

Constraint-based Scheduling & Packing including Constraint Relationships

Agenda

Grundlagen:

- Constraint Satisfaction (Optimisation) Problems
- Funktionsweise von Constraint-Lösern und Sprachen (MiniZinc)
- Einsatz im Scheduling

ISSE-Entwicklungen:

- Constraint Relationships für Soft Constraints
- Entwickelte Fallstudien
- Sprachunterstützung / Features

Constraint Programming: Einordnung

- Generischer Ansatz zur Lösung von Erfüllbarkeitsproblemen
- Ausnützen von Struktur von logischen Bedingungen (?)
- Konzentration auf endliche Wertebereiche und Erfüllbarkeit (?, Kap. 5)
 - Im Gegensatz z.B. zu linearer Programmierung, konvexe Optimierung
 - Verallgemeinert Boolesche Erfüllbarkeitsprobleme (SAT)
 - Scheduling-Probleme
 - Reorganisationen
 - Zuweisungsprobleme (z.B. Frequenzen an Sender, Energie and Produzenten, ...)
- Deklarativ, aber Constraints sind an Algorithmen geknüpft (?)!

Ein prototypisches CSP

Und noch eins

Basics

Definition (Constraint-Problem)

Ein Constraint-Problem (X, D, C) ist beschrieben durch

• Variablen X, Domänen $D = (D_x)_{x \in X}$ (endlich), Constraints C

Domänen typischerweise: int, bool, (float)

Was ist ein **Constraint**? Ein *boolesches* Prädikat über einer Belegung von X: $X = \{x, y, z\}$

- x < y
- x + 5 = z y
- alldifferent([x, y, z])
- \bullet \forall und \exists nur über endlichen Wertebereichen

Beispiel

Problem

CSP(X, D, C) mit

- $X = \{x, y, z\}$
- $D_x = D_v = \{0, 1, 2\}, D_z = \{0, 1\}$
- C
- $c_1: x \neq y, y \neq z, x \neq z$
- $c_2: x+1=y$

```
var 0..2: x;
var 0..2: y;
var 0..1: z;

% c1
constraint x != y /\ y != z /\ x !=
% c2
constraint x + 1 = y;
solve satisfy;
```

Welche Zuweisung ist eine Lösung dieses Problems?

- $\Theta = \{(x \to 1, y \to 2, z \to ?), (x \to 0, y \to 1, z \to ?)\}$ erfüllen c_2 ;
- $(x \to 0, y \to 1, z \to ?)$ lässt sich aber zu keiner Lösung erweitern, da z entweder 0 oder 1 sein muss und somit garantiert c_1 verletzt
- Also ist die einzige Lösung $(x \to 1, y \to 2, z \to 0)$

Constraint-Algorithmen

Wesentliche Kernrichtungen für Algorithmen:

- Systematische (vollständige) Suche ("Try")
 - Backtracking
 - Branch & Bound
- Constraint-Propagation, Inferenz
 - Einfache, lokale Konsistenzchecks (Logische Schlüsse)
 - Reduktion der Domänen
- Relaxierung
 - Löse einfachere Teilprobleme
 - Nehme Ergebnis als Schranken
- Lokale (heuristische) Suche
 - Min-Conflicts-Heuristik
 - Large-neighborhood Search
 - Tabu-Suche / Simulated Annealing

Systematische Suche

Partielle Zuweisungen schrittweise um ein Variablen-Wert-Paar erweitert.

Ausnützen der Konjunktivität: Wenn eine partielle Zuweisung bereits einen Constraint verletzt, wird die letzte Zuweisung rückgängig gemacht (backtracking) und neuer Wert versucht.

Im schlimmsten Fall exponentielle Exploration aller vollständigen Zuweisungen $O(|D|^{|X|})$.

