

# ENPEP-BALANCE: Expanded BALANCE Network with Electric Sector

### **ENPEP-BALANCE Training Course**Singapore December 5-9, 2011



#### **Guenter CONZELMANN**

Center for Energy, Environmental, and Economic Systems Analysis Decision and Information Sciences Division (DIS)

ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, IL 60439

guenter@anl.gov; ++1-630-252-7173



### As an Integrated Model, BALANCE Captures Feedback Effects

**Electricity Price** 



**Electricity Demand** 

- Substitutable
- Non-Substitutable

**Electricity Demand** 



**Fuel Price** 

**Electricity Demand** 



**Capacity Expansion** 

**Sector Effects** 

### Variations in Electricity Demand Can Be Modeled in BALANCE using Useful Energy Demand Representation



### When Electricity Demand Is Determined by BALANCE, Iterations With Other Models May Be Required



# When Electricity Demand Is Exogenous, Iterations Are Typically Not Required



### In BALANCE, there Are Three Main Methods for Representing the Electric Sector

- 1. Multiple input process
- 2. Network of conversion processes and decision nodes
- 3. Electric sector submodule (with dispatch node)

The three different methods may also be combined



### 1. Simple Multiple Input Process Representation





### Multiple Input Representation Data Requirements and Simulation Results

- User supplied information
  - Annual input/output ratios
  - Annual transmission and distribution losses
- Model results
  - Fuel use is scaled based on electricity demand
- Advantages
  - Accurate fuel consumption levels
- Disadvantages
  - Time required to iterate with expansion models
  - No adjustments of input fuel mix between iterations
  - Generation levels are scaled proportionally



# Details Can Be Added to the Multiple Input Representation





### 2. BALANCE Can Represent the Electric Sector as a Set of Single Input/Output Process Nodes



### Process & Decision Node Representation Data Requirements and Simulation Results

- User supplied information
  - Detailed technology information
  - Data on generation levels for old resources
  - Response functions for decision nodes
- Advantages
  - Detailed capacity expansion models not required
  - Can run many scenarios quickly
- Disadvantages
  - Based on simple rules not least cost
  - Unit-level dispatch not determined



### 3. The Electricity Dispatch Node Handles the Electric Sector in a Special Way





### The Electric Dispatch Node Performs Several Important Functions

- Estimates unit-level capacity factors and unit-level and system-level power generation
- Estimates unit-level and system-level fuel consumption
- Adjusts capacity expansion timing
- Computes average electricity prices
- Interacts with fuel prices and electricity demand
- Time frame is annual
- Represents national power pool (on-grid)
- Expansion plan and unit alterations are specified by the user

### Dispatch Node Representation Data Requirements and Simulation Results

- User supplied information
  - Detailed technology information
  - Capacity expansion path (from WASP or other power system expansion tool)
- Advantages
  - Annual expansion path is adjusted automatically
  - Adjustments are performed for each iteration
- Disadvantages
  - The dispatch is less detailed than in electric power system expansion models (e.g., WASP)
  - Peaking hydro is not simulated accurately
  - Adjusted expansion paths may not be optimal
  - Only one dispatch node can be used



### BALANCE Can Simulate Complex Electric Sector Features

- Power Contracts
  - Minimum schedule requirement
  - Dispatchable contracts
  - Capacity limits
  - Energy limits
- Non-Dispatchable Capacity
  - Outside of the Electric Dispatch Submodule
- Cogeneration
  - Outside of the Electric Dispatch Submodule



#### Complex Electric Sector Features (cont'd)

- On-grid and off-grid electricity demand should be normally separated
- Off-grid units and demand can be brought on-grid over time
  - Reflect timing in demand node growth rates
  - Decrease capacity off-grid
  - Use unit on-line date for units brought on to the grid
- User can alter unit dispatch
  - User specified loading order
  - Blocking (Two Unit Representation)
  - Non-economic dispatch (optional or user-specified dispatch)
  - Contract representation



