

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS PO Box 1450 Alexascins, Virginia 22313-1450 www.emplo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/772,253	02/06/2004	Mitsushi Fujiki	042068	6491
38834 7590 02/14/2008 WESTERMAN, HATTORI, DANIELS & ADRIAN, LLP 1250 CONNECTICUT AVENUE, NW			EXAMINER	
			PHAM, THANH V	
SUITE 700 WASHINGTO	N, DC 20036		ART UNIT	PAPER NUMBER
	, , , , , , , , , , , , , , , , , , , ,		2823	
			MAIL DATE	DELIVERY MODE
			02/14/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/772 253 FUJIKI, MITSUSHI Office Action Summary Examiner Art Unit THANH V. PHAM 2823 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 28 December 2007. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1.2 and 4-11 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-2 and 4-11 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

Paper No(s)/Mail Date 10/10/07

2) Notice of Draftsperson's Patent Drawing Review (PTO-948)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

Notice of Informal Patent Application

Art Unit: 2823

DETAILED ACTION

Response to Amendment

The Declaration under 37 CFR 1.132 filed 12/28/2007 is insufficient to overcome
the rejection of claims 1-10 based upon Corvasce et al. in combination with Sasaki et al.
and Matsuura et al. as set forth in the last Office action because:

The Declaration is not timely. The Declaration was not earlier presented in compliance with 37 CFR 1.116 at the time the limitation of temperature being changed from 300 °C to 200 °C as amended on 10/04/2006. Therefore, the Declaration is not entered. Further, the Declaration fails to set forth facts, beside the fact that even it is not easily to form a Ti layer at a temperature higher than room temperature and lower than 200 °C, that formation can be done.

Claim Rejections - 35 USC § 103

- The text of those sections of Title 35, U.S. Code not included in this action can be found in a prior Office action.
- Claims 1-2, 5-8 and 11 are rejected under 35 U.S.C. 103(a) as being unpatentable over <u>Corvasce et al.</u> US 6,300,654 B1 in combination with <u>Sasaki et al.</u> US 6,444,099 B1 and <u>Matsuura et al.</u> US 6,964,873 B2.

Re claim 1, the Corvasce et al. reference discloses a method of manufacturing a semiconductor device of prior art, comprising:

forming an insulating film 24 over a semiconductor substrate 11;

forming a Ti lower layer 26 of a lower-electrode conductive film on the insulating film 24:

Art Unit: 2823

forming an upper layer 7 of the lower-electrode conductive film on the lower layer 26, and constituting a lower-electrode conductive film by the upper and lower layers; forming a ferroelectric film 17 of PZT or SBT (re claim 7) on the lower-electrode conductive film 7/26:

forming an upper-electrode conductive film 8 on the ferroelectric film 17; and forming a ferroelectric capacitor by patterning the upper-electrode conductive film, the ferroelectric film, and the lower-electrode conductive film, fig. 3.

Re claim 5, the Corvasce et al. reference also discloses the upper layer of the lower-electrode conductive film is a single-layer film made of platinum, col. 3, line 64.

The Corvasce et al. reference does not disclose what method in what temperature used in the process step of forming lower layer of lower-electrode conductive film. In other words, the Corvasce et al. reference does not disclose keeping substrate temperature higher than room temperature and lower than 200 °C while sputtering a Ti lower layer 26 of a lower-electrode conductive film on the insulating film 24.

The Matsuura et al. reference discloses, col. 7 lines 34-50

Referring to FIG. 3A, a SiO.sub.2 film 32 is formed on a Si substrate 31 by a thermal oxidation process with a thickness of 200 nm, for example, and a lower electrode 33 of Pt is formed on the SiO.sub.2 film 32 by a D.C. sputtering process (re claim 11) conducted at a room temperature, with an adhesion layer 33A of Ti interposed between the SiO.sub.2 film 32 and the lower electrode 33. More specifically, (re claim 2) the Ti adhesion layer 33A is formed atmosphere under the pressure of 0.7 Pa with a thickness of about 20 nm as represented in TABLE I below. Further, the lower electrode 33 of Pt is formed under the same condition (re claim 5) with a thickness of about 175 nm. The deposition of the Ti film 33A is conducted by setting the D.C. plasma power to 2.6 kW, wherein the deposition of the Ti film 33A is conducted for the duration of

Art Unit: 2823

9 seconds while the deposition of the lower electrode 33 is conducted for the duration of 96 seconds while setting the D.C. plasma power to 1.0 kW.

