· Fragen?

· Beweis zn Körpem)

Rechnen mit Summen und Produkten

Übungsaufgaben

Aufgabenblatt: Summen und Produkte

1. Aufgabe: Summen: Zuordnen

- a) $\sum_{i=0}^{5} i =$ b) $\sum_{i=1}^{6} i =$
- i) 1+2+3+4+5+6 =ii) 2 + 4 + 6 + 8 =iii) $0 \cdot 1 \cdot 4 \cdot 9 =$
- c) $\sum_{i=1}^{4} 2i =$ d) $\prod_{i=0}^{3} i^2 =$
- iv) 0+1+2+3+4+5 =

2. Aufgabe: Benennen: Summe

$\sum_{i=0}^{b} (x_i)$

- c) b ist ...
 d) (x_i) ist ...
- 3. Aufgabe: Summen Berechnen
- a) $\sum_{i=1}^{3} i =$
- e) $\sum_{\lambda=3}^{3} \lambda^{\lambda} =$ b) $\sum_{k=-1}^{3} (k+1) =$ f) $\sum_{m=4}^{2} \frac{m^{7}}{m^{7}} =$
- c) $\sum_{n=3}^{10} (\frac{n}{2}) =$ d) $\sum_{j=1}^{3} j^2 =$
- g) $\sum_{\psi=1}^{50} \psi =$ h) $\sum_{i=1}^{7} x_i =$

4. Aufgabe: rechnen mit Summen

- a) $\left(\sum_{i=1}^{4} i\right) + \left(\sum_{i=1}^{4} i\right) =$
- b) $\sum_{k=1}^{3} k + \sum_{j=1}^{3} j =$
- c) $\sum_{n=1}^{3} n + \sum_{n=4}^{6} n =$
- d) $\sum_{\psi=1}^{3} \psi + \sum_{\lambda=4}^{6} \lambda =$

5. Aufgabe: Indexverschiebung: Zuordnen

- a) $\sum_{i=0}^{5} i + \sum_{i=2}^{7} (i-2)$ i) $\sum_{m=3}^{6} 2(m-1)$
- ii) $\sum_{i=0}^{5} 2i = 2 \sum_{i=0}^{5} i$

c) $\sum_{n=1}^{4} 2(n+1)$ iii) $\sum_{j=-1}^{4} (j+2)$

6. Aufgabe: Schreibe als Summe

- a) 1+2+3+4+5+6+7+8+9+10 =b) 2+4+6+8 =c) 6+9+12+15 =d) -1-2-3-4 =e) 4+2+8+10+6 =f) 3+4+5+7+8+9 =

7. Aufgabe: Benennen: Produkt

8. Aufgabe: Produkte: Zuordnen

- a) $\prod_{i=1}^{5} 2i$
- i) $3^3 \prod_{k=4}^6 k$ ii) $2^5 \prod_{i=1}^5 i$
- b) $\prod_{j=4}^{6} 3j$
- c) $\prod_{i=5}^{6} 2i$ iii) $2^2(5 \cdot 6)$

9. Aufgabe: Schreibe als Produkt

- a) $1 \cdot 2 \cdot 3 \cdot 4 =$ b) 4! =c) $2 \cdot 4 \cdot 6 \cdot 8 =$ d) $4 \cdot 9 \cdot 16 \cdot 25 =$

10. Aufgabe: geschachtelte Summen und Produkte

- a) $\sum_{i=1}^{3} \sum_{j=1}^{3} i \cdot j =$
- b) $\prod_{n=1}^{2} \prod_{m=2}^{3} n^{m} =$
- c) $\sum_{i=1}^{3} \prod_{m=2}^{4} (i + m) =$
- d) $\prod_{n=1}^{3} \sum_{i=0}^{2} n \cdot i$ —

