d. E' vero che ogni estensione algebrica è finita?

	FIRMA	1	2	3	4	5	6	7	8	ТОТ.			
spondere alle seguenti de	omande forne	endo u	ına gi	ustifi	cazio	ne di	una	riga:					
a. Quale è il grado del ca	ampo di spez	zameı	nto de	el pol	inomi	io (T^2)	(2+1)	$(T^2 -$	+ 2)(2	$T^4-2) \in$	$\mathbf{Q}[T]$?		
o. E' sempre vero che, se	$lpha \in {f C}$ è alg	ebrico	o, allo	ra # <i>1</i>	Aut(C	$\mathbf{Q}[lpha]/$	$\mathbf{Q}) =$	$[\mathbf{Q}[a]]$	$[\mathbf{q}]:\mathbf{Q}]$?			
o. E' sempre vero che, se	$lpha \in {f C}$ è alg	ebrico	o, allo	ra # <i>1</i>	Aut(C	$\mathbf{Q}[lpha]/$	$\mathbf{Q}) =$	$[\mathbf{Q}[a]]$	$[\mathbf{Q}]:\mathbf{Q}$?			
o. E' sempre vero che, se	$lpha \in \mathbf{C}$ è alg	ebrico	o, allo	ra # <i>1</i>	Aut(C	$\mathbf{Q}[lpha]/$	$\mathbf{Q})=$	[Q [a	$[\mathbf{Q}]:\mathbf{Q}$?		 	
o. E' sempre vero che, se	$lpha \in \mathbf{C}$ è alg	ebrico	o, allo 	ra #1	Aut(0	$\mathbf{Q}[lpha]/$	$\mathbf{Q})=$	[Q [\alpha	$[\mathbf{Q}]:\mathbf{Q}$?		 	
o. E' sempre vero che, se	$lpha \in {f C}$ è alg	ebrico	o, allo 	ra #1	Aut(0	$\mathbf{Q}[lpha]/$	$\mathbf{Q})=$	[Q [\alpha	[: Q]	?		 	
o. E' sempre vero che, se	$lpha \in {f C}$ è alg	ebrico	o, allo	ra #1	Aut(C	$\mathbf{Q}[lpha]/$	Q) =	[Q [a	[] : Q]	?		 	
o. E' sempre vero che, se	$lpha \in \mathbf{C}$ è alg	ebrico	o, allo	ra #4	Aut(C	$\mathbf{Q}[lpha]/$	Q) =	[Q [\alpha]	·] : Q]	?		 	
o. E' sempre vero che, se	$lpha \in \mathbf{C}$ è alg	ebrico	o, allo	ra #1	Aut(0	$\mathbf{Q}[lpha]/$	Q) =	[Q [\alpha	·] : Q]	?		 	
o. E' sempre vero che, se	$lpha \in {f C}$ è alg	ebrico	o, allo	ra #1	Aut(C	$\mathbf{Q}[lpha]/$	$\mathbf{Q})=$	[Q [a		?		 	
		ebrico	o, allo	ra #1	Aut(C	$\mathbf{Q}[lpha]/$	$\mathbf{Q})=$	[Q [a		?		 	
		ebrico	o, allo	ra # <i>1</i>	Aut(C	$\mathbf{Q}[lpha]/$	$\mathbf{Q})=$	[Q [\alpha		?		 	
c. E' vero che $\sin 2\pi/n \in$		ebrico	o, allo	ra #1	Aut(C	$\mathbf{Q}[lpha]/$	$\mathbf{Q})=$	[Q [a		?		 	
		ebrico	o, allo 	ra #1	Aut(C	$\mathbf{Q}[lpha]/$	Q) =	[Q [a		?		 	
		ebrico	o, allo	ra #1	Aut(C	$\mathbf{Q}[lpha]/$	Q) =	[Q [\alpha		?		 	

3. Sia d un intero positivo dispari fissato. Dopo aver dimostrato che $f_d = X^4 - 2X^2 - 2d \in \mathbf{Q}[X]$ è irriducibile, si denoti con $F_d = \mathbf{Q}[\alpha], \alpha^4 = 2\alpha^2 + 2d.$ a. Dimostrare che F_d ha un sottocampo isomorfo a $\mathbf{Q}[\sqrt{1+2d}]$,
b. Calcolare il grado del campo di spezzamento di f_d su \mathbf{Q} .

4.	Dopo aver descr	itto tutti gli elementi	d di Aut($\mathbf{Q}(2^{1/4}, \sqrt{-1})/\mathbf{Q}$	\mathbf{Q}), si determini l'ordine di c	iascuno di essi.
5.	Determinare il c	ampo di spezzamento	o su \mathbf{Q} di $f(X) = x^{15} -$	$x^8-x^7+1\in {\bf Q}[X]$ e se ne	determini il grado su \mathbf{Q} .
5.	Determinare il c	ampo di spezzamento	o su \mathbf{Q} di $f(X) = x^{15}$ –	$x^8-x^7+1\in {\bf Q}[X]$ e se ne	determini il grado su ${f Q}$.
5.	Determinare il c	ampo di spezzamento	o su \mathbf{Q} di $f(X) = x^{15}$ –	$x^8-x^7+1\in {\bf Q}[X]$ e se ne	determini il grado su ${f Q}$.
5.	Determinare il c	ampo di spezzamento	o su \mathbf{Q} di $f(X) = x^{15}$ –	$x^8-x^7+1\in \mathbf{Q}[X]$ e se ne	determini il grado su ${f Q}$.
5.	Determinare il c	ampo di spezzamento	o su \mathbf{Q} di $f(X) = x^{15}$ –	$x^8-x^7+1\in \mathbf{Q}[X]$ e se ne	determini il grado su ${f Q}$.
5.	Determinare il c	ampo di spezzamento	o su \mathbf{Q} di $f(X) = x^{15}$ –	$x^8-x^7+1\in \mathbf{Q}[X]$ e se ne	determini il grado su ${f Q}$.
5.	Determinare il o	ampo di spezzamento	o su \mathbf{Q} di $f(X) = x^{15}$ –	$x^8 - x^7 + 1 \in \mathbf{Q}[X]$ e se ne	determini il grado su ${f Q}$.
5.	Determinare il c	ampo di spezzamento	o su \mathbf{Q} di $f(X) = x^{15}$ –	$x^8 - x^7 + 1 \in \mathbf{Q}[X]$ e se ne	determini il grado su ${f Q}$.
5.	Determinare il c	ampo di spezzamento	o su \mathbf{Q} di $f(X) = x^{15}$ –	$x^8 - x^7 + 1 \in \mathbf{Q}[X]$ e se ne	determini il grado su ${f Q}$.
5.	Determinare il c	ampo di spezzamento	o su \mathbf{Q} di $f(X) = x^{15}$ –	$x^8 - x^7 + 1 \in \mathbf{Q}[X]$ e se ne	determini il grado su ${f Q}$.
5.	Determinare il c	ampo di spezzamento	o su \mathbf{Q} di $f(X) = x^{15}$ –	$x^8 - x^7 + 1 \in \mathbf{Q}[X]$ e se ne	determini il grado su ${f Q}$.

6. Dopo aver verificato che $\mathbf{Q}(\sqrt{2}) \subset \mathbf{Q}(\zeta_8)$, descrivere gli $\mathbf{Q}(\sqrt{2})$ -omomorfismi del campo $\mathbf{Q}(\zeta_8)$ in \mathbf{C} .	
7. Dopo aver verificato che è algebrico, calcolare il polinomio minimo di sin $\pi/12$ su ${\bf Q}.$	
8. Enunciare e dimostrare il Lemma di Artin.	