

TEST REPORT

Part 15 Subpart B&C 15.247

Equipment Under Test Galaxy Pen(Bluetooth)

Model Name IPBT-100-01, IPBT-100-02(Family model)

FCC ID ZGBIPBT-100-01

Applicant PENANDFREE Co., Ltd

Manufacturer PENANDFREE Co., Ltd

Date of test(s) $2011.08.05 \sim 2011.08.18$

Date of issue 2011.08.18

Issued to

PENANDFREE Co., Ltd

#801, Keumkang Hitech valley 2nd, 138-1, Sangdaewon-dong, Jungwon-gu, Seongnam-si, Gyeonggi-do, Korea

Issued by

KES Co., Ltd.

C3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea

477-6, Hageo-ri, Yeoju-eup, Yeoju-gun, Gyeonggi-do, 469-803, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by:
Mh	2
Kwang-Yeol Choo	Gyu-cheol Shin
Test engineer	Technical manager

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample. Page: 1 of 36

Report Number TK-FR11049

Revision history

Revision	Date of issue	Test report No.	Description
-	2011.08.18	TK-FR11049	Initial

TABLE OF CONTENTS

1.0		General product description	4
1.1		General product description Test frequency	4
1.2		Information about family model	
1.3		Device modifications	4
1.4		Test facility	5
1.5		Laboratory accreditations and listings	5
2.0		Summary of tests	6
2.1		Technical characteristic test	7
	2.1.1		7
	2.1.2	Number of hopping frequency	9
	2.1.3		11
	2.1.4		
	2.1.5		
	2.1.6		
	2.1.7	Tradition of all one of the contract of the co	26
	2.1.8	AC conducted emissions	31
App	endix	A – Test equipment used for test	34
Test	setup	photo and configuration	35

1.0 General product description

Equipment under test	Galaxy Pen(Bluetooth)	
Model name	IPBT-100-01, IPBT-100-02(Family model)	
Serial number	Prototype	
Frequency Range	2 402 MHz ~ 2 480 MHz	
Modulation technique	odulation technique GFSK	
Number of channels	Number of channels 79	
Antenna type & gain Chip Antenna(3.1dBi)		
Power source	3V DC	

1.1 Test frequency

	Low channel	Middle channel	High channel
Frequency (Mb)	2 402	2 441	2 480

1.2 Information about family model

Original model(IPBT-100-01) has family model(IPBT-100-02) according to the purpose and the technology of the product is fundamentally(Hardware & Software) the same.

1.3 Device modifications

N/A

1.4 Test facility

C3701 Dongil Techno Town, 889-1, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-716, Korea 477-6, Hageo-ri, Yeoju-eup, Yeoju-gun, Gyeonggi-do, 469-803, Korea

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.5 Laboratory accreditations and listings

Country	Agency	Scope of accreditation	Logo
USA	FCC	3 & 10 meter Open Area Test Sites and one conducted site to perform FCC Part 15/18 measurements.	FC 343818
KOREA	KCC	EMI (10 meter Open Area Test Site and two conducted sites) Radio (3 & 10 meter Open Area Test Sites and one conducted site)	KR0100
Canada	IC	3 & 10 meter Open Area Test Sites and one conducted site	4769B-1

2.0 Summary of tests

Section in FCC Part 15	Parameter	Status	
15.247(a)(1)	Frequency separation	С	
15.247(a)(1)(iii)	Number of hopping frequency	С	
15.247(a)(1)	20 dB bandwidth	С	
15.247(a)(1)(iii)	Time of occupancy(Dwell time)	С	
15.247(b)(1)	Maximum peak output power	С	
15.247(d)	Conducted spurious emission & band edge	С	
15.247(d)	Radiated spurious emission & band edge	С	
15.207	AC conducted emission	С	
Note 1: C=Complies	NC=Not complies NT=Not tested NA=Not applicable		

2.1 Technical characteristic test

2.1.1 Frequency separation

Test setup

Test procedure

- 1. The EUT must have its hopping function enabled.
- 2. Use the following spectrum analyzer setting

Span = 3 M/z (wide enough to capture the peaks of two adjacent channels)

RBW = 30 kHz (\geq 1% of the span)

 $VBW = 30 \text{ kHz } (\geq RBW)$

Sweep = auto

Detector function = peak

Trace = max hold

3. All the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Limit

15.247(a)(1) Frequency hopping system operating in 2 400 \sim 2 483.5 Mb. Band may have hopping channel carrier frequencies that are separated by 25 kbz or two-third of 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 7 of 36

www.kes.co.kr

Test results

Operation mode	Frequency (Mb)	Adjacent hopping channel separation (kHz)	Two-third of 20 dB bandwidth (kHz)	Minimum bandwidth (虓)
GFSK	2 441	1 000	555	25

