ゼミノート #4

Deformation Theory

七条彰紀

2018年7月31日

1 Automorphism Group of Stable Curve

[5] 3.A, [7] §1 を参照する.

C,D:: stable curves of genus g over a scheme S の間の isomorphism group の scheme としての構造を与える。この scheme を $\mathrm{Isom}(C,D)$ と書く。そして $\mathrm{Aut}(C)=\mathrm{Isom}(C,C)$ と定義し,これの scheme としての特徴を調べる。

Isom(C, D) の特徴付けをするため、次の関手を考える.

$$\mathcal{I}som_S(C,D): \quad \text{(Scheme over } \mathbb{C}) \quad \to \qquad \qquad \text{(Set)}$$

$$S' \qquad \qquad \mapsto \quad \{ \ C \times_{\mathbb{C}} S' \to D \times_{\mathbb{C}} S' \ :: \ S'\text{-isomorphism} \}$$

 $\iota\in \mathit{Isom}(C,D)(S')$ から得られる ι^* は $\omega_{C\times S'/S'}^\circ=\iota^*(\omega_{D\times S'/S'}^\circ)$ を満たす。また \otimes と交換する(すなわち Picard 群の間の準同型である。[3] Ex II.6.8)。このことから $\mathrm{Isom}(C,D)$ が適当な r をとると PGL(r+1) の部分群として書けることが分かる。

もう少し詳しく $\operatorname{Isom}(C,D)$ を書く. $n \geq 3$ を整数とする. 次のように r,d をとる.

$$r+1=h^0((\omega_{C/\mathbb{C}}^\circ)^{\otimes n})=(2n-1)(g-1), \qquad d=\deg(\omega_{C/\mathbb{C}}^\circ)^{\otimes n}=2n(g-1).$$

すると [3] II.7 より,C,D は $\mathbb{P}^r_{\mathbb{C}}$ の次数 d,arithmetic genus g の closed curve とみなせる(\mathbb{P}^r に埋め込める). なので Hildert scheme :: $\mathcal{H}=\mathcal{H}_{d,g,r}$ の点として扱うことが出来る.ここで次のように射を定める.

$$\mu: \quad PGL(r+1) \quad \to \quad \mathcal{H} \times \mathcal{H}$$

$$\alpha \qquad \mapsto \quad (\alpha \cdot [C], [D])$$

すると、 $\mathcal{I}som(C,D)$ は $\mu^{-1}(\Delta)$ によって表現される $^{\dagger 1}$. これを group scheme over \mathbb{C} :: $\mathrm{Isom}(C,D)$ とする. scheme over \mathbb{C} :: X について少々一般の理論を述べる。 $\mathbb{I} = \mathrm{Spec}\,\mathbb{C}[\epsilon]/(\epsilon^2)$ とおく (ref. [5] 1). [3] Ex II.2.8 より、 $t\in \underline{X}(\mathbb{I})$ は X の \mathbb{C} -rational point :: x と $T_x(X) = \mathfrak{m}_x/\mathfrak{m}_x^2 = \mathcal{T}_x$ の元に対応する。ここで \mathcal{T} は tangent sheaf :: $\mathcal{T} = \mathcal{H}om_{\mathcal{O}_X}(\Omega_X, \mathcal{O}_X)$ のことである。[5] でいう regular vector field とは \mathcal{T} の section のこと (と思われる)。

$$\Delta \cap \operatorname{im} \mu = \{ (\alpha \cdot [C], [D]) \mid \alpha \cdot [C] = [D] \}$$

の PGL(r+1) への逆像なので、この点と C,D の間の同型と対応することが分かるだろう.

定理 1.1

C:: stable curve of genus q > 2 について,

$$\operatorname{Ext}^{0}(\Omega_{C}, \mathcal{O}_{C}) = H^{0}(C, \mathcal{T}_{C}) = \mathcal{T}_{C}(C) = 0.$$

(証明). [7] §1.

 $\pi: \tilde{C} \to C$ を normalization of C とする. また \tilde{C} の connected component の個数を ν , それぞれの genus を g_i $(i=1,\ldots,\nu)$ とする.

今, $D \in \mathcal{T}_C(C)$ は pullback :: $\pi^* : \mathcal{T}_{\tilde{C}} \to \pi^* \mathcal{T}_C$ によって $^{\dagger 2}$. $\tilde{D} \in \mathcal{T}_{\tilde{C}}(\tilde{C})$ C の double point に π で対応 する点 (point laying over double point, plodp) で 0 になるような regular vector field :: $\tilde{D} \in \mathcal{T}_{\tilde{C}}(\tilde{C})$ に対応する (TODO). このような \tilde{D} は 0 しかないことを確かめれば, $\mathcal{T}_C(C) = 0$ がわかる.

主張 1.2

1点 $P \in \tilde{C}$ で $\tilde{D}_P = 0$ ならば, $\tilde{D} = 0$ である.

(証明). C :: reduced connected scheme に注意する. $P \in C$ において $\tilde{D} \in \mathcal{T}_C(C)$ が $\tilde{D}_P = 0$ を満たすとしよう. C の irreducible affine open cover :: $\mathfrak U$ をとり, $P \in U$ なる $U = \operatorname{Spec} A \in \mathfrak U$ をとって固定する. すると C :: reduced より A :: integral domain. $\tilde{D}|_U \in \mathcal{T}_C(U)$ が $P \in U$ で 0 になるのだから,次が成立する.

$$\exists u \in A - \mathfrak{p}_P, \quad u \cdot (\tilde{D}|_U) = 0.$$

A:: integral より、これは $\tilde{D}|_U=0$ を意味する。U と交わる irreducible affine open subset of C:: $V\in\mathfrak{U}$ についても、 $\tilde{D}|_{U\cap V}=0$ なので $\tilde{D}|_V=0$. C:: connected なので、このように V を取り続けることで、全ての $V\in\mathfrak{U}$ について $\tilde{D}|_V=0$ であることがわかる。sheaf の Identity Axiom から、C 全体で t=0.

したがって我々は \tilde{C} の各 component は少なくとも一つずつ plodp をもつこと示せば良い.

 $\mathcal{T}_{\tilde{C}} = \mathcal{H}om(\Omega_{\tilde{C}/\mathbb{C}}, \mathcal{O}_{\tilde{C}})$ なので、 $\mathcal{T}_{\tilde{C}}$ に対応する divisor は $K_{\tilde{C}}$. $\deg K_{\tilde{C}} = 2\tilde{g} - 2$ なので、 $\tilde{g} > 1$ ならば $\deg(-K_{\tilde{C}}) < 0$. したがって [3] Lemma IV.1.2 から $\dim_{\mathbb{C}} H^0(\tilde{C}, \mathcal{T}_{\tilde{C}}) = 0$. すなわち $\mathcal{T}_{\tilde{C}}(\tilde{C}) = 0$. なので以下では $\tilde{g}_i = 0, 1$ とする.

 $\tilde{g}_i=0,1$ であるとき, \tilde{C} の各 connected component は必ず plodp をもつ.実際,genus formula で $\delta=0$ とすると

$$g = \sum_{i} (\tilde{g}_i - 1) + 1 \ge 2$$

したがって $\sum_i (\tilde{g}_i-1)>0$ ということになる.しかし仮定から $\tilde{g}_i-1\leq 0$ なので, $\delta>0$. すなわち C は必ず node をもつ. \tilde{C} の各 component は smooth であることと C が connected であることも踏まえて考えると, \tilde{C} の各 component は少なくとも一つずつ plodp をもつことが分かる.(この辺りは [7] Lemma1.4 で詳しく述べられている).

別証明として [4] Prop27.4 がある.

命題 1.3

任意の閉点 $P \in Aut(C)$ について、 $\mathcal{O}_{Aut(C),P} \cong \mathbb{C}$. 特に Aut(C) :: reduced scheme.

 $^{^{\}dagger 2}$ R :: ring, A,B :: ring over R とする. 一般に、k-homomorphism :: $\phi:A\to B$ があるとき、 $D\in \mathrm{Der}_R(B)$ は $\phi^*:D\mapsto D\circ\phi$ によって $\mathrm{Der}_R(A)$ 个写すことが出来る.

(証明). $X = \operatorname{Aut}(C)$ は group scheme over $\mathbb C$ であるから,X のある点での local な性質は transition を用いて単位元 e での性質と言い換えられる.なので $A := \mathcal O_{X,e}$ のみを考える.X :: group scheme over $\mathbb C$ より $e :: \mathbb C$ -rational point なので,A が体ならばそれは $\mathbb C (= A/\mathfrak m_A)$ と同型である.よって我々は A が体であることのみ示せば良い.

