Index

Note: page numbers in italics refer to figures, those in **bold** refer to tables

A alleles 12, 22	ABH antigen	molecular genetics 21-4
evolution 24	acquired changes 47-50	secretion 31–3
A antigen 4	acute myeloid leukaemia 49-50	secretor status 32
acute myeloid leukaemia 49	enzymatic degradation 50-1	structure 11–13
carbohydrate determinants	expression	transplantation 53-4
14–17	on ectodermal/endodermal/	ABO, historical aspects 11–13
enzymatic degradation 50-1	mesodermal tissues 64, 65	ABO gene
expression on acquired B cells	on leucocytes 63-4	alleles 12, 22
48	on platelets 64	cDNA 22
incompatible in malignancy 66	on tumours 64–6	frequency 32
in plasma 33	fetal 32	products in membrane of Golgi
structure 14, 15	genetic control in body 64, 65	apparatus 23
subgroups 33, 34 , 35–8	glycoconjugates 13–14	protein products 22
A genes	glycosyltransferases 17–18	chromosome 9 13, 24
frequency 30, 31	secretion 31–3	CpG island 23
interaction with <i>B</i> genes 40–1	secretors 32–3	evolution 24
A ¹ consensus sequence 22	structure 13–17	fusion genes 24
A ₁ 28–30	Type 1 16	genomic organisation 21, 22
A ₂ 28–31	Type 2 16, 17	linkage 24
determinants 30	Type 3 16–17	non-human primates 24
phenotype 29	Type 4 17	ABO incompatibility 52-3, 64
red cell biochemistry 30	Type 6 17	ABO monoclonal antibodies 54
A^2 allele 22, 29	ABH non-secretors 19, 20, 25, 32	ABO phenotype
A ₃ 33, 34 , 35	bacterial infections 66	clotting anomalies 67-8
A4GALT gene 166, 168, 169	Le ^a antigen 26	disease associations 66-8
mutations 172, 519	viral infection resistance 66-7	frequency 30–1
cisAB 42-3	ABH-active oligosaccharides, Ii antigens	malaria 67
A/B heterozygotes, allelic enhancement	470	pancreatic cancer 68
41	ABO antibodies	prediction 25
A _{bantu} 29, 34 , 36	autoantibodies 53	ABO pseudogene 24
A(B) phenotype 41–2	clinical significance 52-3	abortion, habitual spontaneous with P
ABCB6 487, 488 , 490–1	monoclonal 54	antibodies 174
ABCB6 gene 490	ABO antigens	ABTI 500, 502
ABCG2 487, 488–9	acquired changes 47-50	frequency 501
functions 489, 491	biosynthesis 11-13, 21	acetylcholinesterase (AChE) 354,
ABCG2 gene 488–9	disease associations 66–8	356
mutations 488, 489	inheritance 11	red cell deficiency 356
ABH antibodies 51-7	loss in tumours 65	N-acetylgalactosamine see GalNAc

ACHE gene 354 anti-CD 212 anti-DSLK 140 chromosome location 355 anti-CD20 53 anti-Duclos 140 mutation 356 anti-CD44 450, 451 anti-Dw 228 acquired B 47-9, 517-18 monoclonal 450, 451, 452 anti-e 185, 211, 231 anti-CD99 362 anti-E 184, 209-10, 211, 219, 231 causes 48-9 polyagglutination 49 anti-CD108, monoclonal 467 transfusion 211 serological characteristics 47–8 anti-CD151 461-2 anti-ELO 344 acute myeloid leukaemia (AML) anti-CDE 212 anti-Emm 502 49-50 anti-En^a 106-7, 109-10 anti-ce 211 monosomy 7 387 anti-cE 212 clinical significance 110 Tn polyagglutination 519 anti-Ce 211 anti-EnaFR 110 adhesion molecules 8 anti-CE 211-12 anti-En^aFS 109, 110, 111 adult i phenotype 472-3 anti-Ch 400, 401, 406 anti-En^aTS 109, 110 anti-Cla 133 anti-ENAV GCNT2 gene mutations 473 132 anti-Co3 387 anti-ENEP 132 AE1 red cell anion exchanger 336 anti-Co4 386-7 anti-ENEV 132 A_{el} 33, 34, 35, 37 A_{end} 33, 34, 35–6 anti-Coa 387 anti-Er3 493, 494 A_{finn} **34**, 36 anti-Cob 387 anti-Era 493, 494 anti-CR1 441 anti-Erb 494 A_b **44**, 46 anti-Cra 433 anti-ERIK 131 A_{int} 30 ALeb structure 14 anti-CRAG 432 anti-f 211 allelic enhancement 41 anti-CRAM 432 anti-Far 133 anti-FPTT 218 A_m 33, **34**, **35**, 36–7 anti-CROV 432 amino acids, codes 1, 3 anti-CROZ 432 anti-Fy3 312-13 anti-Fy4 313 A_{mos} 40 anti-CRUE 432 Amt genes 236 anti-Csa 444, 446 anti-Fy5 312, 313 Ana 411, 417, 418 anti-Cs^b 446 anti-Fy6, monoclonal 312, 313 anaemia anti-Cw 213 anti-Fy^a 310, 312 anti-D 140-1, 182, 184, 228-9 CD151 deficiency 463 monoclonal 311 see also autoimmune haemolytic clinical significance 230-1 anti-Fy^b 309, 310-11 anaemia (AIHA); congenital D epitope structure 204-5 monoclonal 311 dyserythropoietic anaemia D+ patients 232 anti-G 212, 231 anti-Ge2 413, 420 (CDA); haemolytic anaemia genetics 229-30 anti-A 28, 32, 51-2 haemolytic disease of the fetus and monoclonal 420 anti-Ge3 413 lectins 55-6 newborn 230-1 monoclonal 54 human monoclonal 229 anti-Ge4 414 anti-A₁ 28, 53 IgG 229, 230, 231 monoclonal 420 monoclonal 54 anti-GIL 485 IgM 476 anti-A,B 52 heavy chain variable region 230 anti-Go^a 227-8 anti-GUTI 432 anti-ABTI 502 immunoprophylaxis 230 anti-ALe^b 61 monoclonal 196, 199, 229 anti-Gy^a 379, 380, 381 anti-Ana 418 stimulation by DVa 206 anti-H 54-5 anti-AnWj 453-4 anti-D immunoglobulin 207, 231 monoclonal 55 anti-HAG 132 monoclonal 454 anti-Dantu 130 anti-Ata 502 anti-Dha 418 anti-He 117 anti-Dia 339-40 anti-Au^a 264 anti-Hi 55, 476 anti-B 51-2 monoclonal 340 anti-HI 55, 476 anti-Di^b 339-40 lectins 56 anti-Hil 120, 127, 128 monoclonal monoclonal 340 anti-HJK 498 anti-Bg 513 anti-Do^a 380-1 anti-HLA-B7 512 anti-Bi 498 anti-Do^b 380-1 anti-Hop 118 anti-By 498 monoclonal 381 anti-Hr 210 anti-DOLG 380 anti-c 231 anti-hr^B 210, 211 anti-C 209, 211, 231 anti-DOMR 380 anti-Hr^B 210 anti-C4 402 anti-DOYA 380 anti-Hr_o 218, 222

	.' IZEL 21 200 00	1 1 120
anti-hr ^s 211	anti-KEL31 289–90	monoclonal 138
anti-Hut 126, 127	anti-KEL32 290	recombinant 138
anti-Hy 379, 380, 381	anti-KEL33 290	anti-MAM 500, 503
anti-i 469, 470, 475, 476	anti-KEL34 290	anti-MAR 213
cold lymphocytotoxin 474	anti-KEL35 290	anti-MARS 132
haemagglutination inhibition 474	anti-KEL36 290	anti-McC ^a 444
monoclonal 475	anti-KEL38 289	anti-McC ^b 442
structure 475–6	anti-Kg 498	anti-Me 478
anti-I 469, 470, 474–6	anti-Km 296	anti-M ^e 117
cold lymphocytotoxin 474	anti-Kn ^a 444	anti-MER2 462, 463
lectin 475	anti-Kp ^a 285–6	anti-M ^g 114
structure 475–6	anti-Kp ^b 285, 286, 292	anti-Mi ^a 129
anti-I (Ma) 474	anti-Kp ^c 286	anti-MINY 128
anti-IFC 429–30	anti-Ku 271, 282, 291	anti-Mit 134
anti-IN3 450, 451	anti-Kx 296	anti-MNTD 134
anti-IN4 450, 451, 452	anti-Lan 489, 490, 500	anti-Mt ^a 133
anti-In ^a 452	anti-Lai 407, 470, 500	anti-MTP 503
anti-In ^b 450, 451, 452	human 60	anti-Mur 125, 128
anti-IP 173	monoclonal 60–1	anti-MUT 127
anti-IP1 173, 476	renal failure in bone marrow	anti-M ^v 133
anti-I ^T 476	transplantation 62	anti-N 103–4, 137
anti-I ^T P 173, 476	renal transplant rejection 61-2	alloantibodies 137
anti-I ^T P1 173	anti-Le ^b 12, 61	autoantibodies 137
anti-j 476	monoclonal 61	clinical significance 137–8
anti-JAL 218	renal transplant rejection 61-2	glucose-dependent 138
anti-JFV 498	anti-Lepore 119	lectins 138–9
anti-Jk3 329-30	anti-LKE 171	monoclonal 138
anti-Jk ^a 327–8	anti-Ls ^a 417	recombinant 138
monoclonal 328	anti-Lu3 266, 267	renal dialysis 137–8
anti-Jk ^b 327–8	anti-Lu5 265	anti-Nf 137–8
monoclonal 328	anti-Lu6 264, 265	anti-Nob 118
anti-JMH 465, 466, 467	anti-Lu7 265	anti-Ny ^a 133
anti-Jo ^a 379, 380, 381	anti-Lu8 264	anti-OK2 458
anti-JONES 498	anti-Luo 204 anti-Luo 264	anti-OK3 458
anti-JONES 498	anti-Lu12 265	anti-Ok ^a 457, 458
-		
anti-Js ^a 287	anti-Lu13 265	anti-Om 478
anti-Js ^b 287	anti-Lu14 264	anti-Or 134
anti-k 285	anti-Lu16 265–6	anti-Os ^a 134
anti-K 282, 283, 284–5	anti-Lu17 266	anti-p 173
clinical significance 284–5	anti-Lu20 266	anti-P 169–70
human monoclonal 284	anti-Lu21 266	early abortion association 174
non-red cell immune 284	anti-Lu ^a 263	anti-P1 165, 166–7, 476
anti-KEL11 287–288	anti-Lu ^b 263	monoclonal 167
anti-KEL17 288	anti-LW 193, 391, 395-6	anti-pdl 225
anti-KEL18 288	animal 396	anti-PEL 503
anti-KEL19 288–9	anti-LW ^a 392, 394, 395	anti-P ^k 167–8
anti-KEL22 289	anti-LW ^{ab} 392, 393–4, 395	monoclonal 168
anti-KEL23 289	monoclonal 396	anti-PP1P ^k 172–3
anti-KEL24 288	anti-LW ^b 395	habitual spontaneous abortion 174
anti-KEL25 289	anti-M 103–4, 116–17, 136–7	anti-Pr 111, 477
anti-KEL26 289	alloantibodies 137	anti-Pt ^a 497
anti-KEL27 289	autoantibodies 137	anti-PX2 171
anti-KEL27 289	clinical significance 137	anti-RASM 498
anti-KEL29 289	glucose-dependent 138	anti-RASW 498
	-	
anti-KEL30 289	lectins 138–9	anti-Rg 400, 401, 406

