



#6

## SEQUENCE LISTING

&lt;110&gt; Xiao, Zhi-Cheng

<120> Peptides, Antibodies Thereto, and Their  
Use in the Treatment of Central Nervous System Damage

&lt;130&gt; 0380-P03063US1

<140> US 10/537,648  
<141> 2005-06-06<150> PCT/GB2003/005323  
<151> 2003-12-05<150> US 60/431,620  
<151> 2002-12-06

&lt;160&gt; 35

&lt;170&gt; FastSEQ for Windows Version 4.0

<210> 1  
<211> 7  
<212> PRT  
<213> Artificial Sequence

&lt;220&gt;

&lt;223&gt; From a phage library that displays random 7-mers

<400> 1  
Tyr Leu Thr Gln Pro Gln Ser  
1 5<210> 2  
<211> 7  
<212> PRT  
<213> Artificial Sequence

&lt;220&gt;

&lt;223&gt; From a phage library that displays random 7-mers

<400> 2  
Gly Ser Leu Pro His Ser Leu  
1 5<210> 3  
<211> 7  
<212> PRT  
<213> Artificial Sequence

&lt;220&gt;

&lt;223&gt; From a phage library that displays random 7-mers

<400> 3  
Thr Gln Leu Phe Pro Pro Gln  
1 5<210> 4  
<211> 7  
<212> PRT  
<213> Artificial Sequence

&lt;220&gt;

&lt;223&gt; From a phage library that displays random 7-mers

<400> 4  
His Ser Ile Pro Asp Asn Ile  
1 5

<210> 5  
<211> 7  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> From a phage library that displays random 7-mers

<400> 5  
His His Met Pro His Asp Lys  
1 5

<210> 6  
<211> 7  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> From a phage library that displays random 7-mers

<400> 6  
Tyr Thr Thr Pro Pro Ser Pro  
1 5

<210> 7  
<211> 7  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> From a phage library that displays random 7-mers

<400> 7  
Gln Leu Pro Leu Met Pro Arg  
1 5

<210> 8  
<211> 508  
<212> PRT  
<213> Rattus norvegicus

<400> 8  
Met Ile Phe Leu Thr Thr Leu Pro Leu Phe Trp Ile Met Ile Ser Ala  
1 5 10 15  
Ser Arg Gly Gly His Trp Gly Ala Trp Met Pro Ser Ser Ile Ser Ala  
20 25 30  
Phe Glu Gly Thr Cys Val Ser Ile Pro Cys Arg Phe Asp Phe Pro Asp  
35 40 45  
Glu Leu Arg Pro Ala Val Val His Gly Val Trp Tyr Phe Asn Ser Pro  
50 55 60  
Tyr Pro Lys Asn Tyr Pro Pro Val Val Phe Lys Ser Arg Thr Gln Val  
65 70 75 80  
Val His Glu Ser Phe Gln Gly Arg Ser Arg Leu Leu Gly Asp Leu Gly  
85 90 95  
Leu Arg Asn Cys Thr Leu Leu Leu Ser Thr Leu Ser Pro Glu Leu Gly  
100 105 110  
Gly Lys Tyr Tyr Phe Arg Gly Asp Leu Gly Gly Tyr Asn Gln Tyr Thr  
115 120 125  
Phe Ser Glu His Ser Val Leu Asp Ile Ile Asn Thr Pro Asn Ile Val  
130 135 140  
Val Pro Pro Glu Val Val Ala Gly Thr Glu Val Glu Val Ser Cys Met  
145 150 155 160  
Val Pro Asp Asn Cys Pro Glu Leu Arg Pro Glu Leu Ser Trp Leu Gly

