CODE No.:16BT30401 SVEC-16

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech II Semester (SVEC-16) Regular Examinations May - 2018 ELECTRONIC CIRCUIT ANALYSIS AND DESIGN

[Electronics and Instrumentation Engineering]

Time: 3 hours		[Electronics and Instrumentation Engineering]	Max. Marks: 70	
		Answer One Question from each Unit		
		All questions carry equal marks		
		UNIT-I		
1	a)	Calculate A _v , A _i , R _i , R _o of CE amplifier with emitter resistance.	CO3	7 Marks
	b)	Differentiate CE, CB and CC amplifiers.	CO4	7 Marks
	,	(OR)		
2	a)	Derive the expression for A _v , A _i , R _i , R _o of Darlington amplifier.	CO3	8 Marks
	b)	With neat diagram, explain the operation of CE-CB cascode configuration.	CO1	6 Marks
		UNIT-II		
3	a)	Derive the expression for A _v , R _i , R _o of common source amplifier at high	CO1	8 Marks
		frequencies.		
	b)	Draw the hybrid π model and explain the capacitance $C_{b'e}$ and $C_{b'c}$.	CO2	6 Marks
		(OR)		
4	a)	Derive the expression for CE short circuit current gain.	CO3	8 Marks
	b)	A BJT has $g_m = 38$ mhos, $r_{b'e} = 5.9$ k Ω , $h_{ie} = 6$ k Ω , $r_{bb'} = 100\Omega$,	CO4	6 Marks
		$C_{b'e}$ = 12pF, $C_{b'c}$ = 63pF and h_{fe} = 224 at 1kHz. Calculate α and β cut-off		
		frequencies and f _T .		
		(UNIT-III)		
5	a)	Draw the block diagram of current shunt feedback amplifier and derive the	CO2	8 Marks
		expression for input and output impedance.	G 0 4	
	b)	A voltage series negative feedback amplifier has a voltage gain without	CO4	6 Marks
		feedback of A=500, input resistance $R_i = 3k\Omega$, output resistance		
		$R_0 = 20k\Omega$ and feedback ratio $\beta = 0.01$. Calculate the voltage gain A_f ,		
		input resistance R_{if} and output resistance R_{of} of the amplifier with feedback.		
		(OR)		
6	a)	Derive the expression for frequency of oscillations in Colpitts oscillator	CO3	10 Marks
		and conditions for oscillations with circuit diagram.		
	b)	In the Wein-bridge oscillator if the RC network consists of resistors of	CO4	4 Marks
		200 k Ω and the capacitors of 300pF, find the frequency of oscillation.		
		(UNIT-IV)		
7	a)	Compare series fed and transformer coupled class-A power amplifiers.	CO4	6 Marks
	b)	Analyze the working of transformer coupled class-A power amplifier and	CO6	8 Marks
		derive the equation for efficiency. (OR)		
8	a)	Explain the working of transformer coupled class-B push-pull power	CO5	10 Marks
J		amplifier and derive the equation for efficiency.		
	b)	A power amplifier supplies 3W to a load of 6Ω . The zero-signal d.c	CO6	4 Marks
		collectors is 55mA and the collector current with signal is 60mA.		
		(UNIT-V)		
9	a)	Draw and explain the working of single tuned amplifier.	CO4	9 Marks
	b)	Derive the expression for bandwidth of cascaded n stages single tuned	CO5	5 Marks
		amplifiers.		
10		(OR) Write short notes on i) Stability of tuned amplifiers	CO2	14 Marks
10		ii) Class-C tuned amplifier	002	1-1 141GLKS
		® ® ®		