NASA CONTRACTOR REPORT

NASA CR-61225

June 18, 1968

S
S
C 1
┰┥
9
- 1
بن
77
Ö
- 4
⋖:
CΩ
₹.
7-7

GPO PRICE \$_	
CSFTI PRICE(S) \$	
Hard copy (HC)	3.00
Microfiche (MF)	165
653 July 65	

HERMETIC SEAL EVALUATION FOR ELECTRONIC COMPONENTS Final Report

Prepared under Contract No. NAS 8-20109 by J. I. Paulk, R. D. Guyton, D. T. Simpson, M. E. Triplett, J. V. Pace, III, and J. R. Kannard

MISSISSIPPI STATE UNIVERSITY

For

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER Huntsville, Alabama

HERMETIC SEAL EVALUATION FOR ELECTRONIC COMPONENTS (Final Report)

By

J. I. Paulk, R. D. Guyton, D. T. Simpson, M. E. Triplett, J. V. Pace, III, and J. R. Kannard

Prepared under Contract No. NAS 8-20109 by MISSISSIPPI STATE UNIVERSITY

For

Quality and Reliability Assurance Laboratory

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

PRECEDING PAGE BLANK NOT FILMED.

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	. 1
ĮI.	FINDINGS AND RECOMMENDATIONS	· 5
III.	PROCUREMENT OF COMPONENTS	8
IV.	DESIGN AND CONSTRUCTION OF THE LIFE TESTER	14
v.	RAG TESTING OF COMPONENTS	16
VI.	SELECTED ENVIRONMENTAL EXPOSURE	20
vII.	LIFE TESTING OF COMPONENTS	22
viii.	RAG-HMS TEST CORRELATION	26
IX,	ANALYSIS OF THE LIFE TEST DATA	29
x.	RESULTS	32
XI.	APPENDICES	35
	APPENDIX A	36
	APPENDIX B	78
	APPENDIX C	94
	APPENDIX D	96
XII.	BIBLIOGRAPHY	102

LIST OF FIGURES

Figure			•	Page
1.	Figure	1:	Full Size Relay	3
. 2.	Figure	2:	Half Size Relay	3
3,	Figure	3:	Transistor of 2N1613 Family	3
4.	Figure	4:	Relay Attached to Mass Spectrometer with Finger Cover Installed	12
5.	Figure	5:	Helium Line Providing Helium Atmosphere for Leak Rate Determination	13
6.	Figure	6:	MSU RAG System	17
7.	Figure	A1:	Test Group With Leak Rates In The Range 2 X 10 ⁻⁷ to 2 X 10 ⁻⁵ atm cc/sec	41
. 8.	Figure	A2:	Control Group With Leak Rates In The Range 2 X 10 ⁻⁷ to 2 X 10 ⁻⁵ atm cc/sec	43
9.	Figure	A3:	Test Group With Leak Rates Less Than 2 X 10 ⁻⁷ atm cc/sec	45
10.	Figure	A4:	Control Group With Leak Rates Less Than 2 X 10 ⁻⁷ atm cc/sec	47
11.	Figure .	A5:	Test Group With Leak Rates In The Range 2 X 10 ⁻⁸ to 2 X 10 ⁻⁵ atm cc/sec	49
12.	Figure	A6:	Control Group With Leak Rates In The Range 2 X 10 ⁻⁸ to 2 X 10 ⁻⁵ atm cc/sec	51.
13.	Figure	A7:	Test Group With Leak Rates Less Than 2 X 10 ⁻⁸ atm cc/sec	53
14.	Figure A	A8:	Control Group With Leak Rates Less Than 2 X 10 ⁻⁸ atm cc/sec	55
15.	Figure A	A9:	Test Group With Leak Rates From 2 X 10 ⁻⁹ to 2 X 10 ⁻⁸ atm cc/sec	57
16.	Figure A	A10:	Control Group With Leak Rates From 2 X 10 ⁻⁹ to 2 X 10 ⁻⁸ atm cc/sec	59
			Test Group With Leak Rates From 2 X 10 ⁻⁸ to 2 X 10 ⁻⁷ atm cc/sec	61
18.	Figure A	12:	Control Group With Leak Rates From 2 X 10 ⁻⁸ to 2 X 10 ⁻⁷ atm cc/sec	63.

Figure _.	v v		Page
16.	Figure A13:	Test Group With Leak Rates From 2 X 10 ⁻⁷ to 2 X 10 ⁻⁶ atm cc/sec	65
17.	Figure A14:	Control Group With Leak Rates From 2 X 10 ⁻⁷ to 2 X 10 ⁻⁶ atm cc/sec	67
18.	Figure A15:	Test Group With Leak Rates From 2 X 10 ⁻⁶ to 2 X 10 ⁻⁵ atm cc/sec	69
19.	Figure A16:	Control Group With Leak Rates From 2×10^{-6} to 2×10^{-5} atm cc/sec	71
20.	Figure B1:	Example of Relay Exhibiting Molecular Flow	91
21.	Figure B2:	Example of Relay Exhibiting Slip Flow	92
22.	Figure B3:.	Example of Relay Exhibiting Poiseuille Flow .	93

LIST OF TABLES

Table			Page
I.	Table Viii-l	Ratio for Each Flow Regime	28
II.	Table Viii-2	Ratio for Each Flow Regime, All Relays Considered Together	28
III.	Table X-1.	Mean Times to Failure	33
IV.	Table X-2.	Ratio of Leak Rates	33
v.	Table Al	Full Size Relays Which Failed Due to Low Resistance Between Pins and Case (Bench Test)	37
VI.	Table A2.	Half Size Relays Which Failed Due to Low Resistance Between Pins and Case (Bench Test) .	39
VII.	Table A3.	Full Size Relays with Leak Rates in the Range 2×10^{-7} to 2×10^{-5} cc/sec. Times to Failure of Test Group	40
VIII.	Table A4.	Full Size Relays With Leak Rates in the Range 2×10^{-7} to 2×10^{-5} cc/sec. Times to Failure of Control Group	42
IX.	Table A5.	Full Size Relays With Leak Rates Less than 2×10^{-7} cc/sec. Times to Failure of Test Group	44
x.	Table A6.	Full Size Relays With Leak Rates Less than 2×10^{-7} cc/sec. Times to Failure of Control Group	46
XI.	Table A7.	Half Size Relays With Leak Rates in the Range 2×10^{-5} to 2×10^{-5} cc/sec. Times to Failure of the Test Group	- 8 48
XII.	Table A8.	Half Size Relays With Leak Rates in the Range 2×10^{-8} to 2×10^{-5} . Times to Failure of the Control Group	50
XIII.	Table A9.	Half Size Relays with Leak Rates Less Than $2x10^{-8}$ cc/sec. Times to Failure of the Test Group	52
XIV.	Table AlO.	Half Size Relays with Leak Rates Less Than 2x10 ⁻⁸ cc/sec. Times to Failure of the Control Group	54
XV.	Table All.	Full Size Relays With Leak Rates Between 2x10 ⁻⁹ cc/sec. and 2x10 ⁻⁸ cc/sec. Times to Failure of the Test Group	56

	Table	•	•	Page
	XVI.	Table Al2.	Full Size Relays With Leak Rates Between 2×10^{-9} cc/sec. and 2×10^{-8} cc/sec. Times to Failure of the Control Group	58
	XVII.	Table A13.	Full Size Relays With Leak Rates Between 2×10^{-8} cc/sec. and 2×10^{-7} cc/sec. Time to Failure of the Test Group	60
	XVIII.	Table Al4.	Full Size Relays With Leak Rates Between 2×10^{-8} cc/sec. and 2×10^{-7} cc/sec. Times to Failure of the Control Group	62
	XIX.	Table Al5 .	Full Size Relays With Leak Rates Between 2x10 ⁻⁷ cc/sec. and 2x10 ⁻⁶ cc/sec. Times to Failure of the Test Group	ne - 64
	хх.	Table A16.	Full Size Relays With Leak Rates Between 2x10-7 cc/sec. and 2x10-6 cc/sec. Times to Failure of the Control Group	ne 66
	XXI.	Table Al7.	Full Size Relays With Leak Rates Between $2x10^{-6}$ cc/sec. and $2x10^{-5}$ cc/sec. Times to Failure of the Test Group	68
	XXII.	Table A18.	Full Size Relays With Leak Rates Between 2x10 ⁻⁶ cc/sec. and 2x10 ⁻⁵ cc/sec. Times to Failure of the Control Group	. 70
	XXIII.	Table Al9.	Full Size Relays Which Failed and Causes of Failure	72
	XXIV.	Table Á20.	Half Size Relays Which Failed and Causes of Failure	76
	XXV.	Table Bl.	RAG and HMS Leak Rates for Full Size Relays	79
	XXVI.	Table B2.	RAG and HMS Leak Rates for Half Size Relays	` 85
	XXVII.	Table D1.	RAG-HMS Correlation Using Experimentally Determine Correlation Factors, Full Size Relays	ed 97
3	XXVIII.	Table D2.	RAG-HMS Correlation Using Experimentally Determined Correlation Factors, Half Size Relays	100

I. INTRODUCTION

In the past, it has been found that hermetically sealing electronic components to prevent the working parts from being exposed to environmental changes enhanced reliability and insured a longer operating life. To verify the quality of the hermetic seals, electronic components were leak tested usually by either the Radioactive Gas (RAG) Method or the Helium Mass Spectrometer process (HMS).

For some time it had been observed in hermetic seal evaluation that the RAG method often appeared to lack correlation with the more commonly used HMS method. It was plausible that a systematic difference might exist as a result of the different properties of the different gases involved in the two testing methods. The establishment of a realistic maximum acceptable leak rate limit was also of interest not only to the user but also to the vendor of electronic components. If the leak rate limit could be relaxed, the manufacturer would have fewer rejected components during the leak rate inspection; and a substantial reduction in manufacturing costs could be realized.

The leak rate limit of 10⁻⁸ atm. cc/sec. was apparently based upon manufacturing capabilities and not upon the quality requirements of the device or effects of contamination on quality requirements. This investigation was initiated to determine a realistic maximum acceptable leak rate limit and also a correlation, if any, between the two leak detection methods.

The first phase of this work was to establish a critical leak rate limit by choosing test components of three types: a crystal can relay, a half size crystal can relay, and a semi conductor of case size TO-5. Figures 1, 2, and 3 illustrate the component types. The semi conductors were not to be of the planar passivated construction in order that contaminants would have maximum effect on the internal construction of the devices. All components passed screening requirements to MSFC specifications with the exception of the seal leakage requirements. These requirements were relaxed in order to get the required number of leakers.

To have sufficient numbers of components to support a statistical analysis, at least two hundred components of each type were proposed. These components were hand picked by the manufacturer using the HMS method so that a spectrum of leak rates ranging from 10^{-4} to less than 10^{-9} atm. cc/sec. were obtained. Components were placed in groups according to leak rate values and serialized to facilitate individual data records. Components were then transported to Mississippi State University at ambient temperatures in sealed containers pressurized to one absolute atmosphere with nitrogen.

Upon receipt the components were tested using the RAG Method and the leak rates again determined. At this point, the components were divided into two groups: a control group to be life tested only and a test group to be exposed to selected environmental conditions and then life tested.

The environmental exposure was intended to be as realistic as possible consistent with the practice of transporting the assembled or essentially completely assembled space vehicle to Cape Kennedy, its subsequent residence at the Cape, and later residence in a near vacuum condition.

The exposure consisted of salt fog spray and humidity concurrent with variations in temperature over the range from room ambient to 150 F. The time at each temperature was 12 hours at each level during each 24 hour period, and a total testing time of 96 hours was selected. Following the salt fog

Figure 1. Full Size Relay

Figure 2. Half Size Relay

Figure 3. Transistor of 2N1613 Family

environment, the test components were placed in an altitude chamber capable of absolute pressures corresponding to an altitude of at least 150,000 feet and temperatures at least as low as -85 F. A total time of 14 days at altitude with the temperature remaining at -65 F for 12 hours and + 150 F for 12 hours of each 24 hour period were the selected environmental conditions. After the removal of the components from the altitude chamber, electrical testing was performed prior to life testing.

The authors of this report assisted by undergraduate workers designed and constructed life testers for the relays and the transistors. Life testing was initiated after electrical test had been completed.

A correlation of leak rates based upon the mass spectrometer data and the RAG data was begun, and conversion factors for converting rates determined by one testing method to leak rates by the other were determined. It should be noted that the HMS Method was used only once, and this test was performed at the vendor's plant.

II. FINDINGS AND RECOMMENDATIONS

(a) Findings:

- to 2×10^{-5} atm cc/sec. based upon helium) neither the full size crystal can relay (S2GP-6-54) nor the half size crystal can relay (S2GP-7.25-73) exhibited any significant change in the mean time to reach the selected criteria to failure between the test groups and the control groups. This indicated that the contaminants had not materially affected the relays in the test groups. This was not to indicate, however, that prolonged exposure to near vacuum conditions might not have an effect upon relay life. It is also possible that the leaking relays may have ceased to leak during the salt fog exposure thus blocking the entry of contaminants.
- 2. The comparison of leak rates based upon the HMS method to those based upon the RAG Method indicated that no single correlation factor could be obtained. Instead, three separate correlation factors were determined which depended upon the flow mechanism. In no case was a one to one correspondence obtained.
- 3. The exposure of relays to a salt fog environment caused the buildup of a conduction path between the relay pins and the relay
 case causing an unacceptable low value of resistance between
 the pins and the case. Case to pin resistances of less than
 1000 megohms were observed. The conducting material was difficult
 to remove; and, in some cases, the use of a small wire brush was
 ineffective in removing it.

- 4. The half size crystal can relay, S2GP-7.25-73, had a superior life time to that of the full size crystal can relay, S2GP-6-54. The mean time to failure of the half size relays was almost three times as long as the mean time to failure of the full size relays. It was evident from the tests that were conducted that the half size relay was superior to the full size relay secured from the same manufacturer. This may have been due to the challenge of producing a reliable product of smaller size.
- 5. Our efforts to obtain non-passivated transistors met with no success. Passivated transistors of the 2N1613 family were obtained which had failed the seal leakage test on a go-no-go basis. When leak tested with the RAG Method, the transistors either did not leak or leaked in a gross fashion. Therefore no further correlation was attempted between the two leak detection methods by using the transistors. Also, the transistor leads weakened and broke after exposure to the salt fog enivronment.
- 6. Two unique life testers were designed for use in life testing relays and transistors. Both testers functioned well during the life testing procedures. It should be mentioned that these testers caused the components to be subjected to more rigid conditions than are usually encountered in life testing.

(b) Recommendations:

1. The selected environmental exposure had a negligible effect on the half size and full size relays other than to produce conduction paths between the pins and the case. It is recommended that leaking relays be life tested under extended vacuum conditions to determine if such conditions cuase any significant change in useful life. 2. The correlation factor between the RAG Method and the HMS Method varied with the flow mechanism. This indicated that a single RAG test would not simultaneously reveal the absolute leak rate and the flow mechanism. If, however, the leak rate value were desired to an accuracy within one order of magnitude under usual soak pressures and soak times, then a single RAG test could be accepted. In any event, it is recommended that if only a single RAG test is to be made, then the assumption should be made that the flow is molecular. The calculated flow rate value will then be conservative.

The direct reading HMS method developed by the General Electric Company for this project is considered to be an exact method for determining leak rates prior to final sealing. It should be recognized, however that a final leak test must be made on the sealed, completed product. It is understood, of course, that a conversion factor from helium to air must be used or leak rate limits must be specified in terms of the leakage of helium.

- 3. Since the buildup of conduction paths between the pins and the case were observed, it is recommended that relays in space vehicles which may be exposed to a salt fog environment have sample relays of the type which were tested be removed after exposure to such an environment and checked for case to pin resistance of less than 1000 megohms.
- 4. The transistor leads weakened and broke after exposure to the salt fog environment. It is recommended that a humidity test or salt fog test be included as part of the lot sampling specifications required in the qualification of transistor vendors.