| 165                                             | 170                     | 175                 |
|-------------------------------------------------|-------------------------|---------------------|
| His Glu Gly Leu Gly Glu Pro Thr Val             | Leu Gly Arg Leu Arg     | Glu Asp             |
| 180                                             | 185                     | 190                 |
| Glu Gly Thr Trp Val Gln Val Ser                 | Leu Leu His Phe Val     | Pro Thr Arg         |
| 195                                             | 200                     | 205                 |
| Glu Ala Asn Gly His Arg Leu Gly Cys Gln Ala Ala | Phe Pro Asn Thr         |                     |
| 210                                             | 215                     | 220                 |
| Thr Leu Gln Phe Glu Gly Tyr Ala Ser             | Leu Asp Val Lys Tyr Pro | Pro                 |
| 225                                             | 230                     | 235                 |
| Val Ile Val Glu Met Asn Ser Ser Val             | Glu Ala Ile Glu Gly     | Ser His             |
| 245                                             | 250                     | 255                 |
| Val Ser Leu Leu Cys Gly Ala Asp Ser Asn         | Pro Pro Pro             | Leu Thr             |
| 260                                             | 265                     | 270                 |
| Trp Met Arg Asp Gly Met Val                     | Leu Arg Glu Ala Val     | Ala Glu Ser Leu     |
| 275                                             | 280                     | 285                 |
| Tyr Leu Asp Leu Glu Glu Val                     | Thr Pro Ala Glu Asp     | Gly Ile Tyr Ala     |
| 290                                             | 295                     | 300                 |
| Cys Leu Ala Glu Asn Ala Tyr Gly Gln Asp         | Asn Arg Thr Val         | Glu Leu             |
| 305                                             | 310                     | 315                 |
| Ser Val Met Tyr Ala Pro Trp Lys Pro             | Thr Val Asn Gly         | Thr Val Val         |
| 325                                             | 330                     | 335                 |
| Ala Val Glu Gly Glu Thr Val Ser                 | Ile Leu Cys Ser Thr     | Gln Ser Asn         |
| 340                                             | 345                     | 350                 |
| Pro Asp Pro Ile Leu Thr Ile Phe Lys             | Glu Lys Gln Ile         | Leu Ala Thr         |
| 355                                             | 360                     | 365                 |
| Val Ile Tyr Glu Ser Gln Leu Gln Leu Glu         | Leu Pro Ala Val         | Thr Pro             |
| 370                                             | 375                     | 380                 |
| Glu Asp Asp Gly Glu Tyr Trp Cys Val             | Ala Glu Asn Gln Tyr     | Gly Gln             |
| 385                                             | 390                     | 395                 |
| Arg Ala Thr Ala Phe Asn Leu Ser Val             | Glu Phe Ala Pro         | Ile Ile Leu         |
| 405                                             | 410                     | 415                 |
| Leu Glu Ser His Cys Ala Ala Ala                 | Arg Asp Thr Val         | Gln Cys Leu Cys     |
| 420                                             | 425                     | 430                 |
| Val Val Lys Ser Asn Pro Glu Pro                 | Ser Val Ala Phe         | Glu Leu Pro Ser     |
| 435                                             | 440                     | 445                 |
| Arg Asn Val Thr Val Asn Glu Thr                 | Glu Arg Glu Phe         | Val Tyr Ser Glu     |
| 450                                             | 455                     | 460                 |
| Arg Ser Gly Leu Leu Leu Thr Ser                 | Ile Leu Thr             | Leu Arg Gly Gln Ala |
| 465                                             | 470                     | 475                 |
| Gln Ala Pro Pro Arg Val Ile Cys Thr             | Ser Arg Asn Leu         | Tyr Gly Thr         |
| 485                                             | 490                     | 495                 |
| Gln Ser Leu Glu Leu Pro Phe Gln                 | Gly Ala His Arg         |                     |
| 500                                             | 505                     |                     |

<210> 9  
<211> 205  
<212> PRT  
<213> Homo sapiens

| <400> 9                             |                     |                     |
|-------------------------------------|---------------------|---------------------|
| Cys Pro Cys Ala Ser Ser Ala Gln Val | Leu Gln Glu Leu Leu | Ser Arg             |
| 1                                   | 5                   | 10                  |
| Ile Glu Met Leu Glu Arg Glu Val     | Ser Val Leu Arg Asp | Gln Cys Asn         |
| 20                                  | 25                  | 30                  |
| Ala Asn Cys Cys Gln Glu Ser         | Ala Ala Thr Gly Gln | Leu Asp Tyr Ile     |
| 35                                  | 40                  | 45                  |
| Pro His Cys Ser Gly His Gly Asn     | Phe Ser Phe Glu     | Ser Cys Gly Cys     |
| 50                                  | 55                  | 60                  |
| Ile Cys Asn Glu Gly Trp Phe         | Gly Lys Asn Cys Ser | Glu Pro Tyr Cys     |
| 65                                  | 70                  | 75                  |
| Pro Leu Gly Cys Ser Ser Arg         | Gly Val Cys Val Asp | Gly Gln Cys Ile     |
| 85                                  | 90                  | 95                  |
| Cys Asp Ser Glu Tyr Ser Gly Asp     | Asp Cys Ser Glu     | Leu Arg Cys Pro     |
| 100                                 | 105                 | 110                 |
| Thr Asp Cys Ser Ser Arg Gly         | Leu Cys Val Asp     | Gly Glu Cys Val Cys |
| 115                                 | 120                 | 125                 |
| Glu Glu Pro Tyr Thr Gly Glu         | Asp Cys Arg Glu     | Leu Arg Cys Pro Gly |
| 130                                 | 135                 | 140                 |
| Asp Cys Ser Gly Lys Gly Arg         | Cys Ala Asn Gly     | Thr Cys Leu Cys Glu |
| 145                                 | 150                 | 155                 |
|                                     |                     | 160                 |

