Complexity of Jet Reconstruction Algorithms

Sean Ericson

UO PHYS 662

March 18, 2024

 Jet Reconstruction algorithms are at the core of modern HEP data collection and analysis

- Jet Reconstruction algorithms are at the core of modern HEP data collection and analysis
- Efficient algorithms are necessary to make analysis of large datasets feasible.

- Jet Reconstruction algorithms are at the core of modern HEP data collection and analysis
- Efficient algorithms are necessary to make analysis of large datasets feasible.
- Outline

- Jet Reconstruction algorithms are at the core of modern HEP data collection and analysis
- Efficient algorithms are necessary to make analysis of large datasets feasible.
- Outline

- Jet Reconstruction algorithms are at the core of modern HEP data collection and analysis
- Efficient algorithms are necessary to make analysis of large datasets feasible.
- Outline
 - Review of jet algorithms

- Jet Reconstruction algorithms are at the core of modern HEP data collection and analysis
- Efficient algorithms are necessary to make analysis of large datasets feasible.
- Outline
 - Review of jet algorithms
 - Measuring Algorithmic Complexity

- Jet Reconstruction algorithms are at the core of modern HEP data collection and analysis
- Efficient algorithms are necessary to make analysis of large datasets feasible.
- Outline
 - Review of jet algorithms
 - Measuring Algorithmic Complexity
 - Analysis of FastJet, SISCone, and their predecessors

■ Jet algorithm goals:

- Jet algorithm goals:
 - Combine data from calorimeters and trackers to define jets

- Jet algorithm goals:
 - Combine data from calorimeters and trackers to define jets
 - Identify subjets and jet substructure

- Jet algorithm goals:
 - Combine data from calorimeters and trackers to define jets
 - Identify subjets and jet substructure
 - Measure invariant masses of constituent particles

- Jet algorithm goals:
 - Combine data from calorimeters and trackers to define jets
 - Identify subjets and jet substructure
 - Measure invariant masses of constituent particles
 - ► Identify missing energy/momentum

- Jet algorithm goals:
 - ► Combine data from calorimeters and trackers to define jets
 - ► Identify subjets and jet substructure
 - Measure invariant masses of constituent particles
 - Identify missing energy/momentum
- Jets:

- Jet algorithm goals:
 - ► Combine data from calorimeters and trackers to define jets
 - Identify subjets and jet substructure
 - Measure invariant masses of constituent particles
 - ► Identify missing energy/momentum
- Jets:
 - A collimated spray of stable particles arising from fragmentation and hadronization of a parton after a collision.

Example Jet

Considerations

Jet size

- Jet size
 - Must be large enough to capture all particles for correct p_{μ} calculation.

- Jet size
 - Must be large enough to capture all particles for correct p_{μ} calculation.
 - However, larger jets are more susceptible to underlying events (UE) and pileup (PU)

- Jet size
 - Must be large enough to capture all particles for correct p_{μ} calculation.
 - However, larger jets are more susceptible to underlying events (UE) and pileup (PU)
- Jet shape

- Jet size
 - Must be large enough to capture all particles for correct p_{μ} calculation.
 - However, larger jets are more susceptible to underlying events (UE) and pileup (PU)
- Jet shape
 - Algs with variable jet shape can allow for good resolution of subjets at the expense of greater susceptibility to UE and PU

- Jet size
 - Must be large enough to capture all particles for correct p_{μ} calculation.
 - However, larger jets are more susceptible to underlying events (UE) and pileup (PU)
- Jet shape
 - Algs with variable jet shape can allow for good resolution of subjets at the expense of greater susceptibility to UE and PU
- Infrared and Collinear safety (IRC safety)

- Jet size
 - Must be large enough to capture all particles for correct p_{μ} calculation.
 - However, larger jets are more susceptible to underlying events (UE) and pileup (PU)
- Jet shape
 - Algs with variable jet shape can allow for good resolution of subjets at the expense of greater susceptibility to UE and PU
- Infrared and Collinear safety (IRC safety)
 - Calculated jets should be insensitive to emission of soft radiation from, or collinear splitting of the constituent particles.

