EXHIBIT League C

Extra Views

INT6

A Link Between the Proteasome and Tumorigenesis

Hsueh-chi S. Yen Eric C. Chang

Department of Molecular and Cellular Biology; Breast Cancer Center; Baylor College of Medicine; 1 Baylor Plaza; BCM 600; Houston, Texas USA

*Correspondence to: Eric C. Chang; Department of Molecular and Cellular Biology; Breast Cancer Center; Baylor College of Medicine; 1 Baylor Plazo; BCM 600; Houston, Texas 77030 USA; Tel.: 713.798.3519; Fax: 713.798.1642; Email: echang@breastcenter.tmc.edu

Received 03/04/03; Accepted 03/05/03

Previously published online as a *Cell Cycle* "Paper In Press" at http://www.landesbioscience.com/journals/cc/

KEY WORDS

MMTV, Genetic instability, Proteasome, Ubiquitin, Proteolysis, CSN, eIF3, Cell cycle, Yeast, Breast cancer

This study is supported by a grant from NIH (CA90464).

To reach the final state of malignancy, cancer cells must undergo a global transformation to acquire a wide range of novel activities. For example, cancer cells must bypass all the signaling pathways that act to suppress uncontrolled cell division. They are immortal and refractory to apoptosis, which functions to eliminate aberrant cells. Cancer cells can evade detection by the immune system. They can migrate and establish colonies in numerous tissues and induce angiogenesis to maintain the supply of nutrieous. Considering the fact that the spontaneous mutation rate in normal cells has been estimated to be just 10⁻⁷ per gene per cell division, it is puzzling how cells can be reprogrammed so efficiently, within a relatively short period of time, to become cancerous.

The INT6 gene was first identified from a screen in which the mouse mammary tumor virus (MMT6) was employed as an insertional mutagen to seek genes whose functions are

The INT6 gene was first identified from a screen in which the mouse mammary tumor virus (MMTV) was employed as an insertional mutagen to seek genes whose functions are critical for breast tumor formation.³ MMTV insertion in mouse INT6 appears to create C-terminally truncated proteins that are dominant-negative. Overexpression of these truncated proteins can transform cells in culture, and injection of these transformed cells into nude mice can induce tumor formation.^{4,5} In human breast cancers, INT6 expression is frequently diminished.⁶⁻⁸ Intriguingly, INT6 was isolated from a feral strain of mouse (Czech II), which has not been pre-selected for a high propensity for tumor formation and does not have any endogenous MMTV insertion into other INT genes.³ These observations support a hypothesis that loss of INT6 functions alone can have a profound impact on breast tumorigenesis. Despite the importance of INT6 and breast cancer, the biological functions of INT6 in humans remain open for investigation.

functions of INT6 in filimans remain open for investigation.

In a recent page, we uncovered a key conserved function of Int6 by characterizing its homolog, pine (yeast int6), in the fission yeast Schizosacchromyces pombe. We demonstrated that Vice (and the position of the page of the position) and the page of the pa that Yin6 positively regulates the 26S proteasome, which functions to degrade polyubiquitinated proteins, by binding to and mediating the nuclear import and assembly of a proceasome regulatory subunit, Rpn5. As a result, the proteasome is inactivated in the m6 deletion (yin6 Δ) mutant, causing accumulation of polyubiquitinated proteins, among which are mitotic cyclin (Cdc13) and securin (Cut2). Cyclin accumulation blocks cytokinesis and exit from mitosis, while securin accumulation impairs sister-chromatid separation. Thus, accumulation of these two proteins is at least partly responsible for the abnormally lengthy mitosis and inefficient chromosome segregation found in yin6\Delta cells (see refs. 10 and 11; Fig. 1). We note that $yin6\Delta$ cells display additional phenotypes that are also present in proteasome mutants. For example, like yin6\(\Delta \) cells, 10 nearly all known S. pombe proteasome mutants are resistant to microtubule depolymerizing drugs. 12 yin6 cells, as well as all the proteasome mutant cells examined (e.g., mts2-3 and pad1 mutants), bypass the requirement for nutrient starvation and mate efficiently in rich media (Fig. 2), suggesting that they are all defective in the cAMP signaling pathway. Because of these similarities in phenotypes, it is highly probable that all the abnormalities resulting from yin6 Δ are due to proteasome inactivation.

Human and yeast Int6 are over 40% identical in protein sequence. As yeast Yin6 binds yeast Rpn5, so also human Int6 binds human Rpn5; most remarkably, human Int6 restores the yeast Rpn5 localization and rescues the growth defect in $yin6\Delta$ cells. 9-11,13 These results suggest that in humans, as in yeast, Int6 might regulate the proteasome, and that inactivation of human Int6 might lead to mitotic abnormalities and genetic instability due to cyclin and securin accumulation. Because abnormalities in the proteasome and mitotic fidelity can both impact broadly on multiple cell functions, this could explain why MMTV insertion in *INT6* alone seems sufficient to induce breast tumor formation in mice. Moreover, we created diploid *S. pombe* cells that lack either one or both copies of yin6. Interestingly, as shown in Figure 3, cells heterozygous for $yin6\Delta$ ($yin6\Delta/+$) display a phenotype that is intermediate between wild type (+/+) and yin6 null cells ($yin6\Delta/yin6\Delta$), indicating haploid insufficiency. If this also occurs in human cells, then the loss of just a single copy of *INT6* (or a reduction in its expression) may suffice to inhibit proteasome activities.

