Curso de Verão de Álgebra Linear Parte 2 - Aula 02

Cleber Barreto dos Santos

29 de janeiro de 2020

Definição 1. Seja V um espaço vetorial e T um operador linear em V. Se W é um subespaço de V, dizemos que W é **invariante** por T se $T(W) \subseteq W$.

Exemplo 2. Se $T:V\longrightarrow V$ é um operador linear no espaço vetorial V então $\mathsf{Ker}(T)$ e $\mathsf{Im}(T)$ são subespaços invariantes por T.

Exemplo 3. Seja $T:V\longrightarrow V$ um operador linear no espaço vetorial V com autovalor λ . Então $\operatorname{Aut}_T(\lambda)$ é um subespaço invariante por T.

Exemplo 4. Seja $D: \mathcal{C}^{\infty}(\mathbb{R}; \mathbb{R}) \longrightarrow \mathcal{C}^{\infty}(\mathbb{R}; \mathbb{R})$ o operador derivação no espaço das funções infinitamente deriváveis. Então o subespaço vetorial $\mathbb{K}[x]$ dos polinômios de grau arbitrário é um subespaço invariante por D.

Exemplo 5. Seja $T:V\longrightarrow V$ um operador linear no espaço vetorial V. Seja U um operador linear tal que TU=UT. Sejam $W=\operatorname{Im}(U)$ e $N=\operatorname{Ker}(U)$. Então W e N são invariantes por T.

Exemplo 6. Seja $R_{\theta}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ a rotação em torno da origem de \mathbb{R}^2 por um ângulo $0 < \theta < \pi$. Seja W um subespaço invariante de \mathbb{R}^2 . Então W = 0 ou $W = \mathbb{R}^2$.

Definição 7. Sejam $T:V\longrightarrow V$ um operador linear no espaço vetorial V. Suponhamos que W seja um subespaço invariante por T. Então o operador $T|_W:W\longrightarrow W$ dado por $T|_W(w)=T(w)$ para cada $w\in W$ é chamado de **operador restrição de** T a W.

Observação 8. Seja $T:V\longrightarrow V$ um operador linear no espaço vetorial V e seja W um subespaço invariante por T. Então existe uma base $\mathcal B$ de V para a qual a matriz de T é representada por

 $[T]_{\mathcal{B}} = \left(\begin{array}{cc} A & B \\ 0 & C \end{array}\right).$

Lema 9. Seja $T:V\longrightarrow V$ um operador linear no espaço vetorial V e seja W um subespaço invariante por T. Então temos que o polinômio $p_{T|_W}(x)$ divide o polinômio $p_T(x)$. Além disso, se f é um polinômio que anula T, então f anula $T|_W$.

Demonstração. De fato, se $\mathcal{B} = \{w_1, w_2, \dots, w_m, v_1, v_2, \dots, v_s\}$ é uma base de V onde $\{w_1, w_2, \dots, w_m\}$ é uma base de W então $[T]_{\mathbb{B}}$ é uma matriz diagonal por blocos onde $p_T(x) = \det(xI - T) = \det(xI - T|_W) q(x)$. De forma análoga, mostra-se que se f(T) = 0 então $f(T|_W) = 0$ para qualquer polinômio f(x).

Exemplo 10. Seja $T: V \longrightarrow V$ um operador linear no espaço vetorial V com autovalores distintos $\lambda_1, \lambda_2, \ldots, \lambda_k$. Seja $W = \operatorname{Aut}_T(\lambda_1) + \operatorname{Aut}_T(\lambda_2) + \cdots + \operatorname{Aut}_T(\lambda_k)$. Então $p_{T|_W}(x) = (x - \lambda_1)^{\operatorname{mg}(\lambda_1)}(x - \lambda_2)^{\operatorname{mg}(\lambda_2)} \cdots (x - \lambda_k)^{\operatorname{mg}(\lambda_k)}$.

Definição 11. Seja W um subespaço invariante para o operador linear $T:V\longrightarrow V$ e seja $v\in V$. O T-condutor de v em W é o conjunto $S_T(v,W)$ formado por todos os polinômios g tais que $g(T)(v)\in W$. Em particular, se W=0, dizemos que $S_T(v,W)$ é o T-anulador de v.

