PREDICTIVE STUDY ON DRUG BIOACTIVITY IN INHIBITING ACETYLCHOLINESTERASE FOR ALZHEIMER'S DISEASE

PB PROJECT

PRESENTED BY:

GROUP 5

GROUP MEMBERS:

ANISHA BOPARDIKAR, GRISHMA BELLANI, RIYA GUPTA, SHREYANSH SRIVASTAV, SHUBHAM DWIVEDI,

VIMANSH MAHAJAN

BACKGROUND OF THE STUDY

- Alzheimer's disease involves cognitive decline from reduced acetylcholine levels.
- One of the key factors contributing to cognitive decline in AD is the deficiency of the neurotransmitter acetylcholine, which plays a crucial role in memory and cognitive function.

PROBLEM STATEMENT

Despite advancements, Alzheimer's disease lacks
effective treatments. Our project addresses this by
assessing various drugs' efficacy in modulating
Acetylcholinesterase (AChE) levels, a critical target for
Alzheimer's treatment, aiming to identify potent
therapeutic candidates.

SOLUTION

By modulating AChE activity, the levels of acetylcholine in the brain can be increased, potentially improving cognitive function and alleviating some symptoms of Alzheimer's disease.

- Quantitative Structure-Activity Relationship (QSAR)
 - Develop a QSAR model to predict the bioactivity of compounds towards inhibiting AChE based on their molecular descriptors.
- Machine Learning Algorithms
 - Utilize machine learning algorithms, such as Random Forest to build predictive models for AChE inhibition.

FEASIBILITY OF OUR SOLUTION

LINK TO THE STUDY: NCBI WEBSITE

Several researches including the one we have mentioned below by NCBI indicate that our solution will indeed be correct and feasible in finding the best drug for Alzheimer's out of all those available in the market today.

Cholinesterase inhibitors

The cholinergic hypothesis of AD concludes that cholinergic systems in the basal forebrain are affected early in the disease process, including loss of acetylcholine neurons, loss of enzymatic function for acetylcholine synthesis and degradation, resulting in memory loss and deterioration of other cognitive and noncognitive functions such as neuropsychiatric symptoms [Bartus et al. 1982; Cummings and Back, 1998]. A strategy to enhance the cholinergic transmission by using CIs to delay the degradation of acetylcholine between the synaptic cleft has been proposed. To date, three CIs are approved for the treatment of mild to moderate AD: donepezil (Pfizer, New York, NY, USA), rivastigmine (Novartis, Basel, Switzerland) and galantamine (Janssen, Beerse, Belgium) [Farlow,

QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP

Utilize computational methods, such as QSAR modeling, to predict the bioactivity of compounds towards inhibiting AChE. This approach can help identify potential drug candidates and reduce the number of compounds that need to be experimentally tested.

WORKFLOW

We have sourced raw data from the **ChEMBL website**, filtering compounds based on specific parameters.

Through classification, we will categorize compounds as either active or intermediate, streamlining the dataset for targeted drug discovery efforts.

We will utilize **Lipinski's Rule**, which assesses drug-likeness based on molecular weight, LogP, hydrogen bond donors, and hydrogen bond acceptors, to sort compounds for drug candidacy.

We will compute molecular descriptors, providing quantitative characterizations of compounds in the dataset, to prepare data for subsequent model construction.

We will construct a

regression model to predict
the activity of
acetylcholinesterase inhibitors
based on molecular
descriptors.

EDA

CALCULATION AND DATASET PREPARATION

BUILDING A
REGRESSION MODEL

HOW FAR WE'VE COME IN DATA COLLECTION...