III. PROCUREMENT OF COMPONENTS

(a) Procurement of Relays:

During the summer of 1965 a representative of Mississippi State University went to the General Electric Company plant at Waynesboro, Virginia to secure relays of types S2GP-6-54 and S2GP-7.25-73. Two hundred and fifty relays of each type were to be hand picked so that 50 would have leak rates in each of the following ranges:

LEAK	RA:	ΓE	RANGE
Atr	a.	c	c/sec
10 ⁻⁸ 10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁶		be 10	etter)-7)-6
10-5	to	10	-4

The relays were to be taken from the normal production runs whenever possible using the following general procedures:

- 1. Assembled relay, complete except for final seal port weld, was leak tested by attaching the relay to the mass spectrometer pump. by a tube from the seal port. The relay was placed in a 100% helium atmosphere, and the leak rate was measured.
- 2. Relays were serialized, the leak rate was recorded, and sorting into leak rate categories was accomplished.
- 3. Relays were filled with 100% dry nitrogen, the seal port was welded closed, and the weld was soldered over. Seal port welding was performed in a dry box containing 100% dry nitrogen.
- 4. Seal degradation by repeated welding stresses was performed where necessary to obtain leaking components in certain leak rate categories. This was accomplished by using the electron beam welder.

- 5. All relays accepted from the vendor had passed electrical and mechanical screening tests given in appropriate MSFC procurement specifications except the seal leakage requirement.
- 6. Relays were transported to State College, Mississippi, by automobile in seal metal containers pressurized to 1 atmosphere of dry nitrogen.

After a period of six weeks, it became apparent that an unlimited amount of time would be required to secure the exact number of relays in each leak rate category. Thus, the number of categories was reduced to 4, and the number of relays selected in each category based only upon HMS testing was as follows.

FULL SIZE CRYSTAL CAN RELAYS (S2GP-6-54)

Leak Rate Range atm cc/sec		Number of Relays in Group
2 X 10 ⁻⁹ to 2 X 10 ⁻⁸ 2 X 10 ⁻⁸ to 2 X 10 ⁻⁷ 2 X 10 ⁻⁷ to 2 X 10 ⁻⁶ 2 X 10 ⁻⁶ to 2 X 10 ⁻⁵	,	36 61 76 65

HALF SIZE CRYSTAL CAN RELAYS (S2GP-7.25-73)

Leak Rate Range	Number of Relays
_atm cc/sec	in Group
2 X 10 ⁻⁹ to 2 X 10 ⁻⁸	61
2 X 10 ⁻⁸ to 2 X 10 ⁻⁷	69
2 X 10 ⁻⁷ to 2 X 10 ⁻⁶	64
2 X 10 ⁻⁶ to 2 X 10 ⁻⁵	44

All other relay selection procedures outlined in our test program submitted to MSFC were followed as proposed.

It should be mentioned that the General Electric Company representatives were exceptionally cooperative in the endeavor and made every effort to supply us with relays in accordance with our needs.

The General Electric Company also devised a new technique for HMS

testing. This was concerned with the method used to provide a helium atmosphere for the relays. Figure 4 illustrates how a rubber finger cover was attached to the base of the relay. A hole was cut in the normally closed end of the finger cover, and a line from the helium supply was inserted into the hole. Figure 5 shows how this was accomplished.

(b) Procurement of Transistors:

The contract specified that 200 transistors of a special type of 2N1613 be procured for this project. An average of 40 transistors were to be obtained in each of five leak rate categories. In addition, the contract required: "These semiconductors must not be of a planar passivated construction in order that contaminants will have maximum effect on the internal construction of the device."

Several of the major semiconductor manufacturers were contacted in an attempt to buy these special transistors. The information obtained from these attempts led to the conclusion that no one in semiconductor technology made the 2N1613 except those of a planar passivated type of construction. Finally, the Texas Instrument Company agreed to furnish at no charge transistors of the 2N1613 family which had failed the leak rate test on a go-no-go basis. These were rejected transistors that had not been checked for compliance with other specifications normally required for the 2N1613. This contractor agreed to accept the transistors for possible further use in the proposed life testing program. If possible, the transistors would be categorized according to leak rate after receipt from the Texas Instrument Company.

After the transistors were received, they were checked by the contractor in a circuit similar to the one in the transistor life tester. Those which passed the tests in the three regions of active, cutoff, and saturation were accepted. About 25% of those received failed this test. The majority of these failures were attributed to variations among transistors of the 2N1613 family and were not, in most cases, due to an inferior product.

Figure 4. Relay Attached to Mass Spectrometer with Finger Cover Installed.

Figure 5. Helium Line Providing Helium Atmosphere For Leak Rate Determination.

IV. DESIGN AND CONSTRUCTION OF THE LIFE TESTERS

(a) Relay Tester:

The design of the relay tester was based upon a compromise between manual and automatic operation in order that construction could be accomplished at a minimum cost to the Government consistent with the time limitations for testing required by the contract. The testing specifications were intended to simulate operational conditions and to determine the expected life of a relay while providing means for detecting and isolating the causes of failure. A failure was defined as any significant change of electrical characteristics which were monitored during the proposed tests.

The electrical characteristics to be monitored during operational cycling of the relays at 20 cycles per minutes were:

- 1. Miss
- 2. Weld
- 3. Bridge
- 4. Contact Resistance
- 5. Insulation Resistance

In addition, prior to operational cycling and after the environmental exposure, the following tests would be performed:

- 1. Insulation resistance check
- 2. Electrical checks:
 - a. Operational and release voltages
 - b. Contact resistance
 - Direct current coil resistance or current at 28 volts DC

These tests were also performed after 10,000, 110,000 210,000 and 310,000 operating cycles.

A complete description of the relay tester construction and operation is given in M. E. Triplett's, "Design, Construction, and Testing of a Life Tester for Hermetically Sealed Electronic Crystal-Can Relays." (1)

(b) Transistor Tester:

Since there was no defined method of life testing for a transistor, a method was chosen with the objective of accelerating the life test to reduce the testing time. The tester was designed to operate each transistor through a repeated three part cycle of approximately four minutes duration per part. The transistors were to be operated in the active region at rated dissipation, in the saturation region, and in the cutoff region. At no time were any of the ratings of the transistor to be exceeded, and this particular sequence of life testing would cycle the junction temperature between the approximate limits of room ambient and 200 C. This temperature cycling should accelerate the life testing.

Failure of a transistor during each phase was defined as follows:

- 1. Failure in the active region was defined as a \pm 10% change in the DC current gain or, equivalently, a \pm 2 volt change in $V_{\rm ce}$.
- 2. Failure in the saturation region was defined as $\rm V_{ce}$ (Sat) $\geq 1.0~\rm VDC.$
- 3. Failure in the cutoff region was defined as $\rm I_{cbo} \geq 10$ na.

The life tester was designed to run continuously with tests for failure to be performed periodically. Tests for failures could be performed as frequently as desired although it was considered desirable to perform the test in each of the three regions at least once a week. For a complete description of the transistor life tester see R. D. Guyton's "Operating Manual for the Transistor Life Tester." (2)

V. RAG TESTING OF COMPONENTS

The RAG method has been used extensively to determine the leak rates of hermetically sealed components for space applications. Under a previous contract with the National Aeronautics and Space Administration a RAG system was constructed at Mississippi State University. The only major difference between the MSU unit and the commercially available unit was a lack of automation. Each test conducted using the MSU unit was performed manually instead of automatically. Figure 6 is a block diagram of the MSU unit which functioned in the manner described below.

Components to be tested were placed in the activation tank which was then evacuated by the vacuum pumps. Valves were adjusted, and the radioactive gas, Kr-85 and dry nitrogen from the storage tank, was transferred through the compressor to the activation tank. The gas remained in the activation tank for a preset soak time at a predetermined pressure and was then returned to the storage tank. The activation tank was evacuated and flushed with air several times. Components were removed from the activation tank and placed on a 1" x 1" NaI scintillation crystal. A determination of the contained activity was accomplished by using a Nuclear Chicago Model 1620CS Count Rate Meter. The count rate obtained in that fashion was proportional to the activity of the residual radioactive gas remaining in the component. Reference sources were prepared by pipetting a known amount of radioactive gas into a component of the same type as those under test for leak rate determination.

(a) RAG Testing of Relays

After receipt of the relays from the General Electric Company RAG testing of the relays was initiated. In an early phase of the testing, it was observed that several of the relays in each leak rate range had ceased to leak.

Fig. 6: MSU RAG System

This occurred although the relays were transported to State College, Mississippi in an atmosphere of dry nitrogen and stored in desiccator jars when not being soaked in the RAG system or being counted with the scintillation counter. It was apparent that these relays could not be used for a correlation of leak rates between the two testing methods since a comparison of a reading of zero or no reading with a finite value yields no correlation at all. Other relays with very low leak rates on the mass spectrometer would have required up to 100 hour soak periods for a detectable amount of RAG gas to be forced into the case at reasonable pressures. This was apparent even though a special shield was constructed around the detector which reduced the background level to about 100 cpm. Therefore, only about forty-one percent of the relays could be tested which yielded meaningful results. Appendix Tables B1 and B2 tabulate the leak rates from the RAG test along with the corresponding leak rates from the HMS tests.

Each relay was soaked six times, twice at each of three soak pressures. The data was analyzed by the method of least squares as indicated in section VIII of this report. Each value of leak rate was considered to be a mean value of the six determinations, and the standard deviation for the mean value was determined. The ratio of the leak rate by the RAG method to that by the HMS method

$$R = Q_s^R/Q_s^{MS}$$
,

was then determined and the standard deviation was calculated. This was also considered to be a mean value. The grand mean of the means for each leak rate regime was then calculated along with its standard deviation. A very good correlation between the theoretical ratio for the molecular regime and the experimental ratio was obtained.

(b) RAG testing of Transistor:

Since only one company agreed to furnish transistors of the 2N1613 family and these were to be those which had failed the leak test on a go-no-go basis, we planned to categorize the transistors using the RAG system. Upon receipt, however, it was determined that the transistors either leaked in a gross fashion or not at all. Thus, no useful data could be obtained from RAG testing the transistors.

(c) Radiation Safety Considerations:

Throughout the entire RAG testing of components none of the operators of the RAG system received greater than a small fraction of the radiation dose allowed for radiation workers during any one week period.

VI. SELECTED ENVIRONMENTAL EXPOSURE

All components in the test groups were subjected to the same environmental exposure with the exception of the altitude exposure of transistors. Generally this consisted of two phases. The first of these was exposure to salt fog environment with variations in temperature.

The components were placed on test tube racks and positioned in the Industrial Filter and Pump Company, Type 411-2ACO, salt fog chamber so that the spray from the nozzle did not impinge directly onto the test specimens. The 20% salt solution was made using technical grade sodium chloride and tap water which contained less than 200 ppm of dissolved solids. Salt fog spray was continuous, and the temperature inside the cabinet was varied from room ambient to 150F. The time at each temperature was 12 hours during each 24 hour period. Components were inspected once daily to determine that corrosion of any component was not excessive. The total testing time was 96 hours, after which the test specimens were removed from the cabinet.

After removal of the specimens, each was washed with warm water and air dried. At this stage it was observed that the transistor leads were very weak and some broke off where the lead enters the transistor header. This had not been observed during any of the daily inspections. It was apparent that the salt had chemically reacted with the lead materials. Since one or more leads on most of the transistors was affected in this fashion, it was not possible to initiate their life testing. Qualitative analysis of the lead materials were made by the Mississippi State Chemical Laboratory. The results of the analyses are given in Appendix C. The relays were affected by the spray in quite a different fashion.

The use of warm water and air drying to remove residual salt from the

relays was not effective. Bench tests of the electrical characteristics later revealed that all test relays failed due to low pins to case resistance. This was not discovered, however, until the specimens were removed from the altitude chamber.

Following the salt fog environment, the relays were placed in an altitude chamber and this phase of exposure began. The chamber was maintained at an absolute pressure corresponding to 150,000 feet and a temperature of 150F for 12 hours and an absolute pressure corresponding to 90,000 feet and a temperature of -65F for 12 hours of each 24 hour period. Relays remained in the chamber for 14 days. They were then removed, bench tested electrically, cleaned with

VII. LIFE TESTING OF COMPONENTS

(a) Life testing of Full Size Relays:

Two hundred and forty-five S2GP-6-54 full size crystal can relays were electrically checked upon removal of the test group from the altitude chamber. All relays in the test group failed these tests due to low pin to case resistance. A close observation of the relays revealed a gray deposit between the pins and the case which apparently provided a conduction path. Although the relays had been cleaned with warm water and dried with air before the test, it was apparent that more rigorous cleaning procedures would be required. A small wire brush was then used to remove the deposit. Even then, some of the relays failed this part of the test. It was decided, however, that as many relays as possible would be used in the determination of the mean time to failure by operationally cycling the relays in the tester.

After the initial electrical checks were completed, two hundred and forty relays were used in the tester for the start of operational testing. An initial goal of 20% failures was set, at which time, the testing would be terminated. It was later decided, however, since sufficient half size relays were not ready for life testing when 20% of the full size relays had failed, that testing would be continued until 50% of the relays had failed. Bench tests of electrical characteristics were repeated at 10,000 operating cycles and each 100,000 operating cycles thereafter. Appendix Table Al is a compilation of the bench test data for full size relays. It should be noted that there were two and one-half times as many bench test failures in the test group as in the control group due to low resistance between the pins and the case. This may have been brought about by the residual deposit remaining after the salt fog test. Other failures occurred during operational cycling.

Appendix Tables A3 through A6 and Figures A1 through A4 illustrate the failures which were detected during operation of the tester. The figures represent a Weibull analysis $\frac{(4)}{}$ to determine the mean time to failure for relays in two large leak rate ranges. Leak rates were based upon the HMS test only.

It is apparent from these data that over the leak rate ranges considered there were no significant differences in the mean times to failure for relays of one groups as compared to the other or between a test group and the corresponding control group. This is further emphasized by Appendix Tables Al through Al8 and Figures A9 through Al6 where the total leak rate range has been further subdivided. Table Al9 lists the causes of failure during operational cycling and indicates that the predominant cause of failure was an unacceptable high value of contact resistance.

(b) Life Testing of Half-Size Relays:

Two hundred and forty-two S2GP-7.25-73 half size crystal can relays were electrically checked upon removal of the test group from the altitude chamber. Again all relays were brushed to remove residual contamination from the salt fog exposure. Initial and subsequent bench test results have been tabulated in Appendix Table A-2 where again it was evident that failures at these stages predominated in the test group. Life testing was initiated.

Appendix Tables A3 through A6 tabulate the cycles to failure of relays in the test and control groups over two broad leak rate ranges. Figures A5 through A8 illustrate the Weibull analysis of the mean times to failures for the half size relays. Again no significant variations between the mean times to failure for relays in each group were observed. No further break down into a greater number of groups was attempted since only 20% of the relays had failed after a considerable testing time. Appendix Table A20 lists the causes

of operational failures and clearly confirm the predominant cause as an increase in contact resistance beyond acceptable limits.

(a) Life Testing of Transistors:

One half of the transistors of the 2N1613 family were exposed to selected environmental conditions prior to life testing. During their residence in the salt fog chamber they were examined daily to determine if excessive corrosion was occurring. Only at the end of the 96 hour exposure period was the discovery made that one or more leads had corroded to the extent that they broke off at the point of entry into the header. It appeared that the salt had chemically reacted with the leads at the point and caused them to weaken or break. Since most of the test group had one or more leads so affected, it was decided not to run the life test part of the project as originally contemplated as there were not enough transistors which had survived the environmental test.

One hundred and six transistors were available from the control group, and these were placed in the life tester to complete the checkout of its operating characteristics. Roughly one-third of these were placed in each of the three groups of the life tester so that the power supply would have the same load at all times during the life test.

The bias potentiometers were adjusted to set $V_{\rm ce}$ to approximately 20 volts for each transistor operating in the active region. The life tester was operated continuously for 1000 hours. Each transistor was checked three times per week during this period to determine if it had failed in either the active, saturated, or cutoff regions. Four transistors apparently failed during this 1000 hour test.

