

Tartalom

- > Programtranszformációk
- > Hatékony algoritmikus technikák
 - Segédösszegek számítása
 - Ablakozás (2-féleképpen)
 - Változásfigyelés
 - > Intervallum-manipulációk (3-féleképpen)
- > Rekurzió
 - > Rekurzió és iteráció
 - Programozási tételek rekurzívan

Programtranszformáció: Az algoritmus ekvivalens átalakítása, melynek célja

- hatékonyabbra írás
- egyszerűsítés
- megvalósíthatóság

Egyszerűsítés, hatékonyabbra írás:

Az origótól legmesszebb levő p_{Max} pont (p_{1..N}∈Pont^N, Pont=X×Y)

A négyzetgyök monoton függvény, emiatt a maximum meghatározásához nem szükséges.

Egyszerűsítés, hatékonyabbra írás:

Az origótól legmesszebb levő p_{Max} pont (p_{1..N}∈Pont^N, Pont=X×Y)

		v amozo
Max:=1; $\max \text{Ért:=p[1].x}^2 + p[1].y^2$		i: Egész maxÉrt: Valós
i=2N		
$p[i].x^2+p[i].y^2>maxÉrt$		
Max:=i		
$\max \text{\'Ert:=p[i].x}^2 + p[i].y^2$		

Itt még ugyanazt a képletet többször számítjuk ki (a ciklusban).

i:Egész

maxÉrt,

táv:Valós

Többszörös kiszámítás elkerülése:

Az origótól legmesszebb levő p_{Max} pont (p_{1..N}∈Pont^N, Pont=X×Y)

Változó Max:=1; $\max \text{ \'Ert:=p[1].x^2+p[1].y^2}$ i=2..N $t\acute{a}v:=p[i].x^2+p[i].y^2$ táv>maxÉrt Max = imaxÉrt:=táv

Párhuzamos értékadás kifejtése:

$$a,b,c:=f(x),g(x),h(x)$$

Egymás utáni kiszámításra bontható, ha az összefüggés körmentes:

$$a := f(x); b := g(x); c := h(x)$$

Párhuzamos értékadás kifejtése:

segédváltozóval egymás utáni kiszámításra bontható, ha az összefüggés kört tartalmaz:

segéd:=a; a:=b; b:=c; c:=segéd

segéd:TH

Változó

Ciklusok összevonása:

Azonos lépésszámú ciklusok összevonhatóak, ha függetlenek

egymástól.

S:=	S:=0	
	i=1N	
	S:=S+X[i]	
P::	=1	
	i=1N	
	P:=P*X[i]	

Elágazások összevonása:

Azonos feltételű elágazások összevonhatóak, ha függetlenek egymástól.

a>	a>b	
Max:=a	Max:=b	
a>b		
Min:=b	Min:=a	

a>	>b	N
Max:=a	Max:=b	
Min:=b	Min:=a	

Függetlenek, ha az 1. feltétel egyik ágán sem változik meg sem az ,a', sem a ,b' változó (kifejezés). Gondolja meg: mikor nem független a két elágazás, ha ,feltétel(a,b)' függvény a közös feltétel?

Elágazások összevonása:

Kizáró feltételű, teljes (egyágú) elágazások is összevonhatók, ha függetlenek egymástól.

a>	> b	/N
Max:=a	Max:=b	

Ciklusok és elágazások összevonása:

Azonos lépésszámú ciklusok, bennük kizáró feltételű elágazásokkal is összevonhatók, ha függetlenek egymástól.

	V	/ált
max:=1; min:=1		i:E
i=21	N	
X[max] < X[i]	X[min]>X[i]	
max:=i	min:=i	

	ma	x:=1	
		i=2]	N
⁷ álte		X = X	$x \le X[i] /_{N}$
i:E		max:=i	
	min:=1		
		i=2]	N
		X[min]>X[i]
		min:=i	

Függvény behelyettesítése:

Függvényhívás helyére egy (egyszerű) függvény képlete (a függvény törzse) behelyettesíthető. (C++ fordítók ilyen optimalizálást el tudnak végezni.)

