Nanocrystal based memory Design: Application of semiconductor electrostatics

Feb 12, 2024 Udayan Ganguly

Reference: A simple FG Flash memory tutorial https://www.youtube.com/watch?v=s7JLXs5es7l

The CNT vs planar FET based nanocrystal memory study is taken from this paper https://doi.org/10.1109/TNANO.2006.888529

Background: A memory transistor: Floating Gate Flash

insulator tunneling through trapezoidal barrier metal metal tunneling metal through triangular barrier

New Physics: Tunneling

The light analogy:

If we place a prism with light and go beyond a critical angle Θ we get Total Internal Reflection

Think: Where does the light "decide" to turn around? (a) At (b) before (c) after the interface (d) irrelevant?

Pair: What is an experiment to measure this "decision" point?

Electron as a wave can "tunnel" through barriers!

metal

Any wave can tunnel!

Result: Light decays exponentially in the gap!

A bit more on Tunneling

We have 2 capacitors make of Pt/SiO2 / Pt with oxide thickness t_1 and t_2 respectively.

Think: Is the current V dependent?

Pair: If the barrier is triangular, can I claim

- (a) Current Density (J) depends only on V and φ_{B}
- (b) Current Density (J) depends only on Electric field and ϕ_B
- (c) Current Density (J) depends only on V and Electric field

State the basis of the choice & elimination?

Bias can modulate the "transparency" of the barrier to electron tunneling J (ϕ_B , E) \rightarrow exponential function!

DT and FN comparison

Assume: Tunneling is exponential with electric field;

Write down the requirements of tunnel oxide vs. IPD for Prog (18V) vs Retention (0V) to set the <u>thickness</u>

IPD

• Tun Ox

• Is there a dilemma or a design challenge?

Answer in the next slide; do not turn until you have spent 10 min to write this down

Dilemma in Memory Design

- ➤ Electrostatic coupling
 - > NC-GATE
- ➤ Quantum Mechanical coupling
 - >NC-Channel

Both tunneling and electrostatics are function of distance

https://doi.org/10.1063/1.1999014 Evap. SiO₂ Au nanocrystal Thermal SiO₂ **Back Gate** CNT (a) Catalyst pad Au leads Au leads (b) SiO₂ Au leads (c)

10²

Time(s) (b)

Single electrons can jump out of the nanocrystal

2000

4000

Time (s)

(a)

6000

Single electrons can jump into the nanocrystal

NC based memory

Technology Options:

- 1. Carbon Nanotube channel- Metal NC
- 2. Si channel- Metal NC

Operation (requirement):

- 1. Program/ Erase : Fast @±20V
- 2. Retention: Slow @ 0V but NC has stored electronic charge

Which one will produce a better performance?

Answer in the next slide; do not turn until you have spent 20 min to write this down

How to proceed?

- Can we understand the capacitive coupling difference in the two systems
 - In program
 - During retention

PROGRAM CONDITION

≻Channel ON

1D vs. 2D channel

➤ assume METALLIC

Self Capacitance

>E~1/r²

➤ Not affected by surroundings

U. Ganguly et al, T Nano, 2006

Program

Simulation results to validate the model

Structural Parameters		Potential on NC (V)	
	<i>d_c</i> (nm)	Capacitive Coupling V _G =5	Self Capacitance q_{NC} =5e
1NC-CNT BG	21	2.52	-0.517
	30	2.35	-0.519
	100	1.77	-0.528
1NC-CNT TG	30	2.69	-0.509
3NC-CNT BG	30	2.33	-0.68
1 NC-Si		0.81	-0.46
3×3 NC -Si		0.74	-0.67

channel

~ 5e

Si (2-D) channel

Large electric fields than 2D Si channel!!!

Retention Condition

➤ Channel OFF

➤ assume DIELECTRIC

Metallic Channel

Retention

Dielectric Channel

J Ganguly 14/36

Retention

- In this case, CNT is a conveniently a dielectric
 - 1NC case -0.35V
 - 3NC case -0.39V
- 2D Si channel
 - 1NC case -0.46V (Si: metallic)
 - 3x3 NC case -0.67V (Si: metallic)
 - NC array case -0.58V (doping 1x10¹⁸cm⁻³)
- CNT metallic
 - 1NC case -0.51V
 - 3NC case -0.68V

J Ganguly 15/3

x 10⁻⁸

Cutline (nm)

Charge injection at V_{CH}=5V

From experiment

- Total V_T shift of 1.24 V
- V_T shift of 130mV per electron
- 9.4 electrons storage detected (incredibly large electron # for 5V charging!!!)
- $-\Delta V_{CH}$ per electron~ 0.4V

Validation

From theory

- Total hole well depth 1.26V
 - Gate bias 5V => NC is at 1.86V
 - Band offset correction of 0.6V i.e. Au 5.1eV, CNT valence band ~ 4.5 eV
- Self capacitance energy 104 meV
- 1. Max electrons that can be stored ~12 (c.f. 5 electrons in 2D channel)
- 2. ΔV_{CH} per electron~ 0.42V (from gate coupling calculations)

- √ Validation is OK
 - ✓ Explains large # of electrons
 - ✓ Slightly lower experimental value is due to read disturbance

Results

- Ideal structure for electrostatics
 - Strong gate coupling
 - High write field (FN tunneling)3-4x larger
 - 40% lower retention field
 - =>Better Write/retention ratio possible
 - <5V operation inspite of thick gate stack
 - 3x number of electron per NC compared

Program

Retention

Ganguly 17/36

Questions for conceptual reinforcement

- In this class, we worked on a "judge" type question the highest skill level in learning! To reflect on the process, here are a few practice questions.
- Write down the steps of approaching the problem like a computer algorithm. e.g.
 - What is the goal? tunneling rate control
 - what is that main metric of success? electric field
 - How to evaluate/ judge this?..
 - **—** ...
 - Conclusion
- For Program and Erase Case
 - Present the key arguments for program case –
 - state in 1 sentence the associated principle learnt in class for each argument
 - state the final conclusion;
 - can you validate quantitatively with simplifying assumptions?

Solving any such unstructured problem

Steps

• Step 1: Define the critical physical phenomenon

Step 2: Define model

Example

 Transport in low V (retention) vs high V (Program) states needs to be modeled

- Given we only know in tunneling $J \sim \exp(k\vec{E})$, we need to model \vec{E}
- Given structure, model $\vec{E}(x,y)$;

Solving any such unstructured problem

Steps

• Step 3: Define metric of comparison

Step 4: Make a judgement

Step 5: Validate

Example

• We need to compare J at high vs. low V. Which $\vec{E}(x,y)$ affects tunneling? <u>Decide/guess</u> that \vec{E} at the injecting surface matters. Compare this.

• Compare the \overrightarrow{E} at relevant surface and judge

 Either use expt or simulation to test model and conclusions