Probability Theory and Random Processes (MA225)

Lecture 5LIDES
Lecture 11

Indian Institute of Technology Guwahati

July-Nov 2022

Jointly Distributed Random Variables

Def: A function $X: \mathcal{S} \to \mathbb{R}^n$ is called a random vector.

Def: For any random vector $X = (X_1, X_2, ..., X_n)$, the joint cumulative distribution function (JCDF) is defined by

$$F_{\mathbf{X}}(x_1, \ldots, x_n) = P(X_1 \le x_1, \ldots, X_n \le x_n),$$

for all $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

Remark:
$$F_X(x) = \lim_{y \to \infty} F_{X,Y}(x, y)$$
.

Remark:
$$F_Y(y) = \lim_{x \to \infty} F_{X,Y}(x, y)$$
.

2/10

MA225 July-Nov 2022

Properties of JCDF

- $\lim_{x \to \infty} \lim_{y \to \infty} F_{X,Y}(x, y) = 1.$
- $\lim_{x \to -\infty} F_{X,Y}(x, y) = 0 \text{ for all } y \in \mathbb{R}.$
- $\mathbf{0} \lim_{y \to -\infty} F_{X,Y}(x, y) = 0 \text{ for all } x \in \mathbb{R}.$
- **1** $F_{X,Y}(\cdot,\cdot)$ is right continuous in each argument keeping other fixed.
- **⑤** For $-\infty < a_1 < b_1 < \infty$ and $-\infty < a_2 < b_2 < \infty$,

$$F_{X,Y}(b_1, b_2) - F_{X,Y}(b_1, a_2) - F_{X,Y}(a_1, b_2) + F_{X,Y}(a_1, a_2) \ge 0.$$

Theorem: Let $G: \mathbb{R}^2 \to \mathbb{R}$ be a function satisfying above properties. Then G is a JCDF of some 2-dimensional random vector.

4日 → 4団 → 4 豆 → 4 豆 → 9 Q ○

Discrete Random Vector

Def: A random vector (X,Y) is said to have a discrete distribution if there exists an atmost countable set $S_{X,Y} \in \mathbb{R}^2$ such that $P\left((X,Y)=(x,y)\right)>0$ for all $(x,y)\in S_{X,Y}$ and $P\left((X,Y)\in S_{X,Y}\right)=1$. $S_{X,Y}$ is called the support of (X,Y).

Def: Define a function $f_{X,Y}: \mathbb{R}^2 \to \mathbb{R}$ by

$$f_{X,Y}(x, y) = \begin{cases} P(X = x, Y = y) & \text{if } (x, y) \in S_{X,Y} \\ 0 & \text{otherwise.} \end{cases}$$

The function $f_{X,Y}$ is called joint probability mass function (JPMF) of the DRV (X,Y).

MA225 July-Nov 2022

Properties of JPMF

 f_X is called marginal PMF of X in this context.

Theorem: If a function $g:\mathbb{R}^2\to\mathbb{R}$ satisfy 1 and 2 above for the atmost countable set $D=\left\{(x,y)\in\mathbb{R}^2:g(x,y)>0\right\}$ in place of $S_{X,Y}$, then g is JPMF of some 2-dimensional DRV.

Expectation of Function of DRV

Def: Let (X, Y) be a DRV with JPMF $f_{X, Y}$ and support $S_{X, Y}$. Let $h : \mathbb{R}^2 \to \mathbb{R}$. Then the expectation of h(X, Y) is defined by

$$E(h(X, Y)) = \sum_{(x, y) \in S_{X, Y}} h(x, y) f_{X, Y}(x, y),$$

$$\operatorname{provided} \sum_{(x,\,y) \in S_{X,\,Y}} |h(x,\,y)| f_{X,\,Y}(x,\,y) < \infty.$$

Continuous Random Vector

Def: A random vector (X,Y) is said to have a continuous distribution if there exists a non-negative integrable function $f_{X,Y}:\mathbb{R}^2\to\mathbb{R}$ such that

$$F_{X,Y}(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(t, s) ds dt$$

for all $(x, y) \in \mathbb{R}^2$.

Def: The function $f_{X,Y}$ is called the joint probability density function (JPDF) of (X,Y).

Def: The set $S_{X,Y}=\left\{(x,y)\in\mathbb{R}^2: f_{X,Y}(x,y)>0\right\}$ is called the support of (X,Y).

Properties of JPDF

Theorem: If a function $g:\mathbb{R}^2\to\mathbb{R}$ satisfy 1 and 2 above, then g is JPDF of some 2-dimensional CRV.

Expectation of Function of CRV

Def: Let (X,Y) be a CRV with JPDF $f_{X,Y}$. Let $h:\mathbb{R}^2\to\mathbb{R}$. Then the expectation of h(X,Y) is defined by

$$E(h(X, Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) f_{X, Y}(x, y) dx dy,$$

provided
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |h(x, y)| f_{X,Y}(x, y) dx dy < \infty$$
.

Examples

In each of following examples, find the value of c, marginal distributions of X and Y, respectively.

Example 1: Let (X, Y) be a DRV with JPMF

$$f_{X,Y}(x,\,y) = \begin{cases} cy & \text{if } x=1,\,2,\,\ldots,\,n;\,y=1,\,2,\,\ldots,\,n\\ 0 & \text{otherwise}. \end{cases}$$

Example 2: Let (X, Y) be a DRV with JPMF

$$f_{X,Y}(x,\,y) = \begin{cases} cy & \text{if } x = 1,\,2,\,\ldots,\,n;\,y = 1,\,2,\,\ldots,\,n;\,x \leq y \\ 0 & \text{otherwise}. \end{cases}$$

Example 3: Let (X, Y) be a CRV with JPDF

$$f_{X,Y}(x,\,y) = \begin{cases} ce^{-(2x+3y)} & \text{if } 0 < x < y < \infty \\ 0 & \text{otherwise}. \end{cases}$$