

Jun 24, 2021

Protocol for Creating Major Ion Solutions for Freshwater Systems

Malcolm A Barnard¹

¹University of North Carolina at Chapel Hill

ABSTRACT

Several experimental designs require serial dilutions of site water. To perform dilutions without the use of prefiltered water or without the addition of nutrients and trace metals in freshwater systems, major ion solutions (MIS) are required. MIS provides a nutrient and metal free dilution medium to minimize hypertonic and hypotonic effects on the organisms in the samples during dilutions by balancing major dissolved ions of Ca^{2+} , Mg^{2+} , Na^+ , K^+ , Cl^- , SO_4^{2-} , and Si^{4+} in freshwater systems. MIS are the equivalent of no nutrient artificial sea water for use in freshwater systems. Unlike artificial sea water, MIS formulation for use in freshwater systems changes from site to site. This protocol describes the process of creating a site specific major ion solution from results of elemental analysis data for use in the specified freshwater system.

DOI

dx.doi.org/10.17504/protocols.io.bvyxn7xn

PROTOCOL CITATION

 $\label{lem:main} \mbox{Malcolm A Barnard 2021. Protocol for Creating Major Ion Solutions for Freshwater Systems . \mbox{{\it protocols.io}} \\ \mbox{https://dx.doi.org/10.17504/protocols.io.bvyxn7xn}$

KEYWORDS

Major Ion Solution, MIS, freshwater dilution media

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Jun 21, 2021

LAST MODIFIED

Jun 24, 2021

PROTOCOL INTEGER ID

50935

MATERIALS TEXT

Na₂SiO₃x9H₂O (CAS 13517-24-3)

CaCl₂x2H₂O (CAS 10035-04-8)

MgSO₄x7H₂O (CAS 10034-99-8)

Na₂SO₄ (CAS 7757-82-6)

K₂SO₄ (CAS 7778-80-5)

Distilled Water

Carboy for the major ion solution

Graduated Cylinders

06/24/2021

•

 $\textbf{Citation:} \ \ \textbf{Malcolm A Barnard (06/24/2021)}. \ \ \textbf{Protocol for Creating Major Ion Solutions for Freshwater Systems}. \ \ \underline{\textbf{https://dx.doi.org/10.17504/protocols.io.bvyxn7xn}}$

Find major ion composition of the freshwater body

- 1 Identify the elemental concentrations of Si⁴⁺, Ca²⁺, Mg²⁺, Na⁺, K⁺, Cl⁻, and SO₄²⁻ in the freshwater system for which you wish to create a major ion solution.
 - Note: USGS reports are helpful for water bodies in the United States, but major ion compositions from elemental analysis are available for many systems from scholarly communication (peer reviewed manuscripts, theses/dissertations, government reports, preprints, etc.).
- 2 Convert the concentrations of the elements to mg/L from μM if the data is not already in this format.

Create the formulation of the major ion solution

3 Download Freshwater_Major_Ion_Solution_calculation.csv from Zenodo at http://www.doi.org/10.5281/zenodo.5019969.

4 A	В	C	D	E	F	G	н	1 1	1 1	К	L	M	N
Calculati	ons and recipes to	make major ion s	olution (MIS) for	freshwater systems									
USE FIRST TABLE FOR CORRECT CALCULATIONS			Note: substitute the final concentration of each ion (mg/L) in boxed area below										
Element	Element FW	as	Compound FW	*Final conc. (mg/L of element)	Final conc. (mmol/L of element)	Final conc. (mmol/L of compound)	Final conc. (mg/L compound)	Mass in 20L mg			mass in 10	mass in 5 L	
Si ^{4*}	28.0855	Na ₂ SiO ₃ 9H ₂ O	284.2		0.0000	0.0000	0.000	0.00			0.00	0.00	
Ca**	40.08	CaCl ₂ 2H ₂ O	147.02		0.0000	0.0000	0.000	0.00			0.00	0.00	
Mg ^{2*}	24.305	MgSO ₄ 7H ₂ O	246.47		0.0000	0.0000	0.000	0.00			0.00	0.00	
o Na*	22.9898	Na ₂ SO ₄	142.04		0.0000	0.0000	0.000	0.00	Total Na (mg/L):	0.0	0.00	0.00	
K*	39.0983	K ₂ SO ₄	174.27		0.0000	0.0000	0.000	0.00			0.00	0.00	
CI CI	35.453	CaCl ₂ 2H ₂ O	147.02		0,000	0.0000	0.000	0.00			0.00	0.00	
SO ₄ 2-	96.0576	MgSO ₄ 7H ₂ O	246.47		0.0000	0.0000	0.000	0.00	Total SO4 (mg/L):	0.0	0.00	0.00	
		_									-		
3													
MIS Reci													
3	Compound	mg per 20 L	g per 20 L	mg per 10 L	g per 10 L	mg per 5 L	g per 5 L						
9	Na ₂ SiO ₃ 9H ₂ O	0.000	0.00000	0.000	0.00000	0.00	0.00000						
0	CaCl ₂ 2H ₂ O	0.000	0.00000	0.000	0.00000	0.00	0.00000						
1	MgSO ₄ 7H ₂ O	0.000	0.00000	0.000	0.00000	0.00	0.00000						
2	Na ₂ SO ₄	0.000	0.00000	0.000	0.00000	0.00	0.00000						
3	K ₂ SO ₄	0.000	0.00000	0.000	0.00000	0.00	0.00000						

Screenshot of Freshwater_Major_Ion_Solution_calculation.csv

4 Fill in the mg/L box in the with the values calculated from Steps 1 and 2. The box to add this data is highlighted in purple in the image below.