After 127 hours one transistor failed in the cutoff region as $I_{\rm cbo}$ greatly exceeded 10 na. It did not fail in the active or saturation regions

for the remainder of the 1000 hour test. The second failure occurred after 248 hours and was the same type of failure during cutoff. This transistor also did not fail in the other two regions for the duration of the test. The third apparent failure after 248 hours was in the active region, but an investigation showed that the transistor was not properly inserted into its socket. Thr fourth apparent failure occurred after 1000 hours with a change of V_{ce} of greater than two volts while in the active region. When this transistor was pushed flush with its socket, the change in V_{ce} was less than 2 volts indicating that it had not failed.

In summary, two failures occurred during the 1000 hour life test; and both were increases in $I_{\mbox{cbo}}$ to values greater than 10 na. This 1000 hour test simply proved the capabilities of the transistor life tester and illustrated its unique features.

The typical life tester approach is to operate each transistor at rated values in the active region. Such a tester would not have detected either of the failures detected by our transistor tester. This accentuates the advantage of testing each transistor in each of the three operating ranges.

VIII. RAG-HMS TEST CORRELATION

Standard leak rate is defined as that quantity of air measure in cm³ per sec at STP which will flow through an opening, one side of which is at an absolute pressure of one atmosphere and the other side is at an absolute pressure of zero. The leak rate equations, assuming molecular, slip, and Poiseuille flows respectively, are then:

$$Q = Q_{S}^{M} (P_{2} - P_{1})$$
 (1a)

$$Q = Q_S^M (P_2 - P_1) + Q_S^P (P_2^2 - P_1^2), \text{ or}$$
 (1b)

$$Q = Q_S^P (P_2^P - P_1^P).$$
 (1c)

The volume which flows through a leak during a time "t", if the pressures on the two sides remain constant, is then:

$$V = Q_S^M t (P_2 - P_1), \qquad (2a)$$

$$V = Q_S^M t (P_2 - P_1) + Q_S^P t (P_2^2 - P_1^2), \text{ or } (2b)$$

$$V = Q_S^P t (P_2^2 - P_1^2),$$
 (2c)

depending upon the leak regime which occurs.

By taking a single measurement with the RAG, one is unable to determine the flow regime or the leak rate. Repeated measurements at different pressures will, however, yield some insight as to the proper flow mechanism and will also permit a determination of the leak rate. The same problem also exists while using the HMS test on a sealed component. This was recognized before the RAG testing began; and, as a compromise between statistical accuracy and the time available to perform RAG testing, it was decided to soak the relays twice at each of three different pressures. Once these data were obtained, a least squares analysis was performed to fit each of equations (2) to the data. The normal equations for the least squares analysis were:

$$Q_{S}^{M} = \left(\sum_{i} V_{i} P_{i} - \sum_{i} V_{i}\right) / t \sum_{i} (P_{i} - 1)^{2}$$
 (3a)

$$Q_{S}^{P} = (\sum_{i} V_{i} P_{i}^{2} - \sum_{i} V_{i}) / t \sum_{i} (P_{i}^{2} - 1)^{2}.$$
 (3c)

Equations 3 were used to determine the leak rate and the flow mechanism. Appendix Figures B1, B2, and B3 are examples of the least squares analysis for one relay in each flow region. A computer program performed the least squares analysis and calculated the standard deviation for each leak rate determination. Appendix Tables B1 and B2 list the leak rates determined from RAG testing and by using the HMS Method.

The leak rates listed in Appendix Tables B1 and B2 for the HMS determinations were based upon the leakage of helium, not air. This was done since helium was used as the gas being transported through the relay cases. The indicated leak rates were read directly from the mass spectrometer and were comparisons of the flow for the unknown leak rate to that flow observed for a calibrated helium leak. The calibrated reference was claimed to be accurate to \pm 10%. For that reason, the mass spectrometer determination were assumed to have a fractional standard deviation of \pm 10%. Once the leak rates were determined by both methods, a correlation was made.

To perform the correlation, relays were divided into the following three categories:

- (1) those exhibiting molecular flow,
- (2) those exhibiting slip flow, and
- (3) those exhibiting Poiseuille flow.

The ratios of the leak rates by the two method were calculated so that the ratio, R, where

$$R = Q_S^R / Q_S^{MS}$$

was determined for each tested relay. Each value of R was considered to be a mean value since several determinations were required to obtain its value. A grand mean of R was then calculated for relays exhibiting each type of flow. The results of these calculations are tabulated below:

.Table VIII-1. Ratio for Each Flow Regime

		Ratio
Flow	Full Size Relays	Half Size Relays
Poiseuille	0.080 ± 0.008	0.070 ± 0.011
Slip	0.234 <u>+</u> 0.033	0.466 <u>+</u> 0.180
Molecular	0.313 ± 0.025	0.328 <u>+</u> 0.035

The listed standard deviations are the standard deviations in the grand mean obtained by using the usual expression,

$$\sigma^2 = \sum_{i} (\bar{R} - R_i)^2 / n(n' - 1).$$

 $\bar{R} = Grand mean$

 R_{i} = Individual determination of the mean

n = Number of data points in each calculation of the grand manner.

From theoretical considerations, the value of the ratio, R, assuming molecular flow, is given by the square root of the ratio of the molecular masses of the gases. For Helium and air this ratio is 0.37, in fairly good agreement with the values above which were determined experimentally.

If both the full size and half size relays are considered together in the determination of the grand mean of the ratios, they are as given below in Table VIII-2.

Table VIII-2 Ratios for Each Flow Regime, All Relays Considered Together.

Flow	Ratios (R)
Poiseuille Slip	0.075 ± .007 0.357 ± .097
Molecular	0.319 + .021

IX. ANALYSIS OF THE LIFE TEST DATA

If a failure rate curve is constructed which represents the rate of failure as a function of testing time for components undergoing life test, it is found that the total curve may be divided into three general parts. The first of these parts may be called an early failure curve and represents the period during which poorly manufactured items are weeded out. The second part, which may or may not be characterized by a constant failure rate, may be considered as the period of useful life. A third part represents wearout failures. The second part of the curve is of primary interest in failure analysis for in that area the early failures have been eliminated and wearout has not occurred. (4)

If the failure rate during the second part is not a constant, the exponential failure model cannot be used; and a more general model must be applied One of these models and the one selected for the failure analysis of the report is the Weibull Model in life testing. This model adequately describes the failure rate if the failure rate varies with time. (4)

The instantaneous failure rate may be expressed as

$$f(t) = AB_t^{B-1}e^{-At}$$
 for t70, A 70, B 70

The reliability function is then

$$R(t) = e^{-AtB};$$

and the failure rate is

$$Z(t) = AB c^{B-1}$$

The mean time to failure may be determined by evaluating the parameters A and B through a solution of

$$\mathcal{M} = \int_{0}^{\infty} tABt^{B-1}e^{-At^{B}}dt$$

which yields

$$\mathcal{M} = A^{-1/B} \qquad \boxed{(1 + \frac{1}{B})}.$$

The variance is given by

$$\sigma^2 = A^{-2/B} \left\{ \int (1 + \frac{2}{B}) - \left[\int (1 + \frac{1}{B}) \right]^2 \right\}.$$

An estimate of A and B may be obtained by taking the logarithm twice of the reliability function, R (t), which gives

$$\frac{1}{\ln 1} \qquad \frac{1}{R (t)} = \ln A + B \ln t$$

The right hand side is linear in In t; and, if we let

$$1n t = x$$

and we estimate $F(t_i) = 1 - R(t_i)$ by letting

$$F(t_i) = (i-\frac{1}{2})/n$$

and thus

In In
$$\frac{1}{R(t)}$$
 = In In $\frac{1}{1-F(t_i)}$ = y,

the equation becomes

$$y = In A + Bx$$
.

A least squares analysis of the data using this equation then yields A and B. It is apparent that In A is the intercept of the curve and B is the slope. The mean time to failure may then be calculated by using the expression for previously shown.

The Weibull method was used in these analyses by first applying the method to the data given in Appendix Tables A3 through A6 and A7 through A10. It was evident at that point that early failures must be recognized and discarded from the analysis. Appendix Figures A1 through A8 illustrate the final Weibull Analysis for two broad leak rate ranges for each relay type. Appendix Tables A11 through A18 further subdivide the full size relay failures into

four leak rate ranges, and Appendix Figures A9 through A16 represent the Weibull analysis for these same leak rate ranges.

It was evident upon completion of the Weibull analysis that the exposure of the relays to the salt fog and altitude environments did not change the mean time to failure significantly. From these data it appeared that over the leak rate ranges under consideration the selected environmental exposure had a negligible effect.

X. RESULTS

Two types of relays were life tested with the objective of determining a critical leak rate limit. Difficulties in securing relays in sufficient quantities to span the desired leak rate range of 10^{-9} to 10^{-4} atm cc/sec. caused the range to be slightly changed from the desired span to one encompassing 2×10^{-9} to 2×10^{-5} atm. cc/sec. These ranges were based only upon the flow of helium using the HMS method. Life testing revealed the following:

- 1. Over the entire leak rate range under consideration the full size crystal can relays of type S2GP-6-54 and the half size crystal can relays of type S2GP-7.25-73 exhibited no significant change in their mean times to failure regardless of our selected environmental exposure. This would tend to indicate that the present leak rate limit may be too restrictive. On the other hand, life testing was not carried out in a near vacuum condition as could be experienced by a component during a long space flight. The results of these life tests then indicated that no significant contamination entered the relays which were tested; and, thus, the exposure of the relays to contamination had a negligible effect on relay life.
- 2. The two types of relays had significantly different mean times to failure. Table X-1 is a tabulation of the mean times to failure of each type of relay with the leak rate range divided into two broad categories.

TABLE	X-1	Mean Times of Failu	re
Relay Types Full Size (S2GP-6-54)	Group '	Leak Rate Range (atm cc/sec.)	Mean Time (cycles) to Failure
	Test	2x10 ⁻⁷ to 2x10 ⁻⁵	162,085 ± 13,488
	Control	2x10 ⁻⁷ to 2x10 ⁻⁵	155,712 ± 11,476
	Test	2x10 ⁻⁷	157,461 ± 11,703
	Control	2x10 ⁻⁷	165,110 ± 16,575
Half Size(S2GP-7.25-73)	Test	2x10 ⁻⁸ to 2x10 ⁻⁵	434,116 ± 97,200
	Control	2x10 ⁻⁸ to 2x10 ⁻⁵	392,063 ± 25,131
	Test	2x10 ⁻⁸	373,208 ± 62,461
	Control	2x10 ⁻⁸	557,239 ±178,064

From these data, the mean time to failure of the half size relays is significantly greater than for the full size relays, thus leading to the conclusion that the half size relay is superior in reliability to the full size relay.

- The predominant cause of failure of relays was high contact resistance.
- 4. A salt fog environment may cause failure of a relay because of a build up of conduction paths between the pins and the case. The conduction paths are difficult to remove and reduce the case to pins resistance to lower than acceptable limits.

Leak testing by the two methods gave correlation factors which relate leak rates determined by the HMS method to leak rates determined by the RAG method. These are shown below for the various flow regimes.

TABLE X-2. Ratio of Leak Rates $(R = Q_S^R/Q_S^{MS})$

F1ow	Full Size Relays	Half Size Relays
Poiseuille Slip Molecular	$\begin{array}{c} 0.080 \pm 0.008 \\ 0.234 \pm 0.033 \\ 0.313 \pm 0.025 \end{array}$	$\begin{array}{c} 0.070 \pm 0.011 \\ 0.466 \pm 0.180 \\ 0.328 \pm 0.035 \end{array}$

To illustrate the correlation obtained by the two methods, Appendix Tables D1 and D2 were prepared. Listed there are the leak rates by RAG testing in one column followed by another column containing the leak rates by the HMS method which have been multiplied by the experimentally determined leak rate ratios, R. It is apparent from these data that the correlation in most cases was very good.

It should be emphasized that a single RAG test will yield the true leak rate only if the flow is molecular in character and only if the molecular flow equation is utilized. If the flow is not molecular, and this is possible; a single RAG test will not give the true leak rate. Only by repetitive testing at different pressures can the leak rate be determined accurately. If, however, the leak rate is desired to within an order of magnitude, a single RAG test may be performed if the molecular flow mechanism is assumed.

The failure of transistors because of leak weakening and breaking when exposed to a salt fog environment suggests the desirability of requiring either a humidity test or salt fog test as part of the lot sampling specifications required in the qualification of vendors. It is recognized, however, that if conformal coating is used, then humidity and salt fog environments will probably not affect a transistor so encased.

Two unique life testers were designed and constructed for this project.

Each subjected the test components to severe operating conditions not usually found in comparable life testers.

APPENDICES

APPENDIX A
LIFE TEST RESULTS FOR RELAYS

Table A1. Full Size Relays Which Failed Due to Low Resistance Between Pins and Case (Bench Test)

Relay No.	Initial	Failure		Failure After 110,222 Cycles	
239 C			 x		•
106 C			~		×
163 C	x				₩
63 C	*		x		
185 C	•	*	x		
38 C					· x
175 C					x
211 C	, ***				<i>A</i> •
117 C	×				
	X				
272 C	X				
259 C	X				
204 C			x		_
195 C					
170 C					×
99 C					X
135 C					x
192 C			x		
95 C					×
60 C					x
229 C			X		
267 T					x
158 T	x				Xi. 34
115 T	4.		x		
286 T		•	ж `		
118 T			X		
61 T			x,		
111 T			x		
75 T					
73 T			X		x ·
188 T		-	v		Δ.
233 T			×		
100 T			x		v
			€ D		*
54 T			X		Tr
178 T					X
217 T	x				
265 T			X		
65 T	X				
83 T	X				
230 T	X		v		
263 T	X				
46 T					X.
123 T	x				

Table Al . (Con't.)

Relay No.	Initial	Failure	Failure After 10,000 Cycles	Failure After 110,222 Cycles	Failure After 180,000 Cycles
•	•				
218 T			×		
73 T	x		•		
262 T			×		
284 T	x				
165 T	•				x
11 T					x
40 T			x		
280 T			· x		
19 T	×				
288 T					-X
234 T					x
18 T	x				
258 T			×		
248 T	x				
62 T	×		*		
145 T			×		
76 T			x		
222 Ť			×		
207 T			×		
154 T			x		
146 T			x		
82 T	×				
138 T			x		
290 T					x
53 T	x				
104 T			×		
177 T			x		
80 T					x
Totals		*			
C	'• 5		6	1	8
T	15	•	24	ō	11
TOTAL	20	-	30	1	19

T = Test Group; C = Control Group.

Table A2 . Half Size Relays Which Failed Due to Low Resistance Between Pins and Case (Bench Test)

Relay Initial Failure After Failure After Failure After Failure After No. Failure 10,000 Cycles 110,000 Cycles 210,000 Cycles 310,000 Cycles

75 T 162 T 116 T 15 T 53 T 138 T 234 T 250 T 178 T 146 T 150 T 46 T 315 T 104 T 18 T 103 T	x x x x x x x x		x	x x	x x	
52 C 172 C 198 C 189 C 299 C 30 C	X X X	x 		•	x	-
Totals T	: 12 3	0 2	1 0	2 0	2 1	
TOTALS	15	2	1	2	3	

Total Relays bench tested were 240. T = Test Group; C = Control Group

Table A3. Full Size Relays with Leak Rates in the Range 2 X 10^{-7} to 2 X 10^{-5} cc/sec. Times to Failure of Test Group.

Relay No.	Cycles to Failure	Relay No.	Cycles to Failure
287	36,403	53	118,759
46 .	59,512	223	119,204
230	61,506	189	120,232
102	67,553	37	125,330
89	82,406	1	140,059
290	82,686	138	141,852
158	88,573	. 217	- 143,060
118	91,883	178	143,725
262	94,455	7	146,441
94	98,974	11	146,609
215	100,333	62	149,961
238	103,040	104	151,536
276	105,875	143	153,037
207	108,743	43	172,699
221	112,714	226	173,002
224	116,209	222	173,115

Relays 278 and 46 were considered to be early failures.

Fig.A1. Test Group With Leak Rates In The Range 2 x 10^{-7} to 2 x 10^{-5} cc/sec.

