

Serial No. 324,638

Filing Date 18 October 1994

Inventor Sherry E. Hammel
Kai F. Gong
Neil J. Jackson
Kathleen D. Keay
John F. MacDonald

NOTICE

The above identified patent application is available for licensing.
Requests for information should be addressed to:

OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
CODE OOCC3
ARLINGTON VA 22217-5660

Accession For	
NTIS CRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

This document has been approved
for public release and sale; its
distribution is unlimited.

DTIC QUALITY INSPECTED 1

19950110 016

1 Navy Case No. 76257
2

3 SYSTEM AND MEHTOD FOR RAPIDLY TRACKING
4 HIGHLY DYNAMIC VEHICLES
5

6 STATEMENT OF GOVERNMENT INTEREST

7 The invention described herein may be manufactured by or for
8 the Government of the United States of America for Governmental
9 purposes without the payment of any royalties thereon or
10 therefor.

11

12 CROSS-REFERENCE TO RELATED APPLICATIONS

13 This patent application is co-pending with related patent
14 application entitled SYSTEM AND METHOD FOR RAPIDLY TRACKING
15 VEHICLES OF SPECIAL UTILITY IN LOW SIGNAL-TO-NOISE ENVIRONMENTS,
16 Navy Case No. 76256 by the same inventors as this application.
17

18 BACKGROUND OF THE INVENTION

19 (1) Field of the Invention

20 The invention relates generally to the field of signal
21 processing and more particularly to a system and method for
22 rapidly detecting a moving target and determining its movement
23 characteristics, such as range, bearing, speed and course in a
24 noisy environment.

1 (2) Description of the Prior Art

2 Detection of a moving object, such as a target, and
3 determination of its range, bearing, speed and course in an ocean
4 environment, is a difficult task, particularly if the target is
5 moving relatively noiselessly and it is desired to perform the
6 detect as early as possible. Typically, acoustic sensors are
7 used to detect acoustic energy (sound waves) emitted by a moving
8 object and convert such energy to electrical signals, and complex
9 signal processing operations are performed in connection with the
10 electrical signals to isolate and provide the desired
11 information. An ocean environment is generally very noisy, and
12 so low-level acoustic signals typical of quietly-moving targets
13 and the high level of ambient noise joint to provide a relatively
14 low ratio of desired signal-to-noise in the electrical signal
15 provided by the sensor, which makes early and accurate detection
16 quite difficult. In current systems, signals that do not have a
17 signal-to-noise ratios above a selected predetermined threshold
18 value are ignored, in which case such signals are not available
19 to provide information which may potentially be useful in
20 characterising the motion of the target.

21

22 SUMMARY OF THE INVENTION

23 It is therefore an object of the invention to provide a new
24 and improved system and method for rapidly tracking moving
25 objects in a noisy environment.

In brief summary, the invention provides a trajectory estimation system for estimating a trajectory of a target in response to a series of data items which generated in response to motion of the target. The trajectory estimation system includes a data segmentation means and a trajectory selection means. The data segmentation means processes the series of data items in accordance with a regression/multiple-hypothesis methodology to generate a plurality of segments, each having associated data items which have similar features. The trajectory selection means for processing said segments in accordance with a multiple-model/hypothesis methodology to generate a corresponding statistically-supportable candidate trajectory motion estimate of target motion thereby to provide indicia of an overall trajectory of the target.

BRIEF DESCRIPTION OF THE DRAWINGS

17 This invention is pointed out with particularity in the
18 appended claims. The above and further advantages of this
19 invention may be better understood by referring to the following
20 description taken in conjunction with the accompanying drawings,
21 in which:

22 FIGS. 1A and 1B together constitute a functional block
23 diagram of a system constructed in accordance with the invention;

