Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření

PROTOKOL O MĚŘENÍ

Název úlohy Číslo úlohy

Měření diod - transilů

201 - 3R

Zadání

- **1.** V teoretickém úvodu vysvětlete, co je to transil, jaké je jeho použití a srovnejte jeho vlastnosti se Zenerovou diodou.
- 2. Multimetrem zkontrolujeme prahové napětí U_{TO} zapojení ad1)
- **3.** Podle zapojení ad2) změřte, údaje zapište do tabulky a na mm papír nebo v PC nakreslete voltampérové charakteristiky (VACH) měřených transilů v závěrném směru až do proudu $I_R = 50$ mA.
- **4.** V měřených bodech vypočtěte příslušné sériové odpory diody R_s a zapište do tabulky.
- **5.** Z VACH stanovte průrazné napětí U_{BR} při I_{R} = 1 mA, které v charakteristice vyznačte.

Poř. č. 7	Příjmení a jméno Horčička Askold			Třída 3.B	Skupina 1.	Školní rok 202	1/22
	měření 2022	Datum odevzdání	Počet listů 4	příprava	Klasii měření	fikace protokol	obhajoba
Protokol o měření obsahuje:		So Ta	eoretický úvod chéma abulka použitých přístro ostup měření	Vz ojů Gr	Tabulky naměřených a vypočtených hodnot Vzor výpočtu Grafy Závěr		

1. Teoretický úvod

VA charakteristika transilu je velice podobná VA charakteristice zenerovy diody. Zenerova dioda při velkém přetížení přestává vodit elektrický proud zatímco transil se zkratuje, díky

tomu se transil používá pro ochranu obvodů před přepětím, při přepětí se totiž transil stává v podstatě kusem drátku přes který proteče prakticky veškerý proud, díky tomu nebude poškozen chráněný obvod, používá se v kombinaci s tavnou pojistkou, protože při dlouhém a velkém přepětí by mohl i transil rozpojit.

Obrázek č.1: Schématická značka transilu

2. Schéma zapojení

Schéma č.1: Zapojení pro měření charakteristiky

Schéma č.2: Měření prahového napětí

3. Tabulka použitých přístrojů – stejné pro schéma č. 1 i č. 2

Označení v zapojení	Přístroj	Тур	Inventární číslo	Poznámka	
А	Ampérmetr	MY-75	19-0046/09	2 mA,20 mA	
V	Voltmetr	MY-75	19-0045/05	20 V	
R ₁	Odporová dekáda	RLC-D1000	19-0047/12	-	
R_2	Odporová dekáda	RLC-D1000	19-1370/07	-	
Z	SS zdroj	-	Stůl → 19-0042/03	-	

Tabulka č. 1: Použité přístroje

4. Postup měření

VA charakteristiky transilu:

- **I.** Zapojíme obvod podle schématu č. 1 s přístroji z tabulky č. 1,
- **II.** Na odporové dekádě R_1 nastavujeme ochranný odpor 200 Ω
- **III.** Nastavujeme vstupní napětí U_1 a odporovou dekádu R_2 tak, abychom měli požadovanou hodnoty I_A , opakujeme a zaznamenáváme hodnoty pro všechny požadované hodnoty I_A

5. Naměřené a vypočtené hodnoty

Číslo měření	MR	Ι _Α [μΑ]	U[V]	I _ν [μA]	I _s [μΑ]	R _s [kΩ]
1	2 mA/20 V	0,5	3,320	0,332	0,268	28
2		1	7,617	0,762	0,238	27,1
3		1,5	9,961	0,996	0,504	12,8
4		2	10,749	1,074	0,926	26
5		50	12,113	1,211	48,789	14,5
6		200	12,177	1,217	198,783	12,8
7		1 000	12,274	1,227	998,773	4,2
8	20 mA/20 V	5 000	12,419	1,241	4 998,759	0,9
9	200 mA/20	20 000	12,657	1,265	19 998,735	0,35
10	V	50 000	12,978	1,297	49 998,703	0,25

6. Vzory výpočtů

a) Výpočet I_V pro U = 3,320 V, R_V = 10 M
$$\Omega \rightarrow I_{v} = \frac{U}{R_{v}} = \frac{3.32}{10^{7}} = 0.332 \,\mu A$$

b) Výpočet I_S pro I_A = 1
$$\mu$$
A, I_V = 0,8318 μ A \rightarrow $I_S = I_A - I_V = 1 - 0,762 = 0.238 μ A$

7. VA charakteristika transilu

$$(U_{BR} = 12,272 \text{ V})$$

VA Charakteristika v závěrném směru pro naměřené

Graf č. 1: VA Charakeristika transilu

8. Závěr

Měřením jsme zjistili U_{BR}, které vyšlo na 12,272 V, dále musím uvést, že při měření velmi malých proudů má ampérmetr velice velkou chybu, je to hlavně až 50 digitů. Také ještě jednou, můžeme vidět, že transil a křemíková dioda mají víceméně stejnou VA charakteristiku, liší se hlavně tím, že při přepětí se transil neničí, jen se zkratuje (v závěrném směru). V propustném směru funguje transil stejně jako křemíkový dioda, my jsme měřili ale jen závěrný směr transilu.