AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application:

- 1. (currently amended) A plant comprising:
 - a solvent source that is configured to provide a carbon dioxide-depleted hydrogen sulfidecontaining lean physical solvent;
 - a vacuum stripper <u>coupled</u> to the <u>solvent source</u> and <u>that is</u> configured to produce an ultra-lean physical solvent from the [[a]] <u>carbon dioxide-depleted lean</u> hydrogen sulfide-containing <u>lean</u> physical solvent; and
 - at least one of a high-pressure flash vessel and a medium pressure flash vessel coupled to the vacuum stripper, wherein the at least one of the high-pressure flash vessel and the medium pressure flash vessel are configured to provide a substantially hydrogen sulfide-free stripping gas to the vacuum stripper.
- 2. (currently amended) The plant of claim 1 further comprising an absorber that <u>is</u> <u>configured to receive</u> the ultra-lean physical solvent and that is <u>further</u> configured to operate with an isothermal gradient or with a decreasing top-to-bottom thermal gradient.
- 3. (currently amended) The plant of claim 2 wherein the absorber <u>is configured to receive</u> receives a feed gas that comprises at least 10 mol% carbon dioxide and at least 500 ppm hydrogen sulfide.
- 4. (Original) The plant of claim 3 wherein the feed gas has a pressure of at least 1000 psig.
- 5. (Original) The plant of claim 4 wherein the feed gas is at least partially dehydrated, and wherein the at least partially dehydrated feed gas is further cooled by a rich solvent.
- 6. (Original) The plant of claim 1 wherein the lean hydrogen sulfide-containing physical solvent comprises at least 100 ppm hydrogen sulfide, and wherein the ultra-lean physical solvent comprises less than 100 ppm hydrogen sulfide.
- 7. (Original) The plant of claim 6 wherein the ultra-lean solvent comprises less than 10 ppm hydrogen sulfide.

- 8. (Original) The plant of claim 1 wherein the lean hydrogen sulfide-containing physical solvent is selected from the group consisting of propylene carbonate, n-methyl pyrolidone, dimethyl ether of polyethylene glycol, and tributyl phosphate.
- 9. (Original) The plant of claim 1 wherein the substantially hydrogen sulfide-free stripping gas comprises at least 95 mol% carbon dioxide.
- 10. (currently amended) The plant of claim 1 wherein the solvent source comprises further emprising a separator in which acid gas is separated from a rich solvent, thereby producing the lean hydrogen sulfide-containing physical solvent, and wherein the plant is further configured such that part of the acid gas can be is compressed and injected into a formation.
- 11. (Original) The plant of claim 10 wherein the vacuum stripper further produces a second acid gas that is combined with the acid gas from the separator.
- 12. (currently amended) A method of producing an ultra-lean physical solvent, comprising: separating in at least one of a high-pressure flash vessel and a medium pressure flash vessel a substantially hydrogen sulfide-free stripping gas from a physical solvent; and
 - using the substantially hydrogen sulfide-free stripping gas to strip stripping hydrogen sulfide from a <u>carbon dioxide-depleted lean</u> hydrogen sulfide-containing <u>lean</u> physical solvent in a vacuum stripper to form the ultra-lean physical solvent.
- 13. (Original) The method of claim 12 further comprising a step of feeding the ultra-lean physical solvent to an absorber, and operating the absorber with an isothermal gradient or with a decreasing top-to-bottom thermal gradient.
- 14. (Original) The method of claim 13 further comprising a step of feeding a feed gas to the absorber at a pressure of at least 1000 psig, wherein the feed gas comprises at least 10 mol% carbon dioxide and at least 500 ppm hydrogen sulfide.
- 15. (Original) The method of claim 12 wherein the lean hydrogen sulfide-containing physical solvent is selected from the group consisting of propylene carbonate, n-methyl pyrolidone, dimethyl ether of polyethylene glycol, and tributyl phosphate.

16.	(Original) The method of claim 12 wherein the substantially hydrogen sulfide-free
strippi	ng gas comprises at least 95 mol% carbon dioxide.