Homework #6

Sam Fleischer

March 4, 2016

Hunter and Nachtergaele 8.1	2
Hunter and Nachtergaele 8.10	3
Hunter and Nachtergaele 8.13	3
Hunter and Nachtergaele 8.14	4
Hunter and Nachtergaele 8.15	5
Hunter and Nachtergaele 8.16	5
Hunter and Nachtergaele 8.17	6
Hunter and Nachtergaele 8.18	7
Hunter and Nachtergaele 8.19	7

Hunter and Nachtergaele 8.1

If M is a linear subspace of a linear space X, then the quotient space X/M is the set $\{x+M \mid x+y \in M\}$ of affine spaces

$$x + M = \{x + y \mid y \in M\}$$

parallel to M.

(a) Show that X/M is a linear space with respect to the operations

$$\lambda(x+M) = \lambda x + M, \qquad (x+M) + (y+M) = (x+y) + M.$$

Proof. Since *X* is a linear space, then $\alpha x + \beta y \in X$ for every $x, y \in X$, $\alpha, \beta \in \mathbb{F}$. Then

$$\alpha(x+M) + \beta(x+M) = (\alpha x + \beta y) + M \in X/M$$

Define the "zero" vector in X/M by 0+M where 0 is the "zero" vector in X. Then

$$(0+M) + (x+M) = (0+x) + M = x + M = (x+0) + M = (x+M) + (0+M)$$

Also, the "one" in \mathbb{F} (1) is the "one" in X/M since

$$1(x+M) = 1x + M = x + M$$

Thus X/M is a vector space.

(b) Suppose that $X = M \oplus N$. Show that N is linearly isomorphic to X/M.

Proof. Define $T: N \to X/M$ by

$$Tn = n + M$$

For any $x, y \in N$, then if Tx = Ty, then $x + M = y + M \Longrightarrow (x - y) + M = 0 + M \Longrightarrow x - y \in M$. But since N is a vector space, then $x - y \in N$. Since $X = M \oplus N$, then $M \cap N = \{0\}$, which means x = y. Thus T is injective. Now choose $x + M \in X/M$. Then note $P_N x \in N$ and

$$T(P_N x) = P_N x + M = (P_N x + M) + (P_M x + M) = (P_N x + P_M x) + M = x + M$$

Thus T is surjective. Thus T is a bijection. Also, T is a linear map since

$$T(\alpha x + \beta y) = (\alpha x + \beta y) + M = \alpha (x + M) + \beta (y + M) = \alpha Tx + \beta Ty$$

Thus N is linearly isomorphic to X/M.

(c) The codimension of M in X is the dimension of X/M. Is a subspace of a Banach space with finite codimension necessarily closed?

UC Davis Analysis (MAT201B)

Proof. Let ϕ be an unbounded linear functional. Then let $M = \ker \phi$ and consider $X/(\ker \phi)$. Define the bijection $T: X/(\ker \phi) \to \mathbb{C}$ by

$$T(x + \ker \phi) = \phi(x)$$

Injectivity: If $T(x + \ker \phi) = T(y + \ker \phi)$, then $\phi(x) = \phi(y)$, then since ϕ is linear, $\phi(x - y) = 0$, i.e. $x - y \in \ker \phi$. Thus $x - y + \ker \phi = 0 + \ker \phi$, and so $x + \ker \phi = (y + \ker \phi) + (0 + \ker \phi) = y + \ker \phi$. Thus T is injective. Sujectivity: If $\lambda \in \mathbb{C}$, then choose $y \in X$ with $y \notin \ker \phi$ and note

$$T\left(\lambda \frac{y}{\phi(y)} + \ker \phi\right) = \phi\left(\lambda \frac{y}{\phi(y)}\right) = \frac{\lambda}{\phi(y)}\phi(y) = \lambda$$

Thus T is surjective, which shows T is bijective, and so $\dim(X/(\ker \phi)) = \dim(\mathbb{C}) = 1 < \infty$. Also, $\ker \phi \neq \ker \phi$ ($\ker \phi$ is not closed) since ϕ is unbounded (proven below). Thus the codimension of M is finite $\dim(X/\ker \phi) = 1$) and M is not closed.

