

66602B.ST25 SEQUENCE LISTING

<110> 'I'	TESCU,	SILVIU
-----------	--------	--------

<120> REGENERATION OF ENDOGENOUS MYOCARDIAL TISSUE

<130> 0575/66602B

<140> 10/693,480

<141> 2003-10-23

<150> 10/128,738

<151> 2002-04-23

<160> 9

<170> PatentIn version 3.1

<210> 1

<211> 2780

<212> DNA

<213> HOMO SAPIENS

<400> 1 aaactaaccc	ctcttttct	ccaaaggagt	gcttgtggag	atcggatctt	ttctccagca	60
attgggggaa	agaaggcttt	ttctctgact	tcgcttagtg	taaccagcgg	cgtatatttt	120
ttaggcgcct	tttcgaaaac	ctagtagtta	atattcattt	gtttaaatct	tattttattt	180
ttaagctcaa	actgcttaag	aataccttaa	ttccttaaag	tgaaataatt	ttttgcaaag	240
gggtttcctc	gatttggagc	tttttttc	ttccaccgtc	atttctaact	cttaaaacca	300
	·					,

actcagttcc atcatggtga tgttcaagaa gatcaagtct tttgaggtgg tctttaacga

Page 1

Applicant: Silviu Itescu U.S. Serial No.: 10/693,480 Filed: October 23, 2003

360

Exhibit C

420 ccctgaaaag gtgtacggca gtggcgagaa ggtggctggc cgggtgatag tggaggtgtg tgaagttact cgtgtcaaag ccgttaggat cctggcttgc ggagtggcta aagtgctttg 480 gatgcaggga tcccagcagt gcaaacagac ttcggagtac ctgcgctatg aagacacgct 540 tettetggaa gaccagecaa caggtgagaa tgagatggtg atcatgagae etggaaacaa 600 atatgagtac aagttcggct ttgagcttcc tcaggggcct ctgggaacat ccttcaaagg 660 720 aaaatatggg tgtgtagact actgggtgaa ggcttttctt gaccgcccga gccagccaac tcaagagaca aagaaaaact ttgaagtagt ggatctggtg gatgtcaata cccctgattt 780 aatggcacct gtgtctgcta aaaaagaaaa gaaagtttcc tgcatgttca ttcctgatgg 840 900 gcgggtgtct gtctctgctc gaattgacag aaaaggattc tgtgaaggtg atgagatttc catccatgct gactttgaga atacatgttc ccgaattgtg gtccccaaag ctgccattgt 9.60 ggcccgccac acttacettg ccaatggcca gaccaaggtg ctgactcaga agttgtcatc 1020 agtcagaggc aatcatatta teteagggac atgegeatea tggegtggea agageetteg 1080 ggttcagaag atcaggcctt ctatcctggg ctgcaacatc cttcgagttg aatattcctt 1140 actgatetat gttagegtte etggatecaa gaaggteate ettgaeetge eeetggtaat 1200 1260 tggcagcaga tcaggtctaa gcagcagaac atccagcatg gccagccgaa ccagctctga gatgagttgg gtagatetga acateeetga taeeeeagaa geteeteeet getatatgga 1320 tgtcattcct gaagatcacc gattggagag cccaaccact cctctgctag atgacatgga 1380 tggctctcaa gacagcccta tctttatgta tgcccctgag ttcaagttca tgccaccacc 1440 gacttatact gaggtggatc cctgcatcct caacaacaat gtgcagtgag catgtggaag 1500 aaaagaagca gctttaccta cttgtttctt tttgtctctc ttcctggaca ctcacttttt 1560 cagagactca acagtetetg caatggagtg tgggtecace ttageetetg acttectaat 1620 1680 gtaggaggtg gtcagcaggc aatctcctgg gccttaaagg atgcggactc atcctcagcc 1740 agcgcccatg ttgtgataca ggggtgtttg ttggatgggt ttaaaaataa ctagaaaaac 1800 tcaggcccat ccattttctc agatctcctt gaaaattgag gccttttcga tagtttcggg 1860 tcaggtaaaa atggcctcct ggcgtaagct tttcaaggtt ttttggaggc tttttgtaaa ttgtgatagg aactttggac cttgaactta cgtatcatgt ggagaagagc caatttaaca 1920 1980 aactaggaag atgaaaaggg aaattgtggc caaaactttg ggaaaaggag gttcttaaaa 2040 tragtgtttc ccctttgtgc acttgtagaa aaaaaagaaa aaccttctag agctgatttg atggacaatg gagagagett teeetgtgat tataaaaaag gaagetaget getetaeggt 2100 catctttgct taagagtata ctttaacctg gcttttaaag cagtagtaac tgccccacca 2160

