Data Mining in Action

Проверка качества

• Как измерять качество?

Проверка качества

• Классический подход

Train	Test	Validation
-------	------	------------

Проверка качества на Kaggle

Стратегия 1: Holdout

Преимущества и недостатки

- + скорость валидации
- - мало данных: можно заточиться под holdout

Стратегия 2: K-fold CV

test				
	test			
		test		
			test	
				test

Преимущества и недостатки

- + уменьшается вероятность «затачивания» под данные
- + в тестировании участвует вся выборка
- - требовательность к ресурсам

Иногда и этого недостаточно!

- Мало данных Mail.ru ML bootcamp
 210 объектов / 5 фолдов = 42 объекта в тесте
- Выход: уменьшаем количество фолдов, повторяем много раз: 32 x 3-Fold CV

Иногда и этого недостаточно!

- Много шума: Santander
- Выход: повторять 5-fold с различными разбиениями

Рекомендации

- Смотреть на дисперсию оценки качества между фолдами
- Сверять с лидербордом: нужно, чтобы улучшение на CV давало улучшение на LB

Проблема с ROC AUC

• AUC оценивает качество не поточечно, а ответов на всей выборке!

0.1	0	ALIC-1		0.1	0	
0.2	1	AUC=1	,=1	0.2	1	
0.3	0	AUC=1	0.3	0	AUC=0.66	
0.4	1	AUC-1		0.4	1	A0C-0.00
	ı			Λ.F.		
0.5	0			0.5	0	
0.6	1	AUC=1		0.6	1	

Смешивание алгоритмов

- Blending
- Stacking
- Feature-weighted stacking

Blending

a(x) = alpha * model1(x) + (1-alpha) * model2(x)

- Нужно смешивать разные алгоритмы!
- Следить за переобучением

Как не переобучиться?

• K-Fold разбиение!

test				
	test			
		test		
			test	
				test

Stacking

Как делать?

Как делать?

• K-Fold разбиение

test				
	test			
		test		
			test	
				test

Но как быть с тестом?

Предсказание для теста:

- Усреднить по фолдам
- Обучиться на всем трейне, посчитать для теста

test				
	test			
		test		
			test	
				test

Рекомендации

- Фиксированное разбиение!
- Разные выборки: X, scale(X), sparse(X),
 PCA(X)
- Разные (по природе) алгоритмы
- Не всегда лучшие параметры дают большИй прирост в смеси