Utasítás kiemelése ciklusból:

A ciklus magjából a ciklustól független utasítások kiemelhetők. (C++ fordítók ilyen optimalizálást el tudnak végezni.)

"Keresés, eldöntés → kiválasztás" transzformáció:

A vizsgálandó sorozat végére helyezzünk egy T tulajdonságú elemet (=Telem) → biztosan találunk ilyet!

Egy földműves egy téglalap alakú területet szeretne vásárolni egy **N×M**-es téglalap alakú földterületen. Tudja minden megvásárolható földdarabról, hogy azt megművelve mennyi lenne a haszna vagy a vesztesége.

Adjuk meg azt a téglalapot, amelyen a legnagyobb haszon érhető el!

- ➤ Bemenet: $N,M \in \mathbb{N}, T_{1..N,1..M} \in \mathbb{Z}^{N \times M}$
- \triangleright Kimenet: $P,Q,R,S \in \mathbb{N}$
- ➤ Előfeltétel: –

Definíció: érték:
$$\mathbb{N}^4 \to \mathbb{Z}$$

érték(a,b,c,d) = $\sum_{s=a}^{c} \sum_{o=b}^{d} T_{s,o}$

Most ciklust kellene írni i-re, j-re, k-ra, l-re, s-re és o-ra, azaz 6 ciklus lenne egymás belsejében. **Ez sok!**

> Az érték függvény újradefiniálása:

Próbáljunk valami részcélt kitűzni: számoljuk ki az (1,1) bal felső, (u,v) jobb alsó sarkú téglalapok értékét!

X= szürke téglalap értéke + piros téglalap összege

 $E[u,v] \leftarrow X$

> Az érték függvény újradefiniálása (folytatás):

Tehát E kiszámításához 2, egymásba ágyazott ciklus kell.

> Az érték függvény újradefiniálása (folytatás):

Definiáljuk E[u,v] segítségével az érték(E,i,j,u,v)-t!

A módszer neve: kumulatív összegzés.

Az érték függvény kiszámításához nem kell ciklus → konstans idejű. Hozzá egyszer kellett az E kiszámítása.

Bemenet: $N,M \in \mathbb{N}, T_{1..N,1..M} \in \mathbb{Z}^{N \times M}$

Kimenet: P,Q,R,S∈N

Előfeltétel: –

Utófeltétel:1≤P≤R≤N és 1≤Q≤S≤M és

 $\forall i,j,k,l \ (1 \leq i \leq k \leq N, 1 \leq j \leq l \leq M) \colon \acute{e}rt\acute{e}k(P,Q,R,S) \geq \acute{e}rt\acute{e}k(i,j,k,l)$

Segédösszegek

A maximális összegű téglalap kiválasztása:

E_mátrix(E,N,M) maxÉrt:=-∞ i=1..Ni=1..Mk=i..N l=i..Mérték(E,i,j,k,l)>maxÉrt P,Q,R,S:=i,j,k,lmaxÉrt:=érték(E,i,j,k,l)

Változó i,j,k,l, maxÉrt:**Egész** E:Tömb[...]

A ciklusban számított érték konstans idővel határozható meg!

Összegzés + maximum-kiválasztása

Feladat:

Adott egy N elemű X számsorozat, adjuk meg azt a pontosan K hosszú részintervallumát, amelyben az értékek összege maximális (kezdő szám: Max-adik, összeg: MaxÉrt)!

Alapmegoldás:

Összegzés: X[i]+...+X[i+K-1]

Összegzés + maximum-kiválasztás + ablakozás

i:Egész

s:**Egész**

Feladat:

Adott egy N elemű X számsorozat, adjuk meg azt a pontosan K hosszú részintervallumát, amelyben az értékek összege maximális (kezdő szám: Max-adik, összeg: MaxÉrt)!

