IN THE CLAIMS:

Amend the claims as indicated below.

1	1. (currently amended) A method for a spread spectrum detector, comprising the steps
2	of:
3	receiving a spread spectrum modulated signal having a Doppler shift error imposed by
4	movement between a signal source and a receiver;
5	producing a plurality of complex first correlation values based upon the signal and a
6	code;
7	generating a plurality of complex second correlation values respectively from the first
8	correlation values, wherein generating includes combining a stored, associated, phase shift value
9	with each of the first correlation values to produce the second correlation values the second
10	correlation values being phase shifted by respective different amounts from corresponding first
11	correlation values, so that the second correlation values exhibit less of the Dopplex shift error
12	than the first correlation values; and
13	combining the second correlation values to derive a complex third correlation value that
14	indicates a degree of correspondence of the code with the signal.

- 2. (original) The method of claim 1, further comprising the steps of:
- performing the producing, generating, and integrating steps a plurality of times with a different code phase of the code each time in order to produce a plurality of third correlation values; and
 - determining that a particular one of the code phases corresponds to the signal based upon the third correlation values.
- 3. (original) The method of claim 1, wherein the producing step comprises the steps of:
 multiplying chips of the code with signal samples, respectively, to derive multiplication
 results; and
- 4 adding together the multiplication results to produce the first correlation values.
- 4. (original) The method of claim 1, wherein the step of generating the second
 correlation values comprises the step of combining successive first correlation values with an

1

5

2

3

4

1

2

3

1

3	incrementally different phase so that each of the second correlation values is offset by a different
	phase shift.

- 5. (original) The method of claim 1, wherein the second correlation values are combined coherently in the combining step so that the third correlation value comprises a real number part and an imaginary number part, which are collectively indicative of a magnitude and a phase.
- 6. (original) The method of claim 1, wherein the second correlation values are combined noncoherently in the combining step so that the third correlation value comprises a magnitude.
- 7. (original) The method of claim 1, wherein the producing step comprises the step of using a matched filter to produce the first correlation values.
- 8. (original) The method of claim 1, wherein the producing step comprises the step of using a digital signal processor to produce the first correlation values.
 - 9. (original) The method of claim 1, wherein the signal is received from a satellite associated with a global positioning system.
- 1 10. (original) The method of claim 1, wherein the signal is a carrier signal modulated 2 with a repeating code.
- 1 11. (original) The method of claim 2, wherein the determining step is performed by a processor.
- 1 12. (original) The method of claim 1, wherein the generating step comprises the step of combining a phase shift value with each of the first correlation values to produce the second correlation values.
- 1 13. (currently amended) The method of claim 12, further A method for a spread
 2 spectrum detector, comprising the steps of:
- 3 receiving a spread spectrum modulated signal having a Doppler shift error imposed by

4	movement between a signal source and a receiver;
5	producing a plurality of complex first correlation values based upon the signal and a
6	code;
7	generating a plurality of complex second correlation values respectively from the first
8	correlation values, the second correlation values being phase shifted by respective different
9	amounts from corresponding first correlation values, so that the second correlation values exhibit
10	less of the Doppler shift error than the first correlation values, wherein generating includes
11	combining a phase shift value with each of the first correlation values to produce the second
12	correlation values; and
13	combining the second correlation values to derive a complex third correlation value that
14	indicates a degree of correspondence of the code with the signal;
15	providing a look-up table storing a plurality of phase shift values;
16	providing a counter that produces indices for the look-up table;
17	identifying the phase shift value for each of the first correlation values based upon the
18	indices and the look-up table; and
19	multiplying each first correlation value with each phase shift value to produce each
20	second correlation value.
1	14. (currently amended) A spread spectrum detector, comprising:
2	first means for receiving a spread spectrum modulated signal having a Doppler shift error
3	imposed by movement between a signal source and a receiver;
4	second means for producing a plurality of complex first correlation values based upon the
5	signal and a code;
б	third means for generating a plurality of complex second correlation values respectively
7	from the first correlation values, wherein generating includes combining a stored, associated,
8	phase shift value with each of the first correlation values to produce the second correlation
9	values the second correlation values being phase shifted by respective different amounts from
10	corresponding first correlation values, so that the second correlation values exhibit less of the
11	Doppler shift error-than the first correlation values; and
12	fourth means for combining the second correlation values to derive a third correlation

