

CY IUT – GEII Neuville

Dossier organisationnel

Document rédigé par : MUHAMMAD Asad Version: 2.0 [25 décembre 2024]

Historique des modifications et révisions de ce document :

N° de version	Date	Auteur	Description et circonstances de la modification
V 0		MUHAMMAD Asad	Brouillon : première version, modèle fourni.
V 1.0	26/10/2024	MUHAMMAD Asad	Première rédaction complète du document.
V 1.1	26/10/2024	MUHAMMAD Asad	Modification WBS
V 2.0	07/11/2024	MUHAMMAD Asad	Amélioration basée sur les retours des professeurs et Avancement.

Avant-propos¹

Le cahier des charges (CDC) du projet est rédigé par le chef de projet. Ce document est élaboré durant la phase d'avant-projet afin de planifier la réalisation du projet et d'organiser l'équipe de manière efficace.

Bien qu'il puisse aborder des éléments variés allant des moyens de communication avec le client aux protocoles de premiers secours en cas d'intervention chez ce dernier, il doit impérativement inclure les éléments suivants :

- La liste des livrables du projet, regroupés par lots de travaux, présentée sous la forme d'une structure de découpage (SDP), également appelée Work Breakdown Structure (WBS).
- Les jalons du projet, servant de repères essentiels pour suivre l'avancement.
- Le planning de réalisation, souvent illustré sous la forme d'un diagramme de Gantt.

Le présent dossier organisationnel a pour objectif de définir et de clarifier l'organisation mise en place pour le projet "Table de Mixage". Ce projet doit respecter le cahier des charges rédigé. Le document précise les différentes étapes de développement, la répartition des tâches au sein de l'équipe, ainsi que les modalités de suivi et de contrôle pour garantir la bonne marche du projet.

L'essentiel de la gestion de projet ; R. Aïm ; Gualino ; 2022.

¹ Référence : Gestion de projet, 50 outils pour agir ; F. Bouchaouir, Y. Dentinger, O. Englender ; Vuibert ; 2014.

Table des matières

Avant-pro	ppos
Table des	matières
Table des	Tableaux3
1. Plar	ification
1.1.	Work Breakdown Structure (WBS)
1.2.	Jalons
1.3.	Planning – Diagramme de Gantt
2. Mod	dalités organisationnelles
2.1.	Equipe :
1.1.	Rôles des intervenants
1.2.	Modalités de maîtrise des livrables techniques
2.2.	Modalités de contrôle du travail
3. Clôt	ure du projet14
	des Tableaux
	Work Breakdown Structure (WBS)
	Jalons
	Membres d'équipe
	Répartition des tâches et des responsabilités
Tableau 3	Documents of Artefacts i madx
- 11	l e
	des Figures
Figure 1D	iagramme Gantt

Version: 2.0

1. Planification

1.1. Work Breakdown Structure (WBS)

La WBS pour le projet Table de Mixage est divisée en x grandes parties

Lot de travail	Tâches	Livrables associés	Responsable du livrables	Personnes ressources	Valideur(s)
	Rédiger le cahier des charges globales	CdC ² globale	Chef de projet	Équipe projet	Équipe pédagogique
	Rédiger le cahier des charges sous systèmes	CdC sous-système	Chaque groupe	Équipe projet	Équipe pédagogique
le projet	Extraire de la liste des livrables	CdC globale	Chef de projet	Équipe projet	Équipe pédagogique
Gestion de projet	Répartir le travail dans l'équipe projet	DO ³	Chef de projet	Équipe projet	Chef de projet
	Rédiger le dossier opérationnel	DO	Chef de projet	Équipe projet	Équipe pédagogique
	Dresser la liste du matériel	Nomenclature	Chef de projet et les groupes	Équipe projet	Équipe pédagogique
Conception	Dossier de conception sous- systèmes	DdC⁴ sous-système	Les groupes	Équipe projet	Équipe pédagogique
	Dossier de conception Globale	DdC globale	Chef de projet	Équipe projet	Équipe pédagogique
	Prototypes des sous-systèmes	Prototypes SS ⁵	Les groupes	Équipe projet	Chef de projet et Équipe pédagogique