A. DATA RETREIVAL

We obtained the raw data from the ChEMBL database for the acetylcholinesterase enzyme, specifically retrieving bioactivity data related to Human Acetylcholinesterase.

	activity_comment	activity_id	activity_properties	assay_chembl_id	assay_description	assay_type	bao_endpoint	bao_format
0	None	33969	0	CHEMBL643384	Inhibitory concentration against acetylcholine	В	BAO_0000190	BAO_0000357
1	None	37563	0	CHEMBL643384	Inhibitory concentration against acetylcholine	В	BAO_0000190	BAO_0000357
2	None	37565	0	CHEMBL643384	Inhibitory concentration against acetylcholine	В	BAO_0000190	BAO_0000357
3	None	38902	0	CHEMBL643384	Inhibitory concentration against acetylcholine	В	BAO_0000190	BAO_0000357
4	None	41170	0	CHEMBL643384	Inhibitory concentration against acetylcholine	В	BAO_0000190	BAO_0000357
7021	None	18798886	0	CHEMBL4274263	Inhibition of human erythrocyte AChE using ace	В	BAO_0000190	BAO_0000357
7022	None	18798887	0	CHEMBL4274263	Inhibition of human	В	BAO_0000190	BAO_0000357

HOW FAR WE'VE COME IN DATA COLLECTION...

B. DATA FILTERING

Upon obtaining the raw data, we filtered it based on specific parameters such as standard_value, standard_type (IC50), and canonical_smiles. This ensured that the dataset contained relevant and usable information for our analysis.

	molecule_chembl_id	chembl_id canonical_smiles					
0	CHEMBL133897 CCOc1nn(-c2cccc(OCc3ccccc3)c		750.0				
1	CHEMBL336398	O=C(N1CCCCC1)n1nc(-c2ccc(Cl)cc2)nc1SCC1CC1	100.0				
2	CHEMBL131588	CN(C(=O)n1nc(-c2ccc(Cl)cc2)nc1SCC(F)(F)F)c1ccccc1	50000.0				
3	CHEMBL130628	O=C(N1CCCCC1)n1nc(-c2ccc(Cl)cc2)nc1SCC(F)(F)F	300.0				
4	CHEMBL130478	CSc1nc(-c2ccc(OC(F)(F)F)cc2)nn1C(=O)N(C)C	800.0				
		***	***				
7019	CHEMBL4293155	CC(C)(C)c1cc(/C=C/C(=O)NCCC2CCN(Cc3ccccc3Cl)CC	2440.0				
7020	CHEMBL4282558	CC(C)(C)c1cc(/C=C/C(=O)NCCC2CCN(Cc3cccc(Cl)c3)	2540.0				
7021	CHEMBL4281727	CC(C)(C)c1cc(/C=C/C(=O)NCCC2CCN(Cc3ccc(Br)cc3)	3810.0				
7022	CHEMBL4292349	CC(C)(C)c1cc(/C=C/C(=O)NCCC2CCN(Cc3cccc([N+](=	3460.0				
7023	CHEMBL4278260	CC(C)(C)c1cc(/C=C/C(=O)NCCC2CCN(Cc3ccc(C#N)cc3	2780.0				

HOW FAR WE'VE COME IN DATA COLLECTION...

C. BIOACTIVITY CLASSIFICATION

Compounds were categorized based on IC50 values:

- <1000 nM as active, indicating strong inhibitory activity;
- >10,000 nM as inactive, suggesting minimal inhibition;
- 1,000-10,000 nM as intermediate, showing moderate inhibitory potential.

	molecule_chembl_id	canonical_smiles	standard_value	class
0	CHEMBL133897	CCOc1nn(-c2cccc(OCc3ccccc3)c2)c(=O)o1	750.0	active
1	CHEMBL336398	O=C(N1CCCCC1)n1nc(-c2ccc(Cl)cc2)nc1SCC1CC1	100.0	active
2	CHEMBL131588	CN(C(=O)n1nc(-c2ccc(Cl)cc2)nc1SCC(F)(F)F)c1ccccc1	50000.0	inactive
3	CHEMBL130628	O=C(N1CCCCC1)n1nc(-c2ccc(Cl)cc2)nc1SCC(F)(F)F	300.0	active
4	CHEMBL130478	CSc1nc(-c2ccc(OC(F)(F)F)cc2)nn1C(=O)N(C)C	800.0	active
		ma .		
4690	CHEMBL4293155	CC(C)(C)c1cc(/C=C/C(=O)NCCC2CCN(Cc3ccccc3Cl)CC	2440.0	intermediate
4691	CHEMBL4282558	CC(C)(C)c1cc(/C=C/C(=O)NCCC2CCN(Cc3cccc(Cl)c3)	2540.0	intermediate
4692	CHEMBL4281727	CC(C)(C)c1cc(/C=C/C(=O)NCCC2CCN(Cc3ccc(Br)cc3)	3810.0	intermediate
4693	CHEMBL4292349	CC(C)(C)c1cc(/C=C/C(=O)NCCC2CCN(Cc3cccc([N+](=	3460.0	intermediate
4694	CHEMBL4278260	CC(C)(C)c1cc(/C=C/C(=O)NCCC2CCN(Cc3ccc(C#N)cc3	2780.0	intermediate

