Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP05/050148

International filing date: 14 January 2005 (14.01.2005)

Document type: Certified copy of priority document

Document details: Country/Office: DE

Number: 102004003837.6

Filing date: 26 January 2004 (26.01.2004)

Date of receipt at the International Bureau: 05 April 2005 (05.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

BUNDESREPUBLIK DEUTSCHLAND

0 2 MAR 2005

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

10 2004 003 837.6

Anmeldetag:

26. Januar 2004

Anmelder/Inhaber:

Siemens Aktiengesellschaft, 80333 München/DE

Bezeichnung:

Schaltungsanordnung und Verfahren zur Erzeugung eines Steuersignals für eine Motorsteuereinheit zur

Ansteuerung von Kraftstoffinjektoren

IPC:

F 02 D, H 02 N, F 02 M

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 25. Februar 2005 **Deutsches Patent- und Markenamt** Der Präsident

> > Im Auftrag

Dzierzon

Beschreibung

5

10

15

20

30

Schaltungsanordnung und Verfahren zur Erzeugung eines Steuersignals für eine Motorsteuereinheit zur Ansteuerung von Kraftstoffinjektoren

Die vorliegende Erfindung betrifft eine Schaltungsanordnung sowie ein Verfahren zur Erzeugung eines Steuersignals für eine Motorsteuereinheit zur Ansteuerung wenigstens eines Kraftstoffinjektors einer Brennkraftmaschine.

Insbesondere die in letzter Zeit strenger gewordenen Abgasnormen für Motoren haben in der Kraftfahrzeugindustrie die
Entwicklung von Kraftstoffinjektoren mit schnell und verzögerungsfrei ansprechenden Stellgliedern bzw. Aktoren ausgelöst.
Bei der praktischen Realisierung derartiger Stellglieder haben sich insbesondere piezoelektrische Elemente als vorteilhaft erwiesen. Derartige Piezoelemente sind üblicherweise als
ein Stapel von Piezokeramikscheiben zusammengesetzt, die über
eine elektrische Parallelschaltung betrieben werden, um die
für einen ausreichenden Hub notwendigen elektrischen Feldstärken erreichen zu können.

Die Verwendung von piezoelektrischer Keramik zur Betätigung von Kraftstoffeinspritzventilen einer Brennkraftmaschine stellt erhebliche Anforderungen an die Elektronik zum Aufladen und Entladen der Piezokeramik. Es müssen dabei vergleichsweise große Spannungen (typisch 100V oder mehr) und kurzzeitig vergleichsweise große Ströme zur Ladung und Entladung (typisch mehr als 10A) bereitgestellt werden. Zur Optimierung der Motoreigenschaften (z.B. Abgaswerte, Leistung, Verbrauch etc.) sollten diese Lade- und Entladevorgänge in

Bruchteilen von Millisekunden mit gleichzeitig weitgehender Kontrolle über Strom und Spannung erfolgen.

Bei den bisher eingesetzten Motorsteuereinheiten umfassend eine Endstufe zum Betreiben eines oder mehrerer Piezo-Kraftstoffinjektoren sind die Lade- und Entladestromformen mehr oder weniger durch das jeweilige Funktionsprinzip der Schaltung vorgegeben bzw. nur in relativ engen Grenzen veränderbar.

10

15

20

25

30

5

So ist beispielsweise aus der DE 199 44 733 A1 eine Endstufe zum Ansteuern von Piezo-Kraftstoffinjektoren bekannt. Diese bekannte Endstufe basiert auf einem bidirektional betriebenen Sperrwandler und ermöglicht eine Zumessung von Energieportionen beim Laden und Entladen der piezoelektrischen Keramik der Kraftstoffinjektoren, so dass prinzipiell die Lade- und Entladestromformen als gemittelte Stromverläufe angepasst realisiert werden können. Die gewünschten Stromverläufe beim Laden und Entladen der Piezoelemente werden hierbei mittels einer in dieser Veröffentlichung nicht detailliert beschriebenen Steuerschaltung definiert, welche zu diesem Zweck die tatsächlich fließenden Lade- und Entladeströme (anhand von Spannungsabfällen an Strommesswiderständen) misst und basierend auf diesen Messgrößen die Auf- und Entladungen regelt. Zum Aufladen eines Piezoelements wird ein Ladeschalter mit vorgegebener Frequenz und vorgegebenem Tastverhältnis im Pulsbetrieb mit einer vorgegebenen Zahl von pulsweitenmodulierten Signalen angesteuert, wohingegen zum Entladen eines Piezoelements ein Entladeschalter pulsförmig leitend und nichtleitend gesteuert wird.

Wenn eine Motorsteuereinheit zur Ansteuerung wenigstens eines Kraftstoffinjektors, wie sie in zahlreichen Ausführungen an

10

15

30

sich bekannt sind, die Kraftstoffinjektoren in geregelter Weise ansteuern soll, so wird für diese Regelung ein Steuersignal benötigt, welches den "Sollwert" eines gewünschten zeitlichen Verlaufs beim Ansteuern eines Injektors, z. B. Laden oder Entladen eines Piezoinjektors, repräsentiert. Insbesondere aufgrund der wie oben bereits erwähnt relativ rasch ablaufenden Ansteuervorgänge wurden für die bislang eingesetzten Motorsteuereinheiten sehr einfache Regelungen bzw. Sollwert-Steuersignale verwendet. Die sich dann ergebenden Ansteuerverläufe, z. B. Lade- und Entladestromformen bei Piezoinjektoren sind insofern nicht optimal.

