Biologie Skript

erstellt von Daniela Wacek, BSc

Inhaltsverzeichnis:	Seite
Zelle:	10
Zellmembranen	10
Zellkern	11
Zytoplasma	12
Mitochondrien	12
endoplasmatisches Retikulum, Ribosomen	13
Golgi-Apparat	15
Lysosomen	19
Zentriolen	15
Zytoskelett	16
Stofftransport in Zellen	18
Zellkontakte	1
Zilien, Geißeln, Mikrovilli	16
Protozyten und Euzyten	20
Lichtmikroskopie, Elektronenmikroskopie	22
Der Körper des Menschen (Grundlagen):	24
Gewebe	24
Organsysteme	33
Verdauungssystem, Ernährung	33
Herz-Kreislauf-System, Blut, Lymphe	39
Atmungssystem	44
Nervensystem	47
Sinnesorgane und Haut	50
Endokrines System	54
Immunsystem	55
Harnorgane	58
weihliche und männliche Geschlechtsorgane	er.

Seite

Fortpflanzung und Entwicklung des Menschen:	63
weiblicher Zyklus	63
Spermien	61
Eizellen	62
Befruchtung, Einnistung, Grundzüge der Embryonalentwicklung	65
Schwangerschaft, Plazenta	65
Empfängnisregelung, Schwangerschaftsverhütung	66
Genetik:	67
Mendel´sche Regeln	67
Zellteilung	67
Mitose	67
Meiose	69
Chromosomentheorie der Vererbung	70
Grundlagen	70
Gen-Kopplung	7
Crossing-over	7
Nichtchromosomale Vererbung	7
Mitochondrien	71
Aufbau des Genoms bei Eukaryoten	72
Mutationen	72
Gen-Mutationen	72
Chrosomen-Mutationen	72
Genom-Mutationen	72
Auslöser von Mutationen	72
Molekulare Genetik:	73
DNA	73
Aufbau	73
Replikation	73
Poparatur	74

Seite

Vom Gen zum Merkmal	74
Genetischer Code	74
Aufbau Eukaryotischer Gene	74
Informationsfluss Gen => Protein	74
RNA und Splicing	75
Proteinsynthese	75
Evolution:	76
Entstehung des Lebens	76
Chemische Evolution (+ Versuch von Miller)	76
Biogenese und Protobionten	76
Endosymbiontentheorie	77
Grundeigenschaften der Lebewesen	77
Evolutionstheorie	77
Darwin	77
Artbegriff	77
Artbildung	77
Evolutionsfaktoren	78
Mutation	78
Gendrift	78
Genetische Rekombination	78
Entwicklung des Menschen	78
Ökologie:	79
Wechselbeziehungen zw. Organismus und Umwelt	79
Abiotische Faktoren	79
Biotische Faktoren	79
Lebensraum und Population	79
Ökologische Nische	
Biologisches Gleichgewicht	79

Seite

Ökosysteme	80
Nahrungsbeziehungen	80
Energiefluss	81
Immunbiologie:	81
Antikörper	81
Gene der Antikörper	81
Blutgruppen	81

Stichwortliste (laut VMC Graz):

Zelle:

- Zellmembranen
- Zellkern
- Zytoplasma
- Mitochondrien
- endoplasmatisches Retikulum, Ribosomen
- Golgi-Apparat
- Lysosomen
- Zentriolen
- Zytoskelett
- Stofftransport in Zellen
- Zellkontakte
- Zilien, Geißeln, Mikrovilli

Protozyten und Euzyten

Lichtmikroskopie, Elektronenmikroskopie

Der Körper des Menschen (Grundlagen):

- Gewebe
- Organsysteme
 - Verdauungssystem, Ernährung
 - Herz-Kreislauf-System, Blut, Lymphe
 - Atmungssystem
 - Nervensystem

- Sinnesorgane und Haut
- Endokrines System
- Immunsystem
- Harnorgane
- weibliche und männliche Geschlechtsorgane

