ECS 20: Discrete Mathematics for Computer Science Winter 2021

Ji Wang

Week 5, February 3

Outline

- ► Propositional Logic in Computer Science
- ► Proof Techniques Recap

Propositional Logic in Computer Science

- 1. in Database Systems (Boolean Search)
- 2. in Programming languages
- 3. in Computer Architecture (Logical Circuit)
- 4. ...

Intro to Databases: An app of Relations in CS

Definition. Let A_1, A_2, \dots, A_n be sets. An *n*-ary relation on these sets is a subset of $A_1 \times A_2 \times \dots \times A_n$.

Intro to Databases: An app of Relations in CS

Definition. Let A_1, A_2, \dots, A_n be sets. An *n*-ary relation on these sets is a subset of $A_1 \times A_2 \times \dots \times A_n$.

App: Relational Databases

- 1. Present the data to the user as relations;
- Provide relational operators to manipulate the data in tabular form.

Example: Class roster

Name	ID	Kerberos	Section	Major	• • • •	Grade
Rachel	932221234	rgreen	A01	MGT	• • • •	A-
Monica	932221235	mgeller	A01	FST		A+
Phoebe	921119876	pbuffay	A03	PSC	• • • •	B+
Joey	920001234	jtri	A03	DRA	• • • •	A-
Chandler	913339876	cbing	A02	ECS	• • • •	Α
Ross	913339877	rgeller	A02	BIS		A+

Manipulate data by **SQL** (Structured Query Language), e.g. Addition, Deletion, Update and Search.

Propositional Logic in Computer Science

Name	ID	Kerberos	Section	Major	 Grade
Rachel	932221234	rgreen	A01	MGT	 A-
Monica	932221235	mgeller	A01	FST	 A+
Phoebe	921119876	pbuffay	A03	PSC	 B+
Joey	920001234	jtri	A03	DRA	 A-
Chandler	913339876	cbing	A02	ECS	 Α
Ross	913339877	rgeller	A02	BIS	 A+

1. Search for all the students in Section A02 **AND** their grades are better than A-:

```
SELECT * FROM ecs20_roster WHERE Section = 'A02' AND GRADE \geq 'A-';
```

- 2. Search for all the students in Section A02 OR in Section A03: SELECT * FROM ecs20_roster WHERE Section = 'A02' OR Section = 'A03';
- Search for all the students **NOT** majoring in Computer Science:

```
SELECT * FROM ecs20_roster WHERE NOT Major =
'ECS';
```

Propositional Logic in Computer Science (More in ECS-120/140)

In many of if-conditionals and for/while loops, we might encounter propositional logic.

```
if (( a >= b && b >= c) || (b >= a && a >= c )) {
    return c;
}
else if (( a >= b && b < c ) || ( b >= a && a < c )) {
    return b;
}
else
    return a;</pre>
```

Propositional Logic in Computer Science (More in ECS-120/140)

In many of if-conditionals and for/while loops, we might encounter propositional logic.

```
if (( a >= b && b >= c) || (b >= a && a >= c )) {
    return c;
}
else if (( a >= b && b < c ) || ( b >= a && a < c )) {
    return b;
}
else
    return a;</pre>
```

The Boolean satisfiability problem (abbreviated SATISFIABILITY, **SAT**) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. ¹

$$(a \ge b \land b \ge c) \lor (b \ge a \land a \ge c)$$

¹Wikipedia

Propositional Logic in Computer Science (More in ECS-154A)

FIGURE 1 Basic logic gates.

FIGURE 2 A combinatorial circuit.

So far, we've learned:

- 1. Direct proof
- 2. Proof by contraposition
- 3. Proof by contradiction

New materials to come this week:

- 1. Equivalence proof
- 2. Proof by counterexample
- 3. Mathematical induction

When is appropriate to use a specific proof technique?

When is appropriate to use a specific proof technique?

Try direct proof first, if it's non-trivial, give contraposition or contradiction a shot!

When is appropriate to use a specific proof technique?

Try direct proof first, if it's non-trivial, give contraposition or contradiction a shot!

Example 1. Prove that if m and n are integers and mn is even, then m is even or n is even.

When is appropriate to use a specific proof technique?

Try direct proof first, if it's non-trivial, give contraposition or contradiction a shot!

Example 1. Prove that if m and n are integers and mn is even, then m is even or n is even.

Since there is no obvious way of showing that m is even or n is even directly from the assumption that mn is even, we attempt a proof by contraposition.

Proof.

Example 2. Prove that if 5n + 4 is odd, then n is odd.

Example 2. Prove that if 5n + 4 is odd, then n is odd.

Still, direct proof is not easy in the direction from a greater number (5n + 4) to a smaller number (n).

Proof.

by Contraposition

Proof.

by Contradiction

Mathematical Induction: Approach

When applicable: Prove that a property P(n) holds for every natural number n.

How it works:

- 1. Show that a property P(n) holds for the base case, usually when n = 0 or 1.
- 2. Assume that P(n) is true for n = k where k is greater than the base case.
- 3. Prove that P(n) is true for n = k + 1. In this step we will use the assumption above.
- 4. Then, by the principle of induction, we can conclude that P(n) is true for every natural number that is greater than or equal to the base case.

Problem Statement: Prove the following statement P(n) is true

$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Build a skeleton:

- ► Basis Step:
- ► Inductive Hypothesis:
- ► Inductive Step:
- ► Thus, by the principle of induction, we can conclude that the statement above is true for every natural number *n*.

$$1^3 + 2^3 + \dots + n^3 = (\frac{n(n+1)}{2})^2$$

► Basis Step:

Verify P(n) is true when n = 1. $1^3 = (\frac{1 \cdot (1+1)}{2})^2$.

$$1^3 + 2^3 + \dots + n^3 = (\frac{n(n+1)}{2})^2$$

- ▶ Basis Step: Verify P(n) is true when n = 1. $1^3 = (\frac{1 \cdot (1+1)}{2})^2$.
- Inductive Hypothesis: Assume P(n) is true when n = k. Then, we have $1^3 + 2^3 + \cdots + k^3 = (\frac{k(k+1)}{2})^2$.

$$1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

▶ Inductive Step: We need to show P(n) is true when n = k + 1.

$$1^{3} + 2^{3} + \dots + (k+1)^{3} = 1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3}$$

$$= (\frac{k(k+1)}{2})^{2} + (k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2}}{4} + \frac{4(k+1)^{3}}{4}$$

$$= \frac{(k+1)^{2}(k^{2} + 4(k+1))}{4}$$

$$= \frac{(k+1)^{2}(k+2)^{2}}{4}$$

$$= (\frac{(k+1)((k+1)+1)}{2})^{2}$$