

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 6月13日

出 Application Number:

特願2003-169597

[ST. 10/C]:

[JP2003-169597]

出 願 人 Applicant(s):

花王株式会社

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner. Japan Patent Office 2003年 9月10日

BEST AVAILABLE COPY

【書類名】

行許願

【提出日】

平成15年 6月13日

【整理番号】

103K0084

【あて先】

特許庁長官 殿

【国際特許分類】

C04B 24/00

【発明者】

【住所又は居所】

和歌山県和歌山市湊1334 花王株式会社研究所内

【氏名】

代田 協一

【発明者】

【住所又は居所】

和歌山県和歌山市湊1334 花王株式会社研究所内

【氏名】

下田 政朗

【発明者】

【住所又は居所】

和歌山県和歌山市湊1334 花王株式会社研究所内

【氏名】

谷所 美明

【発明者】

【住所又は居所】

和歌山県和歌山市湊1334 花王株式会社研究所内

【氏名】

森井 良和

【発明者】

【住所又は居所】

和歌山県和歌山市湊1334 花王株式会社研究所内

【氏名】

江原 雅宣

【特許出願人】

【識別番号】

000000918

【氏名又は名称】

花王株式会社

【代理人】

【識別番号】

100087642

【弁理士】

【氏名又は名称】

古谷 聡

【電話番号】

03 (3663) 7808

【識別番号】

100076680

【弁理士】

【氏名又は名称】 溝部 孝彦

【選任した代理人】

【識別番号】 100091845

【弁理士】

【氏名又は名称】 持田 信二

【選任した代理人】

【識別番号】 100098408

【弁理士】

【氏名又は名称】 義経 和昌

【先の出願に基づく優先権主張】

【出願番号】

特願2003- 14812

【出願日】

平成15年 1月23日

【手数料の表示】

【予納台帳番号】 200747

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9812859

【包括委任状番号】 0007905

【プルーフの要否】 要

明細書

【発明の名称】 水硬性組成物用添加剤

【特許請求の範囲】

【請求項1】 下記一般式(1)で表されるアルキルエーテル基を有するアルキルエーテルリン酸モノエステル又はその塩(以下、モノエステル体という)と、下記一般式(1)で表されるアルキルエーテル基を有するアルキルエーテルリン酸ジエステル(ジエステルにはピロリン酸のジエステルを含む)又はその塩(以下、ジエステル体という)とを含有する水硬性組成物用添加剤であって、モノエステル体とジエステル体の重量比が、モノエステル体/(モノエステル体+ジエステル体)で0.4~0.95である水硬性組成物用添加剤。

$$R^{1} - O(AO)_{n} - (1)$$

〔式中、R¹は炭素数8~22のアルキル基又はアルケニル基、AOは炭素数2~4のオキシアルキレン基、nは平均付加モル数であり1~50の数を示す。〕

【請求項2】 更に、(B1) 炭素数8~26のアルキル基もしくはアルケニル基又は炭素数6~35のアリール基と、炭素数2~4のオキシアルキレン基から構成され、平均付加モル数が3~400であるポリオキシアルキレン基とを有する非イオン性化合物、及び(B2) 炭素数8~26のアルキル基もしくはアルケニル基又は炭素数6~35のアリール基と、炭素数2~4のオキシアルキレン基から構成され、平均付加モル数が5~400であるポリオキシアルキレン基とを有するイオン性化合物(請求項1の一般式(1)で表されるアルキルエーテル基を有するアルキルエーテルリン酸エステル又はその塩を除く)より選ばれる1種類以上の化合物を含有する請求項1記載の水硬性組成物用添加剤。

【請求項3】 非イオン性化合物が、一般式(2)で表される化合物、一般式(3)で表される化合物及び一般式(4)で表される化合物から選ばれる一種以上の化合物である請求項2記載の水硬性組成物用添加剤。

$$R^2 - O - (AO)_p - R$$
 (2)

$$R^3 - COO - (AO)_q - R^4$$
 (3)

$$R^{5}-NH_{(2-t)}[(AO)_{s}-H]_{t}$$
 (4)

〔式中、 R^2 、 R^3 及び R^5 は、それぞれ炭素数 $8 \sim 2$ 6 のアルキル基もしくはア

ルケニル基又は炭素数 6 3 5 のアリール基、R及びR 4 は、それぞれ水素原子、炭素数 1 \sim 2 6 のアルキル基もしくはアルケニル基又は炭素数 6 \sim 3 5 のアリール基、AOは炭素数 2 \sim 4 のオキシアルキレン基、p、q及びs は、それぞれ平均付加モル数であり 3 \sim 4 0 0 の数、t は 1 又は 2 を示す。]

【請求項4】 更に、一般式(5)で表される単量体由来の構成単位と、一般式(6)で表される単量体由来の構成単位及び一般式(7)で表される単量体由来の構成単位から選ばれる一種以上の構成単位とを有する共重合体を含有する請求項1~3いずれか記載の水硬性組成物用添加剤。

【化1】

$$R^{6}$$
 $C=C$
 $C=C$
 (5)
 R^{8}
 $(CH_{2})_{m}(CO)_{p}-O-(AO)_{n1}-Y$

〔式中、

 R^6 、 R^7 : それぞれ水素原子又はメチル基

m:0~2の数

R⁸:水素原子又は-COO(AO)_{nl}Y

p:0又は1の数

AO:炭素数2~4のオキシアルキレン基又はオキシスチレン基

n 1:平均付加モル数であり1~300の数

Y:水素原子又は炭素数1~18のアルキル基もしくはアルケニル基

を表す。〕

【化2】

$$R^{9}$$
 $C=C$
 R^{11}
 $CH_{2}-X$
 (7)

〔式中、

 $R^9\sim R^{11}$: それぞれ、水素原子、メチル基又は $(CH_2)_{m1}COOM^2$ であり、 $(CH_2)_{m1}COOM^2$ は $COOM^1$ 又は他の $(CH_2)_{m1}COOM^2$ と無水物を形成していてもよく、その場合、それらの基の M^1 、 M^2 は存在しない。

 \mathbf{M}^1 、 \mathbf{M}^2 :それぞれ、水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基、アルキルアンモニウム基又は水酸基置換アルキルアンモニウム基

m1:0~2の数

【化3】

$$X: SO_3Z$$
 Z Z CH_2-O-O $-SO_3Z$

2:水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基、アルキルアンモニウム基又は水酸基置換アルキルアンモニウム基を表す。〕

・ 【請求項5】 更に、消泡剤を含有する請求項1~4いずれか記載の水硬性 組成物用添加剤。

【請求項6】 請求項1~5いずれか記載の水硬性組成物用添加剤と、水硬

【請求項7】 水硬性粉体100重量部に対して、モノエステル体とジエステル体とを合計で0.01~7.5重量部含有する請求項6記載の水硬性組成物。

【請求項8】 請求項6又は7記載の水硬性組成物から得られた硬化体。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明はセメント等を含有する水硬性組成物用の添加剤に関する。

[0002]

【従来の技術】

近年、コンクリートの高耐久化指向が強まってきており、例えば、コンクリートに使用される水量を低減して高強度化することが行われており、この傾向は今後も増加するものと予測される。水量の低減には、減水性と流動保持性に優れるポリカルボン酸系減水剤が用いられている。しかし、水量の低減に伴い、フレッシュ・コンクリート粘性(以下、コンクリート粘性ともいう)が増加し、ポンプ圧送、打ち込み、型枠への充填といった作業性、施工性が低下するという問題もある。この粘性増大の問題については、ポリカルボン酸系減水剤でもまだ十分解決されておらず、よりコンクリート粘性低減効果の高い添加剤が望まれている。

[0003]

一方、水硬性組成物用添加剤として、リン酸エステル系の添加剤を用いる技術が開示されている。例えば、特許文献1には、特定のポリカルボン酸系セメント分散剤と、特定の非イオン化合物と、AE剤に用いる化合物から選ばれた1種としてポリオキシアルキレンアルキルエーテルリン酸エステルとを含有する添加剤組成物を使用する技術が開示されている。特許文献2には、セメント分散剤として特定構造のリン酸エステルと特定の非イオン界面活性剤との組成物が開示されている。

[0004]

特許文献3には、ポリオキシアルキレンアルキルエーテルリン酸エステルと特

[0005]

【特許文献1】

特許2508113号明細書

【特許文献2】

特開平1-219050号公報

【特許文献3】

特開2002-121058号公報

[0006]

【発明が解決しようとする課題】

しかし、特許文献1は、当該水硬性組成物に対する粘性低減効果の点では要求を完全に満たしてはおらず、特許文献2の技術を用いても、リン酸エステルと界面活性剤の合計の濃度を実用上要望される20重量%以上とした溶液を調製すると、当該溶液の粘性が大きくなったり、均一な溶液を得ることができなくなり、水硬性組成物へ添加する際の取扱いがしにくい物となる。また、特許文献3についても、水硬性組成物に対する粘性低減効果については、更なる改善が望まれている。

[0007]

本発明の課題は、水硬性組成物、特に水と水硬性粉体とのスラリーからなる水 硬性組成物に対して、優れた粘性低減効果及び流動性(以上を、「フレッシュ性 状」ともいう)を示し、水溶液性状、即ち、水溶液自身が適度な粘性を有し、か つ、均一であるため、水硬性組成物への添加作業性が良く、添加後の水硬性組成 物のフレッシュ性状を安定に得ることができる性能の良好な水硬性組成物用添加 剤を提供することである。

[0008]

【課題を解決するための手段】

本発明は、下記一般式(1)で表されるアルキルエーテル基を有するアルキルエーテルリン酸モノエステル又はその塩(以下、モノエステル体という)と、下

記一般式(1)で表されるアルキルエーテル基を有するアルキルエーテルリン酸ジエステル(ジエステルにはピロリン酸のジエステルを含む)又はその塩(以下、ジエステル体という)とを含有する水硬性組成物用添加剤であって、モノエステル体とジエステル体の重量比が、モノエステル体/(モノエステル体+ジエステル体)で0.4~0.95である水硬性組成物用添加剤[以下、モノエステル体とジエステル体を合わせて(A)成分という]に関する。

$$R^{1}-O(AO)_{n}-$$
 (1)

