

Tartalom

- A problémamegoldás lépései programkészítés folyamata
- ► A specifikáció
- > Az algoritmus
- > Algoritmikus nyelvek struktogram
- ➤ A kódolás a fejlesztői környezet

A programkészítés folyamata

- 1. Specifikálás (miből?, mit?) → specifikáció
- 2. **Tervezés** (mivel?, hogyan?) → adat- + algoritmus-leírás
- 3. **Kódolás** (a gép hogyan?) → *kód* (reprezentáció + implementáció)
- 4. **Tesztelés** (hibás-e?) → hibalista (diagnózis)
- 5. **Hibakeresés** (hol a hiba?) → hibahely, -ok
- 6. Hibajavítás (hogyan jó?) → helyes program
- 7. Minőségvizsgálat, hatékonyság (jobbítható-e?, hogyan?) → jó program
- 8. Dokumentálás (hogyan működik, használható?) → használható program
- 9. **Használat, karbantartás** (még mindig jó?) → évelő (időtálló) program

A specifikáció fogalma

Célja

a feladat formális megragadása.

Osszetevői:

- Bemenő adatok (azonosító, értékhalmaz [mértékegység])
- 2. Ismeretek a bemenetről (előfeltétel)
- 3. Eredmények (azonosító, értékhalmaz)
- 4. Az eredményt meghatározó állítás (utófeltétel)
- 5. A használt fogalmak definíciói
- 6. A megoldással szembeni követelmények
- 7. Korlátozó tényezők

A specifikáció fogalma

Tulajdonságai:

- 1. "Egyértelmű", pontos, teljes
- 2. Rövid, tömör; formalizált
- 3. Szemléletes, érthető (fogalmak)

Specifikációs eszközök:

- 1. Szöveges leírás
- 2. Matematikai megadás

Az algoritmus fogalma

Az algoritmusok összeállítási módjai:

- > Szekvencia (egymás utáni végrehajtás)
- Elágazás (választás 2 vagy több tevékenységből)
- Ciklus (ismétlés adott darabszámszor vagy adott feltételtől függően)
- Alprogram (egy összetett tevékenység, egyedi néven – absztrakció)

(specifikáció)

Feladat:

3 szám lehet-e egy derékszögű háromszög 3 oldala?

Specifikáció:

R=Valós számok halmaza

> Bemenet: $x,y,z \in \mathbb{R}$

L=Logikai értékek halmaza

> Kimenet: lehet∈L

>Előfeltétel: x>0 és y>0 és z>0

> Utófeltétel: lehet= $(x^2+y^2=z^2)$

Megjegyzés: a 3 szám sorrendjét ezek szerint rögzítettük – z az átfogó hossza!

(specifikáció)

Specifikáció = függvény:

Független változók

- ▶ Bemenet: x,y,z∈R
 a függvény értelmezési tartománya: R×R×R=R³
 (amelynek egyes komponenseire lehet hivatkozni a specifikációban x-szel, y-nal, z-vel)
 Függő változó
- ➤ Kimenet: lehet ∈ L a függvény értékkészlete: L (amelyre hivatkozhatunk a specifikációban lehet-tel)
- ► Előfeltétel: x>0 és y>0 és z>0 a függvény értelmezési tartományának (\mathbb{R}^3) szűkítése (\mathbb{R}_+^3)
- ➤ **Utófeltétel**: lehet=(x²+y²=z²) mi igaz a végeredményre

(algoritmus)

Algoritmus:

Valós: Valós számok típusa

Logikai: Logikai értékek típusa

A programunk 4 fő részből áll:

az adatok deklarálása, beolvasása, az eredmény kiszámítása, az eredmény

kiírása:

Specifikáció:

> Bemenet: $x,y,z \in \mathbb{R}$

>Kimenet: lehet∈L

>Előfeltétel: x>0 és y>0 és z>0

> **Utófeltétel**: lehet= $(x^2+y^2=z^2)$

Be: x,y,z [x>0 és y>0 és z>0]

lehet:=
$$(x^2+y^2=z^2)$$

Ki: lehet

Változó x,y,z:Valós

lehet:Logikai

A deklarációt, az "elemi" utasításokat egy-egy "dobozba" írjuk.

Később a be- és kimenetet nem algoritmizáljuk!

