MP3编码分析

xiahouzuoxin ● 于 2012-08-11 14:21:02 发布 ● 阅读量1.9w 🛊 收藏 47 💧 点赞数 7

分类专栏: Image/Audio/ML...

Image/Audio/ML... 专栏收录该内容

4 订阅 43 篇文章

目录

- 一、MP3文件格式解析....2
- 1、MP3文件及MPEG概述...2
- 二、MP3编码原理....4
- 1、MP3编码流程...4
- 2、子带滤波器 排——编码流程图中编号为1......5
- 3、改良后的DCT (MDCT) ——编码流程图中编号为2.....7
- 4、声音心理学模型——编码流程图中编号为3......8
- 5、位元分配、量化和Huffman编码——4......12
- 三、SHINE程序分析....13
- 1、文件数据结构...13
- 2、编码前化工作...14
- 3、MP3编码...14
- 4、后处理...17
- 注: 下面的资料参考网上论文整理而来

一、MP3文件格式解析

1、MP3文件及MPEG概述

MP3文件是由帧(frame)构成的,帧是MP3 文件最小的组成单位。MP3 的全称应为MPEG1 Layer-3 音频文件。

MPEG(MovingPicture Experts Group),MPGE音频层指MPGE文件中的声音部分,根据编码质量和复杂程度分为3层,即Layer-1、Layer2、Layer3,对应MP1、MP2、M 文件。

2、MP3文件结构

MP3文件分为TAG V2(ID3V2), Frame, TAG V1(ID3V1)共3部分。

ID3V2	包含了作者,作曲,专辑等信息,长度不固定,扩展了 ID3V1 的信息量。		
Frame	一系列的帧,个数由文件大小和帧长决定		
	每个 FRAME 的长度可能不固定,也可能固定,由位率 bitrate 决定		
	每个 FRAME 又分为帧头和数据实体两部分		
	帧头记录了 mp3 的位率,采样率,版本等信息,每个帧之间相互独立		
Frame			
ID3V1	包含了作者,作曲,专辑等信息,长度为128BYTE。		

(1) Frame格式

FRAMEHEADER	CRC (free)	MAIN_DATA	1
4 BYTE	O OR 2 BYTE	长度由帧头计算得出	1

https://blog.csdn.net/xiahouzuoxin/article/details/7849249

xiahouzuoxin (关注)

1 7

unsigned intsync:11; //同步信息

unsigned intversion:2; //版本

unsigned intlayer:2; //层

unsigned intprotection:1; // CRC校验

unsigned intbitrate:4; //位率

unsigned intfrequency:2; //采样频率

unsigned intpadding:1; //帧长调节

unsigned intprivate:1; //保留字

unsigned intmode:2; //声道模式 unsigned int mode extension:2; //扩充模式

unsigned intcopyright:1; // 版权

unsigned intoriginal:1; //原版标志

unsigned intemphasis:2; //强调模式

}HEADER, *LPHEADER;

无论帧多长,每帧播放时间为26ms。MAIN_DATA长度为

Length(MAIN DATA)=((version==MPEG1)?144:72)* bitrate / frequency + padding;

(2) ID3V1格式

ID3V1存放在MP3文件结尾,共128Bytes,各项信息都顺序存放,不足部分使用'\0'补足,可使用UltraEdit打开查看。

typedef struct tagID3V1

{

char Header[3]; /*标签头必须是"TAG"否则认为没有标签*/

char Title[30]; /*标题*/

char Artist[30]; /*作者*/

char Album[30]; /*专集*/

char Year[4]; /*出品年代*/

char Comment[28]; /*备注*/

char reserve; /*保留*/

char track;; /*音轨*/

char Genre; /*类型*/

}ID3V1,*pID3V1;

(3) ID3V2格式

ID3V2存放在MP3文件的首部,由1个标签头和若干标签帧组成。

标签头为10个字节,

char Header[3]; /*必须为"ID3"否则认为标签不存在*/

char Ver; /*版本号ID3V2.3 就记录3*/ char Revision; /*副版本号此版本记录为0*/

char Flag; /*存放标志的字节,这个版本只定义了三位,稍后详细解说*/ char Size[4]; /*标签大小,包括标签头的10 个字节和所有的标签帧的大小*/

