

LSINF1121 TP5: PQ. UNION-FIND ET HUFFMAN

QUESTION 5.1.9 HEAPIFY

Prouvez qu'on fait cette opération en O(n)

```
Pour n=2^m - 1, on a:
tableaux de taille 1 à heapifier. Coût
tableaux de taille 3.
tableaux de taille 7.
```

 $2^{m-1} \cdot \log(1) = 0$

 $2^{m-2} \cdot \log(3) \sim 2 \cdot 2^{m-2}$

 $2^{m-3} \cdot \log(7) \sim 3 \cdot 2^{m-3}$

100

= n

 m^{-1}

Or on a que $\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$ si |x| < 1

D'où $n \sum_{i=1}^{n} i \cdot (\frac{1}{n})$

QUESTION 5.1.9 HEAPIFY

Prouvez qu'on fait cette opération en O(n)

Pour $n=2^m - 1$, on a:

-
$$2^{m-1}$$
 tableaux de taille 1 à heapifier. Coût $2^{m-1} \cdot \log(1) = 0$

-
$$2^{m-2}$$
 tableaux de taille 3. $2^{m-2} \cdot \log(3) \sim 2 \cdot 2^{m-2}$

-
$$2^{m-3}$$
 tableaux de taille 7.
$$2^{m-3} \cdot \log(7) \sim 3 \cdot 2^{m-3}$$

-

$$\sum_{i=2}^{m} i \cdot 2^{m-i} = \sum_{i=2}^{m} i \cdot \frac{n}{2^{i}} = n \sum_{i=2}^{m} i \cdot (\frac{1}{2})^{i}$$

Or on a que
$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$
 si $|x| < 1$

D'où
$$n \sum_{i=2}^{m} i \cdot (\frac{1}{2})^i \le 2n$$

QUESTION 5.1.10 HUFFMAN

A-5 B-3 C-1 D-2 E-8 F-7 G-5