Hodgkin-Huxley Model

Isabelle Byrne

Hodgkin and Huxley

- University of Cambridge
- Published model in 1952
- Set of four coupled ODEs
- Describes the dynamics of the membrane potential of a neuron and the flow of ions across the cell membrane
- Models the action potential

Neurons

- An excitable cell of the nervous system
- 'Start' at dendrites
- 'End' at axon terminals
- Signal is received from other neurons at the dendrites
- If input signal is larger than the firing threshold, the neuron will fire its own signal down its axon.

Cell membrane

Capacitance

The ability to store electric charge is called capacitance.

$$Q = CV$$

Q is the charge difference

C is capacitance (const)

V is voltage

Time derivative: describes how the voltages changes as charges redistribute across the membrane:

$$\frac{\partial Q}{\partial t} = C \frac{\partial V}{\partial t}$$

Membranes are semi-permeable:

Sodium and potassium gates that control the flow of ions in and out of the cell

$$\frac{\partial Q}{\partial t} = C \frac{\partial V}{\partial t} \qquad \rightarrow \qquad C \frac{\partial V}{\partial t} = \sum I_{ion} \qquad \rightarrow \qquad C \frac{\partial V}{\partial t} = I_k + I_{Na} + I_L$$
 Leak term

Link between membrane voltage and the ionic currents flowing through ion channels

Action potential

• Brief pulse of increased membrane voltage

Na+ channels open, letting more + charge into the cell and increase the voltage

Na+ channels close. K+ channels open, which + charge leaves the cell, decreasing the voltage

How is this all coordinated?

Rate of Ion Flow

- Depends on two factors:
 - 1. How many channels are open
 - 2. Driving force
 - 1. Diffusion
 - 2. Electrical force

These are competing forces. Equilibrium potential of potassium, E_k , is the voltage when the two forces are exactly balanced. The current can be modeled as:

$$I_k = g_k(E_k - V)$$

Conductance Driving force (open channels)

Ion channels

- Voltage dependent
 - Conductance term g_{ion} is a function of voltage, $g_{ion}(V)$

$$I_{ion} = g_{ion}(V)(E_{ion} - V)$$
$$g_{ion}(V) = \bar{g}p$$

With \bar{g} being maximal conductance (all channels are open) and p being a probability of a channel being open

$$p = \frac{open}{open + closed}$$

Ion channels

$$\frac{dn}{dt} = \alpha(1-n) - \beta n$$

The functions of α and β were discovered experimentally and fit from empirical data:

$$\alpha_n(V) = \frac{0.01(V+55)}{1-exp(-0.1(V+55))}$$

$$\beta_n(V) = 0.125exp(-0.0125(V+65))$$

The probability of the entire channel being permissible is n^4 , and the current is now:

$$I_K = \bar{g}n^4(E_K - V)$$

Final ODE's

Recall:

•
$$\frac{\partial Q}{\partial t} = C \frac{\partial V}{\partial t}$$
 \rightarrow $C \frac{\partial V}{\partial t} = \sum I_{ion}$ \rightarrow $C \frac{\partial V}{\partial t} = I_k + I_{Na} + I_L$

And we have:

•
$$I_K = \overline{g_K} n^4 (E_K - V)$$
 $I_{Na} = \overline{g_{Na}} m^3 h (E_{Na} - V)$ $I_L = \overline{g_L} (E_L - V)$
• $\frac{dn}{dt} = \alpha (1 - n) - \beta n$ $\frac{dm}{dt} = \alpha (1 - m) - \beta m$ $\frac{dh}{dt} = \alpha (1 - h) - \beta h$

Final ODE's

$$C\frac{\partial V}{\partial t} = I_{ext} + \left(\overline{g_K}n^4(E_K - V) + \overline{g_{Na}}m^3h(E_{Na} - V) + \overline{g_L}(E_L - V)\right),$$

$$\frac{dn}{dt} = \alpha_n (1 - n) - \beta_n n,$$

$$\frac{dm}{dt} = \alpha_m (1 - m) - \beta_m m,$$

$$\frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h,$$

For state variables $\begin{bmatrix} n \\ m \end{bmatrix}$

With constants:

$$\overline{g_{Na}} = 120_{ms/cm^2}$$

$$\overline{g_K} = 36_{ms/cm^2}$$

$$\overline{g_L} = 0.3_{ms/cm^2}$$

$$E_{Na} = 50_{mV}$$

$$E_K = -77_{mV}$$

$$E_K = -77_{mV}$$

$$E_L = -54.387_{mV}$$

And equations:

$$\alpha_n(V) = \frac{0.01(V+55)}{1-e^{-0.1(V+55)}}$$

$$\beta_n(V) = 0.125e^{-0.0125(V+65)}$$

$$\alpha_m(V) = \frac{0.1(V+40)}{1 - e^{-0.1(V+40)}}$$

$$\beta_m(V) = 4e^{-0.0556(V+65)}$$

$$\alpha_h(V) = 0.07e^{-0.05(V+65)}$$

$$\beta_h(V) = \frac{1}{1 + e^{-0.1(V + 35)}}$$