



### Features

- 240-pin JEDEC-compliant DIMM, 133.35 mm wide by 30 mm high
- Operating Voltage: 1.5V ± 0.075
- I/O Type: SSTL\_15
- On-board I2C temperature sensor with integrated serial presence-detect (SPD) EEPROM
- Data Transfer Rate: 10.6 Gigabytes/sec
- Data Bursts: 8 and burst chop 4 mode
- ZQ Calibration for Output Driver and On-Die Termination (ODT)
- Programmable ODT / Dynamic ODT during Writes
- Programmable CAS Latency: 6, 8, 9 and 10
- Bi-Directional Differential Data Strobe signals
- SDRAM Addressing (Row/Col/Bank): 14/10/3
- Fully RoHS Compliant

### Identification

DTM64312E 256Mx72  
2GB 2Rx8 PC3-10600R-9-10-B0

### Performance range

Clock / Module Speed / CL-t<sub>RCD</sub>-t<sub>RP</sub>  
667 MHz / PC3-10600 / 9-9-9  
533 MHz / PC3-8500 / 8-8-8  
400 MHz / PC3-6400 / 6-6-6

### Description

DTM64312E is a registered 256Mx72 memory module, which conforms to JEDEC's DDR3, PC3-10600 standard. The assembly is Dual-Rank. Each Rank is comprised of nine 128Mx8 DDR3 Samsung SDRAMs. One 2K-bit EEPROM is used for Serial Presence Detect and a combination register/PLL, with Address and Command Parity, is also used.

Both output driver strength and input termination impedance are programmable to maintain signal integrity on the I/O signals in a Fly-by topology.

A thermal sensor accurately monitors the DIMM module and can prevent exceeding the maximum operating temperature of 95C.

