TECNICATURA UNIVERSITARIA EN PROGRAMACION - 2022 UTN -FRSR

ALGEBRA DE BOOLE

Las computadoras tienen su propio sistema de representación.
 Debido a su construcción basada fundamentalmente en circuitos electrónicos digitales, utiliza un sistema binario. Esto obliga a transformar la representación de nuestra información, tanto numérica como alfanumérica, a una representación binaria para que la máquina sea capaz de procesarlos.

OPERADORES LOGICOS

A	Ā
0	1
1	0

SUMA LOGICA

+	0	1
0	0	1
1	1	1

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	1

PRODUCTO LOGICO

•	0	1
0	0	0
1	0	1

Α	В	D
0	0	0
0	1	0
1	0	0
1	1	1

PUERTAS LOGICAS

 Existe un convenio gráfico para representar dispositivos (electrónicos, hidráulicos, mecánicos, etc.) que lleven a cabo funciones booleanas elementales y que, en función de la combinación o combinaciones diseñadas, se obtendrán funciones más complejas. Las puertas lógicas son dispositivos electrónicos que desarrollan las funciones booleanas y son básicamente: Puertas OR, AND, NOT, NOR, NAND, OR Exclusiva y NOR Exclusiva.

PUERTAS OR

Salida = A+B $Salida = A \lor B$

Tabla de verdad puerta OR

Entrada A	Entrada ${\cal B}$	Salida $A ee B$
0	0	0
0	1	1
1	0	1
1	1	1

PUERTAS AND

Salida = A.BSalida = $A \wedge B$

Tabla de verdad puerta AND

Entrada A	Entrada ${\cal B}$	Salida $A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

PUERTA NOT Realiza la función complementación o inversión booleana

Salida = A.BSalida = $A \wedge B$

Tabla de verdad puerta AND

Entrada ${\cal A}$	Entrada B	Salida $A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

Tabla de verdad puerta AND

Salida = A.B

Entrada ${\cal A}$	Entrada ${\cal B}$	Salida $A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

Puerta NO (NOT)

Salida =A'

Tabla de verdad puerta

Ī	V)	

Entrada A	Salida $\overline{\overline{A}}$
0	1
1	0

PUERTAS NOR

Realizan la función inversa de una operación suma lógica, es decir, es la equivalente a una puerta OR complementada. La función lógica será, por tanto:

$$f = \underline{A + B}$$

Α	В	f
0	0	1
0	1	0
1	0	0
1	1	0

$$\begin{array}{c} A \\ B \end{array} \longrightarrow \begin{array}{c} f = \overline{A + B} \end{array}$$

PUERTAS NAND

Estas puertas realizan la función lógica f = A * B

Α	В	f
0	0	1
0	1	1
1	0	1
1	1	0

PUERTAS OR EXCLUSIVAS (EOR o XOR)

Son puertas que a su salida proporcionan la función lógica $f=A\underline{B}+\underline{A}\;B=A\oplus B$

Α	В	f
0	0	0
0	1	1
1	0	1
1	1	0

NOR EXCLUSIVAS (XNOR)

Son puertas que a su salida proporcionan la función lógica

$$f = \underline{A \oplus B} = \underline{A}\underline{B} + \underline{A}\underline{B} = \underline{A}\underline{B} + \underline{A}\underline{B}$$

Α	В	f
0	0	1
0	1	0
1	0	0
1	1	1

