CSC-507 Programming Lab

Week 2

Instructions: Please read the following instructions carefully before attempting the questions.

- 1. Make a folder named 'RollNumber FirstName LastName' eg. '1101101 Alice Bob'
- 2. Save the solution code for problem X as 'probX.cpp'.
- 3. Make sure it runs correctly, using input from prompt in a file 'inp.txt' as 'a.out < inp.txt'

Problem 1: Graph Algorithms using Preprocessor directives.

[10 Marks]

Write a single code which when compiled with the following flags perform as follows:

- -D BFS: Input Unweighted graph, Output BFS tree (using Queue) starting from 0.
- -D DFS: Input Unweighted graph, Output DFS tree (using Stacks) starting from 0.
- -D DJK: Input Weighted Graph, Output Shortest Path tree from 0 using Dijikstra's algorithm.
- -D WBFS: Input Weighted Graph with integer weight 0-c (for some given constant c), Output shortest path tree starting from 0 using modified BFS algorithm (hint see 0/1 BFS).
- -D DIR: Applicable for above four cases, considers the input graph as directed.
- \bullet -D PRM: Input Weighted Undirected Graph, Output Minimum Spanning Tree using Prim's algorithm.

Give different definitions of Macros for the above using preprocessor directives #ifdef etc., which are then used in the same code uniformly across all algorithms.

Problem 2: Graph Algorithms using OOPs.

[10 Marks]

Write a common class file to use the above algorithms, using extended (or inherited) classes to define only the differences. The choice of algorithm used and undirected/directed graph can be based on a flag passed during object creation.

Input	BFS	DFS
6 8	0.0	0.0
0.1	1 1	1 1
0 4	4 1	2 2
3 5	2 2	3 3
3 0	3 2	5 4
1 2	5 3	4 5
4 5		
2 3		
4 3		

Input	Dijkstra	Prim
6 8	0 1	0 1
$0\ 1\ 5$	0 4	1 2
$0\ 4\ 13$	0 3	$0\ 4$
$3\ 5\ 9$	1 2	4 5
$3\ 0\ 15$	4 5	5 3
1 2 10		
458		
2 3 20		
$4\ 3\ 25$		

Input	WBFS
6 8	0.1
0 1 1	0 4
$0\ 4\ 1$	4 3
$3\ 5\ 0$	3 5
$3\ 0\ 0$	1 2
1 2 1	
$4\ 5\ 1$	
2 3 0	
4 3 0	

(a) Unweighted Undirected

(b) Weighted Undirected

(c) Weighted Directed

Table 1: Input Output Sample

Graph. Define a vector < list < pair < int, int >>> adj, where an element (j, c) of adj[i] describes an edge (i, j) with weight c. Elements of a pair pair < int, int > p are accessed as p.first and p.second.

DFS/BFS Input Output Format. Take as input the number of vertices n and edges m, followed by m lines, each describing an unweighted edge u v. Output each vertex in visit order with its level in a new line.

 $Dijkstra/WBFS/Prim\ Input\ Output\ Format.$ Take as input the number of vertices n and edges m, followed by m lines, each describing a weighted edge $u\ v\ c$, where w(u,v)=c. Output the edges of the tree in the order of addition each in a new line.