Lecson A 02: Linear Algebra

Tersor of various dimersionality

O-D tensor Scalar	1 D tensor Vector	2A tensor. Matrix
R	Rh	R mxn
X, 8, 8.	$\vec{v} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$	m H
	$\overrightarrow{w}^T = [231].$	h .

The Operations about vector

1 Addition and Substraction.

Operations related to inner product \vec{v} : 0 the projection of \vec{v} over \vec{v} : $\vec{v}' = \vec{u}$ $||\vec{v}|| \cdot \cos \theta$ $= \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||} \cdot \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \cdot ||\vec{v}||}.$ $= \left(\begin{array}{c|c} \vec{u} \circ \vec{v} \\ \hline ||\vec{u}||^2 \end{array} \right) \cdot \vec{u}$ Orthogonalization of v $\overrightarrow{v}^* = \overrightarrow{v} - \overrightarrow{v}'$ (projection vector

Magnitude (Length) of Vactor Norn of Vector. Lob-norm. | [3] | = 3. $L_{p}-norm$. $\| \vec{v} \|_{p} = \left(\sum_{i=1}^{n} |v_{i}|^{p} \right)^{1/p}.$ Applications about Norm. O The Error of Neural Network D Normaling a vector 1 VII a vector with unit

Mctrix. (pettern + Magnitude) D Matrix Norn. Frobenius norm $||A||_F = \sqrt{\sum ||aij||}$ = Ntrace (ATA) -(Trace: the sum of the diagonal Elements). Operation of Matrix. Matrix addition/ substructions

Matrix vector product

Matrix scalar product

Matrix - Matrix product Solution of Linear Equetion Eigen-decomposition. Singula Value Decomposition

Solution of linear Egration.

$$\int_{x}^{2x} -y = 2.$$

$$x + y = -2.$$

$$(0,-2)$$

$$\int_{3x+2y=-4}^{3x+2y=-4}$$

One Solution

No colution

00 - many solution.

Example:

$$\begin{cases} x - y = 3 & 0 \\ 2x - 2y = 6 & 2 \end{cases}$$

Find the Eigenvalue and. Eigenvector. $A = \begin{bmatrix} 2 & +1 & 3 \\ 1 & 2 & 3 \\ 3 & 3 & 20 \end{bmatrix}$ Step 1: Find the characteristic Eq. $clet(A-\lambda I) = \begin{vmatrix} 2-\lambda & 1 & 3 \\ 1 & 2-\lambda & 3 \end{vmatrix} = -\lambda^3 + 24\lambda^2 - 65\lambda + 42\lambda^2$ 3 3 20-\(\lambda\) Step 2. Solve the characteristic eg to find Eigen value. $-1^{3} + 241^{2} - 651 + 42 = 6.$ (1 - 1) (1 - 2) (-1 + 21) = 0. (1 - 1) (1 - 2) (-1 + 21) = 0.Step 3: Find the Eigenvectur associated with each eigenvalue. $for \lambda_1=1$. $\begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & 3 \\ 3 & 3 & 20 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $v_1=v$. $\Rightarrow v_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \qquad (9)$

Singular Value Decomposition A = U \(\sum V \)

Left singular kight
vector singular becter Thin Metrix A. Matrix A 6, u, · v, + 62. uz. v, + 63. uz v, + ... - Gn. Un Vn .

10

Find the SVD of A, UZVT, A = [23-2]

(Fat Metrix). Step 1: compute the singular value si by computing the Eigenvalue of A.A.T. $AA^{\top} = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix} * \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}.$ the characteristic polymormial is $\det (AA^{T} - \lambda I) = 1^{2} - 341 + 225$... the singular values are $6_1 = \sqrt{\lambda_1} = \sqrt{25} = 5$. $6_2 = \sqrt{9} = 3$ S-eep 2: Compute the Eigenvector of $A^{T}A$ (Right Vector) $AA^{T} = \begin{bmatrix} -12 & 12 & 2 \\ 12 & -12 & -2 \\ 2 & -2 & -17 \end{bmatrix}.$ for $\lambda_1 = 25$. $\begin{bmatrix} -12 & 12 & 2 \\ 12 & -2 & -2 \\ 2 & -2 & -17 \end{bmatrix} = 25 \begin{bmatrix} 1 & 6 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. $v_1 = 0$. $\Rightarrow v_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$. for $\lambda_2 = 9$. $\begin{bmatrix} -12 & 12 & 2 \\ 12 & -2 & -17 \end{bmatrix} - 9 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $v_2 = 0$. $=) N_2 = \begin{pmatrix} 1/\sqrt{18} \\ -1/\sqrt{18} \end{pmatrix}$ $\frac{1}{\sqrt{\sqrt{18}}}$

for the last right singular vector N3. $v_s = \frac{v_1 \times v_2}{||v_1 \times v_2||} = \begin{bmatrix} \frac{\sqrt{3}}{3} \\ -\frac{1}{3} \end{bmatrix}$ Stop 3: Compute the left singular vector 3.2) Or in other way compute the eigenvector of $AA^{T} = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}$. $f_{\alpha} \lambda_{1} = 25 \cdot \left(\begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix} - 25 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) u_{1} = 0$ $\Rightarrow u_{1} = \begin{bmatrix} 1/\sqrt{2} \\ \sqrt{2} \end{bmatrix}.$ $A = U \Sigma V = \begin{bmatrix} \sqrt{5} & \sqrt{5} &$

Singular Value Decomposition $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = U \Sigma V^{T}$ (Thin Matrix) Solution: Right Singular $V^{T} = \left[\text{eigenvector}(A^{T}A) \right]^{T} = \left[v_{1} v_{2} \right]^{T}$.

Value Vector.

with λ_{1} , λ_{2} ar eigenvalue. Left $V = \begin{bmatrix} \frac{1}{6!} A v_i & \frac{1}{62} A v_2 & \frac{NS(A^T)}{1NS(A^T)!} \end{bmatrix} (6i = NAi)$ Vector $\sum = \begin{bmatrix} 6_1 & 0 \\ 0 & 6_2 \\ 0 & 0 \end{bmatrix}.$ etail: $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \Rightarrow A^{T}A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \Rightarrow \begin{bmatrix} \lambda_1 = 3 & \nu_1 - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ \lambda_2 = 2 & \lambda_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$ $V^{T} = \begin{bmatrix} 0 & 1 \end{bmatrix}^{T} = \begin{bmatrix} \nu_1 & \nu_2 \end{bmatrix}^{T}$ $U = \begin{bmatrix} 1 & \begin{bmatrix} 1 & 1 \\ \sqrt{3} & \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 \\ \sqrt{2} & \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{bmatrix} \frac{NS(A')}{[NS(A')]}$

$$NS (A^{T}) \Rightarrow A^{T} x = 0.$$

Assume that
$$x_3$$
 is free. $x_3 = 1 \Rightarrow x_1 = 1$, $x_2 = -2$.

i.
$$u_3 = \begin{bmatrix} -2 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} / \sqrt{6} (||u_3||)$$

$$V = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$