Table A4. Full Size Relays With Leak Rates in the Range 2 X 10-7 to 2 X 10-5 cc/sec. Times to Failure of Control Group.

Relay No.	Cycles to Failure	Relay No.	Cycles to Failure
103	41,443	23	127,972
281	47,617	105	131,791
185	73,986	74	134,764
235	81,559	192	135,287
20	83,345	208	136,394
166	87,585	63	138,202
170	89,349	175	-
231	92,748	260	144,074
121	99,362	130	148,861
209	100,838		151,828
164	102,338	86	161,065
149	_	239	163,275
199	102,902	237	164,925
	111,948	9	166,309
32	114,204	90	167,084
241	117,645	282	172,091
64	118,344	108	176,549
202	118,483	126	178,060
15	127,720		x # 0 , 000

Relays 103 and 281 were considered to be early failures.

Fig.A2. Control Group With Leak Rates In The Range 2 x 10^{-7} to 2 x 10^{-5} cc/sec.

Table A5. Full Size Relays with Leak Rates Less than 2 X 10-7 cc/sec. Times to Failure of Test Group.

			1
Relay No.	Cycles to Failure	Relay No.	Cycles to Failure
141	38,489	258	117,636
80	56,490	172	119,377
279	61,110	65	121,617
265	75,950	253	122,539
54	83,550	165	125,329
40	90,740	61	127,107
267	92,740	19	131,383
248	96,905	154	132,209
67	97,625	2	132,725
234	102,565	167	146,606
284	110,471	203	163,368
295	113,476	245	163,817
288	116,686	100	176,543
191	116,944	110	170,343

Relays 141 and 80 were considered to be early failures.

Fig.A3. Test Group With Leak Rates Less Than 2 x 10^{-7} cc/sec.

45

Table A6. Full Size Relays With Leak Rates Less than 2 X 10-7 cc/sec.
Times to Failure of Control Group.

Relay No.	Cycles to Failure	Relay No.	Cycles to Failure
174.	36,030	72	116,482
257	38,788	274	117,393
270	45,743	- 55	118,006
99	49,598	50	122,904
232	57,518	135	128,507
159	57,524	. 228	128,929
58	. 62,780	4	144,050
289	65,832	268	
` 36	69.679	275	147,022
247	87,042	152	147,451
283	88,587	173	149,197
251	97,559	26Í	152,114
44	100,277	95	173,770
243	110,492	90	179,296.

Relays 174, 257, 270, 99, 232, and 159 were considered to be early failures.

Table A7. Half Size Relays with Leak Rates in the Range 2 X 10⁻⁸ to 2 X 10⁻⁵ cc/sec. Times to Failure of Test Group.

Re1ay	No. Cycles to Failure
76	10,016
77	26,427
314	35,318
209	53,312
152	190,530
61	227,323
162	231,043
160	239,845
114	245,181
38	290,899
44	299,070
35	310,377
278	311,352
49	321,192
222	321,671
244	322,169
103	335,392

Relays 76, 77, 314, and 209 were considered to be early failures.

Fig.A5. Test Group With Leak Rates In The Range 2 x 10^{-8} to 2 x 10^{-5} cc/sec.

Table A8. Half Size Relays With Leak Rates in the Range 2 X 10^{-8} to 2 X 10^{-5} . Times to Failure of the Control Group.

Relay No.	Cycles to Failure
126	10,000
136	10,000
184	13,437
317	32,675
62	118,742
171	323,459
179	329,298
52	332,426
41	338,602
20	355,557

Relays 126; 136, 184, 317, and 62 were considered to be early failures.

Fig.A6. Control Group With Leak Rates In The Range 2×10^{-8} to 2×10^{-5} cc/sec.

Table A9. Half Size Relays With Leak Rates Less Than 2 X 10-8 cc/sec. Times to Failure of the Test Group.

Relay No.	Cycles to F
197	102,739
16	103,010
23	223,375
216 .	254,978
115	275,549
71	311,085
208	314,240
144	321,144
132	326,792
187	332,434
90	332,548
X	335,579

Relays 197 and 16 were considered to be early failures.

Fig. A7. Test Group With Leak Rates Less Than 2 \times 10⁻⁸ cc/sec.

Table A10. Half Size Relays With Leak Rates Less Than 2 X 10^{-8} cc/sec. Times to Failure of the Control Group.

Relay No	Cycles to Failure
189	10,102
270	11,362
165	59,289
196	213,577 .
158	218,379
66	312,379
22	323,485
214	350,636

Relays 189, 270, and 165 were considered to be early failures.

Table All. Full Size Relays With Leak Rates Between 2 X 10⁻⁹ cc/sec. and 2 X 10⁻⁸ cc/sec. Times to Failure of the Test Group.

Relay No.	Cycles to Failure
<u>279</u>	. 61,110
172	119,377
65	121,617
165	125,329
19	131,383

Relay 279 was considered to be an early failure.

Fig. A9. Test Group With Leak Rates From 2 x 10^{-9} cc/sec. to 2 x 10^{-8} cc/sec.

Table A12. Full Size Relays With Leak Rates Between 2 X 10-9 cc/sec. and 2 X 10-8 cc/sec. Times to Failure of the Control Group.

Relay No.	Cycles to Failure
257	38,788
232	57,518
58	, 62,780
36	69,679
247	87,042
44	100,277
55	118,006
95	179,296

Relays 257 and 232 were considered to be early failures. Relays 95 was arbitrarily omitted due to inconsistency with other data.

Fig. A10. Control Group With Leak Rates From 2 x 10^{-9} cc/sec. to 2 x 10^{-8} cc/sec.

Table A13. Full Size Relays With Leak Rates Between 2 X 10-8 cc/sec. and 2 X 10-7 cc/sec. Time to Failure of the Test Group.

Relay No.	Cycles to Failure
141 .	38,489
54	83,550
40	90,740
267	92,740
248	96,905
67	97,625
234	102,565
284	110,471
295	, 113,476
288	116,686
191	116,944
258	. 117,636
61	127,107
154	132,209
2	132,725
167	146,606
203	163,368
245	163,817
110	177, 232

Relay 141 was considered to be an early failure. Relay 203, 245, and 110 were arbitrarily omitted due to inconsistency with other data.

Fig.All. Test Group With Leak Rates From 2 x 10^{-8} cc/sec. to 2 x 10^{-7} cc/sec.

Table A14. Full Size Relays With Leak Rates Between 2 X 10⁻⁸ cc/sec. and 2 X 10⁻⁷ cc/sec. Times to Failure of the Control Group

Relay No.	Cycles to Failure
174	36,030
270	45,743
159	57,524
283	88,587
251	97,559
243	110,492
274	111,393
50	122,539
135	128,507
228	128,929
4	144,050
268	147,022
275	147,451
152	149,197
227	166,899
261	173,770

Relays 174, 270, and 159 were considered to be early failures. Relays 227 and 261 were arbitrarily omitted due to inconsistency with other data.

Control Group With Leak Rates From 2 x 10-8 cc/sec to 2 x 10-7 cc/sec.

Table Al5. Full Size Relays With Leak Rates Between 2 X 10-7 cc/sec. and 2 X 10-6 cc/sec. Times to Failure of the Test Group

Relay No.	Cycles to Failure
278	36,403
230	61,506
102	· 67,553
290	82,686
262	94,455
94	98,974
215	100,333
238	103,040
276	105,875
207	108,743
221	112,714
53	118,759
189	120,232
217	143,060
7 -	146,441
11	146,609
62	149,961
226	173,002

Relay 278 was considered to be an early failure. Relay 226 was arbitrarily omitted due to inconsistency with other data.

Fig.A13. Test Group With Leak Rates From 2 x 10^{-7} cc/sec. to 2 x 10^{-6} cc/sec.

Table A16. Full Size Relays With Leak Rates Between 2 X 10^{-/} cc/sec. and 2 X 10⁻⁶ cc/sec. Times to Failure of the Control Group.

Relay No.	Cycles to Failure
103	41,443
281	47,617
. 185	73,986
235.	81,559
166	87,585
231	92,748
121	99,362
164	102,338
199	111,948
32	114,204
241	117,645
64	118,344
20 2	118,483
15	127,720
23	127,972
105	131,791
192	135,287
208	136,394
175	144,074
260	148,861
239	163,275
237	164,925
9	166,309
282	172,091

Relays 103 and 281 were considered to be early failures. Relays 239, 237, 9, and 282 were arbitrarily omitted due to inconsistency with other data.

Table A17. Full Size Relays With Leak Rates Between 2 X 10^{-6} cc/sec. and 2 X 10^{-5} cc/sec. Times To Failure of the Test Group.

Relay No.	Cycles to Failure
<u>46</u>	59,512
89	82,406
158	88,573
118	91,883
71	110,593
224	116,209
223	119,204
37	125,330
111	130,537
1	140,059
178	143,725
133	144,415
143	153,037
43	172,699
222	173,115

Relay 46 was considered to be an early failure. Relay 43 and 222 were arbitrarily omitted due to inconsistency with other data.

Fig.A15.

Table A18. Full Size Relay With Leak Rates Between 2 X 10-6 cc/sec. and 2 X 10^{-5} cc/sec. Times to Failure of the Control Group.

Relay No.	Cycles to Failure
20	83,345
170	89,349
209	100,838
149	102,902
39 ·	132,118
74	134,764
63 ·	138,202
130	151,828
90	167,084
150	172,374
124	175,081
108	176,549

Relay 90, 150, 124, and 108 were arbitrarily omitted due to inconsistency with other data.

Fig.A16. Control Group With Leak Rates From 2 x 10^{-6} cc/sec. to 2 x 10^{-5} cc/sec.

Table Al9. Full Size Relays Which Failed and Causes of Failure.

Relay Cycles to Failure Miss Weld or Bridge Arc to Gontact Resistance 174 36,030 X X 278 36,403 X X 141 33,489 X X 257 38,788 X X 103 41,443 X X 270 45,743 X X 281 47,617 X X 99 49,598 X X 80 56,490 X X 232 57,518 X X 159 57,524 X X 232 57,518 X X 257 518 X X 259 61,510 X X 289 65,832 X X 289 65,832 X X 265 75,950 X X 285 81,559 X X 89 <t< th=""><th></th><th>•</th><th></th><th></th><th>Cause of</th><th>Failure</th></t<>		•			Cause of	Failure
278	-	Cycles to Failure	Miss			Contact Resistance
278						
141 38,489 x 257 38,788 x 103 41,443 x 270 45,743 x 281 47,617 x 99 49,598 x 80 56,490 x 232 57,518 x 159 57,524 x 232* 59,422 x 46 59,512 x 279 61,110 x 230 61,506 x 58 62,780 x 289 65,832 x 102 67,553 x 36 69,679 x 185 73,986 x 265 75,950 x 235 81,559 x 89 82,406 x 290 82,686 x 20 83,345 x 54 83,550 x 289* 84,634 x 247 87,042 x 158						
257						
103						x
270			x			
281						•
99						
80						
232 57,518						
159						x
232* 59,422			x			
46 59,512 x 279 61,110 x 230 61,506 x 58 62,780 x 289 65,832 x 102 67,553 x 36 69,679 x 185 73,986 x 265 75,950 x 235 81,559 x 89 82,406 x 290 82,686 x 20 83,345 x 54 83,550 x 289* 84,634 x 247 87,042 x 166 87,585 x 159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 231 92,748 x 248 96,905 x 251 97,559 x 67 97,625 x 94 9						
279 61,110 230 61,506 58 62,780 289 65,832 x 102 67,553 36 69,679 185 73,986 x 265 75,950 235 81,559 89 82,406 290 82,686 20 83,345 54 83,550 289* 84,634 247 87,042 166 87,585 159* 87,826 158 88,573 283 88,587 170 89,349 40 90,740 118 91,883 267 92,740 231 92,748 262 94,455 248 96,905 251 97,559 67 97,625 84 289,362 44 100,277 215 100,333 x x x x x x x x x x x x						
230 61,506 58 62,780 289 65,832 289 65,832 36 69,679 185 73,986 265 75,950 235 81,559 89 82,406 290 82,686 20 83,345 54 83,550 289* 84,634 247 87,042 166 87,585 159* 87,826 158 88,573 283 88,587 170 89,349 40 90,740 118 91,883 267 92,740 231 92,748 262 94,455 248 96,905 251 97,559 67 97,625 84 289 82,962 44 100,277 215 100,333						
58 62,780 x 289 65,832 x 102 67,553 x 36 69,679 x 185 73,986 x 265 75,950 x 235 81,559 x 89 82,406 x 290 82,686 x 20 83,345 x 54 83,550 x 289* 84,634 x 247 87,042 x 166 87,585 x 159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121						
289 65,832 x 102 67,553 x 36 69,679 x 185 73,986 x 265 75,950 x 89 82,406 290 82,686 x 20 83,345 x 247 87,042 x 166 87,585 x 159* 87,826 x 158 88,573 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 2 262 94,455 x 248 96,905 x 251 97,559 x 94 98,974 x 121 99,362 x 14 100,277 x 215 100,333 x						
102 67,553 x 36 69,679 x 185 73,986 x 265 75,950 x 235 81,559 x 89 82,406 x 290 82,686 x 20 83,345 x 54 83,550 x 289* 84,634 x 247 87,042 x 166 87,585 x 159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 211 99,362 x 44						x
36 69,679 x 185 73,986 x 265 75,950 x 235 81,559 x 89 82,406 x 290 82,686 x 20 83,345 x 54 83,550 x 289* 84,634 x 247 87,042 x 166 87,585 x 159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 211 99,362 x 244 100,277 x 215 <t< td=""><td></td><td></td><td>x</td><td></td><td></td><td></td></t<>			x			
185 73,986 x 265 75,950 x 235 81,559 x 89 82,406 x 290 82,686 x 20 83,345 x 54 83,550 x 289* 84,634 x 247 87,042 x 166 87,585 x 159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 211 99,362 x 44 100,277 x 215 100,333 x						
265 75,950 x 235 81,559 x 89 82,406 x 290 82,686 x 20 83,345 x 54 83,550 x 289* 84,634 x 247 87,042 x 166 87,585 x 159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						x
235 81,559 x 89 82,406 x 290 82,686 x 20 83,345 x 54 83,550 x 289* 84,634 x 247 87,042 x 166 87,585 x 159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x				x		•
89 82,406 x 290 82,686 x 20 83,345 x 54 83,550 x 289* 84,634 x 247 87,042 x 166 87,585 x 159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						
290 82,686 x 20 83,345 x 54 83,550 x 289* 84,634 x 247 87,042 x 166 87,585 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						
20 83,345 54 83,550 x 289* 84,634 x 247 87,042 x 166 87,585 x 159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 248 96,905 x 251 97,559 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333						
54 83,550 x 289** 84,634 x 247 87,042 x 166 87,585 x 159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						
289* 84,634 x 247 87,042 x 166 87,585 x 159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						
247 87,042 x 166 87,585 x 159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						
166 87,585 x 159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						
159* 87,826 x 158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						
158 88,573 x 283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						•
283 88,587 x 170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						
170 89,349 x 40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						
40 90,740 x 118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						
118 91,883 x 267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						
267 92,740 x 231 92,748 x 262 94,455 x 248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						
231 92,748						
262 94,455 x 248 96;905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						
248 96,905 x 251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						х.
251 97,559 x 67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						x
67 97,625 x 94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						x
94 98,974 x 121 99,362 x 44 100,277 x 215 100,333 x						x
121 99,362 x 44 100,277 x 215 100,333 x				x		
44 100,277 x 215 100,333 x						x
215 100,333 x						x
						x
209 100,839 x						x
	209	100,839				x

Table	A19.	(Con '	t.)	,
-------	------	--------	-----	---

	•			ause of F		
Re1ay	Cycles to Failure	Miss	Weld or	Arc to	Contact R	esistance
No.			Bridge	Case		···
164	102,338	-			:	x
234	102,565				3	x
149	102,902				2	x
238	103,040				2	x.
276	105,875				3	x
207	108,743				;	x
284	110,474				3	x
243	110,492				1	x
71	110,593				3	ĸ
. 199	111,948				2	ĸ
144	112,001		×			
232*	112,533		x			
215*	11 2,665				7	×
221	112,714	x				
295	113,476				2	×
32	114,204				;	X.
224	116,209					ĸ
72	116,482					ĸ
288	116,686					ĸ
191	116,944					ĸ
274	117,393					×.
258	117,636					X.
241	117,645					K
55	118,006					x.
64	118,344					x.
202	118,483					K.
53	118,759					K
223	119,204					K.
172	119,377					K.
189	120,232					k.
46*	120,234					K
65	121,617					K.
253	122,539					r. K
50	122,904					r. K
165	125,329					
37	123,330					K
61	127,107					<u>C</u>
15	127,720					K.
23	127,972					ζ.
135	128,507					<u>ξ</u>
135*	128,747					ζ
228	128,929.					ζ -
226 284						ζ.
111	129,937					ζ.
103	130,537					¢ _
103	130,716					ζ -
	131,138				2	
105	131,791				3	ζ

Table Al9. (Con't.)