- \rightarrow in der Praxis:
 - Einschränkung der Lösungsraums durch Propagation
 - Frühzeitiges Abschneiden von "Sackgassen"
 - Frühzeitiges Probieren von vielversprechenden Kandidaten

Architektur von Constraint-Lösern

Architektur von Constraint-Lösern

Constraint-Propagation

- Nutze Constraints, um Suchraum einzugrenzen
- Idee: Entferne alle Werte aus Domänen, die in keiner Lösung vorkommen können (*Domain Store*)
- $|x_1 x_2| > 5$ für $x_1, x_2 \in X$ und $D_{x_i} = \{1, \dots, 10\}$
- Welche Werte sind nicht möglich?
- jeweils 5 und 6
- Propagierungsschritte beeinflussen einander
 - "Kettenreaktion"
 - ullet Fixpunktalgorithmus o Keine Propagierung möglich
 - Wenn Domäne nur mehr einen Wert enthält, muss dieser zugewiesen werden.

Constraint-Propagation: Beispiel

Entfernen von Werten, die zu keiner Lösung führen können.

Globale Constraints

- Betrachten wir folgendes einfaches Problem
 - $X = \{x_1, x_2, x_3\}$
 - $(D_x)_{x \in X} = \{1, 2\}$
 - $C: x_1 \neq x_2, x_2 \neq x_3, x_1 \neq x_3$
- Ist dieses Problem nach Constraint-Propagation mit binären Constraints lösbar?
- Ja, für jedes $d \in D_x$ gibt es einen Partner
- Insgesamt allerdings nicht, da mindestens 3 unterschiedliche Werte nötig
- $\bullet \to \mathsf{daher}$ globale Constraints, die eine größere Menge von Variablen im Auge betrachten können
- Und spezialisierte Propagationsalgorithmen haben!
- all different (x_1, x_2, x_3)

Task-Zuweisung in Practice

- Taskzuweisungsproblem (task allocation problem)
 - n Roboter
 - m Tasks
 - Gebe jedem Roboter einen unterschiedlichen Task, um den Gewinn zu maximieren (Unterschied zu Kompensation und Strafe)
- · Beispielproblem:

$$- n = 4, m = 5$$

	t1	t2	t3	t4	t5
r1	7	1	3	4	6
r2	8	2	5	1	4
r3	4	3	7	2	5
r4	3	1	6	3	6

Task-Zuweisung: Modell


```
% problem data
int: n; set of int: ROBOTS = 1..n;
int: m; set of int: TASKS = 1..m;
array[ROBOTS,TASKS] of int: profit;
% decisions
array[ROBOTS] of var TASKS: allocation;
% goal
solve maximize sum(r in ROBOTS) (profit[r, allocation[r]] );
% have robots work on different tasks
constraint alldifferent(allocation);
```

AllDifferent – Machbarkeit

- Erster bekannter Propagator
- Basiert auf Matching in bipartiten Graphen
- Laufzeit ist polynomiell!

```
var {1,2,3}: x; var {2,3}: y; var {2,3}: z;
var {1,2,3,4,5}: t; var {3,4,5,6}: u;
constraint alldifferent([x,y,z,t,u]);
```


AllDifferent - Propagierung


```
var {1,2,3}: x; var {2,3}: y; var {2,3}: z;
var {1,2,3,4,5}: t; var {3,4,5,6}: u;
constraint alldifferent([x,y,z,t,u]);
```



```
var {1}: x;     var {2,3}: y;     var {2,3}: z;
var {4,5}: t;     var {4,5,6}: u;
constraint alldifferent([x,y,z,t,u]);
```

AllDifferent - Algorithmus


```
var {1,2,3}: x; var {2,3}: y; var {2,3}: z;
var {1,2,3,4,5}: t; var {3,4,5,6}: u;
constraint alldifferent([x,y,z,t,u]);
```


Augmentierender Pfad:

$$y \rightarrow 3 \rightarrow z \rightarrow 2 \rightarrow t \rightarrow 5$$

How can we actually use all that?

