Wellennachweis - Abtriebswelle

Quentin Huss, Nadine Schulz 21.06.2023

1 Darstellung der Welle

2 Plots

3 Verformung und Neigung

maximale Verformung in x:	0.0688736170697904	μm
Verformungsgradient in x:	0.1743635875184568	$\frac{mm}{m}$
maximale Verformung in y:	0.0078775679143873	μm
Verformungsgradient in y:	0.0199432099098414	<u>mm</u>
maximale Verformung addiert:	0.0910852735731127	μm
Verformungsgradient addiert:	0.2305956292990197	$\frac{mm}{m}$
Neigung im Festlager x:	9.168591381543824e-06	rad
Neigung im Festlager y:	0.0003474993853309	rad
Neigung im Loslager x:	-0.0001065510646933	rad
Neigung im Loslager y:	-0.0006968473930314	rad

Absatz an Stelle 155 mm

Geometrie

großer Durchmesser	$D = 70.0 \ mm$
kleiner Durchmesser	$d = 60.0 \ mm$
Radius	r = 5 mm
Absatzsprung	t = 5.0 mm

Absatz an Stelle 402 mm

Geometrie

großer DurchmesserD = 80.0 mmkleiner Durchmesserd = 76.0 mmRadiusr = 5 mmAbsatzsprungt = 2.0 mm

Absatz an Stelle 482 mm

Geometrie

großer Durchmesser $D = 100.0 \ mm$ kleiner Durchmesser $d = 80.0 \ mm$ Radius $r = 1 \ mm$ Absatzsprung $t = 10.0 \ mm$