

IE412 AI for Finance: Mini Project 3

Factor analysis with clustering

Contents

- 1. Stock clustering
- 2. Fama-French 3 Factors
- 3. Regression

1

Overview: Time-series clustering

Stock price data

Date	2022-01-03	2022-01-04	2022-01-05	2022-01-06	2022-01-07	2022-01-10	2022-01-11	2022-01-12	2022-01-13	2022-01-14
А	155.204315	149.957458	147.388580	147.904327	143.966690	143.976624	145.444565	148.291153	143.986542	143.500519
AAL	18.750000	19.020000	18.680000	18.570000	19.280001	18.790001	19.020000	18.500000	19.340000	18.490000
AAPL	180.434280	178.144302	173.405685	170.510956	170.679489	170.699326	173.564301	174.010406	170.699326	171.571701
ARRV	127 937485	127 691849	128 362625	127 757980	127 427338	128.853882	129 401840	129 704147	127 451431	129 694611
ABC	130.200043	128.963043	130.082260	128.069672	130.690948	132.183182	133.960175	133.233673	132.428635	133.714722
XYL	115.033981	116.254288	114.669853	114.512405	113.597168	112.445747	114.345093	114.335258	112.603203	109.768921
YUM	133.341415	134.054382	132.355026	133.722336	132.189011	130.343124	127.608521	126.133774	125.801712	124.092590
ZBH	124.095253	125.354172	124.940941	123.903046	123.153473	121.952202	123.374496	120.683662	123.076576	122.413490
ZBRA	583.900024	587.599976	558.179993	555.159973	530.859985	535.409973	538.570007	538.440002	525.799988	528.000000
ZTS	231.284103	222.478653	214.019089	214.869003	208.613281	210.105545	210.303223	210.313080	204.571243	203.760864
472 row	s × 10 columns									
4/210W	rs ~ 10 COIUIIIII	•							Feature	

The constantly changing stock price data is **a time series data** that has values at every time point.

Such time series data can be clustered with stocks as **samples** and prices at each time points as **features**.

Time-series clustering^[1]

The most common method is **k-means clustering**, where distance measures such as **Euclidean** distance and **DTW** are possible.

2

Load data

S&P500 daily price

S&P500 cumulative return

	Α	AAL	AAPL	ABBV	ABC	ABT	ACGL	ACN	ADBE	ADI
Date										
2022- 01-04	-0.033806	0.014400	-0.012691	-0.001920	-0.009501	-0.023518	0.013019	-0.007146	-0.018374	-0.009032
2022- 01-05	-0.050937	-0.003476	-0.039291	0.003333	-0.000822	-0.028011	0.001275	-0.024757	-0.089800	-0.024469
2022- 01-06	-0.047438	-0.009365	-0.055985	-0.001377	-0.016294	-0.028159	0.007105	-0.073047	-0.090403	-0.021287
2022- 01-07	-0.074060	0.028869	-0.054996	-0.003965	0.004174	-0.025051	0.011786	-0.092227	-0.097055	-0.047528
2022- 01-10	-0.073991	0.003454	-0.054880	0.007230	0.015592	-0.027264	0.032864	-0.086158	-0.067429	-0.038289
5 rows × 472 columns * Date: Jan 1, 2022 ~ Dec 31, 2022										

To perform clustering, we retrieve **daily closing price** data from Yahoo Finance^[1] and convert it into **cumulative returns**.

S&P500 market cap

```
{'MMM': 55663685632,
'AOS': 10413592576,
'ABT': 192483524608,
'ABBV': 259615277056
'ACN': 175054372864,
'ATVI': 60825120768,
 'ADM': 41054584832,
'ADBE': 157802070016;
'ADP': 88825552896,
'AAP': 7476755968,
'AES': 15153751040,
'AFL': 40314007552,
'A': 37867589632,
'APD': 62405439488
 'AKAM': 13335857152,
'ALK': 5514254848,
'ALB': 22973214720,
'ARE': 21156126720,
'ALGN': 23357552640,
'ALLE': 9561566208;
'LNT': 13866568704,
'ALL': 31084877824;
'GOOGL': 1422000259072,
'GOOG': 1421997244416,
'MO': 82004590592,
  * Date: May 18, 2023
```

Additionally, we obtain **market capitalization information** to examine the clustering results based on it.

Perform clustering

Model and hyperparameters

```
Perform k-means clustering
"""

ts_return = ts_return.T # transpose to (n_samples, n_features)

model = TimeSeriesKMeans(n_clusters=3, metric='euclidean', n_init=10)
model.fit(ts_return)

1.7s
```

A clustering model can be implemented using the machine learning package "tslearn^[1]" for time series data.

The following **hyperparameters** are used:

- n cluster=3
 - To compare it with the Fama-French 3 Factor model, stocks were grouped into 3 clusters.
- metric='Euclidean'
 - The distance between stocks was calculated using the Euclidean distance.
- n_init=10
 - Since clustering is sensitive to initialization, the final result will be the best output of n_init consecutive runs.

Result

A visualization of the stock time series corresponding to each cluster and the cluster centers

Performance evaluation

Silhouette coefficient

- A measure of cohesion compared to separation
- Range: [-1, 1]
 - · Higher scores indicate dense and well separated clusters

For data point i in cluster C_L , the Silhouette coefficient

$$s_i = \frac{b_i - a_i}{\max(a_i, b_i)}$$

where

 a_i is the mean distance between a sample i and all other points in the same cluster (cohesion)

$$a_i = \frac{1}{|C_I| - 1} \sum_{j \in C_I, i \neq j} d(i, j)$$

 b_i is the mean distance between a sample i and all other points in the next nearest cluster (separation)

$$b_i = \min_{J \neq I} \frac{1}{|C_J|} \sum_{j \in C_I} d(i, j)$$

Result

We calculated the Silhouette scores using the Euclidean **distance** measure for our clustering results and visualized them.