2.1.2 Number of hopping frequency

Test setup

Test procedure

- 1. The EUT must have its hopping function enabled.
- 2. Use the following spectrum analyzer setting

Frequency range: 2 400 MHz \sim 2 441.5 MHz, 2 441.5 MHz \sim 2 483.5 MHz

Span = the frequency band of operation

RBW = 300 kHz (\geq 1% of the span)

 $VBW = 300 \text{ kHz } (\geq RBW)$

Sweep = auto

Detector function = peak

Trace = max hold

3. All the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Limit

15.247(a)(1)(iii) For frequency hopping system operating in the 2 400 - 2483.5 Mz bands shall use at least 15 hopping frequencies.

Test results

Operation mode Number of Hopping Frequency		Limit
GFSK	79	≥ 15

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 9 of 36

www.kes.co.kr

A. 2 400 MHz ~ 2 441.5 MHz

B. 2 441.5 MHz ~ 2 483.5 MHz

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 10 of 36

www.kes.co.kr

2.1.3 20 dB bandwidth

Test setup

Test procedure

1. Use the following spectrum analyzer setting

Center frequency: Lowest, middle and highest channels

Span = 3 Mb (Approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel)

RBW = 30 kHz (\geq 1% of the span)

 $VBW = 30 \text{ kHz } (\geq RBW)$

Sweep = auto

Detector function = peak

Trace = max hold

2. The EUT should be transmitting at its maximum data rate. Allow the trance to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down on side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level.

Limit

Not applicable

Test results

Operation mode	Frequency(Mz)	20 dB bandwidth(Mz)
	2 402	0.833
GFSK	2 441	0.833
	2 480	0.833

A. Low channel

B. Middle channel

C. High channel

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 13 of 36

www.kes.co.kr

2.1.4 Time of occupancy (Dwell time)

Test setup

Test procedure

1. Use the following spectrum analyzer setting

Center frequency: 2 441 Mbz

Span = Zero span, centered on a hopping channel

RBW = 1 Mz

 $VBW = 1 \text{ M/z } (\geq RBW)$

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

- 2. If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., date rate, modulation format, etc.), repeat this test for each variation.
- 3. The Bluetooth has 3 type of payload DH1, DH3, DH5. The hopping rate is 1 600 per second.

Limit

15.247(a)(1)(iii) For frequency hopping system operating in the 2 $400 \sim 2$ 483.5 Mz band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

A period time = $0.4(s) \times 79 = 31.6(s)$

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 14 of 36

www.kes.co.kr

Test results

Time of occupancy on the TX channel in 31.6 sec

= time domain slot length \times (hop rate \div number of hop per channel) \times 31.6

Operation mode: GFSK

Packet type	Frequency (Mbz)	Dwell Time (ms)	Time of occupancy on the Tx channel in 31.6 sec (ms)	Limit for time of occupancy on the Tx channel in 31.6 sec (ms)
DH1	2 441	0.398	127.36	400
DH3	2 441	1.652	264.32	400
DH5	2 441	2.898	309.12	400

***** Remark:

DH1: Dwell time (ms) \times [(1 600 \div 2) \div 79] \times 31.6(s) = Time of occupancy (ms)

DH3: Dwell time (ms) \times [(1 600 \div 4) \div 79] \times 31.6(s) = Time of occupancy (ms)

DH5: Dwell time (ms) \times [(1 600 \div 6) \div 79] \times 31.6(s) = Time of occupancy (ms)

A. Packet type: DH1

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 15 of 36

www.kes.co.kr

B. Packet type: DH3

C. Packet type: DH5

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 16 of 36

www.kes.co.kr

2.1.5 Maximum peak power output power

Test setup

Test procedure

1. Use the following spectrum analyzer setting

Center frequency: Lowest, middle and highest channels

Span = 5 Mz (Approximately 5 times the 20 dB bandwidth, centered on a hopping channel)

RBW = 1 Mb (the 20 dB bandwidth of the emission being measured)

VBW = 1 MHz ($\geq RBW$)

Sweep = auto

Detector function = peak

Trace = max hold

2. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Limit

According to \$15.247(b)(3), for systems using digital modulation in the $902 \sim 928$ MHz, $2400 \sim 2483.5$ MHz, and $5725 \sim 5850$ MHz band: 1 Watt.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 17 of 36

www.kes.co.kr

Test results

Operation mode	Frequency(M z)	Output power (dBm)	Limit (dBm)
	2 402	-0.48	30
GFSK	2 441	-0.42	30
	2 480	-0.02	30

A. Low channel

B. Middle channel

C. High channel

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 19 of 36

www.kes.co.kr

2.1.6 Conducted spurious emission & band edge

Test setup

Test procedure for band edge

1. Use the following spectrum analyzer setting

Center frequency: Lowest, middle and highest channels

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.

