集合論

沈威宇 2025年2月4日

目錄

第一節	i 集合論(Set theory)
_	·、 基本定義
	(一) 集合(Set)
_	、 勢、基數或計數(Cardinality)
	(一) 子集合
	(二) 交集(Intersection)
	(三) 聯集(Union)
	(四) 差集(Complement)
	(五) 笛卡爾積(Cartesian product)
	(六) 冪集合(Power set)
Ξ	、 ZFC 公理系統
	(一) 外延公理(Axiom of extensionality)
	(二) 正則公理(Axiom of regularity)
	(三) 分類公理(Axiom of separation)/規範公理模式(Axiom schema of
	specification)
	(四) 配對公理(Pairing Axiom)
	(五) 聯集公理(Union Axiom)
	(六) 替代公理模式(Axiom schema of replacement)
	(七) 無窮公理(Axiom of Infinity)
	(八) 冪集公理(Power Set Axiom)
	(九) 選擇公理(Axiom of choice)/良序公理(Axiom of well-ordering)
匹	、 宇集(Universe)
	(一) 舊定義
	(二) 今定義
	(三) 補集/餘集
五	、 集合的笛摩根定律(De Morgan's Law)
六	、 ——對應(One-to-one correspondence, also known as bijection)原理....
t	、 加法原理
八	、 乘法原理
九	,、 交集、聯集的交換律、結合律、分配律

十、補	i集相關原理
+-、	冪集計數原理
+=、	排容原理/取捨原理(Principle of inclusion-exclusion, PIE)
(—)	以元素證明
(<u></u>	以數學歸納法證明
十三、	Set scalar arithmetic operation
(—)	Kernel (核) of a family of sets
十四、	Partially ordered set (poset) (偏序集)
十五、	Upward closure

第一節 集合論 (Set theory)

一、 基本定義

(一) 集合(Set)

- 集合是指一組互不相同的物件的集合體,其中的物件稱元素(Element)。即集合由確定的元素 組成,且每個元素都是唯一的。
- 集合以一個 $\{\}$ 中包含所有元素表示,或以 $\{x \mid \text{ condition of } x\}$ 表示,其中 $\{x \mid x \mid x \mid x \in x\}$ 表示,其中 $\{x \mid x \mid x \mid x \in x\}$
- a 是集合 A 的一個元素記作 $a \in A$ •

•

$$(a \notin A) \Leftrightarrow (\neg (a \in A))$$

二、 勢、基數或計數(Cardinality)

是對集合的大小的度量,記作 |A| 或 n(A)。若可在兩集合的元素間建立——對應,則兩者之勢相同。對於有限 (Finite) 集合,勢即其元素數。與 \mathbb{N} 同勢的集合,稱可數無限 (Countable infinite),其勢為可數無限勢 (Cardinality of countable infinity) \aleph_0 。與實數同勢的集合,稱不可數無限 (Uncountable infinite),其勢為連續勢 (Cardinality of continuity) \mathfrak{c} 。

(一) 子集合

$$(z \subseteq x) \iff (\forall q (q \in z \implies q \in x))$$

(二) 交集 (Intersection)

$$A \cap B := \{x \mid x \in A \land x \in B\}$$
$$\bigcap_{i=1}^{n} A_i := \{x \mid \bigwedge_{i=1}^{n} x \in A_i\}$$

(三) 聯集(Union)

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$
$$\bigcup_{i=1}^{n} A_i := \{x \mid \bigvee_{i=1}^{n} x \in A_i\}$$

(四) 差集 (Complement)

$$A \setminus B := \{x \mid x \in A \land x \notin B\}$$

(五) 笛卡爾積(Cartesian product)

$$A \times B := \{(a, b) \mid a \in A \land b \in B\}$$

(六) 冪集合 (Power set)

$$2^A := \{B \mid B \subseteq A\}$$

三、 ZFC 公理系統

ZFC 公理系統指 Zermelo-Fraenkel 公理系統(ZF 公理系統)加上選擇公理(AC)。最常用的集合論公理系統為 ZFC 公理系統或 ZF 公理系統,分別記作 \vdash_{ZFC} 和 \vdash_{ZF} ,或均記作 \vdash 。

(一) 外延公理(Axiom of extensionality)

$$\forall x \forall y [\forall z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y]$$

(二) 正則公理(Axiom of regularity)

$$\forall x (x \neq \emptyset \Rightarrow \exists y (y \in x \land y \cap x = \emptyset))$$

(三) 分類公理(Axiom of separation)/規範公理模式(Axiom schema of specification)

Let φ be any formula in the language of ZFC with all free variables among x, z, w_1, \dots, w_n so that y is not free in φ . Then:

$$\forall z \forall w_1 \forall w_2 \dots \forall w_n \exists y \forall x [x \in y \Leftrightarrow ((x \in z) \land \varphi(x, w_1, w_2, ..., w_n, z))]$$

This axiom can be used to prove the existence of the empty set, denoted as \emptyset or \emptyset . 空集公理(Axiom of empty set):

$$\exists x, \forall y, (y \notin x)$$

The \emptyset is defined as the x above.

