Geometria e Algebra - MIS-Z

Primo Esonero

26/04/2022

Nome e Cognome:		
Corso di Laurea:		
Matricola:		

Informazioni

Questo esonero contiene 4 esercizi per un totale di 34 punti. Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- se $30 \le x \le 34$, allora il voto sarà 30eLode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 1 ora e 50 minuti. È vietato l'utilizzo di ogni tipo di calcolatrice.

Punteggio

TOTALE

ESERCIZIO 1 [8 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

(a) Esiste $k \in \mathbb{R}$ tale che i seguenti vettori di \mathbb{R}^3 siano linearmente indipendenti:

 $v_1 = (1, 2, 3),$ $v_2 = (k, k + 1, k + 2),$ $v_3 = (3, 2, 1),$ $v_4 = (1, 0, 1).$

- \square VERO
- FALSO

Giustificazione

Essendo \mathbb{R}^3 uno spazio vettoriale di dimensione 3, per il lemma di Steinitz un qualsiasi insieme di 4 (> 3) vettori è linearmente dipendente. Non può dunque esistere k tale che i vettori v_1, v_2, v_3 e v_4 siano linearmente indipendenti.

- (b) Se $A \in \mathcal{M}_n(\mathbb{R})$ è invertibile, allora per ogni $n \geq 1$ la matrice A^n è invertibile.
 - VERO
 - \square FALSO

Giustificazione

Sia A^{-1} l'inversa di A. Mostriamo allora che $(A^{-1})^n$ è l'inversa di A^n . Abbiamo:

$$(A^{-1})^n A^n = \underbrace{A^{-1} \cdots A^{-1}}_{\text{n volte}} \cdot \underbrace{A \cdots A}_{\text{n volte}} = A^{-1} \cdots \underbrace{(A^{-1} \cdot A)}_{=I_n} \cdots A = I_n,$$

dove l'ultima uguaglianza è stata ottenuto utilizzando ripetutamente la proprietà associativa e il fatto che $I_nA = A$.

Quindi $(A^n)^{-1} = (A^{-1})^n$ e A^n è invertibile per ogni $n \ge 1$.

(Più semplicemente si poteva anche utilizzare il risultato visto nel corso che il prodotto di matrici invertibili è una matrice invertibile.)

(c) Siano $A, B \in \mathcal{M}_2(\mathbb{R})$. Allora $(A+B)(A-B) = A^2 - B^2$.

 \square VERO

FALSO

Giustificazione

Per mostrare che l'asserto è falso ci basterà esibire due matrici $A, B \in \mathcal{M}_2(\mathbb{R})$ tali che $(A+B)(A-B) \neq A^2 - B^2$.

Siano $A=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ e $B=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Allora abbiamo:

•
$$A + B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, A - B = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \Rightarrow (A + B)(A - B) = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}.$$

•
$$A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow A^2 - B^2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Quindi $(A + B)(A - B) \neq A^2 - B^2$.

Si noti che l'uguaglianza è vera se e solo se le matrici A e B commutano, cioè se e solo se AB = BA.

(d) Sia V uno spazio vettoriale di dimensione 3 e siano U,W due sottospazi vettoriali di V tali che $\dim(U)=\dim(W)=1$. Allora $\dim(U+W)=2$.

 \square VERO

■ FALSO

Giustificazione

Sia $V=\mathbb{R}^3$. Siano $U=W=\langle (1,1,1)\rangle$. Allora $\dim(U)=\dim(W)=1$, poiché U e W sono generati da un vettore non nullo. Abbiamo

$$U + W = \langle (1, 1, 1), (1, 1, 1) \rangle = \langle (1, 1, 1) \rangle = U = W.$$

Quindi $\dim(U+W)=1$. In particolare $\dim(U+W)\neq 2$.

ESERCIZIO 2 [8 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\left\{ \begin{array}{l} kX+k^2Y=3k\\ X-Z=4\\ -3k^2Y+k^2Z=4k \end{array} \right.$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni
$k \in \mathbb{R} \setminus \{0, -3\}$	SI	1	$\left\{ \left(\frac{4k+13}{k+3}, -\frac{k^2+4k}{k^2(k+3)}, \frac{1}{k+3} \right) \right\}$
k = 0	SI	∞^2	$\left\{ \left(4+t,s,t\right),s,t\in\mathbb{R}\right\}$
k = -3	NO	0	-

