Group 4 - ADS 506

November 29, 2022

```
[630]: #Import all required packages:
       import warnings
       warnings.filterwarnings("ignore")
       import os
       import itertools
       import pandas as pd
       import numpy as np
       import datetime
       import statsmodels.api as sm
       from pandas.plotting import autocorrelation_plot
       import statsmodels.formula.api as smf
       from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
       from statsmodels.tsa.stattools import adfuller
       from statsmodels.tsa.seasonal import seasonal_decompose
       from sklearn.metrics import mean_squared_error
       from dateutil.parser import parse
       from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt
       import seaborn as sns
       import matplotlib as mpl
       import matplotlib.pyplot as plt
       from prettytable import PrettyTable
       %matplotlib inline
[631]: df = pd.read_excel('/Users/JohnnyBlaze/Website Data Sets/Online Retail.xlsx',
        →parse_dates=[4])
[632]: df.head()
[632]:
         InvoiceNo StockCode
                                                      Description Quantity \
                               WHITE HANGING HEART T-LIGHT HOLDER
           536365
                      85123A
       0
            536365
                      71053
                                              WHITE METAL LANTERN
                                                                           6
       1
       2
           536365
                      84406B
                                   CREAM CUPID HEARTS COAT HANGER
                                                                           8
       3
            536365
                      84029G KNITTED UNION FLAG HOT WATER BOTTLE
                                                                           6
                                   RED WOOLLY HOTTIE WHITE HEART.
           536365
                      84029E
                 InvoiceDate UnitPrice CustomerID
                                                            Country
       0 2010-12-01 08:26:00
                                   2.55
                                            17850.0 United Kingdom
                                            17850.0 United Kingdom
       1 2010-12-01 08:26:00
                                   3.39
```

```
2 2010-12-01 08:26:00
                            2.75
                                     17850.0 United Kingdom
                                     17850.0 United Kingdom
3 2010-12-01 08:26:00
                            3.39
                                     17850.0 United Kingdom
4 2010-12-01 08:26:00
                            3.39
```

[633]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 541909 entries, 0 to 541908

Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	${\tt InvoiceNo}$	541909 non-null	object
1	StockCode	541909 non-null	object
2	Description	540455 non-null	object
3	Quantity	541909 non-null	int64
4	${\tt InvoiceDate}$	541909 non-null	datetime64[ns]
5	${\tt UnitPrice}$	541909 non-null	float64
6	CustomerID	406829 non-null	float64
7	Country	541909 non-null	object
dt.vp	es: datetime6	4[ns](1), float.64	(2) int64(1) object(

 ${\tt dtypes: datetime64[ns](1), float64(2), int64(1), object(4)}$

memory usage: 33.1+ MB

[634]: df.dropna()

