

FORM PTO-1390 (Modified)  
(REV 11-98)

## U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

ATTORNEY'S DOCKET NUMBER

PF980074

U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR

09/719148

PRIORITY DATE CLAIMED

08 June 1998 (08.06.98)

TRANSMITTAL LETTER TO THE UNITED STATES  
DESIGNATED/ELECTED OFFICE (DO/EO/US)  
CONCERNING A FILING UNDER 35 U.S.C. 371INTERNATIONAL APPLICATION NO.  
PCT/EP99/03953INTERNATIONAL FILING DATE  
07 June 1999 (07.06.99)

## TITLE OF INVENTION

METHOD FOR TRANSMITTING ASYNCHRONOUS DATA IN A HOME NETWORK

## APPLICANT(S) FOR DO/EO/US

Guillaume Bichot, Nicolas Fannechere and Gilles Straub

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

- This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.
- This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.
- This is an express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
- A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
- A copy of the International Application as filed (35 U.S.C. 371 (c) (2))
  - is transmitted herewith (required only if not transmitted by the International Bureau).
  - has been transmitted by the International Bureau.
  - is not required, as the application was filed in the United States Receiving Office (RO/US).
- A translation of the International Application into English (35 U.S.C. 371(c)(2)).
- A copy of the International Search Report (PCT/ISA/210), attached to Item 13
- Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371 (c)(3))
  - are transmitted herewith (required only if not transmitted by the International Bureau).
  - have been transmitted by the International Bureau.
  - have not been made; however, the time limit for making such amendments has NOT expired.
  - have not been made and will not be made.
- A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
- An oath or declaration of the inventor(s) (35 U.S.C. 371 (c)(4)).
- A copy of the International Preliminary Examination Report (PCT/IPEA/409).
- A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371 (c)(5)).

## Items 13 to 20 below concern document(s) or information included:

- An Information Disclosure Statement under 37 CFR 1.97 and 1.98, with references attached.
- An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
- A FIRST preliminary amendment.
- A SECOND or SUBSEQUENT preliminary amendment.
- A substitute specification.
- A change of power of attorney and/or address letter.
- Certificate of Mailing by Express Mail 20. Return Postcard Receipt
- Certificate of Mailing by Express Mail 20. Return Postcard Receipt

26XX0000000000000000 CERTIFICATE OF MAILING UNDER 37 CFR 1.10  
 EL667108589US December 8, 2000

"Express Mail" mailing no.

Date of Deposit

I hereby certify that this application is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Eliza Buchalczky  
 Typed or printed name of person  
 mailing application

*Eliza Buchalczky*  
 Signature of person mailing  
 application

U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR

INTERNATIONAL APPLICATION NO.

ATTORNEY'S DOCKET NUMBER

09/719148

PCT/EP99/03953

PF980074

21. The following fees are submitted:

**BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)) :**

- Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2) paid to USPTO and International Search Report not prepared by the EPO or JPO ..... \$1000.00
- International preliminary examination fee (37 CFR 1.482) not paid to USPTO but Internation Search Report prepared by the EPO or JPO ..... \$860.00
- International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO ..... \$710.00
- International preliminary examination fee paid to USPTO (37 CFR 1.482) but all claims did not satisfy provisions of PCT Article 33(1)-(4) ..... \$690.00
- International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(1)-(4) ..... \$100.00

**ENTER APPROPRIATE BASIC FEE AMOUNT =**

860.00

Surcharge of \$130.00 for furnishing the oath or declaration later than  20  30 months from the earliest claimed priority date (37 CFR 1.492 (e)).

| CLAIMS                                           | NUMBER FILED | NUMBER EXTRA | RATE                     |
|--------------------------------------------------|--------------|--------------|--------------------------|
| Total claims                                     | 7 - 20 =     | 0            | x \$18.00                |
| Independent claims                               | 1 - 3 =      | 0            | x \$80.00                |
| Multiple Dependent Claims (check if applicable). |              |              | <input type="checkbox"/> |

**TOTAL OF ABOVE CALCULATIONS =** 860.00Reduction of 1/2 for filing by small entity, if applicable. Verified Small Entity Statement must also be filed (Note 37 CFR 1.9, 1.27, 1.28) (check if applicable). **SUBTOTAL =** 860.00Processing fee of \$130.00 for furnishing the English translation later than  20  30 + months from the earliest claimed priority date (37 CFR 1.492 (f)).**TOTAL NATIONAL FEE =** 860.00Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) (check if applicable). **TOTAL FEES ENCLOSED =** 900.00

|                           |           |
|---------------------------|-----------|
| Amount to be:<br>refunded | \$        |
| charged                   | \$ 900.00 |

 A check in the amount of to cover the above fees is enclosed. Please charge my Deposit Account No. 07-0832 in the amount of \$900.00 to cover the above fees.  
A duplicate copy of this sheet is enclosed. The Commissioner is hereby authorized to charge any fees which may be required, or credit any overpayment to Deposit Account No. 07-0832 A duplicate copy of this sheet is enclosed.

