Kernel

December 8, 2021

el 1 / 42

Road map

- Intuition and Motivation
- Theoretical framework for kernels
 - Summary
 - Kernel on vectors
 - Reproducing kernel Hilbert space
- Building kernels
 - Kernel algebra
 - Kernels on generic data
- 4 Key tools for ML
 - Kernel trick
 - The representer theorem

iernel 2 / 4

Important References

Books

- Learning with kernel https://mitpress.mit.edu/books/learning-kernels
- Kernel methods for Pattern Analysis. J. Shawe-Taylor et al.
- Reproducing kernel Hilbert spaces in Probability and Statistics.
 Berlinet et al.

Lecture notes

- J. Mairal and JP. Vert. MVA
- S. Canu, G. Gasso, B. Gauzere, INSA de Rouen

ernel 3/4

Linear SVM

- ullet Inputs are vectors of ${\rm I\!R}^d$
- Linear SVM seeks linear classification function

Gernel 4 / 4

Limitations

- Data are not always vectors: (string, time series, graphs, images ...)
- The decision function can not always be linear (text categorization; email filtering; gene detection; protein image classification; handwriting recognition; prediction of loan defaulting)

Figure: How do you classify these data?

rnel 5 / 4

From linear to non-linear decision function

Data might be separable with a non-linear function

• Non-linear embedding of $x = \begin{pmatrix} x_{(1)} \\ x_{(2)} \end{pmatrix}$

$$\begin{array}{ccc} \mathbb{R}^2 & \rightarrow & \mathcal{H} \\ \\ x & \mapsto & \Phi(x) = \begin{pmatrix} x_{(1)}^2 \\ x_{(2)}^2 \\ \sqrt{2}x_{(1)}x_{(2)} \end{pmatrix} \end{array}$$

• Train a linear SVM with samples $\{(\Phi(x_i), y_i)\}$

Resulting SVM model

$$f(\mathbf{x}) = b + \sum_{i \in SV} \alpha_i y_i \Phi(\mathbf{x}_i)^{\top} \Phi(\mathbf{x})$$

ernel 6 / 4

Non-linear decision function

Decision function

$$f(\mathbf{x}) = b + \sum_{i \in SV} \alpha_i y_i \underbrace{\Phi(\mathbf{x}_i)^\top \Phi(\mathbf{x})}_{\mathsf{Kernel}} \underbrace{k(\mathbf{x}_i, \mathbf{x})}_{\mathsf{Kernel}}$$

Kernel function: the trick

- No explicit knowledge of $\Phi(x)$
- We only need to define a function $k(\cdot,\cdot):\mathcal{X}\times\mathcal{X}\to\mathbb{R}$

Problem linearly non-separable in the original space \mathcal{X}

but linear separable in the space $\ensuremath{\mathcal{H}}$ induced by the kernel k

rnel 7 / 4:

Also...

How do we classify dataset composed of proteins?

Use the kernel trick: $f(\text{protein}) = b + \sum_{i \in SV} \alpha_i y_i k(\text{protein}_i, \text{protein})$

8 / 42

Remark

Intuition

By simply modifying the dot product, the algorithm works in another space

Kernel Trick

- Linear SVM relies on inner product between the SV and the sample to predict
- ullet Replaces the inner product between the sample in the ambient space by a kernel $k(\cdot,\cdot)$
- \bullet Leads to a non-linear version of the SVM

el 9 / 42

Motivation of Kernel methods

- From
 - linear techniques
 - operating on vector spaces
- to
 - non linear prediction models
 - operating on various, structured, high-dimensional data
- Using a: well known mathematical framework
- leading to: efficient and powerful algorithm and tools

→ Kernel method

iel 10 / 42

One slide summary

Motivation

- develop generic algorithms for analyzing and learning from data
- ... without making any assumptions on the type of the data

The approach

- Introducing framework based on similarities between pair of examples
- By appropriately defining the notion of similarity, we define a framework named as learning in RKHS.

el 11 / 42

Prerequisites

decision function $f(x) = \frac{1}{2} \alpha_i \phi(\alpha_i) \phi(x) = \frac{1}{2} \alpha_i k(\alpha_i, \alpha_i)$

Some definitions and notations

- \mathcal{X} : non empty input space (\mathbb{R}^N , graphs, objects, ...)
- $x \in \mathcal{X}$,
- \mathcal{H} : feature space endowed with a dot product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$
- \bullet \bullet \bullet : $\mathcal{X} \to \mathcal{H}$: embedding function from \mathcal{X} to \mathcal{H}

nel 12 / 42

Kernel as a similarity

Kernel

A kernel k is a function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that in some way k(x,z) captures the "similarity" between x and z.

