Unsupervised Data Mining: From Batch to Stream Mining Algorithms

Stefan Kramer

Data Mining Group

Johannes Gutenberg-Universität Mainz

Bayesian Networks for **Batch** Discrete Density Estimation

- Joint probability distribution
 P(X₁, X₂, X₃, X₄, X₅, X₆) =
 P(X₁)P(X₂)P(X₃|X₁, X₂)
 P(X₄|X₂)P(X₅|X₁, X₄)P(X₆|X₃)
- Queryable
- Structure learning
- Can this be done online?
 Arbitrary queries on arbitrarily large data
- Idea: conditional probabilities or probabilisitic classifiers as basis for an (online probabilistic) inductive database

Prerequisites

Multi-Class Classification: Ensembles of Nested Dichotomies (Frank & Kramer, ICML 2004)

X_1	X ₂	X_3	X_4	X_5	Y ₁	Y ₂	Y ₃	Y ₄
0	1	0	0	1	0	1	0	0
1	0	0	1	1	0	1	0	0
0	0	1	1	1	1	0	0	0
0	0	1	0	1	0	0	0	1
0	0	0	1	1	0	0	1	0
			•••			•••	•••	

$$P(c = C \mid X_1, ..., X_m) = \prod_{i=1}^{k-1} (I(c \in C_{i1}) P(c \in C_{i1} \mid X_1, ..., X_m, c \in C_i) + I(c \in C_{i2}) P(c \in C_{i2} \mid X_1, ..., X_m, c \in C_i))$$

X ₁	X_2	X_3	X_4	X_5	Y ₁	Y ₂	Y ₃	Y ₄
0	1	0	0	1	1	1	0	1
1	0	0	1	1	0	1	0	1
0	0	1	1	1	1	0	0	1
0	0	1	0	1	1	0	1	0
0	0	0	1	1	1	0	1	0

Classifier chains for multi-label classification (Read et al., ECML/PKDD 2009)

X ₁	X ₂	X_3	X_4	X_5	$\hat{\mathbf{Y}}_1$
0	1	0	0	1	1
1	0	0	1	1	0
0	0	1	1	1	1
0	0	1	0	1	1
0	0	0	1	1	1
			•••	•••	•••

X ₁	X ₂	X_3	X_4	X_5	Y ₁	$\hat{\mathbf{Y}}_{2}$
0	1	0	0	1	1	1
1	0	0	1	1	0	1
0	0	1	1	1	1	0
0	0	1	0	1	1	0
0	0	0	1	1	1	0
•••	•••			•••		

X ₁	X_2	X_3	X_4	X_5	Y ₁	Y ₂	$\hat{\mathbf{Y}}_{3}$
0	1	0	0	1	1	1	0
1	0	0	1	1	0	1	0
0	0	1	1	1	1	0	0
0	0	1	0	1	1	0	1
0	0	0	1	1	1	0	1
					•••		

X ₁	X_2	X_3	X ₄	X_5	Y ₁	Y ₂	Y ₃	$\hat{\mathbf{Y}}_{4}$
0	1	0	0	1	1	1	0	1
1	0	0	1	1	0	1	0	1
0	0	1	1	1	1	0	0	1
0	0	1	0	1	1	0	1	0
0	0	0	1	1	1	0	1	0
• • •	•••	•••		•••			•••	•••

X_1	X ₂	X_3	X_4	X ₅	Y ₁	Y ₂	Y ₃	Y ₄
0	1	0	0	1	1	1	0	1
1	0	0	1	1	0	1	0	1
0	0	1	1	1	1	0	0	1
0	0	1	0	1	1	0	1	0
0	0	0	1	1	1	0	1	0
		•••	•••		•••	•••		•••

Probabilistic classifier chains:

$$P(Y_1,...,Y_L \mid X_1,...,X_m) = P(Y_1 \mid X_1,...,X_m) \prod_{j=2}^{L} P(Y_j \mid Y_1,...,Y_{j-1},X_1,...,X_m)$$

