4교시: 핵심기계요소 설계 2: 회전 운동

- 세부 내용: 회전 메커니즘 이해, 선정능력배양, 계산실무역량, 통합설계관점 - 실습: 카탈로그 기반 베어링 선정, SolidWorks를 이용한 회전 구동부 모델링

4교시 시작 & 3교시 연결

- 3교시 직선운동(힘, 변위) → 4교시 회전운동(토크, 각도) 확장
- 베어링 + 감속기 = 조선소 대형 장비의 핵심 동력전달 시스템

토크(Torque)의 정의

- 토크(τ) = 힘(F) × 반지름(r), 단위: N·m
- 조선소 크레인, 윈치, 프로펠러를 움직이는 근본 원리

조선소 환경의 토크 특성

- 해상 진동, 충격 하중 → 설계토크 × 1.5 안전계수 필수
- 일반 공장(1.2×) vs 조선소(1.5×) 환경 차이 반영

3교시 연계: 힘 → 토크 변환

- 3교시 LM가이드 하중(F) \times 작용반지름(r) = 필요토크(τ)
- 볼스크류 추력 5,000N × 반지름 0.1m = 500N·m 토크

토크의 방향성과 우수법칙

- 토크 방향 = 오른손 법칙, 회전축과 수직인 벡터
- 시계방향(CW) vs 반시계방향(CCW) 구분의 중요성

복합토크와 토크 합성

- 복합토크 = Σ(Fi × ri), 벡터 합성 원리 적용
- 조선소 다축 크레인: 여러 모터의 토크 조합 필요

토크와 동력의 관계

- $P(kW) = \tau(N \cdot m) \times \omega(rad/s) \div 1000$
- 같은 동력이라도 \mathtt{E} 크 \uparrow \rightarrow $\mathtt{4}$ 도 \downarrow , \mathtt{E} 크 \downarrow \rightarrow $\mathtt{4}$ 도 \uparrow

관성모멘트의 개념

- I = Σ(mi × ri²), 회전에 대한 저항 정도
- 조선소 대형 부품: 관성모멘트 ↑ → 가속/감속 토크 ↑

동적 토크 vs 정적 토크

- 정적토크: 일정 속도 유지, 동 적토크: 가속/감속 시
- 총 필요토크 = 정적토크 + 동 적토크 + 마찰토크

$$T_{rms} = \sqrt{\frac{(T_a + T_L)^2 \cdot t_1 + T_L^2 \cdot t_2 + (T_d - T_L)^2 \cdot t_3}{t_f}}$$

토크 리플과 진동

- 토크 리플 = 회전 중 토크 변동, 진동과 소음 원인
- 조선소 정밀 작업: 토크 리플 ↓ → 품질 ↑

토크-속도 특성 곡선

- 토크-속도 곡선: 모터 성능의 핵심 지표
- 정격점(Rated Point): 연속 운전 가능 영역

기어비와 토크 증폭

- 기어비 i = 출력토크/입력토크 = 입력속도/출력속도
- 토크 증폭 vs 속도 감소의 트레이드오프

백래시(Backlash)와 정밀도

- 백래시 = 기어 간 유격, 위치 정밀도 저하 원인
- 조선소 정밀 작업: 백래시 ≤ 3 arcmin 권장

효율(Efficiency)과 발열

- 효율 n = 출력동력/입력동력, 손실 = 발열로 변환
- 조선소 밀폐 환경: 발열 관리 ← 효율 향상 필수

토크 센서와 측정

- 토크 센서: 변형 게이지 방식, 실시간 토크 모니터링
- 설계 검증 = 계산값 vs 실측값 비교

토크 제한과 안전장치

- 토크 리미터 = 설정값 초과 시 자동 차단
- 조선소 안전 규정: 정격 토크의 150% 제한 권장

토크 계산 실습 준비

- 3교시 LM가이드 하중 → 회전 반지름 → 필요 토크
- 계산 결과 = 베어링 선정 기준값 (세션 2 입력)