Optimális megoldás:

Egy K hosszú intervallum összege az előző intervallum összegéből egy elem levonásával és egy elem hozzáadásával számolható.

Maximum-kiválasztás + keresés

Feladat:

Egy országban az elmúlt N (\geq 1) napon M (\geq 1) földrengés volt, ismerjük az egyes földrengések $F_{1..M}$ napsorszámát, időpont szerint növekvő sorrendben. Az is lehet, hogy egy napon több földrengés volt, ekkor a napsorszám ismétlődik. Meg kell adni annak a K napos időszaknak az első napját (Max), amelyen belül a lehető legtöbb (MaxÉrt) földrengés

volt!

Alapmegoldás:

Kiválasztás: j? : F[j]-F[i]<K és F[j+1]-F[i]≥K

Maximum-kiválasztás + keresés + ablakozás

Feladat:

Egy országban az elmúlt N (\geq 1) napon M (\geq 1) földrengés volt, ismerjük az egyes földrengések $F_{1..M}$ napsorszámát, időpont szerint növekvő sorrendben. Az is lehet, hogy egy napon több földrengés volt, ekkor a napsorszám ismétlődik. Meg kell adni annak a K napos időszaknak az első napját (Max), amelyen belül a lehető legtöbb (MaxÉrt) földrengés volt!

Optimális megoldás (vázlat):

Ha van már egy K napos [Kezdet,Vég] intervallumunk, akkor a Kezdet növelésekor az intervallum vége (Vég) folyamatosan növelhető.

Az_első_időszak_megkeresése

Ablakos_maximum_kiválasztás

Maximum-kiválasztás + keresés + ablakozás

Optimális megoldás:

F[M+1]:=N+K; kezdet:=1; vég:=1 vég≤M és F[vég+1]–F[kezdet]<K vég:=vég+1 Max:=F[kezdet]; MaxÉrt:=vég-kezdet+1 kezdet=2..M-1[vég:=vég] vég≤M és F[vég+1]–F[kezdet]<K vég:=vég+1 vég-kezdet+1>MaxÉrt Max:=F[kezdet]; MaxÉrt:=vég-kezdet+1

Változó kezdet, vég:Egész

Maximum-kiválasztás + megszámlálás

Feladat: Adott N intervallum, kezdő- és végpontjaik (Kezdet, Vég) 1 és M közötti számok. (N,M≥1) Adjunk meg egy értéket (Max), amely a legtöbb intervallumban benne van!

Alapmegoldás:

Megszámolás: az i hány intervallumba esik?

Maximum-kiválasztás + megszámlálás + változásfigyelés

Optimális megoldás:

Legyen a darab[i] jelentése, az i érték mennyivel több intervallumban szerepel, mint az i–1. Változó

dara	b[1M+1]:=0	<u> </u>
	i=1N	
darab[Kezdet[i]]:=darab[Kezdet[i]]+1		
darab[Vég[i]+1]:=darab[Vég[i]+1]-1		
db:=darab[1]; Max:=1; maxÉrt:=db		
i=2M		
db:=db+darab[i]		
db>maxÉrt		
	Max:=i; maxÉrt:=db —	

i.db.

maxÉrt:**Egész** darab:Tömb[...]

Keresés

Feladat:

Adott egy növekvő N (≥2) elemű X számsorozat. Jelöljük ki két elemét (A, B), amelyek összege pontosan Z!

Alapmegoldás:

	<u>Változó</u>
i:=1; j:=2	i,j:Egész
i <n td="" x[i]+x[j]≠z<="" és=""><td></td></n>	
j <n< td=""><td>N</td></n<>	N
j:=j+1 i:=i+1; j:=i+1	
Van:=i <n< td=""><td></td></n<>	
van Van	N
A:=i; B:=j —	

Keresés + intervallumszűkítés

Feladat:

Adott egy növekvő N (\geq 2) elemű X számsorozat. Jelöljük ki két elemét (A, B), amelyek összege pontosan Z!

