Bayesian Statistics

Fabio Sigrist

ETH Zurich, Autumn Semester 2019

Today's topics

- Bayesian linear regression model
- ► Bayesian variable selection

Fabio Sigrist 1/25

Bayesian linear regression model

We consider here the linear regression model

$$y = \alpha \mathbf{1} + X\beta + \varepsilon, \quad \varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 I)$$

where

- \triangleright y is an $n \times 1$ vector of responses
- ▶ $\mathbf{1} = (1, ..., 1)^T$
- \triangleright X is the $n \times p$ design matrix
 - the j-th column of X contains the values of the j-th explanatory variable
 - we assume that all columns are centered: $X^T \mathbf{1} = 0$
- $ightharpoonup \alpha$ is the intercept, β the $p \times 1$ regression parameter
- \triangleright ε is the $n \times 1$ vector of errors

Fabio Sigrist 2/25

Model selection

We also want to do selection of explanatory variables.

- ▶ We denote by γ an element of $\{0,1\}^p$ where $\gamma_j = 1$ iff the j-th variable is selected
- Let β_{γ} be the sub-vector that contains only the selected components and X_{γ} the corresponding submatrix
- ▶ The number of explanatory variables included in the model γ is denoted by $|\gamma|$

Then the model indexed by γ is

$$\mathbf{y} = \alpha \mathbf{1} + \mathbf{X}_{\gamma} \beta_{\gamma} + \varepsilon$$

Fabio Sigrist 3/25

Bayesian inference

- Our goal is to compute the posterior of the unknowns $(\gamma, \beta_{\gamma}, \alpha, \sigma^2)$
- For doing this, we need to specify a likelihood and a prior
- In the following, we first assume that γ is fixed (i.e., no model selection)

Fabio Sigrist 4/25

Bayesian linear regression model

Fabio Sigrist 5/25

Bayesian linear regression model: likelihood

► The likelihood is given by

$$(\sigma^2)^{-n/2} \exp\left(-rac{1}{2\sigma^2}(y-lpha\mathbf{1}-X_\gammaeta_\gamma)^T(y-lpha\mathbf{1}-X_\gammaeta_\gamma)
ight)$$

This can also be written as

$$(\sigma^2)^{-n/2} \exp\left(-\frac{s_\gamma^2 + n(\widehat{\alpha} - \alpha)^2 + (\beta_\gamma - \widehat{\beta}_\gamma)^\mathsf{T} X_\gamma^\mathsf{T} X_\gamma (\beta_\gamma - \widehat{\beta}_\gamma)}{2\sigma^2}\right)$$

where

 $ightharpoonup \widehat{\alpha}$ and β_{γ} are the MLEs:

$$\widehat{\alpha} = \overline{y}, \quad \widehat{\beta}_{\gamma} = (X_{\gamma}^T X_{\gamma})^{-1} X_{\gamma}^T y$$

 $ightharpoonup s_{\gamma}^2$ is the residual sum of squares

$$s_{\gamma}^2 = (y - \widehat{\alpha} \mathbf{1} - X_{\gamma} \widehat{\beta}_{\gamma})^T (y - \widehat{\alpha} \mathbf{1} - X_{\gamma} \widehat{\beta}_{\gamma})$$

See blackboard for derivation

Bayesian linear regression model: prior

As prior, we choose

$$\pi(\beta_{\gamma}, \alpha, \sigma^{2}) = \pi(\alpha)\pi(\sigma^{2})\pi(\beta_{\gamma} \mid \sigma^{2}) \propto \pi(\beta_{\gamma} \mid \sigma^{2})\sigma^{-2}$$

- ightharpoonup α independent from σ^2 and β_γ
- ▶ Univariate Jeffreys priors for α and σ^2
- For β_{γ} , use the so-called *g***-prior** of Zellner

$$eta_{\gamma} \mid \sigma^2 \sim \mathcal{N}(eta_{\gamma}^0, g\sigma^2(X_{\gamma}^T X_{\gamma})^{-1})$$

 $ightharpoonup eta_{\gamma}^{0}$ is the prior mean. Often, one uses $eta_{\gamma}^{0}=0$

Fabio Sigrist 7/25

Comments on the *g*-prior

- Since the design matrix is considered to be known and fixed, we can use it for the prior
- g > 0 is a hyperparameter which can be interpreted as a measure of the amount of information available in the prior relative to the data
- ▶ The g-prior arises as the posterior from a flat prior and a response vector $y = X_{\gamma}\beta_{\gamma}^{0}$ (i.e., y = 0 if $\beta_{\gamma}^{0} = 0$) with the same design matrix X_{γ} , no intercept, and error variance $g\sigma^{2}$
- We cannot use a flat prior if we want to do model selection later because this would leave posterior probabilities of different models γ undefined

