

DICOM Overlays Ontology

Онтологии и представления знаний

Выполнил: студент группы Р41172 Попов Алексей

Overlays

Overlays (наложения) описывают графику или растровый текст, связанный с изображением. Они также могут описывать области интереса на изображении и быть использованы для разметки изображений.

С механизмом разметки медицинских изображений с локолайзера компьютерного томографа и записи этой разметки в метаданные dicom-фалов можно ознакомиться в моем репозитории на GitHub: https://github.com/AlexeyPopov1997/Annotation_Medical_Images.

Виды исследований и разметка изображений разных типов

• Localizer - предварительное исследование

• General - основное исследование

Зачем нужна онтология?

- Спроектированная онтология содержит в себе список имен медицинских изображений (dicom-файлов) с разных стадий исследования и позволяет узнать размечен определенный файл или нет.
- Онтология классифицирует снимки по типу исследования и контролирует соответствие разметки типу исследования на снимке:
 - для основного исследования онтология содержит разметку внутренних органов
 - для локалайзера разметку по отделам тела пациента
- для **обоих типов исследования** онтология позволяет добавить только дополнительные записи и пометки

Classes (Классы)

Иерархия классов:

Описания некоторых классов:

Object properties (свойства объектов)

Имеются два свойства - для определения определенной разметки для снимка с конкретным типом исследования:

- has_LS_Annotation для снимков с локалайзера
- has_GS_Annotation для снимков основного исследования

Data properties (свойства объекта)

Имеются два свойства для каждого объекта:

- **Name** имя соответствующего dicom-файла
- Path путь к директории, где расположен данный файл

Пример объекта

Рассмотрим пример изображения.

image_1:

Графовая схема онтологии

Reasoner

1) К снимку с локолайзера применили свойство has_LS_Annotation, но не указали статус размтки:

Reasoner, в таком случае, предполагает, что снимок является размеченным.

2) Попытка применить свойство has_LS_Annotation к снимку, где указано, что он не размечен:

Reasoner

3) Попытка использовать свойство has_LS_Annotation к снимку с основного исследования:

Reasoner

4) Попытка использовать свойство **has_GS_Annotation** к снимку с основного исследования для добавления разметки отделов человеческого тела:

DICOM Overlays Ontology

Выводы

Онтология успешно контролирует соответствие разметки типу исследования на снимке:

- для основного исследования онтология позволяет добавить только разметку внутренних органов и дополнительные записи
- для **локалайзера** онтология позволяет добавить только разметку по отделам тела пациента и дополнительные записи

