Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figur E -2250.000 -2500.000 -2750.000 Radiell fart m/s -3000.000 -3250.000 -3500.000 -3750.000 -4000.000 ò 50 100 150 200 Tidspunkt for observasjon (timer)

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt

Luminositeten øker med en faktor 5.00e+08.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) massen til stjerna er 0.7 solmasser og den fusjonerer hydrogen i kjernen

STJERNE B) stjerna er 10 milliarder år gammel, men har bare levd1/10av levetida si

STJERNE C) radiusen er 1000 ganger solas radius.

STJERNE D) stjerna er bare noen hundretusen år gammel men skal allerede snart begynne sin første heliumfusjon

STJERNE E) det finnes karbon i et skall rundt kjernen

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 7.179e+06 kg/m3̂ og temperatur 15 millioner K.

Kjernen i stjerne B har massetet
thet 7.112e+06 kg/m3̂ og temperatur 36 millioner K.

Kjernen i stjerne C har massetet
thet 2.769e+06 kg/m3̂ og temperatur 16 millioner K.

Kjernen i stjerne D har massetet
thet 6.421e+06 kg/m3 og temperatur 37 millioner K.

Kjernen i stjerne E har massetet
thet 5.186e+06 kg/m3̂ og temperatur 26 millioner K.

Filen 1K/1K.txt

Påstand 1: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig større enn den tilsynelatende størrelseklassen i blått filter

Påstand 2: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig mindre enn den tilsynelatende størrelseklassen i blått filter

Påstand 3: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 4: denne stjerna er nærmest oss

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

Figur B tilsynelatende størrelseklasse 11.76

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Figur D tilsynelatende størrelseklasse 18.66

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 3.400e+05 kg/m3̂ og temperatur 29.92 millioner K.

Kjernen i stjerne B har massetet
thet 1.148e+05 kg/m3̂ og temperatur 31.90 millioner K.

Kjernen i stjerne C har massetet
thet 1.256e+05 kg/m3̂ og temperatur 33.50

millioner K.

Kjernen i stjerne D har massetet
thet 2.912e+05 kg/m3̂ og temperatur 23.33 millioner K.

Kjernen i stjerne E har massetet
thet $4.108\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 19.44 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_.png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen 1O/1O_Figur_2_.png

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 3.05 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tromsø som ligger i en avstand av 1400 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 96.00940 km/t.

Filen 3E.txt

Tog1 veier 69900.00000 kg og tog2 veier 21100.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 507 km/s.

Filen 4E.txt

Massen til gassklumpene er 2600000.00 kg.

Hastigheten til G1 i x-retning er 22200.00 km/s.

Hastigheten til G2 i x-retning er 26400.00 km/s.

Filen 4G.txt

Massen til stjerna er 36.35 solmasser og radien er 1.78 solradier.