# 0.1 线性方程组的解及其应用

### 0.1.1 线性方程组的解的讨论

#### 命题 0.1

线性方程组 Ax = 0 与 Bx = 0 同解当且仅当 r(A) = r(B).

#### 证明

例题 **0.1** 设 **A** 是一个  $m \times n$  矩阵, 记  $\alpha_i$  是 **A** 的第 i 个行向量,  $\beta = (b_1, b_2, \dots, b_n)$ . 求证: 若齐次线性方程组  $Ax = \mathbf{0}$  的解全是方程  $b_1x_1 + b_2x_2 + \dots + b_nx_n = \mathbf{0}$  的解,则  $\beta$  是  $\alpha_1, \alpha_2, \dots, \alpha_m$  的线性组合.

证明 令  $B = \begin{pmatrix} A \\ \beta \end{pmatrix}$ , 由已知, 方程组 Ax = 0 和方程组 Bx = 0 同解, 故  $\mathbf{r}(A) = \mathbf{r}(B)$ , 从而 A 的行向量的极大无关组也是 B 的行向量的极大无关组. 因此, B 可表示为  $\alpha_1, \alpha_2, \cdots, \alpha_m$  的线性组合.

例题 0.2 设  $Ax = \beta$  是 m 个方程式 n 个未知数的线性方程组, 求证: 它有解的充要条件是方程组 A'y = 0 的任一解  $\alpha$  均适合等式  $\alpha'\beta = 0$ .

证明 方程组  $Ax = \beta$  有解当且仅当  $\mathbf{r}(A \mid \beta) = \mathbf{r}(A)$ ,当且仅当  $\mathbf{r}\begin{pmatrix} A' \\ \beta' \end{pmatrix} = \mathbf{r}(A')$ ,当且仅当方程组  $\begin{pmatrix} A' \\ \beta' \end{pmatrix} y = \mathbf{0}$  与  $A'y = \mathbf{0}$  同解,而这当且仅当  $A'y = \mathbf{0}$  的任一解  $\alpha$  均适合等式  $\beta'\alpha = 0$ ,即  $\alpha'\beta = 0$ .

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m; \end{cases}$$
(1)

$$\begin{cases} a_{11}x_1 + a_{21}x_2 + \dots + a_{m1}x_m = 0, \\ a_{12}x_1 + a_{22}x_2 + \dots + a_{m2}x_m = 0, \\ \dots \\ a_{1n}x_1 + a_{2n}x_2 + \dots + a_{mn}x_m = 0, \\ b_{11}x_1 + b_{21}x_2 + \dots + b_{mn}x_m = 1. \end{cases}$$
(2)

求证: 方程组(1)有解的充要条件是方程组(2)无解.

证明 设第一个线性方程组的系数矩阵为 A,常数向量为  $\beta$ ,则第二个线性方程组的系数矩阵和增广矩阵分别为

$$B = \begin{pmatrix} A' \\ \beta' \end{pmatrix}, \widetilde{B} = \begin{pmatrix} A' & O \\ \beta' & 1 \end{pmatrix}.$$

显然, 由矩阵初等变换可知, 我们有  $r(\tilde{\boldsymbol{B}}) = r(\boldsymbol{A}') + 1 = r(\boldsymbol{A}) + 1$ .

若方程组(1)有解,则  $\mathbf{r}(\mathbf{A} \mid \boldsymbol{\beta}) = \mathbf{r}(\mathbf{A})$ , 故  $\mathbf{r}(\mathbf{B}) = \mathbf{r}(\mathbf{B}') = \mathbf{r}(\mathbf{A} \mid \boldsymbol{\beta}) = \mathbf{r}(\mathbf{A}) \neq \mathbf{r}(\widetilde{\mathbf{B}})$ . 因此,方程组(2)无解. 反之,若方程组(1)无解,则  $\mathbf{r}(\mathbf{A} \mid \boldsymbol{\beta}) = \mathbf{r}(\mathbf{A}) + 1$ , 故  $\mathbf{r}(\mathbf{B}) = \mathbf{r}(\mathbf{B}') = \mathbf{r}(\mathbf{A} \mid \boldsymbol{\beta}) = \mathbf{r}(\mathbf{A}) + 1 = \mathbf{r}(\widetilde{\mathbf{B}})$ . 因此,方程组(2)有解.

