

# Module 4 – Part I Machine Learning Fundamentals











#### Class Modules

- Module 1- Introduction to Deep Learning
- Module 2- Setting up Machine Learning Environment
- Module 3- Linear Regression (Econometrics approach)
- Module 4- Machine Learning Fundamentals
- Module 5- Linear Regression (Machine Learning approach)
- Module 6- Penalized Regression (Ridge, LASSO, Elastic Net)
- Module 7- Logistic Regression
- Module 8- K-Nearest Neighbors (KNN)
- Module 9- Classification and Regression Trees (CART)
- Module 10- Bagging and Boosting
- Module 11- Dimensionality Reduction (PCA)
- Module 12- Clustering (KMeans Hierarchical)







# **Topics**

- Inference vs Prediction
- The Model
- Train, Test, Validation
- Resampling methods
- Evaluation metrics
- Bias-Variance tradeoff, overfitting, learning curve
- How do machines actually learn?
  - Cost Function
  - Solvers/learners (GD, SGD)
- Scaling the features









### The Model





#### The Model

$$y = f(X, \theta) + \epsilon = f(X_1, X_2, \dots, X_m, \theta_1, \theta_2, \dots, \theta_k) + \epsilon$$

y: response, dependent variables, output, Target

X: predictors, independent variables, input, Features

 $\theta$ : estimates, specifications, Parameters

- $\checkmark$  It is all about estimating f by  $\hat{f}$  for two purposes:
  - 1) Inference (interpretable ML)
  - 2) Prediction







#### Parameters and Hyperparameters

$$y = f(X, \theta) + \epsilon = f(X_1, X_2, \dots, X_m, \theta_1, \theta_2, \dots, \theta_k) + \epsilon$$

Model parameters are estimated from data automatically and model hyperparameters are set manually (prior to training the model) and are used in processes to help estimate model parameters.

Example?







#### Parametric Vs. Nonparametric models

$$y = f(X, \theta) + \epsilon$$

• The true relationship, f(X) is unknown and the goal is to see which ML algorithm is better at approximating it. An algorithm learns/estimates f(X) from training data.

|                                                                                                |                       | Pros (3                                                                                                                          | cons E                                                                                                                                                      |
|------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| f(X) is assumed. Examples Linear regression, GLM, logistic regression, simple Neural networks, | Parametric algorithms | Simpler Easier to understand and to interpret Faster Very fast to fit your data Less data Require "few" data to yield good perf. | Limited complexity Because of the specified form, parametric algorithms are more suited for "simple" problems where you can guess the structure in the data |





# Train, Validation, Test Resampling Methods







## Partitioning of the dataset

The data set is typically divided into three <u>non-overlapping</u> samples:

- 1) Training set: to train the model
- 2) Validation set: to validate and tune the model
- 3) Test set: to test the model's ability to predict well on new data (generalize)



To be <u>valid</u> and <u>useful</u>, any supervised machine learning model <u>must</u> generalize well beyond the training data.



Large dataset is needed! But what if we don't have it?





### Resampling methods

- Sometimes we cannot afford to split the data in three because the algorithm may not learn anything from a small training dataset!
- Small validation set is also problematic because we cannot tune the hyperparameters properly! Unstable model performance in validation set!
- Solution: combining the training and validation sets and use cross validation!









#### K-fold Cross Validation

- 1) Divide the training data into K roughly equal-sized non-overlapping groups. Leave out  $k^{th}$  fold and fit the model to the other k-1 folds. Finally, obtain predictions for the left-out  $k^{th}$  fold.
- 2) This is done in turn for each part k and then the results are combined.









## Why do we use Cross Validation?

Cross validation is mainly used for two purposes:

- 1. Model architecture selection (optimization vs generalization)
- 2. Estimation of model performance in the test set



- After selecting the best model architecture, we estimate the generalization error using the test set.
- Different model comparison is based on test set performance!





