2019年

数学(三)参考答案

一、选择题

(1) C

解 $\tan x$ 的麦克劳林展开式为 $x + \frac{x^3}{3} + o(x^3)$,

故 $x - \tan x \sim -\frac{1}{3}x^3$,则 k = 3. 故应选 C.

(2) D

解 设 $f(x) = x^5 - 5x + k$,则 $f'(x) = 5x^4 - 5$,令 f'(x) = 0,得 $x = \pm 1$. 当 x < -1 时,f'(x) > 0;当 -1 < x < 1 时,f'(x) < 0;当 x > 1 时,f'(x) > 0. 又 $\lim_{x \to +\infty} f(x) = +\infty$, $\lim_{x \to -\infty} f(x) = -\infty$,结合单调性知,f(-1) > 0,f(1) < 0 时才有三个根,且三个实根分别在区间 $(-\infty, -1)$,(-1, 1), $(1, +\infty)$ 上,

即 f(-1) = -1 + 5 + k > 0, f(1) = 1 - 5 + k < 0, 则 -4 < k < 4. 故应选 D.

(3) D

解 由微分方程通解形式可知, $y = (C_1 + C_2 x)e^{-x}$ 为齐次方程的通解, $y = e^x$ 为非齐次方程的特解, -1 为特征方程 $\lambda^2 + a\lambda + b = 0$ 的二重根,

得
$$\begin{cases} 1-a+b=0, \\ a^2-4b=0, \end{cases}$$
且 $1+a+b=c,$

由此解得 a=2,b=1,c=4. 故应选 D.

(4) B

解 因为 $\lim_{n\to\infty}\frac{|u_n|}{|nu_n|}=0$,且 $\sum_{n=1}^{\infty}nu_n$ 绝对收敛,由比较判别法可知 $\sum_{n=1}^{\infty}u_n$ 也绝对收敛.

而当 $\sum_{n=1}^{\infty} \frac{\nu_n}{n}$ 条件收敛时, $\sum_{n=1}^{\infty} \nu_n$ 的敛散性不定.

如果令 $\nu_n = (-1)^n$ 及 $\nu_n = \frac{(-1)^n}{\ln(n+1)}$ 时, $\sum_{n=1}^{\infty} \frac{\nu_n}{n}$ 都是条件收敛,

而 $\sum_{n=1}^{\infty} \nu_n = (-1)^n$ 发散, $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$ 收敛, 可知 $\sum_{n=1}^{\infty} (u_n + \nu_n)$ 的敛散性是不确定的.

则 C、D 都不正确.

再判断 $\sum_{n=1}^{\infty} u_n \nu_n$ 的敛散性:由于 $\lim_{n\to\infty} \frac{\mid u_n \nu_n\mid}{\mid nu_n\mid} = \lim_{n\to\infty} \left| \frac{\nu_n}{n} \right| = 0$,且 $\sum_{n=1}^{\infty} nu_n$ 绝对收敛,由比较判别法可知 $\sum_{n=1}^{\infty} u_n \nu_n$ 是绝对收敛的. 故应选 B.

(5) A

解 由线性方程组 Ax = 0 的基础解系中只有 2 个向量,则 2 = 4 - r(A),故 r(A) = 2. 由于当 r(A) < n-1 时(n 为 A 的阶数), $r(A^*) = 0$. 故应选 A.

(6) C

解 设λ是A 的特征值,根据A²+A=2E 得: λ^2 +λ=2,解得λ=1或-2.

由于 1 **A** 是 3 阶实对称矩阵,则 **A** 有 3 个特征值且 **A** 的 3 个特征值的积为 | **A** | 的值,故 **A** 的三个特征值的积为 1, -2, -2, 正惯性指数为 1, 负惯性指数为 2, 故二次型 $\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x}$ 的规范形为 $\mathbf{y}_{1}^{2}-\mathbf{y}_{2}^{2}-\mathbf{y}_{3}^{2}$. 故应选 C.

(7) C

解 由
$$P(A\overline{B}) = P(B\overline{A})$$
 得 $P(A\overline{B}) = P(A) - P(AB) = P(B\overline{A}) = P(B) - P(AB) \Leftrightarrow P(A) = P(B)$. 故应选 C.

