

Approximate Manifold Regularization: Scalable Algorithm and Generalization Analysis

Jian Li, Yong Liu*, Rong Yin, and Weiping Wang

Institute of Information Engineering, Chinese Academy of Sciences

28th International Joint Conference on Artificial Intelligence (IJCAI 2019)

- 1. Introduction
- 2. Algorithm Design
- 3. Theoretical Analysis
- 4. Experiments
- 5. Conclusion

What is Manifold Regularization?

Consider common semi-supervised setting that a training dataset with n instances but only a few points m are labeled, where $m \ll n$.

$$\widehat{f}_{\lambda} = \operatorname*{arg\,min}_{f \in \mathcal{H}} \sum_{i=1}^{m} \ell(y_i, f(\mathbf{x}_i)) + \lambda_A ||f||_{\mathcal{H}}^2 + \lambda_I \mathbf{f}^T \mathbf{L} \mathbf{f}.$$

where \mathbf{L} is graph Laplacian by $\mathbf{L} = \mathbf{D} - \mathbf{W}$, $\mathbf{f} = [f(\mathbf{x}_1), \cdots, f(\mathbf{x}_n)]^T$, $\mathbf{W} \in \mathbb{R}^{n \times n}$ measures similarities between all points and \mathbf{D} is a diagonal matrix $\mathbf{D}_{ii} = \sum_{j=1}^n W_{ij}$. [Belkin et al., 2006]

Scalability issues of LapRLS

- Consider kernel ridge regression (KRR) with manifold regularization
 - Representer Theorem $f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i K(\mathbf{x}_i, \mathbf{x})$ • The squared loss $\ell(y_i, f(x_i)) = (y_i - f(x_i))^2$
 - Also called as Laplacian Regularized Least Squares (LapRLS)
- LapRLS with closed-form solution

$$\widehat{\boldsymbol{\alpha}} = (\mathbf{J}\mathbf{K} + \lambda_A \mathbf{I} + \lambda_I \mathbf{L} \mathbf{K})^{-1} \mathbf{y}_n,$$

- Scalability issues
 - Space complexity: $\mathcal{O}(n^2)$. e.g. Storing kernel matrix needs 18.6 GB when n=50,000 while 74.5 GB when n=100,000.
 - Time complexity: $\mathcal{O}(n^3)$.

Unfeasible to deal with large scale semi-supervised tasks!!!

Brief

Core Idea : LapRLS + Nyström + PCG.

- Contributions:
 - Scalable Algorithm : $\mathcal{O}(n)$ space and $\mathcal{O}(n^{1.5})$ time.
 - Theoretical Guarantee: Excess risk bounds with convergence rate $\mathcal{O}(\frac{1}{\sqrt{m}})$.

- Introduction
- 2. Algorithm Design
- 3. Theoretical Analysis
- 4. Experiments
- Conclusion

Nyström LapRLS

• Uniform subsampling over the training set (n points $\rightarrow s$ Nyström centers)

$$\mathcal{H}_s = \{ f \in \mathcal{H} | f = \sum_{i=1}^s \alpha_i K(\mathbf{x}_i, \cdot), \boldsymbol{\alpha} \in \mathbb{R}^s \},$$

Nyström LapRLS with a closed-form solution:

$$\begin{split} \widehat{f}_{\lambda}^{s}(\mathbf{x}) &= \sum_{i=1}^{s} \alpha_{i} K(\mathbf{x}_{i}, \mathbf{x}), \quad \text{with} \\ \alpha &= (\underbrace{\mathbf{K}_{ms}^{T} \mathbf{K}_{ms} + \lambda_{A} \mathbf{K}_{ss} + \lambda_{I} \mathbf{K}_{ns}^{T} \mathbf{L} \mathbf{K}_{ns}}_{\mathbf{H}})^{\dagger} \underbrace{\mathbf{K}_{ms}^{T} \mathbf{y}}_{\mathbf{z}}, \end{split}$$

where \mathbf{H}^{\dagger} denotes the Moore-Penorse pseudoinverse and $\mathbf{H} \in \mathbb{R}^{s \times s}$.

⑤ Computation of **H** needs $\mathcal{O}(ns^2)$. Consider iterative method: conjugate gradient (CG) to solve linear systems.

$$\mathbf{H}\alpha = \mathbf{z}$$
.

Preconditioned Conjugate Gradient (PCG)

• Convergence properties of CG methods are determined by the condition number $\kappa(\mathbf{H})$: the larger $\kappa(\mathbf{H})$ is, the slower the improvement.

$$\mathbf{H}\alpha = \mathbf{z}$$
.

