Exam MATF3 June 2018

4 hour exam with all usual help items. The exam may be answered using pencil and English or Danish language can be used. The exam includes 10 sub-questions which are weighted equally in the evaluation.

Problem 1

Let G be a finite group and K a subset of G. The *centralizer* C(K) of K is defined by

$$C(K) = \{ c \in G \mid ck = kc \ \forall \ k \in K \}.$$

- (1) Prove that C(K) is a subgroup of G.
- (2) Prove that if K is an abelian subgroup of G then K is an invariant subgroup of C(K).

Problem 2

There exists an non-abelian group of order 8, which has the following presentation

$$G = \langle x, y | x^4 = e, \quad y^2 = e, \quad yx = x^3 y \rangle,$$

where e is the identity element.

(1) Show that any element of the form $x^k y^l x^m y^n$ can be written as one of the 8 elements $e, x, x^2, x^3, y, xy, x^2y, x^3y$.

This can easily be turned into a proof that any element of G can be written as one of the 8 mentioned elements.

(2) Fill in the entries marked with \star in the group multiplication table below, expressed in terms of the eight mentioned elements.

	e	x	x^2	x^3	y	xy	x^2y	$\int x^3y$
e	*							
\overline{x}		*	*					
x^2		*	*	*				
x^3			*	*	*			
\overline{y}				*	*	*		
\overline{xy}					*	*	*	
$\frac{\frac{xy}{x^2y}}{\frac{x^3y}{x^3y}}$						*	*	
$\overline{x^3y}$								*

Problem 3

Consider the group SO(3). Its irreducible representations $D^{(J)}(g)$, $g \in SO(3)$, are labeled by J, $J = 0, 1, 2, \ldots$ For a given J the eigenvectors of J_3 are denoted $|JM\rangle$ and constitute a normalized basis for the 2J + 1 dimensional vectorspace where the matrices $D_{MM'}^{(J)}(g)$ act.

(1) Express the $|J=4, M=2\rangle$ vector in terms of the vectors $|j=2, m\rangle|_{j=2, m'}$ constituting a basis for the reducible tensor product representation $D^{(j=2)} \otimes D^{(j=2)}$.

Problem 4

We consider SU(2). We denote the irreducible representations by $D^{(J)}(g)$, $g \in SU(2)$, where $J = 0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ For a given J the normalized eigenvectors $|JM\rangle$ of J_3 form the basis of the 2J+1 dimensional vectorspace in which $D_{MM'}^{(J)}(g)$ acts. Let $d\mu(g)$ be the Haar measure of SU(2). It is invariant under left and right translations: $d\mu(g_0g) = d\mu(gg_0) = d\mu(g)$ for all $g_0 \in SU(2)$.

(1) Show that

(*):
$$\int d\mu(g) \ D_{MM'}^{(J)}(g) = 0$$
 unless $J = 0$.

(Hint 1: Denote the integral (*) by $V_M(M')$ and use the group properties as well as the invariance of the Haar measure to prove that for all $g_0 \in SU(2)$ we have $\sum_M D_{M_1M}^{(J)}(g_0)V_M(M') = V_{M_1}(M')$. Use this to conclude that either J=0 or $V_M(M')=0$ for all M,M'. Instead of hint 1 you can also use hint 2: the "Great Orthogonality Theorem" for continuous compact groups (the Peter-Weil theorem mentioned in addednotes2).

For SU(2) we have the Clebsch-Gordan tensor product decomposition

$$D^{(j_1)}(g) \otimes D^{(j_2)}(g) = \bigoplus_{J=|j_1-j_2|}^{j_1+j_2} D^{(J)}.$$

(2) Use the result (*) above to prove that

(**):
$$\int d\mu(g) \ D_{m_1,m_1'}^{(j_1)}(g) D_{m_2m_2'}^{(j_2)}(g) = 0 \quad \text{unless} \quad j_1 = j_2.$$

Let $\chi^{(j)}(g)$ denote the character corresponding to the irreducible representation $D^{(j)}(g)$.

(3) Use (**) above to prove that

$$\int d\mu(g) \, \chi^{(j_1)}(g) \chi^{(j_2)}(g) = 0 \quad \text{unless} \quad j_1 = j_2.$$

Problem 5

Let S^{ij} and T^{kl} be symmetric, traceless tensors corresponding to irreducible representations of SO(3). The tensor product $S^{ij}T^{kl}$ forms a reducible representation of SO(3) which can decomposed into a sum of irreducible representations of SO(3).

- (1) Determine the dimensions of these irreducible representations.
- (2) One of the irreducible components is a symmetric, traceless tensor W^{ijkl} . Give an explicit expression of W^{ijkl} in terms of S^{ij} and T^{kl} .