MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2017 ROUND 7 TEAM QUESTIONS

ANSWERS

A) ______ D) S = _____ (x, y) = (_____ , ____)

B) _____ E) ____

C) ______ F) ____

A) Compute the **y-coordinates** of <u>all</u> points where the vertical line x = -7 could intersect a hyperbola which has an asymptote whose equation is $(y-4) = \frac{3}{4}(x+2)$.

B) Factor completely over the integers. $4x^6 - 13x^4 - 13x^2 + 4$

C) Given: $\sin(x) = \frac{1 \pm \sqrt{1 - 4(N - 1)}}{2}$

If $x = (30k)^{\circ}$, where k is an integer and $0 \le k < 12$.

Compute all possible <u>rational</u> values of N.

D) Given: $S = x^2 + 4xy + 9y^2 + 4x + 18y + 2017$ for real numbers x and y. Find m, the minimum value of S, and the ordered pair (x, y) for which it occurs.

E) In right triangle ABC, the bisector of $\angle C$ intersects the hypotenuse \overline{AB} at point D. Point E is located on \overline{AC} such that $\overline{DE} \perp \overline{AC}$. Compute $\frac{1}{BC} + \frac{1}{AC}$, if $DE = \frac{\sqrt{5} + 1}{2}$.

F) Some positive factors of 4000 are multiples of 5 and some are not.

Specifically, k% of the factors of 4000 are multiples of 5.

A is a positive integer less than 4000 with the same number of divisors as 4000, and k% of its divisors are multiples of 5.

B is an integer greater than 4000 with the same number of divisors as 4000, and k% of its divisors are multiples of 5.

Compute the minimum possible value of B - A.