## **Checking Consistency**

### Node consistency:

Ensure values in domain of variable X satisfy unary constraints

### Arc Consistency (AC):

Ensure each value in domain  $D_i$  of  $X_i$  satisfies binary constraints

Binary constraint  $C_{i,j}$  for vars  $X_i \leftrightarrow X_j$ If  $X_i$  is AC with  $X_j$  then:

for each  $x \in D_i$  there exists  $y \in D_j$  such that  $(x, y) \in C_{i,i}$ 



 $x_1$  is AC with  $x_2$  and  $x_3$   $x_3$  is AC with  $x_1$  and  $x_2$  $x_2$  is **not** AC with  $x_1$  and  $x_3$ 

## Forward Checking

Whenever a variable X is assigned, enforce arc consistency for all links  $Y \to X$  for unassigned variables Y









But we could have identified it here!







No valid assignment!

# Recursively Enforcing Arc Consistency

```
function AC-3(csp)

while queue is not empty do

(X_i, X_j) \leftarrow queue.POP()

revised \leftarrow false

for each x in D_i do

if there is no value y \in D_i satisfying C_{i,j} then
```



Alan Mackworth
Univ. of British Columbia

Goes beyond forward checking by propagating constraints

```
if revised then
```

if  $size(D_i) = 0$  then return false

remove x from  $D_i$ 

revised ← true

for each  $X_k$  neighbor of  $X_i$  (excluding  $X_i$ ) do queue.PUSH(( $X_k, X_i$ ))

#### Tree-Structured CSPs

If the constraint graph has no loops (also called cycles), then the CSP can be solved in  $O(nd^2)$  time (vs  $O(d^n)$  in general)



## Solving Tree-Structured CSPs

 Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering



- 2. For j from n down to 2, apply RemoveInconsistent( $Parent(X_j), X_j$ )
- 3. For j from 1 to n, assign  $X_j$  consistently with  $Parent(X_j)$

## **Cutset Conditioning**

Conditioning: instantiate a variable, prune its neighbors' domains



Rina Dechter
Univ. of California, Irvine

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size  $c \Rightarrow \text{runtime } O(d^c \cdot (n-c)d^2)$ , very fast for small c

## Summary

- Node and arc consistency refer to whether the domains for a set of variables satisfy the constraints
- Forward checking enforces arc consistency for all neighbors of a variable that has been assigned during search
- Constraint propagation goes further and enforces arc consistency recursively until all domains are consistent (AC-3 algorithm)
- The Maintaining Arc Consistency version of backtracking search calls AC-3 after each variable assignment
- Tree-structured graphs can be solved orders of magnitude faster than general graphs. Cutset conditioning can be used with graphs that are "close" to trees