

Prepared by: Simran Khanna July, 2019

BOOKING a TABLE AHEAD

Only 12.5% of restaurants on Zomato, Bengaluru allow booking a table ahead

Factorplot with # of Restaurants that allowed booking table for Zomato, Bengaluru restaurants

BOOK_TABLE

Categorical

 Distinct count
 2

 Unique (%)
 0.0%

 Missing (%)
 0.0%

 Missing (n)
 0

Toggle details

٧	alue alue	Count	Frequency (%)		
٨	lo	45268	87.5%	87.5%	
Y	és	6449	12.5%	12.5%	

ONLINE ORDERING

A Huge majority of ~58.9% of restaurants on Zomato, Bengaluru allow online ordering

Factorplot with # of Restaurants that allowed Online ordering for Zomato, Bengaluru restaurants

print("A Huge majority of ~58.9% of restaurants on Zomato, Bengaluru allow online ordering")

A Huge majority of ~58.9% of restaurants on Zomato, Bengaluru allow online ordering

 ONLINE_ORDER
 Distinct count
 2

 Categorical
 Unique (%)
 0.0

 Missing (%)
 0.0

Toggle details

Value	Count	Frequency (%)
Yes	30444	58.9%
No	21273	41.1%

Prate Distinct count 65 NEW 2208 Unique (%) 0.1% 3.9/5 2098 Missing (%) 15.0% 3.8/5 2022 Missing (n) 7775 Other values (61) 37614 (Missing) 7775 Toggle details

RATINGS

Ratings data shows a Normal distribution with ~22.6% restaurants rated between 3.7-3.9/5 and ~4.3% New restaurants without a valid rating

In [67]: print("Ratings data shows a Normal distribution with -22.6% restaurants rated between 3.7-3.9/5 and -4.3% New restaurants

Ratings data shows a Normal distribution with -22.6% restaurants rated between 3.7-3.9/5 and -4.3% New restaurants wi thout a valid rating and 15% with missing ratings

RATINGS with Mode correction for missing data

Ratings data shows a Normal distribution with ~22.6% restaurants rated between 3.7-3.9/5 and ~19.3% New restaurants without a valid rating. The restaurants with missing ratings (15%) have been treated as new in the absence of any vintage data on restaurants.

 RATE
 Distinct count
 64

 Categorical
 Unique (%)
 0.1

 Missing (%)
 0.0

 Missing (n)
 0.0

Toggle details

Value	Count	Frequency (%)	
NEW	9983	19.3%	
3.9/5	2098	4.1%	
3.8/5	2022	3.9%	
3.7/5	2011	3.9%	
3.9 /5	1874	3.6%	
3.8 /5	1851	3.6%	
3.7 /5	1810	3.5%	
3.6/5	1773	3.4%	
4.0/5	1609	3.1%	
4.0 /5	1574	3.0%	
Other values (54)	25112	48.6%	

Out[65]: <matplotlib.axes._subplots.AxesSubplot at 0x1a592ea898>

In [66]: print("Ratings data shows a Normal distribution with -22.6% restaurants rated between 3.7-3.9/5 and -19.3% New restaurants

Ratings data shows a Normal distribution with -22.6% restaurants rated between 3.7-3.9/5 and -19.3% New restaurants without a valid rating including the Resturants with missing ratings

Top 5 Restaurants by frequency

Top 5 restaurants by frequency include 'Cafe Coffee Day', 'Onesta', 'Just Bake', 'Empire Resturant' and 'Five Star Chicken'

In [18]: "Top 5 restaurants by vote include 'Cafe Coffee Day', 'Onesta', 'Just Bake', 'Empire Resturant' and 'Five Star Chicken'")

Top 5 restaurants by vote include 'Cafe Coffee Day', 'Onesta', 'Just Bake', Empire Resturant' and 'Five Star Chicken

Approximate Cost per 2 People -Missing Value treatment -Mode

> Approximate cost for 2 people - Before and After fixing missing values through mode replacement

APPROX COST(FOR TWO PEOPLE)

Distinct count Unique (%)

Toggle details

Value	Count
300	7576
400	6562
500	4980
200	4857
600	3714
250	2959
800	2285
150	2066
700	1948
350	1763
Other values (60)	12661