RBW = 100 kHz

 $VBW = 100 \text{ kHz } (\geq RBW)$

Sweep = auto

Detector function = peak

Trace = max hold

2. Allow the trace to stabilize. Set the marker on the emission at the band edge, or on the highest modulation on product outside of the band, if this level is greater than that at the band edge.

Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission

Test procedure for spurious emission

1. Use the following spectrum analyzer setting

Center frequency: Lowest, middle and highest channels

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions(e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonics.

RBW = 100 kHz

 $VBW = 100 \text{ kHz } (\geq RBW)$

Sweep = auto

Detector function = peak

Trace = max hold

2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 20 of 36

www.kes.co.kr

Limit

According to 15.247(d), in any 100~kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20~dB below that in the 100~kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement , provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section , the attenuation required under this paragraph shall be 30~dB instead of 20~dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))

Test results

A. Low channel

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 22 of 36

www.kes.co.kr

B. Middle channel

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 23 of 36

www.kes.co.kr

C. High channel

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 24 of 36

www.kes.co.kr

D. Band edge (Hopping mode)

2.1.7 Radiated spurious emission & band edge

Test location

Testing was performed at a test distance of 3 meter Open Area Test Site

Test procedures

The height of the measuring antenna was varied between 1 to 4 m and the table was rotated a full revolution in order to obtain maximum values of the electric field intensity.

The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report.

The spectrum analyzer is set to:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer 120 kHz for Peak detection (PK) or Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 Gb.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 Mbz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 Gbz.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mb to 1 Gb emissions.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 26 of 36

www.kes.co.kr

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (Mb)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
30 ~ 88	3	40.0	100
88 ~ 216	3	43.5	150
216 ~ 960	3	46.0	200
Above 960	3	54.0	500

Test results (Below 1 000 Mb)

The frequency spectrum from 30 MHz to 1 000 MHz was investigated. Emission levels are not reported much lower than the limits by over 20 dB.

Radiated (emissions	Ant.	Correction factors		Total	Liı	mit
Frequency (MHz)	Reading (dBµV)	Pol.	Ant. factor (dB/m)	Cable (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
176.0	9.01	Н	13.62	2.50	25.13	43.5	18.37
196.5	10.77	Н	11.18	2.67	24.62	43.5	18.88
326.3	9.42	Н	14.33	3.56	27.31	46	18.69
436.0	8.07	V	16.60	4.22	28.89	46	17.11

***** Remark

- 1. All spurious emission at channels are almost the same below 1 % so that middle channel was chosen at representative in final test.
- 2. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 3. Detector mode: Quasi peak
- 4. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

Test results (Above 1 000 Mb)

A. Low channel

Radiated emissions		Ant.	Correction factors		Total	Limit		
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2 390	50.49	Peak	Н	28.31	-38.02	40.78	74.00	33.22
2 390	51.04	Peak	V	28.31	-38.02	41.33	74.00	32.67
4 804	55.81	Peak	V	33.91	-34.11	55.61	74.00	18.39
4 804	44.13	Average	V	33.91	-34.11	43.93	54.00	10.07
4 804	58.17	Peak	Н	33.91	-34.11	57.97	74.00	16.03
4 804	43.58	Average	Н	33.91	-34.11	43.38	54.00	10.62

B. Middle channel

Radiated emissions		Ant.	Correction factors		Total	Limit		
Frequency (MHz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
4 882	59.25	Peak	Н	34.16	-33.92	59.49	74.00	14.51
4 882	45.81	Average	Н	34.16	-33.92	46.05	54.00	7.95
4 882	59.23	Peak	V	34.16	-33.92	59.47	74.00	14.53
4 882	46.01	Average	V	34.16	-33.92	46.25	54.00	7.75

