Week 8

Task 1 Using the diagrams given in the presentation <u>calculate how much (%)</u> is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of <u>double layer</u> with <u>air and no coating</u>? (keep the gap thickness to be 13 mm)

Answer:

The U value of window:

$$U_{\text{window}} = (U_{\text{center}} A_{\text{center}} + U_{\text{edge}} A_{\text{edge}} + U_{\text{frame}} A_{\text{frame}}) / A_{\text{window}}$$

Disregarding the thermal resistances of glass layers, the thermal resistance and U-factor of a double-pane window can be expressed as:

$$\begin{split} \frac{1}{U_{\textit{double-pane}(\textit{centerregion})}} &\cong \frac{1}{h_i} + \frac{1}{h_{\textit{space}}} + \frac{1}{h_o} \\ h_{\textit{space}} &= h_{\textit{rad},\textit{space}} + h_{\textit{conv},\textit{space}} \end{split}$$

Note from the formula, the U value is related with h space, roughly half of the heat transfer through the air space of a double-pane window is by radiation and the other half is by conduction (or convection, if there is any air motion). Therefore, there are two ways to minimize h space and thus the rate of heat transfer through a double-pane window:

- 1) Minimize radiation heat transfer through the air space.
- 2) Minimize conduction heat transfer through air space.

According to different modifications:

1. **changing the gas:** to use a less-conducting fluid such as argon or krypton to fill the gap between the glasses instead of air is a way of reducing conduction heat transfer through a double-pane window.

Note from the figure that when the thickness of gas is 13mm, if we change the air into less-conducting fluid like Argon, the value of U-FACTOR changes from $2.8W/m^2$ •k into $2.65W/m^2$ •k , which means the value decrease by 6.43%. And if we change the air into less-conducting fluid like Krypton, the value of U-FACTOR changes from $2.8W/m^2$ • k into $2.6~W/m^2$ • k , which means the value of U_factor decrease by 7.14%.

2. adding an extra pane: Note from the figure that when the thickness of air gap is 13mm and filled gas is air, the U-factor in triple-panes glazing is 1.8 W/m² • k. So from the double-pane to triple-pane, the value of U changes from 2.8W/m² • k into 1.8W/m² • k, which means the value decreases by 55.6%, about one-third.

3. **using a low emissivity coating:** By coating glass surface with low-emissivity material can reduce the emissivity of them. Recall that the effective emissivity of two parallel plates of emissivities $\varepsilon 1$ and $\varepsilon 1$ is given by:

$$\varepsilon_{\rm effective} = \frac{1}{1/\varepsilon_1 + 1/\varepsilon_2 - 1}$$

The emissivity of an ordinary glass surface is 0.84.

$$\varepsilon_{\text{effective}} = \frac{1}{1/\varepsilon_1 + 1/\varepsilon_2 - 1} = \frac{1}{1/0.84 + 1/0.84 - 1} \approx 0.72$$

Therefore, the effective emissivity of two parallel glass surfaces facing each other is 0.72.

But when the glass surfaces are coated with a film that has an emissivity of 0.1,

$$\varepsilon_{\rm effective} = \frac{1}{1/\varepsilon_{\rm coat1} + 1/\varepsilon_{\rm coat2} - 1} = \frac{1}{1/0.1 + 1/0.1 - 1} \approx 0.05$$

the effective emissivity reduces to 0.05, which is **one-fourteenth of 0.72**. Using a low-emissivity coating, the value of U changes from $1.8W/m^2 \cdot k$ into $1.0W/m^2 \cdot k$, which means the value decreases by 44.4%.

Task 2 Consider the house that we analysed in the last two examples, <u>calculate the heating and cooling load of the other windows</u> which are fixed <u>14.4 m² on the west</u>, fixed <u>3.6 m² on the south and an operable 3.6 m² on the south and an operable 3.6 m² on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminium?</u>

The question:

- 1. The net area of wall(excluding doors and windows) of a building located in Piacenza is 105.8 $\,\mathrm{m}^2$, the calculated $\,\mathrm{U}\,$ value is $\,\mathrm{0.43W/m}^2\,$ k for the winter and $\,\mathrm{0.435W/m}^2\,$ k for the summer. Find the corresponding heating and cooling load.
- 2. A fixed heat absorbing double layer glass(with <u>a wooden frame</u>) window at the <u>east</u> side of a building located in Piacenza has a surface of $\underline{14.4~\text{m}^2}$. In case there are no internal and external shading factors. Calculate the heating and cooling load of the corresponding to that window.

