2. kolokvij iz Osnov verjetnosti in statistike (Ljubljana, 9. april 2015)

Čitljivo napišite svoje ime <u>in</u> priimek ter študentsko številko (tako na ta list kakor tudi na prazen list). Čas reševanja: 60 minut. Vsaka naloga je vredna 20 točk. Preberi celotno besedilo vsake naloge. Dovoljena je uporaba enega A4 lista s formulami in tabel.

- 1. Mečemo pošteno kocko. Če pade šestica, končamo s poskusom, sicer pa vržemo še pošten kovanec. Če pade cifra, končamo s poskusom, sicer pa celoten postopek ponovimo. Naj bo X slučajna spremenljivka, ki šteje, kolikokrat smo vrgli kocko.
 - (a) Kako je porazdeljena slučajna spremenljivka X?
 - (b) Izračunaj $P(X \leq 2)$.
 - (c) Izračunaj E(X).
- 2. Neka rokometna ekipa da v povprečju 30 golov na tekmo (tekma traja 60 minut).
 - (a) Kolikšna je verjetnost, da bo ekipa na naslednji tekmi v prvi minuti dosegla vsaj en gol?
 - (b) Kolikšna je verjetnost, da bo ekipa v zadnjih 3 minutah tekme dosegla natanko dva gola?
- 3. Vaje trajajo v povprečju 90 minut s standardnim odklonom 5 minut.
 - (a) Kakšna je verjetnost, da se bodo vaje končale vsaj 5 minut prej kot običajno?
 - (b) Kakšna je verjetnost, da se bodo vaje zavlekle za vsaj 15 minut?
 - (c) Kakšna je verjetnost, da se bodo vaje končale do minute natančno (med 90 in 91 minutami)?

Vse odgovore dobro utemelji!

(Svoje odgovore na zadnje vprašanje (4.), ki šteje za bonus točke pri izpitu, pišite na ta list (hrbtna stran), sicer Vaših odgovorov ne bomo upoštevali. (a) [4 točke], (b) [4 točke], (c) [2 točke],) vendar morate zbrati vsaj 4 točke, sicer dobite -2, če izberete, da vam odgovore na to vprašanje ocenimo.)

4. Bonus naloga (za oceno na izpitu)

(a) Če je slučajna spremenljivka X porazdeljena normalno $N(\mu, \sigma)$ in standardizirana v Z, iz katerih treh vrednosti izmed x, μ , σ in z vedno izračunamo preostalo (četrto) vrednost (odgovor utemelji)?

(b) Ali lahko vsako binomsko porazdelitev aproksimiramo zelo natančno z ustrezno normalno porazdelitvijo (odgovor utemelji)?

- (c) Recimo, da slučajna spremenljivka porazdeljena binomsko B(1000, 1/2). Katera normalna porazdelitev jo dobro aproksimira?
 - (A) N(1000, 1/2), (B) N(1/2, 1000), (C) N(500, 250), (D) $N(500, \sqrt{250})$,
 - (E) $N(\sqrt{250}, 15.8)$, (F) $N(500, 1/2^{500})$, (G) $N(\sqrt{500}, 1000)$, (H) N(1000, 250).

(e) Verjetnost dogodka A v posamezni ponovitvi poskusa znaša 5/8. Kolikšna je verjetnost, da se pri 6000 realizacijah tega poskusa relativna frekvenca ne razlikuje od verjetnosti P(A) za več kot 0.01?