

Approximate Message Passing for elliptic random matrices

Gaspard - Monte of the dinformation

M-Y. Gueddari⁽¹⁾, W. Hachem⁽¹⁾, J. Najim⁽¹⁾

¹CNRS and Université Gustave Eiffel, France

5 Bd Descartes, 77420 Champs-sur-Marne

MOTIVATION: FROM THEORETICAL ECOLOGY

• Model:

The interactions between species in an ecological environment can be modeled using Lotka Volterra differential equations.

$$\begin{cases} \dot{\boldsymbol{x}}(t) = \boldsymbol{x}(t) \odot \left(\boldsymbol{r} - \boldsymbol{x}(t) + \frac{1}{\alpha \sqrt{n}} A \boldsymbol{x}(t) \right) \\ \boldsymbol{x}(t) \geq 0, \quad \forall t \end{cases}$$

 $\rightarrow A_{i,j}$ is the effect of species *i* on species *j*.

• Goal: We are interested in the equilibrium point x^* and its statistical properties (distribution, number of positive components, etc).

$$\boldsymbol{x}^* \odot \left(\boldsymbol{r} - \left(I_n - \frac{A}{\alpha \sqrt{n}} \right) \boldsymbol{x}^* \right) = 0$$
 (1)

• **Specs**: The interaction matrix A is a large random matrix such that the interactions $A_{i,j}$ and $A_{j,i}$ are correlated $(\rho \in [-,1,1])$. This model is very popular in theoretical ecology.

LCP

In addition to equation 1, the equilibrium x^* is taken to be Lyapunov stable which adds another constraint for x^* . Hence:

$$\begin{cases} \boldsymbol{x}^* \succcurlyeq 0, \\ \boldsymbol{x}^* \odot \left(\boldsymbol{r} - \left(I_n - \frac{A}{\alpha \sqrt{n}} \right) \boldsymbol{x}^* \right) = 0, \\ \boldsymbol{r} - \left(I_n - \frac{A}{\alpha \sqrt{n}} \right) \boldsymbol{x}^* \preccurlyeq 0 \end{cases}$$

Consequence: x^* is a solution to $LCP\left(I_n - \frac{A}{\alpha\sqrt{n}}, -r\right)$ which is a classical non-linear optimization problem.

OBJECTIVES

• Goal: The analysis of the asymptotic behavior of the empirical distribution

$$\mu^{x^*} = \frac{1}{n} \sum_{k=1}^n \delta_{x_k^*} \text{ when } n \text{ is large.}$$

• **Tool**: Approximate Message Passing (AMP) can solve this problem by approximating of the measure μ^{x^*} and by providing rich information of its prop-

erties.

- **Procedure**: For a well-chosen activation function, the iterates x^k of AMP converge to a solution of LCP.
- Our contribution: AMP is known for GOE matrices. We generalize AMP convergence results for a more general type of matrices: elliptic matrices.

ELLIPTIC MATRICES

$$A \sim Ellip(n, \rho)$$
 if $A_{i,j} \sim \mathcal{N}(0, 1)$, $A_{i,i} \sim \mathcal{N}(0, 1 + \rho)$ and $cov(A_{i,j}, A_{j,i}) = \rho$.

The asymptotic spectrum of A is the uniform law over the ellipse of semi-major axis = $1 + \rho$ and semi-minor axis= $1 - \rho$.

AMP FOR GOE MATRICES

Approximate Message Passing algorithms for GOE matrices:

$$\boldsymbol{x^{k+1}} = \frac{1}{\sqrt{n}} A f_k \left(\boldsymbol{x^k} \right) - \overline{f_t'(\boldsymbol{x^k})}^n f_{k-1} \left(\boldsymbol{x^{k-1}} \right)$$

Result: Under some mild initial conditions, we have

$$\mu^{(\boldsymbol{x^1},\cdots,\boldsymbol{x^p})} \xrightarrow[n\to\infty]{W_2} \mathcal{L}(Z^1,\cdots,Z^p) \text{ a.s.}$$

Where (Z^1, \dots, Z^p) is a centered Gaussian vector whose co-variance matrix is given by Density Evolution equations.