Since ϕ is unbounded, $\exists x_n$ such that $\|x_n\| = 1$ and $\phi(x_n) \to \infty$. Then consider $y_n = \frac{x_n}{\phi(x_n)}$. Then $y_n \to 0$ but $\phi(y_n) = \frac{1}{\phi(x_n)}\phi(x_n) = 1$ for $n = 1, 2, \ldots$ Choose any $\tilde{z} \in X$ and define $z = \frac{\tilde{z}}{\phi(\tilde{z})}$. Then $\phi(z) = 1$. Then $\phi(z - y_n) = \phi(z) - \phi(y_n) = 0$ for $n = 1, 2, \ldots$ However, $z - y_n \to z$ since $y_n \to 0$. Thus $(z - y_n) \in \ker \phi$ for all n but $\lim_n (z - y_n) = z \not\in \ker \phi$ since $\phi(z) \neq 0$. Thus $\ker \phi$ is not closed.

Hunter and Nachtergaele 8.10

Let $\{u_{\alpha}\}$ be an orthonormal basis of \mathcal{H} . Prove that $\{\phi_{u_{\alpha}}\}$ is an orthonormal basis of \mathcal{H}^* .

Proof. First note $\{\phi_{u_\alpha}\}$ is an orthonormal set since

$$\langle \phi_{u_1}, \phi_{u_2} \rangle = \langle u_2, u_1 \rangle = \delta_{u_2, u_1} = \begin{cases} 1 & \text{if } u_1 = u_2 \\ 0 & \text{if } u_1 \neq n_2 \end{cases}$$

Next let $\phi \in \mathcal{H}^*$. By the Riesz Representation Theorem, $\exists u \in \mathcal{H}$ such that $\phi(x) = \langle x, u \rangle$ for all $x \in \mathcal{H}$. Then since $\{u_{\alpha}\}$ is an orthonormal basis of \mathcal{H} , then $\exists \{c_{\alpha}\}$ such that $\sum_{\alpha} |c_{\alpha}|^2 < \infty$ and $u = \sum_{\alpha} c_{\alpha} u_{\alpha}$. Then

$$\phi(x) = \langle x, u \rangle = \left\langle x, \sum_{\alpha} c_{\alpha} u_{\alpha} \right\rangle = \sum_{\alpha} c_{\alpha} \langle x, u_{\alpha} \rangle = \sum_{\alpha} c_{\alpha} \phi_{u_{\alpha}}$$

where $\phi_{u_{\alpha}}$ is the functional in \mathcal{H}^* such that $\phi_{u_{\alpha}}(x) = \langle x, u_{\alpha} \rangle$ for all $x \in \mathcal{H}$. Thus $\{\phi_{u_{\alpha}}\}$ spans \mathcal{H}^* , and hence $\{\phi_{u_{\alpha}}\}$ is an orthonormal basis of \mathcal{H}^* .

Hunter and Nachtergaele 8.13

Prove that an orthonormal set of vectors $\{u_{\alpha} \mid \alpha \in A\}$ is a Hilbert space \mathcal{H} is an orthonormal basis if and only if

$$\sum_{\alpha \in \mathcal{A}} u_{\alpha} \otimes u_{\alpha} = I.$$

Proof. Let $\{u_{\alpha}\}$ be an orthonormal basis of \mathcal{H} . Then $\forall x \in \mathcal{H}$, $x = \sum_{\alpha} \langle u_{\alpha}, x \rangle u_{\alpha}$. However, the projection $P_{u_{\alpha}}$ is defined as

$$P_{u_{\alpha}}x = \langle u_{\alpha}, x \rangle u_{\alpha}$$

and hence, for every $x \in \mathcal{H}$, $Ix = x = \sum_{\alpha} \langle u_{\alpha}, x \rangle u_{\alpha} = \sum_{\alpha} P_{u_{\alpha}} x = \sum_{\alpha} (u_{\alpha} \otimes u_{\alpha}) x$. In other words, $I = \sum_{\alpha} u_{\alpha} \otimes u_{\alpha}$. Now let $\sum_{\alpha} u_{\alpha} \otimes u_{\alpha} = I$. Then $x = \sum_{\alpha} P_{u_{\alpha}} x = \sum_{\alpha} \langle u_{\alpha}, x \rangle u_{\alpha}$. Thus $\{u_{\alpha}\}$ is an orthonormal basis of \mathcal{H} .

Hunter and Nachtergaele 8.14

Suppose that $A, B \in \mathcal{B}(\mathcal{H})$ satisfy

$$\langle x, Ay \rangle = \langle x, By \rangle$$
 for all $x, y \in \mathcal{H}$.

