Remarks:

Reconsideration of the application is requested.

Claims 1-7, 9-22, and 67-68 are now in the application.

Claims 1-6 have been amended. Claim 8 has been canceled.

Claims 67-68 have been added.

In item 6 of the above-identified Office action, the Examiner has rejected claims 2-5 as being indefinite under

35 U.S.C. § 112, second paragraph. More specifically, the

Examiner has stated that, "at least partly" as used in claims

2 and 4 is a relative phrase and renders the claims

indefinite. Claims 2 and 4 have been amended to remove the

phrase "at least partly".

The Examiner rejected claims 3 and 5 for containing undefined phrases, "other carbonized organic fibers" and "other silicides", respectively. These phrases have been deleted from the claims. Accordingly, claims 3 and 5 are now definite.

Accordingly, the specification and the claims meet the requirements of 35 U.S.C. § 112, first and second paragraphs. Should the Examiner find any further objectionable items, counsel would appreciate a telephone call during which the matter may be resolved. The changes are neither provided for

overcoming the prior art nor do they narrow the scope of the claim for any reason related to the statutory requirements for a patent.

In item 8 of the Office action, the Examiner rejected claims 1-3, 5, and 7-12 as being fully anticipated by Tredway et al. (U.S. 5,552,213) under 35 U.S.C. § 102(b). The rejection has been noted and the claims have been amended in an effort to define more clearly the invention of the instant application. Support for the changes is found on page 15, lines 7-8, of the specification.

Before discussing the prior art in detail, a brief review of the invention as claimed is provided. Claim 1 calls for, inter alia, a composite material having the following features:

a ceramic matrix consisting essentially of phases of silicon, carbon, and silicon carbide ...

Tredway involves glassy materials. In contrast, the claimed ceramic matrix is made of phases of silicon, carbon, and silicon carbide.

In the Advisory Action dated December 16, 2002, the Examiner argued that the above amendment would be insufficient because

the matrix of Tredway et al. inherently includes silicon, carbon, and silicon carbide.

However, the Examiner has overstated the significance of Tredway et al. Tredway et al. disclose a composite that is a fiber-reinforced glass ceramic matrix composite; see col. 2, lines 18-20. The matrix may be any glass or glass ceramic (col. 2, line 59). Tredway et al. specifically disclose glass materials like borosilicate glass, high-silica content glass, aluminosilicate glass, and mixtures thereof (col. 2 lines 61-63). Silica is the term used for silicon oxide, SiO₂; see attached copy of Grant & Hackh's Chemical Dictionary, labeled "EXHIBIT A". This matrix does not include elemental Si; see especially claim 67. Likewise, it does include elemental carbon (see especially claim 68), or silicon carbide. These materials may be present in the composite, as reinforcing fibers, however; see col. 3, line 18 et seq.

Furthermore, according to the usual usage, a glass is an amorphous (i.e. non-crystalline) hard, brittle, often transparent material that is a fused mixture of the silicates of alkali and alkaline earth and heavy metals; see attached copy of Grant & Hackh's Chemical Dictionary, labeled "EXHIBIT B". The known forms of silicon, silicon carbide, and carbon do not include glasses; see attached copy of Grant & Hackh's Chemical Dictionary. Therefore, it would be wrong to assert

that a glass ceramic matrix inherently has phases of silicon, carbon, and silicon carbide.

In addition, Tredway et al. provide no suggestion that a glass or glass ceramic matrix inherently includes carbon, silicon, or silicon carbide.

Accordingly, none of the references, whether taken alone or in any combination, either show or suggest the features of claim 1. Therefore, claim 1 is patentable over the art.

Moreover, because all of the dependent claims are ultimately dependent on claim 1, they are believed to be patentable as well.

In item 10 of the Office action, the Examiner rejected claims 4, 6, and 13-22 as being unpatentable over Tredway in view of Beier et al. (U.S. 6,316,086) under 35 U.S.C. §103(a). Claims 4, 6, and 13-22 ultimately depend on claim 1. For the reasons stated above, claim 1 (and therefore the claims depending therefrom) is patentable over the cited art. More specifically, Beier is directed to glass matrix composites. In contrast, amended claim 1 involves, "A ceramic matrix consisting essentially of phases of silicon, carbon, and silicon carbide." Furthermore, while Beier mentions using SiC, BN, boron carbide, titanium carbide, carbon, and silicon as fillers (see col. 5, lines 1-17 and 26-43), the phrase

"consisting essentially of" in amended claim 1, avoids any such suggestion from Beier.

Claim 6 has been amended to remove the reference to aluminum.

Claim 8 has been deleted to prevent a repeated claim and not for reasons relating to the prior art.

In view of the foregoing, reconsideration and allowance of claims 1-7, 9-22, and 67-68 are solicited. In the event the Examiner should still find any of the claims to be unpatentable, please telephone counsel so that patentable language can be substituted. In the alternative, the entry of the amendment is requested as it is believed to place the application in better condition for appeal, without requiring extension of the field of search.

