Assignment 2

Finite Automata Due Wednesday, March 24, 2021

1. (60%) Consider the following nondeterministic finite automaton,

Input States	a	b	3
1			{2, 6}
2	{2, 3}	{4}	
3	{5}	{4}	
4	{7}	{2, 8}	{5}
5			{6, 8}
6	{7}	{8}	
7			{10}
8		{9}	
9	{9}		
10		{10}	

where state 1 is the start state and states 9 and 10 are final states. The blank entry in the table represents the empty set. Simulate this NFA using the ϵ -closure and move functions with respect to the input strings aabba and aabab.

CS4005 3/18/2021

2. (40%) Consider the following deterministic finite automaton,

Inputs States	а	b
1	2	3
2	2	4
3	5	7
4	8	7
5	5	8
6	2	6
7	7	
8		8

where state 1 is the start state, and states 7 and 8 are final states. Simulate this DFA using the move function with respect to the input strings aabba and aabab.

To turn in this assignment, upload a pdf file hw2.pdf that contains the solutions for this assignment to the eCourse2 site.