

YACHAY TECH UNIVERSITY

SYLLABUS

1.0	1. General Information						
A.	SCHOOL	Physical Sciences and Nanotechnology	В.	MAJOR	Physics Nanotechnology		
C.	COURSE	Computational Physics II	D.	CODE	PHYSEDH05 PHYSEDN22		
E.	SEMESTER	8th	F.	ACADEMIC TERM	Noviembre 2022 - Marzo 2023 (02SEM2022)		
G.	CURRICULAR UNIT	Professional	Н.	MODALITY	Face to face		
I.	HOURS	200	J.	PROFESSORS	Wladimir Eduardo Banda Barragán		
К.	WEEKLY CLASS SCHEDULE	12:00 – 14:00 Tuesday 14:00 – 16:00 Wednesday 10:00 – 12:00 Friday	L.	WEEKLY TUTORING SCHEDULE	16:00 - 17:00 Tuesday 15:00 - 16:00 Thursday		

2. Prerequisites and Corequisites							
PREREQUISITES		COREQUISITES					
COURSES	Code	COURSES	Code				

3. Course Description

This is an advanced course on object-oriented programming for physics. It is the second module of the computational physics series taught at Yachay Tech. The course focuses on introducing advanced numerical methods and simulation techniques used in physics, and provides an overview of recent progress made in several areas of scientific computing. The course includes detailed step-by-step examples of how to design software and use parallel programming to solve problems in physics. Topics range from advanced data analysis, through ordinary and partial differential equations, nonlinear dynamics and chaos, basic thermodynamics and fluid simulations, to an introduction to machine learning. Each section of the course includes practical examples from different areas of science and technology in which computational physics and high performance computing have played an important role in recent years.

4. Course Contribution to professional training

This course helps students improve programming skills for the design and implementation of parallel software dedicated to applications in physics.

5. Course objectives

- Improve object-oriented programming skills to solve physics problems within Linux environments.
- Design algorithms, implement and debug parallel software within the message passing interface in Python language.
- Apply numerical methods and computational techniques to simulate physical systems via reusable and extensible code packages.
- Use high-performance computing in research applications on thermodynamics, fluid dynamics, astrophysics, electromagnetism, particle physics, classical mechanics, quantum mechanics, and other areas of physics.

CURRICULAR UNITS	CONTENTS	TEACHING HOURS	HOURS OF INTERNSHIP AND EXPERIMENTAL LEARNING	HOURS OF INDEPENDENT LEARNING	EVALUATION INSTRUMENTS
UC.1 Ordinary differential equations in physics	Ordinary differential equations, and initial value problems	3	3	6	Classwork (quizzes), homework (assignments), and exams.
	Euler methods, Runge-Kutta methods, and applications	4	4	8	Classwork (quizzes), homework (assignments), and exams.
	Boundary value problems, shooting and finite difference methods, applications	4	4	8	Classwork (quizzes), homework (assignments), and exams.
UC.2 Partial differential equations in physics	Partial differential equations, generalities and classification	3	3	6	Classwork (quizzes), homework (assignments), and exams.
	Methods of solving partial differential equations	4	4	8	Classwork (quizzes), homework (assignments), and exams.
	Applications to electromagnetism, heat flow, and quantum mechanics	4	4	8	Classwork (quizzes), homework (assignments), and exams.
JC.3 Computational fluid dynamics	Discretisation, meshing and conservation in computational fluid dynamics	3	3	8	Classwork (quizzes), homework (assignments), and exams.
	Advection, shocks and solitons	4	4	8	Classwork (quizzes), homework (assignments), and exams.
	Introduction to hydrodynamics and computational fluid dynamics (CFD) applications	2	2	6	Homework (Project), Classwork (Laboratory), Exam.

UC.4	Thermodynamic simulations and	3	3	7	Classwork (quizzes),
Special topics in	introduction to molecular dynamics				homework (assignments),
computational physics					and exams.
	Nonlinear dynamics, chaotic	4	4	7	Classwork (quizzes),
	systems, fractals and statistical				homework (assignments),
	growth				and exams.
	Introduction to machine learning	2	2	6	Classwork (quizzes),
					homework (assignments),
					and exams.
UC.5	Software design using object-	2	2	6	Classwork (quizzes),
Software design and	oriented programming				homework (assignments),
parallel computing for					and exams.
physics	Message Passing Interface (MPI) and	4	4	6	Classwork (quizzes),
	parallel computing				homework (assignments),
					and exams.
	High Performance Computing (HPC)	2	2	6	Classwork (quizzes),
					homework (assignments),
					and exams.
	TOTAL	48	48	104	200

7.Le	7. Learning outcomes of the course						
	LEARNING OUTCOMES	STUDENT IS REQUIRED TO: (EVIDENCE OF LEARNING)					
A.	Improve object-oriented programming skills to solve physics problems within Linux environments.	Submit quizzes on reading material and code developed in class (classwork). Hand in routines of code, scripts, and group reports (homework). Solve programming problems in exams (mid-term and final exams).					
В.	Design algorithms, implement and debug parallel software within the message passing interface in Python language.	Submit quizzes on reading material and code developed in class (classwork). Hand in routines of code, scripts, and group reports (homework). Solve programming problems in exams (mid-term and final exams).					
C.	Apply numerical methods and computational techniques to simulate physical systems via reusable and extensible code packages.	Submit quizzes on reading material and code developed in class (classwork). Hand in routines of code, scripts, and group reports (homework). Solve programming problems in exams (mid-term and final exams).					
D.	Use high-performance computing in research applications on thermodynamics, fluid dynamics, astrophysics, electromagnetism, particle physics, classical mechanics, quantum mechanics, and other areas of physics.	Submit quizzes on reading material and code developed in class (classwork). Hand in routines of code, scripts, and group reports (homework). Solve programming problems in exams (mid-term and final exams).					

8. Methodology

- 1. Interactive lectures including theory and programming tasks.
- 2. Laboratory classwork including programming exercises and quizzes on reading material.
- 3. Individual and group projects including programming homework and research.

9.1 Main							
Author/s	Title of Work	Edition	Year of Publication	Publishing house - Country	Availability at YACHAY TECH Library		
Landau, Rubin	Computational physics : problem solving with python	3rd	2015	Wiley-VCH; John Wiley - Germany	530.0113 L25390 2015		
9.2 Complementary							
Author/s	Title of Work	Edition	Year of Publication	Publishing house - Country	Availability at YACHAY TECH Library		
Pang, Tao	An introduction to computational	2nd	2006	Cambridge University Press - United	530.0285		
	physics			States	P1917a 2006		
Kong, Qingkai Siauw, Timmy	Python Programming and Numerical Methods - A Guide for Engineers and	1st	2020	https:// pythonnumericalmethods.berkeley.edu	Online		

Midterm Exam (N	ΛT)	Formative Evaluation	(FO)	Laboratory (LAB) *	*	Final Exam (F	1)	Tot
1 Midterm Exam	30 %	Homework average (code routines and project reports)	20 %	Classwork average (reading quizzes and programming exercises)	20 %	1 Final Exam	30 %	
								100
Subtotal	30 %	Subtotal	20 %	Subtotal	20 %	Subtotal	30 %	

11. General considerations

- Students are responsible for ensuring the academic integrity of their submitted assignments and exams.
- Cheating in exams, plagiarising, and copying solutions from other students or from previous years' solutions are all breaches of academic integrity.
- Academic misconduct will be penalised according to the University's regulations.
- Assignment deadlines and exam dates will be discussed and agreed upon in class.

Based on the Academic Regime Regulation issued by the Higher Education Council (CES in Spanish) and the Academic Regime Regulation of Yachay Tech.

- (*) The percentages of each item are established in Art. 35 of Academic Regime Regulation of Yachay Tech.
- (**) In courses in which there is no laboratory item, place: N/A

Prepared by:	Reviewed by:	Approved by:		
PROFESSOR - PROFESSORS	MAJOR COORDINATOR - MAJOR DIRECTOR	DEAN - DIRECTOR		
SIGNATURE AND DATE:	SIGNATURE AND DATE:	SIGNATURE AND DATE:		