Statistical Machine Learning

4주차

담당: 18기 신인수

3주차 과제 우수자

김재훈님☺

코드를화면공유해주시고, 간단히설명해주세요!

리마인드: 매주 수요일 22시까지 과제를 제출해주셔야 합니다! (github)

과제제출시, 파일명은 기존.ipynb 파일이름을 유지하되, '_이름'만 추가해주세요 ⓒ (ML_week4_HW_방서연)

0. Conditional Expectation

1.Regression

2. Linear Regression

3. Regularization

4. Regression Diagnostics

0. Conditional Expectation

Conditional Expectation

Conditional Distribution (조건부 분포)

• Recap) 조건부 확률: B라는 조건이 주어졌을 때 A의 확률

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

• Y라는 조건이 주어졌을 때, X의 분포

$$f(X|Y) = \frac{f(x,y)}{f(y)} = \frac{P(X \cap Y)}{P(Y)}$$

Conditional Expectation

Conditional Expectation (조건부 기댓값)

Y라는 조건이 주어졌을 때, X의 기댓값

$$E(X|Y) = \int_{-\infty}^{\infty} x f(x|y) dx$$
, X is continuous random variable

$$E(X|Y) = \sum_{x} x f(x|y)$$
, X is discrete random variable

Conditional Variance (조건부 분산)

• Y라는 조건이 주어졌을 때, X의 분산 (역시 편차 제곱의 평균)

$$Var(X|Y) = E[(X - E(X|Y))^{2}|Y]$$

Conditional Expectation

Properties

$$E(X) = E[E(X|Y)]$$

$$Var(X) = Var[E(X|Y)] + E[Var(X|Y)]$$

Supervised Learning

Galton의 height 데이터.

x : 아버지의 키 Y : 아들의 키

두 변수의 관계를 Y = aX + b 로 표현하려고 할 때, a와 b를 어떻게 정할 것인가?

→ 원칙이 필요하다

이런 식으로 아무렇게나 그어버리면 곤란하다.

여전히 우리는 조건부 기댓값을 모델링하고 싶다.

Recap: Bias and Variance tradeoff & MSE

$$\begin{split} MSE &= E[y - \hat{f}\left(x\right)^2] \\ &= E[f(x) + \epsilon - \hat{f}\left(x\right)]^2 \\ &= E[f(x) - \hat{f}\left(x\right)]^2 + E[\epsilon]^2 + 2E[\epsilon(f(x) - \hat{f}\left(x\right)] \\ &= [Var(\hat{f}\left(x\right)) + Bias(\hat{f}\left(x\right))^2] + Var(\epsilon) \\ &= Reducible\ Error + Irreducible\ Error \end{split}$$

- 원칙1: Bias = 0으로 만들고(unbiased estimator), 분산이 최소인 직선을(추정량) 구하겠다 → Linear Regression (1장)
- 원칙2: Bias가 있더라도 전체 MSE를 최소화시키는 직선을(추정량) 구하겠다 → LASSO, Ridge 등의 regularization (2장)

어떤 원칙으로 직선을 만들게 되는가?

$$SST = SSR + SSE$$

Sum of squares total = sum of squares regression + sum of squares error

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

데이터의 분산 = 회귀모형이 설명 가능한 부분 + 불가능한 부분

→ SSE를 최소화하는 직선 찾아라!

2. Linear Regression

Linearity & Linear Model

Linearity?

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \dots + \beta_{p}X_{pi} + \epsilon_{i}$$

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} X_{2i} + \epsilon_i$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_p X_i^p + \epsilon_i$$

Linear Regression

예전에 사용하던 슬라이드 중요한 부분 짚어가면서 배워봅시다!

$$r = f(x) + \varepsilon$$

Estimator this one directly! = $g(x|w) = w_1x_1 + \cdots + w_dx_d + w_0 = w^Tx + w_0$

Assume as Linear model

[Assumptions of error]: Normality & Homoscedasticity & independent

→ 회귀진단에 이용!

$$\varepsilon \sim N(0, \sigma^2)$$

$$r \sim N(g(x|w), \sigma^2)$$

$$\log \prod_{t=1}^{N} p(r^{t}|x^{t}) = \log \prod_{t=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} exp\left[-\frac{(r^{t} - g(x^{t}|w))^{2}}{2\sigma^{2}}\right] \rightarrow \text{Maximize!}$$