上記の定理 (1.1) から, $\mathcal{T}_C(C)=0$. これは $C\times\mathbb{I}$ の \mathbb{I} -automorphism は自明なものしか無いことを意味する(後述). さらに $\mathrm{Aut}(C)$ の定義から,これは射 $\mathbb{I}\to\mathrm{Aut}(C)$ としては自明なものしか存在しないことを意味する. さらに [3] Ex II.2.8 より,これは $\mathfrak{m}_A/\mathfrak{m}_A^2=0$ を意味する.中山の補題から $\mathfrak{m}_A=0$. よって A は体である.

2 Definitions of Deformations and (Uni-)Versal Deformation.

定義 **2.1** (C-pointed scheme [8] §1.2.1)

scheme :: Y と \mathbb{C} -rational point :: $y_0 \in Y$ の組を \mathbb{C} -pointed scheme を呼び, (Y, y_0) と書く.

morphism of \mathbb{C} -pointed schemes :: $(S, s_0) \to (T, t_0)$ とは、moephism of schemes :: $\phi: S \to T$ であって、 $\phi(s_0) = t_0$ を満たすもののこと.

定義 **2.2** (Deformation of Scheme [8] §1.2.1, [5] §3.B) (i) deformation of X とは、以下のような pullback diagram のことである. ψ から $X \cong \mathcal{X} \times_Y \mathbb{C}$ が誘導される.

$$X \longrightarrow \mathcal{X}$$

$$\xi : \begin{cases} \text{p.b.} & \text{flat, surj.} \\ \mathbb{C} \xrightarrow{s} Y \end{cases}$$

A':: local artinian ring with $A'/\operatorname{Nil}(A')\cong\mathbb{C}$ を用いて $Y=\operatorname{Spec} A'$ と書ける場合, これは abstruct lifting of X to A' とも呼ばれる ([9] 4.2).

- (ii) 上の deformation of X :: ξ について、S のことを ξ の parameter space、X を ξ の total space と呼ぶ.
- (iii) 任意の scheme :: X と \mathbb{C} -pointed scheme :: (S, s_0) に対して、S が parameter space であるような deformation of X が存在する:

$$X \longrightarrow X \times_{\mathbb{C}} S$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{C} \longrightarrow S$$

これを product family または trivial family と呼ぶ.

(iv) morphism of \mathbb{C} -pointed schemes :: $(T, t_0) \to (S, s_0)$ は,parameter space が S である deformation :: ξ から base change によって次の deformation を誘導する.

$$X \longrightarrow \mathcal{X} \times_S T$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{C} \longrightarrow T$$

これを元の deformation の $f:(T,t_0)\to (S,s_0)$ による pullback と呼び、 $f^*\xi$ と書く(このノート独自?).

(v) isomorphism of deformations of X :: $\xi \to \eta$ とは、以下の可換図式が成立する同型 $\mathcal{X} \cong \mathcal{Y}, S \cong T$ のこと.

isomorphism of parameter spaces :: $(S, s_0) \to (T, t_0)$ と deformation から誘導される deformation は元の deformation と同型である.

定義 2.3 (Universal Deformation, [5] 3.B, [4] §15)

universal deformation for X とは,次の性質を満たす deformation of X :: ξ (parameter space :: S): 任意 の deformation of X :: η (parameter space :: T) にたいし,morphism of pointed schemes :: $f:T\to S$ が 一意に存在し, $f^*\xi\cong\eta$ となる.

Universal Deformation は、次の関手の表現対象であると言える.

$$\mathbf{Sch}/\mathbb{C} \ni S \mapsto \{ \text{Deformation of } X \}.$$

したがって全ての Deformation は universal deformation から得られる. しかし、当然ながらというべきか, universal deformation は殆どの場合で存在しない. そこで universal deformation への要求を

- $S' \to S$ & locally about S' にとるものとし,
- \bullet $U \rightarrow S$ の一意性は要求しない

と弱める. 一意 (uni-) ではないので、これを versal deformation と呼ぶ.

定義 2.4 (Versal Deformation)

(versal deformation の定式化が見つからないので保留. 見つけた限りでは versal deformation for scheme は次で意義する formal deformation でのみ定義されている. [1] では versal deformation for (complex) manifold が定義されているのみである.)

定義 2.5 (First Order Deformation)

 $D = \mathbb{C}[x]/(x^2), \epsilon = x \mod (x^2)$ とする. $\mathbb{I} = \operatorname{Spec} D$ の唯一の閉点を 0 で表す. $(\mathbb{I}, 0)$ 上の deformation ϵ , first order deformation (or infinitesimal deformation) と呼ぶ.

注意 2.6

X:: stable curve of genus g とする. first order deformation :: $\mathcal{X} \to \mathbb{I}$ は、moduli space の定義から、 $0 \in \mathbb{I}$ を $[X] = [\mathcal{X}_0] \in \overline{\mathcal{M}}_g$ へ写す $\mathbb{I} \to \overline{\mathcal{M}}_g$ に対応する.そしてこの射は、既に知られている通り Zariski tangent space at [X]:: $T_{[X]}$ の元に対応する.よって X の first order deformation から $T_{[X]}$ の元への対応がある.この対応は一対一であろうか?

補題 2.7

次の first order deformation of X を考える.

$$X \xrightarrow{\psi} \mathcal{X}$$

$$\downarrow \quad \text{p.b.} \quad \downarrow$$

$$\mathbb{C} \xrightarrow{0} \mathbb{I}$$

この時, ψ は closed imm. かつ同相写像である.

(証明). まず $\mathbb{C} \to \mathbb{I}$ が closed imm. であり、closed imm. が stable under base extension であることから、 ψ も closed imm. また closed imm. ならば finite である ([3] Ex II.5.5b). ψ が homeomorphism であることは local on codomain(target) なもの^{†3}なので、 \mathcal{X} :: affine と仮定して証明すれば十分.

以上から、 $\mathcal{X}=\operatorname{Spec} A, X=\operatorname{Spec} R, R::$ A-algebra, finitely generated as module と仮定して良い、また、 $\psi::$ closed imm. であるから、 $A\cong R/I$ なる I:: ideal of R が存在する。また仮定から $A\otimes_D\mathbb{C}\cong R$ かっ A:: flat D-module. そこで以下の D-module 完全列に $\otimes_D R$ とする。

$$0 \longrightarrow \epsilon D \longrightarrow \mathbb{C} \longrightarrow 0$$

すると次のように成る.

よって $(\epsilon D) \otimes_D R$ 同様 I は nilpotent ideal (i.e. $I^2 = 0$).

 $X = \operatorname{Spec} R$ の閉集合として

$$\mathcal{X} = \text{Spec } A = V(I) = V(I^2) = V((0)) = X$$

なので im $\psi = \mathcal{X}$. ψ :: closed imm. なので, これで ψ :: homeo が証明できた.

定義 2.8 (Restriction of First Order Deformation)

上の命題にある first order deformation of X について, U :: open subset of X をとる. locally ringed space :: $(\psi(U), \mathcal{O}_X|_{\psi(U)})$ を $\mathcal{X}|_U$ と書く.

3 First Order Deformation of a Nonsingular Variety.

補題 3.1

 $A :: \operatorname{ring}, X = \operatorname{Spec} A$ とする. この時, first order deformation of $X :: \mathcal{X}$ も affine scheme である.

(証明). [3] Ex II.3.1 への回答でもある.

 $\mathcal{I} = \ker(X \hookrightarrow \mathcal{X})$ とし、 \mathcal{F} :: quasi-coherent sheaf on X とする。今,補題 (2.7) の証明から $\mathcal{I}^2 = 0$ が得られる。また,明らかに $\mathcal{O}_X/\mathcal{I} \cong \mathcal{O}_X$. したがって次の SES(short exact sequence) が存在する.

$$0 \longrightarrow \mathcal{I}^{d+1}\mathcal{F} \longrightarrow \mathcal{I}^{d}\mathcal{F} \longrightarrow \mathcal{I}^{d}\mathcal{F} \otimes_{\mathcal{O}_{\mathcal{X}}} \mathcal{O}_{\mathcal{X}} \longrightarrow 0$$

^{†3} local on codomain に考えれば、特に全単射性が示せる.

次の LES が誘導される.

$$0 \longrightarrow H^0(\mathcal{X}, \mathcal{I}^{d+1}\mathcal{F}) \longrightarrow H^0(\mathcal{X}, \mathcal{I}^d\mathcal{F}) \longrightarrow H^0(\mathcal{X}, \mathcal{I}^d\mathcal{F} \otimes \mathcal{O}_X)$$

$$\longrightarrow H^1(\mathcal{X}, \mathcal{I}^{d+1}\mathcal{F}) \longrightarrow H^1(\mathcal{X}, \mathcal{I}^d\mathcal{F}) \longrightarrow H^1(\mathcal{X}, \mathcal{I}^d\mathcal{F} \otimes \mathcal{O}_X)$$

. . .

sheaf cohomology は abelian group の cohomology として構成されており、module structure とは無関係 に定まっている。そして X と $\mathcal X$ は homeo。したがって

$$H^i(\mathcal{X}, \mathcal{I}^d \mathcal{F} \otimes \mathcal{O}_X) = H^i(X, \mathcal{I}^d \mathcal{F} \otimes \mathcal{O}_X) = 0.$$

最後の等号は $\mathcal{I}^d\mathcal{F}\otimes\mathcal{O}_X$:: quasi-coherent \mathcal{O}_X -module と [3] Thm III.3.7 から得られる.

