Zusammenfassung Lineare Algebra II

© Tim Baumann, http://timbaumann.info/uni-spicker

Notation. Sofern nicht anders angegeben, bezeichne K im folgenden einen beliebigen Körper, V einen (möglicherweise unendlichdim.) K-Vektorraum und f einen Endomorphismus $V \to V$.

Def. Zwei Matrizen $A, B \in K^{n \times n}$ heißen zueinander ähnlich, falls es eine Matrix $S \in GL(n, K)$ gibt mit $B = SAS^{-1}$.

Bemerkung. Dies definiert eine Äquivalenzrelation auf $K^{n \times n}$.

Def. Eine Matrix $A \in K^{n \times n}$

- ist in **Diagonalform**, wenn A nur auf der Diagonalen von Null verschiedene Einträge besitzt.
- ist in **Triagonalform**, wenn A nur auf und oberhalb der Diagonalen von Null verschiedene Einträge besitzt.
- heißt diagonalisierbar bzw. triagonalisierbar, wenn A ähnlich zu einer Diagonal- bzw. Triagonalmatrix ist.

Ein Endomorphismus $f \in \text{End}(V)$ heißt diagonalisierbar bzw. triagonalisierbar, wenn es eine Basis von V gibt, sodass die darstellende Matrix von f bzgl. dieser Basis eine Diagonalmatrix ist.

Satz. Es sei $A \in K^{n \times n}$. Dann ist A als Matrix genau dann diagonalisierbar (triagonalisierbar), wenn der durch A beschriebene Endomorphismus $K^n \to K^n$ diagonalisierbar (triagonalisierbar) ist.

Def. Sei $f \in \text{End}(V)$. Falls es ein $\lambda \in K$ und einen Vektor $v \in V \setminus \{0\}$ gibt, sodass $f(v) = \lambda v$, so heißt λ **Eigenwert** von f zum **Eigenvektor** v.

Satz. Sei $f \in \text{End}(V)$ und $(v_i)_{i \in I}$ eine Familie von Eigenvektoren von f zu paarweise verschiedenen Eigenwerten. Dann ist diese Familie linear unabhängig.

Def. Ist $\lambda \in K$, so setzen wir

$$\operatorname{Eig}(f; \lambda) := \{ v \in V \mid f(v) = \lambda v \}$$
$$= \ker(f - \lambda \cdot \operatorname{id}_V).$$

Dies ist der zu λ gehörende **Eigenraum**, ein UVR von V.

Satz. Sei V endlichdim. und $f \in \text{End}(V)$ mit Eigenwerten $\lambda_1, ..., \lambda_k$. Dann ist f genau dann diagonalisierbar, wenn

$$\dim \operatorname{Eig}(f; \lambda_1) + ... + \dim \operatorname{Eig}(f; \lambda_k) = \dim V.$$

Satz. $\lambda \in K$ ist ein EW von $f \iff \det(f - \lambda i d_V) = 0$.

Def. Sei $A \in K^{n \times n}$. Das Polynom $P_A(X) = \chi_A(X) \coloneqq \det(A - X \cdot E_n) \in K[X]$ heißt **charakteristisches Polynom** von A. Für die darstellende Matrix A von f bzgl. einer beliebigen Basis von V setzen wir

$$P_f(X) := P_A(X) \in K[X].$$

Dieses Polynom ist von der gewählten Basis von V unabhängig.

Satz. $\lambda \in K$ ist ein EW von $f \iff \lambda$ ist Nullstelle von $P_f \in K[X]$

Verfahren (Bestimmung von Eigenwerten und Eigenräumen). Sei $A \in \mathbb{R}^{n \times n}$ eine (darstellende) Matrix

- 1. Berechne das charakteristische Polynom P_A und bestimme dessen Nullstellen $\lambda_1,...,\lambda_k.$
- 2. Für jedes λ_i , berechne $\ker(A \lambda_i \cdot E_n)$ mit dem Gauß-Verfahren.

Def. Sei $A = (a_{ij}) \in K^{n \times n}$. Dann heißt

$$\operatorname{spur}(A) := \sum_{k=1}^{n} a_{kk} \in K$$
 Spur von A .

Satz. Seien $A, B \in K^{n \times n}$. Dann gilt spur(AB) = spur(BA).

Korollar. Ähnliche Matrizen haben die gleiche Spur.

Satz. Für diagonalisierbare $f \in \operatorname{End}(V)$ zerfällt P_f in Linearfaktoren. Zerfalle umgekehrt P_f in Linearfaktoren, wobei jede Nullstelle nur mit Vielfachheit 1 auftrete. Dann ist f diagonalisierbar.

Def. Sei λ ein EW von f.

- Dann heißt die Ordnung der Nullstelle λ von P_f algebraische Vielfachheit von λ (wird bezeichnet mit μ(f; λ)).
- Die Dimension $d(f; \lambda) := \dim \operatorname{Eig}(f; \lambda)$ heißt geometrische Vielfachheit von λ .

Satz. Für alle EW $\lambda \in K$ von f gilt

$$1 \leq \dim \operatorname{Eig}(f; \lambda) \leq \mu(P_f; \lambda).$$

Def. Der Jordanblock der Größe n zum EW λ ist die Matrix

$$J(\lambda, n) := \begin{pmatrix} \lambda & 1 & & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda \end{pmatrix}.$$

Bemerkung. Es gilt $P_{J(\lambda,n)} = (\lambda - X)^n$ aber nur $\text{Eig}(f;\lambda) = \langle e_1 \rangle$.

