IP addressing & Subnet

Dr. Md. Shohrab Hossain Professor, CSE, BUET

Slide Source: Cisco Networking

- IP addressing
- Public / Private IP address
- Network Address Translation
- Subnetting

Binary Number System

Network Portion and Host Portion of an IPv4 Address

 The subnet mask just says where to look for the network portion in a given IPv4 address

Bitwise AND Operation

IPv4 Subnet masks

Valid Subnet Masks

Subnet Value
255
254
252
248
240
224
192
128
0

Bit Value								
128	64	32	16	8	4	2	1	
1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	0	
1	1	1	1	1	1	0	0	
1	1	1	1	1	0	0	0	
1	1	1	1	0	0	0	0	
1	1	1	0	0	0	0	0	
1	1	0	0	0	0	0	0	
1	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	

Network Address and Broadcast address

For a network, 192.168.10.0/24 network
There are 8-bit allocated for host part.

Network Address:

- All 0's in the host part: 0000 0000 = 0
- So, network address = 192.168.10.0

Broadcast address:

- All 1's in the host part: 1111 1111 = 255
- So, broadcast address = 192.168.10.255
- IP range: 1- 254

Types of IPv4 Address

Legacy Classful Addressing

IP Address Classes

Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	00000000- 01111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	10000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
С	192-223	11000000- 11011111	N.N.N.H	255.255.255. <mark>0</mark>	2,097,150 nets (2^21) 254 hosts per net (2^8-2)
D	224-239	11100000- 11101111	NA (multicast)		
E	240-255	11110000- 11111111	NA (experimental)		

Classless Addressing

- Formal name is Classless Inter-Domain Routing (CIDR)
- Created a new set of standards that allowed service providers to allocate IPv4 addresses on any address bit boundary (prefix length) instead of only by a class A, B, or C address
- Example: 192.168.10.0/23

Examining the Prefix Length

	Dotted Decimal	Significant bits shown in binary
Network Address	10.1.1.0/24	10.1.1. 00000000
First Host Address	10.1.1.1	10.1.1.00000001
Last Host Address	10.1.1.254	10.1.1.11111110
Broadcast Address	10.1.1.255	10.1.1.11111111
Number of hosts: 2^8 – 2 =	254 hosts	

Network Address	10.1.1.0/25	10.1.1.0 00000000
First Host Address	10.1.1 <mark>.1</mark>	10.1.1.00000001
Last Host Address	10.1.1 <mark>.126</mark>	10.1.1.01111110
Broadcast Address	10.1.1 <mark>.127</mark>	10.1.1.01111111
Number of hosts: 2^7 – 2 =	126 hosts	

Network Address	10.1.1.0/26	10.1.1.00 000000					
First Host Address	10.1.1 <mark>.1</mark>	10.1.1.00000001					
Last Host Address	10.1.1 <mark>.62</mark>	10.1.1.00111110					
Broadcast Address	10.1.1 <mark>.63</mark>	10.1.1.00111111					
Number of hosts: 2^6 – 2 = 62 hosts							

Examining the Prefix Length (cont.)

	Dotted Decimal	Significant bits shown in binary
Network Address	10.1.1.0/27	10.1.1.000 00000
First Host Address	10.1.1 <mark>.1</mark>	10.1.1.00000001
Last Host Address	10.1.1.30	10.1.1.00011110
Broadcast Address	10.1.1 <mark>.31</mark>	10.1.1.00011111
Number of hosts: 2^5 – 2 =	30 hosts	

Network Address	10.1.1.0/28	10.1.1.0000 0000
First Host Address	10.1.1 <mark>.1</mark>	10.1.1.00000001
Last Host Address	10.1.1 <mark>.14</mark>	10.1.1.00001110
Broadcast Address	10.1.1 <mark>.15</mark>	10.1.1.00001111
Number of hosts: 2^4 - 2 =	14 hosts	

Private IP address

Public and Private IPv4 Addresses

Private address blocks are:

- Hosts that do not require access to the Internet can use private addresses
 - **10**.0.0.0 to 10.255.255.255 (10.0.0.0/8)
 - **172.16**.0.0 to **172.31**.255.255 (172.16.0.0/12)
 - **192.168**.0.0 to 192.168.255.255 (192.168.0.0/16)
- Not globally routable
- Address translation is done at Router to convert private IP into Public IP address and vice versa

What is NAT?

- NAT is a process used to translate network addresses.
- NAT's primary use is to conserve public IPv4 addresses.
- NAT is usually implemented at border network devices, such as firewalls or routers.
- NAT allows the networks to use private addresses internally, only translating to public addresses when needed.
- Devices within the organization can be assigned private addresses and operate with locally unique addresses.
- When traffic must be sent or received to or from other organizations or the Internet, the border router translates the addresses to a public and globally unique address.

NAT

Subnetting

Network Segmentation

Reasons for Subnetting

Subnetting is the process of segmenting a network into multiple smaller network spaces called subnetworks or subnets.

- Large networks must be segmented into smaller subnetworks, creating smaller groups of devices and services to:
 - Control traffic by containing broadcast traffic within each subnetwork.
 - Reduce overall network traffic and improve network performance.