 $d=1(\implies \mathcal{I}^{d+1}=0)$ からはじめて d についての帰納法により

$$H^i(\mathcal{X}, \mathcal{I}^{d+1}\mathcal{F}) = H^i(\mathcal{X}, \mathcal{I}^d\mathcal{F} \otimes \mathcal{O}_X) = 0 \ (i > 0).$$

よって LES から $H^i(\mathcal{X}, \mathcal{I}^d\mathcal{F}) = 0 (i > 0)$. [3] Thm III.3.7 から \mathcal{X} :: affine.

補題 **3.2** ([8] Thm1.2.4)

X :: affine, nonsingular, finite type scheme over a field k とする. この時, X の first order deformation は自明な deformation :: $X \times_k \operatorname{Spec} D$ しか存在しない.

(証明). 上の補題から、deformation of $X = \operatorname{Spec} A$ は affine. そこで $\mathcal{X} = \operatorname{Spec} B$ とする.

$$B \xrightarrow{\longrightarrow} A$$

$$f \mid \text{p.b.} \mid$$

$$D \xrightarrow{\longrightarrow} k$$

f :: flat と、f の唯一の fiber :: $X = \operatorname{Spec} A$ が smooth であることから、[3] Thm III.10.2 より f :: smooth. 次の commutative diagram を考える.

$$B \xrightarrow{\longrightarrow} A$$

$$f \downarrow \qquad 0 \qquad \uparrow \mod \epsilon A$$

$$D \xrightarrow{\longrightarrow} A \otimes_k D$$

 $f::(\epsilon D\text{-})$ smooth over D なので、図式を可換にする射 $\phi:B\to A\otimes D$ が存在する.以下の主張から $\phi::$ iso なので、任意の deformation of X:: Spec B は自明な deformation :: Spec $A\otimes D=X\times\mathbb{I}$ と同型である.

主張 **3.3** ([8] Lemma A.4)

 $R:: \text{ring}, I:: \text{ideal of } R, F, G:: R\text{-module}, G:: \text{flat}, f: F \to G:: \text{homomorphism of } R\text{-modules}.$

I:: nilponent とし、誘導される homomorphism $f\otimes_R \mathrm{id}_{R/I}: F/IF \to G/IF$ が同型であるとする.この時,f:: iso.

(証明). $C = \operatorname{coker} f$ とする. 完全列 $F \to G \to C \to 0$ に $\otimes_R(R/I)$ を作用させる.

$$F/IF \longrightarrow G/IG \longrightarrow C/IC \longrightarrow 0$$

仮定から C/IC=0. 今 I :: nilponent なので $I\subset \operatorname{Jac}(R)$. したがって中山の補題から C=0. すなわち f :: surj.

 $K = \ker f$ とする. 完全列 $0 \to K \to F \to G \to 0$ に $\otimes_R(R/I)$ を作用させる.

$$0 \longrightarrow K/IK \longrightarrow F/IF \longrightarrow G/IG \longrightarrow 0$$

今, G :: flat から $\operatorname{Tor}_R(G,R/I)=0$. なのでこの SES から誘導される $\operatorname{Tor}_R(-,R/I)$ の LES を考えると, $K\otimes (R/I)\cong K/IK=0$ が得られる. 再び中山の補題から K=0. よって f :: inj.

補題 **3.4** ([8] Lemma1.2.6)

任意のk-algebra :: A について、次の群同型がある.

$$\left\{ \begin{array}{ll} D\text{-automorphism of }A\otimes_k D\\ \text{inducing identity on }A \end{array} \right\} \cong \mathrm{Der}_k(A).$$

D-automorphism of $A \otimes_k D$ のことを infinitesimal automorphism と呼ぶ.

(証明). 仮定から automorphism of $A \otimes_k D = A[\epsilon]$ は D-module homomorphism で, $\operatorname{mod} \epsilon A \otimes (\epsilon D)$ を合成すると identity になる. したがって次のように書ける.

$$\theta(x) = x + \epsilon D(x).$$

 θ が積を保つことと *D*-module homo. であることから, $D: A \otimes D \to A:: D$ -derivation.

 $\Omega_{A\otimes_k D/D}\cong\Omega_{A/k}\otimes_k D$ に注意すると, θ と $\mathrm{Der}_k(A)$ の対応が分かる.この対応が群準同型であることは明らか.

定理 3.5 ([8] Prop1.2.9)

X:: separated nonsingular scheme of finite type over k とする。特に, X:: nonsingular (abstruct) variety over K であればよい。この時,first oder deformation of X の同値類は $H^1(X,\mathcal{T}_X)$ の元と一対一に対応する。

(証明). \mathcal{X} :: first oder deformation of X を任意の取る. そして affine open cover of X:: $\{U_i\}_{i\in I}$ を任意に取る. この cover についての Čech cohomology を考えていく.

今, $\mathcal{X}|_{U_i}$:: first order deformation of U_i . 定理 (3.2) より, $\theta_i:U_i\times_k\mathbb{I}\to\mathcal{X}|_{U_i}$ が得られる. これを用いて, 各 $i,j\in I$ について

$$\theta_{ij} = \theta_i^{-1} \circ \theta_j : U_{ij} \times \mathbb{I} \to U_{ij} \times \mathbb{I}$$

が得られる。ただし $U_{ij}=U_i\cap U_j$ (以降の U_{ijk} なども同様)。補題 (3.4) から,これは $d_{ij}\in\Gamma(U_{ij},\mathcal{T}_X)$ に対応する.

 θ_{ij} は貼り合わせることが出来るのだから、Gluing Lemma を参照すれば $\theta_{ij}\theta_{jk}\theta_{ik}^{-1}=\mathrm{id}_{U_{ijk}\times\mathbb{I}}$ が得られる、補題 (3.4) の準同型で写せば、

$$d_{ij} + d_{jk} - d_{ik} = 0$$

すなわち Čeck 1-cocycle condition が得られる.

first order deformation of X が 2 つあり,その間に同型があるとしよう: $\Psi: \mathcal{X} \to \mathcal{X}'$. \mathcal{X}' について θ'_{ij}, d'_{ij} を \mathcal{X} 同様に定める.次の infiniterimal automorphism を考える.

$$\alpha_i = \theta_i' \circ \Psi|_{U_i} \circ \theta_i : U_i \times \mathbb{I} \to \mathcal{X}|_{U_i} \to \mathcal{X}'|_{U_i} \to U_i \times \mathbb{I}.$$

 α_i に $a_i \in \Gamma(U_i, \mathcal{T}_X)$ が対応しているとする. 計算すると $(\alpha_i|_{U_{ij}})^{-1}\theta'_{ij}(\alpha_j|_{U_{ij}}) = \theta_{ij}$ が得られる. すなわち,

$$d'_{ij} - d_{ij} = a_i - a_j.$$

よって $\{d_{ij}\}$ の同値類と $\{d'_{ij}\}$ の同値類は $\check{H}^1(X,\mathcal{T}_X)$ の中で等しい.

以上より、 \mathcal{X} から $\check{H}^1(X,\mathcal{T}_X)$ の元への対応は単射的である。逆に $\{d_{ij}\}$ から $\{\theta_{ij}\}$ の対応、 θ_{ij} による $U_i \times \mathbb{I}$ の貼り合わせへと手順を遡れば、 $\check{H}^1(X,\mathcal{T}_X)$ の元と first order deformation of X への対応が全射だと分かる。

最後に,
$$[3]$$
 Thm III. 4.5 から $\check{H}^1(X,\mathcal{T}_X)\cong H^1(X,\mathcal{T}_X)$.

4 Extension of Sheaves

4.1 Definitions

定義 **4.1** (Extension of Sheaves) (i) $\mathcal{F}, \mathcal{G} :: \mathcal{O}_X$ -module on ringed space X とする. extension of \mathcal{F} by \mathcal{G} とは、次のような完全列のこと.

$$(\mathcal{E}, \iota, \kappa): 0 \longrightarrow \mathcal{G} \xrightarrow{\iota} \mathcal{E} \xrightarrow{\kappa} \mathcal{F} \longrightarrow 0$$

(ii) $(\mathcal{E}, \iota, \kappa) \to (\mathcal{E}', \iota', \kappa')$:: homomorphism of extensions of \mathcal{F} by \mathcal{G} とは,次の図式を可換にする homomorphism of sheaves :: $\phi: \mathcal{E} \to \mathcal{E}'$ のこと.