24 FIGS. 2A through 3 comprise flow diagrams illustrating the
25 operation of the system depicted in FIGS. 1A and 1B.

1 DESCRIPTION OF THE PREFERRED EMBODIMENT

2 FIGS. 1A and 1B together constitute a functional block
3 diagram of a system 10 for rapidly tracking highly dynamic
4 vehicles, constructed in accordance with the invention. With
5 reference to FIG. 1A, the system 10 includes a sensor arrangement
6 11 that receives acoustic energy (sound) in the form of signals
7 from, for example, an ocean environment, converts the signals to
8 electrical form, and records the electrical signals for later
9 processing. A fast Fourier transform arrangement 12 performs a
10 conventional fast Fourier transform (FFT) operation in connection
11 with the recorded signals to thereby generate phase and amplitude
12 spectral beam maps for the signals. A signal follower module 13
13 receives the beam maps from the fast Fourier transform
14 arrangement 12 for signals at successive points in time and
15 determines whether the beam map indicates that the signal-to-
16 noise ratio of the signal as provided by the sensors 11 exceeds a
17 predetermined detection threshold value, thereby to determine
18 when the signals represent signals from a particular target and
19 effectively distinguishing such target signals from environmental
20 and other noise.

21 When the signal follower 13 determines that a beam map from
22 the fast Fourier transform arrangement 12 exceeds the
23 predetermined detection threshold value, a detection threshold
24 comparator 14 compares the beam map corresponding to the signal
25 at detection to the beam map immediately prior to detection (that
26 is, for the last beam map from the fast Fourier transform

1 arrangement 12 that did not exceed the predetermined detection
2 threshold value) to detect similarities. A beam regions bound
3 module 15 receives the beam maps and similarity information, and
4 bounds the beam maps based on a *priori* information, such as
5 kinematic and other information known about likely targets.
6 The detection threshold comparator 14 and beam regions bound
7 module 15 repeat the operations with each beam map recorded by
8 the sensor arrangement 11 prior to the signal follower 13
9 determining that a signal exceeded the signal-to-noise threshold
10 value. This allows the detection threshold comparator 14 and the
11 beam regions bound module 15 to obtain information concerning the
12 target from the signals recorded prior to detection (that is,
13 prior to the signal follower module 13 determining that a signal
14 exceeded the signal-to-noise threshold value), so that the system
15 will not have to rely solely on signals received after such
16 time. In addition, the system 10 facilitates a restriction on
17 the number of signals that it will have to analyze and allow for
18 subsequent information to be recorded at signal-to-noise ratios
19 lower than the detection threshold values. In particular, a
20 measurement track formations module 16 receives the information
21 from the beam map bounds module and applies a lower signal-to-
22 noise ratio threshold value than that applied by the signal
23 follower module 13 to the beam maps recorded by the sensor
24 arrangement prior to signal detection as determined by the signal
25 follower module 13. The measurement track formations module 16
26 repeats these operations through a series of iterations, in each

1 iteration applying a lower signal-to-noise ratio than in the
2 previous iteration, to extract signal information from the
3 background noise and clutter in those beam maps. For each of the
4 beam maps that satisfy the signal-to-noise criteria for each of
5 the iterations, the measurement track formations module 16
6 performs an inverse fast Fourier transform operation to transform
7 the bounded beam maps to provide a time-based signal for later
8 processing.

9 The signal information from the measurement track formations
10 module 16 is then used by a data segmentation module 20 (FIG. 1B)
11 and a trajectory estimation module 22 (FIG. 1B) to determine the
12 range, bearing, speed and course of the target which is the
13 source of the signal. The operations of the data segmentation
14 module 20 and the trajectory estimation module will be described
15 below in detail in connection with FIGS. 2A and 2B (the data
16 segmentation module 20) and FIG. 3 (the trajectory estimation
17 module 22). Briefly, however, the data segmentation module 20
18 receives the signal information from the measurement track
19 formations module 16 and, using that information and *a priori*
20 kinematic and other knowledge concerning likely targets from *a priori*
21 knowledge input 21, generates one or more hypotheses
22 regarding movement of the target. The trajectory estimation
23 module 22 receives the hypotheses and selects one as the most
24 likely hypothesis, effectively selecting the most likely
25 trajectory (range and bearing) of the target. The trajectory
26 that is selected is verified by a trajectory analysis and

1 validation module 23 and a trajectory characteristics module 24
2 using conventional statistical measures testing the likelihood or
3 probability that a trajectory is representative of the
4 information contained in the signals received by the sensor
5 arrangement 11.

