

Programming Language Semantics and Compiler Design / Sémantique des Languages de Programmation et Compilation Natural Operational Semantics of Languages Block and Proc

Yliès Falcone

ylies.falcone@univ-grenoble-alpes.fr — www.ylies.fr
Univ. Grenoble Alpes, and LIG-Inria team CORSE

Master of Sciences in Informatics at Grenoble (MoSIG)

Master 1 info

 $\label{eq:Univ.Grenoble} Univ.\ Grenoble\ Alpes\ -\ UFR\ IM^2AG \\ www.univ-grenoble-alpes.fr\ -\ im^2ag.univ-grenoble-alpes.fr \\$

Academic Year 2017 - 2018

Extending the Syntax of While with Blocks and Procedures

Motivating Examples

Preliminaries

Natural Operational Semantics of Language **Block**

Natural Operational Semantics of Language Proc

Extending the Syntax of While with Blocks and Procedures

Motivating Examples

Preliminarie

Natural Operational Semantics of Language Block

Natural Operational Semantics of Language Proc

Extending the Syntax of While with Blocks and Procedures Language Block Language Proc

Motivating Evamples

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of Language Proc

Blocks and variable declarations: syntax

Extending language While.

Definition (Language **Block**)

$$\begin{array}{lll} S & \in & \mathbf{Stm} \\ S & ::= & x := a \mid \mathsf{skip} \mid S; S \\ & \mid \mathsf{if} \ b \ \mathsf{then} \ S \ \mathsf{else} \ S \ \mathsf{fi} \\ & \mid \mathsf{while} \ b \ \mathsf{do} \ S \ \mathsf{od} \\ & \mid \mathsf{begin} \ \mathcal{D}_V \ \ S \ \mathsf{end} \end{array}$$

Definition (Syntactic category \mathbf{Dec}_V)

$$D_V ::= \text{var } x; \ D_V \mid \text{var } x := a; \ D_V \mid \epsilon$$

Example of program in **Block**

Example (Example of program in **Block**)

```
\begin{array}{ll} \operatorname{begin} & \operatorname{var} y := 1; \\ \operatorname{var} \mathbf{x} := 1; \\ \operatorname{begin} & \operatorname{var} \mathbf{x} := 2 \\ y := x + 1 \\ \operatorname{end}; \\ \mathbf{x} := y + \mathbf{x} \end{array}
```

Extending the Syntax of While with Blocks and Procedures
Language Block
Language Proc

Motivating Examples

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of Language **Proc**

Introducing Procedures in the syntax

Extending **Block** with procedure declarations.

Definition (Language **Proc**)

Statements

$$S \in Stm$$

 $S ::= x := a \mid skip \mid S_1; S_2 \mid if b then S_1 else S_2 fi \mid while b do S od \mid begin $D_V D_P S$ end | call p$

Variable declarations:

$$D_V$$
 ::= var x ; $D_V \mid \text{var } x$:= a ; $D_V \mid \epsilon$

Definition (Syntactic category **Dec**_P)

$$D_P ::= \operatorname{proc} p \text{ is } S; D_P \mid \epsilon$$

Example: a program with procedures

Example (Program in **Proc**)

```
begin var x := 0;

var y := 1;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x;

end;
```

Extending the Syntax of While with Blocks and Procedures

Motivating Examples

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of Language Proc

Example of program in **Block**

Example (Program in **Block**)

```
begin \text{var } y := 1;

\text{var } x := 1;

\text{begin } \text{var } x := 2

y := x + 1

\text{end};

x := y + x

end
```

Questions:

- 1. Are the declarations active during declaration execution?
- 2. Which order to choose when executing the declarations?
- 3. Do we need to restore the initial state?
- 4. If so, how to restore the initial state?

Example of program in Proc

Example (Program in **Proc**)

```
begin var \mathbf{x} := 0;

var \mathbf{y} := 1;

proc \mathbf{p} is \mathbf{x} := \mathbf{x} * 2;

proc \mathbf{q} is call \mathbf{p};

begin var \mathbf{x} := 5;

proc \mathbf{p} is \mathbf{x} := \mathbf{x} + 1;

call \mathbf{q}; \mathbf{y} := \mathbf{x};

end;
```

What is the final value of y?

