Chapter 1

Lebesgue Measure and Integration

Lectured by Someone Typed by Yu Coughlin Season Year

Introduction

The following are complementary reading for the course.

- G. Grimmett and D. J. A. Welsh, Probability: An Introduction, 1986
- J. K. Blitzstein and J. Hwang, Introduction to Probability, 2019
- D. F. Anderson et al, Introduction to Probability, 2018
- S. M. Ross, Introduction to Pro ability Models, 2014
- G. Grimmett and D. Stirzaker, Probability and Random Processes, 2001
- G. Grimmett and D. Stirzaker, One Thousand Exercises in Probability, 2009

Contents

1	Leb	esgue 1	Measure and Integration 1
L1	1	Motiva	tion
	2	Measu	res
		2.1	Algebras and σ -algebras
		2.2	Measures
		2.3	Complete measure spaces
	3		ructing measures
	J	3.1	Pre-measure
		3.2	Outer measure
		3.3	Restriction
		3.4	Lebesgue measure
	4	_	rable functions
	-	4.1	Defintion
		4.2	Properties
		4.3	Continuity
	5		
	9	5.1	, 9
		$5.1 \\ 5.2$	
	c		Properties
	6		gence
		6.1	Monotone convergence
		6.2	Fatou's lemma
		6.3	Lebesgue dominated convergence
	_	6.4	Vitali's theorem
	7	L^p spa	
		7.1	Norms
		7.2	L^p spaces
		7.3	Normed vector spaces
		7.4	Completeness
	8	Produc	ct measures
		8.1	Products of sets
		8.2	σ -algebras on product sets
		8.3	Product measures
	9	Fubini ³	's theorem
		9.1	Motivations
		9.2	Setup 5
		9.3	Fubini's theorem
	10	Differe	ntiation
		10.1	Hardy-Littlewood maximal function
		10.2	Compact support spaces
		10.3	Lebesgue's differentiation theorem
	11		position
		11.1	Signed measures
		11.2	Hahn decomposition theorem
		11.3	Mutually singular measures
		11.4	Jordan decomposition theorem
		11.5	Lebesgue decomposition theorem
		11.6	Radon-Nikodym theorem

Lecture 1 Monday 30/10/2023

1 Motivation

- 2 Measures
- 2.1 Algebras and σ -algebras
- 2.2 Measures
- 2.3 Complete measure spaces
- 3 Constructing measures
- 3.1 Pre-measure
- 3.2 Outer measure
- 3.3 Restriction
- 3.4 Lebesgue measure
- 4 Measurable functions
- 4.1 Defintion
- 4.2 Properties
- 4.3 Continuity
- 5 Lebesgue integral
- 5.1 Construction
- 5.2 Properties
- 6 Convergence
- 6.1 Monotone convergence
- 6.2 Fatou's lemma
- 6.3 Lebesgue dominated convergence
- 6.4 Vitali's theorem
- 7 L^p spaces
- 7.1 Norms
- 7.2 L^p spaces
- 7.3 Normed vector spaces
- 7.4 Completeness
- 8 Product measures
- 8.1 Products of sets
- 8.2 σ -algebras on product sets

5

- 8.3 Product measures
- 9 Fubini's theorem
- 9.1 Motivations
- 9.2 Setup
- 9.3 Fubini's theorem
- 10 Differentiation