세션 1 종합 정리

- 토크 = 회전의 핵심, 힘 × 거리로 간단 계산
- 조선소 특성 = 충격계수 1.5×, 안전 우선 설계

세션 1 정리

- 토크 = 힘 × 반지름, 조선소 충격계수 1.5× 반영
- 3교시 하중계산 → 4교시 토크계산 완료

세션 2 예고 & 휴식

- 계산된 토크 → 베어링 하중 변환 → L10 수명 계산
- Excel 자동계산 템플릿으로 신속한 베어링 선정 실습

세션 2 시작 & 브리지

- 세션 1 토크계산 → 베어링 하중으로 변환 → 적절한 베어링 선정
- 볼베어링(고속) vs 롤러베어링(고하중) vs 슬루잉베어링(대형회전)

베어링 분류 체계

- 볼베어링: 고속회전(~10,000rpm), 정밀도 우수, 하중 제한
- 롤러베어링: 고하중 지지, 저속~중속, 내구성 우수

슬루잉베어링 특수성

- 대형 회전체용 특수 베어링 = 크레인 선회부, 갑문 회전축
- 저속 고토크 + 축방향·반지름방향 하중 동시 지지

베어링 환경 등급

- 해상 환경 = 염분 + 습도 + 충
 격 → 특수 씰링 필수
- IP65 이상 권장, 스테인리스 또 는 특수 코팅 적용

주요 베어링 브랜드 비교

- SKF(해상 특화) vs NSK(정밀도) vs Timken(고하중) 특성
- 조선소 선호도 = 공급망 안정성 + A/S 접근성 + 검증 실적

구분	SKF (해상 특화)	NSK (정밀도)	Timken (고하중)
주요 강점	해양 환경 대응, 부식 방지 특화	고정밀 가공, 저진동·저소음	고하중·충격 하중 대응
표면 처리/코팅	마린급 코팅(안티코로션, 스테인리스 옵션)	초정밀 연마·미세면 조도	특수 경화 처리, 표면 경도 강화
정밀도 등급	ISO 등급 P6P5 (일반고정밀)	ISO 등급 P5P4 (고정밀초정밀)	ISO 등급 P6 (일반 산업용 중심)
내하중 성능	정격 하중: 중하~고하중 (해상 기계 적합)	정격 하중: 중하중 이하 (정밀 기계에 최적)	정격 하중: 고하중 (광산·철강·건설)
수명(L10, 동일 조건)	1.0 배 (기준)	1.1~1.2 배 (정밀 제조로 인한 내구성 향상)	1.2~1.3 배 (하중 설계 여유)
내식성	매우 우수 (염수·습기 대응)	보통 (옵션 처리 가능)	보통~양호 (산업용 표준)
소음/진동	보통~양호	매우 우수 (정밀 스핀들용 적합)	보통
가격(동급 비교)	★★★ (중간~상)	★★★★ (높음)	★★~★★ (중간)
주 사용 분야	선박, 해양 장비, 항만 크레인	반도체 장비, CNC, 로봇	철강 압연, 광산 장비, 대형 기계
특징 요약	해상·습식 환경에서 수명 유리	미세 오차 요구 환경에서 최적	극한 하중·충격 환경에서 탁월

Excel 실습 준비

- 이론 공식 → Excel 자동 계산 → 실무 바로 적용
- 동적하중용량(C), 등가하중(P), 회전속도(n) 입력만으로 수명 산출

동적하중용량 이해

- C값 = 100만 회전 시 90% 베어링이 생존하는 하중
- 카탈로그에서 C값 찿기 → Excel C 셀에 입력 → 자동 계산

등가하중 계산

- 반지름하중(Fr) + 축하중(Fa) → 등가하중(P) 변환
- P = X×Fr + Y×Fa (X, Y는 베어링별 계수)

