Algèbre 2

Théorie de Galois

Question 1/10

$$\mathbb{F}^{\operatorname{Gal}}$$

 \mathbb{F}/\mathbb{K} séparable et $\mathbb{F} \subset \mathbb{K}^{alg}$

Réponse 1/10

Plus petite extension galoisienne de K contenant **F** C'est l'extension de K engendrée par $\{\sigma(\mathbb{F}), \sigma \in \operatorname{Gal}(\mathbb{K}^{\operatorname{alg}}/\mathbb{K})\}$ Si \mathbb{F}/\mathbb{K} est finie alors $\mathbb{F}^{Gal}/\mathbb{K}$ est finie et $\left[\mathbb{F}^{\text{Gal}}:\mathbb{K}\right]\leqslant\left[\mathbb{F}:\mathbb{K}\right]!$

Question 2/10

 \mathbb{L}/\mathbb{K} est kummérienne

Réponse 2/10

 \mathbb{L}/\mathbb{K} est radicielle avec $\mathbb{L} = \mathbb{K}(\alpha), \ \alpha^n \in \mathbb{K},$ $n \wedge \operatorname{car}(\mathbb{K}) = 1, \ \mathbb{K}$ contient toutes les racines $n^{\text{ièmes}} \text{ de } 1$

Question 3/10

Proprété de $Gal(\mathbb{L}/\mathbb{K})$ sur les racines de P tel que $\mathbb{L} = D_{\mathbb{K}}(P)$

Réponse 3/10

$$\operatorname{Gal}(\mathbb{L}/\mathbb{K}) \hookrightarrow \mathfrak{S}(\operatorname{rac}(P)) \cong \mathfrak{S}_n$$

Si de plus P est irréductible alors l'action sur
les racines est transitive

Question 4/10

L/K est abélienne

Réponse 4/10

 \mathbb{L}/\mathbb{K} est galoisienne et $\operatorname{Gal}(\mathbb{L}/\mathbb{K})$ est abélien

Question 5/10

 \mathbb{L}/\mathbb{K} est cyclique

Réponse 5/10

 \mathbb{L}/\mathbb{K} est abélienne et $\operatorname{Gal}(\mathbb{L}/\mathbb{K}) \cong \mathbb{Z}/n\mathbb{Z}$

Question 6/10

Extension galoisienne

Réponse 6/10

Extension algébrique, normale et séparable

Question 7/10

 \mathbb{L}/\mathbb{K} est radicielle

Réponse 7/10

$$\mathbb{L} = \mathbb{K}(\alpha)$$
 avec α racine de $X^n - a$, $a \in \mathbb{K}$

Question 8/10

Correspondance de Galois appliquée à des compositums et intersections

Réponse 8/10

Si \mathbb{F}_1 et \mathbb{F}_2 sont associés à H_1 et H_2 alors $\mathbb{F}_1 \cap \mathbb{F}_2$ est associé à $\langle H_1, H_2 \rangle$ et $\mathbb{F}_1 \cdot \mathbb{F}_2$ est associé à $H_1 \cap H_2$

Question 9/10

Théorème de correspondance de Galois

Réponse 9/10

Si L/K est une extension galoisienne finie et $G = \operatorname{Gal}(\mathbb{L}/\mathbb{K})$ alors il y a une bijection décroissante entre les extensions intermédiaires \mathcal{E} de \mathbb{L}/\mathbb{K} et les sous groupes \mathcal{G} de G donnée par $\mathcal{E} \longrightarrow \mathcal{G}$ et $\mathcal{G} \longrightarrow \mathcal{E}$ $\mathbb{F} \longmapsto \operatorname{Gal}(\mathbb{L}/\mathbb{F}) \quad H \longmapsto L^H$ F/K est normale si et seulement si $Gal(\mathbb{L}/\mathbb{F}) \triangleleft Gal(\mathbb{L}/\mathbb{K})$

Question 10/10

Construnction de L/K galoisienne comme corps de décomposition

Réponse 10/10

Si \mathbb{L}/\mathbb{K} est galoisienne si et seulement s'il existe un polynôme P séparable sur \mathbb{K} tel que $\mathbb{L} = \mathcal{D}_{\mathbb{K}}(P)$