## Hypothesis Testing

Week 03 - Day 01

## What

Are two groups really different?

## Example #1

### Let's talk about apples



### Austria Italy







| Origin  | Size Mean | Size STD |
|---------|-----------|----------|
| Italy   | 5.5 cm    | 0.8 cm   |
| Austria | 6.2 cm    | 0.9 cm   |

2 samples with unknown origin

| Sample | Size Mean | Size STD |
|--------|-----------|----------|
| #1     | 5.6 cm    | 0.8 cm   |
| #2     | 6.0 cm    | 0.8 cm   |





Do they come from Italy or Austria??

### 10 apples in each sample

Vs.

10000 apples in each sample

# Example #2

#### Clinical trial for the new Viagra



| Group        | Satisfaction |
|--------------|--------------|
| experimental | 50%          |
| placebo      | 30%          |

#### Does it work?

| Group        | Satisfaction | Individuals |
|--------------|--------------|-------------|
| experimental | 50%          | 10          |
| placebo      | 30%          | 10          |

| Group        | Satisfaction | Individuals |
|--------------|--------------|-------------|
| experimental | 50%          | 500         |
| placebo      | 30%          | 500         |

| Group        | Satisfaction | Individuals |
|--------------|--------------|-------------|
| experimental | 35%          | 100,000     |
| placebo      | 30%          | 100,000     |

| Group        | Satisfaction | Individuals |
|--------------|--------------|-------------|
| experimental | 90%          | 20          |
| placebo      | 10%          | 20          |

#### Effect size

+

Sample size

## Can we be 100% sure about our conclusions?

# Solution: Uncertainty!

Uncertainty = Probability

### 6 ways of saying the same thing



We're 80% sure the new Viagra

really has a positive effect

We're 80% sure the new Viagra

has a positive effect not by chance

We're 80% sure control group and effect group are really/statistically different

We're 80% sure control group and effect group come from different populations

We accept a 20% risk that we're selling a new viagra that is not better than placebo

# What is a good p to say viagra WOTKS?

(0.001%, 0.1%, 1%, 5%, 10%, 20%, 30%)

Less than 5%? Good enough!

#### 5% = 1 out of 20

## **QUIZ**

# How to calculate p?

## Are they statistically different?

Sample 1, Sample 2

## The hacker way

Let's assume two samples are coming

from the same population

What is the distribution of

mean(sample1)-mean(sample2)?

1 - generate one population (of apples)

Norm(mean, std)

- 1 generate one population (of apples)
- 2 extract two samples and calculate mean(sample1) mean(sample2)

## Sample 1 --> mean=5.4

Sample 2 --> mean=4.9

mean1-mean2 = 0.5

- 1 generate one population (of apples)
- 2 extract two samples and calculate mean(sample1) mean(sample2)
- 3 repeat the step 2) 100,000 times

[0.5, -0.7, 0.8, -0.2, ..., 0.9]

#### mean(sample1) - mean(sample2) distribution



- 1 generate one population (of apples)
- 2 extract two samples and calculate mean(sample1) mean(sample2)
- 3 repeat the step 2) 100,000 times
- 4 check the original means diff against this distribution

#### mean(sample1) - mean(sample2) distribution





## The boring way

Use t-test

(t-statistic + t-distribution)

$$t = \frac{\bar{x}_E - \bar{x}_C}{\sqrt{s^2(\frac{1}{n_E} + \frac{1}{n_C})}}$$

$$s^{2} = \frac{\sum_{i=1}^{n_{E}} (x_{i} - \bar{x}_{E})^{2} + \sum_{j=1}^{n_{C}} (x_{j} - \bar{x}_{C})^{2}}{n_{E} + n_{C} - 2}$$

Check your t-statistics

against the t-distribution

### Nice video about t-statistics

## The right way

ttest\_indResult(statistic=-1.23, pvalue=0.218)

stats.ttes\_ind(sample1, sample2)

## A few terms

#### H0 vs. H1

#### **HO - Null Hypothesis**

There is **not** statistical difference between the two samples

#### **H1 - Alternative Hypothesis**

The two samples are

statistically different

Rejecting the null hypothesis

#### <u>p-value<=0.05</u>

H1 is true - The samples are different

H0 is rejected - H0 is false

#### <u>p-value>0.05</u>

H0 is NOT rejected - H0 is true

H1 is false - The samples are NOT different

#### PDF vs. CDF

#### PDF - Probbility density function



#### **CDF** - Cumulative distribution function



#### One-tailed tests

VS.

Two-tailed tests



Viagra

Apples

Significance level = alpha = 5%

#### Parametric tests

Vs.

Non parametric tests

#### P-Hacking

https://projects.fivethirtyeight.com/p-hacking/

#### "Psychology journal bans P values"

"Test for reliability of results 'too easy to pass', say editors."

https://www.nature.com/news/psychology-journal-bans-p-values-1.17001

# Summary

## Statistical difference

P-value (<=5%)

T-test

H0 vs H1

The hacker way

5% = 1/20