Public Health Service Water Pollution Surveillance System

ANNUAL COMPILATION OF DATA October 1, 1962 - - - September 30, 1963

A Federal, State and Local cooperative report on water pollution surveillance of surface waters at selected locations throughout the United States

RELATED PUBLICATIONS:

National Water Quality Network Annual Compilation of Data, October 1, 1957–September 30, 1958 Public Health Service Publication No. 663 (1958 Edition)

National Water Quality Network Statistical Summary of Selected Data, October 1, 1957–September 30, 1958 Public Health Service Publication No. 663—Supplement 1

National Water Quality Network Annual Compilation of Data, October 1, 1958–September 30, 1959 Public Health Service Publication No. 663 (1959 Edition)

National Water Quality Network Annual Compilation of Data, October 1, 1959–September 30, 1960 Public Health Service Publication No. 663 (1960 Edition)

National Water Quality Network Plankton Population Dynamics, July 1, 1959–June 30, 1961 Public Health Service Publication No. 663—Supplement 2

National Water Quality Network Annual Compilation of Data, October 1, 1960–September 30, 1961 Public Health Service Publication No. 663 (1961 Edition)

National Water Quality Network Annual Compilation of Data, October 1, 1961–September 30, 1962 Public Health Service Publication No. 663 (1962 Edition)

PUBLIC HEALTH SERVICE PUBLICATION NO. 663 (Revised) (1963 Edition)

ACKNOWLEDGMENT

To increase the usefulness of the water quality data, annual compilations since 1958, including this one, have presented preliminary and unadjusted flow data for gaging stations at or near most of the Public Health Service Water Pollution Surveillance System sampling points. Final data may be obtained directly from the agency concerned. Any studies using the provisional flow data herein compiled should verify the data prior to completion of reports on such studies. For making the flow information available for this publication, grateful acknowledgment is made by the Public Health Service to:

The International Boundary and Water Commission, United States and Mexico

The International Joint Commission, United States and Canada

The U.S. Department of the Interior Bureau of Reclamation • Geological Survey

The U.S. Department of the Army Corps of Engineers • Lake Survey

FOREWORD

This is the sixth annual compilation of data from the Public Health Service Water Pollution Surveillance System (formerly the National Water Quality Network). During this year, the System was increased from 122 to 128 stations. In order to provide data in a form more useful for local or regional water pollution control officials and their staffs, the present compilation is published in 11 separate volumes. The surveillance data reported herein reveal additional findings on pesticides and other organic chemicals in surface waters and on trends in radioactivity and other areas.

The Public Health Service gratefully acknowledges the assistance to our Surveillance System of the participating local, State and Federal Government agencies and private industry. The success of this program depends, in a large measure, upon their continued interest and support.

GORDON E. McCallum, D. Sc.,

Assistant Surgeon General,

Chief, Division of Water Supply and Pollution Control

VOLUME 1

Northeast Basin

CONNECTICUT RIVER at Enfield Dam, Conn. below Northfield, Mass. at Wilder, Vt.

HUDSON RIVER below Poughkeepsie, N.Y.

LAKE ERIE at Buffalo, N.Y.

MERRIMACK RIVER above Lowell, Mass.

RARITAN RIVER at Perth Amboy, N.J.

ST. LAWRENCE RIVER at Massena, N.Y.

VOLUME 2

North Atlantic Basin

DELAWARE RIVER at Philadelphia, Pa. at Trenton, N.J. at Martins Creek, Pa.

POTOMAC RIVER at Washington, D.C. at Great Falls, Md. at Williamsport, Md.

SCHUYLKILL RIVER at Philadelphia, Pa.

SHENANDOAH RIVER at Berryville, Va.

SUSQUEHANNA RIVER at Conowingo, Md. at Sayre, Pa.

VOLUME 3

Southeast Basin

APALACHICOLA RIVER at Chattahoochee, Fla.

CHATTAHOOCHEE RIVER at Columbus, Ga. at Lanett, Ala. at Atlanta, Ga.

ESCAMBIA RIVER at Century, Fla.

ROANOKE RIVER at John H. Kerr Dam and Reservoir, Va.

SAVANNAH RIVER at Port Wentworth, Ga. at North Augusta, S.C.

TOMBIGBEE RIVER below Columbus, Miss.

VOLUME 4

Western Great Lakes and Lake Erie Basins

WESTERN GREAT LAKES

DETROIT RIVER at Detroit, Mich.

LAKE MICHIGAN at Gary, Ind. at Milwaukee, Wis.

LAKE SUPERIOR at Duluth, Minn.

ST. CLAIR RIVER at Port Huron, Mich.

ST. MARYS RIVER at Sault Ste. Marie, Mich.

LAKE ERIE BASIN

CUYAHOGA RIVER at Cleveland, Ohio

MAUMEE RIVER at Toledo, Ohio

VOLUME 5

Ohio and Tennessee River Basins

OHIO RIVER BASIN

ALLEGHENY RIVER at Pittsburgh, Pa.

CUMBERLAND RIVER at Clarksville, Tenn.

KANAWHA RIVER at Winfield Dam, W. Va.

LITTLE MIAMI RIVER at Cincinnati, Ohio

MONONGAHELA RIVER at Pittsburgh, Pa.

OHIO RIVER at Cairo, Ill. at Evansville, Ind. at Louisville, Ky. at Cincinnati, Ohio at Huntington, W. Va. below Addison, Ohio at Toronto, Ohio

WABASH RIVER at New Harmony, Ind.

TENNESSEE RIVER BASIN

CLINCH RIVER above Kingston, Tenn. at Clinton, Tenn.

TENNESSEE RIVER

at Pickwick Landing, Tenn.

at Bridgeport, Ala.

at Chattanooga, Tenn.

at Lenoir City, Tenn.

VOLUME 6

Upper Mississippi River Basin

ILLINOIS RIVER near Grafton, Ill.

at Peoria, Ill.

MISSISSIPPI RIVER

at Cape Girardeau, Mo.

at East St. Louis, Ill.

at Burlington, Iowa

at Dubuque, Iowa

at Lock and Dam 3 below St. Paul, Minn.

RAINY RIVER

at Baudette, Minn.

at International Falls, Minn.

RED RIVER (NORTH)

at Grand Forks, N. Dak.

VOLUME 7

Missouri River Basin

BIG HORN RIVER at Hardin, Mont.

BIG SIOUX RIVER below Sioux Falls, S. Dak.

KANSAS RIVER at DeSoto, Kans.

MISSOURI RIVER

at St. Louis, Mo.

at Missouri City, Mo.

at Kansas City, Kans.

at St. Joseph, Mo.

at Omaha, Nebr.

at Yankton, S. Dak.

at Bismarck, N. Dak.

at Williston, N. Dak.

NORTH PLATTE RIVER above Henry, Nebr.

PLATTE RIVER above Plattsmouth, Nebr.

SOUTH PLATTE RIVER

at Julesburg, Colo.

YELLOWSTONE RIVER near Sidney, Mont.

VOLUME 8

Southwest-Lower Mississippi River Basin

ARKANSAS RIVER at Pendleton Ferry, Ark. at Little Rock, Ark. near Forth Smith, Ark. near Ponca City, Okla. at Coolidge, Kans.

MISSISSIPPI RIVER

at New Orleans, La.

at Delta, La.

at Vicksburg, Miss.

at West Memphis, Ark.

OUACHITA RIVER

at Bastrop, La.

RED RIVER (SOUTH)

at Alexandria, La.

at Bossier City, La.

at Index, Ark.

at Denison, Tex.

VERDIGRIS RIVER at Nowata, Okla.

VOLUME 9

Colorado River and Western Gulf Basins

COLORADO RIVER BASIN

ANIMAS RIVER at Cedar Hill, N. Mex.

COLORADO RIVER

at Yuma, Ariz.

above Parker Dam, Ariz.-Calif.

near Boulder City, Nev.

at Page, Ariz.

at Loma, Colo.

GREEN RIVER

at Dutch John, Utah

SAN JUAN RIVER at Shiprock, New Mex.

WESTERN GULF BASIN

RIO GRANDE

at Brownsville, Tex.

at Laredo, Tex.

at El Paso, Tex.

below Alamosa, Colo.

SABINE RIVER

near Ruliff, Tex.

VOLUME 10

Pacific Northwest and Alaska Basins

PACIFIC NORTHWEST

CLEARWATER RIVER

at Lewiston, Idaho

COLUMBIA RIVER

at Clatskanie, Oreg.

at Bonneville, Oreg.

at McNary Dam, Oreg.

at Pasco, Wash.

at 'Venatchee, Wash.

at Northport, Wash.

PEND OREILLE RIVER at Albeni Falls Dam, Idaho

SNAKE RIVER at Ice Harbor Dam, Wash. at Wawawai, Wash. at Payette, Idaho

SPOKANE RIVER at Post Falls Dam, Idaho

WILLAMETTE RIVER at Portland, Oreg.

YAKIMA RIVER at Richland, Wash.

ALASKA BASIN

CHENA RIVER at Fairbanks, Alaska

SHIP CREEK at Anchorage, Alaska

VOLUME 11
California and the Great Basins

CALIFORNIA BASIN

KLAMATH RIVER near Keno, Oreg.

SACRAMENTO RIVER at Greens Landing above Courtland, Calif.

SAN JOAQUIN RIVER near Vernalis, Calif.

GREAT BASIN

BEAR RIVER above Preston, Idaho

TRUCKEE RIVER at Calif.-Nev. Border at Farad, Calif.

vi

CONTENTS

FOREWORD
ACKNOWLEDGMENT
PUBLIC HEALTH SERVICE WATER POLLUTION SUR- VEILLANCE SYSTEM
MAP OF SYSTEM SAMPLING STATIONS
ANALYTICAL METHODS AND RELIABILITY OF DATA.
WATER POLLUTION PARAMETERS
Radioactivity
Plankton Populations
Organic Chemicals
Chemical, Physical, and Bacteriological Examinations
Trace Elements and Other Determinations
The Benthos
Fish Populations
STREAM FLOW
BIBLIOGRAPHY
EXPLANATION OF ANALYTICAL DATA
BASIN DESCRIPTION (Colorado River)
MAP OF BASIN SAMPLING STATIONS (Colorado River).
BASIN DESCRIPTION (Western Gulf)
MAP OF BASIN SAMPLING STATIONS (Western Gulf)
ANALYTICAL AND FLOW DATA. (See Station Index).

Volume 9.—Colorado River and Western Gulf Basins

ANALYTICAL AND FLOW DATA INDEX

STATION	General Description Trace Elements, Strontium 90	Radioactivity Determinations	Plankton Populations	Organic Chemicals	Chemical, Physical and Bacteriological Analyses	Flow Data
	Page No.	Page No.	Page No.	Page No.	Page No.	Page No.
COLORADO RIVER BASIN					·	
Animas River at Cedar Hill, N. Mex	25–26	27–28	30-31	29	32–33	34
Colorado River at Yuma, Ariz above Parker Dam, ArizCalif near Boulder City, Nev at Page, Ariz at Loma, Colo	35-36 45-46 53-54 63-64 73-74	37 47 55 65-66 75-76	38-39 48-49 56-57 68-69 78-79	40 50 58 67	41-42 51 59-60 70-71 80-81	43 52 61 72 77
Green River at Dutch John, Utah	83–84	85	86-87	_	88–89	90
San Juan River at Shiprock, N. Mex	91–92	93-94	96-97	95	98–99	100
WESTERN GULF BASIN						
Rio Grande at Brownsville, Tex at Laredo, Tex at El Paso, Tex below Alamosa, Colo	103-104 113-114 123-124 131-132	105 115-116 125 133	106–107 118–119 126–127 134–135	108 117 128	109-110 120-121 129 136	111 122 130 137
Sabine River near Ruliff, Tex	139–140	141	142-143	144	145–146	147

Dash (-) indicates no determination made.

THE PUBLIC HEALTH SERVICE

Water Pollution Surveillance System

The Public Health Service program for providing fundamental information on the quality of the Nation's waters stems from Public Law 660, approved July 9, 1956, as amended by Public Law 87-88, July 20, 1961. Section 4(c) thereof states: "... the Secretary (of Health, Education, and Welfare) shall in cooperation with other Federal, State, and local agencies having related responsibilities, collect and disseminate basic data on chemical, physical, and biological water quality insofar as such data or other information relate to water pollution and the prevention and control thereof."

To fulfill this responsibility, the Public Health Service Water Pollution Surveillance System collects, interprets, and disseminates:

- a. Information on changes in water quality at key points in river systems, as such quality may be affected by changes in water use and development.
- b. Continuous information on the nature and extent of pollutants affecting water quality.
- c. Data which will be useful in the development of comprehensive water resources programs.
- d. Data which will assist State, interstate, and other agencies in their water pollution control programs, and in the selection of sites for legitimate water uses.

Some 50 sampling stations were established when the program started, October 1, 1957. By September 30, 1963, the number had grown to 128.

Each sampling location satisfies one or more of the following criteria:

- a. Major waterways used for public water supply, propagation of fish and wildlife, recreational purposes, and agricultural, industrial, and other legitimate uses.
 - b. Interstate, coastal, and international boundary waters.
- c. Waters on which activities of the Federal Government may have an impact.

Sampling station sites are fixed only after consultation with local, State, Federal and other agencies having related interests.

Active local participation is important in this operation. It assures maximum development of all information valuable both locally and nationally. Program costs are shared by the Federal Government and State and local agencies, those of the latter through contributions of laboratory and sampling manpower. Specifically, the State and local agencies perform certain of the conventional chemical analyses and collect samples for the newer, more complex examinations. The Public Health Service, in turn, performs the more complex determinations and makes the results available to the participants and to the public. In addition, the consultation, training facilities, and other resources of the Public Health Service are available to the cooperating agencies.

Locations of sampling stations in operation as of September 30, 1963, are shown on page 2. Descriptions of the stations, participating agencies, and other pertinent information are presented with the station data.

PHS Water Pollution Surveillance System

MAJOR RIVER BASINS OF THE UNITED STATES

Only after careful screening of needs in water resource development was a pattern set for analyses of water samples.

All System samples are examined for:

- a. Radioactivity.
 - (1) Gross alpha.
 - (2) Gross beta.
 - (3) Strontium 90.
- b. Plankton populations.
- c. Coliform organisms.
- d. Organic chemicals.
- e. Biochemical, chemical, and physical measurements, including biochemical oxygen demand (BOD), dissolved oxygen (DO), chemical oxygen demand (COD), chlorine demand, ammonia nitrogen,

hydrogen ion concentration (pH), color turbidity, temperature, alkalinity, hardness, chloride, sulfate, phosphates and total dissolved solids.

f. Sodium, potassium, fluoride and trace elements.

Samples for groups c and e were collected and analyzed weekly. Samples for organic chemicals were collected and analyzed monthly and plankton organism examinations were conducted semimonthly. Water samples for analysis of suspended and dissolved gross alpha and beta radioactivity were submitted weekly. Strontium 90 analyses were made on composites of weekly samples accumulated over 3-month periods. Sodium, potassium, fluoride, and trace metals were also determined on 3-month composites of weekly samples. New parameters which are developed and found significant will be included as the program continues.

Analytical Methods and Reliability of Data

The physical, chemical and biochemical data documented in this publication are the result of efforts of the cooperating agencies. In general, about half of these measurements were contributed by their laboratories. Specifically, all measurements reported for temperature, pH, DO, BOD, COD, chlorine demand and ammonia nitrogen were performed by the participants at the sample collection point. In addition, about 45 of the participating groups regularly perform all or most of the determinations for the remaining parameters included in the data. Whenever possible, analyses for stable constituents not completed by the participants are completed in the central Water Quality laboratories. While individual laboratories make minor modifications to meet local conditions, the methods used in most cases are those published in the 11th edition, "Standard Methods for the Examination of Water and Wastewater" (22). For uniformity, the chlorine demand test is reported on the basis of the

starch-iodide titration procedure, and the chemical oxygen demand test is restricted to the use of 0.025 N reagents.

To assure continued reliability in the published data, frequent analysis of reference samples are made by each cooperating laboratory as an integral part of the overall program. Periodically a synthetic standard sample is provided to each participant for reference analysis. The reported results are reviewed. Any significant errors are called to the attention of the reporting laboratory and, after the cause of the errors has been determined, the previously submitted data are either corrected or discarded. From these findings, the analyses reported in this compilation are believed to be accurate to \pm 10 percent of the reported values.

The analytical methods used by the Public Health Service laboratories are described in the discussion of water quality parameters which follows, and are covered by references listed in the Bibliography.

Water Pollution Parameters

In the assessment of water pollution, all of the legitimate purposes for which raw waters can be used, and which may be affected by pollution, must be considered. These may range from the minimum requirements for navigation to the ultimate in water quality demanded for certain industrial processing. Standards differ considerably, therefore, according to water use.

For domestic use, water must be free of disease organisms, clear, colorless, taste- and odor-free, and have a relatively low dissolved mineral content. Agricultural water is judged primarily on its mineral content, especially with respect to the ratio of sodium to other cations, and the presence of boron. Water for fish propogation and recreational purposes must be relatively free from domestic and industrial pollution and must be able to sustain an active flora of the smaller aquatic organisms on which fish and wildlife feed. Industrial water quality demands run the gamut from the complete absence of minerals to a requirement of low temperature, the critical factor in water used for cooling. The effects of radio-active materials on these uses have not yet been fully appraised.

The various laboratory examinations made as part of this program are discussed below.

Radioactivity

Radioactivity, long recognized as a water contaminant from natural sources, has continued to grow in importance and health significance with the development of nuclear energy for both military and peaceful uses. Consequently, levels must be measured continually as new sources are established.

Gross alpha and beta measurements are made on both suspended and dissolved solids in the raw surface water samples. The total radioactivity in the dissolved solids provides a rough measure of the levels which may be found in a treated water, where water treatment removes substantially all of the suspended matter.

Beta activity levels generally reflect the variable contamination resulting from fallout and discharges from nuclear energy installations, institutions utilizing radioactive materials, and other manmade sources. The trend of gross beta radioactivity in samples received from 47 of the Public Health Service Water Pollution Surveillance System stations operating since 1957 is presented in Figure 1. During the first three quarters of the 1962 water year, renewed weapons testing resulted in a rise in gross beta radioactivity in surface waters of the United States. During the sec-

FIGURE I. GROSS BETA RADIOACTIVITY IN THE SURFACE WATERS OF THE UNITED STATES.

ond and third quarter of water year 1963, the national average activity reached a maximum of 75 pico curies per liter and then decreased. Beta levels have remained well below the Public Health Service Drinking Water Standard of 1,000 pc/l or $\mu\mu$ c/l (26).

Alpha levels reflect largely the activity added by uranium and thorium daughters. The waters of the United States can be characterized in a general way with respect to gross alpha radioactivity content. Gross alpha levels average less than 1 pc/l in east coast, Appalachian, Great Lakes, and Pacific Northwest States. On the Colorado Plateau, and along the eastern slope of the Rocky Mountains, natural radioactivity, principally from mineral deposits, results in average concentrations of about 20 pc/l.

Gross levels are most informative in ascertaining long-term trends or changes in water quality. By themselves, however, they are of limited value in assessing radiation exposure. Where gross results are consistently over the maximum permissible concentrations for mixed fission products, the identity of the specific radionuclides involved must be established.

Because of its significance in the environment, the concentration of strontium 90 in the total solids is also reported. In water year 1963, strontium 90 levels ranged from 0.4 to 11.3 pc/l. The national average reached a high of 3.8 pc/l during the fourth quarter (July, August, September 1963). Highest levels were in the north-central area of the coterminous United States where the average was approximately 6 pc/l for this quarter. All averages were less than the limit (10 pc/l) specified in the Public Health Service Drinking Water Standards (26). The levels of strontium 90 activity in waters of the United States since the first quarter of the 1959 calendar year are presented graphically in figure 2.

Plankton Populations

Geographical distribution of algae and other planktonic organisms are influenced by geologic and climatic factors, and result in distinctive plankton populations in different areas. Within each region, population

FIGURE 2. STRONTIUM - 90 IN SURFACE WATER OF THE UNITED STATES.

changes are directly related to temperature, and the nature and concentration of organic and mineral substances which enter the aquatic environment. These substances may come from domestic sewage, industrial wastes, runoff from agricultural lands, irrigation discharges, or native rocks and soils. They may be basic nutrients, highly toxic, or metabolically inert. Planktonic organisms differ greatly in their sensitivity to the nutrient and toxic substances which are present. Some thrive only in water which is relatively free of nutrients while others multiply rapidly in water which has been greatly enriched. Large numbers of tolerant algae usually develop in waters containing abundant supplies of inorganic nitrogen and phosphorus resulting from the mineralization of domestic sewage. These nuisance populations may clog filters in municipal water plants, and produce objectional tastes and odors.

On the other hand, plankton populations may be eradicated by the introduction of toxic organic or mineral wastes. This is not desirable because some plankton organisms play essential roles in providing food and oxygen for higher forms of aquatic life, and in cleansing polluted waters.

Beginning at low nutrient levels, progressive enrichment of waters results in an increase in the variety and abundance of the plankton. However, as higher levels of enrichment are attained, the increase in total numbers of organisms is accompanied by a decrease in the number of kinds of organisms. This change is typical in populations which have been subjected to the wide spectrum of substances being introduced into

surface water in ever increasing amounts. Plankton counts, which provide information concerning the variety and abundance of organisms, are useful in detecting changes in the concentration of organic and mineral substances which enter water supplies.

METHODS OF ANALYSIS

Plankton samples are collected semimonthly at each station. A sample consists of 3 liters of raw water taken directly from the stream or from a treatment plant intake. Preservation is effected at the time of collection by the use of 30 ppm merthiolate.

Three types of analyses are performed:

- 1. Rotifers, crustacea, and other micro invertebrates are removed from a 1-liter aliquot of the sample by settling 24 hours. The sediment is placed in a special slide, 80 x 50 x 2 mm., and the organisms are enumerated under a compound microscope at 100 × magnification. The counts are reported as organisms per liter.
- 2. A "total live algae" count is obtained from 1 milliliter of the sample by scanning two 50-mm. strips on a Sedgwick-Rafter slide using $200 \times$ magnification and a Whipple micrometer disc. An appropriate correction factor is used to convert the counts to units per milliliter. Each single cell or natural aggregate of cells (colony) occupying up to 300 square microns (μ^2) is counted as 1 unit. Large colonies are enumerated according to a modified areal-unit method in which aggregates occupying $300-1,000\mu^2$ are counted as 2 units, those occupying $1,000-2,500\mu^2$ as 3 units, those $2500-5000\mu^2$ as 4 units, and those over $5,000\mu^2$ as 5 units. About 95 percent of cell aggregates fall into size 1 or 2.
- 3. Identification and proportional census of diatom species are done from sediment obtained by settling 1 liter of the sample 48 hours. A small aliquot of the sediment is placed on a No. 1 coverglass and dried on a warming table. The sediment is ashed on the coverglass by heating on a hotplate, and permanent slides are made with hyrax mounting medium. Counts are made with 90 × apochromatic oil immersion objectives and 10 × oculars containing a Whipple micrometer disc. Random

strip counts are made until the total number of units reaches 200 to 300. The same areal units are used as described for Sedgwick-Rafter counting.

Organic Chemicals

The Nation's water resources continue to receive increasing quantities of organic contaminants. Since 1940 the chemical industry, particularly in the manufacture of synthetic and petrochemicals, has experienced an enormous expansion that shows every sign of continuing. Each year millions of pounds of synthetic detergents, insecticides, herbicides, and similar domestic products find their way into our streams from household sewers, industrial waste discharges, and land runoff.

Effective and economical treatment methods for most of the complex organic materials remain to be developed. Even where treatment exists, residues may remain in sufficient quantity to cause water damage. These stable residues persist through sewage treatment, biological and chemical action of the stream, and water treatment processes, and finally reach the consumer in drinking water.

The presence of some of these materials, even at concentrations considerably less than I part per million, may impair water quality, most noticably in production of tastes and odors. Fishflesh tainting, also quickly noticed by the consumer, is another damage. Effects on water treatment, many of which are ill-defined at present, and impairment of water quality for industrial uses are being reported with increasing frequency. Essentially nothing is known of the possible immediate or long-term effects of these materials on human health. Such information is urgently needed.

The usual sanitary analyses are not effective in measuring these newer organic contaminants. Yet it is essential to know something of their concentrations and character. A method known as the "Carbon Adsorption Technique," developed by the Public Health Service, permits the concentration of these organic compounds from a large volume of water. Elution of the adsorbed materials with organic solvents, followed by chemical separation and testing, provides useful information concerning organic pollution and for assaying river systems for these substances.

Following continuous flow of about 5,000 gallons of water through the carbon adsorption column over a 7- to 10-day period at 0.5 gpm, material on the carbon adsorption column is extracted with two solvents, chloroform and alcohol. The residues are weighed. The concentration of these materials in the water sampled is then computed. See Explanation of Analytical Data, page 21.

CHLOROFORM EXTRACTS

The organic residue recovered from the carbon adsorption column by chloroform is very complex. It is desirable to separate the crude extract into certain broad chemical classes, and this can be done on the basis of solubility differences. The various classes or groups and their general significance are discussed briefly below.

Ether Insolubles

This group is usually a brown, humuslike powder, apparently composed to a large extent of carboxylic acids, ketones, and alcohols of complicated structure. Origin of the group, which is an indicator of "old" pollution, is believed to be partially oxidized sewage and industrial wastes. For example, the Ohio River at Cincinnati has been exposed to much industrial and sewage pollution, and hence large amounts of ether insoluble materials are found. Streams with little or no pollution history have little or no ether insolubles. Chloroform extracts contain from 0 to 30 percent of ether insoluble material.

Water Solubles

These substances are largely acidic and undistillable at moderate temperatures, but their solubility in ether indicates that the molecules are smaller and probably simpler than the ether-solubles. On the other hand, their water solubility practically requires the presence of several functional groups, such as hydroxy-acid, keto-acid, and keto-alcohol. Such compounds probably originate from partial oxidation of hydrocarbons or they may be natural substances. They have very little odor. These materials usually make up 10 to 20 percent of the total extract.

Weak Acids

This group is characterized by being removed from ether solution with sodium hydroxide but not with sodium bicarbonate. Phenols are the best known weak acids, and if present in the water, appear in this group. Other weakly acidic compounds include certain enols, imides, sulfonamides, and some sulfur compounds. This group of materials also occurs in nature. The weak acids are odorous, and commonly constitute 5 to 20 percent of the chloroform extract.

Strong Acids

These acids are usually carboxylic acids such as acetic, benzoic, salicylic or butyric. Although classified as strong in reference to carbonic acid, they are actually weak when compared with a mineral acid, such as sulfuric. Many of the compounds are used industrially, but may also be produced by natural processes, such as fermentation. Some of the materials are highly odorous. This fraction makes up from 5 to 20 percent of the total. The significance of the strong acids can be interpreted only in the light of stream pollution conditions.

Bases

These compounds are organic amines. Such materials as aniline and pyridine are amines of commerce. Lower amines may occur as a result of decomposition. Although odorous, the low concentrations found are not likely to cause objectionable conditions. However, in the case of specific amine-containing wastes the compounds can be of considerable significance. Generally, only 1 or 2 percent of the total extract is made up of the bases.

Neutrals

This group frequently constitutes the major portion of the chloroform extract. Neither basic nor acidic, the materials are less reactive and tend to persist in streams longer than many other types. Hydrocarbons, aldehydes, ketones, esters, and ethers are examples of neutral materials. The group lends itself to further fractionation by means of chromatographic separation into aliphatic, aromatic, and oxygenated subgroups:

Aliphatics: This portion represents petroleum type hydrocarbons in a considerable state of purity, and is usually made up of mineral oil type of material. The percentage of aliphatics present yields important information about the possible source of pollution, since petroleum is the most likely source.

Aromatics: These are principally the coal tar hydrocarbons such as benzene, toluene, and a host of others, and their presence in any significant amount is a reliable indication of industrial pollution. Further, the materials can frequently be identified by infrared spectrophotometry. Some aromatic compounds which have been found in our rivers—and in our drinking water—include DDT, aldrin, endrin, dieldrin, phyenyl ether, orthonitrochlorobenzene, pyridine, phenol, and others. The materials are highly odorous, and may also be toxic. Their appearance in any quantity as pollutants should receive careful evaluation.

Oxygenated compounds (Oxys): These are the neutral compounds containing oxygen, such as aldehydes, ketones, and esters. They may have originated by direct discharge or may represent oxidation products from both natural and industrial materials. They help to indicate the "age" of the pollution, since pollution exposed to oxidation forces for a long time would be expected to contain large amounts of oxys. The oxy materials are odorous.

Losses

Manipulative losses inherent in this type of separation may amount to 10 to 15 percent. Losses greater than this may indicate that volatile components were lost from the sample. Such volatiles may have significance as pollutants.

ALCOHOL EXTRACTS

The alcohol extractables generally consist of materials more polar than the chloroform extractables. They often contain synthetic detergents, carboxylic acids and humic materials which may originate naturally or from oxidized products of domestic and industrial wastes. These classes of substances are not quantitatively recovered by the alcohol extraction. For example, this extraction recovers only 20 to 30 percent of the

synthetic detergents present. On waters of mixed industrial and domestic pollution, the chloroform and alcohol extractables may be about equal. On some streams where the industrial pollution is rather low and much natural pollution or sewage is present, the alcohol extractables may exceed the chloroform extractables by a factor of 4 to 6.

The alcohol extract is usually only partially soluble in water and most ordinary solvents. Very little further chemical separation of this material is currently practical. However, tests have revealed that synthetic detergents may make up 1 to 12 percent of the alcohol extract.

OTHER TESTS

Infrared spectra are routinely run on the total chloroform and alcohol extracts as well as the neutral, aliphatic, aromatic and oxygenated groups which are usually the most significant. Spectra of other groups are obtained when there is an indication that they may be significant. These spectra reveal something of the chemical structure of the materials, indicate differences and in certain instances provide a definite identification. In the case of the alcohol extracts, the infrared spectra will indicate the presence of synthetic detergents if the materials constitute a significant portion.

Thin layer chromatography has been applied successfully to the resolution of the aromatic and basic fractions of CCE. Gas chromatographic equipment with flame ionization, electron-capture and microcoulometric detectors have also been used freely in the identification of specific substances.

COMPOSITE ANALYSIS

Samples from certain locations have been selected for analysis on a quarterly composite basis. Stations that have collected at least 12 samples in a nearly consecutive manner and averaged 100 ppb. or less of chloroform extractables are selected for such analysis when certain other conditions are met. However, samples falling in this category are analyzed individually when the recovery of the chloroform extract is exceptionally high and/or it is unusual in its infrared spectrum or some other physical characteristic.

SPECIFIC IDENTIFICATIONS

Information about specific organic substances which were identified in carbon adsorption samples is given on the second page of the group associated with each station. The increased number of pesticide and other specific compounds identified, as compared to previous years, is partly associated with greater sensitivity in analytical methodology and may be partly a reflection of the increasing usage of these substances in the total environment.

Chemical, Physical, and Bacteriological Examinations

The various biochemical, chemical, physical, and bacteriological examinations generally performed by the participating laboratories are discussed below.

AMMONIA NITROGEN AND CHLORINE DEMAND

The cost of water treatment for domestic use is affected by the consumption of chlorine, with ammonia nitrogen being responsible for a large portion of the chlorine demand. The greater this demand, the more expensive is the treatment. The ammonia may originate from unstabilized domestic pollution, from industrial waste discharges, from run-off containing fertilizers used in farming operations or from all three. The presence of measurable quantities of nitrogen compounds, not necessarily ammonia, is also an indication of the fertility of the stream toward both macro- and micro-biological forms.

COLOR

Color in domestic water supplies is undesirable. Its removal in the water treatment process, whether it be from natural or industrial sources, may require large doses of chemicals and be expensive.

DISSOLVED OXYGEN, BIOCHEMICAL AND CHEMICAL OXYGEN DEMANDS

Biochemical processes, in which aquatic organisms attack and stabilize the organic matter present, require dissolved oxygen. If unstable oxidizable organic matter is present in excess, the organisms will multiply rapidly, consuming the oxygen present in the water, and bring about a foul, septic stream condition. The dissolved oxygen level thus serves to indicate the biochemical activity of the stream. High activity, resulting in low dissolved oxygen levels, will drive out game fish in favor of scavengers. Very low or zero oxygen levels will kill all fish and aquatic organisms dependent on dissolved oxygen for life. Temperature and reaeration rates also affect dissolved oxygen levels.

The 5-day biochemical oxygen demand (BOD) indicates the degree of unstabilized organic pollution from either domestic or industrial sources, to which the stream is being subjected. A significant demand will affect the fish and macroorganism population, and waters carrying a high BOD seldom contain game fish. On the other hand, game fish will thrive in streams in which the oxygen demand has been stabilized, as this condition is usually favorable for the growth of organisms on which fish feed.

The chemical oxygen demand analysis serves to support the findings of the biochemical oxygen demand test. It too may indicate to what extent the waste load of the stream has been stabilized, or it may indicate the presence of organic and inorganic pollution which is not readily oxidized by biological processes. Because the chemical oxygen demand can be determined quickly in comparison to the biochemical oxygen demand, the establishment of a correlation between the two parameters serves to reduce the number of the latter determinations required. The chemical demand results are nearly always higher than the biochemical demand.

TEMPERATURE

Temperature is particularly important to conservation and industry. A few degrees elevation in temperature due to cooling water discharges may seriously limit the capacity of a stream to support fish life. Also, high water temperatures increase the cost of cooling water for

industrial operations. Cooling towers and other equipment for handling cooling water must be engineered to the temperature levels normally encountered.

MINERAL CONSTITUENTS

These determinations include alkalinity, hydrogen-ion concentrations (pH), hardness, chlorides, sulfates, and total dissolved solids. The pH indicates whether water is acidic or alkaline, corrosive or passive. Alkalinity is a measure of the neutralization reserve present, or the extent to which the water can resist a change from an alkaline to an acid condition upon addition of acidic chemicals. This information is important to the water treatment plant operator and to many other water users.

Hardness is not only a measure of the soap consuming property, but is also of importance in the treatment of boiler waters, where removal of hardness is one of the most important functions. Chloride, sulfate, and total dissolved solids add further information on the gross dissolved mineral content carried by the stream. These are of great importance when considering the taste or palatability of water. They are also important when the water is being demineralized for specific industrial processes, since the cost of demineralization is a direct function of the dissolved solids content of the water. In addition, waters of high saline content are less desirable and may at times even be unfit for municipal, irrigation, and other uses.

TURBIDITY

Turbidity of water is due to the suspension of clay, silt, finely divided organic matter, microscopic organisms, and other similar materials. Its presence is of particular importance in water treatment processes and in the propagation of fish and other aquatic life.

COLIFORM ORGANISMS

Information about fecal pollution is essential to water quality measurements. Data on coliform bacteria, used as indicators of pollution, help to point up the trends in the effectiveness of treatment of domestic waste discharges.

The delayed-incubation membrane filter technique is used for the coliform examination, instead of the fermentation tube (MPN) method. The latter necessitates transport of water samples to the Water Quality Section laboratory for examination, with a time lapse between collection and examination that can significantly change their microbial content. Also, some of the many other bacteria present in raw water might overgrow or otherwise inhibit the demonstration of the coliform organisms. In the delayed-incubation membrane filter procedure, the bacteria are filtered out from the fluid samples immediately after collection and the filters sent to the Water Quality Section laboratory on a preservative medium. In the laboratory the membrane filters carrying the bacteria are transferred to a medium selective for coliform organisms, then incubated and counted. The resulting counts approach very closely the actual numbers of coliform bacteria present in the water samples at the time of collection.

Unusual populations of coliform bacteria may mean increased pollution and ensuing loss of water quality. The Public Health Service Water Pollution Surveillance System studies and reports the trends in sewage pollution on streams as indicated by the trends of coliform counts.

Trace Elements and Other Determinations

This year's trace element data differ somewhat from data reported in previous compilations in that the manner of obtaining the data has been modified and the program of elements measured altered. The trace metals measurements are now obtained from a 3.4 meter direct reading spectrograph. Tin, antimony, and bismuth have been discontinued; arsenic, boron, phosphorus, aluminum, and strontium have been added. Increased sensitivity for several elements has been attained, especially zinc, manganese, and beryllium, resulting in fewer indeterminate values.

Twice during the year, 3-month composites of the weekly samples were prepared and subjected to analysis. Examinations covered those elements included in the Public Health Service Drinking Water Standards (26), and other metals considered to have possible physiological or

toxicological significance. The ultimate goal of this phase of the program is to provide background data on all elements which may be found in water and which may be of significance in water quality management.

In carrying out the spectrographic examination, the sample is first passed through a membrane filter, .045 micron pore size, to remove all suspended matter. An aliquot of sample is then acidified with redistilled nitric acid and evaporated to a concentration containing 100 mg. of dissolved solids in 5.0 ml. A portion of the prepared sample is placed in a porcelain boat and sparked using a rotating disc, with concentrations of the 19 programed elements measured on the direct reader (12).

Waters of low dissolved solids content can be concentrated to a greater degree than those having a high dissolved solids content, thus accounting for the variable sensitivity shown in the tabulations. Values followed by an asterisk (*) show the limits of sensitivity at which the test was performed and indicate that the ion being measured was not detected at that level.

It is known that trace concentrations of some ions are subject to precipitation and adsorption on container surfaces during storage. This applies particularly to iron and manganese which are subject to oxidation. Hence, all the values reported by the spectrographic method represent the quantity of metal in solution at the time of analysis to within about 10 percent.

The measurement of sodium and potassium is performed using a flame procedure. Fluoride is determined with the SPADNS reagent using the method described by Bellack and Schouboe (3). Boron, previously measured by the curcumin procedure, is now reported from the spectrograph. Measurement of selenium has been eliminated due to the general absence of this element from the samples examined.

