Process Dynamics & Control

Development of Mathematical Model

Motivation:

- Develop understanding of process
- Build a mathematical hypothesis of process mechanisms
- Match observed process behavior
- useful in design, optimization and *control* of process

Development of Mathematical Model

Motivation:

- Develop understanding of process
- Build a mathematical hypothesis of process mechanisms
- Match observed process behavior
- useful in design, optimization and *control* of process

Control:

- Interested in description of process dynamics
 - ➤ Dynamic model is used to predict how process responds to given input
 - >Tells us how to react

Development of Mathematical Model

Mathematical Modeling of a process require

- ➤ Understanding of the process
- ➤ Writing conservation balance for Mass, Momentum and Energy
- ➤ Writing closure equations, i.e, constitutive relationships defining equilibrium and rate parameters
- Devising solution technique

Dynamic vs. Steady-state

- Steady-state
 - ➤ Variables not a function of time
 - >useful for design calculation

Dynamic vs. Steady-state

- Steady-state
 - Variables not a function of time
 - >useful for design calculation
- Dynamic
 - ➤ Variables are a function of time
 - ➤ Control requires dynamic model

Experimental vs Theoretical

- Experimental
 - > Derived from tests performed on actual process
 - ➤ Simpler model forms
 - > Easier to manipulate

Experimental vs Theoretical

- Experimental
 - > Derived from tests performed on actual process
 - ➤ Simpler model forms
 - > Easier to manipulate
- Theoretical
 - Application of fundamental laws of physics and chemistry
 - >more complex but provides understanding
 - > Required in design stages

Empirical vs. Mechanistic models

- Empirical Models
 - only local representation of the process (no extrapolation)
 - model only as good as the data
 - do not rely on underlying mechanisms
 - Fit specific function to match process

Empirical vs. Mechanistic models

- Empirical Models
 - only local representation of the process (no extrapolation)
 - model only as good as the data
 - do not rely on underlying mechanisms
 - Fit specific function to match process
- Mechanistic Models
 - Rely on our understanding of a process
 - Derived from first principles
 - Observing laws of conservation of
 - Mass
 - Energy
 - Momentum
 - Useful for simulation and exploration of new operating conditions
 - May contain unknown constants that must be estimated

Linear vs Nonlinear

- Linear
 - basis for most industrial control
 - >simpler model form, easy to identify
 - > easy to design controller
 - >poor prediction, adequate control

Linear vs Nonlinear

- Linear
 - basis for most industrial control
 - simpler model form, easy to identify
 - > easy to design controller
 - >poor prediction, adequate control
- Nonlinear
 - **≻**Reality
 - more complex and difficult to identify
 - In the job
 - better prediction and control

In existing processes, we rely on

- Dynamic models obtained from experiments
- Usually of an empirical nature
- Linear

In new applications (or difficult problems)

- Focus on mechanistic modeling
- Dynamic models derived from theory
- Nonlinear

General modeling procedure

- 1. Identify modeling objectives
 - ➤ end use of model (e.g. control)
- 2. Identify fundamental quantities of interest
 - ➤ Mass, Energy and/or Momentum
- 3. Identify boundaries
- 4. Apply fundamental physical and chemical laws
 - ➤ Mass, Energy and/or Momentum balances
- 5. Make appropriate assumptions (Simplify)
 - incompressible flow, etc,...)
- 6. Write down energy, mass and momentum balances
 - develop the model equations

General modeling procedure

- 7. Check model consistency
 - >do we have more unknowns than equations
- 8. Determine unknown constants
 - ➤ e.g. friction coefficients, fluid density and viscosity
- 9. Solve model equations
 - >typically nonlinear ordinary (or partial) differential equations
 - ➤ initial value problems
- 10. Check the validity of the model
 - >compare to process behavior

Benchmark Systems to be used for the course

- Tank Level System
 - 3 tank in series
 - Quadruple Tank
- Continuous Stirred Tank Heater
- Continuous Stirred Tank Reactor system
 - Isothermal Reactor (Van de Vusse reaction)
 - Non-isothermal Reactor
 - Polymerization Reactor
- Distillation Column

MATLAB / SIMULINK model will be developed based on nonlinear model

Mathematical Model of tank level system

$$\frac{dh_1}{dt} = \frac{F_0}{A_1} - \frac{a_1}{A_1} \sqrt{2gh_1}$$

$$\frac{dh_2}{dt} = \frac{a_1}{A_2} \sqrt{2gh_1} - \frac{a_2}{A_2} \sqrt{2gh_2}$$

$$\frac{dh_3}{dt} = \frac{a_2}{A_3} \sqrt{2gh_2} - \frac{a_3}{A_3} \sqrt{2gh_3}$$

Control objective:

Control the 3^{rd} tank level by manipulating pump voltage V, where $F_0 = K V$

Add q_2 input flow on the tanks 2 and set q_2 as manipulated variable.