Please charge any fees that might be due with respect to Sections 1.16 and 1.17 to the Deposit Account of Lerner and Greenberg, P.A., No. 12-1099.

Respectfully submitted,

LOREN DONALD PEARSON REG. NO. 42,987

For Applicants

LDP:cgm

January 6, 2003

Lerner and Greenberg, P.A. Post Office Box 2480 Hollywood, FL 33022-2480

Tel: (954) 925-1100 Fax: (954) 925-1101 Version with Markings to Show Changes Made:

In the Claims:

Cancel claim 8.

Claim 1 (thrice amended). A composite material, comprising:

a ceramic matrix [predominantly including at least one substance selected from the group consisting of carbon, silicide, boron, aluminum, zirconium, silicon carbide, silicon nitride, boron nitride, boron carbide, SiBCN, TiC, iron silicides, and other silicides] consisting essentially of phases of silicon, carbon, and silicon carbide; and

fiber bundles having two different fractions including a reinforcing fiber bundle fraction and a matrix fiber bundle fraction having lengths with different averages, each of said fiber bundles having a weight, said weights being proportional to said fiber bundle lengths, said weights being plotted on a total fiber bundle distribution, and said fractions of fiber bundles being separated by a minimum in said total fiber bundle distribution.

Claim 2 (amended). The composite material according to claim 1, wherein at least a portion of said fiber bundles [at least partly] have at least one protective layer.

Claim 3 (twice amended). The composite material according to claim 1, wherein said fiber bundles contain fibers selected from the group consisting of carbon fibers, graphite fibers, SiC-fibers, aluminum oxide fibers, Al₂O₃SiO₂-fibers, Al₂O₃SiO₂-fibers, carbonized cellulose fibers, carbonized wood fibers, [other carbonized organic fibers] and fibers resistant to elevated temperatures based on compounds containing Si,C,B,N,Al.

Claim 4 (amended). The composite material according to claim 1, wherein said fiber bundles contain at least one of nano fibers, whiskers and nanotubes [at least partly in place of fibers].

Claim 5 (amended). The composite material according to claim 1, wherein said ceramic matrix additionally contains phases of at least one [substance selected from the group consisting] of [carbon, silicon, boron,] aluminum, zirconium [and alloys selected from the group consisting of silicon carbide], silicon nitride, [silicon oxide,] boron nitride, boron carbide, SiBCN, Al₂O₃, ZrO₂, TiC, and iron silicides[, other silicides and glass-ceramics].

Claim 6 (amended). The composite material according to claim 5, wherein said ceramic matrix contains additions selected

from the group consisting of iron, chromium, titanium,
molybdenum, and nickel [and aluminum].

Add the Following Claims:

- --67. The composite material according to claim 1, wherein said phases of silicon in said ceramic matrix are elemental silicon.--
- --68. The composite material according to claim 1, wherein said phases of carbon in said ceramic matrix are elemental carbon.--

GRANT & HACKH'S CHEMICAL DICTIONARY

[American, International, European and British Usage]

Containing the Words Generally Used in Chemistry, and Many of the Terms Used in the Related Sciences of Physics, Medicine, Engineering, Biology, Pharmacy, Astrophysics, Agriculture, Mineralogy, etc.

Based on Recent Scientific Literature

FIFTH EDITION
Completely Revised and Edited by

ROGER GRANT

M.A., D. de l'U., Ph.D., C. Chem., M.R.S.C. Consultant

CLAIRE GRANT

M.B., D.S., M.R.C.P.E. Medical Practitioner

InfraServ GmbH & Co. Wasbaden KG Wise. Bibliothek H245

Eing.: 23. Juni 1997

McGRAW-HILL BOOK COMPANY

New York St. Louis San Francisco Auckland Begoté Hamburg London Modrid Mexico Milan Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo Toronto

EXHIBITA

silane

529

silica

TABLE 8). TRADITIONAL UNITS WITH SI EQUIVALENTS

Quantity	Unit	Equivalent	
length	angetrom	10 ⁻¹⁰ m	
-	Inch	0.0254 m	
	foot	0.3048 m	
	yard	0.9144 m	
	mile	1.609 34 km	
	nauticul mile	1.852 00 km	
8rea	squate inch	645.16 mm ²	
	square foot	0.092 903 m ³	
	square yard	0.836 127 m²	
	aquare mile	2.589 99 km²	
volume	cubic inch	1.638 71 × 10 ⁻⁵ m ³	
	cubic foot	0.028 316 9 m ³	
	U.S. gallon	0.003 785 412 m ³	
	U.K. gallon	0.004 546 090 m ³	
M855,	pound	0.453 592 37 kg	
density	pound/cuble inch	2.767 99 × 10 kg m-3	
,	pound/cubic foot	16.0185 kg m = 3	
force	dyne	10-5 N	
	poundal	0.138 255 N	
	pound-(orce	4.448 22 N	
	kilogramme-force	9.806 65 N	
pressure	atmosphere (standard)	101.325 kPa	
p	torr (1 mmHg at 0°C)	133.322 Pa	
	pound (1)/sq in. (psi)	6894.76 Pa	
MARKY	• • • •	10 ⁻⁷]	
energy	crg calorie (l.T.)		
	calorie (15°C)	4.1869]	
		4.1850 J	
	calorie (thermachemical)	4.184 J	
	Btu (1.T.)	1055.06 J	
	foot poundal	0.042 1401 J	
Muse	(oot pound (f)	1.355 62 J	
ower	horsepower	745.70 W	
emperature	degree Fahrenheit	("F - 32) + 273.15 K	

