

Cutting-edge Deep Learning for NLP learners

Text Representation

Isabel Segura-Bedmar

6 June 2022 Máster Universitario en Inteligencia Artificial, UPM

Outline

- Text representation
 - Bag-Of-Words
 - TF-IDF
 - Spacy vectors
 - Word embeddings

Machine Learning Pipeline

Text representation

- Represents text in a vector of numbers
- Techniques:
 - Bag-Of-Words
 - TF-IDF
 - Word Embeddings
 - Contextualized word embeddings.

- based on counting words in the document
- Steps:
 - Cleaning:
 - Remove <u>stopwords</u>, punctuation and special symbols.
 - Normalize texts (lemmatization or stemming).

- Cleaning
- Obtain vocabulary (unique words) from all texts.

ball	big	cat	moon	small	table	tree	window	Z00

Each text is represented as a vector with the frequencies of their words

D: The big cat in on the table and the small cat in the window. after cleaning:

D: The big cat is on the table and the small cat en la window.

Vector (features):

ball	big	cat	moon	small	table	tree	window	Z00
0	1	2	0	1	1	0	1	0

D1: The big cat is on the table and the small cat in the window

D2: The table and the window are small

D2: The moon and the small tree are big

	ball	big	cat	moon	small	table	tree	window	Z00
D1	0	1	2	0	1	1	0	1	0
D2	0	0	0	0	1	1	0	1	0
D3	0	1	0	1	1	0	1	0	0

TF-IDF

- Extended version of BoW.
- Every text is represented using tf-idf of its words
- TF-IDF decreases the weight of the very common words in the collection of texts

TF-IDF

• Term frequency - inverse document frequency.

$$TF-IDF(W) = TF(W,d) * IDF(W)$$

- \circ TF(W,d) = term frequency of the word W in the document d.
- IDF(W) = inverse document frequency. The logarithm of the quotient of the total number of documents and the number of documents that contains the word W.

$$idf(W) = log \frac{\#(documents)}{\#(documents containing word W)}$$

	ball	big	cat	moon	small	table	tree	window	ZO O
D1	0	1	2	0	1	1	0	1	0
D2	0	0	0	0	1	1	0	1	0
D3	0	1	0	1	1	0	0	0	0

TF-IDF(W) = TF(W,d) * IDF(W)

	ball	big	cat	moon	small	table	tree	window	Z00
D1	0	0.17	0.95	0	0	0.17	0	0.17	0
D2	0	0	0	0	0	0.17	0	0.17	0
D3	0	0.17	0	0.47	0	0	0.47	0	0

Drawbacks of traditional approaches

- Have high dimensionality and are very sparse.
- Don't capture semantics
 - Edema de glotis != hinchazón de la laringe
- Don't position of occurrence of words
 - The hotel was very good and not expensive !=
 - The hotel was very expensive and not good

Hands-on

- Vectorization (BoW and TF-IDF)
- Spam-detection I

Thank you Question time!!!

isegura@inf.uc3m.es

https://hulat.inf.uc3m.es/nosotros/miembros/isegura

https://github.com/isegura