(四) 配對公理 (Pairing Axiom)

$$\forall x \forall y \exists z ((x \in z) \land (y \in z))$$

(五) 聯集公理(Union Axiom)

$$\forall \mathcal{F} \exists A \forall Y \forall x [(x \in Y \land Y \in \mathcal{F}) \Rightarrow x \in A]$$

Although this formula doesn't directly assert the existence of $\cup \mathcal{F}$, the set $\cup \mathcal{F}$ can be constructed from A in the above using the axiom schema of specification:

$$\cup \mathcal{F} = \{ x \in A \mid \exists Y (x \in Y \land Y \in \mathcal{F}) \}$$

(六) 替代公理模式(Axiom schema of replacement)

Let φ be any formula in the language of ZFC with all free variables among x, z, w_1, \dots, w_n so that B is not free in φ . Then:

$$\forall A \forall w_1 \forall w_2 \dots \forall w_n \Big[\forall x (x \in A \Rightarrow \exists ! y \varphi) \Rightarrow \exists B \ \forall x \big(x \in A \Rightarrow \exists y (y \in B \land \varphi) \big) \Big]$$

(七) 無窮公理(Axiom of Infinity)

$$\exists X \left[\exists e (\forall z \, \neg (z \in e) \land e \in X) \land \forall y (y \in X \Rightarrow S(y) \in X) \right]$$

(八) 冪集公理 (Power Set Axiom)

$$\forall A \exists P(A) \forall x (x \in P(A) \leftrightarrow x \subseteq A)$$

The P(A) above is called power set (冪集) and is denoted as 2^A .

(九) 選擇公理(Axiom of choice)/良序公理(Axiom of well-ordering)

$$\forall X \left[\varnothing \notin X \implies \exists f : X \to \bigcup_{A \in X} A \quad \forall A \in X (f(A) \in A) \right]$$

四、 宇集(Universe)

(一) 舊定義

過去,宇集有時定義為 $U = \{z \mid z \text{ is a set}\}$ 。但可以證明,ZH 公理系統下 $U = \{z \mid z \text{ is a set}\}$ 不是一個集合。Statement. $\vdash \nexists U = \{z \mid z \text{ is a set}\}$.

Proof.

Assume that $\exists U = \{z \mid z \text{ is a set}\}$. Let $A = \{x \in U \mid x \notin x\}$. $A \in A \iff (A \in U \land A \notin A)$, but $A \in A \iff \neg A \notin A$, so $A \notin A$, so $\neg (A \in U \land A \notin A)$, so $A \notin U$. $A \text{ is a set, so } A \in U$. $\Rightarrow \in$.

(二) 今定義

宇集今常定義為「當所探討的集合都是某個給定集合的子集,這個給定的集合稱為宇集,記作 U \circ 」

(三) 補集/餘集

若集合 A 為給定字集 U 的一個子集合,則 A 在 U 的補集定義為 $U\setminus A$,記作 A' 或 \overline{A} 或 A^C 。

五、 集合的笛摩根定律(De Morgan's Law)

$$(A \cup B)' = A' \cap B'$$

$$(A \cap B)' = A' \cup B'$$

六、 一一對應(One-to-one correspondence, also known as bijection)原理

$$\left(\forall a_1, a_2 \in A\left(f(a_1) = f(a_2) \implies a_1 = a_2\right)\right) \wedge \left(\forall b \in B\left(\exists a \in A\left(f(a) = b\right)\right)\right) \iff |A| = |B|$$

七、 加法原理

八、 乘法原理

$$\left| \prod_{i=1}^{n} A_i \right| = \prod_{i=1}^{n} |A_i|$$

九、 交集、聯集的交換律、結合律、分配律

- 交集有交換律。
- 聯集有交換律。
- 交集對交集有結合律、分配律。
- 聯集對聯集有結合律、分配律。
- 交集對聯集有分配律。
- 聯集對交集有分配律。
- $(A \cap B) \cup C$ 不一定等於 $A \cap (B \cup C)$

