Team 6 ECE532 Project

Meet the team

Andrew

James

Quinn

What is Infernet?

- Distributed network of machine learning inference modules targeting the MNIST dataset
- Multiple networked FPGAs with hardware inferencers available to desktop PC clients
 - ☐ For this project: FPGAs and PCs on FPGANet

Sample images from the MNIST dataset

System Overview - Old

- One or more inference accelerators (IA)
- A load balancer (LB)
- □ A desktop client (client)
- A desktop GUI, which will be implemented within the client to display results

System Overview - New

- All the same system components
- Switching from IP to UDP to circumvent RTOS issues
- Same amount of communication, slightly different protocol

Updated Protocol

Challenges So Far

Client Software:

- Wrangling network interface names in windows
- No way to open a raw socket from python socket library because not admin

Load Balancer:

- Due to Vivado bug,
 FreeRTOS and lwip socket
 API do not work together.
- No raw IP in lwip

IP Packet Module

- Scary Integrations
- Network Order / Endianness
- Physical Interfaces

Hardware Neural Net

- Lots of stuff to build
- Understanding DSP slices/columns and carry chains

Future Challenges

Client Software:

 Creating a good-looking GUI in python

Load Balancer:

- Get UDP working with no-OS raw lwip.
- Catch and fix corner cases in state machine

IP Packet Module

 Timing closure with big dataframes (workarounds exist)

Hardware Neural Net

- Lots of stuff to build! :)
- Complicated control logic
- NN accuracy issues might be hard to debug
 - But also not fatal to the project

Our Demo

- Focused on getting FPGA <-> DESL PC networking working in hardware
 - Getting IP packet core from sim to H/W
 - Figuring out Python IP networking on DESL PCs
- Replaced full-scale neural net with XOR neural net
 - Uses same underlying dataflow arch (data width, mults)

What's Left

- Rebuild the LB using UDP, with the echo server as a template
- Convert IP core to UDP
- Networking validation
 - Validate LB<->IA protocol components
 - Validate LB<->Client protocol components
- ☐ Finish building the neural net in hardware
- Close timing on the neural net
- Write a pretty GUI

Final Demo Plans

- Multiple DESL PCs each contacting the load balancer, acquiring a board, and streaming large data batches to the accelerators
 - We'll see how far it can scale
 - Probably will end up limited by DESL infrastructure (e.g. how many PCs can we control at once?)
 - Hopefully demonstrating good classification accuracy for the ML workload
 - And hopefully no crashes :)

Questions?