Saiku – taking OLAP databases into 21st century

Tomasz Nurkiewicz

nurkiewicz.com | @tnurkiewicz

Slides: bit.ly/33degree

What is Saiku? DEMO

Core concepts

- OLAP
- Fact
- Dimension
- Hierarchy

Example facts

- Sold product
- Tweet/forum post/shared photo
- Website hit
- Incoming text message
- ...you name it

Dimension

"Properties of facts"

- When?
- What?
- Where?
- Who?
- How?

Example dimensions Access log

- Timestamp
- IP
- URL resource
- HTTP response code

Hierarchy Multi-level aggregation

Example: *location* hierarchy

- (AII)
- Continent
- Country
- State
- City

Measures

- Quantitative properties
- Aggregate matching facts over them
- Count/Sum/Average/Min/Max

Example measures

- Load time (page hit fact)
- Total price (sale fact)
- Age of customer

Charting - DEMO

Exporting - DEMO

Drill down - DEMO

Ignored concepts

- Hypercube
- Mondrian
- MDX

Your own cube

Star schema

ETL

ETL - challenges

- Missing or incomplete data
- Heuristics
- Incremental, periodic updates
- Various data sources

Schema file

```
<Schema name="Twitter">
  <Cube name="Tweets" defaultMeasure="Count">
    <Table name="tweet">
    <DimensionUsage name="Time" source="Time"</pre>
foreignKey="time_id"/>
    <Dimension name="Location" foreignKey="location_id">
      <Hierarchy hasAll="true" allMemberName="All</pre>
locations">
        <Table name="location"/>
        <Level name="Continent" column="continent"/>
        <Level name="Country" column="country"/>
        <Level name="City" column="city"/>
      </Hierarchy>
    </Dimension>
    <!-- -->
</Schema>
```

Schema Workbench

Source: www.stratebi.com/cursos/olap-mdx

Security - users

- Standard user/password
- Roles
- Spring Security customizable

Security - data

- By role
- Restrict what can be seen
- Top/bottom limit

Performance

Big data, before it was cool

- Indexes on foreign keys
- Aggregate tables

Without Aggregate table

SELECT COUNT(id)
FROM tweet NATURAL JOIN locations
GROUP BY locations.continent

With aggregate table

INSERT INTO agg (cnt, 1.city, 1.country, 1.continent)
SELECT COUNT(t.id) AS cnt, city, country, continent
FROM tweet t NATURAL JOIN locations 1
GROUP BY 1.city

Usages:

SELECT SUM(agg.count)
FROM agg
GROUP BY locations.continent

Pentaho Aggregation Designer

Source: infocenter.pentaho.com/help/index.jsp

Deployment

- mondrian.jar engine
- saiku.war RESTful web services
- •ui.war-JSfront-end

Disadvantages

- Horizontal scalability?
- Stuck with SQL databases
- Complex schema definition (XML)
- Aggregate tables are hard

Thank you!

Slides: nurkiewicz.github.io/talks/2014/33degree