Es ist daher eine Aufgabe der vorliegenden Erfindung, einen Weg zur Erzeugung eines Steuersignals für eine Motorsteuer-einheit zur Ansteuerung wenigstens eines Kraftstoffinjektors einer Brennkraftmaschine anzugeben, mit welchem verbesserte Ansteuersignalverläufe bei der Injektoransteuerung realisiert werden können.

Diese Aufgabe wird gelöst durch eine Schaltungsanordnung nach Anspruch 1 oder ein Verfahren nach Anspruch 10. Die abhängigen Ansprüche betreffen vorteilhafte Weiterbildungen der Erfindung.

Die erfindungsgemäße Schaltungsanordnung zur Erzeugung eines Steuersignals für eine Motorsteuereinheit zur Ansteuerung wenigstens eines Kraftstoffinjektors einer Brennkraftmaschine umfasst:

eine mit einem vorgegebenen Taktsignal beaufschlagbare Zähleinrichtung zum Bereitstellen eines zeitabhängigen digitalen Zählsignals basierend auf einer Zählung des Taktsignals,

10

15

20

25

30

- eine mit dem digitalen Zählsignal beaufschlagbare Speichereinrichtung zum Speichern einer Folge von digitalen Steuersignalwerten und zum aufeinanderfolgenden Ausgeben einzelner Steuersignalwerte aus der Steuersignalwertfolge in Abhängigkeit von dem Zählsignal, und
- eine Digital/Analogwandlereinrichtung zum Wandeln der ausgegebenen digitalen Steuersignalwerte in das analoge Steuersignal für die Motorsteuereinheit.

Damit ist es möglich, in einfacher Weise ein dem jeweiligen Anwendungsfall angepasstes Steuersignal als Sollwertvorgabe bei der geregelten Ansteuerung eines Kraftstoffinjektors mit praktisch beliebiger Ansteuerform (z. B. Lade- und Entlade-stromform) zu erzeugen. Wesentlich ist hierbei die Speicherung einer digitalen Steuersignalwertfolge, von welcher im Betrieb der Schaltungsanordnung aufeinanderfolgend einzelne Steuersignalwerte ausgegeben und in das analoge Steuersignal gewandelt werden. Es ist also insbesondere nicht wie bisher notwendig, hinsichtlich der Lade- und Entladestromformen bei Piezoinjektoren Kompromisse einzugehen. Vielmehr können diese Formen den jeweiligen Erfordernissen optimal angepasst werden.

So ist es durch die freie Definierbarkeit der Verläufe von Lade- und Entladeströmen bei Piezoinjektoren und/oder der an solchen Piezoinjektoren anliegenden Spannungen möglich, sowohl den Anforderungen hinsichtlich einer variablen Hubhöhe der Piezoaktoren als auch der Einspritzzeitdauer bei gleichzeitiger Minimierung der akustischen Abstrahlung nachzukommen. Die Kraftstoffinjektoren bzw. deren Ansteuerung lässt

15

20

25

30

sich hinsichtlich der gewünschten Ventilöffnungs- und Ventilschließgeschwindigkeiten, der beim Öffnen und Schließen bewegten Massen und der (in der Regel nicht-linearen) Charakteristik der Umsetzung eines Aktuatorhubs in die Ventilöffnung bzw. Ventilschließung (z. B. hydraulische Umsetzung bei einem Piezo-Servoventil) optimieren. In Laborversuchen wurden z. B. ideale Auflade- und Entladestromkurven für Piezo-Servoventile ermittelt, die relative "sanft" und z. B. ähnlich der Funktion "sin²" verlaufen. Mit der erfindungsgemäßen Lösung lassen sich entsprechende Steuersignale zur Vorgabe von Sollwerten bei der geregelten Injektoransteuerung in einfacher Weise erzeugen.

In einer bevorzugten Ausführungsform ist vorgesehen, dass das Taktsignal mit einstellbarer Frequenz vorgegeben wird. Damit kann für ein und dieselbe gespeicherte Steuersignalwertfolge der Verlauf des entsprechenden Steuersignals in der Zeit skaliert werden. So führt beispielsweise die Einstellung einer niedrigeren Frequenz dazu, dass die Steuersignalwerte mit niedrigerer Taktfrequenz (langsamer) aus der Speichereinrichtung ausgelesen werden. Diese Frequenzeinstellung kann hierbei sowohl zur Anpassung des Steuersignalverlaufs an die Eigenschaften eines bestimmten von mehreren Injektoren als auch zur Anpassung dieses Steuersignalverlaufs an momentane Betriebsbedingungen der betreffenden Brennkraftmaschine bzw. Einspritzanlage verwendet werden. Derartige Anpassungen können hierbei ohne Weiteres in Echtzeit erfolgen.

