GRAFOS: PROPIEDADES Y DEMOSTRACIONES

Tecnología Digital V: Diseño de Algoritmos

Universidad Torcuato Di Tella

Agenda del Día

- 1. Itroducción
- 2. Demostraciones en grafos

Agenda del Día

- 1. Itroducción
 - o Definición y Propiedades
- 2. Demostraciones en grafos

Definición y Propiedades

Definición

Un grafo es un par (V, E) con V un conjunto de nodos o vértices y E un conjunto de pares no ordenados (u, v) con $u, v \in V$, que llamamos aristas o ejes. Si los pares son ordenados decimos que es un digrafo.

Definición y Propiedades

Dado un grafo G = (V, E),

- Obs vértices v y w son advacentes o vecinos si $e = (v, w) \in E$.
- El vecindario de un vértice es $N_G(v) = \{w \in V : (v, w) \in E\}$
- \bigcirc El grado de un vértice es $d_G(v) = |N_G(v)|$, la cantidad de vecinos.
- \bigcirc El grafo complemento de G es $G^c = (V, E^c)$
- Un recorrido de longitud k entre dos vértices v y w es $v = v_0, v_1, ..., v_{k-1}, v_k = w$ tal que $(v_i, v_{i+1}) \in E$ para cada i.
- Un camino es un recorrido que no repite vértices.
- O Un circuito es un recorrido que empieza y termina en el mismo vértice.
- Un ciclo o circuito simple es un circuito de 3 o más vértices que no repite vértices (salvo las puntas, que coinciden).
- \bigcirc G es conexo si para todo par de vértices existe un camino entre ellos.

Definición y Propiedades

Si G = (V, E), es un digrafo, entonces mantiene todas las propiedades anteriores salvo

- Los vecindarios de entrada y salida de un vértice son $N_{in}(v)$ y $N_{out}(v)$. Donde $N_{in}(v) = \{w \in V : (w, v) \in E\}$ y $N_{out}(v) = \{w \in V : (v, w) \in E\}$
- O Los grados de entrada y salida de un vértice es $d_G(v) = |N_G(v)|$, la cantidad de vecinos.
- *G* es fuertemente conexo si para todo par de vértices existe un camino entre ellos.

Agenda del Día

- 1. Itroducción
- 2. Demostraciones en grafos
 - o Métodos para Demostrar en Grafos
 - Ejercicios

Métodos para Demostrar en Grafos

Las demostraciones pueden ser

- Directas
- Constructivas
- Por absurdo
- Inductivas
- Por contrarecíproco

Es importante elegir bien!!

Ejercicio de Inducción

Ejercicio

Dado un grafo G = (V, E), la suma de los grados de sus vértices es igual a 2 veces el número de aristas. Es decir,

$$\sum_{v \in V} d(v) = 2m$$

Ejercicio de Inducción

Demostramos por inducción en m.

Caso Base: Tomamos n = 2 y m = 1. El grafo tiene una sola arista (u, v) y dos nodos tales que, d(v) = d(u) = 1. Por ende

$$\sum_{v \in V} d(v) = d(v) + d(u) = 2 = 2m$$

Hipótesis inductiva: Para todo grafo G' = (V', E'), con |E| = m' < m se cumple,

$$\sum_{v \in V'} d(v) = 2m'$$

Paso Inductivo: Sea G = (V, E), y sea $(u, v) \in E$. Formamos un nuevo grafo G' = (V, E') tal que E' = E - (u, v). Por ende

- Vale que $d_{G'}(v) = d_G(v) 1$ y $d_{G'}(u) = d_G(u) 1$
- Además se tiene que m' = m 1

Esto implica que

$$\sum_{v \in V} d_G(v) = \sum_{v \in V} d_{G'}(v) + 2 =_{HI} 2m' + 2 = 2(m' + 1) = 2m$$

Ejercicio dos

Ejercicio

No puede pasar que G y G^c sean ambos disconexos

Demostración Directa

Sea G=(V,E) disconexo. Como G es disconexo, podemos separar a V en sus componentes conexas $V=V_1\oplus\cdots\oplus V_k$. Es decir, v pertenece a V_i sii para todo $w\in V_i$ existe un camino que los une, y para todo $u\in V-V_i$ no existe un camino que los une.

Observación: Hay al menos dos conjuntos en los que podemos separar a V.

Demostración Directa

Sea $G^c = (V, E^c)$. Luego queremos ver que G^c es *conexo*. Es decir que para todo par $v, w \in V$ existe un camino que los une en G^c .

Estrategia: Vamos a armar el camino para todo $v, w \in V$.

Sea que $v \in V_i$, para algún i.

- Si $w \notin V_i$, entonces debe existir una arista $(v, w) \in E^c$. El camino es v, w.
- Si $w \in V_i$. Puedo encontrar un $z \notin V_i$, ya que por lo menos hay dos conjuntos en los que podemos separar a V. Entonces deben existir las aristas (v, z) y (z, w) en E^c . Luego el camino entre v y w es v, z, w.

Ejercicio 3

Ejercicio

Si *G* es un grafo con exactamente dos vértices de grado impar, entonces existe un camino entre ellos.

Demostración por el absurdo

Supongamos que G tiene exactamente dos vértices de grado impar y que no existe un camino entre ellos. Sin pérdida de generalidad los nombramos v y w.

Entonces tenemos al menos dos componentes conexas, $v \in V_1$ y $w \in V_2$. Las cuales forman los subgrafos $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$.

Ahora, por el primer ejercicio teníamos que dado un grafo cualquiera G = (V, E).

$$\sum_{v \in V} d(v) = 2|E|$$

Esto nos genera un absurdo, porque la suma de los grados de G_1 o G_2 da impar.