### Electricity Demand and Fuel Prices Are Received from the Network



### System Load Characteristics Are Input into BALANCE





#### Dispatch Node Load Information Technical Properties



- Peak Fraction represents
   the fraction of electricity
   that the model will try to
   meet with peaking units only
- Reserve Margin represents the reserve margin for the electric sector of your network
  - 0.15 equals 15% reserve margin over peak demand
  - Is used only for simple reserve margin check; warning message issued if system cannot meet reserve requirement
- Base-Year Production represents the base-year electricity generation









#### Dispatch Node Load Information Economic Properties



Interest Rate represents the annual interest rate used for levelizing (amortizing) the capital cost of electric generating units (cost of capital);



- Minimum Annual System Load is used in conjunction with the Snyder approximation method for the annual load duration curve; it is a fraction of the annual peak load
- Annual Average Load Factor is used in conjunction with the Snyder approximation method



■ *Inverse LDC Number of Cells* represents the number of cells used to approximate the inverse load duration curve; this value must range from 1 to 50





#### Dispatch Node Load Information Economic Properties (cont'd)



• LDC Polynomial Coefficients are used if you choose the polynomial LDC approximation method; in this case the model uses a fifth-degree polynomial to represent the annual load duration curve



- There are six coefficients for the fifth-degree polynomial equation that forms the annual load duration curve; the *first coefficient (a0)* must be 1.0
- Inverse LDC Number of Cells represents the number of cells used to approximate the inverse load duration curve; this value must range from 1 to 50
- You may obtain the coefficients from EXCEL if you have hourly chronological loads or from the WASP case



### Steps Involved in Creating a Load Curve Duration

- Collect hourly load data
- Create a cumulative curve (annual)
- Approximate the curve
  - -Option A. Fifth-degree polynomial
    - Use EXCEL data graph trendline feature
  - -Option B. Snyder method



### Steps Involved in Creating a Load Curve Duration



### Data on Individual Power Plants Are Input into BALANCE



#### Generating Units are Organized into Groups: Total of Up to 20 Goups (1 Hydro + 19 Thermal)





### The SINGLE Hydro Group can Contain up to 300 Individual Hydro Plants





# There Can be up to 19 Thermal Groups with a Total of 999 Generating Units







#### Electric Thermal Unit Data Technical Properties



| echnical Properties Economic Properties |                                        |                                  |                                        |                                                              |                                                             |                                           |  |  |
|-----------------------------------------|----------------------------------------|----------------------------------|----------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|--|--|
| <u>Year</u>                             | Optional<br>Loading Order<br>(\$/M/Vh) | <u>Capacity</u><br>( <u>MVV)</u> | <u>Heat Rate</u><br>( <u>BTU/k/Vh)</u> | <u>Unplanned</u><br><u>Outage Rate</u><br>( <u>Fraction)</u> | <u>Planned</u><br><u>Outage Rate</u><br>( <u>Days/Year)</u> | Minimum Annual Utilzation Rate (Fraction) |  |  |
| 2000                                    | 2.000                                  | 300.000                          | 10,500.000                             | 0.045                                                        | 35.000<br>40.000                                            | 0.000                                     |  |  |

- *The Optional Loading Order* overrides the economic dispatch. A blank indicates that the economic order will be used
- Unplanned Outage Rate is the fraction of time the unit is expected to be on forced outage;
   will be used to derate the unit capacity
- Planned Outage Rate is the number of days the unit is on scheduled maintenance; will be used to derate the unit capacity
- Minimum Annual Utilization Rate is the minimum capacity factor acceptable for this unit. The
  unit will not be dispatched if the model estimates that the unit will be utilized below the
  specified value
  - Use 0 for peaking units
  - Use 0.2 or higher for base load units





#### Electric Thermal Unit Data Economic Properties



| Tec | chnical Pr  | operties | Economic Pro           | perties |                         |                                                   |                            |                        |
|-----|-------------|----------|------------------------|---------|-------------------------|---------------------------------------------------|----------------------------|------------------------|
|     | <u>Year</u> | _        | oital Cost<br>\$/k/\/) |         | l O&M Cost<br>(VV-Year) | <u>Variable O&amp;M Cost</u><br>( <u>\$/M/Vh)</u> | Life Expectancy<br>(Years) | On-line Date<br>(Year) |
|     | 2000        |          | 1,000.000              |         | 40.000                  | 0.850                                             | 25                         | 2000                   |
|     | 2001        |          |                        |         |                         |                                                   |                            |                        |

- Capital Costs should only be used if costs are included in the rate base;
- *Life Expectancy* is the economic life-time and is used to levelize capital costs and also to retire a unit based on the on-line date (maximum value 99 years);
- A unit is typically not dispatched before its on-line date. However, adjustments are made based on load growth and reserve margin requirements.





