SWP Internet-Technologien

Corona-Warn-App Scanner

Motivation

- Ist Anonymität gewährleistet in der Corona-Warn-App?
 - Welche Informationen lassen sich aus den gesendeten Signalen auslesen?
- Wie sehr wird die Warn-App genutzt?
 - Nutzung der Warn-App in bestimmten Bereichen messen
- Persönliches Interesse an
 - Technologien
 - BLE, RIOT, IoT-Devices
 - Umsetzung der Corona-Warn-App

Ziele

- Informationen sammeln / verarbeiten
 - Wie viele Warn-Apps an einem Ort
 - Abstand zwischen den Warn-Apps
- Informationen darstellen
 - als Web-Interface
 - direkte (Echtzeit-) Informationen für den Nutzer des Scanners
- Schlüsse ziehen über
 - Nutzung der Warn-App an ausgewählten Orten
 - Anonymisierung

Funktionale Anforderungen

- Scanner muss ein Signal einer Warn-App zuordnen können
- Scanner muss Ort & Zeit eines Empfangenen Signals speichern
- Scanner muss seine eigene Position herausfinden können
- Scanner muss die Entfernung zwischen gescannten Warn-Apps ermitteln können (Triangulation durch Scanner?)
- Austausch der gesammelten Informationen über die Warn-Apps
- Austausch über relative Position der Scanner
- Scanner muss mit einem Server im Internet kommunizieren können
- Eine Web-Darstellung der Informationen

Plattform Features

Nrf52840	ESP32
BLE (mit NimBLE Stack)	BLE (nicht integriert)
ARM-Toolchain	ESP-Toolchain
	WiFi

Aufbau

- Für eine Plattform entscheiden (nrf52840 vs. ESP32)
- Kommunikation mit der Warn-App etablieren
- Kommunikation zwischen den Scannern
- Kommunikation mit Web-Server
- Visualisierung

Fragen