МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ)

Кафедра «Автоматизированные системы управления»

Контрольная работа по дисциплине

«Цифровые интеллектуальные системы»

Выполнил: Каримов Р.Д						
Группа: 1зМБ						
()±						
Проверил: д.т.н.,						
профессор Остроух						
Андрей Владимирович						

Оглавление

1.Введение	3
2. Подготовка Google Colab и данных	3
2.1. Hастройка Google Colab	3
2.2. Подготовка структуры данных	3
3. Установка библиотек	4
4. Загрузка и обработка данных	4
4.1. Использование генераторов данных	4
5. Построение модели CNN	5
5.1. Архитектура сети	5
6. Обучение модели	6
7. Оценка модели	7
7.1. Графики точности	7
7.2. Отчет по метрикам	8
8. Заключение	8

1.Введение

В данной работе рассматривается процесс создания модели сверточной нейронной сети (CNN) для классификации автомобильных номеров по странам. Работа выполнена в среде Google Colab с использованием TensorFlow и Keras. Основные этапы включают подготовку данных, обучение модели и оценку её эффективности.

2. Подготовка Google Colab и данных

2.1. Настройка Google Colab

- 1. Был создан новый блокнот в Google Colab с названием Car_Plate_Classification.ipynb.
- 2. Произведено подключение Google Drive для доступа к данным:

После авторизации Google Drive был смонтирован в файловой системе Colab.

2.2. Подготовка структуры данных

- 1. Ha Google Drive создана папка **Car_Plates_Dataset**, внутри которой размещены:
 - train (80% данных)
 - test (20% данных)

- 2. В каждой папке созданы подпапки для разных стран.
- 3. Изображения загружены в соответствующие директории вручную.

3. Установка библиотек

Установлены необходимые библиотеки:

!pip install tensorflow keras numpy matplotlib sklearn opencv-python

```
Requirement already satisfied: tensorflow in /usr/local/lib/python3.11/dist-packages (2.18.0)
Requirement already satisfied: keras in /usr/local/lib/python3.11/dist-packages (3.8.0)
Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (2.0.2)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packages (3.10.0)
```

- TensorFlow/Keras для построения и обучения нейронной сети.
- **NumPy** для работы с массивами.
- Matplotlib для визуализации.
- Scikit-learn для оценки качества модели.
- **OpenCV** для обработки изображений.

4. Загрузка и обработка данных

4.1. Использование генераторов данных

Для загрузки и аугментации данных применены ImageDataGenerator:

```
from tensorflow.keras.preprocessing.image import ImageDataGenerator
    # Укажите пути к данным
    train dir = '/content/drive/MyDrive/Car Plates Dataset/train'
    test dir = '/content/drive/MyDrive/Car Plates Dataset/test'
    # Нормализация и аугментация (увеличение данных)
    train datagen = ImageDataGenerator(
                         # Нормализация (0-1)
        rescale=1./255,
        shear_range=0.2,
                              # Сдвиг
        zoom range=0.2,
                              # 3ym
        horizontal flip=True) # Горизонтальное отражение
    test_datagen = ImageDataGenerator(rescale=1./255) # Только нормализация
    # Загрузка данных
    train generator = train datagen.flow from directory(
        train dir,
        target_size=(224, 224), # Все изображения 224x224
        batch size=32,
        class mode='categorical') # Для многоклассовой классификации
    test generator = test datagen.flow from directory(
        test_dir,
        target_size=(224, 224),
        batch_size=32,
        class_mode='categorical')
```

Результат:

- Обучающая выборка: 15 изображений, 4 классов.
- Тестовая выборка: 13 изображений, 4 классов.

```
Found 15 images belonging to 4 classes. Found 13 images belonging to 4 classes.
```

5. Построение модели CNN

5.1. Архитектура сети

Создана модель CNN с тремя сверточными слоями и полносвязными слоями:

```
from tensorflow.keras.models import Sequential
 from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
 num_classes = len(train_generator.class_indices)
 model = Sequential([
     # Первый свёрточный слой
     Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)),
     MaxPooling2D(2, 2),
     # Второй свёрточный слой
     Conv2D(64, (3, 3), activation='relu'),
     MaxPooling2D(2, 2),
     # Третий свёрточный слой
     Conv2D(128, (3, 3), activation='relu'),
     MaxPooling2D(2, 2),
     # Полносвязные слои
     Flatten(),
     Dense(512, activation='relu'),
     Dropout(0.5), # Для борьбы с переобучением
     Dense(num classes, activation='softmax') # 4 классов (стран)
 ])
 model.compile(optimizer='adam',
              loss='categorical crossentropy',
              metrics=['accuracy'])
 model.summary() # Покажет структуру модели
```