Für die Einstellung der Taktfrequenz gibt es zahlreiche Möglichkeiten. Beispielsweise kann zur Bereitstellung des Taktsignals mit eingestellter Frequenz ein mit einem Zeitskaliersignal beaufschlagter spannungsgesteuerter Oszillator (VCO) verwendet werden. In einer anderen Ausführungsform wird hier ein Oszillator mit fester Oszillationsfrequenz und ein dem Oszillator nachgeschalteter Teiler verwendet, dessen Teilungsverhältnis durch ein dem Teiler eingegebenes Zeitskaliersignal bestimmt wird.

5

10

15

20

Bevorzugt ist als die in der Speichereinrichtung gespeicherte Steuersignalwertfolge eine Folge von mindestens 30, insbesondere mindestens 50 Steuersignalwerten vorgesehen. Mit einer derartigen Anzahl ergibt sich eine in der Praxis für die meisten Fälle hinreichend genaue Definition des Steuersignalverlaufs.

Im Hinblick auf die in Laborversuchen ermittelten optimierten Ansteuerkurven für den Strom bzw. die Ladung bei Piezoinjektoren ist es vorteilhaft, wenn die in der Speichereinrichtung gespeicherte Steuersignalwertfolge eine stetige Funktion annähert. Für die Sollwertvorgabe des Lade- oder Entladestromverlaufs bei einem Piezoinjektor hat sich z. B. eine Folge als besonders vorteilhaft herausgestellt, welche eine stetige, insbesondere stetig differenzierbare "Glockenfunktion" annähert. In einer Ausführungsform ist die Folge zusammengesetzt aus einem monoton steigenden und einem monoton fallenden Folgenabschnitt, welche zusammen die Glockenkurve annähern.

25

Hinsichtlich der Genauigkeit der Definition des Steuersignalverlaufs ist es in den meisten Anwendungsfällen günstig, wenn die digitalen Steuersignalwerte mit einer Auflösung von mindestens 8 bit vorgesehen sind.

30

Wenngleich es denkbar ist, dass die gespeicherte Steuersignalwertfolge verändert werden kann, z.B. durch Verwendung eines Schreib-Lese-Speichers und betriebsmäßiges Aktualisie-

10

15

20

25

30

ren der gespeicherten Daten, so vereinfacht sich der Aufbau bzw. Betrieb der Schaltungsanordnung erheblich, wenn eine oder auch mehrere auswählbare Steuersignalwertfolgen durch die gespeicherten Daten fest vorgegeben werden. In einer Ausführungsform ist daher vorgesehen, dass die Speichereinrichtung als ein Nur-Lese-Speicher ausgebildet ist.

Auch basierend auf einer im Betrieb fest vorgegebenen Steuersignalwertfolge ist es möglich, den Steuersignalverlauf variabel bzw. angepasst vorzusehen. Eine Möglichkeit hierzu ist die oben bereits erwähnte Einstellung der Frequenz des Taktsignals, welche eine zeitliche Skalierung des Steuersignalverlaufs bewirkt.

Alternativ oder zusätzlich ist es zur Modifikation des Steuersignalverlaufs beispielsweise möglich, die Wandlung der digitalen Steuersignalwerte in das analoge Steuersignal unter Berücksichtigung eines Amplitudenskaliersignalwerts vorzusehen. Ein solcher Amplitudenskaliersignalwert kann beispielsweise an einem Referenzeingang eines Digital/Analogwandlers eingegeben werden, der zu diesem Zweck vorgesehen ist, so dass das Ausgangssignal des Wandlers in dessen Amplitude entsprechend dem eingegebenen Amplitudenskaliersignalwert skaliert wird.

In einer bevorzugten Ausführungsform ist vorgesehen, dass ein zur Einstellung der Taktsignalfrequenz vorgesehenes Zeitskaliersignal und ein zur Einstellung der Amplitude des Steuersignals vorgesehenes Amplitudenskaliersignal identisch sind oder voneinander bzw. von einem gemeinsamen Skaliersignal abgeleitet sind. Damit ist es beispielsweise in besonders einfacher Weise möglich, unterschiedliche Ladungsendwerte (ent-

sprechend unterschiedlichen Hüben eines Piezoinjektors) bei mitskalierter Auf- oder Entladezeit bereitzustellen.

Schließlich kann der Steuersignalverlauf auch z. B. dadurch modifiziert werden, dass die Zähleinrichtung oder eine der Zähleinrichtung nachgeschaltete digitale Umsetzeinrichtung derart vorgesehen ist, dass für diese Modifizierung eine Umcodierung des Zählsignals vor dessen Verwendung als Adresssignal stattfindet.

