Measure-preserving And Discrete (MAD) map

goal: approximate *univariate* discrete posterior $p(x), x \in \mathbb{N}$

augmented target: $\tilde{p}(x,u) = p(x) \cdot 1_{[0,1]}(u)$

idea: use u in inverse-CDF moves to update x

$$T_{\text{MAD}}(x_0, u_0) = (x_1, u_1)$$

Measure-preserving And Discrete (MAD) map

goal: approximate *univariate* discrete posterior $p(x), x \in \mathbb{N}$

augmented target: $\tilde{p}(x,u) = p(x) \cdot 1_{[0,1]}(u)$

 ${f idea}$: use u in inverse-CDF moves to update x

 $T_{\text{MAD}}(x_0, u_0) = (x_1, u_1)$

MAD map for multivariate discrete distributions

goal: approximate *multivariate* discrete posterior $p(x), x \in \mathbb{N}^M$