Множественный корреляционный анализ

Пусть имеется набор переменных X_1, X_2, \dots, X_n , тогда можно найти выборочные коэффициенты корреляции $r_{i,j}$ для каждой пары X_i, X_j .

Множественный корреляционный анализ

Пусть имеется набор переменных $X_1, X_2, ..., X_n$, тогда можно найти выборочные коэффициенты корреляции $r_{i,j}$ для каждой пары X_i, X_j .

Корреляционная матрица $R = (r_{i,j})$.

$$\mathbf{R} = \begin{pmatrix} 1 & r_{12} & r_{13} \\ r_{12} & 1 & r_{23} \\ r_{13} & r_{23} & 1 \end{pmatrix}.$$

Множественный корреляционный анализ

Пусть имеется набор переменных $X_1, X_2, ..., X_n$, тогда можно найти выборочные коэффициенты корреляции $r_{i,j}$ для каждой пары X_i, X_j .

Корреляционная матрица $R = (r_{i,j})$.

$$\mathbf{R} = \begin{pmatrix} 1 & r_{12} & r_{13} \\ r_{12} & 1 & r_{23} \\ r_{13} & r_{23} & 1 \end{pmatrix}.$$

Матрица является симметричной относительно главной диагонали $(r_{ij} = r_{ji})$, причем все диагональные элементы равны единице $(r_{ij} = 1)$.

Пусть Y - зависимая, X - объясняющая переменные.

Пусть Y - зависимая, X - объясняющая переменные.

Ранее вводили функцию регрессии $y = f_r(x) \stackrel{\text{der}}{=} E(Y \mid X = x)$.

Пусть Y - зависимая, X - объясняющая переменные.

Ранее вводили функцию регрессии $y = f_r(x) \stackrel{\text{def}}{=} E(Y \mid X = x)$.

Определение. Регрессионная модель – предполагаемый вид регрессионной зависимости, с точностью до неизвестных параметров:

$$y=f_r(x;\pmb{eta}),$$
 где $\pmb{eta}=\left(\pmb{eta}_0,\pmb{eta}_1,...,\pmb{eta}_m
ight)$ - вектор параметров.

Пусть Y - зависимая, X - объясняющая переменные.

Ранее вводили функцию регрессии $y = f_r(x) = E(Y | X = x)$.

Определение. Регрессионная модель – предполагаемый вид регрессионной зависимости, с точностью до неизвестных параметров:

$$y = f_r(x; oldsymbol{eta}),$$
 где $oldsymbol{eta} = (oldsymbol{eta}_0, oldsymbol{eta}_1, ..., oldsymbol{eta}_m)$ - вектор параметров.

Например, линейная регрессионная модель:

Например, линейная регрессионная модель:

$$y = \beta_0 + \beta_1 \cdot x.$$

Пусть Y - зависимая, X - объясняющая переменные.

Ранее вводили функцию регрессии $y = f_r(x) \stackrel{\text{def}}{=} E(Y \mid X = x)$.

Определение. Регрессионная модель – предполагаемый вид регрессионной зависимости, с точностью до неизвестных параметров:

$$y=f_r(x;\pmb{\beta}),$$
 где $\pmb{\beta}=\left(\pmb{\beta}_0,\pmb{\beta}_1,...,\pmb{\beta}_m\right)$ - вектор параметров.

Например, линейная регрессионная модель: $y = \beta_0 + \beta_1 \cdot x$.

Примеры нелинейных моделей:

логарифмическая модель: $y = \beta_0 + \beta_1 \cdot \ln x$,

Пусть Y - зависимая, X - объясняющая переменные.

Ранее вводили функцию регрессии $y = f_r(x) \stackrel{\text{def}}{=} E(Y \mid X = x)$.

Определение. Регрессионная модель – предполагаемый вид регрессионной зависимости, с точностью до неизвестных параметров:

$$y=f_r(x;\pmb{\beta}),$$
 где $\pmb{\beta}=\left(\pmb{\beta}_0,\pmb{\beta}_1,...,\pmb{\beta}_m\right)$ - вектор параметров.

Например, линейная регрессионная модель: $y = \beta_0 + \beta_1 \cdot x$.

Примеры нелинейных моделей:

логарифмическая модель: $y = \beta_0 + \beta_1 \cdot \ln x$,

степенная модель: $y = \beta_0 x^{\beta_1}$,

Пусть Y - зависимая, X - объясняющая переменные.

Ранее вводили функцию регрессии $y = f_r(x) \stackrel{\text{def}}{=} E(Y \mid X = x)$.

Определение. Регрессионная модель – предполагаемый вид регрессионной зависимости, с точностью до неизвестных параметров:

$$y=f_r(x;\pmb{eta}),$$
 где $\pmb{eta}=\left(\pmb{eta}_0,\pmb{eta}_1,...,\pmb{eta}_m
ight)$ - вектор параметров.

Например, линейная регрессионная модель: $y = \beta_0 + \beta_1 \cdot x$.

Примеры нелинейных моделей:

логарифмическая модель: $y = \beta_0 + \beta_1 \cdot \ln x$,

степенная модель: $y = \beta_0 x^{\beta_1}$,

экспоненциальная модель $y = e^{\beta_0 + \beta_1 x}$.

Замечание 1. Некоторые нелинейные модели можно преобразовать к линейному виду (заменой переменных и т.д.).

