(1 pt) setAssignment10/probs70.pg

Suppose you throw m = 13 balls into n = 9 bins.

Let X_i be the number of balls that fall into bin i.

Let $T_{i,j}$ Be a random variable that is 1 if the j'th ball falls in the i'th bin.

Clearly $T_{i,j}$, $T_{i,k}$ are independent for $1 \le j < k \le m$, and $X_i = \sum_{j=1}^m T_{i,j}$.

Using these facts, answer the following questions:

- 1. What is $\mathbb{E}(T_{i,j})$?
- 2. What is $var(T_{i,j})$?

(1 pt) setAssignment10/probs70.pg

Suppose you throw m = 13 balls into n = 9 bins.

Let X_i be the number of balls that fall into bin i.

Let $T_{i,j}$ Be a random variable that is 1 if the j'th ball falls in the i'th bin.

Clearly $T_{i,j}$, $T_{i,k}$ are independent for $1 \le j < k \le m$, and $X_i = \sum_{j=1}^m T_{i,j}$.

Using these facts, answer the following questions:

- 1. What is $\mathbb{E}(T_{i,j})$?
- 2. What is $var(T_{i,j})$?

$T_{i,j}$ is 1 with probability 1/9 and 0 with probability 8/9

$$E(T_{i,j}) = 0P(T_{i,j} = 0) + 1P(T_{i,j} = 1)$$

$$= P(T_{i,j} = 1) = 1/9$$

$$var(T_{i,j}) =$$

$$= (0 - 1/9)^2 P(T_{i,j} = 0) + (1 - 1/9)^2 P(T_{i,j} = 1)$$

$$= (1/9)^2 (8/9) + (8/9)^2 (1/9)$$

$$= (1/9)(8/9)(1/9 + 8/9) = (1/9)(8/9)$$

In General, for a binary random variable:

$$P(X = 1) = p, P(X = 0) = 1 - p$$

$$E(X) = p$$
, $var(X) = p(1-p)$

Suppose you throw m=13 balls into n=9 bins. Let X_i be the number of balls that fall into bin i. Let $T_{i,j}$ Be a random variable that is 1 if the j'th ball falls in the i'th bin. 3. What is $Pr(X_i=0)$ (i.e. there are no balls in bin i)?

4. What is $Pr(X_i = 1)$ (i.e. there is exactly one ball in bin i)?

Suppose you throw m = 13 balls into n = 9 bins.

Let X_i be the number of balls that fall into bin i.

Let $T_{i,j}$ Be a random variable that is 1 if the j'th ball falls in the i'th bin.

- 3. What is $Pr(X_i = 0)$ (i.e. there are no balls in bin i)?
- 4. What is $Pr(X_i = 1)$ (i.e. there is exactly one ball in bin i)?

$$Pr(X_i = 0) = Pr\left(\sum_{j=1}^{m} T_{i,j} = 0\right)$$

Holds if and only if $T_{i,j} = 0$ for all j

$$\Pr\left(T_{i,1} = 0, T_{i,2} = 0, \dots, T_{i,m} = 0\right) = \left(\frac{n-1}{n}\right)^m = \left(\frac{8}{9}\right)^{13}$$

$$Pr(X_i = 1) = Pr\left(\sum_{j=1}^{m} T_{i,j} = 1\right)$$

Holds if and only if

 $T_{i,j} = 1$ for a single j and 0 for the rest

$$\Pr\left(\exists 1 \le k \le m \text{ s.t. } T_{i,k} = 1 \text{ and } T_{i,j} = 0 \text{ for } j \ne k\right)$$

$$= {m \choose 1} \left(\frac{n-1}{n} \right)^{m-1} \left(\frac{1}{n} \right) = \frac{m(n-1)^{m-1}}{n^m} = \frac{13 \times 8^{12}}{9^{13}}$$

Suppose you throw m=13 balls into n=9 bins. Let X_i be the number of balls that fall into bin i.

Let $T_{i,j}$ Be a random variable that is 1 if the j'th ball falls in the i'th bin.