每个标签帧都有一个10个字节的帧头和至少一个字节的不固定长度的内容组成为,帧头的定义如下:

char FrameID[4]; /*用四个字符标识一个帧,说明其内容,稍后有常用的标识对照表*/

char Size[4]; /*帧内容的大小,不包括帧头,不得小于1*/ char Flags[2]; /*存放标志,只定义了6 位,稍后详细解说*/

MP3编码流程图

信号描述

(1) MP3编码输入信号: PCM(Pulse Code modulation)声音信号,有些.wav格式的音频文件为PCM信号。

(2) MP3编码输出信号: MP3格式码流

偏移地址	字节数	类型	内容
00H~03H	4	字符	资源交换文件标志(RIFF)
04H~07H	4	长整数	从下个地址开始到文件尾的总字节数
08H~0BH	4	字符	WAV文件标志(WAVE)
0CH~0FH	4	字符	波形格式标志(FMT)
10H~13H	4	整数	过滤字节 (一般为0000010H)
14H~15H	2	整数	格式种类(值为1时,表示数据为线性PCM编码:
16H~17H	2	整数	通道数,单声道为1,双声音为2
18H~1BH	4	长整数	采样频率
1CH~1FH	4	长整数	波形数据传输速率 (每秒平均字节数)
20H~21H	2	整数	数据的调整数(按字节计算)
22H~23H	2	整数	样本数据位数

wav文件头格式

偏移地址	字节数	类型	内容
24H~27H	4	字符	数据标志符(data)
28H~2BH	4	长整型	采样数据总数
2CH			采样数据

wav数据块

WAV格式文件所占容量= (取样频率X 量化位数X 声道)X 时间/8 (字节= 8bit)。

14H~15H的2个字节值为1时表示数据位PCM编码格式,可以作为MP3编码器的输入。

2、子带滤波器排——编码流程图中编号为1

子带滤波器及MDCT处理

子带滤波过程

为多重相位相位滤波器,将PCM信号输入后,滤波器系统看做线性系统,则有

再将用32点进行下采样,得子带滤波器输出结果为

ISO-M标准给出了如下图所示的实现方法,我们的程序将按照该实现方法编写。

ISO-M给出的滤波器组的实现

将上图整个流程综合用表达式表示为

其中

为分析矩阵的系数。是窗函数的系数,共512个点,其值在**ISO11172-3标准**的 ANNEX_C.DOC文档中给出了,为子带序列号,范围为0~31,为第i个子带的样点,且t是取标倍。

3、改良后的DCT (MDCT) ——编码流程图中编号为2

DCT变换的目的:进一步提高频谱解析度,将每一个子频带细分为18个次频带。

在正式DCT运算前,需要对子带信号进行加窗处理,有如下4中窗框,长窗框(Normal Window)、长短窗框(Start Window)、短窗框(Short Window)与短长窗框(Stol 长窗框具有高的频谱解析度,短窗框的时间解析度比较高。

然后进行DCT变换,变换表达式如下,

为DCT变换前加窗处理后的结果,如果加短窗框,则DCT运算中的,若加长框,则DCT运算中的。

在提高频域解析度的同时,加长框后会有假象(混叠现象)产生,因为不同子带之间存在混叠的信号,加长框会对混叠的信号当做该子带内正常信号处理,一种避免的办》 信号的强度。

噢,现在我们是知道了,所谓改良的DCT只不过是,(1)DCT变换前加窗处理(2)DCT变换(3)长框假象的处理 这3个过程。

到这里,还有一个问题,那就是窗框的选择问题,该如何选择窗框?窄的窗框具有好的时间分辨率,宽的窗框具有好的频率分辨率。我们回到编码流程图,

请注意图中的标号3,3表示声音心理学模型,窗框的宽窄选择与声音心里学模型相关,下面来分析该模型。

4、声音心理学模型——编码流程图中编号为3

研究声音心理学模型用途有:

- (1) 研究模型的PE值决定做MDCT变换时使用长窗框还是短窗框
- (2) 研究模型的SMR值决定量化编码时的比特数分配

现在不明白以上2条用途没关系,我们先来分析几个**重要的概念**。

- (1) SPL(Sound Pressure Level),表示声音强度的名词,SPL是评价听觉刺激强度的标准,也就是说,我们对外界声音的感觉强度完全由它决定,其单位为dB。
- (2) 静音门槛曲线

横轴为f(HZ),纵轴为SPL(dB),若声音强度(SPL)低于该曲线的值表示人听不到声音,如下图所示。从图中可以得出几条结论:

- 第一,人的听觉频率范围大约在10Hz~20KHz之间
- 第二,大约在3KHz到4KHz时SPL有最小值,也就是所人在该频率范围内的听觉最敏锐

(3) 临界频带 (Critical Bands)

