This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Chameleon Systems UMTS Rake Receiver Mapping Analysis

27-April-2000 Revision 0.41

Dan Pugh & Mark Rollins
Chameleon Systems, Inc.
dan@chameleonsystems.com
rollins@chameleonsystems.com

Chameleon Systems Confidential 디밀드의용로그나 - 크리크카디디

Rake Receiver Requirements and Assumptions

- Requirements
- Implement 32 users Pilot Processing and Data Despreading
- Strive for target of 32 users in CS2112 (125 MHz)
- Exceed target of 75 users in CS2112X (250 MHz)
- Assumptions
- Maximum of 12 antennas
- Maximum of 8 fingers per user
- Average of 4 fingers per user
- Spreading factors of 4 to 256 on DPDCH
- Dual-port RAM at the input; Input order may be specified
- ARC supplies scrambling code seeds
- The Chameleon Processor is running at exactly 32 x the chip rate
- An external Phase-locked-loop generates the 32 x (122.88) processor clock and is locked to the 3.84 MHz chip clock CHAMELEON

Rake Processor Functional Block Diagram

CHAMELEON

Rake Receiver **Description of Pipelined Operation**

- Store a window of 128 chip samples sampled T_c/2 apart
- In each grouping of 256 consecutive 122.88 MHz clocks: At EVERY 122.88 MHz clock period:
- Read 8 consecutive chip samples at the correct multi-path delay offset
- Align the eight samples to the Despreading Code (Gold Code)
- Multiply the 8 data samples by the 8 appropriate Despreading Codes
- Sum the eight despread chips into one sample (two samples if SF=4)
- Accumulate the sum-of-eight chips into a single despread symbol
- Send the despread Pilot Symbols to the ARC processor
- Calculate Channel Estimation Weights
- Multiply TFCI, FBI, TPC bits by Channel Estimation Weights
- Sum up to six fingers to form each soft bit (symbol)

Fundamental Scheduling Analysis

Parallel Implementation:

- Each circuit processes 8 chips per clock
- Throughput of 256 fingers per circuit
- Populate device with single circuit
- Achieves 128 pilot data fingers (32 users) @ 122.88 MHz
- Achieves 128 data fingers (same 32 users) @ 122.88 MHz
- Achieves 512 fingers (64 users) @ 245.96 MHz
- Utilizes single centralized control unit
- Fits within a single Chameleon device

Parallel implementation is more efficient

than multiple instantiations of individual units

Chameleon Rake Processor High-Level Partitioning Overview

SINGLE CIRCUIT

SINGLE XERNEL

HAMELEON

General Timing and Control

- The Rake Processor is synchronized to the chip-rate clock with an external Phase-Locked-Loop (PLL)
- The Rake Processor clock runs at exactly 32 times the chip-rate clock (32 x 3.84 MHz = 122.88 MHz)
- All processes in the Rake Processor are synchronized to the Master Chip Counter (MCC)
- The MCC counts modulo 1,228,800 (32 clocks/chip x 15 slots x 2560 chips/slot) and is reset by the external Frame Sync signal
- Various bits in the MCC are used to generate the Antenna Sample Buffer Write Address

Master Chip Counter Block Diagram

The External_Frame_Sync signal clears the modulo 1,228,800 counter

Master Chip Counter Implementation

Master Chip Counter Resource Requirements

- Implementation of:
- 32 Users @ 125 MHz
- 48 Users @ 187.5 MHz
- 64 Users @ 250 MHz
- 2 DPUs
- ◆ 0 LSMs

Antenna Sample Butter Requirements and Assumptions

Requirements

- Provide memory in the Antenna Buffer so that a128-chip (256 halfchips) range of samples can be stored for all 12 antennas
- be merged into a single memory This allows the Finger Alignment Buffer and the Antenna Buffer to

Assumptions

- The samples must be organized such that any eight samples T_c apart from one antenna may be read simultaneously from the buffer
- from one to six sectors Each Rake Receiver circuit (Chameleon chip) processor services
- six antennas per sector of coverage the primary sector and the two adjacent sectors, for a minimum of Each Sector must process the primary and diversity antennas for
- Support of all 12 antennas is required

Antenna Sample Buffer General Description

- There are two partitions of the Antenna Sample Buffer
- The first partition contains the on-time antenna data
- The second partition contains the on-time antenna data that is delayed by approximately one frame
- The value of the delay is one frame plus the time required to compute the Spreading Factor from the TFCI bits
- The delayed data is required because the TFCI bits are in the same frame as the data that it controls

Antenna Sample Buffer General Description

- may be accessed from any of the 12 antennas The Antenna Sample Buffer is used to store a large enough window of data that all six fingers
- Data for each finger is read from the Antenna Buffer at the offset specified by the Path Searcher
- The Antenna Buffer is organized so that ANY eight from the buffer in a single clock cycle consecutive samples T_c apart may be accessed

Antenna Sample Buffer Multipath Support Capabilities

- Specifications:
- Chip-rate = 3.84 MHz (260.4 ns, wavelength = 78.125 m)
- Maximum distance of mobile user to base station = 7000 m
- The 7000 m user radius corresponds 0-89.6 chips of line-ofsight delay
- The 128-chip Antenna Sample Buffer provides an additional 38.4-chip buffer to support multipath components
- This corresponds to support for multipath components with up to 10,000 ns (3000 m) delay for all 12 antennas
- If the Antenna Sample Buffer is retasked to support only 8 support may be increased to 26,664 ns (8000 m) antennas (two adjacent sectors) the maximum multipath

Antenna Sample Buffer Multipath Support Capabilities

- Given a 5000m user radius (3G TS25.942)
- A 5000 m user radius corresponds 64 chips of line-of-sight delay
- The 128-chip Antenna Sample Buffer provides an additional 64-chip buffer to support multipath components
- This corresponds to 10,000m of support for a combination of the user radius plus multipath delay with all 12 antennas
- The Antenna Sample Buffer may be retasked to support:
- 8 antennas (two sectors) for 15,000m of user radius/multipath support
- 6 antennas (one sector) for 20,000m of user radius/multipath support

Antenna San Functional Block Diagram

6

Antenna Sample Buffer Memory Map for Bank 0

ADDRESS ANTBUF[31:0]

0x5F0 Antenna 11, Sa	0x5F4 Antenna 11, Sa	0x5F8 Antenna 11, Sai	0x5FC Antenna 11, Sa
Antenna 11, Sample 112, HalfChip 0	Antenna 11, Sample 112, HalfChip 1	Antenna 11, Sample 120, HalfChip 0	Antenna 11, Sample 120, HalfChip 1

•••

0x070 A	0x074 A	0x078 A	0x07C A	0x080	0x084	0x088	0x08C	0x090	0x094 /
0, Samı	Antenna 0, Sample 112, HalfChip 1	Antenna 0, Sample 120, HalfChip 0	ntenna 0, Sample 120, HalfChip 1	Antenna 1, Sample 0, HalfChip 0	Antenna 1, Sample 0, HalfChip 1	Antenna 1, Sample 8, HalfChip 0	Antenna 1, Sample 8, HalfChip 1	Antenna 1, Sample 16, HalfChip 0	Antenna 1, Sample 16, HalfChip 1

•

Antenna 0, Sample 0, HalfChip 0	0x000
Antenna 0, Sample 0, HalfChip 1	0x004
Antenna 0, Sample 8, HalfChip 0	0x008
Antenna 0, Sample 8, HalfChip 1	0x00C
Antenna 0, Sample 16, HalfChip 0	0x010
Antenna 0, Sample 16, HalfChip 1	0x014

ANTENNA SAMPLE BUFFER WORD CONTENTS

ANTBUF[31:24]	ANTBUF[23:16]	ANTBUF[15:8]	ANTBUF[7:0]
Non-Delayed Q[7:0]	Delayed Q[7:0]	Non-Delayed I[7:0]	Delayed I[7:0]

Note:

Sample n HalfChip 0 is used to denote the sample at time n Sample n HalfChip 1 is used to denote the sample at time n+1/2

External Antenna Sample Buffer **Bus Organization**

Antenna Sample Buffer Data Buffer Implementation

Antenna Sample Buffer Write Address Bit Definitions

- The Modulo 1,228,00 Master Chip Counter (MCC) bit fields may Sample Buffer Write Address (ASBWA) be defined with respect to the input data samples to the Antenna
- samples MCC bits that have been reordered to properly store the input The Antenna Sample Buffer Write Address Generator bits are **ANTENNA SAMPLE BUFFER**

BANK ADDRESS

DESCRIPTION
ChipCount[6]
ChipCount[5]
ChipCount[4]
ChipCount[3]
ChipCount[2]
ChipCount[1]
ChipCount[0]
HalfChip
Antenna[3]
Antenna[2]
Antenna[1]
Antenna[0]

											_	i
ASBWA[0]	ASBWA[1]	ASBWA[2]	ASBWA[3]	ASBWA[4]	ASBWA[5]	ASBWA[6]	ASBWA[7]	ASBWA[8]	ASBWA[9]	ASBWA[10]	ASBWA BIT	(for each of the eight banks)
0	0	HalfChip	ChipCount[3]	ChipCount[4]	ChipCount[5]	ChipCount[6]	Antenna[0]	Antenna[1]	Antenna[2]	Antenna[3]	DESCRIPTION	e eight banks)

Note:
ChipCount[2:0] is used to select one of eight physical memory banks

The one-frame-delayed
Samples are stored in bytes 0
and 2 of the Antenna Sample
Buffer, while the non-delayed
samples are stored in bytes 1
and 3 of the Antenna Sample
Buffer