Замечание 1. Некоторые нелинейные модели можно преобразовать к линейному виду (заменой переменных и т.д.).

Замечание 2. Модель зависимости можно представить в виде:

$$Y_i = f_r(x_i; \boldsymbol{\beta}) + \varepsilon_i ,$$

где ε_i - случайная ошибка, i=1,...,n (сумма неслучайной и случайной компоненты).

Замечание 1. Некоторые нелинейные модели можно преобразовать к линейному виду (заменой переменных и т.д.).

Замечание 2. Модель зависимости можно представить в виде:

$$Y_i = f_r(x_i; \beta) + \varepsilon_i ,$$

где ε_i - случайная ошибка, i=1,...,n (сумма неслучайной и случайной компоненты).

простейшая (одномерная) линейная регрессия

 β_0 коэффициент пересечения (с осью X=0)

β₁ коэффициент наклона

Оценивание параметров модели

Принцип наименьших квадратов: параметры модели подбираются так, чтобы сумма квадратов ошибок (отклонений наблюдаемых и теоретических значений Y) была минимальной.

Оценивание параметров модели

Принцип наименьших квадратов: параметры модели подбираются так, чтобы сумма квадратов ошибок (отклонений наблюдаемых и теоретических значений Y) была минимальной.

Пусть
$$S(\beta) = \sum_{i=1}^{n} (y_i - f(x_i; \beta))^2$$
, тогда значение $b = (b_0, b_1)$

такое,

$$\mathsf{YTO}\ S(b) = \min_{\beta \in \mathbf{R}^2} S(\beta),$$

называется оценкой параметров методом наименьших квадратов (МНК-оценкой).

Оценивание параметров модели

Принцип наименьших квадратов: параметры модели подбираются так, чтобы сумма квадратов ошибок (отклонений наблюдаемых и теоретических значений Y) была минимальной.

Пусть
$$S(\beta) = \sum_{i=1}^{n} (y_i - f(x_i; \beta))^2$$
, тогда значение $b = (b_0, b_1)$ такое,

$$\mathsf{YTO}\ S(b) = \min_{\beta \in \mathbf{R}^2} S(\beta),$$

называется оценкой параметров методом наименьших квадратов (МНК-оценкой).

Замечание. В общем случае S может быть многоэкстремальной (требуется найти глобальный минимум).

МНК-оценка параметров линейной модели

Рассмотрим сумму квадратов ошибок:

$$S(\beta_0, \beta_1) = \sum_{i} (y_i - (\beta_0 + \beta_1 x_i))^2.$$

МНК-оценка параметров линейной модели

Рассмотрим сумму квадратов ошибок:

$$S(\beta_0, \beta_1) = \sum_{i} (y_i - (\beta_0 + \beta_1 x_i))^2.$$

Необходимое условие min - равенство нулю частных производных:

$$\begin{cases} S_{\beta_0}' = -2\sum_{i} (y_i - \beta_0 - \beta_1 x_i) = 0 \\ S_{\beta_1}' = -2\sum_{i} (y_i - \beta_0 - \beta_1 x_i) x_i = 0 \end{cases}$$

МНК-оценка параметров линейной модели

Рассмотрим сумму квадратов ошибок:

$$S(\beta_0, \beta_1) = \sum_{i} (y_i - (\beta_0 + \beta_1 x_i))^2.$$

Необходимое условие min - равенство нулю частных производных:

$$\begin{cases} S_{\beta_0}' = -2\sum_{i} (y_i - \beta_0 - \beta_1 x_i) = 0 \\ S_{\beta_1}' = -2\sum_{i} (y_i - \beta_0 - \beta_1 x_i) x_i = 0 \end{cases}$$

$$\begin{cases} \sum_{i} y_i - n\beta_0 - \beta_1 \sum_{i} x_i = 0 \\ \sum_{i} y_i x_i - \beta_0 \sum_{i} x_i - \beta_1 \sum_{i} (x_i)^2 = 0 \end{cases}$$

$$\begin{cases} n \overline{y} - n \beta_0 - \beta_1 n \overline{x} = 0 \\ \sum_i y_i x_i - \beta_0 n \overline{x} - \beta_1 \sum_i (x_i)^2 = 0 \end{cases}$$

$$\begin{cases} n \, \overline{y} - n \, \beta_0 - \beta_1 \, n \, \overline{x} = 0 \\ \sum_i y_i x_i - \beta_0 n \, \overline{x} - \beta_1 \sum_i (x_i)^2 = 0 \end{cases}$$
$$\beta_0 = \boxed{\overline{y} - \beta_1 \, \overline{x} = b_0}$$

$$\begin{cases} n \, \overline{y} - n \, \beta_0 - \beta_1 \, n \, \overline{x} = 0 \\ \sum_i y_i x_i - \beta_0 n \, \overline{x} - \beta_1 \sum_i (x_i)^2 = 0 \end{cases}$$
$$\beta_0 = \boxed{\overline{y} - \beta_1 \, \overline{x} = b_0}$$

$$\sum_{i} y_{i} x_{i} - (\overline{y} - \beta_{1} \overline{x}) n \overline{x} - \beta_{1} \sum_{i} (x_{i})^{2} = 0$$

