```
Exercise 9.1
Define a PDA (push-down automaton) that accepts the language of all correctly nested
sequences of round or square brackets.
• a sequence consists of any number of bracket pairs.
• Each bracket pair begins with an opening bracket [ or ( and ends with the
corresponding closing bracket ] or ). Between opening and closing bracket there
can be any sequence of (possibly nested) bracket pairs.
Here are some examples of correctly nested sequences:
     (\dot{)}[]()
     (-())[[]]
     Also the empty string ε is allowed. In contrast, the following strings should not be
accepted.
     [\ ]]
                opening square bracket [ closed by round bracket )
                closing bracket ) is missing
     ( ]
     )-[] ( -
                has to begin with an opening bracket
S \rightarrow (S) \mid [S] \mid SS \mid \epsilon
(1) z0, k0 z1, k0 S push start symbol S on stack
(2.1) z1, (\rightarrow (z1, \epsilon consume matching symbol (
(2.2) z1, ) \rightarrow )z1, \varepsilon consume matching symbol)
(2.3) z1, [\rightarrow [z1, \epsilon consume matching symbol [
(2.4) z1, ] \rightarrow ]z1, \varepsilon consume matching symbol ]
(3.1) z1, S \rightarrow εz1, (S) expand with production S \rightarrow (S)
(3.2) z1, S \rightarrow \epsilonz1, [S] expand with production S \rightarrow [S]
(3.3) z1, S \rightarrow \epsilonz1, SS expand with production S \rightarrow SS
(3.5) z1, S \rightarrow \epsilon z1, \epsilon expand with production S \rightarrow \epsilon.
(4) z1, k0 \rightarrow eze, k0 switch to end state when stack empty
Exercise 9.2
a) Define a PDA that accepts the language of the following context-free grammar:
     S \rightarrow bA
     A \rightarrow BAB \mid c
     B \rightarrow aa \mid b
M = (\{q\},\{a,b,c\},\{A,B,S\},\delta,q,S,\theta)
\delta = (q,b,S) = \{(q,A)\}
\delta = (q,c,A) = \{(q,BAB), (q,\epsilon)\}
\delta = (q,aa,B) = \{(q,\epsilon)\}
\delta = (q,b,B) = \{(q,\epsilon)\}
```

b) Show how the PDA accepts baacb. (Tip: It might help to draw a derivation tree first).

b) Give a sequence of configuration steps that shows that the PDA accepts the string aabcc.

Tip: First think about what a derivation tree for the string looks like

state stack input.	next operation						
(z0, k0, aabcc)	(1) push start symbol S on stack	•	s.A.c	•		expand	~Ac
→ (z1, k0S, aabcc)	(3.1) expand with $S \rightarrow aAc$	•	aBAc	•	۰	cxpand	2
\rightarrow (z1, k0cAa, aabcc)	(2.1) consume symbol a		•	a A c		, ,	
\rightarrow (z1, k0cA, abcc)	(3.2) expand with $A \rightarrow BA$	×	aAc >		•		•
→ (z1, k0cAB, abcc)	(3.4) expand with B \rightarrow ab	•	BAC -	96 AC	•		•
\rightarrow (z1, k0cbaA, abcc)	(3.3) expand with $A \rightarrow c$	×	abAc -				
\rightarrow (z1, k0cbac, abcc)	(2.3) consume symbol c	•	Ac >		۰	٠	٠
\rightarrow (z1, k0cba, abc)	(2.1) consume symbol a · · ·	•	-c> 6	•	٠	٠	٠
\rightarrow (z1, k0cb, bc)	(2.2) consume symbol b						
\rightarrow (z1, k0c, c)	(2.3) consume symbol c	٠		•	۰	٠	٠
\rightarrow (z1, k0, e)	(4) end state reached, input also	emp	ty· ·	٠	•		•
\rightarrow (ze, k0, e)							
		۰		۰	۰	۰	۰

Exercise 9.4

Grammar G with start symbols S is defined as following:

 $S \rightarrow aA \mid Bd$

 $A \rightarrow BC \mid a$

 $\text{B} \rightarrow \text{bBa} \mid \text{C}$

 $C \to cCb \mid \epsilon$

Compute for this grammar the properties nullable, First, and Follow.

 $A \rightarrow \epsilon$. set nullable(A) = true

 $B \rightarrow \epsilon$. set nullable(B) = true

 $\mathbb{C} \to \mathbf{\epsilon}$. set nullable(\mathbb{C}) = true

		Nullable	First	Follow	
1	S	-	4 d, b, c	B	
	А	true	a, b, c, g	A	
,	В	true	b, c, {	c, a, d	
,	С	true	C, E	b, b, c, a, d	

```
First(S) = {a} u
     (S) \varepsilon d' = u'\{d\}
      (S) Bd = u_{*}\{b\} u_{*}\{c\}
First(A) = \{a,b,c,\epsilon\}
First(B) = \{b,c,\epsilon\}
First(C) = \{c, \epsilon\}.
Follow(S) = \{\$\}
Follow(A) = follow(S)
Follow(B) = \{a\}.
        (B) Bd = u \{d\}
      (B) C = iu\{c\}
Follow(C) = follow(A) u {b}
B \rightarrow 
\alpha A\beta = follow(A) = first(\beta)
\alpha A = follow(A) = follow(B)
Exercise 9.5 - obligatory (14 points)
Let G be the following context-free grammar with start symbols S;
     S \rightarrow BSA \mid aAB
     A \rightarrow bA \mid \epsilon
      B → cBAa | A
A \rightarrow \epsilon. set nullable(A) = true
B \rightarrow \dot{\epsilon}. sef nullable(B) = true
a) Compute for all non-terminal symbols of the grammar the properties:
     (1) nullable(X)
     (2) First(X)
                                     Nullable
                                                                                           Follow
                                                                  First
                                                                 6,0,
                                                                                         $,6
              S
                                                                  6, 8
                                                                                       0,6,9,$
             Α
                                       true
                                                                 0,0, 8
             В
                                                                                       a, b, c, $
                                       true
      (3) Follow(X).
First(S) = \{a,c,b,\epsilon\}
First(A) = \{b, \epsilon\}
First(B) = \{c,b,\epsilon\}
Follow(S) = {$} u {b}
Follow(A) = Follow(A) u {c,b}
Follow(B) = \{b\}
B \rightarrow
\alpha A\beta = follow(A) = first(\beta)
```

 $\alpha A = follow(A) = follow(B)$