gas, b.1.8. chloro - SiH2CI = 66.6. Colorless gas, b. -30. chloromethyl ~ MeCISIH2 = 80.4. A volatile liquid, decomp, by water to silica; used to make textiles waterrepellent. di - SizH6 = 62.2. Silicoechane, a gas, m. - 132, b.-15. dibromo - * SiH₂Br₂ = 189.9. Coloriess liquid, d.2.17, b.66. dichtoro - * SiH₂Cl₂ = 101.0. Coloriess gas, b.8.3. dimethyl ~ Me2SiH2 = 60.2. Coloriess gas, b. -20. cther ~ (SIH₂)₂O = 78.2. Disilane oxide. Colorless gas. b.15. ethoxytriethyl - Et, SIOEt - 160.3. Tricthyleilane ethyl oxide, triethyl silicol ethyl ether. Colorless liquid. b.153, insoluble in water. hexafluorodi $\sim Si_2F_6 = 170.2$. A gas, m. -19. hydroxy $\sim Silicol$. methyl $\sim MeSiH_3 = 46.14$. Methylmonosilane. Colorless gas, b. -57. letra $\sim Si_4H_{10} = 46.14$. 122.4. Silicobutane. Liquid. m. - 88, b.107. tourabromo ~ Silicon bromide (1). tetrachloro ~ * Silicon chloride (1). tetraethyl ~ * Et, Si = 144,3. Sulcon tetraethyl, silicononane. Colorless liquid, d.0.7682, b.153. tetrafluoro ~ Silicon fluoride (1). tetraiodo - Silicon ladide (1). tetramethyl ~ * Me₄Si = 88.2. Silicon tetramethyl. Colorless liquid. d.0.645, b.27. tetraphenyl ~ * Ph₄Si = 336.5. Silicon totraphenyl, tetraphenyl silicon. Coloriess crystals, m. 233. Iri ~ SijH₈ = 92.3. Sillcopropane. A gas, m. -117. tribromo ~ * SiHBr₃ = 268.8. Sillcobromoform. Colorless liquid, d.2.7, b.109. trichloro ~ * Silicochloroform. trichlorethyl ~ * EtSiCl₁ = 163.5. Colorless liquid, d.1.239. trichlorophonyl ~ * PhSiCl3 = 211.6. Colorless liquid, d.1.326, b.197, decomp. in water. triethyl ~ * EtgSiH = 116.3. Triethyl allicon, allicoheptone. Colorless liquid, d.0.751, b.107, insoluble in water. trifluoro - SIHF3 - 86.1.

Silicofluoroform. Colorless gas, b. -80. utilodo - Siljh = 409.8. Silicolodoform. Red liquid, d.3.314, b.220.

s.diol A disubstituted chlorostlane of the type R₂Si(OH)₂. Silanediols condense to form chain or ring structures. s.diyl' Silylenet, allicylene. The radical —SiH₂—, from silane, s.triol A hydrolysis product of a monosubstituted chlorostlane of the type R·Si(OH)₃. Stlanetriols condense to form 3-dimensional polymeric resins. s.triyl' The radical RSi=; as, methyl silanetry.

silanes* Silican(e)s, silicohydrides, hydrosilicons. The branched or unbranched silicon hydrides. Compounds similar to hydrocarbons, in which tetravalent Si replaces the C storn; as, SiH4, silanc. S. are very reactive, ignite in air, and form derivatives. See silanc.

siland Silicol. The trivalent group =SIOH.
Silastic Trademark for a heat-stable silicone.

silavans Group name for colorless, high-melting-point, smong polymers, containing silicon, carbon, and a trogen, silbamin Silver fluoride.

silbamin Silver fluoride, Silberrad, Oswald John (1878-1980) British chemist, noted for his work on explosives.

Silesia explosive A high explosive: potassium chiorate 75, nitrated resin 25%.

silex A heat- and shock-registant class (98% quart). limit

silex A hoat- and shock-resistant glass (96% quarts). liquid — Water glass.

Sil-Foe Trademark for an alloy, m.625-705: Cu 80, Ag 15, P 3%; used for brazing alloys containing copper.