$$\begin{cases} n \overline{y} - n \beta_0 - \beta_1 n \overline{x} = 0 \\ \sum_i y_i x_i - \beta_0 n \overline{x} - \beta_1 \sum_i (x_i)^2 = 0 \end{cases}$$
$$\beta_0 = \overline{y} - \beta_1 \overline{x} = b_0$$

$$\sum_{i} y_{i} x_{i} - (\overline{y} - \beta_{1} \overline{x}) n \overline{x} - \beta_{1} \sum_{i} (x_{i})^{2} = 0$$

$$\sum_{i} y_{i} x_{i} - \overline{y} n \overline{x} + \beta_{1} n (\overline{x})^{2} - \beta_{1} \sum_{i} (x_{i})^{2} = 0$$

$$\begin{cases} n \,\overline{y} - n \,\beta_0 - \beta_1 \, n \,\overline{x} = 0 \\ \sum_i y_i x_i - \beta_0 n \,\overline{x} - \beta_1 \sum_i (x_i)^2 = 0 \end{cases}$$
$$\beta_0 = \boxed{\overline{y} - \beta_1 \,\overline{x} = b_0}$$

$$\sum_{i} y_{i} x_{i} - (\overline{y} - \beta_{1} \overline{x}) n \overline{x} - \beta_{1} \sum_{i} (x_{i})^{2} = 0$$

$$\sum_{i} y_{i} x_{i} - \overline{y} n \overline{x} + \beta_{1} n (\overline{x})^{2} - \beta_{1} \sum_{i} (x_{i})^{2} = 0$$

$$\sum_{i} y_{i} x_{i} - n \overline{y} \overline{x} = \beta_{1} \sum_{i} (x_{i})^{2} - \beta_{1} n (\overline{x})^{2}$$

$$\begin{cases} n \overline{y} - n \beta_0 - \beta_1 n \overline{x} = 0 \\ \sum_i y_i x_i - \beta_0 n \overline{x} - \beta_1 \sum_i (x_i)^2 = 0 \end{cases}$$

$$\beta_0 = \left[\overline{y} - \beta_1 \overline{x} = b_0 \right]$$

$$\sum_i y_i x_i - (\overline{y} - \beta_1 \overline{x}) n \overline{x} - \beta_1 \sum_i (x_i)^2 = 0$$

$$\sum_i y_i x_i - \overline{y} n \overline{x} + \beta_1 n (\overline{x})^2 - \beta_1 \sum_i (x_i)^2 = 0$$

$$\sum_i y_i x_i - n \overline{y} \overline{x} = \beta_1 \sum_i (x_i)^2 - \beta_1 n (\overline{x})^2$$

$$\beta_1 = \left[\frac{\sum_i y_i x_i - n \overline{y} \overline{x}}{\sum_i (x_i)^2 - n (\overline{x})^2} = b_1 \right]$$

$$b_1 = \frac{s_{xy}}{s_x^2},$$

где
$$s_{xy} = \overline{xy} - \overline{x} \cdot \overline{y}$$
, $s_x^2 = \overline{x^2} - (\overline{x})^2$.

$$b_1 = \frac{s_{xy}}{s_x^2},$$

где
$$s_{xy} = \overline{xy} - \overline{x} \cdot \overline{y}$$
, $s_x^2 = \overline{x^2} - (\overline{x})^2$.

Другая форма записи:
$$b_1 = \frac{\displaystyle\sum_i (y_i - \overline{y})(x_i - \overline{x})}{\displaystyle\sum_i (x_i - \overline{x})^2}.$$

$$b_1 = \frac{s_{xy}}{s_x^2},$$

где
$$s_{xy} = \overline{xy} - \overline{x} \cdot \overline{y}$$
, $s_x^2 = \overline{x^2} - (\overline{x})^2$.

Другая форма записи:
$$b_1 = \frac{\displaystyle\sum_i (y_i - \overline{y})(x_i - \overline{x})}{\displaystyle\sum_i (x_i - \overline{x})^2}.$$

$$b_1 = \frac{s_{xy}}{s_x^2},$$

где
$$s_{xy} = \overline{xy} - \overline{x} \cdot \overline{y}$$
, $s_x^2 = \overline{x^2} - (\overline{x})^2$.

Другая форма записи:
$$b_1 = \frac{\displaystyle\sum_i (y_i - \overline{y})(x_i - \overline{x})}{\displaystyle\sum_i (x_i - \overline{x})^2}.$$

Качество модели определяется несмещенной оценкой σ^2 (дисперсии ошибки:

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}$$

$$b_1 = \frac{s_{xy}}{s_x^2},$$

где
$$s_{xy} = \overline{xy} - \overline{x} \cdot \overline{y}$$
, $s_x^2 = \overline{x^2} - (\overline{x})^2$.

Другая форма записи:
$$b_1 = \frac{\displaystyle\sum_i (y_i - \overline{y})(x_i - \overline{x})}{\displaystyle\sum_i (x_i - \overline{x})^2}.$$

Качество модели определяется несмещенной оценкой σ^2 (дисперсии ошибки:

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}$$

где $\hat{y}_i = b_0 + b_1 x_i$ - прогноз для x_i ,

$$b_1 = \frac{s_{xy}}{s_x^2},$$

где
$$s_{xy} = \overline{xy} - \overline{x} \cdot \overline{y}$$
, $s_x^2 = \overline{x^2} - (\overline{x})^2$.

Другая форма записи:
$$b_1 = \frac{\sum_i (y_i - \overline{y})(x_i - \overline{x})}{\sum_i (x_i - \overline{x})^2}$$
.

Качество модели определяется несмещенной оценкой σ^2 (дисперсии ошибки:

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}$$

где $\hat{y}_i = b_0 + b_1 x_i$ - прогноз для x_i , $e_i = y_i - \hat{y}_i$ - остаток,

$$b_1 = \frac{s_{xy}}{s_x^2},$$

где
$$s_{xy} = \overline{xy} - \overline{x} \cdot \overline{y}$$
, $s_x^2 = \overline{x^2} - (\overline{x})^2$.

Другая форма записи:
$$b_1 = \frac{\displaystyle\sum_i (y_i - \overline{y})(x_i - \overline{x})}{\displaystyle\sum_i (x_i - \overline{x})^2}$$
.

Качество модели определяется несмещенной оценкой σ^2 (дисперсии ошибки:

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}$$

где $\hat{y}_i = b_0 + b_1 x_i$ - прогноз для x_i , $e_i = y_i - \hat{y}_i$ - остаток, $s = \sqrt{s^2}$ - средняя ошибка регрессии.

Пример (продолжение). По данным примера предыдущей лекции найти МНК-оценки параметров и среднюю ошибку регрессии.

\mathcal{X}	2	3	5	2	6
y	1	4	3	2	5

Пример (продолжение). По данным примера предыдущей лекции найти МНК-оценки параметров и среднюю ошибку регрессии.

\mathcal{X}	2	3	5	2	6
у	1	4	3	2	5

$$b_1 = \frac{s_{xy}}{s_x^2} = \frac{1.8}{2.6} = 0.69,$$

$$b_0 = \overline{y} - b_1 \overline{x} = 3 - 0.69 \cdot 3.6 = 0.52$$

Пример (продолжение). По данным примера предыдущей лекции найти МНК-оценки параметров и среднюю ошибку регрессии.

\mathcal{X}	2	3	5	2	6
у	1	4	3	2	5

$$b_1 = \frac{s_{xy}}{s_x^2} = \frac{1.8}{2.6} = 0.69,$$

$$b_0 = \overline{y} - b_1 \overline{x} = 3 - 0.69 \cdot 3.6 = 0.52$$

Вычислим прогноз для каждого наблюдения и остатки:

\mathcal{X}	2	3	5	2	6
y	1	4	3	2	5
ŷ	1.9	2.6	3.95	1.9	4.63
$y - \hat{y}$	-0.9	1.4	-0.95	0.1	0.37
$(y-\hat{y})^2$	0.81	1.96	0.9	0.01	0.137

Вычислим прогноз для каждого наблюдения и остатки:

χ	2	3	5	2	6
y	1	4	3	2	5
ŷ	1.9	2.6	3.95	1.9	4.63
$y - \hat{y}$	-0.9	1.4	-0.95	0.1	0.37
$(y-\hat{y})^2$	0.81	1.96	0.9	0.01	0.137

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2} = \frac{1}{3} \cdot 3.86 = 1.286,$$

Вычислим прогноз для каждого наблюдения и остатки:

χ	2	3	5	2	6
y	1	4	3	2	5
ŷ	1.9	2.6	3.95	1.9	4.63
$y - \hat{y}$	-0.9	1.4	-0.95	0.1	0.37
$(y-\hat{y})^2$	0.81	1.96	0.9	0.01	0.137

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2} = \frac{1}{3} \cdot 3.86 = 1.286,$$

$$s = 1.13.$$

$$Y_i = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_m x_{i,m} + \varepsilon_i,$$

$$Y_i = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_m x_{i,m} + \varepsilon_i,$$

где Y_i - случайное значение Y_i соответствующее i-му наблюдению,

$$Y_i = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_m x_{i,m} + \varepsilon_i,$$

где Y_i - случайное значение Y_i соответствующее i-му наблюдению, $x_{i,j}$ - i-е значение неслучайной переменной X_i ; $j=1,\,...,\,m$;

$$Y_i = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_m x_{i,m} + \varepsilon_i,$$

где Y_i - случайное значение Y, соответствующее i-му наблюдению, $x_{i,j}$ - i-е значение неслучайной переменной X_j ; $j=1,\ldots,m$; ε_i - случайная ошибка, $i=1,\ldots,n$; β_0,\ldots,β_m — параметры модели.

$$Y_i = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_m x_{i,m} + \varepsilon_i,$$

где Y_i - случайное значение Y, соответствующее i-му наблюдению, $x_{i,j}$ - i-е значение неслучайной переменной X_j ; j=1,...,m; ε_i - случайная ошибка, i=1,...,n; $\beta_0,...,\beta_m$ — параметры модели.

Параметр $oldsymbol{eta}_j$ - ожидаемое изменение Y при изменении X_j на одну единицу измерения (при прочих неизменных значениях переменных).

$$Y_i = \beta_0 + \beta_1 x_{i,1} + \ldots + \beta_m x_{i,m} + \varepsilon_i,$$

где Y_i - случайное значение Y, соответствующее i-му наблюдению, $x_{i,j}$ - i-е значение неслучайной переменной X_j ; $j=1,\ldots,m$; ε_i - случайная ошибка, $i=1,\ldots,n$; β_0,\ldots,β_m — параметры модели.

