Python EDA & Classification

Image source
"
[]

* EDA *

Heart Diseases: What are the indicators?

Table of Contents

- 0. Introduction
- 1. Exploratory Data Analysis
 - 1.1 Data Dictionary
 - 1.2 Data Pre-processing
 - 1.3 Exploring Features
 - 1.4 Correlations Heatmap
 - 1.5 EDA Summary
- 2. Predictions
 - 2.1 Scikit Learn Classifiers
- 3. Concluding Remarks

1. Exploratory Data Analysis

Shape of the data is (303, 14)

	age	sex	cp	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

	0
age	int64
sex	int64
$^{\mathrm{cp}}$	int64
trestbps	int64
chol	int64
fbs	int64
restecg	int64
thalach	int64
exang	int64
oldpeak	float64
slope	int64
ca	int64
thal	int64
target	int64

int64/float64

1.1

- 1. age:
- 2. sex:
 - 1 =
 - 0 =
- 3. cp:
 - 0
 - 1
 - 2

- 3
- 4. trestbps: mm Hg
- $5. \text{ chol:} \quad \text{mg/dl}$
- 6. fbs: > 120 mg/dl
 - 1 =
 - 0 =
- 7. restecg:
 - 0:
 - 1: ST-T T / ST > 0.05 mV
 - 2: Estes'
- 8. thalach:
- 9. exang:
 - 1 =
 - 0 =
- 10. oldpeak = ST
- 11. slope: ST
 - 0:
 - 1:
 - 2:
- 12. ca: 0-3
- 13. thal:
 - \bullet 0 = 0 NaN
 - 1 =
 - 2 =
 - 3 =
- 14. target ()
 - 0 =
 - 1 = :
 - 0: < 50% 1: > 50%
 - #93 159 164 165 252 ca=4 NaNs
 - $\#49\ 282\ \text{thal} = 0$ NaNs

7

1.2

1.2.1

7

296 303

1.2.2

• / UCL • 0 1 2 ..

• Rob Harrand's

	0
age	int64
sex	object
chest_pain_type	object
resting_blood_pressure	int64
cholesterol	int64
fasting_blood_sugar	object
$resting_electrocardiogram$	object
$max_heart_rate_achieved$	int64
exercise_induced_angina	object
$st_depression$	float64
st_slope	object
$num_major_vessels$	int64
thalassemia	object
target	int64

 $fasting_blood_sugar$ resting_blood_pressure ${\it cholesterol}$ $chest_pain_type$ resting age sex male 0 63 asymptomatic 145 233 greater than 120 mg/mlnorma 1 37 male non-anginal pain 130250lower than 120mg/ml ST-T 2 female atypical angina 130 204 lower than 120mg/ml 41 norma atypical angina 3 236 lower than 120mg/ml ST-T 56 male 1204 57 femaletypical angina 120 354lower than 120mg/ml ST-T

1.2.3

.

1.3 /

1.3.1

46% 54%

1.3.2

pandas data.describe()

	count	mean	std	min	25%	50%	75%	max
age	296.0	54.523649	9.059471	29.0	48.0	56.0	61.00	77.0
cholesterol	296.0	247.155405	51.977011	126.0	211.0	242.5	275.25	564.0
$resting_blood_pressure$	296.0	131.604730	17.726620	94.0	120.0	130.0	140.00	200.0
$max_heart_rate_achieved$	296.0	149.560811	22.970792	71.0	133.0	152.5	166.00	202.0
$st_depression$	296.0	1.059122	1.166474	0.0	0.0	0.8	1.65	6.2
$num_major_vessels$	296.0	0.679054	0.939726	0.0	0.0	0.0	1.00	3.0

:

54.5

77 29

247.15

564 126

[6] < 200mg/dl

131 200 94

149.5 bpm 202 71bpm

ST

st_dpression 1.06 6.2 0

3 0 0.68

Distribution: Density plots

Text(0.5, 0.98, 'Distribution of Numerical Features')

Pair-plots

Text(0.5, 0.98, 'Pairplot: Numerical Features ')

Pairplot: Numerical Features

<matplotlib.legend.Legend at 0x7f4e37020040>

1.3.3

=1 =0

75%

 $\sim \!\! 1.4\%$ ST-T REC 50-50 ST-T REC ST ST

+

 $85\% \hspace{1cm} 120 mg/ml$ ${\sim}54\%$

76% ~69%

Distribution: Count plots

1.4

V

1.4.1

• -1 1

Text(0.5, 1.05, "Numerical features correlation (Pearson's)")

Numerical features correlation (Pearson's)

1.4.2 -

• - []

Cont feats vs target correlation (point-biserial)

1.4.3 V

• V 0+1 · 1946 []

Text(0.5, 1.05, "Categorical Features Correlation (Cramer's V)")

Categorical Features Correlation (Cramer's V)

Back to top

1.5 EDA

• 303 14 13 + > 296

•

•

_

• 54% 46%

•

- num_major_vessels max_heart_rate_achieved st_depression $0.47\ 0.43\ \text{-}0.43$

```
\verb|chest_pain_type num_major_vessels thal assemia exercise_induced_angina| \\
{\tt max\_heart\_rate\_achieved} \quad {\tt st\_depression}
2.
      297
2.1 Scikit Learn
              Scikit learn
                                                    sklearn
                                                                             Nu SVC
                                                                                           AdaBoost
2.1.1
               , ,
                                                 [wiki]
           src="https://miro.medium.com/max/875/1*LQ1YMKBlbDhH9K6Ujz8QTw.jpeg" \\
width="350", align="center"/>
   >>
  :
                                        TP
                                        FP
                                        TN
                                        FN
\frac{TP + TN}{TP + TN + FP + FN}
\overline{(TP{+}FN)}
```

 $\verb|chest_pain_type num_major_vessels thal assemia exercise_induced_angina| \\$

thala

 $\mathbf{F1}$ - :

 $2\tfrac{recall*precision}{recall+precision}$

ROC : ROC

2.1.2

$$\begin{split} ln\frac{p}{1-p} = &4.50 - 0.16*age - 1.57*sex - 0.73cp - 0.33trestbps \\ &- 0.30chol - 0.12fbs - 0.08restecg + 0.55thalach \\ &- 0.70exang - 0.40oldpeak - 0.27slope - 1.24ca \\ &- 0.84thal \end{split}$$

2.1.3 Performance metrics summary table

Table 2

	Classifier	Accuracy	ROC_AUC	Recall	Precision	F1
2	Support Vectors	84.270000	0.900000	0.930000	0.790000	0.850000
3	Nu SVC	84.270000	0.900000	0.930000	0.790000	0.850000
6	AdaBoost	84.270000	0.900000	0.890000	0.810000	0.850000
0	Logistic Regression	83.150000	0.900000	0.910000	0.780000	0.840000
8	Naive Bayes	83.150000	0.920000	0.890000	0.800000	0.840000
10	Quadratic DA	83.150000	0.890000	0.840000	0.820000	0.830000
11	Neural Net	83.150000	0.900000	0.910000	0.780000	0.840000
7	Gradient Boosting	82.020000	0.900000	0.890000	0.780000	0.830000

	Classifier	Accuracy	ROC_AUC	Recall	Precision	F1
9	Linear DA	82.020000	0.910000	0.860000	0.790000	0.830000
5	Random Forest	80.900000	0.910000	0.860000	0.780000	0.820000
1	Nearest Neighbors	76.400000	0.820000	0.700000	0.790000	0.750000
4	Decision Tree	75.280000	0.750000	0.770000	0.740000	0.760000

2.1.4 ROC curves

2.1.5

LR 86% 94% QDA 85% F1-LR F1-

F1-

3.

EDA EDA , , , LASSO