Assignment 7

MCQ:

1. Match the following (by rules of saturation arithmetic with values ranging from -50 to 50)

a. 25*2	1. 12
b. 10+2	235
c. 32-67	3. 50
d. (55+69)-(96+2)	4. 0

A. a-1;b-2;c-3;d-4

B. a-3;b-1;c-4;d-2

C. a-3;b-1;c-4;d-4

D. None of the above

Solution: Option C. a-3;b-1;c-4;d-4

Explanation: a. 25*2 = 50; b. 10+2 = 12; c. 32-67 = 0; d. (55+69)-(96+2) = (50)-(50) = 0

- 2. Which of the following circuital components are dark silicon friendly?
 - A. Specialized logic cells
 - B. Cache memory
 - C. Both A and B
 - D. None of the above

Solution: Option C. Both A and B

Explanation: These circuital components contribute to the overall performance of the IC by consuming power in special situations only. This has led to development of multi-core systems.

- 3. What kind of an RTOS will I use to build a missile system?
 - A. Hard RTOS
 - B. Soft RTOS
 - C. Firm RTOS
 - D. None of the above

Solution: Option A. Hard RTOS

Explanation: A hard RTOS guarantees critical tasks be completed within a time frame which is needed to build a missile system.

- 4. Which of the following statements are false about RTOS?
 - A. They should be made predictable.
 - B. The interrupts should be permanently disabled.
 - C. All contiguous files should be on the disk.
 - D. None of the above.

Solution: Option B. The interrupts should be permanently disabled.

Explanation: the interrupts should be temporarily disabled because the system becomes unpredictable if the interrupts are kept permanently disabled.

- 5. Which are the features of VxWorks Operating System?
 - A. Multitasking kernel with fast interrupt response.
 - B. Preemptive and Round robin scheduling.
 - C. Both A and B
 - D. None of the above.

Solution: Option C. Both A and B.

Explanation: Fact.

- 6. What is the mode bit of a privileged set of instructions?
 - A. 0
 - B. 1
 - C. 2
 - D. 3

Solution: Option A. 0

Explanation: A privileged set of instructions is always executed by the kernel for which the mode bit needs to be 0.

- 7. "In a CPU programmed with a non-preemptive scheduling scheme, interrupts can be handled while a process is running." Note: The CPU dedicates all its resources to the process in the running state.
 - A. True
 - B. False

Solution: Option B. False

Explanation: The CPU, having dedicated all its resources to the running process, waits for its completion before handling another process or an interrupt.

- 8. For a large number of tasks scheduled under the RMS algorithm, all of them can meet the deadlines if the CPU utilization is roughly under
 - A. 50%
 - B. 60%
 - C. 65%
 - D. 70%

Solution: Option D. 70%

Explanation: for an RMS algorithm, $u \le n(2^{1/n} - 1)$; for n tends to infinity, u tends to $\ln(2) \approx 0.6931...$

- 9. What is the minimum number of variables to be shared to avoid the critical section problem?
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Solution: Option B. 2

Explanation: In case of two shared variables, when some kind of preemption occurs in either of the processes having the shared critical section, the deadlock can be avoided.

- 10. Suppose process P1 has a period of 60 units and burst time of 30 units. If 86% of the total CPU resources are being utilized to run P1 and another process P2, calculate the period of process P2.(Assume that the burst for P2 is half of P1).
 - A. 55.86
 - B. 89.94
 - C. 41.67
- D. None of the above Solution: Option C. 41.67

Explanation: Let burst be b. Therefore, 0.86 = 30/60 + b/15; b = 41.67

Short-Answer type(Alphanumeric answers only):

11. Consider the following 4 processes, scheduled by round-robin with a time slice of 3 units.

PID	Arrival Time	Burst Time
А	0	6
В	1	7
С	2	9
D	3	10

Calculate the wait time of process C.

Solution: 17 Explanation:

Turn-Around Time = End time - Arrival time
Wait Time = Turn-Around Time - Burst Time

PID	Arrival Time	Burst Time	Turn Around Time	Wait time
А	0	6	15	9
В	1	7	24	17
С	2	9	26	17
D	3	10	29	19

12. State if the following tasks can be scheduled by the RMS algorithm. Also calculate the minimum CPU utilization(Up to nearest whole number in percent). (Answer format = <Yes/No>-<Value>)

PID	Period	Execution Time
1	8	2
2	7	1
3	9	2
4	6	1

Solution: No-77

Explanation = utilization = sum(c/p) : c=execution time, p =period

Therefore utilization = 2/8+1/7+2/9+1/6 = 0.77 = 77%

Also, for n processes, utilization \leq n($2^{1/n} - 1$) for processes to be schedulable.

Putting n=4, utilization <= 75.68%, therefore processes are not schedulable.