Optimális megoldás:

Ha az első és utolsó elem összege kisebb Z-nél, akkor az első biztosan nem megoldás. Ha nagyobb, akkor az utolsó biztosan nem megoldás.

A:=1;	B:=N		
	A <b td="" x[a]<="" és=""><td>]+X[B]≠Z</td>]+X[B]≠Z	
I	X[A]+	-X[B] < Z	
A	A:=A+1	B:=B-1	
Van:=	Van:=A <b< td=""></b<>		

Maximum-kiválasztás + keresés

Feladat:

Adott egy N elemű X sorozat, amely 1 és M közötti értékeket tartalmaz.

Adjuk meg azt az A értéket, amely két előfordulása a lehető legkö-

zelebb van egymáshoz ha van egyáltalán ismétlődő érték (Van)! (N≥2,M≥1)

Alapmegoldás:

Keresés: X[i] következő ismétlődése

Maximum-kiválasztás + keresés + intervallumkezdet megőrzése

Feladat:

Adott egy N elemű X sorozat, amely 1 és M közötti értékeket tartalmaz. Adjuk meg azt az A értéket, amely két előfordulása a lehető legközelebb van egymáshoz, ha van egyáltalán ismétlődő érték (Van)! (N≥2,M≥1)

Optimális megoldás:

Minden értékhez tároljuk az utolsó előfordulása helyét!

	Változó
minTáv:=N; ut[1M]:=-N	i,minTáv, min: Egész
i=1N	ut:Tömb[]
i—ut[X[i]] <mintáv< td=""><td></td></mintáv<>	
minTáv:=i-ut[X[i]]; min:=ut[X[i]] -	
ut[X[i]]:=i	
Van:=minTáv <n< td=""><td></td></n<>	
Van /N	
A:=X[min] —	

Rendezés

Feladat:

Egy rendezvényen N vendég vesz részt. Érkezési sorrendben ismerjük mindegyik érkezési (Érk) és távozási (Táv) idejét, mindkettő 1 és M közötti egész szám. Sem érkezni, sem távozni nem akart két vendég egyszerre. Adjuk meg a vendégeket távozási idő szerinti sorrendben!

Alapmegoldás:

Kiválogatás +

intervallumkezdet megőrzése, párok indexelése

Változó

i,j,db:**Egész** kezd:Tömb[...]

Optimális megoldás:

Egy intervallum végekkel indexelt tömbbe tegyük bele az intervallum kezdeteket!

kezd	[1M]:=0	
	i=1N	
	kezd[Táv[i]]:=Érk[i]	
db:=	0	
	i=1M	
	kezd[i]	>()
	db:=db+1	
	Érk[db]:=kezd[i]; Táv[db]:=i	_

Rekurzió

Klasszikus példák:

> Faktoriális

$$n! = \begin{cases} n * (n-1)! & ha \ n > 0 \\ 1 & ha \ n = 0 \end{cases}$$

> Fibonacci-számok

$$Fib(n) = \begin{cases} 0 & ha \ n = 0 \\ 1 & ha \ n = 1 \\ Fib(n-1) + Fib(n-2) & ha \ n > 1 \end{cases}$$

A rekurzió lényege: önhivatkozás

Rekurzív specifikáció és algoritmus

Faktoriális:

$$n! = \begin{cases} n * (n-1)! & ha \ n > 0 \\ 1 & ha \ n = 0 \end{cases}$$

Itt egy 2-alternatívájú függvényt kell algoritmizálni, ami egy "2-irányú" elágazással történik.

Rekurzív specifikáció és algoritmus

Fibonacci-számok:

$$Fib(n) = \begin{cases} 0 & ha \ n = 0 \\ 1 & ha \ n = 1 \\ Fib(n-1) + Fib(n-2) & ha \ n > 1 \end{cases}$$

Háromirányú elágazás a megoldás.