6 As noted above, the data segmentation module 20 (FIG. 1B)
7 generates a set of hypotheses H_j each containing one or more
8 segments S_j . Each segment S_j is a hypothesized line segment that
9 the data segmentation module 20 generates in response to the
10 signal information, represented by a series of data items, that
11 the data segmentation module 20 receives from the measurement
12 track formations module 16. The data segmentation module 20
13 generates the segments S_j in a series of iterations for each
14 successive data item it receives. In each iteration, the data
15 segmentation module 20 effectively attempts to add the data item
16 to each segment S_j that it had initiated during previous
17 iterations, and generates a likelihood measure indicating the
18 likelihood that the data item actually belongs to each of the
19 segments S_j . In addition during each iteration, the data
20 segmentation module 20 initiates a new segment S_N containing only
21 the new data item, for the possibility that the data item is the
22 first data item of a segment, and generates a likelihood measure
23 indicating the likelihood that the data item is the first data
24 item for a new segment; in each subsequent iteration, the new
25 segment will be used along with other segments initiated during
26 previous iterations as possible segments for subsequent data

1 items. In addition, during each iteration the data segmentation
2 module generates a "false alarm" hypothesis H_{FA} for the
3 possibility that the data item does not belong to any segment.
4 The trajectory estimation module 22 prunes the hypotheses and the
5 various segments, and over a series of iterations, the data
6 segmentation module 20 and trajectory estimation module 22
7 cooperate to narrow the hypothesized segments S_j .

8 The operations performed by the data segmentation module 20
9 and the trajectory estimation module 22, each during one
10 iteration, are depicted in FIGS. 2A, 2B (data segmentation module
11 20, and FIG. 3 (trajectory estimation module 22). With reference
12 initially to the data segmentation module 20, the data
13 segmentation module 20 represents each segment as a reduced set
14 of regression coefficients, or "features" in the signal
15 represented by the data stream. With further reference initially
16 to FIG. 2A., upon receiving a new data item, identified herein as
17 " $z_1(t)$ " (step 100), the data segmentation module initially
18 performs a series of steps 101 through 103 to test the
19 statistical consistency of the data item $z_1(t)$ with each segment
20 S_j .

21 In determining the statistical consistency, if it is assumed
22 that a segment S_j consists of "n" data items previously assigned
23 to the segment S_j , the data segmentation module 20 initially
24 forms a predicted data item value $\hat{z}_1(t/n)$ as set forth in
25 Equation 1:

1

$$\hat{z}_1(t) = a_0(t*) + a_1(t*) + \frac{1}{2}a_2(t*) \frac{(t-t*)^2}{2} \quad (1)$$

2 where $a_i(t*)$ are the i'th time derivatives of the measurement
 3 $z_1(t)$ evaluated at time $t*$ (step 101). In this case, the data
 4 segmentation module 20 uses $t*$ as the midpoint of the successive
 5 data intervals for the successive data items to minimize
 6 estimation errors for the regression operation.

7 After generating the predicted data item value $\hat{z}_1(t/n)$ via
 8 equation (1), the data segmentation module 20 generates a
 9 normalized squared residual value (step 102) as

$$10 \quad \hat{r}(t/n) = [z_1(t) - \hat{z}_1(t/n)]^T c(t/n) [z_1(t) - \hat{z}_1(t/n)] \quad (2)$$

11 and performs a chi-squared test in connection with $\hat{r}(t/n)$ to
 12 determine whether it satisfies a threshold "gating" value (step
 13 103), which in one embodiment is set to the value thirty-six. If
 14 the data segmentation module 20 makes a negative determination in
 15 step 103, it will ignore the data item received in step 100, and
 16 will return to step 100 to repeat the operations in steps 101
 17 through 103 in connection with the next data item.

