MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (PRG from PRP). Let \mathcal{F} be a (q, t, ε) -secure pseudorandom permutation family defined by a deterministic function $f: \mathcal{K} \times \mathcal{M} \to \mathcal{M}$ such that all functions $f_k(m) := f(k, m)$ are different. Show that functions $g_m: \mathcal{K} \to \mathcal{M}^n$ defined through the following iteration algorithm

$$g_m(k)$$

$$\begin{bmatrix} c_1 \leftarrow f(k,m) \\ c_2 \leftarrow f(k,c_1) \\ \dots \\ c_n \leftarrow f(k,c_{n-1}) \\ \textbf{return } c_1, c_2, \dots, c_n \end{bmatrix}$$

are pseudorandom generators for any $m \in \mathcal{M}$ for small enough n.

Solution.

SUBPROOF. Let us prove the claim under the assumption that we can replace all function invocations by random samplings from \mathcal{M} .

SUBPROOF. Define the collision event and analyse what is the probability that such event occurs under the assumption that function family is the set of all functions $\mathcal{F}_{ALL}(\mathcal{M} \to \mathcal{M})$. Conclude that the construction is pseudorandom generator under this assumption.

Subproof. Use PRP/PRF switching lemma to complete the proof