



# Chapter 2

#### **Protocol Architecture**

Spring 2012 02-1



#### Need For Protocol Architecture

- Protocol: a set of technical rules about how information should be transmitted and received using computers.
- Task broken into subtasks
- Implemented separately in layers in stack
- Functions needed in both systems
- Peer layers communicate

# A Few Questions

- What is a protocol?
- What is a protocol architecture?
- How many layers are needed?
- Major function of network access layer?
- What is TCP/IP?
- What tasks performed by transport layer?
- Does all traffic running on Internet use TCP?
- Differences between TCP & UDP?

Spring 2012 02-2



#### Standardized Protocol Architectures

- Required for devices to communicate
- Vendors have more marketable products
- Customers can insist on standards-based equipment
- Two standards:
  - OSI Reference model
    - Never lived up to early promises
  - TCP/IP protocol suite
    - · Most widely used

Spring 2012 02-3 Spring 2012 02-4



#### **OSI**

- Open Systems Interconnection
- Developed by the International Organization for Standardization (ISO)
- Seven layers
- A theoretical system delivered too late!
- TCP/IP is the de facto standard

Spring 2012 02-5



#### OSI as Framework for Standardization





#### OSI - The Model

- A layer model
- Each layer performs a subset of the required communication functions
- Each layer relies on the next lower layer to perform more primitive functions
- Each layer provides services to the next higher layer
- Changes in one layer should not require changes in other layers

Spring 2012 02-6



#### The OSI Environment





#### Service Primitives and Parameters

- Services between adjacent layers expressed in terms of primitives and parameters
- Primitives specify function to be performed
- Parameters pass data and control info

Spring 2012 02-9



# Timing Sequence for Service Primitives





# **Primitive Types**

| REQUEST    | A primitive issued by a service user to invoke some service and to pass the parameters needed to specify fully the requested service                                                                                                          |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INDICATION | A primitive issued by a service provider either to: indicate that a procedure has been invoked by the peer service user on the connection and to provide the associated parameters, or notify the service user of a provider-initiated action |
| RESPONSE   | A primitive issued by a service user to acknowledge or complete some procedure previously invoked by an indication to that user                                                                                                               |
| CONFIRM    | A primitive issued by a service provider to acknowledge or complete some procedure previously invoked by a request by the service user                                                                                                        |

Spring 2012 02-10



# **OSI** Layers

| Application                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Provides access to the OSI environment for users and al provides distributed information services.                                                                                                     |
| Presentation                                                                                                                                                                                           |
| rieschiation                                                                                                                                                                                           |
| Provides independence to the application processes from differences in data representation (syntax).                                                                                                   |
| Session                                                                                                                                                                                                |
| Provides the control structure for communication between                                                                                                                                               |
| applications; establishes, manages, and terminates                                                                                                                                                     |
| connections (sessions) between cooperating applications                                                                                                                                                |
| Transport                                                                                                                                                                                              |
| Halisport                                                                                                                                                                                              |
| Provides reliable, transparent transfer of data between e<br>points; provides end-to-end error recovery and flow conti                                                                                 |
| Network                                                                                                                                                                                                |
| Provides upper layers with independence from the data<br>transmission and switching technologies used to connec<br>systems; responsible for establishing, maintaining, and<br>terminating connections. |
| Data Link                                                                                                                                                                                              |
| Provides for the reliable transfer of information across the physical link; sends blocks (frames) with the necessary synchronization, error control, and flow control.                                 |
| Physical                                                                                                                                                                                               |
| Concerned with transmission of unstructured bit stream or physical medium; deals with the mechanical, electrical,                                                                                      |

functional, and procedural characteristics to access the

Spring 2012



# OSI Layers (I)

#### Physical

- Physical interface between devices
  - Mechanical
  - Electrical
  - · Functional
  - · Procedural
- Data Link
  - Means of activating, maintaining and deactivating a reliable link
  - Error detection and control
  - Higher layers may assume error free transmission

Spring 2012 02-13



# OSI Layers (III)

#### Session

- Control of dialogues between applications
- Dialogue discipline
- Grouping
- Recovery

#### Presentation

- Data formats and coding
- Data compression
- Encryption

#### Application

- Means for applications to access OSI environment



# OSI Layers (II)

#### Network

- Transport of information cross communication network
- Relieve higher layers of the need to know about underlying technology
- Not needed on direct links

#### • Transport

- Exchange of data between end systems
- Error free
- In sequence
- No losses
- No duplicates
- Quality of service

Spring 2012 02-14



# Use of a Relay



Spring 2012 02-15 Spring 2012 02-16



#### TCP/IP Protocol Architecture

- Developed by the US Defense Advanced Research Project Agency (DARPA) for its packet switched network (ARPANET)
- Used by the global Internet
- No official model but a working one.
  - Application layer
  - Host to host or transport layer
  - Internet layer
  - Network access layer
  - Physical layer

higher-level |
TCP |
internet protocol |
| communication network

02-17

Spring 2012



### Network Access Layer

- Exchange of data between end system and network
- Destination address provision
- Invoking services like priority



### Physical Layer

- Physical interface between data transmission device (e.g. computer) and transmission medium or network
- Characteristics of transmission medium
- Signal levels
- Data rates
- etc.

Spring 2012 02-18



# Internet Layer (IP)

- Systems may be attached to different networks
- Routing functions across multiple networks
- Implemented in end systems and routers

Spring 2012 02-19 Spring 2012 02-20



# Transport Layer (TCP)

- Reliable delivery of data
- Ordering of delivery

Spring 2012



#### OSI vs TCP/IP

- OSI: reference model was devised before the corresponding protocols were invented.
- The OSI model has proven to be exceptionally useful for discussing computer networks.
- The OSI protocols have not become popular.
- TCP/IP: the protocols came first, and the model was just a description of the existing protocols.
- TCP/IP protocols are widely used.





## **Application Layer**

- Support for user applications
- e.g. HTTP, SMPT

Spring 2012 02-22



02-21

02-23

#### **TCP**

- Usual transport layer is Transmission Control Protocol
  - Reliable connection
- Connection
  - Temporary logical association between entities in different systems
- TCP PDU
  - Called TCP segment
  - Includes source and destination port
    - Identify respective users (applications)
    - Connection refers to pair of ports
- TCP tracks segments between entities on each connection

Spring 2012 02-24

Spring 2012



#### **UDP**

- Alternative to TCP is User Datagram Protocol
- Not guaranteed delivery
- No preservation of sequence
- No protection against duplication
- Minimum overhead
- Adds port addressing to IP

Spring 2012 02-25



## Trace of Simple Operation

- Process associated with port 1 in host A sends message to port 2 in host B
- Process at A hands down message to TCP to send to port 2
- TCP hands down to IP to send to host B
- IP hands down to network layer (e.g. Ethernet) to send to router J
- Generates a set of encapsulated PDUs



## TCP/IP Concepts





#### PDUs in TCP/IP



Spring 2012 02-28 Spring 2012 02-28



# Some Protocols in TCP/IP Suite



 BGP
 = Border Gateway Protocol
 OSPF = Open Shortest Path First

 FTP = File Transfer Protocol
 RSVP = Resource ReserVation Protocol

 HTTP = Hypertex Transfer Protocol
 SMTP = Simple Mail Transfer Protocol

 ICMP = Internet Control Message Protocol
 SMM = Simple Network Management Protocol

 IGMP = Internet Group Management Protocol
 TCP = Transmission Control Protocol

 IDP = Internet Protocol
 TCP = User Datagram Protocol

MIME = Multi-Purpose Internet Mail Extension