***********		Cause of Failure			
Relay	Cycles to Failure	Miss	Weld or	Arc to	Contact Resistance
No.	0,0200 10 - 1111		Bridge	Case	
39	132,118				x
154	132,209				. x
2	132,725				×
164*	133,838				×
7 4	134,764				*
192	135,287				×
283*	135,905				· ×
284*	136,394				×
208	138,073				×
63	138,202				X
290*	139,943				×
. 1	140,059				x
99*	141,767				×
138	141,852				×
54	141,997				*
40*	142,849				×
217	143,060				×
286	143,128		x		
178	143,725				×
4	144,050				30
175	144,074				×
103*	144,075		x		
133	144,415				x
7	146,441				x
167	146,606				×
110	146,609				×
268	147,022				×
275	147,451				×
260	148,861				x
152	149,197				×
62	149;9 6 1				x
278	150,946				×
104	151,836				*
130	15 1,82 8				×
173	152,114				x
143	153,037				×
80*	155,9 6 I				X
170*	155,976				x
53*	156,632				×
86	161,065				×
239	163,275				x
203	163,368				×
165*	163,534				×
245	163,817				x
158*	164,814				×
237	164,925				×
9	166,309				×
227	166,899				×

Table A19. (Con't.)

	•		Cause of Failure				
Relay	Cycle to Failure	Miss	Weld or		Contact Resistance		
No.	· · · · · · · · · · · · · · · · · · ·		Bridge	Case			
90	167 004						
	167,084				ж .		
111*	169,218				х ,		
256	171,026				x		
267*	171,123				x		
282	172,091				x		
9*	172,270				×		
150	172,374				x		
43	172,699				x		
226	173,002				x		
222	173,115				x		
261	173,770				X		
124	175,081				x		
100	176,543						
108	176,549				x		
110*	177,232				 X		
100*	177,232		х.		x		
126	178,060				x		
71*	178,548				X		
175*	179,108						
288	179,121				X		
`95	· 179,296		•		X		
99	±179,490				X		
Totals	(Failures for	· 4) 4		128		
	the first time)		-		_ _ _		

^{*} Relay previously failed and turned over to use new set of contacts failed again.

Table A20. Half Size Relays Which Failed and Causes of Failure

				Cause of	Failure
Relay	Cycles to Failure	Miss	Weld or	Arc to	Contact Resistance
No.			Bridge	Case	
126	10,000		X		_
136	10,000		X		
76	10,016				X
189	10,102				X
270	11,362		•		X
184	13,437			X	•
77	26,427		•	•	X
317	32,675				X
314	35,318				X
209	53,312				X
165	59,289	•			· X
254	62,600	X			
197	102,739				X
16	103,010				X
197*	103,737				X
136*	110,050	X			
62	118,742				X
165*	119,111	X			
152	190,530				X
196	213,577				X
158	218,379				X
23	223,375				· X
61	227,323				x
162	231,043				X
160	239,845				X
114	245,181				X
216	254,978				X
115	275,549				x
38	290,899				X
. 44	299,070				X
35	310,377				X
71	311,085	X			•
278	311,352	X			
66	312,379				X
208	314,240				X
144	321,144				x ·
49	321,192				X
222	321,671				X
66*	321,899				X
244	322,169				X .
;¹ 171	323,459				X
22	323,485				X
132	326,792	X			
179	329,298	X			
126*	331,292	X	-		
52	332,426		x		•
187	332,434				X

Table A20. (Con't.)

	•	Cause of Failure				<u> </u>
Relay No.	Cycles to Failure	Miss	Weld or Bridge	Arc to Case	Contact	Resistance
52	. 332,436		X		· 	
90	332,548			•	x	
103	335,392	X	•			
X	335,579				X -	
41	338,602				X	
214	350,636				x	
20	355,557				X	
	(Failures for the first time)	6	3	- i	_3:	8

^{*}Relay previously failed and turned over to use new set of contacts failed again.

APPENDIX B
RAG-HMS RESULTS

Table B1 . RAG and HMS Leak Rates for Full Size Relays

Relay No.	Flow	$Q_s^R(atm.cc/sec)$ (RAG)	Q ^{MS} (atm.cc/sec)	$R=Q_{s}^{R}/Q_{s}^{MS}\pm\sigma$
		(IAG)	Times 9	
1	M	$(8.36 \pm 0.21) \times 10-7$	3.80 x 10-6	.220 <u>+</u> .103
2 .	M	$(3.60 \pm 0.29) \times 10-8$	7.80 x 10-8	$.462 \pm .129$
. 4.			4.10 x 10-8	• 402 • 422
· 7	M	$(2.39 \pm 0.11) \times 10-7$	$8.50 \times 10-7$	$.282 \pm .110$
8		_	$2.50 \times 10-8$, <u> </u>
9		•	4.20 x 10-7	
11	M	$(4.45 \pm 0.26) \times 10-8$	2.06 x 10-7	.216 <u>+</u> .116
12		- · · · -	5.50 x 10-9	
14	M	$(4.21 \pm 0.26) \times 10 - 8$	1.30 x 10-7	$.324 \pm .118$
15	M	$(9.60 \pm 1.07) \times 10-8$	$9.20 \times 10-7$	$.104 \pm .149$
17			$4.00 \times 10-9$	<u> </u>
18		•	3.00 x 10-8	
· 19		•	1.55 x 10-8	
20	S	$(8.90 \pm 0.34) \times 10-7$	5.60 x 10-6	$.159 \pm .107$
21	P	$(8.19 \pm 0.08) \times 10-7$	9.80 x 10-6	$.084 \pm .101$
22			3.10 x 10-8	
23	P	$(6.69 \pm 0.43) \times 10 - 8$	1.20 x 10-6	.056 <u>+</u> .119
26			6.90 x 10-8	.000 1 .119
2 7	S	$(9.38 \pm 0.34) \times 10-7$	1.06 x 10-5	.088 <u>+</u> .106
29			$7.30 \times 10-9$.000100
31			4.00 x 10-8	
32	M	$(1.12 \pm 0.11) \times 10 - 8$	6.50 x 10-7	$.172 \pm .138$
33			5.50 x 10-9	
34			1.70 x 10-6	
35			1.10 x 10-8	
36			9.50 x 10-9	
37	S	$(3.03 \pm 0.22) \times 10-7$	$2.03 \times 10-6$.149 <u>+</u> .123
38	M	$(6.95 \pm 0.21) \times 10-7$	4.00 x 10-6	$.174 \pm .105$
39	S	$(1.63 \pm .003) \times 10-6$	1.26 x 10-5	$.129 \pm .102$
40			$1.01 \times 10-7$	
41			$1.40 \times 10-7$	
42			1.65 x 10-8	
43	M	$(1.97 \pm 0.03) \times 10-6$	$7.00 \times 10-6$.281 <u>+</u> .102
44		· —	$4.57 \times 10-7$	
46 -	M	$(5.50 \pm 0.21) \times 10-7$	$2.30 \times 10-6$	$.239 \pm .107$
47	P	(1.05 ± 0.01) x10-6	$1.60 \times 10-5$.095 \pm .100
48	M	$(1.42 \pm 0.34) \times 10-8$	$1.70 \times 10-7$	$.083 \pm .262$
50		- ,	5.10 x 10-8	
51			$7.00 \times 10-9$	
53			$5.50 \times 10-7$	
54			$2.70 \times 10-8$	
55			$1.95 \times 10-8$	
56	P	$(1.15 \pm 0.01) \times 10-6$	$1.30 \times 10-5$	$.089 \pm .100$
57			$3.50 \times 10-9$	Con
58			$2.10 \times 10-9$	
60			2.20 x 10-8	

Table Bl . (Con't.)

Relay	Flow.	Q ^R (atm.cc/sec) (RAG)	Qs (atm.cc/sec) (HMS;)	R=QsR/Qss± J
61			1.25 x 10-7	
62	Ρ.	$(3.46 \pm 0.21) \times 10-8$	9.80 x 10-7	$.035 \pm .118$
63	, S		6.00 x 10-6	$.286 \pm .103$
. 64	S	$(2.29 \pm 2.17) \times 10-8$	1.10 x 10-6	$.021 \pm .953$
65			4.00 x 10-9	
66			5.50 x 10-9	
67	•	•	2.65 x 10-8	
68 60	7.	(2.06.1.0.0().10.6	1.45 x 10-8	161 1 707
69	M	$(3.06 \pm 0.04) \times 10^{-6}$	6.60 x 10-6	.464 ± .101
70	M	$(5.80 \pm 0.26) \times 10-8$	1.40 x 10-7	$.414 \pm .110$
71	P	$(1.16 \pm 0.01) \times 10-6$	1.20 x 10-5	$.096 \pm .100$
72 73			1.40 x 10-9	
73 74	s	/0 50 ± 0 3/\-10-7	1.65 x 10-8	156 1 107
74 75	Ď.	$(8.59 \pm 0.34) \times 10-7$	5.50 x 10-6	.156 ± .107
75 76	M	$(5.69 \pm 0.21) \times 10-7$	2.90 x 10-8 1.72 x 10-6	221 1 107
77	. PI	(3.09 ± 0.21) x10-7	2.00 x 10-5	$.331 \pm .107$
79	•		5.60 x 10-5	
80			3,00 x 10-3	
82	S	$(1.67 \pm 0.03) \times 10-6$	1.10 x 10-5	159 1 109
83	_	(1.0) <u>1</u> 0.03) 210-0	2.80 x 10-8	$.152 \pm .102$
85			1.98 x 10-5	
86			6.90 x 10-5	
87			2.00 x 10-5	•
88			4.40 x 10-5	
89	M	$(4.21 \pm 0.21) \times 10-7$	4.40 x 10-6	.096 ± .112
90	M	$(2.80 \pm 0.21) \times 10-7$	3.00 x 10-6	$.093 \pm .126$
91	M	$(6.98 \pm 0.26) \times 10-8$	$2.70 \times 10-7$.258 \pm .107
92		-	$3.20 \times 10-5$	
94	S	$(1.57 \pm 0.22) \times 10-7$	1.01 x 10-6	.155 <u>+</u> .171 ·
95		_ •	$1.10 \times 10-8$	•••
98			$3.50 \times 10-5$	
99			1.00×10^{-9}	
100			$8.00 \times 10-10$	
101		$(2.97 \pm 3.29) \times 10-8$	$1.50 \times 10-7$.198 <u>+</u> 1.11
102	M	$(9.47 \pm 0.46) \times 10-8$	2.50 x 10-7	.379 <u>+</u> .111
103	M	$(1.18 \pm 0.25) \times 10-7$	1.10 x 10-6	$.107 \pm .232$
104			$3.00 \times 10-5$	
105	M	$(1.66 \pm 0.11) \times 10-7$	$8.00 \times 10-7$	$.207 \pm .119$
106			$1.20 \times 10-8$	-
107			1.80 x 10-9	
108	M	$(3.60 \pm 0.21) \times 10-7$	$3.40 \times 10-6$.106 ± .116
110	_		6.20 x 10-8	
111	S	$(3.68 \pm 0.04) \times 10-6$	1.02 x 10-5	.361 <u>+</u> .101
112			9.40 x 10-5	•

Table B1 . (Con't.)

Relay No.	Flow	Q_s^R (atm. cc/sec) (RAG)	Q ^{MS} (atm.cc/sec) (HMS)	R=Q ^R _S /Q ^{MS} ± J
114			•	•
115	P	$(7.73 \pm 0.08) \times 10-7$	9.50×10^{-6}	$.081 \pm .101$
116	P	(1.13 ± 0.01) x10-6	$1.36 \times 10-5$.083 $\frac{-}{1}$.100
117	, ,			-
118	S	(1.39 ± 0.03) x10-6	$8.00 \times 10-6$	$.174 \pm .103$
119		•	Gross	•
120	M	$(7.00 \pm 1.07) \times 10-8$	6.20 x 10-7	$.113 \pm .182$
.121		•	$2.75 \times 10-7$	
122	_	(0.05.)	4.40 x 10-7	
123	P	$(8.96 \pm 0.08) \times 10-7$	$7.80 \times 10-6$	$.115 \pm .100$
124	S	$(1.97 \pm 0.03) \times 10-6$	$1.30 \times 10-5$	$.152 \pm .102$
125	M	$(2.79 \pm 0.21) \times 10-7$	$1.90 \times 10-6$	$.147 \pm .126$
126			6.00 x 10-5	
127. 128			6.20×10^{-6}	
120	M	(2 (2 0 11)-10 7	1.00 x 10-5	
130	M M	$(2.62 \pm 0.11) \times 10^{-7}$	9.00 x 10-7	$.291 \pm .108$
131	S	$(5.00 \pm 0.21) \times 10-7$ $(7.23 \pm 0.34) \times 10-7$	2.40 x 10-6	$.208 \pm .109$
132	M	(7.23 ± 0.34) x10=7 (2.11 ± 0.02)x10-6	8.60 x 10-6 4.50 x 10-6	$.084 \pm .110$
133	M	$(4.32 \pm 0.03) \times 10-6$	1.16 x 10-5	$.468 \pm .101$
134	S	$(1.78 \pm 0.22) \times 10-7$	1.20 x 10-6	$.372 \pm .100$ $.149 \pm .158$
135		(1.26 ± 0.27) x10-8	1.80 x 10-7	.070 ± .236
138	Ü	(1.20 <u>.</u> 0.27)X10-0	3.60 x 10-5	.070 <u>+</u> .230
139			2:00 X TO-1	
140	M	$(7.91 \pm 0.14) \times 10-7$	$3.60 \times 10-6$.220 + .102
141	M	$(1.90 \pm 0.11) \times 10-7$	6.60 x 10-7	.287 + .115
142	M	$(2.64 \pm 0.11) \times 10-7$	$1.00 \times 10-6$.264 + .108
143	S	$(4.72 \pm 0.34) \times 10-7$	5.10 x 10-6	$.093 \pm .123$
144		_ ,	2.00 x 10-5	_
145	M	$(2.10 \pm 0.04) \times 10-6$	$5.80 \times 10-6$	$.361 \pm .102$
146			$7.80 \times 10-8$.
147			$4.05 \times 10-7$	-
148	P	(1.46 ± 0.01) ×10-6	$1.30 \times 10-5$	$.112 \pm .100$
149	M	$(2.23 \pm 0.21) \times 10-7$	$2.00 \times 10-6$	$.112 \pm .138$
150		•	$1.50 \times 10-5$	•
152			2.70 x 10-8	
154		•	$4.45 \times 10-8$	
155			1.20 x 10-9	
156			1.38 x 10-7	
157	c	(F 06 4 0 00) 10 7	3.65 x 10-7	# A #
158 159	S	$(5.06 \pm 0.22) \times 10-7$	2.65 x 10-6	$.191 \pm .109$
162	м	(6 71 ± 0 30)10 9	5.80 x 10-8	(01 1 110
163	M	$(6.71 \pm 0.30) \times 10-8$	1.08 x 10-7	$.621 \pm .110$
164			0.00	,
165			2.30 x 10-7 2.00 x 10-9	
166	Ś	$(3.03 \pm 0.11) \times 10-7$	7.00 x 10-9	/32 1 106
	-	(5.00 - 0.11)X10-7	/•00 X 10=/	.433 <u>+</u> .106

Table Bl . (Con't.)