### Pin Configuration

| Front Side           |                         |                       |                     | Back Side           |                     |                     |                        | Pin Description     |                           |      |          |
|----------------------|-------------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|------------------------|---------------------|---------------------------|------|----------|
| Name                 | Function                | Name                  | Function            | Name                | Function            | Name                | Function               | Name                | Function                  | Name | Function |
| 1 V <sub>REFDQ</sub> | 31 DQ25                 | 61 A2                 | 91 DQ41             | 121 V <sub>SS</sub> | 151 V <sub>SS</sub> | 181 A1              | 211 V <sub>SS</sub>    | CB[7:0]             | Data Check Bits           |      |          |
| 2 V <sub>SS</sub>    | 32 V <sub>SS</sub>      | 62 V <sub>DD</sub>    | 92 V <sub>SS</sub>  | 122 DQ4             | 152 DM3             | 182 V <sub>DD</sub> | 212 DM5                | DQ[63:0]            | Data Bits                 |      |          |
| 3 DQ0                | 33/DQS3                 | 63 CK1*               | 93 /DQS5            | 123 DQ5             | 153 NC              | 183 V <sub>DD</sub> | 213 NC                 | DQS[8:0], /DQS[8:0] | Differential Data Strobes |      |          |
| 4 DQ1                | 34 DQS3                 | 64 /CK1*              | 94 DQS5             | 124 V <sub>SS</sub> | 154 V <sub>SS</sub> | 184 CK0             | 214 V <sub>SS</sub>    | DM[8:0]             | Data Mask                 |      |          |
| 5 V <sub>SS</sub>    | 35 V <sub>SS</sub>      | 65 V <sub>DD</sub>    | 95 V <sub>SS</sub>  | 125 DM0             | 155 DQ30            | 185 /CK0            | 215 DQ46               | CK[1:0], /CK[1:0]   | Differential Clock Inputs |      |          |
| 6 /DQS0              | 36 DQ26                 | 66 V <sub>DD</sub>    | 96 DQ42             | 126 NC              | 156 DQ31            | 186 V <sub>DD</sub> | 216 DQ47               | CE[1:0]             | Clock Enables             |      |          |
| 7 DQS0               | 37 DQ27                 | 67 V <sub>REFCA</sub> | 97 DQ43             | 127 V <sub>SS</sub> | 157 V <sub>SS</sub> | 187 /Event          | 217 V <sub>SS</sub>    | /CAS                | Column Address Strobe     |      |          |
| 8 V <sub>SS</sub>    | 38 V <sub>SS</sub>      | 68 P <sub>AR_IN</sub> | 98 V <sub>SS</sub>  | 128 DQ6             | 158 CB4             | 188 A0              | 218 DQ52               | /RAS                | Row Address Strobe        |      |          |
| 9 DQ2                | 39 CB0                  | 69 VDD                | 99 DQ48             | 129 DQ7             | 159 CB5             | 189 V <sub>DD</sub> | 219 DQ53               | /S[3:0]             | Chip Selects              |      |          |
| 10 DQ3               | 40 CB1                  | 70 A10/AP             | 100 DQ49            | 130 V <sub>SS</sub> | 160 V <sub>SS</sub> | 190 BA1             | 220 V <sub>SS</sub>    | /WE                 | Write Enable              |      |          |
| 11 V <sub>SS</sub>   | 41 V <sub>SS</sub>      | 71 BA0                | 101 V <sub>SS</sub> | 131 DQ12            | 161 DM8             | 191 V <sub>DD</sub> | 221 DM6                | A[15:0]             | Address Inputs            |      |          |
| 12 DQ8               | 42/DQS8                 | 72 V <sub>DD</sub>    | 102/DQS6            | 132 DQ13            | 162 NC              | 192 /RAS            | 222 NC                 | BA[2:0]             | Bank Addresses            |      |          |
| 13 DQ9               | 43 DQS8                 | 73 /WE                | 103 DQS6            | 133 V <sub>SS</sub> | 163 V <sub>SS</sub> | 193 /S0             | 223 V <sub>SS</sub>    | ODT[1:0]            | On Die Termination Inputs |      |          |
| 14 V <sub>SS</sub>   | 44 V <sub>SS</sub>      | 74 /CAS               | 104 V <sub>SS</sub> | 134 DM1             | 164 CB6             | 194 V <sub>DD</sub> | 224 DQ54               | SA[2:0]             | SPD Address               |      |          |
| 15 /DQS1             | 45 CB2                  | 75 V <sub>DD</sub>    | 105 DQ50            | 135 NC              | 165 CB7             | 195 ODT0            | 225 DQ55               | SCL                 | SPD Clock Input           |      |          |
| 16 DQS1              | 46 CB3                  | 76/S1                 | 106 DQ51            | 136 V <sub>SS</sub> | 166 V <sub>SS</sub> | 196 A13             | 226 V <sub>SS</sub>    | SDA                 | SPD Data Input/Output     |      |          |
| 17 V <sub>SS</sub>   | 47 V <sub>SS</sub>      | 77 ODT1               | 107 V <sub>SS</sub> | 137 DQ14            | 167 NC (TEST)       | 197 V <sub>DD</sub> | 227 DQ60               | V <sub>SS</sub>     | Ground                    |      |          |
| 18 DQ10              | 48 V <sub>TT</sub>      | 78 V <sub>DD</sub>    | 108 DQ56            | 138 DQ15            | 168 /RESET          | 198 /S3, NC*        | 228 DQ61               | V <sub>DD</sub>     | Power                     |      |          |
| 19 DQ11              | 49 V <sub>TT</sub>      | 79 /S2, NC*           | 109 DQ57            | 139 V <sub>SS</sub> | 169 CKE1            | 199 V <sub>SS</sub> | 229 V <sub>SS</sub>    | V <sub>DDSPD</sub>  | SPD EEPROM Power          |      |          |
| 20 V <sub>SS</sub>   | 50 CKE0                 | 80 V <sub>SS</sub>    | 110 V <sub>SS</sub> | 140 DQ20            | 170 V <sub>DD</sub> | 200 DQ36            | 230 DM7                | V <sub>REFDQ</sub>  | Reference Voltage for DQ  |      |          |
| 21 DQ16              | 51 V <sub>DD</sub>      | 81 DQ32               | 111/DQS7            | 141 DQ21            | 171 A15             | 201 DQ37            | 231 NC                 | V <sub>REFCA</sub>  | Reference Voltage for CA  |      |          |
| 22 DQ17              | 52 BA2                  | 82 DQ33               | 112 DQS7            | 142 V <sub>SS</sub> | 172 A14             | 202 V <sub>SS</sub> | 232 V <sub>SS</sub>    | V <sub>TT</sub>     | Termination Voltage       |      |          |
| 23 V <sub>SS</sub>   | 53 /E <sub>RR_OUT</sub> | 83 V <sub>SS</sub>    | 113 V <sub>SS</sub> | 143 DM2             | 173 V <sub>DD</sub> | 203 DM4             | 233 DQ62               | Temperature Sensing |                           |      |          |
| 24 /DQS2             | 54 V <sub>DD</sub>      | 84 /DQS4              | 114 DQ58            | 144 NC              | 174 A12/ /BC        | 204 NC              | 234 DQ63               | NC                  | No Connection             |      |          |
| 25 DQS2              | 55 A11                  | 85 DQS4               | 115 DQ59            | 145 V <sub>SS</sub> | 175 A9              | 205 V <sub>SS</sub> | 235 V <sub>SS</sub>    |                     |                           |      |          |
| 26 V <sub>SS</sub>   | 56 A7                   | 86 V <sub>SS</sub>    | 116 V <sub>SS</sub> | 146 DQ22            | 176 V <sub>DD</sub> | 206 DQ38            | 236 V <sub>DDSPD</sub> |                     |                           |      |          |
| 27 DQ18              | 57 V <sub>DD</sub>      | 87 DQ34               | 117 SA0             | 147 DQ23            | 177 A8              | 207 DQ39            | 237 SA1                |                     |                           |      |          |
| 28 DQ19              | 58 A5                   | 88 DQ35               | 118 SCL             | 148 V <sub>SS</sub> | 178 A6              | 208 V <sub>SS</sub> | 238 SDA                |                     |                           |      |          |
| 29 V <sub>SS</sub>   | 59 A4                   | 89 V <sub>SS</sub>    | 119 SA2             | 149 DQ28            | 179 V <sub>DD</sub> | 209 DQ44            | 239 V <sub>SS</sub>    |                     |                           |      |          |
| 30 DQ24              | 60 V <sub>DD</sub>      | 90 DQ40               | 120 V <sub>TT</sub> | 150 DQ29            | 180 A3              | 210 DQ45            | 240 V <sub>TT</sub>    |                     |                           |      |          |