(iii) $f: \mathcal{F}' \to \mathcal{F}$ と $(\mathcal{E}, \iota, \kappa)$:: extension of \mathcal{F} by \mathcal{G} について, $\mathcal{E}f^*$ を f と $\kappa: \mathcal{E} \to \mathcal{F}$ の pullback とする. すると次の図式で上の行は完全である(定義の直後で示す).

$$0 \longrightarrow \mathcal{G} \longrightarrow f^* \mathcal{E} \longrightarrow \mathcal{F}' \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

そこで新しく出来た extension of \mathcal{F}' by \mathcal{G} を pullback of \mathcal{E} by f と呼ぶ.

(iv) $g: \mathcal{G} \to \mathcal{G}'$ と $(\mathcal{E}, \iota, \kappa)$:: extension of \mathcal{F} by \mathcal{G} について, $g_*\mathcal{E}$:: pushfoward of \mathcal{F} by \mathcal{G} を次で定める. これが extension of \mathcal{F} by \mathcal{G}' になっていることは簡単に確かめられる.まず,sheaf としては $g_*\mathcal{E}$ は次の準同型の cokernel である.

$$\mathcal{G} \to \mathcal{G}' \oplus \mathcal{E}; \qquad \langle U, y \rangle \mapsto \langle U, g_U(y) \rangle \oplus \langle U, -\iota_U(y) \rangle.$$

 $\iota_{g_*\mathcal{E}}, \kappa_{g_*\mathcal{E}}$ は次で定める.

$$\iota_{g_*\mathcal{E}}: \mathcal{G}' \to g_*\mathcal{E}; \qquad \qquad y' \mapsto [y', 0]$$

$$\kappa_{g_*\mathcal{E}}: g_*\mathcal{E} \to \mathcal{F}; \qquad [y', e] \mapsto \kappa_{\mathcal{E}}(e)$$

extension of \mathcal{F} by \mathcal{G} が成す集合を $E(\mathcal{F},\mathcal{G})$ と書く.

定理 4.2

 $\mathcal{F},\mathcal{G}::\mathcal{O}_X$ -modules on ringed scheme ::X とする. この時, extension of \mathcal{F} by $\mathcal{G}::\mathcal{E}:0\to\mathcal{G}\to\mathcal{E}\to\mathcal{F}\to0$ から誘導される doundary map

$$d_{\mathcal{E}}: \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{G}, \mathcal{G}') \to \operatorname{Ext}^1(\mathcal{F}, \mathcal{G}')$$

は、 $g \in \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{G}, \mathcal{G}')$ を $g_*\mathcal{E}$ の同型類に写す. 特に、

$$\Phi: E(\mathcal{F}, \mathcal{G}) \ni \mathcal{E} \mapsto d_{\mathcal{E}}(\mathrm{id}_{\mathcal{G}}) \in \mathrm{Ext}^1_{\mathcal{O}_X}(\mathcal{E}, \mathcal{G})$$

は全単射である.

「特に」以降は特に有名で、例えば [3] ExIII.6.1 に証明の方針が述べられているし、加群の場合の類似の結果としては [10] pp.259-264 に詳しい証明がある.

定義 **4.3**(1) split extesion of \mathcal{F} by \mathcal{G} を $0_{\mathcal{F},\mathcal{G}}$ あるいは単に 0 と書く.

$$0_{\mathcal{F},\mathcal{G}}: 0 \longrightarrow \mathcal{G} \longrightarrow \mathcal{F} \oplus \mathcal{G} \longrightarrow \mathcal{F} \longrightarrow 0$$

- (2) $(\mathcal{E}, \iota, \kappa)$:: extension of sheaves について, $-\mathcal{E} := (\mathcal{E}, -\iota, \kappa)$ と定める.
- (3) (The Baer sum) $(\mathcal{E}, \iota, \kappa), (\mathcal{E}', \iota', \kappa')$:: extensions of \mathcal{F} by \mathcal{G} に対し、 $\mathcal{E} + \mathcal{E}'$ を以下のように定める.

$$0 \longrightarrow \mathcal{G} \oplus \mathcal{G} \xrightarrow{\iota \oplus \iota'} \mathcal{E} \oplus \mathcal{E}' \xrightarrow{\kappa \oplus \kappa'} \mathcal{F} \oplus \mathcal{F} \longrightarrow 0$$

$$\nabla \downarrow \qquad \downarrow$$

$$0 \longrightarrow \mathcal{G} \longrightarrow \mathcal{M} \longrightarrow \mathcal{F} \oplus \mathcal{F} \longrightarrow 0$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

ただし $\Delta: a \mapsto (a, a), \nabla: (a, b) \mapsto a + b$.

4.2 Propositions.

補題 4.4

以下の図式が可換であり、各行は完全であるとする.

この時, \mathcal{P} は pullback of f and κ .

(証明). 以下, $x \in \mathcal{X}$ と書いたら, x は適当な開集合 U 上の \mathcal{X} の section :: $x \in \mathcal{X}(U)$ を意味する. 各射に次のように名前を付ける.

- $\blacksquare \phi: \mathcal{X} \to \mathcal{P}$ の構成. 任意の $x \in \mathcal{X}$ をとり、これに対して $y \in \mathcal{P}$ を以下のように定める.
 - 1. $x' \in \mathcal{P}$ を $\bar{\kappa}(x') = \alpha(x)$ なるものとする. $\bar{\kappa}$:: surj ゆえ x' が存在することに注意.

 - 3. $p = x' + \bar{\iota}(t')$ とする.
- こうして得られる写像 $x \mapsto p$ が $\phi: \mathcal{X} \to \mathcal{P}$ を与える.

可換性を確認しよう.

$$\bar{\kappa}(\psi(x)) = \bar{\kappa}(x') + \bar{\kappa}(\bar{\iota}(t')) = \bar{\kappa}(x') = \alpha(x),$$

$$\bar{f}(\psi(x)) = \bar{f}(x') + \bar{f}(\bar{\iota}(t')) = \bar{f}(x') + \iota(t') = \bar{f}(x') + \beta(x) - \bar{f}(x') = \beta(x).$$

■ ϕ :: well-defined. x=0 の時 $\phi(x)=0$ であることを見れば十分. x=0 ならば $\bar{\kappa}(x')=0$ すなわち $x'\in\ker\bar{\kappa}=\mathrm{im}\,\bar{\iota}$. なので、 $\bar{\iota}(h)=x'$ となる $h\in\mathcal{G}$ がとれる.

$$\iota(t') = \beta(0) - \bar{f}(x') = -\bar{f}\bar{\iota}(h) = \iota(-h).$$

 ι :: inj. より t' = -h. したがって

$$p = x' + \bar{\iota}(t') = \bar{\iota}(h) + \bar{\iota}(-h) = 0.$$

 $\blacksquare \mathcal{X} \to \mathcal{P}$ の一意性. 最後に $\phi, \phi': \mathcal{Z} \to \mathcal{E}f^*$ が同じ可換性を持つと仮定して $\psi = \phi - \phi' = 0$ を示す. 仮定から $\bar{\kappa}\psi = 0, \bar{f}\psi = 0$ が成立する. まず前者から

$$\operatorname{im} \psi \subseteq \ker \bar{\kappa} = \operatorname{im} \bar{\iota}$$

なので任意の $x \in \mathcal{X}$ に対して $g \in \mathcal{G}$ が存在し, $\bar{\iota}(g) = \psi(x)$ となる.図式の可換性から次が成立する.

$$\iota(g) = \bar{f}\bar{\iota}(g) = \bar{f}\psi(x) = 0.$$

行の完全性から ι は単射なので g=0. 任意の x に対して $\psi(x)=\bar{\iota}(g)=\bar{\iota}(0)=0$. すなわち $\psi=0$.

補題 4.5

以下の図式が可換であり、各行は完全であるとする.

$$0 \longrightarrow \mathcal{G} \xrightarrow{\iota} \mathcal{E} \xrightarrow{\kappa} \mathcal{F} \longrightarrow 0$$

$$\downarrow g \downarrow \qquad \qquad \parallel \qquad \qquad \downarrow$$

$$0 \longrightarrow \mathcal{G}' \longrightarrow \mathcal{P} \longrightarrow \mathcal{F} \longrightarrow 0$$

この時, \mathcal{P} は pushout of g and ι .

(証明). 各射に次のように名前を付ける.

 $lacksymbol{\blacksquare} \mathcal{P} = \bar{g}(\mathcal{E}) + \bar{\iota}(\mathcal{G}'). \quad p \in \mathcal{P}$ を任意に取る.