5. What is $\mathbb{E}(X_i)$?

Hint: Recall linearity of expectations: $E(\sum_{i=1}^{n} T_{i,j}) = \sum_{i=1}^{n} E(T_{i,j})$

6. What is $var(X_i)$?

Hint: The variance of the sum of independent random variables is equal to the sum of the variances.

Suppose you throw m = 13 balls into n = 9 bins.

Let X_i be the number of balls that fall into bin i.

Let $T_{i,j}$ Be a random variable that is 1 if the j'th ball falls in the i'th bin.

5. What is $\mathbb{E}(X_i)$?

Hint: Recall linearity of expectations: $E(\sum_{i=1}^{n} T_{i,j}) = \sum_{i=1}^{n} E(T_{i,j})$

6. What is $var(X_i)$?

Hint: The variance of the sum of independent random variables is equal to the sum of the variances.

$$E(X_{i}) = E\left(\sum_{j=1}^{m} T_{i,j}\right) = \sum_{j=1}^{m} E\left(T_{i,j}\right) \qquad \text{var}(X_{i}) = \text{var}\left(\sum_{j=1}^{m} T_{i,j}\right) = \sum_{j=1}^{m} \text{var}\left(T_{i,j}\right)$$
$$= mE\left(T_{i,1}\right) = \frac{m}{n} = \frac{13}{9} \qquad = m \text{ var}\left(T_{i,1}\right) = \frac{m(n-1)}{n^{2}} = \frac{13*8}{9^{2}}$$

recall that: $E(T_{i,j}) = p = 1/n = 1/9$, $var(T_{i,j}) = p(1-p) = \frac{n-1}{n^2} = \frac{8}{81}$

Expected Number of Right Positions in a Random Permutation

Pick a random permutation of (1, 2, ..., n) Let X_i be the number that ends up in the *i*th position. For instance, if the permutation is (3, 2, 4, 1) then $X_1 = 3$, $X_2 = 2$, $X_3 = 4$, and $X_4 = 1$.

(a) What is the expected number of positions at which $X_i \neq i$ (i.e. the number of wrong positions)?

Let random variable D represents the number of wrong positions, we aim to find $\mathbb{E}(D)$.

If we devise a new r.v. $Y_i = \{0,1\}$ to represent whether or not $X_i \neq i$, then it is easy to see that, $D = Y_1 + Y_2 + \cdots + Y_n$. The linearity of expectation gives: $\mathbb{E}(D) = \mathbb{E}(Y_1 + Y_2 + \cdots + Y_n) = \mathbb{E}(Y_1) + \mathbb{E}(Y_2) + \cdots + \mathbb{E}(Y_n)$. Notice that all positions are equivalent, so all Y_i have the same distribution.

We can easily compute $\mathbb{E}(Y_i) = 0 \cdot \Pr(X_i = i) + 1 \cdot \Pr(X_i \neq i) = \boxed{}$ It follows that, $\mathbb{E}(D) = \boxed{}$.

Expected Number of Right Positions in a Random Permutation

Pick a random permutation of (1, 2, ..., n) Let X_i be the number that ends up in the ith position. For instance, if the permutation is (3, 2, 4, 1) then $X_1 = 3$, $X_2 = 2$, $X_3 = 4$, and $X_4 = 1$.

(a) What is the expected number of positions at which $X_i \neq i$ (i.e. the number of wrong positions)?

Let random variable D represents the number of wrong positions, we aim to find $\mathbb{E}(D)$.

If we devise a new r.v. $Y_i = \{0,1\}$ to represent whether or not $X_i \neq i$, then it is easy to see that, $D = Y_1 + Y_2 + \cdots + Y_n$. The linearity of expectation gives: $\mathbb{E}(D) = \mathbb{E}(Y_1 + Y_2 + \cdots + Y_n) = \mathbb{E}(Y_1) + \mathbb{E}(Y_2) + \cdots + \mathbb{E}(Y_n)$. Notice that all positions are equivalent, so all Y_i have the same distribution.

We can easily compute $\mathbb{E}(Y_i) = 0 \cdot \Pr(X_i = i) + 1 \cdot \Pr(X_i \neq i) = \boxed{}$ It follows that, $\mathbb{E}(D) = \boxed{}$.

$$X_{i} = i \leftrightarrow Y_{i} = 1, \quad X_{i} \neq i \leftrightarrow Y_{i} = 0$$

$$P(Y_{i} = 1) = 1/n, \quad P(Y_{i} = 0) = (n-1)/n$$

$$E(Y_{i}) = 0 \times P(Y_{i} = 0) + 1 \times P(Y_{i} = 0) = 1/n$$

$$E\left(\sum_{i=1}^{n} Y_{i}\right) = \sum_{i=1}^{n} E\left(Y_{i}\right) = n \times (1/n) = 1$$

(b) What is the expected number of positions at which $X_i = i + 1$?

Similar to the previous question, we let D represent the number of positions at which $X_i = i + 1$, and let $Y_i = 0$, 1 represent whether or not $X_i = i + 1$ at a specific position. Again we use the linearity of expectations. Notice that this time, not all Y_i are the same, because Y_n is always 0, while the other Y_i 's have some chances of taking both values.

In other words $\mathbb{E}(Y_n) =$

and for all $1 \le i < n$; $\mathbb{E}(Y_i) = \bigcap$

Using the linearity of expectation we get that $\mathbb{E}(D) = % \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right) \left(\frac{1}{2$

$$E(Y_n) = 0; \quad \forall i < n, \ E(Y_i) = 1/n$$

$$E(D) = E\left(\sum_{i=1}^{n} Y_i\right) = \sum_{i=1}^{n} E(Y_i) = \frac{n-1}{n}$$

(c) What is the expected number of positions at which $X_i \ge i$? In this part, the different Y_i 's have different distributions, but you should be able to compute each of $\mathbb{E}(Y_i)$ easily.

$$\mathbb{E}(Y_i) = \boxed{}$$

$$\mathbb{E}(D) = \boxed{ } .$$

Hint: use the equality: $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$

(c) What is the expected number of positions at which $X_i \ge i$? In this part, the different Y_i 's have different distributions, but you should be able to compute each of $\mathbb{E}(Y_i)$ easily.

$$\mathbb{E}(Y_i) = \boxed{ }$$

$$\mathbb{E}(D) = \boxed{ }$$

Hint: use the equality: $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$

$$Y_i = 1 \text{ if } X_i \ge i, \text{ otherwise } Y_i = 0$$

$$E(Y_i) = P(Y_i = 1) = \frac{n - i + 1}{n}$$

$$E(D) = E\left(\sum_{i=1}^{n} Y_i\right) = \sum_{i=1}^{n} E(Y_i)$$

$$= \frac{n + (n-1) + \dots + 1}{n} = \frac{n(n+1)/2}{n} = \frac{n+1}{2}$$

- We are going to use the combinatorial method. Fix the value of i. Let A_i be the set of all permutations which obey the condition $X_i > \max(X_1, \dots, X_{i-1})$. We will calculate $|A_i|$
- Let us design a method for constructing the elements of A_i . We first choose a **set** S_i of i different numbers from 1 to n to put in the bins X_1 through X_i . The largest of these i numbers will be X_i , and the remaining n-i numbers can be assigned arbitrarily to X_{i+1}, \dots, X_n .
 - 1. How large is the sample space, i.e. how many possibilities are there for choosing the **set** S_i when there is no restriction on the values for X_i other than that they are a subset of $\{1, \ldots, n\}$? (Note that S_i is a set, i.e. order does not matter).

- (d) What is the expected number of positions at which $X_i > \max(X_1, \dots, X_{i-1})$? In this part, $\mathbb{E}(Y_i)$ is not so obvious. We know that $\mathbb{E}(Y_i) = \Pr(X_i > \max(X_1, \dots, X_{i-1}))$, but how do we compute this probability?
- We are going to use the combinatorial method. Fix the value of i. Let A_i be the set of all permutations which obey the condition $X_i > \max(X_1, \dots, X_{i-1})$. We will calculate $|A_i|$
- Let us design a method for constructing the elements of A_i . We first choose a **set** S_i of i different numbers from 1 to n to put in the bins X_1 through X_i . The largest of these i numbers will be X_i , and the remaining n-i numbers can be assigned arbitrarily to X_{i+1}, \dots, X_n .
 - 1. How large is the sample space, i.e. how many possibilities are there for choosing the **set** S_i when there is no restriction on the values for X_i other than that they are a subset of $\{1, \ldots, n\}$? (Note that S_i is a set, i.e. order does not matter).

