EngMath - ps_1

A. Q. Snyder

October 29, 2023

1 HW template

For more details, the entire template and its supplementary materials can be found on GitHub: here. Under the ps_1 directory exist the necessary files for this LaTeX generation, the compiled plots, MATLAB exports, Python exports, the virtual Jupyter kernels used to prototype Python code, and all MATLAB files.

width=!,height=!,pages=-

2 Hand Calcs

Figure 1: Hand Calculations

$$m\left(\frac{dV}{dt}\right) = my - c(V)^2$$
; $V(0) = 0$ $\sim \frac{dV}{dt} = 0 eV_s$

$$\frac{dv}{dt} = g - \frac{dv^2}{m}$$

$$\widetilde{V} = \frac{V - V_r}{V_s} \qquad \widetilde{\mathcal{I}} = \frac{\mathcal{I} - \mathcal{I}_r}{\mathcal{I}_s}$$

$$\frac{dv}{dt} = \frac{d(\tilde{v} \cdot V_s)}{d(\tilde{t} \cdot t_s)} - \frac{V_s}{t_c} \frac{d\tilde{v}}{d\tilde{t}}$$

 $m \frac{V_5}{L_5} \frac{d\tilde{v}}{d\tilde{t}} = m_g - c v_s^2 \tilde{v}^2$

$$m \frac{V_s}{\frac{V_s}{9}} \frac{d\tilde{v}}{d\tilde{t}} = m_9 - C V_s^2 \tilde{V}^2$$

$$\frac{d\tilde{V}}{d\tilde{L}} = 1 - \frac{c}{mg} V_s \tilde{V}^2 - \frac{choose}{velocity} \frac{dv}{dt} = 0 = g - \frac{cv^2}{m}$$

- choose
$$V_c$$
 to be terminal velocity $\frac{dv}{dt} = 0 = g - \frac{cv^2}{m}$

$$V_c^2 = \frac{mg}{c}$$

$$\frac{d\widetilde{V}}{d\widetilde{t}} = 1 - \widetilde{V}^2$$

3.
$$\chi^2 y'' + \chi y' - y = Q \chi^2 + L | \chi$$
 $y(0)=0$ $y(0)=1$
find the linearly independent solm. $(y_1 R y_2)$ for the homogeneous part $\chi^2 y'' + \chi y' - y = 0$ Caychy-Eyler equation!! Lasolm, $y(x) = \chi^2$ $M(M-1)+M-1=0$ Linearly independent solutions: $M(M-1)+M-1=0$ Solutions:

Wronchian:
$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2 \end{vmatrix} = \begin{vmatrix} x & y_x \\ y_1 & y_2 \end{vmatrix} = -\lambda$$

particular son:
$$y_{1}(x) = y_{1}(x) \int \frac{y_{2}(x)(kx^{2}+4x)}{w(y_{1},y_{2})} dx - y_{2}(x) \int \frac{y_{1}(x)(kx^{2}+4x)}{w(y_{1},y_{2})} dx$$
expanding:
$$u_{1}(x) = \int \frac{x(kx^{2}+4x)}{-2} dx$$

$$u_{2}(x) = -\int \frac{x(kx^{2}+4x)}{-2} dx$$

$$\lambda^{b}(x) = x \cdot \alpha'(x) + \frac{x}{T} \cdot \alpha^{s}(x)$$

complete solution with simpson integration

II.
$$xy'' + \lambda y' + y = 0$$

Frobenius: $y = x^{2} \stackrel{?}{\downarrow}_{10}^{2} \stackrel{?}{\downarrow}$

$$y_1 = x^0 \left[c_0 + c_{1x} + c_{2x}^2 + ... \right]$$

 $y_2 = x^1 \left[d_0 + d_{1x} + d_{2x}^2 + ... \right]$

$$C^{K} = \frac{(K/(K-1)/SK)}{-C^{K-1}}$$

3 Python Outputs

Figure 2: Python Logo

10/29/23, 9:28 PM problem_1

1. [10 pt] If a mass is dropped from a very large height the governing equation of motion for the (downward) velocity V is:

$$\boxed{m \ \frac{dV}{dt} = m \ g - c \left(V\right)^2; \quad V\left(0\right) = 0}$$

Here, c is the coefficient of drag in air.

