

Nonparametric Bayesian Methods: Models, Algorithms, and Applications (Day 5)

Tamara Broderick

ITT Career Development Assistant Professor Electrical Engineering & Computer Science MIT

- Bayes Foundations
- Unsupervised Learning
 - Example problem: clustering
 - Example BNP model: Dirichlet process (DP)
 - Chinese restaurant process
- Supervised Learning
 - Example problem: regression
 - Example BNP model: Gaussian process (GP)
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why BNP?
 - What does an infinite/growing number of parameters really mean (in BNP)?
 - Why is BNP challenging but practical?

[Ed Bowlby, NOAA]

1972; Hartl, Clark

[Fox et al 2014]

[Prabhakaran, Azizi, Carr, Pe'er 2016]

[Kiefel, Schuler, Hennig 2014]

[Sudderth, Jordan 2009]

[Deisenroth, Fox, Rasmussen 2015]

[Saria

2010]

et al 20

[Chati, Balakrishnan 2017]

[US CDC PHIL;

Heller 2017]

Futoma, Hariharan,

[wikipedia.org]

[US CDC PHIL; Futoma, Hariharan, Heller 2017]

[Gramacy, Lee 2009]

[Ed Bowlby, NOAA]

1972;

[Fox et al 2014]

[Prabhakaran, Azizi, Carr, Pe'er 2016]

200[Datta,

Finley,

Gelfand

2016]

Banerjee,

[Kiefel, Schuler, Hennig 2014]

[Sudderth, Jordan 2009]

[Deisenroth, Fox, Rasmussen 2015]

[Chati, Balakrishnan 2017]

[wikipedia.org]

[Ed Bowlby, NOAA]

[Ewens

1972;

Hartl,

Clark

[Fox et al 2014]

[Prabhakaran, Azizi, Carr,

Pe'er 2016]

[Kiefel, Schuler, Hennig 2014]

Sudderth, Jordan 2009]

[Saria

2010]

et al

[US CDC PHIL; Futoma, Hariharan, Heller 2017]

[Gramacy, Lee 2009]

200 Datta, Banerjee, Finley, ... Gelfand 2016]

[Deisenroth, Fox, Rasmussen 2015]

[Chati, Balakrishnan 2017]

[Ed Bowlby, NOAA]

1972; Hartl, Clark

[Fox et al 2014]

[Prabhakaran, Azizi, Carr, Pe'er 2016]

[Kiefel, Schuler, Hennig 2014]

[Sudderth, Jordan 2009]

[Deisenroth, Fox, Rasmussen 2015]

[Saria

2010]

et al 20

[Chati, Balakrishnan 2017]

[US CDC PHIL;

Heller 2017]

Futoma, Hariharan,

Regression

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006, ISBN 026218253X. © 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml

Slice sampling

Slice sampling

- Slice sampling
 - auxiliary variable → finite conditionals

- Slice sampling
 - auxiliary variable → finite conditionals

- Slice sampling
 - auxiliary variable → finite conditionals

- Slice sampling
 - auxiliary variable → finite conditionals

Approximate with truncated distribution

- Slice sampling
 - auxiliary variable → finite conditionals

Approximate with truncated distribution

- Slice sampling
 - auxiliary variable → finite conditionals

- Approximate with truncated distribution
 - E.g., Hamiltonian Monte Carlo

Variational Bayes (VB)

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
 - "Close": Minimize Kullback-Liebler (KL) divergence: $KL(q||p(\cdot|x))$

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
 - "Close": Minimize Kullback-Liebler (KL) divergence: $KL(q||p(\cdot|x))$

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
 - "Close": Minimize Kullback-Liebler (KL) divergence: $KL(q||p(\cdot|x))$
 - "Nice": factorizes, exponential family, truncation

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
 - "Close": Minimize Kullback-Liebler (KL) divergence: $KL(q||p(\cdot|x))$
 - "Nice": factorizes, exponential family, truncation
- VB practical success

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
 - "Close": Minimize Kullback-Liebler (KL) divergence: $KL(q||p(\cdot|x))$
 - "Nice": factorizes, exponential family, truncation
- VB practical success
 - point estimates and prediction

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
 - "Close": Minimize Kullback-Liebler (KL) divergence: $KL(q||p(\cdot|x))$
 - "Nice": factorizes, exponential family, truncation
- VB practical success
 - point estimates and prediction
 - fast, streaming, distributed

- Variational Bayes (VB)
 - Approximation $q^*(\theta)$ for posterior $p(\theta|x)$
 - "Close": Minimize Kullback-Liebler (KL) divergence: $KL(q||p(\cdot|x))$
 - "Nice": factorizes, exponential family, truncation
- VB practical success
 - point estimates and prediction
 - fast, streaming, distributed
 - can underestimate uncertainties