Si is a subset of size i of the elements {1,2,...,n}

Let Bi be the set of such sets.

$$|B_i| = \begin{pmatrix} n \\ i \end{pmatrix}$$

1.	How large is the sample space, i.e. how many possibilities are there for choosing the $\mathbf{set}\ S_i$ when				
	there is no restriction on the values for X_i other than that they are a subset of $\{1, \ldots, n\}$?				
	(Note that S_i is a set, i.e. order does not matter).				
2.	How many ways are there to place the elements of S_i into the bins X_1 through X_i ?				

Hint: recall that X_i has to be the largest of the i elements, therefor only i-1 elements can be freely placed in positions X_1 through X_{i-1} .

1.	How large is the sample space, i.e. how many possibilities are there for choosing the set S_i when				
	there is no restriction on the values for X_i other than that they are a subset of $\{1, \ldots, n\}$?				
	(Note that S_i is a set, i.e. order does not matter).				
2.	How many ways are there to place the elements of S_i into the bins X_1 through X_i ?				

Hint: recall that X_i has to be the largest of the i elements, therefor only i-1 elements can be freely placed in positions X_1 through X_{i-1} .

The number of ways to order (i-1) elements is (i-1)!

	2.	How many ways are there to place the elements of S_i into the bins X_1 through X_i ?
		Hint: recall that X_i has to be the largest of the i elements, therefor only $i-1$ elements can be freely placed in positions X_1 through X_{i-1} .
	3.	For positions after i , we can arbitrarily assign the unused $n-i$ numbers, so that gives us
		permutations for position $i+1$ through n .
	taking the product of the numbers we calculated in 1,2,3 we find that $ A_i $ =	

- 2. How many ways are there to place the elements of S_i into the bins X_1 through X_i ?

 Hint: recall that X_i has to be the largest of the i elements, therefor only i-1 elements can be freely placed in positions X_1 through X_{i-1} .
- 3. For positions after i, we can arbitrarily assign the unused n-i numbers, so that gives us permutations for position i+1 through n.
- 4. taking the product of the numbers we calculated in 1,2,3 we find that $|A_i| =$
 - 3. (n-i)!

4.
$$|A_i| = \binom{n}{i} (i-1)!(n-i)!$$

= $\frac{n!(i-1)!(n-i)!}{i!(n-i)!} = \frac{n!}{i}$

4.	taking the product of the numbers we calculated in 1,2,3 we find that $ A_i =$	
----	---	--

5. Finally we know the size of the entire outcome space is n!, dividing by n! we get that

$$\mathbb{E}(Y_i) = P(A_i) = \frac{|A_i|}{n!} =$$
 which simplifies to $\mathbb{E}(Y_i) =$

Now you should be able to compute $\mathbb{E}(D) = \sum_{i=1}^{n} \mathbb{E}(Y_i)$

For large
$$n$$
, $\mathbb{E}(D) \approx$

Hint: use the approximation $\sum_{i=1}^{n} 1/i \approx \ln n$

- 4. taking the product of the numbers we calculated in 1,2,3 we find that $|A_i| =$
- 5. Finally we know the size of the entire outcome space is n!, dividing by n! we get that

$$\mathbb{E}(Y_i) = P(A_i) = \frac{|A_i|}{n!} =$$
 which simplifies to $\mathbb{E}(Y_i) =$

Now you should be able to compute $\mathbb{E}(D) = \sum_{i=1}^{n} \mathbb{E}(Y_i)$

For large n, $\mathbb{E}(D) \approx$

Hint: use the approximation $\sum_{i=1}^{n} 1/i \approx \ln n$

$$E(Y_i = 1) = P(A_i) = \frac{|A_i|}{n!} = \frac{1}{i}$$

$$\sum_{i=1}^{n} E(Y_i) = \sum_{i=1}^{n} \frac{1}{i} \approx \ln n$$