

Universidade do Minho

9 de janeiro de 2021

Relatório do trabalho prático 3

Métodos Determinísticos de Investigação Operacional

Mestrado Integrado em Engenharia Informática - 3º ano

Adriano Novo Soto Maior A89483

Bruno Pinto Jácome A89515

José Pedro Ribeiro Peixoto A89602

Afonso Trindade Araújo de Pascoal Faria A83920

Índice

i introdução								
2	Res	esolução das questões						
	2.1	Indique o valor de ABCDE, e apresente a rede que representa o projecto depois						
		de eliminar as actividades indicadas, identificando os vértices da rede e os arcos						
		e resp	ectivos custos					
		2.1.1	Valor de ABCDE					
		2.1.2	Rede resultante					
	2.2							
		veis de	e decisão), e indique a duração do projecto					
		2.2.1	Diagrama de Gantt					
		2.2.2	Duração do projeto					
	2.3	2.3 Apresente a formulação apenas das novas restrições e da nova função ob						
		do novo modelo de programação linear inteira mista						
		2.3.1	Contextualização					
		2.3.2	Considerações					
	2.4	Apres	ente o modelo de programação linear inteira mista					
		2.4.1	Variáveis de decisão					
		2.4.2	Parâmetros					
		2.4.3	Função Objetivo					
		2.4.4	Restrições					
	2.5							
		2.5.1	GestaoProjetoCrashingTimes.lp					
		Apres	ente o ficheiro de output produzido pelo programa					
		2.6.1	solucao.txt					
	2.7 Apresente o plano de execução (diagrama de Gantt) do projecto repres							
		as acti	vidades com as durações que elas têm após a respectiva redução					
		2.7.1	Análise do ficheiro output					
		2.7.2	Diagrama de Gantt (Antes da Redução)					
		2.7.3	Rede da solução ótima					
		2.7.4	Diagrama de Gantt (Após a Redução)					
	2.8	Verific	que que o custo da solução está correcto					
		2.8.1	Verificação das restrições					
		282	Verificação do custo					

1 Introdução

Este relatório foi realizado no âmbito da Unidade Curricular de Métodos Determinísticos em Investigação Operacional, envolvendo o conceito programação inteira mista, com auxílio do software **lpsolve**. Tem como objetivos principais, abordar o raciocínio e mostrar uma solução para um problema de minimização do custo de redução do tempo de execução, sobre escalonamento de atividades.

Este relatório divide-se essencialmente em 4 partes, todas relacionadas com a resolução do enunciado do trabalho prático: Na primeira parte, identifica-se a rede obtida pelo grupo de acordo com os requisitos do enunciado e o diagrama de Gantt. Já na segunda parte, modela-se o problema e apresenta-se o ficheiro input. Depois, analisa-se os resultados obtidos pela aplicação do *lpsolve* e apresenta-se a solução ótima, isto é, o custo ótimo adicional associado a reduções nas durações nas atividades. Em último lugar, valida-se a solução ótima através da verifação do cumprimento das restrições e do valor ótimo para o custo igualar o valor obtido no ficheiro output.

UMinho - MiEI Introdução | 3

2.1 Indique o valor de ABCDE, e apresente a rede que representa o projecto depois de eliminar as actividades indicadas, identificando os vértices da rede e os arcos e respectivos custos

2.1.1 Valor de ABCDE

Comparando todos os números de aluno do grupo de trabalho (89483, 89515, 89602, 83920), verifica-se que o número maior é o 89602. Portanto, A = 8, B = 9, C = 6, D = 0 e E = 2.

2.1.2 Rede resultante

A partir do grafo original:

Removem-se os vértices D e E, respetivamente, 0 e 2.

- Como a atividade 0 é removida, ini é a nova precedência das atividades 1 e 4 contudo, como 4 ainda depende de 7, então ignora-se o arco ini ightarrow 4. Ou seja, **ini é a nova** precedência da atividade 1.
- Como a atividade 2 é removida, 1 e 4 são as novas precedências da atividade 3.

