75. Sejam D um domínio de integridade, $a,b,c,d\in D$ e $u,u'\in\mathcal{U}_D$. Mostre que:

(a) $a \mid b \Rightarrow a \mid bc$;

(d) $a \mid b, c \mid d \Rightarrow ac \mid bd;$

(b) $a \mid b \Leftrightarrow au \mid b$;

(e) $a \mid b$, $a \mid c \Rightarrow a \mid (b+c)$;

(c) $a \mid b \Leftrightarrow au \mid bu'$;

(f) $a \mid b, b \mid c \Rightarrow a \mid c$.

76. Sejam D um domínio de integridade e α a relação binária definida em D por

 $a \alpha b \Leftrightarrow a e b \tilde{sao} associados.$

Mostre que α é uma relação de equivalência em D e determine a classe de equivalência $[a]_{\alpha}$, para todo $a \in D$.

- 77. Sejam D um domínio de integridade e $u \in D$. Mostre que:
 - (a) $u \in \mathcal{U}_D$ se e só se $u \mid x$, para todo $x \in D$;
 - (b) $u \in \mathcal{U}_D$ se e só se (u) = D.
- 78. Considere o domínio de integridade $\mathbb{Z}[\sqrt{-5}]$.
 - (a) Determine o conjunto das unidades de $\mathbb{Z}[\sqrt{-5}]$.
 - (b) Mostre que $1 + 2\sqrt{-5}$ é irredutível em $\mathbb{Z}[\sqrt{-5}]$.
 - (c) Mostre que $1 + 2\sqrt{-5}$ não é um elemento primo em $\mathbb{Z}[\sqrt{-5}]$.
 - (d) Determine $[1+2\sqrt{-5},3]$.
- 79. Considere o domínio de integridade $\mathbb{Z}[\sqrt{-6}]$.
 - (a) Mostre que $2+\sqrt{-6}$ é irredutível mas não é primo.
 - (b) Prove que não existe $m.d.c.(2(2+\sqrt{-6}),10)$.
 - (c) Prove que não existem elementos $\alpha, \beta \in \mathbb{Z}[-6]$ tais que

$$5\alpha + \beta(2 + \sqrt{-6}) = 1.$$

- 80. Considere o domínio de integridade $\mathbb{Z}[\sqrt{-7}]$.
 - (a) Prove que 2 é irredutível mas não é primo.
 - (b) Justifique que existe m.d.c. $(2, 1 + \sqrt{-7})$.
 - (c) Mostre que não existem elementos $\gamma,\delta\in\mathbb{Z}[\sqrt{-7}]$ tais que

$$2\gamma + \delta(1 + \sqrt{-7}) = 1.$$

81. Sejam D um domínio de integridade e $p,q \in D$ elementos irredutíveis não associados. Mostre que $[p,q] = \mathcal{U}$.