13 value that indicates a degree of correspondence of the code with the signal. 1 15. (original) The detector of claim 14, further comprising: 2 fifth means for determining that a code phase of the code corresponds to the signal based 3 upon the third correlation value. 1 16. (original) The detector of claim 14, wherein the second means comprise: 2 means for multiplying chips of the code with signal samples, respectively, to derive 3 multiplication results; and 4 means for adding together the multiplication results to produce the first correlation 5 values. 1 17. (original) The detector of claim 14, wherein the third means comprises a means for 2 combining successive first correlation values with an incrementally different phase so that each 3 of the second correlation values is offset by a different phase shift. 1 18. (original) The detector of claim 14, wherein the fourth means comprises a means for 2 coherently combining the second correlation values together so that the third correlation value 3 comprises a real number part and an imaginary number part, which are collectively indicative of 4 a magnitude and a phase. 1 19. (original) The detector of claim 14, wherein the fourth means comprises a means for 2 noncoherently combining the second correlation values together so that the third correlation 3 value comprises a magnitude and no phase information. 1 20. (original) The detector of claim 14, wherein the second means comprises a matched 2 filter means for producing the first correlation values. 1 21. (original) The detector of claim 14, wherein the second means comprises a digital 2 signal processor to produce the first correlation values. 1 22. (original) The detector of claim 14, wherein the signal is received from a satellite

associated with a global positioning system.

1	25. (original) The detector of claim 14, wherein the signal is a carrier signal modulated
2	with a repeating code.
1	24. (original) The detector of claim 14, wherein the third means comprises means for
2	combining a phase shift value with each of the first correlation values to produce the second
3	correlation values.
1	25. (currently amended) The detector of claim 24, wherein the third means further
2	comprises A spread spectrum detector, comprising:
3	first means for receiving a spread spectrum modulated signal having a Doppler shift error
4	imposed by movement between a signal source and a receiver;
5	second means for producing a plurality of complex first correlation values based upon the
6	signal and a code;
7	third means for generating a plurality of complex second correlation values respectively
8	from the first correlation values, the second correlation values being phase shifted by respective
9	different amounts from corresponding first correlation values, so that the second correlation
10	values exhibit less of the Doppler shift error than the first correlation values wherein the third
11	means comprises, wherein the third means comprises.
12	means for storing a plurality of phase shift values;
13	means for identifying the phase shift value for each of the first correlation values; and
14	means for multiplying each first correlation value with each phase shift value to
15	produce each second correlation value; and
16	means for combining a phase shift value with each of the first correlation values to
17	produce the second correlation values; and
18	fourth means for combining the second correlation values to derive a complex third
19	correlation value that indicates a degree of correspondence of the code with the signal.
1	26. (currently amended) A spread spectrum detector, comprising:
2	a receiver configured to receive a spread spectrum modulated signal having a Doppler
3	shift error imposed by movement between a signal source and a receiver:

a multiplier configured to produce a plurality of complex first correlation values based

5	upon the signal and a code;
6	a phase shifter configured to generate a plurality of complex second correlation values
7	respectively from the first correlation values, wherein generating includes combining a stored.
8	associated, phase shift value with each of the first correlation values to produce the second
9	correlation values the second correlation values being phase shifted by respective different
10	amounts from corresponding first correlation values, so that the second correlation values exhibit
11	less of the Doppler shift error than the first correlation values; and
12	an integrator configured to integrate the second correlation values to derive a third
13	correlation value that indicates a degree of correspondence of the code with the signal.
1	27. (original) The spread spectrum detector of claim 26, further comprising:
2	a processor programmed to determine that a particular one of code phases of the code
3	corresponds to the signal based upon the third correlation value.
1	28. (original) The detector of claim 26, wherein the multiplier comprises:
2	a plurality of multipliers configured to multiply chips of each code phase with signal
3	samples, respectively, to derive the multiplication results; and
4	adders configured to add together the multiplication results to produce the first correlation
5	values.
1	29. (original) The detector of claim 26, wherein the phase shifter is configured to
2	successively combine first correlation values with an incrementally different phase so that each
3	of the second correlation values is offset by a different phase shift.
1	30. (original) The detector of claim 26, wherein the integrator is configured to coherently
2	combine the second correlation values together so that the third correlation value comprises a
3	real number part and an imaginary number part, which are collectively indicative of a magnitude

4

1 2 and a phase.

