K-Nearest Neighbors (KNN) Classification with Different Distance Metrics

Sijia Li 518030910294 Shanghai Jiao Tong University qdhlsj@sjtu.edu.cn

ABSTRACT

Metric learning is a typical task in machine learning, which is usually combined with many familiar metric-based methods (such as KNN, K-means, etc.) to achieve classification or clustering. In this project, we conduct different distance distance metrics and metric learning method on the K-Nearest Neighbors (KNN) Classification task and compare their performances.

KEYWORDS

K-Nearest Neighbors Classification, Distance Metric, Metric Learning

1 K-NEAREST NEIGHBORS CLASSIFICATION

In K-Nearest Neighbors Classificatio task, the training examples are vectors in a multidimensional feature space, each with a class label. The training phase of the algorithm consists only of storing the feature vectors and class labels of the training samples.

In the classification phase, k is a user-defined constant, and an unlabeled vector (a query or test point) is classified by assigning the label which is most frequent among the k training samples nearest to that query point. In this project, we test different distance metrics and metric learning methods on the task of K-Nearest Neighbors Classification. Figure 1 is an example of k-NN classification quoted from the wikipedia website. The test sample (green dot) should be classified either to blue squares or to red triangles. If k=3 (solid line circle) it is assigned to the red triangles because there are 2 triangles and only 1 square inside the inner circle. If k=5 (dashed line circle) it is assigned to the blue squares (3 squares vs. 2 triangles inside the outer circle).

2 DISTANCE METRICS

2.1 Minkowski Distance

The Minkowski distance of order p (where p is an integer) between two points $X=(x_1,x_2,...,x_n)$ and $Y=(y_1,y_2,...,y_n)\in \mathbb{R}^n$ is defined as

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...\$15.00 https://doi.org/10.1145/nnnnnnnnnnnnnnnn

Figure 1: KNN Example

$$D(X, Y) = \left(\sum_{i=1}^{n} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

2.2 Euclidean Distance

Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem. It is a specialization of Minkowski distance where p=2.

$$D(X, Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

2.3 Chebyshev Distance

Chebyshev distance is a metric defined on a vector space where the distance between two vectors is the greatest of their differences along any coordinate dimension. It is a specialization of Minkowski distance where $p=\infty$.

$$D(X,Y) = \max_{i} |x_i - y_i|$$

2.4 Manhattan Distance

Manhattan distance between two points is the sum of the absolute differences of their Cartesian coordinates. It is a specialization of Minkowski distance where p = 1.

$$D(X,Y) = \sum_{i} |x_i - y_i|$$

, Sijia Li 518030910294

Table 1: KNN accuracy with different distance metrics

K	euclidean	chebyshev	manhattan
1	0.88271	0.76958	0.87708
2	0.86643	0.74647	0.86329
3	0.88941	0.77507	0.88278
4	0.88961	0.78197	0.88177
5	0.89396	0.79034	0.88526
6	0.89269	0.78813	0.88492
7	0.89236	0.79007	0.88686
8	0.89095	0.78853	0.88472
9	0.89129	0.79014	0.88425
10	0.88887	0.78847	0.88331

2.5 KNN accuracy with different distance metrics

3 METRIC LEARNING

3.1 PCA

Table 2: KNN accuracy with PCA

K	euclidean	chebyshev	manhattan
1	0.867171	0.810436	0.863755
2	0.849756	0.793355	0.849019
3	0.879161	0.826579	0.876080
4	0.881171	0.829727	0.878759
5	0.884587	0.837564	0.885860
6	0.884855	0.840780	0.884520
7	0.886396	0.842521	0.885190
8	0.884654	0.843861	0.885525
9	0.886329	0.843995	0.886597
10	0.884520	0.845870	0.884989
11	0.886864	0.844330	0.883850
12	0.885994	0.843861	0.884118
13	0.885793	0.845469	0.883917
14	0.883314	0.845670	0.881774
15	0.884520	0.843593	0.883180

- 3.2 LDA
- 3.3 LFDA
- **3.4 ITML**
- 3.5 **LSML**
- 3.6 MMC

REFERENCES

Table 3: KNN accuracy with LDA(dimension=45)

K	euclidean	chebyshev	manhattan
1	0.902539	0.889410	0.901266
2	0.896711	0.883582	0.897783
3	0.909907	0.900261	0.910711
4	0.912318	0.903008	0.911916
5	0.915801	0.905352	0.916873
6	0.916002	0.905955	0.917476
7	0.917878	0.907228	0.918548
8	0.917811	0.907161	0.919419
9	0.918883	0.909103	0.920557
10	0.919687	0.908768	0.920356
11	0.919486	0.909639	0.920892
12	0.919954	0.909840	0.920289
13	0.920892	0.908768	0.921160
14	0.920155	0.908902	0.920423
15	0.920155	0.909371	0.921629
16	0.921495	0.909371	0.921495
17	0.921830	0.909371	0.921830
18	0.922433	0.909371	0.922433
19	0.922567	0.909371	0.922567
20	0.922701	0.909371	0.922770
21	0.922165	0.909371	0.922165
22	0.922031	0.909371	0.922031