- Jet size
 - Must be large enough to capture all particles for correct p_{μ} calculation.
 - However, larger jets are more susceptible to underlying events (UE) and pileup (PU)
- Jet shape
 - Algs with variable jet shape can allow for good resolution of subjets at the expense of greater susceptibility to UE and PU
- Infrared and Collinear safety (IRC safety)
 - Calculated jets should be insensitive to emission of soft radiation from, or collinear splitting of the constituent particles.
 - Necessary for faithful comparison of data to experiment

Class of Jet Algorithms

■ Cone Algorithms

- Cone Algorithms
 - Assume particles in jets will appear in conical regions; cluster in (η, ϕ) -space.

- Cone Algorithms
 - Assume particles in jets will appear in conical regions; cluster in (η, ϕ) -space.
 - Easy to implement, but typically contain unphysical parameters which hinder analysis

- Cone Algorithms
 - Assume particles in jets will appear in conical regions; cluster in (η, ϕ) -space.
 - Easy to implement, but typically contain unphysical parameters which hinder analysis
 - Most are not IRC safe

- Cone Algorithms
 - Assume particles in jets will appear in conical regions; cluster in (η, ϕ) -space.
 - Easy to implement, but typically contain unphysical parameters which hinder analysis
 - Most are not IRC safe
 - Examples include IC-PR, IC-SM, and SISCone.

- Cone Algorithms
 - Assume particles in jets will appear in conical regions; cluster in (η, ϕ) -space.
 - Easy to implement, but typically contain unphysical parameters which hinder analysis
 - Most are not IRC safe
 - Examples include IC-PR, IC-SM, and SISCone.
- Sequential Clustering Algorithms

- Cone Algorithms
 - Assume particles in jets will appear in conical regions; cluster in (η, ϕ) -space.
 - Easy to implement, but typically contain unphysical parameters which hinder analysis
 - Most are not IRC safe
 - Examples include IC-PR, IC-SM, and SISCone.
- Sequential Clustering Algorithms
 - Assume particles in jets have small differences in p_t ; cluster in momentum space.

- Cone Algorithms
 - Assume particles in jets will appear in conical regions; cluster in (η, ϕ) -space.
 - Easy to implement, but typically contain unphysical parameters which hinder analysis
 - Most are not IRC safe
 - Examples include IC-PR, IC-SM, and SISCone.
- Sequential Clustering Algorithms
 - Assume particles in jets have small differences in p_t ; cluster in momentum space.
 - Automatically IRC safe

- Cone Algorithms
 - Assume particles in jets will appear in conical regions; cluster in (η, ϕ) -space.
 - Easy to implement, but typically contain unphysical parameters which hinder analysis
 - Most are not IRC safe
 - Examples include IC-PR, IC-SM, and SISCone.
- Sequential Clustering Algorithms
 - Assume particles in jets have small differences in p_t ; cluster in momentum space.
 - Automatically IRC safe
 - ightharpoonup Examples include K_t , \bar{K}_t , and Cambridge/Aachen

Measuring Algorithmic Complexity

Assymptotics and Big-O Notation

Assymptotics and Big-O Notation

 Algorithm runtime depends on the specific hardware its running on, and on the input to the particular problem instance

- Algorithm runtime depends on the specific hardware its running on, and on the input to the particular problem instance
- How can we compare algorithms in a context-independent way?