(algoritmus)

Algoritmus:

Valós: Valós számok típusa

Logikai: Logikai értékek típusa

A programunk 4 fő részből áll:

az adatok deklarálása, beolvasása, az eredmény kiszámítása, az eredmény

> Bemenet: $x,y,z \in \mathbb{R}$

>Kimenet: lehet∈L ••

>**Előfeltétel**: x>0 és y>0 és z>0...

> Utófeltétel: lehet= $(x^2+y^2=z^2)$

Be: x,y,z [x>0 és y>0 és z>0]

lehet:= $(x^2+y^2=z^2)$

Ki: lehet

kiírása:

Változó

x,y,z:Valós

lehet:Logikai

A deklarációt, az "elemi" utasításokat egy-egy "dobozba" írjuk.

Később a be- és kimenetet nem algoritmizáljuk!

Példa: háromszög (algoritmus)

Egy másik algoritmus a lényegi részre:

Segéd változók deklarálása "széljegyzetként"

 $xx:=x^2$

 $yy:=y^2$

 $zz := z^2$

lehet:=(xx+yy=zz)

Változó

xx,yy,zz:Valós

Bevezethetők/-endők segéd (belső, saját) változók.

Példa: másodfokú egyenlet (specifikáció)

Feladat:

Adjuk meg a másodfokú egyenlet egy megoldását! Az egyenlet: $ax^2+bx+c=0$

Kérdések:

- Mitől függ a megoldás? bemenet
- Mi a megoldás? kimenet
- Mit jelent: "megoldásnak lenni"? utófeltétel
- Mindig/Mikor van megoldás? előfeltétel
- Biztos egy megoldás van? kimenet/ utófeltétel

(specifikáció)

Specifikáció₁:

> Bemenet: $a,b,c ∈ \mathbb{R}$

 \triangleright Kimenet: $x \in \mathbb{R}$

> Előfeltétel: –

 \rightarrow Utófeltétel₁: $ax^2+bx+c=0$

Megjegyzés: az uf. nem ad algoritmizálható információt. Nem baj, sőt tipikus, de ... próbálkozzunk még!

(specifikáció)

Specifikáció₁:

> Bemenet: $a,b,c ∈ \mathbb{R}$

 \triangleright Kimenet: $x \in \mathbb{R}$

> Előfeltétel: –

 \rightarrow Utófeltétel₁: $ax^2+bx+c=0$

Megjegyzés: az uf. nem ad algoritmizálható információt. Nem baj, sőt tipikus, de ...

Megoldóképlet:
$$x_{1,2} =$$

$$\frac{-b \pm \sqrt{b^2 - 4 * a * c}}{2 * a}$$

(specifikáció)

Specifikáció₂:

> Bemenet: $a,b,c ∈ \mathbb{R}$

 \gt Kimenet: $x \in \mathbb{R}$

> Előfeltétel: a≠0

► Utófeltétel₂:
$$x = \frac{-b + \sqrt{b^2 - 4*a*c}}{2*a}$$

Nyitott kérdések:

- > Mindig/Mikor van megoldás?
- > Egy megoldás van?

(specifikáció)

Specifikáció₂:

> Bemenet: $a,b,c ∈ \mathbb{R}$

 \gt Kimenet: $x \in \mathbb{R}$

> Előfeltétel: a≠0

► Utófeltétel₂:
$$x = \frac{-b + \sqrt{b^2 - 4*a*c}}{2*a}$$

Nyitott kérdések:

- > Mindig/Mikor van megoldás?
- > Egy megoldás van?

(specifikáció)

Kimenet bővítés:

 \gt Kimenet: $x \in \mathbb{R}$, $van \in \mathbb{L}$

> Utófeltétel: van=(b²-4*a*c≥0) és

$$van \rightarrow x = \frac{-b + \sqrt{b^2 - 4 * a * c}}{2 * a}$$

Nyitott kérdés:

> Egy megoldás van? – hf.