Ideas

- ullet the matrix K where each $K_{i,j}$ represents all pairwise similarities
- For n data, K is of size $n \times n$ matrix of $\mathbb R$ regardless of the data type.
- Modularity between the data representation (through K and the choice of the algorithm (that uses K)

el 13 / 42

Positive Definite Kernels (1)

Positive definite kernel

A kernel k(x, z) on $\mathcal{X} \times \mathcal{X}$ is said to be positive definite

- if it is symmetric: k(x, z) = k(z, x)
- and if for any finite positive integer n:

$$\forall \{\alpha_i\}_{i=1,n} \in \mathbb{R}, \forall \{x_i\}_{i=1,n} \in \mathcal{X}, \quad \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j k(x_i, x_j) \ge 0$$

it is strictly positive definite if for $\alpha_i \neq 0$

In the positive definite it for
$$\alpha_i \neq 0$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(\mathbf{x}_i, \mathbf{x}_j) > 0$$

$$\text{Let } \mathbf{K}_{:,j} = k(\mathbf{x}_i, \mathbf{x}_j) \quad \forall \in \mathbb{R}^{N \times N} \quad \forall \mathbf{x} \neq \mathbf{x} > 0$$

$$\text{Lequivelety, the gran native } \mathbf{K} \text{ are } \mathbf{p.s.d.}$$

rnel 14 /

Positive Definite Kernels (2)

Gram Matrix

Given a kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, and samples $\{x_1, \dots, x_n\}$, the Gram Matrix K is a $n \times n$ matrix with entries $K_{i,j} := k(x_i, x_j)$

Another way to characterize positive definite kernel

For any set of $n \in \mathbb{N}$ samples $\{x_1, \dots, x_n\}$ the associated Gram Matrix $K \in \mathbb{R}^{n \times n}$ is positive definite, iff k is a positive definite kernel on \mathcal{X} .

Kernel method

We define kernel methods as algorithms taking positive definite matrix as input.

el 15 / 42

Linear Kernel

$$k(x, z) = x^{T}z$$

Ark 2

- $x, z \in \mathbb{R}^d$
- symmetric: $x^Tz = x^Tz$
- positive:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(\mathsf{x}_i, \mathsf{x}_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j \mathsf{x}_i^\top \mathsf{x}_j$$
$$= \left(\sum_{i=1}^{n} \alpha_i \mathsf{x}_i\right)^\top \left(\sum_{j=1}^{n} \alpha_j \mathsf{x}_j\right)$$
$$= \left\|\sum_{i=1}^{n} \alpha_i \mathsf{x}_i\right\|^2$$

nel 16 / 42

Product kernel

$$k(x,z) = g(x)g(z)$$

- \bullet x, z $\in \mathcal{X}$
- ullet for some $g:\mathcal{X}
 ightarrow \mathbb{R}$
- symmetric: by construction
- positive:

$$\begin{split} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k(\mathsf{x}_{i}, \mathsf{x}_{j}) &= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} g(\mathsf{x}_{i}) g(\mathsf{x}_{j}) \\ &= \left(\sum_{i=1}^{n} \alpha_{i} g(\mathsf{x}_{i}) \right) \left(\sum_{j=1}^{n} \alpha_{j} g(\mathsf{x}_{j}) \right) \\ &= \left(\sum_{i=1}^{n} \alpha_{i} g(\mathsf{x}_{i}) \right)^{2} \end{split}$$

q(x)= who of concerted composets in x

rnel 17 / 4

Finite kernel

let $\phi_j, j = 1, p$ be a finite dictionary of functions from \mathcal{X} to \mathbb{R} (polynomials, wavelets...)