- Algorithm runtime depends on the specific hardware its running on, and on the input to the particular problem instance
- How can we compare algorithms in a context-independent way?
 - Big-O Notation! (a.k.a Bachmann-Landau/asymptotic notation)

- Algorithm runtime depends on the specific hardware its running on, and on the input to the particular problem instance
- How can we compare algorithms in a context-independent way?
 - Big-O Notation! (a.k.a Bachmann-Landau/asymptotic notation)

$$f(x) \in \mathcal{O}(g(x))_{x \to \inf} \iff \exists c \ \exists x_0 \ \forall x > x_0 : \ |f(x)| \le cg(x)$$

Assymptotics and Big-O Notation

- Algorithm runtime depends on the specific hardware its running on, and on the input to the particular problem instance
- How can we compare algorithms in a context-independent way?
 - Big-O Notation! (a.k.a Bachmann-Landau/asymptotic notation)

$$f(x) \in \mathcal{O}(g(x))_{x \to \inf} \iff \exists c \ \exists x_0 \ \forall x > x_0 : \ |f(x)| \le cg(x)$$

▶ E.g. $\mathcal{O}(\ln(x)) \subset \mathcal{O}(x) \subset \mathcal{O}(x^n) \subset \mathcal{O}(e^x) \subset \mathcal{O}(x!)$

- Algorithm runtime depends on the specific hardware its running on, and on the input to the particular problem instance
- How can we compare algorithms in a context-independent way?
 - Big-O Notation! (a.k.a Bachmann-Landau/asymptotic notation)

$$f(x) \in \mathcal{O}(g(x))_{x \to \inf} \iff \exists c \ \exists x_0 \ \forall x > x_0 : \ |f(x)| \le cg(x)$$

- ▶ E.g. $\mathcal{O}(\ln(x)) \subset \mathcal{O}(x) \subset \mathcal{O}(x^n) \subset \mathcal{O}(e^x) \subset \mathcal{O}(x!)$
- ▶ Also, o(), $\Theta(x)$, $\Omega()$, $\omega()$ with related definitions

Complexity of K_t (pre-FastJet)

The Naïve Algorithm

Algorithm Naïve K_t

```
1: repeat
 2:
          for particle pair (i, j) do
               d_{Bi} \leftarrow p_{\pm i}^2

    Calculated once for each i

 3:
               R_{ii}^2 \leftarrow (\eta_i - \eta_i)^2 + (\phi_i - \phi_i)^2
 4:
               d_{ii} \leftarrow \min(p_{ti}^2, p_{ti}^2) R_{ii}
 5:
          end for
 6:
          d_{\min} \leftarrow \min(\{d_{ii}\} \cup \{d_{Bi}\})
 7:
          if d_{min} is d_{Bi} then
 8:
               Add particle i to list of jets, remove from list of particles
 9:
          else
10:
11:
               Merge particles i, j
          end if
12:
13: until no particles remain
```

Complexity Analysis

• Outermost loop executes $\mathcal{O}(n)$ times

- Outermost loop executes $\mathcal{O}(n)$ times
 - ightharpoonup Calculation of d_{Bi} initially $\mathcal{O}(N)$, updates actually $\mathcal{O}(1)$

- Outermost loop executes $\mathcal{O}(n)$ times
 - ▶ Calculation of d_{Bi} initially $\mathcal{O}(N)$, updates actually $\mathcal{O}(1)$
 - ▶ Calculation of d_{ij} initially $\mathcal{O}(N^2)$, updates actually $\mathcal{O}(N)$

- Outermost loop executes $\mathcal{O}(n)$ times
 - ightharpoonup Calculation of d_{Bi} initially $\mathcal{O}(N)$, updates actually $\mathcal{O}(1)$
 - ▶ Calculation of d_{ij} initially $\mathcal{O}(N^2)$, updates actually $\mathcal{O}(N)$
 - ▶ Determining d_{\min} is $\mathcal{O}(N^2)$

- Outermost loop executes $\mathcal{O}(n)$ times
 - ightharpoonup Calculation of d_{Bi} initially $\mathcal{O}(N)$, updates actually $\mathcal{O}(1)$
 - ▶ Calculation of d_{ij} initially $\mathcal{O}(N^2)$, updates actually $\mathcal{O}(N)$
 - ▶ Determining d_{\min} is $\mathcal{O}(N^2)$
 - Merging operation is $\mathcal{O}(1)$

