Applying Iterative Design Principles to a Live Product

Name: Victoria Perez Mola

Date: 24.01.2021

Step 1
Select KPIs

8

Evaluate Previous

Multivariate

Experiment Results

Select KPIs for Flyber Analyses

Using the data available, the KPI(s) that match Flyber's business model are the following:

- **Number of users per day:** This can be counted using the event log with the distinct user uuid group by day.
- Average number of rides per user per month: This can be counted using the event log with the distinct event_uuid associated to event_type = 'ride_begin' grouped by user uuid and month.

Other KPIs that might be important to Flyber but are not calculable based on available data:

Finding New Customers

- User lifetime value
- User acquisition cost

Customer Satisfaction

Survey customers about their happiness with their rides and Flyber's app

Customer Support

- Number of customer support tickets
- Average time to address customer support ticket

Revenues and Costs

- Net profit: revenue after all costs
- Revenue per month from rides fees
- Cost of vehicles maintenance

Describe the First Multivariate Experiment

With the purpose of finding the most optimal design for Flyber's app a multivariate experiment were 3 variations were tested along with the control version.

The tested features were:

- "Book flight" button vs "Fly now" button
- "* Tip included" message

Control

Experiment 1

Experiment 2

Experiment 3

Review Multivariate Test Results: Visualization

 In the following tables we can see total amount of users in each test groups and how many of those users booked a ride.

	experiment_gro	up ^		Users
1.	control			32,125
2.	experiment_1			32,005
3.	experiment_2			32,216
4.	experiment_3			32,105
	Grand total			81,557
			1-4/4	< >
Amo	ount of users that	converte		d a ride)
	ount of users that experiment_gro		d (booke	
е			d (booke nt of use	
e c	xperiment_gro		d (booke nt of use	rs
e c	xperiment_gro		d (booke nt of use 15	r s 54
c	experiment_gro ontrol experiment_1		d (booke nt of use 15	rs 54 72 79

Review Multivariate Test Results: Visualization

 Using the numbers presented we can calculate conversion rate for each test and control group.

Review Multivariate Test Results: Significance Test

Determine if there was a significant difference between the experiments and control states.

Steps to perform a t-test:

- 1. State the null hypothesis: there is no difference in the booking of a ride rate between users in the control and test groups. This is what we want to reject.
- 2. State the alternative hypothesis: there is a difference in the booking of a ride rate between the test and control groups. This is what we want to accept.
- 3. Set confidence threshold: 95%

Review Multivariate Test Results: Significance Test

Determine if there was a significant difference between the experiments and control states.

4. Using a <u>statistical significance calculator</u>, determine which experiments, if any, had a significant result at the 95% level.

Based on the statistical significance calculations, we don't have enough results to make a decision. W'acan't confirm nor expect that changing the app I result in more users booking a ride.

Step 2 Funnel & Cohort Analyses

User Funnel

We can define a funnel that users will go through while using the Flyber's app that follows the steps:

- Open the app
- Select the amount of people that will be using the ride
- Search for an available ride
- Finally booking of a ride

In the table we can see the funnel from step to step, including drop off rates.

	event_type	Drop off rate
1.	open	0%
2.	#_of_users	-58.1%
3.	search	-79.88%
4.	begin_ride	-99.7%

User Segments

In the data available we can identify 2 demographic attributes that allow for segment analysis:

 Age: Being the segment group with the largest number of users the age range between 30-39.

	age	Number of users •
1.	30-39	20,124
2.	18-29	28,321
3.	40-49	41,774
4.	50+	64,059

 User's neighborhood: Being the segment group with the largest number of users Manhattan.

	user_neighborhood	Number of users ▼
1.	Manhattan	57,110
2.	Brooklyn	16,435
3.	Queens	4,050
4.	Bronx	2,396
5.	Staten Island	1,566

Segment Analysis of Funnel

Identify Opportunities for Improvement

Funnel analysis by segment age group

event/age	50+	40-49	18-29	30-39
open				
#_of_users	-58.08	-58.11	-58.02	-58.36
search	-67.87	-35.97	-35.75	-36.49
begin_ride	-98.72	-98.30	-98.62	-98.34

We can see that the age group 50+ has the highest drop off rate in the search stage compared to other age groups.

These findings may indicate areas for app experience optimization for older users.

More user research should take place in order to to determine what may be causing the higher drop off rates.

Segment Analysis of Funnel

Identify Opportunities for Improvement

Funnel analysis by segment user neighbourhood group

event/age	Manhattan	Brooklyn	Queens	Bronx	Staten Island
open			e a	67	
#_of_users	-58.03	-58.19	-58.58	-58.79	-57.80
search	-51.94	-52.24	-51.23	-51.85	-52.67
begin_ride	-98.52	-98.52	-98.63	-98.27	-98.39

There's no indication that the user neighbourhood has some influence in the drop off rates, because numbers are quite similar across all of the segment groups.

Step 3 Hypothesis & Next Steps

Review Qualitative Data

- Read user interviews to understand "why" any funnel under-performance seen in Step 2 might occur
- List your hypothesis for what customer need is being under-served
- Provide 3 or more quotes as evidence for this hypothesis

Suggested Features & Experimentation Plan

 Share your hypothesis using the following format: We believe [observed quantitative effect] Because [hypothesized user "why"] And that by [general change/opportunity for Flyber to improve] for [targeted cohort] we will see [expected effect]

 Suggest 2 or more features that would match your hypothesis and determine a plan for multivariate testing, including describing the control and experimental conditions

Determine who should be exposed to the experimental changes

 List any additional metrics that would be helpful to collect from your suggested features

Appendix

Raw Data

Additional Info

You could include supporting or additional information that can support your previous slides but isn't necessary for every person to see that looks at your slides.