Each Bank requires 3 LSMs

Antenna Sample Buffer Write Address Generation

- If we look at the fields of the Write Address Generator we see that:
- ◆CASE A: When MCC[11:0]=0xFFF
- ASBWA[10:7] = Antenna[3:0] must be cleared
- ASBWA[6:3] = ChipCount[6:3] must be cleared
- ASBWA[2] = HalfChip must be cleared
- ◆CASE B: When MCC[7:0]=0xFF
- ASBWA[10:7] = Antenna[3:0] must be cleared (by incrementing by one)
- ASBWA[2] = HalfChip must be cleared ASBWA[6:3] = ChipCount[6:3] increments by one
- ◆CASE C: When MCC[4:0]=0x1F
- ASBWA[10:7] = Antenna[3:0] increments by one
- ASBWA[2] = HalfChip must be cleared
- ◆CASE D: When MCC[4:0]=0x0F
- ASBWA[10:7] = Antenna[3:0] increments by one
- ASBWA[2] = HalfChip must be set
- ◆CASE E: Otherwise
- ASBWA[10:7] = Antenna[3:0] must be incremented by one

- To implement the above five cases, let us define two registers:
- \bullet REGA = 128 4 = 124 = 0x7C
- \bullet REGB = 128 = 0x80
- CASE A: This state occurs when the entire Antenna Sample so that the buffer may start again at the beginning address Buffer has been written and the address field must be cleared
- MCC[11:0]=0xFFF
- ASBWA[10:7] = Antenna[3:0] must be cleared
- ASBWA[6:3] = ChipCount[6:3] must be cleared
- ASBWA[2] = HalfChip must be cleared
- ALUB = shifterconst=0x0
- ALU = PASSB

- CASE B: This state occurs when both a chip and HalfChip have been written to each of the eight banks and the address field must point back to the first bank
- MCC[7:0]=0xFF
- ASBWA[10:7] = Antenna[3:0] increments by one
- ASBWA[6:3] = ChipCount[6:3] increments by one
- ◆ ASBWA[2] = HalfChip must be cleared
- Since we know ChipCount[6:3] \neq 0xF, incrementing ChipCount[6:3] will not generate a carry into Antenna[3:0]
- Since we know HalfChip=1, we can increment HalfChip and it will toggle HalfChip AND generate a carry to increment ChipCount[6:3]
- * ALUA = ALUOUTREG
- ALUB = 128 + 4 = REGB OR shifterconst=0x4
- ALU = ALUA + ALUB

- CASE C: This state occurs when after a sample (HalfChip=1) the address field must point to the next memory bank has been written to a single bank for all twelve antennas and
- MCC[4:0]=0x1F
- ASBWA[10:7] = Antenna[3:0] increments by one
- ASBWA[2] = HalfChip must be cleared
- → ALUA = 128 4 = REGA
- → ALUB = ALUOUTREG

ALU = ALUA + ALUB

- CASE D: This state occurs when after a sample (HalfChip=0) within the same memory bank the address field must point to the next half-chip address has been written to a single bank for all twelve antennas and
- MCC[4:0]=0x0F
- ASBWA[10:7] = Antenna[3:0] increments by one
- ASBWA[2] = HalfChip must be set
- ◆ ALUA = ALUOUTREG
- ALUB = 128 + 4 = REGB OR shifterconst=0x4
- → ALU = ALUA + ALUB

- CASE E: This state occurs when the conditions for any of the cases A through D are not met and the address field must point to the next antenna sample
- ASBWA[10:7] = Antenna[3:0] must be incremented by one
- ALUA = ALUOUTREG
- → ALUB = 128 = REGB
- → ALU = ALUA + ALUB
- Note that for both CASE B and CASE D, the instructions to the DPU are identical
- We therefore only have four unique states for the DPU

- Let us define the following four states
- State 00: DPU instruction for CASE A
- State 01: DPU instruction for CASE B and CASE D
- State 10: DPU instruction for CASE C
- State 11: DPU instruction for CASE E
- when CASE A is not active, and X represents don't care Let us use the notation of A when case A is true and /A
- We also must assign priority to the five cases since the priority is base on the MCC[11:0] higher order bits having higher priority
- Priority 1: A, CASE B=X, C=X, D=X E=X
- State 00 State 01

State 10

Priority 2: (!A & B), C=X, D=X E=X Priority 3: (!A & !B & C & !D) Priority 3: (!A & !B & !C & D)

- State 01
- Note CASE C and CASE D have equal priority
- Priority 4: !A & !B & !C & !D

- State 11
- Note that the encoding !A & !B & C & D is not physically possible

 Let Pn represent the priority for priority with level n We can fill in the priority assignments for the Karnaugh map entries for the sixteen possibilities for P0, P1, P2, and P3

PRIORITY ASSIGNMENTS

D=1 C=1

If we fill in the DPU state tables with the state assignments

of the previous page:

Priority 1: A, CASE B=X, C=X, D=X E=X

Priority 2: (!A & B), C=X, D=X E=X

Priority 3: (!A & !B & C & !D)

Priority 3: (!A & !B & !C & D)

Note CASE C and CASE D have equal priority

Priority 4: !A & !B & !C & !D

Note that the encoding !A & !B & C & D is not physically possible

STATE[0]

STATE[1]

A=1		B=1	
10	1	2	00
0	0	0	1
0	0	0	0
0	0	0	X
0	0	0	_

A=1		B=1	•	
10		2	00	
0	0	1	1	8
0	0	1	1	TU
0	0	1	X	
0	0	1	0	

STATE[0] = (IA & B) | (IB & IC)STATE[1] = !A & !B & !D

Note that we do not need to compute variable D

and their inverses, without using excessive product terms, register the result we decode a count one before the desired count and In order to be able to decode the conditions A, B, C, and D

REGA: MCC[11:0] = 0xFFE = MCC[11] & MCC[10] & MCC[9] & MCC[8] & MCC[7] & MCC[6] & MCC[5] & MCC[4] & MCC[3] & MCC[2] & MCC[1] & !MCC[0]

REGB: MCC[7:0] = 0xFE & MCC[2] & MCC[1] & !MCC[0] = MCC[7] & MCC[6] & MCC[5] & MCC[4] & MCC[3]

REGC: MCC[4:0] = 0x1E = MCC[4] & MCC[3] & MCC[2] & MCC[1] & !MCC[0]

REGD: MCC[4:0] = 0x0E= IMCC[4] & MCC[3] & MCC[2] & MCC[1] & IMCC[0]

Antenna Sample Buffer Bank Write Enable Generation

- all twelve antennas Each of the eight banks in the Antenna Sample Buffer contains the samples eight chips apart for
- The control must generate a Antenna Sample the n banks Buffer Write Enable (ASBWE_n) signal for each of
- The timing for the ASBWE_n signals is based upon the Master Chip Counter bits MCC[7:0]
- Note that the MCC counter implicitly counts twelve enable signals are only enabled during the first through values for sixteen antennas, but the write

Antenna Sample Buffer Bank Write Enable Generation

- ASBWE_n is active when MCC[7:5] = ChipCount[2:0] Antenna[3:0] addresses antennas 0 to 11: matches the addressed memory bank and MCC[3:0] =
- $ASBWE_0 = IMCC[7] \& IMCC[6] \& IMCC[5] \& I(MCC[3] \& MCC[2])$ $ASBWE_1 = IMCC[7] \& IMCC[6] \& MCC[5] \& I(MCC[3] \& MCC[2])$
- $ASBWE_2 = IMCC[7] \& MCC[6] \& IMCC[5] \& I(MCC[3] \& MCC[2])$
- $ASBWE_3 = IMCC[7] \& MCC[6] \& MCC[5] \& I(MCC[3] \& MCC[2])$
- $ASBWE_5 = MCC[7] \& IMCC[6] \& MCC[5] \& I(MCC[3] \& MCC[2])$ $ASBWE_4 = MCC[7] \& iMCC[6] \& iMCC[5] \& i(MCC[3] \& MCC[2])$
- $ASBWE_6 = MCC[7] \& MCC[6] \& MCC[5] \& MCC[3] \& MCC[2]$
- $ASBWE_7 = MCC[7] \& MCC[6] \& MCC[5] \& !(MCC[3] \& MCC[2])$

Antenna Sample Buffer Read Address Generation (1 of 2)

- Compute the Antenna Sample Buffer Base Read Address (ASBRA) for the Antenna Sample Buffer as follows:
- The Base Read Address (BRA) is the fixed offset between the Buffer Read Address (ASRA) for zero finger chip offset Antenna Sample Buffer Write Address and the Antenna Sample
- For each of the 256 fingers:
- Add the Finger Chip Offset (FCO_f) to the BRA
- Merge the Finger Antenna Assignment (ANT,) bits to the ASBRA
- The Antenna Sample Buffer Read Address (ASBA) is formed by shifting the ASBRA left two bit positions

Antenna Sample Buffer Read Address Generation (2 of 2)

- Compute the Base Read Address (BRA):
- BRA[4:0] =ASBRA[4:0]= MCC[11:8]:0 = ((MCC[20:0] >> 7) && 0x1E)
- The Base Read Address is latched to remain constant for 256 clocks
- An offset can be added if necessary to adjust timing
- For each of the f fingers (0-255)
- Read the antenna assignment (ANT_f) for the current finger
- Read the Finger Chip Offset (FCO_f) for the current finger
- Add the Finger Chip Offset to the Base Address Register

 $ASBRA[4:0] = (BRA[4:0] + ((FCO_{f}[6:0] >> 2) && 0x1E) + (FCO_{f}[6:0] && 0x01)$

- The Antenna Assignment ANT,[3:0] is placed in bits ASBRA[8:5]
- $ASBRA[8:0] = (ANT_{f}[3:0] << 5):ASBRA[4:0]$
- The Antenna Sample Buffer Read Address (ASRA) is formed by shifting ASBRA left two bit positions
- ASRA[10:0] = ASBRA[8:0] << 2

