Chương 1.1. Động học chất điểm

A. Tóm tắt lý thuyết

1. Các đại lượng đặc trưng trong chuyển động của chất điểm.

r - véc-tơ bán kính của chất điểm

 $\vec{r} = \vec{r}(x, y, z) - x, y, z$ là các tọa độ của chất điểm trong hệ trục tọa độ Descartes vuông góc.

- vận tốc trung bình:
$$\vec{v}_{tb} = \frac{\Delta \vec{r}}{\Delta t}$$

Trong đó $\Delta \vec{r}$ là véc-tơ độ dời của chất điểm sau khoảng thời gian Δt .

- vận tốc tức thời:
$$\vec{v} = \frac{d\vec{r}}{dt} = \left(\frac{dx}{dt}; \frac{dy}{dt}; \frac{dz}{dt}\right)$$

- tốc độ trung bình:
$$v_{tb} = \frac{\Delta s}{\Delta t}$$

Trong đó Δs là quãng đường mà chất điểm chuyển động được trong khoảng thời gian Δt .

$$- t \acute{o} c \ d\^{o} \ t \acute{u} c \ t h \grave{o} i : v = \frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2}$$

- véc-tơ gia tốc toàn phần:
$$\vec{a} = \frac{d\vec{v}}{dt} = \vec{a}_t + \vec{a}_n$$

Gia tốc tiếp tuyến:
$$a_t = \frac{dv}{dt}$$

Gia tốc pháp tuyến:
$$a_n = \frac{v^2}{R}$$

Gia tốc toàn phần:
$$a = \sqrt{a_t^2 + a_n^2}$$

R – bán kính cong của quỹ đạo tại điểm đang xét.

2. Các dạng chuyển động

a. Chuyển động thẳng đều:

- Gia tốc: a = 0;
- Vận tốc: v = const;
- Phương trình quãng đường: s = vt
- Phương trình chuyển động (phương trình tọa độ):

 $x = x_0 + vt$; trong đó x_0 là tọa độ của chất điểm tại thời điểm ban đầu.

b. Chuyển động thẳng biến đổi đều:

- Gia tốc: a = const;
- Vận tốc: $v = v_0 + at$; v_0 là vận tốc ban đầu.

- Phương trình quãng đường:
$$s = v_0 t + \frac{1}{2} at^2$$

- Phương trình chuyển động:
$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

- Công thức độc lập thời gian:
$$v^2 - v_0^2 = 2as$$

Chú ý:

Chuyển động thẳng nhanh dần đều a $\uparrow \uparrow \vec{v}$

Chuyển động thẳng chậm dần đều $\vec{a} \uparrow \downarrow \vec{v}$

chứ không phải a>0 hay a<0 ⊚!

c. Sự rơi tự do

là trường hợp đặc biệt của chuyển động nhanh dần đều với: $v_0 = 0$; $a = g = 9.81 \text{ m/s}^2$

d. Chuyển động ném xiên

- Gia tốc:
$$\vec{a} = \begin{cases} a_x = 0 \\ a_y = -g \end{cases}$$

- Vận tốc:
$$\overrightarrow{v} = \begin{cases} v_x = v_{0x} = v_0 \cos \alpha \\ v_y = v_{0y} + a_y t = v_0 \sin \alpha - gt \end{cases}$$

- Gia tốc:
$$\vec{a} = \begin{cases} a_x = 0 \\ a_y = -g \end{cases}$$
- Vận tốc: $\vec{v} = \begin{cases} v_x = v_{0x} = v_0 \cos \alpha \\ v_y = v_{0y} + a_y t = v_0 \sin \alpha - gt \end{cases}$
- Phương trình chuyển động:
$$\begin{cases} x = v_{0x} t = v_0 \cos \alpha.t \\ y = v_0 \sin \alpha.t - \frac{1}{2}gt^2 \end{cases}$$

- Phương trình quỹ đạo:
$$y = x. \tan \alpha - \frac{g}{2v_0^2\cos^2\alpha}.x^2 \Rightarrow Parabol$$

- Độ cao cực đại:
$$h_{max} = \frac{v_0^2 \sin^2 \alpha}{2g}$$

- Tầm xa:
$$L = x_{max} = \frac{v_0^2 \sin 2\alpha}{g}$$

e. Chuyển động tròn

- vận tốc góc:
$$\omega = \frac{d\theta}{dt}$$
, trong đó θ là góc quay.

