COMP6714 Assignment 1

Name: Wenke Yang ZID: z5230655 Nov. 2019

Question 1:

(1).

The algorithm basically splits each input list into two halves and recursively find the intersect elements between each half of A and each half of B. There are two base cases: one list is empty or two lists both have length 1.

```
Algorithm 1 Intersect(A, B)
  if A.len == 0 or B.len == 0 then
    return [
  else if A.len == 1 and B.len == 1 then
    if A == B then
       return A
    else
       return []
    end if
  else
    half_len_A = floor(A.len/2)
    half_{len_B} = floor(B.len/2)
    first\_half\_A = A[:half\_len\_A]
    first\_half\_B = B[:half\_len\_B]
    second_half_A = A[half_len_A:]
    second\_half\_B = B[half\_len\_B:]
    return Intersect(first_half_A, first_half_B) +
       Intersect(first_half_A, second_half_B) +
       Intersect(first\_half\_B, second\_half\_A) +
       Intersect(second_half_A, second_half_B)
  end if
```

(2).

Assume the new function is called **divide_list(A, B)**. It calls a helper function **divide_list_with_k(A, B, current_k)**, the **initial current_k** is the **hyper parameter K**. This helper function has the similar structure as Intersect(A, B). The differences are the details in base case and recursive case:

- The base case is when current_k is 1, return list of A and list of B directly.
- In the recursive case, the new parameter current_k is reduced by half in each call. Besides, there are only two recursive calls (rather than four). One is the first halves of A and B, the other is the rest halves of A and B, both with half of current_k.
- The return value of recursive call is the concatenation of the two returned A lists and the two returned B lists from above two recursive calls respectively.

The full algorithm of the helper function $divide_list_with_k(A, B, current_k)$ is defined as below:

Algorithm 2 divide_list_with_k(A, B, current_k)

```
if current_k == 1 then
    return [A], [B]
else
    half_len_A = floor(A.len/2)
    half_len_B = floor(B.len/2)

first_half_A = A[:half_len_A]
first_half_B = B[:half_len_B]

second_half_A = A[half_len_A:]
second_half_B = B[half_len_B:]

first_splits_A, first_splits_B = divide_list_with_k(first_half_A, first_half_B, current_k / 2)
second_splits_A, second_splits_B = divide_list_with_k(second_half_A, second_half_B, k - (current_k / 2))
return first_splits_A + second_splits_A, first_splits_B + second_splits_B
end if
```

Question 2:

(1).

Assume the highest level of indexes is n. Since the logarithmic strategy is used, there will be at most one index for each level from level 0 to level n. The number of level 0 index required to merge to each level of index is shown below:

index level	count	index	# of level 0 index required for merge
0	1		$1 = 2^0$
1	1	I_1	$2 = 2^1$
2	1	I_2	$4 = 2^2$
n	1	I_n	2^n

The max number of
$$I_0$$
 we need
$$= 2^0 + 2^1 + 2^2 + \dots + 2^n$$
 $\approx 2^n$ (1)

The number of indexes for no merge is t and no merge means all indexes are in the same level, in our case is level 0, hence the number of I_0 we have is t.

$$t = 2^n$$

$$n = log_2 t$$
(2)

Since the number of levels are integers, n should be $\lceil log_2 t \rceil$

(2).

Same as the previous question, we assume that the highest level of indexes is n. The max. total I/O cost should be the reading $\cot(t \cdot M)$ and the sum of the I/O costs for merging I_0, I_1, I_2, \ldots and I_n . However, since we only consider the big O complexity, we just need to calculate the I/O cost for the largest term: merge cost of I_n . Here is a table to assist the calculation:

index level	index	no. of I_{level} need for generate I_n	index size
0	I_0	2^n	2^0M
1	I_1	2^{n-1}	$2^0 M$ $2^1 M$ $2^2 M$
2	I_2	$\frac{2}{2^{n-2}}$	2^2M
n	I_n	2^{0}	$2^n M$

The total I/O cost for generating I_n

$$= \sum \text{no. of } I_{level} \text{ need for generate } I_n \cdot \text{index size}$$

$$= 2^n \cdot 2^0 M + 2^{n-1} \cdot 2^1 M + 2^{n-2} \cdot 2^2 M + \dots + 2^0 \cdot 2^n M$$

$$= 2^n \cdot M \cdot n$$

$$= t \cdot M \cdot log_2 t$$
(3)

Therefore, the total I/O cost of the logarithmic merge is $O(t \cdot M \cdot log_2 t)$.

Question 3:

(1).

$$precision_{top20} = \frac{R_in_top_20}{total_number_of_retrieved}$$

$$= \frac{6}{20}$$

$$= 0.3$$
(4)

The precision of the system on the top-20 is 0.3.

(2).

$$recall_{top20} = \frac{R_in_top_20}{total_number_of_relevant}$$

$$= \frac{6}{8}$$

$$= 0.75$$
(5)

$$F1_{top20} = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

$$= \frac{2 \cdot 0.3 \cdot 0.75}{0.3 + 0.75}$$

$$= \frac{3}{7}$$
(6)

The F1 on the top-20 is $\frac{3}{7}$.

