

The Most Comprehensive Preparation App For All Exams

TRI ANGLE

Part-III

2 seriors were left

Triangles Part 3

s Triangles Part 4

1 Jan

9 - 10:30 am Triangles Pat 3

11:00 - 12:30 Tuagles Pall 9

12 Jan

11:00 - 12:30 pm Quad Pall3 1:00 - 2:30 pm Quad Pall9

K

*

Agenda : Triangles Pout 3

32min * Mid point Theorem > 32min = (onverse >) (34-36) min . 18mil + Circum centre _ \$ (28 - 30) min 5 Practice anestin -> (22-24) min

Homework ->

MID-POINT THEOREM

If we join mid-points of any 2 sides of a Δ by a line segment then that line segment will be parallel to the third side and half of it.

Given,

D is mid-point of AB. E is mid-point of AC.

Proof of Mid-point theorem:

Given, D, E are mid-point of AB & AC.

To prove: (i) $DE \mid BC$

(ii)
$$DE = \frac{1}{2}BC$$

Proof: AD: AB = 1:2

AE: AC=1:2

 Δ ADE ~ Δ ABC (SAS similarity)

 \angle ADE = \angle ABC (Corresponding angles)

DE | BC

$$m{DE} = rac{1}{2} m{BC}$$

CONVERSE OF MID-POINT THEOREM

CONGRUENCY

Two figures are said to be congruent, if they are exactly same in every aspect.

- 2 line segments are congruent?
- 2 circles are congruent?
- 2 squares are congruent?

```
when their leagth are same when their radices are some
```


 $\triangle ABC \cong \triangle DEF$

Then

Symbol of Congruency

CONDITIONS OF CONGRUENCY

```
(1) SSS (side - side - side)
(2) SAS (side - side - side)
(3) ASA (myle - side - Angle)
(4) AAS (Angle - side - side)
(5) RHS (type - Hypoterum - side)
```


SSS (Side - Side - Side)

DABC ~ DFDE

DABC = DEFD

ASA (Angle - Side - Angle)

AAS (Angle - Angle - Side)

RHS (Right - Hypotenuse - Side)

AAA & SSA does not guarantee congruency.

If D, E & F are midpoints of the sides AB, BC, CA

Area of
$$\triangle DFE = \frac{1}{4}$$
 (Area of $\triangle ABC$)

If Congruent	\rightarrow		Yes
If Similar	\rightarrow	Congruent	may or may not
If Congruent	\rightarrow	Area same	400
If Area same	\rightarrow	Congruent	may or may not
Similar + Area same	\rightarrow	Congruent	Yes

Eg14. AD is perpendicular to the internal bisector of ∠ABC of ΔABC. DE is drawn through D parallel to BC to meet AC at E. If the length of AC is 12 cm, then the length of AE (in cm.) is:

Ans. (b)

Centres of D

1 outhocentre

2-3 Chamanter

3 - Incentre

y -s centroid

ORTHOCENTRE

Def: Meeting point of all altitudes

AD, BE and CF are altitudes of triangle.

O → Orthocentre

$$\angle A + \angle BOC = 180^{\circ}$$

Reason??

$$AO \cdot OD = BO \cdot OE = CO \cdot OF$$

Reason??

.

POSITION OF ORTHOCENTRE

1. Acute Angle Triangle

lies inside the D

2. Right Angle Triangle

3. Obtuse Angle Triangle

In a ΔABC , O is the orthocentre. Which point is the orthocentre of ΔBOC ?

•

Sum of all altitudes of a triangle is less than perimeter of triangle. किसी त्रिभुज के सभी शीर्षलंबों का योग त्रिभुज के परिमाप से कम होता है।

CIRCUM CENTRE

Def: Meeting point of all perpendicular bisector.

Any point on perpendicular bisector of AB, is equidistant from the end points of line segment AB.

Circum centre is equidistant from the vertices of triangle.

CIRCUM RADIUS (R) =
$$\frac{abc}{4\Delta}$$

a.b.c R= 4 Area of D

for egys

S.K.8/

=> Side

for Right angle 1

18.8. H_ - Hyp 24. 1 8.8 - 12

POSITION OF CIRCUM CENTRE

(1) Acute angle $\Delta \rightarrow$ lies inside the Δ

(2) Right angle $\Delta \rightarrow \text{mid-point of hypotenuse}$

(3) Obtuse angle $\Delta \rightarrow$ outside the Δ

In all acute angle $\triangle ABC$, if the O is the circumcentre then $\angle BOC = 2 \angle A$

.

Eg. If O be the circumcentre of a triangle PQR and \angle QOR =110, \angle OPR = 25, the measure of \angle PRQ is:

PRACTICE QUESTIONS

Q1. The area of two similar triangles are in the ratio 9: 16. Their corresponding sides will be in the ratio:

(a) 3:5

(b) 3:4

(c) 4:5

(d) 4:3

Q2. If the three side of one triangle are equal to the corresponding sides of the other triangle then the triangle are:

(a) Congruent

(b) Similar

(c) Congruent and similar

(d) None of these

Ans. (c)

- **Q3.** Two line segments PQ and RS intersect at X in such a way that XP = XR. If \angle PSX = \angle RQX, then one must have.
 - (a) PR = QS
 - (b) PS = RQ
 - (c) $\angle XSQ = \angle XRP$
 - (d) ar $(\Delta PXR) = ar(\Delta QXS)$

Q4. In \triangle ABC, points D and E are on the sides, AB and AC respectively such that AD is 80% of AB and EC is 20% of AC. What percentage of the area of the triangle \triangle ABC does that of \triangle ADE form?

