

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C07H 21/02, 21/04, C12Q 1/68 C12Q 1/70	A1	(11) International Publication Number: WO 93/13120 (43) International Publication Date: 8 July 1993 (08.07.93)		
(21) International Application Number: PCT/US92/11165		(74) Agents: KENNEDY, Bill et al.; Morrison & Foerster, 755 Page Mill Road, Palo Alto, CA 94304 (US).		
(22) International Filing Date: 22 December 1992 (22.12.92)		(81) Designated States: CA, JP, KR, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).		
(30) Priority data: 07/813,586 23 December 1991 (23.12.91) US		Published <i>With international search report.</i>		
(71) Applicant: CHIRON CORPORATION [US/US]; 4560 Horton Street, Emeryville, CA 94608 (US).				
(72) Inventors: IRVINE, Bruce, D. ; 3401 El Monte Drive, Concord, CA 94519 (US). KOLBERG, Janice, A. ; 131 Scotts Valley Road, Hercules, CA 94547 (US). RUNNING, Joyce, A. ; 3141 Fitzpatrick Drive, Concord, CA 94519 (US). URDEA, Michael, S. ; 100 Bunce Meadow Road, Alamo, CA 94507 (US).				
(54) Title: HBV AMPLIFIER PROBES FOR USE IN SOLUTION PHASE SANDWICH HYBRIDIZATION ASSAYS				
(57) Abstract Novel DNA probe sequences for detection of HBV in a sample in a solution phase sandwich hybridization assay are described. Amplified nucleic acid hybridization assays using the probes are exemplified.				

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SK	Slovak Republic
CI	Côte d'Ivoire	LJ	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	MC	Monaco	TG	Togo
DE	Germany	MC	Madagascar	UA	Ukraine
DK	Denmark	ML	Mali	US	United States of America
ES	Spain	MN	Mongolia	VN	Viet Nam
FI	Finland				

-1-

5

HBV AMPLIFIER PROBES FOR USE IN SOLUTION PHASE SANDWICH HYBRIDIZATION ASSAYS

10 Technical Field

This invention is in the field of nucleic acid hybridization assays. More specifically, it relates to novel nucleic acid probes for detecting Hepatitis B Virus (HBV).

15

Background Art

Viral hepatitis is a systemic disease involving primarily the liver, with HBV being primarily responsible for most cases of serum or long-incubation hepatitis.

20

Antigenic characterization of HBV derives from the complex protein found on the virus's surface. One antigenic specificity, designated a, is common to all HBV surface antigen (HBsAg), while two other sets of mutually exclusive determinants result in four principle subtypes of HBsAg: adw, ayw, adr, and ayr.

25

Pasek et al. (Nature 282:575-579, 1979) disclosed the entire nucleotide sequence of subtype ayw HBV genomic DNA.

30

Valenzuela et al. (Animal Virus Genetics, Field et al., eds., Academic press, NY, 1981) reported the complete nucleotide sequence of subtype adw2 HBV DNA.

EPA Pub. No. 0068719 disclosed the sequence and expression of HBsAg from the adw serotype.

35

- 2 -

Fujiyama et al. (Nucleic Acid Research 11:4601-4610, 1983) disclosed the entire nucleotide sequence of serotype adr HBV DNA.

British patent application No. 2034323A, published 6/4/80, describes the isolation and cloning of the HBV genome and its use to detect HBV in serum.

Berninger et al. (J. Med. Virol. 9:57-68, 1982) discloses an assay based on nucleic acid hybridization which detects and quantitates HBV in serum, using the complete HBV genome as probe.

U.S. 4,562,159 discloses a method and test kit for the detection of HBV by DNA hybridization using cloned, genomic HBV DNA as a probe.

Commonly owned U.S. 4,868,105 describes a solution phase nucleic acid sandwich hybridization assay in which analyte nucleic acid is first hybridized in solution to a labeling probe set and to a capturing probe set in a first vessel. The probe-analyte complex is then transferred to a second vessel that contains a solid-phase-immobilized probe that is substantially complementary to a segment of the capturing probes. The segments hybridize to the immobilized probe, thus removing the complex from solution. Having the analyte in the form of an immobilized complex facilitates subsequent separation steps in the assay. Ultimately, single stranded segments of the labeling probe set are hybridized to labeled probes, thus permitting the analyte-containing complex to be detected via a signal generated directly or indirectly from the label.

Commonly owned European Patent Application (EPA) 883096976 discloses a variation in the assay described in U.S. 4,868,105 in which the signal generated by the labeled probes is amplified. The amplification involves the use of nucleic acid multimers. These multimers are branched polynucleotides that are

- 3 -

constructed to have a segment that hybridizes specifically to the analyte nucleic acid or to a nucleic acid (branched or linear) that is bound to the analyte and iterations of a second segment that hybridize
5 specifically to the labeled probe. In the assay employing the multimer, the initial steps of hybridizing the analyte to label or amplifier probe sets and capturing probe sets in a first vessel and transferring the complex to another vessel containing immobilized
10 nucleic acid that will hybridize to a segment of the capturing probes are followed. The multimer is then hybridized to the immobilized complex and the labeled probes in turn hybridized to the second segment iterations on the multimer. Since the multimers provide
15 a large number of sites for label probe attachment, the signal is amplified. Amplifier and capture probe sequences are disclosed for Hepatitis B virus, Neisseria gonorrhoeae, penicillin and tetracycline resistance in N. gonorrhoeae, and Chlamydia trachomatis.

20 Commonly owned copending application Serial No. 558,897, filed 27 July 1990, describes the preparation of large comb-type branched polynucleotide multimers for use in the above-described solution phase assay. The combs provide greater signal enhancement in the assays than the
25 smaller multimers.

Disclosure of the Invention

One aspect of the invention is a synthetic oligonucleotide useful as an amplifier probe in a
30 sandwich hybridization assay for HBV comprising a first segment having a nucleotide sequence substantially complementary to a segment of HBV nucleic acid and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide
35 multimer.

- 4 -

Another aspect of the invention is a synthetic oligonucleotide useful as a capture probe in a sandwich hybridization assay for HBV comprising a first segment having a nucleotide sequence substantially complementary to a segment of HBV nucleic acid and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase.

5 Another aspect of the invention is a solution sandwich hybridization assay for detecting the presence 10 of HBV in a sample, comprising

(a) contacting the sample under hybridizing conditions with an excess of (i) an amplifier probe oligonucleotide comprising a first segment having a nucleotide sequence substantially complementary to a 15 segment of HBV nucleic acid and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer and (ii) a capture probe oligonucleotide comprising a first segment having a nucleotide sequence that is 20 substantially complementary to a segment of HBV nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;

25 (b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;

(c) thereafter separating materials not bound to the solid phase;

30 (d) contacting the bound product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second

35

- 5 -

oligonucleotide units that are substantially complementary to a labeled oligonucleotide;

(e) removing unbound multimer;

5 (f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;

(g) removing unbound labeled oligonucleotide;

and

10 (h) detecting the presence of label in the solid phase complex product of step (g).

Another aspect of the invention is a kit for the detection of HBV comprising a kit for the detection of HBV in a sample comprising in combination

15 (i) a set of amplifier probe oligonucleotides wherein the amplifier probe oligonucleotide comprises a first segment having a nucleotide sequence substantially complementary to a segment of HBV nucleic acid and a second segment having a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer;

20 (ii) a set of capture probe oligonucleotides wherein the capture probe oligonucleotide comprises a first segment having a nucleotide sequence that is substantially complementary to a segment of HBV nucleic acid and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;

25 (iii) a nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide; and

(iv) a labeled oligonucleotide.

-6-

These and other embodiments will readily occur to those of ordinary skill in view of the disclosure herein.

Modes for Carrying out the Invention

5 Definitions

In defining the present invention, the following terms will be employed, and are intended to be defined as indicated below.

10 "Solution phase nucleic acid hybridization assay" intends the assay techniques described and claimed in commonly owned U.S. Patent No. 4,868,105 and EPA 883096976.

15 A "modified nucleotide" intends a nucleotide monomer that may be stably incorporated into a polynucleotide and which has an additional functional group. Preferably, the modified nucleotide is a 5'-cytidine in which the N⁴-position is modified to provide a functional hydroxy group.

20 An "amplifier multimer" intends a branched polynucleotide that is capable of hybridizing simultaneously directly or indirectly to analyte nucleic acid and to a multiplicity of polynucleotide iterations (i.e., either iterations of another multimer or iterations of a labeled probe). The branching in the 25 multimers is effected through covalent bonds and the multimers are composed of two types of oligonucleotide units that are capable of hybridizing, respectively, to analyte nucleic acid or nucleic acid hybridized to analyte nucleic acid and to a multiplicity of labeled probes. The composition and preparation of such 30 multimers are described in EPA 883096976 and U.S. Serial No. 558,897 filed 27 July 1990, the disclosures of which are incorporated herein by reference.

35 The term "amplifier probe" is intended as a branched or linear polynucleotide that is constructed to

- 7 -

have a segment that hybridizes specifically to the analyte nucleic acid and iterations of a second segment that hybridize specifically to an amplifier multimer.

The term "capture probe" is intended as an
5 oligonucleotide having a segment substantially complementary to a nucleotide sequence of the target DNA and a segment that is substantially complementary to a nucleotide sequence of a solid-phase-immobilized probe.

"Large" as used herein to describe the comb-type branched polynucleotides of the invention intends a molecule having at least about 15 branch sites and at least about 20 iterations of the labeled probe binding sequence.

"Comb-type" as used herein to describe the structure of the branched polynucleotides of the invention intends a polynucleotide having a linear backbone with a multiplicity of sidechains extending from the backbone.

A "cleavable linker molecule" intends a molecule that may be stably incorporated into a polynucleotide chain and which includes a covalent bond that may be broken or cleaved by chemical treatment or physical treatment such as by irradiation.

All nucleic acid sequences disclosed herein are written in a 5' to 3' direction unless otherwise indicated. Nucleotides are designated according to the nucleotide symbols recommended by the IUPAC-IUB Biochemical Nomenclature.

30 Solution Phase Hybridization Assay

The general protocol for the solution phase sandwich hybridizations is as follows. The analyte nucleic acid is placed in a microtiter well with an excess of two single-stranded nucleic acid probe sets:
35 (1) a set of capture probes, each having a first binding

-8-

sequence substantially complementary to the analyte and a second binding sequence that is substantially complementary to nucleic acid bound to a solid support, for example, the well surface or a bead, and (2) a set of 5 amplifier probes (branched or linear), each having a first binding sequence that is capable of specific binding to the analyte and a second binding sequence that is capable of specific binding to a segment of the multimer. The resulting product is a three component 10 nucleic acid complex of the two probes hybridized to the analyte by their first binding sequences. The second binding sequences of the probes remain as single-stranded segments as they are not complementary to the analyte. This complex hybridizes to the immobilized probe on the 15 solid surface via the second binding sequence of the capture probe. The resulting product comprises the complex bound to the solid surface via the duplex formed by the oligonucleotide bound to the solid surface and the second binding sequence of the capture probe. Unbound 20 materials are then removed from the surface such as by washing.

The amplification multimer is then added to the bound complex under hybridization conditions to permit the multimer to hybridize to the available second binding sequence(s) of the amplifier probe of the complex. The resulting complex is then separated from any unbound 25 multimer by washing. The labeled oligonucleotide is then added under conditions which permit it to hybridize to the substantially complementary oligonucleotide units of 30 the multimer. The resulting immobilized labeled nucleic acid complex is then washed to remove unbound labeled oligonucleotide, and read.

The analyte nucleic acids may be from a variety of sources, e.g., biological fluids or solids, and may be 35 prepared for the hybridization analysis by a variety of

- 9 -

means, e.g., proteinase K/SDS, chaotropic salts, etc. Also, it may be of advantage to decrease the average size of the analyte nucleic acids by enzymatic, physical or chemical means, e.g., restriction enzymes, sonication, 5 chemical degradation (e.g., metal ions), etc. The fragments may be as small as 0.1 kb, usually being at least about 0.5 kb and may be 1 kb or higher. The analyte sequence is provided in single-stranded form for analysis. Where the sequence is naturally present in 10 single-stranded form, denaturation will not be required. However, where the sequence may be present in double-stranded form, the sequence should be denatured. Denaturation can be carried out by various techniques, such as alkali, generally from about 0.05 to 0.2 M 15 hydroxide, formamide, salts, heat, enzymes, or combinations thereof.

The first binding sequences of the capture probe and amplifier probe that are substantially complementary to the analyte sequence will each be of at 20 least 15 nucleotides, usually at least 25 nucleotides, and not more than about 5 kb, usually not more than about 1 kb, preferably not more than about 100 nucleotides. They will typically be approximately 30 nucleotides. They will normally be chosen to bind to different 25 sequences of the analyte. The first binding sequences may be selected based on a variety of considerations. Depending upon the nature of the analyte, one may be interested in a consensus sequence, a sequence associated with polymorphisms, a particular phenotype or genotype, a 30 particular strain, or the like.

The number of different amplifier and capture probes used influences the sensitivity of the assay, because the more probe sequences used, the greater the signal provided by the assay system. Furthermore, the 35 use of more probe sequences allows the use of more

-10-

stringent hybridization conditions, thereby reducing the incidence of false positive results. Thus, the number of probes in a set will be at least one capture probe and at least one amplifier probe, more preferably two capture and two amplifier probes, and most preferably 5-100 capture probes and 5-100 amplifier probes.

5 Probes for HBV were designed as follows. EPA 88309676 discloses a set of HBV probes designed by comparing the DNA sequences of the nine HBV subtypes reported in GenBank. Subsequent experimental analysis 10 has demonstrated that these probes were complementary to the subgenomic strand (i.e., plus sense) of the incompletely double-stranded region of HBV, and thus different subsets of these probes hybridized to different 15 viruses, since the length of the subgenomic strands varies among strains. Accordingly, the probe set has been redesigned to comprise sequences substantially complementary to the genomic-length strand (i.e., minus-sense) of HBV and to contain fewer spacer regions so as 20 to include more oligonucleotides in the probe set, thereby increasing the sensitivity of the assay system.

In general, regions of greatest homology between the HBV isolates were selected as capture probes, while regions of lesser homology were selected as 25 amplifier probes. Thus, as additional strains or isolates of HBV are made available, appropriate probes made be designed by aligning the sequence of the new strain or isolate with the nucleotide sequences used to design the probes of the present invention, and choosing 30 regions of greatest homology for use as capture probes, with regions of lesser homology chosen as amplifier probes. The set of presently preferred probes and their capture or amplifier overhang regions, i.e., the regions which hybridize to sequences immobilized on solid support 35 or to an amplifier multimer, are listed in the examples.

-11-

The second binding sequences of the capture probe and amplifier probe are selected to be substantially complementary, respectively, to the oligonucleotide bound to the solid surface and to a 5 segment of the multimer and so as to not be encountered by endogenous sequences in the sample/analyte. The second binding sequence may be contiguous to the first binding sequence or be spaced therefrom by an intermediate noncomplementary sequence. The probes may 10 include other noncomplementary sequences if desired. These noncomplementary sequences must not hinder the binding of the binding sequences or cause nonspecific binding to occur.

The capture probe and amplifier probe may be 15 prepared by oligonucleotide synthesis procedures or by cloning, preferably the former.

It will be appreciated that the binding sequences need not have perfect complementarity to provide homoduplexes. In many situations, heteroduplexes 20 will suffice where fewer than about 10% of the bases are mismatches, ignoring loops of five or more nucleotides. Accordingly, as used herein the term "complementary" intends exact complementarity wherein each base within the binding region corresponds exactly, and 25 "substantially complementary" intends 90% or greater homology.

The labeled oligonucleotide will include a sequence substantially complementary to the repeated oligonucleotide units of the multimer. The labeled 30 oligonucleotide will include one or more molecules ("labels"), which directly or indirectly provide a detectable signal. The labels may be bound to individual members of the substantially complementary sequence or may be present as a terminal member or terminal tail 35 having a plurality of labels. Various means for

-12-

providing labels bound to the oligonucleotide sequences have been reported in the literature. See, for example, Leary et al., Proc. Natl. Acad. Sci. USA (1983) 80:4045; Renz and Kurz, Nucl. Acids Res. (1984) 12:3435;

5 Richardson and Gumpert, Nucl. Acids Res. (1983) 11:6167; Smith et al., Nucl. Acids. Res. (1985) 13:2399; Meinkoth and Wahl, Anal. Biochem. (1984) 138:267. The labels may be bound either covalently or non-covalently to the substantially complementary sequence. Labels which may

10 be employed include radionuclides, fluorescers, chemiluminescers, dyes, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors, enzyme subunits, metal ions, and the like. Illustrative specific labels include fluorescein, rhodamine, Texas red, phycoerythrin,

15 umbelliferone, luminol, NADPH, α - β -galactosidase, horseradish peroxidase, alkaline phosphatase, etc.

The ratio of capture probe and amplifier probe to anticipated moles of analyte will each be at least stoichiometric and preferably in excess. This ratio is

20 preferably at least about 1.5:1, and more preferably at least 2:1. It will normally be in the range of 2:1 to 10^6 :1. Concentrations of each of the probes will generally range from about 10^{-5} to 10^{-9} M, with sample nucleic acid concentrations varying from 10^{-21} to 10^{-12} M.

25 The hybridization steps of the assay will generally take from about 10 minutes to 20 hours, frequently being completed in about 1 hour. Hybridization can be carried out at a mildly elevated temperature, generally in the range from about 20°C to 80°C, more usually from about

30 35°C to 70°C, particularly 65°C.

The hybridization reactions are usually done in an aqueous medium, particularly a buffered aqueous medium, which may include various additives. Additives which may be employed include low concentrations of

35 detergent (0.01 to 1%), salts, e.g., sodium citrate

-13-

(0.017 to 0.17 M), Ficoll, polyvinylpyrrolidone, carrier nucleic acids, carrier proteins, etc. Nonaqueous solvents may be added to the aqueous medium, such as dimethylformamide, dimethylsulfoxide, alcohols, and 5 formamide. These other solvents are generally present in amounts ranging from 2 to 50%.

The stringency of the hybridization medium may be controlled by temperature, salt concentration, solvent system, and the like. Thus, depending upon the length 10 and nature of the sequence of interest, the stringency will be varied.

Depending upon the nature of the label, various techniques can be employed for detecting the presence of the label. For fluorescers, a large number of different 15 fluorometers are available. For chemiluminescers, luminometers or films are available. With enzymes, a fluorescent, chemiluminescent, or colored product can be provided and determined fluorometrically, luminometrically, spectrophotometrically or visually. 20 The various labels which have been employed in immunoassays and the techniques applicable to immunoassays can be employed with the subject assays.

Kits for carrying out amplified nucleic acid hybridization assays according to the invention will 25 comprise in packaged combination the following reagents: the amplifier probe or set of probes; the capture probe or set of probes; the amplifier multimer; and an appropriate labeled oligonucleotide. These reagents will typically be in separate containers in the kit. The kit 30 may also include a denaturation reagent for denaturing the analyte, hybridization buffers, wash solutions, enzyme substrates, negative and positive controls and written instructions for carrying out the assay.

-14-

The following examples further illustrate the invention. These examples are not intended to limit the invention in any manner.

5

EXAMPLES

Example I

Synthesis of Comb-type Branched Polynucleotide

This example illustrates the synthesis of a comb-type branched polynucleotide having 15 branch sites and sidechain extensions having three labeled probe binding sites. This polynucleotide was designed to be used in a solution phase hybridization as described in EPA 883096976.

All chemical syntheses of oligonucleotides were performed on an automatic DNA synthesizer (Applied Biosystems, Inc., (ABI) model 380 B). Phosphoramidite chemistry of the beta cyanoethyl type was used including 5'-phosphorylation which employed Phostel™ reagent (ABN). Standard ABI protocols were used except as indicated. Where it is indicated that a multiple of a cycle was used (e.g., 1.2 cycle), the multiple of the standard amount of amidite recommended by ABI was employed in the specified cycle. Appended hereto are the programs for carrying out cycles 1.2 and 6.4 as run on the Applied Biosystems Model 380 B DNA Synthesizer.

A comb body of the following structure was first prepared:

3' T₁₈ (TTX')₁₅ GTTTGTGG-5'
30 |
 (RGTCAGTp-5')₁₅
wherein X' is a branching monomer, and R is a periodate cleavable linker.

The portion of the comb body through the 15 (TTX') repeats is first synthesized using 33.8 mg

-15-

aminopropyl-derivatized thymidine controlled pore glass (CPG) (2000 Å, 7.4 micromoles thymidine per gram support) with a 1.2 cycle protocol. The branching site nucleotide was of the formula:

5

10

15

20

25

where R² represents

30

For synthesis of the comb body (not including sidechains), the concentration of beta
35 cyanoethylphosphoramidite monomers was 0.1 M for A, C, G

-16-

and T, 0.15 M for the branching site monomer E, and 0.2 M for Phostel™ reagent. Detritylation was done with 3% trichloroacetic acid in methylene chloride using stepped flowthrough for the duration of the deprotection. At the 5 conclusion the 5' DMT was replaced with an acetyl group.

Cleavable linker R and six base sidechain extensions of the formula 3'-RGTCAGTp (SEQ ID NO:1) were synthesized at each branching monomer site as follows. The base protecting group removal (R^2 in the formula above) was performed manually while retaining the CPG support in the same column used for synthesizing the comb body. In the case of R^2 = levulinyl, a solution of 0.5 M hydrazine hydrate in pyridine/glacial acetic acid (1:1 v/v) was introduced and kept in contact with the CPG 10 support for 90 min with renewal of the liquid every 15 min, followed by extensive washing with pyridine/glacial acetic acid (1:1 v/v) and then by acetonitrile. After 15 the deprotection the cleavable linker R and six base sidechain extensions were added using a 6.4 cycle.

In these syntheses the concentration of phosphoramidites was 0.1 M (except 0.2 M R and Phostel™ reagent; R was 2-(4-(4-(2-Dimethoxytrityloxy)ethyl)-phenoxy 2,3-di(benzoyloxy)-butyloxy)phenyl)ethyl-2-cyanoethyl-N,N-diisopropylphosphoramidite).

Detritylation is effected with a solution of 3% trichloroacetic acid in methylene chloride using continuous flowthrough, followed by a rinse solution of toluene/chloromethane (1:1 v/v). Branched 30 polynucleotide chains were removed from the solid supports automatically in the 380B using the cycle "CE NH₃." The ammonium hydroxide solution was collected in 4 ml screw-capped Wheaton vials and heated at 60°C for 12 hr to remove all base-protecting groups. After cooling 35 to room temperature the solvent was removed in a Speed-

-17-

Vac evaporator and the residue dissolved in 100 μ l water.

3' backbone extensions (segment A), sidechain extensions and ligation template/linkers of the following structures were also made using the automatic

5 synthesizer:

3' Backbone

extension 3'-TCCGTATCCTGGGCACAGAGGTGCP-5' (SEQ ID NO:2)

Sidechain

10 extension 3'-GATGCG (TTCATGCTGTTGGTAG) ₃-5' (SEQ ID NO:3)

Ligation

template for

linking 3'

backbone

extension 3'-AAAAAAAAGCACCTP-5' (SEQ ID NO:4)

15 Ligation tem-

plate for link-

ing sidechain

extension 3'-CGCATCACTGAC-5' (SEQ ID NO:5)

20

25

30

35

-18-

The crude comb body was purified by a standard polyacrylamide gel (7% with 7 M urea and 1X TBE running buffer) method.

The 3' backbone extension and the sidechain extensions were ligated to the comb body as follows. The comb body (4 pmole/ μ l), 3' backbone extension (6.25 pmole/ μ l), sidechain extension (93.75 pmole/ μ l), sidechain linking template (75 pmoles/ μ l) and backbone linking template (5 pmole/ μ l) were combined in 1 mM ATP/ 5 mM DTT/ 50 mM Tris-HCl, pH 8.0/ 10 mM MgCl₂/ 2 mM spermidine, with 0.5 units/ μ l T4 polynucleotide kinase. The mixture was incubated at 37°C for 2 hr, then heated in a water bath to 95°C, and then slowly cooled to below 35°C over a 1 hr period. 2 mM ATP, 10 mM DTT, 14% polyethylene glycol, and 0.21 units/ μ l T4 ligase were added, and the mixture incubated for 16-24 hr at 23°C. The DNA was precipitated in NaCl/ethanol, resuspended in water, and subjected to a second ligation as follows. The mixture was adjusted to 1 mM ATP, 5 mM DTT, 14% polyethylene glycol, 50 mM Tris-HCl, pH 7.5, 10 mM MgCl₂, 2 mM spermidine, 0.5 units/ μ l T4 polynucleotide kinase, and 0.21 units/ μ l T4 ligase were added, and the mixture incubated at 23°C for 16-24 hr. Ligation products were then purified by polyacrylamide gel electrophoresis.

After ligation and purification, a portion of the product was labeled with ³²P and subjected to cleavage at the site of R achieved by oxidation with aqueous NaIO₄ for 1 hr. The sample was then analyzed by PAGE to determine the number of sidechain extensions incorporated by quantitating the radioactive label in the bands on the gel. The product was found to have a total of 45 labeled probe binding sites.

-19-

EXAMPLE 2

Hybridization Assay for HBV DNA

A "15 X 3" amplified solution phase nucleic acid sandwich hybridization assay format was employed in this example. The "15 x 3" designation derives from the fact that the format employs two multimers: (1) an amplifier probe having a first segment (A) that binds to HBV nucleic acid and a second segment (B) that hybridizes to (2) an amplifier multimer having a first segment (B*) that hybridizes to the segment (B) and fifteen iterations of a segment (C), wherein segment C hybridizes to three labeled oligonucleotides.

The amplifier and capture probe segments and their respective names used in this assay were as follows.

HBV Amplifier Probes

HBV.104* (SEQ ID NO:6)
TTGTGGGTCTTTGGGYTTGCTGCYCCWT
HBV.94* (SEQ ID NO:7)
20 CCTKCTCGTGTACAGGCGGGTTTTCTT
HBV.76* (SEQ ID NO:8)
TCCATGGCTGCTAGGSTGTRCTGCCAACTG
HBV.87* (SEQ ID NO:9)
GCYTAYAGACCACCAAATGCCCTATCYTA
25 HBV.45* (SEQ ID NO:10)
CTGTTCAAGCCTCCAAGCTGTGCCTTGGGT
HBV.93* (SEQ ID NO:11)
CATGGAGARCAYMACATCAGGATTCTAGG
HBV.99* (SEQ ID NO:12)
30 TCCTGGYTATCGCTGGATGTGTCTGCGGCGT
HBV.78* (SEQ ID NO:13)
GGCGCTGAATCCYGC GGACGACCCBTCTCG
HBV.81* (SEQ ID NO:14)
CTTCGCTTCACCTCTGCACGTHGCATGGMG
35 HBV.73*070590-C (SEQ ID NO:15)

-20-

GGTCTSTGCCAAGTGTGCTGACGCAACC
HBV.77*070590-b (SEQ ID NO:16)
CCTKCGCGGGACGTCCCTTGTYTACGTCCC
HBV.D44*070590-A (SEQ ID NO:17)
5 MCCTCTGCCTAACATCATCTCWTGTWCATGTC
HBV.79* (SEQ ID NO:18)
CGACCACGGGGCGCACCTCTCTTACGCGG
HBV.82* (SEQ ID NO:19)
TGCCCAAGGTCTTACAYAAGAGGACTCTTG
10 HBV.71* (SEQ ID NO:20)
CGTCAATCTYCKCGAGGAUTGGGGACCTG
HBV.102* (SEQ ID NO:21)
ATGTTGCCGTTGTCTCTAMTCAGGA
HBV.101* (SEQ ID NO:22)
15 ATCTTCTTRTTGGTTCTCTGGAYTAYCAA
HBV.100* (SEQ ID NO:23)
ATCATMTTCCTCTTCATCCTGCTGCTATGC
HBV.98* (SEQ ID NO:24)
CAATCACTCACCAACCTCYTGTCTCCAAY
20 HBV.97* (SEQ ID NO:25)
GTGTCYTGGCCAAAATCGCAGTCCCCAAC
HBV.96* (SEQ ID NO:26)
CTCGTGGTGGACTTCTCTCAATTCTAGG
HBV.95* (SEQ ID NO:27)
25 GACAAGAAATCCTCACAAATACRCAGAGTCT
HBV.92* (SEQ ID NO:28)
TTTGGGGTGGAGGCCKCAGGCTCAGGGCR
HBV.91* (SEQ ID NO:29)
CACCATAATTCTGGAACAAAGAKCTACAGC
30 HBV.88* (SEQ ID NO:30)
ACACTTCCGGARACTACTGTTAGACGA
HBV.86* (SEQ ID NO:31)
GTVTCTTYGGAGTGTGGATTGCACTCCT
HBV.D47* (SEQ ID NO:32)
35 TTGGAGCWWCTGTGGAGTTACTCTCKTTT

- 21 -

HBV.D46* (SEQ ID NO:33)
TTTGGGGCATGGACATYGAYCCKTATAAAG
HBV.85* (SEQ ID NO:34)
AAWGRCTTTGTAYTAGGAGGCTGTAGGCA
5 HBV.84* (SEQ ID NO:35)
RGACTGGGAGGAGYTGGGGAGGAGATTAG
HBV.83* (SEQ ID NO:36)
CCTTGAGGCMTACTTCAAAGACTGKTKTGT
HBV.80* (SEQ ID NO:37)
10 GTCTGTGCCTTCTCATCTGCCGGWCCGTGT
HBV.75* (SEQ ID NO:38)
AGCMGCTTGTGCTCGCAGSMGGTCTGG
HBV.74* (SEQ ID NO:39)
GGCTCSTCTGCCGATCCATACTGCGGAAC
15 HBV.72* (SEQ ID NO:40)
MTKAACCTTTACCCCGTTGCTCGGCAACGG
HBV.51* (SEQ ID NO:41)
GTGGCTCCAGTTCMGGAACAGTAAACCTG
HBV.67* (SEQ ID NO:42)
20 KAARCAGGCTTYACTTTCTCGCCAACTTA
HBV.70* 062890-A (SEQ ID NO:43)
CCTCCKCCTGCCTCYACCAATGSCAGTCA
HBV.65* (SEQ ID NO:44)
ACCAATTITCTTYTGTCTYTGGGTATACAT
25
HBV Capture Probes
HBV.60* (SEQ ID NO:45)
TATTCCCATCCCATCrTCCTGGGCTTTCGS
HBV.64* (SEQ ID NO:46)
30 TATATGGATGATGTGGTATTGGGGGCAAG
HBV.63* (SEQ ID NO:47)
CGTAGGGCTTCCCCCACTGTTGGCTTTC
HBV.62* (SEQ ID NO:48)
GCTCAGTTACTAGTGCCATTGTTAGTG
35 HBV.61* (SEQ ID NO:49)

-22-

CCTATGGGAGKGGGCCTCAGYCCGTTCTC
HBV.89* (SEQ ID NO:50)
GTCCCCTAGAAGAAGAACTCCCTCGCCTCG
HBV.90* (SEQ ID NO:51)
5 ACGMAGRRTCTCMATGCCGCGTCGCAGAAGA
HBV.D13* (SEQ ID NO:52)
CAATCTGGGAATCTCAATGTTAGTATYCC
HBV.D14* (SEQ ID NO:53)
GACTCATAAGGTSGGRAACTTACKGGGCT

10 Each amplifier probe contained, in addition to the sequences substantially complementary to the HBV sequences, the following 5' extension complementary to a segment of the amplifier multimer,

15 AGGCATAGGACCCGTGTCTT (SEQ ID NO:54).

Each capture probe contained, in addition to the sequences substantially complementary to HBV DNA, the following downstream sequence complementary to DNA bound to the solid phase (i.e., complementary to XT1*),

20 CTTCTTTGGAGAAAGTGGTG (SEQ ID NO:55).

Microtiter plates were prepared as follows. White Microlite 1 Removawell strips (polystyrene microtiter plates, 96 wells/plate) were purchased from 25 Dynatech Inc. Each well was filled with 200 µl 1 N HCl and incubated at room temperature for 15-20 min. The plates were then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The wells were then filled with 200 µl 1 N NaOH and incubated at room temperature 30 for 15-20 min. The plates were again washed 4 times with 1X PBS and the wells aspirated to remove liquid.

Poly(phe-lys) was purchased from Sigma Chemicals, Inc. This polypeptide has a 1:1 molar ratio of phe:lys and an average m.w. of 47,900 gm/mole. It has 35 an average length of 309 amino acids and contains 155

-23-

amines/mole. A 1 mg/ml solution of the polypeptide was mixed with 2M NaCl/1X PBS to a final concentration of 0.1 mg/ml (pH 6.0). 100 μ l of this solution was added to each well. The plate was wrapped in plastic to prevent 5 drying and incubated at 30°C overnight. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

The following procedure was used to couple the oligonucleotide XT1* to the plates. Synthesis of XT1* 10 was described in EPA 883096976. 20 mg disuccinimidyl suberate was dissolved in 300 μ l dimethyl formamide (DMF). 26 OD₂₆₀ units of XT1* was added to 100 μ l coupling buffer (50 mM sodium phosphate, pH 7.8). The coupling mixture was then added to the DSS-DMF solution 15 and stirred with a magnetic stirrer for 30 min. An NAP-25 column was equilibrated with 10 mM sodium phosphate, pH 6.5. The coupling mixture DSS-DMF solution was added to 2 ml 10 mM sodium phosphate, pH 6.5, at 4°C. The mixture was vortexed to mix and loaded onto the 20 equilibrated NAP-25 column. DSS-activated XT1* DNA was eluted from the column with 3.5 ml 10 mM sodium phosphate, pH 6.5. 5.6 OD₂₆₀ units of eluted DSS-activated XT1* DNA was added to 1500 ml 50 mM sodium phosphate, pH 7.8. 50 μ l of this solution was added to 25 each well and the plates were incubated overnight. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid.

Final stripping of plates was accomplished as follows. 200 μ L of 0.2N NaOH containing 0.5% (w/v) SDS 30 was added to each well. The plate was wrapped in plastic and incubated at 65°C for 60 min. The plate was then washed 4 times with 1X PBS and the wells aspirated to remove liquid. The stripped plate was stored with desiccant beads at 2-8°C.

-24-

Sample preparation consisted of delivering 12.5 μ l P-K buffer (2 mg/ml proteinase K in 10 mM Tris-HCl, pH 8.0/ 0.15 M NaCl/ 10 mM EDTA, pH 8.0/ 1% SDS/ 40 μ g/ml sonicated salmon sperm DNA) to each well.

5 A standard curve of HBV DNA was prepared by diluting cloned HBV, subtype adw, DNA in HBV negative human serum and delivering aliquots of dilutions corresponding to 1000, 3000, 10,000, 30,000, or 100,000 molecules to each well. Tests for cross-hybridization to heterologous DNAs
10 were done by adding either purified DNA or infected cells to each well. Amounts for each organism are indicated in the Table.

Plates were covered and agitated to mix samples, then incubated at 65° C to release nucleic acids.

15 A cocktail of the HBV-specific amplifier and capture probes listed above was added to each well (5 fmoles of each probe/well, diluted in 1 N NaOH). Plates were covered and gently agitated to mix reagents and then
20 incubated at 65° C for 30 min.

Neutralization buffer was then added to each well (0.77 M 3-(N-morpholino)propane sulfonic acid/1.845 M NaCl/0.185 sodium citrate). Plates were covered and incubated for 12-18 hr at 65° C.

25 After an additional 10 min at room temperature, the contents of each well were aspirated to remove all fluid, and the wells washed 2X with washing buffer (0.1% SDS/0.015 M NaCl/ 0.0015 sodium citrate).

30 Amplifier multimer was then added to each well (30 fmoles/well). After covering plates and agitating to mix the contents in the wells, the plates were incubated for 30 min at 55° C.

After a further 5-10 min period at room temperature, the wells were washed as described above.

-25-

Alkaline phosphatase label probe, disclosed in EP 883096976, was then added to each well (40 μ l/well of 2.5 fmoles/ μ l). After incubation at 55°C for 15 min, and 5 min at room temperature, the wells were washed twice as above and then 3X with 0.015 M NaCl/0.0015 M sodium citrate.

An enzyme-triggered dioxetane (Schaap et al., Tet. Lett. (1987) 28:1159-1162 and EPA Pub. No. 0254051), obtained from Lumigen, Inc., was employed. 20 μ l Lumiphos 530 (Lumigen) was added to each well. The wells were tapped lightly so that the reagent would fall to the bottom and gently swirled to distribute the reagent evenly over the bottom. The wells were covered and incubated at 37°C for 40 min.

Plates were then read on a Dynatech ML 1000 luminometer. Output was given as the full integral of the light produced during the reaction.

Results from an exclusivity study of the HBV probes is shown in the Table below. Results for each standard sample are expressed as the difference between the mean of the negative control plus two standard deviations and the mean of the sample minus two standard deviations (delta). If delta is greater than zero, the sample is considered positive. These results indicate the ability of these probe sets to distinguish HBV DNA from heterologous organisms and a sensitivity of about 1000-3000 HBV molecules.

Table

Sample	Amount	Delta
HBV	1×10^5	25.99
HBV	3×10^4	6.51
HBV	1×10^4	3.00
HBV	3×10^3	0.93
35 HBV	1×10^3	-0.20

-26-

	Control	--	--
	HCV	8×10^5	-0.39
	CMV ¹	3.3×10^6	-0.48
	HTLV-II ²	1×10^5	-0.07
5	HTLV-I ²	1×10^5	-0.23
	HIV	1×10^7	-0.31
	pBR325	1×10^7	-0.27
	Streptococcus sanguis	1×10^7	-0.31
	Streptococcus pyogenes	1×10^7	-0.36
10	Streptococcus pneumoniae	1×10^7	-0.38
	Streptococcus fecalis	1×10^7	-0.28
	Streptococcus agalactiae	1×10^7	-0.26
	Streptococcus epidermidis	1×10^7	-0.31
	Staphylococcus aureus	1×10^7	-0.34
15	Serratia marcescens	1×10^7	-0.30
	Pseudomonas aeruginosa	1×10^7	-0.23
	Proteus mirabilis	1×10^7	-0.43
	Peptostreptococcus anerobius	1×10^7	-0.46
20	Lactobacillus acidophilus	1×10^7	-0.33
	Klebsiella pneumoniae	1×10^7	-0.12
	Haemophilus influenza	1×10^7	-0.34
	Escherichia coli	1×10^7	-0.44
	Enterobacter aerogenes	1×10^7	-0.23
25	Mycobacterium leprae	1×10^7	-0.18

¹ denotes pfu in infected cells² denotes proviral copies

30 Modifications of the above-described modes for carrying out the invention that are obvious to those of skill in biochemistry, nucleic acid hybridization assays, and related fields are intended to be within the scope of the following claims.

-27-

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5 (i) APPLICANT: Irvine, Bruce D.
Kolberg, Janice A.
Running, Joyce A.
Urdea, Michael S.

(ii) TITLE OF INVENTION: HBV PROBES FOR USE IN SOLUTION
PHASE SANDWICH HYBRIDIZATION ASSAYS

10 (iii) NUMBER OF SEQUENCES: 55

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Morrison & Foerster
(B) STREET: 755 Page Mill Road
(C) CITY: Palo Alto
(D) STATE: California
(E) COUNTRY: USA
15 (F) ZIP: 94304-1018

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.25

20 (vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: 07/813,586
(B) FILING DATE: 23-DEC-1991
(C) CLASSIFICATION:

(viii) ATTORNEY/AGENT INFORMATION:

25 (A) NAME: Thomas E. Ciotti
(B) REGISTRATION NUMBER: 21,013
(C) REFERENCE/DOCKET NUMBER: 22300-20234.00

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 415-813-5600
(B) TELEFAX: 415-494-0792
(C) TELEX: 706141

30

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
35 (D) TOPOLOGY: linear

-28-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TGACTG

5 (2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CGTGGAGACA CGGGTCAT GCCT

24

15 (2) INFORMATION FOR SEQ ID NO:3:

15 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 60 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GATGTGGTTG TCGTACTTG A TGTTGGTC GTACTTGATG TGGTTGTCGT ACTTGCGTAG

60

(2) INFORMATION FOR SEQ ID NO:4:

25 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 16 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

TCCACGAAAAA AAAAAAA

16

(2) INFORMATION FOR SEQ ID NO:5:

35 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 12 base pairs

- 29 -

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CAGTCACTAC GC

12

(2) INFORMATION FOR SEQ ID NO:6:

10

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

TTGTGGGTCT TTTGGGYTTT GCTGCYCCWT

30

(2) INFORMATION FOR SEQ ID NO:7:

20

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CCTKCTCGTG TTACAGGCCGG GGTTTTTCTT

30

(2) INFORMATION FOR SEQ ID NO:8:

25

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

TCCATGGCTG CTAGGSTGTR CTGCCAACTG

30

35 (2) INFORMATION FOR SEQ ID NO:9:

-30-

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GCYTAYAGAC CACCAAATGC CCCTATCYTA

30

(2) INFORMATION FOR SEQ ID NO:10:

10

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CTGTTCAAGC CTCCAAGCTG TGCCTTGGGT

30

(2) INFORMATION FOR SEQ ID NO:11:

20

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CATGGAGARC AYMACATCAG GATTCCCTAGG

30

(2) INFORMATION FOR SEQ ID NO:12:

30

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 31 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

TCCTGGYTAT CGCTGGATGT GTCTGCGGCG T

31

- 31 -

(2) INFORMATION FOR SEQ ID NO:13:

5 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GGCGCTGAAT CCYGC GGACG ACCCB TCTCG

30

10 (2) INFORMATION FOR SEQ ID NO:14:

15 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CTTCGCTTCA CCTCTGCACG THGCATGGMG

30

20 (2) INFORMATION FOR SEQ ID NO:15:

25 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GGTCTSTGCC AAGTGTTGC TGACGCAACC

30

30 (2) INFORMATION FOR SEQ ID NO:16:

35 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

35

-32-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CCTKCGCGGG ACGTCCTTG TYTACGTCCC

30

(2) INFORMATION FOR SEQ ID NO:17:

5 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

MCCTCTGCCT AATCATCTCW TGTWCATGTC

30

(2) INFORMATION FOR SEQ ID NO:18:

15 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

20 CGACCACGGG GCGCACCTCT CTTTACGCGG

30

(2) INFORMATION FOR SEQ ID NO:19:

25 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

30 TGCCCAAGGT CTTACAYAAG AGGACTCTG

30

(2) INFORMATION FOR SEQ ID NO:20:

35 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

- 33 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

CGTCAATCTY CKCGAGGACT GGGGACCCCTG

30

5 (2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

ATGTTGCCCG TTTGTCTCT AMITCCAGGA

30

(2) INFORMATION FOR SEQ ID NO:22:

15

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

ATCTTCCTTCT TGGTTCTCT GGAYTAYCAA

30

(2) INFORMATION FOR SEQ ID NO:23:

25

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

ATCATMTTCC TCTTCATCCT GCTGCTATGC

30

(2) INFORMATION FOR SEQ ID NO:24:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid

- 34 -

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

5

CAATCACTCA CCAACCTCYT GTCCCTCCAAY

30

(2) INFORMATION FOR SEQ ID NO:25:

10

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

15

GTTGTCYTGGC CAAAATTGCG AGTCCCCAAC

30

(2) INFORMATION FOR SEQ ID NO:26:

20

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

CTCGTGGTGG ACTTCTCTCA ATTTTCTAGG

30

25

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GACAAGAACG CTCACAATAC CRCAGAGTCT

30

(2) INFORMATION FOR SEQ ID NO:28:

35

-35-

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

TTTTGGGGTG GAGCCCKCAG GCTCAGGGCR

30

(2) INFORMATION FOR SEQ ID NO:29:

10

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

CACCATATTC TTGGGAACAA GAKCTACAGC

30

(2) INFORMATION FOR SEQ ID NO:30:

20

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

ACACTTCCGG ARACTACTGT TGTTAGACGA

30

(2) INFORMATION FOR SEQ ID NO:31:

30

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GTVTCTTYG GAGTGTGGAT TCGCACTCCT

30

-36-

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
5 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

TTGGAGCWWC TGTGGAGTTA CTCTCKTTTT

30

10 (2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
15 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

TTTGGGGCAT GGACATYGAY CCKTATAAAG

30

(2) INFORMATION FOR SEQ ID NO:34:

20 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
25 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

AAWGRCTTT GTAYTAGGAG GCTGTAGGCA

30

(2) INFORMATION FOR SEQ ID NO:35:

30 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
35 (D) TOPOLOGY: linear

35

- 37 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

RGACTGGGAG GAGYTGGGGG AGGAGATTAG

30

(2) INFORMATION FOR SEQ ID NO:36:

5

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CCTTGAGGCC TACTTCAAAG ACTGTGTGTT

30

(2) INFORMATION FOR SEQ ID NO:37:

15

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

20

GTCTGTGCCT TCTCATCTGC CGGWCCGTGT

30

(2) INFORMATION FOR SEQ ID NO:38:

25

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

30

(2) INFORMATION FOR SEQ ID NO:39:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

-38-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

GGCTCSTCTG CCGATCCATA CTGCGGAAC

30-

5 (2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

MTKAACCTTT ACCCCGTTGC TCGGCAACGG

30

(2) INFORMATION FOR SEQ ID NO:41:

15 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

GTGGCTCCAG TTCTMGGAAACA GTAAACCCCTG

30

(2) INFORMATION FOR SEQ ID NO:42:

25 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

KAARCAAGGCT TTYACTTTCT CGCCAACCTA

30

(2) INFORMATION FOR SEQ ID NO:43:

35 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid

- 39 -

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

5 CCTCCCKCTG CCTCYACCAA TCGSCAGTCA 30

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

15 ACCAATTTC TTYTGTCTYT GGGTATAACAT 30

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

20 TATTCCCATC CCATCRTCCT GGGCTTTCGS 30

25 (2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

25 TATATGGATG ATGTGGTATT GGGGGCCAAG 30

(2) INFORMATION FOR SEQ ID NO:47:

35

- 40 -

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

CGTAGGGCTT TCCCCCACTG TTTGGCTTTC

30

(2) INFORMATION FOR SEQ ID NO:48:

10

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

GCTCAGTTTA CTAGTGCCAT TTGTTCAGTG

30

(2) INFORMATION FOR SEQ ID NO:49:

20

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

CCTATGGGAG KGGGCCTCAG YCCGTTCTC

30

(2) INFORMATION FOR SEQ ID NO:50:

30

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

35

GTCCCCTAGA AGAAGAACTC CCTCGCTCG

30

- 41 -

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 31 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
5 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

ACGMAGRTCT CMATCGCCGC GTCGCAGAAG A

31

10 (2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
15 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

CAATCTCGGG AATCTCAATG TTAGTATYCC

30

20 (2) INFORMATION FOR SEQ ID NO:53:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
25 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

GACTCATCAAAG GTSGGRAACT TTACKGGGCT

30

30 (2) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
35 (D) TOPOLOGY: linear

35

-42-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

AGGCATAGGA CCCGTGTCCTT

20

(2) INFORMATION FOR SEQ ID NO:55:

5 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

CTTCTTTGGA GAAAGTGGTG

20

15

20

25

30

35

43

<u>FILE NAME</u>	<u>LAST ACCESS</u>	<u>DATE CREATED</u>	<u>FILE NAME</u>	<u>LAST ACCESS</u>	<u>DATE CREATED</u>
------------------	--------------------	---------------------	------------------	--------------------	---------------------

FILE TYPE: SYNTHESIS CYCLE

6.4XSC-5	08 27, 1991	08 27, 1991	6.4XS-5	08 27, 1991	08 27, 1991
1.2XD-6	08 27, 1991	08 27, 1991	1.2X-6	08 27, 1991	08 27, 1991
ssceaf3	01 07, 1990	01 07, 1990	ceaf3	01 07, 1990	01 07, 1990
10ceaf3	01 07, 1990	01 07, 1990	hoaf3	01 07, 1990	01 07, 1990
10hoaaf3	01 07, 1990	01 07, 1990	rnaaf3	01 07, 1990	01 07, 1990
10rnnaaf3	01 07, 1990	01 07, 1990	sscaf3	01 07, 1990	01 07, 1990
caf3	01 07, 1990	01 07, 1990	10cef3	01 07, 1990	01 07, 1990
10hof3	01 07, 1990	01 07, 1990	rnaaf3	01 07, 1990	01 07, 1990
10rnnaaf3	01 07, 1990	01 07, 1990	ssceaf1	01 07, 1990	01 07, 1990
ceaf1	01 07, 1990	01 07, 1990	10ceaf1	01 07, 1990	01 07, 1990
hoaaf1	01 07, 1990	01 07, 1990	10hoaaf1	01 07, 1990	01 07, 1990
rnaaf1	01 07, 1990	01 07, 1990	10rnnaaf1	01 07, 1990	01 07, 1990
sscaf1	01 07, 1990	01 07, 1990	caf1	01 07, 1990	01 07, 1990
10cef1	01 07, 1990	01 07, 1990	10hof1	01 07, 1990	01 07, 1990
rnaaf1	01 07, 1990	01 07, 1990	10rnnaaf1	01 07, 1990	01 07, 1990

FILE TYPE: BOTTLE CHANGE PROCEDURE

bc 18	07 01, 1986	07 01, 1986	bc 17	07 01, 1986	07 01, 1986
bc 16	07 01, 1986	07 01, 1986	bc 15	07 01, 1986	07 01, 1986
bc 14	07 01, 1986	07 01, 1986	bc 13	07 01, 1986	07 01, 1986
bc 12	07 01, 1986	07 01, 1986	bc 11	07 01, 1986	07 01, 1986
bc 10	07 01, 1986	07 01, 1986	bc 9	07 01, 1986	07 01, 1986
bc 8a	07 01, 1986	07 01, 1986	bc 7	07 01, 1986	07 01, 1986
bc 6	07 01, 1986	07 01, 1986	bc 5	07 01, 1986	07 01, 1986
bc 4	07 01, 1986	07 01, 1986	bc 3	07 01, 1986	07 01, 1986
bc 2	07 01, 1986	07 01, 1986	bc 1	07 01, 1986	07 01, 1986

FILE TYPE: END PROCEDURE

CAP-PRIM	08 27, 1991	08 27, 1991	CE NH3	08 27, 1991	08 27, 1991
deprce	10 08, 1990	10 08, 1990	deprce10	10 08, 1990	10 08, 1990
deprhp	10 08, 1990	10 08, 1990	deprhp10	10 08, 1990	10 08, 1990
deprna	10 08, 1990	10 08, 1990	deprna10	10 08, 1990	10 08, 1990

FILE TYPE: BEGIN PROCEDURE

STD PREP	08 27, 1991	08 27, 1991	phos003	07 01, 1986	07 01, 1986
----------	-------------	-------------	---------	-------------	-------------

FILE TYPE: SHUT-DOWN PROCEDURE

clean003	07 01, 1986	07 01, 1986
----------	-------------	-------------

FILE TYPE: DNA SEQUENCES

15X-2	08 27, 1991	08 27, 1991	15X-1	08 27, 1991	08 27, 1991
-------	-------------	-------------	-------	-------------	-------------

44

STEP NUMBER	FUNCTION # NAME	TIME	STEP ACTIVE FOR BASES							SAFE STEP
			A	G	C	T	S	S	7	
1	10 \$18 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
2	3 \$18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
3	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
4	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5	5 Advance FC	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
6	28 Phos Prep	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
7	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
8	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
9	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
10	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
11	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
13	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
14	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
15	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
16	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
17	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
18	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
19	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
20	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	4 Wait	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
26	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
27	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
28	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
29	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
30	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
31	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
32	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
33	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
34	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
35	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
36	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
37	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
38	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
39	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
40	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
41	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
42	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
43	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

(Continued next page.)

45

STEP NUMBER	FUNCTION # NAME	STEP TIME	STEP ACTIVE FOR BASES							SAFE STEP
			A	S	C	T	E	S	7	
44	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
45	90 TET To Column	-10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
46	20 B+TET To Col 2	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
47	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
48	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
49	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
50	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
51	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
52	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
53	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
54	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
55	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
56	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
57	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
58	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
59	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
60	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
61	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
62	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
63	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
64	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
65	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
66	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
67	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
68	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
69	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
70	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
71	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
72	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
73	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
74	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
75	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
76	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
77	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
78	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
79	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
80	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
81	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
82	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
83	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
84	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
85	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
86	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
87	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
88	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

(Continued next page.)

46

STEP NUMBER*	FUNCTION # NAME	TIME	STEP ACTIVE FOR BASES							SAFE STEP
			A	S	C	T	S	S	?	
99	19 B+TET To Col 1	-8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
90	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
91	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
92	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
93	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
94	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
95	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
96	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
97	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
98	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
99	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
100	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
101	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
102	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
103	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
104	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
105	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
106	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
107	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
108	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
109	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
110	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
111	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
112	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
113	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
114	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
115	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
116	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
117	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
118	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
119	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
120	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
121	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
122	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
123	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
124	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
125	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
126	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
127	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
128	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
129	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
130	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
131	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
132	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
133	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

(Continued next page.)

47

<u>STEP NUMBER</u>	<u>FUNCTION # NAME</u>	<u>STEP TIME</u>	<u>STEP ACTIVE FOR BASES</u>						<u>SAFE STEP</u>
			A	G	C	T	S	S	
134	1 Wait	-30	Yes	Yes	Yes	Yes	Yes	Yes	Yes
135	10 #18 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes
136	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes
137	1 Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes
138	31 #15 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes
139	13 #15 To Column	22	Yes	Yes	Yes	Yes	Yes	Yes	Yes
140	10 #18 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes
141	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes
142	2 Reverse Flush	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes
143	1 Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes
144	9 #18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
145	34 Flush to Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes
146	9 #18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
147	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes
148	9 #18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
149	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes
150	9 #18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
151	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes
152	1 Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes
153	33 Cycle Entry	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
154	5 Waste-Port	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
155	37 Relay 3 Pulse	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
156	82 #14 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes
157	30 #17 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes
158	10 #18 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes
159	9 #18 To Column	20	Yes	Yes	Yes	Yes	Yes	Yes	No
160	11 #17 To Column	60	Yes	Yes	Yes	Yes	Yes	Yes	No
161	14 #14 To Column	20	Yes	Yes	Yes	Yes	Yes	Yes	No
162	2 Reverse Flush	7	Yes	Yes	Yes	Yes	Yes	Yes	No
163	11 #17 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	No
164	34 Flush to Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	No
165	11 #17 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	No
166	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	No
167	14 #14 To Column	20	Yes	Yes	Yes	Yes	Yes	Yes	No
168	34 Flush to Waste	10	Yes	Yes	Yes	Yes	Yes	Yes	No
169	7 Waste-Bottle	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
170	9 #18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
171	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes
172	9 #18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
173	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes
174	9 #18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
175	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes
176	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes

48

STEP NUMBER	FUNCTION # NAME	TIME	STEP ACTIVE FOR BASES							SAFE STEP
			A	S	C	T	5	5	7	
1	10 #18 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
2	9 #18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
3	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
4	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5	5 Advance FC	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
6	28 Phos Prep	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
7	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
8	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
9	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
10	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
11	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
13	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
14	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
15	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
16	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
17	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
18	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
19	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
20	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
21	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
22	4 Wait	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
23	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
24	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
25	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
26	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
27	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
28	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
29	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
30	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
31	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
32	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
33	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
34	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
35	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
36	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
37	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
38	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
39	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
40	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
41	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
42	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
43	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

(Continued next page.)

49

STEP NUMBER	FUNCTION # NAME	STEP TIME	STEP ACTIVE FOR BASES						SAFE STEP
			A	G	C	T	S	7	
44	+47 Group 2 On	- 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
45	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
46	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes
47	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes
48	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
49	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
50	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
51	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes
52	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes
53	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
54	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes
55	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
56	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
57	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes
58	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes
59	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
60	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
61	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
62	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes
63	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes
64	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
65	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
66	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
67	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes
68	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes
69	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
70	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes
71	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
72	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
73	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes
74	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes
75	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
76	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
77	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
78	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes
79	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes
80	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
81	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
82	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes
83	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes
84	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes
85	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
86	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes
87	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes
88	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes

(Continued next page.)

50

STEP NUMBER	FUNCTION # NAME	STEP TIME	STEP ACTIVE FOR BASES							SAFE STEP
			A	G	C	T	S	S	?	
89	19 B+TET To Col 1	- 8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
90	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
91	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
92	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
93	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
94	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
95	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
96	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
97	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
98	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
99	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
100	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
101	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
102	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
103	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
104	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
105	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
106	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
107	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
108	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
109	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
110	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
111	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
112	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
113	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
114	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
115	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
116	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
117	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
118	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
119	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
120	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
121	19 B+TET To Col 1	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
122	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
123	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
124	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
125	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
126	20 B+TET To Col 2	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
127	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
128	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
129	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
130	90 TET To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
131	21 B+TET To Col 3	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
132	90 TET To Column	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
133	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

(Continued next page.)

51

STEP NUMBER*	FUNCTION # NAME	STEP TIME	STEP ACTIVE FOR BASES							SAFE STEP
			A	G	C	T	S	S	7	
134	4 Wait	-50	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
155	16 Cap Prep	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
136	10 \$18 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
137	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
138	1 Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
139	91 Cap To Column	22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
140	10 \$18 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
141	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
142	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
143	1 Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
144	81 \$15 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
145	13 \$15 To Column	22	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
146	10 \$18 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
147	4 Wait	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
148	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
149	1 Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
150	9 \$18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
151	34 Flush to Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
152	9 \$18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
153	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
154	9 \$18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
155	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
156	9 \$18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
157	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
158	1 Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
159	33 Cycle Entry	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
160	6 Waste-Port	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
161	57 Relay 3 Pulse	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
162	82 \$14 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
163	30 \$17 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
164	10 \$18 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
165	9 \$18 To Column	20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
166	11 \$17 To Column	60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
167	14 \$14 To Column	20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
168	2 Reverse Flush	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
169	11 \$17 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
170	34 Flush to Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
171	11 \$17 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
172	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
173	14 \$14 To Column	20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
174	34 Flush to Waste	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
175	7 Waste-Bottle	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
176	9 \$18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
177	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
178	9 \$18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

(Continued next page.)

52

<u>STEP NUMBER</u>	<u>FUNCTION = NAME</u>	<u>STEP TIME</u>	STEP ACTIVE FOR BASES							<u>SAFE STEP</u>
			A	G	C	T	S	S	7	
179	2 Reverse Flush	- 5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
180	3 z18 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
191	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
182	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

53

STEP NUMBER	FUNCTION # NAME	STEP TIME	STEP ACTIVE FOR BASES							SAFE STEP
			A	G	C	T	S	S	7	
1	10 \$18 To Waste	2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
2	3 \$18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
3	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
4	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5	5 Advance FC	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
6	28 Phos Prep	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
7	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
8	90 TET To Column	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
9	19 B+TET To Col 1	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
10	90 TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
11	19 B+TET To Col 1	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	90 TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
13	19 B+TET To Col 1	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
14	3 \$18 To Column	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
15	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
16	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
17	10 \$18 To Waste	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
18	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
19	90 TET To Column	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
20	20 B+TET To Col 2	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
21	90 TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
22	20 B+TET To Col 2	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
23	90 TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
24	20 B+TET To Col 2	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
25	9 \$18 To Column	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
25	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
27	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
28	10 \$18 To Waste	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
29	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
30	90 TET To Column	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
31	21 B+TET To Col 3	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
32	90 TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
33	21 B+TET To Col 3	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
34	90 TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
35	21 B+TET To Col 3	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
36	9 \$18 To Column	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
37	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
38	4 Wait	20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
39	2 Reverse Flush	5	Yes							Yes
40	10 \$18 To Waste	2	Yes							Yes
41	9 \$18 To Column	9	Yes							Yes
42	2 Reverse Flush	5	Yes							Yes
43	10 \$18 To Waste	3	Yes							Yes

(Continued next page.)

54

STEP NUMBER	FUNCTION # NAME	STEP TIME	STEP ACTIVE FOR BASES							SAFE STEP
			A	S	C	T	E	B	7	
44	1 Block Flush	- 3								Yes
45	+45 Group 1 On	1								Yes
46	90 TET To Column	6								Yes
47	19 B+TET To Col 1	5								Yes
48	90 TET To Column	3								Yes
49	19 B+TET To Col 1	3								Yes
50	90 TET To Column	3								Yes
51	19 B+TET To Col 1	3								Yes
52	9 \$18 To Column	1								Yes
53	-46 Group 1 Off	1								Yes
54	+47 Group 2 On	1								Yes
55	10 \$18 To Waste	4								Yes
56	1 Block Flush	3								Yes
57	90 TET To Column	6								Yes
58	20 B+TET To Col 2	6								Yes
59	90 TET To Column	3								Yes
60	20 B+TET To Col 2	3								Yes
61	90 TET To Column	3								Yes
62	20 B+TET To Col 2	3								Yes
63	9 \$18 To Column	1								Yes
64	-48 Group 2 Off	1								Ye
5	+49 Group 3 On	1								Yes
	10 \$18 To Waste	4								Yes
	1 Block Flush	3								Yes
	90 TET To Column	6								Yes
	21 B+TET To Col 3	6								Yes
	90 TET To Column	3								Yes
	21 B+TET To Col 3	3								Yes
	90 TET To Column	3								Yes
	21 B+TET To Col 3	3								Yes
	9 \$18 To Column	1								Yes
	-58 Group 3 Off	1								Yes
	4 Wait	20								Yes
	16 Cap Prep	3								Yes
	2 Reverse Flush	5								Yes
80	1 Block Flush	3								Yes
	91 Cap To Column	12								Yes
	10 \$18 To Waste	3								Yes
	4 Wait	8								Yes
	2 Reverse Flush	5								Yes
	81 \$15 To Waste	3								Yes
	13 \$15 To Column	10								Yes
	10 \$18 To Waste	3								Yes
	4 Wait	15								Yes
	2 Reverse Flush	5								Yes

(Continued next page.)

55

STEP NUMBER	FUNCTION # NAME	STEP TIME	STEP ACTIVE FOR BASES							SAFE STEP
			A	G	C	T	5	6	7	
89	3 \$18 To Column	- 9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
90	34 Flush to Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
91	3 \$18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
92	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
93	9 \$18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
94	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
95	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
96	33 Cycle Entry	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
97	9 \$18 To Column	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
98	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
99	6 Waste-Port	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
100	30 \$17 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
101	11 \$17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
102	34 Flush to Waste	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
103	11 \$17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
104	34 Flush to Waste	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
105	11 \$17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
106	34 Flush to Waste	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
107	11 \$17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
108	34 Flush to Waste	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
109	11 \$17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
110	34 Flush to Waste	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
111	11 \$17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
112	34 Flush to Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
113	9 \$18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
114	34 Flush to Waste	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
115	7 Waste-Bottle	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
116	9 \$18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
117	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
118	9 \$18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
119	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
120	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

56

STEP NUMBER	FUNCTION # NAME	TIME	STEP ACTIVE FOR BASES							SAFE STEP
			A	G	C	T	S	S	?	
1	10 \$18 To Waste	2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
2	9 \$18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
3	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
4	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5	5 Advance FC	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
6	28 Phos Prep	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
7	+45 Group 1 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
8	90 TET To Column	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
9	19 B+TET To Col 1	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
10	90 TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
11	19 B+TET To Col 1	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	90 TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
13	19 B+TET To Col 1	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
14	9 \$18 To Column	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
15	-46 Group 1 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
16	+47 Group 2 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
17	10 \$18 To Waste	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
18	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
19	90 TET To Column	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
20	20 B+TET To Col 2	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
21	90 TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
22	20 B+TET To Col 2	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
23	90 TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
24	20 B+TET To Col 2	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
25	9 \$18 To Column	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
26	-48 Group 2 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
27	+49 Group 3 On	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
28	10 \$18 To Waste	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
29	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
30	98 TET To Column	6	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
31	21 B+TET To Col 3	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
32	98 TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
33	21 B+TET To Col 3	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
34	98 TET To Column	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
35	21 B+TET To Col 3	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
36	9 \$18 To Column	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
37	-50 Group 3 Off	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
38	4 Wait	20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
39	16 Cap Prep	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
40	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
41	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
42	91 Cap To Column	12	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
43	10 \$18 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

(Continued next page.)

57

STEP NUMBER	FUNCTION # NAME	STEP TIME	STEP ACTIVE FOR BASES							SAFE STEP
			A	S	C	T	S	S	7	
44	4 Wait	- 8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
45	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
46	91 #15 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
47	13 #15 To Column	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
48	10 #18 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
49	4 Wait	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
50	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
51	9 #18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
52	34 Flush to Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
53	9 #18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
54	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
55	9 #18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
56	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
57	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
58	33 Cycle Entry	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
59	9 #18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
60	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
61	6 Waster-Port	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
62	30 #17 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
63	11 #17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	No	
64	34 Flush to Waste	1	Yes	Yes	Yes	Yes	Yes	Yes	No	
65	11 #17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	No	
66	34 Flush to Waste	1	Yes	Yes	Yes	Yes	Yes	Yes	No	
67	11 #17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	No	
68	34 Flush to Waste	1	Yes	Yes	Yes	Yes	Yes	Yes	No	
69	11 #17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	No	
70	34 Flush to Waste	1	Yes	Yes	Yes	Yes	Yes	Yes	No	
71	11 #17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	No	
72	34 Flush to Waste	1	Yes	Yes	Yes	Yes	Yes	Yes	No	
73	11 #17 To Column	7	Yes	Yes	Yes	Yes	Yes	Yes	No	
74	34 Flush to Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	No	
75	9 #18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	No	
76	34 Flush to Waste	7	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
77	7 Waster-Bottle	1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
78	9 #18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
79	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
80	9 #18 To Column	9	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
81	2 Reverse Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
82	1 Block Flush	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

58

<u>STEP NUMBER</u>	<u>FUNCTION # NAME</u>	<u>TIME</u>	STEP ACTIVE FOR BASES							<u>SAFE- STEP</u>
			A	G	C	T	S	6	7	
1	10 \$18 To Waste	2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
2	9 \$18 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
3	2 Reverse Flush	20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
4	1 Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5	16 Cap Prep	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
6	91 Cap To Column	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
7	10 \$18 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
8	1 Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
9	4 Wait	300	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
10	16 Cap Prep	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
11	91 Cap To Column	30	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	10 \$18 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
13	1 Block Flush	4	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
14	4 Wait	300	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
15	2 Reverse Flush	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
16	10 \$18 To Waste	3	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
17	9 \$18 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
18	2 Reverse Flush	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
19	9 \$18 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
20	2 Reverse Flush	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
21	9 \$18 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
22	2 Reverse Flush	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
23	9 \$18 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
24	2 Reverse Flush	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
25	9 \$18 To Column	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
26	2 Reverse Flush	60	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
27	1 Block Flush	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

59

<u>STEP NUMBER</u>	<u>FUNCTION # NAME</u>	<u>STEP TIME</u>	<u>STEP ACTIVE FOR BASES</u>	<u>SAFE STEP</u>
			A G C T S S 7	
1	2 Reverse Flush	60	Yes Yes Yes Yes Yes Yes Yes	Yes
2	27 \$10 To Collect	17	Yes Yes Yes Yes Yes Yes Yes	Yes
3	10 \$18 To Waste	5	Yes Yes Yes Yes Yes Yes Yes	Yes
4	1 Block Flush	5	Yes Yes Yes Yes Yes Yes Yes	Yes
5	4 Wait	660	Yes Yes Yes Yes Yes Yes Yes	Yes
6	27 \$10 To Collect	18	Yes Yes Yes Yes Yes Yes Yes	Yes
7	10 \$18 To Waste	5	Yes Yes Yes Yes Yes Yes Yes	Yes
8	1 Block Flush	5	Yes Yes Yes Yes Yes Yes Yes	Yes
9	4 Wait	660	Yes Yes Yes Yes Yes Yes Yes	Yes
10	27 \$10 To Collect	18	Yes Yes Yes Yes Yes Yes Yes	Yes
11	10 \$18 To Waste	5	Yes Yes Yes Yes Yes Yes Yes	Yes
12	1 Block Flush	5	Yes Yes Yes Yes Yes Yes Yes	Yes
13	4 Wait	660	Yes Yes Yes Yes Yes Yes Yes	Yes
14	27 \$10 To Collect	17	Yes Yes Yes Yes Yes Yes Yes	Yes
15	10 \$18 To Waste	5	Yes Yes Yes Yes Yes Yes Yes	Yes
16	1 Block Flush	5	Yes Yes Yes Yes Yes Yes Yes	Yes
17	4 Wait	660	Yes Yes Yes Yes Yes Yes Yes	Yes
18	8 Flush To CLCT	9	Yes Yes Yes Yes Yes Yes Yes	Yes
19	27 \$10 To Collect	14	Yes Yes Yes Yes Yes Yes Yes	Yes
20	8 Flush To CLCT	9	Yes Yes Yes Yes Yes Yes Yes	Yes
21	2 Reverse Flush	60	Yes Yes Yes Yes Yes Yes Yes	Yes
22	1 Block Flush	4	Yes Yes Yes Yes Yes Yes Yes	Yes
23	10 \$18 To Waste	5	Yes Yes Yes Yes Yes Yes Yes	Yes
24	9 \$18 To Column	30	Yes Yes Yes Yes Yes Yes Yes	Yes
25	2 Reverse Flush	60	Yes Yes Yes Yes Yes Yes Yes	Yes
26	1 Block Flush	10	Yes Yes Yes Yes Yes Yes Yes	Yes
27	42 \$10 Vent	2	Yes Yes Yes Yes Yes Yes Yes	Yes

60

<u>STEP NUMBER</u>	<u>FUNCTION # NAME</u>	<u>STEP TIME</u>	STEP ACTIVE FOR BASES							<u>SAFE STEP</u>
			A	G	C	T	S	6	7	
1	28 Phos Prep	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
2	52 A To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
3	53 G To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
4	54 C To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
5	55 T To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
6	56 #5 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
7	57 #6 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
8	58 #7 To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
9	61 TET To Waste	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
10	10 #18 To Waste	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
11	16 Cap Prep	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
12	59 Cap A To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
13	60 Cap B To Waste	5	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
14	81 #15 To Waste	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
15	82 #14 To Waste	8	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
16	30 #17 To Waste	10	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
17	10 #18 To Waste	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
18	1 Black Flush	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

61

5' - GGT STT TGG TTG TTG TTG TTG TTG TTG TTG TTG TTG

TTG TTG TTG TTG TTG TTT TTT TTT TTT TTT TT -3'

DNA SEQUENCE
VERSION 2.00

SEQUENCE NAME: 15X-2
SEQUENCE LENGTH: 10
DATE: Aug 27, 199
TIME: 14:06
COMMENT:

5' - TTT SAC TGG T -3'

Claims

1. A synthetic oligonucleotide useful as an amplifier probe in a sandwich hybridization assay for HBV comprising
5 a first segment comprising a nucleotide sequence substantially complementary to a segment of HBV nucleic acid; and
10 a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide multimer;
wherein said HBV nucleic acid segment is selected from the group consisting of

15 TTGTGGGTCTTTGGGYTTTGTGCTGCYCCWT (SEQ ID NO:6),
CCTKCTCGTGTACAGGCGGGTTTTCTT (SEQ ID NO:7),
TCCATGGCTGCTAGGSTGTRCTGCCAACTG (SEQ ID NO:8),
GCYTAYAGACCACCAAATGCCCTATCYTA (SEQ ID NO:9),
CTGTTCAAGCCTCCAAGCTGTGCCTTGGGT (SEQ ID NO:10),
CATGGAGARCAYMACATCAGGATTCTTAGG (SEQ ID NO:11),
20 TCCTGGYTATCGCTGGATGTGTCTGCGGGCGT (SEQ ID NO:12),
GGCGCTGAATCCYGC GGACGACCCBTCTCG (SEQ ID NO:13),
CTTCGCTTCACCTCTGCACGTHGCATGGMG (SEQ ID NO:14),
GGTCTSTGCCAAGTGTGCTGACGCAACC (SEQ ID NO:15),
25 CCTKCGCGGGACGTCCTTGTYTACGTCCC (SEQ ID NO:16),
MCCTCTGCCTAACATCTCWIGTWCATGTC (SEQ ID NO:17),
CGACCACGGGGCGCACCTCTCTTACGCGG (SEQ ID NO:18),
TGCCCAAGGTCTTACAYAAGAGGACTCTG (SEQ ID NO:19),
CGTCAATCTYCKCGAGGACTGGGGACCTG (SEQ ID NO:20),
30 ATGTTGCCCGTTGCTCTAMTCCAGGA (SEQ ID NO:21),
ATCTTCTTRTGGTTCTCTGGAYTAYCAA (SEQ ID NO:22),
ATCATMTTCCCTCTTCATCCTGCTGCTATGC (SEQ ID NO:23),
CAATCACTCACCAACCTCYTGTCCCTCAA (SEQ ID NO:24),
GTGTCYTGGCCAAAATTCGCAGTCCCCAAC (SEQ ID NO:25),
35 CTCGTGGTGGACTTCTCTCAATTCTAGG (SEQ ID NO:26),

5 GACAAGAACCTCACAAATACCRCAAGACT (SEQ ID NO:27),
 TTTGGGGTGGAGCCCKCAGGCTCAGGGCR (SEQ ID NO:28),
 CACCATATTCTGGGAACAAGAKCTACAGC (SEQ ID NO:29),
 ACACCTCCGGARACTACTGTGTTAGACGA (SEQ ID NO:30),
 GTVTCTTYGGAGTGTGGATTCGCACTCCT (SEQ ID NO:31),
 TTGGAGCWWCTGTGGAGTTACTCTCKTTT (SEQ ID NO:32),
 TTTGGGGCATGGACATYGAYCCKTATAAAG (SEQ ID NO:33),
 AAWGRCTTTGTAYTAGGAGGCTGTAGGCA (SEQ ID NO:34),
 RGAATGGGAGGAGYTGAGGAGGAGATTAG (SEQ ID NO:35),
10 CCTTGAGGCMTACTCAAAGACTGTKTGTT (SEQ ID NO:36),
 GTCTGTGCCCTCTCATCTGCCGGWCCGTGT (SEQ ID NO:37),
 AGCMGCTTGTGCTCGCAGSMGGTCTGG (SEQ ID NO:38),
 GGCTCSTCTGCCGATCCATACTGCCGAACCT (SEQ ID NO:39),
 MTKAACCTTACCCCGTTGCTCGCAACGG (SEQ ID NO:40),
15 GTGGCTCCAGTTCMGGAACAGTAAACCTG (SEQ ID NO:41),
 KAARCAGGCTTYACTTTCTGCCAACTTA (SEQ ID NO:42),
 CCTCCCKCCTGCCCYACCAATGSCAGTCA (SEQ ID NO:43),
 ACCAATTCTTYGTCTYTGGGTATACAT (SEQ ID NO:44).

20 2. The synthetic oligonucleotide of claim 1,
 wherein said second segment comprises

AGGCATAGGACCCGTGTCTT (SEQ ID NO:54).

25 3. A synthetic oligonucleotide useful as a
 capture probe in a sandwich hybridization assay for HBV
 comprising

30 a first segment comprising a nucleotide
 sequence substantially complementary to a segment of HBV
 nucleic acid; and

 a second segment comprising a nucleotide
 sequence substantially complementary to an
 oligonucleotide bound to a solid phase,

35 wherein said HBV nucleic acid segment is
 selected from the group consisting of

5 TATTCCCATCCCATCRTCCCTGGGCTTCGS (SEQ ID NO:45),
 TATATGGATGATGTGGTATTGGGGGCCAAG (SEQ ID NO:46),
 CGTAGGGCTTCCCCACTGTTGGCTTC (SEQ ID NO:47),
 GCTCAGTTACTAGGCCATTGTTAGTGTG (SEQ ID NO:48),
 CCTATGGGAGKGGGCCTCAGYCCGTTCTC (SEQ ID NO:49),
 GTCCCCTAGAAGAAGAACCTCCCTGCCTCG (SEQ ID NO:50),
 ACGMAGRITCTCMATGCCGCGTCGCAGAAGA (SEQ ID NO:51),
 CAATCTCGGAATCTCAATGTTAGTATYCC (SEQ ID NO:52),
 GACTCATAAGGTSGGRAACTTACKGGGCT (SEQ ID NO:53).

10

4. The synthetic oligonucleotide of claim 3,
wherein said second segment is
CTTCTTGGAGAAAGTGGTG (SEQ ID NO:55).

15

5. A set of synthetic oligonucleotides useful
as amplifier probes in a sandwich hybridization assay for
HBV, comprising two oligonucleotides, wherein each member
of the set comprises

20 a first segment comprising a nucleotide
sequence substantially complementary to a segment of HBV
nucleic acid; and

 a second segment comprising a nucleotide
sequence substantially complementary to an
oligonucleotide multimer;

25

 wherein said HBV nucleic acid segments are

30

TTGTGGGTCTTGGGYTTGCTGCYCCWT (SEQ ID NO:6),
CCTKCTCGTGTACAGGCGGGGTTTCTT (SEQ ID NO:7),
TCCATGGCTGCTAGGSTGTRCTGCCAACTG (SEQ ID NO:8),
GCYTAYAGACCACCAAATGCCCTATCYTA (SEQ ID NO:9),
CTGTTCAAGCCTCCAAGCTGTGCCTGGT (SEQ ID NO:10),
CATGGAGARCAYMACATCAGGATTCTTAGG (SEQ ID NO:11),
TCCTGGYTATCGCTGGATGTGTCTGCGGCGT (SEQ ID NO:12),
GGCGCTGAATCCYCGGGACGACCCBTCTCG (SEQ ID NO:13),
CTTCGCTTCACCTCTGCACGTHGCATGGMG (SEQ ID NO:14),

35

GGTCTSTGCCAAGTGTGCTGACGCAACC (SEQ ID NO:15),
CCTKCGGGACGTCCCTTGTYACGTCCC (SEQ ID NO:16),
MCCTCTGCCATTATCATCTCWTGTWCATGTC (SEQ ID NO:17),
CGACCACGGGGCGCACCTCTCTTACGC GG (SEQ ID NO:18),
5 TGCCCAAGGTCTTACAYAAGAGGACTCTTG (SEQ ID NO:19),
CGTCAATCTYCKCGAGGA CTTGGGACCTG (SEQ ID NO:20),
ATGTTGCCGTTGTCCTCTAMTTCCAGGA (SEQ ID NO:21),
ATCTTCTTRTTGGTTCTCTGGAYTAYCAA (SEQ ID NO:22),
ATCATMTTCCTCTTCATCCTGCTGCTATGC (SEQ ID NO:23),
10 CAATCACTCACCAACCTCYTGTCCAA Y (SEQ ID NO:24),
GTGTCYTGGCCAAAATCGCAGTCCCCAAC (SEQ ID NO:25),
CTCGTGGTGGACTTCTCTCAATTCTAGG (SEQ ID NO:26),
GACAAGAATCCTCACAATACRCAGAGTCT (SEQ ID NO:27),
TTTGGGGTGGAGGCCKCAGGCTCAGGGCR (SEQ ID NO:28),
15 CACCATATTCTTGGGAACAAGAKCTACAGC (SEQ ID NO:29),
ACACTTCCGGARACTACTGTTGTTAGACGA (SEQ ID NO:30),
GTVTCTTYGGAGTGTGGATT CGCACTCCT (SEQ ID NO:31),
TTGGAGCWWTGTGGAGTTACTCTCKTTT (SEQ ID NO:32),
TTTGGGGCATGGACATYGAYCCTATAAAG (SEQ ID NO:33),
20 AAWGRCTTTGTAYTAGGAGGCTGTAGGCA (SEQ ID NO:34),
RGACTGGGAGGAGYTG GGGGAGGAGATTAG (SEQ ID NO:35),
CCTTGAGGCM TACTTCAAAGACTGTGTGTT (SEQ ID NO:36),
GTCTGTGCCCTCTCATCTGCCGWCCGTGT (SEQ ID NO:37),
AGCMGCTTGTGGCTCGCAGSMGGTCTGG (SEQ ID NO:38),
25 GGCTCSTCTGCCGATCCATACTGCGGA ACT (SEQ ID NO:39),
MTKAACCTTTACCCGTTGCTCGCAACGG (SEQ ID NO:40),
GTGGCTCCAGTTCMGGAACAGTAAACCTG (SEQ ID NO:41),
KAARCAGGCTTYACTTCTGCCAACTTA (SEQ ID NO:42),
CCTCCCKCTGCCTCYACCAATCGSCAGTCA (SEQ ID NO:43),
30 ACCAATTTCTTYGTCTYTGGGTATACAT (SEQ ID NO:44).

6. The set of synthetic oligonucleotides of
claim 5, wherein said second segment comprises

35 AGGCATAGGACCCGTGTCTT (SEQ ID NO:54).

7. A set of synthetic oligonucleotides useful as capture probes in a sandwich hybridization assay for HBV, comprising two oligonucleotides, wherein each member of the set comprises

5 a first segment comprising a nucleotide sequence substantially complementary to a segment of HBV nucleic acid; and

10 a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide bound to a solid phase,

15 wherein said HBV nucleic acid segments are
TATTCCCATCCCATCRTCCTGGGCTTCGS (SEQ ID NO:45),
TATATGGATGATGTGGTATTGGGGGCCAAG (SEQ ID NO:46),
CGTAGGGCTTCACACTGTTGGCTTC (SEQ ID NO:47),
GCTCAGTTACTAGTGCCATTGTTCACTG (SEQ ID NO:48),
CCTATGGGAGKGGGCCTCAGYCCGTTCTC (SEQ ID NO:49),
GTCCCCCTAGAAGAAGAACTCCCTGCCTCG (SEQ ID NO:50),
ACGMAGRTCTCMATCGCCGCGTCGCAGAAGA (SEQ ID NO:51),
CAATCTGGGAATCTCAATGTTAGTATYCC (SEQ ID NO:52),
20 GACTCATAAGGTSGGRAACTTACKGGGCT (SEQ ID NO:53).

8. The set of synthetic oligonucleotides of claim 7, wherein said second segment comprises
CTTCCTTGGAGAAAGTGGTG (SEQ ID NO:55).

25 9. A solution sandwich hybridization assay for detecting the presence of HBV in a sample, comprising
(a) contacting the sample under hybridizing conditions with an excess of (i) amplifier probes
30 comprising the of set of synthetic oligonucleotides of claim 5 and (ii) a set of capture probe oligonucleotides wherein the capture probe oligonucleotide comprises a first segment comprising a nucleotide sequence that is substantially complementary to a segment of HBV nucleic acid and a second segment that is substantially

complementary to an oligonucleotide bound to a solid phase;

(b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;

(c) thereafter separating materials not bound to the solid phase;

(d) contacting the bound product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide;

(e) removing unbound multimer;

(f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;

(g) removing unbound labeled oligonucleotide; and

(h) detecting the presence of label in the solid phase complex product of step (g).

10. A solution sandwich hybridization assay for detecting the presence of HBV in a sample, comprising

(a) contacting the sample under hybridizing conditions with an excess of (i) a set of amplifier probe oligonucleotides wherein the amplifier probe oligonucleotide comprises a first segment comprising a nucleotide sequence substantially complementary to a segment of HBV nucleic acid and a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer and (ii) capture probes

comprising the set of synthetic oligonucleotides of claim 7;

5 (b) contacting the product of step (a) under hybridizing conditions with said oligonucleotide bound to the solid phase;

(c) thereafter separating materials not bound to the solid phase;

10 (d) contacting the bound product of step (c) under hybridization conditions with the nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially complementary to a labeled oligonucleotide;

15 (e) removing unbound multimer;

(f) contacting under hybridizing conditions the solid phase complex product of step (e) with the labeled oligonucleotide;

20 (g) removing unbound labeled oligonucleotide; and

(h) detecting the presence of label in the solid phase complex product of step (g).

25 11. A kit for the detection of HBV in a sample comprising in combination

(i) a set of amplifier probe oligonucleotides wherein the amplifier probe oligonucleotide comprises a first segment comprising a nucleotide sequence substantially complementary to a segment of HBV nucleic acid and a second segment comprising a nucleotide sequence substantially complementary to an oligonucleotide unit of a nucleic acid multimer;

30 (ii) a set of capture probe oligonucleotides wherein the capture probe oligonucleotide comprises a

first segment comprising a nucleotide sequence that is substantially complementary to a segment of HBV DNA and a second segment that is substantially complementary to an oligonucleotide bound to a solid phase;

5 (iii) a nucleic acid multimer, said multimer comprising at least one oligonucleotide unit that is substantially complementary to the second segment of the amplifier probe polynucleotide and a multiplicity of second oligonucleotide units that are substantially
10 complementary to a labeled oligonucleotide; and
 (iv) a labeled oligonucleotide.

12. The kit of claim 11, wherein said amplifier probe oligonucleotide comprises the set of
15 synthetic oligonucleotides of claim 5.

13. The kit of claim 11, wherein said capture probe oligonucleotide comprises the set of synthetic oligonucleotides of claim 7.

20 14. The kit of claim 10, further comprising instructions for the use thereof.

25

30

35

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US92/11165

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :C07H 21/02, 21/04; C12Q 1/68, 1/70
 US CL :536/24.3; 435/5, 6

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 536/24.3; 435/5, 6

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	GENE, Vol. 30, issued 1984, M. Kobayashi et al, "Complete nucleotide sequence of hepatitis B virus DNA of subtype adr and its conserved gene organization", pages 227-232, see Figure 1.	1-14
Y	EP, A, 0,317,077 (URDEA ET AL) 24 MAY 1989, see entire document.	1-14
Y	WO, A, 89/03891 (URDEA ET AL) 05 MAY 1989, see entire document.	1-14
Y	US, A, 4,868,105 (URDEA ET AL) 19 SEPTEMBER 1989, see entire document, especially Figure 1A.	1-14

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be part of particular relevance		
"E" earlier document published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&"	document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

24 March 1993

Date of mailing of the international search report

30 MAR 1993

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Authorized officer

DAVID SCHREIBER

Facsimile No. NOT APPLICABLE

Telephone No. (703) 308-0196

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US92/11165

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

N-GENESEQ, UEMBL, EMBL-NEW, GENBANK, GENBANK-NEW, MEDLINE, CAS, BIOSIS,
search terms: HBV, hepatitis B virus, amplifier probe, multimer, sandwich hybridization, solid phase, nucleic acid,
synthetic oligonucleotides

THIS PAGE BLANK (USPTO)

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)