Fabio Sigrist 8/25

Bayesian linear regression model: posterior

Combining the prior and likelihood leads to the posterior

$$\begin{split} &\pi(\beta_{\gamma},\alpha,\sigma^{2}\mid y) \\ &\propto &(\sigma^{2})^{-n/2-1} \exp\left(-\frac{s_{\gamma}^{2}}{2\sigma^{2}}\right) (g\sigma^{2})^{-|\gamma|/2} \det(X_{\gamma}^{T}X_{\gamma})^{1/2} \\ &\cdot \exp\left(-\frac{n(\widehat{\alpha}-\alpha)^{2} + \left(\beta_{\gamma} - \widehat{\beta}_{\gamma}\right)^{T} X_{\gamma}^{T}X_{\gamma} \left(\beta_{\gamma} - \widehat{\beta}_{\gamma}\right) + \frac{1}{g} \left(\beta_{\gamma} - \beta_{\gamma}^{0}\right)^{T} X_{\gamma}^{T}X_{\gamma} \left(\beta_{\gamma} - \beta_{\gamma}^{0}\right)}{2\sigma^{2}}\right) \end{split}$$

Fabio Sigrist 9/25

Bayesian linear regression model: posterior

We obtain the following marginal and conditional posteriors:

$$\blacktriangleright \ \beta_{\gamma} \mid \mathbf{y}, \sigma^{2} \sim \mathcal{N}\left(\frac{g}{g+1}\widehat{\beta}_{\gamma} + \frac{1}{g+1}\beta_{\gamma}^{0}, \frac{g\sigma^{2}}{g+1}(\mathbf{X}_{\gamma}^{T}\mathbf{X}_{\gamma})^{-1}\right)$$

$$ightharpoonup lpha \mid y, \sigma^2 \sim N(\bar{y}, \frac{\sigma^2}{n})$$

See blackboard for derivation

Fabio Sigrist 10/25

Bayesian variable selection

Fabio Sigrist 11/25

Posterior model probabilities for model selection

For Bayesian model selection, we put a prior on the set of possible models γ and compute the **posterior model probability**

$$\pi(\gamma \mid y) = \frac{\pi(\gamma)f(y \mid \gamma)}{\sum_{\gamma'} \pi(\gamma')f(y \mid \gamma')}$$

where the marginal likelihood $f(y \mid \gamma)$ is

$$f(y \mid \gamma) = \int f(y \mid \beta_{\gamma}, \alpha, \sigma^{2}) \pi(\beta_{\gamma}, \alpha, \sigma^{2}) d\beta_{\gamma} d\alpha d\sigma^{2}$$

Fabio Sigrist 12/25

Model selection and improper priors

- We cannot use an improper prior for β_{γ} (or any model specific parameter in general) since $f(y \mid \gamma)$ is only defined up to an arbitrary constant which does not cancel in $\pi(\gamma \mid y)$ because this constant differs for different models. This leads to indeterminate model probabilities and Bayes factors
- An improper prior for α and σ^2 is allowed because these two parameters are shared by all models

Fabio Sigrist 13/25

Posterior model probabilities for *g*-prior

For the *g*-prior*, $f(y \mid \gamma)$ can be computed in closed form:

$$f(y \mid \gamma) \propto \frac{(1+g)^{(n-1-|\gamma|)/2}}{(1+g(1-R_{\gamma}^2))^{(n-1)/2}}$$

where

- $\begin{array}{l} \blacktriangleright \ R_{\gamma}^2 = 1 \frac{s_{\gamma}^2}{s_0^2}, \\ \text{and where } s_0^2 = (y \bar{y}\mathbf{1})^T(y \bar{y}\mathbf{1}) \text{ is the sum of squared errors} \\ \text{in the null model } \gamma = 0 \end{array}$
- lacktriangleright " \propto " means up to factors which contain neither γ nor g

See blackboard

^{*}For the sake of simplicity, we assume $\beta_{\gamma}^0=0$ in the following

Choice of a prior $\pi(\gamma)$ for $\gamma \in \{0, 1\}^p$

- The simplest choice is the **uniform prior** $\pi(\gamma) = 2^{-p}$ for all γ . I.e., each explanatory variable is included with probability $\frac{1}{2}$, independently of the other. For large p, this is however **informative for the size of the model** because with high prior probability $|\gamma| \approx \frac{p}{2}$.
- A uniform prior for $|\gamma|$ is obtained by assuming that each explanatory variable is included with probability r where r is unknown and uniform on (0,1)
- If the number of variables p is large, then computing $\pi(\gamma \mid y)$ for all γ is difficult. In such a situation, stochastic search algorithms are preferable

