Министерство образования и науки Российской Федерации Московский физико-технический институт (национальный исследовательский университет)

Физтех-школа аэрокосмических технологий Кафедра вычислительной механики Лаборатория моделирования механических систем и процессов

Выпускная квалификационная работа бакалавра

Создание программного комплекса для уточнения орбит космических аппаратов

Автор: Студент группы Б03-106бт Хрипунов Иван Владимирович

Научный руководитель: Кузнецов Александр Алексеевич

Аннотация

Исследование и разработка методов машинного обучения $\it Иванов~\it Иван$ Иванович

Краткое описание задачи и основных результатов, мотивирующее прочитать весь текст.

Abstract

Research and development of machine learning methods

Содержание

1	Вве	едение	5
2	Boc	сстановление орбиты	6
	2.1	Элементы орбиты	6
	2.2	Прогноз траектории космического объекта	7
		2.2.1 Аналитический	8
		2.2.2 Численно-аналитический	10
		2.2.3 Численный	10
	2.3	Типы измерений	10
		2.3.1 Односторонние измерения дальности	10
		2.3.2 Двусторонние измерения дальности	11
		2.3.3 Оптические измерения	11
		2.3.4 Лазерные	11
	2.4	Обработка измерений	11
		2.4.1 Фильтр Калмана	11
		2.4.2 Метод наименьших квадратов	12
		2.4.3 Оптимальная фильтрация измерений	12
	2.5	Проблематика	12
		2.5.1 Оценка быстродействия	12
3	Реп	пение проблемы	13
4	Bep	рификация	14
5	Балидация — — — — — — — — — — — — — — — — — — —		
6	Вы	воды	16

Список обозначений и сокращений

- КО космический объект
- КА космический аппарат
- СК система координат
- \bullet MEE (modified equinotical elements) модифицированные равноденственные элементы
- ОДУ обыкновенное дифференциальное уравнение
- ГНСС глобальные навигационные спутниковые системы
- SLR (satellite laser ranging) система лазерной дальнометрии

1 Введение

Актуальность

Цель

Задачи

Новизна

Практическая значимость

2 Восстановление орбиты

2.1 Элементы орбиты

Вектором состояния X назовем упорядоченную совокупность переменных, полностью определяющих состояние системы в заданный момент времени. В простейшем случае такой набор состоит из положения \vec{r} и скорости \vec{v} материальной точки. Также в этот набор могут входить площадь поверхности и другие параметры космического объекта, оказывающие влияние на его движение.

Однако, в ходе орбитального движения \vec{r} и \vec{v} меняются за виток значительно, что приводит к снижению точности при численном интегрировании. Поэтому зачастую в ходе решения задачи двух тел в небесной механике используют не радиус-вектор и скорость, а элементы орбиты. Самыми распространенными из них являются кеплеровы элементы и модифицированные равнодественные элементы (MEE). В элементах орбиты быстро меняющаяся переменная, описывающая положение КО на орбите, отделена от медленно меняющихся переменных, определяющих ориентацию и форму орбитальной плоскости.

Кеплеровы элементы:

- \bullet наклонение i
- ullet долгота восходящего узла Ω
- аргумент перицентра ω
- \bullet эксцентриситет e
- большая полуось a
- ullet истинная аномалия u

MEE:

- \bullet a=a
- $h = e \sin(\omega + I\Omega)$
- $k = e \cos(\omega + I\Omega)$
- $p = \left[\tan\frac{i}{2}\right]^I \sin(\Omega)$
- $q = \left[\tan\frac{i}{2}\right]^I \cos(\Omega)$
- $\lambda = M + \omega + I\Omega$

Кеплеровы элементы удобны для визуальной интерпретации орбиты (рис. 1). Первые 3 переменные задают ориентацию орбитальной плоскости в инерциальной системе координат, эксцентриситет и большая полуось фиксируют форму и размеры эллипса, а истинная аномалия определяет положение КО на орбите. В качестве последней переменной также могут использоваться эксцентрическая аномалия E и средняя аномалия M. Удобство использования средней аномалии заключается в том, что она меняется со временем равномерно. Недостатком кеплеровых элементов является вырожденность при $i=0, i=\pi$ и e=0. Как следствие, они плохо подходят для интегрирования.

