Network Calculus Tests – Tandem (TA) Networks

Version 2.0 beta 2 (2017-Jun-25)

© Steffen Bondorf 2013 - 2017, Some Rights Reserved.

Except where otherwise noted, this work is licensed under Creative Commons Attribution-ShareAlike 4.0. See http://creativecommons.org/licenses/by-sa/4.0/

General Information

- The network calculus analyses presented in this document were created for the purpose of testing the Disco Deterministic Network Calculator (DiscoDNC)¹ an open-source deterministic network calculus tool developed by the *Distributed Computer Systems* (DISCO) Lab at the University of Kaiserslautern.
- Naming of the individual network configurations depicts the name of the according functional test for the DiscoDNC.
- The naming scheme used in this document is detailed in NetworkCalculus NamingScheme.pdf.
- Arrival bound computations are equivalent to the PbooArrivalBound_Output_PerHop.java class of the DiscoDNC.
- The end-to-end left-over service curve for PBOO arrival bounds can be computed by simply convolving the server-local ones.
- Arrival bounds for PmooArrivalBound. java and analyses using them are listed only if results are different to PBOO.

Changelog:

Version 1.1 (2014-Dec-30):

- \bullet Streamlined the PMOO left-over latency $T_{\mathrm{e2e}}^{\mathrm{l.o.}f}$ computation.
- Adapted to naming scheme version 1.1.

Version 2.0 beta2 (2017-Jun-25):

- $\bullet\,$ Rework of the documentation according to code changes
 - New, more complete naming.
 - Separation of network and test.

 $^{^{1} \}rm http://disco.cs.uni\text{-}kl.de/index.php/projects/disco-dnc}$

 $TA_2S_1SC_1F_1AC_1P_Network$

- $\beta_{s_0} = \beta_{s_1} = \beta_{R_{s_i}, T_{s_i}} = \beta_{10, 10}, i \in \{0, 1\}$
- $\mathcal{F} = \{f_0\}$
- $\alpha^{f_0} = \gamma_{r^{f_0}, b^{f_0}} = \gamma_{5,25}$

${\rm TA_2S_1SC_1F_1AC_1P_Test}$

arrivalBound $(s_1, \{f_0\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\mathcal{F}) = \alpha_{s_1}^{f_0}$		FIFO_MUX	ARB_MUX
$lpha_{s_0}^{f_0}$		$=\gamma_{5,25}$	
$lpha_{s_0}^{x(f_0)}$		=	$\gamma_{0,0}$
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)} = \beta_{R_{s_0}^{\text{l.o.}f_0}, T_{s_0}^{\text{l.o.}f_0}}$		$=\beta$	10,10
	$r_{s_1}^{f_0}$		= 5
$\alpha_{s_1}^{f_0} = \alpha^{f_0} \oslash \beta_{s_0}^{\text{l.o.}f_0} = \gamma_{r_{s_1}^{f_0}, b_{s_1}^{f_0}}$	$b_{s_1}^{f_0}$	$\alpha^{f_0}(T_{s_0}^{\text{l.o.}f_0}) = 5 \cdot 10 + 25 = 75$	
	=	= '	Ý5,75

	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_0} = \alpha^{f_0}$		$=\gamma_{5,25}$
s_0		$\beta_{s_0} = b_{s_0}$	FIFO per mico flow
	$D_{s_0}^{f_0}$	$10 \cdot [t-10]^+ = 25$	$\beta_{s_0} = b_{s_0}$
	$D_{s_0}^{**}$	1.1	$10 \cdot [t - 10]^+ = 25$
		$t = 12\frac{1}{2}$	$t = 12\frac{1}{2}$
	$B_{s_0}^{f_0}$	$\alpha_{s_0}(T_{s_0})$	$) = 5 \cdot 10 + 25$
	D_{s_0}		= 75
	$\alpha_{s_1} = \alpha_{s_1}^{f_0}$		$=\gamma_{5,75}$
s_1		$\beta_{s_1} = b_{s_1}$	FIFO per micro flow
	- f	$10 \cdot [t-10]^+ = 75$	$\beta_{s_1} = b_{s_1}$
	$D_{s_1}^{f_0}$	' '	$10 \cdot [t - 10]^+ = 75$
		$t = 17\frac{1}{2}$	$t = 17\frac{1}{2}$
	D fo	$\alpha_{s_1}(T_{s_1}) = 5 \cdot 10 + 75$	
	$B_{s_1}^{f_0}$		= 125
	$\sum_{i=0}^{1} D_{s_i}^{f_0} = 30$		$_{=0} D_{s_i}^{f_0} = 30$
$B^{f_0} \qquad \max_{i=\{0,1\}} b_{s_i}^{f_0} = 125$		$b_{s_i}^{f_0} = 125$	

	SFA	FIFO_MUX ARB_MUX
e.	$lpha_{s_0}^{x(f_0)}$	$=\gamma_{0,0}$
s_0	$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)} = \beta_{s_0}$	$=\beta_{10,10}$
6.	$lpha_{s_1}^{x(f_0)}$	$=\gamma_{0,0}$
s_1	$\beta_{s_1}^{\text{l.o.}f_0} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_0)} = \beta_{s_1}$	$=\beta_{10,10}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$	$\bigotimes_{i=0}^{1} \beta_{s_i}^{\text{l.o.} f_0} = \beta_{10,20}$
		$eta_{\mathrm{e2e}}^{\mathrm{l.o.}f_0} = b^{f_0}$
	D^{f_0}	$10 \cdot [t - 20]^+ = 25$
		$t = 22\frac{1}{2}$
	B^{f_0}	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 20 + 25$
		= 125

	PMOO	ARB_MUX	
So	$lpha_{s_0}^{ar{x}(f_0)}$	$=\gamma_{0,0}$	
s_0	$lpha_{s_0}^{x(f_0)}$	$=\gamma_{0,0}$	
s_1	$\alpha_{s_0}^{\overline{x}(f_0)}$	$=\gamma_{0,0}$	
21	$lpha_{s_0}^{x(f_0)}$	$=\gamma_{0,0}$	
	$R_{\text{e2e}}^{\text{l.o.}f_0} = \bigwedge_{i \in \{0,1\}} \left(R_{s_i} - r_{s_i}^{x(f_0)} \right)$	$= (10 - 0) \wedge (10 - 0)$	
$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$	$I_{\text{e2e}} = / \setminus_{i \in \{0,1\}} \left(I_{s_i} - I_{s_i}\right)$	= 10	
$R_{\rm e2e}^{\rm rio, J_0}$, $T_{\rm e2e}^{\rm rio, J_0}$	$T_{\text{e2e}}^{\text{l.o.}f_0} = \sum_{i \in \{0,1\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_0)} + r_{s_i}^{x(f_0)} \cdot T_{s_i}}{R_{co^{2o}}^{\text{l.o.}f_0}} \right)$	$= 10 + \frac{0 + 0 \cdot 10}{10} + 10 + \frac{0 + 0 \cdot 10}{10}$	
	R _{e2e}	= 20	
	=	$=\beta_{10,20}$	
		$eta_{ ext{e2e}}^{ ext{l.o.}f_0} = b^{f_0}$	
	D^{f_0}	$10 \cdot [t - 20]^+ = 25$	
		$t = 22\frac{1}{2}$	
B^{f_0}		$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 20 + 25$	
	D	= 125	

 $TA_2S_2SC_1F_1AC_1P_Network$

- $\bullet \ \beta_{s_0} = \beta_{R_{s_0}, T_{s_0}} = \beta_{10, 10}$
- $\bullet \ \beta_{s_1} = \beta_{R_{s_1}, T_{s_1}} = \beta_{6,6}$
- $\mathcal{F} = \{f_0\}$
- $\alpha^{f_0} = \gamma_{r^{f_0}, b^{f_0}} = \gamma_{5,25}$

$TA_2S_2SC_1F_1AC_1P_Test$

arrivalBound $(s_1, \{f_0\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\mathcal{F}) = \alpha_{s_1}^{f_0}$		FIFO_MUX	ARB_MUX
$lpha_{s_0}^{f_0}$		= '	$\gamma_{5,25}$
$lpha_{s_0}^{x(\widetilde{f}_0)}$		=	$\gamma_{0,0}$
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)} = \beta_{R_{s_0}^{\text{l.o.}f_0}, T_{s_0}^{\text{l.o.}f_0}}$		$=\beta$	310,10
	$r_{s_1}^{f_0}$	=	= 5
$\alpha_{s_1}^{f_0} = \alpha^{f_0} \oslash \beta_{s_0}^{\text{l.o.}f_0} = \gamma_{r_{s_1}^{f_0}, b_{s_1}^{f_0}}$	$b_{s_1}^{f_0}$	$\alpha^{f_0}(T_{s_0}^{\text{l.o.}f_0}) = 5 \cdot 10 + 25 = 75$	
	=	= '	Υ̃5,75

	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_0} = \alpha^{f_0}$		$=\gamma_{5,25}$
s_0	$D_{s_0}^{f_0}$	$ \beta_{s_0} = b_{s_0} 10 \cdot [t - 10]^+ = 25 t = 12\frac{1}{2} $	FIFO per micro flow $\beta_{s_0} = b_{s_0}$ $10 \cdot [t - 10]^+ = 25$ $t = 12\frac{1}{2}$
	$B_{s_0}^{f_0}$	$\alpha_{s_0}(T_{s_0})$	$0 = 5 \cdot 10 + 25$ = 75
	$\alpha_{s_1} = \alpha_{s_1}^{f_0}$		$=\gamma_{5,75}$
s_1	$D_{s_1}^{f_0}$	$\beta_{s_1} = b_{s_1}$ $6 \cdot [t - 6]^+ = 75$ $t = 18\frac{1}{2}$	FIFO per micro flow $\beta_{s_1} = b_{s_1}$ $6 \cdot [t-6]^+ = 75$ $t = 18\frac{1}{2}$
	$B_{s_1}^{f_0}$	$\alpha_{s_1}(T_{s_1})$	$5 \cdot 6 + 75$ $= 105$
	D^{f_0}	\sum_{i}^{1}	$_{=0} D_{s_i}^{f_0} = 31$
	B^{f_0}	$\max_{i=1}^{n}$	$b_{s_i}^{f_0} = 105$

	SFA	FIFO_MUX	ARB_MUX
60	$\alpha_{s_0}^{x(f_0)}$	$=\gamma_{0,0}$	
s_0	$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)} = \beta_{s_0}$	$=\beta_1$	10,10
s_0s_1	$\alpha_{s_0s_1}^{x(f_0)}$	$=\gamma$	Ý0,0
s_1	$\alpha_{s_1}^{x(f_0)} = \alpha_{s_0 s_1}^{x(f_0)}$	= 7	ý0,0
31	$\beta_{s_1}^{\text{l.o.}f_0} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_0)} = \beta_{s_1}$	$= \beta_{6,6}$	
	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$	$\bigotimes_{i=0}^{1} \beta_{s_i}^{\text{l.o.}}$	$f_0 = \beta_{6,16}$
		$\beta_{\mathrm{e2e}}^{\mathrm{l.o.j}}$	$b^{f_0} = b^{f_0}$
	D^{f_0}	$6 \cdot [t-16]$	$^{+} = 25$
			$t = 20\frac{1}{6}$
R^{f_0}		$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) =$	$5 \cdot 16 + 25$
	D	=	105

	PMOO	ARB_MUX
s_0	$lpha_{s_0}^{ar{x}(f_0)}$	$=\gamma_{0,0}$
30	$lpha_{s_0}^{x(f_0)}$	$=\gamma_{0,0}$
s_1	$lpha_{s_1}^{ar{x}(f_0)}$	$=\gamma_{0,0}$
01	$rac{lpha_{s_1}}{lpha_{s_0}}$	$=\gamma_{0,0}$
	$R_{\text{e2e}}^{\text{l.o.}f_0} = \bigwedge_{i \in \{0,1\}} \left(R_{s_i} - r_{s_i}^{x(f_0)} \right)$	$= (10 - 0) \wedge (6 - 0)$
$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$	$r_{\text{e2e}} = /\sqrt{i \in \{0,1\}} $ r_{s_i}	= 6
Feze $R_{\rm e2e}^{\rm Hot,j_0}, T_{\rm e2e}^{\rm Hot,j_0}$	$T_{\text{e2e}}^{\text{l.o.}f_0} = \sum_{i \in \{0,1\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_0)} + r_{s_i}^{x(f_0)} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_0}} \right)$	$= 10 + \frac{0 + 0 \cdot 10}{6} + 6 + \frac{0 + 0 \cdot 6}{6}$
	$\begin{array}{ccc} -\text{e2e} & \mathcal{L}_i \in \{0,1\} & \begin{pmatrix} -s_i & & \\ & & \end{pmatrix} & R_{\text{e2e}}^{\text{1.0.1},0} & \end{pmatrix}$	= 16
	=	$= \beta_{6,16}$
		$eta_{ ext{e}2 ext{e}}^{ ext{l.o.}f_0} = b^{f_0}$
	D^{f_0}	$6 \cdot [t - 16]^+ = 25$
		$t = 20\frac{1}{6}$
B^{f_0}		$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 16 + 25$
	D	= 105

 $TA_2S_1SC_2F_1AC_1P_Network$

- $\bullet \ \beta_{s_0} = \beta_{s_1} = \beta_{R_{s_i}, T_{s_i}} = \beta_{10, 10}, \ i \in \{0, 1\}$
- $\mathcal{F} = \{f_0, f_1\}$
- $\alpha^{f_0} = \alpha^{f_1} = \gamma_{r^{f_n}, b^{f_n}} = \gamma_{5,25}, n \in \{0, 1\}$

$TA_2S_1SC_2F_1AC_1P_Test$

arrivalBound $(s_1, \{f_0\}, \{f_1\}) = \alpha_{s_1}^{f_0}$ = arrivalBound $(s_1, \{f_1\}, \{f_0\}) = \alpha_{s_1}^{f_1}$		FIFO_MUX	ARB_MUX
$\alpha_{s_0}^{f_n}$		$=\gamma_{5,25}$	
$\alpha_{s_0}^{x f_n}$		$=\gamma_{0,0}$	
$\beta_{s_0}^{\text{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{xf_n} = \beta_{R_{s_0}^{\text{l.o.}f_n}}$	$\beta_{s_0}^{\text{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{xf_n} = \beta_{R_{s_0}^{\text{l.o.}f_n}, T_{s_0}^{\text{l.o.}f_n}}$		310,10
	$r_{s_1}^{f_n}$	=	= 5
$\alpha_{s_1}^{f_n} = \alpha_{s_0}^{f_n} \oslash \beta_{s_0}^{\text{l.o.}f_n} = \gamma_{r_{s_1}^{f_n}, b_{s_1}^{f_n}}$	$b_{s_1}^{f_n}$	$\alpha^{f_0}(T_{s_0}^{\mathrm{l.o.}f_0}) =$	$5 \cdot 10 + 25 = 75$
	=	= 1	γ5,75

arrivalBound $(s_1, \{f_0, f_1\}, \{\}) = \alpha_{s_1}^{\{f_0, f_1\}}$		FIFO_MUX	ARB_MUX	
$lpha_{s_0}^{\{f_0,f_1\}}$		$=\gamma_{10,50}$		
$lpha_{s_0}^{x\{f_0,f_1\}}$	$lpha_{s_0}^{x\{f_0,f_1\}}$		$=\gamma_{0,0}$	
$\beta_{s_0}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_0} \ominus \alpha_{s_0}^{x\{f_0,f_1\}} = \beta_{R_{s_0}^{\text{l.o.}\{f_0,f_1\}},T_{s_0}^{\text{l.o.}\{f_0,f_1\}}}$		$=\beta_{10,10}$		
	$\{f_0,f_1\}$		= 10	
$\alpha_{s_1}^{\{f_0,f_1\}} = \alpha_{s_0}^{\{f_0,f_1\}} \oslash \beta_{s_0}^{\text{l.o.}\{f_0,f_1\}} = \gamma_{r_{s_1}^{\{f_0,f_1\}},b_{s_1}^{\{f_0,f_1\}}} \begin{vmatrix} r_{s_1} \\ b_{s_1}^{\{f_0,f_1\}} \end{vmatrix} =$		$\alpha_{s_0}^{\{f_0,f_1\}}(T_{s_0}^{\text{l.o.}\{f\}})$	$(0,f_1) = 10 \cdot 10 + 50 = 150$	
			$=\gamma_{10,150}$	

Flows f_n , $n \in \{0, 1\}$ TFA results will be equal for all flows as they share the same path of servers.

