2.3 Deviations from the sample average Sometimes it is convenient to write the simple linear regression model in a different form that is a little easier to manipulate. Taking equation (2.1), and adding $\beta_1\bar{x} - \beta_1\bar{x}$, which equals zero, to the right-hand side, and combining terms, we can write

$$y_{i} = \beta_{0} + \beta_{1}\bar{x} + \beta_{1}x_{i} - \beta_{1}\bar{x} + e_{i}$$

$$= (\beta_{0} + \beta_{1}\bar{x}) + \beta_{1}(x_{i} - \bar{x}) + e_{i}$$

$$= \alpha + \beta_{1}(x_{i} - \bar{x}) + e_{i} \qquad (2.29)$$

where we have defined $\alpha = \beta_0 + \beta_1 \bar{x}$. This is called the deviations from the sample average form for simple regression.

2.3.1. What is the meaning of the parameter α ?

Solution: α is the value of $E(Y|X=\bar{x})$.

2.3.2. Show that the least squares estimates are

$$\hat{\alpha} = \bar{y}$$
 $\hat{\beta}_1$ as given by (2.5)

Solution: The residual sum of squares function can be written as

$$RSS(\alpha, \beta_1) = \sum (y_i - \alpha - \beta_1(x_i - \bar{x}))^2$$

$$= \sum (y_i - \alpha)^2 - 2\beta_1 \sum (y_i - \alpha)(x_i - \bar{x}) + \beta_1^2 \sum (x_i - \bar{x})^2$$

We can write

$$\beta_1 \sum (y_i - \alpha)(x_i - \bar{x}) = \sum_i y_i(x_i - \bar{x}) + \alpha \sum_i (x_i - \bar{x})$$

$$= SXY + 0$$

$$= SXY$$

Substituting into the last equation,

$$RSS(\alpha, \beta_1) = \sum_i (y_i - \alpha)^2 - 2\beta_1 SXY + \beta_1^2 SXX$$

Differentiating with respect to α and β_1 immediately gives the desired result.

2.3.3. Find expressions for the variances of the estimates and the covariance between them.

Solution:

$$\operatorname{Var}(\hat{\alpha}) = \frac{\sigma^2}{n}, \operatorname{Var}(\hat{\beta}_1) = \sigma^2 / SXX$$

The estimates $\hat{\beta}_1$ and $\hat{\alpha}$ are uncorrelated.

2.4 Heights of Mothers and Daughters

2.4.1. For the heights data in the file heights.txt, compute the regression of *Dheight* on *Mheight*, and report the estimates, their standard errors, the value of the coefficient of determination, and the estimate of variance. Give the analysis of variance table the tests the hypothesis that $E(Dheight|Mheight) = \beta_0$ versus the alternative that $E(Dheight|Mheight) = \beta_0 + \beta_1 Mheight$. Write a sentence or two that summarizes the results of these computations.

Solution:

```
> mean(heights)
 Mheight Dheight
   62.45
           63.75
                    Daughters are a little taller
 > var(heights)
         Mheight Dheight
           5.547
                            Daughters are a little more variable
 Mheight
                   3.005
 Dheight
           3.005
                   6.760
> m1 <- lm(Dheight ~ Mheight, data=heights)</p>
> summary(m1)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                                     18.4
(Intercept)
              29.917
                           1.623
                                            <2e-16 ***
Mheight
               0.542
                           0.026
                                     20.9
                                            <2e-16 ***
Residual standard error: 2.27 on 1373 degrees of freedom
Multiple R-Squared: 0.241,
                                  Adjusted R-squared: 0.24
F-statistic: 435 on 1 and 1373 DF, p-value: <2e-16
```

The F-statistic has a p-value very close to zero, suggesting strongly that $\beta_1 \neq 0$. The value of $R^2 = 0.241$, so only about one-forth of the variability in daughter's height is explained by mother's height.

2.4.2. Write the mean function in the deviations from the mean form as in Problem 2.3. For this particular problem, give an interpretation for the value of β_1 . In particular, discuss the three cases of $\beta_1 = 1$, $\beta_1 < 1$ and $\beta_1 > 1$. Obtain a 99% confidence interval for β_1 from the data.

Solution: If $\beta_1 = 1$, then on average *Dheight* is the same as *Mheight*. If $\beta_1 < 1$, then, while tall mothers tend to have tall daughters, on average they are shorter than themselves; this is the idea behind the word regression, in which extreme values from one generation tend to produce values not so extreme in the next generation. $\beta_1 > 1$ would imply that daughters tend to be taller than their mothers, suggesting that, eventually, we will all be giants.

The base R function vcov returns the covariance matrix of the estimated coefficients from a fitted model, so the diagonal elements of this matrix gives the squares of the standard errors of the coefficient estimates. The alr3 library adds this function for S-Plus as well. In addition, the function confint in the alr3 package can be used to get the confidence intervals:

> confint(m1, level=0.99) 0.5 % 99.5 % (Intercept) 25.7324151 34.1024585 Mheight 0.4747836 0.6087104

2.4.3. Obtain a prediction and 99% prediction interval for a daughter whose mother is 64 inches tall.

Solution: Using R,

> predict(m1,data.frame(Mheight=64),interval="prediction",level=.99)
 fit lwr upr
[1,] 64.59 58.74 70.44

2.8 Scale invariance

2.8.1. In the simple regression model (2.1), suppose the value of the predictor X is replaced by cX, where c is some non-zero constant. How are $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\sigma}^2$, R^2 , and the t-test of NH: $\beta_1 = 0$ affected by this change?

Solution: Write

$$E(Y|X) = \beta_0 + \beta_1 X = \beta_0 + \frac{\beta_1}{c}(cX)$$

which suggests that the slope will change from β_1 to β_1/c , but no other summary statistics will change, and no tests will change.

2.8.2. Suppose each value of the response Y is replaced by dY, for some d≠ 0. Repeat 2.8.1.

Solution: Write

$$E(Y|X) = \beta_0 + \beta_1 X$$

$$dE(Y|X) = d\beta_0 + d\beta_1 X$$

$$E(dY|X) = d\beta_0 + d\beta_1 X$$

and so the slope and intercept and their estimates are all multiplied by d. The variance is also multiplied by d. Scale-free quantities like R^2 and test statistics are unchanged.

note that the variance RSS/(n-2) is also multiplied by d^2.