4章 積分の応用

練習問題 2-A

1. 求める面積を*S*とする.

$$(1) \frac{dx}{dt} = -\sin t$$

求める面積は、 $0 \le t \le \frac{\pi}{2}$ における図形の面積の

4 倍であり、この区間では、 $-\sin t \leq 0$ で、

符号は一定であるから

$$S = 4 \int_0^{\frac{\pi}{2}} |\sin 2t \cdot (-\sin t)| dt$$
$$= 4 \int_0^{\frac{\pi}{2}} |-(2\sin t \cos t) \cdot \sin t| dt$$
$$= 8 \int_0^{\frac{\pi}{2}} |-\sin^2 t \cos t| dt$$

 $0 \le t \le \frac{\pi}{2} \kappa$ t > 0 t < 0 t < 0 t < 0 t < 0

$$S = 8 \int_0^{\frac{\pi}{2}} \sin^2 t \cos t \, dt$$

$$= 8 \int_0^{\frac{\pi}{2}} (1 - \cos^2 t) \cos t \, dt$$

$$= 8 \int_0^{\frac{\pi}{2}} (\cos t - \cos^3 t) \, dt$$

$$= 8 \left(\int_0^{\frac{\pi}{2}} \cos t \, dt - \int_0^{\frac{\pi}{2}} \cos^3 t \, dt \right)$$

$$= 8 \left(\left[\sin t \right]_0^{\frac{\pi}{2}} - \frac{2}{3} \right)$$

$$= 8 \left(1 - \frac{2}{3} \right)$$

$$= 8 \cdot \frac{1}{3} = \frac{8}{3}$$

(2) 求める面積は、曲線と、 $\theta=0$ 、 $\theta=\frac{\pi}{6}$ で囲まれた 部分の 12 倍であるから

$$S = 12 \cdot \frac{1}{2} \int_0^{\frac{\pi}{6}} r^2 d\theta$$
$$= 6 \int_0^{\frac{\pi}{6}} (\cos^2 3\theta)^2 d\theta$$

$$=6\int_0^{\frac{\pi}{6}}\cos^4 3\theta \ d\theta$$

$$3\theta = t$$
とおくと、 $3d\theta = dt$ より、 $d\theta = \frac{1}{3}dt$

また, θ とtの対応は

$$\begin{array}{c|ccc} \theta & 0 & \rightarrow & \frac{\pi}{6} \\ \hline t & 0 & \rightarrow & \frac{\pi}{2} \end{array}$$

よって

$$S = 6 \int_0^{\frac{\pi}{2}} \cos^4 t \cdot \frac{1}{3} dt$$
$$= 2 \int_0^{\frac{\pi}{2}} \cos^4 t dt$$
$$= 2 \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{3}{8} \pi$$

2. それぞれの曲線の長さをlとする.

したがって
$$l = \int_{1}^{\sqrt{2}} u \cdot u du$$
$$= \int_{1}^{\sqrt{2}} u^{2} du$$

$$= \left[\frac{1}{3}u^3\right]_1^{\sqrt{2}}$$
$$= \frac{1}{3}(2\sqrt{2} - 1)$$

(2)
$$r' = 1$$
 であるから

$$r' = 1$$
であるから
$$l = \int_0^{2\pi} \sqrt{r^2 + (r')^2} d\theta$$

$$= \int_0^{2\pi} \sqrt{\theta^2 + 1} d\theta \quad \text{※p. 112 問 15 } \text{よ } \theta$$

$$= \left[\frac{1}{2} \left(\theta \sqrt{\theta^2 + 1} + \log \left| \theta + \sqrt{\theta^2 + 1} \right| \right) \right]_0^{2\pi}$$

$$= \frac{1}{2} \left(2\pi \sqrt{4\pi^2 + 1} + \log \left| 2\pi + \sqrt{4\pi^2 + 1} \right| \right)$$

$$- \frac{1}{2} (0 + \log 1)$$

$$= \pi \sqrt{4\pi^2 + 1} + \frac{1}{2} \log \left| 2\pi + \sqrt{4\pi^2 + 1} \right|$$

3. tにいろいろな値を代入すると

t	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{3}{4}$	1
x	0	$\frac{1}{64}$	$\frac{1}{8}$	$\frac{27}{64}$	1
у	0	1/16	$\frac{1}{4}$	9	1

 $= \pi \sqrt{4\pi^2 + 1} + \frac{1}{2}log\left(2\pi + \sqrt{4\pi^2 + 1}\right)$

$$\frac{dx}{dt} = 3t^2 \ge 0$$

よって、求める体積をVとすると

$$V = \pi \int_0^1 y^2 \left| \frac{dx}{dt} \right| dt$$
$$= \pi \int_0^1 (t^2)^2 |3t^2| dt$$
$$= 3\pi \int_0^1 t^6 dt$$
$$= 3\pi \left[\frac{1}{7} t^7 \right]_0^1$$

$$=3\pi\cdot\frac{1}{7}=\frac{3}{7}\pi$$

4

$$(1) 与式 = \lim_{b \to \infty} \int_{2}^{b} x^{-\frac{3}{2}} dx$$

$$= \lim_{b \to \infty} \left[-2x^{-\frac{1}{2}} \right]_{2}^{b}$$

$$= \lim_{b \to \infty} \left\{ -\frac{2}{\sqrt{b}} - \left(-\frac{2}{\sqrt{2}} \right) \right\}$$

$$= 0 + \sqrt{2} = \sqrt{2}$$

$$= 0 + \sqrt{2} = \sqrt{2}$$

$$(2) 与式 = \lim_{\varepsilon \to +0} \int_0^{a-\varepsilon} \frac{x}{\sqrt{a^2 - x^2}} dx$$

$$\sqrt{a^2 - x^2} = t \, \angle \, \exists \zeta \, \angle \, , \, a^2 - x^2 = t^2 \, \overline{c} \, \exists \, \exists \, b \, \delta,$$

$$-2xdx = 2tdt \, \angle \, b \, , \, xdx = -tdt$$
また、 $x \, \angle \, t \, O \,$ 対応は
$$\frac{x}{t} \quad 0 \quad \to \quad a - \varepsilon$$

$$\frac{x}{t} \quad a \quad \to \quad \sqrt{a^2 - (a - \varepsilon)^2}$$

よって
ここで、
$$\sqrt{a^2 - (a - \varepsilon)^2} = \sqrt{2a\varepsilon - \varepsilon^2}$$
であるから、
与式 = $\lim_{\varepsilon \to +0} \int_a^{\sqrt{2a\varepsilon - \varepsilon^2}} \frac{1}{t} \cdot (-tdt)$

$$= \lim_{\varepsilon \to +0} \left(-\int_{a}^{\sqrt{2a\varepsilon - \varepsilon^{2}}} dt \right)$$

$$= \lim_{\varepsilon \to +0} \int_{\sqrt{2a\varepsilon - \varepsilon^{2}}}^{a} dt$$

$$= \lim_{\varepsilon \to +0} \left[t \right]_{\sqrt{2a\varepsilon - \varepsilon^{2}}}^{a}$$

$$= \lim_{\varepsilon \to +0} \left(a - \sqrt{2a\varepsilon - \varepsilon^{2}} \right) = a$$

【別解】※先に置換積分

$$\sqrt{a^2-x^2}=t$$
とおくと、 $a^2-x^2=t^2$ であるから、 $-2xdx=2tdt$ より、 $xdx=-tdt$ また、 x と t の対応は

$$\begin{array}{c|ccc} x & 0 & \to & a \\ \hline t & a & \to & 0 \end{array}$$

よって

与式 =
$$\int_{a}^{0} \frac{1}{t} \cdot (-tdt)$$

= $\int_{0}^{a} dt$
= $\left[t\right]_{0}^{a}$

$$= a - 0 = a$$

(3) 与式 =
$$\lim_{b \to \infty} \int_0^b x e^{-x^2} dx$$

$$-x^2 = t$$
とおくと, $-2xdx = dt$ より, $xdx = -\frac{1}{2}dt$

また、xとtの対応は

$$\begin{array}{c|ccc} x & 0 & \to & b \\ \hline t & 0 & \to & -b^2 \end{array}$$

よって

与式 =
$$\lim_{b \to \infty} \int_0^{-b^2} e^t \cdot \left(-\frac{1}{2} dt \right)$$