- Outermost loop executes $\mathcal{O}(n)$ times
 - ightharpoonup Calculation of d_{Bi} initially $\mathcal{O}(N)$, updates actually $\mathcal{O}(1)$
 - ▶ Calculation of d_{ij} initially $\mathcal{O}(N^2)$, updates actually $\mathcal{O}(N)$
 - ▶ Determining d_{\min} is $\mathcal{O}(N^2)$
 - ▶ Merging operation is $\mathcal{O}(1)$
- Full time complexity is therefore

$$\mathcal{O}(N + N^2 + N(1 + N + N^2 + 1)) = \mathcal{O}(N^3)$$

Complexity Analysis

- Outermost loop executes $\mathcal{O}(n)$ times
 - ▶ Calculation of d_{Bi} initially $\mathcal{O}(N)$, updates actually $\mathcal{O}(1)$
 - ▶ Calculation of d_{ij} initially $\mathcal{O}(N^2)$, updates actually $\mathcal{O}(N)$
 - ▶ Determining d_{\min} is $\mathcal{O}(N^2)$
 - ▶ Merging operation is $\mathcal{O}(1)$
- Full time complexity is therefore

$$\mathcal{O}(N + N^2 + N(1 + N + N^2 + 1)) = \mathcal{O}(N^3)$$

■ Also easy to see that the space complexity is $\mathcal{O}(N^2)$.

Geometric Insight

■ The key to improving K_t is the (rather obvious) geometric insight:

- The key to improving K_t is the (rather obvious) geometric insight:
 - ▶ Let $d_{\min} = \min(\{d_{ij}\})$, and let $p_{ti} < p_{tj}$.

- The key to improving K_t is the (rather obvious) geometric insight:
 - ▶ Let $d_{\min} = \min(\{d_{ij}\})$, and let $p_{ti} < p_{tj}$.
 - ▶ Then, $\forall I: R_{ij} \leq R_{il}$

- The key to improving K_t is the (rather obvious) geometric insight:
 - ▶ Let $d_{\min} = \min(\{d_{ij}\})$, and let $p_{ti} < p_{tj}$.
 - ▶ Then, $\forall I : R_{ij} \leq R_{il}$
- lacktriangle That is, particles i and j are geometric nearest neighbors

- The key to improving K_t is the (rather obvious) geometric insight:
 - ▶ Let $d_{\min} = \min(\{d_{ij}\})$, and let $p_{ti} < p_{tj}$.
 - ▶ Then, $\forall I : R_{ij} \leq R_{il}$
- That is, particles *i* and *j* are geometric nearest neighbors
- Therefore, we don't need the $\mathcal{O}(N^2)$ table d_{ij} !

- The key to improving K_t is the (rather obvious) geometric insight:
 - ▶ Let $d_{\min} = \min(\{d_{ij}\})$, and let $p_{ti} < p_{tj}$.
 - ▶ Then, $\forall I : R_{ij} \leq R_{il}$
- That is, particles *i* and *j* are geometric *nearest neighbors*
- Therefore, we don't need the $\mathcal{O}(N^2)$ table d_{ij} !
- lacktriangle We only need an n-element list of nearest neighbors $d_{i\mathcal{G}_i}$

Complexity of FastJet

The Smart Algorithm

Algorithm FastJet K_t

- 1: **for** particle *i* **do**
- 2: $\mathcal{G}_i \leftarrow \text{nearest neighbor of particle } i$
- 3: d_{iG_i}, d_{Bi} calculated as previously
- 4: end for
- 5: repeat
- 6: $d_{\min} \leftarrow \min(\{\mathcal{G}_i\} \cup \{d_{Bi}\})$
- 7: Merge or Remove according to d_{\min} as previously
- 8: Update G_i , d_{iG_i} , d_{Bi} .
- 9: until no particles remain

Semi-Naïve Complexity Analysis

■ This appears to have a time complexity of $\mathcal{O}(N^2)$:

- This appears to have a time complexity of $\mathcal{O}(N^2)$:
 - ▶ Initial construction of G_i is O(N).

