► Reaseguro

Ya que conocemos más de cómo funciona la v.a. S, intentaremos modelarla desde otra perspectiva. Pensemos a S como siempre:

$$S = \sum_{j=1}^{N} X_j$$

Ahora, supongamos que este portafolio se fragmentará en dos partes, lo que paga la aseguradora (S^A) y lo que paga la reaseguradora (S^R) de tal manera que:

$$S = S^A + S^R$$

Hay diferentes maneras de hacer una partición de pólizas entre la aseguradora y la reaseguradora. Veremos en lo siguiente las formas más comúnes. Notemos lo siguiente la similaridad con los temas pasados del curso.

Reaseguro proporcional

Similar al coaseguro el reaseguro proporcional divide el riesgo (S) en dos partes considerando un $a \in [0, 1]$, diremos entonces que "a" es la proporción del riesgo (S) que le toca pagar a la aseguradora, mientras que "1 - a" es lo que le toca a la reaseguradora.

$$S^{A} = aS = \sum_{j=1}^{N} aY_{j},$$

$$S^{R} = (1 - a)S = \sum_{j=1}^{N} (1 - aY_{j})$$

Las características probabilísticas de S^A , o bien de S^R , se encuentran fácilmente de las de S^R , pues no es difícil comprobar los siguientes resultados.

- a) $F_{SA}(x) = F_{\mathbb{S}}\left(\frac{x}{a}\right)$.
- b) $f_{S^A}(x) = \frac{1}{a} f_{\mathbf{S}}\left(\frac{x}{a}\right)$, cuando S es absolutamente continua.
- c) $M_{SA}(r) = M_{\mathbf{S}}(ar)$.

- d) $E(S^A) = aE(S) \le E(S)$.
- e) $Var(S^A) = a^2 Var(S) \le Var(S)$.

Introducción a la teoría del Riesgo, L. Rincón, pág:81

Nótese que aY_j es la proporción por póliza que paga la aseguradora.

Reaseguro no proporcional

• Reaseguro en el riesgo completo (stop loss)

Aquí lo que se define es un cierto monto $\mu > 0$ llamado nivel de retención del cual se establecerá que cada parte cubrirá un riesgo (S) de la siguiente manera:

$$S^A = \min\{S,\mu\}: S^R = \max\{0,S-\mu\}$$

Una vez más en términos de S nosotros ya sabemos trabajar perfectamente tanto a S^A como S^R en este caso pues son casos particulares de monto máximo de beneficio y deducible.

Notemos aquí un detalle importante S^A y S^R cubren un nivel de retención μ sobre todo el portafolio S. Es decir, que no depende de cada póliza sino de todo lo que trae consigo el portafolio. Lo que nos da pie a un caso interesante.

• Reaseguro en cada reclamación (excess of loss)

Bajo esta idea, se "repartirán" los pagos, de la siguiente manera:

$$S^A = \sum_{j=1}^N \min\{X_j, \mu \ \} \quad \text{y} \quad S^R = \sum_{j=1}^N \max\{0, X_j - \mu \ \}$$

Donde μ juega un papel de monto máximo de beneficio y deducible por cada asegurado, desde el punto de vista de la aseguradora y reaseguradora respectivamente. A pesar de esto y dado que estamos hablando de reaseguro (excess of loss) seguiremos llamando a μ como nivel de retención .

Notemos que estos casos ya los hemos trabajado, pero hay aquí un detalle interesante. Recordemos que, por ejemplo para la reaseguradora en este caso, si $X_j \leq \mu$ para la reaseguradora

no pagó. De tal manera que el número de pagos que hizo S^R no está del todo determinado por N.

Nota.

No confundir los siguientes conceptos

$$\sum_{j=1}^{N} \min\{X_j, \mu \} \neq \min\{S, \mu \}$$

$$\sum_{j=1}^N \min\{X_j,\mu \ \} \neq \min\{S,\mu \ \}$$

$$\sum_{j=1}^N \max\{0,X_j-\mu \ \} \neq \max\{0,S-\mu \ \}$$

Esto significa que los modelos "excess of loss ", y "stop loss "no son necesariamente equivalentes.

Se invita a platicar un poco sobre esto

A continuación mostramos algunos vídeos con los temas que se acaban de mencionar.

Figura 1: https://www.youtube.com/watch?v=LbDaSLqyfYE

Figura 2: https://www.youtube.com/watch?v=xUroi0VZl14

Figura 3: https://www.youtube.com/watch?v=pGP_bK8x2-U

Figura 4: https://www.youtube.com/watch?v=TAjhROWBkiE

→ Número de reclamaciones

Bajo el esquema "excess of loss" y considerando un nivel de retención μ :

•
$$N^A = \sum_{j=1}^N \mathbb{I}_{(X_j \le \mu)} = \#$$
 pagos Sin incurrir al reaseguro

•
$$N^R = \sum_{j=1}^N \mathbb{I}_{(X_j > \mu_j)} = \#$$
 pagos que hizo la reaseguradora

Es fácil notar que $N=N^A+N^R$, luego se satisfacen las siguientes propiedades

Proposición

Sea $a = P(Y_j \leq M)$. Entonces

- 1. $si \ N \ tiene \ distribución \ bin(n,p),$
 - a) $N^A \sim bin(n, ap)$
 - b) $N^R \sim bin(n, (1-a)p)$
- 2. si N tiene distribución $Poisson(\lambda)$.
 - a) $N^A \sim Poisson(\lambda a)$
 - b) $N^R \sim Poisson(\lambda(1-a))$
- 3. si N tiene distribución bin neg(k,p)
 - a) $N^A \sim binneg(k, p/(p + a(1-p)))$
 - b) $N^R \sim binneg(k, p/(p + (1-a)(1-p)))$

Introducción a la teoría del Riesgo, L. Rincón, pág: 86

Es muy útil notar que N^A y N^R son en realidad casos particulares del modelo colectivo, noten que ambas son sumas aleatorias de variables aleatorias ¿Cuáles?

- $I_{(X_i < \mu)} \sim Ber(p = \mathbb{P}[X_j \le \mu])$
- $I_{(X_i>\mu)} \sim Ber(p=\mathbb{P}[X_j>\mu])$

Donde, desde luego, $\mathbb{P}[X_j \leq \mu] = 1 - \mathbb{P}[X_j > \mu]$.

Con base en esto, la siguiente demostración es sencilla recordando que para cualquier modelo colectivo:

$$M_S(t) = M_N(ln(M_Y(t)))$$

Tomando $a \doteq \mathbb{P}[Y \leq \mu]$, P.D $N \sim Bin(n, p) \Rightarrow N^A \sim Bin(n, ap)$

$$M_Y(t) = E(e^{tY}) = 1 - a + ae^t$$

Entonces $M_{NA}(t) = M_N(ln(1-a+ae^t))$. Cuando N tiene distribución bin(n,p) tenemos que $M_N(t) = (1-p+pe^t)^n$. Por lo tanto,

$$M_{NA}(t) = (1 - p + p(1 - a + ae^t))^n = (1 - ap + ape^t)^n.$$

Ejemplo

- Sea $N \sim Bin(n = 5, p = 0.15)$
- Consideremos un nivel de retención $\mu=2$

$$\Rightarrow a \doteq \mathbb{P}[X \leq \mu] = 0.9$$

Veamos lo que sucede con N^A y N^R en R.

Script: "Reaseguro"