Herbst 13 Themennummer 3 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei $G\subset \mathbb{C}$ ein beschränktes Gebiet. Sei $f:\overline{G}\to \mathbb{C}$ eine stetige und nichtkonstante Funktion.

- a) Die Einschränkung $f|_G$ von f auf G sei holomorph.
 - i) Zeigen Sie, dass $\partial f(G) \subset f(\partial G)$. (Dabei bezeichnet ∂A den Rand $\overline{A} \backslash \mathring{A}$ einer Menge $A \subset \mathbb{C}$.)
 - ii) Geben Sie ein Beispiel für ein derartiges G und f an mit $\partial f(G) \subseteq f(\partial G)$.
- b) Geben Sie ein Beispiel für ein derartiges G und f an mit $f|_G$ unendlich oft reell differenzierbar und $\partial f(G) \not\subset f(\partial G)$.

Lösungsvorschlag:

- a) i) Sei $z \in \partial f(G) = \overline{f(G)} \backslash f(G)$, weil f(G) nach dem Satz über die Gebietstreue offen ist. Hier wird verwendet, dass $f|_G$ nicht konstant ist, sonst wäre durch die Stetigkeit auch f konstant. Es gibt eine Folge $z_n \in G$ mit $f(z_n) \to z$ für $n \to \infty$. Weil G beschränkt ist, besitzt die beschränkte Folge $(z_n)_{n \in \mathbb{N}}$ einen Häufungspunkt $w \in \overline{G}$ und wir finden eine Teilfolge z_{n_k} die für $k \to \infty$ gegen w konvergiert. Aus der Stetigkeit von f folgt dann $z = \lim_{n \to \infty} f(z_n) = \lim_{k \to \infty} f(z_{n_k}) = f(w)$. Falls $w \in G$ wäre, so wäre $z = f(w) \in f(G)$, ein Widerspruch zu $z \in \partial f(G)$. Also folgt $w \in \partial G$ und damit $z = f(w) \in f(\partial G)$.
 - ii) Wir betrachten die Funktion $f(z) = \sin(z)$ auf dem beschränkten Gebiet $G = B_{\pi}(0)$. Dann ist $\pi \in \partial G$ und daher $0 = f(\pi) \in f(\partial G)$. Wegen $0 \in G$ und $f(G) = f(G)^{\circ}$ ist aber $0 = f(0) \notin \partial f(G)$, weil 0 im Inneren des Bildes liegt.
- b) Wir betrachten $f(x+iy)=\cos(x^2+y^2)$ auf dem Gebiet $B_{\sqrt{\pi}}(0)$. Natürlich ist f als Verkettung unendlich oft differenzierbarer Funktionen, selbst unendlich oft differenzierbar. Es gilt f(0+i0)=1 und $f(x+iy)\leq 1$ für alle $x,y\in\mathbb{R}$, weshalb $1\in\partial f(G)$ gilt. Der Rand von G ist $\partial G=\{x+iy\in\mathbb{C}:|x+iy|=\sqrt{\pi}\}$. Für jedes $x+iy\in G$ gilt $0\leq x^2+y^2=|x+iy|^2=\pi$. Wegen $\cos(t)=1\iff t\in 2\pi\mathbb{Z}$ kann für $x+iy\in G$ daher f(x+iy)=0 nur für $x^2+y^2=0$, also für x+iy=0+i0 gelten. Damit gilt $f(z)\neq 1$ für alle $z\in\partial G$ und $1\in\partial f(G)\backslash f(\partial G)$, da $0+i0\notin\partial G$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$