Rekurzív specifikáció és algoritmus

Fibonacci-számok:

$$Fib(n) = \begin{cases} 0 & ha \ n = 0 \\ 1 & ha \ n = 1 \\ Fib(n-1) + Fib(n-2) & ha \ n > 1 \end{cases}$$

Kétirányú elágazássá alakított megoldás.

Problémák a rekurzióval

Hely: nagyra dagadt veremméret.

Idő: a vermelés adminisztrációs többletterhe, a többszörösen ismétlődő hívások.

Példa: Fibonacci-számok esetén

r(i):=az i. Fibonacci-szám kiszámításához szükséges hívások száma

$$r(0):=1, r(1):=1, r(i):=r(i-1)+r(i-2)+1 (i>1)$$

Állítás:

a)
$$r(i)=F(i+1)+F(i)+F(i-1)-1$$
 (i>1),

b)
$$r(i)=2*F(i+1)-1$$
,

ahol F(i)=az i. Fibonacci-szám.

c) $r(i) = \Theta(c^i)$, azaz exponenciális műveletigényű.

$$Fib(n) = \begin{cases} 0 & ha \ n = 0 \\ 1 & ha \ n = 1 \\ Fib(n-1) + Fib(n-2) & ha \ n > 1 \end{cases}$$

Korlátos memóriájú függvények:

Ha egy rekurzív függvény minden értéke valamely korábban kiszámolható értékből számolható, akkor némi memória felhasználással elkészíthető a rekurziómentes változat, amelyben az egyes függvényértékeknek megfeleltetünk egy F[0..N] vektort.

A függvény általános formája:

$$f(n) = \begin{cases} g\big(f(n-1), f(n-2), \dots, f(n-K)\big) & \text{ha} \quad n \geq K \\ h(n) & \text{ha} \quad 0 \leq n < K \end{cases}$$

Korlátos memóriájú függvények:

Rekurzív változat:

$$f(n) = \begin{cases} g\big(f(n-1), f(n-2), \dots, f(n-K)\big) & \text{ha} & n \geq K \\ h(n) & \text{ha} & 0 \leq n < K \end{cases}$$

Korlátos memóriájú függvények:

Iteratív (ciklusos) változat:

$$f(n) = \begin{cases} g\big(f(n-1), f(n-2), \dots, f(n-K)\big) & \text{ha} & n \geq K \\ h(n) & \text{ha} & 0 \leq n < K \end{cases}$$

Ez így természetesen nem hatékony tárolás, hiszen a rekurzív formulából látszik, hogy minden értékhez csak az őt megelőző K értékre van szükség.

A hatékony megoldásban az alábbi értékadást kell átalakítani:

$$F[i] := g(F[i-1], ..., F[i-K])$$

Lehet pl. így, ha a g() függvény kiszámítása nem függ a para-

méterek sorrendjétől:

$$F[i \mod K] := g(F[0], ..., F[K-1]).$$

Ekkor elegendő: F[0..K-1] tömb.

Az eredmény az F[n mod K]-ban képződik.

Példa: Fibonacci-számok_{iteratív}

$$Fib(n) = \begin{cases} 0 & ha \ n=0 \\ 1 & ha \ n=1 \\ Fib(n-1) + Fib(n-2) & ha \ n>1 \end{cases}$$

Alapmegoldás:

Változó i:Egész F:Tömb[0..n:Egész]

Példa: Fibonacci-számok_{iteratív}

Helytakarékos megoldás (K=2):

$$Fib(n) = \begin{cases} 0 & ha \ n = 0 \\ 1 & ha \ n = 1 \\ Fib(n-1) + Fib(n-2) & ha \ n > 1 \end{cases}$$

Változó i:Egész F:Tömb[0..1:Egész]

Rekurzió memorizálással

Többszörös hívás elkerülése:

Amit már kiszámoltunk egyszer, azt ne számoljuk újra! Tároljuk a már kiszámolt értékeket, és ha újra szükségünk van rájuk, használjuk fel őket!

