CS-E407520 - Special Course in Machine Learning and Data Science: Bayesian Workflows

Session 3: Discusson of prior choices & primer on model checking

May 6, 2024

Schedule for today's session

Time	Activity
5 min	Course organisation
45 min	Discussion of workflow diaries
10 min	Break
30 min	Primer for next workflow steps

Course organisation

Halfway point

- we are approaching the halfway point of the course
- to see how you are progressing, we will take a look at your workflow diaries so far
- submit your in-progress diaries on MyCourses by next session (Mon 13.05.)

Workflow Diary Discussion

Discussion of workflow diaries

When it is your turn:

- 1. present your workflow diary via projector or screen
- 2. briefly summarise your data and research question
- 3. teaching staff will guide discussion of your implementation of the workflow steps

Your goals were:

Choose a prior

- specify generative priors (that can be sampled from) for each parameter in your model
- justify these choices

Evaluate prior

- use prior predictive visual checks
- interpret the plots and document any issue with priors

Adjust prior

• based on observed issues, change your prior and repeat

Let's take a break! (10 min)

Some suggestions for recharging during breaks :

- move your body
- open a window or go outside
- drink some water
- try to avoid checking e-mails, messengers, or social media

Primer: Model Checking

Your next steps are:

Parameter estimate and model fit checks

- check model fitting diagnostics
- print and/or plot the marginal (and biviariate) posteriors for important parameters
- comment on the parameter estimates; do they make sense? are they surprising?

Posterior predictive checks

- create appropriate plots to check how model predictions compare to observations
- comment on any potential deficiencies in your model

Influence and sensitivity checks

- use cross validation to identify influential data points (justify if not applicable)
- perform a prior/likelihood sensitivity analysis and comment on results

Running Example

- randomised placebo-controlled trial
- effect of drug (sulindac) on intestinal polyps over 12 months
- 22 participants (11 treatment, 11 placebo)
- initial model: n_polyps ~ treatment * month, family = "gaussian"

Parameter estimate checks

- printing the summary output of a model fit is an important first check
- evaluating if the posteriors seem reasonable checks how well the model is capturing your implicit prior information

Parameter estimate checks

Initial model:

variable	mean	5%	95%	rhat	ess_bulk
b_Intercept	42.04	23.9	60.4	<1.01	4110
b_month	-0.55	-3.5	2.5	<1.01	3705
$b_treatmentsulindac$	-5.88	-20.9	9.1	<1.01	4293
$\verb b_month:treatmentsu indac$	-2.08	-5.7	1.7	<1.01	3649

- visualisation based
- type depends on model properties, particularly outcome variable type (continuous, categorical, ordinal)
- bayesplot is a good starting point, but don't just use the default density plot, look deeper

LOO intervals: Initial model

LOO PIT: Initial model

LOO PIT ECDF: Initial model

Observations

Predictions: Initial model

Predictions: Initial model

Predictions: Later model

Predictions: Later model

Calibration: Later model

Influential observation checking

- the posterior may shift drastically when an influential observation is left out
- leave-one-out cross-validation can indicate if any observations are highly influential
- the loo package implements efficient approximate LOO-CV (available in brms)

Influential observation checking

Pareto k diagnostics: Initial model

Prior and likelihood sensitivity checks

- small changes to the prior and/or likelihood can impact the posterior
- priorsense implements one type of sensitivity analysis

Prior and likelihood sensitivity checks

Power-scaling sensitivity: Initial model

Prior and likelihood sensitivity checks

Power-scaling sensitivity: Adjusted priors

Resources

Case studies

- diabetes
- roaches
- birthdays
- nabiximols

Readings

• Workflow book Chapter 5, 9, 11

Relevant papers

- Säilynoja et al. (2022); Calibration checks
- Kallioinen et al. (2023); Power-scaling sensitivity checks
- Vehtari et al. (2016); Approximate leave-one-out CV