Отчёт по лабораторной работе №2.

дисциплина: операционные системы

Тимофеева Екатерина Николаевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	13
5	Выолнение контрольных вопросов.	14
Сп	Список литературы	

Список иллюстраций

3.1	Регистрация на сайте
	Конфигурация git
	Генерация ключей
3.4	Копирование ключа
3.5	Загрузка сгенерённого ключа
3.6	Создание ключа
3.7	Вывод списка ключей и копирование
3.8	Копирование сгенерированного ключа в буфер обмена 10
3.9	Настройка автоматических подписей коммитов
3.10	Авторизация
3.11	Создание репозитория
	Клонирование
3.13	Настройка каталога курса

Список таблиц

1 Цель работы

Целью работы является изучение идеологии и применение средств контроля версий. Приобретение практических навыков по работе с git.

2 Задание

- 1. Создать базовую конфигурацию для работы с git.
- 2. Создать ключ SSH.
- 3. Создать ключ PGP.
- 4. Настроить подписи git.
- 5. Зарегистрироваться на Github.
- 6. Создать локальный каталог для выполнения заданий по предмету.

3 Выполнение лабораторной работы

№1. Создаём учётную запись на сайте и заполняем основные данные. (рис. 3.1).

Рис. 3.1: Регистрация на сайте

Сначала сделаем предварительную конфигурацию git. Откроем терминал и введём следующие команды, указав имя и email владельца репозитория. (рис. 3.2)

```
entimofeeva@fedora:~—ssh-keygen-СЕкатерина Тимофеев... Q = x

[entimofeeva@fedora ~]$ git config --global user.name "<Ekaterina826>"
[entimofeeva@fedora ~]$ git config --global user.email "<ketrinkot14@gmail.com>"
[entimofeeva@fedora ~]$ git config --global core.quotepath false
[entimofeeva@fedora ~]$ git config --global init.defaultBranch master
[entimofeeva@fedora ~]$ git config --global core.autocrlf input
[entimofeeva@fedora ~]$ git config --global core.safecrlf warn
```

Рис. 3.2: Конфигурация git

Для последующей идентификации пользователя на сервере сгенерируем пару ключей (приватный и открытый). (рис. 3.3).

```
entimofeeva@fedora:~ Q ≡ ×

[entimofeeva@fedora ~]$ ssh-keygen -C "Екатерина Тимофеева ketrinkot14@gmail.com
"

Generating public/private rsa key pair.
Enter file in which to save the key (/home/entimofeeva/.ssh/id_rsa):
/home/entimofeeva/.ssh/id_rsa already exists.
```

Рис. 3.3: Генерация ключей

Далее необходимо загрузить сгенерённый открытый ключ. Для этого зайдём на сайт под своей учётной записью и перейдём в меню Setting. После этого выберем в боковом меню SSH and GPG keys и нажмём кнопку New SSH key, скопировав из локальной консоли ключ в буфер обмена, вставляем ключ в появившееся на сайте поле и указываем для ключа имя. (рис. 3.4), (рис. 3.5)

Рис. 3.4: Копирование ключа

Рис. 3.5: Загрузка сгенерённого ключа

Генерируем рдр-ключ. (рис. 3.6), (рис. 3.7), (рис. 3.8)

```
•
                      entimofeeva@fedora:/tmp — gpg --full-generate-key
                                                                                    Q
                                                                                           \equiv
                                                                                                   ×
[entimofeeva@fedora ~]$ cd /tmp
[entimofeeva@fedora tmp]$ gpg --full-generate-key
gpg (GnuPG) 2.3.4; Copyright (C) 2021 Free Software Foundation, Inc. This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
gpg: создан каталог '/home/entimofeeva/.gnupg'
gpg: создан щит с ключами '/home/entimofeeva/.gnupg/pubring.kbx'
Выберите тип ключа:
   (1) RSA and RSA
    (2) DSA and Elgamal
    (3) DSA (sign only)
   (4) RSA (sign only)
    (9) ECC (sign and encrypt) *default*
  (10) ЕСС (только для подписи)
  (14) Existing key from card
Ваш выбор? 1
длина ключей RSA может быть от 1024 до 4096.
Какой размер ключа Вам необходим? (3072)
```

