MANAGEMENT OF TECHNOLOGY

COLLECTIVE GENIUS

COLLECTIVE GENIUS

• diverse people, wide-ranging ideas, debates

COLLECTIVE GENIUS

- diverse people, wide-ranging ideas, debates
- trial and error, learning

COLLECTIVE GENIUS

- diverse people, wide-ranging ideas, debates
- trial and error, learning
- "either-or" → "both-and" thinking

internal ideas

internal ideas

external ideas

STEPS OF PRODUCT DEVELOPEMENT

STEPS OF PRODUCT DEVELOPEMENT

STAGE	AIM	OBJECT	PLACE
(Pre-)Study	principle of operation, the essence of the product	model	laboratory
Prototype	the design of the product, laboratory-level manufacturing technology	product	laboratory
Pilot lot	factory-level manufacturing technology	product	factory

STAGE GATE SELECTION CRITERIA

STAGE GATE SELECTION CRITERIA

CRITERIA	DEFINITION	SHARE (%)
market	probability of commercial success	23,3
technology	probability of technical success	14,9
profit	profitability of reward	12,8
leverage	probability of competitive advantage	11,7
strategy and business	probability of achieving long term goals	11,0
project management	probability of implementation success	7,6
resourcing	probability of capability	5,5
legal / regulatory	probability of legislative requirements	2,7
other	other	10,3

(Aristodemou, Tietze, Shaw, 2020)

Compared to the (pre-)studies

STAGES	REJECTION RATES (%)
(pre-)study	91
prototype	4
pilot lot	2
market launch	0,6 (failure)

Compared to the (pre-)studies

	STAGES	REJECTION RATES (%)
	(pre-)study	91
	prototype	4
↓	pilot lot	2
3%	market launch	0,6 (failure)

2.4%

SUCCESS

Compared to the (pre-)studies

	STAGES	REJECTION RATES (%)	
	(pre-)study	91	
	prototype	4	
↓	pilot lot	2	\
3%	market launch	0,6 (failure)	33

2.4% SUCCESS 42

Compared to the row product ideas

STAGES	REJECTION RATES (%)
row product idea	90
product concept	5,8
(pre-)study	3,8
prototype	0,17
pilot lot	0,08
market launch	0,03 (failure)

Compared to the row product ideas

	STAGES	REJECTION RATES (%)
	row product idea	90
, i	product concept	5,8
4.2%	(pre-)study	3,8
	prototype	0,17
	pilot lot	0,08
1.26‰	market launch	0,03 (failure)

Compared to the row product ideas

	STAGES	REJECTION RATES (%)
	row product idea	90
•	product concept	5,8
4.2%	(pre-)study	3,8
	prototype	0,17
	pilot lot	0,08
1.26‰	market launch	0,03 (failure)

1‰

SUCCESS

1000

800

24

@ marketoonist.com

TRADITIONAL PRODUCT DEVELOPEMENT

TRADITIONAL PRODUCT DEVELOPEMENT

TRADITIONAL PRODUCT DEVELOPEMENT

2 DIFFERENCES BETWEEN RELAY AND RUGBY

2 DIFFERENCES BETWEEN RELAY AND RUGBY

SOME OF THE SAME ACTIVITIES ARE DONE EARLIER

2 DIFFERENCES BETWEEN RELAY AND RUGBY

SOME OF THE SAME ACTIVITIES ARE DONE EARLIER

- those that are independent of the results of the previous stages,
- and that are cheap (80% / 20% Pareto-rule)

NEW ACTIVITES

2 DIFFERENCES BETWEEN RELAY AND RUGBY

SOME OF THE SAME ACTIVITIES ARE DONE EARLIER

- those that are independent of the results of the previous stages,
- and that are cheap (80% / 20% Pareto-rule)

NEW ACTIVITES

continuous collaboration between the experts of the different aspects, from start to finish

ITERATIVE APPROACH

ITERATIVE APPROACH

rapid, iterative loops

ITERATIVE APPROACH

- rapid, iterative loops
- inexpensive models and prototypes

TEAMS

TEAMS

• nimble, experimenting

TEAMS

- nimble, experimenting
- multidisciplinary, with external experts

TEAMS

- nimble, experimenting
- multidisciplinary, with external experts
- part-time or limited-time members, small constant core

GOVERNANCE

• coach, go / no go decision maker

- coach, go / no go decision maker
- mitigating "organizational antibodies"

- coach, go / no go decision maker
- mitigating "organizational antibodies"
- culture of experimentation and learning

- coach, go / no go decision maker
- mitigating "organizational antibodies"
- culture of experimentation and learning
- sense of urgency and agility

PROCESS

PROCESS

- integrating agile into a single innovation process
- adding a partly parallel agile path

PROCESS

- rintegrating agile into a single innovation process
- adding a partly parallel agile path

AGILE ORGANIZATIONS

AGILE ORGANIZATIONS

"... network of teams within a people-centered culture that operates in rapid learning and fast decision cycles which are enabled by technology ..."