anti-Rg1 404	aquaporin(s) 486	autoanti-Pr 477
anti-Rg2 404	aquaporin-1 (AQP1) 384, 387, 486	autoanti-S 139
anti-Rh 184, 228–32, 391, 476	expression 388	autoanti-SC1 373
anti-Rh29 225	functions 387–8	autoanti-U 140
anti-Rh35 218	structure 384, 385	autoanti-Vel 502
anti-Rh41 211	aquaporin-3 (AQP3) 384, 485	band 3 chymotrypsin-sensitive
anti-Ri ^a 133	ART4 376–7, 380	determinants 344
anti-s 139	ART4 gene 376	depressed Kell phenotype 292
anti-S 139	Ascaris suum 165	Gerbich autoantibodies 420
anti-Sa 111, 477	asthma, Duffy antigens 317	Rh antibodies 232
anti-SARA 498	At ^a 502	autoimmune idiopathic
anti-SC1 373	frequency 501	thrombocytopenic purpura
anti-SC2 373	ataxia telangiectasia 140	(AITP) 271
anti-SC4 373–4	ATP-binding cassette transporters 487	Kell phenotype 292
anti-s ^D 134	A-transferase see GTA	A _w 33, 34, 37–8
anti-Sd ^a 505–6, 507	Au ^a 260 , 263, 264–5	A _x 33, 34 , 35 , 36
anti-SERF 432	Au ^b 260 , 263, 264–5	A _y 33, 34 , 35 , 37
anti-SI2 443	Auberger antigens 260 , 263, 264–5	
anti-Sia-1b 477–8	August see Ata	B antigen 4
anti-St ^a 131	autoanti-A 53	acute myeloid leukaemia 49
anti-T 136, 516–17	autoanti-B 53	carbohydrate determinants 14–17
anti-Tc ^a 433	autoanti-Co3, mimicking 387	enzymatic degradation 50–1
anti-Tc ^b 431	autoanti-D 232	in plasma 33
anti-Tk, monoclonal 519	autoanti-Di ^b 340	structure 14
anti-Tn 136	autoanti-En ^a 110	subgroups 38–40
anti-TSEN 128	autoanti-I 474–5	B genes
anti-U 111–12, 139–40	autoanti-Jk3 330	alleles 12, 22, 38–40
anti-UI ^a 287	autoanti-Jk ^a 328	frequency 30, 31
anti-U ^x 140	autoanti-Js ^b 287	interaction with A genes 40–1
anti-U ^z 140	autoanti-K, mimicking 285	B ₃ 38–9
anti-V 214	autoanti-Kp ^b 286	B3GALNT1 gene 171
anti-Vel 500, 501–2 anti-Vr 132	autoanti-Lan 490 autoanti-LW 395	B3GALT5 gene 171
anti-VS 214	autoanti-P 169–70	B4GALNT2 gene 506, 508
anti-Vw 127	autoanti-P 169–70	B(A) phenotype 41–2 bacterial infections
anti-WES ^b 432	autoanti-Pr 477	ABO 66
anti-Wr ^a 342	autoanti-S 139	CR1 445–6
anti-Wr 342 anti-Wr 110, 340, 342–3	autoanti-SC1 373	
anti-Xg ^a 359, 361–2	autoanti-U 140	glycophorins 142 Knops system 445–6
anti-Yt ^a 354, 355, 356	autoanti-Vel 502	P antigen receptors 173
anti-Yt ^{ab} 356	autoanti-Wr ^b 342–3	bacterial sialidase 516
anti-Yt ^b 354, 355, 356	autoimmune haemolytic anaemia	Bacterioides fragilis 517
anti-ZENA 432	(AIHA)	BAEBL (VSTK) 421
AnWj 269, 270, 449, 453–4, 502–3	ABO autoantibodies 53	band 3
antibodies 453–4	anti-I 474	chymotrypsin cleavage sites 344
CD44 location 454	anti-I 474 anti-I ^T 476	cluster formation 346
development 453	anti-I ^T P 476	concanavalin A binding protein 269
inheritance 453	anti-IV 395–6	Diego antigens 336, 339
In(Lu) phenotype 453	anti-N 137	expression in gastric cancer 346
AnWj– phenotype 453	anti-Pr 111	function 345
A_{pae} 170	anti-Wr ^a 342	glycophorin A 142
Aplysia depilans 475	autoanti-Di ^b 340	association 341–2
AQP1 gene 384	autoanti-i 475	glycophorin C 421
AQP3 gene 485	autoanti-Jk3 330	glycophorin D 421
aquaglyceroporins 486	autoanti-Jk ^a 328	ICAM-4 345, 392–3
adampi/cerobornio 400	autount ja 520	101111 1 010, 072 0

junctional macrocomplex 345	blood group collections 4	polymorphisms 401
LW system 396–7	blood group systems 2, 4	RCCX genetic unit 404
membrane complexes 193–4, 345–6	blood transfusion	red cell coating 402
South-East Asian ovalocytosis 347	D variants 205–6	C4a 401
tetramers 345	Duffy antigen storage lesions 317	C4A gene 401, 403
tissue distribution 346	e variants 211	deletion 406–7
Wr ^b expression 341–2	see also haemolytic transfusion	systemic lupus erythematosus risk
band 3 deficiency 344–5	reaction (HTR)	406, 407
Bandeiraea simplicifolia 56, 139	Bloom syndrome 140	variants 404
BARC 201–2, 227	B _m 23, 39	C4b 401
basal cell carcinoma, B-CAM 272	B _{mos} 40	C4B 403
basigin 457, 458	Bombay phenotype 20, 21, 44–5	variants 404
function 459	anti-H 54	C4B gene 401, 403
hyaluronan binding to CD44 459	distribution 45	C4-binding protein 428
malaria role 459	frequency 45	C4d 401, 402, 403
tissue distribution 459	genetics 45	CA19–9 see sialyl-Le ^a
Bauhinia 139	glycosyltransferases 45	Cad 136, 505, 507
B-CAM, Lu-gps 272	I antigen expression 471	GalNAc residues 507–9
BCAM gene 259	serological characteristics	malaria resistance 509
	44–5	
Be ^a 219, 227		polyagglutination 519 red cell membrane 508
B _{el} 39–40	BOW 399, 343 , 343–4	Can 134–6
benign ethnic neutropenia 315	Bp ^a 399, 343 , 343–4 breast cancer 317–18	
Bennett–Goodspeed see Bg		A DC to a control in social in second
Bg 512	basigin, hyaluronan and CD44	ABC transporters in multidrug
Bg ^a 512	interactions 459	resistance 487, 489
Bg ^b 512	CD99 expression 367	CD99 expression 367
Bg ^c 512	Duffy antigens 317–18	DARC association 317–18
B _h 44, 46	immunotherapy 519	diagnosis with sialyl-Le ^a 58,
Bi 496–497	metastasis 474	65–6
bladder cancer, <i>SLC14A1</i> susceptibility	T-/Tn-activated red cells 519	Ii antigens 474
gene 331	bromelin, MNS antigen effects	p phenotype 173
BLe ^b , structure 14	106	see also malignancy; named cancers
blood donors, testing 7	BSG gene 457, 458	and conditions
blood group(s)	B-transferase see GTB	carbon dioxide
collections 4	Bu ^a see SC2	membrane permeability 388
definition 1	Burkitt's lymphoma 168, 173	transport 345
DNA analysis 5–7	$B_v = 40$	carbonic anhydrase II (CAII) 235–6,
molecular methods 5–7	B_w 40	345
clinical applications 5–7	$B_x = 39$	Cartwright system see Yt system
current/future technologies 7	Bx ^a 496–497	cataract, congenital 472–3
polymorphisms 8–9	By 496–497	CBF/NF-Y transcription factor-binding
systems 1, 2, 4		motif 23–4
terminology 3-5	C and c 182, 184–5, 207–9	CD15 see Le ^x
typing 5–7	frequency 207	CD35 see CR1
blood group alleles	phenotype prediction from DNA	CD44 451
polymorphisms 8–9	208–209	antibodies 450, 451
terminology 3	polymorphism 208	anti-Inb binding in fetal monocytes
blood group antigens	sites on red cells 207, 208	452
carbohydrate determinants 1	C1GALT1C1 gene 518	AnWj 454, 503
functions 7–9	C4 400, 401–4	functions 452
identification number 3–4	deficiency 406–7	hyaluronan binding 452, 459
protein determinants 1	genes 404, 405–6	Indian antigens 449–50
structure 7–9	haplotype 403	In(Lu) effects 268–9
synthesis 1	molecular genetics 403	proteoglycan 452
terminology 3	phenotypes 402	CD44 gene 449, 450, 454
	Prictiotypes 102	02 11 gene 11), 130, 131