Relay No.	Flow	Q ^R (atm.cc/sec.). (RAG)	Q ^{MS} (atm.cc/sec) s (HMS)	R=Q _s ^R /Q _s ^{MS} + σ
167 170 172 173	S	$(4.73 \pm 0.22) \times 10-7$	6.00 x 10-8 2.80 x 10-6 1.61 x 10-8 1.70 x 10-9	.169 ± .110
174 175 . 177 178	M	(1.59 ± 0.04)x10-6	6.50 x 10-8 4.70 x 10-7 3.00 x 10-7 5.20 x 10-6	.306 ± .103
181 182	S	$(3.81 \pm 0.22) \times 10-7$	2.50 x 10-6 4.00 x 10-9	.177 ± .115
183 184 185 186	S S	$(1.93 \pm 0.11) \times 10-7$ $(3.09 \pm 0.11) \times 10-7$	8.20 x 10-7 6.20 x 10-7 3.80 x 10-7 7.00 x 10-9	.235 <u>+</u> .115 .498 <u>+</u> .106
187A 187B 188	S M	$(3.37 \pm 0.13) \times 10^{-7}$ $(1.71 \pm 0.03) \times 10^{-7}$	7.50 x 10-7 1.95 x 10-7 6.00 x 10-6	.449 ± .107 .878 + .101
189 191 192 195	S	$(2.11 \pm 0.11) \times 10-7$	7.00 x 10-7 3.20 x 10-8 3.10 x 10-7 5.00 x 10-8	1.05 ± .113
196 197 198	M	$(3.55 \pm 0.21) \times 10-7$	1.16 x 10-6 7.15 x 10-8 5.00 x 10-9	.306 ± .117
199 200 201	P	$(2.54 \pm 0.26) \times 10-8$	8.10 x 10-7 5.00 x 10-7 3.50 x 10-8	.031 ± .142
202 203	M	$(1.77 \pm 0.30) \times 10-7$	1.40 x 10-6 1.00 x 10-7	.126 ± .197
204 205	M S	(6.82 ± 0.28)x10-8	1.60 x 10-7 3.20 x 10-8	.426 ± .108
207 208 209 210 211	M S	$(2.13 \pm 0.11) \times 10-7$ $(6.98 \pm 0.21) \times 10-7$ $(1.46 \pm 0.03) \times 10-6$	7.20 x 10-7 1.85 x 10-6 5.20 x 10-6 2.15 x 10-6 8.00 x 10-8	$.296 \pm .112$ $.377 \pm .105$ $.281 \pm .103$
214 215 216 217	s	(6.65 ± 1.09)x10-8	2.90 x 10-6 8.00 x 10-7 3.30 x 10-7 2.96 x 10-7	.083 <u>+</u> .192
218 221 222	S	(2.12 ± 0.11)×10-7	4.50 x 10-7 7.00 x 10-7 2.50 x 10-6	.303 ± .112
223 224	S S	$(1.00 \pm 0.03) \times 10-6$ $(4.13 \pm 0.34) \times 10-7$	5.20 × 10-6 4.60 × 10-6 3.40 × 10-7	$.193 \pm .106$ $.090 \pm .129$
225 226	M	$(4.62 \pm 0.21) \times 10-7$	1.38 x 10-6	.335 ± .110

Table B1 . (Con't.)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Relay No.	Flow	$egin{array}{l} Q_{f S}^{f R}({\sf Atm.cc/sec}) \ ({ m RAG}) \end{array}$	Q ^{MS} (atm.cc/sec) (HMS)	$R=Q_s^R/Q_s^{MS}\pm\sigma$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	227		,	3 05 ₩ 10-8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		М	$(8.99 \pm 0.46) \times 10 = 8$		333 + 110
231 M $(7.24 \pm 0.46) \times 10-8$ 2.40 x 10-7 4.00 x 10-9 2.80 x 10-7 3.60 x 10-8 2.80 x 10-8 2.80 x 10-7 3.60 x 10-8 2.80 x 10-7 1.56 x 10-6 1.340 \pm .101 237 6.10 x 10-7 6.10 x 10-7 2.45 x 10-7 1.340 \pm .101 237 6.80 x 10-8 6.80 x 10-7 6.10 x 10-7 238 S $(8.76 \pm 1.09) \times 10-8$ 6.80 x 10-7 1.29 \pm .159 241 S $(2.15 \pm 0.22) \times 10-7$ 1.14 x 10-6 1.88 \pm .142 6.70 x 10-8 6.70 x 1			(0.55 _ 0.40),120.0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		M	$(7.24 + 0.46) \times 10 - 8$		•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		M	$(6.32 + 0.21) \times 10-7$.405 ± .106
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Miles		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		S	$(8.76 + 1.09) \times 10 - 8$.129 + .159
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	239		* * * * * * * * * * * * * * * * * * *		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	241	S	$(2.15 + 0.22) \times 10-7$.188 + .142
244 M (1.15 \pm 0.05)x10-7	243		***************************************		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	244	M	$(1.15 + 0.05) \times 10-7$.461 + .108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	245		· ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	247				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	248				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	249				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	250				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	251				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	252	S	$(3.16 \pm 0.35) \times 10-8$.293 + .149
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	253				
257 258 M $(7.69 \pm 0.26) \times 10-8$ 1.80 x 10-7 0.00 260 M $(1.86 \pm 0.11) \times 10-7$ 6.30 x 10-7 5.20 x 10-8 262 M $(4.66 \pm 0.28) \times 10-8$ 263 0.00 264 M $(5.01 \pm 0.26) \times 10-8$ 1.30 x 10-7 0.00 265 M $(3.01 \pm 0.26) \times 10-8$ 1.30 x 10-7 0.00 266 M $(3.01 \pm 0.21) \times 10-7$ 1.00 x 10-6 0.301 \pm .123 267 M $(3.87 \pm 0.34) \times 10-8$ 1.28 x 10-7 0.221 \pm .134 268 M $(4.55 \pm 0.29) \times 10-8$ 1.28 x 10-7 0.221 \pm .134 269 M $(1.36 \pm 0.05) \times 10-7$ 2.22 x 10-7 0.00 4.50 x 10-8 271 4.90 x 10-7 272 0.00 3.30 x 10-7 274 M $(5.60 \pm 0.26) \times 10-8$ 1.45 x 10-7 0.386 \pm .111 275 M $(7.50 \pm 0.26) \times 10-8$ 1.98 x 10-7 0.379 \pm .106 276 M $(1.03 \pm 0.05) \times 10-7$ 2.70 x 10-7 0.380 \pm .111	255			0.00	
257 258 M $(7.69 \pm 0.26) \times 10-8$ 1.50 x 10-8 259 260 M $(1.86 \pm 0.11) \times 10-7$ 261 262 M $(4.66 \pm 0.28) \times 10-8$ 263 264 M $(5.01 \pm 0.26) \times 10-8$ 265 266 M $(3.01 \pm 0.21) \times 10-7$ 267 268 M $(4.55 \pm 0.29) \times 10-8$ 268 M $(4.55 \pm 0.29) \times 10-8$ 269 M $(1.36 \pm 0.05) \times 10-7$ 270 271 272 273 274 M $(5.60 \pm 0.26) \times 10-8$ 275 M $(4.50 \pm 0.26) \times 10-8$ 276 M $(5.60 \pm 0.26) \times 10-8$ 277 278 279 270 270 271 272 273 274 371 275 377 379 ± 106 276 379 ± 110	256	M	$(2.18 \pm 0.11) \times 10-7$	$6.80 \times 10-7$.320 + .111
259 0.00 0.00 295 ± .115 261 5.20 x 10-8 202 x 10-7 2031 ± .117 263 0.00 204 204 205 205 205 205 205 205 205 205 205 205	257			$1.50 \times 10-8$	-
259 260 M (1.86 \pm 0.11)x10-7 6.30 x 10-7 .295 \pm .115 261 5.20 x 10-8 262 M (4.66 \pm 0.28)x10-8 2.02 x 10-7 .231 \pm .117 263 0.00 264 M (5.01 \pm 0.26)x10-8 1.30 x 10-7 .386 \pm .113 265 0.00 266 M (3.01 \pm 0.21)x10-7 1.00 x 10-6 .301 \pm .123 267 M (3.87 \pm 0.34)x10-8 1.75 x 10-7 .221 \pm .134 268 M (4.55 \pm 0.29)x10-8 1.28 x 10-7 .355 \pm .119 269 M (1.36 \pm 0.05)x10-7 2.22 x 10-7 .610 \pm .106 270 4.50 x 10-8 271 4.90 x 10-7 272 0.00 273 3.30 x 10-7 274 M (5.60 \pm 0.26)x10-8 1.45 x 10-7 .386 \pm .111 275 M (7.50 \pm 0.26)x10-8 1.98 x 10-7 .379 \pm .106 276 M (1.03 \pm 0.05)x10-7 2.70 x 10-7 .380 \pm .110	258	M	$(7.69 \pm 0.26) \times 10-8$	$1.80 \times 10-7$.427 + .106
261	259			0.00	-
261	260	M	$(1.86 \pm 0.11) \times 10-7$	$6.30 \times 10-7$	$.295 \pm .115$
263				5.20 x 10-8	· -
263 264 M (5.01 \pm 0.26)×10-8 1.30 x 10-7 .386 \pm .113 265 0.00 266 M (3.01 \pm 0.21)×10-7 1.00 x 10-6 .301 \pm .123 267 M (3.87 \pm 0.34)×10-8 1.75 x 10-7 .221 \pm .134 268 M (4.55 \pm 0.29)×10-8 1.28 x 10-7 .355 \pm .119 269 M (1.36 \pm 0.05)×10-7 2.22 x 10-7 .610 \pm .106 270 4.50 x 10-8 271 4.90 x 10-7 272 0.00 273 3.30 x 10-7 274 M (5.60 \pm 0.26)×10-8 1.45 x 10-7 .386 \pm .111 275 M (7.50 \pm 0.26)×10-8 1.98 x 10-7 .379 \pm .106 276 M (1.03 \pm 0.05)×10-7 2.70 x 10-7 .380 \pm .110	262	M	$(4.66 \pm 0.28) \times 10-8$	$2.02 \times 10-7$	$.231 \pm .117$
265	263			0.00	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		M	$(5.01 \pm 0.26) \times 10-8$.386 <u>+</u> .113
267 M (3.87 \pm 0.34)×10-8 1.75 x 10-7 .221 \pm .134 268 M (4.55 \pm 0.29)×10-8 1.28 x 10-7 .355 \pm .119 269 M (1.36 \pm 0.05)×10-7 2.22 x 10-7 .610 \pm .106 270 4.50 x 10-8 271 4.90 x 10-7 272 0.00 273 3.30 x 10-7 274 M (5.60 \pm 0.26)×10-8 1.45 x 10-7 .386 \pm .111 275 M (7.50 \pm 0.26)×10-8 1.98 x 10-7 .379 \pm .106 276 M (1.03 \pm 0.05)×10-7 2.70 x 10-7 .380 \pm .110					
268 M $(4.55 \pm 0.29) \times 10-8$ 1.28 x 10-7 .355 \pm .119 .269 M $(1.36 \pm 0.05) \times 10-7$ 2.22 x 10-7 .610 \pm .106 .270 4.50 x 10-8 .271 4.90 x 10-7 .272 0.00 .273 3.30 x 10-7 .274 M $(5.60 \pm 0.26) \times 10-8$ 1.45 x 10-7 .386 \pm .111 .275 M $(7.50 \pm 0.26) \times 10-8$ 1.98 x 10-7 .379 \pm .106 .276 M $(1.03 \pm 0.05) \times 10-7$ 2.70 x 10-7 .380 \pm .110					
269 M $(1.36 \pm 0.05) \times 10-7$ $2.22 \times 10-7$ $610 \pm .106$ 270 $4.50 \times 10-8$ 271 $4.90 \times 10-7$ 272 0.00 273 $3.30 \times 10-7$ 274 M $(5.60 \pm 0.26) \times 10-8$ $1.45 \times 10-7$ $.386 \pm .111$ 275 M $(7.50 \pm 0.26) \times 10-8$ $1.98 \times 10-7$ $.379 \pm .106$ 276 M $(1.03 \pm 0.05) \times 10-7$ $2.70 \times 10-7$ $.380 \pm .110$			$(3.87 \pm 0.34) \times 10 - 8$	$1.75 \times 10-7$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$(4.55 \pm 0.29) \times 10 - 8$	$1.28 \times 10-7$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		M	$(1.36 \pm 0.05) \times 10-7$.610 <u>+</u> .106
272 0.00 273 3.30 x 10-7 274 M (5.60 \pm 0.26)x10-8 1.45 x 10-7 .386 \pm .111 275 M (7.50 \pm 0.26)x10-8 1.98 x 10-7 .379 \pm .106 276 M (1.03 \pm 0.05)x10-7 2.70 x 10-7 .380 \pm .110					
273 3.30 x 10-7 274 M (5.60 ± 0.26) x10-8 1.45 x 10-7 $.386 \pm .111$ 275 M (7.50 ± 0.26) x10-8 1.98 x 10-7 $.379 \pm .106$ 276 M (1.03 ± 0.05) x10-7 2.70 x 10-7 $.380 \pm .110$					
274 M (5.60 \pm 0.26)x10-8 1.45 x 10-7 .386 \pm .111 275 M (7.50 \pm 0.26)x10-8 1.98 x 10-7 .379 \pm .106 276 M (1.03 \pm 0.05)x10-7 2.70 x 10-7 .380 \pm .110					
275 M (7.50 \pm 0.26)×10-8 1.98 × 10-7 .379 \pm .106 276 M (1.03 \pm 0.05)×10-7 2.70 × 10-7 .380 \pm .110					
276 M $(1.03 \pm 0.05) \times 10^{-7}$ 2.70 x 10-7 .380 \pm .110					
$S = (3.42 \pm 0.14) \times 10-7 = 6.60 \times 10-7 = .518 \pm .108$					
	2//	ន	$(3.42 \pm 0.14) \times 10-7$	$6.60 \times 10-7$	$.518 \pm .108$

Table B1 . (Con't.)

Relay No.	Flow	Q _s (Atm.cc/sec) (RAG)	Q _s (atm.cc/sec)	R=Q _s ^R /Q _s ^{MS} ± σ
278 279 280 281 282 283 284 285 286 287 288	М	(2.62 <u>+</u> 0.12)x10-7	3.50 x 10-7 1.44 x 10-8 0.00 5.00 x 10-7 1.45 x 10-6 5.20 x 10-8 3.10 x 10-8 2.75 x 10-6 6.00 x 10-8 1.80 x 10-8 6.40 x 10-8	.180 <u>+</u> .109
289 290 291 294	М .	$(7.37 \pm 1.23) \times 10-8$	0.00 6.50 x 10-7 3.00 x 10-7 4.30 x 10-8	.113 ± .195
295	M	(1.63 ± 0.34) x10-8	$1.25 \times 10-7$.130 <u>+</u> .233

LEGEND; P = Poiseuille S = Slip M = Molecular

 $10 - 7 = 10^{-7}$ (etc.)