Satz. Es sind äquivalent:

- \bullet f ist diagonalisierbar
- P_f zerfällt in Linearfaktoren und für alle Nullstellen λ von P_f gilt $\mu(f;\lambda) = \dim \text{Eig}(f;\lambda)$.
- Sind $\lambda_1, ..., \lambda_k$ die paarweise verschiedenen EW von f, so gilt

$$V = \operatorname{Eig}(f; \lambda_1) \oplus ... \oplus \operatorname{Eig}(f; \lambda_k).$$

Verfahren (Ist ein gegebener Endomorphismus diagonalisierbar?). 1. Berechne das charakteristische Polynom, falls dieses nicht in Linearfaktoren zerfällt, so ist f nicht diagonaliserbar.

 Falls das char. Polynom in Linearfaktoren zerfällt, so berechne für jede Nullstelle den Eigenraum. Wenn für eine Nullstelle algebraische und geometrische Dimension nicht übereinstimmen, so ist f nicht diagonaliserbar. Satz. P_f zerfällt in Linearfaktoren $\iff f$ ist trigonalisierbar

Korollar. Jeder Endomorphismus eines endlichdim. \mathbb{C} -VR ist trigonalisierbar (Fundamentalsatz der Algebra).

Satz (Cayley-Hamilton). Sei V endlichdim. und $f \in \text{End}(V)$ mit charakteristischem Polynom $P_f(X) \in K[X]$. Dann gilt $P_f(f) = 0$.

Def. Sei $\lambda \in K$ ein EW von f mit alg. Vielfachheit $\mu := \mu(P_f, \lambda)$. Dann heißt

$$VEig(f, \lambda) := \ker(f - \lambda \cdot id_V)^{\mu}$$

der verallgemeinerte Eigenraum zum EW λ .

Satz. Es zerfalle P_f in Linearfaktoren, also

$$P_f = \pm (X - \lambda_1)^{\mu_1} \cdot \dots \cdot (X - \lambda_k)^{\mu_k}.$$

Dann gilt

$$V = VEig(f, \lambda_1) \oplus ... \oplus VEig(f, \lambda_k).$$

Notation. Es bezeichne R einen kommutativen Ring mit 1.

Def. Eine Teilmenge $I \subset R$ heißt Ideal, falls I eine additive Untergruppe von R ist und ür alle $r \in R$ und $x \in I$ gilt, dass $r \cdot x \in I$.

Def. Ist $S \subset R$ eine Teilmenge, so ist die Menge

$$\{r_1s_1 + ... + r_ks_k \mid k \geq 0, s_1, ..., s_k \in S, r_1, ..., r_k \in R\}$$

ein Ideal in R und wird von S erzeugtes Ideal genannt.

Def. Ein Ideal $I \subset R$ heißt **Hauptideal**, falls I von einem einzigen Element erzeugt wird. Ein Ring, in dem jedes Ideal ein Hauptideal ist, heißt **Hauptidealring**.

Satz. Für jeden Körper K ist K[X] ein Hauptidealring.

Satz. Es sei R ein Hauptidealring und $a_1,...,a_k \in R$. Dann existiert ein ggT von $a_1,...,a_k$.

 ${\bf Satz}$ (Jordan-Chevalley-Zerlegung). Sei Vendlichdim, und zerfalle P_f in Linearfaktoren. Dann gibt es einen diagonalisierbaren Endomorphismus $D:V\to V$ und einen nilpotenten Endomorphismus $N:V\to V$ mit

- f = N + D
- $D \circ N = N \circ D$

Verfahren. Berechne die erweiterten Eigenräume, triagonalisiere jeweils f eingeschränkt auf den erweiterten Eigenraum, und pack sie in eine Matrix.

Satz. Zerfalle P_f in Linearfaktoren. Für alle EW $\lambda_1,...,\lambda_k$ gilt dann:

$$\dim VEig(f, \lambda_i) = \mu(f, \lambda_i).$$

Satz (Normalform nilpotenter Matrizen). Sei $N \in K^{n \times n}$ nilpotent. Dann ist N ähnlich zu einer Matrix der Form

$$\begin{pmatrix} J(0,n_1) & 0 & 0 & 0 \\ 0 & J(0,n_2) & 0 & 0 \\ & & \ddots & \\ 0 & 0 & 0 & J(0,n_r) \end{pmatrix}$$

Satz (Jordansche Normalform). Sei V endlichdim. und zerfalle P_f in Linearfaktoren. Dann gibt es eine Basis von V, sodass die darstellende Matrix von f folgende Form hat:

$$\begin{pmatrix} J(\lambda_1, m_1) & 0 & \cdots & 0 \\ 0 & J(\lambda_2, m_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & J(\lambda_q, m_q) \end{pmatrix}$$

Dabei sind $m_1, ..., m_q \in \mathbb{N}$ mit $m_1 + ... + m_q = \dim V$ und $\lambda_1, ..., \lambda_q$ EWe von f (mit Vielfachheiten).

Verfahren (JNF). 1. Berechne das charakteristische Polynom der Matrix / des Endomorphismus.

- 2. Führe für jeden Eigenwert λ_i folgende Schritte durch:
- (a) Berechne $\ker(A \lambda_i \cdot E_n)^l$ für l = 1, ..., m bis $\dim \ker(A \lambda_i \cdot E_n)^m = \mu(f, \lambda_i)$.
- (b) Bestimme absteigend von m die Vektorräume V_l , sodass $V_l \oplus \ker(A \lambda_i \cdot E_n)^{l-1} = \ker(A \lambda_i \cdot E_n)^l$ und davon eine Basis. Wende auf die Vektoren der Basis die Abbildung $(A \lambda_i \cdot E_n)$ an und berücksichtige diese Vektoren im nächsten Schritt.

3. ...

