

Machine Translation with Source-Predicted Target Morphology

Joachim Daiber and Khalil Sima'an ILLC, University of Amsterdam

OVERVIEW

- Novel pipeline for translation into morphologically rich languages
- Source enriched with target morphology
- Challenges:
 - Predicting target morphology
 - Learning salient attributes
 - Integration into MT systems

MOTIVATION

- Knowing morphological target properties helps translation
- Possible improvements both in lexical selection and reordering

MORPHOLOGICAL ATTRIBUTES

Part of speech	Manual selection	Automatic selection		
	gender [†]	gender		
noun	number	number		
	case	case		
	gender [†]	gender		
adj	gender [†] number [‡]	number		
	case [‡]	case		
	declension	synpos		
		degree		
	number ^{‡*}	_		
verb	person ^{‡*}			
	tense [*]			
	mode [*]			

SYSTEM TRAINING AND TRANSLATION

(a) Morphology projection and pred. model training

(b) Machine translation system training

MODELING TARGET-SIDE MORPHOLOGY

- Source-side dependency chains:
 - word order might differ significantly
 - source predicate-argument structure is informative for predicting target morph.
- $P(\mathbf{s}'_m \mid \tau, \mathbf{s})$: Source-side dependency chain model to predict morph. enriched source \mathbf{s}'_m .

- Estimation: Coarse-to-fine CRF [1]
- Decoding: root → leaves
- Features as in morph. tagging and additionally: dependency labels, number of children, source POS and child tokens.
- Best performance:
 - 5th order CRF
 - Trained on 50k-100k dependency chains
 - Dep. chains from non-isomorphic trees

LEARNING SALIENT MORPHOLOGICAL ATTRIBUTES

- We want only attributes helpful for language pair (less sparsity, better predictions)
- Salient attributes: attributes that enable better lexical selection
- Learning via latent variable model (as in [2]):
 - Simple translation model (IBM model 1)
- Merging tag occurrences → removing morph. attribute

MT INTEGRATION

- Integration as sparse features, e.g. gender=fem+number=sing+case=dat $X \rightarrow -er X$
- Strategies:
 - training on Viterbi predictions
 - training on gold projections

EVALUATION

		Translation		Word order	Lexical choice
Morphological attributes	Training decor.	METEOR	BLEU	Kendall's $ au$	BLEU-1
No morphology	-	35.74	15.12	45.26	49.86
Manual selection	Predicted	35.85	15.19	45.43	50.01
	Projected	34.63^{A}	14.00^{A}	44.07	48.75
Autom. selection	Predicted	35.99 ^{AC}	15.23 ^B	45.88	50.27
	Projected	35.98^{AC}	15.22^{C}	45.89	50.27

A Statistically significant against baseline at p < 0.05 B Statistically significant against baseline at p < 0.06 C Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 C Statistically significant against Manual selection at p < 0.05 C Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 C Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against Manual selection at p < 0.05 Statistically significant against

REFERENCES

- [1] Thomas Müller, Helmut Schmid, and Hinrich Schütze. Efficient higher-order CRFs for morphological tagging. In *Proceedings of EMNLP 2013*, pages 322--332, Seattle, USA, 2013.
- [2] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate, compact, and interpretable tree annotation. In *Proceedings of ACL 2006*, pages 433--440, Sydney, Australia, 2006.

ACKNOWLEDGEMENTS

The first author is supported by the EXPERT (EXPloiting Empirical appRoaches to Translation) Initial Training Network (ITN) of the European Union's Seventh Framework Programme.