

General Purpose Transistors

NPN and PNP Silicon

MMBT3904WT1G, NPN, SMMBT3904WT1G, NPN, MMBT3906WT1G, PNP, SMMBT3906WT1G, PNP

These transistors are designed for general purpose amplifier applications. They are housed in the SOT-323/SC-70 package which is designed for low power surface mount applications.

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	V _{CEO}	40 -40	Vdc
Collector - Base Voltage MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	V _{CBO}	60 -40	Vdc
Emitter – Base Voltage MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	V _{EBO}	6.0 -5.0	Vdc
Collector Current – Continuous MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	I _C	200 -200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation (Note 1) @T _A = 25°C	P _D	150	mW
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	833	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint.

1

SC-70 (SOT-323) CASE 419 STYLE 3

MARKING DIAGRAM

xx = AM for MMBT3904WT1, SMMBT3904WT

> = 2A for MMBT3906WT1, SMMBT3906WT1

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT3904WT1G, SMMBT3904WT1G	SC-70/ SOT-323 (Pb-Free)	3000 / Tape & Reel
MMBT3906WT1G, SMMBT3906WT1G	SC-70/ SOT-323 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristi	Symbol	Min	Max	Unit			
OFF CHARACTERISTICS							
	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	V _{(BR)CEO}	40 –40	_ _	Vdc		
Collector – Base Breakdown Voltage ($I_C = 10 \mu Adc, I_E = 0$) ($I_C = -10 \mu Adc, I_E = 0$)	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	V _{(BR)CBO}	60 -40	- -	Vdc		
Emitter – Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$) ($I_E = -10 \mu Adc, I_C = 0$)	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	V _{(BR)EBO}	6.0 -5.0	- -	Vdc		
Base Cutoff Current $(V_{CE} = 30 \text{ Vdc}, V_{EB} = 3.0 \text{ Vdc})$ $(V_{CE} = -30 \text{ Vdc}, V_{EB} = -3.0 \text{ Vdc})$	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	I _{BL}	- -	50 –50	nAdc		
Collector Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc) (V _{CE} = -30 Vdc, V _{EB} = -3.0 Vdc)	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	I _{CEX}	- -	50 –50	nAdc		
ON CHARACTERISTICS (Note 2)		•	•	•	•		
$\begin{array}{ c c c } \hline DC \ Current \ Gain \\ \hline (I_C = 0.1 \ mAdc, \ V_{CE} = 1.0 \ Vdc) \\ \hline (I_C = 1.0 \ mAdc, \ V_{CE} = 1.0 \ Vdc) \\ \hline (I_C = 10 \ mAdc, \ V_{CE} = 1.0 \ Vdc) \\ \hline (I_C = 50 \ mAdc, \ V_{CE} = 1.0 \ Vdc) \\ \hline (I_C = 100 \ mAdc, \ V_{CE} = 1.0 \ Vdc) \\ \hline (I_C = -0.1 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ \hline (I_C = -1.0 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ \hline (I_C = -10 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ \hline (I_C = -50 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ \hline (I_C = -50 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ \hline \end{array}$	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	h _{FE}	40 70 100 60 30 60 80 100 60	- 300 - - - - 300	-		
$(I_C = -100 \text{ mAdc}, V_{CE} = -1.0 \text{ Vdc})$			30	-			
	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	V _{CE(sat)}	- - - -	0.2 0.3 -0.25 -0.4	Vdc		
$\label{eq:Base-Emitter Saturation Voltage} Base-Emitter Saturation Voltage\\ (I_C = 10 mAdc, I_B = 1.0 mAdc)\\ (I_C = 50 mAdc, I_B = 5.0 mAdc)\\ (I_C = -10 mAdc, I_B = -1.0 mAdc)\\ (I_C = -50 mAdc, I_B = -5.0 mAdc)$	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	V _{BE(sat)}	0.65 - -0.65 -	0.85 0.95 -0.85 -0.95	Vdc		

^{2.} Pulse Test: Pulse Width \leq 300 μ s; Duty Cycle \leq 2.0%.

