Bokeh and Folium

Python GIS Visualization

Graduate School Housing Search

Craigslist

Zillow

Graduate School Housing Search

GradPads

 Goal: Develop an interactive web tool to help graduate students find housing that aggregates information besides pricing

User: Incoming/current graduate student

 Example use case: User browses neighborhoods to look for parks and crime data

GradPads - Visualization Goals

- Zip-code- to address-level specificity
- Interactive
 - Can toggle layers of prices on and off
- No user python
 - HTML output

Bokeh

- Made up of two library components
 - Python library that generates JavaScript Object Notation (JSON)
 - Javascript library
 - Runs in the browser
 - Responsible for rendering and user interaction
 - "We write the JavaScript so you don't have to!"

- Offers different levels of control
 - Bokeh.models low-level
 - Bokeh.plotting high-level

Bokeh.plotting - glyphs

Bokeh - Mapping Geo Data

Tile provider maps

Web Mercator Projection

Google Maps

Plots glyphs over Google
 Map

GeoJSON

Popular way to represent geographical features

Bokeh - Mapping Geo Data with Google Maps

```
from bokeh.io import output file, show
from bokeh.models import ColumnDataSource, GMapOptions
from bokeh.plotting import gmap
output file("gmap.html")
map options = GMapOptions(lat=47.655855, lng=-122.339308,
                          map type="roadmap", zoom=11)
p = gmap("AIzaSyAor5 RNEfWsEmQOK-XSil-uWPR94kH-Vw", map options)
source = ColumnDataSource(
    data=dict(lat=[ 47.6696, 47.6490, 47.6883],
              lon=[-122.3718, -122.3336, -122.2677])
p.circle(x="lon", y="lat", size=15, fill color="blue",
         fill alpha=0.8, source=source)
show(p)
```


Bokeh - Zip code polygons

- Zip code polygons available as shapefiles (.shp)
- No built-in functionality for shapefiles in Bokeh
- From a Google discussion with one of the developers:

The format that Bokeh expects for patches is a "list of lists" of points. So something like:

```
xs = [[patch0 x-coords], [patch1 x-coords], ...]
ys = [[patch1 y-coords], [patch1 y-coords], ...]
```

Bokeh - Zip Code Workflow

Bokeh - Zip Code Workflow

- Pyshp package
 - "reads and writes ESRI Shapefiles in pure Python"
 - Reads in whole directory
 - shp file contains points; .dbf contains record information

cb_2017_us_zcta510_500k.cpg	11/12/2018 12:36 PM	CPG File	1 KB
cb_2017_us_zcta510_500k.dbf	11/12/2018 12:36 PM	DBF File	1,716 KB
cb_2017_us_zcta510_500k.prj	11/12/2018 12:36 PM	PRJ File	1 KB
cb_2017_us_zcta510_500k.shp	11/12/2018 12:36 PM	SHP File	88,907 KB
cb_2017_us_zcta510_500k.shp.ea.iso	11/12/2018 12:36 PM	XML Document	9 KB
cb_2017_us_zcta510_500k.shp.iso	11/12/2018 12:36 PM	XML Document	33 KB
cb_2017_us_zcta510_500k.shp	11/12/2018 12:36 PM	XML Document	17 KB
cb_2017_us_zcta510_500k.shx	11/12/2018 12:36 PM	SHX File	260 KB


```
▶ In [110]: zip_code_sf = shapefile.Reader(zipcode_directory)
```

Bokeh - Zip Code workflow

```
In [11]: zip code records = zip code sf.records()
▶ In [117]: zip code records[3909]
 Out[117]:
           ['98121', '8600000US98121', '98121', 1149954, 537254]
▶ In [111]: zip code shapes = zip code sf.shapes()
▶ In [121]: zip code shapes[3909].points
 Out[121]: [(-122.362298457347, 47.6190119407141),
            (-122.359864, 47.618584999999999),
            (-122.353833, 47.617698),
            (-122.352841, 47.61859),
            (-122.334304, 47.618528999999999),
            (-122.334346, 47.617464),
            (-122.344937, 47.60912),
            (-122.34493864896001, 47.6091208760351),
            (-122.353093, 47.613453),
            (-122.355818501868, 47.6150988610073),
            (-122.359893520553, 47.6175596607724),
            (-122.361823642306, 47.6187252120307),
            (-122.362298457347, 47.6190119407141)]
```