[634]:		InvoiceNo S	StockCode			Descri	ption	Quantity	\
	0	536365	85123A	WHITE HAN	GING HEART T	-LIGHT H	HOLDER	6	
	1	536365	71053		WHITE	METAL LA	ANTERN	6	
	2	536365	84406B	CREAM	CUPID HEART	S COAT H	HANGER	8	
	3	536365	84029G	KNITTED UN	ION FLAG HOT	WATER E	BOTTLE	6	
	4	536365	84029E	RED W	OOLLY HOTTIE	WHITE H	HEART.	6	
	•••	•••	•••			•••	•••		
	541904	581587	22613	PA	CK OF 20 SPA	CEBOY NA	APKINS	12	
	541905	581587	22899	CHI	LDREN'S APRO	N DOLLY	GIRL	6	
	541906	581587	23254	CHIL	DRENS CUTLER	Y DOLLY	GIRL	4	
	541907	581587	23255	CHILDR	ENS CUTLERY	CIRCUS F	PARADE	4	
	541908	581587	22138	BAKI	NG SET 9 PIE	CE RETRO	OSPOT	3	
		In	voiceDate	${\tt UnitPrice}$	${\tt CustomerID}$		Country	•	
	0	2010-12-01	08:26:00	2.55	17850.0	United	Kingdom	1	
	1	2010-12-01	08:26:00	3.39	17850.0	United	Kingdom	1	
	2	2010-12-01	08:26:00	2.75	17850.0	United	Kingdom	1	
	3	2010-12-01	08:26:00	3.39	17850.0	United	Kingdom	1	
	4	2010-12-01	08:26:00	3.39	17850.0	United	Kingdom	1	
	•••		•••	•••	•••	•••			
	541904	2011-12-09	12:50:00	0.85	12680.0		France)	
		2011-12-09		2.10	12680.0		France	:	
	541906	2011-12-09	12:50:00	4.15	12680.0		France	;	
	541907	2011-12-09	12:50:00	4.15	12680.0		France	:	

```
[406829 rows x 8 columns]
[635]: df = df[df['Quantity'] > 0]
[636]: len(df)
[636]: 531285
[637]: df['Sales'] = (df['Quantity'] * df['UnitPrice'])
[638]: df.head()
        InvoiceNo StockCode
[638]:
                                                     Description Quantity
           536365
                     85123A
                              WHITE HANGING HEART T-LIGHT HOLDER
      0
                                                                         6
      1
           536365
                      71053
                                             WHITE METAL LANTERN
                                                                         6
      2
           536365
                     84406B
                                  CREAM CUPID HEARTS COAT HANGER
                                                                         8
      3
           536365
                     84029G KNITTED UNION FLAG HOT WATER BOTTLE
                                                                         6
                                  RED WOOLLY HOTTIE WHITE HEART.
      4
           536365
                     84029E
                InvoiceDate
                            UnitPrice CustomerID
                                                           Country Sales
                                           17850.0 United Kingdom
      0 2010-12-01 08:26:00
                                  2.55
                                                                   15.30
      1 2010-12-01 08:26:00
                                  3.39
                                           17850.0 United Kingdom
                                                                    20.34
      2 2010-12-01 08:26:00
                                  2.75
                                           17850.0 United Kingdom
                                                                    22.00
      3 2010-12-01 08:26:00
                                  3.39
                                           17850.0 United Kingdom
                                                                    20.34
      4 2010-12-01 08:26:00
                                  3.39
                                           17850.0 United Kingdom
                                                                    20.34
[639]: clock = df[df['Description'].str.contains('CLOCK', na=False)]
[640]: len(clock)
[640]: 7180
[641]: clock['Category'] = 'Clock'
[642]: clock.drop(['InvoiceNo', 'StockCode', 'Description', 'CustomerID', 'Quantity', [
        [643]: clock.head()
[643]:
                  InvoiceDate
                                      Country
                                               Sales Category
      26 2010-12-01 08:45:00
                                       France
                                                90.0
                                                        Clock
          2010-12-01 08:45:00
                                                90.0
      27
                                       France
                                                        Clock
      28 2010-12-01 08:45:00
                                       France
                                                45.0
                                                        Clock
      149 2010-12-01 09:45:00 United Kingdom
                                                        Clock
                                                15.0
      204 2010-12-01 10:03:00
                                    Australia
                                                17.0
                                                        Clock
```