- This appears to have a time complexity of $\mathcal{O}(N^2)$:
 - ▶ Initial construction of G_i is O(N).
 - ▶ Initial calculation of d_{iG_i} , d_{Bi} is $\mathcal{O}(N)$

- This appears to have a time complexity of $\mathcal{O}(N^2)$:
 - ▶ Initial construction of G_i is O(N).
 - ▶ Initial calculation of d_{iG_i} , d_{Bi} is $\mathcal{O}(N)$
 - Finding d_{\min} takes $\mathcal{O}(N)$ times, repeated $\mathcal{O}(N)$ times.

- This appears to have a time complexity of $\mathcal{O}(N^2)$:
 - ▶ Initial construction of G_i is O(N).
 - ▶ Initial calculation of d_{iG_i} , d_{Bi} is $\mathcal{O}(N)$
 - Finding d_{\min} takes $\mathcal{O}(N)$ times, repeated $\mathcal{O}(N)$ times.
 - ▶ Updating G_i , d_{Bi} after a merge or removal takes $\mathcal{O}(N)$ (repeated $\mathcal{O}(N)$ times)

- This appears to have a time complexity of $\mathcal{O}(N^2)$:
 - ▶ Initial construction of G_i is O(N).
 - ▶ Initial calculation of d_{iG_i} , d_{Bi} is $\mathcal{O}(N)$
 - Finding d_{\min} takes $\mathcal{O}(N)$ times, repeated $\mathcal{O}(N)$ times.
 - ▶ Updating G_i , d_{Bi} after a merge or removal takes $\mathcal{O}(N)$ (repeated $\mathcal{O}(N)$ times)
 - Updating G_i in O(N) is a nontrivial geometric affect

- This appears to have a time complexity of $\mathcal{O}(N^2)$:
 - ▶ Initial construction of G_i is O(N).
 - ▶ Initial calculation of d_{iG_i} , d_{Bi} is $\mathcal{O}(N)$
 - Finding d_{\min} takes $\mathcal{O}(N)$ times, repeated $\mathcal{O}(N)$ times.
 - ▶ Updating G_i , d_{Bi} after a merge or removal takes $\mathcal{O}(N)$ (repeated $\mathcal{O}(N)$ times)
 - Updating G_i in O(N) is a nontrivial geometric affect
- However, we can do better!

Dynamic Voronoi Diagram

Better Complexity Analysis

Better Complexity Analysis

A Voronoi diagram for NN calculations

Better Complexity Analysis

- A Voronoi diagram for NN calculations
 - ► Constructed in $\mathcal{O}(n \ln(N))$ time

Better Complexity Analysis

- A Voronoi diagram for NN calculations
 - ▶ Constructed in $\mathcal{O}(n \ln(N))$ time
 - ▶ Allows for calculation of G_i in O(N)

- A Voronoi diagram for NN calculations
 - ▶ Constructed in $\mathcal{O}(n \ln(N))$ time
 - ▶ Allows for calculation of G_i in O(N)
 - ▶ Dynamic updates in $\mathcal{O}(\ln(n))$

- A Voronoi diagram for NN calculations
 - ► Constructed in $\mathcal{O}(n \ln(N))$ time
 - ▶ Allows for calculation of G_i in O(N)
 - ▶ Dynamic updates in $\mathcal{O}(\ln(n))$
- Represent d_{iG_i} as a Red-Black tree

- A Voronoi diagram for NN calculations
 - ▶ Constructed in $\mathcal{O}(n \ln(N))$ time
 - ▶ Allows for calculation of G_i in O(N)
 - ▶ Dynamic updates in $\mathcal{O}(\ln(n))$
- Represent d_{iG_i} as a Red-Black tree
 - ► Constructed in $\mathcal{O}(N \ln(N))$ time

- A Voronoi diagram for NN calculations
 - ► Constructed in $\mathcal{O}(n \ln(N))$ time
 - ▶ Allows for calculation of G_i in O(N)
 - ▶ Dynamic updates in $\mathcal{O}(\ln(n))$
- Represent d_{iG_i} as a Red-Black tree
 - ► Constructed in $\mathcal{O}(N \ln(N))$ time
 - ▶ Dynamic updates and searching in $\mathcal{O}(\ln(N))$

- A Voronoi diagram for NN calculations
 - ► Constructed in $\mathcal{O}(n \ln(N))$ time
 - ▶ Allows for calculation of G_i in O(N)
 - ▶ Dynamic updates in $\mathcal{O}(\ln(n))$
- Represent d_{iG_i} as a Red-Black tree
 - ► Constructed in $\mathcal{O}(N \ln(N))$ time
 - ▶ Dynamic updates and searching in $\mathcal{O}(\ln(N))$
 - ► Searches/updates occur $\mathcal{O}(N)$ times; $\mathcal{O}(N \ln(N))$ operations total

- A Voronoi diagram for NN calculations
 - ► Constructed in $\mathcal{O}(n \ln(N))$ time
 - ▶ Allows for calculation of G_i in $\mathcal{O}(N)$
 - ▶ Dynamic updates in $\mathcal{O}(\ln(n))$
- Represent d_{iG_i} as a Red-Black tree
 - ► Constructed in $\mathcal{O}(N \ln(N))$ time
 - ▶ Dynamic updates and searching in $\mathcal{O}(\ln(N))$
 - ▶ Searches/updates occur $\mathcal{O}(N)$ times; $\mathcal{O}(N \ln(N))$ operations total
- Total time complexity: $\mathcal{O}(N \ln(N))$.

A Naïve Cone-Finding Algorithm

Algorithm Iterative Cone with Split-Merge

```
1: repeat
        p_t^* \leftarrow \max(\{p_{ti}\})
                                                                   ▷ seed axis
 2:
 3:
        repeat
             p_i \leftarrow \text{sum of momenta of particles within R of seed axis}
 4:
 5:
             if p_t^* == p_i then
                 Label p_t^* a protojet, remove all particles
 6:
 7:
             else
 8:
                 p_t^* \leftarrow p_i
             end if
 g.
        until The jet axis and seed axis coincide
10:
11. until No seeds remain
12: Run Split-Merge on the protojets
```

The Split-Merge Procedure

Algorithm Split-Merge

```
1: Remove all protojets with p_t < p_{t,cut}
 2: repeat
        Determine hardest protojet i
 3:
        Determine hardest protojet j such that i and j share particles
 4:
 5:
        if no such j exists then
            i is a final jet; remove particles
 6:
        else
 7:
 8:
            if p_{t,\text{shared}} < f \times p_{ti} then
                Split particles between protojets
9.
            else
10:
                Replace i and j with their merger
11:
            end if
12:
13:
        end if
14: until no protojets left
```

Complexity Analysis

■ Stable cone production

- Stable cone production
 - Process of finding a stable cone from a seed roughly $\mathcal{O}(Nn)$ where n is the average particle count in a circle of radius R

- Stable cone production
 - Process of finding a stable cone from a seed roughly $\mathcal{O}(Nn)$ where n is the average particle count in a circle of radius R
 - ▶ This is repeated $\mathcal{O}(N)$ times.

- Stable cone production
 - Process of finding a stable cone from a seed roughly $\mathcal{O}(Nn)$ where n is the average particle count in a circle of radius R
 - ▶ This is repeated $\mathcal{O}(N)$ times.
 - ► Codes MCFM and NLOJet implement this in $\mathcal{O}(N2^N)$ by iterating through all possible cones!!

- Stable cone production
 - Process of finding a stable cone from a seed roughly $\mathcal{O}(Nn)$ where n is the average particle count in a circle of radius R
 - ▶ This is repeated $\mathcal{O}(N)$ times.
 - ► Codes MCFM and NLOJet implement this in $\mathcal{O}(N2^N)$ by iterating through all possible cones!!
- Split-Merge

- Stable cone production
 - Process of finding a stable cone from a seed roughly $\mathcal{O}(Nn)$ where n is the average particle count in a circle of radius R
 - ▶ This is repeated $\mathcal{O}(N)$ times.
 - ► Codes MCFM and NLOJet implement this in $\mathcal{O}(N2^N)$ by iterating through all possible cones!!
- Split-Merge
 - ▶ Determining hardest protojet takes $\mathcal{O}(N)$

- Stable cone production
 - Process of finding a stable cone from a seed roughly $\mathcal{O}(Nn)$ where n is the average particle count in a circle of radius R
 - ▶ This is repeated $\mathcal{O}(N)$ times.
 - ► Codes MCFM and NLOJet implement this in $\mathcal{O}(N2^N)$ by iterating through all possible cones!!
- Split-Merge
 - ▶ Determining hardest protojet takes $\mathcal{O}(N)$
 - ▶ Finding hardest overlapping jet takes $\mathcal{O}(N/n)$, repeated $\mathcal{O}(N)$ times.

- Stable cone production
 - Process of finding a stable cone from a seed roughly $\mathcal{O}(Nn)$ where n is the average particle count in a circle of radius R
 - ▶ This is repeated $\mathcal{O}(N)$ times.
 - ▶ Codes MCFM and NLOJet implement this in $\mathcal{O}(N2^N)$ by iterating through all possible cones!!
- Split-Merge
 - ▶ Determining hardest protojet takes $\mathcal{O}(N)$
 - ▶ Finding hardest overlapping jet takes $\mathcal{O}(N/n)$, repeated $\mathcal{O}(N)$ times.
 - ▶ Merging takes $\mathcal{O}(Nn)$

- Stable cone production
 - Process of finding a stable cone from a seed roughly $\mathcal{O}(Nn)$ where n is the average particle count in a circle of radius R
 - ▶ This is repeated $\mathcal{O}(N)$ times.
 - ► Codes MCFM and NLOJet implement this in $\mathcal{O}(N2^N)$ by iterating through all possible cones!!
- Split-Merge
 - ▶ Determining hardest protojet takes $\mathcal{O}(N)$
 - ▶ Finding hardest overlapping jet takes $\mathcal{O}(N/n)$, repeated $\mathcal{O}(N)$ times.
 - ▶ Merging takes $\mathcal{O}(Nn)$
- Total complexity: $\mathcal{O}(N^2n)$ (can be optimized to $\mathcal{O}(N^2)$ with 2D tree data structures)

Algorithm SISCone

```
1: for particle i do
 2:
       Find all particles i within 2R of i
       if no such j exists then
 3:
           i is made a protojet
 4:
 5:
       else
           Find circles of radius R with i i on their circumference
 6:
           for each circle do
 7:
               for each permutations of edge point containment do
8:
                   Label circle as cone
9.
10:
                   Check cone stability w.r.t the edge points
               end for
11:
           end for
12.
       end if
13:
14: end for
15: Explicitly check all cones not labeled unstable for stability
```

Improved Cone-Finding

SISCone's geometric approach to seedless cone-finding.

Improved Cone-Finding

SISCone's geometric approach to seedless cone-finding.

SISCone again uses geometric insight to optimize cone finding.

Improved Cone-Finding

SISCone's geometric approach to seedless cone-finding.

- SISCone again uses geometric insight to optimize cone finding.
- Able to provably find all stable cones in $O(Nn \ln(n))$ time!

Improved Cone-Finding

SISCone's geometric approach to seedless cone-finding.

