ជិជទ្ធ ២ សិමិකම් ආච්රිණී / ហ្វហ្សប់ បង្គាប់ឬព្រលយុណ្ណ Lugy / All Rights Reserved

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්ප**ලි** අ**ල්කිකුවේපවාල ලෙපාල්පාලිමින්තුව**ශාක දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව ඉහසිකෙස් ප්රිද්යාවේ නිකාශ්යියහාර මුහසිකෙස් ප්රිදේ නිකාශ්යියහාර මුහසිකෙස් ප්රිදුක් නිකාශ්යියහාර මුහසිකයාර ප්රිදුක් නිකාශ්යියහාර ප්රිදුක් නිකාශ්ය සහ විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලේ ලංකා විභාග දෙපාර්තමේන්තුව ලේ ලේකා විභාග දෙපාර්තමේන්තුව ලේකා දින්ත්තම්න්තුව ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග විභාග දෙපාර්තමේන්තුව ලේකා විභාග දෙපාර්තමේන්තුව ලේකා විභාග විභාග දෙපාර්තමේන්තුව ලේකා විභාග විභාග විභාග දෙපාර්තමේන්තුව ලේකා විභාග වි

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

රසායන විදපාව இரசாயனவியல்

02 S I

පැය දෙකයි

இரண்டு மணித்தியாலம் Two hours

උපදෙස්:

Chemistry

- * ආවර්තිතා වගුවක් සපයා ඇත.
- 🗱 මෙම පුශ්න පතුය පිටු 09 කින් යුක්ත වේ.

Ι

Ι

- * සියලුම පුශ්නවලට පිළිතුරු සපයන්න.
- 🐺 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- 🛠 පිළිතුරු පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත්ව කියවන්න.
- * 1 සිට 50 තෙක් එක් පුශ්නයට (1), (2), (3), (4), (5) යන පිළිතුරුවලින් නිවැරදි හෝ ඉතාමන් ගැළපෙන හෝ පිළිතුර තෝරා ගෙන, එය පිළිතුරු පතුගේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක් (\times) යොද දක්වන්න.

සාර්වනු වායු නියනය $R = 8.314 \, \text{J K}^{-1} \, \text{mol}^{-1}$

ප්ලෑන්ක්ගේ නියතය $h = 6.626 \times 10^{-34} \text{ J s}$

ඇවගාඩ්රෝ නියතය $N_A = 6.022 \times 10^{23} \, \mathrm{mol^{-1}}$

ආලෝකයේ පුවේගය $c = 3 imes 10^8 \, \mathrm{m \ s^{-1}}$

- 1. කැතෝඩ කි්රණ නළයක නි්රීක්ෂණය කරන ලද කැතෝඩ කි්රණ ආශිුත අංශු සම්බන්ධව නිවැරදි වගන්තිය තෝරන්න.
 - (1) අංශුවලට ආරෝපණයක් නොමැත.
 - (2) ඒවා ඇතෝඩයේ සිට කැතෝඩය දක්වා සරල රේඛා ඔස්සේ ගමන් කරයි.
 - (3) ඒවායෙහි ආරෝපණය සහ ස්කන්ධය අතර අනුපාතය $\frac{e}{m}$, කැතෝඩ කිරණ නළය තුළ ඇති වායුවෙහි ස්වභාවය හා පීඩනය මත රඳා පවතී.
 - (4) ඒවායෙහි ගමන් දිශාවට චුම්බක සහ විදාපුත් ක්ෂේතු බලපායි.
 - (5) ඒවාට කැතෝඩ කි්රණ නළය තුළ ඇති වායුව අයනීකරණය කි්රීමේ හැකියාවක් නොමැත.
- 2. පරමාණුවක පුධාන ක්වොන්ටම් අංකය (n), n=3 වන ශක්ති මට්ටම පිළිබඳ මින් කුමන වගන්තිය **වැරදි** වේ ද?
 - (1) එය හා සම්බන්ධ උපකවච 3 ක් ඇත.
 - (2) එහි කාක්ෂික 9 ක් ඇත.
 - (3) එහි උපරිම වශයෙන් ඉලෙක්ටුෝන 18 ක් තිබිය හැකි ය.
 - (4) එහි කෝණික ගමාතා (උද්දිගංශ) ක්වොන්ටම් අංකය (l), l=2 සහිත ඉලෙක්ටෝන 10 ක් උපරිම වශයෙන් තිබිය හැකි ය.
 - (5) එහි චුම්බක ක්වොන්ටම් අංකය (\mathbf{m}_i) , $\mathbf{m}_i = 0$ සහිත ඉලෙක්ටෝන 8 ක් උපරිම වශයෙන් තිබිය හැකි ය.
- 3. H, He, Li, Be, B සහ Na පරමාණුවල පළමු අයනීකරණ ශක්තිය අඩුවන පිළිවෙළ වනුයේ,
 - (1) He > H > B > Be > Li > Na
 - (2) He > H > Be > B > Li > Na
 - (3) He > Be > H > Li > B > Na
 - (4) H > He > B > Be > Li > Na
 - (5) H > He > Be > B > Na > Li
- 4. IF_4^+ , IF_4^- හා IF_5 හි හැඩයන් වනුයේ පිළිවෙළින්,
 - (1) සීසෝ, තලීය සමචතුරසුාකාර හා සමචතුරසු පිරමීඩාකාර ය.
 - (2) කලීය සමචතුරසුංකාර, සීසෝ හා සමචතුරසු පිරමීඩාකාර ය.
 - (3) චතුස්තලීය, සීසෝ හා තිුආනති ද්විපිරමීඩාකාර ය.
 - (4) සීසෝ, චනුස්තලීය හා සමචතුරසු පිරමීඩාකාර ය.
 - (5) චතුස්තලීය, තලීය සමචතුරසුාකාර හා තිුආනති ද්විපිරමීඩාකාර ය.

5. පහත දී ඇති සංයෝගයේ IUPAC නාමය කුමක් ද?

$$\begin{array}{ccc} & \text{OH} & \text{CH}_2 \\ \mid & \parallel & \\ \text{H}_2\text{N}-\text{CH}_2-\text{CH}_2-\text{CH}-\text{C}-\text{CH}_2-\text{CH}_3 \end{array}$$

- (1) 1-amino-4-ethylpent-4-en-3-ol
- (2) 5-amino-2-ethylpent-1-en-3-ol
- (3) 2-ethyl-3-hydroxypent-1-en-5-amine
- (4) 4-ethyl-3-hydroxypent-4-en-1-amine
- (5) 5-amino-2-ethyl-3-hydroxypent-1-ene
- 6. තාපාංක සම්බන්ධව පහත සඳහන් කුමන වගන්තිය නිවැරදි ද?
 - (1) NO වලට වඩා ඉහළ තාපාංකයක් N_2 වලට ඇත.
 - (2) NH ු වලට වඩා ඉහළ තාපාංකයක් PH ු වලට ඇත.
 - (3) Kr වලට වඩා ඉහළ තාපාංකයක් Xe වලට ඇත.
 - (4) CH2CH2CH2OH වලට වඩා ඉහළ තාපාංකයක් CH2CH2OH වලට ඇත.
 - (5) $CH_3CH_2CH_2CH_3$ වලට වඩා ඉහළ තාපාංකයක් CH_3CHCH_3 වලට ඇත.

7. $M(OH)_2$ යනු ජලයෙහි සුළු වශයෙන් දුාවාෳ ඝනයකි. pH=8.0 දී හා දෙන ලද උෂ්ණත්වයකදී $M(OH)_2$ හි සංතෘප්ත ජලීය දුාවණයක $m M^{2+}(aq)$ සාන්දුණය $m 1.0 imes 10^{-6}~mol~dm^{-3}$ වේ. මෙම උෂ්ණත්වයේදී $m M^{2+}(aq)$ සාන්දුණය $1.0 \times 10^{-4} \; \mathrm{mol} \; \mathrm{dm}^{-3}$ වූ $\mathrm{M(OH)}$, හි සංතෘප්ත ජලීය දාවණයක pH අගය වනුයේ,

- (3) 6.0
- (5) 8.0

8. නිවැරදි වගන්තිය තෝරන්න.

- (1) ${
 m SF}_5^{\dagger}$ හි ඉලෙක්ටුෝන යුගල ජාාමිතිය හා හැඩය එකිනෙකින් වෙනස් ය.
- (2) F^- , Mg^{2+} , Al, Cl^- සහ K පරමාණු/අයනවල අරයයන් වැඩිවෙන පිළිවෙළ වන්නේ $F^- < Mg^{2+} < Cl^- < Al < K$ ය.
- (3) නයිටුක් අම්ලය (HNO_3) සඳහා ඇඳිය හැකි සම්පුයුක්ත වසුහ සංඛාාව හතරකි.
- (4) CO, CO_2, CO_3^{2-} සහ CH_3OH අණු/අයන අතුරෙන් දිගින් වැඩීම C-O බන්ධනය ඇත්තේ CO_3^{2-} වල ය.
- (5) $\mathrm{CH_4}$, $\mathrm{COCl_2}$ සහ HCN අණු අකුරෙන් කාබන් පරමාණුවෙහි විදසුත් සෘණතාව $\mathrm{CH_4} < \mathrm{COCl_2} < \mathrm{HCN}$ යන පිළිවෙළට වැඩි වේ.
- $oldsymbol{9}$. $oldsymbol{A}$ සහ $oldsymbol{B}$ යනු $oldsymbol{C}$, $oldsymbol{H}$ සහ $oldsymbol{O}$ යන $oldsymbol{O}$ සමග පිරියම් කළ විට, f A පමණක් සුදු අවක්ෂේපයක් ලබාදුනි. f B, සාන්දු $f H_2 SO_4$ සමග රත් කළ විට ලබාදුන් ඵලය $f Br_2/f H_2 O$ විවර්ණ කළේ ය. ${f A}$ සහ ${f B}$ කාබනික සංයෝග වනුයේ පිළිචෙළින්,
 - (1) C_6H_5OH ,

CH₃OH

(2) $C_6H_5CH_2OH$,

CH₃CH₅OH

(3) C_6H_5OH ,

CH,CHCH,OH

More Past Papers at

CH,

(4) C_6H_5CHO ,

 C_6H_5OH

tamilguru.lk

(5) CH₃CHO,

CH₃CHCH₂OH

CH₂

- 10. A(g) o B(g) + C(g) යන මූලික පුතිකිුයාව නියත උෂ්ණත්වයේ ඇති සංවෘත දෘඪ බඳුනක සිදු වේ. A(g) පමණක් ඇති විට බඳුනේ ආරම්භක පීඩනය $2P_0$ ලෙස මැනගන්නා ලදී. ${
 m A}({
 m g})$ හි අර්ධ ආයු කාල දෙකකට පසු බඳුනේ පීඩනය වනුයේ,

- (2) $\frac{P_0}{4}$ (3) $\frac{3P_0}{4}$ (4) $\frac{3P_0}{2}$ (5) $\frac{7P_0}{2}$

සාදාගැනීමට සුදුසු කුමයක් වනුයේ,

සාන්දු $\mathrm{HNO_3}$ / සාන්දු $\mathrm{H_2SO_4}$

(1) NaNO₂ / තනුක HCl / 0 − 5 °C _____

(1) NaNO₂ / තනුක HCl / 25 °C

 $12.~~0.150~{
m mol~dm^{-3}~HNO}_3$ දාවණයක $300~{
m cm^3}$ පිළියෙළ කිරීම සඳහා අවශා, ඝනත්වය $1.42~{
m g~cm^{-3}}$ වන 70.0% $\left(rac{w}{\omega}\%
ight)$ සාන්දු HNO_3 අම්ලයෙහි නිවැරදි පරිමාව (cm^3) කුමන පුකාශනයෙන් දැක්වේ ද? (සාපේක්ෂ පරමාණුක ස්කන්ධය: H=1, N=14, O=16)

(1) $\frac{100}{1.42} \times \frac{70.0}{63} \times \frac{0.150}{1000} \times 300$

(2) $\frac{100}{142} \times \frac{63}{70.0} \times \frac{0.150}{1000} \times 300$

(3) $\frac{1.42}{100} \times \frac{63}{70.0} \times \frac{1000}{0.150} \times 300$

(4) $\frac{100}{1.42} \times \frac{63}{70.0} \times \frac{1000}{0.150} \times \frac{1}{300}$

(5) $\frac{1.42}{100} \times \frac{70.0}{63} \times \frac{0.150}{1000} \times 300$

13. තියත උෂ්ණත්වයකදී ජලීය දාවණයක $A(aq) + H_{\mbox{\tiny q}} O^{+}(aq)
ightharpoonup B^{+}(aq)$ යන මූලික පුතිකිුයාව සිදු වේ. පහත දී ඇති කුමන පුස්තාරය මගින් නියත A(aq) සාන්දුණයකදී ලසු(ආරම්භක ශීඝුතාව) හා pH අගය අතර සම්බන්ධය නිවැරදිව දැක්වෙයි ද?