(8) A

解 由
$$X \sim N(\mu, \sigma^2)$$
, $Y \sim N(\mu, \sigma^2)$, 且相互独立, 则 $E(X-Y)=0$, $D(X-Y)=DX+DY=2\sigma^2$, 得 $\frac{X-Y}{\sqrt{2}\sigma} \sim N(0,1)$, 故 $P\{|X-Y|<1\}=P\Big\{\frac{|X-Y|}{\sqrt{2}\sigma}<\frac{1}{\sqrt{2}\sigma}\Big\}=2\Phi\Big(\frac{1}{\sqrt{2}\sigma}\Big)-1$ 与 σ^2 有关,与 μ 无关. 故应选 A.

二、填空题

(9) e^{-1}

解 原式=
$$\lim_{n\to\infty} \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1}\right)^n$$

$$= \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \lim_{n\to\infty} \left[1 + \left(-\frac{1}{n+1}\right)\right]^n$$

$$= e^{\lim_{n\to\infty} n\left(-\frac{1}{n+1}\right)} = e^{-1}.$$

故应填 e-1.

(10) $(\pi, -2)$

$$\mathbf{ff} \qquad y' = \sin x + x \cos x - 2\sin x = x \cos x - \sin x,$$

$$y'' = \cos x - x \sin x - \cos x = -x \sin x.$$

令 y'' = 0,得 $x_1 = 0$, $x_2 = \pi$,再判断 x_1 , x_2 两点的左右两侧二阶导数是否异号;在 x_1 左侧 y'' < 0,右侧 y'' < 0,故(0,2) 不是拐点;

 x_2 左侧 $y'' < 0, x_2$ 右侧区间 $\left(\pi, \frac{3\pi}{2}\right)$ 内 y'' > 0,所以拐点为 $\left(\pi, -2\right)$. 故应填 $\left(\pi, -2\right)$.

(11) $\frac{1}{18}(1-2\sqrt{2})$

解 由分部积分法:
$$\int_{0}^{1} x^{2} f(x) dx = \frac{1}{3} \int_{0}^{1} f(x) dx^{3} = \frac{1}{3} x^{3} f(x) \Big|_{0}^{1} - \frac{1}{3} \int_{0}^{1} x^{3} f'(x) dx, \quad ①$$
又 $f(1) = \int_{1}^{1} \sqrt{1 + t^{4}} dt = 0, f'(x) = \sqrt{1 + x^{4}}, 代人 ① 式:$

$$\frac{1}{3} f(1) - \frac{1}{3} \int_{0}^{1} x^{3} \sqrt{1 + x^{4}} dx = -\frac{1}{3} \cdot \frac{1}{4} \int_{0}^{1} \sqrt{1 + x^{4}} dx^{4}$$

$$= -\frac{1}{12} \cdot \frac{2}{3} (1 + x^{4})^{\frac{3}{2}} \Big|_{0}^{1} = \frac{1}{18} (1 - 2\sqrt{2}).$$

故应填 $\frac{1}{18}(1-2\sqrt{2})$.

(12) 0.4

解 当
$$P_B = 20$$
 时, $Q_A = 500 - P_A^2 - 20P_A + 2 \cdot 20^2 = 1300 - 20P_A - P_A^2$,
则 $\eta_{AA} = -\frac{P_A}{Q_A} \frac{dQ_A}{dP_A} = -\frac{P_A}{1300 - 20P_A - P_A^2} \cdot (-20 - 2P_A) = \frac{2P_A (P_A + 10)}{1300 - 20P_A - P_A^2}$,
所以 $\eta_{AA} \Big|_{P_A = 10} = 0.4$. 故应填 0.4.

(13) 1

解 由题意得

$$\overline{A} = \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 1 & 1 & -1 & | & 1 \\ 0 & 1 & a^2 - 1 & | & a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 0 & | & 1 \\ 0 & 1 & a^2 - 1 & | & a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & a^2 - 1 & | & a - 1 \end{pmatrix}.$$

要使 Ax = b 有无穷多解,则应使 $r(A) = r(\overline{A}) < 3$,

当
$$a^2 - 1 = a - 1 = 0$$
,即 $a = 1$ 时, $r(A) = r(\overline{A}) = 2 < 3$.

