Jan Lukas krasse Bachelorarbeit

Jan Lukas Bosse*

5. Juni 2018

Hier ist wohl noch etwas zu tun... So eine hübsche Frontseite wäre doch was!

1 Allgemeines Gelaber über Shearlets

Proposition 1.1 (ψ_{ast} fällt schnell ab)

Sei $\psi \in L^2(\mathbb{R}^2)$ ein Shearlet wie definiert und M so ne Trafomatrix. Dann gilt für alle $k \in \mathbb{N}$, dass es eine konstante C_k gibt s.d. für alle $x \in \mathbb{R}^2$ gilt

$$\begin{aligned} &|\psi_{ast}(x)|\\ &\leq C_k \left|\det M\right|^{-\frac{1}{2}} \left(1 + \left|M^{-1}(x-t)\right|^2\right)^{-k}\\ &= C_k a^{-\frac{3}{4}} \left(1 + a^{-2} \left(x_1 - t_1\right)^2 + 2a^{-2} s \left(x_1 - t_1\right) \left(x_2 - t_2\right) + a^{-1} \left(1 + a^{-1} s^2\right) \left(x_2 - t_2\right)^2\right)^{-k} \end{aligned}$$

Und insbesondere ist $C_k = \frac{15}{2} \frac{\sqrt{a} + s}{a^2} \left(\|\hat{\psi}\|_{\infty} + \|\triangle^k \hat{\psi}\|_{\infty} \right)$

Satz 1.2 ($S_f(a, s, t)$ misst WF(f))

Sei $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$ wobei $\mathcal{D}_1 = \{ (t_0, s_0) \in \mathbb{R}^2 \times [-1, 1] | |\mathcal{S}_f(a, s, t)| = O(a^k)$ gleichmäßig $\forall k \in \mathbb{N}, \forall t \in U$ Umgebung von (t_0, s_0) } und \mathcal{D}_2 analog für $\psi^{(v)}$

Dann gilt $WF(f)^c = \mathcal{D}$

Korollar 1.3 (WF(f) misst $sing \ supp(\psi)$) Sei $\mathcal{R} = \{ t_0 \in \mathcal{R}^2 | \ |\mathcal{S}_f(a,s,t)| = O(a^k) \ \forall k \in \mathbb{N}, \forall t \in U \ Umgebung \ von \ t_0 \ \}$ Dann gilt $sing \ supp(\psi)^c = \mathcal{R}$ diesen
Satz richtig hin
schreiben
und ordentlich
setzen

Stil und Nummerierung für Sätze, Propositionen etc anpassen

Abbildung 1: Der Träger von $\hat{\psi}_{ast}$ für verschiedene a, s. Man sieht gut, wie $supp(\hat{\psi}_{ast})$ für kleinere a in immer kleineren Kegeln liegt.

Bemerkung 1.4 (Träger von ψ)

Im Fourierraum ist $\hat{\psi}_{ast}$ gegeben durch

$$\hat{\psi}_{ast}(\xi_1, \xi_2) = a^{\frac{3}{4}} e^{-i\xi \cdot t} \hat{\psi}_1(a\xi_1) \hat{\psi}_2\left(a^{-\frac{1}{2}} \left(\frac{\xi_2}{\xi_1} - s\right)\right)$$
(1.1)

und es gilt

$$supp(\hat{\psi}) \subset \left\{ \xi \in \hat{\mathbb{R}}^2 \mid |\xi_1| \in \left[\frac{1}{2a}, \frac{2}{a} \right], \left| \frac{\xi_2}{\xi_1} - s \right| \le \sqrt{a} \right\}$$
 (1.2)

2 Zwei nützliche Substitionen für $\langle \psi_{ast}, f \rangle$

Zunächst werden wir zwei verschiedene Ausdrücke für $\langle \psi_{ast}, f \rangle$ im Fourierraum herleiten, welche sich im dann folgenden als nützlich erweisen werden.

Sei also ψ ein Shearlet wie in Korollar 1.4. Sei f die zu analysierende fouriertransformierbare Funktion (oder Distribution) in $\mathcal{D}'(\mathbb{R}^2)$. Dann ist $\mathcal{S}_f(ast)$ gegeben durch

^{*}Georg-August Universität Göttingen

$$\langle \psi_{ast}, f \rangle = \left\langle \hat{\psi}_{ast}, \hat{f} \right\rangle$$
$$= \int a^{\frac{3}{4}} e^{-i\xi \cdot t} \hat{\psi}_{1}(a\xi_{1}) \hat{\psi}_{2} \left(a^{-\frac{1}{2}} \left(\frac{\xi_{2}}{\xi_{1}} - s \right) \right) \hat{f}(\xi) \, d\xi$$

und nach "entscheren" und "deskalieren", also der Substitution

$$a\xi_1 = k_1 \qquad \qquad \xi_1 = \frac{k_1}{a}$$

$$a^{-\frac{1}{2}} \left(\frac{\xi_2}{\xi_1} - s\right) = \frac{k_2}{k_1} \qquad \qquad \xi_2 = \frac{k_1 s}{a} + a^{-\frac{1}{2}} k_2$$

$$\Rightarrow d\xi_1 d\xi_2 = a^{-\frac{3}{2}} dk_1 dk_2$$

etnscheider was mit dem fehlenden Faktor $\frac{1}{(2\pi)^n}$ geschieht

ergibt sich folgendes für $\langle \psi_{ast}, f \rangle$:

$$\langle \psi_{ast}, f \rangle = \iint a^{-\frac{3}{4}} \ \hat{\psi}_1(k_1) \ \hat{\psi}_2\left(\frac{k_2}{k_1}\right) \ \hat{f}\left(\frac{k_1}{a}, \frac{k_1 s}{a} + \frac{k_2}{\sqrt{a}}\right) \ e^{-i\frac{k_1}{a}(t_1 + t_2 s) - i\frac{k_2 t_2}{\sqrt{a}}} \ dk_1 \ dk_2$$
(2.1, Substitution 1)

