Seattle Weather

May 31, 2024

Has rain gotten more frequent in Seattle?

1.1 Madhavi Ghanta

21067 9/5/2005

https://www.kaggle.com/rtatman/did-it-rain-in-seattle-19482017 ___

```
[1]: import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import numpy as np
    from scipy.stats import binom
    %matplotlib inline
[3]: rain = pd.read_csv("C:/Users/mghan/Documents/MSDS/Portfolio/
      ⇔seattleWeather 1948-2017.csv")
[4]: rain.describe()
    rain.head()
[4]:
           DATE PRCP TMAX TMIN
                                   RAIN
    0 1/1/1948 0.47
                         51
                               42 True
    1 1/2/1948 0.59
                         45
                               36 True
    2 1/3/1948 0.42
                         45
                               35 True
    3 1/4/1948 0.31
                         45
                               34 True
    4 1/5/1948 0.17
                         45
                               32 True
[8]: #Bad Values within the data set
    rain[pd.isnull(rain).any(axis=1)]
[8]:
               DATE PRCP TMAX TMIN RAIN
    18415 6/2/1998
                      NaN
                             72
                                   52 NaN
    18416 6/3/1998
                      {\tt NaN}
                                   51 NaN
                             66
```

```
[9]: #Cleaning data set
     rain.dropna(axis=1, how='all', inplace=True)
```

52 NaN

70

NaN

2 Hypothesis:

Rain has been steadily increasing in Seattle. Null Hypothesis: Rain has has not increased or changed over time

2.1 Describe what the 5 variables mean in the dataset (Chapter 1).

DATE: the date of the observation

PRCP: the amount of precipitation, in inches

TMAX: the maximum temperature for that day, in degrees Fahrenheit

TMIN: the minimum temperature for that day, in degrees Fahrenheit

RAIN: TRUE if rain was observed on that day, FALSE if it was not

Include a histogram of each of the 5 variables – in your summary and analysis, identify any outliers and explain the reasoning for them being outliers and how you believe they should be handled (Chapter 2).

```
[10]: #Skipping date on histogram
sns.distplot(rain['PRCP'].dropna())
```

C:\Users\mghan\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

[10]: <AxesSubplot:xlabel='PRCP', ylabel='Density'>

[11]: sns.distplot(rain['TMAX'].dropna())

C:\Users\mghan\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

[11]: <AxesSubplot:xlabel='TMAX', ylabel='Density'>

[12]: sns.distplot(rain['TMIN'].dropna())

C:\Users\mghan\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

[12]: <AxesSubplot:xlabel='TMIN', ylabel='Density'>


```
[13]: rain['RAIN'].value_counts().plot(kind='bar', label='Rain')
```

[13]: <AxesSubplot:>

Include the other descriptive characteristics about the variables: * Mean * Mode * Spread * Tails

```
[14]: rain['TMIN'].mean(), rain['TMIN'].median(), rain['TMIN'].mode(), rain['TMIN'].
       ⇒std()
[14]: (44.51422644906266,
      45.0,
      Name: TMIN, dtype: int64,
      8.892835742411922)
[15]: rain['DATE'].max(), rain['DATE'].min()
[15]: ('9/9/2017', '1/1/1948')
[16]: rain['DATE'] = pd.to_datetime(rain['DATE'])
[17]: rain['YEAR'] = rain['DATE'].dt.year
[18]: rain.head()
[18]:
             DATE PRCP TMAX TMIN RAIN
      0 1948-01-01 0.47
                            51
                                  42
                                     True
                                           1948
      1 1948-01-02 0.59
                            45
                                  36 True
                                           1948
      2 1948-01-03 0.42
                            45
                                  35 True
                                            1948
      3 1948-01-04 0.31
                            45
                                  34
                                     True
                                           1948
      4 1948-01-05 0.17
                            45
                                  32 True 1948
[19]: first_half = rain[rain["DATE"]>='1982-12-22 00:00:00']
      second_half = rain[rain["DATE"] <= '1982-12-23 00:00:00']
[22]: plt.bar(list(pmf_first.values()),list(pmf_first.keys()))
[22]: <BarContainer object of 183 artists>
```



```
[25]: plt.bar(list(pmf_second.values()), list(pmf_second.keys()))
```