\* Not used

### Front view



### Back view



### Side view



### Notes

Tolerances on all dimensions except where otherwise indicated are  $\pm .13$  (.005).

All dimensions are expressed: millimeters [inches]



### Absolute Maximum Ratings

(Note: Operation at or above Absolute Maximum Ratings can adversely affect module reliability.)

| PARAMETER                                              | Symbol                          | Minimum | Maximum | Unit |
|--------------------------------------------------------|---------------------------------|---------|---------|------|
| Temperature, non-Operating                             | T <sub>STORAGE</sub>            | -55     | 100     | C    |
| Ambient Temperature, Operating                         | T <sub>A</sub>                  | 0       | 70      | C    |
| DRAM Case Temperature, Operating                       | T <sub>CASE</sub>               | 0       | 95      | C    |
| Voltage on V <sub>DD</sub> relative to V <sub>SS</sub> | V <sub>DD</sub>                 | -0.4    | 1.975   | V    |
| Voltage on Any Pin relative to V <sub>SS</sub>         | V <sub>IN,V<sub>OUT</sub></sub> | -0.4    | 1.975   | V    |

Notes:

DRAM Operating Case Temperature above 85C requires 2X refresh.

### Recommended DC Operating Conditions (T<sub>A</sub> = 0 to 70 C, Voltage referenced to V<sub>SS</sub> = 0 V)

| PARAMETER             | Symbol             | Minimum              | Typical              | Maximum              | Unit | Note |
|-----------------------|--------------------|----------------------|----------------------|----------------------|------|------|
| Power Supply Voltage  | V <sub>DD</sub>    | 1.425                | 1.5                  | 1.575                | V    |      |
| I/O Reference Voltage | V <sub>REFDQ</sub> | 0.49 V <sub>DD</sub> | 0.50 V <sub>DD</sub> | 0.51 V <sub>DD</sub> | V    | 1    |
| I/O Reference Voltage | V <sub>REFCA</sub> | 0.49 V <sub>DD</sub> | 0.50 V <sub>DD</sub> | 0.51 V <sub>DD</sub> | V    | 1    |

Notes:

1) The value of V<sub>REF</sub> is expected to equal one-half V<sub>DD</sub> and to track variations in the V<sub>DD</sub> DC level. Peak-to-peak noise on V<sub>REF</sub> may not exceed  $\pm 1\%$  of its DC value. For Reference V<sub>DD</sub>/2  $\pm$  15 mV.

### DC Input Logic Levels, Single-Ended (T<sub>A</sub> = 0 to 70 C, Voltage referenced to V<sub>SS</sub> = 0 V)

| PARAMETER              | Symbol              | Minimum                | Maximum                | Unit |
|------------------------|---------------------|------------------------|------------------------|------|
| Logical High (Logic 1) | V <sub>IH(DC)</sub> | V <sub>REF</sub> + 0.1 | V <sub>DD</sub>        | V    |
| Logical Low (Logic 0)  | V <sub>IL(DC)</sub> | V <sub>SS</sub>        | V <sub>REF</sub> - 0.1 | V    |

