AlgoUniversity Archives 🔥

Google India

Coding Test Compilation 2025

Content	Page Number
Coding Test #1	1
Coding Test #2	2
Coding Test #3	4
Coding Test #4	5
Coding Test #5	6
Coding Test #6 🔒	13
Coding Test #7 🔒	15
Coding Test #8 🔒	17
Coding Test #9 🔒	20
Coding Test #10 🔒	22
Coding Test #11 🔒	27
Coding Test #12 🔒	31
Coding Test #13 🔒	
Coding Test #14 🔒	
Coding Test #15 🔒	
Coding Test #16 🔒	

Question 1.

Question 2.

Question 1

Question 2

Previous Question

15

Example

1

Assumptions

2

- N = 2
- M = 3
- Pairs = [[a, b], [b, c), [c, d]].

Approach

- Since (a, b) and (b, c) shares a transitive relation from 'b', thus a relation among all pairs in (a, b, c) holds true.
- Since (a, b, c) and (c, d) shares a transitive relation from (c), thus
 a relation among all pairs in (a, b, c, d) holds true.
- Thus, these pairs of adjacent characters should not occur in the formed string (ab. ac. ad. ba. bc. bd. ca. cb. cd. da. db. dc).
- The strings that can be formed of length 2 are: ("no", "are", "af", ..., "bb", "be", ...)

Therefore, the total number of strings that can be formed is 664. Hence, the answer is 664.

Function description

Complete the solve function provided in the editor. This function takes the following β parameters and returns the count of total

April 2 Sept.

Awesome Factor

Question 1 👙 Max. score: 30.00

Awesome factor

You are given an array A consisting of N integers. You choose two indices l and l such that $1 \le r/s \le N$, the awesomeness of the index l is defined as follows:

• altesomeness = $|A|\tilde{t}-A|j|$) * $INF^{(N-j+i)}$ where INF is a constant having value $INF = 10^8$.

Task

Determine the maximum value of the awesomeness in too array. Report the value after taking the module $vic\ 10^5 + 7$.

Note: 1 based index hour toboved.

Example

Assumptions

- A = [3, 2, 1]
- N = 3

Approach.

For i = 1 summer and takes it = 2 see assessed manages in the DV INDEX 2.2.1 in INDEX.

Next Question

- N = 1

Approach.

- For t = 1, you can take / 2, so awesomeness = (3.2)*INF (3.2-4) = INF (2. $-arrespineness (s10^{\circ} \cdot 7) = 9300000007$
- For i = 1, you can take i = 3, so awe someoness $-(3.1)^{i}/NI^{i(3.3+1)} = 2^{i}/NE$. $JWcsomeness(J10)^{9} - I = 2000000000$
- For l = 2, you can take l = 3, so awesomeness = $(2.4)^{l} INl^{23/2+1} = INl^2$. awesomeness $(00^{\circ}-7) = 9300000007$.
- For /= 3, you can take /= 3, so awesomeness = (4-4)*/N/for (=3) = 3.50 //N/for $-aveson(ac) > (10^9 - I) = 0.$

The maximum x = x for index I - I and J = 2 or I = 2 and J = 3. Here exists an size modulo to be seen a segue 930000007.

Function description

Complete the Assessmetactor function provided in the editor. It is too, takes the following 2 parameters and rename the required amover:

- · N: Represents to esize of the array
- · At Represents the array

Next Question :

the Compile and Test button).

- The first line contains a single integer I which denotes the number of test
 cases. I also denotes the number of times you have to run the
 AwesomeFactor function on a different set of inputs.
- For each test case:
 - \circ The first line contains N denoting the size of the array.
 - \circ The second line contains array A.

Output format

For each test case, print an integer value in a new line that is the maximum awe someness modulo $10^9 \pm 7$.

Constraints

$$1 \le T \le 10$$

$$1 \le N \le 10^5$$

$$1 \le A_7 \le 10^7$$

Code snippets (also called starter code/boilerplate code)

This question has code snippets for C, CPP, Java, and Pytoon,

Sample input

Sample output

Next Question >

Question 2 1:1

Max. score: 30.00

1 Collection of items

There are X ifonis flactified x(1-x-X) is placed at a point P(X,Y) but the starting point be $S(X_0,Y)$ for the second restance flavorsed from S to bring all the transformation $S(X_0,Y)$ most two items can be picked at a time before x to x_0 to x_0 to x_0 .

Note

- · Items picked cannot be kept at any other point
- The distance between any two points is the Microstral distance between them.
- · Each point is distinct.
- The Manhattan distance between two points (r_1 , $\mu=e^{-y_2}$ (x_2 , y_2) is $|x_1+x_2|+|y_1-y_2|$

Input format

- The first line contains an integer X denoting the pumps of items.
- Next X fines contain two space-separated integers denoting the i^{th} point $P(X_i,Y_i)$
- The last line contains two space separated integers denoting point $S(X \mid Y)$

[·] Previous Question