

The Golden Digits National Contest 3rd Edition, April 2024

Problem 1. Vlad draws one hundred rays in the Euclidean plane. David then draws a line ℓ and pays Vlad one pound for each ray that ℓ intersects. Naturally, David wants to pay as little as possible. What is the largest amount of money that Vlad can get from David?

Problem 2. Let $\mathbb{Z}[x]$ be the set of integer polynomials. Find all the functions $\varphi : \mathbb{Z}[x] \to \mathbb{Z}[x]$ such that $\varphi(x) = x$, any integer polynomials f, g satisfy $\varphi(f+g) = \varphi(f) + \varphi(g)$, and $\varphi(f)$ is a perfect power if and only if f is a perfect power.

Note: A polynomial $f \in \mathbb{Z}[x]$ is a perfect power if $f = g^n$ for some $g \in \mathbb{Z}[x]$ and $n \ge 2$.

Problem 3. Let ABC be an acute scalene triangle with orthocentre H and circumcentre O. Let P be an arbitrary point on the segment OH and O_a be the circumcentre of PBC. The line PO_a intersects the line HA at X_a . Define X_b and X_c similarly. Let Q be the isogonal conjugate of P and X be the circumcentre of $X_aX_bX_c$. Prove that PQ and HX are parallel.

Note: The isogonal conjugate of a point P in the interior of a triangle ABC is the unique point Q in the interior of the triangle ABC for which $\angle QBC = \angle PBA$ and $\angle QCB = \angle PCA$.

Concursul Național Cifrele de Aur Ediția 3, Aprilie 2024

Problema 1. Vlad desenează o sută de semidrepte în planul Euclidean. Apoi, David desenează o dreaptă ℓ și îi dă lui Vlad un leu pentru fiecare rază intersectată de ℓ . David vrea să plătească cât mai puțin. Care este cea mai mare sumă de bani pe care Vlad o poate obține?

Problema 2. Fie $\mathbb{Z}[x]$ mulţimea polinoamelor cu coeficienţi întregi. Determinaţi toate funţiile $\varphi : \mathbb{Z}[x] \to \mathbb{Z}[x]$ pentru care $\varphi(x) = x$, orice polinoame f, g satisfac $\varphi(f+g) = \varphi(f) + \varphi(g)$ şi $\varphi(f)$ este o putere perfectă dacă şi numai dacă f este o putere perfectă.

Notă: Un polinom $f \in \mathbb{Z}[x]$ este o putere perfectă dacă $f = g^n$ pentru un $g \in \mathbb{Z}[x]$ și $n \ge 2$.

Problema 3. Fie ABC un triunghi ascuţitunghic oarecare cu ortocentrul H şi centrul cercului circumscris O. Fie P un punct arbitrar pe segmentul OH şi O_a centrul cercului circumscris lui PBC. Dreapta PO_a intersectează dreapta HA în X_a .

Punctele X_b şi X_c sunt definite în mod similar. Fie Q izogonalul conjugat al lui P si X centrul cercului circumscris lui $X_aX_bX_c$. Demonstrați că PQ şi HX sunt paralele.

Notă: Izogonalul conjugat al unui punct P în interiorul triunghiului ABC este unicul punct Q din interiorul triunghiului ABC care satisface $\angle QBC = \angle PBA$ și $\angle QCB = \angle PCA$.