the feature map and linear kernel

kernel in the feature space is a positive definite kernel:

$$k(\mathbf{x}, \mathbf{z}) = (\phi_1(\mathbf{x}), ..., \phi_{\mathbf{z}}(\mathbf{x}))^{\top} (\phi_1(\mathbf{z}), ..., \phi_{\mathbf{z}}(\mathbf{z}))$$

nel 18 / 42

The quadratic kernel

For $x, z \in {\rm I\!R}^d$,, we define the feature map as

Feature map

$$\begin{array}{cccc} \Phi: & \mathbb{R}^d & \rightarrow & \mathbb{R}^{p=\frac{d(d+1)}{2}} \\ & \times & \mapsto & \Phi = \left(x_1^2,...,x_j^2,...,x_d^2,...,\sqrt{2}x_ix_j,...\right) \end{array}$$

Here the x_i represent the variables of $x \in \mathbb{R}^d$

The kernel k(x, z) can be shown to be

$$k(\mathsf{x},\mathsf{z}) = (\mathsf{x}^{\top}\mathsf{z})^2$$

el 19 / 42

Kernels as inner products

Theorem (Aronszajn, 1950)

k is a positive definite kernel on $\mathcal X$ if and only if,there exists a Hilbert space $\mathcal H$ and a mapping

$$\Phi: \mathcal{X} \mapsto \mathcal{H}$$

such that for any x and z in \mathcal{X} :

$$k(x,z) = \langle \Phi(x), \Phi(z) \rangle_{\mathcal{H}}$$

el 20 / 42

Reproducing Kernel Map

Preliminaries

- We need a particular Hilbert space as defined by Aronszjan's theorem
- Φ maps each point $x \in \mathcal{X}$ to a function in \mathcal{H}
- ullet \mathcal{H} is a space of function from $\mathcal{X} \to \mathbb{R}$
- Build Φ from the psd kernel $k(\cdot, \cdot)$

$$\Phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$$
$$\mathsf{x} \mapsto k(\cdot, \mathsf{x})$$

 $\Phi: \mathcal{X} \to \mathbb{R}^{\mathcal{X}}$ $\times \mapsto k(\cdot, x)$ $A = \begin{cases} A & \text{for all } \\ A & \text{for } \\ A & \text{for } \end{cases}$ $A = \begin{cases} A & \text{for all } \\ A & \text{for } \end{cases}$

• Example : $\mathcal{X} = \mathbb{R}$ and $k(\cdot, \mathsf{x}) = \mathsf{y} \mapsto e^{-\frac{(\mathsf{x}-\mathsf{y})^2}{2\sigma^2}}$

RKHS Definition

Definition

Let \mathcal{X} be a set and $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ be a class of function forming a real Hilbert space with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$. The function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is called a reproducing kernel (r.k.) of \mathcal{H} if functions in F con be write as

 \bullet \bullet contains all functions of the form

tions of the form
$$\int_{|\alpha|} |x| = \sum_{|\alpha|} |x| \cdot |x| \cdot$$

② For every $x \in \mathcal{X}$ and $f \in \mathcal{H}$, the reproducing property holds :

$$f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}} = \langle k(x, \cdot) \rangle_{\mathcal{H}} = \langle k(x, \cdot), k(x, \cdot) \rangle$$

$$= k(x, x)$$

if a r.k exists, then \mathcal{H} is called a reproducing kernel Hilbert space (RKHS).

RKHS and Machine Learning

Using RKHS as a hypothesis space for machine learning problem leads to a simple recipe for non-linear models

- **1** maps data $x \in \mathcal{X}$ to a high-dimensional r.k. Hilbert space \mathcal{H} through the mapping $\Phi: \mathcal{X} \mapsto \mathcal{H}$ with $\Phi(x) = k(x, \cdot)$
- ② in \mathcal{H} , consider linear model with $f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}}$
- use this linear model in your learning framework. For supervised learning, we would have

$$\min_{f \in \mathcal{H}} \sum_{i=1}^{n} L(y_i, f(\mathsf{x}_i)) + \lambda \|f\|_{\mathcal{H}}^2$$

Uniqueness of r.k and RKHS

Theorem

- ullet if ${\cal H}$ is a RKHS then it has an unique r.k
- A function $k(\cdot, \cdot)$ can be the r.k of at most one RKHS

nel 24 / 42

RKHS, reproducing kernel and positive definite kernel

Theorem

A function $k: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive definite if and only if it is a reproducing kernel.