Table B2. RAG and HMS Leak Rates for Half-Size Relays

			340	
Relay	Flow	$Q_{s}^{ extsf{R}}(ext{atm.cc/sec})$	MS	$R=Q_s^R/Q_s^{MS}+\sigma$
No.	I TOW	-	Q _s (atm.cc/sec)	$R=Q_S/Q_S + Q$
		(RAG)	(HMS)	
1	S	$(2.59 \pm 0.42) \times 10-7$	7.64 x 10-7	.339 + .189
3	M	$(7.54 \pm 3.86) \times 10^{-9}$	5.00 x 10-8	.151 + .522
4		(7.54 <u>1</u> 5.667x10-9	1.43 x 10-9	• 131 in • 322
5	S	(1.42 ± 1.58) x10-8	2.09 x 10-7	.068 + 1.12
6	M	$(6.23 + 0.18) \times 10-7$	$1.51 \times 10-6$	$.413 \pm .104$
7	M	$(7.60 \pm 2.01) \times 10^{-8}$	2.24 x 10-7	· .339 ± .283
8	S	$(7.48 \pm 0.42) \times 10-7$	$3.10 \times 10-6$	$.241 \pm .114$
9	S,	$(1.09 \pm 0.16) \times 10-7$	1.16 x 10-6	.094 + .176
12	-,	(200) _ 0.20/120 /	9.00 x 10-6	·054 <u>·</u> ·170
13	M	$(3.85 \pm 0.49) \times 10-7$	4.74 x 10-6	.812 <u>+</u> .159
14		(0.00 _ 0.45)/210 /	$3.20 \times 10-7$.042 1 .133
15	S	$(7.98 \pm 1.58) \times 10-8$	7.50 x 10-7	.106 <u>+</u> .221
16		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.82 x 10-9	.100221
18	M	$(1.82 \pm 0.04) \times 10-6$	6.00 - 10-6	.303 \pm .102
19		(2102 <u>7</u> 0104)/1120 0	2.04.x 10-7	.505 1 .102
20	S	$(9.89 + 0.42) \times 10-7$	4.14 x 10-6	.239 + .109
21	P	$(6.37 \pm 0.93) \times 10-8$	6.10 x 10-6	$.010 \pm .177$
22		(313) _ 3133/1110 0	5.82 x 10-9	.010117
23			2.91 x 10-9	
24	S	$(7.33 \pm 0.45) \times 10-7$	4.50 x 10-6	.163 ± .118
26			3.35 x 10-7	. 100 - 1110
27			1.10 x 10-6	
29			6.00 x 10-7	
30	P	$(7.63 \pm 1.55) \times 10-9$	1.13 x 10-7	.068 <u>+</u> .227
31			1.05 x 10-7	
32	M	$(5.26 \pm 0.15) \times 10-7$	1.48 x 10-6	.355 <u>+</u> .104
33			1.63 x 10-8	1201
34	S	$(2.03 \pm 0.16) \times 10-7$	$6.12 \times 10-7$.332 + .127
35	M	$(1.04 \pm 0.15) \times 10-7$	2.78 x 10-7	$.373 \pm .179$
36	P	$(4.44 \pm 0.31) \times 10-8$	$3.40 \times 10-7$	$.131 \pm .122$
37	S	$(3.94 \pm 0.83) \times 10-8$	1.28 x 10-7	.308 + .232
38	M	$(4.88 \pm 0.15) \times 10-7$	$6.55 \times 10-7$	$.745 \pm .105$
40	M	$(1.58 \pm 0.15) \times 10-7$	$5.50 \times 10-7$.287 + .140
41			1.68 x 10-7	<u> </u>
42	P	$(1.42 \pm 0.37) \times 10 - 8$	4.00 x 10-7	.035 ± .280
43			$2.14 \times 10-6$	
44			$1.15 \times 10-7$	
45	M	$(1.26 \pm 0.15) \times 10-7$	$3.42 \times 10-7$	$.369 \pm .158$
46			4.95 x 10-8	
49	P	$(3.01 + 1.55) \times 10 - 9$	1.16 x 10-7	$.026 \pm .526$
50	S	$(2.57 \pm 0.03) \times 10-8$	2.04 x 10-7	$.126 \pm .337$
51	S	$(9.14 \pm 0.42) \times 10-7$	3.00 x 10-6	$.305 \pm .110$
52			2.04 x 10-7	
53	S	$(1.29 \pm 0.04) \times 10-6$	3.00 x 10-6	.429 + .105
56	S	$(1.27 \pm 0.08) \times 10-7$	$1.79 \times 10-7$	$.985 \pm .119$

Table B2. (Con't.)

Relay No.	Flow.	QR(atm.cc/sec) (RAG)	Qs (atm.cc/sec) (HMS)	$R=Q_S^R/Q_S^{MS}\pm \sigma$
58				
59 60	S	$(9.77 \pm 1.82) \times 10-8$	2.85 x 10-7 2.40 x 10-8	.343 <u>+</u> .212
61	М	(2.48 ± 0.18) x10-7	1.68 x 10-7	.148 ± .123
62 64	М	(5.47 ± 3.86) x10-9		.137 <u>+</u> .713
66	•	·	2.11 x 10-9	
67, .	S	$(9.83 \pm 1.94) \times 10-8$		$.246 \pm .221$
68			1.96 x 10-5	•
69 ·			7.50 x 10-6	
71			1.00 x 10-9	
7 3			9.25 x 10-9	
74 75			7.97 x 10-8	
75 76			1.38 x 10-8	
76			4.17 x 10-8	
77 70			2.80 x 10-8 3.05 x 10-9	
78 70			2.09 x 10-8	
79 80			1.00×10^{-8}	
81			2.80 x 10-7	
82	M	$(1.11 + 0.39) \times 10-8$,	.217 ± .363
83	S	$(6.81 \pm 0.16) \times 10^{-7}$	1.75 x 10-6	$.389 \pm .103$
84		(0.02 - 0.20)	4.65 x 10-9	.505205
85	S	$(1.53 \pm 0.16) \times 10-7$	4.70 x 10-7	.324 <u>+</u> .144
87		(219,5 - 4120)1120 ;	2.20 x 10-9	
88			1.16 x 10-8	
89			1.85 x 10-9	
90		•	5.80 x 10-9	
92		•	3.10 x 10-9	
93	P	$(1.33 \pm 0.16) \times 10 - 8$	$1.40 \times 10-7$.095 <u>+</u> .154
95		-	$1.85 \times 10-8$	·
96	M	$(1.83 \pm 0.18) \times 10-7$	$2.78 \times 10-7$.659 <u>+</u> .140 ·
97			4.42 x 10-8	_
98	P	$(1.25 \pm 0.16) \times 10-8$	2.00 x 10-7	.063 <u>+</u> .159
.01	P	$(6.54 \pm 0.93) \times 10-9$		$.127 \pm .173$
.02			5.34 x 10-9	
.03	M	$(5.66 \pm 3.86) \times 10-9$		$.113 \pm .690$
.04	M	$(3.63 \pm 0.11) \times 10-8$		$.403 \pm .317$
.07			1.28 x 10-8	
.08			2.09 x 10-8	
.09			6.62 x 10-7	
.10			2.24 x 10-8	
.12	M	(5 10 1 7 70\ 10 0	3.50 x 10-9	0/1 + 1 51
.13 .14	M. S	$(5.10 \pm 7.72) \times 10-9$.041 ± 1.51
15	U	$(2.48 \pm 3.94) \times 10-9$.060 <u>+</u> 1.59
.15 16	S	/1 62 ± 5 12\10 0	4.60 x 10-9	027 t 2 1/
TO	ט	$(1.63 \pm 5.13) \times 10-9$	4.41 X 10-8	-037 ± 3.14

Table B2 . (Con't.)

Relay No.	Flow	Q ^R (atm.cc/sec) (RAG)	Q ^{MS} (Atm.cc/sec) (HMS)	R=Q ^R _s /Q ^{MS} _s ± T
117 118	S	$(8.77 \pm 1.58) \times 10-8$	2.32 x 10-7 1.40 x 10-8	.378 <u>+</u> .206
119 120	S	(1.93 ± 7.87)×10-9	9.30 x 10-9 9.30 x 10-8	.021 ± 4.08
121	D	(1.95 <u>1</u> 7.07/A10-9	1.60 x 10-8	.021 . 4.00
123		Se. /	2.55 x 10-8	
124	2		4.20 x 10-8	•
125			2.90 x 10-8	
126	M	$(2.92 \pm 0.39) \times 10-8$.393 ± .166
127	M	(1.25 ± 0.50) x10-8	$6.73 \times 10-8$	$.086 \pm .414$
128			9.28 x 10-8	
130		(1 00) 0 01 10 0	8.13 x 10-8	010 1 /01
131	M	$(1.93 \pm 0.81) \times 10-8$		$.213 \pm .431$
132			5.00 x 10-9	
133 134	c	$(1.47 + 0.83) \times 10-8$	4.64 x 10-8	.142 + .570
135	S P	(8.07 ± 0.85) x10-8		$.077 \pm .217$
136	M	$(3.06 \pm 0.95) \times 10-8$	1.16 x 10-7	$.263 \pm .327$
137	11	(3.00 - 0.737210 0	1.40 x 10-8	. 200
138	М	$(2.59 \pm 0.81) \times 10-8$.223 <u>+</u> .329
141		_	$2.60 \times 10-8$	
142	M	$(5.28 \pm 3.86) \times 10-9$	$4.20 \times 10-8$	$.126 \pm .738$
143		<u></u>	4.30 x 10-8	
144			5.80 x 10-9	
145			8.50 x 10-8	
146	_		2.10 x 10-7	007 1 104
147	P	$(9.92 \pm 1.55) \times 10-9$		$.087 \pm .186$
149			2.32 x 10-9	
150	c	(3 00 ± 0 70) -10 8	2.90 x 10-8 1.90 x 10-7	158 + 281
151 152	S	$(3.00 \pm 0.79) \times 10-8$	7.00 x 10-8	.158 \pm .281
154	S	(8.21 ± 1.58) x10-8		$.384 \pm .216$
157	M	$(2.98 \pm 0.39) \times 10^{-3}$		$.320 \pm .164$
158	1.7	(-1) _ 1133,	1.16 x 10-8	-
159			$4.90 \times 10-8$	
160			5.60 x 10-8	
161			$7.00 \times 10-6$	
162			$1.70 \times 10-6$	
163	P	(8.68 ± 1.55) x10-9		$.053 \pm .205$
164	M	$(5.82 \pm 0.41) \times 10-7$		$.194 \pm .122$
165			6.96 x 10-9	
166	16	(1 70 0 70) 10 7	3.50 x 10-9	101 ± 111
169	M	$(1.79 \pm 0.18) \times 10-7$.484 ± .141
170	M	$(8.91 \pm 3.86) \times 10-9$	7.66 x 10-8 3.48 x 10-8	$.116 \pm .445$
171 175			3.70 x 10-5	
176			-3.89 x 10-6	
-,0				

· Table B2 . (Con t.)

Relay	Flow	Q_s^R (atm.cc/sec) (RAG)	Qs (Atm.cc/sec) (HMS)	$R=Q_s^R/Q_s^{MS}\pm G$
177 178	S	$(5.70 \pm 0.04) \times 10^{-7}$	8.12 x 10-8 2.55 x 10-8	7.02 ± .100
179 - 182 183	M	$(1.30 \pm 0.18) \times 10-7$	$2.60 \times 10-5$.320 ± .170
184 186 187	s	$(9.13 \pm 0.22) \times 10-7$	6.50 x 10-8 1.42 x 10-6 5.80 x 10-9	.643 <u>+</u> .103
188 189	M	(1.44 ± 0.04) x10-6		.497 ± .104
190 192 193 194 195 196	S	(2.80 <u>+</u> 7.87)×10-9	2.32 x 10-9 2.10 x 10-8 1.87 x 10-6 1.70 x 10-7 9.00 x 10-5	.016 ± 2.82
197 198 200 201			2.32 x 10-9 1.39 x 10-8	
202 - 203 204 205 206 207 208	S	(1.76 ± 0.16)×10-7	7.40 x 10-6 1.62 x 10-8 3.25 x 10-7 3.48 x 10-8 3.25 x 10-9 3.94 x 10-8 9.30 x 10-9	.541 <u>+</u> .134
209 210 -211	S	(4.18 ± 0.22)x10-7	1.20 x 10-5 1.86 x 10-6 5.80 x 10-9	.225 <u>+</u> .113
214 215 216 217	₽.	(1.16 ± 0.05)×10-7	5.00 x 10-9 1.70 x 10-6 2.50 x 10-10 1.70 x 10-8	.068 ± .109 \
219 221 222 223 224	M	(1.48 <u>+</u> 0.50)×10-8	4.51 x 10-6 9.80 x 10-5 5.05 x 10-8 6.00 x 10-9	.294 ± .353
227 232 233 234			1.02 x 10-5 3.50 x 10-7 2.88 x 10-8 9.40 x 10-5	
235 23 7	M	$(2.38 \pm 0.15) \times 10-7$	6.00 x 10-7 2.40 x 10-5	.396 <u>+</u> .119
240 241 242	S	. (2.15 ± 0.17)x10-7	1.32 x 10-6 7.00 x 10-7 1.95 x 10-6	.307 ± .128
	•	88		,

Table B2 . (Con't.)

Relay No.	· Flow	Q ^R (atm.cc/sec) (RAG)	Q ^{MS} (Atm.cc/sec) (HMS)	R=Q_S^R/Q_S^MS+
243 246 247	S	$(4.06 \pm 0.16) \times 10-7$	1.19 x 10-6 1.90 x 10-6	.341 ± .107
247 248			2.26 x 10-5	
249			5.50 x:10-9	
250			5.40 x 10-5	
252			6.00 x 10-10	
254			1.75 x 10-9 2.20 x 10-5	
260			2.20 x 10-5	
261			,	
263				
266				
270				
271	S	(7.83 <u>+</u> 0.49)x10-7	1.00 x 10-6	.783 ± .118
272		(, tot <u>=</u> 0,113),m20 ,	1.20 x 10-5	.705 T .IIO
273	S	$(8.60 \pm 1.58) \times 10-8$	2.10 x 10-7	$.410 \pm .209$
274	M	$(2.61 \pm 0.39) \times 10 - 8$	6.00 x 10-8	$.410 \pm .209$ $.429 \pm .179$
276	М	$(1.94 \pm 0.04) \times 10-6$	5.90 x 10-6	.427179
277			1.00 x 10-5	.329 <u>+</u> .102
278	M	$(1.57 \pm 0.04) \times 10-6$	6.10 x 10-6	· · · · · · · · · · · · · · · · · · ·
279			$1.10 \times 10-8$	$.257 \pm .103$
280			$1.90 \times 10-8$	123 1200
281			3.80 x 10-7	
283	S	$(4.48 \pm 0.42) \times 10-7$.249 <u>+</u> .137
284	M	$(2.95 \pm 0.41) \times 10-7$	1.30 x 10-6	$.227 \pm .170$
285	M	$(5.08 \pm 0.41) \times 10-7$	$3.00 \times 10-6$	$.170 \pm .128$
286	S	$(6.67 \pm 0.42) \times 10-7$	2.96 x 10-6	.225 \pm .118
287	M	$(1.27 \pm 0.04) \times 10-6$	4.74 x 10~6	.269 \pm .105
288			$8.00 \times 10-8$	_
289			$6.50 \times 10-9$	•
290		$(2.45 \pm 0.41) \times 10-7$	$1.70 \times 10-6$.204 <u>+</u> .193
291	M		$1.20 \times 10-6$	
292			$2.45 \times 10-7$	
293	M	$(7.70 \pm 2.01) \times 10-8$	8.00 x 10-7	.096 ± .270
294		49 49 4 5 5 5 5 5 5 5 5 5 5		
295	M	$(1.47 \pm 0.18) \times 10-7$.683 <u>+</u> .157
296	M	$(2.52 \pm 0.41) \times 10-7$		$.230 \pm .190$
297			$3.70 \times 10-6$	
298		(6.00) 0 (0) 10	$3.20 \times 10-7$	
299	S	$(6.30 \pm 0.42) \times 10-7$.263 <u>+</u> .120
300	M	$(2.11 \pm 0.18) \times 10-7$		$.516 \pm .131$
301 302			2.00 x 10-9	
			8.20 x 10-6	
305 306	እተ	(1 62 + 0 /1) 10 7	1.20 x 10-5	
307	M	$(1.62 \pm 0.41) \times 10-7$.101 <u>+</u> .269
307 308	c	(1.94 0.04) 10.5	1.40 x 10-8	0.6
310	S	(1.24 ± 0.04) x10-6		.346 ± .105
2TA	M	(1.51 ± 0.04) x10-6	4.0U X 1U-6	.329 \pm .104

Table B2 . (Con't.)

