Definitions

- 1.) Given a set X, a metric d on X is a function $d: X \times X \to \mathbb{R}$ that satisfies the following properties:
 - i.) For all $x, x' \in X$, $x = x' \iff d(x, x') = 0$.

Non-degeneracy

ii.) For all $x, x' \in X$, d(x, x') = d(x', x).

Symmetry

iii.) For all $x, x', x'' \in X$, $d(x, x'') \le d(x, x') + d(x', x'')$.

Triangle Inequality

2.) Given a metric d on X, $r \in \mathbb{R}_{>0}$, and $x \in X$, the open ball of radius r centered at x is defined as follows:

$$Ball(x,r) = \{x' \in X : d(x,x') < r\}$$

3.) Given a metric d on X, the metric topology on X is defined as follows:

$$\mathcal{T}_d \subseteq \mathcal{P}(X) = \left\{ U \subseteq X : U = \bigcup_{\alpha \in \mathcal{A}} U_\alpha \right\}$$

Where $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is a collection of open balls in X.

- 4.) A metric space (X, d) is a set X equipped with a metric d.
- 5.) The taxi cab metric on \mathbb{R}^n is defined as follows:

$$d_{taxi}(x, x') = \sum_{i=1}^{n} |x_i - x'_i|$$

6.) The l^{∞} metric on \mathbb{R}^n is defined as follows:

$$d_{l^{\infty}}(x, x') = \max_{i=1,2,\dots,n} |x_i - x'_i|$$

7.) The standard metric on \mathbb{R}^n is defined as follows:

$$d_{std}(x, x') = \sqrt{\sum_{i=1}^{n} (x_i - x'_i)^2}$$

8.) The discrete metric on a set X is defined as follows:

$$d_{discrete}(x, x') = \begin{cases} 1 & x \neq x' \\ 0 & x = x' \end{cases}$$

- 9.) Given metric spaces X and Y, an isometry between them is a bijection $f: X \to Y$ where for all $x, x' \in X$, we have $d_Y(f(x), f(x')) = d_X(x, x')$.
- 10.) Given a metric space X, a sequence $\{x_n\}_{n\in\mathbb{N}}$ is a function $x:\mathbb{N}\to X$. We say that x_n converges to a point $L\in X$ if for all $\varepsilon>0$, there exists $N\in\mathbb{N}$ where

$$n > N \implies d(x_n, L) < \varepsilon$$

Proofs

- a.) Let W be a compact topological space, and \sim an equivalence relation on W. Consider the quotient space W/\sim and quotient map $q:W\to W/\sim$, and let $\{U_{\alpha}\}_{\alpha\in\mathcal{A}}$ be an open cover of W/\sim . Since U_{α} is open in W/\sim for all $\alpha\in\mathcal{A}$, we know that $q^{-1}(U_{\alpha})$ is open. Let $\{V_{\alpha}\}_{\alpha\in\mathcal{A}}$ be a collection of open sets in X where $V_{\alpha}=q^{-1}(U_{\alpha})$. Since $\{U_{\alpha}\}_{\alpha\in\mathcal{A}}$ is an open cover of W/\sim , we know that $\{V_{\alpha}\}_{\alpha\in\mathcal{A}}$ is an open cover of W, and since W is compact, there exists a finite subcover $\{V_{\beta}\}_{\beta\in\mathcal{B}}$ of W where $\mathcal{B}\subseteq\mathcal{A}$. Finally, let $\{U_{\beta}\}_{\beta\in\mathcal{B}}$ be a collection of open sets in W/\sim where $U_{\beta}=q(V_{\beta})$. Since $\{V_{\beta}\}_{\beta\in\mathcal{B}}$ is a cover of W, we know that $\{U_{\beta}\}_{\beta\in\mathcal{B}}$ is a cover of W/\sim , and since $\mathcal{B}\subseteq\mathcal{A}$ and is finite, we know that it is a finite subcover of W/\sim , thus W/\sim is compact.
- b.) Let X be a Hausdorff topological space and equip $A \subseteq X$ with the subspace topology. Let $a, a' \in A$ be distinct points. Since $A \subseteq X$, a and a' are also distinct points in X, thus there exist open sets U, U' in X where $a \in U$, $a' \in U'$, and $U \cap U' = \emptyset$. It is clear that $a \in A \cap U$ and $a' \in A \cap U'$. We also know that by definition $A \cap U$ and $A \cap U'$ are open in A. Finally, note that $(A \cap U) \cap (A \cap U') = A \cap (U \cap U') = A \cap \emptyset = \emptyset$, thus the two sets are distinct, and thus A is Hausdorff.