#### 命题 0.2

设 A 是秩为 r 的  $m \times n$  矩阵, 求证: 必存在秩为 n - r 的  $n \times (n - r)$  矩阵 B, 使得 AB = O.

证明 考虑线性方程组 Ax=0, 它有 n-r 个基础解系, 不妨设为  $\beta_1,\cdots,\beta_{n-r}$ . 令  $B=(\beta_1,\cdots,\beta_{n-r})$ , 则 AB=

 $(A\beta_1, \cdots, A\beta_{n-r}) = \mathbf{0}$ ,结论得证.

例题 0.4 设

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} (m < n),$$

已知 Ax = 0 的基础解系为  $\beta_i = (b_{i1}, b_{i2}, \cdots, b_{in})' (1 \le i \le n - m)$ , 试求齐次线性方程组

$$\sum_{i=1}^{n} b_{ij} y_j = 0 (i = 1, 2, \dots, n - m)$$

的基础解系.

解 令  $B = (\beta_1, \beta_2, \dots, \beta_{n-m})$ , 则 AB = O, B'A' = O. 因为 Ax = 0 有 n-m 个基础解系, 所以 A 的秩为 m. 又由于 r(B) = r(B) = n-m, 因此 B'y = 0 的基础解系有 m 个. 故 B'y = 0 的基础解系为 A' 的全部列向量, 即 A 的所有行向量.

#### 命题 0.3

设  $V_0$  是数域  $\mathbb{K}$  上 n 维列向量空间的真子空间, 求证: 必存在矩阵 A, 使得  $V_0$  是 n 元齐次线性方程组 Ax=0 的解空间.

证明 设  $\beta_1, \dots, \beta_r$  是子空间  $V_0$  的一组基. 令  $B = (\beta_1, \dots, \beta_r)$ , 这是一个  $n \times r$  矩阵. 考虑齐次线性方程组 B'x = 0, 因为 B 的秩等于 r, 故其基础解系含 n - r 个向量, 记为  $\alpha_1, \dots, \alpha_{n-r}$ . 令  $A = (\alpha_1, \dots, \alpha_{n-r})'$ , 这是个  $(n-r) \times n$  矩阵且秩为 n-r. 由 B'A' = 0 可得 AB = 0, 因此齐次线性方程组 Ax = 0 的基础解系是  $\beta_1, \dots, \beta_r$ , 其解空间就是  $V_0$ .

 $\mathbf{\dot{z}}$  设  $\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_r$  是子空间  $V_0$  的一组基. 令  $\boldsymbol{B} = (\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_r)$ , 这是一个  $n \times r$  矩阵. 也可以由命题 0.2直接得到存在矩阵  $\boldsymbol{A}$ , 使得  $\boldsymbol{A}\boldsymbol{B} = \boldsymbol{O}$ , 因此齐次线性方程组  $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$  的基础解系是  $\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_r$ , 其解空间就是  $V_0$ ..

**例题 0.5** 设 A 是秩为 r 的  $m \times n$  矩阵, $\alpha_1, \dots, \alpha_{n-r}$  与  $\beta_1, \dots, \beta_{n-r}$  是齐次线性方程组 Ax = 0 的两个基础解系. 求证: 必存在 n - r 阶可逆矩阵 P, 使得

$$(\boldsymbol{\beta}_1,\cdots,\boldsymbol{\beta}_{n-r})=(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_{n-r})\boldsymbol{P}.$$

证明 设 U 是齐次线性方程组 Ax = 0 的解空间,则向量组  $\alpha_1, \dots, \alpha_{n-r}$  与  $\beta_1, \dots, \beta_{n-r}$  是 U 的两组基. 令 P 是 这两组基之间的过渡矩阵,则

$$(\boldsymbol{\beta}_1,\cdots,\boldsymbol{\beta}_{n-r})=(\alpha_1,\cdots,\alpha_{n-r})\boldsymbol{P}.$$

#### 定理 0.1

- 1. 设 A, B 为  $m \times n$  和  $m \times p$  矩阵, X 为  $n \times p$  未知矩阵, 证明: 矩阵方程 AX = B 有解的充要条件是 r(A B) = r(A).
- 2. 设 A, B 为  $m \times n$  和  $p \times n$  矩阵, X 为  $p \times m$  未知矩阵, 证明: 矩阵方程 XA = B 有解的充要条件是  $r \begin{pmatrix} A \\ B \end{pmatrix} = r(A)$ .

