Controlling information in probabilistic systems The case of fault diagnosis

PhD defence of Engel Lefaucheux

Supervisors: Nathalie Bertrand and Serge Haddad

Septembre 24th 2018 - IRISA/LSV/Inria Rennes

Information disclosure

Systems give information

Information disclosure

Systems give information

• Disclose useful information to the user

Systems give information

- Disclose useful information to the user
- Disclose secret information to an attacker

Systems give information

- Disclose useful information to the user
- Disclose secret information to an attacker

Analysing and controlling the revealed information is crucial

Fault diagnosis

Detecting faulty behaviours

Fault diagnosis

Detecting faulty behaviours

Fault diagnosis

Detecting faulty behaviours

Diagnoser: must emit a verdict when faults occur, based on observations

Features of a diagnoser

Verdict: information provided

Correctness: accuracy of the verdict

Reactivity: delay before a verdict is given

Features of a diagnoser

Verdict: information provided

Correctness: accuracy of the verdict

Reactivity: delay before a verdict is given

Diagnosability: does there exist a diagnoser?

Features of a diagnoser

Verdict: information provided

Correctness: accuracy of the verdict

Reactivity: delay before a verdict is given

Diagnosability: does there exist a diagnoser?

Synthesis: how to build a diagnoser?

Why diagnosis?

Faults and/or failures are unavoidable for some systems

- Components have a finite lifetime
- Reactive systems suffer from unpredictable behaviours of the environment

Why diagnosis?

Faults and/or failures are unavoidable for some systems

- Components have a finite lifetime
- Reactive systems suffer from unpredictable behaviours of the environment

Consequences of unhandled faults may be critical

- Financial losses
- Human casualties

Partial observation

Partial observation

Observable events

_

Partial observation

Observable events/unobservable events

Partial observation

Observable events/unobservable events

Run: $q_0 \xrightarrow{\text{coin}} q_1 \xrightarrow{\text{start}} q_2 \xrightarrow{\text{noise}} q_2 \mid Observation: coin noise}$

Partial observation

Observable events/unobservable events

Run: $q_0 \xrightarrow{\mathtt{coin}} q_1 \xrightarrow{\mathtt{start}} q_2 \xrightarrow{\mathtt{noise}} q_2 \mid \textit{Observation:} \mathtt{coin} \; \mathtt{noise}$

One special event: A run is faulty iff the fault f occurs

Partial observation

Observable events/unobservable events

Run: $q_0 \xrightarrow{\mathtt{coin}} q_1 \xrightarrow{\mathtt{start}} q_2 \xrightarrow{\mathtt{noise}} q_2 \mid \textit{Observation:} \mathtt{coin} \; \mathtt{noise}$

One special event: A run is faulty iff the fault **f** occurs

Observation \longrightarrow Set of potential states of the system

Observation \longrightarrow Set of potential states of the system

$$\texttt{Obs}^{-1}(\texttt{coin coffee}) = \{q_0 \xrightarrow{\texttt{coin}} q_1 \xrightarrow{\texttt{start}} q_2 \xrightarrow{\texttt{coffee}} q_3\}$$

Observation \longrightarrow Set of potential states of the system

$$\mathtt{Obs}^{-1}(\mathtt{coin}\ \mathtt{burning}) = \{q_0 \xrightarrow{\mathtt{coin}} q_1 \xrightarrow{\mathtt{f}} f_1 \xrightarrow{\mathtt{burning}} f_2\}$$

Observation \longrightarrow Set of potential states of the system

```
✓ coin coffee surely correct
X coin burning surely faulty
? coin noise ambiguous
```

$$\texttt{Obs}^{-1}(\texttt{coin noise}) = \{q_0 \xrightarrow{\texttt{coin}} q_1 \xrightarrow{\texttt{start}} q_2 \xrightarrow{\texttt{noise}} q_2, q_0 \xrightarrow{\texttt{coin}} q_1 \xrightarrow{\texttt{f}} f_1 \xrightarrow{\texttt{noise}} f_1\}$$

- Verdict: detection of faults
- Correctness: if a fault is claimed, a fault occurred
- Reactivity: every fault will be detected after a bounded delay

[SSLST96] Sampath, Sengupta, Lafortune, Sinnamohideen and Teneketzis, Failure diagnosis using discrete-event models, IEEE TCST, 1996.

- Verdict: detection of faults
- Correctness: if a fault is claimed, a fault occurred
- Reactivity: every fault will be detected after a bounded delay

Correct but not reactive diagnoser: claiming a fault when burning occurs

[SSLST96] Sampath, Sengupta, Lafortune, Sinnamohideen and Teneketzis, Failure diagnosis using discrete-event models, IEEE TCST, 1996.

Useful to model some systems

Internal random behaviour

Useful to model some systems

Internal random behaviour

Models through statistical analysis

Useful to model some systems

Internal random behaviour

Models through statistical analysis

Enable quantitative requirements

Useful to model some systems

Internal random behaviour

Models through statistical analysis

Enable quantitative requirements

- Is the system diagnosable, ignoring negligible behaviours?
- What is the measure of undetected faults?
- What is the average delay of fault detection?

Probability of a run

$$\textit{Run } \rho = q_0 \xrightarrow[]{\texttt{coin}} q_1 \xrightarrow[]{\texttt{start}} q_2 \xrightarrow[]{\texttt{noise}} q_2$$

Probability of a run

$$\textit{Run } \rho = q_0 \xrightarrow[]{\texttt{coin}} q_1 \xrightarrow[]{\texttt{start}} q_2 \xrightarrow[]{\texttt{noise}} q_2$$

Probability of a run

 $\textit{Run } \rho = \textit{q}_0 \xrightarrow{\texttt{coin}} \textit{q}_1 \xrightarrow{\texttt{start}} \textit{q}_2 \xrightarrow{\texttt{noise}} \textit{q}_2 \mid \textit{Probability } \mathbb{P}(\rho) = 1 \times 0.99 \times 0.5$

Probability of a run
$$\text{Run } \rho = q_0 \xrightarrow[]{\text{coin}} q_1 \xrightarrow[]{\text{start}} q_2 \xrightarrow[]{\text{noise}} q_2 \mid \textit{Probability } \mathbb{P}(\rho) = 1 \times 0.99 \times 0.5$$

ightarrow Defines a probability measure on the set of infinite runs

Contributions on the diagnosis of probabilistic systems

Contributions on the diagnosis of probabilistic systems

Stochastic model

• Finite Markov chain

Specification

- Verdict
- Correctness
- Reactivity

Diagnosability Synthesis

Challenges

Stochastic model Finite Markov chain Diagnosability **Synthesis** Specification Verdict Goal 1: Formalise and compare the specifications for stochastic systems

PhD defence Lefaucheux Engel

PhD defence

Verdict: information provided

Correctness: accuracy of the verdict

Verdict: information provided

 a^n is ambiguous

Correctness: accuracy of the verdict

Verdict: information provided

aⁿ is ambiguous

Faults are detected almost surely:

$$\lim_{n\to\infty} \mathbb{P}(\{q_0 \xrightarrow{\mathsf{f}} f_1(\xrightarrow{\mathsf{a}} f_1)^n, q_0 \xrightarrow{\mathsf{f}} (f_1 \xrightarrow{\mathsf{a}})^n f_2\}) = 0$$

Correctness: accuracy of the verdict

Verdict: information provided

aⁿ is ambiguous

Faults are detected almost surely:

$$\lim_{n\to\infty} \mathbb{P}(\lbrace q_0 \xrightarrow{f} f_1(\xrightarrow{a} f_1)^n, q_0 \xrightarrow{f} (f_1 \xrightarrow{a})^n f_2\rbrace) = 0$$

Correct runs stay ambiguous:
$$\lim_{n\to\infty} \mathbb{P}(\{q_0 \xrightarrow{u} q_1(\xrightarrow{a} q_1)^n\}) = \frac{1}{2}$$

Correctness: accuracy of the verdict

Verdict: information provided

aⁿ is ambiguous

Faults are detected almost surely:

$$\lim_{n\to\infty} \mathbb{P}(\{q_0 \xrightarrow{f} f_1(\xrightarrow{a} f_1)^n, q_0 \xrightarrow{f} (f_1 \xrightarrow{a})^n f_2\}) = 0$$

Correct runs stay ambiguous:
$$\lim_{n\to\infty} \mathbb{P}(\{q_0 \xrightarrow{u} q_1(\xrightarrow{a} q_1)^n\}) = \frac{1}{2}$$

Faulty runs or all ambiguous runs?

Correctness: accuracy of the verdict

Verdict: information provided

Faulty runs or all ambiguous runs?

Correctness: accuracy of the verdict

Verdict: information provided

Faulty runs or all ambiguous runs?

Correctness: accuracy of the verdict

Verdict: information provided

Faulty runs or all ambiguous runs?

Correctness: accuracy of the verdict

Not exactly diagnosable

However a high proportion of b implies a highly probable faulty run

Verdict: information provided

Faulty runs or all ambiguous runs?

Correctness: accuracy of the verdict

Exact, approximate or accurate approximate?

Verdict: information provided

Faulty runs or all ambiguous runs?

Correctness: accuracy of the verdict

Exact, approximate or accurate approximate?

Reactivity: delay before a verdict is given

 $a^n \text{ is ambiguous: } q_0 \overset{a,1}{\to} q_1 (\overset{a}{\to} q_1)^n, q_0 \overset{u}{\to} q_2 (\overset{b,1/2}{\to} q_2)^{n-1} \overset{b,1/2}{\overset{f}{\to}} f_1 \overset{a}{\to} f_2$

Verdict: information provided

Faulty runs or all ambiguous runs?

Correctness: accuracy of the verdict

Exact, approximate or accurate approximate?

Reactivity: delay before a verdict is given

 $\begin{array}{c} \mathbf{a},\mathbf{1} & \mathbf{a},1/2 & \mathbf{b},1/2 \\ \mathbf{a}^n \text{ is ambiguous: } q_0 \overset{u}{\to} q_1 (\overset{a}{\to} q_1)^n, q_0 \overset{u}{\to} q_2 (\overset{a}{\to} q_2)^{n-1} \overset{\mathbf{f}}{\to} f_1 \overset{a}{\to} f_2 \\ \mathbf{a}^n \text{ is likely to be observed } \mathbb{P}(\mathbf{a}^n) = \frac{1}{2} + \frac{1}{2^n} + \frac{1}{2^{n-1}} \end{array}$

Verdict: information provided

Faulty runs or all ambiguous runs?

Correctness: accuracy of the verdict

Exact, approximate or accurate approximate?

Reactivity: delay before a verdict is given

 $a^n \text{ is ambiguous: } q_0 \overset{a,1}{\rightarrow} q_1 (\overset{a}{\rightarrow} q_1)^n, q_0 \overset{u}{\rightarrow} q_2 (\overset{b,1/2}{\rightarrow} q_2)^{n-1} \overset{b,1/2}{\rightarrow} f_1 \overset{a}{\rightarrow} f_2$ $a^n \text{ is likely to be observed } \mathbb{P}(a^n) = \frac{1}{2} + \frac{1}{2^n} + \frac{1}{2^{n-1}}$

However, a^{ω} is surely correct: $q_0 \stackrel{u}{\rightarrow} q_1 (\stackrel{a}{\rightarrow} q_1)^{\omega}, q_0 \stackrel{u}{\rightarrow} q_2 (\stackrel{a}{\rightarrow} q_2)^{\omega}$

Verdict: information provided

Faulty runs or all ambiguous runs?

Correctness: accuracy of the verdict

Exact, approximate or accurate approximate?

Reactivity: delay before a verdict is given

 $a^n \text{ is ambiguous: } q_0 \overset{a,1}{\rightarrow} q_1 (\overset{a}{\rightarrow} q_1)^n, q_0 \overset{u}{\rightarrow} q_2 (\overset{b}{\rightarrow} q_2)^{n-1} \overset{b,1/2}{\rightarrow} f_1 \overset{a}{\rightarrow} f_2$ $a^n \text{ is likely to be observed } \mathbb{P}(a^n) = \frac{1}{2} + \frac{1}{2^n} + \frac{1}{2^{n-1}}$

However, a^{ω} is surely correct: $q_0 \stackrel{u}{\to} q_1 (\stackrel{a}{\to} q_1)^{\omega}, q_0 \stackrel{u}{\to} q_2 (\stackrel{a}{\to} q_2)^{\omega}$

Almost sure, uniform almost sure or infinite?

Verdict: information provided

Faulty runs or all ambiguous runs?

Correctness: accuracy of the verdict

Exact, approximate or accurate approximate?

Reactivity: delay before a verdict is given

Almost sure, uniform almost sure or infinite?

Each combination of features defines a diagnoser notion

Verdict: information provided

Faulty runs or all ambiguous runs?

Correctness: accuracy of the verdict

Exact, approximate or accurate approximate?

Reactivity: delay before a verdict is given

Almost sure, uniform almost sure or infinite?

