Semantic Approximation Based Operator for Reducing Code Bloat in Genetic Programming

Thi Huong Chu^{a,*}

^aFaculty of IT, Le Quy Don Technical University, Hanoi, Vietnam

Supplement 1: The results of Kruskal-Wallis test and post hoc analysis using Dunns Test with Benjamini Hochberg procedure.

Table 1: List of table results in the supplement 1

No	Content	Table
1	Post-hoc analysis of Kruskal Wallis test using Dunns Test with Benjamini Hochberg procedure conducted on training errors.	Table 2
2	Summary of the post hoc analysis of the Kruskal-Wallis test on training error.	Table 3
3	Post-hoc analysis of Kruskal Wallis test using Dunns Test with Benjamini Hochberg procedure conducted on testing errors	Table 4
4	Post-hoc analysis of Kruskal Wallis test using Dunns Test with Benjamini Hochberg procedure conducted on solution size.	Table 5
5	Post-hoc analysis of Kruskal Wallis test using Dunns Test with Benjamini Hochberg procedure conducted on running time.	Table 6

Email address: huongktqs@gmail.com (Thi Huong Chu)

^{*}Thi Huong Chu; Mobile: 84-973080942

Table 2: Post-hoc analysis of Kruskal Wallis test using Dunns Test with Benjamini Hochberg procedure conducted on training errors. If the result of the method in the first column is better than that of the method in the second column, p-value of this post-hoc test is printed in bold face. Significant results marked in italic face ($\alpha = 0.05$).

Problems	}	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15
Kruskal	Wallis	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
neatGP	GP	.013	.000	.004	.000	.000	.000	.000	.001	.031	.000	.000	.000	.000	.000	.001
PP	GP	.241	.037	.338	.000	.000	.000	.002	.099	.022	.000	.000	.006	.000	.000	.001
SAT-GP	GP	.000	.000	.000	.001	.097	.585	.556	.000	.002	.000	.331	.220	.001	.008	.546
PP-AT0.1	GP	.000	.060	.044	.043	.885	.576	.446	.000	.000	.827	.719	.558	.684	.879	.011
PP-AT0.2	GP	.000	.005	.003	.306	.539	.568	.149	.000	.000	.450	.896	.333	.843	.714	.003
PP-AT0.5	GP	.001	.081	.212	.000	.000	.002	.144	.000	.046	.000	.000	.035	.000	.000	.123
PP	neatGP	.205	.022	.059	.001	.174	.032	.012	.135	.873	.008	.712	.139	.368	.138	.971
SAT-GP	neatGP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.304	.000	.000	.021	.006	.000
PP-AT0.1	neatGP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP-AT0.2	neatGP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP-AT0.5	neatGP	.000	.000	.000	.001	.024	.002	.000	.000	.000	.360	.694	.031	.932	.905	.054
SAT-GP	PP	.000	.000	.000	.065	.000	.001	.000	.000	.000	.149	.003	.000	.001	.000	.000
PP-AT0.1	PP	.000	.000	.003	.002	.000	.001	.000	.000	.000	.000	.000	.001	.000	.000	.000
PP-AT0.2	PP	.000	.000	.000	.000	.000	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP-AT0.5	PP	.000	.000	.029	.835	.409	.418	.127	.000	.000	.109	.944	.575	.341	.115	.052
PP-AT0.1	SAT-GP	.978	.009	.002	.225	.074	1	.807	.642	.534	.000	.120	.562	.007	.013	.054
PP-AT0.2	SAT-GP	.954	.087	.035	.026	.302	.981	.401	.097	.440	.000	.257	.784	.003	.027	.021
PP-AT0.5	SAT-GP	.040	.006	.000	.098	.008	.019	.042	.694	.355	.858	.003	.001	.025	.007	.032
PP-AT0.2	PP-AT0.1	.976	.337	.322	.296	.469	1	.507	.222	.898	.336	.748	.667	.849	.843	.691
PP-AT0.5	PP-AT0.1	.032	.880	.415	.004	.000	.018	.023	.406	.102	.000	.000	.006	.000	.000	.000
PP-AT0.5	PP-AT0.2	.032	.280	.082	.000	.000	.020	.003	.041	.072	.000	.000	.001	.000	.000	.000

Table 3: Summary of the post hoc analysis of the Kruskal-Wallis test on training error. Each cell presents the number of problems that the method in a column is significantly better than the method in a row.