In most cases, $\kappa(\mathbf{H})$ is large (ill-conditioned), thus convergence is slow.

② Preconditioning to reduce the condition number $\kappa(\mathbf{P}^{-1}\mathbf{H})$

$$\mathbf{P}^{-1}\mathbf{H}\boldsymbol{\alpha} = \mathbf{P}^{-1}\mathbf{z}.$$

The more similar ${\bf H}$ and ${\bf P}$ are, the smaller the condition number. We provide two preconditioners to approximate ${\bf H}$

• $m \leq \sqrt{n}$

$$\mathbf{P} = \mathbf{K}_{ms}^T \mathbf{K}_{ms} + \lambda_A \mathbf{K}_{ss} + \frac{\lambda_I n^2}{s^2} \mathbf{K}_{ss} \mathbf{L}_{ss} \mathbf{K}_{ss}.$$

• $m > \sqrt{n}$

$$\mathbf{P} = \frac{m}{s} \mathbf{K}_{ss}^T \mathbf{K}_{ss} + \lambda_A \mathbf{K}_{ss} + \frac{\lambda_I n^2}{s^2} \mathbf{K}_{ss} \mathbf{L}_{ss} \mathbf{K}_{ss}.$$

Better scalability

Avoid matrix-matrix multiplications
 For each iteration of PCG, we need to calculate

$$\mathbf{H}\mathbf{p}_t = (\mathbf{K}_{ms}^T\mathbf{K}_{ms} + \lambda_A\mathbf{K}_{ss} + \lambda_I\mathbf{K}_{ns}^T\mathbf{L}\mathbf{K}_{ns})\mathbf{p}_t$$

where $\mathbf{p}_t \in \mathbb{R}^s$. If we figure out \mathbf{H} , it needs $\mathcal{O}(ns^2)$ times to perform matrix-matrix multiplications.

While a series of matrix-vector multiplications only need O(ns) time

$$\mathbf{H}\mathbf{p}_t = \mathbf{K}_{ms}^T(\mathbf{K}_{ms}\mathbf{p}_t) + \lambda_A \mathbf{K}_{ss}\mathbf{p}_t + \lambda_I \mathbf{K}_{ns}^T(\mathbf{L}(\mathbf{K}_{ns}\mathbf{p}_t)).$$

- Block matrix multiplications
 - Kernel matrix \mathbf{K}_{ns} : $\mathcal{O}(ns)$ space
 - Decompose into $s \times s$ size block matrix multiplications: $\mathcal{O}(s^2)$ space
- Space complexity: $\mathcal{O}(s^2)$. Time complexity: $\mathcal{O}(nst+s^3t)$. $\mathcal{O}(s^3)$ is due to the computation of $\mathbf{P}^{-1}\mathbf{r}_t$ in each iteration, where $\mathbf{r}_t \in \mathbb{R}^s$.

How many Nyström centers s and iterations t are needed?

- 1. Introduction
- 2. Algorithm Design
- 3. Theoretical Analysis
- 4. Experiments
- 5. Conclusion

Theoretical Analysis

Theorem (Simple version)

Under common assumptions and

$$s \geq \mathcal{O}(\sqrt{n})$$
 and $t \geq \mathcal{O}(\log m)$

then the following excess risk bound holds with high probability,

$$\mathcal{E}(\widehat{f}_{\lambda,t}^s) - \mathcal{E}(f_{\mathcal{H}}) \le \mathcal{O}(\frac{1}{\sqrt{m}}).$$

Technical challenges:

- Multi-penalty regularization. [Rastogi and Sampath, 2017]
- Integral operator for Nyström methods. [Rudi et al., 2015]
- Convergence of PCG. [Rudi et al., 2017]

The complexity:

- Space complexity: $\mathcal{O}(s^2) = \mathcal{O}(n)$.
- Time complexity: $\mathcal{O}(nst + s^3t) = \mathcal{O}(n\sqrt{n})$.

- Introduction
- 2. Algorithm Design
- 3. Theoretical Analysis
- 4. Experiments
- 5. Conclusion

Compared methods

Estimators	Time	Space
RLS-Direct	$\mathcal{O}(m^3)$	$\mathcal{O}(m^2)$
LapRLS-Direct	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$
LapRLS-CG	$\mathcal{O}(n^{2.5})$	$\mathcal{O}(n^2)$
LapRLS-PCG	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$
Nyström-Direct	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$
Nyström-CG	$O(n^{1.75})$	$\mathcal{O}(n)$
Nyström-PCG	$\mathcal{O}(n^{1.5})$	$\mathcal{O}(n)$

Table 1: Summary of time complexity and space complexity in terms of various methods. Here, we omit logarithmic terms.