Példa: Fibonacci-számok esetén

A megoldásban **F**[i]≥0 jelentse, ha már kiszámoltuk az i-edik

Fibonacci-számot.

i=0..N i:Egész F:Tömk F[i]:=-1 F[N]:=Fib(N)

F:Tömb[0..N:Egész]

Változó

Rekurzió memorizálással

Algoritmus (folytatás):

Közvetett rekurzió

53/68

Feladat:

Döntsük el egy számról, hogy páros-e, ha nincs maradék-számítás műveletünk!

Megoldás:

2021.11.21. 0:43

Horváth-Papné-Szlávi-Zsakó: Programozás 10. előadás

Közvetlen rekurzió

Feladat:

Döntsük el egy számról, hogy páros-e, ha nincs maradékszámítás műveletünk!

A két – közvetetten – rekurzív eljárás most összevonható:

Megoldás:

Mivel párost nem páros, és nem párost páros előz meg.

Feladat:

Számítsuk ki, hogy hányféleképpen lehet egy 1×n egység méretű járdát kikövezni 1×1, 1×2 és 1×3 méretű lapokkal!

Az első helyre tehetünk:

- $>1\times1$ -es lapot:
- >1×2-es lapot:
- >1×3-as lapot:

l		
1		
l		

Az első esetben n–1, a másodikban n–2-t, a harmadikban pedig n–3 cellát kell még lefednünk. Azaz az n cella lefedéseinek száma:

Lefed(n)=Lefed(n-1)+Lefed(n-2)+Lefed(n-3), ha $n \ge 2$.

Megoldás:

	Lefed(n)			
n=0	\ n=1	\ n=	=2	
Lefed:=1	Lefed:=1	Lefe	d:=2	Lefed:=Lefed(n-1)
				+Lefed(n-2)
				+Lefed(n-3)

Sokszoros hívás kiküszöbölése:

- vagy memorizálással,
- vagy iteratív (ciklusos) implementálással!

Feladat:

Számítsuk ki, hogy hányféleképpen lehet egy 2×n egység méretű járdát kikövezni 1×2 és 1×3 méretű lapokkal!

Megoldás:

Az első oszlop egyféleképpen fedhető le:

A-típusú helyzet

Az első két oszlop további elrendezéssel újra

egyféleképpen fedhető le:

A-típusú helyzet

Az első három oszlop ... újra egyféleképpen:

A-típusú helyzet

Sajnos ez is előfordulhat:

B-típusú helyzetek

A B-típusú helyzetű járda háromféleképpen folytatható:

➤ Ha fölülre "kettes"-t teszünk:

B-típusú új helyzet

> Ha fölülre "hármast" és alulra "kettes"-t teszünk:

A-típusú új helyzet

➤ Ha fölülre "hármast" és alulra "hármas"-t teszünk:

B-típusú új helyzet

Jelölje A(n) a megoldás értékét 2×n egység méretű járda esetén! Jelölje B(n) a megoldás értékét 2×n egység méretű járda esetén, ha az egyik baloldali sarok nincs lefedve!

$$A(n) = \begin{cases} & 1 & \text{ha} & n = 1 \\ & 2 & \text{ha} & n = 2 \\ & 4 & \text{ha} & n = 3 \\ A(n-1) + A(n-2) + A(n-3) + 2 * B(n-2) & \text{ha} & n > 3 \end{cases}$$

$$B(n) = \begin{cases} 0 & \text{ha } n = 1\\ 0 & \text{ha } n = 2\\ 1 & \text{ha } n = 3\\ B(n-1) + A(n-3) + B(n-3) & \text{ha } n > 3 \end{cases}$$

