

Projections et systèmes de coordonnées

Christian Kaiser Cartographie & SIG

De la terre au plan

2

De la terre au plan

De la terre au plan

- Domaine de la cartographie: représentations de la surface de la terre sur une carte
- Problème: la terre est un patatoïde presque rond, le papier est plat...
- Solution:
 «aplatissement» de la
 surface de la terre
 en plusieurs étapes,
 y compris la «projection»

Géoréférence & SRS

- ·· Les objets du monde réel représentés sur une carte sont dits **géoréférencés** parce qu'il est possible de les localiser selon un système de référence spatiale (=système de coordonnées)
 - = Spatial Reference System (SRS)
 - = Coordinate Reference System CRS

Systèmes de coordonnées

- Deux types de systèmes de coordonnées:
- Système de coordonnées géographiques
 - Geographic coordinate system (GCS)
 - Aussi appelé système de coordonnées globales, sphériques ou universelles > en 3D!
 - Latitude et longitude, exprimées en degrés
- Système de coordonnées projetées
 - Projected coordinate system (PCS)
 - ·· Aussi appelé système de coordonnées planes ou cartographiques
 - .. XY(Z), exprimées en unités linéaires (mètres, miles...)

Coordonnées géographiques

- Localisation de n'importe quel point sur le globe terrestre
- Un point est référencé d'après ses valeurs de **longitude** et **latitude**
 - Angles mesurés à partir du centre de la terre vers un point de la surface terrestre
 - Mesures en degrés

Latitude et longitude

- ·· Le globe est divisé en méridiens et parallèles
 - .. Méridiens ou lignes de longitude. Greenwich = longitude 0°
 - Parallèles ou lignes de latitude. Equateur = latitude 0°

Coordonnées géographiques

Les 4 quadrants

Équateur :

distance d'un degré de latitude

= distance d'un degré de longitude

La longueur des degrés de latitude et de longitude n'est pas standard :

- il est impossible de mesurer les **distances** ou les **superficies** de façon précise
- ni **d'afficher** les données facilement sur une carte plate ou un écran d'ordinateur

Abbréviation des quadrants:

Nord = N, Sud = S Ouest = W (West), Est = E

10

12

Réseau graticulaire (graticules)

- (a) Parallèles ou lignes de latitude : 0° équateur à 90°N ou 90°S
- (b) Méridiens ou lignes de longitude : 0° Greenwich à 180°W et 180°E
- (c) Réseau des parallèles et méridiens (graticular network)

Représentation lat / long

•• Coordonnées latitude/longitude (lat/long, lat/lng)

- Représentation DMS (degrés minutes secondes) par quadrant:
 46° 47′ 29.8428″ N / 72° 53′ 5.1756″ W
- •• Représentation DMS sans quadrants (S et W = valeurs négatives): $46^{\circ} 47' 29.8428'' / -72^{\circ} 53' 5.1756''$
- Représentation DD (degrés décimales): 46.791623, -72.884771
- Conversion:

11

secondes > minutes: min = sec / 60
 minutes > degrés: deg = min / 60 * 100

formule DMS > DD: dd = deg + ((min + (sec / 60.0)) / 60.0)
 https://www.fcc.gov/encyclopedia/degrees-minutes-seconds-tofrom-decimal-degrees

La forme de la terre

- ·· La terre est un patatoïde.
- On décrit la forme idéalisée de ce patatoïde avec le **géoïde.**
- La forme du géoïde est irrégulière et complexe.
- Il faut donc un modèle plus simple: un ellipsoïde.

Le géoïde terrestre (exagération verticale des déformations) Image ESA

13

La forme de la terre

14

La forme de la terre

.. Le géoïde:

- Figure mathématique complexe nécessaire pour reproduire la forme réelle de la terre
- Correspond à la surface équipotentielle, c'est-à-dire à la surface du géoïde, la force de gravité est identique à chaque endroit
- Correspond au niveau moyen de la mer et à sa prolongation sous les continents.

(Source : © Arthur J. Lembo, Jr.- Cornell University)

La forme de la terre

•• L'altitude est la hauteur d'un point sur le relief par rapport au géoïde

14

La forme de la terre

- ... Un GCS est basé sur un ellipsoïde et non sur le géoïde
- ·· On cherche donc un ellipsoïde ou une sphère qui permet de représenter au mieux le géoïde
- ·· Si on s'intéresse juste à une petite partie du globe (carte locale), on choisit un ellipsoïde qui s'adapte bien localement au géoïde

La forme de la terre

- ·· La forme d'une ellipse (et donc d'un ellipsoïde) est définie par deux rayons:
 - le rayon le plus long est appelé «demi-grand axe»
 - le rayon le plus court est appelé «demi-petit axe»

Paramètres de l'ellipsoïde

- ·· Diamètre polaire: environ 12'714 km
- ·· Diamètre équatorial: environ 12'758 km
- $\cdot \cdot \cdot$ Aplatissement: f = (a b) / a
 - valeur entre 0 et 1
 - a = demi-grand axe
 - $\cdot \cdot \cdot$ b = demi-petit axe
- Exemple: Système géodésique mondial 1984 (WGS84) (utilisé p.ex. pour le système GPS)
 - a = 6'378'137 mètres
 - ·· 1/f = 298.257223563

Ellipsoïdes

- ·· Plusieurs ellipsoïdes ont été élaborés comme approximation (locale ou globale) du géoïde
- " Un ellipsoïde est sélectionné pour s'adapter à un pays ou à une zone spécifique
- Exemples:
 - Ellipsoïde de Bessel de 1841 (référence pour l'Europe):
 - " f = 1 / 299.1528153513233
 - .. Ellipsoïde WGS84 (référence pour le GPS):
 - f = 1 / 298.257223563

Axis a

Major

Ellipsoïde local / global

 Le meilleur ellipsoïde pour une région donnée n'est pas le meilleur ellipsoïde global!

in LEFORT, Jacque	s, L'aventure	cartographique,	p.	232
-------------------	---------------	-----------------	----	-----

Ellipsold Name	EPSG#	Semi Major Axis (a)	Inverse Flattening (f)
Airy 1830	7001	6377563.396	299.3249646
Airy Modified 1849	7002	6377340.189	299.3249646
Australian National Spheroid	7003	6378160	298.25
Average Terrestrial System 1977	7041	6378135	298.257
Bessel 1841	7004	6377397.155	299.1528128
Bessel Modified	7005	6377492.018	299.1528128
Bessel Namibia	7006	6377483.865	299.1528128
Bessel Namibia (GLM)	7046	6377397.155	299.1528128
CGCS2000	1024	6378137	298.257222101
Clarke 1858	7007	6378293.64520876	294.260676369261

Datum

- .. Le **datum** définit:
 - « les paramètres de l'ellipsoïde de référence
 - la position de l'ellipsoïde par rapport au centre de masse de la terre (ou autre référence, comme points tangents au géoïde)
 - " l'orientation des axes de l'ellipsoïde

22

Datum

Datum Suisse: CH1903 / CHTRS95

Datum européen: ETRS89
Datum GPS: WGS84

Datum Amérique du Nord: NAD27, NAD83

- Selon le datum, les coordonnées latitude / longitude d'un endroit peuvent changer
- Et au contraire, pour les mêmes coordonnées, on aura un décalage de position selon le datum
- Il existe des logiciels de conversion, typiquement intégrés dans les logiciels SIG

23

Coordonnées géographiques

 Le datum est la base du système de coordonnées géographiques (GCS) en latitude / longitude

Coordonnées planes

- La majorité des systèmes de coordonnées font référence à un plan, alors que les phénomènes réels se localisent à la surface de la terre (donc sur le géoïde, représenté par un ellipsoïde ou une sphère)
- On utilise alors les **projections** pour représenter les coordonnées géographiques dans un espace à deux dimensions
- Les projections traduisent en unités linéaires (p.ex. en mètres) les coordonnées géographiques (en degrés)
- Un tel système de coordonnées d'un plan est alors dit «système de coordonnées projeté» (PCS)

Projection cartographique

Définition:

Transformation d'une forme ellipsoïdale ou sphérique en surface plane

- Avantage:
 - Représentation sur un support papier (ou à l'écran)
- Désavantage:
 - Toutes les surfaces (courbes) et lignes subissent des distorsions lors de leur aplatissement en termes de formes, surfaces, distances et directions.

2

26

Principe de la projection

Caractéristiques de la surface de projection

- Géométrie de la surface:
 - Projections conique, cylindrique, azimutale
- Position de la surface:
 - · Projection tangente, sécante
- Aspect de la surface:
 - ·· Projection équatorial, transverse, oblique

Surfaces de projection

Position de la surface de projection

3

32

Aspect de la surface de projection

Types de projections

- · Projection cartographique:
 - «Fonction mathématique destinée à projeter point par point une partie de l'ellipsoïde sur un plan»
- 3 types de projections selon la déformation:

 \cdots Conforme \Rightarrow Conservation des angles

" Équivalente ⇒ Conservation des surfaces

Équidistante ⇒ Conservation des distances (sur les méridiens)

Projection conforme

- Conserve le rapport local des angles et des formes des figures
 - Utilisée en géodésie, en topographie pour la navigation, dans les applications militaires et pour les cartes à grandes échelles pour permettre d'appliquer la trigonométrie plane dans les opérations courantes de topométrie.
- Exemples
 - Mercator, Mercator transverse
 - Stéréographique
 - Projection conique conforme de Lambert

Projection de Mercator

- · Projection cylindrique en 3 variantes selon l'orientation du cylindre
 - ·· Mercator «normal»: cylindre touche l'équateur (cylindre «debout»)
 - Mercator transverse: cylindre touche un des méridiens (cylindre «couché»)
 - Mercator oblique: cylindre «complètement de travers», touche un grand cercle qui n'est pas un méridien ni l'équateur

Projection de Mercator (normal)

Projection de Mercator (normal)

- ·· Projection cylindrique touchant l'équateur
- ·· Exagération des surfaces proches des pôles
- .. Impossibilité de représenter les pôles!
- Idéal pour des cartes locales proche de l'équateur (±15°)
- Idéal pour la navigation avec la boussole, p.ex. en mer, car projection conforme conservant l'angle entre le méridien et le Nord
- À éviter pour les cartes à petite échelle

Projection de Mercator

- Mercator transverse ou oblique:
 - Orientation du cylindre de projection change
- Utilisée typiquement pour cartographier une petite portion de la surface terrestre (p.ex. la Suisse)

Projection conique conforme de Lambert

- Utilisée notamment en France
- Utilisée également pour des cartes d'Europe à petites échelles

37

Projection équivalente

- Conserve le rapport local de surface (la surface mais pas la forme!)
- Examples:
 - ·· Projection Gall-Peters, ou juste projection de Peters
 - Projection d'Albers (conique)
 - ·· Projection azimutale équivalente de Lambert
 - ·· Projection cylindrique équivalente de Lambert
 - ·· Projection de Mollweide

Projection de Gall-Peters

Projection de Mollweide

Projection équidistante

- Conserve les distances pour les méridiens
- Utile pour montrer les distances depuis un point
- Exemple:
 - Projection de Postel (projection azimutale polaire équidistante)

42

Quelques PCS...

International: Système UTM

En Suisse: LV03 et LV95

Système UTM (Universal Transverse Mercator)

- Ensemble de 60 systèmes de coordonnées permettant de cartographier n'importe quelle région à grande ou moyenne échelle
- Utilise une projection transverse de Mercator...
- Divise le monde en 60 fuseaux, chaque fuseau couvrant 6° de longitude
- Chaque fuseau = 1 système de coordonnées projeté

Système UTM (Universal Transverse Mercator)

- Rien à avoir avec les fuseaux horaires !!
- Rien à avoir avec UTC
- Fuseaux définissent le méridien touchant le cylindre de projection
- ·· Coordonnées rectangulaires en mètres
- Fuseau définit également origine de la coordonnée x (méridien central = 500'000 m)

4

Fuseaux UTM

4

Système UTM (Universal Transverse Mercator)

- ·· Origine des coordonnées Y:
 - ·· hémisphère N = équateur
 - hémisphère S = pôle Sud
- Une indication complète du SRS nécessite donc l'indication du fuseau et l'hémisphère (fuseau 30: méridien central = Greenwich)
- $\cdot\cdot$ Donc p.ex. en Suisse, nous devrions utiliser UTM 32N

Projections utilisées en Suisse

- " «Swiss Grid», CH1903 / LV03 (pour Landesvermessung 1903)
- ·· Projection double cylindrique conforme à axe oblique
 - Projection de l'ellipsoïde sur une sphère, et puis projection de la sphère sur le cylindre (Mercator oblique)
 - Cylindre tangent à la sphère le long du grand cercle passant par Berne, et perpendiculaire au méridien de Berne
- Ellipsoïde de référence: Bessel 1841
- Coordonnées exprimées en mètres, avec référence ancien observatoire de Berne = 600'000 / 200'00
- Origine du système (à St-Emilion, près de Bordeaux) pour assurer coordonnées positives et non ambiguës.

47

Projections utilisées en Suisse

- Nouveau système de référence CH1903+ / LV95
- Même ellipsoïde de référence (Bessel 1841)
- Axes des coordonnées sont un peu différentes, car déduits directement du système européen de référence terrestre (ETRS89)
- Nouvelles coordonnées pour point de référence à Berne: 2'600'000 / 1'200'000 (donc ajouter un 2 resp. 1 million à la coordonnée)
- Entrée en service progressive, mais terminée en principe jusqu'en 2020

Base de données de systèmes de coordonnées

- Tous les systèmes de coordonnées (géographiques et projetés) courants sont répertoriés dans une base de données par l'Association Internationale de Producteurs de Pétrole et de Gaz (OGP)
 - Auparavant par le European Petroleum Survey Group (EPSG)
- Cette base de données attribue un code EPSG à chaque système de coordonnées
- .. Un PCS se base sur un GCS: attention de ne pas confondre!
- Exemples:

CH1903 / LV03 → EPSG 21781
 CH1903+ / LV95 → EPSG 2056
 WGS84 → EPSG 4326

4

50

Jusqu'à la semaine prochaine...

- Devoirs:
 - Lecture dans Lambert & Zanin 2016:
 - Les projections
 - Exercice 3 (sur Moodle)
 - Exercice sur les systèmes de coordonnées et projections
 - Exercice OGIS