#CAR PRICE PREDICTION

#IMPORTING LIBRARIES

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import linear_model
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

#LOADING THE DATASET

cars = pd.read_csv("https://raw.githubusercontent.com/amankharwal/Website-data/master/CarPrice.csv")

head
cars.head()

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocatio
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	fro
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	fro
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	fro
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	fro
4	5	2	audi 100ls	gas	std	four	sedan	4wd	fro

5 rows × 26 columns

cars.tail()

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation
200	201	-1	volvo 145e (sw)	gas	std	four	sedan	rwd	front
201	202	-1	volvo 144ea	gas	turbo	four	sedan	rwd	front
202	203	-1	volvo 244dl	gas	std	four	sedan	rwd	front
203	204	-1	volvo 246	diesel	turbo	four	sedan	rwd	front
204	205	-1	volvo 264gl	gas	turbo	four	sedan	rwd	front

5 rows × 26 columns

#DATA PREPARATION

```
y = cars['price']
```

CREATING DUMMY VARIABLES FOR ALL CATEGORICAL VARIABLES
cars_categorical = X.select_dtypes(include=['object'])
cars_categorical.head()

	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	enginetype	cylindernumber
0	gas	std	two	convertible	rwd	front	dohc	four
1	gas	std	two	convertible	rwd	front	dohc	four
2	gas	std	two	hatchback	rwd	front	ohcv	six
3	gas	std	four	sedan	fwd	front	ohc	four
4	gas	std	four	sedan	4wd	front	ohc	five

CONVERT INTO DUMMIES

cars_dummies = pd.get_dummies(cars_categorical, drop_first=True)
cars_dummies.head()

	fueltype_gas	aspiration_turbo	doornumber_two	carbody_hardtop	carbody_hatchback	carbody_sedan	c
0	1	0	1	0	0	0	
1	1	0	1	0	0	0	
2	1	0	1	0	1	0	
3	1	0	0	0	0	1	
4	1	0	0	0	0	1	

5 rows × 29 columns


```
# DROP CATEGORICAL VARIABLES
X = X.drop(list(cars_categorical.columns), axis=1)
# CONCAT DUMMY VARIABLES WITH X
X = pd.concat([X, cars_dummies], axis=1)
# SCALING THE FEATURES
from sklearn.preprocessing import scale
cols = X.columns
X = pd.DataFrame(scale(X))
X.columns = cols
X.columns
     'drivewheel_rwd', 'enginelocation_rear', 'enginetype_dohcv', 'enginetype_l', 'enginetype_ohc', 'enginetype_ohcv',
              'enginetype_rotor', 'cylindernumber_five', 'cylindernumber_four', 'cylindernumber_six', 'cylindernumber_three', 'cylindernumber_twelve', 'cylindernumber_two', 'fuelsystem_2bbl', 'fuelsystem_4bbl',
              'fuelsystem_idi', 'fuelsystem_mfi', 'fuelsystem_mpfi', 'fuelsystem_spdi', 'fuelsystem_spfi'],
             dtype='object')
# SPLIT INTO TRAIN AND TEST
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,train_size=0.7,test_size = 0.3, random_state=100)
#TRAINING THE MODEL
lm = LinearRegression()
```

```
lm.fit(X_train, y_train)

▼ LinearRegression

     LinearRegression()
                                                           + Code -
                                                                      + Text
print(lm.coef_)
print(lm.intercept_)
    [ 3.10948137e+02 8.36453448e+02 -3.43260665e+02 1.46810706e+03
      2.72600381e+02 5.87779180e+02 9.22894020e+03 -2.55869078e+03
     -2.47902728e+03 -4.60781831e+02 1.78214309e+03 7.54540184e+02
     -1.24778464e+03 1.64373073e+03 -5.10899847e+02 7.50918876e+02
      1.19818860e+02 -8.10723498e+02 -1.68110837e+03 -1.29400048e+03
     -9.29406051e+02 -3.25156860e+02 3.82124154e+02 7.23233783e+02
     -1.30457362e+02 8.20729163e+01 2.60653437e+03 1.05033915e+03
     -7.91711232e+02 1.23615776e+03 6.02211054e+01 1.51957444e+03
     -4.11635324e+00 1.10565452e+03 -1.63423128e+03 1.23615776e+03
     -9.39263854e+00 5.89877229e+01 5.10899847e+02 2.56734680e-25
     -4.56241487e+01 -6.15650841e+02 -1.27481262e-27]
    13614.94107409846
y_pred = lm.predict(X_test)
from sklearn.metrics import r2_score
print('The Accuracy is :',r2_score(y_true=y_test, y_pred=y_pred)*100,'%')
    The Accuracy is: 84.29496993045859 %
```