 ${f 14.}$ රේචනය කරන ලද දෘඪ බඳුනක් තුළට ${f A}({f g})$ වැඩිපුර හා ${f B}({f g})$ සුළු පුමාණයක් ඇතුල් කරන ලදී. එවිට නියත උෂ්ණත්වයකදී පහත දී ඇති මූලික පුතිකිුයා සිදු වේ.

$$A(g) + B(g) \rightarrow C(g)$$
 වේගයෙන් $A(g) + C(g) \rightarrow 3D(g)$ සෙමින්

පද්ධතියෙහි පීඩනය කාලය සමග වෙනස්වීම සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය නිවැරදි වේ ද?

- (1) පීඩනය වෙනස් නොවී පවතී.
- (2) පීඩනය වැඩි වී ඉන්පසු නියත වේ.
- (3) පීඩනය අඩු වී ඉන්පසු නියත වේ.
- (4) පීඩනය අඩු වී නැවත ආරම්භක අගයට පැමිණේ.
- (5) ආරම්භයේදී පීඩනය වැඩි වී, ඉන්පසු අඩු වී නැවත ආරම්භක අගයට පැමිණේ.

 ${f 15.}$ ජලීය දුාවණයක ${
m V}$ පරිමාවක් තුළ අඩංගු ${f A}$ යන දුාවාංය, ජලය හා අමිශු කාබතික දුාවකයක ${
m 2V}$ පරිමා කොටස් භාවිතයෙන් දෙවරක් නිස්සාරණය කරනු ලැබේ. කාබනික දුාවකය හා ජලය අතර ${f A}$ හි විභාග සංගුණකය, $[{f A}]_{
m (org)}=4.0$ වේ. ජලීය කලාපයෙහි ${f A}$ හි ආරම්භක පුමාණය $a\ ({
m mol})$ වේ. දෙවන නිස්සාරණයට පසු ජලීය කලාපයෙහි ඉතිරිවත A පුමාණය (mol) වනුයේ,

- (1)
- (2) $\frac{a}{9}$

16. A සංයෝගය $NaNO_7/$ තනුක HCl සමග පුතිකිුයා කර B ලබාදෙයි. B, ආම්ලිකෘත ජලීය $K_7Cr_7O_7$ සමග පිරියම් කළ විට දුාවණය කොළ පැහැයට හැරේ. ෆේලිං පුතිකාරකය සමග ${f A}$ පිරියම් කළ විට ගඩොල් රතු අවක්ෂේපයක් ලබා නොදුනි. A සංයෝගය විය හැක්කේ,

- 17. $ext{MCl}_2$ ජලයේ සුළු වශයෙන් දාවා ඝනයකි ($K_{sp}=1.0 imes 10^{-8} ext{ mol}^3 ext{ dm}^{-9}$). $ext{MCl}_2$ හි සංනෘප්ත ජලීය දාවණයක් සම්බන්ධයෙන් පහත කුමක් නිවැරදි වේ ද?
 - (1) දුාවණයෙන් ජලය වාෂ්ප වීමේදී දුාවණයෙහි \mathbf{M}^{2+} හා ක්ලෝරයිඩ් අයන සාන්දුණ වැඩි වේ.
 - (2) NaCl(s) එකතු කිරීමෙන් දාවණයෙහි ක්ලෝරයිඩ් අයන සාන්දුණය වැඩි කළ හැකි ය.
 - (3) HCl එකතු කිරීමෙන් දුාවණය ආම්ලික කළ නොහැකි ය.
 - (4) දුාවණයෙහි ක්ලෝරයිඩ් අයන සාන්දුණය $1.0 \times 10^{-4} \; \mathrm{mol} \; \mathrm{dm}^{-3}$ ට වඩා වැඩි කළ නොහැකි ය.
 - (5) ආසුැත ජලය එකතු කිරීමෙන් හා සංතෘප්ත තත්ත්වය පවත්වා ගනිමින් දුාවණයෙහි ක්ලෝරයිඩ් අයන සාන්දුණය අඩු කළ හැකි ය.
- 18. KBr හි 0.0119 g ක ස්කන්ධයක් ආසුැත ජලය $500.0~{
 m cm}^3$ හි දුවණය කළ වීට එම දුාවණයෙහි ${
 m K}^+$ හි සංයුතිය $\mathrm{mol}\ \mathrm{dm}^{-3}$ හා $\mathrm{ppm}\ (\mathrm{mg}\ \mathrm{kg}^{-1})$ වලින් වනුයේ පිළිවෙළින්,

(සාපේක්ෂ පරමාණුක ස්කන්ධය: m K = 39,
m Br = 80; දාවණයෙහි ඝනත්වය = $1.00
m ~kg ~dm^{-3}$)

- $(1) 1.0 \times 10^{-4} \text{ so } 3.9$
- $(2) 1.0 \times 10^{-4}$ හා 7.8
- (3) 2.0×10^{-4} 800 1.3
- $(4) \ \ 2.0 \times 10^{-4}$ හා 3.9
- (5) 2.0×10^{-4} $\cos 7.8$
- 19. සෝඩියම් අයනයෙහි සම්මත සජලන එන්තැල්පියට අදාළ නිවැරදි පුතිකිුයාව වනුයේ,
 - (1) $Na^+(g) + OH^-(aq) \longrightarrow NaOH(s)$
 - (2) NaCl(g) + $H_2O(l) \longrightarrow Na^+(aq) + OH^-(aq) + HCl(aq)$
 - (3) $Na^+(g) + H_2O(l) \longrightarrow Na^+(aq)$
 - (4) $Na^+(g) + H_2O(l) \longrightarrow Na^+(aq) + OH^-(aq) + H^+(aq)$
 - (5) $Na^+(g) + Cl^-(g) + H_2O(l) \longrightarrow Na^+(aq) + Cl^-(aq)$
- 20. මීතේන් ක්ලෝරිනීකරණයේ පියවරක් නොවන්නේ පහත දැක්වෙන ඒවායින් කුමක් ද?
 - (1) $Cl_2 \xrightarrow{hv} 2Cl^{\bullet}$
 - (2) $CH_4 + {}^{\bullet}Cl \longrightarrow {}^{\bullet}CH_3 + HCl$
 - (3) ${}^{\bullet}CH_3 + Cl_2 \longrightarrow CH_3Cl + Cl^{\bullet}$
 - (4) $CH_3Cl + Cl^* \longrightarrow {}^*CH_2Cl + HCl$
 - (5) ${}^{\bullet}CH_2Cl + HCl \longrightarrow CH_2Cl_2 + H^{\bullet}$
- 21. තාත්ත්වික වායුවක අවධි උෂ්ණත්වය සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය නිවැරදි වේ ද?
 - (1) එය අන්තර්අණුක බල නොසලකා හැරිය හැකිවන උෂ්ණත්වයයි.
 - (2) එය වායුව දුවීකරණය කළ හැකි අඩුම පීඩනයට අදාළ උෂ්ණත්වයයි.
 - (3) එය වායුව එහි ඝනය සමග සමතුලිතව ඇති උෂ්ණත්වයයි.
 - (4) එය වායු කලාපය හා දුව කලාපය සමතුලිතව පවතින වැඩිම උෂ්ණත්වයයි.
 - (5) එය ඕනෑම පීඩනයකදී වැන්ඩ'වාල්ස් සමීකරණය මගින් ලබාදෙන උෂ්ණත්වයයි.

(1) 0.24 g

පරීක්ෂණයේදී භාවිත කළ Mg හි ස්කන්ධය වනුයේ,

(2) 0.48 g

සාපේක්ෂ පරමාණුක ස්කන්ධය: Mg = 24)

22. පරීක්ෂණයකදී, වැඩිපුර N_2 වායුව සමග Mg ලෝහය පුතිකිුයා කිරීමට සලස්වා, ලැබෙන ඵලය H_2O සමග පුතිකිුයා කරවන ලදී. සම්මත උෂ්ණත්වයේදී (273 K) සහ පීඩනයේදී (1.0 atm) පිට වූ වායුවේ පරිමාව 672 cm 3 විය.

 $(273~{
m K}$ හා $1.0~{
m atm}$ හිදී වායුවේ $1.0~{
m mol}, 22.4~{
m dm}^3$ පරිමාවක් අත් කරගන්නා බව උපකල්පනය කරන්න.

(3) 0.72 g

(සාපේක්ෂ පරමාණුක ස්කන්ධය: H=1, N=14) (1) T=T' (2) T=14T' (3) $T=\frac{T'}{4}$ (4) T=7T' (5) $T=\frac{T'}{14}$

23. නිරපේක්ෂ උෂ්ණත්වය T හිදී \mathbf{H}_2 හි වර්ග මධානා වේගය, නිරපේක්ෂ උෂ්ණත්වය T' හිදී \mathbf{N}_2 හි වර්ග මධානා වේගයට සමාන වේ. පහත සඳහන් කුමන සමීකරණය T හා T' අතර නිවැරදි සම්බන්ධය ලබාදෙයි ද?

24. නියත උෂ්ණත්වයක ඇති ස්වාරක්ෂක දාවණයක ඒකභාස්මික දුබල අම්ලයක් ($K_a = 1.00 \times 10^{-5} \; \mathrm{mol} \; \mathrm{dm}^{-3}$) හා එහි