Hoeffding Tree Algorithm (Domingos & Hulten, KDD 2000)

Procedure HoeffdingTree(Stream, δ)

Let HT = Tree with single leaf (root)

Initialize sufficient statistics at root

For each example (X, Y) in *Stream*

Sort (X, Y) to leaf using HT

Update sufficient statistics at leaf

Compute G for each attribute
$$\int \frac{R^2 \ln \left(\frac{1}{\delta}\right)}{2n}$$
 then

Split leaf on best attribute

For each branch

Start new leaf, init sufficient statistics

Return HT

Estimation of Discrete Densities Online (EDDO)

Not Batch Learning, ...

... But Stream Mining

Condensed Representation

- volume
- speed (decoupled)
- unkown task
- privacy

- volume
- speed (decoupled)
- unkown task
- privacy

- volume
- speed (decoupled)
- unkown task
- privacy

- volume
- speed (decoupled)
- unkown task
- privacy

Problem Statement

Given: nominal variables $X_1, X_2, ..., X_n$, an unknown discrete joint density $f(X_1, X_2, ..., X_n)$, and an infinite stream of data that is distributed according to f

Find: A density estimate \hat{f} for f in an online fashion, i.e., in an instance- or batch-incremental way.

Estimators need to be consistent and enable inference tasks (hard evidence, e.g., $f(X_1, X_2, X_4 | X_3 = b, X_5 = c)$ or soft evidence or frequency queries, e.g., $f(X_1, X_2, X_3, X_4, X_5) > \theta$).

Modeling Discrete Densities using Classifier Chains

Applying the product rule to $f(X_1, X_2, ..., X_n)$ yields

$$f_1(X_1) \cdot f_2(X_2 \mid X_1) \cdot \dots \cdot f_n(X_n \mid X_1, X_2, \dots, X_{n-1})$$

Classifier

Majority class for $f_1(X_1)$

Hoeffding trees for $f_i(X_n \mid X_1, X_2, ..., X_{i-1})$

- Both allow us to estimate the density in an online fashion.
- Take permutations for ensembles of chains (performance may vary!)

21

Ensembles of Weighted Classifier Chains (EWCC)

Ensembles of Weighted Classifier Chains (EWCC)

Ensembles of Weighted Classifier Chains (EWCC)

Hence, to increase robustness, we

- sample chains at random from the set of possible variable orderings,
- and average over the density estimates obtained.

On batch data, this outperforms 12 BN structure learners (Geilke *et al.*, IEEE ICDM 2013).

Pattern Mining

Recurrences

- day and night
- working days and weekends
- seasons

Recurrences

- pattern could be more complex
- may only affect a part of the house

- 1. recognize regions of drift
- 2. represent density of data stream segments
- identify recurrences on the density level
- 4. identify recurrences between parts of different densities

- 1. recognize regions of drift
- 2. represent density of data stream segments
- 3. identify recurrences on the density level
- 4. identify recurrences between parts of different densities

- 1. recognize regions of drift
- 2. represent density of data stream segments
- 3. identify recurrences on the density level
- 4. identify recurrences between parts of different densities

- 1. recognize regions of drift
- 2. represent density of data stream segments
- 3. identify recurrences on the density level
- 4. identify recurrences between parts of different densities

- 1. recognize regions of drift
- 2. represent density of data stream segments
- 3. identify recurrences on the density level
- 4. identify recurrences between parts of different densities

- 1. recognize regions of drift
- 2. represent density of data stream segments
- identify recurrences on the density level
- 4. identify recurrences between parts of different densities

All done in an online fashion using a bundle of methods: statistical tests like Wilcoxon, grouping variables by mutual information, graphical representation, ...

Result: Graph of Possible Worlds

- Pool of recurrent distributions plus recurrent "parts"
- Possible worlds connected by probabilistic transitions
- Queries over possible worlds require this structure plus inference on the densities (see (Geilke *et al.*, IEEE DSAA 2015))