Fortpflanzung und Entwicklung des Menschen:

- weiblicher Zyklus
- Spermien
- Eizellen
- Befruchtung, Einnistung, Grundzüge der Embryonalentwicklung
- Schwangerschaft, Plazenta
- Empfängnisregelung, Schwangerschaftsverhütung

Genetik:

- Mendel'sche Regeln
- Zellteilung
 - Mitose
 - Meiose
- Chromosomentheorie der Vererbung
 - Grundlagen
 - Gen-Kopplung
 - Crossing-over
- Nichtchromosomale Vererbung
 - Mitochondrien

- Aufbau des Genoms bei Eukaryoten
- Mutationen
 - Gen-Mutationen
 - Chrosomen-Mutationen
 - Genom-Mutationen
 - Auslöser von Mutationen

Molekulare Genetik:

- DNA
 - Aufbau
 - Replikation
 - Reperatur
- Vom Gen zum Merkmal
 - Genetischer Code
 - Aufbau Eukaryotischer Gene
 - Informationsfluss Gen => Protein
 - RNA und Splicing
 - Proteinsynthese

Evolution:

- Entstehung des Lebens
 - Chemische Evolution (+ Versuch von Miller)
 - Biogenese und Protobionten
 - Endosymbiontentheorie
- Grundeigenschaften der Lebewesen

- Evolutionstheorie
 - Darwin
 - Artbegriff
 - Artbildung
 - Evolutionsfaktoren
 - Mutation
 - Gendrift
 - Genetische Rekombination
 - Entwicklung des Menschen

Ökologie:

- Wechselbeziehungen zw. Organismus und Umwelt
- Abiotische Faktoren
- Biotische Faktoren
- Lebensraum und Population
- Ökologische Nische
- Biologisches Gleichgewicht
- Ökosysteme
- Nahrungsbeziehungen
- Energiefluss

Immunbiologie:

- Antikörper
- Gene der Antikörper
- Blutgruppen

Zelle:

Zellmembran:

Tierische Zellen: => keine Zellwand => daher Zelle unregelmäßiger und wirkt weniger deutlich abgegrenzt

- einzige Grenze = dünne Zellmembran (7-10 nm)
- durch Zellmembran findet der gesamte Stoffaustausch statt
- Zellmembran und Membranen die Zellorganellen umgeben haben den selben Grundaufbau (=Biomembran)
- Zellmembran der Pflanzenzelle = Elementarmembran => ist Zellwand aufgelagert => anders aufgebaut als die Zellwand der Protocyte

Aufbau der Zellmembran (= Plasmamembran od. Plasmalemma):

Funktionen:

- grenzt Zelle nach außen ab
- selektive Barriere, die die Zelle schützt
- ermöglicht Ausbildung eines Ionengradienten zwischen Intra- und Extrazellularraum
- erlaubt Aufnahme von Nährstoffen und Abgebe von Stoffwechselprodukten

Grundstruktur:

- Zellmembran bildet Doppelschicht aus amphiphilen Lipidmolekülen
- besitzen: hydrophile Kopfgruppe + hydrophobe Schwänze
- in Membran sind Glykolipide eingelagert

Merke:

- Zellmembran = asymmetrisch aufgebaut
- Glykolipide NUR in äußeren Schicht der Membran eingelagert
- Zuckerstrukturen IMMER zu Außenseite der Zelle gerichtet

Eigenschaften:

- Membran = beweglich und verhält sich wie zähe Flüssigkeit (= Fluid-Mosaik-Modell)
- in Plasmamembran => Proteine eingelagert
- Membranproteine innerhalb der Membran verschiebbar

eukaryotische Zellmembran:

- hoher Anteil an Cholesterin
- Cholesterin für Stabilisierung der Membranfluidität verantwortlich
- Membranlipide- und proteine => im ER der Zelle synthetisiert und im Golgi Apparat modifiziert
- Epithelzellen können durch Membranausstülpungen (Mikrovilli) Oberfläche vergrößern => z.B. Darm

weitere Funktionen:

- Abgrenzungsfunktion
- Kontrollfunktion
- an Ausbildung von Zell-Zell-Kontakten beteiligt
- nur kleine, nicht polare Stoffe (zB. Gase) und sehr kleine polare Stoffe (zB. Wasser) können durch Zellmembran diffundieren
- Glykokalix ermöglicht Erkennung von Zellen und nicht zellulären Strukturen (zB. Antigene der Erythrozyten =>Blutgruppen)

Zellkern = Nucleus:

- bei Eukaryoten vorhanden, bei Prokaryoten nicht
- oft größte Organell in Zelle
- Kernhülle mit Poren
- Chromatin im Zellkern
- Kernkörperchen = Nucleoli bzw. Nukleolus => meist 2 pro Zellkern; beteiligt an Bildung von Ribosomen
- Kernskelett für dessen Form verantwortlich (im EM erkennbar) => Chromosomen sind am Kernskelett aufgehängt

- von 2 Membranen umgeben, die vom ER aus gebildet werden
- Durchmesser ca 5 μm
- meist jede Zelle ein Zellkern; Ausnahme: reife Erythrozyten => keinen Zellkern

Merke:

- im Zellkern befindet sich genetische Information der Zelle
- hier finden Replikation und Transkription der DNA statt
- RNA-Synthese = Transkription => im Zellkern
- Proteinbiosynthese = Translation => im Zytoplasma
- Nukleolus = Bildungsort der Ribosomenuntereinheiten
- Karyoplasma = Inhalt des Zellkerns
- Kerninnere ist durch Kernhülle vom Zytoplasma getrennt
- äußere Membran steht in direkter Verbindung mit ER
- DNA kann Zellkern NICHT verlassen
- rRNAs werden im Nukleolus synthetisiert

Zytoplasma:

- = gesamter Zellinhalt ohne Zellkern
 - besteht aus halbflüssigen Substanz = Cytosol
 - enthält Zellorganellen und Bausteine des Zytoskeletts
 - Zytosol => 55% des gesamten Zellvolumens; besteht zu 20% aus Proteinen
 - großer Teil des Zellstoffwechsels findet hier statt: Biosynthese von Aminosäuren, Nukleotiden, Zuckern, Fettsäuren,...
 - Proteine werden hier an freien Ribosomen synthetisiert

Mitochondrien:

- = Ort der Zellatmung
 - doppelte Membran

Aufbau:

- äußere Membran
- nichtplasmatischer Raum

- innere Membran => Cristae
- plasmatischen Innenraum der Matrix

Zellatmung findet in Matrix und in inneren Membran statt!

Zahl der Mitochondrien = abhängig von Intensität des Stoffwechsels und dessen Energiebedarfs

Entstehung und Vermehrung:

- Mitochondrien => eigene DNA, RNAs und Ribosomen (zellkernunabhängige Proteinsynthese durchführbar)
- DNA = ringförmig
- Ribosomen der Mitochondrien: 70S (bakterienähnlich)
- Vermehrung durch zellzyklusunabhängige Teilung
- nur an Nachkommen über Eizellen weitergegeben (maternale Vererbung)
- Endosymbiontentheorie: Mitochondrien durch Symbiose von Ur-Eukaryoten mit aeroben Prokaryoten entstanden und durch Phagozytose aufgenommen

Endoplasmatisches Retikulum (ER):

- einfache Membran
- durchzieht Zelle netzförmig
- = Bildungsort fast aller Organellenmembranen bzw. ihrer Bausteine
- ständig verformbar
- wichtiges Transportsystem für Proteine und andere Stoffe innerhalb der Zelle

2 Bereiche, die sich in ihrer Funktion unterscheiden:

- raues endoplasmatisches Retikulum (rER): an Außenseite mit Ribosomen besetzt
- glattes endoplasmatisches Retikulum (gER): keine Ribosomen; dem Zytosol zugewandt

raues ER:

