Лабораторна робота 1

ІНТЕРПОЛЯЦІЯ ДАНИХ. ІНТЕРПОЛЯЦІЙНИЙ ПОЛІНОМ ЛАГРАНЖА

Завдання:

апроксимувати функцію f(x) поліномом Лагранжа, використовуючи глобальну та кускову інтерполяції. Дослідити величину похибки наближення в залежності від числа вузлів.

Вимоги до виконання роботи

- **1.** Запрограмуйте мовою Python побудову інтерполяційного поліному Лагранжа L(x) довільного степеню.
- **2.** Для побудови поліноміального наближення оберіть функцію f(x) згідно з вашим варіантом. Оберіть самостійно межі інтервалу інтерполяції [a,b], на якому функція f(x) є неперервною та обмеженою.
- 3. Зафіксуйте на [a,b] деяку кількість рівновіддалених вузлів $x_0, x_1, x_2, ..., x_n$: $x_0 = a, x_n = b, x_i = x_0 + ih \left(i = \overline{1, n-1}\right)$, де $h = \frac{b-a}{n}$. Почніть з невеликої кількості вузлів (n < 5) та передбачте у програмі можливість призначати інші значення n та x_i . Обчисліть у вузлах x_i значення функції $y_i = f\left(x_i\right)$.
- **4**. Виведіть на екран графіки функції f(x) та поліному L(x), побудованого на вузлах $x_0, x_1, x_2, ..., x_n$ (для побудови графіків ви можете використати бібліотеку MatPlotLib). Окремо побудуйте графік похибки інтерполяції f(x) L(x) та зафіксуйте найбільшу абсолютну величину Δ_n відхилення інтерполяційного поліному від функції (дефект наближення) .
- **5.** Побудуйте кусково-лінійну інтерполяцію на вузлах $x_0, x_1, x_2, ..., x_n$ та побудуйте графіки функції f(x) та інтерполяційної ламаної g(x). Окремо побудуйте графік похибки інтерполяції f(x) g(x) та зафіксуйте дефект наближення Δ_1 найбільшу абсолютну величину відхилення апроксимуючої ламаної від функції.
- **6.** Збільшуючи поступово число вузлів n до 10, 15, 20, дослідіть залежність дефектів наближення Δ_1 та Δ_n від кількості вузлів. Поясніть закономірності, що спостерігаються. Чи прямує Δ до нуля, якщо кількість точок n зростає? Для зручності аналізу побудуйте таблицю значень Δ_1 та Δ_n в залежності від кількості вузлів n

n	Δ_n	Δ_1
4		
8		

7. Екстраполюйте значення функції f(x) на відрізки [b,2b-a] та [2a-b,a]. Виведіть на екран графіки на відрізку [2a-b,2b-a] функції f(x) та поліному L(x), побудованого у п. 4. Побудуйте графіки похибок екстраполяції f(x)-L(x) на відрізках [b,2b-a] та [2a-b,a], зафіксуйте її найбільшу абсолютну величину та порівняйте з Δ_n .

КОНТРОЛЬНІ ЗАПИТАННЯ

- **1.** Що являє собою задача поліноміальної інтерполяції? Опишіть загальну постановку такої задачі. Скільки розв'язків вона має?
- 2. Що таке похибка інтерполяції?
- 3. Чим відрізняється глобальна інтерполяція від кускової?
- 4. Що являє собою екстраполяція?

ВАРІАНТИ ІНДИВІДУАЛЬНИХ ЗАВДАНЬ

Bapiaht 1. $f(x) = \exp(2x^3 + 3x^2 - 5)$;

Варіант 2. $f(x) = \sin(\cos x)$;

Варіант 3. $f(x) = x^2 \exp(-x^2)$;

Варіант 4. $f(x) = \exp(\sin x)$;

Bapiaht 5. $f(x) = x \sin x - \cos x$;

Bapiaht 6. $f(x) = \ln(x^4 - 2x^2 + 3)$;

Варіант 7. $f(x) = \exp(x)\sin(x^3)$;

Варіант 8. $f(x) = \frac{\sin x}{x}$.