CSC321 Lecture 3: Linear Classifiers

- or -

What good is a single neuron?

Roger Grosse

Overview

- Classification: predicting a discrete-valued target
- In this lecture, we focus on binary classification: predicting a binary-valued target
- Examples
 - predict whether a patient has a disease, given the presence or absence of various symptoms
 - classify e-mails as spam or non-spam
 - predict whether a financial transaction is fraudulent

Overview

Design choices so far

- Task: regression, classification
- Model/Architecture: linear
- Loss function: squared error
- Optimization algorithm: direct solution, gradient descent, perceptron

Overview

Binary linear classification

- classification: predict a discrete-valued target
- **binary:** predict a binary target $t \in \{0, 1\}$
 - Training examples with t=1 are called positive examples, and training examples with t=0 are called negative examples. Sorry.
- **linear:** model is a linear function of **x**, followed by a threshold:

$$z = \mathbf{w}^T \mathbf{x} + b$$
$$y = \begin{cases} 1 & \text{if } z \ge r \\ 0 & \text{if } z < r \end{cases}$$

Some simplifications

Eliminating the threshold

• We can assume WLOG that the threshold r = 0:

$$\mathbf{w}^T \mathbf{x} + b \ge r \iff \mathbf{w}^T \mathbf{x} + \underbrace{b - r}_{\triangleq b'} \ge 0.$$

Some simplifications

Eliminating the threshold

• We can assume WLOG that the threshold r = 0:

$$\mathbf{w}^T \mathbf{x} + b \ge r \iff \mathbf{w}^T \mathbf{x} + \underbrace{b - r}_{\triangleq b'} \ge 0.$$

Eliminating the bias

• Add a dummy feature x_0 which always takes the value 1. The weight w_0 is equivalent to a bias.

Some simplifications

Eliminating the threshold

• We can assume WLOG that the threshold r = 0:

$$\mathbf{w}^T \mathbf{x} + b \ge r \iff \mathbf{w}^T \mathbf{x} + \underbrace{b - r}_{\triangleq b'} \ge 0.$$

Eliminating the bias

• Add a dummy feature x_0 which always takes the value 1. The weight w_0 is equivalent to a bias. do we update x_0?

Simplified model

$$z = \mathbf{w}^T \mathbf{x}$$
$$y = \begin{cases} 1 & \text{if } z \ge 0 \\ 0 & \text{if } z < 0 \end{cases}$$

As a neuron

• This is basically a special case of the neuron-like processing unit from Lecture 1.

• Today's question: what can we do with a single unit?

NOT $x_0 = \frac{x_0 \quad x_1 \quad t}{1 \quad 0 \quad 1}$

NOT

$$\begin{array}{c|cccc} x_0 & x_1 & t \\ \hline 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

$$b > 0$$
$$b + w < 0$$

$$b = 1$$
, $w = -2$

NOT

$$\begin{array}{c|cc} x_0 & x_1 & t \\ \hline 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

$$b > 0$$
$$b + w < 0$$

NOT

$$\begin{array}{c|cccc}
x_0 & x_1 & t \\
\hline
1 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

$$b > 0$$
$$b + w < 0$$

$$b = 1$$
, $w = -2$

AND

x_0	x_1	<i>x</i> ₂	t
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

AND

x_0	x_1	<i>x</i> ₂	t
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

b < 0

AND

AND

AND

g(less than zero) = 0g(greater than zero) = 1

b < 0

AND

$$b = -1.5$$
, $w_1 = 1$, $w_2 = 1$

Recall from linear regression:

Input Space, or Data Space

decision boundary always pass through zero since it represent linear contraint offset by zero due to the fact that the threshold = 0

equation of line determined by X^Tw = 0

- Here we're visualizing the **NOT** example
- Training examples are points
- Hypotheses are half-spaces whose boundaries pass through the origin
- The boundary is the decision boundary
 - In 2-D, it's a line, but think of it as a hyperplane
- If the training examples can be separated by a linear decision rule, they are linearly separable.

Weight Space

- Hypotheses are points
- Training examples are half-spaces whose boundaries pass through the origin
- The region satisfying all the constraints is the feasible region; if this region is nonempty, the problem is feasible

- The **AND** example requires three dimensions, including the dummy one.
- To visualize data space and weight space for a 3-D example, we can look at a 2-D slice:

• The visualizations are similar, except that the decision boundaries and the constraints need not pass through the origin.

Visualizations of the AND example

Data Space x_2 Slice for $x_0 = 1$

Weight Space

Slice for
$$w_0 = -1$$

What happened to the fourth constraint?

Some datasets are not linearly separable, e.g. \boldsymbol{XOR}

 Let's mention a classic classification algorithm from the 1950s: the perceptron

- Frank Rosenblatt, with the image sensor (left) of the Mark I Perceptron40

The idea:

- If t = 1 and $z = \mathbf{w}^{\top} \mathbf{x} > 0$
 - then y = 1, so no need to change anything.

The idea:

- If t = 1 and $z = \mathbf{w}^{\top} \mathbf{x} > 0$
 - then y = 1, so no need to change anything.
- If t=1 and z<0
 - then y = 0, so we want to make z larger.

