Introducción a Haskell

Pablo F. Castro

Programación Avanzada, Universidad Nacional de Río Cuarto, Departamento de Computación

2015

2015

1/21

Introducción a Haskell

Haskell fue introducido en 1987 con el objetivo de introducir un lenguaje funcional moderno. Existen diversos interpretes y compiladores:

- Hugs, es un interprete de Haskell muy usado, se puede obtener en www.haskell.org/hugs
- Glasgow Haskell, es un compilador para Haskell se puede obtener en http://www.haskell.org/ghc/.

En la materia utilizaremos Hugs.

Tipos Básicos de Haskell: Bool

El tipo Bool contiene dos valores: True, False y las siguientes operaciones:

- Not :: Bool -> Bool, negación lógica.
- && :: Bool -> Bool, conjunción lógica.
- || :: Bool -> Bool -> Bool, disyunción lógica.

Estos tipos están definidos por pattern matching a la izquierda. Por ejemplo, la expresión:

False && (infty
$$==$$
 3)

se evalua a False, pero:

$$(infty == 3) \&\& False$$

Es indefinido.

Tipos Básicos de Haskell:Char, Int, Integer, Floats

El tipo Char contiene los valores 'a', 'b', 'c',..., y las siguientes funciones:

- ord::Char -> Int convierte carácteres a enteros.
- chr:Int -> Char convierte enteros a carácteres.

También tenemos los tipos:

- númericos Int (enteros de precisión fija),
- Integer (enteros de precisión variable),
- Float (números reales).

Tuplas

Usando los tipos básicos podemos construir tuplas y listas. Dados A y B:

Es el tipo de tuplas de A y B. Por ejemplo:

- (True, False) :: (Bool, Bool)
- (True, 1) :: (Bool, Int)
- ([],[]) :: ([A],[B])

Tenemos dos operaciones:

- fst :: (A,B) -> Ay
- snd :: (A,B) -> B.

Funciones

Dados dos tipos A y B, A->B es el tipo de las funciones de A en B. Por ejemplo:

Las funciones de **Alto Orden** son aquellas que toman como parámetros funciones, por ejemplo:

$$. :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$$

Ejercicio: Definir la composición de funciones.

Listas

El tipo [A] contiene todas las listas de tipo A, en donde:

- [] es la lista vacía.
- x:xs es la lista que tiene como primer elemento x y xs es el resto.

Todos los elementos de la lista son del mismo tipo. Podemos considerar también listas infinitas, por ejemplo:

```
ones :: [Int]
ones = 1 : ones
```

Tenemos un conjunto importante de funciones sobre listas:

- head :: [A] -> A, devuelve la cabeza de la lista.
- last :: [A] -> A, devuelve el último elemento.
- tail :: [A] -> [A], devuelve la cola de la lista.

Definición por Casos

En haskell podemos utilizar definición por casos:

```
sign : Int \rightarrow Int
sign x | x >= 0 = 1
| x < 0 =-1
```

También podemos usar pattern matching:

```
take 0 = []

take _{-} [] = []

take _{n} (x:xs) = x : take (n-1) xs
```

Operaciones sobre Listas

- init :: [A] -> [A], devuelve el comienzo de una lista.
- length :: [A] -> Int, devuelve la longitud de una lista.
- !! :: [A] -> A -> [A], devuelve el elemento en la i-ésima posición.

Funciones de alto orden sobre listas:

```
foldl :: (a->b->a) -> a -> [b] ->a
foldl f z [] = z
foldl f z x:xs = foldl f (f z x) xs
Es decir:
```

foldl
$$\oplus$$
 z $(x_1 : (x_2 : (x_3 : (x_4 : ... : (x_n : [])))))$
= $(((z \oplus x_1) \oplus x_2) \oplus x_3) \oplus x_4 ...$

Operaciones sobre listas

Por ejemplo, la siguiente expresión: foldl (+) 0 xs calcula sum xs. De la misma forma tenemos:

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z x:xs = f x (foldr f z xs)
```

Es decir:

foldr
$$\oplus$$
 z $x_1 : (x_2 : (x_3 : (... : (x_n : [])))$
= $x_1 \oplus (x_2 \oplus ... (x_n \oplus z)...)$

Operaciones sobre listas

La función Map: $(A \rightarrow B) \rightarrow [A] \rightarrow [B]$, está definida como:

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : (map f xs)
```

Es decir:

map
$$f[x_0, x_1, x_2, x_3, x_4, \dots] = [f(x_0), f(x_1), f(x_2), f(x_3), f(x_4), \dots]$$

