SECTION 2-2: THE LIMIT OF A FUNCTION

Read Section 2.2. Work the embedded problems. Goals:

- Understand the meaning of the notation $\lim_{x \to a} f(x) = L$.
- Know how to evaluate one- and two-sided limits both from a graph and numerically.
- Understand the relationship between infinite limits and vertical asymptotes.
- 1. DEFINITION: two-sided limit

Notation:

lim f(x)=L ("a" and "L" are numbers)
x->a

Words: the limit of f(x), as x approaches a, is L.

It means: as x's get closer + closer to the x-value a Cooth from above and from below) give y-values that get closer to L when those x's are plugged into f(x). Note, the limit does not care what happens when x=a, only when x is closer + closer to it.

2. Evaluate the limits below using the graph and confirm your answers numerically.

graphically:

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$$

numerically:

		Humenc	any.
	X	$\frac{x^2-4}{x-2}$	_
	1.5	3.5	
	1.9	3.9	
	1.99	3.99	
\downarrow	1. 999	3.999	,
.s -72	2	DNE fo	2)->4
1	2.001	4.001	
	2.01	4, 01	
	2.1	4.1	
	2.5	4.5	
		I .	

	$\lim_{x\to 2} \frac{ x-2 }{x-2} = D NE$ (Does not exist.) Because one side gets close to -1 and one side gets close to +1.					
	X	x-2 /(x-2)				
•	1.5	-1	f@			
	1.9	-1	goes to			
	1.99	-1	_ 0-1			

- 1	1.9	-1	9003
	1.99	-1	-1
V	1.999		Ψ
n	2	DNE	f(x)
1	2.001	+1	1 goes to
	2.01	+1	+1
Ì	2.1	+	
	2.5	+1	
	-		•

1

	Note: This limit is also DNE; but "20"
the y-values at bound.	is a more complete answer than "DNE".
/(x-	2)2
4	
100	
10,000	
	100

1.5	4	-	
1.9	100	Ι	
1.99	10,000	I	
1.999	1,000,000	L	f(x)
2	DNE		blows
2.001	1,000,000	1	upto
2.01	10,000		+20
2.1	100		
2.5	4		_

2-2 The Limit of a Function

3. Numerically or graphically, determine the limits below. Assume a and c are fixed constants.

4. Return to problem 2b above. Evaluate the limits below assuming that

 $x o 2^-$ means $\,$ X approaches $\,$ 2 from the left (or from $\,$ X-values $\,$ a little smaller than $\,$ a)

and

(a)
$$\lim_{x \to 2^{-}} \frac{|x-2|}{x-2} = -$$

(b)
$$\lim_{x \to 2^+} \frac{|x-2|}{x-2} = + 1$$

See *

5. What must be the relationship between the existence of two-sided limits in terms of one-sided limits?

Cnotation

is equivalent

(words) The two sided limit is

Each one-sided limit exists and is equal to the same number, L.

6. DEFINITION: infinite limits

lim f(x)=20 means f(x) grows w/o bound as x approaches x (on both sides) X->a

lim f(x) = - so means f(x) decreases % bound as x approaches x (on both sides) X->a

These can also be one-sided!

lim f(x)=+00 x>0-lim f(x)=-00 x->0+

7. The function g(x) is graphed below. Use the graph to fill in the blanks.

- $\lim_{x \to 4^-} f(x) = \underline{\hspace{1cm} \mathcal{b}}$
- $\lim_{x \to 4^+} f(x) = \underbrace{\frac{4}{\text{DNE}}}_{\text{(c)}}$ (c) $\lim_{x \to 4} f(x) = \underbrace{\text{DNE}}_{\text{(c)}}$
- (d) $f(4) = _{-}$
- (e) $\lim_{x \to 8} f(x) = \frac{-5}{}$
- (f) f(8) = -5
- 8. The function g(x) is graphed below. Use the graph to fill in the blanks.

- $\lim_{x \to 4^{-}} f(x) = \underline{\qquad + \infty}$
- $\lim_{x \to 4^+} f(x) = \underline{\hspace{1cm}}$
- (c) $\lim_{x\to 4} f(x) =$
- (d) f(4) = DNE
- (f) f(8) =

9. Find any vertical asymptotes of $f(x) = \frac{2}{x+5}$ and *justify* your answer using a limit.

Justification:

$$\lim_{X \to -5^+} \frac{2}{x+5} = +\infty$$

as
$$x=-5+$$
 (#\$ like -4.9,-4.99)
 $x+5 \rightarrow 0+$

10. Sketch the graph of an function that satisfies *all* of the given conditions. Compare your answer with that of your neighbor.

$$\lim_{x \to 0^{-}} f(x) = 1 \quad \lim_{x \to 0^{+}} f(x) = -2 \quad \lim_{x \to 4^{-}} f(x) = 3 \quad \lim_{x \to 4^{+}} f(x) = 0$$

