Probabilities on a Finite or Countable Space

Jieun Shin January 26, 2023

Probabilities on a Finite or Countable Space i

we assume that Ω is finite or countable and we take the σ -algebra $\mathcal{A}=2^{\Omega}$ (the class of all subsets of Ω).

Theorem 4.1

- (a) (uniqueness) A probability on the finite or countable set Ω is characterized by its values on the atoms: $p_w = P(\{w\}), w \in \Omega$.
- (b) (existence) Let $(P_w)_{w\in\Omega}$ be a set of real numbers indexed by the finite or countable set Ω . Then there exists a unique probability P such that $p_w \geq 0, \forall w \in \Omega$ and $\sum_{w \in \Omega} p_w = 1$.

proof of Thm 4.1

(a) Let $A \in \mathcal{A}$. Then $A = \bigcup_{w \in A} \{w\}$, a finite or countable union of pairwise disjoint singletons. If P is probability, countable additivity yields

$$P(A) = P(\bigcup_{w \in A} \{w\}) = \sum_{w \in A} P(\{w\}) = \sum_{w \in A} p_w$$

Probabilities on a Finite or Countable Space ii

- (b)
- (1) existence

Define a set function P such that for a $A \in \mathcal{A}$, $P(A) = \sum_{w \in A} P(\{w\})$, then

- 1. $P(\Omega) = \sum_{w \in A} P(\{w\}) = \sum_{w \in A} p_w = 1$
- 2. Supp' A_1, A_2, \ldots are pairwise disjoint, then

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{w \in \bigcup_{n=1}^{\infty} A_n} P(\{w\}) = \sum_{n=1}^{\infty} \sum_{w \in A_n} P(\{w\}) = \sum_{n=1}^{\infty} P(A_n)$$

Thus, $P(\cdot)$ is a prob measure.

(2) uniqueness

The uniqueness is given by (a).

Probabilities on a Finite or Countable Space iii

Definition 4.1

A probability measure P on the finite set Ω is called uniform if $P(\{w_1\}) = P(\{w_2\}), \forall w_1, w_2 \in \Omega$.

In this case, it is immediate that

$$P(A) = \frac{\#(A)}{\#(\Omega)}.$$

Then computing the probability of any event A amounts to counting the number of points in a. On a given finite set Ω there is one and only one uniform probability.

Probabilities on a Finite or Countable Space iv

Examples for finite space

1. Hypergeometric distribution

$$P(X=x) = \frac{\binom{N}{x} \binom{M}{n-x}}{\binom{N+M}{n}}, \quad 0 \le x \le N \text{ and } 0 \le n-x \le M.$$

2. Binomial distribution

$$P(X = x) = \binom{n}{x} \left(\frac{N}{N+M}\right)^x \left(\frac{M}{N+M}\right)^{n-x}, \quad \text{for } x = 0, 1, \dots, n.$$

Examples for countable space

1. Poisson distribution

$$P(X = x) = e^{-\lambda} \frac{\lambda^n}{n!}, \quad n = 0, 1, 2,$$

2. Geometric distribution

$$P(X = x) = (1 - \alpha)\alpha^{n}, \quad n = 0, 1, 2,$$

л

Example i

Q4.1 (Poisson Approximation to the Binomial) Let P be a Binomial probability with prob of success p and number of trials n. Let $\lambda = pn$. Show that

$$P(k \text{ successes}) = \frac{\lambda^k}{k!} \left(1 - \frac{\lambda}{n}\right)^n \left\{ \left(\frac{n}{n}\right) \left(\frac{n-1}{n}\right) \cdots \left(\frac{n-k+1}{n}\right) \right\} \left(1 - \frac{\lambda}{n}\right)^{-k}.$$

Let $n \to \infty$ and let p change so that λ remains constant. Conclude that for small p and large n.

$$P(k \text{ successes}) \approx e^{-\lambda} \frac{\lambda^k}{k!}$$
, where $\lambda = pn$.

proof of Q4.1

P(k successes)는 n번의 시행 중 k번의 성공, n-k번의 실패가 발생하는 확률이다. n번 중 k번을 선택하는 사건의 수는 $\binom{n}{k}$ 이므로 k번 성공할 확률은

$$P(k \text{ successes}) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Example ii

 $\lambda = pn$ 라고 했으므로 다시 표현하면

$$\binom{n}{k} \rho^k (1-\rho)^{n-k} = \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k \left(1-\frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^k}{k!} \left(1-\frac{\lambda}{n}\right)^n \frac{n!}{n^k(n-k)!} \left(1-\frac{\lambda}{n}\right)^{-k}$$

$$= \frac{\lambda^k}{k!} \left(1-\frac{\lambda}{n}\right)^n \frac{n(n-1)\cdots(n-k+1)}{n^k} \left(1-\frac{\lambda}{n}\right)^{-k}$$

$$= \frac{\lambda^k}{k!} \left(1-\frac{\lambda}{n}\right)^n \left(\frac{n}{n}\right) \left(\frac{n-1}{n}\right)\cdots \left(\frac{n-k+1}{n}\right) \left(1-\frac{\lambda}{n}\right)^{-k}$$

이고,
$$n \to \infty$$
에 따라 $\lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^n = e^{-\lambda}, \lim_{n \to \infty} \frac{n-k}{n} = 1, \lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^{-k} = 1$ 이므로 $P(k \text{ successes}) \approx e^{-\lambda} \frac{\lambda^k}{k!}$ 이다. \blacksquare