

INFS 4203 / 7203 Data Mining Tutorial 4: Classification and Clustering

Seun Aremu, Doris He o.aremu@uq.edu.au, d.he@uq.edu.au

Construct a decision tree that will properly classify each observation using a GINI index based splitting criterion.

RID	AGE	INCOME	STUDENT	RATING	CLASS
1	Youth	High	No	Fair	No
2	Youth	High	No	Excellent	No
3	Middle-aged	High	No	Fair	Yes
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excellent	No
7	Middle-aged	Low	Yes	Excellent	Yes
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
10	Senior	Medium	Yes	Fair	Yes
11	Youth	Medium	Yes	Excellent	Yes
12	Middle-aged	Medium	No	Excellent	Yes
13	Middle-aged	High	Yes	Fair	Yes
Ar 14	Senior	Medium	No	Excellent	No

+

T4-Q1

Decision Tree

- Objective: To construct a good decision tree from the training set.
- Problems:
 - How to evaluate the quality of a candidate split?
- GINI index:
 - GINI index indicate the impurity of the node t
 - GINI index = 0 = pure
 - GINI index:

$$GINI(t) = 1 - \sum_{j=1}^{n_c} p(j/t)^2$$

p(j/t) is the relative frequency of class j at node t

Decision Tree

- GINI index:
- Measuring the quality of split when node p is split into k partitions

$$GINI_{\text{split}} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

- $n_i = number of records at child i$
- = n = number of records at parent node p
- Minimize the GINI Index

Decision Tree

- Compute GINI index for each attribute:
- Age:
 - Binary Split:
 - case1: GINI_{split (age)} = {youth, middle-aged}, {senior}
 - case2: GINI_{split (age)} = {youth}, {middle-aged, senior}
 - Multi-way Split:
 - case3: $GINI_{split (age)} = \{youth\}, \{middle-aged\}, \{senior\}$
 - Minimize GINI Index

Decision Tree

- Compute GINI index for each attribute:
- Age:
 - Binary Split:

	middle-age	
Yes	6	3
lo	3	2

youth/

senior

■ $GINI_{split\ (age)} =$	$\left(\frac{9}{14}*\left(1-\right)\right)$	$\left(\frac{6}{9}\right)^2 - \left(\frac{3}{9}\right)^2$	$\left(\frac{3}{9}\right)^2\right)$	$(\frac{5}{14} * (1 -$	$\left(\frac{3}{5}\right)^2$	$\left(\frac{2}{5}\right)^2\right)$	= 0.457
---------------------------	---	---	-------------------------------------	------------------------	------------------------------	-------------------------------------	---------

Decision Tree

■ Compute GINI index for each attribute:

Binary Split:

	youth/ middle-age	senior
Yes	6	3
No	3	2

	youth	senior/ middle-age
Yes	2	7
No	3	2

■
$$GINI_{split\ (age)} = \left(\frac{5}{14} * \left(1 - \left(\frac{2}{5}\right)^2 - \left(\frac{3}{5}\right)^2\right)\right) + \left(\frac{9}{14} * \left(1 - \left(\frac{7}{9}\right)^2 - \left(\frac{2}{9}\right)^2\right)\right) = 0.394$$

Decision Tree

■ Compute GINI index for each attribute:

Age:

Binary Split:

	youth/ middle-age	senior
Yes	6	3
No	3	2

	youth	senior/ middle-age
Yes	2	7
No	3	2

■ $GINI_{split\ (age)} =$	$\left(\frac{9}{14}*\left(1-\left(\frac{6}{9}\right)\right)\right)$	$\left(\frac{6}{9}\right)^2 - \left(\frac{3}{9}\right)^2\right)$	$+\left(\frac{5}{14}*\left(1-\right)\right)$	$\left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2$) = 0.457
---------------------------	---	--	--	---	-----------

