

Chapitre VII - Les intégrales

 ${\sf Bacomathiques-https://bacomathiqu.es}$

Table des matières
I - Calcul d'aire
1. Qu'est-ce-qu'une intégrale?
2. Comment calculer une intégrale?
3. Positivité de l'intégrale
II - Propriétés de l'intégrale
1. Propriétés algébriques
2. Linéarité
3. Relation de Chasles
III - Calculs particuliers
1. Intégrales de fonctions paires et impaires
2. Intégrales de fonctions périodiques
3. Valeur moyenne d'une fonction
4. Aire entre deux courbes
5. Primitive s'annulant en a

I - Calcul d'aire

1. Qu'est-ce-qu'une intégrale?

Dans un repère orthogonal, on prend un point A(1; 1) et on appelle **Unité d'Aire** (U.A.) l'aire du rectangle formée par les points OIA et J.

Soient a et b deux réels avec $a \leq b$ et f une fonction **continue** sur [a;b]. L'intégrale de la fonction f sur [a;b] notée $\int_a^b f(x) \, \mathrm{d}x$ représente l'aire entre la courbe de f et l'axe des abscisses délimitée par les droites d'équation x=a et x=b et est exprimée en **U.A**..

On dit que les réels a et b sont les **bornes** de l'intégrale.

2. Comment calculer une intégrale?

Pour connaître une intégrale, il faut savoir calculer la primitive d'une fonction donnée (voir le cours sur les Primitives). Soient deux réels a et b avec une fonction f continue sur un intervalle I (on note F la primitive de cette fonction). Alors l'intégrale de la fonction f entre les bornes f0 et f1 est donnée par la formule suivante :

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Exemple: On veut calculer l'aire entre la courbe d'une fonction f définie par f(x) = 2x + 1 et l'axe des abscisses sur l'intervalle [1;4]:

1ère étape : On cherche une primitive de f. On trouve $F(x)=x^2+x=x(x+1)$. 2^{nde} étape : On calcule l'intégrale. On a $\int_1^4 2x+1\,\mathrm{d}x=\left[x(x+1)\right]_1^4=4(4+1)-1(1+1)=3-20=18$ U.A.

3. Positivité de l'intégrale

Soient deux réels a et b et une fonction f continue sur un intervalle I. De manière générale, le signe de l'intégrale de f sur [a;b] dépend du signe de f. Ainsi :

— Si
$$f>0$$
 sur $[a;b]$, alors $\int_a^b f(x)\,\mathrm{d}x>0$

— Si
$$f < 0$$
 sur $[a;b]$, alors $\int_a^b f(x) \, \mathrm{d}x < 0$

- Soit $c \in \mathbb{R}$ avec a < c < b. Si f > 0 sur [a;c] et si f < 0 sur [b;c] (ou inversement si f < 0 sur [a;c] et si f > 0 sur [b;c]), on ne connaît pas le signe de l'intégrale. Le signe dépend de l'aire qui sera la plus "grande".
- Si a = b, alors $\int_a^b f(x) dx = 0$.
- Soit g une fonction définie sur I avec f>g sur I, alors $\int_a^b f(x)\,\mathrm{d}x>\int_a^b g(x)\,\mathrm{d}x.$

Exemple : On veut calculer l'aire sous la courbe d'une fonction f définie par f(x)=x sur l'intervalle [-2;2] :

 $\mathbf{1}^{\mathsf{ère}}$ étape : On cherche une primitive de f. On trouve $F(x) = \frac{x^2}{2}$.

 2^{nde} étape : On calcule l'intégrale. On a $\int_{-2}^2 x \, \mathrm{d}x = \left[\frac{x^2}{2}\right]_{-2}^2 = \frac{4}{2} - \frac{4}{2} = 0$ U.A. (logique car l'aire au dessus de la courbe de la fonction f sur [-2;0] est égale à l'aire sous la courbe de f sur [0;2] voir propriétés sur les intégrales des fonctions paires).

