MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD

Edward F. Schlafly¹ and Douglas P. Finkbeiner 2010

Present by Siyao Jia 10/24/2016

Previous study on foreground reddening

Fitzpatrick reddening law (F99):
R(V) = A(V)/E(B-V)
E(B-V) = (B-V)observed - (B-V)intrinsic
For Milky Way, R(V) ~ 3.1

- Schlegel et al 1998 (SFD):
 Use IRAS and COBE to create a relatively high (~ few arcmin) extinction map of the sky
- Schlafly et al 2010(S10): use photometry from SDSS, recommend a 14% recalibration of the SFD dust map E(B-V) = 0.86 * E(B-V)_{SFD}
- Schlafly and Finkbeiner 2011: refine S10 most popular distinction map currently

SDSS Data: photometry calibrated by "ubercalibration" (Padmanabhan et al. 2008)

Table 1 SDSS Spectral Targets

Target Type	No. of Stars	Description
PHO	15894	Spectrophotometric standards
RED	14353	Reddening standards
SEGUE1_BHB	12603	BHB stars
SEGUE1_FG	5065	FG stars
SEGUE1_GD	44495	G dwarfs
SEGUE1_KD	13459	K dwarfs
SEGUE1_KG	16012	K giants
SEGUE1_LM	22273	Low-metallicity stars
SEGUE1_LOW_KG	2606	Low-latitude K giants
SEGUE1_LOW_TO	6432	Low-latitude turnoff stars
SEGUE1_MPMSTO	26885	Metal-poor F stars
SEGUE2_LKG	19634	K giants
SEGUE2_LM	13785	Low-metallicity stars
SEGUE2_MSTO	31767	Main-sequence turnoff stars
SEGUE2_PMKG	10566	K giants
STAR_BHB	5667	Main survey BHB stars
Total	261496	

SDSS Data: Spectroscopy

Use **SSPP** to **estimate temperature, metallic and gravity** of each star. Use ANNRR estimator which doesn't depend on photometry.

The stellar parameters are transformed into predicted ugriz colors using the MARCS grid of model atmospheres.

SDSS Data: Selection Cut

Exclude stars with unusual colors: g-r>1mag, dwarf targets, with stellar parameter marked as unreliable by the SSPP.

The remaining stars are divided into different types: standard, FG, BHB, K, other

Finally, $\Delta_{a-b} = (a-b)_{obs} - (a-b)_{pre}$

Result: at lbl>50, Δ ~0 calibration

Result: reddening map

Result: calibration for SFD

$$R_{a-b} = E_{a-b} / E(B-V)_{SFD}$$

fit without zero-point offset

$$\Delta_{a-b} = R_{a-b}E(B-V)_{SFD} + C,$$

fit with zero-point offset

$$\Delta_{a-b} = R_{a-b}E(B-V)_{SFD} + C_r$$

the fits with and without zero-point offsets agree to within 4%

The results confirm the preference for an Rv = 3.1 F99 reddening law and a 14% recalibration of SFD.

Result: residual VS SFD

Result: fits to different sky regions

north south color asymmetry: maybe age and metallicity changes in stellar populations