Glu Gly Tyr Val Gly Glu Asp Cys Gly Gln Arg Gln Cys Leu Asn Ala  
165 170 175  
Cys Ser Gly Arg Gly Gln Cys Glu Glu Gly Leu Cys Val Cys Glu Glu  
180 185 190  
Gly Tyr Gln Gly Pro Asp Cys Ser Ala Val Ala Pro Pro  
195 200 205

<210> 10  
<211> 185  
<212> PRT  
<213> Homo sapiens

<400> 10  
Met Glu Asp Leu Asp Gln Ser Pro Leu Val Ser Ser Ser Asp Ser Pro  
1 5 10 15  
Pro Arg Pro Gln Pro Ala Phe Lys Tyr Gln Phe Val Arg Glu Pro Glu  
20 25 30  
Asp Glu Glu Glu Glu Glu Glu Glu Asp Glu Asp Glu Asp  
35 40 45  
Leu Glu Glu Leu Glu Val Leu Glu Arg Lys Pro Ala Ala Gly Leu Ser  
50 55 60  
Ala Ala Pro Val Pro Thr Ala Pro Ala Ala Gly Ala Pro Leu Met Asp  
65 70 75 80  
Phe Gly Asn Asp Phe Val Pro Pro Ala Pro Arg Gly Pro Leu Pro Ala  
85 90 95  
Ala Pro Pro Val Ala Pro Glu Arg Gln Pro Ser Trp Asp Pro Ser Pro  
100 105 110  
Val Ser Ser Thr Val Pro Ala Pro Ser Pro Leu Ser Ala Ala Val  
115 120 125  
Ser Pro Ser Lys Leu Pro Glu Asp Asp Glu Pro Pro Ala Arg Pro Pro  
130 135 140  
Pro Pro Pro Pro Ala Ser Val Ser Pro Gln Ala Glu Pro Val Trp Thr  
145 150 155 160  
Pro Pro Ala Pro Ala Ala Pro Pro Ser Thr Pro Ala Ala Pro  
165 170 175  
Lys Arg Arg Gly Ser Ser Gly Ser Val  
180 185

<210> 11  
<211> 66  
<212> PRT  
<213> Homo sapiens

<400> 11  
Arg Ile Tyr Lys Gly Val Ile Gln Ala Ile Gln Lys Ser Asp Glu Gly  
1 5 10 15  
His Pro Phe Arg Ala Tyr Leu Glu Ser Glu Val Ala Ile Ser Glu Glu  
20 25 30  
Leu Val Gln Lys Tyr Ser Asn Ser Ala Leu Gly His Val Asn Cys Thr  
35 40 45  
Ile Lys Glu Leu Arg Arg Leu Phe Leu Val Asp Asp Leu Val Asp Ser  
50 55 60  
Leu Lys  
65

<210> 12  
<211> 973  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Fusion protein  
  
