LECTURE 7: NETWORK FORMATION PROCESSES

Network Formation Processes

What do we observe that needs explaining

- Small-world model?
 - Diameter
 - Clustering coefficient

- Node degree distribution
 - What fraction of nodes has degree k (as a function of k)?
 - Prediction from simple random graph models: p(k) =exponential function of k
 - Observation: Power-law: $p(k) = k^{-\alpha}$

Degree Distributions

Node Degrees in Networks

lacksquare Take a network, plot a histogram of $oldsymbol{P}(oldsymbol{k})$ vs. $oldsymbol{k}$

Flickr social network n = 584,207,m = 3,555,115

Node Degrees in Networks

□ Plot the same data on log-log scale:

How to distinguish:

$$P(k) \propto \exp(-k)$$
 vs. $P(k) \propto k^{-\alpha}$?

Take logarithms:

if
$$y = f(x) = e^{-x}$$
 then $\log(y) = -x$
If $y = x^{-\alpha}$ then $\log(y) = -\alpha \log(x)$
So, on log-log axis power-law looks like a straight line of slope $-\alpha$!

Node Degrees: Faloutsos³

Internet Autonomous Systems [Faloutsos, Faloutsos and Faloutsos, 1999]

Node Degrees: Web

□ The World Wide Web [Broder et al., 2000]

Node Degrees: Barabasi&Albert

Other Networks [Barabasi-Albert, 1999]

Exponential vs. Power-Law

 \square Above a certain x value, the power law is always higher than the exponential!

Exponential vs. Power-Law

Power-law vs. Exponential on log-log and log-lin scales

x ... logarithmic axis y ... logarithmic axis

x ... linear y ... logarithmic

Exponential vs. Power-Law

Power-Law Degree Exponents

- Power-law degree exponent is typically 2 < α < 3
 - Web graph:
 - $\alpha_{in} = 2.1$, $\alpha_{out} = 2.4$ [Broder et al. 00]
 - Autonomous systems:
 - $\alpha = 2.4 \, [Faloutsos^3, 99]$
 - Actor-collaborations:
 - $\alpha = 2.3$ [Barabasi-Albert 00]
 - Citations to papers:
 - $\alpha \approx 3$ [Redner 98]
 - Online social networks:
 - $\alpha \approx 2$ [Leskovec et al. 07]

Scale-Free Networks

Definition:

Networks with a power law tail in their degree distribution are called "scale-free networks"

- Where does the name come from?
 - Scale invariance: There is no characteristic scale
 - lacksquare Scale-free function: $f(ax) = a^{\lambda}f(x)$
 - Power-law function: $f(ax) = a^{\lambda}x^{\lambda} = a^{\lambda}f(x)$

Power-Laws are Everywhere

Anatomy of the Long Tail

Not Everyone Likes Power-Laws ©

MATHEMATICS OF POWER-LAWS

Heavy Tailed Distributions

Degrees are heavily skewed:

Distribution P(X > x) is heavy tailed if:

$$\lim_{x\to\infty}\frac{P(X>x)}{e^{-\lambda x}}=\infty$$

□ Note:

■ Normal PDF:
$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

Exponential PDF: $p(x) = \lambda e^{-\lambda x}$

■ then
$$P(X > x) = 1 - P(X \le x) = e^{-\lambda x}$$

are not heavy tailed!

Heavy Tailed Distributions

- Various names, kinds and forms:
 - Long tail, Heavy tail, Zipf's law, Pareto's law
- Heavy tailed distributions:
 - □ P(x) is proportional to:

power law $P(x) \propto x^{-\alpha}$

power law with cutoff stretched exponential

log-normal

$$P(x) \propto x^{-\alpha}$$

$$x^{-\alpha} e^{-\lambda x}$$

$$x^{\beta-1} e^{-\lambda x^{\beta}}$$

$$\frac{1}{x} \exp \left[-\frac{(\ln x - \mu)^2}{2\sigma^2} \right]$$

Mathematics of Power-laws

What is the normalizing constant?

$$p(x) = Z x^{-\alpha} Z = ?$$

Continuous approximation

$$1 = \int_{x_{min}}^{\infty} p(x) dx = Z \int_{x_m}^{\infty} x^{-\alpha} dx$$

$$\square \Rightarrow Z = (\alpha - 1)x_m^{\alpha - 1}$$

p(x) diverges as $x \rightarrow 0$ so x_m is the minimum value of the power-law distribution $x \in [x_m, \infty]$

$$p(x) = \frac{\alpha - 1}{x_m} \left(\frac{x}{x_m}\right)^{-\alpha}$$

Mathematics of Power-laws

What's the expectation of a power-law random variable x?