31. (original) The detector of claim 26, wherein the integrator is configured to

noncoherently combine the second correlation values together so that the third correlation value

408-236-6641

3	comprises a magnitude and no phase information.
1	32. (original) The detector of claim 26, wherein the multiplier comprises a matched filter
2	configured to produce the first correlation values.
1	33. (original) The detector of claim 26, wherein the multiplier comprises a digital signal
2	processor to produce the first correlation values.
1	34. (original) The detector of claim 26 wherein the signal is received from a satellite
2	associated with a global positioning system.
1	35. (original) The detector of claim 26, wherein the signal is a carrier signal modulated
2	with a repeating code.
1	36. (original) The detector of claim 26, wherein the phase shifter comprises a mixer for
2	combining a phase shift value with each of the first correlation values to produce the second
3	correlation values.
1	37. (currently amended) The detector of claim 36, wherein the phase shifter further
2	comprises A spread spectrum detector, comprising:
3	a receiver configured to receive a spread spectrum modulated signal having a Doppler
4	shift error imposed by movement between a signal source and a receiver;
5	a multiplier configured to produce a plurality of complex first correlation values based
6	upon the signal and a code;
7	a phase shifter configured to generate a plurality of complex second correlation values
8	respectively from the first correlation values, the second correlation values being phase shifted b
9	respective different amounts from corresponding first correlation values, so that the second
10	correlation values exhibit less of the Doppler shift error than the first correlation values, wherein
11	the phase shifter comprises a mixer for combining a phase shift value with each of the first
12	correlation values to produce the second correlation values;
13	an integrator configured to integrate the second correlation values to derive a third

14

correlation value that indicates a degree of correspondence of the code with the signal;

a memory for storing a plurality of phase shift values; and

	•
16	a counter producing addresses in the memory to identify phase shift values for the first
17	correlation values, respectively.
,	38. (currently amended) A computer readable medium having a program for operating a
1	
2	spread spectrum detector, the program comprising:
3	first logic configured to receive a spread spectrum modulated signal having a Doppler
4	shift error imposed by movement between a signal source and a receiver;
5	second logic configured to produce a plurality of complex first correlation values based
б	upon the signal and a code;
7	third logic configured to generate a plurality of complex second correlation values
8	respectively from the first correlation values, wherein generating includes combining a stored,
9	associated, phase shift value with each of the first correlation values to produce the second
10	correlation values the second correlation values being phase shifted by respective different
11	amounts from corresponding first correlation values, so that the second correlation values exhibit
12	less of the Doppler shift error than the first correlation-values; and
13	fourth logic configured to combine the second correlation values to derive a complex
14	third correlation value that indicates a degree of correspondence of the code with the signal.
1	39. (original) The computer readable medium as defined in claim 38, further comprising:
2	fifth logic configured to cause the second, third and fourth logics to perform the
3	producing, generating, and combining steps a plurality of times with a different code phase of the
4	code each time in order to produce a plurality of third correlation values; and
5	sixth logic configured to determine that a particular one of the code phases corresponds to
6	the signal based upon the third correlation values.
1	40. (original) The computer readable medium as defined in claim 38, wherein the second
2	logic comprises:
3	logic configured to multiply chips of the code with signal samples, respectively, to derive
4	the multiplication results; and
5	logic configured to add together the multiplication results to produce the first correlation

6	VA	mes.

1 41. (original) The computer readable medium as defined in claim 38, wherein the third

SG&C LLP

- 2 logic comprises logic configured to combine successive first correlation values with an
- 3 incrementally different phase so that each of the second correlation values is offset by a different
- 4 phase shift.
- 1 42. (original) The computer readable medium as defined in claim 38, wherein the fourth
- 2 logic comprises logic to coherently combine the second correlation values to produce the third
- 3 correlation value so that the third correlation value comprises a real number part and an
- 4 imaginary number part, which are collectively indicative of a magnitude and a phase.
- 1 43. (original) The computer readable medium as defined in claim 38, wherein the fourth
- 2 logic comprises logic to noncoherently combine the second correlation values to produce the
- 3 third correlation value so that the third correlation value comprises a magnitude without phase
- 4 information.
- 1 44. (original) The computer readable medium as defined in claim 38, wherein the second
- 2 logic comprises logic configured to use a matched filter to produce the first correlation values.
- 1 45. (original) The computer readable medium as defined in claim 38, wherein the second
- 2 logic comprises logic configured to use a digital signal processor to produce the first correlation
- 3 values.
- 1 46. (original) The computer readable medium as defined in claim 38, wherein the first
- 2 logic is configured to receive a signal from a satellite associated with a global positioning system.
- 1 47. (original) The computer readable medium as defined in claim 38, wherein the first
- 2 logic is configured to receive a carrier signal modulated with a repeating code.
- 1 48. (original) The computer readable medium as defined in claim 38, wherein the third
- 2 logic comprises logic configured to combine a phase shift value with each of the first correlation
- 3 values to produce the second correlation values.