<220>  
<221> VARIANT  
<222> (509)...(511)  
<223> Polyalanine linker

<220>  
<221> VARIANT  
<222> (717)...(719)  
<223> Polyalanine linker

<220>  
<221> VARIANT  
<222> (905)...(907)  
<223> Polyalanine linker

<400> 12  
Met Ile Phe Leu Thr Thr Leu Pro Leu Phe Trp Ile Met Ile Ser Ala  
1 5 10 15  
Ser Arg Gly Gly His Trp Gly Ala Trp Met Pro Ser Ser Ile Ser Ala  
20 25 30  
Phe Glu Gly Thr Cys Val Ser Ile Pro Cys Arg Phe Asp Phe Pro Asp  
35 40 45  
Glu Leu Arg Pro Ala Val Val His Gly Val Trp Tyr Phe Asn Ser Pro  
50 55 60  
Tyr Pro Lys Asn Tyr Pro Pro Val Val Phe Lys Ser Arg Thr Gln Val  
65 70 75 80  
Val His Glu Ser Phe Gln Gly Arg Ser Arg Leu Leu Gly Asp Leu Gly  
85 90 95  
Leu Arg Asn Cys Thr Leu Leu Leu Ser Thr Leu Ser Pro Glu Leu Gly  
100 105 110  
Gly Lys Tyr Tyr Phe Arg Gly Asp Leu Gly Gly Tyr Asn Gln Tyr Thr  
115 120 125  
Phe Ser Glu His Ser Val Leu Asp Ile Ile Asn Thr Pro Asn Ile Val  
130 135 140  
Val Pro Pro Glu Val Val Ala Gly Thr Glu Val Glu Val Ser Cys Met  
145 150 155 160  
Val Pro Asp Asn Cys Pro Glu Leu Arg Pro Glu Leu Ser Trp Leu Gly  
165 170 175  
His Glu Gly Leu Gly Glu Pro Thr Val Leu Gly Arg Leu Arg Glu Asp  
180 185 190  
Glu Gly Thr Trp Val Gln Val Ser Leu Leu His Phe Val Pro Thr Arg  
195 200 205  
Glu Ala Asn Gly His Arg Leu Gly Cys Gln Ala Ala Phe Pro Asn Thr  
210 215 220  
Thr Leu Gln Phe Glu Gly Tyr Ala Ser Leu Asp Val Lys Tyr Pro Pro  
225 230 235 240  
Val Ile Val Glu Met Asn Ser Ser Val Glu Ala Ile Glu Gly Ser His  
245 250 255  
Val Ser Leu Leu Cys Gly Ala Asp Ser Asn Pro Pro Pro Leu Leu Thr  
260 265 270  
Trp Met Arg Asp Gly Met Val Leu Arg Glu Ala Val Ala Glu Ser Leu  
275 280 285  
Tyr Leu Asp Leu Glu Glu Val Thr Pro Ala Glu Asp Gly Ile Tyr Ala  
290 295 300  
Cys Leu Ala Glu Asn Ala Tyr Gly Gln Asp Asn Arg Thr Val Glu Leu  
305 310 315 320  
Ser Val Met Tyr Ala Pro Trp Lys Pro Thr Val Asn Gly Thr Val Val  
325 330 335  
Ala Val Glu Gly Glu Thr Val Ser Ile Leu Cys Ser Thr Gln Ser Asn  
340 345 350  
Pro Asp Pro Ile Leu Thr Ile Phe Lys Glu Lys Gln Ile Leu Ala Thr  
355 360 365  
Val Ile Tyr Glu Ser Gln Leu Gln Leu Glu Leu Pro Ala Val Thr Pro  
370 375 380  
Glu Asp Asp Gly Glu Tyr Trp Cys Val Ala Glu Asn Gln Tyr Gly Gln  
385 390 395 400  
Arg Ala Thr Ala Phe Asn Leu Ser Val Glu Phe Ala Pro Ile Ile Leu  
405 410 415  
Leu Glu Ser His Cys Ala Ala Ala Arg Asp Thr Val Gln Cys Leu Cys  
420 425 430  
Val Val Lys Ser Asn Pro Glu Pro Ser Val Ala Phe Glu Leu Pro Ser  
435 440 445  
Arg Asn Val Thr Val Asn Glu Thr Glu Arg Glu Phe Val Tyr Ser Glu  
450 455 460  
Arg Ser Gly Leu Leu Leu Thr Ser Ile Leu Thr Leu Arg Gly Gln Ala  
465 470 475 480

