And Designer Stewart, Timothy A. Tomlinson, Elizabeth

Sequence Listing

RECEIVED

JUL 0 9 2001

TECH CENTER 1600/2900

<120>	FIBROBLAST G	ROWTH	FACTOR-	-19	(FGF-	19)	NUCLE	IC A	ACIDS	AND
	POLYPEPTIDES	AND	METHODS	FOR	THE	TREA	TMENT	OF	OBES	[TY

- <130> P1219P1-US
- <140> US 09/522,342

Goddard, Audrey Gurney, Austin L.

- <141> 2000-03-09
- <150> US 60/066,840
- <151> 1997-11-25
- <150> US 09/158,342
- <151> 1998-09-21
- <150> US 09/284,663
- <151> 1999-04-15
- <150> PCT/US98/25190
- <151> 1998-11-25
- <160> 5
- <210> 1
- <211> 2137
- <212> DNA
- <213> Homo Sapien

gctcccagcc aagaacctcg gggccgctgc gcggtgggga ggagttcccc 50 gaaaccegge egetaagega ggeeteetee teeegeagat eegaaeggee 100 tgggcgggt caccecgget gggacaagaa geegeegeet geetgeeegg 150

- geceggggag ggggetgggg etggggeegg aggeggggtg tgagtgggtg 200 tgtgcggggg gcggaggett gatgcaatcc cgataagaaa tgctcgggtg 250
- tettgggeae etaeeegtgg ggeeegtaag gegetaetat ataaggetge 300
- eggeeeggag eegeegeee gteagageag gagegetgeg teeaggatet 350
- agggedacqa ebateedaac eeggeactea cageecegea gegeateeeg 400
- gtegeegeee agecteeege acceecateg eeggagetge geegagagee 450
- ccaqqqaqqt qccatqcqqa qcqqqtqtqt gqtggtccac gtatggatcc 500
- tggddggddt dtggdtggdd gtggddggdd gddddtagd dttdtdggad 550
- geggggeees aegtgeaeta eggetgggge gaccecates geetgeggsa 600
- cotglacace teeggeeece aegggetete eagetgette eigegeatee 650
- gtgccgacgg cgtcgtggac tgcgcgcggg gccagagcgc gcacagtttg 700
- ctggagatea aggeagtege tetgeggaee gtggeeatea agggegtgea 750

cagogtgogg tacctotgoa tgggogooga oggoaagatg caggggotgo 800 ttcagtactc ggaggaagac tgtgctttcg aggaggagat ccgcccagat 850 ggetacaatg tgtacegate egagaageae egeeteeegg teteeetgag 900 cagtgccaaa cageggcage tgtacaagaa cagaggettt ettecaetet 950 eteattteet geceatgetg eccatggtee cagaggagee tgaggacete 1000 aggggecaet tggaatetga eatgttetet tegeceetgg agacegaeag 1050 catggaccca titigggettg teaceggact ggaggeegtg aggagteeca 1100 getttgagaa gtaactgaga ceatgeeegg geetetteae tgetgeeagg 1150 ggetgtggta cetgeagegt gggggaegtg ettetacaag aacagteetg 1200 aqtocacqtt ctqtttaqct ttaqqaagaa acatotagaa gttgtacata 1250 ttcagagttt tccattggca gtgccagttt ctagccaata gacttgtctg 1300 atcataacat tgtaageetg tagettgeec agetgetgee tgggeececa 1350 ttotgotoco togaggttgo tggacaagot gotgoactgt otcagttotg 1400 cttgaatacc tccatcgatg gggaactcac ttcctttgga aaaattctta 1450 tgtcaagetg aaatteteta atttttete ateaetteee eaggageage 1500 cagaagacag gcagtagttt taatttcagg aacaggtgat ccactctgta 1550 aaacagcagg taaatttcac tcaaccccat gtgggaattg atctatatct 1600 ctacttccag ggaccatttg cccttcccaa atccctccag gccagaactg 1650 actggagcag gcatggccca ccaggcttca ggagtagggg aagcctggag 1700 ccccacteca gccctgggac aacttgagaa ttccccctga ggccagttct 1750 gtcatggatg ctgtcctgag aataacttgc tgtcccggtg tcacctgctt 1800 coatotocca geocaceage ectetgeeca ceteacatge etececatgg 1850 attggggcet cecaggeece ceaecttatg teaacetgea ettettgtte 1900 aaaaatcagg aaaagaaaag atttgaagac cccaagtctt gtcaataact 1950 tqctqtqtqq aagcaqcggg ggaagaccta gaaccctttc cccagcactt 2000 ggttttccaa catgatattt atgagtaatt tattttgata tgtacatctc 2050 ttattttctt acattattta tgcccccaaa ttatatttat gtatgtaagt 2100 gaggtttgtt ttgtatatta aaatggagtt tgtttgt 2137

```
<210> 2
<211> 216
<212> PRT
```

Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly

<213> Homo Sapien

1				5					10					15
Leu	Trp	Leu	Ala	Val 20	Ala	Gly	Arg	Pro	Leu 25	Ala	Phe	Ser	Asp	Ala 30
Gly	Pro	His	Val	His 35	Tyr	Gly	Trp	Gly	Asp 40	Pro	Ile	Arg	Leu	Arg 45
His	Leu	Tyr	Thr	Ser 50	Gly	Pro	His	Gly	Leu 55	Ser	Ser	Cys	Phe	Leu 60
Arg	Ile	Arg	Ala	Asp 65	Gly	Val	Val	Asp	Cys 70	Ala	Arg	Gly	Gln	Ser 75
Ala	His	Ser	Leu	Leu 80	Glu	Ile	Lys	Ala	Val 85	Ala	Leu	Arg	Thr	Vāl 90
Ala	Ile	Lys	Gly	Val 95	His	Ser	Val	Arg	Tyr 100	Leu	Cys	Met	Gly	Ala 105
Asp	Gly	Lys	Met	Gln 110	Gly	Leu	Leu	Gln	Tyr 115	Ser	Glu	Glu	Asp	Cys 120
Ala	Phe	Glu	Glu	Glu 125	Ile	Arg	Pro	Asp	Gly 130	Tyr	Asn	Val	Tyr	Arg 135
Ser	Glu	Lys	His	Arg 140	Leu	Pro	Val	Ser	Leu 145	Ser	Ser	Ala	Lys	Gln 150
Arg	Gln	Leu	Tyr	Lys 155	Asn	Arg	Gly	Phe	Leu 160	Pro	Leu	Ser	His	Phe 165
Leu	Pro	Met	Leu	Pro 170	Met	Val	Pro	Glu	Glu 175	Pro	Glu	Asp	Leu	Arg 180
Gly	His	Leu	Glu	Ser 185	Asp	Met	Phe	Ser	Ser 190	Pro	Leu	Glu	Thr	Asp 195
Ser	Met	Asp	Pro	Phe 200	Gly	Leu	Val	Thr	Gly 205	Leu	Glu	Ala	Val	Arg 210
Ser	Pro	Ser	Phe	Glu 215	Lys									
<210> 3 <211> 26 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic oligonucleotide probe														
<400> 3 atccgcccag atggctacaa tgtgta 26														
<pre><210> 4 <211> 22 <112> DNA <213> Artificial Sequence</pre>														
<220> <223> Synthetic oligonucleotide probe														
< 4 0 0 > 4														

ccagtccggt gacaagccca aa 22

<210> 5

<211> 42

<212> DNA <213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<40C> 5

gcctcccggt ctccctgagc agtgccaaac agcggcagtg ta 42