² Cahier des charges

³ Document organisationnelle

⁴ Dossier de conception

⁵ Sous-systèmes

Fabrication	Document de fabrication électronique sous-systèmes et globale	D_fab_elec ⁶	Chef de projet et les groupes	Équipe projet	Chef de projet et Équipe pédagogique
	Rédiger les procédures et rapports de tests des sous-systèmes	P&R ⁷ de tests des SS	Les groupes	Équipe projet	Équipe pédagogique
	Rédiger la procédure et le rapport de maintenance corrective SS	P&R de maintenance corrective	Les groupes	Équipe projet	Équipe pédagogique
lidation	Rédiger la procédure et le rapport de maintenance corrective globale	P&R de maintenance corrective	Chef de Projet	Équipe projet	Équipe pédagogique
Tests et validation	Effectuer les tests des sous-systèmes	P&R de tests du système	Les groupes	Équipe projet	Chef de projet et Équipe pédagogique
	Rédiger la procédure et le rapport de maintenance préventive SS	P&R de maintenance préventive	Les groupes	Équipe projet	Équipe pédagogique
	Rédiger la procédure et le rapport de maintenance préventive globale	P&R de maintenance préventive	Chef de Projet	Équipe projet	Équipe pédagogique
Mise en service	Rédiger la procédure d'installation et de mise en service	Procédure d'installation et de mise en service	Chef de projet et les groupes	Équipe projet	Équipe pédagogique
Production finale	Créer un prototype opérationnel	Prototype opérationnel	Chef de projet et les groupes	Équipe projet	Chef de projet et Équipe pédagogique
Clôture de projet	Organiser et préparer la soutenance S5	Soutenance S5	Chef de projet	Équipe projet	Équipe pédagogique
Clôture d	Organiser et préparer la soutenance S6	Soutenance S6	Chef de projet	Équipe projet	Équipe pédagogique
Livraison finale	Rédiger le dossier d'œuvre exécuté	Dossier d'œuvre exécuté	Chef de projet et les groupes	Équipe projet	Équipe pédagogique

⁶ Document de fabrication électronique

⁷ Procédure et rapport

		Utiliser une Raspberry pi 4	Prog ⁸ Raspberry	Asad, Volodymyr	Équipe projet	Chef de projet
	riques	Réception données Midi		Asad, Volodymyr	Équipe projet	Chef de projet
	Entrées Numériques	CNN ⁹ données MIDI		Asad, Volodymyr	Équipe projet	Chef de projet
	Ent	Gérer le signal sonore synchronisé		Nathan, Volodymyr	Équipe projet	Chef de projet
âches		Synchroniser le flux de données	Prog Sync	Asad, Volodymyr	Équipe projet	Chef de projet
Réalisation du projet / Répartition des tâches	nes	Conditionnement des signaux analogiques	SS Conditionnement des Signaux Analogique	Asad, Volodymyr	Équipe projet	Chef de projet
projet / Ré	Entrées Analogiques	CAN ¹⁰ données analogiques	Prog	Asad, Volodymyr	Équipe projet	Chef de projet
alisation du	Entré	Gestion des Données CAN	Microcontrôleur	Asad, Volodymyr	Équipe projet	Chef de projet
Ré		Conception des Modules et Carte mère PCB		Asad, Volodymyr	Asad, Volodymyr	Chef de projet
	MHI	Créer une interface	Prog IHM	Enes, Jibril	Équipe projet	Chef de projet
	Effets et	Effets audio Gestion de stockage	Prog Raspberry	Nathan, Gabriel	Équipe projet	Chef de projet
		Rechercher des solutions pour ampli audio	Liste des composants	Nathan, Gabriel	Équipe projet	Chef de projet

⁸ Programme ⁹ Conversion Numérique Numérique

¹⁰ Conversation Analogique Numérique

Dossier organisationnel

iore	Conversation Numérique Analogique	Prog Raspberry	Nathan, Gabriel	Équipe projet	Chef de projet
Restitution Sonore	Tester des solutions pour l'ampli audio déterminer la solution finale	Rapport de test	Nathan, Gabriel	Équipe projet	Volodymyr et Chef de projet
Res	Gérer le son en sortie des HP	SS Restitution Sonore	Nathan, Gabriel	Équipe projet	Volodymyr
Design	Modéliser la boite pour le prototype	Plans 3D (pièces et assemblage) / Fichiers STL	Benji, Victor	Équipe projet	Chef de projet
Des	Imprimer la boite	Boite physique	Benji, Victor	Équipe projet	Chef de projet
	Étude de consommation globale	Document Consommation Énergétique Système	Benji, Victor	Équipe projet	Volodymyr et Chef de projet
Energie	Alimentation Secteur 12V, ±6V	SS Alimentations Secteur, PCB,	Benji, Victor	Équipe projet	Volodymyr et Chef de projet
	Alimentation Batterie 12V, ±6V	SS Alimentations Batterie, PCB,	Benji, Victor		Volodymyr et Chef de projet
Intégration	Intégration des Modules		Volodymyr, Asad	Équipe projet	Chef de projet et Volodymyr
Intég	Intégrer des sous systèmes		Volodymyr, Asad	Équipe projet	Chef de projet

Tableau 1 Work Breakdown Structure (WBS)

