$NAME \rightarrow$

$\begin{array}{c} \textbf{ISyE 3044 } - \textbf{Test 3 Solutions} - \textbf{Fall 2012} \\ \text{(Revised } 12/5/13) \end{array}$

You have 120 minutes. You are allowed 3 cheat sheets. Good Luck!!

- 1. (3 pts each) Short-answer questions on less-recent topics Just write your answer.
 - (a) If X and Y have joint p.d.f. f(x,y) = cxy, $0 \le x \le 2$, $0 \le y \le 1$, for some appropriate constant c, find E[X].

Solution: Since f(x,y) = a(x)b(y) for all x and y, the RV's X and Y are independent. Thus, we can write $f(x) = c_1 x$ for $0 \le x \le 2$.

To solve for
$$c_1$$
, set $1 = \int_0^2 c_1 x \, dx = 2c_1$, so that $c_1 = 1/2$. Then get $\mathsf{E}[X] = \int_0^2 x f_X(x) \, dx = \frac{1}{2} \int_0^2 x^2 \, dx = 4/3$. \diamondsuit

(b) TRUE or FALSE? If X is a continuous random variable that's always positive, we have $E[\ell n(X)] = \int_0^\infty \ell n(x) P(X > x) dx$.

Solution: FALSE. \Diamond

(c) TRUE or FALSE? The Kolmogorov-Smirnov test is a test of independence.

Solution: FALSE. It's a goodness-of-fit test.

(d) TRUE or FALSE? In an Arena PROCESS block, it is possible to initiate a DELAY without a SEIZE or a RELEASE.

Solution: TRUE. \Diamond

(e) TRUE or FALSE? An Arena ASSIGN block can be used to change an entity's picture.

Solution: TRUE. \Diamond

(f) In Arena, you SEIZE a resource. What analogous thing do you do to a conveyor?

Solution: ACCESS. \Diamond

(g) What is the variance of the random variable generated by the Arena function NORM(3,4)?

Solution: 16. \Diamond

(h) Suppose that a Tausworthe generator gave you the series of bits 01111110. If you use all 8 bits, what Unif(0,1) random number would that translate to?

Solution: $\frac{011111110_2}{2^8} = \frac{126}{256} = 0.4922.$ \diamondsuit

(i) TRUE or FALSE? Suppose that U_1, U_2, \ldots are truly i.i.d. Unif(0,1) random variables. Then a χ^2 goodness-of-fit test for uniformity with $\alpha = 0.1$ will fail to reject about 10% of the time.

Solution: FALSE. It will incorrectly reject about 10% of the time.

(j) TRUE or FALSE? If Z_1 and Z_2 are i.i.d. Nor(0,1), then the ratio Z_1/Z_2 has both the Cauchy distribution and the t distribution with one degree of freedom.

Solution: TRUE. They're the same. \diamondsuit

(k) Phun Phact: If X and Z are i.i.d. standard normals, then the ratio $(X + \delta)/Z$ is said to have the *noncentral* t distribution with one degree of freedom and noncentrality parameter δ . Suppose that X = -1.0 and Z = 0.25 are two standard normal outcomes. Generate a noncentral t random variable with one degree of freedom and noncentrality parameter 1.

Solution: $(X + \delta)/Z = (-1 + 1)/0.25 = 0$. I guess I would also accept (0.25 + 1)/-1 = -1.25

(l) Suppose X_1, X_2, \dots, X_{100} are i.i.d. Bern(0.1). Further, denote the sample mean by $\bar{X} \equiv \sum_{i=1}^{100} X_i/100$. Use the CLT to find an approximate expression

for $P(0.07 \le \bar{X} \le 0.13)$.

Solution: By the CLT,

$$\bar{X} \approx \operatorname{Nor}(\mathsf{E}[\bar{X}], \mathsf{Var}(\bar{X})) \sim \operatorname{Nor}(\mathsf{E}[X_i], \mathsf{Var}(X_i)/n) \sim \operatorname{Nor}(p, pq/n).$$

Thus, $\bar{X} \approx \text{Nor}(0.1, 0.0009)$. Standardizing yields

$$\begin{split} \mathsf{P}(0.07 \leq \bar{X} \leq 0.13) \\ &= \mathsf{P}\left(\frac{0.07 - 0.1}{\sqrt{0.0009}} \leq \frac{\bar{X} - 0.1}{\sqrt{0.0009}} \leq \frac{0.13 - 0.1}{\sqrt{0.0009}}\right) \\ &\approx \mathsf{P}(-1 < Z < 1) = 0.683. \quad \diamondsuit \end{split}$$

(m) Suppose X_1, X_2, \ldots is a stationary process with mean μ and variance parameter $\sigma^2 \equiv \lim_{n \to \infty} n \text{Var}(\bar{X})$, where the sample mean $\bar{X} \equiv \frac{1}{n} \sum_{i=1}^n X_i$. What colorful stochastic process does $\sum_{i=1}^{\lfloor nt \rfloor} (X_i - \mu)/(\sigma \sqrt{n})$ converge to (as a function of t)? **Hint:** The answer is *not* Redian motion or Yellowian motion.

