Capítulo 1

Soluções de uma Equação Diferencial

1.1 Definição de Solução

Definição 1.1.0.1 Qualquer função f definida em algum intervalo I, que, quando substituído na ED, reduz a equação a uma identidade, é chamada de **Solução**.

Exemplo 1.1.0.1 Dada a função $y(x) = c_1 sen(2x) + c_2 cos(2x)$, sendo c_1 e c_2 constantes arbitrárias, mostre que y(x) é solução da EDO y'' + 4y = 0.

Solução 1.1.0.1

$$y'' + 4y = \frac{d^2y}{dx^2} + 4y$$

$$y'' + 4y = \frac{d^2}{dx^2} \left[c_1 sen(2x) + c_2 cos(2x) \right] + 4 \left[c_1 sen(2x) + c_2 cos(2x) \right]$$

$$y'' + 4y = \frac{d^2}{dx^2} \left[c_1 sen(2x) + c_2 cos(2x) \right] + 4 c_1 sen(2x) + 4 c_2 cos(2x)$$

$$y'' + 4y = -4 c_1 sen(2x) - 4 c_2 cos(2x) + 4 c_1 sen(2x) + 4 c_2 cos(2x)$$

$$y'' + 4y = 0$$

 $Logo, \ y(x) = c_1 sen(2x) + c_2 cos(2x)$ é solução da EDO y'' + 4y = 0.