1.2. Jalons

Jalon	Responsable	Date
Initialisation du projet	Équipe projet	05 Oct 2024
Présentation avant-projet	Client	24 Oct 2024
Finalisation des documents d'avant-projet	Équipe projet	28 Oct2024
Validation officielle du projet	Client	10 Nov 2024
Conception détaillée des modules	Équipe projet	3 Jan 2025
PCB Modules	Équipe projet	17 Jan 2025
Test initial des Sous Systèmes	Équipe projet	21 Jan 2025
Finalisation et validation interne prototype alpha	Équipe projet	5 Mars 2025
Test initial du prototype alpha	Équipe projet	7 Mars 2025
Livraison du projet final	Équipe projet	28 Avril au 2 mai 2025

Tableau 2 Jalons

Dossier organisationnel

IUTCERGY-PONTOISE

1.3. Planning – Diagramme de Gantt

Les tâches sont réparties par personne.

- Bleu toute ľéquipe
- Rouge Volodymyr & Asad
- Violet: Asad & Volodymyr
- Jaune Nathan et Gabriel
- Orange Enes & Djibril.
- Vert –Benjy & Victor

Figure 1Diagramme Gantt

2. Modalités organisationnelles

2.1. Equipe :

	Nom Prénom
Gestion du flux des données	MUHAMMAD Asad
destion du nux des données	VRONSKYI Volodymyr
Postitution audio	LATHRO-SERI Nathan
Restitution audio	ERBE Gabriel
Interface informatique/ physique utilisateur + opérations	YIGIT Enes
sur les signaux	EL KARANI Djibril
Dimensionnement mécanique/électronique (CAO +	RAMIRES MATOS Victor
Alimentation)	IDMOND Benjy

Tableau 3 Membres d'équipe

1.1. Rôles des intervenants

Chaque membre de l'équipe projet et intervenant extérieur a un rôle défini pour assurer l'avancée du projet.

Rôle	Intervenant (Nom, pro	Institution	
	Représentation o	client	
Propriétaire	IUT CY I	IUT CY Université	
Porteur du besoin	ARCINIEC	GAS Andres	IUT CY Université
Interlocuteur client	GAUTHI	ER Vincent	IUT CY Université
	Équipe proje	t	
Chef de projet	MUHAM	MAD Asad	Équipe projet
Responsable de la rédaction du cahier des charges globale	MUHAM	MAD Asad	Équipe projet
	Gestion du flux des données	MUHAMMAD Asad	
Responsable de la rédaction	Restitution audio	LATHRO-SERI Nathan	Équipe projet
du cahier des charges SS	IHM	YIGIT Enes	Equipe projet
	CAO + Alimentation	RAMIRES MATOS Victor	
Responsable de la rédaction du document organisationnel	MUHAM	Équipe projet	
Responsables programmation IHM	YIGI	Équipe projet	
Opérations sur les signaux	EL KARA	Équipe projet	
Responsables Sortie Audio	LATHRO-S	Équipe projet	

Dossier organisationnel

Responsables Amplification	ERBE Gabriel	Équipe projet			
Responsable modélisation boitier	IDMOND Benjy	Équipe projet			
Responsable alimentation	RAMIRES MATOS Victor	Équipe projet			
Intervenants extérieurs					
(Technicien, ouvrier,)	Fabien	IUT CY Université			

Tableau 4 Répartition des tâches et des responsabilités

1.2. Modalités de maîtrise des livrables techniques

Les livrables techniques seront évaluées selon plusieurs critères détaillés ci-dessous :

1. Conception et validation des documents techniques :

- Cahier des charges : Le livrable doit inclure un cahier des charges précis, validant les besoins fonctionnels et les contraintes techniques du projet.
- Plans techniques : La conception des schémas de câblage, des diagrammes de fonctionnement, et des schémas de connexion des composants sera rigoureusement évaluée pour sa clarté et sa précision.
- o Simulations des circuits : Avant la réalisation des prototypes, des simulations de circuits seront effectuées (si possible), tant au niveau des modules individuels que du système global, afin de vérifier leur bon fonctionnement sous différentes conditions.

2. Validation par tests fonctionnels et de performance :

- Tests sur plaquelab (breadboard): Les circuits seront testés sur des prototypes montés sur plaque d'essai pour vérifier leur comportement en conditions réelles. Ces tests permettront de valider les performances de chaque module (ex : alimentation, traitement du signal, etc.).
- o Tests d'intégration : Une fois les modules validés individuellement, un test d'intégration sera réalisé pour vérifier le bon fonctionnement de sous-système puis système complet, en s'assurant que les interfaces entre les modules et la communication entre les sous-systèmes respectent les exigences.
- o Test de programme : Chaque module logiciel sera testé indépendamment (tests unitaires) pour valider ses fonctionnalités avant l'intégration dans le système complet. La validation se fera en vérifiant que chaque fonction du programme respecte les spécifications définies dans le cahier des charges.

