

Sources femtoseconde pompées par diode

Frédéric Druon

Laboratoire Charles Fabry de l'Institut d'Optique -École Supérieure d'Optique, Orsay, France UMR 8051 du CNRS

Plan

- Introduction
- Lasers fs à base de verres dopés
- Lasers fs à base de cristaux dopés
 - aux ions Cr³⁺
 - aux ions Yb3+
- Lasers fs à base de fibres dopées
- Conclusion

Plan

- Introduction
- Lasers fs à base de verres dopés
- Lasers fs à base de cristaux dopés
 - aux ions Cr3+
 - aux ions Yb3+
- Lasers fs à base de fibres dopées
- Conclusion

LE MONDE DE LA FEMI

champs

cristallin

interaction

spin-orbite

Types de dopants

Ions métalliques dans les cristaux

Cr⁴⁺ ⇒ Cr:forsterite, Cr:YAG

Ions terres rares dans les cristaux les verres et

les fibres

Nd³⁺ ⇒ Nd:verre, Nd:fibres

Yb³⁺ ⇒ Yb:verre, Yb:cristaux, Yb:fibres

Fr³⁺ ⇒ Er:fibres

spin-orbite

Caractéristiques du Ti:saphir

• Mais aussi...

Conductivité thermique exceptionnelle : κ=35W/m/K

Le revers de la médaille du Ti:saphir

Pompé dans le vert

 Laser Nd:YVO4 pompé par diode puis doublé en fréquence Diode de très forte puissance Nd laser

Le laser Argon

Systèmes peu compacts, peu efficaces, complexes et chers

Concrètement

- Consommation électrique
 - ~ 1kW électrique donne 1W optique (efficacité= 0,1%)

Refroidissement

- Coût
 - fabrication, utilisation, entretiens, etc.

Nouvelle génération de sources

• Le but visé (ce que les utilisateurs demandent):

Lasers à impulsions ultra-brèves:

Efficaces, simples, compacts, robustes, fiables et pas chers

• Intérêt :

- Chaînes laser de forte énergie et à haute cadence
- Applications industrielles: micro-usinage athermique, chirurgie...

La solution du pompage par diode

- Efficacité
 - 20 à 50%
- Compacité

3 mm

- Fiabilité (10 000 heures)
- Sans maintenance
- Forte puissance disponible: 1W to kW

Les matériaux pour la femto et « pompables » par diode

Dans l'état de l'art actuel les principaux matériaux sont:

Les verres dopés Nd³⁺ et Yb³⁺

- Les cristaux dopés Cr³⁺ et Yb³⁺
- Les fibres dopées Yb³⁺ et Er³⁺

Plan

- Introduction
- Lasers fs à base de verres dopés
- Lasers fs à base de cristaux dopés
 - aux ions Cr3+
 - aux ions Yb3+
- Lasers fs à base de fibres dopées
- Conclusion

Les verres dopés pour la femto

- ···
- Connus et étudiés depuis longtemps
 - Les premiers TW
- 🙂 Faciles à élaborer en grande taille
- Matériaux amorphes => spectres larges
- Matériaux amorphes => faibles gains
- Matériaux amorphes => Mauvaise conductivité thermique : κ<1 W/m/K</p>

Les ions dopants pour les verres

• Deux acteurs principaux : Yb³⁺ et Nd³⁺

Yb³⁺

- Structure électronique simple
 - => pas d'effet parasite
- Faible défaut quantique
- Quasi trois niveaux

• Nd³⁺

- Structure électronique complexe
 - => effets parasites

Spectroscopie des verres Nd³⁺ et Yb³⁺

- Yb³⁺
- Faibles sections efficaces =>Gain faible
- Largeur spectrale ≈35 nm =>
 durée théorique minimum: 30 fs
- Fortes sections efficaces
 - => Gain plus important
- Largeur spectrale ≈20 nm =>
 durée théorique minimum: 50 fs

Résultats expérimentaux

• Les oscillateurs femtoseconde

Les oscillateurs à base de matériaux dopés Yb³⁺ ou Nd³⁺

🔑 Durée de vie longue :

Nd: 360 µs

Yb: 1300 µs

→ Verrouillage des modes en phase par lentille Kerr (KLM) difficile

Les oscillateurs à base de matériaux dopés Yb³⁺ ou Nd³⁺

- 🔑 Durée de vie longue :
- Verrouillage des modes en phase par lentille Kerr (KLM) difficile

⇒ Utilisation d'un absorbant saturable de type SESAM (SEmiconductor Saturable Absorber Mirror)

Qu'est ce qu'un SESAM?