Def. • Euklidische Norm: Für $x = (x_1, ..., x_n) \in \mathbb{C}^n$ setzen wir $||x|| := \sqrt{|x_1|^2 + ... + |x_n|^2}$

• Operatornorm: Für $A \in \mathbb{C}^{n \times n}$ setzen wir $||A|| := \max\{||Av|| | v \in \mathbb{C}^n, ||v|| = 1\}$

Satz. Für alle $A \in \mathbb{C}^{n \times n}$ konvergiert die Reihe

$$\sum_{k=0}^{\infty} \frac{1}{k!} \cdot A^k$$

absolut.

Def. Die Funktion

$$\exp: \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}, \quad A \mapsto \sum_{k=0}^{\infty} \frac{1}{k!} \cdot A^k$$

heißt Exponentialfunktion für Matrizen.

Bemerkung. Es gilt:

- $\bullet \exp(0) = E_n$
- $\exp(\lambda \cdot E_n) = e^{\lambda} \cdot E_n$ für $\lambda \in \mathbb{C}$
- $\exp\begin{pmatrix} 0 & -t \\ t & 0 \end{pmatrix} = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$
- exp ist stetig.

Satz. Für zwei Matrizen $A, B \in \mathbb{C}^{n \times n}$ mit AB = BA gilt

$$\exp(A+B) = \exp(A) \cdot \exp(B).$$

Def. Für eine Matrix $A \in \mathbb{C}^{n \times n}$ sei

$$\phi_A: \mathbb{R} \to \mathbb{C}^{n \times n}, \quad t \mapsto \exp(t \cdot A)$$

 $\mathbf{Satz.}\,$ Die Abbildung $\phi_A:\mathbb{R}\to\mathbb{C}^{n\times n}$ ist differenzierbar mit Ableitung

$$\phi_A'(t) = A \cdot \phi_A(t).$$

Satz. Es gilt:

$$\exp(t \cdot J(\lambda, n)) = \exp(t\lambda) \cdot \begin{pmatrix} 1 & t & \frac{t^2}{2!} & \cdots & \frac{t^{n-1}}{(n-1)!} \\ 0 & 1 & t & \cdots & \frac{t^{n-2}}{(n-2)!} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 & t \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

Def. Für $x=(x_1,...,x_n)\in\mathbb{R}^n$ und $y=(y_1,...,y_n)\in\mathbb{R}^n$ definieren wir

$$\langle x, y \rangle \coloneqq x_1 y_2 + \dots + x_n y_n.$$

Dies ist das Skalarprodukt im \mathbb{R}^n .

Def. Für

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in K^{m \times n}$$

definieren wir die transponierte Matrix durch

$$A^T := \begin{pmatrix} a_{11} & \cdots & a_{m1} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{mn} \end{pmatrix} \in K^{m \times n}.$$

 $\bf Def.$ Es sei Kein Körper und Vein K-VR. Eine $\bf Bilinearform$ auf V ist eine Abbildung

$$\gamma: V \times V \to K$$
,

sodass γ linear in jedem Argument, d. h. die Abbildungen

$$\gamma(v,-): V \to K, \quad w \mapsto \gamma(v,w)$$

 $\gamma(-,w): V \to K, \quad v \mapsto \gamma(v,w)$

für beliebige $v, w \in V$ linear sind.

Def. Für eine Bilinearform γ auf einem Vektorraum V und eine Basis $\mathcal{B} = (b_1, ..., b_n)$ von V definieren wir die **darstellende Matrix** von γ bzgl. \mathcal{B} durch

$$M_B(\gamma)_{ij} := \gamma(b_i, b_j).$$

Satz. Sei $A \in K^{n \times n}$ die darstellende Matrix einer Bilinearform γ bezüglich einer Basis $\mathcal{B} = (b_1, ..., b_n)$. Für $v, w \in V$ mit Koordinatenvektoren

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

gilt

$$\gamma(v, w) = x^T A y.$$

Korollar. Sind γ und γ' zwei Bilinearformen mit $M_B(\gamma) = M_B(\gamma')$, so gilt $\gamma = \gamma'$.

Satz. Sei $\mathcal C$ eine weitere Basis von V und $T_{\mathcal C}^{\mathcal B}$ die Koordinatentransformations von $\mathcal B$ nach $\mathcal C$. Dann gilt

$$M_{\mathcal{B}}(\gamma) = (T_{\mathcal{C}}^{\mathcal{B}})^T \cdot M_{\mathcal{C}}(\gamma) \cdot T_{\mathcal{C}}^{\mathcal{B}}.$$

Def. Eine Bilinearform $\gamma: V \times V \to K$ heißt symmetrisch, falls $\gamma(v,w) = \gamma(w,v)$ für alle $v,w \in V$ gilt. Äquivalent dazu ist eine Bilinearform auf einem endlichdim. VR V symmetrisch, wenn $M_{\mathcal{B}}(\gamma)^T = M_{\mathcal{B}}(\gamma)$ gilt.

Def. Sei V ein \mathbb{R} -Vektorraum.

- Eine symmetrische Bilinearform γ : V × V → ℝ heißt positiv definit, falls γ(v, v) > 0 für alle v ∈ V\{0} gilt.
- Eine symmetrische, positive definite Bilinearform auf einem R-VR heißt (euklidisches) Skalarprodukt.
- Ein R-VR, auf dem ein euklidisches Skalarprodukt definiert ist, heißt (euklidischer) Vektorraum.

Def. Sei V ein \mathbb{C} -Vektorraum.

