

Exercise 5A

Question 19:

Given: A Δ in which D is the mid point of BC and BL \perp AD and CM \perp AD.

To Prove: BL =CM

Proof: In ΔBLD and ΔCMD

 $\angle BLD = \angle CMD = 90^0$ [Given]

 $\angle BDL = \angle MDC$ [Vertically opposite angles]

BD = DC [Given]

Thus by Angle-Angle-Side criterion of congruence, we have

 $\Delta BLD = \Delta CMD$ [By AAS]

The corresponding parts of the congruent triangles are equal

So, BL = CM [C.P.C.T]

Question 20:

Given: In a ABC, D is the mid point of

BC and DL \perp AB and DM \perp AC. Also, DL = DM

To prove: AB =AC

Proof: In right angled triangles ΔBLD and ΔCMD

 $\angle BLD = \angle CMD = 90^{\circ}$

Hypt.BD = Hypt.CD [Given]

DL = DM [Given]

Thus, by Right Angle-Hypotenuse-Side criterion of congruence, we have

 $\Delta BLD = \Delta CMD$ [By RHS]

The corresponding parts of the congruent triangles are equal.

 $\angle ABD = \angle ACD$ [C.P.C.T]

In $\triangle ABC$, we have

..

∠ABD= ∠ACD

 \Rightarrow AB = AC

[: sides opposite to equal angles are equal]

******* END ******