CD47 194 CFTR gene, KEL gene linkage 281 cold agglutinin(s) 469, 477-8 band 3 tetramer 345 C^G 208, 212, 214 anti-D IgM heavy chain variable region 230 reduced expression in Rh_{null} and Ch 401-2 Rh_{mod} red cells 225 phenotypes 404, 405 anti-I/anti-I^T 476 Rh-deficiency syndrome 226 Mycoplasma pneumoniae 475 typing 402 CD55 508 see DAF Ch1 400, 405, 406 cold agglutinin disease 111, 469 CD55 gene 427, 428 Ch2 400, 405, 406 anti-i 475 organisation 430 Ch3 400, 405, 406 anti-M 137 CD59 433-4 Ch4 400, 404, 405, **405**, 406 autoanti-I 474-5 malaria association 434 Ch5 400, 404, 405, **405**, 406 cold autoanti-LW 395 CD75 269 Ch6 400, 404, 405, 405, 406 cold lymphocytotoxins CD77 see Pk chemokine receptors 314-315 colon malignancy 65 Sda association 508, 509 CD81 tetraspanin 367 Chido/Rogers system 400-7 CD82 461, 464 antibodies 404-6 colorectal carcinoma 519 CD99 359, 362 antigenicity 405, 406 Colton system 384–8 antigens 1, 400-2 enzyme effects 362 antibodies 387 Ewing sarcoma location 401-2 antigens 384, 385-7 367 function 367 autoantibodies 406 gene/genotype frequency 385, 386 location 362 C4 coating of red cells 402 glycoprotein 384, 385 non-human primates 367–8 complex polymorphisms 402-3 monosomy 7 387 disease associations 406-7 phenotype 384, 386 polymorphisms 365–6 CD99 gene 363-5 phenotypes 402 polymorphism 385 organisation 364 serology 400-1 see also aquaporin-1 (AQP1) CD108 464 see also C4 Co_{mod} phenotype 386 CD151 461-2 complement, anti-D activation failure chimpanzee deficiency 463 DARC homologues 309 expression 463 Kell phenotype 293 complement control protein (CCP) see also non-human primates structure 462 repeats 427-8, 429, 431, 432 Chra 496-497 CD151 gene 461 Knops system 439, 440, 442 mutations 462 chromosomes 2 structure 441 CD176 516 blood group gene location 5, 6 complement receptor type 1 see CR1 CD233 see AE1 red cell anion chronic granulomatous disease 295-6 complement regulatory glycoproteins exchanger chronic lymphocytic leukaemia (CLL) alloanti-Jkb 328 concanavalin A lectin 269 CD235A see glycophorin A (GPA) CD235B see glycophorin B (GPB) i antigen 476-7 congenital cataract 472-3 CD238 278 chymotrypsin congenital dyserythropoietic anaemia CD239 259 Kell antigen effects 292 (CDA) 386 CD240CE see RhCcEe MNS antigen effects 106 cryptantigens 519 CD240D see RhD cisAB 42, 43 polyagglutination 519 CD241 see RhAG Cla 115,133 red cell CD44 deficiency 452 CD242 see intercellular adhesion clotting anomalies, ABO phenotype type II 519 molecule 4 (ICAM-4) 67 - 8contiguous gene deletion syndrome CDE notation 184-185 CO1 see Coa 296 CO2 see Cob CDR3 138 Co_{null} phenotype 386, 388 ce 211 CO₂/O₂/NO channel 235-6 COPII coat protein 519 cE 212 Co3 384, **385**, 386 Corynebacterium aquaticum 517 Ce 211 Co4 384, 385, 386-7 Cosmc 518, 519 CE 211-12 CO gene 384 COST1 see Csa CEAG 219 Co^a 384, 385, 385, 386 COST2 see Csb cell adhesion molecules see selectins expression 387 Cost collection 439, 446 Cellano see k coxsackievirus, DAF ligand 434 Co(a-b-) phenotype 384, CELO 204, 215 386 - 7CR1 428 ceMO 219 Co^b 384, 385, **385**, **386** allotypes 439-40 CENR 218, 227 expression 387 bacterial infections 445-6 CEST 218 cold agglutination 469 expression in pregnancy 445

functions 445	Cystisus sessilifolius 57	endothelial cells 315
Knops antigens 439–42, 444	cytoskeleton 8, 345, 346	function on red cells 315
malaria association 445	•	HIV infection 317
CR1 gene 439	d 185	homologues 309
location 440	D 182, 185, 194–6, 197–9 , 200–7	non-human primates 309
CR2 428	elevation 205	N-terminal amino acid sequence
Cr ^a 428 , 430–1	epitopes 196, 197–9 , 200	308, 316
CRAG 428 , 432	structure 204–5	sickle cell disease 317
CRAM 428 , 432	expression 194	structure 307
Crawford 204	fetal typing 206–7	DARC gene 306
CROM1 see Cr ^a	LW relationship 391, 394	DARE 197, 202
CROM2 see Tc ^a	phenotype prediction from DNA	DAU 197
CROM3 see Tc ^b	206–7	Day 220–1
CROM4 see Tc ^c	polypeptide 186	DBA 197
CROM5 see Dr ^a	site number on red cells 205	DBT 197 , 200, 202, 227
CROM6 see Es ^a	variants 6–7, 182, 200–4	Dc- 217, 221
CROM7 see IFC	clusters 203	dCE haplotype 185
CROM8 see WES ^a	identification 205	DCe haplotype 213, 214
CROM9 see WES ^b	transfusion practice 205–6	DCE haplotype 207, 208
CROM10 see UMC	see also partial D	DCS 197, 200
CROM11 see GUTI	D•• 217, 220–1	DC^w = 217, 221-2
CROM12 see SERF	D13 see Wr ^a	decay-accelerating factor see DAF
CROM13 see ZENA	D14 see Wr ^b	DEL 7, 194, 198 , 204
CROM14 see CROV	D– phenotype 182, 189, 206–7, 237,	site number on red cells 205
CROM15 see CRAM	394, 395	transfusion practice 206
CROM16 see CROZ	haplotype 237	DFR 196, 198 , <i>200</i> , 202
CROM17 see CRUE	molecular genetics 194–5	DFV 198
CROM18 see CRAG	transfusion practice 205, 206, 230	DFW 198
Cromer system 427–34	D phenotype 217, 219–20	Dh ^a 411, 417 , 418–19
antibodies 433	D+ phenotype 237	DHAR 198 , 200, 203–4, 227
antipodics 455 antigens 427, 428 , 430–3	blood transfusion 232	DHK 198
location 428	Rh mosaics 233	DHMI 198
serological characteristics 432–3	D polypeptide 187, 188	DHO 198
monoclonal antibodies 433	DAF 427–8, 431	DHR 198
see also DAF	Cromer system antigen location 428	DI1 see Di ^a
Cromer-null phenotype 428–30	deficiency 427	DI2 see Di ^b
CROV 428 , 432	Escherichia coli attachment 434	DI3 see Wr ^a
CROZ 428 , 432	functions 433–4	DI4 see Wr ^b
CRUE 428 , 432	malaria association 434	DI5 see Wd ^a
cryptantigens 515	monoclonal antibodies 433	DI6 see Rb ^a
congenital dyserythropoietic anaemia	pathogenic microorganism receptor	DI7 see WARR
type II 519	434	DI8 see ELO
lectins 515, 516		DI9 see Wu
malignancy 518–19	placental trophoblast epithelial cells 433	DI10 see Bp ^a
Tx 517	structure 429	DI10 see Mo ^a
Cs ^a 439, 446	viral infections 434	DI11 see Ivio
Helgeson phenotype 446	DAK 200, 227	DI12 see Tig DI13 see Vg ^a
Cs(a–) phenotype 446		C
Cs(a-) phenotype 443–4 $Cs(a-)$ Yk(a-) phenotype 443–4	DANE 116, 125–6	DI14 see Sw ^a
	Dantu 116, 129–30	DI15 see BOW
Cs ^b 439, 446 C ^w 212–13, 227	DAR 196, 197, 202, 203	DI16 see NFLD
	DARC 306–8	DI17 see Jn ^a
C ^x 212–13, 227	absence from Fy(a-b-) cells 313	DI18 see KREP
cystic fibrosis	cancer association 317–18 chemokine binding 315	DI19 see Tr ^a
ABC transporters 487	e	DI20 see Fr ^a
CFTR gene KEL gene linkage 281	distribution 314	DI21 see SW1

DI22 see DISK	Dombrock system 376–81	EBA-175 141
Di ^a 336–40, 337 , 338, 343	antibodies 380-1	EBL-1 141
enzyme effects 338	antigens 376, 377–80	echoviruses, DAF ligand 434
expression 338	genotype 376, 377–8	ectoderm, ABH antigen expression 64,
frequency 337, 340	glycoprotein 376–7	65
reducing agent effects 338	phenotype 376, 377, 379	E/e phenotype prediction from DNA
Di ^b 336–40, 337 , 338, 343	DOMR 376, 377 , 380	209
depression in South-East Asian	Donath-Landsteiner (DL) antibodies	E/e polymorphisms 208, 209
ovalocytosis 347	169–70	EKH 219
enzyme effects 338	donor screening, molecular tests 7	EKK 219
frequency 337	Do _{null} phenotype 379	EKLF erythroid transcription factor
reducing agent effects 338	DOYA 376, 377 , 380	267, 386
weak 338	Dr ^a 428 , 431	EKLF gene mutations 164, 451
Diego system 336–47	Dr(a–) phenotype 431	i expression 470
antigens 99, 336, 337	DSLK 234	MER2 expression 463
DI5 to DI22 343-4	absence from Rh _{null} red cells 225	electrolytes, abnormal metabolism
band 3 344	D ^u 195–6	associated with In(Lu) 269
deficiency 344-5	Duclos 233-4	elliptocytosis
membrane complexes 345-6	absence from Rh _{null} red cells 225	hereditary 421
tissue distribution 346	Duffy antigen receptor for chemokines	Leach phenotype 416
molecular basis of polymorphism	see DARC	ELO 339, 343 , 343–4
338, 339	Duffy binding-like (DBL) family 421	Emm 502
see also Dia; Dib; Wra; Wrb	Duffy glycoprotein 306–8	frequency 501
DII 197, 200	chemokine receptor function	EMMPRIN 459
DIII 197, 200–1	314–15	En allele, frequency 107–8
DIM 198	Duffy system 306–18	En(a-) phenotype 98, 106-8
disaccharides, precursor 14-15	antigens 306, 307, 314	biochemistry 108
DISK 336, 339, 337 , 343 , 344	breast cancer 317-18	frequency 107-8
distal renal tubule acidosis 345, 346	malaria 315–17	malaria resistance 141
DIV 197 , 200, 201	asthma 317	molecular genetics 108
DIV(C)- 217, 222	erythroid silent allele (see FY*Null	serological characteristics of cells
DMH 198	gene, allele)	107
DMI 198	genotype 308, 309	En ^a 106–108
DNA analysis 5–7	determination 314	En ^a FR 110
ABO phenotype prediction 25	Rh mosaics 232–3	En ^a FS 109, 120
DNA fingerprinting 3	Duffy-binding-like (DBL) proteins	En ^a TS 109–110, 120
DNA repair diseases 140	141, 316	ENAV 132
DNB 198 , 200	DV 197 , 200, 201	ENDA 125-6
DNU 198 , 200	DVa 197, 206	endoderm, ABH antigen expression
DO gene 376	DVI 197 , 200, 201–2, 205	64, 65
DO1 see Do ^a	monoclonal anti-D for detection	endothelins 293
DO2 see Do ^b	229	ENEH 126
DO6 see DOYA	DVII 197 , 202	ENEP 132
DO7 see DOMR	DVL 198	ENEV 132
DO8 see DOLG	D ^w 201, 227	ENKT 127
Do ^a 376, 377 , 377–8	DWI 198	En(UK) gene 123
development/distribution 380	DYU 198	enzymes 8
Do ^a /Do ^b polymorphism 376		EPB41 gene 189
Do ^b 376, 377 , 377–8	e 182, 185, 209–11	Epstein–Barr virus (EBV), anti-i 475
development/distribution 380	sites on red cells 207, 208	Er antigens 493–4
DOL 198	variants 210	ER1 see Er ^a
DOLG 376, 377 , 380	transfusion practice 211	ER2 see Er ^b
Dolichos biflorus lectin 28–9, 30, 32, 55	E 182, 185, 209–11	Er3 493
Cad antigen 505, 519	sites on red cells 209	Er ^a 493–4
Sd(a+++) 505, 506, 507, 519	variants 209-10, 219	Er(a–) phenotype 493

