School of Electronic Engineering and Computer Science QMUL-BUPT Joint Programme

Science and Engineering

EBU6475 Microprocessor System Design EBU5476 Microprocessors for Embedded Computing

The ARM Cortex-M4 Processor Architecture

Last updated: 25 February, 2020 University Program Education Kits

Outline

- ARM Architectures and Processors
 - What is ARM Architecture
 - ARM Processor Families
 - ARM Cortex-M Series
 - Cortex-M4 Processor
 - ARM Processor vs. ARM Architectures
- ARM Cortex-M4 Processor
 - Cortex-M4 Processor Overview
 - Cortex-M4 Block Diagram
 - Cortex-M4 Registers

ARM Architectures and Processors

What is ARM Architecture?

- ARM architecture is a family of RISC-based processor architectures
 - Advanced RISC Machine
 - Well-known for its power efficiency;
 - Hence widely used in mobile devices, such as smartphones and tablets
 - Designed and licensed to a wide eco-system by ARM
- ARM Holdings
 - The company designs ARM-based processors;
 - Does not manufacture, but licenses designs to semiconductor partners who add their own Intellectual Property (IP) on top of ARM's IP, fabricate and sell to customers;
 - Also offer other IP apart from processors, such as physical IPs, interconnect IPs, graphics cores, and development tools.

ARM Processor Families

- Cortex-A series (Application)
 - High performance processors capable of full Operating System (OS) support;
 - Applications include smartphones, digital TV, smart books, home gateways etc.
- Cortex-R series (Real-time)
 - High performance for real-time applications;
 - High reliability
 - Applications include automotive braking system, powertrains etc.
- Cortex-M series (Microcontroller)
 - Cost-sensitive solutions for deterministic microcontroller applications;
 - Applications include microcontrollers, mixed signal devices, smart sensors, automotive body electronics and airbags;
- SecurCore series
 - High security applications.
- Previous classic processors
 - Include ARM7, ARM9, ARM11 families

As of Dec 2013

Design an ARM-based SoC

- Select a set of IP cores from ARM and/or other third-party IP vendors
- Integrate IP cores into a single chip design
- Give design to semiconductor foundries for chip fabrication

ARM Cortex-M Series

- Cortex-M series: Cortex-M0, M0+, M1, M3, M4.
- Energy-efficiency
 - Lower energy cost, longer battery life
- Smaller code
 - Lower silicon costs
- Ease of use
 - Faster software development and reuse
- Embedded applications
 - Smart metering, human interface devices, automotive and industrial control systems, white goods, consumer products and medical instrumentation

As of Dec 2013

ARM Processors vs. ARM Architectures

ARM architecture

- Describes the details of instruction set, programmer's model, exception model, and memory map
- Documented in the Architecture Reference Manual

ARM processor

- Developed using one of the ARM architectures
- More implementation details, such as timing information
- Documented in processor's Technical Reference Manual

As of Dec 2013

ARM Cortex-M Series Family

Processor	ARM Architectur e	Core Architectur e	Thumb [•]	Thumb ^e -2	Hardware Multiply	Hardware Divide	Saturated Math	DSP Extensions	Floating Point
Cortex- M0	ARMv6-M	Von Neumann	Most	Subset	1 or 32 cycle	No	No	Software	No
Cortex- M0+	ARMv6-M	Von Neumann	Most	Subset	1 or 32 cycle	No	No	Software	No
Cortex- M1	ARMv6-M	Von Neumann	Most	Subset	3 or 33 cycle	No	No	Software	No
Cortex- M3	ARMv7-M	Harvard	Entire	Entire	1 cycle	Yes	Yes	Software	No
Cortex- M4	ARMv7E- M	Harvard	Entire	Entire	1 cycle	Yes	Yes	Hardware	Optional

ARM Cortex-M4 Processor Overview

Cortex-M4 Processor Overview

- Cortex-M4 Processor
 - Introduced in 2010
 - Designed with a large variety of highly efficient signal processing features
 - Features extended single-cycle multiply accumulate instructions, optimized SIMD arithmetic, saturating arithmetic and an optional Floating Point Unit.
- High Performance Efficiency
 - 1.25 DMIPS/MHz (Dhrystone Million Instructions Per Second / MHz) at the order of μWatts / MHz
- Low Power Consumption
 - Longer battery life especially critical in mobile products
- Enhanced Determinism
 - The critical tasks and interrupt routines can be served quickly in a known number of cycles

Cortex-M4 Processor Features

- 32-bit Reduced Instruction Set Computing (RISC) processor
- Harvard architecture
 - Separated data bus and instruction bus
- Instruction set
 - Include the entire Thumb®-1 (16-bit) and Thumb®-2 (16/32-bit) instruction sets
- 3-stage + branch speculation pipeline
- Performance efficiency
 - 1.25 1.95 DMIPS/MHz (Dhrystone Million Instructions Per Second / MHz)
- Supported Interrupts
 - Non-maskable Interrupt (NMI) + 1 to 240 physical interrupts
 - 8 to 256 interrupt priority levels

Cortex-M4 Processor Features

- Supports Sleep Modes
 - Up to 240 Wake-up Interrupts
 - Integrated WFI (Wait For Interrupt) and WFE (Wait For Event) Instructions and Sleep On Exit capability (to be covered in more detail later)
 - Sleep & Deep Sleep Signals
- Enhanced Instructions
 - Hardware Divide (2-12 Cycles)
 - Single-Cycle 16/32-bit MAC, Single-cycle dual 16-bit MAC
 - 8/16-bit SIMD arithmetic
- Debug
 - Optional JTAG & Serial-Wire Debug (SWD) Ports
 - Up to 8 Breakpoints and 4 Watchpoints
- Memory Protection Unit (MPU)
 - Optional 8 region MPU with sub regions and background region

