UM 204 (WINTER 2024) - WEEK 11

Recall that

Examples. (1) Continuous functions need not pull back compact sets to compact sets. For example, consider $f(x) : \mathbb{R} \to [-1,1]$ given by $f(x) = \sin(x)$.

(2) Discontinuous maps may map compact sets to compact sets. For example, consider $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \operatorname{sgn}(x)$.

Definition 0.1. A function $f: X \to Y$ between metric spaces is said to be bounded if f(X) is a bounded set in Y.

Proof of Theorem **??**. Let $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ be an open cover of f(X). Since f is continuous, $\{f^{-1}(U_{\lambda})\}_{{\lambda}\in\Lambda}$ is an open cover of X. By compactness of X, there exist $\lambda_1,...,\lambda_n\in\Lambda$ such that

$$X = f^{-1}(U_{\lambda_1}) \cup \cdots \cup f^{-1}(U_{\lambda_n}).$$

Now, using that $f(A_1 \cup \cdots \cup A_n) = f(A_1) \cup \cdots \cup f(A_n)$ and that $f(f^{-1}(A)) \subseteq A$, we have that

$$f(X) = f\left(f^{-1}(U_{\lambda_1}) \cup \cdots \cup f^{-1}(U_{\lambda_n})\right) f(f^{-1}(U_{\lambda_1})) \cup \cdots \cup f(f^{-1}(U_{\lambda_n})) \subseteq U_{\lambda_1} \cup \cdots \cup U_{\lambda_n}.$$

Thus, we have found a finite subcover of f(X) from the given arbitrary cover.

Corollary 0.2. Any \mathbb{R} -valued continuous function on a compact metric space attains its maximum and minimum.

Proof. Let $f: X \to \mathbb{R}$ be a continuous function on a compact metric space X. By the above theorem f(X) is compact in \mathbb{R} , and thus sup f(X) and inf f(X) exist, and are contained in f(X).

Corollary 0.3. If $f: X \to Y$ is a bijective continuous map and X is compact, then f^{-1} is also continuous. (Such an f is called a homeomorphism.)

Example. Consider $f:(0,1)\cup(1,2]\to(-1,1)$ given by

$$f(x) = \begin{cases} x, & x \in (0,1), \\ x-2, & x \in (1,2]. \end{cases}$$

Then, f is continuous and bijective, but $f^{-1}([-\varepsilon,\varepsilon])=(0,\varepsilon]\cup[2-\varepsilon,2]$ is not compact, and thus f^{-1} is not continuous.

Proof. We need to show that f^{-1} pulls back open sets in X to open sets in Y, i.e., f(V) is open in Y whenever Y is open in X. Since X is compact,

$$C = X \setminus V$$

is compact. Thus, f(C) is compact. But for a bijective map $f: X \to Y$,

$$f(X \setminus A) = Y \setminus f(A)$$
.

Thus,
$$f(V) = f(X \setminus C) = Y \setminus f(C)$$
 is open.

Some questions. (1) Continuous functions map convergent sequences to convergent sequences. What kind of functions map Cauchy sequences to Cauchy sequences? Consider the example of f(x) = 1/x on (0,1).

- (2) Suppose $S \subset X$ and you have a continuous function on S. When can you extend f to a continuous function on X? Consider again f(x) = x on (0,1), but also consider $f(x) = \sin(1/x)$ on (0,1).
- (3) In many applications, the underlying metric space is itself a space of continuous functions. Say, for example,

$$\mathscr{C}([0,1]) = \{f : [0,1] \to \mathbb{R} : f \text{ is continuous}\}\$$

with

$$d(f,g) = \sup_{X} |f - g|.$$

When is a set of functions in this metric space compact? You will encounter a theorem about this in more advanced courses.

Definition 0.4. Let $f: X \to Y$ be a function between metric spaces. We say that f is uniformly continuous on X if, for every $\varepsilon > 0$, there is a $\delta > 0$ such that whenever $d_X(x,y) < \delta$ for $x,y \in X$, then $d_Y(f(x),f(y)) < \varepsilon$, or equivalently

$$f(B_X(x,\delta)) \subset B_Y(f(x),\varepsilon) \quad \forall x \in X.$$

Theorem 0.5 (Sequential characterization). Assignment 07!