Relay No.	Flow	Q _s (atm.cc/sec) (RAG)	QM(Atm.cc/sec) (HMS)	$R=Q_s^R/Q_s^{MS}\pm \sigma^{-1}$
311			2.80 x 10-6	
313		•	6.00 x 10-9	•
314	S	$(1.35 \pm 0.42) \times 10-7$	$1.00 \times 10-6$	$.135 \pm .324$
316			$3.20 \times 10-6$	-
31.7			$1.00 \times 10-5$	
318			$8.00 \times 10-9$	
319	M	$(1.79 \pm 0.18) \times 10-7$	4.10 x 10-7	.431 <u>+</u> .141

Legend: P = Poiseuille
S = Slip
M = Molecular

10 - 7 = 10⁻⁷ (etc.,)

Fig.B1 Example of Relay Exhibiting Molecular Flow

Fig.B2. Example of Relay Exhibiting Slip Flow

Fig.B3. Example of Relay Exhibiting Poiseuille Flow

APPENDIX C

FORM 1027-11-64 5M

Mississippi State Chemical Laboratory

State College, Mississippi

M. P. ETHEREDGE STATE CHEMIST

Analysis No. 381,808-809

Analysis of CONTACT WIRES

Marked:

Received on 6/2/67

from

Dr. J. I. Paulk

Nuclear Engineering Dept.

Address

State College, Mississippi Drawer NE

RESULTS:

Dear Professor Paulk:

Bill Patterson finds that the wires definitely contain iron and nickel. Apparently, these are plated with gold.

Sincerely yours,

5 ---

State Chemist

APPENDIX D

RAG-HMS CORRELATION

Table D1. RAG-HMS Correlation Using Experimentally Determined Correlation Factors, Full Size Relays

Relay No.	Flow	Q _S (atm cc/sec)	$Q_s^{MS} \times \overline{R}$ (atm. cc/sec)
1	M	8.36 x 10-7	11:90 x 10-7
2	M	3.60×10^{-8}	2.44 x 10-8
7	M	2.39 x 10-7	2.66 x 10-7
11	M	4.45 x 10-8	6.45 x 10-8
14	M	4.21 x 10-8	4.06 x 10-8
15	M	$9.60 \times 10-8$	2.88 x 10-7
32	M	1.12 x 10-8	2.03 x 10-7
38	M	6.95 x 10-7	1.25 x 10-6
43	M	1.97 x 10-6	2.19 x 10-6
46	M	$5.50 \times 10-7$	7.21 x 10-7
48	M.	1.42 x 10-8	5.23 x 10-8
69	M	3.06 x 10-6	2.07 x 10-6
70	M	5.80 x 10-8	4.38 x 10-8
76	M	5.69 x 10-7	5.38 x 10-7
89	M.	4.21 x 10-7	1.38 x 10-6
90	M	$2.80 \times 10-7$	9.39 x 10-7
91	M.	6.98 x 10-8	$8.45 \times 10-8$
102	. M	$9.47 \times 10-8$	7.82 x 10-8
103	M	1.18 x 10-7	3.44 x 10-7
105	M	$1.66 \times 10-7$	$2.51 \times 10-7$
108	M	$3.60 \times 10-7$	1.065 x 10-6
120	M	$7.00 \times 10-8$	1.94 x 10-7
1 25	M	$2.79 \times 10-7$	$5.95 \times 10-7$
129	M	$2.62 \times 10-7$	$2.72 \times 10-7$
130	M	$5.00 \times 10-7$	$7.52 \times 10-7$
132	M	2.11 x 10-6	$1.41 \times 10-6$
133	M	.4.32 x 10-6	$3.63 \times 10-6$
140	M	$7.91 \times 10-7$	$1.13 \times 10-6$
141	M	1.90 x 10-7	2.07 x 10-7
142	M	$2.64 \times 10-7$	$3.13 \times 10-7$
145	M	$2.10 \times 10-6$	$1.82 \times 10-6$
149	M	$2.23 \times 10-7$	6.26 x 10-7
162	M	$6.71 \times 10-8$	3.38 x 10-8
178	M	$1.59 \times 10-6$	1.63 x 10-6
187B	M	$1.71 \times 10-7$	$6.10 \times 10-8$
196	M	3.55 x 10-7	3.63 x 10-7
202	M	$1.77 \times 10-7$	4.38 x 10-7
204	M	$6.82 \times 10-8$	5.00 x 10-8
208	M	6.98 x 10-7	5.79 x 10-7
226	M	4.62 x 10-7	4.31 x 10-7
229	M	8.99 x 10-8	8.44 x 10-8
231 235	M M	7.24 x 10-8	7.50 x 10-8
235	M M	6.32 x 10-7	4.88 x 10-7
236 24 4	М м	3.28 x 10-7	7.66 x 10~8
24 4 256	М м	1.15 x 10-7	7.82 x 10-8
258	M M	2.18 x 10-7	2.13 x 10-7
260		7.69 x 10-8 1.86 x 10-7	5.64 x 10-8
262	M M		1.98 x 10-7
202	M	$4.66 \times 10-8$	$6.32 \times 10-8$

Table D1. (Con't.)

Relay No.	Flow	QS(atm cc/sec)	Q _S x R (atm. cc/sec)
264	М	5.01 x 10-8	4.07 x 10-8
266	M	3.01 x 10-7	3.13 x 10-7
267	M	3.87 x 10-8	5.48 x 10-8
268	M	4.55 x 10-8	4.00 x 10-8
269	M	1.36 x 10-7	
			6.95 x 10-8
274	M	5.60 x·10-8	4.54 x 10-8
275	M	$7.50 \times 10-8$	6.20 x 10-8
276	M	1.03 x 10-7	8.45 x 10-8
282	M	2.62 x 10-7	4.54 x 10-7
290	M	7.37 x 10-8	2.03 x 10-7
295	M	1.63 x 10~8	3.92 x 10-8
20	S	8.90 x 10-7	1.31 x 10-6
27	S	9.38 x 10-7	2.48 x 10-6
37	S	$3.03 \times 10-7$	4.75 x 10-7
63	S	1.63 x 10-6	$2.95 \times 10-6$
64	S	$2.29 \times 10-8$	$2.57 \times 10-7$
74	S	8.59 x 10-7	1.28 x 10-6
82	S	1.67 x 10-6	2.57 x 10-6
94	`S	$1.57 \times 10-7$	2.36 x 10-7
111	S	3.68 x 10-6	2.39 x 10-6
118	S	$1.39 \times 10-6$	1.87 x 10-6
124	S	1.97 x 10-6	3.04 x 10-6
131	S	7.23 x 10-7	2.01 x 10-6
134	S	1.78 x 10-7	2.81 x 10-7
135	S	1.26 x 10-8	4.21 x 10-8
143	S	4.72 x 10-7	1.19 x 10-7
158	S	5.06 x 10-7	6.20 x 10-7
166	S	3.03 x 10-7	$1.64 \times 10-7$
170	S	4.73 x 10-7	6.55 x 10-7
181	S	3.81 x 10-7	5.85 x 10-7
.183	S	1.93 x 10-7	1.92 x 10-7
184	S	3.09 x 10-7	1.45 x 10-7
187A	S.	3.37 x 10-7	$1.76 \times 10-7$
189	S	2.11 x 10-7	$1.64 \times 10-7$
207	S	2.13 x 10-7	1.68 x 10-7
209	S	1.46 x 10-6	1.22 x 10-6
215	S	6.65 x 10-8	1.87 x 10-7
221	S	$2.12 \times 10-7$	$1.64 \times 10-7$
223	S	1.00 x 10-6	1.22 x 10-6
224	S	4.13 x 10-7	1.08 x 10-6
238	S	8.76 x 10-8	$1.57 \times 10-7$
241	S`	2.15 x 10-7	2.67 x 10-7
252	S	3.16 x 10~8	2.53 x 10-8
277	S	3.42 x 10-7	1.55 x 10-7
21	P	8.19 x 10-7	7.85 x 10-7
23 47	P	6.69 x 10-8	9.60 x 10-8
47	P	$1.05 \times 10-6$	1.28 x 10-6
		98	

Table D1 Con't.

Relay No.	Flow	Q ^R _S (atm cc/sec)	Q _s x R (atm. cc/sec)
56	P	1.15 x 10-6	1.04 x 10-6
62	P	$3.46 \times 10-8$	$7.85 \times 10-8$
71·	P	$1.16 \times 10-6$	$9.60 \times 10-7$
115	P	$7.73 \times 10-7$	$7.60 \times 10-7$
116	P	$1.13 \times 10-6$	$1.09 \times 10-6$
123	P	$8.96 \times 10-7$	$6.24 \times 10-7$
148	P	$1.46 \times 10-6$	1.04 x 10-6

Table D2. RAG-HMS Correlation Using Experimentally Determined Correlation Factors, Half Size Relays

Relay No.	Flow	Q _S ^R (atm. cc/sec)	Q _S x R (atm. cc/sec)
3	M	7.54 x 10-9	1.64 x 10-8
6	M	6.23 x 10-7	4.96 x 10-7
7	М	$7.60 \times 10-8$	7.35 x 10-8
13	M	$3.85 \times 10-7$	$1.55 \times 10-6$
18	M	1.82 x 10-6	$1.97 \times 10-6$
32	M	5.26 x 10-7	$4.78 \times 10-7$
35 .	M	$1.04 \times 10-7$	8.99 x 10-8
38	M	4.88 x 10-7	$2.15 \times 10-7$
40	M	1.58 x 10-7	1.80 x 10-7
45	М	$1.26 \times 10-7$	$1.12 \times 10-7$
61	M	2.48 x 10-7	5.51 x 10~8
64	M	5.47 x 10~9	$1.31 \times 10-8$
82	M	1.11 x 10-8	$1.67 \times 10-8$
96	M	1.83 x 10-7	9.10 x 10~8
103	M	5.66 x 10-9	$1.64 \times 10-8$
104	M	3.63 x 10-8	2.95 x 10-8
113	M	$5.10 \times 10-9$	4.10 x 10-8
126	M	2.92 x 10-8	2.44 x 10~8
127	M	1.25 x 10-8	$2.21 \times 10-8$
131	M	$1.93 \times 10-8$	$2.97 \times 10-8$
136	M	3.06 x·10-8	$3.80 \times 10-8$
138	M	$2.59 \times 10-8$	$3.80 \times 10-8$
142	M	$5.28 \times 10-9$	$1.38 \times 10-8$
157	M	$2.98 \times 10-8$	$3.05 \times 10-8$
164	M	5.82 x 10-7	9.84 x 10-7
169	M	1.79 x 10-7	$1.22 \times 10-7$
-170	M	1.91 x 1 0 -9	2.52 x 10-8
182	M	1.30 x 10-7	$1.33 \times 10-7$
188	M	$1.44 \times 10-6$	$9.51 \times 10-7$
222	M	1.48 x 10-8	$1.66 \times 10-8$
235	M	$2.38 \times 10-7$	1.97 x 10-7
274	M	2.61 x 10-8	1.97 x 10-8
276	M	1.94 x 10-6	$1.94 \times 10-6$
278	M	$1.57 \times 10-6$	$2.00 \times 10-6$
284	M	2.95 x 10-7	4.26 x 10~7
285	M	$5.08 \times 10-7$	9.84 x 10-7
287	M	$1.27 \times 10-6$	1.55 x 10-6
290 .	M	$2.45 \times 10-7$	5.57 x 10-7
293	M	7.70 x 10-8	$2.62 \times 10-7$
295	М	$1.47 \times 10-7$	$7.05 \times 10-8$
296	M	$2.52 \times 10-7$	$3.61 \times 10-7$
300	M	$2.11 \times 10-7$	$1.34 \times 10-7$
306	M	$1.62 \times 10-7$	$5.25 \times 10-7$
310	M	$1.51 \times 10-6$	$1.51 \times 10-6$
319	M	1.79 x 10-7	1.34 x 10-7

Table D2. con't.

Relay No.	Flow	Q _S (atm. cc/sec.)	Q _s x R(atm.cc/sec.)
1 '	S	2.59 x 10-7	3.56 x 10-7
4	.S		6.93 x 10-8
⁻ /8	S S	6.23 x 10-7	
9	S	7:48 x 10-7 °	1.45 x 10-7
15		1.09 x 10-7	5.40 x 10-7
20	·S-	7.98 x 10-8	$3.49 \times 10-7$
24 ·	S.	9.89 x 10-7	1.793 x T0-6
34	S	7.33 x 10-7	2.09 x 10-6
37 ·	S .c	2.03 x 10-7	2.83 x·10-7
	S S	3.94 x 10-8	5.96 x 10-8
·50		2.57 x 10-8	9.50 x 10-8
5 1	S	9.14 x 10-7	1.40 x 10-6
53	S	$1.29 \times 10-6$	$1.40 \times 10-6$
56	S'	$1.27 \times 10-7$	8.34 x 10-8
59	S	$9.77 \times 10-8$	1.33 x 10-7
67	S	$9.83 \times 10-8$	1.86 x 10-7
·83	S	6.81 x 10-7	·8.15 x 10-7
85	S'	1.53 x 10~7	$2.19 \times 10-7$
114	S	$2.48 \times 10-9$	1.91 x 10-8
116	S.	1.63 x 10-9	$2.06 \times 10-8$
117	S	$8.77 \times 10-8$	$1.08 \times 10-7$
120	S	$1.93 \times 10-9$	$4.33 \times 10-8$
134	S	$1.47 \times 10-8$	4.84 x 10-8
151	S	$3.00 \times 10-8$	8,85 x 10-8
154	S	$8.21 \times 10-8$	9.97 x 10-8
177	S	5.70 x 10-7	3.78 x 10~8
186	S	9.13 x 10∽7	6.51 x 10~7
194	S	$2.80 \times 10-9$	$7.80 \times 10-8$
204	S .	1.76 x 10-7	$1.51 \times 10-7$
210	S	4.18 x 10-7	8.68 x 10-7
241	S	$2.15 \times 10-7$	$3.25 \times 10-7$
243	S	4.06 x 10-7	5.55 x 10-7
271	S	7.83 x 10-7	4.66 x 10-7
2 73	S	8.60 x 10-8	9.80 x 10-8
286	S	$4.48 \times 10-7$	$1.38 \times 10-6$
299	S	$6.67 \times 10-7$	1.12 x 10-6
308	S	$6.30 \times 10-7$	1.68 x 10-6
314	S	1.35 x 10-7	4.66 x 10-7
21	P	$6.37 \times 10-8$	$4.27 \times 10-7$
30	P	7.63 x 10~9	$7.91 \times 10-9$
36	P	$4.44 \times 10-8$	2.38 x 10-8
42	P _.	1,42 x 10-8	2.80 x 10~8
49	P	3.01 x 10-9	$8.12 \times 10-9$
93	P	1.33 x 10-8	6.80 x 10-9
98	P P P P P P	1.25 x 10-8	1.40 x 10-8
101	P	6.54 x 10-9	3.60 x 10-9
135	P	8.07 x 10-9	$7.35 \times 10-9$
147	P	9,92 x 10-9	7.98 x 10-9
163	P	8.68 × 10=9	1.15 x 10-8
215	P	1.16 x 10-7	1.19 x 10-7

XII. BIBLIOGRAPHY

- 1. Triplett, M.E., "Design, Construction and Testing of a Life Tester for Hermetically Sealed Electronic Crystal-can Relays," unpublished Master's Thesis, Department of Electrical Engineering, Mississippi State University, State College, Mississippi, August, 1966.
- 2. Guyton, R.D., "Operating Manual for the Transistor Life Tester," Engineering and Industrial Research Station Report, Department of Electrical Engineering, Mississippi State University, State College, Mississippi, February, 1967.
- 3. Paulk, J.I., G.R. Hoke, and E.F. Harwell, "Hermetic Seal Test Evaluation," Engineering and Industrial Research Station Report NUE-001, Department of Nuclear Engineering, Mississippi State University, State College, Mississippi, June, 1965.
- 4. Miller, I., and J.E. Fruend, "Probability and Statistics for Engineers," Prentice-Hall, Englewood Cliffs, June, 1965.
- 5. Alancraig, C.R. and L.A. Bromley, "Pressure Drop for High Vacuum Flow of Air," Chemical Engineering Progress, V.48, No.7, 357, July, 1952.