(4) 1.08 g

(5) 1.50 g

	සෝ බැගි	ඩියම් ලවණය අඩං ත් වේ. මෙම දුංවෑ	ගු වේ. දුාවණ ණයෙහි 10.0	රෙහි දුබල 0 cm³ පරි	ල අම්ලයෙහි මාවක pH	විතා එහි ඉ අගය ඒක	සෝඩි කෙ එ	්යම් ලව කකින් ඉෙ	ණයෙහි වනස් 1	සාන්(කිරීම	දුණ () සඳහා	0.10 mol ශ ා එක් කළ	dm ^{−3} සයත
	1.00	mol dm ⁻³ දුබල අ	මේල පරිමාව	සහ දුබල අ	අම්ලය එකඃ	තු කිරීමෙ:	ත් පසු	දු දුාවණ	යෙහි pF	 I අගය	ා වනු වනු	යේ පිළිදේ	ළින්,
	(1)	9.00 cm ³ , 4.0 10.00 cm ³ , 5.0		1	(2) 9.00 d (5) 11.00	cm ³ , 6.0 cm ³ , 4.0	0					00 cm ³ , 4	•
25.	වායුර (1) (2) (3) (4)	ලීය උණුසුම ඉහළ මය බැහැර කිරීමක් පොසිල ඉන්ධන ර ගල් අඟුරු බලාග වායුසමීකරණ හා නාගරික ඝන අපද ජෛව ඉන්ධන දෑ	i්/නිපදවීමක් දහනය කරන ාරවලින් පිටෑ ශීතකරණ අ දුවා අවිධිමක	වන්නේ, ත වාහනව(වන අපවා අළුත්වැඩියා ත් ලෙස බ	ලින් පිටවන තයයි. ාවේදී පිටව ැහැර කිරීෙ	ා අපවාත ත වායුන් මන් නිපද	යයි. ් ය. දවෙන			පුශ්ප	ා තුහ	බටම දාය <u>ස</u>	බවන
26.	(1)(2)(3)(4)	මේ (Li) මූලදුවාය Li – Cs දක්වා පළ අගය ඇත්තේ ලිව් වාතයේ රත් කළ පිටවන වායු සැල පමණක් ලබාදෙයි. පළමු කාණ්ඩයේ (පහන්සිළු පරීක්ෂා	ළමු කාණ්ඩලෙ ගියම්වලට ය. විට ලිතියම් කු විට, රත් l. මූලදුවා අතු	ය් මූලදුවා එල දෙකක කිරීමේදී .ි රෙන් දුර්ව	අතුරෙන් අ ත් සාදයි. LiNO ₃ (s) t ලම ලෝහෘ	ඉලෙක්දෙටු වායුන් ඉං ක බන්ධප)ා්ත ල දකක් ත ඇත	_ී බාගැනී තිපදව <u>ූ</u>	මේ ශක ත අතර	්තිය ර Li ₂ C	සඳහා		
27.	සංඛා (සැ .යු	ලික මාධානයේදී Fe(හාව වනුයේ, 3. : ආම්ලික තත්ත්රි - 2	ව හේතුවෙන්	් සිදුවන I	NO- හි අඩු	වීම නො	ාසලක	ා හරින්?	ත.)		_	KMnO ₄	මවුල
	(1)	$\frac{3}{5}$	$(2) \frac{4}{5}$	((3) 1		(4)	$\frac{3}{4}$		(5)	$\frac{3}{3}$		
28.	(1) (2) (3) (4)	ති උෂ්ණත්වයකදී අ ධුැවීය වායුවක ජර ඕනෑම වායුවක් ජ වායුවක ජලයෙහි පිඩනය වැඩිවීම ස පීඩනය වැඩිවීම ස	ලයේ දාවාහත ලීය දාවණය දාවාහතාව එ ෑමග ජලයේ	ාව නිර්ධැමි කදී අයනීම හි පීඩනය තාපාංකය	වීය වායුවක කරණයට භ ට සමානුපෘ ා අඩු වේ.	ා ජලයේ ගාජනය ෙ ගතික වේ.	දාවා වේ.	කාවට ව			නිවැර	රදි ද?	
29.	කෝර්	මියම් (Cr) හා එහි :	සංයෝග ස€්	ම්බන්ධය <u>ෙ</u>	න් නිවැරදි	පුකාශය (තෝර	න්න.					
	(2)	$ m K_2CrO_4$ ජලීය දාව m Cr හි විදාූුත් සාණ	iතාව Co වල	_ී විද <u>ා</u> ුත් ස	ශණතාවට (වඩා විශාල	ල ඉව්	ð.					
	(3)	${\rm Cr}({\rm H_2O})_6^{2+}$ ජලීය දාවණයක් ලැබේ.			[aOH සමග	පිරියම් :	කර, ශ	ඉත්පසු	H ₂ O ₂ €	ඵක් ක	ළ වි	ට කහ පැ	හැති
		$\mathrm{Cr_2O_3}$ භාස්මික ල ආම්ලික $\mathrm{K_2Cr_2O_7}$			යැඩ වීට :	3720788 0	à∕~.~	, 5445) '84	മിക്കുദ്ദേജ	ፈ ኤደጵ	50 es	කිය ලාව්	
•	(3)	4.60m K 2C12O7		1 ₂ 5 00 <u>4</u> 0	w(<u>y</u> 00 (ارسربرن و	E	, O'O G'				කය වේ. වැනි පිටුව බ	
											Lamo	JUN 0 <u>9</u> 0 W	ලග්ඨා,

- $oldsymbol{30}$. පහත දැක්වෙන පුකාශ අතුරෙන් කාබොක්සිලික් අම්ල පිළිබඳව **වැරදී** වන්නේ කුමක් ද?
 - (1) කාබොක්සිලික් අම්ලයක් ${
 m LiAlH}_{A}$ සමග පුතිකිුයා කර ලබාදෙන ඵලය ජලවීච්ඡේදනය කිරීමෙන් ඇල්කොහොලයක් ලබාදෙයි.
 - (2) ජලීය NaOH සමග කාබොක්සිලික් අම්ල පුතිකිුිිියා කරවූ විට කාබන්ඩයොක්සයිඩ් මුක්ත වේ.
 - (3) කාබොක්සිලික් අම්ල PCl_ද සමග පුතිකිුයා කර අම්ල ක්ලෝරයිඩ ලබාදෙයි.
 - (4) CH₂MgBr සමග කාබොක්සිලික් අම්ල පුතිකිුිිියා කරවු විට මීතේන් මුක්ත වේ.
 - (5) ඇල්ඩිහයිඩ, $H^+/K_2Cr_2O_7$ සමග පිරියම් කළ විට කාබොක්සිලික් අම්ල සැදේ.
 - අංක 31 සිට 40 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a),(b),(c) සහ (d) යන පුතිචාර හතර අතුෙරන්, එකක් හෝ වැඩි සංඛාාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය/පුතිචාර කවරේ දැ'යි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

පිළිතුරු පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩනය

(1)	(2)	(3)	(4)	(5)
(a) සහ (b) පමණක් නිවැරදියි	(<i>b</i>) සහ (<i>c</i>) පමණක් නිවැරදියි	(c) සහ (d) පමණක් නිවැරදියි	(<i>d</i>) සහ (<i>a</i>) පමණක් නිවැරදියි	වෙනත් පුතිචාර සංඛාාවක් හෝ සංයෝජනයක් හෝ නිවැරදියි

31. HBr සමග පුතිකිුියා කළ විට, 3-bromo-3-methylhexane පුධාන එලය ලෙස ලබාදෙන්නේ පහත දැක්වෙන ඒවායින් කුමක් /කුමන ඒවා ද?

(a)
$$CH_3CH_2CH_2C = CHCH_3$$

- 32. ශාක පුභව ආශිුත නිෂ්පාදිත හා සම්බන්ධව පහත කුමන පුකාශය/පුකාශ නිවැරදි ද?
 - (a) ශාකවල වාෂ්පශීලි සංඝටකයන්හි සංකීර්ණ මිශුණ සගන්ධ තෙල්වල අන්තර්ගත වේ.
 - (b) වාෂ්පශීලි ශාක තෙල්වලින් ජෛව ඩීසල් නිෂ්පාදනය කරනු ලැබේ.
 - (c) ජෛව ඩීසල් නිෂ්පාදනයේදී මෙතනෝල් භාවිත නොවේ.
 - (d) ශාක දුවා පැසවීමෙන් නිෂ්පාදිත එතනෝල්, පුනර්ජනනීය බලශක්ති පුභවයක් ලෙස සැලකේ.
- $33. \ \ M^{2+}(aq)/M(s)$ යන ඉලෙක්ටෝඩයෙහි ඉලෙක්ටෝඩ විභවය රඳා පවතිනුයේ පහත සඳහන් කුමන සාධකය/සාධක මත ද?
 - (a) M(s) හි පෘෂ්ඨික ක්ෂේතුඵලය
- (b) $\mathbf{M}^{2+}(\mathbf{aq})$ සාන්දුණය

(c) උෂ්ණත්වය

- (d) $\mathbf{M}^{2+}(\mathrm{aq})$ දුාවණයෙහි පරිමාව
- **34.** ජලීය Na_2CO_3 සමග පිරියම් කළ විට CO_2 ලබාදෙන්නේ පහත දැක්වෙන ඒවායින් කුමක්/කුමන ඒවා ද?

More Past Papers at

tamilguru.lk

- 35. දුබල විදායුත් විච්ඡේදායයක ජලීය දාවණයක් සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය/වගන්ති සැමවිටම නිවැරදි වේ ද?
 - (a) විදයුත් ධාරාවක් සන්නයනය කිරීමේදී ඇනායනය මගින් ගෙනයන ධාරාවෙහි භාගය, කැටායනය මගින් ගෙනයන ධාරාවෙහි භාගයට වඩා වැඩි වේ.
 - (b) ඇනායනයෙහි සන්නායකතාව කැටායනයෙහි සන්නායකතාවට වඩා වැඩි වේ.
 - (c) දුබල විදාුත් විච්ඡේදායෙහි අණුවලින් කුඩා පුතිශතයක් පමණක් අයතවලට විඝටතය වී ඇත.
 - (d) දුබල විදාුත් විච්ඡේදායෙහි විඝටනය වී ඇති අණුවල භාගය තනුකකරණය සමග වැඩි වේ.
- 36. වාෂ්පශීලි හැලජනිකෘත හයිඩුොකාබන සහ ලෝක පාරිසරික පුශ්න අතර ඇති සම්බන්ධතාවය පිළිබඳව පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) CFC, HCFC සහ HFC යන තුනම ගෝලීය උණුසුම ඉහළ යාමට දායක වෙයි.
 - (b) CFC පරිවර්තී ගෝලයේදී (troposphere) ක්ලෝරීන් මුක්ත ඛණ්ඩක නිපදවා ඕසෝන් වියන හායනයට දායක වෙයි.
 - (c) HFC ස්ථර ගෝලයේදී (stratosphere) ක්ලෝරීන් මුක්ත ඛණ්ඩක නිපදවා ඕසෝන් වියන හායනයට දායක වෙයි.
 - (d) CFC සහ HCFC යන දෙකම ස්ථර ගෝලයේදී (stratosphere) ක්ලෝරීන් මුක්ත බණ්ඩක නිපදවා ඕසෝන් වියන හායනයට දායක වෙයි.
- 37. මිනිරන් හා දියමන්ති යන කාබන්වල බහුරූප දෙක සම්බන්ධව පහත කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) දියමන්තිවල කාබන් පරමාණු චනුස්තලීයව තවත් කාබන් පරමාණු හතරකින් වටවී නිුමාණ දැලිසක් ලබාදෙයි.
 - (b) මිනිරත් දුර්වල වැන්ඩ'වාල්ස් බල (ද්විතීයික අන්තර්කියා) මගින් එක් කර තබන ද්විමාන ස්ථරවලින් සැකසී ඇති හෙයින් එය හොඳ ලිහිසි දුවායක් ලෙස කිුියාකරයි.
 - (c) දියමන්ති හොඳ තාප හා විදාුත් සන්නායකයක් වේ.
 - (d) දියමන්තිවලට වඩා සැලකිය යුතු ලෙස ඉහළ දුවාංකයක් මිනිරන්වලට ඇත.
- 38. වායු සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය/වගන්ති නිවැරදි වේ ද?
 - (a) තාත්ත්වික වායු නියැදියක අණු විවිධ වේගවලින් චලනය වන අතර පරිපූර්ණ වායු නියැදියක සියලුම අණු එකම වේගයෙන් චලනය වේ.
 - (b) ඉතා ඉහළ පීඩනවලදී පරිපූර්ණ වායු දුවීකරණය කළ හැකි ය.
 - (c) පරිපූර්ණ වායුවක මැක්ස්වෙල්-බෝල්ට්ස්මාන් වේග වාාාප්ති වකුය උපරිම ලක්ෂාය වටා සමමිතික වේ.
 - (d) තාත්ත්වික වායුවක සම්පීඩාාතා සාධකය පීඩනය මත රඳා පවතී.

39.

සංශුද්ධ දුවායයක ඉහත දී ඇති කලාප සටහන සම්බන්ධයෙන් පහත කුමන වගන්තිය/වගන්ති නිවැරදි චේ ද?

- (a) ඒකීය පරිමාවක ඇති අණු සංඛාාව සැමවිටම දුව කලාපයේදීට වඩා වායු කලාපයේදී වැඩි වේ.
- (b) දුව කලාපය හා වායු කලාපය එකම උෂ්ණත්වයේදී කිසිවිටකත් එකට නොපවතී.
- (c) ඝන කලාපය හා වායු කලාපය කිසිවිටකත් එකම පීඩනයේදී එකට නොපවති.
- (d) පද්ධතිය නිුක ලක්ෂායේ ඇති විට, වායුව දුවය බවට පත්වීමේ ශීසුතාව, දුවය වායුව බවට පත්වීමේ ශීසුතාවට සමාන වේ.
- 40. දී ඇති කාර්මික කිුිිියාවලි හා සම්බන්ධව පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
 - (a) ඩව් $({
 m Dow})$ කුමය මගින් ${
 m Mg}$ නිස්සාරණයේදී අමුදුවාංයක් ලෙස මුහුදු ජලය කෙලින්ම භාවිත කළ හැක.
 - (b) NaOH නිෂ්පාදනය කිරීමේදී රසදිය කෝෂවලට වඩා පටල කෝෂ භාවිතය පරිසර හිතකාමී වේ.
 - (c) ${
 m Na_2CO_3}$ නිෂ්පාදනයේදී භාවිත වන සොල්වේ කිුියාවලියේ කාර්යක්ෂමතාවය ඇමෝනීකරණ අටළුව සිසිල් කිරීමෙන් වැඩි කරගත හැකි ය.
 - (d) ස්පර්ශ කුමය මගින් $\mathrm{H_2SO_4}$ නිෂ්පාදනයේදී උත්පේුරකයක් ලෙස Rh ලෝහය භාවිත කරයි.

