

Overview

Azure Databricks is a unified analytics platform for big data and machine learning, built on Apache Spark and optimized for Azure.

Purpose

It combines collaborative notebooks, enterprise-grade security, and scalability to streamline data engineering and data science workflows.

Core Features

Data Engineering & Science

Azure Databricks enables collaborative efforts in data engineering and science, enhancing teamwork and project outputs.

Advanced Analytics

The platform supports advanced analytics and machine learning to derive actionable insights from big data efficiently.

Stream Processing

It facilitates real-time stream processing for immediate data processing and decision-making.

02

Fit in the Azure Ecosystem

Integration with Azure Services

01

Data Lake Integration

Seamlessly integrates with Azure Data Lake, providing a robust environment for large-scale data storage and processing.

77

02

Synapse Connectivity

Offers native integration with Azure Synapse, enabling sophisticated analytics and data warehousing capabilities.

77

03

Power BI Compatibility

Direct connectivity with Power BI allows for advanced data visualization and reporting to drive insightful business decisions.

"

Business Applications

ETL/ELT Processes

Simplifies ETL and ELT processes, improving efficiency and reliability in data movement and transformation.

Machine Learning Projects

Supports various machine learning projects by providing an integrated environment for model development and deployment.

Streamlining Operations

Optimizes business operations through automated data workflows and realtime analytics.

When to Use Azure Databricks

Integration Points

Azure Data Lake Storage Gen2

Integrates seamlessly with Azure Data Lake Storage Gen2 for scalable and secure data storage.

Azure Event Hubs / Kafka

Supports integration with Azure Event Hubs and Kafka for real-time data ingestion and streaming analytics.

Power BI for Visualization

Allows easy integration with Power BI, enhancing data visualization and business intelligence capabilities.

Architecture Overview 03

Governance + Data

Underlying Technologies

Apache Spark

Utilizes Apache Spark as the foundational technology for distributed data processing.

Delta Lake

Enhances data reliability and performance with Delta Lake, optimizing storage and queries.

MLflow

Incorporates MLflow for managing the end-to-end machine learning lifecycle, from experimentation to deployment.

Managing Clusters

01

Cluster Creation

Process of setting up clusters within Databricks, including configuration options.

02

Scaling Clusters

Methods to scale clusters up or down based on workload requirements.

Managing Workspaces

Ol. Workspace Setup

Execute steps for initial workspace configuration and setup in Databricks to take advantage of its capability

02. User Management

Leverage the tools provided by Databricks to manage users and permissions effectively – Principles of Least Privilege, Secure by Default, and Defense in Depth

Platform Components

Compute Resources

Utilizes scalable cloud resources to handle large-scale data processing and computational tasks.

Data Storage Solutions

Supports various data storage solutions, ensuring accessibility, reliability, and scalability of data.

Integration Modules

Provides integration modules to connect seamlessly with other Azure services and third-party applications.

Workflow Management

Enables efficient job scheduling to manage, execute, and monitor data pipelines and analytics tasks.

Integrates with tools to orchestrate complex workflows involving multiple data processing stages and services.

Job Scheduling

Workflow Orchestration

Core Components

Helps with the organization and management of resources

Scalable units of compute that power the platform

Scheduling and execution of jobs that support automated ETL and ML workflows

UI

The user interface managed by Databricks offers links to clusters, notebooks, and various tools.

Jobs Scheduler

Schedules jobs efficiently within the Databricks environment, ensuring systematic processing.

Data Plane

Compute Resources

Compute resources are hosted in your VNet, providing dedicated processing power.

Data Access

Facilitates connection to Azure Data Lake Storage and Blob Storage for seamless data retrieval.

01

Cluster Types

Interactive Clusters

Designed for interactive analytics, providing immediate query results.

Job Clusters

Optimized for scheduled jobs, tailored for batch processing tasks.

Underlying Technologies

https://learn.microsoft.com/en-us/azure/databricks/getting-started/overview

Security Features

Authentication & Authorization

Robust authentication and authorization features ensure secure access to data and resources.

Data Encryption

Data encryption at rest and in transit protects sensitive information from unauthorized access.

Network Security

Enhanced network security measures prevent unauthorized access and ensure data integrity.