Example: a program with procedures

Example (Dynamic scope for variables and procedures)

```
begin var x := 0;

var y := 1;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x;

end;
```

We need to have some "memorization" of the current "procedure mapping" \hookrightarrow when we call q we call p and modify x

Example: a program with procedures

Example (Static scope for procedures)

```
begin var x := 0;

var y := 1;

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x;

end;
```

We need to:

have some "memorization" of the current "procedure mapping" that "remembers the current procedure definitions when it has been defined"

```
\hookrightarrow when we call q we call p and modify x
```

Extending the Syntax of While with Blocks and Procedures

Motivating Examples

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of Language Proc

Extending the Syntax of While with Blocks and Procedure

Motivating Examples

Preliminaries

Notations

Revisiting the Semantics of Language While

Natural Operational Semantics of Language Block

Natural Operational Semantics of Language **Proc**

Some preliminary notation: stacks

We use a stack structure to manage local declarations.

Let \mathcal{F} be a set of (partial) functions.

Definition (Stack notation)

- The set of stacks over F is noted F*.
- ▶ Elements of \mathcal{F}^* are noted $\hat{f}, \hat{f}_1, \hat{f}_2...$
- ▶ The empty stack is denoted by \emptyset .

Remark A stack can be seen as a sequence where:

- ▶ the *push* operation consists in appending to the right.
- ▶ the *pop* operation consists in suppressing from the right.

Remark When a stack \hat{f} is reduced to one element, we use sometimes notation f instead of \hat{f}

Some preliminary notations: stacks (ctd)

Definition (Evaluation on stacks)

Evaluation is defined inductively on stacks:

$$(\hat{f} \oplus f')(x) = \left\{ egin{array}{ll} f'(x) & ext{if } x \in ext{Dom}(f'), \\ \hat{f}(x) & ext{otherwise.} \end{array} \right.$$

 $(\hat{f} \oplus f'$ is the stack resulting in pushing local function f' to stack $\hat{f}.)$

• $\emptyset(x) = \text{undef}$.

Remark Consider the stack $\hat{f} = \hat{f}_1 \oplus \hat{f}_2$, \hat{f}_1 is a prefix of \hat{f} .

$$f[y \mapsto v](x) = \begin{cases} v & \text{if } x = y, \\ f(x) & \text{otherwise.} \end{cases}$$

Definition (Substitution on stacks)

$$(\hat{f} \oplus f')[y \mapsto v] = \left\{ egin{array}{ll} \hat{f} \oplus (f'[y \mapsto v]) & ext{if } y \in ext{Dom}(f'), \\ (\hat{f}[y \mapsto v]) \oplus f' & ext{otherwise}. \end{array}
ight.$$

Extending the Syntax of While with Blocks and Procedure

Motivating Examples

Preliminaries

Notations

Revisiting the Semantics of Language While

Natural Operational Semantics of Language Block

Natural Operational Semantics of Language **Proc**

Semantic domains

States are replaced by a symbol table plus a memory:

- a symbol table associates a memory address to a variable (an identifier);
- a memory associates a value to an address.

Definition (Symbol table: variable environment)

$$\mathsf{Env}_V = \mathsf{Var} \overset{\mathit{part.}}{ o} \mathsf{Loc} \ni \rho$$

Thus, $\hat{\rho}$ denotes a stack of tables.

Definition (Memory)

$$\mathsf{Store} = \mathsf{Loc} \overset{\mathit{part.}}{\to} \mathbb{Z} \ni \sigma$$

Intuition: function state corresponds to $\sigma \circ \hat{\rho}$.

Notation: new() is a function that returns a fresh memory location.

