ĐẠI HỌC ĐÀ NẮNG

TRƯỜNG ĐẠI HỌC KỸ THUẬT KHOA CÔNG NGHÊ THÔNG TIN - ĐIỆN TỬ VIỄN THÔNG

GIÁO TRÌNH MÔN HỌC

LẬP TRÌNH HƯỚNG ĐỐI TƯỢNG

BIÊN SOẠN: LÊ THỊ MỸ HẠNH

MỤC LỤC

$\omega \square \omega$

CHUONG	1: GIỚI THIỆU VỀ LẬP TRÌNH HƯỚNG ĐỐI TƯỢNG	5
	TRÌNH HƯỚNG ĐỐI TƯỢNG (OOP) LÀ GÌ ?	
	Lập trình tuyến tính	
	Lập trình cấu trúc	
I.3.	Sự trừu tượng hóa dữ liệu	
I.4.	Lập trình hướng đối tượng	6
II. MỘT	ſ SỐ KHÁI NIỆM MỚI TRONG LẬP TRÌNH HƯỚNG ĐỐI TƯỢNG	8
II.1.	Sự đóng gói (Encapsulation)	8
II.2.	Tính kế thừa (Inheritance)	9
	Tính đa hình (Polymorphism)	
III. CÁC	NGÔN NGỮ VÀ VÀI ỨNG DỤNG CỦA OOP	11
CHUONG	2: CÁC MỞ RỘNG CỦA C++	12
	ł Sử Của C++	
	MỞ RỘNG CỦA C++	
	Các từ khóa mới của C++	
	Cách ghi chú thích	
	Dòng nhập/xuất chuẩn	
	Cách chuyển đổi kiểu dữ liệu	
II.5.	Vị trí khai báo biến	
II.6.	Các biến const	15
II.7.	Về struct, union và enum	16
II.8.	Toán tử định phạm vi	16
II.9.	Toán tử new và delete	17
	Hàm inline	
II.11.	Các giá trị tham số mặc định	
	Phép tham chiếu	
II.13.	Phép đa năng hóa (Overloading)	29
CHUONG	3: LỚP VÀ ĐỐI TƯỢNG	39
I. DÃN	J NHÂP	39
II. CÀI	ĐẶT MỘT KIỂU DO NGƯỜI DÙNG ĐỊNH NGHĨA VỚI MỘT STRUCT.	39
III. CÀI	ĐẶT MỘT KIỂU DỮ LIỆU TRÙU TƯỢNG VỚI MỘT LỚP	41
IV. PHẠ	M VI LỚP VÀ TRUY CẬP CÁC THÀNH VIÊN LỚP	45
V. ĐIỀU	J KHIỂN TRUY CẬP TỚI CÁC THÀNH VIÊN	47
VI. CÁC	HÀM TRUY CẬP VÀ CÁC HÀM TIỆN ÍCH	48
VII. KHČ	ỜI ĐỘNG CÁC ĐỐI TƯỢNG CỦA LỚP : CONSTRUCTOR	49
VIII.SŰ I	DUNG DESTRUCTOR	51
	NÃO CÁC CONSTRUTOR VÀ DESTRUCTOR ĐƯỢC GỌI?	
	DỤNG CÁC THÀNH VIÊN DỮ LIỆU VÀ CÁC HÀM THÀNH VIÊN	
	VỀ MỘT THAM CHIẾU TỚI MỘT THÀNH VIÊN DỮ LIỆU PRIVATE	
	P GÁN BỞI TOÁN TỬ SAO CHÉP THÀNH VIÊN MẶC ĐỊNH	
	C ĐỐI TƯỢNG HẰNG VÀ CÁC HÀMTHÀNH VIÊN CONST	
	NHƯ LÀ CÁC THÀNH VIÊN CỦA CÁC LỚP KHÁC	
XV. CAC	CHÀM VÀ CÁC LỚP FRIEND	67

Giáo trình môn Lập trình hướng đối tượng		
CHƯƠNG 8: CÁC DẠNG NHẬP/XUẤT		
~ ^ -	143	
	143	
II.1.Các file header của thư viện iostream	143	
II.2.Các lớp và các đối tượng của dòng nhập/xuất1		
III. DÒNG XUẤT1	145	
III.1.Toán tử chèn dòng1	145	
III.2.Nối các toán tử chèn dòng và trích dòng	146	
III.3.Xuất ký tự với hàm thành viên put(); Nối với nhau hàm put() 1	147	
IV. DÒNG NHẬP1	148	
IV.1.Toán tử trích dòng: 1	148	
IV.2.Các hàm thành viên get() và getline()	149	
IV.3.Các hàm thành viên khác của istream1	151	
- · · · · · · · · · · · · · · · · · · ·	151	
V. NHẬP/XUẤT KHÔNG ĐỊNH DẠNG VỚI READ(),GCOUNT() VÀ WRITE() 1	151	
VI. DÒNG NHẬP/ XUẤT FILE1	152	
VI.1.Nhập/xuất file văn bản1	154	
CHƯƠNG 9: HÀM VÀ LỚP TEMPLATE1	159	
	159	

CÁC LớP TEMPLATE......161

CHƯƠNG 1

GIỚI THIỆU VỀ LẬP TRÌNH HƯỚNG ĐỐI TƯỢNG

I. LẬP TRÌNH HƯỚNG ĐỐI TƯỢNG (OOP) LÀ GÌ ?

Lập trình hướng đối tượng (Object-Oriented Programming, viết tắt là OOP) là một phương pháp mới trên bước đường tiến hóa của việc lập trình máy tính, nhằm làm cho chương trình trở nên linh hoạt, tin cậy và dễ phát triển. Tuy nhiên để hiểu được OOP là gì, chúng ta hãy bắt đầu từ lịch sử của quá trình lập trình – xem xét OOP đã tiến hóa như thế nào.