• අංක 41 සිට 50 තෙක් එක් එක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින්ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1), (2), (3), (4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැ'යි තෝරා පිළිතුරු පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

		- 3
පුතිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
(1)	සතා වේ.	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදිව පහදා දෙයි.
(2)	සතා වේ.	සතා වන නමුත් පළමුවැනි පුකාශය නිවැරදිව පහදා නොදෙයි.
(3)	සතා වේ.	අසතා වේ.
(4)	අසතා වේ.	සතාා වේ.
(5)	අසතා වේ.	අසතා වේ.

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
41.	අාම්ලික ${ m MnO_4^-}$ දාවණයක් ${ m H_2O_2}$ සමග පිරියම් කළ වීට එය ${ m O_2}$ පිටකරමින් අවර්ණ වන අතර, ආම්ලික ${ m Fe^{2+}}$ දාවණයක් ${ m H_2O_2}$ සමග පිරියම් කළ වීට කහ-දුඹුරු පැහැ ගැන්වේ.	ආම්ලික මාධායේදී $\mathrm{H_2O_2}$ වලට ඔක්සිකාරකයක් මෙන්ම ඔක්සිහාරකයක් ලෙස ද කිුයා කළ හැකි ය.
42.	තාප පරිචාරක බිත්ති සහිත සංවෘත දෘඪ බඳුනක ඇති වායුවක ශක්තිය නියතව පවතී.	ඒකලිත පද්ධතියක ඇති ශක්තිය හා දුවා පුමාණය යන දෙකම වටපිටාව සමග හුවමාරු නොවේ.
43.	Cl ₂ වායුව ජලය සමග පුතිකිුයා කළ විට ද්විධාකරණයට භාජනය වී HOCl(aq) සහ HCl(aq) ලබා දේ.	ක්ලෝරීන්වල ඔක්සො අම්ල අතුරෙන් HOCl වලට වැඩිම ඔක්සිකාරක හැකියාව ඇත.
44.	උත්පේුරකයක් එකතු කළ විට පුතිවර්තා පුතිකිුියාවක සමතුලිත ස්ථානය වෙනස් වේ.	උත්පේුරකයක් සැමවිටම ඉදිරි පුතිකිුයාවෙහි ශීඝුතාව ආපසු පුතිකිුයාවෙහි ශීඝුතාවට වඩා වැඩි කරයි.
45.	RC≡CH සහ මීතයිල්මැග්නීසියම් බෝමයිඩ් අතර පුතිකිුයාවෙන් RC≡CMgBr සාදා ගත හැකි ය.	ගීනාඩ් පුතිකාරකයක ඇති ඇල්කයිල් කාණ්ඩයට හස්මයක් ලෙස පුතිකිුයා කළ හැකි ය.
46.	ඕනෑම ඇල්ඩිහයිඩයක් සමග HCN පුතිකිුයා කළ විට කයිරැල් කාබන් පරමාණුවක් අඩංගු ඵලයක් ලැබේ.	එකිතෙකට වෙනස් කාණ්ඩ හතරකට සම්බන්ධ කාබන් පරමාණුවකට, කයිරැල් කාබන් පරමාණුවක් යැයි කියනු ලැබේ.
47.	සොල්වේ කිුයාවලිය මගින් $\mathrm{Na_2CO_3}$ නිෂ්පාදනයේදී පුධාන අතුරුඵලය $\mathrm{CaCl_2}$ වේ.	සොල්වේ කුියාවලියේදී NH ₃ පුනර්ජනනය කිරීමට CaO භාවිත වේ.
48.	බෙන්සීන්ඩයසෝනියම් ක්ලෝරයිඩ් ජලීය NaOH හමුවේ, ෆීනෝල් සමග පුතිකිුයා කර පහත දැක්වෙන සංයෝගය සාදයි.	ඩයසෝනියම් අයතවලට ඉලෙක්ටොෆයිල ලෙස පුතිකියා කළ හැකි ය.
49.	ජලීය ඇමෝනියා සමග පුබල අම්ල අනුමාපනය කළ විට සමකතා ලක්ෂායේදී උදාසීන දුාවණයක් නොලැබේ.	$\mathrm{NH_4^+}$ ජලය සමග $\mathrm{H_3O^+}$ සාදමින් පුතිකිුයා කරයි.
50.	වායුගෝලයේ ඕසෝන් සෑදීම සඳහා පරමාණුක ඔක්සිජන් අතාවශා සාධකයකි.	වායුගෝලයේ පරමාණුක ඔක්සිජන් නිපදවනුයේ අණුක ඔක්සිජන් වියෝජනයෙන් පමණි.

* * *

More Past Papers at **tamilguru.lk**

ආවර්තිතා වගුව/ஆவர்த்தன அட்டவணை/The Periodic Table

- 1		2							125									
	1								- N									2
1	H		-						- 1) - 5									He
Ä	3	4											5	6	7	8	9	10
2	Li	Be							A S				В	C	N	o	F	Ne
년 3	11	12											13	14	15	16	17	18
3	Na	Mg							8				Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
1	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cđ	In	Sn	Sb	Te	I	Xe
.:	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Ňd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

සියලු ම හිමිකම් ඇවිරිනි / ω ුගුට ω යුවිට්ටු ω ාගා ω ාගා ω ාගා ω

ලි ලංකා විතාල දෙපාර්තමේන්තුව ලී ලංකා විතාල දෙපාර්තමේස්තුව ලී ලංකු විතාල දෙපාර්තමේන්තුව ලී ලංකා විතාල දෙපාර්තමේන්තුව මුණාගෙසට பුර්ධකපති නිශානාස්සභාග මුණාගෙසට පුර්ධක්**දී ලින්න මිසින් සම්බන්ධ මුදායන් විතාල** දෙපාර්තමේන්තුව මී ලංකා විතාල දෙපාර්තමේන්තුව මේ දෙපාර්තමේන්තුව මේ ලංකා විතාල දෙපාර්තමේන්තුව මේ දෙපාර්තමේන්තු

රසායන විදනව II இரசாயனவியல் II Chemistry II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours **අමතර කියවීම් කාලය** - **මිනිත්තු 10 යි** மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள்

Additional Reading Time - 10 minutes

විභාග අංකය :

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඛත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදා ගන්න.

- * ආවර්තිතා වගුවක් 16 වැනි පිටුවෙහි සපයා ඇත.
- 🔆 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * සාර්වනු වායු නියනය, $R = 8.314~\mathrm{J~K^{-1}~mol^{-1}}$
- * ඇවගාඩ්රෝ නියනය, $N_A = 6.022 \times 10^{23} \; \mathrm{mol}^{-1}$
- 🔻 මෙම පුශ්න පතුගට පිළිතුරු සැපයීමේදී ඇල්කගිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරුපණය කළ හැකි ය.

- A කොටස වපුහගත රචනා (පිටු 02 08)
- * කියලුම ප්‍රශ්නවලට මෙම ප්‍රශ්න පක්‍රයේම පිළිකුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බවද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බවද සලකන්න.
 - 🗅 B කොටස සහ C කොටස රචනා (පිටු 09 15)
- * එක් එක් කොටසින් පුශ්න දෙක බැගින් තෝරා ගනිමින් පුශ්න හතරකට පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු A, B සහ C කොටස් තුනට පිළිතුරු, A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B සහ f C කොටස් **පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

කොටස	පුශ්න අංකය	ලැබූ ලකුණු
	1	
A	2	
A	3	
_	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
	එකතුව	

	එකතුව
ඉලක්කමෙන්	
අකුරෙන්	·

සංකේත අංක

උත්තර පතු පරීක්ෂක 1	
උත්තර පතු පරීක්ෂක 2	
පරීක්ෂා කළේ :	
අධීක්ෂණය කළේ :	

A කොටස - වපුහගත රචනා

පුශ්න **හතරටම** මෙම පතුයේම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය 100 කි.)

මේම තී්රයේ කිසිවක් නො ලියන්න

- ${f 1.}\,\,(a)$ පහත සඳහන් පුකාශ **සහා** ද නැතමහාත් **අසභා** ද යන බව තිත් ඉරි මත සඳහන් කරන්න. හේතු අවශා නැත.
 - (i) කැටායනවල ධැවීකරණ බලය සහ ඇතායනවල ධුැවණශීලිතාව හා සම්බන්ධ නීති, LiI වලට වඩා KBrවල දුවාංකය ඉහළ බව පුරෝකථනය කරයි.
 - (ii) Beවල ඉලෙක්ටුෝන ලබාගැනීමේ ශක්තිය ධන අගයක් වේ.
 - (iii) හයිඩුජන්වල පරමාණුක වර්ණාවලියේ, දෙන ලද ශේණියක අනුයාත රේඛා දෙකක් අතර ඇති පරතරය තරංග ආයාම අඩුවන දෙසට කුමයෙන් අඩු වේ.
 - (iv) එකම පුවේගයෙන් ගමන් කරන විට N_2 අණුවක් හා සම්බන්ධ ඩි බෝග්ලි තරංග ආයාමය O_2 අණුවෙහි ඩි බෝග්ලි තරංග ආයාමයට වඩා කුඩා වේ.
 - (v) Cවල සංයුජතා ඉලෙක්ටෝනයකට දැනෙන සඵල නාෘෂ්ටික ආරෝපණය ($Z_{
 m u2c}$) Nවල සංයුජතා ඉලෙක්ටෝනයකට දැනෙන සඵල නාෘෂ්ටික ආරෝපණයට වඩා වැඩි ය.
 - (vi) කාබොනික් අම්ලයේ (H_2CO_3) සියලුම $C\!-\!O$ බන්ධන දිගින් සමාන ය.

(ලකුණු 24 යි)

(b) (i) $\mathrm{Cl_2O_4}$ අණුව සඳහා **වඩාත්ම** පිළිගත හැකි ලුවිස් තිත්-ඉරි වාූහය අඳින්න. එහි සැකිල්ල පහත දක්වා ඇත.

(ii) ඉහත (i) හි අඳින ලද වාූුහයේ ක්ලෝරින් පරමාණු දෙකෙහි ඔක්සිකරණ අවස්ථා දෙන්න. ක්ලෝරින් පරමාණු පහත දක්වා ඇති ආකාරයට සලකුණු කර ඇත.

$$Cl^1-O-Cl^2-O$$
 Cl^1 , Cl^2

(iii) $N_2O_2^{2-}$ අයනය සඳහා **වඩාත්ම** ස්ථායි ලුවිස් තිත්-ඉරි වනූහය පහත දක්වා ඇත. මෙම අයනය සඳහා තවත් ලුවිස් තිත්-ඉරි වනූහ (සම්පුයුක්ත වනූහ) **දෙකක්** අඳින්න.

$$: \stackrel{\ominus}{\mathbf{N}} = \stackrel{\cdots}{\mathbf{N}} = \stackrel{\ominus}{\mathbf{N}} = \stackrel{\ominus}{\mathbf{N}} :$$

(īv) පහත සඳහන් ලුවිස් තිත්-ඉරි වනූහය සහ එහි ලේබල් කරන ලද සැකිල්ල පදනම් කරගෙන දී ඇති වගුව සම්පූර්ණ කරන්න.

