2007-MA-'31-51'

AI24BTECH11004-Bheri Sai Likith Reddy

1 SECTION-A

1)	Let	f(z)	=	$2z^2$	- 1.	Then	the	maximum	value	of	f(z)	on	the	unit	disc	D	=
	$\{z\in$	C: z	$z \leq$	1} e	equals	;											

a) 1

b) 2

c) 3

d) 4

1

2) Let

$$f(z) = \frac{1}{z^2 - 3z + 2}$$

Then the coefficient of $\frac{1}{z^3}$ in the Laurent series expansion of f(z) for |z| > 2 is

a) 1

b) 2

c) 3

d) 4

3) Let $f: C \to C$ be an arbitrary analytic function satisfying f(0) = 0 and f(1) = 2. Then

- a) there exists a sequence $\{z_n\}$ such that $|z_n| > n$ and $|f(z_n)| > n$
- b) there exists a sequence $\{z_n\}$ such that $|z_n| > n$ and $|f(z_n)| < n$
- c) there exists a bounded sequence $\{z_n\}$ such that $|fz_n| > n$
- d) there exists a sequence $\{z_n\}$ such that $z_n \to 0$ and $f(z_n) \to 2$
- 4) Define $f: C \to C$ by

$$f(x) = \begin{cases} 0 & \text{if Re } (z) \text{ or } \text{Im}(z) = 0\\ z & \text{otherwise.} \end{cases}$$

Then the set of points where f is analytic is

- a) $\{z : Re(z) \neq 0 \text{ and } Im(z) \neq 0\}$
- b) $\{z : Re(z) \neq 0\}$
- c) $\{z : Re(z) \neq 0 or Im(z) \neq 0\}$
- d) $\{z : Im(z) \neq 0\}$
- 5) Let U(n) be the set of all positive integers less than n and relatively prime to n. Then U(n) is a group under multiplication modulo n. For n = 248, the number of elements in U(n) is
 - a) 60

- b) 120
- c) 180
- d) 240
- 6) Let R[x] be the polynomial ring in x with real coefficients and let $I = (x^2 + 1)$ be the ideal generated by the polynomial $x^2 + 1$ in R[x]. Then

- a) I is a maximal ideal
- b) I is a prime ideal but NOT a maximal ideal
- c) I is NOT a prime ideal
- d) R[x]/I has zero divisors
- 7) Consider Z_5 and Z_{20} as rings modulo 5 and 20, respectively. Then the number of homomorphisms $\phi: Z_5 \to Z_{20}$
 - a) 1

b) 2

c) 4

- d) 5
- 8) Let Q be the field of rational numbers and consider Z_2 as a field modulo 2. Let

$$f(x) = x^3 - 9x^2 + 9x + 3$$

Then f(x) is

- a) irreducible over Q but reducible over Z_2
- b) irreducible over both Q and Z_2
- c) reducible over Q but irreducible over Z_2
- d) reducible over both Q and Z_2
- 9) Consider Z_5 as a field modulo 5 and let

$$f(x) = x^5 + 4x^4 + 4x^3 + 4x^2 + x + 1$$

Then the zeros of f(x) over Z_5 are 1 and 3 with respective multiplicity

a) 1 and 4

c) 2 and 2

b) 2 and 3

- d) 1 and 2
- 10) Consider the Hilbert space $l^2 = \{x = \{x_n\} : x_n \in R, \sum_{n=1}^{\infty} x_n^2 < \infty \}$. Let

$$E = \left\{ \{x_n\} : |x_n| \le \frac{1}{n} \text{ for all } n \right\}$$

be a subset of l^2 . Then

- a) $E^{\circ} = \left\{ x : |x_n| < \frac{1}{n} \text{ for all } n \right\}$
- b) $E^{\circ} = E$
- c) $E^{\circ} = \left\{ x : |x_n| < \frac{1}{n} \text{ for all but finitely many n} \right\}$
- d) $E^{\circ} = \dot{\phi}$
- 11) Let X and Y be normed linear spaces and let $T: X \to Y$ be a linear map. Then T is continuous if
 - a) Y is finite dimensional
 - b) X is finite dimensional
 - c) T is one to one
 - d) T is onto
- 12) Let *X* be a normed linear space and let $E_1, E_2 \subseteq X$. Define

$$E_1 + E_2 = \{x + y : x \in E_1, y \in E_2\}$$

Then $E_1 + E_2$ is

- a) open if E_1 or E_2 is open
- b) NOT open unless both E_1 and E_2 are open
- c) closed if E_1 or E_2 is closed
- d) closed if both E_1 and E_2 are closed
- 13) For each $a \in R$, consider the linear programming problem Max. $z = x_1 + 2x_2 + 3x_3 + 4x_4$ subject to

$$ax_1 + 2x_3 \le 1$$

 $x_1 + ax_2 + 3x_4 \le 2$
 $x_1, x_2, x_3, x_4 \ge 0$

Let $S = \{a \in R : \text{the given LP problem has a basic feasible solution}\}$. Then

- a) $S = \phi$
- b) S = R
- c) $S = (0, \infty)$
- d) $S = (-\infty, 0)$
- 14) Consider the linear programming problem

$$Max.z = x_1 + 5x_2 + 3x_3$$

subject to

$$2x_1 - 3x_2 + 5x_3 \le 3$$
$$3x_1 + 2x_3 \le 5$$
$$x_1, x_2, x_3 \ge 0$$

Then the dual of this LP problem

- a) has a feasible solution but does NOT have a basic feasible solution
- b) has a basic feasible solution
- c) has infinite number of feasible solutions
- d) has no feasible solution
- 15) Consider a transportation problem with two warehouses and two markets. The warehouse capacities are $a_1 = 2$ and $a_2 = 4$ and the market demands are $b_1 = 3$ and $b_2 = 3$. Let x_{ij} be the quantity shipped from warehouse i to market j and c_{ij} be the corresponding unit cost. Suppose that $c_{11} = 1$, $c_{21} = 1$ and $c_{22} = 2$. Then $(x_{11}, x_{12}, x_{21}, x_{22}) = (2, 0, 1, 3)$ is optimal for every
 - a) $c_{12} \in [1, 2]$
 - b) $c_{12} \in [0,3]$
 - c) $c_{12} \in [1,3]$
 - d) $c_{12} \in [2, 4]$
- 16) The smallest degree of the polynomial that interpolates the data $\begin{bmatrix} x & -2 & -1 & 0 & 1 & 2 & 3 \end{bmatrix}$

x	-2	-1	0	1	2	3	ic
f(x)	-58	-21	-12	-13	-6	27	15

a) 3

b) 4

c) 5

- d) 6
- 17) Suppose that x_0 is sufficiently close to 3. Which of the following iterations $x_{n+1} =$ $g(x_n)$ will converge to the fixed point x = 3?
 - a) $x_{n+1} = -16 + 6x_n + \frac{3}{x_n}$ b) $x_{n+1} = \sqrt{3} + 2x_n$ c) $x_{n+1} = \frac{3}{x_n 3}$ d) $x_{n+1} = \frac{x_n 3}{2}$