Prove that A = B. Use a polarization-type identity to prove that if \mathcal{H} is a complex Hilbert space and

$$\langle x, Ax \rangle = \langle x, Bx \rangle$$
 for all $x \in \mathcal{H}$,

then A = B. What can you say about A and B for real Hilbert spaces?

Proof. If $\langle x, Ay \rangle = \langle x, By \rangle$, then $\langle x, (A-B)y \rangle = 0$ for all $x, y \in \mathcal{H}$. Then A-B=0, i.e. A=B. Let $\langle x, Ax \rangle = \langle x, Bx \rangle$ for all $x \in \mathcal{H}$. Then $\langle x, (A-B)x \rangle = 0$ for all $x \in \mathcal{H}$. Thus,

$$0 = \langle x + y, (A - B)(x + y) \rangle = \langle x, (A - B)x \rangle + \langle y, (A - B)x \rangle + \langle x, (A - B)y \rangle + \langle y, (A - B)y \rangle$$
$$= \langle y, (A - B)x \rangle + \langle x, (A - B)y \rangle$$
$$\implies \langle y, (A - B)x \rangle = -\langle x, (A - B)y \rangle$$

Also,

$$0 = \langle x + iy, (A - B)(x + iy) \rangle = \langle x, (A - B)x \rangle + \langle iy, (A - B)x \rangle + \langle x, (A - B)(iy) \rangle + \langle iy, (A - B)(iy) \rangle$$

$$= -i \langle y, (A - B)x \rangle + i \langle x, (A - B)(y) \rangle$$

$$\Rightarrow \langle y, (A - B)x \rangle = \langle x, (A - B)y \rangle = -\langle y, (A - B)x \rangle$$

$$\Rightarrow \langle y, (A - B)x \rangle = 0 \quad \forall x, y \in \mathcal{H}$$

Thus, $A - B \equiv 0$, or $A \equiv B$. For real Hilbert spaces, it is possible for $\langle x, Ax \rangle = \langle x, Bx \rangle$ for all x but $A \not\equiv B$. Consider $A, B \in \mathcal{B}(\mathbb{R}^n)$ by

$$A(x_1,...,x_n) = (-x_2,x_1,x_3,x_4,...,x_n)$$
 and $B(x_1,...,x_n) = (x_2,-x_1,x_3,x_4,...,x_n)$

Then

$$\langle x, Ax \rangle = \sum_{i=3}^{n} x_i^2 = \langle x, Bx \rangle \qquad \forall x \in \mathbb{R}^n$$

but clearly $A \not\equiv B$.

(8.16)

Hunter and Nachtergaele 8.15

Prove that for all $A, B \in \mathcal{B}(\mathcal{H})$, and $\lambda \in \mathbb{C}$, we have (a) $A^{**} = A$; (b) $(AB)^* = B^*A^*$; (c) $(\lambda A)^* = \overline{\lambda}A^*$; (d) $(A+B)^* = A^* + B^*$; (e) $\|A^*\| = \|A\|$.

Proof. (a) For all $x, y \in \mathcal{H}$, $\langle x, Ay \rangle = \langle A^*x, y \rangle = \langle x, (A^*)^*y \rangle$. Thus $\langle x, (A - A^{**})y \rangle = 0$ for all $x, y \in \mathcal{H}$. Thus $A = A^{**}$.

- (b) For all $x, y \in \mathcal{H}$, $\langle x, (AB)^* y \rangle = \langle ABx, y \rangle = \langle Bx, A^* y \rangle = \langle x, B^* A^* y \rangle \implies \langle x, ((AB)^* B^* A^*) y \rangle = 0$ for all $x, y \in \mathcal{H}$. Thus $(AB)^* = B^* A^*$.
- (c) For all $x, y \in \mathcal{H}$, $\langle x, (\lambda A)^* y \rangle = \langle \lambda A x, y \rangle = \overline{\lambda} \langle A x, y \rangle = \overline{\lambda} \langle x, A^* y \rangle \implies \langle x, ((\lambda A)^* \overline{\lambda} A^*) y \rangle = 0$ for all $x, y \in \mathcal{H}$. Thus $(\lambda A)^* = \overline{\lambda} A^*$.
- (d) For all $x, y \in \mathcal{H}$, $\langle x, (A+B)^* y \rangle = \langle (A+B)x, y \rangle = \langle Ax, y \rangle + \langle Bx, y \rangle = \langle x, A^* y \rangle + \langle x, B^* y \rangle = \langle x, (A^* + B^*)y \rangle \Longrightarrow \langle x, ((A+B)^* (A^* + B^*))y \rangle = 0$ for all $x, y \in \mathcal{H}$. Thus $(A+B)^* = A^* + B^*$.
- (e) First define $M \in \mathcal{H}^*$ by $Mx = \langle y, Ax \rangle$. Then M is a bounded linear functional since

