18.701 Comments on Problem Set 3

- 1. Chapter 2, Exercise M.6a,b (paths in \mathbb{R}^k)
- (a) It is useful to draw a schematic picture. One must show that the relation is transitive, symmetric, and reflexive. Let's check transitivity. We suppose $a \sim b$ and $b \sim c$. So there are paths x(t) and y(t) that lie entirely in S, such that x(0) = a, x(1) = b, y(0) = b, and y(1) = c. We must find a path z(t) entirely in S such that z(0) = a and z(1) = c. The plan is to go from a to b and then from b to c using the paths x(t) and y(t). We have to do this in "time" 1, so we define z(t) as follows: For $0 \le t \le \frac{1}{2}$, we let z(t) = x(2t), and for $\frac{1}{2} \le t \le 1$, we let z(t) = y(2t-1)). This is the required path. We should check that it is continuous and lies entirely in S, but I'll leave that to you.
- (b) The subsets are the equivalence classes.
- 2. Chapter 2, Exercise M.7 (paths in GL_n)
- (a) If X(t) is a path from A to B and Y(t) is a path from C to D, the path joining AC to BD is the matrix product X(t)Y(t).
- (b) Let G_0 denote the set of matrices that can be joined to I by a path in G. Part (a), with B = D = I, shows that G_0 is closed under multiplication. If X(t) is a path from A to I, then the matrix inverse $X(t)^{-1}$ is a path from A^{-1} to I. Therefore G_0 is closed under inverses. The constant path from I to I shows that $I \in G_0$, and if P is any invertible matrix, the product $PX(t)P^{-1}$ is a path from PAP^{-1} to I. Therefore G_0 is a normal subgroup.
- 3. Chapter 2, Exercise M.8 (SL_n is connected)
- (a) Exercise 4.8 shows that the elementary matrices E of the first type generate SL_n . The identity is connected to such a matrix $E = I + ae_{ij}$ by the path $I + tae_{ij}$, which scales the nonzero off-diagonal entry of E. The previous problem shows that SL_n is connected.
- (b) The quickest way to do this may be to write an invertible matrix as A = DB, where D is the diagonal matrix with diagonal entries $d_{11} = \det A$ and $d_{ii} = 1$ for i > 1, and B is in SL_n . One can apply (a) to the matrix B, and one has only to discuss D.
- 4. Chapter 3, Exercise 1.11 (a field with nine elements)

The main question here is whether every element a + bi with a, b not both zero has an inverse. For this, we compute $(a + bi)(a - bi) = a^2 + b^2$. We note that the answer can be either 1 or 2, modulo 3. It cannot be zero. Therefore $a^2 + b^2$ has an inverse modulo 3, and $(a + bi)^{-1} = (a^2 + b^2)^{-1}(a - bi)$.

On the other hand, working modulo 5, (2+i)(2-i)=5=0. No good: We can't invert 2+i. But the squares modulo 7 are 0,1,2,4 Here again, a^2+b^2 cannot be zero modulo 7 unless a=b=0. So the analogous construction with prime 7 gives us a field with 49 elements.

- 5. Chapter 3, Exercise 4.4 (order of $GL_2(\mathbb{F}_p)$)
- (a) A pair (v_1, v_2) of column vectors forms a basis of F^2 if and only if the matrix whose columns are the two vectors is invertible.
- (b) We count the number of bases. The space F^2 contains p^2 elements. The first vector v_1 can be any nonzero vector, so there are $p^2 1$ choices for v_1 . Once v_1 is chosen, the second vector v_2 can be any vector so that (v_1, v_2) forms an independent set, which means that v_2 that is not a multiple of v_1 . There are p multiples of v_1 , and therefore $p^2 p$ choices for v_2 , once v_1 has been chosen. This gives us $(p^2 1)(p^2 p)$ bases, and the same number of elements of GL_2 .
- If A, B are matrices with the same nonzero determinant, then $A^{-1}B$ will be in SL_2 and B will be in the coset ASL_2 . The coset ASL_2 consists of the matrices with the same determinant as A. There are p-1 nonzero elements in F, so the index of SL_2 in GL_2 is p-1. The counting formula computes the order of SL_2 .