做法

這題我使用了一層 hidden layer ,250 個 node,開始 train 之後,便是接受 input,其中採用的 active function 是 sigmoid function(或者 reLu),經過跟 weight 內積之後,output 的輸出跟正確答案比較後調整 weight,直到我指定的最大次數。

Flowchart:

實驗(1)

Output:

- a. (sigmoid function)
 - (1) Plot the figure of average error vs. iteration, CPU time in learning.

(2) &(3)

(4)confusion matrix (百分比)

П	1	2	3	4	5	6	7	8	9	10
1	8.3000	0	0.1000	0.1000	0	0.1000	0.2000	0	0.1000	0
2	0	12.3000	0.2000	0	0.1000	0	0	0.1000	0	0
3	0	0	10.1000	0.3000	0	0.1000	0.1000	0.3000	0.1000	0
4	0	0.1000	0	7.6000	0	0	0	0.4000	0.2000	0.2000
5	0	0	0.1000	0.1000	9.3000	0	0	0.3000	0.4000	0.1000
6	0	0	0	1.6000	0.1000	7.5000	0.4000	0.1000	0.5000	0.3000
7	0.1000	0.1000	0.1000	0.2000	0.3000	0.2000	8	0	0.2000	0
8	0.1000	0	0.5000	0.1000	0	0.4000	0	8.4000	0.2000	0.8000
9	0	0.1000	0.4000	0.6000	0	0.3000	0	0	6.8000	0
10	0	0	0.1000	0.1000	1.2000	0.1000	0	0.3000	0.4000	8

討論:

How to determine the hidden node number?

我使用了一層 hidden layer, 250 個 nodes, 會這樣使用是因為我之前用了兩層以上的 layer, 發現效率很慢, 而且準確率不高,似乎有 overfitting 的現象,後來發現這樣使用準確率還不錯,而且蠻快的。

Describe any phenomenon you watched

試過許多不同的 node 數量,發現 200-400 個 node 做出來的準確率試差不多的。b. (relu function)

(1) Plot the figure of average error vs. iteration, CPU time in learning.

(2)&(3)

test image, green-desired number, purple-real output

(4) confusion matrix (百分比)

	1	2	3	4	5	6	7	8	9	10
1	8.5000	12.6000	11.6000	10.7000	11	8.7000	8.7000	9.9000	8.9000	9.4000
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0

討論:

How to determine the hidden node number?

因為是跟 sigmoid 的比較,所以就跟之前用的一樣。

Describe any phenomenon you watched

試過許多不同的 node 數量或改一些 rate 的參數,發現結果都很差,如果要用 relu 應該要重新整個設計過,才能達到高的準確率。

與 sigmoid 的收斂有什麼不一樣?

很快就達到收斂,但是效果很差。

c.(toolbox)

(1) Plot the figure of average error vs. iteration, CPU time in learning.

Cputime is on window

(2)&(3)

Frain image 504/92\3\4 3536\72869 409/124327 3869056076 1819398593 307498094/ 4460456700 1716302/17 9026783904 674680783/

(4) confusion matrix

討論

How to determine the hidden node number?

因為是跟之前的比較,所以就跟之前用的一樣。

Describe any phenomenon you watched

試過許多不同的 node 數量,發現 200-400 個 node 做出來的準確率試差不多的。

與不用 toolbox 有什麼不一樣?

除了只要把 input 跟環境設好非常方便外,toolbox 的效率很高,準確率也還不錯。

實驗(2)

- a. (sigmoid function)
- (1) Plot the figure of average error vs. iteration, CPU time in learning.

(2)&(3)

(4) confusion matrix (百分比)

	1	2	3	4	5	6	7	8	9	10
1	9.7300	0	0.0500	0	0	0.0200	0.0500	0	0.0400	0.0300
2	0	11.2400	0.0100	0	0	0	0.0200	0.0400	0	0.0200
3	0.0100	0.0400	10.1000	0.0100	0.0200	0	0	0.0900	0.0400	0
4	0.0100	0	0	10.0100	0.0100	0.0900	0.0100	0.0200	0.0200	0.0500
5	0	0	0.0100	0	9.6600	0.0100	0.0100	0.0100	0.0400	0.0800
6	0.0100	0.0100	0	0.0300	0.0200	8.7700	0.0300	0	0.0400	0.0100
7	0.0100	0.0200	0	0.0100	0.0500	0.0100	9.4300	0	0.0100	0.0100
8	0.0100	0.0200	0.0700	0.0200	0	0	0	10.0400	0.0300	0.0400
9	0.0100	0.0200	0.0700	0.0200	0	0	0.0300	0.0200	9.4900	0.0100
10	0.0100	0	0.0100	0	0.0600	0.0200	0	0.0600	0.0300	9.8400
11										

討論:

除了資料的比數以外都和實驗——樣,而準確率在實驗—中雖然已經很高了,但 train 的比數拉大,準確率還是上升了。

b. (reLU)

(1) Plot the figure of average error vs. iteration, CPU time in learning.

(2)&(3)

(4)confusion matrix

	1	2	3	4	5	6	7	8	9	10
1	9.8000	11.3500	10.3200	10.1000	9.8200	8.9200	9.5800	10.2800	9.7400	10.0900
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0

討論:

除了資料的比數以外都和實驗——樣,而準確率還是沒有上升,所以可以確定要用 relu 就要重新設計 model。

c.(toolbox)

(1) Plot the figure of average error vs. iteration, CPU time in learning.

(2)&(3)

(4) confusion matrix

討論:

基本上除了train的時間稍微拉長一點以外,還有準確率稍微上升,沒有什麼差太多的地方。