Discreet 12.9.5.24

Hiba Muhammed EE23BTECH11026

February 24, 2024

Problem Statement

If S_1 , S_2 , S_3 are the sum of the first n natural numbers, their squares, and their cubes, respectively, show that

$$9(S_2)^2 = (S_3)(1+8(S_1))$$

Solution

Equation	Expression	Description
S_1	$\frac{n(n+1)}{2}$	sum of n natural numbers
S_2	$\frac{n(n+1)(2n+1)}{6}$	sum of squares
S_3	$\left(\frac{n(n+1)}{2}\right)^2$	sum of cubes

Table 1: Input Equations

Now, let's substitute these expressions into the given equation $9(S_2)^2 = (S_3)(1 + 8(S_1))$ and simplify:

$$9\left(\frac{n(n+1)(2n+1)}{6}\right)^{2} = \left(\frac{n(n+1)}{2}\right)^{2} \left(1+8 \cdot \frac{n(n+1)}{2}\right)$$

$$\frac{9}{36}\left(n(n+1)(2n+1)\right)^{2} = \frac{1}{4}\left(n(n+1)\right)^{2}\left(1+4n(n+1)\right)$$

$$\frac{1}{4}\left(n(n+1)(2n+1)\right)^{2} = \frac{1}{4}\left(n(n+1)\right)^{2}\left(4n(n+1)+1\right)$$

$$\left(n(n+1)(2n+1)\right)^{2} = \left(n(n+1)\right)^{2}\left(4n(n+1)+1\right)$$

The last equation holds true, which verifies that $9(S_2)^2 = (S_3)(1 + 8(S_1))$ for the given expressions of S_1 , S_2 , and S_3 .