Web Algorithms – Web Search

Part 3: Topic-Specific PageRank

Eng. Fabio Persia, PhD

- Instead of generic popularity, can we measure popularity within a topic?
- **Goal:** Evaluate Web pages not just according to their popularity, but by how close they are to a particular topic, e.g. "sports" or "history"
- Allows search queries to be answered based on interests of the user
 - Example: Query "Trojan" wants different pages depending on whether you are interested in sports, history and computer security

Topic-Specific PageRank

- Conceptually, we use a random surfer who teleports, with say 10% probability, using the following rule:
 - Selects a category (say, one of the 16 top level ODP categories) based on a query & user - specific distribution over the categories
 - Teleports to a page uniformly at random within the chosen category
 - Sounds hard to implement: can't compute PageRank at query time!

Topic-Specific PageRank

- Offline: Compute pagerank for individual categories
 - Query independent as before
 - Each page has multiple pagerank scores one for each ODP category, with teleportation only to that category
- Online: Distribution of weights over categories computed by query context classification
 - Generate a dynamic pagerank score for each page weighted sum of category-specific pageranks

Influencing PageRank ("Personalization")

- Input:
 - Web graph W
 - influence vector v

v : (page → degree of influence)

- Output:
 - Rank vector r: (page → page importance wrt v)
- $\mathbf{r} = PR(W, \mathbf{v})$

Non-uniform Teleportation

Teleport with 10% probability to a Sports page

Interpretation of Composite Score

For a set of personalization vectors {v_i}

$$\sum_{j} [\mathbf{w}_{j} \cdot \mathsf{PR}(W, \mathbf{v}_{j})] = \mathsf{PR}(W, \sum_{j} [\mathbf{w}_{j} \cdot \mathbf{v}_{j}])$$

 Weighted sum of rank vectors itself forms a valid rank vector, because PR() is linear wrt v_i

Interpretation

10% Sports teleportation

Interpretation

10% Health teleportation

Interpretation

pr = (0.09 PR_{sports} + 0.01 PR_{health}) gives you: 9% sports teleportation, 1% health teleportation