Problem 1

$$\frac{f(t+dt,x) - f(t-dt,x)}{2dt} = -v\frac{f(t,x+dx) - f(t,x-dx)}{2dx}$$
(1)

$$f(t+dt,x) - f(t-dt,x) = -\alpha \Big[f(t,x+dx) - f(t,x-dx) \Big]$$
 (2)

(3)

for $\alpha = k / \frac{dx}{dt}$,

$$\left[\xi^{2dt} - 1\right]\xi^{t-dt}e^{ikx} = -\alpha\xi^t e^{ikx} \left[e^{ikdx} - e^{-ikdx}\right] \tag{4}$$

$$\xi^{2dt} - 1 = -2i\alpha\xi^{dt}\sin(kdx) \tag{5}$$

for $\tilde{\xi} = \xi^{dt}$

$$\tilde{\xi}^2 + 2i\alpha\tilde{\xi}\sin(kdx) - 1 = 0 \tag{6}$$

$$\tilde{\xi}^2 + 2i\alpha\tilde{\xi}\sin(kdx) - 1 = 0$$

$$\tilde{\xi} = -i\alpha\sin(kdx) \pm \sqrt{1 - \alpha^2\sin^2(kdx)}.$$
(6)

We can then take the magnitude, $\left|\tilde{\xi}\right|^2 = \tilde{\xi}\tilde{\xi}^*$

$$\left|\tilde{\xi}\right|^2 = \alpha^2 \sin^2(kdx) + 1 - \alpha^2 \sin^2(kdx) \tag{8}$$

$$\left|\tilde{\xi}\right|^2 = 1\tag{9}$$

$$\Longrightarrow \lceil |\xi| = 1. \tag{10}$$

Then since the amplitude of our function (f) stays constant w.r.t. time and as the energy depends on our amplitude only (like in the kinetic case), then energy is conserved. \square