Machine Learning

K-Nearest Neighbour - Numeric Attributes

• Euclidean distance – most frequently used:

$$D(A,B) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}$$

Manhattan distance:

$$D(A,B) = |a_1 - b_1| + |a_2 - b_2| + \dots + |a_n - b_n|$$

Minkowski distance – generalization of Euclidean and Manhattan:

$$D(A,B) = (|a_1 - b_1|^q + |a_2 - b_2|^q + ... + |a_n - b_n|^q)^{1/q}$$
 q - positive integer

K-Nearest Neighbour - Numeric Attributes

• Euclidean distance – most frequently used:

$$D(A,B) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}$$

Homework

Manhattan distance:

$$D(A,B) = |a_1 - b_1| + |a_2 - b_2| + \dots + |a_n - b_n|$$

Minkowski distance – generalization of Euclidean and Manhattan:

$$D(A,B) = (|a_1 - b_1|^q + |a_2 - b_2|^q + ... + |a_n - b_n|^q)^{1/q}$$
 q - positive integer

Student	Assignment 1	Assignment 2	Exam Grade
1	60	85	HD
2	50	40	Р
3	40	40	F
4	20	30	F
5	55	75	CR
6	50	90	D

Step 1. Calculate the distances

Student	Assignment 1	Assignment 2	Exam Grade	D(Isabella, student)
1	60	85	HD	
2	50	40	Р	
3	40	40	F	
4	20	30	F	
5	55	75	CR	
6	50	90	D	

Step 1. Calculate the distances

Student	Assignment 1	Assignment 2	Exam Grade	D(Isabella, student)
1	60	85	HD	10
2	50	40	Р	55
3	40	40	F	85
4	20	30	F	95
5	55	75	CR	15
6	50	90	D	25

Step 2. Identify the 1 Nearest Neighbour (i.e. shortest distance)

Student	Assignment 1	Assignment 2	Exam Grade	D(Isabella, student)
1	60	85	HD	10
2	50	40	Р	55
3	40	40	F	85
4	20	30	F	95
5	55	75	CR	15
6	50	90	D	25

Step 3. Return the class associated with the 1 Nearest Neighbour

Student	Assignment 1	Assignment 2	Exam Grade	D(Isabella, student)
1	60	85	HD	10
2	50	40	Р	55
3	40	40	F	85
4	20	30	F	95
5	55	75	CR	15
6	50	90	D	25

=> 1NN will predict HD for Isabella's exam grade.

Student	Assignment 1	Assignment 2	Exam Grade	D(Isabella, student)
1	60	85	HD	10
2	50	40	Р	55
3	40	40	F	85
4	20	30	F	95
5	55	75	CR	15
6	50	90	D	25

K-Nearest Neighbour - Nominal Attributes

Distance between attribute values is:

- 1 if the two values are not the same
- **0** if the two values are the same

name	gender	height	class
Cristina	F	1.7	tall
Jim	M	2.0	tall
Margaret	F	1.65	medium
Stephanie	F	1.88	tall
Caitlin	F	1.6	short
David	M	1.65	short
William	M	2.2	tall
Stephen	M	2.1	tall
Debbie	F	1.8	tall
Todd	M	1.95	medium

• Euclidean distance – most frequently used:

$$D(A,B) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}$$

What would be the prediction of 5-Nearest-Neighbor using Euclidian distance for Maria who is (F, 1.75)? Show your calculations. Do <u>not</u> apply normalization for this exercise (but note that in practical situations you need to do this for the numeric attributes). In case of ties, make random selection.

The 5 Nearest Neighbours are their distances are highlighted in green

```
Maria: gender=F, height=1.75

D(cristina, maria) = sqrt(0+(1.7-1.75)^2)=sqrt(0.0025) *tall

D(jim, maria) = sqrt(1+(2-1.75)^2)=sqrt(1.0625)

D(margaret, maria) = sqrt(0+(1.65-1.75)^2)=sqrt(0.01) *medium

D(stephanie, maria) = sqrt(0+(1.88-1.75)^2)=sqrt(0.0169) *tall

D(caitlin, maria) = sqrt(0+(1.6-1.75)^2)=sqrt(0.0225) *short

D(david, maria) = sqrt(1+(1.65-1.75)^2)=sqrt(1.01)

D(william, maria) = sqrt(1+(2.2-1.75)^2)=sqrt(1.2025)

D(stephen, maria) = sqrt(1+(2.1-1.75)^2)=sqrt(1.1225)

D(debbie, maria) = sqrt(0+(1.8-1.75)^2)=sqrt(0.0025) *tall

D(todd, maria) = sqrt(1+(1.95-1.75)^2)=sqrt(1.04)
```