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:

Mr. Joseph S. Tripoli  
 THOMSON multimedia Licensing Inc.  
 Patent Department  
 PO Box 5312  
 Princeton, New Jersey 08540

RECEIVED  
 U.S. PATENT AND TRADEMARK OFFICE  
 DEPT. OF COMMERCE  
 MAR 11 2001

SIGNATURE

Robert D. Shedd

NAME

36,269

REGISTRATION NUMBER

December 8, 2000

DATE

09/719148

EXPRESS MAIL LABEL NO. EL667108589US

PF980074

JC01 Rec'd PCT/PTO

08 DEC 2000

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant : Guillaume Bichot, Nicolas Fannechere and Gilles Straub  
Filed : Herewith  
For : METHOD FOR TRANSMITTING ASYNCHRONOUS DATA IN A HOME NETWORK

PRELIMINARY AMENDMENT

Hon. Commissioner of Patents and Trademarks  
Box PCT  
Washington, D.C. 20231

Sir:

In the US national phase application of PCT/EP99/03953 filed herewith, please enter the following amendments

IN THE CLAIMS:

Please amend the claims as follows:

1. (AMENDED) Method for transmitting data in a home communication network comprising a first device and a second device, wherein said first device includes means to produce a data packet and said second device includes means to use said data packet, said method [being characterised in that it comprises] comprising the steps of:

- opening a connection between said first device and said second device;
- having said second device allocate a message buffer to said connection, said second device communicating the message buffer size to said first device;
- having said first device transmit said data packet to said second device, wherein said data packet is split and sent as payload in messages, where the size of the payloads is smaller or equal to said message buffer size.

2. (AMENDED) Method according to claim 1, [characterised in that] wherein said payloads have a first maximum length independent of said first and second devices and wherein a second maximum length dependent of said second device is constituted by said message buffer size, the shortest of said first and second maximum lengths being retained for sending messages to said second device.

09/719148  
08 DEC 2000

3. (AMENDED) Method according to [claims 1 or 2, characterised in that] claim 1, wherein said connection is opened by said first device through a function call sent to said second device for writing data to said second device.

4. (AMENDED) Method according to [claims 1 or 2, characterised in that] claim 1, wherein said connection is opened by said second device through a function call sent to said first device for reading data from said first device.

5. (AMENDED) Method according to [one of the claims 1 to 4, characterised in that] claim 1, wherein said first device comprises at least one data storage element for storing said data packet.

6. (AMENDED) Method according to claim 5, [characterised in that] wherein said device comprises more than one storage element, each of said storage elements being identified by an identifier.

7. (AMENDED) Method according to [one of the claims 1 to 6, characterised in that] claim 1, wherein said second device comprises at least one data storage element for storing said data packet.

IN THE ABSTRACT:

Please add the Abstract as follows:

-- The invention concerns a method for transmitting data in a home communication network. The network comprises a first device and a second device, wherein said first device includes means to produce a data packet and said second device includes means to use said data packet. The inventive method is characterised in that it comprises the steps of:

- opening a connection between said first device and said second device;
- having said second device allocate a message buffer to said connection, said second device communicating the message buffer size to said first device;
- having said first device transmit said data packet to said second device, wherein said data packet is split and sent as payload in messages, where the size of the payloads is smaller or equal to said message buffer size. The invention applies to home network communications.--

008021-3476150

**REMARKS**

The above amendments, in the claims, have been made to eliminate the multiple dependencies and to meet the requirements in the United States Patent and Trademark Office.

To meet the requirements of the United States, the Abstract (as originally filed) is added.

No fee is believed to have been incurred by virtue of this amendment. However if a fee is incurred on the basis of this amendment, please charge such fee against deposit account 07-0832

Respectfully submitted,  
Guillaume Bichot  
Nicolas Fannechere  
Gilles Straub



Robert D. Shedd Attorney  
Registration No. 36,269  
609/734-9517

THOMSON multimedia Licensing Inc.  
Patent Operation  
PO Box 5312  
Princeton, NJ 08543-5312

December 8, 2000

SEARCHED  
INDEXED  
SERIALIZED  
FILED

Method for transmitting asynchronous data in a home network

5 The specification 'Home Audio/Video interoperability architecture version 0.8', also called 'HAVi' architecture, was disclosed on May 15, 1998 on the WEB sites of at least the following companies: Sony, Philips, Toshiba, Sharp and Hitachi.