10

15

20

25

Die Anpassung des Steuersignalverlaufs kann beispielsweise hinsichtlich fertigungstechnisch bedingter Toleranzen der angesteuerten Kraftstoffinjektoren vorgesehen sein. So kann es etwa sein, dass in verschiedenen Kraftstoffinjektoren eingebaute Piezoelemente verschiedene Ladungsendwerte beim Injektoröffnungsvorgang benötigen, um das Injektorventil zum Anschlag (Vollöffnung) zu bringen. Derartige Toleranzen lassen sich z. B. durch Vorsehen eines entsprechend angepassten Skaliersignals ausgleichen. Für eine solche Anpassung an die Charakteristik eines Kraftstoffinjektors bzw. des darin verwendeten Stellglieds lassen sich vorteilhaft z. B. oftmals ohnehin verfügbare Sensorsignale nutzen, die von so genannten Positions- oder Anschlagsensoren der Injektoranordnung geliefert werden. Derartige Sensoren zur Echtzeit-Erfassung der Charakteristik und/oder des tatsächlichen Bewegungsverlaufs in Kraftstoffinjektoren sind hinreichend bekannt und bedürfen daher keiner detaillierten Erläuterung.

Ferner können z. B. folgende Betriebsparameter der betreffen30 den Brennkraftmaschine bzw. Einspritzanlage ausgewertet und
zur Anpassung des Steuersignalverlaufs herangezogen werden:
Pumpenvordruck (z. B. Raildruck), Temperatur (insbesondere

30

Temperatur des Injektors und/oder des Kraftstoffs), Drehzahl und Last der Brennkraftmaschine etc.

Die Erfindung wird nachfolgend anhand einiger Ausführungsbeispiele mit Bezug auf die beigefügten Zeichnungen weiter beschrieben. Es stellen dar:

- Fig. 1 eine Darstellung zum Vergleich von zwei Kurvenformen des Ansteuersignals (Spannung) für einen
 Piezoinjektor,
 - Fig. 2 eine Darstellung zum Vergleich von zwei weiteren Kurvenformen des Ansteuersignals für einen Piezoinjektor,
 - Fig. 3 eine Darstellung zum Vergleich von zwei weiteren Kurvenformen des Ansteuersignals für einen Piezoinjektor,
- 20 Fig. 4 ein Blockschaltbild einer Schaltungsanordnung zur Erzeugung verschiedener Steuersignal-Kurvenformen für eine Motorsteuereinheit zur Ansteuerung eines oder mehrerer Kraftstoffinjektoren,
- ein Blockschaltbild einer Schaltungsanordnung zur Erzeugung verschiedener Steuersignal-Kurvenformen für eine Motorsteuereinheit zur Ansteuerung eines oder mehrerer Kraftstoffinjektoren gemäß einer weiteren Ausführungsform,
 - Fig. 6 ein Blockschaltbild einer Schaltungsanordnung zur Erzeugung verschiedener Steuersignal-Kurvenformen für eine Motorsteuereinheit zur Ansteuerung eines

oder mehrerer Kraftstoffinjektoren gemäß einer weiteren Ausführungsform, und

- Fig. 7 ein Blockschaltbild eines Motorsteuergeräts, in welchem eine Schaltungsanordnung nach Fig. 4 verwendet ist, zur Ansteuerung von Piezo-Kraftstoffinjektoren.
- Bei den in den Fig. 1 bis 3 dargestellten Kurvenformen handelt es sich um Ansteuerspannungen, wie sie von einem Motorsteuergerät eines Kraftfahrzeugs zum Öffnen eines mittels
 eines Piezoelements betätigten Kraftstoffeinspritzventils an
 das Piezoelement angelegt werden.
- 15 Aufgrund der vorgegebenen elektrischen Kapazität des Piezoelements entsprechen die dargestellten Kurvenformen auch dem Verlauf der in das Piezoelement eingespeicherten Ladungsmenge.
- Fig. 1 zeigt zwei Spannungsverläufe bzw. Kurvenformen U1, U2
 der Piezospannung Up im Verlauf der Zeit t. Die beiden Kurvenformen U1 und U2 besitzen unterschiedliche Piezospannungsendwerte Uend1 und Uend2, wobei im dargestellten Beispiel die
 Endspannung Uend2 des Piezospannungsverlaufs U2 die Hälfte
 des Spannungsendwerts Uend1 des Piezospannungsverlaufs U1 beträgt.

Die beiden Piezospannungsverläufe U1, U2 besitzen qualitativ denselben Verlauf, der sich nämlich für einen Piezoladestromverlauf mit genau einem Maximum ähnlich der Funktion sin² ergibt, wobei die Verläufe U1, U2 im Zeitbereich mit dem am Ende erreichten Spannungsendwert mitskaliert sind. Im dargestellten Beispiel bedeutet dies, dass die mit t3' bezeichnete

15

25

Aufladezeitdauer des Verlaufs U2 die Hälfte der Aufladezeitdauer t3 des Verlaufs U1 beträgt. Dementsprechend betragen die in der Figur ebenfalls eingezeichneten Zeiten t1' und t2', zu welchen die Piezospannung Up des Verlaufs U2 20% bzw. 75% des Spannungsendwerts Uend2 erreichen, ebenfalls die Hälfte der entsprechenden Zeiten t1 und t2 des Verlaufs U1. Aus dieser gleichzeitigen Skalierung des Spannungs- bzw. Ladungsendwerts und der Aufladezeit resultiert ein für beide Verläufe U1 und U2 gleicher maximaler Ladestrom für das Piezoelement, was in der Figur durch eine gleiche maximale Steilheit der Verläufe U1 und U2 zum Ausdruck kommt.

