Common Patterns Across Models

- 1. **Modeling:** Decide whether to model $p(y \mid x)$ (discriminative) or p(x, y) (generative).
- 2. Loss Functions: Examples include squared error, cross-entropy, hinge loss, etc.
- 3. **Optimization:** Solve in closed form (e.g. linear regression) or use iterative methods such as gradient descent/backpropagation.

Discriminative Models: Directly model

$$p(y \mid x; w)$$
.

For binary logistic regression:

$$p(y = 1 \mid x; w) = \sigma(w^T x), \quad \sigma(z) = \frac{1}{1 + e^{-z}}.$$

Generative Models: Model p(x, y) then apply Bayes' rule to compute p(y | x).

MLE & MAP:

$$w_{\text{MLE}} = \arg\max_{w} \log p((x, y) \mid w),$$

$$w_{\text{MAP}} = \arg\max_{w} \Big\{ \log p((x, y) \mid w) + \log p(w) \Big\},\,$$

with a Gaussian prior $w \sim \mathcal{N}(0, \sigma_0^2 I)$ yielding ridge regression:

$$w_{\text{MAP}} = \arg\min_{\boldsymbol{w}} \sum_{i=1}^{N} \left(\boldsymbol{y}^{(i)} - \boldsymbol{w}^T \boldsymbol{x}^{(i)} \right)^2 + \lambda \|\boldsymbol{w}\|_2^2, \quad \lambda = \frac{\sigma^2}{\sigma_0^2}.$$

Optimal w & Likelihood Functions

Linear Regression:

$$w^* = (X^T X)^{-1} X^T y, \quad p((x, y) \mid w) = \prod_{i=1}^N \mathcal{N}(y^{(i)} \mid w^T x^{(i)}, \sigma^2)$$

Binary Logistic Regression:

$$p(y \mid x; w) = \sigma(w^T x)^y [1 - \sigma(w^T x)]^{1-y},$$

with log-likelihood

$$\ell(w) = \sum_{i=1}^{N} \left[y^{(i)} \log \sigma(w^{T} x^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(w^{T} x^{(i)})) \right]$$

Multiclass (Softmax):

Dataset Likelihood:

$$\mathcal{L}(\{w_{\ell}\}) = \prod_{i=1}^{N} \prod_{k=1}^{K} \left(\frac{\exp(w_{k}^{T} x^{(i)})}{\sum_{\ell=1}^{K} \exp(w_{\ell}^{T} x^{(i)})} \right)^{\mathbb{I}\{y^{(i)} = k\}}.$$

Taking the logarithm gives the log-likelihood:

$$\ell(\{w_{\ell}\}) = \sum_{i=1}^{N} \left[w_{y^{(i)}}^{T} x^{(i)} - \log \left(\sum_{\ell=1}^{K} \exp(w_{\ell}^{T} x^{(i)}) \right) \right].$$

Ridge Regression:

$$w^* = (X^T X + \lambda I)^{-1} X^T y.$$

Loss Functions

- **0/1 Loss:** $L(y, \hat{y}) = \mathbb{I}(y \neq \hat{y}).$
- Hinge Loss: $L(y, f(x)) = \max(0, 1 y f(x))$.
- L1 Loss: $L(y, \hat{y}) = |y \hat{y}|$.
- **L2** Loss: $L(y, \hat{y}) = (y \hat{y})^2$.
- Binary Cross-Entropy: $L(y, \hat{y}) = -[y \log \hat{y} + (1-y) \log(1-\hat{y})].$
- Softmax Loss: $L = -\log \frac{\exp(w_k^T x)}{\sum_{\ell} \exp(w_\ell^T x)}$.

Gradient Descent

Gradient Descent:

• Iteratively update parameters by moving opposite to the gradient:

$$w \leftarrow w - \eta \nabla L(w),$$

where η is the learning rate.

• A proper choice of η is crucial: if too high, updates overshoot minima; if too low, convergence is slow

Stochastic Gradient Descent (SGD):

 Approximates the full gradient using a single (or a mini-batch of) training example(s):

$$w \leftarrow w - \eta \nabla L^{(i)}(w),$$

where $L^{(i)}(w)$ is the loss for the *i*th example.

- Benefits: faster iterations and potential to escape shallow local minima.
- Trade-off: introduces variance in updates, often requiring a decaying learning rate schedule.

Matrix Rules

Algebra:

$$(AB)^T = B^T A^T, \quad (A^{-1})^T = (A^T)^{-1}.$$

For column vectors a, b: $a^T b$ is scalar. If X is $n \times d$ and w is $d \times 1$, then Xw is $n \times 1$.

Derivatives:

$$\frac{\partial}{\partial w}(w^TAw) = (A + A^T)w \quad \text{(or } 2Aw \text{ if } A \text{ is symmetric)},$$

$$\frac{\partial}{\partial w} \frac{1}{2} \|y - Xw\|_2^2 = -X^T (y - Xw).$$

Norms

$$||w||_2 = \sqrt{w^T w}, \quad ||w||_1 = \sum_i |w_i|.$$

Lagrangian Method

Steps:

- 1. Form the Lagrangian: $\mathcal{L}(w, \lambda) = \text{Objective}(w) + \lambda (\text{Constraint}(w)).$
- 2. Differentiate with respect to w and λ .
- 3. Set derivatives to zero and solve.

Example (SVM):

$$\mathcal{L}(w, b, \lambda) = \frac{1}{2} \|w\|_2^2 - \sum_{i=1}^{N} \lambda_i \Big[y^{(i)}(w^T x^{(i)} + b) - 1 \Big].$$

Terminology & Notation

Terminology:

Posterior: $p(w \mid (x, y))$ after observing data.

