Sprawozdanie Metody numeryczne 2 **Temat 4, Zadanie nr 12**

Mateusz Śliwakowski, F
44/12/2018

1 Treść zadania

Wzory empiryczne. Baza: $1, x, y, x^2y^2$. Tablicowanie błędów w punktach pomiarowych oraz obliczanie błędu średniokwadratowego. Punkty pomiarowe wybieramy z prostokąta $[a, b] \times [c, d]$.

2 Opis metody

Dana jest baza funkcji: $1, x, y, x^2y^2$, nazwijmy je g_1, g_2, g_3, g_4 . Za ich pomocą chcemy aproksymować daną funkcję f funkcją $f^* = \sum_{j=1}^4 a_j g_j$ w taki sposób, aby $H = \sum_{i=1}^N (f(x_i) - f^*(x_i))^2 \longrightarrow min$. Zadanie sprowadza się do znalezienia współczynników $a_1, a_2, a_3, a_4 \in \mathbb{R}$. N to liczba punktów pomiarowych. Najczęściej powyższej metody używa się, gdy do danych zebranych doświadczalnie chcemy jak najlepiej dopasować krzywą.

Chcemy znaleźć minimum lokalne funkcji H:

$$\frac{\partial H}{\partial a_k}(a_1, \dots, a_4) \sum_{i=1}^N 2(f(x_i) - \sum_{j=1}^4 a_j g_j(x_i))(0 - g_k(x_i)) = 0$$
$$-\sum_{i=1}^N f(x_i) g_k(x_i) + \sum_{i=1}^N \sum_{j=1}^4 a_j g_j(x_i) g_k(x_i) = 0$$
$$\sum_{i=1}^4 a_j \sum_{i=1}^N g_j(x_i) g_k(x_i) = \sum_{i=1}^N f(x_i) g_k(x_i), \text{ gdzie } k = 1, \dots, 4$$

Otrzymaliśmy układ równań normalnych:

$$\sum_{j=1}^{4} a_j < g_j, g_k > = < f, g_k > , \text{ gdzie } k = 1, \dots, 4$$

Układ ten można zapisać jako Ga = d, gdzie:

• G jest macierzą Gramma $(G_{jk} = \langle g_j, g_k \rangle, j, k = 1, \dots, n)$

$$\bullet \ a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$

•
$$d = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{bmatrix}, d_k = \langle f, g_k \rangle, k = 1, \dots, 4$$

Macierz Grama można zapisać jako $G = M^T M$, gdzie

$$M = \begin{bmatrix} g_1(x_1) & g_2(x_1) & g_3(x_1) & g_4(x_1) \\ g_1(x_2) & g_2(x_2) & g_3(x_2) & g_4(x_2) \\ \vdots & \vdots & \vdots & \vdots \\ g_1(x_n) & g_2(x_n) & g_3(x_n) & g_4(x_n) \end{bmatrix}$$

A wektor
$$d = M^T F$$
, gdzie $F = \begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_n) \end{bmatrix}$.

3 Warunki i założenia

- 1. Punkty pomiarowe są generowane losowo z prostokąta $[a, b] \times [c, d]$.
- 2. Dane a, b, c, d, n są podane prawidłowo.
- 3. f jest ograniczona na danym obszarze.

4 Implementacja

Funkcja realizująca założenia zadania to lsfApproximation.

```
function [fApprox, tab, err] = lsfApproximation(f,n,a,
    b,c,d)
```

Parametry wejściowe:

- f uchwyt do aproksymowanej funkcji dwóch zmiennych,
- n ilość punktów pomiarowych,
- a, b, c, d liczby rzeczywiste, definiujące prostokąt $[a, b] \times [c, d]$.

Parametry wyjściowe:

- fApprox uchwyt wynikowej funkcji (f^*) ,
- tab tablica wynikowa zawierająca w kolumnach kolejno: współrzędne x oraz y punktu, wartość funkcji aproksymowanej w tym punkcie, wartość funkcji wynikowej, błąd,
- err wartość błędu średniokwadratowego.

