IIC3263

Terminología

Restricción

Recuerde que en este curso consideramos vocabularios sin funciones.

De hecho, inicialmente nos vamos a restringir más.

▶ Para empezar vamos a considerar vocabularios sin constantes.

Importante

En este capítulo consideramos estructuras con dominios tanto finitos como infinitos.

Resultados son válidos para estructuras arbitrarias.

Terminología: Sub-estructura inducida

Dado: Vocabulario \mathcal{L} y \mathcal{L} -estructuras \mathfrak{A} y \mathfrak{B} .

▶ Los dominios de \mathfrak{A} y \mathfrak{B} son A y B, respectivamente.

Notación

Decimos que $\mathfrak B$ es la sub-estructura de $\mathfrak A$ inducida por B si $B\subseteq A$ y para cada $R\in \mathcal L$ de aridad k:

$$R^{\mathfrak{B}} = R^{\mathfrak{A}} \cap B^k$$

Terminología: Isomorfismo

Notación

 $f: A \rightarrow B$ es un isomorfismo de \mathfrak{A} en \mathfrak{B} si:

- f es una biyección.
- ▶ Para cada $R \in \mathcal{L}$ de aridad k y $(a_1, ..., a_k) \in A^k$, se tiene que:

$$(a_1,\ldots,a_k)\in R^{\mathfrak{A}}$$
 si y sólo si $(f(a_1),\ldots,f(a_k))\in R^{\mathfrak{B}}$

Notación

 $\mathfrak A$ y $\mathfrak B$ son estructuras isomorfas, denotado como $\mathfrak A\cong \mathfrak B$, si existe un isomorfismo f de $\mathfrak A$ en $\mathfrak B$.

Terminología: Isomorfismo parcial

Dado: Tuplas $\bar{a}=(a_1,\ldots,a_k)$ en \mathfrak{A} y $\bar{b}=(b_1,\ldots,b_k)$ en \mathfrak{B} .

Notación

 (\bar{a}, \bar{b}) es un isomorfismo parcial de $\mathfrak A$ en $\mathfrak B$ si la función f definida como $f(a_j) = b_j$ es un isomorfismo entre las sub-estructuras de $\mathfrak A$ y $\mathfrak B$ inducidas por $\{a_1, \ldots, a_k\}$ y $\{b_1, \ldots, b_k\}$, respectivamente.

Ejercicio

Sea $\mathfrak{A}=\langle A=\{1,2,3,4\},<^{\mathfrak{A}}\rangle$ y $\mathfrak{B}=\langle B=\{1,2,3,4,5\},<^{\mathfrak{B}}\rangle$. ¿Es ((1,3),(2,5)) un isomorfismo parcial de \mathfrak{A} en \mathfrak{B} ? ¿Y ((1,3),(4,2))?

Terminología: Rango de cuantificación

Notación

El rango de cuantificación de una \mathcal{L} -fórmula φ , denotado como $rc(\varphi)$, se define como:

- Si φ es atómica, entonces $rc(\varphi) = 0$.
- Si $\varphi = (\neg \psi)$, entonces $rc(\varphi) = rc(\psi)$.
- ► Si $\varphi = (\psi \star \theta)$, donde $\star \in \{\lor, \land, \rightarrow, \leftrightarrow\}$, entonces $rc(\varphi) = m\acute{a}x\{rc(\psi), rc(\theta)\}$.
- ► Si $\varphi = (\exists x \, \psi)$ ó $\varphi = (\forall x \, \psi)$, entonces $rc(\varphi) = 1 + rc(\psi)$.

Ejercicio

¿Cuáles son los rangos de cuantificación de $\exists x \forall y \ P(x,y)$ y $(\exists x \ P(x)) \land (\neg \exists y \ Q(y))$?