Параметр eta_j - ожидаемое изменение Y при изменении X_j на одну единицу измерения (при прочих неизменных значениях переменных).

Предполагается, что случайная ошибка имеет нулевое математическое ожидание и постоянную дисперсию σ^2 ; ε_i , ε_j независимы.

Пусть
$$\boldsymbol{\beta} = \begin{pmatrix} \boldsymbol{\beta}_0 \\ \underline{\boldsymbol{\beta}_1} \\ \overline{\boldsymbol{\beta}_m} \end{pmatrix}$$
 - вектор параметров,

Пусть
$$\boldsymbol{\beta} = \begin{pmatrix} \boldsymbol{\beta}_0 \\ \underline{\boldsymbol{\beta}_1} \\ \overline{\boldsymbol{\beta}_m} \end{pmatrix}$$
 - вектор параметров, $\mathbf{Y} = \begin{pmatrix} y_1 \\ \underline{y_2} \\ y_n \end{pmatrix}$ - вектор

наблюдений зависимой переменной Y,

Пусть
$$\boldsymbol{\beta} = \begin{pmatrix} \boldsymbol{\beta}_0 \\ \underline{\boldsymbol{\beta}_1} \\ \overline{\boldsymbol{\beta}_m} \end{pmatrix}$$
 - вектор параметров, $\mathbf{Y} = \begin{pmatrix} y_1 \\ \underline{y_2} \\ y_n \end{pmatrix}$ - вектор

наблюдений зависимой переменной У,

$$\mathbf{X} = egin{pmatrix} 1 & x_{1,1} & \dots & x_{1,m} \\ 1 & x_{2,1} & \dots & x_{2,m} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n,1} & \dots & x_{n,m} \end{pmatrix}$$
 — «расширенная» матрица наблюдений

объясняющих переменных,

Пусть
$$\boldsymbol{\beta} = \begin{pmatrix} \boldsymbol{\beta}_0 \\ \underline{\boldsymbol{\beta}_1} \\ \overline{\boldsymbol{\beta}_m} \end{pmatrix}$$
 - вектор параметров, $\mathbf{Y} = \begin{pmatrix} y_1 \\ \underline{y_2} \\ y_n \end{pmatrix}$ - вектор

наблюдений зависимой переменной У,

$$\mathbf{X} = egin{pmatrix} 1 & x_{1,1} & \dots & x_{1,m} \\ 1 & x_{2,1} & \dots & x_{2,m} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n,1} & \dots & x_{n,m} \end{pmatrix}$$
 — «расширенная» матрица наблюдений

объясняющих переменных,
$$\mathbf{\epsilon} = \begin{bmatrix} \mathbf{\mathcal{E}}_1 \\ \mathbf{\mathcal{E}}_2 \\ \mathbf{\mathcal{E}}_n \end{bmatrix}$$
— вектор ошибок.

Пусть
$$\boldsymbol{\beta} = \begin{pmatrix} \boldsymbol{\beta}_0 \\ \underline{\boldsymbol{\beta}_1} \\ \overline{\boldsymbol{\beta}_m} \end{pmatrix}$$
 - вектор параметров, $\mathbf{Y} = \begin{pmatrix} y_1 \\ \underline{y_2} \\ \overline{y_n} \end{pmatrix}$ - вектор

наблюдений зависимой переменной У,

$$\mathbf{X} = egin{pmatrix} 1 & x_{1,1} & \dots & x_{1,m} \\ 1 & x_{2,1} & \dots & x_{2,m} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n,1} & \dots & x_{n,m} \end{pmatrix}$$
 — «расширенная» матрица наблюдений

объясняющих переменных,
$$\mathbf{\epsilon} = \begin{bmatrix} \mathcal{E}_1 \\ \mathcal{E}_2 \\ \mathcal{E}_n \end{bmatrix}$$
— вектор ошибок.

Модель в матричном виде: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$.

$$S(\beta_0, \beta_1, ..., \beta_m) = \sum_{i} \left(y_i - \sum_{j=0}^m \beta_j x_{i,j} \right)^2 \rightarrow \min_{\beta_0, \beta_1, ..., \beta_m}.$$

$$S(\beta_{0}, \beta_{1}, ..., \beta_{m}) = \sum_{i} \left(y_{i} - \sum_{j=0}^{m} \beta_{j} x_{i,j} \right)^{2} \to \min_{\beta_{0}, \beta_{1}, ..., \beta_{m}}.$$

$$\frac{\partial S}{\partial \beta_{l}} = \sum_{i} (y_{i} - \sum_{j=0}^{n} \beta_{j} x_{i,j}) x_{i,l} = 0, \quad l = 0, 1, ..., m$$

$$S(\beta_{0}, \beta_{1}, ..., \beta_{m}) = \sum_{i} \left(y_{i} - \sum_{j=0}^{m} \beta_{j} x_{i,j} \right)^{2} \to \min_{\beta_{0}, \beta_{1}, ..., \beta_{m}}.$$

$$\frac{\partial S}{\partial \beta_{l}} = \sum_{i} (y_{i} - \sum_{j=0}^{n} \beta_{j} x_{i,j}) x_{i,l} = 0, \quad l = 0, 1, ..., m$$

