

System Fundamentals

Virtualization and its Components

In today's session, you will learn about:

- Compute Virtualization
- Virtual Machines
- Application Virtualization
- Desktop Virtualization

What is Virtualization?

Created by fae frey from Noun Project

Compute Virtualization

 Compute virtualization is a technique of abstracting the physical hardware of a compute system from the operating system (OS) and applications.

Need for Compute Virtualization

Before Virtualization

- IT silos and underutilized resources
- Inflexible and expensive
- Management inefficiencies
- Risk of downtime

- Server consolidation and improved resource utilization
- Flexible infrastructure at a lower cost
- Increased management efficiencies
- Increased availability and improved business continuity

Name of the Activity Fastest Finger First

Instructions

Mode: In-session

Duration: 5 minutes

Materials Required: None

What changes did Compute Virtualization bring about?

Hypervisor

- Hypervisor is compute virtualization software that is installed on a compute system.
- It provides a virtualization layer that abstracts the processor, memory, network, and storage of the compute system and enables the creation of multiple virtual machines.
- Components of a Hypervisor

Compute System

Bare-metal Hypervisor	Hosted Hypervisor
A bare-metal hypervisor is directly installed on the physical compute hardware in the same way as an OS.	A hosted hypervisor is installed as an application on an operating system.
It has direct access to the hardware resources of the compute system and is therefore more efficient than a hosted hypervisor.	The hosted hypervisor does not have direct access to the hardware, and all requests pass through the OS running on the physical compute system.
A bare-metal hypervisor is designed for enterprise data centers and third platform infrastructure.	A hosted hypervisor is more suitable for development, testing, and training purposes.

Name of the Activity

Face Off

Instructions

Mode: In-session

Duration: 5 minutes

Materials Required: None

Bare-metal Hypervisor v/s Hosted Hypervisor

What is Virtual Machine?

Created by fae frey from Noun Project

Virtual Machine

Logical compute system with virtual hardware on which a supported guest OS and its applications run

Created by a hypervisor installed on a physical compute system

VM appears as a physical compute system

Virtual Machine

- Operating system
- VMware Tools

- CPU and memory
- Network adapters
- Disk controllers
- Parallel and serial ports

	. C•		. C·I
LO	ntigi	ıratior	า file

 Stores information, such as VM name, BIOS information, guest OS type, memory size

Virtual disk file

• Stores the contents of the VM's disk drive

Memory state file

 Stores the memory contents of a VM in a suspended state

Snapshot file

• Stores the VM settings and virtual disk of a VM

Log file

 Keeps a log of the VM's activity and is used in troubleshooting

Name of the Activity

Who am I?

Instructions

Mode: In-session

Duration: 5 minutes

Materials Required: None

Activity – Who am I?

- I store the contents of the VM's disk drive. Virtual Disk File
- I store the VM settings and virtual disk of a VM. Snapshot File
- My role is to keep a log of the VM's activity and is used in troubleshooting. Log File
- I store information, such as VM name, BIOS information, guest OS type, memory size.
- I store the memory contents of a VM in a suspended state. Memory State File

Benefits of Virtual Machines

Physical Machines	Virtual Machines
Difficult to relocate	Easy to relocate
Difficult to manage	Easy to manage
Hardware has limitation	Legacy applications

Name of the Activity Face Off

Instructions

Mode: In-session

Duration: 5 minutes

Materials Required: None

Physical Machines v/s
Virtual Machines

What are some other differences between Virtual Machines and Physical Machines?

Created by fae frey from Noun Project

Physical and Virtual Architecture

Physical Architecture

Virtual Architecture

Physical Architecture

Virtual Architecture

Name of the Activity Taboo

Instructions

Mode: In-session

Duration: 5 minutes

Materials Required: None

Physical and Virtual Host Memory Usage

Physical Architecture

Virtual Architecture

Physical and Virtual Networking

Physical Architecture

Virtual Architecture

Name of the Activity

Correct or Incorrect

Instructions

Mode: In-session

Duration: 5 minutes

Materials Required: None

Knowledge Check – Correct or Incorrect

- Physical switches do not require a spanning tree protocol, because a single-tier networking topology is enforced.
- Virtual memory is a well-known technique used in most general-purpose operating systems.

- The virtualization layer runs instructions only when needed to make virtual machines operate as if they were running directly on a physical machine.
- The hypervisor provides physical hardware resources dynamically to physical machines.

Knowledge Check – Correct or Incorrect

 When CPU contention occurs, the ESXi host time-slices the physical processors across all virtual machines so each virtual machine runs as if it had a specified number of virtual processors.

Virtual machines share access to CPUs and are scheduled to run by the hypervisor.

Application Virtualization

 Application virtualization is the technique of decoupling an application from the underlying computing platform (OS and hardware) in order to enable the application to be used on a compute system without installation.

Benefits of Application Virtualization

Simplified application management

Eliminate OS modifications

Resolve application conflicts and compatibility issues

Simplified OS image management

Flexibility of access

Application Virtualization - Techniques

Name of the Activity Identify the Technique

Instructions

Mode: In-session

Duration: 5 minutes

Materials Required: None

Activity – Identify the Technique

- In this technique, an application is aggregated within a virtualized container, along with the assets, such as files, virtual registry, and class libraries that it requires for execution. Application encapsulation
- In this technique an application is deployed on a remote compute system, and is downloaded in portions to an end-point client device for local execution. Application streaming
- In this technique the process, of packaging or sequencing, converts an application into a standalone, self-contained executable package that can directly run on a compute system. Application encapsulation
- In this technique an application's user interface (UI) is separated from its execution. Application presentation
- In this technique application sessions are created in the remote compute system and a user connects to an individual session from a client by means of the software agent. Application presentation

What is **Desktop Virtualization?**

Created by fae frey from Noun Project

Desktop Virtualization

- Desktop virtualization decouples the OS, applications, and user state (profiles, data, and settings) from a physical compute system.
- Benefits of Desktop Virtualization
 - Simplified desktop infrastructure management
 - Improved data protection and compliance
 - Flexibility of access

Desktop Virtualization - Techniques

Remote Desktop Services

Virtual Desktop Infrastructure

Use Case	Description
Cloud Application Streaming	 Streaming applications from the cloud to various client services Applications flexibly scale to meet growth in processing and storage needs Applications can be delivered to devices on which they may run natively
Desktop as a Service	 Cloud service in which a VDI is hosted by a cloud service provider Provider manages VDI and OS updates Facilitates CAPEX and OPEX savings

Summary

In this session, you learnt about:

- Compute Virtualization
- Virtual Machines
- Application Virtualization
- Desktop Virtualization