Alternativ kann auch folgende Substitution

$$a\xi_1 = k_1 \qquad \qquad \xi_1 = \frac{k_1}{a}$$

$$a^{-\frac{1}{2}} \left(\frac{\xi_2}{\xi_1} - s\right) = k_2 \qquad \Longleftrightarrow \qquad \xi_2 = \left(a^{\frac{1}{2}}k_2 + s\right) \frac{k_1}{a}$$

$$\Rightarrow d\xi_1 d\xi_2 = a^{-\frac{3}{2}}k_1 dk_1 dk_2$$

herausfinden, wie die Gleichungen auch Kapitelnummern erhalten

gewählt werden, wodurch alle Parameter aus den Argumenten von ψ_1, ψ_2 verschwinden und sich

$$\langle \psi_{ast}, f \rangle = \iint a^{-\frac{3}{4}} k_1 \, \hat{\psi}_1(k_1) \, \hat{\psi}_2(k_2) \, \hat{f}\left(\frac{k_1}{a}, k_1 \left(a^{-\frac{1}{2}}k_2 + sa^{-1}\right)\right) \, e^{-ik_1\left(\frac{t_1 + st_2}{a} + \frac{k_2 t_2}{\sqrt{a}}\right)} \, dk_1 \, dk_2 \tag{2.2, Substitution 2}$$

ergibt. Dabei ist zu beachten, dass diese Substitution zulässig ist, obwohl sie die Oriertierung <u>nicht</u> erhält und <u>keine</u> Bijektion ist. Aber der kritische Bereich, nämlich $\xi_1 = 0$, liegt nicht im Träger von $\widehat{\psi}$.

Grafik basteln, die supp ψ vor und nach der Substitution zeigt.

3 Die Wellenfrontmenge von Δ_m

Die massive Zweipunktfunktion ist die Fouriertransformierte der 1*m*-Massenschale positiver Energie:

Quelle dafür zitiesfdren...

$$\Delta_m(t,x) = \int \delta(\omega^2 - k^2 - m^2)\Theta(\omega)e^{-i\omega t + ikx} d\omega dk$$
 (3.1)

woraus sich $\hat{\Delta}_m$ direkt zu $\delta(\omega^2 - k^2 - m^2)\Theta(\omega)$ ablesen lässt.

Abbildung 2: Die Träger von $\hat{\Delta}_m$ und $\hat{\psi}_{ast}$. Es ist zu sehen, dass für $a \to 0$ und $s \neq \pm 1$ die Träger schließlich disjunkt sind

Fall $s \neq \pm 1$

Hier gibt es nicht viel zu tun, denn für a klein genug gilt $supp(\hat{\Delta}_m) \cap supp(\hat{\psi}_{ast}) = \emptyset$ wie man Abb. 2 entnehmen kann. Also gilt $\langle \psi_{ast}, \Delta_m \rangle = 0 = O(a^k) \ \forall k$ für a klein genug. Dies gilt für alle $(t', x') \in \mathbb{R}^2$

Fall s = 1

Intuition Für s=-1 schneidet die Diagonale $supp(\hat{\psi}_{ast})$ auf der ganzen Länge. Der Betrag von $\hat{\psi}_{ast}$ skaliert mit $a^{\frac{3}{4}}$ und die Länge von $supp(\hat{\psi}_{ast})$ mit a^{-1} . Also erwarten wir schlimmstenfalls $\langle \hat{\psi}_{a1t}, \hat{\Delta}_m \rangle = O(a^{-\frac{1}{4}})$. Aber nur wenn die Wellenfronten von $e^{-i\omega t' + ikx'}$

hier noch blöde Abschätzerei machen, warum das tatsächlich gilt, oder stehen lassen. Oder im Kapitel Shearlets ne Bemerkung machen, warum wir in

immer

parallel zu der Singularität und damit der Diagonalen liegen. Andernfalls erwarten wir, dass die immer schneller werdenden Oszillationen der Phase sich gegenseitig auslöschen/wegheben.

