CS 1511 Homework 2

Mathew Varughese

Wednesday, Jan 16

3. (a)

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$ Assume $\exists \text{ TM } R \text{ that decides } E_{TM}.$

Construct Turing Machine S that decides $HALT_{TM}$.

S = "On input $\langle M, w \rangle$ where M is a TM and w is a string:

1. Construct TM M' as follows:

M' = "On input x:

- (a) Run M on input w
- (b) If M accepts w, reject. Otherwise accept.
- 2. Run R on input $\langle M' \rangle$
- 3. If R accepts $\langle M' \rangle$ reject otherwise accept.

Assume that $\langle M, w \rangle \in HALT_{TM}$. Since $\langle M, w \rangle \in HALT_{TM}$, M halts on input w, so $L(M') = \Sigma^*$. Since $L(M') \neq \emptyset$, $\langle M \rangle \notin E_{TM}$. Since R is a decider for E_{TM} , running input $\langle M' \rangle$ will cause R to reject $\langle M' \rangle$, so S will accept $\langle M, w \rangle$.

Assume that $\langle M, w \rangle \notin HALT_{TM}$. Since $\langle M, w \rangle \notin HALT_{TM}$, M does not halt on input w, so $L(M') = \emptyset$. Since $L(M') = \emptyset$, $\langle M \rangle \in E_{TM}$. Since R is a decider for E_{TM} , running input $\langle M' \rangle$ will cause R to accept $\langle M' \rangle$, so S will reject $\langle M, w \rangle$.

3. (b)

 $E_{TM} = \{ \langle M \rangle \mid M \text{is a TM and } L(M) = \Sigma^* \}$

Assume $\exists \text{ TM } R \text{ that decides } E_{TM}.$

Construct Turing Machine S that decides $HALT_{TM}$.

S = "On input $\langle M, w \rangle$ where M is a TM and w is a string:

1. Construct TM M' as follows:

M' = "On input x:

- (a) Run M on input w
- (b) If M accepts w, <u>reject</u>. Otherwise <u>accept</u>.

- 2. Run R on input $\langle M' \rangle$
- 3. If R accepts $\langle M' \rangle$ reject otherwise accept.

Assume that $\langle M, w \rangle \in HALT_{TM}$. Since $\langle M, w \rangle \in HALT_{TM}$, M halts on input w, so $L(M') = \Sigma^*$. Since $L(M') \neq \emptyset$, $\langle M \rangle \notin E_{TM}$. Since R is a decider for E_{TM} , running input $\langle M' \rangle$ will cause R to reject $\langle M' \rangle$, so S will accept $\langle M, w \rangle$.

Assume that $\langle M, w \rangle \notin HALT_{TM}$. Since $\langle M, w \rangle \notin HALT_{TM}$, M does not halt on input w, so $L(M') = \emptyset$. Since $L(M') = \emptyset$, $\langle M \rangle \in E_{TM}$. Since R is a decider for E_{TM} , running input $\langle M' \rangle$ will cause R to accept $\langle M' \rangle$, so S will reject $\langle M, w \rangle$.