### AC Input Logic Levels, Single-Ended (T<sub>A</sub> = 0 to 70 C, Voltage referenced to V<sub>SS</sub> = 0 V)

| PARAMETER              | Symbol              | Minimum                  | Maximum                  | Unit |
|------------------------|---------------------|--------------------------|--------------------------|------|
| Logical High (Logic 1) | V <sub>IH(AC)</sub> | V <sub>REF</sub> + 0.175 | -                        | V    |
| Logical Low (Logic 0)  | V <sub>IL(AC)</sub> | -                        | V <sub>REF</sub> - 0.175 | V    |

### Differential Input Logic Levels ( $T_A = 0$ to $70^\circ C$ , Voltage referenced to $V_{ss} = 0$ V)

| PARAMETER                                                  | Symbol        | Minimum                       | Maximum                       | Unit |
|------------------------------------------------------------|---------------|-------------------------------|-------------------------------|------|
| Differential Input Logic High                              | $V_{IH,DIFF}$ | +0.200                        | DC: $V_{DD}$ AC: $V_{DD}+0.4$ | V    |
| Differential Input Logic Low                               | $V_{IL,DIFF}$ | DC: $V_{SS}$ AC: $V_{SS}-0.4$ | -0.200                        | V    |
| Differential Input Cross Point Voltage relative to $VDD/2$ | $V_{IX}$      | - 0.150                       | + 0.150                       | V    |

### Capacitance ( $T_A = 25^\circ C$ , $f = 100$ MHz)

| PARAMETER                  | Pin                                                          | Symbol   | Minimum | Maximum | Unit |
|----------------------------|--------------------------------------------------------------|----------|---------|---------|------|
| Input Capacitance, Clock   | $CK0, /CK0$                                                  | $C_{CK}$ | 1.5     | 2.5     | pF   |
| Input Capacitance, Address | $BA[2:0], A[15:0], /RAS, /CAS, /WE$                          | $C_I$    | 1.5     | 2.5     | pF   |
| Input Capacitance Control  | $/S[1:0], CKE[1:0], ODT[1:0]$                                | $C_I$    | 1.5     | 2.5     | pF   |
| Input/Output Capacitance   | $DQ[63:0], CB[7:0] DQS[8:0], /DQS[8:0], DM[8:0], TDQS[17:9]$ | $C_{IO}$ | 3       | 5       | pF   |
| ZQ Capacitance             | ZQ                                                           | $C_{ZQ}$ | -       | 6       | pF   |

### DC Characteristics ( $T_A = 0$ to $70^\circ C$ , Voltage referenced to $V_{ss} = 0$ V)

| PARAMETER                                                       | Symbol   | Minimum | Maximum | Unit    | Note |
|-----------------------------------------------------------------|----------|---------|---------|---------|------|
| Input Leakage Current<br>(Any input 0 V < $V_{IN}$ < $V_{DD}$ ) | $I_{IL}$ | -18     | +18     | $\mu A$ | 1,2  |
| Output Leakage Current<br>(0V < $V_{OUT}$ < $V_{DDQ}$ )         | $I_{OL}$ | -10     | +10     | $\mu A$ | 2,3  |

Notes:

- 1) All other pins not under test = 0 V
- 2) Values are shown per pin
- 3) DQ, DQS, DQS and ODT are disabled

**I<sub>DD</sub> Specifications and Conditions (T<sub>A</sub> = 0 to 70 C, Voltage referenced to V<sub>ss</sub> = 0 V)**

| PARAMETER                                               | Symbol              | Test Condition                                              | Max Value | Unit |
|---------------------------------------------------------|---------------------|-------------------------------------------------------------|-----------|------|
| <b>Operating One Bank Active-Precharge Current</b>      | I <sub>DD0*</sub>   | Operating current : One bank ACTIVATE-to-PRECHARGE          | 1740      | mA   |
| <b>Operating One Bank Active-Read-Precharge Current</b> | I <sub>DD1*</sub>   | Operating current : One bank ACTIVATE-to-READ-to-PRECHARGE  | 1875      | mA   |
| <b>Precharge Power-Down Current</b>                     | I <sub>DD2P**</sub> | Precharge power down current: (Slow exit)                   | 1020      | mA   |
| <b>Precharge Power-Down Current</b>                     | I <sub>DD2P**</sub> | Precharge power down current: (Fast exit)                   | 1290      | mA   |
| <b>Precharge Quiet Standby Current</b>                  | I <sub>DD2Q**</sub> | Precharge quiet standby current                             | 1470      | mA   |
| <b>Precharge Standby Current</b>                        | I <sub>DD2N**</sub> | Precharge standby current                                   | 1470      | mA   |
| <b>Active Power-Down Current</b>                        | I <sub>DD3P**</sub> | Active power-down current                                   | 1290      | mA   |
| <b>Active Standby Current</b>                           | I <sub>DD3N**</sub> | Active standby current                                      | 1740      | mA   |
| <b>Operating Burst Write Current</b>                    | I <sub>DD4W*</sub>  | Burst write operating current                               | 2370      | mA   |
| <b>Operating Burst Read Current</b>                     | I <sub>DD4R*</sub>  | Burst read operating current                                | 2280      | mA   |
| <b>Burst Refresh Current</b>                            | I <sub>DD5**</sub>  | Refresh current                                             | 2595      | mA   |
| <b>Self Refresh Current</b>                             | I <sub>DD6**</sub>  | Self-refresh temperature current: MAX T <sub>C</sub> = 85°C | 1020      | mA   |
| <b>Operating Bank Interleave Read Current</b>           | I <sub>DD7*</sub>   | All bank interleaved read current                           | 3225      | mA   |