- 1. $\kappa(e) = \bar{\kappa}(p)$ となる $e \in \mathcal{E}$ をとる. κ :: surj. ゆえ e が存在することに注意.
- 2. $\bar{\iota}(g') = p \bar{g}(e)$ となる $g' \in \mathcal{G}'$ をとる. $p \bar{g}(e) \in \ker \bar{\kappa} = \operatorname{im} \bar{\iota}$ ゆえ g' が存在することに注意.

すると $p = \bar{g}(e) + \bar{\iota}(g')$ となる. 実際,

$$\bar{g}(e) + \bar{\iota}(g') = \bar{g}(e) + (p - \bar{g}(e)) = p.$$

 $\blacksquare \phi: \mathcal{P} \to \mathcal{X}$ の構成. $p \in \mathcal{P}$ に対して, $p = \bar{g}(e) + \bar{\iota}(g')$ となる $e \in \mathcal{E}, g' \in \mathcal{G}'$ をとる.これを元に $\phi(p) = \alpha(e) + \beta(g')$ とする.すると明らかに $\phi \circ \bar{g} = \alpha, \phi \circ \bar{\iota} = \beta$ が成立する. ϕ が well-defined なら module homomorphism になることは明らか.

■ ϕ :: well-defined. $(p=)\bar{g}(e)+\bar{\iota}(g')=0$ となる $e\in\mathcal{E},g'\in\mathcal{G}'$ をとる. $\alpha(e)+\beta(g')=0$ となることを示せば良い. まず, $0=\bar{\kappa}(\bar{g}(e)+\bar{\iota}(g'))=\kappa(e)$. したがって $e\in\ker\kappa=\operatorname{im}\iota$ であり, $\iota(h)=e$ を満たす $h\in\mathcal{G}$ が存在する.

$$0 = \bar{g}(e) + \bar{\iota}(g') = \bar{g}\iota(h) + \bar{\iota}(g') = \bar{\iota}(g(h) + g').$$

 $\bar{\iota}$:: inj $\sharp \mathfrak{h}$ g(h) + g' = 0. $\sharp \mathfrak{I}$

$$\alpha(e) + \beta(g') = \alpha \iota(h) + \beta(-g(h)) = 0.$$

 $\blacksquare \phi$:: unique. $\phi': \mathcal{P} \to \mathcal{X}$ も ϕ と同様の条件を満たすとする. $P = \bar{\iota}(\mathcal{G}') + \bar{g}(\mathcal{E})$ なので,

$$\phi'(p) = \phi'(\bar{g}(e) + \bar{\iota}(g')) = \alpha(e) + \beta(g') = \phi(p).$$

補題 4.6

 $q, q': \mathcal{G} \to \mathcal{G}'$ と、extension of \mathcal{F} by \mathcal{G} をとる.

$$0 \longrightarrow \mathcal{G} \longrightarrow \mathcal{E} \longrightarrow \mathcal{F} \longrightarrow 0$$

以下が成り立つ.

- (a) $0_*\mathcal{E} = 0_{\mathcal{F},\mathcal{G}'}$,
- (b) $g_*(-\mathcal{E}) = -g_*\mathcal{E}$,
- (c) $g_*\mathcal{E} + g'_*\mathcal{E} = (g + g')_*\mathcal{E}$.

(証明).

■proof of (a). 以下の図式は可換である.

よって pushout の一意性から $0_*\mathcal{E} \cong \mathcal{G}' \oplus \mathcal{F} = 0_{\mathcal{F},\mathcal{G}'}$.

■proof of (b). 以下の可換図式を見よ.

$$0 \longrightarrow \mathcal{G} \xrightarrow{(-1)} \mathcal{G} \xrightarrow{\iota} \mathcal{E} \xrightarrow{\kappa} \mathcal{F} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow \mathcal{G}' = \mathcal{G}' \longrightarrow g_*(-\mathcal{E}) \longrightarrow \mathcal{F} \longrightarrow 0$$

(-1) は同型であることと、 $g \circ (-1) = (-1) \circ g$ から、以下も可換図式.

$$0 \longrightarrow \mathcal{G} = \mathcal{G} \xrightarrow{\iota} \mathcal{E} \xrightarrow{\kappa} \mathcal{F} \longrightarrow 0$$

$$\downarrow g \downarrow \qquad \qquad \downarrow g$$

$$\downarrow p.o. \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow \mathcal{G}' \xrightarrow{(-1)} \mathcal{G}' \longrightarrow g_*(-\mathcal{E}) \longrightarrow \mathcal{F} \longrightarrow 0$$

よって pushout の一意性から $g_*(-\mathcal{E}) \cong -g_*\mathcal{E}$. また $g_*(\mathcal{E}) \cong (-g)_*\mathcal{E}$ も分かる.

■proof of (c).

今,この図式は可換であり,各行は完全列である。 $(\kappa \oplus \kappa) \circ \Delta = \Delta \circ \kappa$ なので,pullback $(\mathcal{E} \oplus \mathcal{E})\Delta^*$ の普遍性から,図式を可換に保つ $\phi = \langle \Delta, \kappa \rangle : \mathcal{E} \to (\mathcal{E} \oplus \mathcal{E})\Delta^*$ が存在する.

右の縦の射は合成すると恒等射. したがって左の四角形は pushout diagram. pushout の一意性から一意性から $(\mathcal{E}\oplus\mathcal{E})\Delta^*\cong\Delta^*\mathcal{E}$.

このことから求める同型が得られる.

$$g_*\mathcal{E} + g_*'\mathcal{E} = \nabla_*(g_*\mathcal{E} \oplus g_*'\mathcal{E})\Delta^*$$

$$= \nabla_*(g \oplus g')_*(\mathcal{E} \oplus \mathcal{E})\Delta^*$$

$$= (\nabla_*(g \oplus g')_*\Delta_*)\mathcal{E}$$

$$= (\nabla \circ (g \oplus g') \circ \Delta)_*\mathcal{E}$$

$$= (g + g')_*\mathcal{E}.$$

(2 つめの等号は自明.)

補題 4.7

 $\mathcal{F},\mathcal{G}::\mathcal{O}_X$ -modules on ringed scheme ::X とする. この時, $E(\mathcal{F},\mathcal{G})$ には加法群の構造が定まる.

(証明). $0_{\mathcal{F},\mathcal{G}}$ が Bear sum についての単位元であること,

$$\mathcal{E} + 0 = \mathrm{id}_* \mathcal{E} + 0_* \mathcal{E} = (\mathrm{id} + 0)_* \mathcal{E} = \mathrm{id}_* \mathcal{E} = \mathcal{E}.$$

 $-\mathcal{E}$ が逆元であること,

$$\mathcal{E} + (-\mathcal{E}) = \mathrm{id}_* \mathcal{E} + (-\mathrm{id})_* \mathcal{E} = (\mathrm{id} - \mathrm{id})_* \mathcal{E} = 0_* \mathcal{E} = 0.$$

可換性.

$$\mathcal{E} + \mathcal{E}' = \nabla_* (\mathcal{E} \oplus \mathcal{E}') \Delta^* = \nabla_* (\mathcal{E}' \oplus \mathcal{E}) \Delta^* = \mathcal{E}' + \mathcal{E}.$$

結合律が成り立つこと,

$$\begin{split} &(\mathcal{E}_1 + \mathcal{E}_2) + \mathcal{E}_3 \\ = & \nabla_* ((\mathcal{E}_1 + \mathcal{E}_2) \oplus \mathcal{E}_3) \Delta^* \\ = & \nabla_* ((\nabla_* (\mathcal{E}_1 \oplus \mathcal{E}_2) \Delta^*) \oplus \mathcal{E}_3) \Delta^* \end{split}$$

(TODO)

補題 4.8

全単射 $\Phi: E(\mathcal{F}, \mathcal{G}) \to \operatorname{Ext}^1_{\mathcal{O}_X}(\mathcal{E}, \mathcal{G})$ は加法群の間の同型である.

(証明). 最初に次のことに注意する: $f+f'=\nabla\circ (f\oplus f')\circ \Delta$. したがって $\mathrm{Hom}(\mathcal{F},\mathcal{G})$ の加法は次のように定まる.

$$+: \mathrm{Hom}(\mathcal{F},\mathcal{G})^{\oplus 2} = \mathrm{Hom}(\mathcal{F}^{\oplus 2},\mathcal{G}^{\oplus 2}) \xrightarrow{(\circ \Delta)} \mathrm{Hom}(\mathcal{F}^{\oplus 2},\mathcal{G}) \xrightarrow{(\nabla \circ)} \mathrm{Hom}(\mathcal{F},\mathcal{G})$$

(TODO)

5 First Order Deformation of a Local Complete Intersection.

この節は 5.13 を証明するための必要最低限の定義と命題のまとめである。元の命題と比較して,このノートでは X を \mathbb{C} 上のものに限定し,deformation も一般の local artinian ring ではなく $D=\mathbb{C}[\epsilon]$ に限定している。したがって formal deformation([9] 6.1), abstruct lifting([9] 4.2), first order deformation が一致している。

以下,この節ではXを以下のようなものとする([9] Hypotheses4.1).