Svolgimento

Consideriamo la matrice orlata associata al sistema:

$$\begin{pmatrix} k & k^2 & 0 & 3k \\ 1 & 0 & -1 & 4 \\ 0 & -3k^2 & k^2 & 4k \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_1 \leftrightarrow R_2$,
- 2. $R_2 \leftarrow R_2 kR_1$, 3. $R_3 \leftarrow R_3 + 3R_2$,

si ottiene la matrice a scalini:

$$\begin{pmatrix} 1 & 0 & -1 & 4 \\ 0 & k^2 & k & -k \\ 0 & 0 & k^2 + 3k & k \end{pmatrix}.$$

CASO 1. Notiamo che se $k \neq 0$ e $k \neq -3$ allora l'ultimo pivot non nullo non appartiene all'ultima colonna e tutte le colonne delle incognite contengono un pivot. Ne segue che il sistema è compatibile ed ammette esattamente una soluzione. Quindi per ogni $k \in \mathbb{R} \setminus \{0, -3\}$ l'insieme delle soluzioni è

$$S_k = \left\{ \left(\frac{4k+13}{k+3}, -\frac{k^2+4k}{k^2(k+3)}, \frac{1}{k+3} \right) \right\}.$$

CASO 2. Se k=0 allora la matrice a scalini è

$$\begin{pmatrix} 1 & 0 & -1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Poiché l'unico pivot non appartiene all'ultima colonna, il sistema è compatibile. Le variabili Y e Z sono variabili libere (poiché le colonne corrispondenti non contengono un pivot). Quindi il sistema possiede ∞^2 soluzioni che sono date dall'insieme

$$S_0 = \{(4+t, s, t), s, t \in \mathbb{R}\}.$$

 ${\bf \underline{CASO}}$ 3. Se k=-3allora la matrice a scalini è

$$\begin{pmatrix} 1 & 0 & -1 & 4 \\ 0 & 9 & -3 & 3 \\ 0 & 0 & 0 & -3 \end{pmatrix}.$$

Poiché l'unico pivot appartiene all'ultima colonna, il sistema non è compatibile (l'ultima equazione corrisponde infatti all'equazione 0 = -3).

ESERCIZIO 3 [8 punti]. Il sottospazio della matrici simmetriche.

(a) Dimostrare che per ogni $A, B \in \mathcal{M}_2(\mathbb{R})$, per ogni $\lambda \in \mathbb{R}$ si ha

$$(A+B)^T = A^T + B^T$$
 e $(\lambda A)^T = \lambda (A^T)$.

Svolgimento

Siano $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}), \ \lambda \in \mathbb{R}$. Allora abbiamo

$$(A+B)^T = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix}^T = \begin{pmatrix} a+a' & c+c' \\ b+b' & d+d' \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix} + \begin{pmatrix} a' & c' \\ b' & d' \end{pmatrix} = A^T + B^T.$$

 $(\lambda A)^T = \begin{pmatrix} \lambda a & \lambda b \\ \lambda c & \lambda d \end{pmatrix}^T = \begin{pmatrix} \lambda a & \lambda c \\ \lambda b & \lambda d \end{pmatrix} = \lambda \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \lambda (A^T).$

(b) Si ricorda che una matrice $A \in \mathcal{M}_n(\mathbb{R})$ si dice simmetrica se $A = A^T$. Si consideri dunque il sottoinsieme $U \subseteq \mathcal{M}_2(\mathbb{R})$ costituito delle matrici simmetriche di $\mathcal{M}_2(\mathbb{R})$:

$$U = \{ A \in \mathcal{M}_2(\mathbb{R}) : A \text{ è simmetrica} \}.$$

Si dimostri che U è un sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$.

Svolgimento

Innanzitutto $U \neq \emptyset$, poiché la matrice nulla è simmetrica.

Siano dunque $A, B \in U$. Per definizione, $A^T = A$ e $B^T = B$. Mostriamo che per ogni $\lambda, \mu \in \mathbb{R}, \lambda A + \mu B \in U$, ossia che $(\lambda A + \mu B)^T = \lambda A + \mu B$. Utilizzando quanto dimostrato nel punto precedente abbiamo:

$$(\lambda A + \mu B)^T \stackrel{(a)}{=} (\lambda A)^T + (\mu B)^T \stackrel{(a)}{=} \lambda (A^T) + \mu (B^T) \stackrel{A,B \in U}{=} \lambda A + \mu B.$$

Quindi U è un sottospazio di $\mathcal{M}_2(\mathbb{R})$.

(c) Si dimostri che le matrici

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \qquad A_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

costituiscono una base di U. Dedurne la dimensione di U.

