\mathbf{DMA}

 $Ugeopgave\ 5$

Beate Berendt Søegaard Mathias Larsen Simon Rotendahl

Datalogi

6. oktober 2016

Del 1

1

Vi får givet en table med GCD, Greatest Common Divisor

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2		1	2	1	2	1	2	1	2	1	2	1	2	1	2
3			1	2	3	1	2	3	1	2	3	1	2	3	1
4				1	2	2	3	1	2	2	3	1	2	2	3
5					1	2	3		3	1	2	3	4	3	1
6						1	2	2	2	3	3	1	2	2	2
7							1	2	3	3	4	4	3	1	2
8								1	2	2	4	2		3	3
9									1	2	3	2	3	4	3
10										1	2	2	3	3	2
11											1	2	3	4	4
12												1	2	2	2
13													1	2	3
14														1	2
15															1

Dvs. de manglende tal er hhv. 1 og 1.

$\mathbf{2}$

Lad t_n være det højeste antal trin der skal benyttes til at bestemme GCD(a,b) når $n \ge a \ge b > 0$. Ved at benytte ovenstående figur har vi at t_1, \dots, t_{15} er,

$$t_{1} = 1$$

$$t_{2} = 1$$

$$t_{3} = 2$$

$$t_{4} = 2$$

$$t_{5} = 3$$

$$t_{6} = 2$$

$$t_{7} = 3$$

$$t_{8} = 3$$

$$t_{10} = 3$$

$$t_{11} = 4$$

$$t_{12} = 4$$

$$t_{13} = 4$$

$$t_{14} = 4$$

$$t_{15} = 4$$

3

Vi kan vise at t_n er $\mathcal{O}(n)$. Vi ved at det taget n-tid at køre samligningslinjerne i kode igennem samt at vores returneringslinjer tager konstant tid at køre igennem, derfor får vi at

$$t_n = \mathcal{O}(n) \cdot \mathcal{O}(1) \cdot \mathcal{O}(1) = \mathcal{O}(n)$$

4

Ud fra vores pseudokode og konklusionen vedrørende køretid fra delopgave 1-3, kan t_n ikke være $\mathcal{O}(1)$.

5

Nej, ud fra figur 2, fra opgaveformuleringen, er $t_n = \Theta(n^2)$.

Del 2

1

Vi får givet at

$$P(n): 5 \mid (6^n - 5n + 4) \quad \text{for } n \in \mathbb{Z}$$

Dvs. at højreside divideret med 5 skal være lig med et heltal $I \in \mathbb{Z}$. Vi omskriver udtrykket P(n) = I.

Først sætter vi $(6^n - 5n + 4) = x$ så får vi at $5 \mid x = I$, som vi derefter kan omskrive til x = 5(I). Da dette udtryk er nemmere, at arbejde med end $(6^n - 5n + 4)$, kan vi antage at svaret til $(6^n - 5n + 4)$ kan løses af et multuplum af 5 og et positivt heltal I.

Altså får vi udtrykket

$$P(n): 5 \mid (6^n - 5n + 4) = I \quad I \in \mathbb{Z}^+, \ n \in \mathbb{Z}^+$$

Eller

$$P(n): (6^n - 5n + 4) = 5(I) \quad I \in \mathbb{Z}^+, \ n \in \mathbb{Z}^+$$

 $\mathbf{2}$

$$P(n): (6^{n} - 5n + 4) = 5(I)$$

$$P(1): (6^{1} - 5(1) + 4) = 5(I) \Rightarrow 6 - 5 + 4 = 5(I) = 5(1)$$

$$P(2): (6^{2} - 5(2) + 4) = 5(I) \Rightarrow 36 - 10 + 4 = 5(I) = 5(6)$$

$$P(3): (6^{3} - 5(3) + 4) = 5(I) \Rightarrow 216 - 15 + 4 = 5(I) = 5(41)$$

$$P(4): (6^{4} - 5(4) + 4) = 5(I) \Rightarrow 1298 - 20 + 4 = 5(I) = 5(256)$$

$$P(5): (6^{5} - 5(5) + 4) = 5(I) \Rightarrow 7776 - 25 + 4 = 5(I) = 5(1551)$$

3

Vi har følgen for b_n ,

$$b_n = 6^n - 5n + 4$$

og følgen for b_{n+1} vil se ud på følgende måde for $n \in \mathbb{Z}^+$, altså

$$b_{n+1}: 6^{k+1} - 5(k+1) + 4 = 5(I_k)$$

$$6^{k+1} - 5k - 5 + 4 = 5(I_k)$$

$$6 \cdot 6^k - 5k + 4 - 5 = 5(I_k)$$

$$(5+1) \cdot 6^k - 5k + 4 - 5 = 5(I_k)$$

$$6^k - 5k + 4 + 5 \cdot 6^k - 5 = 5(I_k)$$

Da $b_n = 6^n - 5n + 4$ kan vi omskrive ovenstående på følgende måde

$$b_{n+1}: b_n + 5 \cdot 6^k - 5 = 5(I)$$

5(I) og $5(I_k)$ skal forstås således at de begge er $\mathbb{Z}^+,$ men ikke nødvendigvis ens.

4

Vi har vist i delopgave 2, at P(n) er sand for $n = 1 \cdots 5$.

$$P(k+1): 6^k - 5k + 4 + 5 \cdot 6^k - 5 = 5(I)$$

Da $P(k): 6^n - 5n + 4$ som er lig med b_n som også er lige med 5(I), dvs.

$$5(I) + 5 \cdot 6^k - 5 = 5(I)$$

Vi dividere med 5 over hele ligningen, og får

$$I + 6^k - 1 = I_k$$

Da både $I, k, I_k \in \mathbb{Z}^+$ ses det let at dette udtryk er sand.

5

Vi har i tidligere delopgaver vist vha. induktion at $\forall n > 0 \ P(n)$, hvor

$$P(n): 5 \mid (6^n - 5n + 4)$$

I delopgave 2-2 udførte vi 5 basistrin for $n = 1 \cdots 5$. Derefter begyndte vi vores første induktiontrin i delopgave 2-3. Her sammenknyttede vi b_n og b_{n+1} til at være $b_{n+1} = b_n + 5 \cdot 6^n - 5$. I delopgave 2-4 færdiggjorde vi vores udregninger fra delopgave 3-2 samt redegjorde for at P(k+1) er sandt, kombineret med vores basistrin som var sandt, kan vi konkludere at P(n) er sand.