### **Evaluation Metrics**







#### **Evaluation metrics**

In general, we want to compare how close are the predictions to the actual numbers in the test set.

This is typically assessed using

- MSE for quantitative response
- Misclassification rate for qualitative response

#### **Evaluation Metrics**

#### Classification

- Confusion
   Matrix
- Accuracy
- Precision and Recall
- F-score
- AUC-ROC
- Log Loss
- Gini Coefficient

#### Regression

- MAE (mean abs. error)
- MSE (mean sq. error)
- RMSE

(Root mean sq.error)

- RMSLE
  (Root mean sq.error log error)
- R<sup>2</sup> and Adjusted
   R<sup>2</sup>





# Bias-Variance Tradeoff Optimization vs Generalization







# Model Bias & Model Variance in machine learning









# Model Bias & Model Variance in machine learning









# MSE decomposition

#### $MSE = model\ variance + model\ bias + irreducible\ error$

- 1) Model variance is the variance if we had estimated the model with a different **training set**
- 2) Model bias is the error due to using an approximate model (model is too simple)
- 3) Irreducible error is due to missing variables and limited samples. Can't be fixed with modeling
- The goal is to minimize the sum of model variance and model bias.
- This is known as the <u>bias-variance</u> tradeoff because reducing one often leads to increasing the other.
- Choosing the flexibility (complexity) of  $\hat{f}(X)$ , will amount to bias-variance tradeoff.







**UtahState**University

# MSE decomposition

The bias-variance tradeoff is one of the core concepts in <u>supervised</u> learning.

irreducible error



Assume that the data is generated by a simple model!

$$y_i = f(\mathbf{x}_i) + \epsilon_i, \quad \mathbb{E}[oldsymbol{\epsilon}] = 0, \quad \mathbb{V}[oldsymbol{\epsilon}] = \sigma^2$$

The estimated model yields

total quadratic error

$$\widehat{y_i} = \widehat{f}(X_i)$$

Let us decompose the mean squared error (MSE):

$$\mathbb{E}[\hat{\epsilon}^2] = \mathbb{E}[(y - \hat{f}(\mathbf{x}))^2] = \mathbb{E}[(f(\mathbf{x}) + \epsilon - \hat{f}(\mathbf{x}))^2] \qquad = \underbrace{\mathbb{V}[\hat{f}(\mathbf{x})]}_{\text{variance of model}} + \underbrace{\mathbb{E}[(f(\mathbf{x}) - \hat{f}(\mathbf{x}))]^2}_{\text{squared bias}} + \sigma^2$$





## Representations of the bias-variance tradeoff

Model

Bias



Optimization Vs
Generalization





Model Complexity

**Variance** 



#### Other representations of the bias-variance tradeoff









# Overfitting

Overfitting happens when the fitted algorithm does not generalize well to new data:

- The model fits the training data too well while not predicts well in the new data
- The model fits the noise  $(\epsilon)$  in training data (finds a pattern that does not exist)
- The algorithm has simply memorized the data, rather than learned from it!
- The model is too complex!









# Mitigate overfitting

The main techniques used to mitigate overfitting risk in a model construction are:

- 1) Collect more data (Can reduce AND variance)
- 2) Complexity reduction (regularization, feature selection)
- 3) Cross validation (estimate the performance in test set)







With more training example





#### The Learning Curve: Do we need to collect more data?

- A learning curve is a plot that shows the relationship between the amount of training data and the performance of a machine learning model.
- It is used to diagnose whether a model has high bias, high variance, or is just right.



- -- Cross validation score
- Benchmark performance(common sense performance)







### Class exercise











## How do Machines Learn?







# Terminology

- Learning: Finding the model weights (parameters' values)
- Cost Function: Tells us "how good" our model is at making predictions for a given set of parameters.
- The cost function has its own curve and its own gradients. The slope of this curve tells us how to update our parameters to make the model more accurate.
- The two most frequently used optimization algorithms when the cost function is continuous and differentiable are Gradient Descent (GD) and Stochastic GD.









