Exercitiul 1 a)

instructionea if:

```
if (max(magazin 1) > 10){
       print("numarul maxim de vanzari intr-o zi in magazinul 1 este mai mare de 10")
       } else {
           print("numarul maxim de vanzari intr-o zi in magazinul 1 este mai mic de 10")}
   verifica daca numarul maxim de vanzari intr-o zi in magazinul 1 este mai mare decat 10
   if(numar \%\% 2 == 0){
       cat("numarul ", numar , " este par\n")
       } else {
           cat("numarul ", numar, " este impar\n")}
   verifica daca un numar este par sau impar
• instructiunea for:
   n for (i in 1:100){
    k<-0
    for(j in 1:i){
     if(i\%\%j==0)k<-k+1;
    if(k == 2)print(j)
   }
   afisare numere prime mai mici decat 100
   for(i in 1:nrow(medie vanzari)) {
    cat(medie vanzari[i, 1], "a avut un numar mediu zilnic de vanzari de: ", medie vanzari[
   i, 2], "\n");
   afisez un mesaj cu magazinul si media zilnica de vanzari
• instructiunea while:
   i <- 1;
   while(i <= nrow(medie_vanzari)) {</pre>
    cat(medie vanzari[i, 1], "a avut un numar mediu zilnic de vanzari de: ", medie vanzari[
   i, 2], "\n");
    i <- i+1
   }
   afisez un mesaj cu magazinul si media zilnica de vanzari, de data aceasta insa cu while
   number <- 100
   sum <- 0
   while(number >= 0) {
    sum = sum + number
    number = number - 2
   }
   sum
```

suma numerelor pare mai mici decat 100

Exercitiul 1 b)

• functia medie:

```
s<- 0
media <- function(x) {
  n <- length(x)
  for(i in 1:n) s <- s + x[i]
  medie<-s / n
  return(medie);
}</pre>
```

• functia abatere standard:

```
abatere_standard <- function(x){
  n <- length(x);
  suma = 0;
  for( i in 1:n) suma = suma + (x[i] - media(x))^2;
  rezultat = sqrt(suma/(n-1));
  return(rezultat);
}</pre>
```

link formula abatere standard

• functia test student:

```
student_test <-function(x,prob){
se <- sd(x) / sqrt(length(x))
alpha <- 1 - prob #qnorm ii normal distribution
limite<-c(mean(x) - se * qnorm(1-alpha / 2), mean(x) + se * qnorm(1-alpha / 2))
return(limite)
}</pre>
```

• functia coeficient corelatie:

```
corelatie <- function(x,y){
  suma = 0;
  n = length(x);
  for(i in 1:n){
    suma = suma + (x[i]-mean(x))*(y[i]-mean(y))
  }
  rezultat = suma/(sd(x)*sd(y));
  return(rezultat/4)
}</pre>
```

link formula coeficient corelatie slide 16/28

Exercitiul 1 c)

```
x < c(12,7,34,9,14,22,17,16,42,15,11,22,24,7,44,19,2,76,62,18,13,15,40,23,80,60,45,12);
x este un vector ce contine vanzarea medie a unui produs in fiecare zi pentru 4 magazine
luni = x[seq(1, length(x), 7)]
marti = x[seq(2, length(x), 7)]
miercuri = x[seq(3, length(x), 7)]
joi = x[seq(4, length(x), 7)]
vineri = x[seq(5, length(x), 7)]
sambata = x[seq(6, length(x), 7)]
duminica = x[seq(7, length(x), 7)]
am creat vectori pentru fiecare zi parcurgand din 7 in 7 pozitii vectorul initial x
media pe_zi <- data.frame (
 ziua = c("luni", "marti", "miercuri", "joi", "vineri", "sambata", "duminica"),
 media = c(mean(luni),mean(marti),mean(miercuri),mean(joi), mean(vineri),
mean(sambata), mean(duminica))
)
am creat un data frame, pentru media in functie de zi am folosit functia mean, la fel de
bine puteam folosi deja functia media, definita intr-un exercitiu anterior, acolo este
folosita structura de control for
media pe zi reversed <- t(media pe zi);
trebuie sa transpun data frame-ul
solutie cu apply:
matricea_x <- matrix(x, 7);</pre>
pe prima linie vanzarile de luni, a doua linie vanzarile de marti si asa mai departe,
coloanele reprezinta magazine asadar coloana 1 reprezinta primul mazagin
data frame x <- as.data.frame(matricea x);
row.names(data_frame_x) <- c("luni", "marti", "miercuri", "joi", "vineri", "sambata",
"duminica");
colnames(data_frame_x) <- c("magazin_1", "magazin_2", "magazin_3", "magazin_4")
data_frame_x = rev(data_frame_x);
data frame x
apply(data_frame_x, MARGIN=1, FUN=mean)
MARGIN = 1 indica fptul ca ne referim la linii care reprezinta zilele
```

