Hanoi University of Science and Technology School of Engineering Physics

LAB REPORT

For Electrics and Thermodynamics

Experiment 2

Student name: Nguyen Viet Anh

Student ID : 20150143

Group number: 1

Name: Nguyen Viet Anh

Date: 1st April 2017

ID : 20150143

Experiment 2

Measurement of magnetic field inside a solenoid with finite length

I. Purpose

- Explore the relationship between the magnetic field and the current through the solenoid.
- Calculate the magnetic field produced by a short, thick solenoid considered as theoretical prediction then compare to the measured fields.

II. Experiment results:

1. Investigation of the magnetic field at the positions along the axis of solenoid - $B(\boldsymbol{x})$

*** Measurement result $(I = 0.35 (A) \quad U = 6(V))$

Table 1:

x (cm)	0	1	2	3	4	5	6	7	8	9	10
B (mT)	0.79	1.24	1.43	1.52	1.56	1.59	1.5	0 1.5	1 1.51	1.52	1.53
x (cm)	11	12	13	14	1:	5	16	17	18	19	20
B (mT)	1.53	1.53	1.53	1.53	3 1.5	53 1	1.53	1.53	1.53	1.53	1.53
x (cm)	21	22	23	24	2:	5	26	27	28	29	30
B (mT)	1.52	1.52	1.50	1.50) 1.5	59]	1.57	1.52	1.45	1.29	0.92

*** Calculate using theory:

- The theoretical magnetic field:

$$B = \frac{\mu_0 \mu_r}{2} I_0.n.(\cos \gamma_1 - \cos \gamma_2) = \frac{\mu_0 \mu_r}{2} I \sqrt{2}.n.(\cos \gamma_1 - \cos \gamma_2)$$

where:

⇒ Theoretical data table

x (cm)	0	1	2	3	4	5	6		7	8	9	10
B (mT)	0.78	1.12	1.32	1.42	1.47	1.50	1.5	1 1	.52	1.53	1.53	1.54
x (cm)	11	12	13	14	1:	5	16	17	'	18	19	20
B (mT)	1.54	1.54	1.54	1.54	4 1.5	54	1.54	1.5	4	1.54	1.54	1.54
x (cm)	21	22	23	24	2:	5	26	27	'	28	29	30
B (mT)	1.53	1.52	1.51	1.50) 1.4	17	1.42	1.3	2	1.12	0.78	1.53

Plot of B = f(x) based on the measured results.

Comment:

The graph show that the magnetic field inside a solenoid depends on the position of the probe inside. The magnitude of the magnetic field increase from 0.79 to 1.59 when x from $0 \rightarrow 5$ cm, and then stable until x = 25cm then decrease with

exact the same pace as it increase. The graph is symmetric around the point x=15(cm)

=> The magnetic field is uniform at the middle and less uniform at two ends.

2. Measurement of the relationship between the magnetic field and the current through the solenoid - B(I)

*** Measurement result

x = 15cm

I(A)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
B (mT)	0.65	1.05	1.56	2.06	2.54	3.02	3.53

*** Calculate using theory:

Theoretical equation:

$$B_0 = \mu_0 \mu_r n I_0$$

where:

$$\mu_0 = 4\pi . 10^{-7} H / m$$

$$\mu_{r} = 1$$

$$\mu_0 = 4\pi . 10^{-7} H/m$$
 $\mu_r = 1$ $n = 2500 turn/m$

$$I_0 = I\sqrt{2}$$

⇒ Theoretical data table:

I(A)	0.1	0.2	0.3	0.4	0.5	0.6	0.7
B (mT)	0.44	0.89	1.33	1.78	2.22	2.67	3.11

Make a plot of B = f(I) based on the measured results.

Comment: The graph shows that the magnitude of the magnetic field and the current has a linear relationship (the magnetic field is proportional to the current).

3. Comparison of experimental and theoretical magnetic field

I = 0.4 A

x (cm)	0	15	30
B (mT)	0.92	1.98	1.05

From the measured result table, we see that:

- With a fixed current, the magnetic field has maximum value at x = 15(cm) (at the middle of the solenoid) and min value at x = 0(cm) and x = 30(cm) (the beginning and ending point).

We have:

$$B = \frac{\mu_0 \mu_r}{2} . I. n_0 (\cos \gamma_1 - \cos \gamma_2)$$

In this case,
$$\mu_r=1$$

 $n_0 = \frac{N}{L} = \frac{750}{300 \times 10^{-3}} = 2500$
 $I_0 = I\sqrt{2} = 0.4\sqrt{2} = 0.566$
 $\cos \gamma_1 = \frac{x}{\sqrt{R^2 + x^2}}$
 $\cos \gamma_2 = -\frac{L - x}{\sqrt{R^2 + (L - x)^2}}$
 $R = \frac{D}{2} = \frac{40.3}{2} = 20.2 \ (mm)$

+) x=0 (cm):
$$cos\gamma_1$$
=0; $cos\gamma_2$ =-0.998

$$B = \frac{\mu_0\mu_r}{2}.I. n_0(cos\gamma_1 - cos\gamma_2) = \frac{1.256\times10^{-6}}{2} \times 0.566\times2500\times(0+0.998) = 0.89$$

+) x=15 (cm):
$$cos\gamma_10.991$$
; $cos=-0.991$

$$B = \frac{\mu_0\mu_r}{2}.I.n_0(cos\gamma_1 - cos\gamma_2) = \frac{1.256\times10^{-6}}{2} \times 0.566\times2500 \times (0.991 + 0.991) = 1.76$$

+) x=30 (cm):
$$cos\gamma_1$$
=0.998; $cos\gamma_2$ =0

$$B = \frac{\mu_0\mu_r}{2}.I. n_0(cos\gamma_1 - cos\gamma_2) = \frac{1.256 \times 10^{-6}}{2} \times 0.566 \times 2500 \times (0.998 - 0) = 0.89$$

*** Comparison between theoretical values and experimental values

x (cm)	B _{theoretical} (mT)	B _{experimental} (mT)
0	0.89	0.92
15	1.76	1.98
30	0.89	1.05

The result from the experiment is approximately close to the theoretical values. The different due to the uncertainty of the instruments used.