

A Generalized Language Model in Tensor Space

Tianjin University

Lipeng Zhang, Peng Zhang, Xindian Ma, Shuqin Gu, Zhan Su, Dawei Song

AAAI 2019

Outline

- Motivation
- Background
- TSLM basic representation
- Generalization
- Recursive Language Modeling
- Experiment

Motivation

- To construct a high-order based language model (not limited to two/three consecutive words in 2/3-order tensor)
- To derive an effective solution and demonstrate such a solution is a general approach for language modeling

(a high-order tensor contains exponential magnitude of parameters)

Motivation

• Represent the documents as the two order tensors:

Cai, D.; He, X.; and Han, J. 2006. Tensor space model for document analysis. The 29th SIGIR conference on Research and development in information retrieval, 625–626

Motivation

Figure 1. A document is represented as a character level 3-order tensor

Figure 2. A corpus of documents is represented as a

Represent the text as a 3-order tensor

Liu, N.; Zhang, B.; Yan, J.; and Chen, Z. 2005. Text representation: from vector to tensor. In IEEE International Conference on Data Mining, 725–728

The problem of exponential magnitude of parameters

High-order tensor based language model

- Consider all the combinatorial relations among words through the interaction among all the dimensions of word vectors.
- Demonstrate that tensor representation is a generalization of the n-gram language model
- Derive a recursive calculation of conditional probability for language modeling via tensor decomposition in TSLM

Outline

- Motivation
- Background
- TSLM basic representation
- Generalization
- Recursive Language Modeling
- Experiment

Background

Tensor and Tensor Networks

- A tensor : a mutidimensional array
- The order: the number of indexing entries
- Tensor product : a fundamental operator

3) 3-order δ tensor:

4) <u>n-order tensor T:</u>

Tensor and Tensor Networks

 Tensor Network is formally represented an undirected and weight graph

Outline

- Motivation
- Background
- TSLM basic representation
- Generalization
- Recursive Language Modeling
- Experiment

Language Modeling by Tensor Space

How to represent a single word

$$w_i = \sum_{d_i}^m \alpha_{id_i} e_{d_i}$$

How to represent a original sentence

$$s = w_1 \otimes \cdots \otimes w_n$$

$$s = \sum_{d_1, \cdots, d_n = 1}^m \mathcal{A}_{d_1, \cdots, d_n} e_{d_1} \otimes \cdots \otimes e_{d_n}$$

Language Modeling by Tensor Space

- Assume that each sentence s_i appears with a probability p_i .
- We can denoted the corpus as:

$$c = \sum p_i s_i$$

$$c = \sum_{d_1 \dots d_n = 1}^m \mathcal{T}_{d_1 \dots d_n} \ e_{d_1} \otimes \dots \otimes e_{d_n}$$

The sentence probability:

$$p(s) = \langle s, c \rangle = \sum_{d_1 \dots d_n = 1}^m \mathcal{T}_{d_1 \dots d_n} \mathcal{A}_{d_1 \dots d_n}$$

Outline

- Motivation
- Background
- TSLM basic representation
- Generalization
- Recursive Language Modeling
- Experiment

A Generation of N-Gram Language Mode

- N-gram Language Model
 - N-gram language model: estimate the probability distribution of sentences
 - A sentence's joint probability:

$$p(s) = p(w_1^n)$$

$$p(w_1^n) = p(w_1) \prod_{i=2}^n p(w_i|w_1^{i-1})$$

N-Gram Language Model

The conditional probability can be calculated as:

$$p(w_i|w_1^{i-1}) = \frac{p(w_1^i)}{p(w_1^{i-1})} \approx \frac{count(w_1^i)}{count(w_1^{i-1})}$$

Where the count denotes the frequency statistics in corpus.

How to Prove TSLM as a Generalization of N-Gram

- Three hypotheses
 - The dimension of vector space m = |V|
 - The represent of a word is an one-hot vector
 - The corpus:

$$c = \sum p_i |s_i\rangle$$

Compute the joint probability

N-gram Language Model
 A sentence 's joint probability :

$$p(s) = p(w_1^n)$$

$$p(w_1^n) = p(w_1) \prod_{i=2}^n p(w_i|w_1^{i-1})$$
1

An example

- V={A,B,C}
- The probability of each combination is one element in the tensor

- $S_i = (B, C, A)$ $p(S_i) = T_{231}$

Vocablary V={A,B,C},

$$A = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad C = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$p(BCA) = \langle \mathcal{T}, \mathcal{A} \rangle = \mathcal{T}_{231}$$

\mathcal{T}_{311}	\mathcal{T}_{312}	\mathcal{T}_{313}
T_{321}	\mathcal{T}_{322}	T_{323}
T_{331}	T ₃₃₂	T ₃₃₃

	T_{211}	L	T_{21}	2	T_{213}
	T_{221}	l	\mathcal{T}_{22}	2	\mathcal{T}_{223}
	T_{23}	1	\mathcal{T}_{23}	2	\mathcal{T}_{233}
σ.	,	<i>a</i>	,		