Proof: an r.k is pd

- a r.k is symmetric
- a r.k leads to a pd matrix for any n subset of $\{x_i\}_{i=1}^n$

iel 25 / 42

A positive definite kernel is a reproducing kernel I

We aim to encode the image of Φ into a vector space

The vector space

Linear combinations of $k(\cdot, x)$:

$$f(\cdot) = \sum_{i=1}^{m} \alpha_i k(\cdot, \mathsf{x}_i)$$
 with any $\mathsf{x}_1, \dots, \mathsf{x}_m \in \mathcal{X}$

The dot product

• given $g(\cdot) = \sum_{j=1}^{m'} \beta_j k(\cdot, x_j')$ with $x_1', \dots, x_{m'}' \in \mathcal{X}$ we define the dot product as

$$\langle f, g \rangle := \sum_{i=1}^{m} \sum_{i=1}^{m'} \alpha_i \beta_j k(\mathsf{x}_i, \mathsf{x}_j')$$

el 26 / 42

A positive definite kernel is a reproducing kernel II

We have:

$$f(\mathsf{x}_j') = \sum \alpha_i k(\mathsf{x}_j', \mathsf{x}_i) = \sum \alpha_i k(\mathsf{x}_i, \mathsf{x}_j')$$

Hence:

$$\langle f, g \rangle = \sum \beta_j f(\mathsf{x}_j')$$

Note that it does not depend on the expansion of f. Similarly we have

$$\langle f, g \rangle = \sum \alpha_i g(\mathsf{x}_i)$$

It is easy to show that our dot product is:

- bilinear
- symmetric
- positive definite

and thus constitutes a valid dot product on the vector space $\mathbb{R}^{\mathcal{X}}$.

nel 27 / 4:

A positive definite kernel is a reproducing kernel III

Reproducing kernel

$$\langle k(\cdot, \mathsf{x}), f \rangle = \sum \alpha_i k(\mathsf{x}_i, \mathsf{x}) = f(\mathsf{x})$$

Considering $f(\cdot) = k(\cdot, x')$, we have:

$$\langle k(\cdot, \mathsf{x}), k(\cdot, \mathsf{x}') \rangle = \langle \Phi(\mathsf{x}), \Phi(\mathsf{x}') \rangle = k(\mathsf{x}, \mathsf{x}')$$

k is thus the reproducing kernel of \mathcal{H} and corresponds to a dot product in the vector space of functions \mathcal{H} .

iel 28 / 42

The RKHS associated to a p.d kernel k.

Hilbert Space

- ullet H is Hilbert Space obtained from
 - pre-Hilbert space of functions defined as above endowed with a inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ inducing a norm $\|f\| := \sqrt{\langle f, f \rangle}$
 - and the space completed with all limits of Cauchy sequences

 \mathcal{H} is called a reproducing kernel Hilbert space (RKHS) associated to kernel k

iel 29 / 42

Smoothness functional

A simple inequality

• By Cauchy-Schwarz, we have for any function $f \in \mathcal{H}$ and two points $x, z \in \mathcal{X}$:

$$|f(\mathsf{x}) - f(\mathsf{z})| = \langle f, k(\mathsf{x}, \cdot) - k(\mathsf{z}, \cdot) \rangle_{\mathcal{H}} \leq ||f||_{\mathcal{H}} \times ||k(\mathsf{x}, \cdot) - k(\mathsf{z}, \cdot)||_{\mathcal{H}} = ||f||_{\mathcal{H}} \times d_k(\mathsf{x}, \mathsf{z})$$

• the norm of a function f in the RKHS controls the variation of f over \mathcal{X} with respect to the geometry defined by the kernel.

