Chapter 1

Homework 12235005 谭焱

1.1 Program1

计算初值为 cos(x) 的对流扩散方程 $u_t = -u_x + 0.1 u_{xx}$ 在时间 π 后的结果。 以 512 网格的 Q_2 方法结果作为精确解, 有如下误差结果,不难发现 Q_4 方法在误差上没有明显优势

1.2 BDF method stability domain

Exercise 1.1. Try to display the stability domain for the BDF methods for $3 \le p \le 6$. Solution.

• p=3. the characteristic equation is

$$(1 - \frac{6}{11}\mu)z^3 - \frac{18}{11}z^2 + \frac{9}{11}z - \frac{2}{11} = 0.$$

• p = 4. the characteristic equation is

$$(1 - \frac{12}{25}\mu)z^4 - \frac{48}{25}z^3 + \frac{36}{25}z^2 - \frac{16}{25}z + \frac{3}{25} = 0.$$

• p = 5. the characteristic equation is

$$(1 - \frac{60}{137}\mu)z^5 - \frac{300}{137}z^4 + \frac{300}{137}z^3 - \frac{200}{137}z^2 + \frac{75}{137}z - \frac{12}{137} = 0.$$

• p = 6. the characteristic equation is

$$(1 - \frac{60}{147}\mu)z^6 - \frac{360}{147}z^5 + \frac{450}{147}z^4 - \frac{400}{147}z^3 + \frac{225}{147}z^2 - \frac{72}{147}z + \frac{10}{147} = 0.$$

don't know how to plot, only find wiki picture;

1.3 2.2.1

Exercise 1.2. Derive the stability condition for Simpson's rule (2.2.10) when used for the equation $u_t = u_x$ with Q_4 .

Solution. the characteristic equation is

$$(1 - \frac{\mu}{3})z^2 - \frac{4\mu}{3}z - (1 + \frac{\mu}{3}) = 0.$$

with two roots be

$$|z_{1,2}| = \left|\frac{2\mu \pm \sqrt{3\mu^2 + 9}}{3 - \mu}\right| \le 1.$$

have $|2\mu + \sqrt{3\mu^2 + 9}| \le |3 - \mu|$ and $|2\mu - \sqrt{3\mu^2 + 9}| \le |3 - \mu|$ get $Re \ \mu = 0$, and $|Im \ \mu| \le \sqrt{3}$. By $Q_4 = i\lambda\sin(\xi)(1 - \frac{2}{3}\sin^2\frac{\xi}{2})$, induce

$$|\lambda \sin(\xi)(\frac{2}{3} - \frac{1}{3}\cos \xi)| \le \sqrt{3}.$$

Solve it
$$\frac{k}{h} = \lambda \le \sqrt[4]{27}(\sqrt{6} - \sqrt{2})$$