

(Correctivess)
We now show that S is a correct vertex cover. Muchy, we want to show that
for each edge (u,v), u or v con both of them) are in S. We will proceed by contradiction
and assume that neither u or v are in S.
 Q6) Suppose, he addition, that UEV°, to which set does a below? Reall that X
is the solution to the Lt.
Awwer) Since S is a correct vector cover, and unes (since une V'UV'EUV'E)
Then there exists a constraint in the LP: $\chi_u + \chi_v \ge 1$ and $\chi_u = 0$
Therefore $xv = 1$ and $v \in V^2$
Q7) Deduce from the previous question to which set of V1, V°, V'2 do u and v belong
 Ausum) It u EV, then v eV' (by Q6)
• If u ∈ V3, then v ∈ (V1 v Vp 1/2 v V1/2 v V1/2 v V2/2)) => If v ∈ 1/2 then
 • If $u \in V_3^{l/2}$, then $v \in (V^l \cup V_0^{l/2} \cup V_1^{l/2})$ $) \Rightarrow If v \in V^{l/2} then v \in (V^l \cup V_0^{l/2}), then v \in (V^l \cup V_0^{l/2})$
· # UEVI, then VE VOUVINVIA
Q8) If u and v belong to V1/2, to which subset of V do they belong, if they do not belong to S.
Q8) If u and v belong to V1/2, to which subset of V dottery belong, if they
Q8) If u and v belong to $V^{1/2}$, to which subset of V dottry belong, if they downt belong to S . Auswer) Then $u \in V_3^{1/2}$ and $v \in V_3^{1/2}$ (Otherwise, $u \in S$ or $v \in S$) Q9.) Reall that C is a 4 -colouring. Explain the contendiction.
Q8) If u and v belong to $V^{1/2}$, to which subset of V dottry belong, if they downt belong to S . Auswer) Then $u \in V_3^{1/2}$ and $v \in V_3^{1/2}$ (Otherwise, $u \in S$ or $v \in S$) Q9.) Reall that C is a 4 -colouring. Explain the contendiction.
(Q8) If u and v belong to $V^{1/2}$, to which subset of V dottry belong, if they downt belong to S . Auswer) Then $u \in V_3^{1/2}$ and $v \in V_3^{1/2}$ (Otherwise, $u \in S$ or $v \in S$)
Q8) If u and v belong to V'/2, to which subset of V dothy belong, if they downt belong to S. Auswer) Then $u \in V_3^{1/2}$ and $v \in V_3^{1/2}$ (Otherwise, $u \in S$ or $v \in S$) Q9) Reall that C is a 4-colouring. Explain the contendiction. Answer) since C' is a 4-colouring of G1, $C(u) \neq C(v)$ for $\theta = (u,v) \in E$. Therefore $(u \in V_3^{1/2})$ and $v \in V_3^{1/2}$ is a contendiction, because $C(u) = c(v) = 3$
Q8) If u and v belong to V'/2, to which subset of V dothy belong, if they downt belong to S. Auswer) Then $u \in V_3^{1/2}$ and $v \in V_3^{1/2}$ (Otherwise, $u \in S$ or $v \in S$) Q9) Reall that C is a 4-colouring. Explain the contendiction. Answer) since C' is a 4-colouring of G1, $C(u) \neq C(v)$ for $\theta = (u,v) \in E$. Therefore $(u \in V_3^{1/2})$ and $v \in V_3^{1/2}$ is a contendiction, because $C(u) = c(v) = 3$
Q8) If u and v belong to $V^{1/2}$, to which subset of V dottry belong, if they downt belong to S . Auswer) Then $u \in V_3^{1/2}$ and $v \in V_3^{1/2}$ (Otherwise, $u \in S$ or $v \in S$) Q9.) Reall that C is a 4 -colouring. Explain the contendiction.
Q8) If u and v belong to V'/2, to which subset of V dothy belong, if they downt belong to S. Auswer) Then $u \in V_3^{1/2}$ and $v \in V_3^{1/2}$ (Otherwise, $u \in S$ or $v \in S$) Q9) Reall that C is a 4-colouring. Explain the contendiction. Answer) since C' is a 4-colouring of G1, $C(u) \neq C(v)$ for $\theta = (u,v) \in E$. Therefore $(u \in V_3^{1/2})$ and $v \in V_3^{1/2}$ is a contendiction, because $C(u) = c(v) = 3$