定理 2.45 (Stone 定理) < A , \lor , \land , $^-$ >を有限ブール代数とする。S を A のすべての原子の集合とする。このとき,< A , \lor , \land , $^-$ >は束< $\wp(S)$, \subseteq > によって定義される代数系< $\wp(S)$, \cup , \cap , \sim > と同型である。

【証明】

補題 2.3 により,A の任意の 0 でない要素b に対して, $b=a_1 \vee a_2 \vee ... \vee a_k$ は原子の結びによるb の一意な表現である。ここで, $a_1,a_2,...,a_k$ は $a_i \leq b$ であるようなA のすべての原子である。集合 $\{a_1,a_2,...,a_k\}$ を S_b と記し,関数 $f:A \rightarrow \wp(S)$,a=0 のとき, $f(a)=\phi$, $a\neq 0$ のとき, $f(a)=S_a$ とする。 ϕ を S_0 とする。

- (1) A の任意の要素 x と y に対して、 $x \neq y$ のとき、 $S_x \neq S_y$ である。すなわち、 $f(x) \neq f(y)$ である。ゆえに、f は単射関数である。
- (2) $\wp(S)$ の任意の要素 $S' = \{a_1', a_2', ..., a_j'\}$ に対して、 \vee が閉じた演算であるから、 $a_1' \vee a_2' \vee ... \vee a_j' = b' \in A$ である。すなわち、f(b') = S' である。ゆえに、f は全射関数である。
- (1) \geq (2) により、f は A から $\wp(S)$ への全単射関数である。 次の結果を証明する。

Aの任意の要素 a とbに対して,

- $\Im f(\overline{a}) = \sim f(a)$

が成り立つ。

証明:

① $f(a \land b)$ の任意の要素 x に対して, x は $x \leqslant a \land b$ を満たす原子であるとする。 $a \land b \leqslant a$ と $a \land b \leqslant b$ であるから, $x \leqslant a$ と $x \leqslant b$ である。 すなわち, $x \in f(a)$ か つ $x \in f(b)$ である。よって, $x \in f(a) \cap f(b)$ である。ゆえに, $f(a \land b) \subseteq f(a) \cap f(b)$ である。

 $f(a) \cap f(b)$ の任意の要素 x に対して、 $x \in f(a)$ かつ $x \in f(b)$ であるとする。 すなわち、x は $x \le a$ と $x \le b$ を満たす原子である。よって、 $x \le a \land b$ である。 すなわち、 $x \in f(a \land b)$ である。ゆえに、 $f(a \land b) \supseteq f(a) \cap f(b)$ である。 よって, $f(a \wedge b) = f(a) \cap f(b)$ である。

A の任意の要素 a とb に対して, $a=a_1$ '∨ a_2 '∨…∨ a_j ',, $b=a_1$ ∨ a_2 ∨…∨ a_k とすると, $f(a)=\{a_1',a_2',...,a_j'\}$ と $f(b)=\{a_1,a_2,...,a_k\}$ である。

$$a \lor b = (a_1 \lor a_2 \lor \dots \lor a_j) \lor (a_1 \lor a_2 \lor \dots \lor a_k)$$
$$= a_1 \lor a_2 \lor \dots \lor a_j \lor a_1 \lor a_2 \lor \dots \lor a_k$$

であるから , $f(a \lor b) = \{a_1', a_2', ..., a_i', a_1, a_2, ..., a_k\} = f(a) \cup f(b)$ である。

A の任意の要素a に対して, $a = a_1 \lor a_2 \lor \cdots \lor a_k$ とすると,

$$f(a) = \{a_1, a_2, \dots, a_k\} \subseteq S$$
 かつ $\sim f(a) = S - f(a)$ である。

$$\overline{a} = \overline{a_1 \lor a_2 \lor \cdots \lor a_k} = \overline{a_1} \land \overline{a_2} \land \cdots \land \overline{a_k}$$
 であるから , により ,

 $f(\overline{a}) = f(\overline{a_1} \wedge \overline{a_2} \wedge \cdots \wedge \overline{a_k}) = f(\overline{a_1}) \cap f(\overline{a_2}) \cap \cdots \cap f(\overline{a_k})$ である。系 2.3 により,任意の原子a, に対して, $f(\overline{a_i}) = S - \{a_i\}$ である。すなわち,

$$f(\overline{a}) = (S - \{a_1\}) \cap (S - \{a_2\}) \cap \cdots \cap (S - \{a_k\})$$

= $S - \{a_1, a_2, \dots, a_k\} = S - f(a) = \sim f(a)$ である。

と と によって, A から $\wp(S)$ への全単射関数 f は A , \vee , \wedge , $\bar{}$ > から $< \wp(S)$, \cup , \cap , \sim > への同型関数である。