PROBLEM SET NO. 6 - ISAAC VIVIANO

I affirm that I have adhered to the Honor Code on this assignment. Isaac Viviano

1

1. Problems:

• Problem 1 - Uniform Convergence of Fourier Series:

(b)

Lemma 1.1. Let $\epsilon > 0$ be given. Then, for each $t \in A$, there exists $N_t \in \mathbb{N}$ and $\delta_t > 0$ so that for all $s \in \mathbb{R}$ with $|s - t| < \delta_t$, one has

$$\left|\widehat{[g_{\epsilon;s}^{(\pm)}]}_m\right| < \epsilon, \text{ for all } |m| \geqslant N_t$$

for the function defined by

$$g_{\epsilon;t_0}^{(\pm)}(s) := \begin{cases} \frac{f(t_0-s)-f(t_0)}{\sin(\pi s)} e^{\pm \pi i s} &, if \epsilon \leqslant |s| \leqslant \frac{1}{2} \\ 0 &, if s \in (-\epsilon, \epsilon) \end{cases}$$

Proof. Let $\epsilon \leq |s| \leq \frac{1}{2}$ and let $\eta > 0$ be given. By the uniform continuity of f, pick δ such that if $|s_0 - s_1| < \delta$, $|f(s_0) - f(s_1)| < \frac{\epsilon}{4}$. For such s_0, s_2 and an arbitrary $\epsilon \leq |s| \leq \frac{1}{2}$,

$$\begin{aligned} \left| g_{\epsilon;s_0}^{(\pm)}(s) - g_{\epsilon;s_1}^{(\pm)}(s) \right| &= \left| \frac{f(s_0 - s) - f(s_0)}{\sin(\pi s)} e^{\pm \pi i s} - \frac{f(s_1 - s) - f(s_1)}{\sin(\pi s)} e^{\pm \pi i s} \right| \\ &= \left| \frac{(f(s_0 - s) - f(s_1 - s)) + (f(s_1) - f(s_0))}{\sin(\pi s)} e^{\pm \pi i s} \right| \\ &\leqslant (\underbrace{|f(s_0 - s) - f(s_1 - s)|}_{<\frac{\epsilon}{4}} + \underbrace{|f(s_1) - f(s_0)|}_{<\frac{\epsilon}{4}}) \cdot \underbrace{\frac{\|e^{\pm \pi i s}\|_{\infty}}{\|\sin(\pi s)\|_{\infty}}}_{=1} \\ &< \frac{\epsilon}{2} \end{aligned}$$

Since this bound is independent of s, and

$$g_{\epsilon;s_0}^{(\pm)}(s) - g_{\epsilon;s_1}^{(\pm)}(s)$$

for all $|s| \leq \epsilon$, we get

$$\left\|g_{\epsilon;s_0}^{(\pm)}(s) - g_{\epsilon;s_1}^{(\pm)}(s)\right\|_{\infty} \leqslant \frac{\epsilon}{2} \tag{1}$$

Let $t_0 \in A$. By the Riemann-Lebesgue Lemma, there exists $N_{t_0} \in \mathbb{N}$ such that for all $n \geq N_{t_0}$,

$$\left|\widehat{[g_{\epsilon;t_0}^{(\pm)}]}_n\right| < \frac{\epsilon}{2}$$

Let $\delta_{t_0} = \delta$ from above. If $|s_0 - t_0| < \delta_{t_0}$, then (1) implies

$$\left| \widehat{[g_{\epsilon;s_0}^{(\pm)}]_n} \right| = \left| \widehat{[g_{\epsilon;s_0}^{(\pm)}]_n} - \widehat{[g_{\epsilon;t_0}^{(\pm)}]_n} + \widehat{[g_{\epsilon;t_0}^{(\pm)}]_n} \right|$$
 (2)

$$\leq \left| \widehat{[g_{\epsilon;s_0}^{(\pm)}]}_n - \widehat{[g_{\epsilon;t_0}^{(\pm)}]}_n \right| + \left| \widehat{[g_{\epsilon;t_0}^{(\pm)}]}_n \right| \tag{3}$$