3. Maintenance et documentation :

- Procédures de maintenance : Des documents seront rédigés pour détailler les procédures de maintenance préventive et corrective. Ces procédures viseront à assurer la longévité du système et à permettre son entretien facile par d'autres intervenants.
- Guides d'utilisation : Des documents détaillant l'utilisation du système final seront rédigés pour faciliter la prise en main par les utilisateurs. Ces guides incluront des instructions sur les réglages, les tests de bon fonctionnement et les éventuelles mises à jour logicielles.

4. Suivi de la mise en œuvre et de l'implantation :

- Documentation complète pour l'implantation : Tous les documents nécessaires à l'implantation du système (schémas de câblage, guides d'installation, spécifications des composants) seront fournis, permettant une mise en œuvre fluide et conforme.
- o **Tests de validation finale**: Avant la livraison du projet, une série de tests de validation sera réalisée pour garantir que le système final répond aux exigences initiales et fonctionne comme prévu dans un environnement réel d'utilisation.

2.2. Modalités de contrôle du travail

Pour garantir un suivi rigoureux de la qualité et de l'avancement du projet, plusieurs outils et pratiques sont mis en œuvre :

Outils de gestion et de versioning :

- **Git** : Utilisé pour le stockage et la gestion des versions du code, des plans, et des documents techniques.
 - GitHub (Desktop ou Web): Un projet GitHub (https://github.com/A-s-a-d/Table-de-Mixage) a été créé pour centraliser tous les documents nécessaires au projet. Cet outil facilite le suivi des versions et le stockage des fichiers, notamment pour la programmation.
 - o **GitLab**: Une image du projet a été créée sur GitLab, permettant une synchronisation automatique avec GitHub. GitLab CYU est une plateforme interne de l'université, utilisée pour stocker les documents sur les serveurs de l'établissement. Les éléments du projet doivent obligatoirement être déposés sur l'espace GitLab de l'université. Cependant, l'utilisation de cet outil nécessite une connexion Internet et une interface Web ce qui n'est pas idéal pour la suivie des modifications régulièrement. La création d'une image de projet basée sur GitHub facilite l'accès et l'utilisation.
 - Git (avec ILC) ou GitKraken (Avec Interface Graphique): Sur Linux, chaque membre peut choisir d'utiliser Git en ligne de commande ou GitKraken pour gérer les modifications localement. Ces outils permettent un suivi des versions et des modifications hors ligne comme GitHub Desktop qui n'est pas disponible sur Linux.
- OneDrive: En complément de GitHub, un dossier OneDrive a été configuré pour faciliter le stockage des documents en cours de rédaction. Ces fichiers sont ensuite sauvegardés et synchronisés sur GitHub pour assurer une centralisation des données.
 - o Structure de stockage :

- Cahiers de laboratoire : Chaque membre documente les avancées techniques de ses tâches.
- Réunions hebdomadaires: Revues de l'avancement, obstacles et ajustements éventuels.
- Diagramme de Gantt : Suivi des délais et vérification des dépendances entre tâches.

3. Clôture du projet

Les documents et artefacts finaux incluent :

- **Prototype fonctionnel** Table de Mixage avec interface et fonctionnalités opérationnelles.
- **Documentation technique complète** : Schémas, code source, plans d'implantation et de maintenance.
- Rapports de tests et validation : Résultats des tests de fonctionnalité, latence, justesse des notes

Chaque document sera stocké sur GitLab pour le code et les schémas, tandis que les dossiers techniques seront archivés sur le serveur de l'IUT.

Nom du document	Туре	Description	Lieu de stockage
Cahier des charges	PDF	Précise le contexte, les enjeux, les besoins, définit les objectifs, fonctionnalités requises, et contraintes. Ce document constitue la référence pour la réalisation du projet.	GitHub -> GitLab
Document organisationnel	PDF	Précise les étapes, la répartition des tâches, les rôles, et les modalités nécessaires au déroulement du projet.	GitHub -> GitLab
Diagramme structurel	Image	Illustre l'organisation interne du système.	GitHub -> GitLab
Diagramme fonctionnel	Image	Illustre les fonctions du système en forme de diagramme, permet de définir les liens entre différentes fonctions et de définir les solutions.	GitHub -> GitLab
Diagramme GANTT	Image	Décrit l'organisation et la répartition des tâches du projet et permet de planifier le temps nécessaire pour chaque tâche.	GitHub -> GitLab
Cahier de laboratoire	Support physique	Un cahier permettant le suivi de déroulement du projet. Il inclue les notes de chaque séance, tels que les réflexions, les croquis, les tests, les calculs, etc.	

Tableau 5 Documents et Artefacts Finaux