[25]: <BarContainer object of 175 artists>

[113]: pmf

```
[113]: {0.0: 7246,
        0.01: 462,
        0.02: 353,
        0.03: 258,
        0.04: 198,
        0.05: 212,
        0.06: 209,
        0.07: 170,
        0.08: 174,
        0.09: 130,
        0.1: 129,
        0.11: 142,
        0.12: 146,
        0.13: 130,
        0.14: 112,
        0.15: 108,
        0.16: 97,
        0.17: 96,
        0.18: 70,
        0.19: 63,
        0.2: 101,
        0.21: 73,
        0.22: 62,
        0.23: 77,
        0.24: 70,
        0.25: 62,
        0.26: 59,
        0.27: 51,
        0.28: 68,
        0.29: 64,
        0.3: 67,
        0.31: 54,
        0.32: 38,
        0.33: 51,
        0.34: 47,
        0.35: 53,
        0.36: 49,
        0.37: 41,
        0.38: 44,
        0.39: 42,
        0.4: 29,
        0.41: 28,
        0.42: 32,
        0.43: 26,
        0.44: 33,
```

- 0.45: 46,
- 0.46: 27,
- 0.47: 30,
- 0.48: 22,
- 0.49: 31,
- 0.5: 26,
- 0.51: 24,
- 0.52: 17,
- 0.53: 25,
- 0.54: 24,
- 0.55: 19,
- 0.56: 35,
- 0.57: 15,
- 0.58: 21,
- 0.59: 13,
- 0.6: 24,
- 0.61: 16,
- 0.62: 16,
- 0.63: 13,
- 0.64: 13,
- 0.65: 9,
- 0.66: 17,
- 0.67: 18,
- 0.68: 8,
- 0.69: 9,
- 0.7: 17,
- 0.71: 15,
- 0.72: 9,
- 0.73: 13,
- 0.74: 20,
- 0.75: 7,
- 0.76: 11,
- 0.77: 9,
- 0.78: 9,
- 0.79: 13,
- 0.8: 13,
- 0.81: 8,
- 0.82: 4,
- 0.83: 13,
- 0.84: 10,
- 0.85: 6,
- 0.86: 5,
- 0.87: 8,
- 0.88: 12,
- 0.89: 3,
- 0.9: 2,
- 0.91: 6,

```
0.92: 7,
0.93: 4,
0.94: 5,
0.95: 4,
0.96: 8,
0.97: 3,
0.98: 6,
0.99: 6,
1.0: 0.00023090169067000628,
1.01: 3,
1.02: 2,
1.03: 3,
1.04: 6,
1.05: 7,
1.06: 6,
1.07: 2,
1.08: 5,
1.09: 1,
1.11: 1,
1.12: 1,
1.13: 5,
1.14: 1,
1.15: 1,
1.16: 3,
1.17: 5,
1.18: 5,
1.19: 4,
1.2: 2,
1.21: 2,
1.22: 3,
1.23: 6,
1.24: 2,
1.26: 5,
1.27: 9,
1.28: 4,
1.29: 3,
1.3: 1,
1.31: 1,
1.32: 4,
1.33: 1,
1.34: 1,
1.36: 2,
1.37: 2,
1.38: 1,
1.39: 2,
1.4: 1,
1.45: 3,
```

```
1.46: 3,
1.48: 2,
1.49: 1,
1.5: 1,
1.51: 1,
1.52: 1,
1.53: 1,
1.54: 2,
1.55: 2,
1.56: 1,
1.6: 2,
1.61: 3,
1.63: 3,
1.64: 2,
1.65: 2,
1.66: 2,
1.67: 2,
1.68: 1,
1.7: 1,
1.75: 2,
1.76: 1,
1.78: 2,
1.83: 2,
1.85: 2,
1.93: 1,
2: 0.00010331872260488416,
2.04: 1,
2.08: 1,
2.14: 1,
2.18: 1,
2.23: 1,
2.26: 1,
2.58: 1,
2.7: 1,
2.72: 1,
2.98: 1,
3: 7.827175954915466e-05,
3.41: 1,
4: 0.00010644959298685035,
5: 0.00010488415779586725,
6: 8.140262993112086e-05,
7: 6.105197244834064e-05,
8: 6.966186599874766e-05,
9: 6.809643080776456e-05,
10: 5.165936130244208e-05,
11: 5.9486537257357546e-05,
12: 5.5572949279899807e-05,
```