		. <u>N</u> 1	C^2	C ₃ -	N ⁴
I.	පරමාණුව වටා VSEPR යුගල්		-		
II.	පරමාණුව වටා ඉලෙක්ටෝන යුගල් ජාාමිතිය	-			·
Ш·	පරමාණුව වටා හැඩය			-	
IV.	පරමාණුවේ මුහුම්කරණය				

AL/2021(2	022)/02/S	-II(A)
-----------	-----------	--------

- 3 -

විභාග අංකය :

			ඉහත (iv) කොටසෙහි දෙන ලද _! සෙහි ආකාරයටම වේ.	ලුවිස් තිත්-ඉරි වාූූහය මත පදනම් වේ. පරමාණු	මෙම තීරයේ කිසිවක් නො ලියන්න
(v)		දැක්වෙන පර ගන්න.	්මාණු දෙක අතර σ බන්ධන ස	ෑදීමට සහභාගි වන පරමාණුක/මුහුම් කාක්ෂික	
	I.	N^1 — F	$N^1 \cdot \dots \cdot \dots \cdot \dots$	F	
	II.	N^1 — C^2	N^1	C^2	
	III.	C^2 —H	C^2	Н	
	IV.	C^2 — C^3	C^2	C ³	
	V.	C^3 — N^4	C ³	N ⁴	
	VI.	N ⁴ —O	N ⁴	0	
(vi)	පහත	දැක්වෙන පරම	$ u$ ණු දෙක අතර π බන්ධන සෑදීම u	ට සහභාගි වන පරමාණුක කාක්ෂික හඳුනාගන්න.	
	I.	N^1 — C^2	N^1	C ²	
	II.	C^3 — N^4	C^3	N ⁴	
			C^3	N ⁴	
(vii)	N^1, C^2	2 , ${f C}^3$ සහ ${f N}^4$ ප	රමාණු වටා ආසන්න බන්ධන ග	කා්ණ සඳහන් කරන්න.	
	•	N^1	, C^2 , C^3	, N ⁴	
(viii)	N^1, C^2	² , C ³ සහ N ⁴ ප	ාරමාණු විද <u>ා</u> පුත් සෘණතාව වැඩිවන	පිළිචෙළට සකසන්න.	
			< , <	< (ලකුණු 54 යි)	
(c) (i)	ලේසර	රයක් (Laser) අ	තරංග ආයාමය 695 nm වන ලො	•	
(-) (-)	I.		·	වර්ණාවලියේ කුමන කලාපයට ද?	
	II.		්න මවුලයක ශක්තිය kJ mol ^{–1} දි		
		ආලෝකයේ ද	පුවේගය $c = 3.00 \times 10^8 \; \mathrm{m \; s^{-1}}$	ප්ලාන්ක් නියකය $h = 6.63 \times 10^{-34} \mathrm{J s}$	
(ii)	_		හි අණුවක A−X σ බන්ධන තුනක් තර, A මධාා පරමාණුව වේ.	අඩංගු ය. මෙහි A සහ X මූලදුවාවල සංකේත	
		•	I හිදී AX_3 සඳහා තිබිය හැකි අණු	gක හැඩය/හැඩයන් නම් කරන්න.	
	I.	AX ₃ ධැවීය න	ි ාම්		
		•			
		5 -			
	III.		යටතෙ ඔබ සඳහන කට ඇත හැ ා සූතු අවශා වේ.)	ඩවලට එක් උදාහරණයක් බැගින් දෙන්න.	
				·	
		AX_3 ධුැවීය			[]

2. ප	ත දී ඇති පුශ්න $oldsymbol{[(a)-(d)]} oldsymbol{A}, oldsymbol{B}, oldsymbol{C}$ හා $oldsymbol{D}$ ලෙස නම් ක		මෙම නිරයේ කිසිවස
	A යනු s-ගොනුවේ මූලදවායකි. එහි පරමාණුක කුමාංකය පුබල ලෙස පුතිකියා කර, වායුවක් පිට කරමින්, පුබල හ පුතිකියා කර සුපර්ඔක්සයිඩය සාදයි. ස්වභාවික ලෝපස	ාස්මික දුාවණයක් ලබාදෙයි. ${f A}$ වැඩිපුර ${f O}_2({f g})$ සමග	නො ලි
	(i) \mathbf{A} හි රසායනික සංකේතය ලියන්න,		
	(ii) A හි සම්පූර්ණ ඉලෙක්ටුෝන විනාහසය ලියන්න	•••••	
	(iii) ජලය සමග ${f A}$ පුතිකිුියා කළ විට පිටවන වායුව නම්) කරන්න	
	(iv) පහන්සිළු පරීක්ෂාවේදී A ලබාදෙන වර්ණය කුමක්		
	(v) වැඩිපුර $\mathrm{O}_2(\mathrm{g})$ සමග \mathbf{A} හි පුතිකුියාව සඳහා තුලිත		
	(vi) A හි පළමු අයනීකරණ ශක්තිය, ආවර්තිතා වගු මූලදුවායේ එම අගයට වඩා වැඩි හෝ අඩු වේ ද?		
		•••••	
	(vii) සිල්වයිට්වල අඩංගු A හි සංයෝගයේ රසායනික සූ	නුය දෙන්න	
	මූලදුවාගේ පරමාණුක කුමාංකය 20 ට වඩා අඩු වේ. \mathbf{X} අඩු ය. \mathbf{X} උණු සාන්දු සල්ෆියුරික් අම්ලය සමග පුතිකියා සහිත වායුවක් පිට වේ. \mathbf{B} හි රසායනික සූතුය, ආරෝපණය ද ඇතුළත්ව, ලි	කළ විට, එක් ඵලයක් ලෙස අවර්ණ, කටුක ගඳක්	
	(ii) B හි ලුවිස් තින්-ඉරි වාූහය අඳින්න.		
	(11) B හ පුටස තන-ඉට වයුහය අඳනන.		
	$\left(\mathrm{iii} ight) \; \mathbf{B} \; \mathbf{f 8}$ මධා පරමාණුවේ ඔක්සිකරණ අවස්ථාව දෙන්	ກ	
	$({ m iv})$ ${f B}$ හඳුනාගැනීම සඳහා රසායනික පරීක්ෂාවක් දෙන්	න. (සැ.යු.: නිරීක්ෂණය/නිරීක්ෂණ ද අවශා වේ.)	
	(\mathbf{v}) \mathbf{A} කැටායනය හා \mathbf{B} ඇනායනය ලෙස ඇති සංයෝග	ගයේ රසායනික සූතුය ලියන්න.	
		(om at 25 8)	
(c)	${f C}$ යනු ඔක්සිකාරකයකි. එය $1{:}1{:}3$ අනුපාතයෙන් ඇති මූලදු ${f A}$ වේ. අනෙක් මූලදුවා දෙක ආවර්තිතා වගුවේ $p{:}6$ ගො ${f B}$ හි ද අඩංගු වේ. මෙයින් එක් මූලදුවායක ඇනායනය අතර, එය සාන්දු ඇමෝනියා දුාවණයක අදුාවා වේ. ${f C}$ හි රසායනික සූතුය ලියන්න.	නුවට අයත් වේ. මෙම මූලදුවා දෙකෙන් එකක්	
	<u> </u>	(ලකුණු 10 යි)	

(d) D o	යනු මූලදුවා දෙකකින් සමන්විත සංයෝගයකි. මෙම	මූලදුවා දෙකම ${f C}$ හි ද ඇත.	මෙම තීරයෙ කිසිවැ
	(i)	ආම්ලික මාධායේදී වැඩිපුර $\mathbf{D}(\mathrm{aq})$ සමග $\mathbf{C}(\mathrm{aq})$ මිල	g කළ විට, රතු-දුඹුරු දුාවණයක් ලැබේ.	නො (
		I. D හඳුනාගන්න		
		II. මෙහිදී සිදුවන පුතිකිුියාව සඳහා තුලිත අයනික	සමීකරණය ලියන්න.	
	(ii)	ඉහත (i) හි ලැබෙන රතු-දුඹුරු දුංවණයට, B අඩං දුංවණය අවර්ණ වේ. මෙහි සිදුවන පුතිකිුයාව සඳහ		
	٠			ŀ
	(iii)	ඉහත (i) හා (ii) හි සිදුවන පුතිකියා උපයෝගි කර ගෘ විශ්ලේෂණය මගින් නිර්ණය කළ හැක. මෙහිදී භ ලක්ෂායේදී අපේක්ෂිත වර්ණ විපර්යාසය දෙන්න.		
		දර්ශකය :		
		වර්ණ විපර්යාසය :	(ලකුණු 30 යි)	10
-	උෂ්	ණත්ව-සංයුති කලාප සටහන $(1.0 imes10^5~ ext{Pa}$ පීඩනයක උෂ්ණත්		
•		3ට (v) දක්වා කොටස් දී ඇති කලාප සටහන මත තම් වේ.	130	
	(i)	පහත දී ඇති පුදේශ කලාප සටහන මත P, Q, R අක්ෂර යෙදීමෙන් දක්වන්න.	110	
		${ m P}$ $-$ දුව කලාපය පම-ණක් පවතින පුදේශය	90	
		Q – වාෂ්ජ කලාපය පමණක් පවතින පුදේශය	70	: F.
		R – දුව කලාපය හා වාෂ්ප කලාපය සමතුලිතව ඇති පුදේශය	60 50	· -
	(ii)	සංශුද්ධ $old X$ හා සංශුද්ධ $old Y$ හි තාපාංක දෙන්න.	100% 50% 0%	:
		X Y	සංයුතිය ($\mathbf{X},\mathrm{mol}\%$)	-
	(iii)	$old X$ හි $40~ ext{mol}\%$ අඩංගු $old X$ හා $old Y$ දුව මිශුණයක් නැටීර	මට ආරම්භ වන උෂ්ණත්වය කුමක් ද?	·
	(iv)	f X හි $60~mol%$ අඩංගු $f X$ හා $f Y$ මිශුණයක් සම්පූර්ණ කුමක් ද?	iලයන්ම වාෂ්ප බවට පත්වන අඩුම උෂ්ණක්වය	
				-

More Past Papers at tamilguru.lk

(v) උෂ්ණත්වය $100~^{\circ}{
m C}$ හිදී ${f X}$ හි සංතෘප්ත වාෂ්ප පීඩනය ගණනය කරන්න.

මෙම තීරයේ කිසිවක් තො ලියන්න

(vi) වෙනත් පරීක්ෂණයකදී **සංවෘත දෘඪ** බඳුනක් තුළ ${f X}$ හා ${f Y}$ අඩංගු මිශුණයක් ${f T}$ උෂ්ණත්වයේදී සමතුලිතතාවට එළඹීමට ඉඩහරින ලදී. එවිට වාෂ්ප කලාපය සමග සමතුලිතව පවතින දුව කලාපයෙහි ${f X}$ 0.10 mol හා ${f Y}$ 0.10 mol අඩංගු බව සොයාගන්නා ලදී. මෙම උෂ්ණත්වයේදී ${f X}$ හා ${f Y}$ හි සංතෘප්ත වාෂ්ප පීඩන පිළිවෙළින් 4.0×10^5 Pa හා 2.0×10^5 Pa වේ. රඌල් නියමය භාවිතයෙන් ${f X}$ හා ${f Y}$ හි අාංශික පීඩන ගණනය කරන්න.

(ලකුණු 50 යි)

- (b) ජලීය ඇසිටික් අම්ල දාවණයක (${f Z}$ දාවණය) සාන්දුණය, ජලීය ${f NaOH}$ දාවණයක් සමග අනුමාපනයෙන් නිර්ණය කරන ලදී. ${f Z}$ දාවණයෙහි $12.50~{
 m cm}^3$ පරිමාවක් සඳහා අන්ත ලක්ෂායට ළඟා වීමට සාන්දුණය $0.050~{
 m mol~dm}^{-3}$ වූ ${f NaOH}$ දාවණයෙන් $25.00~{
 m cm}^3$ ක් අවශා විය.
 - (i) ${f Z}$ දාවණයෙහි ඇසිටික් අම්ල සාන්දුණය ගණනය කරන්න.
 - (ii) ${f Z}$ දාවණයෙහි pH අගය ගණනය කරන්න. පරීක්ෂණය සිදු කරන ලද උෂ්ණක්වයේදී ඇසිටික් අම්ලයෙහි අම්ල විඝටන නියතය $(K_s)~1.80 imes 10^{-5}~{
 m mol~dm^{-3}}$ වේ.