Példa: másodfokú egyenlet (algoritmus)

Algoritmus:

Változó

a,b,c,x:Valós van:Logikai

d:Valós

Specifikáció₂:

>Bemenet: a,b,c∈R

► Előfeltétel: a≠0

 \gt Kimenet: $x \in \mathbb{R}$, $van \in \mathbb{L}$

► Utófeltétel: $van=(b^2-4*a*c \ge 0)$ és

$$van \rightarrow x = \frac{-b + \sqrt{b^2 - 4 * a * c}}{2 * c}$$

Be: a,b,c [a≠0)]
$d = b^2 - 4 * a * c$	
van:=d≥0	
	van?
•••	

Példa: másodfokú egyenlet (algoritmus)

Algoritmus:

Változó a,b,c,x:Valós

van:Logikai d:Valós

> Bemenet: a,b,c∈R

► Előfeltétel: a≠0

 \gt Kimenet: $x \in \mathbb{R}$, $van \in \mathbb{L}$

► Utófeltétel: $van=(b^2-4*a*c \ge 0)$ és

$$van \rightarrow x = \frac{-b + \sqrt{b^2 - 4 * a * c}}{2 * a}$$

> Bemenet: a,b,c ∈ R

 \gt Kimenet: $x \in \mathbb{R}$, $van \in \mathbb{L}$

► Utófeltétel: $van=(b^2-4*a*c \ge 0)$ és

► Előfeltétel: a≠0

Példa: másodfokú egyenlet (algoritmus)

Algoritmus:

- Be: a,b,c [$a \neq 0$] d:= $b^2-4*a*c$
- van:=d≥0

 $-b + \sqrt{b^2 - 4 * a * c}$

Változó a,b,c,x:Valós van:Logikai d:Valós

A feltételes utasítás "3-dobozos" struktúra.

van?

Hamis-ág

d:Valós

Példa: másodfokú egyenlet

(algoritmus)

Algoritmus másképpen:

Program MásodfokúEgyenlet:

Változó

a,b,c,x:Valós

van:Logikai

d: Valós

Be:a,b,c $[a\neq 0]$

 $d := b^2 - 4 * a * c$

van:=d≥0

Ha van **akkor** $x := \frac{-b + \sqrt{d}}{}$

Program vége.

 $d = b^2 - 4 * a * c$ van:=d≥0

Algoritmusleíró nyelvek

- Szöveges leírás
 - Mondatokkal leírás
 - Mondatszerű elemekkel pszeudokód
- > Rajzos leírás
 - Folyamatábra
 - Struktogram

(és pszeudokód)

> Szekvencia:

Szekvencia Utasítás1 Utasítás2

> Elágazások:

Kétirányú elágazás

Y Feltétel N

Igaz-ág utasításai Hamis-ág utasításai

	Többirányú elágazás		
Feltétel1	Feltétel2		egyébként /
Utasítások1	Utasítások2		Utasítások

(és pszeudokód)

> Szekvencia:

Szekvencia Utasítás1 Utasítás2

Utasítás1 Utasítás2

> Elágazások:

Kétirányú elágazás

Y Feltétel N

Igaz-ág utasításai Hamis-ág utasításai

Többirányú elágazás		rú elágazás	
Feltétel1	Feltétel2		egyébként /
Utasítások1	Utasítások2		Utasítások

(és pszeudokód)

> Szekvencia:

Szekvencia Utasítás1 Utasítás2

Utasítás1 Utasítás2

Elágazások:

Kétirányú elágazás

Y Feltétel N

Igaz-ág utasításai Hamis-ág utasításai

Ha Feltétel akkor
Igaz-ág utasításai
különben
Hamis-ág utasításai
Elágazás vége

Többirányú elágazás Feltétel1 Feltétel2 ... egyébként Utasítások1 Utasítások2 ... Utasítások

(és pszeudokód)

> Szekvencia:

Szekvencia
Utasítás1
Utasítás2

Utasítás1 Utasítás2

> Elágazások:

Kétirányú elágazás

Y Feltétel N

Igaz-ág utasításai Hamis-ág utasításai

Igaz-ág utasításai különben Hamis-ág utasításai Elágazás vége

Ha Feltétel akkor

Többii Elágazás
Feltétell esetén Utasításokl
Feltétell Feltétell esetén Utasításokl

Feltétell Egyéb esetekben Utasítások
Utasítások Elágazás vége

(és pszeudokód)

> Szekvencia:

Szekvencia Utasítás1 Utasítás2

> Elágazások:

Kétirányú elágazás

Y Feltétel N

Igaz-ág utasításai Hamis-ág utasításai

	Többirányú elágazás		
Feltétel1	Feltétel2		egyébként /
Utasítások1	Utasítások2		Utasítások

(és pszeudokód)

> Ciklusok:

Elöltesztelő ciklus

Bennmaradás feltétele ciklusmag utasításai

Hátultesztelő ciklus

ciklusmag utasításai Bennmaradás feltétele

Számlálós ciklus

cv=tól...ig

ciklusmag utasításai

(és pszeudokód)

> Ciklusok:

Elöltesztelő ciklus

Bennmaradás feltétele ciklusmag utasításai

Hátultesztelő ciklus

ciklusmag utasításai Bennmaradás feltétele

Számlálós ciklus

cv=tól..ig

ciklusmag utasításai

Ciklus amíg Feltétel
 ciklusmag utasításai
Ciklus vége

(és pszeudokód)

> Ciklusok:

Elöltesztelő ciklus

Bennmaradás feltétele ciklusmag utasításai

Hátultesztelő ciklus

ciklusmag utasításai

Bennmaradás feltétele

Számlálós ciklus

cv=tól..ig

ciklusmag utasításai

Ciklus

ciklusmag utasításai amíg Feltétel

Ciklus vége

(és pszeudokód)

> Ciklusok:

Elöltesztelő ciklus

Bennmaradás feltétele ciklusmag utasításai

Hátultesztelő ciklus

ciklusmag utasításai Bennmaradás feltétele

Számlálós ciklus

cv=tól..ig

ciklusmag utasításai

Ciklus cv=tól ig
 ciklusmag utasításai
Ciklus vége

(és pszeudokód)

> Ciklusok:

Elöltesztelő ciklus

Bennmaradás feltétele ciklusmag utasításai

Hátultesztelő ciklus

ciklusmag utasításai

Bennmaradás feltétele

Számlálós ciklus

cv=tól..ig

ciklusmag utasításai

Számlálós ciklus

cv:=tól

cv<=ig

ciklusmag utasításai

cv := cv + 1

(és pszeudokód)

> Ciklusok:

Elöltesztelő ciklus

Bennmaradás feltétele ciklusmag utasításai

Hátultesztelő ciklus

ciklusmag utasításai Bennmaradás feltétele

Számlálós ciklus

cv=tól..ig

ciklusmag utasításai

- > Struktogramszerkesztés:
 - Táblázatkezelővel/szövegszerkesztővel
 - Célprogramokkal (pl. NSD)

Kódolás

> Keretrendszer:

Code::Blocks

> Letöltés:

www.codeblocks.org

> Telepítés:

értelemszerűen

Kódolás

Első elindításkor:

a fordítóprogram kiválasztása

Kódolás

> Használat lépései:

1. projekt létrehozása, azaz milyen platformra készül a majdani alkalmazás:

> Használat lépései:

1. projekt létrehozása, azaz milyen platformra készül a majdani alkalmazás:

Create a New from template

2. sablon (ter Console

> Használat lépései:

1. projekt létrehozása, azaz milyen platformra készül a majdani alkalmazás:

Create a New from template

2. sablon (ter Console

> Használat lépései:

- 1. projekt létrehozása, azaz milyen platformra készül a majdani alkalmazás: Create a new project
- 2. sablon (template) választása: Console application

> Használat további lépései:

a projekt munkakörnyezete a diszken

> Használat további lépései:

a projekt munkakörnyezete a diszken

> Használat további lépései:

a projekt munkakörnyezete a diszken

> Használat további lépései:

- fordítóválasztás
- a munkakörnyezet kialakítás befejezése

Code::Blocks
Registration (fejlesztői környezet)

> A kialakult munkakörnyezet:

a diszken:

> A kialakult munkakörnyezet:

a diszken:

Code::Blocks

Regionario: conspilator III

Interioris cons

> A kialakult munkakörnyezet:

a diszken:

> A kialakult munkakörnyezet:

a diszken:

Code::Blocks
Registration (fejlesztői környezet)

> A "keletkezett 0. program" fordítása

Code::Blocks
Neger nature, conspilation IRE
Interpretation (fejlesztői környezet)

> A kialakult munkakörnyezet:

• a diszken:

Code::Blocks
Neger nature, conspilation IRE
Interpretation (fejlesztői környezet)

> A kialakult munkakörnyezet:

• a diszken:

- > A kialakult munkakörnyezet:
 - a main.cpp tartalma:

```
#include <iostream>
using namespace std;
int main()
    cout << "Hello world!" << endl;</pre>
    return 0;
```

(meglepő módon?)