- gia tốc góc:
$$\beta = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$$

Đối với chuyển động tròn đều: $\omega = \frac{\theta}{t} = \text{const}; \beta = 0.$

- chu kỳ:
$$T = \frac{2\pi}{\omega}$$

- tần số:
$$v = \frac{1}{T} = \frac{\omega}{2\pi}$$

Đối với chuyển đông tròn biến đổi đều:

$$\beta = const$$

- vận tốc góc:
$$\omega = \omega_0 + \beta t$$

- góc quay:
$$\theta = \omega_0 t + \frac{1}{2} \beta t^2$$

- công thức độc lập thời gian:

$$\omega^2 - \omega_0^2 = 2\beta\theta$$

Liên hệ giữa vận tốc, gia tốc dài với vận tốc và gia tốc góc:

$$v = R\omega$$
, $a_t = R\beta$, $a_n = \frac{v^2}{R} = \omega^2 R$

Bài 1.4. Một vật được thả rơi từ một khí cầu đang bay ở độ cao 300 m. Hỏi sau bao lâu vật rơi tới mặt đất, nếu:

- a) Khí cầu đang bay lên (theo hướng thẳng đứng) với vận tốc 5 m/s;
- b) Khí cầu hạ xuống (theo phương thẳng đứng) với vận tốc 5 m/s;
- c) Khí cầu đang đứng yên.

Bài giải:

Gốc tọa độ tại điểm thả vật, chiều dương hướng thẳng đứng xuống dưới. Vận tố của khí cầu là v_0 . Có thể coi đây là chuyển động rơi tự do của 1 vật có vận tốc ban đầu.

Ta có:

 $h = v_0 t + \frac{1}{2}gt^2$, giải phương trình này ta được nghiệm:

$$t = \frac{\sqrt{v_0^2 + 2gh} - v_0}{g}$$

thay số:

a) $v_0 = -5$ m/s (chuyển động ngược chiều dương)

$$g = 10 \text{ m/s}^2$$
, $h = 300 \text{ m}$

$$t = \frac{\sqrt{(-5)^2 + 2.10.300 + 5}}{10} = 8.3(s)$$

b)
$$v_0 = 5 \text{ m/s}$$
,

$$t = \frac{\sqrt{(5)^2 + 2.10.300} - 5}{10} = 7.3(s)$$

c) $v_0 = 0$ m/s (khí cầu đứng yên)

$$t = \frac{\sqrt{2.10.300}}{10} = 7.7(s)$$

Bài 1.6. Thả rơi tự do từ độ cao h = 19,6 m. Tính:

- a) Quãng đường mà vật roi được trong 0,1 giây đầu tiên và 0,1 giây cuối của thời gian roi.
- b) Thời gian cần thiết để vật đi hết 1 m đầu và 1 m cuối của độ cao h.

Bài giải:

Công thức quãng đường:

$$s = \frac{1}{2}gt^2$$

a) Quãng đương vật rơi được trong 0,1 giây đầu:

$$s_{0,ls} = \frac{1}{2}.9, 8.0, 1^2 = 0,049 (m)$$

Thời gian để vật rơi hết cả quãng đường h =19,6 m là:

$$t_{19,6m} = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2.19,6}{9,8}} = 2(s)$$

Như vậy quãng đường mà vật rơi được trong 0,1 giây cuối bằng quãng đường 19,6 m trừ đi quãng đường vật rơi được trong 1,9 s đầu tiên.

