Dividir y Conquistar

Dividir y Conquistar

- Conocida como
 - "Divide & Conquer"
 - "Dividir y Conquistar
 - "Divide y Reinarás
 - D&C
 - etc.
- La metodología consiste en
 - dividir un problema en problemas similares....pero más chicos
 - resolver los problemas menores
 - Combinar las soluciones de los problemas menores para obtener la solución del problema original.
- El método tiene sentido siempre y cuando la división y la combinación no sean excesivamente caras
- ¿Entonces?

Esquema general de D&C

- Algoritmo DC(X)
 - Si X es suficientemente chico (o simple)
 - ADHOC(X)
 - En caso contrario,
 - Descomponer X en subinstancias X₁, X₂,.... X_k
 - Para i desde 1 hasta k hacer
 - \square $Y_i \leftarrow DC(X_i)$
 - Combinar las soluciones Y_i para construir una solución
 Y para X

Ejemplo: Algoritmo de Karatsuba

- Queremos multiplicar dos enteros de n cifras en base b, X e Y
- Algoritmo tradicional requiere....O(n²)
- Pero...
 - □ Sea $X = X_1 b^{(n/2)} + X_0$, e $Y = Y_1 b^{(n/2)} + Y_0$
- Entonces,
- Si calculamos la complejidad de este método, nos da $O(n^2)$ (ver después)

Ejemplo: Algoritmo de Karatsuba(II)

- Pero si definimos
 - $\square m_1 = X_0 Y_0$, $m_2 = X_1 Y_1$ y $m_3 = (X_0 X_1) (Y_1 Y_0)$
- Resulta que
 - $XY = m_2 b^n + (m_1 + m_2 + m_3) b^{n/2} + m_1$
- O sea tenemos 3 subproblemas de tamaño n/2, lo que mejora la complejidad total del algoritmo llevándola a T(n)=O(n^{log2 3})~O(n^{1.59}) (ver después).
- Año: 1962

Algoritmo de Strassen

- Strassen aplicó esta misma idea a la multiplicación de matrices. Dividiendo cada matriz en 4, logró pasar del algoritmo clásico de O(n³) a O(nlog2 7 + o(1))~ O(n².8074)
- Es de 1969
- (¡pensarla!)
- Cota superior actual O(n^{2.3728639}) (¡2014!)

Recurrencias típicas de D&C

- Esquema D&C: dividir las instancias de tamaño mayor que cierto n₀ en subinstancias, resolverlas y luego combinar las soluciones para el problema inicial.
- Situación típica: dividir en a subproblemas, de tamaño máximo n/c, el costo de determinar subproblemas (divide) y unirlos (conquer) es bn^d. Suponemos la base (n=1) cuesta b.

Solución de la recurrencia típica

- Costo (suponiendo n=c^k)
 - $T(n)=aT(n/c)+bn^d=aT(c^{k-1})+bn^d=$
 - $= a(aT(c^{k-2})+(bc^{d(k-1)}))+bc^{kd}=a^2T(c^{k-2})+abc^{d(k-1)}+bc^{kd}=$
 - $= a^2(a(T(c^{k-3})+b(c^{k-2})^d)+abc^{d(k-1)}+bc^{kd} =$
 - $= a^3T(c^{k-3})+a^2b(c^{k-2})^d+abc^{d(k-1)}+bc^{kd} =$
 - $= a^3T(c^{k-3})+a^2bc^{d(k-2)}+abc^{d(k-1)}+bc^{kd} =$
 - o =....=
 - $a^{j}T(c^{k-j})+\sum_{i=0}^{j-1}a^{i}bc^{d(k-i)}=$

 - $= a^{k}b + b\sum_{i=0}^{k-1} a^{i}c^{d(k-i)} = b\sum_{i=0}^{k} a^{i}c^{d(k-i)} =$

Análisis por casos $bn^d \sum_{i=0}^{\log_c n} \left(\frac{a}{c^d}\right)^l$

 a=1, d=0 (o sea, un solo subproblema, la combinación tiene costo constante)

$$b\sum_{n=0}^{\log_{c}}1=O(\log_{c}n)$$

- d=1 (o sea "conquer lineal")
 - Caso a<c (o sea, "pocos subproblemas")
 - □ Como a/c<1, la serie converge →</p>

$$bn\sum_{i=0}^{\log_{c} n} (a/c)^{i} = bn.const = O(n)$$

Análisis por casos $bn^d \sum_{i=0}^{\log_c n} \left(\frac{a}{c^d}\right)^i$

- d=1 (o sea "conquer lineal")
 - Caso a=c

$$bn\sum_{n=0}^{\log_{c}} 1 = O(n\log_{c} n)$$

Caso a>c (o sea, muchos subproblemas)

$$T(n) = bn \sum_{i=0}^{\log_{c} n} \left(\frac{a}{c} \right)^{i} = bn \frac{\left(\frac{a}{c} \right)^{\log_{c} n} - 1}{\frac{a}{c} - 1} = O(n \left(\frac{a}{c} \right)^{\log_{c} n}) = 0$$

$$O(n\frac{a^{\log_{c} n}}{c^{\log_{c} n}}) = O(n\frac{a^{\log_{c} n}}{n}) = O(a^{\log_{c} n} \log_{c} n) = O(n^{\log_{c} n}) = O(n^{\log_{c} n})$$

Teorema Maestro (Master theorem)

Permite resolver relaciones de recurrencia de la forma:
(aT(n/a) + f(n) si n > 1

$$T(n) = \begin{cases} aT(n/c) + f(n) & si \quad n > 1 \\ 1 & si \quad n = 1 \end{cases}$$

La solución es

$$T(n) = \Theta(\boldsymbol{\eta}^{\log_{c}} a) \text{ si } f(n) = O(\boldsymbol{\eta}^{\log_{c}} a^{-\varepsilon}) \text{ para } \varepsilon > 0$$

$$T(n) = \Theta(\boldsymbol{\eta}^{\log_{c}} a \log n) \text{ si } f(n) = \Theta(\boldsymbol{\eta}^{\log_{c}} a)$$

$$T(n) = \Theta(f(n)) \text{ si } f(n) = \Omega(\boldsymbol{\eta}^{\log_{c}} a^{-\varepsilon}) \text{ para } \varepsilon > 0 \text{ y}$$

$$af(n/c) < kf(n) \text{ para } k < 1 \text{ y } n \text{ suficientemente grande}$$

- En los casos 1 y 3 es $T(n) \in \Theta(f(n) + n^{\log_c a})$
- Hay otras formulaciones con pequeñas variantes