# 《微积分A2》第十一讲

教师 杨利军

清华大学数学科学系

2020年03月23日

## 广义含参一致收敛的两个常用的判别法

考虑含参变量的广义积分

$$J(y)=\int_a^{+\infty}f(x,y)g(x,y)dx,\quad y\in K,$$

这里 f(x,y), g(x,y) 在  $[a,+\infty)$  × K 上连续, K 记某一区间. 以下介绍两个含参广义积分的一致收敛性判别法, Dirichlet 判别法和 Abel 判别法, 其证明与通常广义积分的相应的判别法基本相同. 这里从略.

### Dirichlet 判别法

定理: 假设

(i) (一致有界性): 存在M > 0, 使得

$$\left| \int_a^b f(x,y) dx \right| \leq M, \quad \forall b \geq a, \quad \forall y \in K;$$

(ii) (单调一致收敛于零): g(x,y) 关于 x 单调, 且关于  $y \in K$  一 致收敛于零, 即  $\forall \varepsilon > 0$ ,  $\exists B = B(\varepsilon) > a$ , 使得  $|g(x,y)| \le \varepsilon$ ,  $\forall x \ge B$ ,  $\forall y \in K$ , 则广义积分

$$\int_a^{+\infty} f(x,y) g(x,y) dx, \quad y \in K$$

关于 $y \in K$  一致收敛.



### Abel 判别法

定理: 假设

(i) (-致收敛性): 下述广义积分关于 $y \in K$  一致收敛

$$\int_a^{+\infty} f(x,y) dx, \quad y \in K;$$

(ii) (单调一致有界): 函数 g(x,y) 关于 x 单调, 且关于  $y \in K$  一致有界, 即存在 M > 0, 使得

$$|g(x,y)| \leq M, \quad \forall (x,y) \in [a,+\infty) \times K,$$

则广义积分

$$\int_a^{+\infty} f(x,y) g(x,y) dx, \quad y \in K$$

关于 $y \in K$  一致收敛.

# 广义含参积分一致收敛性判别,例一

例:证明积分

$$J(y) = \int_0^{+\infty} e^{-xy} \frac{\sin x}{x} dx$$

关于  $y \in [0, +\infty)$  一致收敛.

证: 记

$$f(x,y) = \frac{\sin x}{x}, \quad g(x,y) = e^{-xy}.$$

由一元函数的广义积分的 Dirichlet 的判别法可知广义积分

$$\int_0^{+\infty} \frac{\sin x}{x} dx$$

收敛.



### 例一续

由于被积函数与 y 无关, 故上述积分当然关于 y  $\geq 0$  一致收敛. Abel 判别法中的条件 (i) 成立. 现考虑条件 (ii). 显然  $e^{-xy}$  对  $\forall x,y \geq 0$  关于 x 单调减且关于 y  $\geq 0$  一致有界:  $|e^{-xy}| \leq 1$ ,  $\forall x,y \geq 0$ . 这说明条件 (ii) 成立. 因此由 Abel 判别法可知所考虑的积分

$$\int_0^{+\infty} e^{-xy} \frac{\sin x}{x} dx$$

关于 $y \in [0, +\infty)$  一致收敛. 解答完毕.



# 广义含参积分一致收敛性判别, 例二

例:证明积分

$$\int_0^{+\infty} \frac{x \sin(xy)}{a^2 + x^2} dx$$

关于 $y \ge \delta$  一致收敛, 这里 $\delta > 0$ , a > 0.

证:证明思想是利用 Dirichlet 判别法. 记

$$f(x,y)=\sin{(xy)},\quad g(x,y)=\frac{x}{a^2+x^2}.$$

我们来验证 D 判别法中的两个条件成立. (i) 积分

$$\left| \int_0^b \sin{(\mathbf{x} \mathbf{y})} d\mathbf{x} \right| = \frac{1}{\mathbf{y}} \Big| 1 - \cos{(\mathbf{b} \mathbf{y})} \Big| \leq \frac{2}{\delta}, \quad \forall \mathbf{y} \geq \delta, \ \forall \mathbf{b} \geq \mathbf{0}.$$



# 例二,续

#### (ii) 显然函数

$$\mathbf{g}(\mathbf{x},\mathbf{y}) = \frac{\mathbf{x}}{\mathbf{a}^2 + \mathbf{x}^2}$$

关于  $x \ge a$  单调下降(注: 单调性要求只需充分大的 x 成立即可. 这可以从一致收敛性的定义看出),因为其导数  $g_x(x,y) = \frac{a^2-x^2}{(a^2+x^2)^2}$ . 进一步 当  $x \to +\infty$  时,g(x,y) 关于  $y \ge \delta$  一致收敛于 0,因为 g(x,y) 实际上与 y 无关. 因此由 D 判别法知广义含参积分

$$\int_0^{+\infty} \frac{x \sin(xy)}{a^2 + x^2} dx$$

关于 $y \ge \delta$  一致收敛. 解答完毕.



