Assignment 2 - Quicksort

<u>วิเคราะห์ปัญหา</u>

การทำ quicksort ประกอบไปด้วยการเลือก pivot แล้วทำการ partition ข้อมูลให้ทางซ้าย ของ pivot น้อยกว่า pivot และให้ข้อมูลทางขวาของ pivot มากกว่า pivot แล้วทำการ recursion ลงไปทำงานในส่วนที่เล็กลงทั้งสองส่วนไปเรื่อย ๆ จนครบ และในได้ใช้ Hoare's partition ซึ่งใช้ partition สองตัวขยับเข้าหากันเนื่องจากสามารถทำงานได้เร็วกว่าแบบใช้ pivot เดียว

จากนั้นจึงได้ทำการเรียงลำดับขั้นตอนการทำงานทั้งหมดได้ดังนี้ โดยให้ **n** เป็นจำนวนข้อมูลและ **p** เป็นจำนวน **process**

- 1. Read input file ใช้เวลาเป็น O(n) เป็นการทำงานแบบ sequential
- 2. Communication to process เป็น overhead ในการทำงานแบบ parallel
- 3. Computation ใช้เวลาเป็น O(nlogn/p) เป็นการทำงานแบบ parallel
- 4. Communication from process เป็น overhead ในการทำงานแบบ parallel
- 5. Merging from process ใช้เวลาเป็น O(np²) เพื่อรวม array ขนาด n ตัว จำนวน p array เป็น array เดียว เป็นการทำงานแบบ sequential
- 6. Write output file ใช้เวลาเป็น O(n) เป็นการทำงานแบบ sequential

พบว่าส่วนที่เป็น sequential ของงานนี้คือข้อ 1, 5, 6 และส่วนที่เป็น parallel ของงานนี้คือข้อ 4 ส่วน การส่งข้อมูลไปกลับ process อื่น ๆ นั้นพบว่าใช้เวลาน้อยมาก จึงตัดออก

จะได้ว่า
$$\sigma(n)=2n+np^2$$
 และ $\mu(n)=rac{nlogn}{p}$

<u>สร้าง model</u>

ดังนั้น เมื่อใช้ Amdahl's law จะได้ว่า

speedup
$$s=rac{2n+np^2+(rac{nlogn}{p})}{2n+np^2+(rac{nlogn}{p^2})}=rac{2np^2+np^4+nplogn}{2np^2+np^4+nlogn}=rac{2p^2+p^4+plogn}{2p^2+p^4+logn}$$
 ພລະ efficiency $e=rac{s}{p}=rac{2np+np^3+nlogn}{2np^2+np^4+nlogn}=rac{2p+p^3+logn}{2p^2+p^4+logn}$

สำหรับ analytical model จะต้องหาเวลาทั้งหมดที่ใช้ในการทำงานแบบ sequential และ เวลาที่ใช้ในการทำงานทั้งหมดในการทำงานแบบ parallel

ในการทำงานแบบ sequential โปรแกรมจะต้องอ่านข้อมูล ใช้เวลา O(n) ทำการคำนวณ ใช้ เวลา O(nlogn) และเขียนข้อมูลไปยังไฟล์ ใช้เวลา O(n) ดังนั้นจะได้ว่า

$$T_s = 2n + nlogn$$

สำหรับในการทำงานแบบ parallel โปรแกรมยะทำงานตาม 7 ขั้นตอนข้างต้น ดังนั้นจะได้ว่า

$$T_p = 2n + \frac{nlogn}{p} + np^2 + T_{comm} \approx 2n + \frac{nlogn}{p} + np^2$$

เนื่องจากเวลาที่ใช้ในการส่งและรับข้อมูลระหว่าง process น้อยมาก จึงตัดออก

ดังนั้น เมื่อใช้ analytical model จะได้ว่า

speedup
$$s = \frac{2n + nlogn}{2n + np^2 + \frac{nlogn}{p}} = \frac{2np + nplogn}{2np + np^2 + nlogn} = \frac{2p + plogn}{2p + p^3 + logn}$$

และ efficiency
$$e=rac{s}{p}=rac{2+logn}{2p+p^3+logn}$$

ซึ่งเมื่อนำมาสร้างกราฟเทียบกับ Ideal case และผลจากการทำงานจริงแล้วจะได้ดังนี้

Туре	Processor	Speedup	Efficiency
Ideal	1	1.000000	1.000000
	2	2.000000	1.000000
	4	4.000000	1.000000
	8	8.000000	1.000000
	16	16.000000	1.000000
Amdahl's law	1	1.000000	1.000000
	2	1.488620	0.744309
	4	1.221250	0.305313
	8	1.037800	0.129725
	16	1.005210	0.062825
Analytical	1	0.961437	0.961437
	2	1.427450	0.713726
	4	1.050510	0.262627
	8	0.362028	0.045254
	16	0.096100	0.006006
Actual	1	1.000000	1.000000
	2	1.403245	0.701623
	4	1.522008	0.380502
	8	1.754877	0.219360
	16	1.575206	0.098450

จะพบว่า โมเดลที่สร้างมานั้น underestimate เพราะเมื่อลองคำนวณด้วยโปรแกรมจริงแล้ว สามารถ speedup ได้มากกว่าโมเดล เนื่องจากมีการ optimize ส่วนต่าง ๆ ของโปรแกรม เช่น การอ่าน และเขียนไฟล์เป็น string ผ่าน buffer แล้วนำมาแปลงเป็นตัวเลขด้วยฟังก์ชั่นแปลงที่เขียนเอง การใช้ openMP ในการคำนวณ quicksort ทำให้สามารถวนลูปได้เร็วขึ้น การเรียกใช้ openMP จากลูป นอกสุดเพื่อลดการสร้างและทำลาย thread เป็นต้น