A	В	C	D	E	F	G	H	1	J	K	L	M
alculatio	ns and recipes to	make major ion s	olution (MIS) for	freshwater systems								
SE FIRS	T TABLE FOR CO	RRECT CALCUL	ATIONS	Note: substitute the	inal concentration of ea	sch ion (mg/L) in boxed a	rea below					
Element	Element FW	as	Compound FW	*Final conc. (mg/L of element)	Final conc. (mmol/L of element)	Final conc. (mmol/L of compound)	Final conc. (mg/L compound)	Mass in 20L mg			mass in 10	mass in 5 l
Si ⁴⁺	28.0855	Na ₂ SiO ₃ 9H ₂ O	284.2		0.0000	0.0000	0.000	0.00			0.00	0.00
Ca**	40.08	CaCl ₂ 2H ₂ O	147.02		0.0000	0.0000	0.000	0.00			0.00	0.00
Mg ^{2*}	24.305	MgSO ₄ 7H ₂ O	246.47		0.0000	0.0000	0.000	0.00			0.00	0.00
Na*	22.9898	Na ₂ SO ₄	142.04		0.0000	0.0000	0.000	0.00	Total Na (mg/L):	0.0	0.00	0.00
K*	39.0983	K ₂ SO ₄	174.27		0.0000	0.0000	0.000	0.00			0.00	0.00
Cl	35.453	CaCl ₂ 2H ₂ O	147.02		0.0000	0.0000	0.000	0.00			0.00	0.00
SO ₄ 2	96.0576	MgSO ₄ 7H ₂ O	246.47		0.0000	0.0000	0.000	0.00	Total SO4 (mg/L):	0.0	0.00	0.00
IIS Recip												
iio Recip	Compound	mg per 20 L	g per 20 L	ma per 10 L	g per 10 L	ma per 5 L	a per 5 L					
	Na ₂ SiO ₃ 9H ₂ O	0.000	0.00000	0.000	0.00000	0.00	0.00000					
	CaCl ₂ 2H ₂ O	0.000	0.00000	0.000	0.00000	0.00	0.00000					
	MgSO ₄ 7H ₂ O	0.000	0.00000	0.000	0.00000	0.00	0.00000					
	Na ₂ SO ₄	0.000	0.00000	0.000	0.00000	0.00	0.00000					
	K ₂ SO ₄	0.000	0.00000	0.000	0.00000	0.00	0.00000					

The box to add the concentrations to is highlighted in purple.

As multiple compounds contribute to the Na⁺ and SO₄²⁻ concentrations and Cl⁻ concentrations come from Ca²⁺ calculations, check to make sure that the concentrations are not magnitudes off compared to the reference. There is natural variability in the ionic composition of freshwater systems so some deviation is not an issue. The orange and blue highlights under final concentration column show the corresponding compounds between the cations and anions. If the values are several magnitudes off, use the values calculated using the anions. See the example below to see how this works.

The example used in the image below is for the upper Neuse River Estuary as reported in Paerl and Bowles (1987) from USGS data (Harned 1982).

protocols.io
2
06/24/2021

References:

Harned, D.A., 1982. Water quality of the Neuse River, North Carolina-Variability, pollution loads, and long-term trends (USGS Report No. 2185-D). USGPO,.

Paerl, H.W. and Bowles, N.D., 1987. Dilution bioassays: Their application to assessments of nutrient limitation in hypereutrophic waters. *Hydrobiologia*, *146*(3), pp.265-273. https://doi.org/10.1007/BF00016348

Example from the Neuse River Estuary of checking the relative concentrations in Major Ion Solution creation.

The concentrations to use when creating a major ion solution are in the MIS Recipe box at the bottom of the document. The recipes are highlighted below. Example is the same as in Step 5.

The MIS Recipe for use in creation of 5 L, 10 L, and 20 L of major ion solution.

Create the major ion solution

7 Add approximately 1/20 of your total desired volume of distilled water to your intended container for the major ion solution.

Example: use a 20 L carboy to create 20 L of major ion solution and use graduated cylinders for volumetric measurements.

- 8 Add in the $Na_2SiO_3x9H_2O$, $CaCl_2x2H_2O$, $MgSO_4x7H_2O$, Na_2SO_4 , and K_2SO_4 in concentrations calculated in Step 6 to the distilled water in the major ion solution container.
- 9 Fill your container to your desired volume using distilled water. Mix the container until all of the salts dissolve.