[Broderick, Boyd, Wibisono, Wilson, Jordan 2013; Giordano, Broderick, Jordan 2015; Huggins, Campbell, Broderick 2016]

Clustering

 Indian buffet process

 Indian buffet process

- Indian buffet process
- Beta process

- Indian buffet process
- Beta process

Feature allocation

- Indian buffet process
- Beta process

K_N := # clusters
 occupied by N data
 points

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc
- Pitman-Yor process:

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc
- Pitman-Yor process:

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc
- Pitman-Yor process:

$$K_N \sim S_{\alpha} N^{\sigma}$$
 w.p. 1

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc
- Pitman-Yor process:

$$K_N \sim S_\alpha N^\sigma$$
 w.p. 1

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc
- Pitman-Yor process:

$$K_N \sim S_\alpha N^\sigma$$
 w.p. 1

 related to Zipf's law (ranked frequencies)

- K_N := # clusters
 occupied by N data
 points
- CRP: $K_N \sim \alpha \log N$ w.p. 1
 - vs. Heaps' law, Herdan's law, etc
- Pitman-Yor process:

$$K_N \sim S_\alpha N^\sigma$$
 w.p. 1

- related to Zipf's law (ranked frequencies)
- Not just clusters

 Hierarchical Dirichlet process

 Hierarchical Dirichlet process

- Hierarchical Dirichlet process
- Chinese restaurant franchise

[Teh et al 2006]

- Hierarchical
 Dirichlet process
- Chinese restaurant franchise

[Teh et al 2006]

- Hierarchical Dirichlet process
- Chinese restaurant franchise
- Hierarchical beta process

[Teh et al 2006]

- Hierarchical
 Dirichlet process
- Chinese restaurant franchise
- Hierarchical beta process

Kingman coalescent

Kingman coalescent

- Kingman coalescent
- Fragmentation
- Coagulation

- Kingman coalescent
- Fragmentation
- Coagulation

[Kingman 1982, Bertoin 2006, Teh et al 2011

- Kingman coalescent
- Fragmentation
- Coagulation
- Dirichlet diffusion tree

[Kingman 1982, Bertoin 2006, Teh et al 2011

- Kingman coalescent
- Fragmentation
- Coagulation
- Dirichlet diffusion tree

[Kingman 1982, Bertoin 2006, Teh et al 2011, Neal 2003]

Beta process, Bernoulli process (Indian buffet)

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)
- Beta process, negative binomial process

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)
- Beta process, negative binomial process

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)
- Beta process, negative binomial process

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)
- Beta process, negative binomial process

 Posteriors, conjugacy, and exponential families for completely random measures

- Beta process, Bernoulli process (Indian buffet)
- Gamma process, Poisson likelihood process (DP, CRP)
- Beta process, negative binomial process

 Posteriors, conjugacy, and exponential families for completely random measures

Clustering: Kingman paintbox

Clustering: Kingman paintbox

[Kingman 1978]

Clustering: Kingman paintbox

Feature allocation: Feature paintbox

Clustering: Kingman paintbox

Feature allocation: Feature paintbox

Probabilistic models for graphs

E.g. online social networks, biological networks, communication networks, transportation networks

- Rich relationships, coherent uncertainties, prior info
- Stochastic block model, mixed membership stochastic block model, infinite relational model, and many more
- Assume: Adding more data doesn't change distribution of earlier data (projectivity)
- Problem: model misspecification, dense graphs

Edge exchangeability

Thm. A wide range of edge-exchangeable graph sequences are sparse

Thm. A paintbox-style characterization for edge-exchangeable graph sequences

$$p(1,2,0) = p(2,4,0)$$

- Bayes Foundations
- Unsupervised Learning
 - Example problem: clustering
 - Example BNP model: Dirichlet process (DP)
 - Chinese restaurant process
- Supervised Learning
 - Example problem: regression
 - Example BNP model: Gaussian process (GP)
- Venture further into the wild world of Nonparametric Bayes
- Big questions
 - Why BNP?
 - What does an infinite/growing number of parameters really mean (in BNP)?
 - Why is BNP challenging but practical?

Applications

[Ed Bowlby, NOAA]

1972; Hartl, Clark

[Fox et al 2014]

[Prabhakaran, Azizi, Carr, Pe'er 2016]

[Kiefel, Schuler, Hennig 2014]

[Sudderth, Jordan 2009]

[Deisenroth, Fox, Rasmussen 2015]

[Saria

2010]

et al 20

[Chati, Balakrishnan 2017]

[US CDC PHIL;

Heller 2017]

Futoma, Hariharan,

