Amendments to the Claims:

This listing of claims will replace all prior versions and listing of claims in the application.

Claim 1 is amended.

Listing of Claims:

1. (Currently Amended) Method for the encoding of a source mesh (M) representing a 3D object in which there is determined a simple mesh (M₀) with a limited number of faces, each defined by vertices, and ridges, and then coefficients in a base of wavelets of a function (f) of which said source mesh is the image defined on said simple mesh (M₀), so as to give a subdivision of said source mesh (M) into successive refined meshes (or sub-meshes) (M_j), according to a predetermined criterion, which comprises:

characterized in that each of the faces of said meshes (M_j) is subdivided into a limited number of facets to form the higher-level mesh (M_{j+1}) , and

the subdivisions of said face corresponding solely to those needed to comply with a condition of affinity of said function (f) on said face.

- 2. (Original) Encoding method according to claim 1, characterized in that said source mesh (M) is subdivided up into a set of trees, each of said trees representing a face of said simple mesh (M₀) and comprising nodes each representing a face of a mesh (M_j), said function (f) being refined on each of said faces
- and each of said trees being the smallest such that, when a given face is subdivided into four facets, the corresponding node comprises four offspring representing said four facets.
- 3. (Previously Presented) Encoding method according to claim 1, characterized in that it enables access to several levels of encoding quality, corresponding to each of said successive meshes.

App. No. 09/743,972 Office Action Dated July 15, 2004

- 4. (Previously Presented) Encoding method according to claim 1, characterized in that said successive meshes are obtained by the implementation of a recursive algorithm.
- 5. (Previously Presented) Encoding method according to claim 1, characterized in that said recursive algorithm comprises the following steps:
- the reception (31) of a wavelet coefficient indexed by a vertex (s) of barycentric coordinates (α, β, γ) on a face F_0 ;
- (b) for each neighboring face F_i of F_0 containing said vertices (s):
 - $\mathbf{F} = \mathbf{F}_i$ is supposed;
 - from the barycentric coordinates (α, β, γ) , the coordinates of said vertex (s) in the refined base (42) formed by the vertices of the face F, also referenced (α, β, γ) are deduced;
 - if the coordinates α , β or γ are positive or zero and if two of them are strictly positive (43):
 - the face F (45) is subdived;
 - the processing of the step (b) is resumed for the four offspring of the face F successively.
- 6. (Original) Method of reconstruction of a source mesh (M) representing a 3D object encoded according to the encoding method of claim 1, characterized in that said object is reconstructed progressively, using the simple mesh (M₀), and then by means of successive meshes (M_i).
- 7. (Original) Method of reconstruction according to claim 6, characterized in that it enables access to several levels of quality of encoding, corresponding to each of said successive meshes.
- 8. (Previously Presented) Application of the encoding method according to claim 1 to at least one of the following fields:
- the display of meshed objects in a 3D screen;
- the progressive display of meshed objects in three dimensions on a screen, said wavelet coefficients being taken into account as and when they arrive;
- the display of meshed objects in three dimensions on a screen with at least two

App. No. 09/743,972 Office Action Dated July 15, 2004

levels of detail, one level of detail corresponding to one of said successive meshes (M_i) ;

- the display of different parts of a meshed object with at least two different levels of detail;
- the compression of a mesh of a meshed object.