Grundbegriffe der Informatik - Tutorium

– Wintersemester 2011/12 –

Christian Jülg

http://gbi-tutor.blogspot.com

09. November 2011

Quellennachweis & Dank an: Martin Schadow, Susanne Dinkler, Sebastian Heßlinger, Joachim Wilke

Übersicht

- 1 Guten Morgen...
- 2 Aufgabenblatt 2
- 3 Aufgabenblatt 3
- Formale Sprachen
- Mengenlehre
- 6 Abschluss

1 Guten Morgen...

Einstieg

- 2 Aufgabenblatt 2
- 3 Aufgabenblatt 3
- 4 Formale Spracher
- Mengenlehre
- 6 Abschluss

Zum Warmwerden...

Die vollständige Induktion...

- ... besteht aus Induktionsanfang und Induktionsschritt.
- 2 ... wird zum beweisen von Aussagen genutzt, die sich auf ein beliebiges Element (n) einer Rekursion, Formel, etc. beziehen.
- **③** ... beginnt immer mit dem Nachweis für n=0.

Für zwei Mengen M_1 und M_2 gilt...

- **1** ... sind gleich, wenn: $M_1 \subset M_2$ und $M_2 \subset M_1$
- ② ... \exists bijektive Abbildung von M_1 nach M_2 , wenn $|M_1| = |M_2|$

Zum Warmwerden...

Die vollständige Induktion...

- ... besteht aus Induktionsanfang und Induktionsschritt.
- 2 ... wird zum beweisen von Aussagen genutzt, die sich auf ein beliebiges Element (n) einer Rekursion, Formel, etc. beziehen.
- ⑤ ... beginnt immer mit dem Nachweis für n=0.

Für zwei Mengen M_1 und M_2 gilt...

- **1** ... sind gleich, wenn: $M_1 \subset M_2$ und $M_2 \subset M_1$
- ② ... \exists bijektive Abbildung von M_1 nach M_2 , wenn $|M_1| = |M_2|$

Zum Warmwerden...

Die vollständige Induktion...

- ... besteht aus Induktionsanfang und Induktionsschritt.
- 2 ... wird zum beweisen von Aussagen genutzt, die sich auf ein beliebiges Element (n) einer Rekursion, Formel, etc. beziehen.
- ⑤ ... beginnt immer mit dem Nachweis für n=0.

Für zwei Mengen M_1 und M_2 gilt...

- **1** ... sind gleich, wenn: $M_1 \subset M_2$ und $M_2 \subset M_1$
- ② ... \exists bijektive Abbildung von M_1 nach M_2 , wenn $|M_1| = |M_2|$

- 1 Guten Morgen...
- 2 Aufgabenblatt 2
- 3 Aufgabenblatt 3
- 4 Formale Spracher
- Mengenlehre
- 6 Abschluss

Ein Blick zurück

etwas Statistik

- 23 von 26 Abgaben, prima!
- durchschnittliche Punktzahl: 14/20 Punkten

- 1 Guten Morgen...
- 2 Aufgabenblatt 2
- 3 Aufgabenblatt 3
- 4 Formale Spracher
- Mengenlehre
- 6 Abschluss

Aufgabenblatt 3

Blatt 3

• Abgabe: 11.11.2011 um 12:30 Uhr im Untergeschoss des Infobaus

Themen

- Formale Sprachen
- Vollständige Induktion

- 1 Guten Morgen...
- 2 Aufgabenblatt 2
- 3 Aufgabenblatt 3
- 4 Formale Sprachen
- Mengenlehre
- 6 Abschluss

Was ist das eigentlich?

Was ist das eigentlich?

• Eine formale Sprache *L* ist eine Menge von Wörtern die aus einem beliebigen Alphabet *A* erzeugt werden können.

Was ist das eigentlich?

- Eine formale Sprache *L* ist eine Menge von Wörtern die aus einem beliebigen Alphabet *A* erzeugt werden können.
- L soll stets alle (in einem bestimmten Sinn) korrekten Gebilde enthalten und alle nicht korrekten nicht.

Was ist das eigentlich?

- Eine formale Sprache *L* ist eine Menge von Wörtern die aus einem beliebigen Alphabet *A* erzeugt werden können.
- L soll stets alle (in einem bestimmten Sinn) korrekten Gebilde enthalten und alle nicht korrekten nicht.

Ein Beispiel...

