

planetmath.org

Math for the people, by the people.

real and complex embeddings

Canonical name RealAndComplexEmbeddings

Date of creation 2013-03-22 13:54:43 Last modified on 2013-03-22 13:54:43 Owner alozano (2414) Last modified by alozano (2414)

Numerical id 4

Author alozano (2414)
Entry type Definition
Classification msc 12D99
Related topic GaloisGroup

Related topic TotallyRealAndImaginaryFields
Related topic RamificationOfArchimedeanPlaces

Defines real embedding
Defines complex embedding

Let L be a subfield of \mathbb{C} .

Definition 1.

1. A real embedding of L is an injective field homomorphism

$$\sigma\colon L\hookrightarrow \mathbb{R}$$

2. A (non-real) complex embedding of L is an injective field homomorphism

$$\tau\colon L\hookrightarrow\mathbb{C}$$

such that $\tau(L) \nsubseteq \mathbb{R}$.

3. We denote Σ_L the set of all embeddings, real and complex, of L in \mathbb{C} (note that all of them must fix \mathbb{Q} , since they are field homomorphisms).

Note that if σ is a real embedding then $\bar{\sigma} = \sigma$, where $\bar{\cdot}$ denotes the complex conjugation automorphism:

$$\overline{\cdot}: \mathbb{C} \to \mathbb{C}, \quad \overline{(a+bi)} = a-bi$$

On the other hand, if τ is a complex embedding, then $\bar{\tau}$ is another complex embedding, so the complex embeddings always come in pairs $\{\tau, \bar{\tau}\}$.

Let $K \subseteq L$ be another subfield of \mathbb{C} . Moreover, assume that [L:K] is finite (this is the dimension of L as a vector space over K). We are interested in the embeddings of L that fix K pointwise, i.e. embeddings $\psi \colon L \hookrightarrow \mathbb{C}$ such that

$$\psi(k) = k, \quad \forall k \in K$$

Theorem 1. For any embedding ψ of K in \mathbb{C} , there are exactly [L:K] embeddings of L such that they extend ψ . In other words, if φ is one of them, then

$$\varphi(k) = \psi(k), \quad \forall k \in K$$

Thus, by taking $\psi = \operatorname{Id}_K$, there are exactly [L:K] embeddings of L which fix K pointwise.

Hence, by the theorem, we know that the order of Σ_L is $[L : \mathbb{Q}]$. The number $[L : \mathbb{Q}]$ is usually decomposed as

$$[L:\mathbb{Q}] = r_1 + 2r_2$$

where r_1 is the number of embeddings which are real, and $2r_2$ is the number of embeddings which are complex (non-real). Notice that by the remark above this number is always even, so r_2 is an integer.

Remark: Let ψ be an embedding of L in \mathbb{C} . Since ψ is injective, we have $\psi(L) \cong L$, so we can regard ψ as an automorphism of L. When L/\mathbb{Q} is a Galois extension, we can prove that $\Sigma_L \cong \operatorname{Gal}(L/\mathbb{Q})$, and hence proving in a different way the fact that

$$\mid \Sigma_L \mid = [L : \mathbb{Q}] = \mid \operatorname{Gal}(L/\mathbb{Q}) \mid$$