

Matière: Math(SG)

Durée: 120 minutes

المادة: الرياضيات (علوم عامة)

المدة: ساعتين

Exercice 1:

Dans le tableau suivant, une seule des réponses données à chaque question est correcte. Écrivez le numéro de chaque question et donnez, en le justifiant, la réponse qui lui correspond.

N	Question	Réponse		
		А	В	С
1)	$\lim_{x \to 0} \frac{1}{x^3 \ln x}$	+∞	-∞	1
2)	x est un nombre réel. Le nombre de solutions de l'équation : $ln^2(x) + 3 ln(x) + 2 = 0$ est:	0	1	2
3)	soit f(x)=ln(1-lnx) alors f	est strictement décroissant	est strictement croissant	N'est pas monotone
4)	$\lim_{x \to +\infty} x \ln\left(1 + \frac{1}{x}\right)$	+∞	0	1
5)	Soit f une fonction définie sur \mathcal{R} Tel que f(x)= $x^4-4x^3+6x^2$ alors f	A un seul point d'inflexion	A un double point d'inflexion	Pas de point d'inflexion
6)	Le domaine de définition du Fonction f, telle que $f(x) = \ln(4 - x^2)$] - ∞; -2[∪]2; +∞[]-2;2[] - ∞; 2] ∪ [2; +∞[
7)	$\lim_{x \to +\infty} x^3 - x \ln x + 2$	+∞	+2	-∞

Exercice2:

Partie (A):

Soit g une fonction définie sur]0; $+\infty$ [par: $g(x) = 1+x - x \ln x$.

- 1) Calculer les limites de g(x) en 0 et $+\infty$.
- 2) Calculer g' (x) puis construire le tableau de variation de g.
- 3) Montrer que l'équation g(x) = 0 admet une solution unique α et vérifier que 3.59 $\leq \alpha \leq$ 3.6.
- 4) Étudiez le signe de g(x).

Partie (B):

Considérons la fonction f définie sur]0; + ∞ [par $f(x) = 1 + \frac{2lnx}{x+1}$ où (C) est sa courbe représentative dans un système orthonormé.

- 1) Vérifier que $f(\alpha) = 1 + \frac{2}{\alpha}$
- 2) Calculer $\lim_{x\to 0} f(x)$. En déduire une asymptote a (C).
- 3) a. Montrer que la droite (d) de l'équation y = 1 est une asymptote de (C).
 - b. Étudiez la position relative de (C) et (d).
- 4) Vérifiez que $f'(x) = \frac{2g(x)}{x(x+1)^2}$ et établir le tableau de variation de f.
- 5) Déterminer l'équation de la tangente (T) à (C) en un point A d'abscisse 1.
- 6) tracer (d), (T) et (C). (tel que α = 3.6)

Exercice 3:

Considérons le point M de l'affixe z dans le plan complexe d'un système orthonormé direct (O; u; v).

Pour chaque nombre complexe $z \neq -i$; on associe le nombre complexe z' tel que $z' = \frac{1}{iz-1}$.

- 1) Déterminer l'affixe de M' lorsque z=1+3i
- 2) Déterminer l'affixe de M lorsque z'=3-2i
- 3) Déterminer l'affixe de M' lorsque M et M' sont confondus.
- 4) soit z = x + iy et z'=x'+iy'.
 - a) Quel est l'ensemble du point M lorsque z' est un nombre réel.
 - b) Quel est l'ensemble du point M lorsque z' est un pur imaginaire.