Algèbre Linéaire

Semaine 1

February 10, 2019

Les matrices

1. Ressources

Avant de commencer les exercices, vous avez un petit cours sur les matrices avec quelques entrainements sur Khanacademy *ici*, et je mets l'accent sur les *propriétés du produit matriciel*.

Vidéo sur la transposition d'une matrice.

2. Mise en pratique

Exercice 1 Effectuer les opérations de matrices suivantes :

a.
$$4.\begin{pmatrix} 2 & -3 \\ -1 & -2 \end{pmatrix}$$
 b. $\begin{pmatrix} 2 & 1 & -1 \\ -3 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 4 \\ 1 & -1 \\ 2 & 1 \end{pmatrix}$ c. $\begin{pmatrix} -1 & 2 & 1 \\ 0 & 2 & 2 \\ -2 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$

Exercice 2 Ecrire les matrices suivantes sous forme de systèmes d'équations, puis les résoudre.

a.
$$\begin{pmatrix} 5 & 2 \\ -1 & 3 \end{pmatrix}$$
. $\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 4 \\ -11 \end{pmatrix}$ b. $\begin{pmatrix} -1 & 3 \\ 2 & 1 \end{pmatrix}$. $\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -2 \\ 11 \end{pmatrix}$

Exercice 3 Commutativité de la multiplication. $A.B \neq B.A$

Soient deux matrices A et B telles que
$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$$
 et $\mathbf{B} = \begin{pmatrix} 1 & 6 \\ -1 & 2 \end{pmatrix}$

Montrer que A.B = 0. Calculer B.A. Obtenez vous le même résultat ?

Exercice 4 Produit matriciel et ses propriétés.

$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 5 & 1 \\ 2 & 3 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$$

Pour les matrices A, B et C, calculer :

- 1. A(BC) et (AB)C: Trouvez vous la même chose?
- 2. A(B + C) et (B + C)A): Trouvez vous la même chose? Pourquoi?

1

3. Transposer les matrices A, B et C.

Les vecteurs

1. Ressources

Pour découvrir (ou revoir) les vecteurs, vous avez les liens suivants :

Qu'est ce qu'un vecteur ?

Combinaisons linéaires

Khanacademy (Pas complet mais bon pour s'entraîner. Il manque juste les notions de norme et produit scalaire).

Wikiversité (Norme et Produit Scalaire).

Kartable (représentation graphique d'un vecteur, colinéarité).

2. Mise en pratique

Exercice 1 Ci dessous les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} :

$$\overrightarrow{w} = \begin{pmatrix} 5 \\ -2 \end{pmatrix} \quad \overrightarrow{v} = \begin{pmatrix} 3 \\ 7 \end{pmatrix} \quad \overrightarrow{w} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

Calculer les opérations suivantes :

$$a) \quad \|\overrightarrow{u}\|, \|\overrightarrow{v}\| \text{ et } \|\overrightarrow{w}\| \qquad d)\overrightarrow{u} + \overrightarrow{v} \qquad e)\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} \qquad f) \quad 4. \overrightarrow{v} \qquad g)\overrightarrow{u}.\overrightarrow{v} \qquad h) \quad \overrightarrow{u}.\overrightarrow{w} + \overrightarrow{v}$$

$$d)\overrightarrow{u} + \overrightarrow{v}$$

$$e)\overrightarrow{u} + \overrightarrow{v} + \overline{u}$$

$$f) \quad 4.\overrightarrow{v}$$

$$g)\overrightarrow{u}.\overrightarrow{v}$$

$$h) \quad \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v}$$