Control Systems

G V V Sharma*

		Contents		10 Oscillator 2	
1	Signal 1.1 1.2	Flow Graph Mason's Gain Formula Matrix Formula	1 1 1	Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text. Download python codes using	
2	Bode I 2.1 2.2	Plot Introduction	1 1 1	svn co https://github.com/gadepall/school/trunk/	
3	Second 3.1 3.2	l order System Damping	1 1 1	1 Signal Flow Graph	
4	Routh 4.1 4.2 4.3 4.4	Hurwitz Criterion Routh Array	1 1 1 1	2 Bode Plot 2.1 Introduction 2.2 Example	
5	State-S 5.1 5.2 5.3 5.4	Controllability and Observability	1 1 1 1	3.1 Damping 3.2 Example 4 Routh Hurwitz Criterion	
6	Nyquist Plot		1		
7	7.1	ensators Phase Lead	2 2 2	5 State-Space Model	
8	Gain N 8.1 8.2	Margin Introduction	2 2 2		
9 Phase Margin 2			2	2 6 NYQUIST PLOT	
*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.			: 1		

Solution: Given the Open Loop Transfer Function

$$G(s) = \frac{1}{s(1+s^2)}$$
 (6.1.2)

Now we have substitute $s=j\omega$

$$G(j\omega) = \frac{1}{j\omega(1-\omega^2)}$$
 (6.1.3)

6.2. Find the Magnitude of the Transfer Function

$$G(j\omega) = \frac{1}{j\omega(1-\omega^2)}$$
 (6.2.1)

$$|G(j\omega)| = \frac{1}{|\omega(1-\omega^2)|}$$
 (6.2.2)

6.3. Find the Phase of Transfer Function

$$\angle G(\jmath\omega) = \angle G(\jmath\omega)_{num} - \angle G(\jmath\omega)_{den} \quad (6.3.1)$$

for
$$\omega (1 - \omega^2) < 0$$

$$\angle G(j\omega) = \frac{\pi}{2} \tag{6.3.2}$$

for
$$\omega (1 - \omega^2) > 0$$

$$\angle G(j\omega)) = -\frac{\pi}{2} \tag{6.3.3}$$

6.4. Draw Polar Plot using phase of transfer function For ω =0

$$|G(j\omega)| = \infty$$
 (6.4.1)

$$\angle G(j\omega) = \frac{\pi}{2} \tag{6.4.2}$$

For $w = \infty$

$$|G(1\omega)| = 0 \tag{6.4.3}$$

$$\angle G(j\omega) = \frac{\pi}{2} \tag{6.4.4}$$

Polar Plot drawn by varying ω from 0 to ∞ .

6.5. Verify the Polar Plot the running the following Code

https://github.com/srikanth2001/EE2227/tree/master/codes

Fig. 6.4

for the given transfer function

$$G(s) = \frac{1}{s(1+s^2)}$$
 (6.6.1)

The polar plots use open loop transfer function, hence the reference point for determining stability is shifted to (-1, 0)

If (-1,0) is exactly on the polar plot then the system is marginally stable polar plot useful to find the stability of given transfer function from the graph we can see that (-1,0) is lying exactly on polar plot

so the system is marginally stable

7 Compensators

7.1 Phase Lead

7.2 Example

8 GAIN MARGIN

8.1 Introduction

8.2 Example

9 Phase Margin

10 OSCILLATOR