因为人耳对不同频率的敏感程度不同,MPEG1/Audio将22KHz范围内可感知的频率范围划分为23~26个临界频带,如下图。

Band	Center Freq.	Bandwidth	Band	Center Freq.	Bandwidth
No.	(Hz)	(Hz)	No.	(Hz)	(Hz)
1	50	- 100	14	2150	2000 - 2320
2	150	100 - 200	15	2500	2320 - 2700
3	250	200 - 300	16	2900	2700 - 3150
4	350	300 – 400	17	3400	3150 - 3700
5	450	400 - 510	18	4000	3700 - 4400
6	570	510 - 630	19	4800	4400 - 5300
7	700	630 – 770	20	5800	5300 - 6400
8	840	770 – 920	21	7000	6400 - 7700
9	1000	920 - 1080	22	8500	7700 – 9500
10	1175	1080 - 1270	23	10500	9500 - 12000
11	1370	1270 - 1480	24	13500	12000 - 15500
12	1600	1480 - 1720	25	19500	15500 -
13	1850	1720 - 2000	***		

表 2-1 理想的臨界頻帶

从表中能得出几条结论:

第一,当当中心频率值在500Hz以内时,不同临界频带的带宽()几乎相同,约100Hz

当中心频率值大于500Hz后,随着f值得上升,临界频带的带宽剧增

第二,从表中也可以看出,人耳对低频的解析度要比高频更好

(4) 频域上的遮蔽效应

SPL较大的信号容易掩盖频率相近的SPL较小的信号,叫声音的遮蔽效应。就比如在机场很难听到打电话的声音。

圖 2-9 遮噪門檻曲線與靜音門檻曲線

如上图所示,Masking Threshold将大约在0.7kHz,1.6kHz和2.3kHz的信号遮蔽了,当然0.7kHz信号的SPL在静音门槛曲线之下,不被遮蔽也是听不到的。

在这里,涉及3个重要的量——SMR、SNR和MNR。

SMR(signal-to-maskratio):指在一个临界频带内,从masker到遮噪门槛值的距离。

SNR(signal-to-noiseratio): 指信号经过m位元量化后的信噪比,等于量化前信号方差和量化噪声的方差之比,。

MNR(mask-to-noise): 用来测量人耳可以感知的失真参数,

如下图所示,展示了3者之间的关系,其中的灰色区域Critial Band指临界频带,Masking Threshold就是遮噪门槛曲线,图中的SMR指在临界频带内最大的SMR值。

遮噪门槛曲线和SMR、SNR、NMR

值得注意的是,(1)我们上面讨论的SMR、SNR和NMR三者都是基于临界频带的,但遮蔽效应不仅对临界频带有影响,对临近的临界频带也有影响,称为遮噪延展性(2)的是一个临界频带内的一条遮噪曲线,实际情况存在多条遮噪曲线,结果是这些曲线的叠加。

(5) 时域上的遮噪曲线

从上图可以看出,在一段很短的时间内(200ms左右),若出现了两个声音,不管出现的先后顺序,SPL大的声音(masker)会遮蔽SPL小的声音(maskee)。

若maskee出现在前,则遮噪曲线如上图的Pre-Masking;若maskee出现在后,则遮噪曲线如上图中的Post-Masking。由图中很容易看出,Post-Masking要比Pre-Masking:长很多。Pre-Masking能遮蔽前回音,这是选择MDCT窗口的一个依据。

(6) 感知熵Perceptual Entropy (PE)

最重要的一点,PE能显示特定信号在理论上的压缩极限。PE的单位是bits/sample,代表每个取样在维持CD音质的情况下,能够压缩到的最低位元数。

重新回到本小节一开始就提到的声音心里学模型的用途, 重新列一下:

- (1) 研究模型的PE值决定做MDCT变换时使用长窗框还是短窗框
- (2) 研究模型的SMR值决定量化编码时的比特数分配

对于第一条,MP3中定义,当PE>1800时,使用短窗框的MDCT来处理该grannul(MP3每个数据帧包含2个grannul,每个grannul包含18*32个subband采样)的 号。因为当PE>1800表示这段音讯变化比较大,可能产生回音,不适合使用长框。

对于第二条,下面的位元分配将给出解释。

5、位元分配、量化和Huffman编码——4

(1) 位元分配

位元分配目的是使每个频带的MNR达到最大,使音质最佳。过程为:寻找最小的MNR频带,分配位元给该频带以提高MNR,接着重新计算各频带的MNR。重复上述过程,配结束。