Рис. 3.6: Создание ключа

```
\oplus
                                                                    Q ≡
                              entimofeeva@fedora:/tmp
gpg: /home/entimofeeva/.gnupg/trustdb.gpg: создана таблица доверия
gpg: создан каталог '/home/entimofeeva/.gnupg/openpgp-revocs.d
gpg: сертификат отзыва записан в '/home/entimofeeva/.gnupg/openpgp-revocs.d/5CDE
9AA32976E354222CF9204A5F6F1BB03E9533.rev'.
открытый и секретный ключи созданы и подписаны.
     rsa4096 2023-02-16 [SC]
     5CDE9AA32976E354222CF9204A5F6F1BB03E9533
                        Ekaterina <ketrinkot14@gmail.com>
uid
     rsa4096 2023-02-16 [E]
sub
[entimofeeva@fedora tmp]$ gpg --list-secret-keys --keyid-format LONG
gpg: проверка таблицы доверия
gpg: marginals needed: 3 completes needed: 1 trust model: pgp
gpg: глубина: 0 достоверных: 1 подписанных: 0 доверие: 0-, 0q, 0n, 0m, 0f
, lu
/home/entimofeeva/.gnupg/pubring.kbx
     rsa4096/4A5F6F1BB03E9533 2023-02-16 [SC]
      5CDE9AA32976E354222CF9284A5F6F1BB03E9533
     [ а6солютно ] Ekaterina <ketrinkot14@gmail.com> rsa4096/E521FE38E30E9124 2023-02-16 [E]
uid
 entimofeeva@fedora tmp]$
```

Рис. 3.7: Вывод списка ключей и копирование

```
[entimofeeva@fedora tmp]$ gpg --armor --export 4A5F6F1BB03E9533 | xclip -sel clip p
[entimofeeva@fedora tmp]$
```

Рис. 3.8: Копирование сгенерированного ключа в буфер обмена

Заходим на gh, вставляем скопированный ключ и добавляем его.

Настроим автоматические подписи коммитов git, используя введёный email, укажем Git при подписи коммитов. (рис. 3.9)

```
p
[entimofeeva@fedora tmp]$ git config --global user.signingkey 4A5F6F1BB03E9533
[entimofeeva@fedora tmp]$ git config --global commit.gpgsign true
[entimofeeva@fedora tmp]$ git config --global gpg.program $(which gpg2)
[entimofeeva@fedora tmp]$
```

Рис. 3.9: Настройка автоматических подписей коммитов

Настраиваем GitHub, для этого необходимо авторизоваться, вводим нужные команды. Затем в терминале нам приходит код, который нужно вставить в форму, которая открывается при переходе по ссылке. (рис. 3.10)

```
[entimofeeva@fedora tmp]$ gh auth login
bash: gh: команда не найдена...
Установить пакет «gh», предоставляющий команду «gh»? [N/y] у
* Ожидание в очереди...
* Загрузка списка пакетов....
Следующие пакеты должны быть установлены:
gh-2.22.1-1.fc36.x86_64 GitHub's official command line tool
Продолжить с этими изменениями? [N/y] у
* Ожидание в очереди...
* Ожидание аутентификации...
* Ожидание в очереди...
* Загрузка пакетов...
* Запрос данных...
* Проверка изменений...
* Установка пакетов...
! First copy your one-time code: 5284-3F9D,
Open this URL to continue in your web browser: https://github.com/login/device
```

Рис. 3.10: Авторизация

Создаём репозиторий курса, с помощью команд, вводимых в терминале. (рис. 3.11), (рис. 3.12)

Рис. 3.11: Создание репозитория

```
[entimofeeva@fedora Onepaquonnue cucremu]s git clone --recursive git@github.com:Ekaterina826/study_2022-2023_os-intro.git os-intro Knowpopanue m eos-intro—
remote: Enumerating objects: 27, done.
remote: Counting objects: 100% (27/27), done.
remote: Counting objects: 100% (26/26), done.
remote: Total 27 (delta 1), reused 11 (delta 0), pack-reused 0
flonyvenue obsertom: 100% (27/27), 1633 Km6 | 199.00 Km6/c, roromo.
Onpeganeuwe unamenenum: 100% (1/1), roromo.
Onpeganeuwe unamenenum: 100% (1/1), roromo.
Onpeganeuwe unamenenum: 100% (1/1), roromo.
Onpoughaw *template/presentations (https://github.com/yamadharma/academic-laboratory-report-template.git) зарегистрирован по пути «template/presentations (https://github.com/yamadharma/academic-laboratory-report-template.git) зарегистрирован по пути «template/proports (https://github.com/yamadharma/academic-laboratory-report-template.git) зарегистрирован по пути «template/proports (https://github.com/yamadharma/academic-laboratory-report-template/presentations—
remote: Enumerating objects: 310% (63/28), done.
remote: Enumerating objects: 310% (63/28), done.
remote: Compressing objects: 100% (63/28), one.
remote: Compressing objects: 100% (63/28), romo.
Knowpomanum e «/home/entimofeeva/work/study/2022-2023/Oперационные системы/os-intro/template/reports—
remote: Counting objects: 100% (63/28), romo.
Knowpomanum e «/home/entimofeeva/work/study/2022-2023/Oперационные системы/os-intro/template/reports—
remote: Counting objects: 100% (61/07), done.
remote: Counting objects: 100% (61/07), done.
remote: Counting objects: 100% (61/07), and.
remote: Total 101 (delta 40), reused 88 (delta 27), pack-reused 0
Innyvenum observators: 100% (61/40), roromo.
Onepageneume изменений: 100% (40/40), roromo.
Onepageneume и
```

Рис. 3.12: Клонирование

Переходим в каталог курса, удаляем лишние файлы, создаём необходимые каталоги и отправляем файлы на сервер. (рис. 3.13)

```
[entimofeeva@fedora Операционные системы]$ cd ~/work/study/2022-2023/"Операционные системы"/os-intro
[entimofeeva@fedora os-intro]$ rm package.json
[entimofeeva@fedora os-intro]$ echo os-intro > COURSE
[entimofeeva@fedora os-intro]$ make
[entimofeeva@fedora os-intro]$ git add .
[entimofeeva@fedora os-intro]$ git commit -am 'feat(main): make course structure'
```

Рис. 3.13: Настройка каталога курса

4 Выводы

Мы изучили идеологии и применение средств контроля версий. Приобрели практических навыков по работе с git.

5 Выолнение контрольных вопросов.

- Что такое системы контроля версий (VCS) и для решения каких задач они предназначаются? Система контроля версий программное обеспечение для облегчения работы с изменяющейся информацией. Система управления версиями позволяет хранить несколько версий одного и того же документа, при необходимости возвращаться к более ранним версиям, определять, кто и когда сделал то или иное изменение, и многое другое. Системы контроля версий (Version Control System, VCS) применяются для:
 Хранение полной истории изменений причин всех производимых изменений Откат изменений, если что-то пошло не так Поиск причины и ответственного за появления ошибок в программе Совместная работа группы над одним проектом Возможность изменять код, не мешая работе других пользователей
- 2. Объясните следующие понятия VCS и их отношения: хранилище, commit, история, рабочая копия. Репозиторий хранилище версий в нем хранятся все документы вместе с историей их изменения и другой служебной информацией. Соmmit отслеживание изменений, сохраняет разницу в изменениях Рабочая копия копия проекта, связанная с репозиторием (текущее состояние файлов проекта, основанное на версии из хранилища (обычно на последней)) История хранит все изменения в проекте и позволяет при необходимости обратиться к нужным данным.
- 3. Что представляют собой и чем отличаются централизованные и децентрализованные VCS? Приведите примеры VCS каждого вида. Централизованные