3%; used for brazing alloys containing copper.
silica SIO₂ = 60.1. Silicon dioxide*, silicic acid anhydride.
Occurs abundantly in nature (12% of all rocks), and exists in

TABLE 82. UNITS ALLOWED IN CONJUNCTION WITH SI SYSTEM

Quantity	Unit	Sympol	Definition	
angle	degree	•	(#/180) rad	
	minute	•	(#/10,800) rad	
	second	•	(#/648,000) rad	
arca	barn*	h	10 ⁻²⁸ m ²	
	are	"	10 ² m ²	
oncentration (amount of substance)	_	м	103 mol/m3 = mol/dm	
mergy	electronvoit	ëvi	1.602 1892 × 10 ⁻¹⁹ J	
•	erge	enz	1.002 1692 X [0 10]	
	kilowatihour	kWh		
orce	dyne*		3.6 M) 10 ⁻⁵ N	
luminance	phot*	dyń		
ength	angstrom*	ę h	10 ⁴ lx	
		A.J	10 ⁻¹⁰ m = 10 ⁻¹ nm	
•	astronomical unit	ΑŲ	149,597.9 × 10 ⁶ m	
	micron ^o	700	10 ⁻⁶ m	
andratic flow density.	parsec	рс	30.857 × 1015 m	
nagnetic flux density	gamma*	7	10 ⁻⁹ T	
1855	ton	t	10 ³ kg = Mg	
	unified atomic mass	u	$1.6605655\times10^{-27}\mathrm{kg}$	
ressure	bar	bar	105 Pa	
exposure	raentgen	R*	3 60 14 1074 6 6	
absorbed	rad	rd.	2.58 × 10 ⁻⁴ C/kg	
adioactivity	curle		0.01 Gy	
emperature	degree Celsius	Cir	3.7 × 1010 Bq	
me	minute delice Celsins	, .ċ	K	
		mid	60 s	
	hour	μ,	60 min = 3600 s	
	day	d	24 h = 86,400 s	
iscasity:	year	a	see year	
	.1 4	_		
dynamic	poise	P	10"' Pa s	
kinematic	stokes*	St	10 - 1 m ² /9	
olume	liter, litre	1, L	10 ⁻³ m ^{3'} = dm ³	

[&]quot;Indicates units to be abandoned as quickly as possible.

6 crystalline forms. Classification: (1) Phenocrystalline or vitreous minerals; see quartz, cristobalite, (2) Cryptocrystalline and smorphous minerals; see chalcedony. (3) Amorphous and colloidal minerals; see opal. amorphous ~ Colorless powder, m.1650, insoluble in water, soluble in hot alkalies or hydrofluoric scid: used for chemical glassware. colloidal ~ See colloidal silicon dioxide under silicon dioxide. crystalline ~ Colorless, cranspatent prisms, m.1760, insoluble in water, soluble in hydrofluoric scid. Used in optical instruments, kitchenware, and chemical plant. The main crystalline forms (quartz, tridymite, and cristobalite) have definite transition points (870 and 1470°C, respectively).

s. brick A firebrick commining over 92% s.; Its crystalline phase is cristobalite and tridymite. a gel Gelatinous s. which, if activated, absorbs water. Used to dry blast-furnace gases, air, and other gases; also in pharmacy (NF). a. minerals Rock-forming minerals comprising the groups: amphiboles, andalusite, cancrinite, sodalite, chlorite, foldspar, gamet, iolite, leucite, melilite, mica, nephelite, ollvine, pyroxene, scapolite, topaz, tourmaline, zeolite, zolette; also beryl, quartz, serpentine, talc. a. rock Hard, compact, quartzide sandstones and quartzite, used for refractories. sand A commercial source of silles produced from sand and weakly remented sandstone deposits (Carboniferous onwards). Used for foundry molding and glass manufacture. silicam Si(NH)2 = \$8.1. Silicon diimide. White powder, Insoluble in water. Forms silicon nitride, SlaNe, when heated. silicane See stlane, stlanes. silicate* Indicating silicon as the principal atom(s) in an

anion, as, a salt derived from silics or the silicit acids. Silicates form the largest group of minerals (see silica), and are derived from M₄SiO₄, orthosilicato*, and M₂SiO₃, metasilicate*, which may combine to form pdysilicates. Except for the alkali silicates, they are insoluble in water. See silica minerals. fibrous ~ natural f, s. Aspestos. mpn-made f. s. Glass, silica, and aluminosilicate fibers, rock wool, slag wool.

s. gardan See chemical garden. s. al soda Sodium silicate. silicaous Containing silica. s. algae See siliceous algo under alga. s. deposit S. ainter. The solid accumulation of silica deposited from hot mineral springs. Cf. geyserite. s. earth Silica of diacomite origin, purified by boiling with dilute acid, washing, and calcining; s filter medium and component of dusting powders (NF). s. sinter S. deposit. silicic (1) Containing silicon. (2) Containing silicic acid. s. acid See Table 83. H₄SIO₄ = 96.1. Orthosilicic acid. White powder, slightly soluble in water. di ~ H₄SI₂O₇. Pyro s. s. White, insolublo powder. meta ~ (H₂SiO₃) = (78.1) n. Hypothetical acid corresponding to long-chain anions.