18 If, on the other hand, the data segmentation module 20 makes a
 19 positive determination in step 103, it assigns a probability
 20 value $P_a(S_j)$ identifying the likelihood that the new data item

1 belongs to segment S_j (step 104), and generates an updated
2 segment S_j' including the new data item (step 105). The data
3 segmentation module 20 generates the probability value $P_a(S_j)$ as a
4 function of the normalized squared residual value generated in
5 step 102 prior to the chi-squared test, in a conventional manner.
6 In one embodiment, for simplicity the probability assignment is
7 obtained by mapping the normalized squared residual (equation 2)
8 in an intuitive formula that approximates the complement of the
9 chi-squared distribution as follows

10

$$P_a(S_j) = \begin{cases} 1 - \frac{\hat{f}(t/n)}{36} & \text{for } \hat{f}(t/n) < 36 \\ 0 & \text{otherwise} \end{cases} \quad (3)$$

11 The data segmentation module 20 generates the updated segment S_j'
12 to include the new data item (identified as the "n+1"st data
13 item) in the following manner. Given a value $a(t_n^*)$ as the
14 current endpoint of segment S_j , the data segmentation module 20
15 generates a new endpoint $a(t_{n+1}^*/n+1)$ for the data item $z_1(t)$ as

16

$$a(t_{n+1}^*/n+1) = a(t_{n+1}^*/n) + K(n) [z_1(t) - \hat{z}_1(t/n)] \quad (4)$$

17 where

18

$$a(t_{n+1}^*/n) = A(t_{n+1}^*, t_n^*) a(t_n^*/n) \quad (5)$$

1 and

2

$$A(t_{n+1}, t_n) = \begin{bmatrix} 1 & (t_{n+1}-t_n) & \frac{1}{2}(t_{n+1}-t_n)^2 \\ 0 & 1 & (t_{n+1}-t_n) \\ 0 & 0 & 1 \end{bmatrix} \quad (6).$$

3 The new endpoint, together with the points previously assigned to
4 the segment S_j , defines an updated segment S_j' . The data
5 segmentation module 20 determines the Kalman gain $K(n)$ for
6 equation 3 as

7

$$K(n) = R(t_{n+1}*/n) H(t, t_{n-1}*) C(t/n) \quad (7)$$

8 with

9

$$C(t/n) = [H(t, t_n*) R(t_n*) H(t, t_n*)^T + \sigma^2]^{-1} \quad (8)$$

10 and

11

$$H(t, t_n*) = [1 \ (t-t*)] \quad (9)$$

12 and the corresponding covariance matrix of $a(t_{n+1}*/n+1)$ is

13

$$R(t_{n+1}*/n+1) = [I - K(n) A(t_{n+1}*, t_n*)^T] R(t_{n+1}*/n) \quad (10)$$

14 where

1 $R(t_{n+1}^*/n) = A(t_{n+1}^*, t_n^*) R(t_n^*/n) A(t_{n+1}^*, t_n^*)^T$ (11)

2 and "I" is the three-by-three identity matrix.

3 After generating the updated segments S_j' for all segments
4 for which the chi-squared test was satisfied in step 103, the
5 data segmentation module 20 effectively updates the set of
6 hypotheses H_i . In that process, the data segmentation module 20
7 updates hypotheses H_{ij} developed during previous iterations, in
8 connection with previous data items in the series, replacing the
9 segments S_j in the respective hypotheses with updated segments S_j'
10 (step 106). In addition, the data segmentation module 20
11 establishes two new hypotheses, one hypothesis H_{FA} comprised of
12 the original segments and the other hypothesis H_{IN} comprised of
13 the original segments plus a new segment S_N representing the new
14 data item. The hypothesis H_{FA} , since it contains only the
15 original, non-updated segments, represents the likelihood that
16 the new data item is a "false alarm", that is, that it neither
17 belongs to any segment S_j nor is the first data item of a new
18 segment S_N . The hypothesis H_{IN} , on the other hand, represents the
19 likelihood that the new data item is the first data item of a new
20 segment S_N and that the other segments S_j are incorrect
21 hypotheses.