AGILE ORGANIZATIONS

"... network of teams within a people-centered culture that operates in rapid learning and fast decision cycles which are enabled by technology ..."

"... quickly and efficiently reconfigure strategy, structure, processes, people, and technology toward value-creating and value-protecting opportunities ..."

How the customer explained

How the project leader understood it

How the analyst designed it

How the programmer wrote

What the beta testers received

How the business consultant described it

How the project was documented

What operations installed

How the customer was billed

How it was supported

What marketing advertised

What the customer really needed

AND THEN TREAT THEM AS DEADLINES

Please Tell us about your experience with project management

So project management... ya know, I like, manage the projects..

imgflip.com

STAGE/PHASE-GATE

STAGE/PHASE-GATE

- built for incremental innovation
- minimizes risk and time-to-market
- clear understanding of requirements

AGILE

STAGE/PHASE-GATE

- built for incremental innovation
- minimizes risk and time-to-market
- clear understanding of requirements

AGILE

- built for breakthrough innovation
- creates new sources of value
- more unknown than known at beginning

Hype Cycle for Emerging Technologies, 2020

gartner.com/SmarterWithGartner

Hype Cycle for the Digital Workplace, 2020

gartner.com/SmarterWithGartner

THE INTERNET OF THINGS

THE INTERNET OF THINGS

INDUSTRY BOUNDARIES

INDUSTRY BOUNDARIES

product

INDUSTRY BOUNDARIES

product

- product
- smart product

- product
- smart product

- product
- smart product
- smart, connected product

CAPABILITIES OF SMART, CONNECTED PRODUCTS

monitor

- monitor
- control

- monitor
- control
- optimization

- monitor
- control
- optimization
- autonomy

- product
- smart product
- smart, connected product

- product
- smart product
- smart, connected product
- product system

- product
- smart product
- smart, connected product
- product system

- product
- smart product
- smart, connected product
- product system
- system of systems

Al is the ability of a machine to perform cognitive functions we associate with human minds.

All is the ability of a machine to perform cognitive functions we associate with human minds.

E.g.: perceive, conclude, learn, interact, solve problems, be creative.

Al is formed by a new generation of machines capable of

(a) interacting with the environment, gathering information from outside (including from natural language) or from other computer systems;

- (a) interacting with the environment, gathering information from outside (including from natural language) or from other computer systems;
- (b) interpreting this information, recognizing patterns, inducing rules, or predicting events;

- (a) interacting with the environment, gathering information from outside (including from natural language) or from other computer systems;
- (b) interpreting this information, recognizing patterns, inducing rules, or predicting events;
- (c) generating results, answering questions; or giving instructions to other systems; and

- (a) interacting with the environment, gathering information from outside (including from natural language) or from other computer systems;
- (b) interpreting this information, recognizing patterns, inducing rules, or predicting events;
- (c) generating results, answering questions; or giving instructions to other systems; and
- (d) evaluating the results of their actions and improving their decision systems to achieve specific objectives.

THE BASIS OF AI

THE BASIS OF AI

- Algorithmic advancements
- Exploison of data
- Exponential increases in computing power and storage

3 TYPES OF AI ANALYSIS

3 TYPES OF AI ANALYSIS

- DESCRIPTIVE: what happened?
- PREDICTIVE: what is expected to happen?
- PRESCRIPTIVE: what should we do to achieve goals?

3 TYPES OF AI ANALYSIS

• DESCRIPTIVE: what happened?

• PRESCRIPTIVE: what should we do to achieve goals?

3 TYPES OF SUPPORTING BUSINESS NEEDS WITH AI:

3 TYPES OF SUPPORTING BUSINESS NEEDS WITH AI:

process automation

3 TYPES OF SUPPORTING BUSINESS NEEDS WITH AI:

- process automation
- cognitive insight

3 TYPES OF SUPPORTING BUSINESS NEEDS WITH AI:

- process automation
- cognitive insight
- cognitive engagement

3 TYPES OF SUPPORTING BUSINESS NEEDS WITH AI:

process automation

- cognitive insight
- cognitive engagement

3 TYPES OF SUPPORTING BUSINESS NEEDS WITH AI:

process automation

cognitive insight

cognitive engagement

Source: BCG analysis.

RISKS OF MACHINE LEARNING

RISKS OF MACHINE LEARNING

unobserved partiality

RISKS OF MACHINE LEARNING

- unobserved partiality
- logical rules statistics

RISKS OF MACHINE LEARNING

- unobserved partiality
- logical rules statistics
- not easy to correct if it makes a mistake

In the distant past, I worked as a software developer for IBM. There was typically a six-month delay between the time I completed an update to the system and the date it was made available to users because a quality assurance (QA) group needed time to run extensive tests. That kind of due diligence is increasingly a thing of the past. [...] Newer applications are much more complicated. The transition happened incrementally but rapidly enough that QA did not keep pace. Furthermore, because of fierce competition, there is enormous pressure to rush to market, which can make QA seem like a nuisance.

Madnick, S. (2020): Blockchain isn't as unbreakable as you think MIT Sloan Management Review, 61 (2) 66-70