$12n_{0654} \ (K12n_{0654})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{18} - 5u^{17} + \dots + b - 7, \ -5u^{18} + 23u^{17} + \dots + 2a + 19, \ u^{19} - 5u^{18} + \dots - 11u + 2 \rangle \\ I_2^u &= \langle -u^8 - u^7 - 6u^6 - 5u^5 - 11u^4 - 7u^3 - 6u^2 + b - 2u, \\ &- u^8 - 2u^7 - 7u^6 - 11u^5 - 16u^4 - 18u^3 - 13u^2 + a - 8u - 2, \\ u^{11} + 2u^{10} + 9u^9 + 14u^8 + 29u^7 + 34u^6 + 40u^5 + 32u^4 + 20u^3 + 7u^2 - 1 \rangle \\ I_3^u &= \langle u^2a - au + 3u^2 + 4b - a + u + 5, \ -u^2a + a^2 - au - u^2 - 2a - 2u - 4, \ u^3 + 2u - 1 \rangle \\ I_4^u &= \langle -u^3a - u^3 - 2au - u^2 + b - a - 2u - 1, \ -u^3a + u^3 + a^2 + 2u^2 + a + 2u, \ u^4 + u^3 + 2u^2 + 2u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 44 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{18} - 5u^{17} + \dots + b - 7, -5u^{18} + 23u^{17} + \dots + 2a + 19, u^{19} - 5u^{18} + \dots - 11u + 2 \rangle$$

$$a_{5} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u\\0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\-u^{2}\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{5}{2}u^{18} - \frac{23}{2}u^{17} + \dots + 30u - \frac{19}{2}\\-u^{18} + 5u^{17} + \dots - 22u + 7 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u\\u^{3} + u\\0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{18} + \frac{5}{2}u^{17} + \dots - 5u + \frac{3}{2}\\-u^{18} + 4u^{17} + \dots - 5u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1\\-u^{4} - 2u^{2}\\0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{7}{2}u^{18} - \frac{33}{2}u^{17} + \dots + 52u - \frac{33}{2}\\-u^{18} + 5u^{17} + \dots - 22u + 7\\0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{5}{2}u^{18} + \frac{23}{2}u^{17} + \dots - 34u + \frac{17}{2}\\u^{18} - 5u^{17} + \dots + 20u - 5\\0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{18} + \frac{3}{2}u^{17} + \dots - 2u + \frac{1}{2}\\u^{18} - 4u^{17} + \dots + 6u - 1\\0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 4u^{18} - 19u^{17} + \dots + 63u - 19\\-u^{18} + 5u^{17} + \dots - 24u + 8\\0 - u^{18} + 5u^{17} + \dots + 54u - \frac{33}{2}\\-u^{18} + 5u^{17} + \dots - 27u + 9\\0 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-u^{17} + 5u^{16} - 22u^{15} + 64u^{14} - 159u^{13} + 316u^{12} - 537u^{11} + 764u^{10} - 924u^9 + 932u^8 - 775u^7 + 509u^6 - 237u^5 + 56u^4 + 27u^3 - 33u^2 + 17u - 8$$

Crossings	u-Polynomials at each crossing
c_1	$u^{19} + 29u^{18} + \dots - 5u + 1$
c_2, c_7, c_{12}	$u^{19} + u^{18} + \dots + u + 1$
c_3, c_4, c_{11}	$u^{19} - 5u^{18} + \dots - 11u + 2$
c_5, c_8	$u^{19} + 10u^{17} + \dots - 3u + 1$
c_6, c_{10}	$u^{19} + 15u^{18} + \dots + 1280u + 128$
<i>C</i> 9	$u^{19} - 18u^{17} + \dots + u + 142$

