Chapter 3 SOLUTIONS

$$I_{0} = \frac{V_{in} - 2V_{bon}}{R_{i} + R_{2}}$$

$$= \frac{2.5 - 1.4}{L_{i}kSL} = \frac{1.1}{4kSL}$$

$$I_{0} = 275\mu A$$

b)
$$I_{s} = 10^{14} A$$
, $T = 300 K$, $V_{pon} = 0.7V$
 $I_{D} = I_{s} \left(e^{\frac{V_{p}}{\phi}r} - 1\right)$
where $\phi_{T} = \frac{kT}{9} = 26 \text{ mV } \Theta$ 300 K

$$T_0 = \frac{V_{in} - 2V_D}{R_1 + R_2} = T_s \left(e^{V_D/O_T} - 1 \right)$$

$$\frac{2.5 - 10^{14}}{14572} = 10^{14} \left(e^{V_D/0.026} - 1 \right)$$
iterating on this expression
$$\frac{V_D = 0.628 \, V}{I_D = 311 \, \mu A}$$

c) SPICE

exercise 3.1

vin in 0 dc 2.5 rl in 2 2k dl 2 3 D r2 3 out 2k d2 out 0 D

.options post=2

.model D D level=1 is=1e-14 m=0.5

.end

NODE VOLTAGE
2 1.8750E+00
3 1.2500E+00
OUT 6.2501E-01

CURRENT 3.1249E-04

d) $I_{S}=10^{16}A$, T=300K;

again use & grow b and; lerate
to grad: $V_{D}=0.743V$ $I_{D}=253MA$ $T_{S}=10^{14}A$, T=350K; $V_{D}=0.728V$ $I_{D}=261MA$

```
exercise 3.1d
vin in 0 dc 2.5
rl in 2 2k
d1 2 3 D
r2 3 out 2k
d2 out 0 D
.options post=2
*.temp27
.temp 77
*.model D D level=1 is=1e-16 m=0.5
.model D D level=1 is=1e-14 m=0.5
.end
******
t=27C°
         VOLTAGE
NODE
         1.9889E+00
2
          1.2500E+00
3
          2.5000E+00
IN
         7.3892E-01
OUT
         2.5554E-04
ID
t=77C°
           VOLTAGE
NODE
        1:7844E+00
2
        1.2500E+00
3
IN
        2.5000E+00
```

5.3436E-01

3.5782E-04

OUT

ID

a)
$$I_0 = 0$$
, $V_0 = -V_3 = 3.3V$

b) Reverse biased

(c)
$$W_{j} = \sqrt{\left(\frac{2E_{5}}{g}; \frac{N_{0}+N_{5}}{N_{0}N_{0}}\right)(\phi_{c}-V_{0})}$$

8=1.6x10-19C, Vs=-Vs=3.3V

Since I coulomb = I faret · I Volt

d)
$$C_j = \underbrace{\mathcal{E}_{s: A_D}}_{W_j}$$

W/ An = 120 x 10 1 cm2

The new voltage, reduces the reverse bias of the P-N junction, hence the width of the depl.

region, vi, decreases. As

you bring the plates of a capacitor together, the Capacitance increases.

3 a)
$$V_{0S} = 2.5 \text{ V}$$
 $V_{0S} = 2.5 \text{ V}$
 $V_{0S} = -0.5 \text{ V}$
 $V_{0S} = -0.5 \text{ V}$
 $V_{0S} = -1.25 \text{ V}$
 $V_{0S} = -1.25 \text{ V}$
 $V_{0S} = 2.2 \text{ V}$
 $V_{0S} = 2.5 \text{ V}$
 $V_{0S} = -2.5 \text{ V}$
 $V_{0S} = -1.8 \text{ V}$
 $V_{0S} = 0.6 \text{ V}$
 $V_{0S} = 0.1 \text{ V}$