	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_0} = \alpha^{f_0} + \alpha^{f_1}$		$=\gamma_{10,50}$
s_0		$\beta_{s_0} = b_{s_0}$	$\beta_{s_0} = \alpha_{s_0}$
	$D_{s_0}^{f_n}$	$10 \cdot [t - 10]^+ = 50$	$10 \cdot [t - 10]^+ = 10 \cdot t + 50$
	$\sum s_0$	t = 15	$0 \cdot t = \qquad 150$
			$\Rightarrow D_{s_0}^{f_n} = \infty$
	$B_{s_0}^{f_n}$	$\alpha_{s_0}(T_{s_0})$	$) = 10 \cdot 10 + 50$
			= 150
	$\alpha_{s_1} = \alpha_{s_1}^{\{f_0, f_1\}}$		$=\gamma_{10,150}$
s_1		$\beta_{r} = b_{r}$	$\beta_{s_1} = \alpha_{s_1}$
	$D_{s_1}^{f_n}$	$10 \cdot [t - 10]^{+} = 150$	$\begin{vmatrix} p_{s_1} - & \alpha_{s_1} \\ 10 \cdot [t - 10]^+ = & 10 \cdot t + 150 \end{vmatrix}$
	D_{s_1}	t = 25	$0 \cdot t = 250$
			$\Rightarrow D_{s_1}^{f_n} = \infty$
	$B_{s_1}^{f_n}$	$\alpha_{s_1}(T_{s_1})$	$= 10 \cdot 10 + 150$
	D_{s_1}		= 250
D^{f_n}		$\sum_{i=0}^{1} D_{s_i}^{f_n} = 40$	$\sum_{i=0}^{1} D_{s_i}^{f_n} = \infty$ $b_{s_i}^{f_n} = 250$
B^{f_n}		$\max_{i=1}^{n}$	$b_{s_i}^{f_n} = 250$

	SFA FIFO_MUX ARB_MUX		ARB_MUX	
	$lpha_{s_0}^{xf_n}$		$=\gamma_{5,25}$	
s_0	(()	$R_{s_0}^{\mathrm{l.o.}f_n}$		= 5
	$\beta_{s_0}^{\text{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_n)}$		$\beta_{s_0} = b_{s_0}^{xf_n}$	$\beta_{s_0} = \alpha_{s_0}^{xf_n}$
		$T_{s_0}^{\mathrm{l.o.}f_n}$	$10 \cdot [t - 10]^+ = 25$	$10 \cdot [t - 10]^+ = 5 \cdot t + 25$
			$t = 12\frac{1}{2}$	t = 25
		=	$=\beta_{5,12\frac{1}{2}}$	$=\beta_{5,25}$
	$lpha_{s_1}^{xf_n}$		=	$\gamma_{5,75}$
s_1	-1 ($R_{s_1}^{\mathrm{l.o.}f_n}$		= 5
01	$\beta_{s_1}^{\text{l.o.}f_n} = \beta_{s_1} \ominus \alpha_{s_1}^{xf_n}$		$\beta_{s_1} = b_{s_1}^{xf_n}$	$\beta_{s_1} = \alpha_{s_1}^{xf_n}$
		$T_{s_1}^{\mathrm{l.o.}f_n}$	$10 \cdot [t - 10]^+ = 75$	$10 \cdot [t-10]^+ = 5 \cdot t + 75$
			$t = 17\frac{1}{2}$	t = 35
		=	$=\beta_{5,17\frac{1}{2}}$	$=\beta_{5,35}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_n}, T_{\text{e2e}}^{\text{l.o.}f}}$	n	$\bigotimes_{i=0}^{1} \beta_{s_i}^{\text{l.o.} f_n} = \beta_{5,30}$	$\bigotimes_{i=0}^{1} \beta_{s_i}^{\text{l.o.} f_n} = \beta_{5,60}$
			$\beta_{\text{e2e}}^{\text{l.o.}f_n} = b^{f_n}$	$\beta_{\text{e2e}}^{\text{l.o.}f_n} = b^{f_n}$
	D^{f_n}		$5 \cdot [t - 30]^+ = 25$	$5 \cdot [t - 60]^+ = 25$
			t = 35	t = 65
B^{f_n}		$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 30 + 25$	$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 60 + 25$	
			= 175	5 = 325

	PMOO	ARB_MUX		
s_0	$egin{array}{c} lpha_{s_0}^{ar{x}f_n} \ lpha_{s_0}^{xf_n} \ lpha_{s_1}^{ar{x}f_n} \ lpha_{s_1}^{xf_n} \ lpha_{s_1}^{xf_n} \end{array}$	$= \gamma_{5,25}$		
	$rac{lpha_{s_0}}{lpha_{s_1}^{\overline{x}f_n}}$	$= \gamma_{5,25}$ $= \gamma_{0,0}$		
s_1	$lpha_{s_1}^{xf_n}$	$=\gamma_{5,75}$		
16	$R_{\text{e2e}}^{\text{l.o.}f_n} = \bigwedge_{i \in \{0,1\}} \left(R_{s_i} - r_{s_i}^{xf_n} \right)$	$= (10-5) \wedge (10-5)$		
$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_n}, T_{\text{e2e}}^{\text{l.o.}f_n}}$	$T_{\text{e2e}}^{\text{l.o.}f_n} = \sum_{i \in \{0,1\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}f_n} + r_{s_i}^{\bar{x}f_n} \cdot T_{s_i}}{R_{e2e}^{\text{l.o.}f_n}} \right)$	$ = 5 $ $ = 10 + \frac{25 + 5 \cdot 10}{5} + 10 + \frac{0 + 5 \cdot 10}{5} $		
	, ,	= 45		
	=	$=\beta_{5,45}$		
		$eta_{\mathrm{e2e}}^{\mathrm{l.o.}f_n} = b^{f_n}$		
	D^{f_n}	$5 \cdot [t - 45]^+ = 25$		
		t = 50		
B^{f_n}		$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 45 + 25$		
	D	= 250		

$TA_2S_2SC_2F_1AC_1P_Network$

- $\bullet \ \beta_{s_0} = \beta_{R_{s_0}, T_{s_0}} = \beta_{10, 10}$
- $\bullet \ \beta_{s_1} = \beta_{R_{s_1}, T_{s_1}} = \beta_{6,6}$
- $\bullet \ \mathcal{F} = \{f_0, f_1\}$
- $\bullet \ \alpha^{f_0} = \alpha^{f_1} = \gamma_{r^{f_n}, b^{f_n}} = \gamma_{2\frac{1}{2}, 12\frac{1}{2}}, \ n \in \{0, 1\}$

$TA_2S_2SC_2F_1AC_1P_Test$

arrivalBound(s_1 , { f_0 }, { f_1 }) = $\alpha_{s_1}^{f_0}$ = arrivalBound(s_1 , { f_1 }, { f_0 }) = $\alpha_{s_1}^{f_1}$		FIFO_MUX	ARB_MUX
$lpha_{s_0}^{f_n}$	$=\gamma_{2\frac{1}{2},12\frac{1}{2}}$		
$lpha_{s_0}^{xf_n}$	$=\gamma_{0,0}$		
$\beta_{s_0}^{\text{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{xf_n} = \beta_{R_{s_0}^{\text{l.o.}f_n}},$	$T_{s_0}^{\text{l.o.}f_n}$	=	$= \beta_{10,10}$
$r_n^{f_n}$			$=2\frac{1}{2}$
$\alpha_{s_1}^{f_n} = \alpha_{s_0}^{f_n} \oslash \beta_{s_0}^{\text{l.o.}f_n} = \gamma_{r_{s_1}^{f_n}, b_{s_1}^{f_n}}$	$b_{s_1}^{f_n}$	$\alpha^{f_n}(T_{s_0}^{\text{l.o.}f_n}) =$	$2\frac{1}{2} \cdot 10 + 12\frac{1}{2} = 37\frac{1}{2}$
	=	=	$\gamma_{2\frac{1}{2},37\frac{1}{2}}$

arrivalBound $(s_1, \{f_0, f_1\}, \{\}) = \alpha_{s_1}^{\{f_0, f_1\}}$	FIFO_MUX	ARB_MUX		
$lpha_{s_0}^{\{f_0,f_1\}}$		$=\gamma_{5,25}$		
$lpha_{s_0}^{x\{f_0,f_1\}}$		$=\gamma_{0,0}$		
$\beta_{s_0}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_0} \ominus \alpha_{s_0}^{x\{f_0,f_1\}} = \beta_{R_{s_0}^{\text{l.o.}\{f_0,f_1\}}, T_{s_0}^{\text{l.o.}}}$	$\beta_{s_0}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_0} \ominus \alpha_{s_0}^{x\{f_0,f_1\}} = \beta_{R_{s_0}^{\text{l.o.}\{f_0,f_1\}}, T_{s_0}^{\text{l.o.}\{f_0,f_1\}}}$			
{{1}}			=5	
$\alpha_{s_1}^{\{f_0,f_1\}} = \alpha_{s_0}^{\{f_0,f_1\}} \oslash \beta_{s_0}^{\text{l.o.}\{f_0,f_1\}} = \gamma_{r_{s_1}^{\{f_0,f_1\}},b_{s_1}^{\{f_0,f_1\}}}$	$b_{s_1}^{\{f_0,f_1\}}$	$\alpha_{s_0}^{\{f_0,f_1\}}(T_{s_0}^{\text{l.o.}\{f\}})$	$(50, f_1) = 5 \cdot 10 + 25 = 75$	
		$=\gamma_{5,75}$		

Flows $f_n, n \in \{0, 1\}$

TFA results will be equal for all flows as they share the same path of servers.

	TFA	FIFO_MUX	ARB_MUX	
	$\alpha_{s_0} = \alpha^{f_0} + \alpha^{f_1}$	$=\gamma_{5,25}$		
s_0		$\beta_{s_0} = b_{s_0}$		
	$D_{s_0}^{f_n}$	$10 \cdot [t-10]^+ = 25$	$10 \cdot [t - 10]^+ = 5 \cdot t + 25$	
		$t = 12\frac{1}{2}$		
	$B_{s_0}^{f_n}$	$\alpha_{s_0}(T_{s_0})$	$= 5 \cdot 10 + 25$	
	- 0		= 75	
	$\alpha_{s_1} = \alpha_{s_1}^{\{f_0, f_1\}}$	=	= $\gamma_{5,75}$	
s_1		$\beta_{s_1} = b_{s_1}$	$\beta_{s_1} = \alpha_{s_1}$	
	$D_{s_1}^{f_n}$	$6 \cdot [t-6]^+ = 75$	$6 \cdot [t-6]^+ = 5 \cdot t + 75$	
		$t = 18\frac{1}{2}$	t = 111	
	$B_{s_1}^{f_n}$	$\alpha_{s_1}(\tilde{T}_{s_1}) = 5 \cdot 6 + 75$		
	D_{s_1}	= 105		
	$D^{f_n} \qquad \sum_{i=0}^{1} D^{f_n}_{s_i} = 31 \qquad \sum_{i=0}^{1} D^{f_n}_{s_i} = 136$ $B^{f_n} \qquad \max_{i=\{0,1\}} b^{f_n}_{s_i} = 105$		$\sum_{i=0}^{1} D_{s_i}^{f_n} = 136$	
$B^{f_n} \qquad \max_{i=\{0,1\}} b_{s_i}^{f_n} = 105$		$b_{s_i}^{f_n} = 105$		

	SFA		FIFO_MUX	ARB_MUX
	$\alpha_{s_0}^{xf_n}$		$= \gamma_{2\frac{1}{2}}$ $= 7$	$\frac{1}{2}$, $12\frac{1}{2}$
s_0		$R_{s_0}^{\mathrm{l.o.}f_n}$		$7\frac{1}{2}$
	$\beta_{s_0}^{\text{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{xf_n}$		$\beta_{s_0} = b_{s_0}^{xf_n}$	$\beta_{s_0} = \alpha_{s_0}^{xf_n} \mid$
		$T_{s_0}^{\mathrm{l.o.}f_n}$	$10 \cdot [t - 10]^+ = 12\frac{1}{2}$	$10 \cdot [t - 10]^{+} = 2\frac{1}{2} \cdot t + 12\frac{1}{2}$
			$t = 11\frac{1}{4}$	t = 15
		=	$=\beta_{7\frac{1}{2},11\frac{1}{4}}$	$=\beta_{7\frac{1}{2},15}$
	$\alpha_{s_1}^{xf_n}$		$= \gamma_{2\frac{1}{2}}$ $= 3$	$\frac{1}{2}$, $37\frac{1}{2}$
s_1		$R_{s_1}^{\mathrm{l.o.}f_n}$	1	$3\frac{1}{2}$
	$\beta_{s_1}^{\text{l.o.}f_n} = \beta_{s_1} \ominus \alpha_{s_1}^{xf_n}$		$\beta_{s_1} = b_{s_1}^{xf_n}$	$\beta_{s_1} = \alpha_{s_1}^{xf_n}$
		$T_{s_1}^{\mathrm{l.o.}f_n}$	$6 \cdot [t - 6]^+ = 37\frac{1}{2}$	$6 \cdot [t-6]^+ = 2\frac{1}{2} \cdot t + 37\frac{1}{2}$
			$t = 12\frac{1}{4}$	t = 21
		=	$=\beta_{3\frac{1}{2},12\frac{1}{4}}$	$=\beta_{3\frac{1}{2},21}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{R_{e2e}^{\text{l.o.}f_n}, T_{e2e}^{\text{l.o.}}}$	f_n	$\bigotimes_{i=0}^{1} \beta_{s_{i}}^{\text{l.o.}f_{n}} = \beta_{3\frac{1}{2},23\frac{1}{2}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_{n}} = b^{f_{n}}$	$\bigotimes_{i=0}^{1} \beta_{s_{i}}^{\text{l.o.}f_{n}} = \beta_{3\frac{1}{2},36}$ $\beta_{\text{e2e}}^{\text{l.o.}f_{n}} = b^{j_{i}}$
			$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_n} = b^{f_n}$	$eta_{\mathrm{e2e}}^{\mathrm{l.o.}f_n} = b^{j_i}$
D^{f_n}		$3\frac{1}{2} \cdot [t - 23\frac{1}{2}]^{+} = 12\frac{1}{2}$	$3\frac{1}{2} \cdot [t - 36]^+ = 12\frac{1}{2}$	
			$t = 27\frac{1}{14}$	$t = 39\frac{4}{7}$
B^{f_n}		$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 2\frac{1}{2} \cdot 23\frac{1}{2} + 12\frac{1}{2}$	$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 2\frac{1}{2} \cdot 36 + 12\frac{1}{2}$	
			$= 71\frac{1}{4}$	$= 102\frac{1}{2}$

	PMOO	ARB_MUX	
s_0	$lpha_{s_0}^{ar{x}f_n}$	$= \gamma_{2\frac{1}{2},12\frac{1}{2}}$	
	$lpha_{s_0}^{s_f}$	$=\gamma_{2\frac{1}{2},12\frac{1}{2}}$	
s_1	$rac{lpha_{s_1}^{ar{x}f_n}}{lpha_{s_1}^{xf_n}}$	$=\gamma_{0,0}$	
	$\alpha_{s_1}^{\omega_{Jn}}$	$=\gamma_{2\frac{1}{2},37\frac{1}{2}}$	
	$R_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_{n}} = igwedge_{i \in \{0,1\}} \left(R_{s_{i}} - r_{s_{i}}^{xf_{n}} ight)$	$= (10 - 2\frac{1}{2}) \wedge (6 - 2\frac{1}{2})$	
$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_n}, T_{\text{e2e}}^{\text{l.o.}f_n}}$		$=$ $3\frac{1}{2}$	
	$T_{\text{e2e}}^{\text{l.o.}f_n} = \sum_{i \in \{0,1\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}f_n} + r_{s_i}^{xf_n} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_n}} \right)$	$= 6 + \frac{12\frac{1}{2} + 2\frac{1}{2} \cdot 10}{3\frac{1}{2}} + 10 + \frac{0 + 2\frac{1}{2} \cdot 10}{3\frac{1}{2}}$	
	(= 31	
	=	$=\beta_{3\frac{1}{2},31}$	
		$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_n} = b^{f_n}$	
D^{f_n}		$3\frac{1}{2} \cdot [t - 31]^+ = 12\frac{1}{2}$	
		$t = 34\frac{4}{7}$	
	B^{f_n}	$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 2\frac{1}{2} \cdot 31 + 12\frac{1}{2}$	
		= 90	

$TA_2S_1SC_4F_1AC_1P_Network$

- $\bullet \ \beta_{s_0} = \beta_{s_1} = \beta_{R_{s_i},T_{s_i}} = \beta_{10,10}, \, i \in \{0,1\}$
- $\mathcal{F} = \{f_0, f_1, f_2, f_3\}$
- $\bullet \ \alpha^{f_n} = \gamma_{r^{f_n}, b^{f_n}} = \gamma_{2,10}, \, n \in left\{0, 1, 2, 3$