Чтобы избавиться от вырожденности вводится другой набор элементов — модифицированные равноденственные элементы. В МЕЕ величина I может принимать два значения:

$$I = \left\{ \begin{array}{ll} +1, & \text{если } i < \pi/2, \\ -1, & \text{если } i \ge \pi/2 \end{array} \right.$$

Также в МЕЕ применяется эксцентрическая долгота F и истинная долгота L. Они выражаются через кеплеровы элементы следующим образом:

$$F = E + \omega + I\Omega$$

$$L=\nu+\omega+I\Omega$$

Рис. 1: Кеплеровы элементы орбиты. Центр декартовых координат привязан к центру масс Земли. Ось Ox направлена в точку весеннего равноденствия, ось Oz является нормалью к плоскости эклиптики, ось Oy дополняет до правой тройки. \vec{N} лежит на линии пересечения плоскости эклиптики с плоскостью орбиты. \vec{L} — момент импульса КО, направлен по нормали к орбитальной плоскости. \vec{e} равен по модулю эксцентриситету и направлен на перицентр.

2.2 Прогноз траектории космического объекта

Задача прогнозирования движения – по начальному вектору состояния X_0 определить траекторию X(t) объекта. В основе описания динамики космических аппаратов лежит 2 закон Ньютона, поэтому расчет траектории сводится к решению задачи Коши для ОДУ вида:

$$\begin{cases} \dot{X} = f(X, t), \\ X(t = t_0) = X_0 \end{cases}$$

При расчете траектории применяются несколько существенно разных подходов. Первый из них, аналитический, использует основные факторы, определяющие эволюцию орбиты. Характерной особенностью аналитических вычислений является низкая ресурсоемкость и невысокая точность. Таким образом, аналитика обладает высокой качественной предсказательной способностью на коротких временных интервалах, «схватывая» главные тренды изменения орбиты.

Численные методы, напротив, позволяют учесть произвольное число сложных возмущающих факторов. Однако прецизионный численный расчет требует значительно больше вычислений. Это связано как с ресурсоемкостью расчета правой части ОДУ и, соответственно, с выбором шага интегрирования для обеспечения заданной точности.

Компромиссом являются полуаналитические подходы, в которых используется комбинация численных и аналитических расчетов. Полуаналитические модели учитывают широкий спектр возмущающих воздействий, что позволяет эффективно производить вычисления без потери точности.

Далее приведен краткий обзор основных подходов к прогнозу траектории.

2.2.1 Аналитический

Рассмотрим возмущенную задачу двух тел:

$$\ddot{\vec{r}} = -\frac{\mu \vec{r}}{r^3} + \vec{f},\tag{1}$$

где μ – гравитационный параметр Земли, \vec{f} – возмущающее ускорение, которое может быть разложено по орбитальной СК на радиальную, тангенциальную и нормальную компоненты:

$$\vec{f} = R\vec{e_r} + T\vec{e_t} + N\vec{e_n},$$

$$\vec{e_r} = \vec{r}/|r|$$

$$\vec{e_n} = \vec{r} \times \vec{v}/|\vec{r} \times \vec{v}|$$

$$\vec{e_t} = \vec{e_n} \times \vec{e_r}$$

Рис. 2: Орбитальная система

Преобразуем систему ОДУ (1) для перехода к кеплеровым элементам. Если возмущающая сила является потенциальной: $\vec{f} = \nabla R$, то система примет вид:

$$\begin{split} \frac{da}{dt} &= \frac{2}{na} \frac{\partial R}{\partial M} \\ \frac{de}{dt} &= \frac{(1 - e^2)^{1/2}}{na^2 e^2} \left((1 - e^2)^{1/2} \frac{\partial R}{\partial M} - \frac{\partial R}{\partial \omega} \right) \\ \frac{di}{dt} &= \frac{1}{h \sin(i)} \left(\cos(i) \frac{\partial R}{\partial \omega} - \frac{\partial R}{\partial \omega} \right) \\ \frac{d\Omega}{dt} &= \frac{1}{h \sin(i)} \frac{\partial R}{\partial i} \\ \frac{d\omega}{dt} &= -\frac{\cos(i)}{h \sin(i)} \frac{\partial R}{\partial i} + \frac{(1 - e^2)^{1/2}}{na^2 e^2} \frac{\partial R}{\partial e} \\ \frac{dM}{dt} &= n - \frac{1 - e^2}{na^2 e} \frac{\partial R}{\partial e} - \frac{2}{na} \frac{\partial R}{\partial a} \end{split}$$

где $n = \sqrt{\frac{\mu}{a^3}}$ – среднее движение, $h = na^2(1 - e^2)^2$.

