Notes

October 29, 2014

if $\lim \inf x_n = L$ then there exists $\{x_{n_k}\}$ such that $\lim x_{n_k} = L$ $l = \liminf_{n \to \infty} x_n = \lim \left(\inf \left\{ \underbrace{x_{n_1}, x_{n_2}, x_{n_3}, \dots}_{c_n} \right\} \right)$

why not just let c_n be the subsequence? because c_n may not be equal to any of the x_k in the sequence $c_n = \inf\{x_{n_1}, x_{n_2}, \dots\}$ give $\varepsilon = 2^{-n}$ there exists $x_{n_k} \in \{x_{n_1}, x_{n+1}, x_{n+2}, \dots\}$ such that $|c_n - x_{n_k}| < 2^{-n}$ by def of infinum

we has a sequence $\{c_n\}$ given $\varepsilon > 0$ there exists N such that $|c_n - L| < \varepsilon$ if $n \ge N$, we approximate each c_n by some x_{n_k} from the original sequence sutch that

convergence test for series

first we talk about series with positive terms $\sum_{k=1}^{\infty} a_k$, $s_n = \sum_{k=1}^{n} a_k$. So if s_n is bounded about then the series

is convergent. and if not, it is divergent. geometric series
$$\sum_{n=0}^{\infty} r^n$$
 is convergent if $|r| < 1$. $s_n = \sum_{k=0}^{\infty} nr^k = 1 + r + r^2 + \dots + r^n, rs_n = r + r^2 + r^3 + \dots, sn - rSn = 1 - r^{n+1}$

$$s_n = \frac{1 - r^{n+1}}{1 - r} \rightarrow \frac{1}{1 - r}$$

comparison test

if $\forall n, |a_n| \leq b_n$

- if $\sum_{n=1}^{\infty} b_n$ is convergent then $\sum_{n=1}^{\infty} a_n$ is convergent,
- if $\sum a_n$ is divergent, so is $\sum b_n$.

3.2.b

show that if $(|a_n|)_{n=1}^{\infty}$ is summable then so is $(a_n)_{n=1}^{\infty}$.

$$\sum_{k=n+1}^{m} |a_k| < \varepsilon \text{ for all } N \le n \le m \text{ because is is summable}$$

$$\left| \sum_{k=n+1}^{m} a_k \right| \le \sum_{k=n+1}^{m} |a_k| < \varepsilon$$

so then $\sum a_k$ is also cauchy and summable

cauchy-schwartz inequality

$$\sum_{k=1}^{n} a_k b_k \leq \left(\sum_{k=1}^{n} a_k^2\right)^{1/2} \left(\sum_{k=1}^{n} b_k^2\right)^{1/2}$$

3.2.f

leibniz test for alternating series

if $\{a_n\}$ is a monotone decreasing sequence of positive terms with the $\lim a_n = 0$ then $\sum_{n=1}^{\infty} (-1)^n a_n$ is convergent

note!

a sequence my have the property $\lim |a_n - a_{n+1}| = 0$ but not be cauchy

3.2.h

Show that if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with $b_n \ge 0$ such that $\limsup_{n \to \infty} < \infty$ and $\sum_{n=1}^{\infty} b_n < \infty$, then the series $\sum_{n=1}^{\infty} a_n$ converges.

$$\begin{split} \left| \left(\sup_{k \ge n} \frac{|a_k|}{b_k} \right) - L \right| &< \varepsilon \\ \left(\sup_{k \ge n} \frac{|a_k|}{b_k} \right) &< L + \varepsilon \\ \frac{|a_k|}{b_k} &< L \varepsilon \\ |a_k| &< (L + \varepsilon) b_k \end{split}$$

3.2.j

 $\liminf \frac{a_n+1}{a_n} \leq \liminf a_n^{\frac{1}{n}} \leq \limsup a_n^{\frac{1}{n}} \leq \limsup \frac{a_n+1}{a_n}.$

step 1

if $x \ge r$ for all r > b then x is a lower bound for the set $\{r \in \mathbb{R} : r > b\}$, $x \le \inf\{r \in \mathbb{R} : r > b\} = b$ we will show that if $\limsup \frac{a_n}{b_n} < r$ then $\limsup a_n^{\frac{1}{n}} \le r$ and then apply step one. let $r > \limsup \frac{a_{n+1}}{a_n}$ then $\exists N$ such that $r > \frac{a_{n+1}}{a_n} \forall n \ge N$

$$a_{N+1} < ra_{N}$$

$$a_{N+2} < ra_{N+1} \le r^{2}a_{N}$$

$$a_{N+K} < r^{k}a_{N}$$

$$a_{N+k}^{\frac{1}{N+k}} < (r^{k}a_{N})^{\frac{1}{N+k}}$$

quiz from 10/1/2014

 $L_k \to L$ then $\{x_n\}$ such that $\forall k, \exists$ a subsequence of $\{x_n\}$ converging to L_k . prove that $\{x_n\}$ has a subsequence converging to L.

