

COMPUTER MODELS IN NEUROSCIENCE: ARETHEY ANY GOOD?

Richard C. (Rick) Gerkin, PhD

Laboratory for Informatics and Computation in Open Neuroscience

George E.P. Box

But which ones?

$$\begin{cases} \frac{dV_{m}}{dt} = \frac{I}{C_{m}} - \frac{\bar{g}_{K}n^{4}}{C_{m}} (V_{m} - V_{K}) - \frac{\bar{g}_{Na}m^{3}h}{C_{m}} (V_{m} - V_{Na}) - \frac{\bar{g}_{l}}{C_{m}} (V_{m} - V_{l}) \\ \frac{dn}{dt} = \alpha_{n}(V_{m})(1 - n) - \beta_{n}(V_{m})n \\ \frac{dm}{dt} = \alpha_{m}(V_{m})(1 - m) - \beta_{m}(V_{m})m \\ \frac{dh}{dt} = \alpha_{h}(V_{m})(1 - h) - \beta_{h}(V_{m})h \end{cases}$$

Biophysically-detailed Models

$$\beta \qquad \alpha \qquad y_i \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta x_i$$

$$y_i \sim \text{Data } i = 1, 2, ..., n$$

Statistical Models

$$C\frac{dV}{dt} = -g_{L}(V - E_{L}) + g_{L}\Delta_{T} \exp\left(\frac{V - V_{T}}{\Delta_{T}}\right) - g_{e}(t)(V - E_{e}) - g_{i}(t)(V - E_{i}) - w$$

$$\tau_{w} \frac{dw}{dt} = a(V - E_{L}) - w$$
At spike time $(V > 20 \text{ mV})$: $V \to EL$

$$w \to w + b$$

Reduced Models

Machine Learning Models

EXAMPLE: A brief history of cosmology

EXAMPLE: A brief history of cosmology

Experimentalists

Modelers

Pass Fail Unclear

Global scientific output doubles every nine years

How can we:

- I) evaluate models against all relevant data?
- 2) do it automatically?
- 3) do it publicly and transparently?

Collections of empirically-informed unit tests. Evaluate models according to which tests they pass.

What is a UNIT TEST?

"... a strict, written contract that the piece of code must satisfy."

Input during Simulation Experiment

Model Neuron

Predicted Observations from Simulated Output Input: 100 pA current injected to soma for 800 msec

MODEL cortical pyramidal cell

Output: predicted membrane potential waveform

100 pA current injected to soma for 800 msec

100 pA current injected to soma for 800 msec

MODEL

cortical pyramidal cell

REAL

cortical pyramidal cell

recorded membrane potential waveform

NeuronUnit, an extensible SciUnit-driven library for the testing of neuron, neural circuit, and ion channel models using common simulators against multiple data sources.

A SciDash portal to identify test repositories on GitHub, make it easy to locate them, execute suites of unit tests locally or in the cloud, and visualize results online with rich markup.

Interoperable: Repositories of unit tests.

Rigorous: Evaluate models based on tests they pass.

Transparent: Share model evaluations on the web.

Reproducible: Models/data/tests are linked and public.

Experiment Data Discovery

CRCNS.org

Experiment Data Format

Neurodata Without Borders

Experiment Data Analysis

NEO / ElePhanT

Data Summary

NeuroElectro / Allen Cell Types

Test Instantiation

NeuronUnit

Test Adjudication

NumPy / SciPy

Test Score Visualization

SciDash

Associated Resources & Standards

Model Discovery

Open Source Brain / NeuroML-DB

Model Description

NeuroML

Model Capabilities

PyNN / Comp. Neuro. Ontology

Simulation Description

SED-ML

Model Interpreter

jNeuroML

Model Execution

NEURON

Model Output Format

NWB / Sonata

Model Output Analysis

NEO / ElePhanT

Visual Cortex Layer 2/3 Pyramidal Cell (Stimulated) Network

Model Type: Network

Neurolex IDs: Neocortex primary visual area pyramidal layer 2-3 cell

Keywords: Mouse

Publication: Smith, et. al. (2013) Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo.

Authors: Spencer L Smith Ikuko T Smith Tiago Branco Michael Häusser

Translators: Michael Hausser Tiago Branco

Sources:

GitHub

<u>View OpenSourceBrain Model</u> <u>View GitHub Model</u>

View OpenSourceBrain on SciCrunch View GitHub on SciCrunch

Files:

± Download NeuroML Version

Model ID NeuroML File

NMLNT001592 L23_Stim.net.nml (view NeuroML)

NMLCL001594 L23 NoHotSpot.cell.nml (view NeuroML)

NMLCH001591 ca.channel.nml (view NeuroML)

L-Measure Metric	Value
Soma Surface	14744.5 μm ²
Number of Stems	6.0
Number of Bifurcations	15.0
Number of Branches	34.0
Overall Width	1195.43 μm
Overall Height	1618.8 µm
Overall Depth	738.53 µm
Average Diameter	2.71858 µm
Total Length	9804.39 µm

APPLICATION: Simulation of C. elegans

https://en.wikipedia.org/wiki/Caenorhabditis_elegans

https://openworm.org

APPLICATION: Simulation of C. elegans

Ą	sibernetic_c302_short	B 👣
lengthTest	Z = -0.03	4
backward_frequencyTest	Insufficient Data	
head_tip_speed_absTest	Z = 1.88	
max_amplitudeTest	Z = -0.60	
midbody_speed_absTest	Z = 0.68	
midbody_bend_mean_absTest	Z = 0.48	
paused_frequencyTest	Insufficient Data	
forward_frequencyTest	Insufficient Data	0.1mm

Visualization Portal

Name	Score
head_tip_speed_absTest	1.877
midbody_bend_mean_absTest	0.476
max_amplitudeTest	-0.597
lengthTest	-0.033
midbody_speed_absTest	0.682

Visualization Portal

Project Partners

Justas Birgiolas

Zhiwei Liang

Russell Jarvis

Vergil Haynes

richard.gerkin@asu.edu

NINDS (U19NS112953) NIDCD (R01DC018455) NIMH (R01MH106674) NIBIB (R01EB021711)

Google Human Brain Project Mayo Clinic INCF