Isomorphism between general objects

with Fundamental applications

Shigeo Hattori

February 23, 2020

bayship.org@gmail.com

https://github.com/bayship-org/mathematics https://orcid.org/0000-0002-2297-2172

1 Introduction

To write down the main conjectures, some definitions need to be given. As you know, two objects are regarded as equivalent if they are isomorphic. In other words, the mathematics on each of the two are equivalent. First we define when two given general objects, say (x, y), are said ¹isomorphic, written $x \cong y$.

Before we go ahead, let me give some trivial examples.

For example, if $\{p_i\}_{i\in\{1,2,3\}}$ is a set of 3 objects pairwise isomorphic then $(p_1,p_2)\cong(p_1,p_3); (p_1,p_2)\ncong(p_1,p_1).$

Two homeomorphic topological spaces $((X_1, T_1), (X_2, T_2))$ are not isomorphic in general because their points are not promised to be pairwise isomorphic, e.g., the homeomorphism f relates all points p as $f(p) = \{p\}$.

$$(X_1, T_1) \cong_h (X_2, T_2)$$

$$(X_1, T_1) \ncong (X_2, T_2)$$

1

2

4

5

6

Take $\forall (x,y)$ as numbers, then it will be defined that: $x\cong y\equiv x=y$. 1 Contrary there exists a class of points where all points are pairwise isomorphic. 1 For example points of some elementary geometry belong to such a class.

A topological space X is a set of points defined the topology T. (X,T) also may 17 be said a topological space.

¹In other words, generally isomorphic.

In the rest, even if X is meant to be a set of points defined a topology,	19
that will be ignored inside expressions of isomorphism, \cong , i.e., X will be	20
regarded as just a set of points, no topology will be implicitly accompanied;	21
· · · · · · · · · · · · · · · · · · ·	22
2 Isomorphism	0.0
2 Isomorphism	23
Definition 2.1 (Deep member). Take $\forall (c, n, x, y)$ such that: c is a chain of set	24
membership; $ c = n$; x is the maximum member of c. y is a minimum member	25
of c . Then c is said a deep chain of x ; y is said a deep member of x ; and you	26
write $y \in ^{deep} x; y \in ^{n-1} x; (x,y)$ are also written as $(\max(c,0), \min(c,0))$	27
respectively.	28
	29
For example:	30
$y \in \ldots \in x$	
For example:	21
$\{y1, y2\} \in {}^{0} \{y1, y2\}$	31
	32
$y \in {}^{2} \{1, \{2, y\}\}$	
Axiom 2.1 (Identity). Conceptually, the identity of an entity is a non literal	33
unique name. Take $\forall (x,y)$, then $\exists z$ written $z=\mathrm{ID}(x)$ such that (*1 $\overset{\mathrm{and}}{\wedge}$	34
$\overset{\mathrm{and}}{\wedge} *4).$	35
	0.0
1. $ID(x) = ID(y) \equiv x = y;$	36
2. $ID(x)$ has no deep member other than itself;	37
3. $ID(x) \neq \emptyset$;	38
$\mathbf{o.} \ \mathbf{ib}(x) \neq \varnothing,$	90
4. the mathematics on $ID(x)$ and the mathematics on $ID(y)$ are equivalent;	39
· · · · · · · · · · · · · · · · · · ·	40
Definition 2.2 (Dow) This definition is just for making the touts shorter but	41
Definition 2.2 (Box). This definition is just for making the texts shorter but	
for fundamental mathematics. All box h is a tuple of either 1 or 2 entities. We write h as $bey(i, v)$ or $bey(i, v)$	42 43
All box b is a tuple of either 1 or 2 entities. We write b as box (i, v) or box (i, v) depending on the length; i is said the index and v is said the value ; the index	44
i must be an identity.	45
•	-10
Definition 2.3 (Deep graph and tree). Take $\forall (x, V, E)$ such that (*1 $\stackrel{\text{and}}{\wedge}$ *3).	46

Define (*4 *5).