Solution: Brownian motion. \Diamond

- 2. (3 pts each) Short-answer questions on more-recent topics Just write your answer.
 - (a) If X_1, \ldots, X_n are i.i.d. Bin(6,0.2), what is the expected value of the sample variance S^2 ?

Solution: $\mathsf{E}[S^2] = \mathsf{Var}(X_i) = npq = 0.96.$ \diamondsuit

(b) If X_1, \ldots, X_{10} are i.i.d. Nor(-3, 10), what is the expected value of the maximum likelihood estimator for the variance σ^2 ?

Solution: $\mathsf{E}[\widehat{\sigma^2}] = \frac{n-1}{n} \mathsf{E}[S^2] = \frac{n-1}{n} \sigma^2 = 9.$ \diamondsuit

(c) Find the sample variance of -4, 0, 4.

Solution: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 = 16.$ \diamondsuit

(d) Suppose we observe the Geom(p) realizations $X_1 = 3$, $X_2 = 9$, and $X_3 = 6$. What is the maximum likelihood estimate of p?

Solution: The likelihood function is

$$L(p) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} q^{x_i - 1} p = q^{\sum_{i=1}^{n} x_i - n} p^n.$$

Thus,

$$\ell \operatorname{n}(L(p)) = \left(\sum_{i=1}^{n} x_i - n\right) \ell \operatorname{n}(q) + n \ell \operatorname{n}(p).$$
$$= \left(\sum_{i=1}^{n} x_i - n\right) \ell \operatorname{n}(1-p) + n \ell \operatorname{n}(p).$$

This implies that

$$\frac{d}{dp}\ln(L(p)) = \frac{-\left(\sum_{i=1}^{n} x_i - n\right)}{1 - p} + \frac{n}{p}.$$

Setting the derivative to 0 and solving yields $\hat{p} = 1/\bar{x} = 1/6$. \diamondsuit

(e) Again suppose we observe the Geom(p) realizations $X_1=3, X_2=9,$ and $X_3=6.$ What's the maximum likelihood estimate of $\ell n(p)$?

Solution: By invariance,

$$\widehat{\ln(p)} = \ln(\hat{p}) = \ln(1/\bar{x}) = \ln(1/6) = -1.79.$$

(f) TRUE or FALSE? The mean squared error of an estimator is square of its variance plus the bias.

Solution: FALSE. It's the var + bias². \diamondsuit

(g) Find the MLE for σ if X has p.d.f.

$$f(x) = \frac{\sigma}{x\sqrt{\pi}} \exp\left\{-\sigma^2[\ln(x)]^2\right\}, \quad x \ge 0.$$

Solution: The likelihood function is

$$L(\sigma) = \prod_{i=1}^{n} f(x_i) = \frac{\sigma^n}{(\prod_{i=1}^{n} x_i) \pi^{n/2}} \exp \left\{ -\sigma^2 \sum_{i=1}^{n} [\ell n(x_i)]^2 \right\}.$$

Thus,

$$\ell \operatorname{n}(L(\sigma)) = n\ell \operatorname{n}(\sigma) - \ell \operatorname{n}\left(\prod_{i=1}^{n} x_{i}\right) - \frac{n}{2}\ell \operatorname{n}(\pi) - \sigma^{2} \sum_{i=1}^{n} [\ell \operatorname{n}(x_{i})]^{2}.$$

This implies that

$$\frac{d}{d\sigma} \ln(L(\sigma)) = \frac{n}{\sigma} - 2\sigma \sum_{i=1}^{n} [\ln(x_i)]^2.$$

Setting the derivative to 0 and solving yields

$$\hat{\sigma} = \sqrt{\frac{n}{2\sum_{i=1}^{n} \ell n^2(x_i)}}.$$
 \diamondsuit

(h) Suppose we're conducting a χ^2 goodness-of-fit test to determine whether or not 100 i.i.d. observations are from a *Johnson* distribution with unknown parameters α , β , γ , and δ , all of which must be estimated. If we divide the observations into 20 equal-probability intervals, how many degrees of freedom will our test have?

