Formules et notes

Nicolas Bellemare 2019-02-12

Contents

P	reface	5
1	Introduction actuariat 2	7
	1.1 Théorème de la fonction quantile	7
	1.2 Espérance tronqué	
	1.3 Fonction Stop-Loss	
	1.4 Fonction quantile	
	1.5 Fonction quantile et espérance	
	1.6 TVaR	
2	Stats	11
	2.1 Définitions	11
	2.2 Formules	
3	Technical Details	13
4	Preuves	15
	4.1 Théorème (1.1) de la fonction quantile	15
	4.2 Fonction Stop-Loss(1.3)	15
	4.3 Tvar	

4 CONTENTS

Preface

6 CONTENTS

Introduction actuariat 2

1.1 Théorème de la fonction quantile

Theorem 1.1.

$$\begin{split} U \sim Unif(0,1) \\ Y &= F_x^{-1}(u) \Rightarrow Y \sim X \\ F_y(x) &= F_{F_X^{-1}(u)}(x) = F_X(x) \ pour \ x \in \mathbb{R} \end{split}$$

ainsi:

$$X = F_x^{-1}(u)$$

Voir preuve 4.1

1.2 Espérance tronqué

$$\begin{split} E[X \times \mathbf{1}_{\{X \ge x\}}] &= \int_{-\infty}^{\infty} y \times \mathbf{1}_{\{y \ge x\}} f_X(y) \, dy \\ &= \int_{-\infty}^{x} 0 \times f_X(y) dy + \int_{x}^{\infty} y f_x(y) \, dy \\ &= \int_{x}^{\infty} y f_x(y) \, dy \end{split}$$

1.3 Fonction Stop-Loss

$$\Pi_X(d) = E[\max(X - d, 0)] \quad \text{pour } d \in \mathbb{R}$$

Voir preuve 4.2

1.3.1 Variable continue

$$\Pi_X(d) = \int_0^\infty \max(X - d, 0) f_X(x) dx$$

1.3.2 Variable discrète sur (0, 1h, 2h, ...)

$$f_X(kh) = P(X - kh), \ k \in \mathbb{N}, \ h > 0, \ d = k_0h$$

$$\Pi_X(k_0h) = E[\max(X - k_0h, 0)] = \sum_{k=0}^{\infty} \max(kh - k_0h, 0)P(X = kh) = \sum_{k_0 = k+1}^{\infty} (kh - k_0h)P(X = kh)$$

1.3.3 Propriété

$$\Pi_X(0) = \lim_{d \to 0} \Pi_X(d) = \lim_{d \to 0} E[\max(X - d, 0)] = E[X]$$

1.4 Fonction quantile

1.4.1 Première forme

$$\begin{split} \int_{k}^{1} F_{X}^{-1}(u) \, du &= \int_{k}^{1} [F_{X}^{-1}(u) - F_{X}^{-1}(k) + F_{X}^{-1}(k)] \, du \\ &= \int_{k}^{1} (F_{X}^{-1}(u) - F_{X}^{-1}(k)) \, du + F_{X}^{-1}(k) \int_{k}^{1} (1) \, du \\ &= \int_{0}^{1} \max(F_{X}^{-1}(u) - F_{X}^{-1}(k), \, 0) \, du + F_{X}^{-1}(k) (1 - k) \\ &= E[\max(F_{X}^{-1} - F_{X}^{-1}(k), \, 0)] + (1 - k) F_{X}^{-1}(k) \\ &= E[\max(X - F_{X}^{-1}, \, 0)] + (1 - k) F_{X}^{-1}(k) \end{split}$$

1.4.2 Deuxième forme

$$\int_{k}^{1} F_{X}^{-1}(u) \, du = \Pi_{X}(F_{X}^{-1}(k)) + (1-k)F_{X}^{-1}(k)$$

En remplaçant $\Pi_X(F_X^{-1}(k))$ par 4.2 on obtient:

$$\begin{split} &= E[X \times 1_{\{X > F_X^{-1}(k)\}}] - F_X^{-1}(k) \bar{F}_X(F_X^{-1}(k)) + (1-k) F_x^{-1}(k) \\ &= E[X \times 1_{\{X > F_X^{-1}(k)\}}] + F_X^{-1}(k) (F_X(F_X^{-1}(k)) - k) \end{split}$$