The concentrations of surface active agents, reported as alkyl benzene sulfonate (ABS), in the Nation's surface waters is reported for the first time on a number of selected stations. As the capability of determining this pollutant increases, efforts will be made to include all sampling points in the Surveillance System. The data presented here were obtained using a modification of the Standard Methods methylene blue procedure on an automatic analyzer.

The Benthos

Animals and plants that live in or on the bottom substrata of lakes and streams are known as the benthos. This biological community includes such common animals as immature insects, worms, clams, snails, and crustacea. The benthic populations found on a stream bottom are largely determined by the type of substrate. Bottoms consisting of soft silty sediments are normally inhabited by animals that are able to burrow into the sediments and feed on organic detritus in the sediments. These include worms, clams, and certain insect larvae. The number of species is usually small in these habitats. Shallow streams with shoals, rapids, and riffles have more available niches for animals to occupy and the normal benthic fauna usually includes a large variety of organisms.

The benthic populations provide a basic indicator of general water quality. Whereas the plankton organisms move downstream with the current, and fish are able to migrate considerable distances, the benthos is a population relatively fixed on the bottom and the animals are subject to the water flowing over them. The benthic populations will therefore be influenced by the quality of the water.

The animals that make up the benthos have various life cycles. Insects may exist as aquatic larvae living in the bottom for as long as 2 years. They then emerge as adults and mate. The female deposits fertilized eggs into the stream. Some of the class produce young which attach themselves to fish. Some of the worms reproduce asexually. An analysis of the age structure of certain forms in the benthos may provide information on past conditions of the water.

Under conditions of good water quality the benthos should include a variety of species with no one species being present in excessive numbers. If the water should become degraded, certain species in the population, intolerant of the changed environment, will die out; and as the water quality deteriorates, increased numbers of species in the benthos will be eliminated. The one or more species that survive may be able to develop very large populations. Toxic materials in the water or deposited on the bottom may effectively eliminate all bottom life.

At each station where bottom samples are taken an attempt is made to find areas of suitable substrate. From these areas, where pos-

sible, a series of at least six quantitative samples is taken by means of suitable dredges or samplers. In riffles the Surber squarefoot sampler is used. In deep rivers the Ekman or Peterson dredge is used (see Standard Methods, for the Examination of Water and Wastewater, 11th edition, pp. 572–582) (22). A general qualitative collection of invertebrate life is usually made at all stations.

The bottom materials are screened in the field using a screen with 28 meshes to the inch. The concentrated sample is preserved in alcohol and returned to the laboratory.

In the laboratory the sample is transferred to pans and the macroscopic organisms are separated from the sediment and detritus. The animals are then identified as near to species as possible, enumerated, and weighed. Specimens are preserved and retained for future reference.

During this year benthos data were gathered for stations in the Ohio and Tennessee River basins only and are presented with the descriptive material for the appropriate stations. A supplemental analysis of these data will be published separately.

Fish Populations

Fish are a biological end product of the aquatic environment. They are an important source of food, and sport fishing is one of our leading forms of recreation. The maintenance of fish life has been recognized by the Congress, and by States which have protective pollution control legislation, as an important and legitimate use of our Nation's waterways. In other words, in measuring fish populations at Surveillance System stations, we are not measuring a parameter that affects a water use as in the case of other measurements presented in this compilation, but rather a unique parameter that is in itself considered a beneficial water use.

The water quality requirements and tolerance of aquatic life to different types of contaminants vary tremendously. It is this variability in response which makes living aquatic organisms usable indicators of environmental disturbance. Fish require water relatively high in dissolved oxygen, and are intolerant of many chemical and physical con-

taminants resulting from agricultural, industrial and mining practices. However, the tolerance of different species varies, and man-induced changes of the environment often affect one species more than another, producing imbalanced populations which quite often favor the species less desirable economically.

Moderate amounts of putrescible wastes may enrich the habitat, resulting in great increases in standing crops of fish present. However, under such conditions, the more tolerant and adaptable species may comprise a disproportionate share of the total population, and very sensitive species may be eliminated altogether. The effect of toxic wastes may vary from complete elimination of populations to a reduction in reproductive capacity, growth and resistance to disease and parasitism.

Fish kills are a spectacular and obvious indication that an abrupt change has taken place in the environment. However, because of high mobility resulting in rapid recruitment, the fish population in a river or stream may return to normal levels within a very short time after a kill.

Chronic pollution, to which the fish population must adjust over a period of time, will be reflected in the kinds and relative abundance of the fish species present. In addition to the species composition, the condition of the fish, their growth, reproductive success and certainly their palatability are factors of considerable importance in evaluating the suitability of a body of water for supporting usable stocks of fish.

During the current water year, data on fish populations were gathered for some stations in the Ohio and Tennessee River basins only, and are presented in tables in volume 5 for the appropriate stations.

Fish samples at these stations were collected primarily with rotenone and with an electrofishing device. Five percent emulsified rotenone was applied at suitable sites, where an area of 1 to 3 acres could be blocked off with nets during the rotenoning operation. Such sites were usually in the form of small coves along the shoreline, the mouths of small tributaries, or behind the partial enclosure created by navigational lock walls. An electrical shocking device was used along the shoreline both during the day and at night. In a few cases, samples were also collected with trammel nets and with short, 25-foot haul seines. Sampling with nets and seines was limited because of the paucity of habitat in large rivers which is suitable for using these types of gear. With each method used sufficient sampling was done to collect as many species present as possible, and to obtain a measure of the relative abundance and size distribution of the various species. Every type of fishing gear is somewhat selective, and the data obtained may not be representative of the actual population composition present in the river at the time of sampling. However, the data obtained by a given method are quantitatively comparable and may be used to evaluate changes in the population composition resulting from natural and man-induced changes in the habitat. Comparisons should be based on samples collected with the same gear, during the same season of the year, and under similar conditions of stream flow and water temperature. These data will be particularly useful in determining the impact of changes in water quality on the fish populations of the Nation's rivers over long periods of time.

For convenience of comparison, the fish in the tables are grouped into six major categories based on food habits and methods of feeding:

- I. Large, sight feeding carnivores that feed on other fish. This group includes most game species.
- II. Species that feed primarily on insects. This group provides important forage for species in group I.
- III. Species that feed primarily on plankton and algae. These also provide important forage for group I species.
 - IV. Species that feed primarily on mollusks.

V. Omnivores that feed indiscriminately on plant and animal matter from the bottom.

VI. Scavengers that take any available food. Some of the species in this group may sometimes act as predators. The group also includes many important food fish, and species that are tolerant of degraded conditions.

Because foods and feeding habits vary with size, age, and availability of food, there may be considerable overlap between groups. The species listed were grouped according to available literature regarding the main foods of adult specimens of each species.

In the field the total length of the fish was routinely measured to the nearest inch class on a one-half inch interval. Thus a fish in the 5-inch class would measure from 4.5 inches to slightly under 5.5 inches. If the end of the tail touched the dividing line between two length classes, the fish was included in the higher classification. The percent total number and weight are carried to the nearest one-tenth of 1 percent in the tables. The one-tenth of 1 percent was arbitrarily selected for purposes of tabulation, and does not imply such a high level of sampling accuracy.

The fish are listed by common names in the tables according to American Fisheries Society Special Publication No. 2 (1960), A List of the Common and Scientific Names of Fishes From the United States and Canada, Second edition (1).

Stream Flow

Stream flow data have a most important role in the utilization of water quality parameters such as are included in this report. For this reason, average daily flow records are reported for most of the sampling stations in the System.

All flow data included in this compilation are *provisional* data furnished by the agencies credited, and are subject to revision by such agencies prior to any final publication. With the exceptions mentioned,

the flows are given as furnished to the Public Health Service.

The data were generally furnished in units of cubic feet per second. In general only the first three digits were considered significant. Because of machine limitations the data are reported here in thousand cubic feet per second. Even though three zeros may appear after the decimal, no artificial accuracy of measurement is implied. Only the first three digits should be considered significant. There are two exceptions:

(1) When the flow was over 1 million cubic feet per second, the first four digits are reported, and (2) at times when the Rio Grande flows were extremely low, the data were reported to tenths of a cubic foot per second. These figures are published showing 4 decimal places.

Flow data for sampling stations on the rivers of the Great Lakes

system are reported as the monthly mean flow, as computed by the U.S. Lake Survey. In certain other rivers, flow data were computed by the Public Health Service from information supplied by the gaging agency. The methods of computations are shown as footnotes to the data for the applicable stations.

BIBLIOGRAPHY

- 1. American Fisheries Society. A List of the Common and Scientific Names of Fishes from the United States and Canada. Special Publication No. 2. Second edition (1960).
- 2. Bell, Wm. E. National Water Quality Network Studies of Surface Waters. Proceedings of the Thirty-sixth Annual Meeting of the Oklahoma Water Pollution and Control Association, Oklahoma State University, Stillwater, Okla., November 30, 1962.
- 3. Bellack, E. and Schouboe, P. J. Rapid Photometric Determination of Fluoride in Water. Anal. Chem. 30: 2032-4 (1958).
- 4. Breidenbach, A. W. The Need for New Approaches to the Measurement and Identification of Organic Chemicals in Water. Presented at the 123d National Meeting of the American Chemical Society, Cincinnati, Ohio, January 16, 1963.
- 5. Breidenbach, A. W. and Lichtenberg, James J. Identification of DDT and Dieldrin in Rivers—A Report of the National Water Quality Network. Science, 141: 899 (September 1963).
- 6. Cheng, K. L. Determination of Traces of Selenium 3,3-Diaminobenzidine as Selenium (IV) Organic Reagent. Analytical Chemistry, 28: 1738 (1956).

- 7. Clark, H. F.; Kabler, P. W., and Geldreich, E. E. The Advantages and Limitations of the Membrane Filter. Water and Sewage Works, 104: 9 (1957).
- 8. Geldreich, Edwin E.; Kabler, Paul W.; Jeter, Harold L., and Clark, H. F. A Delayed Incubation Membrane Filter Test. J.A.P.H.A., 45: 11 (1955).
- 9. Green, Richard S. The Surveillance of Water Quality-Operation of the National Water Quality Network. Proceedings of the Tenth Southern Municipal and Industrial Waste Conference, Department of Civil Engineering, Duke University, Durham, N.C., April 1961.
- 10. Green, Richard S. Data Gathering and Monitoring Equipment in Water Supply and Water Pollution Control Programs. Presented before the Engineering and Sanitation Section, A.P.H.A., Miami Beach, Fla., October 17, 1962.
- 11. Harley, J. H. Radiochemical Determination of Strontium 90. In *Health and Safety Laboratory Manual of Standard Procedures*, prepared by the Radiochemistry and Environmental Studies Division, U.S.A.E.C., New York Operations Office, Revised Cover Sheet, August 1962.

- 12. Kopp, J. F. and Kroner, R. C. A Direct Reading Spectrographic Procedure for the Measurement of Nineteen Minor Elements in Natural Water. Presented at the 1964 Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, March 2–6, 1964.
- 13. Kramer, Harry P., and Kroner, Robert C. Cooperative Studies in Laboratory Methodology. J.A.W.W.A., 51: 607 (1959).
- 14. McCallum, Gordon E. Measurement of Water Quality Through a National Sampling Network. Presented at the 122d Annual Meeting of the American Statistical Association, Minneapolis, Minn., September 8, 1962.
- 15. Middleton, F. M., and Lichtenberg, J. J. Measurements of Organic Contaminants in the Nation's Rivers. Industrial and Engineering Chemistry, 52: 99A (1960).
- 16. Palmer, C. Mervin. Algae in Water Supplies. PHS Publication No. 657. U.S. Government Printing Office, Washington, D.C. (1959).
- 17. Stierli, H., Orem, M. T., and Blair, R. D. Establishing a Water Quality Network Station—A Case History. Seventeenth Annual Purdue Industrial Waste Conference, Purdue University, Lafayette, Ind. (May 1962).
- 18. Weaver, Leo. The National Water Quality Network—1962. Presented at the Fourth Industrial Wastes Forum, Interstate Commission on the Potomac River Basin, Hagerstown, Md. (May 1962).
- 19. Weaver, Leo, Hoadley, Alfred W., and Baker, Stanley. Radioactivity in Surface Waters of the United States, 1957-62. Radiological Health Data, 4: 306 (June 1963).
- 20. Williams, L. G. Plankton Population Dynamics. National Water Quality Network, Supplement 2, PHS Pub. No. 663, Supplement 2, U.S. Government Printing Office, (1963).

- 21. Williams, L. G., and Scott, Carol. Diatoms of Major Waterways of the United States. Limnol. and Ocean. 7: 365 (1962).
- 22. A.P.H.A., A.W.W.A., and F.S.I.W.A. Standard Methods for the Examination of Water and Wastewater. Eleventh Edition. New York, N.Y. (1960).
- 23. U.S. Department of Health, Education, and Welfare, Public Health Service. Municipal Water Facilities Inventory as of January 1, 1958. PHS Publication No. 775, revised, 9 volumes, U.S. Government Printing Office (1964).
- 24. U.S. Department of Health, Education, and Welfare, Public Health Service. Municipal Waste Facilities, 1962 Inventory. PHS Publication No. 1065, 9 volumes, U.S. Government Printing Office (1963).
- 25. U.S. Department of Health, Education, and Welfare, Public Health Service. National Water Quality Network Operating Manual. (Mimeo.) Cincinnati, Ohio (1960).
- 26. U.S. Department of Health, Education, and Welfare, Public Health Service. Public Health Service Drinking Water Standards. Revised 1962. PHS Publication No. 956 (1962).
- 27. U.S. Department of Health, Education, and Welfare, Public Health Service, Robert A. Taft Sanitary Engineering Center. Water Quality Studies on the Columbia River (1954).
- 28. State Water Pollution Control Board, Sacramento, Calif. Water Quality Criteria, Publication No. 3A (1963).

Explanation of Analytical Data

RADIOACTIVITY DETERMINATIONS

In evaluating radioactivity data it should be noted that the reported errors represent counting errors only and the reported values are subject to other errors commonly associated with gross radioactivity analysis. (See Reference 22.)

A dash (—) in the count column signifies that no determination was made. An asterisk (*) following date of sample indicates that determinations are for composites of two or more samples taken on and before the date shown.

Strontium 90 determinations are reported in micro-microcuries per liter as measured from total solids in the sample composited for the quarter. A dash (—) indicates that no determination was made in that period.

PLANKTON POPULATION

Plankton data are reported on two pages. The first page lists the population size of various groups of algae. A coded number shows the

ten most abundant genera of algae and their count level. Code numbers used are identified on page 18. Blank spaces on the data sheets signify that counts of other genera were below a level of 150 per ml. The second page of plankton data lists the four dominant diatom species and their occurrence as a percent of the total diatom population. The percent of occurrence of all other diatom species is shown in the next column. Identification codes of species are given on page 19.

The detectable numbers per ml. of fungi, sheathed bacteria and protozoa are shown in the next two columns. The rotifer and crustacea totals per liter are listed together with the genera where these occurred at a count level of five or more per liter for rotifers and three or more per liter for crustacea. Nematode and miscellaneous animal form counts per liter appear in the last two columns.

A dash (—) indicates that no analysis was made. A zero count of each group is indicated by "o". Blank spaces under abundance and dominance columns indicate that the populations were too few to be included or were absent. Coding for abundant genera of rotifer and crustacea population levels are presented on page 20.

PLANKTON POPULATION

Identification Codes of Algae Genera and Count Levels of Most Abundant Genera

KEY TO COUNT LEVEL (per ml.) 1 150 to 300 2 301 to 600 3 601 to 1,200	Oscillatoria Phormidium Raphidiopsis Spirulina 19, 20, 21 Reserve Other genus	Filamentous green algae 46 Cladophora 47 Stichococcus 48 Stigeoclonium 49 Reserve 50 Other genus	68 Cyclotella 69 Melosira 70 Rhizosolenia 71 Stephanodiscus 72 Other genus Pennate
4 1,201 to 2,400 5 2,401 to 4,800 6 4,801 to 9,600 7 9,601 to 19,200 8 19,201 to 38,400 9 38,401 and over Code to ALGAE GENERA (Producers) Blue-green Algae 01 Agmenellum (Merismopedia) 02 Anacystis (Microcystis) 03 Anacystis 04 Coccochloris 05 Gomphosphaeria 06, 07, 08 Reserve 09 Other genus 10 Other genus Filamentous blue-greens	Coccoid green algae Actinastrum Ankistrodesmus Chlorella-type Chlorococcum Closterium Coclastrum Crucigenia Dictyosphaerium Colenkinia Lagerheimia Micractinium Cocystis Palmellococcus Pediastrum Scenedesmus Staurastrum Tetradesmus	Green flagellates Chlamydomonas including Carteria Euglena Lepocinclis Pandorina Phacotus Phacus Trachelomonas Reserve Other genus Other pigmented flagellates Chromulina Dinobryon Gymnodinium Peridinium Reserve Other genus Other genus	Achnanthes Amphiprora Amphora Amphora Anomoeoneis Asterionella Raloneis Cocconeis Cocconeis Cymatopleura Cymbella Diatoma Diploneis Fragilaria Gomphonema Gyrosigma Navicula Nitzschia Pleurosigma Nhoicosphenia Surirella Synedra Tabellaria
11 Anabaena	41 Tetrastrum	(with chromatophores)	94, 95, 96 Reserve
12 Aphanizomenon	42, 43 Reserve	Centric	97 Other genus
13 Arthrospira	44 Other genus	66 Biddulphia	98 Other genus
14 Lyngbya	45 Other genus	67 Coscinodiscus	99 Other genus

PLANKTON POPULATION Identification Code for Diatom Species

No.	Species	Identification Code for Diatom Spe No. Species	No. Species
01	Achnanthes lanceolata	35 Diatoma elongatum	60 Nitzschia denticula
02	Achnanthes minutissima	36 Diatoma vulgare	70 Nitzschia (Lancelolatae group)
03	Achnanthes sp.	37 Diatoma sp.	71 Nitzschia sp. (first)
04	Amphiprora paludosa	38 Diploneis smithii	72 Nitzschia sp. (second)
25	Amphiprora sp.	39 Diploneis sp.	73 Opephora martyi
6	Amphora ovalis	40 Epithemia turgida	74 Pinnularia sp.
7	Amphora sp.	41 Epithemia sorex	75 Pleurosigma delicatulum
8	Anomoeoneis exilis	42 Epithemia sp.	76 Rhoicosphenia curvata
9	Asterionella formosa	43 Eunotia sp. (first)	77 Rhizosolenia eriensis
0	Bacillaria paradoxa	44 Eunotia sp. (second)	78 Rhopalodia gibba
Ι	Biddulphia laevis	45 Fragilaria capucina	79 Rhopalodia sp.
2	Caloneis amphisbaena	46 Fragilaria construens	80 Stephanodiscus astraea var. minutula
3	Caloneis sp.	47 Fragilaria crotonensis	81 Stephanodiscus dubius
[4	Ceratoneis arcus	48 Fragilaria pinnata	82 Stephanodiscus hantzschii
5	Cocconeis pediculus	49 Fragilaria sp.	<u>-</u>
6	Cocconeis placentula	50 Frustulia sp.	83 Stephanodiscus niagarae
17	Cocconeis sp.	51 Gomphonema olivaceum	84 Stephanodiscus sp.
8	Coscinodiscus rothii	52 Gomphonema sp.	85 Surirella brightwelli
19	Coscinodiscus (brackish)	53 Gyrosigma kutzingii	86 Surirella ovata
20	Coscinodiscus sp.	54 Gyrosigma sp.	87 Surirella striatula
2 I	Cymatopleura solea	55 Hantzchia amphioxys	88 Surirella sp.
22	Cymatosira belgica	56 Melosira ambigua	89 Synedra acus
23	Cyclotella atomus	57 Melosira distans var. alpigena	90 Synedra pulchella
24	Cyclotella comta	58 Melosira granulata	91 Synedra nana
25	Cyclotella kutzingiana	59 Melosira binderana	92 Synedra ulna
26	Cyclotella meneghiniana	60 Melosira islandica	93 Synedra vaucheriae
27	Cyclotella pseudostelligera	61 Melosira italica	94 Synedra sp.
28	Cyclotella stelligera	62 Melosira varians	95 Tabellaria fenestrata
29	Cyclotella striata	63 Meridion circulare	
30	Cyclotella sp.	64 Navicula cryptocephala	A
31	Cymbella ventricosa	65 Navicula sp. (first)	
32	Cymbella tumida	66 Navicula sp. (second)	98 Any entity not found above (second)
33	Cymbella sp.	67 Nitzschia acicularis	99 Reserved for future entity
34	Denticula sp.	68 Nitzschia tryblionella	xx Insignificant or population inadequa

PLANKTON POPULATION

Identification Codes of Microinvertebrate Genera and Count Levels of Most Abundant Genera

j	Genera of ROTIFERS Key to counts per liter	Code to MICROINVERTEBRATES	15	Philodina and similar contracted bdelloids	52 53	Daphnia and related genera Moina
3 21 4 41 5 81	to 20 to 40 to 80	Rotifers 1 Asplanchna 12 Brachionus (also Platyias) 13 Collotheca 14 Cephalodella	17 18 19 20	Ploesoma Polyarthra Pompholyx Proales Rotaria Synchaeta	54 55 73 74 75	to 72 Reserve Other genus Other genus
7 32 8 64 9 1,6 G	I to 640 I to 1,680 Senera of CRUSTACEA Key to counts per liter	Chromogaster Euchlanis Filinia Gastropus Hexarthra (also Pedalia)	22 23	Trichocerca to 45 Reserve Other genus Other genus	76 77 78	•
1 3 1 2 6 1 3 11 4 21	to 5 to 10 to 20 to 40	o Kellicottia I Keratella Lepadella Monostyla (also Lecane) Notholca		Other genus Cladocerans Nauplii Bosmina and related genera	98 99 Bla	Other genus

ORGANIC CHEMICALS

Although units of concentration may be assigned to the values reported herein (µg/l or parts per billion), it is essential that the user of these data consider additional associated information. Introspective examination of the data reported herein has indicated that comparison of concentration values obtained from samples of similar gallonage are more valid than samples of widely differing gallonage. In addition, recent experimental researches have shown that lower flow rates and lower sample volumes than those employed (5,000 gallons at 0.5 gpm) are substantially more efficient and should produce relatively higher concentration values with this method. The first in a series of changes designed to increase sampling efficiency is already underway at Water Pollution Surveillance System stations.

Concentration values reported for specific substances are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE. In light of an unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

Zeros when reported have been entered. A dash indicates that the respective results were not reported. An asterisk in the column

showing end of sample date indicates that the determinations are for composited samples taken on and before the date shown. The extent of compositing can be determined by examining the gallons filtered, which is the sum of the applicable individual samples immediately above it.

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

The data entered in each column are as reported. Concentrations of alkalinity and hardness are reported in milligrams per liter as CaCO₃. A dash signifies that the particular test was not performed. Zeroes when meaningful have been entered. An asterisk preceding a number should be read as "less than" the number following it.

TRACE ELEMENTS AND OTHER DETERMINATIONS

For a discussion of the sensitivity limits of the determinations performed with spectrographic methods, see page 11.

BASIN 11

COLORADO RIVER

The headwaters of Colorado River are on the west slope of the Rocky Mountains in northern Colorado. This river flows nearly 1,400 miles generally southwesterly to the Gulf of California. Seven States comprise 244,000 square miles of the drainage area and the stream forms the boundary separating Arizona from California and part of Nevada. The river flows exclusively through Mexico with a drainage area of about 2,000 square miles for its last 80 miles.

San Juan-Animas Rivers: The San Juan River is tributary to the Colorado River and the Animas River is tributary to the San Juan. The two rivers begin at altitudes above 10,000 feet and flow over very steep courses in their upper reaches. Most of the flow in these river systems originates in Colorado. Flows through numerous dry washes or arroyos from occasional desert rains carry large sediment loads to the San Juan. Below the confluence of the Animas and the San Juan at Farmington, a broad stream bed is cut into soft sandstones and marls, within which the dry-weather flow channel meanders.

Green River: The Green River is tributary to the Colorado in southeastern Utah. This stream flows from southwestern Wyoming to Utah, and back into Utah where it joins the Colorado below Moab, Utah.

Colorado River: The Colorado River drains an area which is almost entirely arid. Precipitation varies from $2\frac{1}{2}$ inches per year along the Mexican Border to 30 inches per year in the higher elevations along the Continental Divide. Annual evaporation varies from about 32 inches in the upper basin to almost 86 inches in the California-Arizona desert area. The lower Colorado is presently regulated. The dam construction now underway and planned will provide for bringing the entire river under regulation.

There are extensive irrigation and water power projects throughout the river basin. In addition, a portion of the flow of the Colorado is diverted and exported to southern California for municipal and industrial uses. The principal industrial activity in the basin is mining and ore processing. The extent of these activities vary in location and time. Past mining activities have left their scars on the mountains and mine drainage and tailings piles still exert an influence on the quality of the water draining some areas. The Colorado plateau extends over portions of Utah, Colorado, Arizona, and New Mexico. The lower portion of the plateau is largely composed of flat-lying sandstones, shales, and limestones which have been deeply incised by the river system, most notably in the Grand Canyon. Because of the land erosion, the Colorado River carries a large silt load.

There is a strong dependence of alpha activity upon suspended solids and thus upon regional geological conditions. It has been found that the range of natural alpha activity in this basin is from 0 to 30 picocuries per gram of suspended solids. Occasional increased levels of alpha activity are reported in this volume for a number of individual samples;

these are associated with higher suspended solids concentrations.

The chlorinated hydrocarbon pesticides, dieldrin, DDT, and DDD have been identified in carbon adsorption method samples collected from the lower Rio Grande at El Paso, Laredo, and Brownsville.

Maximum algal populations in the basin are generally well below 5,000/milliliter. In most cases the phytoplankton are dominated by pennate diatoms, including *Synedra ulna*, *S. nana*, *Diatoma elongatum*, *D. vulgare*, *Navicula* spp., and *Surirella ovata*. The more abundant centric diatoms include *Stephanodiscus hantzschii*, and *Cyclotella meneghiniana*. Rotifers and microcrustacea are not abundant.

ANIMAS RIVER AT CEDAR HILL, NEW MEXICO

The Public Health Service Water Pollution Surveillance System sampling station on the Animas River is located near the Colorado-New Mexico State line. Samples are collected from the bank at the gas pipeline crossing on the Heizer ranch.

Two communities in Colorado, Silverton and Durango, discharge raw and treated municipal wastes, respectively, into the Animas. Aztec, New Mexico, fifteen miles below the surveillance station and Farmington, New Mexico, fourteen miles below Aztec, use the river for municipal supply and waste disposal.

The quality of the Animas is affected by uranium mine tailings and drainage near Silverton, Colorado.

Extensive use is made of the stream for irrigation and there are oil and gas developments below this station.

Station Location:

Animas River at Cedar Hill, New

Mexico

Colorado River

Minor Basin:

Major Basin:

San Juan River

Station at:

37°00' Latitude 107°52' Longitude

Miles above mouth:

3

Activation Date:

February 1, 1960

Sampled by:

San Juan County Health Department

Field Analysis by:

San Juan County Health Department U.S. Public Health Service

Other Cooperating Agencies:

New Mexico Department of Public Health

•

Hydrologic Data:

Nearest pertinent gaging station:

Near Cedar Hill, New Mexico

Gaging station operated by:

U.S. Geological Survey

Drainage area at

1090 square miles

gaging station:
Period of record:

1933 to present

Average discharge

912 cfs.

in record period:

Maximum discharge in record period: 13,100 cfs.

Minimum discharge in record period:

90 cfs. (daily)

Remarks: Flows affected by irrigation diversion above

ALKYL BENZENE SULFONATE (ABS)

mg/1

Date

		Composite	Interval			
		10/1/62	4/1/63			
		12/31/62	6/30/6			
Analysis by	F	.66	.35			
wet or flame methods.	Νa	37	8.3			
Results in mg/l	Κ	4.3	2.1			
	Zn	*8	15			
	С٩	*4	1.7			
	As	*39	*17			
Analysis	В	37	21			
Ьу	p.	*10	10			
Spectro-	Fe	29	6			
graphic	Мо	*4	10			
methods.	Mn	*2	*.9			
memous.	ΑI	-	9			
Results	Ве	*.1	*.04			
in	Cu	*4	2			
micrograms	Ag	*.8	.4			
per	Ni	*4	2.6			
liter	Co	*8	*2			
	Pb	14	21			
	Cr	*2	6			
	٧	7	*9			
	Ва	35	31			
	Sr	488	191			

ELEMENTAL ANALYSES

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+ -	Composite Interval	pc/1	+
October to December	•9	.2	April to June	1	ı
January to March	-	-	July to September	1.8	.3

[±] at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962–3

Interval	Compound	Concentration* ug/l

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

^{*}Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL. NEW MEXICO

56

DATE					RADIOACTIVITY IN PLANKTON													
SAMPLE	DATE OF			ALPHA						BETA				DATE OF	GROSS ACTIVITY			
TAKEN	DETERMI-	SUSPEND	ED	DISSOLVE	0	TOTAL		SUSPEND	ED	DISSOLVE	a:	TOTAL		DATE OF DETERMI- NATION	ALPH	A	BETA	
MO. DAY YR.	MO. DAY	pc/l	±	pe/l	±	pc/l	#	pc/l	±	pc/I	#=	pc/l	#	MO. DAY	pc/g	±	pc/g	
10 1 62		1	1	7	3	8	3	9	6	50	9	59	11					
10 8 62	12 14	0	1	1	2	1	2	1	11	12	17	13	20					İ
10 15 62	11 20	٥	1	13	4	13	4	11	12	35	15	46	19	-		j l		1
10 22 62	11 17	2	1	4	2	6	2	1	7	22	9	23	11	1 1				- 1
10 29 62	12 24	1	1	3	2	4	2	9	5	14	6	23	9					
11 5 62	11 29	ī	ī	12	4	13	4	4	10	19	14	23	17					
11 13 62	12 28	ĩ	ī	5	3	6	3	15	12	25	15	40	19					
		i	il	7	3	8	3	33	12	114	17	147	21					i
	12 6	9				-												İ
11 26 62	12 15	-	10	3	2	12	10	283	68	37	12	320	69					ı
12 3 62	12 31	4	2	2	2	6	3	43	7	23	9	66	11					ŀ
12 10 62	1 4	2	2	4	2	6 .	2	19	14	17	15	36	21					
12 19 62	1 14	2	1 1	4	2	6	2	8	3	10	4	18	5					ı
12 26 62	1 14	2	1 1	5	3	7	3	20	7	24	8	44	11					-
1 2 63	1 18	1	1	6	3	7	3	3	13	25	15	28	20					- 1
1 7 63	1 23	2	2	6	3	8	3	2	13	15	16	17	21					
1 23 63	2 11	1	1 1	14	5	15	5	7	6	42	9	49	11					- 1
1 30 63	2 14	٥	ī	4	4	4	4	16	12	39	17	55	21					1
2 6 63	3 4	51	20	4	3	55	20	336	44	50	l a l	386	45					- 1
	, - , ,	5	20	7	3	12	4	14	6	41	8	55	10					-
	1 1	-			1 - 1				1 ⁻ I		- 1			1				
2 27 63	3 15	10	7	2	3	12	8	78	17	40	14	118	22					
3 5 63	3 27	2	1 1	10	4	12	4	16	13	47	16	63	21					
3 13 63	3 27	3	2	14	4	17	4	46	13	55	17	101	21	1				1
3 20 63	4 4	101	43	12	4	113	43	409	114	69	17	478	114					İ
3 27 63	4 18	5	7	0	3	5	8	168	27	29	8	197	28	1				- 1
4 3 63	4 29	1	1	1	11	2	1	52	5	37	4	89	6					1
4 10 63	5 6	10	4	ī	ī	11	4	157	7	33	4	190	8	1 1				1
4 15 63	5 1	41	13	2	ī	43	13	144	27	35	9	179	28					- 1
	5 20	7.0	0	1	i	1	ī	9	3	20	4	29	5					
			- 1			-		-					5					į
5 1 63	5 20	1	1	3	2	4	2	10	3	26	4	36				1		
5 8 63	5 27	22	10	1	1	23	10	265	22	61	4	326	22	1				
5 15 63	6 3	0	1 1	2	1	2	1	25	3	41	4	66	5	1				İ
5 22 63	6 7	1	1 1	0	1	1	1	44	8	45	8	89	11					İ
5 29 63	7 1	0	0	1	1	1	1	15	3	36	4	51	5					- 1
6 5 63	6 24	C	0	1	1 1	1	1	16	3	28	4	44	5					- 1
6 12 63	7 10	. 0	0	1	1 1	1	1	10	6	27	9	37	11	1		1		- 1
6 19 63	7 10	0	ا ہ ا	2	1	2	1	20	6	25	8	45	10					-
6 26 63	7 17	o o	1	ō	i	ō	ī	6	6	27	8	33	10					
7 3 63	7 17	٥	l il	3	2	3	2	32	5	9	9	41	10					
	1 1 1		1			-	1		1			-				1		1
7 10 63	8 6	99	48	4	2	103	48	496	121	41	9	537	121	1				
7 17 63	8 12	٥	0	2	2	2	2	5	3	19	4	24	5	1		1	ļ	- 1

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL. NEW MEXICO

56

			1	RADIOACTIVITY IN WATER DATE OF ALPHA BETA														7	RADIOACTIVITY IN PLANKTON						
	DATE		D.	TE OF						ALP	HA				1		BETA				DATE OF		*	ACTIVITY	
	AKEN		DATE OF DETERMI- NATION		·	SUSF	END	ED	\top	DISSO	LVED	,	TOTAL		SUSPEND	ED	DISSOLV	ED	TOTAL		DATE OF DETERMI- NATION	ALP			
MO.	DAY	YR.	_		_	pc/l		±	\top	pc/l		±	pe/l	±	pc/l	±	pc/l	±	pc/I	±			T ±		
мо. 7 7 8 8 8 8 8	24 31 7 14 21	YR. 63 63 63 63 63 63	8 8 8 8 9 9	12 14 21 27 16 20 20	_	pc/l	0 1 1 2 3 1 1 7 2 1 0 0			pc/I	322240022	# 322231132	3 3 14 5 5 17 2 3 2 2		20 4 46 31 5 115 12 5 1	,	26 21 20 17 17 15 8 11 12		TOTAL pe/I 46 25 66 48 22 130 20 16 13	± 6	MATION MO. DAY			PETA	#

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

	MDI F	- 7	7	p=1,	TRACTABL					····							
DATE OF SA	EN	<u>-</u>		EX	IRACIABL	E3					CHLOROF	ORM EXTR	ACTABLES		····		
MONTH DAY YEAR	T	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	ARONATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
	11 12 4 5 6	10 11 15 12 10	5335 49627 42440 33633 36233 33633 3383	64 81 87 75 49 67 68 59	21 29 15 23 27 17 29 26 13	432 77 51 233 446	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	672684712	8 12 9 10 7 7 11 -6	1122121	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60 6 6 5 5 8 - 4	000010001000000000000000000000000000000	2 3 1 2 3 2 3 7 2	1211210	0 1 0 0 0 1 1 - 0	3 3 2 3 6 1 4 - 2

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

	OF			DC	MINA ENT C	T SE	PECI TAL	ES O	F DIA	TOMS . See text ;	AND for Code)	¥j,	-				R	OTI	IFEF	₹5			ER	T	EBR.	CR	US	TAC	ΕA				57
SA	MPI	LE 	1	ST		2 _{ND}	\Box	3	₹D	4	гн	ES	I AND BACTERIA per mi.	tifiabi ml.								T LEVE es)						_	AND C					FORM
			ļ	į		į		į				SPECI	GI Al	E Se	NUM- BER	1:	ST	_2 _N	1	_3 _F	D	4T	-	5T	<u> </u>	NUM- BER	15		2 _N		3 _R i	P 2	r ite	MAL
MONTH	DAY	YEAR	SPECIES	PERCENT	SPECIES		PERCEN	SPECIES	PERCENT	SPECIES	PERCENT	OTHER S PERC	FUNGI SHEATHED E Number p	PROTOZOA (Identifiable) Number per ml.	PER LITER	GENUS	COUNT LEVEL	CENUS	COUNT LEVEL	SENUS	COUNT LEVE	CENUS	COUNT LEVEL	GENUS	COUNT LEVE	PER LITER	CENUS	COUNT LEVEL	CENUS	COUNT LEVEL	GENUS	COUNT LEVEL	(Identifiable) Number per liter	OTHER ANIMAL FORMS
11	15593923605035162597146	222222333333333333333333333333333333333	866 866 866 866 866 866 867 922 311 266 311 311	65308 35 17 952583 134583	9 77 7 3 3 8 7 8 7 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5936 78 53 83 138	71 92 92 92 70 70 46 71 71 85 2 86	10 6 14 8 7 8 13 11	463 711 312 92 71 712 488 517 852 92	2 4 3 6 7 12 9 7 7 11	218 18 10 15 57 32 39 20 51 40 33 52 63 63 7 33	20	*	22 33 11 00 44											00000100100100111111111							0000	00031-00-00-01

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL. NEW MEXICO

	DAT	E			A	LGAE (Nu	nber pe	r milliliter	,			INE	RT		N	OST	AE	UND	AN.	T AL	GAE	E - Ge	enero	and (Coun	t Level	per 1	nl. (Se	e tex	for C	odes)	
	OF	,		BLUE-	GREEN	GREE	N	FLAGEL (Pigme	LATED nted)	DIAT	OMS	DIAT	ом	1 s	Т	2n	D	3r	D	4ті	1	5тн	1	6ті	н	7тн	ı	8тн	Ţ	9тн	T	1 Отн
MONTH	DAY	YEAR	TOTAL	COCCOID	FILA. MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS		COUNT LEVEL
10 10 11 11 12 12 1 1 2	5 19 3 19 2 23 6	62 62 62 62 63 63 63	400 3200 1500 5100 1900 10100 2500 2500	000000000000000000000000000000000000000	0 20 0 0 0 50 0	70 20 0 0 0 0 0 0 20	310 0 0 0 0	0 20 0 0 0 0 40	9000	20 20 20 290 160 50 20 710	1440 4470 1710 9880 50 180 1740	70 0 40 0 20 210 70	1550 990 370 630 18280 60 350 2120	91 91 91	3 5 3	92 92 88	1 2 2	92 88 92	2	48	2	77	1	81	1							
23344555	5 20 3 15 1 6	63 63 63 63 63	500 200 600 4100 1400 700 200	0 0 0 0	0 20 0 0 0	0 2 40 0	000000	0 20 0 0 20	800000	40 20 0 20 20	340 180 480 4050 1410 660	110 0 0 40 0	2460 90 730 5390 1320	91 92 81 88	1 4 3	88	2	91	2	86	1	87	1	97	1							
6 8 8 9	5 19 7 21 4	63 63 63 63	300 500 2900 2600 500 600	0000	20 20 30 0	100 0 100 0	0 0 0	0 0 0	0000	20 170 40	410 2580 2530 390	0 170 0 340	230 2260 770	81	1	92	1															

