





FACULTY OF ENGINEERING

# Building a better VHDL testing environment

Joren Guillaume

FEA Ghent University

Thesis presentation

- Situating
  - Developing VHDL
  - Proposed solution
- The framework
  - Utility library
  - Continuous Integration
  - Python script
  - Using the framework
- Concluding
  - Results
  - Future work
- Demo



- Situating
  - Developing VHDL
  - Proposed solution
- 2 The framework
  - Utility library
  - Continuous Integration
  - Python script
  - Using the framework
- Concluding
  - Results
  - Future work
- Demo



# Developing VHDL

#### **VHDL**

- VHSIC Hardware Description Language
- Test benches
  - Output tracking

#### **Problems**

- Non-standardized process
- Single point of failure
- Time consuming



- Situating
  - Developing VHDL
  - Proposed solution
- 2 The framework
  - Utility library
  - Continuous Integration
  - Python script
  - Using the framework
- Concluding
  - Results
  - Future work
- 4 Demo



# Proposed solution

#### Standardized testing framework

- Based on software techniques
- Cross platform
- At the core: Python script
- Utility library
- Continuous Integration system



- Situating
  - Developing VHDL
  - Proposed solution
- 2 The framework
  - Utility library
  - Continuous Integration
  - Python script
  - Using the framework
- Concluding
  - Results
  - Future work
- 4 Demo



# Utility library

#### Bitvis utility library

- Compatible with all VHDL versions
- Expands VHDL functions
  - Easy value checking
  - ► Formatted output
- Quick & uniform coding
  - Reduces time spent coding
  - ► Improves readability





8 / 23

- Situating
  - Developing VHDL
  - Proposed solution
- 2 The framework
  - Utility library
  - Continuous Integration
  - Python script
  - Using the framework
- Concluding
  - Results
  - Future work
- 4 Demo



# Continuous Integration

#### Hudson-CI

- Centralized, automated testing
- Revision control integration
- Very customizable





- Situating
  - Developing VHDL
  - Proposed solution
- 2 The framework
  - Utility library
  - Continuous Integration
  - Python script
  - Using the framework
- Concluding
  - Results
  - Future work
- 4 Demo



# Python script

#### Test bench parser

- Customizable process
  - Command-line arguments
- Separates (groups of) independent tests
- Multiple useful outputs
  - Processed text-based report
  - Processed XML report
  - Unmodified console output



- Situating
  - Developing VHDL
  - Proposed solution
- 2 The framework
  - Utility library
  - Continuous Integration
  - Python script
  - Using the framework
- 3 Concluding
  - Results
  - Future work
- 4 Demo



# Preparing the test bench

- Import the utility library
- Decide on separation method
  - Line by line → No editing test bench
  - Start/Stop
  - Partitioned (recommended)
- Create command file if needed



# Modified test bench example

#### Old test bench:

```
assert q = '0'
    report "Wrong output value at startup" severity FAILURE;
d <= '1';
WAIT FOR clk_period;
assert q = '1'
    report "Wrong output value at first test" severity FAILURE;</pre>
```

#### Modified test bench:

```
— Test 1
    check_value(q = '0', FAILURE, "Wrong output value at startup");
    write(d, '1', "DFF");
    check_value(q = '1', FAILURE, "Wrong output value at first test");
    ...
— End 1
```



# Running the job

- Create new job at Hudson-CI
- Optional: set for import from revision control source
- Set correct parser flags in shell command
- Build & check results

python  $src\testbench\_parser.py \rightarrow m partitioned -I <math>sim\tb\_dff\_r.vhd$ 



# Script workflow



(Steps of the parser logged separately)



- Situating
  - Developing VHDL
  - Proposed solution
- 2 The framework
  - Utility library
  - Continuous Integration
  - Python script
  - Using the framework
- Concluding
  - Results
  - Future work
- 4 Demo



#### Results

- Multiple open-source projects converted
- Tested with Git, Hudson-CI & Bitvis

| S | W         | Job ↓    | Last Success                | Last Failure                            | Last Duration | Console |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|-----------|----------|-----------------------------|-----------------------------------------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <i>-</i>  | VHDL-AES | 1 min 15 sec ( <u>#30</u> ) | 3 mo 4 days ( <u>#16</u> )              |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| • | 7         |          | 38 sec ( <u>#35</u> )       | , , , , , , , , , , , , , , , , , , , , | 24 sec        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | <b>**</b> | VHDL-CRC | 3 mo 1 day ( <u>#12</u> )   | 1 min 3 sec ( <u>#13</u> )              | 5,5 sec       |         | O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O    O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O     O |
|   | <b>**</b> | VHDL-SHA | N/A                         | 52 sec ( <u>#5</u> )                    | 6,2 sec       |         | <b>(2)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



- Situating
  - Developing VHDL
  - Proposed solution
- 2 The framework
  - Utility library
  - Continuous Integration
  - Python script
  - Using the framework
- Concluding
  - Results
  - Future work
- Demo



#### Future work

- Wider, better tool support
- Lexical analysis
  - Automated partitioning
  - Smart test bench generation
- Adapted CI tool
  - Specific needs of hardware development



- Situating
  - Developing VHDL
  - Proposed solution
- 2 The framework
  - Utility library
  - Continuous Integration
  - Python script
  - Using the framework
- Concluding
  - Results
  - Future work
- Demo



### Demo

# Demo

