M3102 – Services et reseaux

MATÉRIEL: HTTPS://WWW.ONETE.NET/TEACHING.HTML

EMAIL: CRISTINA.ONETE@GMAIL.COM

Des vrais réseaux vs. la simulation

- ▶ Nos TPs l'année dernière :
 - Plusieurs machines, des équipements réseau (routeurs, switches, etc.)
 - ▶ Une machine virtuelle par machine
 - Les machines étaient connectées dans des sous-reseaux, éventuellement passant sur des passerelles et/ou via la machine prof.
- Quels sont les risques de cette approche ?

Dans ce module on va plutôt simuler des réseaux complèxes

L'outil Netkit

- Permet de simuler le fonctionnement de tout un reseau sur une machine
- Un logiciel qui permet de créer des VMs (Linux box) sur une machine hôte
 - Chaque VM bénéficie d'un noyau Linux
 - Chaque VM joue le rôle d'un élément d'un réseau : un PC, un routeur, un serveur...
 - ▶ Toutes ces VMs sont dans un seul VM dans lequel on exécute Netkit
 - On peut manipuler VM par VM, ou alternativement faire toute la simulation fonctionner à partir de Netkit
- Ceci nous permet de simuler le fonctionnement d'un réseau en toute sécurité

Une description de Netkit

LES V-COMMANDES, LES L-COMMANDES, ETC.

L'infrastructure avec Netkit

Deux types de commandes

- Netkit nous donne la possibilité de "programmer" un réseau
 - Spécifier quels rôles elles jouent
 - Détailler comment elles sont connectées
 - ▶ Simuler la communication entre elles
- Essentiellement deux types de commandes :
 - ▶ Les V-commandes (vcommands) : des commandes pour chaque machine virtuelle (d'où le v)
 - Les L-commandes (Icommands): des commands pour le labo en entier (d'où le L)

Faire entrer les commandes

Quelques V-commandes

- vstart : fait démarrer une nouvelle machine virtuelle
- vlist: liste des VMs actuelles
- vconfig : permet d'ajouter dynamiquement des nouvelles interfaces à une VM déjà existente
- **vhalt**: permet d'arrêter une VM sans causer des crashes
- vcrash : provoque un crash
- vclean : permet de nettoyer tout Netkit et la configuration de la machine hôte

Quelques L-commandes

- Istart : démarre un labo
- ▶ **Ihalt** : arrêt
- ▶ **Icrash**: provoque un crash sur toutes les VMs du labo
- ▶ **Iclean**: enlève les fichiers temporaires du repertoire d'un labo
- linfo : donne des informations concernant un labo, sans le démarrer
- Itest: permet l'exécution de tests, pour savoir si un labo fonctionne correctemment

Les labos Netkit

- Décrivent une certainte topologie, spécifiée dans un fichier lab.conf
 - ► La topologie spécifie des machines avec des interfaces réseau
 - Les reseaux forment des "domaines de collision" (collision domain)
 - On a la possibilité de donner des specifications pour chaque machine (par exemple combien de RAM on a, etc.)
- Chaque machine virtuelle sera associée à un sous-répertoire
- Des fichiers pour décrire le comportement des machines au start et au halt

```
~/TP_netkit/LP/Harmo $ tree .

Lab.conf
pc1
pc2
pc3
```

<nom_machine>[<numéro>] : se réfère à l'interface <numéro> de la machine <nom_machine>
domain0, domain1 : deux domaines de collision distincts, domain0, domain1
<nom_machine>[mem] : se réfère à la capacité de mémoire de la machine <nom_machine>

Dessinez la topologie indiquée par ce script

Configurer les interfaces des VMs

- Se fait en Netkit via les scripts de start et de shutdown
- Deux possibilités :
 - Chaque VM peut avoir un fichier <nom machine>.startup
 - ▶ Une instruction typique dans un tel fichier pourait être

ip address add 192.168.1.2/24 dev eth1 ip link set eth1 up

- ► Les configurations qui affectent toutes les VMs sont dans deux fichiers shared.startup et shared.shutdown
- Au démarrage, la VM exécute shared.startup, puis <nom de la VM>.startup
- ▶ Le fichier de shutdown est utilisé au cas des opérations de reboot ou de halt
 - ▶ On ne l'utilise pas dans le cas d'un crash

Les trois VMs initialisées

La commande vstart

- Elle peut être exécutée dans un script ou comme ligne de commande vstart <options> <nom_machine>
- ► Les options :
 - -M <valeur> ou -mem=<valeur> : associe la valeur de Mo indiquée pour la VM
 - -eth<numéro> = <nom_domaine> : associe l'interface eth<numéro> (par ex. eth0 ou eth1) avec le domaine de collision
 - -eth<numéro> = tap, <adresse TAP><adresse guest> : function avancée, permet d'obtenir accès à l'Internet via l'interface ethN
- Exemple:

```
vstart -M 64 --eth0=DOM0 --eth1=tap,192.168.1.3,192.168.1.11
```

Exercices

- Ecrivez un fichier lab.conf qui décrit la configuration à droite
- Quels seraient les contenus des fichiers PCB.startup et PCB.shutdown?

Dom1

Des fonctions avancées

L'INTERFACE TAP ET L'ACCES INTERNET

Une connexion Internet

- ▶ Le logiciel Netkit sert à simuler des configurations de réseau avant de les mettre en pratique
 - ▶ Par exemple pour anticiper des crashes, des difficultés concernant le routage...
- Parfois, même pour une simulation il nous faut une connexion Internet

Pourquoi?

L'interface TAP

- Réaliser un tunel entre une VM et l'Internet en utilisant la machine hôte
 - ▶ Si la VM est connectée à d'autres machines, la VM jouera le rôle d'un routeur
 - ▶ La VM sera juste connectée à l'Internet sinon
- Typiquement, la VM qui forme un bout du tunnel a plusieurs interfaces :
 - ▶ Une dans le même domaine de collision que la machine hôte DOM_hote
 - ▶ Les autres dans d'autres domaines de collision DOM_i
 - ▶ L'accès Internet de cette machine est direct via l'interface sur DOM_hote
 - Les autres VMs peuvent accéder l'Internet via cette VM

Un exemple

HOST

Configurer un tunnel TAP

► En ligne de commande :

```
vstart -eth<numéro> = tap, <adresse TAP>, <adresse GUEST> <nom VM>
```

▶ Par exemple :

```
vstart -eth1 = tap, 10.0.0.2, 10.0.0.1 VM1
```

► En lab.conf:

```
<nom VM>[<numéro interface>] = tap, <adresse TAP>, <adresse GUEST>
```

▶ Par exemple :

```
VM1[1] = tap, 10.0.0.2, 10.0.0.1
```

Exercices

- Ecrivez le fichier lab.conf qui correspond à cette figure
- Quelles instructions doit-on fournir pour que la machine VM2 ait accès à l'Internet ?
- ▶ Où va-t-on écrire ces instructions ?

Rappel sur DNS

(POUR LE PREMIER TD)

Le but du protocole DNS

- ▶ Puisque les humains n'aiment pas devoir retenir des centaines d'adresses IP...
 - On peut utiliser des noms de domaine plutôt que des adresses IP
- Correspondance adresse IP -- nom de domaine : DNS (ou fichier hosts)
 - Résolution directe
 - Résolution inverse
- ► Le protocole DNS s'exécute entre un client et un serveur
 - ▶ Le serveur est toujours un serveur, mais un client peut également être un serveur DNS

Les noms de domaine

- ▶ Namespace : l'espace de nommage
- Arbre de noms avec racine commune
 - ▶ jusqu'à 127 niveaux (max 253 char ASCII)
 - ► Chaque noeud à un nom...
 - ... sauf la racine: "."
- ▶ Le nom d'un domaine se reconstitue en ordre inverse, du nom du noeud au plus en bas vers celui le plus en haut (finissant par .)

Exemple

- ▶ Domaine en rouge : ca.openbsd.org.
 - ► Avec deux machines :
 - www.ca.openbsd.org
 - ▶ ftp.ca.openbsd.org
- ▶ Domaine en vert : openbsd.org.
 - plusieurs sous-domaines

Exemple

- Domaine en rouge : ca.openbsd.org.
 - ▶ Avec deux machines :
 - www.ca.openbsd.org
 - ftp.ca.openbsd.org
- Les pings sur une machine dans un domaine s'interprètent premièrement "localement"

ping www sur machine ftp.ca.openbsd.org

Organisation des noms

- ▶ TLD: Top-Level Domain
 - Niveau le plus haut du nom
- ▶ Plusieurs catégories :
 - .arpa : réservé, administratif
 - .ca, .be, .fr, etc. : country-code TLD (ccTLD)
 - génériques de 1^{er} niveau : generic TLD : .com, .mil
 - génériques restreint : .biz, .name, ,pro
 - sponsorisés (sTLD) : .post

Nom rélatif, nom absolu

- ▶ Fully qualified domain name (FQDN):
 - ▶ Nom complet d'une machine, finissant toujours par un point : .
 - ▶ La partie la plus significative est à droite, au contraire des adresses IP

La résolution DNS

- Résolution directe : parcourrir l'arbre par ordre inversée de la hiérarchie de son FQDN
- Résolution inverse : domaine spéciale : in-addr.arpa
 - Contient un arbre inversé : le noeud in-addr a 256 noeuds fils
 - ► Chaque noeud fils a encore 256 noeuds fils...
 - ▶ ... etc. (sur 4 niveaux)