Gln Ala Pro Pro Arg Val Ile Cys Thr Ser Arg Asn Leu Tyr Gly Thr  
 485 490 495  
 Gln Ser Leu Glu Leu Pro Phe Gln Gly Ala His Arg Ala Ala Ala Cys  
 500 505 510  
 Pro Cys Ala Ser Ser Ala Gln Val Leu Gln Glu Leu Leu Ser Arg Ile  
 515 520 525  
 Glu Met Leu Glu Arg Glu Val Ser Val Leu Arg Asp Gln Cys Asn Ala  
 530 535 540  
 Asn Cys Cys Gln Glu Ser Ala Ala Thr Gly Gln Leu Asp Tyr Ile Pro  
 545 550 555 560  
 His Cys Ser Gly His Gly Asn Phe Ser Phe Glu Ser Cys Gly Cys Ile  
 565 570 575  
 Cys Asn Glu Gly Trp Phe Gly Lys Asn Cys Ser Glu Pro Tyr Cys Pro  
 580 585 590  
 Leu Gly Cys Ser Ser Arg Gly Val Cys Val Asp Gly Gln Cys Ile Cys  
 595 600 605  
 Asp Ser Glu Tyr Ser Gly Asp Asp Cys Ser Glu Leu Arg Cys Pro Thr  
 610 615 620  
 Asp Cys Ser Ser Arg Gly Leu Cys Val Asp Gly Glu Cys Val Cys Glu  
 625 630 635 640  
 Glu Pro Tyr Thr Gly Glu Asp Cys Arg Glu Leu Arg Cys Pro Gly Asp  
 645 650 655  
 Cys Ser Gly Lys Gly Arg Cys Ala Asn Gly Thr Cys Leu Cys Glu Glu  
 660 665 670  
 Gly Tyr Val Gly Glu Asp Cys Gly Gln Arg Gln Cys Leu Asn Ala Cys  
 675 680 685  
 Ser Gly Arg Gly Gln Cys Glu Glu Gly Leu Cys Val Cys Glu Glu Gly  
 690 695 700  
 Tyr Gln Gly Pro Asp Cys Ser Ala Val Ala Pro Pro Ala Ala Ala Met  
 705 710 715 720  
 Glu Asp Leu Asp Gln Ser Pro Leu Val Ser Ser Ser Asp Ser Pro Pro  
 725 730 735  
 Arg Pro Gln Pro Ala Phe Lys Tyr Gln Phe Val Arg Glu Pro Glu Asp  
 740 745 750  
 Glu Glu Glu Glu Glu Glu Glu Asp Glu Asp Glu Asp Leu  
 755 760 765  
 Glu Glu Leu Glu Val Leu Glu Arg Lys Pro Ala Ala Gly Leu Ser Ala  
 770 775 780  
 Ala Pro Val Pro Thr Ala Pro Ala Ala Gly Ala Pro Leu Met Asp Phe  
 785 790 795 800  
 Gly Asn Asp Phe Val Pro Pro Ala Pro Arg Gly Pro Leu Pro Ala Ala  
 805 810 815  
 Pro Pro Val Ala Pro Glu Arg Gln Pro Ser Trp Asp Pro Ser Pro Val  
 820 825 830  
 Ser Ser Thr Val Pro Ala Pro Ser Pro Leu Ser Ala Ala Val Ser  
 835 840 845  
 Pro Ser Lys Leu Pro Glu Asp Asp Glu Pro Pro Ala Arg Pro Pro Pro  
 850 855 860  
 Pro Pro Pro Ala Ser Val Ser Pro Gln Ala Glu Pro Val Trp Thr Pro  
 865 870 875 880  
 Pro Ala Pro Ala Pro Ala Pro Pro Ser Thr Pro Ala Ala Pro Lys  
 885 890 895  
 Arg Arg Gly Ser Ser Gly Ser Val Ala Ala Ala Arg Ile Tyr Lys Gly  
 900 905 910  
 Val Ile Gln Ala Ile Gln Lys Ser Asp Glu Gly His Pro Phe Arg Ala  
 915 920 925  
 Tyr Leu Glu Ser Glu Val Ala Ile Ser Glu Glu Leu Val Gln Lys Tyr  
 930 935 940  
 Ser Asn Ser Ala Leu Gly His Val Asn Cys Thr Ile Lys Glu Leu Arg  
 945 950 955 960  
 Arg Leu Phe Leu Val Asp Asp Leu Val Asp Ser Leu Lys  
 965 970

<210> 13  
 <211> 1524  
 <212> DNA  
 <213> Rattus norvegicus

<400> 13  
 atgatattcc ttaccacccct gcctctgttt tggataatga tttcagcttc tcgagggggg 60

cactggggtg cctggatgcc ctgcgtccatc tcagccttcg agggcacgtg tgcgtccatc 120  
 ccctggcggtt tcgacttccc ggatgagctc agaccggctg tggtacatgg cgtctggat 180  
 ttcaacagtc ctttccccaa gaactaccgg ccagtggctc tcaagtcccg cacacaagtg 240  
 gtcacgaga gcttccaggc ccgtagccgc ctgttggag acctgggcct acgaaaactgc 300  
 accctgttc tcagcacgtc gagccctgag ctgggaggg aatactattt ccgaggtgac 360  
 ctggggcgct acaaccatgtc cacccttcg gacacagcg tcctggatcatcaacacc 420  
 cccaacatcg tggtgccccca agaagtgggt gcaggaaacgg aagttagaggt cagctgcatt 480  
 gtggccggaca actgcccaga gctgcgcctt gagctgatgg ggctgggcca cgaggggcta 540  
 ggggagggca ctgttctggg tcggctgcgg gaggatgaag gcacctgggt gcaggtgtca 600  
 ctgctacact tcgtgcctac tagagaggcc aacggccacc gtctggctg tcaggctgcc 660  
 ttccccaaaca ccaccttgca gttcgagggt tacgcccattc tggacgtcaa gtacccccc 720  
 gtgattgtgg agatgaattt ctctgtggag gccattgagg gctccacgt cagccctgctc 780  
 tgggggctg acagcaaccc gccaccgcgtc ctgacttgg tgcggatgg gatgggtgtg 840  
 agggaggcag ttgctgagag cctgtacactt gatctgggg aggtgacccccc agcagaggac 900  
 ggcacatcttgc cttgcctggc agagaatgcc tatggccagg acaaccgcac ggtggagctg 960  
 agcgtcatgt atgcaccccttgaagccccaca gtgaatggg cgggtgggtggc ggttagaggg 1020  
 gagacagtctt ccattccgtt ttcacacag agcaacccgg accctatttctt caccatcttc 1080  
 aaggagaagc agatcctggc cacgggtatc tatgagagtc agctgcagct ggaactccct 1140  
 gcaatgcgcg cccaggacga tggggagtttctgttgc tgagaacca gtatggccag 1200  
 agagccaccg cttcaacact gtctgtggag ttgtctcca taatcttctt ggaatcgac 1260  
 tggcagcgg ccagagacac cgtgcgtgc ctgtgtgtgg taaaatccaa cccggaaaccc 1320  
 tccgtggctt ttgagctgcc ttcccgcaac gtgactgtga acgagacaga gagggagttt 1380  
 gtgtacttagc agcgcagcgg cctctgttc accagcatcc tcacgctccg gggtcaggcc 1440  
 caagccccac cccgcgtcat ttgtacctcc aggaacctt acggcaccctt gaggctcgag 1500  
 ctgcctttcc agggagacaca ccga 1524