Fabio Sigrist 15/25

Bayes factor for model selection

- ▶ The posterior model probabilities $\pi(\gamma \mid y)$ depend on the prior $\pi(\gamma)$
- One can avoid this if one uses the Bayes factor which is independent of the prior:

$$\begin{split} B(\gamma, \gamma') &= \frac{\pi(\gamma \mid y)}{\pi(\gamma' \mid y)} \frac{\pi(\gamma')}{\pi(\gamma)} \\ &= \frac{f(y \mid \gamma)}{f(y \mid \gamma')} \\ &= \underbrace{\frac{(1+g)^{(|\gamma'|-|\gamma|)/2}}{\text{"Complexity penalty"}}}_{\text{(decreases with } |\gamma|)} \underbrace{\frac{1+g(1-R_{\gamma'}^2)}{1+g(1-R_{\gamma}^2)}}_{\text{"Goodness of fit" (increases with } R_{\gamma}^2)} \end{split}}_{\text{"Goodness of fit" (increases with } R_{\gamma}^2)} \end{split}}$$

▶ The Bayes factor for comparing γ with the null model is

$$B(\gamma,0) = \frac{(1+g)^{(n-|\gamma|-1)/2}}{(1+g(1-R_{\alpha}^{2}))^{(n-1)/2}}$$

Fabio Sigrist 16/25

Bayesian model averaging

Fabio Sigrist 17/25

Bayesian model averaging

- For predicting a new observation y_{n+1} for a given vector x_{n+1} of explanatory variables, **Bayesian model averaging** is an alternative to model selection.
- Bayesian model averaging works by
 - making predictions under each model,
 - averaging all predictions according to the posterior probability of each model.
- For instance, the prediction of the mean of y_{n+1} is (for known g) given by

$$\mathbb{E}(y_{n+1}\mid y) = \bar{y} + \frac{g}{g+1} \sum_{\gamma} x_{n+1,\gamma}^{T} \widehat{\beta}_{\gamma} \pi(\gamma \mid y).$$

Fabio Sigrist 18/25

Unknown g

Fabio Sigrist 19/25

Choosing g

- Bayes factors (and also posterior distributions) depend on the choice of g
- As g tends to infinity, the prior becomes non-informative. However, as $g \to \infty$, $B(\gamma, 0) \to 0$ for any $\gamma \neq 0$. I.e., we always choose the null model ("Bartlett's paradox")
- ▶ Choosing any **fixed value for** g also leads to problems: if g is fixed and $R_{\gamma}^2 \to 1$ then $B(\gamma,0) \to (1+g)^{(n-1-\gamma)/2}$ which is finite although one would expect that that this goes to infinity ("information paradox")

Fabio Sigrist 20/25

Choosing g

- In order to avoid these paradoxes, we make use of hierarchical models and consider *g* to be unknown
- In addition, when choosing g, an often desirable frequentist property is the so called **model selection consistency**: the probability that the true model γ' is selected must converge to 1 as the number of samples n goes to infinity:

$$\pi(\gamma' \mid y) \xrightarrow{p} 1 \text{ as } n \to \infty$$

Fabio Sigrist 21/25

Choosing *g*: empirical Bayes

- In an **empirical Bayes approach**, we can determine \hat{g} either separately for each model γ or globally for all models together
- Separately:

$$egin{aligned} \widehat{g} &= rg \max \left((n-1-|\gamma|) \log (1+g) - (n-1) \log (1+g(1-R_{\gamma}^2))
ight) \ &= \max \left(rac{(n-1-|\gamma|) R_{\gamma}^2}{|\gamma| (1-R_{\gamma}^2)} - 1, 0
ight) \end{aligned}$$

The above ratio is the standard F-test statistics for the null hypothesis $\beta_{\gamma}=0$

Globally:

$$\widehat{g} = rg \max \sum_{\gamma} \pi(\gamma) f(y \mid \gamma)$$

This has to be computed numerically

Fabio Sigrist 22/25

Unknown g: empirical Bayes

- In both cases, one can show that the information paradox does not occur any more.
- The empirical Bayes approaches do have model selection consistency except if the true model is the null model

Fabio Sigrist 23/25

Unknown g: fully Bayesian

- In a fully Bayesian approach, one can both avoid the above paradoxes and have model selection consistency for all true models
- lt is desirable to have a prior $\pi(g)$ such that

$$f(y \mid \gamma) \propto \int \frac{(1+g)^{(n-1-|\gamma|)/2}}{(1+g(1-R_{\gamma}^2))^{(n-1)/2}} \pi(g) dg$$

can be computed easily

In order to avoid the information paradox, it is sufficient to have

$$\int (1+g)^{(n-1-|\gamma|)/2}\pi(g)dg = \infty \quad (|\gamma| \le p)$$

Fabio Sigrist 24/25

Priors on g

Zellner-Siow prior

$$\pi(g) \propto g^{-3/2} \exp(-n/(2g))$$
 (i.e., $g \sim IG(1/2, n/2)$)

- Has the model selection consistency property for all true models
- Hyper-g prior

$$\pi(g) \propto (1+g)^{-a/2} \quad (a < 2 \le 3)$$

"Only" has the model selection consistency property for all true models except the null model

Fabio Sigrist 25/25