• Eine Abbildung $\gamma: V \times V \to \mathbb{C}$ heißt Sesquilinearform, falls γ linear im ersten Argument, jedoch konjugiert-linear im zweiten Argument ist, d. h. für alle $v, w_1, w_2 \in V$ und $\lambda_1, \lambda_2 \in \mathbb{C}$ gilt

$$\gamma(v, \lambda_1 w_1 + \lambda_2 w_2) = \overline{\lambda_1} \gamma(v, w_1) + \overline{\lambda_2} \gamma(v, w_2).$$

• Eine Sesquilinearform γ heißt hermitesch, falls

$$\gamma(v, w) = \overline{\gamma(w, v)}$$

für alle $v,w\in V.$ Für alle $v\in V$ gilt dann $\gamma(v,v)=\overline{\gamma(v,v)},$ also $\gamma(v,v)\in\mathbb{R}.$

• Eine hermitesche Sesquilinearform γ heißt (unitäres) Skalarprodukt, falls γ positiv definit ist, d. h. $\gamma(v, v) > 0$ für alle $v \in V$ ist.

Def. Sei $\gamma: V \times V \to \mathbb{C}$ eine Sesquilinearform auf einem $\mathbb{C}\text{-VR }V$ und $\mathcal{B} = (b_1, ..., b_n)$ eine Basis von V. Dann ist die **darstellende** Matrix von γ

$$(M_{\mathcal{B}})_{ij} \coloneqq \gamma(b_i, b_j).$$

Bemerkung. Eine Bilinearform auf einem endlichdim. \mathbb{C} -VR ist genau dann hermitesch, wenn $M_{\mathcal{B}}(\gamma)^T = \overline{M_{\mathcal{B}}(\gamma)}$ gilt.

Def. Für euklidische bzw. euklidische VR V und $v \in V$ setzen wir

$$||v|| := \sqrt{\langle v, v \rangle}.$$

Def. Sei V ein euklidischer/unitärer VR.

- Zwei Vektoren $v, w \in V$ heißen **orthogonal** (geschrieben $v \perp w$), falls $\langle v, w \rangle = 0$ gilt.
- Eine Familie $(v_i)_{i \in I}$ von Vektoren heißt **orthogonal**, falls $v_i \perp v_j$ für alle $i, j \in I$ mit $\neq j$ gilt.
- Eine Familie $(v_i)_{i \in I}$ heißt **orthonormal**, falls sie orthogonal ist und zusätzlich $||v_i|| = 1$ für alle $i \in I$ erfüllt.
- Eine orthogonale Familie, die eine Basis von V ist, heißt Orthonormalbasis.

Satz. Für $v, w \in V$ mit $v \perp w$ gilt $||v + w||^2 = v^2 + w^2$.

Satz (Cauchy-Schwarzsche Ungleichung). Es sei V ein euklidischer oder unitärer Vektorraum. Dann gilt für alle $v,w\in V$

$$|\langle v, w \rangle| \le ||v|| \cdot ||w||.$$

 ${\bf Satz.}\,$ Sei Vein euklidischer/unitärer VR. Dann definiert die Funktion

$$\|-\|: V \to \mathbb{R}, \quad v \mapsto \sqrt{\langle v, v \rangle}$$

eine Norm auf V.

Satz. Sei V ein euklidischer/unitärer VR, $(v_i)_{i\in I}$ eine orthogonale Familie und $v_i \neq 0$ für alle $i \in I$. Dann ist die Familie (v_i) linear unabhängig.

Def. Zwei UVR $U, W \subset V$ heißen **orthogonal** (geschrieben $U \perp W$), falls $u \perp w$ für alle $u \in U$ und $w \in W$ gilt.

Def. Ist $U \subset V$ ein UVR, so ist

$$U^{\perp} \coloneqq \{ v \in V \,|\, v \perp u \text{ für alle } u \in U \}$$

ein UVR von V und heißt das **orthogonale Komplement** von U in V

Bemerkung. Es gilt: $U \perp U^{\perp}$.

Satz. Jeder endlichdimensionale euklidische/unitäre VR besitzt eine Orthonormalbasis.

Korollar. Sei V ein euklidischer/unitärer VR und $W \subset V$ ein endlichdim. UVR. Dann gilt

$$V = W \oplus W^{\perp}$$
.

Def. Sei V ein euklidischer VR und $(v_1, ..., v_k)$ eine endliche Familie von Vektoren in V. Dann ist

$$\operatorname{Gram}(v_1, ..., v_k) \coloneqq \det \begin{pmatrix} \langle v_1, v_1 \rangle & \cdots & \langle v_1, v_k \rangle \\ \vdots & & \vdots \\ \langle v_k, v_1 \rangle & \cdots & \langle v_k, v_k \rangle \end{pmatrix}$$

die Gramsche Determinante von $(v_1, ..., v_k)$.

Satz. Es gilt $Gram(v_1,...,v_k) \ge 0$, wobei Gleichheit genau dann gilt, wenn $(v_1,...,v_k)$ linear abhängig sind.

 $\mbox{\bf Def.}$ Wir definieren den von der Famile $(v_1,...,v_k)$ aufgespannten $\mbox{\bf Spat}$ als

$$Spat(v_1,...,v_k) := \{t_1v_1 + ... + t_kv_k \mid 0 < t_i < 1 \text{ für } i = 1,...,k\}$$

und dessen k-dimensionales Volumen als

$$\operatorname{Vol}(\operatorname{Spat}(v_1,...,v_k)) \coloneqq \sqrt{\operatorname{Gram}(v_1,...,v_k)}.$$

Def. Es sei V ein K-VR. Der Vektorraum $\operatorname{Hom}_K(V,K)$ der K-linearen Abbildungen $V \to K$ heißt der zu V duale **Vektorraum** und wird mit V^* bezeichnet. Die Elemente von V^* heißen **Linearformen** auf V.

Bemerkung. Eine Linearform ist bereits eindeutig dadurch bestimmt, was sie mit den Vektoren einer Basis von V anstellt.

Satz. Sei V endlichdimensional und $\mathcal{B} = (v_1, ..., v_k)$ eine Basis von V. Wir definieren für $j \in \{1, ..., k\}$ die Linearform $v_j^* : V \to K$ durch

$$v_i^*(v_i) \coloneqq \delta_{ij}$$
.