22 The data segmentation module 20 then proceeds to a series of
23 steps to generate several likelihood scores for each hypothesis.
24 In particular, the data segmentation module generates a raw

1 likelihood score $P(H_i/n+1)$ for the original (non-updated)
 2 hypotheses H_i as

$$3 P(H_i/n+1) = P(H_i/n) \left[\left(1 - \prod_{j=1}^K (1 - P_a(S_j)) \right) (1 - P_n) (1 - P_{FA}) + P_N (1 - P_{FA}) + P_{FA} \right] \quad (12)$$

4 where " P_N " represents the *a priori* likelihood that the data item
 5 $z_1(t)$ starts a new segment, " P_{FA} " represents the *a priori*
 6 likelihood that data item $z_1(t)$ is a "false alarm," that is, that
 7 it does not belong to any segment, and "K" is the number of
 8 segments S_j in the collection of segments in hypothesis H_i . The *a*
 9 *priori* likelihood values are provided by the *a priori* knowledge
 10 input module 21, and are generated in any conventional manner.
 11 The data segmentation module 20 then, for each hypothesis H_i in
 12 the collection of hypotheses H updated in step 106, generates
 13 likelihood scores for a series of hypotheses H_{ij} , where each
 14 hypothesis H_{ij} corresponds to the collection of segments in
 15 hypothesis H_i , but replacing the original of segment S_j with the
 16 updated segment S'_j , as well as for the hypotheses H_{iN} and H_{iFA}
 17 (step 110). In those operations, the data segmentation module 20
 18 generates the likelihood score $P(H_{ij})$ for each hypothesis H_{ij} as

$$19 P(H_{ij}) = P(H_i/n+1) \frac{\left[1 - \prod_{j=1}^K (1 - P_a(S_j)) \right] (1 - P_{FA}) \frac{P_a(S_j)}{1 - P_a(S_j)}}{\sum_{j=1}^K (1 - P_a(S_j))} \quad (13),$$

1 the likelihood score $P(H_{iN})$ for the augmented hypothesis H_{iN} (that
2 is, the hypothesis that the data item is the first data item for
3 a new segment) as:

4

$$P(H_{iN}) = P(H_i/n+1) \left[\prod_{j=1}^k (1 - P_a(S_j)) \right] (I - P_{FA}) \quad (14),$$

5 and the likelihood score $P(H_{iFA})$ for false-alarm hypothesis H_{iFA} as

6

$$P(H_{iFA}) = P(H_i/n + 1) P_{FA} \quad (15).$$

7 After generating the likelihood scores, the data
8 segmentation module 20 prunes the hypotheses H_{ij} , H_{iN} and H_{iFA} by
9 deleting the hypotheses that have likelihood scores below a
10 predetermined threshold value (step 111). The data segmentation
11 module prunes a segment S_j , that is, it completely eliminates the
12 segment, when the segment is no longer contained in any
13 hypothesis H_{ij} for any index "i".

14 After performing steps 100 through 111 for one data item,
15 the data segmentation module 20 returns to step 100 to process
16 the next data item. The data segmentation module 20 performs
17 steps 100 through 111 for each data item representing a signal it
18 receives from the measurement track formation module 16.

19 After generating the hypotheses H_i for a set of data items,
20 the data segmentation module 20 then transfers the set of pruned
21 segments S_j contained in the hypotheses H_{ij} and H_{iN} to the
22 trajectory estimation module 22. The trajectory estimation

1 module 22 then performs a discrete grid search procedure depicted
2 in FIG. 3 in connection with all of the segments S_j to select one
3 segment S_j as being most representative of the information
4 represented by the data items. With reference to FIG. 3, the
5 trajectory estimation module 22 uses as the various target
6 variables representing the target states such target variables as
7 range "r", bearing "b", speed "s", course "c" and course rate
8 "c", and establishes a series of "bins" with the minimum and
9 maximum values for each of these variables as determined from a
10 *priori* knowledge of the possible target (step 120). The result,
11 if the target variables r, b, s, c and c are considered to form
12 a five-dimensional space, is a five-dimensional grid of a size
13 determined by the minimum and maximum values for each variable.

