А. Ю. Пирковский

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ Лекция 16

16.1. Спектральный радиус

Пусть A — унитальная банахова алгебра, $a \in A$ — ее элемент.

Определение 16.1. Число $r(a) = \sup\{|\lambda| : \lambda \in \sigma(a)\}$ называется спектральным радиусом элемента $a \in A$.

Поскольку $\sigma(a)$ — непустой компакт в \mathbb{C} , спектральный радиус любого элемента определен, конечен и является радиусом наименьшего замкнутого круга с центром в нуле, содержащего $\sigma(a)$.

Наблюдение 16.1. Из теоремы 15.5 (ii) следует, что $r(a) \leqslant ||a||$.

Пример 16.1. Легко видеть, что в алгебре $A = \ell^{\infty}(X)$ для любого $a \in A$ справедливо равенство r(a) = ||a||. То же самое верно и в любой ее спектрально инвариантной подалгебре — в частности, в алгебрах $C_b(X)$ и $B_{\mathscr{A}}(X)$ (см. пример 14.4).

Пример 16.2. Пусть $A = \mathscr{B}(\mathbb{C}^n)$, где пространство \mathbb{C}^n снабжено обычной евклидовой нормой $\|\cdot\|_2$ (см. пример 1.4). Пусть T — оператор в \mathbb{C}^n , матрица которого в каком-либо ортонормированном базисе диагональна. Легко проверить (ср. предложение 2.6), что норма $\|T\|$ равна наибольшему из модулей его собственных значений. Следовательно, $r(T) = \|T\|$.

Через несколько лекций мы обобщим этот «игрушеченый» пример на случай так называемых *нормальных* операторов в гильбертовом пространстве.

В общем случае равенство r(a) = ||a|| может и не выполняться:

Пример 16.3. Пусть $A = \mathcal{B}(\mathbb{C}^2)$, и пусть оператор T в каком-либо базисе записывается матрицей $T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Тогда $\sigma(T) = \{0\}$, поэтому и r(T) = 0; с другой стороны, $||T|| \neq 0$. На самом деле аналогичное явление имеет место для любого ненулевого нильпотентного элемента (см. листок 11).

Докажем теперь полезную формулу, выражающую спектральный радиус в терминах нормы.

Теорема 16.2 (формула Бёрлинга). Пусть A- унитальная банахова алгебра, и пусть $a\in A$. Тогда

$$r(a) = \lim_{n \to \infty} \|a^n\|^{1/n} = \inf_{n \ge 1} \|a^n\|^{1/n}.$$
 (16.1)

Доказательство. Достаточно установить, что

$$r(a) \leqslant \inf_{n \geqslant 1} \|a^n\|^{1/n} \quad \text{if} \quad r(a) \geqslant \overline{\lim}_{n \to \infty} \|a^n\|^{1/n};$$
 (16.2)

отсюда будет следовать как существование указанного в формулировке предела, так и его совпадение с r(a).

Если $\lambda \in \sigma(a)$, то $\lambda^n \in \sigma(a^n)$ ввиду теоремы об отображении спектра. Поэтому $|\lambda^n| \leq ||a^n||$ и $|\lambda| \leq ||a^n||^{1/n}$. Взяв inf по $n \in \mathbb{N}$, а затем sup по $\lambda \in \sigma(a)$, получаем неравенство $r(a) \leq \inf_n ||a^n||^{1/n}$.

Для доказательства второго неравенства возьмем круг $D = \{\lambda \in \mathbb{C} : |\lambda| < 1/r(a)\}$ (если r(a) = 0, то $D = \mathbb{C}$), зафиксируем функционал $f \in A^*$ и заметим, что функция

$$\psi_f(\lambda) = f((1 - \lambda a)^{-1})$$

определена всюду на D. Напомним, что функция $\lambda \mapsto (1-\lambda a)^{-1} = -\lambda^{-1} R_a(\lambda^{-1})$ голоморфна в $D\setminus\{0\}$ (см. предложение 15.8) и стремится к 1 при $\lambda\to 0$ (см. теорему 15.3). Следовательно, функция ψ_f голоморфна в D (по теореме об устранимой особенности) и поэтому разлагается в ряд Тейлора: $\psi_f(\lambda) = \sum_n c_n \lambda^n$ для всех $\lambda \in D$.