Bei den Kurvenformen U1 und U2 handelt es sich gewissermaßen um optimierte Kurven eines qualitativ vorgegebenen Verlaufs, die aufgrund der Skalierbarkeit vorteilhaft zur Ansteuerung von Kraftstoffinjektoren unterschiedlicher Ansteuercharakteristik oder zur Ansteuerung von Kraftstoffinjektoren mit variablem Betätigungshub eingesetzt werden können.

- 20 Die Fig. 2 und 3 sind der Fig. 1 entsprechende Darstellungen für andere Spannungsverläufe U1 und U2.
 - Fig. 2 zeigt im Unterschied zu Fig. 1 eine zusätzliche Skalierung (Verlängerung) im Zeitbereich für den Spannungsverlauf U2, wodurch der bei diesem Verlauf notwendige Ladestrom verringert wird und vorteilhaft eine Verschiebung des Akustikspektrums zu niedrigeren Frequenzen erreicht wird.
- Fig. 3 zeigt eine weitere Möglichkeit der Formung zweier
 30 Spannungsverläufe U1 und U2 mit unterschiedlichen Spannungsendwerten. Hierbei verlaufen die Piezospannungen Up bis zum
 Zeitpunkt t1=t1' identisch und dann voneinander abweichend

25

30

bis zum Erreichen der jeweiligen Spannungsendwerte Uend1, Uend2.

Schaltungsanordnungen zur Generierung einer Steuerspannung Us, die als "Sollwert" für Lade- und Entladeströme zur Realisierung der in den Fig. 1 bis 3 dargestellten Piezospannungsverläufe geeignet ist, werden nachfolgend mit Bezug auf die Fig. 4 bis 6 beschrieben.

Fig. 4 zeigt eine insgesamt mit 10 bezeichnete Schaltungsanordnung zur Erzeugung eines Steuersignals Us für eine Motorsteuereinheit zur Ansteuerung von Kraftstoffinjektoren,
wobei das erzeugte Steuersignal Us zur PiezostromSollwertvorgabe für die in den Fig. 1 bis 3 gezeigten Piezospannungsverläufe U1, U2 im Rahmen einer geregelten Piezoansteuerung geeignet ist, wie es nachfolgend erläutert wird.

Die Schaltungsanordnung 10 umfasst einen mit einem Taktsignal fc beaufschlagten Zähler 12, welcher - getriggert durch ein nicht dargestelltes Startsignal einer Motorsteuerelektronik das Taktsignal fc (von 1 bis N) zählt und als Ergebnis dieser Zählung ein zeitabhängiges digitales Zählsignal X bereitstellt. Im einfachsten Fall repräsentiert das Signal X die Anzahl der bis zum aktuellen Zeitpunkt durchlaufenden Taktsignalperioden.

Dieses digitale Zählsignal X wird einem Speicher 14 als Adresseingangssignal eingegeben. In diesem Speicher 14 wurde vorab eine Folge Y von digitalen Steuersignalwerten Y1, Y2 ... YN mit einer Auflösung von K bit gespeichert, die in Abhängigkeit von dem zur Adressierung eingegebenen Zählsignal X aufeinanderfolgend an einen Digital/Analogwandler 16 ausgegeben werden.

25

30

Der Digital/Analogwandler 16 wandelt die digitalen Steuersignalwerte Y1, Y2 ... in das analoge Steuersignal Us, welches in einer in dieser Figur nicht dargestellten Motorsteuereinheit als Sollwertvorgabe für den auszugebenden Piezostrom und folglich für die sich (als Integral des Stroms) ergebende Ladung (und proportional dazu die Piezospannung Up) verwendet wird.

Die in dem Speicher 14 gespeicherten Daten, in diesem Fall eine Liste oder Tabelle mit N Steuersignalwerten mit jeweils K bit Auflösung (hier: N=100, K=10), repräsentieren den gewünschten, vorab bestimmten und optimierten zeitlichen Sollwertverlauf für einen Injektoransteuerstrom zur Injektorventilöffnung. Für den Ventilschließvorgang kann derselbe Verlauf (invertiert) oder ein eigens hierfür in dem Speicher 14 gespeicherter anderer Verlauf vorgesehen sein.

Der konkrete Verlauf des Ausgangssignals Us wird hierbei noch durch zwei Parameter bestimmt. Zum einen ist dies die Frequenz eines fest vorgegebenen Taktsignals f0, welches von einem in Fig. 4 nicht dargestellten Taktgenerator erzeugt wird und über einen Teiler 18 als ein frequenzgeteiltes Taktsignal fc dem Zähler 12 eingegeben wird. Zum anderen ist dies ein (z. B. von einem Mikrocontroller ausgegebenes) digitales Skaliersignal S, welches einerseits unmittelbar dem Teiler 18 eingegeben wird und dessen Teilungsverhältnis bestimmt und andererseits über einen Digital/Analogwandler 20 in analoger Form einem Referenzeingang Ref des Digital/Analogwandlers 16 eingegeben wird. Das Skaliersignal S dient somit zum einen als ein Zeitskaliersignal, welches aufgrund des davon abhängigen Teilungsverhältnisses des Teilers 18 den Takt der Datenauslesung aus dem Speicher 14 und somit die Aufladezeit-

spanne bestimmt, und zum anderen als Amplitudenskaliersignal, welches als multiplikativer Parameter bei der ausgangsseitigen Wandlung durch den Digital/Analogwandler 16 berücksichtigt wird.