Fleißige Analysis

$$\langle \hat{\psi}_{a1t}, \hat{\Delta}_{m} \rangle = a^{\frac{3}{4}} \int \hat{\psi}_{1}(a\omega) \hat{\psi}_{2} \left(a^{-\frac{1}{2}} \left(\frac{k}{\omega} - 1 \right) \right) \delta(\omega^{2} - k^{2} - m^{2}) \theta(\omega) e^{-i\omega t' + ikx'} d\omega \, dk$$

$$\frac{\text{Nullstellen von } \delta:}{\omega^{2} - k^{2} - m^{2} = 0 \Leftrightarrow k = \pm \sqrt{\omega^{2} - m^{2}}}$$

$$\Rightarrow \frac{dk}{d\omega} = \frac{\omega}{\sqrt{\omega^{2} - m^{2}}}; \text{ wobei nur } "+" \text{ in } supp(\hat{\psi}_{2}) \text{ liegt}}$$

$$= a^{\frac{3}{4}} \int \hat{\psi}_{1}(a\omega) \hat{\psi}_{2} \left(a^{-\frac{1}{2}} \left(\frac{\sqrt{\omega^{2} - m^{2}}}{\omega} - 1 \right) \right) e^{-i\omega t' + i\sqrt{\omega^{2} - m^{2}}x'} \, d\omega$$

$$= a^{\frac{3}{4}} a^{-1} \int \hat{\psi}_{1}(\omega) \hat{\psi}_{2} \left(a^{-\frac{1}{2}} \left(\frac{\sqrt{a\omega^{2} - m^{2}}}{\omega} - 1 \right) \right) e^{-i\frac{\omega}{a}t' + i\sqrt{\frac{\omega^{2}}{a^{2}} - m^{2}}x'} \, d\omega$$

$$= a^{\frac{3}{4}} a^{-1} \int \hat{\psi}_{1}(\omega) \hat{\psi}_{2} \left(a^{-\frac{1}{2}} \left(\frac{\sqrt{a\omega^{2} - m^{2}}}{\omega} - 1 \right) \right) e^{-i\frac{\omega}{a}t' + i\sqrt{\frac{\omega^{2}}{a^{2}} - m^{2}}x'} \, d\omega$$

Der Integrand lässt sich nun durch $\hat{\psi}_1(\omega) \|\hat{\psi}_2\|_{\infty}$ majorisieren und wir dürfen Lebesgue verwenden um Integral und Grenzwert $a \to 0$ zu vertauschen

$$= a^{-\frac{1}{4}} \int \hat{\psi}_{1}(\omega) \hat{\psi}_{2}(0) e^{-i\omega \left(\frac{t'-x'}{a}\right)}$$

$$= a^{-\frac{1}{4}} \hat{\psi}_{2}(0) \psi_{1} \left(\frac{t'-x'}{a}\right)$$

$$\sim O\left(a^{-\frac{1}{4}}\right), \text{ falls } x' = t'$$

$$\sim O\left(a^{k}\right) \ \forall k, \text{ sonst}$$

$$(3.2)$$

Das analoge Ergebnis erhält man mit gleicher Rechnung auch für s = -1 und t' = -x' Dies bestätigt das intuitiv erwartete Ergebnis. Insgesamt erhalten wir also für die Wellenfrontmenge:

4 Die Wellenfrontmenge von Δ_m^2

Bevor wir die Wellenfrontmenge von Δ_m^2 berechnen können, benötigen wir einen Ausdruck dafür, oder besser noch einen für die Fouriertransformierte davon.

	(t', x') = (0, 0)	t' = x'	t' = -x'	$t' \neq \pm x'$
s = 1	$a^{-\frac{1}{4}}$	$a^{-\frac{1}{4}}$	a^k	a^k
s = -1	$a^{-\frac{1}{4}}$	a^k	$a^{-\frac{1}{4}}$	a^k
$s \neq \pm 1$	a^k	a^k	a^k	a^k

Tabelle 1: Konvergenzordnung von $S_{\Delta_m}(a,s,(t',x'))$ im Limit $a\to 0$ für alle interessanten Kombinationen von s und (t',x')

Abbildung 3: Das zu berechnende Integral Abbildung 4: Die Kreuzungstelle bei k'_{0+} aus (4.1) visualisiert von ganz nah angeschaut

4.1 $\hat{\Delta}^{*2}$ berechnen

Gemäß dem Faltungssatz gilt $\widehat{\Delta_m^2} = \widehat{\Delta}_m * \widehat{\Delta}_m = \widehat{\Delta}_m^{*2}$. Wir müssen also die Faltung von $\widehat{\Delta}_m$ mit sich selber ausrechnen.

$$\widehat{\Delta_m^{*2}}(\omega,k) = \int \theta(\omega')\delta(\omega'^2 - k'^2 - m^2)\theta(\omega - \omega')\delta((\omega - \omega')^2 - (k - k')^2 - m^2)\,\mathrm{d}\omega'\,\mathrm{d}k' \ \ (4.1)$$

An Abbildung 3 sehen wir schon, dass das Faltungsintegral nur dann ungleich null ist, wenn (ω, k) in der 2m-Massenschale liegen. Es ist also insbesondere $\omega > 0$. Da Δ_m Poincare-invariant ist, sind Δ_m^2 und $\widehat{\Delta_m^{*2}}$ es auch. Es genügt also $\widehat{\Delta_m^{*2}}$ für k=0 und positive ω zu berechnen. Alle anderen Werte holen wir uns dann aus der Poincare-Invarianz.

Um nun das Integral über zwei sich schneidende lineare¹ δ -Distributionen zu berechnen bedienen wir uns eines Physikertricks und stellen uns die δ -Distribution als Grenzwert

Wie erklärt man das besser, ohne an Anschaulichkeit oder Rigorosität zu verlieren

¹Linear in dem Sinne, dass die Distribution entlang einer Linie getragen ist. Nicht das es eine lineare Distribution ist

 $(h \to 0)$ einer $\frac{1}{h}$ -hohen und h-breiten Rechtecksfunktion vor. Dann ist das Integral über die sich schneidenden Rechteckfunktionen proportional zu der Schnittfläche und damit zu $l \cdot h$ in Abb. 4. Außerdem schneiden sich die beiden Hyperbeln für $\omega \to +\infty$ in einem rechten Winkel, das Faltungsintegral ergibt hier also 2.

Aus Abb. 4 lesen wir ab:

$$\tan(\alpha) = \frac{d\omega'}{dk'} \quad \text{und} \quad \frac{h}{l} = \sin(2\alpha)$$

$$\Rightarrow l = \frac{h}{\sin\left(2\arctan\left(\frac{d\omega'}{dk'}\right)\right)} = \frac{h\left(\left(\frac{d\omega'}{dk'}\right)^2 + 1\right)}{2\frac{d\omega'}{dk'}}$$
(4.2)

außerdem gilt

$$\omega' = \sqrt{k'2 + m^2} \implies \frac{d\omega'}{dk'} = \frac{k'}{\sqrt{k'^2 + m^2}} \tag{4.3}$$

Wenn wir nun (4.2) und (4.3) sowie die vorhergehenden Gedanken kombinieren erhalten wir

$$\widehat{\Delta_{m}}^{*2}(\omega,0) = C \frac{\left(d\omega'/dk'\right)^{2} \Big|_{k'_{0}} + 1}{d\omega'/dk'|_{k'_{0}}} \Theta(\omega^{2} - (2m)^{2})$$

$$= C \frac{\sqrt{k'_{0}^{2} + m^{2}}(2k'_{0}^{2} + m^{2})}{2k'_{0}(k_{0}^{2} + m^{2})} \Theta(\ldots)$$

$$= C \frac{\sqrt{\frac{1}{4}\omega^{2} - m^{2} + m^{2}}(\omega^{2} - 4m^{2} + m^{2})}{\sqrt{\omega^{2} - 4m^{2}}(\frac{1}{4}\omega^{2} - m^{2} + m^{2})} \Theta(\ldots)$$

$$= C \frac{\omega^{2} - 3m^{2}}{\omega\sqrt{\omega^{2} - 4m^{2}}} \Theta(\ldots) \stackrel{C=2}{=} 2 \frac{\omega^{2} - 3m^{2}}{\omega\sqrt{\omega^{2} - 4m^{2}}} \Theta(\ldots)$$

Jetzt erhalten wir $\widehat{\Delta_m}^{*2}(\omega, k)$ noch aus der Poincare-Invarianz:

breqn-Package ausprobie-

$$\widehat{\Delta_m}^{*2}(\omega, k) \stackrel{(\omega, k) \sim (\sqrt{\omega^2 - k^2}, 0)}{=} \widehat{\Delta_m}^{*2}(\sqrt{\omega^2 - k^2}, 0)$$

$$= 2 \frac{\omega^2 - k^2 - 3m^2}{\sqrt{\omega^2 - k^2}\sqrt{\omega^2 - k^2 - 4m^2}} \Theta(\omega^2 - k^2 - 4m^2)$$
(4.5)

Abbildung 5: Plot von $\hat{\Delta_m}^{*2}$ und $\hat{\Delta_m}$. Je weiter Abbildung 6: Plot von $\hat{\Delta_m}^{*2}$ um das wir uns von der 2m-Massenschale wegbewegen, desto konstanter wird $\hat{\Delta_m}^{*2}$ und ist singulär genau auf der 2m-Massenschale

asymptotische Verhalten für $\omega \to 0$ und $\omega \to \infty$ zu verdeutlichen

Es ist zu beachten, dass die Heaviside-Funktion genau bei der ersten Nullstelle der zweiten Wurzel im Nenner abschneidet und alle weiteren Nullstellen sowohl des Nenners als auch des Zählers außerhalb der 2m-Massenschale und damit außerhalb des Trägers der Heaviside-Funktion liegen.

4.2 ... und nun zur Wellenfrontmenge

Mit diesen Ausdrücken für $\widehat{\Delta_m}^{*2}$ können wir uns nun der Wellenfrontmenge widmen.

Fall |s| > 1

Genau wie im Fall $s \neq 1$ bei der massiven Zweipunktfunktion (vgl. 3) ist hier nichts zu tun, da für a klein genug wieder

$$supp(\hat{\psi}_{ast}) \cap supp(\widehat{\Delta_m}^{*2}) = \varnothing \Rightarrow \left\langle \hat{\psi}_{ast}, \widehat{\Delta_m}^{*2} \right\rangle = 0$$

gilt.