Svolgimento

Mostriamo innanzitutto che $\{A_1, A_2, A_3\}$ è un **sistema di generatori** di U. Sia $A \in U$. Allora, poiché A è simmetrica, esistono $a, b, c \in \mathbb{R}$ tali che

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

Abbiamo allora:

$$A = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = aA_1 + bA_2 + cA_3.$$

Quindi le matrici A_1, A_2 e A_3 generano U.

Mostriamo ora che A_1, A_2 e A_3 sono **linearmente indipendenti**. Siano $\lambda, \mu, \delta \in \mathbb{R}$ tali che

$$\lambda A_1 + \mu A_2 + \delta A_3 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Allora

$$\begin{pmatrix} \lambda & \delta \\ \delta & \mu \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

da cui $\lambda = \mu = \delta = 0$. Quindi A_1, A_2 e A_3 sono linearmente indipendenti.

In conclusione A_1, A_2 e A_3 generano U e sono linearmente indipendenti. Quindi $\{A_1, A_2, A_3\}$ è una base di U.

(d) Completare $\{A_1, A_2, A_3\}$ a una base di $\mathcal{M}_2(\mathbb{R})$.

Svolgimento

Sappiamo che dim $(\mathcal{M}_2(\mathbb{R})) = 4$. Quindi per completare $\{A_1, A_2, A_3\}$ a una base di $\mathcal{M}_2(\mathbb{R})$ è sufficiente determinare una matrice A_4 che formi con A_1, A_2 e A_3 un insieme di vettori linearmente indipendenti. Consideriamo la matrice $A_4 = E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ della base canonica (chiaramente non scegliamo E_{11} e E_{22} poiché appartengono già alla base di U).

Verifichiamo che A_1, A_2, A_3, A_4 sono linearmente indipendenti. Siano $\lambda, \mu, \delta, \gamma \in \mathbb{R}$ tali che

$$\lambda A_1 + \mu A_2 + \delta A_3 + \gamma A_4 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Allora

$$\begin{pmatrix} \lambda & \delta + \gamma \\ \delta & \mu \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

da cui otteniamo facilmente $\lambda = \mu = \delta = \gamma = 0$. Quindi A_1, A_2, A_3, A_4 sono quattro matrici linearmente indipendenti. Ne segue che $\{A_1, A_2, A_3, A_4\}$ è una base di $\mathcal{M}_2(\mathbb{R})$ che contiene $\{A_1, A_2, A_3\}$.

ESERCIZIO 4 [10 punti]. Polynomial time!

(a) Si definisca quando un insieme di vettori di uno spazio vettoriale V è linearmente indipendente.

Definizione

Sia V uno spazio vettoriale su un campo K. Un insieme $\{v_1,\ldots,v_n\}$ di vettori di V si dice linearmente indipendente se

$$\lambda_1 v_1 + \dots + \lambda_n v_n = \underline{0}, \text{ con } \lambda_1, \dots, \lambda_n \in K \Rightarrow \lambda_1 = \dots = \lambda_n = 0.$$

(b) Sia $V = \mathbb{R}_{\leq 4}[X] := \{P(X) \in \mathbb{R}[X] : \deg(P) \leq 4\}$. Si ricorda che per convenzione si pone deg(0) = -1, quindi $0 \in \mathbb{R}_{\leq 4}[X]$. Si determini l'insieme S dei valori di $h \in \mathbb{R}$ per i quali i seguenti polinomi di $\mathbb{R}_{\leq 4}[X]$ sono linearmente indipendenti:

$$P_1(X) = X^3 + 2X^2 + 3X + 4,$$
 $P_2(X) = -2X^3 + X^2 - 3X + 2,$ $P_3(X) = 10X^2 + 6X + h.$

Svolgimento

I polinomi P_1 , P_2 e P_3 sono linearmente indipendenti se

$$\lambda P_1(X) + \mu P_2(X) + \delta P_3(X) = 0 \Rightarrow \lambda = \mu = \delta = 0.$$

Siano dunque $\lambda, \mu, \delta \in \mathbb{R}$ tali che

$$\lambda(X^3 + 2X^2 + 3X + 4) + \mu(-2X^3 + X^2 - 3X + 2) + \delta(10X^2 + 6X + h) = 0.$$

Allora otteniamo

$$(\lambda - 2\mu)X^3 + (2\lambda + \mu + 10\delta)X^2 + (3\lambda - 3\mu + 6\delta)X + 4\lambda + 2\mu + h\delta = 0,$$

da cui segue che λ, μ, δ sono soluzioni del sistema omogeneo

$$\begin{cases} \lambda - 2\mu = 0\\ 2\lambda + \mu + 10\delta = 0\\ 3\lambda - 3\mu + 6\delta = 0\\ 4\lambda + 2\mu + h\delta = 0. \end{cases}$$