$$V_{6S} = 0.6V \quad U_{1000}$$

$$V_{0S} = 0.1V \quad U_{1000}$$

$$V_{0S} = 0.1V \quad U_{1000}$$

$$V_{0S} = 0.1V \quad U_{1000}$$

$$= 1.38 \mu A$$

$$V_{6S} = -2.5V \quad U_{1000}$$

$$V_{0S} = 0.7V \quad U_{1000}$$

for a short channel device In= K' W [(V65-V+) Vmin - Vmin / (1+ 2V05) Vmin = min [(Vos-V+), Vos, VosAT] To begin with the operation regions reed to be determined. For any of these data to be in saturation. VT should be , VGS-VT < VOSAT 2-V7<0.6 ⇒UKV7 This is a quite high value in our ploces. Thus, we can assume that all data are taken in velocity saturation. We will cheek this assumption later. In velocity sout ID= K'W [Vos-V+) VASAT - VOSAT] (1+ AVOS) wing. 182. ID= 4 1 (2.5-Vt) 0.6 - 0.627 (1+71.8)=1812 Ip= k' W [(2-V+) 0.6 - 0.62] (1+2.18)=1297 $\frac{1812}{1297} = \frac{(2.5 - V + 0) \cdot 0.6 - 0.6^{2}}{(2 - V + 0) \cdot 0.6 - 0.6^{2}} \Rightarrow V + 0 = 0.44 V$ using $\frac{2.83}{1.2,3} = \frac{1 + 2.8}{1 + 2.5} \Rightarrow 2 = 0.08 V^{-1}$ using 284 Vt = 0.587V (1) using 2&5; ⇒ V4=0.691 V (2) both these values satisfy V+21.4V so all the data in our table were taken in velocity saturation. V+= V+0 + 8 (/Nsg+124pl - 121/81) (D&D) can be used along with Vto=0.44V

to conclude 2 pg = 0.6 V and 8=0.3 V/2 also wing 2" set of dote ID = 1297, W=K'W [VGS-VF) VDSAT - VDSAT Z W = 15 17 a) This is a PMOS device b) using measurements 184 Vto= 0.5V a) Using 125: 8 = 0.538 V/2 d) Using 126: 7=0.05 V e) 1-Vel. Sat, 2-cut off ,3-saturation, 4-5-6-Vel. Sat., 7- Unear (B)) When R=10k, VD = VBD-IR $\Rightarrow V_D = 2.5 - 50 \times 10^6 \times 10^4 = 2.5 - 0.5 = 2V$ Cheeds to be verified eventually.)

ID= {\text{\W} (Vos-V+)^2 = 50,UA} > V65-V+= 0.3 V > V65= 0.3+0.4 V5= 2-0.7=1.8V = 0.7V Vmin = min (V65-Vt, VDAT, VDS) = min (0306 VD=2V saturation verified.

V3=1.3V saturation operation b) $V_D = 2.5 - 30 \times 10^3 \times 50 \times 10^6 = 2.5 - 1.5$ To = k' W [(Vos-V+) Vos - Vos] = 50,00A 110×10 10 (2-1/5-10-4) (1-1/5) - (1-1/5) 2 = 50 d => Vs= 0.93V min (Vos-VT, Vos, VosAr) = min (2-0.93-0.4), 0.07, 0.

= Vos > linear verigied

9 Device is always in saturation.

4)
$$\frac{-V_x}{R} = \frac{k_p'}{2} \frac{W}{L} (V_x - |V_{\downarrow p}|)^2$$

c)
$$\frac{1V}{20 \text{ kg.}} = \frac{30 \times 10^{-6}}{2} \left(\frac{W}{L}\right) \times \left(1.5 - 0.4\right)^{2}$$

 $50 \text{ M} = 15 \text{ NB}^{6} \left(\frac{W}{L}\right) 1.21$
 $2.755 = \left(\frac{W}{L}\right) \Rightarrow W \approx 0.69 \text{ Mm}$