$$= \left| \widehat{[g_{\epsilon;s_0}^{(\pm)} - g_{\epsilon;t_0}^{(\pm)}]_n} \right| + \left| \widehat{[g_{\epsilon;t_0}^{(\pm)}]_n} \right| \tag{4}$$

$$< \left\| g_{\epsilon;s_0}^{(\pm)}(s) - g_{\epsilon;s_1}^{(\pm)}(s) \right\|_{\infty} + \frac{\epsilon}{2}$$
 (5)

$$<\frac{\epsilon}{2} + \frac{\epsilon}{2} \tag{6}$$

$$=\epsilon$$
 (7)

where for (5), we use the infinity-norm bound for Fourier coefficients from Set 2, Problem 5, part (a).

• Problem 2 - rational & irrational rotations: For $\alpha \in (0,1)$, we consider the map

$$R_{\alpha}: [0,1] \to [0,1], R_{\alpha}(x) = (x+\alpha) \mod 1.$$
 (8)

(a)

Proposition 1.1. R_{α} is periodic if and only if $\alpha \in \mathbb{Q}$.

Proof. (\iff) Suppose $\alpha \in \mathbb{Q}$. Let $\alpha = \frac{p}{q}$ with $p, q \in \mathbb{N}$ and $\gcd(p, q) =$ 1. For each $x \in [0, 1)$.

$$R_{\alpha}^{q}(x) = x + q \cdot \alpha \mod 1$$
$$= x + p \mod 1$$
$$= x$$

So, $R^q_{\alpha}=$ id. Thus, R_{α} is periodic. (\Longrightarrow) Suppose $R^q_{\alpha}=$ id for some $q\in\mathbb{N}.$ Then for all $x\in[0,1),$

$$x = R^q_\alpha(x) = x + q \cdot \alpha \mod 1$$

Therefore, $q \cdot \alpha \equiv 0 \mod 1$, which implies $q\alpha = p \in \mathbb{Z}$. Since q is nonzero, we may divide to get

$$\alpha = \frac{p}{q} \in \mathbb{Q}$$

Proposition 1.2. For irrational α , R_{α} never returns to any point twice, i.e., for all $x \in [0,1]$, we have

$$R_{\alpha}^{n}(x) \neq R_{\alpha}^{m}(x)$$
, whenever $n \neq m$.

Proof. We argue by contrapositive. Suppose $R_{\alpha}^{n}(x) = R_{\alpha}^{m}(x)$ for some $x \in [0, 1)$ and $n < m \in \mathbb{N}$. We have

$$x + n\alpha \equiv x + m\alpha \mod 1$$

So,

$$(m-n)\alpha \equiv 0 \mod 1$$

Since $0 \neq m - n \in \mathbb{N}$, we have $\alpha \in \mathbb{Q}$ as before.

• Problem 3 - "Irrational Rotations are Dense"

Fix an open interval $I \subseteq [0,1]$. Denote the length of I by $0 < \epsilon \le 1$.

(a) Let $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$ by the Archimedean property of \mathbb{R} . Divide the half open unit interval into N half open intervals:

$$I_i = \left[\frac{i}{N}, \frac{i+1}{N}\right), 0 \leqslant i < N$$

Note that

$$\bigcup_{i=0}^{N-1} I_i = [0,1)$$

so any collection of N+1 points in [0,1) must have at least two elements in I_i for some $0 \le i < N$ by the Pigeonhole Principle. One such collection is the finite orbit:

$$\mathcal{O}_{\alpha}(0,N) = \{R_{\alpha}^{k}(0) : 0 \leqslant k \leqslant N\}$$

So, we may pick $n_1 < n_2 \le N$ and i < N with

$$R_{\alpha}^{n_1}(0), R_{\alpha}^{n_2}(0) \in I_i$$

Note that

$$0 \leqslant |R_{\alpha}^{n_1}(0) - R_{\alpha}^{n_2}(0)| < \frac{i+1}{N} - \frac{i}{N} = \frac{1}{N} < \epsilon$$