<210> 14  
 <211> 615  
 <212> DNA  
 <213> Homo sapiens

<400> 14  
 tggccatgtg ccagttcagc ccaggtgctg caggagctgc tgagccggat cgagatgctg 60  
 gagagggagg tggccatgtg ctgcgtgtt gcaacgcctt actgtgcctt agaaagtgtt 120  
 gcaacaggac aactggactt tattcccttac tgcgtggcc acggcaactt tagcttttag 180  
 tcctgtggctt gcatctgtt cgaaggctgg tttggcaaga attgtctggg gcccctactgc 240  
 ccgtgggtt gctcccgcc ggggggtgtt gtggatggcc agtgcatctg tgacagcgaa 300  
 tacagcgggg atgactgttc cgaactccgg tgcccaacag actgcagctc cggggggctc 360  
 tggcgtggacg gggagttgtt ctgtgaagag ccctacactg gcgaggactg cagggaaactg 420  
 aggtgcctt gggactgttc gggggagggg agatgtgcca acggtaactt tttatgcgag 480  
 gagggctacg ttggtgagga ctgcggccag cggcgtgtt gtaatgcctt cagtggcgaa 540  
 ggacaatgtt aggaggggtt ctgcgtctgtt gaagagggtt accagggccc tgactgctca 600  
 gcagttggcc ctcca 615

<210> 15  
 <211> 555  
 <212> DNA  
 <213> Homo sapiens

<400> 15  
 atgaaagacc tggaccatgtc tcctctggc tcgtcctccg acagccccacc cggggccgcag 60  
 cccgcgttca agtaccatgtt cgtgggggg cccggaggacg aggagggaaa agaggaggag 120  
 gaagaggagg acgaggacga agacccctggg gagctgggg tggctggagag gaagcccccc 180  
 gcccggctgt ccggggccccc agtgccttcc gcccctggcc cggggccgccttgcgtatggac 240  
 ttcggaaatgtt acttcgttcc gccggccccc cggggacccc tggccggccgc tcccccccttc 300  
 gccccggagc ggcagccgtc ttgggacccg agccgggtgtt cgtcgtccgtt gcccggccca 360  
 tccccggctgt ctgtgtccccc agtctccccc tccaagttcc ctgaggacga cggccctccg 420  
 gccccggctt cccctccccc cccggccaggc gtgagccccc agggagggcc cgtgtggacc 480  
 cggccagccca cggcccccgc cggccccccc tccacccccc cggcccccac gcgccaggcc 540  
 tcctcggtt cagtgtt 555

<210> 16  
 <211> 198  
 <212> DNA  
 <213> Homo sapiens

<400> 16  
 agatataaca agggtgttat ccaagctatc cagaaatctt atgaaggcca cccattcagg 60  
 gcatatctgg aatctgttatc tgcttatctt gaggagttgg ttcagaagttt cagtaatttt 120  
 gctcttggcc atgtgtactt caccataaaatc gaaatcaggc gcctttttt agttgtatgtt 180  
 ttatgttattt ctctgttat 198