10 a) I = kn W (V: -Vo-Vt)2

$$\sqrt{\frac{2\Gamma_D}{k'_0 W}} = V_i - V_o - V_t$$

neglecting body effect $V_t = V_t$
 $V_i = \sqrt{\frac{2\Gamma_D}{k'_0 W}} + V_t + V_o$

exercise 3.12 .lib g25.lib TT

vdd vdd 0 dc 2.5

vin in 0 dc 2.5
rl vdd out_long 8k
ml out_long in sl 0 nmos_t l=0.5u w=4u
m2 sl in 0 0 nmos_t l=0.5u w=4u

r2 vdd out_short 8k m3 out_short in 0 0 nmos_t I=0.25u w=1u

.probe .dc v(in) v(out) v(out1)
.dc vin 0 2.5 0.1
.options post=2 csdf
.op

.op .end

***	****	*******	****
Vin	Vout_long	Vout_short	Vout hand
0.0	2.500	2.50	2.50
0.5	2.470	2.48	2.49
1.0	1.537	1.86	1.90
1.5	0.442	0.92	0.85
2.0	0.301	0.46	0.41
2.5	0.244	0.35	0.30
2.5	0.244	0.35	

c) The long device was modeled as two transistors in series.

The equivalent transistor was a skeper transition

12

V_{T0} This one should immediately signal you to look at a curve(s) that don't have body-effect. That means V_{BS} = 0V. Pick two points, each from different curves that satisfy the no-body-effect condition. Make sure they're in the same operating region too!

Point	V _{G\$}	Vos	In	Operating Region
A	2.5V	1.8V	300uA	saturation
В	2.0V	1.8V	160uA	saturation

The reason why I chose points with the same V_{DS} will be evident once I work through the math.

$$\frac{I_{D,A}}{I_{D,B}} = \frac{\frac{1}{2} k_p \left(\frac{w}{L}\right) v_{GS,A} - v_{T0})^2 (1 + \lambda \cdot v_{DS,A})}{\frac{1}{2} k_p \left(\frac{w}{L}\right) v_{GS,B} - v_{T0})^2 (1 + \lambda \cdot v_{DS,B})}$$

$$\frac{300}{160} = \frac{(2.5 - V_{T0})^2}{(2.0 - V_{T0})^2}$$

As you can see, in order for me to isolate $V_{T\psi}$, I needed to make sure I can cancel as many variables to be able to solve the equation.

λ We can use the same methodology as above. This time, we want to keep V_{GS} constant.

Point	Vas	V _{Ds}	Io	Operating Region
A	2.5V	2.4V	310uA	saturation
В	2.5V	1.8V	300uA	saturation

$$\frac{I_{D,A}}{I_{D,B}} = \frac{\frac{1}{2} k_p \left(\frac{w}{L}\right) \left(v_{GS,A} - v_T\right)^2 (1 + \lambda \cdot v_{DS,A})}{\frac{1}{2} k_p \left(\frac{w}{L}\right) \left(v_{GS,B} - v_T\right)^2 (1 + \lambda \cdot v_{DS,B})}$$

$$\frac{310}{300} = \frac{(1 + \lambda \cdot 2.4)}{(1 + \lambda \cdot 1.8)}$$

$$\lambda = 0.0617 \text{V}^{-1}$$

It shouldn't be a surprise, but that leaves us to keep almost everything constant except for V_{SB}.

Point	Ysu	V _{GN}	V _{DS} T	10	Operating Region
٨	1.0V	2.0V	1.2V	105uA	saturation
В	0.0V	2.0V	1.2V	150uA	saturation

12 contid

$$\frac{I_{D,A}}{I_{D,B}} = \frac{\frac{1}{2} k_p \left(\frac{w}{L}\right) v_{GS,A} - v_T)^2 (1 + \lambda \cdot v_{DS,A})}{\frac{1}{2} k_p \left(\frac{w}{L}\right) (v_{GS,B} - v_{T0})^2 (1 + \lambda \cdot v_{DS,B})}$$

$$\frac{105}{150} = \frac{(2.0 - V_T)^2}{(2.0 - 0.64)^2}$$

$$V_T = 0.862 \text{V}$$

Now solve for y using the following equation:

$$V_T - V_{T0} = \gamma \left(\sqrt{|V_{SB} - 2\Phi_F|} - \sqrt{-2\Phi_F} \right)$$

$$0.862 - 0.64 = \gamma \left(\sqrt{|1 + 0.6|} - \sqrt{0.6} \right)$$

$$\gamma = 0.453 V^{In}$$

13)
$$V_{1}n = 0.2 \Rightarrow$$
 $T_{0}s = 3 \times 10^{8} A \text{ (1)}$
 $V_{1}n = 0.2 \Rightarrow$
 $T_{0}s = 5 \times 10^{9} A \text{ (2)}$

$$A + = C \frac{AV}{I}$$

$$A + 0 = 1 \text{ pF} \times \frac{1}{3 \times 10^{8}}$$

$$= 33.3 \text{ M S}$$

$$A + 2 = 1 \text{ pF} \times \frac{1}{9 \times 10^{9}}$$

$$= 200 \text{ M S}$$

a)
$$I_{DS} = QJ$$
 ($V = Velocity$)