Er(a–b–) phenotype 493	fucosidosis, Lewis antigens 68	Fy(a-b-) phenotype 306, 310, 311–13,
Er ^b 493, 494	fucosyltransferase 12, 19, 20	314
ERIK 131	ABH secretors 19–20	African origin people 306, 311, 313
ERMAP 371-2	haemopoietic origin 21	HIV infection 317
ERMAP gene 371–2	Lewis gene product 26	non-African origin people 311–12
mutations 373	see also FUT genes	Plasmodium vivax infection
erythroblastic islands, LW 396	α1,2-fucosyltransferase	315–317
erythroid cells, somatic mutation	distal colon malignancy 65	sickle cell disease 317
140	FUT gene control 43	Fy ^b 306, 307 , 308–10
erythroid Krüppel-like factor see EKLF	non-secretor levels 32	development 314
erythroid transcription factor	α1,3-fucosyltransferase 28	distribution 314
erythroid membrane-associated protein	α1,4-fucosyltransferase 58	enzyme effects 309
see ERMAP	FUT genes 28	frequency 308
erythropoiesis	see also numbered FUT genes	polymorphism 308–9
basigin role in erythropoietin-	FUT1 12, 19	site density 314
mediated 459	ABH antigen genetic control in body	FY*Null allele 308, 309, 311, 312, 313,
CD151 463	64, 65	315, 316
ICAM-4 296–297	alleles 20, 43–4	HIV infection 317
Kell glycoprotein 293	chromosome 19 13, 19	Fy ^x
Lu-gps 271–2	H deficiency 43–44, 46	enzyme effects 309–10
LW 296–297	isolation 19	phenotype 310
MER2 463	Lutheran locus linkage 262	FY'X gene 306, 309–10
RhAG 193	FUT2 12, 19	11 11 gene 300, 303 10
suppression by anti-K 284–285	ABH antigen genetic control in body	G 212
suppression by Gerbich	64, 65	site density on red cells 212
alloantibodies 420	alleles 20 , 44	galactose (Gal) 12, 14–15, 16–17
Es ^a 428 , 430 , 432	chromosome 19 13, 19	ABO biosynthesis 21
Escherichia coli 66	interaction with <i>FUT3</i> 25	Ii structure 471
DAF attachment site 434	Lutheran locus linkage 262	polyagglutination 518
P antigen receptors 173	mutation detection 21	α-galactosidase A deficiency 168
red cell agglutination 142	FUT3 12, 13	α1,4-galactosyltransferase 167–8
Evonymus 56	ABH antigen genetic control in body	P1 synthesis 166
Evans 220–1, 227	64	GalNAc 12–17
Ew 209, 227	alleles 26, 27 , 28	ABO biosynthesis 21
Ewing sarcoma, CD99 expression	chromosome 19 13	acquired B phenomenon 517–18
367	interaction with <i>FUT2</i> 25	Cad 507–9
	Lewis antigen 26	
extracellular matrix metalloproteinase inducer (EMMPRIN) 459	Lutheran locus linkage 262	Ii structure 471 Sd ^a 508
inducei (EMMFRIN) 439	FY gene 306, 307–8	Tn 518
f 211	_	GalNAc-transferase 24
f 211	alleles 309	
Fabry disease 168	frequencies 308	Gal-transferase 24
Factor VIII 67, 68	FY1 see Fy ^a FY2 see Fy ^b	gastric cancer 173
Fanconi anaemia 140	,	band 3 expression 346
Far 115, 133	Fy3 306, 307 , 309, 312	gastrointestinal cancer, Sda association
fetal D typing 206–7	Fy4 307 , 313	508, 509
ficin, MNS antigen effects 106	Fy5 194, 306, 307 , 309, 313	GATA1 gene 270–1
Fisher's synthesis 184–5	Fy6 306, 307 , 309	Gb3 167, 168
Fomes fomentarius 56	non-human primates 313	Gb4 see P antigen
FORS system 162–3	Fy ^a 306, 307 , 308–9	GBGT1 gene 170
FORS1 164 , <i>165</i> , 170	development 314	GBTG1 pseudogene 24
Forssman glycolipid 162, 170	distribution 314	GCNT2 gene 469, 470, 471, 474
FPTT 202, 227, 228	enzyme effects 309	breast cancer metastasis 474
molecular genetics 227	frequency 308	late activation 477
FPTT-associated haplotypes 218	polymorphism 308–9	mutations 472–3
Fr ^a 339, 343 , 343–4	site density 314	transcript expression 474

Ge2 410, 412-13 glycophorin(s) 98-103, 410 glycophorin C (GPC) development/distribution 420 atypical glycosylation 134-6 BAEBL (VSTK) binding 421 bacterial infections 142 Ge:-2,3,4 phenotype 414-15 band 3 membrane complex 345, Ge:-2,-3,4 phenotype 415-16 function 142-3 346, 421 Ge:-2,-3,-4 phenotype 416 gene evolution 143 Gerbich antigens 410-12, 413, 414, Ge3 410, 412, 413-14 glycosylated extracellular domain development/distribution 420 142 - 3Gerbich-negative phenotype 414, Ge4 410, 412, 414 hybrid 119-20, 121-2 GE5 see Wh Leach phenotype 416 malaria 141, 142 GE6 see Lsa pathogen receptors 141-2 Lsa 418 GE7 see Ana membrane skeleton association 421 viral infections 142 GE8 see Dha glycophorin A (GPA) 96, 98, 99-101 receptor for Plasmodium falciparum GE9 see GEIS amino acid sequence 100-1, 103 346, 421 GE10 see GEPL anion exchanger band 3 142 Wb antigen 417 GE11 see GEAT band 3 membrane complex 341–2, glycophorin D (GPD) GE12 see GETI 345, 346 Ana 418 GEAT 411, 419 Cad red cells 507-8 band 3 membrane complex 345, GEIS 411, 417, 419 En(a-) cells lacking 108 346, 421 gene conversion 119, 190-2, 403, enzyme treatment effects 105-6 Gerbich antigens 410–12, 413, 420 404 evolution 142-3 Gerbich-negative phenotype 414, function 142-3 genes, symbols 2, 4 genomic DNA, ABO phenotype gene coding for 101-3 Leach phenotype 416 prediction 25 malarial parasite invasion 142 Lsa 418 GEPL 411, 419 monoclonal antibodies to nonmembrane skeleton association 421 glycophosphatidylinositol (GPI) anchor Gerbich system 410-21 polymorphic epitopes 110-11 antibodies 414, 419-20 N-terminal peptides 103 427, 429, 434 antigens 412-19 amino acid substitutions 113-14, glycoproteins 1, 8, 9, 13 development/distribution 420 **115-16**, 116-18, 132 O-linked oligosaccharides 516, 517 autoantibodies 420 red cell receptor for Plasmodium glycosidases, novel recombinant 50-1 Gerbich phenotype 410, 415-16 glycosphingolipids 13 falciparum 346 Gerbich-negative phenotypes 414 Rh_{null} red cells 225 Lewis antigens 58-9 glycophorins 410-12 structure 99 NOR antigen 169 Kell system association 416-17 T activation 516 glycosyltransferases 12, 17–18 Leach phenotype 413, 416 virus receptor 143 Bombay phenotype 45 malaria 421 Wr^b expression association 342 H deficient phenotypes 43–47 monoclonal antibodies 420 glycophorin A (GPA) deficiency upregulation in tumours 65-6 Rh system association 417 phenotype 106-11, 142 Go^a 201, 227 GP(A-B) hybrid 119, 121-2 serological history 412–13 glycophorin B (GPB) 98, 99, 101 Vel antigen association 417, 502 amino acid sequence 101 S antigen associated 120, 123 Yus phenotype 410, 414–15 band 3 membrane complex 345, 346 GP(A-B-A).KI 127-8 GERW 411, 419 Cad red cells 507 GP(A-B-A).Sat 128 GETI 411, 419 enzyme treatment effects 105-6 GP(A–B–A) hybrid 119, 121–2, 125–8 GIL 485 evolution 142-3 GPA.N 110 GIL- phenotype 485, 486 function 142-3 GP(B-A) hybrid 121-2, 129-31 Gill system 485–6 gene coding for 101-3 GP(B-A-B) hybrid 119, 121-2, 123-5, glycoprotein 384 N-terminal peptides 103 341 Globo-A antigen 15 amino acid substitutions 113-14, GP.Bun 118, 123, 124 Globo-H antigen 15 **115-16**, 116-18 GP.Cal 131 globoside series 163, 164, 165 red cell receptor for Plasmodium GP.Dane 118, 125-6 P antigen 169 falciparum 346 GP.EBH 131 structure 99 globoside system 162–3, 169–70 GP.En(UK) 119 GLUT1 glucose transporter 345 T activation 516 GP.HF 118, 124 Glycine soja 107, 139 U antigen 112 GP.Hil 118, 119, 120 glycocalyx, components 8 glycophorin B (GPB)-deficient GP.Hop 118, 123-4 glycolipids 1, 9, 13 phenotypes 111–13 GP.Hut 118, 126–7

GPI-linked glycoprotein 502 GYPC gene 410, 411-12, 414 anti-Ge3 419-20 GP.JL 118, 120 Gerbich phenotype 415–16 anti-Jka and -Jkb 328 GP.Joh 118, 127 Leach phenotype 416 anti-Jra 488 GP.Kip 124 Lsa 418 anti-k 285 GP.Mar 131 anti-K 282, 284-5 organisation 412 GP.Mur 118, 120, 123, 124 Yus phenotype 415 anti-LFAs 498 antibodies 125 GYPE gene 103, 143 anti-M 137 biochemistry/molecular genetics promoter 103 anti-MAM 500, 503 anti-Mur 125 124 - 5structural organisation 102 GP.Nob 118, 127 GYP*EBH 131 anti-N 137 GP.Sat 119 GYP*He gene 125 anti-RHAG4 234 GP.Sch 130 GYPHe(NY) gene 113 anti-S and -s 139 GP.Vw 118, 126-7 GYP*Sch 130 anti-U 140 GP.Zan 130-1 anti-Vel 502 GTA 21, 24-5 H antibodies 54-5 anti-Vw 127 anti-Wra 342 cisAB phenotype 43 H antigen 4, 12 overlapping specificity with GTB cisAB phenotype 43 anti-Yta and anti-Ytb 356 41 - 3biosynthesis 12, 19 D evolution 237 structure 24-5 body secretions 19-21 fetal genotyping 5 GTA₁ 29, 30 carbohydrate determinants 14-17 D- pregnant women 206-7 GTA₂ 29, 30 K 282 enzymatic degradation 50-1 GTB 21, 24-5 human tissues 21 low frequency antigens 495 cisAB phenotype 43 in plasma 33 prevention mechanism for ABO 477 B subgroups 38-9, 40 secretion 31-3 Rh antigens 234 overlapping specificity with GTA structure 11-13, 15 haemolytic transfusion reaction (HTR) 41 - 3Type 1 structures 19, 21 structure 24-5 Type 2 structures 19, 21 ABO 52-3 GUTI 428, 430, 432 H blood group, historical aspects anti-AnWj 453-4 11 - 13Gya 376, 377, 378-9 anti-Ata 502 haematological malignancy anti-Bg 513 development/distribution 380 Gy(a-) phenotype 379 CD99 expression 367 anti-Co3 387 GYPA gene 98, 101-3 Rh mosaicism 232, 233 anti-Coa and -Cob anti-D 230 chromosome location see also leukaemia; named leukaemia En(a-) 108 diseases and conditions anti-Dia and -Dib 339 misalignment with GYPB haemoglobin 345-6 anti-Do^a and -Do^b 380 - 1119 haemolytic anaemia anti-Fy3 313 mutations 143 alpha-methyldopa-induced 140 anti-Fy^a 310 non-human primates 143 Tn polyagglutination 518 anti-Fy^b 310-11 promoter 103 VA polyagglutination 520 anti-Gy^a 381 structural organisation 102 see also cold agglutinin disease anti-HLA 513 GYPA mutation assay 140 haemolytic disease of the fetus and anti-Hy 381 GYP(A-B) hybrid gene 108 newborn (HDFN) 3 anti-I 475 GYP(A-B)*Hil 120 ABO antibodies 53 anti-Inb 452 GYPA*Null 107 anti-Ata 502 anti-Jk3 330 GYPB gene 98, 101-3, 143 antibodies to Rh low frequency anti-Jk^a and -Jk^b 328 chromosome location 103 antigens 227-8 anti-JMH 467 En(a-) 108 anti-Co3 387 anti-Jra 488 He association 117 anti-Coa 387 anti-Isb 287 misalignment with GYPA 119 anti-D 182, 184, 230-1, 284-5 anti-k 285 non-human primates 143 peptide immunotherapy 231 anti-K 284 anti-D in women with variant D red anti-Ku 291 promoter 103 cells 206 structural organisation 102 anti-Lan 490, 500 GYPB*Null 112-13 anti-Dia 339 anti-LFAs 498 GYPB(NY) gene 113 anti-Di^b 339 anti-M 137 anti-MAM 503 GYPB-pseudoexon 119, 126, 128 anti-Fy^a and -Fy^b 310

anti-MER2 463	HLA-DRB1 04, anti-Fy 310	H-deficient phenotypes 47
anti-Mur 125	HOFM 496–7	onco-developmental role 474
anti-N 137	H _m phenotype 44 , 46–7	structure 469, 470, 471
anti-P1 166	Hodgkin's lymphoma, anti-I ^T 476	i-active glycolipids 470
anti-PP1P ^k 172–3	HOFM 497, 498	I-active glycolipids 470
anti-S and -s 139	Hop 116 , 118	Iberis amara 138
anti-Sd ^a 507	Hr 210	ICAM-1-4, see intercellular adhesion
anti-T 516–17	hr ^B 210, 216	molecule
anti-U 140	Hr ^B 210, 216 , 219	ICAM4 gene 392, 393
anti-Vel 500, 501–2	hr ^B – phenotype 211	IFC 429–30
anti-Wr ^a 342	hr ^H 214	Ii antigens 470
anti-Yt ^a and -Yt ^b 356		animal species 474
Rh antibodies 231	Hr _o 215, 217, 219, 222	-
	hr ^s 210	biosynthesis 471
Rh enzyme-only antibodies 231–2	hr ^s – phenotype 211	chemistry 471
haemolytic uremic syndrome (HUS)	Hu 134–6	distribution 473–4
173, 516	biochemistry 136	immunodeficiency
Haemophilus influenzae, AnWj as	genetics 135	anti-i 475
receptor 453	serology 135	see also HIV infection
haemopoietic progenitor cell (HPC)	Hübener-Thomsen-Friedenreich	immunoglobulin A (IgA), ABO
transplants, ABO	phenomenon 515–17	antibodies 51, 52
incompatibility 53, 54	Human Genome Organisation Gene	immunoglobulin G (IgG)
HAG 132	Nomenclature Committee	ABO antibodies 51, 52
H-deficient phenotype 43–7, 44, 476	(HGNC), symbols 2, 4	anti-D 229, 230, 231
H-deficient red cells 19-20	human leukocyte antigens (HLA) Class	immunoglobulin M (IgM)
anti-H 54	I antigens 512–13	ABO antibodies 51, 52
I and i antigen expression 47	CD99 expression 367	anti-D 476
He 113, 115 , 117, 125	see also named HLAs	heavy chain variable region 230
Helgeson phenotype 441-2, 444	Hut 115, 126	Rh antibodies 476
Cs ^a 446	HUT11A transcript 325	immunoglobulin MWOO (IgMWOO)
Helicobacter pylori 66	Hy 376, 377 , 379–80	478
Helix pomatia 56	development/distribution 380	immunoglobulin superfamily (IgSF) 8
helminth protoscolices 165	hyaluronan, CD44 binding 452, 459	Lu-gps 260, 261, 271
hemichromes 345–6	hydatid cyst fluid 165, 168	LW glycoprotein 392, 393
HEMPAS 519	Hyde Park polyagglutination 516,	IN1 see In ^a
hereditary elliptocytosis 421	519–20	IN2 see In ^b
see also South-East Asian ovalocytosis	hyperacute rejection 53	IN3 449, 450–1
hereditary nephritis, anti-MER2 463	,,	IN4 449, 450–1
hereditary spherocytosis, Lu-gps 272	i antigen 469–77	In ^a 450
Hg ^a 339, 343 , 343–4	adult i phenotype 472–3	In(a-b-) 452
HI 55, 476	animal species 474	Inab phenotype 428–30, 434
high frequency antigens (HFAs) 5,	biosynthesis 471	intestinal disorders 430
500–3	body fluids 473–4	transient 429
Hil 118, 120, 128	chemistry 471	In ^b 450, 451
histo-blood group antigens 1, 13	disease associations 476–7	In ^a /In ^b polymorphism 450
distribution in body 64, 65	H-deficient phenotype 47	Indian system 449–52
HIV infection	In(Lu) effects 268	antibodies 452
anti-i 475	onco-developmental role 474	antigens 449–52
Duffy system 317	structure 469, 470, 471	<i>In(Lu)</i> effects 268–9, 451–2
P antigens 174	I antigen 469–77	CD44 449–50
	C	
secretor status 67	animal species 474	pregnancy 451
HJK 496–7	anti-HI and anti-Hi 55	see also AnWj
HLA testing 3	biosynthesis 471	infectious mononucleosis 475, 513
HLA-B7 512, 513	body fluids 473, 474	INFI see IN3
HLA-B17 512	chemistry 471	influenza virus 142
HLA-B28 512	disease associations 476–7	INJA see IN4

erythropoiesis 293	K _o	Le ^d 13, 62
expression on megakaryocytes 292	phenotype 285, 290–1	structure 14
extracellular domains 280	Xk protein 294	Le ^x
Xk protein association 294–5	Kp ^a 285–6	CD15 28, 63
Kell protein 280, 280, 293	effect 291	see also Le ^{abx}
Kell system 278, 279 , 280–93	Kp ^b 285–6	Le ^y 28, 63
evolution 293	Kp ^c 286	Leach phenotype 413, 416
function 293	KREP 339, 343–4	lectins 55–7
Gerbich system association	KTIM see KEL30	anti-A 55–6
416–17	KUCI see KEL32	anti-B 56
phenotype	KUHL see KEL37	anti-I 475
acquired depressed 292	Kx antigen 278, 295, 296	anti-M 138–9
null 290–1	Kx system 293–6	anti-N 138–9
transient depressed 292	KYO see KEL31	anti-Sd ^a 505, 506, 507, 519
see also numbered KEL antigens	KYOR see KEL38	cryptantigens 515, 516
KELP see KEL35		En(a–) cell reactions 107
KETI see KEL36	Laburnum alpinum 57	polyagglutination 515, 516, 517,
Kg 496, 497	lactosylceramide 165	518, 519, 520
Kidd system 325–31	LADII 44 , 47	Lepore hybrid glycophorin 119, 123
antibodies 325	Lan 487, 489–90	Le-transferase 26
glycoprotein 325–6	frequency 489	leucocyte adhesion deficiency type II
UT-B red cell urea transporter	LAN1 see Lan	(LADII) 44 , 47
331	Lan- phenotype 490, 491	leucocytes, ABH and Lewis antigen
kidney	Langereis system 487, 489–91	expression 63–4
hereditary nephritis 463	Lan-weak phenotype 489–90	leucopenia, Tn polyagglutination 518
p phenotype 172	<i>le</i> allele 26	leukaemia
urea transporters 331	<i>Le</i> allele 26	i antigen 476–7
see also renal entries	Le gene 26	Tn polyagglutination 519
K/k genotyping 282	frequency 60	see also named leukaemia conditions
K/k polymorphism 281–2	Le ^a 12, 57–9	and diseases
KLF1 gene 267, 268 , 386	ABH non-secretors 26	Lewis antibodies 60–2
mutations 259, 267, 268 , 270	development 59	clinical significance 61
Km 296	expression 15	renal transplantation 61-2
K _{mod} 283–4, 291	frequency 59-60	Lewis antigen 1, 25–6, 27 , 28
KN1 see Kn ^a	plasma 58	biosynthesis 11-13, 26
KN2 see Kn ^b	pregnancy 59	development 59
KN3 see McC ^a	red cells	expression
KN4 see SI1	frequency 59-60	on ectodermal/endodermal/
KN5 see Yk ^a	uptake by 58–9	mesodermal tissues 64
KN6 see McC ^b	secretions 57–8, 60	on leucocytes 63-4
KN7 see SI2	structure 14	on platelets 64
KN8 see SI3	Le^{abx} 62	on tumours 65–6
KN9 see KCAM	Le ^b 12, 57–9	frequency 59-60
Kn ^a 440 , 441, 442	development 59	fucosidosis 68
Kn ^b 440 , 442	expression 15	glycoconjugates 13-14
Knops system 439–46	frequency 60	molecular genetics 26, 27, 28
antibodies 444–5	plasma 58	pregnancy 59
antigens 428, 439, 440 , 440–1,	pregnancy 59	red cells
442–4	red cells	frequency 59-60
expression 444	frequency 60	uptake by 58–9
serological characteristics 444	uptake by 58–9	secretions 57–8, 60
bacterial infections 445–6	secretions 58, 60	structure 11–13, 13–17
CR1 439–42, 445	structure 14	Type 1 structures 16
Helgeson phenotype 441–2, 444	Le ^c 13, 62, 63	Lewis system 57–63
Cs ^a 446	structure 14	historical aspects 11–13
		•

Li 477, 478 Lu_{null} 259, 266–7 sialic acid 104 Li^a 496-7, 497 LURC 266 variants 113-14, 115-16, 116-18 LKE 165, 170-1 Lutheran locus 5, 262 M₁ 134-6 biochemistry/biosynthesis 171–2 Lutheran system 259-72 biochemistry 136 LOCR 218-19, 227 antibodies 264 genetics 135 Lotus tetragonolobus 56, 57 antigens 259, 260 serology 135 low frequency antigens (LFAs) 4, enzyme effects on antigens 266 Maclura aurantiaca 139 495 - 8glycoproteins 259-62 malaria 67 disease associations 272 basigin role 459 antibodies 495-6, 497 clinical significance 498 distribution 271 Cad family resistance 509 CD55 levels 434 frequencies 495, 496 functions 271-2 Lsa 417-18 recombinant antigens 266 CD59 levels 434 LU gene 259 reducing agent effects on antigens CR1 association 445 chromosome location 262 Duffy antigens 315-17 sickle cell disease 272 exon/intron organisation 260, 261 Gerbich antigens 421 terminology 3, 4 glycophorins 141, 142 organisation 261-2 LU1 see Lua LW gene 392 McCa and McCb association 445 LU2 see Lub LW system 184, 391-7 protection with South-East Asian Lu3 267 acquired negative phenotype 394-5 ovalocytosis 346-7 **260**, 265 Lu4 antibodies 395-6 resistance with Fy(a-b-) phenotype **260**, 265 animal 396 Lu5 Lu6 **260**, 263, 264 antigens 391, 392, 393 Sd(a+++) cell resistance 509 see also Plasmodium Lu7 **260**, 263, 265 non-human primates 397 Lu8 **260**, 263, 264 autoantibodies 395-6 malignancy Lu9 **260**, 263, 264 band 3 membrane complex 346 A antigen incompatibility 66 Lu11 260, 263, 265 D antigen relationship 391, 394 B-CAM 272 Lu12 265 development 394 CD99 expression 367 Lu13 265 disease association 396-7 cryptantigens 518-19 expression 394 distal colon 65 Lu14 260, 263, 264 Lu16 265-6 functions 396-7 Ii antigens 474 Lu17 266 glycoprotein 193, 392-3, 393 verotoxins 173 LU18 see Au^a integrins 396-7 Vga 339, 343, 343-4 LU19 see Aub red cell senescence 396-7 see also cancer; haematological Lu20 266 sickle cell disease 272, 397 malignancy; named malignancies transient antibodies 395 Lu21 266 and conditions LU22 see LURC LW5 see LWa MAM 503 LW6 see LWab Lu^a 262-3 MAR 213 Lu(a-b-) 270 LW7 see LWb MARS 132 LWa 391, 393, 394 acquired phenotypes 271 matrix metalloproteinases (MMPs) enzyme/reducing agent effects 394 see Lumod and Lunull Lu^b 262-3 LWab 392, 393-4 matrix-assisted laser desorption/ Lud 477, 478 enzyme/reducing agent effects 394 ionisation time-of-flight Lu-gps 259-62 LW(a-b-) phenotype 393-5 (MALDI TOF) mass LWa/LWb polymorphism 392, 393 disease associations 272 spectrometry 7 LW^b 391, 392, 393 fetal K detection 282 distribution 271 erythropoiesis 271-2 enzyme/reducing agent effects 394 M^c 114, 116 functions 271-2 McC^a 440, 441, 442-3 isoforms 271 M 96, 103-4 malaria association 445 **440**, 442–3 laminin binding capacity 271 amino acid groups 103, 104 malaria association 445 structure 261 frequency 104 Lumbricus terrestris 165 McLeod phenotype 292, 295 gene frequency 104 Lumod 267-71 genotype frequency 105 immune response 296 McLeod syndrome 278, 294, 295 KLF1 mutations 268 inheritance 105 In(Lu) phenotype 267–70, 451, 452 phenotype frequency 104 inheritance/molecular genetics X-linked 270-1, 451, 452 polymorphisms 103-4 295 - 6

MCT1 and MCT4 459 glycophorin A-deficient phenotypes MNS33 see TSEN Me 477, 478 106 - 11MNS34 see MINY Me 117 glycophorins MNS35 see MUT MNS36 see SAT membrane inhibitor of reactive lysis with atypical glycosylation 134-6 (MIRL) see CD59 evolution 142-3 MNS37 see ERIK function 142-3 MNS38 see Osa membrane transporters 7–8 membrane-palmitoylated protein 1 hybrid 119-20, 121-2, 128-9 MNS39 see ENEP (MMP1) 421 as pathogen receptors 141–2 MNS40 see ENEH MER2 269, 461, 462-3 MNS41 see HAG structure 99 GPA amino acid substitutions 132 enzyme effects 462 MNS42 132 MNS43 see MARS quantitative polymorphism 462-3 GP(A-B) variants 120, 121-2, 123 reducing agent effects 462 GP(A-B-A) variants 121-2, 125-8 MNS44 see ENDA MNS45 see ENEV mesoderm, ABH antigen expression GP(B-A) variants 121-2, 129-31 GP(B-A-B) variants 121-2, 123-5 MNS46 see MNTD 64, 65 MNTD 116, 134 metastases, T and Tn cryptantigens GPB-deficient phenotypes 111–13 Mo^a 339, 343, 343-4 519 GYPA mutation assay 140 M^g 113–14, 115 low frequency antigens 132-4 Mollucella laevis 139 M-Hyde Park haemoglobin 519 monocarboxylate transporters (MCT) molecular genetics 98-103 Mi.I see GP.Vw phenotype 96, 98 459 Mi.II see GP.Hut frequency 104-5 monosomy 7 387 Mi.III see GP.Mur MSP1 346 polymorphisms 103-5 Mi.IV see GP.Hop Rh association 140-1 Mta 115, 133 Mi.V see GP.Hil U antigen 111-13 MTP 503 Mi.VI see GP.Bun MNS1 see M multidrug resistance, ABCG2 487, 489 Mi.VII see GP.Nob MNS2 see N Mur 115, 118, 128 Mi.VIII see GP.Joh MNS3 see S MUT 127 Mi.IX see GP.Dane MNS4 see s M^v 115, 133 Mi.X see GP.HF MNS5 see U Mycoplasma pneumoniae Mi.XI see GP.JL MNS6 see He anti-I 469 Mi^a 129 MNS7 see Mia autoanti-I 475 MNS8 see Mo β₂-microglobulin 513 cold agglutinins 475 Milne 496, 497 MNS9 see Vw myelodysplastic syndrome 517, 519 MNS10 see Mur Miltenberger series 117-18 myeloid leukaemia MINY 128 MNS11 see Mg Rh mosaicism 232 MNS12 see Vr Mit 116, 134 see also acute myeloid leukaemia MNS13 see Me mitogen-activated protein kinase (AML) (MAPK) pathway 467 MNS14 see Mta M^k gene 98, 108–9 MNS15 see Sta N 96, 137 biochemistry/molecular genetics MNS16 see Ria amino acid groups 104 MNS17 see Cla 109 frequency 104 M^k phenotype 108–9 MNS18 see Nya gene frequency 104 antibodies produced by 110 MNS19 see Hut genotype frequency 105 M-like alloantibodies 137 MNS20 see Hil inheritance 105 MN antibodies 116-17 MNS21 see M^v phenotype frequency 104 MNS22 see Far MNS antigens 96, 97, 98 polymorphisms 103-4 MNS23 see sD development 142 sialic acid 104 distribution 142 MNS24 see Mit variants 113-14, 115-16, 116-18 enzyme treatment 105-6MNS25 see Dantu 'N' 101 frequency 104-5 MNS26 see Hop N-acetylgalactosamine see GalNAc MNS27 see Nob gene frequency 104-5 necrotising enterocolitis 516–17 inheritance 105 MNS28 see Ena nephritis, hereditary, anti-MER2 MNS29 see ENKT polymorphisms 103-5 463 MNS system 96-143 MNS30 see 'N' neuroacanthocytosis 278 biochemistry 98–103 MNS31 see Or see also McLeod syndrome MNS32 see DANE NFLD 339, 343, 343-4 genotype 96, 98