iar la FUN specificam ce functie vrem sa folosim, in cazul nostru mean

Exercitiul 1 d)

functia	input	output	exemple
apply()	matrice sau array	vector	calcul medie pe coloane, suma pe linii
lapply()	vector, lista, data frame	lista	aplica aceasi functie pentru fiecare element din lista, pot ridica fiecare element din lista la patrat, pot calcula radical din el sau orice alta functie
sapply()	vector, matrice, lista	array, matrice	aproximativ acelasi lucru ca lapply()
tapply()	vector	array	ne ajuta sa impartim in submultimi si aplicam anumite functii pe ele (de exemplu daca am un date frame cu produse(in care am pret si categorie) lopot afisa pretul mediu pe categorii de produse)
mapply()	vector, matrix	vector, matrix, lista	este o versiune multivariata a lui sapply()

Exercitiul 1 e)

set de date: Level of internet access – households link: https://ec.europa.eu/eurostat/databrowser/view/TIN00134/default/table

importare date

format_wide<-read_xlsx('C:\\Users\\liber\\OneDrive\\Desktop\\proiecte r studio\\proiect de semestru\\proiect semestru\\tin00134_spreadsheet.xlsx')

View(format_wide)

de mentionat ca fisierul excel a fost formatat de catre mine (un mic cleaning)

transformare format long

```
format_long <- format_wide %>%
  gather(key = denumire,
     value = valori, -TIME, convert = TRUE)

colnames(format_long)
colnames(format_long) <- c("tara", "an", "procent") #redenumiri

format_long[format_long == ":"] <- NA #am inlocuit : din celule cu NA</pre>
```

media pe un anumit an

```
format_long$procent<-as.integer(format_long$procent,na.omit = TRUE)
media_pe_an <- format_long %>%
filter(an == 2020) %>%
summarize(
    media_pe_an = mean(procent, na.rm= TRUE)
    )
cat("Media pe anul 2020 este: ", sum(media_pe_an))
```

media pe fiecare an

```
media pe ani <- format long %>%
group by(an)%>%
summarise(mean(procent, na.rm = TRUE))
colnames(media pe ani) <- c("an", "procent")
media pe ani
```

Exercitiul 1 f)

sursa: https://en.wikipedia.org/wiki/List_of_countries_by_average_wage#cite_note-OECDaaw-3

importare tabel html

```
pagina<-
read html("https://en.wikipedia.org/wiki/List of countries by average wage#cite note-
OECDaaw-3")
class(pagina)
library(magrittr)
tabele<-pagina %>% html nodes("table")
length(tabele)
hpi<-html table(tabele[[1]])
hpi[1] <- lapply(hpi[1], gsub, pattern = "*", replacement = "", fixed = TRUE)
salarii long <- hpi %>%
 gather(key = an,
     value = salariu, -Country, convert = TRUE)
View(salarii long)
```

salariul mediu in fiecare an

```
salarii long$salariu<-as.integer(salarii long$salariu,na.omit = TRUE)
salarii pe ani <- salarii long %>%
 group by(an)%>%
 summarise(mean(salariu, na.rm = TRUE))
colnames(salarii_pe_ani) <- c("an", "salariu")</pre>
salarii pe ani
```

grafic evolutie salariu anual in Norvegia

```
salarii Norvegia <- salarii long
salarii Norvegia$Country<- as.character(salarii long$Country)
salarii_Norvegia <- salarii_Norvegia %>% filter(str_detect(Country, "^Norway"))
```

```
salarii Norvegia %>%
 ggplot(aes(x = an, y = salariu)) +
 geom_line() +
 geom point()
 labs(
   y = "salariu",
   x = "an"
```


Exercitiul 2

```
set de date: top 100 songs Spotify(2010-2019) https://www.kaggle.com/datasets/muhmores/spotify-top-100-songs-of-20152019?resource=download
```

objective:

sa obseram trenduri si patternuri intre melodii (cu ajutorul tabelelor de frecventa si al graficelor)

variabile selectate:

```
top genre - categoriala
artist_type - categoriala
beats_per_minute - cantitativa continua numerica
duration - cantitativa continua numerica
dance - cantitativa continua numerica
energy - cantitativa continua numerica
acoustic - cantitativa continua numerica
top year - cantitativa continua numerica
live - cantitativa continua numerica
```