 $Q = CV$ ($V = Veltage$)

 $C = W \cdot Cex$ $V = V_{GS} - V_{E}$
 $I_{DS} = W \cdot Cex$ ($Ves - V_{E}$) J

b) $J = p_{A} \cdot E$
 $E = (V_{GS} - V_{E})$
 $I_{DS} = W \cdot Cex$ ($V_{ES} - V_{E}$) $V_{ES} - V_{E}$
 $I_{DS} = W \cdot Cex$ ($V_{ES} - V_{E}$) $V_{ES} - V_{E}$
 $I_{DS} = P_{A} \cdot Cex$ ($V_{ES} - V_{E}$) $V_{ES} - V_{E}$

c) $J = J_{ABEX} - Censtent$
 $I_{DS} = W \cdot Cex$ ($V_{ES} - V_{E}$) J_{ABEX}

d)

1) $I_{D} \propto W \cdot cex$ $V_{ES} - V_{E}$) J_{ABEX}

a) $I_{D} \propto (V_{ES} - V_{E})^{2}$
 $I_{DS} = V_{Cex} \cdot V_{ES} - V_{E}$

(15)
a)
$$T_0 = \frac{K'}{2} \frac{W}{L} (V_{65}' - V_{4})^2$$

$$V_{65}' = V_{65} - T_{5} R_{5}$$

$$T_{5} = \frac{K'}{2} \frac{W}{L} \left[(V_{65} - V_{4})^2 - 2 (V_{65} - V_{6}) I_{5} R_{5} + I_{5} R_{5} \right]^2$$

$$+ \frac{1}{2} I_{5} I_{5}$$

ID[1+K'\(V63-V6)R5] · 光 (V63-14) (Vas-Ve) Rs = (Ves-Ve)

TO

 a) First let us write the resistance as a function of the output voltage

$$R(V) = \frac{V}{I(V)} = \frac{V}{k*V*e^{V/V_0}} = \frac{1}{k*e^{V/V_0}}$$

Then, we need to average this resistance over the voltages of interest. A variant of the formula 3.42 in course notes can be written as

$$R_{eq} = \frac{1}{(V_2 - V_1)} \int_{V_1}^{V_2} R(v) dv$$

plugging the R(V) expression in and carrying out integral, we obtain

$$R_{eq} = \frac{1}{2V_0} \int\limits_0^{2V_0} \frac{1}{k^+ e^{\nu V_0}} d\nu = \frac{1}{2V_0} \frac{-V_0}{k} \left(e^{-2V_0 V_0} - 1 \right) = \frac{1}{2k} \left(1 - e^{-2} \right) = \frac{0.423}{k} \Omega$$

 Again we should obtain R(v) by starting from the I-V relation.

Note that the device will be operating in velocity saturation régime. This can be seen by comparing V_{OS} - V_T = V_{DD} - V_T ≈ 2.5 -0.4 ≈ 2.1 ; VDSAT ≈ 0.6 and V_{DS} > V_{DD} /2=1.25, where V_{DD} =2.5v and V_T and V_{DSAT} from Table 3.2 were used.

