		Ideal op amp	Real op amp
Input impedance	R_{Ih}	00	<∞ (finite)
Amplifi- cation	A	∞	< 00 (finik)
Output impedance	Rout	0	>0 (finite)

Equivalent circuit:

V. Rin Rout

V. Vout

Example:

$$R_{In} = 100 M\Omega$$
 (not ∞)

 $R_{out} = 100\Omega$ (not 0)

 $A = 10^7$ (not ∞)

Consequences for input circuit

=> Design input circuit so that

R << Rin L Resistors "seen by" input terminals of op amp.

Example:

⇒ Design circuit such that (R1 11 RG) ≪ RIn

Consequences for output circuit

Design output circuit to satisfy

RLoad >> Rout

Le Load as seen by output terminal of op amp.

R1 + (R2 11 R3) >> Rout

Consequences for feedback circuit

=> Design feedback circuit to satisfy

Hwith feedback < AOL Le open loop (without feedback) e.g. 107

Example: VIn Ri Vout

→ Design circuit such that

Awith feedback = - RI << AOL