= $-\frac{1}{2} \lim_{b \to \infty} \int_0^{-b^2} e^t dt$
= $\frac{1}{2} \lim_{b \to \infty} \int_{-b^2}^0 e^t dt$
= $\frac{1}{2} \lim_{b \to \infty} \left[e^t \right]_{-b^2}^0$
= $\frac{1}{2} \lim_{b \to \infty} (e^0 - e^{-b^2})$
= $\frac{1}{2} (1 - 0) = \frac{1}{2}$

【別解】※先に置換積分

$$-x^2 = t$$
とおくと, $-2xdx = dt$ より, $xdx = -\frac{1}{2}dt$

また, xとtの対応は

$$\begin{array}{c|cccc} x & 0 & \to & \infty \\ \hline t & 0 & \to & -\infty \end{array}$$

トって

与式 =
$$\int_0^{-\infty} e^t \cdot \left(-\frac{1}{2}dt\right)$$

= $\frac{1}{2} \int_{-\infty}^0 e^t dt$
= $\frac{1}{2} \lim_{a \to -\infty} \int_a^0 e^t dt$
= $\frac{1}{2} \lim_{a \to -\infty} \left[e^t\right]_a^0$
= $\frac{1}{2} \lim_{a \to -\infty} (e^0 - e^a)$
= $\frac{1}{2} (1 - 0) = \frac{1}{2}$

(4) 与式 =
$$\lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \frac{\log x}{x} dx$$

$$\log x = t \, \xi \, \, \Im \, \zeta \, \, \xi \, , \ \, \frac{1}{x} dx = dt$$

また、xとtの対応は

$$\begin{array}{c|ccc} x & \varepsilon & \to & 1 \\ \hline t & \log \varepsilon & \to & 0 \end{array}$$

よって

与式 =
$$\lim_{\varepsilon \to +0} \int_{\log \varepsilon}^{0} t \, dt$$

= $\lim_{\varepsilon \to +0} \left[\frac{1}{2} t^{2} \right]_{\log \varepsilon}^{0}$
= $\lim_{\varepsilon \to +0} \left\{ -\frac{1}{2} (\log \varepsilon)^{2} \right\} = -\infty$

したがって, 広義積分は存在しない.

【別解】※先に置換積分

$$\log x = t \, \xi \, \, \Im \, \zeta \, \, \xi \, , \ \, \frac{1}{x} dx = dt$$

また、xとtの対応は

$$\begin{array}{c|ccc} x & 0 & \rightarrow & 1 \\ \hline t & -\infty & \rightarrow & 0 \end{array}$$

よって

与式 =
$$\int_{-\infty}^{0} t \, dt$$

= $\lim_{a \to -\infty} \int_{a}^{0} t \, dt$
= $\lim_{a \to -\infty} \left[\frac{1}{2} t^{2} \right]_{a}^{0}$
= $\lim_{a \to -\infty} \left(-\frac{1}{2} a^{2} \right) = -\infty$

したがって、広義積分は存在しない.

5.

(1) 時刻tにおける点 P の速度をv(t)とすると

$$v(t) = v(0) + \int_0^t \alpha(t)dt$$
$$= 12 + \int_0^t (-8) dt$$
$$= 12 - 8 \int_0^t dt$$
$$= 12 - 8 \left[t\right]_0^t$$
$$= 12 - 8t$$

ここで、速度が0になるのは、12-8t=0より

$$t=\frac{3}{2}$$

(2) 道のりは、 $\int_0^4 |v(t)| dt$ で求められる。 v(t) = 12 - 8tであるから $0 \le t \le \frac{3}{2}$ のとき、|v(t)| = 12 - 8t

$$\frac{3}{2} < t \le 4$$
 のとき, $|v(t)| = -(12 - 8t)$

よって、求める道のりは

$$\int_{0}^{4} |v(t)| dt = \int_{0}^{\frac{3}{2}} (12 - 8t) dt + \int_{\frac{3}{2}}^{4} \{-(12 - 8t)\} dt$$

$$= 4 \int_{0}^{\frac{3}{2}} (3 - 2t) dt - 4 \int_{\frac{3}{2}}^{4} (3 - 2t) dt$$

$$= 4 \left[3t - t^{2}\right]_{0}^{\frac{3}{2}} - 4 \left[3t - t^{2}\right]_{\frac{3}{2}}^{4}$$

$$= 4 \left(\frac{9}{2} - \frac{9}{4}\right) - 4 \left\{(12 - 16) - \left(\frac{9}{2} - \frac{9}{4}\right)\right\}$$

$$= 4 \cdot \frac{9}{4} - 4 \left(-4 - \frac{9}{4}\right)$$

$$= 9 + 16 + 9 = 34$$

練習問題 2-B

1.

△OP₁P₂において、余弦定理より

$$(P_1P_2)^2 = r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1)$$

$$= r_1^2 + r_2^2 - 2r_1r_2\cos\{-(\theta_1 - \theta_2)\}$$

$$= r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_1 - \theta_2)$$

P₁P₂ > 0であるから

$$P_1 P_2 = \sqrt{r_1^2 + r_2^2 - 2r_1 r_2 \cos(\theta_1 - \theta_2)}$$

【別解】

極座標を直交座標で表すと

 $P_1(r_1\cos\theta_1, r_1\sin\theta_1)$

 $P_2(r_2\cos\theta_2, r_2\sin\theta_2)$

よって

$$\begin{split} \mathrm{P_1P_2} &= \sqrt{(r_1\cos\theta_1 - r_2\cos\theta_2)^2 + (r_1\sin\theta_1 - r_2\sin\theta_2)^2} \\ &= \sqrt{(r_1^2\cos^2\theta_1 - 2r_1r_2\cos\theta_1\cos\theta_2 + r_2^2\cos^2\theta_2)} \\ &+ (r_1^2\sin^2\theta_1 - 2r_1r_2\sin\theta_1\sin\theta_2 + r_2^2\sin^2\theta_2) \\ &= \sqrt{r_1^2(\cos^2\theta_1 + \sin^2\theta_1) + r_2^2(\cos^2\theta_2 + \sin^2\theta_2)} \\ &- 2r_1r_2(\cos\theta_1\cos\theta_2 + \sin\theta_1\sin\theta_2)} \\ &= \sqrt{r_1^2 \cdot 1 + r_2^2 \cdot 1 - 2r_1r_2\cos(\theta_1 - \theta_2)} \\ &= \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_1 - \theta_2)} \end{split}$$

(2) 図のように, 0′(1, 0)とする.

PO' = 1であるから、 (1) より PO' =
$$\sqrt{r^2 + 1^2 - 2 \cdot r \cdot 1 \cos(\theta - 0)}$$
 = $\sqrt{r^2 + 1 - 2r \cos \theta} = 1$

よって

$$r^{2} + 1 - 2r\cos\theta = 1$$
$$r^{2} - 2r\cos\theta = 0$$
$$r(r - 2\cos\theta) = 0$$

これより,
$$r = 0 \cdot \cdot \cdot \cdot 1$$
 または, $r = 2\cos\theta \cdot \cdot \cdot \cdot 2$

ここで、②において、
$$\theta = \frac{\pi}{2}$$
とすれば、 $r = 0$ となる

ので, ②は, ①の条件を含む.

よって,
$$r = 2\cos\theta$$

逆にこの式を満たす点は、円周上にある.

【別解】

図のように、A(2, 0)とする.

 \triangle OAPにおいて, \angle OAP = 90°であるから

$$\cos\theta = \frac{OP}{OA} = \frac{r}{2}$$

逆にこの式を満たす点は, 円周上にある.

※補足

 $r=2\cos\theta$ において、例えば $\theta=\frac{3}{4}\pi$ とすると、 $r=-\sqrt{2}$ となり、r<0となる.

このとき,点 (r, θ) は,点 $(-r, \theta + \pi)$ を表すと約束することがある.この場合では

$$\left(-\sqrt{2}\ ,\ \frac{3}{4}\pi\right)\to \left(\sqrt{2}\ ,\ \frac{7}{4}\pi\right)$$

2. tのいろいろな値に対するx, yの値を求めると

t	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
х	а	$\frac{3\sqrt{3}}{8}a$	$\frac{\sqrt{2}}{4}a$	$\frac{1}{8}a$	0
		0.65 <i>a</i>	0.35 <i>a</i>	0.13 <i>a</i>	
у	0	$\frac{1}{8}a$	$\frac{\sqrt{2}}{4}a$	$\frac{3\sqrt{3}}{8}a$	а
		0.13 <i>a</i>	0.35 <i>a</i>	0.65 <i>a</i>	

t	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
24	$-\frac{1}{8}a$	$-\frac{\sqrt{2}}{4}a$	$-\frac{3\sqrt{3}}{8}a$	-a
x	-0.13a	-0.35a	-0.65a	
	$\frac{3\sqrt{3}}{8}a$	$\frac{\sqrt{2}}{4}a$	$\frac{1}{8}a$	0
у	0.65a	0.35a	0.13 <i>a</i>	

 $%\pi < t \le 2\pi$ は省略.

