M74HC174P/FP/DP

HEX D-TYPE FLIP-FLOP WITH COMMON CLOCK AND RESET

DESCRIPTION

The M74HC174 is a semiconductor integrated circuit consisting of six positive-edge triggered D-type flip flops with common clock and direct reset inputs.

FEATURES

- High-speed: (clock frequency) 60MHz typ. (C_L=15pF, V_{CC}=5V)
- Low power dissipation: 20µW/package, max (V_{CC}=5V, T_a=25℃, quiescent state)
- High noise margin: 30% of V_{CC}, min (V_{CC}=4.5V, 6V)
- Capable of driving 10 74LSTTL loads
- Wide operating voltage range: V_{CC}=2∼6V
- Wide operating temperature range: $T_a = -40 \sim +85^{\circ}$ C

APPLICATION

General purpose, for use in industrial and consumer digital equipment.

FUNCTIONAL DESCRIPTION

Use of silicon gate technology allows the M74HC174 to maintain the low power dissipation and high noise margin characteristics of the standard CMOS logic 4000B series while giving high-speed performance equivalent to the 74LS174.

The M74HC174 contains six internal edge-triggered D-type flip-flops with common direct reset input $\overline{R_D}$ and common clock input CK.

When CK changes from low-level to high-level, the signals just previously input D appears at outputs Q in accordance with the function table given. When $\overline{R_D}$ is low, all outputs Q will become low irrespective of other inputs.

When used as a D-type flip-flop, $\overline{R_D}$ should be maintained at high-level.

FUNCTION TABLE (Note 1)

	Inputs		Outputs
R _D	СК	D	Q
н	t	Н	Н
н	t	L	L
Н .	+	Х	Q°
<u>L</u>	X	X	L
н	L	X	Q°

Note 1: X : Irrelevant

† : Change from low to high

: Change from high to low

Q⁰ : Output state Q before clock input

changed

HEX D-TYPE FLIP-FLOP WITH COMMON CLOCK AND RESET

ABSOLUTE MAXIMUM RATINGS $(T_a = -40 \sim +85\%$, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		-0.5~+7.0	, v
Vı	Input voltage		-0.5~V _{cc} +0.5	٧
Vo	Output voltage		-0.5~V _{cc} +0.5	V
ħĸ	Input protection diode current	V ₁ < 0V	-20	^
		V _I > V _{CC}	20	mA
		V ₀ < 0V	-20	^
lok	Output parasitic diode current	$v_o > v_{cc}$	20	_ mA
I _o	Output current per output pin		±25	mA
Icc	Supply/GND current	V _{CC} , GND	±50	mA
Pd	Power dissipation	(Note 2)	500	mW
Tstq	Storage temperature range		_65~+150	°C

Note 2 : M74HC174FP, $T_a = -40 \sim +70^\circ C$ and $T_a = 70 \sim 85^\circ C$ are derated at -6mW/°C. M74HC174DP, $T_a = -40 \sim +50^\circ C$ and $T_a = 50 \sim 85^\circ C$ are derated at -5mW/°C.

RECOMMENDED OPERATING CONDITIONS $(T_a = -40 \sim +85\%)$

	Parameter Supply voltage			Limits				
Symbol			Min	Тур	Max	Unit		
Vcc			Supply voltage		2		6	V
V _I	Input voltage		0	0		٧		
Vo	Output voltage		0		Vcc	V		
Topr	Operating temperature range		-40		+85	Ĉ		
		$V_{CC} = 2.0V$	0		1000			
t _r , t _f	Input risetime, falltime	$V_{CC} = 4.5V$	0		500	ns		
	$V_{CC} = 6.0V$		0		400			

ELECTRICAL CHARACTERISTICS

	Parameter			Limits						
Symbol		Test	Test conditions $V_{CC}(V)$		25°C			-40~+85℃		. Unit
		ĺ			Min	Тур	Max	Min	Max	
				2.0	1.5			1.5		
V _{IH}	High-level input voltage	$V_0 = 0.1V, V_{CO}$		4.5	3. 15			3.15		٧
		$ I_0 = 20\mu A$		6.0	4.2			4.2		
V _{1L}							0.5		0.5	
	Low-level input voltage	$V_0 = 0.1V, V_{CO}$		4.5			1.35		1.35	٧
		$ I_0 = 20\mu A$		6.0			1.8		1.8	
	High-level output voltage V _i = V		$I_{OH} = -20\mu A$	2.0	1.9			1.9		
		High-level output voltage $V_i = V_{iH}, \ V_{iL}$	$I_{OH} = -20 \mu A$	4. 5	4. 4			4.4	i	
V _{OH}			$I_{OH} = -20 \mu A$	6.0	5. 9			5.9		v
_			$I_{OH} = -4.0 \text{mA}$	4.5	4. 18		1	4.13		i
			$I_{OH} = -5.2 \text{mA}$	6.0	5. 68		İ	5. 63	! 	
			$I_{OL} = 20 \mu A$	2.0			0.1		0.1	
	1		$I_{OL} = 20 \mu A$	4.5			0.1	!	0.1	l
VoL	Low-level output voltage	$V_I = V_{IH}, V_{IL}$	$I_{OL} = 20 \mu A$	6.0			0.1		0.1	V
			I _{OL} = 4.0mA	4.5			0. 26		0.33	
			$I_{OL} = 5.2 \text{mA}$	6.0	Ì		0.26		0.33	1
l _{ie}	High-level input current	V, = 6V		6.0			0.1		1.0	μA
I _{IL}	Low-level input current	$V_1 = 0V$		6.0			-0.1		1.0	μA
Icc	Quiescent supply current	VI = VCC, GNE	$I_0 = 0 \mu A$	6.0			4.0		40.0	μА

HEX D-TYPE FLIP-FLOP WITH COMMON CLOCK AND RESET

SWITCHING CHARACTERISTICS ($v_{cc} = 5v$, $T_a = 25^{\circ}C$)

Symbol	Parameter	Test conditions		Limits				
- Cymbol	raianeter	Test conditions	Min	Тур	Max	¬ Unit		
fmax	Maximum clock frequency		30			MHz		
t _{TLH}	Low-level to high-level and high-level to low-level	C _L = 15pF (Note 4)	!		10	ns		
t _{THL}	output transition time				10	ns		
t _{PLH}	Low-level to high-level and high-level to low-level				30	ns		
t _{PHL}	output propagation time (CK - Q)				30	ns		
t _{PHL}	High-level to low-level output propagation time $(\overline{R}_D - Q)$				30	ns		

SWITCHING CHARACTERISTICS ($V_{cc} = 2\sim6V$, $T_a = -40\sim+85^{\circ}C$)

		Test conditions		Limits					
Symbol	Parameter			25 °C			-40~+85°C		Unit
			V _{cc} (V)	Min	Тур	Max	Min	Max	1
			2.0	5			4		
fmax	Maximum clock frequency	1	4.5	27		İ	21		MHz
			6.0	31		:	24	:	i
t _{TLH}			2.0			75		95	
	Low-level to high-level and high-level to low-level		4.5			. 15	ĺ	19	ns
			6.0			13		16	1
t _{THL}	mgn-rever to low-rever		2.0			75		95	
	output transition time		4.5			15		19	ns
_		C _L = 50pF (Note 4)	6.0			13	i	16	
		OL Sobi (Note 4)	2.0			165		206	•
t _{PLH}	Low-level to high-level and	1	4.5			33	;	41	ns
	high-level to low-level		6.0			28		. 35	;
	output propagation time	! !	2.0			165		206	
t _{PHL}	(CK - Q)		4.5			33		41	ns
	1		6.0			28		35	İ
	High-level to low-level		2.0			165	i	206	
t _{PHL}	output propagation time		4.5			33		41	ns
	(R _D -Q)		6.0			28	İ	35	
Cı	Input capacitance					10	:	10	pF
CPD	Power dissipation capacitance (Note 3)				64			*	pF

Note 3: C_{PD} is the internal capacitance of the IC calculated from operation supply current under no-load conditions. The power dissipated during operation under no-load conditions is calculated using the following formula: $P_D = C_{PD} \cdot V_{CC}^2 \cdot f_i + I_{CC} \cdot V_{CC}^2$

TIMING REQUIREMENTS $(v_{cc} = 2\sim 6v, \tau_a = -40\sim +85^{\circ}C)$

				Limits					
Symbol	Parameter	Test conditions		25°C			-40~+85℃		Unit
			V _{cc} (V)	Min	Тур	Max	Min	Max	1
			2.0	80		Ţ	106		
tw(ck)	Clock pulse width		4.5	16			20		ns
			6.0	14			18		į
			2.0	80		-	106		1
$t_{W(\overline{R_D})}$	Direct reset pulse width		4.5	16			20		ns
			6.0	14			18		
	D setup time with		2.0	100		:	125		1
tsu			4.5	20			25	: I	ns
	respect to CK		6.0	17			21	i I	
	D bold since with		2.0	5		T.,,,,,	5	1	
th	D hold time with respect to CK		4.5	5			5		ns
			6.0	5		1	5		!
	R _D recovery time with		2.0	5			5	*	
trec			4.5	5			5		ns
	respect to CK		6.0	5			5		l i

HEX D-TYPE FLIP-FLOP WITH COMMON CLOCK AND RESET

Note 4: Test Circuit

- (1) The pulse generator (PG) has the following
- characteristics (10%~90%): t_F = 6ns, t_f = 6ns (2) The capacitance C_L includes stray wiring capacitance and the probe input capacitance.

TIMING DIAGRAM

MITSUBISHI HIGH SPEED CMOS PACKAGE OUTLINES

6249827 MITSUBISHI (DGTL LOGIC)

91D 12849 D T-90-20

2932

PACKAGE OUTLINES

91D 12850 D T-90-20

6249827 MITSUBISHI (DGTL LOGIC)

2933

G-02

1-52

PACKAGE OUTLINES

6249827 MITSUBISHI (DGTL LOGIC)

91D 12851 D T-90.20

PACKAGE OUTLINES

D. T-90-20 91D 12852

6249827 MITSUBISHI (DGTL LOGIC)

PACKAGE OUTLINES

6249827 MITSUBISHI (DGTL LOGIC)

91D 12853

D T-90-20

PACKAGE OUTLINES

6249827 MITSUBISHI (DGTL LOGIC)

91D 12854

D T-90-20

