

2018-2	이산수학	1차 과제물: 1장~4장
담당교수: 예홍진		제출기한: 2018년 10월10일(수)까지

※ 문제 자체는 생략하고 문항번호와 답안만 작성하여 제출하기 바랍니다.

※(1~14) 다음 문장의 내용이 맞으면 ○표, 틀리면 ×표를 답하시오.

- 1. Let $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{2, 5, 6\}$ and $B = \{1, 2, 4\}$. Then sequence 0,1,0,0,1,1 represents f_A and 1,1,0,0,1,0 represents f_B . (f_A, f_B) are characteristic functions.
- 2. Let $A = \{a, b, c\}$. The expression $a^*(b \wedge c)^*bc$ is a regular expression. \longrightarrow \times
- 3. Let $A = \{ab, bc, ba\}$. All the strings such as abba, baba, baba, baba
- 4. If e is an identity for a binary operation, then e is unique. \longrightarrow
- 5. Let $A = \{1,2,3,4\}$ and let $R = \{(1,2),(2,2),(3,4),(4,1)\}$. Then R is antisymmetric. \rightarrow
- 6. When the relation R on the set $A = \mathbb{Z}$ and aRb if and only if |a-b| = 2, the relation R is symmetric and transitive.
- 7. The recurrence relation $f_n = f_{n-1} + 2f_{n-2}$ is a linear homogeneous relation of degree 2.
- 8. Let aRb if and only if GCD(a,b)=1 for a,b in $A=Z^+$, then R is an equivalence relation. \rightarrow
 - 9. The symmetric closure of a relation R is the smallest symmetric relation containing R.
 - 10. Let $A = \{1,2,3,4\}$ and let $R = \{(3,3),(1,2),(2,2),(2,1)(3,4),(4,3),(1,1),(4,4)\}$. Then R is an equivalence relation.
 - 11. Let R be the relation on $A = \{1, 2, 3, 4\}$ that has the matrix $M_R = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$.

12. Let R be a relation from A to B, and let A_1 and A_2 be subsets of A. Then $R(A_1) \cap R(A_2) \not\subseteq R(A_1 \cap A_2)$.

14. Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and R be a relation on A. If $M_R \odot M_R = M_R$ then R is transitive.

※(15~28) 다음 괄호에 알맞은 값이나 용어를 채워 넣으시오.

- 15. A(n) (P of nonempty subsets of A such that
 - (1) Each element of A belongs to one of the sets in P.
 - (2) If A_1 and A_2 are distinct elements of P, then $A_1 \cap A_2 = \emptyset$.
- 16. A Mathematical structure is (Closed) with respect to an operation if that operation always produces another member of the collection of objects.
- 17. If \star is a binary operation, then \star is (A550Ciative) if $(x \star y) \star z = x \star (y \star z)$.
- 18. If a binary operation \star has an identity e, we say y is a \star -(10 $\forall \checkmark \lor 5p$) of x if $x \star y = y \star x = e$.
- A19. A relation R on a set A is antisymmetric if whenever $a \neq b$, then $a \not R b$ ($a \not R b$.) $a \not R b$.
 - 20. Let R be a relation on a set A. Then (\mathbb{R}^n) is the transitive closure of R.
 - 21. M_R is the matrix of a relation R. Then $M_{R^{-1}}$ equals the (Symmetric) of the matrix M_R .
 - 22. A symmetric relation R on a set A is called (Comecfel) if there is a path from any element of A to any other element of A.

- $\frac{9}{23}$. Six friends discover that they have a total of $\frac{$2,161}{}$ with them on a trip to the movies. One or more of them must have at least \$(
- 24. A path that begins and ends at the same vertex is called a (CYCIE).
- 25. A relation R on a set A is (white map if whenever aRb and bRa, then a=b.
- 26. Suppose that R is a relation on a set A. The reflexive closure of R is (\nearrow).
- 27. A relation R on a set A is (*MS)* whenever $(a,b) \in R$, then $(b,a) \not\in R$
- 28. A relation R on a set A is called a(n) (equivalence) if it is reflexive, symmetric, and transitive.

29. Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$. Compute $A \wedge B, A \vee B$ and $A \odot B$. $M_{\text{AVB}} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$

- 30. Let $A = \{0, 1\}$. Give the regular expression corresponding to the given regular set $\{0,1,010,110,01010,11010,...\}$. $\Rightarrow (OV)(10)*$
- 31. What is the minimum number of members to guarantee that at least eight of them will have birthdays in the same month? -> 35
- 32. Solve the the recurrence relation $b_n = 4b_{n-1} 4b_{n-2}$ with initial conditions $b_1 = 2$ and $b_2 = 3$.
- 33. Let $A = \{x \mid x \text{ is } integer, 0 \le x \le 8\}$ and $R = \{(a,b) \in A \times A \mid a \equiv b \pmod{3}\}$. Determine $A/R \Rightarrow \{(a,b) \in A \times A \mid a \equiv b \pmod{3}\}$.
- 34. Let $A = \{a, b, c, d, e\}$, $R = \{(a, a), (a, b), (a, d), (b, b), (b, c), (b, e), (c, e), (d, a), (d, c), (e, b), (e, d)\}$ and $S = \{(a,a), (a,b), (a,c), (a,d), (b,b), (b,c), (c,c), (c,d), (d,a), (d,e)\}.$
 - (a) Find Dom(S). $\rightarrow 20,6,0,13$
 - (b) Find $(R \cap S)(\{a,b,c\})$. $\rightarrow \{(a,a),(a,b),(b,b),(b,c)\}$
 - (c) Compute $|S \cup \Delta|$. $\rightarrow |3|$
 - (d) Compute $|R \cup R^{-1}|$. $\rightarrow |\mathcal{L}$ (e) Compute $M_{(R \cap S)^2}$ $\begin{array}{c} 1, 1, 1, 1 \\ 0, 1, 1, 0 \\ 0, 0, 0, 0 \\ 1, 1, 0, 1 \end{array}$
 - (f) Compute W_4 as in Warshall's algorithm where $W_0 = M_{(R \cap S)}$.
- 35. Let $R = \{(1,1),(1,3),(2,4),(3,1),(4,3),(4,4)\}, S = \{(1,2),(1,4),(2,1),(3,1),(3,3),(4,2)\}$ be the relations on $A = \{1, 2, 3, 4\}$. Compute W_0 , W_1 , and W_2 using Warshall's algorithm where

- ※ 주의사항
- 1. 과제는 반드시 본인이 직접 손으로 풀어 제출한다.
- 2. 타인의 과제를 그대로 복제하면, 두 과제 모두 미제출 처리한다.
- 3. 과제는 제출 기한 내에 담당 조교 연구실 앞에 비치되어 있는 과제함에 제출한다.
- 4. 제출 기한이후에 제출하면 1점 감점하며, 일주일이 지난 후에는 미제출로 처리된다.
 - *** 문제를 제외하고 답안만 작성하며, 뒷면을 사용하여 가급적 한 장으로 제출하기 바랍니다. ***