Для построения аналитического решения воспользуемся возмущающим потенциалом от второй гармоники:

$$R = -\frac{\mu J_2}{r} \left(\frac{R_{\oplus}}{r}\right)^2 \frac{3}{2} \left(\sin^2(\phi) - \frac{1}{3}\right),\tag{2}$$

где ϕ — широта точки.

Подставив соотношение $sin(\phi) = sin(i)sin(\omega + \nu)$, получим, что R может быть представлена в виде суммы:

$$\begin{split} R &= R_s + R_p \\ R_s &= -\frac{3\mu J_2}{2r} \left(\frac{R_{\oplus}}{r}\right)^2 \left(\frac{\sin^2(i)}{2} - \frac{1}{3}\right) \\ R_p &= \frac{3\mu J_2}{2r} \left(\frac{R_{\oplus}}{r}\right)^2 \frac{\sin^2(i)\cos(2(\omega + \nu))}{2} \end{split}$$

Видно, что первое слагаемое потенциала вызывает постоянное или так называемое вековое возмущение орбиты. Период таких возмущений значительно превышает орбитальный период. Короткопериодические возмущения, порождаемые слагаемым R_p , не приводят к изменениям орбиты на значительном промежутке времени.

Усреднив R_s по периоду, получим:

$$R_{avg} = -\frac{\mu J_2}{2a} \left(\frac{R_{\oplus}}{r}\right)^2 \left(\frac{3}{4}\sin^2(i) - \frac{1}{2}\right) \left(\frac{1}{(1 - e^2)^{3/2}}\right)$$

Подстановка R_{avg} в ОДУ дает вековые возмущения кеплеровых элементов орбиты

$$\begin{split} \dot{a}_{sec} &= 0 \\ \dot{e}_{sec} &= 0 \\ \dot{i}_{sec} &= 0 \\ \dot{\Omega}_{sec} &= -\frac{3nR_{\oplus}^2 J_2}{2p^2} \cos(i) \\ \dot{\omega}_{sec} &= \frac{3nR_{\oplus}^2 J_2}{4p^2} (4 - 5\sin^2(i)) \\ \dot{M}_{0sec} &= -\frac{3nR_{\oplus}^2 J_2 \sqrt{1 - e^2}}{4p^2} (3\sin^2(i) - 2) \end{split}$$

Аналогичным образом могут быть выделены короткопериодические возмущения. В частности:

$$\delta a=\gamma_3 a\left[\left(3z\sin^2(\omega+\nu)-1\right)\left(\frac{a}{r}\right)^3-\frac{3z-2}{2\eta^3}\right],$$
 где $\gamma_3=-J_2\left(\frac{R_\oplus}{a}\right)^2,\ \eta=\sqrt{1-e^2},\ z=\sin^2(i).$

Так как большая полуось, эксцентриситет и наклонение не испытывают вековых возмущений, долгота восходящего узла и аргумент перицентра легко интегрируются аналитически.

$$\Omega(t) = \Omega_0 + \Omega_{sec}(t - t_0)$$

$$\omega(t) = \omega_0 + \omega_{sec}(t - t_0)$$

Для получения выражения для a необходимо провести процедуру усреднения среднего движения

$$a = \bar{a} + \delta a \to \bar{a} = a_0 - \delta a_0$$
$$\bar{n} = \sqrt{\frac{\mu}{\bar{a}^3}}$$

В результате получим:

$$M(t) = M_0 + (\bar{n} + \dot{M}_{0sec})(t - t_0)$$

2.2.2 Численно-аналитический

2.2.3 Численный

Модель вращения Земли

Геопотенциал

Сопротивление атмосферы

Солнечное давление

Альбедо

2.3 Типы измерений

Для уточнения орбиты требуются измерения параметров, связанных с положением и движением КО. Конкретный набор измеряемых параметров зависит от типа используемых наблюдательных средств. Рассмотрим несколько классических наборов измеряемых величин.

2.3.1 Односторонние измерения дальности

Расстояние между спутником и станцией наблюдения является одним из наиболее часто измеряемых параметров. Такая модель измерений получила широкое распространение во многом благодаря глобальным навигационным спутниковым системам. Каждый спутник ГНСС оснащен антенной, которая излучает электромагнитные волны на нескольких частотах. Сигнал каждого спутника модулируется особым образом, чтобы приемник мог определить момент времени T_T излучения волны по шкале времени спутника и соответствующие этому моменту координаты излучателя. Момент приема сигнала T_R фиксируется по часам приемника.