10 This specification describes the implementation of a home network comprising consumer electronics devices and computing devices, and compatible with the IEEE 1394 1995 serial bus and the IEC 61883 interface standards.

15 The HAVi specification version 0.8 describes in its sections 3.2 and 5.2 an inter-device communication system referred to as the 'Messaging System'. The Messaging System, sometimes also called the 'Message Passing System', is a software object (a 'software element' according to the HAVi terminology) present in some device types of the network. It possesses an application programmable interface, comprising a number of functions, which can be accessed by a software element to send a message to another software element. When a software element calls a function of another software element of another device, the function called is mapped into a Messaging System message.

20 25 Messages use a predefined format which is described in section 3.2.1. of the HAVi document. A message contains two bytes defining the length of the message payload. The maximum length of a message is thus a little over 64 Kb: the maximum payload, to which the length of the header information is added.

30 The Messaging System of HAVi version 0.8 is well adapted for performing function calls and managing software element identifiers in the network. The inventors have recognized the following problem with the proposed architecture: when a sending software element sends a message to a receiving software element, the Messaging System does not take into account the memory capacity of the receiving software element. The receiving software element may encounter problems to process a huge amount of data if the buffer allocated to the communication by the receiving software element is not adequate. In other words, the HAVi 0.8 document does not enable the receiving software element to control the amount of data it receives.

003820 4507443 4348200

The object of the invention is a method for transmitting data in a home communication network comprising a first device and a second device, wherein said first device includes means to produce a data packet and said second device includes means to use said data packet, said method being characterised in that it comprises the steps of:

- opening a connection between said first device and said second device;

- having said second device allocate a message buffer to said connection, said second device communicating the message buffer size to said first device;

- having said first device transmit said data packet to said second device, wherein said data packet is split and sent as payload in messages, where the size of the payloads is smaller or equal to said message buffer size.

The receiving device specifies the size of its message buffer at the beginning of the transmission, and the sending device takes into account this value in order to maintain a limited payload size.

The word 'device' is not limited in its significance to a physical device. It comprises among others software objects, and in particular 'software elements' as defined by the HAVI 0.8 document.

According to a particular embodiment of the invention, said payloads have a first maximum length independent of said first and second devices and wherein a second maximum length dependent of said second device is constituted by said message buffer size, the shortest of said first and second maximum lengths being retained for sending messages to said second device.

The first maximum message size is that given by the specification in itself: for instance, HAVI 0.8 gives 64 kilobytes as the maximum message size.

The second maximum message size is that defined within the connection, i.e. the message size of the receiving device. This message size has to be used only in connection with messages sent to that particular receiving device, and through the particular connection.

The invention thus solves a problem inherent to the network presented in the HAVI 0.8 document, while being compatible with this document, and in particular with the Messaging System.

00000000000000000000000000000000

Other characteristics and advantages of the invention will appear in the description of a non-limiting embodiment, described with the help of the enclosed figures, among which:

- figure 1 is a block diagram of a home network;
- figure 2 is a block diagram of a device in the home network of figure 1;
- figure 3 is a diagram of an example of the software objects and layers implemented in the device of figure 2;
- figure 4 is a diagram of message exchanges between an entity producing a stream ('producer') and an entity receiving that stream ('consumer'), in the case the producer takes the initiative to send the stream;
- figure 5 is a diagram similar to figure 4, but in the case where the consumer takes the initiative to request a stream from the producer;
- figure 6 is a diagram of an exchange between two entities which are both producer and consumer in the frame of a same connection.

The present description uses a terminology defined in the following document, to which one should also refer for further details about the home network architecture: 'The HAVi Architecture - Specification of the Home Audio/Video interoperability (HAVi) Architecture' of May 11, 1998 Version 0.8 and publicly disclosed on May 15, 1998 on the WEB sites of at least the following companies: Sony, Philips, Toshiba, Sharp and Hitachi.