Antenna Sample Buffer Base Read Address Generator Implementation

Antenna Sample Buffer Read Address Offset Circuit

- The Antenna Sample Buffer Base Base Read Address, (BRA) is on a multiple of eight sample boundary
- If the Finger Chip Offset for a finger, FCO_f, is not on a consecutive samples are not output on the memory multiple-of-eight sample boundary, then the correct eight
- To output the correct words, some of the addresses the next full sample into the buffer must not select the word specified by the ASBRA, but
- FCO_f[3:1] are used to determine which of the eight read the next eighth sample into the buffer have their Bankn ReadWordPlus8 asserted in order to Antenna Sample Buffer address generators need to

Antenna Sample Buffer Read Address Offset Circuit

- The ASBRA calculation requires that the Finger Chip Offset for a given finger, FCO_f, is read out of the FCO memory before it is needed for the Read Address Offset
- FCO_f[0] is needed one cycle after it is read from the FCO placed in the same tile as the FCO memory, because FCO_ℓ[0] is delayed one cycle through the Control State Memory memory, so the DPU using FCO₅[0] as a control input must be
- FCO_f[3:1] is needed by the Read Address Offset Circuit two cycles after it is read from the FCO memory
- An additional delay of one cycle for FCO,[3:1] is achieved if and the following equations are used: FCO_f[3:1] is routed through Broadcast Bit horizontal long lines

Antenna Sample Buffer Bankn_ReadWordPlus8 Generation

Case FCOf[3:1]

Bank0_ReadWordPlus8 = 1 Bank1_ReadWordPlus8 = 1 Bank2_ReadWordPlus8 = 1 Bank3_ReadWordPlus8 = 0 Bank4_ReadWordPlus8 = 0 Bank5_ReadWordPlus8 = 0 Bank6_ReadWordPlus8 = 0 Bank6_ReadWordPlus8 = 0	Bank0_ReadWordPlus8 = 1 Bank1_ReadWordPlus8 = 1 Bank2_ReadWordPlus8 = 0 Bank3_ReadWordPlus8 = 0 Bank4_ReadWordPlus8 = 0 Bank5_ReadWordPlus8 = 0 Bank6_ReadWordPlus8 = 0 Bank6_ReadWordPlus8 = 0 Bank7_ReadWordPlus8 = 0	Bank0_ReadWordPlus8 = 1 Bank1_ReadWordPlus8 = 0 Bank2_ReadWordPlus8 = 0 Bank3_ReadWordPlus8 = 0 Bank4_ReadWordPlus8 = 0 Bank5_ReadWordPlus8 = 0 Bank6_ReadWordPlus8 = 0 Bank6_ReadWordPlus8 = 0	BankO_ReadWordPlus8 = 0 Bank1_ReadWordPlus8 = 0 Bank2_ReadWordPlus8 = 0 Bank3_ReadWordPlus8 = 0 Bank4_ReadWordPlus8 = 0 Bank4_ReadWordPlus8 = 0 Bank5_ReadWordPlus8 = 0 Bank6_ReadWordPlus8 = 0
7: Bank0_ReadWordPlus8 = 1 Bank1_ReadWordPlus8 = 1 Bank2_ReadWordPlus8 = 1 Bank3_ReadWordPlus8 = 1 Bank4_ReadWordPlus8 = 1 Bank5_ReadWordPlus8 = 1 Bank6_ReadWordPlus8 = 1 Bank6_ReadWordPlus8 = 1	6: Bank0_ReadWordPlus8 = 1 Bank1_ReadWordPlus8 = 1 Bank2_ReadWordPlus8 = 1 Bank3_ReadWordPlus8 = 1 Bank4_ReadWordPlus8 = 1 Bank5_ReadWordPlus8 = 1 Bank6_ReadWordPlus8 = 0 Bank7_ReadWordPlus8 = 0	5: Bank0_ReadWordPlus8 = 1 Bank1_ReadWordPlus8 = 1 Bank2_ReadWordPlus8 = 1 Bank4_ReadWordPlus8 = 1 Bank4_ReadWordPlus8 = 1 Bank5_ReadWordPlus8 = 0 Bank6_ReadWordPlus8 = 0 Bank7_ReadWordPlus8 = 0	4: Bank0_ReadWordPlus8 = 1 Bank1_ReadWordPlus8 = 1 Bank2_ReadWordPlus8 = 1 Bank3_ReadWordPlus8 = 1 Bank4_ReadWordPlus8 = 0 Bank5_ReadWordPlus8 = 0 Bank6_ReadWordPlus8 = 0 Bank7_ReadWordPlus8 = 0

Antenna Sample Buffer Resource Requirements

Implementation of:

32 Users @ 125 MHz

48 Users @ 187.5 MHz

64 Users @ 250 MHz

- ◆ 22 DPUs
- ◆ 26 LSMs

UMTS Gold Code Generator Requirements & Assumptions

Requirements

- Needs to generate 16 bits per clock (8I, 8Q)
- 32 Users at 125 MHz (The generator supports 64 users @125 MHz)
- Easily scale to 64 users @ 250 MHz with single engine
- 32-64 user expansion is only a function of memory

Assumptions

- The same Gold Code output may be shared by the different fingers of a single channel if the fingers are aligned
- Each Gold Code is unique per user

UMTS Gold Code Generator as defined by 3G TS 25.213

HAMELEON

Exploit Code Properties to Eliminate Masks

Linear Feedback Shift Register (LFSR) Initial Values

- Each LFSR is reset to its initial value at the beginning of the frame
- The seed for LFSRA is assigned by the Network Controlle
- The seed for LFSRB is 0x1FFFFFF for all users
- ARC at the beginning of the call shifted by 16,777,232 cycles, and is computed by the The seed for LFSRC is the contents of LFSRA's seed
- The seed for LFSRD is 0x1FFFFFF shifted by 16,777,232 cycles for all users and is static
- The seed values for all LFSRs are stored in LSMs

Lookup Table Determines the Next 8 Bits In a Single Cycle

CHAMELEON

Gold Code Generator Output Computations

C_{long1,n} = LSFRA[7:0] XOR LSFRB[7:0] Let us define LFSRC'[i] = LSFRC[2[i/2]]

 $C_{long,n}(i) = C_{long1,n}(i)(1 + j(-1)^i(c_{long2},n(2\lfloor i/2 \rfloor))$ (from 3G TS25.213)

Multiplying bits by +1/-1 is the same as XOR for 0s and 1s.

In binary representation, the Scrambling Code Clong, becomes: XORing by 0xAA can be used in place of the (-1)i term

 $C_{long,n}[7:0] = C_{long1,n}[7:0](1 + j(0xAA) XOR C_{long2,n}[7:0])$ $C_{long,n}[7:0] = LFSRA[7:0] XOR LFSRB[7:0]$

+j(LFSRA[7:0] XOR LFSRB[7:0] XOR 0xAA XOR LFSRC'[7:0] XOR LFSRD'[7:0]

 $C_{long,n}[7:0] = SCI[7:0] + jSCQ[7:0]$

Let us define LFSRD"[7:0] = 0xAA XOR LFSRD'[7:0], then:

 $C_{long,n}[7:0] = (LFSRA[7:0] XOR LFSRB[7:0])$

+ j(LFSRA[7:0] XOR LFSRB[7:0] XOR LFSRC'[7:0] XOR LFSRD''[7:0])

We use a lookup table to compute LFSRC'[7:0] and LFSRD''[7:0])

Gold Code Generator Functional Block Diagram

IN 32 MSBs OF MEMORY Initial Values Generated **INITIAL VALUE STORED**

Memory Layout Gold Code Generator

Gold Code Initial Value Memory User LFSR State Memory Address Contents

0x1C 0x18 0x14 0x10 0x0C 0x0C 0x0C 0x08		0xFC 0xF8 0xF4 0xF0 0xEC 0xEC 0xE8 0xE8
User 1 LFSRD User 1 LFSRB User 1 LFSRA User 1 LFSRA User 0 LFSRD User 0 LFSRC User 0 LFSRB User 0 LFSRB	⊚ ⊚ ⊚	User 63 LFSRD User 63 LFSRB User 63 LFSRA User 63 LFSRA User 62 LFSRD User 62 LFSRC User 62 LFSRB User 62 LFSRB User 62 LFSRA

Address Contents

0x1C 0x18 0x14 0x10 0x0C 0x0C 0x08 0x04		0xFC 0xF8 0xF4 0xF0 0xEC 0xEC 0xE8 0xE4 0xE0
User 1 LFSRD User 1 LFSRC User 1 LFSRB User 1 LFSRA User 0 LFSRD User 0 LFSRC User 0 LFSRB User 0 LFSRB	● ● ◎	User 63 LFSRD User 63 LFSRB User 63 LFSRA User 63 LFSRD User 62 LFSRD User 62 LFSRC User 62 LFSRB User 62 LFSRB

User Code Buffer Memory Address Contents

0x04 0x02 0x00		0x104 0x102 0x100 0xFE 0x0C		0x1FE 0x1FC 0x1FA
User 2 PING User 1 PING User 0 PING	● ● ●	User 2 PONG User 1 PONG User 0 PONG User 63 PING User 62 PING	⊕ ⊕ ⊕	User 63 PONG User 62 PONG User 61 PONG

