Assignment 18.2:

In one state, 52% of the voters are Republicans, and 48% are Democrats. In a second state, 47% of the voters are Republicans, and 53% are Democrats. Suppose a simple random sample of 100 voters are surveyed from each state.

What is the probability that the survey will show a greater percentage of Republican voters in the second state than in the first state?

Solution

For this analysis,

P₁ = proportion of Republican voters in the first state

P₂ = proportion of Republican voters in the second state

 p_1 = proportion of Republican voters in the sample from the first state

 p_2 = proportion of Republican voters in the sample from the second state.

The number of voters sampled from the first state $(n_1) = 100$,

and The number of voters sampled from the second state $(n_2) = 100$.

1: To check if the sample size is big enough to model differences with a normal population.

Because $n_1P_1 = 100 * 0.52 = 52$,

$$n_1(1 - P_1) = 100 * 0.48 = 48,$$

 $n_2P_2 = 100 * 0.47 = 47,$ and
 $n_2(1 - P_2) = 100 * 0.53 = 53$

all above values are each greater than 10, the sample size is large enough.

2: the mean of the difference in sample proportions:

$$\mu_{p1-p2} = P_1 - P_2 = 0.52 - 0.47 = 0.05.$$

4: Find the standard deviation of the difference.

```
\begin{split} &\sigma_d = sqrt\{ \ [ \ P_1(1-P_1) \ / \ n_1 \ ] + [ \ P_2(1-P_2) \ / \ n_2 \ ] \ \} \\ &\sigma_d = sqrt\{ \ [ \ (0.52)(0.48) \ / \ 100 \ ] + [ \ (0.47)(0.53) \ / \ 100 \ ] \ \} \\ &\sigma_d = sqrt \ (0.002496 + 0.002491) = sqrt (0.004987) = 0.0706 \end{split}
```

3: Find the probability.

This problem requires us to find the probability that p_1 is less than p_2 . This is equivalent to finding the probability that p_1 - p_2 is less than zero. To find this probability, we need to transform the random variable $(p_1 - p_2)$ into a z-score.

That transformation appears below:

$$z_{p1-p2} = (x - \mu_{p1-p2}) / \sigma_d = = (0 - 0.05)/0.0706 = -0.7082 = approx to 2 decimals = -0.71$$

Using Table for Standard Normal Distribution, we find

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
8.0-	0.2119	0.2000	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.240	0.2389	0.2858	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451

 $P(z \le 0.7082) = 0.2389 = 0.24 \text{ (upto 2 decimals)}$

the probability of a z-score being -0.7082 = 0.71 (upto 2 decimals) or less is 0.24

Therefore, the probability that the survey will show a greater percentage of Republican voters in the second state than in the first state is 0.24.