$TA_2S_1SC_4F_1AC_1P_Test$

arrivalBound $(s_1, xf_n, \{f_n\}) = \alpha_{s_1}^{xf_n},$	FIFO_MUX	ARB_MUX	
$lpha_{s_0}^{xf_n}$	=	$\gamma_{6,30}$	
$lpha_{s_0}^{xxf_n}$	=	$=\gamma_{0,0}$	
$\beta_{s_0}^{\text{l.o.}xf_n} = \beta_{s_0} \ominus \alpha_{s_0}^{xxf_n} = \beta_{R_{s_0}^{\text{l.o.}x}}$	=	$\beta_{10,10}$	
	$r_{s_1}^{xf_n}$		=6
$\alpha_{s_1}^{xf_n} = \alpha_{s_0}^{xf_n} \oslash \beta_{s_0}^{\text{l.o.}xf_n} = \gamma_{r_{s_1}^{xf_n}, b_{s_1}^{xf_n}}$	$b_{s_1}^{xf_n}$	$\alpha^{xf_n}(T_{s_0}^{\text{l.o.}xf_n}) = 6 \cdot 10 + 30 = 90$	
	=	=	$\gamma_{6,90}$

arrivalBound $(s_1, \{f_0, f_1, f_2, f_3\}, \{\}) = \alpha_{s_1}^{\{f_0, f_1, f_2, f_3\}}$	FIFO_MUX	ARB_MUX	
$lpha_{s_0}^{\{f_0,f_1,f_2,f_3\}}$	$=\gamma_{8,40}$		
$lpha_{s_0}^{x\{f_0,f_1,f_2,f_3\}}$	$=\gamma_{0,0}$		
$\beta_{s_0}^{\text{l.o.}\{f_0,f_1,f_2,f_3\}} = \beta_{s_0} \ominus \alpha_{s_0}^{x\{f_0,f_1,f_2,f_3\}} = \beta_{R_{s_0}^{\text{l.o.}\{f_0,f_1,f_2,f_3\}},T_{s_0}^{\text{l.o.}\{f_0,f_1,f_2,f_3\}}}$		$=\beta_{10,10}$	
$\{f_0,f_1,f_2,f_3\}$			= 8
$\alpha_{s_1}^{\{f_0,f_1,f_2,f_3\}} = \alpha_{s_0}^{\{f_0,f_1,f_2,f_3\}} \oslash \beta_{s_0}^{\text{l.o.}\{f_0,f_1,f_2,f_3\}} = \gamma_{r_{s_1}^{\{f_0,f_1,f_2,f_3\}},b_{s_1}^{\{f_0,f_1,f_2,f_3\}}}$	$b_{s_1}^{\{f_0,f_1,f_2,f_3\}}$	$\alpha_{s_0}^{\{f_0,f_1,f_2,f_3\}}(T)$	$\frac{1.0.\{f_0, f_1, f_2, f_3\}}{s_0}$ = $8 \cdot 10 + 40 = 120$
	=		$=\gamma_{8,120}$

Flows $f_n, n \in \{0, 1, 2, 3\}$

TFA results will be equal for all flows as they share the same path of servers.

	TFA	FIFO_MUX	ARB_MUX	
	$\alpha_{s_0} = \sum_{n=0}^{3} \alpha^{f_n}$	$=\gamma_{8,40}$		
s_0		$\beta_{s_0} = b_{s_0}$	$\beta_{s_0} = \alpha_{s_0}$	
	$D_{s_0}^{f_n}$	$10 \cdot [t - 10]^+ = 40$	$10 \cdot [t - 10]^+ = 8 \cdot t + 40$	
		t = 14	t = 70	
	$B_{s_0}^{f_n}$	$\alpha_{s_0}(T_{s_0})$	$= 8 \cdot 10 + 40$	
			= 120	
	$\alpha_{s_1} = \alpha_{s_1}^{\{f_0, f_1, f_2, f_3\}}$		$= \gamma_{8,120}$	
s_1		$\beta_{s_1} = b_{s_1}$	$\beta_{s_1} = \alpha_{s_1}$	
	$D_{s_1}^{f_n}$	$10 \cdot [t - 10]^+ = 120$	$10 \cdot [t - 10]^+ = 8 \cdot t + 120$	
		t = 22	t = 110	
	$B_{s_1}^{f_n}$	$\alpha_{s_1}(T_{s_1}) = 8 \cdot 10 + 120$		
	$D_{s_1}^{r_n}$	= 200		
	D^{f_n}	$\sum_{i=0}^{1} D_{s_i}^{f_n} = 36$	$\sum_{i=0}^{1} D_{s_i}^{f_n} = 180$	
	$\begin{array}{c cccc} D^{f_n} & \sum_{i=0}^{1} D^{f_n}_{s_i} = 36 & \sum_{i=0}^{1} D^{f_n}_{s_i} = 180 \\ B^{f_n} & \max_{i=\{0,1\}} b^{f_n}_{s_i} = 200 \end{array}$			

	SFA		FIFO_MUX ARB_MUX		
	$\alpha_{s_0}^{xf_n} = \sum_{k=0}^2 \alpha^{f_k}$		$= \gamma_{6,30}$		
s_0		$R_{s_0}^{\mathrm{l.o.}f_n}$	=	: 4	
30	$\beta_{s_0}^{\mathrm{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{xf_n}$		$\beta_{s_0} = b_{s_0}^{xf_n}$	$\beta_{s_0} = \alpha_{s_0}^{xf_n}$	
		$T_{s_0}^{\mathrm{l.o.}f_n}$	$10 \cdot [t - 10]^+ = 30$	$10 \cdot [t - 10]^+ = 6 \cdot t + 30$	
			t = 13	$t = 32\frac{1}{2}$	
		=	$=\beta_{4,13}$	$=\beta_{4,32\frac{1}{2}}$	
	$\alpha_{s_1}^{xf_n} = \alpha_{s_1}^{xf_n}$			ý6,90	
s_1		$R_{s_1}^{\mathrm{l.o.}f_n}$	=	: 4	
	$\beta_{s_1}^{\text{l.o.}f_n} = \beta_{s_1} \ominus \alpha_{s_1}^{xf_n}$		$\beta_{s_1} = b_{s_1}^{xf_n}$	$\beta_{s_1} = \alpha_{s_1}^{xf_n}$	
		$T_{s_1}^{\mathrm{l.o.}f_n}$	$10 \cdot [t - 10]^+ = 90$	$10 \cdot [t - 10]^+ = 4 \cdot t + 90$	
			t = 19	$t = 47\frac{1}{2}$	
		=	$= \beta_{4,19}$	$= \beta_{4,47\frac{1}{2}}$	
	$eta_{\mathrm{e2e}}^{\mathrm{l.o.}f_n}$		$\bigotimes_{i=0}^{1} \beta_{s_i}^{\text{l.o.} f_n} = \beta_{4,32}$ $\beta_{e^{2e}}^{\text{l.o.} f_n} = b^{f_n}$	$\bigotimes_{i=0}^{1} \beta_{s_i}^{\text{l.o.}f_n} = \beta_{4,80}$ $\beta_{\rho_{s_0}}^{\text{l.o.}f_n} = b^{f_n}$	
			$\beta_{\text{e2e}}^{\text{l.o.}f_n} = b^{f_n}$	$\beta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_n} = b^{f_n}$	
D^{f_n}		$4 \cdot [t - 32]^+ = 10$	$4 \cdot [t - 80]^+ = 10$		
		$t = 34\frac{1}{2}$	$t = 82\frac{1}{2}$		
	B^{f_n}		$\alpha^{f_n}(T_{e2e}^{\text{l.o.}f_n}) = 2 \cdot 32 + 10$	$\alpha^{f_n}(T_{e2e}^{\text{l.o.}f_n}) = 2 \cdot 80 + 10$	
	D *		= 74	= 170	

	PMOO	ARB_MUX		
s_0	$egin{array}{c} lpha_{s_0}^{\overline{x}f_n} & & & & & & \\ lpha_{s_0}^{xf_n} & & & & & & \\ lpha_{s_1}^{xf_n} & & & & & & \\ lpha_{s_1}^{xf_n} & & & & & & \\ lpha_{s_1}^{xf_n} & & & & & & \\ \end{array}$	$= \gamma_{6,30}$		
50	$lpha_{\mathbf{s}_0}^{xf_n}$	$= \gamma_{6,30}$		
s_1	$\alpha_{s_1}^{xf_n}$	$=\gamma_{0,0}$		
<u> </u>	$\alpha_{s_1}^{xJ_n}$	$=\gamma_{6,90}$		
	$R_{\text{e2e}}^{\text{l.o.}f_n} = \bigwedge_{i \in \{0,1\}} \left(R_{s_i} - r_{s_i}^{xf_n} \right)$	$= (10-6) \wedge (10-6)$		
$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_n}, T_{\text{e2e}}^{\text{l.o.}f_n}}$		= 4		
$ \rho_{\text{e2e}} = \rho_{R_{\text{e2e}}^{\text{I.o.}J_n}, T_{\text{e2e}}^{\text{I.o.}J_n}} $	$T_{\text{e2e}}^{\text{l.o.}f_n} = \sum_{i \in \{0,1\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}f_n} + r_{s_i}^{\bar{x}f_n} \cdot T_{s_i}}{R_{e2e}^{\text{l.o.}f_n}} \right)$	$= 10 + \frac{30 + 6 \cdot 10}{4} + 10 + \frac{0 + 6 \cdot 10}{4}$		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$=$ $37\frac{1}{2}$		
	=	$= \beta_{3\frac{1}{2},31}$ $\beta_{e^{2}e}^{\text{l.o.}f_n} = b^{f_n}$		
		. 626		
	D^{f_n}	$4 \cdot [t - 57\frac{1}{2}]^+ = 10$		
		t = 60		
	B^{f_n}	$\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 2 \cdot 57\frac{1}{2} + 10$		
		= 125		

$TA_2S_1SC_2F_1AC_2P_Network$

- $\bullet \ \beta_{s_0} = \beta_{s_1} = \beta_{R_{s_i}, T_{s_i}} = \beta_{20, 20}, \ i \in \{0, 1\}$
- $\bullet \ \mathcal{F} = \{f_0, f_1\}$
- $\alpha^{f_0} = \alpha^{f_1} = \gamma_{rf_n, bf_n} = \gamma_{5,25}, n \in \{0, 1\}$

 $TA_2S_1SC_2F_1AC_2P_Test$

arrivalBound $(s_1, \{f_0\}, \mathcal{G}) \ \mathcal{G} \in \mathcal{P}(\mathcal{F}) = \alpha_{s_1}^{f_0}$		FIFO_MUX	ARB_MUX
$lpha_{s_0}^{f_0}$	$=\gamma_{5,25}$		
$lpha_{s_0}^{x(f_0)}$	=	$\gamma_{0,0}$	
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)} = \beta_{R_0}$	$=\beta_{10,10}$		
$ r_{0}^{f_{0}} $		=	= 5
$\alpha_{s_1}^{f_0} = \alpha_{s_0}^{f_0} \oslash \beta_{s_0}^{\text{l.o.}f_0} = \gamma_{r_{s_1}^{f_0}, b_{s_1}^{f_0}}$	$b_{s_1}^{f_0}$	$\alpha^{f_0}(T_{s_0}^{\text{l.o.}f_0}) = 5 \cdot 10 + 25 = 125$	
	=	= '	$\gamma_{5,125}$

Flow f_0

	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_0} = \alpha^{f_0}$		$=\gamma_{5,25}$
s_0		$eta_{s_0} = b^{f_0}$	FIFO per micro flow $\beta_{s_0} = b^{f_0}$
	$D_{s_0}^{f_0}$	$20 \cdot [t-20]^+ = 25$	$20 \cdot [t - 20]^+ = 25$
		$t = 21\frac{1}{4}$	$t = 21\frac{1}{4}$
	$B_{s_0}^{f_0}$	$\alpha_{s_0}(T_{s_0})$	$) = 5 \cdot 20 + 25$
			= 125
	f_{0}		
	$\alpha_{s_1} = \alpha_{s_1}^{f_0}$		$+\gamma_{5,125} = \gamma_{10,150}$
s_1	$\alpha_{s_1} = \alpha_{s_1}^{r_0}$	$\beta_{s_1} = b_{s_1}$	$\beta_{s_1} = \alpha_{s_1}$
s_1	$\alpha_{s_1} = \alpha_{s_1}^{f_0}$ $D_{s_1}^{f_0}$	$\beta_{s_1} = b_{s_1} 20 \cdot [t - 20]^+ = 150$	$\beta_{s_1} = \alpha_{s_1} 20 \cdot [t - 20]^+ = 10 \cdot t + 150$
s_1		$\beta_{s_1} = b_{s_1} 20 \cdot [t - 20]^+ = 150 t = 27\frac{1}{2}$	$\beta_{s_1} = \alpha_{s_1}$ $20 \cdot [t - 20]^+ = 10 \cdot t + 150$ $t = 55$
s_1	$D_{s_1}^{f_0}$	$\beta_{s_1} = b_{s_1} 20 \cdot [t - 20]^+ = 150 t = 27\frac{1}{2}$	$\beta_{s_1} = \alpha_{s_1} 20 \cdot [t - 20]^+ = 10 \cdot t + 150$
s_1		$\beta_{s_1} = b_{s_1} 20 \cdot [t - 20]^+ = 150 t = 27\frac{1}{2}$	$\beta_{s_1} = \alpha_{s_1}$ $20 \cdot [t - 20]^+ = 10 \cdot t + 150$ $t = 55$
s ₁	$D_{s_1}^{f_0}$	$\beta_{s_1} = b_{s_1}$ $20 \cdot [t - 20]^+ = 150$ $t = 27\frac{1}{2}$ $\alpha_{s_1}(T_{s_1})$ $\sum_{i=0}^{1} D_{s_i}^{f_0} = 48\frac{3}{4}$	$\beta_{s_1} = \alpha_{s_1}$ $20 \cdot [t - 20]^+ = 10 \cdot t + 150$ $t = 55$ $= 10 \cdot 20 + 150$

	SFA		FIFO_MUX	ARB_MUX
0.	$lpha_{s_0}^{x(f_0)}$		= 1	γ0,0
s_0	$\beta_{s_0}^{\text{i.o.}j_0} = \beta_{s_0}$		$=\beta$	20,20
	$\alpha_{s_1}^{x(f_0)} = \alpha_{s_1}^{f_1}$		$=\gamma$	Ý5,25
6.		$R_{s_1}^{\mathrm{l.o.}f_0}$		15
s_1	$\beta_{s_1}^{\text{l.o.}f_0} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_0)}$		$\beta_{s_1} = b_{s_1}^{x(f_0)}$	$\beta_{s_1} = \alpha_{s_1}^{x(f_0)}$
		$T_{s_1}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 25$	$20 \cdot [t - 20]^+ = 5 \cdot t + 25$
		01	$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$
		=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f}}$	0	$\bigotimes_{i=0}^{1} \beta_{s_i}^{\text{l.o.} f_0} = \beta_{15,41\frac{1}{4}}$	$\bigotimes_{i=0}^{1} \beta_{s_i}^{\text{l.o.} f_0} = \beta_{15,48\frac{1}{3}}$
			$\beta_{\text{e2e}}^{\text{l.o.}f_0} = b^{f_0}$	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = b^{f_0}$
	D^{f_0}		$15 \cdot [t - 41\frac{1}{4}]^+ = 25$	$15 \cdot [t - 48\frac{1}{3}]^+ = 25$
			$t = 42\frac{11}{12}$	t = 50
	B^{f_0}		$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 41\frac{1}{4} + 25$	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 48\frac{1}{3} + 25$
	Dvv		$=$ $231\frac{1}{4}$	$=$ $266\frac{2}{3}$

	PMOO	ARB_MUX
e.	$lpha_{s_0}^{ar{x}(f_0)}$	$=\gamma_{0,0}$
s_0	$lpha_{s_0}^{x(j_0)}$	$=\gamma_{0,0}$
s_1	$lpha_{s_1}^{ar{x}(f_0)}$	$=\gamma_{5,25}$
01	$lpha_{s_1}^{x(f_0)}$	$=\gamma_{5,25}$
	$R_{\text{e2e}}^{\text{l.o.}f_0} = \bigwedge_{i \in \{0,1\}} \left(R_{s_i} - r_{s_i}^{x(f_0)} \right)$	$= (20 - 5) \wedge (20 - 5)$
$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$		= 15
R _{e2e} , I _{e2e}	$T_{\text{e2e}}^{\text{l.o.}f_0} = \sum_{i \in \{0,1\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_0)} + r_{s_i}^{x(f_0)} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_0}} \right)$	$= 20 + \frac{0 + 0 \cdot 20}{15} + 20 + \frac{25 + 5 \cdot 20}{15}$
	$ \begin{array}{c c} \mathbf{I}_{\text{e2e}} & - \angle i \in \{0,1\} & \mathbf{I}_{s_i} & \mathbf{R}_{\text{e2e}}^{\text{I.o.},f_0} & \mathbf{I}_{\text{e2e}} & \mathbf{I}_{e$	$=$ $48\frac{1}{3}$
	=	$=\beta_{15,48\frac{1}{3}}$
		$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_0} = b^{f_0}$
	D^{f_0}	$15 \cdot [t - 48\frac{1}{3}]^+ = 25$
		t = 50
	B^{f_0}	$t = 50$ $\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 48\frac{1}{3} + 25$
	<i>υ</i> ··	$=$ $266\frac{2}{3}$