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

- /

DAT						1	CHLORINE	DEMAND									TOTAL	
OF SAJ	T	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	рH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/i	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 1	62		9•6 8•6	8 • 2 8 • 4	1.9 5.0	-	-	-	000	38 58	114 234	228 242	1 2	43 8	69 72	=	- 510	_
10 8			-	-	_	-	-	-	_	_	_		, -	-	_	-	_	840
10 9	62	12.0	10.2	8 • 4	2.3	-	-	-	•0	59	124	248	1	4	_	-	500	-
10 15		11.0	10.4	8 • 5	2 • 9	-	-	-	•0	48	120	254	-		180	-	450	300
10 22	62	10.0	9.8	8 • 2	2.0	_	-	-	•0	44	212	206 244	2	77 20	68		450 460	3000 470
10 29 11 5		9•0	11.0	8 • 5	• 7		_	-	•0	27	174	244		20	_	_	400	50
11 13		_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	320
11 18	62	_	-	-	_	- 1		-	·	-	-	_	-	_		_	_	1700
11 26	62	_	-	8.1	-	-	-	-	-	14	130	250	0	800	160	•0	390	760
12 3	62	-	-	7•7	-	-	~	-	-	40	120	260	0	*25	155	•0	440	130
12 10	62	-	-	8 • 1	-	-	-	-	-	14	124	270	0	*25 *25	130 135	•0	372 380	80
12 19 12 26		_	_	7.8	_		_	_	_	17 24	140 136	290 300	_	*25	150	.0	450	-
1 7		_	_	8.0	-		_	_	_	26	116	500	_	*25	140		440	_
1 23		•0	_	7.8	-	_			• 1		144	_	_	-		_	_	210
1 30		•0	_	-		-	-	-	1.0	_	-	-	-	-		-	_	400
2 6		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6000
2 8		2 • 0	-		-	-	-	-	• 1				-		-	-	-	l
2 13		1 • 0 5 • 0	6.3	8 • 1	1 0	_ [-	_	•5	63 56	156	256 252	2	90 65	186	_	_	110 200
2 20 2 27	63	6.0	5.7	8.3	1.0 1.5	_ [2.7	5.2	•1	26 	132	252	1	- 05	100	_		500
3 5		7.0	_	8.1	-	_	-		-	40	136	248	1	*25	160	•0	470	-00
3 13		3.0	5 • 4	8 • 1	1.9	-	• 9	3.9	•1	45	118	224	ī	48	160	• 0	460	170
3 20	63	5.0	5 • 5	8.1	2.6	-	1.8	5.6	• 8	20	136	256	2	240	160	• 0	425	-
3 27	63	-	-	7 • 2	-	-		-	-	7	104	200	0	320	76	•0	240	3600
4 3		5.0	6.5	8.0	1.7		1.8	4 • 6	•1	6	92	160	ō	60	60	•0	220	640
4 10		_		8 • 2 7 • 4	-		_	_	_	7 10	92 88	170 140	5 0	*25 145	60 50	•0	197 196	
4 24		_		/•	_		_	-	•0	10	108	190	0	*25	96	.0	270	50
5 1		_	-	-1	_	_	-		-	11	96	200	5	*25	88	•0	250]
5 8	63	-			-	-		-		7	64	100	5	170	24	•0	150	4800
5 15		-	-	7 • 4	-	77	2 • 4	4 • 8	•0	7	48	110	0	*25	46	•0	137	-
5 22		13.0	9•1	7.8	1.9		1.2	3 • 8	•0	4	60	90	5	*25	42	•0	139	4300
5 29	63	14.0	9•2	8.3	1.8	28	• 2	3.8	•0	12	60	120	0	*25	46	• 2	150	4000
				İ														

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

NEW MEXICO

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION ANIMAS RIVER AT

CEDAR HILL, NEW MEXICO

DATE	1					CHLOSON	DEMAND				<u> </u>	ļ					
OF SAMPLE	(Degrees	DISSOLVED OXYGEN mg/l	pН	8.O.B. mg/l	COB.	1-moun	24-1904/R mg/1	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/I	COLIFORMS per 100 ml.
6 5 6 6 12 6 6 19 6 6 26 6 7 3 6 7 10 6 7 24 6 7 31 6 8 14 6 8 28 6 9 11 6 8 2 11 6 9 25 6	3 16.0 18.0 18.0 22.0 23.0 22.0 21.0 23.0 21.0 23.0 21.0 23.0 21.0	10 · 1 9 · 8 8 · 9 7 · 8 9 · 1 8 · 6 7 · 6 8 · 3 7 · 1 7 · 6 8 · 5	8.3 8.3 8.0 7.7 8.1 7.4 8.0 8.0 7.8 8.1 8.1	1.4 2.1 3.9 3.5 7.9 1.6 2.0 1.3 2.1 2.4 .8 .7 -1.2	14 	•2 •1 •2 •4 -7 •8 -8 	1•3	•0 •0 •0 •0 •1 •1 •2 •0 •0 •0 •1 •0 •0	8 14 12 13 20 14 19 23 40 20 21 10 13 	74 84 76 84 104 110 118 134 130 100 118 80 90 	150 150 148 140 188 192 188 200 220 120 220 140 320 180	0 1 5 0 5 5 0 0 0 0 0 0 0	*25 *25 *25 *25 *25 *25 *25 *25 *25 *25	56 66 61 73 95 95 110 100 125 110 102 58 80 98	004402000000000000000000000000000000000	170 200 270 230 300 280 330 340 280 260 270	7600 *200 18000 5800 500

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Cedar Hill, New Mexico Operated by U.S. Geological Survey STATE

New Mexico

MAJOR BASIN

Colorado River

MINOR BASIN

Middle Colorado-San Juan Rivers

STATION LOCATION

Animas River at

Cedar Hill, New Mexico

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	.409	• 355	. 340	.240	. 300	.242	1.110	.598	1.800	. 544	.238	, 99A
2	• 379	• 345	. 310	.230	.320	.234	1.030	.631	1.700	.532	.253	.998 .940
3 4	• 361	. 340	•290	.240	• 350	.221	.836	.729	1.400	•532 •484	.277	778
4	• 350 • 340	. 361.	•290	.250	• 330	.242	.736	1.110	1.150	-484	365	.666
5	• 340	• 355	.290	.250 .240	• 350	و230 ،	•694	1.630	1.140	.526	.415	659
6	. 361	. 350	.280	.220	.400	.221	.673	2.160	1.150	.478	.400	•750
7 8	• 340	• 340	.28 0	.210	. 380	.226	.778	2.770	1.120	. 442	.448	.924
8	• 320	.320	.285	.210	• 373	.234	•956	3.220	1.180	.520	.520	.820
9	• 305	• 31.5	.280	.220	• 350	.247	•989	3.440	1.160	•598	.478	.680
10	. 3 05	. 320	. 265	.220	.409	.247	.908	2.490	1.020	•799	•479	.624
11	.285	. 31.5	.260	.200	• 345	.251	.813	2.280	.884	•743	.580	.645
12	.270	.305	.251	.160	• 310	-251	.860	2.230	.860	•729	-574	• 574
13 14	-265	.295	.255	•130	• 300	•238	1.020	2.270	1.080	•736	•550	-532
14	.260	320	.260	.120	.2 65	.242	1.260	2.410	1.240	.708	.502	550
15	.260	. 361	.251	.130	. 265	.25 5	1.520	1.860	1.430	.610	.448	-574
16	.285	- 345	.247	-150	.275	.260	1.350	2.080	1.290	.550	.415	.520
17 18	.441	• 345	.251	-170	•265	.242	1.140	2.700	1.070	.496	.415	490
18	• 543	· 3 ⁴ 5	.260	.200	.251	.251	.940	2.960	∙ 980	. 442	.420	.460
19 20	. 630	•330	.28 0	.230	.26 0	.242	.836	2.780	.972	.436	.425	.460
20	•508	• 305	. 265	-250	.2 65	.265	.729	2.740	932	.405	.400	454
21	.460	.320	.247	.230	.285	- 330	•659	2.610	•956	.380	.425	. 568
22 23 24	.434	• 325	.230	.220	.2 80	. 391	•598	2.230	948	.410	.472	.592
23	-415	. 320	.226	.220	. 265	•460	•532	2.150	•908	.420	.520	.514
24	.403	.320	.226	.220	.270	. 536	•580	1.960	.852	.390	•574	.478
25	. 403	.315	.220	.220	-275	• 598	•750	1.790	•778	• 355	- 550	.454
26	-397	.320	.200	.230	.2 65	·648	.836	1.650	•736	.3 08	.568	.436
27	• 397	.310	.180	.220	.265	.819	.806	1.900	. 708	.303	1.050	.415
28	• 385	.300	.190	.210	.255	• 950	•743	1.900	-659	.294	1.160	.400
29 30 31	•373	.295	.200	.220		•990	.652	2.050	.631	.261	.860	• 365
30	• 367	.300	.210	.220		1.020	•598	1.900	•586	.253	•799	•335
31	. 367	-	.220	.230		1.030		2.000		.253	.884	- 557

COLORADO RIVER AT YUMA, ARIZONA

The Yuma, Arizona station provides pollution surveillance on the Colorado River before the river enters Mexico. Samples are collected from the former intake of the Arizona Water Company.

The Colorado River is used as a source of irrigation water for the extensive developments above Yuma and for the disposal of irrigation drainage.

The Yuma station is directly influenced by the Wellton-Mohawk irrigation district drainage and the Gila River which enter the Colorado River immediately upstream. Resulting concentrations of major constituents during water year 1963 were:

	Concentration Range at Yuma mg/1	Recommended PHS Drinking Water Standard mg/l
Chloride	550 to 1,060	250
Sulfate	450 to 700	250
Total Dissolved Solids	1,950 to 3,040	500
Hardness	630 to 980	•••

Yuma discharges its municipal waste into the Colorado River without treatment below the station.

Station Location:

Colorado River at Yuma, Arizona

Major Basin:

Colorado River

Minor Basin:

Lower Colorado River

Station at:

32°44' Latitude 114°42' Longitude

Miles above mouth:

91

Activation Date:

November 4, 1957

Sampled by:

Arizona Water Company

Field Analysis by:

Arizona Water Company U.S. Public Health Service

Other Cooperating Agencies:

Arizona State Department of Health

Hydrologic Data:

Nearest pertinent

At Yuma, Arizona

gaging station:

U.S. Geological Survey

Gaging station operated by:

Drainage area at gaging station:

242,900 square miles

Period of record:

1902 to present

Average discharge

989 cfs. (WY 1962 only)

in record period:

Maximum discharge in record period:

34,900 cfs. after 1934

Minimum discharge in record period:

41 cfs. after 1934

Remarks: Many diversions above gaging station affect flows after 1934. Irrigation water by-passes gaging station and returns to river. Flows regulated by operations of Hoover, Parker, and Davis dams since 1935, 1936, and 1950, respectively.

ALKYL BENZENE

SULFONAT	re (ABS
Date	mg/1
3-4-63	0.10
3-11-63	0.07
3-18-63	0.08
3-25-63	0.08
4-1-63	0.08
4-8-63	0.08
4-15-63	0.07
4-22-63	0.07
5-20-63	0.07
5-27-63	0.10
6-3-63	0.09
6-10-63	0.08
6-17-63	0.07
6-24-63	0.08
7-1-63	0.07
7-8-63	0.07
7-15-63	0.07
7-22-63	0.08
7-29-63	0.08
8-5-63	0.08
8-12-63	0.08
8-20-63	0.10
8-26-63	0.06
9-2-63	0.07
9-9-63	0.07
9-23-63	0.13
9-30-63	0.15
i	

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

ELEMENTAL ANALYSES

		Composite	Interval
		10/1/62	4/1/63
		to 12/31/62	to 6/30/63
Analysis by	F	.61	.90
wet or flame methods.	Na	563	560
Results in mg/1	K	9.4	9.5
	Zn	* 50	*25
	Ċd	*25	*25
	As	*50	*50
Analysis	В	688	575
by	p.	*63	* 75
Spectro-	Fe	*63	63
graphic	Мо	*25	50
methods.	Mn	*12	13
	ΑI	_	125
Results	Ве	*.6	*.6
in	Cu	*25	*13
micrograms	Ag	*5	* 6
per	Νï	*25	25
liter	Co	*50	*25
	Pb	*63	*63
	Cr	*13	63
	٧	*50	*50
	Ва	94	38
	Sr	3500	2050

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	pc/1	+
October to December	.9	.2	April to June	.9	4 3
January to March	-	1	July to September	1	-

[±] at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration* ug/i

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/l. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

ARIZONA

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

YUMA, ARIZONA

DATE	<u></u>									RADIOACTI	VITY IN	WATER							RADIOACTIVI	TY IN PLA	NKTON	
SAMPLE	E	ATE OF					ALP	на						BETA				DATE OF DETERMI-		GROSS AC		
TAKEN	تــــــــــــــــــــــــــــــــــــــ	NATION		SUSPE	NDE	D	DISSO	LVEC)	TOTAL		SUSPEND	ED	DISSOLVE	. d	TOTAL		DETERMI- NATION	ALPHA		BETA	
MO. DAY YR.	М	O. DAY	•	pc/l		±	pc/l		±	pc/i	±	pc/i	±	pc/l	±	pc/l	±	MO. DAY	pc/g	±	pc/g	T ±
10 1 62 10 8 62 10 15 62 10 22 62 10 29 62 11 26 62 1 28 63 2 25 63 3 25 63 4 29 63 5 27 63 6 24 63 7 29 63 8 26 63 9 30 63	1:	2 29 2 19 2 24 2 3 2 31			111010000000000	0-424130001110	1	14 13 4 0 1 5 10 2		10 10 11 13 4 3 1 5 10 2 18 0		92 1 4 3 6 37 10 12 1 14 1 2 7 0 0	66 56 41 3 7 58 32 8 12 14 6 3 5 17 10 6	16 23 21 53 34 109 42 26 25 121 129 37 288	95 79 55 43 44 40 20 76 81 41 79 80 40 155	108 24 25 56 40 146 52 38 26 135 130 62 134 129 37 288		mo. DAT	PVY		pc/ g	

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

YUMA, ARIZONA

DATE	l DC	MINANT SPE	CIES OF DIA	TOMS AND		1	<u> </u>					N	110	RC	DIN	V	ERT	EBR	ΑТ	E S						
OF SAMPLE				(See text for Code	18)	ERIA	(916)				R C	DT1	FERS	SUNT	LEVEL				C F	NERA	TAC	EA	T LEVE			S C
- J	1st	2 _{ND}	3RD	4TH	- SE .	10-2	(Identifiab er per ml.		1	- 1			AND CC				E									FORMS liter)
					SPECI	GI ANI D BAC	(Ide)	NUM- BER	151		2nr	2	3RD		4TH		<u>5тн</u>	NUM- BER	<u>1s</u>		2 N	D d	3 _{RI}	D	DES ble) r lite	MAI.
# #	CENT	IES I	SIES	LES :	ER S	FUNGI EATHED Number	DZOA	PER LITER	_	I FE	_	3		LEVEL		LEVEL	TEVE	PER LITER	_	LEVEL	_	1	_	LEYEL	KATO mtifio ver pe	R ANI mber
MON DAY	SPEC	SPEC	SPEK	SPEC	6	SHE	PROT		GENU	COUNT	E .	COURT	S N	COUNT	GERG	NA COUNT	COUNT		GERUI	Min Oo	GERUS	COUNT	E E	COUN	N E	OTHE (N)
Now No	ш п	92 9 75 15 26 10 46 7 46 11 75 9 11 23 11 38 8 15 65 92 9 9 1 8 8 91 18 26 14 70 24	Seecures 6 8 8 8 8 10 75 6 8 10 75 8 16 60 77 77 77 77 77 77 77 77 77 77 77 77 77	7 7 8 5 7 90 7 7 92 11 26 16 65 92 96 8 2 7 70 8 8 2 7 46 8 8 8 2 10	67 53 62 74 59 66 61 61 31 160 58 64 22 43 38 34 42 28	SHEAT	PROTOZOA Namber	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SAVES	COWAT	\$AX23	CONKI		COUNT L		COUNT L	EEKUS COURT L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EEKN	COUNT	SONZE S	1.4100	ERNES	1 LM00	NEWNORS Companie	
													1													
													į													

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

YUMA, ARIZONA

DATE			A	LGAE (Nu	nber pe	r milliliter.)			INE	RT		1	MOST	ΑE	BUNE	AN	T AL	GAI	E - G	enero	and (Count	Level	per 1	ml. (S	ee te	xt for	Codes	
OF SAMPLE		BLUE-	GREEN	GREE	N	FLAGEL (Pigme		TAID	омѕ	DIAT		15	ST	2 N	D	3R	D	4т	н	5ті	Н	6т	н	711	i	8тн	1	9TI	1	10тн
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	- 1	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	GENUS COUNT LEVEL
10 8 62 10 15 62 11 5 62 11 9 62 12 3 62 12 17 62 1 14 63 1 16 63 2 18 63 3 18 63 4 15 63 5 6 63 5 20 63 6 17 63 7 15 63 8 20 63 8 20 63 9 2 63 9 2 63 9 3 63 6 63 9 3 66 9 3 63	1700 700 200 1000 600 400 200 300 100 500 600 400 2100 2100 2100 1500 2200 2100 2100 21	200000000000000000000000000000000000000		430 230	000000000000000000000000000000000000000	40 10 0 0 0 0 0 0 0 0 20 40 20 130 20 40 0 0 130 130 110	700000000000000		440 350 370 350 1120 560 1010 1450 850 860 610	40 00 20 20 20 20 20 20 20 20 20 40 40 40 110	270 1500 400 1100 800 290 4000 3100 6600 2600 6600 1700 500	68 68 68 38 68 87	222 2122	92 68 88	2 1 1	87 92 88	1	92	1											

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

YUMA, ARIZONA

3

	,		TRACTABL	T.C.	1				CHI OROS	ORM EXTR	ACTABLES				
DATE OF SAMPLE BEGINNING END	-	<u></u>	IRACIABL	.ES	 	1			NEUTRALS		TOTABLES				
MONTH YEAR MONTH	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10		269 233 193 232 468 213 319 529 571 252 420 OW UNKN ESTIMAT		241 201 180 - 189 406 178 275 367 476 203 329	0 1 0 - 3 - 1 - 15 4 - 4	7 9 3 - 12 9 - 49 24 27	11 10 6 -11 13 -36 23 -23	1 1 2 - 4 2 - 1	1 1 0 - 2 - 2 3 - 2 2	985-8-8-217-18	000 0 1 1 1 2	3 3 2 - 4 - 18 11 - 11	221-3-2-09-10	1 1 0 - 2 - 1 - 4 2 - 1 1	4 6 1 7 5 20 22 15

ORGANIC CHEMICALS
RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER

(Parts per billion)

ARIZONA

COLORADO RIVER MAJOR BASIN

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

YUMA, ARIZONA

3

	DATE							CHLORINE	DEMAND							444-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	N10001147-7-	TOTAL	COLIFORMS
MONTH	F SAM	YEAR	TEMP. (Degrees Centigrade)	OXYGEN mg/l	pH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	per 100 ml.
10	1	62	23.0	9.0	8.2	_	-		-	_	950	200	880	-	30	_	-	-	2400
10	8	62	23.5	9.5	8.2		-	-	-	-	780	188	770	-	55	-	_	-	*330 1000
10	15	62	21.0	9.7	8.2	-	-	-	-	-	975	216	870 980] =	44 22	_	_	-	*100
10	22	62	23.0	12•3		-	-	-	-	-	1040	212	980	_	24	_	_	_	*100
10	29	62	20.0	11.8	7 • 8	-	-	-	-	_	960 670	180	730	_	26	_	_ '		900
11	5	62	20.0	9 • 5	8 • 2	- 1	_	_	_	_	980	212	900	5	*25	600	. •0	2728	400
	13	62	18.0	12.5	8 • 2	_		_	_	_	1030	148	830	0	*25	625	• 0	2725	*100
11 11	19 26	62	14.0 17.0	11.1	8.2	_	_	-	_	_	720	126	720	0	*25	575	•0	2280	300
12	3	62	16.0	10.8	8.1	_	_	-	-	_	565	136	630	0	*25	500	• 0	2215	-
12	10	62	15.0	10.0	8.1	-	-	-	-	-	550	174	700	0	*25	475	• 0	1990	100 *100
12	17	62	15.0	10.5	8 • 1	-	-	-	-	_	650	192		0	*25	500	• 0	2000	*100
12	24	62	15.0	12.0	8 • 2	-	-	-	_	-	630	182	700	0	*25 *25	500 675	•0	3040	100
1	14	63	12.0	14.0	8 • 2	-	- 1	-	-	-	1060	220	980 910	_	*25	625		2700	500
1	21	63	11.0	17.4	8 • 2			-	_		970 630	180	730		*25	500	.0	1950	500
1	28	63	12.0	13.8	8 • 2	-	_	_	-	-	610	180	730	_	*25	450	.0	2100	1500
2	11	63	16.0	13.0	8.2			_	_	_	610	180	670	١ ،	*25	475	• 0	2050	*100
2	18	63	15.0	12.5	8 • 2 8 • 2	_	_	_	_	_	860	208	890	ا ة	*25	575	• 0	2740	*100
2	25	63	16 • 5 15 • 5	12.7	8.0	_	_	_	_	_	1020	220	940	5	*25	600	• 0	2800	*100
3	11	63	15.5	12.0	8.1	_	_	-	_	-	980	210	930	0	*25	580	• 0	2900	100
3	18	63	15.0	12.5	8.1	-	-	-	-	-	840	184	840	0	*25	550	•0	2500	2000
3	25	63	18.0	12.0	8.1	-	-	-	-	-	880	184	880	5	*25	550	•0	2600	1300
4	1	63	18.0	8.5	8.1	-	-	-	-	-	850	200	880	0	*25	580		2000	100
4	8	63	-	-	-	-	-	_	-	_		200	840	- 0	*25	580	I .	2500	1400
4	15	63	18.0	8 • 6	8.0	-	-	-	_] _	900	200	880	5	*25	550		2500	700
4	22		17.0	8 • 6	7.4	_	_	_	_		750	200	880	5	*25	580		2600	-
4	29	63	20.0	7.8		_	_	_	_] _	900	200	960	ا ه	*25	550	• 0	2500	1800
.5	6	63	24.0	7.6	8.0] _		_	_	_	850		840	1 0	*25	620	•0	2600	-
5	13	63	21.0	7.5	7.9	_	_	-	_	_			780	5	*25	625		2700	
5 5	27	63	23.0	7.5	8.0	_	i -	-	-	-	830	210	880		*25	620	ı	2600	500
6	3	63	24.5	7.5	8.0	_	-	-	-	-	1		960		*25	570		2500	1000
6	10		22.0		8.0	-	-	-	-	-			860	5	*25 *25	570 550			*100
6	17	63	26.0		8.1	-	-	-	-	-	1 /20		820		t	580			1200
6	24		22.0		8.1	-	-	-	_	_	1					510	1		50
7	1	63	24.0		8.1	-	_	-	_	_	1		1		1	550	1		100
7	8	63	25.5	7 • 2	8.0	_	-	_	-	-	""	132	'**		-				
							1	1			l					1			

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

YUMA, ARIZONA

3

DATI		Ī	<u> </u>		<u> </u>		CHLORINE	DEMAND			Γ							
OF SAM	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	рĦ	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES .mg/l	TOTAL DISSOLVED SOLIDS mg/i	COLIFORMS per 100 ml.
7 22 7 29 8 5 8 12 8 20 8 26 9 9 9 16	63 63 63 63 63 63 63 63	27.5 27.0 26.5 28.0 28.0 27.5 26.5 26.0	6.0 6.9 7.0 6.6 6.0 10.0 7.0 6.4 6.8 7.6 7.3	8.1 8.1 7.9 7.8 8.0 8.0 7.9 7.8 7.9		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1.4	800 1000 850 810 825 825 950 1030 750	182 192 186 178 180 182 174 190 200 176 208	800 920 800 780 980 980 980 980 920	55550000555	********** ***************************	5700 5800 5880 5880 6300 6300 65 6	0000000000	2300 2700 2400 2300 2350 2600 2900 1980 2800	300 500 500 200 980 580 200 1000

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station below Yuma, Arizona Operated by U.S. Geological Survey STATE

Arizona

MAJOR BASIN

Colorado River

MINOR BASIN

Lower Colorado River

STATION LOCATION

Colorado River at

Yuma, Arizona

ау	October	November	December	January	February	March	April	May	June	July	August	September
				0.060	2,640	•989	1.110	1.920	1.130	1.720	1.080	1.040
1	1.080	•962	2.770	2.060		1.000	1.150	1.940	1.190	1.570	1.030	1.070
2 3 4	•931	1.960	2.900	2.450	3.130	1.000	1.140	1.970	1.150	1.590	1.090	1.070
3	1.350	2.400	2.260	2.990	3-330		1.150	1.800	1.030	1.330	1.250	1.100
4	1.660	2.470	2.080	2,220	2.510	.993	1.100	2.000	.983	1.260	1.430	1.080
5	1.150	2.360	2.060	1.960	2.100	1.030	1.100	2.000	روره	20200		
_			0.000	7 500	1.940	1.090	1.110	2.020	1.020	1.270	1.480	1.120
6	1.690	2.230	2.090	1.590		.956	1.090	1.960	1.050	1.420	1.450	1.090
7 8	2.060	2.510	2.050	1.440	1.790		1.240	2.000	1.070	1.460	1.410	1.020
8	2.390	2.550	2.140	1.280	1.900	.910 .967	1.240	1.620	1.110	1.420	1.420	991ء
9	3.020	2.240	2.180	1.220	2.020		1.110	1.280	1.280	1.390	1.380	.980
.o	2.790	1.700	2.090	•968	2.030	.960	1.01110	1.200	1.100	_0 0,00		•
			0-	on l	1 000	.991	1.080	1.180	1.330	1.440	1.430	1.780
ı	2,730	1.190	2.080	.914	1.930	• 991	1.140	1.290	1.310	1.480	1.430	1.960
2	1.950	1.110	2.120	.907	1.720	1.060	1.140	1.240	1.340	1.430	1.390	2.010
L3	1.190	1.040	2.120	.856	1.960	1.070	1.070	1.190	1.310	1.410	1.320	2.040
ւ3 ւ4	1.220	1.080	2.010	.855	2.020	1.080	1.140	1.320	1.340	1.400	1.350	2.030
-5	1.160	1.150	1.960	1.020	2.410	1.080	1.140	1.520	1,0	20100	5,	
					0.000	7 050	1.100	1.470	1.380	1.380	1.410	2.030
16	.963	1.630	1.950	1.300	2.800	1.050	1.430	1.770	1.320	1.390	1.440	2.280
17	1.020	1.520	1.960	.976	2.800	1.170		1.580	1.130	1.330	1.430	4.190
17 18	1.000	1.120	2.140	.948	2.140	1.160	1.230	1.220	1.060	1.040	1.410	3.370
19	1.000	1.040	2.560	.965	1.940	1.120	1.130 1.110	1.190	1.120	1.040	1.350	4.080
20	•930	1.140	2.340	•947	2.030	1.120	ToTTO	1.150	1.0120	200.0	3,	
		_			0.000	1.120	1.120	1.130	1.380	1.070	1.370	3.460
21	•937	1.180	2.150	•978	2.060	1.060	1.180	1.160	1.170	1.060	1.430	2.840
22	•945	1.080	2.010	1.730	1.860		1.390	1.250	1.130	1.040	1.420	2.790
23	•963	1.360	2.200	2.160	1.820	1.060	1.570	1.120	1.110	1.010	1.460	2.940
21 22 23 24 25	.920	1.720	2.360	2.100	2.180	1.120		1.240	1.070	1.160	1.470	1.940
25	1.000	1.370	2.180	2.090	2.070	1.070	1.980	1.240	7.010			
				0.100	0.100	1.070	1.870	1.850	1.210	1.160	1.460	1.370
26	1.080	2.210	2.020	2.120	2.120	1.070	2.040	1.940	1.410	1.150	1.310	1.210
27 28	.952	3.210	2.080	2.370	2.120	1.210	2.000	2.020	1.720	1.060	1.410	1.210
28	1.060	2.770	2.030	2.320	1.760		2.000	1.950	1.830	1.240	1.280	1.210
29	.868	2.320	2.090	2.320		1.090	1.960	1.950	1.860	1.180	1.150	1.170
30	.864	2.550	2.120	2.540		1.050	1.500	1.140	1.000	1.040	1.130	
29 30 31	.908		2.130	2.360		1.050		7.740		7.0-10	_,,	

COLORADO RIVER ABOVE PARKER DAM, ARIZONA-CALIFORNIA

This Public Health Service Water Pollution Surveillance System station is located in Whitset Pumping Plant which diverts Colorado River water from Lake Havasu to the Metropolitan Water District of Southern California. The Los Angeles and San Diego metropolitan areas use this water as a major portion of their municipal supplies. A portion of this water is used for industrial purposes and to recharge ground water aquifers.

There are no other municipal, industrial or agricultural uses made of this water in the Parker Dam-Boulder City reach. Needles, California, about 70 miles upstream, draws its supply from wells and discharges its wastes through lagoons to the main stem.

The August 7 sample had an unusually high count of nuisance organisms which are often responsible for taste problems. Over 2,000 per milliliter of the flagellate Peridinium and over 7,000 per milliliter of the diatom Synedra were present.

Station Location:	Colorado River above Parker Dam, Arizona-California	ALKYL BEN	
Marian Basin	Colorado River	Date	mg/l
Major Basin:	Colorado Kiver	7-1-63	0.03
Minor Basin:	Lower Colorado River	7-17-63	0.03
		8-12-63	0.04
Station at:	34°18' Latitude 114°11' Longitude	8-19-63	0.05
Miles above mouth:	258	9-9-63	0.02
Activation Date:	January 1, 1958		
Sampled by:	Metropolitan Water District of Southern California		
Field Analysis by:	Metropolitan Water District of South California U.S. Public Health Service		
Other Cooperating Agencies:	California State Department of Health California State Water Quality Control Board		!
Hydrologic Data:	board		
Nearest pertinent gaging station:	Below Parker Dam, Arizona		
Gaging station operated by:	U.S. Geological Survey		
Drainage area at gaging station:	178,800 square miles		
Period of record:	1934 to present		
Average discharge in record period:	13,430 cfs.		
Maximum discharge in re	cord period: 42,400 cfs.		
Minimum discharge in re	cord period: 1,350 cfs.		

Flows regulated by operations of Hoover, Parker, and Davis dams since 1935, 1936, and 1950,

respectively.

KYL BENZENE ILFONATE (ABS)

		Composite	Interval
		10/1/62	4/1/63
		12/31/62	6/30/63
Analysis by	F	.45	.50
wet or flame methods.	Na	105	120
Results in mg/1	κ	6.8	6.3
	Zn	*8	21
	Cd	*8	*7
	As	*75	* 70
Analysis	В	105	95
by	P	*38	*35
Spectro-	Fe	15	*14
graphic	Мо	41	63
methods.	Mn	*2	*4
	ΑI	_	*35
Results	Ве	*.2	*.2
in	Cu	6	*4
micrograms	Ag	*2	*2
per	Ni	*4	7
liter	Co	*15	*7
	РЬ	38	*18
	Cr	*4	*18
	v	*8	*35
	Ва	143	63
	Sr	865	655

ELEMENTAL ANALYSES

STRONTIUM 90 ACTIVITY

				•	
Composite Interval	pc/1	+ -	Composite Interval	pc/1	+
October to December	1.3	.2	April to June	-	-
January to March	1	1	July to September	1.0	.2

[±] at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

	Interval	Compound	Concentration* ug/1
I			,
ı			
	i		

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

^{*}Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

CALIFORNIA

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER ABOVE

PARKER DAM. ARIZONA-CALIFORNIA

	_								RADIOACTI	VITY IN	WATER						 ı		RADIOAC	YTIVIT	IN PLAI	IKTON	
DATE	-	DATE	OF				ALPHA		RADIOACI	7111 114	7775124		BETA				DAT	E OF ERM!- TION		GR	OSS AC	TIVITY	
SAMPLE TAKEN	1	DATE	MI-	SUSPE	IDEI		DISSOLVE	<u> </u>	TOTAL		SUSPEND	ED	DISSOLVE	D	TOTAL		NA	TION	AL	-PHA		BETA	
	-	10.		pc/l	I	±	pc/I		pc/l		pc/l	±	pc/l	土	pc/l	±	MO.	DAY	pc/g		±	pc/g	<u> </u>
10 17 62 10 22 62	11111	2 1 1 1 1 1 2 1 2 1 3 2 4 2 6 2	.3	1	000000000000000000000000000000000000000	1 1 1 3 2 1 2 0	4 5 3 10 6 13 6 9 9	44354654554	4 5 3 22 7 13 6 9 10 8	44364654554	0 1 11 3 53 82 0 1 1 0 2	23 10 11 23 30 12 52 6 11 22 2	11 22 47 14 4 186 29 20 41 15 23	34 27 29 28 24 18 29 29 18 19	11 23 58 17 57 268 29 21 42 15 25	41 29 31 36 26 22 60 30 21 29							
7 17 63 8 19 63 9 18 63	1	9	6* 8* 6*		000	000	9 7 6	5 5 5	9 7 6	5 5 5	0 0 4	26 5 5	19 31 13	18 18 17	19 31 17	32 19 18							

STATE

CALIFORNIA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER ABOVE

PARKER DAM, ARIZONA-CALIFORNIA 004

DATE		OMINAN															0 1	NΙ	/ERI	EBR								
OF SAMPLE	1st		ND		RD	41			I AND BACTERIA per ml.	iable)	 	Ι		GENER	AAND	COUL	T LE	/EL			GE GE	NERA	TAC	OUN	T LEVE	L		RMS (P
	 		1		1			H C	AND BAC	dentij er m	NUM-	1 ST	- T	2 _{ND}		RD	1 -	TH	5тн	NUM-		ST ST	2 N		3 _R		ES Sie) Hiter	1, Fo
MONTH DAY YEAR	SPECIES	H	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SPECIES PERCENT	FUNGI SHEATHED B	PROTOZOA (Identifiable) Number per ml.	BER PER LITER	GERUS	COUNT LEVEL	COUNT LEVEL		COUNT LEVEL	CENUS	COUNT LEVEL	GENUS	BER PER LITER	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	NEMATODE: (Identifiable Number per l	OTHER ANIMAL FORMS (Number per liter)
10 2 62 10 17 62 11 6 62 11 6 62 12 1 62 12 17 62 12 16 63 2 18 63 3 18 63 3 18 63 4 15 63 5 7 63 5 20 63 6 17 63 8 7 63 8 19 63 9 16 63	8 56 56 56 82 26 91 33 71 31 91 88 91 83 91 81 91 72	23 8 8 8 8 25 25 61 89 52 25 25 25 25 25 25 25 25 25 25 25 25	12 15 19 10 4 20 20 27 27 2 5 2 3 4 17	91 91 25 82 86 80 92 2 2 92 26 28 18	12 8 14 7 3 6	92 82 92 92 92 27 47 92 65 82 26 70 27 92	3 3 7 6 3	23 15 33 50 34 47 44 29 7 6 10 9 9 9 6			127 5 2 0 8 2 3 0 0 0 7 2 159 2 82 -	18 17 11	3	17 3 11 2 17 3 17 3 17 5		9 3	1	03	33	300000000000000000000000000000000000000	76 50	1	51		76		000000000000000000000000000000000000000	-00000000000000000000000000000000000000

STATE

CALIFORNIA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER ABOVE

PARKER DAM, ARIZONA-CALIFORNIA

				GAE (Nur									M	OST	AB	UND	ANT	ALC	SAE	- Gen	era o	and Cou	nt L	evel pe	ml.	(See t	text fo	r Code	:8)	
DATE OF SAMPLE		BLUE -		GREE	1	FLAGEL (Pigme	LATED	DIATO	омѕ	INE DIAT SHE	OM LLS	1s	т	2n	D	3 _{RI}		4тн		5тн		6тн	7	7тн	8	TH	9	TH	10	TH
DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEYEL	GENUS	COUNT LEVEL		COUNT LEVEL		COUNT LEVEL	GENUS	77.1	GENUS COUNT LEVEL	envac	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL
10 2 62 10 17 62 11 6 62 11 62 12 1 62 12 17 63 1 21 63 2 4 63 3 18 63 3 18 63 4 1 63 4 1 63 5 7 63 5 20 63 6 3 63 6 7 1 63 7 17 63 8 7 63 8 7 63 9 16 63	200 300 500 100 200 200 200 200 300 1100 1201 11700 1202 11700 1204		0 0 0 170 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 30 20 110 60 20 20 20 20 20 110 40 40 46 46 46 46 46 46 46 46 46 46 46 46 46	000000000000000000000000000000000000000	00 00 20 120 00 180 40 90 40	50 0 0 20 40 20 320 0 0 0 2220 22110 40 40 60 22110	50 0 0 150 50 20 400 0 0 0 110 70 40 110 120 120 130	40 20 20 440 150 50 110 660 640 8140 620 790	15C 2C 2C 19C 2C (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	0 30 8 50 150 20 150 320 180 0 240 0 200 200 370 370 370 370 370 370 370 370 370 3	71 92 92 92 92 92 92 92 92	1 232622	35 38 63	1 1 1 4	38	2	88	2	44	1	76	1	87	1 3	5	1			

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

CALIFORNIA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER ABOVE

PARKER DAM: ARIZONA-CALIFORNIA

	TE OF	EAN	DI F	- 1		F	KTRACTABL	ES					CHLOROF	ORM EXTR	ACTABLES				
	NNING		EN	_		<u> </u>	1	1		ī			NEUTRALS				ı		
MONTH	Τ.	_	MONIH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
2 2 4 5 6 7 8	8 63 63 63 63 63 63 63 63 63 63 63 63 63	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 3 4 5 6	14 13 14 12	4629 4365 4730 51190 5990 5460 4650	178 156 196 158 130 163 162 195 219	52 33 50 60 39 64 80 82 89	126 123 146 98 91 99 82 113 130	41-2-2-7-	11 10 - 14 - 13 - 24 -	20 12 - 26 - 20 - 20 -	1 1 - 7 - 4 4	2 1 - 3 - 1 - 2 -	17 9 - 15 - 15 - 14 -	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 - 5 - 16	31 31 5 9	1 2 2 7	8 5 - 9 - 6 - 10

CALIFORNIA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER ABOVE

PARKER DAM. ARIZONA-CALIFORNIA

١.			