#### Electric Hydro Unit Data Technical Properties



| Technical Properties  | Economic Prop                                 | perties                                          |                                                 |                                                                      |                                                 |
|-----------------------|-----------------------------------------------|--------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|
| <u>Year</u> 2000 2001 | Optional<br>ading Order<br>(\$/M/Vh)<br>1.250 | <u>Capacity</u><br>( <u>MVV-Year)</u><br>100.000 | Unplanned<br>Outage Rate<br>(Fraction)<br>0.000 | <u>Planned</u><br><u>Outage Rate</u><br>( <u>Days/Year)</u><br>0.000 | Minimum Annual Utilzation Rate (Fraction) 0.000 |

- By default, hydro units are loaded in the base portion of the load duration curve as they have
   0 total variable cost
- The *Optional Loading Order* can be used to move hydro units into the peak part of the curve; however, generation levels need to be verified
- The *Capacity* of hydropower plant is specified as the annual generation (MWh/yr) divided by the number of hours in a year (i.e., 8760).





#### Electric Hydro Unit Data Economic Properties





- Capital Costs should only be specified if costs are included in the electricity rate base;
- Life Expectancy is the economic lifetime and is used to levelize capital costs and also to retire
  a unit based on the on-line date (maximum value 99 years);
- A unit is typically not dispatched before its on-line date. However, adjustments are made based on load growth and reserve margin requirements.



### How Does the Model Load the Units and Estimate Unit Capacity Factors and Generation Levels

- STEP 1: Derate units before loading
- STEP 2: Compute the loading order (taking into account user-specified loading order)
- STEP 3: Enter units into the load duration curve
- STEP 4: Determine the number of hours of operation and annual generation for each unit



#### STEP 1: Derate Units Before Loading

- Account for scheduled maintenance
- Account for equivalent forced outages

$$\frac{Derated}{Capacity} = \frac{Installed}{Capacity} x \left(1 - \frac{Unplanned}{OutageRate}\right) x \left(1 - \frac{PlannedOutage}{365}\right)$$

#### **EXAMPLE**

Installed Capacity: 400 MW

Unplanned outage rate: 15% per year

Planned outage: 35 days/year

$$400MW \ x \ (1 - 0.15) \ x \left(1 - \frac{35}{365}\right) = 307.4MW$$



### STEP 2: Compute the Loading Order: Loading Order Is Based on Total Variable Cost

$$\frac{Variable}{Cost_{Total}} = \frac{Variable}{O\&M} + \left(\frac{Fuel \, \text{Pr} \, ice \, x \, Heat \, Rate}{5,440.761}\right)$$

#### **EXAMPLE**

Variable O&M cost: 3.3 \$/MWh

Fuel Price: 10 \$/boe

Heat rate: 9,800 btu/kWh

Unit conversion factor: 5,440.761

(5,440,761 btu/boe x 0.001 MWh/kWh)

$$3.3 + \left(\frac{10 \times 9,800}{5,440.761}\right) = 21.3122 \$/MWh$$



STEP 3: Enter Units into the Load Duration Curve, First Hydro Units, then Continue with Lowest Variable Cost Thermal Units