Originando o seguinte grafo:

2.2 Apresente o diagrama de Gantt (que resulta de resolver o modelo com as variáveis de decisão), e indique a duração do projecto

2.2.1 Diagrama de Gantt

2.2.2 Duração do projeto

Como se pode ver no diagrama de Gantt a duração mínima do projeto é 26 U.T., que é o custo (duração) do caminho crítico (6 \rightarrow 7 \rightarrow 4 \rightarrow 5 \rightarrow 3).

2.3 Apresente a formulação apenas das novas restrições e da nova função objectivo do novo modelo de programação linear inteira mista

2.3.1 Contextualização

Tempo de execução

O problema de otimização consiste em minimizar o custo total da realização de atividades, com redução no tempo de execução do projeto em 3 U.T.. Estas atividades têm durações e as suas realizações podem depender de outras:

Atividade	Duração (U.M.)	Precedências	
1	6		
3	2	1, 4, 5	
4	9		
5	4	4,8	
6	5		
7	6	6	
8	4	7, 10	
9	2	8, 11	
10	8	6	
11	7	10	

Custos de atividade e reduções nas durações das atividades

Além do tempo de execução de cada atividade, também é necessário considerar o custo de cada atividade.

Todavia, poderá reduzir-se o tempo de atividade, em troca de um custo adicional ao custo normal dessa mesma atividade. Por isso, para cada atividade $i \in {1,3,4,5,6,8,10,11}$, é possível:

- Não reduzir, i.e., escolher custos/durações normais.
- Reduzir a duração da atividade i em r_{1i} U.T, $0 <= r_{1i} <= m_{1i}$, com um custo adicional de $r_{1i} * c_{1i}$ U.M..
- Reduzir a duração da atividade i em $m_{1i}+r_{2i}$ U.T., $0<=r_{2i}<=m_{2i}$, com um custo adicional de $m_{1i} * c_{1i} + r_{2i} * c_{2i}$ U.M..

Atividade	Custo Normal	C ₁ (U.M./U.T.)	Redução Máxima 1	C ₂ (U.M./U.T.)	Redução Máxima 2
1	1000	600	1	300	1
3	300	200	0.5	100	0.5
4	2000	800	2	400	1
5	1000	1600	0.5	800	0.5
6	800	180	1	90	1
7	900				
8	600	200	0.5	100	0.5
9	300				
10	1600	1000	0.5	500	0.5
11	1400	600	1	300	1

Custos alternativos

Para cada uma das atividades 7 e 9 - notemos que são as únicas, na tabela anterior, sem reduções - existem 2 reduções alternativos. Por isso, para cada atividade $i \in 7, 9$, é possível:

- Não reduzir, i.e., escolher custos/durações normais.
- Reduzir a duração da atividade i em t_{ai} U.T, com um custo adicional de c_{ai} U.M.
- Reduzir a duração da atividade i em $t_{\rm bi}$ U.T., com um custo adicional de $c_{\rm bi}$ U.M.

Atividade	Custo Normal	C _a	Redução a (U.T.)	C _b	Redução b (U.T.)
7	900	300	1	1100	2
9	300	200	1	400	2

2.3.2 Considerações

Objetivo

Explicou-se ,anteriormente, a possibilidade de reduzir o tempo de execução de atividades individuais, em troca de um custo adicional. Então, o verdadeiro objetivo do problema é agora minimizar o custo adicional, para uma redução no tempo de execução de 3 U.T.

Nota 1: a soma de todos os custos normais das atividades é 9900 U.M..

Nota 2: o tempo de execução mínimo normal do projeto é 26 U.T..

Otimização: Minimizar o custo total adicional da relização do projeto.

Para isto, utilizou-se a ferramenta de otimização lpsolve e enunciou-se o problema no ficheiro GestaoProjetoCrashingTimes.lp, gerando-se o ficheiro output solution.