$$M(ax_1 + bx_2) = \langle y, A(ax_1 + bx_2) \rangle = \langle y, aAx_1 \rangle + \langle y, bAx_2 \rangle = a \langle y, Ax_1 \rangle + b \langle y, Ax_2 \rangle = aMx_1 + bMx_2$$

and

$$||M|| = \sup_{||x||=1} \langle y, Ax \rangle \le \sup_{||x||=1} ||y|| ||Ax|| \le ||y|| ||A||$$

and since $A \in \mathcal{B}(\mathcal{H})$, then $||M|| < \infty$. Then since $M \in \mathcal{H}^*$, The Riesz Representation Theorem guarantees a unique vector $v \in \mathcal{H}$ such that

$$Mx = \langle v, x \rangle = \langle v, Ax \rangle = \langle A^* v, x \rangle$$

Thus $v = A^* v$. Finally,

$$\left\|A^*y\right\| = \sup_{\|x\|=1} \left|\langle y, x \rangle\right| = \sup_{\|x\|=1} \left|\langle y, Ax \rangle\right| \le \sup_{\|x\|=1} \left\|y\right\| \|Ax\| \le \sup_{\|x\|=1} \left\|y\right\| \|A\| \|x\| = \left\|y\right\| \|A\|$$

Thus $||A^*|| \le ||A||$. This also implies $||A|| = ||A^{**}|| = ||(A^*)^*|| \le ||A^*||$. Thus, $||A|| = ||A^*||$.

Hunter and Nachtergaele 8.16

Let
$$U:L^2(\Omega,P)\to L^2(\Omega,P)$$
 by
$$Uf=f\circ T$$

where $T:(\Omega,P)\to(\Omega,P)$ is measure preserving, i.e. $P(A)=P(T^{-1}A)$ \forall measurable $A\subset\Omega$. Prove that the operator U defined in (8.16) is unitary.

Proof. Since T is measure-preserving, then T is bijective (by definition) and for any $f \in L^2(\Omega, P)$, we have $\mathcal{X} f = \mathcal{X} f \circ T$ (where \mathcal{X} is the characteristic function), or

$$\int_{\Omega} f \, \mathrm{d}P = \int_{\Omega} f \circ T \, \mathrm{d}P$$

Then since $\overline{f}g \in L^2(\Omega, P)$, then

$$\int_{\Omega} \overline{f} g dP = \int_{\Omega} (\overline{f} g) \circ T dP$$

Thus,

$$\langle Uf, Ug \rangle = \int_{\Omega} \overline{f(T(\omega))} g(T(\omega)) dP(\omega) = \int_{\Omega} \left(\left(\overline{f}g \right) \circ T \right) (\omega) dP(\omega) = \int_{\Omega} \left(\overline{f}g \right) (\omega) dP(\omega) = \langle f, g \rangle$$

Also, since T is bijective, T^{-1} exists and $U^{-1}f$ can be defined as

$$U^{-1}f = f \circ T^{-1}$$

Clearly

$$U^{-1}(Uf) = U^{-1}(f \circ T) = (f \circ T) \circ T^{-1} = f \circ (T \circ T^{-1}) = f \circ \mathbb{1} = f$$

and

$$U(U^{-1}f) = U(f \circ T^{-1}) = (f \circ T^{-1}) \circ T = f \circ (T^{-1} \circ T) = f \circ \mathbb{1} = f$$

Hunter and Nachtergaele 8.17

Prove that strong convergence implies weak convergence. Also prove that strong and weak convergence are equivalent in a finite-dimensional Hilbert space.