given
$$\varepsilon > 0 \exists N_0$$
 such that $|L_k - L| < \varepsilon$ if $k \ge N_0$ $|x_{N_k} - L| \le |x_{N_k} - L_k| + |L_k - L| < 2\varepsilon$

example

let $A, B \subseteq \mathbb{R}$, prove that $\sup A \leq \inf B$, if $\forall a \in A, b \in B, a \leq b$

3.3.5

any rearrangement of an absolutely convergent series converges to the same limit

proof

let $\sum a_n = L < \infty$. We know $\sum |a_n|$ is convergent (not necessarily to L). by th cauchy riterion for series $\forall \varepsilon > 0 \exists N \text{ such that } \left(\sum_{n=N+1}^{\infty} |a_n|\right) < \varepsilon$

$$\pi: \mathbb{N} \to \mathbb{N}$$
 is bijective, the rearranged series is $\sum_{n=1}^{\infty} a_{\pi(n)}$ and $\{a_1 \dots a_N\} \subseteq \{a_{\pi(1)1} \dots a_{\pi(M)}\}$

3.3.7 rearrangement theorem

let
$$\sum a_n=L<\infty$$
 and define $b_n=(a_n\geq 0)?a_n:0$ and $c_n=(a_n<0)?a_n:0$ consider the series $\sum b_n$ and $\sum |c_n|$

case 1

both convergent

 $\sum |a_n| = \sum b_n + \sum |c_n|$ which is convergent, which contradicts the fact that a_n is conditionally convergent

case 2

one convergent, one divergent

assume
$$\sum |c_n| = A < \infty$$
 and $\sum b_n$ is divergent to $+\infty$

given any $R \in \mathbb{N}$ big, $\exists N$ such that $\sum_{n=1}^{N} b_n > R + A$, then we pick M big enough so that $\{b_1, \ldots, b_N\} \subseteq$

 $\{a_1, a_2, \dots, a_M\}$ and $\sum_{n=1}^M a_n \ge \sum_{n=1}^N b_n - \sum |c_n| > R$ so $\sum a_n$ is divergent, which is a contradiction.

case 3

both divergent

chapter 4

 $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n), x_i \in \mathbb{R}\}$, vector space (or point in *n*-space). with the coordinate wise sum and the product by real numbers (scalars).

$$(x_1, \dots x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$
$$\lambda(x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$$
$$x^{\rightarrow} = (x_1, \dots, x_n) = x$$

euclidean norm

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}$$

distance from \mathbf{x} to \mathbf{y}

$$||x-y||$$

cauchy-schwarz

$$\begin{vmatrix} \sum_{i=1}^n a_j b_j \end{vmatrix} \le \left(\sum_{i=1}^n a_j^2\right)^{1/2} \left(\sum_{i=1}^n b_j^2\right)^{1/2} \\ |a \cdot b| \le ||a|| ||b||$$

dot product

$$a \cdot b = \sum a_i b_i$$

triangle inequality

$$||x + y|| \le ||x||| + ||y||$$

proof

$$||x+y||^{2} = \sum (x_{i} + y_{i})^{2}$$

$$= (x+y) \cdot (x+y)$$

$$= x \cdot x + 2x \cdot y + y \cdot y$$

$$= ||x||^{2} + 2x \cdot y + ||y||^{2}$$

$$\leq ||x||^{2} + 2||x||||y|| + ||y||^{2}$$

$$= (||x|| + ||y||)^{2}$$

standard orthogonal base of \mathbb{R}^n

$$e_1 = <1, 0, ..., 0>$$
 $e_2 = <0, 1, ..., 0>$
 \vdots
 $e_n = <0.0, ..., 1>$

4.2 convergence in \mathbb{R}^n

definition: a sequence $\{x^i\}$ of parts in \mathbb{R}^n converge to $c \in \mathbb{R}^n$ if $\forall \varepsilon > 0 \exists N = N(\varepsilon) \in \mathbb{N}$, such that $||x^i - c|| < \epsilon$ if $i \geq N$ we say $\lim x^i = c$.