### Dirichlet 积分公式之证明

例: 证明 Dirichlet 积分公式

$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

证: 考虑含参变量积分

$$J(y)=\int_0^{+\infty} e^{-xy} \frac{\sin x}{x} dx, \quad y \geq 0.$$

被积函数中的  $e^{-xy}$  称为收敛因子. 在前例中已证积分 J(y) 关于  $y \ge 0$  一致收敛. 由连续性定理知 J(y) 在区间  $[0,+\infty)$  上连续. 因此

$$\int_0^{+\infty} \frac{\sin x}{x} dx = J(0) = \lim_{y \to 0^+} J(y).$$

### 证明续一

以下将利用积分号下求导技术来计算积分 J(y), y>0. 记

$$f(x,y) = e^{-xy} \frac{\sin x}{x},$$

则  $f_y(x,y) = -e^{-xy}\sin x$ . 于是  $|f_y(x,y)| \le e^{-xy} \le e^{-\delta x}$ ,

 $\forall y \geq \delta$ ,  $\forall x \geq 0$ , 这里  $\delta > 0$  为任意正常数. 因此积分

$$\int_0^{+\infty} f_y(x,y) dx = \int_0^{+\infty} -e^{-xy} \sin x dx$$

关于 y  $\geq \delta$  一致收敛 (Weierstrass 判别法). 于是由积分号下求导定理得

$$J'(y) = \int_0^{+\infty} f_y(x,y) dx = -\int_0^{+\infty} e^{-xy} \sin x dx.$$

### 证明续二

注意上述积分是可以积出来的. 回忆关于积分  $\int e^{ax} \cos(bx) dx$  和  $\int e^{ax} \sin(bx) dx$  的计算公式

$$\int e^{ax} \left[ \begin{array}{c} cos \, (bx) \\ sin \, (bx) \end{array} \right] dx = \frac{e^{ax}}{a^2 + b^2} \left[ \begin{array}{cc} a & b \\ -b & a \end{array} \right] \left[ \begin{array}{c} cos \, (bx) \\ sin \, (bx) \end{array} \right].$$

证明:  $\int e^{ax}(\cos bx + i\sin bx)dx = \int e^{(a+bi)x}dx = \frac{e^{(a+bi)x}}{a+bi} = \frac{a-bi}{a^2+b^2}e^{(a+bi)x}$ . 然后分离实部和虚部即得.

根据上述公式可知  $J'(y) = -\int_0^{+\infty} e^{-xy} \sin x dx$ 

$$=-\frac{\mathrm{e}^{-\mathrm{x}\mathrm{y}}}{1+\mathrm{y}^2}(-\mathrm{y}\sin\mathrm{x}-\cos\mathrm{x})\bigg|_{\mathrm{x}=0}^{\mathrm{x}=+\infty}=\frac{-1}{1+\mathrm{y}^2},\quad\forall\mathrm{y}>\delta.$$

(ㅁ▶◀♬▶◀불▶◀불▶ 불 쒸٩)

## 证明续三

即

$$\mathsf{J}'(\mathsf{y}) = -rac{1}{1+\mathsf{y}^2}, \quad \forall \mathsf{y} > \delta.$$

因此得  $J(y) = c - \arctan y$ ,  $\forall y > \delta$ . 由于  $\delta > 0$  是任意给定的正数. 故

$$\mathbf{J}(\mathbf{y}) = \mathbf{c} - \arctan \mathbf{y}, \quad \forall \mathbf{y} > \mathbf{0}.$$

以下来确定常数 c. 由定义

$$J(y) = \int_0^{+\infty} e^{-xy} \frac{\sin x}{x} dx.$$

可知当  $y \to +\infty$ ,



### 证明续四

$$|J(y)| \leq \int_0^{+\infty} e^{-xy} \left| \frac{\sin x}{x} \right| dx \leq \int_0^{+\infty} e^{-xy} = \frac{1}{y} \to 0.$$

因此

$$0 = \lim_{y \to +\infty} J(y) = \lim_{y \to +\infty} (c - \arctan y) = c - \frac{\pi}{2}.$$

即 c =  $\frac{\pi}{2}$ . 于是 J(y) =  $\frac{\pi}{2}$  – arctan y,  $\forall$ y > 0. 由此我们就得到

了 Dirichlet 积分公式

$$\int_0^{+\infty} \frac{\sin x}{x} dx = J(0) = \lim_{y \to 0^+} J(y) = \frac{\pi}{2}.$$

解答完毕.



### Euler-Poisson 积分公式

例: 利用含参变量积分技术证明 Euler-Poisson 积分公式

$$\int_0^{+\infty}\!e^{-x^2}dx=\frac{\sqrt{\pi}}{2}.$$

(以后我们将利用重积分技术给出这个公式的另一个比较简单的证明)

证: 记

$$f(y) = \int_0^1 \frac{e^{-(1+x^2)y^2}}{1+x^2} dx, \quad y \in IR,$$

则

$$\begin{split} f'(y) &= \int_0^1 e^{-(1+x^2)y^2} (-2y) dx = -2e^{-y^2} \int_0^1 e^{-x^2y^2} d(xy) \\ &= -2e^{-y^2} \int_0^y e^{-u^2} du = -\frac{d}{dy} \left[ \int_0^y e^{-u^2} du \right]^2. \end{split}$$

### 证明续一

记

$$\mathbf{g}(\mathbf{y}) = \left[ \int_0^{\mathbf{y}} \! \mathrm{e}^{-u^2} du \right]^2, \quad \mathbf{y} \in \mathbf{IR},$$