In velocity saturation region:

 $I = k^*W/L[(V_{DD}-V_T)V_{DSAT}-V_{DSAT}^2/2](1+\lambda V_{DS}) = I_{DSAT}(1+\lambda V_{DS}),$

Where, we define $I_{DSAT} = k'W/L [(V_{DD}-V_T)V_{DSAT}-V_{DSAT}^2/2]$. Using this I-V_{DS} relation we can write the integral.

$$R_{eq} = -2/(V_{DD}I_{DSAT}) \int_{V_{DD}}^{V_{DD}/2} dV_{DS}/(1 + \lambda V_{DS})$$
. Carrying out

this integral we obtain

$$\begin{split} R_{eq} &= 2/(\lambda^* V_{DD} * I_{DSAY}) * \{V_{DD}/2 - 1/\lambda [\ln(1+\lambda V_{DD}) - \ln(1+\lambda V_{DD}/2)]\} \end{split}$$

Now, we will replace the ln(1+x)'s with their respective Taylor expansions.

$$\begin{split} &\ln(1 + \lambda V_{\rm DD}) \approx \{\lambda V_{\rm DD} - (\lambda V_{\rm DD})^2 / 2 + (\lambda V_{\rm DD})^3 / 3)\} \text{ and } \\ &\ln(1 + \lambda V_{\rm DD} / 2) \approx \{\lambda V_{\rm DD} / 2 - (\lambda V_{\rm DD})^2 / 8 + (\lambda V_{\rm DD})^3 / 24)\}. \end{split}$$

Subtracting these two expressions we get, $\ln(1+\lambda V_{DD}) - \ln(1+\lambda V_{DD}/2 \approx {\lambda V_{DD}/2 - 3(\lambda V_{DD})^2/8 + 7(\lambda V_{DD})^3/24}$.

Now let's insert this expression in the R_{eq} equation to get: $R_{eq} = 2/(\lambda * V_{DD} * I_{DSAT}) * \{V_{DD}/2 - V_{DD}/2 + 3\lambda V_{DD}^2/8 - 7\lambda^2 V_{DD}^3/24\}$

Bringing the expression $3\lambda V_{DD}^2/8$ outside the curly brackets, we obtain

 $R_{eq} = 2/(\lambda * V_{DD} * I_{DSAT}) * 3 \lambda V_{DD}^{2}/8 \{1-7\lambda V_{DD}/9\} = (3/4) * (V_{DD}/I_{DSAT}) \{1-7\lambda V_{DD}/9\}$

17 Cox = 6f F/Mm2 LD= 0.5 Mm WD= 1 Mm cut-off. CONWL + 2 GO W Linear. CONWL +2GW Sot-Vel.sot 3/6xWL + 26 W Diffusion Capacitonie (Cd) Cd = Cj LoWo + Cjsw (2Lp+Wo): diffusion cap Cjsw = Cjsw o a)-) Vin=2.5V, Vout=2.5V Vel. suturation. Q = 4.05 fC = 4.03 x 10 5C Cg = 1.62+F Ca= 0.827 pF -) Vow = 0.5V Linear region Q= 5.3 fC=5.3×10 C Cg = 2.12 & F Cd= 1.263fF -) Vout = 0 V Linear region Q= 5.3 pC = 5,3 x10 C Cg=2.121F Cd - 1.56 FF b) Vin = 0 > Cut off.

Regardless of Vas,

Cg = CoxWL

Cg = 2.12 fF, Q=0

Cd, are the same as part b.

Vout= 2.5 > Cd = 0.82 7F

Vout= 05 > Cd = 1.263 fF

Vout= 0 > Cd = 1.56 fF

change after $V_g = V_T$ for $V_g: 0 \Rightarrow V_T \Rightarrow C_T = C_T(1)$ $V_g: V_T \Rightarrow V_T \Rightarrow C_T = C_T(2)$ then $t_1 = C_T(1) \frac{V_T}{I_{1D}}$ $t_2 = C_T(2) \frac{V_T - V_T}{I_{1D}}$ $t = C_T(1) + C_T(2) \frac{V_T}{I_{1D}}$

b) Cob, Colb do not contribute to the total gate capacitance. Until, Vg=Vr device is off and only gb motes up Cr. Between VrxVgx2Vr Cgb falls down to zero and being in Vel sax, Cgd & Cgs add up to Cr. Thus,.