W implementacji postępujemy zgodnie z algorytmem przedstawionym w punkcie $Opis\ metody$. Najpierw definiujemy funkcje z bazy i losujemy punkty pomiarowe. Potem przechodzimy do wyznaczenia macierzy kolejno: $M,\ G,\ F,\ d,\ a$ korzystając z operatorów Matlaba. Na koniec wszystkie wyniki tablicujemy oraz obliczamy błąd średniokwadratowy.

5 Przykłady i wnioski

Na potrzeby prezentacji przykładów posłużymy się pomocniczą funkcją *presentResult*, która wyświetla funkcje aproksymowaną i wynikową na jednym wykresie oraz konstruuje tablicę wynikową w przystępnym formacie.

5.1 Funkcja z bazy

Rozpocznijmy od sprawdzenia aproksymacji dla funkcji z bazy.

$$f = @(x,y) -5 + 4.*x - 2.*y + 3.*y.*y.*y.*x.*x.*x.*x;$$
presentResult(f,10,-2,2,-2,2);

Otrzymujemy wynik z dokładnością maszynową. Na wykresie funkcja aproksyowana i wynikowa pokrywają się.

Wartość błędu średniokwadratowego wynosi 2.0583e-15. Porównywalne rezultaty otrzymujemy dla innych funkcji z bazy.

5.2 Funkcja wielomianowa wyższego stopnia

Następnie sprawdzimy działanie dla funkcji wielomianowej wyższego stopnia.

$$f = @(x,y) -5 + 4.*x - 2.*y + 3.*y.*y.*x.*x + 1.5.*x.* \\ x.*x.*x.*y - 3.*y.*y.*y; \\ presentResult(f,10,-2,2,-2,2);$$

 $\operatorname{Kolorem}$ czerwonym zaznaczona jest funkcja aproksymowana, zielonym - wynikowa.

Błąd średniokwadratowy wynosi 1.5181 - funkcje z bazy nie pozwalają oddać kształtu danej funkcji, zwłaszcza gdy jej pochodna osiąga duże wartości.

5.3 Funkcja trygonometryczna, silnie oscylująca

Za pomocą danej bazy nie jest możliwe dokładnie odwzorować kształtu tego typu funkcji. Funkcja przyjmuje intuicyjnie oczekiwany kształt - przechodzi w przybliżeniu przez średnią wartość funkcji.

Błąd średniokwadratowy w tym przypadku wynosi 0.76338.

5.4 Badanie wpływu ilości punktów pomiarowych na błąd średniokwadratowy

```
Weźmy funkcję f:

f = Q(x,y) \sin(5.*(x.*x+y.*y));
```

Wykonamy poniższy skrypt i na podstawie wynikowej tabeli utworzymy wykres.

```
errors = zeros(1,1996);
for i = 4:1:2000
[~, ~, errors(i-3)] = lsfApproximation(f,i,-2,2,-2,2);
end
```

Wykres wygląda następująco:

Można zauważyć, że wartości błędu kwadratowego zbiegają do pewnej wartości - jest to wartość błędu dla aproksymacji średniokwadratowej ciągłej. Dla n=4 wartość błędu średniokwadratowego wynosi 0 - mamy wtedy faktycznie doczynienia z zadaniem interpolacji, czyli funkcja wynikowa w punktach pomiarowych przyjmuje wartości dokładne.

5.5 Wnioski końcowe

- Dokładność maszynową osiągamy tylko dla funkcji z bazy.
- Dla złożonych funkcji nie jesteśmy w stanie oddać dokładnego kształtu za pomocą danej bazy.
- Funkcja wynikowa przyjmuje intuicyjnie oczekiwany kształt.
- Wraz ze wzrostem ilości punktów pomiarowych wartość błędu średniokwadratowego zbliża się do wartości błędu dla aproksymacji średniokwadratowej ciągłej.