MAT347 Abstract Algebra

Jonah Chen

1 Groups

Groups are generally associated with symmetries. Consider the equilateral triangle:

We know that there are six symmetries of the triangle:

- ullet Identity transformation (do nothing) denoted as id or e
- Two rotations $(A \to B \to C \to A \text{ and } A \to C \to B \to A)$
- Three reflections $A \leftrightarrow B$, $A \leftrightarrow C$, $B \leftrightarrow C$

Note that these symmetries preserve the structure of the triangle, hence the composition of two symmetries must also be a symmetry. Let

- $\bullet \;\; \rho \; \mbox{be the rotation} \; A \rightarrow B \rightarrow C \rightarrow A$
- σ be the reflections $B \leftrightarrow C$

Note that $\rho\sigma$ is the $A\leftrightarrow C$ reflection and $\sigma\rho$ is the $A\leftrightarrow B$ reflection. Hence they may not be commutative.

We also know that all symmetries can be reversed. α has an inverse α^{-1} such that $\alpha\alpha^{-1}=\alpha^{-1}\alpha=e$. These inspires the following definition:

Definition: A group is a set G with a composition

$$G \times G \to G$$
 (1)

$$(g,h) \mapsto g \cdot h \tag{2}$$

Satisfying:

• Associativity: $(g \cdot h) \cdot k = g \cdot (h \cdot k)$

- \bullet Identity: $\exists\, e\in G$ such that $g\cdot e=e\cdot g=g$ for all $g\in G$
- \bullet Inverse: $\forall\,g\in G,\,\exists\,g^{-1}\in G$ such that $g\cdot g^{-1}=g^{-1}\cdot g=e$

Examples:

- \mathbb{Z} with + is a group. It is associative, e = 0 and $g^{-1} = -g$.
- $\bullet \ \mathbb{Z}/n\mathbb{Z}$ with addition modulo n.
- ullet SL(n,F) all n imes n matrices with determinant 1 over a field F.