Which one is difficult to control?

Data for Simulation in Matlab/Simulink

$$A_1$$
, $A_3 = 28 \text{ cm}^2$ $A_2 = 32 \text{ cm}^2$ $V^s = 3 \text{ V}$
 $a_1 = 0.06725 \text{ cm}^2$ $a_2 = 0.05683 \text{ cm}^2$
 $a_3 = 0.07089 \text{ cm}^2$ K=3.14

Transfer Function model

Define:
$$x_1 = h_1 - h_1^s$$
; $x_2 = h_2 - h_2^s$; $x_3 = h_3 - h_3^s$; $u = V - V^s$
Linearizing around steady state value h^s

Linearizing around steady state value h_1^{s}

$$\frac{dh_1}{dt} = \frac{K}{A_1}V - \frac{a_1}{A_1}\sqrt{2g} \left[\sqrt{h_1^S} + \frac{1}{2\sqrt{h_1^S}}(h_1 - h_1^S)\right]$$

Subtracting above from steady state equation,

$$\frac{dx_1}{dt} = \frac{K}{A_1}u - \frac{a_1\sqrt{g}}{A_1\sqrt{2h_1^s}}x_1 \quad \Rightarrow \text{ Transfer function } \frac{x_1(s)}{u(s)} = \frac{K_{p_1}}{\tau_{p_1}s+1}$$

Where,
$$K_{p_1} = \frac{K}{a_1} \sqrt{\frac{2h_1^S}{g}}$$
 and $\tau_{p_1} = \frac{A_1}{a_1} \sqrt{\frac{2h_1^S}{g}}$

Similarly,

$$\frac{dx_2}{dt} = \frac{a_1}{A_2} \sqrt{\frac{g}{2h_1^S}} \ x_1 - \frac{a_2}{A_2} \sqrt{\frac{g}{2h_2^S}} \ x_2 \ \text{ and Transfer function } \frac{x_2(s)}{x_1(s)} = \frac{K_{p_2}}{\tau_{p_2} s + 1}$$

$$\frac{dx_3}{dt} = \frac{a_2}{A_3} \sqrt{\frac{g}{2h_2^s}} \ x_2 - \frac{a_3}{A_3} \sqrt{\frac{g}{2h_3^s}} \ x_3 \ \text{ and Transfer function } \frac{x_3(s)}{x_2(s)} = \frac{Kp_3}{\tau_{p_3}s + 1}$$

Where,
$$K_{p_j} = \frac{a_{j-1}}{a_j} \sqrt{\frac{h_j^s}{h_{j-1}^s}}$$
 and $\tau_{p_j} = \frac{A_j}{a_j} \sqrt{\frac{2h_j^s}{g}}$ for j = 2,3

So, Process Transfer function
$$G(s) = \frac{x_3(s)}{u(s)} = \frac{K_{p_1}K_{p_2}K_{p_3}}{(\tau_{p_1}s+1)(\tau_{p_2}s+1)(\tau_{p_3}s+1)}$$

Quadruple Tank problem

Quadruple Tank problem

$$\begin{split} \frac{dh_1}{dt} &= -\frac{a_1}{A_1} \sqrt{2gh_1} + \frac{a_3}{A_1} \sqrt{2gh_3} + \frac{\gamma_1 k_1}{A_1} v_1 \\ \frac{dh_2}{dt} &= -\frac{a_2}{A_2} \sqrt{2gh_2} + \frac{a_4}{A_2} \sqrt{2gh_4} + \frac{\gamma_2 k_2}{A_2} v_2 \\ \frac{dh_3}{dt} &= -\frac{a_3}{A_3} \sqrt{2gh_3} + \frac{(1 - \gamma_2)k_2}{A_3} v_2 \\ \frac{dh_2}{dt} &= -\frac{a_4}{A_4} \sqrt{2gh_4} + \frac{(1 - \gamma_1)k_1}{A_4} v_1 \end{split}$$

Control Objective

Both the levels of tank1 and tank2 should be controlled by manipulating voltages to the pumps.