5

10

Wenn die Schaltungsanordnung nach Fig. 4 mit einer fest vorgegebenen Grundfrequenz f0, jedoch variablem Skaliersignal Sbetrieben wird, so lassen sich die in Fig. 1 gezeigten Spannungsverläufe U1 und U2 in einfacher Weise durch entsprechende Einstellung des Skaliersignals S (z. B. durch den erwähnten Mikrocontroller) realisieren. Der Übergang von dem Spannungsverlauf U1 zu dem Spannungsverlauf U2 erfolgt beispielsweise durch Halbierung des durch das Signal S dargestellten Skalierwerts.

15

20

25

Auch die in Fig. 2 dargestellte Variation des Spannungsverlaufs lässt sich mit der Schaltungsanordnung nach Fig. 4 in einfacher Weise realisieren. Im Gegensatz zu dem Betrieb mit fester Grundfrequenz f0 ist für einen Übergang von den Spannungsverlauf U1 auf den Spannungsverlauf U2 in Fig. 2 hierzu lediglich eine zusätzliche Verkleinerung der Frequenz des dem Teiler 18 eingegebenen Signals f0 vorzusehen (um die beim Spannungsverlauf U2 zusätzliche Verlängerung bzw. Verlangsamung des Piezospannungsanstiegs zu erzielen). Alternativ oder zusätzlich könnte für die Kurvenskalierung nach Fig. 2 auch (abweichend von der in Fig. 4 dargestellten Ausführungsform) das dem Teiler 18 zugeführte Zeitskaliersignal ungleich zu dem Amplitudenskaliersignal gewählt werden, welches dem Wandler 16 als Referenz eingegeben wird.

30

Schließlich kann auch die in Fig. 3 dargestellte Variation des Spannungsverlaufs mit der Schaltungsanordnung nach Fig. 4 realisiert werden, indem, abhängig vom gewünschten Spannungs-

verlauf, nicht die komplette gespeicherte Steuersignalwertfolge Y1, Y2 ... YN durchlaufen (ausgegeben) wird, sondern ein mittlerer Bereich aus dieser gespeicherten Folge (in Fig. 3 der Bereich zwischen t1 und t2) übersprungen wird.

5

10

15

20

Zu diesem Zweck kann der Zähler 12 derart steuerbar bzw. programmierbar gestaltet sein, dass die Steuerwertausgabe für einen Bereich von mittleren Adressen entsprechend einer vorgewählten Steuerwertamplitude unterdrückt wird. Letzteres z. B. indem der Zähler mit einer Steuerlogik kombiniert wird, welche für eine veränderbare Umcodierung des Signals X vor

dessen Ausgabe an den Speicher sorgt.

Die Schaltungsanordnung 10 zur Realisierung einer oder mehrerer der mit Bezug auf die Fig. 1 bis 3 beschriebenen Ansteuermethoden (unter Zugrundelegung einer optimierten Steuerkurve) lässt sich problemlos in fester Logik, also insbesondere auch ohne einen Mikrocontroller umsetzen, so dass sich eine sehr hohe Ablaufgeschwindigkeit im Mikrosekundenbereich erzielen lässt. In dieser Hinsicht ist es vorteilhaft, wenn bei der Wahl der Werte N, K, S binäre Vielfache verwendet werden, die sich dann z. B. sehr rasch durch eine entsprechende bit-Verschiebeoperation einstellen lassen.

25

30

Alternativ lässt sich die Methode allerdings auch mit einem Mikrocontroller oder einem DSP ("Digital Signal Processor") realisieren, wenn die Echtzeitanforderungen nicht allzu hoch sind. In diesem Fall sind gegebenenfalls vorgesehene Regelkreisabschnitte, z. B. für die Piezoansteuerspannung (bzw. Piezoladung), einfacher zu realisieren und die Notwendigkeit für analoge Schaltkreise reduziert, was die Gesamtanordnung kostengünstiger macht.

15

20

25

30

Die Fig. 5 und 6 zeigen noch zwei Modifikationen der Schaltungsanordnung nach Fig. 4, wobei in diesen Figuren analoge Schaltungskomponenten mit den gleichen Bezugszahlen bezeichnet sind, jedoch zur Unterscheidung der Ausführungsformen jeweils um 100 (Fig. 5) bzw. 200 (Fig. 6) erhöht.

Bei der Modifikation nach Fig. 5 ist ein analoges Skaliersignal S vorgesehen, welches in dieser Form unmittelbar dem Referenzeingang Ref des Digital/Analogwandlers 116 und über einen Analog/Digitalwandler 122 in digitaler Form dem Teiler 118 eingegeben wird.