14 In selecting a segment S_j as the potentially correct
15 segment, the trajectory estimation module 22 makes the
16 determination based on certain ones of the variables, as
17 indicated by the nature of the particular data items, in this
18 case range "r" and bearing "b". After the grid is established,
19 for each discrete point in the grid, the trajectory estimation
20 module 22 generates a marginal density value P_{ij} (step 121) along
21 the coordinates "i" and "j" of these data items as

$$P_{ij} = \sum_{klm} e^{-\frac{1}{2} |z - 2(x_i, b_j, s_k, c_l, c_m)|^2} \quad (16).$$

1 The trajectory estimation module 22 then identifies the point
2 (i,j) at which the marginal density value is a minimum (step
3 122), and adjusts the perspective of the grid so that it is
4 centered over that point (123). The trajectory estimation module
5 22 determines whether a selected accuracy level, as determined by
6 the resolution of the grid generated by the trajectory estimation
7 module 22, has been reached (step 124), and if not returns to
8 step 120 to repeat the operations. The trajectory estimation
9 module 22 repeats the operations until the selected accuracy
10 level has been reached, and if so it performs a chi-squared test
11 in connection with the segment S_j . It will be appreciated that
12 the trajectory estimation module 22 will perform these operations
13 in connection with all of the segments S_j , and it will use the
14 results of the chi-squared tests for all of the segments to
15 identify one as being most representative of the data, and that
16 segment is selected as the correct one.

17 As noted above, and returning to FIG. 1B, the segment
18 selected by the trajectory estimation module 22 is coupled to a
19 trajectory analysis and validation module 23 and a trajectory
20 characteristics module 24 for verification using conventional
21 statistical measures testing the likelihood or probability that a
22 trajectory is representative of the information contained in the
23 signals received by the sensor arrangement 11.

24 The invention provides a number of advantages. It
25 facilitates the detection and use of signals received that
26 are below the (initial) signal-to-noise ratio, despite the fact

1 that such signals are embedded in an increased level of clutter
2 and noise. This enables the system to determine the location and
3 bearing of a target relatively early and quickly.

4 In addition, the invention provides an arrangement for
5 quickly and reliably tracking a target with an environmentally
6 perturbed minimal data set comprising only a few data items which
7 exploits target kinematics and *a priori* knowledge, which further
8 allows for anomalies in the data. Using multiple hypothesis
9 techniques, such as as described in connection with the data
10 segmentation module 20 and the trajectory estimation module 22
11 (FIGS. 2A, 2B and 3) allows for accommodation of changes in
12 dynamics and quick evaluation of the target dynamics. The
13 segmentation of acoustical information, as performed by the data
14 segmentation module 20, allows for partitioning of the data
15 according to similar features, which, in turn, allows for rapid
16 detection of motion changes. The discrete grid search technique
17 performed by the trajectory estimation module 22 provides for
18 relative stability in the non-linear estimation problem and
19 exploitation of *a priori* knowledge of target motion.

20 It will be appreciated by those skilled in the art that the
21 new arrangement can be implemented using special-purpose hardware
22 or a suitably-programmed general purpose computer.

23 The preceding description has been limited to a specific
24 embodiment of this invention. It will be apparent, however, that
25 variations and modifications may be made to the invention, with
26 the attainment of some or all of the advantages of the invention.

1 Therefore, it is the object to cover all
2 such variations and modifications as come within the true spirit
3 and scope of the invention.

1 Navy Case No. 76257

2

3 SYSTEM AND METHOD FOR RAPIDLY TRACKING
4 HIGHLY DYNAMIC VEHICLES

5

6 ABSTRACT OF THE DISCLOSURE

7 A trajectory estimation system for estimating a trajectory
8 of a target in response to a series of data items which generated
9 in response to motion of the target. The trajectory estimation
10 system includes a data segmentation means and a trajectory
11 selection means. The data segmentation means processes the
12 series of data items in accordance with a regression/multiple-
13 hypothesis methodology to generate a plurality of segments, each
14 having associated data items which have similar features. The
15 trajectory selection means for processing said segments in
16 accordance with a multiple-model hypothesis methodology to
17 generate a corresponding statistically-supportable candidate
18 trajectory motion estimate of target motion thereby to provide
19 indicia of an overall trajectory of the target.

FIG. 1A

A
FROM FIG. 1A

A PRIORI
KNOWLEDGE INPUT
21

DATA SEGMENTATION
MODULE (STAGE 1)
20

TRAJECTORY ESTIMATION
MODULE (STAGE 2)
22

TRAJECTORY ANALYSIS &
VALIDATION MODULE
23

TRAJECTORY CHARACTERISTICS
MODULE 24

FIG. 1B

FIG. 2A

FIG. 2 B

FIG. 3