GÉOMÉTRIE ET ARITHMÉTIQUE 1

Planche 2 : Nombres complexes

Forme cartésienne, forme polaire 1

Exercice 1. Mettre sous forme algébrique les nombres complexes suivants :

a)
$$(3+2i)(1-3i)$$
, **b)** $\frac{\pi+i}{1-\sqrt{2}i}$, **c)** $\frac{6-i}{i}$, **d)** $(1+i)^2+\overline{\left(\frac{2+6i}{2-3i}\right)}$, **e)** $\frac{1+i}{1-i}+\frac{1-i}{1+i}$.

Exercice 2. Résoudre dans \mathbb{C} les équations suivantes :

a)
$$z^2 + 3\bar{z} = 0$$
;

b)
$$2z+(1+i)\bar{z}=1-3i;$$
 c) $z^2-2iz-1=0;$

c)
$$z^2 - 2iz - 1 = 0$$
;

$$\mathbf{d}) \ \frac{z+1}{\bar{z}-1} = -1$$

d)
$$\frac{z+1}{\bar{z}-1} = -1;$$
 e) $(z+\bar{z})+i(z-\bar{z}) = 2i-6;$

$$\mathbf{f}) \ \frac{1-3i}{3z+2i} = \frac{2i-3}{5-2iz}.$$

Exercice 3. Dans le plan complexe dessiner les ensembles donnés par les conditions suivantes :

a)
$$\text{Im}[(1+2i)z-3i] < 0;$$
 b) $\text{Re}(z-i)^2 \geqslant 0;$ c) $\frac{4}{z} = \bar{z};$

b)
$$\operatorname{Re}(z-i)^2 \geqslant 0$$
;

$$\mathbf{c}) \ \frac{4}{z} = \bar{z}$$

d)
$$z^2 = 2 \operatorname{Re}(iz);$$
 e) $\overline{z - i} = z - 1.$

e)
$$\overline{z-i} = z-1$$
.

Exercice 4. Représenter sous forme algébrique et exponentielle les nombres complexes suivants.

a)
$$\frac{(1-i\sqrt{3})^5(2+2i)^3}{(1-i)^7}$$

b)
$$\frac{(\sqrt{3}+i)^4(1+i)^9}{(1+i\sqrt{3})^{10}}$$

a)
$$\frac{(1-i\sqrt{3})^5(2+2i)^3}{(1-i)^7}$$
, b) $\frac{(\sqrt{3}+i)^4(1+i)^9}{(1+i\sqrt{3})^{10}}$, c) $\left(\sin\frac{\pi}{6}+i\cos\frac{\pi}{6}\right)^{24}$.

Exercice 5. Calculer le module et l'argument de $u = \frac{\sqrt{6} - i\sqrt{2}}{2}$ et v = 1 - i. En déduire le module et l'argument de $w = \frac{u}{v}$.

Exercice 6. Déterminer le module et l'argument des nombres complexes suivants.

$$\mathbf{a}) \ e^{e^{i\theta}}, \ \theta \in \mathbb{R}$$

$$\mathbf{b}) e^{i\theta} + e^{2i\theta}, \ \theta \in \mathbb{R},$$

a)
$$e^{e^{i\theta}}$$
, $\theta \in \mathbb{R}$, **b**) $e^{i\theta} + e^{2i\theta}$, $\theta \in \mathbb{R}$, **c**) $1 + e^{i\theta}$, $\theta \in [-\pi, \pi[$.

Exercice 7. Soient z, z_1 et z_2 des nombres complexes.

Montrer que Re(z) = |z| si et seulement si z est un nombre réel positif ou nul.

Montrer que $|z_1 + z_2| = |z_1| + |z_2|$ si et seulement si $(z_1 = 0 \text{ ou } z_2 = 0 \text{ ou } Arg(z_1) = Arg(z_2))$.

2 Euler, de Moivre et Newton

Exercice 8. 1. Calculer $\sin(5\alpha)$ et $\cos(5\alpha)$ en fonction de $\sin \alpha$ et $\cos \alpha$.

2. Utiliser l'identité $\cos^2\alpha=1-\sin^2\alpha$ pour ramener la formule trouvée au point précédent à la forme

$$\sin(5\alpha) = A\sin\alpha + B\sin^3\alpha + C\sin^5\alpha,$$

où A, B, C sont des coeficients réels que l'on précisera.

