Name
Department
Whilst answering the test you may use the Formula Sheet and a university-approved calculator but please do NOT consult the Module or any book

MODULE 3 Differentiation I

TEST 3.1

- 1. (i) Write down the definition of the derivative of the function f(x) at the point x.
 - (ii) Find the derivative of f(x) = 3x + 4 from first principles.

- 2. Differentiate the following functions with respect to x:
 - (i) $2x^3 + 3x 4$
 - (ii) $\frac{3}{m^2}$
 - (iii) $(1-x^2)^6$
 - (iv) $\sin(x^3+1)$

$$(v) \qquad \frac{e^x}{x+1}$$

(vi)
$$x^2 \ln x$$
, $x > 1$

(vii)
$$\ln\left(x+\sqrt{x^2-1}\right)$$
, $x>1$

(viii)
$$\tan^3(1+x^2)$$

An approximate solution of the equation $x^3 = 7$ is x = 2. Use the Newton-Raphson procedure to 3. obtain the next two approximations.

- 4. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ when (i) $f(x,y)=x^4y^2+x\sin y+x^2+y^2+2$

(ii) $f(x,y) = \sin^2(x+y)$