Đăng kí http://thichhocchui.xyz/ tại Zalo 0383572270 Thích Học Chui

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

17 bài tập - Góc giữa hai mặt phẳng - File word có lời giải chi tiết

Câu 1. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, $ABC = 60^{\circ}$, tam giác SBC là tam giác đều có cạnh 2a và nằm trong mặt phẳng vuông góc với đáy. Tính tan của góc giữa hai mặt phẳng (SAC) và (ABC).

A.
$$\sqrt{3}$$

B.
$$2\sqrt{3}$$

C.
$$\frac{\sqrt{3}}{6}$$

D.
$$\frac{1}{2}$$

Câu 2. Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Đường thẳng SO vuông góc với mặt phẳng đáy $\left(ABCD\right)$ và $SO = \frac{a\sqrt{3}}{2}$. Tính góc giữa hai mặt phẳng $\left(SBC\right)$ và $\left(ABCD\right)$.

C.
$$60^{\circ}$$

Câu 3. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 2, $BC = 2\sqrt{3}$, cạnh bên $SA = \frac{\sqrt{3}}{2}$ và vuông góc với mặt đáy (ABC). Gọi M là trung điểm AB, tính tan của góc giữa hai mặt phẳng (SMC) và mặt đáy (ABC).

A.
$$\frac{4}{\sqrt{13}}$$

B.
$$\frac{\sqrt{13}}{4}$$

D.
$$\frac{\sqrt{2}}{2}$$

Câu 4. Cho hình lập phương ABCD.A'B'C'D'. Tính cosin của góc giữa hai mặt phẳng (BDA') và (ABCD).

A.
$$\frac{\sqrt{3}}{3}$$

B.
$$\frac{\sqrt{3}}{2}$$

C.
$$\frac{\sqrt{6}}{3}$$

D.
$$\frac{\sqrt{2}}{2}$$

Câu 5. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = AC = a; cạnh bên SA = a và vuông góc với đáy. Tính cosin của góc giữa hai mặt phẳng (SAC) và (SBC).

A.
$$\frac{\sqrt{6}}{3}$$

B.
$$\frac{\sqrt{2}}{2}$$

C.
$$\frac{\sqrt{3}}{3}$$

D.
$$\frac{\sqrt{3}}{2}$$

Câu 6. Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng a. Tính tan của góc giữa hai mặt phẳng (SBD) và (SCD).

Dăng kí http://thichhocchui.xyz/ tại Zalo 0383572270 Thích Học Chui

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A.
$$\sqrt{6}$$

B.
$$\frac{\sqrt{2}}{2}$$

C.
$$\frac{\sqrt{3}}{2}$$

D.
$$\sqrt{2}$$

Câu 7. Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Cạnh bên SA = a và vuông góc với mặt phẳng (ABCD). Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng α . Tính cosin của góc giữa hai mặt phẳng (SBC) và (SCD) biết rằng $\cot \alpha = \sqrt{2}$.

A.
$$\frac{1}{3}$$

B.
$$\frac{1}{2}$$

C.
$$\frac{2}{3}$$

D.
$$\frac{1}{6}$$

Câu 8. Cho hình lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng a. Gọi I là trung điểm của BC. Góc giữa mặt phẳng (C'AI) và mặt phẳng (ABC) bằng 60° . Thể tích của khối lăng trụ ABC.A'B'C' bằng

A.
$$\frac{a^3}{4}$$

B.
$$\frac{3a^3}{4}$$

C.
$$\frac{a^3}{8}$$

D.
$$\frac{3a^3}{8}$$

Câu 9. Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D, AB là đáy lớn và tam giác ABC là cân tại C, AC = a. Các mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy, cạnh bên $SC = a\sqrt{3}$ và tạo với mặt phẳng (SAB) một góc bằng 30° . Góc giữa hai mặt phẳng (SAB) và (SAC) bằng

Câu 10. Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a. Tam giác SAB cân tại S và thuộc mặt phẳng vuông góc với đáy. Biết đường thẳng SC tạo với đáy một góc 60° . Tính tan góc giữa 2 mặt phẳng (SCD) và (ABCD).

A.
$$\sqrt{15}$$

B.
$$\frac{\sqrt{15}}{2}$$

C.
$$\frac{\sqrt{15}}{5}$$

D.
$$\frac{\sqrt{15}}{15}$$

Câu 11. Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B có $AB = a; BC = a\sqrt{3}$. Cạnh bên $SA \perp (ABC)$, biết $SC = a\sqrt{5}$, gọi M là trung điểm của AC tính tan góc giữa 2 mặt phẳng (SBM) và mặt phẳng đáy (ABC).

