YEAR	TITLE	AUTHOR(S)	PROS	CONS
2021	Artificial Intelligence applications in nutrition and dietics	Izzet Ulkar,Ferid e Ayyildiz	It can act as a nutritionist, recommendin g personalized meal plans	A photo may contain multiple foods, plates, cutlery, tables, and other scene objects. Domain-specific problems like high interclass similarity
2021	Artificial Intelligence in Nutrients Science Research	Sak. J, Suchodol ska. M	The development of AI also provides new opportunities for research on nutrients and medical sensing technology.	The blurred pictures cannot be regained and all so the multiple foods, plates, cutlery, tables, and other scene objects was not given proper details.

2020	Mobile Apps for Human Nutrition	Muzomil Ahmad, Muhammad Abbas khan,Mairaj Bibi, SyedTan veer shah	The Use of nutrition related mobile applications to make balance nutrition and a healthy	Food choices are decided for you, without taking factors like hunger, cravings, and personal food preferences
2019	Classification of Food Nutrients Composition using Deep Learning	Abdul salam, Riyaz Ahamed Ariyaluran Habeeb	Finds the calorie value of each food item from the image for dietary assessment	Nutritional information in the dietary assessment may be false when any errors in model may occur.
2018	Automatic food detection in egocentric images using artificial intelligence technology	Wenyan Jia, Yuecheng Li, Ruowei Qu, Thomas Baranowski, Lora E Burke, Hong Zhang, Yicheng Bai, Juliet M Mancino, Guizhi Xu2, Zhi-Hong Mao and Mingui Sun	Automatic detection of images containing food using artificial intelligence shows promise for photos taken in ideal condition	blurred pictures cannot be avoided if images are recorded when the wearer of the eButton is moving.

2014	Food Detection	Hokuto	Automatically	The images
	Recognition using	Kagaya,	detects the	contain some
	Convolutional Neural	Kiyoharu	important	degree of tilt
	Network	Aizawa,	features	or rotation
		Makoto	without any	then CNNs
		Ogawa.	human	usually have
			supervision	difficulty in
				classifying
				the image