Алгоритмы

1 Выделение базиса из системы векторов

Дано Пусть $v_1, \ldots, v_m \in F^n$ – вектора и $V = \langle v_1, \ldots, v_m \rangle$ – их линейная оболочка.

Задача Среди векторов v_1, \ldots, v_m найти базис пространства V и разложить оставшиеся вектора по этому базису.

Алгоритм

1. Запишем вектора v_1, \ldots, v_m по столбцам в матрицу $A \in \mathrm{M}_{\mathrm{n}\,\mathrm{m}}(F)$. Например, при $n=3, \, m=5$

$$A = \begin{pmatrix} v_{11} & v_{21} & v_{31} & v_{41} & v_{51} \\ v_{12} & v_{22} & v_{32} & v_{42} & v_{52} \\ v_{13} & v_{23} & v_{33} & v_{43} & v_{53} \end{pmatrix}$$

2. Приведем матрицу A элементарными преобразованиями строк к улучшенному ступенчатому виду. Например

$$A' = \begin{pmatrix} 1 & 0 & a_{31} & 0 & a_{51} \\ 0 & 1 & a_{32} & 0 & a_{52} \\ 0 & 0 & 0 & 1 & a_{53} \end{pmatrix}$$

- 3. Пусть k_1, \ldots, k_r номера главных позиций в матрице A'. Тогда вектора v_{k_1}, \ldots, v_{k_r} образуют базис V. Например, в примере выше это вектора v_1, v_2 и v_4 .
- 4. Пусть v_i вектор соответствует неглавной позиции в A'. Тогда в i-ом столбце A' записаны координаты разложения v_i через найденный базис выше. Например, в примере выше $v_3 = a_{31}v_1 + a_{32}v_2$ и $v_5 = a_{51}v_1 + a_{52}v_2 + a_{53}v_4$.

Пример Пусть

$$v_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 5 \\ 12 \\ 7 \end{pmatrix}, v_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \in F^3$$

Тогда

$$\begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 3 & 2 & 12 & 1 & 1 \\ 2 & 1 & 7 & 1 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & -1 & 2 \\ 2 & 1 & 7 & 1 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & -1 & 2 \\ 1 & 0 & 2 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 1 & -2 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}$$

1

Тогда v_1 , v_2 и v_4 – базис линейной оболочки и $v_3=2v_1+3v_2$ и $v_5=v_1-2v_4$.

2 Нахождение какого-то базиса линейной оболочки

Дано Пусть $v_1, \ldots, v_m \in F^n$ – вектора и $V = \langle v_1, \ldots, v_m \rangle$ – их линейная оболочка.

 ${f 3}$ адача Найти какой-нибудь базис подпространства V.

Алгоритм

- 1. Уложить все вектора v_i в строки матрицы $A \in \mathrm{M}_{\mathrm{mn}}(F)$.
- 2. Элементарными преобразованиями строк привести матрицу к ступенчатому виду.
- 3. Ненулевые строки полученной матрицы будут искомым базисом.

3 Дополнение линейно независимой системы до базиса всего пространства стандартными векторами

Дано Пусть $v_1, \ldots, v_m \in F^n$ – линейно независимая система векторов, $V = \langle v_1, \ldots, v_m \rangle$ – их линейная оболочка и e_i – стандартные базисные векторы, т.е. на i-ом месте стоит 1, а в остальных 0.

Задача Найти такие вектора $e_{k_1},\dots,e_{k_{n-m}},$ что система $v_1,\dots,v_m,e_{k_1},\dots,e_{k_{n-m}}$ является базисом $F^n.$

Алгоритм

- 1. Уложить вектора v_i в строки матрицы $A \in M_{mn}(F)$.
- 2. Привести матрицу A к ступенчатому виду.
- 3. Пусть k_1, \dots, k_{n-m} номера неглавных столбцов. Тогда $e_1, \dots, e_{k_{n-m}}$ искомое множество.

4 Найти ФСР однородной СЛУ

Дано Система однородных линейных уравнений Ax = 0, где $A \in M_{mn}(F)$ и $x \in F^n$.

Задача Найти Φ CP системы Ax = 0.

