UNIVERSITY COLLEGE LONDON DEPARTMENT OF SPACE AND CLIMATE PHYSICS

Candidate Code: HYXC3

Programme Title: MSc Scientific Computing

Module Code: SPCE0038

Module Title: Machine Learning with Big Data

End Assessment

In submitting this coursework, I assert that the work presented is entirely my own except where properly marked and cited.

Date of	11/05/20
Submission:	

Question 1

1(a)

With reference to the diagram of the basic *logistic unit* on the following page:

The input vector \mathbf{x} is the input to the *logistic unit*.

Each input x_i has an associated weight θ_i . The weights are set to a random value prior to *training*. The *training* process determines these weights.

The product of each input x_i and weight θ_i is summed to produce a weighted sum z.

The output, $h_{\theta}(x)$, is the the non-linear activation function, h, applied to z.

1(b)

Consider the diagram of Question 1(a).

The weighted sum of the inputs, z, is:

$$z = \sum_{j=1}^{n} \theta_j x_j = \theta^T x \tag{1}$$

where x_i is the i^{th} element of input vector \mathbf{x} of length n, and θ_i is the associated weight.

And, the output from the *logistic unit*, $h_{\theta}(x)$, is:

$$h_{\theta}(x) = h(z) \tag{2}$$

where h is a non-linear activation function.

Question 1(a) – Basic Logistic Unit

a = h(z)

Activation:

1(c)

See diagram on following page.

1(d)

Consider the diagram of Question 1(c).

Firstly, consider the data transformation from the input vector \mathbf{x} to the hidden layer. We now need two indices, one for the input vector elements, and one for the *hidden layer* nodes. We will use i for the input vector index, and j for the *hidden layer* nodes.

The weighted sum of the inputs at the j^{th} hidden layer node is:

$$z_j = \sum_{i=1}^n \theta_{ij} x_i \tag{3}$$

where θ_{ij} is the weight between input element i and $hidden\ layer$ node j, and n is the length of the input vector \mathbf{x} .

Secondly, the output from each hidden layer node is the non-linear activation function, h, applied to each z_i :

$$h_{\theta j}(x) = h(z_j) \tag{4}$$

And finally, the output from the whole network, $h_{\Theta}(x)$ is the sum of the hidden layer outputs:

$$h_{\Theta}(x) = \sum_{j=1}^{m} h_{\theta j}(x) \tag{5}$$

where m is the number of *hidden layer* nodes.

Question 1(c) – Fully Connected, Feed Forward, Artificial Neural Network

Input Layer Logistic Units

Hidden Layer Logistic Units

Output Node

Weighted Sums: $z_j = \sum_{i=1}^n heta_{ij} x_i$

 θ_{ij} : Weight, e.g. $\theta_{11}\,\theta_{33}$

Activations: $a_j = h(z_j)$

1(e)

TODO

1(f)

Artificial Neural Networks (ANNs) are described as *shallow* or *deep*, and *wide* or *narrow*. *shallow* or *deep* refers to the number of layers in the network, and *wide* or *narrow* refers to the number of nodes in each layer.

The *credit assignment path*, the CAP, of a neural network is a measure of the number of data transformations that occur as data passes through the network. For *feed-forward* networks the CAP is the number of *hidden layers* plus one.

A deep neural network is generally considered to be a network with multiple layers and a CAP > 2.

1(g)

Question 2 **2**(a) TODO **2**(b) TODO **2**(c) TODO **2**(d) TODO **2**(e) TODO **2**(f) TODO

2(g)

(h)

Question 3 3(a) TODO **3**(b) TODO **3(c)** TODO 3(d) TODO 3(e) TODO

3(f)

Question 4

4(a)

TODO

4(b)

TODO

4(c)

TODO

4(d)

TODO

4(e)

TODO

4(f)

question 4f

May 7, 2020

```
[]: # Fetch batch function:
     def fetch_batch(epoch, batch_index, batch_size):
        return X_batch, y_batch
     # Set up computational graph:
     import tensorflow as tf
     reset_graph ()
     n_{epochs} = 1000
     learning_rate = 0.01
     X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
     y = tf.constant(housing_data_target, dtype=tf.float32, name="y")
     theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0), name="theta")
     y_pred = tf .matmul(X, theta , name="predictions")
     error = y_pred - y
     mse = tf.reduce_mean(tf.square(error), name="mse")
     optimizer = tf.train.GradientDescentOptimizer(learning_rate)
     training_op = optimizer.minimize(mse)
     # Execute:
     init = tf.global_variables_initializer()
     with
     tf.Session() as sess:
         sess.run(init)
         for epoch in range(n_epochs):
             if epoch % 100 == 0:
                 print("Epoch", epoch, "MSE=", mse.eval()) sess.run(training_op)
         best_theta = theta.eval()
```

```
# Fetch batch function:
   def fetch_batch(epoch, batch_index, batch_size):
3
       return X_batch, y_batch
6
   # Set up computational graph:
   import tensorflow as tf
   reset_graph ()
10
   n_{epochs} = 1000
12
   learning_rate = 0.01
13
14
   X = tf.constant(scaled_housing_data_plus_bias, dtype=tf.float32, name="X")
15
   y = tf.constant(housing_data_target, dtype=tf.float32, name="y")
16
   theta = tf.Variable(tf.random_uniform([n + 1, 1], -1.0, 1.0), name="theta")
18
   y_pred = tf .matmul(X, theta , name="predictions")
19
   error = y_pred - y
20
   mse = tf.reduce_mean(tf.square(error), name="mse")
21
   optimizer = tf.train.GradientDescentOptimizer(learning_rate)
22
   training_op = optimizer.minimize(mse)
   # Execute:
26
27
   init = tf.global_variables_initializer()
28
29
   with tf.Session() as sess:
30
       sess.run(init)
31
       for epoch in range(n_epochs):
32
           if epoch % 100 == 0:
33
                print("Epoch", epoch, "MSE=", mse.eval())
34
                sess.run(training_op)
35
       best_theta = theta.eval()
```

Listing 1: Question 4f

Question 5

5(a)

TODO

5(b)

TODO

5(c)

TODO

5(d)

TODO

5(e)

TODO

5(f)