Preuve pour la fonction dérivée de $x \mapsto 1/x$ EXERCICE N°1

VOIR LE CORRIGÉ

On veut démontrer que $f: x \mapsto \frac{1}{x}$ est dérivable sur $]-\infty$; $0[\cup]0$; $+\infty[$.

Pour cela, nous allons démontrer que f est dérivable sur $]-\infty$; 0 puis que f est dérivable sur $[0; +\infty[$. (conseil : quand on parle de dérivation, on reste sur des intervalles)

Soit
$$x \in]-\infty$$
; $0[$ et $h \in]-\infty$; $0[$ tel que $x+h \in]-\infty$; $0[$ On a $\frac{f(x+h)f(x)}{h} = \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$

- 1) Simplifier l'expression : $\frac{\frac{1}{x+h} \frac{1}{x}}{h}$
- En déduire que f'(x) existe et déterminer sa valeur.

Partie 2
Soit
$$x \in]0$$
; $+\infty[$ et $h \in]0$; $+\infty[$ tel que $x+h \in]0$; $+\infty[$

On a
$$\frac{f(x+h)f(x)}{h} = \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$

- 3) Simplifier l'expression : $\frac{\frac{1}{x+h} \frac{1}{x}}{\frac{1}{x}}$
- En déduire que f'(x) existe et déterminer sa valeur.
- 5) Conclure

EXERCICE N°2 Preuve de la troisième ligne du tableau de la propriété n°5

Soit u et v deux fonctions définies sur un intervalle I de \mathbb{R} . soit $x \in I$ et soit $h \in \mathbb{R}$ tel que $x+h \in I$. Soit f la fonction définie pour tout $x \in I$ par f(x) = u(x) + v(x)

- 1) Pourquoi impose-t-on $x+h \in I$?
- Transformer l'expression $\frac{f(x+h)-f(x)}{h}$ pour séparer u et v.
- En déduire le nombre dérivé en x de la fonction $f: x \mapsto u(x) + v(x)$.

EXERCICE N°3 Un peu de lecture attentive

La consigne est juste : Lisez attentivement la démonstration afin de comprendre la formule du

Nous allons démontrer la formule sur la dérivée de l'inverse.

Soit I un intervalle de \mathbb{R} , soit u une fonction définie sur I et qui ne s'annule pas sur I. Soit $x \in I$ et soit $h \in I$ tel que $x+h \in I$.

$$\frac{\left(\frac{1}{u}\right)(x+h) - \left(\frac{1}{u}\right)(x)}{h} = \frac{\frac{1}{u(x+h)} - \frac{1}{u(x)}}{h}$$

$$= \frac{\frac{u(x)}{u(x+h)u(x)} - \frac{u(x+h)}{u(x)u(x+h)}}{h}$$

$$= \frac{\frac{u(x) - u(x+h)}{u(x)u(x+h)}}{h}$$

$$= \frac{\frac{u(x) - u(x+h)}{u(x)u(x+h)} \times \frac{1}{h}$$

$$= \frac{u(x) - u(x+h)}{h} \times \frac{1}{u(x)u(x+h)}$$

Réduction au même dénominateur

Diviser par un nombre revient à ...

Quand h tend vers zéro, $-\frac{u(x+h)-u(x)}{h}$ tend vers -u'(x)

 $=-\frac{u(x+h)-u(x)}{h}\times\frac{1}{u(x)u(x+h)}$

ρt

$$\frac{1}{u(x)u(x+h)} \text{ tend vers } \frac{1}{u(x)\times u(x)} = \frac{1}{(u(x))^2}$$

$$\text{Donc } -\frac{u(x+h)-u(x)}{h} \times \frac{1}{u(x)u(x+h)} \text{ tend vers } \frac{-u'(x)}{(u(x))^2}.$$

Il y a une petite arnaque : pourquoi u(x+h) tend vers u(x) ?

Rassurez-vous, c'est vrai mais il faudra attendre la notion de continuité pour le comprendre.