0 < Vg < VT > CT = CT(2) = 2 COXWL + W(CGDO+CGSO)

VX Vg < VT > CT = CT(2) = 2 COXWL + W(CGDO+CGSO)

c) This time the device is completely off at all times. CG5; CGB, CGB do not have any connection to drain node Thus they don't contribute to

Only overlap component of Cgd& a varying Cdb make up CT in this case

CT = WCGDO + Keq CJO + Keqsw CJSWO

CJO = CJAD

CJSWO = CJSWPD

C7 = WCGDO+Keg CJAD+Kegsw CJSW PD / Keg = -PB / (1-MJ) [(Pe-2V_T)(1-MJ)] (PB)(1-MJ)]

 $Keqsw = \frac{-P_B M_{JSW}}{2V_T (1-M_{JSW})} \left[\left(P_B - 2V_T \right)^{1-M_{JSW}} - \left(P_B \right)^{(1-M_{JSW})} \right]$

20 a) Minimum: Kn=16.66 WA/v2 Vt=0.766 (W/Leff)=(14.7/5.0)

Nominal:

Maximum:

Vgs = 0:

Imin = 98.7,4

Inom = 129/A

Imax = 165 NA

Inia = 398NA

Inom = 438NA

Inax = 471NA

b) For Vain -> I max, R=84002 Vmax -> I min, R=72002

V35=0 -> Vout =5V

(sut) Vos = 2.5V; Vo4 = 400 -IR

Imin = 99NA, Rain => Kuranx = 4,290

Inon = 129pA, Room & Verynom= 397V

I max = 165 pA, Rmax = Vart, min = 3,55 V

Vgs=5V (triode)

Rain => Vove, max = 497V

Room => Vout, non = 1.50V

Rnax > Vat, min = 1.14

PROBLEM 215

par w1 = 20u

.per 11 = 5u

vdd vdd 0 dc 5

R vdd our R1

me out in 0 0 nmos wewl lell

vin in 0 dc 0

.DATA d1

will kpn vt0 RI

+19.7u 5.3u 9.20068E-05 0.768469 7200

+20.0u 5.0u 8.00059E-05 0.743469 8000

+20.3u 4.7u 6.80050E-05 0.718469 8800

SPICE LEVEL 2 Model for MOSIS 1.2 mu Process

.MODEL NMOS NMOS LEVEL-2 LD-0.15U TOX-200.0E-10

+ NSUB=5.36726E+15 VTO=vt0 KP=kpa GAMMA=0.543

+ PHI=0.6 U0=655.881 UEXP=0.157282 UCRIT=31443.8

+ DELTA=2.39824 VMAX=55260.9 XJ=0.25U LAMBDA=0.0367072

+ NFS=1E+12 NEFF=1.001 NSS=1E+11 TPG=1.0 RSH=70.00

+ CGDO=4.3E-10 CGSO=4.3E-10 CJ=0.0003 MJ=0.6585

+ CJSW=8.0E-10 MJSW=0.2402 PB=0.58

. Weff = WDrawn . Delta_W

* The suggested Delta_W is 1.9970E-07

.dc vin 0 5 2.5 sweep data=d1

.print v(out) i(vdd) i(vdd2)

.opnon post nomod

.end

OUTPUT:

Data index#1:

volt voltag out current

0. . 5.0000 -10.6299p

2.50000 2.5350 -342.3599u

5.00000 688.5851m -598.8076u

Data index#2 (nominal):

volt voltage out current

0. 5.0000 -10.9104p

2.50000 2.3750 -328.1237u

5.00000 658.0161m -542.7480u

Data index#3:

volt voltage out current

). 5.0000 -11.3080p

2.50000 2.2784 -309.2724u

5.00000 646.0152m -494.7710u

Fixed voltage scaling

P'= 0.4mW x 100M H2 = 40mW

Assuming dynamic power dominates

d)
$$\left(\frac{P_{100}}{A}\right)' = \left(\frac{P_{100}}{U^2}\right) \left(\frac{S^2}{A}\right) S - \frac{P_{100}}{A}$$

$$U^2 = S^3$$

 $U = S^{35} = (1.5)^{3/2} 1.837$

$$U = \frac{1.8}{V'} = 1.837$$

(22) a) s = 0.25/0.1 = 2.5

speed scales inversely to to which scales as 1/52 > Speed scale. with 52. 80 \frac{f=625MHz}{}.

Power scales ~ × S ⇒ P= 25W