- flat,
- generically smooth,
- local complete intersection,
- finite type

scheme over \mathbb{C} .

特に stable curve over $\mathbb C$ はこれらの条件を満たす.

"local complete intersection"の定義を改めて書き下しておく.

定義 **5.1** ((local) complete intersection [9] p.21, [3] p.185)

X:: scheme of finite type over $\mathbb C$ が complete intersection であるとは次が成立すること: X は P:: smooth scheme over $\mathbb C$ ([3] III.10) に埋め込まれ,さらに ideal sheaf:: $\ker(X \hookrightarrow P)$ が $\operatorname{codim}(P,X)$ 個の global section で生成されること ([3] p.121).

X :: scheme of finite type over $\mathbb C$ が locally complete intersection であるとは $\mathfrak U$:: open covering of X が存在し、任意の $U \in \mathfrak U$ が complete intersection であること.

議論は、 $\nu(\mathcal{X}_1,\mathcal{X}_2)$ 、 $\mathcal{E}(\mathcal{X}_1,\mathcal{X}_2)$, $e(\mathcal{X}_1,\mathcal{X}_2)$ の対応の連鎖である。これらはいずれも first order deformations $:: \mathcal{X}_1,\mathcal{X}_2$ の「差」を表現する量である。ここでの「差」の意味を理解するには、最初に命題 (5.9)、(5.10) のステートメントを見るのが良い。そして自明な first order deformation of $X:: X \times D$ と与えられた first order deformation の「差」である $e(\mathcal{X},X \times D)$ によって first order deformation of X を分類する(定義 5.12)。

5.1 $\nu(X_1, X_2)$

定義 5.2

X:: complete intersection over $\mathbb C$ embedded in P とする. これの ideal sheaf を $\mathcal I\subseteq\mathcal O_P$ とする. $\mathcal X_1,\mathcal X_2::$ first order deformation of X とすると, $\mathcal X_1,\mathcal X_1::$ embedded in P となる. そこで ideal sheaf を それぞれ $\mathcal I_1,\mathcal I_2\subseteq\mathcal O_P$ とする. first order deformation of X の定義から, $\mathcal I_i/\epsilon\mathcal I_i\cong\mathcal I$ (i=1,2).

写像 $\mathcal{I} \to (\epsilon D) \otimes_{\mathbb{C}} \mathcal{O}_X$ を以下のように定める. まず、 $\langle U, f, \epsilon \rangle \mathcal{I}$ に対し、

$$\langle U, \tilde{f}_i \rangle \mod \epsilon \mathcal{I}_i = \langle U, f \rangle \ (i = 1, 2)$$

となる $\langle U, \tilde{f}_i \rangle$ が存在する. そこで

$$\langle U, f \rangle \mapsto \langle U, \tilde{f}_1 - \tilde{f}_2 \rangle \mod(\epsilon D) \otimes_{\mathbb{C}} \mathcal{I} \in (\epsilon D) \otimes_{\mathbb{C}} (\mathcal{O}_P / \mathcal{I}) = (\epsilon D) \otimes_{\mathbb{C}} \mathcal{O}_X$$

と写す. これは \tilde{f}_i のとり方に依らず, well-defined. この写像を $\nu(\mathcal{X}_1,\mathcal{X}_1)$ と書く.

以下の \mathbb{C} -module としての同型があるため、 $\nu(X_1, X_2)$ を以下のいずれの集合の元ともみなす.

$$\operatorname{Hom}_{\mathcal{O}_{P}}(\mathcal{I}, (\epsilon D) \otimes_{\mathbb{C}} \mathcal{O}_{X})$$

$$\cong \operatorname{Hom}_{\mathcal{O}_{P}}(\mathcal{I}/\mathcal{I}^{2}, (\epsilon D) \otimes_{\mathbb{C}} \mathcal{O}_{X})$$

$$\cong H^{0}(X, (\epsilon D) \otimes_{\mathbb{C}} (\mathcal{I}/\mathcal{I}^{2})^{\hat{}})$$

$$\cong (\epsilon D) \otimes_{\mathbb{C}} H^{0}(X, (\mathcal{I}/\mathcal{I}^{2})^{\hat{}})$$

$$\cong H^{0}(X, (\mathcal{I}/\mathcal{I}^{2})^{\hat{}})$$

命題 **5.3** ([9] Prop2.8a,b,c,d,e)

X :: complete intersection embedded in P とする.

- (a) $\nu(\mathcal{X}_1, \mathcal{X}_2) = 0 \iff \mathcal{X}_1 = \mathcal{X}_2.$
- (b) $\nu(\mathcal{X}_1, \mathcal{X}_2) + \nu(\mathcal{X}_2, \mathcal{X}_3) = \nu(\mathcal{X}_1, \mathcal{X}_3)$.
- (c) $\nu(\mathcal{X}_2, \mathcal{X}_1) = -\nu(\mathcal{X}_1, \mathcal{X}_2)$.
- (d) 任意の \mathcal{X} :: first order deformation of X, 任意の $\nu \in H^0(X,(\mathcal{I}/\mathcal{I}^2)^{\hat{}})$ に対し, \mathcal{Y} :: first order deformation of X が存在して, $\nu = \nu(\mathcal{X},\mathcal{Y})$ となる.

(証明). (d) のみ証明する. 他は自明であろう.

 \mathcal{I} :: ideal sheaf of X, \mathcal{I}' :: ideal sheaf of \mathcal{X} とし、sheaf of ideal :: $\mathcal{J} \subseteq \mathcal{O}_P$ を次のように定める. (これが sheaf of ideal であることは自明.)

$$\mathcal{J}(U) = \{ \tilde{f}' \in \mathcal{O}_P(U) \mid \exists f' \in \mathcal{I}'(U), \quad (f' - \tilde{f}') \bmod \epsilon \mathcal{I}(U) = v_U(\tilde{f}' \bmod \epsilon \mathcal{O}_P(U)) \}$$

 $\mathcal J$ で定まる P の subscheme :: $\mathcal Y$ が X の deformation であることを示す。これは自然な全射 $\mathcal J/\epsilon\mathcal J\to\mathcal J$ が単射(したがって同型)であることを示せば良い ([9] Lemma 2.6). (TODO)

5.2 $\mathcal{E}(\mathcal{X}_1, \mathcal{X}_2)$

補題 5.4

X :: complete intersection over \mathbb{C} embedded in P とし,ideal sheaf は $\mathcal{I} \subseteq \mathcal{O}_P$ であるとする.この時, $\mathcal{I}/\mathcal{I}^2 ::$ locally free sheaf of rank $n := \dim X$.

(証明). local な問題なので、 $x \in X \subset P$ での $\mathcal{I}/\mathcal{I}^2$ の stalk が free module であることを示す。 $A := \mathcal{O}_{P,x}$ とし、 $I := \mathcal{I}_x$ を生成する regular sequence を x_1, \ldots, x_r とする。[2] Lemma A.6.1 より(この文献の証明は 同値な命題 [6] Thm16.2 のものより美しい)、graded ring として $(A/I)[t_1, \ldots, t_r] \cong \bigoplus_{d \geq 0} (I^d/I^{d+1})$. 1次成分の同型から $(A/I)^{\oplus r} \cong I/I^2$.

補題 5.5 (First Fundamental Exact Sequence)

X :: **complete intersection** over \mathbb{C} embedded in P とし,ideal sheaf は $\mathcal{I} \subseteq \mathcal{O}_P$ であるとする.この時,以下は exact.

$$0 \longrightarrow \mathcal{I}/\mathcal{I}^2 \stackrel{d}{\longrightarrow} (\Omega_{P/\mathbb{C}})|_X \longrightarrow \Omega_{X/\mathbb{C}} \longrightarrow 0$$

すなわち, $(\Omega_{P/\mathbb{C}})|_X$:: extension of $\Omega_{X/\mathbb{C}}$ by $\mathcal{I}/\mathcal{I}^2$.

(証明). よく知られている通り、最初の射が単射であることを示しさえすれば良い.