# STEP 3: Enter Units Into the Load Duration Curve: Dispatch Node Report

Unit loading order ranked by total variable cost

Derated Capacities

| UNIT  | OPTIONAL | UNIT    | UNIT   | YEAR  | UNIT   | UNZ1 U | JTIL | ENERGY   | UNIT    |
|-------|----------|---------|--------|-------|--------|--------|------|----------|---------|
| NAME  | LD ORDER | V COST  | F COST | BUILT | CAPAC  | UTIL   | MIN  | IN       | ENERGY  |
|       |          | \$/MWH  | \$/MW  |       | MW     |        |      | 10*3 BOE | MWH     |
| HYD-1 | 0.0000   | 0.0000  | 413437 | 1990  | 93.97  | 0.94 0 | 0.00 | 516.29   | 823197  |
| Coal6 | 0.0000   | 20.6119 | 127257 | 1995  | 461.10 | 0.77 0 | 0.20 | 6990.59  | 4038820 |
| NCoal | 0.0000   | 21.3122 | 131157 | 2007  | 307.40 | .77 0  | 0.20 | 4848.89  | 2692536 |
| Coal1 | 0.0000   | 24.4368 | 22850  | 1971  | 315.62 | 0.70 0 | 0.20 | 5842.15  | 2764526 |
| Coal2 | 0.0000   | 24.4368 | 22850  | 1971  | 175.34 | 0.68 0 | 0.20 | 3147.17  | 1489252 |
| Coal3 | 0.0000   | 24.4368 | 33076  | 1981  | 258.66 | 0.48 0 | 0.20 | 3126.06  | 1479261 |
| Coal4 | 0.0000   | 24.4368 | 131157 | 1991  | 230.55 | 0.38 0 | 0.20 | 2135.58  | 1010565 |
| Coal5 | 0.0000   | 24.5988 | 131157 | 1991  | 153.70 | 0.23 0 | 0.10 | 779.97   | 404234  |
| CC-1C | 0.0000   | 31.3102 | 60218  | 1999  | 330.41 | 0.09 0 | 0.05 | 452.79   | 320543  |



# STEP 4: Determine Unit Capacity Factor



# STEP 4: Determine Unit Capacity Factor: Dispatch Node Report

Capacity Factor (based on installed capacity)

| UNIT  | OPTIONAL                 | UNIT            | UNIT     | YEAR  | UNIT     | UNIT | UTIL | ENERGY   | UNIT    |
|-------|--------------------------|-----------------|----------|-------|----------|------|------|----------|---------|
| NAME  | LD ORDER                 | V COST          | F COST   | BUILT | CAPAC    | UTIL | MIN  | IN       | ENERGY  |
|       |                          | \$/MWH          | \$/MW    |       | MW       |      |      | 10*3 BOE | MWH     |
| HYD-1 | 0.0000                   | 0.0000          | 413437   | 1990  | 93.97    | 0.94 | 0.00 | 516.29   | 823197  |
| Coal6 | 0.0000                   | 20.6119         | 127257   | 1995  | 461.10   | 0.77 | 0.20 | 6990.59  | 4038820 |
| NCoal | 0.0000                   | 21.3122         | 131157   | 2007  | 307.4    | 0.77 | 0.20 | 4848.89  | 2692536 |
| Coal1 | 0.0000                   | 24.4368         | 22850    | 1971  | 15.62    | 0.70 | 0.20 | 5842.15  | 2764526 |
| Coal2 | 0.0000                   | 24.4368         | 220      |       | 175.34   | 0.68 | 0.20 | 3147.17  | 1489252 |
| Coal3 | 2,69                     | 2,536 <i>MV</i> | Vh       | . –   | 58.66    | 0.48 | 0.20 | 3126.06  | 1479261 |
| Coal4 | $\frac{1}{400 \ MW_{i}}$ |                 | 3,760 h  | = 0.7 | 7  30.55 | 0.38 | 0.20 | 2135.58  | 1010565 |
| Coal5 | TOO MIN i                | nstalled A      | 5, 100 h |       | 53.70    | 0.23 | 0.10 | 779.97   | 404234  |
| CC-1C | 0.0000                   | 31.3102         | 60218    | 1999  | 330.41   | 0.09 | 0.05 | 452.79   | 320543  |



# Exceptions to Economic Loading Order: Use the Optional Loading Order to Move Units in Desired Place

- Must run units
- Peak hydroelectric units
- Non-dispatchable units
  - -Wind
  - -Solar
  - Run-of-river hydro
- Spinning reserves
  - Block units



### Calculate Fixed Cost

$$\frac{Fixed}{Cost_{Total}} = \begin{pmatrix} Capital \\ Cost \end{pmatrix} x CRF + \frac{Fixed}{O\&M} x 1000$$