Johannes Bröhl Winter-Semester 2024/2025 Seite 5

Übungsaufgaben

Cheat-Sheet: Summen und Produkte

Formel: Triviale Summen

$$\sum_{i=a}^{a} (x_i) = x_a$$

$$\sum_{i=a}^{b} (x_i) = 0 \text{ falls } b < a$$

Formel: Distributivgesetz bei Summen

Ein konstanter Faktor kann aus einer Summe ausgeklammert werden:

$$\sum_{i=a}^{b} c \cdot (x_i) = c \cdot \sum_{i=a}^{b} (x_i)$$

 $\label{eq:powers} \mbox{Die $\mbox{\sc width} P\"{\sc u}$nktchenschreibweise$$"$ motiviert dies aus dem bekannten Distributivgesetz heraus sehr anschaulich:}$

$$\sum_{i=1}^{n} (c \cdot x_i) = (c \cdot x_1) + (c \cdot x_2) + (c \cdot x_3) + \dots + (c \cdot x_n) = c \cdot (x_1 + x_2 + x_3 + \dots + x_n) = c \cdot \sum_{i=1}^{n} (x_i)$$

Formel: Summen aufspalten & zusammenfassen

$$\sum_{i=a}^{b}(x_i) + \sum_{j=b+1}^{c}(x_j) = \sum_{k=a}^{c}(x_k) = \sum_{j=a}^{b'-1}(x_j) + \sum_{i=b'}^{c}(x_i) = x_a + \sum_{i=a+1}^{c}(x_i) = \sum_{i=a}^{c-1}(x_i) + x_c$$

Beachte, dass ein Zusammenfassen nur möglich ist, wenn die "Körper" beider Summen zusammenpassen. Außerdem wird immer implizit angenommen, dass $a \le b < c$ bzw. $a < b' \le c$.

$$\sum_{i=a}^{b}(x_i) + \sum_{j=a}^{b}(y_j) = \sum_{k=a}^{b}(x_k + y_k)$$

Summen mit unterschiedlichen "Körpern" können zusammengefasst werden sofern sie identische Grenzen haben Auch das lässt sich gut mittels der Pünktchen-Schreibweise nachvollziehen.

Formel: Summen Indexverschiebung

$$\sum_{i=a}^{b} (x_i) = \sum_{i=a+c}^{b+c} (x_{i-c}) = \sum_{i=a-d}^{b-d} (x_{i+d})$$

Seite 6

Johannes Bröhl

Winter-Semester 2024/2025

Übungsaufgaben

Horizontal hierbei das Geschehen der inneren Summe, Vertikal das der äußeren.

$$\begin{split} &\sum_{i=1}^{2} \prod_{j=2}^{4} (ji) &= \sum_{i=1}^{2} (2i)(3i)(4i) = (2 \cdot 1)(3 \cdot 1)(4 \cdot 1) + (2 \cdot 2)(3 \cdot 2)(4 \cdot 2) = 2 \cdot 3 \cdot 4 + 4 \cdot 6 \cdot 8 = 24 + 192 = 216 \\ &= \left(\prod_{i=2}^{4} j \cdot 1\right) + \left(\prod_{i=2}^{4} j \cdot 2\right) = \left((2 \cdot 1) \cdot (3 \cdot 1) \cdot (4 \cdot 1)\right) + \left((2 \cdot 2) \cdot (3 \cdot 2) \cdot (4 \cdot 2)\right) = \dots = 216 \end{split}$$

Es ist möglich von "innen nach außen" oder von "außen nach innen" aufzulösen

Aufgabenblatt: Potenzen, Wurzeln und Logarithmen

1. Aufgabe: Potenzen

2. Aufgabe: Wurzeln

$$\begin{array}{lll} a) & \sqrt[3]{8} = \\ b) & \sqrt[3]{3} \cdot \sqrt[3]{27} = \\ c) & \sqrt[3]{27} + 2 \cdot \sqrt[3]{27} = \\ d) & \left(\sqrt{\frac{9}{2}} - \sqrt{2}\right)^2 = \end{array}$$

$$e) & \left(\sqrt{\frac{9}{2}} \cdot \sqrt{2}\right)^2 = \\ d) & \left(\sqrt{\frac{9}{2}} - \sqrt{2}\right)^2 =$$

$$g) & \sqrt[3]{2^{21}} =$$

3. Aufgabe: Logarithmen

ı)	ln(e) =	e)	$2^{x} = 16$
))	$log_{16}(8) =$	f)	$\ln(\sqrt{e}) =$
:)	$\lg(3000) - \lg(3) =$	g)	ld(32) =
i)	$l\sigma(4) + 2 \cdot l\sigma(5) =$		

