Trditev. Na območju \mathcal{D} naj ima funkcija $f: \mathcal{D} \to \mathbb{C}$ singularnosti le v obliki polov. Naj bo $\overline{D}(a,r)$ cel vsebovan v \mathcal{D} in na robu tega kroga naj ne bo ne ničel ne polov funkcije f. Potem je

$$\frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{f'(z)}{f(z)} dz = N - P$$

kjer smo z N označili število ničel znotraj D(a,r) - pri čemer upoštevamo morebitno večkratnost ničel, s P pa število polov znotraj D(a, r).

Dokaz. Po izreku o stekališčih je ničel končno mnogo. Ker so poli funkcije f ničle funkcije 1/f, je tudi teh končno mnogo.

Naj bojo $a_1, a_2, ..., a_n$ ničle s kratnostmi $m_1, m_2, ..., m_n$

poli pa $b_1, b_2, ..., b_p$ s kratnostmi $n_1, n_2, ..., n_p$ $N = m_1 + m_2 + ... + m_n \text{ in } P = n_1 + n_2 + ... + n_p$ Za funkcijo f vemo, da mora biti oblike $f(z) = \frac{(z - a_1)^{m_1}(z - a_2)^{m_2}...(z - a_n)^{m_n}}{(z - b_1)^{n_1}(z - b_2)^{n_2}...(z - a_p)^{n_p}}g(z)$, pri čemer g(z)

na D(a,r) nima ničel ali polov.

Zdaj bomo morali to odvajati. Začnimo z najenostavnejšim primerom, ko ima f(z) le eno ničlo.

$$f(z) = (z - a)^k g(z)$$

$$f'(z) = k(z - a)^{k-1} g(z) + (z - a)^k g'z$$

$$\frac{f'(z)}{f(z)} = \frac{k}{z - a} + \frac{g'(z)}{g(z)}$$

V našem primeru imamo produkt takšnih funkcij, tore

$$\begin{split} \frac{f'(z)}{f(z)} &= \frac{m_1}{z - a_1} + \frac{m_2}{z - a_2} + \ldots + \frac{m_n}{z - a_n} - \frac{n_1}{z - b_1} + \frac{n_2}{z - b_2} + \ldots + \frac{n_p}{z - b_p} + \frac{g'(z)}{g(z)} \\ &\frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{f'(z)}{f(z)} dz = m_1 \frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{1}{z - a_1} dz + m_2 \frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{1}{z - a_2} dz + \ldots \\ &- n_1 \frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{1}{z - b_1} dz - n_2 \frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{1}{z - b_2} dz - \ldots \\ &+ \frac{1}{2\pi i} \int_{\partial D(a,r)} \frac{g'(z)}{g(z)} dz \end{split}$$

Izrazi oblike $\frac{1}{2\pi i}\int_{\partial D(a,r)}\frac{1}{z-z_0}dz$ so enaki 1 (gre za indeks krivulje), izraz $\frac{1}{2\pi i}\int_{\partial D(a,r)}\frac{g'(z)}{g(z)}dz$ pa bo po Cauchyjevem izreku enak 0.

Izrek. Izrek o odprti preslikavi:

bodi $f: \mathcal{D} \to \mathbb{C}$ holomorfna in nekonstantna. Potem je f odprta preslikava, kar pomeni, da je f(U)odprta v \mathbb{C} , čim je U odprta v \mathcal{D} .

Dokaz. (skica dokaza) Recimo, da je U odprta v \mathcal{D} . Iščemo $\varepsilon > 0$, da bo $D(f(\alpha), \varepsilon) \subseteq f(U)$. To sledi iz naslednjega rezultata:

Recimo, da je $f(\alpha) = \beta$; tedaj je α ničla funkcije $f(z) - \beta$. Recimo, da je α n-kratna ničla. Tedaj ima $f(z)-\beta$ natanko n rešitev. Potem $\exists \delta>0$ in $\exists \varepsilon>0:\ w\in D(\beta,\varepsilon),\ w\neq\beta$ ima enačba f(z)=w natanko n rešitev (tega dela ne bomo dokazovali). Ker je U odprta, lahko dosežemo $D(\alpha, \delta) \subseteq U$. Zadošča dokazati, da je $D(\beta, \varepsilon) \subseteq U$. To pa je posledica tega, da ima enačba f(z) - w natanko $n \ge 1$ rešitev za $w \in D(\beta, \varepsilon)$.

Opomba. Že na začetku smo povedali, da je pri funkciji $f: A \to B$ množica $V \subset B$ odprta v B, če je $f^{-1}(V)$ odprta v A. To sledi iz definicije zveznosti. Zdaj smo to nadgradili, saj odprtost f zagotavlja zveznost f^{-1} .

Posledica. $f: \mathcal{D} \to \mathbb{C}$ bodi holomorfna in $\alpha \in \mathcal{D}$ taka točka, da $f'(\alpha) \neq 0$. tedaj obstaja okolica α (v nadaljnje označena z U), da bo $f|_{U}: U \to f(U)$ bijektivna in f^{-1} holomorfna.

Dokaz. (skica dokaza) Označimo $f(\alpha) = \beta$. Tedaj je α ničla funkcije $g(z) = f(z) - \beta$. Ker je $f'(\alpha) = 0$, je α enkratna ničla funkcije g.

$$g(z) = (z - \alpha)^{k} h(z)$$

$$f'(z) = g'(z) = k(z - \alpha)^{k-1} h(z) + (z - \alpha)^{k} h'(z)$$

V točki α mora biti to različno od 0, torej mora biti k=1, da prvi člen ne bo enak 0. Naj bo g inverz f. To pomeni, da je f(z)=w in g(w)=z.

$$\lim_{w \to w_0} \frac{g(w) - g(w_0)}{w - w_0} = \lim_{z \to z_0} \frac{z - z_0}{f(z) - f(z_0)} = \frac{1}{f'(z)}$$

Kaj, če je f'(z)=0? Ker je f' zvezna in je $f'(\alpha)\neq 0$, lahko poiščemo dovolj majhen δ , da na krogu $D(\alpha,\delta)$ velja $f'(z)\neq 0$