十、 補集相關原理

$$(A')' = A$$

$$A \setminus B = A \cap B'$$

$$A \subseteq B \iff B' \subseteq A'$$

十一、幂集計數原理

$$n(2^A) = 2^{n(A)}$$

十二、 排容原理/取捨原理(Principle of inclusion-exclusion, PIE)

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{\emptyset \neq J \subseteq \{a \mid a \in \mathbb{N} \land 1 \le a \le n\}} \left((-1)^{|J|-1} \cdot \left| \bigcap_{j \in J} A_{j} \right| \right)$$

(一) 以元素證明

Proof.

$$\begin{split} &\left|\bigcup_{i=1}^{n} A_{i}\right| = \sum_{\varnothing \neq J \subseteq \{a \mid a \in \mathbb{N} \land 1 \le a \le n\}} \left((-1)^{|J|-1} \cdot \left|\bigcap_{j \in J} A_{j}\right|\right) \\ &\equiv 1_{\bigcup_{i=1}^{n} A_{i}} = \sum_{k=1}^{n} \left((-1)^{k-1} \cdot \sum_{I \subseteq \{a \mid a \in \mathbb{N} \land 1 \le a \le n\} \land |I| = k} 1_{A_{I}}\right) \\ &\equiv \forall \left(x \in \bigcup_{i=1}^{n} A_{i}, m = \sum_{i: x \in A_{i}} 1\right) : 1 = \sum_{k=1}^{m} \left((-1)^{k-1} \sum_{I \subset \{a \mid a \in \mathbb{N} \land 1 \le a \le m\} \land |I| = k} 1\right) \\ &\equiv \forall \left(x \in \bigcup_{i=1}^{n} A_{i}, m = \sum_{i: x \in A_{i}} 1\right) : \binom{m}{0} = \sum_{k=1}^{m} \left((-1)^{k-1} \binom{m}{k}\right) \\ &\equiv \forall \left(x \in \bigcup_{i=1}^{n} A_{i}, m = \sum_{i: x \in A_{i}} 1\right) : (1-1)^{m} = 0 \end{split}$$

(二) 以數學歸納法證明

Proof.

當 n=2時, $|A_1\bigcup A_2|=|A_1|+|A_2|-|A_1\cap A_2|$,排容原理成立。 設 $n=k,k\geq 2,k\in \mathbb{N}$ 時,排容原理成立。 當 n=k+1時,

$$\begin{split} & \left| \bigcup_{i=1}^{k+1} A_i \right| \\ & = \left| \left(\bigcup_{i=1}^k A_i \right) \cup A_{k+1} \right| \\ & = \sum_{\varnothing \neq J \subseteq \{a \mid a \in \mathbb{N} \land 1 \le a \le k+1\}} \left((-1)^{|J|-1} \cdot \left| \bigcap_{j \in J} A_j \right| \right) \end{split}$$

,排容原理亦成立。

由數學歸納法,得證。

十三、 Set scalar arithmetic operation

- If $\forall a \in A$, sa is defined, $sA := \{sa : a \in A\}$.
- If $\forall a \in A$, a + v is defined, $A + v := \{a + v : a \in A\}$.

(一) Kernel (核) of a family of sets

The kernel of a family $\mathcal{B} \neq \emptyset$ of sets is defined to be:

$$\ker(\mathcal{B}) := \bigcap_{B \in \mathcal{B}} B.$$

十四、 Partially ordered set (poset) (偏序集)

A partially ordered set (poset for short) is an ordered pair $P = (X, \leq)$ consisting of a set X (called the ground set of P) and a partial order \leq on X. That is, for all $a, b, c \in X$ it must satisfy:

- 1. Reflexivity: $a \le a$, i.e. every element is related to itself.
- 2. Antisymmetry: $a \le b \land b \le a \implies a = b$, i.e. no two distinct elements precede each other.
- 3. Transitivity: $a \le b \land b \le c \implies a \le c$.

When the meaning is clear from context and there is no ambiguity about the partial order, the set X itself is sometimes called a poset.

十五、 Upward closure

Let A be a subset of a poset X, the upward closure of A (denoted as \uparrow A) is defined to be:

$$\uparrow A := \{x \in X : \exists a \in A \text{ s.t. } a \leq x\}.$$