1. vežbe

1. Neka su A,B,C i D iskazne formule, takve da su formule $A\Rightarrow (B\Rightarrow C)$ i $(A\wedge C)\Rightarrow \neg D$ tautologije. Dokazati da je i formula $(D\wedge A)\Rightarrow \neg B$ tautologija.

Rešenje:

$$=) \quad \underline{\exists r (D \land A) = \land} \quad 2 \quad \underline{\exists r (A) = 0}$$

$$\underline{\exists r (D \land A) = \land} \quad 2 \quad \underline{\exists r (A) = 0} \quad \underline{\exists r (B) = 0}$$

$$T_{v}(A) = 1$$

$$T_{v}(A \Rightarrow (B \Rightarrow C)) = 1$$

$$T_{v}(B \Rightarrow C) = 1$$

$$T_{v}(C) = 1$$

$$\frac{T_{r}(A) = 1}{T_{r}(C) = 1} = \int T_{r}(A \wedge C) = 1$$

$$\frac{T_{r}(A) = 1}{T_{r}(C) = 1} = \int T_{r}(A \wedge C) = 1$$

$$\frac{T_{r}(A) = 1}{T_{r}(A) = 1} = 0$$

$$\Rightarrow$$
 $\neq (D \land A) \Rightarrow 7 B$

2. Dokazati da važi: Ako su formule $A \vee B$ i $\neg A \vee C$ tautologije, onda je i formula $B \vee C$ tautologija. Rešenje:

$$\frac{1}{2} (A \cup B) = 1$$

$$\frac{1}{2} (B) = 0$$

$$= \sum_{i=1}^{n} (A \cup B) = 1$$

3. Dokazati da važi: Ako su formule $A \vee B$, $A \Rightarrow C$ i $B \Rightarrow D$ tautologije, onda je i formula $C \vee D$ tautologija. Rešenje:

$$T_{V}(A = C) = 1$$
 = 1 $T_{V}(A) = 0$
 $T_{V}(C) = D$ = 1 $T_{V}(A = 0)$
 $T_{V}(B = D) = 1$ = 1 $T_{V}(B) = D$
 $T_{V}(B) = 0$

$$=$$
) \neq CVD

4. Ispitati da li je formula $(\neg q \Rightarrow \neg p) \Rightarrow (p \Rightarrow q)$ tautologija. Rešenje:

Protp. Suproduo ,
$$\# (7g \Rightarrow 7p) =) (p \Rightarrow g)$$

=) postogi valuacija v tako da važi

 $Tr ((7g \Rightarrow 7p) =) (p \Rightarrow g) = 0$

=) $Tr (7g \Rightarrow 7p) = 1$; $Tr (p \Rightarrow 7g) = 0$
 $Tr (p) = n$ i $Tr (q) = 0$
 $Tr (p) = 0$