ī	45. (Currently amondout) ************************************
2	the third logic comprises A computer readable medium having a program for operating a spread
3	spectrum detector, the program comprising:
4	first logic configured to receive a spread spectrum modulated signal having a Doppler
5	shift error imposed by movement between a signal source and a receiver;
6	second logic configured to produce a plurality of complex first correlation values based
7	upon the signal and a code:
8	third logic configured to generate a plurality of complex second correlation values
9	respectively from the first correlation values, the second correlation values being phase shifted by
10	respective different amounts from corresponding first correlation values, so that the second
11	correlation values exhibit less of the Doppler shift error than the first correlation values wherein
12	the third logic comprises.
13	a look-up table storing a plurality of phase shift values;
14	a counter that produces indices for the look-up table; and
15	a multiplier to multiply each first correlation value with a phase shift value to produce
16	a second correlation value; and
17	fourth logic configured to combine the second correlation values to derive a complex
18	third correlation value that indicates a degree of correspondence of the code with the signal.
1	50. (currently amended) A GPS receiver, comprising:
2	a first GPS antenna coupled to a digital memory, the digital memory storing first digitized
3	signals obtained through the first GPS antenna;
4	a second GPS antenna coupled to the digital memory, the digital memory storing second
5	digitized signals obtained through the second GPS antenna;
6	a digital processor coupled to the digital memory, the digital processor processing the first
7	digitized signals after being stored in the digital memory to provide the first position information
8	and processing the second digitized signals after being stored in the digital memory to provide
9	second position information;
10	a receiver configured to receive a spread spectrum modulated signal having a Doppler
11	shift error imposed by movement between a signal source and a receiver;

a multiplier configured to produce a plurality of complex first correlation values based

12

	•
13	upon the signal and a code;
14	a phase shifter configured to generate a plurality of complex second correlation values
15	respectively from the first correlation values, wherein generating includes combining a stored,
16	associated, phase shift value with each of the first correlation values to produce the second
17	correlation values the second correlation values being phase shifted by respective different
18	amounts from corresponding first correlation values, so that the second correlation values exhibit
19	less of the Doppler shift error than the first correlation values; and
20	an integrator configured to integrate the second correlation values to derive a third
21	correlation value that indicates indicate a degree of correspondence of the code with the signal.
.,1	51. (currently amended) A method of operating a GPS receiver, the method comprising:
2	receiving first GPS signals through a first GPS antenna;
3	digitizing the first GPS signals to provide first digitized signals and storing the first
4	digitized signals in a first digital memory;
5	receiving second GPS signals through a second GPS antenna;
6	digitizing the second GPS signals to provide second digitized signals and storing the
7	second digitized signals in one of the first digital memory and a second digital memory;
8	processing in a digital processor the stored first digitized signals to provide a first position
9	information and processing the stored second digitized signals to provide a second position
10	information;
11	selecting one of the first position information and the second position information to
12	provide a selected position information; and
13	when performing the processing step, performing the following steps upon each of the
14	first and second GPS signals;
15	producing a plurality of complex first correlation values based upon the signal and a
16	code;
17	generating a plurality of complex second correlation values respectively from the first
18	correlation values, wherein generating includes combining a stored, associated, phase
19	shift value with each of the first correlation values to produce the second correlation

