Import Data rm(list = ls()) library(dplyr) data <- read.csv('Walmart_Store_sales.csv', header = T) data1 <- data.frame(data) **Analysis Tasks Basic Statistics tasks** Which store has maximum sales Code-Sales_Stores <- data1[order(data1\$Weekly_Sales,decreasing = T),] Sales_Stores **Output-**Store Date Weekly_Sales Holiday_Flag Temperature Fuel_Price CPI 1906 14 24-12-2010 3818686 0 30.59 3.141 182.5446 2764 20 24-12-2010 3766687 0 25.17 3.141 204.6377 1334 10 24-12-2010 3749058 0 57.06 3.236 126.9836 14th store has maximum weeklysale Which store has maximum standard deviation i.e., the sales vary a lot. Also, find out the coefficient of mean to standard deviation standard deviation mean of store Code $summarise(group_by(data1, Store), mean(Weekly_Sales)) \\ tapply(data1\$Weekly_Sales, data1\$Store, mean) \\ aggregate(Weekly_Sales \sim Store, data1, sd) \\ aggregate(Weekly_Sales) \\ tapply(data1\$Weekly_Sales) \\ tapply(data1\$$ Store, data1, var) data1[which.max(data1\$sd),] **Output-**Store Date Weekly_Sales Holiday_Flag Temperature Fuel_Price CPI Unemployment 14 07-05-2010 1603955 0 72.55 2.835 210.34 7.808

sd

14 317569.9

14th store has max SD

Which store/s has good quarterly growth rate in Q3'2012

\sim		_	
(:r	eating	7 ()II	atere
\mathbf{v}	Cauin	a vu	attio

 $head(data1), Q2_2012 \leftarrow mutate(data1, start_time = 1-04-2012, end_time = 30-06-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 1-07-2012, end_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time = 30-09-2012), Q3_2012 \leftarrow mutate(data1, start_time$

Some holidays have a negative impact on sales. Find out holidays which have higher sales than the mean sales in non-holiday season for all stores together

Nonholidaysales <- data1%>%group_by(Weekly_Sales)%>%filter(Holiday_Flag==0) Avg_Nonholidaysales <- mean(Nonholidaysales\$Weekly_Sales) Avg_Nonholidaysales & Holiday_Flag==1)

Output-

Store Date Weekly_Sales Holiday_Flag Temperature Fuel_Price CPI

1 12-02-2010 1641957 1 38.51 2.548 211.2422

1 10-09-2010 1507461 1 78.69 2.565 211.4952

1 26-11-2010 1955624 1 64.52 2.735 211.7484

1 31-12-2010 1367320 1 48.43 2.943 211.4049

1 11-02-2011 1649615 1 36.39 3.022 212.9367

1 09-09-2011 1540471 1 76.00 3.546 215.8611

Change dates into days by creating new variable.

convert date to YY-MM-DD

as.Date(data1\$Date, format = "%d-%m-%Y") data1\$Date <- as.Date(data1\$Date, format = "%d-%m-%Y") data1

Creating days variable by the help of baseline date

 $\label{lem:datalpate} $$ datal$Date <- as. Character(datal$Date) \ baseline_date <- as. Date('2010-02-05') \ datal$Days <- as. numeric(as. Date(datal$Date) - baseline_date) \ datalpate <- as. Date('2010-02-05') \ datalpate <- as. numeric(as. Date(datal$Date) - baseline_date) \ datalpate <- as. Date('2010-02-05') \ datalpate <- as. numeric(as. Date(datal$Date) - baseline_date) \ datalpate <- as. numeric(as. Date(dat$

Output

Days

0

7

14

21

28

35

42

Split Date into Year/Month/Day	
data1\$Date <- as.character(data1\$Date) # convert date to cher d <- strsplit(data1\$Date, '-') d <- as.numeric(unlist(d)) d <- matrix(d, dim(data1)[1], 3, byrov data1\$Month <- d[,2] data1\$Day <- d[,3] data1	v=T) data1\$Year <- d[,1]
Output-	
Days Year Month Day	
0 2010 2 5	
7 2010 2 12	
14 2010 2 19	
21 2010 2 26	
28 2010 3 5	
# 	
Provide a monthly and semester view of sales in units and give insights	
weekly Sales by month	
data1%>%group_by(Month)%>% summarise(Mean_Weekly_Sales = mean(Weekly_Sales))	
Output-	
Month Mean_Weekly_Sales	
1 923885.	
2 1053200.	
3 1013309.	
4 1026762.	
5 1031714.	
6 1064325.	
weekly Sales by year	
data1%>%group_by(Year)%>% summarise(Mean_Weekly_Sales = mean(Weekly_Sales))	
Output	
Output Year Mean_Weekly_Sales	