Lema 12. Sejam $T: V \longrightarrow V$ um operador linear no espaço vetorial V e W um subespaço vetorial invariante por T. Então W é invariante por qualquer polinômio aplicado em T. Em particular, para cada $v \in V$, $S_T(v, W)$ é um ideal da álgebra de polinômios $\mathbb{K}[x]$.

Demonstração. De fato, recursivamente temos que $T^n(W) \subseteq W$ para cada inteiro $n \geqslant 0$. Segue disto que W é invariante sob a aplicação de qualquer operador obtido a partir da aplicação de um polinômio a T.

Se $f, g \in S_T(v, W)$ então $f(T)(v), g(T)(v) \in W$ e logo $(f_g)(T)(v) = f(T)(v) + g(T)(v) \in W$. Seja agora $f \in S_T(v, W)$ e $h \in \mathbb{K}[x]$ qualquer. Logo $(hf)(T)(v) = h(T)f(T)(v) = h(T)(w) \in W$ pois $w = f(T)(v) \in W$ por definição. Portanto $S_T(v, W)$ é um ideal de $\mathbb{K}[x]$.

Observação 13. Cada ideal em $\mathbb{K}[x]$ é gerado por um único polinômio mônico.

Definição 14. Sejam $T: V \longrightarrow V$ um operador linear no espaço vetorial V e W um subespaço de V invariante por T. Diremos que o polinômio gerador de $S_T(v, W)$ é o T-condutor de α em W. Se W = 0 diremos que esse polinômio é o T-anulador de $v \in V$.

Definição 15. Sejam W_1, W_2, \ldots, W_k subespaços de um espaço vetorial v. Dizemos que W_1, W_2, \ldots, W_k são **independentes** se $v_1 + v_2 + \ldots + v_k = 0$ para cada $v_j \in W_j$ implica em $v_j = 0$.

Exemplo 16. Seja V um espaço vetorial de dimensão 2. Se os subespaços W_1 e W_2 são independentes e não nulos então $V = W_1 \oplus W_2$.

Lema 17. Seja V um espaço vetorial de dimensão finita. Sejam W_1, W_2, \ldots, W_k subespaços de V e seja $W = W_1 + W_2 + \cdots + W_k$. As seguintes afirmações são equivalentes:

- (1) W_1, W_2, \ldots, W_k são independentes;
- (2) para cada $2 \le j \le k$ temos que $W_j \cap (W_1 + W_2 + \dots + W_{j-1}) = \{0\};$
- (3) se \mathcal{B}_j é uma base ordenada para W_j então $\mathcal{B} = \bigcup_{j=1}^k \mathcal{B}_j$ é uma base ordenada de W.
- Demonstração. (1) \Rightarrow (2): Suponhamos que os espaços W_1, W_2, \ldots, W_k sejam independentes. Seja $v \in W_j \cap (W_1 + W_2 + \cdots + W_{j-1}$. Logo existem $w_t \in W_t$ tais que $v = w_1 + w_2 + \cdots + w_{j-1}$, ou seja, $w_1 + w_2 + \cdots + w_{j-1} + (-v) = 0$. Pela definição de independência segue que $0 = v = w_1 = w_2 = \cdots = w_j$.
- (2) \Rightarrow (1): Suponha que $v_1+v_2+\cdots+v_k=0$ com $v_j\in W_j$. Seja j o maior inteiro tal que $v_j\neq 0$. Logo $0=v_1+v_2+\cdots+v_j=0$ com $v_j\neq 0$, donde $v_j=-v_1-v_2-\cdots-v_{j-1}\in W_j\cap (W_1+W_2+\cdots+W_{j-1})$. Segue todos os v_i 's são nulos.
- (1) \Rightarrow (3): Suponha novamente que W_1, W_2, \dots, W_k sejam independentes e sejam \mathcal{B}_j as bases de W_j e seja \mathcal{B} a união ordenada dessas bases. Toda relação de dependência linear entre vetores de \mathcal{B} tem a forma $v_1 + v_2 + \dots + v_k = 0$ Segue que cada $v_j = 0$ e olhando para as escritas nas bases, os coeficientes da relação devem ser nulos.
- (3) \Rightarrow (1): Sejam $v_j \in W_j$ tais que $v_1 + v_2 + \cdots + v_k = 0$. Como cada \mathcal{B}_j é base podemos escrever $v_j = a_{j,1}v_{j,1} + a_{j,2}v_{j,2} + \cdots + a_{j,n_j}v_{j,n_j}$ onde $\mathcal{B}_j = \{v_{j,1}, v_{j,2}, \dots, v_{j,n_j}\}$. Como \mathcal{B} é base, todos os coeficientes tem de ser nulos e segue que W_1, W_2, \dots, W_k são independentes.