Flow f_1

	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_1} = \alpha_{s_1}^{f_1} + \alpha_{s_1}^{f_0}$	$= \gamma_{5,25} +$	$\gamma_{5,125} = \gamma_{10,150}$
s_1		$\beta_{s_1} = b_{s_1}$	$\beta_{s_1} = \alpha_{s_1}$
	$D_{s_1}^{f_1}$	$20 \cdot [t - 20]^+ = 150$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 150$
		$t = 27\frac{1}{2}$	t = 55
	$B_{s_1}^{f_1}$	$\alpha_{s_1}(T_{s_1})$	$= 10 \cdot 20 + 150$
	D_{s_1}		= 350
	D^{f_1}	$\sum_{i=0}^{1} D_{s_i}^{f_1} = 27\frac{1}{2}$	$\sum_{i=0}^{1} D_{s_i}^{f_1} = 55$
	B^{f_1}	$\max_{i=1}^{n}$	$\{0,1\}$ $b_{s_i}^{f_1} = 350$

	SFA		FIFO_MUX	ARB_MUX
	$\alpha_{s_1}^{x(f_1)} = \alpha_{s_1}^{f_0}$		$=\gamma$	5,125
s_1	$g(f_{\epsilon})$	$R_{s_1}^{\mathrm{l.o.}f_1}$	=	15
	$\beta_{s_1}^{\text{l.o.}f_1} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_1)} = \beta_{R_{s_1}^{\text{l.o.}f_1}, T_{s_1}^{\text{l.o.}f_1}}$		$\beta_{s_1} = b_{s_1}^{x(f_1)}$	$\beta_{s_1} = \alpha_{s_1}^{x(f_1)}$
		$T_{s_1}^{\mathrm{l.o.}f_1}$	$20 \cdot [t - 20]^+ = 125$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 125$
			$t = 26\frac{1}{4}$	t = 35
		=	$=\beta_{15,26\frac{1}{4}}$	$=\beta_{15,35}$
	$\beta_{\mathrm{e2e}}^{\mathrm{l.o.}f_{1}} = \beta_{R_{\mathrm{e2e}}^{\mathrm{l.o.}f_{1}}, T_{\mathrm{e2e}}^{\mathrm{l.o.}f_{1}}}$		$\bigotimes_{i=0}^{1} \beta_{s_{i}}^{\text{l.o.}f_{1}} = \beta_{15,26\frac{1}{4}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_{1}} = b^{f_{1}}$	$\bigotimes_{i=0}^{1} \beta_{s_i}^{\text{l.o.} f_1} = \beta_{15,35}$
				$\beta_{\text{e2e}}^{\text{l.o.}f_1} = b^{f_1}$
	D^{f_1}		$15 \cdot [t - 26\frac{1}{4}]^{+} = 25$	$15 \cdot [t - 35]^+ = 25$
			$t = 27\frac{11}{12}$	$t = 36\frac{2}{3}$
	B^{f_1}		$\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 26\frac{1}{4} + 25$	$\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 35 + 25$
	D		$=$ $156\frac{1}{4}$	= 200

	PMOO	ARB_MUX
<i>S</i> ₁	$lpha_{s_1}^{ar{x}(f_1)}$	$=\gamma_{5,125}$
91	$\frac{\alpha_{s_1}}{\alpha_{s_1}^{x(f_1)}}$	$=\gamma_{5,125}$
	$R_{e2e}^{\text{l.o.}f_1} = R_{s_1} - r_{s_1}^{x(f_1)}$	= 20-5
$\beta_{\text{e2e}}^{\text{l.o.}f_1} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_1}, T_{\text{e2e}}^{\text{l.o.}f_1}}$	$R_{\mathrm{e}2\mathrm{e}} = R_{s_1} + R_{s_1}$	= 15
$R_{\rm e2e}$, $I_{\rm e2e}$	$T_{\text{e2e}}^{\text{l.o.}f_1} = T_{s_1} + \frac{b_{s_1}^{\bar{x}(f_1)} + r_{s_1}^{x(f_1)} \cdot T_{s_1}}{R_{s_0}^{\text{l.o.}f_0}}$	$= 20 + \frac{125 + 5 \cdot 20}{15}$
	$R_{\rm e2e}^{1.0.10}$	= 35
	=	$=\beta_{15,35}$
		$\beta_{\text{e2e}}^{\text{l.o.}f_1} = b^{f_1}$
	D^{f_1}	$15 \cdot [t - 35]^+ = 25$
		$t = 36\frac{2}{3}$
	B^{f_1}	$\alpha^{f_1}(T_{e2e}^{\text{l.o.}f_1}) = 5 \cdot 35 + 25$
	D	= 200

$TA_3S_1SC_3F_1AC_3P_Network$

- $\bullet \ \beta_{s_0} = \beta_{s_1} = \beta_{s_2} = \beta_{R_{s_i},T_{s_i}} = \beta_{20,20}, \, i \in \{0,1,2\}$
- $\mathcal{F} = \{f_0, f_1, f_2\}$
- $\alpha^{f_0} = \alpha^{f_1} = \alpha^{f_2} = \gamma_{r^{f_n}, b^{f_n}} = \gamma_{5,25}, n \in \{0, 1, 2\}$

$TA_3S_1SC_3F_1AC_3P_Test$

arrivalBound $(s_1, \{f_0\}, \{f_2\}) =$ = arrivalBound $(s_1, \{f_2\}, \{f_0\})$	$= \alpha_{s_1}^{f_0} $ $= \alpha_{s_1}^{f_2}$	FIFO_MUX	ARB_MUX
$\alpha_{s_0}^{f_n}, n \in \{0, 2\}$		=	$\gamma_{5,25}$
$\alpha_{s_0}^{xf_n}$		=	$\gamma_{0,0}$
$\beta_{s_0}^{\text{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{x\bar{f}_n} = \beta_{R_{s_0}^{\text{l.o.}f_n}},$	$T_{s_0}^{\text{l.o.}f_n}$	= .	$\beta_{20,20}$
	$r_{s_1}^{f_n}$:	= 5
$\alpha_{s_1}^{f_n} = \alpha_{s_0}^{f_n} \oslash \beta_{s_0}^{\text{l.o.}f_n} = \gamma_{r_{s_1}^{f_n}, b_{s_1}^{f_n}}$	$b_{s_1}^{f_n}$	$\alpha_{s_0}^{f_n}(T_{s_0}^{\text{l.o.}f_n}) =$	$5 \cdot 20 + 25 = 125$
	=	=	$\gamma_{5,125}$

arrivalBound $(s_1, \{f_0\}, \{f_0\}) = c$ = arrivalBound $(s_1, \{f_2\}, \{f_2\}) = c$		FIFO_MUX	ARB_MUX
$\frac{\alpha_{s_0}^{f_n}, n \in \{0, 2\}}{\alpha_{s_0}^{xf_n}}$		=	$=\gamma_{5,25}$
$lpha_{s_0}^{xf_n}$		=	$=\gamma_{5,25}$
	$R_{s_0}^{\mathrm{l.o.}f_n}$		=15
$\beta_{s_0}^{\text{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{xf_n} = \beta_{R_{s_0}^{\text{l.o.}f_n}, T_{s_0}^{\text{l.o.}f_n}}$		$\beta_{s_0} = b_{s_0}^{f_n}$	$\beta_{s_0} = \alpha_{s_0}^{f_n}$
	$T_{s}^{\text{l.o.}f_n}$	$20 \cdot [t - 20]^+ = 25$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 25$
	30	$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$
	=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$
	$r_{s_1}^{f_n}$	= 5	
$lpha_{s_1}^{f_n} = lpha_{s_0}^{f_n} \oslash eta_{s_0}^{\mathrm{l.o.}f_n} = \gamma_{r_{s_1}^{f_n}, b_{s_1}^{f_n}}$	$\begin{array}{c c} r_{s_1}^{f_n} \\ \hline b_{s_1}^{f_n} \end{array}$	$\alpha_{s_0}^{f_n}(T_{s_0}^{\text{l.o.}f_n}) = 131\frac{1}{4}$	$\alpha_{s_0}^{f_n}(T_{s_0}^{\text{l.o.}f_n}) = 166\frac{2}{3}$
	=	$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$

arrivalBound $(s_1, \{f_0, f_2\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\{f_1\}) = \alpha_s^s$	$\{f_0, f_2\}$	FIFO_MUX	ARB_MUX
$lpha_{s_0}^{\{f_0,f_2\}}$		$= \gamma_{10,50}$	
$lpha_{s_0}^{x\{f_0,f_2\}}$		$=\gamma_{0,0}$	
$\beta_{s_0}^{\text{l.o.}\{f_0,f_2\}} = \beta_{s_0} \ominus \alpha_{s_0}^{x\{f_0,f_2\}} = \beta_{R_{s_0}^{\text{l.o.}\{f_0,f_2\}}, T_{s_0}^{\text{l.o.}\{f_0,f_2\}}}$		$= \beta_{20,20}$	
	$\{f_0, f_2\}$		= 10
$\alpha_{s_1}^{\{f_0, f_2\}} = \alpha_{s_0}^{\{f_0, f_2\}} \oslash \beta_{s_0}^{\text{l.o.}\{f_0, f_2\}} = \gamma_{r_{s_1}^{\{f_0, f_2\}}, b_{s_1}^{\{f_0, f_2\}}}$	$b_{s_1}^{\{f_0,f_2\}}$	$\alpha_{s_0}^{\{f_0,f_2\}}(T_{s_0}^{\text{l.o.}\{j\}})$	f_{0},f_{2}) = $10 \cdot 20 + 50 = 250$
	=		$=\gamma_{10,250}$

PBOO-AB:

arrivalBound $(s_2, \{f_2\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\{f_1\}) = \alpha_s^{f_2}$	2 2	FIFO_MUX	ARB_MUX
$lpha_{s_1}^{f_2}$		$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$
$lpha_{s_1}^{x(f_2)}$		$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$
	$R_{s_1}^{\mathrm{l.o.}f_2}$	= 1	5
$\beta_{s_1}^{\text{l.o.}f_2} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_2)} = \beta_{s_1} \ominus (\alpha_{s_0}^{f_0})^* = \beta_{R_{s_1}^{\text{l.o.}f_2}, T_{s_1}^{\text{l.o.}f_2}}$		$eta_{s_1} = b_{s_0 s_1}^{f_0}$	$\beta_{s_1} = \alpha_{s_0 s_1}^{f_0}$
	$T_{s_1}^{\mathrm{l.o.}f_2}$	$20 \cdot [t - 20]^+ = 131\frac{1}{4}$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 166\frac{2}{3}$
		$t = 26\frac{9}{16}$	$t = 37\frac{7}{9}$
	=	$=\beta_{15,26\frac{9}{16}}$	$=\beta_{15,37\frac{7}{9}}$
	$r_{s_2}^{f_2}$	=	
$lpha_{s_2}^{f_2} = lpha_{s_1}^{f_2} \oslash eta_{s_1}^{ ext{l.o.}f_2} = \gamma_{r_{s_2}^{f_2}, b_{s_2}^{f_2}}$	$b_{s_2}^{f_2}$	$\alpha_{s_1}^{f_2}(T_{s_1}^{\text{l.o.}f_2}) = 5 \cdot 26\frac{9}{16} + 131\frac{1}{4} = 264\frac{1}{16}$	$\alpha_{s_1}^{f_2}(T_{s_1}^{\text{l.o.}f_2}) = 5 \cdot 37\frac{7}{9} + 166\frac{2}{3} = 355\frac{5}{9}$
	=	$=\gamma_{5,264\frac{1}{16}}$	$=\gamma_{5,355\frac{5}{9}}$

PMOO-AB, ARB MUX:

$$\alpha_{s_2}^{f_2} = \alpha^{f_2} \oslash \beta_{\langle s_0, s_1 \rangle}^{\mathbf{l.o.} f_2}$$

Note, that we use a simplified notation here due to the use of rate-latencies and token-buckets as well as the lack of demultiplexing on the analyzed path.

$$\beta_{\langle s_0, s_1 \rangle}^{\mathbf{l.o.} f_2} = (\beta_{s_0} \otimes \beta_{s_1}) \ominus \alpha^{f_0}$$

$$= (\beta_{20,20} \otimes \beta_{20,20}) \ominus \gamma_{5,25}$$

$$= \beta_{20,40} \ominus \gamma_{5,25}$$

$$= \beta_{15,55}$$

$$\alpha_{s_2}^{f_2} = \alpha^{f_2} \oslash \beta_{\langle s_0, s_1 \rangle}^{\mathbf{l.o.}f_2}$$

$$= \gamma_{5,25} \oslash \beta_{15,55}$$

$$= \gamma_{5,300}$$

arrivalBound $(s_2, \{f_2\}, \mathcal{G}), \mathcal{G} \in \mathcal{P}(\{f_1\}) = \alpha_{s_2}^{f_2}$	2	FIFO_MUX	ARB_MUX
$lpha_{s_1}^{f_2}$		$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$
$\alpha_{s_1}^{x(f_2)}$		$=\gamma_{5,131\frac{1}{4}}$	$=\gamma_{5,166\frac{2}{3}}$
	$R_{s_1}^{\mathrm{l.o.}f_2}$	= 1	15
$\beta_{s_1}^{\text{l.o.}f_2} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_2)} = \beta_{s_1} \ominus (\alpha_{s_0}^{f_0})^* = \beta_{R_{s_1}^{\text{l.o.}f_2}, T_{s_1}^{\text{l.o.}f_2}}$		$\beta_{s_1} = b_{s_0 s_1}^{f_0}$	$\beta_{s_1} = \alpha_{s_0 s_1}^{f_0}$
	$T_{s_1}^{\mathrm{l.o.}f_2}$	$20 \cdot [t - 20]^+ = 131\frac{1}{4}$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 166 \frac{2}{3}$
		$t = 26\frac{9}{16}$	$t = 37\frac{7}{9}$
	=	$=\beta_{15,26\frac{9}{16}}$	$=\beta_{15,37\frac{7}{9}}$
	$r_{s_2}^{f_2}$	=	~
$lpha_{s_2}^{f_2} = lpha_{s_1}^{f_2} \oslash eta_{s_1}^{ ext{l.o.}f_2} = \gamma_{r_{s_2}^{f_2}, b_{s_2}^{f_2}}$	$b_{s_2}^{f_2}$	$\alpha_{s_1}^{f_2}(T_{s_1}^{\text{l.o.}f_2}) = 5 \cdot 26\frac{9}{16} + 131\frac{1}{4} = 264\frac{1}{16}$	$\alpha_{s_1}^{f_2}(T_{s_1}^{\text{l.o.}f_2}) = 5 \cdot 37\frac{7}{9} + 166\frac{2}{3} = 355\frac{5}{9}$
	=	$=\gamma_{5,264\frac{1}{16}}$	$=\gamma_{5,355\frac{5}{9}}$

Flow f_0 (comparable to Tandem_1SC_2Flows_1AC_1Path)

	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_0} = \alpha^{f_0} + \alpha^{f_1}$		$=\gamma_{10,50}$
s_0		$\beta_{s_0} = b_{s_0}$	$\beta_{s_0} = \alpha_{s_0}$
	$D_{s_0}^{f_0}$	$20 \cdot [t - 20]^+ = 50$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 50$
		$t = 22\frac{1}{2}$	t = 45
	$B_{s_0}^{f_0}$	$\alpha_{s_0}(T_{s_0})$	$= 20 \cdot 10 + 50$
	$D_{s_0}^*$		= 250
	$\alpha_{s_1} = \alpha_{s_1}^{\{f_0, f_2\}}$		$=\gamma_{10,250}$
s_1		$\beta_{s_1} = b_{s_1}$	$\beta_{s_1} = \alpha_{s_1}$
	$D_{s_1}^{f_0}$	$20 \cdot [t - 20]^+ = 250$	$20 \cdot [t-20]^+ = 10 \cdot t + 250$
		$t = 32\frac{1}{2}$	t = 65
	$B_{s_1}^{f_0}$	$\alpha_{s_1}(T_{s_1})$	$= 10 \cdot 20 + 250$
	$D_{s_1}^{\bullet}$		= 450
	D^{f_0}	$\sum_{i=0}^{1} D_{s_i}^{f_0} = 55$	$\frac{\sum_{i=0}^{1} D_{s_i}^{f_0} = 110}{\{0,1\} b_{s_i}^{f_0} = 450}$
B^{f_0}		$\max_{i=1}^{n}$	$\{0,1\} b_{s_i}^{f_0} = 450$