DATE						CHLORINE	DEMAND									TOTAL	
OF SAMPLE	TEMP.	DISSOLVED	pH	B.O.D.	C.O.D.			AMMONIA- NITROGEN	CHLORIDES	ALKALINITY	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS	COLIFORMS per 100 ml.
DAY	(Degrees Centigrade)		P	mg/l	mg/l	1-HOUR mg/l	24-HOUR mg/l	mg/l	mg/l	mg/l	mg/1	(seure onne)	(SCSIO SIIII)			mg/l	
10 17 662 11 12 662 11 12 662 11 12 12 662 11 12 12 12 12 12 12 13 14 663 11 12 12 12 12 12 13 14 663 11 16 663 11 1	27·22·88 	12.9 12.9 12.9 12.6 12.2 11.7 12.6 12.7 12.5 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.7 12.6 12.7 12.6 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7	8 · 1 · 1 · 8 · 1 · 1 · 8 · 1 · 1 · 8 · 1 · 1	1.1 1.4 1.3 9 9 5 7 4 4 7 7 7 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4		mg/l			78 90 88 82 80 80	128 - 128 128 136 136 128 - 128 122 120 118 126 120 120 116		5 0 0 0	55555555555-555-55-555555555555555	290 270 305 290 300 290 320 295 310 310 310 310 310 3290 3290 3290 3290 3290 3290 320 290		690 700 700 710 690 680 670 700	

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL-SUBJECT TO REVISION

Gaging Station below Parker Dam Operated by U.S. Geological Survey STATE

California

MAJOR BASIN

Colorado River

MINOR BASIN

Lower Colorado River

STATION LOCATION

Colorado River above

Parker Dam, Arizona-California

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	8.890	13.900	5.460	4.780	6.220	10.600	14.400	11.300	13.000	13.600	15.100	12.100
2	9.400	16.100	5.750	3.240	6.220	11.500	14.100	10.800	13.000	13.400	15.300	12.600
3 4	9.660	17.200	5.950	2.350	6.340	11.100	13.900	11.500	12.800	14.000	15.600	11.700
	10.700	16.000	5.740 5.240	2.560 2.640	6.860	11.800 12.100	12.800	11.400 12.000	13.200	14.000	15.300	12.500
5	10.900	9.810	5.240	2.040	7.830	12.100	13.200	12.000	13.700	14.800	16.200	10.500
6	10.600	6.600	4.780	2.900	7.990	11.600	13.500	11.300	12.700	15.000	15.000	12.000
7 8	10.400	6.680	5.550	2.880	8.370	10.600	13.600	11.400	13.200	15.400	14.200	11.900
8	10.400	5.720	5.780	3.210	8.880	11.000	13.900	11.600	13.400	15.400	12.700	11.600
9	9.010	6. 380	5.660	4.020	7.820	11.300	13.500	11.100	13. <i>6</i> 00	15.400	13.600	12.300
10	7.590	6.460	5.300	5.140	7.520	11.400	12.700	11.200	14.300	15.100	15.300	12.700
11	6,590	6.440	5.040	6.480	7.460	11.000	11.400	11.200	13.400	14.500	14.800	12.700
12	7.350	5.980	4.700	7.270	8.010	10.900	12.200	11.700	13.000	15.400	14.800	12.500
13 14	7.160	5.600	4.190	6.900	8.200	11.100	11.000	11.800	11.400	15.100	14.400	13.200
14	6.840	5.110	5 . ¼40	5.870	7.520	11.900	11.000	12.000	12.600	14.900	14.000	12.900
15	7.490	4.700	5.670	5.140	7.820	12.900	10.400	11.000	12.900	15.400	12.700	13.000
16	7.140	5.640	5.630	4.840	7.880	12.600	10.500	10.100	12.600	15.400	11.600	13.000
17	7.210	5.210	4.340	5.180	8.450	11.400	9.730	10.100	13.200	15.600	10.900	11.400
18	4.410	5.480	3.560	7.430	8.740	11.400	9.560	10.700	14.000	14.100	10.900	6.190
19	5.040	5.270	3.150	9.050	8.730	11.800	10.500	10.900	14.400	15.700	12.500	8.040
20	5.170	5.3 80	3.150	9.240	8.360	11.400	10.600	12.000	14.600	15.900	12.700	8.580
21	4.920	5.010	2.900	7.120	8.160	11.400	10.700	11.300	17.200	15.600	12.700	8,460
22	5.470	4.960	2.640	7.210	9.730	12.700	9.840	11.200	16.700	15.400	12.300	8.170
23	5.220	7.140	3.800	7.670	9.710	12.400	10.400	11.100	16.800	15.700	13.200	6.480
23 24	5.040	6.710	4.630	6.220	11.000	12.300	10.500	12.000	17.000	15.500	13.300	6.440
25	4.630	6.290	4.120	6.220	10.500	12.400	10.700	11.900	16.800	15.000	13.000	8.180
26	4.630	6.370	3.720	6.670	10.400	13.200	11.600	12.400	7.5.700	3.5.500	70.000	0.000
27	6.360	6.300	3.640	6.920	10.400	13.200	10.100	12.400	15.700 14.600	15.500	12.800	8.920
28	7.330	6.150	4.700	6.540	10.700	12.600	10.100	13.000	15.000	15.700 15.600	12.300 12.300	10.300
29	8.710	5.390	4.340	6.670	20,100	13.500	10.400	12.200	14.500	16.000	11.400	10.500 10.500
29 30 31	10.800	5.000	5.040	6.600		13.700	11.300	11.500	14.300	16.500	11.500	10.900
31.	12.400	•	4.850	5.700		13.600		12.900	تاري. ي	16.000	11.800	10.500

COLORADO RIVER NEAR BOULDER CITY, NEVADA

Water samples are taken from the booster pump station on Boulder City intake which taps Hoover Dam Penstocks. The intake elevation is variable.

Hoover Dam created Lake Mead which has a detention time of about two years for the average Colorado River flow. The evaporation rate is about seven feet per year. Lake Mead is a recreational water and receives some pollution from this source. Above Lake Mead the river flows through the Grand Canyon of the Colorado.

Station Location:	Colorado River near Boulder City, Nevada	ALKYL BEI	
Major Basin:	Colorado River	Date	mg/1
Major basin;	Colorado River	7-9-63	0.02
Minor Basin:	Lower Colorado River	7-16-63	0.03
Station at:	36°01' Latitude 114°44' Longitude	7-23-63	0.03
siation at,	50 01 Battende 114 44 Bongitude	8-6-63	0.03
Miles above mouth:	415	8-13-63	0.03
Activation Date:	July 18, 1958	8-20-63	0.03
Sampled by:	Boulder City Water Department	8-28-63	0.02
sampled by,	bodider City water bepartment	9-3-63	0.02
Field Analysis by:	Boulder City Water Department U.S. Public Health Service	9-24-63	0.05
Other Cooperating Agencies:	Nevada State Department of Public Health U.S. Bureau of Reclamation		
lydrologic Data:	,		
Nearest pertinent gaging station:	Below Hoover Dam, Nevada		
Gaging station operated by:	U.S. Bureau of Reclamation Discharges published by U.S. Geologi- cal Survey		
Drainage area at gaging station:	167,800 square miles		
Period of record:	1933 to present		
Average discharge in record period:	14,370 cfs.		
Maximum discharge in re	cord period: 36,000 cfs.		
	1		

Remarks: Flows regulated since February 1935 by operations of Hoover Dam. Upstream irrigation, municipal and industrial diversions.

152 cfs.

Minimum discharge in record period:

ABS)

		Composite	Interva
		10/1/62	4/1/63
		12/31/62	6/30/63
Analysis by	TF	.36	.45
wet or flam methods.	e Na	95	95
Results in mg/I	K	5.7	6.2
	Zn	259	24
	Cq	*7	*7
	As	*74	*68
Analysis	В	118	95
by	p.	*19	*34
Spectro-	Fé	33	17
graphic	Мо	* 75	*7 5
methods.	Mn	*4	*3
	ΑI	-	*34
Results	Ве	*.2	*.2
in	Cu	*7	*4
micrograms	Ag	*2	*2
per	Ni	*7	*7
liter	Co	*15	* 7
	Pb	*19	*17
	Cr	*4	*17
	v	*7	*34
	Ва	81	61
	Sr	115	646

ELEMENTAL ANALYSES

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	pc/i	+
October to December	1.5	.2	April to June	1.8	.3
January to March	-	1	July to September	_	-

⁺ at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration* ug/l

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

NEVADA

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER NEAR

BOULDER CITY, NEVADA

DATE	1							RADIOACTI	VITY IN	WATER							RADIOACTIVI	TY IN PLA	NKTON	
SAMPLE	Ι.	DATE	oF.			ALPHA						BETA				DATE OF DETERMI-		GROSS A	CTIVITY	
TAKEN	Ι'	NATIO	N _	SUSPEND	ED	DISSOLVE	(D	TOTAL		SUSPEND	ED.	DISSOLVE	.D	TOTAL		NATION	ALPHA		BETA	
MO, DAY YR.	N	10. E	AY	pc/l	<u> </u>	pc/i	±	pc/l	H	pc/l	#	pc/i	±	pc/l	#	MO. DAY	pc/g	±	pc/g	±
10 2 62 10 9 62 10 16 62 10 23 62 11 27 62 11 27 62 12 24 62 12 26 63 2 26 63 3 26 63 4 30 63 5 28 63 6 25 63 8 27 63	1111111	2 1 2 2 1 2 1 2 1 2 1	726578** 88** 82573** 563*		1 2 2 1 1 1 0 0 1 0		+ 1-64554536465565	- 11 7 9 7 8 6 6 3 9 12 11 8	# 1164554536465565	36 5 11 15 0 3 12 1 3 2 5 2 0 2	8 19 26 23 160 22 11 6 3 5 6 3 23 3 12	16 26 34 27 26 15 21 33 24 20 13 35 20 13	± 105 344 29 218 27 15 9 15 26 30 15 8 28	19 32 39 38 41 15 24 45 14 27 22 66 25 35 22 13	± 131 437 273 55 19 85 26 31 15 29 30	MO, DAY	pc/g	±	pc/g	±

STATE

NEVADA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER NEAR

BOULDER CITY, NEVADA

DAT	TF	T	DC	MINAN	T SPE	CIES C	F DIA	TOMS	AND		ſ .							міс	R	011	V V	ER	Т	EBR								
OF SAMI	F	-	PERCI		TOTA ND		RD	(See text	for Code TH	,	ERIA	able				- R GEN	OT	AND	S	T LEVE	L		-		C R	US	AND C	EA	T LEVE	EL.		S S
	Τ.		131	 	<u>.uv</u>	<u></u>		 	In	SPECIES	AND SACT	entifi er må	NUM-	1s	т	2 _N		3R		4T)		5тн	7	NUM-	1 s		2 N		3R			r lite
момтн	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SPE PERCEN	FUNGI AND SHEATHED BACTERIA Number per ml.	PROTOZOA (Identifiable) Number per ml.	BER PER LITER	GENUS	COUNT LEVEL	CERUS	COUNT LEVEL	бения	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEYEL	BER PER LITER	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	NEMATODES (Identifiable) Number per liter	OTHER ANIMAL FORMS (Number per liter)
10 15 11 19 12 17 1 12 18 4 15 6 6 5 20 3 6 17 7 7 1 8 19 9 16	62 62 62 62 63 63 63 63 63 63 63 63 63 63 63 63 63		8 44	91	26	47	8	55	7	15	200		000000000000111111111											00000000000001111111111							01111111100000000000011111111111	000000000000011111111

STATE

NEVADA

MAJOR BASIN

IN COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER NEAR

BOULDER CITY, NEVADA

DATE	1		Al	LGAE (Nu	nber pe	r milliliter)			INE	RT		N	MOST	AE	UND	AN	r AL	GAE	- Ger	era an	d Cou	nt Lei	el per	ml. (8	ice te:	xt for	Codes)
OF SAMPLE		BLUE-	GREEN	GREE	N.	FLAGEL (Pigme		DIAT	OMS	DIAT SHE	OM	15	ST	2 N	D	3r	D	4тн	1	5тн	6	Зтн	7	TH	8т	н	9т	ł	10тн
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	COUNT LEVEL
2 62 10 15 62 11 19 62 12 17 63 12 1 63 12 1 63 12 1 63 13 18 63 3 18 63 3 18 63 3 18 63 15 63 15 63 17 63 19 63 19 63 19 63 19 63 19 63 19 63 19 63 19 63 19 63 19 63 19 63	100 100 00 500 00 00 00 00 00 00 00 00 00 00	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 30 0	000000000000000000000000000000000000000	400000000000000000000000000000000000000	0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 40 0 0 20 20 30 0 50 20	10 70 0 0 0 0 0 30 0 10 20 20 20 20	100	0 30 40 20 0 30 30 0 30 20 40 0 0																		

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

NEVADA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER NEAR

BOULDER CITY, NEVADA

DATE OF S	SAM	PLE	T T		EXTRACTAE	LES	1				CHLOROF	ORM EXTR	ACTABLES				
BEGINNING		END	7	_	1	T		1	1		NEUTRALS				T	T	
DAY YEAR		MONTH	GALLO		L CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
11 14 62 12 7 62 12 7 62 1 23 63 3 11 63 4 19 63 5 13 63 6 10 63 7 8 63 7 29 63 8 26 63 9 20 63		1 2 1	3 491 672 526 504 7 487 492 497 497 499 511	0 21 1 24 0 15 0 16 0 13 0 15 0 16 15 0 16 15 0 16 16 16 17	5 49 53 42 57 44 52 57 44 52 51 57 53 48	257 167 191 113 112 90 104 118 85 110 91 95	1 2 4 - 1 2 - 2 - 1	13 17 14 20 19	18 -13 -12 -11 -8 	1 1 0 0 0 1	1 0 0 0 -	12 10 10 8 8 -		1 1 5 1 6 1 4 1 5 1 4 1	3 - 6 - 5 - 7 - 5 -	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 - 12 - 12 - 11 - 9

NEVADA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER NEAR

BOULDER CITY, NEVADA

5

	DATE							CHLORINE	DEMAND									TOTAL	
MONTH	F SAME	YEAR	TEMP. (Degraes Centigrade)	DISSOLVED OXYGEN mg/l	рН	B.O.D. mg/i	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10		62	15.0	9.8	8.1	-	-	10.8	12.8	_	82	132	338	-	-	211	-	-	33
10		62	15•0	10.6	7 • 8 8 • 1	-	_	10.4	14.8		82 82	132 126	340 340	5	*25	224 170	•0	731	14000
10	16 23	62	15.0 15.0	11.8	8.0	-	_	10.9	12.7	_	86	128	340		725	200		121	20
10		62	15.0	10.7	8.1			10.7	15.0	_	84	130	348	_	-	182	-	-	70
11		62	14.0	6.6	8.1	-	-	10.9	14.9		80	130	340	-	-	182	- 1	740	20
11	13	62	13•5	7.0	7 • 8	-	-	12.9	16.9	-	88	124	340	-	-	182	-	-	5
11		62	13.5	7.0	7•8 7•9	_	-	10.8	12.8	_	36 86	130	340 344	_	_	203 226	_	790	20 5
11 12		62 62	13.0 13.0	7.0	7.9	_		12.0	14•4	_	79	126	344	0	*25	280	•0	714	*3
12	11	62	13.0	6.8	7.9	-	_ '			_	76	126	328	ŏ	*25	300	•0	720	*3
12	17	62	13.5	6.4	7.8		-	•8	1.1	-	80	130	328	0	*25	305	•0	695	*3
12	24	62	13.0	6.5	7.9	-	-	• 7	1.2	-	83	126	320	-	*25	280	•0	714 680	5 20
12	31	62	13.0	6.3	7.9	-	_	• 7	1.8	_	94	126	340	-	_	-	_	660	5
1 1	7 8	63	12•5	6.0	7•9	_		• 7	1.8		_	_	_	_	_	_	_	-	_
1	16	63	12.5	6.3	7.9	• 4	10	1.0	2.0	_	85	126	340	-	*25	270	• 0	695	50
1	22	63	12.5	6.3	7.8	• 3		• 7	1 • 2	-	86	128	340	-	*25	290	•0	690	5
1	29	63	12.5	6 • 4	7.9	• 3	-	• 7	1.7	-	78	120	350	-	*25	290	•0	710 710	*3 *3
2	5	63	13.0	6 • 4	8.0	•3	-	•7 •8	1 • 2	_	75	120	340	_	*25	290	•0	710	*3
2	12 19	63	13.5 13.0	6.5	7 • 8 8 • 0	• 4	_	.7	1.7		80	128	328	0	*25	275	•0	680	*3
2	26	63	13.5	6.3	7.9	4	_	. 8	1.7	_	79	128	324	5	*25	290	•0	700	*3
3	5	63	13.0	6.1	7.9	• 4	-	• 8	1.8	-	77	130	320	0	*25	240	•0	710	*3
3		63	13.0	6.2	7.9	• 5	-	1 • 2	1 • 4	_	80	130	320	5	*25	310	•0	720	3000
3	19	63	13.0	6 • 2	7.9	-	-	1.0	1.9		43	128	320	0	*25 *25	280 280	•0	690 690	*3 *33
3		63 63	13.0 13.0	6.0 5.9	7•9 7•9	• 2	-	• 6 1 • 2	1.8	_	72 86	124	330	5 5	*25	280	1 .0	720	*3
4 4	9	63	13.5	6.4	7.9	.5	_	1.2	2 • 2	_	80	128	320	5	*25	280	•0	670	67
4	16	63	14.0	6.3	7.3	.2	_	1 • 2	1.8	_	82	128	330	0	*25	300	•0	690	*3
4		63	13.0	6 • 2	7.9	• 4	-	• 7	1.7	-	96	132	340	5	*25	280	• 0	690	*3
4	30	63	14.0	6.8	7.9	• 5	-	• 2	• 8	-	74	124	320	10	*25	280	• 0	670	*3
5	7	63	14.0	6.7	7.8	• 7	_	• 8	2 • 2	_	82 78	136	340 320	0	*25 *25	280 290	•0	640 670	30 550
5 5	14	63 63	14.0 14.0	6.6	7•9 7•9	• 4	_	.8	1 • 8	_	78	128	320	5	*25	290	.0	640	200
5	21	63	14.0	6.7	7.8	1.7	_	1.2	2.3	-	64	120	360	5	*25	290	•0	690	-
6	4	63	14.0	6.2	7.8	• 6	-	1.7	2 . 8	-	76	128	330	0	*25	280	•0	670	200
6	11	63	14.0	6.8	7.6	• 6	-	• 7	2 • 1	-	72	126	320	0	*25	260	•0	650	*3
6	18	63	14.0	6.7	7•9	• 2	-	• 9	2 • 2	_	90	126	340	5	*25	270	•0	660	6000

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

NEVADA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

LOWER COLORADO RIVER

STATION LOCATION COLORADO RIVER NEAR

BOULDER CITY. NEVADA

DATE OF SAMPLE				T		CHLORINE	DEMAND							1	1	<u> </u>	1
DAY YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pН	B,O.D, mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
25 63 77 963 77 16 63 77 130 63 8 13 63 8 20 7 63 9 10 62 9 24 63	14.0 14.0 14.0 14.0	6.9 6.9 6.9 6.5 6.5 6.5 6.3 2 2 2 6.5 6.6 6.5	7.9 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9	.48663336885486 		.9 .9 1.1 .7 .9 .9 .9 .9 .9 .9	2 · 3 1 · 7 2 · 2 2 · 4 4 · 7 1 · 9 2 · 2 2 · 1 2 · 1 2 · 1 2 · 1 2 · 1 1 · 7 1 · 3		76 72 72 74 80 90 70 76 70 74 76 80	128 118 122 120 120 120 120 120 120 120 128	340 340 340 310 310 320 380 330 310	100505500555	**************************************	260 280 270 350 260 270 280 290 290	• • • • • • • • • • • • • • • • • • • •	670 680 670 710 650 670 650 640 660 660 630	*33 8000 200 100 200 100 *3 3 30 20

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Nevada

Thousand Cubic Feet per Second

MAJOR BASIN

STATE

Colorado River

PROVISIONAL -- SUBJECT TO REVISION

MINOR BASIN

Lower Colorado River

Gaging Station below Hoover Dam Data furnished by U.S. Bureau of Reclamation through U.S. Geological Survey

STATION LOCATION

Colorado River near

Boulder City, Nevada

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	12.300	9.960	8.660	3.300	9.060	11.800	14.700	15.200	11.300	15.000	15.300	5.720
2	9.830	9.360	3.080	8.860	7.150	11.400	14.200	15.300	7.200	14.500	15.000	6.290
3	9.980	8.090	11.500	7.310	3.550	9.330	13.900	14.600	14.000	14.600	11.000	15.600
4	9.180	4.580	11.400	7.230	10.300	14.500	14.400	10.200	13.000	7.370	6.420	13.800
5	10.200	11.900	11.800	5.560	10.300	17.200	15.800	8.020	12.900	14.800	13.900	14.500
6 7 8 9	7.270 3.040 10.900 11.700 10.900	11.500 12.700 12.700 12.200 10.400	12.000 12.000 9.490 4.530 11.500	2.970 6.260 6.430 6.510 6.710	11.200 11.500 12.100 11.500 5.460	14.800 14.900 15.800 14.600 10.800	11.100 8.510 16.900 18.600 18.000	15.000 13.800 13.700 13.700 14.800	12.700 12.500 10.100 6.630 13.100	12.200 8.650 16.800 17.000 17.800	13.100 13.900 13.800 14.500 12.900	15.500 11.400 5.130 15.000 16.400
11	12.200	6.070	12.500	8.720	11.000	15.900	18.300	10.800	11.700	17.800	8.780	15.100
12	10.000	10.300	12.200	9.880	11.600	17.000	16.400	8.520	12.500	17.000	15.700	17.600
13	8.070	11.100	11.900	6.840	13.100	17.100	14.800	16.000	13.100	13.400	16.300	14.600
14	3.950	10.900	11.800	10.600	11.800	18.000	8.740	17.300	14.500	9.350	16.000	10.200
15	9.610	11.800	9.600	8.510	13.000	17.300	17.600	17.700	11.400	16.400	16.600	5.450
16	10.800	12.800	5.180	7.490	10.600	14.300	17.500	19.000	9.660	16.400	17.600	12.700
17	12.800	11.100	12.000	10.000	5.260	10.500	18.900	18.700	15.600	16.800	14.200	12.600
18	13.400	5.700	10.800	11.100	13.100	16.200	17.300	16.700	14.700	17.300	9.820	13.800
19	14.100	12.500	11.600	9.440	12.000	15.200	15.700	13.000	14.700	17.400	17.600	12.600
20	9.730	11.800	11.700	5.370	12.400	14.800	13.100	18.500	15.000	12.500	16.800	11.400
21	4.740	12.000	11.600	10.000	14.100	15.400	8.700	17.400	14.000	10.400	15.500	8.630
22	13.900	3.940	9.540	8.450	8.010	14.700	14.600	17.100	11.600	16.000	15.000	4.170
23	14.300	10.800	5.960	8.610	9.880	12.800	14.600	17.400	8.200	16.500	14.300	13.400
24	14.200	9.170	5.760	9.220	4.770	8.310	14.200	16.100	14.400	17.300	11.300	14.700
25	13.600	3.830	5.200	8.820	13.400	15.900	14.600	12.700	16.200	17.200	6.640	14.800
26 27 28 29 30 31	13.300 8.710 4.900 12.200 10.800 9.560	12.200 11.200 12.700 12.300 13.400	13.400 13.500 13.300 10.200 5.200 6.680	7.130 3.470 9.520 9.940 9.200 9.690	11.000 11.800 10.900	16.400 16.200 15.700 13.900 10.800 7.750	14.300 11.500 8.320 15.100 15.500	9.620 17.800 16.800 16.500 9.470 18.000	15.900 16.400 17.200 15.500 9.260	16.100 12.600 10.600 16.000 16.400 15.700	14.700 15.300 15.300 15.800 15.500 13.300	16.700 16.200 10.800 6.710 13.600

i i

COLORADO RIVER AT PAGE, ARIZONA

The Page, Arizona Water Pollution Surveillance System station is located approximately 5 miles below the Arizona-Utah State line. Samples are taken from the municipal water treatment plant. Moab, Utah, about 150 miles upstream, is the nearest community. The Green River and the San Juan River are both confluent to the Colorado reach above Page and below Loma, Colorado; both tributaries have Surveillance System stations.

Station Location:

Colorado River at Page, Arizona

Major Basin:

Colorado River

Minor Basin:

Middle Colorado River

Station at:

36°56' Latitude 111°26' Longitude

Miles above mouth:

775

Activation Date:

November 23, 1959

Sampled by:

U.S. Bureau of Reclamation

Field Analysis by:

U.S. Bureau of Reclamation U.S. Public Health Service

Other Cooperating Agencies:

Arizona State Department of Health Utah State Department of Health

Hydrologic Data:

Negrest pertinent gaging station:

At Lees Ferry, Arizona

Gaging station

U.S. Geological Survey

operated by:

Drainage area at gaging station:

107,900 square miles

Period of record:

1911 to present

Average discharge

17,850 cfs.

in record period:

Maximum discharge in record period: 220,000 cfs.

Minimum discharge in record period:

750 cfs.

Remarks: Flows affected by irrigation diversion and return flows, transmountain diversions, storage, and

power developments.

ALKYL BENZENE SULFONATE (ABS)

ELEMENTAL ANALYSES Composite Interval Date mg/l 10/1/62 4/1/63 to 12/31/62 to 6/30/63 .50 .52 Analysis by wet or flame 205 155 methods. Results in 8.3 7.5 mg/1 *26 19 Ζn *13 *10 Cd*****75 *75 134 Analysis 205 *33 48 Ьy 46 101 Spectro-*50 *50 graphic *5 *7 methods. *48 Results *.3 *.2 in lCυ *13 *5 micrograms Ag *3 *2 *13 *10 per Co *26 *10 liter Pb *24 *33 Cr *24 *7 *13 *48 Ва 40 48

1250

792

STRONTIUM 90 ACTIVITY

Composite Interval	pc/l	+ -	Composite Interval	pc/l	+
October to December	6.8	1.8	April to June	ı	-
January to March	1.5	.2	July to September	4.2	.7

[±] at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS **WATER YEAR 1962-3**

Interval	Compound	Concentration*

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

^{*}Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

ARIZONA

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

DATE						RADIOACTI	VITY IN	WATER							RADIOACTIV	ITY IN PLA	NKTON	
SAMPLE	DATE OF			ALPHA						BETA				DATE OF DETERMI-		GROSS A	TIVITY	
TAKEN	DETERMI- NATION	SUSPEND	ED	DISSOLVE	D	TOTAL		SUSPEND	ED	DISSOLVE	D	TOTAL		NATION	ALPH	A	BETA	
MO. DAY YR.	MO. DAY	pc/l	±	pc/l	±	pc/l	±	pc/l	±	pc/l	#	pc/l	土	MO. DAY	pc/g	±	pc/g	<u> </u>
0 8 62 0 15 62 1 5 62 1 13 62 1 19 62	MO. DAY 1 18 1 1 16 1 1 3 0 8 1 1 1 2 15 1 1 1 2 2 2 2 3 1 1 4 2 2 2 2 3 1 1 4 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 6 6 7 7 7 7 7 8 8 1 2 4 8 8 8 1 4 4 4 4 5 5 1 5 5 6 6 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	62 107 208 12 14 43 37 7 16 6 17 4 25 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	# 72 88 77 15 16 6 7 6 3 19 6 2 2 2 2 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0	pe/I 15 11 15 5 7 9 10 11 6 9 13 14 14 14 14 16 18 5 8 11 7 9 15 6 13 9 13 9 10 8 8 9 10 8 11 10 8 11 10 8 10 8 10	1098556576677988957656865779475655866564	77 118 223 17 21 52 47 18 22 26 60 17 91 18 59 12 7 91 15 60 17 91 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	# 73388 9 9 6 17 9 9 8 8 20 11 8 9 9 5 7 6 5 6 8 6 6 5 5 5 8 6 6 6 5 6 4 6	pe/I 650 776 447 866 1446 640 93 866 411 97 88 80 122 68 80 111 114 00 22 44 34 39 77 00 17 86 65	318179 338733396333170565849229863601111535563	pe/1 6558 1 540 486 400 297 472 427 706 666 498 446 42 940 759 749 68 55 29 69 134 48	# 32 64 39 35 32 26 27 39 26 41 18 43 45 61 33 21 32 62 34 42 08 37 40 39 17 70 32 32 15 34 41 170 28 36 61 15 18		3186 3180 3180 3180 3180 3180 3180 3180 3180	MO. DAY	pe/g	±	pc/g	

ARIZONA

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MIDDLE COLORADO-SANJUAN RIVERS

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

DATE	T			RAD	IOACTIVITY IN	WATER					$\overline{}$		RADIOACTIV	ITY IN PLA	NKTON	
SAMPLE	DATE OF		ALPHA			1		BETA				DATE OF DETERMI- NATION		GROSS A	CTIVITY	
TAKEN	DETERMI- NATION	SUSPENDED		D 7	OTAL	SUSPEND	ED	DISSOLVE	ED	TOTAL		NATION	ALPH	A	BETA	
MO. DAY YR.				# pc/	ı ±	pc/l	±	pc/l	±	pc/l	±	MO. DAY	pc/g	±	pc/g	±
**Mo. DAY YR. 8	8 19 8 27 9 16 9 16 10 1 10 8 10 8	6 0 0 1 1	DISSOLVE													

ARIZONA

ORGANIC CHEMICALS
RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

MAJOR BASIN COLORADO RIVER

MINOR BASIN

STATE

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

DATE O	OF SA	MPLI	E I		EX	TRACTABL	.ES	<u> </u>				CHLOROF	ORM EXTR	ACTABLES				
BEGINNIN			dИ									NEUTRALS						
MONTH	YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
11 5 6 1 9 6 3 4 6 5 9 6 7 2 6	63 63 63 63	11 1 3 5 7 8	16 20 10 19	5380 5250 5000 7500 504* 7920*	144 180 179 117 140 186 108	100 38 73 52 62 79 48	44 142 106 65 78 107 60		111111	-				11111				

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

060

	DAT		F		MINAN ENT OF						e)	<	<u> </u>						MIC		011	νV	ER	Т	EBR			TAC	. .				
S	OF AMP	LE		ST		ND	31		4		ES	TERI	fiable if.				GEI	VERA (Se	AND C	OUN or Cod	T LEVE	L				GEN	ERA (Se	AND C	OUN	T LEVE			ORMS er.}
											N ECH	I AND BACTERIA per ml.	denti per n	ипи-	1 s	T_	2 _N		3R		4т	H_	5ті	_	NUM-	1 s		2n	D	3R		iter iiter	AL FI
MONTH	DAY	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SPECIF	FUNGI SHEATHED I	PROTOZOA (Identifiable) Number per ml.	BER PER LITER	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	CENUS	COUNT LEVEL	GENUS	COUNT LEVEL	BER PER LITER	SERUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	NEMATODES (Identifiable) Number per liter	OTHER ANIMAL FORMS (Number per lifer)
11122112233445556677889	155830214848156037155960	62 62 63 63 63 63 63 63 63 63 63 63 63 63 63	92 82 82 82 82 35 35 6	71 67 29 26 93 80 36 33 58	36 92 82 71 91 86 27 82 70 70	3 6 24 27 15 11	795 656 67077 656 388 923 35 6	3 3 6 14 16 10 14 10 9 8	33 64 41 64 92 92 86 92 71 91 33	5 23 49 463397	5 4 4 8 6 5 6 3 4 4 3 1 4 9 8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	* *	000000000000000000000000000000000000000	13	5	21	4	17	4	14	3	46	ß	0000100018	72	2	50	2				1111100000000111111111

PLANKTON POPULATION

PLANKTON POPULATION

STATE

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

DATE			Al	LGAE (Nu	mber pe					INE	RT OM		$\overline{}$			$\neg \tau$				Π_	\neg		ml. (See	1	1	
OF SAMPLE		BLUE-	GREEN	GREE	N	FLAGEL (Pigme	LATED inted)	DIATO	OMS	SHEL	LS	1 51		2nd	3R	D	4TH	5	тн	6т	Н	7тн	8тн	9тн	_	10тн
MONTH DAY	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS COUNT LEVEL	GENUS COUNT LEVEL	GENUS	COUNT LEVEL	GENUS COUNT LEVEL
0 1 62 0 15 62 1 18 62 2 1 63 2 2 1 63 2 1 63 2 1 63 2 1 63 3 18 63 4 15 63 4 15 63 5 20 63 3 63 7 1 63 7 1 63 8 19 63 9 16 63 9 16 63	* 100 1900 200 800 400 1800 700 300 3200 1100 500 800 200 100 100 100 10		000000000000000000000000000000000000000	20 20 20 20 20 20 20 20 20 20 20 20 20 2	000000000000000000000000000000000000000	40 20 20 20 20 20 20 20 20 20 20 20 20 20		330 0 480 60 1500 180 2777 2550 650 20 20 20 20 20 20 20 20 20 20 20 20 20	1530 180 260 310 20 110 210 370 250 370 240 240 746 0 166 0 246 0 266 0 266 0 266 0 276 0	120 00 50 90 00 180 2460 00 00 00 00 00 00 00 00 00 00 00 00 0	120 230 480 420 70 270 230 230 150 170 0 10	92	4 5 5 2	8 2 1 1 5 1 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2	1										

ARIZONA

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

60

DATE						CHLORINE	DEMAND								<u> </u>		<u> </u>
MONTH DAY	TEMP. (Dograes Centigrade)	DISSOLVED OXYGEN mg/l	pН	B.O.D. mg/i	C.O.D. mg/l	T-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml,
10	24.0 20.0 18.0 17.0 19.0 22.0 - 10.0 8.9 8.5 5.2 4.4 4.5 - 6.0 7.0 7.0 8.3 11.0 12.0 12.5 13.0 14.5 18.0 14.5	11.0 10.0 11.5 9.8 12.0 11.5 11.5 11.5 11.5 11.5 11.5 11.5	7.6.16.59.6.09.01.12.2.0.99.1.00.07.3.4.5.99.5.4.4.5.7.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8	6.5 5.0 				110010110111111111111111111111111111111	128 150 955 81 120 88 88 105 100 134 142 16 158 140 150 82 96 120 112 116 100 112 116 100 112 116 110 110 110 110 110 110 110 110 110	156 292 192 260 164 172 154 182 154 182 224 232 160 160 164 168 164 168 164 169 160 116 116 116 116 116 116 116 116 116	780 660 770 540 540 40 316 470 452 428 540 470 488 512 512 513 410 420 460 440 440 440 440	1 1 0 0 0 7 1 5 5 0 5 5 5 6 0 1 1 1 1 5 5 5 5 5 5 5 5 5 5 0 0 5 5 0 5 0	0000000 - 00000000 9400000000 9400000000	1700 - 57 - 0 1720 - 57 - 0 1720 - 57 - 0 1720 - 57 - 0 1720 - 57 - 0 1720 - 57 - 0 1720 - 57 - 0 1720 - 57 - 0 1720 - 57 - 0 1720 - 57 - 0 1720 - 57 - 0 1720 - 0 1	110011100100000000000000000000000000000	1051 1256 851 1411 995 708 927 9444 1100 1015 1045 1000 1190 1165 1130 1160 970 980 970 930 940 1020 990 940 970 810	*130 *130 *130 *130 *130 *130 *130 *130

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

ARIZONA

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION COLORADO RIVER AT

PAGE, ARIZONA

DATE			1			CHLORINE	DEMAND										
DAY PEAR YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pН	B.Q.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/I	coliforms per 100 ml.
610 633 633 663 663 77 715 667 77 716 67 77 77 77 81 81 99 99 99 99 99	19.0 18.0 20.0 17.0 21.0 18.0 21.0 11.0	11.7	1	1 • 4 2 • 2 •				-	80 106 95 90 95 100 90 84 82 68 70	128 128 128 124 126	3000 3000	100 100 55 00 55 100 00	*25- *25- *25- *25- *25- *25- *25- *25-	300 290 310 290 280 350 310 320 310 300 280	- 0 0 0 0 0 0	760 7750 7750 7750 670 710 650 710 650 710 710 710 710 710 710 710 710 710 71	10 1000 *40 *40 2000 50 7600 26000 *200 1300 100

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL-SUBJECT TO REVISION

Gaging Station at Lees Ferry, Arizona Operated by U.S. Geological Survey STATE

Arizona

MAJOR BASIN

Colorado River

MINOR BASIN

Middle Colorado-San Juan Rivers

STATION LOCATION

Colorado River at

Page, Arizona

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	10.300	8.080	6.410	2.650	4.600	6.130	1.030	1.020	1.010	2.450	1.000	1.000
2	11.000	8.040	6.320	2.700	4.930	6.000	1.030	1.030	1.020	2.470	1.000	1.000
3 4	9.300	8.040	6.250	2.720	5.140	5.940	1.030	1.020	1.550	2.480	1.010	1.000
	7.620	7.900	6.190	3.090	5.490	5.970	1.030	1.010	2.470	2.470	1.010	1.000
5	6.440	7.830	6.060	3.240	5.550	5•970	1.040	1.010	2.500	2.470	1.000	1.000
6	6.570	7.940	6.060	3.590	6.350	6.000	1.020	1.010	2,470	2.470	1.000	•990
7	6.740	8.110	6.130	4.060	7.070	5.970	1.020	1.010	2.450	2.470	1.000	•990
8	6.540	7.860	6.100	4.420	7.310	5.850	1.030	1.010	2.450	2.480	1.000	1.000
9	7.140	7.690	6.000	4.680	7.620	5.790	1.020	1.010	2.440	2.500	1.000	1.000
10	7.900	7•550	5.880	4.930	7.580	5.,700	1.020	1.000	2.450	1.900	1.000	1.010
11.	7.690	7.450	5.850	5.170	7.550	5.530	.990	1.000	2.470	1.040	1.000	1.020
12	7.0 4 0	7.240	5.850	4.400	7.620	5.440	.990	1.000	2.480	1.020	1.000	1.020
13 14	7.040	6.800	5.760	3.300	7.760	4.470	1.010	1.010	2.540	1.000	1.010	1.030
L4	7.140	6.540	5.760	3.000	7.800	1.300	1.020	1.020	2,550	1.000	1.010	1.030
15	6.700	6.540	5.760	1.900	7.800	1.260	1.020	1.030	2.550	1.000	1.010	1.030
16	6.770	6.570	5.580	2.000	7.550	1.220	1.010	1,000	2.550	1.000	1.020	1.010
17	6.840	6.770	5.410	2.100	7.480	1.260	. 980	1.000	2.520	1.010	1.020	1.010
L8	7.210	6.870	5.280	2.300	7.240	1.210	•990	1.020	2.500	1.010	1.030	1.000
L9	9.000	7.550	5.250	2.400	7.180	1.080	1.010	1.030	2.500	1.010	1.010	1.000
30	13.500	7.940	5.030	2.500	7.070	1.050	1.010	1.040	2.500	1.010	• 980	1.000
21.	18.100	7.970	4.780	2.500	6.840	1.060	1.010	1.010	2.500	1.000	000	3 000
22	16.700	7.620	4.800	1.500	6.510	1.060	1.020	1.010	2.480	1.000	•980	1.000
23 24	12.200	7.410	4.900	•910	6.510	1.050	1.010	1.020	2.500	1.000	•990	1.000
34	9.760	6.940	5.060	.720	6.510	1.050	1.020	1.010	2.500	1.010	.990	1.000
25	9.270	6.610	5.470	1.450	6.510	1.060	1.020	1.000	2.480	1.010	•990 •990	1.000 1.000
6	8.830	6.870	5.610	2.200	6.410	1.050	1.030	1.010	2.480	1.000		
27 28	8. <i>6</i> 80	6.740	5.330	2.660	6.380	1.050	1.020	1.000	2.480	1.000	.990	1.000
0	8.250	6.570	5.200	3.200	6.250	1.040	1.020	1.000	2.480	1.000	1.000	1.010
9 0	7.800	6.570	4.320	3.650	-	1.050	1.030	1.010	2.480	1.000	1.000	1.010
1	7-970	6.510	3.610	3.940		1.030	1.020	•980	2.470	•980	1.000	1.010
ı	8.100		3.000	4.280		1.040		.990	20710	•980 •980	1.100 1.020	1.010

COLORADO RIVER AT LOMA, COLORADO

This is the furthest upstream surveillance station on the Colorado River and is located approximately fifteen river miles above the Colorado-Utah State Line. Samples are collected from the north bank of the river two miles south of Loma.

Irrigated agriculture above the station produces fruit, forage, grains and truck farm products. Upstream industries include uranium plants at Rifle, Grand Junction and Gunnison, and an oil shale extraction plant at Rifle.

A BOD population equivalent of 4,940 is discharged by three upstream communities within twenty-one miles of this station. There is a gasoline and coke refinery one mile upstream.

Station Location:

Colorado River at Loma, Colorado

ALKYL BENZENE SULFONATE (ABS)

mg/1

ELEMENTAL ANALYSES

STRONTIUM 90 ACTIVITY

Major Basin:

Minor Basin:

Colorado River

Upper Colorado River

Station at:

39°10' Latitude 108°49' Longitude

Miles above mouth:

Activation Date:

April 21, 1958

1.150

Sampled by:

Mesa County Department of Public Health

Field Analysis by:

Grand Junction Water Department U.S. Public Health Service

Other Cooperating Agencies:

Colorado State Department of Public Health

Hydrologic Data:

Near Colorado-Utah State line

Nearest pertinent gaging station:

Gaging station

U.S. Geological Survey

operated by: Drainage area at

17,900 square miles

gaging station: Period of record:

1951 to present

Average discharge

5,970 cfs.

in record period:

Maximum discharge in record period: 56,800 cfs.

Minimum discharge in record period:

960 cfs.

Remarks: Flows influenced by transmountain diversions, power development, storage and irrigation diversions.

		Composite	Interval
		10/1/62	4/1/63
		12/31/62	6/30/63
Analysis by	F	.62	.40
wet or flame methods.	Na	118	72
Results in mg/l	К	6.2	4.4
	Zn	*10	*6
	Ċа	*10	* 6
	As	* 75	*60
Analysis	В	77	36
by	p.	*48	*30
Spectro-	Fè	19	*12
graphic	Мо	*58	27
methods.	Mn	*2	*3
	ΑI	_	*30
Results	Ве	*.2	*.2
in	Cu	*5	*3
micrograms	Ag	*2	*2
per	Ni	*5	*6
liter	Co	*19	* 6
	РЬ	*48	*15
	Cr	*5	*15
	٧	*10	*30
	Ba	50	23
	Sr	665	366

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

Composite	pc/1	+	Composite Interval	pc/i	+
October to December	.5	.2	April to June	2.5	.3
January to March.	1	1	July to September	-	-

[±] at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration* ug/1
,		

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

COLORADO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

UPPER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

LOMA, COLORADO

	T					RADIOACTI	/ITY IN	WATER						_		RA	DIOACTIV	ITY IN PLA		
DATE SAMPLE	DATE OF			ALPHA			Ť			BETA				1	DATE OF	<u>. _ </u>		GROSS A		
TAKEN	DETERMI-	SUSPENDE	(D	DISSOLVED	<u> </u>	TOTAL.		SUSPENDE	ED	DISSOLVE	D	TOTAL		L	NATION		ALPH		BETA	
MO. DAY YR.		pc/l	±	pc/l	±	pc/l	±	pc/l	±	pc/l	±	pc/l	#	M	O. DA	Y	pc/g	±	pc/g	<u> </u>
MO. DAT TK.	MO. DAI	pc/1														- 1				1
		_	5	5	6	10	8	47	63	85	75	132	98	- 1				-		
10 1 62		5		19	9	21	9	5	27	25	39	30	47	- 1		-		i		
10 8 62		2	3	4	4	6	4	15	23	32	30	47	38			- 1				-
10 24 62	11 16	2	2	- 1	_	_		6	22	35	28	41	36	-				1	l	
10 29 62	12 22	-	-	. 1	6	6	6	166	25	16	30	182	39	- 1				İ		
11 5 62	11 29	0	2	6 7	5	7	5	31	24	69	33	100	41			- 1			ŀ	
11 13 62	12 18	0	2	5	5	7	5	24	24	53	33	77	41	- 1		- 1		1		-
11 19 62	12 4	2	2	- 1	- 1	. 1	8	13	23	25	31	38	39	- 1		ı				1
11 27 62	12 21	4	3	16	7	20				34	34	61	43			1			1	- 1
12 5 62	1 10	4	3	11	7	15	8	27	26	27	32	46	39							
12 10 62	1 4	3	3	9	6	12	7	19	23			70	56	1		- 1				
1 2 63	1 15	6	5	23	10	29	11	45	36	25	43	29	20			ļ		İ		l
1 7 63	1 21	4	3	13	7	17	7	10	12	19	16	l .		- 1		- 1			İ	1
1 14 63	1 24	0	6	3	12	3	13	67	62	44	79	111	100	- 1		- 1		i		-
1 22 63	2 6	18	6	11	7	29	9	52	33	49	41	101	53			l.			1	- 1
2 5 63		16	6	7	6	23	8	81	10	74	16	155	19			- 1		1	İ	- 1
2 11 63		0	6	1	5	1	8	132	41	51	36	183	55			.			i	i
2 25 63	1 "	6	4	9	6	15	7	57	30	55	38	112	48			- 1		1		
3 6 63		14	5	9	12	23	13	115	27	87	38	202	47						1	1
3 11 63	1 1	7	4	4	6	11	7	27	25	12	31	39	40	- 1						
3 18 63		8	4	10	7	18	8	41	12	57	17	98	21	l						1
	1	4	4	2	2	6	4	128	22	60	16	188	27			- 1				-
3 29 63		11	5	6	3	17	6	147	21	123	18	270	28						1	
4 1 63		4	3	7	5	îi	6	46	27	68	31	114	41	- 1		1				
4 8 63			1				_	145	12	69	9	214	15			1			Į.	
4 15 63		_	-	6	4	12	5	44	26	73	31	117	40	- 1		- 1		-	1	
4 22 63		6	3	5	4	15	7	128	32	50	29	178	43			i		-	1	1
4 29 63		10	6	4	3	1 9	4	57	16	50	18	107	24			- 1		1	L	- 1
5 6 62		5	2	7	3	13	5	86	18	57	15	143	23	- 1		- 1				
5 13 63	1	6	4	3	3	1 11	5	90	18	46	15	136	23						1	i
5 21 63	1	8	4			6	4	48	15	65	18	113	23	- 1		l			1	
5 28 63		2	2	4	4	_	5	32	11	54	15	86	19	- 1		- 1				1
6 3 63	1 "	1	2	7	5	8	1	26	14	55	18	81	23	- 1		-		1		1
6 10 63		3	2	10	5	13	5	74	1 7	68	15	142	17	- 1		1		- 1	1	i i
6 18 63		2	2	5	4	7	4	8	6	68	30	76	31	l		1		l l	1	- 1
6 24 63	7 10	0	1	2	4	2	4		8	74	39	88	40	1				1	Į.	
7 1 63	3 7 17	2	1	8	7	10	7	14	7	77	42	91	43	- 1		- 1		- 1		
7 8 63	3 7 31	1	1	16	11	17	11	14	1 '	55	43	141	47	- 1				1	1	
7 15 63	3 8 7	9	5	8	9	17	10	86	19			198	32						1	
7 23 63	8 12	25	13	8	9	33	16	126	24	72		103	23					ļ	1	
7 29 63		6	4	26	12	32	13	45	9	58		1	51					1		- 1
8 5 6	-	3	5	1 9	9	12	10	89	23	76	46	165	1 27 1	- 1				1		

RADIOACTIVITY DETERMINATIONS

COLORADO

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

UPPER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

LOMA, COLORADO

		_							RADIOACT	VITY IN	WATER							RADIOACTIV	ITY IN PL	NKTON	
DATI		-					ALPHA				1		BETA		•		DATE OF	T	GROSS A	CTIVITY	
SAMP			DATE O	i- -	SUSPEND		DISSOLVE	_	TOTAL		SUSPEND	ED	DISSOLVE	(D	TOTAL		DATE OF DETERMI- NATION	ALPH	A	BETA	
TAKE		_		_				l ±	pc/l	±	pc/l		pc/l	土	pc/l	±	MO. DAY	pc/g	T ±	pc/g	±
MO. DAY	YR.	+ ^	10. 0.	Y	pc/l	±	pc/l	+=-	P./.												1
				- 1		ļ		1	j								1	1		ŀ	
8 13			8 27		36	19	13	8	49	21	235	57	65 46	40	300 77	70	i i		1	}	
8 19	63		9 20		4	3		10	20	10	31	14	26		49	46	İ				
8 26	63		9 17		5	3	19		24	11	23	18	56	42 34	197	46					
9 4	63		9 25		18	12	0	7	18	14	141 202	31 85	39	23	241	88			1		1
9 10					40	21	14	7	54	22		17	63	44	87	47					
9 17					4	4	10	10	14	11	24		59	41	553	171					
9 23			.0 8		14	30	5	9	19	31	494	166	5	33	16	34					1
9 30	63	1	0 17		1	1	6	8	7	8	11	°	,	ود	10	24			1		1
				- 1				l	İ					ł		1 1					l
								1													1
								l													1
															ĺ	i I					
														1		1 1					1
								1								i i	-				1
		1														1 1			i		1
		1										l									1
				- 1												1 1	1				1
		1		- 1												1 1	1				1
		1		- 1								ļ					l				1
																1 1					1
																1 1	- 1				1
																	-			•	1
																					1
				- 1															1		1
														i				1	1		
														i					-		1
		1												l]	1
														j	i						
		1												ł							
																				1	
		1						i I										1			
				-											l		1		1	1	1
																	1				1
														ł	l		1		ı	[l
		1													l		1	1			
														1	l		1	1	1	1	
		1												1	l		- 1	1			
												1		l	l		1		1	1	
														ł			1.		ı		
		1		- 1		1						1		1	1	1 1	1	1	1	l .	1

A TOTAL PROPERTY.

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Colorado-Utah State Line Operated by U.S. Geological Survey STATE

Colorado

MAJOR BASIN

Colorado River

MINOR BASIN

Upper Colorado River

STATION LOCATION

Colorado River at

Loma, Colorado

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	3.710	4.320	3.280	2.600	4.400	2.430	5.500	2.220	7.630	1.960	1.020	4.240
2	3.630	4.810	3.390	2.800	5.000	2.520	5.500	2.160	6.850	1.770	1.060	3.490
3	3.570	4.450	3.450	3.000	4.600	2.560	5.210	2.130	7.270	1.700	1.240	3.430
4	3.910	4.390	3.450	3.200	4.000	2.540	4.390	2.190	7.600	1.630	1.460	3.240
5	4.070	4.220	3.390	3.200	4.000	2.510	3.530	2.740	6.970	1.720	1.780	2.800
6	3.890	4.200	3.350	3.200	4.000	2.480	3.240	4.160	6. <i>6</i> 40	1.830	2.280	2.740
7	3.850	4.160	3.370	3.200	4.000	2.360	3.300	5.740	6.140	1.880	2.880	3.260
8	3.870	3.930	3.280	3.000	4.000	2.440	3.630	7.390	5.770	1.860	3.150	3.300
9	3.890	3.830	3.370	2.600	3.600	2.360	4.140	8.350	5.700	1.740	2.970	3.390
10	3.690	3.770	3.430	2.400	3.400	2.340	4.180	10.100	5.920	1.980	2.860	3.400
11	3.910	3.830	3.170	2.½00	3.400	2.380	3.950	9.850	5.770	2.060	2.690	3.200
12	3.950	3.830	3.040	2.200	3.400	2.380	3.430	9.620	5.020	2.430	2.900	3.000
13	3.910	3.790	2.950	2.000	3.000	2.400	3.060	9.270	4.370	2.360	3.130	2.800
14	3.850	3.730	2.970	1.800	2.600	2.400	3.280	8.380	4.560	2.280	3.040	2.600
15	4.010	3.830	2.800	2.200	2.600	2.320	3.830	8.350	5.210	2.430	2.570	2.600
16	3.990	4.320	2.570	2.200	2.800	2.440	4.260	7.240	5.820	2.030	2.060	2.600
17	4.810	4.490	2.600	2.200	2.600	2.280	3.890	8.110	5.940	1.810	1.760	2.600
18	4.430	4.450	2.800	2.400	2.480	2.300	3.110	8.990	6.240	1.560	1.730	2.400
19	4.830	4.280	3.000	2.400	2.490	2.400	2.660	10.400	5.840	1.350	1.780	2.400
20	5.170	3.790	3.200	2.400	2.610	2.400	2.460	11.000	5.970	1.310	2.050	2.600
21	5.040	3.890	3.200	2.400	2.360	2.340	2.130	10.700	5.360	1.260	2.090	3.400
22	5.000	3.790	3.200	2.400	2.340	2.430	1.960	10.700	4.900	1.310	2.150	2.600
23	4.760	3.790	3.000	2.600	2.300	2.970	1.790	9.590	4.520	1.850	2.510	2.400
24	4.050	3.650	2.800	2.600	2.320	3.770	1.620	9.110	4.050	1.740	2.380	2.400
25	4.050	3.550	2.600	2.600	2.410	4.320	1.530	9.240	3.670	1.580	2.540	2.200
26 27 28 29 30 31	4.390 4.490 4.300 4.280 4.200	3.550 3.550 3.510 3.470 3.410	2.200 1.800 1.800 1.800 2.000 2.200	2.600 2.600 2.600 2.800 3.400 3.800	2.570 2.490 2.460	4.410 4.280 4.260 4.760 5.800 5.800	1.590 2.020 2.830 3.100 2.640	8.680 7.960 7.660 7.630 7.690 7.600	3.200 2.860 2.540 2.280 2.170	1.610 1.500 1.490 1.320 1.190	2.520 2.710 3.320 3.650 3.470 4.300	2.200 2.000 2.000 2.000 1.900

PLANKTON POPULATION

STATE

COLORADO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

UPPER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

LOMA, COLORADO

	DAT OF	E		DO	MINAN NT OF	T SPE	CIES C	OF DIA	TOMS	AND	·s.1	-	<u> </u>					ΜI	CR	0 1	N V	ERT	EBR							
SA	AMP	LE	_	ST		ND		RD		TH	ES	I AND BACTERIA per ml.	fiable) d.		T		GENER	A AND	COU	NT LEVE	īL.			C R	U S ERA	TACE AND CO e text for	A	LEVEL	\exists	¥ _
				! !		İ					SPECIE	BAC	denti	NUM-	1s	Г	2 _{ND}		RD	4т		5тн	NUM-	15		2ND		3 _{RD}		F F
MONTH	DAY	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SF PERCE	FUNGI SHEATHED I	PROTOZOA (Identifiab Number per ml.	BER PER LITER	GENUS	COUNT LEVEL	GENUS COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	GENUS COUNT LEVEL	BER PER LITER	GENUS	COUNT LEVEL		COURT LEVEL		NEWATOBES (Identifiable) Number nor Her	OTHER ANIMAL FORMS (Number per liter)
11 11 12 12 11 12 3 3 1 4 4 1 5 5 6 6 1 7 7 1 8	5 6 18 15 6 13 7 15 5 9	622266226663333333333333333333333333333	92 92 92 92 92 95 65 65 65 65 65 65	30 26 38 34 51 21 32 32 23 56 41 25 21 15	33 33 36 36 36 36 31 86 53	16 24 22 33 21 16 11 20 28 7 10 9 8 9 14	654 366 922 33 466 511 126 866 70 15	13 22 18 11 13 8 15 12 6 8 8	92 866 166 64 65 71 65 33 92 36 36 37 70 51 26	5753567 1005 5687	40 366 288 299 144 53 23 188 59 21 366 51 555 50			0002000 - 010 - 1 - 1 - 1 - 1 - 1 - 1									1000000010001111111111							70100000-00

PLANKTON POPULATION

STATE

COLORADO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

UPPER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

LOMA, COLORADO

DATE			A	LGAE (Nu			INE	RT	·	MOST	AE	UND	ANT .	ALG	AE - (Gener	a and	Coun	t Level pe	r ml. (See to	xt for Coc	er)			
SAMPLE		BLUE.	GREEN	GREE	EN	FLAGEL (Pigme	LATED nted)	DIAT	омѕ	DIAT	OM	1st	21		3RE	1	ТН	51	Ī	6т	1	7тн	81	1	9тн	1 Отн
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	COUNT LEVEL		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS COUNT LEVEL	GENUS	COUNT LEVEL	GENUS COUNT LEVEL	GENUS COUNT LEVEL
10	400 1500 9000 3300 4000 1000 700 9000 1800 33000 11000 43000 36000 *	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60 50 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 20 0 20 0 0 30 40 20 20 20 20 20 20 20 20 20 20 20 20 20	0	40 90 20 0 0 0 20 20 130 110 660 1060 1040 290	900 3230	00 00 00 00 200 200 200 1800 500	900 990 810 210 630 1070 440 1200 1200 1720 2860 2100 460 1390 310 860	92 1 81 3 92 1 92 4 87 1 87 1 87 4 87 1 87 1 87 3 87 3	81 82 82 82 91 87 81 88 88 87	1 3 1 2 2 1 1 2		3 8 2 8 2 8 2 3 3	8 1 2 1 8 2	91	1							

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

COLORADO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

UPPER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

LOMA, COLORADO

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND	AMMONIA-								TOTAL	
MONTH DAY YEAR	(Degrees Centigrade)	OXYGEN mg/l	Не	B,O,D, mg/l	C.O.D.	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	mg/l	Mg/l	HARDNESS mg/l	COLOR (scale units)	(scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 mi.
0 1 62	14.0	7.0 7.7	8 • 4	2.6	44	-	-	•1	132	180	576	10	170	575	•0	1210	40000
0 15 62	13.0 12.0	6.8	7•8 7•9	2 • 4 2 • 0	_	-	-	1.1	107	164	500	5	*25	410	•0	1040	2000
0 24 62	12.5	0.0	8.1	2.0	_	_	_	•9	100 94	156	470	5	*25	320	•0	986	13000
0 29 62	10.0	8.0	7.8	1.8	_	_	_	1.0	91	160 150	456 430	5 5	*25 *25	400	• 0	872	
1 5 62	9.0	8.8	8.2	4.7		_	_	9	86	156	328	5	*25 *25	425	•0	1000	3800
1 13 62	-	-	7.7	_	_	_	-		110	156	490	5	*25	325 375	•0	962	3800
1 19 62	5.0	9.2	8 • 4	3.9	_	-	-	• 3	78	130	408	٥	*25	400	•0	1000	7200
1 21 62	-	- [-	_	-	-	_	-	-		-	_	"23	400	•0	865	-
1 27 62	• 5	7.8	8.4	2 • 1	-	-	- 1	1.0	75	164	480	٥١	*25	475	•0	990	5300 7000
2 5 62			8 • 1	-	-	-	-	-	109	166	480	ŏl	*25	475	• 0	985	7000
2 10 62	2.0	9.5	8.5	3•1	62	-		• 8	85	162	424	٥l	*25	375	•0	960	7800
1 2 63	2 -		7.9	-	-	-	-	-	149	225	600	-	*25	500	•0	1190	, 505
1 7 63	2.0	10.2	8.1	4•0	-	-	-	1.6	116	168	224	-	*25	350	•0	910	8500
1 22 63	:1	9.2	8.2	3•2	- 1	-	-	9.5	302	336	990	-	*25	1000	•0	2425	*200
2 5 63	-	2.2	7.9	202	_	-	-1	3.0	166	194	520	-	*25	500	• 0	1270	4000
2 11 63	-	-	7.9	_	_	_	-	-	85	148	330	20	320	450	•0	870	-
2 25 63	5.0	8.9	7.8	3.2	_	_	_	1.1	120	164	440	10	400	450	•0	950	-
3 6 63	-	-	7.5	-	_	_	_	1.1	130	164	456	0	*25	400	•0	1040	20000
3 11 63	-	-	7.8		_	_	-1	-1	130	150 160	420 440	5	*25	350	• 0	1030	-
3 18 63	7.0	9.5	8.5	3.1		-	-	_	160	152	432	0	*25	400	•0	1110	-
3 29 63	-	-	7.0	-	-	-	_	-1	65	152	340	0	*25	380	• 0	1030	-
4 1 63	11.0	7.4	8.0	4 • 1	-	-	- [.5	75	124	300	20	310	220	•0	630	
4 8 63	12.0	7.2	8.4	6.3	-	-1	-	.5	80	132	360	5	260	200	•0	580	8200
4 15 63 4 22 63	15.0	7•6	8.2	4.6	-	-	-	1.0	56	136	320	15	250	260	•0	710	10000
+ 22 63 + 29 63	8.0	8.6	8.4	4 • 8	-	-1	-	• 3	105	132	420	5	180	340	.0	621 830	20000
6 63	17.0	7.6	8.3	3 • 8	-	-	-	• 6	80	148	380	5	260	280	• 0	720	10000 9400
13 63	13.0	-	7.9	3 • 4	-	-	-	1.0	95	124	380	15	130	280	•0	740	8200
21 63	13.0	7.4	7.8	2.5	-	-	-	• 0	40	108	260	10	115	140	•0	410	- 0200
28 63	16.0	6.8	8.4	3.9	_	_	-	• 6	25	104	240	10	90	135	• 0	360	27000
3 63	16.0	7.6	8.4	5.6	_	- 1	_	•6	45	114	340	10	*25	240	•0	530	
10 63	15.0	7.0	8.3	1.4	_	-1	-1	• 2	50	104	340	5	*25	240	• 0	560	4800
18 63	20.0	•0	8.4	-	-	_	_	• 2	60 80	122	440	15	*25	280	•0	660	35000
24 63	19.0	7.4	8.4	4.8	-	-	_	.2	74	122	340	10	*25	280	• 0	630	-
1 63	20.0	7+2	8.6	3.2	-	-	-	1.6	110	142	410 550	10	*25	340	• 0	730	20000
8 63	21.0	7.0	8.5	4.5	-	-	-		130	168	880	0	*25	500	• 0	1130	3200
	- 1	İ	ł	1		1	ļ		100	100	000	5	0	690	• 0	1410	3800

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STATE

COLORADO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

UPPER COLORADO RIVER

STATION LOCATION COLORADO RIVER AT

LOMA, COLORADO

DATE	Τ						CHLORINE	DEMAND						TURBIDITY	SULFATES	PHOSPHATES	TOTAL DISSOLVED	COLIFORMS
OF SAMPLE	\dashv	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	mg/l	HARDNESS mg/l	COLOR (scale units)	1	mg/l	mg/l	SOLIDS mg/l	per 100 ml.
7 15 6 7 23 6 7 29 6 8 5 6 8 13 6 8 19 6 8 26 6 9 4 6	33 33 33 33 33 33 33 33 33 33 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36	23.0 22.0 23.0 21.0 21.0 21.0		8.66 7.8 8.9 8.6 8.3 8.5	1.5 2.8 2.8 2.8 - 1.9 - 2.4 1.5				3.6 1.7 .2 .7 .6	98 140 140 160 130 140 80 135 145 150 175	178 168 186 184 250 190 180 176 168	660 730 800 850 720 740 640 640	5 10 10 20 20 10 0 10 10 5	530 280 225 450 1200 240 325 6900 120 2402 *25	710 740 800 950 770 720 630 650 650 680	•0	1360 1520 1590 1830 1730 1440 1300 1320 1320 1350	15000 670 200000 20000 - 300000 24000 71000 12000

GREEN RIVER AT DUTCH JOHN, UTAH

The Public Health Service Water Pollution Surveillance System station at Dutch John, Utah is about 30 miles downstream from the Wyoming-Utah State line. Samples are collected at Flaming Gorge dam powerhouse. Downstream, the Green River enters and flows in Colorado for a short distance before reentering Utah and proceeding to its confluence with the Colorado in southeast Utah.

The nearest municipal discharge is about 90 miles upstream at Green River, Wyoming, with a BOD population equivalent of 1,260 from a sewered population of 4,200. Grazing of sheep and cattle is a major land use. A large portion of the irrigated cropland is in Wyoming. Principal crops are alfalfa, natural hay, oats and clover.

Station Location:

Green River at Dutch John, Utah

Major Basin:

Colorado River

Minor Basin:

Green River

Station at:

40°54' Latitude 109°26' Longitude

Miles above mouth:

403

Activation Date:

July 9, 1962

Sampled by:

Bureau of Reclamation

Field Analysis by:

U.S. Public Health Service

Other Cooperating Agencies:

Utah Water Pollution Control Board

Hydrologic Data:

Nearest pertinent gaging station:

Near Greendale, Utah

Gaging station operated by:

U.S. Geological Survey

Drainage area at

15,100 square miles

gaging station: Period of record:

1950 to present

Average discharge

2,107 cfs.

in record period:

Maximum discharge in record period: 19,600 cfs.

Minimum discharge in record period:

208 cfs.

Remarks: Irrigation diversions upstream.

ALKYL BENZENE

SULFONAT	
Date	mg/1
Date	mg/1

FIEMENITAL ANALYSES

FLEW	ENL	AL ANALY	SES
		Composite	Interva
		10/1/62	4/1/63
		12/31/62	6/38/6:
Analysis by	F	.36	.50
wet or flame methods.	Na	72	40
Results in	ĸ	3.0	2.8
mg/l	-	110	
	Zn	*12	11
	Cq	*6	* 7
	As	*59	*73
Analysis	В	106	161
by	р.	*15	*37
Spectro-	Fe	109	18
graphic	Мο	*12	95
methods.	Mn	*3	15
memous.	ΑI	_	*15
Results	Ве	*.15	*.18
in	Сυ	*6	11
micrograms	Ag	*1.2	*2.2
per	Ni	*6	7
liter	Со	*12	11
	РЬ	*15	*18
	Cr	*3	*18
	V	*6	*37
	Ва	21	11
	Sr	398	372

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

				•	
Composite Interval	pc/1	+	Composite Interval	pc/1	+
October to December	1.2	.2	April to June	_	_
January to March	1	ı	July to September	2.7	.3

⁺ at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

	Interval	Compound	Concentration*
	!		
L			i

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

UTAH

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

GREEN RIVER

STATION LOCATION GREEN RIVER AT

DUTCH JOHN, UTAH

DATE		RADIOACTIVITY IN WATER TE OF ALPHA BETA												T	RADIOAČTIVI	Y IN PLA	NKTON	
SAMPLE	DATE OF DETERMI-			ALPHA						BETA		· · · · · · · · · · · · · · · · · · ·		DATE OF		ROSS AC		
TAKEN	NATION	SUSPENDE	ED D	DISSOLVE	D	TOTAL		SUSPEND	ED	DISSOLVE	D I	TOTAL		DETERMI- NATION	ALPHA		BETA	
MO. DAY YR.	MO. DAY	pc/l	#	pc/l	#	pc/l	#	pc/l	±	pc/i	±	pc/l	±	MO. DAY	pc/g	±	pc/g	T
0 1 62 0 8 62 0 15 62 0 22 62 1 5 62							± 344332344444-44544444343543334						± 191 221 240 122 199 168 249 111 372 250 309 188 91					

UTAH

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

GREEN RIVER

STATION LOCATION GREEN RIVER AT

DUTCH JOHN, UTAH

121

D.	ATE	-		DC	ANIMA	VT SF	PECIE	S OF	F DIA	TOMS	AND		Ι	· · ·						и г с	R	0 I N \	/ F F	- -	FBB	A T E							
	OF			ST	ENT O	F TO	TAL D	3R	OMS (See text	for Code.	ī	ERIA	zble)				R	OTI	FER	5	T LEVEL				CR	u s	TACE	A	LEVE	_		<u> </u>
\neg	T		'	1		IND		1	עו	 		CIES	AND SACT	entifi r ml.	NUM-		т	2 _N		e text for 3ri		4TH	5.		NUM-	1 s1		AND CO e text for 2ND		3RE		1	FOR
<u>.</u>	i		to El	F	S	L		ES	ENT	ES	ENT	RCENT	JNGI HED I	OA (Id	BER PER		LEVEL		LEVEL	J,	LEVEL	LEVEL	-	1 2	BER PER	131	LEVEL	ZIND	LEVEL	JKL	LEVEL	ones fiable) per lit	NIMAL er per
MONT	ž d	YEAR	SPECII	PERCENT	SPECIE	PERCE		SPECIE	PERCE	SPECIE	PERCE	OTHER PER	FUNGI SHEATHED E Number p	PROTOZOA (Identifiable) Number per ml.	LITER	GENUS	COUNT LE	SUNES	COUNT LE	CENDS	COUNT LE	GENUS COUNT LE	SENUS	COUNT LEY	LITER	GENUS	COUNT LE	GENUS	COUNT LE	GENUS	COUNT LE	(Identifiable) Number per liter	OTHER ANIMAL FORMS (Number per liter)
10 1 11 1 11 1 12 1 1 2 2 1 1 2 2 1 3 1 4 4 1 5 5 6 1 8 1	55930714848156037594	22222233333333333333333333333333333333	92 92 92 92 82 82 82 82 82 83 35	69 75 32 68 37 77 57 39 77 73	3 5 6 5 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 6 3 1 27 5 10 6 14 7 11 6 12 7 16 7 16 7 16 7 17 8 18 8 18 8 18 8 18 8 18 8 18 8 18	8	41 64 26 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37	452 1086 3127974 1113779	51 78 71 34 41 71 64 75 11 64 75 11 64 75 11 91 91	2525355622	31 16 18 26 12 37 6 24 20 30 5 7 7 8 8 1 1 5 4	150		0000000100010111111111										0000000000000111111111							00000000000111111	100000000000000000000000000000000000000

PLANKTON POPULATION

PLANKTON POPULATION

STATE

UTAH

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

GREEN RIVER

STATION LOCATION GREEN RIVER AT

DUTCH JOHN, UTAH

					A	LGAE (Nu	nber pe	r milliliter,	,			INE	PT			MOST	ГΑІ	NUE	DAN	IT AL	GA	Ξ - G	enera	and C	ount	Level pe	ml. (See te	xt for	Codes)	
DA' OI SAM	F	- 1		BLUE-	GREEN	GREE	N	FLAGEL (Pigme		DIATO	омѕ	DIAT	гом	15	ST.	21	1D	3 F	₹D	4т	Н	5ті	Н	6тн		7тн	81	Ή	9 TI	i	1 Отн
МОМТН		YEAR	TOTAL.	COCCOID	FILA- MENT- OUS	coccoip	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL		COUNT LEVEL	GENUS COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	COUNT LEVEL
10		666666666666666666666666666666666666666	200 1000 1000 200 400 5000 1800 5000 1100 300 1300 2000 2000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0		00 40 00 00 00 20 20 90 40 20 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 0 0 0 20 20 0 0 0 130 0 0	10 0 0 20 390 370 180 2380 1600 1600 190 180 0 0	200 950 140 360 140 60 0 240 170 150 250 460 900 150 1090 1090 180	10 80 00 20 30 40 40 110 610 00 20 20	40 110 470 340 120 0 0 20 70 600 70 130 110 130 40 20 20	71 71 71 71 71 71 71	1 2211442412	ĺ	1 2	93	1												

UTAH

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

GREEN RIVER

STATION LOCATION GREEN RIVER AT

DUTCH JOHN, UTAH

121

	DATE	7						CHLORINE	DEMAND									TOTAL	
MONTH	SAMP	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	mg/I	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10	1	62			8 • 2	_	_	_	-	-	23	136	250	5	*25	230	•0	514	-
10	8	62	_	-	8 • 3	-	-	-		-	20	140	290	5	*25 *25	280 265	•0	576 600	_
10		62	-	-	8 • 2		-	-	~	_	18 22	152 148	320 312	0	*25 *25	260		592	_
		62	_	-	8 • 4	-	-		_		12	150	290	0	*25	260	•0	647	_
		62	-	-	8 • 1 8 • 2	1	_	_	_	_	39	172	276	١٥	*25	230	•0	595	-
		62 62	_		8 • 2	_	_	_	-	_	17	170	284	0	*25	260	• 0	570	-
		62	_	_	8.3	_	_	_	-	-	13	180	288	0	*25	260	•0	577	-
12		62	_		8.3	-	_	_	-	-	21	186	330	0	*25	270	• 0	665	-
		62	_	-	8.3	_	_	_	-	-	18	204	560	0	*25	260	• 0	660	_
		62	_	-	8 • 4		-	-	-	-	27	190	336	0	*25	315	• 2	700	_
12		62	-	-	8 • 2	_	-	-	-	-	34	208	356	-	*25	305	• 0	710	1 =
	31	62	-	-	8.1	-	-	-	_	-	21	166	370	_	*25 *25	275 270	•0	635 660	_
1		63	-	-	8.3	-	-	_	-	-	26 25	180	332 336		*25	290	.0	675	_
-		63	-	-	8 • 2	-	_	-	_	-	15	184	332	_	*25	270	.0	655	1 -
1		63	_	-	8 • 2	-	_	_	_	_	22	190	350	_	*25	280	.0	680	-
1		63	_	-	8 • 2		_	_	_	_	21	190	370	_	*25	300	• 0	690	-
5		63	_	_	8 • 1		_	_	_	_	20	196	400	5	65	300	• 0	700	-
2		63	_	_	8.0	-		-		-	19	184	336	0	*25	300	• 0	650	-
2		63	_	-	7.9	_	-	-	-	_	23	184	340	5	*25	300	• 0	660	_
3		63	_		8 • 2	-	-	-	-	-	25	160	308	5	*25	290	• 0	640	-
3		63	-	-	8.0	-	-	-	-	-	26	160	320	5	*25	300	• 0	640 630	_
3		63	-	-	7.6	-	-	-	-	-	26	172	320	5 5	*25 *25	280 290	•0	670	_
3		63	-	-	7•4	-	-	-	-	-	24	188	340 360	5	*25	290	1 .0	650	_
4		63	_	-	7•4	-	-	-	_	-	28	176	370	5	*25	300	.0	660	l _
4		63	_	-	7 • 7	-	-	_	_	_	28 26	180	340	5	*25	290	.0	660	-
4		63	-		7 • 4	-	_		_	_	20	188	370	5	*25	280	• 0	670	_
4		63	-		7•5	_	_	_	_		27	184	360	5	*25	300	.0	660	_
4		63	_	_	_	_	_	_		_	29	188	370	5	*25	290	• 0	670	-
5	1 - 1	63	_	1 1	_	_	_	_	_	_	27	180	350	5	*25	310	•0	670	-
5 5		63	_	-	_	_	_	_	_	_	24	180	340	10	*25	280		670	-
 5		63	_	1	_	_	_	_	-	-	20	180	370	5	*25	310	i .	630	-
6		63	_	-	_ '	-	_	-	-	-	27	178	350	5	*25	290	• 0	650	-
6		63	_	-	-	-	-	-	-	-	30	158	350	1	*25	280		640	-
6		63	_] -	-	-	-	-	-	-	27	180	360		*25	280		680 680	<u>-</u>
6	24	63	-	-	-	-	-	-	-	-	25	158	320	15	*25	300	• 0	680	-
							<u></u>					<u></u>	L	<u></u>	<u> </u>	<u> </u>	<u> </u>	L	<u></u>