Die Sprache die alle Zustände einer Ampel beschreibt enthält Grün oder Rot-Gelb aber nicht die Phase Grün-Rot.

Jetzt wirds theoretisch...

- formale Sprache: $L \subseteq A^*$
- Produkt: $L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$
 - $\{a, bb\} \cdot \{aa, b\} =$
 - $L \cdot \{\epsilon\} =$

Jetzt wirds theoretisch...

- formale Sprache: $L \subseteq A^*$
- Produkt: $L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$
 - $\{a, bb\} \cdot \{aa, b\} = \{aaa, ab, bbaa, bbb\}$
 - $L \cdot \{\epsilon\} =$

Jetzt wirds theoretisch...

- formale Sprache: $L \subseteq A^*$
- Produkt: $L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$
 - $\{a, bb\} \cdot \{aa, b\} = \{aaa, ab, bbaa, bbb\}$
 - $L \cdot \{\epsilon\} = L$

Einstieg

Jetzt wirds theoretisch...

- formale Sprache: $L \subseteq A^*$
- Produkt: $L_1 \cdot L_2 = \{ w_1 w_2 \mid w_1 \in L_1 \land w_2 \in L_2 \}$
 - $\{a, bb\} \cdot \{aa, b\} = \{aaa, ab, bbaa, bbb\}$
 - $L \cdot \{\epsilon\} = L$
- Potenzen: $L^0 = \{\epsilon\}$ und $L^{i+1} = L^i \cdot L$
- Konkatenationsabschluss:

$$L^+ = \bigcup_{i=1}^{\infty} L^i$$
 und $L^* = \bigcup_{i=0}^{\infty} L^i$

Die Zahlen vom Typ int

Gebt eine formale Sprache L_I aller legalen Zahlen vom Typ int an.

Die Zahlen vom Typ int

Gebt eine formale Sprache L_I aller legalen Zahlen vom Typ int an.

$$A = \{0, \dots, 9\}$$

$$L_I = A^*$$

Die Zahlen vom Typ int

Gebt eine formale Sprache L_I aller legalen Zahlen vom Typ int an.

$$A = \{0, \dots, 9\}$$

$$L_I = \{\epsilon, -\}A^+.$$

Seid ihr mit der Lösung einverstanden?

Variabelnamen in Java

Gebt eine formale Sprache L_V aller legalen Variablenamen in Java an.

Lösung

Variabelnamen in Java

Gebt eine formale Sprache L_V aller legalen Variablenamen in Java an.

Lösung

$$A = \{-, a, \dots, z, A, \dots, Z\},\ B = A \cup \{0, \dots, 9\}\ L_V = A \cdot B^*.$$

Was fehlt?

Variabelnamen in Java

Gebt eine formale Sprache L_V aller legalen Variablenamen in Java an.

Lösung

$$A = \{-, a, \dots, z, A, \dots, Z\},\ B = A \cup \{0, \dots, 9\}\ L_V = A \cdot B^*.$$

Was fehlt?

- Umlaute
- Schlüsselwörter sind als Variablenamen verboten

Variabelnamen in Java

Gebt eine formale Sprache L_V aller legalen Variablenamen in Java an.

Lösung

Also besser:

$$A = \{-, a, \dots, z, A, \dots, Z, \ddot{a}, \ddot{o}, \ddot{u}\},\$$

$$B = A \cup \{0, \dots, 9\}$$

$$L_V = (A \cdot B^*) \setminus \{\text{if}, \text{class}, \dots\}$$

noch einige Hinweise...

Wörter & Sprache

Wörter und Sprachen sind nicht das Gleiche! So ist abb ist etwas anderes als $\{abb\}$. Und $\{abb\}^*$ gibt es, aber abb^* kennen wir **nicht**.

L_1L_2

 $L_1 = \{a^n \mid n \in \mathbb{N}_0\}$ und $L_2 = \{b^n \mid n \in \mathbb{N}_0\}$ **Achtung:** $L_1L_2 = \{a^kb^m \mid k \in \mathbb{N}_0 \land m \in \mathbb{N}_0\}$ die Exponenten können verschieden sein!

- 1 Guten Morgen...
- 2 Aufgabenblatt 2
- 3 Aufgabenblatt 3
- 4 Formale Spracher
- Mengenlehre
- 6 Abschluss

Ergänzungen

• Was ist eine Mengendifferenz?