### **EXAMPLE**

Capital Cost: 1,021

Fixed O&M cost: 22.85 \$/kW-year

Unit Life Time: 30 years

Interest Rate: 0.1 (fraction)

$$CRF = \frac{i x (1 + i)^n}{(1 + i)^n - 1}$$

**Capital Recovery Factor:** 

$$\frac{0.1 \ x \ (1 + 0.1)^{30}}{(1 + 0.1)^{30} - 1} = 0.10608$$

$$(1,021 \times 0.10608 + 22.85) \times 1,000 = 131,157 \$/MW/year$$



# Calculate Unit Generation and Fuel Consumption

Generation = 
$$\frac{Derated}{Capacity} x \frac{Capacity}{Factor} x 8760$$

$$\frac{Fuel}{Consumption} = Generation \ x \ \frac{Heat \ Rate}{5,440,761}$$

#### **EXAMPLE**

Derated Capacity: 307.3973 MW

Capacity Factor: 0.77 (0.768418)

Heat Rate: 9,800 btu/kWh

Unit Conversion Factor: 5,440,761 btu/boe

$$307.3973 \ MW \ x \ 0.768418 \ x \ 8760 \ h = 2,692,537 \ MWh$$

$$2,692,537 \ MWh \ x \ \frac{9800 \ btu / kWh}{5,440,761} = 4,849.8 \ kboe$$



# Fixed Cost, Generation, and Fuel Consumption: Dispatch Node Report

Unit Fixed Cost

Unit Fuel Consumption (Energy In) and Generation (Unit Energy)

| - 10 |       |          |         |        |       |        |      |      |          |         |
|------|-------|----------|---------|--------|-------|--------|------|------|----------|---------|
| 1    | UNIT  | OPTIONAL | UNIT    | UNIT   | YEAR  | UNIT   | UNI  | /IL  | ENERGY   | UNIT    |
| ı    | NAME  | LD ORDER | V COST  | F COST | BUILT | CAPAC  | UTIL | MA   | IN       | ENERGY  |
| ı    |       |          | \$/MWH  | \$/MW  |       | MW     |      |      | 10*3 BOE | MWH     |
| ı    | HYD-1 | 0.0000   | 0.0000  | 413437 | 1990  | 93.97  | 0.94 | 0.00 | 516.29   | 823197  |
| ı    | Coal6 | 0.0000   | 20.6119 | 127257 | 1995  | 461.10 | 0.77 | 0.20 | 6990.59  | 4038820 |
| ı    | NCoal | 0.0000   | 21.3122 | 131157 | 2007  | 307.40 | 0.77 | 0.20 | 4848.89  | 2692536 |
| ı    | Coal1 | 0.0000   | 24.4368 | 22850  | 1971  | 315.62 | 0.70 | 0.20 | 5842.15  | 2764526 |
| ı    | Coal2 | 0.0000   | 24.4368 | 22850  | 1971  | 175.34 | 0.68 | 0.20 | 3147.17  | 1489252 |
| ı    | Coal3 | 0.0000   | 24.4368 | 33076  | 1981  | 258.66 | 0.48 | 0.20 | 3126.06  | 1479261 |
| ı    | Coal4 | 0.0000   | 24.4368 | 131157 | 1991  | 230.55 | 0.38 | 0.20 | 2135.58  | 1010565 |
|      | Coal5 | 0.0000   | 24.5988 | 131157 | 1991  | 153.70 | 0.23 | 0.10 | 779.97   | 404234  |
|      | CC-1C | 0.0000   | 31.3102 | 60218  | 1999  | 330.41 | 0.09 | 0.05 | 452.79   | 320543  |



### **Calculate Unit Generation Cost**

$$\frac{Generation}{Cost_{Total}} = \begin{pmatrix} Fixed & x & Installed \\ Cost_{Total} & x & Capacity \end{pmatrix} + \begin{pmatrix} Variable \\ Cost_{Total} & x & Generation \end{pmatrix}$$