$$\sum_{i} y_{i} x_{i,l} - \sum_{i} \sum_{j=0}^{m} \beta_{j} x_{i,j} x_{i,l} = 0, \quad l = 0, 1, ..., m$$

$$S(\beta_{0}, \beta_{1},...,\beta_{m}) = \sum_{i} \left(y_{i} - \sum_{j=0}^{m} \beta_{j} x_{i,j} \right)^{2} \rightarrow \min_{\beta_{0},\beta_{1},...,\beta_{m}}.$$

$$\frac{\partial S}{\partial \beta_{l}} = \sum_{i} (y_{i} - \sum_{j=0}^{n} \beta_{j} x_{i,j}) x_{i,l} = 0, \quad l = 0,1,...,m$$

$$\sum_{i} y_{i} x_{i,l} - \sum_{i} \sum_{j=0}^{m} \beta_{j} x_{i,j} x_{i,l} = 0, \quad l = 0,1,...,m$$

$$\sum_{j=0}^{m} \beta_{j} \sum_{i} x_{i,j} x_{i,l} = \sum_{i} y_{i} x_{i,l}, \quad l = 0,1,...,m$$

- система нормальных уравнений.

$$(\mathbf{X}^{\mathrm{T}}\mathbf{X})\boldsymbol{\beta} = \mathbf{X}^{\mathrm{T}}\mathbf{Y}$$

 \mathbf{X}^{T} - транспонированная матрица.

$$(\mathbf{X}^{\mathrm{T}}\mathbf{X})\boldsymbol{\beta} = \mathbf{X}^{\mathrm{T}}\mathbf{Y}$$

 \mathbf{X}^{T} - транспонированная матрица.

Предположим, что существует обратная матрица $(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}$ (ранг(X)=m+1).

$$(\mathbf{X}^{\mathrm{T}}\mathbf{X})\boldsymbol{\beta} = \mathbf{X}^{\mathrm{T}}\mathbf{Y}$$

 \mathbf{X}^{T} - транспонированная матрица.

Предположим, что существует обратная матрица $(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}$ (ранг(X)=m+1). Тогда

$$\boldsymbol{\beta} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y} = \mathbf{b},$$

$$(\mathbf{X}^{\mathrm{T}}\mathbf{X})\boldsymbol{\beta} = \mathbf{X}^{\mathrm{T}}\mathbf{Y}$$

 \mathbf{X}^{T} - транспонированная матрица.

Предположим, что существует обратная матрица $(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}$ (ранг(X)=m+1). Тогда

$$m{eta} = (m{X}^Tm{X})^{-1}m{X}^Tm{Y} = m{b},$$
 где $m{b} = egin{pmatrix} b_0 \\ \underline{b_1} \\ \overline{b_m} \end{pmatrix}$ — вектор оценок параметров.

Теорема Гаусса-Маркова. Пусть выполняются условия классической модели. Тогда МНК-оценки являются наиболее эффективными, т.е. обладают наименьшей дисперсией среди всех линейных несмещенных оценок.

Теорема Гаусса-Маркова. Пусть выполняются условия классической модели. Тогда МНК-оценки являются наиболее эффективными, т.е. обладают наименьшей дисперсией среди всех линейных несмещенных оценок.

Анализ качества модели:

 - определение степени соответствия модели и наблюдений (дисперсионный анализ);

Анализ качества модели:

- определение степени соответствия модели и наблюдений (дисперсионный анализ);
- проверка гипотез о значимости оценок параметров и модели в целом.

Пусть

$$e_i = y_i - \hat{y}_i$$

i-й остаток, где

$$\hat{y}_i = b_0 + b_1 x_{i,1} + \dots + b_m x_{i,m}$$

прогноз для i-го наблюдения.

$$e_i = y_i - \hat{y}_i$$

i-й остаток, где

$$\hat{y}_i = b_0 + b_1 x_{i,1} + \dots + b_m x_{i,m}$$

прогноз для i-го наблюдения.

Остаточная вариация (residual sum of squares)

$$RSS = \sum_{i=1}^{n} (e_i)^2$$
;

$$e_i = y_i - \hat{y}_i$$

i-й остаток, где

$$\hat{y}_i = b_0 + b_1 x_{i,1} + \dots + b_m x_{i,m}$$

прогноз для i-го наблюдения.

Остаточная вариация (residual sum of squares)

$$RSS = \sum_{i=1}^{n} (e_i)^2;$$

Стандартная ошибка (несмещенная оценка дисперсии ошибки): $s^2 = RSS / (n - m - 1)$.

$$e_i = y_i - \hat{y}_i$$

i-й остаток, где

$$\hat{y}_i = b_0 + b_1 x_{i,1} + \dots + b_m x_{i,m}$$

прогноз для i-го наблюдения.

Остаточная вариация (residual sum of squares)

$$RSS = \sum_{i=1}^{n} (e_i)^2$$
;

Стандартная ошибка (несмещенная оценка дисперсии ошибки): $s^2 = RSS / (n - m - 1)$.

Общая вариация
$$TSS = \sum_{i=1}^{n} (y_i - \overline{y})^2$$
;

$$e_i = y_i - \hat{y}_i$$

i-й остаток, где

$$\hat{y}_i = b_0 + b_1 x_{i,1} + \dots + b_m x_{i,m}$$

прогноз для i-го наблюдения.

