Learning to Search for Targets with Deep Reinforcement Learning

Oskar Lundin

Linköping University

May 19, 2022

Outline

Problem Description

Autonomous search for a set of targets in an scene with a camera.

- Limited region of scene visible at any given time.
- Camera can be moved to change visible region.
- Locate targets by bringing them into view and indicating that they are visible.
- Should locate all targets while minimizing the number of actions.
- Applications in search and rescue, fire detection, surveillance, etc.

- ▶ In a small or random scene with uniformly distributed targets, random or exhaustive search is sufficient.
- Most real-world search tasks are not random, but exhibit structure.
- Cues in the searched scene can be used to find targets quicker.
 - Books are in bookshelves.
 - Cars can be found on roads.
 - ► Some targets spread out/close together.
- Patterns and cues may be subtle and difficult to pick up.
- Manually engineering a searching system with domain knowledge be difficult and costly.
- Can a system learn to search intelligently from a set of samples and generalize to similar search tasks?

Challenges

- Prioritize regions with high probability of targets based on previous experience.
- Learn correlations between scene appearance and target probability.
- ► Search exhaustively while avoiding searching the same region twice.
- Real-world tasks have limited number of training samples.

Research Questions

- 1. How can an agent that learns to intelligently search for targets be implemented with reinforcement learning?
- 2. How does the learning agent compare to random walk, exhaustive search, and a human searcher with prior knowledge of the characteristics of the searched scenes?
- 3. How does the agent's ability to generalize to unseen in-distribution scenes depend on the number of training samples?

Markov Decision Process (MDP)

Framework for modeling decision making in partly random processes. In our case, partially observable MDP [?]:

- ► Agent interacts with environment over discrete time steps t = 0, 1, 2, ..., T.
- ► Takes action a_t in state s_t.
- \triangleright Perceives (partial) observation of state o_t .
- \triangleright Receives scalar reward r_t that indicates whether action is good or bad.
- ightharpoonup New state s_{t+1} depends only on history of interactions.
- Agent usually maintains some internal state depending on history \rightarrow memory.

Reinforcement Learning (RL)

Paradigm for learning from interactions how to achieve a goal.

- ► Tasks usually formalized as (partially observable) MDPs.
- ▶ Policy $\pi(a|s)$ is a mapping from states to actions.
- ► Find π that maximizes cumulative reward $\mathbb{E}\left[\sum_{k=0}^{T} \gamma^{k-t-1} r_k\right]$.
- ▶ Often involves estimating the value $v_{\pi}(s)$ of a state under policy pi (useful for training).

Deep RL: Approximate π (and v_{π}) with deep neural networks. Has been used to play Atari [?], Go [?], StarCraft II [?], etc.

Search with Reinforcement Learning

- ► Object localization ([?, ?, ?]).
- ► Visual navigation (...).
- ► Todo: add more related work.

Problem Formulation

- ightharpoonup Agent searches scene $S \subset \mathbb{R}^d$.
- ▶ Scene contains set of targets $\{t_0, ... t_n\}$, $t_i \in S$.
- ▶ Agent perceives view $V \subset S$.
- ▶ Move actions transform view to new subspace.
- ► Trigger action indicates that a target is in view.
- ► Select actions that maximize the probability of finding all targets while minimizing cost in time.
- ▶ NP complete [?], intractable to solve optimally.

- ► Three environments with varying characteristics.
- ▶ Search space discretized into 10×10 camera positions.
- ▶ Each camera position has a unique view $V \subset S$.
- ► Three targets in all scenes.
- ► Target probability correlated with scene appearance.
- ▶ Should be possible to do better than exhaustive search on average.
- ► Scenes procedurally generated:
 - ▶ Pseudorandom seed determines scene appearance and target positions.
 - ► Gives control over difficulty to solve.
 - Can vary training and test set sizes.

Observation, Action and Reward

At each time step t:

- ▶ The agent receives observation $o_t = \langle x_t, p_t \rangle$, where
 - $ightharpoonup x_t \in \mathbb{R}^{3 \times 64 \times 64}$ is an RGB image of current view, and
 - ▶ $p_t \in \{0, ..., 9\} \times \{0, ..., 9\}$ is the position of the camera.
- ▶ Takes action $a_t \in \{TRIGGER, UP, DOWN, LEFT, RIGHT\}$, where
 - ► TRIGGER indicates that a target is in view, and
 - ▶ UP, DOWN, LEFT, RIGHT move the view in each cardinal direction.
- ▶ Receives reward $r_t = h 0.001$ where $h = |T \cap V|$ is the number of targets in view.
 - Rewarded for finding targets.
 - Constant penalty encourages quick episode completion.

Gaussian Environment

- ▶ 2D scene.
- ► Three gaussian kernels with random center.
- Sum of kernels determine appearance of scene and probability of targets.
- Clear correlation between appearance and desired behavior

Terrain Environment

- ► Similar to previous environment.
- ► Terrain seen from above.
- ► Gradient noise used to generate height map.
- Color determined by height.
- ► Targets placed with uniform probability across coastlines.
- ► More realistic, higher variance.
- Analogous to search and rescue with UAV.

Camera Environment

- ➤ 3D scene viewed from a perspective projection camera.
- Height map from terrain environment turned into mesh, same appearance and target probability as before.
- Camera location fixed at center of scene.
- Moving actions control pan and tilt (pitch and yaw).
- ➤ Visually complex, difficult to interpret.

Architecture

- ► Actor-critic method trained with PPO [?].
- ▶ Image x_t passed through CNN.
- ▶ Latent image representation h_t and position p_t passed through RNN. Two variants:
 - 1. LSTM with input $[h_t, p_t]$.
 - 2. Spatial memory.
- ▶ Policy and value heads approximate π and ν_{π} with MLPs.

Recurrent Steps

1. LSTM:

- ► Proven to work for POMDPs [?, ?, ?, ?].
- ► May struggle with remembering over many time steps.
- ► Important for exhaustive search and scene understanding.
- 2. Spatial memory (inspired by [?]):
 - Structured memory $M_t \in \mathbb{R}^{C \times 10 \times 10}$ as hidden state (one slot per camera position p_t / unique view V / image x_t).
 - ightharpoonup Read vector $r_t = f(M_t)$, f is CNN.
 - ▶ Write vector $w_t = g([h_t, r_t])$, g is MLP.
 - Action probabilities $\pi([r_t, w_t])$ and value $v([r_t, w_t])$.
 - $ightharpoonup r_t$ contains information from the whole explored scene.
 - \blacktriangleright w_t written to index p_t of M_{t+1} .

Experiments

- ► Train for 25M time steps.
- Results reported across 3 runs with different seeds.
- ► Interval estimates via stratified bootstrap confidence intervals.
- ► Separate training and test sets.
- ► Same hyperparameters in all runs.

Experiment I: Search Space and Reward Signal

- ► Larger search spaces take longer to train:
 - Sparse reward might not be sufficient.
 - Stronger demands on memory (remember searched positions, scene understanding).
- linvestigate impact by comparing agents on 10×10 , 15×15 , and 20×20 versions of gaussian environment.
- Evaluate two additional reward signals that may speed up training:
 - $ightharpoonup r'_t = r_t + e$, where e = 0.1 if $a_t \neq \text{TRIGGER}$ moves the view to an unexplored region and 0 otherwise.
 - $ightharpoonup r''_t = r_t + d$, where d = 0.1 if $a_t \neq \texttt{TRIGGER}$ moves the view towards the nearest target and 0 otherwise.

Experiment II: Search Performance

- Compare to random searcher, exhaustive searcher, human searcher with prior knowledge of scenes.
- Use held out samples as test set.
- Average number of steps on test set.
- \triangleright SPL metric [?], with N as the number of test samples, S_i indicating success, p_i as the number of steps and l_i as the shortest path length:

$$\frac{1}{N} \sum_{i=1}^{N} S_i \frac{l_i}{\max(p_i, l_i)}$$

Experiment III: Generalization with Limited Training Samples

- ▶ Limit number of scene samples seen during training to 100, 1000, 10 000,
- Use terrain environment, high appearance variance and somewhat realistic.
- Fix seed pool used to generate scenes seen during training.
- Train agents until convergence (or for a fixed number of time steps).
- ► Test on held out scenes from full distribution.

Implementation

- ► OpenAl Gym environment interface.
- PyTorch for models and automatic differentiation.
- ► Intel Core i9-10900X CPU.
- NVIDIA GeForce RTX 2080 Ti GPU.

Preliminary Results

Status:

- ▶ Done with implementation.
- Exploratory experiments done, know what seems to work and what does not.
- ► Spatial memory scales to larger search spaces than LSTM.

Problems:

- ► Many configurable parts (hyperparameters, environment settings, agent architectures).
- ► Long training times, difficult to predict hyperparameter interplay, expensive to tune.
- ▶ Difficult to design reward signal, magnitudes matter.
- ► Initial problems with scaling up to large search spaces where intelligent search is more important, hopefully solved now.

Future Steps

- 1. Collect results across multiple seeds for all experiments.
- 2. Find opponent.
- 3. More baselines vs. ablation studies?
- 4. Discussion and conclusion.
- 5. Tidy up report.
- 6. Presentation preparation.

References I