〔式中、 R^1 は炭素数8~22のアルキル基又はアルケニル基、AOは炭素数2~4のオキシアルキレン基、nは平均付加モル数であり1~50の数を示す。〕

また、本発明は、上記本発明の水硬性組成物用添加剤と、水硬性粉体と、水とを含有する水硬性組成物、並びに水硬性組成物から得られた硬化体に関する。

[0010]

【発明の実施の形態】

[0011]

<実施態様 I >

本発明の水硬性組成物用添加剤に(A)成分を用いることで、コンクリート等の水硬性組成物のフレッシュ性状が良好で製品安定性に優れた添加剤が得られる。以下、本発明の水硬性組成物用添加剤において(A)成分を単独で用いる場合(実質的な有効成分が(A)成分のみの場合)を実施態様 I として説明する。

[0012]

(A) 成分は、上記一般式(1)で表されるアルキルエーテル基を有する。式中、R¹は炭素数8~22、好ましくは炭素数10~20のアルキル基又はアルケニル基であり、本発明の添加剤水溶液の水溶液性状(水溶液の粘度及び水溶液の均一性)の観点から、アルキル基の炭素数は12~16、アルケニル基の炭素数は16~20がそれぞれ好ましい。特に好ましくはミリスチル基及びオレイル基である。また、AOは炭素数2~4のオキシアルキレン基であり、オキシエチレン基、オキシプロピレン基、オキシブチレン基が挙げられ、好ましくはオキシエチレン基とオキシプロピレン基であり、ポリオキシアルキレン基中のオキシエ

チレン基の比率は、好ましくは50 モル%以上、より好ましくは70 モル%以上、特に好ましくは100 モル%である。n は平均付加モル数であり $1\sim50$ の数を示すが、(A) 成分を単独で用いる場合は、粘性低減の観点から、好ましくは $3\sim35$ 、更に好ましくは $5\sim20$ の数を示す。また、(A) 成分を単独で用いる場合は、水硬性組成物の流動性の観点から、n は $10\sim25$ が好ましく、 $10\sim22$ がさらに好ましく、 $15\sim20$ が特に好ましい。一般式(1) の構造は重要であり、 R^1 の炭素数や種類、n が上記範囲にあることで、水硬性組成物に対する優れた粘性低減効果や適正な流動性付与効果が得られる。例えば、 R^1 がアルケニル基では、n が5 未満の場合には、水硬性組成物の同一の流動性を得るために必要な添加量は多くなる傾向がある。この観点からは、n は5 以上が好ましい。

[0013]

(A) 成分の塩として、例えばアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩が挙げられ、好ましくはアルカリ金属塩、水酸基置換アルキルアミン塩であり、特に好ましくはカリウム塩、ナトリウム塩、トリエタノールアミン塩であり、水溶液性状の観点から、さらに特に好ましくはナトリウム塩、カリウム塩、最も好ましくはカリウム塩である。

[0014]

(A) 成分のモノエステル体とジエステル体は、それぞれ一般式(1-1)で表される構造のものが好ましい。

[0015]

【化4】

$$\begin{array}{c}
O \\
\parallel \\
[R^1-O-(AO)_n]_k-P-(O-M)_{3-k}
\end{array} (1-1)$$

[0016]

〔式中、 R^1 は炭素数8~22のアルキル基又はアルケニル基、AOは炭素数2~4のオキシアルキレン基、nは平均付加モル数であり1~50の数を示す。k

は1又は2、Mは水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基 、アルキルアンモニウム基又は水酸基置換アルキルアンモニウム基を示す。〕

[0017]

一般式 (1-1) において、kが1のときの2個のM、kが2のときの2個の R^1 とnは、ぞれぞれ異なっていてもよい。

[0018]

(A) 成分は、リン原子に結合する一般式 (1) で表されるアルキルエーテル 基を有するアルキルエーテルリン酸のモノエステルもしくはジエステル又はこれ らの塩である。そして、本発明の添加剤を水溶液にした場合の水溶液性状の観点 から、モノエステル体とジエステル体(ジエステル体にはピロリン酸のジエステ ル体を含む)の重量比は、モノエステル体/(モノエステル体+ジエステル体) で $0.4 \sim 0.95$ であり、nが 10 未満のときは、水硬性組成物の流動性の観 点から、好ましくは $0.4\sim0.85$ 、より好ましくは $0.4\sim0.65$ である 。nが10以上のときは、水硬性組成物の流動性および水溶液性状の観点から、 好ましくは $0.5\sim0.95$ 、より好ましくは $0.65\sim0.95$ 、さらに好ま しくは0.7~0.95であり、さらに工業的な製造容易性の観点から、特に好 ましくは0.7~0.85である。

[0019]

実施態様Ⅰにおいて、本発明の添加剤の水溶液の水溶液性状、水硬性組成物の 流動性についての総合的観点から、

 R^{1} のアルキル基の炭素数 x 又はアルケニル基の炭素数 y 、A O付加モル数 n 及びモノエステル体/(モノエステル体+ジエステル体)の重量比zは、

- (I) nが10未満のときは、
- (I-1) R^1 がアルキル基の場合、
- $x=10\sim22$ 、 $n=3\sim9$ 、及び $z=0.4\sim0.95$ が好ましく、
- $x=10\sim22$ 、 $n=3\sim9$ 、及び $z=0.4\sim0.85$ がより好ましく、
- $x=10\sim22$ 、 $n=3\sim9$ 、及び $z=0.4\sim0.65$ がさらに好ましく、
- (I-2) R¹がアルケニル基の場合、
- $y=10\sim 22$ 、 $n=3\sim 9$ 、及び $z=0.4\sim 0.95$ が好ましく、

 $y=12\sim18$ 、 $n=3\sim9$ 、及 $\sigma_{z=0.4}\sim0.95$ がより好ましく、

 $y=12\sim18$ 、 $n=5\sim9$ 、及び $z=0.4\sim0.85$ がより好ましく、

 $y=12\sim18$ 、 $n=5\sim9$ 、及び $z=0.4\sim0.65$ がさらに好ましく、

 $y=16\sim18$ 、 $n=5\sim9$ 、及び $z=0.4\sim0.65$ がさらに好ましく、

y=18、n=5~9、及びz=0.4~0.65が特に好ましい。

(II) また、nが10以上のときは、

 $x=10\sim22$ 又は $y=10\sim22$ 、 $n=10\sim35$ 、及び $z=0.5\sim0.95$ が好ましく、

 $x=10\sim20$ 又は $y=12\sim20$ 、 $n=10\sim30$ 、及び $z=0.65\sim0.95$ がより好ましく、

 $x=12\sim18$ 又は $y=14\sim18$ 、 $n=10\sim20$ 、及び $z=0.7\sim0.95$ がさらに好ましく、

 $x=14\sim18$ 又は $y=16\sim18$ 、 $n=10\sim20$ 、及び $z=0.7\sim0.95$ がさらに好ましく、

x=14又は y=18、 $n=15\sim20$ 、及び $z=0.70\sim0.85$ が特に好ましい。

水硬性組成物の流動性の観点から、nが10以上であることが好ましい。

[0020]

また、本発明の水硬性組成物用添加剤は、(A) 成分(モノエステル体とジエステル体)以外に、一般式(1)で表されるアルキルエーテル基を有するアルキルエーテルリン酸のトリエステル(以下、トリエステル体という)を含有していてもよい。(A) 成分が上記のモノエステル体とジエステル体の比率と後述の本発明の水硬性組成物用添加剤中の含有量を満たせば、トリエステル体の比率や量は特に限定されないが、(モノエステル体+ジエステル体)/(モノエステル体+ジエステル体)/(モノエステル体+ジエステル体)/(モノエステル体ましくは0.7以上、更に好ましくは0.8以上である。

[0021]

なお、(A)成分は、上記重量比を満たすことが重要であり、モノエステル体とジエステル体、更にトリエステル体の R^1 、AO、nは同一でも異なっていてもよい。

[0022]

(A) 成分は、例えばアルコールにアルキレンオキサイドを付加した後、リン酸エステル化することによって得ることができる。沸点の低いアルコールにアルキレンオキサイドを付加する場合は、水の発生を少なくできる触媒を選択するこ

とが望ましい。あるいは、市販されているアルコールのアルキレンオキサイド付加物を原料として、リン酸エステル化反応によって得ることもできる。アルコールとして、天然アルコールや合成アルコールを使用できる。アルキレンオキサイドは炭素数2~4のものであり、エチレンオキサイド(以下、EOと表記する)、プロピレンオキサイド(以下、POと表記する)、ブチレンオキサイド(以下、BOと表記する)が挙げられ、好ましくはEO、又はEOとPOの併用が好ましく、特に好ましくはEOである。

[0023]

リン酸エステル化反応の方法としては、一般的な方法を用いることができる。 例えば、無水リン酸を用いる方法の他にも、無水リン酸とリン酸水溶液、無水リン酸と水、オキシ塩化リン、ポリリン酸を用いる方法などによっても(A)成分を製造することができる。本発明において、(A)成分中のモノエステル体の比率を調整するには、上記のような製造方法において、ポリオキシアルキレンアルキルエーテルとリン酸化剤の比率と反応時間を調整したり、加水分解反応をしたりする他、晶析、蒸留等の精製や、別添等により調整すればよい。

[0024]

特に、加水分解反応により、ピロリン酸モノエステル体1モルから(A)成分のモノエステル体1モルを、ピロリン酸ジエステル体1モルから(A)成分のモノエステル体2モルを生じるので、(A)成分中のモノエステル体比率を増加させるのに有効である。

[0025]

アルカリ土類金属の水酸化物触媒、三フッ化ホウ素等の酸触媒、ハイドロタルサイト類あるいはZn、Al、Mg等の複合酸化物を含有してなる触媒を使用して製造した、分子量分布範囲の狭いポリオキシアルキレンアルキルエーテル(ナロー化エトキシレート)を使用することも可能であり、水硬性組成物の流動性の観点から、好ましい。

[0026]