Tablero : \mathcal{L} -estructuras \mathfrak{A} y \mathfrak{B}

Jugadores : Duplicator (**D**) y Spoiler (**S**) Número de rondas : $k \ge 0$ (parámetro del juego)

En cada ronda:

- 1. **S** elije una estructura y un elemento en esa estructura.
- 2. **D** responde con un elemento en la otra estructura.

Sean \bar{a} y \bar{b} los elementos jugados en $\mathfrak A$ y $\mathfrak B$: **S** gana el juego si (\bar{a},\bar{b}) no es un isomorfismo parcial de $\mathfrak A$ en $\mathfrak B$.

► En caso contrario gana **D**.

¿Qué están tratando de hacer S y D?

Para ganar, **D** tiene que mantener un isomorfismo parcial en todas las movidas.

▶ **D** no puede corregir en una movida posterior un error.

Notación

D tiene una estrategia ganadora en el juego de Ehrenfeucht-Fraïssé de k rondas entre $\mathfrak A$ y $\mathfrak B$ si para cada posible forma de jugar de $\mathbf S$, existe una forma de jugar de $\mathbf D$ que le permite ganar.

 $ightharpoonup \mathfrak{A} \equiv_k \mathfrak{B}$

Un momento para jugar ...

Ejercicios

- 1. Sean $\mathfrak{A}=\langle\{1,2,3,4\}\rangle$ y $\mathfrak{B}=\langle\{1,2,3,4,5\}\rangle$. ¿Es cierto que $\mathfrak{A}\equiv_3\mathfrak{B}$? ¿Qué sucede con $\mathfrak{A}\equiv_5\mathfrak{B}$?
- 2. Sean $\mathfrak{A}=\langle\{1,2,3,4\},\ P^{\mathfrak{A}}=\{1,2\}\rangle$ y $\mathfrak{B}=\langle\{1,2,3,4,5\},\ P^{\mathfrak{B}}=\{3,5\}\rangle$. ¿Es cierto que $\mathfrak{A}\equiv_2\mathfrak{B}$? ¿Qué sucede con $\mathfrak{A}\equiv_3\mathfrak{B}$?
- 3. Sean $\mathfrak{A} = \langle \{1,2,3\}, \, R^{\mathfrak{A}} = \{(1,2),(2,3)\} \rangle$ y $\mathfrak{B} = \langle \{1,2,3,4\}, \, R^{\mathfrak{B}} = \{(1,2),(2,3),(3,4)\} \rangle$. ¿Es cierto que $\mathfrak{A} \equiv_2 \mathfrak{B}$? ¿Qué sucede con $\mathfrak{A} \equiv_3 \mathfrak{B}$?
- 4. En el ejercicio anterior, suponga que A y B tienen k y k+1 elementos, respectivamente. ¿Existe algún valor de k para el cual $\mathfrak{A} \equiv_3 \mathfrak{B}$?

Juegos y la lógica de primer orden

¿Por qué nos interesan los juegos de Ehrenfeucht-Fraïssé?

▶ Si $\mathfrak{A} \equiv_k \mathfrak{B}$, entonces para cada oración φ tal que $rc(\varphi) \leq k$, se tiene que:

$$\mathfrak{A}\models \varphi$$
 si y sólo si $\mathfrak{B}\models \varphi$

¿Por qué es esto cierto?

▶ Idea: Sea $\varphi = \forall x \exists y \ R(x,y)$, $\mathfrak{A} \models \varphi \ y \ \mathfrak{B} \not\models \varphi$. Demuestre que $\mathfrak{A} \not\equiv_2 \mathfrak{B}$.

Vamos a demostrar que la relación descrita arriba es cierta.

Pero antes vamos a ver para que la podemos usar.

Juegos y el poder expresivo de una lógica

Dado: Vocabulario $\mathcal L$ y propiedad $\mathcal P$ de las $\mathcal L$ -estructuras.

ightharpoonup Queremos demostrar que $\mathcal P$ no es expresable en lógica de primer orden.