- 1. let $V_c := \{g(c) \mid c \text{ is a deep chain of } x \};$
- 2. 49

$$V_2 = \{ c \mid c \in V_c \stackrel{\text{and}}{\wedge} c \text{ is maximal on } V_1 \};$$

$$V_1 = V_c - V_2;$$
 51

$$V = \{ box(ID(c), min(c)) \mid c \in V_2 \} \cup \{ box(ID(c),) \mid c \in V_1 \};$$
52

3. E is the set of directed edges on V such that:

$$E := \{ (b_1 > b_2) \in V^2 \mid (@b_1 \supset @b_2) \stackrel{\text{and}}{\wedge} (|@b_1| - |@b_2| = 1) \};$$
 54

$$@b := ID^{-1}(\text{the index of } b);$$
 55

- **4.** (V, E) is said the deep tree of x;
- **5.** all vertex v of a deep tree is said an end vertex if $v \in V_2$;
- 59
- **Definition 2.4** (Isomorphism). Take $\forall (x,y,F,f)$ such that (*0 $\stackrel{\text{and}}{\wedge}$... $\stackrel{\text{and}}{\wedge}$ *5). 60 Define $x \cong^{F,f} y \stackrel{\text{and}}{\wedge} x \cong^F y \stackrel{\text{and}}{\wedge} x \cong y$.
- **0.** let G_i be the deep tree of $\forall i \in \{x, y\}$;
- 1. let G_i decomposed as $(V, E)_i := G_i$; 63
- **2.** F is a bijection on some set of indentities;
- **3.** f is a graph isomorphism from*to $G_x * G_y$;
- **4.** take $\forall v$ as an end vertex of G_x ,
 - @v := (the value of v);
- **5.** (*5a ° *5b); 68
- **5a.** F(@v) = F(@f(v)); 69
- **5b.** $@v \notin^2 F \stackrel{\text{and}}{\wedge} @v = @f(v);$ 70
- **Definition 2.5.** Take $\forall (x, G_1, G_2, F, f)$ such that: G_1 is a deep tree of x 72 $\stackrel{\text{and}}{\wedge} G_1 \cong^{F,f} G_2 \stackrel{\text{and}}{\wedge} F$ is an identity function. Then G_2 too is said a deep 73 tree of x.

71

3 Point abstraction	7.
Take $\forall ((X_1, T_1), (X_2, T_2))$ as homeomorphic topological spaces where $T_{\forall i}$ is a topology. In the rest we prefer that $((X_1, T_1), (X_2, T_2))$ are also isomorphic. In other words we prefer all points in $X_1 \cup X_2$ to be identities. In the rest, if the condition is not satisfied then we transform the topological space into its point abstraction.	7'
Definition 3.1 (Point abstraction). Take $\forall (x, G, P)$ such that (*1 $\stackrel{\text{and}}{\wedge}$ $\stackrel{\text{and}}{\wedge}$ *5 Do (*6 $\stackrel{\text{and}}{\wedge}$ *9) to get the point abstraction y of x .). 8 8
1. G is a deep tree of x ;	8
2. let G be decomposed as $(V, E) := G$;	84
3. $P \subset V$;	8
4. P is the set of all such vertices p that you regard p as a point of x ;	8
Recall that p is either a $box(c, m)$ or $box(c)$ where c is a deep chain of x .	8
5. members of P are pairwise (p_1, p_2) in a condition that $@p_1 \not\supset @p_2;$	8
$@p := ID^{-1}(\text{the index of } p);$	8
	9
6. update G by removing all such vertices v from V that $\exists p :\in P \stackrel{\text{and}}{\wedge} @v \supset @p;$	9
7. for each $p :\in P$, update G at p as *7a;	9:
7a let $c := ID^{-1}$ (the index of p), then replace p with box($ID(c)$, $ID(\min(c))$);	9
8. let $(V, E)_2$ be the output of *7;	9.
9. take $\forall y$ such that $(V, E)_2$ is a deep tree of y ;	9.
The proof of the uniqueness of y is omitted.	9
•	9
4 Applications in geometrical topology	9
4.1 Natural automorphism	9
Definition 4.1. Take $\forall (F, X, T)$ such that (X, T) is a topological space and F	
is an ambient isotopy on X .	10