(iii) ${f Z}$ දාවණයෙහි තවත් කොටසකට ($100.00~{
m cm}^3$) සංශුද්ධ සන NaOH $0.200~{
m g}$ එකතු කර දියකරන ලදී. දාවණ පරිමාව හා උෂ්ණත්වය වෙනස් නොවන බව උපකල්පනය කරමින් මෙම දාවණයෙහි pH අගය ගණනය කරන්න.

[සාපේක්ෂ පරමාණුක ස්කන්ධය: Na = 23, O = 16, H = 1]

	(iv)	ඉහත (iii) හි විස්තර කරන ලද දුාවණය ස පැහැදිලි කරන්න.	ස්වාරක්ෂක දුාවණයක් ලෙස හැසිරෙයි ද? ඔබගේ පිළිතු	මෙම නිරයේ කිසිවක් නො ලියන්න

	(**)	20.00	00 3 00 0 to NOTIO 000 0	·
	(V)	ලදී. මෙම දුාවණය ස්වාරක්ෂක දුාවණයක්	00 cm ³ පරිමාවක සංශුද්ධ ඝන NaOH 0.800 g දිය කරු ලෙස කිුිිිියාකරයි ද? සුදුසු ගණනය කිරීමක් මගින් ඔබලේ මාව හා උෂ්ණත්වය වෙනස් නොවන බව උපකල්පනය	र्ज ।
			······································	
		***************************************		·// \
		•••••		$\cdot \left \frac{}{100} \right $
			(ලකුණු 50 සි	• \
4. (a)	A , B පමණ	සහ ${f C}$ යනු අණුක සූතුය ${f C}_5 {f H}_{11} {f Br}$ සහිත ව ${f m}$ ක් පුකාශ සමාවයවිකතාවය පෙන්වයි. ${f A}$ ස	ාපුහ සමාවයවික චේ. මෙම සමාවයවික තුන අතුරෙන්, ${f l}$ හ ${f C}$ එකිනෙකෙහි ස්ථාන සමාවයවික වේ.	В
	F සං පුතිකි දෙක	යෝග පිළිවෙළින් ලබාදුනි. \mathbf{D},\mathbf{E} සහ \mathbf{F} වේ බුයා නොකළේ ය. PCC සමග \mathbf{D} සහ \mathbf{E} පුකිදි	පුතිකිුයා කළ විට අණුක සූතුය $\mathbf{C_5H_{12}O}$ වන, \mathbf{D} , \mathbf{E} සව වන වෙනම PCC සමග පිරියම් කරන ලදී. PCC සමග \mathbf{D} බුයා කර පිළිවෙළින් \mathbf{G} සහ \mathbf{H} ලබාදුනි. \mathbf{G} සහ \mathbf{H} සංයෝග – DNP) සමග වර්ණවත් අවක්ෂේපද, ඇමෝනීය AgNO	F
	A, B	, C, D, E, F, G සහ H වල වනුහයන් පහත	දී ඇති කොටු තුළ අඳින්න.	-
		A	В	
		C	D	
		-	<i>D</i>	
		E	F	
				[
		İ		
:		<u>G</u>	H (cm of 568	

(b) පහත දක්වා ඇති පුතිකුියාවල ${f I}, {f J}, {f K}$ සහ ${f L}$ එලවල වහුනයන් දී ඇති කොටු තුළ අඳින්න.

මෙම තීරයේ කිසිවක් නො ලියත්න

- O || (i) CH₃COCH₃
- $(1) \ \mathrm{CH_3MgBr} \, ($ වැඩිපුර)/වියළි ඊතර්
- $\frac{}{(2) \text{ H}^+ / \text{H}_2\text{O}}$

I

(ii) $C_2H_5C \equiv CH$ කනුක H_2SO_4/Hg^{2+}

- (iii) CH_3CCH_3
- (1) ජලීය NaOH
- (2) H^+/Δ

K

(iv) N₂⁺Cl⁻ KI

L

(ලකුණු 24 යි)

(c) $\mathrm{CH_3CH} = \mathrm{CHCH_3}$ හා $\mathrm{Br_2/CCl_4}$ අතර පුතිකියාව සඳහා යන්නුණය සහ සෑදෙන ඵලයෙහි වාූහය දෙන්න.

* *

(ලකුණු 20 සි)

ල් ලංකා විභාග දෙපාර්තමේත්තුව ල් ලංකා විභාග දෙපාර්**ල් ලබක් ාමවචාග ලෙපාල්කාලමින්තුව**මාග දෙපාර්තමේත්තුව ල් ලංකා විභාග දෙපාර්තමේත්තුව இலங்கைப் பழீட்சைத் திணைக்களம் இலங்கைப் ப**ழீட**ிசத் திணைக்களம் இலங்கைப் பழீட்சைத் திணைக்களம் இலங்கைப் பழீட்சைத் திணைக்களம் Department of Examinations, Sri Lanka Department of **இலங்கை, Sufficient தொரியானின் இனங்களைம்** Is, Sri Lanka Department of Examinations, Sri Lanka ල් ලංකා විභාග දෙපාර්තමේත්තුව ලේකා විභාග දෙපාර්තමේත්තුව ල් ලංකා විභාග දෙපාර්තමේත්තුව ල් ල්කා විභාග දෙපාර්තමේත්තුව ල්කා විභාග

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2021(2022) கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2021(2022) General Certificate of Education (Adv. Level) Examination, 2021(2022)

රසායන විදහාව II இரசாயனவியல் II Chemistry II

* සාර්වනු වායු නියනය $R=8.314~{
m J~K}^{-1}{
m mol}^{-1}$ * ඇවගාඩ්රෝ නියනය $N_A=6.022 imes 10^{-1}{
m mol}^{-1}$

B කොටස _ රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 150** බැගින් ලැබේ.)

- 5. (a) (i) රේචනය කරන ලද සංවෘත දෘඪ බඳුනක් තුළට CH_4 , $\operatorname{C}_2\operatorname{H}_6$ හා වැඩිපුර O_2 අඩංගු වායු මිශුණයක් ඇතුළු කරන ලදී. බඳුනෙහි පරිමාව $8.314 \times 10^{-3} \, \mathrm{m}^3$ විය. $400 \, \mathrm{K}$ හිදී බඳුනේ පීඩනය $4.80 \times 10^6 \, \mathrm{Pa}$ විය. බඳුන තුළ ඇති වායූන්ගේ මුළු මවුල සංඛ්‍යාව ගණනය කරන්න. සියලුම වායූන් පරිපූර්ණ ලෙස හැසිරෙන බව සහ මෙම උෂ්ණත්වයේදී පුතිකිුිිිිිිිිිිිිිිිි නොවන බව උපකල්පනය කරන්න.
 - (ii) බඳුනෙහි උෂ්ණත්වය $800~{\rm K}$ දක්වා වැඩි කිරීමෙන් බඳුන තුළ ඇති සියලුම හයිඩොකාබන පූර්ණ දහනයට භාජනය කරන ලදී. එම දහන පුතිකියාවලට පසු $800~{\rm K}$ හිදී බඳුනෙහි පීඩනය $1.00\times 10^7~{\rm Pa}$ විය. දහනයට පසු බඳුන තුළ ඇති වායූන්ගේ මුළු මවුල සංඛ්‍යාව ගණනය කරන්න. මෙම තත්ත්ව යටතේදී ${\rm H_2O}$ වායුවක් ලෙස පවතින බව උපකල්පනය කරන්න.
 - (iii) පහත දක්වා ඇති වායූන්හි දහන පුතිකුියා සඳහා තුලිත රසායනික සමීකරණ (භෞතික අවස්ථා දක්වමින්, $800~{
 m K}$ හි දී) ලියන්න.
 - I. CH₄(g)
 - II. $C_2H_6(g)$
 - (iv) දහනයට පෙර හා පසු වායු මවුල සංඛ්‍යාවෙහි වෙනසට දායක වන්නේ ඉහත හයිඩොකාබන දෙකෙන් එකක් පමණි.
 - අාරම්භයේදී බඳුන තුළට ඇතුළු කරන ලද මෙම හයිඩුොකාබනයෙහි මවුල සංඛ්යාව ගණනය කුරන්න.
 - (v) ඉන්පසු බඳුන $300~{
 m K}$ දක්වා සිසිල් කර ජලය ඉවත් කරන ලදී. මෙවිට බඳුනේ පීඩනය $2.10 \times 10^6~{
 m Pa}$ විය. පහත ඒවා ගණනය කරන්න.
 - I. සෑදුනු මුළු H_2O මවුල සංඛනාව
 - II. C_2H_6 දහනය මගින් සැදුනු H_2O මවුල සංඛාාව
 - $ext{III.}$ $ext{CH}_4$ දහනය මගින් සැදුනු $ext{H}_2 ext{O}$ මවුල සංඛාහව
 - ${
 m IV}$. බඳුන තුළට ආරම්භයේදී ඇතුළු කරන ලද ${
 m O_2}$ මවුල සංඛ්‍යාව

(ලකුණු 75 යි)

(b) (i) **තාප රසායනික වකුයක්** හා දී ඇති දත්ත භාවිතයෙන් පහත පුතිකිුයාව සඳහා සම්මත එන්තැල්පි වෙනස ගණනය කරන්න.

$$4 \text{ CH}_4(g) + O_2(g) \longrightarrow 2 C_2 H_6(g) + 2 H_2 O(g)$$

	$\left(\Delta H_f^{\rm o}\right)$ (kJ mol ⁻¹)	$S^{\circ} (J \text{ mol}^{-1} \text{ K}^{-1})$
$CH_4(g)$	-74.8	186.3
$C_2H_6(g)$	-84.7	229.6
$CO_2(g)$	-393.5	213.7
$H_2O(g)$	-214.8	188.8
C(s), graphite	0.0	5.7
$O_2(g)$	0.0	205.1
$H_2(g)$	0.0	130.7

- (ii) ඉහත (b)(i) හි පුතිකිුයාව සඳහා සම්මත එන්ටොපි වෙනස ගණනය කරන්න.
- (iii) $500 ext{ K}$ හිදී ඉහත (b)(i) හි පුතිකිුයාව සඳහා සම්මත ගිබ්ස් ශක්ති වෙනස (ΔG°) ගණනය කරන්න.
- (iv) උෂ්ණත්වයෙහි වැඩිවීම ඉහත (b)(i) හි දී ඇති පුතිකුියාවට හිතකර වේ දැයි හේතු දක්වමින් සඳහන් කරන්න. එන්තැල්පි වෙනස හා එන්ටොපි වෙනස උෂ්ණත්වය මත රදා නොපවතින බව උපකල්පනය කරන්න. $(ලකුණු 75 \ absolute{3})$
- 6. (a) (i) ජලීය මාධායේ සිදුවන \mathbf{a} $\mathbf{A}(\mathbf{aq}) \Leftrightarrow \mathbf{b}$ $\mathbf{B}(\mathbf{aq}) + \mathbf{c}$ $\mathbf{C}(\mathbf{aq})$ පුතිවර්තා පුතිකියාව සලකන්න. ඉදිරි හා පසු පියවර යන දෙකම මූලික පුතිකියා ලෙස සලකමින් ඉදිරි පුතිකියාවෙහි ශීසුතාව (R_1) හා පසු පුතිකියාවෙහි ශීසුතාව (R_2) සඳහා පුකාශන ලියන්න. ඉදිරි පුතිකියාව හා පසු පුතිකියාව සඳහා ශීසුතා නියන පිළිවෙළින් k_1 හා k_2 වේ.
 - (ii) සමතුලිතතාවේදී R_1 හා R_2 අතර සම්බන්ධතාව ලියා දක්වන්න.
 - $({
 m iii})$ සමතුලිතතා තියතය, $K_{
 m C}$ සඳහා පුකාශනය ලියා දක්වන්න. තවද $K_{
 m C}, k_1$ හා k_2 අතර සම්බන්ධතාව දෙන්න.
 - (iv) ඉහත සමතුලිතතාව හැදැරීම සඳහා නියත උෂ්ණත්වයකදී පරීක්ෂණ තුනක් සිදු කරන ලදී. මෙම පරීක්ෂණවලදී A,B හා C විවිධ පුමාණ මිශු කර, එම පද්ධතිය සමතුලිතතාවට එළඹීමට ඉඩ හරින ලදී. සමතුලිතතාවේදී පහත දත්ත ලබාගන්නා ලදී.