 $\mathcal{K}=\ker d$ とすると, $\mathcal{K}\subseteq\mathcal{I}/\mathcal{I}^2$. したがって $\mathcal{I}/\mathcal{I}^2$ 同様 \mathcal{K} も locally free. 一方, [3] ThmII.8.17(2) の証明より d は irreducible point の近傍で injective. したがって Supp \mathcal{K} :: support of \mathcal{K} は Sing \mathcal{X} :: \mathcal{X} の singular points である. \mathcal{X} についての仮定からこれは離散集合で、すなわち開集合を含まない。もし $\mathcal{K}_x\neq 0$ ならば、 \mathcal{K} は trivialization open cover を持たないので、 \mathcal{K} :: locally free に反する。よって $\mathcal{K}=\ker d=0$.

定義 5.6

 $U \subseteq X$:: complete intersection over $\mathbb C$ embedded in P とする. $\mathcal X_1, \mathcal X_2$:: first order deformation of X について、

$$\mathcal{E}(\mathcal{X}_1|_U, \mathcal{X}_2|_U) := \nu(\mathcal{X}_1|_U, \mathcal{X}_2|_U)_*((\Omega_{P/\mathbb{C}})|_U) = (\nu(\mathcal{X}_1, \mathcal{X}_2)|_U)_*((\Omega_{P/\mathbb{C}})|_U)$$

を extension of $\Omega_{U/\mathbb{C}}$ by $(\epsilon D) \otimes_{\mathbb{C}} \mathcal{O}_U$ として定める.

補題 5.7

 $U \subseteq X$:: **affine complete intersection** over \mathbb{C} embedded in P とする. この時 X:: finite type over \mathbb{C} なので $U \hookrightarrow \mathbb{A}^n_{\mathbb{C}}$:: closed embedding が存在する. \mathcal{U} :: first order deformation of $U^{\dagger 4}$ について, $U \hookrightarrow \mathbb{A}^n_{\mathbb{C}}$ の拡張 $\mathcal{U} \hookrightarrow \mathbb{A}^n_D$ が存在する.

補題 5.8

 $U\subseteq X$:: **affine complete intersection** over $\mathbb C$ embedded in P とする. P_1,P_2,P_3 :: nonsingular affine scheme over $\mathbb C$ と $U\hookrightarrow P_i$ が与えられているとする. $\mathcal P_i=P_i\times_{\mathbb C} D$ への U の lifting (first order deformation):: $\mathcal U_i\to\mathcal P_i$ を任意にとり、対応する extension of $\Omega_{U/\mathbb C}$ by $(\epsilon D)\otimes_{\mathbb C} \mathcal O_U$ を $\mathcal E_i$ とする.

この時同型 $\alpha_{j,i}: \mathcal{E}_i \xrightarrow{\cong} \mathcal{E}_j$ が存在し,cocycle condition :: $\alpha_{1,3} = \alpha_{1,2} \circ \alpha_{2,3}$ が成立する.

したがって $\{U_i\}$:: open affine, complete intersection covering of X について, $\mathcal{E}(\mathcal{X}_1|_{U_i},\mathcal{X}_2|_{U_i})$ の貼り合わせることが出来^{†5},こうして $\mathcal{E}(\mathcal{X}_1,\mathcal{X}_2)$ を得る.

命題 5.9 ([9] Prop4.9a,b,c,f)

 $\mathcal{X}_1, \mathcal{X}_2$:: first order deformations of X とする.

- (a) $\mathcal{E}(\mathcal{X}, \mathcal{X}) \cong 0_{\Omega_{X/\mathbb{C}}, (\epsilon D) \otimes \mathcal{O}_X}$.
- (b) $\mathcal{E}(\mathcal{X}_2, \mathcal{X}_1) = -\mathcal{E}(\mathcal{X}_1, \mathcal{X}_2)$.
- (c) $\mathcal{E}(\mathcal{X}_1, \mathcal{X}_2) + \mathcal{E}(\mathcal{X}_2, \mathcal{X}_3) \cong \mathcal{E}(\mathcal{X}_1, \mathcal{X}_3)$.
- (d) 任意の \mathcal{E} :: extension of $\Omega_{X/\mathbb{C}}$ by $(\epsilon D) \otimes_{\mathbb{C}} \mathcal{O}_X$ と任意の \mathcal{X} :: first order deformation of X に対し,

$$\mathcal{E} \cong \mathcal{E}(\mathcal{X}, \mathcal{Y})$$

$$\mathcal{E}(\mathcal{X}_1|_U,\mathcal{X}_2|_U)|_V \cong (\nu(\mathcal{X}_1,\mathcal{X}_2)|_V)_*(\Omega_{P/\mathbb{C}}|_V) \cong \nu(\mathcal{X}_1|_V,\mathcal{X}_2|_V)_*(\Omega_{P/\mathbb{C}}|_V).$$

 $^{^{\}dagger 4}$ 補題 (3.1) よりこれも affine.

 $^{^{\}dagger 5}$ 次のことに注意して上の二つの補題を使う: restriction of sheaves to open subset は left adjoint functor であるから, pushout of extensions (colimit) を保つ,よって $V \subseteq U$ について

なる \mathcal{Y} :: first order deformation of X が存在する.

- (d) を命題 (5.10) の後に証明する. 他は命題 (5.3) の対応する命題と補題 (4.6) から得られる.
- 命題 **5.10** ([9] Prop3.9, Prop4.10) (a) $\mathcal{X}_1, \mathcal{X}_2$:: first order deformation of X とする. この時, splittings of $\mathcal{E}(\mathcal{X}_1, \mathcal{X}_2)$ と isomorphisms :: $\mathcal{X}_1 \cong \mathcal{X}_2$ の間に一対一対応がある. さらにこの対応を通して, extensions の加法と同型の合成が対応する $^{\dagger 6}$.
- (b) また、 $\mathcal{E}_1, \mathcal{E}_2$:: extension of sheaves とする. この時 splittings of $\mathcal{E}_1 \mathcal{E}_2$ と isomorphisms :: $\mathcal{E}_1 \cong \mathcal{E}_2$ の間に一対一対応がある.

命題 (5.9)(d) の証明. まず $\{X_{\alpha}\}_{\alpha}$ を X の affine open cover とし, $\mathcal{X}_{\alpha}=\mathcal{X}|_{X_{\alpha}}$ とおく. \mathcal{X} :: finite type over \mathbb{C} なので,うまく cover を取れば $\mathcal{X}_{\alpha} \hookrightarrow \mathbb{A}^n_{\mathbb{C}}$ が存在するように出来る.この embedding に対応する conormal bundle of X_{α} を \mathcal{C}_{α} とする.すると以下の SES が存在する.

$$E: 0 \longrightarrow \mathcal{C}_{\alpha} \longrightarrow \Omega_{\mathbb{A}^{n_{\alpha}}}|_{X_{\alpha}} \longrightarrow \Omega_{X_{\alpha}} \longrightarrow 0$$

この extension を $E:=\Omega_{\mathbb{A}^{n_{\alpha}}}|_{X_{\alpha}}$ と略す. ここから Ext の LES が誘導される.

$$\operatorname{Hom}_{\mathcal{O}_{X_{\alpha}}}(\mathcal{C}_{\alpha}, (\epsilon D) \otimes \mathcal{O}_{X_{\alpha}}) \xrightarrow{-d_{E}} \operatorname{Ext}^{1}_{\mathcal{O}_{X_{\alpha}}}(\Omega_{X_{\alpha}}, (\epsilon D) \otimes \mathcal{O}_{X_{\alpha}}) \longrightarrow \operatorname{Ext}^{1}_{\mathcal{O}_{X_{\alpha}}}(\Omega_{\mathbb{A}^{n_{\alpha}}}|_{X_{\alpha}}, (\epsilon D) \otimes \mathcal{O}_{X_{\alpha}}) = 0$$

右の = 0 は [3] Prop III.6.7, Prop III.6.3, Thm III.3.7 から得られる. したがって d_E :: surj.

なので定理 (4.2) より, $f_{\alpha}: \mathcal{C}_{\alpha} \to (\epsilon D) \otimes \mathcal{O}_{X_{\alpha}}$ と同型 $(f_{\alpha})_*E \cong \mathcal{E}|_{X_{\alpha}}$ が存在する.一方命題 (5.3) より, $f_{\alpha} = \nu(\tilde{\mathcal{X}}_{\alpha}, \mathcal{X}_{\alpha})$ を満たす first order deformation of $X_{\alpha}:: \tilde{\mathcal{X}}_{\alpha} \subseteq \mathbb{A}_{D}^{n_{\alpha}}$ が存在する.

こうして得られる
$$\{\mathcal{X}_{\alpha}\}_{\alpha}$$
 を貼り合わせる. 命題 (5.10) (TODO)

5.3 $e(X_1, X_2)$

定義 5.11

 $T^i(X) = \operatorname{Ext}_{\mathcal{O}_X}^i(\Omega_{X/\mathbb{C}}, \mathcal{O}_X)$ とおく. \mathcal{X} :: first order deformation of X に対し,

$$e(\mathcal{X}_1, \mathcal{X}_2) \in \operatorname{Ext}^1(\Omega_{X/\mathbb{C}}, (\epsilon D) \otimes_{\mathbb{C}} \mathcal{O}_X) \cong (\epsilon D) \otimes T^1(X) \cong T^1(X) \cong \operatorname{Hom}((\epsilon D)^*, T^1(X))$$

を, $\mathcal{E}(\mathcal{X}, X \times D)$ に対応する元とする (4.2).

補題 (4.8) より,命題 (5.9),(5.10) と同様の命題が $e(\mathcal{X}_1,\mathcal{X}_2)$ についても性質する.

定義 5.12 (Kodaira-Spencer class/map, [9])

 $T^i(X) = \operatorname{Ext}_{\mathcal{O}_X}^i(\Omega_{X/\mathbb{C}}, \mathcal{O}_X)$ とおく. \mathcal{X} :: first order deformation of X に対し,

$$k_{\mathcal{X}} = e(\mathcal{X}, X \times D) \in T^1(X) \cong \operatorname{Hom}((\epsilon D)^*, T^1(X))$$

とおく. この $k_{\mathcal{X}}$ を Kodaira-Spencer class of \mathcal{X} と呼ぶ、対応する写像 $K_{\mathcal{X}}: (\epsilon D)^*, T^1(X)$ を Kodaira-Spencer map of \mathcal{X} と呼ぶ、

^{†6} すなわち $\phi_1: \mathcal{X}_1 \cong \mathcal{X}_2, \phi_2: \mathcal{X}_2 \cong \mathcal{X}_3$ について, $\phi_2\phi_1: \mathcal{X}_1 \cong \mathcal{X}_3$ は $\mathcal{E}(\mathcal{X}_1, \mathcal{X}_3)$ に対応する.

5.4 Complete Classification.

定理 5.13

First order deformation of X の同値類と $\operatorname{Ext}^1_{\mathcal{O}_X}(\Omega_{X/\mathbb{C}},\mathcal{O}_X)$ の元は一対一に対応する. (cf. [9] Prop 6.12)

(証明). 命題 (5.9), (5.10) より,
$$\mathcal{X} \mapsto k_{\mathcal{X}}$$
 がこの対応を与えることは明らか.

系 5.14

X:: nonsingular and have finite dimention ならば、First order deformation of X の同値類と $H^1(X,\mathcal{T}_X)$ の元は一対一に対応する.

(証明). 仮定より、 $\Omega_{X/\mathbb{C}}$:: locally free sehaf of finite rank. したがって [3] PropIII.6.7, Prop II.6.3 から次の同型が成立する.

$$\operatorname{Ext}^1_{\mathcal{O}_X}(\mathcal{O}_X \otimes \Omega_{X/\mathbb{C}}, \mathcal{O}_X) \cong \operatorname{Ext}^1_{\mathcal{O}_X}(\mathcal{O}_X, \mathcal{T}_X \otimes \mathcal{O}_X) \cong H^1(X, \mathcal{T}_X)$$

6 Two Examples of Other Deformation Theories

deformation theory の対象は scheme の他にもある. 例えば, 次の二つがある.

Deformation of a coherent sheaf :: F on a scheme X, over a fixed scheme

 \mathcal{X} :: deformation of X over (S, s_0) とする. deformation of F over X とは, \mathcal{F} :: flat coherent sheaf on \mathcal{X} と homomorphism :: $\phi: \mathcal{F} \to F$ の組であって,誘導される射

$$\phi \otimes_{\mathcal{O}_{\mathcal{X}}} 1_{\mathcal{O}_{\mathcal{X}}} : \mathcal{F} \otimes_{\mathcal{O}_{\mathcal{X}}} \mathcal{O}_{\mathcal{X}} \to F$$

が同型であるもの. (ref. [4] §7, p.53)

- Deformation of a map $f: X \to Y$ with both X and Y fixed -

X,Y:: scheme, $(S,s_0)::$ \mathbb{C} -pointed scheme, $f:X\to Y::$ morphism とする. Deformation of a map $f:X\to Y$ with both X and Y fixed とは morphism $:: \bar f:X\times S\to Y\times S$ であって, $\bar f|_{X\times \{s_0\}}=f$ であるもの. (ref. [5]p.93)

それぞれ、first order deformation が成す空間が分かっている.

定理 **6.1** ([4] Thm2.7)

X:: scheme over \mathbb{C} , F:: coherent sheaf on X とする. この時, F の first order deformation とは, \mathcal{F} :: coherent sheaf on $\mathcal{X} = X \times_{\mathbb{C}} D$ と homomorphism :: $\phi : F \to \mathcal{F}$ の組であって誘導される射 $\phi \otimes_D 1_{\mathbb{C}} : \mathcal{F} \otimes \mathbb{C} \to F$ が同型であるものとする.

この時、first order deformation of F over $\mathcal X$ の同型類と $\operatorname{Ext}^1_{\mathcal O_X}(F,F)$ の元とが、一対一対応する.

系 **6.2** ([4] Prop2.6)

上の定理で F を invertible sheaf に限定すると, first order deformation of F over $\mathcal{X} = X \times D$ の同型類は

 $H^1(X, \mathcal{O}_X)$ の元と一対一対応する.

(証明). 系 (5.14) の証明と全く同様.

定理 6.3

X,Y: flexed scheme, $f:X\to Y$ をとる. この時, first order deformation of a map f with both X and Y fixed の同型類と, $H^0(X,f^*\mathcal{T}_Y)$ の元とが一対一対応する.

こちらについては詳しい文献が見つかっていない. しかし, "Deformation of a map $f: X \to Y$ with only Y fixed"については, 解析的な場合について [1] §8 で述べられている.

7 Functor of Artin Rings - Abstruct Deformation Theory

3 つの圏を次のように定める. L :: local noetherian \mathbb{C} -algebras with residue field \mathbb{C} とする.

 $(LA)_L$: the category of local artinian L-algebras with residue field \mathbb{C} .

 $(CLN)_L$: the category of complete local noetherian L-algebras with residue field \mathbb{C} .

 $(LN)_L$: the category of local noetherian L-algebras with residue field $\mathbb C.$

 $L = \mathbb{C}$ の時は添字を略す. (ref. [8] p.1)

 $(LA)_L \subset (CLN)_L \subset (LN)_L$ という包含関係があることに注意.

定義 7.1 ([8] §2.2)

以下のような functor を functor of artin rings と呼ぶ.

$$F: (LA)_L \to (Sets).$$

ここで $L \in (CLN)$.

 $F(\mathbb{C})$ が 1 元集合 (singleton) ならば、F は特に predeformation functor と呼ばれる.

F が functor

$$\operatorname{Hom}_{(\operatorname{CLN})_L}(R,-) \qquad R \in (\operatorname{CLN})_L$$

と同型である時, F:: prorepresentable と言う.

定義 7.2 ([8] §2.2)

formal element semiuniversal formal element universal formal element

predeformation functor :: F が (semi)universal formal element を持つか、ということについては、以下の定理が大変有用である。逆に以下の定理が predeformation functor を考える重要性を示している。

定理 7.3 ([8] Thm 2.3.2, p.56)

参考文献

- [1] Enrico Arbarello, Maurizio Cornalba, and Phillip Griffiths. Geometry of Algebraic Curves: Volume II with a contribution by Joseph Daniel Harris (Grundlehren der mathematischen Wissenschaften). Springer, 2011 edition, 4 2011.
- [2] William Fulton. Intersection Theory. Springer, 2nd ed. 1998 edition, 7 1998.
- [3] Robin Hartshorne. Algebraic Geometry (Graduate Texts in Mathematics. 52). Springer, 1st ed. 1977. corr. 8th printing 1997 edition, 4 1997.
- [4] Robin Hartshorne. Deformation Theory (Graduate Texts in Mathematics). Springer, 2010 edition, 12 2009.
- [5] Ian Morrison Joe Harris. Moduli of Curves (Graduate Texts in Mathematics). Springer, 1998 edition, 8 1998.
- [6] Hideyuki Matsumura. Commutative Ring Theory (Cambridge Studies in Advanced Mathematics). Cambridge University Press, revised edition, 5 1989.
- [7] David Mumford Pierre Deligne. The irreducibility of the space of curves of given genus. *Publications Mathématiques de l'Institut des Hautes Études Scientifiques*, Vol. 36, No. 1, pp. 75–109, Jan 1969.
- [8] Edoardo Sernesi. Deformations of Algebraic Schemes (Grundlehren der mathematischen Wissenschaften). Springer, 11 2010.
- [9] Angelo Vistoli. The deformation theory of local complete intersections. https://arxiv.org/abs/alg-geom/9703008.
- [10] 志甫淳. 層とホモロジー代数 (共立講座 数学の魅力). 共立出版, 1 2016.