Intro to Robotics

Lecture 8

Big Picture

Joint Space

Task Space

Joint space velocity vs. task space velocity

Angular Velocity

$$\omega = \dot{\theta}k$$
$$v = \omega \times r$$

$$v = \omega \times r$$

Angular Velocities

$$\omega(t) = \dot{\theta}(t)k$$

For a robot, k is always align with z (joint)

$$\omega_{0,n}^{0}(t) = \sum_{0,n} \omega_{0,n}^{0}(t)$$

$$\omega_{0,n}^{0}(t) = \sum_{0,n} \omega_{0,n}^{0}(t) = R_{1}^{0}\omega_{1,2}^{0}(t)R_{1}^{0}k_{1}^{0} = \dot{\theta}_{1,2}(t)Z_{1}^{0}$$

$$\omega_{0,n}^{0}(t) = R_{2}^{0}\omega_{2,3}^{2} = \dot{\theta}_{2,3}(t)R_{2}^{0}k_{2}^{2} = \dot{\theta}_{2,3}(t)Z_{2}^{0}$$

$$\omega_{n-1,n}^{0}(t) = R_{n-1}^{0}\omega_{n-1,n}^{n-1} = \dot{\theta}_{n-1,n}(t)R_{n-1}^{0}k_{n-1}^{n-1} = \dot{\theta}_{n-1,n}(t)Z_{n-1}^{0}$$

 $\omega_{i-1,i}^{j}(t)$ -- Angular velocity of link i, relative to frame j,

Angular Velocity with Revolute Joints

$$\omega_n^0 = \dot{\theta}_{0,1} z_0^0 + \dot{\theta}_{1,2} z_1^0 + \dots + \dot{\theta}_{n-1,n} z_{n-1}^0$$

$$\omega_{n}^{0} = \begin{bmatrix} z_{0}^{0} & z_{1}^{0} & \dots & z_{n-1}^{0} \end{bmatrix} \begin{bmatrix} \dot{\theta}_{0,1} \\ \dot{\theta}_{1,2} \\ \vdots \\ \dot{\theta}_{n-1,n} \end{bmatrix} = \begin{bmatrix} z_{0}^{0} & z_{1}^{0} & \dots & z_{n-1}^{0} \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \vdots \\ \dot{\theta}_{n} \end{bmatrix}$$

Linear velocity with Revolute Joints

$$v = \omega \times r = \dot{\theta}_i z_{i-1} \times (o_n - o_{i-1})$$

Combined Velocity for Revolute Joints

$$v_n^0 = \begin{bmatrix} z_0 \times (o_n - o_0) & z_1 \times (o_n - o_1) & \dots & z_{n-1} \times (o_n - o_{n-1}) \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \\ \dots \\ \dot{\theta}_n \end{bmatrix}$$

$$\omega_{n}^{0} = \begin{bmatrix} z_{0}^{0} & z_{1}^{0} & \dots & z_{n-1}^{0} \end{bmatrix} \begin{bmatrix} \dot{\theta}_{0,1} \\ \dot{\theta}_{1,2} \\ \vdots \\ \dot{\theta}_{n-1,n} \end{bmatrix} = \begin{bmatrix} z_{0}^{0} & z_{1}^{0} & \dots & z_{n-1}^{0} \end{bmatrix} \begin{bmatrix} \dot{\theta}_{1} \\ \dot{\theta}_{2} \\ \vdots \\ \dot{\theta}_{n} \end{bmatrix}$$

Example

$$\begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} z_0 \times (o_2 - o_0) & z_1 \times (o_2 - o_1) \\ z_0 & z_1 \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$

$$J = \begin{bmatrix} z_0 \times (o_2 - o_0) & z_1 \times (o_2 - o_1) \\ z_0 & z_1 \end{bmatrix}$$

$$o_{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad o_{1} = \begin{bmatrix} l_{1}c\theta_{1} \\ l_{1}s\theta_{1} \\ 0 \end{bmatrix} \quad o_{2} = \begin{bmatrix} l_{1}c\theta_{1} + l_{2}c(\theta_{1} + \theta_{2}) \\ l_{1}s\theta_{1} + l_{2}s(\theta_{1} + \theta_{2}) \\ 0 \end{bmatrix} \quad \blacksquare$$

(x, y)

$$z_{0} = z_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad J = \begin{bmatrix} -l_{1}s\theta_{1} - l_{2}s(\theta_{1} + \theta_{2}) & -l_{2}s(\theta_{1} + \theta_{2}) \\ l_{1}c\theta_{1} + l_{2}c(\theta_{1} + \theta_{2}) & l_{2}c(\theta_{1} + \theta_{2}) \\ 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{bmatrix}$$

Prismatic Joints

- For prismatic joint i
- Contribute NULL to angular velocity of the endeffector
- Contribute $\dot{d}_{i}Z_{i-1}^{0}$ to linear velocity of the end-effector

$$v_n^0 = \begin{bmatrix} z_0 & z_1 & \dots & z_{n-1} \end{bmatrix} \begin{bmatrix} \dot{d}_1 \\ \dot{d}_2 \\ \dots \\ \dot{d}_n \end{bmatrix}$$

$$\omega_n^0 = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} d_1 \\ \dot{d}_2 \\ \dots \\ \dot{d}_n \end{bmatrix}$$

For Joint i

If joint i is revolute

$$J_i = \begin{bmatrix} z_{i-1} \times (o_n - o_{i-1}) \\ z_{i-1} \end{bmatrix}$$

If joint i is prismatic

$$J_i = \begin{bmatrix} z_{i-1} \\ 0 \end{bmatrix}$$

Example

Link	a_i	α_i	d_i	θ_i
1	a_1	0	0	$ heta_1^\star$
2	a_2	180	0	θ_2^{\star}
3	0	0	d_3^{\star}	0
4	0	0	d_4	$ heta_4^\star$

^{*} joint variable

$$J_{i} = \begin{bmatrix} z_{i-1} \times (o_{n} - o_{i-1}) \\ z_{i-1} \end{bmatrix} \qquad J_{i} = \begin{bmatrix} z_{i-1} \\ 0 \end{bmatrix}$$

1. Compute Z_{i-1}

$$z_0 = z_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$z_2 = z_3 = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

2. Compute O_i

$$A_{1}^{0} = A_{1}, A_{2}^{0} = A_{1}^{0} A_{2}, A_{3}^{0} = A_{2}^{0} A_{3}, A_{4}^{0} = A_{3}^{0} A_{4}$$

$$0_{4}$$

$$A_{1}^{0} = \begin{bmatrix} c_{12}c_{4} + s_{12}s_{4} & -c_{12}s_{4} + s_{12}c_{4} & 0 \\ s_{12}c_{4} - c_{12}s_{4} & -s_{12}s_{4} - c_{12}c_{4} & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$a_{1}c_{1} + a_{2}c_{12}$$

$$a_{1}s_{1} + a_{2}s_{12}$$

$$-d_{3} - d_{4}$$

Ref. page 93