Semantic functions for arithmetic and boolean expressions

Definition (Semantic function for arithmetic expressions)

$$\mathcal{A}: \mathbf{Aexp} \rightarrow ((\mathbf{Env}_V^* \times \mathbf{Store}) \rightarrow \mathbb{Z})$$

$$\mathcal{A}[n](\hat{\rho}, \sigma) = \mathcal{N}[n]$$

$$\mathcal{A}[x](\hat{\rho}, \sigma) = \sigma(\hat{\rho}(x))$$

$$\mathcal{A}[a_1 + a_2](\hat{\rho}, \sigma) = \mathcal{A}[a_1](\hat{\rho}, \sigma) +_I \mathcal{A}[a_2](\hat{\rho}, \sigma)$$

$$\mathcal{A}[a_1 * a_2](\hat{\rho}, \sigma) = \mathcal{A}[a_1](\hat{\rho}, \sigma) *_I \mathcal{A}[a_2](\hat{\rho}, \sigma)$$

$$\mathcal{A}[a_1 - a_2](\hat{\rho}, \sigma) = \mathcal{A}[a_1](\hat{\rho}, \sigma) -_I \mathcal{A}[a_2](\hat{\rho}, \sigma)$$

Exercise

Give the semantic function for boolean expressions.

Transition rules for assignment, skip, and sequential composition

Definition (Transition system for While)

Configurations:

$$(\mathsf{Stm} \times \mathsf{Env}_V^* \times \mathsf{Store}) \cup \mathsf{Store}$$

Transitions:

Assignment:

$$(x := a, \hat{\rho}, \sigma) \rightarrow \sigma[\hat{\rho}(x) \mapsto \mathcal{A}[a](\hat{\rho}, \sigma)]$$

► Skip:

$$(\mathsf{skip}, \hat{\rho}, \sigma) \to \sigma$$

Sequential composition:

$$\frac{(S_1, \hat{\rho}, \sigma) \to \sigma' \quad (S_2, \hat{\rho}, \sigma') \to \sigma''}{(S_1; S_2, \hat{\rho}, \sigma) \to \sigma''}$$

Transition rules for while and if

Definition (Transition system for While)

- While:
 - if $\mathcal{B}[b](\hat{\rho}, \sigma) = \mathbf{tt}$

$$\frac{(S, \hat{\rho}, \sigma) \to \sigma' \quad \text{(while } b \text{ do } S \text{ od}, \hat{\rho}, \sigma') \to \sigma''}{\text{(while } b \text{ do } S \text{ od}, \hat{\rho}, \sigma) \to \sigma''}$$

• if $\mathcal{B}[b](\hat{\rho}, \sigma) = \mathbf{ff}$

$$\overline{\left(\mathsf{while}\; b\; \mathsf{do}\; S\; \mathsf{od}, \hat{\rho}, \sigma\right) \to \sigma}$$

Exercise

Give the rules for the if ... then ... else ... fi statement.

Extending the Syntax of While with Blocks and Procedures

Motivating Examples

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of Language Proc

Transition rules for blocks

To define the semantics, we define:

- a transition system for declarations, and
- an extended transition system for statements.

Definition (Transition system for Variable Declarations)

► Configurations:

$$(\mathsf{Dec}_V \times \mathsf{Env}_V^* \times \mathsf{Env}_V \times \mathsf{Store}) \cup (\mathsf{Env}_V \times \mathsf{Store})$$

(i.e., of the form $(D_{v}, \hat{\rho}, \rho', \sigma)$ or (ρ', σ))

Transition rules for blocks

To define the semantics, we define:

- a transition system for declarations, and
- an extended transition system for statements.

Definition (Transition system for Variable Declarations)

▶ Transitions given by the transition relation \rightarrow_D (where I = new()):

$$(\epsilon, \hat{\rho}, \rho', \sigma) \rightarrow_D (\rho', \sigma)$$

$$\frac{(D_V, \hat{\rho}, \rho[\mathsf{x} \mapsto \mathit{l}], \sigma) \to_{D} (\rho', \sigma')}{(\mathsf{var} \ x; \ D_V, \hat{\rho}, \rho, \sigma) \to_{D} (\rho', \sigma')}$$

$$\frac{(D_V, \hat{\rho}, \rho[x \mapsto I], \sigma[I \mapsto \mathcal{A}[a](\hat{\rho} \oplus \rho, \sigma)]) \to_{\mathcal{D}} (\rho', \sigma')}{(\text{var } x := a; D_V, \hat{\rho}, \rho, \sigma) \to_{\mathcal{D}} (\rho', \sigma')}$$

(Having $\hat{\rho}$ and ρ used in \mathcal{A} means that both the global and local environments are used to evaluate expressions.)