Data for simulation:

$$A_1$$
, $A_3 = 28 \text{ cm}^2$

$$A_2$$
, A_4 = 32 cm²

$$a_1$$
, a_3 = 0.071 cm²

$$a_2$$
, a_4 = 0.057 cm²

$$k_1$$
, k_2 = 3.33, 3.35

$$v_1$$
, v_2 = 3.0, 3.0

$$\gamma_1$$
, $\gamma_2 = 0.7$, 0.6

Jacketed heated stirred tank

Assumptions:

Constant hold-up in tank and jacket Constant heat capacities and densities Incompressible flow

$$\frac{dV}{dt} = F_0 - F = 0$$

$$\frac{dT}{dt} = \frac{F}{V}(T_0 - T) + \frac{UA}{\rho C_P V}(T_j - T)$$

$$\frac{dT_j}{dt} = \frac{F_j}{V_j}(T_{ji} - T_j) - \frac{UA}{\rho_j C_{Pj} V_j}(T_j - T)$$

Parameter and Steady State Values

F = 30 l/min;
$$F_j^s$$
 = 50 l/min; T_0 = 15°C; T_{Jin} = 93°C; V = 300 l; V_j = 30 l; ρC_p = 1 Kcal/K l; ρC_{pj} = 1.384 ; UA = 100 Kcal/min K; T^s = 60°C ; T_J = 73.5 °C

Continuous Stirred Tank Reactor

Assumption:

- 1. Exit Condition = Reactor Condition
- 2. Isothermal Reaction
- 3. Constant volume, i.e, $F_{in} = F_{out} = F$
- 4. Only reactant A in feed is consumed, i.e, other reactant is in large excess. No product in the feed

Continuous Stirred Tank Reactor

Constant volume : dV/dt = 0

Dynamic model

$$\bullet \frac{dC_A}{dt} = \frac{F}{V} \left(C_{Af} - C_A \right) - k_1 C_A - k_3 C_A^2$$

$$\bullet \frac{dC_B}{dt} = -\frac{F}{V}C_B + k_1C_A - k_2C_B$$

$$\cdot \frac{dC_C}{dt} = -\frac{F}{V}C_C + k_2C_B$$

$$\bullet \frac{dC_D}{dt} = -\frac{F}{V}C_D + \frac{1}{2}k_3C_A^2$$

Data for the CSTR

$$V = 1 \text{ I}$$

 $F = 78 \text{ I/h}$
 $C_{Af} = 10 \text{ mol/I}$
 $kI = 50 \text{ h-1}$
 $k2 = 100 \text{ h-1}$
 $k3 = 10 \text{ I.mol-1.h-1}$

Since our objective is to control C_B, the reduced order model should be

•
$$\frac{dC_A}{dt} = \frac{F}{V}(C_{Af} - C_A) - k_1 C_A - k_3 C_A^2 = f_1(C_A, C_B, F)$$

•
$$\frac{dC_B}{dt} = -\frac{F}{V}C_B + k_1C_A - k_2C_B = f_2(C_A, C_B, F)$$

Steady State plot of Van-De-Vusse Reactor

Non-Isothermal Jacketed CSTR

parameter	case 1	case 2	case 3
F/V, hr-1	1	1	1
k ₀ , hr-1	14,825*3600	9,703*3600	18,194*3600
$(-\Delta H)$, kcal/kgmol	5215	5960	8195
E, kcal/kgmol	11,843	11,843	11,843
ρcp, kcal/(m³ °C)	500	500	500
T _f , °C	25	25	25
C _{Af} , kgmol/m3	10	10	10
UA/V, kcal/(m³ °C hr)	250	150	750
T _C , °C	25	25	25

Styrene Polymerization Reactor

$$\begin{array}{ll} \dot{x_1} &= \frac{(F_i\,C_{ia} - F_o\,x_1)}{V} - k_d\,x_1 & x_2 \; \text{Monomer Conc} \\ \dot{x_2} &= \frac{(F_m\,C_{ma} - F_o\,x_2)}{V} - k_p\,x_2\,\mathcal{R} \\ \dot{x_3} &= \frac{F_o\,(T_a - x_3)}{V} - \frac{\Delta H}{\rho\,C_p}\,k_p\,x_2\,\mathcal{R} - \frac{UA}{\rho\,C_p\,V}\,(x_3 - x_4) \\ \dot{x_4} &= \frac{F_j(T_{j,in} - x_4)}{V_j} + \frac{UA}{\rho_j\,C_{pj}\,V_j}\,(x_3 - x_4) \end{array}$$

The chain concentration of growing polymer is equal to

$$\mathcal{R} = (2 f k_d x_1 / k_t)^{0.5}$$

 x_1 Initiator Conc

The dissociation, propagation and termination Rate constants follow Arrhenius law:

$$k_i = k_{i0} e^{-\frac{E_i}{RT}}$$
 for I =d, p or t

 $F_o = F_i + F_m + F_s$

Steady State Heat Power vs Reactor Temperature

Phase Portrait