Architecture

Scheduling & Packing

Soft-Constraints

Präferenzen im Constraint Solving

Constraint-Problem (X, D, C)

• Variablen X, Domänen $D = (D_x)_{x \in X}$, Constraints C

In der Praxis: überbestimmte Probleme

$$\begin{split} \big(\big(\{x,y,z\},D_x=D_y=D_z=\{1,2,3\}\big),\{c_1,c_2,c_3\}\big) \text{ mit } \\ c_1:x+1&=y \\ c_2:z&=y+2 \\ c_3:x+y&\leq 3 \end{split}$$

- Nicht alle Constraints können gleichzeitig erfüllt werden
 - ullet e.g., c_2 erzwingt $\mathrm{z}=3$ und $\mathrm{y}=1$, im Konflikt mit c_1
- \bullet Ein Agent wählt zwischen Zuweisungen, die $\{c_1,c_3\}$ oder $\{c_2,c_3\}$ erfüllen.

Welche Zuweisungen $v \in [X \to D]$ sollen bevorzugt werden von einem Agenten (oder sogar einer Menge von Agenten)?

Constraint Relationships

Ansatz (?)

- Definiere Relation *R* über Constraints *C* um anzugeben, welche Constraints wichtiger sind als andere, e. g.
 - c_1 wichtiger als c_2
 - $\bullet \ c_1 \ \text{wichtiger als} \ c_3 \\$

Benefits

- Qualitativer Formalismus einfach zu spezifizieren
 - Hebe diese Relation auf Verletzungsmengen
 - Dominanzeigenschaften regulieren den Tradeoff "Hierarchie vs. Egalitär"
 - Single-Predecessors-Dominance (SPD) vs. Transitive-Predecessors-Dominance (TPD)

Single-Predecessor-Dominance (SPD) Lifting

isWorseThan-Relation für Mengen verletzter Constraints

Transitive-Predecessors-Dominance (TPD) Liftin

isWorseThan-Relation für Mengen verletzter Constraints

Traditional Constraint Solving

- Eine Kombinationsoperation ∧
- Ein neutrales Element ⊤
- Eine partielle Ordnung $\left(\mathbb{B},\leq_{\mathbb{B}}\right)$ mit $\top<_{\mathbb{R}}\perp$

Klassisches Constraint-Solving

- Eine Kombinationsoperation ∧
- Ein neutrales Element ⊤
- Eine partielle Ordnung $\left(\mathbb{B},\leq_{\mathbb{B}}\right)$ mit $\top<_{\mathbb{R}}\perp$

Soft-Constraint-Solving

- Eine Menge von Erfüllungsgraden, e.g., $\{0, \ldots, k\}$
- Eine Kombinationsoperation +
- Ein neutrales Element 0
- Eine partielle Ordnung (\mathbb{N}, \geq) mit 0 als Top

Eine valuation structure (?), wenn die Ordnung total ist, sonst eine partial valuation structure (?) (PVS).

SoftConstraints in MiniZinc


```
% X: \{x,y,z\} D_i = \{1,2,3\}, i in X
% * c1: x + 1 = y * c2: z = y + 2 * c3: x + y <= 3
% (c) ISSE
% isse.uni-augsburg.de/en/software/constraint-relationships/
include "soft_constraints/minizinc_bundle.mzn";
var 1..3: x; var 1..3: y; var 1..3: z;
% read as "soft constraint c1 is satisfied iff x + 1 = y"
constraint x + 1 = y <-> satisfied[1];
constraint z = y + 2 <-> satisfied[2];
constraint x + y <= 3 <-> satisfied[3];
% soft constraint specific for this model
nScs = 3; nCrEdges = 2;
crEdges = [| 2, 1 | 3, 1 |]; % read c2 is less important than c1
solve minimize penSum; % minimize the sum of penalties
```

Search types

The whole valuation space (partially ordered)


```
%
% Typical Optimization Routine (Branch and Bound):
%
% 1. Look for the first feasible solution
% 2. Impose restrictions on the next feasible solution
% 3. Repeat
```

Search types: Strictly better

The whole valuation space (partially ordered)

Search types: Only not dominated

The whole valuation space (partially ordered)

