M451/551 Quiz 9

April 7, Prof. Connell

Name: Enrique Areyon.

You do not need to simplify numerical expressions.

1. If β_i is the beta of stock i for i=1,...,k, what would be the beta of a portfolio in which α_i is the fraction of ones capital that is used to purchase stock i (i = 1, ..., k)? (Assume $\sum_{i=1}^k \alpha_i = 1$.)

Our rate of return on the portfalia, say Rp, is showly Rp = Edi Ri ... (1)

Also, Bi = Cov(Ri, Rn) = Cov(Ri, Rn) = Bi Vor(Rn):(2) for a swen security i Var (Rn)

According So, let BP be the Beta of our port polis. to the previous equation:

factoring Constats

(Problem #2 is on the other side.)

So, the bety of our portfolio is just the weighted sum of the Betas for each security.

2. Let X_i be a Poisson random variable with mean λ_i . If $\lambda_1 \geq \lambda_2$, show that $X_1 \geq_{lr} X_2$.

Poisson R.V. is a discrete P.V. Hence, we went to show that, if X1 and X2 are Poisson with mean $\lambda 1$ and $\lambda 2$ resp.

Then $P(X_1=K)$ is increasing in $K \in L_{0,1}, 2,...$ provided $\lambda 1 > \lambda 2$. $P(X_2=K)$

By definition P(Xi=X) = \frac{\lambda_i^{\color}}{\color !} e^{-\lambda_i}. Thus,

 $f(k) = \frac{P(x_1 = k)}{P(x_2 = k)} = \frac{\lambda_1^k \cdot e^{-\lambda_1}}{\frac{\lambda_2^k}{k!}} = \frac{\lambda_1^k \cdot k!}{\frac{\lambda_2^k \cdot k!}{e^{-\lambda_2}}} = \frac{\lambda_2^k \cdot k!}{\frac{\lambda_2^k \cdot k!}{e^{-\lambda_2}}} = \frac{\lambda_2$

So the function f(k) is of the form $f(k) \propto a \cdot b^k$, where b > 1 only because $\lambda 1 > \lambda 2 = > \frac{\lambda_1}{\lambda_2} > 1$. and a > 0 because the function $e^{\lambda_2 - \lambda_1}$ is dways positive. Clearly f(k) is an increasing function of K tho, 1/2, ... $\frac{1}{4}$.

this Shows that Xizer Xz.