Gold Code Generator Lookup[6:0] Definitions

OUT[0] = IN[0]	OUT[0] = IN[0]
OUT[1] = /IN[0]	OUT[1] = IN[1]
OUT[2] = IN[2]	OUT[2] = IN[2]
OUT[3] = /IN[2]	OUT[3] = IN[3]
OUT[4] = IN[3] XOR IN[2] XOR IN[1] XOR IN[0]	OUT[4] = IN[3] XOR IN[2] XOR IN[1] XOR IN[0]
OUT[5] = $IN[4]$ XOR $IN[3]$ XOR $IN[2]$ XOR $IN[1]$	OUT[5] = IN[4] XOR IN[3] XOR IN[2] XOR IN[1]
OUT[6] = IN[5] XOR IN[4] XOR IN[3] XOR IN[2]	OUT[6] = IN[5] XOR IN[4] XOR IN[3] XOR IN[2]
OUT[7] = $IN[6]$ XOR $IN[5]$ XOR $IN[4]$ XOR $IN[3]$	OUT[7] = $IN[6] \times IN[5] \times IN[4] \times IN[3]$
At Address 4n+3: OUT[7:0] = Next StateD[3:0]:LFSRD"[3:0]	At Address 4n+1: OUT[7:0] = Next StateB[3:0]:PASSB[3:0]
OUT[0] = IN[0]	OUT[0] = IN[0]
OUT[1] = IN[0]	OUT[1] = IN[1]
OUT[2] = IN[2]	OUT[2] = IN[2]
OUT[3] = IN[2]	OUT[3] = IN[3]
OUT[4] = IN[3] XOR IN[0]	OUT[4] = IN[3] XOR IN[0]
OUT[5] = IN[4] XOR IN[1]	OUT[5] = IN[4] XOR IN[1]
OUT[6] = IN[5] XOR IN[2]	OUT[6] = IN[5] XOR IN[2]
OUT[7] = IN[6] XOR IN[3]	OUT[7] = IN[6] XOR IN[3]
At Address 4n+2: OUT[7:0] = Next StateC[3:0]:LFSRC'[3:0]	At Address 4n+0: OUT[7:0] = Next StateA[3:0]:PASSA[3:0]

Gold Code Generator Lookup[10:4] Definitions

	At Address 4n+3: OUT[7:0] = IN"[7:4]:Next StateD[7:4]	At Address 4n+1: OUTI7:01 = INI7:41: Next StateBI7:41
	OUT[4] = IN[3] XOR IN[0]	OUT[0] = IN[3] XOR IN[0]
	OUT[5] = IN[4] XOR IN[1]	OUT[1] = IN[4] XOR IN[1]
	OUT[6] = IN[5] XOR IN[2]	OUT[2] = IN[5] XOR IN[2]
	OUT[7] = IN[6] XOR IN[3]	OUT[3] = IN[6] XOR IN[3]
	OUT[0] = IN[0]	OUT[4] = IN[0]
	OUT[1] = IN[0]	OUT[5] = IN[1]
-	OUT[2] = IN[2]	OUT[6] = IN[2]
	OUT[3] = IN[2]	OUT[7] = IN[3]
	At Address 4n+2: OUT[7:0] = IN'[7:4]:Next StateC[7:4]	At Address 4n+0: OUT[7:0] = IN[7:4]:Next StateA[7:4]

Gold Code Control Implementation

If MCC[7:0]= TBD :: Address=0
ALUB = shifterconstant = 0
ALU = PASSB
else :: Address = Address + 4
ALUB = BREG
ALU = ADD

Add User Chip Offset to Master Chip Counter

Gold Code Generator Implementation

Lookup[6:0] Address Generation Generator Implementation

Control needs to be able to select one of four lookup

Each lookup table is selected by two control inputs Select[1:0]:

Select[1:0] resides in the bottom two bits of the address

If Select[1:0]=0x0 then Address[1:0]=0x0 ALU=PASSB

If Select[1:0]=0x1 then Output[7:4]= NextStateA[20:17], Output[3:0]=LFSRA[3:0]

Output[7:4]= NextStateB[20:17], Output[3:0]=LFSRB[3:0] f Select[1:0]=0x2 then

Address[1:0]=0x1 ALU=INC (B+1)

ALU=ADD (A + B)

Output[7:4]= NextStateC[20:17], Output[3:0]=LFSRC'[3:0] Address[1:0]=0x2

f Select[1:0]=0x3 then

ALU=ADDCNT (A + B + 1, force Cin by control)

Address[1:0]=0x3

Output[7:4]= NextStateD[20:17], Output[3:0]=LFSRD"[3:0]

Select[1:0] is a function of the Master Chip Counter bits MCC[1:0]

Gold Code Generator Implementation Lookup[10:4] Address Generation DPU

Control needs to be able to select one of four lookup tables in the RAM.

Each lookup table is selected by two control inputs Select[1:0]: Select[1:0] resides in the bottom two bits of the address If Select[1:0]=0x0 then

ALU=PASSB Address[1:0]=0x0

Output[7:4]= LFSRA[7:4], Output[3:0]= NextStateA[24:21]

If Select[1:0]=0x1 then

ALU=INC (B+1)

Address[1:0]=0x1 Output[7:4]= I FSF

Output[7:4]= LFSRB[7:4], Output[3:0]= NextStateB[24:21]

If Select[1:0]=0x2 then

ALU=ADD (A + B)

Address[1:0]=0x2

Output[7:4]= LFSRC'[7:4], Output[3:0]= NextStateC[24:21]

If Select[1:0]=0x3 then

ALU=ADDCNT (A + B + 1, force Cin by control)

Address[1:0]=0x3

Output[7:4]= LFSRD"[7:4], Output[3:0]= NextStateD[24:21]

Select[1:0] is a function of the Master Chip Counter bits MCC[1:0]

Code Generator Implementation XOR DPU

(-		9
XOR Output Register	XOR DPU ALU Instruction	LFSR Input
A^B^C^D	PASSB	Α
>	XOR	В
A^B	XOR	C
A^B^C	XOR	0
A^B^C A^B^C^D	PASSB	A
A	XOR	В
A^B	XOR	C.
A^B^C	XOR	D
A^B^C^D	PASSB	Α
A	XOR	В

Where:

A = LFSRA[7:0]
B = LFSRB[7:0]
C = LFSRC'[7:0]
D = LFSRD'[7:0]
^ = XOR

LFSRx[7:0] ————————————————————————————————————
XOR[7:0]

This DPU is used to perform an XOR operation

Control needs to generate two states for the DPU: If PASS
;Pass the input to the output register
ALUB=LFSRx[7:0] (from previous stage)
ALU = PASSB

OUTREGEN = 1

Else

;XOR the input with the output register

ALUA = OUTREG

ALUB=LFSRx[7:0] (from previous stage)

ALU = XOR

OUTREGEN = 1

Chameleon Systems Confidential

Gold Code Generator Implementation 8:16 Demultiplex and Merge UCOSF DPU

the LSFR data as well as merge the UCOSF[15:0] field into the data stream before it is written into the User Code Buffer RAM This DPU is used to perform a 8:16 demultiplexing operation on

Control needs to generate three states for the DPU: If MERGE_

ALU = OR ALUB=(DESPREADI[7:0] from previous stage)<<24

;and place DESPREADI[7:0] in bits [31:24] ALUA=UCOSF[15:0] && (Mask==0xFFFF)

;Place UCOSF[15:0] in bits [15:0]

ALUA = OUTREG

OUTREGEN = 1

If MERGE_Q

;Merge DESPREADQ[7:0] into bit positions [23:16]

ALUB =((DESPREADQ[7:0] from previous stage)<<16) && Mask==0x00FF0000

OUTREGEN = 1 ALU = OR

OUTREGEN = 0

Gold Code Generator Implementation of Downshift Pipeline Delay with Multipliers

Two DPUs may be saved by performing the equivalent operations with two multipliers