Bei der in Fig. 6 gezeigten Modifikation wird zur Bereitstellung des Taktsignals fc ein spannungsgesteuerter Oszillator (VCO) 224 verwendet, der mit dem Skaliersignal S zur Frequenzeinstellung beaufschlagt wird. Dieses Signal S wird ferner einem analogen Multiplizierglied 216-2 zugeführt, welches einem Digital/Analogwandler 216-1 nachgeschaltet ist und mit diesem zusammen die Digital/Analogwandlereinrichtung 216 bildet.

Fig. 7 veranschaulicht in einem schematischen Blockschaltbild die Verwendung der oben beschrieben Schaltungsanordnung 10 für den Betrieb einer Endstufe 1 in einem Motorsteuergerät ECU zur geregelten Aufladung und Entladung von Piezoelementen in Kraftstoffinjektoren.

Das Motorsteuergerät ECU umfasst die Schaltungsanordnung 10, welcher einerseits von einem Oszillator 4 das Grundtaktsignal f0 und andererseits von einem Mikrocontroller 3 das Skaliersignal S eingegeben wird. In oben bereits beschriebener Weise erzeugt die Schaltungsanordnung 10 damit ein analoges Steuer-

15

20

30

signal Us, welches einer Ansteuereinheit 2 des Motorsteuergeräts ECU als Sollwertvorgabe zugeführt wird.

Von der Ansteuereinheit 2 werden unter anderem vier Auswahlsignale select1 bis select4 erzeugt und der Endstufe 1 zugeführt. Mittels dieser Signale select1 bis select4 wird unmittelbar vor einer Kraftstoffeinspritzung zunächst einer von vier Kraftstoffinjektoren ausgewählt.

Dem Piezoelement des ausgewählten Kraftstoffinjektors wird nachfolgend die Piezoansteuerspannung (eine der Spannungen Up1 bis Up4) zugeführt. Dies wird initiiert durch Ausgabe eines PWM-modulierten Ladesignals up von der Ansteuereinheit 2 an die Endstufe 1. In der Endstufe 1 wird das Signal up z. B. dem Gate eines Leistungs-MOS-FET zugeführt, um diesen zur Aufladung des betreffenden Piezoelements getaktet einzuschalten. Die Ansteuerung der Entladung des Piezoelements erfolgt in analoger Weise durch Erzeugung eines entsprechenden PWM-modulierten Entladesignals down, mittels welchem z. B. ein zur Entladung vorgesehener Leistungs-MOS-FET angesteuert wird.

Die PWM-Ansteuerung, insbesondere das Tastverhältnis der Lade- und Entladesignale up und down basiert hierbei auf einer Regelung, mittels welcher eine tatsächliche, für den Ansteuerzustand des aktuell angesteuerten Injektors repräsentative Größe (hier: Lade/Entladestrom Ip, alternativ z. B.: Piezospannung Up) in der Ansteuereinheit 2 mit einer entsprechenden Sollwertvorgabe (hier: von der Schaltungsanordnung 10 bereitgestelltes Steuersignal Us) verglichen wird und die Modulation der Signale up und down zum Angleichen der Istgröße (tatsächlich fließender Piezostrom) an die Sollgröße Us eingestellt wird.

15

Zur Berücksichtigung von Motorbetriebsparametern bei diesem geregelten Betrieb der Kraftstoffinjektoren werden hierbei solche Parameter wie z. B. der Druck p in einem Kraftstoffdruckspeicher, die Temperatur T des Kraftstoffs im Bereich der Injektoren etc. als Sensorsignale der Ansteuereinheit 2 zugeführt und, gegebenenfalls unter Einbeziehung des Mikrocontrollers 3, ausgewertet.

Wenngleich bei den vorstehend beschriebenen Ausführungsformen das Steuersignal Us die Vorgabe für einen an ein Piezoelement auszugebenden Strom darstellt, so ist dies nicht einschränkend für die Erfindung. Vielmehr kann das gemäß der Erfindung erzeugte Steuersignal auch eine beliebige andere, für den Ansteuerzustand oder den Ansteuerungsverlauf eines Kraftstoffinjektors, insbesondere Ladungszustand oder Lade/Entladespannung eines piezoelektrischen Stellglieds repräsentative Größe darstellen.

