Задача 1 Пусть Y_t - стационарный процесс.

Верно ли, что стационарны:

1.
$$Z_t = 2Y_t$$

2.
$$Z_t = Y_t + 1$$

3.
$$Z_t = \Delta Y_t$$

4.
$$Z_t = 2Y_t + 3Y_{t-1}$$

Решение 1 а, б, в, г - стационарны

Задача 2 Известно, что временной ряд Y_t порожден стационарным процессом, задаваемым соотношением $Y_t = 1 + 0.5Y_{t-1} + \varepsilon_t$. Имеется 1000 наблюдений.

Вася построил регрессию Y_t на константу и Y_{t-1} . Петя построил регрессию на константу и Y_{t+1} .

Как (примерно) будут соотносится между собой их оценки коэффициентов?

Решение 2 Они будут примерно одинаковы. Оценка наклона определяется автоковариационной функцией.

Задача 3 Рассмотрим следующий AR(1)-ARCH(1) процесс:

$$Y_t = 1 + 0.5Y_{t-1} + \varepsilon_t, \ \varepsilon_t = \nu_t \cdot \sigma_t$$

 ν_t независимые N(0;1) величины.

$$\sigma_t^2 = 1 + 0.8\varepsilon_{t-1}^2$$

 ${\it Также \ uзвестно, \ что \ Y_{100}=2, \ Y_{99}=1.7}$

- 1. Haŭdume $E_{100}(\varepsilon_{101}^2),~E_{100}(\varepsilon_{102}^2),~E_{100}(\varepsilon_{103}^2),~E(\varepsilon_t^2)$
- 2. $Var(Y_t), Var(Y_t|\mathcal{F}_{t-1})$
- 3. Постройте доверительный интервал для Y_{101} :
 - (а) проигнорировав условную гетероскедастичность
 - (b) учтя условную гетерескедастичность

Решение 3

Задача 4 Рассмотрим GARCH(1,1) процесс ...

Решение 4

Задача 5 Пусть X_t , t = 0, 1, 2, ... - случайный процесс и $Y_t = (1 + L)^t X_t$. Выразите X_t с помощью Y_t и оператора лага L.

Решение 5 $X_t = (1 - L)^t Y_t$

Задача 6 Пусть F_n - последовательность чисел Фибоначчи. Упростите величину

$$F_1 + C_5^1 F_2 + C_5^2 F_3 + C_5^3 F_4 + C_5^4 F_5 + C_5^5 F_6$$

1

Решение 6 $F_n = L(1+L)F_n$, значит $F_n = L^k(1+L)^kF_n$ или $F_{n+k} = (1+L)^kF_n$

Задача 7 Пусть X_t , t=...-2,-1,0,1,2,... - случайный процесс. И $Y_t=X_{-t}$. Какое рассуждение верно?

1.
$$LY_t = LX_{-t} = X_{-t-1}$$

2.
$$LY_t = Y_{t-1} = X_{-t+1}$$

Решение 7 а - неверно, б - верно.

Задача 8 Представьте процесс AR(1), $y_t = 0.9y_{t-1} - 0.2y_{t-2} + \varepsilon_t$, $\varepsilon \sim WN(0;1)$ в виде модели состояние-наблюдение.

- 1. Выбрав в качестве состояний вектор $\left(egin{array}{c} y_t \\ y_{t-1} \end{array}
 ight)$
- 2. Выбрав в качестве состояний вектор $\begin{pmatrix} y_t \\ \hat{y}_{t,1} \end{pmatrix}$

Найдите дисперсии ошибок состояний

Решение 8

Задача 9 Представьте процесс MA(1), $y_t = \varepsilon_t + 0.5\varepsilon_{t-1}$, $\varepsilon \sim WN(0;1)$ в виде модели состояние-наблюдение.

1.
$$\begin{pmatrix} \varepsilon_t \\ \varepsilon_{t-1} \end{pmatrix}$$

2.
$$\left(\begin{array}{c} \varepsilon_t + 0.5\varepsilon_{t-1} \\ 0.5\varepsilon_t \end{array}\right)$$

Решение 9

Задача 10 Представьте процесс ARMA(1,1), $y_t = 0.5y_{t-1} + \varepsilon_t + \varepsilon_{t-1}$, $\varepsilon \sim WN(0;1)$ в виде модели состояние-наблюдение.