We may also write

$$R_{\alpha}^{n_1}(0) - R_{\alpha}^{n_2}(0) = n_1 \alpha - n_2 \alpha \mod 1$$

Pick $k_0 \in \mathbb{Z}$ such that

$$n_1\alpha - n_2\alpha - k_0 = n_1\alpha - n_2\alpha \mod 1$$

Then,

$$d_c(n_1\alpha, n_2\alpha) = \min\{|\alpha(n_1 - n_2) - k|, k \in \mathbb{Z}\}$$

$$\leq |\alpha n_1 - \alpha n_2 - k_0|$$

$$= |R_{\alpha}^{n_1}(0) - R_{\alpha}^{n_2}(0)|$$

$$< \frac{1}{N}$$

$$< \epsilon$$

(b)

Proposition 1.3. Let $M := n_2 - n_2$. Then, for all $x \in [0,1]$, there exists $k \in \mathbb{N}$ such that

$$R_{\alpha}^{kM}(x) \in I . (9)$$

Proof. Suppose not: Let I=(a,b) and let $k_0\in\mathbb{N}$ be the first k such that

$$R_{\alpha}^{k_0 M}(x) \leqslant a$$

and

$$R_{\alpha}^{(k_0-1)M}(x) \geqslant b$$

Note that

$$R_{\alpha}^{m}(x) = x + n\alpha \mod 1 = x + R_{\alpha}^{m}(0) \mod 1$$

So,

$$k_0(n_2 - n_1)\alpha + x \mod 1 \leqslant a \tag{10}$$

and

$$(k_0 - 1)(n_2 - n_1)\alpha + x \mod 1 \geqslant b$$
 (11)

Subtracting (11) from (10) gives

$$(n_1 - n_2)\alpha \mod 1 \geqslant b - a = \epsilon$$

which contradicts (9).

(c)

Proposition 1.4. For every $x \in [0,1]$, $R_{\alpha}^{n}(x) \in I$ for infinitely many $n \in \mathbb{N}$.

Proof. Let $M \in \mathbb{N}$ and $x \in [0,1]$ be given. Divide I into M subintervals:

$$I_i = \left(a + \frac{i\epsilon}{M}, a + \frac{(i+1)\epsilon}{M}\right), \text{ for } 0 \leqslant i < M$$

and

$$I_M = \left(b - \frac{\epsilon}{M}, b\right)$$

By Kronecker's Theorem, for each $0 \le i < M$, there exists $n_i \in \mathbb{N}$ such that

$$R_{\alpha}^{n_i}(x) \in I_i \subseteq I$$

Note that $n_i \neq n_j$ for all $i \neq j$, since $I_i \cap I_j = \emptyset$. We have shown that

$$\#(\mathcal{O}_{\alpha}(x) \cap I) \geqslant M$$

Since M was arbitrary, $R_{\alpha}^{n}(x) \in I$ for infinitely many n.

• Problem 4:

Proposition 1.5. Let $a,b,c \in \mathbb{N}$ with $b,c \neq 1$. Suppose there exists a prime p which only contributes to the prime factorization of precisely one of a or b or c. Then, $\log_a(b)$ and $\log_a(c)$ are independent over \mathbb{Q} : there are no $n_1, n_2, n_3 \in \mathbb{Z}$ such that

$$n_1 \log_a(b) + n_2 \log_a(c) = n_3$$

 $besides n_1 = n_2 = n_3 = 0$

Proof. Suppose there exist n_1, n_2, n_3 nonzero satisfying

$$n_1 \log_a b + n_2 \log_a c = n_3$$

Using log properties, we write

$$a^{n_3} = b^{n_1}c^{n_2}$$

We see that

 $\{q: q \text{ is a prime factor of } a\} = \{q: q \text{ is a prime factor of } c\} \cup \{q: q \text{ is a prime factor of } b\}\}$ so there is no prime p contributing to the prime factorization of precisely one of a, b, or c.