Machine learning II, unsupervised learning and agents: density estimation

Maximum likelihood

KL divergence

Kernel density estimation

Density estimation

Objective : compute a probability distribution that represents the data well.

Maximum Likelihood

The Maximum Likelihood method is one example method.

We observe a dataset $D_n = (x_1, ..., x_n)$.

We first need to choose a **model** (which is the distribution) of the dataset, p.

Then, we must optimize the parameters of this model, noted θ .

Maximum Likelihood

The likelihood (vraisemblance) of the model is

$$L(\theta) = p(x_1, \dots, x_n | \theta)$$
 (1)

Here, p denotes the probability of observing the sample (x_1, \ldots, x_n) , when the model had the parameter θ , (or the probability density, in the corresponding context).

Maximum Likelihood

The likelihood (vraisemblance) of the model is

$$L(\theta) = p(x_1, \dots, x_n | \theta)$$
 (2)

This is the function that we want to **maximize**, by choosing the best possible θ (optimization problem).

If (x_1, \ldots, x_n) are conditionally independant, then it writes :

$$L(\theta) = \prod_{i=1}^{n} p(x_i | \theta)$$
 (3)

Remark on max-likelihood

Most of the time it's written this way : "minimise $-logL(\theta)$ " Because the log transforms the product into a sum, which is easier to differentiate.

$$-logL(\theta) = -\sum_{i=1}^{n} \log(p(x_i|\theta))$$
 (4)

Exercice 1: We observe the data (1,0). We assume that these data come from a random variable that follows a Bernoulli distribution of parameter p. What is the likelihood of these observations as a function of p?

Exercice 1: We observe the data (1,0). We assume that these data come from a random variable that follows a Bernoulli distribution of parameter p. What is the likelihood of these observations as a function of p?

$$L = P(1|p)P(0|p) \tag{5}$$

For which value of p is this likelihood maximum?

Exercice 2: We observe the data (2.5, 3.5). We assume that these data come from a normal law of parameters μ and σ . What is the likelihood of (μ, σ) ?

Exercice 2: We observe the data (2.5, 3.5). We assume that these data come from a normal law of parameters μ and σ .

$$L = p(2.5|\mu,\sigma)p(3.5|\mu,\sigma)$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{2.5-\mu}{\sigma})^2} \times \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}(\frac{3.5-\mu}{\sigma})^2}$$
(6)

Exercice 2: We observe the data (2.5, 3.5). We assume that these data come from a normal law of parameters μ and σ .

$$L = p(2.5|\mu,\sigma)p(3.5|\mu,\sigma)$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(\frac{2.5-\mu}{\sigma})^2} \times \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}(\frac{3.5-\mu}{\sigma})^2}$$
(7)

We wan show that the likelihood is maximum for :

$$\hat{\mu} = \frac{2.5+3.5}{2}$$

$$\hat{\sigma^2} = \frac{(2.5 - \hat{\mu})^2 + (3.5 - \hat{\mu})^2}{2}$$

Kullbach-Leibler Divergence

The KL divergence is a measure of the discrepancy between two distributions.

Expected value (espérance)

▶ For a discrete random variable X that takes the values x_i with probability p_i :

$$E(X) = \sum_{i=1}^{n} p_i x_i \tag{8}$$

For a continuous random variable X with density p(x):

$$E(X) = \int x p(x) dx \tag{9}$$

Kullbach-Leibler Divergence

- ► The samples $(x_1,..,x_n)$ are described by an empirical distribution.
- The Kullbach-Leibler divergence is a tool to compare distributions.
- It is not a distance : it is not symmetric, no triangular inequality.

Kullbach-Leibler Divergence

$$\mathcal{D}[p||q] = \mathbb{E}_{\sim p}[\log(\frac{p}{q})] \tag{10}$$

For discrete variables

$$\mathcal{D}[p||q] = \sum_{i} p(i) \log \frac{p(i)}{q(i)}$$
 (11)

for continuous variables

$$\mathcal{D}[p||q] = \int_{X} p(x) \log \frac{p(x)}{q(x)} dx \tag{12}$$

Exercice 2: Fitting a distribution

- cd kl_divergence
- A two dimensional dataset is contained in empirical_distribution.csv. It represents the age distribution of some groupe of people. We want to study this age distribution.
- ▶ load it in **compute_kl.py**. We will use the functions provided in the file in order to find the best model, meaning here the model M, such that $KL(M||\tilde{P})$ is smallest, with \tilde{P} the empirical distribution of the data.

Exercice 2: Fitting a distribution

- ► First step : choice of the model
- ► Plot the histogram of the data : what model seems to be relevant?

- We will use normal laws. We want to fint the normal law that is the closest to the empirical data
- We measure the proximity between the model and the empirical data with the KL divergence.

Kernel density estimation (non-parametric model)

```
https:
//seaborn.pydata.org/generated/seaborn.kdeplot.html
Example in kde/
```