(3).

In order to assist answering the question(3) and (4), a table of moving precision and recall of the top-20 is attached below:

k-th input	1	2	3	4	5	6	7	8	9	10
$prec_k$	1.0	1.0	0.67	0.5	0.4	0.33	0.29	0.25	0.33	0.3
$recall_k$	0.13	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.38	0.38

k-th input	11	12	13	14	15	16	17	18	19	20
$prec_k$	0.36	0.33	0.31	0.29	0.33	0.31	0.29	0.28	0.26	0.3
$recall_k$	0.5	0.5	0.5	0.5	0.63	0.63	0.63	0.63	0.63	0.75

According to the tables above, the uninterpolated precisions of the system at 25% recall are: $1.0,\,0.67,\,0.5,\,0.4,\,0.33,\,0.29,\,0.25.$

(4).

According to the tables in question (3), the interpolated precision at 33% recall which is the maximum precision after 8th input is 0.36 (at 11th input).

(5).

$$MAP = \frac{\sum \text{precisions if the current input is relevant}}{\text{no. of relevant docs}}$$

$$= \frac{1+1+0.33+0.36+0.33+0.3}{8}$$

$$\approx 0.42$$
(7)

The MAP for the query is 0.42.

(6).

The largest possible MAP can be reached if the 21th and 22th results are both relevant.

$$MAP_{max} = \frac{\sum \text{precisions if the current input is relevant}}{\text{no. of relevant docs}}$$

$$= \frac{1+1+0.33+0.36+0.33+0.3+\frac{7}{21}+\frac{8}{22}}{8}$$

$$\approx 0.50$$
(8)

The largest possible MAP that this system could have is 0.50.

(7).

The smallest possible MAP can be reached if the 9999th and 10000th results are relevant.

$$MAP_{min} = \frac{\sum \text{precisions if the current input is relevant}}{\text{no. of relevant docs}}$$

$$= \frac{1+1+0.33+0.36+0.33+0.3+\frac{7}{9999}+\frac{8}{10000}}{8}$$

$$\approx 0.42$$
(9)

The smallest possible MAP that this system could have is 0.42.

(8).

$$max_MAP_error = MAP_{max} - MAP_{min}$$

$$= 0.50 - 0.42$$

$$= 0.08$$
(10)

The largest error for the MAP by calculating (5) instead of (6) and (7) could be 0.08.

Question 4:

(1).

$$no_of_words_{d1} = 2 + 3 + 1 + 2 + 2 + 0 = 10$$

 $no_of_words_{d2} = 7 + 1 + 1 + 1 + 0 + 0 = 10$ (11)

$$p(Q|d_1) = \prod_{i=1}^{6} p(w_i|d_1)$$

$$= \frac{2}{10} \times \frac{3}{10} \times \frac{1}{10} \times \frac{2}{10} \times \frac{2}{10} \times \frac{0}{10}$$

$$= 0$$

$$p(Q|d_2) = \prod_{i=1}^{6} p(w_i|d_2)$$

$$= \frac{7}{10} \times \frac{1}{10} \times \frac{1}{10} \times \frac{1}{10} \times (\frac{0}{10})^2$$

$$= 0$$
(12)

According to the likelihood calculated, $p(Q|d_2)$ and $p(Q|d_1)$ are both zero, they should have the same rank.

(2).

$$p(Q|d_1) = \prod_{i=1}^{6} p(w_i|d_1)$$

$$= \prod_{i=1}^{6} 0.8 \cdot p_{mle}(w_i|M_{d1}) + (1 - 0.8) \cdot p_{mle}(w_i|M_c)$$

$$= (0.8 \times \frac{2}{10} + 0.2 \times 0.8) \times (0.8 \times \frac{3}{10} + 0.2 \times 0.1) \times$$

$$(0.8 \times \frac{1}{10} + 0.2 \times 0.025) \times (0.8 \times \frac{2}{10} + 0.2 \times 0.025)^{2} \times$$

$$(0.2 \times 0.025)$$

$$= 9.63 \times 10^{-7}$$

$$(13)$$

$$p(Q|d_2) = \prod_{i=1}^{6} p(w_i|d_2)$$

$$= \prod_{i=1}^{6} 0.8 \cdot p_{mle}(w_i|M_{d2}) + (1 - 0.8) \cdot p_{mle}(w_i|M_c)$$

$$= (0.8 \times \frac{7}{10} + 0.2 \times 0.8) \times (0.8 \times \frac{1}{10} + 0.2 \times 0.1) \times$$

$$(0.8 \times \frac{1}{10} + 0.2 \times 0.025)^{2} \times (0.2 \times 0.025)^{2}$$

$$= 1.30 \times 10^{-8}$$

After recompute the likelihood with smoothing, document 1 has higher ranking.