Data Import and Setup

```
data = readtable("HW3_data.xlsx");
```

```
% Transpose data so Observations are rows and Genes are columns
data1 = rows2vars(data, "VariableNamesSource", "ID_REF");
```

Warning: Table variable names were modified to make them valid MATLAB identifiers.

```
% Create X and Y by removing non-numerical rows from data1.
X = cell2mat(data1{3:end,2:end-1});
Xz = zscore(X);
Y = cell2mat(data1{3:end,"SurvivalDays"});
Yz = zscore(Y);
```

Find Top 100 Genes (p-value)

```
% Extract r and p-value data
[r, pval] = corr(X,Y);
```

```
% Identify top 100 correlated genes based on p-value
[gene_pval,gene_index] = mink(abs(pval),100);
var_names = data1.Properties.VariableNames(gene_index+1)
```

```
% Create new data set w/ 100 genes plus Survival Days data
data_rev = data1(:,[gene_index+1;end]);
```

```
% Check that new matrix looks correct head(data_rev)
```

ans = 8×101 table

	A_23_P342744	A_24_P246891	A_23_P24535	A_23_P75362	A_32_P76399	A_23_P102973
1	'LIX1L'	'NEU4'	'TTC12'	'IFITM10'	'EIF3L'	'DGCR14'
2	'Lix1 homolog	'sialidase 4'	'tetratricope	'interferon i	'eukaryotic t	'DiGeorge syn
3	-0.0999	-0.9610	0.2836	-0.3181	-0.2663	0.3688
4	1.0914	1.6402	-1.4203	-0.5402	-0.0894	1.1947
5	-0.3744	1.7162	0.1795	0.7548	0.4971	-0.0330
6	-0.5794	-0.3284	0.0996	-0.6180	-1.4039	-0.9170
7	0.1093	0.9673	1.8210	0.0177	-0.8933	-0.2180
8	0.1558	-0.2542	0.9784	-0.4683	-0.2940	-0.5283

```
% Write new matrix to csv file for future use writetable(data_rev,"Top 100 Genes.csv")
```

```
% Create new X and Y matrices

X_100 = cell2mat(data_rev{3:end,1:100});

Y_100 = cell2mat(data_rev{3:end,end});
```

Hold Out Validation Model

Using Top 20 Correlated Genes from Training Set

```
% Create X and Y training/test sets from 100 genes
[trainInd,~,testInd] = dividerand(size(X_100,1),0.7,0,0.3);
Xtrain = X_100(trainInd,:);
Xtest = X_100(testInd,:);
Ytrain = Y_100(trainInd,:);
Ytest = Y_100(testInd,:);

% Find top 20 correlated genes with training data
r_100 = corr(Xtrain,Ytrain);
[r_20,index_20] = maxk(abs(r_100),20);

% Create new training and test predictor data sets with top 20 genes
Xtrain_20 = Xtrain(:,index_20);
Xtest_20 = Xtest(:,index_20);
mdl_20 = fitlm(Xtrain_20,Ytrain)
```

2772 7 1120

+0+0+

Estimated Coefficients:

Estimate	SE	tStat	pValue
536.06	69.11	7.7566	1.3465e-07
-22.317	63.378	-0.35213	0.72825
84.066	49.352	1.7034	0.10325
180.93	89.93	2.0119	0.057239
38.562	169.01	0.22817	0.82172
-43.673	51.844	-0.8424	0.40906
223.31	156.38	1.428	0.168
91.61	162.47	0.56386	0.57882
62.336	69.476	0.89723	0.37977
3.3181	98.448	0.033704	0.97343
-56.429	143.82	-0.39237	0.69874
7.2124	98.879	0.072941	0.94254
30.05	78.329	0.38364	0.7051
59.653	60.625	0.98397	0.33633
-128.54	157.77	-0.81476	0.42435
72.859	123.38	0.59051	0.56115
-72.814	104.6	-0.69615	0.49397
18.293	85.73	0.21338	0.83309
	536.06 -22.317 84.066 180.93 38.562 -43.673 223.31 91.61 62.336 3.3181 -56.429 7.2124 30.05 59.653 -128.54 72.859 -72.814	536.06 69.11 -22.317 63.378 84.066 49.352 180.93 89.93 38.562 169.01 -43.673 51.844 223.31 156.38 91.61 162.47 62.336 69.476 3.3181 98.448 -56.429 143.82 7.2124 98.879 30.05 78.329 59.653 60.625 -128.54 157.77 72.859 123.38 -72.814 104.6	536.06 69.11 7.7566 -22.317 63.378 -0.35213 84.066 49.352 1.7034 180.93 89.93 2.0119 38.562 169.01 0.22817 -43.673 51.844 -0.8424 223.31 156.38 1.428 91.61 162.47 0.56386 62.336 69.476 0.89723 3.3181 98.448 0.033704 -56.429 143.82 -0.39237 7.2124 98.879 0.072941 30.05 78.329 0.38364 59.653 60.625 0.98397 -128.54 157.77 -0.81476 72.859 123.38 0.59051 -72.814 104.6 -0.69615

