NCS 강좌: 딥러닝 기초 0. 기초개념 정리

강사 윤예빈

yebinyoun@gmail.com

https://github.com/yebiny

머신러닝

전통적인 알고리즘

문제를 해결하는 Instruction의 sequence.

인공지능, 머신러닝, 딥러닝

우승 알고리즘의 분류 에러율(%)

머신러닝 종류

Machine Learning Supervised Learning

Regression, Classification, ..

Unsupervised Learning

Clustering, Dimensionality reduction, Generation, ...

Reinforcement Learning

Realtime decision, Robot navigation ..

데이터 세트

속성, 특성(feature)

feature1 feature1 feature1

	집면적	방개수	연식	
sample1	35	1	5	
sample2	17	1	10	
	52	2	2	
	132	3	15	
	60	2	12	
sample n	155	4	20	

$$D(dataset) = \{x_1, x_2, \dots, x_n\}$$

$$x_i = (x_{i1}, x_{i2}, \dots, x_{id})$$

- Q) 오른쪽 데이터셋에서 데이터샘플의 차원은?
- Q) 수식으로 나타냈을 때 n 과 d 의 값은?

샘플 공간 (Sample space)

속성, 특성(feature)

feature1 feature1 feature1

집면적	방개수	연식
35	1	5
17	1	10
52	2	2
132	3	15
60	2	12
155	4	20

데이터 세트: 레이블

X

	집면적	방개수	연식	가격	가격
sample1	35	1	5	50	낮다
sample2	17	1	10	85	낮다
	52	2	2	125	낮다
	132	3	15	155	높다
	60	2	12	280	높다
sample n	155	4	20	360	높다

모델

학습 파라미터

학습, 훈련(learning, training)

학습 파라미터를 잘 조정해 가는 과정!

손실 함수(Loss function)

= 비용 함수 (Cost function), 목적 함수(Objective function)

최적화(Optimizer)

에러가 감소하도록 W와 b를 업데이트 -> **어떻게**?

훈련샘플과 테스트샘플

- 검증용 데이터: 모델의 성능을 평가하기 위한 용도가 아니라, 모델의 성능을 조정하기 위한 용도
- 테스트용 데이터: 모델의 실제 성능을 평가

과적합(Overfitting)

Under-fitting

(too simple to explain the variance)

Appropirate-fitting

Over-fitting

(forcefitting--too good to be true)