Robòtica Exercise

Given the following 3R robot

where L_1 =4, L_2 =3, L_3 =2, and L_4 =1.

- 1) Derive the DH parameters and the neighbouring homogeneous transformation matrices ${}^{i-1}T$, for i=1,2,3, as functions of the joint angles.
- 2) Implement the forward kinematics, that is, ${}_{3}^{0}T(\theta_{1},\theta_{2},\theta_{3})$.
- 3) Calculate the result for the following joint angles: (0, 0, 0), $(0, \pi/2, 0)$, and $(0, \pi/2, \pi/6)$.
- 4) Build the robot using the obtained DH parameters and compare the results using the forward kinematics associated method with that obtained multipliying the neighboring matrices.

Standard frame attachment

Standard DH Table

Modified frame attachment

Modified DH Table

```
%%% First we clean the workspace
clear;
clc;
%%% We define the constants
L1 = 4;
L2 = 3;
L3 = 2;
L4 = 1;
%%% We introduce three symbols denoting the joint angles
a1 = sym('a1');
a2 = sym('a2');
a3 = sym('a3');
T01 = trotz(a1) *transl(0, 0, L1+L2) *trotx(pi/2);
T12 = trotz(a2) *transl(L3, 0, 0);
T23 = trotz(a3) * transl(L4, 0, 0);
T03 = T01*T12*T23;
T1 = subs(T03, \{a1, a2, a3\}, \{0, 0, 0\});
T2 = subs(T03, \{a1, a2, a3\}, \{0, pi/2, 0\});
T3 = subs(T03, {a1, a2, a3}, {0, pi/2, pi/6});
\ensuremath{\mbox{\%}} We build the robot using DH parameters
L(1) = Link([0 L1+L2 0 pi/2]);
L(2) = Link([0
                  0 L3
                              0]);
                   0 L4
                              0]);
L(3) = Link([0
Robot3R = SerialLink(L);
%%% Now we plot the robot to check if it has been correctly built
Robot3R.name = 'Robot3R';
Robot3R.plot([0 0 0]);
TT1 = Robot3R.fkine([0 0 0]);
TT2 = Robot3R.fkine([0 pi/2 0]);
TT3 = Robot3R.fkine([0 pi/2 pi/6]);
%%% It can be checked that Ti is identical to TTi
```

Do the same with the Modified DH Paramenters

Problem #1 - Kinematics

- 1. What are the robot morphology of the crane on the truck given in the next figure.
- 2. Make a sketch of the links and joints that the crane use, to position its end effector.
- 3. Derive its DH parameters (modified or standards).
- 4. Derive de Forward Kinematic equation and demonstrate that for a known parameters and variables the function will work.

Problem #1 1.- RRP also RRPP (spherical manipulator) 2.- A possible robot configuration DH parameter standard using iA - trotz(Gi)-transl_(di)-transl_(ai) transl_ ${}^{0}A = \begin{pmatrix} C_{1} & 0 & -S_{1} & 0 \\ S_{1} & 0 & C_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad {}^{1}A = \begin{pmatrix} C_{2} & 0 & S_{2} & 0 \\ S_{2} & 0 & -C_{2} & 0 \\ C & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad {}^{2}A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}$ tratalent trateril if 0,=02=0 dd3= L3 20 4-12. - L3 /8 2 Thu HT

20 4-12. - L3 /8 2 CA (060-L2)

40 YO 3A= (000 O)

