Informe Tarea 1 Circuito Combinacional

Grupo 29

Diego Paz 202004502-k Ronald Bruno 202030563-3

30 de septiembre de 2022

Resumen

En este informe abarcamos el desarrollo de un circuito que se nos pide que cumpla con ciertas condiciones y prioridades, en este caso, un robot que debe moverse según su nivel de batería y de la cantidad de enemigos y cargas que tenga en las celdas adyacentes a sí mismo. Mediante tablas de verdad y mapas de Karnaugh se logró llegar a un circuito que cumple con todos los requisitos descritos en el enunciado de la tarea y pasó los casos de prueba aplicados. Se aplicó conceptos y herramientas tales como el selector de Bits para poder simplificar una entrada de 4 bits a una de 1 bit, se agrupó correctamente los minterminos de los mapas de Karnaugh para expresar correctamente las ecuaciones booleanas de cada una de las salidas y se logró simplificar un circuito de 10 bits de entrada totales a uno de 7 bits, para luego ingresar las ecuaciones booleanas obtenidas al software de modelacion de circuitos digitales Logisim y comprobar nuestros resultados obtenidos y dar una solución concreta a la problematica planteada en el ejercicio.

Índice

I. Desarrono de la tarea	1
2. Resultados y análisis	5

3. Conclusiones

1. Desarrollo de la tarea

En el enunciado se nos presenta un modelo conceptual de robot cuya funcionalidad es elegir entre 3 celdas para moverse dependiendo si hay enemigos o cargas en estas, y si el robot está por sobre un umbral de carga en su batería, estas condiciones están representadas en el caso de la batería por 1 pin de 4 bits, y tanto los enemigos como las cargas estan representados por 3 pines de 1 bit, y el circuito en su totalidad debe entregar 3 salidas de 1 bit, dependiendo de hacia donde debe moverse el robot. Además, se nos encarga modelar este robot y construir su circuito correspondiente en *Logisim*, y para esto primero se debe analizar el enunciado.

Se nos dice que la batería del robot está representada por un pin de 4 bits, y que el comportamiento del robot cambia dependiendo si esta entrada de 4 bits tiene un valor menor o igual que 3, por lo que si el pin tiene alguno de los siguientes valores, el comportamiento del robot cambia: $\{0000, 0001, 0010, 0011\}$. Viendo esto, podemos notar que se mantienen constantes los valores de los bits 3 y 2, entonces utilizando un selector de bits en Logisim, podemos transformar esta entrada de 4 bits en una de 1 bit, que llamaremos B, donde será 1 si la entrada es menor que 4, y 0 para valores iguales o mayores que 4, tal como se muestra en la siguiente tabla:

B_3	B_2	B_1	B_0	$\mid B$
0	0	0	0	1
	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0 0 0 0 0 0 0 0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1		0
1	1	0	$\frac{1}{0}$	0
1	1	0	1	0
1	1	1	0	$\left \begin{array}{c} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
1	1	1	1	0

Tabla 1: Tabla de verdad del comportamiento de la batería.

Una vez simplificado la primera entrada, es necesario trabajar las otras 6, pero una tabla de verdad de 6 variables sería muy grande para expresarla en LATEX al tener 128 filas, por lo que utilizaremos mapas de Karnaugh, donde utilizaremos 2 mapas (para cuando el valor de la batería es 0 o 1) por cada salida (L, F, R), ya que además pueden mostrar la representación con minterminos de la ecuación booleana del circuito.

Entonces, para la salida \boldsymbol{L} , cuando B=0, el mapa de Karnaugh es:

$L(E_L, E_F, E_R, C_L, C_F, C_R)$											
$\searrow E_F, C_L, C_R$											
E_L,E_R,C_F	000	001	011	010	110	111	101	100			
0	00 0	0	0	0	1	1	1	1			
0	01 0	0	0	0	1	1	1	1			
0	11 0	0	0	0	1	1	1	1			
0	10 0	0	0	0	1	1	1	1			
1	10 0	0	0	0	0	0	0	0			
1	11 0	0	0	0	0	0	0	0			
1	01 0	0	0	0	0	0	0	0			
1	00 0	0	0	0	0	0	0	0			

Y cuando B=1, el mapa de Karnaugh es:

$L(E_L, E_F, E_R, C_L, C_F, C_R) \searrow E$	C_F, C_I	C_R						
E_L, E_R, C_F	000	001	011	010	110	111	101	100
000	0	0	0	1	1	0	0	0
001	0	0	0	0	1	0	0	0
011	0	0	0	0	1	1	0	0
010	0	0	1	(1	1	1	0	0
110	0	0	0	0	0	0	0	0
111	0	0	0	0	0	0	0	0
101	0	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0	0

Por lo que para este grupo de mapas tenemos que:

$$B = 0 ; L(E_L, E_F, E_R, C_L, C_F, C_R) = E_F \overline{E_L}$$

$$\tag{1}$$

$$B = 1 \; ; \; L(E_L, E_F, E_R, C_L, C_F, C_R) = C_L \overline{E_L} E_R \overline{C_F} + C_L \overline{C_R E_L C_F} + E_F C_L \overline{C_R E_L} + E_F C_L \overline{E_L} E_R$$
 (2)