Posterior Predictive:

$$p(y^* \mid x^*, (x, y)) = \int p(y^* \mid x^*, w) p(w \mid (x, y)) dw.$$

Marginal Likelihood:

$$p((x,y)) = \int p((x,y) | w) p(w) dw.$$

Class-Conditional: $p(x \mid y)$.

Notation:

- N: Number of training examples.
- K: Number of classes.
- $x^{(i)}$: ith input data point.
- $y^{(i)}$: Label corresponding to $x^{(i)}$.
- X: Design matrix whose rows are $x^{(i)}$.
- w, w_{ℓ} : Weight vector(s); w_{ℓ} denotes the weight for class ℓ in multiclass models.
- w_0 or b: Bias term.
- η : Learning rate in gradient descent.
- λ : Regularization parameter (ridge: ℓ_2 , lasso: ℓ_1).
- C: SVM regularization parameter trading off margin and classification errors.
- ξ_i: Slack variable for the ith example in softmargin SVM.
- $\phi(x)$: Feature mapping or basis function.
- $\sigma(z)$: Sigmoid function, $\frac{1}{1+e^{-z}}$.
- $\mathbb{I}\{\cdot\}$: Indicator function.
- L: Generic loss function.
- ℓ : Often denotes log-likelihood.

Bias-Variance & Regularization

Bias-Variance Tradeoff: High bias \rightarrow underfitting; high variance \rightarrow overfitting. Regularization (e.g. ridge, lasso) can reduce variance.

Ridge Regression:

$$w^* = (X^T X + \lambda I)^{-1} X^T y.$$

Lasso Regression:

Minimize

$$\sum_{i=1}^{N} (y^{(i)} - w^T x^{(i)})^2 + \lambda ||w||_1.$$

Neural Networks

Architecture:

• Feedforward NN with one hidden layer:

$$h = \sigma(W_1x + b_1), \quad f = W_2h + b_2.$$

• Deep networks with multiple hidden layers enable hierarchical feature learning.

Activation Functions:

Introduce non-linearity (e.g. Sigmoid, ReLU, tanh) to enable universal approximation.

Backpropagation:

Compute gradients via the chain rule:

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial f} \frac{\partial f}{\partial W}.$$

Performs a forward pass to compute outputs and a backward pass to update parameters.

Additional Points:

- Model Selection: Techniques such as crossvalidation and regularization are key for avoiding overfitting.
- Loss Functions: Choice depends on the task—least squares for regression; softmax loss for classification.
- Task Adaptation: Neural networks can be tailored for both regression and classification tasks.
- Bias Inclusion: Always incorporate the bias term via the augmented input (see Supervised Learning Organization).

Support Vector Machines (SVMs)

Maximum Margin Classifier:

Finds the hyperplane that maximizes the distance (margin) between classes.

Hard Margin SVM:

$$\min_{w,b} \frac{1}{2} ||w||_2^2 \quad \text{s.t. } y^{(i)}(w^T x^{(i)} + b) \ge 1.$$

Soft Margin SVM:

$$\min_{w,b} \frac{1}{2} ||w||_2^2 + C \sum_{i=1}^N \xi_i \quad \text{s.t. } y^{(i)}(w^T x^{(i)} + b) \ge 1 - \xi_i, \quad \xi_i \ge 0.$$

Additional Points:

- **Hinge Loss:** Penalizes points within the margin, defined as $L(y, f(x)) = \max(0, 1 y f(x))$.
- Regularization (C): A higher C emphasizes minimizing classification errors, potentially at the cost of a smaller margin.
- Kernel Trick: Replaces inner products x^Tz with $K(x,z) = \phi(x)^T\phi(z)$ to handle nonlinearly separable data. Common kernels include linear, polynomial, and RBF.
- Example Kernel: For RBF, $K(x, x') = \exp(-\gamma ||x x'||_2^2)$.
- Support Vectors: The data points that lie closest to the decision boundary; they determine the position of the hyperplane.
- Decision Boundaries: SVMs often yield sharper boundaries compared to logistic regression.

Naive Bayes & Bayesian Linear Regression

Naive Bayes:

• Modeling: A generative model that estimates p(x, y) by assuming feature independence given the class:

$$p(x \mid y) = \prod_{j} p(x_j \mid y).$$

• Classification: Compute the posterior via Bayes' rule:

$$p(y \mid x) \propto p(y) p(x \mid y)$$
.

• Characteristics: Simple, fast, and effective in highdimensional settings, though it relies on the independence assumption.

Working with Generative Models for Classification:

- Estimate class priors p(y) and class-conditional likelihoods $p(x \mid y)$ from the data.
- Apply Bayes' rule to obtain $p(y \mid x)$ and classify by choosing the class with maximum posterior probability.

Discriminative vs. Generative Models:

- Discriminative models (e.g., Logistic Regression) directly model $p(y \mid x)$ focusing on the decision boundary.
- Generative models (e.g., Naive Bayes) model the joint distribution p(x, y) and derive $p(y \mid x)$ using Bayes' rule.
- Discriminative models often achieve higher asymptotic accuracy, while generative models can perform better with limited data or when model assumptions hold.

Bayesian Linear Regression:

- Concept: Treats weights w as random variables with a prior (commonly Gaussian).
- Posterior: Update beliefs with:

$$p(w \mid D) \propto p(D \mid w) p(w).$$

• **Prediction:** Integrate over the posterior to obtain:

$$p(y^* \mid x^*, D) = \int p(y^* \mid x^*, w) \, p(w \mid D) \, dw.$$