- 13: 5.8703819661866e-05,
- 14: 5.3224796493425174e-05,
- 15: 4.8528490920475895e-05,
- 16: 3.757044458359424e-05,
- 17: 4.53976205385097e-05,
- 18: 5.0876643706950534e-05,
- 19: 4.618033813400125e-05,
- 20: 4.304946775203507e-05,
- 22: 4.148403256105198e-05,
- 23: 4.226675015654352e-05,
- 25: 3.8353162179085784e-05,
- 27: 3.678772698810269e-05,
- 28: 3.209142141515341e-05,
- 29: 3.913587977457733e-05,
- 30: 3.6005009392611145e-05,
- 31: 3.287413901064496e-05,
- 32: 3.52222917971196e-05,
- 33: 3.443957420162805e-05,
- 35: 3.052598622417032e-05,
- 38: 2.739511584220413e-05,
- 40: 2.582968065122104e-05,
- 43: 2.8960551033187226e-05,
- 44: 2.4264245460237948e-05,
- 45: 2.9743268628678773e-05,
- 51: 2.3481527864746398e-05,
- 52: 2.6612398246712587e-05,
- 54: 2.113337507827176e-05,
- 01. 2.11000/00/02/1/00 00
- 56: 2.269881026925485e-05,
- 57: 1.8002504696305572e-05,
- 61: 2.5046963055729494e-05,
- 68: 2.0350657482780215e-05,
- 69: 1.643706950532248e-05,
- 71: 1.7219787100814026e-05,
- 72: 1.5654351909830933e-05, 88: 1.4871634314339386e-05,
- 90: 1.408891671884784e-05,
- 94: 1.3306199123356293e-05,
- 111: 1.1740763932373199e-05,
- 112: 1.0958046336881654e-05,
- 113: 1.0175328741390108e-05,
- 118: 1.2523481527864747e-05,
- 124: 9.39261114589856e-06,
- 132: 7.827175954915466e-06,
- 136: 7.04445835942392e-06,
- 157: 5.479023168440827e-06,
- 161: 6.2617407639323735e-06,
- 199: 4.69630557294928e-06,

207: 3.913587977457733e-06, 230: 3.1308703819661867e-06, 235: 2.34815278647464e-06, 354: 1.5654351909830934e-06, 471: 7.827175954915467e-07,

7403: 0.0}

[27]: #Create 1 CDF with one of your variables, using page 41-44 as your guide, what does this tell you about your variable and how does it address the question does you are trying to answer (Chapter 4).

[29]: sns.heatmap(rain.corr(), cmap='coolwarm')
plt.title('Rain Corr')


```
[]:
[34]: rain_per_year.reset_index(inplace=True)
[35]: rain_per_year = rain_per_year[['YEAR', 'RAIN', 'TMIN MEAN', 'TMAX MEAN', 'PRCP_
       →MEAN']]
[36]: rain_per_year.head()
[36]:
        YEAR RAIN TMIN MEAN TMAX MEAN PRCP MEAN
     0 1948
               177 41.196721 57.013661
                                          0.125109
     1 1949
               139 41.391781 59.147945
                                          0.088932
     2 1950
               194 41.000000 57.035616
                                          0.151068
     3 1951
               150 41.052055 58.545205
                                          0.110411
     4 1952
               139 41.467213 58.743169
                                          0.064973
[37]: rain_per_year.columns
[37]: Index(['YEAR', 'RAIN', 'TMIN MEAN', 'TMAX MEAN', 'PRCP MEAN'], dtype='object')
[38]: sns.lmplot(x='YEAR', y='RAIN', data=rain_per_year)
[38]: <seaborn.axisgrid.FacetGrid at 0x2b720ec2a90>
```



```
[39]: sns.jointplot(x='YEAR', y='RAIN', data=rain_per_year, kind='kde')
```

[39]: <seaborn.axisgrid.JointGrid at 0x2b720e14d00>


```
[40]: plt.plot('YEAR', 'TMIN MEAN', data=rain_per_year, marker='o') plt.plot('YEAR', 'TMAX MEAN', data=rain_per_year, marker='', color='olive')
```

[40]: [<matplotlib.lines.Line2D at 0x2b721153160>]


```
[41]: plt.plot('YEAR', 'TMIN', data=rain, marker='o')
plt.plot('YEAR', 'TMAX', data=rain, marker='', color='olive')
```

[41]: [<matplotlib.lines.Line2D at 0x2b7211afb80>]

[42]: sns.lmplot('YEAR', 'PRCP MEAN', data=rain_per_year)

C:\Users\mghan\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

[42]: <seaborn.axisgrid.FacetGrid at 0x2b7211dd1f0>

[43]: sns.lmplot('YEAR', 'PRCP', data=rain)

C:\Users\mghan\anaconda3\lib\site-packages\seaborn_decorators.py:36:
FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

[43]: <seaborn.axisgrid.FacetGrid at 0x2b7211d6b50>

[44]: sns.jointplot(x='YEAR', y='PRCP MEAN', data=rain_per_year, kind='kde')

[44]: <seaborn.axisgrid.JointGrid at 0x2b721232520>


```
[50]: super_column = rain_per_year[['YEAR', 'TMIN MEAN', 'TMAX MEAN']]

[51]: super_column['Max']='Max'

    C:\Users\mghan\AppData\Local\Temp\ipykernel_1592\3469924724.py:1:
    SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy super_column['Max']='Max'
```