\* One module rank in this operation the rest in IDD2P slow exit.

\*\* All module ranks in this operation.

### AC Operating Conditions

| PARAMETER                                                                                     | Symbol               | Min                             | Max          | Unit                 |
|-----------------------------------------------------------------------------------------------|----------------------|---------------------------------|--------------|----------------------|
| Internal read command to first data                                                           | $t_{AA}$             | 13.5                            | 20           | ns                   |
| CAS-to-CAS Command Delay                                                                      | $t_{CCD}$            | 4                               | -            | $t_{CK}$             |
| Clock High Level Width                                                                        | $t_{CH}(\text{avg})$ | 0.47                            | 0.53         | $t_{CK}$             |
| Clock Cycle Time                                                                              | $t_{CK}$             | 1.5                             | 1.875        | ns                   |
| Clock Low Level Width                                                                         | $t_{CL}(\text{avg})$ | 0.47                            | 0.53         | $t_{CK}$             |
| Data Input Hold Time after DQS Strobe                                                         | $t_{DH}$             | 65                              | -            | ps                   |
| DQ Input Pulse Width                                                                          | $t_{DIPW}$           | 400                             | -            | ps                   |
| DQS Output Access Time from Clock                                                             | $t_{DQSCK}$          | -255                            | +255         | ps                   |
| Write DQS High Level Width                                                                    | $t_{DQSH}$           | 0.45                            | 0.55         | $t_{CK}(\text{avg})$ |
| Write DQS Low Level Width                                                                     | $t_{DQL}$            | 0.45                            | 0.55         | $t_{CK}(\text{avg})$ |
| DQS-Out Edge to Data-Out Edge Skew                                                            | $t_{DQSQ}$           | -                               | 125          | ps                   |
| Data Input Setup Time Before DQS Strobe                                                       | $t_{DS}$             | 30                              | -            | ps                   |
| DQS Falling Edge from Clock, Hold Time                                                        | $t_{DSH}$            | 0.2                             | -            | $t_{CK}(\text{avg})$ |
| DQS Falling Edge to Clock, Setup Time                                                         | $t_{DSS}$            | 0.2                             | -            | $t_{CK}(\text{avg})$ |
| Clock Half Period                                                                             | $t_{HP}$             | minimum of $t_{CH}$ or $t_{CL}$ | -            | ns                   |
| Address and Command Hold Time after Clock                                                     | $t_{IH}$             | 140                             | -            | ps                   |
| Address and Command Setup Time before Clock                                                   | $t_{IS}$             | 65                              | -            | ps                   |
| Load Mode Command Cycle Time                                                                  | $t_{MRD}$            | 4                               | -            | $t_{CK}$             |
| DQ-to-DQS Hold                                                                                | $t_{QH}$             | 0.38                            | -            | $t_{CK}(\text{avg})$ |
| Active-to-Precharge Time                                                                      | $t_{RAS}$            | 36                              | $9*t_{REFI}$ | ns                   |
| Active-to-Active / Auto Refresh Time                                                          | $t_{RC}$             | 49.5                            | -            | ns                   |
| RAS-to-CAS Delay                                                                              | $t_{RCD}$            | 13.5                            | -            | ns                   |
| Average Periodic Refresh Interval $0^\circ \text{C} \leq T_{\text{CASE}} < 85^\circ \text{C}$ | $t_{REFI}$           | -                               | 7.8          | $\mu\text{s}$        |
| Average Periodic Refresh Interval $0^\circ \text{C} \leq T_{\text{CASE}} < 95^\circ \text{C}$ | $t_{REFI}$           | -                               | 3.9          | $\mu\text{s}$        |
| Auto Refresh Row Cycle Time                                                                   | $t_{RFC}$            | 110                             | -            | ns                   |
| Row Precharge Time                                                                            | $t_{RP}$             | 13.5                            | -            | ns                   |
| Read DQS Preamble Time                                                                        | $t_{RPRE}$           | 0.9                             | Note-1       | $t_{CK}(\text{avg})$ |
| Read DQS Postamble Time                                                                       | $t_{RPST}$           | 0.3                             | Note-2       | $t_{CK}(\text{avg})$ |
| Row Active to Row Active Delay                                                                | $t_{RRD}$            | Max(4nCK, 6ns)                  | -            | ns                   |
| Internal Read to Precharge Command Delay                                                      | $t_{RTP}$            | Max(4nCK, 7.5ns)                | -            | ns                   |
| Write DQS Preamble Setup Time                                                                 | $t_{WPRE}$           | 0.9                             | -            | $t_{CK}(\text{avg})$ |
| Write DQS Postamble Time                                                                      | $t_{WPST}$           | 0.3                             | -            | $t_{CK}(\text{avg})$ |
| Write Recovery Time                                                                           | $t_{WR}$             | 15                              | -            | ns                   |
| Internal Write to Read Command Delay                                                          | $t_{WTR}$            | Max(4nCK, 7.5ns)                | -            | ns                   |