■
$$GINI_{split\ (age)} = \left(\frac{5}{14} * \left(1 - \left(\frac{2}{5}\right)^2 - \left(\frac{3}{5}\right)^2\right)\right) + \left(\frac{9}{14} * \left(1 - \left(\frac{7}{9}\right)^2 - \left(\frac{2}{9}\right)^2\right)\right) = 0.394$$

	youth	middle-age	senior
Yes	2	4	3
No	3	0	2

Multi-way Split:

Decision Tree

■ Compute GINI index for each attribute:

	1		
■ Age:			

Binary Split:

	youth/ middle-age	senior
Yes	6	3
No	3	2

	youth	senior/ middle-age
Yes	2	7
No	3	2

$lacksquare$ $GINI_{split\ (age)} =$	$\left(\frac{9}{14} * \left(1 - \left(\frac{6}{9}\right)\right)\right)$	$\left(2-\left(\frac{3}{9}\right)^2\right)+\left(\frac{3}{9}\right)^2$	$\left(\frac{5}{14} * \left(1 - \left(\frac{3}{5}\right)^2 - \right)\right)$	$-\left(\frac{2}{5}\right)^2\bigg)\bigg) = 0.457$
--------------------------------------	---	--	--	---

$ \blacksquare \ GINI_{split \ (age)} = \Big($	$\left(\frac{5}{14}*\left(1-\right)\right)$	$\left(\frac{2}{5}\right)^2$	$\left(\frac{3}{5}\right)^2\right)$	$\left(\frac{9}{14} * \left(1 - \right)\right)$	$\left(\frac{7}{9}\right)^2$	$-\left(\frac{2}{9}\right)^2\right)$	= 0.394
--	---	------------------------------	-------------------------------------	---	------------------------------	--------------------------------------	---------

	youth	middle-age	senior
Yes	2	4	3
No	3	0	2

Multi-way Split:

■ Minimize GINI Index

Decision Tree

- Compute GINI index for each attribute:
- Income:
 - Binary Split:
 - case1: GINI_{split (income)} = {low, medium}, {high}
 - case2: GINI_{split (income)} = {low}, {medium, high}
 - Multi-way Split:
 - case3: $GINI_{split\ (income)} = \{low\}, \{medium\}, \{high\}$
 - Minimize GINI Index

Decision Tree

- Compute GINI index for each attribute:
- Income:
 - Binary Split:

	low/ medium	high
Yes	7	2
No	3	2

	low	high/ medium
Yes	3	6
No	1	4

■
$$GINI_{split\ (income)} = \left(\frac{4}{14} * \left(1 - \left(\frac{3}{4}\right)^2 - \left(\frac{1}{4}\right)^2\right)\right) + \left(\frac{10}{14} * \left(1 - \left(\frac{6}{10}\right)^2 - \left(\frac{4}{10}\right)^2\right)\right) = 0.45$$

		low	medium	high
)	Yes	3	4	2
	No	1	2	2

Multi-way Split:

■
$$GINI_{split\ (income)} = \left(\frac{4}{14}*\left(1-\left(\frac{3}{4}\right)^2-\left(\frac{1}{4}\right)^2\right)\right)+\left(\frac{6}{14}*\left(1-\left(\frac{4}{6}\right)^2-\left(\frac{2}{6}\right)^2\right)\right)+\left(\frac{4}{14}*\left(1-\left(\frac{2}{4}\right)^2-\left(\frac{2}{4}\right)^2\right)\right)=0.393$$

T4-Q1

Decision Tree

- Compute GINI index for each attribute:
- Student:
 - Binary Split:
 - case1: $GINI_{split (student)} = \{yes\}$, $\{no\}$

■ $GINI_{split\ (student)} =$	$\left(\frac{7}{14}*\left(1-\right)\right)$	$-\left(\frac{6}{7}\right)^2$	$\left(\frac{1}{7}\right)^2\right)$	$+\left(\frac{7}{14}*\left(\right.\right)\right)$	$\left(1-\left(\frac{3}{7}\right)^2-\right)$	$\left(\frac{4}{7}\right)^2$	= 0.367
-------------------------------	---	-------------------------------	-------------------------------------	---	--	------------------------------	---------