RMSE, Iteration and Runing time

dataset	sample size	RLS-CG	LapRLS-CG	LapRLS-PCG	Nyström-CG	Nyström-PCG
madelon	2000	1.036±0.009	0.990±0.007	0.990±0.007	0.991±0.009	0.991±0.009
space_ga	3107	1.251±0.004	1.210 ± 0.004	1.210 ± 0.004	1.210 ± 0.004	1.210 ± 0.004
abalone	4177	$4.55\pm0.2\times10^{3}$	$4.17\pm0.1\times10^{3}$	$4.17\pm0.1\times10^{3}$	$4.18\pm0.1\times10^{3}$	$4.18\pm0.1\times10^{3}$
phishing	11055	0.426±0.049	0.294 ± 0.005	0.273 ± 0.007	0.295 ± 0.005	0.275±0.008
a8a	22696	0.702±0.002	0.664 ± 0.002	0.664 ± 0.002	0.664 ± 0.002	0.664 ± 0.002
w7a	24692	0.291±0.002	0.283 ± 0.002	0.283 ± 0.002	0.284 ± 0.002	0.284 ± 0.002
a9a	32561	0.698 ± 0.005	0.664 ± 0.000	0.664 ± 0.002	0.664 ± 0.000	0.664 ± 0.002
ijcnn1	49990	0.434 ± 0.005	0.389 ± 0.002	0.389 ± 0.002	0.393 ± 0.001	0.463 ± 0.00
cod-rna	59535	0.686 ± 0.002	/	/	0.614 ± 0.001	0.614 ± 0.00
connect-4	67757	0.781±0.015	/	/	$\overline{0.739 \pm 0.002}$	0.739 ± 0.002
skin_nonskin	245057	3.119±0.023	/	/	2.620 ± 0.043	2.620 ± 0.043
YearPrediction	463715	0.198 ± 0.001	/	/	0.187 ± 0.001	0.187 ± 0.00

	RLS-CG		RLS-CG LapRLS-CG LapRLS-I		LS-PCG	i Nyström-CG		Nyström-PCG		
	iter	time	iter	time	iter	time	iter	time	iter	time
madelon	32	0.003	13	0.029	6	0.032	12	0.043	1	0.006
space_ga	11	0.004	23	1.220	5	0.569	23	0.113	2	0.016
abalone	64	0.053	98	26.50	4	0.903	94	0.363	2	0.067
phishing	74	0.031	300	24.20	56	8.210	300	2.470	3	0.045
a8a	100	0.068	50	189.1	3	20.98	50	44.71	1	4.370
w7a	13	0.072	32	143.2	2	9.683	213	107.7	1	2.252
a9a	300	0.529	64	1699	3	30.30	65	70.40	1	4.034
ijcnn1	242	8.204	57	2154	9	72.41	53	108.8	5	4.186
cod-rna	96	7.178	/	/	/	/	55	134.6	7	8.154
connect-4	103	11.07	/	/	/	/	154	186.5	10	4.220
skin_nonskin	43	91.39	/	/	/	/	65	1490	3	40.05
YearPrediction	37	236.5	/	/	/	/	94	2479	2	116.1

We randomly select 10% samples (m=0.1n) as labeled data and 10% samples (s=0.1n) as Nyström centers.

Average RMSE for different labeled data proportion

Figure 1: Average RMSE for different labeled data proportion.

- Introduction
- 2. Algorithm Design
- 3. Theoretical Analysis
- 4. Experiments
- 5. Conclusion

Conclusion

Core Idea : LapRLS + Nyström + PCG.

- Contributions:
 - Scalable Algorithm : $\mathcal{O}(n)$ space and $\mathcal{O}(n^{1.5})$ time.
 - Theoretical Guarantee: Excess risk bounds with convergence rate $\mathcal{O}(\frac{1}{\sqrt{m}})$.

References

- Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. *Journal of Machine Learning Research*, 7(Nov):2399–2434, 2006.
- Abhishake Rastogi and Sivananthan Sampath. Manifold regularization based on nystr $\{\"\ o\}\$ m type subsampling. $arXiv\ preprint\ arXiv:1710.04872$, 2017.
- Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström computational regularization. In *Advances in Neural Information Processing Systems 28 (NIPS)*, pages 1657–1665, 2015.
- Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. Falkon: An optimal large scale kernel method. In *Advances in Neural Information Processing Systems 30 (NIPS)*, pages 3888–3898, 2017.

Any Questions?