TD5 - Circuits du deuxième ordre (correction)

Exercice 1 – Caractéristiques de signaux sinusoïdaux

1. $s_1(t)$: A = 15, T = 0.02 s, f = 50 Hz et $\varphi = 0.5$ rad.

 $s_2(t): A = 5, T = 0.8 \,\text{µs}, f = 1.25 \,\text{MHz et } \varphi = -\frac{\pi}{2}.$

 $s_3(t): A=2, T=16.7 \,\text{ms}, f=60 \,\text{Hz et } \varphi=-\frac{3\pi}{4}.$

 $s_4(t):A=\sqrt{15^2+5^2},\,T=1\,\mathrm{ms},\,f=1\,\mathrm{kHz}$ et $\varphi=\arctan\frac{5}{15}.$

2. $\varphi = -\frac{5\pi}{6}$.

Exercice 2 - Résolution d'équation différentielles

1. $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \omega_0^2 x = 0$

2. 2.a. $x(t) = x_0 \cos \omega_0 t$;

2.b. $x(t) = \frac{v_0}{\omega_0} \sin \omega_0 t$;

2.c. $x(t) = x_0 \cos \omega_0 t + \frac{v_0}{\omega_0} \sin \omega_0 t$.

3. 3.a. $x(t) = (x_0 - X_0) \cos \omega_0 t + X_0$;

3.b. $x(t) = \frac{v_0}{\omega_0} \sin \omega_0 t + X_0$;

3.c. $x(t) = (x_0 - X_0) \cos \omega_0 t + \frac{v_0}{\omega_0} \sin \omega_0 t + X_0.$

Exercice 3 - Connexion d'une bobine à un circuit RC parallèle

- 1. En $t=0^-$, le régime permanent est atteint : le condensateur est équivalent à un interrupteur ouvert. Avec un pont diviseur de tension, on trouve $u(t=0^-)=\frac{E}{2}$. La tension aux bornes du condensateur est continue : $u(t=0^+)=u(t=0^-)=\frac{E}{2}$.
- 2. En régime permanent la bobine est équivalente à un fil : $\lim_{t\to\infty} u(t)=0$.
- 3. L'intensité du courant traversant la bobine est continue donc $i_L(t=0^+)=0$, donc à $t=0^+$, la loi des nœuds donne $i=\frac{u}{R}+C\frac{\mathrm{d}u}{\mathrm{d}t}$. En injectant cette expression de i dans la loi des mailles sur la grande maille toujours à $t=0^+$: E=Ri+u, on obtient $\frac{\mathrm{d}u}{\mathrm{d}t}(t=0^+)=0$.
- 4. $\frac{d^2 u}{dt^2} + \frac{\omega_0}{Q} \frac{du}{dt} + \omega_0^2 u = 0$, avec $\omega_0 = \frac{1}{\sqrt{LC}}$ et $Q = \frac{R}{2} \sqrt{\frac{C}{L}}$.
- 5. $Q > \frac{1}{2}$, c'est-à-dire $R > \sqrt{\frac{L}{C}}$.
- **6.** La courbe 1 convient : les valeurs u(t=0), $\frac{\mathrm{d}u}{\mathrm{d}t}(t=0)$ et $\lim_{t\to\infty}u(t)$ sont cohérentes avec les questions précédentes. Pour la courbe 0, $\frac{\mathrm{d}u}{\mathrm{d}t}(t=0^+)>0$, pour la courbe 2, $u(t=0^+)=E\neq\frac{E}{2}$ et pour la courbe 3, $u(t=0^+)=0\neq\frac{E}{2}$ et $\lim_{t\to\infty}u(t)=E\neq0$.
- 7. Sans calcul, on ne peut qu'utiliser les conditions $i(t=0^+)=\frac{E}{2R}, \lim_{t\to\infty}i(t)=\frac{E}{R}$ et le fait que i(t) doit présenter le même nombre d'oscillations que u(t).

- 8. Le régime transitoire présente quelques oscillations (\sim 3), ce qui permet d'estimer le facteur de qualité : $Q \approx 3$. On a donc $\omega_0 \approx \Omega$, où Ω est la pseudo-pulsation, d'où, après une mesure graphique de la pseudo-période $T: L \approx 0,47\,\mathrm{H}$.
- 9. $u(t) = \frac{E}{2}e^{-\mu t}(\cos\Omega t + \frac{\mu}{\Omega}\sin\Omega t).$

Exercice 4 – Régime pseudo-périodique

- 1. En $t = 0^-$, le régime permanent est atteint : le condensateur se comporte comme un interrupteur ouvert et la bobine comme un fil d'où $i(0^-) = 0$ et $q(0^-) = Cu_C(0^-) = 0$.
- 2. $\frac{\mathrm{d}^2}{\mathrm{d}t^2} + 2\gamma \frac{\mathrm{d}q}{\mathrm{d}t} + \omega_0^2 q = \frac{E}{L}.$
- 3. La tension aux bornes du condensateur est continue, donc sa charge q aussi et l'intensité du courant parcourant la bobine est continue, donc $\frac{dq}{dt}$ l'est aussi. On a donc $q(0^+)=0$ et $\frac{dq}{dt}(0^+)=0$.
- 4. Il faut que le discriminant de l'équation caractéristique soit négatif, c'est-à-dire $\omega_0 > \gamma$.
- 5. $q(t) = (A\cos\omega t + B\sin\omega t)e^{-\gamma t} + D$, avec $\omega = \sqrt{\omega_0^2 \gamma^2}$, A = -CE, $B = -CE\frac{\gamma}{\sqrt{\omega_0^2 \gamma^2}}$ et D = CE.
- 6. $i(t) = CE \frac{\omega_0^2}{\omega} e^{-\gamma t} \sin \omega t$.
- 7. On retrouve les valeurs en régimes permanent indiquées sur les graphes en faisant un schéma équivalent au circuit en remplaçant C par un interrupteur ouvert et L par un fil.

8. $\mathcal{E}_g = CE^2$, $\mathcal{E}_{LC} = \frac{CE^2}{2}$ d'où $\mathcal{E}_J = \frac{CE^2}{2}$. Ces expressions ne dépendent pas du régime. Quand $R \to 0$, le circuit n'atteint jamais le régime permanent, le condensateur et la bobine stockent et restituent alternativement de l'énergie.

Exercice 5 - Réponse d'un circuit RLC

$$i(t) = \frac{E}{2R}e^{-t/\tau}\left(-\cos\frac{t}{\tau} + \sin\frac{t}{\tau}\right) + \frac{E}{2R}$$