# Math 415 - Lecture 36

Minima, maxima and saddle points, Constrained Optimization

### Wednesday December 2nd 2015

Textbook reading: Chapter 6.1

Suggested practice exercises: Chapter 6.1, # 1, 16

Strang lecture: Lecture 27: Positive definite matrices and minima

## 1 Review

Spectral theorem:

• A is a symmetric matrix if  $A^T = A$ .

• Any  $n \times n$  symmetric matrix A has n real eigenvalues and an orthonormal eigenbasis  $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$ .

• So, we can write

$$A = QDQ^T$$

where

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} \text{ and } Q = \begin{bmatrix} & & & \\ & \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ & & & \end{bmatrix}$$
matrix of eigenvalues

• A is called **positive definite** if  $\mathbf{x}^T A \mathbf{x} > 0$  for all  $\mathbf{x} \neq \mathbf{0}$ .

• Let  $\lambda_1, \ldots, \lambda_n$  be the eigenvalues of A. Then

1. If all  $\lambda_i > 0$ , then A is positive definite,

2. If all  $\lambda_i < 0$ , then  $\mathbf{x}^T A \mathbf{x} < 0$  for all  $\mathbf{x} \neq \mathbf{0}$ 

3. If some  $\lambda_i > 0$ , some  $\lambda_j < 0$ ,  $\mathbf{x}^T A \mathbf{x}$  will have both positive and negative values.

• a function of the form  $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$  is called a **quadratic form**.

## 2 2nd derivative test

**Definition 1.** Let  $f: \mathbb{R}^n \to \mathbb{R}$  is twice differentiable, the **Hessian** matrix of f

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial^2 x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{0}) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial^2 x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\mathbf{0}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial x_n \partial x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial^2 x_n}(\mathbf{0}) \end{bmatrix}$$

**Idea.** If  $f: \mathbb{R}^n \to \mathbb{R}$  is twice differentiable and  $\mathbf{0}$  is a critical point, then  $f(\mathbf{x}) \approx f(\mathbf{0}) + \frac{1}{2}\mathbf{x} \cdot H\mathbf{x}$ .

- $\bullet$  H is always symmetric
- We're approximating  $f(\mathbf{x})$  by  $f(\mathbf{0})$  plus a quadratic function,  $\frac{1}{2}\mathbf{x} \cdot H\mathbf{x}$ !
- We understand  $q(\mathbf{x}) = \frac{1}{2}\mathbf{x} \cdot H\mathbf{x} \implies$  we understand if **0** is a max, min or neither for f!
- Turns out:  $q(\mathbf{x})$  is determined by eigenvectors and eigenvalues of H!

**Theorem 1** (2nd derivative test). If  $f: \mathbb{R}^n \to \mathbb{R}$  has a critical point at  $\mathbf{0}$ , then

- 1. If all eigenvalues of H are positive, then  $\mathbf{0}$  is a local min.
- 2. If all eigenvalues of H are negative, then  $\mathbf{0}$  is a local max.
- 3. If one eigenvalue of H is positive and one is negative, then  $\mathbf{0}$  is neither a max nor a min.
- 4. Otherwise (e.g. all eigenvalues positive or zero), no information!

Example 2. Suppose  $f: \mathbb{R}^2 \to \mathbb{R}$  has a critical point at **0** and has Hessian  $H = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ . Does f have local max, min or neither at **0**?

(An example of such a function is  $f(x,y) = \frac{1}{2}x^2 + 2xy + \frac{1}{2}y^2$ ).

Solution.





Figure 1: Graph of the function  $f(x,y) = \frac{1}{2}x^2 + 2xy + \frac{1}{2}y^2$ 

Example 3. Suppose  $f: \mathbb{R}^2 \to \mathbb{R}$  has a critical point at  $\mathbf{0}$  and has Hessian  $H = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$ . Does f have local max, min or neither at  $\mathbf{0}$ ?







Figure 2: Graph of the function  $f(x,y) = \frac{1}{2}x^2 - xy + \frac{3}{2}y^2$ 

# 3 Constrained optimization

**Problem:** Given a quadratic from q(x), find the maximum or minimum value q(x) for  $\mathbf{x}$  in some specified set. Typically, the problem can be arranged such that  $\mathbf{x}$  varies over the set of vectors with  $\mathbf{x}^T\mathbf{x} = 1$ .

Example 4. Let  $A = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ . Find the maximum and minimum values of  $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$  subject to the constraint  $\mathbf{x}^T \mathbf{x} = 1$ .

#### Solution.



What if A is not diagonal?

**Theorem 2.** Let A be a symmetric matrix and let  $\lambda_m$  be the least eigenvalue and  $\lambda_M$  be the greatest eigenvalue of A. Then

$$\lambda_m = \min\{\mathbf{x}^T A \mathbf{x} : \mathbf{x}^T \mathbf{x} = 1\},\,$$

moreover if  $\mathbf{u}_m$  is a unit eigenvector corresponding to  $\lambda_m$ , then  $\mathbf{u}_m^T A \mathbf{u}_m = \lambda_m$ . In addition,

$$\lambda_M = \max\{\mathbf{x}^T A \mathbf{x} : \mathbf{x}^T \mathbf{x} = 1\},$$

moreover if  $\mathbf{u}_M$  is a unit eigenvector corresponding to  $\lambda_M$ , then  $\mathbf{u}_M^T A \mathbf{u}_M = \lambda_M$ .

| Proof. |   |
|--------|---|
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        | _ |

| Example 5. Let $A =$                                                                               | $\begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}.$ Find the maximum and minimum values of $q(\mathbf{x})$ | = |  |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---|--|--|
| $\mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$ .<br>Solution. |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |
|                                                                                                    |                                                                                                                             |   |  |  |