Data Structures with C++

Worksheets

```
# Worksheets - Data Structures with C++
```

01 - Introduction

01 - Introduction - Worksheet

Part A - Quick Questions

- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

Part B - Coding Exercises

- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

Part C - Mini Challenge

- Build a tiny application using this week's DS/algorithms.

```
## 02 - Arrays
```

02 - Arrays - Worksheet

Part A - Quick Questions

- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

Part B - Coding Exercises

- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

Part C - Mini Challenge

- Build a tiny application using this week's DS/algorithms.

03 - Strings

03 - Strings - Worksheet

Part A - Quick Questions

- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

Part B - Coding Exercises

1. Implement create/insert/delete for the core structure (or a key algorithm demo).

- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

```
## Part C - Mini Challenge
```

- Build a tiny application using this week's DS/algorithms.

```
## 04 - Singly Linked List
```

04 - Singly Linked List - Worksheet

Part A - Quick Questions

- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

Part B - Coding Exercises

- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

Part C - Mini Challenge

- Build a tiny application using this week's DS/algorithms.

05 - Doubly & Circular Linked List

05 - Doubly & Circular Linked List - Worksheet

Part A - Quick Questions

- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

Part B - Coding Exercises

- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

Part C - Mini Challenge

- Build a tiny application using this week's DS/algorithms.

06 - Stack

06 - Stack - Worksheet

Part A - Quick Questions

1. Define the main concept of this week's topic and one real-world analogy.

- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

Part B - Coding Exercises

- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

Part C - Mini Challenge

- Build a tiny application using this week's DS/algorithms.

07 - Oueue

07 - Queue - Worksheet

Part A - Quick Questions

- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

Part B - Coding Exercises

- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

Part C - Mini Challenge

- Build a tiny application using this week's DS/algorithms.

08 - Recursion

08 - Recursion - Worksheet

Part A - Quick Questions

- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

Part B - Coding Exercises

- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

Part C - Mini Challenge

- Build a tiny application using this week's DS/algorithms.

09 - Binary Trees & BST

09 - Binary Trees & BST - Worksheet

- ## Part A Quick Questions
- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

Part B - Coding Exercises

- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

Part C - Mini Challenge

- Build a tiny application using this week's DS/algorithms.

10 - Advanced Trees (AVL, Heap)

10 - Advanced Trees (AVL, Heap) - Worksheet

Part A - Quick Questions

- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

Part B - Coding Exercises

- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

Part C - Mini Challenge

- Build a tiny application using this week's DS/algorithms.

11 - Graph Basics

11 - Graph Basics - Worksheet

Part A - Quick Questions

- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

Part B - Coding Exercises

- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

- ## Part C Mini Challenge
- Build a tiny application using this week's DS/algorithms.
- ## 12 Graph Algorithms
- # 12 Graph Algorithms Worksheet
- ## Part A Ouick Ouestions
- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.
- ## Part B Coding Exercises
- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.
- ## Part C Mini Challenge
- Build a tiny application using this week's DS/algorithms.
- ## 13 Hashing
- # 13 Hashing Worksheet
- ## Part A Quick Questions
- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.
- ## Part B Coding Exercises
- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.
- ## Part C Mini Challenge
- Build a tiny application using this week's DS/algorithms.
- ## 14 Review & Practice
- # 14 Review & Practice Worksheet
- ## Part A Quick Questions
- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

- ## Part B Coding Exercises
- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

Part C - Mini Challenge

- Build a tiny application using this week's DS/algorithms.

15 - Sorting & Searching

15 - Sorting & Searching - Worksheet

Part A - Quick Questions

- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

Part B - Coding Exercises

- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

Part C - Mini Challenge

- Build a tiny application using this week's DS/algorithms.

16 - Applications & Final Project

16 - Applications & Final Project - Worksheet

Part A - Quick Questions

- 1. Define the main concept of this week's topic and one real-world analogy.
- 2. List two advantages and two disadvantages.
- 3. State the typical time complexity of the core operations.

Part B - Coding Exercises

- 1. Implement create/insert/delete for the core structure (or a key algorithm demo).
- 2. Implement a search (or traversal) and print routine.
- 3. Provide a small menu-driven CLI wrapper.

Part C - Mini Challenge

- Build a tiny application using this week's DS/algorithms.