- (a) Put this governing equation in dimensionless form. (Hint, think about the terminal velocity $V_{\rm T}$.)
- (b) Solve the problem in its dimensionless form.
- (c) Determine when the mass achieves 95% of its terminal velocity

```
In [ ]: import numpy as np
        import matplotlib.pyplot as plt
In [ ]: def model(v):
            dvdt = 1 - v**2
            return dvdt
        def rk4(v, t, dt):
            k1 = dt * model(v)
            k2 = dt * model(v + 0.5 * k1)
            k3 = dt * model(v + 0.5 * k2)
            k4 = dt * model(v + k3)
            v_new = v + (k1 + 2*k2 + 2*k3 + k4) / 6.0
            return v new
        t = np.linspace(0, 10, 5000)
        dt = t[1] - t[0]
        v = np.zeros_like(t)
        v[0] = 0
        for i in range(1, len(t)):
            v[i] = rk4(v[i-1], t[i-1], dt)
        # Handle for v=0.95
        indices_95 = np.where(v >= 0.95)[0]
        if indices_95.size > 0:
            idx_95 = indices_95[0]
            time_95 = t[idx_95]
            print(f"Velocity reaches 95% at {time_95:.2f} non-dimensional units.")
        else:
            idx_95 = None
            time_95 = None
        # Handle for v=1 (terminal velocity)
        indices_1 = np.where(v \ge 0.999999)[0]
        if indices_1.size > 0:
            idx_1 = indices_1[0]
            time_1 = t[idx_1]
            print(f"Velocity reaches terminal velocity at {time_1:.2f} non-dimensional unit
        else:
```

10/29/23, 9:28 PM problem 1

```
idx_1 = None
time_1 = None
```

Velocity reaches 95% at 1.83 non-dimensional units. Velocity reaches terminal velocity at 7.26 non-dimensional units.

```
In [ ]: plt.figure(figsize=(10, 6))
    plt.plot(t, v, label=r"Dimensionless Velocity $\hat{V}$", color='blue')
    if time_95:
        plt.axhline(0.95, color='red', linestyle='--', label="95% of Terminal Velocity"
        plt.axvline(time_95, color='green', linestyle='--', label=f"Time (95%) = {time_if time_1:
        plt.axhline(1.0, color='purple', linestyle='--', label="Terminal Velocity")
        plt.axvline(time_1, color='orange', linestyle='--', label=f"Time (Terminal) = {
        plt.xlabel('Time (non-dimensional units)')
        plt.ylabel('Dimensionless Velocity $\hat{V}$')
        plt.title('Dimensionless Velocity vs Time')
        plt.legend()
        plt.grid(True)
        plt.show()
```


4 MATLAB Outputs

Figure 3: MATLAB Logo

```
function main
    t = linspace(0, 10, 5000);
   dt = t(2) - t(1);
   v = zeros(size(t));
   v(1) = 0;
    for i = 2:length(t)
        v(i) = rk4(v(i-1), t(i-1), dt);
    end
    % Handle for v=0.95
    idx 95 = find(v >= 0.95, 1, 'first');
    if ~isempty(idx_95)
        time 95 = t(idx 95);
        fprintf('Velocity reaches 95%% at %.2f non-dimensional units.\n',
 time 95);
    else
        idx 95 = [];
        time_95 = [];
    end
    % Handle for v=1 (terminal velocity)
    idx 1 = find(v >= 0.999999, 1, 'first');
    if ~isempty(idx_1)
        time_1 = t(idx_1);
        fprintf('Velocity reaches terminal velocity at %.2f non-dimensional
 units.\n', time 1);
    else
        idx_1 = [];
        time_1 = [];
    end
    figure('Position', [100, 100, 800, 480]);
    plot(t, v, 'b-', 'LineWidth', 1.5, 'DisplayName', 'Dimensionless Velocity
 $\hat{V}$');
    xlabel('Time (non-dimensional units)', 'Interpreter', 'latex');
    ylabel('Dimensionless Velocity $\hat{V}$', 'Interpreter', 'latex');
    title('Dimensionless Velocity vs Time', 'Interpreter', 'latex');
    grid on;
   hold on;
    if ~isempty(time_95)
        yline(0.95, 'r--', 'DisplayName', '95% of Terminal Velocity');
        xline(time_95, 'g--', 'DisplayName', sprintf('Time (95%%) = %.2f non-
dimensional units', time_95));
    end
    if ~isempty(time_1)
        yline(1.0, 'm--', 'DisplayName', 'Terminal Velocity');
        xline(time_1, 'Color', [1 0.6 0], 'LineStyle', '--', 'DisplayName',
 sprintf('Time (Terminal) = %.2f non-dimensional units', time_1));
```

```
end

legend('show', 'Location', 'best', 'Interpreter', 'latex');
hold off;
end

function dvdt = model(v)
    dvdt = 1 - v.^2;
end

function v_new = rk4(v, t, dt)
    k1 = dt * model(v);
    k2 = dt * model(v + 0.5 * k1);
    k3 = dt * model(v + 0.5 * k2);
    k4 = dt * model(v + k3);

v_new = v + (k1 + 2*k2 + 2*k3 + k4) / 6.0;
end
```

Velocity reaches 95% at 1.83 non-dimensional units. Velocity reaches terminal velocity at 7.26 non-dimensional units.

Published with MATLAB® R2023a

5 Compiled Plots