

Introduction to Machine Learning

Data

Continuous process

Measures

Targets

Monitoring

Features

Signal

Relationships

Patterns

Hidden information in our dataset

Valuable resources to predict our target

Learning

Set of Rules – Human vs Machine Learn from Data

Learn a pattern so that when it sees **similar** data, it will be able to understand it.

.Take data as input, and output a prediction

Data → Machine Learning → Output

Techniques

Supervised Learning

- . Regression
- . Classification

Unsupervised Learning

- . Dimensionality Reduction
- . Clustering

Wachine Leaving

Machine Leaning

HAVE THE (LESS)

ANGUER (LESS)

SUPERISED

Machine Leaning

HAVE THE MACH

ANSWER (MACH)

SUPERVISED

U YOU TON'T HEVE THE ANSWER UNKUPERVISED Wachine Leavingy
HAVE THE MEDI
ANSWER (MEDI)
Supervised YOU DON'T HEVE THE ANSWER UNKUPERVISED

ARTIFICIAL INTELLIGENCE TERMS— ARTIFICIAL • AI is an umbrella term for machines capable of perception, logic, and learning. MACHINE **LEARNING** Machine learning employs algorithms that learn from data to make predictions or decisions, and whose performance improves when exposed to more data over time. DEEP **LEARNING** • Deep learning uses many-layered neural networks to build algorithms that find the best way to perform tasks on their own, based on vast sets of data.

Should I go walking or by bus?

Bias and Variance TradeOff

Bias

A highly biased model oversimplifies the information given by your data and tends to have high error rate.

Variance

A model with high variance tends to pay so much attention to the data it was given that it fails to generalize for data it hasn't seen before.

Bias and Variance TradeOff

Machine Leanning
Overfitting Regression
: under fitting :overfitting : generalization

Bias and Variance TradeOff

Techniques to prevent overfitting

Validation Techniques

Train Test Split

Time Split

Cross Validation

Calculate evaluation measures (ex: MSE)

Techniques to prevent overfitting

Reducing Model Complexity

Regularization

Tree Pruning

