Presentation Outline:

- 1) Introducing the 4-Queen problem
- 2) **Activity**: Solving 4-Queen problem using artifacts
- 3) Solution of 4-Queen problem in Backtracking approach
- 4) Demerits of Backtracking approach
- 5) Introducing 8-Queen problem
- 6) Discussion on Genetic Algorithm
- 7) Solution of 8-Queen problem using GA
- 8) Conclusion

The 4-Queen Problem

Once upon a time, there was a great king in India. However, it was a matter of shame that he had 4 Queens. The Queens were so arrogant and they didn't even want see one another. Therefore, the King built a castle of 4 x 4 rooms. However, he couldn't find way the to place the 4 Queens in 4 separate rooms, so that they couldn't see each others.

Would, you please help the King to place the Queens? Avoid placing two Queens in a same row, same column and even same diagonal rooms.

Solution of the 4-Queen Problem Using Backtracking Approach

Therefore, the king called Professor of an University to solve the 4-Queen problem. And Professor solved the 4-Queen problem in backtracking approach.

Complexity: NQueens: O(N!)

The 5-Queen Problem

One month later, Professor received a call from the great King to solve his 5-Queen problem. Professor, solved the 5-Queen problem in backtracking approach.

Solution of the 5-Queen Problem Using Backtracking Approach

6-Queen Problem

Fortunately, one month later, the King requested the professor to solve 6-Queen problem. The professor thought that the King may request him to solve 16-Queen problem within next 10 months.

Backtracking approach will not be efficient to solve the 8 or 16-Queen problems.

Therefore, professor invented Genetic Algorithm to solve the n-Queen problem.

8-Queen Problem

		_	

Genetic Algorithm

Darwin's theory of evolution

The **genetic algorithm** is a method for solving both constrained and unconstrained optimization problems that is based on natural selection, the process that drives biological evolution.

Genetic Algorithms Successor States are Generated Combining Two Parent S

Introduced in the 1970s by John Holland at University of Michigan

- begin with k randomly generated states (population)
- each state (individual) is a string over some alphabet (chromosome)
- fitness function (bigger number is better)
- crossover
- mutate (evolve?)

Darwin's theory of evolution

GA: PROCEDURE

Pseudo-code of GA:

```
Generate the initial population
Compute fitness
REPEAT
Selection
Crossover
Mutation
Compute fitness
UNTIL population has converged
STOP
```


Formulation of Genetic Algorithm

John Holland introduced **Genetic Algorithm (GA) Darwin's theory of evolution**

Fitness function: number of non-attacking pairs of queens

Maximum number of attacking pairs: $8 \times 7/2 = 28$

[Q1 Q2]

[Q1 Q3]

[Q1 Q4]

[Q1 Q5]

[Q1 Q6]

[Q1 Q7]

[Q1 Q8]

......

[Q8 Q7]

Chromosome of Father: 3 8 4 7 2 3 2 5

Chromosome of Mother: 3 8 5 7 1 6 1 5

Crossover:

Chromosome from Father:

Chromosome from Mother:

Chromosome of Mother:

Mutation:

Before Mutation:

Offspring 1: 3 8 4 7 1 6 1 5

Offspring2: 3 8 5 7 2 3 2 5

After Mutation:

Offspring 1: 3 8 4 7 1 6 2 5

Offspring2: 3 8 6 7 2 3 2 5

Offspring2:

Genetic Algorithms Example

Represent states and compute fitness function.

GENETIC ALGORITHMS

- Fitness function: number of non-attacking pairs of queens (min = 0, max = $8 \times 7/2 = 28$)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc

Solution of 8-Queen Problem using Genetic Algorithm

John Holland introduced **Genetic Algorithm** (**GA**)

Darwin's theory of evolution

S					
1 8 0					
190			So and the second		
200		_		_	
		6			

The 4-Queen Problem

What is the Maximum fitness value: ????

4-Queen Problem Using Backtracking vs GA Approach

Therefore, the king called Professor John Holland of the University of Michigan to solve the 4-Queen problem. And solved the 4-Queen problem in backtracking approach.

Complexity: NQueens: O(N!)

Genetic Algorithms complexity is O(g(nm + nm + n)) with g the number of generations, n the population size and m the size of the individuals. Therefore the complexity is on the order of O(gnm)

Try to Solve the 4-Queen Problem Using GA?

Initial Population

GA: ANALYSIS

n	Size of solution space $(n!)$	Number of solutions		
1	1			
2	2	0		
3	6	0		
4	24	2		
5	120	10		
6	720	4		
7	5040	40		
8	40320	92		
9	362880	352		
10	3628800	724		
11	39916800	2680		
12	479001600	14200		
13	6227020800	73712		
14	87178291200	365596		
15	1307674368000	2279184		
16	20922789888000	14772512		
17	355687428096000	95815104		
18	6402373705728000	666090624		
19	121645100408832000	4968057848		
20	2432902008176640000	39029188884		
21	51090942171709440000	314666222712		
22	1124000727777607680000	2691008701644		
23	25852016738884976640000	24233937684440		
24	620448401733239439360000	227514171973736		
25	15511210043330985984000000	2207893435808352		
26	403291461126605635584000000	22317699616364044		