Kontrolltöö

Joosep Näks

2. Lahendus:

Et saada esialg
ne punktid esialgses reeperis, on vaja pöörata punkt
e -30° võrra. Saan baasiteisenduse maatriksiks:

$$X = \begin{pmatrix} \cos -30^{\circ} & -\sin -30^{\circ} \\ \sin -30^{\circ} & \cos -30^{\circ} \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

Seega saan esialgsed punktid:

$$A = XA' = \begin{pmatrix} \frac{1}{2} - \sqrt{3} \\ 1 + \frac{\sqrt{3}}{2} \end{pmatrix}$$

$$B = XB' = \begin{pmatrix} 2\sqrt{3} \\ 0 \end{pmatrix}$$

$$C = XC' = \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$$

$$D = XD' = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

3. Lahendus:

Leian kõigepealt pikema pooltelje. Eksentrilisuse definitsiooni põhjal kehtib $e=\frac{c}{a}$, kus e on eksentrilisus, c fokaalpunkti kaugus keskpunktist ning a pikema pooltelje pikkus. Kuna iga ellipsi punkti kauguste fokaalpunktidest summa on 2a, peab lühema pooltelje kaugem ots olema kummastki fokaalpunktist a kaugusel (kuna tekib võrdhaarne kolmnurk). Seega saab tekkinud võrdkülgsest kolmnurgast ellipsi keskpunkti, fokaalpunkti ja lühema pooltelje tipu vahel võrrandi $b^2+c^2=a^2$. Siia sisse asendades eksentrilisuse võrrandi, saab leida pikema pooltelje: $a=\frac{b}{\sqrt{1-e^2}}=\frac{4}{\sqrt{1-\frac{1}{2^2}}}=\frac{8}{\sqrt{3}}$.

Seega on ellipsi kanooniline võrrand

$$\frac{x^2}{\frac{64}{2}} + \frac{y^2}{16} = 1$$

Skitseeritud ellips:

Fookuspunktid asuvad punktides (c,0)ja (-c,0)ehk $(\frac{16}{3},0)$ ja $(-\frac{16}{3},0)$

4. Lahendus:

Võrrandit teisendades saan võrrandi:

$$\frac{x^2}{\frac{29}{20}} - \frac{(y - \frac{1}{2})^2}{\frac{29}{12}} = 1$$

Siit on näha, et tema keskpunkt on $\left(0,\frac{1}{2}\right)$, poolteljed $a=\frac{29}{20}$ ja $b=\frac{29}{12}$, asümptoodid $y=\sqrt{\frac{5}{3}}x+\frac{1}{2}$ ja $y=-\sqrt{\frac{5}{3}}x+\frac{1}{2}$. Fookuste kaugus keskpunktist on $c=\sqrt{a^2+b^2}=\sqrt{\frac{58}{15}}$ ehk eksentrilisus on $e=\frac{c}{a}=\sqrt{\frac{8}{3}}$ ning fookused asuvad punktides $F_1\left(\sqrt{\frac{58}{15}},\frac{1}{2}\right)$ ja $F_2\left(-\sqrt{\frac{58}{15}},\frac{1}{2}\right)$. Fokaalparameetriks saan $q=\frac{b^2}{a}=\frac{\sqrt{145}}{6}$.

5. Lahendus:

Teen kõigepealt nihke (-1,-2), et saada keskpunktiks (1,2): $A(1,2) \rightarrow A'(0,0)$, $B(-2,4) \rightarrow B'(-3,2)$. Seejärel pööran baasi 30° võrra maatriksiga

$$X = \begin{pmatrix} \cos 30^{\circ} & -\sin 30^{\circ} \\ \sin 30^{\circ} & \cos 30^{\circ} \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

Saan punktid $A'' = XA' = (0,0), B'' = XB' = \left(-\frac{3\sqrt{3}}{2} - 1, \sqrt{3} - \frac{1}{2}\right)$. Teen vahetuse polaarkoor-

dinaatidesse:
$$r_A = \sqrt{0^2 + 0^2} = 0$$
, $\theta_A = \arctan\left(\frac{0}{0}\right) = 0$, $r_B = \sqrt{\left(-\frac{3\sqrt{3}}{2} - 1\right)^2 + \left(\sqrt{3} - \frac{1}{2}\right)^2} = \sqrt{11 + 2\sqrt{3}}$, $\theta_B = \arctan\left(\frac{-\frac{3\sqrt{3}}{2} - 1}{\sqrt{3} - \frac{1}{2}}\right)$.