

DS-поток

23 сентября

Задача классификации

Ô

Классификация

 \mathscr{X} — пространство объектов,

 \mathscr{Y} — конечное множество классов.

Истинное правило классификации:

неизвестная функция $f: \mathscr{X} \to \mathscr{Y}$.

Пространство $\mathscr X$ разбивается на подпространства (decision regions) $\mathscr X_y = \{x \in \mathscr X \mid f(x) = y\}$, границы которых называются разделяющими поверхностями (decision surfaces).

Часто $\mathscr{X} \subset \mathbb{R}^d$, в т.ч. могут быть категориальные.

Типы классификации

- 1. Двухклассовая. $\mathscr{Y} = \{0,1\}$ или $\mathscr{Y} = \{-1,1\}$.
- 2. Многоклассовая.

$$\mathscr{Y} = \{1,...,K\}$$
 или $\mathscr{Y} = \{(1,0,...,0),(0,1,...,0),...,(0,0,...,1)\}.$

Задача классификации:

предложить оценку $\widehat{f}: \mathscr{X} \to \mathscr{Y}$ правила классификации на основе обуч. выборки $(x_1,Y_1),...,(x_n,Y_n)$, где $x_i=(x_{i1},...,x_{id})\in \mathscr{X}$, $Y_i\in \mathscr{Y}$. как можно точнее приближающую неизвестное правило классиф-ции.

Оценку правила классификации чаще будем называть моделью.

Вероятностная природа

Часто предполагается случайная принадлежность классу: ϕ ункция f при повторении эксперимента один и тот же объект $x \in \mathscr{X}$ может отнести как одному классу, так и к другому.

 \implies имеет смысл предсказывать вероятность $P_x(Y = y)$ принадлежности объекта x каждому из классов.

Точечная оценка: $\underset{y \in \mathscr{Y}}{\operatorname{arg max}} P_x(Y = y)$

Если классы неравнозначны: $\underset{y \in \mathscr{Y}}{\arg\max} [w_y \, \mathsf{P}_x(Y=y)],$ $w_y = \mathsf{приоритетность} \; \mathsf{класса}$

Примеры:

- 1. $P(Y = 0 \mid X = x_2) = 0.95$, $P(Y = 1 \mid X = x_2) = 0.05$ уверенное предсказание в пользу класса 0
- 2. $P(Y = 0 \mid X = x_1) = 0.55$, $P(Y = 1 \mid X = x_1) = 0.45$ модель не уверена в предсказании.

Ô

Типы моделей

Среди моделей, предсказывающих вероятность принадлежности классу, можно выделить две категории моделей:

1. Дискриминативные.

Оценивается $\mathsf{P}_{\mathsf{x}}(Y=y)$ для каждого $\mathsf{x}\in\mathscr{X}.$ Например, $\mathscr{P}=\left\{\mathsf{P}_{\varphi(\mathsf{x},\theta)}\right\}$ — семейство распр. с параметром $\theta.$

2. Генеративные.

Признаки X предполагаются случайными.

Оценивается совместная плотность $p_{X,Y}(x,y)$.

Вероятность класса считается, например, по формуле Байеса

$$P(Y = y \mid X = x) = \frac{p(x \mid Y = y) P(Y = y)}{\sum_{y \in \mathscr{Y}} p(x \mid Y = y) P(Y = y)}.$$

Это не есть байесовский вывод!

Генеративный подход сложнее дискриминативного.

Линейные модели

 $y(x) = \theta^T x$ — линейная модель регрессии.

Линейная модель в классификации:

разделяющая поверхность — линейная гиперплоскость в пр-ве ${\mathscr X}$.

В многоклассовом случае — при дополнении до гиперплоскости.

Например, при $\mathscr{Y} = \{0,1\}$ линейна модель $y(x) = \operatorname{sign}(\theta^T x)$.

Замечание.

Исходное пр-во признаков может быть предварительно преобразовано с помощью нелинейных функций, в частности можно включить константный признак. В таком случае разделяющая поверхность лин. классификатора не будет линейной в исходном пространстве.