Cortex-M4 Processor Features

- Cortex-M4 processor is designed to meet the challenges of low dynamic power constraints while retaining light footprints
 - 180 nm ultra low power process: 151 μW/MHz
 - 90 nm low power process: 32.82 μW/MHz
 - 40 nm low power process: 12.26 μW/MHz

ARM Cortex-M4 Implementation Data									
Process	180ULL (7-track, typical 1.8v, 25°C)	90LP (7-track, typical 1.2v, 25°C)	40LP 9-track, typical 1.1v, 85°C)						
Dynamic Power	151 μW/MHz	32.82 μW/MHz	12.26 μW/MHz						
Floorplanned Area	0.44 mm ²	0.119 mm ²	0.028 mm ²						

- Processor core
 - Contains internal registers, the ALU, data path, and some control logic
 - Registers include sixteen 32-bit registers for both general and special usage
- Processor pipeline stages
 - Three-stage pipeline: fetch, decode, and execution
 - Some instructions may take multiple cycles to execute, in which case the pipeline will be stalled
 - The pipeline will be flushed if a branch instruction is executed
 - Up to two instructions can be fetched in one transfer (16-bit instructions)

- Nested Vectored Interrupt Controller (NVIC)
 - Up to 240 interrupt request signals and a non-maskable interrupt (NMI)
 - Automatically handles nested interrupts, such as comparing priorities between interrupt requests and the current priority level
- Wakeup Interrupt Controller (WIC)
 - For low-power applications, the microcontroller can enter sleep mode by shutting down most of the components.
 - When an interrupt request is detected, the WIC can inform the power management unit to power up the system.
- Memory Protection Unit (optional)
 - Used to protect memory content, e.g. make some memory regions read-only or preventing user applications from accessing privileged application data

Bus interconnect

- Allows data transfer to take place on different buses simultaneously
- Provides data transfer management, e.g. a write buffer, bitoriented operations (bit-band)
- Includes the internal bus system, the data path in the processor core, and the AHB LITE protocol unit including ICode, Dcode and System interfaces
- May include bus bridges (e.g. AHB-to-APB bus bridge) to connect different buses into a network using a single global memory space

Debug subsystem

- Handles debug control, program breakpoints, and data watchpoints
- When a debug event occurs, it can put the processor core in a halted state, where developers can analyse the status of the processor at that point, such as register values and flags

ARM Cortex-M4 Processor Registers

- Processor registers
 - The internal registers are used to store and process temporary data within the processor core
 - All registers are inside the processor core, hence they can be accessed quickly
 - Load-store architecture
 - To process memory data, they have to be first loaded from memory to registers, processed inside the processor core using register data only, and then written back to memory if needed
- Cortex-M4 registers
 - Register bank
 - Sixteen 32-bit registers (thirteen are used for generalpurpose);
 - Special registers

- R0 R12: general purpose registers
 - Low registers (R0 R7) can be accessed by any instruction
 - High registers (R8 R12) sometimes cannot be accessed e.g. by some Thumb (16-bit) instructions
- R13: Stack Pointer (SP)
 - Records the current address of the stack
 - Used for saving the context of a program while switching between tasks
 - Cortex-M4 has two SPs: Main SP, used in applications that require privileged access e.g. OS kernel, and exception handlers, and Process SP, used in base-level application code (when not running an exception handler)
- R15: Program Counter (PC)
 - Records the address of the next instruction for execution
 - Automatically incremented by 4 at each operation (for 32bit instruction code), except branching operations
 - A branching operation, such as function calls, will change the PC to a specific address, meanwhile it saves the current PC to the Link Register (LR)

- R14: Link Register (LR)
 - The LR is used to store the return address of a subroutine or a function call
 - The program counter (PC) will load the value from LR after a function is finished

- xPSR, combined Program Status Register
 - Provides information about program execution and ALU flags
 - Application PSR (APSR)
 - Interrupt PSR (IPSR)
 - Execution PSR (EPSR)

APSR

- N: negative flag set to one if the result from ALU is negative
- Z: zero flag set to one if the result from ALU is zero
- C: carry flag set to one if an unsigned overflow occurs
- V: overflow flag set to one if a signed overflow occurs
- Q: DSP overflow and saturation flag set to one if saturation has occurred in saturating arithmetic instructions, or overflow has occurred in certain multiply instructions

IPSR

ISR number – current executing interrupt service routine number

EPSR

- T: Thumb state always one since Cortex-M4 only supports the Thumb state (more on processor states in the next module)
- IC/IT: Interrupt-Continuable Instruction (ICI) bit, IF-THEN instruction status bit

- Interrupt mask registers
 - 1-bit PRIMASK
 Set to one will block all the interrupts apart from non-maskable interrupt (NMI) and the hard fault exception
 - 1-bit FAULTMASK
 Set to one will block all the interrupts apart from NMI
 - 1-bit BASEPRI
 Set to a non zero value will block all interrupts of the same or lower level (only allow for interrupts with higher priorities)
- CONTROL: special register
 - 1-bit stack definition
 Set to one: use the process stack pointer (PSP)
 Clear to zero: use the main stack pointer (MSP)

Useful Resources

Architecture Reference Manual:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0403c/index.html

Cortex-M4 Technical Reference Manual:

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439d/DDI0439D_cortex_m4_processor_r0p1_trm.pdf

Cortex-M4 Devices Generic User Guide:

http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A_cortex_m4_dgug.pdf