Miroir à absorbant saturable semi-conducteur (rapide)

Indispensable pour des oscillateurs fs stables

Comment fonctionne un SESAM?

Régime continu

Puissance crête faible Absorbant non-saturé Fortes pertes

Régime défavorisé

Régime fs

Puissance crête élevée Absorbant saturé Faibles pertes

Régime favorisé

Résultats expérimentaux: les oscillateurs

Nd

60 fs 80 mW 114 MHz λ=1.06 μm (1,3W de pompe)

Nd:fluorophosphate glass (LG 810)

J. Aus der Au, al. Opt. Lett., 307 (1997)

Yb

58 fs 65 mW $_{\lambda=1.06 \, \mu m}^{112 \, MHz}$ (1,2W de pompe)

C. Honninger , al. , Opt. Lett. , 126 (1998).

Efficacité ≈ 1%

Faibles puissances

Produits industriels

Exemple:
 à base de Nd:verre

UC Series – Ultra compact

Model UC-100 fs OSC 100 mW / <200 fs / 1.06 μm

High Q Laser

Kästle Fark, 2nd Floor Kaiser-Franz-Josef-Strasse 61 A-6845 Hohenems/Austria T ++43 (0) 55 76 / 43 0 . 40 F ++43 (0) 55 76 / 43 0 . 50 E sales@highClaser.com

New: USA - East Coast Office, Newton Massachusetts
Phone: 617-332-1962, Email: sales@HighQ-US.com, www.highQlaser.com

Résultats expérimentaux

• Les amplificateurs femtoseconde

Résultats expérimentaux: les amplificateurs

Matériaux amorphes => faibles gains

Amplificateurs de type régénératif

• Nd
400 fs, 150mW 5kHz, 30µJ
(4 W de pompe)

C. Horvath, al. Opt. Lett., 1790 (1997)

Yb
250 fs, 300 mW 100kHz, 3µJ
(5 W de pompe)

M.J. Lederer, al. CLEO CThFF6, (2004)

Les verres et la puissance

Matériaux amorphes => Mauvaise conductivité thermique

Comment gérer les problèmes thermiques lorsque la puissance de pompe augmente ?

- ⇒ Utilisation de tranches fines
- ⇒cavités très astigmates
- ⇒Grande complexité

Oscillateur Nd

175 fs 1 W (20 W de pompe) 117MHz J. Aus der Au, al. Opt. Lett., 271 (1998)

Amplificateur Yb

200 fs 150mW (30 W de pompe) 150Hz, 1mJ H. Liu, al. Opt. Lett., 917 (1999)

Solutions alternatives

- Utilisations de cristaux
 - Matériaux plus ordonnés avec donc de meilleures conductivités thermiques

- Utilisation de fibres dopées (verres)
 - Chaleur répartie sur de plus grandes longueurs

Plan

- Introduction
- Lasers fs à base de verres dopés
- Lasers fs à base de cristaux dopés
 - aux ions Cr³⁺
 - aux ions Yb3+
- Lasers fs à base de fibres dopées
- Conclusion

Les cristaux dopés aux ions métalliques

- Les principaux : les colquiriites dopés aux Cr³⁺
 - LiSrAIF, ou LiSAF, LiCaAIF, ou LiCAF, LiSrGaF, ou LiSGaF

Spectres presque aussi larges que le Ti:Saphir

Oscillateurs ultra-courts

• Cr:LiCAF (KLM)

10 fs 40 mW
(1W de pompe)

Diode (670 nm) de faibles puissances

P.Wagenblast, Opt. Lett., 1713 (2003)

Femtos sur piles

122 fs 35 mW

6 piles AAA

University of St Andrews

La grande désillusion

Effets parasites => augmentation de la température

Plan

- Introduction
- Lasers fs à base de verres dopés
- Lasers fs à base de cristaux dopés
 - aux ions Cr3+
 - aux ions Yb3+
- Lasers fs à base de fibres dopées
- Conclusion

Yb3+: un spectre sous influence

Le choix dans un panel de cristaux

Ordre

Verres (matériaux amorphes)

Cristaux de structure complexe (beaucoup d'atomes par maille)

Cristaux de structure simple (peu d'atomes par maille)

- Largeur spectrale
- Conductivité thermique
- Sections efficaces (gain)