පරික්ෂණ අංකය	සමතුලිතතාවේදී සාන්දුණය (mol dm ⁻³)									
d-mm	[A]	[B]	[C]							
1	1.0×10^{-1}	1.0×10^{-2}	1.0×10^{-3}							
2	1.0×10^{-2}	1.0×10^{-3}	1.0×10^{-3}							
3	1.0×10^{-2}	1.0×10^{-2}	1.0×10^{-5}							

- I. පරීක්ෂණ 1,2 සහ 3 සඳහා වගුවෙහි දී ඇති A,B සහ C හි සාන්දුණ, සමතුලිතතා නියතය සඳහා ඉහත (a) (iii) හි ලියන ලද පුකාශනයට ආදේශ කර සම්බන්ධතා තුනක් ලබාගන්න.
- II. මෙම සම්බන්ධතා උපයෝගී කරගෙන a=b=2c බව ඔප්පු කරන්න.
- ${
 m III.}$ a, b සහ c යන ස්ටොයිකියෝමීතික සංගුණක සඳහා කුඩාම පූර්ණ සංඛාා යොදාගනිමින් ඉහත පුතිකියාවේ සමතුලිතතා නියතය, $K_{
 m C}$ හි අගය ගණනය කරන්න.

(ලකුණු 80 යි)

- (b) වායු කලාපයේදී සිදුවන \mathbf{p} $\mathbf{P}(\mathbf{g}) \implies \mathbf{q}$ $\mathbf{Q}(\mathbf{g}) + \mathbf{r}$ $\mathbf{R}(\mathbf{g})$ පුතිකියාව සලකන්න.
 - (i) ඉදිරි පුතිකිුයාව \mathbf{p} $\mathbf{P}(\mathbf{g}) \longrightarrow \mathbf{q}$ $\mathbf{Q}(\mathbf{g}) + \mathbf{r}$ $\mathbf{R}(\mathbf{g})$ සඳහා එන්තැල්පි වෙනස හා සකිුයන ශක්තිය පිළිවෙළින් 50.0 kJ mol^{-1} හා 90.0 kJ mol^{-1} වේ. මෙම පුතිකිුයාව සඳහා නම් කරන ලද ශක්ති සටහන (ශක්තිය හා පුතිකිුයා ඛණ්ඩාංකය අතර පුස්තාරය) අදින්න. \mathbf{P}, \mathbf{Q} හා \mathbf{R} හි ස්ථාන ශක්ති සටහනෙහි සලකුණු කර දක්වන්න. තවද, සකිුය සංකීර්ණයෙහි ස්ථානය 'සකිුය සංකීර්ණය' ලෙස එහි සලකුණු කරන්න.
 - (ii) ආපසු පුතිකුියාව සඳහා සකුියන ශක්තිය ගණනය කරන්න.
 - (iii) මෙම පුකිකිුයාවෙහි සමතුලිතතා නියතය මත උෂ්ණත්වය වැඩිවීමෙහි බලපෑම පැහැදිලි කරන්න.
 - (iv) I. ඉදිරි පුතිකිුියාවෙහි සහ පසු පුතිකිුයාවෙහි ශීඝුතා මත
 - Π . සමතුලිතතා නියතය මත

උත්පේරකයක බලපෑම පැහැදිලි කරන්න.

(ලකුණු 70 යි)

More Past Papers at

tamilguru.lk

- 7. (a) ඔබට L, M, N යන ලෝහ කූරු තුන ද $L^{2^+}(1.0 \text{ mol dm}^{-3}), M^{2^+}(1.0 \text{ mol dm}^{-3}), N^{2^+}(1.0 \text{ mol dm}^{-3})$ යන දාවණ තුන ද සපයා ඇත. N ලෝහය M^{2^+} අයන දාවණයේ හිල් වූ විට M^{2^+}, M බවට ඔක්සිහරණය වන අතර, N, L^{2^+} අයන දාවණයේ හිල් වූ විට L^{2^+}, L බවට ඔක්සිහරණය නොවේ.
 - (i) හේතු දක්වමින්, L,M සහ N යන ලෝහ තුන, ඒවායේ ඔක්සිහාරක හැකියාව වැඩිවන පිළිවෙළට සකසන්න.
 - (ii) ${f L}^{2+}(aq)/{f L}(s)$ ඉලෙක්ටෝඩය හා අනෙක් ඉලෙක්ටෝඩ දෙකෙන් එක් එක් ඉලෙක්ටෝඩය භාවිත කර සාදන ලද විදයුත් රසායනික කෝෂ දෙකෙහි විදයුත් ගාමක බලයන් $+0.30~{f V}$ සහ $+1.10~{f V}$ වේ. මෙම තොරතුරු හා ඉහත (i) සඳහා ඔබගේ පිළිතුර භාවිතයෙන් $E_{{f M}^{2+}(aq)/{f M}(s)}^{\circ}$ සහ $E_{{f N}^{2+}(aq)/{f N}(s)}^{\circ}$ ගණනය කරන්න. $\left(E_{{f L}^{2+}(aq)/{f L}(s)}^{\circ}\right)=-0.80~{f V}$
 - (iii) ඔබට පහත සඳහන් සැකසුම සපයා ඇති අතර එහි ${f L}$ සහ ${f N}$ ලෝහ කූරු දෙක අතර විභවමානයක් (${f P}$) සම්බන්ධ කර ඇත.

- I. විභවමානයේ පාඨාංකය ගණනය කරන්න.
- II. විභවමානය ඉවත් කර L හා N සන්නායකයක් මගින් සම්බන්ධ කළ විට (A), (B), (C) සහ (D) යන එක් එක් ඉලෙක්ටුෝඩයේ සිදුවන ඉලෙක්ටුෝඩ පුතිකිුිිිිිිිිිිිිිි වෙන් වෙන්ව ලියා දක්වන්න.

(ලකුණු 75 යි)

- (b) පහත දැක්වෙන පුශ්න මැංගනීස් (Mn) මූලදුවාසය මත පදනම් වේ.
 - (i) Mn වල සම්පූර්ණ ඉලෙක්ටුෝන විනාහසය ලියන්න.
 - (ii) Mn වල සුලභ ඔක්සිකරණ අවස්ථා **තුනක්** ලියන්න.
 - (iii) $MnSO_4 \cdot H_2O$ ජලයේ දුවණය කළ විට, f P දාවණය ලබාදෙයි.
 - I. P දාවණයේ වර්ණය සඳහන් කරන්න.
 - II. මෙම වර්ණය ලබාදීමට ඉවහල් වන පුභේදයේ රසායනික සූතුය සහ IUPAC නාමකරණය දෙන්න.
 - (iv) පහත අවස්ථාවන්හි දී ඔබ නිරීක්ෂණය කරන්නේ කුමක් ද?
 - I. **P** දුාවණයට තනුක NaOH දැමු විට
 - II . ඉහත $\mathrm{(iv)}(\mathrm{I})$ හි ලැබුණු මිශුණය වාතයට තිරාවරණය කළ වීට
 - ${
 m III.}$ ඉහත ${
 m (iv)(I)}$ හි මිශුණයට සාන්දු ${
 m HCl}$ දැමූ විට
 - (v) Mn වල ඔක්සයිඩ **පහක** රසායනික සූතු දී, ඉන් එකිනෙකෙහි Mn වල ඔක්සිකරණ අවස්ථාව ලියන්න. එක් එක් ඔක්සයිඩයේ ස්වභාවය භාස්මික, දුබල භාස්මික, උභයගුණි, දුබල ආම්ලික, ආම්ලික ලෙස සඳහන් කරන්න.
 - (vi) Mn වල වඩාත්ම සුලභ ඔක්සොඇනායනයේ රසායනික සූතුය දෙන්න.
 - (vii) ඔබ ඉහත (vi) හි දැක්වූ ඔක්සොඇනායනය ආම්ලික සහ භාස්මික මාධාවල ඔක්සිකාරකයක් ලෙස හැසිරෙන ආකාරය පෙන්වීමට තුලිත අර්ධ අයනික සමීකරණ දෙන්න.
 - $({
 m viii})$ ජල තත්ත්ව පරාමිතීන් නිර්ණයේදී ${
 m MnSO_4}$ හි එක් භාවිතයක් සඳහන් කරන්න.

(ලකුණු 75 යි)

C කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 150** බැගින් ලැබේ.)

 $8. \ \ (a) \ P$ සංයෝගය, පහත දැක්වෙන පුතිකිුයා අනුකුමය භාවිත කරමින් V සංයෝගය බවට පරිවර්තනය කරන ලදී.

$$CH_3-CH-NH_2$$
 පියවර $1 \rightarrow Q$ පියවර $2 \rightarrow R$ පියවර $3 \rightarrow S$ පියවර $4 \rightarrow T$ CH_3 (P) $CH_3-CH-COC1$ CH_3-CH_3 (V)

(i) $\mathbf{Q}, \mathbf{R}, \mathbf{S}, \mathbf{T}$ සහ \mathbf{U} සංයෝගවල වයූහ අඳිමින් සහ පියවර 1-6 සඳහා පුතිකාරක, පහත දී ඇති ලැයිස්තුවෙන් පමණක් තෝරාගෙන ලිවීමෙන්, ඉහත දී ඇති පුතිකිුිිිිිිිිිි අනුකුමය සම්පූර්ණ කරන්න.

පුතිකාරක ලැයිස්තුව
HCHO, Mg/වියළි ඊකර,
$$H^{\dagger}/K_2Cr_2O_7$$
, PCl_5 , PBr_3 , $NaNO_2/$ කනුක HCl , H^{\dagger}/H_2O

(**සැ.ගූ :** ගීුනාඩ් පුතිකාරකයක් සමග සංයෝගයක පුතිකිුයාව සහ ඉන් ලැබෙන මැග්නීසියම් ඇල්කොක්සයිඩයෙහි ජලවිච්ඡේදනය, ඉහත පුතිකිුයා අනුකුමයේදී **එක් පියවරක්** ලෙස සැලකිය යුතු ය.)

(ii) ${f P}$ සහ ${f V}$ සංයෝග එකිනෙක සමග පුතිකිුයා කළ විට සැදෙන ඵලයෙහි වාූහය අදින්න.

(ලකුණු 65 යි)

- (b) (i) **තූනකට** (03) නොවැඩි පියවර සංඛාහවක් භාවිත කරමින් බෙන්සීන්වලින් o-නයිටුෝබෙන්සොයික් අම්ලයෙහි සහ p-නයිටුෝබෙන්සොයික් අම්ලයෙහි මිශුණයක් සාදාගැනීම සඳහා කුමයක් යෝජනා කරන්න.
 - (ii) පහත දැක්වෙන පුතිකියාවේ, ${f X}$ ඵලයේ වාූහය සහ යන්තුණය දෙන්න.

$$\bigcirc$$
 $\xrightarrow{\text{CH}_3\text{COCl}}$ X

(ලකුණු 65 යි)

(c) බෙන්සීන්වල වාූහය නිරූපණය කරනු ලබන්නේ පහත දක්වා ඇති උපකල්පිත සය සාමාජික වලයාකාර වාූහ (සයික්ලොහෙක්සාටුයිඊන්, cyclohexatriene) දෙකක සම්පුයුක්ත මුහුමක් ලෙස ය.

$$\bigcirc \longleftrightarrow \bigcirc$$

පහත දී ඇති සම්මත හයිඩුජනීකරණ එන්තැල්පි දත්ත භාවිත කරමින්, බෙන්සීන්, උපකල්පිත 'සයික්ලොහෙක්සාටුයිඊන්'වලට වඩා ස්ථායි බව පෙන්වන්න.

$$\Delta H^{
m o} = -120~{
m kJ~mol}^{-1}$$
 සයික්ලොහෙක්සීන් සයික්ලොහෙක්සේන්

බෙන්සීන් +
$$3~\mathrm{H_2}$$
 — \Rightarrow සයික්ලොහෙක්සේන් $\Delta H^\mathrm{o} = -208~\mathrm{kJ~mol}^{-1}$ (ලකුණු 20 යි)

9. (a) පහත දී ඇති පුශ්නය කැටායනවල ගුණාත්මක විශ්ලේෂණය මත පදනම් වී ඇත.