4.2.2 lemma

 $\lim x^i = a$ if and only if $\lim ||x^i - a|| = 0$.

4.2.3 lemma

 $\lim x^i = a$ if and only if $\forall j = 1, \dots, n, \lim x_j^i = a_j$

october 15

lemma 4.2.3****know this

a sequence $\{x^i\}$ of points \mathbb{R}^n converges to $a \in \mathbb{R}^n$ if and only if for each coordinate $\lim x_i^i = a_j$

thm 4.2.5

every cauchy sequence of points in \mathbb{R}^n converges to a point in \mathbb{R}^n .

def

a sequence $\{x^i\}$ of points in \mathbb{R}^n is cauchy if $\forall \varepsilon > 0 \exists N \in \mathbb{N}$ such that $||x^i - x^j|| < \varepsilon$ for all $i, j \geq N$

proof

we have a cauchy sequence. given $\varepsilon > 0, \exists N, \, ||x^i - x^j|| < \varepsilon \text{ if } i, j \ge N$ $|x_k^i - x_k^j| \le ||x^i - x^j|| = \sqrt{(x_1^i - x_1^j)^2 + (x_2^i - x_2^j)^2 + \dots + (x_n^i - x_n^j)^2}$

so each of the coordinates for the sequence is cauchy ($\{x_k^i\}$ is cauchy). So it converges to some $a_k \in \mathbb{R}$ and $a = (a_1, a_2, \dots, a_n)$ and so b lemma $4.2.3 ||x^i - a|| \to 0$

4.2.6

read, useful for next weeks hw

4.3 open, closed sets in \mathbb{R}^n

def: let $A \subseteq \mathbb{R}^n$. we say that x is a limit point of A if there exists a sequence $\{a_k\}$ with $a^k \in A$ such that the limit of the sequence is x.

def: a set $A \subseteq \mathbb{R}^n$ is closed if it contains all of it's limit points.

example

```
is [0,1] closed? and is (0,1] not closed?

0 is a limit point because 0=\lim \frac{1}{n} an \frac{1}{n}\in(0,1].

consider [a,b]. \{x_n\}\subseteq[a,b]. a\leq x_n\leq b, \forall n=1,2,3,\ldots

assume \lim x_n exists, call it x. we will show a\leq x\leq b. then assume not and show wlog x>b.

take \varepsilon=\frac{x-b}{2}. then \exists N such that |x_N-x|<\epsilon. x-x_N<\frac{x-b}{2} and b<\frac{x}{2}+\frac{b}{2}< x_n and so we have a contradiction
```

special cases

```
\emptyset is closed. [a, +\infty) and (-\infty, a] are closed. finite sets of \mathbb{R}^n are closed.
```

proof

let $A = \{a_1, \ldots, a_M\}$. consider sequence $\{x_j\}$ such that $x_j \in A, \forall j \in \mathbb{N}$. at least one of the points appears ∞ many times. if $\lim x_j$ exists then at some point the sequence is a single repeating point, which is the limit, which is in A.

proposition 4.3.3

the finite union of closed sets is closed, arbitrary intersections of closed sets are closed.

proof

let A, B be closed, we need to check that $A \cup B$ is closed, then by induction, if A_1, \ldots, A_N is closed then $\bigcup_{i=1}^N A_i$ is closed.

pick a sequence $\{x_j\}$ of points in $A \cup B$. converging to some $x \in \mathbb{R}^n$. We need to show that $x \in A \cup B$ $x_j \in A \cup B \Rightarrow x_j \in A$ or $x_j \in B$. We have infinitely many points and so either A or B contains infinitely many of the points. but since the sequence has a limit $\exists N$ such that $x_j \in A \forall j \geq N$

infinitely many of the points are in one of the sets, but since the sequence has a limit, passing to a subsequence oif necessary, we get that all points in the sequence are eventually in one of the seats, hence the limit is in that set because the set is closed $\Rightarrow x \in A \cup B$

and for the second part: let $\{A_i\}$ be a collection of closed sets. let $\{x_n\}$ be a sequence such that $x_n \in \bigcap_{i \in I} A_i$ and $\lim x_n = x$. we need to show $x \in \cap A_i$ since $x_n \in A_i \forall i$ and A_i is closed $\lim x_n = x \in A_i \forall i$

example

a countable union of closed sets may not be closed. $A_n = [\frac{1}{n}, 1] \quad \bigcup_{n=1}^{\infty} [\frac{1}{n}, 1] = (0, 1]$

def

let $A \subseteq \mathbb{R}^n$. The closure of A, \bar{A} is the set containing all the limit points of A. \bar{A} is the smallest closed set that contains A.

\mathbf{def}

```
a set U \subseteq \mathbb{R}^n is open if \forall x \in U \exists B(x, \varepsilon) \subset U. B(x, \varepsilon) = \{y \in \mathbb{R}^2 : ||y - x|| < \varepsilon\}
```

proposition

a set is open iff A^C is closed.

october 20

$$\overline{\mathbb{Q}} = \mathbb{R} \text{ and } \mathbb{Q}^{\circ} = \emptyset$$

$$\overline{\mathbb{R} - \mathbb{Q}} = \mathbb{R} \text{ and } (\mathbb{R} - \mathbb{Q})^{\circ}$$
define: a set $A \subseteq \mathbb{R}^n$ is dense if $\overline{A} = \mathbb{R}^n$.
A set $A \subseteq B$ is dense in B if $B \subseteq \overline{A}$

4.3M

Let A be dense in \mathbb{R}^n and let U be an open set

a) we need to show that $U \subseteq \overline{A \cap U}$. Pick $x \in U$ to show that $x \in \overline{A \cap U}$, we have to find a sequence $a^i \in A \cap U$ such that $\lim a^i = x$.

since A is dense in \mathbb{R}^n and $x \in U \in \mathbb{R}^n \exists \{b^i\} \subseteq A \text{ such that } \lim b^i = x$

since $x \in U$ and U s open there is a ball (B(x,r),r>0) in U and $b^i \in B(x,r)$ so $||x-b^i|| < r$. the sequence $\{b^i\}$ is in $A \cap U$ and converges to $x \in U$ hence $A \cap U$ is dense in U.

more notes

 \overline{C} is closure

 C° is interior

$$\begin{array}{ll} C=\{(x,y):y=x^2\} & \overline{C}=C & C^\circ=\emptyset \\ S=\{(x,y):y=\sin\frac{1}{x}\} & \overline{S}=S\cup\{(0,a):a\in[-1,1]\} & S^\circ=\emptyset \end{array}$$

cantor set

start with $C_0 = [0, 1], C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1] \dots$ and continue on removing the middle thirds. $\mathcal{C} = \bigcap_{n=1}^{\infty} C_n$ and by the nested intervals theorem $\mathcal{C} \neq \emptyset$. this is actually an uncountable set.

what are we removing? $C_0 = \frac{1}{3}, C_1 = \frac{2}{9}, C_n = \frac{2^{n-1}}{3(n)}$

length of the removed part is $\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = \frac{1}{3} \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^{n-1} = 1$ so \mathcal{C} has length 0.

if we look at the sets C_0, C_2, C_2 in base 3 then $x \in [0, 1] = \sum_{i=1}^{\infty} \frac{a_i}{3^i}, a_i \in \{0, 1, 2\}.$

in step n we are removing from [0,1] all the points whose base 3 expansion has a 1 in the nth position. so $\mathcal{C} = \{x \in [0,1] \text{ st } x\text{'s base 3 expansion does not contain 1}\}$. $F:\mathcal{C} \to [0,1]$ we map all the twos to ones. x=0.2->0.1=y. this is a surjection. so cardinality of \mathcal{C} is greater than or equal to [0,1] which is the continuum (cardinality of the real numbers. but $\mathcal{C} \subseteq [0,1]$ so they have the same cardinality.

assume $(a,b) \subseteq \mathcal{C}$ then $(a,b) \subseteq C_n$. Every interval has length 3^{-n} and so we can find an N such that $|a-b| > 3^{-N}$.

defintions

def: a set $A \subseteq \mathbb{R}^n$ is compact if every sequence $\{a^k\}$ of elements of A has a convergent subsequence $\{a^{k_n}\}$ and $\lim a^k = a \in A$ any closed and bounded set in \mathbb{R}^n is compact by bolzano-weierstrass

october 27

chap 5 functions

def

The limit of the function f as $\vec{x} \in S$ approaches $\vec{a} \in \mathbb{R}^n$ is $\vec{v} \in \mathbb{R}^m$ if $\forall \varepsilon > 0 \exists r > 0$ such that $||f(\vec{x}) - \vec{v}|| < \varepsilon$ whenever $||\vec{x} - \vec{a}|| < r$

def

f is continuous at \vec{a} if $\forall \varepsilon > 0 \exists r > 0$ such that $||f(\vec{x}) - f(\vec{a})|| < \varepsilon$ whenever $||\vec{x} - \vec{a}|| < r$.

example

prove that $\lim_{x \to 0} x^2 = 4$. using the definition of limit of a function.

given $\varepsilon > 0$ we have to find r depending on ε such that if |x-2| < r then $|x^2-4| < \varepsilon$. since x is approaching 2 then |x-2| will eventually be less than 1. $1 \le x \le 3$. $3 \le x+2 \le 5$

$$|x^2 - 4| = |x - 2||x + 2| < r \cdot 5 = \varepsilon$$

now take $r = \frac{\varepsilon}{5}$ we get $|x^2 - 4| < \varepsilon$. so given $\epsilon > 0$, take $r = \frac{\epsilon}{5}$ and this guarantees that if |x - 2| < r then $|x^2 - 4| < \varepsilon$

5.1.C

let
$$f(x) = \begin{cases} x - 2n & \text{if } 2n \le x \le 2n + 1\\ 2n + 2 - x & \text{if } 2n + 1 \le x \le 2n + 2 \end{cases}$$

 $\text{now } a = 2n. \quad \text{Then } |f(x) - f(a)| = \begin{cases} x - 2n - 0 & \text{if } x > a \\ |2n - x - 0| & \text{if } x < a \end{cases} \text{ assuming } |x - a| < 1. \quad \text{In eiher case } |f(x) - f(a)| = |x - 2n| = |x - a| \text{ again, take } r = \varepsilon.$

defintion

a function is Lipschitz if $\exists C > 0$ such that $||f(x) - f(y)|| \le C||x - y|| \forall x, y \in S$

by definition $||x-y|| < \frac{\varepsilon}{C}$ then $||f(x)-f(y)|| < \varepsilon$. so it is continuous, and $r = \frac{\varepsilon}{C}$ for every point so it is "uniformly" continuous because r does not depend on x, y. $\lim_{x \to a} x^2 = b^2 \text{ is continuous but } r \text{ depends on both } \varepsilon \text{ and } b \text{ so } x^2 \text{ is not uniformly continuous, but it is}$

continuous.

let $f: \mathbb{R} \to \mathbb{R}$ be such that $|f'(x)| \leq A \forall x \in \mathbb{R}$ then f is Lipschitz, therefore uniformly continuous.

mean value theorem $|f(x) - f(y)| = |f'(\varsigma)|x - y| < A|x - y|$. $x < y :: \varsigma \in (x, y)$.

5.1.k

find a bounded continuous function on \mathbb{R} that is not lipschitz. note x^2 is not bounded.

$$f(x) = \sin \frac{1}{x}$$
 on $(0, +\infty)$
 $y = \arctan x$

example

if $f: \mathbb{R}^n \to \mathbb{R}^m$ is liner then it is Lipsch

let A be the matrix of f.
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

$$f(\vec{x}) = A\vec{x} = \left(\sum_{j=1}^{n} a_{1j}x_{j}, \dots, \sum_{j=1}^{n} a_{mj}x_{j}\right)$$

$$||f(x) - f(y)|| \le C||x - y||$$

$$||F(x) - f(y)|| = ||f(x - y)|| = \sqrt{\sum_{k=1}^{m} \sum_{j=1}^{n} a_{kj}(x_{j} - y_{j})} \le \text{cauchy schwartz}$$

october 29

 $f:S\to\mathbb{R}^m$ where $s\subseteq\mathbb{R}^n$

lipschitz means that $\exists C>0$ such that $\forall x,y\in S, ||f(x)-f(y)||_{\mathbb{R}^m}\leq C||x-y||_{\mathbb{R}^n}$ uniformally continuous means that $\forall \varepsilon>0 \exists r>0: ||f(x)-f(y)||<\varepsilon$ whenever ||x-y||< r where $r(\varepsilon)$ continuous means that $\forall \varepsilon>0 \exists r>0: ||f(x)-f(y)||<\varepsilon$ whenever ||x-y||< r where $r(\varepsilon,y)$ continuous at $\vec{a}\in S$ means that $\forall \varepsilon>0 \exists r>0: ||f(x)-f(\vec{a})||<\varepsilon$ whenever ||x-y||< r where $r(\varepsilon,\vec{a})$

exercise 5.1.B

prove the f is continuous at 0.

$$\begin{aligned} & \text{find } r > 0 \text{ st } |f(x) - 1| < 10^{-6} \text{ if } |x| < r \\ & f(x) = \begin{cases} \frac{x}{\sin x}, & x \in [-\frac{\pi}{2}, \frac{\pi}{2}] - \{0\} \\ 1, & x = 0 \end{cases} \\ & \forall \varepsilon > 0 \text{ we need to find } r > 0 \text{ st if } |x - 0| < r \text{ then } |\frac{x}{\sin x} - 1| < \varepsilon \\ & \frac{\sin x}{2} \le \frac{1}{2} r^2 \theta = \frac{x}{2} \le \frac{\tan x}{2} \\ & 1 \le \frac{x}{\sin x} \le \frac{1}{\cos x} \\ & |\frac{x}{\sin x} - 1| \le |\frac{1}{\cos x} - 1| = |\frac{1 - \cos x}{\cos x}| \\ & \cos x = \sqrt{1 - \sin^2 x} \ge \sqrt{1 - x^2} \ge 1 - x^2 \text{ if } 1 - x^2 \in [0, 1) \end{aligned}$$
 we did see that x^2 is a continuous function.
$$\frac{x^2}{1 - x^2} < 10^{-6} \to x^2 < 1^{-6} (1 - x^2) \to x^2 (1 + 10^{-6}) < 10^{-6} \to x < 10^{-6} / (1 + 10^{-6}) \end{aligned}$$

section 5.2 discontinuities

survey of types of discontinuities.

def of right limit

the right limit of f(x) as x approaches a is b if $\forall \varepsilon > 0 \exists r > 0 (r = r(\varepsilon, a))$ such that if a + r > x > a then $|f(x) - b| < \varepsilon$

if a function f has different values for it's left and right limit, then we say it has a jump disconinuouity at a.

prototype of jump discontinuouities is the heavyside function.

$$H(x) = \begin{cases} 0, & x < 0 \\ 1, & x > 0 \end{cases}$$

example:

$$f(x) = \begin{cases} 0 & x < 0\\ 1 + x & x > 0 \end{cases}$$

and f - H is continuous

a removeable discontinuity happens when $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x)$ but $f(x) \neq \lim_{x\to a^+} f(x)$. we can fix the discontinuity by redefining $f(a) = \lim_{x \to a} f(x)$

a function is piecewise continuous if on any bounded interval, f has a finite number of jump discontinu-

 $f(x) = \lfloor x \rfloor$ is piecewise continuous because if we pick bounds, then we limit the number of discontinuities. if $\lim_{x\to a^{\pm}} = \pm \infty$ then we have a discontinuity (vertical asymptote) with no way to fix

 $\sin \frac{1}{x}$ has not limit at 0. there isn't even a reasonable way to define the limit. no name for this kind of disconitnuity.

$$\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^22} = \lim_{x\to 0} \frac{x^2}{x^2+m^2x^2} = \frac{1}{1+m^2}$$

let $A \subseteq \mathbb{R}^n$

define the characteristic function of the set A. $1_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$

how discontinuous this is depends on the set A.

example A = (0,1) is piecewise continuous with only two jump discontinuouities. but if $A = \mathbb{Q}$? yuck.

example

$$f(x) = \begin{cases} 0 & x \notin \mathbb{Q} \\ \frac{1}{q} & x = \frac{p}{q} \end{cases}$$

where gcd(p,q) = 1 and q > 0. f is continuous on $\mathbb{R} \setminus \mathbb{Q}$ and discontinuous on \mathbb{Q} . if $a \in \mathbb{R}$, $\lim_{x \to a} f(x) = 0$.

let $\varepsilon > 0$. let $M > |a|, M \in \mathbb{N}$. let $N \in \mathbb{N}, \frac{1}{N} > \varepsilon$. $\{\frac{p}{q}: 1 \leq q \leq N, -Mq \leq p \leq Mq\} \setminus \{a\}$. set S is finite and so closed. $a \in S^C$ is open. There exists an interval $(a - \varsigma, a + \varsigma) \subseteq S^C \cap [-M, M]$

if $x \in S^C \cap [-M, M]$ either x is irrational $(f(x) = 0 \text{ or } x \text{ is rational but } x = \frac{p}{q}, q > N, f(x) = \frac{1}{q} < \frac{1}{N} < \varepsilon,$ hence $\lim f(x) = 0$