Если $|\lambda| < 1/\|a\|$, то $(1 - \lambda a)^{-1} = \sum_n (\lambda a)^n$ (см. теорему 15.3). Поэтому $\psi_f(\lambda) = \sum_n f(a^n) \lambda^n$ для всех таких λ . Пользуясь единственностью ряда Тейлора, заключаем, что $c_n = f(a^n)$ для всех n.

Зафиксируем произвольное $\lambda \in D$, $\lambda \neq 0$. Поскольку ряд $\sum_n f(a^n)\lambda^n$ сходится, последовательность $\{f(a^n)\lambda^n\}$ ограничена. Применяя следствие 11.8 из теоремы Банаха—Штейнгауза, видим, что последовательность $\{\lambda^n a^n\}$ ограничена в A, т.е. $\|\lambda^n a^n\| \leqslant C$ для некоторого C>0 и всех n. Переписывая полученное неравенство в виде $\|a^n\|^{1/n} \leqslant C^{1/n}/|\lambda|$ и переходя к верхнему пределу, получаем $\overline{\lim}_n \|a^n\|^{1/n} \leqslant 1/|\lambda|$. Ввиду произвольности точки $\lambda \in D \setminus \{0\}$ отсюда следует, что $\overline{\lim}_n \|a^n\|^{1/n} \leqslant r(a)$, как и требовалось. Итак, оба неравенства (16.2) установлены, и теорема доказана.

Замечание 16.1. Вы, наверное, заметили, что формула Бёрлинга напоминает формулу Коши–Адамара из комплексного анализа. В этом нет ничего удивительного: на самом деле основные утверждения о рядах Лорана голоморфных функций можно перенести (попробуйте это сделать!) на случай функций со значениями в банаховом пространстве. В частности, если X — банахово пространство, то всякая голоморфная в кольце $D_{r,R} = \{z \in \mathbb{C} : r < |z| < R\}$ функция $f \colon D_{r,R} \to X$ разлагается в $D_{r,R}$ в ряд Лорана $\sum_{n \in \mathbb{Z}} c_n z^n$ (где $c_n \in X$). Если при этом f не продолжается до голоморфной функции в большем кольце, то радиусы r и R можно вычислить по формулам Коши–Адамара

$$R = \left(\overline{\lim}_{n \to +\infty} \|c_n\|^{1/n}\right)^{-1}, \quad r = \overline{\lim}_{n \to +\infty} \|c_{-n}\|^{1/n}.$$
 (16.3)

Используя эти факты, можно получить простое доказательство формулы Бёрлинга. В самом деле, резольвентная функция R_a элемента a унитальной банаховой алгебры A голоморфна в кольце $D_{r(a),\infty}$ и, как нетрудно проверить, не продолжается до голоморфной функции в большем кольце. С другой стороны, при $|\lambda| > ||a||$ имеем разложение

$$R_a(\lambda) = -\lambda^{-1}(1 - \lambda^{-1}a)^{-1} = -\sum_{n \ge 0} a^n \lambda^{-n-1}.$$

Следовательно, это же разложение имеет место и при $|\lambda| > r(a)$, и из (16.3) следует, что $r(a) = \overline{\lim}_n \|a^n\|^{1/n}$. Вместе с неравенством $r(a) \leqslant \inf_n \|a^n\|^{1/n}$, которое составляет «простую часть» доказательства формулы Бёрлинга (см. выше), это дает нужное равенство (16.1).

Лекция 16 107

Следствие 16.3. Для $a \in A$ следующие условия эквивалентны:

- (i) $\sigma(a) = \{0\};$
- (ii) r(a) = 0;
- (iii) $||a^n|| = o(\varepsilon^n)$ при $n \to \infty$ для любого $\varepsilon > 0$ (т.е. нормы степеней элемента а стремятся к нулю быстрее, чем любая геометрическая прогрессия).

Определение 16.2. Элемент $a \in A$, удовлетворяющий эквивалентным условиям следствия 16.3, называется *квазинильпотентным*.

Для сравнения напомним, что элемент $a \in A$ называется *нильпотентным*, если $a^n = 0$ для некоторого $n \in \mathbb{N}$. Разумеется, всякий нильпотентный элемент квазинильпотентен, однако обратное неверно. Вот классический пример.

Упражнение 16.1. Пусть I = [a, b] и $K \in L^2(I \times I)$. Интегральный оператор Вольтерра $V_K \colon L^2(I) \to L^2(I)$ задается формулой

$$(V_K f)(x) = \int_a^x K(x, y) f(y) \, dy.$$

- (i) Докажите, что если K ограничена, то V_K квазинильпотентен.
- (ii)* Докажите, что V_K квазинильпотентен для любой $K \in L^2(I \times I)$.