Bokeh - Zip Code Polygon Workflow

```
▶ In [71]:
              xs = []
                                                                                                                              LOYAL HEIGHTS
                                                                                                             47.68
              ys = []
                                                                                                                                                                     HAWTHORNE
              for i in range(len(shapeRecs[3909].shape.points)):
                                                                                                                                Woodland Park Zoo
                                                                                                                                                                       HILLS
                   xs.append(shapeRecs[3909].shape.points[i][0])
                  ys.append(shapeRecs[3909].shape.points[i][1])
                                                                                                                                                  WALLINGFORD
                                                                                                             47.66
                                                                                                                        Discovery
                                                                                                                                                           University of
                                                                                                                                                           Washington
              from bokeh.models.glyphs import Patch
In [108]:
                                                                                                             47.64
                                                                                                                          MAGNOLIA
                                                                                                                                                      Volunteer Park
               output file("gmap.html")
                                                                                                                                         QUEEN ANNE
               map options = GMapOptions(lat=47.655855, lng=-122.339308, map type="roadmap",
                                                                                                                                    Space Needle 2
                                                                                                             47.62
               p = gmap("AIzaSyAor5 RNEfWsEmQOK-XSil-uWPR94kH-Vw", map options)
                                                                                                                                                                 MADRONA
                                                                                                                                                 Seattle
               source = ColumnDataSource(
                   data=dict(lat=ys,
                                                                                                                                        CenturyLink Field
                               lon=xs)
                                                                                                                                                                 90
                                                                                                                  ach Park 📀
                                                                                                                                                                MT. BAKER
               p.patch(x='lon', y='lat', alpha=0.5, source=source)
                                                                                                                                          Harbor Island
                                                                                                                        ALKI
                                                                                                                                        West Seattle Bridge
               show(p)
                                                                                                                             WEST SEATTLE
                                                                                                                                                 INDUSTRIAL
                                                                                                             47.56 - Google
                                                                                                                                                                COLUMBIA CITY
                                                                                                                                                           Map data @2018 Google Terms of Use
                                                                                                                            -122.4
                                                                                                                                             -122.35
```

Bokeh - Summary

- Pros
 - Easily interactive
 - HTML output
 - Extensive control over glyphs

Cons

- Geographical data support is not very developed
- Requires download of more packages for geo data

Folium

- Python library that combines Python's data manipulation features with Leaflet.js's mapping ability
 - Highly specific purpose that aligns with GradPads's goals
 - Support for image overlays as well as GeoJSON and TopoJSON formats

- Can run from jupyter notebook
 - Ability to create interactive and customizeable maps
 - Can also render and export as HTML depending on users' level of experience / need

Folium - Using Maps as Base Layers

Folium - GeoJSON Data Overlays

- GeoJSON format based on JSON (JavaScript Object Notation)
 - Designed to represent geographical features along with non-spatial attributes
 - Contains points, LineStrings, and polygons

```
Type
                                           Examples
                         "type": "Point",
Point
                         "coordinates": [30, 10]
             0
                         "type": "LineString",
                         "coordinates": [
LineString
                             [30, 10], [10, 30], [40, 40]
                         "type": "Polygon",
                         "coordinates": [
                             [[30, 10], [40, 40], [20, 40], [10, 20], [30, 10]]
Polygon
                         "type": "Polygon",
                            [[35, 10], [45, 45], [15, 40], [10, 20], [35, 10]],
                            [[20, 30], [35, 35], [30, 20], [20, 30]]
```

Folium - GeoJSON Data Overlays

 GeoJSON - format based on JSON (JavaScript Object Notation)

