

Mid-term

- □ Highest 98, Lowest 31
- □ Mean 68, STD 14.9

Background: Sybil Attack

- Sybil attack: Single user pretends many fake/sybil identities
 - Creating multiple accounts from different IP addresses
 - Sybil identities can become a large fraction of all identities
 - Out-vote honest users in collaborative tasks

Background: Defending Against Sybil Attack

- Using a trusted central authority
 - Tie identities to actual human beings
- Not always desirable

launch

- Can be hard to find such authority
- Sensitive info may scare away users
- Potential bottleneck and target of attack
- Without a trusted central authority
 - □ Impossible unless using special assumptions [Douceur'02]
 - Resource challenges not sufficient -- adversary can have much more resources than typical user

SybilGuard's Central Authority

- Main Idea: Use a social network as the "central authority"
- □ A node trusts its neighbors
- Each node learns about the network from its neighbors

SybilGuard Basic Insight: Leveraging Social Networks

Our Social Network Definition

- Undirected graph
- Nodes = identities
- Edges = strong trust
- E.g., colleagues, relatives

SybilGuard Basic Insight

- n honest users: One identity/node each
- Malicious users: Multiple identities each (sybil nodes)

*Edges to honest nodes are "human established"

•Attack edges are difficult for Sybil nodes to create

•Sybil nodes may collude - the adversary

Observation: Adversary cannot create extra edges between honest nodes and sybil nodes

SybilGuard Basic Insight

SybilGuard's Model

- 9
 - A social network exists containing honest nodes and Sybil nodes
 - Honest nodes provide a service to or receive a service from nodes that they "accept"

Goal of Sybil Defense

- 10
- Goal: Enable a verifier node to decide whether to accept another suspect node
 - Accept: Provide service to / receive service from
 - Idealized guarantee: An honest node accepts and only accepts other honest nodes
- SybilGuard:
 - $\hfill\Box$ Bounds the number of sybil nodes accepted
 - □ Guarantees are with high probability
 - $\hfill \Box$ Accepts and is accepted by most honest nodes
 - Approach: Acceptance based on random route intersection between verifier and suspect

Random Routes

-11

- Every node picks a random routing from input to output edges
- A directed edge is in exactly one route of unbounded length
- □ A directed edge is in at most w routes of length w

Clever Use of Random Routes

12

- Each node finds all the length w random routes that start at the node itself
- □ Honest node V accepts node S if most of V's random routes intersect a random route of S

Random Walk Review

Random Route: Convergence

Using routing table gives Convergence Property: Routes merge if crossing the same edge

Random Route: Back-traceable

Using 1-1 mapping gives Back-traceable Property:
Routes may be back-traced

Random Route Intersection:

Honest Nodes

- Verifier accepts a suspect if the two routes intersect
 - Route length w:
 - $\sim \sqrt{n} \log n$
 - W.h.p., verifier's route stays within honest region
- W.h.p., routes from two honest nodes intersect

Random Route Intersection: Sybil Nodes

Random Route Intersection:

Sybil Nodes

- SybilGuard bounds the number of accepted sybil nodes within g*w
 - g: Number of attack edges
 - w: Length of random routes
- □ Next ...
 - Convergence property to bound the number of intersections within g
 - Back-traceable property to bound the number of accepted sybil nodes per intersection within w

Bound # Intersections Within g

Bound # Sybil Nodes Accepted per Intersection within w

- Back-traceable: Each intersection should correspond to routes from at most w honest nodes
- Verifier accepts at most w nodes per intersection
 Will not hurt honest nodes

Bounds on Accepted Sybil Nodes

- □ For routes of length w in a network with g attack edges, WHP,
 - Accepted nodes can be partitioned into sets of which at most g contain Sybil nodes
 - Honest nodes accept at most w*g Sybil nodes

Summary of SybilGuard Guarantees

- Power of the adversary:
 - Unlimited number of colluding sybil nodes
 - Sybil nodes may not follow SybilGuard protocol
 - W.h.p., honest node accepts ≤ g*w sybil nodes
 - g: # of attack edges
 - w: Length of random route

If SybilGuard bounds # accepted	Then apps can do
sybil nodes	
within	
n/2	byzantine consensus
n	majority voting
not much larger than n	effective replication

SybilGuard Protocol

- □ Security:
 - Protocol ensures that nodes cannot lie about their random routes in the honest region
 - □ Decentralized:
 - No one has global view
 - Nodes only communicate with direct neighbors in the social network when doing random routes

SybilGuard Protocol (continued)

- Efficiency: Random routes are performed only once and then "remembered"
 - No more message exchanges needed unless the social network changes
 - Verifier incurs O(1) messages to verify a suspect
- □ User and node dynamics:
 - □ Different from DHTs, node churn is a non-problem in SybilGuard ...