Metodología:

- 1. Suponga que \mathcal{P} si es expresable: Existe φ tal que para todo $\mathfrak{A} \in \operatorname{AllStruct}[\mathcal{L}], \, \mathfrak{A} \in \mathcal{P}$ si y sólo si $\mathfrak{A} \models \varphi$.
- 2. Suponga que $rc(\varphi) = k$ y encuentre estructuras $\mathfrak A$ y $\mathfrak B$ tales que $\mathfrak A \equiv_k \mathfrak B$, $\mathfrak A \in \mathcal P$ pero $\mathfrak B \notin \mathcal P$.

Se puede concluir que φ no representa a \mathcal{P} . ¿Por qué?

Juegos y el poder expresivo de una lógica

Ejercicio

Sea $\mathcal{L} = \{U(\cdot)\}\$ y \mathcal{P} el conjunto de todas las \mathcal{L} -estructuras que tienen una cantidad par de elementos en U. Demuestre que \mathcal{P} no es expresable en lógica de primer orden.

Queda mucho por recorrer ...

- ▶ ¿Qué tan buena es la metodología?
- ¿Qué tan cercanos son los juegos de Ehrenfeucht-Fraïssé a la lógica de primer orden?

Poder expresivo de una lógica sobre una clase de estructuras

Dado: Clase C de L-estructuras.

▶ Por ejemplo, C puede ser el conjunto de todas las \mathcal{L} -estructuras finitas (STRUCT[\mathcal{L}])

Notación

▶ \mathcal{P} es expresable en lógica de primer orden en \mathcal{C} si existe una oración φ tal que para toda $\mathfrak{A} \in \mathcal{C}$:

$$\mathfrak{A} \models \varphi$$
 si y sólo si $\mathfrak{A} \in \mathcal{P}$

¿Se puede usar la metodología para demostrar que una propiedad no es expresable en \mathcal{C} ? ¿Cómo?

Poder expresivo de una lógica sobre una clase de estructuras

Dado: Vocabulario \mathcal{L} , clase \mathcal{C} de \mathcal{L} -estructuras y propiedad \mathcal{P} sobre \mathcal{C} .

 $lackbox{ Queremos demostrar que } \mathcal{P}$ no es expresable en \mathcal{C}

Metodología:

- 1. Suponga que \mathcal{P} si es expresable: Existe φ tal que para todo $\mathfrak{A} \in \mathcal{C}$, $\mathfrak{A} \in \mathcal{P}$ si y sólo si $\mathfrak{A} \models \varphi$.
- 2. Suponga que $rc(\varphi) = k$ y encuentre estructuras $\mathfrak{A} \in \mathcal{C}$ y $\mathfrak{B} \in \mathcal{C}$ tales que $\mathfrak{A} \equiv_k \mathfrak{B}$, $\mathfrak{A} \in \mathcal{P}$ pero $\mathfrak{B} \notin \mathcal{P}$.

Se concluye que φ no representa a $\mathcal{P}.$

Ejemplo: Ordenes lineales finitos

Sea $\mathcal{L} = \{<\}$ y \mathcal{C} la clase de ordenes lineales finitos sobre \mathcal{L} . Queremos demostrar que la siguiente propiedad no es expresable:

$$\mathcal{P} = \{\mathfrak{A} \in \mathcal{C} \mid |A| \text{ es par, donde } A \text{ es el dominio de } \mathfrak{A}\}$$

Suponemos que \mathcal{P} es expresable en \mathcal{C} .

- **Existe** φ tal que para todo orden lineal finito \mathfrak{A} :
 - $\mathfrak{A}\models \varphi$ si y sólo si \mathfrak{A} tiene un número par de elementos
- $ightharpoonup rc(\varphi) = k$

Ejemplo: Ordenes lineales finitos

Tenemos que encontrar estructuras $\mathfrak A$ y $\mathfrak B$ en $\mathcal C$ tales que:

- $\triangleright \mathfrak{A} \equiv_k \mathfrak{B}$
- ▶ 🎗 tiene un número par de elementos y
- B tiene un número impar de elementos.

