COMP 3711

Tutorial 3a

Question 1

Using the *Master Theorem*, give asymptotic tight bounds for T(n)

(a)
$$T(1) = 1$$

 $T(n) = 3T(n/4) + n$ if $n > 1$

(b)
$$T(1) = 1$$

 $T(n) = 3T(n/4) + 1$ if $n > 1$

(c)
$$T(1) = 1$$

 $T(n) = 4T(n/2) + n^2$ if $n > 1$

(d)
$$T(1) = 1$$

 $T(n) = 4T(n/3) + n^2 \text{ if } n > 1$

Question 1

Using the *Master Theorem*, give asymptotic tight bounds for T(n)

(e)
$$T(1) = 1$$

 $T(n) = 9T(n/3) + n^2$ if $n > 1$

(f)
$$T(1) = 1$$

 $T(n) = 10T(n/3) + n^3 \text{ if } n > 1$

(g)
$$T(1) = 1$$

 $T(n) = 99T(n/10) + n^2$ if $n > 1$

(h)
$$T(1) = 1$$

 $T(n) = 101T(n/10) + n^2$ if $n > 1$

Recall the version of the Master Theorem for equalities we saw Let $a \ge 1, b > 1$ and $c \ge 0$ be constants.

$$T(n) = aT(n/b) + f(n), \qquad c = \log_b a$$

1. If
$$f(n) = \theta(n^{c-\epsilon})$$
 for some $\epsilon > 0$ => $\mathsf{T}(n) = \theta(n^c)$

2. If
$$f(n) = \theta(n^c)$$
 => $T(n) = \theta(n^c \log n)$

3. If
$$f(n) = \theta(n^{c+\epsilon})$$
 for some $\epsilon > 0$ & $af(n/b) \le df(n)$ for some $d < 1$ and large enough $n = T(n) = \theta(f(n))$

Let $f(n) = \theta(n^k)$ for some k. This simplifies to

What about 2nd part of (3)?

1. If
$$k < c$$
 => $T(n) = \theta(n^c)$

2. If
$$k = c$$
 => $T(n) = \theta(n^c \log n)$

3. If
$$k > c$$
 => $T(n) = \theta(f(n)) = \theta(n^k)$

Note: $af(n/b) \le df(n)$ becomes $a\left(\frac{n}{b}\right)^k \le dn^k$, i.e $\frac{a}{b^k} \le d$.

This is true iff $\beta = c - k = \log_b a - k \log_b b \le \log_b d.$

Recall k > c. Then $\beta < 0$. Set $d = b^{\beta} < 1$. Then $\log_b d = \beta$ and 2^{nd} part of condition 3 is satisfied.

We use the specialized version of Master Theorem from previous page: Let $a, b \ge 1$ and $c \ge 0$ be constants.

$$T(n) = aT(n/b) + f(n)$$
, $c = \log_b a$. Let $f(n) = \theta(n^k)$ for some k .

- 1. If $k < c \implies T(n) = \theta(n^c)$
- 2. If $k = c \Rightarrow T(n) = \theta(n^c \log n)$
- 3. If $k > c \Rightarrow \mathsf{T}(n) = \theta(f(n)) = \theta(n^k)$
- (a) T(n) = 3T(n/4) + n: This is case 3 because $1 > \log_4 3$.

$$\Rightarrow T(n) = \Theta(n).$$

(b) T(n) = 3T(n/4) + 1: This is case 1 because $0 < \log_4 3$.

$$\Rightarrow T(n) = \Theta(n^{\log_4 3}) = \Theta(n^{0.7924...}).$$

(c) $T(n) = 4T(n/2) + n^2$: This is case 2 because $2 = \log_2 4$.

$$\Rightarrow T(n) = \Theta(n^2 \log n).$$

(d) $T(n) = 4T(n/3) + n^2$: This is case 3 because 2 > $\log_3 4$.

$$\Rightarrow T(n) = \Theta(n^2).$$

We use specialized version of Master Theorem from the previous page: Let $a, b \ge 1$ and $c \ge 0$ be constants.

$$T(n) = aT(n/b) + f(n)$$
, $c = \log_b a$. Let $f(n) = \theta(n^k)$ for some k .

- 1. If $k < c \implies T(n) = \theta(n^c)$
- 2. If $k = c \Rightarrow T(n) = \theta(n^c \log n)$
- 3. If $k > c \Rightarrow \mathsf{T}(n) = \theta(f(n)) = \theta(n^k)$
- (e) $T(n) = 9T(n/3) + n^2$: This is case 2 because $2 = \log_3 9$.

$$\Rightarrow T(n) = \Theta(n^2 \log n).$$

(f) $T(n) = 10T(n/3) + n^3$: This is case 3 because $3 > \log_3 10$.

$$\Rightarrow T(n) = \Theta(n^3).$$

(g) $T(n) = 99T(n/10) + n^2$: This is case 3 because $2 > \log_{10} 99$.

$$\Rightarrow T(n) = \Theta(n^2).$$

(h) $T(n) = 101T(n/10) + n^2$: This is case 1 because $2 < \log_{10} 101$.

$$\Rightarrow T(n) = \Theta(n^{\log_{10} 101}).$$