TABLE 83. SLICIC ACIDS

H₄SIO₄ = SIO₂: 2H₂O, ortho~*
(H₂SIO₂)₆ = nSiO₂: nH₂O, meta~*
H₆Si₂O₇ = 2SiO₂: 3H₂O, di~*, pyro~
H₆SI₂O₁₀ = 3SIO₂: 4H₂O, mi~*
H₂nSI₆O₁₀ = cyclic ~

tri ~ " H₆Si₂O₁₀ = 250.3. White, insoluble powder, tetrahydrogen decawolframo ~ " SiO₂:10WO₃:2H₂O = 2415. Silico(deci)tungstic acid. White powder, a reagent for cesium (insoluble salts). silicide Compounds of the type M₇Si₂ as, Mg₂Si, CaSl₂, Fe₃Si. silicification The gradual replacement of rocks or fossils by silica. Cf. perifaction. silicided Describing an organic material, e.g., wood, that has been petrified.

silicium Silicon.

silico- Prefix indicating silicon, generally in organic compounds. s.benzoic acid PhSiOOH = 138.2, m.92, insoluble in water. s.bromoform SiHBr₃ = 268.8. Heavy, colorless liquid, d.2.7, b.116. decomp. by water. s.butane See silones. s.calcium A product of the electric furnace used to deoxidize steel. s.chloroform SiHCl₃ = 135.5. Colorless liquid, d.1.34, b.34, decomp. by water. s.dectrungstic acid Tetrahydrogen decawolfromosilicie acid. s.cthane See silones. s.fluoride Hexafluorosilicate*. s.fluoride acid Hexafluorosilic acid*. s.hsplane Triethyl silones*. s.hydrides Silones*. s.fodoform SiHl₃ = 409.8. Heavy, colorless liquid, d.3.4, b.226, decomp. by water. s.methane Silone*. s.oxalic acid HOOSi-SiOOH = 122.2. White, unstable solid.

silicol R₃SiOH. Hydroxysllanc. Iriethyl ~ Et₃SIOH = 132.3. Silicoheptyl alcohol. Colorless liquid, b.154, insoluble in water.

silicon° Si = 28.0855, Silicium. A nonmetallic element of the carbon group, at. no. 14. Allotropic modifications: (1) Amarphous: Brown powder, d.2.35. (2) Crystalline; Gray crystals, m.1412, b. ca. 2480, insoluble in water. (3) Graphitaidal: Dense crystals, or graphitelike masses deposited from molten s. (4) Adamantine: Hard needles. Principal valency 4. S. forms many complex compounds on the earth surface (rocks). Used in alloys to impart hardness, and in semiconductors. See silica minerals, ethyl ~ The radical —SiEt. Cr. silanes. methyl ~ The radical —SiMe. radio ~ A s. Isotope, mass 27. Cf. radioelements.

s. alkyls (1) Hydrogen compounds of s. corresponding with hydrocarbons; as, SiH4, allane. (2) Organic compounds of s. and alkyl radicals; as, Me,Sl. See silanes. s. alloys Noncorrodible alloys of s. with metals; as, Duriron, Cf. silicon copper. s. borldes SiB3, SiB4, and SiB6 exist. Black, irregular crystals, of high m.; very hard, and good conductors of clectricity. e. bromides (1) SiBr. = 347.7. S. tetrabromide*. Colorless, fuming liquid, b.154, decomp. by water to silicic acid. (2) Siz Br6 = 535.6. S. tribromide*. Colorless solid, b.240, decomp. by water, s. bronzo A noncorrodible alloy: Cu, Sn, with 1-4% Si. s. carbide. SiC = 40.10. Colorless plates, dissociates 2250; used in refractories and abrasives. a. chip A wafer of pure s. printed with alternate insulating and semiconducting layers, on which the pattern of an electric circuit is etched. Wafers fused together can contain thousands of circults. s. chloridos (1) SiCle = 169.9. S. tetrachloride. Colorless, furning liquid, d.1.524, b.58, decomp. by water to silicic acid. Used in electrotechnics, and mixed with ammonia vapors. in smoke screens. (2) $Si_2Cl_6 = 268.9$. S. trichloride, b.146, decomp. by water. (3) Si₃Cl₈ = 367.9. S. octachloride*. White powder. s. controlled rectifier SCR. Thyristor. A fastacting switching device made from 4 alternate layers of nand p-type silicon. a. copper An alloy: Si 20-30, Cu 70-80%, used in metallurgy. s. dioxide. Silics. colloidal Used in pharmacy as a suspending agent and stabilizer (NP). a. disulfide" SIS, = 92.2. White needles, sublime when heated, decomp, by water. e. ethene See silenes. e. othyl

