Lecture 39

Electric Rocket Propulsion

Force and Impulse

Newton's 2nd Law: The rate of change of momentum of a body is equal to the net force acting on it

$$\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \frac{\mathrm{d}(m\mathbf{v})}{\mathrm{d}t}$$

The impulse acting on a body is defined as $\int_{-\infty}^{\infty} \mathbf{F} \, dt$

$$\int_{t_1}^{t_2} \mathbf{F} \, dt$$

Or,
$$I = (mv)_2 - (mv)_1$$

- Impulse is the net change in momentum imparted to a body due to a force acting on it over a period of time.
- The same impulse can be produced with a small force acting over a long time or a large force acting over a small time

The Tsiolkovsky Rocket Equation

(fundamental equation of rocketry)

$$m\overline{a} = \sum F_{axis}$$

$$M \frac{du}{dt} = T - D - Magain$$

$$M\frac{du}{dt} = T - D - Mg\cos\theta$$

$$\frac{du}{dt} = \frac{\dot{m}_p}{M} u_{eq} - \frac{D}{M} - g \cos \theta$$

$$u_{eq} = const$$

integrating from initial to burnout

$$\Delta u = u_{eq} \ln \left(\frac{M_0}{M_b} \right) - \int_0^{t_b} \frac{D}{M} dt - \int_0^{t_b} g \cos \theta \ dt$$

Limitations of Chemical Propulsion

Mission	Required ∆v*	m _{initial} /m _{payload} (c _e = 5 km/s)	$m_{initial} / m_{payload}$ ($c_e = 25 \text{ km/s}$)
Earth orbit to Mars and return	14 km/s	16	1.8
Earth orbit to Mercury and return	31 km/s	148	3.5
Earth orbit to Jupiter and return	64 km/s	3.6x10 ⁵	12.9
Earth orbit to Saturn and return	110 km/s	3.6x10 ⁹	81.5

^{*}Assumes Hohmann transfer with no staging or gravity assists.

- Payload fractions are really small for chemical propulsion since the maximum exhaust velocity < 5km/s
- Significantly higher exhaust velocities are needed for long distance travel – that leads to electric propulsion for long distance travel

Deep Space 1, Ion Thruster

N-STAR solar powered, ion thruster for Deep Space 1 spacecraft

- Launched October 1998
- Payload platform for advanced, high risk technologies
- Flyby of <u>Asteroid Braille</u>; mission extended to include encounter with <u>Comet Borrelly</u>
- Travelled 263,179,600 km at speeds up to 4.5 km/s
- Engine: 30 cm beam, weight 8.3 kg;
 [w/81 kg of xenon] propellant

NASA's 2.3 kW N-STAR ion thruster during hot fire test at JPL

ESA Smart-1, Ion Thruster

Artist's depiction of SMART-1 mission to the Moon in 2003; impacted in 2006

Circuitous route to the Moon

13 ½ months

SMART-1 ion bombardment ion engine Note the "neutralizer"

- Xenon is ionized by electron bombardment
- electrostatic grid used to accelerate charged particles to very high velocities
- electrons routed to second anode and injected into beam to neutralize charge
- allows for a reduction in propellant mass of up to 90% in a satellite designed for 12-15 years of operation
- Solar powered
- 7 g (~ 70 mN) thrust
- 50 liters (~ 13 gallons) of Xenon to the Moon

Energy Transformation in Rocket Propulsion

- Accelerate propellant in one direction to provide thrust in the opposite direction
- The energy transformation process to accelerate air is different in chemical propulsion compared to electric propulsion

- Energy release is slow
- High efficiency

ELECTRIC PROPULSION OVERVIEW

- Electric propulsion broadly defined as acceleration of propellants by:
 - Electrical heating
 - Electric body forces
 - Magnetic body forces
- Electric systems: Power limited
 - No limit to energy added to propellant (in theory)
 - However, power limited by mass of conversion equipment which must be carried, M_{electrical}
 - Possible to achieve very high exhaust velocities at cost of high power consumption
 - Efficiency ~ 90%
 - Fraction of propellant compared to chemical rockets
- Chemical rockets: Energy limited
 - Limited to energy contained within propellants they carry
 - High power (W=J/s) due to rapid conversion of energy
 - Efficiency ~ 35%

COMPARISON EXAMPLE: ORDER OF MAGNITUDE

Liquid Rocket: Energy Limited

- $Ue \sim 4,000 \text{ m/s}$
- Isp ~ 450 s
- Energy ~ 100 GJ
- Power ~ 300 MW
- Thrust $\sim 2,000,000 \text{ N}$

• Ion Rocket (Electrostatic): Power Limited

- $Ue \sim 40,000 \text{ m/s}$
- $Isp \sim 3,000 s$
- Energy $\sim 1,000$ GJ
- Power $\sim 1 \text{ kW}$
- Thrust $\sim 0.1 \text{ N}$

Thrust and Isp Ranges

Electric Propulsion Classification

Electro-Thermal

- Propellant is electrically heated through wall (resistojet) or by electrical arc discharge (arcjet)
- —then expand through a C-D nozzle; high thrust, high I_{sp}

• Electro-Static

- accelerate a stream of electrically charged particles
- very high exhaust velocities (5-10 times chemical) \Rightarrow high I_{sp}
- low fuel flow, low thrust, long burn time ⇒ long term missions

• Electro-Magnetic

- create magnetic body force on conducting gas or plasma
- extremely high jet velocities (~ 50 km/sec)

Electro-thermal Thruster

- Electrical energy generates hot plasma to increase the energy of bulk propellant.
- Thermal energy converted into kinetic energy in a C-D nozzle formed from solid material or magnetic fields.
- ArcJet
 - high voltage arc at nozzle throat adds thermal energy to exhaust
 - various gaseous or vaporized propellants may be used
 - typically hydrazine, ammonia, H₂
 - operating temp ~ 2500 K
- ResistoJet
- RF/EM/radiative heating
- Typically 1-5 kW Power req'd:
 - hottest parts are electrodes → HT issues
- All limited by:
 - material temperatures; erosion abrasion
 - losses similar to chemical rockets and the nature of rapidly expanded, high speed flows

Electrostatic Ion Thruster

- Acceleration caused by a Coulomb force (i.e., a static <u>electric field</u>) in the direction of acceleration.
- Works on principle of attraction or repulsion of electrically charged particles to accelerate a stream of charged ions
 - ion engines first flew in the mid 1960's
 - very high exit velocities; 5-10x chemical
 - very efficient use of fuel (high I_{sp})
 - low thrust, long "burn" time

Electrostatic Ion Thruster

Electromagnetic Thruster

- Acceleration caused by a Lorentz (
 j x B) Force perpendicular to
 magnetic field
- EM forces used to accelerate a hot plasma or a conducting cold gas
 - positive ions and negative electrons
 - net neutral beam is produced
 - higher thrust per unit area than electrostatic thruster
 - ~ 3000 to 5000 K
- Classifications:
 - magneto-plasma-dynamic
 - pulsed plasma
 - Hall effect thruster

ELECTROSTATIC/ELECTROMAGNETIC: PROPELLANTS

- Alkali Metals: H, Li, Na, K, Rb, Cs
 - Low ionization potential (easy to create ions), 1 electron in outer shell
- Inert Gases: He, Ne, Ar, Kr, Xe, outer shell full
- Hg: two electrons in outer shell