#### **EXAMPLE**

Fixed Cost Total: 131,157 \$/MW-year

Installed Capacity: 400 MW

Variable Cost Total: 21.3122 \$/MWh

Generation: 2,692,536 MWh

$$131,157 \times 400 + 21.3122 \times 2,692,536 = 109,846,666$$
\$\frac{year}{}

Model reports cumulative cost: 310.79 - 200.95 = HYD-1 41.34 109.84 million Coal6 200.95 NCoal 310.79



# Calculation of Average Electricity Cost/Price (AEC)

$$AEC = \frac{\sum Generation \ Cost_{Total}}{\sum Generation}$$

At the end of each iteration, model also summarizes capacity, demand, reserves

| TOTAL ELECTRICITY DEMAND (MWH) | =    | 15170319      |
|--------------------------------|------|---------------|
| EST. ELECTRICITY SUPPLY (MWH)  | =    | 15182986      |
| RATIO SUPPLY/DEMAND (FRAC)     | =    | 1.0008        |
|                                |      |               |
| AVAIL DERATED CAPACITY (MW)    | =    | 3197.16       |
| CAPACITY EXISTING UNITS (MW)   | =    | 3197.16       |
| CAPACITY PRODUCING UNITS (MW)  | =    | 2979.55       |
| PEAK DEMAND (MW)               | =    | 2886.29       |
| COMPUTED RESERVE MARGIN ()     | =    | 10.77         |
|                                |      |               |
| TOTAL GENERATION COST (\$)     | = 66 | 2156800.00000 |
| AVE. ELECTRICTY COST (c/KWH)   | =    | 4.3612        |
| LARGEST VAR COST (c/KWH)       |      | 5.2188        |

 $\frac{\$662,156,800}{15,182,986 \ MWh} = 43.612 \ \$/MWh = 4.3 \ cents/kWh$ 



# Case-Level Input Data - Output Codes (Model Output Reports)

- Converged P/Q and electric sector results are the basic model output and can be generated for userspecified time steps
- Diagnostic output provides more details and is typically used for debugging



- Electric sector report includes
  - Input data
  - Load curve
  - Loading order
  - Unit-level generation
  - Fuel consumption

Set the two values to 0 to get only the converged iteration results



## Summary

- The electricity representation in BALANCE is a simplification -- it should not be used to simulate only the electric sector -- the entire energy system should be simulated
- The strength of BALANCE is that the electric sector directly interacts with fuel suppliers and energy consumers
- There are three different methods for representing the electric sector in BALANCE; they are often combined

## Electric Sector Cases - Input Data

Case 1: Base Case (import Electric Case from the course CD)

Case 2: Repower old and inefficient coal unit COAL1 with new AFBC unit

Repower in the year: 2005

– New heat rate: 9,800 btu/kWh

New unplanned outages: 0.15

New planned outages: 35 days

New capital cost: 600 \$/kW

New life expectancy: 20 years

- Case 3: Advanced technology: Introduce Nuclear
  - Nuclear on-line year is 2007
- Case 4: Renewable technologies (dispatchable and non-dispatchable)
  - Geothermal on-line year is 2005
  - Wind becomes available in 2004
  - Solar becomes available in 2004



# Electric Sector Cases - Input Data

Wind and solar development plan for Case 4:

| Capacity installed | Wind Farm Units | Wind | Wind        | Solar Units | Solar | Solar       |
|--------------------|-----------------|------|-------------|-------------|-------|-------------|
|                    | #               | MW   | kboe-energy | #           | MW    | kboe-energy |
| 2004               | 1               | 50   | 72.05       | 1           | 5     | 5.50        |
| 2006               | 3               | 150  | 216.15      | 3           | 15    | 16.50       |
| 2008               | 6               | 300  | 432.30      | 6           | 30    | 33.00       |
| 2010               | 9               | 450  | 648.45      | 10          | 50    | 55.00       |
| 2012               | 12              | 600  | 864.60      | 15          | 75    | 82.50       |
| 2014               | 15              | 750  | 1080.75     | 21          | 105   | 115.50      |
|                    |                 |      |             |             |       |             |

- Examine and compare all cases to the BASE CASE
  - Electricity price over time
  - Change in fuel consumption level and fuel mix over time
  - Electricity generation by different plant types