Transition rules for blocks - with only uninitialised variables

If we allow only declarations of the form var x:

$$D_V$$
 ::= var x ; $D_V \mid \epsilon$

Then, the transition system for declarations can be simplified.

Definition (Transition system for variable declarations)

► Configurations:

$$(\mathbf{Dec}_V \times \mathbf{Env}_V) \cup \mathbf{Env}_V$$

(i.e., of the form
$$(D_v, \rho)$$
 or ρ)

▶ Transitions given by the transition relation \rightarrow_D (where l = new()):

$$(\epsilon, \rho') \rightarrow_D \rho'$$

$$\frac{(D_V, \rho[x \mapsto l]) \to_D \rho'}{(\text{var } x; D_V, \rho) \to_D \rho'}$$

Transition rules for blocks

To define the semantics we define:

- a transition system for declarations, and
- a transition system for statements.

Definition (Natural operational semantics of **Block**)

Configurations:

$$\mathsf{Stm} \times \mathsf{Env}_V^* \times \mathsf{Store} \cup \mathsf{Store}$$

► Transitions:

$$\frac{(D_V, \hat{\rho}, \emptyset, \sigma) \to_D (\rho_I, \sigma') \quad (S, \hat{\rho} \oplus \rho_I, \sigma') \to \sigma''}{(\text{begin } D_V \quad S \text{ end, } \hat{\rho}, \sigma) \to \sigma''}$$

▶ **OR** Transitions (when there is only un-initialised variables)

$$\frac{(D_V,\emptyset)\to_D\rho_I\quad (S,\hat\rho\oplus\rho',\sigma)\to\sigma'}{(\mathsf{begin}\ D_V\ S\ \mathsf{end},\hat\rho,\sigma)\to\sigma'}$$

Execution of one statement of **Block**

Example (Execution of one statement of **Block** - derivation tree)

begin
$$var y := 1;$$

 $var x := 1;$
begin $var x := 2$ $y := x + 1$ end
 $x := y + x$
end

Let us note:

- ▶ D_{V_0} : var y := 1; var x := 1;
- ▶ S_0 : (begin var x := 2 y := x + 1 end); x := y + x
 - S_{00} : (begin var x := 2 y := x + 1 end)
 - $S_{01}: x := y + x$
- $D_{V_1}: \text{var } x := 2$
- ▶ $S_1 = y := x + 1$

Let us compute a derivation tree with root (begin D_{V_0} S_0 end, $\hat{\rho}_0, \sigma_0$) $\to \sigma_0''$, where $\hat{\rho}_0 = \emptyset, \sigma_0 = \emptyset$.

$$\overline{\left(\mathsf{begin}\ D_{V_0}\ |\ \mathcal{S}_0\ \mathsf{end}, \hat{\rho}_0, \sigma_0\right) \to \sigma_0''}$$

Execution of one statement of **Block** (ctd)

Applying rule of block:

$$\frac{(D_{V_0}, \hat{\rho}_0, \emptyset, \sigma_0) \to_D (\rho_1, \sigma_1) \quad (S_0, \hat{\rho}_0 \oplus \rho_1, \sigma_1) \to \sigma_0''}{(\text{begin } D_{V_0} \quad S_0 \text{ end, } \hat{\rho}_0, \sigma_0) \to \sigma_0''}$$

Applying rules of sequential composition and block:

$$\frac{(D_{V_1},\hat{\rho}_1,\emptyset,\sigma_1)\rightarrow_D(\rho_2,\sigma_2)\quad (S_1,\hat{\rho}_1\oplus\rho_2,\sigma_2)\rightarrow\sigma_3}{(S_{00},\hat{\rho}_0\oplus\rho_1,\sigma_1)\rightarrow\sigma_3} \qquad (S_{01},\hat{\rho}_0\oplus\rho_1,\sigma_3)\rightarrow\sigma_0''}{(S_0,\hat{\rho}_0\oplus\rho_1,\sigma_1)\rightarrow\sigma_0''}$$

where:

$$\rho_0 = \emptyset
\rho_1 = [y \mapsto h, x \mapsto h_2]
\sigma_1 = [l_1 \mapsto 1, l_2 \mapsto 1]
\hat{\rho}_1 = \hat{\rho}_0 \oplus \rho_1 = \emptyset \oplus \rho_1 = \rho_1
\rho_2 = [x \mapsto l_3]
\sigma_2 = [l_1 \mapsto 1, l_2 \mapsto 1, l_3 \mapsto 2]
\sigma_3 = [l_1 \mapsto 3, l_2 \mapsto 1, l_3 \mapsto 2]
\sigma_0'' = [l_1 \mapsto 3, l_2 \mapsto 4, l_3 \mapsto 2]$$

Extending the Syntax of While with Blocks and Procedures

Motivating Example

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of Language Proc

Dynamic scope for variables and procedures: remember the intuition

Example (Dynamic scope for variables and procedures)

```
begin var \mathbf{x} := 0;

var \mathbf{y} := 1

proc \mathbf{p} is \mathbf{x} := \mathbf{x} * 2;

proc \mathbf{q} is call \mathbf{p};

begin var \mathbf{x} := 5;

proc \mathbf{p} is \mathbf{x} := \mathbf{x} + 1;

call \mathbf{q}; \mathbf{y} := \mathbf{x};

end;
```

We need to have some "memorization" of the current "procedure mapping" \hookrightarrow when we call q we call p and modify x

Semantics with dynamic scope for variables and procedures

Procedure names belong to a syntactic category called **Pname**.

$$\begin{array}{lll} \mathbf{Env}_{V} & = & \mathbf{Var} \stackrel{part.}{\rightarrow} \mathbf{Loc} \ni \rho & \mathbf{Variable} \ \ \mathbf{environment} \\ \mathbf{Store} & = & \mathbf{Loc} \stackrel{part.}{\rightarrow} \mathbb{Z} \ni \sigma & \mathbf{Store} \\ \mathbf{Env}_{P} & = & \mathbf{Pname} \stackrel{part.}{\rightarrow} \mathbf{Stm} \ni \lambda & \mathbf{Procedure} \ \ \mathbf{environment} \\ \end{array}$$

Example (Environment)

- ▶ $[p \mapsto x := x+1]$: procedure name p is associated to statement x := x+1.
- ▶ $[q \mapsto \text{call } p]$: procedure name q is associated to a call to procedure p.

Semantics with dynamic scope: transition system

Configurations: $(\mathbf{Stm} \times \mathbf{Env}_P^* \times \mathbf{Env}_V^* \times \mathbf{Store}) \cup \mathbf{Store}$

Transition rules:

$$\frac{(D_V, \hat{\rho}, \emptyset, \sigma) \to_D (\rho_I, \sigma') \ (S, \hat{\lambda} \oplus \mathsf{upd}(\emptyset, D_P), \hat{\rho} \oplus \rho_I, \sigma') \to \sigma''}{(\mathsf{begin}\ D_V\ D_P\ \ S\ \mathsf{end}, \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma''}$$

OR (when there is only uninitialised variables):

$$\frac{(D_V, \hat{\rho}) \to_D \hat{\rho}' \ (S, \hat{\lambda} \oplus \mathsf{upd}(\emptyset, D_P), \hat{\rho}', \sigma') \to \sigma''}{(\mathsf{begin}\ D_V\ D_P\ S\ \mathsf{end}, \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma''}$$

where $\operatorname{upd}(\lambda, \epsilon) = \lambda$ and $\operatorname{upd}(\lambda, \operatorname{proc} p \text{ is } S; D_P) = \operatorname{upd}(\lambda[p \mapsto S], D_P)$

$$\frac{(\hat{\lambda}(p), \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma'}{(\mathsf{call}\; p, \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma'}$$

Updating the rule for sequential composition:

$$\frac{(S_1, \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma' \ (S_2, \hat{\lambda}, \hat{\rho}, \sigma') \to \sigma''}{(S_1, S_2, \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma''}$$

Similarly, other rules are adapted in a straightforward manner...