Designed to represent goographical

```
{"type":"FeatureCollection", "features":[{"type":"Feature", "properties":
{"STATEFP10":"53", "ZCTA5CE10":"98822", "GEOID10":"5398822", "CLASSFP10":"B5", "MTFCC10":"G6350", "FUNCSTAT10":"S", "ALAND10":1131837710, "AWATER10":5582389, "INTPTLAT10":"+47.9019257", "INTPTLON
10":"-120.5504512", "PARTFLG10":"M"}, "geometry":{"type":"Polygon", "coordinates":[[[-120.479846,47.683729], [-120.48083,47.683762], [-120.480478,47.683852], [-120.480574,47.68366],
[-120.481009,47.6839], [-120.481272,47.68396], [-120.481441,47.684062], [-120.481525,47.684553], [-120.481534,47.684613], [-120.481602,47.685858], [-120.481793,47.68506], [-120.481962,47.68567], [-120.481982,47.68568], [-120.481962,47.68568], [-120.481983,47.68568], [-120.481983,47.68568], [-120.48203,47.68568], [-120.48203,47.68568], [-120.48203,47.68568], [-120.484094,47.68568], [-120.484094,47.68568], [-120.484094,47.68568], [-120.484094,47.68568], [-120.484094,47.68568], [-120.484094,47.68568], [-120.484094,47.68568], [-120.484094,47.68568], [-120.484094,47.68508], [-120.484094,47.68568], [-120.484094,47.68508], [-120.484094,47.68508], [-120.484094,47.68508], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131], [-120.485971,47.687131
```

```
[-120.482403,47.685993], [-120.482507,47.686011], [-120.483198,47.686035], [-120.483642,47.686081], [-120.483643,47.686028], [-120.48403,47.686228], [-120.48403,47.686228], [-120.48403,47.686228], [-120.484233,47.686418], [-120.4843643,47.686208], [-120.484787,47.687087], [-120.48554,47.68703], [-120.485434,47.687209], [-120.485971,47.687174], [-120.489841,47.687277], [-120.49087,47.687981], [-120.491145,47.688219,47.686946], [-120.491601,47.689225], [-120.491694,47.689605], [-120.491519,47.689605], [-120.491145,47.688641], [-120.491601,47.689225], [-120.491694,47.69169], [-120.491519,47.690384], [-120.491453,47.690634], [-120.491547,47.690897], [-120.491792,47.691065], [-120.492295,47.691139], [-120.494879,47.69126], [-120.493714,47.691575], [-120.4941647,47.69123], [-120.494147,47.69268], [-120.494554,47.6952678], [-120.494687,47.695243], [-120.494879,47.693887], [-120.494971,47.69387], [-120.49559,47.691343], [-120.49559,47.691363], [-120.49569], [-120.49569], [-120.49569], [-120.496674,47.69509], [-120.49618,47.69529], [-120.49618,47.69529], [-120.49618,47.69529], [-120.49618,47.69529], [-120.49618,47.69589], [-120.49618,47.69589], [-120.49618,47.69583], [-120.499742,47.697332], [-120.499742,47.697382], [-120.499809,47.699842], [-120.499605,47.700216], [-120.499367,47.700436], [-120.499229,47.700436], [-120.499494,47.70184], [-120.499464,47.70231], [-120.49913,47.70233], [-120.49918,47.70258], [-120.499488,47.70184], [-120.499488,47.70258], [-120.499494,47.70294], [-120.499488,47.70299], [-120.498868,47.70299], [-120.49667,47.70299], [-120.499464,47.70299], [-120.49966,47.70299], [-120.49966,47.70299], [-120.499566,47.70358], [-120.499666,47.70389], [-120.49909,47.70358], [-120.499246,47.70358], [-120.499246,47.70358], [-120.499246,47.70358], [-120.499246,47.70486], [-120.499248,47.70359], [-120.499246,47.70489], [-120.499246,47.70489], [-120.499246,47.70489], [-120.499246,47.70489], [-120.499246,47.70489], [-120.499246,47.70486], [-120.499389,47.70486], [-120.499389,47.70486], [-120.499389,47.70486], [-120
```

