Comment caractériser nos antennes

Antennes DIY: Boite a « T »

Fréquence :

- 1600 MHz 2200 MHz
- B = 600 MHz

Le résultat de la mesure

Comment analyser ce résultat ?

Marker 1

Frequency: 1.81886 GHz VSWR: 1.172 Return loss: 22.045 dB

Marker 2

Frequency: 1.61538 GHz VSWR: 1.929 Return loss: -9.972 dB

Marker 3

Frequency: 2.21092 GHz VSWR: 1.873 Return loss: -10.350 dB

Un autre résultat

Comment l'interpréter

Marker 1

Frequency: 1.81886 GHz VSWR: 1.172

Return loss: 22.045 dB

Marker 2

Frequency: 1.61538 GHz

VSWR: 1.929 Return loss: -9.972 dB

Marker 3

Frequency: 2.21092 GHz

VSWR: 1.873 Return loss: -10.350 dB

Ou alors

Que penser de ce résultat?

Marker 1

Frequency: 1.81886 GHz VSWR: 1.172

Return loss: 22.045 dB

Marker 2

Frequency: 1.61538 GHz

VSWR: 1.929 Return loss: -9.972 dB

Marker 3

Frequency: 2.21092 GHz

VSWR: 1.873 Return loss: -10.350 dB

L'abaque de Smith

Comment l'utiliser

Marker 1

Frequency: 1.81886 GHz VSWR: 1.172 Return loss: 22.045 dB

Marker 2

Frequency: 1.61538 GHz VSWR: 1.929 Return loss: -9.972 dB

Marker 3

Frequency: 2.21092 GHz VSWR: 1.873 Return loss: -10.350 dB

Qu'est-ce qu'un abaque de Smith?

- Un outil graphique pour tracer et calculer :
 - L'impédance complexe
 - Le coefficient de réflexion complexe
 - Le ROS (VSWR)
 - Les effets des lignes de transmission
 - Les réseaux d'adaptation
 - et plus encore

Coefficient de réflexion

Coefficient de réflexion

Impédance complexe

Impédance Complexe - Cas particuliers

Effet de la Ligne de transmission

Lmin et Lmax et VSWR (ROS)

Abaque de Smith

- Un outil graphique pour tracer et calculer :
 - L'impédance complexe
 - Le coefficient de réflexion complexe
 - Le ROS (VSWR)
 - Les effets des lignes de transmission
 - Les réseaux d'adaptation
 - et plus encore