Definição 18. Seja V um espaço vetorial. Dizemos que o operador $E:V\longrightarrow V$ é uma **projeção** se $E^2=E$.

Lema 19. Seja $E:V\longrightarrow E$ uma projeção em um espaço vetorial V. Temos que $V=\mathsf{Ker}(E)\oplus \mathsf{Im}(E)$.

Demonstração. De fato, seja $v \in \text{Ker}(E) \cap \text{Im}(E)$. Logo E(v) = 0 e v = E(w) para algum $w \in V$. Portanto $v = E(w) = E^2(w) = E(E(w)) = E(v) = 0$. Por outro lado, podemos escrever cada vetor v da forma v = E(v) + (v - E(v)), o que mostra que V = Ker(E) + Im(E).

Teorema 20. Seja $V = W_1 \oplus W_2 \oplus \cdots W_k$ um espaço vetorial. Então existem operadores \mathbb{K} -lineares E_1, E_2, \dots, E_k em V tais que

- (1) cada E_i é uma projeção;
- (2) $E_i E_j = 0$ para cada $i \neq j$ com $i, j \in \{1, 2, ..., k\}$.
- (3) $i = E_1 + E_2 + \cdots + E_k$;
- (4) $Im(E_i) = W_i$.

Demonstração. Como $V = W_1 \oplus W_2 \oplus \cdots W_k$, dado $v \in V$, existem únicos $w_j \in W_j$ para os quais $v = w_1 + w_2 + \cdots + w_k$. Defina $E_j(v) = w_j$.

Teorema 21. Seja $T: V \longrightarrow V$ um operador linear no espaço vetorial $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$. Seja E_j a projeção associada a W_j . Então cada W_j é invariante por T se, e somente se, $TE_j = E_j T$ para cada $j \in \{1, 2, \dots, k\}$.

Demonstração. Suponha que T comuta com cada E_j . Seja $v \in W_j$. Então $T(v) = T(E_j(v)) = E_j(T(v))$. Logo T(v) está na imagem de E_j , i.e., $T(W_j) \subseteq W_j$.

Por outro lado, suponhamos que cada W_j seja invariante por T para cada $v \in V$ temos que $T(v) = TE_1(v) + TE_2(v) + \cdots + TE_k(v)$. Como $E_j(v) \in W_j$ que é invariante por T, existe w_j tal que $T(E_j(v)) = E_j(w_j)$. Logo $E_iTE_j(v) = E_iE_j(w_j)$. Segue que $E_jT = TE_j$

Teorema 22. Seja T um operador linear em um espaço vetorial de dimensão finita V. Se T é diagonalizável e se $\lambda_1, \lambda_2, \ldots, \lambda_k$ são autovalores distintos para T, então existem operadores lineares E_1, E_2, \ldots, E_k em V tais que

- (1) $T = \lambda_1 E_1 + \lambda_2 E_2 + \cdots + \lambda_k E_k$;
- (2) $I = E_1 + E_2 + \cdots + E_k$;
- (3) $E_i E_j = 0$ para quaisquer $i \neq j$;
- (4) $E_i^2 = E_i$;
- (5) $Im(E_i)$ é o autoespaço para T associado ao autovalor λ_i .

Demonstração. Basta observar que, como T é diagonalizável, então $V = \bigoplus_{j=1}^k \operatorname{Aut}_T(\lambda_j)$

Exercícios - 29 de janeiro de 2020

No que segue, a menos de menção em contrário, $T:V\longrightarrow V$ é um operador linear em um \mathbb{K} -espaço vetorial V de dimensão finita n.

