МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Лабораторная работа №1:

«Исследование характеристик источника электрической энергии постоянного тока»

по дисциплине Электротехника Вариант №12

Выполнил: Студент группы

R3237 Осинина Т. С

Преподаватель: Горшков К.С.

- 1) **Цель работы:** исследование режимов работы и экспериментальное определение параметров схемы замещения источника электрической энергии.
- 2) Объект исследования: исследование режимов работы.
- 3) Метод экспериментального исследования:
 - 1. Анализ
 - 2. Лабораторный эксперимент (в программе LTspice)
- 4) Рабочие формулы

(1)	$R = \sum_{i=1}^{n} R_i$	(5) $r_k = \frac{\left(U_{n_k} - U_{n_{k+1}}\right)}{I_{n_{k+1}} - In_k}$
(2)	$R = \frac{R_1 R_2}{R_1 + R_2}$	(6) $r = \sqrt{\sum_{k=2}^{9} r_k^2 / 8}$
(3)	$I_{n_k} = \frac{u_{n_k}}{R_{n_k}}$	(7) $\eta_{k=} \frac{R_{n_k}}{(r + Rn_k)}$
(4)	$P_{n_k} = \frac{U_{n_k}^2}{R_{n_k}}$	(8) $Isc = \frac{U_0}{r}$

5) Схема установки

1. Схема замещения источника электрической энергии и нагрузки

6) Определение значения параметров элементов источника питания г и Е

До начала измерений нужно разобраться со значением r и E, так как вариант №12, будем работать со схемой 1.2:

1.2. Схема варианта №12

Чтобы найти r, нужно с помощью эквивалентных преобразований, найти $R_{\scriptscriptstyle ЭКВ}$, используя формулы (1), (2), находим $R_{\scriptscriptstyle ЭКВ}$:

$$m R_{_{2KB}} = R_1 + R_2 + rac{R_5 \cdot R_8}{R_5 + R_8} = 12 + 8 + rac{30 \cdot 20}{50} = 32 \
m Om$$
 Следовательно, $m r= R_{_{2KB}} = 32 \
m Om, E = 38,4 \
m B$

7) Результаты измерений

k	Измерения		Расчёт r = 32[Ом], E = 38,4 [В], Isc =1,2 [А]			
0	Rn [Ом]	Un [B]	In [A]	Pn [BT]	η	r [Ом]
1	r=32 Ом	U0=38.4	0	0	1	-
2	2475	37,91	0,015	0,58	0,99	32,00191
3	1100	37,31	0,034	1,27	0,97	31,99848
4	642	36,58	0,057	2,08	0,95	31,99985
5	413	35,64	0,086	3,08	0,93	32,00117
6	275	34,4	0,125	4,30	0,9	31,99905
7	183	32,7	0,179	5,84	0,85	32,00059
8	79	27,33	0,346	9,45	0,71	31,99721
9	69	26,23	0,380	9,97	0,68	32,00057
10	32	19,2	0,6	11,52	0,5	32,00813
11	15	12,26	0,817	10,01	0,32	32,00028
12	10	9,14	0,914286	8,36	0,24	31,99926

13	5	5,19	1,037838	5,39	0,14	32,00005
14	0,1	0,12	1,19626	0,14	0,003	

Рассчитаем In, используя формулу (3), $I_2=U/R=37,91/2475=0,015A$

Дальше найдем Pn, используя формулу (4): $P_2=U^2/R=37,91^2/2475=0,58$ BT

Находим внутреннее сопротивление и проводим его оценку (формулы (5), (6)):

(формулы (5), (6)):
$$r_2 = \frac{U_2 - U_3}{I_3 - I_2} = \frac{37,91 - 37,31}{0,034 - 0,015} = 31,97895 \text{ Ом}$$

$$r = \sqrt{\sum_{k=2}^{9} r_k^2 / 8} = 31,99947 \text{ Om}$$

Рассчитаем КПД, используя формулу (7):

$$\eta_{2} = \frac{R_{n_2}}{(r + Rn_2)} = \frac{2475}{(32 + 2475)} = 0,987$$

По формуле (8) находим Isc:

$$Isc = \frac{U_0}{r} = \frac{38.4}{32} = 1.2 \text{ A}$$

8) Графики

9) Вывод

Во время выполнения лабораторной работы исследовали режимы работы и определили параметры схемы замещения источника электрической энергии. Также построили графики зависимости мощности от силы тока, КПД от силы тока и график расчётной внешней характеристики с точками экспериментальных данных. Дополнительно познакомились с программой LTspice. Исследуя графики и таблицу, опишем каждый режим: согласованный режим — режим, который отдает максимальную мощность, на графике зависимости мощности от силы тока, видим, что максимальная мощность при I=0.6, при $U=U_0/2$; Режим холостого хода — разрыв цепи, сопротивление приемника стремится к бесконечности, U_0 , как раз, напряжение холостого хода; Режим короткого замыкания, режим при R=0, при этом сила тока быстро возрастает до большого значения(R=0,1, I=1,19).