	SFA		FIFO_MUX	ARB_MUX
	$\alpha_{s_0}^{x(f_0)} = \alpha^{f_2}$		=	$\gamma_{5,25}$
s_0	(c)	$R_{s_0}^{\mathrm{l.o.}f_0}$	=	= 5
50	$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_0)}$		$\beta_{s_0} = b_{s_0}^{x(f_0)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_0)}$
		$T_{s_0}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 25$	$20 \cdot [t - 20]^+ = 5 \cdot t + 25$
		30	$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$
		=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$
	$\alpha_{s_1}^{x(f_0)} = \alpha_{s_1}^{x(f_0)}$		= 7	Ŷ5,125
s_1	(c)	$R_{s_1}^{\mathrm{l.o.}f_0}$: 15
	$\beta_{s_1}^{\text{l.o.}f_0} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_0)}$		$\beta_{s_1} = b_{s_1}^{x(f_0)}$	$\beta_{s_1} = \alpha_{s_1}^{x(f_0)}$
		$T_{s_1}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 125$	$20 \cdot [t-20]^+ = 5 \cdot t + 125$
			$t = 26\frac{1}{4}$	t = 35
		=	$=\beta_{15,26\frac{1}{4}}$	$=\beta_{15,35}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f}}$	0	$\bigotimes_{i=0}^{1} \beta_{s_{i}}^{\text{l.o.}f_{0}} = \beta_{15,47\frac{1}{2}}$ $\beta_{\text{e}2e}^{\text{l.o.}f_{0}} = b^{f_{0}}$	$\bigotimes_{i=0}^{1} \beta_{s_i}^{\text{l.o.} f_0} = \beta_{15,63\frac{1}{3}}$
				$eta_{\mathrm{e2e}}^{\mathrm{l.o.}f_0} = b^{f_0}$
	D^{f_0}		$15 \cdot [t - 47\frac{1}{2}]^{+} = 25$	$15 \cdot [t - 63\frac{1}{3}]^+ = 25$
			$t = 49\frac{1}{6}$	t = 65
	B^{f_0}		$t = 49\frac{1}{6}$ $\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 47\frac{1}{2} + 25$	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 63\frac{1}{3} + 25$
	$D_{*,*}$		$=$ $262\frac{1}{2}$	$= 341\frac{2}{3}$

PMOO		ARB_MUX
s_0	$lpha_{s_0}^{ar{x}(f_0)} = lpha_{s_0}^{x(f_0)}$	$=\gamma_{5,25}$
	$lpha_{s_0}^{x(f_0)} = rac{lpha_{s_0}}{ar{x}(f_0)}$	$=\gamma_{5,25}$
s_1	$\alpha_{s_1}^{\overline{x}(f_0)}$	$=\gamma_{0,0}$
- 1	$lpha_{s_1}^{x(f_0)}$	$=\gamma_{5,125}$
	$R_{\text{e2e}}^{\text{l.o.}f_0} = \bigwedge_{i \in \{0,1\}} \left(R_{s_i} - r_{s_i}^{x(f_0)} \right)$	$= (20 - 5) \wedge (20 - 5)$
$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$	$n_{\text{e2e}} - / i \in \{0,1\} $ $n_{s_i} - r_{s_i}$	= 15
$ \rho_{\text{e2e}} = \rho_{R_{\text{e2e}}^{\text{I.o.}, J_0}, T_{\text{e2e}}^{\text{I.o.}, J_0}} $	$T_{\text{e2e}}^{\text{l.o.}f_0} = \sum_{i \in \{0,1\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_0)} + r_{s_i}^{x(f_0)} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_0}} \right)$	$= 20 + \frac{25 + 5 \cdot 20}{15} + 20 + \frac{0 + 5 \cdot 20}{15}$
	ve2e /	= 55
	=	$=\beta_{15,55}$
		$\beta_{\text{e2e}}^{\text{l.o.}f_0} = b^{f_0}$
	D^{f_0}	$15 \cdot [t - 55]^+ = 25$
		$t = 56\frac{2}{3}$
B^{f_0}		$\alpha^{f_0}(T_{\text{e}2\text{e}}^{\text{l.o.}f_0}) = 5 \cdot 55 + 25$
	D	= 300

Flow f_1 (comparable with Node_2Flows_2ACs)

PBOO-AB:

I DC	O-AD.		
	TFA	${ m FIFO}_{ m MUX}$	ARB_MUX
	$\alpha_{s_2} = \alpha^{f_1} + \alpha^{f_2}_{s_1 s_2}$	$\gamma_{5,25} + \gamma_{5,264\frac{1}{16}} = \gamma_{10,289\frac{1}{16}}$	$\gamma_{5,25} + \gamma_{5,355\frac{5}{9}} = \gamma_{10,380\frac{5}{9}}$
s_2		$\beta_{s_2} = b_{s_2}$	$\beta_{s_2} = \alpha_{s_2}$
	$D_{s_2}^{f_1}$	$20 \cdot [t - 20]^+ = 289 \frac{1}{16}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 380 \frac{5}{9}$
		$t = 34\frac{29}{64}$	$t = 78\frac{5}{90}$
	$B^{f_1}_{s_2}$	$\alpha_{s_2}(T_{s_2}) = 10 \cdot 20 + 289 \frac{1}{16}$	$\alpha_{s_2}(T_{s_2}) = 10 \cdot 20 + 380 \frac{5}{9}$
	$D_{\tilde{s}_2}$	$=$ $489\frac{1}{16}$	$=$ $580\frac{5}{9}$
	D^{f_1}	$=34\frac{29}{64}$	$=78\frac{5}{90}$
	B^{f_1}	$=489\frac{1}{16}$	$=580\frac{5}{9}$

LIVI	OO-AD:	
	TFA	ARB_MUX
	$\alpha_{s_2} = \alpha^{f_1} + \alpha_{s_1 s_2}^{f_2}$	$\gamma_{5,25} + \gamma_{5,300} = \gamma_{10,325}$
s_2		$\beta_{s_2} = \alpha_{s_2}$
	$D_{s_2}^{f_1}$	$20 \cdot [t - 20]^+ = 10 \cdot t + 325$
	$-s_2$	$t = 72\frac{1}{2}$
	$B_{s_2}^{f_1}$	$\alpha_{s_2}(T_{s_2}) = 10 \cdot 20 + 325$
	$D_{s_2}^{*}$	= 525
D^{f_1}		$=72\frac{1}{2}$
	B^{f_1}	=525

PBOO-AB:

	SFA		FIFO_MUX	ARB_MUX
	$\alpha_{s_2}^{x(f_1)} = \alpha_{s_2}^{f_2}$		$=\gamma_{5,264\frac{1}{16}}$	$=\gamma_{5,355\frac{5}{9}}$
s_2		$R_{s_2}^{\mathrm{l.o.}f_1}$	=	15
32	$\beta_{s_2}^{\text{l.o.}f_1} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_1)} = \beta_{s_2} \ominus \alpha_{s_1 s_2}^{x(f_1)}$		$\beta_{s_2} = b_{s_2}^{x(f_1)}$	$\beta_{s_2} = \alpha_{s_2}^{x(f_1)}$
		$T_{s_2}^{\mathrm{l.o.}f_1}$	$20 \cdot [t - 20]^+ = 264 \frac{1}{16}$	$\beta_{s_2} = \alpha_{s_2}^{x(f_1)}$ $20 \cdot [t - 20]^+ = 5 \cdot t + 355 \frac{5}{9}$ 10
			$t = 33\frac{1}{64}$	$t = 50\frac{1}{27}$
		=	$=\beta_{15,33\frac{13}{64}}$	$=\beta_{15,50\frac{10}{27}}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_1} = \beta_{s_2}^{\text{l.o.}f_1}$		$=\beta_{15,33\frac{13}{64}} \\ \beta_{\text{e}2\text{e}}^{\text{l.o.}f_1} = b^{f_1}$	$=\beta_{15,50\frac{10}{27}} \\ \beta_{\text{e}2\text{e}}^{\text{l.o.}f_1} = b^{f_1}$
			$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_{1}}=\qquad b^{f_{1}}$	
	D^{f_1}		$15 \cdot [t - 33\frac{13}{64}]^+ = 25$	$15 \cdot [t - 50\frac{10}{27}]^+ = 25$
			$t = 34 \frac{167}{192}$	$t = 52\frac{1}{27}$ $\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 50\frac{10}{27} + 25$
	B^{f_1}			
	D		$=$ $191\frac{1}{64}$	$=$ $276\frac{23}{27}$

PMOU-AB:			
	SFA		ARB_MUX
	$\alpha_{s_2}^{x(f_1)} = \alpha_{s_2}^{f_2}$		$= \gamma_{5,300}$
		$R_{s_2}^{\mathrm{l.o.}f_1}$	= 15
s_2	$\beta_{s_2}^{\text{l.o.}f_1} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_1)} = \beta_{s_2} \ominus \alpha_{s_1 s_2}^{x(f_1)}$		$\beta_{s_2} = \alpha_{s_2}^{x(f_1)}$
		$T_{s_2}^{\text{l.o.}f_1}$	$20 \cdot [t - 20]^+ = 5 \cdot t + 300$
			$t = 46\frac{2}{3}$
		=	$=\beta_{15,46\frac{2}{3}}$
	$\beta_{\text{e2e}}^{\text{l.o.}f_1} = \beta_{s_2}^{\text{l.o.}f_1}$		$=\beta_{15,46\frac{2}{3}}$
			$=\beta_{15,46\frac{2}{3}} \\ \beta_{\text{e2e}}^{\text{l.o.}f_1} = b^{f_1}$
D^{f_1}		$15 \cdot [t - 46\frac{2}{3}]^{+} = 25$	
			$t = 48\frac{1}{3}$ $\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 46\frac{2}{3} + 25$
B^{f_1}		$\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 46\frac{2}{3} + 25$	
	D**-		$=$ $258\frac{1}{3}$

	PMOO	ARB_MUX
s_2	$lpha_{s_2}^{ar{x}(f_1)}$	$=\gamma_{5,355\frac{5}{9}}$
- 2	$lpha_{s_2}^{x(f_1)}$	$=\gamma_{5,355\frac{5}{9}}$
	$R_{\text{e2e}}^{\text{l.o.}f_1} = R_{s_2} - r_{s_2}^{x(f_0)}$	= 20-5
$\beta_{\text{e2e}}^{\text{l.o.}f_1} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_1}, T_{\text{e2e}}^{\text{l.o.}f_1}}$	$R_{\mathrm{e}2\mathrm{e}} = R_{s_2} + R_{s_2}$	= 15
$R_{\rm e2e}$, $R_{\rm e2e}$, $R_{\rm e2e}$	$T_{\text{e2e}}^{\text{l.o.}f_1} = T_{s_2} + \frac{b_{s_2}^{\bar{x}(f_1)} + r_{s_2}^{x(f_1)} \cdot T_{s_2}}{R^{\text{l.o.}f_1}}$	$= 20 + \frac{355\frac{5}{9} + 5 \cdot 20}{15}$
	$R_{\rm e2e}^{\rm 1.o.f_1}$	$=$ $50\frac{10}{27}$
	=	$=\beta_{15,50\frac{10}{27}}$
		$\beta_{\text{e2e}}^{\text{l.o.}f_1} = b^{f_1}$
	D^{f_1}	$\beta_{\text{e2e}}^{\text{l.o.}f_1} = b^{f_1}$ $15 \cdot [t - 50\frac{10}{27}]^+ = 25$
		$t = 52\frac{1}{27}$
	R^{f_1}	$t = 52\frac{1}{27}$ $\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 50\frac{10}{27} + 25$
	D	$=$ $276\frac{23}{27}$

Flow f_2

PBOO-AB:

TDC	OO-AB:	DIDO MIIV	ADD MIN
	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_0} = \alpha_{s_0}^{f_0} + \alpha_{s_0}^{f_1}$		γ _{10,50}
s_0		$\beta_{s_0} = b_{s_0}$	$\beta_{s_0} = \alpha_{s_0}$
	$D_{s_0}^{f_2}$	$20 \cdot [t - 20]^+ = 50$	$20 \cdot [t - 20]^+ = 10 \cdot t + 50$
		$t = 22\frac{1}{2}$	$t = 45$ $= 20 \cdot 10 + 50$
	$B_{s_0}^{f_2}$	$\alpha_{s_0}(\tilde{T_{s_0}}) =$	$20 \cdot 10 + 50$
		=	250
	$\alpha_{s_1} = \alpha_{s_1}^{\{f_0, f_1\}}$		$\gamma_{10,250}$
s_1		$\beta_{s_1} = b_{s_1}$	$\beta_{s_1} = \alpha_{s_1}$
	$D_{s_1}^{f_2}$	$20 \cdot [t - 20]^+ = 250$	$20 \cdot [t - 20]^+ = 10 \cdot t + 250$
		$t = 32\frac{1}{2}$	t = 65
	$B_{s_1}^{f_2}$	$\alpha_{s_1}(\overline{T_{s_1}}) =$	$10 \cdot 20 + 250$
	D_{s_1}	=	450
	$\alpha_{s_2} = \alpha_{s_2}^{f_1} + \alpha_{s_2}^{f_2}$	$\gamma_{5,25} + \gamma_{5,264\frac{1}{16}} = \gamma_{10,289\frac{1}{16}}$	$\gamma_{5,25} + \gamma_{5,355\frac{5}{9}} = \gamma_{10,380\frac{5}{9}}$
s_2		$\beta_{s_2} = b_{s_2}$	$\beta_{s_2} = \alpha_{s_2}$
	$D_{s_2}^{f_2}$	$20 \cdot [t - 20]^+ = 289 \frac{1}{16}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 380\frac{5}{9}$
		$t = 34\frac{29}{64}$	$t = 78\frac{5}{90}$ $\alpha_{s_2}(T_{s_2}) = 10 \cdot 20 + 380\frac{5}{9}$
	$B_{s_2}^{f_2}$	$\alpha_{s_2}(T_{s_2}) = 10 \cdot 20 + 289 \frac{1}{16}$	$\alpha_{s_2}(T_{s_2}) = 10 \cdot 20 + 380 \frac{5}{9}$
	$D_{s_2}^{"}$	$=$ $489\frac{1}{16}$	$=$ $580\frac{5}{9}$
	D^{f_2}	$\sum_{i=0}^{2} D_{si}^{f_2} = 89\frac{29}{64}$	$\sum_{i=0}^{2} D_{s_i}^{f_2} = 188 \frac{5}{90}$
	B^{f_2}	$\max_{i=\{0,1,2\}} b_{s_i}^{f_0} = 489 \frac{1}{16}$	$\max_{i=\{0,1,2\}} b_{s_i}^{f_0} = 580\frac{5}{9}$

P	MOO-AB:	
	TFA	ARB_MUX
	$\alpha_{s_0} = \alpha_{s_0}^{f_0} + \alpha_{s_0}^{f_1}$	$= \gamma_{10,50}$
s_0		$\beta_{s_0} = \alpha_{s_0}$
	$D_{s_0}^{f_2}$	$20 \cdot [t - 20]^+ = 10 \cdot t + 50$
		t = 45
	$B_{s_0}^{f_2}$	$\alpha_{s_0}(T_{s_0}) = 20 \cdot 10 + 50$
		= 250
	$\alpha_{s_1} = \alpha_{s_1}^{\{f_0, f_1\}}$	$=\gamma_{10,250}$
s_1		$\beta_{s_1} = \alpha_{s_1}$
	$D_{s_1}^{f_2}$	$20 \cdot [t - 20]^+ = 10 \cdot t + 250$
		t = 65
	$B_{s_1}^{f_2}$	$\alpha_{s_1}(T_{s_1}) = 10 \cdot 20 + 250$
		= 450
	$\alpha_{s_2} = \alpha^{f_1} + \alpha_{s_1 s_2}^{f_2}$	$\gamma_{5,25} + \gamma_{5,300} = \gamma_{10,325}$
s_2		$\beta_{s_2} = \alpha_{s_2}$
	$D_{s_2}^{f_1}$	$20 \cdot [t - 20]^+ = 10 \cdot t + 325$
	52	$t = 72\frac{1}{2}$
	$B_{s_2}^{f_1}$	$\alpha_{s_2}(T_{s_2}) = 10 \cdot 20 + 325$
	$D_{s_2}^{*1}$	= 525
	D^{f_2}	$\sum_{i=0}^{2} D_{s_i}^{f_2} = 182\frac{1}{2}$ $\max_{i=\{0,1,2\}} b_{s_i}^{f_0} = 525$
	B^{f_2}	$\max_{i=\{0,1,2\}} b_{s_i}^{f_0} = 525$

SFA		FIFO_MUX ARB_MUX			
$lpha_{s_0}^{x(f_2)} = lpha_{s_0}^{f_0}$			$=\gamma_{5,25}$		
0.0	So (f)			=5	
s_0	$\beta_{s_0}^{\text{l.o.}f_2} = \beta_{s_0} \ominus \alpha_{s_0}^{x(f_2)} = \beta_{s_0} \ominus \alpha_{s_0}^{f_0}$		$\beta_{s_0} = b_{s_0}^{x(f_2)}$	$\beta_{s_0} = \alpha_{s_0}^{x(f_2)}$	
		$T_{s_0}^{\mathrm{l.o.}f_2}$	$20 \cdot [t - 20]^+ = 25$	$20 \cdot [t - 20]^+ = 5 \cdot t + 25$	
			$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$	
		=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$	
	$\alpha_{s_1}^{x(f_2)} = \alpha_{s_1}^{x(f_2)}$		=	$\gamma_{5,125}$	
		$R_{s_1}^{\mathrm{l.o.}f_2}$	=	= 15	
s_1	$\beta_{s_1}^{\text{l.o.}f_2} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_2)}$		$\beta_{s_1} = b_{s_1}^{x(f_2)}$	$\beta_{s_1} = \alpha_{s_1}^{x(f_2)}$	
		$T_{s_1}^{\mathrm{l.o.}f_2}$	$20 \cdot [t - 20]^+ = 125$	$20 \cdot [t - 20]^{+} = 5 \cdot t + 125$	
			$t = 26\frac{1}{4}$	t = 35	
		=	$=\beta_{15,26\frac{1}{4}}$	$= \beta_{15,35}$	
	$\alpha_{s_2}^{x(f_2)} = \alpha_{s_2}^{f_1}$		$=\gamma_{5.25}$		
	$R_{s_2}^{\text{l.o.}f_2}$		$= \gamma_{5,25}$ $= 15$		
s_2	$\beta_{s_2}^{\text{l.o.}f_2} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_2)} = \beta_{s_2} \ominus \alpha^{f_1}$		$\beta_{s_2} = b_{s_2}^{x(f_2)}$	$\beta_{s_2} = \alpha_{s_2}^{x(f_2)}$	
		$T_{s_2}^{\mathrm{l.o.}f_2}$	$20 \cdot [t - 20]^+ = 25$	$20 \cdot [t - 20]^+ = 5 \cdot t + 25$	
			$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$ $= \beta_{15,28\frac{1}{3}}$ $\bigotimes_{i=0}^{2} \beta_{s_{i}}^{\text{l.o.}f_{0}} = \beta_{15,91\frac{2}{3}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_{2}} = b^{f_{2}}$	
		=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$	
	$eta_{ ext{e}2 ext{e}}^{ ext{l.o.}f_2}$		$\bigotimes_{i=0}^{2} \beta_{s_{i}}^{\text{l.o.} f_{2}} = \beta_{15,68\frac{3}{4}}$ $\beta_{\text{e2e}}^{\text{l.o.} f_{2}} = b^{f_{2}}$	$\bigotimes_{i=0}^{2} \beta_{s_i}^{\text{l.o.} f_0} = \beta_{15,91\frac{2}{2}}$	
				$\beta_{\text{e2e}}^{\text{l.o.}f_2} = b^{f_2}$	
	D^{f_2}		$15 \cdot [t - 68\frac{3}{4}]^+ = 25$	$15 \cdot [t - 91\frac{2}{3}]^+ = 25$	
			$t = 70\frac{5}{12}$	$t = 93\frac{1}{3}$	
B^{f_2}		$\alpha^{f_2}(T_{s_2}^{\text{l.o.}f_2}) = 5 \cdot 68\frac{3}{4} + 25$	$t = 93\frac{1}{3}$ $6 \alpha^{f_2}(T_{\text{e2e}}^{\text{l.o.}f_2}) = 5 \cdot 91\frac{2}{3} + 25$		
	D*-		$= 368\frac{3}{4}$	$=$ $483\frac{1}{3}$	

	PMOO	ARB_MUX	
s_0	$\frac{\alpha_{s_0}^{\bar{x}(f_2)}}{\alpha_{s_0}^{x(f_2)}}$	$=\gamma_{5,25}$	
30	$lpha_{s_0}^{x(j_2)}$	$=\gamma_{5,25}$	
s_1	$\alpha_{s_0}^{s_0}$ $\alpha_{s_1}^{\bar{x}(f_2)}$	$=\gamma_{0,0}$	
51	$\alpha_{s_1}^{x(j_2)}$	$=\gamma_{5,125}$	
e _a	$lpha_{s_2}^{ar{x}(f_2)}$	$=\gamma_{5,25}$	
s_2	$lpha_{s_2}^{x(f_2)}$	$=\gamma_{5,25}$	
$\beta^{\text{l.o.}f_2} = \beta$	$R_{\text{e2e}}^{\text{l.o.}f_2} = \bigwedge_{i \in \{0,1,2\}} \left(R_{s_i} - r_{s_i}^{x(f_2)} \right)$	$= (20-5) \wedge (20-5) \wedge (20-5)$ $= 15$	
$\beta_{\text{e2e}}^{\text{l.o.}f_2} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_2}, T_{\text{e2e}}^{\text{l.o.}f_2}}$	$T_{\text{e}2e}^{\text{l.o.}f_2} = \sum_{i \in \{0,1,2\}} \left(T_{s_i} + \frac{b_{s_i}^{x(f_2)} + r_{s_i}^{x(f_2)} \cdot T_{s_i}}{R_{e2e}^{\text{l.o.}f_0}} \right)$	$= 20 + \frac{25 + 5 \cdot 20}{15} + 20 + \frac{0 + 5 \cdot 20}{15} + 20 + \frac{25 + 5 \cdot 20}{15}$ $= 83\frac{1}{3}$	
	=		
	D^{f_2}	$= \beta_{15,83\frac{1}{3}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_2} = b^{f_1}$ $15 \cdot [t - 83\frac{1}{3}] = 25$	
D'		t = 85	
	B^{f_2}	$t = 85$ $\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 83\frac{1}{3} + 25$	
		$=$ $441\frac{2}{3}$	

 $TA_3S_1SC_2F_1AC_1P_Network$

- $\bullet \ \beta_{s_0} = \beta_{s_1} = \beta_{s_2} = \beta_{R_{s_i},T_{s_i}} = \beta_{20,20}, \, i \in \{0,1\}$
- $\bullet \ \mathcal{F} = \{f_0, f_1\}$
- $\alpha^{f_0} = \alpha^{f_1} = \gamma_{rf_n, bf_n} = \gamma_{5,25}, n \in \{0, 1\}$

${\rm TA_3S_1SC_2F_1AC_1P_Test}$

arrivalBound $(s_1, \{f_0, f_1\}, \{\}) = \alpha_{s_1}^{\{f_0, f_1\}}$	FIFO_MUX	ARB_MUX	
$lpha_{s_0}^{\{f_0,f_1\}}$	$=\gamma_{10,50}$		
$lpha_{s_0}^{x\{f_0,f_1\}}$	$lpha_{s_0}^{x\{f_0,f_1\}}$		
$\beta_{s_0}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_0} \ominus \alpha_{s_0}^{x\{f_0,f_1\}} = \beta_{R_{s_0}^{\text{l.o.}\{f_0,f_1\}}, T_{s_0}^{\text{l.o.}}}$	$\beta_{s_0}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_0} \ominus \alpha_{s_0}^{x\{f_0,f_1\}} = \beta_{R_{s_0}^{\text{l.o.}\{f_0,f_1\}}, T_{s_0}^{\text{l.o.}\{f_0,f_1\}}}$		
	$\{f_0,f_1\}$		= 10
$\alpha_{s_1}^{\{f_0,f_1\}} = \alpha_{s_0}^{\{f_0,f_1\}} \oslash \beta_{s_0}^{\text{l.o.}\{f_0,f_1\}} = \gamma_{r_{s_1}^{\{f_0,f_1\}},b_{s_1}^{\{f_0,f_1\}}}$	$b_{s_1}^{\{f_0,f_1\}}$	$\alpha_{s_0}^{\{f_0, f_1\}}(T_{s_0}^{\text{l.o.}\{f_0, f_1\}}) = 10 \cdot 20 + 50 = 25$	
=			$=\gamma_{10,250}$

arrivalBound $(s_2, \{f_0, f_1\}, \{\}) = \alpha_{s_2}^{\{f_0, f_1\}}$	FIFO_MUX	ARB_MUX	
$lpha_{s_1}^{\{f_0,f_1\}}$	$=\gamma_{10,250}$		
$lpha_{s_1}^{x\{f_0,f_1\}}$	$=\gamma_{0,0}$		
$\beta_{s_1}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_1} \ominus \alpha_{s_1}^{x\{f_0,f_1\}} = \beta_{R_{s_1}^{\text{l.o.}\{f_0,f_1\}}, T_{s_1}^{\text{l.o.}\{}}$	$eta_{s_1}^{ ext{l.o.}\{f_0,f_1\}} = eta_{s_1} \ominus lpha_{s_1}^{x\{f_0,f_1\}} = eta_{R_{s_1}^{ ext{l.o.}\{f_0,f_1\}},T_{s_1}^{ ext{l.o.}\{f_0,f_1\}}}$		
	$r_{s_2}^{\{f_0,f_1\}}$		= 10
$\alpha_{s_2}^{\{f_0,f_1\}} = \alpha_{s_1}^{\{f_0,f_1\}} \oslash \beta_{s_1}^{\text{l.o.}\{f_0,f_1\}} = \gamma_{r_{s_2}^{\{f_0,f_1\}},b_{s_2}^{\{f_0,f_1\}}}$	$b_{s_2}^{\{f_0,f_1\}}$	$\alpha_{s_1}^{\{f_0, f_1\}}(T_{s_1}^{\text{l.o.}\{f_0, f_1\}}) = 10 \cdot 20 + 250 = 25$	
=			$=\gamma_{10,450}$

arrivalBound $(s_1, \{f_0\}, \{f_1\}) =$ = arrivalBound $(s_1, \{f_1\}, \{f_0\})$	FIFO_MUX	ARB_MUX	
$\alpha_{s_0}^{f_n}$	$=\gamma_{5,25}$		
$lpha_{s_0}^{xf_n}$	$=\gamma_{0,0}$		
$eta_{s_0}^{\text{l.o.}f_n} = eta_{s_0} \ominus lpha_{s_0}^{xf_n} = eta_{R_{s_0}^{\text{l.o.}f_n}, f_n}$	$\beta_{s_0}^{\text{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{xf_n} = \beta_{R_{s_0}^{\text{l.o.}f_n}, T_{s_0}^{\text{l.o.}f_n}}$		
	$r_{s_1}^{f_n}$	=5	
$\alpha_{s_1}^{f_n} = \alpha_{s_0}^{f_n} \oslash \beta_{s_0}^{\text{l.o.}f_n} = \gamma_{r_{s_1}^{f_n}, b_{s_1}^{f_n}}$	$b_{s_1}^{f_n}$	$\alpha^{f_n}(T_{s_0}^{\text{l.o.}f_n}) = 5 \cdot 20 + 25 = 125$	
	=	$= \gamma_{5,125}$	

arrivalBound $(s_2, \{f_0\}, \{f_1\}) =$ = arrivalBound $(s_2, \{f_1\}, \{f_0\})$	FIFO_MUX	ARB_MUX	
$lpha_{s_1}^{f_n}$	$=\gamma_{5,125}$		
$lpha_{s_1}^{xf_n}$	$=\gamma_{0,0}$		
$\beta_{s_1}^{\text{l.o.}f_n} = \beta_{s_1} \ominus \alpha_{s_1}^{xf_n} = \beta_{R_{s_1}^{\text{l.o.}f_n}, f_n}$	$T_{s_1}^{\text{l.o.}f_n}$	$=\beta_{20,20}$	
	$r_{s_2}^{f_n}$	=5	
$\alpha_{s_2}^{f_n} = \alpha_{s_1}^{f_n} \oslash \beta_{s_1}^{\text{l.o.}f_n} = \gamma_{r_{s_2}^{f_n}, b_{s_2}^{f_n}}$	$b_{s_2}^{f_n}$	$\alpha_{s_1}^{f_n}(T_{s_1}^{\text{l.o.}f_n}) = 5 \cdot 20 + 125 = 22$	
2 2	=	$=\gamma_{5,125}$	

Flows f_n , $n \in \{0, 1\}$ TFA results will be equal for all flows as they share the same path of servers.

	TFA	FIFO_MUX	ARB_MUX
	$\alpha_{s_0} = \alpha_{s_0}^{f_0} + \alpha_{s_0}^{f_1}$		$=\gamma_{10,50}$
s_0		$\beta_{s_0} = b_{s_0}$	$\beta_{s_0} = \alpha_{s_0}$
	$D_{s_0}^{f_n}$	$20 \cdot [t - 20]^+ = 50$	$20 \cdot [t - 20]^+ = 10 \cdot t + 50$
	,	$t = 22\frac{1}{2}$	$t = 45$ $= 10 \cdot 20 + 50$
	$B_{s_0}^{f_n}$	$\alpha_{s_0}(T_{s_0})$	$= 10 \cdot 20 + 50$
			= 250
	$\alpha_{s_1} = \alpha_{s_1}^{\{f_0, f_1\}}$:	$=\gamma_{10,250}$
s_1		$\beta_{s_1} = b_{s_1}$	$\beta_{s_1} = \alpha_{s_1}$
	$D_{s_1}^{f_n}$	$20 \cdot [t - 20]^+ = 250$	$20 \cdot [t - 20]^+ = 10 \cdot t + 250$
		$t = 32\frac{1}{2}$	$ \begin{array}{cccc} & \beta s_1 - & \alpha s_1 \\ & 20 \cdot [t - 20]^+ = & 10 \cdot t + 250 \\ & t = & 65 \\ & = & 10 \cdot 20 + 250 \end{array} $
	$B_{s_1}^{f_n}$	$\alpha_{s_1}(T_{s_1})$	$= 10 \cdot 20 + 250$
	- 1		= 450
	$\alpha_{s_2}^{f_0} = \alpha_{s_2}^{\{f_0, f_1\}}$	=	$=\gamma_{10,450}$
s_2		$\beta_{s_2} = b_{s_2}$	$\beta_{s_2} = \alpha_{s_2}$
	$D_{s_2}^{f_n}$	$20 \cdot [t - 20]^+ = 450$	$20 \cdot [t - 20]^+ = 10 \cdot t + 450$
		$t = 42\frac{1}{2}$	$ \begin{array}{cccc} & \beta_{s_2} - & \alpha_{s_2} \\ 20 \cdot [t - 20]^+ = & 10 \cdot t + 450 \\ & t = & 85 \\ & = & 10 \cdot 20 + 450 \end{array} $
	$B_{s_2}^{f_n}$	$\alpha_{s_1}(T_{s_1})$	$= 10 \cdot 20 + 450$
	D_{s_2}		= 650
	D^{f_n}	$\sum_{i=0}^{2} D_{s_i}^{f_n} = 97\frac{1}{2}$	$\sum_{i=0}^{2} D_{s_i}^{f_n} = 195$
	$\begin{array}{c c} D^{f_n} & \sum_{i=0}^2 D^{f_n}_{s_i} = 97\frac{1}{2} & \sum_{i=0}^2 D^{f_n}_{s_i} = 195 \\ B^{f_n} & \max_{i=\{0,1,2\}} b^{f_n}_{s_i} = 650 \end{array}$		

