[DSBA] 1. Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey

1. Why do we need to "Explain"?

- ▼ XAI란 인간의 Explanation이 아닌 AI가 Explanation을 도출하며, 사람이 AI의 동작과 최종 결과를 이해하고 올바르게 해석할 수 있고, 결과물이 생성되는 과정을 설명 가능하도록 함
 - 1) Improves transparency using human understandable justifications to decisions
 - 2) Improves trust by improving confidence in decision making
 - 3) Improves bias understanding and fairness by global model and behavior
 - 4) Improve models and verify the model

architecture

2. Where is the XAI method forcusing on?

2.1 Scope

- local : individual data를 설명함 ($\rightarrow x \in X$ 에 대해 하나의 explanation map 생성)
- Global : model 전체를 하나의 단위로 인식하여 설명함 ($\rightarrow x \in X$ 들의 group에 대해 하나의 explanation map 생성)

input
$$\rightarrow$$
 Black-box model $(\bar{y}^{(n)})$

(x) Shock-box model $(\bar{y}^{(n)})$

Explanation (9)

about instance $(x^{(n)})$

[그림 2] Diff. between model architecture (scope)

▼ Local Explainable Artificial Intelligence (XAI)

(1) Activation Maximization

CNN의 각 layer의 중요성을 알기 위해 **특정 hidden unit activation을 최대화하는** input 패턴을 탐지

$$x^*$$
 = $argmax_{x_{s,t}||x||=p} \ z_{ij} \ (heta, \ x)$

→ 특정 Input 패턴과 correlated된 layer filter activation maximization loss 를 최적화 목적

이를통해 input instance의 layer별 feature importance를 찾을 수 있음

(2) Saliency Map Visualization

각 output class에 해당하는 gradient를 픽셀별로 계산하여 각 픽셀의 importance 도출

$$S_c(I) = W^T x + b$$

→ 픽셀별로 gradient를 계산했을때 positive인 gradient 일수록 결과에 영향을 주는 픽셀로 가정함

이를 통해 positive gradient를 갖는 픽셀로 saliency map을 구할수 있음

(3) LRP (Layer-wise Relevance Back-propagation)

output prediction을 back-propagation을 통해 분해하여 input data의 각 feature의 relevance score를 계산

$$y_j$$
 = $\sum_i w_{ij} x_i + b_j$, z_j = $f(y_j)$
 $R_{i \leftarrow j}$ = $R(z_j) \frac{x_j w_{ij}}{y_j + \epsilon \ sign(y_j)}$, $R(x) = \sum_j R_{i \leftarrow j}$

▼ Global Explainable Artificial Intelligence (XAI)

복잡한 Deep model을 linear counterparts로 축소하여 해석하기 쉬운 형태로 만듦 (Rule-base, tree-base model, ... etc.)

(1) Class model Visualization

Activation maximization을 global explanation으로 확장한 형태 $l'=argmax_l\ Sc(l)\ -\lambda ||l||_2^2$

(2) CAVs (Concept Activation Vectors)

positive concept (사람이 구분할수 있는 컨셉 : p_c) 과 negative를 구분하는 방법론 directional derivatives를 활용, class prediction의 sensitivity (input의 특정 p_c 로 가까워 질수록 드러나는 layer의 변화) 를 평가하는 방법 (TCAVs)

$$5c.k.j(x) = \lim_{\epsilon \to 0} \frac{hj.k \left(Z_j(x) + \epsilon v_{\epsilon}^{i} \right) - hj.k \left(Z_j(x) \right)}{\epsilon} = \forall hj.k \left(Z_j(x) \right) \cdot v_{\epsilon}^{i}$$

$$TCAV_{5} c.k.j = \frac{\left[i \Re \mathcal{E} X_{K} : G_{c.k.j}(x) > 0 \right]}{\left[X_{K} \right]}$$

(3) SpRAy (Spectral Relevance Analysis)

군집화 한 후 relevant 한 입력값 도출하는 방법론으로 **LRP를 통해 각 입력값의** relevant score를 구한후 해당 score 기반으로 입력값들을 군집화 (spectral clustering)

(가장 relevant한 cluster를 찾기 위해 eigenvalue간의 차이를 기반으로 함)

2.2 Methodology

- Gradient based (Back-propagation based): Back-propagation된 gradient를 통해 neuronal influence나 input / output의 relevance를 파악
- Perturbation based : 입력데이터의 feature 변화에 따른 input / output relevance를
 파악
- **▼** Gradient based Explainable Artificial Intelligence (XAI)

(1) Saliency maps

gradients of the output over the input으로 인해 만들어짐 즉, 이미지 안에 어떤 부분이 classification에 relevance한지 highlight

(2) GradCAM (Gradient class Activation Mapping)

Convolution layer를 쌓고 FCNN 대신 GAP(Global Average Pooling)을 사용 하여 위치정보 보전

[그림 3] GradCAM architecture

(3) Salient Relevance Maps

background layer와 foreground layer의 차이를 구하여 context aware한 information (canny-edge based detector를 Salient Relevance map에 추가)을 찾음

(즉, 픽셀별로 saliency value를 찾는데 인접 픽셀이 distinct하고, 서로다른 스케일의 pixel patch들과 다르면 salient)

(4) Attribute Maps

IG(Integrated Gradients)를 주장하며, input data x가 model f에 가한 attribution은 gradients 들의 integral을 통해 얻을수 있다고 가정함 또한, 도메인 지식을 학습단계에 추가하여 모델을 해석

$$IG_j(x, x') = (x_j - x_j') * \int_{\alpha=0}^l \frac{\partial F(x' + \alpha * (x - x'))}{\partial x_j} \partial \alpha (x : \text{input data}, x' : \text{base-line data})$$

$$\begin{split} EG(x) &= \int_{x'} (x_j - x_j') \int_{\alpha=0}^l \frac{\delta F(x' + \alpha * (x - x'))}{\delta x_j} \delta \alpha) * P_{D(x)}(x') \delta x' \\ &= E[(x_j - x_j') \frac{\delta f(x' + \alpha * (x - x'))}{\delta x_j}] \end{split}$$

(Integration Over the whole training distribution이 intractable 하기 때문에 integral 대신에 Expectation 사용)

▼ Perturbation based Explainable Artificial Intelligence (XAI)

(1) DeConvolution Nets for Convolution Visualization

CNN의 정반대 방향으로 진행되는 Network을 사용하여 Activation Map을 생성함 (Activation Map: input pixel space로 매핑하는 역할로, 각 layer가 무엇을 어떻게 학습하였는지 알수 있음)

[그림 4] DeConvolution Nets architecture

즉, 입력 이미지로 부터 대략적인 Approximate version of convolution feature를 생성하여, feature상의 변화를 de-convolution함으로 변화가 어떻게 감지 / 학습 되는지 파악 가능

(2) RISE (Randomized Input Sampling for Explanation)

input 이미지에 random mask를 곱하여 perturbation을 가한 후 prediction 수행하는데 이때 classification에 대해 confidence score를 return, mask와 confidence score을 가중합하여 saliency map을 구함

3. Metric of Explainable Artificial Intelligence (XAI)

• SCS (System Causality Scale)

'User facing Human-AI, Machine-interfase' 에 대한 설명을 위해 고안됨 (척도로된 평가표)

▼ BAM (Benchmarking Attribution Methods)

모델별로, 같은 모델 내에서 입력별로, functionality equivalent input에 따라 explainer 의 성능 추정

- (1) **Model Constrast scores** : object로 학습된 모델과 scene label로 학습된 모델의 attribution 차이
- (2) **Input dependence rate** : scene only image로 train된 경우 input dependence 는 추가된 물체가 loss importance라고 attributed된 region을 리턴하는 비율을 측정

(3) **Input independence rate**: scene-only로만 train된 model이 주어졌을때 input independence는 기능적으로 크게 중요하지 않은 patch가 붙어 있는 이미지가 크게 explanation에 영향을 미치지 않는 비율

Faithfulness

importance score of feature와 performance effect of each feature간의 상관 관계

Monotonicity

feature importance에 따라 model에 feature를 점진적으로 더해가며, 각 data feature 의 성능에 기여한 정도를 지표화

Human-grounded evaluation Benchmark

사람의 평가 방식을 benchmark삼아 설명 모델을 평가하는 방식으로, 다양한 의견을 수 집하여 최대한 human bias를 제거하고자 함

4. Limitation of Explainable Artificial Intelligence (XAI)

- 사람이 XAI의 Explanation maps를 추론하기 힘듦
- XAI에 대한 정량적인 평가가 어려움
- input layer에 perturbation을 가하면 prediction accuracy 보다 feature importance map이 확연하게 변화되는 한계

Reference

[1] <u>Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey</u>

[2] [DSBA] XAI Review - 1. Overview