Static scope for variables and procedures: remember the intuition

Example (Static scope for variables and procedures)

```
begin var x := 0;

var y := 1

proc p is x := x * 2;

proc q is call p;

begin var x := 5;

proc p is x := x + 1;

call q; y := x;

end;
```

We need to:

▶ have some "memorization" of the current "procedure mapping" that "remembers the current procedure definitions when it has been defined"

```
\hookrightarrow when we call q we call p and modify x
```

Semantics with static scope for variables and procedures

$$\begin{array}{lll} \mathbf{Env}_{V} & = & \mathbf{Var} \overset{part.}{\to} \mathbf{Loc} \ni \rho & \mathbf{Variable} \ \ \mathbf{environment} \\ \mathbf{Store} & = & \mathbf{Loc} \overset{part.}{\to} \mathbb{Z} \ni \sigma & \mathbf{Store} \\ \mathbf{Env}_{P} & = & \mathbf{Pname} \overset{part.}{\to} \mathbf{Stm} \times \mathbf{Env}_{P}^{*} \times \mathbf{Env}_{V}^{*} \ni \rho & \mathbf{Procedure} \ \ \mathbf{environment} \end{array}$$

Definition (Updating the procedure environment)

$$\mathsf{upd} : \mathsf{Env}_P^* \times \mathsf{Env}_V^* \times \mathsf{Env}_P \times \mathsf{Dec}_P \longrightarrow \mathsf{Env}_P$$

- ightharpoonup upd $(\hat{\lambda}_{g},\hat{\rho},\lambda_{l},\epsilon)=\lambda_{l}$, and
- $\qquad \mathsf{upd}(\hat{\lambda}_g,\hat{\rho},\lambda_I,\mathsf{proc}\;p\;\mathsf{is}\;S;D_P) = \mathsf{upd}(\hat{\lambda}_g,\hat{\rho},\lambda_I[p\mapsto (S,\hat{\lambda}_g\oplus\lambda_I,\hat{\rho})],D_P).$

Semantics with static scope for variables and procedures: transition system

Configurations: $(\mathbf{Stm} \times \mathbf{Env}_P^* \times \mathbf{Env}_V^* \times \mathbf{Store}) \cup \mathbf{Store}$

Transition rules:

$$\frac{(D_V, \hat{\rho}, \emptyset, \sigma) \to_D (\rho_I, \sigma') (S, \hat{\lambda} \oplus \mathsf{upd}(\hat{\lambda}, \hat{\rho} \oplus \rho_I, \emptyset, D_P), \hat{\rho} \oplus \rho_I, \sigma') \to \sigma''}{(\mathsf{begin} \ D_V \ D_P \ S \ \mathsf{end}, \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma''}$$

OR (when there is only uninitialised variables):

$$\frac{(D_V, \hat{\rho}) \to_D \hat{\rho}' \ (S, \hat{\lambda} \oplus \mathsf{upd}(\hat{\lambda}, \hat{\rho}', \emptyset, D_P), \hat{\rho}', \sigma) \to \sigma'}{(\mathsf{begin} \ D_V \ D_P \ S \ \mathsf{end}, \hat{\lambda}, \hat{\rho}, \sigma) \to \sigma'}$$

Procedure call:

[call]
$$\frac{(S, \hat{\lambda}', \hat{\rho}', \sigma) \to \sigma''}{(call \ n \ \hat{\lambda} \ \hat{\sigma}, \sigma) \to \sigma''}$$

where $\hat{\lambda}(p) = (S, \hat{\lambda}', \hat{\rho}')$.

procedures

Syntax of the example program

Example (Program in **Proc**)

end

```
begin
          D_{V_0} \quad [ \text{ var } \mathbf{x} := 1;
          D_{P_0} [ proc p is x := x * 2;
         S_0 begin call q
```

Example 1: semantics of a program with dynamic scope for variables and

We start with:

Execution of the example program

procedures

$$\frac{(D_{V_0},\emptyset,\emptyset) \to ? \quad (S_0,\mathsf{upd}(\emptyset,D_{P_0}),\emptyset,\emptyset) \to ?}{(\mathsf{begin}\ D_{V_0};D_{P_0}\ \ S_0\ \mathsf{end},\emptyset,\emptyset) \to ?}$$