N.B.: Les cristaux dopés aux Nd sont hors-jeu car ils ont des spectres trop étroits

Yb³⁺: un spectre sous influence

• Stratégies :

Faible conductivité thermique/Forte conductivité thermique

 κ = 2 à 5 W/m/K κ =5-15 W/m/K

Yb³⁺: un spectre sous influence

	Cristal	Largeur d'émission N _{exc} /N _{tot} =0,5	Durée théorique des impulsions	Section efficace d'émission (10 ⁻²⁰ cm ²)	Longueur d'onde optimale d'émission	Temps de fluorescence	Conductivité thermique (W/m/K) (non-dopé)
_	Yb:SYS	73 nm	16 fs	0,4	1070 nm	1,1 ms	2
_	Yb:YAG	9 nm	120 fs	2,2	1030 nm	0,95 ms	11

Résultats expérimentaux

• Les oscillateurs femtoseconde

Résultats oscillateurs

Produit commercial

- Yb:YAG durée trop longue
- Yb:SYS pas encore mature
- Pour l'industrie : le Yb:KGW

200 fs @ 1030 nm, 10 MHz, 200nJ/impulsion

Les oscillateurs de puissance

La technologie « thin disk »

Contact: technologie complexe

Yb:YAG

Puissance 80 W

(370 W de pompe)

57 MHz, 1,4µJ E. Innerhofer et al. Opt. Lett. 2003, 2004

Efficacité ≈ 2 %

Yb:KGW

240 fs22W (100 W de pompe) 25MHz 0,9µJ F. Brunner et al. Opt. Lett. 1162 (2002)

Produit commercial

Yb:YAGThin disk

Time-Bandwidth Products, Inc.

50 W average power
 50 MHz repetition rate
 1 μJ per pulse
 1 ps pulse width
 1 MW peak power
 1030 nm wavelength
 M² < 1.2 TEM₀₀ mode

Les oscillateurs à base de cristaux dopés à l'ytterbium

Résultats expérimentaux

• Les amplificateurs femtoseconde

Les amplificateurs à base de cristaux dopés à l'ytterbium

- Gain dans l'ytterbium faible
 Nombreux passages dans
 - Nombreux passages dans l'amplificateur
- Rétrécissement par le gain @
 - Soit on limite le nombre de passages; on favorise le gain.
 - Soit on limite l'effet de rétrécissement par le gain ; on favorise le spectre.

Les amplificateurs à base de cristaux dopés à l'ytterbium

Faible section efficaces / grande largeur spectrale

Résultats sur les amplificateurs

Produits commerciaux

Pour l'industrie : le Yb:KGW

Eclipse:
500 fs, 7kHz, 4 W
(400 µJ / impulsions)

S Pulse : 400 fs, 1-10 kHz, 100 µJ

Plan

- Introduction
- Lasers fs à base de verres dopés
- Lasers fs à base de cristaux dopés
 - aux ions Cr3+
 - aux ions Yb3+
- Lasers fs à base de fibres dopées
- Conclusion

Caractéristiques des fibres

- Crande longueur d'interaction
 - Effets thermiques répartis
 - Fort gain
- Qualité spatiale du faisceau (confinement)
- Systèmes sans propagation en espace libre
- Systèmes en régime continu de plusieurs kW

Limpert, Tutorial CLEO 2004

Les ions dopants

Historiquement :

- Ulssu des composant « télécom' »
- Oispersion nulle à 1,5µm dans le verre

Oscillateur à base d'Er³⁺

300 fs, ≈ 10 mW à 50 MHz à 1560 nm

Produit commercial

 Femtolite d'IMRA Inc dimension (193 x 109 x 82 mm)

300 fs, ≈ 10 mW

L'Erbium limité en puissance

F. Tauser, et al. Opt. exp. 594-600 (2003)

Systèmes amplifiés limité à qq 100 mW à cause des propriétés spectroscopiques de l'Er3+

Le retour de l'Yb : les oscillateurs

Forte dispersion

Efficacité ≈ 3 %

Les oscillateurs à fibres à cristaux photoniques et dopées à l'Yb

 Solution pour résoudre les problèmes de dispersion à 1 µm

H. Lim, et al. Opt. exp. 2231-2235 (2004)

Les amplificateurs femtoseconde à fibres dopées Yb³⁺

- Confinement
 - Effets non-linéaires importants

- Il faut utiliser des fibres avec des cœurs
 de plus en plus larges
- Systèmes complexes