Performance Considerations 04

Optimization Techniques

Query Tuning

Employ query tuning techniques to enhance the performance and speed of data retrieval operations. 02

0

01

Resource Allocation

Dynamic resource allocation ensures optimal performance based on workload requirements and priorities.

Cluster Configuration

Spot vs. on-demand VMs

Worker types and autoscaling

Optimize cluster performance by choosing appropriate worker types and enabling autoscaling to dynamically adjust resources based on workload needs.

Evaluate cost and reliability trade-offs between using spot instances and ondemand VMs for running workloads on Azure Databricks.

Benchmarking Strategies

Performance Metrics

Use comprehensive performance metrics to evaluate and benchmark system efficiency and effectiveness.

Continuous Monitoring

Implement continuous performance monitoring to detect issues and maintain optimal operational efficiency.

Caching Strategies

Delta Cache

Utilize Delta Cache for improving read performance of data stored in Delta Lake.

Databricks IO Cache

Leverage Databricks IO Cache for faster data retrieval in big data workflows.

Memory Management

Efficient memory management techniques help improve overall system performance.

Query Optimization

Cost-Based Optimizer

Employ a Cost-Based
Optimizer to choose the most
efficient plan for query
execution.

Adaptive Query Execution

Adaptive Query Execution dynamically optimizes queries during runtime for better performance.

Vectorized **Execution**

Vectorized execution model enhances processing speed of large datasets.

Compute Resources

Autoscaling Clusters

Set clusters to automatically scale up or down based on workload to optimize resource utilization.

Spot Instances

Utilize spot instances for costeffective scaling while ensuring computational efficiency.

GPU Acceleration

Harness GPU acceleration to improve performance for machine learning and deep learning tasks.

Delta Lake Performance

ACID transactions

Ensure data reliability and integrity in Delta Lake by leveraging ACID transaction properties for consistent and isolated data processing.

Data skipping and Z-order indexing

Enhance query performance through data skipping and advanced indexing techniques like Z-order indexing to reduce I/O operations.

05

Security and Compliance

Security Features

Authentication Protocols

Employs robust authentication protocols to ensure secure access and protect sensitive data.

Encryption Standards

Adheres to industry-standard encryption for data at rest and in transit to safeguard against unauthorized access.

Compliance Standards

Regulatory Compliance

Meets various regulatory compliance standards, ensuring the platform is suitable for use in regulated industries.

Data Governance

Implements comprehensive data governance policies to ensure data integrity, quality, and security.

Data Governance

Data Lineage

Tracks data movement and transformations for better governance and transparency.

Auditing

Comprehensive auditing capabilities to monitor and log access and modifications.

Policy Management

Defines and enforces data policies to comply with regulatory requirements.

Compliance Standards

GDPR

Ensures compliance with GDPR regulations for processing personal data within the EU.

HIPAA

Supports HIPAA compliance for managing healthcare-related data securely and efficiently.

SOC 2

Meets SOC 2 standards for secure data management and privacy.

Identity Management

Role-Based Access Control (RBAC)

Implements RBAC to control resource access based on user roles and responsibilities.

Azure Active Directory Integration

Seamlessly integrates with Azure Active Directory for robust identity and access management.

Multi-Factor Authentication

Enhances security by requiring multi-factor authentication for accessing critical resources.

Use Cases 06

Data Engineering

ETL Pipelines

Builds efficient ETL pipelines to extract, transform, and load large datasets.

Data Warehousing

Utilizes Databricks for creating scalable and performant data warehouses.

Data Migration

Efficiently migrates data from legacy systems to modern data platforms.

Machine Learning

Model Training

Facilitates large-scale model training with distributed computing capabilities.

Hyperparameter Tuning

Automates hyperparameter tuning and optimization processes for better model performance.

Model Deployment

Streamlines the deployment of machine learning models to production environments.

Real-Time Analytics

Event Processing

Processes real-time streams of events for immediate insights and actions.

Stream Analytics

Enables real-time stream analytics for monitoring critical business operations.

Predictive Maintenance

Uses real-time data to predict and prevent equipment failures and downtime.

Development

Collaboration

Promotes collaboration between data engineers, scientists, and analysts through shared workspaces.