Notes:

1. The maximum preamble is bound by  $t_{LZDQS}(\text{min})$
2. The maximum postamble is bound by  $t_{HZDQS}(\text{max})$

### SERIAL PRESENCE DETECT MATRIX

| Byte # | Function.                                                            | Value             | Hex  |
|--------|----------------------------------------------------------------------|-------------------|------|
| 0      | Number of Bytes Used / Number of Bytes in SPD Device / CRC Coverage. |                   | 0x92 |
|        | Bit 3 ~ Bit 0. SPD Bytes Used -                                      | 176               |      |
|        | Bit 6 ~ Bit 4. SPD Bytes Total -                                     | 256               |      |
|        | Bit 7. CRC Coverage - Bytes 0-116                                    |                   |      |
| 1      | SPD Revision.                                                        | Rev. 1.0          | 0x10 |
| 2      | Key Byte / DRAM Device Type.                                         | DDR3 SDRAM        | 0x0B |
| 3      | Key Byte / Module Type.                                              |                   | 0x01 |
|        | Bit 3 ~ Bit 0. Module Type -                                         | RDIMM             |      |
|        | Bit 7 ~ Bit 4. Reserved -                                            | 0                 |      |
| 4      | SDRAM Density and Banks.                                             |                   | 0x02 |
|        | Bit 3 ~ Bit 0. Total SDRAM capacity, in megabits -                   | 1Gb               |      |
|        | Bit 6 ~ Bit 4. Bank Address Bits -                                   | 8 banks           |      |
|        | Bit 7. Reserved -                                                    | 0                 |      |
| 5      | SDRAM Addressing.                                                    |                   | 0x11 |
|        | Bit 2 ~ Bit 0. Column Address Bits -                                 | 10                |      |
|        | Bit 5 ~ Bit 3. Row Address Bits -                                    | 14                |      |
|        | Bit 7, 6. Reserved                                                   | 0                 |      |
| 6      | Reserved.                                                            | UNUSED            | 0x00 |
| 7      | Module Organization.                                                 |                   | 0x09 |
|        | Bit 2 ~ Bit 0. SDRAM Device Width -                                  | 8-Bits            |      |
|        | Bit 5 ~ Bit 3. Number of Ranks -                                     | 2-Rank            |      |
|        | Bit 7, 6. Reserved                                                   | 0                 |      |
| 8      | Module Memory Bus Width.                                             |                   | 0x0B |
|        | Bit 2 ~ Bit 0. Primary bus width, in bits -                          | 64-Bits           |      |
|        | Bit 4, Bit 3. Bus width extension, in bits -                         | 8-Bits            |      |
|        | Bit 7 ~ Bit 5. Reserved -                                            | 0                 |      |
| 9      | Fine Timebase (FTB) Dividend / Divisor.                              |                   | 0x52 |
|        | Bit 3 ~ Bit 0. Fine Timebase (FTB) Divisor                           | 2                 |      |
|        | Bit 7 ~ Bit 4. Fine Timebase (FTB) Dividend                          | 5                 |      |
| 10     | Medium Timebase (MTB) Dividend.                                      | 1 (MTB = 0.125ns) | 0x01 |
| 11     | Medium Timebase (MTB) Divisor.                                       | 8 (MTB = 0.125ns) | 0x08 |
| 12     | SDRAM Minimum Cycle Time (tCKmin).                                   | 1.5ns             | 0x0C |
| 13     | Reserved.                                                            | UNUSED            | 0x00 |
| 14     | CAS Latencies Supported, Least Significant Byte.                     |                   | 0x74 |
|        | Bit 0. CL = 4 -                                                      |                   |      |
|        | Bit 1. CL = 5 -                                                      |                   |      |
|        | Bit 2. CL = 6 - X                                                    |                   |      |
|        | Bit 3. CL = 7 -                                                      |                   |      |
|        | Bit 4. CL = 8 - X                                                    |                   |      |
|        | Bit 5. CL = 9 - X                                                    |                   |      |