|                                     |    |  |
|-------------------------------------|----|--|
| <210> 17                            |    |  |
| <211> 28                            |    |  |
| <212> DNA                           |    |  |
| <213> Artificial Sequence           |    |  |
| <br>                                |    |  |
| <220>                               |    |  |
| <223> PCR primer MAG1               |    |  |
| <br>                                |    |  |
| <400> 17                            | 28 |  |
| cgggatccat gatattcctt accaccct      |    |  |
| <br>                                |    |  |
| <210> 18                            |    |  |
| <211> 28                            |    |  |
| <212> DNA                           |    |  |
| <213> Artificial Sequence           |    |  |
| <br>                                |    |  |
| <220>                               |    |  |
| <223> PCR primer MAG2               |    |  |
| <br>                                |    |  |
| <400> 18                            | 28 |  |
| tccccgcggc tcggtgtgct ccctggaa      |    |  |
| <br>                                |    |  |
| <210> 19                            |    |  |
| <211> 29                            |    |  |
| <212> DNA                           |    |  |
| <213> Artificial Sequence           |    |  |
| <br>                                |    |  |
| <220>                               |    |  |
| <223> PCR primer TNR1               |    |  |
| <br>                                |    |  |
| <400> 19                            | 29 |  |
| tccccgcggc atgtccatgt gccagttca     |    |  |
| <br>                                |    |  |
| <210> 20                            |    |  |
| <211> 28                            |    |  |
| <212> DNA                           |    |  |
| <213> Artificial Sequence           |    |  |
| <br>                                |    |  |
| <220>                               |    |  |
| <223> PCR primer TNR2               |    |  |
| <br>                                |    |  |
| <400> 20                            | 28 |  |
| ttgcggccgc tggaggggca actgctga      |    |  |
| <br>                                |    |  |
| <210> 21                            |    |  |
| <211> 32                            |    |  |
| <212> DNA                           |    |  |
| <213> Artificial Sequence           |    |  |
| <br>                                |    |  |
| <220>                               |    |  |
| <223> PCR primer NogoN1             |    |  |
| <br>                                |    |  |
| <400> 21                            | 32 |  |
| ttgcggccgc aatggaagac ctggaccagt ct |    |  |
| <br>                                |    |  |
| <210> 22                            |    |  |
| <211> 31                            |    |  |
| <212> DNA                           |    |  |
| <213> Artificial Sequence           |    |  |
| <br>                                |    |  |
| <220>                               |    |  |
| <223> PCR primer NogoN2             |    |  |
| <br>                                |    |  |
| <400> 22                            | 31 |  |
| aaactgcagc cactgagccc gagggagcccc t |    |  |
| <br>                                |    |  |
| <210> 23                            |    |  |
| <211> 28                            |    |  |
| <212> DNA                           |    |  |
| <213> Artificial Sequence           |    |  |

<220>  
 <223> PCR primer Nogo66-1  
 <400> 23  
 aaactgcagc aaggatatac aagggtgt 28  
 <210> 24  
 <211> 28  
 <212> DNA  
 <213> Artificial Sequence  
 <220>  
 <223> PCR primer Nogo66-2  
 <400> 24  
 gctctagatc acttcagaga atcaacta 28  
 <210> 25  
 <211> 2934  
 <212> DNA  
 <213> Artificial Sequence  
 <220>  
 <223> Construct resulting from sequentially connected  
 PCR products  
 <400> 25  
 ggatccatga tattccttac caccctgcct ctgttttggtaatgatttc agtttcgtcgaa 60  
 ggggggcact ggggtgcctg gatgcctcg tccatctcg cttcgaggcacgtgtgtc 120  
 tccatccccct gccgtttcga ctccccggat gagctcagac cggtgtggatcatggcgtc 180  
 tggtatttca acagtccta ccccaagaac tacccgcagtggttctcaa gtcccgacaca 240  
 caagtggtcc acgagagctt ccagggccgt agccgcctgt tggagacct gggcctacga 300  
 aactgcaccc tgcttctcgac cagctgagc cctgagctgg gagggaaata ctattccga 360  
 ggtgacctgg gcggctacaa ccagtcacacc ttctcgagc acagcttcgtcgacatcatc 420  
 aacaccccca acatcggttgc gccccccgaa gtgggtggcag gaacgaaatg agaggttcagc 480  
 tgcgttgtc cggacaactg cccagagctg cggccgtgatcgatgggtctggcgtc 540  
 ggcttaggg agccccactgt tctgggtcgg ctgcggggagg atgaaggcac ctgggtgcag 600  
 gtgtcaactgc tacacttcgt gcctactaga gaggccaaacg gcccacgtct gggctgtcag 660  
 gtcgccttcc ccaacaccac ctgcgttgc gagggttacg ccagtctggatgtcaagtac 720  
 ccccccgtga ttgtggagat gaatttcctct gtggaggcata tgagggtctccacgtc 780  
 ctgctctgtg gggctgacag caacccgcac ccgtctgtatcgttgcgtcg ggtggatgtc 840  
 gtgttgggg aggccgttgc tgagagctgc tacctggatc tggaggaggt gaccccgac 900  
 gaggacggca tctatgttgc cctggcagag aatgcctatgc cggccacgttgcacgttgc 960  
 gagctgagcg tcatgtatgc accttggaaag cccacagtga atggacgggttgcgttgc 1020  
 gaggggggaga cagtctccat cctgtgttcc acacagagca accccggaccc tattctcacc 1080  
 atcttcaagg agaaggcagat cctggccacgc gtcatctatgc agatcgactgcagctggaa 1140  
 ctcccctgcag tgacgcccga ggacgatggg gtagtactgttgcgttgcgaaccaggat 1200  
 ggcagagag ccacccgcctt caacctgtct gtggagtttgcgttgcgttgcgttgc 1260  
 tcgcactgtc cagccggccag agacaccgtg cagtgcgtgtgtgttgcgttgcgttgc 1320  
 gaaccctccg tggccttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc 1380  
 gagtttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc 1440  
 caggcccaag ccccaaaaaa cgtcattttgttgcgttgcgttgcgttgcgttgcgttgc 1500  
 ctcgagctgc ctttccaggg agcacaccgtg gccgcggcat gtccatgtgc cagttcagcc 1560  
 caggtgtcgc aggagctgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc 1620  
 cgagaccagt gcaaccccaa ctgtgtccaa gaaagtgcgttgcgttgcgttgcgttgcgttgc 1680  
 atccctactcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc 1740  
 gaaggctgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc 1800  
 ggggtgtgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc 1860  
 gaactccggat gccccacaga ctgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc 1920  
 tgtgaagagc cctacactgg cgaggactgc agggaaactgatgcgttgcgttgcgttgcgttgc 1980  
 gggaaaggggat gatgtgtccaa cggtaactgttgcgttgcgttgcgttgcgttgcgttgcgttgc 2040  
 tgcggccagc ggcagtgtcttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc 2100  
 tgcgtctgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc 2160  
 gcaatggaaac acctggacca gtcctctgttgcgttgcgttgcgttgcgttgcgttgcgttgc 2220  
 cagcccccgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc 2280  
 gaggaagaggat aggacgaggttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc 2340  
 gccgcggggcc tggccggccgc cccagtgccatccgttgcgttgcgttgcgttgcgttgcgttgc 2400  
 gacttcggaa atgacttcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc 2460  
 gtcgccccggat agccggcagcc gtccttggacccgttgcgttgcgttgcgttgcgttgcgttgc 2520  
 ccatccccccgc tgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgcgttgc 2580