10

15

20

25

30

Patentansprüche

- 1. Schaltungsanordnung (10; 110; 210) zur Erzeugung eines Steuersignals (Us) für eine Motorsteuereinheit (ECU) zur Ansteuerung wenigstens eines Kraftstoffinjektors einer Brennkraftmaschine, umfassend:
 - eine mit einem vorgegebenen Taktsignal (fc) beaufschlagbare Zähleinrichtung (12; 112; 212) zum Bereitstellen eines zeitabhängigen digitalen Zählsignals (X) basierend auf einer Zählung des Taktsignals (fc),
 - eine mit dem digitalen Zählsignal (X) beaufschlagbare Speichereinrichtung (14; 114; 214) zum Speichern einer Folge (Y) von digitalen Steuersignalwerten (Y1, Y2 ...) und zum aufeinanderfolgenden Ausgeben einzelner Steuersignalwerte (Y1, Y2 ...) aus der Steuersignalwertfolge (Y) in Abhängigkeit von dem Zählsignal (X), und
 - eine Digital/Analogwandlereinrichtung (16; 116; 216) zum Wandeln der ausgegebenen digitalen Steuersignal-werte (Y1, Y2 ...) in das analoge Steuersignal (Us) für die Motorsteuereinheit (ECU).
 - 2. Schaltungsanordnung (10; 110; 210) nach Anspruch 1, wobei das Taktsignal (fc) mit einstellbarer Frequenz vorgegeben wird.
 - 3. Schaltungsanordnung (10; 110; 210) nach Anspruch 2, wobei zur Bereitstellung des Taktsignals (fc) mit eingestellter Frequenz ein mit einem Zeitskaliersignal (S) beaufschlag-

15

20

25

30

ter spannungsgesteuerter Oszillator (VCO) (224) verwendet wird.

- 4. Schaltungsanordnung (10; 110; 210) nach Anspruch 2, wobei zur Bereitstellung des Taktsignals (fc) mit eingestellter Frequenz ein Oszillator mit fester Oszillationsfrequenz und ein dem Oszillator nachgeschalteter Teiler (18; 118) verwendet wird, dessen Teilungsverhältnis durch ein dem Teiler eingegebenes Zeitskaliersignal (S) bestimmt wird.
 - 5. Schaltungsanordnung (10; 110; 210) nach einem der vorangehenden Ansprüche, wobei als die in der Speichereinrichtung (14; 114; 214) gespeicherte Steuersignalwertfolge (Y) eine Folge von mindestens 30, insbesondere mindestens 50 Steuersignalwerten (Y1, Y2 ... YN) vorgesehen ist.
 - 6. Schaltungsanordnung (10; 110; 210) nach einem der vorangehenden Ansprüche, wobei als die in der Speichereinrichtung (14; 114; 214) gespeicherte Steuersignalwertfolge (Y) eine stetige Funktion annähert.
 - 7. Schaltungsanordnung (10; 110; 210) nach einem der vorangehenden Ansprüche, wobei die digitalen Steuersignalwerte (Y1, Y2 ...) mit einer Auflösung von mindestens 8 bit vorgesehen sind.
 - 8. Schaltungsanordnung (10; 110; 210) nach einem der vorangehenden Ansprüche, wobei die Speichereinrichtung (14; 114; 214) als ein Nur-Lese-Speicher ausgebildet ist.
 - 9. Schaltungsanordnung (10; 110; 210) nach einem der vorangehenden Ansprüche, wobei die Wandlung der digitalen Steuersignalwerte (Y1, Y2 ...) in das analoge Steuersig-

15

nal (Us) unter Berücksichtigung eines Amplitudenskaliersignalwerts (S) vorgesehen ist.

- 10. Verfahren zur Erzeugung eines Steuersignals (Us) für eine 5 Motorsteuereinheit (ECU) zur Ansteuerung wenigstens eines Kraftstoffinjektors einer Brennkraftmaschine, umfassend:
 - Zählen eines vorgegebenen Taktsignals (fc), um ein zeitabhängiges digitales Zählsignal (X) bereitzustellen,
 - aufeinanderfolgendes Ausgeben einzelner digitaler Steuersignalwerte (Y1, Y2 ...) in Abhängigkeit von dem Zählsignal (X) aus einer zuvor gespeicherten Folge (Y) von Steuersignalwerten (Y1, Y2 ... YN), und
 - Wandeln der ausgegebenen digitalen Steuersignalwerte (Y1, Y2 ...) in das analoge Steuersignal (Us) für die Motorsteuereinheit (ECU).

10

15

20

Zusammenfassung

Schaltungsanordnung und Verfahren zur Erzeugung eines Steuersignals für eine Motorsteuereinheit zur Ansteuerung eines Kraftstoffinjektors

Es wird eine Schaltungsanordnung (10) zur Erzeugung eines Steuersignals für eine Motorsteuereinheit zur Ansteuerung wenigstens eines Kraftstoffinjektors einer Brennkraftmaschine angegeben, mit welcher verbesserte Ansteuersignalverläufe bei der Injektoransteuerung realisiert werden können, umfassend:

- eine mit einem vorgegebenen Taktsignal (fc) beaufschlagbare Zähleinrichtung (12) zum Bereitstellen eines zeitabhängigen digitalen Zählsignals (X) basierend auf einer Zählung des Taktsignals (fc),
- eine mit dem digitalen Zählsignal (X) beaufschlagbare Speichereinrichtung (14) zum Speichern einer Folge (Y) von digitalen Steuersignalwerten und zum aufeinanderfolgenden Ausgeben einzelner Steuersignalwerte aus der Steuersignalwertfolge (Y) in Abhängigkeit von dem Zählsignal (X), und
- eine Digital/Analogwandlereinrichtung (16) zum Wandeln der ausgegebenen digitalen Steuersignalwerte in das analoge Steuersignal (Us) für die Motorsteuereinheit.
- 30 Figur 4

Fig. 7