Ainsi, cette intégrale sera positive :

Et cette intégrale sera négative :

Page 4 sur 9

II - Propriétés de l'intégrale

1. Propriétés algébriques

Soient deux réels a et b et une fonction f continue sur un intervalle I. k est un réel quelconque. On a les propriétés suivantes :

$$- \int_a^b f(x) dx = - \int_b^a f(x) dx$$
$$- \int_a^b k \times f(x) dx = k \times \int_b^a f(x) dx$$

2. Linéarité

Soient deux réels a et b et deux fonction f et g continues sur un intervalle I. k et l sont deux réels quelconques :

$$-\int_{a}^{b} f(x) + g(x) dx = \int_{b}^{a} f(x) dx + \int_{b}^{a} g(x) dx$$
$$-\int_{a}^{b} k \times f(x) + l \times g(x) dx = k \times \int_{b}^{a} f(x) dx + l \times \int_{b}^{a} g(x) dx$$

3. Relation de Chasles

Soient trois réels a, b, c et une fonction f continue sur un intervalle I. La relation de Chasles nous donne la propriété suivante :

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Exemple: On veut calculer l'aire entre la courbe d'une fonction f définie par f(x) = |x|et l'axe des abscisses sur l'intervalle [-2;4] (Rappel : la fonction valeur absolue est définie par $x\mapsto -x$ sur $]-\infty;0]$ et par $x\mapsto x$ sur $[0;+\infty[)$.

 $\begin{array}{l} \mathbf{1^{\grave{e}re}} \ \ \textbf{\acute{e}tape} : \ \mathsf{On} \ \ \mathsf{s\'epare} \ \ \mathsf{I'aide} \ \ \mathsf{de} \ \mathsf{la} \ \ \mathsf{relation} \ \ \mathsf{de} \ \mathsf{Chasles} : \ I = \int_{-2}^4 |x| \, \mathrm{d}x = \\ \int_{-2}^0 -x \, \mathrm{d}x + \int_0^4 x \, \mathrm{d}x. \\ \mathbf{2^{nde}} \ \ \ \mathsf{\acute{e}tape} : \ \mathsf{On} \ \ \mathsf{calcule} \ \ \mathsf{l'int\'egrale}. \ \mathsf{On} \ \ \mathsf{a} \ \ I = \int_{-2}^0 -x \, \mathrm{d}x + \int_0^4 x \, \mathrm{d}x = \left[-\frac{x^2}{2}\right]_{-2}^0 + \\ \left[\frac{x^2}{2}\right]_0^4 = 0 - \left(-\frac{2^2}{2}\right) + \left(\left(\frac{4^2}{2}\right) - 0\right) = 10 \ \mathsf{U.A}. \end{array}$

III - Calculs particuliers

1. Intégrales de fonctions paires et impaires

Soit f une **fonction paire** (comme $x \mapsto x^2$) définie sur I, on a la relation suivante pour tout $a \in I$ (-a doit être dans I) :

$$\int_{-a}^{a} f(x) \, dx = 2 \times \int_{0}^{a} f(x) \, dx = 2 \times \int_{-a}^{0} f(x) \, dx$$

Si f est une fonction impaire (comme $x \mapsto x^3$), on a la relation suivante :

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0$$

Ces deux relations peuvent se retrouver visuellement, pour les fonctions paires (l'aire du côté gauche par rapport à (Oy) est égale à l'aire de l'autre côté de (Oy), et les deux sont positives; on peut donc les additionner pour retrouver l'aire totale) :

2. Intégrales de fonctions périodiques

Soit f une fonction périodique de période k (comme $x \mapsto cos(x)$ avec $k = 2\pi$) définie sur I, on a la relation suivante pour tout $a \in I$ (a + k doit être dans I):

$$\int_0^k f(x) \, \mathrm{d}x = \int_a^{a+k} f(x) \, \mathrm{d}x$$

3. Valeur moyenne d'une fonction

Soient a et b deux réels avec $a \le b$ et f une fonction **continue** sur [a;b]. La valeur moyenne de f sur [a;b] est donnée par la formule suivante :

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x$$

4. Aire entre deux courbes

Soient a et b deux réels avec $a \le b$ et deux fonctions f et g continues sur [a;b]. Si on f>g sur cet intervalle, alors l'aire entre les deux courbes est donnée par la relation suivante :

$$\int_{a}^{b} f(x) - g(x) \, \mathrm{d}x$$

5. Primitive s'annulant en a

Soient une fonction f continue sur un intervalle I et un réel $a \in \mathbb{R}$. La primitive de f (notée F) qui vaut 0 quand x=a est donnée par la formule :

$$F(x) = \int_{a}^{x} f(x) \, \mathrm{d}x$$