Exercício 1. Se $V_1,V_2\subseteq V$ são subespaços T-invariantes tais que $V=V_1\oplus V_2$ então $p_T(x)=p_{T|_{V_1}}(x)\cdot p_{T|_{V_1}}(x).$

Generalize.

Exercício 2. Sejam $W \subseteq V$ um subespaço e $\lambda \in \mathbb{R}$ um escalar. Mostre que W é $(\lambda I - T)$ -invariante se, e somente se, W for T invariante.

Exercício 3. Considere nesse exercício que a dimensão de V possa ser infinita. Seja $\{W_i\}_{i\in I}$ uma família de subespaços de V que são T-invariantes. Mostre que $W = \bigcap_{i\in I} W_i$ é T-invariante.

Podemos afirmar que $\bigcup_{i \in I} W_i$ é um subespaço T-invariante?

Exercício 4. Encontre todos os subespaços T-invariantes de \mathbb{R}^2 sendo T a transformação dada pela matriz

 $A = \left(\begin{array}{cc} 2 & -5 \\ 1 & -2 \end{array}\right)$

na base canônica de \mathbb{R}^2 .

Exercício 5. Sejam $V_1, V_2 \subseteq V$ subespaços T-invariantes de tais que $V = V_1 \oplus V_2$. Mostre que a aplicação $\tilde{T}: V/V_1 \longrightarrow V/V_1$ dada por $\tilde{T}(v+V_1) = T(v) + V_1$ está bem definida e que é uma transformação linear. Além disso calcule o polinômio característico de \tilde{T} .

Exercício 6. Supponha que T seja diagonalizável. Seja $W\subseteq V$ um subespaço T-invariante qualquer. Mostre que a restrição $T|_W$.

Exercício 7. Suponha que a matriz de T na base canônica de \mathbb{K}^2 seja

$$\left(\begin{array}{cc} 1 & -1 \\ 2 & 2 \end{array}\right).$$

Calcule os subespaços invariantes quando $\mathbb{K} = \mathbb{R}$ e quando $\mathbb{K} = \mathbb{C}$.

Exercício 8. Considere $T: \mathcal{C}^0(\mathbb{R}; [0,1]) \longrightarrow \mathcal{C}^0(\mathbb{R}; [0,1])$ o operador linear no espaço das funções contínuas definido por

 $(Tf)(x) = \int_0^x f(t)dt.$

- (1) O espaço das funções polinomiais é invariante por T?
- (2) O espaço das funções diferenciáveis é invariante por T?
- (3) O espaço das funções que se anulam em x = 1/2 é invariante por T?

Exercício 9. Seja $W_1 \subseteq V$ um subespaço de V. Prove que existe uum subespaço W_2 de V para o qual $V = W_1 \oplus W_2$.

4

Exercício 10. Suponha que T seja uma projeção. Encontre todos os autovalores de T.

Exercício 11. Sejam E_1, E_2, \ldots, E_k operadores em V tais que $E_1 + E_2 + \cdots + E_k = I$

(1) Prove que se $E_i E_j = 0$ quando $i \neq j$ então $E_i^2 = E_i$.

(2) Suponha que k=2. Mostre que se $E_1+E_2=I$ e $E_1^2=E_1$ e $E_2^2=E_2$ então $E_1E_2=0$.

Exercício 12. Sejam $W_1, W_2 \subseteq V$ subespaços independentes. Se E_1 e E-2 são projeções associadas, podemos afirmar que $E_1 + E_2$ é uma projeção?

Exercício 13. Seja $T:V\longrightarrow V$ a projeção de \mathbb{R}^2 na reta ax+by=0. Encontre a matriz do operador T, mostre que T é uma projeção de fato e encontre uma base para a qual a matriz que representa T é daigonal.

Exercício 14. Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ cuja matriz é

$$\left(\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right).$$

Mostre que o subespaço W_1 gerado por (1,0) é invariante por T e encontre um subespaço W_2 tal que $\mathbb{R} = W_1 \oplus W_2$ que seja **invariante** por T.