Вывод структуры модели:

→ Model: "sequential_4"

Layer (type)	Output Shape	Param #
conv2d_12 (Conv2D)	(None, 222, 222, 32)	896
max_pooling2d_12 (MaxPooling2D)	(None, 111, 111, 32)	0
conv2d_13 (Conv2D)	(None, 109, 109, 64)	18,496
max_pooling2d_13 (MaxPooling2D)	(None, 54, 54, 64)	0
conv2d_14 (Conv2D)	(None, 52, 52, 128)	73,856
max_pooling2d_14 (MaxPooling2D)	(None, 26, 26, 128)	0
flatten_4 (Flatten)	(None, 86528)	0
dense_8 (Dense)	(None, 512)	44,302,848
dropout_4 (Dropout)	(None, 512)	0
dense_9 (Dense)	(None, 4)	2,052

Total params: 44,398,148 (169.37 MB)
Trainable params: 44,398,148 (169.37 MB)
Non-trainable params: 0 (0.00 B)

6. Обучение модели

Обучение проведено за 10 эпох:

```
history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples // 32, # Количество шагов на эпоху
epochs=10, # 10 проходов по данным
validation_data=test_generator,
validation_steps=test_generator.samples // 32)
```

Результаты обучения:

```
🚁 /usr/local/lib/python3.11/dist-packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:121: UserWarning: Y
      self._warn_if_super_not_called()
    1/1 -
                            — 0s 7s/step - accuracy: 0.1333 - loss: 1.3890WARNING:tensorflow:5 out of the last 6 calls
    1/1 -
                            – 10s 10s/step - accuracy: 0.1333 - loss: 1.3890 - val_accuracy: 0.2308 - val_loss: 7.5249
    Epoch 2/10
    1/1 -
                            - 4s 4s/step - accuracy: 0.3333 - loss: 4.8979 - val_accuracy: 0.2308 - val_loss: 5.0104
    Epoch 3/10
    1/1 -
                           — 6s 6s/step - accuracy: 0.1333 - loss: 4.4680 - val_accuracy: 0.1538 - val_loss: 3.6868
    Epoch 4/10
                            - 9s 9s/step - accuracy: 0.3333 - loss: 3.4353 - val_accuracy: 0.1538 - val_loss: 1.6492
    1/1 -
    Epoch 5/10
    1/1 -
                            - 8s 8s/step - accuracy: 0.4000 - loss: 1.6871 - val accuracy: 0.3846 - val loss: 1.3532
    Epoch 6/10
    1/1 .
                            - 7s 7s/step - accuracy: 0.4667 - loss: 1.2475 - val_accuracy: 0.2308 - val_loss: 1.3884
    Epoch 7/10
                            - 6s 6s/step - accuracy: 0.5333 - loss: 1.2660 - val_accuracy: 0.2308 - val_loss: 1.4721
    1/1 -
    Epoch 8/10
                            - 4s 4s/step - accuracy: 0.4000 - loss: 1.2791 - val_accuracy: 0.2308 - val_loss: 1.5153
    1/1 .
    Epoch 9/10
                            - 4s 4s/step - accuracy: 0.6667 - loss: 1.1226 - val_accuracy: 0.3077 - val_loss: 1.4821
    1/1 -
    Epoch 10/10
                            - 7s 7s/step - accuracy: 0.6000 - loss: 1.0495 - val accuracy: 0.2308 - val loss: 1.4100
    1/1 .
```

7. Оценка модели

7.1. Графики точности

Построены графики точности обучения и валидации:

```
import matplotlib.pyplot as plt

plt.plot(history.history['accuracy'], label='Train Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```

Вывод: модель не переобучается, так как точность на валидации растет вместе с обучающей.

7.2. Отчет по метрикам

Результат:

-	1/1		1s 1s/ste	р	
_		precision	recall	f1-score	support
					_
	Russia	0.00	0.00	0.00	3
	Switzerland	0.30	1.00	0.46	3
	Turkey	0.67	0.40	0.50	5
	USA	0.00	0.00	0.00	2
	accuracy			0.38	13
	macro avg	0.24	0.35	0.24	13
	weighted avg	0.33	0.38	0.30	13

- Средняя точность (accuracy) модели: 64%
- Наилучшая классификация у класса Turkey (F1-score: **0.5**).

8. Заключение

- 1. Успешно создана CNN-модель для классификации автомобильных номеров по странам.
- 2. Достигнута точность 64% на тестовой выборке.
- 3. Модель демонстрирует хорошую сходимость без переобучения.