Loads that are applied to a bearing

Loads that are applied to a bearing

등가하중 계산

베어링 종류	조건	Х	Υ
깊은 홈 볼 베어링 (Deep Groove Ball	축하중이 거의 없거나 작음 (F_a/F_r <e), e:0.2~0.3<="" th=""><th>1</th><th>0</th></e),>	1	0
Bearing)	축하중이 큰 경우 (F_a/F_r > e)	0.56	1.63/e ~ 1.6 (보통 약 1.6)
앵귤러 콘택트 볼 베어링 (Angular Contact Ball Bearing, α=15°)	모든 경우		0.56
앵귤러 콘택트 볼 베어링 (α=25°)	모든 경우		1.63
앵귤러 콘택트 볼 베어링 (α=40°)	모든 경우	0.35	1.0
원통 롤러 베어링 (Cylindrical Roller Bearing, Radial Load)	순수 방사하중	1	0
구면 롤러 베어링 (Spherical Roller	축하중이 작음 (F_a/F_r < e)	1	0
Bearing)	축하중이 큰 경우 (F_a/F_r > e)	0.67	1.5
테이퍼 롤러 베어링 (Tapered Roller	축하중이 작음 (F_a/F_r < e)	1	0
Bearing)	축하중이 큰 경우 (F_a/F_r > e)	0.4~0.67	1.4~2.0 (형식·접촉각에 따라 다름)

회전속도 고려사항

- 정격속도 vs 실제 운전속도 → 변동 계수 적용
- 간헐 운전 = 등가 운전시간으로 환산 → 수명 연장 효과

조선소 환경계수

- 일반 공장 계수 1.0 → 조선소 1.3~1.5 (염분, 충격, 진동)
- 환경 악화 = 수명 감소 → 여유도 확보 필수

구분	위험/매우 높음	주의/높음	적정/보통	낮음
염분	> 200 mg/m²/day	50 - 200 mg/m²/day	10 - 50 mg/m²/day	< 10 mg/m²/day
습도	> 85% RH	70 - 85% RH	40 - 70% RH	< 40% RH
온도	> 35°C 또는 < 5°C	28 - 35°C	5 - 28°C	-
충격	> 20 G	5 - 20 G	1 - 5 G	< 1 G
진동	> 15 mm/s	7 - 15 mm/s	2 - 7 mm/s	< 2 mm/s

Excel 실습 실행

- C, P, n 입력 → L10h 자동 계산 → 목표 수명과 비교
- 계산 결과 = 초록(OK) / 빨강(NG) 자동 색상 표시

계산 결과 해석

- 계산 수명 ≥ 목표 수명 × 안전계수 1.5 → 선정 완료
- 부족 시 → 상위 모델 선정 or 운전 조건 재검토

베어링 최종 선정

- Excel 검증 완료 → 카탈로그 재확인 → 공급업체 검토
- 선정 근거 문서화 → 설계 변경 시 추적 가능성 확보

베어링 선정 체크리스트

- 기술: 수명, 하중, 속도, 정밀도, 환경 등급 확인 완료
- 실무: 가격, 납기, A/S, 호환성, 재고 가능성 확인 완료

베어링 섹션 마무리

- 베어링 선정 완료 → 이제 감속기 선정 + SolidWorks 조합
- 토크(세션1) + 베어링(세션2) + 감속기(세션3) = 완전한 회전 시스템

Excel 실습: L10 수명 계산

- L10h = (C/P)^p × (10^6)/(60×n) 수식을 Excel에 구현
- 동적하중용량(C), 작용하중(P), 회전속도(n) 입력 → 수명 자동계산