Take-home message

Small norm \Rightarrow Small variations

nel 30 / 42

RKHS

Positive kernel ⇔ RKHS

- it defines the inner product
- ullet it defines regularity (smoothness) of ${\cal H}$
- there exists a "mapping" function $\Phi: \mathcal{X} \to \mathcal{H}$ such that $\forall x, z \in \mathcal{X}$ the inner product $\langle \Phi(x), \Phi(z) \rangle_{\mathcal{H}} = k(x, z)$ and thus it defines the function space

nel 31 / 42

Let's summarize

From kernel to feature space

Given a valid kernel k, we can associate a RKHS ${\mathcal H}$ which corresponds to the feature space of k.

From feature space to kernel

Now consider that you have $\Phi: \mathcal{X} \to \mathcal{H}$ a mapping function.

A positive kernel k is defined by:

$$k(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$$

nel 32 / 42

Kernel algebra

Convex cone:

The set of kernels forms a convex cone, closed under pointwise convergence.

• Linear combination:

- if k_1 an k_2 are kernels, $a_1, a_2 \ge 0$, then $a_1k_1 + a_2k_2$ is a kernel
- if k_1, k_2, \ldots are kernels, and $k(\mathsf{x}, \mathsf{x}') := \lim_{n \to \infty} k_n(\mathsf{x}, \mathsf{x}')$ exists for all x , x' , then k is a kernel

Product kernel:

if k_1 an k_2 are kernels, then $k_1k_2(x,x') := k_1(x,x')k_2(x,x')$ is a kernel.

iel 33 / 42

by linearity:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} (a_{1} k_{1}(i,j) + k_{2}(i,j)) = a_{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{1}(i,j) + \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{2}(i,j)$$

ullet assuming $\exists \psi_\ell \text{ s.t. } k_1(\mathsf{s},\mathsf{t}) = \sum_{\mathsf{t}} \psi_\ell(\mathsf{s}) \psi_\ell(\mathsf{t})$

$$\begin{split} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \ k_{1}(\mathsf{x}_{i}, \mathsf{x}_{j}) k_{2}(\mathsf{x}_{i}, \mathsf{x}_{j}) &= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \left(\sum_{\ell} \psi_{\ell}(\mathsf{x}_{i}) \psi_{\ell}(\mathsf{x}_{j}) k_{2}(\mathsf{x}_{i}, \mathsf{x}_{j}) \right) \\ &= \sum_{\ell} \sum_{i=1}^{n} \sum_{i=1}^{n} \left(\alpha_{i} \psi_{\ell}(\mathsf{x}_{i}) \right) \left(\alpha_{j} \psi_{\ell}(\mathsf{x}_{j}) \right) k_{2}(\mathsf{x}_{i}, \mathsf{x}_{j}) \end{split}$$

nel 34 / 42

Kernel engineering: building PDK

ullet for any polynomial with positive coef. ϕ from ${\rm I\!R}$ to ${\rm I\!R}$

$$\phi(k(s,t))$$

ullet if Ψ is a function from \mathbb{R}^d to \mathbb{R}^d

$$k(\Psi(s), \Psi(t))$$

Example: the Gaussian kernel is a PDK

$$\begin{array}{ll} \exp(-\|\mathbf{s} - \mathbf{t}\|^2) &= \exp(-\|\mathbf{s}\|^2 - \|\mathbf{t}\|^2 - 2\mathbf{s}^\top \mathbf{t}) \\ &= \exp(-\|\mathbf{s}\|^2) \exp(-\|\mathbf{t}\|^2) \exp(2\mathbf{s}^\top \mathbf{t}) \end{array}$$

- $s^T t$ is a PDK and function exp as the limit of positive series expansion, so $exp(2s^T t)$ is a PDK
- $\exp(-\|\mathbf{s}\|^2) \exp(-\|\mathbf{t}\|^2)$ is a PDK as a product kernel
- the product of two PDK is a PDK