The Sasaki et al. reference discloses, col. 7, lines 15-30

EXAMPLE 1

Sputtering can be carried out under the following conditions as a practical example (hereinafter referred to as the first practical example) of <u>producing a titanium thin film</u> for use as a barrier film. This example pertains to the embodiment given above.

Sputtering power source 3: 13.56 MHz, 8 kW output

Material of target 2: titanium Type of process gas: argon Flux of process gas: 120 cc/min

Pressure during film deposition: 60 mTorr

Substrate-biasing voltage: -600 V

Temperature of substrate holder 5 during film deposition: 300.degree. C.

Deposition rate: 500 angstroms/min

Further, the Sasaki et al. reference discloses, col. 4, lines 64-65 "heater 52 controls the temperature of the substrate 50 over a range from room temperature to about 500 °C" among many variable parameters of pressure, target size, distance between target and substrate holder, frequency/current of the output of the power source, ratio and flow rates of gases, flux adjusting, electric field, bias voltage, etc. while performing the sputtering process (col's. 3-5).

Choice of temperature, amongst many variable parameters would have been a matter of routine optimization because temperature is known to affect device properties and would depend on the desired device density on the finished wafer and the desired device characteristics. One of ordinary skill in the art would have been led to the recited temperature through routine experimentation to achieve desired deposition and reaction rates.

The Marsuura et al. reference discloses further, (col. 3 lines 38-52)

Art Unit: 2823

In general, it is known that the ferroelectric properties of a PZT or PLZT film is related to the orientation of the PZT or PLZT crystals constituting the film. Commonly, a predominantly (111) or (100)-orientation is obtained for a PZT or PLZT film formed on a Pt lower electrode, which has a self-textured (111)-orientation (re claim 6), due to the epitaxial effect, in which the surface energy is minimized as a result of the foregoing film orientation. It should be noted that a PZT or PLZT film has a self-textured (100)-orientation. In order to maximize the remnant polarization of the PZT or PLZT film, it is desired to align the PZT of PLZT crystals, which belong to the tetragonal crystal system, such that the switching direction for the preferential (100)-orientation is perpendicular to the switching electric field.

Meanwhile, it is known that the PZT or PLZT film constituting the ferroelectric capacitor insulation film 16 of FIG. 1 shows a columnar microstructure and that the value of the spontaneous polarization 2 Pr is maximized when the crystal grains therein are oriented in the (111) direction.

Re claims 6-8, Marsuura et al.'s PLZT film is formed as the ferroelectric film "by sputtering process contains characteristically low concentration C (carbon)", (col. 8, lines 61-63, re claim 7); an orientation direction of the ferroelectric film 34 is a (111) direction, (col. 3, line 39 – col. 4, line 40 and col. 12, lines 10-11, re claim 8); and "a Pt lower electrode, which has a self-textured (111)-orientation", col. 3, lines 42-43, [the same as instant Background of the Invention, page 2, "in general, a Pt film oriented in the (222) direction, which is the same direction as the (111) direction, is employed as the lower electrode"], (re claim 6).

4. Claims 4 and 10 are rejected under 35 U.S.C. 103(a) as being unpatentable over the combination of <u>Corvasce et al.</u> with <u>Sasaki et al.</u> and <u>Matsuura et al.</u> as applied to claims 1-2, 5-8 and 11 above, and further in view of <u>Ohwaki et al.</u>, "Preferred Orientation in Ti Film Sputter-Deposited on SiO₂ Glass: The Role of Water Chemisorption on the Substrate", Jpn. J. Appl. Phys., Vol. 36 (1997) pp L154-L157 (crovided by applicant).

Art Unit: 2823

The combination teaches substantially all of the instant invention but does not teach crystal orientation, H₂O added during sputtering, ...

The Ohwaki et al. reference discloses a sputtering method (re claim 2) for forming Ti (re claim 3) on glass which improves the orientation of the Ti film in the preferred (002) direction (re claim 4) wherein an orientation with an amount of H₂O (re claim 10) to enhance the Ti (002) preferred orientation providing the temperature at 350 °C.

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to provide the method of Corvasce et al.'s prior art with the conditions of Ohwaki et al. and/or Marsuura et al. because the conditions of Ohwaki et al. and/or Marsuura et al. would provide the ferroelectric capacitor of Corvasce et al. with the Ti (002) preferred orientation for the reliability of the electrode (Ohwaki et al.'s) and with better adhesion (Marsuura et al.'s).

5. Claim 9 is rejected under 35 U.S.C. 103(a) as being unpatentable over the combination of <u>Corvasce et al.</u> with <u>Sasaki et al.</u> and <u>Matsuura et al.</u> as applied to claims 1-3 and 5-8 above, and further in view of <u>Noguchi et al.</u> US 6,716,749 B2.

The combination does not disclose the improvement of the insulating film before forming further the device. The Noguchi et al. reference discloses in col. 21, lines 10-13, quality of the insulating film is improved by exposed a surface of the insulating film to NH₃ plasma. It would have been obvious to one of ordinary skill in the art at the time of the invention to provide the process of the combination with NH₃ plasma nitridation before the lower layer of the lower-electrode conductive film is formed because the

Art Unit: 2823

plasma nitridation would improve the surface of the insulating film as taught by Noguchi et al

Response to Arguments

- 6 Applicant's arguments filed 12/28/2007 have been fully considered but they are not persuasive.
- 7. Applicant relies on the so-called "experimental results" which is obtained "after the filing of this application" (line 6 of page 5 of the Remark filed Feb 21, 2007) to argue that "[t]he Examiner apparently did not give weight to the experimental results". The examiner, since the time of that Remarks, directs the applicant to the lower limit of the claimed temperature in Matsuura et al. reference and the upper limit in the Sasaki et al. which is the same as instant specification's page 21, final paragraph (mentioned to by the applicant himself on the Response filed June 19, 2006) as a response to that "experimental results" with the reason(s) of/for optimization.

Instant specification's page 21, final paragraph quoted in the Response filed June 19, 2006 is re-quoted as the evidence of record

the degree of orientation turns into a downward trend after becoming maximum at around 150 °C. It can be seen by extending the graph that the degree of orientation at around 300 °C becomes almost the same as that at room temperature. These show that the degree of orientation of a Ti film in the (002) direction can be improved by setting the substrate temperature during the deposition of the Ti film higher than room temperature and lower than 300 °C." Therefore, it was the opinion of the Inventors at the time the invention was made that Fig. 2 could be extrapolated to show that a temperature of no more than 300 °C was necessary to produce the invention.

The Declaration states

Data retention characteristics in the FeRAMs are not referred to, suggested or expected in any of the cited references, and accordingly, even if the teachings of respected references are combined, it would be not have been obvious to one of ordinary skill in the art to easily from [form?] a high reliability ferroelectric capacitor as in the claimed invention.

Page 8

Application/Control Number: 10/772,253

Art Unit: 2823

As stated above, even "it would not have been obvious to one of ordinary skill in the art to easily form a high reliability ferroelectric capacitor as in the claimed invention", this step could be done though not easily.

In view of the foregoing, when all of the evidence is considered, the totality of the rebuttal evidence of nonobviousness fails to outweigh the evidence of obviousness. See MPEP 716.01.

8. The Declaration does not provide further objective evidence and the "Applicants emphasize the criticality of the claimed temperature range based on the Declaration" (first sentence on page 6 of the Remark filed Dec 28, 2007); therefore, the rejections are maintained.

Conclusion

- The prior art made of record and not relied upon is considered pertinent to applicant's disclosure.
- Any inquiry concerning this communication or earlier communications from the examiner should be directed to Thanh V. Pham whose telephone number is 571-272-1866. The examiner can normally be reached on M-T (6:30-5:00).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Matthew Smith can be reached on 571-272-1907. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Application/Control Number: 10/772,253 Page 9

Art Unit: 2823

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

02/11/2008

/Thanh V Pham/ Examiner, Art Unit 2823