Redes Neurais Artificiais

Perceptron

Roteiro

- Introdução ao modelo Perceptron;
- Lógica Perceptron;
- Exemplo abordado;

Perceptron

- No final da década de 1950, Rosenblatt na Universidade de Cornell, criou uma genuína rede de múltiplos neurônios do tipo discriminadores lineares e chamou esta rede de perceptron. Um perceptron é uma rede com os neurônios dispostos em camadas. Este pode ser considerado o primeiro modelo de redes neurais.
- Perceptron aprende conceitos, ele pode aprender a responder com verdadeiro (1) ou falso (0) pelas entradas que nós apresentamos a ele, "estudando" repetidamente os exemplos que lhe são apresentados.
- O perceptron é uma rede neural cujos os pesos e inclinações podem ser treinados para produzir um vetor alvo que quando apresentamos tem que corresponder ao vetor de entrada.

Modelo Esquemático de Rede Neural

Lógica do Modelo Perceptron

- 1° Passo: inicializar pesos e limites com zero;
- 2° Passo: apresentar nova entrada que vai se somar a saída desejada;
- 3° Passo: calcular saída atual;
- 4° Passo: atualizar o peso. Esta atualização é feita através da fórmula:

$$w_i(t+1) = w_i(t) + n[(d(t) - Y(t))] * x_1$$

$$0 \le i \le n-1$$

$$d(t) = 1, \text{ se a entrada for classe } A$$

$$d(t) = -1, \text{ se a entrada for classe } B$$

Algoritmo Perceptron

```
Início (Algoritmo Perceptron - Fase de Treinamento)
  (<1> Obter o conjunto de amostras de treinamento { <math>x^{(k)} }:
  <2> Associar a saída desejada { d<sup>(k)</sup> } para cada amostra obtida;
  <3> Iniciar o vetor w com valores aleatórios pequenos:
  <4> Especificar a taxa de aprendizagem {n}:
  <5> Iniciar o contador de número de épocas {época ← 0}:
  <6> Repetir as instruções:
          <6.1> erro ← "inexiste":
          <6.2> Para todas as amostras de treinamento { x^{(k)}, d^{(k)}}, fazer:
                    <6.2.1> u \leftarrow \mathbf{w}^T \cdot \mathbf{x}^{(k)}
                    <6.2.2> y \leftarrow sinal(u):
                    <6.2.3> Se y \neq d^{(k)}
                                <6.2.3.1> Então \begin{cases} \mathbf{w} \leftarrow \mathbf{w} + \eta \cdot (d^{(k)} - y) \cdot \mathbf{x}^{(k)} \\ erro \leftarrow \text{"existe"} \end{cases}
          <6.3> época ← época + 1;
       Até que: erro ← "inexiste"
Fim {Algoritmo Perceptron - Fase de Treinamento}
```

```
Após o treinamento, temos a fase de operação:

Início {Algoritmo Perceptron – Fase de Operação}

<1> Obter uma amostra a ser classificada { x };
<2> Utilizar o vetor w ajustado durante o treinamento;
<3> Executar as seguintes instruções:
<3.1> u \leftarrow w^T \cdot x;
<3.2> y \leftarrow \text{sinal}(u);
<3.3> Se y = -1
```

<3.4> Se v=1

Fim {Algoritmo Perceptron - Fase de Operação}

<3.3.1> Então: amostra x ∈ {Classe A}

<3.4.1> Então: amostra x ∈ {Classe B}

Exemplo Proposto

2.7 Exercício com dois neurônios na camada de saída

Esse exemplo tem como objetivo construir um sistema para uma livraria com base no *Perceptron* capaz de classificar automaticamente os clientes da livraria em quatro categorias de forma a estabelecer o desconto adequado na hora do pagamento no caixa. Os clientes são classificados em: Cliente Diamante (desconto de 15%), Cliente Ouro (desconto de 10%), Cliente Prata (desconto de 5%) e Cliente Bronze (desconto de 0%).

As informações disponíveis na hora do pagamento para realizar a classificação são:

O cliente possui cartão fidelidade da livraria?

O valor da compra é maior do que R\$ 50,00 (Cinqüenta Reais)?

Pagamento em dinheiro?

A tabela 2.9 apresenta um conjunto de oito clientes classificados por categoria em função das informações disponíveis.

- a) Oual a arquitetura mínima para o Perceptron.
- a) Treinar a rede Perceptron adotando o valor 1 para a taxa de aprendizagem e inicializar todos os pesos com valor 1.

Cliente	Cartão Fidelidade	Compra > RS50,00	Pagamento em dinheiro?	Categoria
1	sim	sim	sim	Diamante
2	sim	sim	não	Diamante
3	sim	não	sim	Ouro
4	sim	não	não	Ouro
5	não	sim	sim	Prata
6	não	sim	não	Prata
7	não	não	sim	Bronze
8	não	não	não	Bronze

Tabela 2.9: Exemplos de clientes da livraria

Exemplo Proposto

Os clientes serão classificados em quatro categorias. Logo, precisamos de no **mínimo** dois neurônios na saída para termos quatro possibilidades. A codificação para os dois neurônios de saída fica conforme tabela 2.10.

Categoria	Saídas		
Categoria	\mathbf{d}_{i}	d_2	
Diamante	o	0	
Ouro	0	1	
Prata	1	0	
Bronze	1	1	

Tabela 2.10: Codificação dos neurônios de saída

Pode-se visualizar a arquitetura desta rede na figura 2.14.

Figura 2.14: Arquitetura para o problema da livraria

A arquitetura da rede fica com três neurônios de entrada além da entrada constante x₀ = 1 totalizando quatro neurônios de entrada e dois neurônios de saídas.

A tabela 2.11 mostra a codificação utilizada para as entradas deste exemplo: (sim = 1 e não = -1).

Cliente	Entradas			Saídas	
	\mathbf{x}_1	×2	X3	d_1	d_2
	Cartão Compra >		Pagamento	Categoria	
	Fidelidade	R\$50,00	em dinheiro		
1	1	1	1	0	0
2	1	1	-1	0	0
3	1	-1	1	0	1
4	1	-1	-1	0	1
5	-1	1	1	1	0
6	-1	1	-1	1	0
7	-1	-1	1	1	1
8	-1	-1	-1	1	1

Tabela 211: Codificação dos exemplos para a livraria

b) A taxa de aprendizagem é 1 (um) e todos os pesos serão inicializados com valor 1 (um). Neste exemplo apresenta-se a cada ciclo es exemplos de forma aleatória.

Para este primeiro ciclo os exemplos serão apresentados na seguinte ordem: 4 1 3 5 8 7 2 6