29 September 2020 12:0

1. Evaluate $\int_0^{2\pi} \frac{\cos^2(3x)}{5 - 4\cos(2x)} dx.$

$$\int_{0}^{2\pi} \frac{\cos^{2}(3\theta)}{5 - 4\cos(2\theta)} d\theta = \frac{1}{4} \int_{0}^{2\pi} \frac{(2\cos(3\theta))^{2}}{5 - 2(2\cos(2\theta))} d\theta$$

$$= \frac{1}{4} \int_{0}^{2\pi} \frac{(e^{3i\theta} + e^{-3i\theta})^{2}}{5 - 2(e^{2i\theta} + e^{-2i\theta})} d\theta$$

$$= \frac{1}{4} \int_{0}^{2\pi} \frac{(e^{3i\theta} + e^{-3i\theta})^{2}}{5 - 2(e^{2i\theta} + e^{-2i\theta})} \frac{ie^{i\theta}}{ie^{i\theta}} d\theta$$

$$= \frac{1}{4} \int_{|z|=1}^{2\pi} \frac{(z^{3} + z^{-3})^{2}}{5 - 2(z^{2} + z^{-2})} \frac{1}{iz} dz$$

$$= -\frac{1}{8i} \int_{|z|=1}^{2\pi} \frac{(z^{6} + 1)^{2}}{z^{5}(z^{4} - 5z^{2}/2 + 1)} dz$$

Want to use CRT

$$f(z) := \frac{(z^{6} + 1)^{2}}{z^{5} (z^{4} - \frac{5z^{2}}{2} + 1)} z = \pm \frac{1}{5z} \pm \frac{1}{4z} + \frac{1}{4z}$$
rook

Poles of
$$f: 0, \pm \frac{1}{\sqrt{2}}, \pm \sqrt{2}$$
 outside curve these that matter

$$\int_{\gamma} f = 2\pi 2 \sum_{z \in Z} \operatorname{Res}(f; z)$$
poles within γ

Residue at 0:
$$f(z) = \frac{(z^6+1)^2}{z^5(z^2-2)(z^2-\frac{1}{2})}$$

0 is a pole of order 5.

Thus, define $g(z) := z^5 f(z)$ and $Res(f_jo) = \frac{1}{4!} g^{(4)}(a)$.

Ugly (but correct)

We instead compute Laurent series around o.

$$\frac{(z^{6}+1)^{2}}{z^{5}(z^{4}-5z^{2}/2+1)} = \frac{1}{z^{5}} \frac{(z^{6}+1)^{2}}{1-(5z^{2}/2-z^{4})}$$

$$= \frac{1}{z^{5}}(z^{6}+1)^{2} \left[1+\left(\frac{5z^{2}}{2}-z^{4}\right)+\left(\frac{5z^{2}}{2}-z^{4}\right)^{2}+\cdots\right]$$

$$= \frac{1}{z^{5}} \left\{ [z^{12}+2z^{6}+1] \left[1+\left(\frac{5z^{2}}{2}-z^{4}\right)+\left(\frac{5z^{2}}{2}-z^{4}\right)^{2}+\cdots\right] \right\}$$

$$= \frac{25z^{4}}{4}-5z^{6}+z^{5}$$

Ros (f; 0) is co-efficient of 1 here

Co-eff of
$$z^4$$
 in $\{ \dots \}$.

$$-1 + \frac{25}{4} = 21$$

$$Res(f; o) = \frac{21}{4}$$

le (f; 1/2):

$$f(z) = \frac{(z^6+1)^2}{z^5(z^2-1)/a-1(1+1)}$$

$$z^{5}(z^{2}-2)\left(z-\frac{1}{\sqrt{2}}\right)\left(z+\frac{1}{\sqrt{2}}\right)$$

$$\Rightarrow Res(f; \frac{1}{52}) = \lim_{z \to \frac{1}{52}} (z - \frac{1}{52}) f(z) = \lim_{z \to \frac{1}{2}} \frac{(z^{6} + 1)^{2}}{z^{5}(z^{2} - 2)(z + \frac{1}{52})}$$

$$\frac{\left(\left(\frac{1}{\sqrt{2}}\right)^{6}+1\right)^{2}}{\left(\left(\frac{1}{\sqrt{2}}\right)^{2}-2\right)\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)} = \frac{\left(\frac{1}{8}+1\right)^{2}}{\left(\frac{1}{\sqrt{2}}\right)^{5}\left(\frac{1}{2}-2\right)\left(\frac{2}{\sqrt{2}}\right)}$$

$$= -\frac{\frac{81}{64}}{\left(\frac{1}{4\sqrt{2}}\right)\left(\frac{3}{2}\right)(\sqrt{2})}$$

$$= -\frac{27}{8}$$

: Res
$$(f)$$
 $\frac{1}{52}$ = $-\frac{27}{8}$

$$\int f = 2\pi i \left(\frac{21}{4} - \frac{27}{8} - \frac{27}{8} \right)$$
$$= -3\pi i$$

Thus, desired integral is:
$$-\frac{1}{82}(3\pi i)$$

$$=$$
 $\frac{371}{8}$

Reed integral	, v. J.	1	
		V	
		Use CR	T

29 September 2020 12:00 PM

2. Evaluate
$$\int_{|z-2|=4} \frac{2z^3 + z^2 + 4}{z^4 + 4z^2} dz.$$

Use
$$CRT$$
 let $f(z) := 2z^3 + z^2 + 4$

Out the within $(z^4 + 4z^2)$

Poles : $0, \pm 2i$
 $z^2(z^2 + 4)$
 $z^2(z^2 + 2i)(z^2 - 2i)$

1 (of each)

Residue at 0:

Define
$$g(z) = z^2 f(z)$$
.

Then, Res (f; 0) = $\frac{1}{1!}g'(0)$.

Then Res(f; z_0):

 $g(z) : z^m f(z)$

Then Res(f; z_0):

 $g(z) : z^m f(z)$

Then Res(f; z_0):

 $g(z) : z^m f(z)$

$$g(z) = \frac{2z^{3} + z^{2} + 4}{z^{2} + 4}$$

$$g'(0) = 0 \qquad (Check!)$$

Res. at
$$2i$$
:

22 is a simple pole.

Thus, Res $(f; 2i) = \lim_{z \to 2i} (z - 2i) f(z)$

$$= \lim_{z \to 2i} \frac{2z^3 + z^2 + 4}{z^2 (z+2i)}$$

$$\lim_{z \to 2\iota} (z - 2\iota) f(z) = \lim_{z \to 2\iota} \frac{2z^3 + z^2 + 4}{z^2(z + 2\iota)}$$
$$= \frac{2(2\iota)^3 + 0}{(2\iota)^2(2\iota + 2\iota)}$$
$$= \frac{-16\iota}{-4(4\iota)}$$
$$= 1.$$

Smi., Res
$$(f; -21) = 1$$
.

Thus,
$$\int f = 2\pi i (0 + 1 + 1)$$

 $|z-2|=4$
 $= 4\pi i$

29 September 2020 12:00 PM

3. Show with and without the open mapping theorem that if f is a holomorphic function on a domain Ω with |f| is constant, then f is constant.

Without OMT: (CR equations)

Write
$$f = u + iv$$
 as usual.

We are given: $\frac{1}{3}(20)$: $u^{2}(x,y) + v^{2}(x,y) = c$ for all $(x,y) \in \Sigma$.

Case 1. $c = 0$. force $u = 0 = v$. Thus, $f \in D$ and we are done.

Case 2. $c \neq 0$.

Ully $+ v^{2} = c$
 $v^{2} + v^{2} + v^{2} + v^{2} = c$
 $v^{2} + v^{2} + v^{2} + v^{2} + v^{2} = c$
 $v^{2} + v^{2} +$

Thus, u and v are constant. (-: 2 was a domain.)

With OM:

Recall: If Ω is a domain and $f: \Omega \to \mathbb{C}$ is hold & non-constant, then $f(\Omega)$ is open.

OMT actually give: f(U) is open for all open UC SZ.

Sol. Given: If is constant.

To show: f is constant.

Proof Assume not. That is, f is not const. Then, $f(\Omega)$ must be open thowever,

 $f(s) \subset \{z \in C: |z| = c\}$

This has no open Subset. Thus, we get a Contradiction.

4. Show that $\int_{-\infty}^{\infty} \frac{x}{(x^2+2x+2)(x^2+4)} \mathrm{d}x = -\frac{\pi}{10}.$

Let
$$f(z) = \frac{z}{(z^2+2z+2)(z^2+4)}$$
 $(z+1)^2+1=0$

Poles of f: -1 +2, +2i

Take R > 2.

The poles enclosed within the drawn contour: -1+2, 22

CRT:

$$\int_{\Gamma_1} f + \int_{\tau_2} f = 2\pi i \left(\operatorname{Res}(f_{j-1} + i) + \operatorname{Res}(f_{j} 2i) \right)$$

$$\int_{im} \int_{R\to\infty} f = \int_{-\infty}^{\infty} \frac{\pi}{(\pi^2 \tau 2\pi + 2)(\pi^2 + 4)} d\pi$$

$$\lim_{R \to \infty} \int_{\sigma_{1}} f = \int_{-\infty}^{\infty} \frac{\pi}{(\pi^{2} \tau_{2} \pi_{1} \tau_{2})(\pi^{2} + 4)} d\pi$$

$$\lim_{R \to \infty} \int_{\sigma_{2}} f = 0.$$

$$|z| + |z| + |z| + |z| + |z|$$

$$|z| + |z| + |z| + |z| + |z|$$

$$|z| + |z| + |z| + |z| + |z|$$

$$|z| + |z| + |z|$$

$$|z| + |z| + |z|$$

$$|z| + |z|$$

29 September 2020 12

5. Show that any injective entire function is of the form az + b for some $a \neq 0$.

Obs. f cannot be constant.

1) We show f is a poly. Assume not.

Then, an \$0 for inf. many n >0.

 \Rightarrow 0 is an essential shy. of zxof($\frac{1}{z}$). (*)

Define $\Omega_1 = \{ Z : |z| < 1\}$ and $\Omega_2 = \{ z : |z| > 1\}$.

By DMT, $f(\Omega_i)$ is open.

Note that as $\in f(\Omega_1)$. (\bigstar) $\begin{pmatrix} a_0 = f(0) \\ 2 & 0 \in \Omega_1 \end{pmatrix}$

By (+), 0 is an exist of $f(\frac{1}{2})$.

Thun, ly Casorati-Weierstrass, Ja sagnence (Zn) s.t.

 $Z_n \longrightarrow 0$ and $f\left(\frac{1}{Z_n}\right) \rightarrow a_0$.

Note: 2 -> 0 => |Zn| < 1 for all n=N1.

 $\Rightarrow \frac{1}{Z_n} \in Q_2$ for $n \ge N_1$.

> f(=) ef(0=) for n > N,. (1) Since $a, \in \mathbb{Z}_{1}$, $\exists \in \mathbb{Z}_{0}$ s.t. $B_{\varepsilon}(a) \subset \mathbb{Q}_{1}$. (2) Since $f(\frac{1}{2n}) \rightarrow \alpha_0$, $\exists N_2 \in \mathbb{N} \text{ s.t. } f(\frac{1}{2n}) \in \mathbb{B}_{\epsilon}(\alpha_0)$ for all n zNz. (3) for N= max {N1, N2}. Then, by (1), $f\left(\frac{1}{2N}\right) \in f(\Omega_2)$. (3), $f\left(\frac{1}{z_N}\right) \in B_{\varepsilon}(a_0) \subset f(\Omega_1)$. $f(\frac{1}{2}) \in f(\Omega_1) \cap f(\Omega_2)$ Thus, => f(21) 1 f(212) \$ \$. | contradicts 1-1 Since $\Omega_1 \cap \Omega_2 = \emptyset$. Thun, f is a polynomial. f(z) = ao + ··· + anz for some n z 1 a 70. Assume 17! Then, f(z)=0 has n roots.

Assume n71. Then, f(z)=0 has n roots.Injectivity forces all equal

Thus, $f(z)=k(z-z_0)^n$

But then, f(z) = 1 has a distinct But n > 1 contradicts injectivity. Thus, h=1. Henre, f(2) = a, z + a. 2 a, +a