Remark. The key feature in the above definition is the independence of δ from $x \in X$. A function that is continuous, but not uniformly continuous is f(x) = 1/x on (0,1). Write a rigorous proof.

END OF LECTURE 25

Theorem 0.6. A continuous function on a compact set is uniformly continuous.

Proof. Let $\varepsilon > 0$. Then, for each $x \in X$, there is a $\delta_x > 0$ such that

$$(0.1) f(B_X(x;\delta_x)) \subset B(f(x);\varepsilon/2).$$

Since *X* is compact, the open cover $\{B_X(x, \delta_x/2)\}_{x \in X}$ admits a finite subcover, say

$$B_X(x_1; \delta_{x_1}/2), ..., B_X(x_n; \delta_{x_n}/2).$$

Let $\delta = 1/2\min\{\delta_{x_1},...,\delta_{x_n}\}$. Let $p,q \in X$ such that $d(p,q) < \delta/2$. Since $p \in X$, there is some $j \in \{1,...,n\}$ such that $p \in B_X(x_j;\delta_{x_j}/2)$. Thus,

$$d(q,x_i) \le d(p,q) + d(q,x_i) < \delta.$$

By (0.1),

$$d(f(p),f(q)) \leq d(f(p),f(x_j)) + d(f(x_j),f(q)) < 2\frac{\varepsilon}{2} = \varepsilon.$$

As a consequence, we obtain the extreme value theorem.

Corollary 0.7. Let $f: X \to \mathbb{R}$ be a continuous function on a compact metric space X. Then, f attains its maximum and minimum on X.

Proof. Since $Y = f(X) \subseteq \mathbb{R}$ is a compact space, $\sup f(X)$ and $\inf f(X)$ exist (since Y is nonempty and bounded) and are contained in Y (since Y is closed).

Corollary 0.8. Let $f: X \to Y$ be a bijective, continuous function. Assume X is compact. Then, f^{-1} is continuous.

Proof. Let $g = f^{-1}$. We wish to show that if $V \subset X$ is an open set, then $g^{-1}(V)$ is open in Y. But, $g^{-1} = f$. Thus, we need to show that f(V) is open in Y whenever V is open in X.

Since X is compact, $X \setminus V$ is compact. Thus, $f(X \setminus V)$ is compact, and therefore closed in Y. But, since f is bijective,

$$f(X \setminus V) = Y \setminus f(V)$$
.

Thus, f(V) is open in Y.

Exercise. Give an example of a continuous and bijective function, whose inverse is not continuous.

Theorem 0.9. Let $f: X \to Y$ be a continuous function between metric spaces. Then, f(X) is connected whenever X is connected.

Proof. Suppose f(X) is not connected. Then, there exist nonempty sets $A, B \subset f(X)$ such that

$$f(X) = A \cup B$$
$$A \cap \overline{B} = \overline{A} \cap B = \emptyset.$$

Let $A_* = f^{-1}(A)$ and $B_* = f^{-1}(B)$. Then, since $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$, we have that

$$X = f^{-1}(f(X)) \subseteq A_* \cup B_*.$$

Since $A_* \subseteq f^{-1}(\overline{A})$ and the RHS is closed, $\overline{A_*} \subseteq f^{-1}(\overline{A})$. Thus, $f(\overline{A_*}) \subseteq f(f^{-1}(\overline{A})) \subseteq \overline{A}$. Also, $f(B_*) \subseteq B$. Thus,

$$f(\overline{A_*} \cap B_*) \subseteq f(\overline{A_*}) \cap f(B_*) \subseteq \overline{A} \cap B = \emptyset \Rightarrow \overline{A_*} \cap B_* = \emptyset.$$

0.1. **Discontinuities of functions on** \mathbb{R} **.** Consider the following examples:

(1) The Heaviside step function:

$$f(x) = \begin{cases} 1, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

(2) The sign function:

$$f(x) = \begin{cases} 1, & x > 0, \\ 0, & x = 0, \\ -1, & x < 0. \end{cases}$$

(3)

$$f(x) = \begin{cases} \frac{3x - x^2}{x^2 - x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

(4)

$$f(x) = \begin{cases} 1/x, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

(5)

$$f(x) = \begin{cases} \sin(1/x), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

(6) The Dirichlet function:

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}. \end{cases}$$

The first five functions are continuous everywhere except at x = 0. The sixth function is continuous nowhere.