APPROX_COST(FOR TWO PEOPLE)

Categorical

Toggle details

Value	Count	Frequency (%)	
300	7922	15.3%	
400	6562	12.7%	
500	4980	9.6%	
200	4857	9.4%	
600	3714	7.2%	
250	2959	5.7%	
800	2285	4.4%	
150	2066	4.0%	
700	1948	3.8%	
350	1763	3.4%	
Other values (60)	12661	24.5%	

Approximate Cost per 2 People – Missing Value treatment - Mode

Data for Average cost for 2 people is left skewed and borders below INR 1000 for a majority of the restaurants

In [101]: zomato_fix['APPROX_COST(FOR TWO PEOPLE)'].value_counts().head(20).plot.bar()

Out[101]: <matplotlib.axes. subplots.AxesSubplot at 0x1a5c55ef9

CORRELATION ASSESSMENT Conversion to Numeric

Conversion of data from Category/Character to Numeric to assess correlation across factors In [110]: zomato.head()

Out[110]:

	URL	ADDRESS	NAME	ONLINE_ORDER	BOOK_TABLE	RATE	VOTES	PHONE	LOCATION	REST_1
0	https://www.zomato.com/bangalore/jalsa- banasha	942, 21st Main Road, 2nd Stage, Banashankari, 	Jalsa	Yes	Yes	4.1/5	775	080 42297555\r\n+91 9743772233	Banashankari	Ci D
1	https://www.zomato.com/bangalore/spice- elephan	2nd Floor, 80 Feet Road, Near Big Bazaar, 6th	Spice Elephant	Yes	No	4.1/5	787	080 41714161	Banashankari	Ci D
2	https://www.zomato.com/SanchurroBangalore?	1112, Next to KIMS Medical College, 17th Cross	San Churro Cafe	Yes	No	3.8/5	918	+91 9663487993	Banashankari	Cafe, Ci
3	https://www.zomato.com/bangalore/addhuri- udupi	1st Floor, Annakuteera, 3rd Stage, Banashankar	Addhuri Udupi Bhojana	No	No	3.7/5	88	+91 9620009302	Banashankari	Quick
4	https://www.zomato.com/bangalore/grand- village	10, 3rd Floor, Lakshmi Associates, Gandhi Baza	Grand Village	No	No	3.8/5	166	+91 8026612447\r\n+91 9901210005	Basavanagudi	Ci D

In [108]: zomato_new = zomato.copy(deep=True) # creating new dataframe to make any datatype changes over it and keep the origin from sklearn.preprocessing import LabelEncoder # Label encoder is used to transform number = LabelEncoder() # Here as our data set consists only for i in zomato_new.columns: # in order to find the correlation zomato_new[i] = number.fit_transform(zomato_new[i].astype('str')) zomato_new.head()

Out[108]:

-1-		URL	ADDRESS	NAME	ONLINE_ORDER	BOOK_TABLE	RATE	VOTES	PHONE	LOCATION	REST_TYPE	DISH_LIKED	CUISINES	APPROX_COST(FOR TWO PEOPLE)	
	0	22195	8016	3690	1	1	46	2094	13293	1	27	3651	2159	66	
	1	41273	3844	7022	1	0	46	2109	13078	1	27	2964	952	66	
	2	92	784	6499	1	0	40	2253	7145	1	22	1416	766	66	
	3	1160	2515	199	0	0	38	2208	6770	1	78	2766	2555	42	

CORRELATION ASSESMENT Factors driving Ratings

Correlation Assessment indicates that Reviews have high correlation to Ratings (~0.43)

```
In [104]: corr=zomato new.corr()['RATE']
          corr[np.argsort(corr,axis=0)[::-1]]
Out[104]: RATE
          REVIEWS LIST
                                         0.430843
          BOOK_TABLE
                                         0.120170
          MENU ITEM
                                         0.063947
          DISH_LIKED
                                         0.043749
          LOCATION
                                         0.034516
          ADDRESS
                                         0.020579
          LISTED_IN(TYPE)
                                         0.016577
          REST TYPE
                                         0.007890
          NAME
                                        0.004367
                                        -0.000792
          LISTED IN(CITY)
                                        -0.028311
          CUISINES
                                        -0.032267
                                        -0.036015
          APPROX_COST(FOR TWO PEOPLE)
                                        -0.124718
          ONLINE ORDER
                                        -0.167062
          VOTES
                                        -0.493170
          Name: RATE, dtype: float64
```

```
In [105]: features_correlation = zomato_new.corr()
    plt.figure(figsize=(8,8))
    sns.heatmap(features_correlation,vmax=1,square=True,annot=False,cmap='Blues')
    plt.show()
```