Crossings	Riley Polynomials at each crossing
c_1	$y^{19} - 85y^{18} + \dots + 107y - 1$
c_2, c_7, c_{12}	$y^{19} - 29y^{18} + \dots - 5y - 1$
c_3, c_4, c_{11}	$y^{19} + 21y^{18} + \dots + 49y - 4$
c_5, c_8	$y^{19} + 20y^{18} + \dots + 29y - 1$
c_6, c_{10}	$y^{19} + 7y^{18} + \dots + 98304y - 16384$
<i>c</i> ₉	$y^{19} - 36y^{18} + \dots - 59071y - 20164$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.855612 + 0.517253I		
a = -0.909632 - 0.056467I	-13.4415 - 7.8504I	-10.93721 + 4.73909I
b = -0.55550 + 1.60326I		
u = 0.855612 - 0.517253I		
a = -0.909632 + 0.056467I	-13.4415 + 7.8504I	-10.93721 - 4.73909I
b = -0.55550 - 1.60326I		
u = 0.837505 + 0.614615I		
a = 0.803451 - 0.480637I	-13.15870 + 2.26983I	-11.04237 + 0.00811I
b = -0.25051 - 1.50923I		
u = 0.837505 - 0.614615I		
a = 0.803451 + 0.480637I	-13.15870 - 2.26983I	-11.04237 - 0.00811I
b = -0.25051 + 1.50923I		
u = -0.113992 + 0.724011I		
a = 0.100196 + 0.799956I	1.84434 + 1.33494I	-1.83885 - 5.69262I
b = 0.365076 + 0.254010I		
u = -0.113992 - 0.724011I		
a = 0.100196 - 0.799956I	1.84434 - 1.33494I	-1.83885 + 5.69262I
b = 0.365076 - 0.254010I		
u = 0.030735 + 1.321750I		
a = -1.098310 + 0.606917I	2.98081 + 0.93862I	-5.64110 - 2.81933I
b = -0.403445 + 0.928311I		
u = 0.030735 - 1.321750I		
a = -1.098310 - 0.606917I	2.98081 - 0.93862I	-5.64110 + 2.81933I
b = -0.403445 - 0.928311I		
u = 0.115597 + 1.356600I		
a = 1.77650 - 0.51209I	3.95111 - 4.05741I	-5.74595 + 1.84063I
b = 0.91251 - 1.25835I		
u = 0.115597 - 1.356600I		
a = 1.77650 + 0.51209I	3.95111 + 4.05741I	-5.74595 - 1.84063I
b = 0.91251 + 1.25835I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.31913 + 1.53475I		
a = -1.73237 + 0.83605I	-6.80749 - 12.16250I	-7.67551 + 5.42074I
b = -0.85879 + 1.57727I		
u = 0.31913 - 1.53475I		
a = -1.73237 - 0.83605I	-6.80749 + 12.16250I	-7.67551 - 5.42074I
b = -0.85879 - 1.57727I		
u = 0.398864 + 0.081266I		
a = -0.07628 + 1.71759I	-0.63713 - 2.25906I	-4.49996 + 0.38823I
b = 0.427663 - 1.071520I		
u = 0.398864 - 0.081266I		
a = -0.07628 - 1.71759I	-0.63713 + 2.25906I	-4.49996 - 0.38823I
b = 0.427663 + 1.071520I		
u = 0.30835 + 1.59968I		
a = 0.798169 - 1.114480I	-5.90194 - 2.02936I	-8.97202 + 0.94297I
b = 0.029454 - 1.281070I		
u = 0.30835 - 1.59968I		
a = 0.798169 + 1.114480I	-5.90194 + 2.02936I	-8.97202 - 0.94297I
b = 0.029454 + 1.281070I		
u = -0.363080		
a = -0.809970	-0.659169	-15.1130
b = -0.215750		
u = -0.07027 + 1.64614I		
a = 0.493254 + 0.199283I	10.11590 + 2.22289I	2.40930 - 2.51224I
b = 0.441412 - 0.066654I		
u = -0.07027 - 1.64614I		
a = 0.493254 - 0.199283I	10.11590 - 2.22289I	2.40930 + 2.51224I
b = 0.441412 + 0.066654I		