$\begin{array}{c} \mathsf{MMBT3904WT1G},\,\mathsf{NPN},\,\mathsf{SMMBT3904WT1G},\,\mathsf{NPN},\,\mathsf{MMBT3906WT1G},\,\mathsf{PNP},\\ \mathsf{SMMBT3906WT1G},\,\mathsf{PNP} \end{array}$

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit	
SMALL-SIGNAL CHARACTERISTICS					
$\label{eq:Current-Gain-Bandwidth Product} $	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	f _T	300 250	- -	MHz
Output Capacitance (V_{CB} = 5.0 Vdc, I_E = 0, f = 1.0 MHz) (V_{CB} = -5.0 Vdc, I_E = 0, f = 1.0 MHz)	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	$C_{ m obo}$		4.0 4.5	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz) (V _{EB} = -0.5 Vdc, I _C = 0, f = 1.0 MHz)	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	C _{ibo}		8.0 10.0	pF
Input Impedance $(V_{CE} = 10 \text{ Vdc}, I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$ $(V_{CE} = -10 \text{ Vdc}, I_C = -1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	h _{ie}	1.0 2.0	10 12	kΩ
$\begin{tabular}{lll} Voltage Feedback Ratio \\ (V_{CE} = 10 \mbox{ Vdc, } I_{C} = 1.0 \mbox{ mAdc, } f = 1.0 \mbox{ kHz}) \\ (V_{CE} = -10 \mbox{ Vdc, } I_{C} = -1.0 \mbox{ mAdc, } f = 1.0 \mbox{ kHz}) \\ \end{tabular}$	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	h _{re}	0.5 0.1	8.0 10	X 10 ⁻⁴
$\label{eq:small-Signal Current Gain} Small-Signal Current Gain $$ (V_{CE}=10\ Vdc,\ I_{C}=1.0\ mAdc,\ f=1.0\ kHz)$ $$ (V_{CE}=-10\ Vdc,\ I_{C}=-1.0\ mAdc,\ f=1.0\ kHz)$$	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	h _{fe}	100 100	400 400	-
Output Admittance $(V_{CE} = 10 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$ $(V_{CE} = -10 \text{ Vdc}, I_{C} = -1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	MMBT3904WT1, SMMBT3904WT1 MMBT3906WT1, SMMBT3906WT1	h _{oe}	1.0 3.0	40 60	μmhos
Noise Figure $(V_{CE}=5.0~Vdc,~I_{C}=100~\mu\text{Adc},~R_{S}=1.0~k~\Omega,~f=$ $(V_{CE}=-5.0~Vdc,~I_{C}=-100~\mu\text{Adc},~R_{S}=1.0~k~\Omega,$	MMBT3904WT1, SMMBT3904WT1	NF	- -	5.0 4.0	dB

SWITCHING CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Max	Unit
Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc})$ MMBT3904WT1, SMMBT3904WT1 $(V_{CC} = -3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc})$ MMBT3906WT1, SMMBT3906WT1	t _d	- -	35 35	ns
Rise Time	$(I_{C} = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$ MMBT3904WT1, SMMBT3904WT1 $(I_{C} = -10 \text{ mAdc}, I_{B1} = -1.0 \text{ mAdc})$ MMBT3906WT1, SMMBT3906WT1	t _r	- -	35 35	
Storage Time	$(V_{CC}=3.0~Vdc,~I_{C}=10~mAdc) \\ MMBT3904WT1,~SMMBT3904WT1 \\ (V_{CC}=-3.0~Vdc,~I_{C}=-10~mAdc) \\ MMBT3906WT1,~SMMBT3906WT1$	t _s	- -	200 225	ns
Fall Time	$(I_{B1} = I_{B2} = 1.0 \text{ mAdc})$ MMBT3904WT1, SMMBT3904WT1 $(I_{B1} = I_{B2} = -1.0 \text{ mAdc})$ MMBT3906WT1, SMMBT3906WT1	t _f	- -	50 75	

