Statistical Considerations in Multilevel Mediation Analysis

William Ruth

Collaborators: Rado Ramasy, Rowin Alfaro, Ariel Mundo, Bruno Remillard, Bouchra Nasri

Outline

- 1) The Problem
- 2) Mediation Analysis
- 3) Causal Inference
- 4) Mixed-Effects Models
- 234) Mixed-Effects Models in Causal Mediation Analysis

Example

- Goal: Understand adherence to restrictive measures
 - E.g. Lockdowns
 - Both past and future
- Influence of news source
 - How trustworthy?
- Disentangle influence on future from influence on past

Example

Example

Terminology

- Top path: Direct effect
- Center path: Indirect effect
- Combined: Total effect

- Exposure: *X*
- Outcome: Y
- Mediator: M

Separate **Total Effect** of X on Y into

- Direct Effect
- Indirect Effect

Traditionally, use regression

Continuous outcome and mediator:

•
$$Y = \alpha_0 + \alpha_1 M + \alpha_2 X + \varepsilon_Y$$

•
$$M = \beta_0 + \beta_1 X + \varepsilon_M$$

Direct Effect: α_2

• "X in Y"

Indirect Effect: $\alpha_1 \cdot \beta_1$

"M in Y" · "X in M"

Total Effect: $\alpha_2 + \alpha_1 \cdot \beta_1$

Popular approach

A bit outdated...

More popular: Causal mediation analysis

Assume that X causes Y

Counterfactuals:

- What value would Y take if X were set to a particular level?
- Write Y_x for the value of Y when X = x
- If $X \neq x$ then Y_x is literally a "counterfactual"

Example:

- Alice only reads scientific publications and will follow all lockdown mandates
- What if she instead only read Facebook?
- $Y_{Science}(Alice) = follow$
- $Y_{Facebook}(Alice) = \text{follow}$

Example:

- Bob also only reads scientific publications and will follow all lockdown mandates, but is more susceptible to being influenced
- $Y_{Science}(Bob) = follow$
- $Y_{Facebook}(Bob) = \text{not follow}$

- We only observe one outcome per individual
- Explore population-level effects by averaging
- Define mediation effects in terms of expected counterfactuals

Total Effect: $\mathbb{E}(Y_{x'} - Y_x)$

• Effect on outcome when we change exposure from X = x to X = x'

Other effects involve dependence on a mediator:

- Y_{xm} : Value of outcome when
 - Exposure (X) is set to x
 - Mediator (M) is set to m
- $M_{\rm x}$: Value of mediator when
 - Exposure (X) is set to x
- "Nested Counterfactuals": Y_{xM_x} or $Y_{xM_{x'}}$

◆ロト ◆ 部 ト ◆ 意 ト

Controlled Direct Effect: $\mathbb{E}(Y_{x'm} - Y_{xm})$

Effect of changing exposure with mediator held fixed

Natural Direct Effect: $\mathbb{E}(Y_{x'M_x} - Y_{xM_x})$

 Effect of changing exposure when we don't interfere with the mediator

Natural Indirect Effect: $\mathbb{E}(Y_{xM_{x'}} - Y_{xM_x})$

 Effect of changing which exposure value is seen by the mediator while holding fixed which exposure value is seen by the outcome

ペロト ペラト ペラト ペラト マラト ラーツへで William Ruth

In our example

- Controlled Direct Effect: Effect of increasing news trustworthiness if the whole population followed guidelines in the past
- Natural Direct Effect: Effect of increasing news trustworthiness independent of any induced change in past compliance
- Natural Indirect Effect: Effect of changing past compliance if everyone only got news from Facebook

We can't measure all required counterfactuals

• E.g., Y_x or $Y_{x'}$, not both

Expected counterfactuals related to conditional expectations

• Under strong assumptions, $\mathbb{E} Y_x = \mathbb{E}(Y|X=x)$

Nested counterfactuals more complicated

More on this later

How does causality change our analysis?

Still fit regression models, but include interaction terms between exposure and mediator

•
$$Y = \alpha_0 + \alpha_1 M + \alpha_2 X + \alpha_3 M \cdot X + \varepsilon_Y$$

•
$$M = \beta_0 + \beta_1 X + \varepsilon_M$$

Direct and indirect effects now depend on the levels of the exposure

Causal Mediation Analysis – Extensions

Discussion so far has involved continuous mediator and outcome

• What about binary or categorical?