4. Aufgabe: Regeln vervollständigen: Potenzen

5. Aufgabe: Regeln vervollständigen: Wurzeln

6. Aufgabe: Regeln vervollständigen: Logarithmen

a)	$log_a(1) =$	g)	$log_a (u \cdot v) =$
b)	$log_a(a) =$	h)	$= \log_a (u) - \log_a$
c)	$log_a(a^x) =$	i)	$log_{\#}(c) =$
d)	$= w \cdot \log_a(u)$	j)	$\ln(x) =$
e)	$\lg(x) =$	k)	$=\frac{\log_{\sigma}(u)}{\log_{\sigma}(a)}$
f)	Id(x) =	,	$\log_x(a)$

7. Aufgabe: Vereinfachen

$$\begin{array}{ll} \text{a)} & \frac{(v^2-n^2)\cdot 2n}{v-n} \\ \text{b)} & (\sqrt{x}-\sqrt{2})\cdot (\sqrt{x}+\sqrt{2}) \\ \text{c)} & 7(a-b)^3+3(b-a)^3 \\ \text{d)} & \frac{\sqrt{x}\cdot\sqrt{y}}{\sqrt{y}\sqrt{x}\sqrt{y}} \\ \end{array}$$

8. Aufgabe: Gleichungen lösen

$$\begin{array}{ll} \text{a)} & 2^x = 16 \\ \text{b)} & \left(\frac{2}{3}\right)^x = 3\frac{3}{8} \\ \text{c)} & \log_3\left(\frac{9x}{4x-3}\right) = 2 \\ \text{d)} & \log_3\left(3x-5\right) = \log_3\left(2x+3\right) \end{array}$$

Johannes Bröhl Seite 8 Winter-Semester 2024/2025 & Paul Meier

Kombinatorik

- 6.2.3 Wie viele Möglichkeiten gibt es aus einer Gruppe von 7 Personen 5 auszuwählen (c)? (Was liegt vor: Ziehen (a) mit/ohne Zurücklegen und (b) mit/ohne Beachtung der Reihenfolge?)
- 6.2.4 Wie viele Möglichkeiten gibt es aus einer Gruppe von 5 Personen einen Rat von 3 Personen mit Vorsitz und Stellvertretung zu bilden (c)? (Was liegt vor: Ziehen (a) mit/ohne Zurücklegen und (b) mit/ohne Beachtung der Reihenfolge?)
- 6.2.5 Wie viele Möglichkeiten gibt dass 3 Personen die Noten S, A, B, C, D, E, F bekommen (c)? (Was liegt vor: Ziehen (a) mit/ohne Zurücklegen und (b) mit/ohne Beachtung der Reihenfolge?)
- 6.2.6 Wie viele Möglichkeiten gibt dass Laura, Tim und Charlie die Noten S, A, B, C, D, E, F bekommen (c)? (Was liegt vor: Ziehen (a) mit/ohne Zurücklegen und (b) mit/ohne Beachtung der Reihenfolge?)

Übungsaufgaben

Formel: Summe mit Sprungweite

Betrachte folgende Summendefinition:

$$\sum_{i=a}^{b} (x_i) = x_a + x_{a+s} + x_{a+(2s)} + \cdots + x_{b-s} + x_b$$

Um die hier im "Kopf" der Summe definierte Sprungweite aus dem Kopf heraus zu bekommen, ist eine Indexverschiebung umd das Anwenden des Distributivgesetzes notwendig:

Mit s der Sprungweite zum nichtsten vorkommenden Index und
a als Startindex sowie b = a + r. sals Endindex, ergibt sich dann:

$$\sum_{i=a}^{b} (x_i) = x_{a+0 \cdot s} + x_{a+1 \cdot s} + x_{a+2 \cdot s} + \dots + x_{a+n \cdot s} = \sum_{i=0}^{n} (x_{a+i \cdot s})$$

bzw. falls über Zahlen x_i also $x_1, x_2, x_3, \cdots, x_n$ summiert wird und diese einen gemeinsamen Teiler besitzen, also $\operatorname{ggT}((x_i)_i) = \operatorname{ggT}(x_i, x_2, x_3, \cdots, x_n) = t > 1$, ist folgendes Möglich:

$$\sum_{i}(x_{i}) = \sum_{i=1}^{n}(x_{i}) = \sum_{i=\frac{x_{i}}{2\pi T(1+1)}}^{\frac{x_{n}}{2\pi T(2+1)}} (i \cdot \operatorname{ggT}((x_{i})_{i})) = \sum_{i=x_{1}+t}^{x_{n}+t} (i \cdot t)$$