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

UTAH

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

GREEN RIVER

STATION LOCATION GREEN RIVER AT

DUTCH JOHN, UTAH

121

DATE OF SAMP		TEMP.	DISSOLVED		B.O.D.	C,O.D.	CHLORINE	DEMAND	AMMONIA-	CHLORIDES	ALKALINITY	HARDNESS	COLOR	TURBIDITY	SULFATES	PHOSPHATES	TOTAL DISSOLVED	COLIFORMS
MONTH	YEAR	(Degrees Centigrade)	OXYGEN mg/l	pН	mg/l	mg/I	1-HOUR mg/l	24-HOUR mg/l	NITROGEN mg/l	mg/l	mg/l	mg/l	(scale units)	(scale units)	mg/l	mg/i	SOLIDS mg/l	per 100 ml.
7 1 7 8 7 15 7 22 7 29 8 5 8 12 8 19 8 26 9 9	63 63 63 63 63 63 63		-							21 25 25 24 30 30 34 23 26 28 29 29		350 320 330 340 340 3300 3300 3400 3300	555550555	*25 *25 *25	280 300 320 280 290 310 300 290 310 300 300	•0	650 680 650 640 640 640 640 640 640 640 640	

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL -- SUBJECT TO REVISION

Gaging Station near Greendale, Utah Operated by U.S. Geological Survey STATE

Utah

MAJOR BASIN

Colorado River

MINOR BASIN

Green River

STATION LOCATION

Green River at

Dutch John, Utah

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	.702	.392	.080	.447	• 374	.134	.158	.158	.152	.122	•098	.115
ž	.698	.113	•080	. 3 89	• 374	-137	.158	.134	.152	•115	.098	.113
1 2 3 4	.712	.098	.080	• 3 4 7	• 374	.142	.169	.134	•147 •144	.104 .102	.098 .098	.102 .089
4	.712	.115	.080	• 347	• 374	.142 .134	.172 .141	.134 .134	.127	.102	.098	.080
5	.717	.103	.080	• 351	.370	•134	• T4T	•134	ا عبد ا	•104	.0,0	•000
6	750	.085	.082	. 351	•370	.109	.115	.134	.120	.104	•098	.089
0	•750 •750	.085	084	.351	.370	.098 .098	.117	.13 4	.120	.106	•096	.104
7 8	.774	.089	.084	• 351 • 355	.419	.098	.117	.139	.122	.109	.094	.104
0	798	.094	.084	355	.497	•096	.117	.137	.122	.109	•098	•098
9 10	.803	.096	.125	. 362	•497	•096	.117	.134	.122	.106	.100	.094
		000	1.07	266	.501	.094	.117	.134	.122	.104	.100	.092
11	• 79 ⁴ • 789	.098	.137	• 300 366	.501	.092	.111	.132	.122	.104	.100	.095
12 13 14	-789 -789	.076	.137	• 366 • 366 • 366	.505	.092	.100	.134	.122	.104	.100	.102
13	.784	.040 .040	.137 .137	. 363	505	.001	.100	.132	.120	.104	.100	.100
14	• 774	.040	.137	.362 .362	• 505 • 497	.092 .094 .094	.098	.132 .124	.117	.106	.102	.102
15	• 774	•040	اديده		51				•	_		
16	•779	.059	.137	.362	.510	•094	.09 8	.120	.117	.106	.105	.102
17	• 774	.072	. 320	.366	•510	.094	•098	.115	.120	.106	.106	.100
17 18	774	.072	. 320 . 451	. 366	.514	•094	.096	.117	.122	.106	.106	.108
19	779	.075	. 451	. 36 6	.514 .514	.096	.123	.117	.120	.111	.104	.124
20	.789	.078	. 451	• 362 • 366 • 366 • 366 • 366	.518	.082	.150	.120	.117	.111	•096	.127
	000	075	.451	266	518	വര	.144	.120	.117	.111	.092	.129
21	.803	.075	• 4 55	366	.518 .518	.098 .082	.134	.120	.120	.111	.094	.132
22	.798 .803	.075 .075	• 455 • 455	.366 .366 .366	.522	.096	.137	.120	.122	.109	.098	.132
21 22 23 24	.818	.077	.459	.366	.527	.096	.139	.120	.127	.111	.102	.134
25	.818	.077	.459	.370	.527	.098	.150	.122	.132	.102	.104	.173
									_			
26	.808	.077	. 451	. 370	.531	.096 .069	.150	.122	.129	.091	.104	.154
27 28	.8 08	.078	• ¼ 4 7	• 374	• 535	.069	.147	.117	-117	.091	.104	.122
28	.803	.082	• 447	• 378	• 317	.082	.147	.117	.117	.091	.111	.120
29 30	.803	.082	• 447	• 378		.108	.179	.129	.117	.091	.113	.122
30	.803	.082	• 447	.378		.169	.212	.169	.122	.091	.115	.124
31	.79 8		• 44 7	• 374		.169		.163		.092	.115	

SAN JUAN RIVER AT SHIPROCK, NEW MEXICO

The Surveillance System station at Shiprock is about 22 miles upstream from the point where the San Juan enters Utah after flowing through Colorado for about three miles near the Four Corners area. Samples are collected just upstream from the water intake for the U.S. Bureau of Mines' helium plant. Several small communities are located above the surveillance station. Farmington, New Mexico with a population of about 25,000 is 59 miles upstream. Extensive irrigation near Farmington can be expected to increase when Navajo is filled and when the irrigation works are completed. Natural gas deposits are found along the river above Farmington and a uranium mill is located a short distance above the surveillance station.

Station Location:		LKYL BEI	
Major Basin:	Colorado River	Date	F
Minor Basin:	San Juan River		
Station at:	36°48' Latitude 108°44' Longitude		
Miles above mouth:	208		
Activation Date:	August 7, 1961		
Sampled by:	San Juan County Health Department		
Field Analysis by:	San Juan County Health Department U.S. Public Health Service		
Other Cooperating Agencies:	New Mexico Department of Public Health		
Hydrologic Data:			
Nearest pertinent gaging station:	At Shiprock, New Mexico		
Gaging station operated by:	U.S. Geological Survey		
Drainage area at gaging station:	12,900 square miles		
Period of record:	1927 to present		
Average discharge in record period:	2,370 cfs.		
Maximum discharge in	record period: 80,000 cfs.		
Minimum discharge in	record period: 8 cfs. (daily)		

Remarks: Irrigation diversion above station for about 118,000 acres. Navajo Dam completed in June 1963, about

75 miles upstream.

IZENE E (ABS) mg/1

		Composito	Interval
		Composite	
		10/1/62 to	4/1/63 to
		to 12/31/62	6/30/63
Analysis by	F	.60	.50
wet or flame methods.	Na	95	40
Results in mg/1	K	2.1	2.8
	Zn	29	22
	Сq	*7	*4
	As	*50	*40
Analysis	В	74	56
by	p.	*37	50
Spectro-	Fe	40	66
graphic	Мо	15	*10
methods.	Mn	*1.5	6
	ΑI	_	200
Results	Ве	*.18	*.1
in	Cu	4	18
micrograms	Ag	*1.5	1.4
per	Ni	*4	*4
liter	Co	*15	*4
	Pb	*37	14
	Cr	*4	*10
	V	*7	*20
	Ba	63	26
	Sr	1030	338

ELEMENTAL ANALYSES

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+ 1	Composite Interval	pc/l	+
October to December	1.7	.1	April to June	1.9	.3
January to March	_	-	July to September	-	_

± at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration*
	'	

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION SAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

DATE							RADIOACTI	VITY IN	WATER					Т			RADIOACTIV	ITY IN PLA	NKTON	
SAMPLE	DATE	OF			ALPHA			1111			BETA					DATE OF DETERMI-		GROSS A		
TAKEN	DETER	ON -	SUSPEND	ED	DISSOLVE	₀ 1	TOTAL		SUSPEND	ED	DISSOLVE	D D	TOTAL			NATION	ALPH	A	BETA	
MO. DAY YR.		DAY	pc/l		pc/l	±	pc/l	±	pc/I	±	pc/l	±	pc/l	±	1	IO. DAY	pc/g		pc/g	<u> </u>
							_								ĺ					
0 1 62		1	0	1 1	6 4	3	6 4	3	5 4	11	15	15 17	20 13	19 20		1				1
.0 8 62 .0 1 5 62		8	0	ا م	10	5	10	5	2	4	25	8	27	9		i				1
0 22 62		1	206	149	10	5	216	149	1081	540	56	18	1137	540				1		
0 29 62		3	200	147	-	_	-	-	11	10	24	11	35	18						
1 5 62	11 2		1	1	16	6	17	6	5	13	131	21	136	25						
1 13 62			ī	ī	3	3	4	3	11	10	32	16	43	19						1
1 19 62	12 1		33	29	11	5	44	29	273	189	78	21	351	190	- 1					ŀ
1 26 62			0	1	4	4	4	4	0	37	43	15	43	40						ı
2 3 62	1	3	1	1	13	5	14	5	5	13	33	19	38	23	- 1			1		1
2 10 62	1 1 1	.0	0	2	9	5	9	5	26	26	149	35	175	44	1					-
2 19 62	1 1	.4	1	1	5	4	6	4	14	6	41	10	55	12	ŀ				1	
2 26 62	1 1	4	٥	2	9	6	9	6	36	13	49	17	85	21	- 1	1				1
1 2 63	1 1	.5	0	2	12	6	12	6	31	27	30	32	61	42	1			1		
1 8 63	1 2	24	1	2	11	6	12	6	30	26	46	33	76	42	- 1					
1 15 63	1 2	25	O	2	12	8	12	8	41	31	99	42	140	52				1	1	
1 23 63	2 1	.1	0	1	6	5	6	5	7	6	47	10	54	12					ŀ	
2 13 63	_	. 1	9	2	7	5	. 7	5	15	12	43	15	58	19				-		
2 20 63	_	7	3	3	17	7	,20	7	61	28	50	30	111	41				-		
2 27 63		5	7	4	13	5	20	6	23	28	34	29	57	31						
3 6 63		25	1	2	11	5	12	5	19	12	34 102	10	53 139	13				1	ļ	
3 13 63	1	27	4	2	53	10	57	10	37 0	23	41	8	41	24	-				1	
3 20 63		1	0	1	20	6	20	6	104	23	32	16	136	28	1			1		
3 27 63		LO	16	8	1 ′	3	23		73	16	46	14	119	21	- 1					
4 3 63		25	4	3	2	2	6	4	69	20	47	9	116	22	- 1					
4 17 63	-	1	13	7	6	3	19	8 4	į.	27	38	14	38	30						
4 24 63		20	1	2	4	4	5	1 '	207		40	4	247	41						
5 8 63		27	47	21	3	2	50	21		41	29	8	75	12	1					
5 15 63	1	5	6	3	3	2	9	4 4	46 52	10	35	8	87	13				- 1		
5 22 63	1 -	7	9	3	4	2	13		36	7	34	9	70	111				1	1	
5 29 63		.2	1	1	4	2	5	2	5	6	21	7	26	9				l		- 1
6 5 63		24	1	1	5 7	3	6 8	3 4	9	11	38	16	47	19						-
6 19 63		3	1	1	l '8	4 5	8	5	2	3	28	9	30	9						-
6 26 63		15	0	0	1	1 - 1	23	111	1	2	45	20	46	20	- 1					-
7 3 63		15	0	0	23	11	134	75	1021	211	104	31	1125	213				1	1	1
7 10 63		31	120	75	14	1 1		6	25	8	24	28	49	29						
7 17 63		7	2	2	8	6	10		43	6	111	52	118	52					ļ	1
7 24 63		14	0	1	21	16	21	16	4	5	68	42	72	42					1	- 1
7 31 63	8 1	14	1	1	50	17	51	1 1	"	3	30	72	1 '2	74					1	
					1			1			[
		1							1	1	L			11						

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION SAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

93

			_			RADIOACT	n corne in i	MATER						 l	RADIOACTIV	ITY IN PLA	NKTON	
DATE						RADIOACT	4111 IN	TOTER		BETA				DATE OF	Ī	GROSS A	CTIVITY	
	DATE OF			ALPHA		TOTAL		SUSPEND	ED	DISSOLV		TOTAL		DATE OF DETERMI- NATION	ALPH	A	BETA	
TAKEN	NATION	SUSPEND	ED							pc/l	±	pc/I	□ ±	MO. DAY	pc/g	±	pc/g	T ±
MO. DAY YR.	MO. DAY	pc/l	±	pc/l	<u> </u>	pc/1		- Pu.										
SAMPLE TAKEN MO. DAY YR. 8 7 63 8 14 63 8 21 63 8 28 63 9 4 63 9 11 63	3 21 9 6 9 16 9 23 9 17 10 1		30 61 4 861 14 3	DISSOLVE pt/l 11 9 7 6 8 9 17 8	76464564	143 63 10 1599 22 15 41 34	80 61 6	107 15 266	± 260	58 12 19 35 14 15 51 23		pc/I 815	262 213 16 999 78 13 292					土

RADIOACTIVITY DETERMINATIONS

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION SAN JUAN RIVER AT

SHIPROCK , NEW MEXICO

		100.00	TD 1 071								A-1.5				
DATE OF SAMPLE BEGINNING END		EX	TRACTABL	E5	 	· · · · · · · · · · · · · · · · · · ·			CHLOROF	ORM EXTRA	CTABLES		t		
DAY YEAR MONTH	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	ARONATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 5 62 10 15 11 5 62 12 26 12 3 62 12 6 2 6 63 3 13 3 6 63 4 10 5 1 63 5 8 6 5 63 7 10 8 9 63 8 14	4077 1.2537 1747 2624 1786 5000 4572 4536 4566 3290	116 80 182 225 256 87 139 130 203 224	35 20 25 70 41 25 39 72 85	81 60 157 155 215 100 81 131 139	1 0 1 2 - 1 - 6 - 1	10 5 18 - 6 - 13 - 21	11 8 14 23 - 11 - 9 - 30	1032-2-1-1	1 0 2 2 2 - 1 1 - 0 - 2 2	9 7 8 19 - 7 - 7 - 26	0 1 1 0 - 1 - 1 1 1 1 1 1	4 3 2 6 - 2 - 4 - 10	2118-1-4-8	1 0 1 2 - 1 - 1 - 2	6 3 1 11 - 3 3 - 12 - 13

PLANKTON POPULATION

and the second pro-

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION SAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

				DO	MINAN	r SPE	CIES C	F DIA	TOMS	AND											011	V V	ΕR	TE	ВR								
	DAT		P	ERCE	NT OF	TOTA	L DIA	OM5	See text	or Code		I AND BACTERIA per ml.	able)	 -			GEN	ERA	FER AND C	OUN	T LEVE	L		-		GEN	U S	AND C	EA	T LEVE	i.		FORMS liter)
	AMP	LE	1:	ST	21	ND_	3	RD	41	<u>гн</u>	SPECIES	AND	entifi r mL	NUM-	1 s	r	2 _{NI}		3R		4TI		5тн		NUM-	1s		2 N		3 _R	D	iter.	IL FO rr 1886
MONTH	DAY	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SPE PERCEN	FUNGI SHEATHED F	PROTOZOA (Identifiable) Number per ml.	BER PER LITER	GENUS	COUNT LEVEL	CENUS	COUNT LEVEL	CENUS	COUNT LEVEL	CENUS	COUNT LEVEL	GENUS	COUNT LEVEL	BER PER LITER	sanas	COUNT LEVEL	GENUS	COUNT LEVEL	SENUS	COUNT LEVEL	NEMATODES (Identifiable) Number per liter	OTHER ANIMAL I
1001111122334466888999	155 193 192 2060 175 197 214 18	622226233333333333333333333333333333333	86 36 36	57 45 49 25 34 62 57 27	92 65 65	15 42 18 21 31 13 20 17	711 644 922 922 366 366 922 71 511 65	7 14 4 12 18 6 11 8 10	9236 8688 8692 511866 365 365 31	5 4 2 5 4 3 3 4 6 9	35 39 10 7 16 32 26 11 14 40 61 46	1400		000 1000 1000 1 1 1 1 1											00010000111111111							000 000	00010000100011111111

PLANKTON POPULATION

STATE

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION SAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

DATE	L		Al	_GAE (Nu	mber pe	r milliliter	,			INE	27		моѕ	T AB	UNDA	NT A	LGA	E - G	enera	and Co	unt Leve	l per	ml. (See t	ext for Cod	ea)
OF SAMPLE		BLUE-GREEN		EEN GREEN		FLAGELLATED (Pigmented)		DIATO	oms	DIAT	OM .LS	1st 2nd		4D	3RD 4T		тн	5тн		6тн	7тн		8тн	9тн	1 Отн
MONTH DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS COUNT LEVEL		COUNT LEVEL	GENUS	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	GENUS	COUNT LEVEL	GENUS COUNT LEVEL	GENUS COUNT LEVEL	GENUS COUNT LEVEL
1 62 10 1 5 62 11 19 62 12 2 3 62 12 2 6 63 2 2 6 63 2 2 6 63 3 2 6 63 4 17 63 6 19 63 8 2 1 63 8 2 1 63 8 2 1 63 8 2 1 63 8 9 18	00 1000 1800 500 1500 1300 100 3100 1400 1700 220 3300 460 130 * *			300 (0) (0) (0) (0) (0) (0) (0) (0) (0) (CC CC CC CC CC CC CC CC CC CC CC CC CC	00 20 00 00 00 00 60 40 190 800 570	0 20 0 110 60 20 110 40 20 20 20	860 1760 500 1510 900 1300 1103 1630 1630 1790 3150 3890 1410	500 500 000 200 200 800 800 1100	1720 1300 1390 2350 2560 3890 710	91 82 82 87 87 92 95 97 97 97 97 97 97		7 1 7 1 1 2 2 1 1 2 1 2 1 1	92 92 88	1	7, 1	91	1	97	1				

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION SAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

93

DATE					T	CHLORINE DEMAND		1						<u> </u>			T
DAY YEAR	TEMP, (Degraes Centigrade)	DISSOLVED OXYGEN mg/l	pН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 1 62 10 5 662 10 15 662 10 15 662 11 13 662 11 13 662 11 12 16 62 11 12 16 62 11 12 16 63 11 12 17 18 18 18 18 18 18 18 18 18 18 18 18 18	17.0 12.0 12.0 12.0 12.0 12.0 12.0 0 12.0 0 12.0 0 12.0 0 12.0 12.	- 2	7.24 8.45 8.45 7.88 7.88 7.88 7.88 7.88 7.99 8.11 8.00 7.79 7.70 7.88 8.3	4.26 1.55 6.88 3.55 		1.66	3.7 1.9 2.4 1.8 -2.7 3.8 3.8	· 2 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1	5204477477522488035476-7-59-887380429692-	168 296 150 144 288 298 142 148 150 148 160 252 150 156 168 104 104 104 104 104 104 100 88 80 100	308 3544 3264 2334 00 3408 3470 3408 34709 58 - 0 360 210 180 210 160 224	23218111105511111111211005550051501	866-000555555-5-40-550009 **222222	170 216 260 260 260 290 3340 3390 3808 317 290 280 125 115 320 90 140 175	000000000000000000000000000000000000000	780 730 730 740 760 652 720 800 735 812 1210 750 480 640 500 350 310 7280 270 270 270 350 430	100 3000 100 5800 5000 *67 5100 2000 2000 1000 2000 1100 2000 1100 3800 53000 37000 40000 1500

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

NEW MEXICO

MAJOR BASIN

COLORADO RIVER

MINOR BASIN

MIDDLE COLORADO-SAN JUAN RIVERS

STATION LOCATION SAN JUAN RIVER AT

SHIPROCK, NEW MEXICO

93

DATE						CHLORINE	DEMAND									TOTAL	
MONTH DAY YEAR	TEMP. (Degrees Centigrade)	OXYGEN mg/l	pН	B.O.D. mg/l	C,O.D. mg/i	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
6 19 63 6 26 63 7 10 63 7 17 63 7 24 63 8 14 63 8 28 63 9 14 63 9 11 663 9 25 63	18.0 19.0 22.0 21.0 22.0 23.0 21.0 21.0 21.0 20.0 18.0 22.0	7 • 6 - 7 • 8	7.9 7.8 7.7 7.7 7.9 8.0 7.9 7.6 7.7 8.0 7.9	1 · 4 1 · 8 1 · 5 4 · 6 1 · 7 1 · 5 6 · 0 2 · 3 - - 2 · 7 4 · 9 3 · 3	22 18 20 31 27 37 34 	.8 .2 .6 .6 .6 1.0 .4 1.2 1.3 .4 	4.8 5.8 2.4 4.9 3.6 1.9 4.7 3.2 	• 2 • 5 • 7	16 28	114 134 130 162 146 132 180 120 120 130 148 136	270 320 560 510 410 750 710 600 160 400 320	5 5 0 0	*25 *25 *25 *25 *25 *000 5000 1500 1200 1300	230 310 760 440 480 1100 520 750 220 340 370 290	•0 •0 •0	500 680 1440 1100 850 1920 1810 1230 1110 720 800 600	1300 1100 - 400 100 25000 30000 - 10000 400

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Shiprock, New Mexico Operated by U.S. Geological Survey STATE

New Mexico

MAJOR BASIN

Colorado River

MINOR BASIN

Middle Colorado-San Juan Rivers

STATION LOCATION

San Juan River at

Shiprock, New Mexico

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	•719 •628 •582 •534 •504	.614 .628 .607 .594 .594	.621 .649 .635 .594 .534	.456 .504 .540 .552 .498	•550 •560 •600 •550 •546	.420 .380 .492 .498 .498	1.210 1.230 1.130 .998 .900	.240 .224 .164 .171 .441	1.440 1.360 1.300 1.040 .812	.155 .100 .083 .070	.062 .062 .074 .390 .666	1.590 1.240 1.050 .828 .705
6 7 8 9 10	.510 .510 .504 .444 .420	. 558 . 570 . 552 . 546 . 582	•498 •492 •492 •492 •492	.450 .438 .420 .400 .410	•582 •588 •552 •540 •552	.510 .486 .498 .486 .492	.852 .780 .812 .852 .924	1.130 1.620 2.260 2.820 2.920	.812 .806 .740 .866 .872	.058 .054 .064 .151 .361	.830 .600 .510 .468 .830	. 698 . 692 . 782 . 645 . 500
11 12 13 14 15	• 385 • 375 • 375 • 365 • 360	.570 .540 .534 .546 .635	.480 .492 .444 .450 .462	.395 .162 .100 .120 .150	.600 .546 .480 .468 .468	.486 .504 .540 .522 .480	.908 .836 1.060 1.820 2.100	2.180 2.100 1.750 1.770 1.820	.680 .500 .435 .616 .719	• 588 • 546 • 486 • 486 • 462	.677 .534 .500 .391 .319	.435 .391 .411 .415 .464
16 17 18 19 20	• 365 • 796 2•880 6•190 4•020	• 79 ⁴ • 812 • 782 • 752 • 719	.468 .462 .468 .498 .498	.200 .300 .400 .500 .470	•504 •522 •498 •498 •498	.504 .516 .498 .498 .480	2.420 2.250 1.910 1.770 1.390	1.470 1.720 2.400 2.920 2.680	. 980 . 852 . 663 . 582 . 540	• 364 • 261 • 180 • 109 • 087	.284 .237 .240 .239 .206	.480 .474 .456 .400 1.290
21 22 23 24 25	1.360 1.020 .796 .756	.684 .677 .670 .649 .635	.468 .450 .420 .415	.420 .400 .390 .380 .400	.486 .516 .486 .486	.498 .558 .635 .698 .804	.635 .478 .347 .252 .226	2.480 2.260 2.040 1.810 1.510	• 504 • 558 • 582 • 504 • 395	.068 .066 .066 .062	.206 .244 .340 .426 .444	2.580 1.190 .852 .719 .642
26 27 28 29 30 31	.719 .684 .663 .663 .628 .628	.614 .614 .614 .600 .600	• 390 • 335 • 316 • 330 • 370 • 400	.450 .430 .420 .420 .440 .470	. 456 . 456 . 456	.884 .956 1.130 1.280 1.310 1.220	.404 .496 .496 .435 .340	1.360 1.220 1.330 1.330 1.430 1.380	.312 .264 .216 .166 .171	.098 .171 .193 .100 .070 .064	.410 1.220 1.420 1.260 1.080 1.510	.621 .582 .516 .474 .420

BASIN 12
WESTERN GULF

The Western Gulf Drainage Basin includes most of Texas and New Mexico and small portions of Colorado and Louisiana. Topography varies from the sea level coastal plain to the 14,000-foot peaks of southern Colorado. Average annual rainfall ranges from 8 inches in the plains of New Mexico to 52 inches in the southeastern portion. Mean temperatures vary from 40° F. near the mountainous headwaters to 70° F. along the Gulf of Mexico.

Two river systems within the Western Gulf Basin, the Sabine on the east and the Rio Grande on the west, are included within the PHS Water Pollution Surveillance System.

Sabine River: The Sabine River begins at an elevation of 500 feet in east Texas, flows to the southeast for about 200 miles, and then turns south to form the Texas-Louisiana border for 180 miles. The river discharges into Sabine Lake near Port Arthur and thence into the Gulf of Mexico. The total drainage area is about 9,700 square miles.

Rio Grande: The Rio Grande drains an area of 182,200 square miles of which about half are in Mexico. The headwaters are on the eastern flank of the San Juan Mountains in south central Colorado. The river then flows southward through New Mexico and thence southeasterly to form the border between Mexico and the United States.

The Rio Grande drains the San Luis Valley of Colorado. This is an area of extensive agricultural development and the flow is affected by irrigation withdrawals and returns and by the operation of storage reservoirs. Upon entering New Mexico, the Rio Grande traverses an area which is arid. There are two large main stem impoundments above the El Paso Surveillance System station. These are Elephant Butte and Cabello Reservoirs which store most of the flow from September to March and for subsequent release during the growing season. Below El Paso, the river drains a portion of Mexico that contributes little surface runoff. In the vicinity of Brownsville, the stream supports an area of extensive irrigated agriculture.

Maximum phytoplankton counts at stations in this basin range from 10,000 to 30,000/milliliter. Except for summer pulses of blue-green and green algae, at Brownsville, Tex., on the Rio Grande River, the phytoplankton is dominated by diatoms. The lower reach of the Rio Grande supports a rich and diverse algal flora. The Brownsville station is

unique in having reoccuring high counts of the planktonic filamentous green alga, *Binuclearia*, which persist through late summer and early fall. Reoccurring populations of planktonic filamentous green algae have not been observed at any other network station.

The abundant pennate diatoms of this basin are Synedra acus,

S. ulna, Diploneis smithii, and Caloneis amphisbaena. The abundant centric diatoms are Stephanodiscus astraea var. minutula, and Cyclotella meneghiniana.

Populations of the rotifers, Keratella, Brachionus, Trichocerca, and Synchaeta, together approach 3,000/liter during late summer in the Rio Grande River.

RIO GRANDE AT BROWNSVILLE, TEXAS

The Brownsville station is the terminal station on the Rio Grande. Samples are collected at the intake of Brownsville No. 1 Water Flant. Falcon Reservoir, on the main stem between Brownsville and Laredo, provides irrigation and municipal water supplies for the communities which compose the 'Magic Valley' at the southern end of Texas. This agricultural district supports a diversified production of cotton, vegetables, corn, grains and citrus fruit. Most of the industrial wastes result from canning and packing operations. Municipal and industrial wastes in this valley for the most part are diverted into the Gulf of Mexico via arroyos and floodways. Brownsville is an exception and this city discharges 9,300 BOD population equivalents into the Rio Grande from its treatment plant. There are no communities downstream.

The chlorinated pesticides, DDT and dieldrin, have been identified in carbon adsorption method samples from this station.

Station Location:	Rio Grande at Brownsville, Texas
Major Basin:	Western Gulf
Minor Basin:	Rio Grande/Lower/Below Fecos River
Station at:	25°55' Latitude 97°30' Longitude
Miles above mouth:	52
Activation Date:	October 19, 1959
Sampled by:	Brownsville Water Department
Field Analysis by:	Brownsville Water Department U.S. Public Health Service
Other Cooperating Agencies:	Texas State Department of Health
Hydrologic Data:	
Nearest pertinent gaging station:	Rio Grande at lower Brownsville Gaging Station
Gaging station operated by:	International Boundary & Water Commission
Drainage area at gaging station:	182,200 square miles
Period of record:	1934 to present
Average discharge in record period:	2,580 cfs.
	•

ALKYL BENZENE SULFONATE (ABS

	SULFONAT	TE (ABS	5)	
	Date	mg/1]	Γ
	2-25-63	0.04		
	3-4-63	0.06	į	Ā
	3-11-63	0.05		me
	3-25-63	0.04		Re
	4-1-63	0.03		
	4-15-63	0.03		
	4-22-63	0.02		
	5-27-63	0.04		△
				s
				١,
				R
İ				"
İ	l			m
l				
ı	1	1		

ELEMENTAL ANALYSES

		Composite	Interval
		10/1/62	4/1/63
		12/31/62	6/30963
Analysis by	F	.76	.85
wet or flame methods.	Na	162	155
Results in mg/1	κ	6.3	7.6
	Zn	*15	*6
	Сq	*8	*8
	As	*50	*50
Analysis	В	375	246
Ьу	p.	*19	*39
Spectro-	Fe	24	*16
graphic	Мо	*8	*8
methods.	Mn	*3.8	* 7.8
Results	ΑI	-	*39
	Ве	*.19	*.20
in	Cu	*8	*8
micrograms	Ag	*1.5	*2.0
per	Νi	*8	*8
liter	Co	*15	*8
	Pb	*19	*20
	Cr	*4	*4
	٧	*8	*8
	Ва	124	101
	Sr	1160	858

^{*}Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	pc/1	+
October to December	1.3	.2	April to June	-	-
January to March	1	_	July to September	2.3	,3

⁺ at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration*
11/19 - 12/4/62	DDT	
1/7 - 1/18/63	DDT	
6/22 - 7/1/63	Dieldrin	0.001
6/22 - 7/1/63	TDD	0.144

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/l. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

Remarks:

TEXAS

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

BROWNSVILLE, TEXAS

DATE						RADIOACTI	VITY IN	WATER			····					RADIOACTIV	TY IN PL	ANKTON	
SAMPLE	DATE OF DETERMI-			ALPHA						BETA				D.	ATE OF TERMI- ATION		GROSS A	CTIVITY	
TAKEN	NATION	SUSPEND	ED	DISSOLVE	0	TOTAL		SUSPEND	ED	DISSOLVE	D D	TOTAL		N	ATION	ALPH.	A.	BET	۸
MO. DAY YR.	MO. DAY	pc/l	±	pc/l	±	pc/l	±	pc/l	#	pc/l	± ·	pc/l	#	мо	. DAY	pc/g	=	pc/g	<u> </u>
10 1 62 10 9 62 10 15 62 10 22 62					2		111457845445526	18 100 56 14 65 9 14 55 17 36 14 3	19 11 6 24 11 28 7 6 14 21 10 6 3 12	32 32 40 16 517 22 15 217 29 21	26 14 9 29 15 37 10 38 28 28 38 38 31	33 48 36 108 54 22 61 26 30 48 78 31 32 28	32 18 11 38 19 46 12 39 31 36 30 38 18 33						

PLANKTON POPULATION

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

BROWNSVILLE, TEXAS

	DA	TE	Т								TOMS	AND for Code						_			итс	R	0 1	N V	ER	Т	EBR	ΑТ	E S						
	O SAM		-	1 ST			ND		31			TH	S	I AND BACTERIA per ml.	rable)		I —		GEN	OTI	FER	≀s	IT LEVE			-		CR	US	TAC	EA	IT LEVE			s .
_	T			T			Ï	T	1	-		1	PECIE	ANI BAC per "	denti)	NUM-	15	Τ	2 N		3 _R		4 _T		5т	H	NUM-	1s		e text for		les) 3R			FORMS Liter)
MONTH	DAY	YEAR	SPECIES		PERCENT	SPECIES	PERCENT		SPECIES	PERCENT	SPECIES	PERCENT	OTHER SP PERCE	FUNGI SHEATHED I Number p	PROTOZOA (Identifiable) Number per ml.	BER PER LITER	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	CENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	BER PER LITER	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	NEMATOBES (Identifiable) Number per liter	OTHER ANIMAL I
100 111 112 122 111 122 111 122 133 144 155 167 177 188 199 199	1 155 199 3 100 7 144 188 4 115 60 10 115 220 3 16	62 62 62 62 62 63 63	8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	29999999999999999999999999999999999999	T292991029110210 531339	38 75 92 91 78 38 80 82 92 56 66 56 87 70 91 89 38 80 82 82 82 82 82 82 82 82 82 82 82 82 82	47 5 6 10 7 7 14 25 14 6 15 12 12 13 8 30 3	8 3 2 2 3 3 3 7 6 6 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	26 38 47 38 71 71	3 4 4 6 5 4 9 11 21	45 658 388 70 122 92 92 92 92 92 70 70 71 56 71	2 1 4 6 5 3	46 68 100 511 275 500 188 323 339 377 477 5314 13 296 24 510 18	951000000111111111111111111111111111111		518 3060 0 72 53 101 1 0 2380 0 - 268 -	11 17 22 11 21	7 9 3 3	9 2 2 2 1 1 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7	4 8 3 2	2221177	3 3 2 2 3	177 18	2 3	2 2	1	000000000000000000000000000000000000000	5 O	COUNT	ENAD		GENUS	ANOO CONAT	000000000010101111111111111111111111111	OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

PLANKTON POPULATION

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

BROWNSVILLE, TEXAS

					AL	GAE (Nu	mber pe	r milliliter,	,			INE	RT		М	ost .	ABU	NDAN	T ALGA	E - Gen	ra and	Coun	t Level	per 1	nl. (Se	e text	for Co	des)	
DAT OF SAMI	F	.		BLUE-		GREE	1	FLAGEL (Pigme	LATED	DIATO	омѕ	DIAT	OM	1:	ST	2nd	3	3rd	4тн	5тн	61	Н	7т	1	8тн	1	9тн	1	Отн
MONTH		YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	COUNT LEVEL	GENUS COUNT LEVEL	GENUS	1 1	COUNT LEVEL		COUNT LEVEL		COUNT LEVEL	GENUS		COUNT LEVEL
10 1 10 15 11 5 11 19 12 3 12 10 1 7 1 14 2 4 2 18 3 4	6 6 6 6 6 6 6 6 6	222223333333333333333333333333333333333	8500 8400 4400 15300 13600 28700 2700 2800 2700 2800	1040 430 1470 360 1410 0 40 0	270	2360 1700 180 2150 450 3440 510 310 160 480	0 0 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	130 40	0 80 0 20 0 1610 360	560 540 90 730 90 330 110 370 180 500 260	12690 23180 1940 2020 350 480 1090	40 170 70 80 90 60 70 290 180 330	540 360 500 860 2280 460 990 330 350 420	92 92 92 92 92 88 92 83 64	5 6 6 7 2 3 1 4 2	1 25 88 83 92 88	3 4 1 4 4 8 4 8 2 8 2 7 2 8	1 3 45 2 38 3 77 4 37 4 37 2 71 2 65 1 88 2 74 2	1 2 1 3 87 3 88 4 38 1 97 1 92 1 92 2	25 2 83 2 78 25 2 87 87 83 38	2 38 3 89 3 38 1 44 1 83	2	71 38 91	1 2	51 89 40 83 3	2 :	44 1 75 2 1 3	28	3 1 3 1 5 2 4 2
3 18 4 15 5 20 6 10 7 15 7 22 8 2	1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	63 63 63 63 63 63 63 63 63 63 63 63	3700 7000 5100 1700 16900 3100 4200 4400 2800 10500 4300	40 20 0 860 0 60 80 290 1260	20 20 180 20 20 150 420	920 1300 350 1190 920 1350 191 170 1600	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	70 70 330 20 1140 20 50	40 00 00 00 00 00 00 00 00 00 00 00 00 0	420 330 150 420 1070 310 120 40 370	5540 3320 1120 13900 1050 600 970 1370 5830 1410	90 220 40 220 250 230 100 570	1140 860 150 590 250 60 230 150 3490 120	75 82 92 93 95 95 95 95 95 95 95 95 95 95 95 95 95	3 2 2 3 3 5 3 6 3 0 0 0 3 6 0 0 0 3 6 0 0 0 0	88 83 88 38 57 92 88 50 92	3 3 1 5 2 2 3 3 3 3	83 3 83 2 83 3 51 2 50 1 92 2 3 3	92 2 68 2 3 3 3 17 2 17	71 87 26 25 25 1	2 87 1 26 2 87 2 87 2 87	5 1 7 2 8 2	74 68 38 35	1 1 1	52 35	1	86	1	9 1 5 1
	3 6 6 6	63 63 63 63	8800 18100 14400	7020	110 3550	106	0 479	0 20 90 140		430	5670	90	430	9	22 9 6	38 92	2	50 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2 1	2 44	2 8	3 1		1	35	1	87	1 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