$$\square E[x] = \int_{x_m}^{\infty} x \, p(x) dx = z \int_{x_m}^{\infty} x^{-\alpha+1} dx$$

$$\Box = -\frac{Z}{2-\alpha} [x^{2-\alpha}]_{x_m}^{\infty} = -\frac{(\alpha-1)x_m^{\alpha-1}}{2-\alpha} [\infty^{2-\alpha} - x_m^{2-\alpha}]$$
Need: $\alpha > 2$!

$$\Rightarrow E[x] = \frac{\alpha - 1}{\alpha - 2} x_m$$

Power-law density:

$$p(x) = \frac{\alpha - 1}{x_m} \left(\frac{x}{x_m}\right)^{-\alpha}$$
$$Z = \frac{\alpha - 1}{x_m^{1 - \alpha}}$$

Mathematics of Power-Laws

Power-laws have infinite moments!

$$E[x] = \frac{\alpha - 1}{\alpha - 2} x_m$$

$$\blacksquare \text{ If } \alpha \leq 2 : E[x] = \infty$$

In real networks $2 < \alpha < 3$ so: E[x] = const $Var[x] = \infty$

- Average is meaningless, as the variance is too high!
- □ Sample average of n samples from a power-law with exponent α :

Estimating Power-Law Exponent α

Estimating α from data:

- (1) Fit a line on log-log axis using least squares:
 - Solve $\underset{\alpha}{arg} \min_{\alpha} (\log(y) \alpha \log(x))^2$

BAD!

Estimating Power-Law Exponent α

Estimating α from data:

OK!

□ Plot Complementary CDF (CCDF) $P(X \ge x)$. Then the estimated $\alpha = 1 + \alpha'$ where α' is the slope of P(X > x).

□ If $p(x) = P(X = x) \propto x^{-\alpha}$ then $P(X \ge x) \propto x^{-(\alpha-1)}$

$$P(X \ge x) = \sum_{j=x}^{\infty} p(j) \approx \int_{x}^{\infty} Z j^{-\alpha} dj =$$

Flickr: Fitting Degree Exponent

Random vs. Scale-free network

Random network

(Erdos-Renyi random graph)

Scale-free (power-law) network

Degree distribution is Power-law

MODEL: PREFERENTIAL ATTACHMENT

Model: Preferential attachment

Preferential attachment

[Price '65, Albert-Barabasi '99, Mitzenmacher '03]

- Nodes arrive in order 1,2,...,n
- \blacksquare At step j, let d_i be the degree of node $i \le j$
- \blacksquare A new node j arrives and creates m out-links
- Prob. of j linking to a previous node i is proportional to degree d_i of node i

$$P(j \to i) = \frac{d_i}{\sum_k d_k}$$

Rich Get Richer

- New nodes are more likely to link to nodes that already have high degree
- ☐ Herbert Simon's result:
 - Power-laws arise from "Rich get richer" (cumulative advantage)
- □ Examples [Price 65]:
 - Citations: New citations to a paper are proportional to the number it already has

The Exact Model

We will analyze the following model:

- \square Nodes arrive in order 1,2,3, ..., n
- □ When node j is created it makes a single out-link to an earlier node i chosen:
 - lacktriangleright 1) With prob. p, j links to i chosen uniformly at random (from among all earlier nodes)
 - **2)** With prob. 1 p, node j chooses node i uniformly at random and links to a node i points to.
 - This is same as saying: With prob. 1-p, node j links to node u with prob. proportional to d_u (the in-degree of u)
 - Our graph is directed: Every node has out-degree 1.

The Model Givens Power-Laws

Claim: The described model generates networks where the fraction of nodes with in-degree k scales as:

$$P(d_i = k) \propto k^{-(1 + \frac{1}{q})}$$

where q=1-p

So we get power-law degree distribution with exponent:

$$\alpha = 1 + \frac{1}{1 - p}$$

Preferential attachment: Good news

- □ Preferential attachment gives power-law degrees
- Intuitively reasonable process
- \square Can tune p to get the observed exponent
 - \blacksquare On the web, $P[node\ has\ degree\ d] \sim d^{-2.1}$

There are also other network formation mechanisms that generate scale-free networks:

- Random surfer model [Blum-Mugizi]
- Copying model [Kleinberg et al.]
- Forest Fire model [Leskovec et al.]