Остаточная вариация (residual sum of squares)

$$RSS = \sum_{i=1}^{n} (e_i)^2;$$

Стандартная ошибка (несмещенная оценка дисперсии ошибки): $s^2 = RSS / (n - m - 1)$.

Общая вариация
$$TSS = \sum_{i=1}^{n} (y_i - \overline{y})^2$$
;

Вариация, объясненная регрессией $ESS = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$.

$$TSS = ESS + RSS$$
 (если $\beta_0 \neq 0$).

$$TSS = ESS + RSS$$
 (если $\beta_0 \neq 0$).

$$(y_i - \overline{y}) = (y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})$$

$$TSS = ESS + RSS$$
 (если $\beta_0 \neq 0$).

$$(y_i - \overline{y}) = (y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})$$

$$\sum_i (y_i - \overline{y})^2 = \sum_i ((y_i - \hat{y}_i) + (\hat{y}_i - \overline{y}))^2$$

$$\overline{TSS = ESS + RSS} \quad (\text{если } \beta_0 \neq 0).$$

$$(y_i - \overline{y}) = (y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})$$

$$\sum_i (y_i - \overline{y})^2 = \sum_i ((y_i - \hat{y}_i) + (\hat{y}_i - \overline{y}))^2$$

$$\overline{RSS}$$

$$\sum_i (y_i - \overline{y})^2 = \sum_i (y_i - \hat{y}_i)^2 + \sum_i (\hat{y}_i - \overline{y})^2 + \sum_i (y_i - \overline{y})^2 + \sum_i (y_i - \hat{y}_i) \cdot (\hat{y}_i - \overline{y})$$

$$= 0 \text{ если } \beta_0 \neq 0$$

$$R^2 = 1 - RSS/TSS = ESS/TSS$$
; $R^2 \in [0,1]$

показывает степень подгонки модели к наблюдаемым значениям Y (чем ближе к 1, тем лучше).

$$R^2 = 1 - RSS/TSS = ESS/TSS$$
; $R^2 \in [0,1]$

показывает степень подгонки модели к наблюдаемым значениям Y (чем ближе к 1, тем лучше).

Для парной линейной модели $R^2 = r_{xy}^2$ (коэффициент корреляции)

$$R^2 = 1 - RSS/TSS = ESS/TSS$$
; $R^2 \in [0,1]$

показывает степень подгонки модели к наблюдаемым значениям Y (чем ближе к 1, тем лучше).

Для парной линейной модели $R^2 = r_{xy}^2$ (коэффициент корреляции)

Пример.

$$R^2 = 1 - RSS/TSS = ESS/TSS$$
; $R^2 \in [0,1]$

показывает степень подгонки модели к наблюдаемым значениям Y (чем ближе к 1, тем лучше).

Для парной линейной модели $R^2 = r_{xy}^2$ (коэффициент корреляции)

Пример.

- Остаточная вариация – «необъясненная»

Недостаток \mathbb{R}^2 - автоматически увеличивается при включении в модель дополнительных переменных (даже если они незначимы).

Недостаток \mathbb{R}^2 - автоматически увеличивается при включении в модель дополнительных переменных (даже если они незначимы).

Нормированный (скорректированный, adjusted) коэффициент детерминации:

$$R_{adj}^2 = 1 - \frac{RSS/(N-n-1)}{TSS/(N-1)}.$$

Недостаток \mathbb{R}^2 - автоматически увеличивается при включении в модель дополнительных переменных (даже если они незначимы).

Нормированный (скорректированный, adjusted) коэффициент детерминации:

$$R_{adj}^2 = 1 - \frac{RSS/(N-n-1)}{TSS/(N-1)}$$
.

Свойства:

1.
$$R_{adj}^2 = 1 - (1 - R^2) \frac{N - 1}{N - n - 1}$$
;

Недостаток R^2 - автоматически увеличивается при включении в модель дополнительных переменных (даже если они незначимы).

Нормированный (скорректированный, adjusted) коэффициент детерминации:

$$R_{adj}^2 = 1 - \frac{RSS/(N-n-1)}{TSS/(N-1)}$$
.

Свойства:

1.
$$R_{adj}^2 = 1 - (1 - R^2) \frac{N - 1}{N - n - 1};$$

2. $R_{adj}^2 \le R^2$ при $n > 2;$

$$2. R_{adi}^2 \le R^2$$
 при $n > 2$

Недостаток \mathbb{R}^2 - автоматически увеличивается при включении в модель дополнительных переменных (даже если они незначимы).

Нормированный (скорректированный, adjusted) коэффициент детерминации:

$$R_{adj}^2 = 1 - \frac{RSS/(N-n-1)}{TSS/(N-1)}$$
.

Свойства:

1.
$$R_{adj}^2 = 1 - (1 - R^2) \frac{N - 1}{N - n - 1}$$
;

2.
$$R_{adj}^2 \le R^2$$
 при $n > 2$;

3.
$$R_{adi}^2 \le 1$$
, но может быть $R_{adi}^2 < 0$.

$$H_0$$
: " $\beta_1 = \beta_2 = \dots = \beta_m = 0$ ".

$$H_0$$
: " $\beta_1 = \beta_2 = \dots = \beta_m = 0$ ".

