

CD4013BMS

CMOS Dual 'D'-Type Flip-Flop

FN3080 Rev 0.00 December 1992

Features

- High-Voltage Type (20V Rating)
- · Set-Reset Capability
- Static Flip-Flop Operation Retains State Indefinitely With Clock Level Either "High" Or "Low"
- Medium-Speed Operation 16 MHz (typ.) Clock Toggle Rate at 10V
- Standardized Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package Temperature Range):
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- Registers
- Counters
- Control Circuits

Description

CD4013BMS consists of two identical, independent data type flip-flops. Each flip-flop has independent data, set, reset, and clock inputs and Q and \overline{Q} outputs. These devices can be used for shift register applications, and, by connecting \overline{Q} output to the data input, for counter and toggle applications. The logic level present at the D input is transferred to the Q output during the positive going transition of the clock pulse. Setting or resetting is independent of the clock and is accomplished by a high level on the set or reset line, respectively.

The CD4013BMS is supplied in these 14 lead outline packages:

Braze Seal DIP H4Q
Frit Seal DIP H1B
Ceramic Flatpack H3W

Pinout

Functional Diagram

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) ... -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs ... -0.5V to VDD +0.5V DC Input Current, Any One Input ... ± 10 mA Operating Temperature Range ... -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) ... -65°C to +150°C Lead Temperature (During Soldering) ... ± 265 °C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

-		
Thermal Resistance	θ_{ja}	θ _{jc} 20°C/W
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD		
For TA = -55°C to +100°C (Package Ty	oe D, F, K)	500mW
For TA = +100°C to +125°C (Package T	ype D, F, K) Derate
Line	earity at 12r	nW/°C to 200mW
Device Dissipation per Output Transistor.		100mW
For TA = Full Package Temperature Ra	nge (All Pad	kage Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDI	D or GND	1	+25°C	-	2	μА
				2	+125°C	-	200	μА
		VDD = 18V, VIN = VDI	D or GND	3	-55°C	-	2	μА
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	•	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load (Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4	/DD = 5V, VOUT = 0.4V		+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	/DD = 10V, VOUT = 0.5V		+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6	6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.9	5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	3.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	uΑ	1	+25°C	-2.8	-0.7	٧
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μΑ	1	1	+25°C	0.7	2.8	٧
Functional	F	VDD = 2.8V, VIN = VD	D or GND	7	+25°C	VOH >	VOL <	٧
		VDD = 20V, VIN = VDI	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VDI	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	DD = 3V, VIN = VDD or GND		-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	-	1.5	٧
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	٧
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	VDD = 15V, VOH > 13.5V,		+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being implemented.

^{3.} For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

^{2.} Go/No Go test with limits applied to inputs

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	300	ns
Clock to Q, Q	TPLH1		10, 11	+125°C, -55°C	-	405	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	400	ns
Set to Q, Reset to Q			10, 11	+125°C, -55°C	-	540	ns
Propagation Delay	TPLH2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	300	ns
Set to Q, Reset to Q			10, 11	+125°C, -55°C	-	405	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
Clock to Q, Q	TTLH		10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input Fre-	FCL	FCL VDD = 5V, VIN = VDD or GND		+25°C	3.5	-	MHz
quency			10, 11	+125°C, -55°C	3.5/1.35	ı	MHz

NOTES:

- 1. VDD = 5V, CL = 50pF, RL = 200K
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX UNIT	
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	1.0	μΑ
				+125°C	-	30	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C		2.0	μА
				+125°C	-	60	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2.0	μΑ
				+125°C	-	120	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	=	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	1	-0.36	mA
				-55°C	1	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	1	-1.6	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-4.2	mA
Output Current (Source)	IOH15 VDD =15V, VOUT = 13.5V		1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	+7	-	V
Propagation Delay Clock	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	130	ns
to Q, \overline{Q}	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	90	ns
Propagation Delay	TPHL2 VDD = 10V		1, 2, 3	+25°C	-	170	ns
Set to Q Reset to Q		VDD = 15V	1, 2, 3	+25°C	-	120	ns
Propagation Delay	TPLH2	VDD = 10V	1, 2, 3	+25°C	-	130	ns
Set to Q Reset to Q		VDD = 15V	1, 2, 3	+25°C	-	90	ns
Transition Time	TTHL TTLH	VDD = 10V	1, 2, 3	+25°C	-	100	ns
Clock to Q, Q		VDD = 15V	1, 2, 3	+25°C	-	80	ns
Maximum Clock Input Fre-	FCL	VDD = 10V	1, 2, 3	+25°C	8	-	MHz
quency		VDD = 15V	1, 2, 3	+25°C	12	-	MHz
Minimum Data Setup Time	TS	VDD = 5V	1, 2, 3	+25°C	-	40	ns
		VDD = 10V	1, 2, 3	+25°C	-	20	ns
		VDD = 15V	1, 2, 3	+25°C	-	15	ns
Minimum Clock Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	140	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	60	ns
		VDD = 15V	1, 2, 3	+25°C	-	40	ns
Minimum Set or Reset	TW	VDD = 5V	2, 3	+25°C	-	180	ns
Pulse Width		VDD = 10V	2, 3	+25°C	ı	80	ns
		VDD = 15V	2, 3	+25°C	•	50	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	7.5	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
P Threshold Voltage Delta	ΔVPTH	$VSS = 0V, IDD = 10\mu A$	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND VDD = 3V, VIN = VDD or GND	1	+25°C	VOH > VDD/2	VOL < VDD/2	V
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25^OC

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-1	IDD	$\pm~0.2\mu A$
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD	
Initial Test (Pre Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
PDA (Note 1)		100% 5004	1, 7, 9, Deltas		
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A	
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas		
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11		
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11		
Group B Subgroup B-5 Subgroup B-6		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11	
		Sample 5005	1, 7, 9		
Group D		oup D Sample 5005		Subgroups 1, 2 3	

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9 Table 4		1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 (Note 1)	1, 2, 12, 13	3-11	14			
Static Burn-In 2 (Note 1)	1, 2, 12, 13	7	3-6, 8-11, 14			

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR	
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Dynamic Burn- In (Note 1)	-	4, 6-8, 10	14	1, 2, 12, 13	3, 11	5, 9
Irradiation (Note 2)	1, 2, 12, 13	7	3-6, 8-11, 14			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Logic Diagram

FIGURE 1. ONE OF TWO IDENTICAL FLIP-FLOPS

TRUTH TABLE

	_	_	_	_	_	
CL*	D	R	s	ø	Ø	No Change
	0	0	0	0	1	
	1	0	0	1	0	
	Х	0	0	Q	Q	
Х	Х	1	0	0	1	
Х	Х	0	1	1	0	
Х	Х	1	1	1	1	
Logic 0 = I	* = Level change					

 $\label{eq:logic_logic} \mbox{Logic 1 = High} \qquad \qquad X = \mbox{Don't care}$ $\mbox{N(N) = FF1/FF2 terminal assignments}$

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 3. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

Typical Performance Characteristics (Continued)

FIGURE 6. TYPICAL PROPAGATION DELAY TIME vs LOAD CAPACITANCE (CLOCK OR SET TO Q, CLOCK OR RESET TO $\overline{\bf Q}$)

FIGURE 8. TYPICAL MAXIMUM CLOCK FREQUENCY vs SUPPLY VOLTAGE

FIGURE 7. TYPICAL PROPAGATION DELAY TIME vs LOAD CA-PACITANCE (SET TO Q OR RESET TO Q)

FIGURE 9. TYPICAL POWER DISSIPATION vs FREQUENCY

Chip Dimensions and Pad Layout

Dimension in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch).

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

© Copyright Intersil Americas LLC 1999. All Rights Reserved.

All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