2.4 Apresente o modelo de programação linear inteira mista

2.4.1 Variáveis de decisão

 $r_{xi} \in [0, m_{xi}]$, redução do tipo x para a atividade i $k_{ij} \in \{0,1\}$, se escolheu-se, ou não, a redução do tipo y para a atividade j Onde, $i \in \{1, 3, 4, 5, 8, 10, 11\}, j \in \{7, 9\}, x \in \{1, 2\}, y \in \{a, b\}$

2.4.2 Parâmetros

Reduções máximas

Considere-se.

 m_{xi} , a redução temporal máxima do tipo x para a atividade i Onde, $i \in \{1, 3, 4, 5, 8, 10, 11\}, x \in \{1, 2\}$

Dependências nas reduções nas atividades $\in \{1, 3, 4, 5, 6, 8, 10, 11\}$

Notemos que, a redução do tipo 2 (a um nodo i) só é válida quando a redução do tipo 1 (ao mesmo nodo i) é máxima. Por exemplo, $r_{21}=0.5 \implies r_{11}=1$: a redução do tipo 2 da duração da atividade 1 em 0.5 U.T. obriga a que a redução do tipo 1 da duração da atividade 1 é máxima (1 U.T.). Ora, esta implicação pode ser traduzida para:

$$r_{2i} > 0 \implies r_{1i} = m_{1i} \tag{2.1}$$

Considere-se ainda uma variável k_i binária tal que:

 $k_i=1, \ {
m se} \ r_{1i}=m_{1i},$ isto é, se a redução do tipo 1 à atividade i é máxima $k_i = 0$, senão

Então, podemos rescreever 2.1 como:

$$r_{2i} > 0 \implies k_i = 1$$

Uma vez que, $r_{2i} \leq m_{2i}$, então:

$$r_{2i} \leq m_{2i} \times k_i$$

- Se $r_{2i}>0$, então $rac{r_{2i}}{m_{2i}}\in\left]0,1
 ight]$ e, por isso, $k_i=1$ (ou seja, $r_{1i}=m_{1i}$).
- Senão ($r_{2i}=0$), então $\frac{r_{2i}}{m_{2i}}=0$ e, por isso, $k_i\in\{0,1\}$ (ou seja, r_{1i} pode ser, ou não,

Além disso, notemos que se $k_i=1$, ou seja, se $r_{2i}>0$, então $r_{1i}=m_{1i}$. Notemos que $r_{1i}=m_{1i}$ é o mesmo que $r_{1i}\leq m_{1i}$ e $r_{1i}\geq m_{1i}$. Como, $r_{1i}\leq m_{1i}$, então:

$$r_{1i} \ge m_{1i} \times k_i$$

Em suma, e notando que a redução total a uma atividade i é a soma dos dois tipos de reduções:

$$r_i = r_{1i} + r_{2i}$$

$$r_{1i} \ge m_{1i} \times k_i$$

$$r_{2i} \le m_{2i} \times k_i$$

Através do quadro seguinte, confirmam-se as afirmações anteriores:

r _{2i}	r _{2i} / m _{2i}	$\mathbf{k}_{i} (\mathbf{r}_{2i} \leq \mathbf{m}_{2i} \times \mathbf{k}_{i} \Leftrightarrow \mathbf{k}_{i} \geq \mathbf{r}_{2i} / \mathbf{m}_{2i})$	$m_{1i} \times k_i$	$r_{1i} (r_{1i} \ge m_{1i} \times k_i)$
]0, m _{2j}]]0, 1]	1	m _{1i}	m _{1i}
0	0	{0,1}	{0,m _{1i} }	[0, m _{1i}]

2.4.3 Função Objetivo

Recapitulando, sejam:

- $r_{xi} \in [0, m_{xi}]$, redução do tipo x para a atividade i
- c_{xi} o custo adicional (U.M/U.T.) do tipo x de realizar a tarefa i
- $k_{yj} \in \{0,1\}$, se escolheu-se, ou não, a redução do tipo y para a atividade j
- c_{yj} o custo adicional do tipo y de realizar a tarefa j