MMBT3904WT1, SMMBT3904WT1

* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

MMBT3904WT1, SMMBT3904WT1

TYPICAL TRANSIENT CHARACTERISTICS

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CF} = 5.0 \text{ VDC}, T_A = 25^{\circ}\text{C}, BANDWIDTH = 1.0 \text{ HZ})$

MMBT3904WT1, SMMBT3904WT1

H PARAMETERS

Figure 11. Input Impedance

Figure 12. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

Figure 13. DC Current Gain

MMBT3904WT1, SMMBT3904WT1

Figure 14. Collector Saturation Region

Figure 15. Collector Emitter Saturation Voltage vs. Collector Current

Figure 16. Base Emitter Saturation Voltage vs. Collector Current

Figure 17. Base Emitter Voltage vs. Collector Current

MMBT3904WT1, SMMBT3904WT1

T_J = 125°C 10 MMBT3904WT1 7.0 CAPACITANCE (pF) 5.0 \mathbf{C}_{ibo} 3.0 $\mathsf{C}_{\mathsf{obo}}$ 2.0 1.0 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 40 REVERSE BIAS VOLTAGE (VOLTS)

 $T_J = 25^{\circ}C$

Figure 18. Temperature Coefficients

Figure 19. Capacitance

Figure 20. Current Gain Bandwidth Product vs. Collector Current

Figure 21. Safe Operating Area

MMBT3906WT1, SMMBT3906WT1 3 V P +9.1 V **\$**275 ₹275 < 1 ns 10 k 10 k $rac{1}{1}$ $C_S < 4 pF^*$ C_S < 4 pF* 1N916 +10.6 V -→ 300 ns $10 < t_1 < 500 \mu s$ 10.9 V DUTY CYCLE = 2% DUTY CYCLE = 2%

* Total shunt capacitance of test jig and connectors

Figure 22. Delay and Rise Time Equivalent Test Circuit

Figure 23. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

MMBT3906WT1, SMMBT3906WT1

H PARAMETERS

 $(V_{CE} = -10 \text{ VDC}, F = 1.0 \text{ KHZ}, T_A = 25^{\circ}\text{C})$

Figure 28. Current Gain

20 MMBT3906WT1 10 7.0 h_{ie} , INPUT IMPEDANCE ($k\Omega$) 5.0 3.0 2.0 1.0 0.7 0.5 0.3 0.2 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 IC, COLLECTOR CURRENT (mA)

Figure 29. Output Admittance

Figure 30. Input Impedance

Figure 31. Voltage Feedback Ratio

Figure 32. DC Current Gain

MMBT3906WT1, SMMBT3906WT1

Figure 33. Collector Saturation Region

Figure 34. Collector Emitter Saturation Voltage vs. Collector Current

Figure 35. Base Emitter Saturation Voltage vs. Collector Current

Figure 36. Base Emitter Voltage vs. Collector
Current

MMBT3906WT1, SMMBT3906WT1

Figure 37. Temperature Coefficients

Figure 38. Capacitance

Figure 39. Current Gain Bandwidth Product vs. Collector Current

Figure 40. Safe Operating Area

SC-70 (SOT-323) CASE 419 ISSUE R

DATE 11 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	M:	ILLIMETE	RS		INCHES	
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2	0.70 REF				0.028 BS	C
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.00	2.20	0.071	0.080	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1		0.65 BSC)	0.026 BSC		
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095

GENERIC MARKING DIAGRAM

XX = Specific Device Code

M = Date Code

■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the ID Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6:	STYLE 7:	STYLE 8:	STYLE 9:	STYLE 10:	STYLE 11:
PIN 1. EMITTER	PIN 1. BASE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	3. ANODE-CATHODE	CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales