1 Verificação de conceitos

- 1. Calcule o cosseno do ângulo entre os vetores u=(3,4) e v=(12,9)
- 2. Se ||u||=5, ||v||=8 e o ângulo entre os vetores u e v é $\theta=\pi/3$, calcule ||u-v||
- 3. Verifique que os vetores pertencentes à reta y=x são ortogonais ao vetor v=(1,-1)
- 4. O que é uma base ortonormal β de um espaço E? Qual é a relação entre as matrizez de passagem P_e^{β} e P_B^e ?
- 5. Construa uma base ortonormal de \mathbb{R}^2 que contenha o vetor $u=\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$

2 Exercícios

- 1. Seja F um subespaço de \mathbb{R}^n de dimensão r. O conjunto dos vetores de \mathbb{R}^n ortogonais a qualquer vetor de F é chamado de complemento ortogonal de F e é denotado por F^{\perp} . Ou seja, $F^{\perp} = \{u \in E/\forall v \in F, \langle u, v \rangle = 0\}$. Mostre que F^{\perp} é um subespaço de \mathbb{R}^n e que $dim(F^{\perp}) = n r$.
- 2. Dois subespaços F e G de E são chamados de ortogonais se $\forall u \in F$ e $\forall v \in G$ temos que $\langle u, v \rangle = 0$.
 - (a) Exiba dois subespaços ortogonais de \mathbb{R}^3 de dimensão 1.
 - (b) Mostre que se F e G são subespaços ortogonais de E então $F \cap G = \{0\}$.
- 3. Seja ${\cal F}$ um subespaço de ${\cal E}$ de dimensão finita. Mostre que
 - (a) Todo vetor w de E pode ser escrito como w = u + v, onde $u \in F$ e $v \in F^{\perp}$
 - (b) $(F^{\perp})^{\perp} = F$
- 4. Assinale verdadeiro ou falso, justificando as afirmativas
 - () Se $u \neq 0$ e < u, v > = < u, u > então v = u
 - (
 - () O posto de uma matriz A é igual ao posto de $A^T A$
 - () Se u e v são ortogonais e P é uma projeção ortogonal então Pu e Pv são ortogonais
 - () O complemento ortogonal de um vetor não nulo $u \in \mathbb{R}^3$ é uma reta
 - () Se F é um subespaço de E então $(F^{\perp})^{\perp} = F$
- 5. O espaço F é o plano gerado pelos vetores u = (2, 2, 1) e v = (2, -3, 6).
 - (a) Exiba uma base ortonormal de \mathbb{R}^3 que contenha $u \in v$.
 - (b) Calcule a projeção ortogonal de w = (1, 1, 1) sobre u e sobre v
 - (c) Escreva a matriz da projeção ortogonal de w=(x,y,z) sobre F na base obtida na letra (a) e também na base canônica.
- 6. Aplique o processo de Gram-Schimidt nos vetores $u_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ e $u_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ e encontre

uma decomposição QR da matriz $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

- 7. Seja P^2 o espaço vetorial dos polinômios de grau até dois. Considere operação < p,q> entre dois polinômios definida por $< p,q> = \int_{-1}^1 p(x)q(x)dx$.
 - (a) Mostre que esta operação é um produto interno em P^2
 - (b) Encontre uma base ortonormal (segundo este produto interno) de P^2 (que tal usar Gram-Schmidt?)

1