3. En posant $\alpha = \pi/5$, déduire de l'équation ci-dessus la valeur de $\sin \pi/5$, puis celle de $\cos \pi/5$.

Exercice 9. Soit $\alpha \in \mathbb{R}$. Grâce aux formules d'Euler, linéariser les expressions suivantes : $\sin^2 \alpha$, $\cos^2 \alpha$, $\sin^3 \alpha$, $\cos^4 \alpha$, $\sin^4 \alpha$. ("Linéariser" signifie représenter comme somme de termes de la forme $\sin(k\alpha)$ et $\cos(k\alpha)$, où k et un entier.)

Utiliser les expressions précédentes pour résoudre dans $\mathbb R$ les équations suivantes :

- a) $\cos^2(\alpha) \sin^2(\alpha) = \sin(3\alpha)$.
- b) $\cos^4(\alpha) \sin^4(\alpha) = 0.$
- c) $\cos^4(\alpha) \sin^4(\alpha) = 1$.

Exercice 10. Pour quelles valeurs de $n \in \mathbb{N}$, $(1+i)^n$ est-il un nombre réel?

Exercice 11. Soit $z \in \mathbb{C}$ un nombre complexe tel que $z \neq 1$.

1. Montrer que pour tout $n \in \mathbb{N}$, nous avons

$$1 + z + z^{2} + \ldots + z^{n} = \frac{1 - z^{n+1}}{1 - z}.$$

2. Soit $\alpha \in \mathbb{R}$. Utiliser la formule de la question précédente pour calculer les sommes suivantes :

$$\sum_{k=0}^{n} \sin(k\alpha), \quad \sum_{k=0}^{n} \cos(k\alpha), \quad \sum_{k=0}^{n} \sin((2k+1)\alpha).$$

Exercice 12. En dérivant la formule $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$, calculer les sommes suivantes

$$S_1 = \sum_{k=0}^n k \binom{n}{k}, \qquad S_2 = \sum_{k=0}^n k^2 \binom{n}{k}, \qquad S_3 = \sum_{k=0}^n k^3 \binom{n}{k}.$$

Exercice 13. Soient $\alpha, \beta \in \mathbb{R}$ et $n \in \mathbb{N}$. A l'aide de formules du binôme, calculer les sommes suivantes :

$$S_1 = \sum_{k=0}^n \binom{n}{k} \cos(k\alpha), \qquad S_2 = \sum_{k=0}^n \binom{n}{k} \sin((k+1)\alpha), \qquad S_3 = \sum_{k=0}^n \cos(\alpha + k\beta).$$

2

Exercice 14. Soit $n \in \mathbb{N}$ et p un entier vérifiant $0 \leq p \leq n$.

1. Montrer que

$$\frac{(1+x)^{n+1}-1}{x} = 1 + (1+x) + (1+x)^2 + \dots + (1+x)^n.$$

2. En déduire que

$$\sum_{k=p}^{n} \binom{k}{p} = \binom{n+1}{p+1}.$$

- 3. Ecrire ces égalités pour p = 2 et p = 3.
- 4. En déduire les sommes

$$S_1 = \sum_{k=1}^{n-1} k(k+1), \quad S_2 = \sum_{k=1}^{n} k^2, \quad S_3 = \sum_{k=1}^{n-1} k^2(k+1), \quad S_4 = \sum_{k=1}^{n} k^3.$$

3 Racines de nombres complexes

Exercice 15. Calculer les racines carrées de

$$z_1 = 1$$
, $z_2 = i$, $z_3 = \sqrt{2}(1+i)$, $z_4 = 4-3i$.

Exercice 16. Calculer les racines carrées de z=1+i sous forme algébrique et sous forme exponentielle. En déduire les valeurs de $\sin(\pi/8)$ et $\cos(\pi/8)$.

Exercice 17. Résoudre dans $\mathbb C$ les équations suivantes :

a)
$$z^2 - \sqrt{3}z - i = 0$$
, b) $z^2 + z + 1 = 0$, c) $iz^2 + 2z + (1 - i) = 0$,
d) $z^2 - (1 + 2i)z + i - 1 = 0$, e) $z^2 - (3 + 4i)z - 1 + 5i = 0$,
f) $4z^2 - 2z + 1 = 0$, g) $z^4 + 10z^2 + 169 = 0$, h) $z^4 + 2z^2 + 4 = 0$.