则  $f'(y) + g'(y) \equiv 0$ . 因此

$$f(y)+g(y)\equiv f(0)+g(0),\quad \forall y\in IR.$$

由于g(0)=0,

$$f(0) = \int_0^1 \frac{1}{1+x^2} dx = \frac{\pi}{4}.$$

另一方面当  $y \to +\infty$  时,



### 证明续二

$$\begin{split} 0 < f(y) &= \int_0^1 \! \frac{e^{-(1+x^2)y^2}}{1+x^2} dx \leq e^{-y^2} \! \int_0^1 \! \frac{e^{-x^2y^2}}{1+x^2} dx \leq e^{-y^2} \to 0, \\ g(y) &= \left[ \int_0^y \! e^{-u^2} du \right]^2 \to \left[ \int_0^{+\infty} \! e^{-u^2} du \right]^2, \end{split}$$

故

$$\left[\int_0^{+\infty} e^{-x^2} dx\right]^2 = \frac{\pi}{4}.$$

由此得 Euler-Poisson 公式

$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

证毕.



### 一元函数的定积分回顾

设 f(x) 为闭区间 [a,b] 上的函数. 对区间 [a,b] 作分割  $\pi$ , 其分点为  $a=x_0< x_1< \cdots < x_n=b$ ,并取样点  $x_i^*\in [x_{i-1},x_i]$ ,作 Riemann 和

$$\sum_{i=1}^n f(x_i^*) \triangle x_i, \quad \triangle x_i = x_i - x_{i-1}.$$

如果当  $\|\pi\| = \max\{\triangle x_1, \dots, \triangle x_n\} \to 0$ , 上述 Riemann 和有极限 J, 且极限值 J 与样点集  $\{x_i^*\}$  的选择无关, 则称函数 f(x) 在闭区间 [a,b] 上 Riemann 可积, 极限值 J 称为 f(x) 在 [a,b] 上的积分, 并记作  $\int_a^b f(x) dx$ .



### 定积分的几何意义

当函数  $f(x) \geq 0$ ,  $x \in [a,b]$  时, 由曲线 y = f(x) 和三条直线段 x = a, x = b, y = 0 所围图形(区域)为 S, 上述 Riemann 和可看作图形 S 之面积的近似值. 于是积分  $\int_a^b f(x) dx$  可定义为图形 S 之面积.



### 体积问题

设函数 f(x,y) 为定义在闭矩形  $R=[a,b]\times [c,d]$  上. 假设  $f(x,y)\geq 0$ ,  $\forall (x,y)\in R$ . 记 V 为曲面 z=f(x,y) 和五个平面 x=a,b, y=c,d 以及 z=0 所围成的立体, 即  $V=\{(x,y,z),0\leq z\leq f(x,y),(x,y)\in R\}$ . 如图所示.





# 分割,近似体积

我们希望定义并求出 V 的体积. 同一元情形, 将区间 [a,b] 分割为 m 闭子区间, 分点为  $a=x_0 < x_1 < \cdots < x_m = b$ , 将区间 [c,d] 分割为 n 闭子区间, 分点为  $c=y_0 < y_1 < \cdots < y_n = d$ . 记小闭矩形

$$R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j],$$

其面积为  $|R_{ij}| = \triangle x_i \triangle y_j = (x_i - x_{i-1})(y_j - y_{j-1})$ . 对每个小矩形  $R_{ij}$  取样点  $(x_i^*, y_j^*) \in R_{ij}$ , 则可得立体 V 的近似体积

$$|V| \approx \sum_{i=1}^m \sum_{j=1}^n f(x_i^*, y_j^*) \triangle x_i \triangle y_j.$$







FIGURE 4

# 图示三



### 体积定义

记  $d_{ij}=\sqrt{\triangle x_i^2+\triangle y_j^2}$ ,即  $d_{ij}$  记小矩形  $R_{ij}$  的对角线长度, $\|\pi\|$   $=max\{d_{ij}\}\ 为分割的宽度,P=\{(x_i^*,y_j^*)\}\ 为样本点集.如果$  当  $\|\pi\|\to 0$  时,二重和

$$\sum_{i=1}^m \sum_{j=1}^n f(x_i^*,y_j^*) \triangle x_i \triangle y_j$$

有极限,且这个极限值与样本点集 P 的选择无关,则可以定义 所求体积 |V| 就是这个极限值,即

$$|V| := \lim_{\|\pi\| \to 0} \sum_{i=1}^m \sum_{j=1}^n f(x_i^*, y_j^*) \triangle x_i \triangle y_j.$$



# 一般二重积分定义(double integrals)

定义: 闭矩形  $R = [a,b] \times [c,d]$  上的二元函数 f(x,y) 的二重积分定义为

$$\iint_{R} \! f(x,y) dx dy := \lim_{\|\pi\| \to 0} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{i}^{*},y_{j}^{*}) \triangle x_{i} \triangle y_{j},$$

假设左边极限存在, 且极限值与样本点集  $P=\{(x_i^*,y_j^*)\}$  的选择无关, 即存在实数 J, 使得对任意  $\varepsilon>0$ , 存在  $\delta=\delta(\varepsilon)>0$ , 使得对闭矩形 R 的任意分割  $\pi$  满足 $\|\pi\|<\delta$ , 以及任意样本点集  $P=\{(x_i^*,y_i^*)\}$ 的选择, 均成立

$$\left| J - \sum_{i=1}^m \sum_{j=1}^n f(x_i^*, y_j^*) \triangle x_i \triangle y_j \right| < \varepsilon.$$

## 一般二重积分定义续

上式中的和

$$\sum_{i=1}^m \sum_{j=1}^n f(x_i^*,y_j^*) \triangle x_i \triangle y_j$$

称为f的一个Riemann和;数J称作f(x,y)在R上的二重积分,并记J为 $\iint_R f(x,y) dx dy$ . 易证这个数J如果存在,则必唯一. 当f(x,y)的二重积分存在时,称f在矩形R上(Riemann)可积.

 $\underline{i}$ : 上述二重积分  $\iint_{\mathbb{R}} f(x,y) dxdy$  常常简记为

$$\iint_{R} f \quad \text{or} \quad \int_{R} f.$$



### 例子

例: 考虑函数  $z=16-x^2-2y^2$  在矩形  $R=[0,2]\times[0,2]$  上的二重积分. 以下对区间 [0,2] 作 m 等分和 n 等分,并且对每个小矩形的样本点均取为右上角点. 先考虑情形 m=2 和 n=2,即  $R=\cup_{i,j=1}^2R_{ij}$ ,如图.



### 例子续一

#### 相应的 Riemann 和为

$$\begin{split} \sum_{i,j=1}^2 f(x_i^*,y_j^*) \triangle x_i \triangle y_j \\ &= f(1,1) \cdot 1 + f(1,2) \cdot 1 + f(2,1) \cdot 1 + f(2,2) \cdot 1 \\ &= 13 + 7 + 10 + 4 = 34. \end{split}$$

## 例子续二

#### Riemann 和作为体积逼近, 如下图所示



### 例子续三

当 m = n = 4 时,且样本点均取右上角点,Riemann 和为 41.5. 计算过程略.图示如下.



(a) m = n = 4,  $V \approx 41.5$ 

### 例子续四

当 m = n = 8 时, 且样本点均取右上角点, Riemann 和为44.875. 图示如下.



(b) m = n = 8,  $V \approx 44.875$ 

### 例子续五

当 m = n = 16 时, 且样本点均取右上角点, Riemann 和 为46.46875. 图示如下.



(c)  $m = n = 16, V \approx 46.46875$ 

### 可积蕴含有界

#### Theorem

定理: 若函数 f(x,y) 在闭矩形 R 上可积, 则 f(x,y) 在 R 上有 R.

#### Proof.

证明: 证明方法类似一维情形. 细节略.

### Darboux 上和与下和

设 f(x,y) 为闭矩形  $[a,b] \times [c,d]$  上的函数. 设  $\pi$  是 R 的一个分割:  $a=x_0 < x_1 < \cdots < x_m = b$ ,  $c=y_0 < y_1 < \cdots < y_n = d$ . 记小闭矩形  $R_{ij}=[x_{i-1},x_i] \times [y_{j-1},y_j]$ ,

$$\label{eq:mass_mass_mass_mass} M_{ij} = \underset{R_{ij}}{sup} \{f(x,y)\}, \quad m_{ij} = \underset{R_{ij}}{inf} \{f(x,y)\}.$$

<u>定义</u>: 我们分别称

$$U(\pi) \stackrel{\triangle}{=} \sum_{i=1}^m \sum_{j=1}^n M_{ij} \triangle x_i \triangle y_j, \quad L(\pi) \stackrel{\triangle}{=} \sum_{i=1}^m \sum_{j=1}^n m_{ij} \triangle x_i \triangle y_j,$$

为函数 f 关于分割  $\pi$  的 Darboux 上和与下和.



### 振幅与振幅体积

#### Definition

定义:  $\omega_{ij} = M_{ij} - m_{ij}$  为函数 f 在小矩形  $R_{ij}$  上的振幅, 称

$$\begin{split} U(\pi) - L(\pi) &= \sum_{i=1}^m \sum_{j=1}^n (M_{ij} - m_{ij}) \triangle x_i \triangle y_j \\ &= \sum_{i=1}^m \sum_{j=1}^n \omega_{ij} \triangle x_i \triangle y_j \end{split}$$

为f 关于分割 $\pi$  的振幅体积.

## 分割加密及其性质

与一元函数情形类似, 称一个分割  $\pi'$  是另一个分割  $\pi$  的加密(分割), 如果  $\pi$  的分点均为  $\pi'$  的分点. 此事简单记作  $\pi \subset \pi'$ . 显然以下两件事情成立.

- (i) 若 $\pi \subset \pi'$ , 则  $U(\pi') \leq U(\pi)$ ,  $L(\pi') \geq L(\pi)$ . 通俗地说, 关于加密分割, 上和不增, 下和不减.
- (ii) 对于任意两个分割  $\pi_1$ ,  $\pi_2$ ,  $L(\pi_1) \leq U(\pi_2)$ . 证明:记  $\pi' = \pi_1 \cup \pi_2$ , 则分割  $\pi'$  既是  $\pi_1$  又是  $\pi_2$  的加密分割.于是

$$\mathsf{L}(\pi_1) \leq \mathsf{L}(\pi') \leq \mathsf{U}(\pi') \leq \mathsf{U}(\pi_2).$$



## Darboux 上积分与下积分

并分别称它们为 Darboux 上积分和 Darboux 下积分. 由于对任意分割  $\pi_1$  和  $\pi_2$ , 成立  $L(\pi_1) \leq U(\pi_2)$ . 由此可得  $\underline{f} \leq \overline{f}$ . 于是对任意分割  $\pi$ ,

$$m|R| \leq L(\pi) \leq \underline{\int} f \leq \overline{\int} f \leq U(\pi) \leq M|R|.$$

## Darboux 可积性准则

#### Theorem

<u>定理</u>:设 f(x,y) 是闭矩形  $R = [a,b] \times [c,d]$  上的有界函数,则以下事情等价

- (i) f 在 R 上可积;
- (ii)  $\overline{\int} f = \underline{\int} f$ ;
- (iii)  $\forall \varepsilon > 0$ , 存在分割  $\pi$ , 使得  $U(\pi) L(\pi) < \varepsilon$ ;
- (iv)  $\forall \varepsilon > 0$ , 存在  $\delta > 0$ , 使得当任意分割  $\pi$  满足  $||\pi|| < \delta$ ,

$$\mathsf{U}(\pi) - \mathsf{L}(\pi) < \varepsilon.$$

定理的证明方法同一维情形. 详见常庚哲史济怀的《数学分析教程》下册, 第三版, page 2-8.

## 连续函数可积

#### $\mathsf{Theorem}$

定理: 若 f(x,y) 为闭矩形  $R = [a,b] \times [c,d]$  上的连续函数,则 f(x,y) 在 R 上可积.

证明:由于f 在闭矩形 R 上连续,从而一致连续.故对  $\forall \varepsilon > 0$ ,存在  $\delta = \delta(\varepsilon) > 0$ ,使得当  $\sqrt{(x-x')^2 + (y-y')^2} < \delta$  时, $|f(x,y) - f(x',y')| < \varepsilon$ ,设分割  $\pi: R = \cup_{i,j} R_{ij}$  满足  $\|\pi\| < \delta$ .记

$$\begin{split} M_{ij} &= \underset{R_{ij}}{sup} \{f(x,y)\} = \underset{R_{ij}}{max} \{f(x,y)\} = f(x_i',y_j'), \\ m_{ij} &= \underset{R_{ij}}{inf} \{f(x,y)\} = \underset{R_{ij}}{min} \{f(x,y)\} = f(x_i'',y_j''), \end{split}$$

## 证明续

这里 
$$(x_i',y_i')$$
,  $(x_i'',y_i'') \in R_{ij}$ . 因此

$$0 \leq \omega_{ij} = \mathsf{M}_{ij} - \mathsf{m}_{ij} = \mathsf{f}(\mathsf{x}_i', \mathsf{y}_j') - \mathsf{f}(\mathsf{x}_i'', \mathsf{y}_j'') < \varepsilon$$

于是关于分割π 的振幅体积

$$\mathsf{U}(\pi) - \mathsf{L}(\pi) = \sum_{\mathsf{i},\mathsf{j}} \omega_{\mathsf{i}\mathsf{j}} \triangle \mathsf{x}_{\mathsf{i}} \triangle \mathsf{y}_{\mathsf{j}} < \varepsilon |\mathsf{R}|.$$

根据可积准则知函数 f 在闭矩形 R 上可积. 证毕.



### 不可积函数例子

例: 记R =  $[0,1] \times [0,1]$ . 对每个  $(x,y) \in R$ , 定义函数

$$D(x,y) = \begin{cases} 1, & x,y \text{ 均为有理数}, \\ 0, & \text{其他情形}. \end{cases}$$

上述函数称为矩形 R 上的 Dirichlet 函数. 函数 D(x,y) 在 R 上不可积. 因为对于任何分割  $\pi$  的任何一个小矩形  $R_{ij}$ ,根据有理数和无理数的稠密性可知, 函数的振幅  $\omega_{ij}=1-0=1$ ,从而振幅面积为  $\sum_{ij} \omega_{ij} \triangle x_i \triangle y_j = |R|=1$ . 根据可积性准则知函数 D(x,y) 在 R 上不可积. 证毕.

# 零测度集

#### Definition

定义: 设  $S \subset \mathbb{R}^2$  为平面点集. 若对于任意  $\varepsilon > 0$ , 存在有限个或可数个闭矩形  $R_i$ ,  $j \geq 1$ , 使得

$$S \subset \bigcup_{j \geq 1} R_j \quad \text{and} \quad \sum_{j \geq 1} |R_j| < \varepsilon,$$

则称集合 S 为平面零测度集.

# 零测度集性质

#### Theorem

定理: (i) 平面有限点集是零测度集; (ii) 可数点集是零测度集; (iii) 零测度集的任意子集是零测度集; (iv) 平面直线或直线段均为零测度集; (v) 有限个或可数无限个零测度集的并集也是 零测度集.

#### Proof.

证明不难. 略去. 详见常庚哲史济怀《数学分析教程》下册, 第三版, page 10.

# Lebesgue 可积性准则

#### Theorem

定理: 设 f(x,y) 为闭矩形 R 上的有界函数,则 f 在 R 上可积, 当且仅当 f 的不连续点集是零测度集.

#### Proof.

证明比较麻烦. 略去. 详见常庚哲史济怀《数学分析教程》下册, 第三版, page 12-14.

 $\underline{i}$ : 如果函数 f(x,y) 在其定义域  $\Omega \subset \mathbb{R}^2$  上的不连续点集是零测度集,则称 f 在  $\Omega$  上几乎处处连续. 几乎处处的英文表达为 almost everywhere, 简写为 a. e. 记号:  $D(f) := \{f$  的间断点全体 $\}$ ,  $C(f) := \{f$  的连续点全体 $\}$ .  $\mathcal{R}(\Omega)$  为闭矩形  $\Omega$  上的可积函数全体.

# 积分性质,线性性

<u>线性性</u>: 若  $f,g \in \mathcal{R}(\Omega)$ ,  $\lambda, \mu \in \mathbb{R}$ , 则  $\lambda f + \mu g \in \mathcal{R}(\Omega)$ , 且

$$\int_{\Omega} (\lambda \mathbf{f} + \mu \mathbf{g}) = \lambda \int_{\Omega} + \mu \int_{\Omega} \mathbf{g}. \quad (*)$$

 $\underline{\iota\iota}$ : 由于  $C(f) \cap C(g) \subset C(\lambda f + \mu g)$ , 故  $D(f) \cup D(g) \supset$ 

 $D(\lambda f + \mu g)$ . 再由 Lebesgue 准则立刻得到结论. 再由

Riemann 和的关系

$$\sum_{i,j} \left[ \lambda f(\mathbf{x}_i^*, \mathbf{y}_j^*) + \mu \mathbf{g}(\mathbf{x}_i^*, \mathbf{y}_j^*) \right] \Delta \mathbf{x}_i \Delta \mathbf{y}_j$$

$$= \lambda \sum_{i,j} f(\mathbf{x}_i^*, \mathbf{y}_j^*) \Delta \mathbf{x}_i \Delta \mathbf{y}_j + \mu \sum_{i,j} g(\mathbf{x}_i^*, \mathbf{y}_j^*) \Delta \mathbf{x}_i \Delta \mathbf{y}_j,$$

令分割宽度趋向于零取极限,即可得到等式(\*).



### 可加性

可加性: 设闭矩形  $\Omega$  分解为有限个闭矩形  $\Omega_j$  之并,  $j=1,\cdots$ , m,  $\Omega=\cup_{j=1}^m\Omega_j$ , 且任意两个矩形至多只有一条公共线段, 则 (i)  $f\in\mathcal{R}(\Omega)\Longleftrightarrow f\in\mathcal{R}(\Omega_i)$ ,  $j=1,\cdots$ , m;

(ii) 当  $f \in \mathcal{R}(\Omega)$  时,  $\int_{\Omega} f = \sum_{j=1}^{m} \int_{\Omega_{j}} f$ .

证: 由 Lebesgue 准则可知结论(i)成立. (ii)的证明概要. 只需证情形 m=2, 即  $\Omega=\Omega_1\cup\Omega_2$ . 不妨设  $\Omega_1$  和  $\Omega_2$  的公共边在直线  $x=x_0$  上. 设  $f\in\mathcal{R}(\Omega)$ , 分割矩形  $\Omega$  时, 总是取  $x_0$  作为 x 区间 [a,b] 的一个分点. 于是  $\Omega$  上的 Riemann 和, 可表为  $\Omega_1$  与  $\Omega_2$  上两个 Riemann 和之和. 再令分割宽度趋向于零, 取极限即得到  $\int_{\Omega} f = \int_{\Omega_1} f + \int_{\Omega_2} f$ . 证毕.

## 保序性

條序性: 设  $f,g \in \mathcal{R}(\Omega)$ . 若  $f(x,y) \leq g(x,y)$ ,  $\forall (x,y) \in \Omega$ , 则  $\int_{\Omega} f \leq \int_{\Omega} g.$ 

证: 显然函数 f 和 g 的 Riemann 和满足

$$\sum_{i,j} f(x_i^*,y_j^*) \Delta x_i \Delta y_j \leq \sum_{i,j} g(x_i^*,y_j^*) \Delta x_i \Delta y_j.$$

令分割宽度  $\|\pi\|$  趋近于零,并利用 f 和 g 的可积性,即可得到结论.证毕.

### 绝对可积性

<u>绝对可积性</u>: 若函数  $f \in \mathcal{R}(\Omega)$ , 则其绝对值函数  $|f| \in \mathcal{R}(\Omega)$ , 且  $\int_{\Omega} f \leq \int_{\Omega} |f|$ .

证:由于  $C(f) \subset C(|f|)$ ,故  $D(f) \supset D(|f|)$ .由 Lebesgue 准则知 D(f) 为零测集,从而 D(|f|) 也为零测集.再次利用 Lebesgue 准则知 |f| 可积.由积分的保序性得  $\int_O f \leq \int_O |f|$ .证毕.

### 乘积可积性

乘积可积性: 设  $f,g \in \mathcal{R}(\Omega)$ , 则它们的乘积  $fg \in \mathcal{R}(\Omega)$ .

证: 由于  $C(f) \cap C(g) \subset C(fg)$ , 故  $D(f) \cup D(g) \supset D(fg)$ . 由

Lebesgue 准则知 D(f) 和 D(g) 均为零测集, 从而 D(fg) 也是

零测集. 因此乘积函数 fg 可积.

## 积分中值定理

#### Theorem

定理: 设  $f,g \in \mathcal{R}(\Omega)$ , 且函数 g(x,y) 在  $\Omega$  上不变号, 则

$$\int_{\Omega}\! f \mathbf{g} = \mu\!\int_{\Omega}\! \mathbf{g}, \quad \mathbf{m} \leq \mu \leq \mathbf{M}, \quad (*)$$

 $\mathsf{m}=\inf\{\mathsf{f}(\mathsf{x},\mathsf{y}),(\mathsf{x},\mathsf{y})\in\Omega\},\ \mathsf{M}=\sup\{\mathsf{f}(\mathsf{x},\mathsf{y}),(\mathsf{x},\mathsf{y})\in\Omega\}.$ 

### 定理证明

 $\underline{\iota\iota}$ : 不妨设  $g(x,y) \geq 0$ ,  $\forall (x,y) \in \Omega$ . 由 m,M 的定义知

$$m \leq f(x,y) \leq M, \quad \forall (x,y) \in \Omega.$$

由此得

$$mg(x,y) \leq f(x,y)g(x,y) \leq Mg(x,y), \quad \forall (x,y) \in \Omega.$$

由积分保序性知

$$\mathsf{m}\!\int_\Omega\!\mathsf{g} \le \int_\Omega\!\mathsf{f}\mathsf{g} \le \mathsf{M}\!\int_\Omega\!\mathsf{g}.$$



## 证明续

若  $\int_{\Omega} \mathbf{g} = \mathbf{0}$ , 则必有  $\int_{\Omega} \mathbf{f} \mathbf{g} = \mathbf{0}$ , 等式 (\*) 对任意常数  $\mu$  均成立.

设  $\int_{\Omega}$ g > 0,则由不等式  $m \int_{\Omega}$ g  $\leq \int_{\Omega}$ fg  $\leq M \int_{\Omega}$ g 得

$$m \leq \frac{\int_{\Omega} fg}{\int_{\Omega} g} \leq M.$$

取 $\mu = \frac{\int_{\Omega} fg}{\int_{\Omega} g}$ , 则立刻得到等式(\*). 证毕.



## 两个推论

#### Corollary

推论一: 设 f(x,y) 在闭矩形  $\Omega$  上连续, g(x,y) 在闭矩形  $\Omega$  上可积, 且不变号, 则存在点  $(\varepsilon,\eta) \in \Omega$ , 使得

$$\int_{\Omega} \mathbf{f} \mathbf{g} = \mathbf{f}(\xi, \eta) \int_{\Omega} \mathbf{g}.$$

#### Corollary

推论二: 设 f(x,y) 在闭矩形 Ω 上可积,则

$$\int_{\Omega} \mathbf{f} = \mu |\Omega|, \quad \mathbf{m} \le \mu \le \mathbf{M},$$

这里m, M 记函数 f 在  $\Omega$  上的下确界和上确界.



## 二重积分化为累次积分

#### Theorem (Fubini)

定理一: 设 f(x,y) 在闭矩形  $\Omega=[a,b]\times[c,d]$  上可积, 且对任意  $x\in[a,b]$ , 积分  $\int_c^d f(x,y) dy$  存在, 记作 A(x), 则 A(x) 在 [a,b] 上可积, 且  $\int_a^b A(x) dx = \iint_\Omega f(x,y) dx dy$ , 即  $\iint_\Omega f(x,y) dx dy = \int_a^b dx \int_a^d f(x,y) dy.$ 

# 二重积分化为累次积分,续一

#### Theorem (Fubini)

定理二: 设 f(x,y) 在闭矩形  $\Omega=[a,b]\times[c,d]$  上可积, 且对任意  $y\in[c,d]$ , 积分  $\int_a^b f(x,y)dx$  存在, 记作 B(y), 则 B(y) 在 [c,d] 上可积, 且  $\int_c^d B(y)dy=\int_\Omega f(x,y)dxdy$ , 即  $\iint_\Omega f(x,y)dxdy=\int_a^d dy \int_a^b f(x,y)dx.$ 

# 二重积分化为累次积分, 续二

#### Theorem (Fubini)

定理三: 设 f(x,y) 在闭矩形  $\Omega = [a,b] \times [c,d]$  上连续,则

$$\iint_{\Omega}\!f(x,y)dxdy=\int_{a}^{b}\!dx\int_{c}^{d}\!f(x,y)dy=\int_{c}^{d}\!dy\!\int_{a}^{b}\!f(x,y)dx.$$

显然上述定理三是定理一和定理二的直接推论.

# Fubini 定理图示



## 例子

例: 计算积分  $J = \iint_{\Omega} f(x,y) dxdy$ , 其中  $\Omega = [0,1] \times [0,1]$ ,

$$f(x,y) = \frac{y}{(1+x^2+y^2)^{3/2}}.$$

解: 根据上述定理可知

$$\begin{split} J &= \int_0^1 \! dx \! \int_0^1 \! \frac{y dy}{(1+x^2+y^2)^{3/2}}, \\ &= \int_0^1 \! dy \! \int_0^1 \! \frac{y dx}{(1+x^2+y^2)^{3/2}}. \end{split}$$

第二个累次积分的内层积分不便计算. 而第一个累次积分的计

算比较容易:



## 例子续

$$\begin{split} J &= \frac{1}{2} \int_0^1 \! dx \int_0^1 \frac{dy^2}{(1+x^2+y^2)^{3/2}} \\ &= \frac{1}{2} \int_0^1 \left[ \frac{-2}{(1+x^2+y^2)^{1/2}} \right]_{y=0}^{y=1} dx \\ &= \int_0^1 \left[ \frac{1}{\sqrt{1+x^2}} - \frac{1}{\sqrt{2+x^2}} \right] dx \\ &= \left[ \ln \! \left( x + \sqrt{1+x^2} \right) - \ln \! \left( x + \sqrt{2+x^2} \right) \right]_{x=0}^{x=1} \\ &= \ln \! \frac{2+\sqrt{2}}{1+\sqrt{3}}. \end{split}$$

解答完毕.

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 9 < で

#### 定理一证明

 $\underline{w}$ : 想法是利用 Darboux 可积性准则. 设 $\pi$  为 $\Omega$  的一个分割:

$$a=x_0< x_1< \cdots < x_n=b$$
,  $c=y_0< y_1< \cdots < y_m=d$ . 记  $R_{ii}=[x_{i-1},x_i] imes[y_{i-1},y_i]$ ,

$$\label{eq:mass_mass_mass_mass} M_{ij} = \underset{R_{ij}}{sup} \{f(x,y)\}, \quad m_{ij} = \underset{R_{ij}}{inf} \{f(x,y)\}.$$

相应的 Darboux 上和与下和为

$$U_f(\pi) = \sum_{i=1}^m \sum_{j=1}^n M_{ij} \triangle x_i \triangle y_j, \quad L_f(\pi) = \sum_{i=1}^m \sum_{j=1}^n m_{ij} \triangle x_i \triangle y_j.$$



#### 证明续一

由 Darboux 可积性准则知, 对  $\forall \varepsilon > 0$ , 存在  $\delta > 0$ , 当分割  $\pi$  满  $\mathbb{Z} \|\pi\| < \delta$  时,  $\mathbb{U}_{f}(\pi) - \mathbb{L}_{f}(\pi) < \varepsilon$ . 现证明函数  $\mathbb{A}(x)$  在 [a,b]上的可积性. 每个闭矩形  $\Omega = [a,b] \times [c,d]$  的分割  $\pi$ , 均确定 了闭区间 [a,b] 的一个分割  $\pi'$ :  $a = x_0 < x_1 < \cdots < x_n = b$ . 函数 A(x) 关于分割  $\pi'$  的 Darboux 上和与下和分别记作  $U_{\Delta}(\pi')$ ,  $L_{\Delta}(\pi')$ . 下面考虑它们与 f(x,y) 的 Darboux 上和与下 和  $U_f(\pi)$  与  $L_f(\pi)$  的关系. 记  $J_i = [x_{i-1}, x_i], \triangle x_i = x_i - x_{i-1},$ 

$$M_i = \sup_{J_i} \{A(x)\}, \quad m_i = \inf_{J_i} \{A(x)\}.$$



### 证明续二

对 i = 1, ..., n, 
$$m_i = inf_{J_i}\{A(x)\}$$

$$\begin{split} &= \inf_{J_i} \left\{ \int_c^d f(x,y) dy \right\} = \inf_{J_i} \left\{ \sum_{j=1}^m \int_{y_{j-1}}^{y_j} f(x,y) dy \right\} \\ &\geq \sum_{j=1}^m \inf_{J_i} \left\{ \int_{y_{j-1}}^{y_j} f(x,y) dy \right\} \geq \sum_{j=1}^m m_{ij} \triangle y_j. \end{split}$$

即

$$m_i \geq \sum_{i=1}^m m_{ij} \triangle y_j.$$

于上述不等式的两边同乘以 $\triangle x_i$ ,并对 $i=1,\dots,n$ 求和得

$$L_{A}(\pi') = \sum_{i=1}^{n} m_{i} \triangle x_{i} \geq \sum_{i=1}^{n} \sum_{j=1}^{m} m_{ij} \triangle x_{i} \triangle y_{j} = L_{f}(\pi).$$

## 证明续三

即  $L_A(\pi') \ge L_f(\pi)$ . 同理可证  $U_A(\pi') \le U_f(\pi)$ . 由此得  $L_f(\pi) \le L_A(\pi') \le U_A(\pi') \le U_f(\pi).$ 

于是根据 f(x,y) 的可积性,以及一维和二维 Darboux 可积性准则知,函数 A(x) 在 [a,b] 上可积,并且  $\int_{[a,b]} A = \iint_{\Omega} f$ . 定理得证.

## 作业

第一章总复习题(page 97): 17.

第二章总复习题(page 115-116): 5(1).

习题3.1 (page 124): 6.

习题3.3 (page 143): 1, 2, 3.