

Neural Networks

TCTI-VKAAI-17: Applied Artificial Intelligence

Huib Aldewereld

Leerdoelen

- Na deze les kan de student:
 - Concepten van neurale netwerken, bijv. neurons, perceptrons, layers uitleggen en toepassen in het ontwerp van een neuraal netwerk.
 - Weloverwogen keuzes maken met betrekking tot netwerktopologie, initialisatie, gewichten en leeralgoritme in het bouwen van een neuraal netwerk voor een specifiek doel.

Inhoudsopgave

- Wat is een neuraal netwerk?
 - Brein analogie
 - Concepten
 - Perceptron
- Wat een perceptron doet
 - Beperkingen van de perceptron
- Artificial neural networks
- Feed-forward netwerken
 - Bias
 - Sigmoid activation

3

Neural Network

- Geïnspireerd op menselijke intelligentie
- Het brein
 - Opgebouwd uit kleine modules: neurons, axonen, dendrieten
 - Elk simpel in functionaliteit (aan/uit)
 - Samenspel van veelvoud (86 miljard neuronen, >1 biljard verbindingen) maakt mens intelligent
- Als we dat nou eens nabouwen, hebben we dan ook meteen een intelligent systeem?

Neuron

- Basiscomponenten:
 - Nucleus ('reken'kern: aan of uit)
 - Axon ('verbinding' / output)
 - Dendrites ('ontvangers' / input)
 - Synapse = verbinding tussen axon en dendrite
- Neurotransmitters zorgen voor informatieoverdracht van axon naar dendrites

 Door verandering aan de kern, ouput en ontvangers kan een neuron zich 'aanpassen', d.w.z. leren wanneer aan/uit

Artificial Neuron

- Synaps is verbinding met axon van voorgaande neuronen
- Signalen op de synaps hebben een invloed op de activatie van het neuron
- Als het neuron voldoende wordt gestimuleerd, vuurt het
- Vuren betekent een signaal over het axon naar volgende neuronen

Artificial Neuron

- Input
 - 0 255 (grijs-/kleurwaarden in plaatje)
 - Reëel getal tussen -1 1
- Elke verbinding met axons gewogen; factor die de invloed van dat neuron bepaald

 Als de optelling van de inputs (gewogen naar belang) hoger is dan de threshold, stimuleert het neuron zijn opvolgers (via axon)

$$output = g = \begin{cases} 0 & \text{if } \sum_{i=1}^{n} w_i x_i < t \\ 1 & \text{if } \sum_{i=1}^{n} w_i x_i \ge t \end{cases}$$
Activation function

Perceptron

- Alleen inputs, gewichten en output
- Input is multi-dimensional (vector)
- Typisch 'fully connected'
 - Elke input heeft een invloed op de output

- Berekend gewogen som van inputs om output(s) te bepalen
- Eenvoudige binaire classifier
 - Spam/ham, vogel/niet vogel, ...

Voorbeeld: AND / OR / INVERT

9

Inhoudsopgave

- Wat is een neuraal netwerk?
 - Brein analogie
 - Concepten
 - Perceptron
- Wat een perceptron doet
 - Beperkingen van de perceptron
- Artificial neural networks
- Feed-forward netwerken
 - Bias
 - Sigmoid activation

Wat een perceptron doet

- Binair, lineair onderscheiden van classes
 - Gebaseerd op input(s)

11

Beperkingen van Perceptron

- Alleen lineaire onderscheidbaarheid
- Niet in staat om 'grillige' vormen in de classificatiegrens te leren

Inhoudsopgave

- Wat is een neuraal netwerk?
 - Brein analogie
 - Concepten
 - Perceptron
- Wat een perceptron doet
 - Beperkingen van de perceptron
- Artificial neural networks
- Feed-forward netwerken
 - Bias
 - Sigmoid activation

13

Artificial neural network

- Perceptron
 - Simplistisch
 - Redelijk krachtig
 - Maar, met beperkingen
- Maar, gebaseerd op 1 enkele neuron (ook wel unit genoemd)
- Artificial neural network is een verzameling van verbonden units
 - Opgedeeld in lagen

Artificial neural network

- Multi-layered neural network
 - Multi-layered Perceptron (MLP)

Input layer

Hidden layer

Output layer

- Elke verbinding heeft een gewicht
- Fully connected (feed-forward):
 - Elk neuron op laag i is verbonden met elk neuron op laag i+1
- Recurrent:
 - Neuronen kunnen verbindingen hebben met vorige lagen (out of scope)

15

Inhoudsopgave

- Wat is een neuraal netwerk?
 - Brein analogie
 - Concepten
 - Perceptron
- Wat een perceptron doet
 - Beperkingen van de perceptron
- Artificial neural networks
- Feed-forward netwerken
 - Bias
 - Sigmoid activation

Feed-forward network

- Multi-layered neural network
 - Multi-layered Perceptron (MLP)

Input layer

Hidden layer

Output layer

- Input propageert voorwaarts door het netwerk
- Inputs → Hidden → Output
- Output berekend door:

$$O = g(w_{3,5}a_3 + w_{4,5}a_4)$$

= $g(w_{3,5}g(w_{1,3}a_1 + w_{2,3}a_2) + w_{4,5}g(w_{1,4}a_1 + w_{2,4}a_2))$

17

Bias

- Gebruik threshold hinderlijk
- Makkelijker te representeren door invoer van een bias

$$b \equiv -threshold$$

$$output = g = \begin{cases} 0 & \text{if } \vec{w} \cdot \vec{x} + b < 0 \\ 1 & \text{if } \vec{w} \cdot \vec{x} + b \ge 0 \end{cases}$$

 Alternatief, neem bias op als input (altijd -1):

$$output = g = \begin{cases} 0 & \text{if } \vec{w} \cdot \vec{x} < 0 \\ 1 & \text{if } \vec{w} \cdot \vec{x} \ge 0 \end{cases}$$

Leren van NN

- Maak een aanpassing aan de gewichten, zodanig dat de output dichter bij de gewenste output komt
- De threshold functie (step-function) die we nu gebruiken maakt dit erg lastig!

Sigmoid neuron

- Verander activatiefunctie van step-functie (threshold) naar een continue functie
- Sigmoid functie:

$$\sigma(z) = \frac{1}{(1 + e^{-z})}$$

- Neem een reëel getal en "plet" die tot een waarde tussen 0 en 1
 - Waarbij grote negatieve waarden 0 worden
 - En grote positieve waarden 1

Alternatieven

- Nadelen Sigmoid:
 - Sigmoid verzadigd en stopt gradients
 - Sigmoid output niet zero-centered
- Tanh
 - Sigmoid, maar dan rondom 0

$$tanh(z) = 2\sigma(2x) - 1$$

- ReLU
 - Momenteel populairst

$$f(z) = max(0, z)$$