C. High channel

Radiated emissions		Ant.	Correction	Correction factors		Limit		
Frequency (Mbz)	Reading (dBµV)	Detector mode	Pol.	Ant. factor (dB/m)	Amp + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
2 483.5	50.11	Peak	Н	28.50	-37.81	40.80	74.00	33.20
2 483.5	50.22	Peak	V	28.50	-37.81	40.91	74.00	33.09
4 960	57.17	Peak	V	34.42	-33.73	57.86	74.00	16.14
4 960	45.10	Average	V	34.42	-33.73	45.79	54.00	8.21
4 960	57.43	Peak	Н	34.42	-33.73	58.12	74.00	15.88
4 960	45.17	Average	Н	34.42	-33.73	45.86	54.00	8.14

***** Remark

- 1. "*" means the restricted band.
- 3. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/ average detector mode.
- 4. Average test would be performed if the peak result were greater than the average limit.
- 5. Actual = Reading + Ant. factor + Amp + CL (Cable loss)
- 6. To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes.

2.1.8 AC conducted emissions

Frequency range of measurement

150 kHz to 30 MHz

Instrument settingsIF Band Width: 9 kHz

Test procedures

The EUT was placed on a non-metallic table 0.8m above the metallic, grounded floor and 0.4m from the reference ground plane wall. The distance to other metallic surfaces was at least 0.8m. Amplitude measurements were performed with a quasi-peak detector and an average detector.

Limit

15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

Engage on or of Emission (MII-)	Conducted limit (dBuV/m)				
Frequency of Emission (MHz)	Quasi-peak	Average			
0.15 - 0.50	66 - 56*	56 - 46*			
0.50 - 5.00	56	46			
5.00 – 30.0	60	50			

***** Remark

Decreases with the logarithm of the frequency.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 31 of 36

www.kes.co.kr

Test results

Frequency	Corre	ection	Phase	Quasi peak				Average	
(MHz)	LISN	Cable Loss	Hot/ Neutral	Reading	Result	Limit	Reading	Result	Limit
0.196	9.772	0.104	N	41.354	51.230	64	29.684	39.560	54
0.261	9.764	0.100	Н	36.516	46.380	61	28.446	38.310	51
0.262	9.764	0.100	N	33.366	43.230	61	26.426	36.290	51
0.327	9.760	0.100	Н	31.140	41.000	60	22.050	31.910	50
0.328	9.757	0.100	N	29.553	39.410	60	22.123	31.980	50
0.459	9.750	0.100	N	26.940	36.790	57	23.830	33.680	47
0.522	9.760	0.100	Н	29.290	39.150	56	27.240	37.100	46
0.526	9.750	0.100	N	27.740	37.590	56	25.810	35.660	46
0.587	9.760	0.100	Н	28.290	38.150	56	25.770	35.630	46
1.839	9.760	0.100	N	25.900	35.760	56	24.560	34.420	46
2.692	9.774	0.100	N	26.896	36.770	56	25.846	35.720	46
3.020	9.780	0.100	N	26.840	36.720	56	25.190	35.070	46
5.577	9.796	0.100	N	24.714	34.610	60	22.084	31.980	50
5.635	9.796	0.100	N	21.934	31.830	60	4.804	14.700	50
5.702	9.797	0.100	N	17.023	26.920	60	4.563	14.460	50
5.888	9.809	0.100	Н	18.131	28.040	60	4.551	14.460	50
14.010	9.850	0.190	Н	12.350	22.390	60	9.380	19.420	50
22.695	9.990	0.100	Н	15.490	25.580	60	12.220	22.310	50

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 33 of 36

www.kes.co.kr

Appendix A – Test equipment used for test

Equipment	Manufacturer	Model	Calibration due.
Spectrum Analyzer	R&S	FSV30	2012-01-07
Trilog-Broadband Antenna	SCHWARZBECK	VULB 9168	2013-03-18
Horn Antenna	nna A.H. System SAS-571		2013-03-22
High Pass Filter	Figh Pass Filter Wainwright Instrument WHJS3000-10TT		2012-01-07
Attenuator	HP	8491B	2012-05-04
Preamplifier	A.H.	PAM-0118	2012-05-04
EMI Test Receiver	R&S	ESHS10	2012-05-09
LISN	R&S	ENV216	2012-02-16

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
Notebook	Samsung electronics	R159	ZKPA93AS900167D
Notebook	Fujitsu	A6020	FPC03209CZ

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 34 of 36

www.kes.co.kr

Test setup photo and configuration

Radiated field emissions

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 35 of 36

www.kes.co.kr

AC conducted emission

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. This document may be altered or revised by KES Co., Ltd. The test results in the report only apply to the tested sample.

Page: 36 of 36

www.kes.co.kr