Onde,
$$i \in \{1, 3, 4, 5, 8, 10, 11\}, j \in \{7, 9\}, x \in \{1, 2\}, y \in \{a, b\}$$

Então, o custo total adicional da realização das atividades é:

$$\sum_{ijxy} \left[c_{xi} r_{xi} + c_{yj} k_{yj} \right]$$

Portanto, minimizar o custo total adicional é:

$$\min: \sum_{ijxy} \left[c_{xi} r_{xi} + c_{yj} k_{yj} \right]$$

A partir da tabela de custos e reduções, enunciou-se a seguinte função objetivo:

```
min:
      600 r1_1
                   300 r2_1
      200 r1_3
                   500 r2_3
      800 r1_4
                   400 r2_3
     1600 r1_5
                   800 r2_5
      180 r1_6
                    90 r2_6
      300 ka7
                + 1100 kb7
      300 r1_8
                   100 r2_8
      200 ka9
                   400 kb9
     1000 r1_10 +
                   500 r2_10
      600 r1_11 +
                   300 r2_11
```

2.4.4 Restrições

Redução total

Lembra-se que é exigido que o tempo de execução do projeto seja reduzido em 3 U.T.. logo, o tempo total de execução do programa será de 26 - 3 = 23 U.T.

```
tf = 23;
```

Dependências nas reduções nas atividades $\{1, 3, 4, 5, 6, 8, 10, 11\}$

Conforme foi enunciado anteriormente em 2.4.2, enunciaram-se as seguintes restrições, no ficheiro de input:

```
= r1_1
            + r2_1
                        r1_1
                              <= 1
                                         r1_1
                                                                r2_1
                                                                             * k1
            + r2_3
                        r1_3
                                                                r2_3
                              <= 0.5
                                               >= 0.5 * k3
                                                                      <= 0.5 * k3
   = r1_3
                                         r1_3
   = r1_4
                                              >= 2
           + r2_4
                        r1_4
                              <= 2
                                         r1_4
                                                      * k4
                                                                r2_4
                                                                      <= 1
                                                                             * k4
                                                                r2_5 <= 0.5 * k5
  = r1_5
           + r2_5
                        r1_5 <= 0.5
                                         r1_5 >= 0.5 * k5
  = r1_6
           + r2_6
                                         r1_6 >= 1
                                                      * k6
                                                                r2_6 <= 1
                        r1_6 <= 1
                                                                             * k6
                        r1_8 <= 0.5;
r1_10 <= 0.5;
                                         r1_8 >= 0.5 * k8
r8 = r1_8
           + r2_8
                                                                r2_8 <= 0.5 * k8
                                         r1_10 >= 0.5 * k10 ;
r10 = r1_10 + r2_10;
                                                                r2_{10} <= 0.5 * k10
r11 = r1_11 + r2_11;
                        r1_11 <= 1
                                         r1_11 >= 1
                                                     * k11 ;
                                                                r2_11 <= 1
                                                                             * k11 ;
```

Dependências nas reduções nas atividades $\{7, 9\}$

Ao contrário das dependências nas reduções anteriores, as reduções agora são alternativas exclusivas (xor). Isto é, para cada atividade $j \in \{7,9\}$ apenas se poderá, no máximo, optar por um dos dois tipos (a ou b) de reduções.

