		I	
LEC #	TOPICS	SCRIBE NOTES	INSTRUCTOR NOTES
15	Linear Programming (cont.) Strong Duality	Duality(<u>PDF</u>) (Courtesy of Jay-Kumar Sundararajan.)	
16	Linear Programming (cont.) Complementary Slackness Algorithms: Simplex, Ellipsoid	Duality (<u>PDF</u>) (Courtesy of Jay-Kumar Sundararajan.)	
17	Linear Programming (cont.) Algorithms: Interior Point		
18	Approximation Algorithms NP-hard problems		(<u>PDF</u>)
19	4/3-Approximation for TSP		
20	Relaxations Directed TSP		
21	Randomized Rounding Chernoff Bound Fixed Parameter Tractability Kernelization		(PDF)
22	Online Algorithms (Ski Rental, Load Balancing, Paging)	Lower Bounds for Competitive Ratios of Randomized Online Algorithms (<u>PDF</u>) (Courtesy of Chun- Chieh Lin.)	(PDF)
23	Randomized Online Algorithms (Adversaries, Fiat's Marking Algorithm, Potential Functions, Yao's Minimax Principle)	Lower Bounds for Competitive Ratios of Randomized Online Algorithms (PDF) (Courtesy of Chun-Chieh Lin.)	
24	K-Server Problem Double-Coverage Algorithm Computational Geometry Introduction (Orthogonal Range Search)		
25	Sweep Algorithms (Convex Hull, Segment Intersection, Voronoi Diagrams)	Sweep Line (PDF) (Courtesy of Matt Rasmussen.)	(<u>PDF</u>)
26	Sweep Algorithms (Voronoi Diagrams) Randomized Incremental Constructions Backwards Analysis Linear Programming in Fixed Dimension		
27	(Optional Material) External Memory Algorithms		(PDF)
28	(Optional Material) Cache Oblivious Algorithms: Matrix Multiplication, Linked Lists, Median		
29	(Optional Material) Cache Oblivious Algorithms: Search Streaming Model		
29	(Optional Material) Parallel Algorithms		(PDF)

Lecture notes from the 2004 version of this course.

LEC #	TOPICS	SCRIBE NOTES
1	Course Introduction Fibonacci Heaps	(<u>PDF</u>) (Courtesy of David Andersen, Ioana Dumitriu, John Dunagan, and Akshay Patil.)
2	Persistent Data Structures Suffix Trees	(PDF 1) (Courtesy of Sommer Gentry and Eddie Kohler.) (PDF 2) (Courtesy of Jiawen Chen.)
3	Suffix Trees (cont.)	(PDF)
4	Treaps	
	Splay Trees	(<u>PDF</u>) (Courtesy of Naveen Sunkavally.)
5	Hashing: 2-Universal, Perfect Hashing Fingerprinting	

LEC #	TOPICS	SCRIBE NOTES
6	Fingerprinting (cont.) Max Flows	(PDF 1) (Courtesy of Jiawen Chen.) (PDF 2) (Courtesy of Alexandr Andoni.)
7	Max Flows (cont.)	
8	Max Flows (cont.)	
9	Max Flows (Max Flow of Min Cost)	
	Dynamic Trees Preflow-push Algorithm	
10	Min Cost Flow Algorithms Linear Programming	(<u>PDF 1</u>) (Courtesy of Brian Dean and John Jannotti.)
11	Linear Programming (cont.) Farkas Lemma Duality	(PDF) (Courtesy of Vinod Vaikuntanathan.)
	Goldberg-Tarjan Min-cost Flow	(PDF) (Courtesy of Mohammad Hajiaghayi and Vahab Mirrokni.)
12	Linear Programming: More Duality (Weak and Strong Duality) Complementary Slackness Conditions	
13	Linear Programming: Complementary Slackness Conditions (Same Scribes as Above)	
14	LP: Interior Points Algorithm Approximation Algorithms: Constant, Relative Approximation	(PDF) (Courtesy of Jason Eisenberg.)
15	Approximation Algorithm: PAS, FPAS, Rounding, Enumeration	
16	Approximation Algorithm: Rounding, Relaxation	(<u>PDF</u>) (Courtesy of Sachin Katti.)
17	Approximation Algorithm: LP Relaxation, Randomized Rounding	(PDF) (Courtesy of Shannon McDonald.)
18	Fixed Parameter Tractability	(PDF) (Courtesy of Shannon McDonald.)
19	Fixed Parameter Tractability - Treewidth Online Algorithms	
20	Online Algorithms (cont.): Paging, Randomization, Potential Functions	
21	Randomized Online Algorithms (Adversarial Models, Marking Algorithm)	
22	Lower Bounds for Randomized Online Algorithms Geometry: Range Search	(PDE) (Courtesy of Nick Harvey.)
23	Convex Hulls Voronoi Diagrams	
24	Voronoi Diagrams (cont.) Randomized Incremental Construction: Binary Space Partition	

LEC #	TOPICS	SCRIBE NOTES
26	External Memory Algorithms	
27	Cache-oblivious Algorithms	

FIND COURSES

FOR EDUCATORS

GIVE NOW Make a Donation

Why Give?

Shop OCW

Sponsor

Our Supporters

Other Ways to Contribute

Become a Corporate

OUR CORPORATE SUPPORTERS

Find by Topic Find by Course Number

Find by Department **New Courses** Most Visited Courses

OCW Scholar Courses Audio/Video Courses Online Textbooks Instructor Insights Supplemental Resources

MITx & Related OCW Courses

Translated Courses

Search for Instructor

Insights Search for Teaching Materials

Instructor Insights by Department

MIT Courses about Teaching and Education Highlights for High School

MIT+K12 Videos Teaching Excellence at MIT

MIT Undergraduate Curriculum Map

ABOUT

About OpenCourseWare

Site Statistics **OCW Stories** News

Press Releases

Help & FAQs Contact Us Site Map

TOOLS

Privacy & Terms of Use

RSS Feeds

ABOUT MIT OPENCOURSEWARE

Massachusetts Institute of Technology

MIT OpenCourseWare makes the materials used in the teaching of almost all of MIT's subjects available on the Web, free of charge. With more than 2,400 courses available, OCW is delivering on the promise of open sharing of knowledge. Learn more »

Massachusetts Institute of Technology

Your use of the MIT OpenCourseWare site and materials is subject to our Creative Commons License and other terms of use.