Определение 1. Пусть функция f определена в некоторой окрестности точки x_0 . Функция fназывается $\partial u \phi \phi$ еренцируемой в точке x_0 , если существует предел

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

 $\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$ (называемый производной функции f в точке x_0). Обозначения: $f'(x_0),\,\frac{df}{dx}(x_0).$

Задача 1. Докажите, что если функция f дифференцируема в точке x_0 , то

$$f'(x_0) = \lim_{t \to 0} \frac{f(x_0 + t) - f(x_0)}{t}.$$

Определение 2. Функция f называется дифференцируемой на множестве M, если она диффе ренцируема в каждой точке этого множества. В этом случае функция $g: M \to \mathbb{R}, g(x) = f'(x)$ называется производной функции f на множестве M. Обозначения: f', $\frac{df}{dx}$.

Задача 2°. Найдите производные следующих функций:

- **б**) x**a**) c

- в) x^2 г) 1/x д) \sqrt{x} е) $\sin x$
- \mathbf{x}) $\cos x$
- \mathbf{u}) $\ln x$.

Задача 3. Приведите пример функции, определённой на множестве \mathbb{R} , которая дифференцируема ровно в одной точке.

Задача 4°. Пусть функции f и q дифференцируемы на множестве M. Докажите, что:

- а) (cf)' = cf' $(c \in \mathbb{R});$ б) $(f \pm g)' = f' \pm g';$ в) (Правило Лейбница) (fg)' = f'g + fg';
- г) если $g(x_0) \neq 0$, то $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{g^2(x_0)}$.

Задача 5. Найдите производные следующих функций:

а) x^m $(m \in \mathbb{Z});$ б) |x-3|; в) $x^2 + \frac{1}{x^3};$ г) $\operatorname{tg} x;$ д) $\operatorname{ctg} x.$

Задача 6°. Докажите, что $f'(x_0) = A$ тогда и только тогда, когда для некоторой функции o(t)приращение $f(x_0+t)-f(x_0)$ представимо в виде At+o(t), причём $\lim_{t\to 0} o(t)/t=0$.

Задача 7°. (Производная сложной функции) Пусть функция f дифференцируема в точке x_0 , а функция g дифференцируема в точке $y_0 = f(x_0)$. Докажите, что композиция $h = g \circ f$ функций f и gдифференцируема в точке x_0 , причём $h'(x_0) = g'(y_0)f'(x_0)$.

1	2 a	2 6	2 B	$\frac{2}{\Gamma}$	2 д	2 e	2 ж	2 3	2 и	3	4 a	4 б	4 B	4 Г	5 a	5 6	5 в	5 г	5 д	6	7

Листок №20 Страница 2

Задача 8. Найдите производные следующих функций:

а)
$$2x^3 + 5x^2 - 3x + 4$$
; б) $\frac{x^2 + 8x - 15}{x + 2}$; в) $(2x^2 - 5x + 3)^{100}$; г) $\sqrt{1 - x^2}$; д) $\frac{(3x + 1)^2}{(2x - 5)^3}$;

e)
$$\sin(\cos e^x)$$
; ж)* $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, \text{ если } x \neq 0 \\ 0, \text{ если } x = 0 \end{cases}$ з)* $f(x) = \begin{cases} x \sin \frac{1}{x}, \text{ если } x \neq 0 \\ 0, \text{ если } x = 0 \end{cases}$

Задача 9°. Пусть функция f определена и строго монотонна в некоторой окрестности точки x_0 , причём существует $f'(x_0) \neq 0$. Докажите, что обратная к f функция g дифференцируема в точке $y_0 = f(x_0)$ и $g'(y_0) = \frac{1}{f'(x_0)}$.

Задача 10*. Найдите и исправьте ошибку в предыдущей задаче.

Задача 11. Найдите производные следующих функций:

- a) x^a $(a \in \mathbb{R})$; 6) a^x (a > 0); b) $\log_a x$ $(a > 0, a \neq 1)$;
- \mathbf{r}) $\arcsin x$; \mathbf{g}) $\arccos x$; \mathbf{e}) $\arctan x$; \mathbf{w}) $\operatorname{arcctg} x$.

Определение 3. Пусть функция f определена в окрестности точки x_0 . Прямая L называется касательной к графику функции в точке x_0 , если $\lim_{x\to x_0} \frac{\varrho(x)}{x-x_0} = 0$, где $\varrho(x)$ — расстояние от точки (x,f(x)) до прямой L.

Задача 12. Пусть функция f дифференцируема в точке x_0 . Докажите, что касательная к графику функции f в точке x_0 существует и её уравнение имеет вид: $y(x) = f'(x_0)(x - x_0) + f(x_0)$.

Задача 13. Докажите, что в случае окружности определение 3 эквивалентно определению касательной, известному из геометрии.

Задача 14°. Пусть функция f дифференцируема в точке x_0 и $f'(x_0) > 0$. Докажите, что существует такая окрестность точки x_0 , что для всех x из левой полуокрестности $f(x) < f(x_0)$, а для всех x из правой полуокрестности $f(x) > f(x_0)$.

Задача 15°. ($Teopema \ \Phi epma$) Пусть функция f определена на интервале (a,b) и в точке x_0 принимает наибольшее или наименьшее значение на (a,b). Докажите, что если производная $f'(x_0)$ существует, то она равна нулю. Верно ли обратное?

Задача 16. а) Дайте определения левой и правой производных функции f в точке x_0 . Обозначение: $f'_-(x_0)$ и $f'_+(x_0)$

б) При каких
$$a$$
 и b функция $f(x) = \begin{cases} x^2, \text{ если } x \leqslant x_0 \\ ax + b, \text{ если } x > x_0 \end{cases}$ дифференцируема на \mathbb{R} ?

8 a	8 6	8 B	8 Г	8 д	8 e	8 ж	8 3	9	10	11 a	11 б	11 B	11 Г	11 д	11 e	11 ж	12	13	14	15	16 a	16 б