Операторы Вольтерра образуют важный и довольно хорошо изученный класс линейных операторов. В частности, они играют важную роль в теории интегральных уравнений, описывающих различные физические процессы. То, что оператор Вольтерра квазинильпотентен, означает в точности, что для любой функции $g \in L^2(I)$ и любого $\lambda \in \mathbb{C}$ интегральное уравнение Вольтерра второго рода $f = \lambda V_K f + g$ с неизвестной функцией $f \in L^2(I)$ имеет единственное решение.

Еще одно полезное следствие формулы Бёрлинга заключается в том, что при «уменьшении» алгебры A спектральный радиус ее элемента остается прежним (напомним, что сам спектр может при этом увеличиться; см., например, листок 12).

Следствие 16.4. Пусть A — унитальная банахова алгебра, $B \subseteq A$ — замкнутая подалгебра, причем $1_A \in B$. Тогда $r_B(b) = r_A(b)$ для любого $b \in B$.

Более точная информация о том, насколько $\sigma_B(b)$ может быть больше, чем $\sigma_A(b)$, содержится в листке 13.

16.2. Спектры ограниченных операторов. Части спектра

От общих банаховых алгебр перейдем теперь к алгебре $\mathcal{B}(X)$ ограниченных операторов в банаховом пространстве X. Наша ближайшая задача — вычислить спектры некоторых классических операторов, обсудить несколько общих приемов вычисления спектра и попутно понять, на какие части естественно разбить спектр линейного оператора.

Предложение 16.5. Пусть $X=\ell^p$ (где $1\leqslant p\leqslant \infty$) или $X=c_0$, $\alpha=(\alpha_n)\in \ell^\infty$ и $M_\alpha\colon X\to X$ — диагональный оператор (см. пример 2.2). Тогда $\sigma(M_\alpha)=\overline{\{\alpha_n\}_{n\in\mathbb{N}}}$.

Доказательство. Обозначим, как обычно, через e_n последовательность с единицей на n-ом месте и нулем на остальных. Очевидно, $M_{\alpha}e_n=\alpha_ne_n$. Отсюда с учетом замкнутости спектра следует, что $\overline{\{\alpha_n\}_{n\in\mathbb{N}}}\subseteq\sigma(M_{\alpha})$. Для доказательства обратного включения заметим, что отображение

$$\varphi \colon \ell^{\infty} \to \mathscr{B}(X), \quad \varphi(\alpha) = M_{\alpha},$$

является унитальным гомоморфизмом и поэтому не увеличивает спектр (предложение 14.2). Таким образом,

$$\sigma(M_{\alpha}) = \sigma_{\mathscr{B}(X)}(\varphi(\alpha)) \subseteq \sigma_{\ell^{\infty}}(\alpha) = \overline{\{\alpha_n\}_{n \in \mathbb{N}}}$$

(см. пример 14.4). Это завершает доказательство.

Полученный результат можно обобщить следующим образом.

Предложение 16.6. Пусть (Ω, μ) — пространство с мерой¹, $X = L^p(\Omega, \mu)$ (где $1 \le p \le \infty$), $f \in L^\infty(\Omega, \mu)$ и $M_f \colon X \to X$ — оператор умножения (см. пример 2.5). Тогда спектр $\sigma(M_f)$ равен множеству существенных значений функции f.

Доказательство. Как и в предыдущем предложении, имеем унитальный гомоморфизм

$$\varphi \colon L^{\infty}(\Omega, \mu) \to \mathscr{B}(X), \quad \varphi(f) = M_f.$$

Напомним, что $\sigma_{L^{\infty}}(f)$ — это в точности множество существенных значений функции f (см. пример 14.5). Поэтому, чтобы доказать требуемое равенство, остается проверить, что гомоморфизм φ переводит необратимые элементы алгебры $L^{\infty}(\Omega, \mu)$ в необратимые операторы (см. предложение 14.2).