Figure 1 is a diagram of an example of a HAVi-compliant home network comprising all four types of devices defined by the HAVi 0.8 specification. The home network comprises a communication bus, which is a IEEE 1394 1995 serial bus according to the present example. To this bus are connected a digital television, a digital receiver/decoder, a modem, a Digital Video Disc recorder/player (DVD) and a Videocassette Recorder (VCR). The television receiver is a Full Audio/Video (FAV) device, which is the device type having the most functionalities according to the HAVi specification. In particular, the FAV type device has the capacity to execute HAVi runtime code. The television receiver can thus host the software to control the VCR, which in the present case is a Legacy device, i.e. a device having no HAVi functionality. The Legacy device is connected directly to the Full Audio/Video device, since it does not have a bus connector or the necessary means to communicate on the bus. The digital decoder and the modem are Intermediate Audio/Video (IAV)

devices, which have many of the features of the FAV device, but not the capability to download software to control other devices. Such software may nevertheless be resident in an IAV device. Lastly, the DVD player is a Basic Audio/Video device, which does not have the means to run HAVi code, but has at least the capacity to connect to the communication bus and to communicate with a IAV or FAV device which runs the software interface between the HAVi environment and the Basic Audio/Video device's own environment.

Figure 2 is a block diagram of the television receiver's components related to its HAVi functionalities. The television receiver 1 contains a microprocessor 2, connected to a RAM memory 3 and a reprogrammable ROM memory 4 through an internal bus 7. The ROM is used to store the receiver's software elements and other code for managing the device's functionalities executed by the microprocessor. The television receiver also contains a connection 5 to the IEEE 1394 bus, the connection comprising a physical/link circuit (and the software required for the asynchronous transaction and bus management layers. The television receiver also comprises a connector 6 destined to control and exchange Audio/Video streams with a specific device, in this case the VCR of figure 1.

Figure 3 shows the organisation of software objects ('software elements' according to the HAVi terminology) in the television receiver, and more generally in a FAV-type device.

The television receiver hosts a number of applications and device control applications which interact with the following software elements through corresponding application programmable interfaces:

- a 1394 Communication Media Manager, which allows other software elements to perform asynchronous and isochronous communication over the IEEE 1394 bus,
- a Message Passing System, for exchanging messages with other software elements,
- an Event Manager for managing object state changes,
- a Stream Manager for managing Audio/Video data streams between functional components, such as a tuner and a recording device,
- a Registry, which keeps a list of local software elements and its identifiers and manages communication with distant registries,
- a Device Control Module Manager (DCMM), for loading or deleting Device Control Modules (DCM),
  - a number of either resident or uploaded Device Control Modules.

The resident application of figure 3 is in the present case an Electronic Program Guide, while one of the Device Control Modules (DCMs) has been installed to control the VCR of figure 2, and another DCM has been downloaded from the DVD player.

A device control module may control one or more Functional Control Modules, also called FCMs. An FCM is a software element which gives control over a specific function of a device through a well known function set, comprising groups of functions called Application Programmable Interfaces, or APIs. In a digital television receiver/decoder, FCM APIs would typically be dedicated to the control of the tuner and the video/audio decoder.

According to the present embodiment, an Asynchronous Data API is defined. This API, or a part thereof, is to be included into the FCMs which require the capability of managing the transfer of asynchronous data streams between a producer and a consumer.

The terms 'producer' and 'consumer' are used to designate the capability of a device or functional component to produce an asynchronous stream or to receive such a stream. Consumers and producers may be storage devices, but this is not necessarily so.

A digital stream demultiplexer demultiplexing service information is a producer. A recording device (for instance a memory, a magneto-optical disk, a hard disk or a digital video cassette recorder) can also be a producer. A piece of software generating or processing data may also be a producer.

Examples of consumers can also be given: a recording device playing back information, a printer or a display device.

The notions of producer and consumer are not exclusive: some devices or functional components may have both functions within a same connection. An example of such a device is a modem connected to the public switched telephone network for accessing internet services. Seen from the HAVi network, the modem can act as a consumer, i.e. by accepting data from a client application for transmission to an internet server, or it may act as a producer, when transferring data from the internet server to the client application. The client application is also both a producer and a consumer in this case.

The term 'asynchronous data stream' is used to make a distinction with the 'isochronous data streams', i.e. the audio and video streams handled by the Stream Manager defined by the HAVi document. Typically,

asynchronous data consists in data corresponding to a picture, a file or program code. An FCM implementing the functions explained in detail below will remain compatible with the Messaging System (as defined in the HAVi version 0.8 document) while correcting the deficiencies described in the introduction.

An FCM can manage one or more containers, a container being the general term to designate a consumer, a producer or an entity having both functions. If an FCM contains more than one container, then each container is identified by a unique label. Such a label is redundant if only one container is present, but can, according to a variant of the invention, nevertheless be implemented for system uniformity reasons.

The Asynchronous Data API is defined by the parameters and functions given below. Depending on whether an FCM is simply a consumer, a producer or both, the appropriate subsets of functions have to be implemented.

The term 'in' used in the function definitions defines parameters which are passed by the software element calling the function to the software element which receives the function call, while the term 'out' defines parameters sent back by the software element receiving the function call.

