Handed out: September 12th, 2007

Singular Value Decomposition

We here give a complete description and proof for the Singular Value Decomposition (SVD) Theorem. First, recall that the inner product defined on \mathbb{C}^n is $\langle x, y \rangle = x^*y, \forall x, y \in \mathbb{C}^n$. We now introduce the following important lemma:

Lemma 1 Let $A \in \mathbb{C}^{m \times n}$ and A^* be its conjugate transpose. We then always have:

$$Nu(AA^*) = Nu(A^*), \quad Ra(AA^*) = Ra(A).$$

Proof: To prove $Nu(AA^*) = Nu(A^*)$, we have:

- (a) $AA^*x = \theta \Rightarrow \langle x, AA^*x \rangle = ||A^*x||^2 = 0 \Rightarrow A^*x = \theta$, hence $Nu(AA^*) \subseteq Nu(A^*)$.
- (b) $A^*x = \theta \Rightarrow AA^*x = \theta$, hence $Nu(AA^*) \supseteq Nu(A^*)$.

To prove $\operatorname{Ra}(AA^*) = \operatorname{Ra}(A)$, we first need to prove that \mathbb{C}^n is a direct sum of $\operatorname{Ra}(A^*)$ and $\operatorname{Nu}(A)$. We prove this by showing that a vector x is in $\operatorname{Nu}(A)$ if and only if it is orthogonal to $\operatorname{Ra}(A^*)$: $x \in \operatorname{Nu}(A) \Leftrightarrow < A^*x, y >= 0, \forall y \in \operatorname{Ra}(A^*) \Leftrightarrow < x, Ay >= 0, \forall y$. Hence $\operatorname{Nu}(A)$ is exactly the subspace which is orthogonal supplementary to $\operatorname{Ra}(A^*)$ (sometimes denoted as $\operatorname{Ra}(A^*)^{\perp}$). Therefore \mathbb{C}^n is a direct sum of $\operatorname{Ra}(A^*)$ and $\operatorname{Nu}(A)$. Let $\operatorname{Img}_A(S)$ denote the image of a subspace S under the map A. Then we have: $\operatorname{Ra}(A) = \operatorname{Img}_A(\mathbb{C}^n) = \operatorname{Img}_A(\operatorname{Ra}(A^*)) = \operatorname{Ra}(AA^*)$ (in the second equality we used the fact that \mathbb{C}^n is a direct sum of $\operatorname{Ra}(A^*)$ and $\operatorname{Nu}(A)$.)

In the above A can be regarded as a linear map from \mathbb{C}^n to \mathbb{C}^m . In fact the same result still holds even if the domain of the linear map A is replaced by an infinite dimensional linear space with an inner product (i.e., \mathbb{C}^n is replaced by a Hilbert space). In that case, this lemma is also known as the *Finite Rank Operator Fundamental Lemma*, which will be useful for obtaining conditions of controllability and observability for LTI systems.

We are now ready to give a complete proof for the Singular Value Decomposition Theorem is:

Theorem 1 (Singular Value Decomposition) Let $F = \mathbb{R}$ or \mathbb{C} . Let $A \in F^{m \times n}$ be a matrix of rank r. Then there exist matrices $U \in F^{m \times m}$ and $V \in F^{n \times n}$, and $\Sigma_1 \in \mathbb{R}^{r \times r}$ such that:

- 1. $V = [V_1 : V_2], V_1 \in F^{n \times r}$, satisfies: V is unitary, i.e., $V^*V = I_{n \times n}$, $Ra(V_1) = Ra(A^*)$; the columns of V_1 form an orthonormal basis of $Ra(A^*)$ $Ra(V_2) = Nu(A)$; the columns of V_2 form an orthonormal basis of Nu(A)The columns of V form a complete orthonormal basis of eigenvectors of A^*A .
- 2. $U = [U_1 : U_2], U_1 \in F^{m \times r}$, satisfies: U is unitary, i.e., $U^*U = I_{m \times m}$, $Ra(U_1) = Ra(A)$; the columns of U_1 form an orthonormal basis of Ra(A) $Ra(U_2) = Nu(A^*)$; the columns of U_2 form an orthonormal basis of $Nu(A^*)$ The columns of U form a complete orthonormal basis of eigenvectors of AA^* .

3. $\Sigma_1 = diag(\sigma_1, \sigma_2, \dots, \sigma_r) \in \mathbb{R}^{r \times r}$ such that $\sigma_1 \geq \sigma_2 \geq \dots, \geq \sigma_r > 0$. $A \in F^{m \times n}$ has a dyadic expansion:

$$A = U_1 \Sigma_1 V_1^*$$
, or equivalently, $A = \sum_{i=1}^r \sigma_i u_i v_i^*$

where u_i, v_i are the columns of U_1 and V_1 respectively.

4. $A \in F^{m \times n}$ has a singular value decomposition (SVD):

$$A = U\Sigma V^*, \quad with \quad \Sigma = \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix}_{n\times n}.$$

Proof: 1. $A \in F^{m \times n}$ has rank r, hence the nonnegative (or, equivalently, positive semidefinite) Hermitian matrix A^*A has rank r according to the Lemma. It has n nonnegative eigenvalues σ_i^2 ordered as:

$$\sigma_1^2 \ge \sigma_2^2 \ge \dots \ge \sigma_r^2 > 0 = \sigma_{r+1}^2 = \dots = \sigma_n^2$$

to which corresponds a complete orthonormal eigenvector basis $(v_i)_{i=1}^n$ of A^*A . This family of vectors (in F^n) form the columns of a unitary $n \times n$ matrix, say, V. From the lemma, $Ra(A^*A) = Ra(A^*)$ and $Nu(A^*A) = Nu(A)$, the properties listed in 1 follow.

2. Define a diagonal matrix $\Sigma_1 = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_r) \in \mathbb{R}^{r \times r}$. We then have $A^*AV_1 = V_1\Sigma_1^2$, hence $(AV_1\Sigma_1^{-1})^*(AV_1\Sigma_1^{-1}) = I_{r \times r}$. This defines a $m \times r$ matrix:

$$U_1 = AV_1\Sigma_1^{-1}. (1)$$

Then $U_1^*U_1 = I_{r \times r}$. Since A^*A and AA^* both have exactly r nonzero eigenvalues, it follows that the columns of U_1 form an orthonormal basis for $Ra(AA^*)$ and Ra(A). Thus the properties of U_1 listed in 2 hold. Now define an $m \times (m-r)$ matrix U_2 with orthonormal columns which are orthogonal to columns of U_1 . Then $U = [U_1 : U_2]$ is clearly an unitary matrix. From the proof of the lemma, columns of U_2 form an orthonormal basis of $Nu(A^*)$ or $Nu(AA^*)$. Therefore, columns of U_2 are all the eigenvectors corresponding to the zero eigenvalue. Hence columns of U form a complete orthonormal basis of eigenvectors of AA^* . List 2 is then fully proven.

3. From the definition of U_1 in (1), we have:

$$A = U_1 \Sigma_1 V_1^*$$
.

The dyadic expansion directly follows.

4. The singular value decomposition follows because:

$$A[V_1:V_2] = [U_1\Sigma_1:0] = [U_1:U_2]\Sigma \quad \Rightarrow \quad A = U\Sigma V^*.$$

After we have gone through all the trouble proving this theorem, you must know that SVD has become a numerical routine available in many computational softwares such as MATLAB. Within MATLAB, to compute the SVD of a given $m \times n$ matrix A, simply use the command "[U, S, V] = SVD(A)" which returns matrices U, S, V satisfying $A = USV^*$ (where S represents Σ as defined above).