

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № __8__

Название:	Преобразователи кодов

Дисциплина: Схемотехника

Студент	ИУ6-52Б		С.В. Астахов
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Т.А. Ким
		(Подпись, дата)	(И.О. Фамилия)

Цель работы: изучение принципов построения и методов синтеза преобразователей двоично-десятичных кодов (ДДК); моделирование электрических схем ДДК.

Вариант 14 (значения: 2,3,4,5,6,7,8,9,10,11)

Ход работы.

- 1. Исследование преобразователя ДДК 8421в заданный код (см. табл. 2):
- а) выполнить синтез схемы преобразователя кода. Результаты синтеза представить в базисе И-НЕ;
- б) выполнить синтез схемы двоично-десятичного счетчика на ЈКтриггерах по безвентильной схеме с естественным порядком изменения состояний; скоммутировать схемы счетчика и преобразователя кода; выходные сигналы счетчика использовать в качестве переменных А3, A2, A1, A0;
- в) исследовать схему преобразователя кода в статическом и динамическом режимах. В статическом режиме сигналы выходные сигналы счетчика использовать в качестве переменных А3, А2, А1, А0. В статическом режиме сигналы на вход счетчика подавать от ключа, в динамическом режиме от генератора импульсов. Провести анализ работы преобразователя кода по таблице истинности и временной диаграмме входных и выходных сигналов преобразователя кода.
- 2. Исследование преобразователя заданного ДДК в ДДК 8421:
- а) выполнить синтез схемы преобразователя кода. Результаты синтеза представить в базисе И-НЕ;
- б) скоммутировать схемы 4-разрядного двоичного счетчика и преобразователя кода; выходные сигналы счетчика использовать в качестве переменных B3, B2, B1, B0;
- в) исследовать схему преобразователя кода в статическом и динамическом режимах. В статическом режиме выходные сигналы счетчика использовать в качестве переменных ВЗ, В2, В1, В0. В статическом режиме сигналы на вход счетчика подавать от ключа, в динамическом режиме от генератора импульсов. Провести анализ работы преобразователя кода по таблице истинности и временной диаграмме входных и выходных сигналов преобразователя кода.

Для заданного набора значений составим таблицу кодирования (таблица 1).

Таблица 1 - таблица кодирования

N	Код	A3	A2	A1	A0	В3	B2	B1	В0
0	2	0	0	0	0	0	0	1	0
1	3	0	0	0	1	0	0	1	1
2	4	0	0	1	0	0	1	0	0
3	5	0	0	1	1	0	1	0	1
4	6	0	1	0	0	0	1	1	0
5	7	0	1	0	1	0	1	1	1
6	8	0	1	1	0	1	0	0	0
7	9	0	1	1	1	1	0	0	1
8	10	1	0	0	0	1	0	1	0
9	11	1	0	0	1	1	0	1	1

Минимизируем Φ АЛ определяющие завимости между переменными A и B с помощью карт Карно.

Очевидно, A0 = B0, B0 = A0

Для В1:

A3A2	00	01	11	10
A1A0				
00	1	1	X	1
01	1	1	X	1
11			X	X
10			X	X

B1 = not - A1

Для А1:

B3B2	00	01	11	10
B1B0				
00	X	1	X	1
01	X	1	X	1
11			X	
10			X	

A1 = not-B1

Для В2:

A3A2	00	01	11	10
A1A0				
00		1	X	
01		1	X	
11	1		X	X
10	1		X	X

B2 = (A2 * not-A1) v (not-A2 * A1) = not(not(A2 * not-A1) * not(not-A2 * A1))

Для А2:

B3B2	00	01	11	10
B1B0				
00	X		X	1
01	X		X	1
11		1	X	
10		1	X	

 $\overline{A2 = (B3 * not-B1) \vee (B2 * B1)} = not(not(B3 * not-B1) * not(B2 * B1))$

Для В3:

				
A3A2	00	01	11	10
A1A0				
00	0	0	X	1
01	0	0	X	1
11	0	1	X	X
10	0	1	X	X

B3 = A3 v (not-A3*A2*A1) = not(not-A3* not(not-A3*A2*A1))

Для А3:

B3B2	00	01	11	10
B1B0				
00	X	0	X	0
01	X	0	X	0
11	0	0	X	1
10	0	0	X	1

 $\overline{A3 = B3*B1}$

Далее, на основе полученных ФАЛ смоделируем схему прямого и обратного преобразователей кодов.

Рисунок 1 - Схема прямого и обратного преобразователя кодов

Исследуем работу преобразователей в статическом режиме и составим таблицу переходов состояний (таблица 2).

Таблица 2 - Таблица переходов состояний

N	Исх	одные	значе	ения	Результаты прямого			Результаты обратного				
					преобразования			преобразования				
	A3	A2	A 1	A0	В3	B2	B1	B0	A3	A2	A 1	A0
0	0	0	0	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	1	1	0	0	0	1
2	0	0	1	0	0	1	0	0	0	0	1	0
3	0	0	1	1	0	1	0	1	0	0	1	1
4	0	1	0	0	0	1	1	0	0	1	0	0
5	0	1	0	1	0	1	1	1	0	1	0	1
6	0	1	1	0	1	0	0	0	0	1	1	0
7	0	1	1	1	1	0	0	1	0	1	1	1
8	1	0	0	0	1	0	1	0	1	0	0	0
9	1	0	0	1	1	0	1	1	1	0	0	1

Из полученной таблицы можно заключить, что преобразователи кодов смоделированы корректно.

Преобразуем схему для анализа в динамическом режиме (рисунок 2). Отобразим временные диаграммы (рисунок 3).

Рисунок 2 - Анализ схемы в динамическом режиме

Рисунок 3 - временная диаграмма сигналов

В динамическом режиме схема функционирует аналогично статическому.

Вывод: в ходе данной лабораторной работы были изучены методы синтеза преобразователей двоично-десятичных кодов.