Matrices de proyección poblacional

Ecología de Poblaciones Demografía

- Ciclos de vida → Cambios en natalidad y supervivencia
- Modelos simples como:

$$N_{t+1} = \lambda N_t$$

No capturan características biológicas

Ejemplo

Ejemplo

0	100	0	0
1	90	0.1	0
2	72	0.3	0
3	57.6	0.2	20
4	51.84	0.1	10
5	25.92	0.5	0

 I_{X}

 m_{x}

Número

Edad

Representación como matriz

p_i =Supervivencia
$m_i = Natalidad$

$$\begin{bmatrix} p_{0,1} m_0 & p_{1,2} m_1 & p_{2,3} m_2 & m_3 \\ p_{0,1} & 0 & 0 & 0 \\ 0 & p_{1,2} & 0 & 0 \\ 0 & 0 & p_{2,3} & 0 \end{bmatrix} \times \begin{bmatrix} N_{0,t} \\ N_{1,t} \\ N_{2,t} \\ N_{3,t} \end{bmatrix} = \begin{bmatrix} N_{0,t+1} \\ N_{1,t+1} \\ N_{2,t+1} \\ N_{3,t+1} \end{bmatrix}$$

Mortalidad cambiante con edad y estado de desarrollo

Solución

$$N_{0,t+1} = p_{0,1} m_0 N_{0,t} + p_{1,2} m_1 N_{1,t} + p_{2,3} m_2 N_{2,t} + p_{3,4} m_3 N_{3,t} + m_4 N_{4,t}$$

$$m_0 = 0$$
, $m_1 = 0$ y $m_2 = 0$

$$N_{0,t+1} = p_{3,4} m_3 N_{3,t} + m_4 N_{4,t}$$

• Necesitamos entonces, valores iniciales para N_3 y N_4

$$N_{0,t+1} = p_{3,4} m_3 N_{3,t} + m_4 N_{4,t}$$

 $N_{0,0} = 0; N_{3,0} = 10; N_{4,0} = 5$
 $N_{0,1} = p_{3,4} m_3 \times 10 + m_4 \times 5$
 $N_{0,1} = 0.5 \times 20 \times 10 + 10 \times 5 = 150$

Con una matriz completa