Yes

No

- Rating:
 - Binary Split:
 - case1: $GINI_{split\ (rating)} = \{fair\}$, $\{excellent\}$

\blacksquare $GINI_{split\ (rating)} =$	$\left(\frac{8}{14}*\left(1-\right)\right)$	$\left(\frac{6}{8}\right)^2 - \left(\frac{2}{8}\right)$	$\binom{2}{2}$ + $\binom{2}{2}$	$\left(\frac{6}{14}*\left(1-\right)\right)$	$\left(\frac{3}{6}\right)^2$	$\left(\frac{2}{6}\right)^2$) = 0.488
---	---	---	---------------------------------	---	------------------------------	------------------------------	-----------

	fair	excellent
Yes	6	3
No	2	3

Decision Tree

■ Compute GINI index for each attribute:

■ Age: $GINI_{split\ (age)} = 0.343$

■ Income: $GINI_{split\ (income)} = 0.393$

■ Student: $GINI_{split\ (student)} = 0.367$

■ Rating: $GINI_{split\ (rating)} = 0.488$

Decision Tree

- Compute GINI index for each attribute:
- Age: $GINI_{split\ (age)} = 0.343$

- Income: $GINI_{split\ (income)} = 0.393$
- Student: $GINI_{split\ (student)} = 0.367$
- Rating: $GINI_{split\ (rating)} = 0.488$

Decision Tree

■ Compute GINI index for each attribute:

■ Age: $GINI_{split\ (age)} = 0.343$

■ Income: $GINI_{split\ (income)} = 0.393$

■ Student: $GINI_{split\ (student)} = 0.367$

■ Rating: $GINI_{split\ (rating)} = 0.488$

youth senior middle-age
Yes

subset of data for the right branch

RID	AGE	INCOME	STUDENT	RATING	CLASS
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excellent	No
10	Senior	Medium	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

subset of data for the left branch

	RID	AGE	INCOME	STUDENT	RATING	CLASS
	1	Youth	High	No	Fair	No
	2	Youth	High	No	Excellent	No
	8	Youth	Medium	No	Fair	No
SIT	9	Youth	Low	Yes	Fair	Yes
e	11	Youth	Medium	Yes	Excellent	Yes

Decision Tree

■ Compute GINI index for each attribute:

■ Age: $GINI_{split\ (age)} = 0.343$

■ Income: $GINI_{split\ (income)} = 0.393$

■ Student: $GINI_{split\ (student)} = 0.367$

■ Rating: $GINI_{split\ (rating)} = 0.488$

choose student for the left branch

	RID	AGE	INCOME	STUDENT	RATING	CLASS
	1	Youth	High	No	Fair	No
	2	Youth	High	No	Excellent	No
	8	Youth	Medium	No	Fair	No
AN	9	Youth	Low	Yes	Fair	Yes
e	11	Youth	Medium	Yes	Excellent	Yes
_						

youth senior middle-age

Yes ?

choose rating for the right branch

RID	AGE	INCOME	STUDEN1	RATING	CLASS
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excellent	No
10	Senior	Medium	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

Decision Tree

■ Compute GINI index for each attribute:

■ Student:
$$GINI_{split\ (student)} = \left(\frac{2}{5} * \left(1 - \left(\frac{2}{2}\right)^2 - (0)^2\right)\right) + \left(\frac{3}{5} * \left(1 - (0)^2 - \left(\frac{3}{3}\right)^2\right)\right) = 0$$

	yes	no
Yes	2	0
No	0	3

RID	AGE	INCOME	STUDENT	RATING	CLASS
1	Youth	High	No	Fair	No
2	Youth	High	No	Excellent	No
8	Youth	Medium	No	Fair	No
9	Youth	Low	Yes	Fair	Yes
11	Youth	Medium	Yes	Excellent	Yes