<実施態様II>

本発明の水硬性組成物用添加剤は、(A)成分単独で用いる場合よりも、流動

性を向上させる点で、 (B1) 炭素数8~26のアルキル基もしくはアルケニル 基又は炭素数6~35のアリール基と、炭素数2~4のオキシアルキレン基から 構成され、平均付加モル数が3~400であるポリオキシアルキレン基とを有する非イオン性化合物 [以下、 (B1) 成分という]、及び (B2) 炭素数8~26のアルキル基もしくはアルケニル基又は炭素数6~35のアリール基と、炭素数2~4のオキシアルキレン基から構成され、平均付加モル数が5~400であるポリオキシアルキレン基とを有するイオン性化合物 (請求項1の一般式 (1)で表されるアルキルエーテル基を有するアルキルエーテルリン酸エステル又はその塩を除く) [以下、 (B2) 成分という]より選ばれる1種類以上の化合物 (B) [以下、 (B) 成分という]を含有することが好ましい。 (B) 成分は、前記ポリオキシアルキレン基を1~2個有することが好ましい。以下、本発明の水硬性組成物用添加剤において (A) 成分と (B) 成分とを併用する場合 (実質的な有効成分が (A) 成分と (B) 成分である場合)を実施態様IIとして説明する。

[0027]

(B) 成分のうち、(B1) 成分としては、下記一般式(2)で表される化合物、一般式(3)で表される化合物、一般式(4)で表される化合物から選ばれる一種以上の化合物、ポリオキシアルキレンソルビタンアルキルエステル、ポリオキシアルキレングリセリンアルキルエステル、ポリオキシアルキレン硬化ヒマシ油等が挙げられ、実施態様IIでの水溶液粘性の観点から、一般式(2)で表される化合物、一般式(3)で表される化合物及び一般式(4)で表される化合物から選ばれる一種以上の化合物が好ましい。

$$R^2 - O - (AO)_p - R$$
 (2)

$$R^3 - COO - (AO)_q - R^4$$
 (3)

$$R^{5}-NH(2-t)[(AO)_{s}-H]_{t}$$
 (4)

〔式中、 R^2 、 R^3 及び R^5 は、それぞれ炭素数 $8\sim 2$ 6のアルキル基もしくはアルケニル基又は炭素数 $6\sim 3$ 5のアリール基、R及び R^4 は、それぞれ水素原子、炭素数 $1\sim 2$ 6のアルキル基もしくはアルケニル基又は炭素数 $6\sim 3$ 5のアリール基、好ましくは水素原子、AOは炭素数 $2\sim 4$ のオキシアルキレン基、p、

[0028]

一般式(2)の非イオン性化合物は、R²の基を有するアルコールに、EO、PO及びBOから選ばれるアルキレンオキサイド、好ましくはEO、又はEOとPO、更に好ましくはEOを付加することにより得られる。同様に、一般式(3)、(4)の非イオン性化合物は、R³又はR⁵の基を有する化合物に、EO、PO及びBOから選ばれるアルキレンオキサイド、好ましくはEO、又はEOとPOを付加することにより得られる。水溶液性状の観点から、付加するアルキレンオキサイド中、好ましくはEOを50モル%以上、より好ましくは70モル%以上、特に好ましくは100モル%用いる。(B1)成分としては、特に一般式(2)の非イオン性化合物が好ましい。

[0029]

一般式 (2) ~ (4) において、 R^2 、 R^3 及び R^5 は、それぞれ炭素数 10 ~ 22、更に 14 ~ 20、特に 14 ~ 18 の直鎖のアルキル基又はアルケニル基が好ましく、特にオレイル基が好ましい。 R 及び R^4 は、それぞれ水素原子、炭素数 1 ~ 26 のアルキル基もしくはアルケニル基又は炭素数 6 ~ 35 のアリール基であり、水素原子、炭素数 1 ~ 8 のアルキル基、炭素数 2 ~ 8 のアルケニル基が好ましく、水素原子、炭素数 1 ~ 4 のアルキル基、炭素数 2 ~ 4 のアルケニル基が更に好ましく、特に水素原子、炭素数 1 ~ 2 のアルキル基、炭素数 2 ~ 4 のアルケニル基が更に好ましく、特に水素原子、炭素数 1 ~ 2 のアルキル基、炭素数 2 ~ 2 のアルケニル基が列ましい。

[0030]

(B1) 成分のうち、一般式(2) の非イオン性化合物としては、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテルが、一般式(3) の非イオン性化合物としては、ポリオキシアルキレンアルキルエステル、アルコキシポリオキシアルキレンアルキルエステルが、一般式(4) の非イオン性化合物としては、ポリオキシアルキレンアルキルアミン等が挙げられる。また、(B1) 成分の特定のアルキル基、アルケニル基、アリール基の代

[0031]

また、(B2) 成分としては、ポリオキシアルキレンアルキルエーテル硫酸塩やポリオキシアルキレンアルキルエーテルカルボン酸塩が好ましい。これらのポリオキシアルキレン部分の構造(炭素数、平均付加モル数等)やアルキル基の炭素数等については、(B1) 成分と同様である。

[0032]

水溶液性状の観点から、(B1)の方が、(B2)よりも好ましい。

[0033]

(A) 成分と(B) 成分とを併用する実施態様IIにおいて、モノエステル体/(モノエステル体+ジエステル体)の重量比は、(A) 成分の水硬性組成物の流動発現性がより向上するため、水溶液性状と水硬性組成物の流動性の両者の観点から、好ましくは0.5~0.95、より好ましくは0.7~0.95、さらに工業的な製造容易性の観点から、特に好ましくは0.7~0.85である。モノエステル体/(モノエステル体+ジエステル体)の重量比が0.4未満では、粘性低減効果の点と水溶液性状(添加剤の水溶液の粘度及び水溶液の均一性)の点で好ましくない。

[0034]

また、(A)成分と(B)成分とを併用する実施態様IIにおいて(A)成分の与える水硬性組成物の流動性がより向上するため、nは5~25が好ましく、8~20がさらに好ましく、8~15が特に好ましい。

[0035]

本発明の添加剤の水溶液性状、水硬性組成物の流動性及び工業的な製造容易性 についての総合的観点から、実施態様IIにおける(A)成分は、R¹のアルキル 基の炭素数x1又はアルケール基の炭素数y1、AO付加モル数n1及びモノエステル体/(モノエステル体+ジエステル体)の重量比z1は、

- (1-1) x1=10~22又はy1=10~22、n1=3~35、及びz1=0.50~0.95が好ましく、
- (1-2) x1=10~20又はy1=12~20、n1=5~25、及びz1=0.70~0.95がより好ましく
- (1-3) xl=12~18又はyl=14~18、nl=5~25、及びzl=0.70~0.95がさらに好ましく、
- (1-4) xl=14~18又はyl=16~18、nl=8~20、及びzl=0.70~0.85がさらに好ましく、
- (1-5) x1=14又はy1=18、n1=10~15、及びz1=0.70~0.85が特に好ましい。

[0036]

また、実施態様(II)では、(B)成分、特に(B 1)成分である一般式(2)~(4)の非イオン性化合物における R^2 、 R^3 及び R^5 のアルキル基もしくはアリール基の炭素数x2又はアルケニル基の炭素数y2、A O付加モル数n2は、

水硬性組成物の流動性の観点から、

x2=12~22又はy2=16もしくは18、n2=8~370が好ましく、

x2=14~22又はy2=18、n2=8~200がより好ましい。

[0037]

さらに、水硬性組成物の粘性低減の観点から、(A)/(B)の重量比は、9 9/1~10/90が好ましく、更に90/10~30/70が好ましく、特に 80/20~45/55が好ましい。

[0038]

<実施態様III>

本発明の水硬性組成物用添加剤は、(A)成分、(B)成分に加えて、水硬性組成物の流動性の保持性を向上する観点から、一般式(5)で表される単量体由来の構成単位と、一般式(6)で表される単量体由来の構成単位及び一般式(7)で表される単量体由来の構成単位から選ばれる一種以上の構成単位とを有する共重合体(C)[以下、(C)成分という]を含有することが好ましい。以下、本発明の水硬性組成物用添加剤において(A)成分と(B)成分と(C)成分と

[0039]

(C) 成分は、一般式(5)で表される単量体と、一般式(6)で表される単量体及び一般式(7)で表される単量体から選ばれる一種以上とを重合して得られる共重合体が挙げられる。一般式(5)で表される単量体としては、平均付加モル数1~300のオキシアルキレン基もしくはポリオキシアルキレン基を有するエチレン系不飽和カルボン酸エステルが好ましい。ここで、オキシアルキレン基はオキシスチレン基でもよく、ポリオキシアルキレン基はオキシスチレン基を含んでもよく、ポリオキシスチレン基でもよい。一般式(5)で表される単量体、一般式(6)で表される単量体及び一般式(7)で表される単量体は、それぞれ2種以上を併用してもよい。

[0040]

[化5]

$$R^{6}$$
 R^{7} (5)
$$C = C$$
 (5)
$$R^{8}$$
 $(CH_{2})_{m}(CO)_{p} - O - (AO)_{n1} - Y$

[0041]

〔式中、

 R^6 、 R^7 : それぞれ水素原子又はメチル基

m:0~2の数

R8:水素原子又は-COO(AO)_{nl}Y

p:0又は1の数

AO:炭素数2~4のオキシアルキレン基又はオキシスチレン基

n1:平均付加モル数であり1~300の数

Y:水素原子又は炭素数1~18のアルキル基もしくはアルケニル基

を表す。〕

【化6】

$$R^9$$
 $C=C$
 R^{10}
 $C+C$
 CH_2-X
 (7)

[0043]

〔式中、

 $R^{9}\sim R^{11}$: それぞれ、水素原子、メチル基又は $(CH_2)_{m1}COOM^2$ であり、 $(CH_2)_{m1}COOM^2$ は $COOM^1$ 又は他の $(CH_2)_{m1}COOM^2$ と無水物を形成していてもよく、その場合、それらの基の M^1 、 M^2 は存在しない。

 M^1 、 M^2 : それぞれ、水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基、アルキルアンモニウム基又は水酸基置換アルキルアンモニウム基

m1:0~2の数

[0044]

【化7】

$$X: SO_3Z$$
 Z Z CH_2-O-CO_3Z

[0045]

Z:水素原子、アルカリ金属、アルカリ土類金属、アンモニウム基、アルキルアンモニウム基又は水酸基置換アルキルアンモニウム基

[0046]