4.95

12680.0

France

541908 2011-12-09 12:50:00

```
[644]: clock['Country'].value_counts()
[644]: United Kingdom
                              6415
       France
                               184
                               141
       Germany
       EIRE
                               127
                                63
       Belgium
       Australia
                                38
       Switzerland
                                35
       Denmark
                                25
       Spain
                                24
       Norway
                                21
       Iceland
                                18
       Channel Islands
                                13
       Netherlands
                                13
       Portugal
                                11
       Finland
                                11
       Singapore
                                 7
       Cyprus
                                 7
       Israel
                                 6
       Canada
                                 5
       Poland
                                 3
                                 2
       Greece
       Brazil
                                 2
                                 2
       Malta
       Italy
                                 2
       RSA
                                 2
       Hong Kong
                                 1
       European Community
                                 1
       Unspecified
                                 1
       Name: Country, dtype: int64
[645]: clock = clock.loc[clock['Country'] == 'United Kingdom']
[646]: clock.drop('Country', axis=1, inplace=True)
[647]: len(clock)
[647]: 6415
[648]: clock.head()
[648]:
                   InvoiceDate Sales Category
       149 2010-12-01 09:45:00
                                  15.0
                                           Clock
       271 2010-12-01 10:47:00
                                  15.0
                                           Clock
       272 2010-12-01 10:47:00
                                  30.0
                                           Clock
                                           Clock
       273 2010-12-01 10:47:00
                                  30.0
       274 2010-12-01 10:47:00
                                  30.0
                                           Clock
```

```
[649]: type(clock)
[649]: pandas.core.frame.DataFrame
[650]: # clock3 = pd.DataFrame(clock.groupby("InvoiceDate")['Sales'].sum().
       \neg reset\_index())
       # clock3.head()
[651]: # clock3.plot(figsize=(12, 4))
       # plt.title('Clock Sales', fontweight='bold', size=20)
       # plt.show()
[652]: # clock.resample('H', on='InvoiceDate').Sales.sum()
[653]: clock2 = clock.resample('D', on='InvoiceDate').Sales.sum().reset_index()
[654]: clock2 = pd.DataFrame(clock2)
[655]: clock2.head()
[655]:
        InvoiceDate
                       Sales
       0 2010-12-01 568.40
       1 2010-12-02 798.25
       2 2010-12-03 587.62
       3 2010-12-04
                        0.00
       4 2010-12-05 596.00
[656]: clock2 = clock2[clock2['Sales'] > 1]
[657]: type(clock2)
[657]: pandas.core.frame.DataFrame
[658]: len(clock2)
[658]: 303
[659]: clock2 = clock2.rename(columns={'Sales': 'Clock_Sales'})
[660]: clock2.head()
[660]:
        InvoiceDate Clock_Sales
       0 2010-12-01
                           568.40
       1 2010-12-02
                           798.25
       2 2010-12-03
                           587.62
       4 2010-12-05
                           596.00
       5 2010-12-06
                           475.97
```

```
[661]: clock2.tail()
[661]:
           InvoiceDate Clock_Sales
       369
           2011-12-05
                            1246.29
       370 2011-12-06
                            1358.44
       371 2011-12-07
                            2496.14
       372 2011-12-08
                            1195.32
       373 2011-12-09
                             421.82
[662]:
      clock2['InvoiceDate'].min()
[662]: Timestamp('2010-12-01 00:00:00')
[663]: clock2.info()
      <class 'pandas.core.frame.DataFrame'>
      Int64Index: 303 entries, 0 to 373
      Data columns (total 2 columns):
           Column
                        Non-Null Count
                                        Dtype
           InvoiceDate 303 non-null
                                         datetime64[ns]
           Clock_Sales 303 non-null
                                         float64
      dtypes: datetime64[ns](1), float64(1)
      memory usage: 7.1 KB
[664]: def plot_df(clock2, x, y, title="", xlabel='Date', ylabel='# of Clocks Sold', u
        →dpi=100):
           plt.figure(figsize=(15,4), dpi=dpi)
           plt.plot(x, y, color='tab:green')
           plt.gca().set(title=title, xlabel=xlabel, ylabel=ylabel)
           plt.legend(['Clock_Sales'])
           plt.show()
       plot_df(df, x=clock2['InvoiceDate'], y=clock2['Clock_Sales'], title='Online_
        →Clock Sales Dec 2010 to Dec 2011')
```



```
[666]: # Decomposition
       \# Decomposition of a time series can be performed by considering the series as \sqcup
        →an additive or multiplicative combination of the base level, trend, seasonal
        ⇔index and the residual term.
       from statsmodels.tsa.seasonal import seasonal decompose
       from dateutil.parser import parse
       # Multiplicative Decomposition
       multiplicative_decomposition = seasonal_decompose(clock2['Clock_Sales'],__
        →model='multiplicative', period=35)
       # Additive Decomposition
       additive_decomposition = seasonal_decompose(clock2['Clock_Sales'],__
        →model='additive', period=35)
       plt.rcParams.update({'figure.figsize': (16,12)})
       multiplicative_decomposition.plot().suptitle('Multiplicative Decomposition', __
        ⇔fontsize=16)
       plt.tight_layout(rect=[0, 0.03, 1, 0.95])
```

```
additive_decomposition.plot().suptitle('Additive Decomposition', fontsize=16)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.show()
```

Multiplicative Decomposition

Additive Decomposition

- 0.1 If we look at the residuals of the additive decomposition closely, it has some pattern left over.
- 0.2 The multiplicative decomposition, looks quite random which is good. So ideally, multiplicative decomposition should be preferred for this particular series.