Итак, пусть $f \in L^{\infty}(\Omega,\mu)$ — необратимый элемент. Это означает в точности, что 0 — существенное значение функции f, т.е. $\mu(f^{-1}(U))>0$ для любой окрестности нуля $U\subseteq\mathbb{C}$. Для каждого $\delta>0$ выберем измеримое подмножество $E_{\delta}\subseteq\Omega$ так, чтобы $0<\mu(E_{\delta})<\infty$ и $|f(x)|<\delta$ для всех $x\in E_{\delta}$. Тогда функция $\chi_{\delta}=\chi_{E_{\delta}}$ лежит в X, причем $\chi_{\delta}\neq0$ в X. Нетрудно проверить (проверьте!), что $\|M_f\chi_{\delta}\|\leqslant\delta\|\chi_{\delta}\|$ (см. пример 2.5). Следовательно, оператор M_f не топологически инъективен, а значит, необратим.

Если внимательно посмотреть на разобранные выше примеры, то может возникнуть естественное желание разбить спектр оператора T на несколько частей в зависимости от того, по какой причине соответствующий оператор $T - \lambda \mathbf{1}$ необратим.

Вообще, пусть S — произвольный ограниченный оператор в банаховом пространстве X. Почему он может оказаться необратимым? Во-первых, может оказаться, что $\operatorname{Ker} S \neq 0$ (в конечномерном случае этим все и исчерпывается — инъективный оператор в конечномерном пространстве обратим). Во-вторых, возможен случай, когда $\operatorname{Ker} S = 0$, но $\operatorname{Im} S \neq X$ (приведите пример!). Его удобно разбить на два подслучая: либо $\operatorname{Im} S$ плотен в X, либо нет. В применении к оператору $S = T - \lambda \mathbf{1}$ это приводит к следующему определению.

 $^{^1}$ Как обычно, мы не предполагаем, что мера μ конечна, однако будем требовать, чтобы каждое измеримое подмножество в Ω положительной меры содержало измеримое подмножество конечной положительной меры. Этим свойством обладают все «приличные» меры — в частности, все σ -конечные меры. Если не требовать выполнения этого условия, то доказываемое утверждение перестает быть верным — приведите пример!

Лекция 16 109

Определение 16.3. *Точечным спектром* оператора $T \in \mathcal{B}(X)$ называется множество

$$\sigma_p(T) = \{ \lambda \in \mathbb{C} : \operatorname{Ker}(T - \lambda \mathbf{1}) \neq 0 \}.$$

Hепрерывным спектром оператора T называется множество

$$\sigma_c(T) = \{\lambda \in \mathbb{C} \setminus \sigma_p(T) : \overline{\operatorname{Im}(T - \lambda \mathbf{1})} = X, \operatorname{Im}(T - \lambda \mathbf{1}) \neq X\}.$$

Наконец, остаточным спектром оператора T называется множество

$$\sigma_r(T) = \{ \lambda \in \mathbb{C} \setminus \sigma_p(T) : \overline{\operatorname{Im}(T - \lambda \mathbf{1})} \neq X \}.$$

Очевидно, $\sigma(T) = \sigma_p(T) \sqcup \sigma_c(T) \sqcup \sigma_r(T)$. Заметим, что точечный спектр $\sigma_p(T)$ — это в точности множество собственных значений оператора T. Если пространство X конечномерно, то $\sigma(T) = \sigma_p(T)$, а $\sigma_c(T)$ и $\sigma_r(T)$ пусты. Посмотрим, что происходит в бесконечномерном случае.

Предложение 16.7. Пусть $X = \ell^p$ (где $1 \leqslant p < \infty$) или $X = c_0$, $\alpha = (\alpha_n) \in \ell^\infty$ и M_α : $X \to X$ — диагональный оператор (см. пример 2.2). Тогда $\sigma_p(M_\alpha) = \{\alpha_n\}$, $\sigma_c(M_\alpha) = \overline{\{\alpha_n\}} \setminus \{\alpha_n\}$ и $\sigma_r(M_\alpha) = \varnothing$.

Доказательство. Поскольку $M_{\alpha}e_n = \alpha_n e_n$, справедливо включение $\{\alpha_n\} \subseteq \sigma_p(M_{\alpha})$. Пусть теперь $\lambda \in \sigma(M_{\alpha}) \setminus \{\alpha_n\}$. Заметим, что $M_{\alpha} - \lambda \mathbf{1} = M_{\beta}$, где $\beta_n = \alpha_n - \lambda$. Поскольку $\beta_n \neq 0$ для всех n, оператор M_{β} инъективен, т.е. $\lambda \notin \sigma_p(M_{\alpha})$. С другой стороны, вектор $e_n = \beta_n^{-1} M_{\beta}(e_n)$ лежит в Im M_{β} для всех n. Но линейная оболочка векторов e_n $(n \in \mathbb{N})$ плотна в X; значит, и Im M_{β} плотен в X, а это и означает, что $\lambda \in \sigma_c(M_{\alpha})$.