 ${f Q}$ ජලීය දාවණයේ ${f A},{f B},{f C}$ සහ ${f D}$ යන ලෝහවල කැටායන **හතරක්** අඩංගු වේ. පහත දී ඇති සටහනේ සඳහන් පුකිකිුයාවලට ${f Q}$ භාජනය කරනු ලැබේ.

කොටුව තුළ දී ඇති සංකේත මගින් අවක්ෂේපය සහිත දුාවණ, ඝන දුවා හා දුාවණ නිරූපණය වේ.

(**සැ.යු** : RT – කාමර උෂ්ණත්වය)

(i) $A_1,A_2,A_3,B_1,B_2,C_1,C_2$, හා D_1 යනු A,B,C,D කැටායන හතරේ සංයෝග/විශේෂ වේ. $A_1,A_2,A_3,B_1,B_2,C_1,C_2$, හා D_1 හඳුනාගන්න.

(සැ.ගු : රසායනික සූතු **පමණක්** ලියන්න. රසායනික සමීකරණ හා හේතු අවශා නැත.)

(ii) සුදු ජෙලටිනීය අවක්ශේපය (*) ලබා ගැනීමේදී NH_4OH/NH_4Cl පුතිකාරකයක් ලෙස භාවිත කිරීම සඳහා හේතුවක් දක්වන්න. (ලකුණු 75 යි)

(b) ${f X}$ නම් මිශුණයක ඇලුමිනියම් සල්ෆයිඩ් $({
m Al}_2{
m S}_3)$ සහ ෆෙරික් සල්ෆයිඩ් $({
m Fe}_2{
m S}_3)$ පමණක් අඩංගු වේ. ${f X}$ හි ඇති ${
m Al}_2{
m S}_3$ හා ${
m Fe}_2{
m S}_3$ ස්කන්ධ පුතිශතයන් ගණනය කිරීමට පහත දැක්වෙන කියාපිළිවෙළ යොදාගන්නා ලදී. ${f X}$ මිශුණයෙන් ${f m}$ ස්කන්ධයක් හයිඩුජන් වායු ධාරාවක් යටතේදී ඉහළ උෂ්ණත්වයකට රත් කළ විට ${
m Al}_2{
m S}_3$

තොවෙනස්ව පවතින නමුත්, $\mathrm{Fe_2S_3}$ යකඩ (Fe) ලෝහය බවට පරිවර්තනය විය. මෙහි අවසානයේ ලැබුණ ස්කන්ධය $0.824~\mathrm{g}$ විය.

 ${f X}$ මිශුණයෙන් වෙනත් ${f m}$ ස්කන්ධයක් ඉහළ උෂ්ණත්වයකට වාතයේ රත් කළ විට ${
m Al}_2{
m S}_3$ සහ ${
m Fe}_2{
m S}_3$ යන දෙකම ${
m SO}_2$ වායුව දෙමින් වියෝජනය විය. එම ${
m SO}_2$ වායුව, ${
m H}_2{
m O}_2$ දාවණයකට බුබුලනය කර, එකම ඵලය වන ${
m H}_2{
m SO}_4$ අම්ලය බවට ඔක්සිකරණය කරන ලදී. මෙම සම්පූර්ණ දාවණයම සාන්දුණය $1.00~{
m mol~dm}^{-3}$ සම්මත ${
m NaOH}$ දාවණයක් සමග ෆිනෝල්ප්තලීන් දර්ශකය යොදාගනිමින් අනුමාපනය කළ විට බියුරෙට්ටු පාඨාංකය $36.00~{
m cm}^3$ විය.

- (i) හයිඩුජන් වායුව සමග ${
 m Fe}_{\gamma}{
 m S}_{\gamma}$ හි පුතිකිුයාව සඳහා තුලිත රසායනික සමීකරණය ලියන්න.
- (ii) H_2SO_4 ලබාදීමට SO_2 හා H_2O_2 අතර පුතිකිුයාව සඳහා තුලිත රසායනික සමීකරණය ලියන්න.
- (iii) \mathbf{X} මිශුණයේ ඇති $\mathrm{Al}_2\mathrm{S}_3$ සහ $\mathrm{Fe}_2\mathrm{S}_3$ ස්කන්ධ පුතිශතයන් ගණනය කරන්න.
- (iv) ඉහත අනුමාපනය සඳහා දර්ශකය ලෙස ෆිනෝල්ප්තලීන් වෙනුවට මෙතිල් ඔරෙන්ජ් භාවිත කළේ නම් බියුරෙට්ටු පාඨාංකයේ වෙනසක් සිදු වේද? ඔබේ පිළිතුර පැහැදිලි කරන්න. (සාපේක්ෂ පරමාණුක ස්කන්ධය : Al=27, S=32, Fe=56) (ලකුණු 75 යි)
- 10.(a) පහත දැක්වෙන ගැලීම් සටහන මගින්, වැදගත් මූලදුවාx/සංයෝග තුනක් වන $\mathbf{P_1},\,\mathbf{P_2}$ සහ $\mathbf{P_3}$ හි කාර්මික නිස්සාරණයx/නිෂ්පාදනය පෙන්නුම් කරයි.

අවුරුදු දහස් ගණනකට පෙර අපේ මුතුන් මිත්තන් $\mathbf{P_1}$ නිෂ්පාදනය කළ බවට සාක්ෂි ඇත. $\mathbf{M_2}$ හි උත්පේුරකයක් ලෙස $\mathbf{P_1}$ භාවිත වේ. $\mathbf{P_3}$ පුපුරන දුවා නිෂ්පාදනයේදී භාවිත වේ.

- (i) ${f M_2}$ සහ ${f M_3}$ යන නිෂ්පාදන කියාවලි නම් කරන්න. (උදා: ${f Na_2CO_3}$ නිෂ්පාදනය සොල්වේ කියාවලිය ලෙස නම් කෙරේ.)
- (ii) M_1 කිුියාවලිය හඳුනාගෙන, එහි අපවායුවේ පුධාන සංඝටකය නම් කරන්න.
- (iii) M_1 හි භාවිත වන R_1, R_2 සහ R_3 යන අමුදුවාවල සාමානා නම් දෙන්න. (සැ.යු : R_1 ශක්ති පුභවයක් ලෙස මෙන්ම ඔක්සිහාරකයක් ලෙස ද M_1 හි කිුයාකරයි; R_2 යනු P_1 ලබාගැනීම සඳහා භාවිත කළ හැකි ස්වභාවිකව පවතින පුභවයකි.)

- (iv) $\mathbf{M_1}$ කිුයාවලියේදී ඔක්සිහාරකයක් ලෙස $\mathbf{R_1}$ හි කාර්යය සඳහා තුලිත රසායනික සමීකරණයක් ලියන්න.
- (v) $\mathbf{R_4}$ සහ $\mathbf{R_5}$ හඳුනාගන්න.
- (vi) M_1, M_2 සහ M_3 කියාවලියන්හි සිදුවන පුතිකියා සඳහා තුලිත රසායනික සමීකරණ දෙන්න. නිසි තත්ත්වයන් (උෂ්ණත්වය, පීඩනය, උත්පුේරක වැනි) අදාළ පරිදි සඳහන් කළ යුතුයි.
 - (සැ.යු : \mathbf{M}_1 කිුයාවලිය සඳහා $\mathbf{R}_2, \mathbf{P}_1$ බවට පරිවර්තනය කරන පුතිකිුයා පමණක් දෙන්න.)
- (vii) P_1 , P_2 සහ P_3 වල පුයෝජන **දෙක** බැගින් දෙන්න (ගැලීම් සටහනේ දක්වා ඇති හා පුශ්නයේ සඳහන් ඒවාට **අමතරව**).
- (viii) $\mathbf{M_2}$ කියාවලිය ඉතා ඉහළ උෂ්ණත්වවලදී පහසුවෙන් සිදු වේ දැයි සඳහන් කරන්න. ඔබේ පිළිතුර $\Delta H, \Delta S$ හා ΔG අනුසාරයෙන් පහදා දෙන්න.

(ලකුණු 50 යි)

- (b) පහත පුශ්න පුකාශ රසායනික ධූමිකාව සහ ජල දූෂණය මත පදනම් චේ.
 - (i) පුකාශ රසායනික ධූමිකාව ඇතිවීමට අවශාවන පුධාන වායුමය රසායනික දූෂක වර්ග සහ තත්ත්වයන් සඳහන් කරන්න.
 - (ii) උදෑසන සහ සවස් කාලයේ පුකාශ රසායනික ධූමිකාවේ පුබලතාව අඩු ඇයිදැයි සඳහන් කරන්න.
 - (iii) පුකාශ රසායනික ධූමිකාව හේතුවෙන් පහළ වායුගෝලයේ ඕසෝන් ඇතිවන ආකාරය තුලින රසායනික සමීකරණ ආධාරයෙන් පැහැදිලි කරන්න.
 - (iv) පුකාශ රසායනික ධූමිකාවේ පුධාන ඵල **හතරක්** (ඕසෝන්වලට අමතරව) සඳහන් කරන්න.
 - (v) පුකාශ රසායනික ධූමිකාවක් ඇති වන අවස්ථාවකදී සෑදෙන මුක්ත ඛණ්ඩක **තුනක්** සඳහන් කරන්න.
 - (vi) වර්තමානයේ බොහෝ රටවල් විදුලි වාහන භාවිතය දිරිගන්වයි. විදුලි වාහන භාවිතය මගින් පුකාශ රසායනික ධුමිකාව සෑදීම මත ඇති බලපෑම සඳහන් කරන්න.
 - (vii) වීදුලි වාහන භාවිතය හේතුවෙන්, පුකාශ රසායනික ධූමිකාවට අමතරව, සමනය විය හැකි පාරිසරික පුශ්නයක් සඳහන් කරන්න.
 - (viii) පහත දැක්වෙන රසායනික දුවා රැගෙන යන නෞකාවක් මුහුදේ ගිලුණි. $Na_2HPO_4,\ HNO_3,\ Pb(CH_3COO)_2$ ඉහත රසායන දුවා බැහැරවීමෙන් නැව ආසන්නයේ ඇති ජලයේ ජල තත්ත්ව පරාමිතීන් මත එක් එක් රසායනික දුවාය මගින් ඇති විය හැකි බලපෑමක් බැගින් සඳහන් කරන්න. $(easignessed 50\ asignessed 50\ asignessed 50\ asignessed 60\
- (c) පහත සඳහන් පුශ්න ස්වාභාවික රබර් හා බහු අවයවක ආශිුත නිෂ්පාදන දුවා සඳහා යොදන ආකලන දුවා මත පදනම් වේ.
 - (i) ස්වාභාවික රබර්වල පුනරාවර්තී ඒකකය අඳින්න.
 - (ii) ස්වාභාවික රබර් කිරි කැටිගැසීම වැළැක්වීම සඳහා භාවිත කළ හැකි සංයෝගයක් දෙන්න.
 - (iii) ස්වාභාවික රබර් කිරි කැටි ගැසීම සඳහා භාවිත කළ හැකි සංයෝගයක් සඳහන් කර, එය කිුිිියාකරන ආකාරය පැහැදිලි කරන්න.
 - (iv) ස්වෘභාවික රබර්වල 'වල්කනයිස් කිරීම' සිදු කරන්නේ කෙසේදැයි කෙටියෙන් සඳහන් කරන්න.
 - (v) වල්කනයිස් කිරීමේ කාර්යක්ෂමතාව වැඩි කිරීම සඳහා යොදාගන්නා දුවා වර්ග **දෙකක්** සඳහන් කරනින.
 - (vi) බහු අවයවක භාණ්ඩ නිෂ්පාදනයේදී ආකලන දුවා එක් කිරීමෙන් වැඩි කරගත හැකි ගුණාංග **තුනක්** දෙන්න. (ලකුණු 50 යි)

ආවර්තිතා වගුව

		1																
	1	1																2
1	H		7															Не
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	O	$ \mathbf{F} $	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg					_						Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pŧ	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr