B \setminus A$ that connects 2 trees (can also be vertices) of A. Since adding an edge between two trees will not create cycles, $A \cup \{e\} \in l_G$.

Definition 1. If there exists an element x not in an independent set A, and $A \cup x \in l$, we call A an **extendable** independent subset, and x an **extension** to A.

Definition 2. If A doesn't have an extension, we call A a **maximal** independent subset.

Notice that because of the augmentation property, we can derive the following theorem:

Theorem A. Il maximal independet subsets have the same size.

The proof is trivial: or else the larger independent subsets can give extension elements to smaller independet subsets.

3 Weighted Matroid

A matroid M(S, l) is weighted if it's associated with a weight function $w(\cdot): S \to \mathbb{R}^+$. The independent subset with the maximum weight is called the **optimal** independent subset of the matroid.

Since all the weights are positive, the *optimal* independent subset is also a *maximal* independent subset.

3.1 Matroid Greedy Algorithm

Greedy(M, w):

- 1. $A = \emptyset$
- 2. sort M.S into monotonically decreasing order by weight w
- 3. for each $x \in M.S$, taken in monotonically decreasing order by weight w(x)
- 4. if $A \cup \{x\} \in M.\mathcal{I}$
- $5. A = A \cup \{x\}$
- 6. return A.

Weighted matroid has the property that Matroids exhibit the greedy-choice property.

Lemma 1. Suppose that M = (S, l) is a weighted matroid with weight function w and that S is sorted into monotonically decreasing order by weight. Let x be the first element of S such that $\{x\}$ is independent, if any such x exists. If x exists, then there exists an optimal subset A of S that contains x.

Proof. If such element doesn't exist, then l obviously just contains the empty set.

If such element x exist, we prove by contradiction, supposing B is the optimal independent subset. Construct independent subset A from $\{x\}$ and keep adding elements from B using augmentation to make them the same size. Therefore A = B - y + x and w(y) < w(x). Therefore A is obviously more weighted than B.

Lemma 2. Let M be any matroid. If x is an element of S that is an extension of some independent subset A of S, then x is also an extension of \emptyset .

Proof. By downward closure or heridity, $\{x\}$ is a subset of A. Therefore $\{x\}$ is a valid independent subset of the matroid.

Lemma 3. Let M be any matroid. If $\{x\}$ is not independent, then x is not and extension to any independent subset.

Proof. Lemma 2's contrapositive.

Now we can prove that:

Lemma 4. The greedy algorithm produces an optimal independent subset.

Proof. Let x be the first element of S chosen by GREEDY for the weighted matroid M = (S, l). The remaining problem of finding a maximum-weight independent subset containing x reduces to finding a maximum-weight independent subset of the weighted matroid M' = (S', l'), where

$$S' = \{ y \in S : \{x, y\} \in l \}$$

$$l' = \{ B \subseteq S - \{x\} : B \cup \{x\} \in l \}$$

and the weight function for M' is the weight function for M, restricted to S'. (We call M' the **contraction** of M by the element x.)

In other words, there's a bijection between optimal independet sets of M containing x and the optimal independent sets of M'.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein *Introduction to Algorithms, Third Edition*. The MIT Press Cambridge, Massachusetts London, England. 2009