C.
$$\frac{2}{\sqrt{3}}$$

D.
$$\frac{\sqrt{3}}{2}$$

Đăng kí http://thichhocchui.xyz/ tại Zalo 0383572270 Thích Học Chui

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Câu 12. Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a. Tính cosin góc giữa 2 mặt phẳng (A'BC) và mặt đáy (ABC).

A.
$$\frac{\sqrt{3}}{2}$$

B.
$$\frac{2}{\sqrt{3}}$$

C.
$$\frac{\sqrt{21}}{7}$$

D.
$$\frac{\sqrt{21}}{21}$$

Câu 13. Cho hình chóp S.ABCD có đáy ABCD là hình thoi có góc $BAD = 120^{\circ}$, hình chiếu vuông góc của điểm H trên mặt phẳng đáy trùng với trọng tâm của tam giác ABC, biết đường cao của khối chóp là $SH = \frac{a\sqrt{6}}{3}$ và tam giác SBD vuông tại S. Tính góc giữa 2 mặt phẳng SAD và SAD và SAD.

$$\mathbf{C.}\ 60^{\circ}$$

Câu 14. Cho hình chóp S.ABC có đáy là tam giác cân tại A có AB = AC = 2a và $BC = 2a\sqrt{3}$. Tam giác SBC đều và thuộc mặt phẳng vuông góc với đáy. Cosin góc giữa 2 mặt phẳng (SAB) và (SAC) là:

A.
$$\frac{5}{13}$$

B.
$$\frac{6}{13}$$

C.
$$\frac{4}{13}$$

D.
$$\frac{7}{13}$$

Câu 15. Cho hình chóp S.ABCD có đáy ABCD là nửa lục giác đều nội tiếp đường tròn đường kính AB = 2a, $SA = a\sqrt{3}$ và vuông góc với mặt phẳng ABCD. Cosin của góc giữa hai mặt phẳng (SAD) và (SBC) là:

A.
$$\frac{\sqrt{2}}{2}$$

B.
$$\frac{\sqrt{2}}{3}$$

C.
$$\frac{\sqrt{2}}{4}$$

D.
$$\frac{\sqrt{2}}{5}$$

Câu 16. Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, có AB = 2a, AD = DC = a, SA = a và $SA \perp (ABCD)$. Tan của góc giữa 2 mặt phẳng (SBC) và (ABCD) là:

A.
$$\frac{1}{\sqrt{3}}$$

B.
$$\sqrt{3}$$

C.
$$\sqrt{2}$$

D.
$$\frac{1}{\sqrt{2}}$$

Câu 17. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, $SA \perp (ABC)$, $SA = a\sqrt{3}$. Cosin của góc giữa 2 mặt phẳng (SAB) và (SBC) là:

A.
$$\frac{-2}{\sqrt{5}}$$

B.
$$\frac{2}{\sqrt{5}}$$

C.
$$-\frac{1}{\sqrt{5}}$$

D.
$$\frac{1}{\sqrt{5}}$$

HƯỚNG DẪN GIẢI

Câu 1. Chọn đáp án B

Gọi M là trung điểm của $BC \Rightarrow SM \perp BC$

Ta có
$$\begin{cases} (SBC) \perp (ABC) \\ SM \perp BC \end{cases} \Rightarrow SM \perp (ABC)$$

Gọi N là trung điểm của $AC \Rightarrow MN / AB \Rightarrow MN \perp AC$

Ta có
$${AC \perp MN \atop AC \perp SM} \Rightarrow AC \perp (SMN)$$

$$\Rightarrow$$
 $((SAC), (ABC)) = (MN, SN) = SNM$

Ta có
$$SM = \frac{2a\sqrt{3}}{2} = a\sqrt{3}, MN = \frac{1}{2}AC = \frac{a}{2}$$

$$\Rightarrow \tan SNM = \frac{SM}{MN} = 2\sqrt{3}$$

Câu 2. Chọn đáp án C

Gọi M là trung điểm của $BC \Rightarrow OM \perp BC$

Ta có
$$\begin{cases} BC \perp OM \\ BC \perp SO \end{cases} \Rightarrow BC \perp (SOM)$$

$$\Rightarrow ((SBC), (ABCD)) = SMO$$

Ta có
$$\tan SMO = \frac{SO}{OM} = \sqrt{3} \Rightarrow SMO = 60^{\circ}$$

Câu 3. Chọn đáp án B

Kẻ
$$AH \perp CM$$
 ta có
$$\begin{cases} CM \perp AH \\ CM \perp SA \end{cases} \Rightarrow CM \perp (SAH)$$

$$((SMC),(ABC)) = (AH,SH) = SHA$$

Ta có
$$AH = \frac{S_{ABC}}{CM} = \frac{2\sqrt{39}}{13} \Rightarrow \tan SHA = \frac{SA}{AH} = \frac{\sqrt{13}}{4}$$

Câu 4. Chọn đáp án A

Ta có
$$\begin{cases} BD \perp AC \\ BD \perp A'A \end{cases} \Rightarrow BD \perp (A'AC)$$

$$\Rightarrow ((BDA'), (ABCD)) = A'OA$$

Ta có
$$AO = \frac{a\sqrt{2}}{2}$$
, $A'A = a \Rightarrow A'O = \sqrt{AO^2 + A'A^2} = \frac{a\sqrt{6}}{2}$

$$\Rightarrow \cos A'OA = \frac{AO}{A'O} = \frac{\sqrt{3}}{3}$$

Câu 5. Chọn đáp án C

Kẻ
$$AH \perp SC$$
 ta có $\begin{cases} AB \perp AC \\ AB \perp SA \end{cases} \Rightarrow AB \perp (SAC)$

$$\Rightarrow$$
 $AB \perp SC$ mà $SC \perp AH \Rightarrow SC \perp (SHB)$

$$\Rightarrow$$
 $((SAC),(SBC)) = (AH,HB) = AHB$

Ta có
$$\frac{1}{AH^2} = \frac{1}{AS^2} + \frac{1}{AC^2} = \frac{2}{a^2} \Rightarrow AH = \frac{a\sqrt{2}}{2}$$

$$\Rightarrow HB = \sqrt{AB^2 + AH^2} = \frac{a\sqrt{6}}{2} \Rightarrow \cos AHB = \frac{AH}{BH} = \frac{\sqrt{3}}{3}$$

Câu 6. Chọn đáp án D

Ta có $SO \perp (ABCD)$ và tứ giác ABCD là hình vuông.

Như vậy
$$\begin{cases} CO \perp BD \\ CO \perp SO \end{cases} \Rightarrow CO \perp (SBD)$$
.

Kė
$$OP \perp SD(P \in SD) \Rightarrow \tan((SCD),(SBD)) = \tan CPO = \frac{OC}{OP}$$
.

Ta có
$$SO^2 = SA^2 - OA^2 = a^2 - \frac{a^2}{2} \Rightarrow OS = \frac{a}{\sqrt{2}} = OD \Rightarrow OP = \frac{a}{2}$$

$$\Rightarrow \tan((SCD);(SBD)) = \frac{\frac{a}{\sqrt{2}}}{\frac{a}{2}} = \sqrt{2}$$

Câu 7. Chọn đáp án B

ADOBA

Ta có
$$\cot \alpha = \frac{AC}{SA} = \sqrt{2} \Rightarrow AC = SA\sqrt{2} = a\sqrt{2} \Rightarrow AB = a$$
.

Tọa độ hóa với
$$A \equiv O, AD \equiv Ox, AB \equiv Oy, AS \equiv Oz$$

$$\Rightarrow S(0;0;a), D(a;0;0), C(a;a;0), B(0;a;0).$$

Như vậy
$$\begin{cases} \overrightarrow{SD} = (a;0;-a) \\ \overrightarrow{SC} = (a;a;-a) \Rightarrow \begin{cases} \overrightarrow{n_1} = \left[\overrightarrow{SD}, \overrightarrow{SC} \right] = (a^2;0;a^2) \\ \overrightarrow{SB} = (0;a;-a) \end{cases}$$
$$\begin{cases} \overrightarrow{n_2} = \left[\overrightarrow{SC}, \overrightarrow{SB} \right] = (0;a^2;a^2) \end{cases}$$

$$\Rightarrow \cos((SBC),(SCD)) = \left|\cos(\overrightarrow{n_1};\overrightarrow{n_2})\right| = \left|\frac{a^4}{a^2\sqrt{2}.a^2\sqrt{2}}\right| = \frac{1}{2}$$

Câu 8. Chọn đáp án D

Ta có $C'C \perp (ABC)$ và $CI \perp AI$

$$\Rightarrow C'AI = C'IC \Rightarrow \tan 60^\circ = \frac{CC'}{IC} \Rightarrow CC' = IC\sqrt{3} = \frac{a\sqrt{3}}{2}$$

$$\Rightarrow V = CC.S_{ABC} = \frac{a\sqrt{3}}{2}.\frac{a^2\sqrt{3}}{4} = \frac{3a^3}{8}$$

Câu 9. Chọn đáp án C

Dựng $CK \perp AB$, lại có $CK \perp SA$

Do đó
$$CK \perp (SAB) \Rightarrow CSK = (CS, (SAB)) = 30^{\circ}$$

Suy ra $CK = SC \sin 30^\circ = \frac{a\sqrt{3}}{2}$. Xét tam giác ABC cân tại C có đường cao $CK = \frac{a\sqrt{3}}{2} \Rightarrow \Delta ABC$ đều suy ra $BAC = 60^\circ$.

Mặt khác $(CAB) \perp SA \Rightarrow ((SAC), (SAB)) = CAB = 60^{\circ}$

Câu 10. Chọn đáp án B

ADOBA

Gọi H là trung điểm của AB khi đó $SH \perp AB$

Mặt khác $(SAB) \perp (ABCD)$ suy ra $SH \perp (ABCD)$.

Khi đó
$$(SC, (ABCD)) = SCH = 60^{\circ}$$

Lại có
$$HC = \sqrt{HB^2 + BC^2} = a\sqrt{5} \Rightarrow SH = a\sqrt{5}$$
. tan $60^\circ = a\sqrt{15}$

Dựng $HK \perp CD$ lại có $SH \perp CD \Rightarrow CD \perp (SKH)$

$$\Rightarrow$$
 SKH = $((SCD), (ABC))$

Khi đó tan
$$SKH = \frac{SH}{HK} = \frac{SH}{BC} = \frac{a\sqrt{15}}{2a} = \frac{\sqrt{15}}{2}$$

Câu 11. Chọn đáp án C

Dăng kí http://thichhocchui.xyz/ tại Zalo 0383572270 Thích Học Chui

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Ta có:
$$AC = \sqrt{AB^2 + BC^2} = 2a \Rightarrow BM = \frac{BC}{2} = a$$

Mặt khác
$$SA = \sqrt{SC^2 - AC^2} = a$$

Dựng
$$AE \perp BM$$
, lại có $SA \perp BM \Rightarrow BM \perp (SEA)$

Do đó
$$((SBM), (ABC)) = SEA$$

Do
$$S_{ABM} = \frac{1}{2}S_{ABC} = \frac{1}{4}AB.BC = \frac{a^2\sqrt{3}}{4} = \frac{1}{2}.AE.BM \Rightarrow AE = \frac{a\sqrt{3}}{2}$$

Hoặc do $\tan BAC = \sqrt{3} \Rightarrow A = 60^{\circ}$ do đó tam giác ABM đều cạnh a

Suy ra
$$AE = \frac{a\sqrt{3}}{2}$$
. Do đó $\tan SEA = \frac{SA}{AE} = \frac{2}{\sqrt{3}}$

Câu 12. Chọn đáp án C

Gọi M là trung điểm của BC khi đó $AM \perp BC$

Lại có $AA' \perp BC$ suy ra $(A'MA) \perp BC \Leftrightarrow (A'BC, ABC) = A'MA$

Mặt khác
$$AM = \frac{a\sqrt{3}}{2}$$
 do đó $\cos A'MA = \frac{MA'}{A'M} = \frac{MA'}{\sqrt{AA'^2 + AM^2}}$

$$=\frac{\frac{a\sqrt{3}}{2}}{\sqrt{a^2+\frac{3a^2}{4}}}=\frac{\sqrt{21}}{7}$$

Câu 13. Chọn đáp án D

có

FanPage: Adoba - Tài Liệu luyện thi số 1 Việt Nam

Do H là trọng tâm tam giác ABC nên HA = 2HO

Dễ thấy HD = 2HB. Mặt khác tam giác SBD vuông tại S có đường cao SH suy ra $SH^2 = HB.HD = 2HB^2$

$$\Rightarrow HB = \frac{a\sqrt{3}}{3} \Rightarrow OB = \frac{a\sqrt{3}}{2}$$

Do đó
$$AB = AC = a \Rightarrow OA = \frac{a}{2}$$
.