(a) The FileLoc parameter

This parameter indicates whether a message from a producer to a consumer is the first message, an intermediate message or the last message of a contiguous series of messages. The conditions of use of such series of messages will be explained as described later in relation with figures 4 to 6.

The parameter is defined as follows:

```
enum FileLoc { START, NEXT, MIDDLE};
```

(b) The Container parameter

It defines the characteristics of a container. For example, a container containing program files will be defined by its identifier ('oid'), the names of files it contains, the file types and the sizes of the files.

The parameter is defined as follows:

```
struct Container {  
    oid;  
    characteristics;  
}
```

## (c) The OpenRead function

This function is implemented within an FCM which is only a producer. It is called by a consumer to request the transfer of an asynchronous stream from a container . It is defined as follows:

10            Status IoStream::OpenRead(  
                       in any ioid,  
                       in long message\_buffer\_size,  
                       in OperationCode opCode,  
                       out short cid  
                       )

15            'Status' is the type of the function return value.

The following parameters are used by the OpenRead function:

- ioid : This is the identifier of the container to be opened. It is not mandatory if the FCM which implements the function has only one container and will be ignored by that FCM if nevertheless present in the function call.

20            - message\_buffer\_size : This parameter indicates the maximum size of a message accepted by the consumer, excluding the messaging system overhead (i.e. the header and other data related to the messaging system layer). The producer will take into account that parameter to determine the length of its message payloads to the consumer. Preferably, the length of the payloads will be equal to the message buffer size of the consumer.

25            The message buffer size is either fixed or can be allocated dynamically by the calling software element on the basis of available memory resources when the connection is to be established. For the OpenRead function, the consumer takes the initiative to establish the connection, and so the message buffer size passed as a parameter in the OpenRead function is the size of the consumer message buffer.

30            - opCode : this parameter is a code the producer will use to send the stream to the consumer. This operation code identifies a function of the consumer which the producer has to call to forward a response to the client. This parameter is set by the consumer. The operation code uniquely identifies a function within a software element. In this case, it is the 'Write' function, as defined below. The unique address of a function in the network thus comprises the 'SEID' identifier and the operation code .

- cid : This parameter identifies a given connection between the producer and the consumer, since there may be more than one such connection. Its value is defined by the producer, and is different from all other such identifiers used by the same producer at a given moment, in order to uniquely identify each connection.

One of the following values is returned by the 'OpenRead' function call:

'0' if the call has been a success

'1' if the container identifier was not correct

'2' if the container could not be accessed. This can happen for example if too many read accesses are made over several connections at the same time.

15 (d) The OpenWrite function

This function is implemented in FCMs which are only consumers. It enables a producer to send an asynchronous stream to container of a consumer's FCM.

It is defined as follows:

20 Status IoStream::OpenWrite(  
                  in any ioid,  
                  out long message\_buffer\_size,  
                  out short cid  
                  )

The following parameters are used, in addition to those which have already been defined:

30 - ioid,

message\_buffer\_size : indicates the maximum size of a message payload accepted by the consumer. The producer will take into account that parameter during the sending of the data and until a close request.

cid : This parameter identifies the connection. In the case of the OpenWrite function, it is the called FCM which defines the value of the cid parameter.

35 The function returns one of the following values:

09719748-20080701

- '0' if the function call is successful,  
'1' if the container identifier 'oid' sent in the function call is not correct,  
5        '2' if the container identified by the 'oid' identifier cannot be accessed.

(e) The Open function

This function is implemented in FCMs which act both as a consumer and as a producer in the frame of a same connection.

10      It enables a consumer/producer to receive/send an asynchronous stream from/to a container.

It is defined as follows:

15      Status IoStream::Open(

          in any oid,  
          in long message\_buffer\_size\_client,  
          in OperationCode opCode,  
          out long message\_buffer\_size\_FCM,  
          out short cid  
          )

20      The following parameters are used :

- oid,

25      - message\_buffer\_size\_client : This parameter indicates the maximum size of a message accepted by the client application which calls the FCM function. When the called FCM is a producer, it will take that parameter into account for the sending of the data to the consumer (i.e. the client application) and until a close request.

30      - message\_buffer\_size\_FCM : This parameter indicates the maximum size of a message accepted by the FCM. When the clients application acts as a producer, it will take that parameter into account during the sending of the data to the consumer (i.e. the FCM) and until a close request.

35      - opCode : this parameter is the code which the FCM will use to send the asynchronous stream to the client application (which will act as a consumer). This operation code identifies a function of the client application API which the producer has to call to forward asynchronous data to the client. In

this case, it is the 'Write' function, as defined below. The unique address of a function in the network thus comprises the 'SEID' identifier and the operation code.