EXERCICE N°4 Déterminer la fonction dérivée d'une fonction

VOIR LE CORRIGÉ

Pour chaque fonction, préciser le domaine de définition, le domaine de dérivabilité et déterminer sa fonction dérivée.

1)
$$f: x \mapsto -2x^2 + 3x - 5$$

2)
$$g: x \mapsto \frac{3}{4}x^4 + \frac{7}{9}x^3$$

3)
$$h: x \mapsto 7x^3 - \frac{5}{8}\sqrt{x}$$

4)
$$i: x \mapsto 4x^{-1} + 5x$$

LA DÉRIVATION M02C

EXERCICE N°1 Preuve pour la fonction dérivée de $x \mapsto 1/x$

RETOUR À L'EXERCICE

On veut démontrer que $f: x \mapsto \frac{1}{x}$ est dérivable sur $]-\infty$; $0[\cup]0$; $+\infty[$.

Pour cela, nous allons démontrer que f est dérivable sur $]-\infty$; 0[puis que f est dérivable sur]0; $+\infty[$. (conseil : quand on parle de dérivation, on reste sur des intervalles)

Partie 1

Soit
$$x \in]-\infty$$
; 0[et $h \in]-\infty$; 0[tel que $x+h \in]-\infty$; 0[
On a $\frac{f(x+h)f(x)}{h} = \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$

1) Simplifier l'expression : $\frac{\frac{1}{x+h} - \frac{1}{x}}{h}$

$$\frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \frac{\frac{x - (x+h)}{x(x+h)}}{h} = \frac{\frac{-h}{x^2 + xh}}{h} = \frac{-h}{h(x^2 + xh)} = \frac{-1}{x^2 + xh}$$

2) En déduire que f'(x) existe et déterminer sa valeur.

Quand h tend vers zéro, $\frac{-1}{x^2 + xh}$ tend vers $-\frac{1}{x^2}$.

Or: $x \in]-\infty$; 0[(il est donc non nul...).

On en déduit que $-\frac{1}{r^2}$ existe

Ainsi
$$f'(x) = -\frac{1}{x^2}$$

Partie 2

Soit
$$x \in]0$$
; $+\infty[$ et $h \in]0$; $+\infty[$ tel que $x+h \in]0$; $+\infty[$

On a
$$\frac{f(x+h)f(x)}{h} = \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$$

3) Simplifier l'expression : $\frac{\frac{1}{x+h} - \frac{1}{x}}{h}$

De la même façon qu'à la question 1)

$$\frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \frac{-1}{x^2 + xh}$$

4) En déduire que f'(x) existe et déterminer sa valeur.

De la même façon qu'à la question 2)

$$f'(x) = -\frac{1}{x^2}$$

5) Conclure

Nous savons à présent que pour tout $x \in]-\infty$; 0[, f'(x)] existe et vaut $-\frac{1}{x^2}$

et que pour tout $x \in]0$; $+\infty[$, f'(x) existe et vaut $-\frac{1}{x^2}$.

Donc f est dérivable sur $]-\infty$; $0[\ \cup\]0\ ; +\infty[$ et pour tout $x\in]-\infty$; $0[\ \cup\]0\ ; +\infty[$, $f'(x)=-\frac{1}{x^2}$

LA DÉRIVATION M02C

EXERCICE N°2 Preuve de la troisième ligne du tableau de la propriété n°5 RETOUR À L'EXERCICE

Soit u et v deux fonctions définies sur un intervalle I de $\mathbb R$. soit $x \in I$ et soit $h \in \mathbb R$ tel que $x+h \in I$. Soit f la fonction définie pour tout $x \in I$ par f(x) = u(x) + v(x)

1) Pourquoi impose-t-on $x+h \in I$?

Si $x+h \notin I$ alors on ne peut pas calculer son image par u ou v.