Restrictions Imposed On Applications

- □ There must be a social network
 - Nodes must create and maintain their friendships
- □ How many social networks will we need?
 - One for each application, or
 - A single network used by many applications

Evaluation Results

- Simulation based on synthetic social network model [Kleinberg'00] for 106, 104, 102 nodes
- With 2500 attack edges (i.e., adversary has acquired 2500 social trust relationships):
 - Honest node accepts honest node with 99.8% prob
 - 99.8% honest node properly bounds the number of accepted sybil nodes

Privacy Implications

- □ Information about friends spreads along routes
- □ Verification involves nodes sharing all their routes
 - Bloom filters help here
- □ Nodes are not anonymous

Content Sharing Privacy

- □ Before you post, ask the following:
 - Will this post/picture cause a problem for me?
 - □ Can I say this in front of my mother?
- □ Divide your Friends into groups, lists, or circles
- □ Limit the number of people that see it
- □ Share public information with the public
- Share inner thoughts and personal feelings with close friends

Networking Privacy

- Do not Friend or Connect with people that you have not met in person or know well
- Reject Friend requests and Connections from strangers
- □ Having a lot of Friends can work against you
 - $\hfill\Box$ Facebook may ask you to identify your Friends
- □ Limit your visibility on services

Location Privacy and Safety

- □ Limit your check-in information to friends only
- □ Never check in at your home, school, work
- □ A mayorship is a public "office"
- □ Avoid public lists for a location
- □ Do not let friends check you in
- □ Review posts you are tagged in

Service Specific Configuration Options

Google Security and Privacy

- □ Enable 2-step verification
 - Use Google Authenticator or text-based codes
 - □ Applies to (almost) all Google services
- □ Create Google+ circles based on sharing needs
- □ Turn off geo location data in photos
- □ Turn off "find my face" in photos and videos
- □ Manage your Dashboard data

Facebook Security Tools

- □ Enable
 - Secure Browsing
 - □ Login Notifications (text and email)
 - □ Login Approvals (text and mobile Code Generator)
- □ Select your Trusted Friends
- Review and Monitor
 - Recognized Devices
 - Active Sessions
- □ Delete old and unused Apps

Facebook Privacy Tools

- □ Limit App access to your data
- □ Set your default audience to Friends
- □ Customize your timeline content settings
 - Who can post, tag you, tag reviews
 - Disable tag suggestions for photos uploaded
- □ Limit search engine inclusion
- □ Limit third-party and social ads
- □ Limit info that can be included by others in apps

Dropbox Security and Privacy

- □ Enable two-step verification
- □ Disable LAN sync on laptops
- □ Do not put sensitive data into Dropbox
- □ Encrypt files if needed
- Unlink old devices
- □ Review Apps linked to your account
- □ Turn on email for new devices and apps added
- □ Review your shared folders periodically

Twitter Security and Privacy

- □ Enable Protect My Tweets
- □ Enable HTTPS
- □ Require personal information for password reset
- □ Disable location data for tweets
 - □ Delete old location data too

Linkedin Privacy

- Turn off data sharing with third-party apps and sites
- Consider changing your photo visibility, activity broadcasts
- □ Remove Twitter access
- □ Disable ads from third-party sites
- □ Enable full-time SSL connections

Foursquare Privacy

- Do not include yourself in lists of people checked into a location
- □ Do not earn mayorships
- □ Do not let friends check you into places
- □ Do not let venue managers see you

Stay Safe

- □ Stay up to date on software and settings
- □ Be selective when choosing friends
- □ Using your thinkin' before you're tweetin'!
- □ Be mysterious