

IVOA interop, May 2023 Hendrik Heinl, Dave Morris

Everyone invited to develop science use cases

Science based interest groups

Working group discussions

IVOA working groups

Science priorities committee

Scientists from IVOA members and major astronomy projects

Request For Comment (RFC) document

IVOA recommendation

GitHub

D.Morris Institute for Astronomy, **Edinburgh University**

Anyone can raise issues

Introduction to the VO **IVOA** interop May 2023

The Virtual Observatory

Data from all over the world in the cloud

Lots of individual services each playing their part But ... how do you know where everything is ?

May 2023

Registration metadata includes a description of the data they provide and the technical details of how to connect

D.Morris Institute for Astronomy, Edinburgh University

Introduction to the VO IVOA interop May 2023

Simple Cone Search

One of the earliest services defined by the IVOA

Version 1.0 adopted as an IVOA recommendation in 2006

 $RA = 170^{\circ} (deg)$

 $DEC = 25^{\circ} (deg)$

 $SR = 30^{\circ} (deg)$

https://ivoa.net/documents/latest/ConeSearch.html

Simple Cone Search

Simple HTTP GET request

https://ivoa.example.net/cone?RA=170&DEC=25&SR=30

 $RA = 170^{\circ} (deg)$

 $DEC = 25^{\circ} (deg)$

 $SR = 30^{\circ} (deg)$

https://ivoa.net/documents/latest/ConeSearch.html

Unified Content Descriptors (UCD)

Different data providers have a different table structures

Data provider #1 Data provider #2

Unified Content Descriptors (UCD)

TAP schema and UCDs enable clients to figure out the mapping

The Virtual Observatory

All the data from the cloud available on your desktop

All the data from the cloud to each desktop app

Each application maintains its own connection to the VO

SAMP is a message bus within your local computer Applications can use SAMP to send messages to each other

table.load.votable http://example.org/.../table.vot image.load.fits http://example.org/.../image.fits coord.pointAt.sky <ra,dec>

Messages can be sent to specific applications

Send to Aladin:

image.load.fits http://example.org/.../image.fits

Or broadcast to all listeners

Send to all:

coord.pointAt.sky <ra,dec>

The Virtual Observatory

If we have done our job right, all the details disappear

All the data from the cloud appears to be one big dataset accessible through your desktop

Search for:

"Services with neutrino data"

The registry is the initial contact point for interactions with IVOA services

Clients query the registry to find services that contain data they are interested in

Registry Resource Record:

Service capabilities

TAP, ObsTap, ConeSearch, SIAP, SSAP

Collection metadata

Sky coverage (MOC)

Waveband

Infra-red, optical, ultra-violet, xray

Database catalogs

Table and column metadata

"Services with neutrino data"

Client applications can use standard terms to help the user discover the data they need

Registry Resource Record:

Service capabilities

TAP, ObsTap, ConeSearch, SIAP, SSAP

Collection metadata

Sky overage (MOC)

Waveband

Infra-red, optical, ultra-violet, xray

Database catalogs

Table and column metadata

https://wiki.ivoa.net/twiki/bin/view/IVOA/PublishingInTheVO

The service standards define what metadata is required for each type of service

Observation Data Model Core Components

ObsCore adds a standard view to the data in each data provider

Data provider #1

Data provider #2

CREATE VIEW ivoa. ObsCore (....)

CREATE VIEW ivoa. ObsCore (....)

https://www.ivoa.net/documents/ObsCore/

Observation Data Model Core Components

Now the public tables in **both** providers are the same

Observation Data Model Core Components

Now, the same query can be applied to **both** services

Data provider #1 Data provider #2 ivoa.ObsCore ivoa.ObsCore **SELECT** obs id FROM ivoa. obscore AS db s ra JOIN TAP_UPLOAD.It AS mine s dec ON 1=CONTAINS (POINT('ICRS', db.s_ra, db.s_dec), **CIRCLE('ICRS', mine.RA, mine.Decl, mine.Beta) AND** db.dataproduct_type='image'

Everyone invited to develop science use cases

Science based interest groups

Scientific use cases

theory

time-series

Science priorities for the IVOA

Science platforms

Machine learning

Science priorities committee

Multi-messenger astronomy

Scientists from IVOA members and major astronomy projects

Request For Comment (RFC) document

IVOA working groups

e.g. DataAccessLayer,

Applications,

Semantics

Everyone invited to comment

Anyone can raise issues

Working group email list

New standards being developed

ObjVisSAP ObsLocTAP

TIMESYS Multi-order Coverage (MOC)

Hierarchical Progressive Surveys (HiPS)

IVOA recommendation

D.Morris Institute for Astronomy, **Edinburgh University**

Introduction to the VO **IVOA** interop May 2023