

Wasserquelle							
Aufgabennummer: A_129							
Technologieeinsatz:		möglich □	erforderlich ⊠				
Unter dem <i>Volumenstrom</i> einer Wasserquelle versteht man dasjenige Wasservolumen, das pro Zeiteinheit durch die Öffnung der Quelle fließt. Man führt 3 unabhängige Messungen an einer Quelle durch, bei der im Laufe der Zeit der Volumenstrom exponentiell abnimmt. Der Volumenstrom wird in der Einheit Liter pro Stunde (L/h) angegeben.							
a)	Zu Beginn der 1. Messung fließen 20000 L/h Wasser aus der Quelle. Nach 150 Stunden misst man 17800 L/h.						
	 Stellen Sie diejenige Gleichung der Funktion f auf, die den Volumenstrom in Abhän- gigkeit von der Zeit t in Stunden ab dem Beginn der Messung beschreibt. 						
b)	Der zu einem bestimmten Zeitpunkt der 2. Messung vorliegende Volumenstrom kann mit der Funktion g beschrieben werden:						
	$g(t) = 17000 \cdot e^{-0.01 \cdot t}$						
	$t \dots$ Zeit in Stunden (h) $g(t) \dots$ Volumenstrom in L/h zur Zeit t						
	 Berechnen Sie die mittlere Änderungsrate des Volumenstroms in den ersten 12 Stunden dieser Messung. Erklären Sie, was die 1. Ableitung zum Zeitpunkt t = 5 h in diesem Sachzusammenhang angibt. 						

Wasserquelle 2

C)	Der Volumenstrom	verlauft bei der	3. Messuno	ı nach c	der Funktion	u mit
----	------------------	------------------	------------	----------	--------------	-------

$$u(t) = 15\,000 \cdot 0,998^t$$

t ... Zeit in Stunden (h)

u(t) ... Volumenstrom in L/h zur Zeit t

Die Fläche unter der Kurve ist ein Maß dafür, wie viel Liter Wasser insgesamt innerhalb der angegebenen Zeitgrenzen aus der Quelle geflossen sind.

- Kreuzen Sie an, mit welcher Rechnung das ausgetretene Wasservolumen der ersten 9 Tage berechnet werden kann. [1 aus 5]

$\int_0^{216} (15\ 000 \cdot 0,998 \cdot t) \mathrm{d}t$	
$15\ 000 + \int_0^{216} 0,998^t \mathrm{d}t$	
$\int_0^9 (15\ 000 + 0.998 \cdot t) dt$	
$\int_0^9 (15\ 000 \cdot 0,998^t) \mathrm{d}t$	
$15\ 000 \cdot \int_0^{216} 0,998^t \mathrm{d}t$	

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Wasserquelle 3

Möglicher Lösungsweg

a)
$$f(t) = 20000 \cdot e^{\lambda \cdot t}$$

$$17\,800 = 20\,000 \cdot e^{\lambda \cdot 150}$$

$$e^{150 \cdot \lambda} = 0.89 \implies \lambda \approx -7.769 \cdot 10^{-4}$$

$$f(t) = 20\,000 \cdot e^{-0.0007769 \cdot t}$$

Die Aufgabe kann auch mit dem Abnahmefaktor gelöst werden: $f(t) = 20\,000 \cdot 0,9992^t$

b)
$$g(0) = 17000$$

 $g(12) \approx 15077,65$

$$\frac{g(12)-g(0)}{12}=-160,196...$$

Die mittlere Änderungsrate in den ersten 12 Stunden entspricht einer stündlichen Abnahme des Volumenstroms von ca. 160,20 L/h.

g'(5) entspricht der momentanen Änderungsrate des Volumenstroms zu diesem Zeitpunkt, das heißt, 5 Stunden nach dem Beobachtungsbeginn nimmt der Volumenstrom pro Stunde ungefähr um den Wert g'(5) ab.

C)

[]	
[]	
[]	
[]	
$15\ 000 \cdot \int_0^{216} 0,998^t \mathrm{d}t$	X

Wasserquelle

Klassifikation

☐ Teil B Wesentlicher Bereich der Inhaltsdimension: a) 2 Algebra und Geometrie b) 4 Analysis c) 4 Analysis Nebeninhaltsdimension: a) 3 Funktionale Zusammenhänge b) c) — Wesentlicher Bereich der Handlungsdimension: a) A Modellieren und Transferieren b) B Operieren und Technologieeinsatz c) C Interpretieren und Dokumentieren Nebenhandlungsdimension: a) B Operieren und Technologieeinsatz b) D Argumentieren und Kommunizieren c) — Schwierigkeitsgrad: Punkteanzahl: a) 2 a) mittel b) 2 b) mittel c) mittel c) 1 Thema: Physik Quellen: -