$$II. \\ I_2^u = \langle -u^8 - u^7 + \dots + b - 2u, \ -u^8 - 2u^7 + \dots + a - 2, \ u^{11} + 2u^{10} + \dots + 7u^2 - 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{8} + 2u^{7} + 7u^{6} + 11u^{5} + 16u^{4} + 18u^{3} + 13u^{2} + 8u + 2 \\ u^{8} + u^{7} + 6u^{6} + 5u^{5} + 11u^{4} + 7u^{3} + 6u^{2} + 2u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{10} - 2u^{9} - 8u^{8} - 12u^{7} - 22u^{6} - 24u^{5} - 25u^{4} - 17u^{3} - 10u^{2} - 2u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{7} + u^{6} + 6u^{5} + 5u^{4} + 11u^{3} + 7u^{2} + 6u + 2 \\ u^{8} + u^{7} + 6u^{6} + 5u^{5} + 11u^{4} + 7u^{3} + 6u^{2} + 2u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{6} - u^{5} - 5u^{4} - 4u^{3} - 7u^{2} - 4u - 2 \\ -u^{7} - u^{6} - 5u^{5} - 4u^{4} - 7u^{3} - 4u^{2} - 3u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{9} - 2u^{8} - 8u^{7} - 12u^{6} - 22u^{5} - 24u^{4} - 25u^{3} - 17u^{2} - 10u - 2 \\ -u^{10} - 2u^{9} - 8u^{8} - 12u^{7} - 22u^{6} - 24u^{5} - 26u^{4} - 18u^{3} - 12u^{2} - 3u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{9} - 2u^{8} - 8u^{7} - 12u^{6} - 22u^{5} - 24u^{4} - 25u^{3} - 17u^{2} - 10u - 2 \\ -u^{10} - 2u^{9} - 8u^{8} - 12u^{7} - 22u^{6} - 24u^{5} - 26u^{4} - 18u^{3} - 12u^{2} - 3u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{8} - 2u^{7} - 6u^{6} - 9u^{5} - 11u^{4} - 11u^{3} - 6u^{2} - 3u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} + u^{4} + 4u^{3} + 3u^{2} + 4u + 2 \\ u^{8} + u^{7} + 6u^{6} + 5u^{5} + 11u^{4} + 7u^{3} + 6u^{2} + 3u \end{pmatrix}$$

(ii) Obstruction class = 1

$$= 3u^{10} + 6u^9 + 27u^8 + 39u^7 + 85u^6 + 85u^5 + 108u^4 + 66u^3 + 41u^2 + 5u - 11$$

Crossings	u-Polynomials at each crossing
c_1	$u^{11} - 11u^{10} + \dots + 6u - 1$
c_2	$u^{11} + u^{10} - 5u^9 - 4u^8 + 8u^7 + 5u^6 - 6u^5 - 7u^4 + 3u^2 - 1$
c_3, c_4	$u^{11} + 2u^{10} + \dots + 7u^2 - 1$
c_5	$u^{11} + u^9 - 4u^8 + 2u^7 - 3u^6 + 7u^5 - 3u^4 + 3u^3 - 4u^2 - 1$
c_6	$u^{11} + 4u^9 + 3u^8 + 3u^7 + 7u^6 + 3u^5 + 2u^4 + 4u^3 + u^2 + 1$
c_7, c_{12}	$u^{11} - u^{10} - 5u^9 + 4u^8 + 8u^7 - 5u^6 - 6u^5 + 7u^4 - 3u^2 + 1$
c_8	$u^{11} + u^9 + 4u^8 + 2u^7 + 3u^6 + 7u^5 + 3u^4 + 3u^3 + 4u^2 + 1$
c_9	$u^{11} - 5u^9 + 2u^8 + 10u^7 + 3u^6 + 3u^5 + u^4 - u^3 + 2u^2 + 1$
c_{10}	$u^{11} + 4u^9 - 3u^8 + 3u^7 - 7u^6 + 3u^5 - 2u^4 + 4u^3 - u^2 - 1$
c_{11}	$u^{11} - 2u^{10} + \dots - 7u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{11} - 23y^{10} + \dots - 10y - 1$
c_2, c_7, c_{12}	$y^{11} - 11y^{10} + \dots + 6y - 1$
c_3, c_4, c_{11}	$y^{11} + 14y^{10} + \dots + 14y - 1$
c_5, c_8	$y^{11} + 2y^{10} + 5y^9 + 2y^8 + y^6 + 11y^5 + y^4 - 21y^3 - 22y^2 - 8y - 1$
c_6, c_{10}	$y^{11} + 8y^{10} + 22y^9 + 21y^8 - y^7 - 11y^6 - y^5 - 2y^3 - 5y^2 - 2y - 1$
<i>c</i> ₉	$y^{11} - 10y^{10} + \dots - 4y - 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395494 + 0.824290I		
a = 0.720569 + 0.626450I	0.620962 + 0.437817I	-9.18978 - 1.12208I
b = -0.190505 + 0.832468I		
u = -0.395494 - 0.824290I		
a = 0.720569 - 0.626450I	0.620962 - 0.437817I	-9.18978 + 1.12208I
b = -0.190505 - 0.832468I		
u = -0.568934 + 0.281691I		
a = -0.550853 + 0.784586I	-1.08686 + 2.94207I	-9.96542 - 7.42015I
b = -0.488844 - 1.076040I		
u = -0.568934 - 0.281691I		
a = -0.550853 - 0.784586I	-1.08686 - 2.94207I	-9.96542 + 7.42015I
b = -0.488844 + 1.076040I		
u = 0.125362 + 1.374090I		
a = 1.48225 - 0.25773I	-2.02402 - 1.43083I	-5.20918 + 0.10056I
b = 1.065730 + 0.479865I		
u = 0.125362 - 1.374090I		
a = 1.48225 + 0.25773I	-2.02402 + 1.43083I	-5.20918 - 0.10056I
b = 1.065730 - 0.479865I		
u = -0.20089 + 1.44390I		
a = -1.56865 - 0.46843I	4.55914 + 5.69959I	-3.05206 - 5.79000I
b = -0.86003 - 1.16265I		
u = -0.20089 - 1.44390I		
a = -1.56865 + 0.46843I	4.55914 - 5.69959I	-3.05206 + 5.79000I
b = -0.86003 + 1.16265I		
u = -0.08861 + 1.68680I		
a = 0.263127 + 0.581865I	9.51549 + 2.22958I	-11.44069 - 2.17239I
b = -0.069116 + 0.558344I		
u = -0.08861 - 1.68680I		
a = 0.263127 - 0.581865I	9.51549 - 2.22958I	-11.44069 + 2.17239I
b = -0.069116 - 0.558344I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.257134		
a = 5.30713	-6.72007	-5.28570
b = 1.08552		

