Introduction to Filters

Dr Chris Jobling (c.p.jobling@swansea.ac.uk)

Digital Technium 123

Office Hours: 12:00-13:00 Mondays

You can view the notes for this presentation in HTML and PDF.

The source code of this presentation is available in Markdown format from GitHub: ft2.md.

The GitHub repository EG-247 Resources also contains the source code for all the Matlab/Simulink examples and the Laboratory Exercises.

Scope and Background Reading

This session is Based on the section **Filtering** from Chapter 5 of Benoit Boulet, Fundamentals of Signals and Systems from the **Recommended Reading List**.

This material is an introduction to analogue filters. You will find much more in-depth coverage on Pages 11-1—1-48 of Karris.

Agenda

- Frequency Selective Filters
- Ideal low-pass filter
- Butterworth low-pass filter
- High-pass filter
- Bandpass filter

Introduction

- Filter design is an important application of Fourier transform
- Filtering is a rich topic often taught in graduate courses so we give only an introduction.
- Our introduction will illustrate the usefulness of the frequency domain viewpoint.
- We will explore how filters can shape the spectrum of a signal.

Other applications of the Fourier transform are sampling theory (introduced next week) and modulation.

Frequency Selective Filters

Frequency Selective Filters

An ideal frequency-selective filter is a system that let's the frequency components of a signal through undistorted while components at other components are completely cut off.

- The range of frequencies which are let through belong to the pass Band
- \bullet The range of frequencies which are cut-off by the filter are called the ${\bf stopband}$
- A typical scenario where filtering is needed is when noise n(t) is added to a signal x(t) but that signal has most of its energy outside the bandwidth of a signal.

Typical filtering problem

Figure 1: Typical filtering problem

Figure 2: Signal

Figure 3: Noise

Figure 4: Signal plus noise

Figure 5: filtering

Signal

Out-of Bandwidth Noise

Signal plus Noise

Filtering

Motivating example

Filtering in Matlab using 'built-in' filter design techniques by David Dorran YouTube.

For script see: Filter Design Using Matlab Demo

Ideal Low-Pass Filter

Ideal Low-Pass Filter

An ideal low pass filter cuts-off frequencies higher than its cutoff frequency, ω_c .

$$H_{\mathrm{lp}}(\omega) = \left\{ \begin{array}{ll} 1, & |\omega| < \omega_c \\ 0, & |\omega| \ge \omega_c \end{array} \right.$$

Frequency response

Impulse response

$$h_{\mathrm{lp}}(t) = \frac{\omega_c}{\pi} \mathrm{sinc}\left(\frac{\omega_c}{\pi}t\right)$$

Filtering is Convolution

The output of an LTI system with impulse response

$$h(t) \Leftrightarrow H(\omega)$$

subject to an input signal

Figure 6: Ideal low-pass filter

Figure 7: Impulse response of ideal low-pass filter

$$x(t) \Leftrightarrow X(\omega)$$

is given by

$$y(t) = h(t) * x(t) \Leftrightarrow Y(\omega) = H(\omega)X(\omega)$$

Issues with the "ideal" filter

This is the step response:

Figure 8: Step response of ideal filter

(reproduced from Boulet Fig. 5.23 p. 205)

Ripples in the impulse response would be undesirable, and because the impulse response is non-causal it cannot actually be implemented.

Butterworth low-pass filter

Butterworth low-pass filter

N-th Order Butterworth Filter

$$|H_B(\omega)| = rac{1}{\left(1 + \left(rac{\omega}{\omega_c}
ight)^{2N}
ight)^{rac{1}{2}}}$$

Remarks

• DC gain is $|H_B(j0)| = 1$

• Attenuation at the cut-off frequency is $|H_B(j\omega_c)| = 1/\sqrt{2}$ for any N

More about the Butterworth filter: Wikipedia Article

Example 1: Second-order BW Filter

The second-order Butterworth Filter is defined by its *characteristic equation* (CE):

$$p(s) = s^2 + \omega_c \sqrt{2}s + \omega_c^2 = 0^*$$

Calculate the roots of p(s) (the poles of the filter transfer function) in both Cartesian and polar form.

Note: This has the same characteristic as a control system with damping ratio $\zeta = 1/\sqrt{2}$ and $\omega_n = \omega_c!$

Example 2

Derive the differential equation relating the input x(t) to output y(t) of the 2nd-Order Butterworth low-pass filter with cutoff frequency ω_c .

Example 3

Determine the frequency response $H_B(\omega) = Y(\omega)/X(\omega)$

Magnitude of frequency response of a 2nd-order Butterworth Filter

Generated with butter2_ex.m

Bode-plot of a 2nd-order Butterworth Filter

Matlab:

```
wc = 100;
H = tf(wc^2,[1, wc*sqrt(2), wc^2])
bode(H)
```

Generated with butter2_ex.m

Figure 9: Magnitude response of Butterworth filter

Figure 10: Bode plot of Butterworth filter

Example 4

Determine the impulse response of the Butterworth filter.

You will find this Fourier transform pair useful:

$$e^{-at}\sin\omega_0 t \ u_0(t) \Leftrightarrow \frac{\omega_0}{(j\omega+a)^2+\omega_0^2}$$

Impulse response

Figure 11: Impulse response of Butterworth filter

Matlab:

impulse(H)

Generated with $butter2_ex.m$

Step response of of a 2nd-order Butterworth Filter

Matlab:

Figure 12: Step response of Butterworth filter

step(H)

Generated with $butter2_ex.m$

High-pass filter

High-pass filter

An ideal high-pass filter cuts-off frequencies lower than its cutoff frequency, ω_c .

$$H_{\mathrm{hp}}(\omega) = \left\{ \begin{array}{ll} 0, & |\omega| \leq \omega_c \\ 1, & |\omega| > \omega_c \end{array} \right.$$

Frequency response

Figure 13: Frequency respons of a high-pass filter

Responses

Frequency response

$$H_{\rm hp}(\omega) = 1 - H_{\rm lp}(\omega)$$

Impulse response

$$h_{\rm hp}(t) = \delta(t) - h_{\rm lp}(t)$$

Example 5

Determine the frequency response and impulse response of a 2nd-order butterworth highpass filter

Magnitude of frequency response of a 2nd-order Butterworth High-Pass Filter

Figure 14: Magnitude of frequency response of a 2nd-order Butterworth high-pass filter

Generated with $butter2_ex.m$

Bandpass filter

Bandpass filter

An ideal bandpass filter cuts-off frequencies lower than its first cutoff frequency ω_{c1} , and higher than its second cutoff frequency ω_{c2} .

$$H_{\rm bp}(\omega) = \begin{cases} 1, & \omega_{c1} < |\omega| < \omega_{c2} \\ 0, & \text{otherwise} \end{cases}$$

Figure 15: Bandpass filter

Bandpass filter design

A bandpass filter can be obtained by multiplying the frequency responses of a low-pass filter by a high-pass filter.

$$H_{\rm bp}(\omega) = H_{\rm hp}(\omega)H_{\rm lp}(\omega)$$

- The high-pass filter should have cut-off frequency of ω_{c1}
- The low-pass filter should have cut-off frequency of ω_{c2}

Summary

- Frequency Selective Filters
- $\bullet\,$ Ideal low-pass filter
- Butterworth low-pass filter
- High-pass filter
- Bandpass filter

 $Next\ Session$ — sampling theory

Lab Work

In the lab we will look at frequency response analysis and filtering.