ANSWER:

						P	IACENZ	ZA, Italy						WMO#:	160840	
Lat	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	W)	Period:	89-10	WBAN:	99999	
Annual H	eating and H	umidificati	on Design C	onditions												
Coldest	Heating	n DB		Humi	dification Di	P/MCDB and				Coldest mon	th WS/MCD		MCWS	/PCWD		
Month	ricating	9 00	111	99.6% 99% 0.4% 1%		%	to 99.	6% DB								
WIOTHIT	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250		(1,
Annual C	ooling, Dehu	midificatio	n, and Entha	alpy Design	Conditions											
Hottest	Hottest			Cooling D	B/MCWB				et n	Evaporation	WB/MCDE	1		MCWS	PCWD	
Month	Month	0.	4%	1	6	29	6	0	.4%	1	%	2	%	to 0.4	% DB	
WIOTHIT	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
8	11.9	33.1	22.7	31.9	22.4	30.3	21.8	24.6	30.2	23.7	29.2	22.9	28.3	2.4	90	(2)

From the table above,

The cooling design temperature:

$$T_{\rm cooling} = 24 {\circ} C$$

The heating design temperature:

$$T_{\rm heating} = 20^{\circ} C$$

Thus,

$$\Delta T_{cooling} = 31.9^{\circ}C - 24^{\circ}C = 7.9^{\circ}C$$

 $\Delta T_{heating} = 20^{\circ}C - (-4.8)^{\circ}C = 24.8^{\circ}C$
 $DR = 11.9^{\circ}C$

• EAST WINDOW (14.4 m², fixed, wooden frame)

HEATING:

$$\begin{split} A_{\text{east}} &= 14.4 \\ U_{\text{window}_{\text{east}}} &= 2.84 \text{W/m}^2 \cdot \text{K} \\ HF_{\text{window}_{\text{east}}} &= U_{\text{window}_{\text{east}}} \times \Delta T_{\text{heating}} = 2.84 \times 24.8 = 70.4 \text{W/m}^2 \cdot \text{K} \\ Q_{\text{window}_{\text{east}}} &= HF_{\text{window}_{\text{east}}} \times A_{\text{window}_{\text{east}}} = 70.4 \times 14.4 = 1014.2 W \end{split}$$

$$CF_{\rm window_{\it east} \it heat Transfer Part} = U_{\it window_{\it east}} \left(\Delta T_{\it cooling} - 0.46 DR \right) = 2.84 * (7.9 - 0.46 * 11.9) = 6.9 W \ / \ m^2 \ / \ m$$

we are assuming that there is no internal or external shading!

Table 10 Peak Irradiance, W/m²

					La	titud	e						
Exposure		20°	25°	30°	35°	40°-	45°	50°	55°	60°			
North E	D	125	106	92	84	81	85	96	112	136			
E	**	128				84	76	69	62	55			
E		253		195		166	162		174				
Northeast/Northwest E	-	460				412	7000		374				
E E		177 637	169 618		156 581		147 546	143 529			posure	Single Family Detached	Multifamily
East/West E	D	530			558						rth	0.44	0.27
E		200						187			rtheast	0.21	0.43
E		730			748						st	0.31	0.56
Southeast/Southwest E	-	282	328 203		405 204			485 210			utheast	0.37	0.54
E	u	485						695			uth	0.47	0.53
South E	D	0	60	139	214	283	348	408	464	515	uthwest	0.58	0.61
E	d	166	193	196	200	204	209	214	219	225	st	0.56	0.65
E	1	166	253	335	414	487	557	622	683	740	rthwest	0.46	0.57
Horizontal E	-	845		~~		776		691			rizontal	0.58	0.73
E		170				170	170	170 861		170 744	<i>10</i>		

$$PXI_{\text{window}_{east}} = E_D + E_d = 559 + 188 = 747$$

$$SHGC = 0.54$$

$$IAC = 1$$

$$FFs = 0.31$$

$$CF_{\mathrm{window}_{\mathrm{east}}\mathrm{irradiation}P\mathrm{art}} = PXI \times SHGC \times IAC \times FF\mathrm{s} = 747*0.54*1*0.31 = 125.1$$

$$CF_{\rm window_{\rm east}} = CF_{\rm window_{\rm east}} \\ heatTransferPart \\ + CF_{\rm window_{\rm east}} \\ \text{irradiationPart} = 6.9 + 125.1 \\ = 132W \\ / \\ m^2$$

$$Q_{\text{window}_{\text{east}}} = CF_{\text{window}_{\text{east}}} \times A_{\text{window}_{\text{east}}} = 132 * 14.4 = 1900.8W$$