Solution:
$$\nu = n - s - 1 = 20 - 4 - 1 = 15.$$

(i) TRUE or FALSE? Newton's method can help you find the zeros of a continuous function g(x), but you need to know the derivative g'(x).

Solution: TRUE. \Diamond

(j) Do you use the method of batch means for (a) terminating simulations or (b) steady-state simulations (choose one)?

Solution: steady-state. \Diamond

(k) Consider the following 6 consecutive observations arising from a simulation:

Use the method of batch means to calculate a two-sided 90% confidence interval for the mean μ . In particular, use two batches of size three.

Solution: The batch size is m=3, the number of batches is b=2, and the total number of observations is n=6. The grand sample mean is $\bar{X}_n=176$. The batch means are

$$\bar{X}_{1,3} = 169.67$$
 and $\bar{X}_{2,3} = 182.33$.

The batch means variance estimator is

$$\widehat{V}_B = \frac{m}{b-1} \sum_{i=1}^b (\bar{X}_{i,m} - \bar{X}_n)^2 = \frac{3}{1} \left[(169.67 - 176)^2 + (182.33 - 176)^2 \right] = 240.41.$$

The batch means confidence interval is

$$\mu \in \bar{X}_n \pm t_{\alpha/2,b-1} \sqrt{\hat{V}_B/n}$$

$$= 176 \pm t_{0.05,1} \sqrt{240.41/6}$$

$$= 176 \pm 6.314(6.330)$$

$$= 176 \pm 39.97 = [136, 216]. \diamondsuit$$

(l) Consider a particular data set of 60000 stationary waiting times obtained from a large queuing system. Suppose your goal is to get a confidence interval for the unknown mean. Would you rather use (a) 30 batches of 2000 observations or (b) 6000 batches of 10 observations each?

Solution: (a). \Diamond

(m) Suppose [-2, 2] is a 95% nonoverlapping batch means confidence interval for the mean μ based on 10 batches of size 500. Now the boss has decided that she wants a 90% CI based on those same 10 batches of size 500. What is it?

Solution: The confidence interval is of the form

$$[0,4] = \bar{X}_n \pm t_{\alpha/2,b-1} \sqrt{\hat{V}_B/n}.$$

This implies that $\bar{X}_n = 0$ and the half-length is $t_{0.025,9} \sqrt{\hat{V}_B/n} = 2$. Thus, the new 90% confidence interval is

new CI =
$$\bar{X}_n \pm t_{0.05,9} \sqrt{\hat{V}_B/n}$$

= $0 \pm \frac{t_{0.05,9}}{t_{0.025,9}} t_{0.025,9} \sqrt{\hat{V}_B/n}$
= $\pm \frac{1.833}{2.262} \times 2 = \pm 1.621$. \diamondsuit

(n) Consider the following observations:

If we choose a batch size of 3, calculate all of the overlapping batch means for me.

Solution:
$$\bar{X}_{1,3}^{\text{o}} = \frac{1}{3} \sum_{i=1}^{3} X_i = 69.67 \text{ and } \bar{X}_{2,3}^{\text{o}} = \frac{1}{3} \sum_{i=2}^{4} X_i = 72.33.$$

(o) Suppose that $X_1, X_2, ...$ is a stationary stochastic process with covariance function $R_k \equiv \mathsf{Cov}(X_1, X_{1+k})$, for k = 0, 1, ... We know from class that the variance of the sample mean can be represented as

$$\operatorname{Var}(\bar{X}_n) = \frac{1}{n} \left[R_0 + 2 \sum_{k=1}^{n-1} \left(1 - \frac{k}{n} \right) R_k \right].$$

We also know from class that for a simple AR(1) process, $R_i = \phi^i$, $i = 0, 1, 2, \ldots$ Compute $Var(\bar{X}_n)$ for an AR(1) process with n = 3 and $\phi = 0.9$.

Solution:

$$\operatorname{Var}(\bar{X}_n) = \frac{1}{3} \left[R_0 + 2 \sum_{k=1}^2 \left(1 - \frac{k}{3} \right) R_k \right]$$

$$= \frac{1}{3} \left[R_0 + 2 \left(1 - \frac{1}{3} \right) R_1 + 2 \left(1 - \frac{2}{3} \right) R_2 \right]$$

$$= \frac{1}{3} \left[\phi^0 + \frac{4}{3} \phi^1 + \frac{2}{3} \phi^2 \right]$$

$$= \frac{1}{3} \left[1 + \frac{4}{3} (0.9) + \frac{2}{3} (0.81) \right] = 0.913. \diamondsuit$$

(p) TRUE or FALSE? Using the notation of the previous question, $\lim_{n\to\infty} n \text{Var}(\bar{X}_n) = R_0 + 2\sum_{i=1}^{\infty} R_i$.

