Maximum Likelihood Estimation

Idea: Choose the value in the parameter space that makes the observed data "most likely".

Example:

Suppose that we flip a biased coin which has the probability of getting "Heads" as either 0.2, 0.3, or 0.8.

Suppose that we flip the coin 20 times and see the results:

Which of 0.2, 0.3, or 0.8 seems "most likely"?

What if we only flip the coin twice?

Model:

For i=1,2, let

$$X_i = \begin{cases} 1 & \text{if we get "Heads" on the ith flip} \\ 0 & \text{if we get "Tails" on the ith flip} \end{cases}$$

Let p=P("Heads" on any one flip)

Then

where
$$p \in \{0.2, 0.3, 0.8\}$$

Joint pmf:

$$\begin{split} f(x_1,x_2) &= P(X_1 = x_1, X_2 = x_2) \\ &= P(X_1 = x_1) \cdot P(X_2 = x_2) \quad \text{(indep)} \\ &= p^{x_1}(1-p)^{1-x_1} \, I_{\{0,1\}}(x_1) \cdot p^{x_2}(1-p)^{1-x_2} \, I_{\{0,1\}}(x_2) \end{split}$$

Tabulated values of the joint pmf:

		(0,0)	(0,1)	(1,0)	(1,1)
	0.2	0.64	0.16	0.16	0.04
P	0.3	0.49	0.21	0.21	0.06
	0.8	0.04	0.16	0.16	0.64

When we observe the data to be (0,0)
i.e. ("Tails", "Tails"),

the value of p that gives the highest joint probability (0.64) is 0.2.

		$(\mathbf{x}_1, \mathbf{x}_2)$				
		(0,0)	(0,1)	(1,0)	(1,1)	
	0.2	0.64	0.16	0.16	0.04	
P	0.3	0.49	0.21	0.21	0.06	
	0.8	0.04	0.16	0.16	0.64	

• When we observe the data to be (0,1) or (1,0) i.e. ("Tails", "Heads") or ("Heads", "Tails"),

the value of p that gives the highest joint probability (0.21) is 0.3.

When we observe the data to be (1,1)
i.e. ("Heads", "Heads"),

the value of p that gives the highest joint probability (0.64) is 0.8.

• When the data is $(x_1, x_2) = (0, 0)$

p = 0.2 is "most likely" (gives highest probability of seeing the data)

- When the data is $(x_1, x_2) = (0, 1)$ or $(x_1, x_2) = (1, 0)$
 - p = 0.3 is "most likely" (gives highest probability of seeing the data)
- When the data is $(x_1, x_2) = (1, 1)$
 - p = 0.8 is "most likely" (gives highest probability of seeing the data)

The maximum likelihood estimator for p is:

$$\widehat{\mathbf{p}} = \begin{cases} 0.2 & \text{, if } (x_1, x_2) = (0, 0) \\ 0.3 & \text{, if } (x_1, x_2) = (0, 1) \text{ or } (1, 0) \\ 0.8 & \text{, if } (x_1, x_2) = (1, 1) \end{cases}$$