#### 证明

1. 设  $A = (\alpha_1, \dots, \alpha_n)$ ,  $B = (\beta_1, \dots, \beta_p)$ ,  $X = (x_1, \dots, x_p)$  为对应的列分块. 设  $\mathbf{r}(A) = r$  且  $\alpha_{i_1}, \dots, \alpha_{i_r}$  是 A 的列向量的极大无关组. 注意到矩阵方程 AX = B 有解当且仅当 p 个线性方程组  $Ax_i = \beta_i (1 \le i \le p)$  都有解.

因此, 若 AX = B 有解, 则每个  $\beta_i$  都是 A 的列向量的线性组合, 从而是  $\alpha_{i_1}, \dots, \alpha_{i_r}$  的线性组合, 于是

2

 $\alpha_{i_1}, \cdots, \alpha_{i_r}$  是  $(A \mid B)$  的列向量的极大无关组, 故  $r(A \mid B) = r$ .

反之, 若  $\mathbf{r}(A \mid B) = r$ , 则由命题**??**(1) 可知, $\alpha_{i_1}, \dots, \alpha_{i_r}$  是  $(A \mid B)$  的列向量的极大无关组, 于是每个  $\beta_i$  都是 A 的列向量的线性组合, 从而 AX = B 有解.

2. 线性方程组 XA = B 两边取转置可得 A'X' = B', 从而

线性方程组XA = B有解  $\Leftrightarrow$  线性方程组A'Y = B'有解.

又由第一问可知

线性方程组
$$A'Y = B'$$
有解  $\Leftrightarrow r(A' B') = r(A')$ .

而 
$$r(A') = r(A), r(A' B') = r((A' B')') = r(A),$$
 故

线性方程组
$$XA = B$$
有解  $\Leftrightarrow r \begin{pmatrix} A \\ B \end{pmatrix} = r(A)$ .

#### 命题 0.4

矩阵方程 AX = B 有解当且仅当 p 个线性方程组  $Ax_i = \beta_i (1 \le i \le p)$  都有解. 从而每个  $\beta_i$  都是 A 的列向量的线性组合.

证明 证明是显然的.

#### 命题 0.5

设 A, B 为  $m \times n$  和  $n \times p$  矩阵, 证明: 存在  $p \times n$  矩阵 C, 使得 ABC = A 的充要条件是 r(A) = r(AB).

证明 必要性由秩的不等式  $r(A) \ge r(AB) \ge r(ABC) = r(A)$  即得.

充分性由秩的不等式可知  $\mathbf{r}(A) = \mathbf{r}(AB) \le \mathbf{r}(AB|B) = \mathbf{r}(A(B|I_n)) \le \mathbf{r}(A)$ . 故  $\mathbf{r}(A) = \mathbf{r}(AB|B)$ . 于是由定理 0.1可知, 矩阵方程 ABX = A 有解. 即存在  $p \times n$  矩阵 C, 使得 ABC = A 的充要条件是  $\mathbf{r}(A) = \mathbf{r}(AB)$ .

### 0.1.2 线性方程组的公共解

对两个非齐次线性方程组, 若只已知它们的通解, 而不知道方程组本身, 要求它们的公共解, 我们可以这样来做: 设  $Ax = \beta_1$ ,  $Bx = \beta_2$  是两个含 n 个未知数的非齐次线性方程组. 方程组  $Ax = \beta_1$  有特解  $\gamma$  且 Ax = 0 的基础解系为  $\eta_1, \dots, \eta_{n-r}$ . 方程组  $Bx = \beta_2$  有特解  $\delta$  且 Bx = 0 的基础解系为  $\xi_1, \dots, \xi_{n-s}$ .