Positive definite kernels: some common examples

Type	Name	k(x,z)
radial	Gaussian	$\exp\left(-\frac{\ \mathbf{x}-\mathbf{z}\ ^2}{2\sigma^2}\right)$
radial	Laplacian	$\exp(-\ \mathbf{x}-\mathbf{z}\ /\sigma)$
non stat.	χ^2	$\exp(-r/\sigma), \ r = \sum_{k} \frac{(x_k - z_k)^2}{x_k + z_k}$
projectif	polynomial	$(\mathbf{x}^{\top}\mathbf{z} + \sigma)^{p}$ $\mathbf{x}^{\top}\mathbf{z}/\ \mathbf{x}\ \ \mathbf{z}\ $
projectif	cosinus	$\mathbf{x}^{T}\mathbf{z}/\ \mathbf{x}\ \ \mathbf{z}\ $
projectif	correlation	$\exp\left(\frac{\mathbf{x}^{\top}\mathbf{z}}{\ \mathbf{x}\ \ \mathbf{z}\ } - \sigma\right)$

- The kernel may involve hyper-parameter(s) to tune (polynom order p, bandwidth σ)
- Their value has to be set by cross-validation

iel 36 / 42

Kernels on structures

- ullet $\mathcal X$ may not be a vector space.
- we can define kernels on any kind of data :
 - Strings
 - Time series
 - Graphs
 - Images
 - . . .

el 37 / 42

RKHS, kernel and machine learning: Kernel trick

Proposition

Any algorithm to process finite-dimensional vectors that can be expressed only in terms of pairwise inner-products can be applied to potentially infinite-dimensional vectors in the space of a p.d kernel by replacing each inner product evaluation by a kernel evaluation.

Applications

- replace inner product by kernel evaluation
- replace any inner-product induced norm by kernel evaluation

38 / 42

RKHS and machine learning: representer theorem

The representer theorem

- let \mathcal{H} be a RKHS with k as associated kernel and $\mathcal{S} = \{x_1, \dots, x_n\}$ be a finite set of points in \mathcal{X}
- let $\Psi: \mathbb{R}^{n+1} \mapsto \mathbb{R}$ be a function of n+1 variables, strictly increasing with respect to the last variable.
- Then, any solution to the optimization problem :

$$\min_{f \in clH} \Psi(f(x_1), \cdots, f(x_n), ||f||_{\mathcal{H}})$$

admits a representation of the form:

$$f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$$

nel 39 / 4

Using the Representer theorem

In practice

• When the representer theorem holds for our learning problem, then we can look for solution *f* of the form :

$$f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\mathsf{x}_i, \cdot)$$

ullet Pointwise evaluation : for any $j=1,\cdots {
m n}$, we have

$$f(\mathsf{x}_j) = \sum_{i=1}^n \alpha_i k(\mathsf{x}_i, \mathsf{x}_j) = [\mathsf{K}\alpha]_j$$

The norm

$$||f||_{\mathcal{H}}^2 = \langle f, f \rangle_{\mathcal{H}} = \sum_{i,j=1}^n \alpha_i \alpha_j k(\mathsf{x}_i, \mathsf{x}_j) = \alpha^\top \mathsf{K} \alpha$$

rnel 40 / 4

Using the Representer theorem

In practice

A problem of the form

$$\min_{f\in\mathcal{H}}\Psi(f(\mathsf{x}_1),\cdots,f(\mathsf{x}_n),\|f\|_{\mathcal{H}})$$

is equivalent to the n-dimensional optimization problem

$$\min_{\alpha \in \mathbb{R}^n} \Psi([\mathsf{K}\alpha]_1, \cdots, [\mathsf{K}\alpha]_n, \alpha^\top \mathsf{K}\alpha)$$

 The resulting problem can be usually solved analytically or by numerical methods

1 41/42

Conclusion

What we seen

- Kernels corresponds to scalar product in some Hilbert space:
 - value corresponds to high dimensional scalar product,
 - on non linear embedding
 - ullet without explicit representations of Φ
- Can be defined on any kind of data
- Kernels define the functional space (and its smoothness) in which we are looking for the solution

Key tools for ML

- Representer theorem
- Kernel trick