BROWNSVILLE, TEXAS

						KTRACTABL	FC	1										
DATE OF BEGINNING		END				IRACIABL	LS	 					ORM EXTR	ACTABLES				
DAY YEAR	_	$\overline{}$	1 -	SALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	LOSS
10 22 62 11 19 62 1 7 63 2 18 63 3 26 63 4 28 63 6 22 63 7 25 63 8 26 63	2 12 3 3 3 3 3 3 3 3 3 3	2 22	4 8 2 1 1 1	2860 5805 5443# 1440 3279 3537 5472 4588# 3920 #	194 148 - 303 195 176 98 163 153 ESTIMA	31 13 16 47 23 28 25 30 43	163 135 * 256 172 148 73 133 110 *	O 1 1 - 1 - 2 ABORATO	8 2 4 5 7 14 RY ACCII	14 7 5 - 11 - 9 - 10 DENT	1001-22-11-11	1100	12554-8-7-8	0101010	412121315	1 1 1 4	101111111111111111111111111111111111111	3 1 2 - 2 - 3 - 7

TEXAS

MAJOR BASIN

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

BROWNSVILLE, TEXAS

DATE	1				-		CHLORINE	DEMAND									TOTAL	COLIFORMS
OF SAM	PLE	TEMP.	DISSOLVED	pН	B.O.D.	C.O.D.			AMMONIA-	CHLORIDES	ALKALINITY	HARDNESS	COLOR	TURBIDITY	SULFATES	PHOSPHATES mg/l	DISSOLVED	per 100 ml.
MONTH	YEAR	(Degrees Centigrade)	mg/i	pr	mg/i	mg/l	1-HOUR mg/l	24-HOUR mg/l	mg/l	mg/l	mg/l	mg/l	(scale units)	(scale units)	mg/l	mg/t	mg/l	po. 102
10 1			7.8	8 • 2	1.0					290	135	350	5	30	225	•0	925	16000 180
10 9	62	_	7.5	7.8	• 9	-	_	-	-	70	96	160	5		105 150	•0	405 548	2400
10 15	62	_	7.3	8.3	. 8	-	_	-	-	150	116	210	5 5		205	• 0	685	300
10 22		28.0	7 • 2	8.3	1•2	-	-	_	-	157	112 140	252 320	٥		235	•0	849	400
10 29		- 0 0		8 • 0	-	-	-		_	165 328	128	360	0	*25	270	• 0	1176	
11 5	62	20.9	7 • 2	7.9 8.1	•8 1•6		_	_	_	220	140	320	lő		260	•0	905	2900
11 12 11 19		23 • 7 17 • 5	8.6	8.0	1.3	-	_	_	-	227	140	356	0		280	• 1	1000	100
11 26		22•2	8.6	8.2	2.2	-	_	_	*	240	132	356	0		290	•0	1125	270
12 3		19.5	8.9	8.3	1.6	-	_	-	_	224	162	360	0		265	•0	990 975	_
12 10	62	20.6	8.9	8.1	2.0	-	-	-	-	. 311	122	360	0		110 265		950	200
12 17	62	20.6	9.2	8.2	2•2	1 -1	-	-	-	224	144	340	0		230	1	764	_
12 31	62	-	-	8.0	_	-	-	_	_	146 77	136 120	340 268	_		250	• 0	720	700
1 7	63	15.0		8 • 1	1.0			_	_	216		332	_	ŧ	260	• 0	935	100
1 14		15.0	8.9	8 • 1 8 • 0	1•4 1•6	_	_	1		140		308		1	240	•0	835	1000
1 21		12.0		8.1	2.1			ŀ	_	160		290	-		240	1	780	*10
1 28		16.0		8.1	2.3	_	_	1	_	110		270		II .	200		645	1100
2 11		1000		7.9		-	_	-	_			268			220		685 650	500 500
2 18		_		7.9	_	-	_	-	-			264			205		724	100
2 25	63			8.0	-	-	-	-	-	152	1	284	1	1	225		1 124	*13
3 4	63	-	-	-	-	-	-		-			290	5		310	1	1100	*10
3 11		-	1	8 • 1	-	-		1	-						260		930	100
3 18	63	-	-	7.4	-	_	_		-						260		920	-
3 25		-	t .	7•3 7•4	_	=	_	1		1					230	• 0		9000
4 1			:	3.2	_	_	_		-	1			0		230		710	500
4 15		_		7.3	_	_	i -	1	_	195	124	290				1		1500
4 22		_		7.4		_	-		-			1					1	1600
4 29	63	_	. -	_	-	-	-	.	-							t .		1000
5 6		-		-	_	-	-	· -	-								1	-
5 13	63	-	-	-	-	-	-	1	-	1		L .						_
5 20	63	1	- -	-	-	-	-		1								l l	650
5 2			1	-	-	-	-	1	-	1								-
6 19			l l	_	_	_	-	1	1	1		-	<u>.</u> _	1	1	. -	1	610
6 24		1	:	_	_	_	-	1		1	130	250		*25				240
7	1 63			_	_	_	-		. -					*25	260	• 0	970	400
<u> </u>	' 0.3	1																
																	.1	

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIC GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

BROWNSVILLE, TEXAS

71

	ATE	1						CHLORINE	DEMAND									TOTAL	
OF S.	AMP	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	Не	B.O.D. mg/l	C.O.D. mg/l	I-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	Mg/I	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 mi.
7 1 7 2 7 2 8 1 8 1 8 2 9	2952963953	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3									300 460 250 180 170 120 280 270 3280	146 124 146 142 110 110 152 124 128	410 420 420 270 3360 290 4040	505505000055	** 22 22 22 22 22 22 22 22 24 ** ** ** ** ** ** ** ** ** ** ** ** **	350 350 370 240 240 250 280 260	000000000000000000000000000000000000000	1130 1420 990 1380 760 740 50 850 780 1010 990 930	100 1800 1000 950 70 800 500 500 50

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Computed Data for Brownsville, Texas Supplied by International Boundary and Water Commission

El Jardin Pump.

STATE

Texas

MAJOR BASIN

Western Gulf

MINOR BASIN

Rio Grande Lower below Pecos River

STATION LOCATION

ION Rio Grande at

Brownsville, Texas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	.118 .212 .317 .189	.151 .200 .202 .164 .170	.123 .185 .189 .153 .128	.223 .067 .069 .121	.086 .189 .188 .146 .153	.074 .135 .132 .112 .089	.496 .278 .229 .183 .180	.209 .103 .090 .243 .240	.640 .702 .585 .371 .312	.188 .337 .368 .393 .639	.154 .058 .071 .194 .162	.112 .181 .149 .125 .076
6 7 8 9 10	.134 .124 .189 .189 .162	.204 .178 .162 .133 .141	.115 .110 .103 .326 .560	.290 .290 .307 .290 .262	.106 .135 .090 .108	.106 .049 .051 .064 .127	.183 .098 .378 .301 .232	• 322 • 576 • 457 • 389 • 438	.149 .132 .357 .332 .388	.472 .299 .264 .243 .198	.171 .167 .194 .169	.136 .154 .134 .113 .114
11 12 13 14 15	.132 .190 .186 .131 .128	.128 .143 .140 .128	.473 .275 .178 .147 .136	.409 .712 .612 .331 .291	.126 .151 .161 .130 .149	.126 .097 .114 .086 .073	.104 .035 .035 .038 .201	. 384 . 441 . 328 . 263 . 220	·373 ·147 ·191 ·397 ·474	.245 .169 .132 .124 .121	.124 .161 .129 .097 .145	.117 .124 .107 .107 .139
16 17 18 19 20	.114 .104 .118 .239 .336	.104 .125 .133 .172 .134	.161 .146 .106 .169 .071	.168 .248 .346 .224 .177	.229 .189 .143 .104	.169 .138 .114 .137 .127	.212 .099 .197 .221	.182 .160 .150 .148 .153	.370 .426 .945 1.270 2.190	.114 .108 .229 .359 .248	.283 .209 .168 .160 .179	.160 .170 .146 .115 .083
21 22 23 24 25	.215 .147 .135 .248 .269	.149	.083 .170 .140 .244 .741	.485 .554 .251 .159 .177	.063 .050 .076 .429 .441	.099 .079 .062 .049 .054	.113 .133 .176 .133 .120	.146 .127 .115 .106	2.460 .878 .209 .172 .456	.177 .305 .495 .281 .145	.119 .071 .074 .108 .114	.103 .260 .289 .245 .193
26 27 28 29 30 31	.206 .160 .164 .264 .238	.127 .155 .165 .120	.801 .611 .287 .208 .145 .228	.178 .152 .202 .286 .201	.127 .075	.063 .064 .250 .293 .170	.121 .096 .057 .239 .227	.087 .076 .079 .105 .125	.824 .670 .623 .395 .218	.096 .055 .069 .205 .224 .188	.084 .073 .084 .076 .059	.121 .139 .150 .127

Computed as being sum of (1) Flow at Lower Brownsville Station, (2) City of Matemoros Diversion and (3) average daily Diversion at

.

RIO GRANDE AT LAREDO, TEXAS

This station is 892 river miles below the Fl Paso Surveillance System station. In this reach, the Pecos River which has a drainage area of about 35,000 square miles has joined the Rio Grande. Samples are collected from the intake of the municipal water plant. The Rio Grande flows through sparsely populated areas in the El Paso to Laredo reach.

Limited use is made of the Rio Grande between Laredo and Fagle Rock for irrigation. DDT, DDD and dieldrin have been identified in carbon adsorption method samples from this station.

Very low plankton populations were observed at this station during October and mid-November 1962 and increased in the latter portion of November. A decrease of turbidity of the water from October through November accompanied this growth.

Station Location:	Rio Grande at Laredo, Texas
Major Basin:	Western Gulf
Minor Basin:	Rio Grande/Lower/Below Pecos River
·Station at:	27°31' Latitude 99°31' Longitude
Miles above mouth:	356
Activation Date:	November 10, 1957
Sampled by:	Laredo Water Department
Field Analysis by:	Laredo Water Department
Other Cooperating Agencies:	Texas State Department of Health
Hydrologic Data:	
Nearest pertinent gaging station:	At Laredo, Texas
Gaging station operated by:	International Boundary and Water Commission
Drainage area at gaging station:	136,000 square miles
Period of record:	1924 to present
Average discharge in record period:	4,010 cfs.
Maximum discharge in re	cord period:
Minimum discharge in re	cord period:
Remarks:	

ALKYL BENZENE SULFONATE (ABS)

30LI OIAAI	L (7.00	′				
Date	mg/1				Composite	Interval
1-22-63	0.08				10/1/62	4/1/63
1-22-05	0.00				to 12/31/62	to 6/30/63
2-26-63	0.10		Analysis by	F	1.08	.80
3-12-63	0.05		wet or flame methods.	Na	190	95
3-19-63	0.05		Results in mg/1	K	7.5	6.2
3-26-63	0.05			Zn	78	*13
4-2-63	0.02			Cd	*8	10
4-16-63	0.04			As	*50	*50
5-21-63	0.04		Analysis	В	163	134
			by	p.	*41	64
			Spectro-	Fe	86	13
			graphic	Мо	11	*6
			methods.	Mn	*1.6	*6.4
				Αl	_	*32
			Results	Ве	*.2	*.16
			in	Cu	4	*6
			micrograms	Ag	*1.6	*1.6
			per	Ni	*4	*6
			liter	Co	*16	*6
				Pb	*41	*16
				Cr	*4	*3
				V	*8	*8
			:	Ва	131	90

ELEMENTAL ANALYSES

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

1200

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	pc/1	+
October to December	1.8	•5	April to June	3.7	.4
January to March	_	-	July to September	-	-

⁺ at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration*
6/22 - 6/28/63	Dieldrin	0.004
6/22 - 6/28/63	DDT	0.006
6/22 - 6/28/63	DDD	0.004

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/l. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

TEXAS

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

DATE						RADIOACTI	VITY IN V	WATER							RADIOACTIV	ITY IN PLA	NKTON	
SAMPLE	DATE OF			ALPHA						BETA				DATE OF DETERMI-		GROSS A		
TAKEN	DETERMI- NATION	SUSPEND	ED	DISSOLVE	D	TOTAL		SUSPEND	ED	DISSOLVE	D	TOTAL		NATION	ALPH	Α	BETA	
O. DAY YR.	MO. DAY	pc/l	±	pc/l	±	pc/l	±	pc/l	#	pc/l	#	pc/l	±	MO. DAY	pc/g	#	pc/g	<u> </u>
0000112746666222111229529666666666666666666666666	12 13 12 14 11 23 12 18 12 18 12 18 12 18 12 19 11 12 25 11 25 11	18	17 1 3 3 1 1 2 2 3 3 1 2 2 3 3 1 2 2 3 1 5 5 2 1 1 6 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	10 - 3 3 8 8 3	1-4-14-7-54651-41-141-15-1-24-1-531-	27 	17 	86 31 112 206 5 181 1214 10 25 22 21 13 12 8 0 25 22 21 13 12 3 4 5 7 7 10 8 8 8 9 15 10 10 10 10 10 10 10 10 10 10 10 10 10	86 53 53 77 15 14 140 29 28 33 22 26 26 26 24 17 15 7 14 22 11 27 22 11 21 11 27 22 11 12 11 22 12 1	18 18 12 25 316 70 516 330 27 24 26 27 57 34 44 43 44 43 44 43 44 43 44 44 45 47 47 47 47 47 47 47 47 47 47 47 47 47	19 18 16 14 21 16 32 37 40 40 26 32 31 30 16 26 32 30 17 30 17 30 17 30 17 30 17 17 17 17 17 17 17 17 17 17 17 17 17	1049 1242 231 3872 28461 8155 51046 34427 825 103 1026 468 554 367 253 1667 267 283 1667 283 1567 283 1567 283 1567 283 1567 283 1585 1587 283 1587 283 1587 283 1587 283 1587 283 283 283 283 283 283 283 283 283 283	88 55 57 26 1447 49 53 440 83 23 42 12 13 22 14 14 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	mu, LAT	Por M			

TEXAS

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

DATE	T					RADIOACT	IVITY IN	WATER						<u> </u>		RADIOACTIVI	TY IN PLA	NKTON	
SAMPLE	DATE OF DETERMI- NATION			ALPHA				i		BETA				DATE	OF		GROSS A		
TAKEN	NATION	SUSPEND	ED	DISSOLVE	ď	TOTAL		SUSPEND	ED	DISSOLVE	ED	TOTAL		DATE DETER NATIO	ON -	ALPH		BETA	
MO. DAY YR.	MO. DAY	pc/l	土	pc/I	#	pc/l	±	pc/i	#	pc/l	#	pc/l	#	MO.	DAY	pc/g		pc/g	_ ±
MO DAY YR. 7 23 63 7 30 63 8 6 63 8 13 63 8 27 63 9 3 63 9 10 63 9 17 63 9 24 63	8 12 8 14 8 21 8 27 9 16 9 17 9 17 10 2 10 4	pe/l	12 67 88	pc/1	= 1 - 4 - 1 - 1 - 4 4 - 3	pe/I	* 8 8 8 8	362 50 78	54 18 22 224 217 429 74 411 407	9c/1 46 46 24 42 40 43 33 47 64 36	9 17 17 8 18 17 18 17 8	408 96 102 837 1125 737 175	55 25 28 225 217 429 76 411 407			pc/g	#	pe/g	4

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

									·	······································							
BEGINNING		ND		EX	TRACTABL	E5					CHLOROF	ORM EXTRA	CTABLES				
DAY YEAR	MONTH	DAY	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	Loss	WEAK ACIDS	STRONG ACIDS	BASES	Loss
10 26 62 10 26 62 12 5 62 1 8 63 2 17 63 2 137 63 3 12 63 3 12 63 4 12 63 4 12 63 5 15 63 6 3 63 7 26 63 7 27 28 63 8 17 63 8 17 63 8 17 63 8 17 63 8 17 63 8 17 63 8 17 63 8 17 63 8 17 63	12 2 2 3 3 3 4 4 4 4 5 5 6 6 6 7 7 8 8 8 9 10	26 * 20 27 10 28 12 29 * 1 28 * 6	4384 2382 2054 4436 2364	118 120 * 75 140 * 101 197 137 174 173 144 103 129 132 176 139 156 161 99 132 114 88 101	263 - 82 - 7 51 29 8 34 6 6 7 36 3 4 4 3 3 8 4 2 2 8 8 2 2 2 2 2 2 2 0	92 107 67 118 84 146 108 137 98 763 102 132 1018 127 78 104 86 76 81	100	6 2 - 1 13 - 10 - 7 - 8 - 10 - 10 - - 4	14 7 	5 1 - - 3 - - 3 - - 2 - 1 1 - - 2 - - 2 - - 2 - 2 - 2 -	2 -	7 - 8 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	000000000000000000000000000000000000000	2 1 1	2 -	100000000000000000000000000000000000000	12 4 3 6 3 8 4 2
12 5 62 2 13 63					INSUFFI W FLOW	CIENT F	LOW										

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

045

DATE OF	PER	OMINAN	T SPE	CIES O	F DIA	TOMS	AND	a)	<	<u> </u>						MIC		OIN	V E	RT	EBR								
SAMPLE	1 st		ND	31		41		ES	I AND BACTERIA per ml.	fiable I.		<u> </u>		GEN	IERA (Se	AND C	COUN or Cod	T LEVEL			 	GEN	IERA (Se	AND C	OUNT	T LEVE	_		RMS
								SPECIE	BAC Per	denti per n	NUM-	1st		2n		3R		4тн		5тн	NUM-	1 s1		2 _{N1}		3 _R ı		- 4	II. FO er lite
MONTH DAY YEAR	SPECIES	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SF PERCE	FUNGI SHEATHED E	PROTOZOA (Identifiable) Number per ml.	BER PER LITER		COUNT LEVEL	GENUS	COUNT LEYEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS COUNT LEYEL	BER PER LITER	GENUS	COUNT LEYEL	CENUS	COUNT LEVEL	GENUS	COUNT LEVEL	(Identifiable) Number per liter	OTHER ANIMAL FORMS (Number per liter)
10	69 2 89 5 89 4 89 4 89 4 26 5 26 5 26 5 26 11	7 58 3 89 4 26 6 26 2 26 3 12 9 13 3 13 5 36 6 36 2 71	21 26 25 38 20 12 17 8 11 12 8	922 822 922 922 922 927 927 927 927 927 927 9	6 12 10 6 5	266 122 70 71 46 89 9 71 38 12	624246366	10 17 17 8 39 40 20 27 30 24 64	200 1500		000000000000000000000000000000000000000										000000000000000000000000000000000000000							000000000000000000000000000000000000000	

PLANKTON POPULATION

PLANKTON POPULATION

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

DATE			Al	_GAE (Nu	nber pe	r milliliter	.)			INE	RT		M	OST	ABI	JNDA	NT A	LGA	E - G	enera	and C	ount	Level pe	r ml.	See to	ext for	Codes)	_
OF SAMPLE		BLUE-	GREEN	GREE	N	FLAGEL (Pigme		DIATO	омѕ	DIAT	OM	1 s	r T	2 _{NI}	D	3rd	4	TH	5т	н	6тн	ī	7тн	81	гн	9ті	Н	10	TH
DAY YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEYEL		COUNT LEVEL	GENUS	GENUS	COUNT LEVEL		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL
0 2 62 16 62 1 6 62 2 0 62 2 1 8 63 1 2 7 63 1 2 7 63 1 2 63 1 2 63 1 2 63 1 2 63 1 2 63 1 2 63 1 2 63 1 2 63 1 2 63 1 2 63 1 2 63 1 63 1 63 1 63 1 63 1 63 1 63 1 63 1	900 300 100 11600 2200 2100 8000 4400 3700 * * * * * *	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		120 0 0 2460 3380 40 40 90 420 3300 31130 0 0 0 0 	000000000000000000000000000000000000000	20 0	0 0 0 0 0 0 20 610 230 230 0 0 0 0	4220 1760 1320 400 480 1500 1830 400 880 250 - 20	1740 3150 810 700 1410 290 2640 1070 1720 1970 7220 0 0	40 30 790 250 1800 310 360 180 2300 1050 90 90	250 460 290 840 680 880 1700 290 110 340 - 180 90	69 25 68 68 92 68 63 968 88	5544324323	92 92 92 92 68 78 17 82 82	44232 3223	17 17 92 38 68 88	1 88 3 8 2 88 2 2:	3 1 7 1 3 1 7 1	38 88 78 88 87	1 1 1 1	87 85 63	1	71 3 1 28 1 76 1 1 92 1 2 2 1	35	1	78	1		1

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

45

DATE OF SAME							CHLORINE	DEMAND										I
MONTH	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/I	pН	B.O.D. mg/l	C.O.D. mg/l	I-HOUR mg/I	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALĶALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
	62	27.0	-	8 • 4	_	-		-	-	82	142	248	-	1370	173	-		*50
	62	28•0 27•7	_	8 • 3 8 • 3	_	-		-	-	54	100	268	-	10500	222	-	-	2600
	62	23 • 8	_	8.3	_		_	_		80	137	242	-	2880	182	• • •	650	-
	62	22.5	_	8.4	_	_	_	_	-	24	93	133	-			-	-	1
Y 1	62	20.0	_	8.3		-		_	_	92 100	140 138	252	-	2540	154	-	-	20000
11 13	62	17.3	-	8 • 4		_	-	_	_	105	155	280 286	-	2040 665	176	-	-	38000
	62	16.0	-	8.3	-	-	-	_	_	110	135	270	_	103	174 195	_		680
	6.2		-	-	-	l - I	_	-	_			~	-	105	1,,,	_	-	100 3000
	62	21.0	-	8.3	~	-	-	-	_	190	133	324	_	1170	238		_	3000
	62	18.0	-	8 • 4		-	-		-	265	128	370	-	47	275	_]	_	500
	62	14.0	-	8 • 3	-	-	-	-	-	295	120	396	-	78	285	-	-	100
	62	14.0	-	8 • 3	-	-	-	-	-	230	149	376	-	107	258	-	_	_
	63	12•0 13•5	_	8.2	-	~	-	-	-	175	146	336	-	198	225		-	500
	63	8.5	_	6.2	_	_	-		-	170	149	332	-	198	246	-	-	670
	63	9•5	_	8.3	_		_	-	-	180	154	328	-	150	244	-	-	1000
	63	8.5	-	8.1	_			_	-	175	159	338	-	150	279		-	50
	63	14.0	_	8.4	_	_	_	-	_ [160 160	160 157	342	-	120	238	-	-	*50
2 12	63	13.0	-1	8 • 2	_	_			_	155	148	334 318	_	181	234	-	_	1000
2 19	63	13.0	-	8 • 2	-	-	_ [_	155	145	310	-	194 214	234 225	_	_	400
	63	15.0	-	8.3	-	-	_	-	_	140	146	302	_	238	205	_	_	300
	63	20.0	-	8 • 4	-		-	-	-	160	137	314		180	237	-	_	100 100
	63	21.0	-	8 • 3	-	-	-	- [-	-		-			_		*50
	63	23.0	-	8.3	-	-	-	-		165	129	304	-1	99	224		_	500
	63	23.0	- 1	8.3	-	-	-	-	-	170	129	310	-	58	240	_		500
	63	23.0	-	8.3	-	-		[- [175	122	306	-	47	244	-	-	200
1 1	63	24.0	-	8 • 2	-	-	-	-	-	140	123	276	-1	432	188	-	_	2000
	63	24.5	_	8 • 4 8 • 4	_	- 1	-	-1	-1	155	128	280	-	164	204	-	-	*50
	63	26.1	-1	8 - 4	_	- 1		-	-	145	118	278	-	116	237	-	~	100
	63	24.0	-	7.9	_	_	-	-	~	125	115	262	-	532	180	-		-
	53		_	1.5		_	_ [_		96	98	210	-	3160	134	-	-	
	53	27.5	-	8.3	_	1	_	-1	_	90	7.0	22.	-			-	-	50
	53	27.2	-	8.4		_	_	-1		64	148	236 196	-	630	154	-	-	-
6 4 6	53	26.0	-1	8.3	-	-	_	_		145	135	286	_	2000	92	-	_	4300
6 11 6		28 • 1	-	8 • 4	-	-	-	_	_	94	139	246	-	2400	183	-	-	
	53	26.0	- 1	8.0	-	-	_		-1	32	72	103	_	9200	141 57	_	_	750
6 25 6	53	28.8	-	8.3	-	-	-	-	_	62	127	202	-	2500	122	_	-	100000
					i	- 1	i	L		0-1	~~'	202	- 1	2,000	122	- 1	-	6000

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

TEXAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /LOWER/ BELOW PECOS RIVER

STATION LOCATION RIO GRANDE AT

LAREDO, TEXAS

DA		1					1	CHLORINE	DEMAND				<u> </u>				1	1	<u> </u>
OF 24	-	\dashv	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pH	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/l	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
7 1 7 1 7 2 1 7 2 1 2 1 2 1 2 1 2 1 2 1	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	66666666666666666666666666666666666666	28.0 29.2 28.9 29.0 29.0 29.0 29.0 27.5 27.5		3 4 2 4 4 3 4 4 4 3 4 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8				11111111111		74 70 44 76 94 62 68 64 36	126 116 115 135 136 127 120 130 134 105	320 236 322 250 256 244 242 264 2196	1 1 1 1	2960 489 29600 4200 970 9000 1530 8000 11000 13900	269 166 272 273 211 192 181 210 236 273 188 149	-	111111111111111111111111111111111111111	*3 500 - 500 100 2500 1000 *20 *20 600

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station at Laredo, Texas Supplied by International Boundary and Water Commission STATE

Texas

MAJOR BASIN

Western Gulf

MINOR BASIN

Rio Grande/Lower/below Pecos River

STATION LOCATION

Rio Grande at

Laredo, Texas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1 2 3 4 5	3.000 5.010 4.380 4.200 3.390	2.930 2.590 2.360 2.270 2.200	1.850 1.850 1.830 1.780 1.830	1.750 1.750 1.800 1.780 1.780	1.480 1.480 1.450 1.450	1.340 1.240 1.180 1.180 1.160	.837 .798 .798 .713 5.650	1.570 1.110 1.540 1.350 1.150	1.580 1.580 1.870 2.970 1.930	1.640 1.590 4.100 2.590 1.540	.664 .678 1.500 1.820 1.730	1.220 1.190 1.190 1.120 .975
6 7 8 9 10	2.880 2.970 2.820 2.590 2.290	3.670 2.500 2.050 2.000 1.950	1.800 1.730 1.700 1.850 1.920	1.700 1.660 1.610 1.580 1.680	1.410 1.340 1.310 1.210	1.080 1.020 1.020 1.020 .996	5.190 2.430 1.670 1.500 1.430	2.830 8.400 5.440 3.100 2.570	1.450 1.190 1.030 1.780 4.130	1.130 1.050 .911 .833 1.800	1.500 1.250 1.170 1.250 2.240	.922 2.430 3.960 4.700 3.960
11 12 13 14 15	2.990 3.330 3.160 3.880 2.770	1.950 1.950 1.950 1.920 1.840	1.970 1.900 1.800 1.750 1.730	1.680 1.610 1.560 1.590 1.680	1.750 1.490 1.340 1.310	.996 1.020 .996 .918	1.340 1.700 1.640 1.500 1.320	2.330 2.440 2.010 1.820 1.590	1.990 2.860 1.750 1.220 1.500	3.470 2.880 2.320 1.900 1.800	2.850 2.420 2.080 1.730 1.470	3.920 2.950 3.280 7.270 5.690
16 17 18 19 20	2.460 2.360 2.410 6.990 14.000	1.820 1.790 1.820 1.860 1.840	1.700 1.750 1.830 1.800 1.750	1.720 1.720 1.630 1.560 1.520	1.310 1.240 1.470 2.040 2.270	.918 .971 .996 1.000 .961	1.150 1.010 .957 .830 .795	1.380 1.250 1.130 1.250 1.620	1.750 8.930 3.810 2.320 3.260	1.860 1.540 1.640 1.920 1.860	1.310 1.250 1.330 1.820 4.310	4.480 3.600 3.430 4.630 4.520
21 22 23 24 25	7.420 15.300 6.110 4.130 4.660	1.820 1.820 1.790 1.770 1.750	1.730 1.750 1.750 1.830 1.900	1.520 1.560 1.590 1.540 1.540	1.980 1.730 1.630 1.530 1.490	.961 .918 .961 .961 .918	.830 .812 .759 .759 .721,	1.070 1.120 1.480 3.270 2.630	3.410 3.140 2.610 2.160 1.990	1.750 1.390 1.260 1.160 1.190	3.740 2.390 1.890 1.770 2.170	3.100 2.550 2.270 2.140 1.890
26 27 28 29 30 31	3.810 3.460 3.110 3.100 2.970 2.820	3.420 3.640 2.160 2.000 1.920	1.950 1.880 1.850 1.830 1.800 1.780	1.520 1.540 1.490 1.520 1.540 1.520	1.460 1.310 1.290	.961 .961 .879 .879 .879	•932 1.660 1.150 •957 3.040	1.960 3.470 2.440 1.860 1.590 1.520	1.930 1.990 1.640 1.930 2.110	1.030 .890 .773 .706 .717	2.040 2.300 1.890 1.500 1.280 1.190	1.760 1.630 1.570 1.470 1.390

RIO GRANDE AT EL PASO, TEXAS

The El Paso Surveillance System station is located near the point where the river starts to form the international boundary between the United States and Mexico. Samples are collected from the municipal water plant intake. The river forms the interstate boundary between New Mexico and Texas for approximately 20 miles above El Paso.

The Rio Grande at this point is regulated by Elephant Butte and Caballo Reservoirs upstream in New Mexico. From about mid-September to early March the flow at El Paso is in the range of one to several cubic feet per second. Throughout the remainder of the year the flow ranges from 300 to 2,500 cubic feet per second. La Cruces, New Mexico and Anthony, Texas, 45 and 19 miles upstream respectively, discharge secondary effluents with a combined loading of 4,600 population equivalents of BOD to the stream. El Paso, Texas, and Juarez, Mexico use the Rio Grande to provide half of their municipal supply needs.

The plankton sample from the Rio Grande at El Paso collected March 4, 1963, contained an unusually large population of rotifers. Two genera, Notholca and Gastropus, were found in large numbers with 3,064 per liter being present. Rotifers are tiny animal forms which consume algae or organic particles. There is no indication that algae counts were high and it is not known what stimulated the growth of the rotifers.

DDT, DDD, and dieldrin have been identified in carbon adsorption method samples from this station.

Station Location:	Rio Grande at El Paso, Texas
Major Basin:	Western Gulf
Minor Basin:	Rio Grande/Upper/Above Pecos River
Station at:	31°46' Latitude 106°30' Longitude
Miles above mouth:	1,248
Activation Date:	March 31, 1958
Sampled by:	El Paso Public Service Board
Field Analysis by:	F:1 Paso Public Service Board
Other Cooperating Agencies:	Texas State Department of Health
Hydrologic Data:	
Nearest pertinent gaging station;	Relow Caballo Dam, New Mexico
Gaging station operated by:	U.S. Bureau of Reclamation
Drainage area at gaging station:	30,700 square miles with 2,940 non-contributary
Period of record:	1938 to present
Average discharge in record period:	942 cfs.
Maximum discharge in	record period: 7,650 cfs.
Azturtum de l	

Remarks: Discharge figures do not include irrigation bypass around gaging station. Flow regulated at both Elephant Nutte and Caballo Reservoirs, completed in 1916 and 1938, respectively.

0.1 cfs. (daily)

Minimum discharge in record period:

ALKYL BENZENE SULFONATE (ABS)

mg/1

Date

		Composite	Interval
1		10/1/62	4/1/63
		12/31/62	6/30/63
Analysis by	F	.68	.80
wet or flame methods.	Na	280	170
Results in mg/1	K	15	9.0
	Zn	*30	17
	Cq	*15	*8
	As	*50	*50
Analysis	В	375	155
by	P·	*38	*42
Spectro-	Fe	*38	*17
graphic	Мо	*15	*8
methods.	Mn	*7.5	*8.4
Results	ΑI	-	*42
	Ве	*.38	*.21
in	Cu	38	*8
micrograms	Ag	*3	*2.1
per	Ni	*15	*8
liter	Co	*30	*8
	Pb	*38	*21
	Cr	*8	*4
	V	*15	*14
	Ва	120	63
	Sr	2620	609

ELEMENTAL ANALYSES

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+	Composite Interval	pc/1	+
October to December	.7	.2	April to June	-	-
January to March	ı	1	July to September	1.9	.4

[±] at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration*
7 & 9/62(c)	DDT	
8/1 - 8/12/63	Dieldrin	0.001
8/1 - 8/12/63	DDD	0.004
8/1 - 8/12/63	DDT	0.012
7/2 - 7/10/63	DDT	0.004
7/2 - 7/10/63	DDD	0.001
(c) - Compo	site	

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/l. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

TEXAS

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE AT

EL PASO, TEXAS

DATE						RADIOACTI	VITY IN	WATER					Т		BADIO ACTIVI	TV III C		
SAMPLE	DATE OF DETERMI-			ALPHA						BETA				DATE OF	RADIOACTIVI			
TAKEN	NATION	SUSPEN	DED	DISSOLVE	ED D	TOTAL		SUSPEND	ED	DISSOLVE	ED	TOTAL		DATE OF DETERMI- NATION	ALPHA	GROSS A		
MO. DAY YR.	MO. DAY	pc/l	±	pc/l	±	pc/i	±	pc/l	±	pc/I	T ±	pc/l	#				BETA	
0 1 62 0 8 62 0 22 62 1 26 62 1 26 62 1 28 63 2 25 63 3 25 63 3 25 63 5 27 63 5 27 63 8 12 63 8 12 63 8 12 63 8 12 63 9 3 63 9 9 63 9 9 63	12 17 12 14 12 24 12 15 1 3 1* 3 18* 4 15* 5 22* 6 19* 8 16* 9 9 6 9 17 9 17 9 10 10		1 9 2 3 2 2 2 9 3 2 6 7 2 1 7 2 5 6 1 3 6 1		1-5-78845555446646077773	2 3 5 5 9 16 6 5 9 2 7 10 2 0 0	111 7 8 6 4 0 6 5 7 8 6 6 8 3 3 6 9 7 7 7 3	146 111 102 19 22 8 12 22 175 25 12 149 61 12 47 47 54 57 49 62 1	527 47 21 24 19 35 7 48 27 36 16 8 22 45 115 9 7 6 5	58 21 82 51 82 81 9 63 34 9 63 81 13 81 23 7 26 7 14 8	29 70 39 29 27 36 31 36 32 39 29 30 31 44 44	2 0 4 2 1 8 4 7 0 0 6 1 9 2 1 5 4 4 2 3 0 7 9 1 3 0 4 6 1 6 1 2 9	± 0901613975480630681224144	MO. DAY	pc/g	±	P€/g	

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE AT

EL PASO, TEXAS

046

	DA:			DO	MINAN	T SPE	CIES (OF DIA	TOMS (See text	AND for Code	e)	-	<u> </u>	T					MIC	C R	0 1	N V	ER	Т	EBR								-
	SAM	PLE		ST		ND		RD		TH	<u>8</u>	I AND BACTERIA per ml.	fiable 1.		Ι		GE	VERA	AND C	COUN	T LEV!	EL				C R	VERA	AND o	EA	T LEVI	EL		SE C
				ļ							SPECIE	BAC	denti	NUM-	1 s	T	_2n		_3R		4т		5т	H	NUM-	1s		2N		3R	5D	5	E P
MONTH	DAY	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SP PERCE	FUNGI SHEATHED I	PROTOZOA (Identifiable) Number per ml.	BER PER LITER	CENUS	COUNT LEVEL	SENDS	COUNT LEVEL	CENUS	COUNT LEYEL	CENUS	COUNT LEVEL	GENUS	COUNT LEVEL	BER PER LITER	GENUS	COUNT LEVEL	GENUS	COUNT LEYEL		COUNT LEVEL	NEMATODES (Identifiable) Number per liter	OTHER ANIMAL FORMS (Number per liter)
101011111111111111111111111111111111111	155193 177248481560317165936	62 62 62 62 63 63 63 63 63	26 12 12 12 12 71 12 65 12 12 80 80	14 36 83 45 24 54 38 57 33	65 97 71 71 71 71 71 71 71 8 80 80	11 14 7 11 19 26 34 15 26 19 6	65 12 71 10 11 11 70 64 47 70 92 70 12 58 15 12 12	7 7 7 1 6 5 3 7 3 13	100 50 856 866 44 724 92 71 366 71	6 6 7 1 4 5 2 7 1 10	55 72 62 36 8 447 15 22 9 36 8 13 67	20	000	3060	14	9	8	6							000021-000020-13	50		76	1			-00000011101111111111111111111111111111	-000000-00000

PLANKTON POPULATION

PLANKTON POPULATION

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE AT

EL PASO, TEXAS

	OF				A	LGAE (Nu	mber pe	er milliliter	-)			1	·n~	_		4OST	Α=	LIND	ANT												
SAM] .	BLUE-	GREEN	GREE	EN	FLAGEL (Pigm	LATED ented)	DIAT	OMS	INE DIA SHE	TOM .	15		2 _N		UND 3ri	- 1	TH	1	- 1		- 1		$\overline{}$		1			
			TOTAL		ļ					<u> </u>			T			Z.N	-			- <u>I</u> -	51	Н	6т	Н	7 T F	4	8тн	15	9TH	_	10
DAY	DAY	YEAR		COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	COUNT LEVEL		COUNT LEVEL	GENUS	SOUNT LEVEL	GENUS	OUNT LEVEL	GENUS		Collect		GENUS
1 15 1 15 1 19 2 2 4 1 18 1 15 6 20 3 17 1 16 5 5 1 16	55937724848155503716666	63 63 63 63 63 63	200 4700 2800 2300 1300 1200 1500 2300 3400 900 1700 1700 1700 1700 1700 1700 170	000000000000000000000000000000000000000	0 90 70 610 20 20 0 20 0 20 0 250 80 530 0 0 0 0 0 BID T	0 90 70 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	530 110 0 20 180 240 20 20 40 330	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 140 50 110 90 20 80 70 780 920 2200 730 2270 7900 8450 600 1700 10890	180 4230 2590 1580 1060 900 1130 1370 1170 2390 570 180 860 2350 1200 1300 700 8810 580	710 1130 2240 2350 100 410	900 1060 1100 990 840 170 770 950 2690 990 290 1220 970 4510 1740 1090 460 260 480 1250	88 78 78 78 88 78 87 78 69 71 51 71 71	3 3 3 2 2 3 2 4 1 3 1 3 3 6 2	17 88 78 88 662 88 78 78 35	2 3 1 1 2 2 3 1 1 3 8 2 7 1	. !	22 98 11 12 22 68 65 65 17 17	2 2 2 1 1 2	89 97	2 !	97 79	1 1 8	38 1						

