MATH	2554	(Calculus	I)
Summe	r 2015	5	

Name:	
	_

Fri 10 July 2015

Quiz 11: Antiderivatives ($\oint 4.8, 5.2, 5.3$)

Directions: You have 30 minutes to complete this quiz. Collaborative and open book.

1. A mass oscillates up and down on the end of a spring. Find its position s relative to the equilibrium position if its acceleration is

$$a(t) = \sin{(\pi t)},$$

and its initial velocity and position are v(0) = 3 and s(0) = 0, respectively.

2. Use the picture to evaluate:

- (a) $\int_0^{\frac{3\pi}{2}} x \sin x \ dx$
- (b) $\int_{\frac{\pi}{2}}^{2\pi} x \sin x \ dx$
- 3. Use the Fundamental Theorem of Calculus to simplify the following expressions:

(a)
$$\frac{d}{dy} \int_{y^2}^{100} \frac{dw}{w^2 + 1}$$

(b)
$$\frac{d}{dx} \int_1^x e^t dt$$

4. Match the functions f whose graphs are given in (a)-(d) with the area functions $A(x) = \int_0^x f(t) \ dt, \quad \text{whose graphs are given in (A)-(D)}.$

(c)

 \overline{o}

(d)