Алгоритм

1. Привести матрицу A элементарными преобразованиями строк к улучшенному ступенчатому виду. Например

$$A' = \begin{pmatrix} 1 & 0 & a_{31} & 0 & a_{51} \\ 0 & 1 & a_{32} & 0 & a_{52} \\ 0 & 0 & 0 & 1 & a_{53} \end{pmatrix}$$

2. Пусть k_1, \ldots, k_r – позиции свободных переменных. Если положить одну из этих переменных равной 1, а все остальные нулями, то существует единственное решение, которое мы обозначим через u_i (всего r штук). Например, для матрицы A' выше свободные переменные имеют номера 3 и 5. Тогда вектора (записанные в строку)

$$u_1 = \begin{pmatrix} -a_{31} & -a_{32} & 1 & 0 & 0 \end{pmatrix}, u_2 = \begin{pmatrix} -a_{51} & -a_{52} & 0 & -a_{53} & 1 \end{pmatrix}$$

являются ФСР.

5 Задать подпространство базисом, если оно задано матричным уравнением

Дано Пусть $A \in M_{mn}(F)$ и $V \subseteq F^n$ задано в виде $V = \{y \in F^n \mid Ay = 0\}.$

Задача Найти базис подпространства V.

Алгоритм

1. Найти Φ CP системы Ay = 0. Векторы Φ CP будут базисом V.

6 Задать подпространство матричным уравнением, если оно задано линейной оболочной

2

Дано Пусть $v_1, \ldots, v_k \in F^n$ – набор векторов и $V = \langle v_1, \ldots, v_k \rangle$.

Задача Для некоторого m найти матрицу $A \in \mathrm{M}_{\mathrm{m}\,\mathrm{n}}(F)$ такую, что $V = \{y \in F^n \mid Ay = 0\}.$

Алгоритм

- 1. Уложить вектора v_i в строки матрицы $B \in M_{k,n}(F)$.
- 2. Найти Φ CP системы Bz = 0.
- 3. Уложить Φ CP в строки матрицы $A \in \mathrm{M}_{\mathrm{m}\,\mathrm{n}}(F)$, где m количество векторов в Φ CP. Матрица A и будет искомой.

7 Найти матрицу замены координат

Дано Векторное пространство $V, e = (e_1, \ldots, e_n)$ и $f = (f_1, \ldots, f_n)$ – два базиса пространства V. Известна матрица перехода от e к f, т.е. $(f_1, \ldots, f_n) = (e_1, \ldots, e_n)A$, где $A \in M_n(F)$. Дан вектор $v = x_1e_1 + \ldots + x_ne_n$.

Задача Найти разложение v по базису f.

Алгоритм

1. Если v=ex, где $x\in F^n$, а также v=fy, где $y\in F^n$, то $y=A^{-1}x$.

8 Найти матрицу линейного отображения при замене базиса

Дано Векторное пространство V с базисами $e=(e_1,\ldots,e_n)$ и $e'=(e'_1,\ldots,e'_n)$, а также векторное пространство U с базисами $f=(f_1,\ldots,f_m)$ и $f'=(f'_1,\ldots,f'_m)$. Известны матрицы перехода $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)C$ и $(f'_1,\ldots,f'_m)=(f_1,\ldots,f_m)D$, где $C\in \mathrm{M_n}(F)$ и $D\in \mathrm{M_m}(F)$. Дано линейное отображение $\phi\colon V\to U$ заданное в базисах e и f матрицей $A\in \mathrm{M_n}(F)$, т.е. $\phi e=fA$.

Задача Найти матрицу отображения ϕ в базисах e' и f', то есть такую $A' \in M_{nm}(F)$, что $\phi e' = f'A'$.

Алгоритм

1. $A' = D^{-1}AC$.

9 Определить существует ли линейное отображение заданное на векторах

Дано Векторное пространство V над полем F и набор векторов $v_1, \ldots, v_k \in V$, векторное пространство U и набор векторов $u_1, \ldots, u_k \in U$.

Задача Определить существует ли линейное отображение $\phi: V \to U$ такое, что $\phi(v_i) = u_i$.

Алгоритм

- 1. Среди векторов v_1, \dots, v_k выделить линейно независимые, а остальные разложить по ним.
- 2. Пусть на предыдущем этапе базис получился v_1, \ldots, v_r , а $v_{r+i} = a_{i1}v_1 + \ldots + a_{ir}v_r$.
- 3. Искомое линейное отображение ϕ существует тогда и только тогда, когда выполняются равенства $u_{r+i} = a_{i1}u_1 + \ldots + a_{ir}u_r$.

10 Найти базис образа и ядра линейного отображения

Дано $\phi \colon F^n \to F^m$ задан $x \mapsto Ax$, где $A \in \mathrm{M}_{\mathrm{m}\,\mathrm{n}}(F)$.

Задача Найти базис $\operatorname{Im} \phi \in F^m$ и базис $\ker \phi \in F^n$.

