- 1. Question 1
 - (1.1) yapyapyap

(2.1) The ordinary differential equation (ODE) governing the temperature T(t) is:

$$\frac{dT(t)}{dt} = \frac{Q_f(t) - UA(T(t) - T_a)}{\rho V c_p}$$

For this problem, the furnace is off, so $Q_f(t) = 0$. Substituting this into the equation:

$$\frac{dT(t)}{dt} = \frac{-UA(T(t) - T_a)}{\rho V c_p}$$

At steady state, the temperature T(t) no longer changes with time, so:

$$\frac{dT(t)}{dt} = 0$$

Substitute this condition into the ODE:

$$0 = \frac{-UA(T(t) - T_a)}{\rho V c_p}$$

Solve:

$$T(t) - T_a = 0$$

Thus:

$$T(t) = T_a$$

(2.2) Part B SOLUTION

- $\begin{array}{c} \text{(3.1)} \;\; \text{Part A} \\ \text{SOLUTION} \end{array}$
- (3.2) Part B SOLUTION

- $\begin{array}{c} (4.1) \ \, {\rm Part} \,\, {\rm A} \\ \, \, {\rm SOLUTION} \end{array}$
- (4.2) Part B SOLUTION

- $\begin{array}{c} \text{(5.1)} \ \text{Part A} \\ \text{SOLUTION} \end{array}$
- (5.2) Part B SOLUTION