Each combination of features defines a diagnoser notion

 \rightarrow Semantical analysis of the relations

Verdict: Detection of faulty runs

Reactivity: Finite delay

Verdict: Detection of faulty runs

Reactivity: Finite delay

Reactivity Correctness	Uniform almost sure	Almost sure
Exact	Uniform FF-diagnosability	FF-diagnosability
		$\lim_{n\to\infty} \mathbb{P}(FAmb_n) = 0$
Accurate approximate	Uniform AFF-diagnosability	AFF-diagnosability
		$\forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}(\mathit{FAmb}_n^{\varepsilon}) = 0$
Approximate	Uniform $arepsilon$ FF-diagnosability	arepsilonFF-diagnosability

Verdict: Detection of faulty runs

Reactivity: Finite delay

Reactivity Correctness	Uniform almost sure	Almost sure
Exact	Uniform FF-diagnosability [TT05][BHL18]	FF-diagnosability [BHL14][BHL18] $\lim_{n\to\infty} \mathbb{P}(FAmb_n) = 0$
Accurate approximate	Uniform AFF-diagnosability [TT05][BHL16][BHL18]	AFF-diagnosability [BHL16] [BHL18] $\forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}(FAmb_n^{\varepsilon}) = 0$
Approximate	Uniform εFF-diagnosability [BHL16][BHL18]	εFF-diagnosability [BHL16][BHL18]

[TT05] Thorsley and Teneketzis, Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

[BHL14] Bertrand, Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS, 2014.

[BHL16] Bertrand, Haddad and Lefaucheux, Accurate approximate diagnosability of stochastic systems, LATA, 2016.

[BHL18] Bertrand, Haddad and Lefaucheux, A Tale of Two Diagnoses in Probabilistic Systems, I&C, 2018.

PhD defence Lefaucheux Engel S

Verdict: Detection of faulty runs

Reactivity: Finite delay

Reactivity Correctness	Uniform almost sure	Almost sure
Exact	Uniform FF-diagnosability ← [TT05][BHL18]	FF-diagnosability [BHL14][BHL18] $\lim_{n\to\infty} \mathbb{P}(FAmb_n) = 0$
	I	₩
Accurate approximate	Uniform AFF-diagnosability = [TT05][BHL16][BHL18]	AFF-diagnosability [BHL16][BHL18] $\forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}(FAmb_{\varepsilon}^{\varepsilon}) = 0$
	₩	1
Approximate	Uniform εFF-diagnosability= [BHL16][BHL18]	⇒ εFF-diagnosability [BHL16][BHL18]

[TT05] Thorsley and Teneketzis, Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

[BHL14] Bertrand, Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS, 2014.

[BHL16] Bertrand, Haddad and Lefaucheux, Accurate approximate diagnosability of stochastic systems, LATA, 2016.

[BHL18] Bertrand, Haddad and Lefaucheux, A Tale of Two Diagnoses in Probabilistic Systems, I&C, 2018.

PhD defence Lefaucheux Engel Septembre 24th 2018 – IRISA - 15

Verdict: Detection of faulty runs

Reactivity: Finite delay

Reactivity Correctness	Uniform almost sure	Almost sure
Exact	Uniform FF-diagnosability ← [TT05][BHL18]	$\Rightarrow FF\text{-diagnosability}$ $[BHL14][BHL18]$ $\lim_{n\to\infty} \mathbb{P}(FAmb_n) = 0$
Accurate approximate	Uniform AFF-diagnosability = [TT05][BHL16][BHL18]	+
Approximate	↓↓ Uniform εFF-diagnosability= [BHL16][BHL18]	$\forall \varepsilon > 0$, $\lim_{n \to \infty} \mathbb{P}(FAmb_n^{\varepsilon}) = 0$ $\Rightarrow \varepsilon FF-diagnosability$ [BHL16][BHL18]

[TT05] Thorsley and Teneketzis, Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

[BHL14] Bertrand, Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS, 2014.

[BHL16] Bertrand, Haddad and Lefaucheux, Accurate approximate diagnosability of stochastic systems, LATA, 2016.

[BHL18] Bertrand, Haddad and Lefaucheux, A Tale of Two Diagnoses in Probabilistic Systems, I&C, 2018.