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER
(Parts per billion)

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE AT

EL PASO, TEXAS

				CTRACTABL												
DATE OF SAMP	END	-		I	LES I	 				NEUTRALS	ORM EXTR	ACTABLES	r			
	MONTH	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
4 8 63 5 2 63 6 3 63 6 3 63 7 2 63 8 1 63 6	4 2.5 5 1 1 6 7 1 1 8 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 5100 8 5212 0 5002 2 5287	166 123 102 160 123 124	36 29 27 57 26 29	130 94 75 103 97 95	1 2 1 2 0 1	9 8 7 19 7 8	15 9 9 13 11 10	1 1 1 1 1 1	1	12 7 7 10 8 8	1000100		7 2	1 1 2 0 1 1	4 4 3 7 3 4

TEXAS

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE AT

EL PASO, TEXAS

WESTERN GULF

DATE		[CHLORINE	DEMAND									TOTAL	
OF SAMPLE TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/i	рН	B.O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	chlorides mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
10 29 62 11 26 62 12 15 62 12 17 62 11 14 63 14.0 3 18 63 14.0 3 25 63 14.3 4 9 63 13.2 4 15 63 15.5 5 63 17.0 7 63 15.5 5 14 63 17.5 5 14 63 17.5 6 10 63 17.5 6 10 63 17.5 6 10 63 17.5 6 10 63 23.0 6 11 63 23.0 6 12 63 23.0 6 16 63 23.0 7 16 63 23.0 7 16 63 23.0 7 16 63 23.0 7 16 63 23.0 7 16 63 23.0 7 22 63 23.0 7 16 63 23.0 7 22 63 23.0 7 16 63 23.0 7 22 63 23.0 7 23 63 23.0 7 24 63 23.0 7 25 63 23.0 7 26 3 23.0 7 3 63 23.0 7 3 63 24.0 7 3 63 23.0 7 3 63 23.0 7 3 63 23.0 7 3 63 23.0 7 3 63 24.0 7 3 63 23.0 7 3 63 23.0 7 3 63 24.0 7 3 63 23.0 7 3 63 24.0 7 3 63 23.0 7 3 63 24.0 7 3 63 23.0 7 3 63 24.0 7 4 63 63 24.0 7 5 63 63 24.0 7 63 63	14.4 	6.8.2.6.9.4.3.1.3.1.3.1.3.1.4.4.3.2.1.4.4.3.1.3.1.3.1.3.1.4.4.3.3.2.1.4.4.3.1.3.1.3.1.3.1.4.4.3.1.4.4.4.4.4	3.8 		1.44 1.66 1.47 1.77 1.66 1.44 1.44 1.44 1.44 1.44 1.44 1.44	1.5 1.7 1.7 1.6 1.8 2.2 1.9 1.7 1.6 1.7 1.6 1.7 1.4		110 110 110 110 110 140 200 111 150	215 - 218 220 - 185 - 185 - 165 202 202 176 195 - 176 - 176 195 -	276 276 276 276 270 296		140 	306 181 179		965 771 693 643 579 1041 638 626	150000 100000 100000 93000 62000 100000 100000 20000 20000 *4000 10000 *1000 *1000 45000 45000 45000

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station below Caballo Dam, New Mexico Operated by U.S. Bureau of Reclamation STATE

Texas

MAJOR BASIN

Western Gulf

MINOR BASIN

Rio Grande/Upper/above Pecos River

STATION LOCATION

Rio Grande at

El Paso, Texas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	.0021	.0015	.0015	.0014	.0015	.0015	2.250	205				
2	.0020	.0015	•0016	.0014	.0015	.0015	1.900	• 395 • 485	• 992	1.980	.663	•957
3 4	•0019	.0015	.0016	.0014	.0016	.0015	1.600	.485	1.040	1.640	• 581	•519
	.0018	.0015	.0016	.0015	.0016	.0016		. 690	1.040	1.380	.886	465
5	•0018	.0015	.0015	.0015	.0016	•497	1.560	-806	1.150	1.340	1.110	.421
_		•	,	•001)	•0010	•497	1.260	•796	1.300	1.320	1.060	.105
6	.0018	.0015	.0015	.0015	.0016	1 1:00	226					
7	.0017	.0015	.0015	.0015	.0016	1.480	•996	•789	1.360	1.230	1.020	•598
9 10	•0017	.0015	.0015	.0015		1.650	-875	•812	1.450	1.030	•955	1.000
9	.0017	.0015	.0015		.0016	1.980	•770	-845	1.540	•916	•953	1.020
10	.0016	.0015	.0015	.0015	.0016	2.310	•676	.824	1.490	1.040	1.100	.964
		.001)	•0015	.0015	.0015	2.310	. 668	-818	1.360	1.180	1.250	• 904 • 609
IJ	.0016	.0015	0015								1.200	•009
12 13 14	.0016	.0016	.0015	.0015	.0015	2.310	615ء -	.837	1.410	1.270	1.250	2050
13	.0016	.0016	.0015	.0015	.0015	2.440	• 557	801	1.490	1.730	1.300	•0050
ı li.	.0017		.0015	.0015	.0014	2.540	•536	•751	1.450	2.020		.0025
L5	.0017	.0016	.0015	.0015	.0014	2.610	• 546	.716	1.540	2.090	1.500	.0025
-)	10017	.0016	.0015	.0015	.0014	2.840	•509	.777	1.600		1.640	.0025
.6	0017	227.6					.,.,	4111	1.000	2.070	1.340	.0025
-7	.0017	.0016	.0015	.0015	.0014	3.050	-437	.837	1.590	0.000		
.8 .8	.0017	.0016	.0015	.0015	.0015	3.000	• 394	.900		2.230	1.360	.0025
.0	.0017	.0016	.0015	.0015	.0015	2.960	•436	•936	1.550	2.480	1.520	.0025
.9	.0017	.001.6	.0015	.0015	.0015	2.890	• 542	•930 •893	1.640	2.550	1.490	.0025
90	.0017	.0016	.0015	.0016	.0015	2.900	•576		1.780	2.530	1.070	.0025
-					,	2.500	•570	-815	1.780	2.520	•977	.0025
1	.0016	.0016	.0015	.0016	.0015	2.950	600	0				•
2	.0016	.0016	.0015	.0016	.0015	2.970	.609	•738	2.020	2 . 5 3 0	1.090	.0025
3 4	.0016	.0016	.0015	.0015	.0015	2.860	.568	.707	2.280	2.380	1.030	.0025
4	.0016	.0016	.0Cl/+	.0015	.0015	2.810	• 565	. 658	2.290	2.110	1.120	.0025
5	.0016	.0015	.0014	.0015	.0015		•637	.629	2.250	1.950	1.150	.0025
_		•		•001)	*0012	2.820	•668	. 617	2.030	1.980	1.200	.0025
6	.0016	.0015	.0014	.0015	.0015	0 (00				-		•002)
7	.0016	.0015	.0014	.0015		2.620	.602	.605	1.860	1.900	1.140	.0025
3	.0015	.0015	.0014	.0015	.0015	2.450	•511	. 665	1.860	1.880	1.330	.0025
9	.0015	.0015	.0014		.0015	2.530	• 500	•795	1.880	1.730	1.500	
Ó	.0015	.0015	.0014	.0015		2.480	.301	.880	1.990	1.570	1.500	.0025
L	.0015	••••		.0015		2.320	• 31.1.	•941	1.980	1.280	1.280	.0025
	•001/		.0014	.0015		2.330	-	•947		1.010	•980	.0025

RIO GRANDE BELOW ALAMOSA, COLORADO

Samples are collected from Colorado State Highway 142 bridge. This is the uppermost surveillance station on the Rio Grande River and is located approximately 10 miles above the Colorado-New Mexico State Line in the San Luis Valley. This valley supports an extensive agricultural development with potatoes being the principal crop. In certain parts of the valley, the water table is quite high and the fields must be extensively drained to prevent a buildup of minerals in the root zone.

The nearest upstream municipal waste discharges include Alamosa along with Del Norte, and Monte Vista. An estimated total BOD population equivalent of 780 is discharged from lagoons. An oil refinery and a dairy also discharge wastes about three miles above this station.

Station Location: Rio Grande below Alamosa, Colorado Major Basin: Western Gulf Minor Basin: Rio Grande/Upper/above Pecos River Station at: 37°11' Latitude 105°44' Longitude Miles above mouth: 1.755 Activation Date: November 1, 1960 Sampled by: Colorado State Department of Public Health Field Analysis by: Colorado State Department of Public Health Other Cooperating None Agencies: Hydrologic Data: Nearest pertinent Near Lobatos, Colorado gaging station: Gaging station U.S. Geological Survey operated by: Drainage area at 7,700 square miles with 2,940 square miles non-contributing gaging station: Period of record: 1899 to present Average discharge 633 cfs. in record period: Maximum discharge in record period: 13,200 cfs.

Minimum discharge in record period:

reservoirs.

Remarks: Flows affected by irrigation diversions and

returns, transmountain diversions, and storage

ALKYL BENZENE SULFONATE (ABS)

mg/1

Date

ELEMENTAL ANALYSES Composite Interval 10/1/62 4/1/63 to 12/31/62 6/30/63 Analysis by wet or flame 34 40 methods. Results in 5.6 9.4 mg/1 Źn *6 *7 lC4 *3 *4 As *28 *35 Analysis 78 82 Ьy *7 *18 13 *7 Spectro-*4 graphic *1.4 *3.5 methods. *18 Results *.07 *.09 in 5 4 micrograms *.6 *.9 Ni. *3 per *4 Co liter *6 *4 Pb *9 l Cr *1 *2 *30 *20 Ba 50 33 308

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

STRONTIUM 90 ACTIVITY

Composite Interval	pc/l	+	Composite Interval	pc/1	+
October to December	.5	.3	April to June	1.1	.2
January to March	-	-	July to September	-	_

+ at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

	Interval	Compound	Concentration* ug/l
L			

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values.

See page 21.

COLORADO

MAJOR BASIN

WESTERN GULF

RADIOACTIVITY DETERMINATIONS

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE BELOW

ALAMOSA, COLORADO

DATE							RADIOACTI	VITY IN	WATER					Т		RADIOACTIVI	TY IN PLA	NICTON	
SAMPLE	DAT	ERMI-			ALPHA						BETA				DATE OF		ROSS A		
TAKEN	NA	TION	SUSPEND		DISSOLVE		TOTAL		SUSPEND	ED	DISSOLVE	.D	TOTAL		DATE OF DETERMI- NATION	ALPHA		BETA	
MO. DAY YR.	MO.	DAY	pc/l	土	pc/l	#	pc/l	*	pc/l	土	pe/l	±	pc/l	±	MO. DAY	pc/g	T ±	pc/g	T ±
10 1 62 10 15 62 11 23 62 12 31 62 1 7 63 2 25 63 3 11 63 4 30 63 5 20 63 6 7 29 63 8 12 63 8 12 63 8 12 63 9 16 63 9 23 63 9 30 63	12 11 33 45 67 99 99 90 100	5 4* 2 3 1 22* 2 2 2 4 * 2 1 2 3 9 5 6 7 0 4 8	000100000000000000000000000000000000000	111111111111111111111111111111111111111	8202111222212822	23121122222212222	321211122244222332	2312112222222222	17 16 16 0 0 4 10 20 16 24 25 46 24 11 2 3 5 1	13 11 6 20 15 6 3 5 7 6 6 6 5 5 6 6 5 5 6 6 5 5 6 6 5 7 6 6 5 7 6 6 5 7 6 6 5 7 6 6 5 7 6 6 5 7 6 7 6	3180596863354261 10596863354261 10596863354261 10596863354261 10596863554261	1718987545959987898	5474053682200673208 5346685533208	21 20 10 22 17 9 6 21 8 11 10 9 10 11 9					

PLANKTON POPULATION

STATE

COLORADO

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE BELOW

ALAMOSA, COLORADO

	AT		 	DC	MINA	NT SI	PECIES	OF DIA	TOMS (See text	AND	e)	₄					ROT	MI	C R	0 1	N V	ER	TE	BR								
	OF MP			ST		2ND		BRD	4		<u> </u>	I AND BACTERIA per ml.	trable 11.				GENER	A ANE	COUNT	NT LEVE	EL		\top	Ī	GEN	IERA (Se	AND C	OUN	T LEVEL	-		RMS
				1							SPECII	BAC	ldent per n	NUM-	1 st	_	2 _{ND}	3	RD	4т	-	5тн		NUM-	1 s		2 N		3 _{RE}		E C N	7 P
МОМТН	DΑΥ	YEAR	SPECIES	PERCENT	SPECIES	1 11 11 11 11 11 11 11 11 11 11 11 11 1	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SF	FUNGI SHEATHED E Number p	PROTOZOA (Identifia Number per ml.	BER PER LITER		COUNT LEVEL	GENUS	CENUS	COUNT LEVEL	CENUS	COUNT LEVEL	GENUS	FE	BER PER LITER	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	CENUS	COUNT LEVEL	NEMATODES (Identifiable) Number per liter	OTHER ANIMAL FORMS (Number per liter)
11 2 1 1 2 2 1 3 3 3 4 4 1 5 5 2 6 7 7 1 8 1 9 9 1	3 2 5 3 3 6	622266233666333333333333333333333333333	92 46 92 12 92 92 46 92 92 94 46 48 48	15 23 32 30 24 36 20 25 21 48 17 31 28 32	36 92 92 92 46 92 36 46 46 46 82 41 82 41	2 22 2 25 2 16 2 16 2 17 2 20 15 15 15 15 17 2 20 15 17 2 20 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	55 46 55 10 56 46 57 36 57 36 57 70 57	15 11 12 10 12 11 12 15 10 6 14 6 8	36 65 92 64 46 85 36 36 12 71 12 36 26 41	8 6 9 5 6	31 4153 355 433 322 433 322 415 45 50 338 21	070000000000000000000000000000000000000	00 0 0 1 1 1 1 1 1 1		11	5	17 5		7 2	15	1			0000010000011111111			,				000010000011111	000000000000000000000000000000000000000

PLANKTON POPULATION

STATE

COLORADO

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE BELOW

ALAMOSA, COLORADO

DA	TE				A	LGAE (Nu	mber pe	r milliliter)			INE	RT	L	MOST	AB	UND	ANT	ALGA	AE - (Gener	a and	Coun	t Leve	per	ml. (8	ee te	at for	Codes)	
SAM	F	.		BLUE-	GREEN	GREE	:N	FLAGEL (Pigme		DIATO	омѕ	DIAT	MO	1 s т	2n	D	3ri) 4	1тн	51	H	6т	н	7т	Н	8тн	н	911	1	10	TH
MONTH		YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS COUNT LEVEL	GENUS	COUNT LEVEL		COUNT LEVEL	COUNT LEVEL		COUNT LEVEL.	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL
10 110 111 23 111 22 218 3111 34 15 55 66 77 15 13 99 16 99 99	37 + 3 1 9 1 5 5 5 3 3 5	666666666666666666666666666666666666666	6700 3200 1200 1500 300 600 17800 3600 15100 17800 1700 1700 1700 1700 1700 1700	970 970 60 0 180 0 50 40	150 0 0 400 50	20 1100 310 1230 5160 4960	000000000000000000000000000000000000000	150 1520 440 120 70 250	0 0 0 0 70 640 3420 110 760 0 20 0 0	90 230 40 20 0 170 420 770 10370 180 70 1010 480 1000 11910 4550	2220 3650 1280 840 1540 500 3270 2000 1100	290 920 260 150 750 210 200 7890	1600 2340 2230 170 180 680 3280 5720 5810 3480 950 2030 5730 5660 3740	68 3 84 1 92 1 26 26 6 84 3 71 6 92 1 57 4 38 4 71 38 5	92 87 87 63 92 92 88 92 71 83 71 83 71	1 1 4 2 3 1 1 2 5	92 84 88 84 68	2 8 8 8 8 8 6 7 3 8 8 8 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 3 4 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4 2 2 2 3 4	2 4 8 1 3 3 8 1	51 88 52 68 17 87 87 88	1313 2 13	88 98 69 24	3 2 1 1 2 2	69 92 87 31	2 2 1 1 1 1 1 1	69	2 1		1 1	78	1

COLORADO

MAJOR BASIN

WESTERN GULF

MINOR BASIN

RIO GRANDE /UPPER/ ABOVE PECOS RIVER

STATION LOCATION RIO GRANDE BELOW

ALAMOSA, COLORADO

72

	ATE					<u> </u>	1	CHLORINE	DEMAND]					<u> </u>
2	DAY	YEAR	TEMP. (Degrees Centigrade)	DISSOLVED OXYGEN mg/l	pH	B.O.D. mg/i	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/i	CHLORIDES mg/l	ALKALINITY mg/l		COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
8 1 8 2	26	63 63	-								20 20 13 8 11 12 13		150 104 130 116 112	55 55 10 55 5	*25555 *2255 *2255 *225	95 105 42 44 48 50 47	•1 •1 •2 •1	310 370 240 230 270 240 260	

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL-SUBJECT TO REVISION

Gaging Station near Lobatos, Colorado Operated by U.S. Geological Survey

STATE

Colorado

MAJOR BASIN

Western Gulf

MINOR BASIN

Rio Grande/Upper/above Pecos River

STATION LOCATION

Rio Grande below

Day	October	November	December	Ta							Colorado	
			December	January	February	March	April	May	June	July	August	Cont
1	.060 .058	.088	.251)	222						September
2 3 4	.062	.102 .289	•251		1	• 390 • 380	•289	.029	•039			
ر آر	.069	• 209 l.or	.264	j	ł	• 300	-280	.027	•039	•008	-014	.032
4		- 485	•276	ļ		410	•243	.026	•039	.008	.011	.030
5	.073	•059	.264		1	-200	.211	.022	.040	.007	.007	
_				1	ĺ	• 360	.192		.040	.010	.010	.029
6	•069	. 639	-247	1	1		,-	.018	•039	.011		025،
7	•069	• 667	.247	1	1	• 384	-177				۰034	۰034
7 8	.069	•674	243	ł		•390		•018	.037	• 008		
9	•067	.710		l	1	400	-184	.017	.034	•006	•018	•033
ó	.062	710	.259	- 1		400	•196	.018	.034		012ء	.024
•	•002	• 110	.276	1	i	1.00	•196	.020	.036	006ء	.010	.023
	056					-401	.227	.020		•009	.017	.022
1	.056	. 702	ء 268		1		•	*****	.033	.012	.012	
2	.054	667	.251	j	į į	<u>- 36</u> 8	•272	.024			0022	-025
3 +	•053	• 3 4 8	.251	1	i	• 363	.272		.027	.013	.009	_
+	•051	.223	.235	1	.315	• 368	196	.030	.026	.033		.024
5	.049	•199	.227	.143	>.212	-294	• 190	•044	.025	•020	.020	.020
			• == [/ ***	1	• 303	•177	•047	.024		۰030	.019
5	•065	.188			1	• 303	.177	.045	.022	.013	•018	•019
;	.067		•231	1	1	200		•	****	•013	.011	.019
i	•007	.153	•239	1	İ	• 300	•199	•040	03.0			•019
	.076	.130	-247	ł	1	-280	•203	.054	.019	•013	•009	010
li .	.078	.180	-227	Į.		•289	.177	.049	.022	.013	.012	.019
	•082	.220	.23i		1	•280	140		.022	•012	.015	.017
				1	j	.289	.117	.120	•022	.012		•017
	.092	•2 6 8	.223	1	ł	•	0.444.1	880ء	.022	.010	•012	015ء
	.092	.272	•200	1	ļ	•264	300			10.10	•009	•016
	.100	.259		İ	1	.243	.100	•065	•020	010		
	.100	.284	160ء	1	1	025	۰085	•056	.019	-010	•009	019ء
			-140	1	1	-235	•080	و40،	.015	•009	-019	.023
	•095	.284	.130	1	1	•280	۰054	.042		.015	.040	•023
				ł	{	.284	۰045	.040	.013	و00ء	.045	•022
	.098	. 284	.120	1	j		•	8040	.010	•006	.039	
	•095	.276	.130		1	•276	.044	Olio.			• 0.37	.022
	•090	.280	•150	l	1	• 30 8	.045	.042	•01O	.007	0.20	_
	۰085	•268	.160	1 -	,	- 31.8		۰0 <u>6</u> 0	.010	•006	.037	•018
	.082	.255		1		.280	.039	۰060	.012		•036	.013
	.085	درء.	.160	l		27.2	.034	۰٥60	.009	• 005	•033	.009
	•005		160ء			۰313 مور	•030	۰0 56	.009	·004	۰033	.008
						•298		.045	•009	•002	•036	.007
					****			· V T J		• 004	.029	100

SABINE RIVER NEAR RULIFF, TEXAS

The Sabine River forms the boundary between Texas and Louisiana for approximately 180 miles. The Public Health Service Water Pollution Surveillance System station is located on the Sabine River Authority Canal which supplies industrial and agricultural water to the Orange-Beaumont area. Samples are collected at the Sabine River Authority pumping plant. The 1962 Inventory of Municipal Waste Facilities shows that 34 communities in both Texas and Louisiana discharge both treated and untreated municipal wastes to the main stem or a tributary. There are, however, no significant discharges within 100 miles of the station. Oil fields have been developed in the upstream drainage basin. Some irrigation diversion is made for rice.

Station Location:

Sabine River near Ruliff, Texas

Western Gulf

Minor Basin:

Major Basin:

Sabine River

Station at:

30°14' Latitude 93°44' Longitude

Miles above mouth:

40

Activation Date:

May 25, 1960

Sampled by:

Sabine River Authority

Field Analysis by:

U.S. Public Health Service

Other Cooperating Agencies:

U.S. Geological Survey Texas State Department of Health

Hydrologic Data:

Nearest pertinent gaging station:

Near Ruliff, Texas

Gaging station

U.S. Geological Survey

operated by:

Drainage area at gaging station:

9,329 square miles

Period of record:

1924 to present

Average discharge in record period:

8,842 cfs.

Maximum discharge in record period:

121,000 cfs.

Minimum discharge in record period:

270 cfs.

Remarks: Diversions above gaging station for municipal and industrial use.

ALKYL BENZENE SULFONATE (ABS)

Date

mg/1 Analysis by wet or flame methods. Results in

mg/1

Analysis 4 4 1

by

Spectro-

graphic

methods.

in

micrograms

liter

Results

*Actual value is less than the amount shown. Reported result indicates limit of sensitivity at which test was performed. See text for explanation.

ELEMENTAL ANALYSES

34

396

*2

*17

53 *9

167

*2

.6

*.04

. 4

17

*****9

*1

*2

70

211

Źn

Cq

Cυ

Ag

РЬ

Cr

3.2

Composite Interval

10/1/62 4/1/63

12/31/62 6/30/63

.15

35

47

*2

*7

87

*9

28

*4

*1.7

*.04

*.4

15

*2

*2

*4

*4

*9

55

3.5

STRONTIUM 90 ACTIVITY

Composite Interval	pc/1	+ 1	Composite Interval	pc/1	+
October to December	1.4	.2	April to June	-	_
January to March	-	_	July to September	3.2	1.1

+ at 95% Confidence Limits

SPECIFIC QUALITATIVE IDENTIFICATIONS FROM CARBON ADSORPTION EXTRACTS WATER YEAR 1962-3

Interval	Compound	Concentration* ug/l

*Concentration values, where shown, are calculated from quantitative gas chromatographic analysis of the aromatic fractions of CCE, and may be assigned the units of ug/1. In light of the unknown efficiency of carbon adsorption sampling for these compounds, the reported values represent minima, the actual values being equal to or greater than the reported values. See page 21.

TEXAS

RADIOACTIVITY DETERMINATIONS

MAJOR BASIN WESTERN GULF

MINOR BASIN

SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

DATE						RADIOACTI	VITY IN	WATER										
SAMPLE	DATE OF DETERMI- NATION			ALPHA				T TOTAL							RADIOACTIV	ITY IN PL	ANKTON	
TAKEN		SUSPEND	ED	DISSOLVE	D	TOTAL		SUSPEND	FD	DISSOLVE				DATE OF DETERMI- NATION		GROSS A		
MO, DAY YR.	MO. DAY	pc/l	±	pc/l	±	pc/l	±	pc/l		pc/I		TOTAL		NATION	ALPH		BETA	
	1		ĺ							pc/1	#	pc/i	±	MO. DAY	pc/g	±		
12 31 62 1 28 63 2 25 63 3 25 63 4 30 63 5 27 63 6 24 63 7 29 63	11 8 11 15 11 17 11 26 12 20* 1 24* 2 21* 3 20* 4 16* 5 24* 6 24* 7 30* 8 21* 10 2*	11 10 100 N0 N0 100 N0 N0 100 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N	001111100111100	0100000100001		0 - 0 1 2 0 1 0 3 1 2 0 1		2 3 5 9 26 49 37 247 23 5 2 6 11	666636787478116	4 6 4 4 5 1 3 3 8 6 4 4 3 6 3 5 1 2 3 5 5 2 4 6	6 7 7 7 4 4 6 8 8 8 7 8 8 4 8 8 8 8 1 5 1	5 9 9 23 22 39 70 112 73 57 9 58 87 25 57	8 9 9 5 8 11 11 11 11 11 11 14 16	MO. DAY	pc/ g	±	pc/g	土

PLANKTON POPULATION

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

							E DIA	OVE	AND								М	ı c	R O	I N '	/ E R	T	EBR/	ATE	s						
DA1 OF	E	P	ERCE	NT OF	TOTAL	L DIAT	OMS (COMS /	or Codes	<u>, </u>	I AND BACTERIA per ml.	ble)				GENER	AAN	ERS	UNT LI	EVEL				GEN	ERA	AND C	OUN	LEVEL	\exists		E C
SAME		1:	ST	21	ND.	31	RD	4	TH	ES	P T	ntifio		1 s1	- 1	2 _{ND}	See te	3RD		4тн	51	н	NUM-	1 s1		2 _{NI}		3 _{RE}			7 P
MONTH	YEAR	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	SPECIES	PERCENT	OTHER SPECII	FUNGI A SHEATHED B. Number pe	PROTOZOA (Identifu Number per mt.	NUM- BER PER LITER	eenus c	COUNT LEVEL.	SERUS	7		COUNT LEVEL	NT LEVEL		COUNT LEVEL	BER PER LITER	CENUS.	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	NEMATODES (Identifiable) Number per lites	OTHER ANIMAL FORMS (Number per liter)
10 1	62 62 63 63 63 63 63 63 63 63 63 63 63 63 63	26 26 26 26 26 92	91 89 81 94 69 33 20 55 74 42 35 57 442 35 73	82 86	4 6 2 4 17 9 31 5 23 27 32 24 23 12 15	655 577 100 58 57 36 92 26 70 26 26 29 22 57 36 82 23 58	3 2 2 15 7 9 3 6 1 1 6 8 1 2 4 3	566 567 567 567 567 567 567 567 567 567	11125 663505572	43 99 123 30 58 199 30 6 15 28 28 32 7 14			0	11 15	1	2	1						1002000000111	76	2	50				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000

PLANKTON POPULATION

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

	ATI				A	LGAE (Nu	mber pe	τ milliliter	,							*OF1	- 4 5	21.15.15		r ALG					- 1 T		-1 (6					
	OF			BLUE-	GREEN	GREE	N.	FLAGEL (Pigme	LATED nted)	DIATO	омѕ	INE DIAT SHE	RT OM LLS	1:		2 _N		3 _R I	T	4TH	1	TH		rH.	71		8TI	1	9TH		10тн	
МОМТН		YEAR	TOTAL	COCCOID	FILA- MENT- OUS	COCCOID	FILA- MENT- OUS	GREEN	OTHER	CENTRIC	PENNATE	CENTRIC	PENNATE	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEVEL	GENUS		COUNT LEVEL	GENUS	COUNT LEVEL	GENUS	COUNT LEYEL	GENUS	COUNT LEVEL		COUNT LEYEL	COUNT LEVEL	
10 1: 11 1: 12 1: 12 1: 12 2: 22 2: 3 1: 4 1: 5 1: 6 1: 8 1:	55937714548153007592	666666666666666666666666666666666666666	10200 2400 1600 1500 00 200 200 200 3100 400 200 200 200 200 200 400	210000000000000000000000000000000000000	80 00 00 00 00 00 00 00 00 00 00 00 00 0	10 180 90 40 70 0 20 20	0. 0 0	660 300 200 820 740 440 200 700 200 520	0 0 40 0 0 50 110 40	7990 2390 1160 1370 600 200 0 1240 440 600 290 140 0 0 200	540 20 180 20 3300 110 0 300 70 400 40 40 40 40 20 20	200 250 380 70 120 370 0 0 20 150 1300 1100 20 20 500 50	20 60 20 20 20 20 70 70 130 130 150 110 40 70 290 50	68 68 68 71 68	43 45 31 2	69 65 92	3	92	2	38 2		1	51	1								

ORGANIC CHEMICALS

RECOVERED BY CARBON FILTER TECHNIQUE

RESULTS IN MICROGRAMS PER LITER (Parts per billion)

STATE

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

				, ————		· · · · · · · · · · · · · · · · · · ·											
DATE OF SA	AMPLE EN			E	XTRACTABL	ES			,			ORM EXTR.	ACTABLES				
DAY Z	-	рау	GALLONS FILTERED	TOTAL	CHLORO- FORM	ALCOHOL	ETHER INSOLUBLES	WATER SOLUBLES	TOTAL	ALIPHATICS	NEUTRALS AROMATICS	OXYGEN- ATED COMPOUNDS	LOSS	WEAK ACIDS	STRONG ACIDS	BASES	Loss
11	12 2 3 3	19 16 11 30 28 24 19 14 26 24	2000 2780 2660 2780 2530 2710 3000 3140 3320 4010 2970 2880	384 480 450 312 590 367 333 287 258 287 227	84 105 126 79 134 153 137 155 102 132 75 108 93	300 375 324 235 4551 230 178 1845 1879 134	1 - 1 - 3 - 7 - 5 - 5	19 26 21 42 41 30 24	29 36 25 44 27 27 30	42 3 5 2 1 5	2212151313141	19 32 - 19 - 22 - 22 - 20	401115101111	11 14 - 8 - 15 - 12 - 12	10 10 - 9 - 18 - 23 - 18 - 18	22 - 2 - 3 - 2 - 1 - 1	12 16 - 13 - 28 - 40 - 39 - 18

TEXAS .

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

MAJOR BASIN

WESTERN GULF

MINOR BASIN

SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

DATE OF SAMPLE	TEMP.	DISSOLVED				CHLORINE	DEMAND		<u> </u>				1	ī	<u> </u>	ī	
MONTH DAY YEAR	(Degrees Centigrade)	OXYGEN mg/l	pH	B,O.D. mg/l	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS
100 100 111 121 121 121 121 121 121 121			7.44 7.04 7.04 7.04 7.05 7.05 7.05 7.06 7.06 7.06 7.06 7.06 7.06 7.07 7.06 7.07 7.06 7.07 7.07				mg/1		3441918754528444989 0836587119344488395827 13423445 43466655556324488395827	286 24 24 86 22 24 46 20 21 4 6 20 21 4 6 20 21 4 6 20 21 4 6 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20	4328 486 466 442 80 2888 444 222 200 668 282 444 45 45 45 666 44 55 55 34 65 67 45 468	200 200 200 100 100 5 5 25 00 	55555555555555555555555555555555555555	17 13 18 15 16 15 20 27 20 25 28 20 25 25 25 25 25 25 27 20 27 20 27 20 27 20 25 25 25 27 27 20 27 20 27 20 27 20 27 20 27 20 20 20 20 20 20 20 20 20 20 20 20 20			per 100 ml.

TEXAS

MAJOR BASIN

WESTERN GULF

MINOR BASIN

SABINE RIVER

STATION LOCATION SABINE RIVER NEAR

RULIFF, TEXAS

73

	DATE OF SAMPLE		TEMP.	DISSOLVED				CHLORINE DEMAND											
HLINO	3	YEAR	(Degrees Centigrade)	OXYGEN	pH	B.O.D. mg/l.	C.O.D. mg/l	1-HOUR mg/l	24-HOUR mg/l	AMMONIA- NITROGEN mg/I	CHLORIDES mg/l	ALKALINITY mg/l	HARDNESS mg/l	COLOR (scale units)	TURBIDITY (scale units)	SULFATES mg/l	PHOSPHATES mg/l	TOTAL DISSOLVED SOLIDS mg/l	COLIFORMS per 100 ml.
3 8 8 1 1 8 9 9 9 1 2	52963963	କଳ ଲ ଲ ଲ ଲ ଲ ଲ ଲ ଲ ଲ ଲ ଲ ଲ ଲ ଲ ଲ ଲ ଲ ଲ ଲ		-							45 527 58 70 488 422	32 36 38 34 32 36	44 40 44 48 48 40 20	10 10 5 5 15	*25 *25 *25 *25 *25	9 11 9 11 10	•0	132 157 240 182 150 150 52	

CHEMICAL, PHYSICAL AND BACTERIOLOGICAL ANALYSES

STREAM FLOW DATA - 1962-1963

Thousand Cubic Feet per Second

PROVISIONAL--SUBJECT TO REVISION

Gaging Station near Ruliff, Texas Operated by U.S. Geological Survey STATE

Texas

MAJOR BASIN

Western Gulf

MINOR BASIN

Sabine River

STATION LOCATION

Sabine River near

Ruliff, Texas

Day	October	November	December	January	February	March	April	May	June	July	August	September
1	1.600	1.160	2.720	9.300	2.960	6.080	2.160	1.320	1.640	1.240		
2	1.480	1.080	2.360	10.300	3.100	5.300	2.060	1.280	1.600	1.480	• 940	. 500
3	1.360	1.040	2.260	10.600	3.170	5.100	2.010	1.360	1.600	1.680	.852	• 455
3 4	1.280	1.010	2.360	9.950	3.100	5.540	1.960	1.520	1.640	1.680	.800	455
5	1.200	1.010	2.600	8.080	2.960	5.940	1.860	2.160	1.640	1.680	.800 .852	• 485 • 470
6	1.120	•975	2.780	6.560	2.780	5.940	1.860	3.240	1.600	1.680	.870	
7	1.040	•9 7 5	2.840	5.540	2,660	5.660	1.860	4.150	1.560	1.600		.425
8	1.040	•975	2.780	5.300	2.540	5.660	2.260	4.700	1.440	1.520	. 782 605	•398
9	1.080	•975	2.780	5.200	2.480	5.540	3.240	5.000	1.360	1.400	.695	- 398
10	1.120	•940	2.780	4.900	2.420	5.300	4.330	5.300	1.280	1.240	.665 .712	• 386 • 386
11	1.200	.940	2.840	4.600	2.360	4.900	5.300	E 510	•		-	
12	1.280	. 940	2.960	4.510	2.360	4.510	5.660	5.540 5.660	1.240	1.240	.800	• 398
13	1.280	.940	3.030	4.330	2.360	4.600	5.660	5.800	1.240	1.480	.818	.412
13 14	1.280	.940	3.170	4.330	2.480	5.000	5.420	6.080	1.360	1.810	. 730	• 398 • 425
15	1.240	.940	3.240	4.150	2.600	5.200	4.900	6.240	1.440 1.480	2.110 2.010	•650 500	
1.6	1.240	000	2 7 2 2		- 44	•	-		2	2.010	. 590	. 398
	1.240	-98 0	3.100	3.990	2.660	5.100	4.150	6.240	1.400	1.760	. 560	• 398
17		1.020	2.840	3.910	2.600	4.700	3.450	6.400	1.280	1.600	.560	.818
18	1.280	1.070	2.540	4.070	2.840	4.150	2.840	6.560	1.160	1.480	.605	12.700
19	1.240	1.120	2.260	4.420	4.750	3.750	2.420	6.920	1.080	1.400	.635	20.700
20	1.240	1.280	2.060	4.900	6.740	3.450	2.160	7.100	1.080	1.280	.590	18.000
21	1.280	1.400	1.860	5.200	8.520	3.240	1.960	7.100	1.240	1.160	CO.C.	77 000
22	1.400	1.640	1.910	5.200	9.950	3.030	1.860	7.100	1.440	1.120	•575 •545	11.800
23 24	1.440	2.060	2.360	5.100	10.600	2.960	1.760	6.920	1.480	1.040	• 545 • 545	7.060
24	1.600	2.110	3 . 580	4.800	9.950	2.900	1.680	5.540	1.440	1.010	1.260	4.360
25	1.680	1.960	4.900	4.420	8.780	2.840	1.600	3.990	1.320	1.040	1.400	2.720
_	. (0-							5-770	بسر دس	2.040	1.400	1.720
26	1.680	1.760	5.420	4.070	7.880	2.780	1.560	3.030	1.320	1.280	1.040	1.280
27	1.640	1.760	5.660	3.750	7.480	2.720	1.480	2.480	1.360	1.860	-818	1.040
28	1.520	2.160	5.540	3.520	6 . 920	2.600	1. 1140	2.160	1.320	1.960	.680	•975
⊇9 30	1.360	2.660	5.660	3.310		2.480	1.400	2.010	1.240	1.680	.590	.940
3U	1.280	2.960	6.080	3.170		2.360	1.360	1.860	1.200	1.320	•530	•975
31.	1.240		7 . 680	3.030		2.260		1.760		1.080	•515	•917