Lecture 01: Convergence

Mathematical Statistics II, MATH 60062/70062

Thursday January 20, 2022

Reference: Casella & Berger, 5.5

Convergence concepts

- In statistical analysis, a key to the success of finding a good inferential procedure is being able to find some moments and/or distributions of various statistics.
- In many complicated problems, exact distributional results (i.e., "finite sample" results that are applicable for any fixed sample size n) of given statistics may not be available.
- When exact results are not available, we may be able to gain insight by examining the stochastic behavior as the sample size n becomes infinitely large. These are called large sample or asymptotic results.
- The asymptotic approach can also be used to obtain a procedure simpler (e.g., in terms of computation) than that produced by the exact approach.

Convergence in probability

A sequence of random variables X_1, X_2, \ldots , converges in probability to a random variable X (written as $X_n \stackrel{p}{\to} X$) if, for every $\epsilon > 0$,

$$\lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0.$$

That is, $P(|X_n - X| \ge \epsilon) \to 0$ as $n \to \infty$. An equivalent definition is

$$\lim_{n \to \infty} P(|X_n - X| < \epsilon) = 1.$$

- Informally, $X_n \xrightarrow{p} X$ means the probability of the event " X_n stays away from X" gets small as n gets large.
- In many cases, statisticians are concerned with situations where the limiting random variable *X* is a constant.

Weak Law of Large Numbers (WLLN)

Let X_1, \ldots, X_n be iid random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 < \infty$. Then, the sample mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

converges in probability to μ (i.e., $\bar{X}_n \xrightarrow{p} \mu$, as $n \to \infty$).

<u>Proof:</u> Suppose $\epsilon > 0$. By Markov's inequality,

$$P(|\bar{X}_n - \mu| \ge \epsilon) = P((\bar{X}_n - \mu)^2 \ge \epsilon^2)$$

$$\le \frac{E(\bar{X}_n - \mu)^2}{\epsilon^2}$$

$$= \frac{\operatorname{Var}(\bar{X}_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0,$$

as $n \to \infty$.

Convergence in distribution

A sequence of random variables $X_1, X_2, ...$, converges in distribution to a random variable X if

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

at all points x where $F_X(x)$ is continuous.

Convergence in distribution

A sequence of random variables $X_1, X_2, ...$, converges in distribution to a random variable X if

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

at all points x where $F_X(x)$ is continuous.

- We only need to consider the convergence at x that is a continuity point of F_X .
- It is really the CDFs that converge, not the random variables.

Continuity

- Suppose $X_n \xrightarrow{p} X$, as $n \to \infty$ and let $h : \mathbb{R} \to \mathbb{R}$ be a continuous function. Then $h(X_n)$ converges in probability to h(X).
- Suppose $X_n \xrightarrow{d} X$, as $n \to \infty$ and let $h : \mathbb{R} \to \mathbb{R}$ be a continuous function. Then $h(X_n)$ converges in distribution to h(X).

Convergence in probability & convergence in distribution

If the sequence of random variables, X_1, X_2, \ldots , converges in probability to a random variable X, the sequence also converges in distribution to X,

$$X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X.$$

The converse is not true in general. It is true when the limiting random variable is a constant.

Convergence in probability & convergence in distribution

If the sequence of random variables, X_1, X_2, \ldots , converges in probability to a random variable X, the sequence also converges in distribution to X,

$$X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X.$$

The converse is not true in general. It is true when the limiting random variable is a constant.

Suppose that $X_n \sim \mathcal{N}(0,1)$ for all n and that $X \sim \mathcal{N}(0,1)$. Obviously, $F_{X_n}(x) \to F_X(x)$, for all $x \in \mathbb{R}$. However, this does not guarantee that X_n will be close to X with high probability.

E.g., if X_n and X are independent, then $Y=X_n-X$ is a $\mathcal{N}(0,2)$ random variable. For $\epsilon>0$, $P(|X_n-X|\leq\epsilon)=P(|Y|\leq\epsilon)$ is a constant. This does *not* converge to 1.

Central Limit Theorem

Let X_1,X_2,\ldots , be a sequence of iid random variables with $E(X_i)=\mu$ and ${\rm Var}(X_i)=\sigma^2<\infty.$ Then

$$Z_n = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1),$$

as $n \to \infty$.

Normal approximation to the sample proportion

Suppose X_1, X_2, \dots, X_n are iid $\operatorname{Bern}(p)$, where $0 . Recall that <math>E(X_1) = p$ and $\operatorname{Var}(X_1) = p(1-p)$.

For Bernoulli random variables, X_i 's are zeros and ones, so \bar{X}_n is a sample proportion (i.e., the proportion of ones in the sample).