[a]可编码位元数计算方法,1152指每个编码框的取样个数,

比如,以单声道为例,比特率为128kbps,采样频率为44.1kHz,则每个编码框可编码的位元数为3344。但考虑到挡头的32位,附属资料的136位和可选择的16位CRC,所的位元数为3344-32-136-16=3160,实际编码最小单位为grannul,所以每个grannul可用位元数为3160/2=1580。

[b]MNR计算方法,在前面心理学模型中已经提到,

其中SMR由声音心理学模型提供,SNR信噪比则是由量化确定的。

(2) 非均匀量化

上式为MP3量化的公式,其中为MDCT输出并调整后的值,为量化后的整数值,0.75是为了使量化器提供一致的SNR值,表示四舍五入。

下图为量化器的输入输出曲线,量化器的输入为浮点值频率,输出为整形值的频率。

由图知,量化器将输入的浮点值量化后变为整型值,且量化过程为非线性非均匀的。

频谱量化器的输入输出

三、SHINE程序分析

SHINE是一个C语言编写的MP编码程序,总共由11个源文件构成。将源文件添加到VC新建的控制台应用程序中即可运行,但运行时得使用命令行方式。

table1.h	2003/6/20 16:16 2003/6/20 16:16	C/C++ Header C/C++ Header	17 KE
C/C++ Header (3)			
wave.c	2012/8/8 20:16	C Source	5 KE
utils.c	2012/8/8 19:39	C Source	1 KE
main.c	2004/3/18 20:59	C Source	6 KI
loop.c	2003/6/23 19:14	C Source	16 K
ayer3.c	2004/3/18 20:14	C Source	5 KE
huffman.c	2001/6/14 10:35	C Source	14 KF
coder.c	2004/3/18 20:14	C Source	5 KE
bitstream.c	2003/6/23 19:15	C Source	15 KE

1、文件数据结构

在types.h中定义了一个config_t的结构体类型,并用它初始化了一个全局变量config,该变量作用相当于面向对象语言中的"对象",用于在整个编码流程中对编码数据和参数 管理。

定义了一个用于存储PCM脉冲格式文件信息的结构体类型wave_t,并且用wave_t在config_t中定义了wave变量,该变量保存了MP3编码的源的信息,作为MP3编码器的输 定义了一个用于存储MP3编码后信息的结构体类型mpeg_t,同样用mpeg_t在config_t中定义了mpeg变量,该变量存储的信息作为编码后的MP3参数信息输出。

typedefstruct {

time_t start_time; /*记录编码起始时间*/

char* infile; /*编码输入文件*/

wave_t wave; /*PCM文件头信息*/ **⊘** char* outfile; /*编码输出码流文件*/

/*MP3文件头信息*/ mpeg_t mpeg;


```
MP3编码分析-CSDN博客
} config_t;
以上的结构体主要用于保存"头"信息,编码输出后的字节流实体信息保存在bs结构体(bitstream.h文件中定义)中,bs结构体定义为
staticstruct
 FILE *f;
           /* bitstream output file handle */
 unsigned int i; /*file buffer index */
 unsigned char *b; /* buffer pointer */
结构体中的文件指针与指向同一个输出文件,b指向编码后的码流,编码结束后写入文件中。
2、编码前化工作
包括初始化config.mpeg结构体变量的默认值,打开wave类型文件(SHINE程序中此时只读取了文件头信息,没读取实体信息),根据读取的信息对mpeg输出信息进行配置
3、MP3编码
MP3编码主要由3步组成,分析子频带滤波器组,MDCT变换到频域,位元分配与量化。每次的操作对象为输入PCM的一帧。
              MP3编码核心调用
/* polyphase filtering */
 for(gr=0; gr<config.mpeg.granules; gr++)
  for(ch=0; ch<config.mpeg.channels; ch++)
   for(i=0;i<18;i++)
    L3_window_filter_subband(&buffer[ch],&l3_sb_sample[ch][gr+1][i][0],ch);
  /* applymdct to the polyphase output */
  L3_mdct_sub(l3_sb_sample, mdct_freq);
  /* bit andnoise allocation */
  L3_iteration_loop(mdct_freq, &side_info, I3_enc,mean_bits);
 /* writethe frame to the bitstream */
  L3_format_bitstream(I3_enc, &side_info);
 (1) 子频带滤波器
下图是ISO11172-3标准给出的Analysis subband filter flow chart。其步骤为
```