20	values the second correlation values being phase shifted by respective different amounts
21	from corresponding first correlation values, so that the second correlation values exhibit
22	less of the Doppler shift error than the first correlation values; and
23	combining the second correlation values to derive a complex third correlation value
24	that indicates a degree of correspondence of the code with the signal.
1	52. (currently amended) A method for determining a position of a mobile global
2	positioning system receiver, the mobile global positioning receiver receiving global positioning
3	system signals from at least one of a plurality of global positioning system (GPS) satellites, the
4	method comprising:
5	receiving a cellular communication signal in a mobile communication receiver coupled to
6	the mobile global positioning system receiver, the cellular communication signal having a time
7	indicator which represents a time event;
8	associating the time indicator with data representing a time of arrival of a GPS satellite
9	signal at the mobile global positioning system receiver;
10	determining position information of the mobile global positioning system receiver,
11	wherein the data representing the time of arrival of the GPS satellite signal and the time indicator
12	are used to determine the position information of the mobile global positioning system receiver
13	and wherein the cellular communication signal supports 2-way communications; and
14	when performing the determining step, performing the following steps:
15	producing a plurality of complex first correlation values based upon a signal and a
16	code;
17	generating a plurality of complex second correlation values respectively from the first
18	correlation values, wherein generating includes combining a stored, associated, phase
19	shift value with each of the first correlation values to produce the second correlation
20	values the second correlation values being phase shifted by respective different amounts
21	from corresponding first correlation values, so that the second correlation values exhibit
22	less of the Doppler shift error than the first correlation values; and
23	combining the second correlation values to derive a complex third correlation value
24	that indicates a degree of correspondence of the code with the signal.

1	53. (currently amended) A method of operating a global positioning system (GPS)
2	receiver, comprising:
3	sensing whether GPS signals are capable of being received from GPS satellites and
4	providing an activation signal when GPS signals are capable of being received;
5	maintaining the GPS receiver in a low power state;
6	activating the GPS receiver from the low power state upon detecting the activation signal
7	producing a plurality of complex first correlation values based upon a GPS signal and a
8	code;
9	generating a plurality of complex second correlation values respectively from the first
10	correlation values, wherein generating includes combining a stored, associated, phase shift value
11	with each of the first correlation values to produce the second correlation values the second
12	correlation values being phase shifted by respective different amounts from corresponding first
13	correlation values, so that the second correlation values exhibit less of the Doppler shift error
14	than the first correlation values; and
15	combining the second correlation values to derive a complex third correlation value that
16	indicates a degree of correspondence of the code with the signal.
1	54. (currently amended) A method for using a dual mode GPS receiver, the method
2	comprising the steps of:
3	activating the GPS receiver in a first mode of operation including,
4	receiving GPS signals from in view satellites;
5	downconverting and demodulating the GPS signals to extract Doppler information
6	regarding in view satellites and to compute pseudorange information;
7	storing the Doppler information;
8	detecting when the GPS information is experiencing blockage conditions and activating a
9	second mode of operation in response thereto, the second mode including, digitizing the GPS
10	signals at a predetermined rate to produce sampled GPS signals; and
11	receiving a signal having a Doppler shift error imposed by movement between a signal
12	source and the GPS receiver;
13	producing a plurality of complex first correlation values based upon the signal and a

14	code;
15	generating a plurality of complex second correlation values respectively from the first
16	correlation values, wherein generating includes combining a stored, associated, phase shift value
17	with each of the first correlation values to produce the second correlation values the second
18	correlation-values being phase shifted by respective different amounts from corresponding first
19	correlation values, so that the second correlation values exhibit less of the Doppler shift error
20	than the first correlation-values; and
21	combining the second correlation values to derive a complex third correlation value that
22	indicates a degree of correspondence of the code with the signal.
1	55. (currently amended) In a method for determining the position of a remote unit, a
2	process comprising:
3	receiving, at the remote unit from a transmission cell in a cellular communication system,
4	a Doppler information of a satellite in view of the remote unit;
5	computing, in a remote unit, position information for the satellite by using the Doppler
6	information without receiving and without using satellite ephemeris information;
7	when computing the position information, performing the following steps:
8	producing a plurality of complex first correlation values based upon the signal and a
9	code;
10	generating a plurality of complex second correlation values respectively from the first
11	correlation values, wherein generating includes combining a stored, associated, phase
12	shift value with each of the first correlation values to produce the second correlation
13	values the second correlation values being phase shifted by respective different amounts
14	from corresponding first correlation values, so that the second correlation values exhibit
15	less of the Doppler shift error than the first correlation-values; and
16	combining the second correlation values to derive a complex third correlation value
17	that indicates a degree of correspondence of the code with the signal.
1	56. (currently amended) A method of using a base station for providing a
2	communications link to a mobile GPS unit, the method comprising:
3	determining Doppler information of a satellite in view of the mobile GPS unit, wherein
	Athy Docket No. SIDE BOIG IS III