Exercice 18. Soient $a, b, c \in \mathbb{R}$ avec $a \neq 0$. Montrer que les solutions $z \in \mathbb{C}$ de l'équation de $az^2 + bz + c = 0$ sont réelles ou complexes conjuguées.

Exercice 19. Trouver les racines cubiques de $z_1 = i$, $z_2 = 2 - 2i$, $z_3 = 11 + 2i$ et $z_4 = \frac{1}{4}(-1+i)$.

Exercice 20. Représenter le nombre complexe

$$z = \frac{1 + i\sqrt{3}}{\sqrt{2} + i\sqrt{2}}$$

sous forme algébrique et exponentielle. En déduire les valeurs cos $\frac{\pi}{12}$, sin $\frac{\pi}{12}$, tan $\frac{\pi}{12}$, tan $\frac{5\pi}{12}$. Puis, résoudre dans $\mathbb C$ l'équation $z^{24}=1$.

3

Géométrie 4

Exercice 21. Dessiner dans le plan complexe les ensembles donnés par les rélations suivantes :

a)
$$|z+1-2i|=3$$
;

b)
$$2 < |z+i| \le 4$$

b)
$$2 < |z+i| \le 4;$$
 c) $|(1+i)z-2| \ge 4;$

$$\mathbf{d}) \quad \left| \frac{z+3}{z-2i} \right| \geqslant 1$$

e)
$$|z^2+4| \le |z-2i|$$
;

$$\mathbf{f}) \quad |\bar{z} + 2 - i| \leqslant |z|;$$

g)
$$\arg z = \frac{\pi}{4} [2\pi];$$

h)
$$\arg(z+i) = \pi [2\pi]$$

d)
$$\left| \frac{z+3}{z-2i} \right| \ge 1;$$
 e) $|z^2+4| \le |z-2i|;$ f) $|\bar{z}+2-i| \le |z|;$ g) $\arg z = \frac{\pi}{4} [2\pi];$ h) $\arg(z+i) = \pi [2\pi];$ i) $\frac{\pi}{4} \le \arg(-\bar{z}) [2\pi] < \frac{\pi}{2};$

j)
$$\arg(z+2-i) = \pi [2\pi];$$

j)
$$\arg(z+2-i) = \pi \ [2\pi];$$
 k) $\arg\left(\frac{i}{z}\right) = \frac{3\pi}{4} \ [2\pi];$ **l**) $\frac{\pi}{2} < \arg(z^3) \ [2\pi] < \pi.$

l)
$$\frac{\pi}{2} < \arg(z^3) [2\pi] < \pi$$
.

Exercice 22. Déterminer l'ensemble des nombres complexes non nuls tels que z, 1/z, et z-1aient le même module.

Exercice 23. Déterminer l'ensemble des points M du plan dont l'affixe z vérifie la condition : $z + \frac{4}{z} \in \mathbb{R}$.

Exercice 24. Déterminer par le calcul et géométriquement les nombres complexes z tels que $\left|\frac{z-3}{z-5}\right| = 1.$

Généraliser pour $\left| \frac{z-a}{z-b} \right| = 1$.

Exercice 25. Déterminer par le calcul et géométriquement les nombres complexes z tels que $\left|\frac{z-3}{z-5}\right| = \frac{\sqrt{2}}{2}.$

Généraliser pour $\left|\frac{z-a}{z-b}\right| = k \ (k > 0, \ k \neq 1).$

Exercice 26. Soient A, B, C trois points du plan d'affixe $z_A, z_B, z_C \in \mathbb{C}$ respectivement.

1. Montrer que le triangle $\triangle ABC$ est rectangle en B si et seulement si le nombre complexe

$$\frac{z_A - z_B}{z_C - z_B}$$

est un imaginaire pur.

2. Montrer que le triangle $\triangle ABC$ est isocèle si et seulement s'il existe $\alpha \in \mathbb{C} \setminus \mathbb{R}$ de module 1 tel que

$$(1 - \alpha)z_A + \alpha z_B - z_C = 0.$$

Exercice 27. 1. Définir au moyen de nombres complexes la rotation de centre 2+3i et d'angle

2. Définir au moyen de nombres complexes la similitude de centre z_0 , d'angle α et de rapport $a \neq 0$.

4

Exercice 28. Soit $f: \mathbb{C} \to \mathbb{C}$ une similitude du plan.

- 1. Montrer que l'image par f d'une droite est une droite.
- 2. Montrer que l'image par f d'un cercle est un cercle.