- Produktion von Membranproteinen + exportablen Proteinen
- verstärkt in sekretorischen Zellen zu finden

glattes ER:

• Synthese von Cholesterin + Phospholipiden für Membran

- Entgiftung der Zelle
- Synthese von Steroidhormonen
- Bildung von Speicherfetten (als Fetttröpfchen gespeichert)
- an Gluconeogenese + Glycogenolyse beteiligt

sarkoplasmatisches Retikulum:

= Bezeichnung des gER im Muskel

Funktion:

- Ca-Speicher
- schnelle intrazelluläre Verteilung eingehender Reize zur optimalen Synchronisation der Kontraktion einzelner Muskelfasern

Ribosomen:

- = Ort der Proteinbiosynthese (Translation)
 - im Cytoplasma sind Ribosomen in Gruppen od. perlschnurartig (Polysomen) beieinander aufgereiht
 - oder an ER-Membran gebunden => rER
 - besitzen KEINE Membran
 - bestehen aus RNA (rRNA) und Proteinen
 - wichtigsten nicht membranösen Zellorganellen
 - pro Zelle 1-2 Mio. Ribosomen, in stoffwechselaktiveren Zellen => mehr

Untereinheiten:

- Eukaryoten: 60S + 40 S => 80S Ribosomen
- Prokaryoten: 50S + 30 S => 70S Ribosomen
- freie Ribosomen des Zytoplasmas, die momentan keine Aufgabe in der Proteinbiosynthese haben liegen immer in getrennten UE vor; nur zur Translation lagern sich Ribosomen-UE zusammen

Golgi-Apparat:

= Dictyosomen

- bestehen aus Stapeln flacher membranumgrenzter Reaktionsräumen, die mit Stoffen beladene Vesikel (=Golgi-Vesike) abschnüren
- Gesamtheit aller Dictyosomen = Golgi-Apparat
- Aufgaben: Umwandlung, Sortierung und Verpackung von Stoffen; Modifikation von Proteinen + Lipiden, Synthese von Glykolipiden + Polysacchariden
- im Lichtmikroskop als Golgi-Felder sichtbar
- cis- und trans- Seite; cis-Seite = ER od. Zellkern zugewandt, trans-Seite= Zytoplasma zugewandt

Lysosomen:

- = Verdauungsorganellen der Zelle
 - in Lysosomen sind Enzyme enthalten mit deren Hilfe Makromoleküle abgebaut werden können
 - Lysosomen werden vom Golgi-Apparat gebildet
 - Autolyse = Selbstverdauung der Zelle
 - primäre, sekundäre und tertiäre Lysosomen

Zentriolen:

- kommen in der Regel paarweise vor
- 2 senkrecht zueinander liegende Zylinder
- aus 10 zweier Gruppen von Mikrotubuli aufgebaut
- Aufgabe: an Kern- und Zellteilung beteiligt
- von KEINER Membran umschlossen
- während S-Phase trennen sich die 2 Zylinder und jeder bildet jeweils einen zweiten Zylinder aus, wandern zu den Zellpolen und organisieren währen Mitose die Ausbildung des Spindelapparates
- in Pflanzenzellen => keine Zentriolen vorhanden

Merke:

- Basalkörper + Zentriolen haben eine 9 x 3 Struktur
- Zilien + Geißeln haben eine 9 x 2 + 2 Struktur

Zytoskelett:

- bestimmt Form von tierischen Zellen
- an Bewegungsvorgängen + Signalübertragung innerhalb der Zelle beteiligt

3 Bauelemente:

- Mikrotubuli => aus Tubulin aufgebaut
- Mikrofilamente => aus Actin
- intermediäre Filamente
- Muskelbewegung => durch Actinfilamente + Myosinmoleküle