$$III. \\ I_3^u = \langle u^2a - au + 3u^2 + 4b - a + u + 5, -u^2a + a^2 - au - u^2 - 2a - 2u - 4, u^3 + 2u - 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{4}u^{2}a - \frac{3}{4}u^{2} + \dots + \frac{1}{4}a - \frac{5}{4} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{4}u^{2}a - \frac{3}{4}u^{2} + \dots - \frac{3}{4}a - \frac{13}{4} \\ \frac{1}{4}u^{2}a - \frac{1}{4}u^{2} + \dots + \frac{3}{4}a - \frac{3}{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{1}{4}u^{2}a + \frac{3}{4}u^{2} + \dots + \frac{3}{4}a + \frac{5}{4} \\ -\frac{1}{4}u^{2}a - \frac{3}{4}u^{2} + \dots + \frac{1}{4}a - \frac{5}{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 2 \\ \frac{1}{4}u^{2}a - \frac{5}{4}u^{2} + \dots + \frac{3}{4}a - \frac{7}{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{3}{4}u^{2}a + \frac{3}{4}u^{2} + \dots + \frac{5}{4}a + \frac{1}{4} \\ \frac{1}{2}u^{2}a - \frac{1}{2}u^{2} + \dots + \frac{1}{2}a - \frac{5}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2u^{2} - 4 \\ -\frac{1}{2}u^{2}a + \frac{5}{2}u^{2} + \dots - \frac{3}{2}a + \frac{7}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 2 \\ \frac{1}{4}u^{2}a - \frac{5}{4}u^{2} + \dots + \frac{3}{4}a - \frac{7}{4} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^2 4u 18$

Crossings	u-Polynomials at each crossing
c_1	$u^6 + 6u^5 + 11u^4 + 30u^3 + 81u^2 + 57u + 16$
c_2, c_7, c_{12}	$u^6 - 3u^4 + 4u^3 + u^2 - 7u - 4$
c_3, c_4, c_{11}	$(u^3 + 2u - 1)^2$
c_5, c_8	$u^6 + 2u^5 + 3u^4 + 8u^3 + 9u^2 + 9u + 2$
c_6,c_{10}	$(u-1)^{6}$
<i>c</i> ₉	$u^6 + 3u^5 - 3u^4 - 9u^3 + 7u^2 + 10u - 17$

Crossings	Riley Polynomials at each crossing
c_1	$y^6 - 14y^5 - 77y^4 + 230y^3 + 3493y^2 - 657y + 256$
c_2, c_7, c_{12}	$y^6 - 6y^5 + 11y^4 - 30y^3 + 81y^2 - 57y + 16$
c_3, c_4, c_{11}	$(y^3 + 4y^2 + 4y - 1)^2$
c_5, c_8	$y^6 + 2y^5 - 5y^4 - 42y^3 - 51y^2 - 45y + 4$
c_6,c_{10}	$(y-1)^6$
<i>c</i> ₉	$y^6 - 15y^5 + 77y^4 - 217y^3 + 331y^2 - 338y + 289$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.22670 + 1.46771I		
a = -1.54629 - 0.37257I	2.86100 + 5.13794I	-8.68207 - 3.20902I
b = -0.529360 - 0.960345I		
u = -0.22670 + 1.46771I		
a = 1.21680 + 1.17483I	2.86100 + 5.13794I	-8.68207 - 3.20902I
b = 0.63214 + 1.62580I		
u = -0.22670 - 1.46771I		
a = -1.54629 + 0.37257I	2.86100 - 5.13794I	-8.68207 + 3.20902I
b = -0.529360 + 0.960345I		
u = -0.22670 - 1.46771I		
a = 1.21680 - 1.17483I	2.86100 - 5.13794I	-8.68207 + 3.20902I
b = 0.63214 - 1.62580I		
u = 0.453398		
a = -1.29347	-7.36693	-20.6360
b = -1.92103		
u = 0.453398		
a = 3.95244	-7.36693	-20.6360
b = -0.284535		

$$\text{IV. } I_4^u = \langle -u^3 a - u^3 - 2au - u^2 + b - a - 2u - 1, \ -u^3 a + u^3 + a^2 + 2u^2 + a + 2u, \ u^4 + u^3 + 2u^2 + 2u + 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3}a + u^{3} + 2au + u^{2} + a + 2u + 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3}a - u^{3} + au - 2u^{2} - 3u \\ 2u^{3} - a + 3u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + 1 \\ u^{3} + 2u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{3} + 2u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3}a - u^{3} - 2au - u^{2} - 2u - 1 \\ u^{3}a + u^{3} + 2au + u^{2} + a + 2u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3}a - u^{2} - 2u - 2 \\ u^{3} + au + 2u^{2} + a + u + 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3}a - u^{2}a - 2u^{3} - 2au - u^{2} - 2a - 4u - 1 \\ u^{3}a + u^{2}a + 2u^{3} + au + a + 4u + 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 2u^{3} + 2u^{2} + 4u + 4 \\ -2u^{3} - 2au - 4u^{2} - 2a - 3u - 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - u^{2} - 2u - 2 \\ u^{3} + au + 2u^{2} + a + 2u + 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^3 4u 14$

Crossings	u-Polynomials at each crossing
c_1	$u^8 + 15u^7 + \dots + 966u + 361$
c_2, c_7, c_{12}	$u^8 - u^7 - 7u^6 + 3u^5 + 20u^4 + 3u^3 - 25u^2 - 4u + 19$
c_3, c_4, c_{11}	$(u^4 + u^3 + 2u^2 + 2u + 1)^2$
c_5,c_8	$u^8 + 5u^7 + 13u^6 + 23u^5 + 36u^4 + 31u^3 + 31u^2 + 10u + 7$
c_6, c_{10}	$(u-1)^{8}$
<i>c</i> 9	$u^8 - 4u^7 + 3u^6 + 20u^5 + 8u^4 - 2u^3 + 28u^2 + 48u + 31$