Dann ist $(v_1^*, ..., v_n^*)$ eine Basis von V^* und die Abbildung $v_i \mapsto v_i^*$ ein Isomorphismus $\phi_{\mathcal{B}} : V \to V^*$.

Korollar. Für endlichdim. VR V gilt: dim $V = \dim V^*$.

Def. Sei $f: V \to W$ linear. Dann heißt die lineare Abbildung

$$f^*: W^* \to V^*, \quad \phi \mapsto \phi \circ f$$

zu f duale Abbildung.

 ${\bf Satz.}$ Seien V,Wendlichdim. VR mit Basen ${\cal B}$ und ${\cal C}$ und $f:V\to W$ linear. Dann gilt

$$M_{\mathcal{B}^*}^{\mathcal{C}^*}(f^*) = M_{\mathcal{C}}^{\mathcal{B}}(f)^T$$

Def. Ist $v \in V$, so definiert die Auswertung bei v

$$\iota_v: V^* \to K, \quad \phi \mapsto \phi(v)$$

ein Element in V^{**}

Satz. Sei V endlichdim. Dann ist die Abbildung $\iota: V \to V^{**}, v \mapsto \iota_v$ ein (natürlicher) Isomorphismus und stimmt mit der Verknüpfung der bzgl. einer Basis $\mathcal B$ und $\mathcal B^*$ definierten Isomorphismen $V \to V^*$ und $V^* \to V^{**}$ überein.

Def. Sei V ein K-VR. Ein Bilinearform $\gamma:V\times V\to K$ heißt **nicht ausgeartet**, falls die lineare Abbildung

$$\Phi: V \to V^*, \quad w \mapsto \gamma(-, w)$$

injektiv ist, d. h. für alle $w \neq 0$ existiert ein $v \in V$ mit $\gamma(v, w) \neq 0$.

Bemerkung. Euklidische und unitäre Skalarprodukte sind immer nicht ausgeartet. Eine Bilinearform ist genau dann nicht ausgeartet, wenn ihre darstellende Matrix (bzgl. einer beliebigen Basis) invertierbar ist.

 ${\bf Satz.}\,$ Sei Vein endlichdim. VR und die Bilinearform $\gamma:V\times V\to K$ nicht ausgeartet. Dann sind die Abbildungen

$$\Phi: V \to V^*, \quad w \mapsto \gamma(-, w)$$

$$\Psi: V \to V^*, \quad v \mapsto \gamma(v, -)$$

Isomorphismen.

Satz. Es gibt eine eineindeutige Entsprechung zwischen

- Isomorphismen $V \to V^*$
- nicht-ausgearteten Bilinearformen $V \times V \to K$

Dabei ordnen wir einem Isomorphismus $\Psi: V \to V^*$ die Bilinearform $(v, w) \mapsto \Psi(v)(w)$ zu.

Andersrum ist für einen endlichdim. euklidischen VR $(V,\langle -,-\rangle)$ die Abbildung

$$\Psi: V \to V^*, \quad v \mapsto \langle v, - \rangle$$

ein Isomorphismus.

 $\mathbf{Def.}\,$ Sei Vein $K\text{-}\mathrm{VR}$ und $W\subset V$ ein UVR. Dann heißt der UVR

$$W^0 := \{ f \in V^* \mid f \mid_W = 0 \}$$

Annulator von W in V^* .

Bemerkung. Ist dim $V < \infty$, so gilt dim $W^0 = \dim V - \dim W$.

Satz. Sei V endlichdimensional und $W \subset V$ ein UVR. Dann gilt

$$\Psi(W^{\perp}) = W^0.$$

Def. Sei $W \subset V$ ein UVR. Wir definieren die Relation \sim wie folgt:

$$v_1 \sim v_2 : \iff v_1 - v_2 \in W.$$

Dann ist die Äquivalenzklasse [v] gleich dem affinen Teilraum

$$v + W = \{v + w \mid w \in W\}.$$

Durch die Setzung

$$(v_1+W)+(v_2+W)\coloneqq (v_1+v_2)+W\lambda\cdot(v+W) \cong \lambda v_1+W$$

wird V/W zu einem K-Vektorraum, genannt **Quotientenraum** von V nach W.

Satz. Sei $(V, \langle -, - \rangle)$ ein euklidischer/unitärer VR und $W \subset V$ ein endlichdimensionaler UVR. Dann ist die Abbildung

$$\chi: W^{\perp} \to V/W, \quad v \mapsto [v]$$

ein Vektorraumisomorphismus.

Korollar. Für endlichdimensionale V gilt: $\dim V/W = \dim W^{\perp} = \dim V - \dim W$.

Def. Seien V, W euklidische/unitäre VR. Eine eine $\mathbb{R}/$ - bzw. \mathbb{C} -lineare Abbildung $f: V \to W$ heißt **orthogonal** bzw. **unitär**, falls für alle $v, w \in V$ gilt:

$$\langle f(v), f(w) \rangle_W = \langle v, w \rangle_V.$$

Bemerkung. Orthogonale/unitäre Abbildungen sind längenerhaltend (und somit injektiv) und bilden orthogonale Familien wieder auf orthogonale Familien ab. Die Umkehrung gilt auch:

 $\mathbf{Satz.} \ \mathrm{Sei} \ f: V \to W$ linear und längenerhaltend. Dann ist forthogonal bzw. unitär.

Def. Eine Matrix $A \in \mathbb{R}^{n \times m}$ bzw. $A \in \mathbb{C}^{n \times m}$ heißt **orthogonal** bzw. **unitär**, falls sie bzgl. der Standardskalarprodukte eine orthogonale bzw. unitäre Abbildung beschreibt. Dies ist gleichbedeutend damit, dass

$$(Ax)^T (Ay) = x^T A^T Ay = x^T y$$

für alle $x, y \in \mathbb{R}^m$, also

$$A^T A = E_m$$

im euklidischen und

$$A^T \overline{A} = E_m$$

im unitären Fall.