Table 4: KNN accuracy with LFDA (defaul dimesion)

K	euclidean	chebyshev	manhattan
1	0.127001	0.344631	0.115212
2	0.152857	0.330498	0.137518
3	0.088619	0.332708	0.075893
4	0.092772	0.331971	0.080715
5	0.074419	0.329627	0.063835
6	0.075223	0.331435	0.065644
7	0.065778	0.329627	0.056266
8	0.067051	0.326412	0.058142
9	0.060687	0.324871	0.052716
10	0.061759	0.323866	0.054056
11	0.057405	0.320785	0.050640
12	0.058075	0.318709	0.052113
13	0.055663	0.317570	0.049635
14	0.056735	0.316699	0.051176
15	0.054257	0.315493	0.048898

Table 5: KNN accuracy with LFDA (euclidean, different dimesions)

K	dim=32	dim=40	dim=48	dim=56	dim=64
1	0.873937	0.889075	0.898587	0.900797	0.895907
2	0.868913	0.887333	0.895103	0.894367	0.890884
3	0.884453	0.902740	0.908366	0.907562	0.904749
4	0.885793	0.900931	0.907964	0.910309	0.906692
5	0.890750	0.903945	0.912452	0.915065	0.911381
6	0.889142	0.903476	0.910242	0.914462	0.911916
7	0.891888	0.905486	0.914529	0.917074	0.914127
8	0.890884	0.905285	0.913591	0.916069	0.914730
9	0.892424	0.907362	0.915467	0.917878	0.914730
10	0.892424	0.907696	0.915667	0.917007	0.914663
11	0.893161	0.908500	0.916337	0.918749	0.915801
12	0.893831	0.908299	0.917007	0.918682	0.915132
13	0.893831	0.909706	0.917878	0.917878	0.916069
14	0.893697	0.910175	0.917677	0.917409	0.915868
15	0.894233	0.910309	0.918213	0.918079	0.916873
16	0.893630	0.909103	0.917476	0.918146	0.915333
17	0.894501	0.910309	0.918079	0.919352	0.916337
18	0.894434	0.909304	0.917744	0.918414	0.915868
19	0.894434	0.910175	0.917543	0.918950	0.915333
_20	0.893898	0.909505	0.917476	0.918615	0.915132

Table 6: KNN accuracy with ITML

K	euclidean	chebyshev	manhattan	euclidean with LDA
1	0.850894	0.601514	0.857392	0.899658
2	0.830665	0.576864	0.840043	0.896711
3	0.846942	0.600844	0.857459	0.909907
4	0.849019	0.614710	0.849822	0.912653
5	0.849555	0.620671	0.853909	0.914596
6	0.845736	0.622078	0.851698	0.916069
7	0.846205	0.620336	0.852971	0.918213
8	0.844196	0.620939	0.849822	0.917945
9	0.842387	0.621274	0.850291	0.918749
10	0.839708	0.621341	0.847344	0.919084
11	0.840713	0.620939	0.846473	0.919352
12	0.838167	0.618126	0.843258	0.919954
13	0.835890	0.619398	0.843861	0.920222
14	0.833612	0.620470	0.841383	0.919553
15	0.832340	0.618997	0.840043	0.919954

Table 7: KNN accuracy with LSML

K	euclidean	chebyshev	manhattan	euclidean with LDA
1	0.872865	0.672851	0.870520	0.902673
2	0.854980	0.648068	0.854243	0.897917
3	0.877219	0.676469	0.873736	0.909907
4	0.877420	0.681961	0.873669	0.912653
5	0.881707	0.690066	0.877956	0.914596
6	0.882377	0.694621	0.874740	0.916069
7	0.882912	0.694219	0.876415	0.918213
8	0.881908	0.694219	0.874272	0.917945
9	0.881171	0.694554	0.875276	0.918749
10	0.880032	0.692411	0.872463	0.919084
11	0.877755	0.692143	0.872463	0.919352
12	0.876281	0.690669	0.870052	0.919954
13	0.875879	0.690066	0.869516	0.920222
14	0.874807	0.689664	0.866769	0.919553
_15	0.875209	0.688861	0.867171	0.919954

Table 8: KNN accuracy with MMC

K	euclidean	chebyshev	manhattan	euclidean with LDA
1	0.872530	0.674258	0.867573	0.897716
2	0.852904	0.654163	0.848885	0.893898
3	0.874606	0.676335	0.870520	0.908701
4	0.873803	0.686248	0.869516	0.909639
5	0.880233	0.693148	0.873066	0.911849
6	0.878425	0.695157	0.870989	0.912988
7	0.878090	0.696564	0.873468	0.914462
8	0.878492	0.698439	0.869315	0.914395
9	0.878625	0.699243	0.870989	0.915801
10	0.876750	0.699712	0.867372	0.916337
11	0.877286	0.700784	0.867372	0.916136
12	0.876750	0.698439	0.866568	0.917141
13	0.875477	0.696564	0.865631	0.917275
14	0.873803	0.695626	0.864425	0.917275
15	0.873267	0.695425	0.864425	0.916940