5           cid : This parameter identifies the connection. It is determined and delivered by the FCM.

The function returns one of the following values:

'0' if the function call is successful,

'1' if the container identifier 'oid' sent in the function call is not correct,

10           '2' if the container identified by the 'oid' identifier cannot be accessed.

(e) The Write function

The Write function is the function which has to be called by a producer to transfer data to a consumer. The producer has to wait for the return value of the Write function before calling this function a new.

This function is implemented at the consumer side. Its operation code is a well-known operation code when the FCM acts as a consumer, because the operational codes of the functions of the Asynchronous Data API are predetermined. In case a client application acts as a consumer, the operation code is sent to a producer as a parameter through the OpenRead or the Open function call by a consumer, because the Asynchronous Data API is not necessarily implemented by the client application. It is assumed here that the client application implements the Write function, although any proprietary function achieving similar results may be used.

The Write function is defined as follows:

IoStream::Write

Prototype

30           Status IoStream::Write

(

in cid,

in FILELOC where,

in sequence <byte> data,

)

35           In addition to the parameters which have already been defined for the other functions, the following parameters are used by the Write function:

- where : This parameter informs the consumer that a message is the first, the last or an intermediate message among a series of messages for transferring a stream,

5 - data : This is the payload of the message, i.e. a part of the stream  
to be transferred.

The Write function returns one of the following return values:

'0' if the consumer requests further messages,

'1' if the consumer needs to inform the producer that it should abort

10 the transfer.

(f) The Dir function

This function returns the list of identifiers of containers of an FCM. If the FCM manages only one default container, then the function need not be implemented.

15 According to a variant of the present embodiment, this function also returns other characteristics of each container (such as for example type of storage element, total space available, free space available, list of files etc...)

20 The function is defined as follows:

IoStream::Dir

Prototype

void IoStream::Dir(

out sequence <Container> list

)

25 The 'list' parameter is the list of containers managed by the FCM. As described above, a container is identified by its 'oid' identifier. The list can be empty. This means that the FCM handles only one container.

30 (g) The 'Close' function

This function enables a consumer or a producer to close a previously opened connection, identified by the 'cid' parameter. The connection can only be closed by the client application which opened it.

35 A software element does not necessarily need to close a connection after a stream transfer has been achieved. It can keep the connection open and transfer further streams through that connection.

The function prototype is defined as follows:

Status IOSStream::Close(

in long cid

)

The only parameter is the 'cid' parameter, i.e. the identifier of this connection.

The receiving FCM acknowledges with one of the following status values:

10 0: The connection has been closed successfully,

1: The transmitted value of the 'cid' parameter is unknown.

Figure 4 illustrates the message flow between a consumer and a producer when the producer takes the initiative to send a stream.

15 A producer, for example the decoder of figure 1, requests its Messaging System to call the OpenWrite function of a consumer, for example the display of the digital television receiver of figure 1, in order to prepare the display to show a still picture which the decoder has demultiplexed and decompressed. The decoder has obtained the identifier of the Display FCM from its local Registry service, by requesting a list of all display devices in the network, and has decided to use the display of the digital television receiver. For this purpose, the Display FCM run by the Full Audio/Video device of the network of figure 1 comprises the required functions from the Application Programmable Interface defined above, i.e. the Open, Write and Close 20 functions.

25 More details about the Registry service are given in the French patent application FR 9805110 filed on April 23, 1998 in the name of THOMSON multimedia.

30 The consumer acknowledges the request for opening a connection by returning the value '0', and passing the corresponding parameter values, i.e. the connection identifier 'cid', the size in bytes of the message buffer allocated to this connection and the operational code of the Write function, which is in principle not known by the producer. The producer will then proceed to transfer 35 its data, adequately distributed over a number of messages in such a way that none of the message payloads is longer than the specified message buffer size.

DOCUMENTA DEUTSCHE PATENT- UND MARKENAMMEN

The producer will first make a Write function call in which the 'where' parameter has the value START, using the operational code previously received from the consumer. The 'START' value indicates that the message is the first message of a series of messages in which a piece of data greater than the consumer's message buffer size is transferred. According to the preferred embodiment, the producer strives to use for each of its message payloads the maximum message length authorised by the consumer's message buffer size in order to reduce the overall number of messages required. In other words, the payload size is equal to the specified consumer buffer size if enough data remains to be sent. If the buffer size specified by the consumer is greater than the limit defined by the HAVi document (i.e. 64 kilobytes in the version 0.8), then the payload size of the messages is limited to that size.