(1) 求める面積をSとする.

$$\frac{dx}{dt} = 3a\cos^2 t \cdot (-\sin t) = -3a\cos^2 t \sin t$$

求める面積は, $0 \le t \le \frac{\pi}{2}$ における図形の面積の

4倍であり、この区間では、 $-3a\cos^2t\sin t \le 0$ で、符号は一定であるから

$$S = 4 \int_0^{\frac{\pi}{2}} |a \sin^3 t \cdot (-3a \cos^2 t \sin t)| dt$$

$$= 4 \int_0^{\frac{\pi}{2}} |-3a^2 \sin^4 t \cos^2 t| dt$$

$$= 12 \int_0^{\frac{\pi}{2}} |-a^2 \sin^4 t \cos^2 t| dt$$

$$-a^2 \sin^4 t \cos^2 t \le 0 \text{ is 3.5}$$

$$S = 12 \int_0^{\frac{\pi}{2}} a^2 \sin^4 t \cos^2 t dt$$

$$= 12a^2 \int_0^{\frac{\pi}{2}} \sin^4 t (1 - \sin^2 t) dt$$

$$= 12a^2 \int_0^{\frac{\pi}{2}} (\sin^4 t - \sin^6 t) dt$$

$$= 12a^2 \int_0^{\frac{\pi}{2}} (\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} - \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2})$$

$$= 12a^2 \left(\frac{3}{16}\pi - \frac{5}{32}\pi\right)$$

$$= 12a^2 \cdot \frac{1}{32}\pi = \frac{3}{8}\pi a^2$$

(2) 求める曲線の長さをlとする.

$$\frac{dx}{dt} = 3a\cos^2 t \cdot (-\sin t) = -3a\cos^2 t \sin t$$

$$\frac{dy}{dt} = 3a\sin^2 t \cdot \cos t = 3a^2 \sin^2 t \cos t$$

求める曲線の長さは, $0 \le t \le \frac{\pi}{2}$ における図形の

曲線の長さの4倍であるから,

$$l = 4 \int_0^{\frac{\pi}{2}} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$= 4 \int_0^{\frac{\pi}{2}} \sqrt{(-3a\cos^2 t \sin t)^2 + (3a\sin^2 t \cos t)^2} dt$$

$$= 4 \int_0^{\frac{\pi}{2}} \sqrt{9a^2 \cos^4 t \sin^2 t + 9a^2 \sin^4 t \cos^2 t} dt$$

$$= 4 \int_0^{\frac{\pi}{2}} \sqrt{9a^2 \cos^2 t \sin^2 t (\cos^2 t + \sin^2 t)} dt$$

$$= 4 \int_0^{\frac{\pi}{2}} \sqrt{9a^2 \cos^2 t \sin^2 t} \, dt$$
$$= 4 \int_0^{\frac{\pi}{2}} |3a \cos t \sin t| \, dt$$

$$0 \le t \le \frac{\pi}{2}$$
で、 $3a\cos t\sin t \ge 0$ であるから

$$l = 12a \int_0^{\frac{\pi}{2}} \cos t \sin t \, dt$$

$$= 12a \int_0^{\frac{\pi}{2}} \frac{\sin 2t}{2} \, dt$$

$$= 6a \int_0^{\frac{\pi}{2}} \sin 2t \, dt$$

$$= 6a \left[-\frac{1}{2} \cos 2t \right]_0^{\frac{\pi}{2}}$$

$$= -3a(\cos \pi - \cos 0)$$

$$= -3a(-1 - 1) = 6a$$

(3) 求める体積をVとする.

$$\frac{dx}{dt} = 3a\cos^2 t \cdot (-\sin t) = -3a\cos^2 t \sin t$$

求める体積は, $0 \le t \le \frac{\pi}{2}$ における曲線をx軸の

まわりに回転してできる回転体の体積の 2 倍であり、 この区間では、 $-3a\cos^2t\sin t \le 0$ で、符号は一定 であるから

$$V = 2\pi \int_0^{\frac{\pi}{2}} y^2 \left| \frac{dx}{dt} \right| dt$$

$$= 2\pi \int_0^{\frac{\pi}{2}} (a \sin^3 t)^2 |-3a \cos^2 t \sin t| dt$$

$$= 2\pi \int_0^{\frac{\pi}{2}} a^2 \sin^6 t \cdot (3a \cos^2 t \sin t) dt$$

$$= 6\pi a^3 \int_0^{\frac{\pi}{2}} \sin^7 t \cos^2 t dt$$

$$= 6\pi a^3 \int_0^{\frac{\pi}{2}} \sin^7 t (1 - \sin^2 t) dt$$

$$= 6\pi a^3 \int_0^{\frac{\pi}{2}} (\sin^7 t - \sin^9 t) dt$$

$$= 6\pi a^3 \left(\frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} - \frac{8}{9} \cdot \frac{6}{7} \cdot \frac{4}{5} \cdot \frac{2}{3} \right)$$

$$= 6\pi a^3 \left(\frac{16}{35} - \frac{128}{315} \right)$$

$$= 6\pi a^3 \cdot \frac{16}{215} = \frac{32}{105} \pi a^3$$

3

(1) θ のいろいろな値に対するrの値を求めると

θ	$\frac{\pi}{4}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π	$\frac{5\pi}{2}$	3π	$\frac{7\pi}{2}$	4π
r	$\frac{4}{\pi}$	$\frac{2}{\pi}$	$\frac{1}{\pi}$	$\frac{2}{3\pi}$	$\frac{1}{2\pi}$	$\frac{2}{5\pi}$	$\frac{1}{3\pi}$	$\frac{2}{7\pi}$	$\frac{1}{4\pi}$
r	1.27	0.63	0.32	0.21	0.16	0.13	0.11	0.09	0.08

(2) 曲線の長さを1とする.

$$r' = -\frac{1}{\theta^2}$$
 であるから
$$r^2 + (r')^2 = \left(\frac{1}{\theta}\right)^2 + \left(-\frac{1}{\theta^2}\right)^2$$
$$= \frac{\theta^2 + 1}{\theta^4}$$

$$\begin{split} & \mathcal{L} \supset \mathcal{T} \\ & l = \int_{\frac{\pi}{4}}^{4\pi} \sqrt{r^2 + (r')^2} d\theta \\ & = \int_{\frac{\pi}{4}}^{4\pi} \sqrt{\frac{\theta^2 + 1}{\theta^4}} d\theta \\ & = \int_{\frac{\pi}{4}}^{4\pi} \frac{1}{\theta^2} \sqrt{\theta^2 + 1} d\theta \\ & = \int_{\frac{\pi}{4}}^{4\pi} \left(-\frac{1}{\theta} \right)' \sqrt{\theta^2 + 1} d\theta \\ & = \left[-\frac{1}{\theta} \sqrt{\theta^2 + 1} \right]_{\frac{\pi}{4}}^{4\pi} - \int_{\frac{\pi}{4}}^{4\pi} \left(-\frac{1}{\theta} \right) \left(\sqrt{\theta^2 + 1} \right)' d\theta \\ & = \left[-\frac{1}{\theta} \sqrt{\theta^2 + 1} \right]_{\frac{\pi}{4}}^{4\pi} + \int_{\frac{\pi}{4}}^{4\pi} \frac{1}{\theta \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{\theta^2 + 1}} \cdot 2\theta \ d\theta} \\ & = \left[-\frac{1}{\theta} \sqrt{\theta^2 + 1} \right]_{\frac{\pi}{4}}^{4\pi} + \left[\log \left| \theta + \sqrt{\theta^2 + 1} \right| \right]_{\frac{\pi}{4}}^{4\pi} \\ & = \left[-\frac{1}{4\pi} \sqrt{16\pi^2 + 1} + \frac{1}{\frac{\pi}{4}} \sqrt{\frac{\pi^2}{16} + 1} \right] \end{split}$$