故应填1.

 $(14) \frac{2}{3}$

解 由随机变量
$$X$$
 的概率密度 $f(x) = \begin{cases} \frac{x}{2}, & 0 < x < 2, \\ 0, & \text{其他,} \end{cases}$

$$F(X) = \begin{cases} 0, & x < 0, \\ \frac{x^2}{4}, & 0 \le x < 2, EX = \int_0^2 x f(x) dx = \int_0^2 x \cdot \frac{x}{2} dx = \frac{4}{3}, \\ 1, & x \ge 2, \end{cases}$$

$$\begin{split} P\{F(X) > EX - 1\} &= P\left\{F(X) > \frac{4}{3} - 1\right\} = P\left\{\frac{X^2}{4} > \frac{1}{3}\right\} \\ &= P\left\{X > \frac{2}{\sqrt{3}}\right\} = \int_{\frac{2}{\sqrt{3}}}^{2} \frac{x}{2} \mathrm{d}x = \frac{2}{3}. \end{split}$$

故应填 $\frac{2}{3}$.

三、解答题

(15) **M**
$$\exists x > 0 \text{ bd}, f'(x) = 2x^{2x}(\ln x + 1); \exists x < 0 \text{ bd}, f'(x) = e^{x}(x + 1).$$

因为
$$\lim_{x\to 0^+} \frac{x^{2x}-1}{x} = \lim_{x\to 0^+} \frac{e^{2x\ln x}-1}{x} = \lim_{x\to 0^+} \frac{2x\ln x}{x} = -\infty$$
,所以 $f'(0)$ 不存在.

综上
$$f'(x) = \begin{cases} 2x^{2x}(\ln x + 1), & x > 0, \\ e^x(x + 1), & x < 0. \end{cases}$$

令
$$f'(x) = 0$$
,得驻点 $x = -1, x = \frac{1}{e}$.

当
$$x < -1$$
 或 $0 < x < \frac{1}{}$ 时, $f'(x) < 0$;

淘宝店铺:光速考研工作室

当
$$-1 < x < 0$$
 或 $x > \frac{1}{e}$ 时, $f'(x) > 0$.

所以 f(x) 在区间 $(-\infty, -1)$ 和 $\left(0, \frac{1}{e}\right)$ 内单调减少,

在区间(-1,0) 和 $\left(\frac{1}{e},+\infty\right)$ 内单调增加,从而 f(x) 的极小值为

$$f(-1) = 1 - \frac{1}{e}$$
, $f(\frac{1}{e}) = e^{-\frac{2}{e}}$, 极大值为 $f(0) = 1$.

(16)解 因为

$$\begin{split} &\frac{\partial g}{\partial x} = y - f_u(x + y, x - y) - f_v(x + y, x - y),\\ &\frac{\partial g}{\partial y} = x - f_u(x + y, x - y) + f_v(x + y, x - y),\\ &\frac{\partial^2 g}{\partial x^2} = -f_{uu}(x + y, x - y) - 2f_{uv}(x + y, x - y) - f_{vv}(x + y, x - y),\\ &\frac{\partial^2 g}{\partial x \partial y} = 1 - f_{uu}(x + y, x - y) + f_{vv}(x + y, x - y),\\ &\frac{\partial^2 g}{\partial y^2} = -f_{uu}(x + y, x - y) + 2f_{uv}(x + y, x - y) - f_{vv}(x + y, x - y),\\ &\text{所以} \end{split}$$

$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial x \partial y} + \frac{\partial^2 g}{\partial y^2} = 1 - 3f_{uu}(x + y, x - y) - f_{vv}(x + y, x - y).$$

(17) 解 (I)由一阶线性微分方程的通解公式,得

$$y(x) = e^{\int x dx} \left(C + \int \frac{1}{2\sqrt{x}} e^{\frac{x^2}{2}} e^{-\int x dx} dx \right) = e^{\frac{x^2}{2}} (\sqrt{x} + C).$$

因为 $y(1) = \sqrt{e}$,所以 C = 0.