- > A kialakult munkakörnyezet:
 - a elsőProg.cbp tartalma (xml):

```
[D:\Oktatas\Bsc\ProgAlap\1Gyak\elsőProg\elsőProg.cbp]
  Edit Options Help
<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<CodeBlocks project file>
 <FileVersion major="1" minor="6" />
 <Project>
  <Option title="elsőProq" />
  <Option pch mode="2" />
  <Option compiler="qcc" />
  <Build>
   <Target title="Debug">
    <Option output="bin\Debuq\elsőProq" prefix auto="1" extension auto="1" />
    <Option object output="obj\Debug\" />
    <Option type="1" />
    <Option compiler="qcc" />
    <Compiler>
     <Add option="-q" />
    </Compiler>
   </Target>
```


Code::Blocks
Registration (fejlesztői környezet)

- > A kialakult munkakörnyezet:
 - a elsőProg.cbp tartalma (xml):

```
[D:\Oktatas\Bsc\ProgAlap\1Gyak\elsőProg\elsőProg.cbp]
File Edit Options Help
<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<CodeBlocks project file>
 <FileVersion major="1" minor="6" />
 <Project>
  <Option title="elsőProq" />
  <Option pch</pre>
                  <Target title="Release">
  <Option cor</pre>
                    <Option output="bin\Release\elsőProg" prefix_auto="1" extension_auto=""</pre>
                    <Option object output="obj\Release\" />
  <Build>
   <Target ti
                    <Option type="1" />
    <Option a
                    <Option compiler="qcc" />
    <Option a
                   <Compiler>
    <Option t</pre>
                    <Add option="-02" />
    <Option c
                   </Compiler>
    <Compiler |
                    <Linker>
                     <Add option="-s" />
      <Add opt
    </Compile
                    </Linker>
    </Target>
                  </Build>
                  <Compiler>
                  <Add option="-Wall" />
                  <Add option="-fexceptions" />
                  </Compiler>
                  <Unit filename="main.cpp" />
                  <Extensions>
```


- > A kialakult munkakörnyezet:
 - a elsőProg.cbp tartalma (xml):

(mily meglepő!)

> A futó konzolalkalmazás:

- "fordítás" •
- (az utolsó lefordított) futtatás(a) >
- fordítás+futtatás –
- és a konzolablak tartalma:

```
D:\Oktatas\Bsc\ProgAlap\1Gyak\els§Prog\bin\Debug\els§Prog.exe
Hello world!
                             execution time : 0.469 s
Process returned 0 (0x0)
Press any key to continue.
```


33/34

> A futó konzolalkalmazás:

- "fordítás" •
- (az utolsó lefordított) futtatás(a) >
- fordítás+futtatás –
- és a konzolablak tartalma:

D:\Oktatas\Bsc\ProgAlap\1Gyak\els§Prog\bin\Debug\els§Prog.exe

Hello world!

execution time : 0.469 s Process returned 0 (0x0) Press any key to continue.

érték

Kódolás

> A futó konzolalkalmazás:

- "fordítás" •
- (az utolsó lefordított) futtatás(a) >
- fordítás+futtatás –
- és a konzolablak tartalma:

D:\Oktatas\Bsc\ProgAlap\1Gyak\els§Prog\bin\Debug\els§Prog.exe Hello world! execution time : 0.469 s Process returned 3 (0x0) Press any ker to continue.

érték

Kódolás

> A futó konzolalkalmazás:

- "fordítás" •
- (az utolsó lefordított) futtatás(a) >
- fordítás+futtatás –
- és a konzolablak tartalma:

futási idő

```
D:\Oktatas\Bsc\ProgAlap\1Gyak\els§Prog\bin\Debug\els§Prog
Hello world!
                             execution time : 0.469 s
Process returned 3 (0x0)
Press any ker to continue.
```


> A futó konzolalkalmazás:

- "fordítás" •
- (az utolsó lefordított) futtatás(a) >
- fordítás+futtatás –
- és a konzolablak tartalma:

futási idő

Hello world! execution time : 0.469 s Process returned 3 (0x0) Press any key to continue.

D:\Oktatas\Bsc\ProgAlap\1Gyak\els§Prog\bin\Debug\els§Prog

Érdemes elindítani az exe-t! Mit tapasztalt? Magyarázat?