Gold Code Generator Timing

Mod256_Count U0A U0B U0C U0B U1B U1B <t< th=""><th></th><th>Ø</th><th><u>O</u></th><th><u>O</u></th><th>≘</th><th><u>_</u></th><th><u></u></th><th>ூ</th><th><u>_</u></th><th><u>_</u></th><th></th><th><u>②</u></th></t<>		Ø	<u>O</u>	<u>O</u>	≘	<u>_</u>	<u></u>	ூ	<u>_</u>	<u>_</u>		<u>②</u>
		User LFSR State Memory Input	Form NextState LFSRx[24:0]	Merge NextState Fields	Form NextState LFSRx[16:0]	User to Finger Buffer Input	Merge Scrambling Codes	XOR LFSRx[7:0] Fields	Merge LFSRx[7:0] Fields	Gold Code Lookup Output	User LFSR State Output	Mod256_Count
		U61A			U62A	U601Q			U61D	U62A	U63A	UOA
		U61B	U61D	U62A	U62B			U61Q	U62A	U62B	U63B	BOU
U1A U1B U1C U1D U2A U2B U2C U2D U3A U3B U3C U3B U3B U3C U4A U4B U4C U0A U0B U0B U1B U1B U1C U1D U2A U2B U2C U2B U3A U3B U3C U63A U63B U63C U63D U0A U0B U0C U0D U1A U1B U1C U1D U2A U2B U3A U3B U3C U63A U63B U63C U63D U0A U0B U0C U0D U1A U1B U1C U1D U2A U2B U62D U63D U63D U63D U63D U0B U0C U0D U1A U1B U1C U1D U1A U1D U2A U2B U62A U63B U63C U63D U0A U0B U0C U0B U1A U1B U1C U1D U2A		U61C	U62A	U62B	U62C		U61IQ		U62B		U63C	UOC
U1B U1C U1D U2A U2B U2C U2D U3A U3B U3C U3B U4A U4B U4C U63B U63C U63D U1A U1B U1C U1D U1A U1B U1C U1B U1C U3B U3C U63B U63C U63D U6A U6B U0C U0D U1A U1B U1C U1D U2A U2B U63A U63B U63C U63D U6A U6B U0C U0D U1A U1B U1C U1D U2A U2B U63A U63B U63C U6A U0B U0C U0D U1A U1B U1C U1D U2A U2B U63B U63C U63B U63C U63B U63C U63B U63C U63B U63C U63B		U61D	U62B	U62C	U62D			U62I	U62C	U62D	U63D	O0D
		U62A	U62C	U62D	U63A	U61IQ			U62D	U63A	UQA	U1A
U1C U1D U2A U2B U2C U2D U3A U3B U3C U3B U4A U4B U4C U0C U0D U1A U1B U1C U1D U2A U2B U2C U2D U3A U3B U3C U63C U63D U0A U0B U0C U0D U1A U1B U1C U1D U2A U2B U63B U63C U63D U0A U0B U0C U0D U1A U1B U1C U1D U2A U2B U62IQ U63D U63Q U63IQ U0 U0 U1A U1B U1C U1D U2A U2B U62IQ U63Q U63Q U63IQ U6 U1A U1B U1C U1Q		U62B	U62D	U63A	U63B			U62Q	U63A	U63B	800	U1B
U2A U2B U2C U2D U3A U3B U3C U3D U4A U4B U4C U1A U1B U1C U1D U2A U2B U2C U2D U3A U3B U3C U0A U0B U1C U1D U1A U1B U1C U1D U2A U2B U3C U0A U0B U0C U0D U1A U1B U1C U1D U2A U2B U2C U63D U0A U0B U0C U0D U1A U1B U1C U1D U2A U2B U63D U0A U0B U1A U1B U1C U1D U2A U2B U63C U63D U0B U1A U1B U1C U1D U2A U2B U63C U63D U0B U0B U1A U1B U1C U1D U2A U2B U63A U63B U63D U6B U6B U6B		U62C	U63A	U63B	U63C		U62IQ		U63B	U63C	Uoc	U1C
U2A U2B U2C U2D U3A U3B U3C U3B U4A U4B U4C U1A U1B U1C U1D U2A U2B U2C U2D U3A U3B U3C U0A U0B U1C U1B U1C U1B U1C U1D U2A U2B U3C U63D U0A U0B U1A U1B U1C U1D U2A U2B U2C U63D U0A U0B U1A U1B U1C U1D U1A U1B U1C U1D U2A U2B U63D U0B U1A U1B U1C U1D U1A U1D U1A U1B U1C U1D U2A U2B U63D U0A U0B U1A U1B U1C U1D U1B U1C		U62D	U63B	U63C	U63D			U63I	U63C	U63D	GBD	U1D
U2C U2D U3A U3B U3C U3D U4A U4B U4C U1C U1D U2A U2B U2C U2D U3A U3B U3C U0C U0D U1A U1B U1C U1D U2A U2B U2C U0B U0C U0D U1A U1B U1C U1D U2A U2B U0B U0C U0D U1A U1B U1C U1D U1D U2A U2B U0B U0B U1A U1B U1C U1D U2A U2B U2C U1D		U63A	U63C	U63D	UOA	U621Q			U63D	UOA	U1A	
U2D U3A U3B U3C U3D U4A U4B U4C U1D U2A U2B U2C U2D U3A U3B U3C U0D U1A U1B U1C U1D U2A U2B U2C U0D U1A U1B U1C U1D U1D U2A U2B U0I U0D U1A U1B U1C U1D U1A U1D U0D U1A U1B U1C U1D U2A U2B U0D U1A U1B U1C U1D U2A U2B U0D U1A U1B U1C U1D U2A U2B U0B U0C U0B U1B U1C U1B U1C U63D U0A U0B U1B U1C U1B U1C		U63B	U63D	UOA	BOU			U63Q	UOA	BOU	U1B	U2B
120			UOA	BOU	00C		U63IQ		BOU	00C	U1C	U2C
U3B U3C U3D U4A U4B U4C U2B U2C U2D U3A U3B U3C U1B U1C U1D U2A U2B U2C U1A U1B U1C U1D U2A U2B U0A U1B U1C U1D U1A U1D U1B U1C U1D U2A U2B U1B U1C U1D U2A U2B U0B U1A U1B U1C U1B U2A U0B U1A U1B U1C U1B U2A		U63D	BOU	00C	aou			LOI.	UOC	00D	U1D	U2D
U3C U3D U4A U4B U4C U2C U2D U3A U3B U3C U1C U1D U2A U2B U2C U1B U1C U1D U2A U2B U0IQ U1 U1Q U1Q U1Q U1C U1D U2A U2B U2C U1A U1B U1C U1D U2A U2B U1A U1B U1C U1B U1C U1B U1C U0C U0D U1A U1B U1C U1C U1C		UOA	00C	agu	U1A	U63IQ			OOD	U1A	U2A	U3A
U3D U4A U4B U4C U2D U3A U3B U3C U1D U2A U2B U2C U11 U1D U1Q U1Q U1D U2A U2B U1Q U1D U2A U2B U2C U1B U1C U1B U2A U1B U1B U1C U1B U1C		800	GBO	U1A	U1B			υoΩ	U1A	U1B	U2B	υзв
U4A U4B U4C U3A U3B U3C U2A U2B U2C U1D U2A U2B U0Q U1Q U1Q U1D U2B U2C U1D U2A U2B U1A U1B U1C U1A U1B U1C		U0C	U1A	U1B	U1C		DOID		U1B	U1C	U2C	U3C
U4B U4C U3B U3C U2B U2C U1Q U1Q U2B U2C U2B U2C U2B U2C U2B U2A U1B U1C		G G	U1B	U1C	U1D			U11	U1C	U1D	U2D	U3D
U4B U4C U3B U3C U2B U2C U1Q U1Q U2B U2C U2B U2C U2B U2C U2B U2A U1B U1C		U1A	U1C	U1D	U2A	UOIQ			U1D	U2A	U3A	U4A
	,	U1B	U1D	U2A	U2B			υ1Q	U2A	U2B	U3B	U4B
			\Box	U2B	U2C		U1IQ			U2C	U3C	
			U2B	U2C				U2I				

Gold Code Data Format:
Gold Code Output[15:0] =GOLDI[7:0]:GOLDQ[7:0]

Gold Code Generator UCOSF Output Timing

-	₪	₪	<u></u>			
8:16 Demux Output	UCOSF[15:0]	Gold Code 8-BIT XOR	GOLD_MUX_SEL	REG_UCC_EQUAL_0	UCC[12:0], UCC_EQUAL_0	UCOSF[15:0]
		U61B	U63	×	×	8
U61			U63	×	8	8
	U62	U62A	U63	8	8	U62
U62 temp			8	S	×	U62
	- 4	U62B	S	S	×	7
U62		П	8	8	Z	2
	U63	U63A	8	5	5	U63
U63 temp			5	٦	×	U63
		U63B	7	č	×	U2
U63			₹.	5	22	25
	S	UQĀ	٦	U2	L 2	S
temp			\ \ \ \ \ \ \	U2	×	G
		800	L2	L 2	×	U3
S			U2	L 2	C3	S
	<u> </u>	U1A	۶ S	uз	U3	7
U1 temp			S	U3	×	Z
		U1B	ಽ	U3	×	U4
3			ಒ	L3	Ç4	U4
	U2	U2A	డ	4	4	U2
U2 temp			42	4	×	U2

Gold Code Generator Resource Requirements

- 32 User Implementation @ 125 MHz
- ▶ 14 DPUs
- ◆ 8 LSMs
- 2 Multipliers
- 64 User Implementation @ 125 MHz
- 14 DPUs
- ◆ 10 LSMs
- ◆ 2 Multipliers
- 128 User Implementation @ 250 MHz
- 16 DPUs
- 12 LSMs
- 2 Multipliers

Channel Code Generator / Multiplier Requirements and Assumptions

Requirements

- Provide a User to Finger Interface
- Convert between <u>User-based</u> Gold Code and <u>Finger-based</u> Chip despreading
- Assumptions (from 3G TS25.213 Specification)
- DPCCH $c_c = c_{ch,256,0} = 1, 1, 1, 1, ...$ (all ones)
- Single DPDCH $c_{d,1} = c_{ch,SF,k}$ where k=SF/4
- + $C_{ch,4,1} = 1, 1, -1, -1, ...$
- + $c_{ch,8,2}$ = 1, 1, -1, -1, ...
- + $c_{ch,16,4} = 1, 1, -1, -1, ...$
- If more than one DPDCH_n SF=4, $c_{d,n} = c_{ch,4,k}$
- + k=1 if n∈{1,2}
- + k=3 if n∈{3,4}
- + k=2 if n∈{5,6}

Channel Code Generator / Multiplier Functional Block Diagram

Channel Code Generator / Multiplier Implementation

Channel Code Generator / Multiplier Resource Requirements

Implementation of:

32 Users @ 125 MHz

48 Users @ 187.5 MHz

64 Users @ 250 MHz

- ◆ 4 DPUs
- 2 LSMs
- Note that the Gold Code Output Buffer LSM resources are counted in the Gold Code Generator circuit

Chip Descrambler Requirements and Assumptions

Requirements

- Include the Adder Tree Input multiplexer
- Descramble 8 chips per clock
- Process 256 fingers @ 125 MHz
- Process 512 fingers @ 250 MHz

Assumptions

- I must be able to read 8 consecutive samples (T_c apart) per antenna clock from the Antenna Sample Buffer from any one
- An 8:1 Multiplexer is needed to align the input data to an even SF boundary point
- All fingers with SF=4 will require 2 consecutive finger to the output of the Adder Tree in two clocks assignments so that two sums of four chips may be routed

Chip Descrambler Functional Description

- specified by the Path Searcher Read sixteen consecutive T_c/2 samples out of the Antenna Buffer corresponding to one finger, at the offset
- Mask out the unwanted half-chip samples
- Align the remaining eight samples (32 x 8 Barrel Shifter) with the Descrambling Code (Gold Code)
- Sign-extend the 8-bit data samples to 16 bits
- Multiply the eight aligned samples with the appropriate Despreading Codes

Chip Descrambler Functional Description

CHAMELEON

Chip Descrambler Block Diagram

Chip Descrambler Input Alignment Implementation

Outputs to Conjugate Unit

Shifter Control for Each Cell: DelaySel_F=0: <<0 DelaySel_F=1: <<8

Input Multiplexer Control:
ALIGN_f[i] = Bank[(i + Select[1:0])mod 8]

Jescrampiei Multiplier Implementation

else ALUA[31:0]=IN[31:0],ALUB[15:0]=IN[31:16],ALUB[31:16]=IN[15:0]
ALU=PASSB
Output to Swap/Conjugate Unit

ALU=SUB16

Chip Descrambler Data Organization

Since the DPUs can only perform a SWAP or a Complex Conjugate, the I and Q inputs are assumed to be preswapped at the input to the Chip Descrambler circuit.

- 10°. 10°.	7 % _n l 10:0]	טיתוי.ט]	ביחן יסיסו	מסבוי ווירר ססיי סוסי הסטקוסיים
DO [7:0]	DO [15.8]	DI [7:0]	DI [15:0]	ADDER TREE OUTPUTS: ADD_[31:0]
DQ,[7:0]	DQ,[15:8]	DI,[7:0]	DI _n [15:0]	CHIP MULTIPLIER OUTPUTS: CMULT _F [31:0]
0x00	DI[7:0]	0x00	DQ[7:0]	NPUT ALIGNMENT OUTPUTS: ALIGN _F [31:0]
DelayedDl _n [7:0]	DI _n [7:0]	DelayedDQ _n [7:0]	DQ _n [7:0]	SAMPLE BUFFER OUTPUTS: ANTBUF[31:0]
SAMPLE[7:0]	3:16] SAMPLE[15:8]	SAMPLE[23:16]	SAMPLE[31:24] SAMPLE[2:	

Where n is the sample n and n+ 1/2 is the next half-chip sample out of the Antenna Sample Buffer

Chip Descrambler Control Implementation

Control Input: Scrambling Code Input $SCl_m[7:0]$, $SCQ_m[7:0]$ for User m

CI_[i] SCQ_[i] OUTI_[i] OutQ_[i] 0	_	U _k lr.vj	-Du _k [/.0]	•	-
SCQ_[i] OUTI_[ii] O DQ_[7:0] 1 DI_[7:0] O -DI_[7:0]		0.750	70.7		•
SCQ,[i] OUTI,,[i] 0 DQ,[7:0] 1 DI,[7:0]		-DQ,[7:0]	-DI,[7:0]	0	_
] SCQ,[i] OUTI,,[i] OUTI,,[i]		DQ,[7:0]	DI _k [7:0]	_	0
SCO,[i] OUTI,,[i]		-DI _k [7:0]	DQ,[7:0]	0	0
		OutQ _m [i]	[i] _" [TUO	SCQ_[i]	SCI _n [i]

Data Inputs:
Eight Samples DI_[[7:0]
for k = 0 to 7

Chip Descrambler Resource Requirements

Implementation of:

32 Users @ 125 MHz 48 Users @ 187.5 MHz 64 Users @ 250 MHz

- ◆ 24 DPUs
- ◆ 0 LSMs

Chip Adder Tree Requirements and Assumptions

- Requirements
- Add 8 chips per clock
- Process 256 fingers @ 125 MHz
- Process 512 fingers @ 250 MHz

Assumptions

- Inputs have been aligned on an even 8-chip boundary by the shifter in the Chip Descrambler circuit
- All fingers with SF=4 will require 2 consecutive finger assignments so that two sums of four chips may be routed to the output of the Adder Tree in two clocks
- Finger pairs allocated for SF=4 require that the first finger SF=0 is assigned SF=4 and the second finger is assigned

Chip Adder Tree Functional Block Diagram

Chip Adder Tree Implementation

CMULT_[7]

Output to Chip Integrator

Chip Adder Tree Control Implementation

We need delayed versions of the Spreading Factor (SF) to control the Adder Tree

Chip Adder Tree Control Timing

Fn = Data for Finger n is valid

			ر برد ا	ראבן	بالانكا	ستعصا	ראד						
SFEQ4G=Reg decode of SFEQ4F	Final Stage ALU Control Inputs	Final Stage DPU CSR Inputs	SFEQ4F=Reg decode of SFEQ4E	SFEQ4E=Reg decode of SFEQ4D	SFEQ4D=Reg decode of SFEQ4C	SFEQ4C=Reg decode of SFEQ4B	SFEQ4B=Reg decode of SFEQ4A	SFEQ4A=Reg. Decode of SF=4	Adder Tree Final Stage Inputs	Descrambler CMULT Output	Descrambler ALIGN Output	UCB[2:0]=SF[2:0] valid in PLA	SF RAM Outputs
F248	F248	F249	F249	F250	F251	F252	F253	F254	F248	F252	F254	F255	P
F249	F249	F250	F250	F251	F252	F253	F254	F255	F249	F253	F255	FO	T
F250	F250	F251	F251	F252	F253	F254	F255	FO	F250	F254	77	끄	F2
F251	F251	F252	F252	F253	F254	F255	FO	F1	F251	F255	F1	F2	-3
F252	F252	F253	F253	F254	F255	FO	F1	F2	F252	B	F2	F3	F4
F253	F253	F254	F254	F255	FO	F1	F2	F3	F253	끄	F3	F4	F5
F254	F254	F255	F255	Б	F1	F2	F3	F4	F254	F2	F4	F5	Б
F255	F255	FO	Fo	77	F2	F3	F4	F5	F255	F3	F5	F6	F7
FO	FO	F1	F1	F2	F3	F4	F5	F6	FO	F4	F6	F7	F8
포	끄	F2	F2	F3	F4	F5	F6	F7	F1	F5	F7	F8	F9
F2	F2	- 3	F3	F4	F5	F6	F7	F8	F2	F6	F8	F9	F10
F3	73	F 4	F4	F5	F6	F7	æ	F9	F3	F7	F9	F10	==
F4	F4	F5	F5	F6	F7	F8	F9	F10	F4	FB	F10	F11	F12
F5	F5	F6	F6	F7	F8	F9	F10	F11	F5	F9	F11	F12	F13
F6	F6	F7	F7	F8	F9	F10	F11	F12	F6	F10	F12	F13	F14
F7	F7.	F8	F8	F9	F10	F11	F12	F13	F7	F11	F13	F14	F15
F8	F8	F9	F9	F10	F11	F12	F13	F14	F8	F12	F14	F15	F16
F9	F9	F10	F10	F11	F12	F13	F14	F15	F9	F13	F15	F16	F17
F10	F10	F11	F11	F12	F13	F14	F15	F16	F10	F14	F16	F17	F18
F11	F11	F12	F12	F13	F14	F15	F16	F17	F11	F15	F17	F18	F19

Chip Adder Tree Resource Requirements

Implementation of:

32 Users @ 125 MHz

48 Users @ 187.5 MHz

64 Users @ 250 MHz

- 7 DPUs
- 0 LSMs

Chameleon Systems Confidential

Chip integrator Requirements and Assumptions

- Requirements
- Sum SF (Spreading Factor) partial sums into a single sum of SF
- Prepare Data that is to be sent to the Channel Estimator in the ARC
- Assumptions
- ◆ Average SF = 128
- 256 chips input rate per 256 clocks @ 125 MHz

Chip Integrator Theory of Operation

- Read one complex sum from Chip Adder Tree every clock
- The LSB position of the Q component of the accumulated sum will be used to hold a valid bit for the backend circuits
- The LSB of the sum with SF=4 will have this LSB "robbed" without a noticeable effect on the result
- The accumulated sums with SF=4-128 will have their fullprecision results shifted up one bit position
- For data with SF=4-128, shift input data up one bit position, for data with SF=256, pass data straight through
- Input data has already been despread by 8 chips (4 chips for fingers with SF=4)
- inputs) have been added together Sum input data with partial sum until SF chips (SF/8

Chip Integrator Theory of Operation

- If the Chip Integrator input has SF=4-128 shift the input data up one bit position and set bits 0 and 16 to zero
- If the Chip Integrator input is the last 8-chip sample in a into Chip Integrator Memory and set the valid bit (bit 0) set of SF/8 chips, add it to the partial sum and place it
- If the Chip Integrator input is the first 8-chip sample in a set of SF/8 chips, place it into the Chip Integrator Memory and forward the previous despread sum

Chip Integrator Functional Block Diagram

 $DESPREAD_{F}[31:0] = DESPREADI_{F}[14:0]:0:DESPREADQ_{F}[14:0]:VALID$

Chip Integrator Datapath Implementation

Chameleon Systems Confidential

Chip Integrator Control Implementation (1/2)

```
First In Frame FIF =
Spreading Factor Equals 256 SF256 = SF[2:0]==7
                                                                                                                                                                                                                                                    Last In Frame LIF =
                                                          + (SF[2:0]==7 && UCC[7:3]==0x1F)
                                                                                    + (SF[2:0]==6 && UCC[6:3]== 0xF)
                                                                                                                + (SF[2:0]==5 && UCC[5:3]== 0x7
                                                                                                                                          + (SF[2:0]==4 && UCC[4:3]== 0x3
                                                                                                                                                                    + (SF[2:0]==3 && UCC[3]== 0x1)
                                                                                                                                                                                               + SF[2:0]==2
                                                                                                                                                                                                                         + SF[2:0]==1
                                                                                                                                                                                                                                                                                                          + (SF[2:0]==7 && UCC[7:3]==0x00) ;Spreading Factor = 256
                                                                                                                                                                                                                                                                                                                                     + (SF[2:0]==6 && UCC[6:3]== 0x0)
                                                                                                                                                                                                                                                                                                                                                                 + (SF[2:0]==5 && UCC[5:3]== 0x0)
                                                                                                                                                                                                                                                                                                                                                                                           + (SF[2:0]==4 && UCC[4:3]== 0x0)
                                                                                                                                                                                                                                                                                                                                                                                                                     + (SF[2:0]==3 && UCC[3]== 0x0)
                                                                                                                                                                                                                                                                                                                                                                                                                                                + SF[2:0]==2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          + SF[2:0]==1
                                                                                                                                                                                                                                                   SF[2:0]==0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    SF[2:0]==0
                                                      ;Spreading Factor = 256
                                                                                                                                                                                                                                                                                                                                    ;Spreading Factor = 128
                                                                                                                                                                                                                                                                                                                                                              ;Spreading Factor = 64
                                                                                                                                                                                                                                                                                                                                                                                        ;Spreading Factor = 32
;Spreading Factor = 256
                                                                                                            ;Spreading Factor = 64
                                                                                                                                      ;Spreading Factor = 32
                                                                                  ;Spreading Factor = 128
                                                                                                                                                                ;Spreading Factor = 16
                                                                                                                                                                                                                                                                                                                                                                                                                  ;Spreading Factor = 16
                                                                                                                                                                                           ;Spreading Factor = 8
                                                                                                                                                                                                                                                ;Spreading Factor = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ;Spreading Factor = 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Spreading Factor = 0
                                                                                                                                                                                                                      Spreading Factor = 4
                                                                                                                                                                                                                                                                                                                                                                                                                                            Spreading Factor = 8
```


Chip Integrator Control Implementation (1/2)

CASE (SF256:FIF:LIF)

000: ;Add 8-chip input to memory contents

ALUA= AINPUT && Mask=0xFFFEFFFE

ALUB= (BINPUT << 1) &&& Mask=0xFFFEFFFE

ALU= ALUA + ALUB

;Add 8-chip input to Chip Integrator Memory contents and set VALID bit

ALUA= AINPUT && Mask=0xFFFEFFFE

ALUB= (BINPUT << 1) &&& Mask=0xFFFFFFFE

ALU= ALUA + ALUB + 1 ;Set VALID bit

;Store 8-chip input into Chip Integrator Memory and forward previously despread sum

ALUA= AINPUT && Mask=0xFFFEFFFE

ALUB= (BINPUT << 1) &&& Mask=0xFFFFFFF

ALU= PASSB

011: ;Add 8-chip input to Chip Integrator Memory contents, set VALID bit,

;and forward previously despread sum

ALUB= (BINPUT << 1) &&& Mask=0xFFFEFFFE ALUA= AINPUT && Mask=0xFFFEFFFE

ALU= ALUA + ALUB + 1 ;Set VALID bit

Chip Integrator Control Implementation (2/2)

CASE (SF256:FIF:LIF) (CONTINUED)

100: ;Add 8-chip input to memory contents

ALUA= AINPUT

ALUB= BINPUT

ALU= ALUA + ALUB

;Add 8-chip input to Chip Integrator Memory contents and set VALID bit

ALUA= AINPUT && Mask=0xFFFFFFFE

ALUB= BINPUT &&& Mask=0xFFFEFFFE

ALU= ALUA + ALUB + 1 ;Set VALID bit

;Store 8-chip input into Chip Integrator Memory and forward previously despread sum

ALUA= AINPUT

ALUB= BINPUT

ALU= PASSB

;THIS INPUT COMBINATION IS NOT POSSIBLE

ARBITRARILY ASSIGN THE SAME COMMAND AS CASE 110;

ALUA= AINPUT

ALUB= BINPUT

ALU= PASSB

Chip Integrator Control Timing

Fn = Data for Finger n is valid

SEPLICE RAMMOLIQUIUS		_	_					_		_						
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F	Integrate/Dump ALU Inputs	Integrate/Dump CSR Inputs	Integrate/Dump Output Reg Val	DataValid Output Register Valid	DataValid ALU Inputs	DataValid CSR Inputs	INTE= Reg decode of INTD	INTD= Reg decode of INTC	INTC= Reg decode of INTB	INTB= Reg decode of INTA	INTA=Reg Decode of SF/UCC	Final Stage	Descrambler CMULT Output	Descrambler ALIGN Output	1 1	SF/UCC RAM Outputs
F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F9 F10 F11 F12 F13 F14 F15 F16 F17 F10 F11 F12 F13 F14 F15 F16 F17 F18 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F9 F10 <td>F249</td> <td>F250</td> <td>F249</td> <td>F249</td> <td>F250</td> <td>F251</td> <td>F250</td> <td>-</td> <td>F252</td> <td>F253</td> <td>F254</td> <td>F249</td> <td></td> <td>F254</td> <td>F255</td> <td>FO</td>	F249	F250	F249	F249	F250	F251	F250	-	F252	F253	F254	F249		F254	F255	FO
F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F25 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F255 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F7 F8 F9 F10 F11 F12 F1	F250	F251	F250	F250	F251	F252	F251	F252	F253	-	F255	F250		F255	FO	22
F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F10 F11 F12 F13 F14 F15 F16 F17 F18 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15	F251	F252	F251	F251	F252	F253	F252	F253	F254	F255	FO	F251	U62B	FO	. F1	F2
F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F7 F18 F19 F10 F11	F252	F253	F252	F252	F253	F254	F253	F254	F255	Б	F1	F252	F255	F1	F2	F3
F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F10 F11 F12 F13 F14 F15 F16 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F2 F3 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F7 <td< td=""><td>F253</td><td>F254</td><td>F253</td><td>F253</td><td>F254</td><td>F255</td><td>F254</td><td>F255</td><td>ТО</td><td>7</td><td>F2</td><td>F253</td><td>FO</td><td>F2</td><td>F3</td><td>F4</td></td<>	F253	F254	F253	F253	F254	F255	F254	F255	ТО	7	F2	F253	FO	F2	F3	F4
F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F6 F7	F254	F255	F254	F254	F255	FO	F255	FO	F1	F2	F3		F	F3	F4	F5
F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F1 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F7 F8 F9 F10	F255	P	F255	F255	F0	7	B	F1	F2	F3	F4	F255	F2	F4	F5	F6
8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 8 F9 F10 F11 F12 F13 F14 F15 F16 F17 8 F9 F10 F11 F12 F13 F14 F15 F16 8 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 8 F9 F10 F11 F12 F13 F14 F15 F16 8 F9 F10 F11 F12 F13 F14 F15 F16 8 F9 F10 F11 F12 F13 F14 F15 F16 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F7 F8	FO	F1	FO	FO	F1	F2	F1	F2	F3	F4	F5	FO	F3	F5	F6	F7
F10 F11 F12 F13 F14 F15 F16 F17 F18 8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 8 F9 F10 F11 F12 F13 F14 F15 F16 F8 F9 F10 F11 F12 F13 F14 F15 F16 F8 F9 F10 F11 F12 F13 F14 F15 F16 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F4 F5	=	F2	F1	F2	F2	F3	F2	F3	F4	F5	F6	F1	F4	F6	F7	F8
0 F11 F12 F13 F14 F15 F16 F17 F18 9 F10 F11 F12 F13 F14 F15 F16 F17 8 F9 F10 F11 F12 F13 F14 F15 F16 F17 6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F9 F10 F11 F12 F13 F14 F15 F16 F8 F9 F10 F11 F12 F13 F14 F15 F16 F8 F9 F10 F11 F12 F13 F14 F15 F16 F8 F9 F10 F11 F12 F13 F14 F15 F16 F8 F9 F10 F11 F12 F13 F14 F15 F16 F1 F8 F9 F10 F11 F12 F13 F14 </td <td>F2</td> <td>F3</td> <td>F2</td> <td>F3</td> <td>F3</td> <td>F4</td> <td>F3</td> <td>F4</td> <td>F5</td> <td>F6</td> <td>F7</td> <td>F2</td> <td>F5</td> <td>F7</td> <td>F8</td> <td>F9</td>	F2	F3	F2	F3	F3	F4	F3	F4	F5	F6	F7	F2	F5	F7	F8	F9
1 F12 F13 F14 F15 F16 F17 F18 0 F11 F12 F13 F14 F15 F16 F17 F18 0 F11 F12 F13 F14 F15 F16 F17 0 F10 F11 F12 F13 F14 F15 F16 F2 F8 F9 F10 F11 F12 F13 F14 F15 F16 F9 F10 F11 F12 F13 F14 F15 F16 F1 F8 F9 F10 F11 F12 F13 F14 F15 F16 F7 F8 F9 F10 F11 F12 F13 F14 F1 F8 F9 F10 F11 F12 F13 F1 F8 F9 F10 F11 F12 F13 F1 F9 F10 F11 F12 F13	E3	F4	F3	F4	F4	F5	F4	F5	F6	F7	F8	F3	F6	F8	F9	F10
F13 F14 F15 F16 F17 F18 F12 F13 F14 F15 F16 F17 F18 F11 F12 F13 F14 F15 F16 F17 F9 F10 F11 F12 F13 F14 F15 F16 F11 F12 F13 F14 F15 F16 F1 F10 F11 F12 F13 F14 F15 F16 F1 F10 F11 F12 F13 F14 F15 F16 F1 F8 F9 F10 F11 F12 F13 F14 F7 F8 F9 F10 F11 F12 F13 F7 F8 F9 F10 F11 F12 F13 F6 F7 F8 F9 F10 F11 F12 F6 F7 F8 F9 F10 F11 F12 F6	F4	F5	F4	F5	F5	-F6	F6	F6	F7	F8	F9	F4	F7	F9	F10	F11
F14 F15 F16 F17 F18 F13 F14 F15 F16 F17 F12 F13 F14 F15 F16 F10 F11 F12 F13 F14 F1 F12 F13 F14 F15 F16 F1 F11 F12 F13 F14 F8 F9 F10 F11 F12 F13 F8 F9 F10 F11 F12 F11 F8 F9 F10 F11 F12 F11	F5	F6	F5	F6	F6	F7	F6	F7	F8	F9	F10	F5	F8	F10	F11	F12
4 F15 F16 F17 F18 3 F14 F15 F16 F17 2 F13 F14 F15 F16 F17 5 F11 F12 F13 F14 F13 F14 F15 F16 F17 F13 F14 F15 F16 F11 F12 F13 F14 F15 F16 F11 F10 F11 F12 F13	F6	F7	F6	F7	F7	F8	F7	F8	F9	F10	F11	F6	F9	F11	F12	F13
6 F16 F17 F18 4 F15 F16 F17 8 F14 F15 F16 F12 F13 F14 F9 F10 F11 F13 F14 F15 F11 F12 F13 F11 F12 F13 F10 F11 F12	F7	F8	F7	F8	F8	F9	F8	F9	F10	F11	F12	F7	F10	F12	F13	F14
8 F17 F18 6 F16 F17 1 F16 F17 2 F13 F14 F10 F11 F16 F14 F15 F16 F14 F15 F16 F17 F12 F13 F11 F12 F13 F11 F12 F13 F11 F12 F13 F11 F12 F11 F10 F11 F12 F10 F11 F12	F8	F9	F8	F9	F9	F10	F9	F10	F11	F12	F13	F8	F11	F13	F14	F15
F18 F18 F16 F16 F16 F16 F17 F12 F12 F12 F11	F9	F10	F9	F10	F10	F11	F10	F11	F12	F13	F14	F9	F12	F14	F15	F16
	F10	F11	F10	F11	F11	F12	F11	F12	F13	F14	F15	F10	F13	F15	F16	F17
F19 F18 F17 F17 F16 F16 F17 F17 F18 F17 F17 F18 F19 F19 F19 F19 F19 F19 F19 F19 F19 F19	F1	F12	F11	F12	F12	F13	F12	F13	F14	F15	F16	F11	F14	F16	F17	F18
	F12	F13	F12	F13	F13	F14	F13	F14	F15	F16	F17	F12	F15	F17	F18	F19

