

Lecture 11: Combinational Circuit Design

Outline

- □ Bubble Pushing
- □ Compound Gates
- □ Logical Effort Example
- Input Ordering
- □ Asymmetric Gates
- □ Skewed Gates
- Best P/N ratio

1) Sketch a design using AND, OR, and NOT gates.

2) Sketch a design using NAND, NOR, and NOT gates. Assume ~S is available.

Bubble Pushing

- Start with network of AND / OR gates
- Convert to NAND / NOR + inverters
- Push bubbles around to simplify logic
 - Remember DeMorgan's Law

3) Sketch a design using one compound gate and one NOT gate. Assume ~S is available.

Compound Gates

Logical Effort of compound gates

unit inverter

$$Y = \frac{AOI21}{A \cdot B + C}$$

$$Y = \overline{A \cdot B + C \cdot D}$$

 $Y = \overline{A}$

AOI22

Complex AOI

$$\begin{array}{c|c}
A \rightarrow \boxed{4} & B \rightarrow \boxed{4} \\
C \rightarrow \boxed{4} \\
A \rightarrow \boxed{2} \\
C \rightarrow \boxed{1}
\end{array}$$

$$g_A = 3/3$$

 $p = 3/3$

$$g_A = 6/3$$

 $g_B = 6/3$
 $g_C = 5/3$
 $p = 7/3$

$$g_A =$$
 $g_B =$
 $g_C =$

$$g_D = p = p$$

$$g_B = g_C =$$

☐ The multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units. Estimate the delay of the two designs.

$$H = B = N =$$

$$D0 - \overline{S} - \overline{S}$$

$$D1 - \overline{S} - \overline{S}$$

$$P = G = G = G =$$

$$F = \hat{f} = F =$$

$$D = D =$$

□ Annotate your designs with transistor sizes that achieve this delay.

Input Order

- Our parasitic delay model was too simple
 - Calculate parasitic delay for Y falling
 - If A arrives latest?
 - If B arrives latest?

Inner & Outer Inputs

- ☐ *Inner* input is closest to output (A)
- ☐ Outer input is closest to rail (B)
- If input arrival time is known
 - Connect latest input to inner terminal

Asymmetric Gates

- ☐ Asymmetric gates favor one input over another
- ☐ Ex: suppose input A of a NAND gate is most critical
 - Use smaller transistor on A (less capacitance)
 - Boost size of noncritical input

reset

- So total resistance is same
- \Box $g_A =$
- \Box $g_B =$
- \Box $g_{total} = g_A + g_B =$

☐ But total logical effort goes up

Symmetric Gates

☐ Inputs can be made perfectly symmetric

Skewed Gates

- ☐ Skewed gates favor one edge over another
- ☐ Ex: suppose rising output of inverter is most critical
 - Downsize noncritical nMOS transistor

- ☐ Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.
 - $-g_u =$
 - $-g_d =$

HI- and LO-Skew

- Def: Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition.
- ☐ Skewed gates reduce size of noncritical transistors
 - HI-skew gates favor rising output (small nMOS)
 - LO-skew gates favor falling output (small pMOS)
- ☐ Logical effort is smaller for favored direction
- ☐ But larger for the other direction

Catalog of Skewed Gates

Inverter

NAND2

NOR2

LO-skew A
$$g_u = 4/3$$

 $g_{avg} = 1$

Asymmetric Skew

- ☐ Combine asymmetric and skewed gates
 - Downsize noncritical transistor on unimportant input
 - Reduces parasitic delay for critical input

Best P/N Ratio

- We have selected P/N ratio for unit rise and fall resistance (μ = 2-3 for an inverter).
- Alternative: choose ratio for least average delay
- □ Ex: inverter
 - Delay driving identical inverter
 - $-t_{pdf} =$
 - $-t_{pdr} =$
 - $-t_{pd} =$
 - $dt_{pd} / dP =$
 - Least delay for P =

P/N Ratios

- ☐ In general, best P/N ratio is sqrt of equal delay ratio.
 - Only improves average delay slightly for inverters
 - But significantly decreases area and power

Observations

- ☐ For speed:
 - NAND vs. NOR
 - Many simple stages vs. fewer high fan-in stages
 - Latest-arriving input
- ☐ For area and power:
 - Many simple stages vs. fewer high fan-in stages