VCS (Subversion; CVS; TFS; VAULT; AccuRev): • Одно основное хранилище всего проекта • Каждый пользователь копирует себе необходимые ему файлы из этого репозитория, изменяет и, затем, добавляет свои изменения обратно Децентрализованные VCS (Git; Mercurial; Bazaar): • У каждого пользователя свой вариант (возможно не один) репозитория • Присутствует возможность добавлять и забирать изменения из любого репозитория В классических системах контроля версий используется централизованная модель, предполагающая наличие единого репозитория для хранения файлов. Выполнение большинства функций по управлению версиями осуществляется специальным сервером. В отличие от классических, в распределённых системах контроля версий центральный репозиторий не является обязательным.

- 4. Опишите действия с VCS при единоличной работе с хранилищем. Сначала создаем и подключаем удаленный репозиторий. Затем по мере изменения проекта отправлять эти изменения на сервер.
- 5. Опишите порядок работы с общим хранилищем VCS. Участник проекта (пользователь) перед началом работы посредством определённых команд получает нужную ему версию файлов. После внесения изменений, пользователь размещает новую версию в хранилище. При этом предыдущие версии не удаляются из центрального хранилища и к ним можно вернуться в любой момент.
- 6. Каковы основные задачи, решаемые инструментальным средством git? Первая хранить информацию о всех изменениях в вашем коде, начиная с самой первой строчки, а вторая обеспечение удобства командной работы над кодом.
- 7. Назовите и дайте краткую характеристику командам git. Наиболее часто используемые команды git: создание основного дерева репозитория: git init получение обновлений (изменений) текущего дерева из центрального репозитория: git pull отправка всех произведённых изменений локального

дерева в центральный репозиторий: git push • просмотр списка изменённых файлов в текущей директории: git status • просмотр текущих изменения: git diff • сохранение текущих изменений: – добавить все изменённые и/или созданные файлы и/или каталоги: git add. – добавить конкретные изменённые и/или созданные файлы и/или каталоги: git add имена файлов • удалить файл и/или каталог из индекса репозитория (при этом файл и/или каталог остаётся в локальной директории): git rm имена файлов • сохранение добавленных изменений: – сохранить все добавленные изменения и все изменённые файлы: git commit -am 'Описание коммита' – сохранить добавленные изменения с внесением комментария через встроенный редактор git commit • создание новой ветки, базирующейся на текущей: git checkout -b имя ветки • переключение на некоторую ветку: git checkout имя ветки (при переключении на ветку, которой ещё нет в локальном репозитории, она будет создана и связана с удалённой) • отправка изменений конкретной ветки в центральный репозиторий: git push origin имя ветки • слияние ветки с текущим деревом: git merge —no-ff имя ветки • удаление ветки: – удаление локальной уже слитой с основным деревом ветки: git branch -d имя_ветки – принудительное удаление локальной ветки: git branch -D имя ветки – удаление ветки с центрального репозитория: git push origin :имя ветки

- 8. Приведите примеры использования при работе с локальным и удалённым репозиториями. git push –all (push origin master/любой branch)
- 9. Что такое и зачем могут быть нужны ветви (branches)? Ветвление («ветка», branch) один из параллельных участков истории в одном хранилище, исходящих из одной версии (точки ветвления). Обычно есть главная ветка (master), или ствол (trunk). Между ветками, то есть их концами, возможно слияние. Используются для разработки новых функций.
- 10. Как и зачем можно игнорировать некоторые файлы при commit? Во время

работы над проектом так или иначе могут создаваться файлы, которые не требуется добавлять в последствии в репозиторий. Например, временные файлы, создаваемые редакторами, или объектные файлы, создаваемые компиляторами. Можно прописать шаблоны игнорируемых при добавлении в репозиторий типов файлов в файл .gitignore с помощью сервисов.

Список литературы

Кулябов Д.С. "Материалы к лабораторной работе"