Considere-se $k_{yj} \in \{0,1\}, y \in \{a,b\}, j \in \{7,9\}$ o parâmetro que indica que se optou pela redução do tipo y para a atividade j. Desta forma, tem-se que:

$$\sum_{y} k_{yj} \le 1$$

Com isto, enunciaram-se as seguintes restrições no ficheiro de input:

```
r7 = ka7 + 2 kb7; ka7 + kb7 <= 1;
r9 = ka9 + 2 kb9; ka9 + kb9 <= 1;
```

2.5 Apresente o ficheiro de input

2.5.1 GestaoProjetoCrashingTimes.lp

```
min:
       600 r1_1 +
                       300 r2_1
       200 r1_3
                       500 r2_3
       800 r1_4 + 400 r2_3
      1600 r1_5 + 800 r2_5
                        90 r2_6
       180 r1_6 +
       300 ka7 + 1100 kb7
       300 \text{ r1}_{-8} + 100 \text{ r2}_{-8}
       200 ka9
                   + 400 kb9
      1000 r1_10 +
                       500 r2_10
       600 r1_11 + 300 r2_11
// tempo máximo para concluir o projecto
tf = 23;
// relações de precedência
// na restrição ti >= di + tj - ri, a função di - ri representa
// o tempo de conclusão da actividade i após a redução da duração
// de di para di - ri
              t1 >=
t3 >= t1
arco_i_1:
                                r1 + 6
arco_1_3:
                                r3
              tf >= t3
arco_3_f:
arco_4_3:
              t3 >= t4
                                r3 + 2
              t5 >= t4 -
t3 >= t5 -
arco_4_5:
                                r5 + 4
                                r3 + 2
arco_5_3:
arco_5_f:
              tf >= t5
              t6 >=
t7 >= t6
arco_i_6:
                                r6
                                    + 5
arco_6_7:
                                r7
                                    + 6
              t4 >= t7 -
arco_7_4:
                                r4 + 9
              t8 >= t7
t9 >= t8
arco_7_8:
                                r8 + 4
arco_8_9:
                                r9
                                     + 2
              tf >= t9
arco_9_f:
arco_6_10: t10 >= t6 -
                                r10 + 8
              t8 >= t10 -
arco_10_8:
                                r8 + 4
arco_10_11: t11 >= t10 -
                                r11 + 7
arco_{11_9}: t9 >= t11 - r9 + 2
// reduções máxima permitidas do tipo 1 e 2 (só possível se a redução do tipo 1 é max)
r1 = r1_{-1} + r2_{-1}; r1_{-1} <= 1; r1_{-1} >= 1 * k1; r3 = r1_{-3} + r2_{-3}; r1_{-3} <= 0.5; r1_{-3} >= 0.5 * k3; r4 = r1_{-4} + r2_{-4}; r1_{-4} <= 2; r1_{-4} >= 2 * k4; r5 = r1_{-5} + r2_{-5}; r1_{-5} <= 0.5; r1_{-5} >= 0.5 * k5; r1_{-6} >= 0.5 * k5;
                                                                                r2_1 <= 1 * k1
r2_3 <= 0.5 * k3
r2_4 <= 1 * k4
                                                                                r2_5 <= 0.5 * k5
r6 = r1_{-6} + r2_{-6}; r8 = r1_{-8} + r2_{-8};
                             r1_6 <= 1 ;
r1_8 <= 0.5 ;
                                                  r1_6 >= 1 * k6;
r1_8 >= 0.5 * k8;
r1_10 >= 0.5 * k10;
                                                                                r2_6 <= 1 * k6
r2_8 <= 0.5 * k8
r8 = r1_8 + r2_8 ;
r10 = r1_10 + r2_10 ;
                             r1_10 <= 0.5 ;
                                                                                r2_{10} <= 0.5 * k10 ;
r11 = r1_11 + r2_11;
                             r1_11 <= 1 ;
                                                  r1_11 >= 1 * k11 ;
                                                                                r2_11 \le 1 * k11;
// redução do tipo a (kai) ou b (kbi)
r7 = ka7 + 2 kb7; ka7 + kb7 <= 1;
r9 = ka9 + 2 kb9; ka9 + kb9 <= 1;
bin k1, k3, k4, k5, k6, ka7, kb7, k8, ka9, kb9, k10, k11;
```