The Central Limit Theorem says that

$$\sqrt{n}(\bar{X}_n - p) \xrightarrow{d} \mathcal{N}(0, p(1-p)),$$

or

$$\frac{\bar{X}_n - p}{\sqrt{\frac{p(1-p)}{n}}} \xrightarrow{d} \mathcal{N}(0,1),$$

as $n \to \infty$. This is the foundation for the inference of categorical data.

Slutsky's Theorem

Suppose that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} a$, where a is a constant. Then

- $2 X_n + Y_n \xrightarrow{d} X + a.$

Slutsky's Theorem

Suppose that $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} a$, where a is a constant. Then

Let X_1,X_2,\ldots , be a sequence of iid random variables with $E(X_i)=\mu$ and ${\rm Var}(X_i)=\sigma^2<\infty.$ The CLT says

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1),$$

as $n \to \infty$. In practice, we do not know σ and use the sample standard deviation S to replace σ for inference calculations.

By Slutsky's Theorem, we can show that

$$\frac{\bar{X}_n - \mu}{S/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0, 1).$$

Delta Method

Suppose X_n is a sequence of random variables that satisfy

$$\sqrt{n}(X_n - \theta) \xrightarrow{d} \mathcal{N}(0, \sigma^2),$$

as $n \to \infty$. For a given function g, suppose that $g'(\theta)$ exists and $g'(\theta) \neq 0$. Then

$$\sqrt{n}[g(X_n) - g(\theta)] \xrightarrow{d} \mathcal{N}(0, [g'(\theta)]^2 \sigma^2),$$

as $n \to \infty$.

In other words, the distribution of $g(X_n)$ can be approximated by

$$\mathcal{N}\left(g(\theta), \frac{[g'(\theta)]^2 \sigma^2}{n}\right)$$

for large n.

Variance of odds estimator

Suppose X_1,X_2,\ldots,X_n are iid $\mathrm{Bern}(p)$ random variables, where 0< p<1. Using $\frac{\hat{p}}{1-\hat{p}}$ as an estimate of the **odds** $\frac{p}{1-p}$, what is the variance of the estimate?

Variance of odds estimator

Suppose X_1,X_2,\ldots,X_n are iid $\mathrm{Bern}(p)$ random variables, where 0< p<1. Using $\frac{\hat{p}}{1-\hat{p}}$ as an estimate of the **odds** $\frac{p}{1-p}$, what is the variance of the estimate?

Let $\hat{p} = \bar{X}_n$. The CLT gives

$$\sqrt{n}(\hat{p}-p) \xrightarrow{d} \mathcal{N}(0,p(1-p)), \quad \text{when } n \to \infty$$

Take $g(p) = \frac{p}{1-p}$, so $g'(p) = \frac{1}{(1-p)^2}$. The Delta Method says that

$$\operatorname{Var}\left(\frac{\hat{p}}{1-\hat{p}}\right) \approx [g'(p)]^{2} \operatorname{Var}(\hat{p})$$

$$= \left[\frac{1}{(1-p)^{2}}\right]^{2} \frac{p(1-p)}{n} = \frac{p}{n(1-p)^{3}}.$$

Multivariate extensions

All convergence concepts can be extended to handle sequences of random variables.

Central Limit Theorem: Suppose X_1, X_2, \ldots , is a sequence of iid random vectors (of dimension k) with $E(X_1) = \mu_{k \times 1}$ and $\mathrm{Cov}(X_1) = \Sigma_{k \times k}$. Let $\bar{X}_n = (\bar{X}_{1+}, \bar{X}_{2+}, \ldots, \bar{X}_{k+})'$ denote the vector of sample means. Then $\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\to} \mathrm{MVN}_k(\mathbf{0}, \Sigma)$.

Multivariate Delta Method: Suppose X_1, X_2, \ldots , is a sequence of iid random vectors (of dimension k) that satisfy

 $\sqrt{n}(X_n - \mu) \xrightarrow{d} \text{MVN}_k(\mathbf{0}, \Sigma)$. For a given function $g : \mathbb{R}^k \to \mathbb{R}$, suppose that g is differentiable at μ and is not zero. Then

$$\sqrt{n}[g(\boldsymbol{X}_n) - g(\boldsymbol{\mu})] \xrightarrow{d} \mathcal{N}\left(0, \frac{\partial g(\boldsymbol{\mu})}{\partial \boldsymbol{x}} \boldsymbol{\Sigma} \frac{\partial g(\boldsymbol{\mu})}{\partial \boldsymbol{x}'}\right)$$

where

$$\frac{\partial g(\boldsymbol{\mu})}{\partial \boldsymbol{x}} = \left(\frac{\partial g(\boldsymbol{x})}{\partial x_1}, \dots, \frac{\partial g(\boldsymbol{x})}{\partial x_k}\right)\Big|_{\boldsymbol{x} = \boldsymbol{\mu}}.$$