Page 2

aaggtcttaa	aagccatttt	tggagcctat	tgcactgtgt	tctcctactg	caaatatttt	2220
catatgggag	gatggttttc	tcttcatgta	agtccttgga	attgattcta	aggtgatgtt	2280
cttagcactt	taattcctgt	caaattttt	gttctcccct	tctgccatct	taaatgtaag	2340
ctgaaactgg	tctactgtgt	ctctagggtt	aagccaaaag	acaaaaaaa	ttttactact	2400
tttgagattg	ccccaatgta	cagaattata	taattctaac	gcttaaatca	tgtgaaaggg	2460
ttgctgctgt	cagccttgcc	cactgtgact	tcaaacccaa	ggaggaactc	ttgatcaaga	2520
tgcccaaccc	tgtgatcaga	acctccaaat	actgccatga	gaaactagag	ggcaggtctt	2580
cataaaagcc	ctttgaaccc	ccttcctgcc	ctgtgttagg	agatagggat	attggcccct	2640
cactgcagct	gccagcactt	ggtcagtcac	tctcagccat	agcactttgt	tcactgtcct	2700
gtgtcagagc	actgagctcc	acccttttct	gagagttatt	acagccagaa	agtgtgggct	2760
gaagatggtt	ggtttcatgt				•	2780

<210> 2

<211> 391

<212> PRT

<213> HOMO SAPIENS

<400> 2

Met Val Met Phe Lys Lys Ile Lys Ser Phe Glu Val Val Phe Asn Asp 1 10 15

Pro Glu Lys Val Tyr Gly Ser Gly Glu Lys Val Ala Gly Arg Val Ile 20 25 30

Val Glu Val Cys Glu Val Thr Arg Val Lys Ala Val Arg Ile Leu Ala 35 40 45

Cys Gly Val Ala Lys Val Leu Trp Met Gln Gly Ser Gln Gln Cys Lys 50 55 60

Gln Thr Ser Glu Tyr Leu Arg Tyr Glu Asp Thr Leu Leu Leu Glu Asp 65 70 75 80

Gln Pro Thr Gly Glu Asn Glu Met Val Ile Met Arg Pro Gly Asn Lys 85 90 95

Tyr	Glu	Tyr	Lys 100	Phe	Gly	Phe	Glu	Leu 105	Pro	Gln	Gly	Pro	Leu 110	Gly	Thr
Ser	Phe	Lys 115	Gly	Lys	Tyr	Gly	Cys 120	Val	Asp	Tyr	Trp	Val 125	Lys	Ala	Phe
Leu	Asp 130	Arg	Pro	Ser	Gln	Pro 135	Thr	Gln	Glu	Thr	Lys 140	_	Asn	Phe	Glu
Val 145	Val	Asp	Leu	Val	Asp 150	Val	Asn	Thr	Pro	Asp 155	Leu	Met	Ala	Pro	Val 160
Ser	Ala	Lys	Lys	Glu 165	Lys	Lys	Val	Ser	Cys 170	Met	Phe	Ile	Pro	Asp 175	Gly
Arg	Val	Ser	Val 180	Ser	Ala	Arg	Ile	Asp 185	Arg	Lys	Gly	Phe	Cys 190	Glu	Gly
Asp	Glu	Ile 195	Ser	Ile	His	Ala	Asp 200	Phe	Glu	Asn	Thr	Cys 205	Ser	Arg	Ile
Val	Val 210	Pro	Lys	Ala	Ala	Ile 215	Val	Ala	Arg	His	Thr 220	Tyr	Leu	Ala	Asn
Gly 225	Gln	Thr	Lys	Val	Leu 230	Thr	Gln	Lys	Leu	Ser 235	Ser	Val	Arg	Gly	Asn 240
His	Ile	Ile	Ser	Gly 245	Thr	Cys	Ala	Ser	Trp 250	Arg	Gly	Lys	Ser	Leu 255	Arg
Val	Gln	Lys	Ile 260	Arg	Pro	Ser	Ile	Leu 265	Gly	Cys	Asn	Ile	Leu 270	Arg	Val
Glu	Tyr	Ser 275	Leu	Leu	Ile	Tyr	Val 280	Ser	Val	Pro	.Gly	Ser 285	Lys	Lys	Val
Ile	Leu 290.	Asp	Leu	Pro	Leu	Val 295	Ile	Gly	Ser	Arg	Ser 300	_	Leu	Ser	Ser
Arg 305	Thr	Ser	Ser	Met	Ala 310	Ser	Arg	Thr	Ser	Ser 315	Glu	Met	Ser	Trp	Val 320
Asp	Leu	Asn	Ile	Pro 325	Asp	Thr	Pro	Glu	330	Pro Page		Cys	Tyr	Met 335	Asp

