

Introduction

- · Fluid statics is a branch of fluid mechanics that deals with the behavior/response of fluid and the balance of forces which stabilize fluids when they are at rest or relative rest
- · Since there is no relative movement within the fluid, no viscous shear stress exists
- · Only pressure exists on the fluid surface
- · Fluid statics mainly concerns with problems related to fluid pressure, the pressure on the solid surface, and their distributions

2

Forces on fluids

- Surface forces: contact force; the forces acting on the surface of the fluids
 - Normal stress:

$$p = \lim_{\Delta A \to 0} \frac{\Delta P_n}{\Delta A} = \frac{dP_n}{dA}$$

- Shear stress:

$$\tau = \lim_{\Delta A \to 0} \frac{\Delta P_{\tau}}{\Delta A} = \frac{dP_{\tau}}{dA}$$

· Body forces: non-contact force

$$\mathbf{f} = \lim_{\Delta m \to 0} \frac{\Delta \mathbf{F}}{\Delta m} = \frac{d\mathbf{F}}{dm} \quad \mathbf{m/s^2}$$
$$= f_x \mathbf{i} + f_y \mathbf{j} + f_z \mathbf{k}$$

e.g., only gravity in
$$y$$
 direction:
 f_x =0, f_y =-g; f_z =0

Pressure

- · Characteristics of pressure:
 - The pressure of a fluid at rest always acts perpendicular to the contact surface and points to the inner normal direction

- The pressures at any point in a fluid at rest are equal in every direction

 $p = p_1 = p_2$

4

Pressure

• The fluid pressure applied to a fluid in a closed vessel is transmitted to all parts at the same pressure value as that applied (Pascal's law)

$$F_2 = F_1 \frac{A_2}{A_1}$$

5

Differential equations of fluid statics

• Equilibrium in *x* direction:

$$\left(p - \frac{1}{2}\frac{\partial p}{\partial x}dx\right)dydz - \left(p + \frac{1}{2}\frac{\partial p}{\partial x}dx\right)dydz + f_spdxdydz = 0$$

$$f_{x} - \frac{1}{\rho} \frac{\partial p}{\partial x} = 0 \longrightarrow f_{y} - \frac{1}{\rho} \frac{\partial p}{\partial y} = 0 \quad f_{z} - \frac{1}{\rho} \frac{\partial p}{\partial z} = 0$$

$$f_{i} - \frac{1}{\rho} p_{x} = 0 \qquad \mathbf{f} - \frac{1}{\rho} \nabla p = 0$$

$$f_i - \frac{1}{\rho} p_{,i} = 0$$
 $\mathbf{f} - \frac{1}{\rho} \nabla p = 0$

Differential equations of fluid statics

• Euler's equilibrium equation:

$$\begin{split} f_x - \frac{1}{\rho} \frac{\partial p}{\partial x} = 0 & f_y - \frac{1}{\rho} \frac{\partial p}{\partial y} = 0 & f_z - \frac{1}{\rho} \frac{\partial p}{\partial z} = 0 \\ & & \downarrow \\ f_x dx + f_y dy + f_z dz = \frac{1}{\rho} \left(\frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial y} dy + \frac{\partial p}{\partial z} dz \right) = \frac{1}{\rho} dp \\ & & \downarrow \\ dp = \rho \left(f_x dx + f_y dy + f_z dz \right) \end{split}$$

If only gravity exists in z direction:

 $dp = -\rho gz$

Pressure of fluid at rest under gravity

7

$pdA - \left(p + \frac{dp}{dz}dz\right)dA - pgdAdz = 0$ dp = -pgdz $p = -pg \int dz = -pgz + c$ If the base point is set at z_0 below the upper surface, the upper surface has $p = p_0 \qquad z = z_0$

 $c = p_0 + \rho g z_0$

 $p = p_0 + \rho g \left(z_0 - z \right) = p_0 + \rho g h$

8

Pressure of fluid at rest under gravity

 $p=p_{\scriptscriptstyle 0}+\rho gh$

- Under gravity, the pressure of fluid increases linearly with increasing depth
- Under gravity, the pressures of fluid at same depth are equal