2012 1033660.
Statistical Model
Hypothesize if CPI, unemployment, and fuel price have any impact on sales.
* *
Relation between Weekly_Sales and CPI
#
Ho: There is no linear relationship between Weekly_Sales and CPI
Ha: There is linear relationship between Weekly_Sales and CPI
model1 <- Im (Weekly_Sales ~ CPI, data=data1) summary(model1) p_value = 5.438e-09 alpha = 0.05 p_value < alpha
Output-
TRUE ,so their is relationship
Relation between Weekly_Sales and Unemployment
#
Ho: There is no linear relationship between Weekly_Sales and Unemployment
Ha: There is linear relationship between Weekly_Sales and Unemployment
model2 <- Im (Weekly_Sales ~ Unemployment, data=data1) summary(model2) p_value = 2.2e-16 alpha = 0.05 p_value < alpha
Output-
TRUE ,so their is relationship
#
Relation between Weekly_Sales and Fuel price
#
Ho: There is no linear relationship between Weekly_Sales and Fuel price
Ha: There is linear relationship between Weekly_Sales and Fuel price
model3 <- Im (Weekly_Sales ~ Fuel_Price, data=data1) summary(model3) p_value = 0.4478 alpha = 0.05 p_value < alpha # FALSE ,so their is no relationship
Output-
FALSE, so their is no relationship
#
Build prediction models to forecast demand

Creating New coulmn for model building By Droping Store and Date Coulmn

col.vars <- c('Holiday_Flag','Temperature', 'Fuel_Price', 'CPI', 'Unemployment','Weekly_Sales') datamodel <- data1[,col.vars]

Model Building

model4 <- Im (Weekly_Sales ~ ., datamodel) summary(model4) Rsqd1 <- summary(model4)\$r.squared Rsqd1 # 0.02544366

predicted_y1 <- predict(model4, datamodel) RMSE1 = sqrt(mean((data1\$Weekly_Sales - predicted_y1)^2)) RMSE1 # 557097.3

Summary-In this model we use all varriables to check the impact

considering those independent where the value is higher

model5 <- Im(Weekly_Sales ~ Unemployment + CPI+ Temperature, datamodel) summary(model5) Rsqd2 <- summary(model5)\$r.squared Rsqd2 # 0.02423897 predicted_y2 <- predict(model5, datamodel)

RMSE2 = sqrt(mean((datamodel\$Weekly_Sales - predicted_y2)^2)) RMSE2 # 557441.5

Summary in model5 we are taken the high value that the co-related to Weekly_Sales like Unemployment & CPI & Temperature

model6 <- Im(Weekly_Sales ~ log(Unemployment) + CPI+ Temperature, datamodel) summary(model6) Rsqd3 <- summary(model6)\$r.squared Rsqd3 # 0.02270446 predicted_y3 <- predict(model6, datamodel)

RMSE3 = sqrt(mean((datamodel\$Weekly_Sales - predicted_y3)^2)) RMSE3 # 557879.7

Summary- In model6 we take the log of Unemployment & CPI & Temperature for better linearity

 $model7 < -lm(Weekly_Sales \sim Unemployment + CPI + Temperature + Holiday_Flag \ , datamodel) \ summary(model7) \ Rsqd4 < -summary(model7) \ Sr. \ squared \ Rsqd4 \# 0.02538059 \ predicted_y2 < -predict(model7, datamodel)$

RMSE4 = sqrt(mean((datamodel\$Weekly_Sales - predicted_y2)^2)) RMSE4 # 557115.3

Summary- In model7 we take Unemployment & CPI & Temperature & Holiday_Flag for linear model

Comparing all models

Rsqd_ <- c(Rsqd1,Rsqd2,Rsqd3,Rsqd4) RMSE_ <- c(RMSE1,RMSE2,RMSE3,RMSE4)

Model_Validation <- cbind(Rsqd_RMSE_) rownames(Model_Validation) <- c("model4 - (all variables)", "model5 - (Weekly_Sales on CPI & Temperature)", "model6 - (Weekly_Sales on log(Unemployment) & CPI & Temperature)", "model7 - (Weekly_Sales on Unemployment + CPI+ Temperature + Holiday_Flag)")

Model_Validation

Output-

Model_Validation

Rsqd_

model4 - (all variables) 0.02544366

model5 - (Weekly_Sales on CPI & Temperature) 0.02423897

model6 - (Weekly_Sales on log(Unemployment) & CPI & Temperature) 0.02270446

model7 - (Weekly_Sales on Unemployment + CPI+ Temperature + Holiday_Flag) 0.02538059

RMSE_

model4 - (all variables) 557097.3

model5 - (Weekly_Sales on CPI & Temperature) 557441.5

model6 - (Weekly_Sales on log(Unemployment) & CPI & Temperature) 557879.7

model7 - (Weekly_Sales on Unemployment + CPI+ Temperature + Holiday_Flag) 557115.3

Summery- By model validation technique we can see which model would perfome best between all models