|    |                                                                               |         |      |
|----|-------------------------------------------------------------------------------|---------|------|
|    | Bit 6. CL = 10 -                                                              | X       |      |
|    | Bit 7. CL = 11 -                                                              |         |      |
| 15 | CAS Latencies Supported, Most Significant Byte.                               |         | 0x00 |
|    | Bit 0. CL = 12 -                                                              |         |      |
|    | Bit 1. CL = 13 -                                                              |         |      |
|    | Bit 2. CL = 14 -                                                              |         |      |
|    | Bit 3. CL = 15 -                                                              |         |      |
|    | Bit 4. CL = 16 -                                                              |         |      |
|    | Bit 5. CL = 17 -                                                              |         |      |
|    | Bit 6. CL = 18 -                                                              |         |      |
|    | Bit 7. Reserved.                                                              |         |      |
| 16 | Minimum CAS Latency Time (tAamin).                                            | 13.5ns  | 0x6C |
| 17 | Minimum Write Recovery Time (tWRmin).                                         | 15.0ns  | 0x78 |
| 18 | Minimum RAS# to CAS# Delay Time (tRCDmin).                                    | 13.5ns  | 0x6C |
| 19 | Minimum Row Active to Row Active Delay Time (tRRDmin).                        | 6.0ns   | 0x30 |
| 20 | Minimum Row Precharge Delay Time (tRPmin).                                    | 13.5ns  | 0x6C |
| 21 | Upper Nibbles for tRAS and tRC.                                               |         | 0x11 |
|    | Bit 3 ~ Bit 0. tRAS Most Significant Nibble -                                 | 1       |      |
|    | Bit 7 ~ Bit 4. tRC Most Significant Nibble -                                  | 1       |      |
| 22 | Minimum Active to Precharge Delay Time (tRASmin), Least Significant Byte.     | 36.0ns  | 0x20 |
| 23 | Minimum Active to Active/Refresh Delay Time (tRCmin), Least Significant Byte. | 49.5ns  | 0x8C |
| 24 | Minimum Refresh Recovery Delay Time (tRFCmin), Least Significant Byte.        | 110.0ns | 0x70 |
| 25 | Minimum Refresh Recovery Delay Time (tRFCmin), Most Significant Byte.         | 110.0ns | 0x03 |
| 26 | Minimum Internal Write to Read Command Delay Time (tWTRmin).                  | 7.5ns   | 0x3C |
| 27 | Minimum Internal Read to Precharge Command Delay Time (tRTPmin).              | 7.5ns   | 0x3C |
| 28 | Upper Nibble for tFAW.                                                        |         | 0x00 |
|    | Bit 3 ~ Bit 0. tFAW Most Significant Nibble -                                 | 0       |      |
|    | Bit 7 ~ Bit 4. Reserved -                                                     | 0       |      |
| 29 | Minimum Four Activate Window Delay Time (tFAWmin), Least Significant Byte.    | 240     | 0xF0 |
| 30 | SDRAM Optional Features.                                                      |         | 0x02 |
|    | Bit 0. RZQ / 6 -                                                              |         |      |
|    | Bit 1. RZQ / 7 -                                                              | X       |      |
|    | Bit 6 ~ Bit 2. Reserved -                                                     |         |      |
|    | Bit 7. DLL-Off Mode Support                                                   |         |      |
| 31 | SDRAM Drivers Supported.                                                      |         | 0x81 |
|    | Extended Temperature Range -                                                  | X       |      |
|    | Extended Temperature Refresh Rate -                                           |         |      |
|    | Auto Self Refresh (ASR) -                                                     |         |      |
|    | On-die Thermal Sensor (ODTS) Readout -                                        |         |      |
|    | Reserved -                                                                    |         |      |
|    | Reserved -                                                                    |         |      |
|    | Reserved -                                                                    |         |      |

