Lecture 8: Phase Shifting Mask

@luk036

2022-11-26

Overview

- Background
- What is Phase Shifting Mask?
- Phase Conflict Graph
- Phase Assignment Problem
 - Greedy Approach
 - Planar Graph Approach

class: middle, center

Background

Background

.pull-left[

- In the past, chips have continued to get smaller and smaller, and therefore consume less and less power.
- However, we are rapidly approaching the end of the road and optical lithography cannot take us to the next place we need to go.

```
] .pull-right[
```

Process of Lithography

```
.pull-left[
1. Photo-resist coating ( )
2. Illumination ( )
3. Exposure ( )
4. Etching ( )
5. Impurities doping ( )
6. Metal connection
] .pull-right[
```


Figure 1: image

Figure 2: image

Sub-wavelength Lithography

.pull-left[

Figure 1: Shift to subwavelength optical lithography since the 0.35-micron process generation.

Figure 3: image

] .pull-right[

- What you see in the mask/layout is **not** what you get on the chip:
 - Features are distored
 - Yields are declined

1

DFM Tool (Mentor Graphics)

OPC and PSM

. pull-left[

• Results of OPC on PSM:

Figure 4: image

Figure 5: image

Figure 6: image

- -A = original layout
- B = uncorrected layout
- C = after PSM and OPC

] .pull-right[

Figure 7: image

]

Phase Shifting Mask

Phase Conflict Graph

- Edge between two features with separation of $\leq b$ (dark field)
- Similar conflict graph for "bright field".
- Construction method: plane sweeping method + dynamic priority search

tree

Phase Assignment Problem

.pull-left[

- Instance: Graph G = (V, E)
- Solution: A color assignment $c:V \to [1..k]$ (here k=2)

Figure 8: image

• Goal: Minimize the weights of the monochromatic edges. (Question: How can we model the weights?)

```
] .pull-right[
```

Phase Assignment Problem

- In general, the problem is NP-hard.
- It is solvable in polynomial time for planar graphs with k=2, since the problem is equivalent to the T-join problem in the dual graph [Hadlock75].
- For planar graphs with k = 2, the problem can be solved approximately in the ratio of two using the primal-dual method.

Overview of Greedy Algorithm

- Create a maximum weighted spanning tree (MST) of G (can be found in LEDA package)
- Assign colors to the nodes of the MST.
- Reinsert edges that do not conflict.
- Time complexity: $O(N \log N)$
- Can be applied to non-planar graphs.

Figure 9: image

Greedy Algorithm

.pull-left[

• Step 1: Construct a maximum spanning tree T of G (using e.g. Kruskal's algorithm, which is available in the LEDA package).

] .pull-right[

Figure 10: image

]

Greedy Algorithm (Cont'd)

.pull-left[

• Step 2: Assign colors to the nodes of T.

] .pull-right[

Figure 11: image

]

Greedy Algorithm (Cont'd)

.pull-left[

• Step 3: Reinsert edges that do not conflict.

```
] .pull-right[
```

Other Approaches

- Reformulate the problem as a MAX-CUT problem. Note that the MAX-CUT problem is approximatable within a factor of 1.1383 using the "semi-definite programming" relaxation technique [Goemans and Williamson 93].
- Planar graph approach: Convert G to a planar graph by removing the minimal edges, and then apply the methods to the resulting planar graph.

Note: the optimal "planar sub-graph" problem is NP-hard.

Figure 12: image

Figure 13: image

Overview of Planar Graph Approach (Hadlock's algorithm)

- 1. Approximate G by a planar graph G'
- 2. Decompose G' into its bi-connected components.
- 3. For each bi-connected component in G',
 - 1. construct a planar embedding
 - 2. construct a dual graph G^*
 - 3. construct a complete graph C(V, E), where
 - V is a set of odd-degree vertices in G^*
 - the weight of each edge is the shortest path of two vertices
 - 4. find the minimum perfect matching solution. The matching edges are the conflict edges that have to be deleted.
- 4. Reinsert the non-conflicting edges from G.

Planar Graph Approach

.pull-left[

- Step 1: Approximate G with a planar graph G'
 - It is NP-hard.
 - The naive greedy algorithm takes $O(n^2)$ time.
 - Any good suggestion?

] .pull-right[

Figure 14: image

]

Planar Graph Approach

• Step 2: Decompose G' into its bi-connected components in linear time (available in the LEDA package).

Figure 15: image

Planar Graph Approach

• Step 3: For each bi-connected component in G', construct a planar embedding in linear time (available in the LEDA package)

Figure 16: image

Note: planar embedding may not be unique unless G is tri-connected.

Planar Graph Approach

.pull-left[

• Step 4: For each bi-connected component, construct its dual graph G^* in linear time.

```
] .pull-right[
```


Figure 17: image

Planar Graph Approach

.pull-left[

- Step 5: Find the minimum weight perfect matching of G^* .
 - Polynomial time solvable.
 - Can be formulated as a network flow problem.

Note: complete graph vs. Voronoi graph

] .pull-right[

Figure 18: image

1

Planar Graph Approach

. pull-left[

• Step 6: reinsert the non-conflicting edges in G.

Note: practically we keep track of conflicting edges.

```
] .pull-right[
```


Figure 19: image