方法一: 假设它们的公共解为  $\gamma+t_1\eta_1+\cdots+t_{n-r}\eta_{n-r}$ ,则  $\gamma+t_1\eta_1+\cdots+t_{n-r}\eta_{n-r}-\delta$  是 Bx=0 的解,因此可以表示为  $\xi_1,\cdots,\xi_{n-s}$  的线性组合. 于是矩阵  $(\xi_1,\cdots,\xi_{n-s},\gamma+t_1\eta_1+\cdots+t_{n-r}\eta_{n-r}-\delta)$  的秩等于 n-s. 由此可以求出  $t_1,\cdots,t_{n-r}$ ,从而求出公共解.

方法二:假设它们的公共解为ζ,则

$$\zeta = \gamma + t_1 \eta_1 + \dots + t_{n-r} \eta_{n-r} = \delta + (-u_1) \xi_1 + \dots + (-u_{n-s}) \xi_{n-s}$$

要求公共解 $\zeta$ 等价于求解下列关于未定元 $t_1, \dots, t_{n-r}; u_1, \dots, u_{n-s}$ 的线性方程组:

$$t_1\boldsymbol{\eta}_1 + \cdots + t_{n-r}\boldsymbol{\eta}_{n-r} + u_1\boldsymbol{\xi}_1 + \cdots + u_{n-s}\boldsymbol{\xi}_{n-s} = \boldsymbol{\delta} - \boldsymbol{\gamma}.$$

例题 0.6 设有两个非齐次线性方程组 (I), (II), 它们的通解分别为

$$\gamma + t_1 \eta_1 + t_2 \eta_2$$
;  $\delta + k_1 \xi_1 + k_2 \xi_2$ ,

其中  $\gamma = (5, -3, 0, 0)', \eta_1 = (-6, 5, 1, 0)', \eta_2 = (-5, 4, 0, 1)'; \delta = (-11, 3, 0, 0)', \xi_1 = (8, -1, 1, 0)', \xi_2 = (10, -2, 0, 1)'.$ 求这两个方程组的公共解.

证明 解法一: 设公共解为

$$\boldsymbol{\gamma} + t_1 \boldsymbol{\eta}_1 + t_2 \boldsymbol{\eta}_2 = \begin{pmatrix} 5 - 6t_1 - 5t_2 \\ -3 + 5t_1 + 4t_2 \\ t_1 \\ t_2 \end{pmatrix}.$$

注意矩阵  $(\xi_1,\xi_2,\gamma-\delta+t_1\eta_1+t_2\eta_2)$  的秩等于 2, 对此矩阵作初等行变换:

$$\begin{pmatrix} 8 & 10 & 16 - 6t_1 - 5t_2 \\ -1 & -2 & -6 + 5t_1 + 4t_2 \\ 1 & 0 & t_1 \\ 0 & 1 & t_2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 8 & 10 & 16 - 6t_1 - 5t_2 \\ -1 & -2 & -6 + 5t_1 + 4t_2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & t_1 \\ 0 & 1 & t_2 \\ 0 & 0 & 16 - 14t_1 - 15t_2 \\ 0 & 0 & -6 + 6t_1 + 6t_2 \end{pmatrix}$$

可得关于  $t_1, t_2$  的方程组

$$\begin{cases} 14t_1 + 15t_2 = 16, \\ 6t_1 + 6t_2 = 6. \end{cases}$$

解得  $t_1 = -1$ ,  $t_2 = 2$ , 所以公共解为 (只有一个向量) $\gamma - \eta_1 + 2\eta_2 = (1, 0, -1, 2)'$ .