Let us compute / complete $(D_{V_0}, [], []) \rightarrow_D$?:

$$\frac{(\epsilon,\emptyset,[x\mapsto l_0])\to_D([x\mapsto l_0],[l_0\mapsto 1])}{(D_{V_0},\emptyset,\emptyset)\to_D([x\mapsto l_0],[l_0\mapsto 1])}$$

Let us compute upd(\emptyset , D_{P_0}):

$$\mathsf{upd}(\emptyset,\mathsf{proc}\ p\ \mathsf{is}\ x:=x*2)=\mathsf{upd}(\epsilon,[p\mapsto x:=x*2])=[p\mapsto x:=x*2]$$

Let us compute / complete $(S_0, \text{upd}([], D_{P_0}), \emptyset, \emptyset) \rightarrow ?:$

$$(\mathbf{x} := \mathbf{x} * 2, [p \mapsto \mathbf{x} := \mathbf{x} * 2], [\mathbf{x} \mapsto l_0], [l_0 \mapsto 1]) \to ([l_0 \mapsto 2])$$

$$(\mathsf{call} \ p, \mathsf{upd}(\emptyset, D_{P_0}), [\mathbf{x} \mapsto l_0], [l_0 \mapsto 1]) \to ([\mathbf{x} \mapsto l_0], [l_0 \mapsto 2])$$

Finally:

(begin
$$D_{V_0}; D_{P_0}$$
 S_0 end, $\emptyset, \emptyset) o [I_0 \mapsto 2]$

Example: semantics of a program with dynamic scope for variables and procedures

Syntax of the example program

Example (Program in Proc)

begin

```
D_{V_0} \quad \begin{bmatrix} \text{var } \mathbf{x} := 0; \\ \text{var } \mathbf{y} := 1; \end{bmatrix}
D_{P_0} \quad \begin{bmatrix} \text{proc } p \text{ is } \mathbf{x} := \mathbf{x} * 2; \\ \text{proc } q \text{ is call } p; \end{bmatrix}
S_0 \quad \begin{bmatrix} \mathbf{begin} \\ D_{V_1} & [ \text{var } \mathbf{x} := 5; \\ D_{P_1} & [ \text{proc } p \text{ is } \mathbf{x} := \mathbf{x} + 1; \\ S_1 & [ \text{call } q; \mathbf{y} := \mathbf{x}; \\ \mathbf{end} \end{bmatrix}
```

end

Example 2: semantics of a program with dynamic scope

Derivation tree for the outer block

$$\frac{\gamma_1 \rightarrow (\rho_2, \sigma_2) \quad \overbrace{(S_1, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_2) \rightarrow \sigma_0''}^{T_1}}{(S_0, \hat{\lambda}_1, \rho_1, \sigma_1) \rightarrow \sigma_0''}}$$

$$\frac{\gamma_0 \rightarrow (\rho_1, \sigma_1) \quad (S_0, \hat{\lambda}_1, \rho_1, \sigma_1) \rightarrow \sigma_0''}{(\mathsf{begin} \ D_{V_0}; D_{P_0}; S_0 \ \mathsf{end}, \hat{\lambda}_0, \hat{\rho}_0, \sigma_0) \rightarrow \sigma_0''}}$$

where

$$\begin{array}{lll} \gamma_0 & = & (D_{V_0},\hat{\rho}_0,\emptyset,\sigma_0) \\ \hat{\lambda}_0 & = & \lambda_0 = \emptyset \\ \hat{\rho}_0 & = & \rho_0 = \emptyset \\ \sigma_0 & = & \emptyset \\ \gamma_1 & = & (D_{V_1},\hat{\rho}_1,\emptyset,\sigma_1) \\ \rho_1 & = & [x\mapsto h,y\mapsto l_2] \\ \sigma_1 & = & [l_1\mapsto 0,l_2\mapsto 1] \\ \hat{\lambda}_1 & = & \lambda_1 = [p\mapsto x:=x*2,q\mapsto {\sf call}\;p]({\sf function}\;{\sf upd}) \\ \rho_2 & = & [x\mapsto l_3] \\ \sigma_2 & = & [l_1\mapsto 0,l_2\mapsto 1,l_3\mapsto 5] \\ \lambda_2 & = & [p\mapsto x:=x+1] \end{array}$$