Chip Integrator Resource Requirements

Implementation of:

32 Users @ 125 MHz

48 Users @ 187.5 MHz

64 Users @ 250 MHz

- ◆ 3 DPUs
- ◆ 2 LSMs

Channel Estimator Data Input Buffer Requirements and Assumptions The first of the first state of THE COLUMN THE COLUMN THE TABLE OF THE COLUMN THE COLUM

Requirements

- Provide a path between the Chip Integrator in the Chameleon fabric and the ARC processor
- Double-buffer 128 despread pilot symbols every 256 T_c

Assumptions

- Input written by Chip Accumulator
- Output is read by the ARC core
- ◆ All Control Channel data has SF=256

Channel Estimator Data Input Buffer Functional Block Diagram

in the

Channel Estimator Data Input Buffer **Implementation** TOLET HESSESS

Channel Estimator Data Input Buffer Resource Requirements

- 32 User Implementation @ 125 MHz
- ◆ 1 DPU
- ◆ 2 LSMs
- 48 User Implementation @ 187.5 MHz
- 1 DPUs
- ◆ 4 LSMs
- 64 User Implementation @ 250 MHz
- 1 DPUs
- ◆ 6 LSMs

Channel Estimator UCC Input Buffer Requirements and Assumptions

Requirements

- Provide a buffer containing the present User Chip Counter (UCC) value for each of the 128 Pilot chips
- Provide a buffer containing the present User Chip Counter (UCC) value for each of the 128 Data chips
- Double-buffer 256 UCCs every 256 T_c

Assumptions

- Input written by User Code Buffer
- Output is read by the ARC core

Channel Estimator UCC Input Buffer Functional Block Diagram

Data from User Code Buffer

User Code Buffer[31:16] _ =UCOSF[15:0]

Channel Estimator

Double-Buffer Dual-Port Memory

Channel Estimator UCC Input Buffer **Implementation**

Channel Estimator UCC Input Buffer Resource Requirements

- 32 User Implementation @ 125 MHz
- ◆ 1 DPU
- ◆ 2 LSMs
- 48 User Implementation @ 187.5 MHz
- ◆ 1 DPUs
- ◆ 4 LSMs
- 64 User Implementation @ 250 MHz
- 1 DPUs
- ◆ 6 LSMs

Channel Estimator Requirements and Assumptions

- Requirements
- Compensate the user data given the characteristics of the Pilot Channel data using XXX filtering
- Assumptions
- All channel estimation is performed in the ARC processor
- The Channel estimation is performed after the Pilot slower than the chip rate Channel has been despread (SF=256) and is significantly

FIR Filters for Channel Estimation

5-Tap Symmetric FIR Filter

Required Ops/Sample:

- 6 Multiplies
- 4 Additions
- 3 Post-Multiply Packing Ops

Allow Multiple Clocks per Sample:

- 2 MUL for multiplies1 DPU for additions
- 1 DPU for packing

3-Tap Non-symmetric FIR Filter

Required Ops/Sample:

- 6 Multiplies
- 2 Additions
- 3 Post-Multiply Packing Ops

Allow Multiple Clocks per Sample:

- 2 MUL for multiplies
- 1 DPU for additions
- 1 DPU for packing

Channel Estimator Output Buffer Requirements and Assumptions

Requirements

- Provide a buffer between the Channel Estimation Filter and the Phase Recovery circuits
- Provide a double buffer memory to prevent race conditions

Assumptions

- One 32-bit (16-bit I, 16-bit Q) Channel Compensation Weight word per pilot is required
- 32 Users required
- Must provide double buffer for proper operation
- Channel Compensation word is sample and held on one time-slot (2560 T_c) boundaries

Channel Estimator Output Buffer Functional Block Diagram

256 Fingers: 256 fingers x 32-bit words x 2 banks (ping, pong)

Channel Estimator Output Buffer Resource Requirements

- 32 Users Implementation
- ▼ 1 DPU
- ▶ 2 LSMs
- 48 Users Implementation
- ◆ 2 DPU
- ◆ 3 LSMs
- 64 Users Implementation
- ◆ 2 DPU
- ◆ 4 LSMs

Pilot Pattern Generator Requirements and Assumptions

- Requirements
- Provide simple lookup-table approach
- Assumptions
- ◆ Physically resides in ARC processor
- N_Pilot = 3,4,5,6,7, or 8
- The pilot is a function of slot
- A single LSM is sufficient to contain the lookup-table

Pilot Pattern Generator Memory Map Address Bit Definitions

œ	7	6	5	4	ယ	N Pilot
ഗ	4	ယ	2		0	PilotGenAddr[6:4]

										_
œ	7	တ	Ŋ	4	ω	2	_	0	SlotNumber	
∞	7	6	ഗ	4	ω	2	_	0	PilotGenAddr[3:0]	

13 13 14	0 4 0 0 7 8 0	SlotNumber
10 11 12 13	9876543210	PilotGenAddr[3:0]

Phase Recovery Input Buffer Requirements and Assumptions

Requirements

- Provide a double buffer between the Chip Integrator circuit and the Phase Recovery circuit
- Buffer 128 fingers every 256 clocks

Assumptions

- Only the delayed data channels are buffered
- Pilot Channel data is not buffered

Phase Recovery Input Buffer Block Diagram

CHAMELEON STATE OF STREET

Phase Recovery Input Buffer Implementation

Phase Recovery and Weighting Requirements and Assumptions

- Requirements
- Assumptions
- A complex multiplication of (A +jB) * (C +jD)
- We are only interested in the real part of the output: = (AC - BD) + j(AD + BC)

$$Re{(A + jB) * (C + jD)} = AC - BD$$

We have extra cycles so only one multiplier is required

Phase Recovery and Weighting Functional Block Diagram

Phase Recovery and Weighting **Implementation**

Output of Channel Estimator Output Buffer

Phase Recovery and Weighting Resource Requirements

Implementation of:

32 Users @ 125 MHz

48 Users @ 187.5 MHz

64 Users @ 250 MHz

- ◆ 1 DPU
- 1 Multiplier

Finger Combiner Requirements and Assumptions

- Requirements
- Must be able to combine up to six fingers
- Assumptions
- Extra cycles can be wasted as long as the TPCG < 300us
- Allocate timing such that the circuit is always adding 8 fingers
- The ARC processor may assign up to 8 fingers to each user
- The ARC processor assigns zeroes to the unused fingers in an eight finger block

Finger Combiner Functional Block Diagram

and Weighting Block FINGCOMBI[15:0] FINGCOMBQ[15:0] Phase Recovery Output of Add each block of eight inputs REGISTER DELAY

Combined Fingers

Forward

Finger Combiner Implementation

Implementation of:

32 Users @ 125 MHz

48 Users @ 187.5 MHz

64 Users @ 250 MHz

◆ 1 DPU

General Timing and Control Finger Tracking within the Rake Receiver

- Upon initial acquisition, the Rake Receiver is buffer window offset that places the (up to) six fingers in the tasked such that the Scrambling Code is set to an path delay corresponds to the beginning of the Antenna Sample Buffer window such that zero
- As the mobile user moves toward or away from the the Antenna Sample Buffer window as tasked by the Path Searcher base station (Node B), the fingers will move within

Spreading Factor Mapping Assignments

- Spreading Factors (SF): The following table lists the values corresponding to the various
- Note that users requiring SF=4 must assign each finger to two successive tinger resources per tinger according to the following
- At finger resource n assign SF=4
- At finger resource n+1 assign SF=0 (used to denote second part of SF=4 finger)

SPREADING FACTOR SF MEMORY CONTENTS 0 0 4 1 8 2 16 3 32 4 64 5 128 6 256 7											
SF MEMORY CONTENTS 0 1 2 2 3 4 5 6	256	128	64	32	16	œ	4	0	FACTOR	SPREADING	
	7	6	G i	4	ယ	2		0	CONTENTS	SF MEMORY	

Chameleon Systems Rake Receiver CS2112 Device Utilization for 32 Users

KERNEL	DATA PATH UNITS (DPUs)	LOCAL STATE MEMORIES (LSMs)	MULTIPLIERS
Gold Code Generator	14	8	2
Channel Code Generator / Multiplier	4	2	0
Antenna Sample Buffer	22	26	0
Chip Descrambler	24	0	0
Chip Adder Tree	7	0	0
Chip Integrator	ω	2	0
Channel Estimator Data Input Buffer	_	2	0
Channel Estimator UCC Input Buffer	_	2	0
Channel Estimator Output Buffer		2	0
Phase Recovery Input Buffer	ω	ω	0
Phase Recovery and Weighting		0	_
Finger Combiner		0	0
Master Chip Counter	2	0	0
TOTALS:	84	47	ယ
TOTAL AVAILABLE	84	48	24
PERCENT UTILIZED	100%	98%	13%