"type": "Polygon",
 "coordinates": [
 [[35, 10], [45, 45], [15, 40], [10, 20], [35, 10]],
 [[20, 30], [35, 35], [30, 20], [20, 30]]
]
}

Folium - GeoJSON Data Overlays

Folium - Choropleth Maps

 Choropleth - a thematic map in which areas are shaded or patterned in proportion to the measurement of the statistical variable being displayed on the map

 Folium creates choropleth by joining data in a dataframe to geographical data (like GeoJSON data) and overlaying heat map-type layers onto the map base

layer

Folium - Data Formatting

Shape	NAME
(47.540452178000066, -122.37780245599998)	
(47.60714388200006, -122.31624801799995)	12TH AVE SQUARE PARK
(47.66138567400003, -122.37380064899997)	14TH AVENUE NW BOAT RAMP
(47.66650821300004, -122.30952061299996)	17TH AVENUE NE CENTERSTRIP
(47.625074045000076, -122.29279565699994)	3001 E MADISON
(47.56985503300007, -122.39355961799998)	48TH AVE SW/SW CHARLESTOWN ST
(47.691283181000074, -122.29120216499996)	8605 35TH AVE NE
(47.650230511000075, -122.34865418599998)	A. B. ERNST PARK

Latitude	Longitude	NAME
47.54045218	-122.3778025	
47.60714388	-122.316248	12TH AVE SQUARE PARK
47.66138567	-122.3738006	14TH AVENUE NW BOAT RAMP
47.66650821	-122.3095206	17TH AVENUE NE CENTERSTRIP
47.62507405	-122.2927957	3001 E MADISON
47.56985503	-122.3935596	48TH AVE SW/SW CHARLESTOWN ST
47.69128318	-122.2912022	8605 35TH AVE NE
47.65023051	-122.3486542	A. B. ERNST PARK

		Conve	rt CSV	to Geo	JSON			
	Use	this tool to	output G	eoJSON d	ata from	CSV.		
		Ad clo	sed by Goog					
See also GeoJ See also CSV	ISON to CSV	input Enter URL	de. We will automa	itically identify the fi	ields if we can ba	ased on the co	olumn headings ai	nd the data.
	Choose File g Example ds- Header: true rator: , Fields: 7		Encoding	-Default-		•		
Step 3: 0	Choose ou	out options (
Output Op Latitude Fiel Longitude Fiel Altitude Fiele	d# 2		These two value	s are required!				
					Sort CSV =	Ignore Case		

Folium - More Data Overlays

Folium - Workflow

- Primarily formatting / manipulating datasets
 - Most available in CSV format
 - Also need to package data into dataframes with zipcode data vs. variable of interest
 - Need to make sure uniform set of zipcodes are used, remove unnecessary data
 - Will require some conversion of CSV, etc. type data into GeoJSON format for qualitative overlays

Folium - Summary

- Pros
 - Interactive interface
 - HTML output
 - Relatively easy to interface with our datasets and types
 - Good support for geographical data

Cons

- Somewhat limited in scope only map functionality
- Doesn't interface seamlessly with jupyter?
 Browser? (Can't display complex maps in the notebook)
- Does require some manipulation of data to comply with several different formats -GeoJSON, pandas dataframes, etc.

http://www.convertcsv.com/csv-to-geojson.htm

Greenspace data

https://catalog.data.gov/dataset?organization_type=City+Government&publisher=data.seattle.gov&tags=green-space

JSON Seattle zip codes

https://catalog.data.gov/dataset/seattle-zip-codes-ebab5/resource/5bb72c5f-b9ee-4dc5-852b-0f3a51bda638

GeoJSON WA zip codes

https://raw.githubusercontent.com/OpenDataDE/State-zip-code-GeoJSON/master/