Parece no ser tan fácil...

¿Cuan grandes tienen que ser los dominios de $\mathfrak A$ y $\mathfrak B$?

► Con una fórmula con rango de cuantificación k, ¿De qué tamaño son la estructuras que podemos distinguir?

Distancias y lógica de primer orden

Pronto vamos a demostrar que la lógica de primer orden es *local*, en el sentido que las fórmulas solo pueden ver un vecindario alrededor de ellas.

- ► El vecindario, eso si, es bastante grande.
- Vamos a ver un caso particular: órdenes lineales.

Lógica de primer orden y ordenes lineales

Definimos una familia de fórmulas $\alpha_n(x,y)$, para $n \ge 1$, de manera recursiva:

$$\alpha_{1}(x,y) := x < y, \alpha_{n}(x,y) := \exists x_{n} (\alpha_{\lfloor \frac{n}{2} \rfloor}(x,x_{n}) \wedge \alpha_{\lceil \frac{n}{2} \rceil}(x_{n},y)).$$

Veamos cuáles son las propiedades fundamentales de estas fórmulas.

Rango de cuantificación de α_n

Lema

$$rc(\alpha_n(x,y)) = \lceil \log n \rceil.$$

Demostración: Por inducción en n. Para n = 1 se cumple trivialmente.

Supongamos que $n \ge 2$ y que la propiedad se cumple para todo número menor que n.

Por definición:

$$rc(\alpha_n(x,y)) = 1 + máx\{rc(\alpha_{\lfloor \frac{n}{2} \rfloor}(x,x_n)), rc(\alpha_{\lceil \frac{n}{2} \rceil}(x_n,y))\}.$$

Rango de cuantificación de α_n

Por hipótesis de inducción:

$$rc(\alpha_{\lfloor \frac{n}{2} \rfloor}(x,y)) = \lceil \log \lfloor \frac{n}{2} \rfloor \rceil,$$

$$rc(\alpha_{\lceil \frac{n}{2} \rceil}(x,y)) = \lceil \log \lceil \frac{n}{2} \rceil \rceil.$$

Como $\log\lfloor \frac{n}{2} \rfloor \leq \log\lceil \frac{n}{2} \rceil$, concluimos que:

$$rc(\alpha_n(x,y)) = 1 + \lceil \log \lceil \frac{n}{2} \rceil \rceil.$$

Por demostrar: $\lceil \log n \rceil = 1 + \lceil \log \lceil \frac{n}{2} \rceil \rceil$

Un poco de aritmética ...

Consideramos tres casos:

1. Suponemos que $n=2^\ell$, donde $\ell \geq 1$. Entonces $\lceil \frac{n}{2} \rceil = 2^{\ell-1}$, por lo que:

$$\lceil \log n \rceil = \ell = 1 + (\ell - 1) = 1 + \lceil \log 2^{\ell - 1} \rceil = 1 + \lceil \log \lceil \frac{n}{2} \rceil \rceil.$$

2. Suponemos que $n=2^\ell+2c$, donde $\ell\geq 1$ y $0<2c<2^\ell$.

Como
$$2^{\ell} < 2^{\ell} + 2c < 2^{\ell+1}$$
, concluimos que $\lceil \log n \rceil = \ell + 1$.

Como $0 < 2c < 2^{\ell}$, se tiene que $0 < c < 2^{\ell-1}$. Concluimos que $2^{\ell-1} < 2^{\ell-1} + c < 2^{\ell}$. Por lo tanto $\lceil \log \lceil \frac{n}{2} \rceil \rceil = \ell$, ya que $\lceil \frac{n}{2} \rceil = 2^{\ell-1} + c$.

De todo lo anterior: $\lceil \log n \rceil = 1 + \lceil \log \lceil \frac{n}{2} \rceil \rceil$

Un poco de aritmética ...