When calculating Silhouette scores, various pairwise distances such as cosine, L1, and L2 can be used as the distance measure^[1].

Cluster centers as factors

The cluster centers were visualized based on the **three clusters** obtained from clustering.

In the figure, the solid line represents the **simple average** of the cumulative return values within the cluster, while the dotted line represents the **weighted average based on market capitalization**.

Clustering can be used to find factors, but it is also possible to use other machine learning techniques such as **PCA or AutoEncoder** to identify factors.

Overview: Fama-French 3 Factors

$$r_i - r_f = \alpha + \beta_i (r_M - r_f) + \beta_{si} \cdot f_{SMB} + \beta_{vi} \cdot f_{HML} + \varepsilon_i$$

- 1. Market excess return
- 2. Outperformance of small versus big companies
- 3. Outperformance of high value versus low value companies

2. Fama-French 3 Factors

2

Load data

F-F daily return

F-F cumulative return

To compare with the factors obtained from clustering, we obtain daily data for 3 factors^[1] and convert them into cumulative returns.

Visualization

The return paths of the three factors are visualized.

2. Fama-French 3 Factors

3

Comparison with cluster factors

Comparing with the three cluster centers obtained earlier:

Cluster 0 resembles the SMB factor, which oscillates around zero during the given period.

VS

Cluster 1 exhibits a movement similar to the Mkt-RF factor.

Cluster 2 resembles the HML factor, which shows a consistent upward trend during the given period.

3. Regression analysis

1

Overview: Linear regression

$$y_i = eta_0 + eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^\mathsf{T} oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

Example of simple linear regression, which has one independent variable^[1].

[1] https://en.wikipedia.org/wiki/Linear_regression

Load data

AAPL daily price

AAPL log return

To fit the daily price movements of individual stocks to the factors, we retrieve **Apple stock data** and convert it into log returns.

Cluster factors

	Cluster 0	Cluster 1	Cluster 2
Date			
2022-01-03	0.000000	0.000000	0.000000
2022-01-04	0.009006	0.001512	0.022123
2022-01-05	-0.010998	-0.024916	-0.008799
2022-01-06	0.001227	0.001656	0.011276
2022-01-07	0.000047	-0.009480	0.010117

F-F 3 factors

	Mkt-RF	SMB	HML	RF
20220103	0.0073	0.0033	0.0078	0.0
20220104	-0.0029	-0.0082	0.0362	0.0
20220105	-0.0228	-0.0146	0.0260	0.0
20220106	0.0000	0.0021	0.0175	0.0
20220107	-0.0048	-0.0132	0.0202	0.0

3. Regression analysis

Perform linear regression

Fitting the cluster factors

```
AAPL_regr = linear_model.LinearRegression().fit(
                                                                   # shape (n_samples, 3)
       X = df.iloc[:,:3].values,
       y = ts return.values - df FF3['RF'].values.reshape(-1,1)
                                                                   # shape (n samples, 1)
   # print stock ticker
   print("Stock: {}".format("AAPL"))
   # print coefficients
   print("Alpha: {:.4f}".format(AAPL regr.intercept [0]))
   for i, coef in enumerate(AAPL regr.coef [0]):
       print("Beta for factor {} ({}): {:.4f}".format(i+1, df.columns[i], coef))
   # print R^2
   print("R^2: {:.4f}".format(AAPL_regr.score(df.iloc[:,:3].values, ts_return.values - df_FF3['RF'].values

√ 0.0s

Stock: AAPL
Alpha: -0.0005
Beta for factor 1 (Cluster 0): 0.3567
Beta for factor 2 (Cluster 1): 0.7583
Beta for factor 3 (Cluster 2): 0.0195
R^2: 0.6844
```

The Apple stock, with the largest market capitalization, has a strong correlation with the Cluster 1 which is similar to the market factor.

3. Regression analysis

Perform linear regression

Fitting the F-F 3 factors

```
AAPL_regr = linear_model.LinearRegression().fit(
       X = df_FF3.iloc[:,:3].values,
                                                                   # shape (n samples, 3)
       y = ts_return.values - df_FF3['RF'].values.reshape(-1,1)
                                                                   # shape (n_samples, 1)
   # print stock ticker
   print("Stock: {}".format("AAPL"))
   # print coefficients
   print("Alpha: {:.4f}".format(AAPL_regr.intercept_[0]))
   for i, coef in enumerate(AAPL_regr.coef_[0]):
       print("Beta for factor {} ({}): {:.4f}".format(i+1, df FF3.columns[i], coef))
   # print R^2
   print("R^2: {:.4f}".format(AAPL_regr.score(df_FF3.iloc[:,:3].values, ts_return.values - df_FF3['RF'].val
 ✓ 0.0s
Stock: AAPL
Alpha: -0.0002
Beta for factor 1 (Mkt-RF): 1.1820
Beta for factor 2 (SMB): -0.5327
Beta for factor 3 (HML): -0.3247
R^2: 0.7978
```

The Apple stock, with the largest market capitalization, has a significant negative correlation with the **size factor**.

Thank You.