一般式(5)で表される単量体としては、メトキシポリエチレングリコール、 メトキシポリプロピレングリコール、メトキシポリブチレングリコール、メトキ シポリスチレングリコール、エトキシポリエチレンポリプロピレングリコール等 の片末端アルキル封鎖ポリアルキレングリコールと(メタ)アクリル酸、マレイ ン酸との(ハーフ)エステル化物や、(メタ)アリルアルコールとのエーテル化 物、及び(メタ)アクリル酸、マレイン酸、(メタ)アリルアルコールへのEO 、PO付加物が好ましく用いられ、R8は水素原子が好ましく、mは0が好まし く、pは1が好ましい。より好ましくはアルコキシ、特にはメトキシポリエチレ ングリコールと(メタ)アクリル酸とのエステル化物、さらに特に好ましくはメ トキシポリエチレングリコールとメタクリル酸とのエステル化物である。エステ ル化は単量体に行ってもよいし、上述の一般式(6)の単量体及び/又は一般式 (7) の単量体との共重合の後に行ってもよい。アルキレンオキサイドの平均付 加モル数 n 1 は流動性及び流動保持性に優れることから 1~300の範囲である が、更に8~200、特に20~150の範囲が好ましい。Yは炭素数1~4の アルキル基又はアルケニル基がより好ましく、特にメチル基が好ましい。アルキ レンオキサイドはEO又はEOとPOが好ましく、特にEOが好ましい。

[0047]

また、一般式(6)で表される単量体として、(メタ)アクリル酸、クロトン酸等の不飽和モノカルボン酸系単量体、マレイン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸系単量体、又はこれらの塩、例えばアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩等が挙げられ、好ましくは、(メタ)アクリル酸又はこれらのアルカリ金属塩であり、さらに好ましくは、メタクリル酸又はこれらのアルカリ金属塩であり、特に好ましくは、メタクリル酸又はこれらのナトリウム塩である。また、一般式(7)で表される単量体として、(メタ)アリルスルホン酸又はこれらの塩、例えばアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩等が挙げられ、特に好ましくは、メタリルスルホン酸又はそのナトリウム塩である。

(C) 成分の共重合体の重量平均分子量 [ゲルパーミエーションクロマトグラフィー法、ポリエチレングリコール換算、カラム:G4000PWXL + G2500PWXL (東ソー (株) 製)、溶離液:0.2Mリン酸緩衝液/アセトニトリル=7/3 (体積比)] は、水硬性粉体に対する充分な流動性及び流動保持性を得るため、1000~20万が好ましく、1.5万~10万が特に好ましい。

[0049]

(C) 成分は、一般式(5)で表される単量体(5)と、一般式(6)で表される単量体(6)及び一般式(7)で表される単量体(7)とを、(5)/[(6)+(7)]のモル比が99/1~1/99、更には60/40~1/99、特に40/60~5/95で用いて製造されることが好ましい。また、一般式(6)で表される単量体と一般式(7)で表される単量体のモル比(6)/(7)は100/0~80/20が好ましく、100/0~90/10が好ましい。

[0050]

なお、(C) 成分は、アクリロニトリル、(メタ) アクリルアミド、スチレン、(メタ) アクリル酸アルキル(水酸基を有していてもよい炭素数1~12のもの) エステル、スチレンスルホン酸等の共重合可能な単量体を併用してもよい。これらは全単量体中50重量%以下、更に30重量%以下の比率で使用できるが、0重量%が好ましい。

[0051]

(C) 成分の共重合体は、公知の方法で製造することができる。例えば、特開平11-157897号公報の溶液重合法が挙げられ、水や炭素数1~4の低級アルコール中、過硫酸アンモニウム、過酸化水素等の重合開始剤存在下、必要ならば、亜硫酸ナトリウムやメルカプトエタノール等を添加し、50~100℃で0.5~10時間反応させればよい。

[0052]

水硬性粉体の種類や水硬性組成物の用途等を考慮して、(C)成分の共重合体を2種以上併用することも好ましい。

[0053]

なお、実施態様IIIにおける(A)成分、(B)成分それぞれの具体的な化合物、モノエステル体/(モノエステル体+ジエステル体)重量比の範囲、(A) / (B) 重量比の範囲等は、実施態様 I 又は実施態様IIから適宜選択できる。

[0054]

また、(A) 成分と(C) 成分の重量比は、(A) / (C) = 9 9 / 1 \sim 1 0 / 9 0、更に 9 0 / 1 0 \sim 3 0 / 7 0、特に 8 0 / 2 0 \sim 4 5 / 5 5 であることが、流動保持効果の点で好ましい。

[0055]

<水硬性組成物用添加剤>

本発明の水硬性組成物用添加剤は、実施態様 I ~IIIの何れも、水の重量を低減できるので分散剤や流動化剤として、また粘性低減効果を有するので粘性低減剤等として用いることができる。

[0056]

本発明の水硬性組成物用添加剤は、実施態様 $I \sim III$ の何れも、水硬性粉末 1 0 0 重量部に対して、 (A) 成分が 0 . 0 $1 \sim 7$. 5 重量部、更に 0 . 0 $5 \sim 5$ 重量部、特に 0 . 0 $8 \sim 2$ 重量部となるように用いられることが、粘性低減効果の点で好ましい。

[0057]

また、(B) 成分は、水硬性粉末100重量部に対して、 $0.01\sim7.5$ 重量部、更に $0.05\sim5$ 重量部、特に $0.05\sim2$ 重量部となるように用いられることが、粘性低減効果の点で好ましい。

[0058]

また、(C)成分は、水硬性粉末100重量部に対して、 $0.01\sim5$ 重量部、更に $0.05\sim2$ 重量部、特に $0.05\sim1$ 重量部となるように用いられることが、流動保持効果の点で好ましい。

[0059]

また、(A)成分と(B)成分の重量比は、(A)/(B)=99/1~10/90、更に90/10~30/70、特に80/20~45/55であることが、粘性低減効果の点で好ましい。

さらに、(A)成分と(B)成分とを加えたものの、(A)成分、(B)成分及び(C)成分とを加えたもののに対する比率は、 $[[(A) + (B)]/[(A) + (B) + (C)]] \times 100 = 20 \sim 90$ 重量%、更に、 $30 \sim 80$ 重量%、特に $40 \sim 70$ 重量%が、水溶液性状の観点から好ましい。

[0061]

また、本発明の水硬性組成物用添加剤において、(A)成分と(B)成分と(C)成分との合計量〔(B)成分と(C)成分はそれぞれ0重量%でもよい〕の占める比率は、添加剤中に5~100重量%、更に10~100重量%、特に20~100重量%が好ましい。

[0062]

本発明の水硬性組成物用添加剤は、溶液として用いることが作業性の点で好ましい。溶媒として水や有機溶剤を用いることができ、水を溶媒とする水溶液として用いることが安全性の点で好ましく、(A)成分と(B)成分と(C)成分の合計(以下、有効分ともいう)の濃度を20重量%以上とした水溶液が、20℃で均一な外観を呈することが好ましい。また、当該水溶液の20℃における粘度が500mPa・s以下であることが好ましく、更に400mPa・s以下、更に1~400mPa・s以下、更に1~400mPa・s以下、更に1~200mPa・sとなることが、作業性の点で好ましい。

[0063]

本発明の水硬性組成物用添加剤には、他の成分、例えば(A)成分、(B)成分、(C)成分以外の構造を有する分散剤を併用してもよい。該分散剤とは一般にコンクリート用混和剤として使用されているものであればよいが、グルコン酸ナトリウム等のオキシカルボン酸もしくはその塩、ナフタレンスルホン酸塩ホルムアルデヒド縮合物、メラミンスルホン酸塩ホルムアルデヒド縮合物、ポリカルボン酸もしくはそのエステルもしくはその塩、精製リグニンスルホン酸もしくはその塩、ポリスチレンスルホン酸塩、フェノール骨格を有するセメント分散剤(例えば、フェノールスルホン酸と共重合可能な他の単量体とのホルムアルデヒド共縮合物)、アニリンスルホン酸を主成分とするセメント分散剤(例えば、アニ

[0064]

また、(C) 成分の共重合体の代わりに、特開平11-139855号公報の特許請求の範囲に記載されているような、エチレン性不飽和単量体をポリエーテル化合物にグラフト重合してなる重合体を用いることもできる。

[0065]

以上の実施態様に係る本発明の添加剤は、水溶液性状が良好で、コンクリート等の水硬性組成物に使用すると、水硬性組成物に良好な流動性を付与した上で、その粘性を低減でき、さらに、かかる水硬性組成物のフレッシュ性状を安定に発現できるため、ポンプ圧送、打ち込み、型枠への充填等の水硬性組成物を使用する際の作業性、施工性が大幅に改善される。

[0066]

また、本発明の水硬性組成物用添加剤は公知の添加剤(材)と併用することができる。一例を挙げれば、AE剤、流動化剤、遅延剤、早強剤、促進剤、起泡剤、保水剤、増粘剤、防水剤、消泡剤、収縮低減剤、水溶性高分子等や珪石粉末、高炉スラグ、フライアッシュ、シリカフューム等が挙げられる。

[0067]

なかでも、消泡剤を含有することが好ましい。消泡剤 [(B) 成分を除く] としては、(1) メタノール、エタノール等の低級アルコール系、(2) ジメチルシリコーンオイル、フルオロシリコーンオイル等のシリコーン系、(3) 鉱物油と界面活性剤の配合品等の鉱物油系、(4) リン酸トリブチル等のトリアルキルリン酸エステル系、(5) オレイン酸、ソルビタンオレイン酸モノエステル、ポリエチレングリコール脂肪酸エステル、ポリエチレングリコール/ポリプロピレングリコール脂肪酸エステル等の脂肪酸又は脂肪酸エステル系、(6) ポリプロピレングリコール、ポリエチレングリコール/ポリプロピレングリコール、ポリエチレングリコール/ポリプロピレングリコールアルキルエーテル等のポリオキシアルキレン系が挙げられる。好ましくは、脂肪酸又は脂肪酸エステル系消泡剤、シリコーン系消泡剤、ポリオキシアルキレン系消泡剤及びトリアルキルリン酸エステル系消泡剤から選ばれる1種以上の消泡剤であり

、本発明の水硬性組成物用添加剤との混合安定性の観点から、より好ましくは脂肪酸又は脂肪酸エステル系消泡剤、シリコーン系消泡剤、ポリオキシアルキレン系消泡剤から選ばれる1種以上の消泡剤であり、さらに好ましくは脂肪酸又は脂肪酸エステル系消泡剤、シリコーン系消泡剤から選ばれる1種以上の消泡剤であり、特に好ましくはシリコーン系消泡剤である。消泡剤の添加量は、水硬性組成物の用途により要求される空気量の範囲が異なるが、水硬性組成物の強度や凍結融解抵抗性の観点から、本発明の添加剤中の(A)成分と(B)成分と(C)成分の合計量100重量部に対し0.01~10重量部が好ましく、0.05~5重量部が更に好ましく、0.1~3重量部が特に好ましい。