从而
$$y(x) = \sqrt{x} e^{\frac{x^2}{2}}$$
.

 $(\Pi)D$ 绕 x 轴旋转所得旋转体的体积为

$$V = \int_{1}^{2} \pi y^{2}(x) dx = \int_{1}^{2} \pi x e^{x^{2}} dx = \frac{\pi}{2} e^{x^{2}} \Big|_{1}^{2} = \frac{\pi}{2} (e^{4} - e).$$

(18)解 由题意,所求面积为

$$S = \int_0^{+\infty} e^{-x} | \sin x | dx = \sum_{n=0}^{\infty} (-1)^n \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x dx,$$
因为
$$\int_{n\pi}^{(n+1)\pi} e^{-x} \sin x dx = -e^{-x} \cos x \Big|_{n\pi}^{(n+1)\pi} - \int_{n\pi}^{(n+1)\pi} e^{-x} \cos x dx$$

$$= (-1)^n \Big[e^{-(n+1)\pi} + e^{-n\pi} \Big] - \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x dx.$$

$$\iint S = \frac{1}{2} \sum_{n=0}^{\infty} \Big[e^{-n\pi} + e^{-(n+1)\pi} \Big] = \frac{e^{\pi} + 1}{2(e^{\pi} - 1)}.$$

淘宝店铺:光速考研工作室

(19) **$$\mathbf{m}$$** (I) $a_{n+1} - a_n = \int_0^1 x^n (x-1) \sqrt{1-x^2} dx$.

因为在积分区间[0,1]上, $x^n(x-1)\sqrt{1-x^2} \le 0$ 且不恒等于 0, 所以 $a_{n+1}-a_n < 0$,即 $\{a_n\}$ 单调减少.

当
$$n \ge 2$$
 时,因为 $a_n = \int_0^1 x^n \sqrt{1 - x^2} \, \mathrm{d}x$

$$= -\frac{1}{3} x^{n-1} (1 - x^2)^{\frac{3}{2}} \Big|_0^1 + \frac{n-1}{3} \int_0^1 x^{n-2} (1 - x^2)^{\frac{3}{2}} \, \mathrm{d}x$$

$$= \frac{n-1}{3} \int_0^1 x^{n-2} \sqrt{1 - x^2} \, \mathrm{d}x - \frac{n-1}{3} \int_0^1 x^n \sqrt{1 - x^2} \, \mathrm{d}x$$

$$= \frac{n-1}{3} a_{n-2} - \frac{n-1}{3} a_n,$$

所以
$$a_n = \frac{n-1}{n+2} a_{n-2} (n=2,3,\cdots)$$
.

$$(\prod_{a_{n-1}} \frac{a_n}{a_{n-1}} = \frac{n-1}{n+2} \frac{a_{n-2}}{a_{n-1}}.$$

因为 $\{a_n\}$ 单调减少且 $a_n > 0$,所以 $\frac{n-1}{n+2} < \frac{a_n}{a_{n-1}} < 1$,从而 $\lim_{n \to \infty} \frac{a_n}{a_{n-1}} = 1$.

(20)解 由等价的定义可知:

 β_1 , β_2 , β_3 都能由 α_1 , α_2 , α_3 线性表示,则有 $r(\alpha_1,\alpha_2,\alpha_3) = r(\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2,\beta_3)$, 对(α_1 , α_2 , α_3 , β_1 , β_2 , β_3) 作初等行变换可得:

$$\begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 1 \\ 1 & 0 & 2 & | & 1 & 2 & 3 \\ 4 & 4 & a^2 + 3 & | & a + 3 & 1 - a & a^2 + 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & | & 1 & 0 & 1 \\ 0 & -1 & 1 & | & 0 & 2 & 2 \\ 0 & 0 & a^2 - 1 & | & a - 1 & 1 - a & a^2 - 1 \end{pmatrix}$$

当 a = -1 时,有 $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) < r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3);$

当 a=1 时,有 $r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3)=r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3,\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3)=2$;

可知 $a \neq 1$ 且 $a \neq -1$ 时,此时 $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = 3$,

则有 a=1 或者 $a \neq 1$ 且 $a \neq -1$ 时, β_1 , β_2 , β_3 可由 α_1 , α_2 , α_3 线性表示,

此时,要保证 α_1 , α_2 , α_3 可由 β_1 , β_2 , β_3 线性表示.

