Advanced Logic: Problem Set 02

- Due date: Friday, September 16.
- Your proofs may appeal to any facts stated in the first three lectures.
- 1. (80%) Suppose we have a function $f: A \to B$. Let $f^*: \mathscr{P}B \to \mathscr{P}A$ be the function such that for any $Y \in \mathscr{P}B$, $f^*Y = \{x \in A \mid fx \in Y\}$.
 - (a) Break down $f: A \to B$, this statement assumes that there is a function(a relation(Cartesian product of two elements from A and from B) that is both serial and functional) from set A to set B
 - (b) Break down $f^*: \mathscr{P}B \to \mathscr{P}A$. This statement assumes that there exists a power set of B and a power set of A and assumes that there is a function from the one to the other
 - (c) Combining the condition (a) and condition (b), the question asks us to prove that with all these condition above, we should have a causation structure that $Y \in \mathcal{P}B$, $f^*Y = \{x \in A \mid fx \in Y\}$
 - (d) Break down $Y \in \mathscr{P}B$, $f^*Y = \{x \in A \mid fx \in Y\}$, This Disgusting Notation represents that 2 assumptions. The first assumptions assumes that there is a set Y that is the element of power set of the set B, this $\mathscr{P}B$ is consistent with the above definition. The second assumption(here comes the nasty part) $f^*Y = \{x \in A \mid fx \in Y\}$ assumes that there is a set $\{x \in A \mid fx \in Y\}$, the subset of A (such that) for all elements x in set A, x is a member of the $\{x \in A \mid fx \in Y\}$, (if and only if), the subset of A that contains ALL and ONLY those objects x (for which) $fx \in Y$
 - (e) Above are my understanding of the question and assumptions, and now I will start my proof. None of the above are my assumptions, thoses are assumptions coming from the question itself.
 - (f) I will start with the first assumption, that there is a function from set A to set B. This is a function that is both serial and functional. This means that for any two elements from set A, there is only one element from set B that is the image of the function. This is a function that is both serial and functional. This means that for any two elements from set A, there is only one element from set B that is the image of the function. This is a function that is both serial and functional. This means that for any two elements from set A, there is

only one element from set B that is the image of the function. This is a function that is both serial and functional. This means that for any two elements from set A, there is only one element from set B that is the image of the function. This is a function that is both serial and functional. This means that for any two elements from set A, there is only one element from set B that is the image of the function. This is a function that is both serial and functional. This means that for any two elements from set A, there is only one element from set B that is the image of the function. This is a function that is both serial and functional. This means that for any two elements from set A, there is only one element from set B that is the image of the function. This is a function that is both serial and functional. This means that for any two elements from set A, there is only one element from set B that is the image of the function. This is a function that is both serial and functional. This means that for any two elements from set A, there is only one element from set B that is the image of the function. This is a function that is both serial and functional. This means that for any two elements from set A, there is only one element from set B that is the image of the function. This is a function that is both serial and functional. This means that for any two elements from set A, there is only one element from set B that is the image of the function. This is a function that is both serial and functional. This means that for any two elements from set A, there is only one element from set B that is the image of the function. This is a function that is both serial and functional. This means that for any two elements from set A, there is

- (a) (50%) Show that f is injective iff f^* is surjective.
 - (b) (30%) Show that f is surjective iff f^* is injective.
 - 3. (10%) Using the Axiom of Separation to show that there is no set that contains all sets. (Hint: adapt the reasoning in Russell's Paradox.)
 - 4. (10%) Show that for any set A, there is no injective function from $\mathscr{P}A$ to A.
 - 5. (10%) Suppose that $f: A \to B$ and $g: B \to A$ are functions such that for any $x \in A$, x = g(fx), and for any $y \in B$, y = f(gy). Show that g = f 1.