[0068]

<水硬性組成物>

本発明は、上記本発明の水硬性組成物用添加剤と、水硬性粉体と、水とを含有する水硬性組成物に関する。

[0069]

本発明の水硬性組成物においては、水硬性粉体100重量部に対して、(A)成分を0.01~7.5重量部、更に0.05~5重量部含有することが好ましい。また、本発明の水硬性組成物においては、水硬性粉体100重量部に対して、(A)成分と(B)成分と(C)成分の合計量を0.01~10重量部、更に0.01~7.5重量部、特に0.05~3重量部含有することが好ましい。

[0070]

本発明の水硬性組成物用添加剤は土木、建築、二次製品等のセメント類の水硬性組成物に使用するもので、特に限定されるものではない。本発明の添加剤が良好に機能する水硬性組成物は、水、セメント、骨材を含有する、ペースト、モルタル又はコンクリートである。

[0071]

セメントとして、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、エコセメント (例えばJIS R5214等) が挙げられる。本発明の水硬性組成物には、セメント以外の水硬性粉体として、高炉スラグ、フライアッシュ、シリカヒューム等が含まれてよく、また、非水硬性の

[0072]

また、本発明の水硬性組成物は骨材を含有してもよい。骨材として細骨材や粗骨材等が挙げられ、細骨材は山砂、陸砂、川砂、砕砂が好ましく、粗骨材は山砂利、陸砂利、川砂利、砕石が好ましい。用途によっては、軽量骨材を使用してもよい。なお、骨材の用語は、「コンクリート総覧」(1998年6月10日、技術書院発行)による。

[0073]

水硬性組成物の水/水硬性粉体比〔組成物中の水と水硬性粉体の重量百分率(重量%)、以下、W/Pと表記する。〕は、60%以下、更に5~55%、より更に5~50%、特に5~40%、更に5~35%であってもよい。W/Pの値が小さいほど、本発明の水硬性組成物が有する低い粘性特性が顕著になる。

[0074]

本発明の水硬性組成物として、さらに好ましい例について説明する。

< (1) 振動製品用水硬性組成物>

側溝、ボックスカルバート、セグメント等のコンクリート製品(振動製品ともいう)は、相対的にセメント量及び細骨材量が少なく、粗骨材が多い、極めて流動性に乏しいフレッシュコンクリートを型枠に充填して、強い振動を加えて成形する方法が主流である。

[0075]

かかる振動製品は、硬化後の製品表面に充填不足に伴う残留気泡が少なく、表面が平滑に仕上がることが好ましいが、従来のコンクリート用減水剤により調製されたフレッシュコンクリートでは、モルタル粘性が大きいために、気泡を振動によって十分に抜くことができず、残留気泡が多く、良好な硬化体表面を得ることができなかった。

[0076]

本発明の添加剤を、振動製品用減水剤として使用すると、低い粘性のモルタル を得ることができるため、気泡が残留し難く、硬化体の表面を良好に仕上げるこ とができ、さらに、従来と同等の硬化体表面状態であれば、振動強度を低減して振動に伴う騒音を改善することができる。振動製品用水硬性組成物においては、本発明の添加剤は、水硬性粉体100重量部に対して(A)成分が0.01~7.5重量部、更に0.05~5重量部、特に0.08~2重量部となるように用いることが好ましい。

[0077]

<(2)高強度用水硬性組成物>

W/Pが40%以下、更に5~40%、より更に5~30%、特に5~20% のいわゆる高強度若しくは超高強度域の水硬性組成物では、多量の水硬性粉体を少量の水で分散することが要求される。従来の水硬性組成物用分散剤では流動性を確保できても、W/Pの低下に伴ない水硬性粉体の粘性が急激に増加し、型枠への充填性が悪化するという課題があった。

[0078]

本発明の添加剤を使用すると、低W/Pの水硬性組成物の粘性を低減するため、かかる課題の解決に大いに寄与することができる。

[0079]

さらに、水硬性組成物を構成する細骨材として特定の粒度分布を有するものを使用すると、低W/Pの高強度用水硬性組成物の粘性がさらに低減でき、前記課題をより高いレベルで解決できる。

[0080]

即ち、水硬性組成物の細骨材として、粒度分布が、JIS A 1102で用いられる呼び寸法0.3mmのふるいの通過率(以下、0.3mm通過率という)が1重量%以上10重量%未満で、かつ、粗粒率が2.5~3.5である細骨材(以下、細骨材Aという)を用いることが好ましい。

[0081]

細骨材Aは、より好ましくは、0.3 mmを超えるふるい呼び寸法における通過率が標準粒度分布の範囲内にあることである。

[0082]

本発明において、細骨材Aの0.3mm通過率は、水硬性組成物の流動性の観

[0083]

従って、流動性保持と材料分離抵抗性の観点から、0.3 mm通過率は1%以上10%未満が好ましく、より好ましくは3%以上9%以下、更に好ましくは5%超7%以下である。

[0084]

以上の要件に加え、細骨材Aは、粗粒率(JIS A0203-3019)が $2.5 \sim 3.5$ であることが好ましく、より好ましくは $2.6 \sim 3.3$ で、更に好ましくは $2.7 \sim 3.1$ である。粗粒率が 2.5 以上では、コンクリートの粘性が低減され、粗粒率が 3.5 以下では、材料分離抵抗性も良好となる。

[0085]

さらに、細骨材AのJIS A 1102で用いられる呼び寸法0.3mmを超えるふるいの通過率が、JIS A 5308付属書1表1の砂の標準粒度の範囲内であることが好ましい。より好ましくは、呼び寸法0.15mmのふるいの通過率が2重量%未満であり、更に好ましくは1.5重量%未満である。ただし、材料分離抵抗性の観点から、0.5重量%以上であることが好ましい。呼び寸法0.3mmを超えるふるいについては、1つ以上の呼び寸法で、通過率が標準粒度の範囲内にあればよいが、好ましくは全部について標準粒度の範囲内にあることである。

[0086]

細骨材Aとしては、上記の粒度分布と粗粒率を満たす限り、砂、砕砂等、公知のものを適宜組み合わせて使用できる。本発明に使用できる細骨材としては、中国福建省ミン江等、特定地域の川砂が挙げられる。細孔が少なく、吸水性が低く、同じ流動性を付与するのに少量の水でよい点から、海砂よりも川砂、山砂、砕砂が好ましい。また、細骨材Aは、絶乾比重(JIS A 0203:番号3015)が2.56以上であることが好ましい。

なお、上記細骨材Aは、高強度用水硬性組成物以外の水硬性組成物に用いることもできる。

[0088]

高強度用水硬性組成物においては、本発明の添加剤は、水硬性粉体100重量部に対して(A)成分が0.05~10重量部、更に0.08~7.5重量部、特に0.1~4重量部となるように用いることが好ましい。

[0089]

<(3)エコセメント配合水硬性組成物>

省資源の観点から、リサイクル材料や種々無機物質の副生物等を水硬性組成物の主力材料であるセメントに積極的に混在させる試みが近年行われている(特開平11-228197号、特開2003-146726号)。かかる材料、例えば、都市ゴミ焼却灰、下水汚泥焼却灰の一種以上を原料としてなる焼成物であって、C₁₁A₇C_aC₁₂、C₁₁A₇C_aF₂、C₃Aの一種以上を10~40重量%およびC₂S、C₃Sの一種以上を含む焼成物と石膏からなる水硬性組成物(いわゆる、エコセメント)を低W/Pで使用した場合にも、本発明の水硬性組成物用添加剤を使用すると、水硬性組成物の粘性が低く、流動性及び流動保持性の良好なフレッシュ性状を得ることができる。

[0090]

<硬化体>

上記本発明の水硬性組成物から得られる硬化体としては、構造物やコンクリート製品が挙げられ、構造物として、例えば、鉄筋コンクリート、鉄骨鉄筋コンクリート造建築物の柱、梁、床板、耐力壁等の主要部や、道路、橋梁、橋脚、桁、トンネル、水路、ダム、下水道、防波堤、擁壁等、土木構造物が挙げられる。コンクリート製品として、例えば、カルバート、側溝、セグメント等の振動成形製品やポール、パイル、ヒューム管等の遠心成形製品が挙げられる。

[0091]

(メカニズム)

本発明の添加剤の水硬性粉体等への吸着、分散、流動機構は、現在のところ明

[0092]

(B) 成分を併用した場合、吸着力のほとんどない(B) 成分は、ジエステル体と同じように、モノエステル体によって形成された疎水部に、(B) 成分の疎水基(アルキル基又はアルケニル基等)が配列(挿入)されて外層を形成し、外に向けた親水部で水硬性粉体を分散すると考えられる。(B) 成分の両末端が疎水基の化合物は、親水部を外に向けると考えられる。これら2重層の形成は、内層、外層と順番に起こるというよりも、同時に起こるものと予想される。

[0093]

(C) 成分を併用する場合、(A) 成分又は(A) 成分と(B) 成分の水硬性粉体等への吸着速度は(C) 成分に比べて速く、(C) 成分は後から吸着する。まず、(A) 成分又は(A) 成分と(B) 成分が、水硬性組成物の混練直後から水硬性粉体等を細かく分散し、低い粘性特性を発揮する。そして、時間が経過すると水硬性粉体等は水和によって比表面積が増加するので、流動性の低下が起こるところ、(C) 成分が徐々に水硬性粉体等に吸着することで、流動保持性を発揮すると考えられる。

[0094]

【発明の効果】

本発明によれば、水硬性組成物、特に水と水硬性粉体とのスラリーからなる水 硬性組成物に対して、極めて優れた粘性低減効果及び流動性を示す水硬性組成物 用添加剤が得られる。また、本発明の添加剤は、添加剤中の有効分濃度が20重 量%以上の水溶液とした場合でも、均一で粘度の低いものとなるため、作業性も 格段に向上する。更に、(B)成分を併用することにより水硬性組成物に対する

[0095]