Tetraethylsilane*, s. Suorides (1) SiF. - 104.1. S. Tetrafluoride* Colorless, suffocating gas, blaton decomp. by water to hazafluorosilicic acid, soluble in sicohol. (2) SI2F6 = 176.2. S. subfluoride, White powder. s. hydridos Silanes". s. lodides (1) Sil, = 535.7. S. tetraiodide Colorless solid, m.121, insoluble in water. (2) Sigla 🗢 817.6. S. sublodide. Colorless solid. m.250 (In vacuo), decomp. by water. s. Iron Ferrosilicon. Iron condaning 2-15% Si; used in metallurgy. s. magnesium See magnesium silicides. e. methone Silane". s. methyl Terramethylsilane". s. nitride SI3N4 = 140.3. White powder insoluble in water, existing in 2 hexagonal phases stable below and above 1400-1450 C. respectively. Very resistant to thermal shock and chemical reagents; used as a support for caralysts and in stator plades of high-temperature gas turbines. s. octachloride. See silicon chlorides. a. oxide Silica. a. oxychlorides SizDCla. b.137; Si₄O₄Cl₃, b.200; Si₄O₃Cl₁₀, b.153; also (SIOCl₂), O(SiCl₃)₃, where n = 1 to 4. e. ste 1 Steel containing 2-3% St; hard and brittle. s. sulfide S. disulfide". s. telrabramide. See allican bramides. s. tetrachloride. See silicon chlorides. a. latrafluoride. Sce silicon fluorides. a. letralodide* See silicon iodides. e. tetraphenyl Tetraphenylsilane. s. tungatic acid Silicotungstic acid. s. zirconium An alloy used to purify malten steel. silicone (1) Contraction of silicoketone. A polymer containing -Si(R2)O- groups. Lower molecular weight compounds are olls (used as lubricants and in polishes); higher are inert solids with good electrical insulation properties, (2) H₃Si₃O₂ = 119,3. Yellow solid. s. alloy A compound produced by the almultaneous polymerization of 2 silicones; e.g., tetravinyl s. and methyl hydrogen alloxane give a s. alloy of high water repellency. s. release paper Protoctive backing paper that is easily removed when required, as on self-adhesive labels. s. rubber A s. that retains its elastic properties between -50 and +291, and can be knesded; used for protective costings on wires and for high-temperature lubricants, siliconic acid R-SIOOH, analogous to organic acids. C. carbylic acid.

eilicono The radical (HO)OSi —, derived from metasilicie acid.

Silicool Trademark for a protein synthetic fiber. . silicoois A form of pneumoconiosis due to silica dust less than 10 µm in diameter. U.K. limit is 0.1 mg/m³ of respirable air.

silicotungstate A salt of afficotungate acid, especially with the alkaloids.

ailicolungstic ocid H₄[SiW₁₂O₄₀] = 2878. Tetrahydrogen dodecawolframosilicate*. Dodecawolframosilicic acid*. Yellow crystals, soluble in water; used in alkaloid analysis.

silicy] The ellyle radical. di — The dislianyle radical.
s. axide (R₃Sl)₂O; as hexasthyl ~ (Et₃Sl)₂O = 246.5.
Colorless liquid, b.231.
silicylene The silanediyle radical.

ailleylene The silanediyl' radical.

silk (1) Fibroin, sericin. The fibrous envelope of the silk-rorm
before the chrysalis state (cocoon). It constate of fibroin (the
fiber protein) and sericin (the gummy protein). (2) A sieve for
grading flour; no. 5 = 0.270, no. 8 = 0.190 mm aperture. (3)
A series of parallel fine-line inclusions in certain gems (e.g.,
rubles). Cf. osterism. "all-~" S. containing fillers, but no
other fibers. artificial ~ Rayon. ust ~ S. fabric made
from yarns of continuous s. filament. pure ~ S. fibers
without fillers. schappe ~, spun ~ Describing a fabric
made from silk-waste staple fiber. vegetable ~ (1) The floss
from the seeds of Colotropis gigantes (Asclepiadaceae), Asia.

(2) Kapok.

E = H/nf + T dE/dT

where E is the emf of the cell, H the heat equivalent of the chemical change for moiar quantities expressed in electrical units, F the Faraday constant, T the thermodynamic temperature at which the cell is working, and n the valency, or the number of charges carried by a mole of the substances undergoing change; dE/dT is the rate of change in emf with temperature of the cell. G., Oliver Wolcott (1822–1908) American chemist noted (or his work on complex compounds. G. paradox Work results when 2 gases of thermodynamically identical physical properties (e.g., N_2 and CO) are mixed, but not when 2 portions of the same gas are mixed. G. phase rule. See phose rule.

gibbsite Al(OH)₃. A native aluminum hydroxide, gibrol $C_{10}H_{21}O_6K = 384.5$. Potassium gibberellate; used to increase the microbial activity of the soll.

Giomsa, Guelav (1867–1948) German chemotherapist. G. elain A staining for white blood cells and bacteria: Azur II Eosin 0.3, Azur II 0.8, glycerol 250 g; and 250 mL methanol. G. ultrafilter A device for sterilizing and filtering small quantities of blological liquids through a collodion membrane. giga* G. SI prefix for a multiple of 10°.

gigantolite A pseudomorph of iolite.

