Fixed Point Heration

Algorithm goes as follows:

- 1) Choose initial guess p.
- 2) Generate {pn} n=1 by setting: n=g(pn-1), N=1

Note If pn-p and g continuous, p= limpn= limg(pn-1) = g(limpn-1) = g(p)

Thm Fixed Point Theorem

Let gec([a,b]) with g(x)e[a,b] for all xe[a,b]

gec'([a,b]) such that |g'(x)| | k for all xe[a,b]

Then for any poe[a,b], the sequence {pn}_{n=1}^{\infty} defined by

pn=g(pn-1), n=1 converges to the unique fixed point of g

in [a,b] with rate O(k")

Pf. By Existence & Uniqueness Theorem, there exists $p \in [a, b]$ such that g(p) = p.

Since g(x) maps [a,b] to itself, $\{pn\}$ is well-defined $(g(pn) \in [a,b]$ for all $n \ge 1$, and $pn \in [a,b]$ for all $n \ge 1$. By MVT, there exists $S \in (a,b)$ such that

Since ke(0,1), we have limk =0.

 $\lim_{h\to\infty} |p_n-p| \leq \lim_{h\to\infty} k^n |p_n-p| = 0$ $\lim_{h\to\infty} |p_n-p| = 0 \quad \text{by} \quad \text{Squeeze Theorem}$

Thus, $|p_n-p| \le k^n |p_0-p|$, p_n converges to p with rate k^n (0<k<1) i.e. $p_n = p + O(k^n)$.

Rmk. Bound Ipn-p1=k" Ipo-p1 is not useful since we do not have Ipo-p1.

Corollary Error bounds for pn in fixed point iteration can be given by $|p_n-p| \le k^n \cdot \max\{|p_0-a|, |p_0-b|\} \qquad (1)$

and
$$|p_n-p| \leq \frac{k^n}{1-k} |p_1-p_0|$$
 (2)

Note | po-pl = max { po-al, po-bl}

- Rmk. (1) If n_1 , n_2 are minimum number of iterations required to achieve accuracy \mathcal{E} for (1) and (2), respectively, then take $n=\min\{n_1,n_2\}$
 - ② Convergence rate depends on k (upper bound for g'(x))

 So $k \approx 0 \rightarrow fast$ convergence $k \approx 1 \rightarrow slow$ convergence
 - Ex. (a) Show that $9(x)=2^{-x}$ has unique solution in $\begin{bmatrix} \frac{1}{3} \end{bmatrix}$

(b) Estimate # of iterations to achieve accuracy &=104

Sol. (a) g continuous on [0,1] $g(x) \in \left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right] \subset \left[\frac{1}{3}, 1\right] \Rightarrow \text{ solution exists}$ $g'(x) = -\ln(2) \cdot 2^{x}, \quad |g'(x)| \in \left[\left|\frac{\ln 2}{2}\right|, \left|\frac{\ln 2}{\sqrt{2}}\right|\right]$ $\approx [0.347, 0.552]$

 $\Rightarrow |g(x)| \le k = \frac{\ln 2}{\sqrt{2}}, \text{ so } g \text{ has a solution in } \left[\frac{1}{3}, 1\right] \text{ by } E/U$ (b) First bound: since $p_n \in \left[\frac{1}{3}, 1\right]$ and $\max \{|p_0-a|, |p_0-b|\} \le \frac{2}{3}$ $\Rightarrow n_1 \ge 14.7347 \rightarrow n_1 \ge 15$

Second bound:

$$|p_n-p| \leq \frac{k^n}{1-k} |p_i-p_0| \leq \frac{k^n}{1-k} |b-a| \Rightarrow n_{2} \geq 16.07$$

need at least 15 iterations