I.1. Lập trình tuyến tính

Máy tính đầu tiên được lập trình bằng mã nhị phân, sử dụng các công tắt cơ khí để nạp chương trình. Cùng với sự xuất hiện của các thiết bị lưu trữ lớn và bộ nhớ máy tính có dung lượng lớn nên các ngôn ngữ lập trình cấp cao đầu tiên được đưa vào sử dụng . Thay vì phải suy nghĩ trên một dãy các bit và byte, lập trình viên có thể viết một loạt lệnh gần với tiếng Anh và sau đó chương trình dịch thành ngôn ngữ máy.

Các ngôn ngữ lập trình cấp cao đầu tiên được thiết kế để lập các chương trình làm các công việc tương đối đơn giản như tính toán. Các chương trình ban đầu chủ yếu liên quan đến tính toán và không đòi hỏi gì nhiều ở ngôn ngữ lập trình. Hơn nữa phần lớn các chương trình này tương đối ngắn, thường ít hơn 100 dòng.

Khi khả năng của máy tính tăng lên thì khả năng để triển khai các chương trình phức tạp hơn cũng tăng lên. Các ngôn ngữ lập trình ngày trước không còn thích hợp đối với việc lập trình đòi hỏi cao hơn. Các phương tiện cần thiết để sử dụng lại các phần mã chương trình đã viết hầu như không có trong ngôn ngữ lập trình tuyến tính. Thật ra, một đoạn lệnh thường phải được chép lặp lại mỗi khi chúng ta dùng trong nhiều chương trình do đó chương trình dài dòng, logic của chương trình khó hiểu. Chương trình được điều khiển để nhảy đến nhiều chỗ mà thường không có sự giải thích rõ ràng, làm thế nào để chương trình đến chỗ cần thiết hoặc tại sao như vậy.

Ngôn ngữ lập trình tuyến tính không có khả năng kiểm soát phạm vi nhìn thấy của các dữ liệu. Mọi dữ liệu trong chương trình đều là dữ liệu toàn cục nghĩa là chúng có thể bị sửa đổi ở bất kỳ phần nào của chương trình. Việc dò tìm các thay đổi không mong muốn đó của các phần tử dữ liệu trong một dãy mã lệnh dài và vòng vèo đã từng làm cho các lập trình viên rất mất thời gian.

I.2. Lập trình cấu trúc

Rõ ràng là các ngôn ngữ mới với các tính năng mới cần phải được phát triển để có thể tạo ra các ứng dụng tinh vi hơn. Vào cuối các năm trong 1960 và 1970, ngôn ngữ lập trình có cấu trúc ra đời. Các chương trình có cấu trúc được tổ chức theo các công việc mà chúng thực hiện.

Về bản chất, chương trình chia nhỏ thành các chương trình con riêng rẽ (còn gọi là hàm hay thủ tục) thực hiện các công việc rời rạc trong quá trình lớn hơn, phức tạp hơn. Các hàm này được giữ càng độc lập với nhau càng nhiều càng tốt, mỗi hàm có dữ liệu và logic riêng. Thông tin được chuyển giao giữa các hàm thông qua các tham số, các hàm có thể có các biến cục bộ mà không một ai nằm bên ngoài phạm vi của hàm lại có thể truy xuất được chúng. Như vậy, các hàm có thể được xem là các chương trình con được đặt chung với nhau để xây dựng nên một ứng dụng.

Mục tiêu là làm sao cho việc triển khai các phần mềm dễ dàng hơn đối với các lập trình viên mà vẫn cải thiện được tính tin cậy và dễ bảo quản chương trình. Một chương trình có cấu trúc được hình thành bằng cách bẻ gãy các chức năng cơ bản của chương trình thành các mảnh nhỏ mà sau đó trở thành các hàm. Bằng cách cô lập các công việc vào trong các hàm, chương trình có cấu trúc có thể làm giảm khả năng của một hàm này ảnh hưởng đến một hàm khác. Việc này cũng làm cho việc tách các vấn đề trở nên dễ dàng hơn. Sự gói gọn này cho phép chúng ta có thể viết các chương trình sáng sủa hơn và giữ được điều khiển trên từng hàm. Các biến toàn cục không còn nữa và được thay thế bằng các tham số và biến cục bộ có phạm vi nhỏ hơn và dễ kiểm soát hơn. Cách tổ chức tốt hơn này nói lên rằng chúng ta có khả năng quản lý logic của cấu trúc chương trình, làm cho việc triển khai và bảo dưỡng chương trình nhanh hơn và hữu hiện hơn và hiệu quả hơn.

Biên soạn: Lê Thị Mỹ Hạnh