3. Suponemos que $n=2^\ell+2c+1$, donde $\ell\geq 1$ y $1\leq 2c+1<2^\ell$.

Como
$$2^{\ell} < 2^{\ell} + 2c + 1 < 2^{\ell+1}$$
, concluimos que $\lceil \log n \rceil = \ell + 1$.

Como $1 \leq 2c+1 < 2^\ell$, se tiene que $\frac{1}{2} \leq c+\frac{1}{2} < 2^{\ell-1}$. Entonces tenemos que $1 \leq c+1 \leq 2^{\ell-1}$. Concluimos que $2^{\ell-1} < 2^{\ell-1} + c+1 \leq 2^\ell$. Por lo tanto $\lceil \log \lceil \frac{n}{2} \rceil \rceil = \ell$, ya que $\lceil \frac{n}{2} \rceil = 2^{\ell-1} + c+1$.

De todo lo anterior:
$$\lceil \log n \rceil = 1 + \lceil \log \lceil \frac{n}{2} \rceil \rceil$$

Distancias medidas por α_n

Lema

Sea
$$\mathfrak{A} = \langle A = \{1, \dots, m\}, <^{\mathfrak{A}} \rangle$$
. Si $\mathfrak{A} \models \alpha_n(i,j)$, entonces $j - i \geq n$.

Demostración: Por inducción en n. Para n = 1 es fácil de verificar.

Sea $n \ge 2$ y supongamos que la propiedad se cumple para todo número menor que n.

Si $\mathfrak{A} \models \alpha_n(i,j)$, entonces existe k tal que $\mathfrak{A} \models \alpha_{\lfloor \frac{n}{2} \rfloor}(i,k)$ y $\mathfrak{A} \models \alpha_{\lceil \frac{n}{2} \rceil}(k,j)$.

Distancias medidas por α_n

Por hipótesis de inducción:

$$k-i \geq \lfloor \frac{n}{2} \rfloor$$
 y $j-k \geq \lceil \frac{n}{2} \rceil$.

Como
$$j - i = (j - k) + (k - i)$$
, concluimos que:

$$j - i \ge \lceil \frac{n}{2} \rceil + \lfloor \frac{n}{2} \rfloor$$

$$= n$$

Juegos y ordenes lineales

Corolario

Si un orden lineal $\mathfrak A$ satisface $\alpha_{2^k}(a,b)$, entonces la distancia entre a y b es al menos 2^k .

Tenemos que:

- ► Con una fórmula con rango de cuantificación k podemos verificar si dos puntos están a distancia 2^k.
- \mathfrak{A} tiene al menos $2^k + 1$ elementos.

Tenemos una primera indicación de que si queremos $\mathfrak{A} \equiv_k \mathfrak{B}$, entonces \mathfrak{A} y \mathfrak{B} deben tener un número exponencial de elementos.

Hagamos más precisa esta afirmación ...

Juegos y ordenes lineales

Dado:
$$\mathfrak{A} = \langle A = \{1, \dots, m\}, <^{\mathfrak{A}} \rangle$$
 y $\mathfrak{B} = \langle B = \{1, \dots, n\}, <^{\mathfrak{B}} \rangle$.

▶ Pregunta original: ¿Cuan grandes tienen que ser m y n para que $\mathfrak{A} \equiv_k \mathfrak{B}$?

Proposición

Si $m < n < 2^{k-1}$, entonces existe una oración φ tal que $\mathfrak{A} \not\models \varphi$, $\mathfrak{B} \models \varphi$ y $rc(\varphi) \leq k$.

Demostración: Sea

$$\varphi = \exists x (\exists y \, \alpha_{\lfloor \frac{n}{2} \rfloor}(y, x) \wedge \exists z \, \alpha_{\lceil \frac{n}{2} \rceil - 1}(x, z)).$$

Juegos y ordenes lineales

Se tiene que $\mathfrak{A} \not\models \varphi$ y $\mathfrak{B} \models \varphi$.

