

1 I2C interface

IP2368 可作为从设备, MCU 可通过 I2C 接口来读取或设置 IP2368 的充电电压。电流、电路等信息,连接方式如下:

IP2368 的 I2C 设备地址: 写为 0xEA, 读为 0xEB。如需设为其他地址,可以通过定制实现;例如:

往 0x05 寄存器写入数据 0x5A

从 0x05 寄存器读回数据

I2C Read

特别说明:在 I2C 读取数据的末尾,在最后一个 BYTE 读取完时,一定要给 NACK 信号,否则 IP2368 会以为 MCU 还需要继续读取数据,下一个 SCLK 就会输出下一个数据,无法正常收到 STOP 信号,可能会导致 I2C 总线拉死。

1) INT 应用说明:

IP2368在休眠状态下,INT为高阻,MCU检测到INT为低后16ms内要停止访问I2C;

IP2368在休眠状态下,如果检测检测到INT为高就会唤醒IP2368;

IP2368在唤醒后,INT为主动来拉高,拉高100ms 后MCU可以开始访问I2C数据;

IP2368在进入休眠前,会将INT切换为输入高阻,如果INT被MCU拉高就认为MCU不允许IP2368进入休眠。

- 2) IP2368 的 I2C 最高频率支持 250K, 考虑到 MCU 时钟偏差, 在应用 I2C 时 MCU 通讯的时钟 建议用 200K 左右;
- 3) 如果要修改 IP2368 某个寄存器的时候需要先将相应寄存器的值读出来对需要修改的 BIT 位进行与或运算后再把计算的值写进这个寄存器,确保只修改需要修改的 bit 其他未开放的 bit 的值不能随意改动,寄存器的默认值以读到的值为准,不同批次的 IC 默认值可能会存在差异。
- 4) MCU 操作流程: INT 持续为高 100ms 就可以读写 I2C 寄存器,可先初始化寄存器 (需要修改特殊功能时才修改寄存器,如果不需要修改可以不写寄存器),然后读取 IC 内部信息(电量、充放电状态、按键状态),进行特性需求的(如特殊指示灯、充放电管理、快充请求管理)操作; INT 为低后 16ms 内需要停止访问 I2C。
- 5) IP2368 寄存器默认值只供客户参考当前功能的配置情况,如需要操作寄存器时,需要先读 出来再进行计算后再写回到寄存器中。
- 6) 本文档只针对 IP2368_I2C_COUT 的型号, 其他型号无效;

*Reserved 的寄存器不可随意写入数据,不可改变原有的值,否则会出现无法预期的结果。对寄存器的操作必须按照读-修改-写来进行,只修改要用到的 bit,不能修改其他未用 bit 的值。

寄存器列表:

可读/写操作寄存器

SYS_CTLO(charge 使能寄存器)

Bit(s)	Name	Description	R/W	RESET
7	EN_LOADOTP	开机唤醒重新复位寄存器值使能	R/W	1
		0: 不重新复位寄存器值		
		1: 重新复位寄存器值		
		该 bit 不建议修改为 0,如果需要修改,软件需要定期		
		复位寄存器默认值,如 VINOK VBUOK 信号触发后		
6	EN_RESETMCU	MCU 重新复位寄存器	R/W	0
		写 1: 重新复位寄存器为默认值,复位后该 bit 自动恢		
		复为 0		
5	EN_INT_low	有异常的时候 INT 拉低 2MS ,提示 MCU 有异常发生	R/W	0
		1: enable		
		0: disable		
4	EN_VBUS_sinkDP	C 口输入 DM DP 快充使能	R/W	1
	DM	1: enable		
		0: disable		
3	EN _VBUS_sinkpd	C 口输入 PD 快充使能	R/W	1
		1: enable		

		0: disable		
2	EN	C 口输入 SCP 快充使能	R/W	1
	_VBUS_sinkSCPV	1: enable		
	00C	0: disable		
1	EN	C 口 MOS 输入使能	R/W	1
	_VBUS_sinkctrl	1: enable,打开 C 口 MOS		
		0: disable,关闭 C 口 MOS		
0	En_Charger	Charger 充电使能(关闭后不可充电)	R/W	1
		1: enable		
		0: disable		

SYS_CTL1(串联节数设置、电池类型、电流设置模式)

I2C 地址 0XEA 寄存器地址= 0x01

Bit(s)	Name	Description	R/W	RESET
7: 4	Reserved			
3	En_batmode_set	设置电池类型使能(电池类型由寄存器 0x01[2])	R/W	0
		1: enable,允许设置电池类型		
		0: disable,不允许设置电池类型		
2	Set_batmode	电池类型设置	R/W	1
		0:磷酸铁锂电池,单节电池涓流转恒流电压 2.5V,充		
		满电压 3.6V 左右		
		1: 普通锂电池,单节电池涓流转恒流电压 3.0V,充满		
		电压 4.2V 左右		
1	En_isetmode_set	选择电流设置模式使能	R/W	0
		1: enable, 允许选择电流设置模式		
		0: disable 不允许选择电流设置模式		
0	Set_isetmode	选择电流设置模式(电流和功率寄存器 0x03 [6:0])	R/W	1
	_	0: ISET 设置的是电池端电流		
		1: ISET 设置的是输入端功率		
		/		

SYS_CTL2(VSET 充满电压设定)

I2C 地址 0XEA 寄存器地址= 0x02

Bit(s)	Name	Description	R/W	RESET
7	En_vset_set	设置充满电压使能	R/W	0
		1: enable,允许设置充满电压		
		0: disable,不允许设置充满电压		
6:0	VSET	充满电压设置		00 1010
		磷酸铁锂电池模式时(0x01[2]=0),单节电池充满电		
		压 VSET=N*10+3500mV(最高 3.7V)		

service@injoinic.com 3 / 18 V1.2

	普通锂电池模式时(0x01[2]=1),单节电池充满电压		
	VSET=N*10+4000mV(最高 4.4V)		l
			l

SYS_CTL3(ISET 充电功率或电流设置)

I2C 地址 0XEA 寄存器地址= 0x03

120 延星(7,77,		D /114	A-0
Bit(s)	Name	Description	R/W	RESET
7	En_iset_set	设置充电功率或电流使能	R/W	Ó
		1: enable,允许设置充电功率或电流	\nearrow ()	
		0: disable,不允许设置充电功率或电流		
6:0	ISET	电池端电流或功率设置	R/W	0111100
		当设置为电池端电流时(0x01[0]=0),电池端电流		
		ISET=N*100mA(最大为 5A)		
		当设置为充电输入功率模式时(0x01[0]=1),设置的		
		充电功率		
		Pmax=N*1W(充电最大为 100W)		

SYS_CTL4(电池容量设置)

I2C 地址 0XEA 寄存器地址= 0x04

Bit(s)	Name	Description 4	R/W	RESET
7	En FCAP set	设置电池容量功能使能	R/W	0
		1: enable,允许设置电池容量	,	
		0. disable,不允许设置电池容量		
6:0	FCAP	电池容量 FCAP= N*200mAh	R/W	0101000

SYS_CTL5(初始电量)

I2C 地址 0XEA 寄存器地址= 0x05

Bit(s)		Name	Description	R/W	RESET
7:	0	CAP_INT	充电开始前的剩余电量	R/W	х

SYS_CTL6(当前电量)

Bit(s)	Name	Description	R/W	RESET
--------	------	-------------	-----	-------

7:0	CAP_NOW	当前电量 (只读)	R/W	х

SYS_CTL7(涓流充电电流、阈值和充电超时设置)

I2C 地址 0XEA 寄存器地址= 0x07

Bit(s)	Name	Description	R/W	RESET
7:4	Itk	涓流充电电流设置(最大的涓流充电电流 400ma)	R/W	0100
		Itk=N*50mA		\
3:2	Vtk	单节电池涓流转恒流充电电压阈值	R/W	10
		当设置为磷酸铁锂模式时(0x01[2]=0)		
		00: 2.3V		
		01: 2.4V		
		10: 2.5V		
		11: 2.6V		
		当设置为普通锂电池模式时(0x01[2]=1		
		00: 2.8V		
		01: 2.9V		
		10: 3.0V		
		11: 3.1V		
1:0	Charge_OT	充电超时设置	R/W	10
		00: disable,没有充电超时功能		
		01: 24h		
		10: 36h		
		11: 48h		

SYS_CTL8(停充电流和再充电阈值设置)

Bit(s)	Name	Description	R/W	RESET
7:4	Istop	停充充电电流设置	R/W	0010
		Istop=N*50mA		
3:2	Vrch	再充电阈值	R/W	10
		00: 充饱后没有再充电功能		
	y	01: V _{TRGT} – N*0.05		
7		10: VTRGT - N*0.1		
		11: V _{TRGT} – N*0.2		
		V _{TRGT} 充饱电压		
		N电池串联节数		
1:0		Reserved		

SYS_CTL9(待机使能和低电电压设置)

I2C 地址 0XEA 寄存器地址= 0x09

Bit(s)	Name	Description	R/W	RESET
7	En_Standby	待机使能	R/W	1
		1: 使能		
		0: 不使能		
6	En_batlow_SET	电池低电电压设置使能(电池电压设置寄存器 0x0A)	R/W	0
		0: disable		
		1: enable	C 0	
5:0	Reserved			

SYS_CTL10(电池低电电压设置)

I2C 地址 0XEA 寄存器地址= 0x0A

IZC 地址 UNLA 可行册地址 – UNUA				
Bit(s)	Name	Description	R/W	RESET
7:5	SET_batlow	电池低电电压设置	R/W	010
		000:锂电池 2.80V*N/铁锂电池 2,3V*N		
		001:锂电池 2.90V*N/铁锂电池 2.4V*N		
		010:锂电池 3.00V*N/铁锂电池 2.5V*N		
		011:锂电池 3.10V*N/铁锂电池 2.6V*N		
		100:锂电池 3.20V*N/铁锂电池 2.7V*N		
		N:电池串联节数		
4:0	Reserved			

SYS_CTL11 (输出使能寄存器)

Bit(s)	Name	Description	R/W	RESET
7	En_dc-dc_output	放电输出使能(关闭后不可输出)	R/W	1
		1: 使能		
		0: 不使能		
6	EN_vbus_src_DP	VBUS 口输出 DP/DM 快充使能	R/W	1
	DM	1: enable		
		0: disable		
5	EN _VBUS_srckpd	C 口输出 PD 快充使能	R/W	1
		1: enable		
		0: disable		
4	EN _VBUS_srcSCP	C 口输出 SCP 快充使能	R/W	1
		1: enable		
		0: disable		
3:0	Reserved			

TYPEC_CTL8(TYPE-C 模式控制寄存器)

I2C 地址 0XEA 寄存器地址= 0x22

Bit(s)	Name	Description	R/W	RESET
7:6	Vbus_mode_set	Vbus CC 模式选择	R/W	0
		00: UFP		
		01: DFP		
		11: DRP		
5:0	Reserved		^	

TYPEC_CTL9(输出 PDO 电流设置寄存器)

Bit(s)	Name	Description	R/W	RESET
7	EN_5VPDO_3A/2.4A	5VPDO 电流设置	R/W	1
		1: 3A		
		0: 2.4A		
6	EN_PPS2PDO_ISET	PPS2 PDO 电流设置使能	R/W	0
		1: enable		
		0: disable		
		│*使能后输出功率、过流以设置的 PDO 电流为准,过 │		
		流为设置 PDO 电流 1.1 倍		
5	EN_PPS1PDO_ISET	PPS1 PDO 电流设置使能	R/W	0
		1: enable		
		0: disable		
		*使能后输出功率、过流以设置的 PDO 电流为准,过		
		流为设置 PDO 电流 1.1 倍		
4	EN_20VPDO_ISET	20VPDO 电流设置使能	R/W	0
		1: enable		
		0. disable		
		*使能后输出功率、过流以设置的 PDO 电流为准,过		
		流为设置 PDO 电流 1.1 倍		
3	EN_15VPDO_ISET	15VPDO 电流设置使能	R/W	0
		1: enable		
		0: disable		
		*使能后输出功率、过流以设置的 PDO 电流为准,过		
		流为设置 PDO 电流 1.1 倍		
2	EN_12VPDO_ISET	12VPDO 电流设置使能	R/W	0
Y		1: enable		
		0: disable		
		*使能后输出功率、过流以设置的 PDO 电流为准,过		
		流为设置 PDO 电流 1.1 倍		
1	EN_9VPDO_ISET	9VPDO 电流设置使能	R/W	0
		1: enable		
		0: disable		
		*使能后输出功率、过流以设置的 PDO 电流为准,过		
		流为设置 PDO 电流 1.1 倍		

0	EN_5VPDO_ISET	5VPDO 电流设置使能	R/W	0	
		1: enable			
		0: disable			

TYPEC_CTL10(5VPDO 电流设置寄存器)

I2C 地址 0XEA 寄存器地址= 0x24

·= • ·	A 11 HH . C. T.	··- ·				
Bit(s)	Name	Description			R/W	RESET
7:0	5VPDO_ISET	5VPDO 电流设置		(R/W	0x96
		5VPDO=20mA*N	(默认 3A,Max=3A)			

TYPEC_CTL11 (9VPDO 电流设置寄存器)

I2C 地址 0XEA 寄存器地址= 0x25

Bit(s)	Name	Description			R/W	RESET
7:0	9VPDO_ISET	9VPDO 电流设置			R/W	0x96
		9VPDO=20mA*N (默)	认 3A,Max	=3A)		

TYPEC_CTL12(12VPDO 电流设置寄存器)

I2C 地址 OXEA 寄存器地址= 0x26

Bit(s)	Name	Description	R/W	RESET
7:0	12VPDO_ISET	12VPDO 电流设置	R/W	0x96
		12VPDO=20mA*N (默认 3A,Max=3A)		

TYPEC_CTL13 (15VPDO 电流设置寄存器)

12C 地址 0XEA 寄存器地址= 0x27

Bit(s)	Name	Description	R/W	RESET
7:0	15VPDO_ISET	15VPDO 电流设置	R/W	0x96
		15VPDO=20mA*N (默认 3A,Max=3A)		

TYPEC_CTL14(20VPDO 电流设置寄存器)

Bit(s)	Name	Description	R/W	RESET
7:0	20VPDO_ISET	20VPDO 电流设置	R/W	0xFA
		20VPDO=20mA*N (默认 5A, 需要识别到		
		emark,Max=5A) 没有识别到 emark 为 3A		

TYPEC_CTL23(PPS1 PDO 电流设置寄存器)

I2C 地址 OXEA 寄存器地址= 0x29

Bit(s)	Name	Description	R/W	RESET
7:0	PPS1PDO_ISET	PPS1 PDO 电流设置	R/W	0x3C
		PPS1 PDO=50mA*N (默认 5A,需要识别到		
		emark,Max=5A) 没有识别到 emark 为 3A		

TYPEC_CTL24(PPS2 PDO 电流设置寄存器)

I2C 地址 OXEA 寄存器地址= 0x2A

Bit(s)	Name	Description	R/W	RESET
7:0	PPS2PDO_ISET	PPS2 PDO 电流设置	R/W	0x3C
		PPS2 PDO=50mA*N (默认 5A) 需要识别到		
		emark,Max=5A) 没有识别到 emark 为 3A		

TYPEC_CTL17(输出 PDO 设置寄存器)

Bit(s)	Name	Description	R/W	RESET
7		Reserved	R/W	R
6	EN_SRC_PPS2PDO	PPS2 PDO 使能	R/W	1
	4	1: enable		
		0: disable		
		* disable 后没有 PPS2 PDO		
5	EN_SRC_PPS1PDO	PPS1 PDO 使能	R/W	1
		1: enable		
) <i>V</i>	0: disable		
		* disable 后没有 PPS1 PDO		
4	EN_SRC_20VPDO	20VPDO 使能	R/W	1
		1: enable		
		0: disable		
		* disable 后没有 20V PDO		
3	EN_SRC_15VPDO	15VPDO 使能	R/W	1
		1: enable		
		0: disable		
		* disable 后没有 15V PDO		
2	EN_SRC_12VPDO	12VPDO 使能	R/W	1

		1: enable		
		0: disable		
		* disable 后没有 12V PDO		
1	EN_SRC_9VPDO	9VPDO 使能	R/W	1
		1: enable		
		0: disable		
		* disable 后没有 9V PDO		
0		Reserved	R/W	R

CRASSON SERVICE

service@injoinic.com 10 / 18 V1.2

只读状态指示寄存器

SOC_CAP_DATA(电芯电量数据寄存器)

I2C 地址 0XEA 寄存器地址= 0X30

Bit(s)	Name	Description	R/W
7:0	SOC_CAP	电芯百分比电量数据(%)	R
		SOC_CAP=N	

STATE_CTLO(充电状态控制寄存器)

I2C 地址 0XEA 寄存器地址= 0X31

Bit(s)	Name	Description	R/W
7:6		Reserved	R
5	CHG_en	充电标志位	R
		1: 充电状态(VBUSOK 就算充电状态)	
		0: 非充电状态	
4	CHG_end	充满状态标志位	R
		1: 充电已充满	
		0: 充电未充满	
3	Output_en	放电状态标志位	
		1: 放电状态且输出口已经打开,没有任何异常	R
		0: 放电状态输出没有打开或者有放电异常	
2:0	Chg_state	Chg_state	R
		000: 待机	
		001: 涓流	
		010: 恒流充电	
		011: 恒压充电	
		100: 充电等待中(包括未开启充电等情况)	
	1 9	101: 充满状态	
		110: 充电超时	

STATE CTL1(充电状态控制寄存器)

I2C 地址 OXEA 寄存器地址= OX32

Bit(s)	Name	Description	R/W
7:6		Chg_state	R
		00: 5V 输入充电	
		01: 高压输入快充充电	
6:0		Reserved	R

STATE_CTL2(输入 PD 状态控制寄存器)

I2C 地址 0XEA 寄存器地址= 0X33

Bit(s)	Name	Description	R/W
7	Vbusok	VBUSOK	R
		1: VBUS 有电	
		0: VBUS 没电	
6	Vbusov	VBUSOV	R
		1: VBUS 输入过压	
		0: VBUS 输入没有过压	X Y
5:3		Reserved	Y
2:0		充电电压	R
		111: 20V 充电	
		110: 15V 充电	
		101: 12V 充电	
		100: 9V 充电	
		011: 7V 充电	
		010: 5V 充电	

TYPEC_STATEO(系统状态指示寄存器)

I2C 地址 OXEA 寄存器地址= 0X34

Bit(s)	Name	Description	R/W
7	Sink_Ok	typec SINK 输入连接标志位	R
		1: 有效	
6		0: 无效 typec Src 输入连接标志位	R
b	Src_ok	1: 有效	ĸ
		0: 无效	
5	Src pd ok	Src_Pd_Ok 输入连接标志位	R
		1: 有效	
		0: 无效	
4	Sink_pd_ok	Sink_Pd_Ok 输入连接标志位	R
		1: 有效	
		0: 无效	
3		输入快充有效标志位 QC5V 和 PD5V 不算快充 OK	R
\mathcal{A}^{N}		1: 有效	
	7	0: 无效	
2:0		Reserved	R

MOS_STATE (输入 MOS 状态指示寄存器)

Bit(s)	Name	Description	R/W
--------	------	-------------	-----

7	Reserved	R
6	VBUS 口输入 MOS 状态	R
	0: 关闭状态	
	1: 开启状态	
5:0	Reserved	R

STATE_CTL3(系统过流指示寄存器)

I2C 地址 0XEA 寄存器地址= 0X38

120 地址 07	2C 地址 UNLA 可行船地址- UN38		
Bit(s)	Name	Description	R/W
7:6		Reserved	R
5	VSYS_oc	VSYS 输出过流标志位,需写 1 清 0 1: VSYS 输出有触发过流信号 0: VSYS 输出没有触发过流信号 当检测到第一次短路信号时,先写 1 清 0,然后再读,如果 600ms 内连续检测到两次以上的过流信号就认为过流信号有效	R
4	VSYS_scdt	VSYS 输出短路标志位,需写 1 清 0 1: VSYS 输出短路标志位,需写 1 清 0 1: VSYS 输出有触发短路信号 0: VSYS 输出没有触发短路信号 当检测到第一次短路信号时,先写 1 清 0,然后再读,如果 600ms 内连续检测到两次以上的短路信号就认为短路信号有效	R
3:0		Reserved	R

BATVADC_DATO(VBAT 电压寄存器)

I2C 地址 OXEA 寄存器地址= 0X50

Bit(s)	Name	Description	R/W
7:0	BATVADC[7:0]	BATVADC 数据的低 8bit	R
		VBATPIN 的电压	

BATVADC_DAT1 (VBAT 电压寄存器)

Bit(s)	Name	Description	R/W
7:0	BATVADC[15:8]	BATVADC 数据的高 8bit	R
		VBATPIN 的电压	
		VBAT=BATVADC (mV)	

VSYSVADC_DATO(VSYS 电压寄存器)

I2C 地址 OXEA 寄存器地址= OX52

Bit(s)	Name	Description	R/W
7:0	VSYSVADC[7:0]	VSYS 电压数据的低 8bit	R
		VSYSPIN 的电压	

VSYSVADC_DAT1(VSYS 电压寄存器)

寄 I2C 地址 OXEA 寄存器地址= 0X53

Bit(s)	Name	Description	R/W
7:0	VSYSVADC[15:8]	VSYS 电压数据的高 8bit VSYSPIN 的电压 VSYS= VSYSVADC (mV)	R

IVBUS_IADC_DATO(输入电流寄存器)

I2C 地址 0XEA 寄存器地址= 0X54

Bit(s)	Name	Description	R/W
7:0	IVBUS	充电输入电流数据的低 8bit	R
	ADC[7:0]	VBUS 输入的电流	

IVBUS_IADC_DATO(输入电流寄存器)

寄 I2C 地址 OXEA 寄存器地址= 0X55

Name (Description	R/W
IVBUSADC		充电输入电流数据的高 8bit	R
[15:8]		VBUS 输入的电流	
		lin=IVBUSADC(mA)	
	IVBUSADC	IVBUSADC	IVBUSADC 充电输入电流数据的高 8bit VBUS 输入的电流

IBATIADC_DATO(BAT 端电流寄存器)

Bit(s)	Name	Description	R/W
7:0	IBATIADC[7:0]	电芯端电流 IBATIADC 数据的低 8bit	R

IBATIADC_DAT1(BAT端电流寄存器)

I2C 地址 OXEA 寄存器地址= 0x6F

Bit(s)	Name	Description	R/W
7:0	IBATIADC[15:8]	电芯端电流 BATIADC 数据的高 8bit	R
		IBAT= IBATIADC(mA)	

ISYS_IADC_DATO(IVSYS端电流寄存器)

I2C 地址 0XEA 寄存器地址= 0x70

Bit(s)	Name	Description		R/W
7:0	ISYSIADC[7:0]	IVSYS 端电流 VSYSIADC 数据的低 8bit	()	R

IVSYS_IADC_DAT1(IVSYS端电流寄存器)

I2C 地址 OXEA 寄存器地址= 0x71

Bit(s)	Name	Description		R/W
7:0	IVSYSIADC[15:8]	IVSYS 端电流 VSYSIADC 数据的高	8bit	R
		IVSYS = VSYSIADC(mA)		

VSYS_POW_DATO(VSYS 端功率寄存器)

I2C 地址 OXEA 寄存器地址= OX74

Bit(s)	Name	Description	R/W
7:0	VSYS_POW_ADC [7:0]	VSYS 端功率 ADC 数据的低 8bit	R

VSYS_POW_DAT1(VSYS端功率寄存器)

I2C 地址 0XEA 寄存器地址= 0X75

Bit(s)	Name	Description	R/W
7:0	VSYS_POW_ADC[15:8]	VSYS 端功率 ADC 数据的高 8bit	R
		VSYS_POW= VSYS_POW_ADC(mW)	

INTC_IADC_DATO(NTC输出电流寄存器)

Bit(s) Name Description R/W

7	NTC_IADC_DAT	0:输出 20uA	R	
		1:输出 80uA		
6:0	Reserved			

VGPIO0_NTC_DATO(VGPIO0_NTC_ADC 电压寄存器)

I2C 地址 OXEA 寄存器地址= 0X78

Bit(s)	Name	Description	R/W
7:0	VGPIO0_DAT0 [7:0]	VGPIO0_ADC 数据的低 8bit	R

VGPIO0_NTC_DAT1(VGPIO0_NTC_ADC 电压寄存器)

I2C 地址 OXEA 寄存器地址= 0X79

	12 - 13 TE - 14 14 TH - 14 15 TE - 14 15			
Bit(s)	Name	Description	7	R/W
7:0	VGPIO0_DAT1	VGPIO0_ADC 数据的高 8bit		R
	[15:8]	VGPIO0_DAT= VGPIO0_ADC (mV) (0~3.3	V	

VGPIO1_ISET_DATO(VGPIO1_ISET_ADC电压寄存器)

I2C 地址 0XEA 寄存器地址= 0X7A

Bit(s)	Name	Description	R/W	
7:0	VGPIO1_DAT0	VGPIO1_ADC 数据的低 8bit	R	
	[7:0]			

VGPIO1_ISET_DAT1 (VGPIO1_ISET_ADC 电压寄存器)

I2C 地址 OXEA 寄存器地址= 0X7B

Bit(s)	Name	Description	R/W
7:0	VGPIO1_DAT1	VGPIO1_ADC 数据的高 8bit	R
	[15:8]	VGPIO1_DAT= VGPIO1_ADC (mV) (0~3.3V)	

VGPIO2_VSET_DATO(VGPIO2_VSET_ADC 电压寄存器)

I2C 地址 OXEA 寄存器地址= 0X7C

Bit(s)	Name	Description	R/W
7:0	VGPIO2_DAT0	VGPIO2_ADC 数据的低 8bit	R
	[7:0]		

VGPIO2_VSET_DAT1(VGPIO2_VSET_ADC 电压寄存器)

I2C 地址 0XEA 寄存器地址= 0X7D

Bit(s)	Name	Description	R/W
7:0	VGPIO2_DAT1	VGPIO2_ADC 数据的高 8bit	R
	[15:8]	VGPIO2_DAT= VGPIO2_ADC (mV) (0~3.3V)	

VGPIO3_FCAP_DATO(VGPIO3_FCAP_ADC 电压寄存器)

I2C 地址 OXEA 寄存器地址= OX7E

ILC POPE ON	ico sesti over significante over			
Bit(s)	Name	Description		R/W
7:0	VGPIO3_DAT0 [7:0]	VGPIO3_ADC 数据的低 8bit	~	R

VGPIO3_FCAP_DAT1(VGPIO3_FCAP_ADC 电压寄存器

I2C 地址 0XEA 寄存器地址= 0X7F

Bit(s)	Name	Description	R/W
7:0	V GPIO3_DAT1	VGPIO3_ADC 数据的高 8bit >	R
	[15:8]	VGPIO3_DAT= VGPIO3_ADC (mV) (0~3.3V)	

VGPIO4_BATNUM_DATO(VGPIO4_BATNUM_ADC 电压寄存器)

I2C 地址 0XEA 寄存器地址= 0X80

Bit(s)	Name	Description	R/W
7:0	VGPIO4_DATO	VGPIO4_ADC 数据的低 8bit	R
	[7:0]		

VGPIO4_BATNUM_DAT1(VGPIO4_BATNUM_ADC 电压寄存器)

Bit(s)	Name	Description	R/W
7:0	V GPIO4_DAT1	VGPIO4_ADC 数据的高 8bit	R
	[15:8]	VGPIO3_DAT= VGPIO3_ADC (mV) (0~3.3V)	

责任及版权申明

英集芯科技有限公司有权对所提供的产品和服务进行更正、修改、增强、改进或其它更改,客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的销售条款与条件。

英集芯科技有限公司对应用帮助或客户产品设计不承担任何义务。客户应对其使用英集芯的产品 和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全验证。

客户认可并同意,尽管任何应用相关信息或支持仍可能由英集芯提供,但他们将独力负责满足与 其产品及在其应用中使用英集芯产品相关的所有法律、法规和安全相关要求。客户声明并同意,他们具备 制定与实施安全措施所需的全部专业技术和知识,可预见故障的危险后果、监测故障及其后果、降低有可 能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因在此类关键应用中使用任何 英集芯产品而对英集芯及其代理造成的任何损失。

对于英集芯的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。英集芯对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

英集芯会不定期更新本文档内容,产品实际参数可能因型号或者其他事项不同有所差异,本文档 不作为任何明示或暗示的担保或授权。

在转售英集芯产品时,如果对该产品参数的陈述与英集芯标明的参数相比存在差异或虚假成分,则会失去相关英集芯产品的所有明示或暗示授权,且这是不正当的、欺诈性商业行为。英集芯对任何此类 虚假陈述均不承担任何责任或义务。

