Week 10: Tutorial Handout on series

- (Stirling's formula) We have $n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$ (i.e. $\lim_{n\to\infty} \frac{n!}{\sqrt{2\pi n} (\frac{n}{e})^n} = 1$).
- A series converges uniformly when $\left\|\sum^{N} f_{k} \sum f_{k}\right\|_{\infty} = \left\|\sum_{k \geq N} f_{k}\right\|_{\infty} \to 0$.
- (Weierstrass M-test) If $||f_k||_{\infty} \leq M_k$ and $\sum M_k < \infty$, then $\sum f_k(x)$ converges uniformly.
- (Hadamard's theorem) For power series $\sum a_k x^k$ if $\limsup_{k\to\infty} |a_k|^{1/k} = \frac{1}{R}$, then the radius of convergence is R. If $\lim_{k\to\infty} \left|\frac{a_{k+1}}{a_k}\right| < \infty$, then $\lim_{k\to\infty} |a_k|^{1/k} = \lim_{k\to\infty} \left|\frac{a_{k+1}}{a_k}\right|$.
- (Calculus with power series) For power series $f(x) := \sum a_k x^k$ with interval of convergence $x \in (-R, R)$ we have

$$f'(x) = \sum a_k k x^{k-1}$$
 and $\int_0^x f(t)dt = \sum \frac{a_k}{k+1} x^{k+1}$.

8.4 Series

- 1. Show that $\sum_{k=1}^{\infty} x^k e^{-kx}$ converges uniformly in [0,A]? What about for $A = \infty$?
- 2. Does $\sum_{k=1}^{\infty} \frac{1}{x^2+n^2}$ converge uniformly on \mathbb{R} ?

8.4 Power series

- 3. Find the radius of convergence for the following power series:
 - $\bullet \sum_{k=1}^{\infty} k^3 x^k$
 - $\bullet \sum_{k=1}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$
 - $\bullet \sum_{k=1}^{\infty} \frac{k!}{k^k} x^k.$
- 4. Compute $f(x) = \sum_{k=1}^{\infty} (\frac{1}{(k-1)!} + k) x^{k-1}$.
- 5. Compute $f(x) = \sum_{k=1}^{\infty} (k+1)x^k$ and $\sum_{k=1}^{\infty} \frac{k}{3^k}$. Justify your method.