- 【a】输入32个音频samples
- 【b】建立一个数组x[n], for n=0~511用于保存输入的采样值。将x[n]看做一个最多能容纳512个元素的队列,x[511]为队首,x[0]为队尾, 每次接收新的samples前将队首32 出,将samples放入队尾。
- 【c】加窗滤波器处理,窗函数系数为C[i],i=0~512,通过实现窗函数滤波器
- 【d】计算64个Yi值,表达式如流程图中所示
- 【e】计算32个子带滤波器采样值Si,这里使用到矩阵M[i][k],

 $M[i][k] = \cos[(2i + 1)(k - 16)p/64],$

for i = 0 to 31, and k = 0 to 63.

实际计算时可以将非线性的运算用查Table的方法以减小运算的复杂度。

当然,在SHINE程序中,作者对M[i][k]×Y[k]的运算做了简化,主要从两方面:

第一, cos函数在k=16和k=48处的对称性; 第二, 从各滤波器的相关性考虑,即cos(2i+1)的对称性考虑。

(2) MDCT实现

DCT (离散余弦变换) 的原始表达式为

$$F(u) = a_0 c(u) \sum_{x=0}^{N-1} f(x) \cos \frac{(2x+1)u\pi}{2N}, \text{ for } -u = 0, 1, \cdots, N-1 \in \mathbb{R}$$

DCT可以通过蝶形运算提高运算效率,具体内容可参考数字信号处理教材的内容。

MDCT快速算法蝶形图

计算一样可以通过蝶形图运算来提高效率,蝶形运算中最重要的是系数值,使用短窗框的MDCT运算点数为12,长窗框则为36。 ISO 11172-3的ANNEX_AB.DOC文档中Table 3-B.9给出了蝶形运算的系数如下

Table 3-B.9 Layer III coefficients for aliasing reduction:

(i)	ci
0	-0.6
1	-0.535
2	-0.33
3	-0.185
4	-0.095
5	-0.041
6	-0.0142
7	-0.0037

蝶形系数csi和cai通过下面2个式子计算

$$cs_i = \frac{1}{\sqrt{1 + c_i^2}}$$
 $ca_i = \frac{c_i}{\sqrt{1 + c_i^2}}$

带假象处理的MDCT/IMDCT编解码图

32个频带每个频带的蝶形运算都需要8次,SHINE中蝶形运算的程序如下

```
for(band=31; band--; )
 for(k=8;k--; )
   /* must left justifyresult of multiplication here because the centre
    * two values in eachblock are not touched.
  bu = muls(mdct_enc[band][17-k], cs[k]) + muls(mdct_enc[band+1][k], ca[k]);
  bd = muls(mdct\_enc[band+1][k], cs[k]) - muls(mdct\_enc[band][17-k], ca[k]); \\
  mdct_enc[band][17-k] = bu;
```


 $mdct_enc[band+1][k] = bd;$

(3) Huffman编码与位元分配

在经过声音心理模型和分析滤波器排之后提供信息之后,就可以对Audio进行位元分配和量化编码了。SHINE程序在该部分做了很多工作,位元分配和量化编码通过3个回[a]Iteration Loop [b]Outer Loop [c]Inner Loop。且[a]包含[b],[b]包含[c]。

[c]主要完成量化工作,[b]计算量化后失真大小以决定是否需要重新量化,[a]计算剩余位元数并放在储存处。

Outer Loop流程图

位元分配与量化是整个编码过程中计算量最大的部分,是整个编码过程的核心。

【1】外部回圈分析

根据下面的公式计算失真度大小

对于量化误差大于人耳所能能最大可容忍失真的情况,则需将最大的可容忍失真度放大并且将每个未量化前的频带xr[i]放大。

【2】内部回圈分析

首先,根据下面公式进行量化

$$ix(i) = n \text{ int}((\frac{|xr(i)|}{\sqrt[4]{2}]^{stepsize}})^{0.75} - 0.0946)$$

若出现溢位或者位元数不够分配的情况,则按+1逐渐增大stepsize,直到前述情况不存在。

接着、计算编码所需位元数、通过位元数选择Huffman码表。

4、后处理

将结果写入比特流中,关闭PCM文件和码流存储文件。计算整个编码过程算法运行时间end_time -=config.start_time。

MP3文件格式与编码原理解码流程详解

水龙吟的备?

