Data Collection and Preprocessing Phase

Data Exploration and Preprocessing report

Data Overview-

	Gender	Hemoglobin	МСН	МСНС	MCV	Result
count	1421.000000	1421.000000	1421.000000	1421.000000	1421.000000	1421.000000
mean	0.520760	13.412738	22.905630	30.251232	85.523786	0.436312
std	0.499745	1.974546	3.969375	1.400898	9.636701	0.496102
min	0.000000	6.600000	16.000000	27.800000	69.400000	0.000000
25%	0.000000	11.700000	19.400000	29.000000	77.300000	0.000000
50%	1.000000	13.200000	22.700000	30.400000	85.300000	0.000000
75%	1.000000	15.000000	26.200000	31.400000	94.200000	1.000000
max	1.000000	16.900000	30.000000	32.500000	101.600000	1.000000

Univarient Analysis-

Bivarient Analysis-

Multivarient Analysis-

Data Preprocessing Code Screenshots
Loding data-

Haldling Missing Data-

Handling Imbalance Value-

```
#0-not anemic 1-anemic
#checking for the count of anemia and not anemia

results = df['Result'].value_counts()
results.plot(kind = 'bar', color=['blue', 'green'])
plt.xlabel('Result')
plt.ylabel('Frequency')
plt.title('Count of Result')
plt.show()

✓ 0.6s
```



```
# Plot the balanced gender counts
result_balanced = df['Result'].value_counts()
result_balanced.plot(kind='bar', color=['blue', 'green'])
plt.xlabel('Result')
plt.ylabel('Frequency')
plt.title('Count of Result (Balanced)')
plt.show()
```