- Was ist eine Mengendifferenz?
- Sei $A := \{1, 2, 3\}$ und $B := \{2, 4, 6\}$ Was ist dann $A \setminus B$?

- Was ist eine Mengendifferenz?
- Sei $A := \{1, 2, 3\}$ und $B := \{2, 4, 6\}$ Was ist dann $A \setminus B$?
- *A* ohne *B*, d.h. $A \setminus B = \{1, 3\}$

- Was ist eine Mengendifferenz?
- Sei $A := \{1, 2, 3\}$ und $B := \{2, 4, 6\}$ Was ist dann $A \setminus B$?
- *A* ohne *B*, d.h. $A \setminus B = \{1, 3\}$
- Was ist bei $A \cup B$ zu beachten?

- Was ist eine Mengendifferenz?
- Sei $A := \{1, 2, 3\}$ und $B := \{2, 4, 6\}$ Was ist dann $A \setminus B$?
- *A* ohne *B*, d.h. $A \setminus B = \{1, 3\}$
- Was ist bei $A \cup B$ zu beachten?
- In einer Menge kommt ein Element nie mehrfach vor (und die Reihenfolge ist ohne Bedeutung).

Wie beweist man das nochmal?

Wie beweist man das nochmal?

Indem man beweist, dass \subseteq und \supseteq gelten

Wie beweist man das nochmal?

Indem man beweist, dass \subseteq und \supseteq gelten

Beweise $L^* \cdot L = L^+$

• ⊆:

• ⊇:

Wie beweist man das nochmal?

Indem man beweist, dass \subseteq und \supseteq gelten

Beweise $I^* \cdot I = I^+$

• ⊆:

Wenn $w \in L^* \cdot L$, dann w = w'w'' mit $w' \in L^*$ und $w'' \in L$.

Also existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$. Also $w = w'w'' \in L^i \cdot L = L^{i+1}$

Also $W = WW \in L \cdot L = L^+$.

Da $i + 1 \in \mathbb{N}_+$, ist $L^{i+1} \subseteq L^+$, also $w \in L^+$.

• ⊇:

Wie beweist man das nochmal?

Indem man beweist, dass \subseteq und \supseteq gelten

Beweise $L^* \cdot L = L^+$

• ⊆:

Wenn $w \in L^* \cdot L$, dann w = w'w'' mit $w' \in L^*$ und $w'' \in L$. Also existiert ein $i \in \mathbb{N}_0$ mit $w' \in L^i$.

Also $w = w'w'' \in L^i \cdot L = L^{i+1}$.

Da $i + 1 \in \mathbb{N}_+$, ist $L^{i+1} \subseteq L^+$, also $w \in L^+$.

- \supseteq : Wenn $w \in L^+$, dann existiert ein $i \in \mathbb{N}_+$ mit $w \in L^i$. Da $i \in \mathbb{N}_+$ ist i = j + 1 für ein $j \in \mathbb{N}_0$, also ist für ein $j \in \mathbb{N}_0$: $w \in L^{j+1} = L^j \cdot L$. also w = w'w'' mit $w' \in L^j$ und $w'' \in L$. Wegen $L^j \subset L^*$ ist $w = w'w'' \in L^* \cdot L$.
- Grundbegriffe der Informatik <u>Tutorium</u>

- 1 Guten Morgen...
- 2 Aufgabenblatt 2
- 3 Aufgabenblatt 3
- 4 Formale Spracher
- Mengenlehre
- 6 Abschluss

Was ihr nun wissen solltet!

• Wie beweise ich Mengengleichheit?

- Wie beweise ich Mengengleichheit?
- Was ist das Beweisverfahren der vollständigen Induktion?

- Wie beweise ich Mengengleichheit?
- Was ist das Beweisverfahren der vollständigen Induktion?
- Was kann ich alles tolles damit anstellen?

- Wie beweise ich Mengengleichheit?
- Was ist das Beweisverfahren der vollständigen Induktion?
- Was kann ich alles tolles damit anstellen?
- Wie kann ich meinen Tutor bei der Korrektur meines Übungsblattes positiv beeinflussen?

Was ihr nun wissen solltet!

- Wie beweise ich Mengengleichheit?
- Was ist das Beweisverfahren der vollständigen Induktion?
- Was kann ich alles tolles damit anstellen?
- Wie kann ich meinen Tutor bei der Korrektur meines Übungsblattes positiv beeinflussen?

Ihr wisst was nicht?

Stellt jetzt Fragen!