Fall s < 1

Hier bedienen wir uns direkt bei (2.2, Substitution 2) und schreiben

$$\begin{split} &\left\langle \widehat{\psi}_{ast}, \widehat{\Delta_{m}}^{*2} \right\rangle \\ &= 2a^{-\frac{3}{4}} \int \frac{\widehat{\psi}_{1}(\omega) \ \widehat{\psi}_{2}(k) \left(\omega^{2}a^{-2} - \omega^{2} \left(a^{-\frac{1}{2}}k + sa^{-1} \right)^{2} - 3m^{2} \right)}{\sqrt{\omega^{2}a^{-2} - \omega^{2} \left(a^{-\frac{1}{2}}k + s^{-1} \right)^{2}} \sqrt{\omega^{2}a^{-2} - \omega^{2} \left(a^{-\frac{1}{2}}k + sa^{-1} \right)^{2} - 4m^{2}}} \\ &\cdot \Theta \left(\omega^{2} - k^{2} - 4m^{2} \right) e^{-i\omega \left(\frac{t' - sx'}{a} + k \frac{x'}{\sqrt{a}} \right)} \omega \ d\omega \ dk \\ &= 2a^{-\frac{3}{4}} \int \frac{\widehat{\psi}_{1}(\omega) \ \widehat{\psi}_{2}(k) a^{-2} \left(\omega^{2} \left(\Delta s - 2a^{\frac{1}{2}}ks - ak^{2} \right) - 3a^{2}m^{2} \right) e^{-i\Theta(\dots)\omega}}{\omega a^{-2}} \ d\omega \ dk \end{split}$$

$$= 2a^{-\frac{3}{4}} \int \frac{\widehat{\psi}_{1}(\omega) \ \widehat{\psi}_{2}(k) a^{-2} \left(\omega^{2} \left(\Delta s - 2a^{\frac{1}{2}}ks - ak^{2} \right) - 3a^{2}m^{2} \right) e^{-i\Theta(\dots)\omega}}{\omega a^{-2}} \ d\omega \ dk \end{split}$$

Für hinreichend kleine a können wir den Integrand nun majorisieren

$$\left| 2 \frac{\hat{\psi}_1(\omega) \ \hat{\psi}_2(k) \omega^2 \Delta s \Theta(\ldots)}{\sqrt{\Delta s} \sqrt{\Delta s \omega^2}} \right| \ge \left| \frac{\hat{\psi}_1(\omega) \ \hat{\psi}_2(k) \left(\omega^2 \left(\Delta s - 2a^{\frac{1}{2}}ks - ak^2 \right) - 3a^2m^2 \right) \Theta(\ldots)}{\sqrt{\Delta s - 2a^{\frac{1}{2}}ks - ak^2} \sqrt{\Delta s \omega^2 - 2a^{\frac{1}{2}}\omega^2 ks - a\omega^2 k^2 - 4a^2m^2}} \right|$$

und dürfen also Lebesgue verwenden und schreiben

$$\lim_{a \to 0} \int \dots \, d\omega \, dk = \int \lim_{a \to 0} \dots \, d\omega \, dk$$

$$= 2a^{-\frac{3}{4}} \int \frac{\hat{\psi}_1(\omega) \, \hat{\psi}_2(k) \, \omega^2 \, \cancel{A} s \, \Theta(\dots)}{\sqrt{\cancel{\Lambda} s \sqrt{\cancel{\Lambda} s \omega}}} e^{-i\omega \left(\frac{t' - s x'}{a} + k \frac{x'}{\sqrt{a}}\right)} \, d\omega \, dk$$

$$= 2a^{-\frac{3}{4}} \int \hat{\psi}_1(\omega) \, \hat{\psi}_2\left(\frac{k}{\omega}\right) e^{-i\omega \frac{t' - s x'}{a} + ik \frac{x'}{\sqrt{a}}} \, d\omega \, dk$$

$$= 2a^{-\frac{3}{4}} \psi\left(\frac{t' - s x'}{a}, \frac{x'}{a}\right)$$

Und da Shearlets nach Proposition 1.1 schnell abfallen erhalten wir schließlich

$$\langle \psi_{ast}, \Delta_m^2 \rangle \sim O(a^k) \ \forall k$$

 $\in \mathbb{N}, \ \text{falls } (t', x') \neq 0$
 $\sim O(a^{-\frac{3}{4}}), \ \text{falls } (t', x') = 0$

5 Berechnen von $WF(G_F)$

5.1 Ausdrücke für $\langle \psi_{ast}, G_F \rangle$

Ab jetzt werden wir der Namenskonvention der Physiker in der SRT folgen und unsere Ortsraumvariablen mit x = (t, x) und unsere Impulsraumvariablen mit $\xi = (\omega, k)$ bezeichnen sowie konsequenterweise das Minkowskiskalarprodukt $x \cdot \xi = \omega t - kx$ verwenden. Des weiteren wird der Verschiebungsparameter mit t = (t', x') bezeichnet.

Die massive skalare Zweipunktfunktion bzw. der Feynmanpropagator im Impulsraum ist dann gegeben durch (Schwartz [1], (6.34))

$$\hat{G}_F(\omega, k) = \frac{1}{m^2 - \omega^2 + k^2 - i0^+}$$
(5.1)

