mit math lectures 20 and 21

Yunhua Zhao

November 2, 2020

1 Chapter 20 Summary

1.1 Independent Definition

Def: If P(A|B) = P(A), then A is independent of B

- 1. disjoint can not get independent eg. two events A and B are disjoint, then $P(A|B) = 0 \neq P(A)$
- **2.** Theorem(Product Rule For Independent Events): If A is independent of B, then $P(A \wedge B) = P(A)P(B)$ It is an equivalent definition, which means if $P(A \wedge B) = P(A)P(B)$, then A is independent of B
- **3.** Theorem(Symmetry of Independence): If A is independent of B, then If B is independent of A

1.2 Mutually Independent

Def:Events $A_1, A_2...$ are mutually independent, if \forall_i and $\forall J \subseteq [1, n] - i$, $P(A_i | \bigcap_{j \in J} A_j) = P(A_i)$ or $P(\bigcap_{j \in J} A_j) = 0$ **Equivalent Def:**(Product Rule Form): $A_1, A_2...$ are mutually independent, If $\forall J \subseteq [1, n]$, $P(\bigcap_{j \in J} A_j) = \prod_{j \in J} P(A_j)$

Note: all the events are independent with each other, and put them together also independent

1.3 Pairwise Independent

Def: Events $A_1, A_2...$ are pairwise independent, if $\forall i, j \ (i \neq j), A_i$ and A_j are independent.

Note: all the events are independent with each other, but put them together not sure if it is independent

Note:

 $\begin{array}{l} \text{pairwise} \Rightarrow \text{mutual} \\ \text{mutual} \Rightarrow \text{pairwise} \end{array}$

Stirling's formula: $N! \sim \sqrt{2\pi N} (\frac{N}{\epsilon})^N$

1.4 Birthday Principle: x collides with y

hash: $L \to S$, and $L' \subseteq L$, L' is pretty small, we want L' after hash matched one by one

Def: x collides with y, if h(x) = h(y), but $x \neq y$

Def Birthday Principle: If $|S| \ge 100$, $L' \subseteq L$, $|L'| \ge 1.2\sqrt{|S|}$, and if the values of h on L' are random(uniform) and mutually independent, then with prob $\ge 1/2$, $\exists x, y \in L'$, such that $x \ne y$, but h(x) = h(y)

2 Chapter 21 Summary

2.1 Random Variable

Def: A random variable R is a function

 $R:S\to R$, first IR is the random variable, S is the sample space, the second IR is the reals.

Def: $P(R = x) = \sum_{w:R(w)=x} P(w)$, which means the probability of the random variable is x equal to the probability of the event happens. Suit for the set also.

Def: Two random variable (r.v.) R_1 and R_2 are independent if

 $\forall x_1, x_2 \in IR, P(IR_1 = x_1 | IR_2 = x_2) = P(IR_1 = x_1) \text{ or } P(IR_2 = x_2)$

Equivalent Def: $\forall x_1, x_2 \in IR$, $P(IR_1 = x_1 \land IR_2 = x_2) = P(IR_1 = x_1)P(IR_2 = x_2)$

Note: If asked to show independent, need to show everything required, if dependent just find one

2.2 Indicator

Def An indicator(known as Bernoulli or Characteristic):

r.v. is a r.v. with range 0, 1

w|R(w)=x is the event that R=x, R is the random variable

2.3 Mutually Independent

Def mutually independent $r.v.: R_1, R_2, ...$ are mutually independent if $\forall x_1, x_2 ... \in IR$, $P(IR_1 = x_1 \land IR_2 = x_2 \land ...) = P(IR_1 = x_1)P(IR_2 = x_1)$

$$x_2)P(IR_3 = x_3)...$$

Distribution Function 2.4

Def: Given a rv R, the probability(also point) distribution function (pdf) for R is f(x) = P(R = x)

Def: The cumulative distribution function F for R is $F(x) = P(R \le x) =$ $\sum_{y \le x} P(R = y)$

2.5 Winning Strategy—Random Guess (uniform distribution problem eg)

Note:Improve the probability to win $1/2 + (z - y)/2n \ge 1/2 + 1/2n$

2.6 **Binomial Distribution**

Def Unbiased Binomial Distribution:

$$f_n(k) = \binom{n}{k} 2^{-n} \ n \geqslant 1, \ 0 \leqslant k \leqslant n$$

Def Normal Binomial Distribution:
 $f_{n,p}(k) = \binom{n}{k} p^k (1-p)^{n-k} \ n \geqslant 1, \ 0 \leqslant k \leqslant n, \ 0$

Note: Unbiased Binomial Distribution is when p = 1/2