→ 갑자기 MLE??? → 다음 슬라이드

Minimize: Loss function
$$E(w|x) = \frac{1}{2} \sum_{t=1}^{N} [(r^t - g(x^t|w))^2]$$

$$\rightarrow$$
 MSE 최소화 $\frac{1}{n}\sum_{i=1}^{n}(y_i-\widehat{y_i})^2$

Linear Regression

- 분명 MLE와 LSE는 원칙이 다르다.
 - MLE: likelihood을 최대로 만드는 추정량 (estimator)
 - LSE: MSE, 혹은 SSE를 최소로 만드는 추정량
- 그러나 오차의 정규성, 등분산성, 독립성을 만족할 때 두 추정량은 같다.

$$\mathbf{y} = \mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon} \quad oldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$$

MLE

$$L(oldsymbol{eta}, \sigma^2) = \prod_{i=1}^n rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{(y_i - \mathbf{x}_i^Toldsymbol{eta})^2}{2\sigma^2}
ight)$$

Maximize
$$\ell(oldsymbol{eta}, \sigma^2) = -rac{n}{2}\log(2\pi\sigma^2) - rac{1}{2\sigma^2}\sum_{i=1}^n(y_i - \mathbf{x}_i^Toldsymbol{eta})^2$$

Minimize
$$-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\mathbf{x}_i^T\boldsymbol{\beta})^2$$

Equivalent to
$$S(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

LSE

Minimize
$$S(\boldsymbol{\beta}) = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

$$S(oldsymbol{eta}) = \mathbf{y}^T\mathbf{y} - 2\mathbf{y}^T\mathbf{X}oldsymbol{eta} + oldsymbol{eta}^T\mathbf{X}^T\mathbf{X}oldsymbol{eta}$$

$$rac{\partial S(oldsymbol{eta})}{\partial oldsymbol{eta}} = -2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}oldsymbol{eta}$$

Let
$$-2\mathbf{X}^T\mathbf{y} + 2\mathbf{X}^T\mathbf{X}\boldsymbol{\beta} = 0 \quad \Rightarrow \quad \mathbf{X}^T\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^T\mathbf{y}$$
$$\boldsymbol{\beta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

Therefore
$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Gauss-Markov Theorem

 \hat{eta} 가 LSE이면서 비편향 추정량(unbiased estimator)일때, 임의의 비편향추정량 \tilde{eta} 에 대해 다음을 만족

$$Var[\hat{\beta}|X] \leq Var[\tilde{\beta}|X]$$

따라서 LSE가 BLUE (best linear unbiased estimator)를 만족!

Gradient Descent

Minimize: Loss function
$$E(w|x) = \frac{1}{N} \sum_{t=1}^{N} [(\mathbf{r^t} - \mathbf{g}(\mathbf{x^t}|\mathbf{w}))^2] = MSE(Mean Squared Error)$$

$$w^* = argmin_w E(w|x)$$
 $w_{j+1} \leftarrow w_j - \eta \frac{\partial E}{\partial w_j}$ iteratively

- 컴퓨터가 어떻게 MSE를 최소화 하는 추정량을 찾는가 → Gradient Descent
- MSE가 2차함수이기 때문에 금방 찾을 수 있다.
- 다른 Loss 함수를 사용하는 경우도 사용 가능
 - Ex) MAE, RMSE, Huber 등등

Least Square Estimation

Minimize: Loss function
$$E(w|x) = \frac{1}{2} \sum_{t=1}^{N} [(\mathbf{r}^{t} - \mathbf{g}(\mathbf{x}^{t}|w))^{2}]$$

** $g(x^{t}|w) = w_{1}x^{t} + w_{0}$: 1st order

$$w^* = argmin_w E(w|x) \rightarrow \frac{\partial E}{\partial w_1} = 0 \& \frac{\partial E}{\partial w_0} = 0$$

$$A = \begin{bmatrix} N & \sum_{t} x^{t} \\ \sum_{t} x^{t} & \sum_{t} (x^{t})^{2} \end{bmatrix} w = \begin{bmatrix} w_{0} \\ w_{1} \end{bmatrix} y = \begin{bmatrix} \sum_{t} y \\ \sum_{t} r^{t} x^{t} \end{bmatrix}$$

$$w^* = A^{-1}y$$

Multivariate Regression Multiple Regression

$$r^{t} = g(\mathbf{x}^{t} | w_{0}, w_{1}, \dots, w_{d}) + \epsilon = w_{0} + w_{1}x_{1}^{t} + w_{2}x_{2}^{t} + \dots + w_{d}x_{d}^{t} + \epsilon$$

