CS & IT ENGINEERING Algorithms

Introduction to Algorithms and Analysis

Recap of Previous Lecture

Topics to be Covered

Topics

Small Notations (0; w)

Properties of Asymptotic Notations

Problem Solving

Topic: Asymptotic Notations

$$f(n) = \frac{\pi}{2\pi} = o() = \sqrt{1 + \sqrt{2} + \sqrt{3} + \cdots + \sqrt{n}}$$

$$\int_{1}^{\infty} \frac{1}{2} di = \left(\frac{3}{2}\right)^{\infty}$$

$$\int (\pi) = \pi^{3/2} * c$$

$$= O(u_{3/5}) = O(u_{1/2}) = O(u_{1/2})$$

Topic: Asymptotic Notations

- The bounds provided by Big-Notations (0, -2), may or may not be tight; f(n) - n = O(n): tight Bound

f(n) = n = O(n): tight Bound $O(n^2): Corre Bound$ O(n): Jight O(n): Lorse

-> The bounds provided by

Little Small Notations is always Not Asymptotically tight; (loose Bound)

5) Small omege (W): Roben Lower Bound

f(n) is $\omega(g(n))$, if for all c>0

f(n) > c.g(n), Whenever

(200) (200) (Logn)

Topic: Asymptotic Notations Tweeters 9 ASN:

1. Analogy b/w Real No's & A.S.N let a,b: real Nois & f,g: the functions

Topic: Analysis of Algorithms

$$\log x^y = y \log x$$

$$logn = log_{10}^n$$

$$\log xy = \log x + \log y$$

$$\log^k n = (\log n)^k$$

$$log log n = log(long)$$

$$\log \frac{x}{y} = \log x - \log y$$

$$a^{\log_b^x} = x^{\log_b^a}$$

$$\log_b^x = \frac{\log_a^x}{\log_a^b}$$

$$a = b^{\log_b a}$$

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \cdot \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b^{1/a} = -\log_b^a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

Topic: Geometric Sum Formula

1. The geometric sum formula for finite terms is given as:

if
$$r = 1$$
, $S_n = n*a$

if
$$|r| < 1$$
, $S_n = \frac{a(1-r^n)}{1-r}$

if
$$|r| > 1$$
, $S_n = \frac{a(r^{n-1})}{r-1}$

Where

- a is the first term
- r is the common ratio
- n is the number of terms

Topic: Analysis of Algorithms

Airthmetic series

$$\sum_{k=1}^{n} k = 1 + 2 + ... + n = \frac{n(n+1)}{2}$$

Geometric series

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} (x \neq 1)$$

Harmonic series

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \log n$$

$$f(n) = \sum_{i=1}^{n} i^3 = x$$
, choices for x

$$\theta(n^4)$$

II.
$$\theta(n^5)$$

$$MI.$$
 $O(n^5)$

IV.
$$\Omega(n^3)$$

$$\mathcal{L}_{s} = \frac{1}{2} \left(\frac{2}{2} \right)$$

$$\mathcal{L}_{s} = \frac{1$$

Topic: General Properties of Big Oh Notation

Let d(n), e(n), f(n), and g(n) be functions mapping nonnegative integers to nonnegative reals. Then

- 1. If d(n) is O(f(n)), then ad(n) is O(f(n)), for any constant a > 0.
- /2. If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) + e(n) is O(f(n) + g(n)).
- /3. If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) is O(f(n)g(n)).
- 4. If d(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is O(g(n)).
- 5. If f(n) is a polynomial of degree d (that is, $f(n) = (a_0 + a_1 n + + a_d n^d)$ then f(n) is $O(n^d)$.
- /6. n^x is $O(a^n)$ for any fixed x > 0 and a > 1.
- 7. $\log n^x$ is $O(\log n)$ for any fixed x > 0.
 - 8. $\log^x n$ is $O(n^y)$ for any fixed constants x > 0 and y > 0.

$$\left(\frac{\nabla \left(\omega_{w} \right)}{\omega + K} \right) = 0 \left(\frac{\omega_{w}}{\omega} \right)$$

$$\left(\frac{\omega}{\omega} + K \right) = 0 \left(\frac{\omega_{w}}{\omega} \right)$$

$$\left(\frac{\omega}{\omega} + K \right) = 0 \left(\frac{\omega_{w}}{\omega} \right)$$

$$\Rightarrow (x \cdot pdu) = (x$$

Const's < Log < Poly < Empo

Discrete Roberties 9 ASN かこん(の)~ Reflerive Symmetric Transpose if f(n) is 0 (g(n))
Symmetry then g(n) is re(f(n)) N f(n) is o (g(n)) thun 9(n) in w (f(n)) y a < b =) b > a

 $a \leq b$ $f(n) = n^{2}$ $O(n^{2})$ $a \leq b$

u ≥ 5, b ≤ c => a ≤ c

 $u_j in O(u_j)$ $u_j in O(u_j)$

Satisfy Tricstormy Property

J. a < b 11.a>b III. a = b

200es ASN ASFns obey Tricotomy Property always? (MN) $f(n)=m; g(n)=m (f \leq c.9)$ 2) A(n)= logn; g(n)= /n f>c.8

Topic: Asymptotic Notations & Apriori Analysis

n=1024

State True / False

2.
$$2^{n+1} = O(2^n) : 2 \cdot 2^n = O(2^n) : 1$$

3.
$$2^{2n} = O(2^n) \implies (2^2)^n = 4^n : F$$

4.
$$O < x < y$$
 then $n^x = O(n^y)$: T 2 < 3

5.
$$(n+k)^m \neq \theta(n^m)(k, m) > 0$$
:

6.
$$\sqrt{\log n} = O(\log \log n)$$
:

7.
$$\log(n)$$
 is $\Omega(1/n)$:

8.
$$2^{n^2}$$
 is $O(n!)$:

9.
$$n^2$$
 is $O(2^{2\log n})$:

10.
$$a^n \neq O(n^x)$$
, $a > 1$, $x > 0$

11.
$$2^{\log_2 n^2}$$
 is $O(n^2)$:

$$2\log n^2 = (n)^{\log 2} = n^2$$

if f(n) is O(g(n)) then always $O((f(n))^2)$? Logn /m (9mc) (sec) Log₂8 /8 3 > 0.125

*

THANK - YOU