\mathcal{T}_{111}	\mathcal{T}_{112}	T_{113}
\mathcal{T}_{121}	\mathcal{T}_{122}	\mathcal{T}_{123}
T_{131}	T_{132}	\mathcal{T}_{133}

$$\boldsymbol{\mathcal{J}}$$

$$S_i = B \otimes C \otimes A$$

0	0	0
0	0	0
0	0	0

0	0	0
0	0	0
1	0	0

0	0	0
0	0	0
0	0	0

 \mathcal{A}

Compute the joint probability

• The sentence *s* will be represented as:

$$s = \sum_{d_1, \cdots, d_n}^{|V|} \mathcal{A}_{d_1, \cdots, d_n} w_{d_1} \otimes \cdots \otimes w_{d_n}$$

Where

$$\mathcal{A}_{d_1, \cdots, d_n} = \begin{cases} 1, d_k = V. index(w_k) \\ 0, & otherwise \end{cases}$$

• The corpus is $c \coloneqq \sum p_i s_i$

$$c = \sum_{d_1 \cdots d_n = 1}^{|V|} \mathcal{T}_{d_1 \cdots d_n} \, w_{d_1} \otimes \cdots \otimes w_{d_n}$$

• Therefore, the probability of sentence

$$p_{i} = \langle s_{i}, c \rangle = \sum_{d_{1} \cdots d_{n}=1}^{|V|} \mathcal{T}_{d_{1} \cdots d_{n}} \mathcal{A}_{d_{1} \cdots d_{n}}$$
$$= \mathcal{T}_{d_{1} \cdots d_{n}}, d_{k} = V. index(w_{k}).$$

Compute the conditional probability

- N-Gram Language Model
 - The conditional probability can be calculated as:

$$p(w_i|w_1^{i-1}) = \frac{p(w_1^i)}{p(w_1^{i-1})} \approx \frac{count(w_1^i)}{count(w_1^{i-1})}$$

• In TSLM

$$\frac{p(w_1^i)}{p(w_1^{i-1})} = \frac{\langle w_1^i, c \rangle}{\langle w_1^{i-1}, c \rangle}$$

• We define $p(w_1^i) = p(w_1, \dots w_i)$, in our model, have:

$$\begin{split} &p(w_1^i) = \left\langle w_1^i, c \right\rangle \\ &= \left\langle w_1 \otimes \cdots \otimes \mathbf{1}, \sum_{d_1 \cdots d_n = 1}^{|v|} \mathcal{T}_{d_1 \cdots d_n} w_{d_1} \otimes \cdots \otimes w_{d_n} \right\rangle \\ &= \sum_{d_1 \cdots d_n = 1}^{|v|} \mathcal{T}_{d_1 \cdots d_n} \left\langle w_1 \otimes \cdots \otimes \mathbf{1}, w_{d_1} \otimes \cdots \otimes w_{d_n} \right\rangle \\ &= \sum_{d_{i+1} \cdots d_n = 1}^{|v|} \mathcal{T}_{d_1 \cdots d_n}, d_k = V. index(w_k), \forall k \in [i] \end{split}$$

We can compute the $p(w_1^{i-1}) = \langle w_1^{i-1}, c \rangle$ like this.

Outline

- Motivation
- Background
- TSLM basic representation
- Generalization
- Recursive Language Modeling
- Experiment

Recursive Language Modeling

- Two hypotheses
 - The dimensions of word vectors is $m \ll |V|$
 - The parameters are the same after each recursive SVD decomposition
 - The corpus : $c = \sum p_i |s_i\rangle$
- The formula of the recursive decomposition about tensor $\mathcal T$ is :

$$\mathcal{T} = \sum_{i=1}^{r} \lambda_i S_{(n),i} \otimes u_i$$
$$S_{(n),k} = \sum_{i=1}^{r} w_{k,i} S_{(n-1),i} \otimes u_i$$

Tensor recursive decomposition

Recursive Language Modeling

Outline

- Motivation
- Background
- TSLM basic representation
- Generalization
- Recursive Language Modeling
- Experiment

Experimental Result

Model	PTB			WikiText-2				
	Hidden size	Layers	Valid	Test	Hidden size	Layers	Valid	Test
KN-5(Mikolov and Zweig 2012)	-	-		141.2	-	-	-	-
RNN(Mikolov and Zweig 2012)	300	1	-	124.7	-	.70	5	
LSTM(Zaremba, Sutskever, and Vinyals 2014)	200	2	120.7	114.5	111 E 111	-	2	_
LSTM(Grave, Joulin, and Usunier 2016)	1024	1	-	82.3	1024	1	2	99.3
LSTM(Merity et al. 2017)	650	2	84.4	80.6	650	2	108.7	100.9
RNN†	256	1	130.3	124.1	512	1	126.0	120.4
LSTM†	256	1	118.6	110.3	512	1	105.6	101.4
TSLM	256	1	117.2	108.1	512	1	104.9	100.4
RNN+MoS†(Yang et al. 2018)	256	1	88.7	84.3	512	1	85.6	81.8
TSLM+MoS	256	1	86.4	83.6	512	1	83.9	81.0

Table 2: Best perplexity of models on the PTB and WikiText-2 dataset. Models tagged with † indicate that they are reimplemented by ourselves.

Experience

Figure 4: Perplexity (PPL) with different max length of sentences in corpus.

Figure 5: Perplexity (PPL) with different hidden sizes.

Future Work

- Achieve text generation by using TSLM
- Further interpreted in the neural network by tensor network
- Further explore the potential of tensor network for language model