1.5 Fonction quantile et espérance

$$\int_0^1 F_X^{-1}(u) \, du = E[F_X^{-1}(x)]$$
$$\int_0^1 F_X^{-1}(u)(1) \, du = E[X]$$

Généralisation:

$$\int_0^1 \phi(F_X^{-1}(u)) \, du = E[\phi(F_X^{-1}(u))] = E[\phi(X)]$$

1.6. TVAR 9

1.6 TVaR

$$VaR_k(X) = F_X^{-1}(k)$$

$$\text{TVaR}_k(X) = \frac{1}{1-k} \int_k^1 \text{VaR}_u(X) \, du$$

1.6.1 Expression alternative 1

$$\text{TVaR}_k(X) = \frac{1}{1-k} \Pi_X(\text{VaR}_k(X)) + \text{VaR}_k(X)$$

Voir preuve 4.3.1

1.6.2 Expression alternative 2

$$\text{TVaR}_k(X) = \frac{1}{1-k} (E[X \times 1_{\{X > \text{VaR}_k(X)\}}] + \text{VaR}_k(X) \times (F_X[\text{VaR}_k(X)] - k))$$

Voir preuve 4.3.2

1.6.3 Expression alternative 3

$$TVaR_k(X) = \frac{P(X \ge VaR_k(X))}{(1-k)} \times E[X|X \ge VaR_k(X)] + \left(1 - \frac{P(X \ge VaR_k(X))}{(1-k)}\right) \times VaR_k(X), \quad k \in (0,1)$$

Voir preuve 4.3.3

Stats

2.1 Définitions

Observation: réalisation d'une variable aléatoire

Échantillon aléatoire de F: ensemble de V.A. iid

Statistiques: fonction d'un échantillon aléatoire et de constantes connues

2.2 Formules

2.2.1 Moyenne échantilonnale:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

2.2.2 Variance échantillonale:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

2.2.3 Loi faible des grands nombres:

Soit $X_1, X_2, ...,$ une suite de V.A. iid. On suppose $var(X_i) < \infty$ et $E[X] = \mu$, lorsque $n \to \infty$

$$P(|(\bar{X}_n - \mu)| > \epsilon) \to \infty \quad \forall \epsilon > 0$$

 \bar{X}_n converge en probabilité vers μ

$$\bar{X}_n \stackrel{p}{\to} \mu$$

Preuve par Tchebycheff:

$$P(|\bar{X}_n - \mu| > \epsilon) \le \frac{var(X_i)}{n\epsilon^2}$$

12 CHAPTER 2. STATS

2.2.4 Statistiques d'ordre d'un échantillon:

$$X_{(1)} = \min(X_1, \dots, X_n)$$

$$F_{X_{(1)}}(x) = 1 - (1 - F_X(x))^n$$

$$X_{(n)} = \max(X_1, \dots, X_n)$$

$$F_{X_{(n)}}(x) = F_X(x)^n$$

$$f_{X_{(k)}}(x) = \frac{n!}{(k-1)!1(n-k)!} F_X(x)^{k-1} (1 - F_X(x))^{n-k} f_X(x)$$

2.2.5 Distribution de \bar{X} :

Soit X_1, \ldots, X_n , un échantillon de $N(\mu, \frac{\sigma^2}{n})$,

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim N(\mu, \frac{\sigma^2}{n})$$

$$Z_n = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

utilisation de la distribution d'échantillonage de \bar{X}_n : Vérifier une affirmation Trouver un interval plausibe *Déterminer une taille d'échantillon minimal

2.2.6 Somme de normales au carré

Soit $Z_1, \ldots, Z_n \sim N(0, 1)$

$$\sum_{i=1}^{n} Z_i^2 \sim \chi_n^2$$

Soit $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$

$$\frac{(n-1)S_n^2}{\sigma^2} = \frac{1}{\sigma^2} sum_{i=1}^n (X_i - \bar{X}_n)^2 \sim \chi_{(n-1)}^2$$

 $S_n^2 \perp \bar{X}_n$

$$E[S_n^2] = \frac{\sigma^2}{(n-1)} E[\frac{(n-1)}{\sigma^2} S_n^2] = \frac{\sigma^2}{(n-1)} (n-1) = \sigma^2$$

Technical Details

Now I'll teach you some crazy math, but I need to work it out first...

