- 1. Sean $\tau = (\mathcal{C}, \mathcal{F}, \mathcal{R}, a), c \in \mathcal{C}$ y $\varphi \in F^{\tau}$ tales que c no ocurre en φ . Supongamos que $\mathbf{A}_1 = (A, i_1)$ y $\mathbf{A}_2 = (A, i_2)$ son modelos de τ tales que $i_1(s) = i_2(s)$ para cada $s \in (\mathcal{C} \cup \mathcal{F} \cup \mathcal{R}) \setminus \{c\}$. Pruebe que para toda $\vec{a} \in A^{\mathbb{N}}$ vale que $\mathbf{A}_1 \models \varphi[\vec{a}]$ sii $\mathbf{A}_2 \models \varphi[\vec{a}]$.
- 2. Sean $\tau = (\{c\}, \{f^1\}, \{r^2\}, a)$, A, B modelos de τ y $F: A \to B$ una función. Supongamos que para toda fórmula atómica α de τ y toda $(a_1, a_2, \ldots) \in A^{\mathbb{N}}$ vale que

$$A \vDash \alpha[\vec{a}] \Longrightarrow B \vDash \alpha[(F(a_1), F(a_2), \ldots)].$$

Pruebe que F es un homomorfismo de A en B.