Decision Tree

■ Compute GINI index for each attribute:

■ Student:
$$GINI_{split\ (rating)} = \left(\frac{2}{5} * \left(1 - \left(\frac{3}{3}\right)^2 - (0)^2\right)\right) + \left(\frac{3}{5} * \left(1 - (0)^2 - \left(\frac{2}{2}\right)^2\right)\right) = 0$$

	fair	excellent
Yes	3	0
No	0	2

RID	AGE	INCOME	STUDENT	RATING	CLASS
4	Senior	Medium	No	Fair	Yes
5	Senior	Low	Yes	Fair	Yes
6	Senior	Low	Yes	Excellent	No
10	Senior	Medium	Yes	Fair	Yes
14	Senior	Medium	No	Excellent	No

Decision Tree

+

Decision tree

Summary

- Tree is constructed in a **top-down recursive divide and conquer manner**
 - At start, all the training examples are at the root.
 - Attributes are categorical
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., GINI Index)
- Stopping partitioning when
 - All samples for a given node belong to the same class
 - All the records have similar/the same attribute values

Partitioning clustering method

- Suppose the data mining task is to cluster the following measurements of the variable *age* into **three** groups: {18, 22, 25, 42, 27, 43, 33, 35, 56, 28}
 - Use *k-means* algorithm to show the clustering procedures **step by step**; and
 - Calculate corresponding SSE values.

+

T4-Q2

Partitioning method

- K-partitioning method:
 - Partitioning a dataset *D* of into a set of *K* clusters so that an objective function is optimized.
- A typical objective function: Sum of Squared Errors (SSE)
 - $\blacksquare SSE(C) = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(C_i, x)$
- K-means

K-means clustering

- Given *K* , the number of clusters
 - Select K points as initial centroids randomly
 - Repeat
 - Form *K* clusters by assigning each point to its closest centroid
 - Re-compute the centroids (mean point) of each cluster
 - Until convergence criterion is satisfied

Initial centroids: 22, 35, 43

the old clusters are no use

Cluster#	Old Centroid	\	Cluster Element	s new Centroid
1	22		18,22,25,27,28	24
2	35		33,35	34
3	43		42,43,56	47

Cluster#	Old Centroid	Cluster Elements	new Centroid
1	24	18,22,25,27,28	24
2	34	33,35	34
3	47	42,43,56	47

R1	22	35	43
18	4	7	25
22	0	13	21
25	3	10	18
42	20	7	1
27	5	8	16
43	21	8	0
33	11	2	10
35	13	0	8
56	34	21	13
28	6	7	15

R2	24	34	47
18	6	16	29
22	2	12	25
25	1	9	22
42	18	8	5
27	3	7	30
43	19	9	4
33	9	1	14
35	11	1	12
56	32	22	9
28	4	6	19

SSE = 190

use the final clusters to calculate SSE

+ T4-Q2

Create change

Initial centroids: 18, 27, 35

Cluster	Old centroid	Cluster Elements	New Centroid
1	18	18, 22	20
2	27	25, 27, 28	26.7
	35	33, 35, 42, 43, 56	41.8
	20	18, 22	20
	26.7	25, 27, 28, 33	28.25
	41.8	35, 42, 43, 56	44
	20	18, 22	20
	28.25	25, 27, 28, 33, 35	29.6
	44	42, 43, 56	47
	20	18, 22	20
	29.6	25, 27, 28, 33, 35	29.6
	47	42, 43, 56	47

SSE = 201.2

+

T4-Q2

Discussion of k-means

- When $k \ll n$, k-means is an efficient algorithm
- The clustering quality is sensitive to the **initial position**.
- Need to specify *K*
- Sensitive to noisy data and outliers
- Only valid to convex shapes

Thanks for your attention