베어링 선정 마무리

세션 3 예고 & 휴식

- 선정된 베어링 + 감속기 조합 → SolidWorks 3D 모델링
- 유성감속기 vs 사이클로이드 vs 웜감속기 특성 비교

세션 3 시작 & 브리지

- 세션 2 베어링 선정 완료 → 감속기 추가 → 3D 모델링으로 검증
- 감속비 계산 + 효율 고려 + SolidWorks 어셈블리 실습

감속기 필요성과 분류

- 서보모터 3000rpm → 작업 속도 30rpm = 100:1 감속 필요
- 토크 증대 + 정밀 제어 → 조선소 자동화의 핵심 요소

유성감속기 특성

- 태양기어 + 유성기어 + 링기어 = 높은 감속비 + 작은 크기
- 효율 95%↑, 백래시 최소 → 정밀 위치 제어 최적

사이클로이드 감속기 특성

- 사이클로이드 곡선 활용 → 충격 흡수 + 긴 수명
- 고하중 대응 + 역구동 방지 → 중장비 적용 최적

웜감속기 특성

- 웜기어 + 웜휠 = 역구동 완전 차단
- 대감속비 가능 + 소음 저감 → 안전 중시 조선소 적합

감속기 종류별 비교

- 정밀도 우선 → 유성감속기 / 내구성 우선 → 사이클로이드
- 안전성 우선 → 웜감속기 / 경제성 우선 → 헬리컬 기어

구분	주요 특성	장점	단점	대표 용도
유성감속기 (Planetary)	중심 태양기어·행성기어 구조, 다점 접촉	고정밀, 높은 토크/체적 비, 컴팩트	제작비용 높음, 소음 가능	로봇 구동축, CNC, 정밀 자동화 장비
사이클로이드 감속기 (Cycloidal)	원판 편심 회전, 롤러 핀과 접촉	매우 높은 내구성, 충격 하중 강함, 고토크	제작 복잡, 고속 시 소음	산업용 로봇, 프레스, 중장비
웜감속기 (Worm)	웜스크류-웜휠 맞물림	자기잠김(Self- locking) 가능, 안전성 우수	효율 낮음(마찰↑), 발열	리프트, 호이스트, 안전 중시 기계
<mark>헬리컬 기어</mark> (Helical)	비스듬한 이빨 맞물림	효율 높음, 부드러운 전달, 저소음	축방향 하중 발생, 고토크 한계	컨베이어, 일반 산업기계, 감속기 내부단

