Q3-1. HTUに基づく物質移動係数 k_{LITIL} を各流量で求めよ。

Q3-2. 実験から、無次元濃度、物質移動係数 $k_{\text{L Exp}}$ を求めよ。

Q3-3. 理論吸収速度式に基づく物質移動係数 $k_{\text{L}}^{\text{Theo}}$ もあわせて、 接触時間はと物質移動係数との関係を両対数プロットせよ。

HTU

H_Iと液側物質移動係数k_I

$$H_{\rm L} = \frac{\Gamma}{\rho_{\rm L} k_{\rm L}}$$

式(4.4.46)

出口 CO_2 濃度 C_2

$$k_{\rm L} = \left(\frac{\Gamma}{\rho_{\rm L}L}\right) \ln \frac{1}{E}$$
 $E = \frac{C_i - C_2}{C_i - C_1}$

$$E = \frac{C_i - C_2}{C_i - C_1}$$

式(4.4.29)

式(4.4.24)

実験

無次元濃度E

物質移動係数線

HTUの推算

流動状態を判別

層流から擬層流

$$Re_{\text{LC1}} = 93.3Sc^{-0.24}Ga^{0.08} \left(\frac{\sigma}{72}\right)^{0.3}$$
 $\pm (4.4.40)$

擬層流から乱流

$$Re_{\rm L} \le 1,000 \sim 2,000$$

擬層流

$$H_{\rm L} \left(\frac{\rho_{\rm L}^2 g}{\mu_{\rm L}^2}\right)^{1/3} = 2.36 Re_{\rm L}^{1.0} Sc^{0.5}$$
 $\pm (4.4.42)$

刮流

$$H_{\rm L} = 14LRe_{\rm L}^{0.3}Sc^{0.56}Ga^{-0.25}$$

$$Sc = \frac{\mu_L}{\rho_L D_L}$$

$$Ga = \frac{\rho_L^2 g L^3}{\mu_L^2}$$

式(4.4.45)

 $H_{\rm L}$ と液側物質移動係数 $k_{\rm L}$ $H_{\rm L} = \frac{1}{\rho_{\rm L} k_{\rm L}}$ 式(4.4.46)

$$H_{\rm L} = \frac{\Gamma}{\rho_{\rm L} k_{\rm L}} \qquad \vec{\Xi}(4)$$

式(4.4.29)

k → 出口濃度の推算 式(4.4.24)