	Mikrofilamente	Intermediäre Filamente	Mikrotubuli
Länge bzw.	7 nm	8-12 nm	200 nm - 25 μm
Durchmesser	ca. 6-7 nm	ca. 10 nm	ca. 25 nm
Aufbau	Aktin	Heterodimere	α/β-Tubulin
		Protofilamente	
Funktion	Aufnahme von	Aufnahme von	Aufnahme von
	Zugkräften	Zugkräften, Kernlamina	Druckkräften,
	Verbindung mit		Leitstruktur für
	Zellmembran,		intrazellulären
	Mikrovilli,		Transport,
	Pseudopodien		Spindelapparat bei
			Zellzeilung

Zilien, Geißeln, Mikrovilli:

- bei Tieren und Menschen => Zilien an Epithelzellen von Atmungsorganen, Fortpflanzungs-, Verdauungs- und Ausscheidungsorganen
- Wimpernschlag dient dem Transport bzw. der Fortbewegung

Zilien:

- kommen an Zelle in großer Zahl vor (oft als Flimmerepithel)
- 9 x 2 + 2 Komplex

Geißeln:

- gleicher Aufbau wie Zilien
- gleiche Dicke, aber länger als Zilien

Merke:

- Zilien und Geißeln unterscheiden sich im Schlagmuster
- Zilien schlagen hin + her
- Geißeln = nur zur Fortbewegung, jede Zelle hat nur eine Geißel, wellenförmige Bewegung

Mikrovilli:

- resobierende Zellen (z.B. Dünndarmepithel)
- vergrößern Oberfläche durch viele Mikrovilli (=Membranausstülpungen)
- innen durch Aktinfaserbündel stabilisiert

Zellkontakte:

= Verknüpfung von Zellen

Desmosomen:

- halten Membranen benachbarter Zellen wie Nieten zusammen und dienen an Zellinnenseite als Anhaftungspunkte für intermediäre Filamente
- verleiht Zelle hohe Zugfestigkeit
- v.a. in besonders mechanisch beanspruchten Zellen (z.B. Epithelgewebe)

Kollagen: => dient dem Zusammenhalt von Zellen und Geweben (Bindegewebe)

Membrankontakte:

- Tight Junctions(= Zonulae occludens= Verschlusskontakt) => dienen zur Abdichtung der Zellen des Epithelgewebes, Vorkommen: Dünndarm-, Blasen-, Nierenepithelien und Gehirngefäße
- Gap Junctions (=Nexus, Kommunikationskontakt) => ermöglichen intrezelluläre Kommunikation durch kleine Kanäle (zB. bei Herz)
- Desmosomen (Maculae adhaerens) => sind punktförmige Haftverbindungen im Gewebe,
 Vorkommen: v.a. in Epithelzellen

- Gürteldesmosomen (=Zonula adhaerens) => wichtig für mechanische Stabilität von Epithelzellen,
 Gürteldesmosomen sind KEINE Desmosomen; Desmosomen = Intermediärfilamente,
 Gürteldesmosomen = Aktin
- Hemidesmosomen => heften Zellen an extrazelluläre Matrix

Stofftransport in Zellen:

2 Typen:

- passiver Transport (ohne Energie)
- aktiver Transport (mit ATP-Verbrauch)

passiver Stofftransport:

- Diffusion
- erleichterte Diffusion
- Osmose

Diffusion: = Eigenbewegung der Teilchen die zur gleichmäßigen Verteilung im Raum führt

- bei Konzentrationsgefälle (=Unterschied in Konzentrationen)
- von Ort der höheren Konzentration zum Ort niedrigeren Konzentration
- Diffunsionsgeschwindigkeit ist umso höher, je kleiner die Molekülmasse des diffundierenden Stoffs, je größer das Konzentrationsgefälle und je höher die Temperatur ist

Osmose:

- semipermeable Membran = halbdurchlässig; H2O kann durch, gelöste Stoffe jedoch nicht
- Osmose = Diffusion durch semipermeable Membran
- osmotischer Druck => steigt mit Konzentration der gelösten Stoffe

erleichterte Diffusion:

- durch Carrier oder Porenproteine können Ionen und einige kleine organische Moleküle durch die Zellmembran
- z.B. Abgabe von Glukose aus Epithelzellen der Darmwand in Zwischenzellraum und durch Wandzellen der Blutkapillaren in Blutbahn
- Ionenkanäle: lassen nur bestimmte Ionen durch, öffnen sich nur auf spezifisches Signal, kommen in allen Zellen vor

aktiver Transport:

- von Ort niedriger Konzentration zu Ort höherer Konzentration
- Transport GEGEN Konzentrationsgefälle => nur mit Energie
- durch spezifische Membranproteine
 - zB. Carrier, Porenproteine, "Pumpen"-Proteine

man unterscheidet zwischen primären aktiven Transport und sekundären aktiven Transport.

primär aktiver Transport:

- direkte Nutzung von ATP
- z.B. Na-K-Pumpe: spaltet 1 ATP zum Transport von 2 K-Ionen ins Zellinnere und 3 Na-Ionen aus Zelle hinaus

sekundär aktiver Transport:

• unter Energieaufwand entstandene Konzentrationsgefälle (entsteht beispielsweise bei Na-K-Pumpe) kann ihrerseits als Energiequelle für Transport durch andere Carrier genutzt werden

Ionenkanäle (Transport nur in eine Richtung möglich)=> transportieren viel rascher als Carrier

Endozytose + Exozytose:

Endozytose:

- durch Vesikel ins Zellinnere
 - Pinozytose = Aufnahme flüssiger Stoffe in Vesikel
 - Phagozytose = Aufnahme fester Stoffe in Vesikel
- Phagozytosevesikel verschmelzen im Zellinneren mit Lysosom
- Enzyme des Lysosoms bauen festen Stoff ab

Exozytose:

- Stoffwechselendprodukte werden durch Vesikel aus Zelle geschleust
- Inhalt wird nach außen abgegeben
- Transzytose = durch die Zelle hindurch

Protozyten + Euzyten:

Kennzeichen des Lebens:

- Stoffwechsel
- Wachstum
- Fortpflanzung
- Reizbarkeit (=Reaktion auf Umweltreize)
- Bewegung

2 Grundtypen von Zellen:

- Euzyte (Pflanzenzellen und Tierzellen)
- Protozyte

Euzyten => haben Zellkern

Protozyten => haben KEINEN Zellkern

alle Organismen die aus Euzyten aufgebaut sind = Eukaryoten

alle Organismen die aus Protozyten aufgebaut sind = Prokaryoten

Protozyten => Bakterien und Archaea

Viren sind KIEINE Lebewesen

bei Eucyte: DNA im Zellkern

bei Protocyte:

- DNA als Bakterienchromosom ringförmig in Zelle
- Plasmide (=kleine DNA-Ringe)
- Zellmembran meist von Zellwand umgeben
- Flagellum

Unterschiede von pflanzlichen und tierischen Zellen:

Eigenschaft	Pflanzenzelle	Tierzelle
Zellwand	Cellulose	keine Zellwand sondern nur
		Zellmembran
Plastiden	immer vorhanden, meist	nie vorhanden
	Chloroplasten	
Kohlenhydratspeicher	Stärke	Glykogen
Interzellularraum im Gewebe	Mittellamelle mit	Extrazelluläre Matrix
	Kontaktbereichen	
Stoffaustausch mit	teilweise über Plasmodesmen	über Desmosomen oder Gap-
Nachbarszellen		Junctions
Lysosomen	können, müssen aber nicht	oft vorhanden
	vorhanden sein	
Zellkern in Interphase	immer einfach vorhanden	meistens vorhanden
		(Ausnahme: reife Erythrozyten)

Lichtmikroskopie - Elektronenmikroskopie:

Robert Hooke => Zellen entdeckt, einfaches Mikroskop (1665)

Lichtmikroskopie:

- Auflösungsvermögen von LM => 200-500x stärker als vom Auge
 - 0,2-0,5 µm
- Leistungsfähigkeit des Mikroskops = abhängig von Qualität des Objektivs und Wellenlänge des Lichts => je kleiner die Wellenlänge des Lichts, desto besser = Auflösungsvermögen des Mikroskops
- Zellkern + Chloroplasten wurden aufgrund von Helligkeitsunterschieden (Kontraste) im LM entdeckt