Preuves

4.1 Théorème (1.1) de la fonction quantile

Proof.

$$\begin{split} F_{F_x^{-1}(u)}(x) &= P(F_X^{-1} \leq x) \\ &= P(U \leq F_X(x)) \\ &= F_X(x) \end{split}$$

4.2 Fonction Stop-Loss(1.3)

Proof.

$$\begin{split} \Pi_X(d) &= E[\max(X-d,0)] \\ &= E[X1_{\{X>d\}} - d \times 1_{\{X>d\}}] \\ &= E[X1_{\{X>d\}}] - d\bar{F}(d) \end{split}$$

4.3 Tvar

4.3.1 Expresion alternative 1(1.6.1)

Proof. On applique 1.4.1, ainsi:

$$\begin{aligned} \text{TVaR}_k(X) &= \frac{1}{(1-k)} \int_k^1 \text{VaR}_k(u) \, du \\ &= \frac{1}{1-k} (\Pi_X(\text{VaR}_k(X))) + \text{VaR}_k(X) \end{aligned}$$

4.3.2 Expression alternative 2(1.6.2)

Proof. On remplace $\Pi_X(VaR_k(X))$ dans 4.3.2 par sa définition 1.3

$$TVaR_{k}(X) = VaR_{k}(X) + \frac{1}{(1-k)} (E[X \times 1_{\{X > VaR_{k}(X)\}}] - VaR_{k}(X)\bar{F}(VaR_{k}(X)))$$

$$= \frac{1}{(1-k)} [E[X \times 1_{\{X > VaR_{k}(X)\}}] - Var_{k}(X)(\bar{F}_{X}(VaR_{k}(X)) - (1-k))]$$

$$= \frac{1}{(1-k)} [E[X \times 1_{\{X > VaR_{k}(X)\}}] - Var_{k}(X)(F_{X}(VaR_{k}(X)) - k)]$$

Pour une V.A. continue $VaR_k(X)(F_X(VaR_k(X)) - k) = 0$ donc,

$$TVaR_k(X) = \frac{E[X \times 1_{\{X > VaR_k(X)\}}]}{P(X > VaR_k(X))} = E[X|X > VaR_k(X)]$$

4.3.3 Expression alternative 3(1.6.3)

On fait la preuve à partir de l'expression alternative 2:

Proof.

$$\begin{aligned} \text{TVaR}_{k}(X) &= \frac{1}{(1-k)} [E[X \times 1_{\{X > \text{VaR}_{k}(X)\}}] - \text{Var}_{k}(X) (F_{X}(\text{VaR}_{k}(X)) - k)] \\ &= \frac{1}{(1-k)} [E[X \times 1_{\{X > \text{VaR}_{k}(X)\}} + X \times 1_{\{X = \text{VaR}_{k}(X)\}} - X \times 1_{\{X = \text{VaR}_{k}(X)\}}] - \text{Var}_{k}(X) (1 - \bar{F}_{X}(\text{VaR}_{k}(X)) - (1 - \frac{1}{(1-k)} \{E[X \times 1_{\{X \ge \text{VaR}_{k}(X)\}}] - E[X \times 1_{\{X = \text{VaR}_{k}(X)\}}] + \text{VaR}_{k}(X) [(1-k) - P(X > \text{VaR}_{k}(X))] \} \\ &= \frac{1}{(1-k)} \{E[X \times 1_{\{X \ge \text{VaR}_{k}(X)\}}] - (E[X \times 1_{\{X = \text{VaR}_{k}(X)\}}] + P(X > \text{VaR}_{k}(X)) \times \text{VaR}_{k}(X)) \} \end{aligned}$$

Deux cas possibles: 1)V.A. discrète $P(X = \operatorname{VaR}_k(X)) > 0$ 2)V.A. continue $P(X = \operatorname{VaR}_k(X)) = 0$ Donc la portion $(E[X \times 1_{\{X = \operatorname{VaR}_k(X)\}}] + P(X > \operatorname{VaR}_k(X)) \times \operatorname{VaR}_k(X)) = \operatorname{VaR}_k(X)[1 - \frac{P(X \ge \operatorname{VaR}_k(X))}{(1-k)}]$