EXPLORATORY DATA ANALYSIS

A. CALCULATION OF LIPINSKI DESCRIPTORS

Lipinski's Rule, also known as the Rule of Five, evaluates a compound's drug-likeness based on four key factors:

- Molecular weight < 500 Dalton
- Octanol-water partition coefficient (LogP) < 5
- Hydrogen bond donors < 5
- Hydrogen bond acceptors < 10

COMBINED DATASET WITH LIPINSKI'S FACTORS

	${\tt molecule_chembl_id}$	canonical_smiles	standard_value	class	MW	LogP	NumHDonors	NumHAcceptors
0	CHEMBL133897	CCOc1nn(-c2cccc(OCc3ccccc3)c2)c(=O)o1	750.0	active	312.325	2.80320	0.0	6.0
1	CHEMBL336398	O=C(N1CCCCC1)n1nc(-c2ccc(Cl)cc2)nc1SCC1CC1	100.0	active	376.913	4.55460	0.0	5.0
2	CHEMBL131588	CN(C(=O)n1nc(-c2ccc(Cl)cc2)nc1SCC(F)(F)F)c1ccccc1	50000.0	inactive	426.851	5.35740	0.0	5.0
3	CHEMBL130628	O = C(N1CCCCC1)n1nc(-c2ccc(CI)cc2)nc1SCC(F)(F)F	300.0	active	404.845	4.70690	0.0	5.0
4	CHEMBL130478	CSc1nc(-c2ccc(OC(F)(F)F)cc2)nn1C(=O)N(C)C	800.0	active	346.334	3.09530	0.0	6.0
4690	CHEMBL4293155	CC(C)(C)c1cc(/C = C/C(=O)NCCC2CCN(Cc3ccccc3CI)CC	2440.0	intermediate	511.150	7.07230	2.0	3.0
4691	CHEMBL4282558	CC(C)(C) c1 cc(/C = C/C(= O) NCCC2CCN(Cc3cccc(CI) c3)	2540.0	intermediate	511.150	7.07230	2.0	3.0
4692	CHEMBL4281727	CC(C)(C)c1cc(/C=C/C(=O)NCCC2CCN(Cc3ccc(Br)cc3)	3810.0	intermediate	555.601	7.18140	2.0	3.0
4693	CHEMBL4292349	CC(C)(C)c1cc(/C=C/C(=O)NCCC2CCN(Cc3cccc([N+](=	3460.0	intermediate	521.702	6.32710	2.0	5.0
4694	CHEMBL4278260	CC(C)(C)c1cc(/C = C/C(=O)NCCC2CCN(Cc3ccc(C#N)cc3	2780.0	intermediate	501.715	6.29058	2.0	4.0

4695 rows x 8 columns

EXPLORATORY DATA ANALYSIS

B. CONVERT IC50 TO PIC50

- To allow IC50 data to be more uniformly distributed, we will convert IC50 to the negative logarithmic scale which is essentially log10(IC50).
- Steps for the procedure:
- Take the IC50 values from the standard_value column and converts it from nM to M by multiplying the value by 10 -9
- Take the molar value and apply -log10
- Delete the standard_value column and create a new pIC50 column and delete rows of "intermediate class".