$$E(w_{0}, w_{1}, \dots, w_{d} | \mathcal{X}) = \frac{1}{2} \sum_{t} (r^{t} - w_{0} - w_{1}x_{1}^{t} - w_{2}x_{2}^{t} - \dots - w_{d}x_{d}^{t})^{2}$$

$$\sum_{t} r^{t} = Nw_{0} + w_{1} \sum_{t} x_{1}^{t} + w_{2} \sum_{t} x_{2}^{t} + \dots + w_{d} \sum_{t} x_{d}^{t}$$

$$\sum_{t} x_{1}^{t} r^{t} = w_{0} \sum_{t} x_{1}^{t} + w_{1} \sum_{t} (x_{1}^{t})^{2} + w_{2} \sum_{t} x_{1}^{t} x_{2}^{t} + \dots + w_{d} \sum_{t} x_{1}^{t} x_{d}^{t}$$

$$\sum_{t} x_{2}^{t} r^{t} = w_{0} \sum_{t} x_{2}^{t} + w_{1} \sum_{t} x_{1}^{t} x_{2}^{t} + w_{2} \sum_{t} (x_{2}^{t})^{2} + \dots + w_{d} \sum_{t} x_{2}^{t} x_{d}^{t}$$

$$\vdots$$

$$\sum_{t} x_{d}^{t} r^{t} = w_{0} \sum_{t} x_{d}^{t} + w_{1} \sum_{t} x_{d}^{t} x_{1}^{t} + w_{2} \sum_{t} x_{d}^{t} x_{2}^{t} + \dots + w_{d} \sum_{t} (x_{d}^{t})^{2}$$

$$\mathbf{X} = \begin{bmatrix} 1 & x_1^1 & x_2^1 & \cdots & x_d^1 \\ 1 & x_1^2 & x_2^2 & \cdots & x_d^2 \\ \vdots & & & & \\ 1 & x_1^N & x_2^N & \cdots & x_d^N \end{bmatrix}, \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d, \end{bmatrix}, \mathbf{r} = \begin{bmatrix} r^1 \\ r^2 \\ \vdots \\ r^N \end{bmatrix}$$

Then the normal equations can be written as

$$\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{r}$$
$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{r}$$

$$w^* = A^{-1}y$$

※주의

Multiple Linear Regression 종속 변수 1개

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon$$

Multivariate Linear Regression 종속변수 여러 개

$$Y_1 = \beta_{01} + \beta_{11}X_1 + \beta_{21}X_2 + \dots + \beta_{p1}X_p + \epsilon_1$$
 $Y_2 = \beta_{02} + \beta_{12}X_1 + \beta_{22}X_2 + \dots + \beta_{p2}X_p + \epsilon_2$
 $Y_3 = \beta_{03} + \beta_{13}X_1 + \beta_{23}X_2 + \dots + \beta_{p3}X_p + \epsilon_3$

Polynomial Regression

$$g(x^{t} | w_{k},...,w_{2},w_{1},w_{0}) = w_{k}(x^{t})^{k} + \cdots + w_{2}(x^{t})^{2} + w_{1}x^{t} + w_{0}$$

$$\mathbf{A} = \begin{bmatrix} N & \sum_{t} x^{t} & \sum_{t} (x^{t})^{2} & \cdots & \sum_{t} (x^{t})^{k} \\ \sum_{t} x^{t} & \sum_{t} (x^{t})^{2} & \sum_{t} (x^{t})^{3} & \cdots & \sum_{t} (x^{t})^{k+1} \\ \vdots & & & & \\ \sum_{t} (x^{t})^{k} & \sum_{t} (x^{t})^{k+1} & \sum_{t} (x^{t})^{k+2} & \cdots & \sum_{t} (x^{t})^{2k} \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} w_{0} \\ w_{1} \\ w_{2} \\ \vdots \\ w_{k} \end{bmatrix}, \mathbf{y} = \begin{bmatrix} \sum_{t} r^{t} \\ \sum_{t} r^{t} x^{t} \\ \sum_{t} r^{t} (x^{t})^{2} \\ \vdots \\ \sum_{t} r^{t} (x^{t})^{k} \end{bmatrix}$$

$$\mathbf{w}^{*} = A^{-1} \mathbf{y}$$

Polynomial Regression

Model Selection

Cross Validation

To estimate generalization error, we need data unseen during training.

We split the data as

= Test Error 추정

- Training set (50%)
- Validation set (25%)
- Test (publication) set (25%)

Measure generalization accuracy by testing on data unused during training

Regularization

Penalize complex models

- E'=error on data + λ *model complexity
- * If λ increases, variance decreases, but bias increases

→ Penalty term이 생기는 순간 unbiased 포기 (Gauss-Markov Theorem)

In regression...