【実施例】

以下において、各成分の製造例で、単に%と記載するものは重量%を意味する

[0096]

<(A)成分>

実施例及び比較例に用いた(A)成分は表1の通りであり、それらは以下の製造例 $A-1\sim A-3$ に準じて製造した。なお、表1中の原料アルコールの商品名は以下のものを表す。

- ・ソフタノール70:株式会社日本触媒製、第2級アルコール(炭素数12~14)のEO付加物(平均付加モル数7)
- ・ファインオキソコール180N:日産化学工業株式会社製、多分岐鎖合成アルコール (炭素数18)

[0097]

なお、表1中のモノエステル体比率は、以下の方法で算出したものである。 (モノエステル体比率の計算方法)

加水分解反応前後の反応生成物(製造工程において加水分解反応をしない場合についても、モノエステル体の比率を計算するために、仕込み総量に対して5重量%の加水分解用水を添加し、80℃で6時間加水分解反応を行い、加水分解反応後の反応生成物を得る)のそれぞれ酸価1、酸価2、酸価3を測定し、これらの値より、計算により求めた。酸価は、反応生成物をエタノール/水(70体積%/30体積%)に溶解して、0.5mol/1水酸化カリウム水溶液(試薬)を滴定標準液として、電位差自動滴定装置AT-500(京都電子工業)を使用し、多段階滴定によって測定した。反応生成物の酸価1と酸価2は続けて測定を行う。酸価3については、酸価1と酸価2とは別のサンプルで測定する。酸価1の測定と同様に測定を始め、酸価1の滴定終了後にすばやく、測定液に1M塩化カルシウム水溶液を約20m1加える。いくつか滴定終点が出る場合があるが、

[0098]

リン酸モノエステルは酸価1と酸価2を、リン酸ジエステルは酸価1のみを、 ピロリン酸ジエステルは酸価1のみを、ピロリン酸は酸価1と酸価2を、リン酸 は酸価1と酸価2と酸価3をもつ。加水分解反応によって、ピロリン酸ジエステ ルはリン酸モノエステル2つに、ピロリン酸はリン酸2つに分解される。

[0099]

加水分解反応前後で、酸価1は変化しないので、加水分解反応後の酸価1が加水分解反応前の酸価1と等しくなるように、加水分解反応後の酸価2と酸価3の値を比例計算により補正した。加水分解反応前の酸価1、酸価2、酸価3をそれぞれ、k、m、n、加水分解反応後の酸価2、酸価3をp、qとした。リン酸モノエステル体モル量、リン酸ジエステル体(ピロ体を含まない、本計算中で以下同様)モル量およびピロリン酸ジエステル体モル量は次式で得られる。

リン酸モノエステル体モル量 (mol) = (-k+m+p-q)/56108

リン酸ジエステル体モル量 (mol) = (2k-p)/56108

ピロリン酸ジエステル体モル量 (mol) = (-0.5m+0.5p)/56108

[0100]

一方、原料であるポリオキシアルキレンアルキルエーテルの水酸基価より、ポリオキシアルキレンアルキルエーテルの分子量(56108/水酸基価)が求められ、それをMとすると、リン酸モノエステル体、リン酸ジエステル体およびピロリン酸ジエステル体の分子量(それぞれMw1、Mw2、Mw3とする)は次式で得られる。

リン酸モノエステル体分子量;Mw1 = M+80.0

リン酸ジエステル体分子量;Mw2 = 2M+62.0

ピロリン酸ジエステル体分子量;Mw3 = 2M+141.9

[0101]

モノエステル体比率は次式で求めた。

モノエステル体比率= (リン酸モノエステル体モル量) $\times Mw1/$ [(リン酸モノエステル体モル量) $\times Mw1+$ (リン酸ジエステル体モル量) $\times Mw2+$ (ピロリン酸

ここで、酸価および水酸基価の単位は、mgKOH/gである。

[0102]

(1) 製造例A-1

[0103]

反応生成物の酸価1を測定し、酸価1に対して中和度が0.5から1.0であって、且つ濃度が20重量%となるように、水道水と48%-水酸化カリウム水溶液で調整し、表1中の(A)成分a-12を得た。a-19もこの方法に準じて製造した。中和前の熟成を24時間行った以外はこの方法に準じてa-14を製造した。

[0104]

また、a-1、a-5、、a-15、a-20、a-22及びa-23をこの方法に準じて製造したが、無水リン酸の添加後の熟成を行った後、16.2gの水道水を添加し、液温度を80 \mathbb{C} に調整し、更に2 時間加水分解反応させた。

[0105]

(2) 製造例A-2

撹拌機付き反応容器に、ミリスチルアルコールのEO付加物(平均付加モル数 10)(水酸基価 85.0) 300 g(0.45 モル)を仕込み、撹拌しながら 窒素置換し、窒素雰囲気とした。80 ℃まで加熱し、減圧下で含有水分を除去した。常圧、60 ℃にした後、リン酸(純度 85 %)を 9.61 g(0.08 モル)滴下する。完全に均一状態になった後、市販無水リン酸(純度 98 %)を 26 . 8 g(0.18 モル)添加した。無水リン酸の添加は 3 回に分けて行った。添加後、液温度を 65 ~ 75 ℃に調整し、6 時間熟成を行った。16.8 gの水道

[0106]

反応生成物の酸価 1 を測定し、酸価 1 に対して中和度が 0. 5 から 1. 0 であって、且つ濃度が 2 0 重量%となるように、水道水と 4 8 % - 水酸化カリウム水溶液で調整し、表 1 中の(A)成分 a - 3 を得た。また、a - 2 、a - 4 、a - 6 、a - 8 、a - 9 、a - 1 0 、a - 1 3 、a - 1 6 、a - 1 7 、a - 1 8 及びa - 2 1 e 、この方法に準じて製造した。リン酸(純度 8 5 %)を滴下後、液が均一になりにくいときは液温度を 8 0 \mathbb{C} にして撹拌した。

[0107]

(3) 製造例A-3

撹拌機付き反応容器に、オキシ塩化リン38.7g(0.25モル)とテトラハイドロフラン(THF)500gを仕込み、よく撹拌した。ドライアイスーイソプロピルアルコール浴を使用し、液温度が-30 $\mathbb C$ 以下となるようにし、撹拌した。オレイルアルコールの $\mathbb C$ O付加物(平均付加モル数9)(水酸基価85.8)150g(0.23モル)とトリエチルアミン23.2g(0.23モル)をTHF400gに溶解した液を、前述の液に滴下した。このとき、液温度が-30 $\mathbb C$ 以下となるように滴下量をコントロールした。反応が進み、液粘度が大きくなりすぎたので、THFを更に500g追加した。滴下終了後、1時間後、氷浴に変更し、0 $\mathbb C$ $\mathbb C$ $\mathbb C$ 5時間熟成した。

[0108]

反応液中の不溶物を吸引口過で除去した。口液を撹拌機付き反応容器に移し、 蒸留水35gを加え、40℃で1時間加水分解反応を行う。エバポレーターでト ッピングし、THFを除去した。

[0109]

反応生成物の酸価1を測定し、酸価1に対して中和度が1.0であって、且つ 濃度が20重量%となるように、水道水と48%-水酸化ナトリウム水溶液又は 48%水酸化カリウム水溶液で調整し、表1中の(A)成分a-7を得た。

[0110]

また、a-11をこの方法に準じて製造したが、オキシ塩化リン16.8g(

0.11モル)とテトラハイドロフラン(THF)500gの混合液の液温度が-10 ℃となるようにし、撹拌し、オレイルアルコールのEO付加物とトリエチルアミンをTHFに溶解した液を、前述の液に滴下したときに、液温度が-10 ~ 0 ℃となるように滴下量をコントロールし、滴下終了後、4時間後、氷浴に変更し、0 ℃で12時間熟成した。

[0111]

<(B)成分>

実施例及び比較例に用いた(B)成分は表2の通りであり、非イオン性界面活性剤等、一般的な非イオン性化合物の製造方法によって得ることができる。製造例B-1にポリオキシアルキレンアルキルエーテル [ミリスチルアルコールE〇(平均付加モル数16)付加物]の製造方法を示す。

[0112]

(1) 製造例B-1

[0113]

<(C)成分>

実施例及び比較例に用いた(C)成分は表3の通りであり、それらは以下の製造例 $C-1\sim C-3$ に準じて製造した。

[0114]

(1) 製造例 C-1

温度計、撹拌機、滴下ロート、窒素導入管及び環流冷却器を備えたガラス製反応容器に、水366重量部を仕込み、窒素置換を行った。続いて窒素雰囲気下で80℃まで昇温した後、メタノールE〇(平均付加モル数120)付加物・メタクリル酸モノエステルの60%水溶液898重量部及びメタクリル酸34.4重

[0115]

(2) 製造例C-2

温度計、撹拌機、滴下ロート、窒素導入管及び環流冷却器を備えたガラス製反応容器に、水70モルを仕込み、撹拌しながら窒素置換し、窒素雰囲気下で75 \mathbb{C} まで昇温した、メタノールE〇(平均付加モル数120)付加物・メタクリル酸モノエステル0. 1モルとアクリル酸メチル0. 7モルとメタクリル酸0. 2 モルとを混合溶解したものと、20%-過硫酸アンモニウム水溶液0. 05モル(有効分換算、以下、本製造例の水溶液について同様)と、20%-2-メルカプトエタノール水溶液0. 1モルとの3者を一緒に2時間かけて滴下した。次に20%-過硫酸アンモニウム水溶液0. 02モルを30分かけて滴下し、1時間同温度($75\mathbb{C}$)で熟成した。熟成後 $95\mathbb{C}$ に昇温して35%-過酸化水素水0. 2モルを30分かけて滴下し、2時間同温($95\mathbb{C}$)で熟成後、48%-水酸化ナトリウム水溶液0. 07モルを添加し、重量平均分子量40, 000の共重合体100年に

[0116]

(3) 製造例 C-3

特開 $2\ 0\ 0\ 1\ -\ 1\ 8\ 0\ 9\ 9\ 8$ 号公報の実施例 $8\$ に準じて共重合体 $c\ -\ 3\$ を得た。但し、該公報における単量体($A\ -\ IV$)に代えて、メタノール $E\ O$ (平均付加モル数 $1\ 2\ 0$)付加物・メタクリル酸モノエステルを使用した。