解法二: 求公共解等价于求解下列线性方程组:

$$t_1 \eta_1 + t_2 \eta_2 + u_1 \xi_1 + u_2 \xi_2 = \delta - \gamma.$$

对其增广矩阵实施初等行变换,可得

$$\begin{pmatrix} -6 & -5 & 8 & 10 & -16 \\ 5 & 4 & -1 & -2 & 6 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix},$$

故  $(t_1, t_2, u_1, u_2)$  只有唯一解 (-1, 2, 1, -2). 因此, 公共解为  $\gamma - \eta_1 + 2\eta_2 = \delta - \xi_1 + 2\xi_2 = (1, 0, -1, 2)'$ . **0.7** 设有非齐次线性方程组 (I):

$$\begin{cases} 7x_1 - 6x_2 + 3x_3 = b, \\ 8x_1 - 9x_2 + ax_4 = 7. \end{cases}$$

又已知方程组 (II) 的通解为

$$(1, 1, 1, 0)' + t_1(1, 0, -1, 0)' + t_2(2, 3, 0, 1)'.$$

若这两个方程组有无穷多组公共解, 求出 a,b 的值并求出公共解.

证明 将 (II) 的通解写为  $(1+t_1+2t_2,1+3t_2,-t_1,t_2)'$ , 代入方程组 (I) 化简得到

$$\begin{cases} 4t_1 - 4t_2 = b - 1, \\ 8t_1 + (a - 11)t_2 = 8. \end{cases}$$

要使这两个方程组有无穷多组公共解 $,t_1,t_2$  必须有无穷多组解,于是上面方程组的系数矩阵和增广矩阵的秩都应该等于 1,从而 a=3,b=5.解出方程组得到  $t_1=t_2+1$ ,因此方程组 (I), (II) 的公共解为

$$(1+t_1+2t_2, 1+3t_2, -t_1, t_2)' = (2, 1, -1, 0)' + t_2(3, 3, -1, 1)',$$

其中  $t_2$  为任意数.

## 0.1.3 在解析几何上的应用

### 命题 0.6

求平面上n个点 $(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)$ 位于同一条直线上的充要条件.

证明 充要条件为第一个点和其余点代表的向量之差属于一个一维子空间,即  $(x_i - x_1, y_i - y_1)$  都成比例. 写成矩阵形式为

$$r \begin{pmatrix} x_2 - x_1 & x_3 - x_1 & \cdots & x_n - x_1 \\ y_2 - y_1 & y_3 - y_1 & \cdots & y_n - y_1 \end{pmatrix} \le 1,$$

或

$$r \begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_n \\ y_1 & y_2 & y_3 & \cdots & y_n \\ 1 & 1 & 1 & \cdots & 1 \end{pmatrix} \le 2.$$

### 命题 0.7

求三维实空间中 4 点  $(x_i, y_i, z_i)$  ( $1 \le i \le 4$ ) 共面的充要条件.

证明 设 4 点的向量为  $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ ,则 4 点共面的充要条件是:向量组  $\alpha_2 - \alpha_1, \alpha_3 - \alpha_1, \alpha_4 - \alpha_1$ 的秩不超过 2. 不 难将此写成矩阵形式:

$$r \begin{pmatrix} x_2 - x_1 & x_3 - x_1 & x_4 - x_1 \\ y_2 - y_1 & y_3 - y_1 & y_4 - y_1 \\ z_2 - z_1 & z_3 - z_1 & z_4 - z_1 \end{pmatrix} \le 2,$$

或

$$r \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ z_1 & z_2 & z_3 & z_4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \le 3.$$

例题 0.8 证明: 通过平面内不在一条直线上的 3 点  $(x_1, y_1), (x_2, y_2), (x_3, y_3)$  的圆方程为

$$\begin{vmatrix} x^2 + y^2 & x & y & 1 \\ x_1^2 + y_1^2 & x_1 & y_1 & 1 \\ x_2^2 + y_2^2 & x_2 & y_2 & 1 \\ x_2^2 + y_2^2 & x_3 & y_3 & 1 \end{vmatrix} = 0.$$

证明 圆方程可设为

$$u_1(x^2 + y^2) + u_2x + u_3y + u_4 = 0,$$

于是得到未知数 и1, и2, и3, и4 的方程组为

$$\begin{cases} (x_1^2 + y_1^2)u_1 + x_1u_2 + y_1u_3 + u_4 = 0, \\ (x_2^2 + y_2^2)u_1 + x_2u_2 + y_2u_3 + u_4 = 0, \\ (x_3^2 + y_3^2)u_1 + x_3u_2 + y_3u_3 + u_4 = 0. \end{cases}$$

上述方程组加上原方程组成一个含4个未知数、4个方程式的齐次线性方程组,它有非零解的充要条件是系数行

列式等于零,即

$$\begin{vmatrix} x^2 + y^2 & x & y & 1 \\ x_1^2 + y_1^2 & x_1 & y_1 & 1 \\ x_2^2 + y_2^2 & x_2 & y_2 & 1 \\ x_3^2 + y_3^2 & x_3 & y_3 & 1 \end{vmatrix} = 0.$$

由命题 0.6可知 3 点不在一条直线上意味着

$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \neq 0,$$

故圆方程不退化.

#### 命题 0.8

求平面上不在一条直线上的 4 个点  $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)$  位于同一个圆上的充要条件.

证明 由例题 0.8可得充要条件为

$$\begin{vmatrix} x_1^2 + y_1^2 & x_1 & y_1 & 1 \\ x_2^2 + y_2^2 & x_2 & y_2 & 1 \\ x_3^2 + y_3^2 & x_3 & y_3 & 1 \\ x_4^2 + y_4^2 & x_4 & y_4 & 1 \end{vmatrix} = 0.$$

**例题 0.9** 已知平面上两条不同的二次曲线  $a_i x^2 + b_i xy + c_i y^2 + d_i x + e_i y + f_i = 0 (i = 1, 2)$  交于 4 个不同的点  $(x_i, y_i)(1 \le i \le 4)$ . 求证: 过这 4 个点的二次曲线均可写为如下形状:

$$\lambda_1(a_1x^2+b_1xy+c_1y^2+d_1x+e_1y+f_1)+\lambda_2(a_2x^2+b_2xy+c_2y^2+d_2x+e_2y+f_2)=0.$$

证明 显然上述曲线过这 4 个交点. 现设  $ax^2 + bxy + cy^2 + dx + ey + f = 0$  是过这 4 个交点的二次曲线,则有

$$\begin{cases} ax_1^2 + bx_1y_1 + cy_1^2 + dx_1 + ey_1 + f = 0, \\ ax_2^2 + bx_2y_2 + cy_2^2 + dx_2 + ey_2 + f = 0, \\ ax_3^2 + bx_3y_3 + cy_3^2 + dx_3 + ey_3 + f = 0, \\ ax_4^2 + bx_4y_4 + cy_4^2 + dx_4 + ey_4 + f = 0. \end{cases}$$
(3)

视 a,b,c,d,e,f 为未知数,则线性方程组 (3) 有线性无关的解  $(a_1,b_1,c_1,d_1,e_1,f_1)',(a_2,b_2,c_2,d_2,e_2,f_2)'$ . 如果能证明方程组 (3) 的系数矩阵的秩等于 4,则这两个解就构成了基础解系,从而即得结论.

容易验证 4 个交点中的任意 3 个点都不共线,而且经过坐标轴适当的旋转,可以假设这 4 个交点的横坐标  $x_1,x_2,x_3,x_4$  互不相同. 用反证法证明结论,设方程组 (3) 系数矩阵 A 的秩小于 4. 由任意 3 个交点不共线以及命题 0.6知, $(x_1,x_2,x_3,x_4)'$ , $(y_1,y_2,y_3,y_4)'$ ,(1,1,1,1)' 线性无关,从而它们是 A 的列向量的极大无关组,于是  $(x_1^2,x_2^2,x_3^2,x_4^2)'$  是它们的线性组合,故可设  $x_i^2=rx_i+sy_i+t(1\leq i\leq 4)$ ,其中 r,s,t 是实数. 由于  $x_1,x_2,x_3,x_4$  互不相同,故  $s\neq 0$ ,于是  $y_i=\frac{1}{s}x_i^2-\frac{r}{s}x_i-\frac{t}{s}(1\leq i\leq 4)$ . 考虑 A 的第一列、第二列、第四列和第六列构成的四阶行列式 |B|,利用 Vander - monde 行列式容易算出  $|B|=-\frac{1}{s}\prod_{1\leq i< j\leq 4}(x_i-x_j)\neq 0$ ,于是 A 的秩等于 4,这与假设矛盾. 因 此方程组 (3) 的系数矩阵的秩只能等于 4.