При вычислении спектра часто бывает полезно использовать соображения подобия:

Предложение 16.8. Пусть X, Y — банаховы пространства. Предположим, что операторы $S \in \mathcal{B}(X)$ и $T \in \mathcal{B}(Y)$ подобны (см. определение 7.4). Тогда $\sigma(S) = \sigma(T)$, $\sigma_p(S) = \sigma_p(T)$, $\sigma_c(S) = \sigma_c(T)$ и $\sigma_r(S) = \sigma_r(T)$.

Доказательство этого предложения — простая проверка (проведите ee!).

В качестве иллюстрации вычислим спектр оператора двустороннего сдвига в $\ell^2(\mathbb{Z})$ (см. пример 2.3).

Предложение 16.9. Пусть $T_b \colon \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ — оператор двустороннего сдвига. Тогда $\sigma(T_b) = \mathbb{T}$.

Доказательство. Для каждого $n \in \mathbb{Z}$ рассмотрим функцию $f_n(z) = z^n$ ($z \in \mathbb{T}$). Как уже отмечалось в примере 6.7, $\{f_n\}_{n\in\mathbb{Z}}$ — ортонормированный базис в $L^2(\mathbb{T})$. Сопоставляя каждой функции из $L^2(\mathbb{T})$ последовательность ее коэффициентов Фурье относительно этого базиса, мы получаем унитарный изоморфизм $U \colon L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$ (см. теорему 6.8), переводящий ортонормированный базис $\{f_n\}_{n\in\mathbb{Z}}$ в стандартный ортонормированный базис $\{e_n\}_{n\in\mathbb{Z}}$ пространства $\ell^2(\mathbb{Z})$. Следовательно, оператор T_b унитарно эквивалентен оператору $S = U^{-1}T_bU$ в пространстве $L^2(\mathbb{T})$. Так как $T_be_n = e_{n+1}$ для всех $n \in \mathbb{Z}$, то и $Sf_n = f_{n+1} = f_1f_n$ для всех $n \in \mathbb{Z}$. Таким образом, оператор S действует на базисе $\{f_n\}_{n\in\mathbb{Z}}$ так же, как и оператор умножения M_{f_1} на функцию f_1 . Отсюда заключаем, что $S = M_{f_1}$. Применяя предложения 16.8 и 16.6 и пользуясь тем, что множество существенных значений непрерывной функции — это просто множество ее значений (см. листок 11), получаем равенства $\sigma(T_b) = \sigma(M_{f_1}) = \mathbb{T}$.

Следующая серия приемов вычисления спектра основана на теории двойственности, т.е. на обсуждавшихся в лекции 13 взаимосвязях между свойствами оператора и свойствами его сопряженного.

Предложение 16.10. Пусть X — банахово пространство и $T \in \mathcal{B}(X)$. Тогда $\sigma(T) =$ $\sigma(T^*)$.

Доказательство. Мы знаем (см. теорему 13.10), что оператор $T \in \mathcal{B}(X)$ обратим тогда и только тогда, когда обратим оператор $T^* \in \mathcal{B}(X^*)$. Остается применить это утверждение к оператору $T - \lambda \mathbf{1}_X$.

Исследуем теперь соотношения между частями спектра операторов T и T^* , т.е. между их точечными, непрерывными и остаточными спектрами.

Предложение 16.11. Пусть X — банахово пространство и $T \in \mathcal{B}(X)$. Тогда

- (i) $\sigma_n(T) \subseteq \sigma_n(T^*) \cup \sigma_r(T^*)$;
- (ii) $\sigma_c(T) \subseteq \sigma_c(T^*) \cup \sigma_r(T^*);$
- (iii) $\sigma_r(T) \subseteq \sigma_p(T^*);$
- (iv) $\sigma_p(T^*) \subseteq \sigma_p(T) \cup \sigma_r(T)$;
- (v) $\sigma_c(T^*) \subseteq \sigma_c(T)$;
- (vi) $\sigma_r(T^*) \subset \sigma_n(T) \cup \sigma_c(T)$.