Crossings	Riley Polynomials at each crossing
c_1	$y^8 - 35y^7 + \dots + 84142y + 130321$
c_2, c_7, c_{12}	$y^8 - 15y^7 + \dots - 966y + 361$
c_3, c_4, c_{11}	$(y^4 + 3y^3 + 2y^2 + 1)^2$
c_5, c_8	$y^8 + y^7 + 11y^6 + 159y^5 + 590y^4 + 993y^3 + 845y^2 + 334y + 49$
c_6,c_{10}	$(y-1)^8$
<i>c</i> ₉	$y^8 - 10y^7 + \dots - 568y + 961$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.621744 + 0.440597I		
a = -1.40199 + 0.41923I	-3.28987 + 2.02988I	-12.00000 - 3.46410I
b = -0.306391 - 1.124160I		
u = -0.621744 + 0.440597I		
a = 0.523731 + 0.006202I	-3.28987 + 2.02988I	-12.00000 - 3.46410I
b = -0.00117 + 1.44231I		
u = -0.621744 - 0.440597I		
a = -1.40199 - 0.41923I	-3.28987 - 2.02988I	-12.00000 + 3.46410I
b = -0.306391 + 1.124160I		
u = -0.621744 - 0.440597I		
a = 0.523731 - 0.006202I	-3.28987 - 2.02988I	-12.00000 + 3.46410I
b = -0.00117 - 1.44231I		
u = 0.121744 + 1.306620I		
a = 0.999194 - 0.897147I	-3.28987 - 2.02988I	-12.00000 + 3.46410I
b = -0.054173 + 0.641191I		
u = 0.121744 + 1.306620I		
a = -2.62094 - 1.27550I	-3.28987 - 2.02988I	-12.00000 + 3.46410I
b = -2.13827 - 1.18907I		
u = 0.121744 - 1.306620I		
a = 0.999194 + 0.897147I	-3.28987 + 2.02988I	-12.00000 - 3.46410I
b = -0.054173 - 0.641191I		
u = 0.121744 - 1.306620I		
a = -2.62094 + 1.27550I	-3.28987 + 2.02988I	-12.00000 - 3.46410I
b = -2.13827 + 1.18907I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{6} + 6u^{5} + 11u^{4} + 30u^{3} + 81u^{2} + 57u + 16)$ $\cdot (u^{8} + 15u^{7} + \dots + 966u + 361)(u^{11} - 11u^{10} + \dots + 6u - 1)$
c_2	$(u^{19} + 29u^{18} + \dots - 5u + 1)$ $(u^{6} - 3u^{4} + 4u^{3} + u^{2} - 7u - 4)$ $(u^{8} - u^{7} - 7u^{6} + 3u^{5} + 20u^{4} + 3u^{3} - 25u^{2} - 4u + 19)$ $(u^{11} + u^{10} - 5u^{9} - 4u^{8} + 8u^{7} + 5u^{6} - 6u^{5} - 7u^{4} + 3u^{2} - 1)$ $(u^{19} + u^{18} + \dots + u + 1)$
c_3, c_4	$((u^{3} + 2u - 1)^{2})(u^{4} + u^{3} + 2u^{2} + 2u + 1)^{2}(u^{11} + 2u^{10} + \dots + 7u^{2} - 1 + \dots + 1u + 2)$
<i>c</i> ₅	$(u^{6} + 2u^{5} + 3u^{4} + 8u^{3} + 9u^{2} + 9u + 2)$ $\cdot (u^{8} + 5u^{7} + 13u^{6} + 23u^{5} + 36u^{4} + 31u^{3} + 31u^{2} + 10u + 7)$ $\cdot (u^{11} + u^{9} - 4u^{8} + 2u^{7} - 3u^{6} + 7u^{5} - 3u^{4} + 3u^{3} - 4u^{2} - 1)$ $\cdot (u^{19} + 10u^{17} + \dots - 3u + 1)$
c_6	$(u-1)^{14}(u^{11} + 4u^9 + 3u^8 + 3u^7 + 7u^6 + 3u^5 + 2u^4 + 4u^3 + u^2 + 1)$ $\cdot (u^{19} + 15u^{18} + \dots + 1280u + 128)$