Gilbert G., Sir Joseph Henry (1817-1801) British chemist, noted for agricultural research. G., Ludwig Wilhelm (1769-1824) German chemist, and editor of Annalen der Physik. G., Waller (1932-...) American chemist. Nobel prize winner (1980), Noted for work on chemical structure of DNA. G. William (1540-1603) British natural philosopher, physician to Queen Elizabeth I, and a ploneer in magnetism and electricity. gilbert An obsolete unit of magnetic quantity. I gilbort =

0.795775 A (the SI unit). pra ~ See progilberi.

Gilead balm Balm of Gilead, Mecca balsam, An oleoresin from Balsamodendron gileadense (Burseraceae). Cf. poplar buds.

Giles flask A volumetric flask with long neck, graduated at x and at (x + 10%x) of its volume; used to prepare normal solutions.

gill A liquid measure: 1 U.S. gill = 118.29 mL = 0.83267 U.K. gill.

ellenia Indian physic, American tpecae. The root bark of G.
tripolate or G. stipulacee (Rosaceae); an emetic and cathartic.
gilpinite Utanvitriot.

glisonite Uintaite. A black, brittle, lustrous hydrocarbon mineral.

gin An alcoholic beverage made by distillation of a fermented extract of grain in the presence of juniper leaves. artificial — Fancy g, to which flavoring essences have been added. fancy — A mixture of g, and neutral alcohol.

gingelly Sesame.
ginger Zingiber. The dried thizome of Zingiber officinalis

(Schaminaceae), Asia, W. Indies, Africa; an aromado. flavoring, and carminative (BP). fametos ~ The yellow room, with the skin removed. wild ~ Asarum. g. oil The essential oil of g., d.0.882-0.900, b.155-300.

containing phellandrone and zingibereno. gingerin An olecresin from ginger. gingerol An essential oil from ginger. ginkgetin C₃₂H₂₂O₁₀ = 566.5. A yellow biflavonyl pigment from the leaves of Ginkgo bilobo, maldenheir tree, m.343. ginkgolic acid C₁₃H₃₄O₃ = 346.5. (Z)-2-Hydroxy-5(8-; pentadecenyl)benzoic acid. An unsaturated acid from the fruit of Ginkgo bilobo.

ginning The removal of the larger seed hairs from the cotton plant. Cf. linter(s).

ginseng Panax. The dried roots of Panax quinquefalium (Aralla); a reputed tonic that may cause hypertension. gismondine Clemendite.

gismondite CaA1₂Si₄O₁₂. Gismondine, abrazite. A gray, hydrated, monoclinic zeolite, d.2.4, hardness 5–5.5, gitalin C₂₆H₄₉O₁₀ = S44.7. A glucoside, m.253, from digitalis.

githagenin C₂₁H₄,O₄ = 444.4. The aglycone of githagin, githagin A saponin from corn cockel. Agrastemma githago: hydrolyzes to githagenin and glucuronic acid.

hydrolyzes to githagenin and glucuronic acid.
gitogenic (1) Having a digitalislike effect. (2) The structure of
digitalis aglucones.

sitoxigenin C₁₃H₃₄O₅ = 390,5, 3,14,16-Trihydroxy-20(22)-cardenolide, m.222. A split product of gitoxin, gitoxin. A glucoside from the leaves of digitalis; it hydrdlyzes

to 1 mole gitoxigenin and 3 moles digitoxose.
glacial Describing a compound of icelike, crystalline
appearance, especially the solid form of a liquid compound:

as, glacial acetic acid. gladiolic acid C₁₁H₁₀O₃ = 222.2. 2.3-Diformyl-6-methoxy-8-methylbenzoic acid*. From Penicillium gladioli. Silky needles, m.160; an antibiotic. With ammonia it gives a deep green color, changing after 12 hours to red and then orange, glair Prepared white of egg used for tempera painting, glance. General term for minerals with a glassy luster, e.g.,

lead glance.
gland An organ or group of cells that secretes specific
substances, e.g., enzymes, sweat, mucua.

Glanzstoff Trademark for a riscose synchetic fiber. Cf. Jayon.
Glasor furnace A combustion furnace used for organic elemonory analysis.

Blaserite Na₂SÓ_{4.}3K₂SO₄. Aphthitalite, arcanite. A colorless, vitreous sulfate, d.2.6, hardness 3–3.5 (Stassfurt).

glass An amorphous, hard, brittle, often transparent material; a fused mixture of the silicates of the sikali and alkaline earth or heavy metals. See Table 39. Composition: between (K,Na)₂O, (Ca,Pb)O, 6SiO₂ and 5(K,Na)₂O, 7(Ca,Pb)O, 36SiO₂.