NH ₃ /NH ₄ ⁺ transporter 235	P1 162, 163–7	PfRh5 459
900 series 5, 500	biochemistry/biosynthesis 165,	Phaseolus vulgaris 139
901 series 500, 501	165–6	Phlomis fructicosa 56
NO channel 236	development 164, 165	PIGA gene mutations 434
Nob 116, 118	distribution 165	pigeon excrement 165
non-Hodgkin's lymphoma, mimicking	frequency 163-4	PIP gene, KEL gene linkage 281
autoanti-Co3 387	inheritance 164	P ^k 162, 163
non-human primates	In(Lu) effects 268, 269	biochemistry/biosynthesis 167-8
ABO genes 24	sources 165	expression 168
DARC homologues 309	strength variation 164	HIV infection protection 174
Fy6 313	structure 164 , 166	phenotype 167
GYPA and GYPB genes 143	P1PK system 162–7	structure 164
Ii antigens 474	P1K1 see P1	verotoxins 173
Kell phenotype 293	P1PK3 see P ^k	Plasmodium falciparum
LW antigen 397	P1PK4 see NOR	ABO 67
RH genes 237	p55 421	band 3 346
Xg ^a 367–8	P antigen 163, 165, 169	basigin 459
NOR 164 , <i>165</i> , 168–9	biochemistry/biosynthesis 164 , <i>165</i> ,	CD55 levels 434
polyagglutination 519	169	CR1 association 445
Norovirus 66–7	pathogenic micro-organism receptors	DAF levels 434
Nou 222	173–4	Duffy binding-like (DBL) family
Ny ^a 115, 133	p phenotype 171–3	421
,,	antibodies 172–3	Gerbich antigens 421
O alleles 22, 23	biochemical effects 172	glycophorins 141, 142, 421
261delG 24	cancer 173	neoantigen exposure in infected red
evolution 23, 24	frequency 172	cells 346
frequency 30, 31	habitual spontaneous abortion 174	Sd(a+++) cell resistance 509
non-deletion 22, 23, 38	inheritance 172	var genes 316
O blood group	molecular genetics 172	Plasmodium falciparum merozoite
anti-A,B serum 52	P synthetase 172	surface protein 1 (MSP1)
bacterial infections 66	PAB1X gene 363, 364	346
malaria 66	pancreatic cancer, ABO phenotype 68	Plasmodium knowlesi 316
O^1 22, 23	papain, MNS antigen effects 106	Plasmodium vivax 306, 313, 315–17
$O^{I\nu}$ 23	PAR1 and PAR2 363	platelets, ABH and Lewis antigen
O^2 22, 23, 38	para-Bombay phenotype 19	expression and incompatibility
O ₂ channel 236	paragloboside 163, 164 , 166, 470	64
O _h phenotype <i>see</i> Bombay phenotype	series 163, 164 , 165	Plexin C1 467
O _h -secretor 44 , 46	PARG 226	pneumococcal infection 517
Ok system 457–9	paroxysmal cold haemoglobinuria	•
antibodies 458	169–70	haemolytic uremic syndrome 516 polyagglutination 168–9, 515–20
antigens 457–8	paroxysmal nocturnal haemoglobinuria (PNH) and PNHIII cells	acquired 515–19
OK1 see Ok ^a OK2 457, 458	CD59 deficiency 433–4	acquired B 517–18 Cad 519
	•	classification 515, 516
OK3 457, 458	DAF (Cromer) deficiency 427, 434 Dombrock 376	
Ok ^a 457, 458		congenital dyserythropoietic anaemia
OKGV see OK2	Emm 502	type II 519
OKVM see OK3	JMH 465	definition 515
Ol ^a 234	PIGA mutations 434	Hyde Park 516 , 519–20
Om 477, 478	Yt 354	inherited 516 , 519–20
Or 116, 134	partial D 195–6, 197–9 , 200	lectins 515, 516, 517, 518, 519,
Os ^a 116, 134	parvovirus B19 173–4	520
osteocarcinoma, CD99 expression	passenger lymphocyte syndrome 53–4	microbial 515–18
367	pegylation 51	non-microbial 518–19
oxygen channel 236	PEL 503	NOR 519
oxygen transport 345	PEPC gene 189	Sd ^a 516 , 519

T 515-17, 518-19 RH4 see c renal transplantation Th 517 autoanti-Jkb 328 RH5 see e Tk 517, 518-19 Duffy mismatched 310 RH6 see ce RH7 see Ce Tn **516**, **517**, 518–19 Lewis antibodies 61–2 Tr 516, 520 renal tubule acidosis, distal 345, 346 RH8 see Cw RH9 see Cx undetermined 516, 520 respiratory gas transport 345 VA 520 reticulosis, autoanti-i 475 RH10 see V polycythemia vera, Lu-gps 272 Réunion O_b phenotype 45 RH11 see Ew RH12 see G polyethylene glycol (PEG), antigen anti-H 54 expression modification 51 Rg 401-2 RH17 see Hr. RH18 see Hr polyglycosylceramide 470 phenotypes 404, 405 polymerase chain reaction (PCR) 7 typing 402 RH19 see hrs r^G gene 212, 218 RH20 see V porphyrin transporter 489, 490-1 Rg1 400 RH21 see CG Pr antigens 111, 477 RH22 see CE Rg2 400 pregnancy Rh antibodies 228-32 RH23 see Dw CR1 expression 445 Indian antigens 451 autoantibodies 232 Rh26 218-19 RH27 see cE Lewis antigens 59 enzyme only 231-2 RH28 see hrH IgM, cold agglutinin activity 476 Sda 506 RH29 see 225 preimplantation genetic diagnosis, K transplant donor-derived 232 RH30 see Goa see also anti-Rh preleukaemic dysmyelopoietic Rh boxes 191, 207 RH31 see hrB syndromes 387 Rh genes Rh32 202, 227, 228 pronase, MNS antigen effects 106 chromosomal assignment 189-90 Rh33 203-4, 227 prostate cancer cloning 187-8 RH34 see Hr^B Duffy 317 non-human primates 237 Rh35 218, 227 CD99 expression 367 Rh system 182, 183, 184–96, 197–9, RH36 see Bea proteases, MNS antigen effects 200-15, 216, 217-33, 234-7 RH37 see Evans RH40 see Tar 105 - 6acquired phenotype changes 232-3 Rh41 211 pseudoautosomal boundary 363, 364 antigens 183 Rh42 227 XGR gene 364, 366 band 3 complex 193, 346 pseudoautosomal region 363 development/distribution 234 RH43 see Crawford RH44 see Nou Pt^a 496-7, 496, 497 enzyme-only antibodies 231-2 RH45 see Riv Ptilota plumosa 56 evolution 236-7 PX2 antigen 164, 165, 171, 173 Fisher's synthesis 184-5 RH46 215, 217 RH47 see Day functional aspects 234-6 Radin see Rd genetic models 184-6 RH48 see IAL RH49 see STEM Raph system 461-4 genotypes 186, 187 antibody 462, 463 Gerbich system association 417 RH50 see FPTT antigen 461-3 RH51 see MAR haplotypes 182, 184, 185, 186, 237 glycoprotein 461-2 historical aspects 184 RH52 see BARC RAPH1 see MER2 HOFM association 497 RH53 see IAHK RASM 496, 497 low frequency antigens 226–8 RH54 see DAK RAZ see KEL27 MNS system association 140-1 RH55 see LOCR mosaics 232-3 RH56 see CENR Rba 339, 343, 343-4 notation 184-6 RH57 see CEST RCCX genetic unit 404 Rd 371, 372, 373-4 phenotypes 186, 187 RH58 see CELO enzyme effects 373 polypeptides 186-94 RH59 see CEAG RH60 see PARG frequency 373, **374** identification/isolation 186 Rea 496, 497 Tippett's two-locus model 185–6 RH61 see ceMO RhAG 192-3, 192, 233-4 receptors 8 Wiener's theory 185 regulator of complement activation see also C; c; D; E; e band 3 complex 193, 345, 346 (RCA) gene cluster 428 RH1 see D cation transport 236 REIT 496, 497 RH2 see C CO₂/O₂/NO channel 235–6 RH3 see E development/distribution 234 renal dialysis, anti-N 137-8

NH ₃ /NH ₄ ⁺ transporter 235	RHCG gene 236	SC2 371, 372 , 372–3
protein function aspects 234-6	RhD polypeptide 186–9, 188, 189,	enzyme effects 373
reduced expression in Rh _{null} and	191	frequency 372–3
Rh _{mod} red cells 225	RHD gene	SC3 371, 372 , 373
RHAG gene 184, 192, 193	cloning 187, 188	SC4 see Rd
evolution 236–7	D– phenotype 194–5	SC5 372 , 374
genomic organisation 190, 192–3	prediction 206	SC6 372 , 374
mutations 193, 223	D variant encoding 194–206	SC7 372 , 374
Rh _{mod} 224–5	evolution 237	SCAN see SC7
Rh _{null} regulator type 223 , 224	exons 190 , <i>191</i>	SCER see SC6
RHAG system 233–4	fetal screening 207	Scianna system 371–4
antigens 233	G reactivity 212	glycoprotein 371–2
RHAG1 see Duclos	genomic organisation 190, 191	SC _{null} phenotype 373
RHAG2 see O1 ^a	genomic rearrangement 190–1,	s ^D 116 , 134
RHAG3 see DSLK	192	Sd ^a 505–6
RHAG4 234	zygosity testing 207	babies 506
Rh-associated glycoprotein see RhAG;	RHD pseudogene ($RHD\psi$) 194–5	biochemistry 507, 508, 508
		body fluids 506
RHAG system	$RHD-CE(2-9)-D_2$ gene 195	•
RhBG 193	RHD-CE-D's gene 195, 208, 209	colon malignancy association 508
RHBG gene 236	Rh-deficiency phenotypes 222–6	509
RHCE gene	Rh-deficiency syndrome 225–6	frequency 505, 506
cloning 187, 188	rheumatoid arthritis 513	gastrointestinal cancer association
evolution 237	Rh _{mod} 223, 224–5, 225–6	508, 509
exons 190, 191	Rh _{null} 184, 222–4, 225–6	inheritance 506
genomic organisation 190, 191	amorph type 222, 223–4	malaria 509
genomic rearrangement 190–1, 192	antibodies in sera 225	polyagglutination 516 , 519
RhCE polypeptide 186, 188, 189, 191	regulator type 223, 224	pregnancy 506
G reactivity 212	Rh-deficiency syndrome 225–6	red cells 507–8
RHCE cE gene, variant alleles 216, 219	Ri ^a 115, 133	Tamm–Horsfall protein association
RHCE*Ce gene,	Riv 222, 227	507
variant alleles 215, 216 , 217–18	R^N 215, 217	tissues 506
RHCE ce gene, variant alleles 216,	R _o ^{Har} 203–4, 217, 219, 227	urine 507
218–19	rotaviruses 67	Sd(a+++) 505–6, 507
encoding epitopes of D 203-4, 219	routine antenatal anti-D prophylaxis	polyagglutination 516, 519
<i>RHCE*ceAG</i> 216 , 219	(RAADP) 230	Sd ^a glycosyltransferase 508
RHCE*ceAR gene 202, 215, 216, 219	Rx 477	Sd ^a -transferase 509
<i>RHCE</i> * <i>ceBE</i> gene 216 , 219		se allele 32
RHCE*ceBI 216 , 219	s antigen	Se allele 32
<i>RHCE*ceEK</i> 216 , 219	frequency 104-5	Se gene 26
RHCE*ceHAR 216 , 219	genotype frequency 105	Se/se alleles 20
RHCE CeJAHK gene 216, 218	inheritance 105	SEC1 pseudogene 20–1
<i>RHCE</i> ⁺ <i>ceJAL</i> gene 216 , 218	polymorphisms 104	SEC23B gene 519
RHCE*CeJAL gene 216, 217	S antigen 96, 98	Secretor gene see FUT2
<i>RHCE</i> * <i>ceLOCR</i> gene 216 , 218–19	frequency 104–5	selectins 28, 47, 63, 64, 65, 68
RHCE*ceMO 216 , 219	genotype frequency 105	Sema7A 465, 466
RHCE*CeNR 216 , 217, 218	GP(A–B) hybrid association 120,	expression 466, 467
RHCE*ceRA gene 216 , 219	123	functions 467
RHCE*CeRN 215, 216 , 217	inheritance 105	SEMA7A gene 465, 466
RHCE*ceRT 216 , 219	polymorphisms 104	semaphorins 465
RHCE*ceSL 216 , 219	Sa 111, 477	senescent red cells
RHCE*CeVA gene 216 , 218	SARA 496 , 497	band 3 345, 346
RHCE*ceVS 216 , 219	SAT 116 , 123	LW 396
RHCE*E gene 209	SC1 371, 372 , 372–3	SERF 428 , 430 , 432
RhCG 193	enzyme effects 373	700 series 4, 495, 496
· ·	,	,

 Se^{w} **20**, 32–3 South-East Asian ovalocytosis 346-7 transfusion-associated lung injury sex chromosomes 359 Di^b depression 338 317 aneuploidy 366-7 transplantation I^T expression 476 Sext 135, 136 spherocytosis, hereditary 272 ABO antigens 53-4 squamous cell carcinoma, B-CAM 272 Shiga toxin 173 hyperacute rejection 53 Shigella dysenteriae 173 SS red cells 272 Lewis antibodies 61–2 SHIN 496-7 SSEA-4 murine stage-specific see also renal transplantation Sl1 440, 441, 443 embryonic antigen 171 trypsin Sl2 440, 443 Sta 130-1, 115 Kell antigen effects 292 Sl3 440, 443 STAR see SC5 MNS antigen effects 105-6 Sia-b1 477, 478 STEM 211, 227 TSEN 123, 128 Sia-l1 477, 478 stomatocytes 226 TSPAN24 see CD151 Sia-lb-1 and -2 477, 478 TSPAN27 see CD82 SW1 339, 343-4 Sw^a 339, 343, 343-4 T-synthase 518, 519 sialic acid glycophorin glycosylated extracellular systemic lupus erythematosus (SLE) tumour-associated carbohydrate domain 142-3 Ch/Rg-null phenotype 406 antigens 65 Plasmodium falciparum invasion of HLA red cell expression 513 tumours red cells 141 ABH antigen expression 64-6 sialidase T activation 515-17 Lewis antigen expression 65-6 turtle dove ovomucoid 165 bacterial 516 T antigen 136 twin chimeras 59 MNS antigen effects 106 structure 15, 517 sialoglycoproteins see glycophorin(s) T cells, CD81 tetraspanin web 367 Tx cryptantigen 517 sialosylparagloboside 164, 165, 171 T polyagglutination 515–17, 518–19 Type 1 H see Led Sd^a phenotype association 508 Tamm-Horsfall protein, Sda association sialyl-Le^a 65, 68 507 U 111-13 cancer diagnosis 58, 65-6 Tar 202, 220, 227 biochemistry 112 Sda expression 509 Tca 428, 430, 431 frequency 113 structure 14 Tc(a-b-) phenotype 431 molecular genetics 112-13 sialyl-Le^x 28, 63, 65, 68 TcaTcb 431 UI^a 287 Sda expression 509 Tcb 428, 431 Ulex europaeus 56, 57 sialyl-Tn 517, 518-19 Tc^c 428, 430 U-like autoantibodies 140 sickle cell disease testicular disorder of sex development UMC 428, 430, 432 anti-Fy5 313 unequal crossing-over 119, 403-4 anti-Jo^a 381 uric acid transporter 489 tetraspanin superfamily (TM4SF) 461, Duffy antigens 317 464 uromodulin 507, 508 Duffy genotyping 314 functions 463 UT-A urea transporter 331 Hr and Hr^B 219 tetraspanin web 367, 463 UT-B red cell urea transporter 331 Lu 272 Ux 140 Th polyagglutination 517 UZ 140 LW 272, 397 ß-thalassaemia minor, CD151 transfusion 211 deficiency 463 Sid 505-9 thrombocytopenia, Tn V 214-15, 227 antibodies 507 polyagglutination 518 VA polyagglutination 520 Tippett's two-locus model 185–6 Vel 500-2 single chain FV (scFv) antibody Tk polyagglutination 517, 518-19 frequency 500, 501 Tm 134-6 fragments 229 Gerbich system association 417, 502 biochemistry/genetics 136 Si 134-6 inheritance 500-1 VEL1 see Vel biochemistry/genetics 136 Tn 136 SLC4A1 gene 336, 506 polyagglutination **516**, **517**, 518–19 VEL2 see ABTI structure 517 venous thromboembolism 68 organisation 338 SLC14A1 gene 325, 326 To^a 496, 497 verotoxins 173 TOU see KEL26 Vg^a 339, 343, 343-4 bladder cancer susceptibility 331 SLC14A2 gene 326 Tr polyagglutination 516, 520 Vibrio cholerae 66, 142, 517 Sm see SC1 Tr^a 339, 343, 343-4 Vicia graminea 138-9 Sophora japonica 107, 139 transfusion see blood transfusion Vicia unijuga 139

viral infections 66-7 Wright antigens see Wra; Wrb non-human primates 367-8 DAF ligand 434 Wu 339, 343, 343-4 site density 361 glycophorins 142 XGR gene 360 P antigen receptors 173-4 X chromosome pseudoautosomal boundary location VLAN see KEL25 inactivation 362-3 364, 366 von Willebrand factor (vWF) CD99 gene 363 regulator locus 366 67 - 8XG gene 363 XIST gene 363 VONG see KEL28 XK gene 296 XK gene 278, 294 Vr 115, 132 pseudoautosomal region 363 erythropoiesis 295 VS 214-15, 227 sex chromosome aneuploidy 366-7 mutations 295 Vw 115, 118, 126-7 X-linkage 359 X-chromosome inactivation 296 XX males 359, 366 Xk protein 278, 280, 293-4 WARR 339, 343, 343-4 X-Y interchange 366 Kell glycoprotein association 294-5 Wb 411, 417 XG gene 359, 363-5 X-linkage 359 Wda 339, 343, 343-4 XS2 259, 270 frequency 359, 360 weak D 195-6, 198, 202-3 inheritance 365 XX males 359, 366 trans effect of RHCE*C 205 location 360 X-Y interchange 366 weak Di^b 338 non-human primates 367-8 weak E 209-10 organisation 364, 364 YG gene 362 weak K 283-4 Xg system 359-68 Yka 440, 441, 443-4 WESa 431-2 Yt system 354-6, 355 CD99 polymorphism association WESb 431-2 365 - 6Yta 354, 355-6 development/distribution 356 WH 404, 405 function 367 Wiener's theory 185 polymorphism 365 enzyme effects 355-6 frequency 355 Wiskott-Aldrich syndrome, autoanti-i pseudoautosomal region 363 inheritance 355 475 sex chromosome aneuploidy 366-7 Wka 287-8 X-chromosome inactivation 362–3 molecular basis 355 Wra 336, 337, 340-1 XX males 359, 366 reducing agent effects 355-6 see also CD99 enzyme effects 341 Yt(a-b-) phenotype 354 XG1 see Xga transient 356 frequency 341 Yta/Ytb polymorphism 355 reducing agent effects 341 XG2 see CD99 Sd(a+++) gene linkage 506 Xga 359, 360-1, 366 Ytb 354, 355-6 Wr(a-b-) 336, 342 biochemistry 360-1 development/distribution 356 Wra/Wrb dimorphism 341 enzyme effects 355-6 development 361 Wr^b 336, **337**, 340–1 dosage 361 frequency 355 enzyme effects 360 inheritance 355 band 3 in expression 341-2 depression in South-East Asian in fibroblasts 361 reducing agent effects 355-6 ovalocytosis 347 frequency 359 Yus phenotype 410, 414-15 enzyme effects 341 inheritance 359-60, 361 reducing agent effects 341 ZENA 432 loss 361