	neatGP	PP	SAT-GP	PP-AT0.1	PP-AT0.2	PP-AT0.5
neatGP		4	14	15	15	10
PP	1		13	15	15	5
SAT	0			3	4	0
PP-AT0.1	0	0	2		0	1
PP-AT0.2	0	0	2	0		0
PP-AP0.5	0	0	11	10	12	

Table 4: Post-hoc analysis of Kruskal Wallis test using Dunns Test with Benjamini Hochberg procedure conducted on testing errors. If the result of the method in the first column is better than that of the method in the second column, p-value of this post-hoc test is printed in bold face. Significant results marked in italic face ($\alpha = 0.05$).

Problems	3	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15
Kruskal	Wallis	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
neatGP	GP	.052	.931	.020	.000	.021	.748	.040	.534	.204	.325	.031	.791	.349	.791	.491
PP	GP	.376	.907	.294	.021	.076	.875	.715	.863	.258	.196	.823	.929	.497	.396	.543
SAT-GP	GP	.000	.000	.000	.322	.972	.958	.528	.000	.001	.000	.025	.000	.010	.022	
PP-AT0.1	GP	.000	.002	.116	.700	1.000	.185	.183	.001	.001	.000	.033	.010	.228	.109	.001
PP-AT0.2	GP	.000	.000	.004	.902	1.000	.386	.045	.000	.001	.000	.050	.038	.193	.021	.000
PP-AT0.5	GP	.000	.001	.177	.009	.262	.123	.115	.000	.083	.000	.853	.021	.001	.003	.001
PP	neatGP	.351	.879	.183	.087	.690	.614	.089	.446	.960	.781	.044	.848	.830	.246	.952
SAT-GP	neatGP	.000	.000	.000	.003	.021	.750	.133	.000	.000	.000	.000	.000	.104	.013	.000
PP-AT0.1	neatGP	.000	.002	.000	.000	.022	.375	.453	.000	.000	.003	.001	.004	.865	.056	.000
PP-AT0.2	neatGP	.000	.000	.000	.000	.036	.190	.858	.000	.000	.003	.000	.021	.763	.011	.000
PP-AT0.5	neatGP	.000	.000	.000	.157	.246	.049	.608	.000	.001	.000	.021	.010	.018	.001	.000
SAT-GP	PP	.000	.000	.000	.206	.068	.876	.741	.000	.000	.000	.019	.000	.060	.196	.000
PP-AT0.1	PP	.000	.003	.010	.007	.060	.152	.364	.001	.000	.008	.254	.010	.726	.504	.000
PP-AT0.2	PP	.000	.000	.000	.016	.060	.467	.072	.000	.000	.006	.174	.045	.624	.180	.000
PP-AT0.5	PP	.000	.001	.021	.772	.646	.147	.207	.000	.002	.000	.752	.021	.010	.033	.000
PP-AT0.1	SAT-GP	1.000	.001	.001	.149	1.000	.185	.528	.013	.922	.055	.234	.150	.174	.489	1.000
PP-AT0.2	SAT-GP	1.000	.009	.051	.279	1.000	.383	.049	.051	.920	.059	.312	.056	.205	.963	.989
PP-AT0.5	SAT-GP	.058	.003	.000	.129	.259	.134	.390	.420	.200	.457	.057	.072	.539	.475	1.000
PP-AT0.2	PP-AT0.1	1.000	.541	.177	.760	.949	.030	.365	.619	.912	.936	.829	.608	.863	.494	.909
PP-AT0.5	PP-AT0.1	.054	.791	.763	.002	.232	.001	.767	.123	.135	.003	.420	.832	.034	.179	.982
PP-AT0.5	PP-AT0.2	.054	.845	.116	.007	.226	.474	.508	.318	.176	.003	.305	.790	.046	.504	.930

Table 5: Post-hoc analysis of Kruskal Wallis test using Dunns Test with Benjamini Hochberg procedure conducted on solution size. If the result of the method in the first column is better than that of the method in the second column, p-value of this post-hoc test is printed in bold face. Significant results marked in italic face ($\alpha = 0.05$).