Version Control

Implements version control for managing changes and maintaining consistency in code.

90

Testing

Ensures thorough testing of data pipelines and models to maintain reliability and accuracy.

Automation

Continuous Integration

Applies continuous integration pipelines to streamline and automate workflow deployment.

Monitoring & Logging

Sets up extensive monitoring and logging for tracking performance and diagnosing issues.

Infrastructure as Code

Utilizes Infrastructure as Code (IaC) for consistent and reproducible infrastructure setups.

Cost Management

Budgeting

Sets and monitors budgets to control costs associated with data processing and storage.

Resource Optimization

Optimizes resource usage to balance performance and costeffectiveness.

Cost Tracking

Implements tools and processes for tracking and analyzing costs in real-time.

Data Governance

Use Unity Catalog for fine-grained data governance

Implementing fine-grained data governance, metadata management, and access controls using Unity Catalog to ensure data security and compliance.

What is Unity Catalog:

Definition and Overview

Unity Catalog is Databricks' data governance layer providing a unified metastore for tables, views, volumes, files, functions, and ML models.

Importance in Data Governance

Essential for secure, scalable data access across workspaces and teams, crucial in multi-tenant or enterprise-level environments.

Core Components

Metastore

A top-level container for cataloging and governance typically scoped to a region, shared across workspaces.

Schema (Database)

Grouping elements including tables, views, functions, enabling structured data management.

Catalog

A logical grouping of schemas acting as collections of databases, facilitating organization.

Access Controls

Fine-Grained Access Control

Provides table, column, and row-level security, allowing detailed data access management.

Attribute-Based Access Control (ABAC)

Integration with Microsoft Entra ID enables attribute-based security measures.

Data Masking and Filtering

01 Data Masking Techniques

Ensures sensitive information is hidden during data access, providing an additional security layer.

02 Row-Level Filtering

Allows dynamic data visibility based on user roles and permissions, enhancing security.

Integration with Azure Data Lake Storage

Storage and Compute Decoupling

Multiple workspaces access a single metastore, ensuring a flexible and efficient architecture.

Configuration Options

Unity Catalog can be configured via Azure Databricks account console, Terraform, or REST APIs.

User Configuration

Setting Up Metastore

Defining a metastore in Azure region and attaching it to multiple Databricks workspaces.

Assigning Roles and Permissions

Creating SQL definitions for tables, views, and assigning precise access permissions.

Benefits: Centralized Governance

Single Access Point

One centralized place to manage access policies across workspaces, simplifying administrative tasks.

Simplified Data Sharing

Securely share data across various workspaces, ensuring consistency and compliance.

Benefits: Multicloud Support

01.

02.

Consistent API

Provides a consistent API and governance framework across AWS, Azure, and GCP.

Lineage Tracking

Automatically captures and visualizes how data is created and used, aiding in transparency.

Setting Up a Catalog

Creating a Catalog

Use SQL commands to create a catalog in an Azure environment for structured data organization.

Creating Schemas and Tables

Define schemas within the catalog and populate them with tables using detailed access controls.

Setting Up a Catalog

```
-- Create a catalog
CREATE CATALOG finance_catalog;
-- Create a schema inside the catalog
CREATE SCHEMA finance_catalog.sales;
-- Create a table
CREATE TABLE finance_catalog.sales.q1_revenue (
  region STRING,
  amount DECIMAL(10, 2)
-- Grant SELECT permission to a group
GRANT SELECT ON TABLE finance_catalog.sales.q1_revenue TO `data_analysts`;
```

Role Assignment

Data Steward Roles

Assign specific roles responsible for the management and governance of catalog and schemas.

Access Permissions

Utilize SQL to grant specific permissions to user groups for data access and manipulation.

Azure Databricks Requirements

Premium or Enterprise Plans

Ensure workspaces are on Azure Databricks Premium or Enterprise plans for Unity Catalog access.

Cluster Policies

Implement cluster policies or shared access mode for data access, ensuring compliance with security requirements.

Enabling Workspaces

Enable workspaces for Unity Catalog usage and ensure configurations align with governance policies.

Data Access Policies

Establish and enforce data access policies to maintain security and operational efficiency.

02

Summary 08

Key Takeaways