NOW, I change the frame of the window from wooden one to ALUMINIUM:

					Frame									
			Property ^{c,d}	Center of Glazing			Operable			Fixed				
Glazing Type	Glazing Layers	IDb			Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl
Clear	1	la	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35
			SHGC	0.86	0.75	0.75	0.64	0.64	0.64	0.78	0.78	0.75	0.75	0.75
	2	5a	U	2.73	4.62	3.42	3.00	2.87	5.83	3.61	3.22	2.86	2.84	2.72
			SHGC	0.76	0.67	0.67	0.57	0.57	0.57	0.69	0.69	0.67	0.67	0.67
	3	29a	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93
			SHGC	0.68	0.60	0.60	0.51	0.51	0.51	0.62	0.62	0.60	0.60	0.60
Low-e, low-solar	2	25a	U	1.70	3.83	2.68	2.33	2.21	1.89	2.75	2.36	2.03	2.01	1.90
			SHGC	0.41	0.37	0.37	0.31	0.31	0.31	0.38	0.38	0.36	0.36	0.36
	3	40c	U	1.02	3.22	2.07	1.76	1.71	1.45	2.13	1.76	1.44	1.40	1.33
			SHGC	0.27	0.25	0.25	0.21	0.21	0.21	0.25	0.25	0.24	0.24	0.24
Low-e, high-solar	2	17c	U	1.99	4.05	2.89	2.52	2.39	2.07	2.99	2.60	2.26	2.24	2.13
			SHGC	0.70	0.62	0.62	0.52	0.52	0.52	0.64	0.64	0.61	0.61	0.61
	3	32c	U	1.42	3.54	2.36	2.02	1.97	1.70	2.47	2.10	1.77	1.73	1.66
			SHGC	0.62	0.55	0.55	0.46	0.46	0.46	0.56	0.56	0.54	0.54	0.54
Heat-absorbing	1	lc	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35
			SHGC	0.73	0.64	0.64	0.54	0.54	0.54	0.66	0.66	0.64	0.64	0.64
	2	5c	U	2.73	4.62	3.42	3.00	2.87	2.53	3.61	3.22	2.86	2.84	2.72
			SHGC	0.62	0.55	0.55	0.46	0.46	0.46	0.56	0.56	0.54	0.54	0.54
	3	29c	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93
			SHGC	0.34	0.31	0.31	0.26	0.26	0.26	0.31	0.31	0.30	0.30	0.30
Reflective	1	11	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35
			SHGC	0.31	0.28	0.28	0.24	0.24	0.24	0.29	0.29	0.27	0.27	0.27
	2	5p	U	2.73	4.62	3.42	3.00	2.87	2.53	3.61	3.22	2.86	2.84	2.72
			SHGC	0.29	0.27	0.27	0.22	0.22	0.22	0.27	0.27	0.26	0.26	0.26
	3	29c	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93
			SHGC	0.34	0.31	0.31	0.26	0.26	0.26	0.31	0.31	0.30	0.30	0.30

HEATING:

$$A_{\rm east} = 14.4$$

$$U'_{window_{east}} = 3.61 W/m^2 \cdot K$$

$$\mathrm{HF'}_{\mathrm{window}_{\mathrm{east}}} = \mathrm{U'}_{\mathrm{window}_{\mathrm{east}}} \times \Delta T_{\mathrm{heating}} = 3.61 \times 24.8 = 89.5 \mathrm{W/m}^2 \cdot \mathrm{K}$$

$$Q'_{\text{window}_{\text{cast}}} = HF'_{\text{window}_{\text{cast}}} \times A_{\text{window}_{\text{cast}}} = 89.5 \times 14.4 = 1289.2W$$

COOLING:

$$CF'_{\text{window}_{east}} = U'_{\text{window}_{east}} \left(\Delta T_{cooling} - 0.46DR\right) = 3.61*(7.9 - 0.46*11.9) = 8.7W / \text{m}^2$$

$$PXI_{\text{window}_{east}} = E_D + E_d = 559 + 188 = 747$$

$$SHGC' = 0.56$$

$$IAC = 1$$

$$FFs = 0.31$$

$$CF'_{\text{window}_{east}} = PXI \times SHGC' \times IAC \times FFs = 747*0.56*1*0.31 = 129.6$$

$$CF'_{\text{window}_{east}} = CF'_{\text{window}_{east}} + CF'_{\text{window}_{east}} + CF'_{\text{window}_{east}} = 8.7 + 129.6 = 138.3W / m^2$$

$$Q'_{\text{window}_{east}} = CF'_{\text{window}_{east}} \times A_{\text{window}_{east}} = 138.3*14.4 = 1991.5W$$

● WINDOW2: WEST (14.4 m², fixed, wooden frame) HEATING:

$$A_{\text{west}} = 14.4$$

$$U_{\text{window}_{\text{west}}} = 2.84 \text{W/m}^2 \cdot \text{K}$$

$$HF_{\text{window}_{\text{west}}} = U_{\text{window}_{\text{west}}} \times \Delta T_{\text{heating}} = 2.84 \times 24.8 = 70.4 \text{W/m}^2 \cdot \text{K}$$

$$Q_{\text{window}_{\text{west}}} = HF_{\text{window}_{\text{west}}} \times A_{\text{window}_{\text{west}}} = 70.4 \times 14.4 = 1014.2 \text{W}$$

COOLING:

$$CF_{\text{window}_{\text{west}} \text{heatTransferPart}} = U_{\text{window}_{\text{west}}} (\Delta T_{\text{cooling}} - 0.46DR) = 2.84*(7.9 - 0.46*11.9) = 6.9W / m^2$$

we are assuming that there is no internal or external shading!

$$\begin{split} PXI_{\text{window}_{east}} &= E_D + E_d = 559 + 188 = 747 \\ SHGC &= 0.54 \\ IAC &= 1 \\ FFs &= 0.56 \\ CF_{\text{window}_{\text{west}} \text{irradiation}Part} &= PXI \times SHGC \times IAC \times FFs = 747 * 0.54 * 1 * 0.56 = 225.9W / m^2 \\ CF_{\text{window}_{\text{west}}} &= CF_{\text{window}_{\text{west}}} heatTransferPart} + CF_{\text{window}_{\text{west}} \text{irradiation}Part} = 6.9 + 225.9 = 232.8W / m^2 \\ Q_{\text{window}_{\text{west}}} &= CF_{\text{window}_{\text{west}}} \times A_{\text{window}_{\text{west}}} &= 232.8 * 14.4 = 3352.3W \end{split}$$

NOW, I change the frame of the window from wooden one to ALUMINIUM : HEATING:

$$\begin{split} A_{\text{west}} &= 14.4 \\ \text{U'}_{\text{window}_{\text{west}}} &= 3.61 \text{W/m}^2 \cdot \text{K} \\ \text{HF'}_{\text{window}_{\text{west}}} &= \text{U'}_{\text{window}_{\text{west}}} \times \Delta T_{\text{heating}} = 3.61 \times 24.8 = 89.52 \, \text{W/m}^2 \\ \text{Q'}_{\text{window}_{\text{west}}} &= \text{HF'}_{\text{window}_{\text{west}}} \times A_{\text{window}_{\text{west}}} = 89.52 \times 14.4 = 1289.1 W \end{split}$$

COOLING:

$$CF'_{\text{window}_{\text{west}}} = U'_{\text{window}_{\text{west}}} \ (\Delta T_{cooling} - 0.46DR) = 3.61*(7.9 - 0.46*11.9) = 8.7W \ / \ \text{m}^2$$

$$PXI_{\text{window}_{east}} = E_D + E_d = 559 + 188 = 747$$

$$SHGC' = 0.56$$

$$IAC = 1$$

$$FFs = 0.56$$

$$CF'_{\text{window}_{\text{west}}} = PXI \times SHGC' \times IAC \times FFs = 747*0.56*1*0.56 = 234.26W \ / \ m^2$$

$$CF'_{\text{window}_{\text{west}}} = CF'_{\text{window}_{\text{west}}} + CF'_{\text{window}_{\text{west}}} + CF'_{\text{window}_{\text{west}}} = 8.7 + 234.26 = 242.96W \ / \ m^2$$

$$Q'_{\text{window}_{\text{west}}} = CF'_{\text{window}_{\text{west}}} \times A_{\text{window}_{\text{west}}} = 242.96*14.4 = 3498.6W$$