Problems	S	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15
Kruskal '	Wallis	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
neatGP	GP	.002	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP	GP	.003	.000	.040	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
SAT-GP	GP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP-AT0.1	GP	.001	.349	.422	.602	.792	.901	.416	.854	.003	.178	.049	.044	.196	.306	.028
PP-AT0.2	GP	.000	.135	.824	.440	.582	.433	.048	.024	.000	.033	.045	.048	.320	.178	.021
PP-AT0.5	GP	.000	.000	.001	.000	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP	neatGP	.895	.009	.000	.000	.007	.072	.000	.413	.236	.272	.340	.291	.499	.372	.577
SAT-GP	neatGP	.000	.491	.107	.448	.784	.904	.416	.000	.002	.000	.001	.009	.013	.008	.000
PP-AT0.1	neatGP	.858	.000	.000	.000	.000	.000	.000	.000	.082	.029	.004	.000	.000	.000	.007
PP-AT0.2	neatGP	.205	.000	.000	.000	.000	.000	.000	.071	.244	.163	.005	.000	.000	.000	.010
PP-AT0.5	neatGP	.000	.007	.001	.001	.000	.062	.007	.077	.051	.002	.360	.079	.615	.208	.018
SAT-GP	PP	.000	.001	.004	.002	.016	.088	.003	.002	.053	.000	.022	.000	.001	.100	.000
PP-AT0.1	PP	.790	.000	.004	.000	.000	.000	.001	.000	.003	.001	.000	.008	.000	.000	.029
PP-AT0.2	PP	.152	.002	.065	.001	.000	.000	.018	.010	.018	.015	.000	.007	.000	.000	.037
PP-AT0.5	PP	.000	.931	.244	.550	.173	.947	.293	.360	.415	.036	.990	.006	.240	.710	.004
PP-AT0.1	SAT-GP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP-AT0.2	SAT-GP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP-AT0.5	SAT-GP	.210	.001	.102	.017	.000	.076	.065	.030	.246	.025	.019	.393	.051	.206	.211
PP-AT0.2	PP-AT0.1	.251	.601	.319	.719	.401	.320	.328	.034	.566	.404	.947	.990	.728	.686	.884
PP-AT0.5	PP-AT0.1	.000	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP-AT0.5	PP-AT0.2	.004	.003	.002	.000	.007	.000	.001	.000	.002	.000	.000	.000	.000	.000	.000

Table 6: Post-hoc analysis of Kruskal Wallis test using Dunns Test with Benjamini Hochberg procedure conducted on running time. If the result of the method in the first column is better than that of the method in the second column, p-value of this post-hoc test is printed in bold face. Significant results marked in italic face ($\alpha = 0.05$).

Problems	S	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15
Kruskal '	Wallis	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
neatGP	GP	.049	.043	.418	.045	.133	.044	.149	.041	.050	.045	.036	.045	.042	.045	.042
PP	GP	.013	.003	.002	.002	.000	.000	.000	.007	.003	.000	.000	.000	.000	.000	.001
SAT-GP	GP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP-AT0.1	GP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.005	.000	.016	.007	.005	.000
PP-AT0.2	GP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.001	.000	.001	.000	.000
PP-AT0.5	GP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP	neatGP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
SAT-GP	neatGP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP-AT0.1	neatGP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP-AT0.2	neatGP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP-AT0.5	neatGP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
SAT-GP	PP	.000	.000	.000	.000	.000	.000	.000	.000	.000	.001	.000	.003	.022	.005	.000
PP-AT0.1	PP	.075	.636	.144	.231	.882	.484	.571	.152	.190	.010	.860	.012	.005	.046	.562
PP-AT0.2	PP	.015	.047	.003	.160	.714	.313	.992	.057	.308	.043	.820	.405	.034	.483	.558
PP-AT0.5	PP	.000	.000	.000	.000	.000	.009	.000	.000	.000	.063	.000	.000	.006	.000	.000
PP-AT0.1	SAT-GP	.000	.000	.003	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP-AT0.2	SAT-GP	.000	.000	.137	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
PP-AT0.5	SAT-GP	.078	.209	.444	.533	.217	.120	.314	.058	.355	.105	.343	.575	.606	.467	.396
PP-AT0.2	PP-AT0.1	.464	.121	.147	.819	.794	.737	.593	.610	.755	.569	.718	.089	.491	.183	.963
PP-AT0.5	PP-AT0.1	.006	.000	.000	.001	.000	.001	.001	.003	.001	.000	.000	.000	.000	.000	.000
PP-AT0.5	PP-AT0.2	.042	.016	.024	.002	.000	.000	.000	.013	.000	.000	.000	.000	.000	.000	.000