 $F:X*[0,1]\to X$

Take $\forall (t, f)$ such that f is the function as $f: X \to X$, $f(x) := F(x, t)$. Then f	103
is said a natural automorphism on (X,T) ; alternatively F or (F,t) are used	
to describe f .	105
Take $\forall (x,y)$ such that $(X,T,x)\cong f$ (X,T,y) , then (x,y) are said (X,T) -	106
natural-automorphic.	107
4.2 Ideal set of sub spaces	108
Definition 4.2 (Ideal set of sub spaces). Take $\forall (X, T, S)$ such that: (X, T) is a topological space. S is a set of sub spaces of X .	109 110 111
For example, (X, T, M) is a Euclidean space of dimension 1 where M is the metric table, and S is the set of all open intervals of length 1 in terms of M .	
Be careful that, neither (X,T) nor S is defined the notion of lengths; instead M defines	114
lengths.	115
S is said ideal if: (*1 $\stackrel{\text{and}}{\wedge}$ $\stackrel{\text{and}}{\wedge}$ *5).	116
1. $\exists B$ as an open basis to generate (X,T) .	117
Hence B is a subset of the power set of X .	118
2. Let $S_B := \{@S_b \mid \exists b \in B \ \wedge \ S_b = \{s \mid s \in S \ \wedge \ P(s) \subset b \} \}.$	119
That is, $P(s)$ denotes the set of all points of s ;	120
$\forall A$, define $@A := \{ ID(a) \mid a \in A \};$	121
3. let $S_d := @S;$	122
4. $\exists T_d$ such that S_B is an open basis to generate (S_d, T_d) .	123
5. Members of S_d are pairwise (X,T) -natural-automorphic.	124
· ·	125
Conjecture 4.1 (Ideal set of sub spaces and ambient isotopies).	126
Take $\forall (X,T,S,F,A)$ such that: (X,T) is a topological space where T is the	127
topology. S is an ideal set of sub spaces of (X,T) . F is the set to collect:	128
$\forall f \colon X^*[0,1] \to X$ such that f is an ambient isotopy. A is the set to collect	129
$\forall (g, S_1, S_2)$ such that: g is a natural automorphism on $(X, T) \stackrel{\text{and}}{\wedge} (S_1, S_2)$ are	130
subsets of $S \stackrel{\text{and}}{\wedge} (S_1, T) \cong^g (S_2, T)$.	131
Then $(*1 \stackrel{\text{and}}{\wedge} \dots \stackrel{\text{and}}{\wedge} *4)$ holds.	132
1. take $\forall (g, S_1, S_2) :\in A;$	133

$2. \ \exists f :\in F;$	134
3. take $\forall t:\in [0,1] \stackrel{\text{and}}{\wedge} \text{ define } f_t$ as the natural automorphism in terms of $(X,T,f,t);$	135 136
4. $(f_t, S_1, S_2) \in A \stackrel{\text{and}}{\wedge} \text{ if } t = 1 \text{ then } f_t = g;$	137
· ·	138
Definition 4.3 (Prime topological space). Take $\forall (X,T)$ as a topological space. Then (X,T) is said prime if *1.	139 140
1. $\exists S$ as a set of sub spaces of $(X,T) \overset{\text{and}}{\wedge} S$ is ideal $\overset{\text{and}}{\wedge} @S$ is an open basis to generate X .	141 142
$@S := \{s \mid (s,t) \in S \}$ where t is the topology;	143
·	144
Conjecture 4.2 (Ideal set of sub spaces). Take $\forall (X,T,S)$ such that: (X,T) is a prime topological space. S is a set of sub spaces of (X,T) . Then S is ideal if *1.	
1. let $S_{Xp} := \{(S, X_s, p) \mid \exists s \in S \stackrel{\text{and}}{\wedge} (X_s, T_s) := s \stackrel{\text{and}}{\wedge} p \in X_s \};$	148
Members of S_{Xp} are pairwise (X,T) -natural-automorphic.	149
· ·	150
5 Abstract conjectures	151
5.1 Main abstract conjecture	152
Definition 5.1 ($\stackrel{\text{ID}}{Deep}$). Take $\forall X$.	153
Definition 5.1 ($Deep$). Take $\forall X$. $Deep(X) := \{ p \mid p \in ^{deep} X \stackrel{\text{and}}{\wedge} p \text{ is an identity } \}.$	154
$Deep(X) := \{ p \mid p \in X $	194
•	155
Conjecture 5.1 (Abstract conjecture of ideal set and metric).	156
Take $\forall (M, X, T, S_1, f)$ such that *A.	157
Consider (*B \rightarrow *C). It is independent from the topological class of members	158
of S_1 if f is enough general over (different solutions of S_1), in terms of	159
topological classes of members.	160
The claim converges to true if generality approaches to the perfect by removing inequali-	161
ties. And you can achieve it in finite steps proportional to the length of the original definition.	162