Out of these 5NN: 3 tall, 1 medium, 1 short

```
Maria: gender=F, height=1.75

D(cristina, maria) = sqrt(0+(1.7-1.75)^2)=sqrt(0.0025) *tall

D(jim, maria) = sqrt(1+(2-1.75)^2)=sqrt(1.0625)

D(margaret, maria) = sqrt(0+(1.65-1.75)^2)=sqrt(0.01) *medium

D(stephanie, maria) = sqrt(0+(1.88-1.75)^2)=sqrt(0.0169) *tall

D(caitlin, maria) = sqrt(0+(1.6-1.75)^2)=sqrt(0.0225) *short

D(david, maria) = sqrt(1+(1.65-1.75)^2)=sqrt(1.01)

D(william, maria) = sqrt(1+(2.2-1.75)^2)=sqrt(1.2025)

D(stephen, maria) = sqrt(1+(2.1-1.75)^2)=sqrt(1.1225)

D(debbie, maria) = sqrt(0+(1.8-1.75)^2)=sqrt(0.0025) *tall

D(todd, maria) = sqrt(1+(1.95-1.75)^2)=sqrt(1.04)
```

Out of these 5NN: 3 tall, 1 medium, 1 short

=> 5NN classified Maria as tall

```
Maria: gender=F, height=1.75

D(cristina, maria) = sqrt(0+(1.7-1.75)^2)=sqrt(0.0025) *tall

D(jim, maria) = sqrt(1+(2-1.75)^2)=sqrt(1.0625)

D(margaret, maria) = sqrt(0+(1.65-1.75)^2)=sqrt(0.01) *medium

D(stephanie, maria) = sqrt(0+(1.88-1.75)^2)=sqrt(0.0169) *tall

D(caitlin, maria) = sqrt(0+(1.6-1.75)^2)=sqrt(0.0225) *short

D(david, maria) = sqrt(1+(1.65-1.75)^2)=sqrt(1.01)

D(william, maria) = sqrt(1+(2.2-1.75)^2)=sqrt(1.2025)

D(stephen, maria) = sqrt(1+(2.1-1.75)^2)=sqrt(1.1225)

D(debbie, maria) = sqrt(0+(1.8-1.75)^2)=sqrt(0.0025) *tall

D(todd, maria) = sqrt(1+(1.95-1.75)^2)=sqrt(1.04)
```

1R

- 1R stands for "1-rule"
- Generate 1 rule that tests the value of a single attribute
- The rule can be represented as 1-level decision tree (decision stump)
 - At the root: test the attribute value
 - Each branch corresponds to a value
 - Each leaf corresponds to a class

1R

- 1R stands for "1-rule"
- Generate 1 rule that tests the value of a single attribute

There are many attributes. How to select the best attribute?

The best attribute minimise the number of training examples being misclassified (i.e. number of errors).

age	income	student	credit_rating	buys_iPhone
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

age	income	student	credit_rating	buys_iPhone
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

age	income	student	credit_rating	buys_iPhone
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Total errors: 4/14

age	income	student	credit_rating	buys_iPhone
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Total errors: 4/14

Your turn to do the same for income, student and credit_rating!

Total errors: 5/14

Total errors: 4/14

Both features give the minimum number of errors

Let's randomly pick age for 1R

Total errors: 4/14

1R produces the following rule:

if age <= 30 then buys_iPhone = No Elif age = 31..40 then buys_iPhone = Yes Elif age > 40 then buys_iPhone = Yes

1R produces the following rule:

if age <= 30 then buys_iPhone = No Elif age = 31..40 then buys_iPhone = Yes Elif age > 40 then buys_iPhone = Yes

New example: age<=30, income=medium, student=yes, credit-rating=fair

1R produces the following rule:

if age <= 30 then buys_iPhone = No Elif age = 31..40 then buys_iPhone = Yes Elif age > 40 then buys_iPhone = Yes

New example: age<=30, income=medium, student=yes, credit-rating=fair

=> Classified as buys_iPhone = No

Step 1-3

Step 4

Step 6 (Normalisation)