7	the Doppler information is used by the mobile GPS that to determine a position information for
5	the satellite;
6	transmitting from a transmission cell in a cellular communication system the Doppler
7	information of the satellite in view to the mobile GPS unit wherein the mobile GPS unit
8	determines the position information without receiving and without using satellite ephemeris
9	information;
10	when performing the determining step, performing the following steps:
11	receiving a signal having a Doppler shift error imposed by movement between a
12	satellite and a GPS receiver producing a plurality of complex first correlation values
13	based upon the signal and a code;
14	generating a plurality of complex second correlation values respectively from the first
15	correlation values, wherein generating includes combining a stored, associated, phase
16	shift value with each of the first correlation values to produce the second correlation
17	values the second correlation values being phase shifted by respective different amounts
18	from corresponding first correlation values, so that the second correlation values exhibit
19	less of the Doppler shift error than the first correlation values; and
20	combining the second correlation values to derive a complex third correlation value
21	that indicates a degree of correspondence of the code with the signal.
1	57. (currently amended) A method of determining the location of a remote object
2	comprising the steps of:
3	transporting a positioning sensor to a remote object;
4	repositioning the positioning sensor to a fix position such that the positioning sensor is
5	capable of receiving positioning signals, the fix position being in a known position relative to the
6	position of the remote sensor;
7	storing a predetermined amount of data in the positioning sensor while the positioning
8	sensor is located at the fix position, the data comprising the positioning signals;
9	processing the data to determine the location of the fix position;
10	computing the location of the remote object using the location of the fix position; and
11	when performing the processing steps, performing the following steps:

12	producing a plurality of complex first correlation values based upon the signal and a
13	code;
14	generating a plurality of complex second correlation values respectively from the first
15	correlation values, wherein generating includes combining a stored, associated, phase
16	shift value with each of the first correlation values to produce the second correlation
17	values the second correlation values being phase shifted by respective different amounts
18	from corresponding first correlation values, so that the second correlation values exhibit
19	less of the Doppler shift error than the first correlation values; and
20	combining the second correlation values to derive a complex third correlation value
21	that indicates a degree of correspondence of the code with the signal.
1	58. (currently amended) A method of tracking a remote object comprising the steps of:
2	fitting a remote object with a positioning sensor configured to receive and store
3	positioning information when the remote object is in a fix position;
4	positioning the remote object in a fix position such that the positioning sensor is capable
5	of detecting an activation signal;
6	processing and storing a predetermined amount of data in the positioning sensor, the data
7	comprising position information;
8	processing the data to determine the location of the fix position;
9	when processing the data, performing the following steps:
10	producing a plurality of complex first correlation values based upon the signal and a
11	code;
12	generating a plurality of complex second correlation values respectively from the first
13	correlation values, wherein generating includes combining a stored, associated, phase shift value
14	with each of the first correlation values to produce the second correlation values the second
15	correlation values being phase shifted by respective different amounts from corresponding-first
16	correlation values, so that the second correlation values exhibit less of the Doppler shift error
17	than the first correlation values; and
18	combining the second correlation values to derive a complex third correlation value
19	that indicates a degree of correspondence of the code with the signal.

1	59. (currently amended) A computer readable medium containing a computer program
2	having executable code for a GPS receiver, the computer program comprising:
3	first instructions for receiving GPS signals from in view satellites, the GPS signals
4	comprising pseudorandom (PN) codes;
5	second instructions for digitizing the GPS signals at a predetermined rate to produce
6	sampled GPS signals;
7	third instructions for storing the sampled GPS signals in a memory; and
8	fourth instructions for processing the sampled GPS signal by performing a plurality of
9	convolutions on the sampled GPS signals, the processing comprising performing the plurality of
10	convolutions on a corresponding plurality of blocks of the sampled GPS signals to provide a
11	plurality of corresponding results of each convolution and summing a plurality of mathematical
12	representations of the plurality of corresponding results to obtain a first position information; and
13	wherein the fourth in instructions are designed to:
14	produce a plurality of complex first correlation values based upon the signal and a
15	code, ;
16	generate a plurality of complex second correlation values respectively from the first
17	correlation values, wherein generating includes combining a stored, associated, phase
18	shift value with each of the first correlation values to produce the second correlation
19	values the second correlation values being phase shifted by respective different amounts
20	from corresponding first correlation values, so that the second correlation values exhibit
21	less of the Doppler shift error than the first correlation values; and
22	combine the second correlation values to derive a complex third correlation value that
23	indicates a degree of correspondence of the code with the signal.
1	60. (currently amended) A computer readable medium containing an executable
2	computer program for use in a digital processing system, the executable computer program when
3	executed in the digital processing system causing the digital processing system to perform the
4	steps of:
5	performing a plurality of convolutions of a corresponding plurality of blocks of sampled
6	GPS signals to provide a plurality of corresponding results of each convolution;
	Atty. Docket No. SIRF.P219-US-U1 -19-