0.3 The graph loooks the same as when it was first plotted suggesting no trend

ADF Statistic: -4.091994

- 0.4 Running the example prints the test statistic value of -4. The more negative this statistic, the more likely we are to reject the null hypothesis (we have a stationary dataset).
- 0.5 This suggests that we can reject the null hypothesis with a significance level of less than 1% (i.e. a low probability that the result is a statistical fluke).
- 0.6 Rejecting the null hypothesis means that the process has no unit root, and in turn that the time series is stationary or does not have time-dependent structure.
- 0.7 Stationarity of the time-series data: The stationarity of the data can be found using adfuller class of statsmodels.tsa.stattools module. The value of p-value is used to determine whether there is stationarity. If the value is less than 0.05, the stationarity exists.

```
[669]: # Dickey-Fuller Test
from statsmodels.tsa.stattools import adfuller
# Run the test
df_stationarityTest = adfuller(clock2['Clock_Sales'], autolag='AIC')
# Check the value of p-value
print("P-value: ", df_stationarityTest[1])
```

P-value: 0.000998459148273761

```
[670]: clock2['Clock_Sales'].hist()
plt.show()
```



```
[671]: # Test for seasonality
from pandas.plotting import autocorrelation_plot

# Draw Plot
plt.rcParams.update({'figure.figsize':(10,8), 'figure.dpi':100})
autocorrelation_plot(clock2['Clock_Sales'].tolist())
plt.show()
```


0.8 If partial autocorrelation values are close to 0, then values between observations and lagged observations are not correlated with one another. Inversely, partial autocorrelations with values close to 1 or -1 indicate that there exists strong positive or negative correlations between the lagged observations of the time series.

0.9 A Lag plot is a scatter plot of a time series against a lag of itself. It is normally used to check for autocorrelation. If there is any pattern existing in the series, the series is autocorrelated. If there is no such pattern, the series is likely to be random white noise.

```
[673]: from statsmodels.graphics.tsaplots import plot_pacf

pacf = plot_pacf(clock2['Clock_Sales'], lags=25)
```


0.10 The above plot can be used to determine the order of AR model. You may note that a correlation value up to order 3 is high enough. Thus, we will train the AR model of order 3.

0.10.1 Naive Forecast Model

```
[674]: # Split Train / Test

train_length = 243
train = clock2[0:train_length]
test = clock2[train_length:]
print(len(train))
print('')
print(len(test))
```

243

60

```
[675]: # Naive Forecast

naive = test.copy()
naive['naive_forecast'] = train['Clock_Sales'][train_length-1]

plt.figure(figsize=(20,5))
plt.grid()
plt.plot(train['Clock_Sales'], label='Train')
plt.plot(test['Clock_Sales'], label='Test')
plt.plot(naive['naive_forecast'], label='Naive forecast')
plt.legend(loc='best')
plt.title('Naive Method')
plt.show()
```


[676]: Method RMSE MAPE 0 Naive method 868.59 58.44

Per the graph naive method is not suitable for data with high variability

0.10.2 Simple Average

```
[677]: simple_average = test.copy()
simple_average['avg_forecast'] = train['Clock_Sales'].mean()
plt.figure(figsize=(20,5))
```

```
plt.grid()
plt.plot(train['Clock_Sales'], label='Train')
plt.plot(test['Clock_Sales'], label='Test')
plt.plot(simple_average['avg_forecast'], label='Average forecast')
plt.legend(loc='best')
plt.title('Average Method')
plt.show()
```


[678]: Method RMSE MAPE 0 Average method 868.59 58.44

This model did improve our score, it seems the average of our data is pretty consistent.

0.10.3 Moving Average (60 Day)

```
plt.legend(loc='best')
plt.show()
```

[680]: Method RMSE MAPE 0 Moving Average method 868.59 58.44

Interestingly enough this model did not improve our results after choosing the last 60 days. We could adjust the window and see if that improves our results.

0.10.4 Simple Exponential Smoothing

[682]: Method RMSE MAPE 0 Simple Exponential Smoothing method 868.59 58.44

So far the second best model after simple average. We can tune to alpha from 0.6 to another number to see if it helps improve the model.

0.10.5 Holt Method

[684]: Method RMSE MAPE 0 Holt Linear method 868.59 58.44

Results were not very good on the first run, model can be tuned to see if there's improvement

0.10.6 Holt Winter's Method

```
[685]: hw = test.copy()
hw_fit = ExponentialSmoothing(np.asarray(train['Clock_Sales'])_
______, seasonal_periods=7 ,trend='add', seasonal='add',).fit()
hw['Holt_Winter'] = hw_fit.forecast(len(test))

plt.figure(figsize=(20,5))
plt.grid()
plt.plot( train['Clock_Sales'], label='Train')
plt.plot(test['Clock_Sales'], label='Test')
plt.plot(hw['Holt_Winter'], label='Holt_Winter')
plt.legend(loc='best')
plt.show()
```


[686]: Method RMSE MAPE 0 Holt Winters method 868.59 58.44

0.10.7 Arima Model

```
[687]: autocorrelation_plot(clock2['Clock_Sales']) plt.show()
```



```
[688]: fig = plt.figure(figsize=(12,8))
    ax1 = fig.add_subplot(211)
    fig = sm.graphics.tsa.plot_acf(clock2['Clock_Sales'],lags=40,ax=ax1)
    ax2 = fig.add_subplot(212)
    fig = sm.graphics.tsa.plot_pacf(clock2['Clock_Sales'],lags=40,ax=ax2)
```



```
[689]: from statsmodels.tsa.arima_model import ARIMA

model = ARIMA(clock2['Clock_Sales'], order = (1,0,0))
model_fit = model.fit(disp=0)
model_fit.summary()
```

[689]: <class 'statsmodels.iolib.summary.Summary'>

ARMA Model Results

=======================================		=======================================	=========
Dep. Variable:	Clock_Sales	No. Observations:	303
Model:	ARMA(1, 0)	Log Likelihood	-2368.473
Method:	css-mle	S.D. of innovations	600.512
Date:	Tue, 29 Nov 2022	AIC	4742.946
Time:	21:22:27	BIC	4754.087
Sample:	0	HQIC	4747.403
=======================================			
=====			
	coef std er	r z P> z	[0.025
0.975]			

const	481.2924	38.920	12.366	0.000	405.011
557.574					
ar.L1.Clock_Sales	0.1140	0.057	2.000	0.045	0.002
0.226					

Roots

========		=======================================		=========
	Real	Imaginary	Modulus	Frequency
AR.1	8.7734	+0.0000j	8.7734	0.0000

[690]: model_fit.plot_predict(dynamic=False)
plt.show()

[691]: # Create Training and Test For Arima
train_length = 243

train_sales = clock2.Clock_Sales[0:train_length]
test_sales = clock2.Clock_Sales[train_length:]

```
[692]: # Build Model
       model = ARIMA(train_sales, order=(1, 0, 0))
       fitted = model.fit(disp=0)
       # Forecast using 95% confidence interval
       fc, se, conf = fitted.forecast(60, alpha=0.05)
       # Make as pandas series
       fc_series = pd.Series(fc, index=test_sales.index)
       lower_series = pd.Series(conf[:, 0], index=test_sales.index)
       upper_series = pd.Series(conf[:, 1], index=test_sales.index)
       # Plot
       plt.figure(figsize=(12,5), dpi=100)
       plt.plot(train_sales, label='training')
       plt.plot(test_sales, label='actual')
       plt.plot(fc_series, label='forecast')
       plt.fill_between(lower_series.index, lower_series, upper_series, color='k',__
        →alpha=.15)
       plt.title('Forecast vs Actuals')
       plt.legend(loc='upper left', fontsize=8)
       plt.show()
```



```
results = results[['Method', 'RMSE', 'MAPE']]
       results
[693]:
               Method
                          RMSE
                                MAPE
       0 ARIMA method 868.59 58.44
[695]: # Table Results
       Table = PrettyTable(["Model","MAPE", "RMSE"])
       Table.add_row(["Naive", n_mape, n_rmse])
       Table.add_row(["Simple Average", sa_mape, sa_rmse])
       Table.add_row(["Moving Average", ma_mape, ma_rmse])
       Table.add_row(["Simple Exponential", se_mape, se_rmse])
       Table.add_row(["Holt Linear", hl_mape, hl_rmse])
       Table.add_row(["Holt Winter", hw_mape, hw_rmse])
       Table.add_row(["ARIMA", arima_mape, arima_rmse])
       print("Time Series Model Performance Sorted by MAPE")
       Table.sortby = "MAPE"
       print(Table)
```

Time Series Model Performance Sorted by MAPE

Model MAPE RMSE +		
	MAPE RMSE	Model
ARTMA	ge 58.35 868.62 58.44 868.59	Simple Average
Simple Exponential 63.33 819.63	tial 63.33 819.63	Simple Exponential
Naive 65.53 962.45 Moving Average 74.06 778.11	ge 74.06 778.13	Moving Average
Holt Linear 74.44 776.13 Holt Winter 83.05 729.28	·	