Setzen wir dies in unsere Ausdrücke für $\langle \psi_{ast}, f \rangle$ aus (??) bzw. (??) ergibt sich, unter Verwendung des Minkowskiskalaprodukts,

$$\langle \hat{\psi}_{ast}, \hat{G}_{F} \rangle = \int \hat{\psi}_{ast}(\omega, t) \, \hat{G}_{F}(\omega, t) \, d\omega \, dk$$

$$= a^{\frac{3}{4}} \iint \frac{\hat{\psi}_{1}(a\omega) \, \hat{\psi}_{2} \left(a^{-\frac{1}{2}\frac{k}{\omega}} - s\right) \, e^{-i\omega t' + ikx'}}{m^{2} - \omega^{2} + k^{2} - i0^{+}} \, d\omega \, dk$$

$$= a^{-\frac{3}{4}} \iint \frac{\hat{\psi}_{1}(\omega) \, \hat{\psi}_{2} \left(\frac{k}{w}\right) \, e^{-i\omega \frac{t' - sx'}{a} + ik\frac{x'}{\sqrt{a}}}}{m^{2} - \left(\frac{\omega}{a}\right)^{2} + \left(\frac{\omega s}{a} + \frac{k}{\sqrt{a}}\right)^{2} - i0^{+}} \, d\omega \, dk$$

$$= a^{-\frac{3}{4}} \iint \frac{\hat{\psi}_{1}(\omega) \, \hat{\psi}_{2} \left(\frac{k}{\omega}\right) \, e^{-i\omega \frac{t' - sx'}{a} + ik\frac{x'}{\sqrt{a}}}}{m^{2} + a^{-2}\omega^{2}(s^{2} - 1) + a^{-\frac{3}{2}} 2s\omega k + a^{-1}k - i0^{+}} \, d\omega \, dk$$

$$\omega \in [-2, -\frac{1}{2}] \cup [\frac{1}{2}, 2]$$

$$|\frac{k}{8} - s| < \sqrt{ax}$$
(5.2)

und mit der anderen Substitution analog

Integral hübsch machen. Größeres Integralzeichen?

$$\langle \hat{\psi}_{ast}, \hat{G}_{F} \rangle = a^{-\frac{3}{4}} \iint_{\substack{|\omega| \in [\frac{1}{2}, 2]\\k \in [-1, 1]}} \frac{\omega \, \hat{\psi}_{1}(\omega) \, \hat{\psi}_{2}(k) e^{-i\omega\left(\frac{t'-sx'}{a} + \frac{kx'}{\sqrt{a}}\right)}}{\frac{t'-sx'}{a} + \frac{kx'}{\sqrt{a}}} \, d\omega \, dk$$
 (5.3)

wobei sich die Integrationsbereiche aus den Forderungen an den Träger von ψ (vgl. (1.2)) ergeben.

Nach Satz (1.2) genügt es zu bestimmen, an welchen Punkten (t', x') und in welche Richtungen s $S_f(a, s, (t', x'))$ nicht schnell-fallend in a^{-1} ist, um die Wellenfrontmenge zu bestimmen. Da wir keine explizite erzeugende Funktion ψ angegeben haben, werden wir uns dabei Argumente bedienen, die alleine auf den allgemeinen Eigenschaften von ψ_{ast} beruhen, aber nicht einer expliziten Form.

Das allgemeine Vorgehen wird dabei folgendes sein: Die Ausdrücke in (5.2) und (5.3) genau anstarren, um zu sehen für welche Werte von (t',x') und s potentiell interessante Dinge geschehen, also z.B. Terme im Nenner weg fallen, oder die Phase konstant wird. Dann werden diese Werte von (t',x') und s eingesetzt und alles so weit vereinfacht und genähert – im Rahmen des Erlaubten, ohne das Verhalten für $a \to 0$ zu ändern –, bis die a-Abhängigkeit abgelesen werden kann. Entscheidende Zutaten sind dabei der beschränkte Träger von $\hat{\psi}$ und der schnelle Abfall von ψ .

Fall
$$s = 1, t' = 0 = x'$$

Nach (5.3) erhalten wir mit s = 1, t' = 0 = x'

$$\langle \hat{\psi}_{a10}, \hat{G}_F \rangle = \int a^{-\frac{3}{4}} \frac{\omega \ \hat{\psi}_1(\omega) \ \hat{\psi}_2(k)}{m^2 + \omega^2 (a^{-1}k^2 + a^{-\frac{3}{2}}2k)} \, d\omega \, dk$$
$$= \int a^{\frac{3}{4}} \frac{\omega \ \hat{\psi}_1(\omega) \ \hat{\psi}_2(k)}{a^{\frac{3}{2}}m^2 + \omega^2 (a^{\frac{1}{2}}k^2 + 2k)} \, d\omega \, dk$$

Da aber $|\omega| \in [\frac{1}{2}, 2]$ und $k \in [-1, 1]$ ist, ist für hinreichend kleine a (und für genau die interessieren wir uns ja)

$$\left|\frac{\omega \; \hat{\psi}_1(\omega) \; \hat{\psi}_2(k)}{k\omega^2}\right| \geq \left|\frac{\omega \; \hat{\psi}_1(\omega) \; \hat{\psi}_2(k)}{a^{\frac{3}{2}}m^2 + a^{\frac{1}{2}}\omega^2k + 2k\omega^2}\right|$$

eine integrierbare (im Sinne des Cauchy-Hauptwertes) Majorante für den Integranden.

Wir dürfen uns also des Lebesgueschen Konvergenzsatzes bedienen und schreiben

$$\lim_{a\to 0} \left\langle \hat{\psi}_{a10}, \hat{G}_F \right\rangle = a^{\frac{3}{4}} \int \frac{\omega \ \hat{\psi}_1(\omega) \ \hat{\psi}_2(k)}{2k\omega^2} \, d\omega \, dk \sim O(a^{\frac{3}{4}})$$
 (5.4)

In Textform beschreiben, was die grobe Strategie ist, also wie der Integrand vernünfitg vereinfacht wird und welche Eigenschaften $von_{\nu}\psi$ wie eingehen.

