Analyse Prédictive des Défauts de Paiement

- 1 Problématique
- 2 Données
- 3 Modélisation
- 4 Interprétation
- **5** Conclusions

- 1 Problématique
- 2 Données
- 3 Modélisation
- 4 Interprétation
- (5) Conclusions

Problématique: Introduction

Contexte:

- Les institutions financières font face à un risque croissant de défauts de paiement.
- Importance de prédire ces risques pour minimiser les pertes.

Objectifs:

- Développer un modèle prédictif pour identifier les emprunteurs à risque.
- Améliorer la gestion des risques de crédit grâce à l'analyse des données.

Problématique: Etapes du projet

EDA

- Importation jeu de données
- Types de données, nan, outliers, doublons, n-unique
- Analyses descriptives variables
- Corrélation des variables
- | The second of the content of the c

PRÉ PROCESSING

- Séparation des variables,
- Encodage,
- Split du jeux de données,
- Standardisation

FEATURES SELECTION

- Première modélisation
- Features importances
- Selection des variables les plus importantes

MODELISATION

- Choix des modèles,
- Rééquilibrage des classes
- Choix des métriques
- Optimisation des modèles

INTERPRETATION RESULTATS

- Tableau des métriques
- Matrices de confusion
- Analyse des performances des modèles

- 1 Problématique
- 2 Données
- 3 Modélisation
- 4. Interprétation
- (5) Conclusions

Données

Jeu de données:

Description	Colonne	
ld unique client	LoanID	0
âge	Age	1
revenu annuel	Income	2
montant du crédit	LoanAmount	3
score de crédit qui indique la capacité de rem	CreditScore	4
nombre de mois de travail	MonthsEmployed	5
nombre de crédits déjà en cours	NumCreditLines	6
taux d'intérêt du crédit	InterestRate	7
nombre de mois de remboursement du crédit	LoanTerm	8
ratio dette/revenu	DTIRatio	9
niveau d'études	Education	10
type d'emploi	EmploymentType	11
statut marital	MaritalStatus	12
hypothèque	HasMortgage	13
personnes à charge	Has Dependents	14
objet du prêt	LoanPurpose	15
co-signataire	HasCoSigner	16
défauts de paiement	Default	17

LoanID	Age	Income	LoanAmount	CreditScore	MonthsEmployed	NumCreditLines	InterestRate	LoanTerm	DTIRatio	Education	EmploymentType
I38PQUQS96	56	85994	50587	520	80	4	15.23	36	0.44	Bachelor's	Full-time
HPSK72WA7R	69	50432	124440	458	15	1	4.81	60	0.68	Master's	Full-time
C1OZ6DPJ8Y	46	84208	129188	451	26	3	21.17	24	0.31	Master's	Unemployed
V2KKSFM3UN	32	31713	44799	743	0	3	7.07	24	0.23	High School	Full-time
EY08JDHTZP	60	20437	9139	633	8	4	6.51	48	0.73	Bachelor's	Unemployed

Données: EDA

Analyse descriptive: variables numériques

	Age	Income	LoanAmount	CreditScore	${\bf Months Employed}$	NumCreditLines	InterestRate	LoanTerm	DTIRatio
count	255347.00	255347.00	255347.00	255347.00	255347.00	255347.00	255347.00	255347.00	255347.00
mean	43.50	82499.30	127578.87	574.26	59.54	2.50	13.49	36.03	0.50
std	14.99	38963.01	70840.71	158.90	34.64	1.12	6.64	16.97	0.23
min	18.00	15000.00	5000.00	300.00	0.00	1.00	2.00	12.00	0.10
25%	31.00	48825.50	66156.00	437.00	30.00	2.00	7.77	24.00	0.30
50%	43.00	82466.00	127556.00	574.00	60.00	2.00	13.46	36.00	0.50
75%	56.00	116219.00	188985.00	712.00	90.00	3.00	19.25	48.00	0.70
max	69.00	149999.00	249999.00	849.00	119.00	4.00	25.00	60.00	0.90

(Min, Max)

•Âge emprunteurs: 18 – 69 ans

• Montants de prêt: 5000 – 249999 €

• Taux d'intérêt: 2 – 25 %

DTI Ratio: 0.1 – 0.9

Tendances centrales (mean)

•Âge moyen: 43.5 ans

• Revenu moyen: 82 499€

• Montant moyen de prêt: 127 578€

• Taux d'intérêt moyen: 13.49%

Score de crédit minimum = $300 \rightarrow$ emprunteurs avec un profil de crédit à risque élevé Ratio DTI = $0.1 - 0.9 \rightarrow$ certains emprunteurs très endettés par rapport à leurs revenus

Données: EDA

Analyse descriptive: variables catégorielles

	Education	EmploymentType	MaritalStatus	HasMortgage	HasDependents	LoanPurpose	HasCoSigner	ScoreSegment
count	255347	255347	255347	255347	255347	255347	255347	254863
unique	4	4	3	2	2	5	2	5
top	Bachelor's	Part-time	Married	Yes	Yes	Business	Yes	Poor
freq	64366	64161	85302	127677	127742	51298	127701	129739