Зная разницу между временем отправки и приема сигнала, а также используя свойство прямолинейности распространения света, можно рассчитать величину, называемую псевдодальностью:

$$\rho = (T_R - T_T)c,$$

где c — скорость света.

Псевдодальность не совпадает с геометрической в силу несогласованности часов излучателя и приемника, особенностей распространения сигнала в атмосфере и относительного движения излучателя и приемника.

Учет этих факторов необходим при формировании расчетного аналога измерения:

$$\tilde{\rho} = |\vec{r}_T - \vec{r}_R| + c \left(\delta t_T - \delta t_R\right) + \delta \rho_{tropo} + \delta \rho_{ion} + \epsilon,$$

где помимо геометрической дальности $|\vec{r}_T - \vec{r}_R|$ присутствуют слагаемые, связанные с поправкой часов спутника δt_T и станции δt_R , тропосферная $\delta \rho_{tropo}$ и ионосферная $\delta \rho_{ion}$ задержки. Благодаря измерениям на нескольких частотах ионосферная задержка может быть с высокой точностью исключена. В ϵ включаются остаточные ошибки, связанные с неучитываемыми нелинейными эффектами.

Для повышения точности позиционирования и уменьшения разброса результатов в ходе решения навигационной задачи могут обрабатываться не только псевдодальности, но и фазовые измерения сигнала. В этом случае точность позиционирования с использованием ГНСС может достигать 10 сантиметров.

2.3.2 Двусторонние измерения дальности

В ходе двустороннего измерения дальности фиксируется время, за которое излученный сигнал достигает цели, отражается и возвращается в точку испускания. Вариантом такой измерительной системы является лазерная дальнометрия (SLR). В отличии от односторонних измерений дальности в лазерной дальнометрии излучатель и приемник находятся в одном месте и подключены к одним часам, что избавляет от необходимости уточнения поправок шкал времени. При этом атмосферные поправки все еще требуются. В качестве измерений усредняется расстояние, пройденное сигналом в прямом и обратном направлениях:

$$\rho_{avg} = \frac{1}{2} \left[\left(T_R - T_T \right) c + \delta \rho_{atm} + \epsilon \right]$$

Современные станции SLR используют лазеры с длиной волны 532 нм, что соответствует оптическому диапазону. С этим связан недостаток лазерной дальнометрии – зависимость от погодных условий.

В качестве примера применения SLR рассмотрим серию аппаратов LAGEOS (LAser GEOdynamics Satellite). Аппараты LAGEOS-I и LAGEOS-II были запущены на среднюю околоземную орбиту в 1976 и 1992 годах соответственно. Цель миссии – изучение геодинамики, в частности, определение формы земной поверхности и уточнение параметров вращения Земли. Каждый аппарат имеет шарообразную форму и оснащен набором уголковых отражателей, необходимых для точного отражения лазерного сигнала.

Позиционирование спутников выполняется на основе измерений наблюдательных пунктов Международной службы лазерной дальнометрии. Ошибки лазерных измерений составляют менее 1 сантиметра, что позволяет восстанавливать орбиту аппаратов с точностью до нескольких сантиметров.

- 2.3.3 Оптические измерения
- 2.3.4 Лазерные
- 2.4 Обработка измерений
- 2.4.1 Фильтр Калмана

Расширенный фильтр Калмана

Сигма-точечный фильтр Калмана

- 2.4.2 Метод наименьших квадратов
- 2.4.3 Оптимальная фильтрация измерений
- 2.5 Проблематика
- 2.5.1 Оценка быстродействия

3 Решение проблемы

4 Верификация

5 Валидация

6 Выводы

Список литературы

- [1] Mott-Smith, H. The theory of collectors in gaseous discharges / H. Mott-Smith, I. Langmuir // Phys. Rev. 1926. Vol. 28.
- [2] *Морз, Р.* Бесстолкновительный РІС-метод / Р. Морз // Вычислительные методы в физике плазмы / Еd. by Б. Олдера, С. Фернбаха, М. Ротенберга. М.: Мир, 1974.
- [3] $\mathit{Kucen\"ee}$, A. A. Численное моделирование захвата ионов бесстолкновительной плазмы электрическим полем поглощающей сферы / A. A. Кисел\"eв, Долгоносов M. C., Красовский B. $\Pi.$ // Девятая ежегодная конференция «Физика плазмы в Солнечной системе». 2014.