Exam Review

1 Memory Partitioning

The following diagram shows a partition of memory. If three separate requests for memory of 40M, 20M, and 10M are made, determine the spots in memory where the requests will each be placed, and indicate the beginning address of the request based on the following policies:

- 1. First Fit
- 2. Best Fit
- 3. Next Fit
- 4. Worst Fit

The grey blocks represent already filled spaces in memory.

2 Memory Allocation

A 1Mb block of memory is allocated using the buddy method. Show the resulting partitions in the following diagram if they recieve the following memory requests:

$$A = 70K$$

$$B = 35K$$

$$C = 80K$$

$$D = 60K$$

The memory is requested/released as follows:

1. Request A

5. Request D

2. Request B

6. Return B

3. Request C

7. Return D

4. Return A

8. Return C

			102	4			Initial
	A	1	28	2	256	512	Request A
	A	В	64	2	256	512	Request B
	A	В	64	С	128	512	Request C
1	28	В	64	С	128	512	Return A
D	64	В	64	С	128	512	Request D
D	64	1	28	С	128	512	Return B
	25	56		С	128	512	Return D
			102	4			Return C

3 Paging I

Given the following table, determine which physical address, if any, the following virtual address would correspond.

1103 2325 5544

VPN	Valid Bit	Reference Bit	Modify Bit	PFN
0	1	1	0	4
1	1	1	1	7
2	0	0	0	-
3	1	0	0	2
4	0	0	0	-
5	1	0	1	0

$$1103 = (1*1024) + 79 \qquad 2325 = (2*1024) + 277 \qquad 5544 = (5*1024) + 424$$

$$\implies \text{PFN: 7} \qquad \implies \text{PFN: -} \qquad \implies \text{PFN: 0}$$

$$Address = (7*1024) + 79 \qquad \implies \text{PAGE FAULT} \qquad \text{Address} = (0*1024) + 424$$

$$= 7247 \qquad \qquad = 79$$

4 Paging II

Given the following table, assume there is a page fault at 4. Determine which page will be replaced using the following policies:

- 1. FIFO
- 2. LRU
- 3. Clock
- 4. Optimal (Assume the remaining sequence is 4, 0, 0, 0, 2, 4, 2, 1, 0, 3, 2)

VPN	Time Loaded	Reference Time	R-Bit	M-Bit
2	60	161	0	1
1	130	160	1	0
0	26	162	1	0
3	20	163	1	1

VPN	3	0	2	1		1	2	0	3	4
VPN In Memory	3	3	3	3		3	3	3	3	4
		0	0	0		0	0	0	0	0
			2	2		2	2	2	2	2
				1		1	1	1	1	1
Time	20	26	60	130		160	161	162	163	164
VPN	3	0	2	1		1	2	0	3	4
VPN In Memory	3	3	3	3		3	3	3	3	3
		0	0	0		0	0	0	0	0
			2	2		2	2	2	2	2
				1		1	1	1	1	4
Time	20	26	60	130		160	161	162	163	164
VPN	3	0	2	1		1	2	0	3	4
VPN VPN In Memory	3	0 3	3	1 3		1 3	3	0 3	3	3
	l	-								
	l	3	3	3		3	3	3	3	3
	l	3	3	3		3	3	3	3	3 0
	l	3	3	3 0 2		3 0 2	3 0 2	3 0 2	3 0 2	3 0 4*
VPN In Memory	3	3 0	3 0 2	3 0 2 1		3 0 2 1	3 0 2 1	3 0 2 1	3 0 2 1	3 0 4* 1*
VPN In Memory	3	3 0 26	3 0 2	3 0 2 1		3 0 2 1 160	3 0 2 1 161	3 0 2 1	3 0 2 1 163	3 0 4* 1* 164
VPN In Memory Time	3 20	3 0	3 0 2 60	3 0 2 1 130		3 0 2 1 160	3 0 2 1 161	3 0 2 1 162	3 0 2 1 163	3 0 4* 1* 164
VPN In Memory Time VPN	3 20 1	3 0 26	3 0 2 60	3 0 2 1 130		3 0 2 1 160	3 0 2 1 161	3 0 2 1 162	3 0 2 1 163	3 0 4* 1* 164
VPN In Memory Time VPN	3 20 1 3	3 0 26 2 3	3 0 2 60 0 3	3 0 2 1 130 3 3	4	3 0 2 1 160	3 0 2 1 161	3 0 2 1 162	3 0 2 1 163	3 0 4* 1* 164
VPN In Memory Time VPN	20 1 3 0	3 0 26 2 3 0	3 0 2 60 0 3 0	3 0 2 1 130 3 3	 4 4 0	3 0 2 1 160	3 0 2 1 161	3 0 2 1 162	3 0 2 1 163	3 0 4* 1* 164

5 Processor Scheduling

Determine the processor scheduling times of the following policies.

- 1. First Come First Serve
- 2. Round Robin (q = 1)
- 3. Round Robin (q = 4)
- 4. Shortest Process Next
- 5. Shortest Remaining Time
- 6. Highest Response Ratio Next (Response Ratio = $\frac{\text{wait time} + \text{service time}}{\text{service time}}$)
- 7. Feedback (q = 1)
- 8. Feedback (q = 2^i)

Process Name	Arrival Time	Service Time
1	0	3
2	1	5
3	3	2
4	9	5
5	12	5

Process Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1																				
2																				
3																				
4																				
5																				
1																				
2																				
3																				
4																				
5																				
1																				
2																				
3																				
4																				
5																				
1																				
2																				
3																				
4																				
5																				
1																				
1																				
2																				
3																				
4																				
5																				

Process Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1																				
2																				
3																				
4																				
5																				
1																				
2																				
3																				
4																				
5																				
1																				
2																				
3																				
4																				
5																				

6 Multiprocessor Scheduling I

Determine the runtimes of the following processes based on the Fixed Priority $(A \to B \to C)$, and Earliest Deadline policies.

Process	Arrival Time	Execution Time	Ending Deadline
A_1	0	10	20
A_2	20	10	40
A_3	40	10	60
$egin{array}{c} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ \end{array}$	60	10	80
A_5	80	10	100
B_1 B_2	0	10	50
B_2	50	10	100
C_1 C_2	0	15	50
C_2	50	15	100

	10	20	30	40	50	60	70	80	90	100
FP	$A_1 + A_1 + B$	$B_1 + B_1 + A$	$A_2 + A_2 + C$	C_1+C_1+A	$_3 + A_3 + B_2$	$+B_2+A_4$	$+A_4+C_2$	$2+C_2+A_5$	$\mid A_5 \mid$	C_2 1
ED	$A_1 \mid A_1 \mid B$	$B_1 + B_1 + A$	$A_2 \mid A_2 \mid C$	$C_1 \mid C_1 \mid C$	$A_1 \mid A_3 \mid A_3$	$B_2 \mid B_2$	$A_4 A_4$	$A \mid C_2 \mid C_2$	C_2	$A_4 \mid A_4 \mid$

7 Multiprocessor Scheduling II

Display the result of the following periodic tasks under the Earliest Starting Deadline, First Come First Serve, and Earliest Starting Deadline with Unenforced Idle Times policies.

Process	Arrival Time	Execution Time	Starting Deadline
A	10	20	100
В	20	20	20
С	40	20	60
D	50	20	80
E	60	20	70

	5 ;	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120
ESD	!	Α	A	! A																				1 !
ESDU	l i		1	1	B	В	B	В	С	C	С	C	Е	E	E	Е	D	i D	D	D	A	A	A	A
FCFS	1		! A	! A	! A	l A	I .	! C	' C	! С	С	! D	! D	! D	! D	Ţ	I	1	I	I	I .	1	1	1 1

I/O Operations 8

(a) Perform a FIFO, SSTF, SCAN, and C-SCAN on the following sequence of disk track requests in order to calculate the average seek length:

Assume that the disk starts at address 100, and the head is moving in the direction of decreasing track number.

FIFO:		SSTF:		SCAN:		C-SCAN:	
	100		100		100		100
27	73	110	10	64	36	64	36
129	102	120	10	41	23	41	23
110	19	129	9	27	14	27	14
186	76	147	18	10	17	10	17
147	39	186	39	110	100	186	176
41	106	64	122	120	10	147	39
10	31	41	23	129	9	129	18
64	54	27	14	147	18	120	9
120	56	10	17	186	39	110	10
Average:	61.8	Average:	29.1	Average:	29.6	Average:	38

(b) Perform a FIFO, SSTF, SCAN, and C-SCAN on the following sequence of disk track requests in order to calculate the average seek length:

55, 58, 39, 18, 90, 160, 150, 30, 184

Assume that the disk starts at address 100, and the head is moving in the direction of increasing track number.

FIFO:		SSTF:		SCAN:		C-SCAN:	
	100		100		100		100
55	45	90	10	150	50	150	50
58	3	58	32	160	10	160	10
39	19	55	3	184	24	184	24
18	21	39	16	90	94	18	166
90	72	30	9	58	32	30	12
160	70	18	12	55	3	39	9
150	10	150	132	39	16	55	16
30	120	160	10	30	9	58	3
184	154	184	24	18	12	90	32
Average:	58.1	Average:	27.5	Average:	27.7	Average:	35.7

9 UNIX Inodes

Consider a UNIX file system represented by inodes. Assume that there are 12 direct block pointers and a singly, doubly, and triply indirect pointer in each inode. Further, assume that the system block size is and the disk sector size are both 8 Kb. If the disk block pointer is 32 bits, with 8 bits to identify the physical disk and 24 bits to identify the physical block, then

1. What is the max file size supported by the system?

Since there are 12 block pointers in the inode, and each block is 8 Kb, we have 12 * 8 Kb, or 96 Kb, directly addressable. The indirect pointer points to an entire block of pointers. Since each block is 8 Kb, and each pointer is 32 bits, there are 1024 pointers in the block; each pointer points to an 8 Kb block. This means the single pointers take up 1024 * 8 Kb, or 8192 Kb. The double pointer points to a pointer that points to a block. There are 1024 of those, so we have 1024 * 1024 * 8 Kb, or 8,388,608 Kb. The triple pointer will yield 1024 * 1024 * 1024 * 3 Kb, or 8,589,934,592 Kb. This yields a total size of 8,598,331,488 Kb.

2. What is the max file system partition supported by the system?

There are 24 bits assigned to idetify the physical block, so the max file system partition supported is $2^{24} * 8$, or 134,217,728 Kb.

3. How many disk accesses are required to access the byte in position 13,423,956?

The location in question is located in the third pointer, so it would take 4 disk accesses to access the location.