c_7, c_{12}	$(u^{6} - 3u^{4} + 4u^{3} + u^{2} - 7u - 4)$ $\cdot (u^{8} - u^{7} - 7u^{6} + 3u^{5} + 20u^{4} + 3u^{3} - 25u^{2} - 4u + 19)$ $\cdot (u^{11} - u^{10} - 5u^{9} + 4u^{8} + 8u^{7} - 5u^{6} - 6u^{5} + 7u^{4} - 3u^{2} + 1)$ $\cdot (u^{19} + u^{18} + \dots + u + 1)$
c ₈	$(u^{6} + 2u^{5} + 3u^{4} + 8u^{3} + 9u^{2} + 9u + 2)$ $\cdot (u^{8} + 5u^{7} + 13u^{6} + 23u^{5} + 36u^{4} + 31u^{3} + 31u^{2} + 10u + 7)$ $\cdot (u^{11} + u^{9} + 4u^{8} + 2u^{7} + 3u^{6} + 7u^{5} + 3u^{4} + 3u^{3} + 4u^{2} + 1)$ $\cdot (u^{19} + 10u^{17} + \dots - 3u + 1)$
<i>C</i> 9	$(u^{6} + 3u^{5} - 3u^{4} - 9u^{3} + 7u^{2} + 10u - 17)$ $\cdot (u^{8} - 4u^{7} + 3u^{6} + 20u^{5} + 8u^{4} - 2u^{3} + 28u^{2} + 48u + 31)$ $\cdot (u^{11} - 5u^{9} + 2u^{8} + 10u^{7} + 3u^{6} + 3u^{5} + u^{4} - u^{3} + 2u^{2} + 1)$ $\cdot (u^{19} - 18u^{17} + \dots + u + 142)$
c_{10}	$(u-1)^{14}(u^{11} + 4u^9 - 3u^8 + 3u^7 - 7u^6 + 3u^5 - 2u^4 + 4u^3 - u^2 - 1)$ $\cdot (u^{19} + 15u^{18} + \dots + 1280u + 128)$
c_{11}	$((u^{3} + 2u - 1)^{2})(u^{4} + u^{3} + 2u^{2} + 2u + 1)^{2}(u^{11} - 2u^{10} + \dots - 7u^{2} + 1)$ $\cdot (u^{19} - 5u^{18} + \dots - 11u + 2)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{6} - 14y^{5} - 77y^{4} + 230y^{3} + 3493y^{2} - 657y + 256)$ $\cdot (y^{8} - 35y^{7} + \dots + 84142y + 130321)(y^{11} - 23y^{10} + \dots - 10y - 1)$ $\cdot (y^{19} - 85y^{18} + \dots + 107y - 1)$
c_2, c_7, c_{12}	$(y^{6} - 6y^{5} + 11y^{4} - 30y^{3} + 81y^{2} - 57y + 16)$ $\cdot (y^{8} - 15y^{7} + \dots - 966y + 361)(y^{11} - 11y^{10} + \dots + 6y - 1)$ $\cdot (y^{19} - 29y^{18} + \dots - 5y - 1)$
c_3, c_4, c_{11}	$(y^{3} + 4y^{2} + 4y - 1)^{2}(y^{4} + 3y^{3} + 2y^{2} + 1)^{2}$ $\cdot (y^{11} + 14y^{10} + \dots + 14y - 1)(y^{19} + 21y^{18} + \dots + 49y - 4)$
c_5, c_8	$(y^{6} + 2y^{5} - 5y^{4} - 42y^{3} - 51y^{2} - 45y + 4)$ $\cdot (y^{8} + y^{7} + 11y^{6} + 159y^{5} + 590y^{4} + 993y^{3} + 845y^{2} + 334y + 49)$ $\cdot (y^{11} + 2y^{10} + 5y^{9} + 2y^{8} + y^{6} + 11y^{5} + y^{4} - 21y^{3} - 22y^{2} - 8y - 1)$ $\cdot (y^{19} + 20y^{18} + \dots + 29y - 1)$
c_6, c_{10}	$(y-1)^{14} \cdot (y^{11} + 8y^{10} + 22y^9 + 21y^8 - y^7 - 11y^6 - y^5 - 2y^3 - 5y^2 - 2y - 1) \cdot (y^{19} + 7y^{18} + \dots + 98304y - 16384)$
c_9	$(y^{6} - 15y^{5} + 77y^{4} - 217y^{3} + 331y^{2} - 338y + 289)$ $\cdot (y^{8} - 10y^{7} + \dots - 568y + 961)(y^{11} - 10y^{10} + \dots - 4y - 1)$ $\cdot (y^{19} - 36y^{18} + \dots - 59071y - 20164)$