Etude et développement d'outils mathématiques pour estimer, en temps réel, le tassage et le volume d'un silo de maïs à partir de capteurs embarqués

Point Mi-stage Sébastien Hervieu 12 Juillet 2018

Plan

- Tellus Environnement
- Progession Stage
- Démonstation
- Questions

Tellus Environment

- Startup spécialisée dans le relevé et la cartographie de sous-sols et milieux sousmarins et aquatiques
- Petite activité R&D:
 - Nouveaux outils de relevé (Drones, Relevés Multicanaux)
 - Agriculture de précision

Symeter 2

Environnement de développement

- Prototypage d'un système de mesure largement autonome
 - Logiciel sous ROS
 - Plateforme Hardware Simulée sous Gazebo
- Le HW simulé permet:
 - Initier la chaine de traitement
 - Simuler des configurations HW variées
 - Identifier les axes d'améliorations pour augmenter la fiabilité du procédé.
 - Evite Moyens « lourds ».

Démarche du Stage

- Apprentissage / Faisabilité ROS Gazebo
- Implémentation « Tracteur Virtuel »
- Montage des modules ROS pour Symeter 2
 - Localisation (fusion IMU + GPS)
 - Acquisition LIDAR
 - Traitement des données
 - Pilotage logique prestation (GUI, Stockage, coordination)

ROS – Plateforme Robotique

- Robot OS Open Source
- Basé sur un ensemble de process
- Interfaces standardisées, simples à déployer
 - Tf: Transformations positionnement des éléments internes du robots, et du robot dans le monde
 - Com interprocess continue (topics) ou interactionnelle (services)
- Extrêmement modulaire
 - De très nombreux capteurs intégrés
 - De nombreux modules existants pour assurer localisation, traitement des données, etc

Gazebo

- Simuler un environnement « physique » dans lequel évolue un robot virtuel
 - Spécification d'un « monde » virtuel
 - Interaction du robot avec son environnement
 - Capteur (Lidar, GPS, IMU, Caméra, etc)
 - Actuateurs (moteurs, actionneurs,...)
 - Physique (Gravité, friction, ...)
- Interaction fine avec ROS

Apprentissage / Faisabilité ROS - Gazebo

- Monter une simulation d'un robot simple
 - Acquérir l'expertise nécessaire
 - Vérifier la disponibilité des modules nécessaire à simulation Symeter 2
 - Véhicule téléguidable
 - Mise en œuvre Lidar simulé
 - Mise en œuvre IMU simulé
 - Mise en œuvre GPS simulé
- Coutournement de bugs et limitations de Gazebo
 - Contrôleur PID, gestion de la friction capricieuse

Robot Préliminaire

Tracteur Simulé

- Plateforme ayant taille et vitesse d'un Tracteur Réel
 - Propulsion et direction (différentiel, Ackerman)
 - Implantation des capteurs
- Description par fichier XML (URDF)
 - De nombreux contournements à mettre en place

Localisation

- Fusion de Données:
 - IMU (assiette, accélération linéaire)
 - GPS (coordonnées terrestres, précision ~10cm)
 - Obtenir estimation précise Pose du tracteur
- Mise en œuvre d'un node ROS: ekf_localisation_node
- Développement scriptes Python pour analyse des tests

Localisation

Parcours Réel

Parcours Estimé

Localisation: Axes d'amélioration

- Mieux utiliser l'IMU
- Chercher un IMU simulé moins bruité
- Utiliser des données issues d'un IMU réel.

Traitement Lidar

- Un Lidar génère beaucoup de données
 - Filtrage nécessaire
- Reconstitution de la scène
 - Carte d'occupation 3D
 - Octree
- Point Cloud Library

Progression du stage

- Nous partions d'une feuille blanche
- Le procédé de base est maintenant disponible
- Maintenant faire des tests:
 - Positionnement des capteurs
 - Amélioration de la Localisation -> précision
 - Améliorer les traitements PCL > précision et performance

Démonstration

Et les Maths dans tout ça?

- Géométrie (« Pose »)
 - Coordonnées Homogènes, Géométrie Projective
 - Quaternions Unitaires (rotations)
- Estimation Filtres de Kalman
- Nuages de Points
 - Filtrage (Voxel grid)
 - Interpolation
 - OctoMap (Map d'occupation probabiliste)
 - Extraction de paramètres (RANSAC)

Etude préliminaire Lidar

- Etudier l'influence de l'inclinaison d'un lidar par rapport à la surface
- Etude bibliographique:
 - Matériaux granulaire répondent bien même si forte inclinaison
- Simulation sous Spyder:
 - Etudier la taille (forme) du faiseau laser suivant l'inclinaison par rapport à la cible
 - Géométrie projective