ccggccccggc ctcccccctcc tccccccggcc agcgtgagcc cccaggcaga gcccgtgtgg 2640  
 accccgcctcgag cccccggctcc cgccgcgcggcc ccctccaccc cggccgcgcggcc caagcgcagg 2700  
 ggctcctcggtcg gtcagtgcc tgcaagcaagg atatacaagg gtgtatcca agctatccag 2760  
 aaatcagatg aaggccaccc attcagggca tatctgaat ctgaagttgc tatatctgag 2820  
 gagttgggttc agaagtacag taattctgct cttggtcatg tgaactgcac gataaaggaa 2880  
 ctcaggcgcc tcttcttagt tgatgattta gttgatttc tgaagtgatc taga 2934

<210> 26  
 <211> 42  
 <212> DNA  
 <213> M13 coliphage

<400> 26  
 ttattcgcaa ttccctttagt ggtaccttgc tattctcact ct 42

<210> 27  
 <211> 33  
 <212> DNA  
 <213> M13 coliphage

<400> 27  
 ggtggagggtt cggccgaaac tggtaaaagt tgt 33

<210> 28  
 <211> 21  
 <212> DNA  
 <213> Artificial Sequence

<220>  
 <223> Exemplary 7-mer peptide-encoding sequence

<400> 28  
 tatctgacgc agcctcagtc g 21

<210> 29  
 <211> 21  
 <212> DNA  
 <213> Artificial Sequence

<220>  
 <223> Exemplary 7-mer peptide-encoding sequence

<400> 29  
 gtttctctgc ctcattcgct g 21

<210> 30  
 <211> 21  
 <212> DNA  
 <213> Artificial Sequence

<220>  
 <223> Exemplary 7-mer peptide-encoding sequence

<400> 30  
 acgcagctgt ttccctcccta g 21

<210> 31  
 <211> 21  
 <212> DNA  
 <213> Artificial Sequence

<220>  
 <223> Exemplary 7-mer peptide-encoding sequence

<400> 31  
 cattcttattc ctgataatat t 21

<210> 32  
 <211> 21  
 <212> DNA  
 <213> Artificial Sequence

<220>  
<223> Exemplary 7-mer peptide-encoding sequence

<400> 32  
catcatatgc ctcataaa g

21

<210> 33  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Exemplary 7-mer peptide-encoding sequence

<400> 33  
tatacgacgc ctccgagtc t

21

<210> 34  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Exemplary 7-mer peptide-encoding sequence

<400> 34  
cagcttcgc ttatgcctcg t

21

<210> 35  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Exemplary 7-mer peptide-encoding sequence

<400> 35  
acgcagctgt ttccctcctca g

21