cleaning

```
songs wide<-readr::read csv('C:\\Users\\liber\\OneDrive\\Desktop\\proiecte r
studio\\proiect de semestru\\proiect semestru\\Spotify 2010 - 2019 Top 100.csv')
songs wide <- na.omit(songs wide)</pre>
songs wide$added <- as.Date(songs wide$added)</pre>
songs wide$`top genre` <- as.factor(songs wide$`top genre`) #le facem tip categorii
songs wide$`artist type` <- as.factor(songs wide$`artist type`)</pre>
#cateva renameuri
songs wide <- songs wide %>%
 rename(beats per minute = "bpm") %>%
 rename(energy = "nrgy") %>%
 rename(dance = "dnce") %>%
 rename(duration = "dur") %>%
 rename(acoustic = "acous") %>%
 rename(speech = "spch") %>%
 rename(top genre = "top genre") %>%
 rename(top year = "top year") %>%
 rename(artist type = "artist type") %>%
 rename(year released = "year released")
songs wide <- select(songs wide, -val) #am sters coloana val pentru ca nu stiu ce semnifica
View(songs wide)
```

transformare format long

```
#transformare in format long
songs_long <- songs_wide %>%
  gather(key = variabila, value = valoare, -title, convert = TRUE)
```

valoarea medie beats per minute a tuturor pieselor

```
beats_per_minute_mediu <- songs_long %>%
  filter(variabila == "beats_per_minute") %>%
  summarise(
    beats_per_minute_mediu <- mean(as.numeric(valoare), na.rm=TRUE)
)

cat("valoarea medie beats_per_minute a tuturor pieselor este: ",
  sum(beats_per_minute_mediu))

numarul de piese per artist_type

numar_songs_per_artist_type <- songs_wide %>%
  group_by(artist_type) %>%
  summarise(
  numar <- n()
)

colnames(numar songs per artist type) <- c("tip artist", "numar cantece")</pre>
```

numar_songs_per_artist_type <- as.data.frame(numar_songs_per_artist_type)
numar_songs_per_artist_type
barplot(numar_songs_per_artist_type\$`numar cantece`,
names.arg=numar_songs_per_artist_type\$`tip artist`, main = "numar cantece per tip de

durata medie a unei piese in functie de artist_type

artist")

```
durata_songs_per_artist_type <- songs_wide %>%
  group_by(artist_type) %>%
  summarise(
    durata <- mean(duration)
)
colnames(durata_songs_per_artist_type) <- c("tip artist", "durata medie")
durata_songs_per_artist_type <- as.data.frame(durata_songs_per_artist_type)
durata_songs_per_artist_type
barplot(durata_songs_per_artist_type$`durata medie`,
names.arg=durata_songs_per_artist_type$`tip artist`, main = "numar cantece per tip de artist")</pre>
```

observam ca nu exista diferente majore in durata cantecelor in fuctie de artist_type, cea ce ne duce cu gandul ca nu exista o corelatie intre ele

evolutie numar piese cantate de Band/Group anual + grafic

```
band songs per year <- songs wide %>%
 filter(artist type == "Band/Group") %>%
 group by(top year) %>%
 summarise(numar <- n())</pre>
colnames(band songs per year) <- c("an", "nr piese")</pre>
band songs per year <- as.data.frame(band songs per year)
band songs per year %>%
 ggplot(aes(x = an, y = `nr piese`)) +
 geom_line() +
 geom point()
labs(
y = "nr piese",
x = "an"
observam o tendinta clara de scadere a numarului de cantece cantate de bands/group
grafice corelatii intre variabile
ggplot(songs wide,aes(x = duration,y = beats per minute)) +
 geom point() +
 geom smooth(method='lm')
intre beats per minute si duration, nu pare sa existe corelatie
ggplot(songs wide,aes(x = live,y = acoustic)) +
 geom point() +
 geom smooth(method='lm')
pare sa existe o corelatie mai mare intre variabilele live si acoustic
ggplot(songs wide,aes(x = dance,y = speech)) +
 geom_point() +
 geom smooth(method='lm')
```

linkuri folosite:

- https://www.guru99.com/r-apply-sapply-tapply.html
- suportul de curs/laborator
- https://www.datacamp.com/community/tutorials/r-tutorial-apply-family?utm source=adwords ppc&utm medium=cpc&utm campaignid=12492439802
 &utm adgroupid=122563404161&utm device=c&utm keyword=sapply%20r&utm mat chtype=b&utm network=g&utm adpostion=&utm creative=504158805007&utm targe tid=kwd-

302622694743&utm loc interest ms=&utm loc physical ms=1011806&gclid=Cj0KCQi w5-WRBhCKARIsAAId9FnIZ2eYwkUFIAIT-bl6sLVzlNRUkFmdYtiiUMSmUkoUhuC-WNaN oEaAie3EALw wcB

- help-ul din R Studio
- https://r-coder.com/tapply-r/
- https://www.statology.org/ggplot2-linear-regression/
- https://tidyr.tidyverse.org/