对(β_1 , β_2 , β_3 , α_1 , α_2 , α_3)作初等行变换可得:

$$\begin{pmatrix} 1 & 0 & 1 & | & 1 & 1 & 1 \\ 1 & 2 & 3 & | & 1 & 0 & 2 \\ a+3 & 1-a & a^2+3 & | & 4 & 4 & a^2+3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & | & 1 & 1 & 1 \\ 0 & 2 & 2 & | & 0 & -1 & 1 \\ 0 & 0 & a^2-1 & | & 1-a & \frac{3}{2}(1-a) & \frac{2a^2-a-1}{2} \end{pmatrix}$$

当 a=1 时,有 $r(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3)=r(\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,\boldsymbol{\beta}_3,\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3)=2$,

可知当 $a \neq 1$ 且 $a \neq -1$ 时,此时 $r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3, \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = 3$,

此时, α_1 , α_2 , α_3 可由 β_1 , β_2 , β_3 线性表示.

淘宝店铺:光速考研工作室

无水印版由【公众号: 小盆考研】免费提供

更多考研数学视频文档资料, 【公众号: 小盆考研】, 回复【数学】免费获取

更多考研押题资料视频, 【公众号: 小盆考研】免费提供

更多考研数学预测卷, 【公众号: 小盆考研】, 回复【数学预测】免费获取

无水印版由【公众号:小盆考研】免费提供

综上所述: 当 $a \neq -1$ 时,向量组 $\alpha_1, \alpha_2, \alpha_3$ 与向量组 $\beta_1, \beta_2, \beta_3$ 可相互线性表示.

当
$$a \neq 1$$
 时, $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\beta}_3)$ $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 & 2 \\ 0 & 0 & a^2 - 1 & a^2 - 1 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}$

则 $\boldsymbol{\beta}_3 = \boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3$

当
$$a = 1$$
 时, $(\alpha_1, \alpha_2, \alpha_3, \beta_3)$ → $\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ → $\begin{pmatrix} 1 & 0 & 2 & 1 & 3 \\ 0 & 1 & -1 & 1 & -2 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$

基础解系为
$$k \begin{pmatrix} -2\\1\\1 \end{pmatrix} + \begin{pmatrix} 3\\-2\\0 \end{pmatrix} (k \in \mathbf{R}), 则 \beta_3 = (3-2k)\alpha_1 + (k-2)\alpha_2 + k\alpha_3.$$

(21) 解 (I) 因为矩阵 \mathbf{A} 与 \mathbf{B} 相似,所以 $\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{B})$, $|\mathbf{A}| = |\mathbf{B}|$,

即
$$\begin{cases} x-4=y+1, \\ 4x-8=-2y, \end{cases}$$
解得 $x=3,y=-2.$

(Ⅱ)矩阵 **B** 的特征多项式为 $|\lambda E - B| = (\lambda - 2)(\lambda + 1)(\lambda + 2)$,

所以 **B** 的特征值为 2, -1, -2.

由于 \mathbf{A} 与 \mathbf{B} 相似,所以 \mathbf{A} 的特征值也为 2, -1, -2.

A 的属于特征值 2 的特征向量为 $\xi_1 = (1, -2, 0)^T$;

A 的属于特征值 -1 的特征向量为 $\xi_0 = (-2,1,0)^{\mathrm{T}}$;

A 的属于特征值 -2 的特征向量为 $\xi_3 = (1, -2, -4)^T$.

记
$$P_1 = (\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, \boldsymbol{\xi}_3)$$
,于是 $P_1^{-1} A P_1 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$.

B 的属于特征值 2 的特征向量为 $\eta_1 = (1,0,0)^{T}$;

B 的属于特征值 -1 的特征向量为 $\eta_2 = (1, -3, 0)^T$;

B 的属于特征值 -2 的特征向量为 $η_3 = (0,0,1)^T$.

