Value Function Approximation I

Alina Vereshchaka

CSE4/510 Reinforcement Learning Fall 2019

avereshc@buffalo.edu

September 24, 2019

*Slides are based on David Silver Course. Lecture 6

Overview

Value Function Approximation

Before

- Last time: how to learn a good policy from experience
- So far, have been assuming we can represent the value function or state-action value function as a vector/ matrix (Tabular representation)
- Many real world problems have enormous state and/or action spaces
- Tabular representation is insufficient

Reinforcement learning can be used to solve large problems, e.g.

■ Backgrammon: 10²⁰ states

■ Go: 10¹⁷⁰ states

Helicopter: ?

Reinforcement learning can be used to solve large problems, e.g.

■ Backgrammon: 10²⁰ states

■ Go: 10¹⁷⁰ states

■ Helicopter: ? continuous state space

How can we scale up the model-free methods for prediction and control?

Table of Contents

Value Function Approximation

- So far we have represented value function by a *lookup table*
 - Every state s has an entry V(s)
 - Or every state-action pair s, a has an entry Q(s, a)
- Problem with large MDPs:

- So far we have represented value function by a *lookup table*
 - Every state s has an entry V(s)
 - Or every state-action pair s, a has an entry Q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually

■ Solution for large MDPs:

- Solution for large MDPs:
 - Estimate value function with *function approximation*

$$\hat{v}(s,\mathbf{w})pprox v_\pi(s) \ \hat{q}(s,a,\mathbf{w})pprox q_\pi(s,a)$$

- Generalise from seen states to unseen states
- Update parameter w using MC or TD learning

Types of Value Function Approximation (VFA)

Represent a (state-action/state) value function with a parameterized function instead of a table

Motivation for VFA

- Don't want to have to explicitly store or learn for every single state a
 - Dynamics or reward model
 - Value
 - State-action value
 - Policy
- Want more compact representation that generalizes across state or states and actions

Benefits of Generalization

- Reduce memory needed to store (P, R)/V/Q/ π
- Reduce computation needed to compute (P, R)/V/Q/ π
- Reduce experience needed to find a good (P, R)/V/Q/ π

Value Function Approximation (VFA)

Represent a (state-action/state) value function with a parameterized function instead of a table

Which function approximator?

Function Approximators

- Many possible function approximators including
 - Linear combinations of features
 - Neural networks
 - Decision trees
 - Nearest neighbors
- For the next few classes we will focus on function approximators that are differentiable (Why?)
- Two very popular classes of differentiable function approximators
 - Linear feature representations
 - Neural networks
- Furthermore, we require a training method that is suitable for non-stationary, non-iid data