実施例1

表1の(A)成分を用いて表4に示す添加剤を調製し、以下の添加剤水溶液の物性評価と以下のモルタル配合に対する性能評価を以下の試験方法により行った。(A)成分は、モルタルフロー180±30mmを目標値として添加した。結果を表4に示す。

[0118]

(1) モルタル配合

セメント:1100g(太平洋セメント株式会社製普通ポルトランドセメントと住友大阪セメント株式会社製普通ポルトランドセメントの1:1混合物、比重3.16)

水道水:440g (添加剤及び消泡剤を含む)

砂:1925g(千葉県君津産陸砂、表乾比重2.63)

W/P:40.0%

[0119]

(2)評価項目

(2-1)モルタル流動性

JIS R 5201に規定されるモルタルミキサーを使用して、上記配合成分を混練(63rpm、90秒)し、モルタルを調製し、モルタルフローを測定してモルタル流動性の指標とした。モルタルフローは、JIS R 5201に記載のフローコーン(上径70mm×下径100mm×高さ60mm)を使用して測定した。

[0120]

(2-2) モルタル粘性

上記(2-1)で得られるモルタルを用い、ロート型装置(上部内径100mm×下部内径14mm×長さ328mm)でモルタルの流下時間(秒)を測定し、モルタル粘性の指標とした。すなわち、上記条件で混練後のモルタルを、ステンレス鋼(SUS 304)を加工して作製した図1の形状の装置に、下部排出口2を閉じた状態で充填し上部投入開口1の面で擦り切った後、下部排出開口2

[0121]

(2-3) 水溶液の状態

添加剤の水溶液〔添加剤の(A)成分と(B)成分と(C)成分の合計量の濃度が20重量%となる水溶液〕の状態を、調製後20℃で24時間静置後、目視で観察した。水溶液が均一である場合は、20℃における粘度を、 $Programmable viscometer DVII+(Brookfield社製)を使用して測定し、以下の基準で評価した。この評価が<math>\triangle$ 、〇又は \bigcirc であれば、ポンプ輸送性等において問題のない水溶液性状であると言える。

○:粘度が150mPa·s未満

〇:粘度が150mPa・s以上300mPa.s未満

△:粘度が300mPa·s以上500mPa. s未満

×:粘度が500mPa. s以上、又は水溶液が不均一

[0122]

(2-4) 製造容易性

製造例A-3のように、反応温度を0 \mathbb{C} 未満にしなければならないような(A)成分の製造方法は極めて大きな製造コストもかかるため、工業的には不利である。このため、反応温度が0 \mathbb{C} 未満の場合は製造容易性 \times 、0 \mathbb{C} 以上の場合は製造容易性 \mathbb{C} とした。

[0123]

実施例2

表1の(A)成分と表2の(B)成分を用いて表5に示す添加剤を調製し、実施例1と同様にモルタルに対する性能評価と添加剤の水溶液の物性評価を行った。結果を表5に示す。

[0124]

実施例3

表1の(A)成分、表2の(B)成分、及び表3の(C)成分を用いて表6に

[0125]

実施例4

表1の(A)成分、表2の(B)成分、及び表3の(C)成分を用いて表7に示す添加剤を調製し、実施例1と同様にモルタルに対する性能評価を行った。結果を表7に示す。モルタル流動性は、以下のようなモルタル配合を用い、混練条件は、63rpmで1分、次いで126ppmで1分として、初期モルタルフロー〔接水(水を加えてから)の約2分30秒後に相当〕を測定し、接水30分後、60分後、90分後に、再度混練(63rpm、10秒)し、それぞれのモルタルフローを測定し、流動保持性の指標とした。このとき添加剤は、初期モルタルフローを測定し、流動保持性の指標とした。また、モルタル粘性(流下時間)は、別途、初期モルタルフローが240±5mmとなるように添加剤量を調整して混練(63rpmで1分、次いで126ppmで1分)して得たモルタルを用いて測定した。結果を表7に示す。

(1) モルタル配合

セメント:1250g (宇部三菱セメント株式会社製シリカヒュームセメント、 比重3.08)

水道水:312.5g(添加剤及び消泡剤を含む)

砂:1500g(千葉県君津産陸砂、表乾比重2.63)

W/P:25.0%

[0126]

		1		T
記号	モノエステル体 比率*1	原料化合物*2	製造例	製造容易性
a-1	0.42	デシルアルコールEO(3)付加物	A-1	0
a-2	0.80	ソフタノール70	A-2	0
a-3	0.78	ミリスチルアルコールEO(10)付加物	A-2	0
a-4	0.83	ミリスチルアルコールEO(20)付加物	A-2	0
a-5	0.51	オレイルアルコールEO(9)付加物	A-1	0
a-6	0.72	オレイルアルコールEO(9)付加物	A-2	0
a-7	1.0	オレイルアルコールEO(9)付加物	A-3	×
a-8	0.80	オレイルアルコールEO(15)付加物	A-2	0
a-9	0.83	オレイルアルコールEO(20)付加物	A-2	0
a-10	0.75	ファインオキソコール180Nの EO(10)付加物	A-2	0
a-11	0.10	オレイルアルコールEO(9)付加物	A−3	×
a-12	0.29	オレイルアルコールEO(4)付加物	A-1	0
a-13	0.78	オレイルアルコールEO(16)付加物	A-2	0
a-14	0.42	メタノールEO(9)付加物	A-1	0
a-15	0.53	オレイルアルコールEO(20)付加物	A-1	0
a-16	0.79	ヘキサノールEO(10)付加物	A-2	0
a-17	0.84	ミリスチルアルコールEO(12)付加物	A-2	0
a-18	0.81	ミリスチルアルコールEO(14)付加物	A-2	0
a-19	0.33	オレイルアルコールEO(20)付加物	A−1	0
a-20	0.54	ミリスチルアルコールEO(4)付加物	A-1	0
a-21	0.76	ミリスチルアルコールEO(8)付加物	A-2	0
a-22	0.51	ミリスチルアルコールEO(10)付加物	A-1	0
a-23	0.83	ミリスチルアルコールEO(25)付加物	A-2	0

^{*1} モノエステル体/(モノエステル体+ジェステル体)重量比

[0]127]

^{*2} 原料化合物の()内の数字は平均付加モル数(以下同様)

記号	The A letter
b-1	化合物 ミリスチルアルコールEO(8)付加物
b-2	
b-3	ミリスチルアルコールEO(16)付加物
b-4	ミリスチルアルコールEO(40)付加物
	ミリスチルアルコールEO(60)付加物
b-5	ミリスチルアルコールEO(80)付加物
b-6	ミリスチルアルコールEO(100)付加物
b-7	オレイルアルコールEO(9)付加物
b-8	オレイルアルコールEO(20)付加物
b-9	オレイルアルコールEO(60)付加物
b-10	モノステアリン酸EO(45)エステル
b-11	ステアリルアミンEO(45)付加物
b-12	牛脂組成アルキルアミンEO(100)付加物
b-13	牛脂組成アルキルアミンEO(400)付加物
b-14	硬化ビマシ油EO(80)付加物
b-15	ソルビトールテトラオレートEO(60)付加物
b-16	ジスチレン化フェノールEO(64)付加物
b-17	ソルビタンモノオレートEO(20)付加物
b-18	ラウリルアルコールEO(5)PO(4.5)EO(5)付加物 (ブロック、EO69モル%)
b-19	ベヘニルアルコールEO(50)付加物
b-20	混合(ステアリル/パルミチル=88/12、重量比)アルコール EO(300)付加物
b-21	混合(ステアリル/パルミチル=88/12、重量比)アルコール EO(300)PO(70)付加物(ブロック、EO85モル%)
b-22	オレイルアルコールEO(40)付加物
b-23	POE(23)オレイルエーテル硫酸Na塩
b-24	POE(40)ラウリルエーテルカルボン酸Na塩

[0128]

記号	共重合体	Mw	製造例
c-1	メタノールEO(120)・メタクリル酸モノエステル/メタクリル酸 (20/80)共重合体Na塩	53000	C-1
c-2	メタノールEO(120)・メタクリル酸モノエステル/アクリル酸メチル/ メタクリル酸(10/70/20)共重合体Na塩	40000	C-2
c-3	メタノールEO(120)・メタクリル酸モノエステル/メタノールEO(9)・ メタクリル酸モノエステル/メタクリル酸(6/49/45)共重合体Na塩	67000	C-3
c-4	メタノールEO(18)・メタクリル酸モノエステル/メタクリル酸(37/63) 共重合体Na塩	25000	C-1
c-5	マリアリムAKM-60F[日本油脂株式会社製、ポリオキシエチレン モノアリルモノメチルエーテル/無水マレイン酸/スチレン共重合体]	24000	_ (市販品)

^{*}単量体比率はモル比

[0129]

		(A)成	 分				
		種類	添加量(重量%)	モルタルフロー (mm)	流下時間 (秒)	水溶液 の状態	
	1-1	a-1	0.90	184	10.2	Δ	
	1-2	a-4	0.45	172	14.8	0	
	1-3	a-5	0.85	194	13.9	0	
実施	1-4	a-5/a-6=1/1 (重量比)	1.00	185	16.7	0	
例	1-5	a-8	0.50	179	15.5	0	
	1-6	a-9	0.35	175	14.7	© ·	
	1-7	a-10	0.67	176	16.0	0	
	1-8	a-15	0.33	188	16.4	0	
	1-1	c-4	0.12	164	23.2	0	
	1-2	c-4	0.13	185	18.8	0	
	1-3	c-4	0.14	204	17.2	0	
比較	1-4	a-7	2.00	103	測定不能	0	
例	1-5	a-11	1.00	110	測定不能	×	
	1-6	a-12	0.80	190	14.2	×	
	1-7	a-14	2.10	164	22.2	0	
	1-8	a-16	2.00	105	測定不能	0	

[0130]

なお、表4の結果のうち、流下時間とモルタルフローの関係をグラフ化したものを図2に示した。

[0131]

