Heat Transfer: Radiation

Energy Balance

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Learning goals

Energy balances:

- ▶ Understanding the concept of energy balances in radiative heat transfer
- ► Ability to set up energy balances around a body
- Understanding of internal and external energy balances

What is an energy balance?

Energy balance

Outer energy balance:

$$\frac{\partial U}{\partial t} = \Sigma \dot{Q}_{in} - \Sigma \dot{Q}_{out}$$

Energy balance

Energy balance

Outer energy balance:

$$\frac{\partial U}{\partial t} = \Sigma \dot{Q}_{in} - \Sigma \dot{Q}_{out}$$

Outer energy balance

Inner energy balance

UNIVERSITY OF TWENTE.

Inner energy balance

incident radiation

Inner energy balance:

 $\alpha \Sigma \dot{Q}_{incoming} = \alpha_3 \Sigma (\dot{Q}_i \phi_{i,3})_{arriving}$

Absorbed part of

surface brightness of Body i

View factor from Body *i* to Body 3

 $\Sigma \dot{Q}_{outgoing} = \dot{Q}_{3,\epsilon}$

Emission from Body 3

emitted

Inner energy balance:

Absorption

Object 3:

(reflects, emits

transmits)

$$\frac{\partial U}{\partial t} = \alpha \Sigma \dot{Q}_{in} - \Sigma \dot{Q}_{emitted}$$

control

volume

Comparison: Inner and Outer Energy Balance

Inner energy balance:

$$\frac{\partial \mathbf{U}}{\partial \mathbf{t}} = \alpha \Sigma \dot{\mathbf{Q}}_{in} - \Sigma \dot{\mathbf{Q}}_{emitted}$$

Inner energy balance - Explanation:

$$\alpha \Sigma \dot{Q}_{incoming} = \alpha_3 \Sigma (\dot{Q}_i \phi_{i,3})_{arriving}$$

Absorbed part of surface brightness of Body *i*

X

View factor from Body i to Body 3

$$\Sigma \dot{Q}_{outgoing} = \dot{Q}_{3,\epsilon}$$

Emission from Body 3

Radiation: Energy balance

Outer energy balance:

$$\frac{\partial \mathbf{U}}{\partial t} = \Sigma \dot{\mathbf{Q}}_{in} - \Sigma \dot{\mathbf{Q}}_{out}$$

Outer energy balance - Explanation:

$$\Sigma \dot{Q}_{incoming} = \Sigma (\dot{Q}_i \phi_{i,3})_{arriving}$$

Surface brightness of Body i

Χ

View factor from Body i to Body 3

$$\Sigma \dot{Q}_{outcoming} = \dot{Q}_3$$

Surface brightness from Body 3

Comparison: Inner and Outer Energy Balance

Inner energy balance:

$$\frac{\partial \mathbf{U}}{\partial \mathbf{t}} = \alpha \Sigma \dot{\mathbf{Q}}_{in} - \Sigma \dot{\mathbf{Q}}_{emitted}$$

Outer energy balance:

$$\frac{\partial \mathbf{U}}{\partial t} = \Sigma \dot{\mathbf{Q}}_{\rm in} - \Sigma \dot{\mathbf{Q}}_{\rm out}$$

Inner energy balance - Explanation

$$\alpha \Sigma \dot{Q}_{incoming} = \alpha_3 \Sigma (\dot{Q}_i \phi_{i,3})_{arriving}$$

Absorbed part of surface brightness of Body *i*

X

View factor from Body i to Body 3

$$\Sigma \dot{Q}_{outgoing} = \dot{Q}_{3,\epsilon}$$

Emission from Body 3

Only the absorbed part of the surface brightness is taken into account in the inner balance.
Reflection und Transmission play no role.

In the surface brightness of the outer balance Reflection and Transmission are again taken into account.

alance - Explanation:

 $(\dot{Q}_i \phi_{i,3})_{arriving}$

ntness of Body i

Χ

view ractor trom Body i to Body 3

 Q_3

ness from Body 3

Conclusion: The result from Inner and Outer Energy Balance is identical

Advantage inner balance:

Less terms

Advantage outer balance:

Direct calculation with surface brightness

Radiation: Energy balance UNIVERSITY

Comprehension Questions

Which events lead to a temporal change of the thermal energy in the control volume?

Which terms are considered additionally in the outer energy balance? How can inner and outer energy balance be transformed into each other?

For which applications is an inner or external energy balance more useful?