TABLE 39. TYPICAL GLASS COMPOSITIONS, %

Composition	Soda, window	Plint	Bottle	Borostilcate	Lead	Aluminosilicate	Silica
(A) 510 ₂ A1 ₂ O ₃ B ₂ O ₃ (B) Na ₂ O K ₂ O (C) C ₃ O PbO M ₆ O	71.5 1.5 14.0 13.0	54 ————————————————————————————————————	74 0.5 17 5 3.5	80.5 2.4 12.9 3.8 0.4	7.0	58.7 22.4 3.0 } 1.4 6.0 8.5	96.3 0.4 2.9) 0.4

carbodimide* Hypothedcal compound, NH: C:NH. Carbofrax Trademark for certain silicon carbide refractories bonded by other ceramics. carbofuran" See fungicides, Table 37 on p. 250, and

insecticides, Table 45 on p. 305. carbohydrates. Organic compounds synthesized by plants. They often fit the general formula C.(H2O), Monosaccharide (q.v.): x and y are 2, 3, 4, 5, 6, or 7; e.g., glucose. Disaccharides: x is 12, y is 11; e.g., lactose. Trisaccharides: x is 18, y is 16; e.g., raffinose. Polysaccharides: x and y exceed 18; e.g., dextrin, cellulase. Natural c. are generally dextrorotatory. except fructose and inositel. Conjugated saccharides; (1) gums and mucilage group (saccharides and acids); (2) glucosides. q.v. (saccharides and another compound); (3) tannins, q.v. (sacchardes and tannins). c. catabolism Achieved in animals by glycolysis, q.v., followed by an acetyl coenzyme A Intermediate and the citric acid cycle, q.v. carbohydrazide Carbonohydrazide*.

carbohydrazonee Carbonohydrazides. carbohydride Hydrocarbon. carboids Kerotenes.

carbolate Phenolates.

carbolfuchsin Ziehl's stain, Ziehl-Neelson, Stain for tubercle and similar bacilli, that is not removed by acid, Fuchaln S, phenol 25, alcohol 50, water 500 pts. c. topical solution Castellani's paint, magenta solution. Used to treat skin infections (USP, BP).

carbolic a acid Phenol*. a liquid Cresylic acid. a oil The phenolic fraction of coal tar, b.180-230.

carbolmethyl violet A microscope stain: 10 pts. alcoholic methyl violet 68, 90 pts. of 5% aqueous phenol solution. Carbolon Trademark for silicon carbide.

Carboloy Trademark for cemented tungsten carbide; used for high-speed machine tools and second in hardness to diamond.

carbolxylene A clearing solution: 3 pts, xylene, 1 pt. phenol, corbamor A polymer of acrylic acid. Fluffy, hygroscopic powder, characteristic odor, soluble in water. A pharmaceutical gel (NF, BP).

carbometer. A device to measure carbon dioxide in air, carbomethene Ketene*.

carbomethoxy The methoxycarbonyl' radical.

carbon* C = 12.011. At. no. 6. A nonmetallic bioelement; 3 allotropes: amorphous (coal), graphite, and crystalline (diamond). m.3650 (sublimes). It occurs native as coal, graphite, and diamond; in combination with hydrogen as neuraleum, with oxygen as c, dioxide. The isotope 14C (halflife period, 5,730 years) is produced by treditation of tellurium nitride, and is continuously in the atmosphere from the Interaction of costnic rays and nitrogen. See radiocorban deting. Also used to label organic compounds for use as tracers; as in medicine. 12C, the natural, dominant isompe of c., is the basis of the scale of atomic weights of the elements; Le., 12C = 12. Cf. isotopes, C, is an element essential to vegetable and animal life. Its principal valency is 4. but some divalent c. compounds (carbenes) have been prepared. Its atoms have a greater affinity for one another than for other atoms, and give rise to numerous different (organic compounds. The binary compounds are carbides, M_xC_y hydrocarbons, C.H.; carbonyls, CO. amorphous minute graphitelike crystallites. asymmetric ~ See . stereoisomerism. fixed ~ The char remaining after removal of the volatile matter, q.v., from a fuel. graphitte - The loss on ignition of graphite below its fusion point in air. Itquid See liquid carbon under liquid. synthetic - See synthetic graphic under graphic. total organic - T.O.C. Measure of effluent strength involving oxidation of the organic b. to CO₃, whellerized ~ C. containing 8-12% Cu, to increase its absorbency. Cf. activated c., gas c., charcoal, graphite, diamond. lampblack.

c. apparatus. An instrument to determine total c. in fuels. c. atom asymmetric 🖚 See asymmetric C. c. bisulfide C. disulfide". a black Lampblack. a bond The nonpolar electron linkage between 2 c. atoms. c. bronze Art alloy for bearings, c, chains A succession of linked c. atoms in a compound, closed ~ Aromade compounds, open ~ Allpharic compounds. c. compounds See organic compounds. Cheracteristics: (1) nonpolarity: they do not ionize; their reactions are molecular and have a low velocity; (2) polymerism; (3) isomerism and asymmetry; (4) combustibility: all c. atoms are oxidized to c. dioxide and other products. c. cycle The circulation of c. between a living organism and the surrounding environments is shown in Pig. 6. a dating See radiocarbon during. c. dichloride. C2Cl4 = 165.8. Ethylene

Fig. 6. The carbon cycle: (1) bacterial action, (2) phorosynthesis. (3) metabolism, (6) decay.