PhD defence

Lefaucheux Engel

FF-diagnosability

Definition

The probability of faulty ambiguous runs converges to 0

Faulty ambiguous runs: ending with $(f_1 \xrightarrow{noise} f_1)^*$

 $\mathcal{O}_{\mathcal{A}}$: sequence of observations \mapsto set of possible current states

PhD defence

 $\mathcal{O}_{\mathcal{A}}$

 \longrightarrow $\{q_0\}$

 $\mathcal{O}_{\mathcal{A}}$

PhD defence

Synchronised product

Synchronised product

ullet Same stochastic behaviour as ${\cal A}$

Synchronised product

- Same stochastic behaviour as A
- Ambiguity of a run deduced from its last state

Synchronised product

- ullet Same stochastic behaviour as ${\cal A}$
- Ambiguity of a run deduced from its last state
- ullet Possibly exponential in the size of ${\mathcal A}$

Synchronised product

- ullet Same stochastic behaviour as ${\cal A}$
- Ambiguity of a run deduced from its last state
- ullet Possibly exponential in the size of ${\mathcal A}$

FF-diagnosable iff no BSCC contains a faulty ambiguous state

Complexity of FF-diagnosability

Verdict: Detection of faulty runs

Reactivity: Finite delay

Reactivity Correctness	Uniform almost sure	Almost sure
Exact	Uniform FF-diagnosability [TT05] [BHL18]	FF-diagnosability PSPACE-complete [BHL14][BHL18]
Accurate approximate	Uniform AFF-diagnosability [TT05][BHL16][BHL18]	AFF-diagnosability [BHL16][BHL18]
Approximate	Uniform $arepsilon$ FF-diagnosability [BHL16][BHL18]	εFF-diagnosability [BHL16][BHL18]

[TT05] Thorsley and Teneketzis, Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

[BHL14] Bertrand, Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS, 2014.

[BHL16] Bertrand, Haddad and Lefaucheux, Accurate approximate diagnosability of stochastic systems, LATA, 2016.

Complexity of FF-diagnosability

Verdict: Detection of faulty runs

Reactivity: Finite delay

Reactivity Correctness	Uniform almost sure	Almost sure
Exact	Uniform FF-diagnosability [TT05] PSPACE-complete [BHL18]	FF-diagnosability PSPACE-complete [BHL14][BHL18]
Accurate approximate	Uniform AFF-diagnosability [TT05][BHL16][BHL18]	AFF-diagnosability [BHL16][BHL18]
Approximate	Uniform $arepsilon$ FF-diagnosability [BHL16][BHL18]	εFF-diagnosability [BHL16][BHL18]

[TT05] Thorsley and Teneketzis, Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

[BHL14] Bertrand, Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS, 2014.

[BHL16] Bertrand, Haddad and Lefaucheux, Accurate approximate diagnosability of stochastic systems, LATA, 2016.

Complexity of FF-diagnosability

Verdict: Detection of faulty runs

Reactivity: Finite delay

Reactivity Correctness	Uniform almost sure	Almost sure
Exact	Uniform FF-diagnosability EXPTIME [TT05] PSPACE-complete [BHL18]	FF-diagnosability PSPACE-complete [BHL14][BHL18]
Accurate approximate	Uniform AFF-diagnosability [TT05][BHL16][BHL18]	AFF-diagnosability [BHL16][BHL18]
Approximate	Uniform $arepsilon$ FF-diagnosability [BHL16][BHL18]	εFF-diagnosability [BHL16][BHL18]

[TT05] Thorsley and Teneketzis, Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

[BHL14] Bertrand, Haddad and Lefaucheux, Foundation of diagnosis and predictability in probabilistic systems, FSTTCS, 2014.

[BHL16] Bertrand, Haddad and Lefaucheux, Accurate approximate diagnosability of stochastic systems, LATA, 2016.

AFF-diagnosability

Definition

Faults are almost surely detected with arbitrarily small probability of false positive

$$\mathbb{P}(\text{correct} \mid bba) = \frac{1}{4}$$

$$\mathbb{P}(\text{correct} \mid bbab) = \frac{1}{10}$$

High proportion of $b \Rightarrow$ small probability of being correct

Distance between q_c and q_f : $\sup_{E\subseteq \{a,b\}^\omega} \mathbb{P}_{q_f}(E) - \mathbb{P}_{q_c}(E)$.

Distance between q_c and q_f : $\sup_{E\subseteq\{a,b\}^{\omega}}\mathbb{P}_{q_f}(E)-\mathbb{P}_{q_c}(E)$.

 $E = \{ \text{infinite words with proportion of } b \text{ greater than half} \}$

Distance between q_c and q_f : $\sup_{E \subseteq \{a,b\}^{\omega}} \mathbb{P}_{q_f}(E) - \mathbb{P}_{q_c}(E)$.

 $E = \{ \text{infinite words with proportion of } b \text{ greater than half} \}$

E separates q_c and q_f : $\mathbb{P}_{q_c}(E)=0$ and $\mathbb{P}_{q_f}(E)=1$

Distance between q_c and q_f : $\sup_{E\subseteq \{a,b\}^{\omega}}\mathbb{P}_{q_f}(E)-\mathbb{P}_{q_c}(E)$.

 $E = \{ \text{infinite words with proportion of } b \text{ greater than half} \}$

E separates q_c and $q_f\colon \mathbb{P}_{q_c}(E)=0$ and $\mathbb{P}_{q_f}(E)=1$

 \longrightarrow The distance between q_c and q_f is 1

Distance between q_c and q_f : $\sup_{E\subseteq\{a,b\}^{\omega}}\mathbb{P}_{q_f}(E)-\mathbb{P}_{q_c}(E)$.

 $E = \{ \text{infinite words with proportion of } b \text{ greater than half} \}$

E separates q_c and $q_f\colon \mathbb{P}_{q_c}(E)=0$ and $\mathbb{P}_{q_f}(E)=1$

- \longrightarrow The distance between q_c and q_f is 1
- $\longrightarrow \mathcal{A}$ is AFF-diagnosable

• Identifying relevant pairs of states

• Identifying relevant pairs of states

• Checking distance 1 for all relevant pairs

• Identifying relevant pairs of states

• Checking distance 1 for all relevant pairs

AFF-diagnosable iff distance 1 for all relevant pairs

• Identifying relevant pairs of states

• Checking distance 1 for all relevant pairs

AFF-diagnosable iff distance 1 for all relevant pairs

• The distance 1 problem is in PTIME [CK14]

[CK14] Chen and Kiefer, On the Total Variation Distance of Labelled Markov Chains, CSL-LICS, 2014.

Complexity of AFF-diagnosability

Verdict: Detection of faulty runs

Reactivity: Finite delay

Reactivity Correctness	Uniform almost sure	Almost sure
Exact	Uniform FF-diagnosability EXPTIME [TT05] PSPACE-complete [BHL14][BHL18]	FF-diagnosability PSPACE-complete [BHL18]
Accurate approximate	Uniform AFF-diagnosability [TT05][BHL16][BHL18]	AFF-diagnosability PTIME [BHL16][BHL18]
Approximate	Uniform εFF-diagnosability [BHL16][BHL18]	εFF-diagnosability [BHL16][BHL18]

[TT05] Thorsley and Teneketzis, Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

 $[BHL14] \ Bertrand, \ Haddad \ and \ Lefaucheux, \ Foundation \ of \ diagnosis \ and \ predictability \ in \ probabilistic \ systems, \ FSTTCS, \ 2014.$

[BHL16] Bertrand, Haddad and Lefaucheux, Accurate approximate diagnosability of stochastic systems, LATA, 2016.

Complexity of AFF-diagnosability

Verdict: Detection of faulty runs

Reactivity: Finite delay

Reactivity Correctness	Uniform almost sure	Almost sure
Exact	Uniform FF-diagnosability EXPTIME [TT05] PSPACE-complete [BHL14][BHL18]	FF-diagnosability PSPACE-complete [BHL18]
Accurate approximate	Uniform AFF-diagnosability [TT05] undecidable [BHL16][BHL18]	AFF-diagnosability PTIME [BHL16][BHL18]
Approximate	Uniform εFF-diagnosability undecidable [BHL16][BHL18]	εFF-diagnosability undecidable [BHL16][BHL18]

[TT05] Thorsley and Teneketzis, Diagnosability of stochastic discrete-event systems, IEEE TAC, 2005.

 $[BHL14] \ \ Bertrand, \ Haddad \ and \ Lefaucheux, \ \textit{Foundation of diagnosis and predictability in probabilistic systems}, \ FSTTCS, \ 2014.$

[BHL16] Bertrand, Haddad and Lefaucheux, Accurate approximate diagnosability of stochastic systems, LATA, 2016.

PhD defence

PhD defence Lefaucheux Engel Septembre 24th 2018 – IRISA - 26

PhD defence Lefaucheux Engel Septembre 24th 2018 – IRISA - 26

PhD defence Lefaucheux Engel Septembre 24th 2018 – IRISA - 27