CORRELATION ASSESMENT Factors driving Ratings

Correlation Assessment indicates that Reviews have high correlation to Ratings (~0.43)

```
In [107]: corr = zomato_new.corr()
          plt.figure(figsize=(10,10))
          sns.heatmap(corr,vmax=.8,linewidth=.01, square = True, cmap='YlGnBu',linecolor ='black')
          plt.title('Correlation between features')
Out[107]: Text(0.5,1,'Correlation between features')
                                                                 Correlation between features
                           ONLINE ORDER
                             BOOK_TABLE
                                  VOTES
                               LOCATION
                              REST_TYPE
                              DISH_LIKED
                                CUISINES
           APPROX_COST(FOR TWO PEOPLE)
                              MENU_ITEM
                          LISTED_IN(TYPE)
                          LISTED_IN(CITY)
```

Top Restaurant Locations

The top 50 locations for restaurants is as per the list in the graph with BTM, HSR and Koramangala 5thblock topping the list

```
In [118]: import pylab
    pylab.ylim(0,6000)
    zomato_fix['LOCATION'].value_counts().head(50).plot.bar()
```

Out[118]: <matplotlib.axes._subplots.AxesSubplot at 0x1a687082b0>

Top Restaurant Locations by Online facility availability

Top restaurant locations typically offer online ordering facility

Out[147]: Text(0.5,1, 'Location vs Online ordering')

Top Restaurant Types

The top 20 types of restaurants are as listed in the graph

```
In [166]: plt.figure(figsize=(7,7))
    rest=zomato_fix['REST_TYPE'].value_counts()[:20]
    sns.barplot(rest,rest.index)
    plt.title("Restaurant types")
    plt.xlabel("count")
```

Out[166]: Text(0.5,0,'count')

Top 15 cuisines at Zomato,
Bengaluru

```
In [185]: plt.figure(figsize=(7,7))
    cuisines=zomato_fix['CUISINES'].value_counts()[:15]
    sns.barplot(cuisines,cuisines.index)
    plt.xlabel('Count')
    plt.title("Top 15 Cusines of Bangalore")
```

Out[185]: Text(0.5,1,'Top 15 Cusines of Bangalore')

Pandas Profiling Quantitative and Qualitative Summary of the data

Overview

Dataset info Variables types Number of variables 17 Numeric Number of observations 51717 Categorical 15 Total Missing (%) 4.3% Boolean 6.7 MiB Date Total size in memory Average record size in memory 136.0 B Text (Unique) Rejected Unsupported 0

Warnings

```
ADDRESS has a high cardinality: 11495 distinct values Warning

APPROX_COST(FOR TWO PEOPLE) has a high cardinality: 71 distinct values Warning

CUISINES has a high cardinality: 2724 distinct values Warning

DISH_LIKED has 28078 / 54.3% missing values Missing

DISH_LIKED has a high cardinality: 5272 distinct values Warning

LOCATION has a high cardinality: 94 distinct values Warning

MENU_ITEM has a high cardinality: 9098 distinct values Warning

NAME has a high cardinality: 8792 distinct values Warning

PHONE has 1208 / 2.3% missing values Missing

PHONE has a high cardinality: 14927 distinct values Warning

RATE has 7775 / 15.0% missing values Missing

RATE has a high cardinality: 65 distinct values Warning

REST_TYPE has a high cardinality: 94 distinct values Warning

REVIEWS_LIST has a high cardinality: 22513 distinct values Warning

VOTES has 10027 / 19.4% zeros Zeros
```

http://localhost:8888/view/Documents/Data%20Science/ e/INSAID/zomazomato before preprocessing.htmlto before preprocessing.html