Proof. Let $x_n \to x$ strongly, i.e. $||x_n - x|| \to 0$. Then

$$\langle x_n, y \rangle - \langle x, y \rangle = \langle x_n - x, y \rangle \le ||x_n - x|| y \to 0 \quad \forall y \in \mathcal{H}$$

Then $x_n \to x$ weakly. Suppose dim $\mathcal{H} = n < \infty$ and $x_n \to x$ weakly. Let $\{e_i\}_{i=1}^n$ be an orthonormal basis of \mathcal{H} . Then $x = \sum_{i=1}^n c_i e_i$ where $c_i = \langle e_i, x \rangle$. Next, define the ℓ^1 norm by

$$||x||_1 = \sum_{i=1}^n |c_i|$$

Since $x_n \to x$ weakly, then $\langle x_n, y \rangle \to \langle x, y \rangle$ for all $y \in \mathcal{H}$. This implies $\langle e_i, x_n \rangle \to \langle e_i, x \rangle$ for each i = 1, ..., n. Also, $x_n - x = \sum_{i=1}^n \langle e_i, x_n - x \rangle e_i$, and thus

$$\|x_n - x\|_1 = \sum_{i=1}^n |\langle e_i, x_n - x \rangle| = \sum_{i=1}^n |\langle e_i, x_n \rangle - \langle e_i, x \rangle| \to 0$$

However, $\|\cdot\|_1 \equiv \|\cdot\|_{\mathcal{H}}$ since all norms are equivalent in finite-dimensional spaces, and thus $x_n \to x$ strongly.

Ш

Hunter and Nachtergaele 8.18

Let (u_n) be a sequence of orthonormal vectors in a Hilbert space. Prove that $u_n \to 0$ weakly.

Proof. Let $y \in \mathcal{H}$. Then by Bessel's inequality, $||y|| \ge ||\sum_{n=0}^{\infty} c_n u_n||$ where $\sum_{n=0}^{\infty} |c_n|^2 < \infty$ and $c_n = \langle u_n, y \rangle$ for $n = 0, 1, \ldots$ Thus, $|c_n| \to 0 \Longrightarrow \langle c_n, y \rangle \to 0$, and thus

$$\forall y \in \mathcal{H}, \quad \langle u_n, y \rangle \to 0 \implies \langle u_n, y \rangle \to \langle 0, y \rangle \implies u_n \to 0$$
 weakly.

Hunter and Nachtergaele 8.19

Prove that a strongly lower-semicontinuous convex function $f: \mathcal{H} \to \mathbb{R}$ on a Hilbert space \mathcal{H} is weakly lower-semicontinuous.

Proof. Let f be a strongly lower-semicontinuous function on a Hilbert space \mathcal{H} , $f: \mathcal{H} \to \mathbb{R}$. Let $u_n \in \mathcal{H}$ such that $u_n \to u$ weakly. Then define $y_n = u_n - u$, $y_n \to 0$ weakly. Assume

$$f(0) > \lim_{n} f(y_n)$$

This assumption will lead to a contradiction, which will prove f is weakly lower-semicontinuous. The assumption implies \exists a subsequence y_{n_k} such that $f(0) - \epsilon > f(y_{n_k})$. Note $y_{n_k} \to 0$ since $y_n \to 0$. By Mazur's Theorem, \exists subsequence of y_{n_k} (call it $y_{n_{k_\ell}}$) and z_ℓ defined by

$$z_{\ell} = \frac{1}{\ell} \left(y_{n_{k_1}} + y_{n_{k_2}} + \dots + y_{n_{k_{\ell}}} \right)$$

and $z_\ell \to 0$ strongly (the limit is 0 since the weak limit of y_{n_k} is 0). Since f is strongly lower-semicontinuous, then

$$f(0) \le \underline{\lim}_{\ell} f(z_{\ell}) = \underline{\lim}_{\ell} f\left(\frac{1}{\ell} \sum_{i=1}^{\ell} y_{n_{k_i}}\right)$$

Convexity of *f* implies

$$\underline{\lim}_{\ell} f\left(\sum_{i=1}^{\ell} y_{n_{k_i}}\right) \leq \underline{\lim}_{\ell} \sum_{i=1}^{\ell} \frac{1}{\ell} f\left(y_{n_{k_i}}\right)$$

However, since y_{n_k} is a subsequence of f_{n_k} , then

$$f(0) \leq \underline{\lim}_{\ell} \sum_{i=1}^{\ell} \frac{1}{\ell} f(y_{n_{k_i}}) \leq \underline{\lim}_{\ell} \sum_{i=1}^{\ell} \frac{1}{\ell} f(y_{n_k}) < \underline{\lim}_{\ell} \sum_{i=1}^{\ell} \frac{1}{\ell} f(0) - \epsilon$$

which is a contradiction. Thus $f(0) \le \underline{\lim}_n f(y_n)$, which means f is weakly lower-semicontinuous for the sequence y_n . Thus f is weakly lower-semicontinuous for the sequence u_n , and since u_n was an arbitrary weakly convergent sequence, then f is weakly lower-semicontinuous.