Közvetett rekurzió

ha	n = 2
ha	n-3

			A(n)
_			
n=1	n=2	n=3	
A:=1	A:=2	A:=4	A:=A(n-1)+A(n-2)+A(n-3)+
			2*B(n-2)

$$B(n) = \begin{cases} 0 & \text{ha } n = 1 \\ 0 & \text{ha } n = 2 \\ 1 & \text{ha } n = 3 \\ B(n-1) + A(n-3) + B(n-3) & \text{ha } n > 3 \end{cases}$$

A(n) =

Rekurzív eljárás

A rekurzív eljárások nem mindig alakíthatók át egyszerűen táblázatkitöltéssé, az alábbi feladat nemrekurzív megoldása sokkal nehezebb lehet.

Hanoi tornyai:

Adott 3 rudacska. Az elsőn egyre csökkenő sugarú korongok vannak. Az a feladat, hogy tegyük át a harmadik rudacskára a korongokat egyenként úgy, hogy az átpakolás közben és természetesen a végén is minden egyes korongon csak nála kisebb lehet. Az átpakoláshoz lehet segítségül felhasználni a középső rudacskát.

Rekurzív eljárás

Hanoi tornyai:

- >,,N-1 darabot 1-ről 2-re"
- >,,Legalsót (N=1) 1-ről 3-ra"
- >,,N−1 darabot 2-ről 3-ra"

Hanoi(n,ról,át,ra) n>1 Hanoi(n-1,ról,ra,át) Ki: n,ról,ra Hanoi(n-1,át,ról,ra) Ki: n,ról,ra

Sorozatszámítás (összegzés):

A sorozatszámítás tétel egy egyszerű rekurziót tartalmazott, ahol minden kiszámolt érték az előző egyetlen értéktől függött:

$$F(X_{1..n}) := \begin{cases} F_0 & , n = 0 \\ f(F(X_{1..n-1}), X_n), n > 0 \end{cases}$$

$$F(X_{1..n}) \coloneqq \begin{cases} F_0, & n = 0 \\ f(F(X_{n-1}), X_n), n > 0 \end{cases}$$

Sorozatszámítás (összegzés):

A sorozatszámítás tétel egy egyszerű rekurziót tartalmazott, ahol minden kiszámolt érték az előző egyetlen értéktől függött:

$$F(\mathbf{X}, \mathbf{n}) \coloneqq \begin{cases} F_0 &, \mathbf{n} = 0 \\ f(F(\mathbf{X}, \mathbf{n} - 1), X_n), \mathbf{n} > 0 \end{cases}$$

Maximum-kiválasztás:

A maximum-kiválasztás tétel rekurzívan ugyanezen az elven fogalmazható meg:

$$\operatorname{Maximum}(X, n) \coloneqq \begin{cases} X_1 & , n = 1 \\ \max(\operatorname{Maximum}(X, n - 1), X_n), n > 1 \end{cases}$$

n=1	n>1	
Maximum:=X[1]	Maximum:=	
	max(Maximum(X,n-1),X[n])	

Keresés:

A keresés tétel is ugyanezen az elven fogalmazható meg rekurzívan, de már háromirányú elágazással:

$$\text{Keres\'es}(X,n) \coloneqq \begin{cases} (\text{hamis},-) &, n=0 \\ (\text{igaz},n) &, T(X_n) \\ \text{Keres\'es}(X,n-1) &, \text{egy\'ebk\'ent} \end{cases}$$

Keresés(X,n)

n=0	T(X[n])	
Keresés:=	Keresés:=	Keresés:=
(hamis,-)	(igaz,n)	Keresés(X,n−1)

Visszatekintés

- > Programtranszformációk
- > Hatékony algoritmikus technikák
 - Segédösszegek számítása
 - Ablakozás (2-féleképpen)
 - Változásfigyelés
 - > Intervallum-manipulációk (3-féleképpen)
- > Rekurzió
 - > Rekurzió és iteráció
 - Programozási tételek rekurzívan