Satz. Seien V und W endlichdim. euklidisch/unitär. Eine Abbildung $f:V\to W$ ist genau dann orthogonal/unitär, wenn gilt: Bezüglich Orthonormalbasen $\mathcal B$ und $\mathcal C$ von V und W ist die darstellende Matrix $M_C^B(f)$ orthogonal/unitär.

Satz. Sei V endlichdim. euklidisch/unitär und $f: V \to V$ ein orthogonaler/unitärer Endomorphismus. Dann gilt:

- f ist ein Isomorphismus.
- f^{-1} ist ebenfalls orthogonal/unitär
- $\bullet\,$ alle EW von f haben den Betrag 1
- Eigenvektoren zu unterschiedlichen EW sind orthogonal

Bemerkung. Für Matrizen $A \in \mathbb{R}^{n \times n}$ (bzw. $A \in \mathbb{C}^{n \times n}$) sind äquivalent:

- A ist orthogonal (unitär)
- Die Spalten von A bilden eine ONB.
- Die Zeilen von A bilden eine ONB.
- $A^{-1} = A^T$ (bzw. $\overline{A}^{-1} = A^T$)

Def. Die Untergruppen

$$O(n) := \{ A \in \operatorname{Mat}(n, \mathbb{R}) \mid A \text{ orthogonal } \} \subset \mathbb{R}^{n \times n}$$
$$O(n) := \{ A \in \operatorname{Mat}(n, \mathbb{C}) \mid A \text{ unitär } \} \subset \mathbb{C}^{n \times n}$$

der multiplikativen Gruppen $\mathrm{GL}(n,\mathbb{R})$ bzw. $\mathrm{GL}(n,\mathbb{C})$ heißen Gruppen der orthogonalen bzw. unitären Matrizen.

Bemerkung. Für alle $A \in O(n)$ und $A \in U(n)$ gilt $|\det A| = 1$.

Def. Sei V ein endlichdim. \mathbb{R} -VR.

- Zwei Basen $\mathcal B$ und $\mathcal C$ von V heißen gleich orientiert, falls gilt: $\det M_{\mathcal C}^{\mathcal B}>0.$
- Die Äquivalenklassen der so definierten Relation heißen Orientierungen von V. Zwei Basen in derselben Äquivalenzklasse heißen positiv, Basen in unterschiedlichen Äquivalenzklassen negativ orientiert.
- Es seien V, W endlichdim. und orientierte VR, d. h. mit Äquivalenzklassen gleich orientierter Basen versehen. Ein Isomorphismus $V \to W$ heißt **orientierungserhaltend**, falls f eine positiv orientierte Basis von V auf eine positiv orientierte Basis von W abbildet.
- Für $V = \mathbb{R}^n$ heißt die Orientierungsklasse der Standardbasis $(e_1, ..., e_n)$ Standardorientierung oder kanonische Orientierung von \mathbb{R}^n .

Def. Die Gruppen

$$SO(n) := \{A \in O(n) \mid \det A = 1\}$$

 $SU(n) := \{A \in U(n) \mid \det A = 1\}$

heißen spezielle orthogonale/unitäre Gruppe.

Bemerkung. Die spezielle orthogonale Gruppe enthält genau die richtungserhaltenden, orthogonalen Endomorphismen $\mathbb{R}^n \to \mathbb{R}^n$.

Satz. Sei $A \in O(2)$. Dann ist det $A \in \{-1, 1\}$.

• Falls det A=1, gibt es genau ein $\phi \in [0, 2\pi[$, sodass

$$A = \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix}$$

• Falls det A = -1, gibt es genau ein $\phi \in [0, 2\pi[$, sodass

$$A = \begin{pmatrix} \cos(\phi) & \sin(\phi) \\ \sin(\phi) & -\cos(\phi) \end{pmatrix}.$$

Satz. Sei V ein endlichdim., unitärer VR und $f:V\to V$ ein unitärer Endomorphismus. Dann gilt:

- \bullet f ist diagonalisierbar
- \bullet V hat eine ONB aus Eigenvektoren von f

Verfahren. Eine ONB aus Eigenvektoren von f bestimmt man, indem man mittel Gram-Schmidt ONB von den Eigenräumen von f berechnet und diese zu einer Basis zusammensetzt.

Korollar. Ist $A \in U(n)$, so gibt es ein $S \in U(n)$, sodass

$$SAS^{-1} = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix},$$

wobei $\lambda_1, ..., \lambda_n \in \mathbb{C}$ mit Betrag 1.

Satz. Es sei V ein endlichdim. euklidischer VR und $f:V\to V$ ein orthogonaler Endomorphismus. Dann existiert eine ONB von V, bezüglich der f durch eine Matrix der Form

$$\begin{pmatrix} 1 & & & & & 0 \\ & \ddots & & & & \\ & & 1 & & & \\ & & & -1 & & \\ & & & \ddots & \\ & & & -1_{A_1} & & \\ & & & \ddots & \\ & & & & A_k \neq 0 \end{pmatrix}$$

dargestellt wird, wobei $A_1,...,A_k \in SO(2)$ Drehmatrizen der Form

$$A_i = \begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix}$$

mit $\theta_i \in]0, \pi[\cup]\pi, 2\pi[$ sind.

Satz. Sei $A \in SO(3)$ mit $A \neq E_3$. Dann existiert eine ONB $\mathcal{B} = (v_1, v_2, v_3)$ von \mathbb{R}^3 , bezüglich der die Abbildung A durch eine Matrix der Form

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{pmatrix}$$

dargestellt wird, wobei $\phi \in [0, 2\pi]$. Wir können uns daher A als Drehung mit Drehachse $\mathrm{span}(v_1) \subset \mathbb{R}^3$ um den Winkel ϕ vorstellen. Die Drehachse und der Winkel ϕ sind durch A eindeutig bestimmt.

Satz. Es gilt:

$$SU(2) = \left\{ \begin{pmatrix} w & -\overline{z} \\ z & \overline{w} \end{pmatrix} : w, z \in \mathbb{C}, |w|^2 + |z|^2 = 1 \right\}$$

Def.

$$\mathbb{H} := \mathrm{span}_{\mathbb{R}} SU(2) \subset \mathbb{C}^{2 \times 2}$$

Satz. Die Matrizen

$$\eta_0 := E_2, \quad \eta_1 := \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix},$$
$$\eta_2 := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \eta_3 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

bilden eine Basis der reellen VR H.

Satz. \mathbb{H} ist ein (nicht-kommutativer) Ring mit $1 = \eta_0$. Jedes Element $x \in \mathbb{H} \setminus \{0\}$ besitzt ein multiplikatives Inverses. Damit ist $\mathbb{H} \setminus \{0\}$ bezüglich der Multiplikation eine Gruppe und \mathbb{H} ein Schiefkörper.

Def. Setzen wir $I := \eta_1, J := \eta_2, K := \eta_3$, dann gilt

$$I^2=J^2=K^2=-1,$$

$$IJ=-JI=K, \quad JK=-KJ=I, \quad KI=-IK=J.$$

Satz. Es gilt

$$SO(2) = \left\{ \begin{pmatrix} w & -z \\ z & w \end{pmatrix} : w, z \in \mathbb{R}, w^2 + z^2 = 1 \right\}.$$

Def. Sei $G := \operatorname{GL}(n,\mathbb{R})$ oder $G := \operatorname{GL}(n,\mathbb{C})$. Eine **Einparametergruppe** in G ist eine differenzierbare Abbildung $\phi : \mathbb{R} \to G$, die außerdem ein Grupenhomomorphismus $(\mathbb{R},+,0) \to (G,\cdot,E_n)$ ist. Für die Differenzierbarkeit fassen wir G als offene Teilmenge von $\mathbb{R}^{n \times n}$ bzw. $\mathbb{C}^{n \times n}$ und ϕ als Zusammenfassung von Komponentenfunktionen auf.

Satz. Für alle $A \in \operatorname{Mat}(n, \mathbb{R})$ bzw. $A \in \operatorname{Mat}(n, \mathbb{C})$ definiert

$$\phi_A: \mathbb{R} \to G, \quad t \mapsto \exp(t \cdot A)$$

eine Einparametergruppe in $\mathrm{GL}(n,\mathbb{R})$ bzw. in $\mathrm{GL}(n,\mathbb{C})$

Satz. Es gilt im $\phi_A \subset O(n) \iff A^T = -A$.

Bemerkung. Es gilt für alle $A \in \mathbb{R}^{n \times n}$ bzw. $A \in \mathbb{C}^{n \times n}$

$$\frac{d}{dt}\phi_A(t)\mid_{t=0}=A.$$

Daher heißt A infinitesimaler Erzeuger der Einparametergruppe ϕ_A .

Def. Der Vektorraum

$$\mathfrak{o}(n) := \{ A \in \mathbb{R}^{n \times n} \, | \, A^T = -A \}$$

heißt Vektorraum der infinitesimalen Erzeuger von O(n).

Bemerkung. Wegen

$$\det(\exp(tA)) = \exp(t \cdot \operatorname{spur}(A))$$

gilt $(\forall t \in \mathbb{R} : \det \phi_A(t) = 1) \iff \operatorname{spur} A = 0.$

Def. Der Vektorraum

$$\mathfrak{so}(n) := \{ A \in \mathbb{R}^{n \times n} \mid A^T = -A, \operatorname{spur} A = 0 \}$$

heißt Vektorraum der infinitesimalen Erzeuger von SO(n).

Satz. Es gilt $\mathfrak{so}(n) = \mathfrak{o}(n)$.

Def. Sei $(V, \langle -, - \rangle)$ ein euklidischer/unitärer Vektorraum. ein Endomorphismus $f: V \to V$ heißt selbstadjungiert, wenn

$$\langle v, f(w) \rangle = \langle f(v), w \rangle$$
 für alle $v, w \in V$.

Satz. Sei V endlichdim. euklidisch/unitär und $f \in \operatorname{End}(V)$. Dann ist f genau dann selbstadjungiert, wenn folgendes gilt: Es sei \mathcal{B} eine ONB von V und $A = M_{\mathcal{B}}(f)$ die darstellende Matrix von f bzgl. \mathcal{B} . Dann ist $\overline{A}^T = A$, d. h. A ist hermitesch bzw. symmetrisch.

Satz. Sei $f:V\to V$ selbstadjungiert. Dann sind alle EW von f reell und Eigenvektoren zu verschiedenen Eigenwerten sind orthogonal.

 ${\bf Satz}$ (Spektralsatz für selbstadjungierte Operatoren). Sei Vein endlichdim. euklidischer/unitärer VR und $f:V\to V$ selbstadjungiert. Dann besitzt Veine ONB bestehend aus Eigenvektoren von f.

Korollar. Sei $A \in \mathbb{C}^{n \times n}$ hermitesch bzw. $A \in \mathbb{R}^{n \times n}$ symmetrisch. Dann ist A diagonalisierbar. Es existiert eine ONB bestehend aus Eigenvektoren von A.