▶ ¿Por qué?

También se tiene que $rc(\varphi) = 2 + rc(\alpha_{\lfloor \frac{n}{2} \rfloor}(y, x)) = 2 + \lceil \log \lfloor \frac{n}{2} \rfloor \rceil$.

Como
$$n < 2^{k-1}$$
, se tiene que $\lfloor \frac{n}{2} \rfloor < 2^{k-2}$, por lo que $\lceil \log \lfloor \frac{n}{2} \rfloor \rceil \le k - 2$. Concluimos que $rc(\varphi) \le k$.

Conclusión

Si queremos que $\mathfrak{A} \equiv_k \mathfrak{B}$, entonces $|A| \setminus |B|$ deben ser $\Omega(2^k)$.

▶ Vamos a ver que esta es una buena estimación ...

Dado:
$$\mathfrak{A} = \langle A = \{1, \dots, m\}, <^{\mathfrak{A}} \rangle$$
 y $\mathfrak{B} = \langle B = \{1, \dots, n\}, <^{\mathfrak{B}} \rangle$.

Proposición

Si $m, n \geq 2^k + 1$, entonces $\mathfrak{A} \equiv_k \mathfrak{B}$.

Demostración: Vamos a definir una estrategia ganadora para D.

Utilizamos una estrategia que en la ronda $\ell \leq k$ cumpla lo siguiente: Si las movidas en $\mathfrak A$ y $\mathfrak B$ son (a_1,\ldots,a_ℓ) y (b_1,\ldots,b_ℓ) , respectivamente, entonces para todo $1\leq i,j\leq \ell$:

- 1a. si $|a_i a_j| < 2^{k-\ell}$, entonces $|b_i b_j| = |a_i a_j|$;
- 1b. si $|a_i 1| < 2^{k-\ell}$, entonces $|b_i 1| = |a_i 1|$;
- 1c. si $|a_i m| < 2^{k-\ell}$, entonces $|b_i n| = |a_i m|$;

2a. si
$$|a_i - a_i| \ge 2^{k-\ell}$$
, entonces $|b_i - b_i| \ge 2^{k-\ell}$;

2b. si
$$|a_i - 1| \ge 2^{k-\ell}$$
, entonces $|b_i - 1| \ge 2^{k-\ell}$;

2c. si
$$|a_i - m| \ge 2^{k-\ell}$$
, entonces $|b_i - n| \ge 2^{k-\ell}$;

3. $a_i < a_j$ si y sólo si $b_i < b_j$.

Cuando tomamos $\ell=k$, concluimos que gana **D**. ¿Por qué?

Vamos a demostrar por inducción en $\ell \leq k$ que **D** puede jugar de tal forma de cumplir las condiciones anteriores.

Suponga que en la ronda $\ell < k$ las movidas en $\mathfrak A$ y $\mathfrak B$ son (a_1,\ldots,a_ℓ) y (b_1,\ldots,b_ℓ) , respectivamente.

Suponga que **S** decide jugar un punto $a_{\ell+1}$ en $\mathfrak A$ (si **S** juega un punto en $\mathfrak B$, la estrategia se define de la misma forma).

Tenemos tres casos posibles:

- ▶ Existe $i \in \{1, ..., \ell\}$ tal que a_i es el menor elemento en $(a_1, ..., a_\ell)$ y $1 \le a_{\ell+1} \le a_i$.
- ▶ Existe $i \in \{1, ..., \ell\}$ tal que a_i es el mayor elemento en $(a_1, ..., a_\ell)$ y $a_i \le a_{\ell+1} \le m$.
- Existen $i, j \in \{1, ..., \ell\}$ tales que $a_i \le a_j$, no existe un elemento entre ellos en $(a_1, ..., a_\ell)$ y $a_i \le a_{\ell+1} \le a_j$.

Vamos a ver como se define la estrategia en el tercer caso. Los otros dos casos son idénticos a este.

- ▶ Si $|a_i a_j| < 2^{k-\ell}$, entonces $|b_i b_j| = |a_i b_j|$. Los intervalos $[a_i, a_j]$ en $\mathfrak A$ y $[b_i, b_j]$ en $\mathfrak B$ son isomorfos, por lo que es fácil definir $b_{\ell+1}$. ¿Cómo se define?
- ▶ Si $|a_i a_j| \ge 2^{k-\ell}$, entonces $|b_i b_j| \ge 2^{k-\ell}$. Para definir $b_{\ell+1}$ consideramos tres casos.
 - Si $|a_i a_{\ell+1}| < 2^{k-(\ell+1)}$, entonces definimos $b_{\ell+1}$ como un punto en $\mathfrak B$ mayor o igual a b_i tal que $|a_i a_{\ell+1}| = |b_i b_{\ell+1}|$.
 - ▶ Si $|a_j a_{\ell+1}| < 2^{k-(\ell+1)}$, entonces definimos $b_{\ell+1}$ como un punto en $\mathfrak B$ menor o igual a b_j tal que $|a_j a_{\ell+1}| = |b_j b_{\ell+1}|$.

▶ Si $|a_i - a_{\ell+1}| \ge 2^{k-(\ell+1)}$ y $|a_j - a_{\ell+1}| \ge 2^{k-(\ell+1)}$, entonces definimos $b_{\ell+1}$ de la siguiente forma.

Sabemos que existe por lo menos un punto $b_i \leq b \leq b_j$ tal que $|b_i-b| \geq 2^{k-(\ell+1)}$ y $|b_j-b| \geq 2^{k-(\ell+1)}$. Definimos $b_{\ell+1}$ como uno de estos puntos.

Para terminar la demostración tenemos que demostrar que $(a_1, \ldots, a_{\ell+1})$ y $(b_1, \ldots, b_{\ell+1})$ satisfacen las condiciones iniciales.

¿Cómo se hace esto?

Paridad no es definible sobre ordenes lineales finitos

Sea
$$\mathcal{L}=\{<\}$$
, \mathcal{C} la clase de ordenes lineales finitos sobre \mathcal{L} y
$$\mathcal{P} = \{\mathfrak{A} \in \mathcal{C} \mid |A| \text{ es par, donde } A \text{ es el dominio de } \mathfrak{A}\}.$$

Corolario

 ${\mathcal P}$ no es definible en lógica de primer orden en ${\mathcal C}.$

Ejercicio

Demuestre el corolario.

Teorema de Ehrenfeucht-Fraïssé: Caso general

Volvemos a considerar vocabularios con constantes.

Dado: Vocabulario \mathcal{L} y \mathcal{L} -estructuras \mathfrak{A} y \mathfrak{B} .

▶ Los dominios de \mathfrak{A} y \mathfrak{B} son A y B, respectivamente.

Decimos que $\mathfrak B$ es la sub-estructura de $\mathfrak A$ inducida por B si

- ▶ B ⊂ A
- ▶ para cada $c \in \mathcal{L}$, se tiene que $c^{\mathfrak{A}} \in B$ y $c^{\mathfrak{B}} = c^{\mathfrak{A}}$
- ▶ para cada $R \in \mathcal{L}$ de aridad k: $R^{\mathfrak{B}} = R^{\mathfrak{A}} \cap B^k$

Terminología: Isomorfismo incluyendo constantes

Decimos que f es un isomorfismo de $\mathfrak A$ en $\mathfrak B$ si:

- ▶ f es una biyección
- ▶ Para cada $c \in \mathcal{L}$, se tiene que $f(c^{\mathfrak{A}}) = c^{\mathfrak{B}}$
- ▶ Para cada $R \in \mathcal{L}$ de aridad k y $(a_1, ..., a_k) \in A^k$, se tiene que $(a_1, ..., a_k) \in R^{\mathfrak{A}}$ si y sólo si $(f(a_1), ..., f(a_k)) \in R^{\mathfrak{B}}$

Notación

 $\mathfrak A$ y $\mathfrak B$ son estructuras isomorfas, denotado como $\mathfrak A\cong \mathfrak B$, si existe un isomorfismo f de $\mathfrak A$ en $\mathfrak B$.

Juegos de Ehrenfeucht-Fraïssé: Caso general

¡El juego no cambia!

Tablero : \mathcal{L} -estructuras \mathfrak{A} y \mathfrak{B}

Jugadores : Duplicator (**D**) y Spoiler (**S**) Número de rondas : $k \ge 0$ (parámetro del juego)

En cada ronda:

- 1. **S** elije una estructura y un punto en esa estructura.
- 2. **D** responde con un punto en la otra estructura.

Juegos de Ehrenfeucht-Fraïssé: Caso general

Dado: Vocabulario \mathcal{L} que contiene constantes $\{c_1,\ldots,c_\ell\}$.

Sean (a_1, \ldots, a_k) y (b_1, \ldots, b_k) los puntos jugados en $\mathfrak A$ y $\mathfrak B$.

S gana el juego si

$$((c_1^{\mathfrak{A}},\ldots,c_{\ell}^{\mathfrak{A}},a_1,\ldots,a_k),(c_1^{\mathfrak{B}},\ldots,c_{\ell}^{\mathfrak{B}},b_1,\ldots,b_k))$$

no es un isomorfismo parcial de $\mathfrak A$ en $\mathfrak B$.

► En caso contrario gana **D**.

¿Por qué incluimos las constantes?

▶ Nótese que puede pasar que $\mathfrak{A} \not\equiv_0 \mathfrak{B}$. ¿Tiene sentido esto?

Juegos de Ehrenfeucht-Fraïssé: Estrategia ganadora

Notación

D tiene una estrategia ganadora en el juego de Ehrenfeucht-Fraïssé de k rondas entre $\mathfrak A$ y $\mathfrak B$ si para cada posible forma de jugar de $\mathbf S$, existe una forma de jugar de $\mathbf D$ que le permite ganar.

 $ightharpoonup \mathfrak{A} \equiv_k \mathfrak{B}$

Ejercicio

Sea $\mathcal{L} = \{<, min, max\}$ y \mathcal{C} la clase de \mathcal{L} -estructuras tales que < es un orden lineal finito, min es el menor elemento de < y max es el mayor elemento de <.

▶ Demuestre que para $\mathfrak{A}, \mathfrak{B} \in \mathcal{C}$, si $|A|, |B| \ge 2^k + 1$, entonces $\mathfrak{A} \equiv_k \mathfrak{B}$.

Teorema de Ehrenfeucht-Fraïssé

Dado: Vocabulario \mathcal{L} .

Notación

- ► LPO[k] es el conjunto de L-oraciones en lógica de primer orden con rango de cuantificación a lo más k.
- ▶ Dos \mathcal{L} -estructuras \mathfrak{A} y \mathfrak{B} están de acuerdo en LPO[k] si para cada $\varphi \in LPO[k]$:

$$\mathfrak{A} \models \varphi$$
 si y sólo si $\mathfrak{B} \models \varphi$

Teorema de Ehrenfeucht-Fraïssé

Teorema (Ehrenfeucht-Fraïssé)

Para todo par de \mathcal{L} -estructuras \mathfrak{A} y \mathfrak{B} , las siguientes afirmaciones son equivalentes:

- 1. $\mathfrak{A} \equiv_k \mathfrak{B}$
- 2. \mathfrak{A} y \mathfrak{B} están de acuerdo en LPO[k]

Ejercicio

Use el teorema para demostrar que la clausura transitiva no es definible en lógica de primer orden sobre la relación sucesor.