Art of Problem Solving

Unofficial Solutions

QILIN XUE

October 16, 2018

Contents

1	Logarithms															2								
	1.1	Equations																						2
	1.2	Problems																						2
	1.3	Solutions																						3

Chapter 1

Logarithms

1.1 Equations

There are 6 main equations:

$$\log_a b^n = n \log_a b \tag{1.1}$$

$$\log_a b + \log_a c = \log_a bc \tag{1.2}$$

$$\log_a b - \log_a a = \log_a b/c \tag{1.3}$$

$$(\log_a b)(\log_c d) = (\log_a d)(\log_c b) \tag{1.4}$$

$$\frac{\log_a b}{\log_a c} = \log_c b \tag{1.5}$$

$$\log_{a^n} b^n = \log_a b \tag{1.6}$$

1.2 Problems

Exercise 1.1

Evaluate the product $(\log_2 3)(\log_3 4)(\log_4 5)(\log_5 6)(\log_6 7)(\log_7 8)$ (View Solution)

Exercise 1.2

If $\log(36)=a$ and $\log(125)=b$, express $\log(\frac{1}{12})$ in terms of a and b. (MAO 1992)

(View Solution)

1.3 Solutions

Solution 1.1 (View Question)

Use equation (1.4) we can note that if we have a product of logs and keep the bases the same, we can shift the arguments around however much we want. If we move all the arguments one to the right, and move the final argument to the first one, we get

$$(\log_2 8)(\log_3 3)(\log_4 4)(\log_5 5)(\log_6 6)(\log_7 7)$$

Since $\log_n n = 1$ we can cancel everything and get our answer of 3

Solution 1.2 (View Question)

First we note that 36 and 125 are both a perfect square and cube, respectively. Therefore, we can simplify these equations by writing them with an exponent: $\log(36) = \log(6^2) = 2\log(6)$ and $\log(125) = \log(5^3) = 3\log(5)$

Start with $\log(\frac{1}{12})$ and note it is equal to $\log(1) - \log(12) = -\log(12)$. We know from the first step we need to somehow include both $\log(5)$ and $\log(6)$, therefore we need to include these expressions in our solution somewhere...

After some experimentation, we find that $-\log(12) = -\log(\frac{6\times10}{5})$ which is equal to:

$$-(\log(6 \times 10) - \log(5)) = -(\log(6) + \log(10) - \log(5))$$
$$-(\frac{a}{2} + 1 - \frac{b}{3})$$

The answer is
$$\left[\frac{b}{3} - \frac{a}{2} - 1\right]$$