F-критерий:

$$F = \frac{R^2}{1 - R^2} \frac{n - m - 1}{m},$$

где R^2 - коэффициент детерминации.

$$H_0$$
: " $\beta_1 = \beta_2 = \dots = \beta_m = 0$ ".

F-критерий:

$$F = \frac{R^2}{1 - R^2} \frac{n - m - 1}{m},$$

где R^2 - коэффициент детерминации.

 H_0 отвергается на уровне значимости α , если

$$F_{\text{набл}} > F_{\kappa p}(\alpha; m, n-m-1),$$

где $F_{\kappa p}(\alpha; m, n-m-1)$ определяется из таблицы F-распределения.

$$H_0$$
: " $\beta_1 = \beta_2 = \dots = \beta_m = 0$ ".

F-критерий:

$$F = \frac{R^2}{1 - R^2} \frac{n - m - 1}{m},$$

где R^2 - коэффициент детерминации.

 H_0 отвергается на уровне значимости α , если

$$F_{\mu\alpha\delta n} > F_{\kappa p}(\alpha; m, n-m-1),$$

где $F_{\kappa p}(\alpha; m, n-m-1)$ определяется из таблицы F-распределения.

p-value: $P[F > F_{Haбn} \mid H_o]$ - используется в компьютерных пакетах статистического анализа.

(насколько существенно влияние X_j на Y): $H_{0j}="eta_j=0"$.

(насколько существенно влияние X_j на Y) : H_{0j} = " β_j = 0" . Проверка: t- критерий Стьюдента.

(насколько существенно влияние X_j на Y) : H_{0j} = " β_j = 0" . Проверка: t- критерий Стьюдента.

Пусть
$$t_{j \text{ набл}} = \frac{b_j}{s_j}$$
, s_j - стандартная ошибка j -го параметра:

$$s_j = s\sqrt{q_j}$$
, $q_j - j$ -й диагональный элемент матрицы $(\mathbf{X}^T\mathbf{X})^{-1}$,

(насколько существенно влияние X_j на Y) : H_{0j} = " β_j = 0" . Проверка: t- критерий Стьюдента.

Пусть $t_{j \text{ набл}} = \frac{b_j}{s_j}$, s_j - стандартная ошибка j -го параметра:

 $s_j = s\sqrt{q_j}$, $q_j - j$ -й диагональный элемент матрицы $(\mathbf{X}^T\mathbf{X})^{-1}$,

Определим табличное значение $t_{\kappa p} (\alpha, n-m-1),$ где α - заданный уровень значимости; n-m-1 - число степеней свободы.

(насколько существенно влияние X_j на Y) : H_{0j} = " β_j = 0" . Проверка: t- критерий Стьюдента.

Пусть $t_{j \text{ набл}} = \frac{b_j}{s_j}$, s_j - стандартная ошибка j -го параметра:

 $s_j = s\sqrt{q_j}$, $q_j - j$ -й диагональный элемент матрицы $(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}$,

Определим табличное значение $t_{\kappa p} (\alpha, n-m-1),$ где α - заданный уровень значимости; n-m-1 - число степеней свободы.

Если $|t_{j \text{ } \mu a \delta \pi}| > t_{\kappa p}$, то гипотеза отвергается.

(насколько существенно влияние X_j на Y) : H_{0j} = " β_j = 0" . Проверка: t- критерий Стьюдента.

Пусть $t_{j \text{ набл}} = \frac{b_j}{s_j}$, s_j - стандартная ошибка j -го параметра:

 $s_j = s\sqrt{q_j}$, $q_j - j$ -й диагональный элемент матрицы $(\mathbf{X}^T\mathbf{X})^{-1}$,

Определим табличное значение $t_{\kappa p} (\alpha, n-m-1),$ где α - заданный уровень значимости; n-m-1 - число степеней свободы.

Если $\mid t_{j \; ha \delta n} \mid > t_{\kappa p}$, то гипотеза отвергается.

p-value: $P[T_j > t_{j \; \text{набл}} \; | \; H_{o \; j}]$, где T_j величина с распределением Стьюдента;

- чем меньше p-value, тем более значима X_i .

Пример


```
1 import pandas as pd
2 import matplotlib.pyplot as plt
3 import statsmodels.formula.api as smf
5 dat = pd.DataFrame({'X':[3,5,7,8,12,15,22,28],
                          'Y':[2,4,6,10,15,16,24,32]});
7 dat.plot('X','Y',kind='scatter')
9 lm = smf.ols(formula="X ~ Y", data=dat).fit()
```

Результаты

```
ipdb> lm.summary()
<class 'statsmodels.iolib.summary.Summary'>
```

OLS Regression Results							
Dep. Variable:		X		R-squared:		0.987	
Model:		OLS		Adj. R-squared:		0.985	
Method:		Least Squares		F-statistic:		454.5	
Date:		Sun, 23 Apr 2017		Prob (F-statistic):		6.95e-07	
Time:		00:04:06		Log-Likelihood:		-10.793	
No. Observations:		8		AIC:		25.59	
Df Residuals:		6		BIC:		25.74	
Df Model:			1				
Covariance Type:		nonrob	ust				
=========	======		====				
	coef	f std err		t	P> t	[95.0% Con	f. Int.]
Intercept	1.0926	0.657	1	1.664	0.147	-0.514	2.699
Υ	0.8372	0.039	23	1.320	0.000	0.741	0.933