Case Studies

Applied to domains where

- Certain properties should really capture preferences, not constraints
- at design time, it is unclear whether an instance is actually solvable
- Solution space is combinatorial
 - Discrete choices
 - Additional hard constraints

Illustrative case studies

- Mentor Matching
- Exam Scheduling
- Power Plant Scheduling

Mentor Matching: Model


```
int: n; set of int: STUDENT = 1..n;
int: m; set of int: COMPANY = 1..m;
% assign students to companies
array[STUDENT] of var COMPANY: worksAt;
% insert relationships of students and companies here
int: minPerCompany = 2; int: maxPerCompany = 3;
constraint global_cardinality_low_up (
          worksAt, [c | c in COMPANY],
          [minPerCompany | c in COMPANY],
          [maxPerCompany | c in COMPANY]);
solve
:: int_search([ satisfied[mostImpFirst[i]] | i in SOFTCONSTRAINTS],
 input_order, indomain_max, complete)
minimize penSum;
```

Mentor Matching: Preferences


```
n = 3: m = 3:
int: brenner = 1;
int: teufel = 2;
int: fennek = 3;
int: cupgainini = 1;
int: gsm = 2;
int: junedied = 3;
% specify soft constraints, order by relationship
constraint worksAt[teufel] = junedied <-> satisfied[teufJune];
constraint worksAt[teufel] = cupgainini <-> satisfied[teufCap];
constraint worksAt[teufel] = gsm <-> satisfied[teufGsm];
constraint worksAt[fennek] in {cupgainini, gsm} <-> satisfied[fenFavs];
constraint worksAt[fennek ] in {junedied} <-> satisfied[fenOK];
crEdges = [| teufGsm, teufCap | teufGsm, teufJune
           | fenOK, fenFavs |];
```

Mentor Matching: Refinements

Split company and student preferences:

```
% first, our students' preferences
var int: penStud = sum(sc in 1..lastStudentPref)
     (bool2int(not satisfied[sc]) * penalties[sc]);
% now companies' preferences
var int: penComp = sum(sc in lastStudentPref+1..nScs)
     (bool2int(not satisfied[sc]) * penalties[sc]);
```

Optimize lexicographically

```
solve
:: int_search([ satisfied[mostImpFirst[i]] | i in SOFTCONSTRAINTS],%...
%search minimize_lex([penStud, penComp]) /\ if % ...
search minimize_lex([penComp, penStud]) /\ if % ...
```

Mentor Matching: Priority Example

Taken from example: student-company-matching.mzn

```
solve
:: int_search([ satisfied[mostImpFirst[i]] | i in SOFTCONSTRAINTS],%...
search minimize_lex([penStud, penComp]) /\ if %...
```

```
solve
:: int_search([ satisfied[mostImpFirst[i]] | i in SOFTCONSTRAINTS],%...
search minimize_lex([penStud, penComp]) /\ if %...
```

Here, company 1 (cupgainini) wanted to have student 3, and company 2 (APS) did not have any preferences whatsoever (so accepted student 4 instead of 3). Student 4 would have liked company 3 (junedied) better, though.

Mentor Matching: Real Instance

Collected data from winter term

Example

```
"the favorites":
1. JuneDied-Lynx- HumanIT
2. Cupgainini

"I could live with that":
3. Seamless-German
4. gsm systems
5. Yiehlke

"I think, we won't be happy":
6. APS
```

7. Delphi Databases

Mentor Matching: Real Instance

- Gave precedence to students
 - After all, what should companies do with unhappy students?
- Search space: 7 companies for 16 students \rightarrow 7¹⁶ = 3.3233 \cdot 10¹³
- Led to a constraint problem with
 - 77 student preferences (soft constraints) from 16 students
 - of a total of 114 soft constraints (37 company preferences)
- Proved optimal solution
 - 4 minutes compilation
 - another 2m 12s solving time

Exam Scheduling

Goal: Assign exam dates to students such that

- Each student likes their appoints (approves of it)
- The number of distinct dates is minimized (to reduce time investment of teachers)

Illustrates some core ideas of constraint relationships:

- No preference of any student should be weighted higher than another one's
- Solution (exam schedule) is a shared decision

Exam Scheduling: Core Model

See exam-scheduling-approval.mzn:

```
% Exam scheduling example with just a set of
% approved dates and *impossible* ones
include "globals.mzn";
include "soft_constraints/soft_constraints.mzn";
int: n; set of int: STUDENT = 1..n;
int: m; set of int: DATE = 1..m;
array[STUDENT] of set of DATE: possibles;
array[STUDENT] of set of DATE: impossibles;
% the actual decisions
array[STUDENT] of var DATE: scheduled;
int: minPerSlot = 0; int: maxPerSlot = 4;
constraint global_cardinality_low_up(scheduled % minPerSlot, maxPerSlot
constraint forall(s in STUDENT) (not (scheduled[s] in impossibles[s]));
```

Exam Scheduling: Preferences

See exam-scheduling-approval.mzn:

```
% have a soft constraint for every student
nScs = n:
penalties = [ 1 | n in STUDENT]; % equally important in this case
constraint forall(s in STUDENT) (
    (scheduled[s] in possibles[s]) <-> satisfied[s] );
var DATE: scheduledDates;
% constrains that "scheduledDates" different
% values (appointments) appear in "scheduled"
constraint nvalue(scheduledDates, scheduled);
% search variants
solve
:: int_search(satisfied, input_order, indomain_max, complete)
search minimize_lex([scheduledDates, violateds]); % pro teachers
%search minimize_lex([violateds, scheduledDates]); % pro students
```

Exam Scheduling: Real Instance

- Collected preferences of 33 students
- over 12 possible dates (6 days, morning and afternoon)
 - Approval set
 - Impossible set
- Aggregated via approval voting (has nice voting-theoretical properties!)
- At most 4 per appointment
- Immediately (61 msec) found an optimal solution that
 - Is approved by every student
 - Is achieved with the minimal number of 9 dates
- Used Strategy:

search minimize_lex([violateds, scheduledDates]); % pro students

Power Plant Scheduling

Goal: Schedule plants such that they meet the demand; See unitCommitment.mzn

Power Plant Scheduling: Core Model


```
include "soft_constraints/soft_constraints_noset.mzn";
include "soft_constraints/cr_types.mzn";
include "soft_constraints/cr_weighting.mzn";
% ground penalties using the appropriate weighting
penalties = [weighting(s, SOFTCONSTRAINTS, crEdges, true)
               | s in SOFTCONSTRAINTS]:
int: T = 5; set of int: WINDOW = 1..T;
array[WINDOW] of float: demand = [10.0, 11.3, 15.2, 20.7, 19.2];
int: P = 3; set of int: PLANTS = 1..P;
array[PLANTS] of float: pMin = [12.0, 5.0, 7.3];
array[PLANTS] of float: pMax = [15.0, 11.3, 9.7];
array[WINDOW, PLANTS] of var 0.0..15.0: supply;
var float: obj;
constraint obj = sum(w in WINDOW) ( abs( sum(p in PLANTS)
          (supply[w, p]) - demand[w]));
```

Power Plant Scheduling: Soft Constraints


```
% ground penalties using the appropriate weighting
penalties = [weighting(s, SOFTCONSTRAINTS, crEdges, true)
               | s in SOFTCONSTRAINTS]:
[...]
% some soft constraints
constraint supply[1, 2] >= 6.0 <-> satisfied[1];
constraint supply[2, 2] >= 6.0 <-> satisfied[2];
% constraint time step 1 seems more urgent
nCrEdges = 1;
crEdges = [| 2, 1 |];
% could do something more sophisticated here
solve minimize obj + penSum;
```

→ Library works with MIP (*Mixed Integer Programming*) as well!

Language Features

a

Language Features: Suitable Weighting

Language Features: Consistency Checks

Language Features: Variable Ordering

Language Features: Redundant Constraints

a

Language Features: Custom Search

Quellen I