Eсли же пространство X рефлексивно, то

- (vii) $\sigma_c(T) = \sigma_c(T^*)$;
- (viii) $\sigma_r(T^*) \subseteq \sigma_p(T)$.

Доказательство. Достаточно применить следствие 13.9 к оператору $T - \lambda \mathbf{1}_X$.

В качестве иллюстрации вычислим непрерывный, точечный и остаточный спектры операторов правого и левого сдвига.

Предложение 16.12. Пусть $1 , и пусть <math>T_r, T_\ell \in \mathscr{B}(\ell^p)$ — операторы правого и левого сдвига. Положим

$$\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}, \quad \overline{\mathbb{D}} = \{z \in \mathbb{C} : |z| \leqslant 1\}, \quad \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}.$$

Тогда

- (i) $\sigma(T_r) = \sigma(T_\ell) = \overline{\mathbb{D}};$
- (ii) $\sigma_p(T_r) = \varnothing$, $\sigma_c(T_r) = \mathbb{T}$, $\sigma_r(T_r) = \mathbb{D}$; (iii) $\sigma_p(T_\ell) = \mathbb{D}$, $\sigma_c(T_\ell) = \mathbb{T}$, $\sigma_r(T_\ell) = \varnothing$.

Доказательство. Во-первых, заметим, что

$$\sigma(T_r) \subseteq \overline{\mathbb{D}}, \quad \sigma(T_\ell) \subseteq \overline{\mathbb{D}},$$
 (16.4)

поскольку $||T_{\ell}|| = ||T_r|| = 1$. Найдем теперь точечные спектры наших операторов. Заметим, что

$$T_r x = \lambda x \iff (0 = \lambda x_1) \& (x_n = \lambda x_{n+1} \forall n) \iff x = 0,$$

поэтому

$$\sigma_p(T_r) = \varnothing. \tag{16.5}$$

Лекция 16 111

С другой стороны,

$$T_{\ell}x = \lambda x \iff x_{n+1} = \lambda x_n \ \forall n \iff x_n = x_1 \lambda^{n-1} \ \forall n,$$

поэтому вектор $x \neq 0$ является собственным для T_{ℓ} с собственным значением λ тогда и только тогда, когда последовательность (λ^{n-1}) лежит в ℓ^p , т.е. когда $|\lambda| < 1$. Следовательно,

$$\sigma_p(T_\ell) = \mathbb{D}. \tag{16.6}$$

Пусть теперь число q таково, что 1/p+1/q=1. Операторы $T_\ell, T_r \colon \ell^p \to \ell^p$ нам в дальнейшем будет удобно обозначать через $T_\ell^{(p)}$ и $T_r^{(p)}$ соответственно. Напомним (см. предложение 7.5), что $(T_\ell^{(p)})^* \cong T_r^{(q)}$ и $(T_r^{(p)})^* \cong T_\ell^{(q)}$ (здесь символ \cong означает изометрическую эквивалентность). Применяя предложения 16.8 и 16.11, получаем следующую цепочку включений:

$$\mathbb{D} \stackrel{(16.6)}{=} \sigma_p(T_\ell^{(q)}) \subseteq \sigma_p(T_r^{(p)}) \cup \sigma_r(T_r^{(p)}) \stackrel{(16.5)}{=} \sigma_r(T_r^{(p)}) \subseteq \sigma_p(T_\ell^{(q)}) \stackrel{(16.6)}{=} \mathbb{D}.$$

Следовательно,

$$\sigma_r(T_r) = \mathbb{D}. \tag{16.7}$$

Из (16.4), (16.6) и (16.7) с учетом замкнутости спектра сразу следует утверждение (i). Далее, из (16.5) и (16.7) с учетом (i) следует, что

$$\sigma_c(T_r) = \mathbb{T},$$

откуда с учетом п. (vii) предложения 16.11 получаем равенство

$$\sigma_c(T_\ell) = \mathbb{T}.\tag{16.8}$$

Наконец, из (16.8), (16.6) и (i) получаем оставшееся равенство $\sigma_r(T_\ell) = \emptyset$.

Полезное упражнение — доказать предложение 16.12 «в лоб», т.е. не используя соображений двойственности. Задача вполне решаемая, но, согласитесь, с двойственностью все выглядит куда проще и красивее.

Разобранные выше примеры — лишь небольшая часть в серии задач о вычислении спектров классических операторов. Несколько других важных примеров — упражнения из листка 13; обязательно постарайтесь их сделать!