,	summing a plurality of mathematical representations of the plurality of corresponding
. 8	results to obtain a first position information; and
9	when performing the plurality of convolutions step, performing at least the following
10	steps:
11	producing a plurality of complex first correlation values based upon the signal and a
12	code;
13	generating a plurality of complex second correlation values respectively from the fir
14	correlation values, wherein generating includes combining a stored, associated, phase
15	shift value with each of the first correlation values to produce the second correlation
16	values the second correlation values being phase shifted by respective different amounts
17	from corresponding first correlation values, so that the second correlation values exhibit
18	less of the Doppler shift error than the first correlation-values; and
19	combining the second correlation values to derive a complex third correlation value
20	that indicates a degree of correspondence of the code with the signal.
1	61. (currently amended) A method of calibrating a local oscillator in a mobile GPS
2	receiver, the method comprising:
3	receiving a precision carrier frequency signal from a source providing the precision
4	carrier frequency;
5	automatically locking to the precision carrier frequency signal and providing a reference
6	signal;
7	calibrating the local oscillator with the reference signal, the local oscillator being used to
8	acquire GPS signals;
9	receiving a signal having a Doppler shift error imposed by movement between a signal
10	source and the GPS receiver;
11	producing a plurality of complex first correlation values based upon the signal and a
12	code;
13	generating a plurality of complex second correlation values respectively from the first
14	correlation values, wherein generating includes combining a stored, associated, phase shift value
15	with each of the first correlation values to produce the second correlation values the second

16	correlation values being phase shifted by respective different amounts from corresponding first
17	correlation values, so that the second correlation values exhibit less of the Doppler shift error
18	than the first correlation values; and
19	combining the second correlation values to derive a complex third correlation value that
20	indicates a degree of correspondence of the code with the signal.
1	62. (currently amended) A method of using a base station to calibrate a local oscillator i
2	a mobile GPS receiver, the method comprising:
3	producing a first reference signal having a precision frequency;
4	modulating the first reference signal with a data signal to provide a precision carrier
5	frequency signal;
6	transmitting the precision carrier frequency signal to the mobile GPS receiver, the
7	precision carrier frequency signal being used to calibrate a local oscillator in the mobile GPS
8	receiver, the local oscillator being used to acquire GPS signals;
9	receiving a spread spectrum signal having a Doppler shift error imposed by movement
0	between a signal source and the GPS receiver;
1	producing a plurality of complex first correlation values based upon the signal and a
2	code;
3	generating a plurality of complex second correlation values respectively from the first
4	correlation values, wherein generating includes combining a stored, associated, phase shift value
5	with each of the first correlation values to produce the second correlation values the second
6	correlation values being phase shifted by respective different amounts from corresponding first
7	correlation values, so that the second correlation values exhibit less of the Doppler shift error
8	than the first correlation values; and
9	combining the second correlation values to derive a complex third correlation value that
0	indicates a degree of correspondence of the code with the signal.
ı	63. (currently amended) A method of deriving a local oscillator signal in a mobile GPS
2	receiver, the method comprising:
3	receiving a precision carrier frequency signal from a source providing the precision
4	carrier frequency signal:

5	automatically locking to the precision carrier frequency signal and providing a reference
6	signal;
7	using the reference signal to provide a local oscillator signal to acquire GPS signals;
8	receiving a spread spectrum signal having a Doppler shift error imposed by movement
9	between a signal source and the GPS receiver;
10	producing a plurality of complex first correlation values based upon the signal and a
11	code;
12	generating a plurality of complex second correlation values respectively from the first
13	correlation values, wherein generating includes combining a stored, associated, phase shift value
14	with each of the first correlation values to produce the second correlation values the second
15	correlation values being phase shifted by respective different amounts from corresponding first
16	correlation values, so that the second correlation values exhibit less of the Doppler shift error
17	than the first correlation values; and
18	combining the second correlation values to derive a complex third correlation value that
19	indicates a degree of correspondence of the code with the signal.
1	64. (currently amended) A method of processing position information, the method
2	comprising:
3	receiving SPS signals from at least one SPS satellite;
4	transmitting cell based communication signals between a communication system coupled
5	to the SPS receiver and a first cell based transceiver which is remotely positioned relative to the
6	SPS receiver wherein the cell based communication signals are wireless;
7	determining a first time measurement which represents a time of travel of a message in
8	the cell based communication signals in a cell based communication system which comprises a
9	first cell based transceiver and the communications system;
10	determining a second time measurement which represents a time of travel of the SPS
11	signals;
12	determining a position of the SPS receiver from at least one of the first time measurement
13	A - ALL THE THE THE THE THE TANK THE
X -3	and the second time measurement, wherein the cell based communication signals are capable of
14	and the second time measurement, wherein the cell based communication signals are capable of communicating data messages in a two-way direction between the first cell based transceiver and

the communication system; and
performing the following steps during at least one of the determining steps:
producing a plurality of complex first correlation values based upon the signal and a
code;
generating a plurality of complex second correlation values respectively from the firs
correlation values, wherein generating includes combining a stored, associated, phase
shift value with each of the first correlation values to produce the second correlation
valuesthe second correlation values being phase shifted by respective different amounts
from corresponding first correlation values, so that the second correlation values exhibit
less of the Doppler shift error than the first correlation values; and
combining the second correlation values to derive a complex third correlation value
that indicates a degree of correspondence of the code with the signal.
65. (currently amended) A method of processing position information in a digital
processing system, the method comprising:
determining a first time measurement which represents a time of travel of a message in
cell based communication signals in a cell based communication system which comprises a first
cell based transceiver which communicates with the digital processing system and a
communication system which communicates in a wireless manner with the first cell based
transceiver;
determining a position of a SPS receiver from at least the first time measurement and a
second time measurement which represents a time of travel of SPS signals received at the SPS
receiver which is integrated with the communication system and is remotely located relative to
the first cell based transceiver and the digital processing system, wherein the cell based
communication signals are capable of communicating messages from the communication system
to the first cell based transceiver; and
performing the following steps when determining the position:
receiving a signal having a Doppler shift error imposed by movement between a
signal source and the GPS receiver;
producing a plurality of complex first correlation values based upon an SPS signal

and a code;

19	generating a plurality of complex second correlation values respectively from the firs
20	correlation values, wherein generating includes combining a stored, associated, phase
21	shift value with each of the first correlation values to produce the second correlation
22	values the second correlation values being phase shifted by respective different amounts
23	from corresponding first correlation values, so that the second correlation values exhibit
24	less of the Doppler shift error than the first correlation values; and
25	combining the second correlation values to derive a complex third correlation value
26	that indicates a degree of correspondence of the code with the signal.
1	66. (currently amended) A method of controlling a communication link and processing
2	data representative of GPS signals from at least one satellite in a GPS receiver, the method
3	comprising:
4	processing the data representative of GPS signals from at least one satellite in a
5	processing unit, including performing a correlation function to determine a pseudorange based or
6	the data representative of GPS signals;
.7	controlling communication signals through the communication link by using the
8	processing unit to perform the controlling and wherein the processing unit performs
9	demodulation of communication signals sent to the GPS receiver; and
10	when performing the processing step, performing at least the following steps:
11	receiving a signal having a Doppler shift error imposed by movement between a
12	signal source and the GPS receiver;
13	producing a plurality of complex first correlation values based upon the signal and a
14	code;
15	generating a plurality of complex second correlation values respectively from the first
16	correlation values, wherein generating includes combining a stored, associated, phase
17	shift value with each of the first correlation values to produce the second correlation
18	values the second correlation values being phase shifted by respective different amounts
19	from corresponding first correlation values, so that the second correlation values exhibit
20	less of the Doppler shift error than the first correlation values; and

21 combining the second correlation values to derive a complex third correlation value 22 that indicates a degree of correspondence of the code with the signal.