The producer will also include part of the data to be transferred into this first message. Subsequent messages will use the value 'NEXT' for the 'where' parameter, to indicate intermediate messages in the series of messages. The last message will use the 'END' value.

The producer will send messages only after having received a proper acknowledgement ('0' return value) for each Write function call it performs.

When all data has been transferred, the producer calls the Close

20 function to close the connection with the consumer.

Figure 5 illustrates the case where a consumer takes the initiative to open a connection, calling the 'OpenRead' function of a producer's FCM. Apart from the parameters which differ between the OpenRead function and the 25 OpenWrite function, the mechanism is similar to the one explained in connection with figure 4.

Figure 6 illustrates the case in which a consumer-producer client application initiates a full duplex connection with a consumer-producer FCM. According to the present embodiment, the FCM manages a modem associated 30 with a single container.

The client application opens the connection with the FCM providing as a parameter its maximum buffer size to handle incoming messages.. In response, the FCM initialises the modem, connects to a given server using predetermined settings (phone number, connection name, password...) 35 confirms the opening of the connection to the client application (by transmitting

the '0' status value) and transmits, among other parameters, its maximum message buffer size and the identifier of the connection (cid)..

The client's application then sends a first request (which according to the present example fits into one message payload to the FCM. The FCM forwards the payload content through the modem access and acknowledges the transmission to the client application. The server processes the request and sends it back a response. The FCM receives the response flow and forwards it to the client application using several messages, distributing the response over the payloads of the messages according to the maximum buffer size of the client application. The transfer of data continues until all data is transferred. The communication between the client application and the FCM continues according to a predefined protocol between the client application and the remote server.

According to this protocol, the client application then closes the connection.

European patent application 98402384.6 filed on September 28, 1998 in the name of the Applicant and whose priority is claimed concerns an internet access functional component module.

DOCUMENT-PATENT-AUTO

## Claims

1. Method for transmitting data in a home communication network comprising a first device and a second device, wherein said first device includes means to produce a data packet and said second device includes means to use said data packet, said method being characterised in that it comprises the steps of:
- opening a connection between said first device and said second device;
  - having said second device allocate a message buffer to said connection, said second device communicating the message buffer size to said first device;
  - having said first device transmit said data packet to said second device, wherein said data packet is split and sent as payload in messages, where the size of the payloads is smaller or equal to said message buffer size.
2. Method according to claim 1, characterised in that said payloads have a first maximum length independent of said first and second devices and wherein a second maximum length dependent of said second device is constituted by said message buffer size, the shortest of said first and second maximum lengths being retained for sending messages to said second device.
3. Method according to claims 1 or 2, characterised in that said connection is opened by said first device through a function call sent to said second device for writing data to said second device.
4. Method according to claims 1 or 2, characterised in that said connection is opened by said second device through a function call sent to said first device for reading data from said first device.
5. Method according to one of the claims 1 to 4, characterised in that said first device comprises at least one data storage element for storing said data packet.

6. Method according to claim 5, characterised in that said device comprises more than one storage element, each of said storage elements being identified by an identifier.

5        7. Method according to one of the claims 1 to 6, characterised in that said second device comprises at least one data storage element for storing said data packet.

1 / 3



Fig. 1



Fig. 2

2 / 3



3 / 3



Fig. 5



Fig. 6

DECLARATION FOR UNITED STATES PATENT APPLICATION,  
POWER OF ATTORNEY, DESIGNATION OF CORRESPONDENCE ADDRESS

As a below named inventor, I hereby declare that my residence, post office address and citizenship are as stated below next to my name, and that I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

**METHOD FOR TRANSMITTING ASYNCHRONOUS DATA IN A HOME NETWORK**

the specification of which

(CHECK ONE)  is attached hereto.  
 was filed on June 7, 1999, Application Serial. No. PCT/EP99/03953  
 and was amended on .

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with 37 CFR 1.56(a).

I hereby claim foreign priority benefits under 35 USC 119 of any foreign application(s) for patent, utility model, design or inventor's certificate having a filing date before that of the application(s) on which priority is claimed:

| Prior Foreign Application(s) |         |                    | Priority Claimed |    |
|------------------------------|---------|--------------------|------------------|----|
| Number                       | Country | Date Filed         | Yes              | No |
| 98401372.2                   | EP      | June 8, 1998       | xx               |    |
| 98402384.6                   | EP      | September 28, 1998 | xx               |    |
| 98402712.8                   | EP      | October 30, 1998   | xx               |    |

I hereby claim the benefit under 35 USC 120 of any US Application(s) listed below, and, insofar as the subject matter of each of the claims of this Application is not disclosed in the prior US application in the manner provided by the first paragraph of 35 USC 112, I acknowledge the duty to disclose information which is material to the examination of this application in accordance with 37 CFR 1.56(a).