Figure 1. Accumulation of late mitotic cells. $yin\delta\Delta$ cells were pregrown at 30°C to early log phase, resuspended in fresh medium, and then shifted to either 30°C, as control, or to 20°C to grow for another 17 hr. The cells were fixed and stained as described. ¹⁰ The spindle and DNA staining were pseudo-colored green and red, and then merged. After the shift to 20°C, a disproportionally large number of mitotic $yin\delta\Delta$ cells were in late anaphase, as judged by the presence of a long spindle and post-anaphase arrays (arrowheads) in the same cell: 13% at 30°C and 50% at 20°C, as compared to \leq 1.7 % in wild type cells at both 30 and 20°C.

Several lines of data suggest that Int6 preferentially regulates Rpn5. In our original two-hydrid screen, the only proteasome subunit that was isolated is Rpn5, and it was isolated multiple times. 9 Furthermore, Yin6 does not bind other proteasome subunits available for the two-hybrid system, Rpn9/Mts1, Rpn10/Pus1, Rpn11/Bts4, Rpt1/Mss1, Rpt2/Mts2, Rpt5/Sug2, or Rpt6/Sug1. Can Int6 interact and regulate other proteasome subunits? In an ongoing study, we have isolated Rpn7 as a high copy suppressor that rescues the phenotype of yin6\Delta cells, and in plants, Int6 copurifies with Rpn7. 14 In humans, Int6 has been shown to bind Rpt4. 15 It is possible that, besides Rpn5, Yin6/Int6 may influence the function of Rpn7 and Rpt4. It is unclear why Rpn5 has not yet been identified in other systems as an Int6-binding protein. During the course of studying Rpn5 expression in S. pombe, we found that Rpn5 expression is highly regulated to maintain a low level in the cell (Yen et al., submitted). Moreover, Rpn5 has been identified as one of only 200 or so components that are expressed in common among many

human stem cells. ¹⁶ Thus, we surmise that Rpn5 expression may be highly regulated in eukaryotes such that it is expressed at low levels or that it is expressed in certain cell types and/or during a particular process.

Human Int6 may also influence proteolysis indirectly via at least three proteins that have been identified as Int6-binding proteins, Tax, ¹⁷ RFP (Ring Finger Protein), ¹⁸ and p56. ¹⁹ Tax is an oncoprotein carried by Human T-cell Lymphoma Virus Type I. Tax binds and stimulates the activity of the proteasome. ²⁰ RFP contains the RING finger, which is present widely among ubiquitin ligases (E3, reviewed in ref. 21), and localizes to the PML nuclear bodies, which are rich with the proteasome. ²² p56 was first identified as one of the molecules whose expression is induced by interferons, and it contains two ubiquitin-like domains (see the annotation in Genbank, Accession # Q15646), suggesting that it can also bind the proteasome.

In addition to the proteasome, Int6 also associates with the COP9 signalosome, CSN, which is best known for its role in plants to regulate photomorphogenesis.²³ In S. pombe, the CSN regulates the cell cycle check-point, while in flies, it is essential and regulates multiple developmental pathways. In cell culture, the CSN controls a wide range of signaling pathways, and may play important roles in tumorigenesis in humans. The biochemical functions of CSN have not been fully established, but, like Int6, it plays a role in regulating proteolysis. Components of the CSN frequently co-purify with certain proteasome components. Furthermore, a component in the CSN, CSN5, can activate E3 by removing Nedd8,²⁴ an ubiquitinlike molecule, which is conjugated to cullin to otherwise keep the cullin-associated E3 in the off-state. The proteasome regulatory complexes consist of the lid and base subcomplexes. Interestingly, the components in the lid and CSN are structurally similar, in that they all seem to contain the same number of subunits (eight) and the majority of them contain either the PCI or the MPN domain.25 Because both the CSN and the proteasome lid are important for proteolysis and because their components are structurally similar, it has been hypothesized that either the entire CSN and the proteasome lid or some of their subunits may be interchangeable to degrade specific set of proteins. In plants, Int6 interacts with at least one of the CSN subunits, CSN7.26 A S. pombe CSN7 homolog was also isolated in the same screen from which Rpn5 was identified as a Yin6 binding protein⁹ (and our unpublished results). Since Yin6/Int6 also contains the PCI domain, it would be of interest to determine whether Yin6/Int6 plays a role in mediating an interaction between the CSN and the proteasome lid during proteolysis.

Int6 also co-purifies with the eIF3 complex in mammals, plants, and *S. pombe*, and thus was also named eIF3e. 11,13,27-29 The eIF3 is essential for initiating translation. Paradoxically, budding yeast,

Figure 2. Mating without sufficient nutrient starvation. Various homothallic (h90) strains were patched on plates containing the rich medium (YEAU) and incubated at room temperature for 3 days. Note that some of the asci are abnormal and this may be caused by abnormal chromosome segregation during meiosis. 10,11,28