Ta có:
$$\begin{cases} AC \perp BD \\ AC \perp SH \end{cases} \Rightarrow AC \perp (SBD) \Rightarrow AC \perp SD$$

Dựng
$$CK \perp SD \Rightarrow (ACK) \perp SD$$

Ta

$$d(H;SD) = \frac{HD.SH}{\sqrt{HD^2 + SH^2}} = \frac{2a}{3} \Rightarrow OK = \frac{3}{4}d(H;SD) = \frac{a}{2} \Rightarrow \cos OKC = \frac{OK}{KC} = \frac{1}{\sqrt{2}} \Rightarrow OKC = 45^{\circ}$$

$$\Rightarrow$$
 (SAD, SCD) = AKC = 90°

Hoặc $OK = \frac{1}{2}AC = \frac{a}{2} \Rightarrow AKC = 90^{\circ}$ (tính chất trung tuyến ứng cạnh huyền bằng nửa cạnh ấy).

Câu 14. Chọn đáp án D

Gọi H là trung điểm của BC khi đó $SH \perp BC$

Mặt khác $(SBC) \perp (ABC)$ suy ra $SH \perp (ABCD)$.

Ta có:
$$\begin{cases} BC \perp AH \\ BC \perp SH \end{cases} \Rightarrow BC \perp SA$$

Dựng $BI \perp SA$, lại có $BC \perp SA \Rightarrow (BIC) \perp SA$

Mặt khác
$$SH = \frac{2a\sqrt{3}.\sqrt{3}}{2} = 3a; AH = \sqrt{AB^2 - BH^2} = a$$

Do đó
$$IH = \frac{SH.AH}{\sqrt{SH^2 + HA^2}} = \frac{3a}{\sqrt{10}} \Rightarrow IB = IC = \sqrt{IH^2 + HB^2} = \frac{a\sqrt{390}}{10}$$

Suy ra
$$\cos BIC = \frac{BI^2 + CI^2 - BC^2}{2.BI.IC} = \frac{-7}{13} < 0 \Rightarrow \cos((SAB), (SAC)) = \frac{7}{13}$$

Câu 15. Chọn đáp án C

Gọi I là giao điểm của AD và BC

Ta có
$$\begin{cases} BD \perp AD \\ BD \perp SA \end{cases} \Rightarrow BD \perp (SAD) \Rightarrow BD \perp SI$$

Kẻ
$$DE \perp SI$$
 ta có $\begin{cases} SI \perp BD \\ SI \perp DE \end{cases} \Rightarrow SI \perp (BDE)$

$$\Rightarrow$$
 $((SAD),(SBC)) = (DE,BE)$

Ta có
$$\sin AIS = \frac{SA}{SI} = \frac{\sqrt{3}}{\sqrt{7}}$$
 mà $\sin AIS = \frac{DE}{DI}$

$$\Rightarrow DE = DI.\sin AIS = \frac{a\sqrt{3}}{\sqrt{7}}$$

$$\Rightarrow \tan DEB = \frac{BD}{ED} = \sqrt{7} \Rightarrow \cos DEB = \frac{\sqrt{2}}{4}$$

Câu 16. Chọn đáp án D

Ta có
$$((SBC), (ABCD)) = ACS$$

Ta có
$$AC = \sqrt{AD^2 + DC^2} = a\sqrt{2}$$

$$\Rightarrow \tan ACS = \frac{SA}{AC} = \frac{1}{\sqrt{2}}$$

Câu 17. Chọn đáp án D

Gọi M là trung điểm AB

Ta có
$${CM \perp AB \atop CM \perp SA} \Rightarrow CM \perp (SAB) \Rightarrow CM \perp SB$$

Kẻ
$$MN \perp SB$$
 ta có
$$\begin{cases} SB \perp MN \\ SB \perp CM \end{cases} \Rightarrow SB \perp (CMN)$$

$$\Rightarrow$$
 $((SAB),(SBC)) = (MN,NC) = MNC$

Ta có
$$\tan SBA = \frac{SA}{AB} = \sqrt{3} \Rightarrow SBA = 60^{\circ}$$

Ta có
$$\sin SBA = \frac{MN}{MB} \Rightarrow MN = \frac{a\sqrt{3}}{4} \Rightarrow \cos MNC = \frac{1}{\sqrt{5}}$$