Solution: TRUE. Just let the n's get big (though you have to be a little non-rigorous in this class.) \diamondsuit

(q) We know from class that both $X = -\ell n(U)$ and $Y = -\ell n(1 - U)$ are Exp(1) RV's. What I may not have told you is that X and Y aren't independent. Before I ask my question, fill out the following table.

After having filled out the table, I'd like you to calculate the usual estimate for covariance,

$$\widehat{\text{Cov}}(X,Y) = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} \right].$$

Report only your answer for $\widehat{Cov}(X,Y)$ on the answer sheet.

Solution: Let's first fill in the table.

i	1	2	3	4
$\overline{U_i}$	0.05	0.72	0.94	0.36
$X_i = -\ell n(U_i)$	2.996	0.329	0.062	1.022
$Y_i = -\ell n(1 - U_i)$	0.051	1.273	2.813	0.446

Now,

$$\widehat{\text{Cov}}(X,Y) = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} \right]$$
$$= \frac{1}{3} \left[1.202 - 4(1.102)(1.146) \right] = -1.283. \diamondsuit$$

By the way, it can also be shown that the estimated correlation between X and Y is

$$\hat{\rho} = \frac{\widehat{\text{Cov}}(X, Y)}{S_X S_Y} = \frac{-1.283}{(1.326)(1.223)} = -0.791.$$

where S_X and S_Y are the sample standard deviations of the X's and Y's. This is a fairly high negative correlation; and this result can be used as a so-called *antithetic* variate to reduce the variance of an estimator for E[X].

3. (10 points) We are interested in seeing if the daily order volume of a particular item at a warehouse is geometric distributed. Here are the statistics for a 100-day period. We'll assume that the numbers from day to day are i.i.d.

# of orders	# of days
1	52
2	22
3	13
4	7
5	6

Thus, for example, there were 22 days during when we had exactly 2 orders.

Perform a 90% test to see if the number of orders each day is geometric. I leave it to you to find the appropriate intervals, degrees of freedom, etc. You need to neatly show your work and clearly state your final answer in plain English.

Solution: We'll do a χ^2 g-o-f test for the Geom(p) distribution. The MLE of p is (by a previous problem on this test) $\hat{p} = 1/\bar{X} = 1/1.93 = 0.518$. Then by invariance, we can calculate

$$\hat{\mathsf{P}}(X=i) = (1-\hat{p})^{i-1}\hat{p} = (0.482)^{i-1}(0.518), \text{ for } i=1,2,\ldots$$

Then the expected number of observations for each value of i is

$$E_i = n\widehat{\mathsf{P}}(X=i) = 100(0.482)^{i-1}(0.518),$$

and we obtain the following table.

i	$\widehat{P}(X=i)$	E_i	O_i
1	0.5180	51.80	52
2	0.2497	24.97	22
3	0.1203	12.03	13
4	0.0580	5.80	7
5	0.0280	2.80	6
≥ 6	0.0260	2.60	0
	1	100	100

where we have added the " ≥ 6 " row to make things add up properly.

In order to assure that all of the E_i 's we use are at least 5, we'll need to combine a couple of those latter rows. Here's what we get.

i	$\widehat{P}(X=i)$	E_i	O_i
1	0.5180	51.80	52
2	0.2497	24.97	22
3	0.1203	12.03	13
4	0.0580	5.80	7
≥ 5	0.0540	5.40	6
	1	100	100

We can now calculate the χ^2 goodness-of-fit statistic,

$$\chi_0^2 = \sum_i \frac{(O_i - E_i)^2}{E_i} = 0.747.$$

Meanwhile, let's conduct a formal test at level $\alpha=0.1$, for which the appropriate quantile is $\chi^2_{\alpha,k-1-s}=\chi^2_{0.1,3}=6.25$, where k=5 is the number of intervals and s=1 is the number of parameters that we had to estimate. Since $\chi^2_0<\chi^2_{0.1,3}$, we fail to reject the hypothesis that the number of accidents is geometric. (Actually, since the χ^2_0 statistic was so small, I really didn't need to look up anything in a table.) So the bottom line is that we are willing to assume that the data are geometric. \Diamond