[52]: super_column['Min']='Min'

```
[53]: max = super_column[['YEAR', 'TMAX MEAN', 'Max']]
      min = super_column[['YEAR', 'TMIN MEAN', 'Min']]
[54]: max['temp']=max['TMAX MEAN']
      max['type']=max['Max']
      min['temp']=min['TMIN MEAN']
      min['type']=min['Min']
     C:\Users\mghan\AppData\Local\Temp\ipykernel_1592\3706309177.py:1:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       max['temp']=max['TMAX MEAN']
     C:\Users\mghan\AppData\Local\Temp\ipykernel_1592\3706309177.py:3:
     SettingWithCopyWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-
     docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
       min['temp']=min['TMIN MEAN']
[55]: max = max[['YEAR', 'temp', 'type']]
      min = min[['YEAR', 'temp', 'type']]
[56]: combined = max.append(min)
     C:\Users\mghan\AppData\Local\Temp\ipykernel_1592\299298275.py:1: FutureWarning:
     The frame.append method is deprecated and will be removed from pandas in a
     future version. Use pandas.concat instead.
       combined = max.append(min)
 []:
[57]: sns.heatmap(rain_per_year.corr(), cmap='coolwarm')
[57]: <AxesSubplot:>
```



```
[58]: sns.lmplot(x='YEAR', y='temp', hue='type', data=combined)
```

[58]: <seaborn.axisgrid.FacetGrid at 0x2b7224527f0>


```
[59]: sns.lmplot(x='YEAR', y='TMIN MEAN', data=rain_per_year) sns.lmplot(x='YEAR', y='TMAX MEAN', data=rain_per_year)
```

[59]: <seaborn.axisgrid.FacetGrid at 0x2b7223c47c0>


```
[60]: sns.jointplot(x='YEAR', y='TMIN MEAN', data=rain_per_year, kind='kde') sns.jointplot(x='YEAR', y='TMAX MEAN', data=rain_per_year, kind='kde')
```

[60]: <seaborn.axisgrid.JointGrid at 0x2b7226bc580>


```
[61]: sns.lmplot(x='YEAR', y='RAIN', data=rain_per_year)
```

[61]: <seaborn.axisgrid.FacetGrid at 0x2b722957340>

=======================================			==========
Dep. Variable:	RAIN	R-squared:	0.022
Model:	OLS	Adj. R-squared:	0.007
Method:	Least Squares	F-statistic:	1.520
Date:	Fri, 31 May 2024	Prob (F-statistic):	0.222
Time:	18:34:13	Log-Likelihood:	-289.74
No. Observations:	70	AIC:	583.5
Df Residuals:	68	BIC:	588.0
Df Model:	1		
Covariance Type:	nonrobust		
============	============		=======================================
со	ef std err	t P> t	[0.025 0.975]

Intercept YEAR	378.4702 -0.1124	180.659 0.091	2.095 -1.233	0.040 0.222	17.970 -0.294	738.970 0.069
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):	0.2 0.2 0.2	931 Jarque 102 Prob(•		1.891 0.196 0.907 1.95e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.95e+05. This might indicate that there are strong multicollinearity or other numerical problems.

[64]: result = sm.ols(formula='RAIN ~ YEAR',data=rain_per_year).fit() print(result.summary())

OLS Regression Results								
Dep. Variab	======== le·	======	====== RAIN	R-sa	======== uared:	=======	0.022	
Model:	10.		OLS	_	R-squared:		0.007	
		I.east	t Squares	Ū	atistic:		1.520	
Date:	20000 24000		-					
Time:		111, 01	18:34:17		Likelihood:	•	-289.74	
No. Observa	tions:		70	•	dinorinoca.		583.5	
Df Residual			68				588.0	
Df Model:	2.		1				000.0	
Covariance	Type:	,	- nonrobust					
=========	=======		=======	======	=========	=======		
	coe	f std			P> t	_	0.975]	
Intercept	378.470	2 180			0.040			
YEAR	-0.112	4 0	.091	-1.233	0.222	-0.294	0.069	
Omnibus:	======	======	 0.144	====== Durb	======== in-Watson:	=======	1.891	
Prob(Omnibu	s):		0.931	Jarq	ue-Bera (JB):		0.196	
Skew:			0.102	Prob			0.907	
Kurtosis:			2.839	Cond	. No.		1.95e+05	
=======	======			=====		======		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.95e+05. This might indicate that there are strong multicollinearity or other numerical problems.

[65]: result.pvalues

[65]: Intercept 0.039904 YEAR 0.221791

dtype: float64

[]: