Biochemistry

张梦杰

98061@tongji.edu.cn

13816619408

办公室: 医学楼辅楼405

生物大分子	糖类	脂类	蛋白质	核酸
长啥样				
干啥的				
咋来的?	外源消化和吸收 (动物),糖异 生;光合磷酸化 (植物)	外源消化和 吸收,运输, 合成	aa合成	核苷酸合成
咋没的?	糖酵解,TCA, 氧化磷酸化, HMP	β-氧化	aa分解	核苷酸 分解

11.17	北316	代谢概述,糖酵解
11.20	北316	三羧酸循环
11.24	北316	氧化磷酸化
11.27	北316	磷酸戊糖途径、糖异生
12.1	北316	糖原合成与分解
12.4	北316	光合磷酸化
12.8	北316	脂类分解代谢 (一)
12.11	北316	脂类合成代谢 (二)
12.15	北316	脂类合成代谢 (三)
12.18	北316	蛋白质代谢 (一)
12.22	北316	蛋白质代谢 (二)
12.25	北316	核酸代谢
12.29	北316	代谢调控

Metabolism Overview

Outline

- 1. Nutrition
- 2. Disease with metabolism-obesity, diabetes, CVD(心血管疾病), cancer
- 3. Metabolism
- 4. Metabolic regulation
- 5. Experimental methods to reveal metabolic pathways

1. Nutrition

- **Carbohydrates energy, essential components for nucleotides** and nucleic acids.
- **Protein--** source of nitrogen, essential amino acids.
- Lipids-- essential fatty acids.
- **Fiber**

Nature. 2015 Feb 26;518(7540):S3-11.

2. Diseases associated with metabolism

- Obesity One of the most serious public health problems
 - ✓ Increase heart diseases, type 2 diabetes, cancer (colon cancer)
 - ✓ Dieting and physical exercise control obesity

Diabetes

- High blood glucose
 - Type 1: pancreas does not produce insulin-- inherited
 - Type 2: cells does not respond to insulin -- lifestyle and genetics
 - Gestation(妊娠) diabetes
- Symptoms: polyuria (多尿) polydipsia (多饮) polyphagia (多食)
- Treatment
 - -insulin for Type 1
 - -medications Metformin(甲福明,二甲双胍) for control type 2

Metformin can reduce cancer incidence Euro. J. Cancer 2010;46:2369-2380

3. What is metabolism?

@Metabolism

-the sum of all the chemical transformations taking place in a cell or organism, occurs through a series of enzyme-catalyzed reactions that constitute metabolic pathways.

@Organisms vary in type

- aerobic, anaerobic

Metabolic pathways

- anabolic (合成) or catabolic (分解)
- "amphibolic" (两用代谢): anabolic + catabolic
- Pathways vary in type:

-Linear, Cyclic, Spiral or Branched.

Enzymes may appear as:

Individual, monofunctional enzymes

- Multienzyme complexes
- Multifunctional enzymes

The Substrates of Catabolism Contain Reduced Forms of Carbon

- > -CH₂- are the most form of reduced carbon.
- \triangleright CO₂ is the most oxidized form of carbon.
- Oxidation is the loss of electrons.

ATP Serves in a Cellular Energy Cycle

- Phototrophs transform light energy into ATP.
- In heterotrophs, catabolism produces ATP, which drives activities of cells.
- Energy is also conserved as reducing equivalents.
 - e.g. NADH, NADPH, FADH₂, FMNH₂ and CoQH₂.
- The other common energy carrier is acetylSCoA.

NADH and Catabolism

- Proteins, carbohydrates, and lipids in a reduced state.
- The oxidation release reducing equivalents from these substrates, often in the form of hydride ions.
- These hydrides are transferred to NAD+→NADH →other acceptors →O₂

NADPH and Anabolism

NADPH can be viewed as the carrier of electrons from catabolic reactions to anabolic reactions.

Reductive biosynthetic product Reductive biosynthetic reactions

Oxidized precursor

4. Metabolic regulation

• Molecular level: e.g. enzyme

ATP

- Cell level: Compartmentation (分区)
- The whole level: hormone regulation

Phosphorylation

Parallel pathways of catabolism and anabolism must differ in at least one metabolic step in order that they can be regulated independently.

5. What Experiments Can Be Used to Elucidate Metabolic Pathways?

Metabolic inhibitors were important tools for elucidating the

pathway steps.

- Mutations also were used to create specific metabolic blocks.
- Isotopic tracers (同位素示踪) as metabolic probes
- Mass spectrometry (MS) and nuclear magnetic resonance (NMR) are both powerful techniques for metabolomic analysis.

• Bioenergetics(生物能学)(自学)

-----P302-314

 $\Delta G^{\circ}' = -16.7 \text{ kJ/mol}$

Craig Venter 人造生命 http://open.163.com/movie/2008/2/G/F/MANER2A9T_MANER8LGF.html

Glycolysis (糖酵解)

Outline

- 1. Introduction
- 2. Catabolism of carbohydrates- three stages
- 3. Glycolysis
- 4. Regulation of glycolysis
- 5. The fates of NADH and pyruvate
- 6. Other substrates used in glycolysis
- 7. Summary on glycolysis

1. Introduction

Some Points About Glucose

- Glucose is very soluble source of quick and ready energy.
- Stable and easily transported.
- In mammals, the brain uses only glucose under non-starvation conditions.
- Glucose is the only source of energy in red blood cells.
- Under cellular conditions, 5% of the energy of glucose is released in glycolysis

Central Role of Glucose

LOW BLOOD SUGAR *Hypo*glycemia (低血糖)

2. Catabolism of carbohydrates

- ➤ Stage 1: Breakdown by enzymes in the digestive systems followed by intestinal absorption and cellular distribution
 - starch and glycogen
 - * salivary and pancreatic amylase
 - * maltase, sucrase and lactase → hexose
 - intestinal absorption: SGLT1 and SGLT2, Glut5 (小肠单糖转运体)
- Stage 2: Glycolysis
- Stage 3: TCA and oxidative phosphorylation

Intestinal absorption and cellular distribution

Only monosaccharides can be absorbed in mammalian intestine

3. glycolysis: Embden Meyerhof pathway

- 1854-1864, Louis Paster, fermentation—"vital force"(活力)
- 1897 Hans Buchner and Edward Buchner (1907 Nobel)
 - Yeast cell-free extracts , sucrose
 - First time that fermentation could occur outside cell
- 1905 Arthur Harden and William Young
- 1940, Gustav Embden, Otto Meyerhof, Carl Newberg, Jacob Parnas, Otto Warburg, Gerty Cori and Carl Cori (1947 Nobel)

Importance of Glycolysis

- Central energy-yielding path
- Provides precursors for many biosynthetic paths
- Some tissues (brain, kidney medulla, rapidly contracting skeletal muscles) and some cells (erythrocytes cells)---glucose is the only source of metabolic energy

- 10 steps of glycolysis (in the cytosol)
 - The starting point ——— glucose
 - The process ends ——— formation of two pyruvate
 - Aerobic or anaerobic

TCA

■ Glycolysis is the major source of pyruvate → ATP+ NADH

Reaction	Enzyme
Olucose+ ATP → Glucose6-phosphate+ ADP + H⊕	Hexokinase,glucokinase
 Glucose6-phosphate ← Fructose 6-phosphate 	Glucose-6-phosphateisomerase
3. Fructose6-phosphate+ ATP → Fructose1,6-bisphosphate+ ADP + H⊕	Phosphofructokinase-1
 Fructose1,6-bisphosphate	Aldolase
 Dihydroxyacetone phosphate	Triosephosphateisomerase
6. Glyceraldehyde 3-phosphate+ NAD⊕ + _i P ← 1,3-Bisphosphoglycerate+ NADH + H⊕	Glyceraldehyde 3-phosphatedehydrogenase
7) 1,3-Bisphosphoglycerate+ ADP	Phosphoglycerate kinase
8. 3-Phosphoglycerate 2-Phosphoglycerate	Phosphoglycerate mutase
 2-Phosphoglycerate → Phosphoenolpyruvate + H₂O 	Enolase
10. Phosphoenolpyruvate + ADP + H [⊕] → Pyruvate + ATP	Pyruvate kinase

Preparatory phase

Phosphorylation of glucose and its conversion to glyceraldehyde 3-phosphate

Glycolysis 1st Stage

Step 1. Hexokinase (己糖激酶) reaction

ΔG for the 1st step is large and negative.

Four kinases in glycolysis: steps 1,3,7, and 10, all of which require Mg²⁺ and have a similar mechanism.

Properties of hexokinases

 Hexokinases I, II, III (broad substrate specificity) are active at normal glucose concentrations (K_m ~10⁻⁶ to 10⁻⁴M)

 Hexokinase IV (Glucokinase, K_m ~10⁻²M) in the hepatocyte is active at higher glucose levels, allows the liver to respond to large increases in blood glucose

> | Glycogen (糖原)

Step 2. Conversion of G6P to F6P

ΔGº'= 1.7 kJ/mol 可逆

critical regulatory point

Step 3. Phosphofructokinase-1 (PFK-1) Reaction

- PFK-1 ---- irreversible and critical regulatory point
- PFK-2 ---- fructose 2,6-bisphosphate (F2,6BP)

Phosphofructokinase (PFK)

- MW 360,000
- Rate-limiting step in glycolysis
- Major control point: allosteric regulation
- High ATP inhibits
- High AMP, ADP stimulates
- Other "fuels" alter activity
- Fru-2,6-bisP
- hormonal signal

Step 4. Aldolase Reaction

Step 5. Reaction of Triose phosphate isomerase

(b) Glyceraldehyde 3-phosphate (2) $\frac{\text{oxidation and phosphorylation}}{6}$ 6 $\frac{2P_i}{2NAD^+}$ 脱氢酶 $\frac{2NAD^+}{2NAD^+}$ 比氢酶 1,3-Bisphosphoglycerate (2) first ATPforming reaction (substrate-level phosphorylation) 3-Phosphoglycerate (2) 2-Phosphoglycerate (2) Phosphoenolpyruvate (2) second ATPforming reaction (substrate-level phosphorylation) Pvruvate (2)

Payoff phase

Oxidative conversion of glyceraldehyde 3-phosphate to pyruvate and the coupled formation of ATP and NADH

Glycolysis

Step 6. Reaction of Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH)

G3P-DH is the site of action of arsenate (砷酸盐)

1-Arseno-3-phosphoglycerate

1,3-Bisphosphoglycerate

Step 7. Phosphoglycerate kinase reaction

> Substrate-level phosphorylation --- ATP

Step 8. Phosphoglycerate mutase 变位酶reaction

3-Phosphoglycerate

2-Phosphoglycerate

 $\Delta G'^{\circ}$ = 4.4 kJ/mol

Step 9. Enolase 烯醇酶 reaction

Richard Wheeler (Zephyris) 2006

 $\Delta G^{\prime \circ}$ = 7.5 kJ/mol

• Fluoride ion(氟化物) inhibits enolase

Step 10. Pyruvate kinase reaction

Phosphoenolpyruvate

ADP + H^{$$\oplus$$}
Pyruvate kinase
ATP

ADP + H ^{\oplus}

$$\Delta G^{\circ}' = -31.4 \text{ kJ/mol}$$

- substrate-level phosphorylation
- irreversible reaction
- allosteric modulators and covalent modification
- Pyruvate kinase gene is regulated by various hormones and nutrients

All ten intermediates are phosphorylated, why?

4. Regulation of glycolysis

Pyruvate Kinase

Control of PFK-1 (磷酸果糖激酶-1)

→ Many allosteric effectors

critical regulatory point

- **ATP** is an allosteric inhibitor of PFK-1.
- **→ Two binding sites: substrate and allosteric site.**

[Fructose 6-phosphate]

Control of pyruvate kinase

Control of pyruvate kinase

Note: all in cytosol

Net reaction of glycolysis

2 Pyruvate + 2 ATP + 2 NADH + 2 H^+ + 2 H_2O

那么生成的丙酮酸有哪些去路?

5. The fates of NADH and pyruvate produced in glycolysis

- Two acetyl-CoA(乙酰辅酶A)
- Complete degraded in the citric acid cycle
- Generate 4 CO₂ and 4 H₂O
- Large energy production

- Two lactates
- Consumption of 2 NADH
- Mechanism for the production of yogurt

- Consumption of 2 NADH
- Generate 2 ethanol and 2
 CO₂
- Mechanism for the production of ethanol beverages (wine, beer, etc)

1) Under anaerobic conditions

In Exercising muscle, pyruvate →lactate

 $\Delta G^{\prime \circ} = -25.1 \text{ kJ/mol}$

Glucose + 2 P_i +2 ADP \rightarrow 2 lactate + 2 ATP + 2 H_2O

Cancer cells tend to convert G→lactate even in the presence of O₂

tto Warburg

931 Nobel Prize of
hysiology or Medicine

2) In anaerobic **yeast**, pyruvate→**ethanol**

What happens when we ingest what the yeast excretes.

- high NADH----- inhibits TCA
- increase the synthesis of fatty acid and glycerol 3-phosphate →
 accumulation triacylglycerols → fatty liver.

Figure 14-10
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

6. Other substrates used in glycolysis

Fructose intolerance(果糖不耐症)

A 9-month-old girl: bouts of sweating and vomiting (呕吐), hypoglycemia (低血糖), lactic acidosis (乳酸血症) after consumption of milk formula or fruit.

Galactosemia (半乳糖血症)

UDP-Glucose

7. Summary on glycolysis

- Nearly living cell carries out glycolysis
- Glycolysis is a paradigm of metabolic pathways for the stepwise degradation of glucose which localized in the cytosol and is an anerobic process with no requirement for O₂
- Glycolysis consists of two phases each with 5 reactions
- Fates of pyruate
- Regulation of glycolysis: hexokinase, phosphofructokinase and pyruvate kinase
- Other substrates of glycolysis: frutose, galactose and mannose

思考题

- 1. NADH和NADPH的生物学功能是什么?
- 2. 常见的代谢途径类型都有哪些?分别举例。
- 3. 什么是糖酵解?详述糖酵解过程。
- 4. 丙酮酸在体内的去向。
- 5. 糖酵解两次底物水平磷酸化是哪两步?
- 6. 糖酵解关键步骤是哪一步? 机体是如何调控该限速酶的?
- 7. 酒精诱发脂肪肝产生机制是什么?
- 8. 果糖不耐症和半乳糖血症产生原因和症状。