Def. Sei ein V endlichdim. euklidisch/unitärer VR und $\lambda_1, ..., \lambda_k$ die (paarweise verschiedenen) reellen EWe eines selbstadjungierten Endomorphismus $f: V \to V$. Setzen wir $W_i := \text{Eig}(f; \lambda_i)$, so haben wir nach den bisher bewiesenen Aussagen eine Summenzerlegung

$$f = \sum_{i=1}^{k} \lambda_i \cdot \operatorname{pr}_{W_i}^{\perp}$$

von f als Linearkombination von selbstadjungierten Projektionen. Diese Zerlegung nennt man **Spektralzerlegung** von f.

Bemerkung. Es ist nicht sinnvoll, von EW
en einer symmetrischen Bilinearform $\gamma: V \times V \to K$ zu sprechen!

Satz. Sei V ein endlichdim. \mathbb{R} -VR und $\gamma: V \times V \to \mathbb{R}$ eine symmetrische Bilinearform. Dann existiert eine Basis \mathcal{B} von V, sodass $M_{\mathcal{B}}(\gamma)$ eine Diagonalmatrix ist.

Def. Eine quadratische Form vom Rang n über einem Körper K ist ein Polynom $Q \in K[X_1, ..., X_n]$ der Form

$$Q = \sum_{1 \le i, j \le n} \alpha_{ij} X_i X_j$$

mit $\alpha_{ij} \in K$ für alle $i, j \in \{1, ..., n\}$. Man sagt auch, Q ist ein homogenes Polynom vom Grad 2.

Bemerkung. Ist Q eine quadratische Form, so definiert Q eine Abbildung $\phi_Q: K^n \to K$, gegeben durch

$$(x_1,...,x_n) \mapsto Q(x_1,...,x_n)$$

also durh Einsetzen der Körperelemente für die Unbestimmten. Wenn wir die Koeffizienten in einer Matrix $A \coloneqq (\alpha_{ij})_{1 \le i,j \le n} \in K^{n \times n}$ zusammenfassen, so sehen wir, dass

$$\phi_O(x) = x^T A x$$
.

Satz. Wir können aus ϕ_Q die Matrix A zurückgewinnen (falls $0 \neq 2$ in K gilt).

Def. Eine affine Quadrik im \mathbb{R}^n ist eine Teilmenge der Form

$$\{x \in \mathbb{R}^n \mid x^T A x + \langle b, x \rangle + c = 0\} \subset \mathbb{R}^n,$$

wobei wir A ohne Einschränkung als symmetrisch annehmen dürfen, $b \in \mathbb{R}^n$ und $c \in \mathbb{R}$.

Def. Eine affine Quadrik im \mathbb{R}^2 nennt man einen **Kegelschnitt**.

 \mathbf{Satz} (Trägheitssatz von Sylvester). Sei Vein $n\text{-}\mathrm{dimensionaler}$ $\mathbb{R}\text{-}\mathrm{Vektorraum}$ und

$$\gamma: V \times V \to \mathbb{R}$$

eine symmetrische Bilinearform. Es seien $\mathcal B$ und $\mathcal C$ zwei Basen von V und $S \coloneqq M_{\mathcal B}(\gamma)$ und $T \coloneqq M_{\mathcal C}(\gamma)$ die entsprechenden darstellenden Matrizen. Es seien s_+ und s_- die Anzahlen der positiven, bzw. negativen Eigenwerte von S. Entsprechend definieren wir t_+ und t_- . Dann gilt

$$s_+ = t_+, s_- = t_-.$$

Korollar (Normalform für reelle symmetrische Bilinearformen). Sei V ein endlichdim. \mathbb{R} -Vektorraum der Dimension n und $\gamma:V\times V\to\mathbb{R}$ eine symmetrische Bilinearform der Signatur (r_+,r_-) . Dann existiert eine Basis \mathcal{B} von V, sodass

$$M_{\mathcal{B}}(\gamma) = \begin{pmatrix} E_{r_+} & 0\\ 0 & -E_{r_-} & 0\\ 0 & 0 \end{pmatrix},$$

wobei die 0 unten rechts die Nullmatrix in $\mathbb{R}^{r_0 \times r_0}$ bezeichnet.

Def. Sei V ein endlichdim. \mathbb{R} -VR und $\gamma: V \times V \to \mathbb{R}$ eine symmetrische Bilinearform. Wir nennen γ

- positiv definit, falls $\gamma(v,v) > 0$ für alle $v \in V \setminus \{0\}$,
- positiv semidefinit, falls $\gamma(v,v) \geq 0$ für alle $v \in V$,
- negativ definit, falls $\gamma(v,v) < 0$ für alle $v \in V \setminus \{0\}$,
- negativ semidefinit, falls $\gamma(v, v) \leq 0$ für alle $v \in V$,
- indefinit, falls es $v, w \in V$ gibt mit $\gamma(v, v) < 0$ und $\gamma(w, w) > 0$.

Bemerkung. Positiv definite symmetrische Bilinearformen auf reellen Vektorräumen werden Skalarprodukt genannt.

Satz. Sei V ein endlichdim. \mathbb{R} -VR und $\gamma: V \times V \to \mathbb{R}$ eine symmetrische Bilinearform der Signatur (r_+, r_-) . Dann gilt:

- γ ist genau dann positiv definit, falls $r_+ = n$.
- γ ist genau dann positiv semidefinit, falls $r_{-}=0$.
- γ ist genau dann indefinit, falls $r_{+} > 0$ und $r_{-} > 0$.

Satz (Hauptminoren-Kriterium). Sei $A \in \mathbb{R}^{n \times n}$ eine symmetrische Matrix. Für k=1,...,n bezeichnen wir mit $H_k \in \mathbb{R}$ die Determinante der linken oberen $(k \times k)$ -Teilmatrix A_k von A (auch k-ter Hauptminor genannt). Dann sind äquivalent:

- A ist positiv definit.
- $H_k > 0$ für alle k = 1, ..., n.