- La majorité des emprunteurs ont un **Bachelor** et travaillent à temps partiel (**Part-time**)
- Les emprunteurs sont majoritairement mariés (environ 50% sont mariés)
- La majorité des prêts sont accordés pour des raisons Business
- Plus de la moitié des emprunteurs ont une hypothèque et des personnes à charge
- La catégorie **Poor** est la plus courante dans les segments de score de crédit

Statut matrimonial: majorité des emprunteurs **mariés** ≈stabilité financière

Segments de score de crédit: majoritairement faible (Poor) → prise en compte dans les stratégies

de modélisation, car risque élevé

Concentration finalités de prêt : majorité de prêts acc

Concentration finalités de prêt: majorité de prêts accordés pour des raisons commerciales \rightarrow pertinent de cibler des stratégies spécifiques à ce segment

Données: Corrélation

Corrélations des variables

Variables très peu corrélées entre elles -> variables quasi indépendantes

Données: Pré processing et feature engineering

Suppression variables moins importantes (feat_imp < 0.3)

- 1 Problématique
- 2 Données
- 3 Modélisation
- 4 Interprétation
- (5) Conclusions

Modélisation: Variable cible

Variable cible binaire

Classe 0

Clients non défaillants

88.6 % majoritaire

Classe 1

Clients défaillants

11.4% minoritaire

classes déséquilibrées

Rééquilibrage des classes avec SMOTE

Modélisation: Choix des métriques

$$Précision = \frac{TP}{TP+FP}$$

Rappel =
$$\frac{TP}{TP+FN}$$

$$F1\text{-score} = \frac{\text{Pr\'{e}cision} \times \text{Rappel}}{\text{Pr\'{e}cision} + \text{Rappel}}$$

Accuracy =
$$\frac{TP+TN}{TP+TN+FP+FN}$$

Métrique	Description
Précision	proportion de prédictions positives correctes parmi toutes les prédictions positives
Rappel	proportion d'exemples positifs correctement identifiés par le modèle
F1-score	moyenne harmonique de la précision et du rappel
Accuracy	pourcentage de prédictions correctes sur l'ensemble des exemples
AUC-ROC	L'aire sous la courbe ROC, qui évalue la capacité du modèle à distinguer les classes positives des classes négatives
MSE	L'erreur quadratique moyenne

Modélisation: Bilan des 3 modèles testés

Tableau des métriques

Modèle	Précision	Rappel	F1-score	AUC-ROC	Accuracy	MSE
Decision Tree	0.175154	0.306799	0.222997	0.558281	0.751243	0.248757
Random Forest	0.246105	0.223325	0.234163	0.685368	0.830037	0.169963
XGBoost	0.316901	0.174184	0.224805	0.700935	0.860231	0.139769

Meilleur modèle: XGBoost

- ✓ Meilleure précision, AUC-ROC, accuracy, et MSE
- ★ Rappel soit le plus faible

Modèle offrant un bon équilibre entre la précision et la capacité à distinguer correctement les classes, ce qui est souvent crucial dans les problèmes de classification binaire comme la prédiction de la capacité de remboursement d'un emprunteur.

- 1 Problématique
- 2 Données
- 3 Modélisation
- 4 Interprétation
- (5) Conclusions

Modélisation: Interprétation XGBoost

Le graphique de la SHAP value ci-dessus aide à comprendre non seulement quelles caractéristiques sont importantes pour les prédictions de notre modèle, mais aussi comment ces caractéristiques influencent la décision du modèle.

Observations:

- -- Plus le terme de remboursement est court, plus l'emprunteur est susceptible d'être en défaut de paiement
- -- Plus l'emprunteur est jeune, plus la probabilité d'être en défaut de paiement est élevée
- -- Plus le taux d'intérêt est élevé, plus la probabilité de remboursement est faible
- -- Plus le montant du crédit est élevé, plus la probabilité de défaut de paiement est élevé
- -- Un revenu annuel faible augmente le risque de défaut de paiement

Modélisation: Interprétation XGBoost

SHAP value (impact on model output)

Les 5 variables avec le plus d'impact sur la prédiction :

LoanTerm (durée de remboursement), Age, InterestRate (taux d'intérêt),
MonthsEmployed(nombre de mois en fonction), et DTIRation (ratio dette/revenu)

Recommandations:

- -- Evaluation de la stabilité professionnelle et des revenus annuels
- -- Evaluation du ratio dette/revenu
- -- Adaptation du taux d'intérêt et du terme de remboursement en fonction du revenu
- -- Accent sur l'âge de l'emprunteur: fixer des montants bas pour le plus jeunes

- 1 Problématique
- 2 Données
- 3 Modélisation
- 4. Interprétation
- **5** Conclusions

Conclusions et perspectives

Problématique de classification binaire avec classes déséquilibrées

Modèle retenu: XGBoost en raison de sa robustesse et de ses performances

Améliorations potentielles:

- Ajustement des hyperparamètres pour améliorer le rappel
- Exploration de modèles hybrides ou d'ensemble
- Collecte de données additionnelles pour enrichir le modèle