Reinforcement Learning Fundamentals

Lecture 10: Markov Decision Process (MDP)

Dr Sandeep Manjanna Assistant Professor, Plaksha University sandeep.manjanna@plaksha.edu.in

In today's class...

- Markov Process
- Markov Reward Process
- Markov Decision Process (MDP)
- Problem to formulation
- Examples

Schedule for Evaluation

Date	Evaluation	Description
2/16/2024	Finalizing Project	Finalize Team, and Project topic
2/23/2024	Project Proposal (5%)	 2-page report for Project Proposal. This document is expected to include following but not limited to: 1/2 page for introduction and related work, 1 page for the problem and the proposed work, 1/4 page for proposed evaluation, 1/4 page for references. Format will be shared with you.
2/28/2024	Quiz 2	
3/15/2024	In-class Exam 1 (10%)	
3/25/2024	Mid Term Progress Report (5%)	 4-page report for Mid-term Progress Report. This document is expected to include following but not limited to: The first two pages contain a copy of your project proposal. The remaining pages include: a status update, presenting what you have accomplished so far (include figures and results), and 1/4 page describing your next steps.
Mar 28th and 29th	Mid Term Presentation (5%)	Progress presentation
4/3/2024	Quiz 3	
4/24/2024	Quiz4	
5/3/2024	Final Project Submission (25%)	Include full code in git hub, 6 page report, multi-media with demo if required. The format for the report will be provided later
May 6th to 10th	Final Project Presentation (10%)	Final Presentation Details will be shared Later
May	In-class Exam 2 (20%)	

Inside an RL Agent Model

- A model predicts what the environment will do next
- \blacksquare \mathcal{P} predicts the next state
- \blacksquare \mathcal{R} predicts the next (immediate) reward, e.g.

Transition Model
$$\rightarrow \mathcal{P}^a_{ss'} = \mathbb{P}[S_{t+1} = s' \mid S_t = s, A_t = a]$$

Reward Function / Return $\rightarrow \mathcal{R}^a_s = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$

Inside an RL Agent

POLICY $\pi(s, a) = \Pr(a = a \mid s = s)$

$$R(\mathbf{s}', \mathbf{s}, \mathbf{a}) = \mathbf{Pr}\left(\mathbf{r}_{k+1} \mid \mathbf{s}_{k+1} = \mathbf{s}', \mathbf{s}_k = \mathbf{s}, \mathbf{a}_k = \mathbf{a}\right)$$

$$P(s', s, a) = Pr(s_{k+1} = s' | s_k = s, a_k = a),$$

VALUE
$$V_{\pi}(s) = \mathbb{E}\left(\sum_{t} \gamma^{t} r_{t} \mid s_{0} = s\right)$$

Markov Property

- "the state" at time t, means whatever information about the environment that is available to the agent at time t.
- The state can include immediate observations, highly processed observations, and structures built over time from a sequence of observations.
- Ideally, a state should summarize past observations so as to retain all essential information.
- "The future is independent of the past given the present"

$$\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, ..., S_t]$$

- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future

State Transition Matrix

For a Markov state s and successor state s', the state transition probability is defined by

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s
ight]$$

State transition matrix P defines transition probabilities from all states s to all successor states s',

$$\mathcal{P} = \textit{from} egin{bmatrix} \textit{to} \ \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \ dots \ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$$

where each row of the matrix sums to 1.

Markov Process

A Markov process is a memoryless random process, i.e. a sequence of random states $S_1, S_2, ...$ with the Markov property.

Definition

A Markov Process (or Markov Chain) is a tuple $\langle \mathcal{S}, \mathcal{P} \rangle$

- lacksquare \mathcal{S} is a (finite) set of states
- lacksquare is a state transition probability matrix,

$$\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$$

Markov Process Example

Sample episodes for Student Markov Chain starting from $S_1 = C1$

$$S_1, S_2, ..., S_T$$

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep

Markov Reward Process Example

A Markov reward process is a Markov chain with values.

Definition

A Markov Reward Process is a tuple $\langle \mathcal{S}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- lacksquare S is a finite set of states
- \mathcal{P} is a state transition probability matrix, $\mathcal{P}_{ss'} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s\right]$
- \mathcal{R} is a reward function, $\mathcal{R}_s = \mathbb{E}\left[R_{t+1} \mid S_t = s\right]$
- $ightharpoonup \gamma$ is a discount factor, $\gamma \in [0,1]$

Markov Reward Process Example

What will be the return for each of these samples?

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep

Markov Decision Process

- MDP, M, is the tuple: $M = \langle S, A, p, r \rangle$
 - S: set of states.
 - A : set of actions.

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s, A_t = a\right]$$

- $-p: S \times A \times S \rightarrow [0,1]$: probability of transition.
- $-r: S \times A \times S \to \mathbb{R}$: expected reward. $\mathcal{R}_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$
- Policy: $\pi: S \times A \rightarrow [0,1]$ (can be deterministic)
- Maximize total expected reward
- Learn an optimal policy

How to compute the expected reward?

- 1. Discrete distribution over r:
- 2. R is from Real numbers:

Markov Decision Process

- MDP, M, is the tuple: $M = \langle S, A, p, r \rangle$
 - S: set of states.
 - A : set of actions.
 - $p: S \times A \times S \rightarrow [0,1]$: probability of transition.
 - $-r: S \times A \times S \rightarrow \mathbb{R}$: expected reward.
- Policy: $\pi: S \times A \rightarrow [0,1]$ (can be deterministic)
- Maximize total expected reward
- Learn an optimal policy

 π (a/s) or π (s,a) = ?

What does it mean for policy to be deterministic?

Markov Decision Process

- MDP, M, is the tuple: $M = \langle S, A, p, r \rangle$
 - S: set of states.
 - A : set of actions.
 - $p: S \times A \times S \rightarrow [0,1]$: probability of transition.
 - $-r: S \times A \times S \rightarrow \mathbb{R}$: expected reward.
- Policy: $\pi: S \times A \rightarrow [0,1]$ (can be deterministic)
- Maximize total expected reward
- Learn an optimal policy

The policy that achieves the maximum total expected reward is called Optimal Policy.

Markov Reward Process Example

Formulating an RL Problem

States

States must follow Markov Property

- Enough information to take decisions
- –Raw inputs often not sufficient
- Actions
 - —The control variables

- Different levels of controls in learning to drive example.
- Discrete items to recommend, moves in a game
- -Continuous torque to a motor
- Rewards
 - -Define the *goal* of the problem