- SISCone again uses geometric insight to optimize cone finding.
- Able to provably find all stable cones in $O(Nn \ln(n))$ time!
- Seedlessness ⇒ inherent IR safety

 Jet Reconstruction algorithms are central to modern HEP experiment and theory

- Jet Reconstruction algorithms are central to modern HEP experiment and theory
- Algorithms need to be fast; algorithmic complexity quantifies this.

- Jet Reconstruction algorithms are central to modern HEP experiment and theory
- Algorithms need to be fast; algorithmic complexity quantifies this.
- Seemingly the same algorithm can be implement in ways with different complexities

- Jet Reconstruction algorithms are central to modern HEP experiment and theory
- Algorithms need to be fast; algorithmic complexity quantifies this.
- Seemingly the same algorithm can be implement in ways with different complexities
 - $\blacktriangleright \ \, \mathcal{K}_t \colon \, \mathcal{O}(N^3) \to \mathcal{O}(N \ln(N))$

- Jet Reconstruction algorithms are central to modern HEP experiment and theory
- Algorithms need to be fast; algorithmic complexity quantifies this.
- Seemingly the same algorithm can be implement in ways with different complexities
 - $\blacktriangleright \ \, \mathit{K}_{t} \colon \, \mathcal{O}(\mathit{N}^{3}) \to \mathcal{O}(\mathit{N} \, \mathsf{ln}(\mathit{N}))$
 - ► Cone Algs: $\mathcal{O}(N2^N) \to \mathcal{O}(N^3) \to \mathcal{O}(N^2 \ln(N))$

- Jet Reconstruction algorithms are central to modern HEP experiment and theory
- Algorithms need to be fast; algorithmic complexity quantifies this.
- Seemingly the same algorithm can be implement in ways with different complexities
 - $\blacktriangleright \ \, \mathit{K}_{t} \colon \, \mathcal{O}(\mathit{N}^{3}) \to \mathcal{O}(\mathit{N} \, \mathsf{ln}(\mathit{N}))$
 - ▶ Cone Algs: $\mathcal{O}(N2^N) \to \mathcal{O}(N^3) \to \mathcal{O}(N^2 \ln(N))$
- We, as physicists, should be embarrassed!

- Jet Reconstruction algorithms are central to modern HEP experiment and theory
- Algorithms need to be fast; algorithmic complexity quantifies this.
- Seemingly the same algorithm can be implement in ways with different complexities
 - $\blacktriangleright \ \, \mathcal{K}_t \colon \, \mathcal{O}(N^3) \to \mathcal{O}(N \ln(N))$
 - ► Cone Algs: $\mathcal{O}(N2^N) \to \mathcal{O}(N^3) \to \mathcal{O}(N^2 \ln(N))$
- We, as physicists, should be embarrassed!
 - ▶ (particularly by those N2^N codes...)

- Jet Reconstruction algorithms are central to modern HEP experiment and theory
- Algorithms need to be fast; algorithmic complexity quantifies this.
- Seemingly the same algorithm can be implement in ways with different complexities
 - $\blacktriangleright \ \, \mathcal{K}_t \colon \, \mathcal{O}(N^3) \to \mathcal{O}(N \ln(N))$
 - ► Cone Algs: $\mathcal{O}(N2^N) \to \mathcal{O}(N^3) \to \mathcal{O}(N^2 \ln(N))$
- We, as physicists, should be embarrassed!
 - ▶ (particularly by those N2^N codes...)
- Have a good spring break!

References

- Ryan Atkin 2015 J. Phys.: Conf. Ser. 645 012008
- G. P. Salam and G. Soyez, JHEP 0705 (2007) 086 [arXiv:0704.0292 [hep-ph]].
- M. Cacciari and G. P. Salam, arXiv:hep-ph/0512210.
- S. Fortune, in Proceedings of the second annual symposium on Computational geometry, p. 312 (1986).