Vogliamo determinare i valori di h per cui tale sistema ammette l'unica soluzione (0,0,0). Consideriamo la matrice orlata associata al sistema:

$$\begin{pmatrix} 1 & -2 & 0 & 0 \\ 2 & 1 & 10 & 0 \\ 3 & -3 & 6 & 0 \\ 4 & 2 & h & 0 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_2 \leftarrow R_2 2R_1$,
- 2. $R_3 \leftarrow R_3 3R_1$,
- 3. $R_4 \leftarrow R_4 4R_1$, 4. $R_3 \leftarrow R_3 \frac{3}{5}R_2$, 5. $R_4 \leftarrow R_4 2R_2$,
- 6. $R_3 \leftrightarrow R_4$,

si ottiene la matrice a scalini:

$$\begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & 5 & 10 & 0 \\ 0 & 0 & h-20 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Il sistema associato ammette l'unica soluzione (0,0,0) se non ci sono variabili libere, cioè se solo se $h-20\neq 0$, ossia $h\neq 20$. Quindi $S=\mathbb{R}\setminus\{20\}$.

(c) Si consideri

$$U_h = \langle X^3 + 2X^2 + 3X + 4, -2X^3 + X^2 - 3X + 2, 10X^2 + 6X + h \rangle \subseteq \mathbb{R}_{\leq 4}[X].$$

Si mostri che per ogni $h \in S$, $1 \in U_h$. (S denota l'insieme dei valori di h trovato al punto precedente.)

Svolgimento

Dal punto precedente abbiamo ottenuto $S = \mathbb{R} \setminus \{20\}$. Mostriamo che per ogni $h \in S$ il polinomio 1 appartiene a U_h , ossia che per ogni $h \in S$ esistono $\lambda, \mu, \delta \in \mathbb{R}$ tali che

$$\lambda P_1(X) + \mu P_2(X) + \delta P_3(X) = 1. \tag{1}$$

Da (1) otteniamo il sistema

$$\begin{cases} \lambda - 2\mu = 0 \\ 2\lambda + \mu + 10\delta = 0 \\ 3\lambda - 3\mu + 6\delta = 0 \\ 4\lambda + 2\mu + h\delta = 1. \end{cases}$$

Mostriamo che per ogni $h \neq 20$, tale sistema possiede almeno una soluzione. Consideriamo la matrice orlata associata al sistema:

$$\begin{pmatrix} 1 & -2 & 0 & 0 \\ 2 & 1 & 10 & 0 \\ 3 & -3 & 6 & 0 \\ 4 & 2 & h & 1 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_2 \leftarrow R_2 2R_1$,
- 2. $R_3 \leftarrow R_3 3R_1$,
- 3. $R_4 \leftarrow R_4 4R_1$,
- 4. $R_3 \leftarrow R_3 \frac{3}{5}R_2$, 5. $R_4 \leftarrow R_4 2R_2$,
- 6. $R_3 \leftrightarrow R_4$,

si ottiene la matrice a scalini:

$$\begin{pmatrix} 1 & -2 & 0 & 0 \\ 0 & 5 & 10 & 0 \\ 0 & 0 & h - 20 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Quindi per ogni $h \neq 20$ il sistema ammette l'unica soluzione $\left(-\frac{4}{h-20}, -\frac{2}{h-20}, \frac{1}{h-20}\right)$. Infatti abbiamo:

$$-\frac{4}{h-20}P_1(X) - \frac{2}{h-20}P_2(X) + \frac{1}{h-20}P_3(X) = 1.$$

Quindi per ogni $h \neq 20, 1 \in U_h$.

(d) Si considerino i seguenti sottospazi di $\mathbb{R}_{\leq 4}[X]$:

$$U_0 = \langle X^3 + 2X^2 + 3X + 4, -2X^3 + X^2 - 3X + 2, 10X^2 + 6X \rangle,$$

 $W = \langle 1, X, 3X + 2 \rangle.$

(d1) Si determini una base di U_0 e di W e se ne deduca la dimensione di U_0 e W.

Svolgimento

Dal punto (b) sappiamo che i vettori che generano U_0 sono linearmente indipendenti $(0 \in S = \mathbb{R} \setminus \{20\})$, quindi $\{X^3 + 2X^2 + 3X + 4, -2X^3 + X^2 - 3X + 2, 10X^2 + 6X\}$ è una base di U e dim(U) = 3.