Val Ile Pro Glu Asp His Arg Leu Glu Ser Pro Thr Thr Pro Leu Leu 340 345 350

Asp Asp Met Asp Gly Ser Gln Asp Ser Pro Ile Phe Met Tyr Ala Pro 355 360 365

Glu Phe Lys Phe Met Pro Pro Pro Thr Tyr Thr Glu Val Asp Pro Cys 370 375 380

Ile Leu Asn Asn Asn Val Gln 385 390

<210> 3

<211> 1176

<212> DNA

<213> HOMO SAPIENS

<400> atggtgatgt tcaagaagat caagtctttt gaggtggtct ttaacgaccc tgaaaaggtg 60 tacggcagtg gcgagaaggt ggctggccgg gtgatagtgg aggtgtgtga agttactcgt 120 gtcaaagccg ttaggatcct ggcttgcgga gtggctaaag tgctttggat gcagggatcc 180 cagcagtgca aacagacttc ggagtacctg cgctatgaag acacgcttct tctggaagac 240 cagccaacag gtgagaatga gatggtgatc atgagacctg gaaacaaata tgagtacaag 300 ttcggctttg agcttcctca ggggcctctg ggaacatcct tcaaaggaaa atatgggtgt 360 gtagactact gggtgaaggc ttttcttgac cgcccgagcc agccaactca agagacaaag 420 aaaaactttg aagtagtgga tctggtggat gtcaataccc ctgatttaat ggcacctgtg 480 tctgctaaaa aagaaaagaa agtttcctgc atgttcattc ctgatgggcg ggtgtctgtc 540 tctgctcgaa ttgacagaaa aggattctgt gaaggtgatg agatttccat ccatgctgac 600 tttqaqaata catgttcccg aattgtggtc cccaaagctg ccattgtggc ccgccacact 660 taccttgcca atggccagac caaggtgctg actcagaagt tgtcatcagt cagaggcaat 720 catattatct cagggacatg cgcatcatgg cgtggcaaga gccttcgggt tcagaagatc 780 aggeetteta teetgggetg caacateett egagttgaat atteettaet gatetatgtt 840 agogttoctg gatocaagaa ggtoatoott gacotgooco tggtaattgg cagcagatoa 900

			66602B.		asattaaats	960
	gcagaacatc					
gatctgaaca	tccctgatac	cccagaagct	cctccctgct	atatggatgt	cattcctgaa	1020
gatcaccgat	tggagagccc	aaccactcct	ctgctagatg	acatggatgg	ctctcaagac	1080
agccctatct	ttatgtatgc	ccctgagttc	aagttcatgc	caccaccgac	ttatactgag	1140
gtggatccct	gcatcctcaa	caacaatgtg	cagtga			1176
				•		
<210> 4					·.	
<211> 20						
<212> DNA	1			•		
<213> AR7	CIFICIAL SEQ	UENCE				
	· :		*	•		
<220>						
<223> PR	MER DIRETCT	ED TO RAT C	inc			
<400> 4	·					
gaagatagat	tgcaccgatg					20
<210> 5						
<211> 18			.•			
<212> DN						
<213> AR7	TIFICIAL SEQ	UENCE				
						•
<220>						
<223> PR	MER DIRETCT	ED TO RAT C	inc			
<400> 5 catageetet	cacatttc			·		18
	٠				,	
<210> 6		· .				
-211- 25	•	•			•	

<220>

<213>

<212> DNA

ARTIFICIAL SEQUENCE

-223 DEIMED D	IRETCTED TO RAT C	nc	125		•
(223) PRIMER L	TRETCIED TO RAT C	.iic	•	• • •	
<400> 6	orgona tagas		• •		25
gegeeegtee geea	argage rgege		•	• •	
2.50					
<210> 7					
<211> 28					
<212> DNA	•				
<213> ARTIFICI	AL SEQUENCE				
•	. •				
		•			
<220>					
<223> PRIMER I	IRETCTED TO RAT C	inc			
<400> 7			•		
cttggggaca ccct	tcagca tcttttgg		A		28
<210> 8				-	
<211> 21					
<212> DNA			•		
<213> ARTIFICI	AL SEQUENCE		· · · · · · · · · · · · · · · · · · ·		
,					
		•		•	
<220>					
<223> PRIMER I	IRETCTED TO RAT C	inc			
<400> 8					• •
ctctacccac ggca	agttca a				21
<210> 9			• •	•	
<211> 20		•			
<212> DNA					
<213> ARTIFICI	AL SEQUENCE				
<220>	· `		•	•	•
<223> PRIMER D	IRETCTED TO RAT C	inc	•	· .	
<400> 9					
gggatgacct tgcc	cacagc				20

Page 7