Example 2: semantics of a program with dynamic scope for variables and procedures

Derivation tree for the inner block

Derivation tree T_1 :

$$\frac{(x := x + 1, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_2) \rightarrow \sigma_3}{(\mathsf{call} \ p, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_2) \rightarrow \sigma_3}{(\mathsf{call} \ q, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_2) \rightarrow \sigma_3} \qquad (y := x, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_3) \rightarrow \sigma_0''$$

$$(S_1, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_2) \rightarrow \sigma_0''$$

where

$$\begin{array}{rcl}
\sigma_3 & = & [l_1 \mapsto 0, l_2 \mapsto 1, l_3 \mapsto 6] \\
\sigma_0'' & = & [l_1 \mapsto 0, l_2 \mapsto 6, l_3 \mapsto 6]
\end{array}$$

Example 2bis: semantics of a program with static scope for variables and procedures

The only things that change are:

- function upd, and
- ightharpoonup derivation tree T_1 .

Changes to function upd:

$$\hat{\lambda}_{0} = \emptyset = \lambda_{0}
\hat{\lambda}_{01} = [p \mapsto (x := x * 2, \hat{\lambda}_{0}, \rho_{1})] = \lambda_{01}
\hat{\lambda}_{1} = [p \mapsto (x := x * 2, \hat{\lambda}_{0}, \rho_{1}), q \mapsto (\text{call } p, \hat{\lambda}_{01}, \rho_{1})] = \lambda_{1}
\lambda_{2} = [p \mapsto (x := x + 1, \hat{\lambda}_{1}, \hat{\rho}_{1} \oplus \rho_{2})]$$

Example 2bis: semantics of a program with static scope for variables and procedures

Derivation tree for the inner block

Derivation tree T_1 :

$$\frac{(\mathsf{x} := \mathsf{x} * 2, \hat{\lambda}_0, \hat{\rho}_1, \sigma_2) \to \sigma_3}{(\mathsf{call} \; \mathsf{p}, \hat{\lambda}_{01}, \hat{\rho}_1, \sigma_2) \to \sigma_3}}{\frac{(\mathsf{call} \; \mathsf{p}, \hat{\lambda}_{01}, \hat{\rho}_1, \sigma_2) \to \sigma_3}{(\mathsf{call} \; \mathsf{q}, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_2) \to \sigma_3}} \; (\mathsf{y} := \mathsf{x}, \hat{\lambda}_1 \oplus \lambda_2, \hat{\rho}_1 \oplus \rho_2, \sigma_3) \to \sigma_0''}$$

where

$$\begin{array}{rcl}
\sigma_3 & = & [l_1 \mapsto 0, l_2 \mapsto 1, l_3 \mapsto 5] \\
\sigma_0'' & = & [l_1 \mapsto 0, l_2 \mapsto 5, l_3 \mapsto 5]
\end{array}$$

Extending the Syntax of While with Blocks and Procedures

Motivating Examples

Preliminaries

Natural Operational Semantics of Language Block

Natural Operational Semantics of Language Proc

Summary Natural Operational Semantics

Definition of the programming languages While, Block, and Proc:

- Syntax with inductive definitions of syntactic categories: Var, Stm, Dec_V,
 Dec_P.
- ▶ Semantics for arithmetic and Boolean expressions: A, B.
- lacktriangle Semantics for statements: $\mathcal{S}_{\mathrm{ns}}.$
- ► Termination of programs
- Semantics of blocks (semantics of declarations given by a separate transition system)
- Semantics of Proc, giving a semantics to procedure declarations and calls (environment for procedures):
 - dynamic scope for variables and procedures
 - static scope for variables and procedures (symbol table and a memory)
 - dynamic scope for variables and static scope for procedures
 - ▶ static scope for variables and dynamic scope for procedures
 - recursive vs non-recursive calls (in the tutorial)