Ejemplo:

square x = x * x

squarel :: [Int] -> [Int] squarel xs = map square xs

También podríamos haber dicho: squarel = map square

Operaciones sobre Listas

Las siguientes operaciones son útiles:

- zip :: [a] → [b] → [(a, b)], pone los elementos de la primera lista y la segunda en pares.
- $zipWith :: (a \rightarrow b \rightarrow c) \rightarrow [a] \rightarrow [b] \rightarrow [c]$, combina los elementos de las listas usando f.
- filter :: (a -> Bool) -> [a] -> [a], filtra los elementos de la lista usando p.
- takeWhile :: (a -> Bool) -> [a] -> [a], se queda con los primero elementos que cumplen con p.
- dropWhile :: (a -> Bool) -> [a] -> [a], tira los primeros elementos que cumplen con p.

Ejemplos:

- foldl 0 max (el máximo de una lista)
- filter ((0 /=) . ('mod' 2)) (los impares de una lista)
- zipWith (+) xs ys (suma dos listas elemento por elemento)
- ns = 0 : map (+1) ns (devuelve los naturales)

Comprensión sobre Listas

En conjuntos podemos hacer:

$$\{2 * x \mid x \in \{0, 1, 2, 3, 4\}\}$$

En Haskell tenemos la comprensión de listas, por ejemplo:

$$[2 * x | x < - [0,1,2,3,4]]$$

La expresión x < -[0, 1, 2, 3, 4] es llamada **generador**.

Podemos tener mas de un generador:

$$[(x,y) \mid x \leftarrow [0,1], y \leftarrow [4,5]]$$

que devuelve: [(0,4),(0,5),(1,4),(1,5)]

Listas por Comprensión

Podemos usar guardas para producir listas más interesantes:

```
[x \mid x \leftarrow [0..], \text{ even } x]
```

Podemos usar comprensión de listas para definir funciones:

```
divisores :: Int \rightarrow [Int]
divisores n = [x | x <- [1..n], n mod x = 0]
```

Ejercicio: Definir la función prime usando divisores.

Ejercicios con Comprensión de Listas

- calcular $1^2 + 2^2 + \cdots + 100^2$ usando comprensión de listas.
- Tres números x, y, z se dicen Pitagóricos is $x^2 + y^2 = z^2$, usando comprensión calcular las lista de todos las triplas Pitagóricas hasta un n dado.
- Calcular la lista de números perfectos utilizando comprensión de listas.

Declarando Nuevos Tipos

Podemos definir nuevos tipos con el constructor type, por ejemplo:

```
type String = [Char]
```

Podemos definir un tablero como:

```
type Board = [Pos]
```

en donde:

```
type Pos = (Int, Int)
```

También podemos definir tipos completamente nuevos con Data.

```
data Bool = False | True
```

Tipos Recursivos

Podemos introducir tipos recursivos (naturales, listas, árboles, etc). Por ejemplo:

```
data Nat = Zero | Succ Nat
```

Es decir, los naturales son:

```
Zero, Succ Zero, Succ(Succ Zero), Succ(Succ Zero)), ...
```

Podemos definir listas:

```
data List a = Nil | Cons a (List a)
```

Árboles binarios:

```
data Tree a = Leaf a | Node (Tree a) a (Tree a)
```

Ejercicios

- Definir las siguientes funciones sobre árboles:
 - La función size:Tree a -> Int, que dado un árbol devuelve el número de nodos del árbol.
 - ► La función alt: Tree a -> Int, que me da la altura de un árbol.
 - La función bal: Tree a -> Bool, que dice si un árbol es balanceado.
 - La función flatten: Tree a -> [a] que transforma un árbol en una lista.
- Probar por inducción que: alt t ≤ size t
- Definir la función map para árboles.

Clases

Sobrecarga de Operadores

Un operador se dice sobrecargado si puede utilizarse con diferentes tipos.

Las clases nos permiten definir funciones sobre tipos que comparten las mismas operaciones:

Solo funciona sobre tipos que tienen la igualdad definida, esto se escribe en Haskell:

```
elem :: (Eq a) => a -> [a] -> Bool
```

La clase Eq esta conformada por todos los tipos que tienen la igualdad:

Instanciando la igualdad para Tree

Podemos decir que *Nat* pertenece a *Eq* declarando:

```
instance (Eq a) => Eq Nat where
Zero == Zero = True
Zero == Succ n = False
Succ n == Succ m = n == m
```

Ejercicio:Instanciar Eq para árboles.

Otras clases:

- Show, aquellos tipos que se pueden mostrar por pantalla.
- Ord, tipos con una relación de orden.

Ejemplo Final:QuickSort

podemos programar el QuickSort de la siguiente forma: