勉強会 LLaMAとその派生

M1上野

目次

- ✓ LLaMAとは
 - 概要
 - モデル構造
- ✓ LLaMA2とは
 - 概要
 - LLaMAとの差分
 - 性能
- ✓ LLaMA2の派生
 - code llama
 - ELYZA

LLaMA: Open and Efficient Foundation Language Models '23 arXiv

- ✓ Metaより発表されたLLM(ソースコード公開, 商用利用不可)
- ✓ GPTやPaLMと比べて圧倒的に少ないパラメータ数で高性能を達成
 - 7B, 13B, 33B, 65Bが存在
- ✓ 後のLLaMA2の前身にあたる

		BoolQ	PIQA	SIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA
GPT-3	175B	60.5	81.0	-	78.9	70.2	68.8	51.4	57.6
Gopher	280B	79.3	81.8	50.6	79.2	70.1	-	-	-
Chinchilla	70B	83.7	81.8	51.3	80.8	74.9	-	-	-
PaLM	62B	84.8	80.5	-	79.7	77.0	75.2	52.5	50.4
PaLM-cont	62B	83.9	81.4	-	80.6	77.0	-	-	-
PaLM	540B	88.0	82.3	-	83.4	81.1	76.6	53.0	53.4
	7B	76.5	79.8	48.9	76.1	70.1	72.8	47.6	57.2
I I aMA	13B	78.1	80.1	50.4	79.2	73.0	74.8	52.7	56.4
LLaMA	33B	83.1	82.3	50.4	82.8	76.0	80.0	57.8	58.6
	65B	85.3	82.8	52.3	84.2	77.0	78.9	56.0	60.2

LLaMAのモデル構造

- ✓ 過去のLLMで上手く機能した手法の掛け合わせ
- ✓ PaLMと同様のTransformerベースに対して下記の変更を加えた
 - RMS正規化で計算量を削減(PaLMより)
 - 活性化関数にSwiGLUを適用(GPT3より)
 - Rotary Position Embeddingで長文への性能を向上(GPTNeoより)

Figure 1: Implementation of Rotary Position Embedding(RoPE).

SwiGLU

Rotary Position Embedding

Llama 2: Open Foundation and Fine-Tuned Chat Models '23 arXiv

- ✓ LLaMAをベースとした商用利用可能なオープンソースのLLM
 - RLHFを用いてChatも可能なLLaMA2-Chatもリリース

モデル構造

- ✓ LLaMAと大きくは変わらず, 70BではGrouped Query Attentionを採用
 - Key, Valueに対して複数のQueryを紐づける
 - Multi-query Attentionと比べて,速度が落ちる分性能が向上

事前学習データ

- ✓ LLaMAでは1~1.4Tトークンだったが, LLaMA2では2Tに拡張
 - 個人情報をクリーニングしたりと,値以上に価値が向上している
- ✓ 1度に入力できるコンテキスト長も2倍に

	Training Data	Params	Context Length	GQA	Tokens	LR
		7B	2k	Х	1.0T	3.0×10^{-4}
Llama 1	See Touvron et al.	13B	2k	X	1.0T	3.0×10^{-4}
LLAMA 1	(2023)	33B	2k	X	1.4T	1.5×10^{-4}
		65B	2k	X	1.4T	$1.5 imes 10^{-4}$
		7B	4k	Х	2.0T	3.0×10^{-4}
Irana	A new mix of publicly	13B	4k	X	2.0T	3.0×10^{-4}
Llama 2	available online data	34B	4k	✓	2.0T	1.5×10^{-4}
		70B	4k	✓	2.0T	1.5×10^{-4}

LLaMA2 vs Open-source Models

- ✓ LLaMA2の34BでCode以外はMPT30B, Falcon40Bを上回る
 - LLaMAの65Bには届かない
 - LLaMA2の70Bは他を圧倒

Model	Size	Code	Commonsense Reasoning	World Knowledge	Reading Comprehension	Math	MMLU	ввн	AGI Eval
MPT	7B	20.5	57.4	41.0	57.5	4.9	26.8	31.0	23.5
	30B	28.9	64.9	50.0	64.7	9.1	46.9	38.0	33.8
Falcon	7B	5.6	56.1	42.8	36.0	4.6	26.2	28.0	21.2
	40B	15.2	69.2	56.7	65.7	12.6	55.4	37.1	37.0
Llama 1	7B	14.1	60.8	46.2	58.5	6.95	35.1	30.3	23.9
	13B	18.9	66.1	52.6	62.3	10.9	46.9	37.0	33.9
	33B	26.0	70.0	58.4	67.6	21.4	57.8	39.8	41.7
	65B	30.7	70.7	60.5	68.6	30.8	63.4	43.5	47.6
Llama 2	7B	16.8	63.9	48.9	61.3	14.6	45.3	32.6	29.3
	13B	24.5	66.9	55.4	65.8	28.7	54.8	39.4	39.1
	34B	27.8	69.9	58.7	68.0	24.2	62.6	44.1	43.4
	70B	37.5	71.9	63.6	69.4	35.2	68.9	51.2	54.2

LLaMA2 vs Closed-source Models

- ✓ GPT3.5にも勝てない
 - パラメータ数の差を考えれば十分なのでは
 - ファインチューニングするとどうなるのか

Benchmark (shots)	GPT-3.5	GPT-4	PaLM	PaLM-2-L	Llama 2
MMLU (5-shot)	70.0	86.4	69.3	78.3	68.9
TriviaQA (1-shot)	_	_	81.4	86.1	85.0
Natural Questions (1-shot)	_	_	29.3	37.5	33.0
GSM8K (8-shot)	57.1	92.0	56.5	80.7	56.8
HumanEval (0-shot)	48.1	67.0	26.2	_	29.9
BIG-Bench Hard (3-shot)	-	_	52.3	65.7	51.2

LLaMA2-Chat

✓ LLaMA2の事前学習重みから,事前学習データ+100万以上の人手にアノテーションされたデータを用いてRLHFを行った

LLaMA2-Chat vs Other Chat Models

- ✓ 基本的な性能はChatGPTに劣るが、安全性は他と比べてはるかに高い
 - クリーニングとRLHFをかなり丁寧に行っている(らしい)

		TruthfulQA ↑	ToxiGen↓
ChatGPT	-	78.46	0.20
Falcon-instruct	7B	28.03	7.89
MPT-instruct	7B	29.99	16.33
	7B	57.04	0.00
Llama 2-Chat	13B	62.18	0.00
LLAMA 2-CHAT	34B	67.20	0.02
	70B	64.14	0.01

LLaMA2-Chat の日本語性能

- ✓ LLaMA2は事前学習でフルデータの0.1%(2B)トークンの日本語で学習済み
 - ※ ただし, 英語以外の使用は想定されておらず, 日本語で回答を出力できない

X 🕿

Language	Percent	Language	Percent
en	89.70%	uk	0.07%
unknown	8.38%	ko	0.06%
de	0.17%	ca	0.04%
fr	0.16%	sr	0.04%
sv	0.15%	id	0.03%
zh	0.13%	cs	0.03%
es	0.13%	fi	0.03%
ru	0.13%	hu	0.03%
nl	0.12%	no	0.03%
it	0.11%	ro	0.03%
ja	0.10%	bg	0.02%
pl	0.09%	da	0.02%
pt	0.09%	sl	0.01%
vi	0.08%	hr	0.01%

LLaMA2-7b-Chat

<s>[INST] <<SYS>>
あなたは誠実で優秀な日本人のアシスタントです。以下の質問に日本語で回答してください。
<</SYS>>
現在のアメリカ大統領は誰ですか?
[/INST] Ah, an excellent question! (^-^) As of now, the 45th President of the United States is Donald J. Trump. (US)
<s>[INST] <<SYS>>
あなたは誠実で優秀な日本人のアシスタントです。以下の質問に日本語で回答してください。
<</SYS>>
犬は哺乳類なのでAと表します. ロボットは哺乳類ではないのでBで表します. 猫はA, Bどちらですか?
[/INST] Ah, an excellent question! 犬 (dog) is indeed a mammal, specifically a member of the Canidae family, which also includes wolves a nd foxes. 犬は哺乳類です (dogs are mammals).
As for 猫 (cat), it is also a mammal, specifically a member of the Felidae family. 猫は哺乳類です (cats are mammals).
So, to answer your question, both 犬 (dog) and 猫 (cat) are mammals, and therefore are classified as A.

So, to answer your question, I would say that dogs are more like mammals than robots are. 🐕 🐱 🐰

LLaMA2についてのまとめ

- ✓ 7B~70Bで商用利用可能なオープンソースLLM
 - ※ 7Bは出力がバグることがあるので注意
- ✓ RLHFにより調整されたLLaMA2-Chatも存在
- ✓ どのタスクの性能もChatGPTに敵わない
- ✓ 日本語は理解できるが、話せない
- ✓ オープンソースだからこそ、様々なバージョンアップが行われている
 - タスクごとに最適化
 - code llama
 - ELYZA

Code Llama: Open Foundation Models for Code '23 arXiv

✓ LLaMA2をベースに, Code Llama, Code Llama Instruct, Code Llama Pythonを作成

- Code Llama コード生成タスク

Code Llama Instruct 人の指示データでファインチューニング

- Code Llama Python Pythonコーディング用に特化

Model	Size		HumanEv	/al		MBPP	
		pass@1	pass@10	pass@100	pass@1	pass@10	pass@100
code-cushman-001	12B	33.5%	-	-	45.9%	-	-
GPT-3.5 (ChatGPT)	-	48.1%	-	-	52.2%	-	-
GPT-4	-	<u>67.0%</u>	-	-	-	-	-
PaLM	540B	26.2%	-	-	36.8%	-	-
PaLM-Coder	540B	35.9%	-	88.4%	47.0%	-	-
PaLM 2-S	-	37.6%	-	88.4%	50.0%	-	-
StarCoder Base	15.5B	30.4%	-	-	49.0%	-	-
StarCoder Python	15.5B	33.6%	-	-	52.7%	-	-
StarCoder Prompted	15.5B	40.8%	-	-	49.5%	-	-
	7B	12.2%	25.2%	44.4%	20.8%	41.8%	65.5%
Llama 2	13B	20.1%	34.8%	61.2%	27.6%	48.1%	69.5%
LLAMA 2	34B	22.6%	47.0%	79.5%	33.8%	56.9%	77.6%
	70B	30.5%	59.4%	87.0%	45.4%	66.2%	83.1%
	7B	33.5%	59.6%	85.9%	41.4%	66.7%	82.5%
Code Llama	13B	36.0%	69.4%	89.8%	47.0%	71.7%	87.1%
	34B	48.8%	76.8%	93.0%	55.0%	76.2%	86.6%
	7B	34.8%	64.3%	88.1%	44.4%	65.4%	76.8%
Code Llama - Instruct	13B	42.7%	71.6%	91.6%	49.4%	71.2%	84.1%
	34B	41.5%	77.2%	93.5%	57.0%	74.6%	85.4%
Unnatural Code Llama	34B	62.2%	85.2%	$\underline{95.4\%}$	$\underline{\mathbf{61.2\%}}$	$\underline{76.6\%}$	86.7%
	7B	38.4%	70.3%	90.6%	47.6%	70.3%	84.8%
Code Llama - Python	13B	43.3%	77.4%	94.1%	49.0%	74.0%	87.6%
	34B	53.7%	82.8%	94.7%	56.2%	76.4%	88.2%

Prompt:

[INST] Your task is to write a Python function to solve a programming problem. The Python code must be between [PYTHON] and [/PYTHON] tags.

You are given one example test from which you can infere the function signature.

Problem: Write a Python function to get the unique elements of a list.
Test: assert get_unique_elements([1, 2, 3, 2, 1]) == [1, 2, 3]
[/INST]
[PYTHON]
def get_unique_elements(my_list):

[INST] Problem: %%%question%%%

return list(set(my_list))

Test: %%%test%%%

[/INST]

[/PYTHON]

ELYZA

- ✓ LLaMA2をベースに、日本語に特化させた商用利用可能なLLM
- ✓ 元のLLaMA2は2Bトークンの日本語で事前学習しており、ELYZAは追加で18Bトークン学習させた
 - 日本語での応答が可能となり, GPT-3.5に匹敵する性能を達成
- ✓ 現時点では7Bのモデルの未公開されており、13Bや70Bも登場予定

モデル	Jcommon- senseqa	jnli	marc_ja	jsquad	jaqket_v2	xlsum_ja	xwinograd_ja	mgsm
ELYZA-japanese-Llama-2-7b-instruct	65.15	57.27	91.51	67.38	58.51	5.02	70.07	10.0
ELYZA-japanese-Llama-2-7b-fast-instruct	70.87	36.32	92.73	68.82	62.29	3.35	59.85	9.2
ELYZA-japanese-Llama-2-7b	75.60	50.66	87.57	71.43	58.85	4.16	71.85	7.6
ELYZA-japanese-Llama-2-7b-fast	71.49	45.69	86.59	70.85	64.26	2.51	60.90	8.0
Llama-2-7b-chat	55.59	29.54	90.41	59.34	17.96	2.34	66.11	9.2
matsuo-lab-weblab-10b-instruction-sft	74.62	66.56	95.49	78.34	63.32	20.57	71.95	2.0
stabilityai-japanese-stablelm-instruct-alpha-7b	82.22	52.05	82.88	63.26	74.83	7.79	72.68	2.0
rinna-bilingual-gpt-neox-4b-instruction-ppo	48.79	48.23	96.09	54.16	57.65	5.03	65.07	2.4
rinna-japanese-gpt-neox-3.6b-instruction-ppo	44.06	54.19	89.61	51.62	50.95	6.63	69.13	4.4
line-japanese-large-lm-3.6b-instruction-sft	33.60	42.56	55.09	44.37	39.86	6.57	64.65	2.4

B_INST, E_INST = "[INST]", "[/INST]" B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。" text = "現在のアメリカ大統領は誰ですか<mark>?</mark>S|"

/anaconda/envs/azureml_py38_PT_TF/lib/python3.8/site-packagerch.float16, but bnb_4bit_compute_type=torch.float32 (defauternings.warn(f'Input type into Linear4bit is torch.floatference or training speed.')
現在のアメリカ合衆国大統領は、ドナルド・トランプです。

```
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n', "\n<</SYS>>\n\n"
DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。"
text = "犬は哺乳類なのでAと表します。ロボットは哺乳類ではないのでBで表します。猫はA, Bどちらですか?"
```

※失敗例 形式もバグ発生 猫はAです。 猫は哺乳類です。 イヌは哺乳類ではありません。 イヌは爬虫類です。

猫はAです。

※上手く できたとき

できたとき 犬は哺乳類であり、猫は哺乳類ではないので、AとBで表すことができます。しかし、猫はキジャラ目(爬虫類ではないが、両生類でもない小動物のグループ)に分類されるため、AとBで表すことはできません。

まとめ

- ✓ 7B~70Bで商用利用可能なオープンソースLLM
- ✓ どのタスクの性能もChatGPT (GPT-4) には敵わない
 - オープンソースで使えるメリットは十分にある
 - HuggingFaceなどで毎日のようにLLaMA2を基にしたモデルが登場
 - − Code Llama†Elyza
- ✓ ユーザビリティに対する研究・開発も行われている
 - 4bit量子化を行えばA100(80GB)×1枚でも70Bモデルを利用可能
 - AutoModelForCausalLM
 - AutoGPTQForCausalLM
- ✓ トークン調整限は面倒
 - 一 元のLLaMA2は入出力の合計が4,096トークン
 - 長文のやり取りには工夫が必要
 - Ilama index 実質無制限
 - yarn llama 128K

補助資料

LLaMAの活性化関数 SwiGLU

Swish関数とGLU(Gated Linear Unit)関数の組み合わせ

Swish

$$f(x) = x\sigma(\beta x)$$

$$f(x) = x\sigma(eta x)$$
 $\sigma(eta x) = rac{1}{1 + e^{-eta x}}$

GLU

$$\mathrm{GLU}(x, W, V, b, c) = \sigma(xW + b) \otimes (xV + c)$$

 $FFN_{SwiGLU}(x, W, V, W_2) = (Swish_1(xW) \otimes xV)W_2$

SwiGLU

Rotary Position Embedding

相対位置埋め込みを回転行列で表現し, tokenを回転させることで長文テキストへの性能向上

Figure 1: Implementation of Rotary Position Embedding(RoPE).

Rotary Position Embedding

Rotary Position Embedding

相対位置埋め込みを回転行列で表現し、tokenを回転させることで長文テキストへの性能向上

Query, Key, Value定義

$$\mathbf{q}_m = f_q(\mathbf{x}_m, m)$$

 $\mathbf{k}_n = f_k(\mathbf{x}_n, n)$

$$\boldsymbol{v}_n = f_v(\boldsymbol{x}_n, n),$$

Attention

$$a_{m,n} = \frac{\exp(\frac{\boldsymbol{q}_{m}^{\mathsf{T}} \boldsymbol{k}_{n}}{\sqrt{d}})}{\sum_{j=1}^{N} \exp(\frac{\boldsymbol{q}_{m}^{\mathsf{T}} \boldsymbol{k}_{j}}{\sqrt{d}})}$$
$$\mathbf{o}_{m} = \sum_{n=1}^{N} a_{m,n} \boldsymbol{v}_{n}$$

絶対位置埋め込み

$$f_{t:t\in\{q,k,v\}}(\boldsymbol{x}_i,i) := \boldsymbol{W}_{t:t\in\{q,k,v\}}(\boldsymbol{x}_i + \boldsymbol{p}_i),$$

$$\begin{cases} \boldsymbol{p}_{i,2t} &= \sin(k/10000^{2t/d}) \\ \boldsymbol{p}_{i,2t+1} &= \cos(k/10000^{2t/d}) \end{cases}$$

相対位置埋め込み(従来)

$$egin{align} f_q(oldsymbol{x}_m) &:= oldsymbol{W}_q oldsymbol{x}_m \ f_k(oldsymbol{x}_n, n) := oldsymbol{W}_k(oldsymbol{x}_n + ilde{oldsymbol{p}}_r^k) \ f_v(oldsymbol{x}_n, n) := oldsymbol{W}_v(oldsymbol{x}_n + ilde{oldsymbol{p}}_r^v) \ \end{split}$$

Rotary Position Embedding

相対位置埋め込みを回転行列で表現し、tokenを回転させることで長文テキストへの性能向上回転相対位置埋め込み SAの一般形

$$f_q(\boldsymbol{x}_m, m) = (\boldsymbol{W}_q \boldsymbol{x}_m) e^{im\theta}$$

$$f_k(\boldsymbol{x}_n, n) = (\boldsymbol{W}_k \boldsymbol{x}_n) e^{in\theta}$$

$$g(\boldsymbol{x}_m, \boldsymbol{x}_n, m - n) = \text{Re}[(\boldsymbol{W}_q \boldsymbol{x}_m) (\boldsymbol{W}_k \boldsymbol{x}_n)^* e^{i(m-n)\theta}]$$

fの行列表現

$$f_{\{q,k\}}(\boldsymbol{x}_m,m) = \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} W_{\{q,k\}}^{(11)} & W_{\{q,k\}}^{(12)} \\ W_{\{q,k\}}^{(21)} & W_{\{q,k\}}^{(22)} \\ W_{\{q,k\}}^{(2)} & \end{pmatrix} \begin{pmatrix} x_m^{(1)} \\ x_m^{(2)} \end{pmatrix}$$

$$f_{\{q,k\}}(\boldsymbol{x}_m,m) = \boldsymbol{R}_{\Theta,m}^d \boldsymbol{W}_{\{q,k\}} \boldsymbol{x}_m$$

$$\boldsymbol{R}_{\Theta,m}^{d} = \begin{pmatrix} \cos m\theta_{1} & -\sin m\theta_{1} & 0 & 0 & \cdots & 0 & 0\\ \sin m\theta_{1} & \cos m\theta_{1} & 0 & 0 & \cdots & 0 & 0\\ 0 & 0 & \cos m\theta_{2} & -\sin m\theta_{2} & \cdots & 0 & 0\\ 0 & 0 & \sin m\theta_{2} & \cos m\theta_{2} & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \cdots & \cos m\theta_{d/2} & -\sin m\theta_{d/2}\\ 0 & 0 & 0 & 0 & \cdots & \sin m\theta_{d/2} & \cos m\theta_{d/2} \end{pmatrix}$$

Attention(Q, K, V)_m =
$$\frac{\sum_{n=1}^{N} sim(\boldsymbol{q}_{m}, \boldsymbol{k}_{n}) \boldsymbol{v}_{n}}{\sum_{n=1}^{N} sim(\boldsymbol{q}_{m}, \boldsymbol{k}_{n})}.$$

非負関数でSAを再定義

Attention
$$(\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V})_m = \frac{\sum_{n=1}^N \phi(\boldsymbol{q}_m)^{\intercal} \varphi(\boldsymbol{k}_n) \boldsymbol{v}_n}{\sum_{n=1}^N \phi(\boldsymbol{q}_m)^{\intercal} \varphi(\boldsymbol{k}_n)},$$

RoPE (線形)

Attention(
$$\mathbf{Q}, \mathbf{K}, \mathbf{V}$$
)_m = $\frac{\sum_{n=1}^{N} \left(\mathbf{R}_{\Theta, m}^{d} \phi(\mathbf{q}_{m}) \right)^{\mathsf{T}} \left(\mathbf{R}_{\Theta, n}^{d} \varphi(\mathbf{k}_{n}) \right) \mathbf{v}_{n}}{\sum_{n=1}^{N} \phi(\mathbf{q}_{m})^{\mathsf{T}} \varphi(\mathbf{k}_{n})}$.

LLaMA2 70Bの日本語性能(オンラインデモ)

- ✓ LLaMA2は事前学習でフルデータの0.1%(2B)トークンの日本語で学習済み
 - ※ ただし, 英語以外の使用は想定されていない

LLaMA2-70b-Chat

Language	Percent	Language	Percent
en	89.70%	uk	0.07%
unknown	8.38%	ko	0.06%
de	0.17%	ca	0.04%
fr	0.16%	sr	0.04%
sv	0.15%	id	0.03%
zh	0.13%	cs	0.03%
es	0.13%	fi	0.03%
ru	0.13%	hu	0.03%
nl	0.12%	no	0.03%
it	0.11%	ro	0.03%
ja	0.10%	bg	0.02%
pl	0.09%	da	0.02%
pt	0.09%	sl	0.01%
vi	0.08%	hr	0.01%

The current President of the United States is Joe Biden. He was inaugurated on January 20, 2021, and is serving his first term as President. Prior to his presidency, he served as Vice President under Barack Obama from 2009 to 2017.

ile 40

イヌは哺乳類なのでAとします、ロボットは哺乳類ではないのでBとします。この時、猫はどちらになりますか?

This is a classic lateral thinking puzzle. The answer is A.

The reasoning is as follows:

- イヌ (dog) is a mammal, so it belongs to class A.
- ロボット (robot) is not a mammal, so it belongs to class B.
- 猫 (cat) is a mammal, just like イヌ, so it also belongs to class A.

Therefore, the correct answer is $\ensuremath{\mathsf{A}}.$

現在のアメリカ大統領は誰ですか