$$\begin{aligned} &+\log\left|4\pi+\sqrt{16\pi^2+1}\right| - \log\left|\frac{\pi}{4}+\sqrt{\frac{\pi^2}{16}+1}\right| \\ &= -\frac{1}{4\pi}\sqrt{16\pi^2+1} + \frac{4}{\pi}\sqrt{\frac{\pi^2}{16}+1} \\ &+\log\left(4\pi+\sqrt{16\pi^2+1}\right) - \log\left(\frac{\pi}{4}+\sqrt{\frac{\pi^2}{16}+1}\right) \\ &= -\frac{1}{4\pi}\sqrt{16\pi^2+1} + \frac{1}{\pi}\sqrt{\pi^2+16} \\ &+\log\left(4\pi+\sqrt{16\pi^2+1}\right) - \log\left(\frac{\pi}{4}+\frac{1}{4}\sqrt{\pi^2+16}\right) \end{aligned}$$

4.

i)
$$k = 1$$
のとき

$$\exists \vec{x} = \int_0^1 \frac{dx}{x}$$

$$= \lim_{\varepsilon \to +0} \int_{\varepsilon}^1 \frac{dx}{x}$$

$$= \lim_{\varepsilon \to +0} \left[\log|x| \right]_{\varepsilon}^1$$

$$= \lim_{\varepsilon \to +0} (-\log \varepsilon) = \infty$$

よって,この広義積分は存在しない.

ii) *k* ≠ 1のとき

与式 =
$$\lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \frac{dx}{x^{k}}$$

= $\lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} x^{-k} dx$
= $\lim_{\varepsilon \to +0} \left[\frac{1}{1-k} x^{1-k} \right]_{\varepsilon}^{1}$
= $\lim_{\varepsilon \to +0} \frac{1}{1-k} (1-\varepsilon^{1-k})$
ここで、 $1-k < 0$ 、すなわち $k > 1$ のとき、

$$\lim_{\varepsilon\to+0}\varepsilon^{1-k}=\infty \ {\it c}$$

$$\lim_{\varepsilon \to +0} \frac{1}{1-k} (1 - \varepsilon^{1-k}) = \infty$$

1-k>0, t>0, t>0, t>0

$$\lim_{\varepsilon \to +0} \varepsilon^{1-k} = 0 \text{ \it cash } \delta$$

$$\lim_{\varepsilon \to +0} \frac{1}{1-k} (1 - \varepsilon^{1-k}) = \frac{1}{1-k}$$

よって、
$$0 < k < 1$$
 のとき、 $\int_0^1 \frac{dx}{x^k} = \frac{1}{1-k}$ $k \ge 1$ のとき、 $\int_0^1 \frac{dx}{x^k} = \infty$ であるから、積分の値は存在しない.

 $%k \leq 0$ のときは、普通の積分となる.

5.

i)
$$k = 1028$$

よって,この広義積分は存在しない.

ii) *k* ≠ 1のとき

与式 =
$$\lim_{b \to \infty} \int_1^b \frac{dx}{x^k}$$

= $\lim_{b \to \infty} \int_1^b x^{-k} dx$
= $\lim_{b \to \infty} \left[\frac{1}{1 - k} x^{1 - k} \right]_1^b$
= $\lim_{b \to \infty} \frac{1}{1 - k} (b^{1 - k} - 1)$

ここで, 1-k<0, すなわちk>1のとき,

$$\lim_{k \to \infty} b^{1-k} = 0$$
 であるから

$$\lim_{b \to \infty} \frac{1}{1-k} (b^{1-k} - 1) = \frac{1}{1-k} \cdot (-1) = \frac{1}{k-1}$$

1 - k > 0, t > 0

$$\lim_{k\to\infty}b^{1-k}=\infty \ \ \text{cb}\ \ \delta \ \ b \ \ \delta$$

$$\lim_{k\to\infty} \frac{1}{1-k} (b^{1-k} - 1) = \infty$$

よって、
$$k > 1$$
 のとき、
$$\int_{1}^{\infty} \frac{dx}{x^{k}} = \frac{1}{k-1}$$

 $0 < x \le 1$ のとき, $\int_1^\infty \frac{dx}{x^k} = \infty$ であるから,

積分の値は存在しない.

 $%k \leq 0$ のときは、積分の値は存在しない。