1	77. The method according to claim 76, wherein said vertebrate cell is a mammalian
2	cell.
1	78. The method according to claim 77, wherein said mammalian cell is a human cell.
1	79. The method according to claim 76, wherein said vector comprises inverted
2	terminal repeat sequences flanking said polynucleotide encoding said protein.
1	80. The method according to claim 79, wherein said inverted terminal repeat
2	sequences are derived from adeno-associated virus.
1	81. The method according to claim 76, wherein said promoter sequence is capable
2	of driving expression of said polynucleotide encoding said protein.
1	82. The method according to claim 81, wherein said promoter sequence is selected
2	from the group consisting of a CMV promoter sequence and herpes TK promoter sequence.
1	83. The method according claim 76, wherein said protein encoded by said
2	polynucleotide is selected from the group consisting of interleukins, cytokines, growth
3	factors, interferons, enzymes and structural proteins.
1	84. The method according to claim 76, wherein said vector is introduced into said
2	vertebrate cell by infection in a viral particle.
1	85. The method according to claim 76, wherein said vector is introduced into said
2	vertebrate cell by means selected from the group consisting of transfection, transduction and
3	injection.

1	86. The method according to claim 76, wherein said vector is introduced into said
2	vertebrate cell in vitro.
1	87. The method according to claim 76, wherein said vector is introduced into said
2	vertebrate cell <i>in vivo</i> .
1	88. The method according to claim 76, wherein said polynucleotide encoding said
2	protein is greater than about 10 kb in size.
1	89. The method according to claim 76, wherein said polynucleotide also encodes a
2	selectable marker protein.
	1 ~
1	-90. A recombinant entomopox virus vector comprising a polynucleotide encoding
2	a protein operably linked with a heterologous promoter sequence.
_	a protein operatory infact with a neterologous promoter sequence.
1	91. The vector according to claim 90, wherein said heterologous promoter sequence
2	is not a pox virus promoter sequence.
1	92. The vector according to claim 90, wherein said entomopox virus is Amsacta
2	moorei entomopox virus.
1	93. The vector according to claim 90, wherein said vector comprises inverted
2	terminal repeat sequences flanking said polynucleotide encoding said protein.
1	94. The vector according to claim 93, wherein said inverted terminal repeat
2	sequences are derived from adeno-associated virus.
_	1

Docket No. UF-221C1XC1 Serial No. 09/662,254

1	25. The vector according to claim 90, wherein said heterologous promoter sequence
2	is capable of driving expression of said polynucleotide encoding said protein.
1	96. The vector according to claim 95, wherein said heterologous promoter sequence
2	is selected from the group consisting of CMV and herpes TK.
1	97. The vector according to claim 90, wherein said protein encoded by said
2	polynucleotide is selected from the group consisting of interleukins, cytokines, growth
3	factors, interferons, enzymes and structural proteins.
1	98. The vector according to claim 90, wherein said polynucleotide encoding said
2	protein is greater than about 10 kb in size.
1	99. The vector according to claim 90, wherein said polynucleotide also encodes a
2	selectable marker protein.
1	100. A viral particle comprising the vector of claim 90.
	- 101. A cell comprising a recombinant entomoxpox virus vector comprising a
2	polynucleotide encoding a protein operably linked with a heterologous promoter sequence.
1	102. The cell according to claim 101, wherein said cell expresses said protein
2	encoded by said polynucleotide.