Meta-analysis of GWAS for LDL cholesterol

SMED8020 2 June 2022 Brooke Wolford, PhD

Motivating example: LDL cholesterol and genetic variation

- 3 studies of various sample sizes
- Each collected same variables (LDL cholesterol, age, sex, genotypes)
- How do we use data from multiple studies to answer our research question?

Study 1 (n=300)

Study 2 (n=100)

Mega-analysis pools individual-level data across studies

Fit model and estimate/ make inferences about parameters in the usual way

Factors we consider:

- lacktriangle Direction of effect and magnitude of $m{\beta}$ in each study
- Strength of associations (p-value) in each study
- Sample size

Why perform a meta-analysis?

- Resolve uncertainty between studies
- Improve effect size (β) estimates
- Increase statistical power by increasing sample size (as effectient as pooling individual left data)
- Identify patterns among the studies
- Analyze different ancestries separately before combining to avoid population stratification
- Avoid privacy concerns: meta-analysis is performed with summary statistics (β , CI/P-value) and does not require access to individual level data

Forest plots help us visualize results from multiple studies

Study 1

Forest plots help us visualize results from multiple studies

Forest plots help us visualize results from multiple studies

β₁<0: Allele 1 associated with lower cholesterol

β₁>0: Allele 1 associated with higher cholesterol

Meta-analysis assumptions

- Each sub-study has controlled type 1 error and proper QC
- No sample overlap between studies
 - Methods in development for this situation (https://genome.sph.umich.edu/w/images/7/7b/METAL_sample_overlap_methodo-2017-11-15.pdf)
- Fixed or random effects meta-analysis have their own assumptions
- Estimated beta value is in terms of the same allele, consistent direction

Zeggini, Pharmacogenomics, 2009

Fixed vs random effects

Fixed: one common true effect size $(\underline{\beta})$ that underlies all the studies in the analysis

Random: distribution of true effect sizes, effect size in each study is different with means assumed to be chosen from Gaussian

Fixed effect model: calculation of weights

- Most common strategy to calculate weights for fixed effect meta-analysis is called inverse variance weighting
- Key idea: give larger weights to studies with more precise β estimates (usually larger sample size)

Weight assigned to ith study:

$$w_i = \frac{1}{var(\widehat{\beta}_i)}$$

Weighted average:

$$\hat{\beta}_{pooled} = \frac{\sum w_i \hat{\beta}_i}{\sum w_i}$$

Fixed effect model: calculation of pooled estimate

Study	$\hat{eta_i}$	$var(\widehat{eta}_l)$
1	70	1,600
2	-20	3,600
3	55	900

Fixed effect model: calculation of pooled confidence

interval

$$se(\hat{\beta}_{pooled}) = \sqrt{\frac{1}{\sum w_i}}$$

METAL

Table 1. Formulae for meta-analysis

	Analytical strategy	
	Sample size based	Inverse variance based
Inputs	N_i - sample size for study i $P_i - P$ -value for study i Δ_i - direction of effect for study i	β_i - effect size estimate for study i se_i - standard error for study i
Intermediate Statistics	study i $Z_i = \Phi^{-1} \left(1 - \frac{pi}{2} \right) * \operatorname{sign}(\Delta_i)$ $w_i = \sqrt{N_i}$	$w_{i} = 1/SE_{i}^{2}$ $se = \sqrt{1/\sum_{i} w_{i}}$ $\beta = \sum_{i} \beta_{i} w_{i} / \sum_{i} w_{i}$
Overall Z-Score	$Z = \frac{\sum_{i} Z_{i} w_{i}}{\sqrt{\sum_{i} w_{i}^{2}}}$	$Z = \beta/SE$
Overall <i>P</i> -value	$\sqrt{\sum_{i} w_{i}}$ $P = 2\Phi(-Z)$	

Willer et al, 2010

Quantifying between-study heterogeneity

Calculated by METAL

- Cochran's Q statistic: test of homogeneity of the effect across cohorts
 - k=number of cohorts
 - \circ χ^2_{k-1} test statistic

$$Q = \sum_{i=1}^{k} w_i (\beta_i - \beta_{pooled})^2$$

- <u>l² statistic</u>: percent of total variation across studies due to heterogeneity instead of chance
 - Ranges from 0-100%
 - I²>50%: moderate heterogeneity
 - I²>75%: high heterogeneity

$$I^2 = \max\left(0, \frac{Q - (k - 1)}{Q} * 100\right)$$

Random effects meta-analysis

- In fixed effect meta-analysis, we assume that each study is estimating the same effect size
- Sometimes, studies address the same research question but still have important differences that influence effect sizes
 - Variation in outcome or covariate measurement
 - Variation in study populations
- Random effects meta-analysis allows for differences in the true effect sizes between different studies

Fixed effect vs random effects

	Fixed effect	Random effects
Assumption	One true common effect across all studies	Study-specific effects come from a common distribution
Pooled effect estimate	True common effect	Mean of common distribution
Weights	Based on study variance	Based on both study variance and variance of common distribution

Other GWAS meta-analysis software

- GWAMA (Genome-Wide Association Analysis)
 - Mägi et al, BMC Bioinformatics, 2010
- METASOFT
 - Han et al, AJHG, 2011
- MANTRA (Meta-Analysis of Trans-ethnic Association Studies)
 - Morris et al, Genetic Epidemiology, 2011
- MR-MEGA (Meta-Regression of Multi-Ethnic Genetic Association)
 - Mägi, Hum Mol Gen, 2017
- SMetABF
 - Sun et al, PLOS,2022

Practical Day 3: meta-analysis of LDL cholesterol GWAS

Biobank Japan (BBJ) (n=72,866)

Global Lipids Genetics Consortium (GLGC) (n=89,138)

Trøndelag Health Study (HUNT) (n=67,429)

In choosing software for GWAS consider...

- Is your trait binary or quantitative?
 - Logistic vs linear regression
- Is your sample size large and what computational capability do you have?
 - Memory and time constraints
- Is your sample related?
 - Subjects are not independent
- Is your sample geographically/ancestrally homogeneous?
 - Population stratification

SAIGE

Scalable and Accurate Implementation of GEneralized mixed model

Wei Zhou, Nature Genetics, 2018

https://github.com/weizhouUMICH/SAIGE

Note: If a linear mixed model (e.g. BOLT-LMM) is used to test for association on an all-or-none trait, the estimate must be adjusted before meta-analysis with other logistic regression Lloyd-Jones, et al 2018 Genetics

