Modelo de Producción, Periodos Multiples

Lab1-Ejercicio-2

A)

Variables de decisión:

 x_t : número de ventanas producida en el mes t, con t = 1,2,3,4,5,6 I_t :inventario de ventas al final del mes t

Datos

Demanda mensual:

d=[180,250,190,140,220,250]

Costo de producción por mes:

cp=[45,55,52,48,50,50]

Costo de inventario por mes:

ci=[8,10,10,10,8,8]]

Capacidad máxima de producción por mes:

$$x_t \leq 225$$

Función objetivo:

$$min \sum_{t=1}^{6} (c_{p,t} \cdot x_t + c_{i,t} \cdot I_t)$$

Restricciones

1. Balance de inventario:

$$I_{0} = 0$$

$$x_{1} - d_{1} = I_{1}$$

$$x_{2} + I_{1} - d_{2} = I_{2}$$

$$x_{3} + I_{2} - d_{3} = I_{3}$$

$$x_{4} + I_{3} - d_{4} = I_{4}$$

$$x_{5} + I_{4} - d_{5} = I_{5}$$

$$x_6 + I_5 - d_6 = I_6$$

2. Capacidad de producción:

$$0 \le x_t \le 225, \ \forall t = 1, 2, 3, 4, 5, 6$$

3. Inventario no negativo:

$$I_t \ge 0, \ \forall t = 1, 2, 3, 4, 5, 6$$

B)

Código en el Github

C)

La producción e inventario probablemente darán soluciones enteras aun sin forzarlo, porque los costos están diseñados de forma tal que el óptimo usualmente cae en valores enteros. Sin embargo, si se exige que \boldsymbol{x}_t e \boldsymbol{I}_t sean enteros y la solución puede cambiar ligeramente, especialmente si hay redondeo en inventario.