Individuals might also be clustered

• E.g. Within countries

Causal Mediation Analysis – Extensions

Handling binary variables is pretty straightforward

- Instead of linear regression, use logistic regression
- Re-define mediation effects based on expected counterfactuals
 - I.e. Counterfactual probabilities
- New formulas for relating mediation effects to regression coefficients

Extend to more than 2 categories using binary indicators

Causal Mediation Analysis – Extensions

Clustered data more complicated

Standard approach is multi-level modelling

• I.e. Add random effects that vary across clusters

Combined with categorical variables:

Generalized linear mixed models (GLMMs)

The core idea is to augment our set of covariates

 Coefficients of these new covariates are random variables that vary across groups/clusters

In the linear setting:

Old model:

$$Y = \alpha_0 + \alpha_1 X_1 + \ldots + \alpha_p X_p + \varepsilon$$

• New model:

$$Y = \alpha_0 + \alpha_1 X_1 + \ldots + \alpha_p X_p + \mathbf{u_1} \mathbf{Z_1} + \ldots + \mathbf{u_q} \mathbf{Z_q} + \varepsilon$$

The Z's are fixed, known covariates The u's are random variables

Le. Random effects

It's possible for the X's and Z's to overlap

- The coefficient on such a covariate has the form $\alpha_j + u_k$
- I.e. Mixed effect

Extend to generalized linear models in the usual way

Choose response distribution and link function as for ordinary GLMs

Linear predictor now has a random effects component

Why bother?

- E.g. Measured some but not all levels of a categorical variable
- Estimate covariance matrix of random effects
- Test for non-zero variance of each random effect

"Predict" level of random effects for each group

Conditional mean or conditional mode of random effects given response

In our example:

- Data collected from 11 different countries
- Explicitly model inter-country variability
- Predict country-specific random effects
- Use country-specific coefficients in formulas for mediation effects
- Test for significant mediation effects within each country

Uncertainty quantification for mixed-effects models can be challenging

Strategies include:

- Bootstrap
- Quasi-Bayesian Monte Carlo
- \bullet δ -method

Uncertainty quantification for mixed-effects models can be challenging

Strategies include:

- Bootstrap (Rado Ramasy, yesterday)
- Quasi-Bayesian Monte Carlo
- δ -method

Uncertainty quantification for mixed-effects models can be challenging

Strategies include:

- Bootstrap
- Quasi-Bayesian Monte Carlo
- δ -method

Recall: Mediation effects defined using nested counterfactuals – $Y_{xM_{y}}$

- Value of Y when X is set to x, and
- M is set to whatever value it would have if X were set to x'

Under strong assumptions, use the "Mediation Formula"

Mediation Formula:

$$\mathbb{E}Y_{xM_{x'}} = \mathbb{E}_{M|X=x'}\mathbb{E}(Y|X=x,M)$$

Mediation Formula:

$$\mathbb{E}Y_{xM_{x'}} = \mathbb{E}_{M|X=x'}\mathbb{E}(Y|X=x,M)$$

$$= \sum_{m=0}^{1} \mathbb{P}(Y=1|X=x,M=m)\mathbb{P}(M=m|X=x')$$

Mediation Formula:

$$\mathbb{E}Y_{xM_{x'}} = \mathbb{E}_{M|X=x'}\mathbb{E}(Y|X=x,M)$$

$$= \sum_{m=0}^{1} \mathbb{P}(Y=1|X=x,M=m)\mathbb{P}(M=m|X=x')$$

Logistic regression model makes this (relatively) simple:

$$\mathbb{P}(Y=1|X=x,M=m) = \text{logit}^{-1} \text{(linear predictor)}$$

$$\mathbb{P}(M=m|X=x') = \text{logit}^{-1} \text{(different linear predictor)}$$

Estimating $\mathbb{E} Y_{xM_{x'}}$ messy, but not hard

Uncertainty quantification based on asymptotic covariance of regression parameters

- Use δ -method
- Need derivatives of $\mathbb{E} Y_{xM_{x'}}$ wrt regression parameters
- Very messy, not particularly hard

Uncertainty quantification for mediation effects similar

• More δ -method

Very similar for GLMs and GLMMs

- Latter has more regression parameters
- Use merDeriv package to supplement 1me4

Putting it All Together

- Define direct, indirect and total effects using counterfactuals
- Estimate these effects across countries using generalized linear mixed models
- Compute standard errors for estimated effects using the δ -method

Acknowledgements

Collaborators:

- Rado Ramasy
- Rowin Alfaro
- Ariel Mundo
- Bruno Remillard
- Bouchra Nasri

Funding:

Canadian Statistical Sciences Institute

Thank You