Quãng đường vật rơi được trong 1,9 s đầu tiên:

$$s_{1,9s} = \frac{1}{2}gt^2 = \frac{1}{2}.9, 8.1, 9^2 = 17, 7(m)$$

Quãng đường vật rơi được trong 0,1 s cuối cùng:

 $s_{0,1}$ giây cuối = 19.6 - 17.7 = 1.9 (m).

b) thời gian để vật rơi hết 1 m đầu tiên là:

$$t_{1m} = \sqrt{\frac{2h_1}{g}} = \sqrt{\frac{2.1}{9.8}} = 0.45(s)$$

Thời gian để vật rơi hết 1 m cuối cùng bằng thời gian để vật rơi cả quãng đường 19,6 m trừ đi thời gian vật rơi 18,6 m:

Thời gian vật rơi 18,6 m:

$$t_{18,6m} = \sqrt{\frac{2h_2}{g}} = \sqrt{\frac{2.18,6}{9,8}} = 1,95(s)$$

Như vậy thời gian rơi 1 m cuối:

 $t_{1m \text{ cuối cùng}} = 2 - 1.95 = 0.05 \text{ (s)}.$

Bài 1.20. Một vô lăng sau khi bắt đầu quay được một phút thì thu được vận tốc 700 vòng/phút. Tính gia tốc góc của vô lăng và số vòng mà vô lăng đã quay được trong phút ấy nếu chuyển động của vô lăng là nhanh dần đều.

Bài giải:

Ta có: $\Delta t = 1$ phút = 60 giây, $\Delta n = 700$ (vòng/phút)

$$\rightarrow \omega = 700.2\pi / 60 = \frac{70\pi}{3} (rad/s)$$

Gia tốc:
$$\beta = \frac{\Delta\omega}{\Delta t} = \left(\frac{70\pi}{3} - 0\right) \frac{1}{60} = \frac{7\pi}{18} \left(\text{rad/s}^2\right)$$

$$\omega^2 - \omega_0^2 = 2\beta\theta \rightarrow \theta = \frac{\omega^2 - \omega_0^2}{2\beta} =$$

$$= \frac{\omega^2}{2\beta} = \frac{(70\pi/3)^2}{2.7\pi/18} = 700\pi (\text{rad}) = 350 \text{ (vong)}.$$

Bài 1.22. Một bánh xe có bán kính R = 10 cm lúc đầu đứng yên, sau đó quay xung quanh trục của nó với gia tốc góc bằng $3,14 \text{ rad/s}^2$. Hỏi sau giây thứ nhất:

- a) Vận tốc góc và vận tốc dài của một điểm trên vành bánh?
- b) Gia tốc pháp tuyến, gia tốc tiếp tuyến và gia tốc toàn phần của một điểm trên vành bánh?
- c) Góc giữa gia tốc toàn phần và bán kính của bánh xe (ứng với cùng một điểm trên vành bánh)?

Bài giải:

a) vận tốc góc sau giây thứ nhất:

$$\omega = 3.14 (rad/s)$$

Vận tốc dài:
$$v = R\omega = 0, 1.3, 14 = 0, 314 (m/s)$$

b) gia tốc pháp tuyến:

$$a_n = \frac{v^2}{R} = \frac{0.314^2}{0.1} = 0.99 (m/s^2)$$

Gia tốc tiếp tuyến:

$$a_t = \beta R = 3,14.0,1 = 0,314 (m/s^2)$$

Gia tốc toàn phần:

$$a = \sqrt{a_n^2 + a_t^2} = \sqrt{0.99^2 + 0.314^2} = 1.1(m/s^2)$$

$$\tan \alpha = \frac{a_t}{a_n} = \frac{0.314}{0.99} = 17.6^{\circ} = 17^{\circ}36'$$

Bài 1.25. Vận tốc của electron trong nguyên tử hydro bằng $v = 2,2.10^8$ cm/s. Tính vận tốc góc và gia tốc pháp tuyến của electron nếu xem quỹ đạo của nó là một vòng tròn bánh kính $0,5.10^{-8}$ cm. **Bài giải:**

$$\omega = \frac{v}{R} = \frac{2,2.10^6}{0,5.10^{-10}} = 4,4.10^{16} (rad/s)$$

$$a_n = \frac{v^2}{R} = \frac{2, 2^2.10^{12}}{0, 5.10^{-10}} = 9,68.10^{22} (rad/s^2)$$