Hier schon die Ergebnisse als Satz angeben, und dann Beweis hinschreiben?

Bemerkung einfügen, warum dass auch ziemlich unmöglich ist

Warum ist
CauchyHauptwert
hier erlaubt?
Weiter
ausführe,
warum

es diese

Für s=-1 erhalten wir genau das selbe Ergebniss, da ja der $\omega^2(1-s^2)$ -Term im Nenner genauso wieder verschwindet.

Fall
$$s \neq \pm 1, t' = 0 = x'$$

In diesem Fall verschwindet der $\omega^2(1-s^2)$ -Term im Nenner nicht und dementsprechend folgt

$$\langle \hat{\psi}_{as0}, \hat{G}_F \rangle = \int a^{-\frac{3}{4}} \frac{\omega \ \hat{\psi}_1(\omega) \ \hat{\psi}_2(k)}{m^2 - \omega^2((1 - s^2) - a^{-1}k^2 - a^{-\frac{3}{2}}2k)} \, d\omega \, dk$$
$$= \int a^{\frac{5}{4}} \frac{\omega \ \hat{\psi}_1(\omega) \ \hat{\psi}_2(k)}{a^2 m^2 + \omega^2(s^2 - 1) + a\omega^2 k^2 + a^{\frac{1}{2}}2\omega^2 ks} \, d\omega \, dk$$

Analog zum vorigen Teil ist, diesmal sogar ohne den Cauchy-Hauptwert bemühen zu müssen,

$$\left| \frac{2\omega \ \hat{\psi}_{1}(\omega) \ \hat{\psi}_{2}(k)}{\omega^{2}(1-s^{2})} \right| \geq \left| \frac{\omega \ \hat{\psi}_{1}(\omega) \ \hat{\psi}_{2}(k)}{a^{2}m^{2} + \omega^{2}(s^{2}-1) + a\omega^{2}k^{2} + a^{\frac{1}{2}}2\omega^{2}ks} \right|$$

dass eine integrierbare Majorante ist (in der Tat ja sogar in $C_c^{\infty}(\mathbb{R}^2)$) Damit können wir folgende Abschätzung treffen:

$$\lim_{a\to 0} \langle \hat{\psi}_{as0}, \hat{G}_F \rangle = a^{\frac{5}{4}} \int \frac{2\omega \ \hat{\psi}_1(\omega) \ \hat{\psi}_2(k)}{\omega^2 (1-s^2)} d\omega dk \sim O(a^{\frac{5}{4}})$$

Fall $s \neq \pm 1, (t', s') \neq 0$

In diesem Fall benutzen wir wieder die erste Substitution (5.2) und klammern wie schon in den beiden vorigen Teilen die höchste negative Potenz von *a* im Nenner aus.

$$\Rightarrow \langle \hat{\psi}_{ast}, \hat{G}_F \rangle = a^{\frac{5}{4}} \int \frac{\hat{\psi}_1(\omega) \; \hat{\psi}_2\left(\frac{k}{\omega}\right) \; e^{-i\omega\left(\frac{k'-sx'}{a}\right) + ik\frac{x'}{\sqrt{a}}}}{a^2m^2 - \omega^2(1-s^2) + a^{\frac{1}{2}}s\omega k + ak^2} \, d\omega \, dk$$
 (5.5)

und da immer noch $0 \notin supp(\psi_1)$ gilt ist ein weiteres mal eine integrierbare Majorante gegeben durch

Überall wo es sein muss $\lim_{a\to 0}$ dazu schreiben, oder sagen dass der Limit überall impliziert ist

$$2\frac{\hat{\psi}_1(\omega)\ \hat{\psi}_2\left(\frac{k}{\omega}\right)}{\omega^2(s^2-1)}\tag{5.6}$$

In der Tat ist sogar

$$\hat{f}(\omega, k) := \frac{\hat{\psi}_1(\omega) \; \hat{\psi}_2\left(\frac{k}{\omega}\right)}{\omega^2(s^2 - 1)} \in C_c^{\infty}(\hat{\mathbb{R}}^2)$$
(5.7)

da ψ_1 und ψ_2 getragen sind. Demnach ist die Fourierinverse von \hat{f} , $f := \mathcal{F}^{-1}(\hat{f}) \in \mathcal{S}(\mathbb{R}^2)$, also schnell fallend. Damit können wir schließlich abschätzen

$$\left|\left\langle \hat{\psi}_{ast}, \hat{G}_{F} \right\rangle \right| = a^{\frac{5}{4}} \left| \int \hat{f}(\omega, k) e^{-i\omega \left(\frac{t'-sx'}{a}\right) + ik\frac{x'}{\sqrt{a}}} d\omega dk \right|$$

$$= a^{\frac{5}{4}} \left| f\left(\frac{t'-sx}{a}, \frac{x'}{\sqrt{a}}\right) \right| \leq a^{\frac{5}{4}} C_{k} \left(1 + \left\|\frac{(t'-sx')/a}{x'/\sqrt{a}}\right\|\right)^{-k}$$

$$\leq a^{\frac{5}{4}} \frac{C_{k}}{2} a^{\frac{k}{2}} \left\|\frac{(t'-sx')}{x'}\right\|^{-k} \sim O\left(a^{\frac{5/2+k}{2}}\right) \quad \forall k \in \mathbb{N}$$

$$\Rightarrow \left|\left\langle \hat{\psi}_{ast}, \hat{G}_{F} \right\rangle \right| \sim O\left(a^{k}\right) \quad \forall k \in \mathbb{N}$$

$$(5.8)$$

Fall $s = 1, (t', x') \neq 0$

Auch in diesem Fall nutzen wir wieder den ersten Ausdruck für $\langle \hat{\psi}_{a1t}, \hat{G}_F \rangle$ aus (5.2) und sorgen wir auch bisher jedes Mal dafür, dass wir im Nenner nur noch positive Potenzen von a und einen von a unabhängigen Term haben. Dann sieht das ganze so aus:

$$\langle \hat{\psi}_{a1t}, \hat{G}_F \rangle = a^{\frac{3}{4}} \int \frac{\hat{\psi}_1(\omega) \, \hat{\psi}_2\left(\frac{k}{\omega}\right) \, e^{-i\omega\left(\frac{t'-x'}{a}\right) + ik\frac{x'}{\sqrt{a}}}}{a^{\frac{3}{2}}m^2 + a^{\frac{1}{2}}k^2 + 2\omega k} \, d\omega \, dk$$

wo wir im $\lim_{a\to 0}$ wieder doe a-Potenzen im Nenner weg fallen lassen und auch dieses Mal dafür wieder den Cauchy-Hauptwert bemühen müssen, um den Lebesgueschen Konvergenzsatz benutzen zu dürfen. Weiter geht's:

$$= a^{\frac{3}{4}} \int \frac{\hat{\psi}_{1}(\omega) \, \hat{\psi}_{2}\left(\frac{k}{\omega}\right) \, e^{-i\omega\left(\frac{t'-x'}{a}\right) + ik\frac{x'}{\sqrt{a}}}}{2\omega k} \, d\omega \, dk$$

$$= a^{\frac{3}{4}} \int \underbrace{\left\{\int \frac{\hat{\psi}_{2}\left(\frac{k}{\omega}\right) \, e^{ik\frac{x'}{\sqrt{a}}}}{2k\omega} \, dk\right\}}_{=:\hat{f}_{a}(\omega)} \hat{\psi}_{1}(\omega) e^{-i\omega\left(\frac{t'-x'}{a}\right)} \, d\omega \qquad (5.9)$$

und um hier weiter zu kommen, schauen wir uns \hat{f}_a genauer an. Sei dazu $\Psi_2(\omega) := \int_{-\infty}^{\omega} \psi_2(\omega') \, d\omega' - \int_{\omega}^{+\infty} \psi_2(\omega') \, d\omega'$ eine Stammfunktion von ψ_2 . Dies ist offenbar C^{∞} und beschränkt, da $\hat{\psi}_2 \in C_c^{\infty}$. Mithilfe von Fourieridentitäten und Substitution können wir nun weiter rechnen:

$$\hat{f}_{a}(\omega) = \int \frac{\hat{\psi}_{2}\left(\frac{k}{\omega}\right)}{2k\omega} e^{ik\frac{x'}{\sqrt{a}}} d\omega$$

$$\stackrel{i)}{=} \int \frac{\hat{\psi}_{2}(k)}{2k} e^{ik\frac{x'\omega}{\sqrt{a}}} d\omega$$

$$\stackrel{ii)}{=} \frac{i}{2} \Psi_{2}\left(\frac{x'\omega}{\sqrt{a}}\right)$$

Hier wurde in i) einfach $k \to \omega k$ substituiert und im Schritt ii) wurde genutzt, dass $f(x) = \operatorname{sgn}(x) \leftrightarrow \hat{f}(k) \sim \frac{1}{k}$. Nun stecken wir diese Erkenntnisse in unseren vorigen Ausdruck und erhalten

$$\langle \hat{\psi}_{a1t}, \hat{G}_{F} \rangle = \frac{ia^{\frac{3}{4}}}{2} \int \Psi_{2} \left(\frac{x'\omega}{\sqrt{a}} \right) \hat{\psi}_{1}(\omega) e^{-i\omega \left(\frac{t'-x'}{a} \right)} d\omega dk$$

$$\sim O\left(a^{\frac{3}{4}} \right) \quad ; \text{ für } t' = x'$$

$$\sim O\left(a^{k} \right) \ \forall k \in \mathbb{N} \quad ; \text{ andernfalls}$$
(5.10)

Im letzten Schritt wurde wieder genutzt, dass $\Psi_2\left(\frac{x'\omega}{\sqrt{a}}\right)$ $\hat{\psi}_1(\omega) \in \mathcal{S}(\mathbb{R})$ ist, und demnach eine schnell fallende Fouriertransformierte hat.

Das analoge Ergebnis erhält man auch für s = -1 und t' = -x'

Literatur

[1] Matthew D. Schwartz. Quantum Field Theory and the Standard Model -. Cambridge: Cambridge University Press, 2014. ISBN: 978-1-107-03473-0.