_								
		(A)成分	(B) 成分	(A)/(B) 重量比	(A)+(B) 添加量 (重量%)	モルタル フロー (mm)	流下時間(秒)	水溶液 の状態
1	2-1	a-2	b−7	1/1	1.00	192	15.1	0
	2-2	a-3	b-3	1/1	0.37	203	12.7	1 8
	2-3	a-3	b-7	1/1	0.44	180	14.2	1 <u></u>
	2-4	a-3	b-10	1/1	0.37	211	13.3	0
	2-5	a-3	b-11	1/1	0.44	170	14.2	1 6
	2-6	a-3	b-11	1/1.6	0.485	156	18.5	0
1	2-7	a-3	b-13	1/1	0.54	168	15.5	0
ł	2-8	a-3	b-14	1/1	0.37	201	13.4	0
1	2-9	a-3	b-15	1/1.6	0.485	167	17.8	0
	2-10		b-16	1/1	0.44	206	12.5	0
1	2-11		b-17	1/1	0.48	182	15.0	0
	2-12		b-3	1/1	0.59	170	16.6	6
1	2-13		b-1	1/1	0.54	189	12.5	8
	2-14		b-2	1/1	0.46	181	13.6	6
	2-15		b-3	1/1	0.70	193	13.8	6
1	2-16		b-3	1/1	0.42	186	14.2	8
	2-17	a-6	b-3	1/1	0.40	199	13.6	0
実	2-18		b−3	1/1	0.64	177	16.9	6
施	2-19		b-4	1/1	0.37	193	13.7	0
例	2-20		b~5	1/1	0.36	195·	13.5	6
	2-21	a-6	b-6	1/1	0.50	185	13.4	0
	2-22	a-6	b-7	1/1	0.40	191	11.7	6
1	2-23	a-6	b-18	1/1	0.64	163	14.6	0
	2-24	a-9	b-3	1/1	0.44	186	13.6	0
1	2-25	a-5	b-4	1/1	0.44	189	16.2	6
	2-26	a-6	b-4	1/1	0.36	201	13.4	6
1	2-27	a-6	b-19	1/1	0.28	212	13.3	8
	2-28	a-6	b-20	1/1	0.32	174	18.2	6
1	2-29	a-6	b-21	1/1	0.40	174	15.8	0
	2-30	a-20	b-3	1/1	0.90	185	15.8	ŏ
	2-31	a-21	b-3	1/1	0.70	192	14.5	0
	2-32	a-3/a-22=1/1 (重量比)	b-3	1/1	0.35	198	13.0	0
	2-33	a-22	b-3	1/1	0.31	195	13.3	0
	2-34	a-23	b-3	1/1	0.65	193	13.2	6
1 1	2-35	a-23	b-23	1/1	0.48	185	14.2	8
	2-36	a-23	b-24	1/1	0.65	190	13.7	8
┝┷┩	2-37	a-3	b-12	1/1	0.54	178	15.4	0
	2-1	(c-4)			0.12	164	23.2	0
出	2-2	(c-4)		_	0.13	185	18.8	8
較	2-3	(c-4)			0.14	204	17.2	-
例	2-4	a-11	b-1	1/1	1.00	114	測定不能	×
	2-5	a-16	b-3	1/1	1.00	105	測定不能	<u></u>
							NAVE LIBE	

[0132]

なお、表5の結果のうち、流下時間とモルタルフローの関係をグラフ化したも

[0133]

【表 6】

Γ	夜號		Т	1	Т	T			т-			
	- - - - - - - - - - - - - -	0	0	0	0	0	0	0	0	0		×
	06次	174	208	171	174	188	173	131	167	195	194	175
モルタルフロー(mm)	09 次	197	221	190	194	184	163	173	176	203	201	180
モルタルフ	30	182	185	189	183	163	167	197	177	187	198	195
	初期	183	178	183	173	164	176	180	174	181	181	181
海	(聖)	13.0	13.4	14.8	17.5	14.9	13.4	13.5	21.2	19.6	19.4	18.5
	然加量 (重量%)	0.22	0.24	0.22	0.20	0.25	0.44	0.19	0.18	0.19	0:30	0.20
	[中]	!	J	l	4-1*	ı	1]			,	1
添加剤	成下段は重量部)		c-2 10	ı	c-2 10	1	1	1	社製	社製)	c-4 18	1
凝	成员	c-2 10	c-5 15	c-2 10	c - 3 13	c-2 10	c-2 1	1	株式金	株式金	c-2 8	c-2 10
	組 (上段は種類、	c-1 35	c-1 20	c-1 35	c-1 30	c-5 35	6	c-1 38	(花王)	(花玉)	c-3 10	c-1 35
	上段。	b-8 10	b-8 10	b-8 10	p-9 7	b-8 10	c-1 35	b-8 12	3000S	30008	c-1 10	b-8 10
)	a-3 45	a-3 45	a-9 45	a-3	a-9 45	a-13 58	a-3 50	マイテイ3000S(花王株式会社製)	マイテイ3000S(花王株式会社製)	a-14 54	a-19 45
		3-1	3-2	3–3	3-4	3-5	3-6	3–7	3-1	3-2	3–3	3-4
		······································		-	 未施例					开	寮 室	

*d-1:サッカロースの20重量%水溶液

[0134]

		添加剤			流下	Ŧ,	モルタルフロー(mm)				
	組 成*		組 成*		添加量 (重量%)	時間(秒)	初期	30 分後	60 分後	90 分後	
	4-1	a-17 70	ъ-8 30		1	1.00	29.4	231	202	181	151
	4-2	a-18 70	b-7 30		I	1.10	28.9	236	207	182	160
実施	4-3	a-18 70	ъ-8 30	1	-	1.00	24.9	274	244	221	196
例	4-4	a-18 70	b−22 30	1	l	0.70	25.0	243	214	189	158
	4-5	a-18 70	ъ-9 30	_	-	0.60	26.2	239	215	198	155
	4-6	a-18 35	b8 15	c-1 20	с-4 30	0.70	25.5	258	260	255	252
比較例	4-1	с-4 100	_	_	-	0.31	34.7	230	198	182	150

^{*}組成の上段は種類、下段は重量部

[0135]

表4、5、6、7中の添加量は、(A) 成分と(B) 成分と(C) 成分の合計量の対セメント重量%である。ただし、表7の添加量は、モルタル流動性の測定に用いたモルタルにおける添加量である。また、本発明の添加剤を使用した水硬性組成物の空気量を安定にするために、適切な消泡剤を添加することが好ましい。かかる趣旨から、表4、5、6、7では、以下のように消泡剤を添加し、空気量が10体積%以下となるようにした。

[0136]

<表4>

(1) 実施例1-1~1-8、比較例1-4~1-8

シリコーン系消泡剤アンチフォーム 0 1 3 B (ダウ・コーニング・アジア製;ポリオルガノシロキサン系) 1.0重量% (対セメント重量%、以下同様)

(2) 比較例1-1~1-3

[0137]

<表5>

- (1) 実施例 $2-1\sim 2-3$ 7、比較例 $2-4\sim 2-5$ シリコーン系消泡剤アンチフォーム 0 1 3 B (ダウ・コーニング・アジア製;ポリオルガノシロキサン系) 1.0 重量%
- (2) 比較例 2-1~2-3

脂肪酸エステル系消泡剤フォームレックス797 (日華化学株式会社製) 0. 5重量%

[0138]

<表6>

- (1) 実施例 $3-1\sim3-7$ 、比較例 $3-3\sim3-4$ シリコーン系消泡剤アンチフォーム 0 1 3 B (ダウ・コーニング・アジア製;ポリオルガノシロキサン系) 0.5 重量%
- (2) 実施例 3-1~3-2

脂肪酸エステル系消泡剤フォームレックス797 (日華化学株式会社製) 0. 5重量%

[0139]

<表7>

(1) 実施例 4-1~4-5

シリコーン系消泡剤アンチフォーム 0 1 3 B (ダウ・コーニング・アジア製;ポリオルガノシロキサン系) 1.0 重量%

(2) 実施例4-6

シリコーン系消泡剤アンチフォーム 0 1 3 B (ダウ・コーニング・アジア製;ポリオルガノシロキサン系) 0.5 重量%

(3) 比較例4-1

脂肪酸エステル系消泡剤フォームレックス797 (日華化学株式会社製) 0. 5重量%

【図1】

実施例で流下時間の測定に用いた装置を示す概略図

【図2】

表4の結果中、流下時間とモルタルフローの関係を示すグラフ

【図3】

表5の結果中、流下時間とモルタルフローの関係を示すグラフ

【符号の説明】

1…上部投入開口

2…下部排出開口

【図1】

【図2】

【図3】

【要約】

【課題】 水硬性組成物、例えば水と水硬性粉体とのスラリーからなる水硬性組成物に対して、優れた粘性低減効果を示し、水溶液として用いた場合の作業性も良好な水硬性組成物用添加剤を提供する。

【解決手段】 特定のアルキルエーテル基を有するアルキルエーテルリン酸モノエステル又はその塩(モノエステル体)と、特定のアルキルエーテル基を有するアルキルエーテルリン酸ジエステル又はその塩(ジエステル体)とを、モノエステル体/(モノエステル体+ジエステル体)=0.4~0.95の重量比(ジエステル体にはピロ体を含む)で含有する水硬性組成物用添加剤。

【選択図】 なし

特許出願の番号特願2003-169597受付番号50300996169

書類名 特許願

担当官 第五担当上席 0094

作成日 平成15年 6月18日

<認定情報・付加情報>

【特許出願人】

【識別番号】 000000918

【住所又は居所】 東京都中央区日本橋茅場町1丁目14番10号

【氏名又は名称】 花王株式会社

【代理人】 申請人

【識別番号】 100087642

【住所又は居所】 東京都中央区日本橋浜町2丁目17番8号 浜町

花長ビル6階

【氏名又は名称】 古谷 聡

【選任した代理人】

【識別番号】 100076680

【住所又は居所】 東京都中央区日本橋浜町2丁目17番8号 浜町

花長ビル6階

【氏名又は名称】 溝部 孝彦

【選任した代理人】

【識別番号】 100091845

【住所又は居所】 東京都中央区日本橋浜町2丁目17番8号 浜町

花長ビル6階

【氏名又は名称】 持田 信二

【選任した代理人】

【識別番号】 100098408

【住所又は居所】 東京都中央区日本橋浜町2丁目17番8号 浜町

花長ビル6階

【氏名又は名称】 義経 和昌

次頁無

出願人履歴情報

識別番号

[000000918]

1. 変更年月日 [変更理由] 住 所 氏 名

1990年 8月24日 新規登録 東京都中央区日本橋茅場町1丁目14番10号 花王株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.