• WINDOW3: SOUTH (3.6 m^2 , fixed; 3.6 m^2 operable, wooden frame) HEATING:

$$\begin{split} A_{\text{south}_{\text{fixed}}} &= A_{\text{south}_{\text{operable}}} = 3.6 \\ U_{\text{window}_{\text{southfixed}}} &= 2.84 \text{W/m}^2 \cdot \text{K} \\ U_{\text{window}_{\text{southoperable}}} &= 2.87 \text{W/m}^2 \cdot \text{K} \\ HF_{\text{window}_{\text{southoperable}}} &= U_{\text{window}_{\text{southfixed}}} \times \Delta T_{\text{heating}} = 2.84 \times 24.8 = 70.4 \text{W/m}^2 \\ HF_{\text{window}_{\text{southoperable}}} &= U_{\text{window}_{\text{southoperable}}} \times \Delta T_{\text{heating}} = 2.87 \times 24.8 = 71.17 \text{W/m}^2 \\ Q_{\text{window}_{\text{southoperable}}} &= HF_{\text{window}_{\text{southoperable}}} \times A_{\text{window}_{\text{southfixed}}} = 70.4 \times 3.6 = 253.6 W \\ Q_{\text{window}_{\text{southoperable}}} &= HF_{\text{window}_{\text{southoperable}}} \times A_{\text{window}_{\text{southoperable}}} = 71.17 \times 3.6 = 256.2 W \\ Q_{\text{window}_{\text{southoperable}}} &= Q_{\text{window}_{\text{southoperable}}} \times A_{\text{window}_{\text{southoperable}}} = 509.8 W \end{split}$$

$$\begin{split} &CF_{\text{window}_{\text{southfixed}} \text{heatTransferPart}} = U_{\text{window}_{\text{southfixed}}} \left(\Delta T_{\text{cooling}} - 0.46DR\right) = 2.84*(7.9 - 0.46*11.9) = 6.9W \, / \, \text{m}^2 \\ &CF_{\text{window}_{\text{southoperable}} \text{heatTransferPart}} = U_{\text{window}_{\text{southoperable}}} \left(\Delta T_{\text{cooling}} - 0.46DR\right) = 2.87*(7.9 - 0.46*11.9) = 6.96W \, / \, \text{m}^2 \end{split}$$

$$PXI_{\text{window}} = E_D + E_d = 348 + 209 = 557$$

$$SHGC_{\text{fixed}} = 0.54$$

$$SHGC_{\text{operable}} = 0.46$$

$$IAC = 1$$

$$FFs = 0.47$$

$$CF_{\text{window}}_{\text{southfixed}} = PXI \times SHGC_{\text{fixed}} \times IAC \times FFs = 557 * 0.54 * 1 * 0.47 = 120.4W / m^2$$

$$CF_{\text{window}}_{\text{southfixed}} = PXI \times SHGC_{\text{operable}} \times IAC \times FFs = 557 * 0.46 * 1 * 0.47 = 141.4W / m^2$$

$$CF_{\text{window}}_{\text{southfixed}} = CF_{\text{window}}_{\text{southfixed}} + CF_{\text{window}}_{\text{southfixed}} + CF_{\text{window}}_{\text{southfixed}} + CF_{\text{window}}_{\text{southfixed}} = 6.9 + 120.4 = 127.3W / m^2$$

$$CF_{\text{window}}_{\text{southfixed}} = CF_{\text{window}}_{\text{southfixed}} + CF_{\text{window}}_{\text{sout$$

$\underline{\text{NOW, I}}$ change the frame of the window from wooden one to ALUMINIUM :

HEATING:

$$\begin{split} A_{\text{south}_{\text{fixed}}} &= A_{\text{south}_{\text{operable}}} = 3.6 \\ U'_{\text{window}_{\text{southfixed}}} &= 3.61 \text{W/m}^2 \cdot \text{K} \\ U'_{\text{window}_{\text{southoperable}}} &= 4.62 \text{W/m}^2 \cdot \text{K} \\ HF'_{\text{window}_{\text{southfixed}}} &= U'_{\text{window}_{\text{southfixed}}} \times \Delta T_{\text{heating}} = 3.61 \times 24.8 = 89.5 \text{W/m}^2 \\ HF'_{\text{window}_{\text{southoperable}}} &= U'_{\text{window}_{\text{southoperable}}} \times \Delta T_{\text{heating}} = 4.62 \times 24.8 = 114.58 \text{W/m}^2 \\ Q'_{\text{window}_{\text{southoperable}}} &= HF'_{\text{window}_{\text{southfixed}}} \times A_{\text{window}_{\text{southfixed}}} = 89.6 \times 3.6 = 322.56 W \\ Q'_{\text{window}_{\text{southoperable}}} &= HF'_{\text{window}_{\text{southoperable}}} \times A_{\text{window}_{\text{southoperable}}} = 114.58 \times 3.6 = 411.488 W \\ Q'_{\text{window}_{\text{south}}} &= Q'_{\text{window}_{\text{southfixed}}} + Q'_{\text{window}_{\text{southoperable}}} = 735.05 W \end{split}$$