Definition 0.10. Given a function f:(a,b) and $c \in (a,b)$ such that f is discontinuous at C, we say that

(1) f has a discontinuity of the first kind at c if

$$\lim_{x \to c^{-}} f(x)$$
 and $\lim_{x \to c^{+}} f(x)$ exist;

(2) f has a discontinuity of the second kind at c if

$$\lim_{x \to c^{-}} f(x)$$
 or $\lim_{x \to c^{+}} f(x)$ does not exist.

Functions in examples (1)-(3) have discontinuities of the first kind, while 0 is a discontinuity of the second kind in examples (4)-(5). All the discontinuities are of the second kind in the final example.

END OF LECTURE 26

In general, the set of discontinuities can be quite bad, but in the case of monotone functions, we can say something more.

Theorem 0.11. Let $f:(a,b) \to \mathbb{R}$ be a monotonically increasing function, i.e., $f(x) \le f(y)$ whenever $(x,y) \subseteq (a,b)$. Then, f only has discontinuities of the first type. In particular,

$$\lim_{x \to c^-} f(x) \le f(c) \le \lim_{x \to c^+} f(x),$$

for all $c \in (a, b)$.

Proof. Let $c \in (a, b)$. Consider the set

$$A = \{f(t) : t \in (a, c)\}.$$

Clearly *A* is nonempty. Moreover, $f(t) \le f(c)$ for all t < c. Thus, *A* is bounded above. We claim that

$$\lim_{x \to c^{-}} f(x) = \sup A \le f(c).$$

Let $\varepsilon > 0$ and $s = \sup A$. Then, there is a $y \in (a, c)$ such that $s - \varepsilon < f(y) \le s$, since $s - \varepsilon$ is not an upper bound of A. Let $\delta = c - y$. Then, for all $z \in (c - \delta, c) = (y, c)$, we have that

$$f(c) \ge f(z) \ge f(v) > f(c) - \varepsilon$$
.

Since ε was arbitrary,

$$\lim_{x \to c^{-}} f(x) = s.$$

A similar argument gives the existence of the right-hand limit (and the inequality) as well.

Corollary 0.12. *The set of discontinuities of a monotone function on any interval is at most countable.*

Proof. Let f be a monotonically increasing function. Let D denote its set of discontinuities. We construct an injective map from D into \mathbb{Q} .

Given any $c \in D$, we know that

$$\lim_{x \to c^{-}} f(x) < \lim_{x \to c^{+}} f(x).$$

By the density of \mathbb{Q} in \mathbb{R} , there is some $r_c \in \mathbb{Q}$ such that

$$\lim_{x \to c^{-}} f(x) < r_{c} < \lim_{x \to c^{+}} f(x).$$

Now, let $c \neq d \in D$. WLOG, assume c < d. Then,

$$r_c < \lim_{x \to c^+} f(x) < \lim_{x \to d^-} f(x) < r_d.$$

Thus, $c \mapsto r_c$ is an injective map from D into \mathbb{Q} .

Example. The set of discontinuities of a monotone function need not be discrete! Let $D \subset (a, b)$ be a dense countable set. Enumerate $D = \{x_1, x_2, ...\}$. Define

$$f(x) = \sum_{n: x_n < x} \frac{1}{n^2}.$$

The function is well defined because of the absolute convergence of the $\sum_{n \in \mathbb{N}_+} 1/n^2$.

- (1) f is increasing: if x < y, then there is some $x_j \in D \cap (x, y)$. Thus, $f(y) f(x) > \frac{1}{i^2} > 0$.
- (2) f is discontinuous at every point of D: let $x_j \in D$. For any $x > x_j$, $f(x) f(x_j) \ge \frac{1}{j^2}$. Thus, $\lim_{x \to x_j^+} f(x) > f(x_j)$.
- (3) *f* is continuous everywhere else: Exercise.

END OF LECTURE 27