|          | Reserved -                                                | X        |      |
|----------|-----------------------------------------------------------|----------|------|
| 32       | Reserved                                                  | €        | 0x80 |
| 33-59    | Reserved                                                  | UNUSED   | 0x00 |
| 60       | Module Nominal Height.                                    |          | 0x0F |
|          | Bit 4 ~ Bit 0. Module Nominal Height max, in mm -         | 29<h<=30 |      |
| 61       | Bit 7 ~ Bit5. Reserved -                                  | 0        |      |
|          | Module Maximum Thickness.                                 |          | 0x11 |
|          | Bit 3 ~ Bit 0. Front, in mm (baseline thickness = 1 mm) - | 1<th<=2  |      |
| 62       | Bit 7 ~ Bit 4. Back, in mm (baseline thickness = 1 mm) -  | 1<th<=2  |      |
|          | Reference Raw Card Used.                                  |          | 0x01 |
|          | Bit 4 ~ Bit 0. Reference Raw Card -                       | R/C B    |      |
|          | Bit 6, Bit 5. Reference Raw Card Revision -               | Rev.0    |      |
| 63       | Bit 7. Reserved -                                         | 0        |      |
|          | Address Mapping from Edge Connector to DRAM.              |          | 0x05 |
|          | Bit 0. Rank 1 Mapping (Registered DIMM - Reserved) -      |          |      |
| 64-66    | Bit 7 ~ Bit 1. Reserved -                                 |          |      |
|          | Module-Specific Section                                   | UNUSED   | 0x00 |
| 67       | Register Revision Number                                  |          | FF   |
| 68, 69   | Module-Specific Section                                   | UNUSED   |      |
| 70       | Module-Specific Section                                   | P        | 0x50 |
| 71-112   | Module-Specific Section                                   | UNUSED   | 0x00 |
| 113      | Module-Specific Section.                                  | UNUSED   | 0x00 |
| 114-116  | Module-Specific Section                                   | UNUSED   | 0x00 |
| 117      | Module Manufacturer ID Code, Least Significant Byte       |          | 0x01 |
| 118      | Module Manufacturer ID Code, Most Significant Byte        |          | 0x91 |
| 119      | Module Manufacturing Location                             | UNUSED   | 0x00 |
| 120, 121 | Module Manufacturing Date                                 |          | 0x20 |
| 122-125  | Module Serial Number                                      |          | 0x20 |
| 126      | Cyclical Redundancy Code (CRC).                           | CRC      | 0xB4 |
| 127      | Cyclical Redundancy Code (CRC).                           | CRC      | 0xEA |
| 128-131  | Module Part Number                                        |          | 0x20 |
| 132      | Module Part Number                                        | D        | 0x44 |
| 133      | Module Part Number                                        | A        | 0x41 |
| 134      | Module Part Number                                        | T        | 0x54 |
| 135      | Module Part Number                                        | A        | 0x41 |
| 136      | Module Part Number                                        | R        | 0x52 |
| 137      | Module Part Number                                        | A        | 0x41 |
| 138      | Module Part Number                                        | M        | 0x4D |
| 139      | Module Part Number                                        |          | 0x20 |
| 140      | Module Part Number                                        | 6        | 0x36 |

|             |                                                   |        |      |
|-------------|---------------------------------------------------|--------|------|
| 141         | Module Part Number                                | 4      | 0x34 |
| 142         | Module Part Number                                | 3      | 0x33 |
| 143         | Module Part Number                                | 1      | 0x31 |
| 144         | Module Part Number                                | 2      | 0x32 |
| 145         | Module Part Number                                |        | 0x20 |
| 146,<br>147 | Module Revision Code                              |        | 0x20 |
| 148         | DRAM Manufacturer ID Code, Least Significant Byte | UNUSED | 0x00 |
| 149         | DRAM Manufacturer ID Code, Most Significant Byte  | UNUSED | 0x00 |
| 150-<br>175 | Manufacturer's Specific Data                      | UNUSED | 0x00 |
| 176-<br>255 | Open for customer use                             | UNUSED | 0x00 |
|             |                                                   |        |      |



# DTM64312E

---

2GB - 240-Pin 2Rx8 Registered ECC DDR3 DIMM

---



DATARAM CORPORATION, USA Corporate Headquarters, P.O.Box 7528, Princeton, NJ 08543-7528;  
Voice: 609-799-0071, Fax: 609-799-6734; [www.dataram.com](http://www.dataram.com)

All rights reserved.

The information contained in this document has been carefully checked and is believed to be reliable. However, Dataram assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Dataram.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Dataram.