2.6 Apresente o ficheiro de output produzido pelo programa

2.6.1 solucao.txt

Value of object	tive function: 570.00000000				
144200 01 05300	270.0000000				
Actual values	Actual values of the variables:				
r1_1	0				
r2_1	0				
r1_3	0				
r2_3	0				
r1_4	0				
r1_5	0				
r2_5	0				
r1_6	1				
r2_6	1				
ka7	1				
kb7	0				
r1_8	0				
r2_8	0				
ka9	0				
kb9	0				
r1_10	0				
r2_10	0 0				
r1_11					
r2_11	0 23				
tf	6				
t1 r1	0				
t3	23				
r3	0				
t4	17				
t5	21				
r5	0				
t6	3				
r6	2				
t7	8				
r7	1				
r4	0				
t8	15				
r8	0				
t9	20				
r9	0				
t10	11				
r10	0				
t11	18				
r11	0				
k1	0				
k3	0				
r2_4	0				
k4	0				
k5	0 1				
k6					
k8 k10	0 0				
k10 k11	0				
LTT	U				

2.7 Apresente o plano de execução (diagrama de Gantt) do projecto representando as actividades com as durações que elas têm após a respectiva redução

2.7.1 Análise do ficheiro output

• Reduziu-se 1 U.T. (máximo) do tipo 1 à atividade 6.

• Reduziu-se 1 U.T. (máximo) do tipo 2 à atividade 6.

• Escolheu-se a redução do tipo *a* à atividade 7, reduzindo-se 1 U.T.

• A redução total ao projeto foi de 3 U.T. (26 - 23 = 3), tal como era desejado.

2.7.2 Diagrama de Gantt (Antes da Redução)

2.7.3 Rede da solução ótima

2.7.4 Diagrama de Gantt (Após a Redução)

2.8 Verifique que o custo da solução está correcto

2.8.1 Verificação das restrições

Redução mínima no tempo para concluir o projeto

$$23 = 23$$
 \checkmark

Relações de Precedência

```
arco_i_1: 6 \ge -0+6 \checkmark
  arco_1_3: 23 \ge 6 - 0 + 2 \checkmark
  arco_3_f: 23 \ge 23
  arco_4_3: 23 \ge 17 - 0 + 2
  arco 4 5: 21 \ge 17 - 0 + 4 \checkmark
  arco 5 3: 23 \ge 21 - 0 + 2
  arco 5 f: 23 \ge 21
  arco_i_6: 3 \ge -2 + 5 \checkmark
  arco 6 7: 8 \ge 3 - 1 + 6 \checkmark
  arco_7_4: 17 \ge 8 - 0 + 9 \checkmark
  arco_7_8: 15 \ge 8 - 0 + 4 \checkmark
  arco_8_9: 20 \ge 15 - 0 + 2 \checkmark
  arco 9 f: 23 \ge 20
 arco_6_{10}: 11 \ge 3 - 0 + 8 \checkmark
 arco_10_8: 15 \ge 11 - 0 + 4 \checkmark
arco_10_11: 18 \ge 11 - 0 + 7 \checkmark
 arco_11_9: 20 \ge 18 - 0 + 2 \checkmark
```

Reduzir (opção 1 e opção 2) no máximo

Opção a ou b (xor)

$$1 = 1 + 2 \times 0$$
; \checkmark $1 + 0 \le 1$ \checkmark $0 = 0 + 2 \times 0$; \checkmark $0 + 0 \le 1$ \checkmark

2.8.2 Verificação do custo

Seguindo as informações dadas pelo ficheiro output e pelas tabelas de custos,

 ${\it custo}\ {\it total}\ {\it adicional}=$ 600 (0) + 300 (0) +200 (0) + 500 (0) +800 (0) + 400 (0) +1600(0) + 800(0) +180 (1) + 90 (1) + **300** (1) + 1100(0) +300 (0) + 100 (0) +200 (0) + 400 (0) +1000(0) + 500(0) +600 (0) + 300 (0)

=180+90+300=570, que é o mesmo valor que foi obtido no ficheiro output.