MODIFIED DATASET WITH PIC50 VALUES

	molecule_chembl_id	canonical_smiles	class	MW	LogP	NumHDonors	NumHAcceptors	pIC50
0	CHEMBL133897	CCOc1nn(-c2cccc(OCc3ccccc3)c2)c(=O)o1	active	312.325	2.8032	0.0	6.0	6.124939
1	CHEMBL336398	O=C(N1CCCCC1)n1nc(-c2ccc(Cl)cc2)nc1SCC1CC1	active	376.913	4.5546	0.0	5.0	7.000000
2	CHEMBL131588	CN(C(=O)n1nc(-c2ccc(CI)cc2)nc1SCC(F)(F)F)c1ccccc1	inactive	426.851	5.3574	0.0	5.0	4.301030
3	CHEMBL130628	O = C(N1CCCCC1)n1nc(-c2ccc(Cl)cc2)nc1SCC(F)(F)F	active	404.845	4.7069	0.0	5.0	6.522879
4	CHEMBL130478	CSc1nc(-c2ccc(OC(F)(F)F)cc2)nn1C(=O)N(C)C	active	346.334	3.0953	0.0	6.0	6.096910

4675	CHEMBL4284261	CCN(C)Cc1cc(N)ccc1O.Cl.Cl	inactive	180.251	1.4261	2.0	3.0	3.015428
4676	CHEMBL4276921	CN(C)Cc1cc(N)ccc1O.Cl.Cl	inactive	166.224	1.0360	2.0	3.0	2.813467
4677	CHEMBL4292574	CNCc1cc(N)ccc1O.Cl.Cl	inactive	152.197	0.6938	3.0	3.0	3.476904
4685	CHEMBL4292766	CC(C)(C)c1cc(/C = C/C(=O)NCCC2CCN(Cc3ccccc3F)CC2	active	494.695	6.5580	2.0	3.0	6.124939
4687	CHEMBL4284475	CC(C)(C)c1cc(/C = C/C(=O)NCCC2CCN(Cc3ccc(F)cc3)C	active	494.695	6.5580	2.0	3.0	6.008774

EXPLORATORY DATA ANALYSIS

C. PLOT OF LIPINSKI'S
FACTOR VS BIOACTIVITY
CLASS IS OBTAINED AS
RESULT

CALCULATION AND DATASET PREPARATION

A. CALCULATE FINGERPRINT DESCRIPTORS USING PADEL DESCRIPTORS

• Individually calculate the X (fingerprints matrix) and the Y (PIC50 data matrix) and then combine both the matrices into a single table.

		PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	PubchemFP8	PubchemFP9	PubchemFP10	PubchemFP11
	0	1	1	1	0	0	0	0	0	0	1	1	1
	1	1	1	1	0	0	0	0	0	0	1	1	1
	2	1	1	1	0	0	0	0	0	0	1	1	1
	3	1	1	0	0	0	0	0	0	0	1	1	1
	4	1	1	0	0	0	0	0	0	0	1	1	1
4	690	1	1	1	1	0	0	0	0	0	1	1	1
4	691	1	1	1	1	0	0	0	0	0	1	1	1
4	692	1	1	1	1	0	0	0	0	0	1	1	1
4	693	1	1	1	1	0	0	0	0	0	1	1	1
4	694	1	1	1	1	0	0	0	0	0	1	1	1

4695 rows x 882 columns

REGRESSION MODELS WITH RANDOM FOREST

SCATTER PLOT OF EXPERIMENTAL VS PREDICTED PIC50 VALUES

Performance Percentage= 86%

STEP 2: FILE UPLOADED

THANK YOU!

<u>REFERENCES</u>

- NCBI
- PUBMED (NCBI)
- ChEMBL
- PaDEL

CONTRIBUTIONS:

- Data collection, Website Grishma, Shubham, Shreyansh
- Data set preparation, PPT- Anisha, Riya, Vimansh
- QSAR and Regression Model- Anisha, Grishma, Riya, Shubham, Shreyansh, Vimansh