Q1.

Color = Yello, Size = 2lb, Temp = Warm-blooded, Bath = Everyday						
	class	color	size	temp	bath	
P(Cat New pet)	0.343	0.122	0.25	0.921	0.154	0.0014823141
P(Dog New pet)	0.451	0.269	0.255	0.898	0.340	0.0094495238
P(Small mammal New pet)	0.02	0.250	0.286	0.600	0.167	0.0001428571
P(Reptile New pet)	0.078	0.214	0.077	0.182	0.167	0.0000389610
P(Fish New pet)	0.049	0.091	0.100	0.250	0.222	0.0000247475
P(Bird New pet)	0.029	0.111	0.250	0.667	0.286	0.0001534392
P(Other New pet)	0.029	0.111	0.125	0.333	0.286	0.0000383598
* pick bath 'More frequently than once a month' cause it's closest to Everyday bath						

From the above table, I assume that the pet is a Dog

Q2.

cats	58.4	251.3	0.232391564
dogs	76.8	251.3	0.305610824
small mammal	6.2	251.3	0.024671707
reptile	6	251.3	0.023875846
fish	76.3	251.3	0.30362117
birds	22.9	251.3	0.091126144
other	4.7	251.3	0.018702746
	251.3		

	class	color	size	temp	bath	
P(Cat New pet)	0.232391564	0.122	0.25	0.921	0.154	0.00100430696
P(Dog New pet)	0.305610824	0.269	0.255	0.898	0.340	0.00640327440
P(Small mammal New						
pet)	0.024671707	0.250	0.286	0.600	0.167	0.00017622648
P(Reptile New pet)	0.023875846	0.214	0.077	0.182	0.167	0.00001192600
P(Fish New pet)	0.30362117	0.091	0.100	0.250	0.222	0.00015334403
P(Bird New pet)	0.091126144	0.111	0.250	0.667	0.286	0.00048214891
P(Other New pet)	0.018702746	0.111	0.125	0.333	0.286	0.00002473908

Re-calculate the probability of each Class and plug in the value into the table again. It is still considered a dog.

Q3.

Color = Yello, Size = 2lb, Temp = Warm-blooded, Bath = Everyday						
	class	color	size	temp	bath	
P(Cat New pet)	0.343	0.122	1	0.921	0.154	0.0059292563
P(Dog New pet)	0.451	0.269	1	0.898	0.340	0.0370712088
P(Small mammal New pet)	0.02	0.250	1	0.600	0.167	0.0005000000
P(Reptile New pet)	0.078	0.214	1	0.182	0.167	0.0005064935
P(Fish New pet)	0.049	0.091	1	0.250	0.222	0.0002474747
P(Bird New pet)	0.029	0.111	1	0.667	0.286	0.0006137566
P(Other New pet)	0.029	0.111	1	0.333	0.286	0.0003068783
* pick bath 'More frequently than once a month' cause it's closest to Everyday bath						

I think I can just ignore the size probability and treat it like just 1 not to affect other probabilities. The result still is a Dog

Q4.

Difference: The difference between the two methods lies in the possibility of data separation. If your data is clearly separable with lines, use a hard margin. If there are some data that make finding a linear classifier impossible, it is better to use a soft margin to allow some data points to be misclassified.

Hard margin advantages: No misclassification occurs.

Soft margin advantages: It is applicable even if a linear boundary is not feasible.

Which one and which situation: Use a hard margin when your data is linearly and reliably separable. If there are data points that get in the way of linear classification, use a soft margin.

Extra.

If we start from the point x0 and add k we find that the point z0=x0+k is in the hyperplane H1 as shown on figure below.

The fact that z0 is in H1 means that

$$\mathbf{w} \cdot \mathbf{z}_0 + b = 1$$

We can replace z0 by x0+k because that is sum of the vector as we can see above figure.

$$\mathbf{w} \cdot (\mathbf{x}_0 + \mathbf{k}) + b = 1$$

We can now replace k, cause k is

$$\mathbf{k} = m\mathbf{u} = m\frac{\mathbf{w}}{\|\mathbf{w}\|}$$

Byeongchan Gwak, 501026, b.gwak@wustl.edu

$$\mathbf{w} \cdot (\mathbf{x}_0 + m \frac{\mathbf{w}}{\|\mathbf{w}\|}) + b = 1$$

We now expand the equation

$$\mathbf{w} \cdot \mathbf{x}_0 + m \frac{\mathbf{w} \cdot \mathbf{w}}{\|\mathbf{w}\|} + b = 1$$

The dot product of a vector with itself is the square of its norm so :

$$\mathbf{w} \cdot \mathbf{x}_0 + m \frac{\|\mathbf{w}\|^2}{\|\mathbf{w}\|} + b = 1$$

$$\mathbf{w} \cdot \mathbf{x}_0 + m \|\mathbf{w}\| + b = 1$$

$$\mathbf{w} \cdot \mathbf{x}_0 + b = 1 - m \|\mathbf{w}\|$$

We can substitute left side with this

$$\mathbf{w} \cdot \mathbf{x}_0 + b = -1$$

As a result, we can get

$$-1 = 1 - m\|\mathbf{w}\|$$

$$m\|\mathbf{w}\| = 2$$

$$m=rac{2}{\|\mathbf{w}\|}$$

Finally, we get m in the figure above.

If we want to maximize m, we need to minimize w value.