Déterminer, dans chacun des cas, l'ensemble de définition de la fonction:

1.
$$x \rightarrow \frac{2x+3(x^2-1)}{3}$$

2.
$$x \rightarrow \frac{2x+1}{3(x^2-1)}$$

3.
$$\chi \rightarrow \frac{\chi(\chi+5)}{\chi^2+\chi}$$

4.
$$\times \longrightarrow \frac{4x}{x-5}$$

Exercice 2

Dans chaeun des cas, calculer f'(x) en précisant l'ensemble de définition de f:

1.
$$f(x) = 4x^3 - 5x^2 + x - 1$$

8.
$$f(x) = (2x+1)^2$$

$$2. \quad f(x) = 5x^3 - \frac{1}{x}$$

$$9. f(x) = x(5x-3)$$

3.
$$f(x) = (x^2+1)(x^3-2x)$$

4.
$$f(x) = \frac{2x^2-3}{x^2+7}$$

5.
$$f(x) = \frac{2x-1}{x+1}$$

6.
$$f(x) = -x + 2 + \frac{2}{3x}$$

$$7. f(x) = \frac{1}{x + x^2}$$

Déterminer l'ensemble de définition de la fonction f définie par f(x)=x³-x²-x.

Calculer f'(a) et en déduire les variations de f.

Exercice h

On considère la fonction f définie par $f(x) = x^3 - 3x + 1$.

- 1. Préciser le domaine de définition de f.
- 2. Calculer f'(x) puis étudier son signe suivant les valeurs de x.
- 3. En déduire le variations de f.
- 4. Quels sont les points de la courbe C, réprésentative de la fonction f dans un repère orthonormé, pour lesquels le coefficient directeur de la tongente est égal à 9.

Exercice 5

Dans chacun des cas, déterminer une équation de la tangente à la courbe « représentative de la fanction f au paint »:

1.
$$f(x) = x^3$$
 $x_0 = 1$ 4. $f(x) = \frac{x-1}{-2x+3}$ $x_0 = -1$

2.
$$f(x) = \frac{1}{x}$$
 $x_o = -2$

3.
$$f(x) = x + x^2 \quad x_0 = 3$$

On considère la fonction définie sur Rilo3 per $f(x) = \frac{-x^2 + 2x - 1}{x}$ et C sa courbe représentative dans un repère orthonormal.

- 1. Déterminer les réels a, b et c tels que $f(x) = \alpha x + b + \frac{c}{x}$
- 2. Déterminer l'expression algébrique de la dérivée l' de f.
- 3. Étudier le signe de l'(x) et en déduire les variations de f.
- 4. Déterminer les abscisses des paints de C où la tangente:

 a. est horizontale

 b. admet un coefficient directeur égal à 3.
- 5. Déterminer une équation de la tangente T à la courbe C au point d'abscisse -2.
- 6. Déterminer les coordonnées des points d'intersection de C avec les axes du repère.

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{x}{x^2 + 3}$ 1. Étudier les variations de f.

2. Montrer que la fonction f admet un minimum sur l'intervalle J-0;0] et un maximum sur l'intervalle [0;+00[.

Exercise 8

Démontrer que la fonction f définie sur \mathbb{R} par $f(x) = -15 \times ^4 + 80 \times ^3 + 150 \times ^2 - 3511$ admet un maximum.

Correction Ex 1

Correction Ex 2

1.
$$D_t = R$$
 $f'(x) = 12x^2 - 10x + 1$

3.
$$D_f = R$$
 $f'(x) = 5x^4 - 3x^2 - 2$

4.
$$D_f = R$$
 $f'(x) = \frac{34x}{(x^2+7)^2}$

5.
$$D_f = \mathbb{R} \setminus \{-1\}$$
 $f'(x) = \frac{3}{(x+1)^2}$

6.
$$D_f = R \cdot \{0\}$$
 $f'(x) = -1 - \frac{2}{3x^2}$

7.
$$D_f = \mathbb{R} \cdot \{-1; 0\}$$
 $f'(x) = -\frac{1+2x}{(x+x^2)^2}$

9.
$$D_f = R$$
 $f'(x) = 10x - 3$

Correction Ex 3

$$D_t = \mathbb{R}$$
.

Variations:

$$\frac{x}{4} + \frac{1}{4} + \frac{1}$$

Correction Ex 4

2.
$$f'(x) = 3x^2 - 3$$

3.
$$\frac{x - \alpha - 1}{f' + \phi - \phi} + \frac{1}{f' + \phi}$$

4.
$$f'(x) = 9 \iff x = -2 \text{ ou } x = 2$$

Donc les points sent: $\begin{cases} x = -2 \\ y = -1 \end{cases}$ et $\begin{cases} x = 2 \\ y = 3 \end{cases}$

Correction Ex 5

1.
$$y = 3x - 2$$
 2. $y = -\frac{1}{4}x - 1$

3.
$$y = 7x - 9$$
 4. $y = \frac{1}{25}x - \frac{9}{25}$

Correction Ex 6

2.
$$f'(x) = -1 + \frac{1}{x^2}$$

3.
$$\frac{x-\infty}{4} - \frac{1}{6} + \frac{1}{6} +$$

4. 2.
$$x = -1$$
 et $x = 1$
b. $x = -\frac{1}{2}$ et $x = \frac{1}{2}$

5.
$$T: y = -\frac{3}{4}x + 3$$

6. La courbe e et l'axe des ordonnées n'ont pas de point d'intersection.

Le point d'intersection de C avec l'axe des abscisse est le point de coordonnées (1;0).

Correction Ex 7

2. La fonction f est croissante sur [-13; 13] et donc

f est croissante sur [0; 13]. La fonction f

est decroissante sur [13; +0]. La dérivée f'est

égale à zero pour x = 53. La fonction f admet

donc un maximum en 53.

La fonction f est decreissant sur J-0;-13] et croissante sur [-13;0]. La dérivée f'est égale à zero pour x=-13. La fonction f admet donc un minimum en -13.

Correction Ex 8

X	- 00	- 1		0		5		+0
+1	<i>⇒</i>),	+ 0	10 14	4	+	0		
		-3456			Ž	,864		
f		(a (a)	2	511	/	2	, 1/4	7

La fonction & admet done un maximum en 5 qui vaut 864.