1 文件格式 MP3文件格式四部分,按顺序排列如下: ID3V2 包含了作者,作曲,专辑等信息,长度不固定,扩展了ID3V1的信息量 Frame 音频帧序列 APEV2 包含了作者,

音频格式之MP3: (2)MP3编解码原理详解

littlezIs的t

本文主要介绍mp3文件的存储格式,以及mp3编解码原理

11 条评论

🏟 huashuicaigou 热评 非常好

常见音频编码格式解析_一帧声音包含什么代码

1.MP3编码格式 1.1.MP3概述 MPEG-1 or MPEG-2 AudioLayerIII是一种音频压缩技术,其全称是动态影像专家压缩标准音频层面3(Moving Picture Experts Group Audio Layer

Mp3解码算法流程_mp3算法

不过MP3对音频信号采用的是有损压缩方式,为了降低声音失真度,MP3采取了"心理声学模型",即编码时先对音频文件进行频谱分析,然后再根据心理声学模型把谱线分成若干

编码与解码 最新发布 scj1022的t

如果每个国家都定义一套自己的<mark>编码</mark>标准,结果相互之间谁也不懂谁的<mark>编码</mark>,就无法进行很好的沟通交流。所以 ISO(国际标准化组织)定义一套<mark>编码</mark>方案来解决所有国家

MP3文件格式解析 热门推荐

李世平的:

MP3文件格式解析Peter Lee 2008-06-05 目录一、概述... 二、整个MP3文件结构... 三、MP3帧格式... 1. 帧头格式... 2. MAIN_DATA.. 四、ID3标准... 1. ID3V1. 2. ID3V2. 五、

各种音频编码方式详解_音频编码方式有哪些

MP3(MPEG-1 audio layer 3) 类型:Audio 制定者:MPEG 所需频宽:128~112kbps(压缩10~12倍) 特性:编码复杂,用于互联网上的高质量声音的传输,如MP3音乐压缩10倍,2声:

MP3文件格式解析_mp3 格式解析

MP3 文件是由帧(frame)构成的,帧是MP3 文件最小的组成单位。MP3 的全称应为MPEG1Layer-3 音频文件,MPEG(Moving Picture Experts Group)在汉语中译为活动图像专家

MP3编码原理概述[转]

技术点亮人生,成功通向些

音频压缩由<mark>编码</mark>和解码两个部分组成。把波形文件里的数字音频数据转换为高度压缩的形式(称为比特流)即为<mark>编码</mark>;要解码则把比特流重建为波形文件。 音频压缩可以

MP3编解码 (MP3 encoder)

典型的Mp3编解码源码,是学习音频编解码的良好样例

MP3解码算法原理解析_mp3编解码

频率反转:对逆向离散余弦变换的输出值中的奇数号子带(0到31号子带中的1,3,5,...,31)中的奇数号样本值(每个子带中的0到17号样本值的1,3,5,...,17号样本值)进行反相处理,用

文件名及mp3标签乱码问题_mp3 标题 怎么改编码格式

二。<mark>mp3</mark>标签 只需要把<mark>mp3</mark>标签里面用gbk、gb18030、big5等<mark>编码</mark>存储的中文内容修改为Unicode<mark>编码</mark>,那么基本上所有Linux下的播放器都能正常识别<mark>mp3</mark>标签了。 关于r

LAME3.92经典MP3编码器

LAME(Low Altitude Military Encoder)是一款开源的MP3编码器,因其卓越的音质和高效性能而备受赞誉。在音乐制作、音频编辑和数字音频处理领域,LAME3.92版本:

MP3CodeEncode.rar_mp3编码VC

MP3编码是音频压缩技术的一种,它通过有损压缩的方式减少音频数据的大小,以便于存储和传输。在VC++环境下进行MP3编码与解码的编程,涉及到的知识点广泛而深

对mp3 乱码问题的分析和解决(ZZ)_mp3 名称都是17位

1、了解 mp3 标签类型和使用的编码 首先说 mp3 标签类型和编码,大家应该知道目前主要存在这几种标准,ID3v1, ID3v2 2.3, ID3v2 2.4, APEv2,ID3v1 只支持 ISO-8859-1 编码

文件编码格式_mp3怎么验证格式编码

从文件<mark>编码</mark>的方式来看,文件可分为ASCII码文件和二进制码文件两种。 ASCII文件也称为文本文件,这种文件在磁盘中存放时每个字符对应一个字节,用于存放对应的ASCII码。 **②**

强大的mp3格式分析工具

在多媒体领域,音频格式的处理是一项重要任务,市

4 7