Betrachte zum besseren Verständnis folgende alternative Vorgehensweise: Klammere den gemeinsamen Faktor aus bevor zur Summe zusammengefasst wird:

$$\begin{array}{lll} x_1 + x_2 + x_3 + \cdots + x_n & = & (x_1' \cdot t) + (x_2' \cdot t) + (x_3' \cdot t) + \cdots + (x_n' \cdot t) \\ \\ & = & t \cdot (x_1' + x_2' + x_3' + \cdots + x_n') = t \cdot \sum_{i=1}^{x_n'} i = \cdot \sum_{i=1}^{x_n'} (i \cdot t) = \sum_{i=1}^{x_n + t} (i \cdot t) \end{array}$$

$$mit x_i = x'_i$$

Formel: Produkte Sonderregeln

Triviales Produkt:

$$\prod_{i=a}^{b} (x_i) = 1 \text{ falls } b < a$$

Fakultät

$$n! = \prod_{i=1}^{n} (i) = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$$

Faktor ausklammern

$$\prod_{i=1}^{b} (c \cdot (x_i)) = c^{b-a+1} \cdot \prod_{i=1}^{b} (x_i)$$

 $\label{eq:continuous} Der "Körper" eines Produkts sollte vorsichtshalber immer geklammert werden um folgendes Missverständnis zu vermeiden:$

$$\prod_{i=a}^b(x_i)\cdot c\stackrel{\circ}{=} \left\{ \begin{array}{l} \prod_{i=a}^b(x_i\cdot c)=c^{b-a+1}\cdot \prod_{i=a}^b(x_i)\\ \left(\prod_{i=a}^b(x_i)\right)\cdot c=c\cdot \prod_{i=a}^b(x_i) \end{array} \right.$$

Beispiel: Geschachtelte Summen und Produkte

Johannes Bröhl Seite 7 Winter-Semester 2024/2025 & Paul Meier

Aufgabe 71 Berechnen Sie das Folgende:

- a) In einem Restaurant stehen 20 Getränke zur Auswahl. Wie viele Möglichkeiten der Getränkeauswahl gibt es bei einer Bestellung von 10 Getränken.
- b) Die Anzahl der Möglichkeiten beim 20-maligen Münzwurf maximal 17-Mal Zahl zu werfen.
- c) Die Anzahl der dreistelligen Zahlen, in denen sich keine Ziffer wiederholt. Zahlen, die mit der Ziffer 0 beginnen sollen dabei nicht mitgezählt werden.

Aufgabe 72 a) In der Mensa stehen 6 Menüs zur Auswahl und Sie gehen mit 6 weite-
ren Kommilitonen zum Essen, von denen jeder genau ein Menü nimmt. Wie viele
mögliche Menüauswahlen können dabei getroffen werden? Es soll dabei alleine
die Auswahl, und nicht die Zuordnung zu den einzelnen Personen unterschieden
werden.

b) Zeigen Sie, dass für $n, \nu \in \mathbb{N}, n \ge \nu$ gilt

$$\binom{n+1}{\nu} = \binom{n}{\nu-1} + \binom{n}{\nu}.$$

mit Zurücklegen	geordnet	Anzahl Möglichkeiten
ja	ja	$n^{ u}$
nein	ja	$\frac{n!}{(n-\nu)!}$
ja	nein	$\binom{n+\nu-1}{\nu}$
nein	nein	$\binom{n}{\nu}$

Beispiele:

- Anzohl der Wörter der länge v aus n Buchstaben
- Anzohl de Worter de Lange v aus n Budnstaben (ohne Doppelung)
- Anzahl de Möglichkeiten, v Objekte an n Subjekte zu verteilen
- Arzahl der Mäglichkeiten, eine Gruppe von v Personen aus einer Gruppe von n Personen zusammenzustellen