Вектор состояний имеет вид x_t, x_{t-1} , где $x_t = \frac{1}{1-0.5L} \varepsilon_t$

Решение 10

Задача 11 Рекурсивные коэффициенты

- 1. Оцените модель вида $y_t = a + b_t x_t + \varepsilon_t$, где $b_t = b_{t-1}$.
- 2. Сравните графики filtered state u smoothed state.
- 3. Сравните финальное состояние b_T с коэффициентом в обычной модели линейной регрессии, $y_t = a + bx_t + \varepsilon_t$.

Решение 11

Задача 12 Рассмотрим модель $y_t = \mu + \varepsilon_t$, где ε_t — стационарный AR(1) процесс $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$ с $u_t \sim N(0, \sigma^2)$. Найдите условную логарифмическую функцию правдоподобия $l(\mu, \rho, \sigma^2|y_1)$.

Решение 12

Задача 13 Известно, что ε_t — белый шум. Классифицируйте в рамках классификации ARIMA процесс $y_t = 1 + \varepsilon_t + 0.5\varepsilon_{t-1} + 0.4\varepsilon_{t-2} + 0.3\varepsilon_{t-3} + 0.2y_{t-1} + 0.1y_{t-2}$.

Решение 13 ARMA(2,3), ARIMA(2,0,3)

Задача 14 Известно, что ε_t — белый шум. У каких разностных уравнений есть слабо стационарные решения?

1.
$$y_t = 1 + \varepsilon_t + 0.5\varepsilon_{t-1} + 0.25\varepsilon_{t-2}$$

2.
$$y_t = -2y_{t-1} - 3y_{t-2} + \varepsilon_t + \varepsilon_{t-1}$$

3.
$$y_t = -0.5y_{t-1} + \varepsilon_t$$

4.
$$y_t = 1 - 1.5y_{t-1} - 0.5y_{t-2} + \varepsilon_t - 1.5\varepsilon_{t-1} - 0.5\varepsilon_{t-2}$$

5.
$$y_t = 1 + 0.64y_{t-2} + \varepsilon_t + 0.64\varepsilon_{t-1}$$

6.
$$y_t = 1 + t + \varepsilon_t$$

7.
$$y_t = 1 + y_{t-1} + \varepsilon_t$$

Решение 14 1. $y_t = 1 + \varepsilon_t + 0.5\varepsilon_{t-1} + 0.25\varepsilon_{t-2} - стационарный$

2.
$$y_t = -2y_{t-1} - 3y_{t-2} + \varepsilon_t + \varepsilon_{t-1}$$

$$3. \ y_t = -0.5y_{t-1} + \varepsilon_t - cmayuoнaphый$$

4.
$$y_t = 1 - 1.5y_{t-1} - 0.5y_{t-2} + \varepsilon_t - 1.5\varepsilon_{t-1} - 0.5\varepsilon_{t-2}$$

5.
$$y_t = 1 + 0.64y_{t-2} + \varepsilon_t + 0.64\varepsilon_{t-1} - стационарный$$

$$6. \ y_t = 1 + t + \varepsilon_t \ - \ нестационарный$$

7.
$$y_t = 1 + y_{t-1} + \varepsilon_t - нестационарный$$

Задача 15 Белые шумы ε_t и u_t независимы. Пусть $y_t = 2 - 0.5t + u_t$, $x_t = 1 + 0.5t + \varepsilon_t$.

- 1. Является ли процесс $z_t = x_t + y_t$ стационарным?
- 2. Являются ли процессы x_t и y_t коинтегрированными?

Решение 15 z_t стационарный, x_t и y_t коинтегрированы

Задача 16 Рассмотрим GARCH(1,2) процесс $\varepsilon_t = \sigma_t \nu_t$, $\sigma^2 = 0.2 + 0.5 \sigma_{t-1}^2 + 0.2 \varepsilon_{t-1}^2 + 0.1 \varepsilon_{t-2}^2$. Найдите безусловную дисперсию $Var(y_t)$

Решение 16

Задача 17 Для GARCH(1,1) процесса $\varepsilon_t = \sigma_t \nu_t, \, \sigma_t^2 = w + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$ най $\partial ume \ \mathbb{E}(\mathbb{E}(\varepsilon_t^2 | \mathcal{F}_{t-1}))$

Решение 17

Задача 18 Рассмотрим GARCH(1,1) процесс $\varepsilon_t = \sigma_t \nu_t$, $\sigma_t^2 = 0.1 + 0.7 \sigma_{t-1}^2 + 0.2 \varepsilon_{t-1}^2$. Известно, $\sigma_T = 1$, $\varepsilon_T = 1$. Найдите $\mathbb{E}(\sigma_{T+2}^2 | \mathcal{F}_T)$.

Решение 18