•	Organellen	die mit LM	beschrieben	wurden:
---	------------	------------	-------------	---------

- Zellkern
- Chloroplasten
- Zentriolen
- Golgi-Apparat
- Mitochondrien

Aufbau vom Lichtmikroskop:

- Okular
- Tubus
- Revolver
- Objektiv
- Stativ
- Objekttisch
- Kondensor
- Blende
- Feinrieb
- Grobrieb
- Fuß mit eingebauter Leuchte

Elektronenmikroskopie:

- 1934 von Ruska erfunden
- Wellenlänge der Elektronenstrahlen ist umso kürzer, je höher die Geschwindigkeit der Elektronen ist
- Auflösungsvermögen: 0,1 nm (2000x größer als LM)
- 2 Arten:
 - Transmissions-Elektroskopie (TEM) => liefert nur schwarz-weiß Bilder
 - Rasterelektronenmikroskopie (REM) => keine dünnen Schnitte notwendig, wie bei TEM;
 dreidimensionale Bilder
- Viren und kleine Zellorganellen sind mit dem EM erkennbar

Körper des Menschen:

Gewebe:

4 Grundgewebe:

- Epithelgewebe
- Bindegewebe und Stützgewebe
- Muskelgewebe
- Nervengewebe

Definition Gewebe: = Gruppen von Zellen gleicher Funktion + Bauart

1) Epithelgewebe:

- Oberflächenepithelien
- Drüsenepithelien
- Sinnesepithelien

Funktionen:

- Schutz vor Schäden
- sondern Sekrete ab (u.a. Schweiß)
- Resorption von Nährstoffen aus Darm
- Transportfunktion
- Aufnahme von Sinnesreizen

besitzen KEINE eigenen Blut- und Lymphgefäße!

=> werden durch Diffusion von tiefer liegenden Bindegewebe ernährt

Verschiedene Epithelarten:

- einschichtiges Plattenepithel
 - ermöglichen Stoffaustausch
 - z.B. bei Lungenbläschen, Endothel
- einschichtiges isoprismatisches (kubisches) Epithel
 - aktive Transportaufgaben
 - z.B. Drüsenausführungsgänge, Nierentubuli, Speicheldrüsen, Gallengänge, Eierstockepithel
- einschichtiges hochprismatisches Epithel =Zylinderepithel
 - Barriere- und Transportfunktion
 - mit Flimmerhärchen => Atemwege

- ohne Flimmerhärchen => Gallenblase, Darmkanal, Magenschleimhaut, Eileiter
- mehrreihiges hochprismatisches Epithel
 - respiratorisches Epithel (Atemwege), Samenleiter, Nebenhodengänge
 - mit Flimmerhärchen => Nasenschleimhaut
- mehrschichtiges hochprismatisches Epithel (selten)
 - Umschlagfalten der Konjungtiva, Nasenvorhof
- mehrschichtiges Übergangsepithel (Urothel)
 - Harnblase, Harnleiter, Nierenbecken
- mehrschichtiges unverhorntes Plattenepithel
 - überall wo mechanische Belastung hoch ist => unverhornt in feuchten Gebieten
 - z.B. Mundhöhle, Spreiseröhre, Vaginalschleimhaut, Analkanal
- mehrschichtiges verhorntes Plattenepithel
 - große mechanische Belastung
 - äußere Haut (Epidermis)

Oberflächenepithel:

- bedecken innere + äußere Oberfläche des Körpers
- Epithelgewebe schützt vor Umwelteinflüssen + Wasserverlust
- Schleimhäute => Drüsen produzieren schleimiges Sekret => legt sich in dünnen Film um Epithel
 z.B. Magen-Darm-Trakt, Gallenblase, Harnblase
- Endothel = Oberflächenepithel der Gefäß- und Herzinnenräume
- Mesothel = Oberflächenepithel der serösen Höhlen