A. *1 $\stackrel{\text{and}}{\wedge}$ $\stackrel{\text{and}}{\wedge}$ *3.	
	163
	16 4
•	165
2. S_1 is an ideal set of sub spaces of X .	166
3. f is a function on S_1 .	167
B. *1 $\stackrel{\text{and}}{\wedge}$ $\stackrel{\text{and}}{\wedge}$ *3.	168
1. Take $\forall k_1 :\in S_1$	169
2. Let $S_2 := \{k_2 \in S_1 \mid f(k_2) = f(k_1) \}.$	170
3. S_2 is unique for (M, X) .	171
Unique?: For example, take $\forall x :\in \stackrel{\text{ID}}{Deep}(X)$. It is trivial that x is not unique for (M,X) in general. Hence, if S_2 is the set to collect $\forall k :\in S_1$ such that $x \in \stackrel{\text{ID}}{Deep}(k)$ then S_2 is not unique for (M,X) in general. Instead S_2 is unique for (M,X,x) .	17 3
C. S_2 is ideal.	176
•	177
5.2 Application on knots	178
Let Conj be an alias for Conjecture 5.1. Let Def be an alias for the following Definition 5.2. The antecedent of Conj apparently holds for (M, X, T, K, K_f, f) of Def in place of (M, X, T, S_1, S_2, f) . And f is apparently enough general as required in Conj.	180
M is a metric table to define (X,T) as a Euclidean space of 3-dimension. Take $\forall k_0$ as a knot and a subspace of (X,T) . K is the set to collect $\forall k$ such that: (k,k_0) are (X,T) -natural-automorphic. $K_f := \{k \in K \mid f(k) = f(k_0) \}$.	187
	188 189
j is an orthogonal ² projection of k onto some infinite plane $\}$.	190 191
² Hence, j is a function from k to an infinite plane.	

• $j_2(\forall k :\in K) := \{j \in j_1(k) \mid \neg (\exists p \land p \in \text{image}(j) \land j^{-1}(p) > 2) \}.$	192
$\neg (\exists p \land p \in \operatorname{image}(j) \land j \land (p) > 2) \}.$	193
• $j_3(\forall k :\in K) := \{n \mid \text{and} \}$	194
$\exists j \overset{\text{and}}{\wedge} j \in j_2(k) \overset{\text{and}}{\wedge} n \text{ is the number of } ^3 \text{double points in } \text{image}(j) \}.$	195
• $f(\forall k :\in K) := \{m \mid$	196
m is the maximal member from $j_3(k)$ }.	197
· · · · · · · · · · · · · · · · · · ·	198
C Notation	
6 Notation	199
• take $\forall x \equiv \text{for } \forall x \equiv \forall x$.	200
In other words, "take" means nothing.	201
• $\forall x \text{ as a set} \equiv \forall x \text{ such that } x \text{ is a set.}$	202
• assume that y has been introduced as dependent on z; if (x_1, x_2) are	203
introduced as solutions of y ; then (x_1, x_2) are dependent on a same z .	204
• $\{x \mid p(x)\} \equiv$ the set to collect $\forall x$ such that $p(x)$.	205
• All tuple of length 1 is written with parentheses and a comma, e.g., $(x,)$.	206
•	207
	208
In definitions, I rarely write "if and only if". In stead I write "if" even if I know	209
that "if and only if" can replace the "if".	210

³Double point?: That is, the inverse image of a double point has exactly 2 distinct points of k; no matter the double point represents a crossing or a tangent point.

References	211
[1] Glen E. Bredon, Topology and Geometry, Springer, ISBN 978-1-4419-3103-0	212
[2] Reinhard Diestel, Graph Theory, Springer-Verlag, ISBN 0-387-98976-5	213