Serial No.: Filed:

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under of 18 USC 1001 and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

I hereby appoint the following attorneys to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith: Joseph S. Tripoli (Reg. No. 26,040), Dennis H. Irlebeck (Reg. No. 26,372), Eric Herrmann (Reg. No. 29,169) and Joseph J. Laks (Reg. No. 27,914) Telephone: (609) 734-9813.

Address all correspondence to Joseph S. Tripoli, Patent Operations - Thomson multimedia Licensing, Inc. - CN 5312 - Princeton, New Jersey 08543-0028.

Signature: Guillaume Bichot Date: 10 day of November, 2000.  
 Sole or First Joint Inventor: Guillaume Bichot

Citizenship: FR

Residence and Post Office Address:

Le Bourg  
 F- 35630 La Chapelle Chaussée  
 France FRX

Signature: \_\_\_\_\_ Date: \_\_\_\_\_ day of \_\_\_\_\_, 2000.

Second Joint Inventor: Nicolas Fannechère

Citizenship: FR

Residence and Post Office Address:

75bis avenue Emile Ripert  
 F-13600 La Ciotat  
 France

Signature:

302 Second Joint Inventor: Gilles Straub

Citizenship: FR

Residence and Post Office Address:

Date: 20 day of November, 2000.

20 rue des Tertres

F-35690 Acigné

France ~~FR~~

09749448, 126800

DECLARATION FOR UNITED STATES PATENT APPLICATION,  
POWER OF ATTORNEY, DESIGNATION OF CORRESPONDENCE ADDRESS

As a below named inventor, I hereby declare that my residence, post office address and citizenship are as stated below next to my name, and that I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the Invention entitled

**METHOD FOR TRANSMITTING ASYNCHRONOUS DATA IN A HOME NETWORK**

the specification of which

(CHECK ONE)  is attached hereto.  
 was filed on June 7, 1999, Application Serial No. PCT/EP99/03953  
and was amended on .

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with 37 CFR 1.56(a).

I hereby claim foreign priority benefits under 35 USC 119 of any foreign application(s) for patent, utility model, design or inventor's certificate having a filing date before that of the application(s) on which priority is claimed:

| Prior Foreign Application(s) |         |                    | Priority Claimed |
|------------------------------|---------|--------------------|------------------|
| Number                       | Country | Date Filed         | Yes No           |
| 98401372.2                   | EP      | June 8, 1998       | xx               |
| 98402384.6                   | EP      | September 28, 1998 | xx               |
| 98402712.8                   | EP      | October 30, 1998   | xx               |

I hereby claim the benefit under 35 USC 120 of any US Application(s) listed below, and, insofar as the subject matter of each of the claims of this Application is not disclosed in the prior US application in the manner provided by the first paragraph of 35 USC 112, I acknowledge the duty to disclose information which is material to the examination of this application in accordance with 37 CFR 1.56(a).

Serial No.: \_\_\_\_\_ Filed: \_\_\_\_\_

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under of 18 USC 1001 and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

I hereby appoint the following attorneys to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith: Joseph S. Tripoli (Reg. No. 26,040), Dennis H. Irbeck (Reg. No. 26,372), Eric Herrmann (Reg. No. 29,189) and Joseph J. Laks (Reg. No. 27,914) Telephone: (609) 734-9813.

Address all correspondence to Joseph S. Tripoli, Patent Operations - Thomson multimedia Licensing, Inc. - CN 5312 - Princeton, New Jersey 08543-0028.

Signature: \_\_\_\_\_ Date: \_\_\_\_\_ day of \_\_\_\_\_, 2000.

Sole or First Joint Inventor: Guillaume Bichot

Citizenship: FR

Residence and Post Office Address:

Le Bourg  
F- 35630 La Chapelle Chaussée  
France

Signature: \_\_\_\_\_ Date: \_\_\_\_\_ day of \_\_\_\_\_, 2000.

Second Joint Inventor: Nicolas Fannechère

Citizenship: FR

Residence and Post Office Address:

75bis avenue Emile Ripert  
F-13600 La Ciotat  
France FRX

Signature: \_\_\_\_\_ Date: \_\_\_\_\_ day of \_\_\_\_\_, 2000.  
Second Joint Inventor: Gilles Straub  
Citizenship: FR  
Residence and Post Office Address: 20 rue des Terfres  
F-35690 Acigné  
France

DUBOST-BRIGGS