TestFilesCreate

Creates test data files in a single directory or a tree of directories. It is a tool for creating data to test data storage using hard drives and tape, it also can be used evaluating storage compression and deduplication capabilities. Comparative timings of compression software can be performed.

TestFilesCreate can set a benchmark for storage products by creating consistent test data to measure storage efficiency of data compression and data deduplication both at rest in storage systems and inflight during network transmission.

Data is created locally when required. It is not necessary to store test data and transmit between test sites for remote testing.

The complexity of test data is selected from a scale of 1-95. A complexity of one has only one printable character repeated, the upper limit is filled with randomized 95 printable characters. The more complex the data is, the more difficult it is to compress.

./TestFilesCreate

FileCreate -P 20 -d 6 -w 7 -s 4K -l 2M -n 26 -o /tmp

DIRECTORY TREE:

Each directory contains 7 directories and 26 files The tree is 6 levels deep

Output: /tmp/tfc_250518-1136-43

File contents individually generated for each file Files created in a size range 4K to 2M Storage used..... 995.72G (max potential)

File Contents..... printable, data complexity of 20 Total data directories.....19607

Total data files......509808

Calculator mode

./TestFilesCreate -C

File size requires units of B, K, M or G, the number must >1 decimals not permitted i.e. 750K 34M 2G and 10B (10 bytes)

Two bytes (2B) file size is the minimum to build a tree One byte is permitted here for information only SINGLE DIRECTORY only, set Depth = 1

Data tree directory depth (-d): 6
Data tree directory width (-w): 7
Files per directory (-n): 26
Size per file (-f or -l): 2M

Total number of directories : Total number of files : 19607 Total file storage usage 995.72G

Top Level directory (tree depth = 1) total file usage 52.00M This directory contains 26 files, each 2.00M Content counts and storage used by this top level is constant and unaffected by subdirectory count (tree width)

Tree Depth		Directory 2	count for 3	each tree 4	5	6
					4	
Width	1 2	1 2	2 6	3		5
Width	_			14	30	62
Width	3	3 4	12	39	120	363
Width			20	84	340	1364
Width	5	5	30	155	780	3905
Width	6	6	42	258	1554	9330
Width	7	7	56	399	2800	19607
		File count	for each	tree		
Tree De	anth	2	3	4	5	6
iree be	-pen					
Width	1	52	78	104	130	156
Width	2 j	78	182	390	806	1638
Width	зİ	104	338	1040	3146	9464
Width	4	130	546	2210	8866	35490
Width	5 İ	156	806	4056	20306	101556
Width	6 İ	182	1118	6734	40430	242606
Width	7	208	1482	10400	72826	509808
		File storage usage for each tree				
Tree Depth		2	3	4	5	6
Width	1 I	104.00M	156.00M	208.00M	260.00M	312.00M
Width	2	156.00M	364.00M	780.00M	1.57G	3.20G
Width	3	208.00M	676.00M	2.03G	6.14G	18.48G
Width	4	260.00M	1.07G	4.32G	17.32G	69.32G
Width	5	312.00M	1.57G	7.92G	39.66G	198.35G
Width	6	364.00M	2.18G	13.15G	78.96G	473.84G
Width	7	416.00M	2.18G 2.89G	20.31G		995.72G
wiath	7	416.00M	2.896	20.31G	142.24G	995.726

Data creation options

Selectable data complexity range of 1-95.

Files are human readable and verifiable.

Individual file contents can be unique.

File size can be random, within a size range.

File size can be fixed, minimum two bytes.

All files can be identical.

Create a single file or millions.

Output to a single directory or a directory tree.

Filling files with random binary is available.

Sparse files are not available.

Limited to creating 100 million directories and 100 million files.

A Benchmark tool for Data Compression and Deduplication

This provides a simple method of comparing data compression or data deduplication capabilities of storage software and appliances while at rest or inflight.

Many applications and devices have purpose-built compression techniques targeting their unique data, like video and audio, but for every-day data that relies upon storage techniques to compress data there appears to be no recognised method or standard to compare the storage reduction techniques. Compression testers have their own unpublished methods and data sets to compare storage and networking products. The method that TestFilesCreate provides is a simple reproducible standard method generating data of varying compressibility.

Benchmarks have been published, the Calgary Corpus, Canterbury Corpus and the Silesia Compression Corpus* were used for benchmarking compression in the 1990s and early 200s. In the mid-2000s data deduplication technology become commercially available and made some test tools obsolete like the *HPCreateData* tool which was not suitable for testing data deduplication.

Test Data and Data Complexity

Data for testing compression and deduplication needs test files that contain data that is a challenge to compress. Test data that is too simple or too complex will not produce meaningful results. TestFilesCreate is able to produce data of selectable complexities of 1 to 95, a spectrum of complexity which sufficient for most testing requirements.

The files are filled with randomized printable characters of the ASCII character set or of random binary data. The test data is generated in a directory tree of user defined dimensions.

	Complexity	File Contents		
Digits only	1	Only zeros '0'		
(D)	2-10	Random digits '0123456789'		
Printable	1	Only uppercase 'A'		
ASCI character set	2-26	Only lowercase Latin alphabet		
(P)	27-95	The Printable ASCII characters set		
	P 10	Randomised selection from abcdefghij		
Examples	P 30	Randomised selection from !"#\$%&'()*+,/0123456789:;<=>		
	D 8	Randomised selection from '12345678'		
	D 1	000000000000000000000000000000000000000		

^{*}Calgary Corpus & Canterbury Corpus: https://corpus.canterbury.ac.nz/index.html

^{*}Silesia Corpus Compression Corpus: https://sun.aei.polsl.pl/~sdeor/index.php?page=silesia

Benchmark examples

PIGZ, ZIP, ZSTD storage savings (%)

Storage Savings variable file size storage savings (%)

PIGZ 🔵

ZIP DEFLATE

ZSTD Default compressions

Backup Application storage savings (%)

Storage Device storage savings (%)

Testing the IP network performance of deduplication.

Some storage appliances and applications offload data deduplicated to the source device resulting substantial network throughput improvement. During transmission only unique data chunks and the deduplication signatures of repeated data chunks are transmitted.

Notes.

Storage savings from compression and deduplication is only one factor, the importance of efficiently and quickly producing these savings are often more import in selecting data reduction techniques.

Storage that uses network enabled deduplication may come with guidelines regarding its use because some network devices use deduplication to improve efficiency across WAN and other networks.

The PIGZ and ZSTD —*rsyncable* option is used in PIGZ and ZSTD to create rsync friendly compressed files. The use of the rsyncable option has been found to be beneficial in some deduplication applications and may significantly influence deduplication test results. The rsyncable option in PIGZ and ZSTD has little impact on compressed file size.

Test data for examples.

PIGZ, ZIP, ZSTD, Backup Applications and Device Storage

Each data point is a minimum of two tests using 99.6 GiB directory trees containing 6,800 15 MiB files in 340 directories. If the two tests agreed no further tests was done.

PIGZ, ZIP, ZSTD Variable File Size

Each data point is three tests using a data complexity of 10 i.e. files were filed with a random sequence of <code>abcdefghij</code> characters.

TestFilesCreate available from https://github.com/Jim-JMCD

TestFilesCreate is a Linux only bash script protected by a *shc* generated executable wrapper.