CF

```
      -53.038
      143.21
      -0.37034
      0.71483

      -58.021
      69.837
      -0.8308
      0.41543

    x18
    x19
                     -0.072881 117.67 -0.00061935
    x20
                                                                  0.99951
Number of observations: 42, Error degrees of freedom: 21
Root Mean Squared Error: 205
R-squared: 0.7, Adjusted R-Squared: 0.414
F-statistic vs. constant model: 2.45, p-value = 0.0238
Ypred = predict(mdl 20, Xtest 20);
r mdl = corr(Ytest, Ypred)
r mdl = 0.2431
r2 \text{ mdl} = r \text{ mdl}^2
r2 \text{ mdl} = 0.0591
RMSE = sqrt(mean((Ypred-Ytest).^2))
RMSE = 418.5823
avg error = mean(abs(Ypred-Ytest)./Ytest*100)
avg error = 143.5671
```

Hold Out Model w/ For Loop

Top 20 Correlated Genes are Reselected Each Iteration

```
r mdl = zeros(100,1);
for j = 1:100
    % Create X and Y training/test sets from 100 genes
    [trainInd, \sim, testInd] = dividerand(size(X 100,1), 0.7, 0,0.3);
    Xtrain = X 100(trainInd,:);
    Xtest = X 100(testInd,:);
    Ytrain = Y 100(trainInd,:);
    Ytest = Y 100(testInd,:);
    % Find top 20 correlated genes with training data
    r 100 = corr(Xtrain, Ytrain);
    [r 20, index 20] = maxk(abs(r 100), 20);
    % Create new training and test predictor data sets with top 20 genes
    Xtrain 20 = Xtrain(:,index 20);
    Xtest 20 = Xtest(:,index 20);
    mdl 20 = fitlm(Xtrain 20, Ytrain);
    Ypred = predict(mdl 20, Xtest 20);
    r mdl(j) = corr(Ytest, Ypred);
    r2 \text{ mdl} = r \text{ mdl}^2
    %RMSE = sqrt(mean((Ypred-Ytest).^2))
    %avg error = mean(abs(Ypred-Ytest)./Ytest*100)
```

```
hist(r_mdl)
xlabel("Correlation Coefficient, r")
ylabel("Frequnecy")
title("Hold Out Model (100 runs)")
```


K-fold Cross Validation Model

```
% For K-fold model, using top 20 correlated genes from entire data set (not
% just the training set, as the 20 genes would change each iteration)

r_100_kfold = corr(X_100,Y_100);
[r_20_kfold,index_20_kfold] = maxk(abs(r_100_kfold),20);
```

```
indices = crossvalind('kfold',size(X_100,1),5);
RMSE_kfold = zeros(5,1);
corr_kfold = zeros(5,1);
avg_error = zeros(5,1);
X_kfold = X_100(:,index_20_kfold);
% Run through loop 5 times and assign iteration number to i. Identify rows
% in indices equal to i and assign to test; assign remaining rows to train.
for i = 1:5
    test = (indices == i);
    train = ~test;
```

```
% Extract train rows from X and Y. Create linear model with train data.
    Xtrain = X kfold(train,:);
    Ytrain = Y 100(train,:);
    model = fitlm(Xtrain, Ytrain);
    %Extract test rows from X and Y
    Xtest = X kfold(test,:);
    Ytest = Y 100(test,:);
    % Predict Y values from model. Calculate stat parameters and assign
    % to index i of variables
    Ypred = predict(model, Xtest);
    corr kfold(i) = corr(Ytest, Ypred);
    RMSE kfold(i) = sqrt(mean((Ypred-Ytest).^2));
    avg error(i) = mean(abs(Ypred-Ytest)./Ytest*100);
end
mean(corr kfold)
ans = 0.4558
mean (RMSE kfold)
ans = 338.8842
```

```
mean(RMSE_kfold)
ans = 338.8842

mean(abs(avg_error))
```

ans = 81.9366

K-fold Cross Validation w/ For Loop

```
corr kfold = zeros(5,100);
X \text{ kfold} = X 100(:,index 20 kfold);
for j = 1:100
    indices = crossvalind('kfold', size(X 100,1),5);
    %RMSE kfold = zeros(5,1);
    corr kfold = zeros(5,1);
    %avg error = zeros(5,1);
    % Run through loop 5 times and assign iteration number to i. Identify rows
    % in indices equal to i and assign to test; assign remaining rows to train.
    for i = 1:5
        test = (indices == i);
        train = ~test;
        % Extract train rows from X and Y. Create linear model with train data.
        Xtrain = X kfold(train,:);
        Ytrain = Y 100(train,:);
        model = fitlm(Xtrain, Ytrain);
```

```
%Extract test rows from X and Y
Xtest = X_kfold(test,:);
Ytest = Y_100(test,:);

% Predict Y values from model. Calculate stat parameters and assign
% to index i of variables
Ypred = predict(model, Xtest);
corr_kfold(i,j) = corr(Ytest, Ypred);
% RMSE_kfold(i) = sqrt(mean((Ypred-Ytest).^2));
% avg_error(i) = mean(abs(Ypred-Ytest)./Ytest*100);
end

end

mean_corr = mean(corr_kfold);
mean(mean_r, "all")
```

```
ans = 0.4067
```

```
hist(mean_corr)
xlabel("Correlation Coefficient, r")
ylabel("Frequency")
title("Cross Validation Model (100 runs)")
```