Bolthausen's conditioning technique

matrix over $span(q^0, \dots, q^{k-1})$ and $\mathcal{F}_k =$

 $\stackrel{\mathcal{L}}{=} |_{\mathcal{F}_k} \frac{1}{\sqrt{n}} \sum_{l=1}^k \alpha_l \boldsymbol{x^l} + o(1) + \left(\tilde{\boldsymbol{A}} - \rho P_k \tilde{\boldsymbol{A}}^{\top} \right) P_k^{\perp}$

Where green is \mathcal{F}_k measurable and red is in-

Let $q^k = f_k(x^k)$, P_k is the projection

ELEMENTS OF PROOF

 $\boldsymbol{x}^{k+1} = \frac{1}{\sqrt{n}} A f_k \left(\boldsymbol{x}^k \right) - \rho b_k \boldsymbol{q}^{k-1}$

 $\sigma\left(\boldsymbol{x^0},\cdots,\boldsymbol{x^k}\right)$. Then

FIXED POINT EQUATIONS

Let $\rho \in [-1,1]$ and $Z \sim \mathcal{N}(0,1)$, the system of unknown $(\delta, \sigma^2, \gamma)$ has a unique solution if $\alpha > 2$.

$$\begin{cases} \alpha &= \delta + \rho \frac{\gamma}{\delta} \\ \sigma^2 &= \frac{1}{\delta^2} \mathbb{E} \left(\sigma Z + r \right)_+^2 \\ \gamma &= \mathbb{P} \left[\sigma Z + r > 0 \right] \end{cases}$$

Key ideas:

- Using the AMP scheme with specific activation functions $f_k(x) = \frac{(x+r_k)_+}{\delta}$, the iterates x^k and x^{k+1} become more correlated when k grows.
- Density evolution equations explicitly describe the variances which lead to a fixed point equation for σ^2 .

Result:

$$\mu^{x^*} \xrightarrow[n \to \infty]{W_2} \mathcal{L}\left(\left(1 + \rho \frac{\gamma}{\delta^2}\right) (\sigma Z + r)_+\right) \text{ a.s.}$$

Remark. For k large enough, $x^k \approx x^*$.

AMP FOR ELLIPTIC MATRICES

For the elliptic matrix model: AMP iterations will be defined as:

$$\boldsymbol{x^{k+1}} = \frac{1}{\sqrt{n}} A f_k \left(\boldsymbol{x^k} \right) - \rho \overline{f_k'(\boldsymbol{x^k})}^n f_{k-1} \left(\boldsymbol{x^{k-1}} \right)$$

The "Onsager term" $\rho \overline{f'_k(x^k)}^n f_{k-1}(x^{k-1})$ is an interpolation between the GOE case : $\rho = 1$ and the i.i.d. case : $\rho = 0$ (where the Onsager term disappear).

PERSPECTIVES

- Prove a universality result of the convergence of AMP (elliptic model), i.e. when the entries are not necessarily gaussian.
- Generalize the AMP scheme to matrices with variance profile, i.e. models of the form $M=V\odot A$, where $A\sim Ellip(n,\rho)$ and V is a deterministic matrix.

CONCLUSION

In this work,

- ullet we analysed the statistical properties of the equilibrium $oldsymbol{x}^*.$
- we developed of a new AMP algorithm.

REFERENCES

dependant from \mathcal{F}_k .

- [1] Oliver Y. Feng and Ramji Venkataramanan and Cynthia Rush and Richard J. Samworth. A unifying tutorial on Approximate Message Passing, 2021.
- [2] M. Bayati and A. Montanari. The dynamics of message passing on dense graphs,
- with applications to compressed sensing, 2011.
- [3] Akjouj, I. and Hachem, W. and Maïda, M. and Najim, J. Equilibria of large random Lotka-Volterra systems with vanishing species: a mathematical approach, 2023.