Communication Between Subnets

- A router is necessary for devices on different networks and subnets to communicate.
- Devices on a network and subnet use the router interface attached to their LAN as their default gateway.

Different networks for different groups

Planning the Network

Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.

Basic Subnetting

- Borrowing Bits to Create Subnets
- Borrowing 1 bit $2^1 = 2$ subnets

Subnets in Use

Subnets in Use

Subnet 0

Network 192.168.1.0-127/25

192.168.1.0/25

192.168.1.128/25

Subnet 1

Network 192.168.1.128-255/25

Address Range for 192.168.1.0/25 Subnet

Network Address

192. 168. 1. 0 000 0000 = 192.168.1.0

First Host Address

192. 168. 1. 0 000 0001 = 192.168.1.1

Last Host Address

192. 168. 1. 0 111 1110 = 192.168.1.126

Broadcast Address

192. 168. 1. 0 111 1111 = 192.168.1.127

Address Range for 192.168.1.128/25 Subnet

Network Address

192. 168. 1. 1 000 0000 = 192.168.1.128

First Host Address

192. 168. 1. 1 000 0001 = 192.168.1.129

Last Host Address

192. 168. 1. 1 111 1110 = 192.168.1.254

Broadcast Address

192. 168. 1. 1 111 1111 = 192.168.1.255

Subnetting Formulas

Creating 4 Subnets

Borrowing 2 bits to create 4 subnets. $2^2 = 4$ subnets

Creating Eight Subnets

Borrowing 3 bits to Create 8 Subnets. $2^3 = 8$ subnets

	Network	192.	168.	1.	000	0 0000	192.168.1.0
Net 0	First	192.	168.	1.	000	0 0001	192.168.1.1
	Last	192.	168.	1.	000	1 1110	192.168.1.30
	Broadcast	192.	168.	1.	000	1 1111	192.168.1.31
	Network	192.	168.	1.	001	0 0000	192.168.1.32
Net 1	First	192.	168.	1.	001	0 0001	192.168.1.33
	Last	192.	168.	1.	001	1 1110	192.168.1.62
	Broadcast	192.	168.	1.	001	1 1111	192.168.1.63
	Network	192.	168.	1.	010	0 0000	192.168.1.64
Net 2	First	192.	168.	1.	010	0 0001	192.168.1.65
	Last	192.	168.	1.	010	1 1110	192.168.1.94
	Broadcast	192.	168.	1.	010	1 1111	192.168.1.95
	Network	192.	168.	1.	010	0 0000	192.168.1.96
Net 3	First	192.	168.	1.	010	0 0001	192.168.1.97
	Last	192.	168.	1.	010	1 1110	192.168.1.126
	Broadcast	192.	168.	1.	010	1 1111	192.168.1.127

Creating Eight Subnets (Cont.)

	Network	192.	168.	1.	100	0 0000	192.168.1.128
Net 4	Fist	192.	168.	1.	100	0 0001	192.168.1.129
	Last	192.	168.	1.	100	1 1110	192.168.1.158
	Broadcast	192.	168.	1.	100	1 1111	192.168.1.159
	Network	192.	168.	1.	101	0 0000	192.168.1.160
Net 5	Fist	192.	168.	1.	101	0 0001	192.168.1.161
11010	Last	192.	168.	1.	101	1 1110	192.168.1.190
	Broadcast	192.	168.	1.	101	1 1111	192.168.1.191
	Network	192.	168.	1.	110	0 0000	192.168.1.192
Net 6	Fist	192.	168.	1.	110	0 0001	192.168.1.193
	Last	192.	168.	1.	110	1 1110	192.168.1.222
	Broadcast	192.	168.	1.	110	1 1111	192.168.1.223
	Network	192.	168.	1.	111	0 0000	192.168.1.224
Net 7	Fist	192.	168.	1.	111	0 0001	192.168.1.225
	Last	192.	168.	1.	111	1 1110	192.168.1.254
	Broadcast	192.	168.	1.	111	1 1111	192.168.1.255

Creating Eight Subnets (Cont.)

Subnetting Based on Host Requirements

Two considerations when planning subnets:

- Number of subnets required
- Number of host addresses required

Formula to determine number of usable hosts: 2ⁿ-2

- 2ⁿ (where n is the number of remaining host bits) is used to calculate the number of hosts.
- -2 (The subnetwork ID and broadcast address cannot be used on each subnet.)

Traditional Subnetting: Equal Addresses

- Subnets that require fewer addresses have unused (wasted) addresses
- For example, WAN links only need two addresses.

Variable Length Subnet Masks (VLSM)

- The variable-length subnet mask (VLSM) or subnetting a subnet provides more efficient use of addresses.
- VLSM allows a network space to be divided in unequal parts.
- Subnet mask varies, depending on how many bits have been borrowed for a particular subnet.
- Network is first subnetted, and then the subnets are resubnetted.

Benefits of Variable Length Subnet Masking Basic VLSM

Creating Eight Subnets (Cont.)

Let us do another example ..