

planetmath.org

Math for the people, by the people.

formal definition of Landau notation

Canonical name FormalDefinitionOfLandauNotation

Date of creation 2013-03-22 15:15:48 Last modified on 2013-03-22 15:15:48

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 6

Author paolini (1187) Entry type Definition Classification msc 26A12

Synonym Landau notation

Synonym small o Synonym big o

Synonym order of infinity Synonym order of zero

Related topic PropertiesOfOAndO

Let us consider a domain D and an accumulation point $x_0 \in \overline{D}$. Important examples are $D = \mathbb{R}$ and $x_0 \in D$ or $D = \mathbb{N}$ and $x_0 = +\infty$. Let $f \colon D \to \mathbb{R}$ be any function. We are going to define the spaces o(f) and O(f) which are families of real functions defined on D and which depend on the point $x_0 \in \overline{D}$.

Suppose first that there exists a neighbourhood U of x_0 such that f restricted to $U \cap D$ is always different from zero. We say that $g \in o(f)$ as $x \to x_0$ if

$$\lim_{x \to x_0} \frac{g(x)}{f(x)} = 0.$$

We say that $g \in O(f)$ as $x \to x_0$ if there exists a neighbourhood U of x_0 such that

 $\frac{g(x)}{f(x)}$ is bounded if restricted to $D \cap U$.

In the case when $f \equiv 0$ in a neighbourhood of x_0 , we define o(f) = O(f) as the set of all functions g which are null in a neighbourhood of 0.

The families o and O are usually called "small-o" and "big-o" or, sometimes, "small ordo", "big ordo".