记
$$P_2 = (\eta_1, \eta_2, \eta_3)$$
,于是 $P_2^{-1}BP_2 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$.

由 $P_1^{-1}AP_1 = P_2^{-1}BP_2$,得 $(P_1P_2^{-1})^{-1}A(P_1P_2^{-1}) = B$.

则 $P^{-1}AP = B$.

(22) **解** (I) Z 的分布函数为

$$\begin{split} F_Z(z) = & P\left\{Z\leqslant z\right\} = P\left\{XY\leqslant z\mid Y=-1\right\}P\left\{Y=-1\right\} + P\left\{XY\leqslant z\mid Y=1\right\}P\left\{Y=1\right\} \\ = & pP\left\{-X\leqslant z\right\} + (1-p)P\left\{X\leqslant z\right\}. \end{split}$$

当
$$z < 0$$
 时, $F_Z(z) = pP\{X \ge -z\} + (1-p) \cdot 0 = pe^z$;
当 $z \ge 0$ 时, $F_Z(z) = p \cdot 1 + (1-p)P\{X \le z\} = 1 - (1-p)e^{-z}$.

所以
$$Z$$
 的概率密度为 $f_Z(z) = F_Z'(z) = \begin{cases} p e^z, & z < 0, \\ (1-p)e^{-z}, & z \ge 0. \end{cases}$

(
$$\blacksquare$$
) $Cov(X,Z) = E(XZ) - EX \cdot EZ$

$$= E(X^2Y) - EX \cdot E(XY)$$

$$= E(X^2) \cdot E(Y) - (EX)^2 \cdot E(Y)$$

$$= DX \cdot EY = 1 - 2p,$$

令 Cov(X,Z) = 0,得 $p = \frac{1}{2}$. 所以 $p = \frac{1}{2}$ 时,X 与 Z 不相关.

(Ⅲ)因为

$$P\{X \leq 1, Z \leq -1\} = P\{X \leq 1, XY \leq -1\} = 0,$$

$$P(X \le 1) > 0, P(Z \le -1) > 0,$$

所以

$$P\{X \leqslant 1, Z \leqslant -1\} \neq P\{X \leqslant 1\}P\{Z \leqslant -1\}.$$

故 X 与 Z 不相互独立.

(23) 解 (I) 由
$$\int_{-\infty}^{+\infty} f(x;\sigma^2) dx = 1,$$

$$1 = \int_{\mu}^{+\infty} \frac{A}{\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = A \int_{0}^{+\infty} e^{-\frac{t^2}{2}} dt$$
$$= A \cdot \frac{\sqrt{2\pi}}{2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \frac{\sqrt{2\pi}}{2} A,$$

所以
$$A = \sqrt{\frac{2}{\pi}}$$
.

(\mathbb{I}) 设 x_1, x_2, \dots, x_n 为样本 X_1, X_2, \dots, X_n 的观测值,则似然函数为

$$L(\sigma^2) = \prod_{i=1}^n f(x_i; \sigma^2) = \begin{cases} \left(\frac{2}{\pi}\right)^{\frac{n}{2}} (\sigma^2)^{-\frac{n}{2}} e^{-\sum_{i=1}^n \frac{(x_i-\mu)^2}{2\sigma^2}}, & x_1, x_2, \dots, x_n \geqslant \mu, \\ 0, & \text{ \sharp th}, \end{cases}$$

对数似然函数为

$$\ln L(\sigma^{2}) = \frac{n}{2} \ln \frac{2}{\pi} - \frac{n}{2} \ln \sigma^{2} - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}.$$

$$\frac{\mathrm{d} \ln L(\sigma^{2})}{\mathrm{d}\sigma^{2}} = -\frac{n}{2\sigma^{2}} + \frac{1}{2\sigma^{4}} \sum_{i=1}^{n} (x_{i} - \mu)^{2},$$

令
$$\frac{\mathrm{d} \ln L(\sigma^2)}{\mathrm{d}\sigma^2} = 0$$
,得 σ^2 的最大似然估计值为 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$,

所以
$$\sigma^2$$
 的最大似然估计量为 $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$.