감속비 계산 기초

- 감속비 = 입력 rpm / 출력 rpm = 기어비의 곱
- 다단 감속 = 각 단별 감속비 × 연쇄 계산

효율 계산과 열 발생

- 총 효율 = 각 단별 효율의 곱 (연쇄 효율 저하)
- 효율 손실 = 열 발생 → 냉각 시스템 필요성

SolidWorks 실습 시작

- 세션 2 베어링 + 감속기 STEP 파일 → 3D 어셈블리
- Mate 기능으로 축 정렬 + 간섭 체크 + 동작 시뮬레이션

어셈블리 기본 설정

- 전체 좌표계 설정 → 각 부품의 기준점 정렬
- 기준면 활용 → 정확한 부품 배치와 각도 조정

베어링 하우징 배치

- 베어링 내경 = 축 직경 → Concentric Mate로 정확한 정렬
- 축방향 위치 → Distance Mate로 설계 치수 반영

감속기 케이스 조립

- 감속기 출력축 + 베어링 하우징 → 플랜지 볼트 체결
- 볼트홀 패턴 매칭 → Hole Wizard로 정확한 구멍 위치

커플링 설치

- 감속기 출력축 + 작업축 → 커플링으로 연결
- 축 정렬 오차 허용 → 탄성 커플링 vs 강성 커플링 선택

어셈블리 검증

- 치수 검증 → 설계 치수와 CAD 모델 일치성 확인
- 동작 시뮬레이션 → 회전 동작과 가동 범위 점검

재료 속성 설정

- 각 부품별 재료 지정 → 자동 무게 계산 → 관성모멘트 산출
- 정확한 물성값 → 동역학 해석과 모터 용량 계산 기초

SolidWorks 실습 완료

- 베어링 + 감속기 통합 모델 완성 → 이제 성능 검증 단계
- 3D 모델 + 계산 결과 → 세션 4 최종 검증에서 통합 평가

SolidWorks 어셈블리 핵심 단계

- 베어링 하우징 + 감속기 케이스 + 커플링 조립
- Mate 기능으로 정확한 축 정렬 + 간섭 체크 필수

SolidWorks 마무리 및 검증

세션 4 시작 & 브리지

- 베어링+감속기 통합 시스템 → 설계 검증 + 안전성 확인
- 1일차 총정리 + 2일차 서보모터 시스템으로 연결

안전계수 통합 계산

- 전체 시스템 안전계수 = 각 구성품 안전계수의 최솟값
- 조선소 기준 ≥ 2.0 → 환경 불확실성과 충격 하중 대응

수명 예측 통합 분석

- 시스템 수명 = 가장 짧은 부품 수명 (병목 이론)
- 예방 정비 주기 = 예측 수명 × 0.8 (20% 여유도)

효율 분석과 에너지 비용

- 전체 효율 = 감속기 효율 × 베어링 효율 × 커플링 효율
- 효율 1% 차이 = 연간 전력비 수십만원 차이 (대형 장비 기준)

성공 사례 1: 크레인 모던화

- 기존 웜감속기 → 유성감속기 교체 → 효율 15% 향상
- 연간 전력비 1,200만원 절감 + 정밀도 향상으로 작업 시간 단축

성공 사례 2: 패널라인 정밀도 개선

- 일반 베어링 → 정밀 베어링 + 사이클로이드 감속기 조합
- 위치결정 정밀도 ± 5 mm $\rightarrow \pm 1$ mm 개선 \rightarrow 후공정 재작업 90% 감소

실패 사례 분석 1: 베어링 조기 마모

- 일반 공장용 베어링 → 조선소 염분 환경 → 6개월 만에 교체
- 환경계수 미반영 + 씰링 부족 = 설계 수명의 1/10 단축

실패 사례 분석 2: 감속기 과열 문제

- 고효율 추구 → 소형 감속기 선정 → 열 발생 과다 → 윤활유 열화
- 냉각 시스템 미설치 + 듀티사이클 과소평가 = 3개월 만에 고장

설계 검증 체크리스트

- 기술적 검증: 용량, 수명, 효율, 환경 대응, 안전계수 확인
- 실무적 검증: 공급성, 경제성, 정비성, 호환성, 확장성 확인

ROI 계산과 경제성 평가

- 투자비 vs 절감 효과 → ROI = (연간 절감액 연간 비용) / 투자비
- 조선소 평균 회수 기간 2-3년 → 장기 운영 관점의 경제성

유지보수 전략 수립

- 예방정비 = 예측 수명 80% 시점 교체 → 계획적 비용 관리
- 사후정비 = 고장 후 교체 → 생산 중단 비용 〉 부품 비용

성능 모니터링 시스템

- 진동, 온도, 전류 센서 → 실시간 상태 모니터링
- 이상 징후 조기 발견 → 계획 정비로 전환 → 비용 절감

지속적 개선 방향

- 운전 데이터 축적 → 설계 기준 개선 → 차세대 시스템 최적화
- 실패 사례 DB → 설계 검증 강화 → 신뢰성 향상

1일차 총정리

- 직선운동(3교시) + 회전운동(4교시) = 기계설계 기초 완성
- 이론 → Excel 계산 → SolidWorks 모델링 → 검증 전 과정 체험

2일차 예고: 서보모터 시스템

- 오늘 설계한 베어링+감속기 → 필요한 서보모터 용량 계산
- 토크, 속도, 관성 모두 고려한 정밀한 모터 선정 실습

질의응답 & 피드백

- 오늘 학습 내용 중 궁금한 점 질의응답
- 내일 서보모터 교육을 위한 준비사항 안내