Regularization (L2):
$$E(\mathbf{w} \mid \mathcal{X}) = \frac{1}{2} \sum_{t=1}^{N} \left[r^{t} - g(\mathbf{x}^{t} \mid \mathbf{w}) \right]^{2} + \lambda \sum_{i} w_{i}^{2}$$

Loss Function인 MSE에 Penalty Term 추가 → 그런데 이게 왜 필요? → 다음 슬라이드

Linear Regression: Limitations

Linear Regression with and without an Outlier

- Linear Regression은 outlier에 취약!
- 이를 완화하기 위해 Regularization 사용
 - Ridge, LASSO

3. Regularization

Distance

Distance measure

$$d(\mathbf{u}, \mathbf{v}) = (\sum |u_i - v_i|^2)^{\frac{1}{2}} = ||\mathbf{u} - \mathbf{v}||_2 \qquad Euclidean (L2 norm)$$

$$d(\mathbf{u}, \mathbf{v}) = \sum |u_i - v_i| = ||\mathbf{u} - \mathbf{v}||_1 \qquad Manhattan (L1 norm)$$

$$d(\mathbf{u}, \mathbf{v}) = (\sum |u_i - v_i|^p)^{\frac{1}{p}} = ||\mathbf{u} - \mathbf{v}||_p \qquad Minkowski (Lp norm)$$

$$d(\mathbf{u}, \mathbf{v}) = \sqrt{(\mathbf{x} - \mathbf{\mu})^T \Sigma^{-1} (\mathbf{x} - \mathbf{\mu})} \qquad Mahalanobis Distance$$

Distance

- Green: All points y at distance L₁(x, y) = r from point x
- Blue: All points y at distance $L_2(x, y) = r$ from point x
- Red: All points y at distance L_∞(x, y) = r from point x

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$

$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

$$\|\mathbf{x}\|_{\infty} = \max_{i=1,\ldots,n} |x_i|$$

$$\|\mathbf{x}\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$$

SSE와 추정량의 contour

- 실제로 시뮬레이션을 해보면 이차 곡면이 나온다.
- 붉은 점이 LSE
- RSS = residual sum of square = SSE

→ 다음 슬라이드에 LASSO, Ridge regression 설명을 위함!

Lasso Regression

LASSO (Least Absolute Shrinkage and Selection Operator)

$$(\widehat{\boldsymbol{\beta}}^{\lambda,1} =) \widehat{\boldsymbol{\beta}}_{LASSO} = \underset{\boldsymbol{\beta}}{argmin} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda ||\boldsymbol{\beta}||_{1}$$

where
$$||\beta||_1 = \sum_j^p |\beta_j|$$
 \rightarrow Lagrangian Form

$$\Leftrightarrow \widehat{\pmb{\beta}}_{LASSO} = \operatorname*{argmin}_{\pmb{\beta}} (\pmb{Y} - \pmb{X} \pmb{\beta})^T (\pmb{Y} - \pmb{X} \pmb{\beta})$$
, with constraint $\sum_{i=1}^p |\beta_i| \le t$

Ridge Regression

Ridge Regression solves → Lagrangian Form

$$\min_{\boldsymbol{\beta}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda ||\boldsymbol{\beta}||_2^2 \qquad (L2 \ penalty)$$

$$\Leftrightarrow \widehat{\pmb{\beta}}_{Ridge} = \operatorname*{argmin}_{\pmb{\beta}} (\pmb{Y} - \pmb{X} \pmb{\beta})^T (\pmb{Y} - \pmb{X} \pmb{\beta})$$
, with constraint $\sum_{i=1}^p \beta_i^2 \le t$

Elastic-Net Regression

$$\frac{\sum_{i=1}^{n} (y_i - x_i^J \hat{\beta})^2}{2n} + \lambda \left(\frac{1 - \alpha}{2} \sum_{j=1}^{m} \hat{\beta}_j^2 + \alpha \sum_{j=1}^{m} |\hat{\beta}_j| \right)$$

4. Regression Diagnostics

Regression Diagnostics (회귀 진단)

종류

- 1. Optimism based method → AIC, BIC
- 2. Test error based → Cross Validation, Bootstrap
- 3. Multicollinearity
- 4. Residual plot: 오차의 iid 가정 체크 (독립, 등분산, 정규성)
- 5. Goodness of Fit Test

