

Data Science & Machine Learning in Agriculture

Impuls-Talk
Dr. Julian Adolphs
Department Data Science

What is Data Science and Machine Learning?

Picture from https://towardsdatascience.com

Machine Learning is not about Teaching Machines to Think or Develop Consciousness.

What is Machine Learning (ML)?

Extraction of **Knowledge** from **Data**.

ML is a subset of artificial intelligence.

ML algorithms build models based on training data, in order to make predictions without being explicitly programmed for the task.

Machine Learning Algorithms

Three categories of Machine Learning (ML):

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Machine Learning Algorithms

Three categories of Machine Learning (ML):

Supervised Learning

Classification

Learn and predict Group memberships

- Unsupervised Learning
- Reinforcement Learning

Regression

Learn and predict Continuous values

Supervised ML – Classification (Discrete Values)

Dog or Cat?!

Classification in Agriculture – Disease Detection

Desease or no desease?!

Disease: stipe rust

Supervised ML – **Regression** (Continuous Values)

Linear Regression of the Data with linear Function: f(x) = a x + b

$$f(x) = a x + b$$

generalised Model

$$a = 1.0167$$

$$b = 0.9280$$

Supervised ML – **Regression** (Continuous Values) non-linear, multidimensional

Input-data

Features

(size, # rooms, age, ...)

Output-data

Labels / Targets

(House price)

Cross Validation

How to estimate how good our model is?

Split data into **train set** and **test set**:

Test error is an estimate for the **generalization error**.

Regression with Machine Learning Methods

In the **Training Session** we study real emission data, measured in a cow barn in germany.

We use Machine Learning Algorithms:

- Linear Regression
- Polynomial Regression
- Random Forest
- Support Vector Machines (SVM)
- Artificial Neural Networks (ANN)

We use the very useful programming language python (previous knowledge in any programming language helpful)

Trainers in the Machine Learning session: Julian Adolphs & Sabrina Hempel