# Solvers (learners)!

- Gradient Descent: is an iterative optimization algorithm for finding the minimum of a function.
- We starts at some random point and take steps proportional to the negative of the gradient of the function at the current point.

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_j} J(\theta)$$

- $\theta_j$  is the model's  $j^{th}$  parameter
- $\alpha$  is the learning rate
- $J(\theta)$  is the cost function (which is differentiable)







# Choice of learning rate

- If  $\alpha$  is too small, gradient descent can be slow
- If  $\alpha$  is too large, the gradient descent can even **diverge**.









## Beyond Gradient Descent?

#### Disadvantages of gradient descent:

- Single batch: use the entire training set to <u>update</u> parameters!
- Sensitive to the choice of the learning rate
- Slow for large datasets

(Minibatch) Stochastic Gradient Descent: is a version of the algorithm that speeds up the computation by approximating the gradient using smaller batches (subsets) of the training data. SGD itself has various "upgrades".







#### SGD vs GD



- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent









## Beyond SGD?

- Loss functions can be difficult to optimize!
- Visualizing the loss landscape of neural nets, Li et all, 2018



- Solution: Designing an adaptive learning rate that can adapt to the loss landscape.
- Rather than just looking at the current gradient, consider the previous weight updates.
- This is called, momentum!
- Examples: Adam, Adadelta, Adagrad, RMSProp!







#### How do machines learn?







# Feature Scaling







ION M.

# Why feature scaling?

- Feature scaling in machine learning is a critical step during the pre-processing of data before creating a machine learning model.
- Feature scaling is essential for machine learning models that calculate distances between data.
- Feature scaling could:
  - Avoid numerical overflow and speed up the algo
  - Reduce dominant effects of specific variables

$$0 \le x_1 \le 1$$
$$0 \le x_2 \le 1$$



Both parameters could be updated in equal proportions



Gradient of larger parameters dominates the updates





# Scaling the features

Let us use  $x_i$  for raw input and  $\tilde{x_i}$  for the transformed data. Common scaling practices include:



• Standardization (Z-score):

$$\widetilde{x_i} = \left(\frac{x_i - \mu_x}{\sigma_x}\right)$$

- Normalization:
  - Min-Max scaler over [0,1]:

$$\widetilde{x_i} = \left(\frac{x_i - \min(X)}{\max(X) - \min(X)}\right)$$

$$\widetilde{x_i} = 2 * \left( \frac{x_i - \text{Min}(X)}{\text{Max}(X) - \text{Min}(X)} \right) - 1$$

$$\widetilde{x_i} = \left(\frac{x_i - \text{Mean}(X)}{\text{Max}(X) - \text{Min}(X)}\right)$$



JON M.

**UtahState**University



# Scaling the features (class exercise)









```
0 \le x_1 \le 3-2 \le x_2 \le 0.5-100 \le x_3 \le 100-0.001 \le x_4 \le 0.001
```

 $98.6 \le x_5 \le 105$ 

Which of these ranges need to be scaled?







# Some general hints with scaling

- Be careful when scaling the time series data! Why?
- To avoid data leakage, it is a good practice to fit the scaler on the training data and then use it to transform the testing data.
- Scaling the data does NOT change the shape of the distributions.







#### Class Modules

- ✓ Module 1- Introduction to Deep Learning
- ✓ Module 2- Setting up Machine Learning Environment
- ✓ Module 3- Linear Regression (Econometrics approach)
- ✓ Module 4- Machine Learning Fundamentals
- Module 5- Linear Regression (Machine Learning approach)
- Module 6- Penalized Regression (Ridge, LASSO, Elastic Net)
- Module 7- Logistic Regression
- Module 8- K-Nearest Neighbors (KNN)
- Module 9- Classification and Regression Trees (CART)
- Module 10- Bagging and Boosting
- Module 11- Dimensionality Reduction (PCA)
- Module 12- Clustering (KMeans Hierarchical)