The idea:

- If t = 1 and $z = \mathbf{w}^{\top} \mathbf{x} > 0$
 - then y = 1, so no need to change anything.
- If t=1 and z<0
 - then y = 0, so we want to make z larger.
 - Update:

$$\boldsymbol{w}' \leftarrow \boldsymbol{w} + \boldsymbol{x}$$

The idea:

- If t = 1 and $z = \mathbf{w}^{\top} \mathbf{x} > 0$
 - then y = 1, so no need to change anything.
- If t = 1 and z < 0
 - then y = 0, so we want to make z larger.
 - Update:

$$\mathbf{w}' \leftarrow \mathbf{w} + \mathbf{x}$$

Justification:

$$\mathbf{w}^{\prime \mathsf{T}} \mathbf{x} = (\mathbf{w} + \mathbf{x})^{\mathsf{T}} \mathbf{x}$$
$$= \mathbf{w}^{\mathsf{T}} \mathbf{x} + \mathbf{x}^{\mathsf{T}} \mathbf{x}$$
$$= \mathbf{w}^{\mathsf{T}} \mathbf{x} + ||\mathbf{x}||^{2}.$$

For convenience, let targets be $\{-1,1\}$ instead of our usual $\{0,1\}$.

Perceptron Learning Rule:

Repeat:

For each training case
$$(\mathbf{x}^{(i)}, t^{(i)})$$
, $z^{(i)} \leftarrow \mathbf{w}^T \mathbf{x}^{(i)}$
If $z^{(i)} t^{(i)} \leq 0$, $\mathbf{w} \leftarrow \mathbf{w} + t^{(i)} \mathbf{x}^{(i)}$

Stop if the weights were not updated in this epoch.

1 epoch = 1 pass through training set

Compare:

• SGD for linear regression

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha(y - t)\mathbf{x}$$

perceptron

$$z \leftarrow \mathbf{w}^T \mathbf{x}$$

happens if z and t are different, i.e. wrong

If
$$zt \leq 0$$
,

$$\mathbf{w} \leftarrow \mathbf{w} + t\mathbf{x}$$

- Under certain conditions, if the problem is feasible, the perceptron rule is guaranteed to find a feasible solution after a finite number of steps.
- If the problem is infeasible, all bets are off.
 Stay tuned...
 i.e. able to classify all samples correctly
- The perceptron algorithm caused lots of hype in the 1950s, then people got disillusioned and gave up on neural nets.
- People were discouraged about fundamental limitations of linear classifiers.

limitation = overfit, and linear classifier can not separate linearly inseparable problems

• Visually, it's obvious that XOR is not linearly separable. But how to show this?

Convex Sets

• A set S is convex if any line segment connecting points in S lies entirely within S. Mathematically,

$$\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{S} \implies \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 \in \mathcal{S} \text{ for } 0 \leq \lambda \leq 1.$$

• A simple inductive argument shows that for $\mathbf{x}_1, \dots, \mathbf{x}_N \in \mathcal{S}$, weighted averages, or convex combinations, lie within the set: are linear combination s.t. coefficients > 0 and add up to 1

$$\lambda_1 \mathbf{x}_1 + \dots + \lambda_N \mathbf{x}_N \in \mathcal{S} \quad \text{for } \lambda_i > 0, \ \lambda_1 + \dots \lambda_N = 1.$$

Showing that XOR is not linearly separable

- Half-spaces are obviously convex.
- Suppose there were some feasible hypothesis. If the positive examples are in the positive half-space, then the green line segment must be as well.
- Similarly, the red line segment must line within the negative half-space.

• But the intersection can't lie in both half-spaces. Contradiction!

A more troubling example

```
pattern A pattern B pattern B pattern B pattern B
```

- ullet These images represent 16-dimensional vectors. White = 0, black = 1.
- Want to distinguish patterns A and B in all possible translations (with wrap-around)
- Translation invariance is commonly desired in vision!

A more troubling example

```
pattern A pattern B pattern B pattern B pattern B
```

- ullet These images represent 16-dimensional vectors. White = 0, black = 1.
- Want to distinguish patterns A and B in all possible translations (with wrap-around)
 average=percentage of black
- Translation invariance is commonly desired in vision!
- Suppose there's a feasible solution. The average of all translations of A is the vector $(0.25, 0.25, \ldots, 0.25)$. Therefore, this point must be classified as A.
- Similarly, the average of all translations of B is also $(0.25, 0.25, \dots, 0.25)$. Therefore, it must be classified as B. Contradiction!

 Sometimes we can overcome this limitation using feature maps, just like for linear regression. E.g., for **XOR**:

$$\phi(\mathbf{x}) = \begin{pmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{pmatrix}$$

x_1	<i>x</i> ₂	$\phi_1(\mathbf{x})$	$\phi_2(\mathbf{x})$	$\phi_3(\mathbf{x})$	t
0	0	0	0	0	0
0	1	0	1	0	1
1	0	1	0	0	1
1	1	1	1	1	0

- This is linearly separable. (Try it!)
- Not a general solution: it can be hard to pick good basis functions. Instead, we'll use neural nets to learn nonlinear hypotheses directly.