Per quanto riguarda W, i vettori 1 e X sono linearmente indipendenti (in quanto non sono multiplo l'uno dell'altro). Notiamo che il terzo vettore è combinazione lineare di 1 e X. Infatti

$$3X + 2 = 3 \cdot X + 2 \cdot 1.$$

Quindi una base di $W \in \{1, X\}$ e dim(W) = 2.

(d2) Si determini una base di $U_0 + W$ e se ne deduca la dimensione corrispondente.

Svolgimento

Consideriamo

$$U_0 + W = \langle X^3 + 2X^2 + 3X + 4, -2X^3 + X^2 - 3X + 2, 10X^2 + 6X, 1, X \rangle.$$

Sappiamo che $\mathcal{L}_1 = \{X^3 + 2X^2 + 3X + 4, -2X^3 + X^2 - 3X + 2, 10X^2 + 6X\}$ è un insieme di vettori linearmente indipendenti. Inoltre dal punto (c) sappiamo che $1 \in U_0$, quindi consideriamo $\mathcal{L}_1 \cup \{X\}$. Determiniamo se $\mathcal{L}_1 \cup \{X\}$ è un insieme di vettori linearmente indipendenti. Siano dunque $\lambda, \mu, \delta, \gamma \in \mathbb{R}$ tali che

$$\lambda(X^3 + 2X^2 + 3X + 4) + \mu(-2X^3 + X^2 - 3X + 2) + \delta(10X^2 + 6X) + \gamma X = 0.$$

Allora otteniamo

$$(\lambda - 2\mu)X^3 + (2\lambda + \mu + 10\delta)X^2 + (3\lambda - 3\mu + 6\delta + \gamma)X + 4\lambda + 2\mu = 0,$$

da cui segue che $\lambda,\mu,\delta,\gamma$ sono soluzioni del sistema omogeneo

$$\begin{cases} \lambda - 2\mu = 0 \\ 2\lambda + \mu + 10\delta = 0 \\ 3\lambda - 3\mu + 6\delta + \gamma = 0 \\ 4\lambda + 2\mu = 0. \end{cases}$$

Consideriamo la matrice orlata associata al sistema:

$$\begin{pmatrix} 1 & -2 & 0 & 0 & 0 \\ 2 & 1 & 10 & 0 & 0 \\ 3 & -3 & 6 & 1 & 0 \\ 4 & 2 & 0 & 0 & 0 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_2 \leftarrow R_2 2R_1$,
- 2. $R_3 \leftarrow R_3 3R_1$,
- 3. $R_4 \leftarrow R_4 4R_1$. 4. $R_3 \leftarrow R_3 \frac{3}{5}R_2$. 5. $R_4 \leftarrow R_4 2R_2$.
- 6. $R_3 \leftrightarrow R_4$.

si ottiene la matrice a scalini:

$$\begin{pmatrix} 1 & -2 & 0 & 0 & 0 \\ 0 & 5 & 10 & 0 & 0 \\ 0 & 0 & -20 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Il sistema ammette quindi l'unica soluzione (0,0,0,0). Quindi $\mathcal{L}_1 \cup \{X\} = \{X^3 + 1\}$ $2X^2+3X+4, -2X^3+X^2-3X+2, 10X^2+6X, X\}$ è un insieme di vettori linearmente indipendenti ed è quindi una base di $U_0 + W$. Ne segue che dim $(U_0 + W) = 4$.

(d3) $U_0 + W = \mathbb{R}_{\leq 4}[X]$? Perché?

Svolgimento

No, perché $\dim(U_0 + W) = 4 < 5 = \dim(\mathbb{R}_{\leq 4}[X])$.

(d4) Si enunci il teorema della formula di Grassmann.

Teorema

Sia V uno spazio vettoriale e siano U e W due sottospazi vettoriali di dimensione finita di V. Allora

$$\dim(U+W) = \dim(U) + \dim(W) - \dim(U \cap W).$$

(d5) Si determini una base di $U_0 \cap W$.

Svolgimento

Dalla formula di Grassmann otteniamo

$$\dim(U_0 \cap W) = \dim(U_0) + \dim(W) - \dim(U_0 + W) = 3 + 2 - 4 = 1.$$

Per determinare una base di $U_0 \cap W$ basterà quindi trovare un vettore non nullo v che appartiene sia a U_0 che W. Abbiamo già notato nel punto (d2) che $1 \in U_0 \cap W$. Quindi $\{1\}$ è una base di $U_0 \cap W$.