(a) 32%

(b) 40%

(c) 64%

(d) 80%

Ans. (c)

Q5. In \triangle ABC, D and E are points on AB and AC respectively such that DE || BC. If area of \triangle ABC = 50 cm² and AD : DB = 2 : 3 then area of \triangle BDE is :

(a) $8 \, \mathrm{cm}^2$

(b) 12 cm^2

(c) 20 cm^2

(d) 30 cm²

D and E are two points on the sides AC and BC respectively of AABC such that DE = 18 cm, CE = 5 cm and \angle DEC = 90°. If tan \angle ABC = 3.6, then

AC: CD

C: 2CE

(c) 2BC : CE

(b) 2CE : BC

(d) CE: 2BC

$$\Delta DEC \quad text C = \frac{18}{5} = \frac{34}{5}$$

$$\Delta AMC \quad DEIIAM$$

$$CD = 2CE$$

$$CA \quad 2CM$$

$$CD = 2CE$$

$$CD = 2CE$$

Ans. (a)

ABC is a right angled triangle, right angled at C and p is the length of the Q7. perpendicular from C to AB. If a, b and c are the length of the sides BC, CA and AB respectively, then

(a)
$$\frac{1}{p^2} = \frac{1}{b^2} - \frac{1}{a^2}$$
 (b) $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$

(b)
$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$$

(c)
$$\frac{1}{p^2} = \frac{1}{a^2} = -\frac{1}{b^2}$$
 (d) $\frac{1}{p^2} = \frac{1}{a^2} - \frac{1}{b^2}$

(d)
$$\frac{1}{p^2} = \frac{1}{a^2} - \frac{1}{b^2}$$

Q8. In the given figure, M is an point on AB such that AM : MB = 4 : 3, MN is parallel to AC and ND is parallel to CM. In \triangle AXC, \angle AXC = 90° and in \triangle MNY,

∠MYN = 90°. The length of NY is 6 cm. What is ratio AM: MD?

ABON NA BMC

Ans. (c)

Q9. In a right angled $\triangle ABC$, $\angle ABC = 90^\circ$, BN is perpendicular to AC, AB = 6 cm, AC = 10 cm. Then AN : NC is-

(a) 3:4

(b) 9:16

(c) 3:16

(d) 1:4

In the given figure, PQR is a triangle in which, PQ = 24 cm, PR = 12 cm and altitude PS = 8 cm. If PT is the diameter of the circum-circle, then what is the length (in cm) of circum-radius?

(a) 15

(c) 20

(b) 18

(d) 21

Q11. D is a point on the side BC of a triangle ABC such that AD \perp BC. E is a point on AD for which AE : ED = 5 : 1. If \angle BAD = 30° and tan(\angle ACB) = 6 tan (\angle DBE), then \angle ACB=

(a) 15°

(b) 60°

(c) 45°

(d) 30°

Q13. In a triangle ABC, \angle B = \angle C = 76°. D and E are two points on side AB and AC such that \angle BCD = 52° and \angle CBE = 28°. Find the \angle CDE = ?

(a) 9°

(b) 12°

(c) 8°

(d) 14°

Ans. (d)

Q14. In $\triangle PQR$ three point K, L and M are on side PQ, PR and QR respectively such that QM = KM and MR = LM. If $\angle QPR$ = 50°. Find $\angle KML$ = ?

(a) 150°

(b) 80°

(c) 100°

(d) 50°

Q15. In the figure shown, PQR is an isosceles triangle with PQ = PR, S is a point on QR such that PS = PT and \angle QPS = 30°, then find value of \angle RST.

(a) 15°

(b) 45°

 $(c) 30^{\circ}$

(d) 20°

Ans. (a)

Q16. The sides of a triangle are in geometric progression with common ratio r < 1. If the triangle is a right angled triangle the square of common ratio is given by:

(a)
$$\frac{\sqrt{5}+1}{2}$$

(b)
$$\frac{\sqrt{5}-1}{2}$$
 (c) $\frac{\sqrt{3}+1}{2}$

(c)
$$\frac{\sqrt{3}+1}{2}$$

d)
$$\frac{\sqrt{3}-1}{2}$$

An isosceles triangle ABC is right angled at B. D is a point inside the triangle ABC. P and Q are the feet of the perpendiculars drawn from D on the side AB and AC respectively of \triangle ABC. If AP = a cm, AQ = b cm and \angle BAD = 15°, sin 75° = ?

(a)
$$\frac{2b}{\sqrt{3}a}$$

(b)
$$\frac{a}{2b}$$

(c)
$$\frac{\sqrt{3}a}{2b}$$

d)
$$\frac{2a}{\sqrt{3}b}$$

Ans. (c)

Q18. In a \triangle ABC, AB = AC and BA is produced to D such that AC = AD, then the \angle BCD is -

(a) 100°

(b) 60°

 $(c) 80^{\circ}$

(d) 90°

Ans. (d)

DOWNLOAD NOW