Attention aux faisceaux multimodes

H. Limpert, et al. Opt. Lett. 1984 (2003)

Les amplificateurs femtoseconde à fibres

Fibres à larges cœurs multimodes

Solution 1

L=13,5 m, \emptyset = 23 μ m

Imposer des pertes différentielles par des faibles rayons de courbures

(180W de pompe) 75 MHz, 1µJ

Qualité temporelle

Efficacité ≈ 3 %

H. Limpert, et al. Opt. Lett. 1984 (2003)

Les amplificateurs femtoseconde à fibres

- Fibres à larges cœurs multimodes
- Solution 2
 - Fibres à cristaux photoniques à larges modes

 Tests en continu uniquement

4W pour 20 W de pompe

À suivre...

56

W. J. Wadsworth et al. Opt.exp. 48-53 (2003)

Plan

- Introduction
- Lasers fs à base de verres dopés
- Lasers fs à base de cristaux dopés
 - aux ions Cr3+
 - aux ions Yb3+
- Lasers fs à base de fibres dopées
- Conclusion

Synthèse

Cristal	durée	thermique	efficacité	puissance	maturité	applications	
Ti:saphir	\vdots	Θ		<u></u>			
Yb:verre Nd:verre	···			···		- Oscillateurs de quelques 100 fs	
Cr:cristal	\odot	\ :	Θ			- Systèmes pour la métrologie	
Yb:cristal	<u></u>	<u> </u>	<u> </u>	<u></u>		- Micro-usinage athermique -Sources RVB	
Yb:fibre	<u></u>	(c)	$\overline{\Theta}$	$\overline{\mathbf{e}}$		- Sources pour la biologie	
Er:fibre	$\ddot{\circ}$				\odot	- Telecom'	

...ET POUR QUELQUES WATTS DE PLUS

- Choix de l'ytterbium
- Vers des systèmes mixtes
 - Oscillateurs à bases de cristaux
 - Amplificateurs à base de fibres
- Les cristaux
 - Étendre la méthode du « thin-disk » à des matériaux à plus larges bandes
- Les fibres
 - Utilisations des fibres à cristaux photoniques

Le déclin de l'empire du Ti:saphir?

- Pour les chaînes laser ultra-brèves
 - Touche pas au Ti:Saphir!
- Pour les Watts
 - Good bye Ti:Saphir!
- Extension des performances
 - L'Yb contre attaque
 - OPA
 - Élargissement spectrale
 - Compression d'impulsions

L'aventure continue

- Les verres dopés
 - Points forts
 - Maturité
 - Points faibles
 - Problèmes thermiques
 - Limitation aux puissances : quelques 100 mW
 - Applications
 - Oscillateurs de quelques 100 fs
 - Systèmes industriels

- Les colquiriites dopés Cr³⁺
 - Points forts
 - Durée très courtes
 - Efficacité
 - Points faibles
 - Problèmes thermiques
 - Limitation aux puissances : quelques 100 mW
 - Applications
 - systèmes à très faible consommation
 - Systèmes embarqués
 - Systèmes pour la métrologie

- Les cristaux dopés Yb³⁺
 - Points forts
 - Oscillateurs de puissance
 - Efficacité
 - Points faibles
 - choix du cristal :
 durée ou puissance
 - Amplificateurs
 - Applications
 - Micro-usinage
 - Source RGB

- Les fibres dopées Yb³⁺
 - Points forts
 - Amplificateurs de puissance
 - Efficacité
 - Points faibles
 - Qualité temporelle
 - Oscillateurs
 - Applications
 - Micro-usinage
 - Source RGB

Les oscillateurs à base de cristaux dopés à l'ytterbium

Les oscillateurs à base de cristaux dopés à l'ytterbium

Les oscillateurs femtoseconde à fibres dopées à l'erbium

- Solution 1
 - Changer de longueur d'onde
- Systèmes monolithiques

450fs, 400µW **Efficacité ≈ 0,4** %

• Il faut amplifier

K. Tamura, et al. Opt. Lett. 220-223 (1993)

Synthèse

Cristal	durée	thermique	efficacité	puissance	maturité	applications
Ti:saphir	+++	+++	_	+	+++	
Yb:verre Nd:verre	++		++	+	+++	
Cr:cristal	+++		+++	+	++	
Yb:cristal	+	+++	+++	+++	++	
	++	++	+++	++	+	
Yb:fibre	+	+++	+++	+++	+	

LE MONDE DE LA FEMTO

L'aventure continue