$$CF'_{\text{window}_{\text{southfixed}}\text{heatTransferPart}} = U'_{\text{window}_{\text{southfixed}}} \left(\Delta T_{\text{cooling}} - 0.46DR \right) = 3.61*(7.9 - 0.46*11.9) = 8.76W / \text{m}^2$$

$$CF'_{\text{window}_{\text{southoperable}}\text{heatTransferPart}} = U'_{\text{window}_{\text{southoperable}}} \left(\Delta T_{\text{cooling}} - 0.46DR \right) = 4.62*(7.9 - 0.46*11.9) = 11.2W / \text{m}^2$$

$$PXI_{\text{window}_{\text{south}}} = E_D + E_d = 348 + 209 = 557$$

$$SHGC'_{\text{fixed}} = 0.56$$

$$SHGC'_{\text{operable}} = 0.55$$

$$IAC = 1$$

$$FFs = 0.47$$

$$CF'_{\text{window}_{\text{southfixed}}\text{irradiation}Part} = PXI \times SHGC'_{\text{fixed}} \times IAC \times FFs = 557 * 0.56 * 1 * 0.47 = 146.6W / m^2$$

$$CF'_{\text{window}_{\text{southfixed}}} = PXI \times SHGC'_{\text{operable}} \times IAC \times FFs = 557 * 0.55 * 1 * 0.47 = 143.98W / m^2$$

$$CF'_{\text{window}_{\text{southfixed}}} = CF'_{\text{window}_{\text{southfixed}}} + CF'_{\text{window}_{\text{southfixed}}} + CF'_{\text{window}_{\text{southfixed}}} = 8.76 + 146.6 = 155.36W / m^2$$

$$CF'_{\text{window}_{\text{southfixed}}} = CF'_{\text{window}_{\text{southfixed}}} + CF'_{\text{window}_{\text{southfixed}}} + CF'_{\text{window}_{\text{southfixed}}} = 11.2 + 143.98 = 155.18W / m^2$$

$$Q'_{\text{window}_{\text{southfixed}}} = CF'_{\text{window}_{\text{southfixed}}} \times A_{\text{window}_{\text{southfixed}}} = 155.36 * 3.6 = 559.296W$$

$$Q'_{\text{window}_{\text{southfixed}}} = CF'_{\text{window}_{\text{southfixed}}} \times A_{\text{window}_{\text{southfixed}}} = 155.18 * 3.6 = 558.648W$$

$$Q'_{\text{window}_{\text{south}}} = Q'_{\text{window}_{\text{southfixed}}} + Q'_{\text{window}_{\text{southfixed}}} = 559.296 + 558.648 = 1117.944W$$

SO,

HEATING:

$$\begin{aligned} &Q_{TOTAL_{HEATING-WOODEN}} = Q_{window_{east}} + Q_{window_{west}} + Q_{window_{south}} = 1014.2 + 1014.2 + 509.8 = 2538.2W \\ &Q_{TOTAL_{HEATING-ALUMINUM}} = Q'_{window_{east}} + Q'_{window_{west}} + Q'_{window_{south}} = 1289.2 + 1289.1 + 735.05 = 3321.8W \end{aligned}$$

$$\begin{aligned} Q_{TOTAL_{COOLING-WOODEN}} &= Q_{window_{east}} + Q_{window_{west}} + Q_{window_{south}} \\ &= 1900.8 + 3352.3 + 992.16 = 6245.26W \\ Q_{TOTAL_{COOLING-ALUMINUM}} &= Q'_{window_{east}} + Q'_{window_{west}} + Q'_{window_{south}} \\ &= 1991.5 + 3498.6 + 1117.944 = 6608.044W \end{aligned}$$