List 01. Panel analysis

Nikita V. Artamonov

November 1, 2024

Necessary Python package: pandas, numpy, linearmodels¹

Contents

1	Baseline model	1
2	Models with lags & differences	Ę
1	Baseline model	
#	1. For the panel Grunfeld consider a regression	
	inv on value & capital	
R	emark: here firm is an individual index vear is a time index	

- 1. write down the specification of a baseline model
- 2. import the dataset and set a MultiIndex over a pandas DataFrame (please, mind individual and time indices).
- 3. Is the panel balanced or not?
- 4. Evaluate matrices of regression design y, X
- 5. Fit the model using Pooling, RE, FE (within) and FD estimators

¹ conda install -c conda-forge linearmodels pip install linearmodels

- via matrices of regression design
- via regression specification

and report the fitting result.

- 6. For each model test the significance of coefficients. Perform both non-robust and robust test.
- 7. Test overall significance of each model. Perform both non-robust and robust test
- 8. Perform Hausman test
- #2 (Gun Laws and the Effect on Crime). For the panel Guns consider a regression

log(violent) on law (+ another regressors)

Remark: here state is an individual index, year is a time index.

- 1. write down the specification of a baseline model
- 2. import the dataset and set a MultiIndex over a pandas DataFrame (please, mind individual and time indices).
- 3. Is the panel balanced or not?
- 4. Evaluate matrices of regression design y, X (law is categorical!)
- 5. Fit the model using Pooling, RE, FE (within) and FD estimators
 - via matrices of regression design
 - via regression specification

and report the fitting result.

- 6. For each model test the significance of coefficients. Perform both non-robust and robust test.
- 7. Test overall significance of each model. Perform both non-robust and robust test
- 8. Perform Hausman test

#3. For the panel EmplUK consider a regression

log(emp) on log(wage), log(capital), log(output)

Remark: here firm is an individual index, year is a time index.

- 1. write down the specification of a baseline model
- 2. import the dataset and set a MultiIndex over a pandas DataFrame (please, mind individual and time indices).
- 3. Is the panel balanced or not?
- 4. Evaluate matrices of regression design y, X
- 5. Fit the model using Pooling, RE, FE (within) and FD estimators
 - via matrices of regression design
 - via regression specification

and report the fitting result.

- 6. For each model test the significance of coefficients. Perform both non-robust and robust test.
- 7. Test overall significance of each model. Perform both non-robust and robust test
- 8. Perform Hausman test
- #4. For the panel Wages² consider a regression

lwage on ed, exp, exp², south, smsa, married, bluecol

Remark: here id is an individual index, time is a time index.

- 1. write down the specification of a baseline model
- 2. import the dataset and set a MultiIndex over a pandas DataFrame (please, mind individual and time indices).
- 3. Is the panel balanced or not?

²In the panel ed is time-invariant!

- 4. Evaluate matrices of regression design y, X
- 5. Fit the model using Pooling, RE, FE (within) and FD estimators
 - via matrices of regression design
 - via regression specification

and report the fitting result.

- 6. For each model test the significance of coefficients. Perform both non-robust and robust test.
- 7. Test overall significance of each model. Perform both non-robust and robust test
- 8. Perform Hausman test

#5 (Production costs of Turkish banks). For the panel TurkishBanks consider a regression

log(cost) on log(output) (+ another regressors)

Remark: here id is an individual index, year is a time index.

- 1. write down the specification of a baseline model
- 2. import the dataset and set a MultiIndex over a pandas DataFrame (please, mind individual and time indices).
- 3. Is the panel balanced or not?
- 4. Evaluate matrices of regression design y, X
- 5. Fit the model using Pooling, RE, FE (within) and FD estimators
 - via matrices of regression design
 - via regression specification

and report the fitting result.

- 6. For each model test the significance of coefficients. Perform both non-robust and robust test.
- 7. Test overall significance of each model. Perform both non-robust and robust test
- 8. Perform Hausman test

2 Models with lags & differences

#1. For the panel Grunfeld consider a regression

 Δ inv on Δ value & Δ capital

Remark: here firm is an individual index, year is a time index.

- 1. Fit the model using Pooling, RE, FE (within) and FD estimators and report the fitting result.
- 2. For each model test the significance of coefficients. Perform both non-robust and robust test.
- 3. Test overall significance of each model. Perform both non-robust and robust test
- 4. Perform Hausman test
- #2. For the panel Grunfeld consider a regression

inv_{it} on value_{it}, value_{i,t-1}, capital_{it}, capital_{i,t-1}

Remark: here firm is an individual index, year is a time index.

- 1. Fit the model using Pooling, RE, FE (within) and FD estimators and report the fitting result.
- 2. For each model test the significance of coefficients. Perform both non-robust and robust test.
- 3. Test overall significance of each model. Perform both non-robust and robust test
- 4. Perform Hausman test
- #3. For the panel Empluk consider a regression

 $\Delta \log(\text{emp})$ on $\Delta \log(\text{wage})$, $\Delta \log(\text{capital})$, $\Delta \log(\text{output})$

Remark: here firm is an individual index, year is a time index.

1. Fit the model using Pooling, RE, FE (within) and FD estimators and report the fitting result.

- 2. For each model test the significance of coefficients. Perform both non-robust and robust test.
- 3. Test overall significance of each model. Perform both non-robust and robust test
- 4. Perform Hausman test
- #4. For the panel Empluk consider a regression

 $\log(\text{emp})_{it}$ on $\log(\text{wage})_{it}$, $\log(\text{wage})_{i,t-1}$, $\log(\text{capital})_{it}$, $\log(\text{capital})_{i,t-1}$, $\log(\text{output})_{it}$, $\log(\text{output})_{i,t-1}$

Remark: here firm is an individual index, year is a time index.

- 1. Fit the model using Pooling, RE, FE (within) and FD estimators and report the fitting result.
- 2. For each model test the significance of coefficients. Perform both non-robust and robust test.
- 3. Test overall significance of each model. Perform both non-robust and robust test
- 4. Perform Hausman test

#5 (Production costs of Turkish banks). For the panel TurkishBanks consider a regression

 $\Delta \log(\cos t)$ on $\Delta \log(\operatorname{output})$ (+ another regressors)

Remark: here id is an individual index, year is a time index.

- 1. Fit the model using Pooling, RE, FE (within) and FD estimators and report the fitting result.
- 2. For each model test the significance of coefficients. Perform both non-robust and robust test.
- 3. Test overall significance of each model. Perform both non-robust and robust test
- 4. Perform Hausman test

#6 (Production costs of Turkish banks). For the panel TurkishBanks consider a regression

 $\log(\cos t)_{it}$ on $\log(\operatorname{output})_{it}$, $\log(\operatorname{output})_{i,t-1}$, (+ another regressors)

Remark: here id is an individual index, year is a time index.

- 1. Fit the model using Pooling, RE, FE (within) and FD estimators and report the fitting result.
- 2. For each model test the significance of coefficients. Perform both non-robust and robust test.
- 3. Test overall significance of each model. Perform both non-robust and robust test
- 4. Perform Hausman test