CSE205 Spring 2021 Homework 4

John J Li

March 18, 2021

Problem 1

Compute the maximum delay, assume every gate (gate includes the attached negation bubbles) has a delay of Δ . Assume only uncomplemented inputs are available and an additional gate must be added to complement any input marked X'.

Solution: Since we can see that inputs A and E will have to go through 6 logic gates and we assumed every gate has a delay of Δ , the maximum delay is 6Δ .

Problem 2

Create the truth table that belongs to the following multiplexer implementing function F(A, B, C).

Solution:

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Problem 3

Given the following functions,

$$F(A, B, C) = \sum m(1, 4, 5, 7)$$

$$G(A,\,B,\,C)=\Pi M(1,\,2,\,3,\,4,\,7)$$

a. Implement both functions using a PROM chip (draw full grid)

Solution:

A	В	\mathbf{C}	F	A	В	\mathbf{C}	G
0	0	0	0	0	0	0	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	0	0	1	1	0
1	0	0	1	1	0	0	0
1	0	1	1	1	0	1	1
1	1	0	0	1	1	0	1
1	1	1	1	1	1	1	0

b. Implement both function using as many 2:4 decoders chips (with a single active lowenable) and any other logic gates needed

Solution:

We have a new type of flip flop with inputs A and B. If A=0, then $Q^+=B'+Q$ If A=1, then $Q^+=(AB)'$.

a. Show the state diagram for this flip flop.

Solution:

A	Q	Q^+	В
	0	0	1
	0	1	0
0	1	0	0
	1	1	1
	0	0	0
	0	1	1
1	1	0	0
	1	1	1

b. Write a single equation for Q+ in terms of A, B and Q.

Solution:

$$Q^+ = Q(A+B) + A'B'Q'$$

Problem 5

Answer the following short answer questions:

a. Why is a NOT inverter logic gate faster than an open-collector buffer gate?

Solution: An open-collector buffer gate consists of two transitors. This, by default, would mean that the NOT inverter logic gate is faster than an open-collector buffer gate since a NOT inverter gate only contains one transitor.

b. What happens when a tri-state buffer has an enable input equal to 0?

Solution: When the tri-state buffer has an enable input equal to 0, the buffer behaves as an open circuit – the output is no longer connect to anything. This is called the High-Impedance state (Hi-Z).

c. A latch and a flip flop differ in what way?

Solution: Latches are asynchronous – the outputs changes soon after the input changes – however, most appliances and eletronics operate with an internal clock signal. And so the flip-flop is a synchronout version of the latch meaning it incorporates a clock signal so that the outputs changes simultaneously according to the clock.

Problem 6

For the input D show below, show the D-latch output (Q) assuming the latch is activated when the enable signal is high.

Solution:

Create the schematic for a new flip flop with the behavior defined by the function below. Use a single D flip flop (positive edge triggered), a single 2:1 multiplexer, and any complemented or uncomplemented variables or additional logic gates needed.

$$Q^{+}(x, y, Q) = (Q' + x) + (y'Q')$$

Solution:

X	у	Q	Q^+
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Problem 8

For the input shown below, show the flip flop outputs assuming a negative edge trigger.

a. Assume that the flip flop is a T flip flop with only an active low clear (ignore the PRE' input).

Solution:

b. Assume that the flip flop is a D flip flop with both an active low clear and active low preset.

Solution:

For the following JK flip flop, complete each timing diagram. First, assume the CLR' and PRE' are inactive (1). Then use the values shown.

Solution:

$$\begin{array}{c|cccc} J & K & Q^+ \\ \hline 0 & 0 & Q \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & \overline{Q} \\ \end{array}$$

Solution:

Solution:

For the following circuit, complete the timing diagram assuming negative edge triggering. Include a timing graph for both IN and Q in relation to x. Assume the flip flop is a D flip flop. Assume the flip flop starts at 0.

Solution:

IN equation: $\overline{Q}x+Q\overline{x}$

Problem 11

For the following circuit, complete the timing diagram for the state of each flip flop and the output, where shown. All flip flops are negative-edge triggered. Assume each flip flop starts at 0.

Solution:

$$J=xq_2 \qquad K=\overline{x} \qquad D=x(q_1+\overline{q}_2) \qquad Z=q_1q_2$$