2) Transformer l'expression $\frac{f(x+h)-f(x)}{h}$ pour séparer u et v.

$$\frac{f(x+h)-f(x)}{h} = \frac{(u+v)(x+h)-(u+v)(x)}{h}$$

$$= \frac{u(x+h)+v(x+h)-[u(x)+v(x)]}{h}$$

$$= \frac{u(x+h)+v(x+h)-u(x)-v(x)}{h}$$
On réorganise les termes
$$= \frac{u(x+h)-u(x)+v(x+h)-v(x)}{h}$$

$$= \frac{u(x+h)-u(x)+v(x+h)-v(x)}{h}$$
On « sépare » les numérateurs
$$= \frac{u(x+h)-u(x)+v(x+h)-v(x)}{h}$$

Réorganiser les termes est une « astuce » que vous retrouverez souvent plus tard...

3) En déduire le nombre dérivé en x de la fonction $f: x \mapsto u(x) + v(x)$.

Quand h tend vers zéro, $\frac{u(x+h)-u(x)}{h}$ et $\frac{v(x+h)-v(x)}{h}$ tendent respectivement vers u'(x) et v'(x).

On en déduit que f'(x) = u'(x) + v'(x).

LA DÉRIVATION M02C

EXERCICE N°4 Déterminer la fonction dérivée d'une fonction

RETOUR À L'EXERCICE

Pour chaque fonction, préciser le domaine de définition, le domaine de dérivabilité et déterminer sa fonction dérivée.

1)
$$f: x \mapsto -2x^2 + 3x - 5$$

f est une somme de fonctions de référence définies et dérivables sur \mathbb{R} , donc f est définie et dérivable sur \mathbb{R} et : $\forall x \in \mathbb{R}$, f'(x) = -4x + 3 $f'(x) = -2 \times 2x + 3 \times 1 - 0$

3)
$$h: x \mapsto 7x^3 - \frac{5}{8}\sqrt{x}$$

f est une somme de fonctions de référence et dérivables sur définies sur 0; + ∞ $0 ; +\infty$ donc f est définie $\begin{bmatrix} 0 \ ; +\infty \end{bmatrix}$ et dérivable sur $\begin{bmatrix} 0 \ ; +\infty \end{bmatrix}$ et : $\forall x \in]0 \ ; +\infty [$,

$$h'(x) = 21 x^2 - \frac{5}{16 \sqrt{x}}$$

$$h'(x) = 21x^{2} - \frac{5}{16\sqrt{x}}$$

$$h'(x) = 7 \times 3x^{2} - \frac{5}{8} \times \frac{1}{2}\sqrt{x}$$

 $x \mapsto 7x^3$ est bien sûr dérivable sur un ensemble plus grand: \mathbb{R} .

Mais, si elle dérivable sur R alors elle l'est aussi sur 0; + ∞

Et ce qui nous intéresse, c'est la fonction h.

2)
$$g: x \mapsto \frac{3}{4}x^4 + \frac{7}{9}x^3$$

g est une somme de fonctions de référence définies et dérivables sur \mathbb{R} , donc g est définie et dérivable sur \mathbb{R} et : $\forall x \in \mathbb{R}$,

$$g'(x) = 3x^3 + \frac{7}{3}x^2$$

$$g'(x) = \frac{3}{4} \times 4x^3 + \frac{7}{9} \times 3x^2$$

4)
$$i: x \mapsto 4x^{-1} + 5x$$

On se souvient que $x^{-1} = \frac{1}{x}$...

i est une somme de fonctions de référence définies et dérivables sur

$$]-\infty$$
; $0[\cup]0$; $+\infty[$,

donc *i* est définie sur et dérivable sur

$$]-\infty ; 0[\cup]0 ; +\infty[$$

et:
$$\forall x \in]-\infty$$
; $0[\cup]0$; $+\infty[$,

$$i'(x) = -\frac{4}{x} + 5$$

•
$$i'(x) = 4 \times \frac{-1}{x} + 5 \times 1$$

• On peut faire le même genre de remarque qu'à la question 3)