Measurement of pressure

Absolute pressure uses vacuum as base pressure:

$$p = p_a + \rho g h$$

where $p_{\rm a}$ is the atmospheric pressure, absolute pressure only has positive values

Gauge pressure (or relative pressure) uses atmospheric pressure as base pressure:

$$p_{\scriptscriptstyle g}=p-p_{\scriptscriptstyle a}$$

Gauge pressure could be positive and negative

10

Measurement of pressure

- Manometer
 - A device which measures the fluid pressure by the height of a liquid column

$$p = p_0 + \rho g h$$

• Single tube:

 $p = p_a + \rho g h$

Disadvantage: the pipe should be long enough

· U-shape tube:

 $p = p_a + \rho_2 g h_2 - \rho_1 g h_1$

11

Hydrostatic forces on plane surfaces

Pressure on the infinitesimal element:

Overall forces:

 $P = \rho g \sin \alpha \cdot y_c A = \rho g h_c A = p_c A$

The total force *P* equals the product of the pressure at the centroid *C* and the underwater area *A*

Hydrostatic forces on plane surfaces

• Force center:

 $Since I_x = I_{Cx} + y_C^2 A$

 $y_{\rm D} = \frac{\int_A dP \cdot y}{P} = \frac{\rho g \sin \alpha \cdot I_x}{\rho g \sin \alpha \cdot y_{\rm C}A} = \frac{I_x}{y_{\rm C}A} = \frac{I_{\rm C} + y_{\rm C}^2 A}{y_{\rm C}A} = y_{\rm C} + \frac{I_{\rm CC}}{y_{\rm C}A}$

13

Example

- Overall forces:
 - Left: $P_1 = \rho g h_{C1} A_1 = \rho g \frac{l_1}{2} b l_1$
 - Right: $P_2 = \rho g h_{c2} A_2 = \rho g \frac{l_2}{2} b l_2$ $P = P_1 P_2$

Acting points:

$$I_{Ca} = \frac{1}{12}bl^3$$
 $y_D = y_C + \frac{I_{Ca}}{y_C A} = \frac{l}{2} + \frac{\frac{1}{12}bl^3}{\frac{l}{2}bl} = \frac{2}{3}l$ \Rightarrow $y_{D1} = \frac{2}{3}l_1$ $y_{D2} = \frac{2}{3}l_2$

$$P \cdot L = P_1 \cdot \frac{1}{3} l_1 - P_2 \cdot \frac{1}{3} l_2 \qquad \Longrightarrow \qquad L = P_1 \cdot \frac{1}{3} l_1 - P_2 \cdot \frac{1}{3} l_2 = \frac{P_1 \cdot l_1 - P_2 \cdot l_2}{3(P_1 - P_2)}$$

14

Hydrostatic forces on curved surfaces

 The horizontal force acting on the infinitesimal element:

 $P_x = \int_{A_x} dP_x = \rho g \int_{A_x} h \cdot dA \cos \alpha = \rho g \int_{A_x} h \cdot dA_x = \rho g h_c A_x = P_c A_x$

The horizontal component of the fluid force on the curved surface is equal to the overall force acting on the vertical projection of the curved surface

Hydrostatic forces on curved surfaces

The vertical force acting on the infinitesimal element:

The vertical component of the fluid force on the curved surface is equal to the weight of the fluid above the curved surface

16

Hydrostatic forces on curved surfaces

· The overall force:

$$P = \sqrt{P_x^2 + P_z^2}$$

• The angle with vertical direction

$$\theta = \tan^{-1} \frac{P_x}{P_z}$$

17

Example

· Horizontal force:

 $h = R \sin \alpha$

· Vertical force:

 $P_z = \rho g V_p$

Overall force:

$$P = \sqrt{P_x^2 + P_z^2}$$

$$\theta = \tan^{-1} \frac{P_x}{P_z}$$