Entonces, al tener B constante en cada mapas, lo agregamos a la expresión, pero antes, podemos ver que en el mapa con B = 1, las expresiones $E_F C_L \overline{C_R E_L}$ y $E_F C_L \overline{E_L} E_R$ también se puede agrupar en B = 0, así que como B no sería constante, no se le agrega a estas expresiones, quedando la expresión final para L como:

$$L(B, E_L, E_F, E_R, C_L, C_F, C_R) = \overline{B}E_F \overline{E_L} + BC_L \overline{E_L} E_R \overline{C_F} + BC_L \overline{C_R} E_L C_F + E_F C_L \overline{C_R} E_L + E_F C_L \overline{E_L} E_R$$
(3)

Para la salida \boldsymbol{F} , cuando B=0, el mapa de Karnaugh es:

 $F(E_L, E_F, E_R, C_L, C_F, C_R)$ $\setminus E_F, C_L, C_R$ E_L, E_R, C_F 000 001

Y cuando B=1, el mapa de Karnaugh es:

$F(E_L, E_F, E_R, C_R)$									
	$\searrow E_{\cdot}$		C_R						
	$E_L, E_R, C_F \setminus$	000	001	011	010	110	111	101	100
	000	0	0	0	0	0	0	0	0
	001	1	1	1	1	0	0	0	0
	011	1	1	1	1	0	0	0	0
	010	0	0	0	0	0	0	0	0
	110	0	0	0	0	0	0	0	0
	111	1	1	1	1	/ 0	0	0	0
	101	1	1	1	1	0	0	0	0
	100	0	0	0	0	0	0	0	0

Por lo que para este grupo de mapas tenemos que:

$$B = 0 \; ; \; F(E_L, E_F, E_R, C_L, C_F, C_R) = \overline{E_F}$$
 (4)

$$B = 1 \; ; \; F(E_L, E_F, E_R, C_L, C_F, C_R) = \overline{E_F}C_F$$
 (5)

Entonces, al tener B constante en cada mapas, lo agregamos a la expresión, pero antes, podemos ver que en el mapa con B=1, la expresión también se puede agrupar en B=0, así que como B no sería constante, no se le agrega a la expresión, quedando la expresión final para F como:

$$F(B, E_L, E_F, E_R, C_L, C_F, C_R) = \overline{BE_F} + \overline{E_F}C_F$$
(6)

Y para la salida \boldsymbol{R} , cuando B=0, el mapa de Karnaugh es:

$$R(E_L, E_F, E_R, C_L, C_F, C_R) = E_F, C_L, C_R = 000 \quad 001 \quad 011 \quad 010 \quad 110 \quad 111 \quad 101 \quad 100 = 000 \quad 00$$

Y cuando B=1, el mapa de Karnaugh es:

$R(E_L, E_F, E_R, C_L, C_F, C_R)$	a	0						
	$_F, C_I$	C, C_R	011	010	110	111	101	100
E_L, E_R, C_F	0	1	1	0	0	1	1	0
001	0	0/	0	0	0 /	1	1	0
011	0	p	0	0	9	0	d	þ
010	0	0	0	0	0	0	0	0
110	0	0	0	0	0	0	0	0
111	0	þ	0	0	$ \phi $	0	9	ϕ
101	0	0	0	0	0	1	$\sqrt{1}$	/0
100	0	1	1	0	0	1	1	0

Por lo que para este grupo de mapas tenemos que:

$$B = 0 ; R(E_L, E_F, E_R, C_L, C_F, C_R) = E_F E_L \overline{E_R}$$

$$(7)$$

$$B = 1 ; R(E_L, E_F, E_R, C_L, C_F, C_R) = C_R \overline{E_R C_F} + E_F C_R \overline{E_R}$$
(8)

Entonces, al tener B constante en cada mapas, lo agregamos a la expresión, además, revisamos que ninguna de las expresiones se puede agrupar en el mapa contrario, así quedando la expresión final para R como:

$$R(B, E_L, E_F, E_R, C_L, C_F, C_R) = \overline{B}E_F E_L \overline{E_R} + BC_R \overline{E_R C_F} + BE_F C_R \overline{E_R}$$

$$\tag{9}$$

2. Resultados y análisis

Una vez terminado el circuito, lo ingresamos a *Logisim* para ver su comportamiento en casos de prueba. A continuación se mostraran los circuitos de cada salida por separado y el circuito final.

Figura 1: Circuito combinacional de la salida L

Figura 2: Circuito combinacional de la salida F

Figura 3: Circuito combinacional de la salida ${\bf R}$

Figura 4: Circuito combinacional final

Al generar cada una de las salidas del circuito en base a la tabla de verdad, se puede asumir que todos los casos son correctos puesto que todos los casos posibles están en la tabla, pero aún así, a continuación mostraremos los resultados al ingresar los casos de prueba presentes en el enunciado de la tarea en la cual se basa este informe:

Figura 5: Caso de prueba 1

Figura 6: Caso de prueba 2

Figura 7: Caso de prueba 3

Figura 8: Caso de prueba 4

Figura 9: Caso de prueba 5

Figura 10: Caso de prueba 6

3. Conclusiones

Se consiguió crear un circuito digital combinacional en base a los requerimientos y casos específicos entregados, aplicando conocimientos y técnicas aprendidas en clase y con ayuda del texto guía. Por lo que podemos concluir que el diseño e implementación del circuito fue correcta ya que cumple con las rutas solicitadas y ejemplos entregados.