	SFA		FIFO_MUX	ARB_MUX	
$lpha_{s_0}^{xf_n}$			$=\gamma_{5,25}$		
s_0				15	
50	$\beta_{s_0}^{\text{l.o.}f_n} = \beta_{s_0} \ominus \alpha_{s_0}^{xf_n} = \beta_{R_{s_0}^{\text{l.o.}f_n}, T_{s_0}^{\text{l.o.}f_n}}$		$\beta_{s_0} = b_{s_0}^{xf_n}$	$\beta_{s_0} = \alpha_{s_0}^{xf_n}$	
		$T_{s_0}^{\text{l.o.}f_n}$		$20 \cdot [t - 20]^+ = 5 \cdot t + 25$	
			$t = 22\frac{1}{4}$ $= \beta_{15,21\frac{1}{4}}$	$t = 28\frac{1}{3}$	
		=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$	
	$lpha_{s_1}^{xf_n}$		$= \gamma_{!}$	5,125	
s_1		$R_{s_1}^{\mathrm{l.o.}f_n}$		15	
01	$eta_{s_1}^{\mathrm{l.o.}f_n} = eta_{s_1} \ominus lpha_{s_1}^{xf_n}$		$\beta_{s_1} = b_{s_1}^{xf_n}$	$\beta_{s_1} = \alpha_{s_1}^{xf_n}$	
		$T_{s_1}^{\mathrm{l.o.}f_n}$	$20 \cdot [t - 20]^+ = 125$	$20 \cdot [t - 20]^+ = 5 \cdot t + 125$	
			$t = 26\frac{1}{4}$	t = 35	
		=	$=\beta_{15,26\frac{1}{4}}$	$= \beta_{15,35}$	
$\alpha_{s_2}^{xf_n}$		$=\gamma_{5,225}$			
s_2		$R_{s_2}^{\mathrm{l.o.}f_n}$	=15		
32	$\beta_{s_2}^{\mathrm{l.o.}f_n} = \beta_{s_2} \ominus \alpha_{s_2}^{xf_n}$		$\beta_{s_2} = b_{s_2}^{xf_n}$	$\beta_{s_2} = \alpha_{s_2}^{xf_n}$	
		$T_{s_2}^{\mathrm{l.o.}f_n}$	$20 \cdot [t - 20]^+ = 225$	$20 \cdot [t - 20]^+ = 5 \cdot t + 225$	
			$t = 31\frac{1}{4}$	$t = 41\frac{2}{3}$	
		=	$=\beta_{15,31\frac{1}{4}}$	$=\beta_{15,41\frac{2}{3}}$	
	$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_n}, T_{\text{e2e}}^{\text{l.o.}f_n}}$		$\bigotimes_{i=0}^{2} \beta_{s_i}^{\text{l.o.} f_n} = \beta_{5,78\frac{3}{4}}$ $\beta_{e2e}^{\text{l.o.} f_n} = b^{f_n}$	$\bigotimes_{i=0}^{2} \beta_{s_i}^{\text{l.o.} f_n} = \beta_{5,105}$	
				$\beta_{\mathrm{e2e}}^{\mathrm{l.o.}f_n} = b^{f_n}$	
	D^{f_n}		$15 \cdot [t - 78\frac{3}{4}]^+ = 25$	$15 \cdot [t - 105]^+ = 25$	
			$t = 80 \frac{5}{12}$ $\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 78 \frac{3}{4} + 25$	$t = 106\frac{2}{3}$	
B^{f_n}		- 2	020		
			$=$ $418\frac{3}{4}$	= 550	

	PMOO	ARB_MUX	
s_0	$lpha_{s_0}^{ar{x}f_n} = lpha_{s_0}^{xf_n}$	$= \gamma_{5,25}$ $= \gamma_{5,25}$	
s_1	$lpha_{s_1}^{\widetilde{x}f_n}$ $lpha_{s_1}^{xf_n}$	$= \gamma_{0,0}$ $= \gamma_{5,75}$	
s_2	$egin{array}{c} lpha_{s_0}^{xf_n} & & & & & & & & & & \\ & lpha_{s_0}^{xf_n} & & & & & & & & & \\ & lpha_{s_1}^{xf_n} & & & & & & & & & \\ & lpha_{s_1}^{xf_n} & & & & & & & & & \\ & lpha_{s_2}^{xf_n} & & & & & & & & \\ & lpha_{s_2}^{xf_n} & & & & & & & \\ & lpha_{s_2}^{xf_n} & & & & & & & \\ & & lpha_{s_2}^{xf_n} & & & & & & \\ & & & lpha_{s_2}^{xf_n} & & & & & \\ & & & & & & & & \\ & & & & $	$= \gamma_{0,0}$ $= \gamma_{5,225}$	
$\beta_{\text{e2e}}^{\text{l.o.}f_n} = \beta_{R_{e2e}^{\text{l.o.}f_n}, T_{e2e}^{\text{l.o.}f_n}}$	$R_{\text{e2e}}^{\text{l.o.}f_n} = \bigwedge_{i \in \{0,1,2\}} \left(R_{s_i} - r_{s_i}^{xf_n} \right)$	$= (20-5) \wedge (20-5) \wedge (20-5)$ $= 15$	
$P_{e2e} = P_{R_{e2e}}^{1.0.J_n}, T_{e2e}^{1.0.J_n}$	$T_{\text{e2e}}^{\text{l.o.}f_n} = \sum_{i \in \{0,1,2\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}f_n} + r_{s_i}^{xf_n} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_n}} \right)$	$= 20 + \frac{25 + 5 \cdot 20}{15} + 20 + \frac{0 + 5 \cdot 20}{15} + 20 + \frac{0 + 5 \cdot 20}{15}$ $= 81\frac{2}{3}$	
	=	$=\beta_{15,81\frac{2}{3}}$	
	D^{f_n}	$\beta_{\text{e2e}}^{\text{l.o.}f_n} = b^{f_n}$ $15 \cdot [t - 81\frac{2}{3}]^+ = 25$	
	B^{f_n}	$t = 83\frac{1}{3}$ $\alpha^{f_n}(T_{\text{e2e}}^{\text{l.o.}f_n}) = 5 \cdot 81\frac{2}{3} + 25$ $= 433\frac{1}{3}$	

$TA_4S_1SC_2F_1AC_2P_Network$

$$\bullet \ \beta_{s_0} = \beta_{s_1} = \beta_{s_2} = \beta_{s_3} = \beta_{R_{s_i},T_{s_i}} = \beta_{20,20}, \, i \in \{0,1\}$$

$$\bullet \ \mathcal{F} = \{f_0, f_1\}$$

$$\alpha^{f_0} = \alpha^{f_1} = \gamma_{r^{f_n}, b^{f_n}} = \gamma_{5,25}, n \in \{0, 1\}$$

$TA_4S_1SC_2F_1AC_2P_Test$

arrivalBound $(s_1, \{f_0\}, \mathcal{G}), \mathcal{G} \in$	$\in \mathcal{P}\left(\mathcal{F}\right) = \alpha_{s_1}^{f_0}$	FIFO_MUX	ARB_MUX
$lpha_{s_0}^{f_0}$		=	$\gamma_{5,25}$
$lpha_{s_0}^{x(f_0)}$		=	$\gamma_{0,0}$
$\beta_{s_0}^{\text{l.o.}f_0} = \beta_{s_0} \ominus \alpha_{s_0}^{\vec{x}(f_0)} = \beta_{g_0}$	$C_{s_0}^{1.o.f_0}, T_{s_0}^{1.o.f_0}$	= ,	$\beta_{20,20}$
	$r_{s_1}^{f_0}$		= 10
$\alpha_{s_1}^{f_0} = \alpha_{s_0}^{f_0} \oslash \beta_{s_0}^{\text{l.o.}f_0} = \gamma_{r_{s_1}^{f_0}, b_{s_1}^{f_0}}$	$b_{s_1}^{f_0}$	$\alpha_{s_0}^{f_0}(T_{s_0}^{\text{l.o.}f_0}) =$	$5 \cdot 20 + 25 = 125$
	=	= '	γ5,125

arrivalBound $(s_2, \{f_0\}, \{f_0\}) = \alpha_{s_2}^{f_0}$		FIFO_MUX	ARB_MUX		
$lpha_{s_1}^{f_0}$		$=\gamma_1$	$=\gamma_{5,125}$		
$lpha_{s_1}^{x(\hat{f}_0)}$		$=\gamma_{5,25}$			
	$R_{s_1}^{\mathrm{l.o.}f_0}$	=	15		
$\beta_{s_1}^{\mathrm{l.o.}f_0} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_0)}$		$\beta_{s_1} = b_{s_1}^{x(f_0)}$	$\beta_{s_1} = \alpha_{s_1}^{x(f_0)}$		
$T_{s_1}^{\mathrm{l.o.}f_0}$		$20 \cdot [t - 20]^+ = 25$	$20 \cdot [t - 20]^+ = 5 \cdot t + 25$		
		$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$		
	=		$=\beta_{15,28\frac{1}{3}}$		
	$r_{s_2}^{f_0}$	= 5			
$\alpha_{s_2}^{f_0} = \alpha_{s_1}^{f_0} \oslash \beta_{s_1}^{\text{l.o.}f_0} = \gamma_{r_{s_2}^{f_0}, b_{s_2}^{f_0}}$	$b_{s_2}^{f_0}$	$\alpha_{s_1}^{f_0}(T_{s_1}^{\text{l.o.}f_0}) = 5 \cdot 21\frac{1}{4} + 125 = 231\frac{1}{4}$	$\alpha_{s_1}^{f_0}(T_{s_1}^{\text{l.o.}f_0}) = 5 \cdot 28\frac{1}{3} + 125 = 266\frac{2}{3}$		
	=	$=\gamma_{5,231\frac{1}{4}}$	$=\gamma_{5,266\frac{2}{3}}$		

arrivalBound $(s_2, \{f_1\}, \{f_0\}) = \alpha_{s_2}^{f_1}$		FIFO_MUX	ARB_MUX
$lpha_{s_1}^{f_1}$		$=\gamma_{5,25}$	
$lpha_{s_1}^{x(ar{f}_1)}$		$=\gamma_{0,0}$	
$\beta_{s_1}^{\text{l.o.}f_1} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_1)} = \beta_{R_{s_1}^{\text{l.o.}f_1}}$	$T_{s_1}^{\text{l.o.}f_1}$	= ,	$\beta_{20,20}$
, , , , , , , , , , , , , , , , , , ,	$r_{s_2}^{f_1}$	=	= 10
$\alpha_{s_2}^{f_1} = \alpha_{s_1}^{f_1} \oslash \beta_{s_1}^{\text{l.o.}f_1} = \gamma_{r_{s_1}^{f_1}, b_{s_1}^{f_1}}$	$b_{s_2}^{f_1}$	$\alpha_{s_1}^{f_1}(T_{s_1}^{\text{l.o.}f_1}) = 5 \cdot 20 + 25 = 1$	
	=	= '	$\gamma_{5,125}$

PBOO-AB:

arrivalBound $(s_3, \{f_0\}, \{\})$ =	$= \alpha_{s_3}^{f_0}$	FIFO_MUX	ARB_MUX
$lpha_{s_2}^{f_0}$		$=\gamma_{5,231\frac{1}{4}}$	$=\gamma_{5,266\frac{2}{3}}$
$\alpha_{s_2}^{x(f_0)}$		=	$\gamma_{5,125}$
	$R_{s_2}^{\mathrm{l.o.}f_0}$		= 15
$\beta_{s_2}^{\text{l.o.}f_0} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_0)}$		$\beta_{s_2} = b_{s_2}^{x(f_0)}$	$\beta_{r} = \alpha^{x(f_0)}$
	$T_{s_2}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 156\frac{1}{4}$	$\beta_{s_2} = \alpha_{s_2}^{x(f_0)}$ $20 \cdot [t - 20]^+ = 5 \cdot t + 200$
		$t = 27\frac{13}{16}$	t = 40
	=	$=\beta_{15,27\frac{13}{16}}$	$=\beta_{15,40}$
	$r_{s_3}^{f_0}$		=5
$\alpha_{s_3}^{f_0} = \alpha_{s_2}^{f_0} \oslash \beta_{s_2}^{\text{l.o.}f_0} = \gamma_{r_{s_3}^{f_1}, b_{s_3}^{f_1}}$	$\begin{array}{ c c c }\hline r_{s_3}^{f_0} \\ b_{s_3}^{f_0} \\ \hline \end{array}$	$\alpha_{s_2}^{f_0}(T_{s_2}^{\text{l.o.}f_0}) = 370\frac{5}{16}$	$\alpha_{s_2}^{f_0}(T_{s_2}^{\text{l.o.}f_0}) = 466\frac{2}{3}$
	=	$=\gamma_{5,370\frac{5}{16}}$	$=\gamma_{5,466\frac{2}{3}}$

PMOO-AB, ARB MUX:

$$\alpha_{s_3}^{f_0} = \alpha^{f_0} \oslash \beta_{\langle s_0, s_2 \rangle}^{\mathbf{l.o.} f_0}$$

Note, that we use a simplified notation here due to the use of rate-latencies and token-buckets as well as the lack of demultiplexing on the analyzed path.

$$\beta_{\langle s_0, s_2 \rangle}^{\mathbf{l.o.}f_0} = \beta_{s_0} \otimes \left((\beta_{s_1} \otimes \beta_{s_2}) \ominus \alpha^{f_1} \right)$$

$$= \beta_{20,20} \otimes \left((\beta_{20,20} \otimes \beta_{20,20}) \ominus \gamma_{5,25} \right)$$

$$= \beta_{20,20} \otimes (\beta_{20,40} \ominus \gamma_{5,25})$$

$$= \beta_{20,20} \otimes \beta_{15,55}$$

$$= \beta_{15,75}$$

$$\alpha_{s_3}^{f_0} = \alpha^{f_0} \otimes \beta_{\langle s_0, s_2 \rangle}^{\mathbf{l.o.}f_0}$$

$$= \gamma_{5,25} \otimes \beta_{15,75}$$

$$= \gamma_{5,400}$$

arrivalBound $(s_2, \{f_0, f_1\}, \{\}) = \alpha_{s_2}^{\{f_0, f_1\}}$	arrivalBound $(s_2, \{f_0, f_1\}, \{\}) = \alpha_{s_2}^{\{f_0, f_1\}}$		
$lpha_{s_1}^{\{f_0,f_1\}}$	$=\gamma_{10,150}$		
	$lpha_{s_1}^{x\{f_0,f_1\}}$		
$\beta_{s_1}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_1} \ominus \alpha_{s_1}^{x\{f_0,f_1\}} = \beta_{R_{s_1}^{\text{l.o.}\{f_0,f_1\}}, T_{s_1}^{\text{l.o.}\{f_0,f_1\}}}$	$\beta_{s_1}^{\text{l.o.}\{f_0,f_1\}} = \beta_{s_1} \ominus \alpha_{s_1}^{x\{f_0,f_1\}} = \beta_{R_{s_1}^{\text{l.o.}\{f_0,f_1\}}, T_{s_1}^{\text{l.o.}\{f_0,f_1\}}}$		$=\beta_{20,20}$
	$r_{s_2}^{\{f_0,f_1\}}$		= 10
$\alpha_{s_2}^{\{f_0,f_1\}} = \alpha_{s_1}^{\{f_0,f_1\}} \oslash \beta_{s_1}^{\text{l.o.}\{f_0,f_1\}} = \gamma_{r_{s_2}^{\{f_0,f_1\}},b_{s_2}^{\{f_0,f_1\}}}$	$b_{s_2}^{\{f_0,f_1\}}$	$\alpha_{s_1}^{\{f_0,f_1\}}(T_{s_1}^{\text{l.o.}\{f\}})$	f_0, f_1) = $10 \cdot 20 + 150 = 350$
	=		$=\gamma_{10,350}$

$\operatorname{arrivalBound}(s_2, \{f_0\}, \{f_1\}) = \alpha$	f_0	FIFO_MUX	ARB_MUX
$lpha_{s_1}^{f_0}$		=	$\gamma_{5,125}$
$\alpha_{s_1}^{x(f_0)}$		$=\gamma_{0,0}$	
$\beta_{s_1}^{\text{l.o.}f_0} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_0)} = \beta_{R_{s_1}^{\text{l.o.}f_0}, T_{s_1}^{\text{l.o.}}}$	$0.f_0$	=	$\beta_{20,20}$
r	$s_2^{f_0}$		= 10
$\alpha_{s_2}^{f_0} = \alpha_{s_1}^{f_0} \oslash \beta_{s_1}^{\text{l.o.}f_0} = \gamma_{r_{s_1}^{f_0}, b_{s_1}^{f_0}} $	$\frac{f_0}{s_2}$	$\alpha_{s_1}^{f_0}(T_{s_1}^{\text{l.o.}f_0}) = 0$	$5 \cdot 20 + 125 = 225$
=	=	=	$\gamma_{5,225}$

Flow f_0

PBOO-AB:

PBC	OO-AB: TFA	FIFO_MUX	ARB_MUX		
	α_{s_0}	=	$=\gamma_{5,25}$		
s_0	$D_{s_0}^{f_0}$	$\beta_{s_0} = b_{s_0}$ $20 \cdot [t - 20]^+ = 25$ $t = 21\frac{1}{4}$	FIFO per microflow $\beta_{s_0} = b_{s_0}$ $20 \cdot [t - 20]^+ = 25$ $t = 21\frac{1}{4}$		
	$B_{s_0}^{f_0}$:	$= 5 \cdot 20 + 25 = 125$		
	$\alpha_{s_1} = \alpha_{s_1}^{f_0} + \alpha_{s_1}^{f_1}$	$= \gamma_{5,125} + \beta_{s_1} = b_{s_1}$	$\gamma_{5,25} = \gamma_{10,150}$		
s_1	$D_{s_1}^{f_0}$	$20 \cdot [t - 20]^+ = 150$	$\beta_{s_1} = \alpha_{s_1}$ $20 \cdot [t - 20]^+ = 10 \cdot t + 150$ $t = 55$ $10 \cdot 20 + 150$		
	$B_{s_1}^{f_0}$	$\alpha_{s_1}(T_{s_1}) = =$	$10 \cdot 20 + 150$ 350		
	$\alpha_{s_2} = \alpha_{s_2}^{\{f_0, f_1\}}$	$=\gamma_{10,350}$			
s_2	$D_{s_2}^{f_0}$	$\beta_{s_2} = b_{s_2} 20 \cdot [t - 20]^+ = 350 t = 37\frac{1}{2}$	$\beta_{s_2} = \alpha_{s_2}$ $20 \cdot [t - 20]^+ = 10 \cdot t + 350$ $t = 75$ $10 \cdot 20 + 350$		
	$B_{s_2}^{f_0}$	$\alpha_{s_2}(\tilde{T_{s_2}}) =$	$10 \cdot 20 + 350$ 550		
	$\alpha_{s_3} = \alpha_{s_3}^{f_0}$	$=\gamma_{5,370\frac{5}{16}}$	$=\gamma_{5,466\frac{2}{3}}$		
s_3	$D_{s_3}^{f_0}$	$\beta_{s_3} = b_{s_3}$ $20 \cdot [t - 20]^+ = 370 \frac{5}{16}$ $t = 38 \frac{33}{64}$	FIFO per micro flow $\beta_{s_3} = b_{s_3}$ $20 \cdot [t - 20]^+ = 466 \frac{2}{3}$ $t = 43 \frac{1}{3}$		
	$B_{s_3}^{f_0}$	$\alpha_{s_3}(T_{s_3}) = 5 \cdot 20 + 370 \frac{5}{16}$ $= 470 \frac{5}{16}$	$\alpha_{s_3}(T_{s_3}) = 5 \cdot 20 + 466 \frac{2}{3}$ $= 566 \frac{2}{3}$		
	D^{f_0}	$\sum_{i=0}^{3} D_{s_i}^{f_0} = 124 \frac{49}{64}$	$\frac{\sum_{i=0}^{3} D_{s_i}^{f_0} = 194\frac{7}{12}}{\max_{i=0}^{3} b_{s_i}^{f_0} = 566\frac{2}{3}}$		
	B^{f_0}	$\max_{i=0}^{3} b_{s_i}^{f_0} = 550$	$\max_{i=0}^{3} b_{s_i}^{f_0} = 566\frac{2}{3}$		

Г	PMOO-AB:	ADD MIN
	TFA	ARB_MUX
	α_{s_0}	$= \gamma_{5,25}$
s_0		FIFO per microflow
		$\beta_{s_0} = b_{s_0}$
	$D_{s_0}^{f_0}$	$20 \cdot [t - 20]^{+} = 25$
		$t = 21\frac{1}{4}$
	$B_{s_0}^{f_0}$	$\alpha_{s_0}(T_{s_0}) = 125$
	$\alpha_{s_1} = \alpha_{s_1}^{f_0} + \alpha_{s_1}^{f_1}$	
s_1	$\alpha_{s_1} - \alpha_{s_1} + \alpha_{s_1}$	$= \gamma_{5,125} + \gamma_{5,25} = \gamma_{10,150}$ $\beta_{s_1} = \alpha_{s_1}$
01	$D_{s_1}^{f_0}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 150$
	01	t = 55
		$t = 55$ $\alpha_{s_1}(T_{s_1}) = 10 \cdot 20 + 150$
	$B_{s_1}^{f_0}$	= 350
	$\alpha_{s_2} = \alpha_{s_2}^{\{f_0, f_1\}}$	
_	$\alpha_{s_2} = \alpha_{s_2}$	$= \gamma_{10,350}$ $\beta_{s_2} = \alpha_{s_2}$
s_2		_ =
	$D_{s_2}^{f_0}$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 350$
		t = 75
	$B_{s_2}^{f_0}$	$\alpha_{s_2}(T_{s_2}) = 550$
	$\alpha_{s_3} = \alpha_{s_3}^{f_0}$	$= \gamma_{5,400}$
s_3	3 83	FIFO per micro flow
		$\beta_{s_3} = b_{s_3}$
	$D_{s_3}^{f_0}$	
	-3	$20 \cdot [t - 20]^+ = 400$
		t = 40
	$B_{s_2}^{f_0}$	$\alpha_{s_3}(T_{s_3}) = 5 \cdot 20 + 400$
	$D_{s_3}^{\circ\circ}$	= 500
	D^{f_0}	$\begin{array}{c} \sum_{i=0}^{3} D_{s_{i}}^{f_{0}} = 191\frac{1}{4} \\ \max_{i=0}^{3} b_{s_{i}}^{f_{0}} = 550 \end{array}$
	B^{f_0}	$\max_{i=0}^{3} b_{s_i}^{f_0} = 550$

	SFA		FIFO_MUX	ARB_MUX	
s_0	$lpha_{s_0}^{x(f_0)}$		$=\gamma_{0,0}$		
	$eta_{s_0}^{\mathrm{l.o.}f_0}$		= k	320,20	
	$lpha_{s_1}^{x(f_0)}$			$\gamma_{5,25}$	
s_1	$a(f_0)$	$R_{s_1}^{\mathrm{l.o.}f_0}$		15	
	$\beta_{s_1}^{\text{l.o.}f_0} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_0)}$		$\beta_{s_1} = b_{s_1}^{x(f_0)}$	$\beta_{s_1} = \alpha_{s_1}^{x(f_0)}$	
		$T_{s_1}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 25$	$20 \cdot [t - 20]^+ = 5 \cdot t + 25$	
			$t = 21\frac{1}{4}$	$t = 28\frac{1}{3}$	
		=	$=\beta_{15,21\frac{1}{4}}$	$=\beta_{15,28\frac{1}{3}}$	
	$lpha_{s_2}^{x(f_0)}$		= ^	ý5,125	
0.0		$R_{s_2}^{\mathrm{l.o.}f_0}$	=	: 15	
s_2	$\beta_{s_2}^{\text{l.o.}f_0} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_0)}$		$\beta_{s_2} = b_{s_2}^{x(f_0)}$	$\beta_{s_2} = \alpha_{s_2}^{x(f_0)}$	
		$T_{s_2}^{\mathrm{l.o.}f_0}$	$20 \cdot [t - 20]^+ = 125$	$20 \cdot [t-20]^+ = 5 \cdot t + 125$	
		_	$t = 26\frac{1}{4}$	t = 35	
		=	$=\beta_{15,26\frac{1}{4}}$	$=\beta_{15,35}$	
	$\alpha_{s_3}^{x(f_0)}$		=	$\gamma_{0,0}$	
s_3	$\beta_{s_3}^{\text{l.o.}f_0} = \beta_{s_3} \ominus \alpha_{s_3}^x$	(f_0)		320,20	
	$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f}}$	0	$\bigotimes_{i=0}^{3} \beta_{s_{i}}^{\text{l.o.}f_{0}} = \beta_{15,87\frac{1}{2}}$ $\beta_{e2e}^{\text{l.o.}f_{0}} = b^{f_{0}}$	$\bigotimes_{i=0}^{3} \beta_{s_i}^{\text{l.o.} f_0} = \beta_{15,103\frac{1}{3}}$	
				$\beta_{\text{e2e}}^{\text{l.o.}f_0} = b^{f_0}$	
	D^{f_0}		$15 \cdot [t - 87\frac{1}{2}]^{+} = 25$	$15 \cdot [t - 103\frac{1}{3}]^+ = 25$	
			$t = 89\frac{1}{6}$ $\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 87\frac{1}{2} + 25$	t = 105	
D.f.		$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 87\frac{1}{2} + 25$	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 103\frac{1}{3} + 25$		
	B^{f_0}		$=$ $462\frac{1}{2}$	$=$ $541\frac{2}{3}$	

	PMOO	ARB_MUX	
s_0	$\alpha_{s_0}^{\bar{x}(f_0)}$	$=\gamma_{0,0}$	
, and the second	$\alpha_{s_0}^{x(f_0)}$	$=\gamma_{0,0}$	
s_1	$lpha_{s_1}^{\overline{x}(f_0)}$	$=\gamma_{5,25}$	
_	$lpha_{s_1}^{x_f(f_0)}$	$=\gamma_{5,25}$	
s_2	$\alpha_{s_1}^{\bar{x}(f_0)}$	$=\gamma_{0,0}$	
-	$\alpha_{s_2}^{x_2}$	$=\gamma_{5,125}$	
s_3	$lpha_{s_3}^{\overline{x}}(f_0)$	$=\gamma_{0,0}$	
~ 3	$lpha_{s_3}^{x(f_0)}$	$=\gamma_{0,0}$	
	$R_{\text{e2e}}^{\text{l.o.}f_0} = \bigwedge_{i \in \{0,1,2,3\}} \left(R_{s_i} - r_{s_i}^{x(f_0)} \right)$	$= (20-0) \wedge (20-5) \wedge (20-5) \wedge (20-0)$	
$\beta_{\text{e2e}}^{\text{l.o.}f_0} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_0}, T_{\text{e2e}}^{\text{l.o.}f_0}}$		= 15	
R_{e2e} , R_{e2e}	$ T_{\text{e2e}}^{\text{l.o.}f_0} = \sum_{i \in \{0,1,2,3\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_0)} + r_{s_i}^{x(f_0)} \cdot T_{s_i}}{R_{\text{e2e}}^{\text{l.o.}f_0}} \right) $	$= 20 + \frac{0+0\cdot20}{15} + 20 + \frac{25+5\cdot20}{15} + 20 + \frac{0+5\cdot20}{15} + 20 + \frac{0+0\cdot20}{15}$ $= 95$	
	=	$=\beta_{15,95}$	
		$eta_{\mathrm{e}2\mathrm{e}}^{\mathrm{l.o.}f_0} = b^{f_0}$	
	D^{f_0}	$15 \cdot [t - 95]^+ = 25$	
		$t = 96\frac{2}{3}$	
	B^{f_0}	$\alpha^{f_0}(T_{\text{e2e}}^{\text{l.o.}f_0}) = 5 \cdot 95 + 25$	
	D	= 500	

Flow f_1

	TFA	FIFO_MUX	ARB_MUX	
	$\alpha_{s_1} = \alpha_{s_1}^{f_0} + \alpha_{s_1}^{f_1}$		$+\gamma_{5,125} = \gamma_{10,150}$	
s_1		$\beta_{s_1} = b_{s_1}$		
	$D_{s_1}^{f_1}$	$20 \cdot [t - 20]^+ = 150$	$20 \cdot [t - 20]^{+} = 10 \cdot t + 150$	
		$t = 27\frac{1}{2}$	t = 55	
	$B_{s_1}^{f_1}$	$\alpha_{s_1}(T_{s_1})$	$= 10 \cdot 20 + 150$	
	D_{s_1}		= 350	
	$\alpha_{s_2} = \alpha_{s_2}^{\{f_0, f_1\}}$		$=\gamma_{10,350}$	
s_2		$\beta_{s_2} = b_{s_2}$	$\beta_{s_2} = \alpha_{s_2}$	
	$D_{s_2}^{f_1}$	$20 \cdot [t - 20]^+ = 350$	$20 \cdot [t - 20]^+ = 10 \cdot t + 350$	
		$t = 37\frac{1}{2}$	t = 75	
	$B_{s_2}^{f_1}$	$\alpha_{s_2}(T_{s_2}) = 10 \cdot 20 + 350$		
	$D_{\tilde{s}_2}$		= 550	
	D^{f_1}	$\sum_{i=1}^{2} D_{s_i}^{f_1} = 65 \qquad \sum_{i=1}^{2} D_{s_i}^{f_1} = 130$		
	B^{f_1}	$B^{f_1} \qquad \qquad \max_{i=1}^2 b_{s_i}^{f_1} = 550$		

	SFA		FIFO_MUX	ARB_MUX	
	$\alpha_{s_1}^{x(f_1)}$		$=\gamma_{5,125}$		
s_1	(()	$R_{s_1}^{\mathrm{l.o.}f_1}$		15	
	$\beta_{s_1}^{\text{l.o.}f_1} = \beta_{s_1} \ominus \alpha_{s_1}^{x(f_1)}$		$\beta_{s_1} = b_{s_1}^{x(f_1)}$	$\beta_{s_1} = \alpha_{s_1}^{x(f_0)}$	
		$T_{s_1}^{\mathrm{l.o.}f_1}$	$20 \cdot [t - 20]^+ = 125$	$20 \cdot [t-20]^+ = 5 \cdot t + 125$	
			$t = 26\frac{1}{4}$	t = 35	
		=	$=\beta_{15,26\frac{1}{4}}$	$=\beta_{15,35}$	
	$\alpha_{s_2}^{x(f_1)}$			5,225	
s_2		$R_{s_2}^{\mathrm{l.o.}f_1}$		15	
02	$\beta_{s_2}^{\text{l.o.}f_1} = \beta_{s_2} \ominus \alpha_{s_2}^{x(f_1)}$		$\beta_{s_2} = b_{s_2}^{x(f_1)}$	$\beta_{s_2} = \alpha_{s_2}^{x(f_1)}$	
		$T_{s_2}^{\mathrm{l.o.}f_1}$	$20 \cdot [t - 20]^+ = 225$	$20 \cdot [t - 20]^+ = 5 \cdot t + 225$	
		32	$t = 31\frac{1}{4}$	$t = 41\frac{2}{3}$	
		=	$= \beta_{15,31\frac{1}{4}}$	$=\beta_{15,41\frac{2}{3}}$	
	$\beta_{\text{e2e}}^{\text{l.o.}f_1} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_1}, T_{\text{e2e}}^{\text{l.o.}f}}$	1	$\bigotimes_{i=1}^{2} \beta_{s_{i}}^{\text{l.o.}f_{1}} = \beta_{15,57\frac{1}{2}}$ $\beta_{e2e}^{\text{l.o.}f_{1}} = b^{f_{1}}$	$\bigotimes_{i=1}^{2} \beta_{s_{i}}^{\text{l.o.}f_{1}} = \beta_{15,76\frac{2}{3}}$ $\beta_{\text{e2e}}^{\text{l.o.}f_{1}} = b^{f_{1}}$	
			$\beta_{\text{e2e}}^{\text{l.o.}f_1} = b^{f_1}$	$\beta_{\text{e2e}}^{\text{l.o.}f_1} = b^{f_1}$	
	D^{f_1}		$15 \cdot [t - 57\frac{1}{2}]^{+} = 25$	$15 \cdot [t - 76\frac{2}{3}]^{+} = 25$	
			$t = 59\frac{1}{6}$ $\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 57\frac{1}{2} + 25$	$t = 78\frac{1}{3}$	
	B^{f_1}		$\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 57\frac{1}{2} + 25$	$t = 78\frac{1}{3}$ $\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 76\frac{2}{3} + 25$	
	<i>D</i>		$=$ $312\frac{1}{2}$	$=$ $408\frac{1}{3}$	

	PMOO	ARB_MUX		
6-	$lpha_{\mathbf{s}_1}^{ar{x}(f_1)}$	$=\gamma_{5,125}$		
s_1	$\alpha_{s}^{x(j_1)}$	$=\gamma_{5,125}$		
s_2	$\alpha^{x(f_1)}$	$=\gamma_{0,0}$		
0.2	$\alpha_{s_2}^{x(f_1)}$	$=\gamma_{5,225}$		
	$R_{\text{e2e}}^{\text{l.o.}f_1} = \bigwedge_{i \in \{1,2\}} \left(R_{s_i} - r_{s_i}^{x(f_1)} \right)$	$= (20-5) \wedge (20-5)$		
$\beta_{\text{e2e}}^{\text{l.o.}f_1} = \beta_{R_{\text{e2e}}^{\text{l.o.}f_1}, T_{\text{e2e}}^{\text{l.o.}f_1}}$	$r_{\text{e2e}} = r_{i \in \{1,2\}} \left(r_{s_i}, r_{s_i}\right)$	= 15		
R _{e2e} 1, I _{e2e} 1	$T_{\text{e2e}}^{\text{l.o.}f_1} = \sum_{i \in \{1,2\}} \left(T_{s_i} + \frac{b_{s_i}^{\bar{x}(f_1)} + r_{s_i}^{x(f_1)} \cdot T_{s_i}}{R_{c2e}^{\text{l.o.}f_1}} \right)$	$= 20 + \frac{125 + 5 \cdot 20}{15} + 20 + \frac{0 + 5 \cdot 20}{15}$		
	$= \frac{2}{R_{\text{e2e}}^{\text{loc},1}} $	$=$ $61\frac{2}{3}$		
	=	$=\beta_{15,81\frac{2}{3}}$		
		$eta_{ ext{e2e}}^{ ext{l.o.}f_1} = b^{f_1}$		
	D^{f_1}	$15 \cdot [t - 61\frac{2}{3}]^+ = 25$		
		$t = 63\frac{1}{3}$		
	B^{f_1}	$\alpha^{f_1}(T_{\text{e2e}}^{\text{l.o.}f_1}) = 5 \cdot 61\frac{2}{3} + 25$		
	D	$= 333\frac{1}{3}$		