 $^{^{1}\}mathrm{B}$ частности, если все v_{i} оказались линейно независимыми, то линейное отображение ϕ обязательно существует.

Алгоритм

- 1. Выделить базис среди столбцов матрицы A. В результате получится базис $\operatorname{Im} \phi$.
- 2. Найти Φ CP системы Ax=0. Полученная Φ CP будет базисом $\ker \phi$.

11 Найти линейное отображение с заданными ядром и образом

Дано Пространства $U \subseteq F^n$ и $W \subseteq F^m$ такие, что $\dim U + \dim W = n$.

Задача Найти матрицу линейного отображения $\varphi \colon F^n \to F^m$ такого, что $U = \ker \varphi$ и $W = \operatorname{Im} \varphi$.

Алгоритм

- 1. Задать подпространство W с помощью базиса. Пусть b_1, \ldots, b_k базис W. Определим матрицу $B = (b_1 | \ldots | b_k)$.
- 2. Задать подпространство U системой с линейно независимыми строками $U = \{ y \in F^n \mid Ay = 0 \}.$
- 3. В силу условия $\dim U + \dim W = n$ матрица A будет иметь столько же строк, сколько столбцов в матрице B. В этом случае искомое линейное отображение задается матрицей BA.

12 Найти сумму подпространств заданных линейными оболочками

Дано Подпространства $V, U \subseteq F^n$ заданные в виде $V = \langle v_1, \dots, v_m \rangle, U = \langle u_1, \dots, u_k \rangle$, где $v_i, u_i \in F^n$.

 $m {f 3}$ адача Найти базис V+U.

Алгоритм

1. Надо найти базис линейной оболочки $\langle v_1, \dots, v_m, u_1, \dots, u_k \rangle$.

13 Найти пересечение подпространств заданных линейными оболочками

Дано Подпространства $V, U \subseteq F^n$ заданные в виде $V = \langle v_1, \dots, v_m \rangle, \ U = \langle u_1, \dots, u_k \rangle$, где $v_i, u_j \in F^n$.

Задача Найти базис $V \cap U$.

Алгоритм

- 1. Найти ФСР системы Dx=0, где $D=(v_1|\dots|v_m|u_1|\dots|u_k)$ и $x=\left(\frac{\alpha}{\beta}\right)$, где $\alpha\in F^m,\ \beta\in F^k.$
- 2. Пусть $\left(\left. \frac{\alpha_1}{\beta_1} \right| \dots \right| \left. \frac{\alpha_s}{\beta_s} \right)$ ФСР. Далее есть две опции (из них вторая опция предпочтительнее!):
 - Множество векторов $R = (v_1 | \dots | v_m)(\alpha_1 | \dots | \alpha_s)$ порождает $V \cap U$. Среди $(\alpha_1 | \dots | \alpha_s)$ можно выкинуть те α_i , для которых $\beta_i = 0.3$
 - Множество векторов $R' = (u_1 | \dots | u_k)(\beta_1 | \dots | \beta_s)$ порождает $V \cap U$. Причем можно рассматривать только ненулевые β_i .
- 3. Выделить базис среди столбцов R. Это и будет базис $V \cap U$.
 - Если векторы u_1, \ldots, u_k были линейно независимы изначально и β_i, \ldots, β_s все ненулевые сегменты ФСР с прошлого шага, то $(u_1|\ldots|u_k)(\beta_i|\ldots|\beta_s)$ будет базисом $V \cap U$.

 $^{^2}$ В это задаче можно задать подпространства системами, потом найти пересечение в виде системы, потом задать результат базисом. Но есть куда более эффективный способ.

³Если ФСР построен по стандартному базису, то останутся α_i с нулевыми свободными переменными.

14 Найти пересечение подпространств заданных матричным уравнением

Дано Подпространства $V,U\subseteq F^n$ заданные в виде $V=\{y\in F^n\mid Ay=0\},\ U=\{y\in F^n\mid By=0\},$ где $A\in \mathrm{M_{m\,n}}(F)$ и $B\in \mathrm{M_{k\,n}}(F).$

Задача Задать $V\cap U$ в виде $\{y\in F^n\mid Dy=0\}$ для некоторого $D\in \mathrm{M}_{\mathrm{k}\,\mathrm{n}}(F)$, где $\mathrm{rk}\,D=k\leqslant n.$

Алгоритм

- 1. Рассмотреть матрицу $D' = \left(\frac{A}{B}\right)$.
- 2. Выделить среди строк D' линейно независимую подсистему. Результат и будет искомая D.