Optimism of Training Error

Training vs. Testing Error

Model Complexity (Polynomial Degree)

- 우리는 test error을 최소화 하고 싶다!
- 그러나 우리가 알고 있 수 있는 것은 training error 뿐
- 그러나 training error은 test error보다 낮다.
- Train error: 단조 감소
 Test error: 감소 → 증가
- $op = Err_{in} \overline{err}$
- *op*: optimism
- *Err_{in}*: in-sample error
- \overline{err} : training error

Optimism of Training Error

1. Optimism based method → AIC, BIC AIC와 BIC는 optimism (op)를 추정 이 둘을 최소화하는 모델 찾기

$$AIC = 2k - 2\ln(L)$$

k = number of estimated parametersL = maximum likelihood of model

$$BIC = \ln(n)k - 2\ln(L)$$

k = number of estimated parametersL = maximum likelihood of modeln = sample size

2. Test error based → Cross Validation, Bootstrap

두 방법은 test error을 직접 추정

Cross validation: sample size N, fold K일 때 κ : $\{1, \dots, N\} \to \{1, \dots, K\}$: indexing function $\hat{f}^{-k}(x)$: fitted function with kth chunk left out

$$testerror = CV(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{f}^{-\kappa(i)}(x_i))$$

Bootstrapping: B 가 replication 수 일때 $\hat{f}^{*b}(x_i)$: predicted value of bth fitted bootstrap dataset

$$testerror = \frac{1}{B} \frac{1}{N} \sum_{b=1}^{B} \sum_{i=1}^{N} L(y_i, \hat{f}^{*b}(x_i))$$

Bootstrapping

Sample size가 N, replication 수를 B 라고 하자.

- sample에서 N개를 복원 추출 (중복된 값 허용)
- B번 반복
- B개의 sample을 통해 통계량 계산 🔿 bootstrap mean, bootstrap variance, bootstrap sd 등등

Multicollinearity (다중공선성)

종속변수 Y, 독립변수를 X1, X2라고 하자

- Y와 X1의 correlation이 높으면 (좋다/나쁘다)
- X1과 X2의 correlation이 높으면 (좋다/나쁘다)

Multicollinearity

파악하는 방법

1. Scatterplot matrix: X1과 X2 다중공선성

Scatterplot Matrix

2. VIF (variance inflation factor)

$$VIF_j = \frac{1}{1 - R_j^2}$$

 R_j^2 : R² calculated by jth predictor regressed on other predictors \rightarrow 보통 cutoff 3 또는 5로 잡는다

- → R²에 대해서는 뒤에 등장

Multicollinearity

처리하는 방법

- 1. 변수 제거 (X2 제거)
- 2. Ridge regression, LASSO regression → robust to multicollinearity
- 3. 파생변수로 만들기

Residual QQ Plot 오차의 정규성 체크: 잔차의 qqplot이 직선을 따르면 정규성 만족

Residual vs Predicted Values Plot 오차의 독립성 체크: predicted value vs residual 산점도 패턴 없어야 만족

Residuals vs. Predicted Values (No Pattern)

독립 가정 만족

Residuals vs. Predicted Values (Quadratic Patteri

독립 가정 불만족

Residual vs Predicted Values Plot

오차의 등분산성 체크: predicted value vs residual 퍼져있는 정도가 일정하면 만족

점점 퍼지는 중 → 오차 등분산 불만족

해결 방법:

Variance stabilizing transformation(VST) → 분산을 줄이는 변수변환 이용

 $X \rightarrow \sqrt{X}$, $\log X$, $\arcsin X$ 등으로 변환

오차의 정규성을 포기한 회귀 모델이 많은데, 등분산은 유지하려 하는 경향은 있다!

ACF (autocorrelation function) Plot 오차의 독립성 체크: ACF 값이 전체적으로 낮으면 만족. 첫번째 값은 높음

ACF of Residuals (No Autocorrelation)

독립 가정 만족

ACF of Residuals (Autocorrelation)

독립 가정 불만족

Goodness of Fit Test

Coefficient of Determination (R^2)

$$R^2 = \frac{SSR}{SST} = \frac{SST - SSE}{SST} = 1 - \frac{SSE}{SST} \le 1$$

- 전체 변동 (SST) 중 모델이 설명하는 변동 (SSR)의 비율이 얼만큼 되는가.
- 1에 가까워질수록 모델의 설명력이 좋다고 할 수 있다.

수고하셨습니다!

해당 세션자료는 KUBIG Github에서 보실 수 있습니다! 다음은 이번 주차 과제 설명이 있습니다!