Einteilung:

- Plattenepithelien
 - Schutz und Abgrenzungsfunktion
- Isoprismatische (kubische) Epithel

- Hochprismatische (zylindrisches) Epithel
 - letzten beiden (kubisches + zylindrisches Epithel) => Stoffauf- und abgabe, Resorption und Sekretion

Drüsenepithelien:

=> sondern Sekrete ab

- exokrine Drüsen:
 - z.B. Tränen + Schweißdrüsen => sondern Sekrete an Oberfläche der Haut ab = haben Ausführungsgang
 - z.B. Becherzellen im Darm
 - Drüsenformen:
 - serös
 - ◆ mukös
 - merokrin = ekkrin
 - apokrin
 - ♦ holokrin
- endokrine Drüsen
 - = Hormondrüsen
 - keinen Ausführungsgang
 - Hormone diffundieren in Blutkapillaren => parakrine Sekretion

Sinnesepithelien:

- spezialisierte Epithelien
- können Sinnesreize aufnehmen + weiterleiten
- z.B. lichtaufnehmende Stäbchen + Zapfen der Netzhaut im Auge

2) Binde-	- und Stützgewebe:
Funktion	: Formgebung + Formerhalt des Körpers
Bindegev	webe:
•	kollagenes (lockeres + straffes) BG
•	retikuläres BG
•	Fettgewebe

Stützgewebe:

- Knorpel
- Knochen

3) Muskelgewebe:

Muskelzellen = Myozyten

Myofibrillen ermöglichen Muskelkontraktion (=>Verkürzung der Zelle)

Einteilung:

- Glatte Muskulatur
- Quergestreifte Muskulatur
- Herzmuskulatur

Glatte Muskulatur:

Vorkommen:

- im Magen-Darm-Trakt (Ausnahme: obere Speiseröhre)
- im Urogenitaltrakt
- in Blutgefäßen
- in Haarbälgen

Aufbau:

- aus länglichen, teils verzweigten Zellen
- in Mitte der Zelle => einzelner Zellkern
- langsame + unwillkührliche Kontraktion

Quergestreifte Muskulatur:

=> Skelettmuskeln

Vorkommen:

- Zunge
- Kehlkopfmuskeln
- Schlundmuskulatur
- Zwerchfell
- alle Muskeln der Extremitäten

Aufbau:

- große Zellen => viele randständige Zellkerne
- willkürliche Auslösung + vom ZNS

Herzmuskulatur:

- = Sonderform der quergestreiften Muskulatur
 - typische Querstreifung wie Skelettmuskel, aber mittelständige Zellkerne wie bei glatten Muskulatur
 - Zellen=> durch Glanzstreifen miteinander verbunden
 - unwillkürlich!

3) Nervengewebe:

besteht aus 2 unterschiedlichen Zelltypen:

- Neurone (=Nervenzellen)
- Gliazellen (=Stützzellen)

Neuron:

- 100 Mrd. nur im Gehirn
- gleiche Grundstruktur wie andere Körperzellen, aber 3 Unterschiede:
 - Zellmembran erzeugt elektrische Signale; Signalempfang durch Botenstoffe + Rezeptoren
 - Zellfortsätze: Dendriten + Axone; für Informationsübermittlung zu anderen Neuronen, Drüsen-, oder Muskelzellen
 - haben Ernährungsfunktion verloren; reife Neurone = NICHT teilungsfähig
- affarente Neurone => zum ZNS hin
- efferente Neurone => vom ZNS weg zur Zielzelle
- ZNS = Gehirn + Rückenmark
- PNS = alle Neuronen die durch Körper ziehen

Aufbau eines Neurons:

- Zellkörper (Zellkern, Zytoplasma mit Zellorganellen)
- Zellfortsätze (Dendriten + Axone)
- Besonderheit: Nissl-Schollen (= Anhäufungen freier Ribosomen + rER im Zellkörper)

Zellfortsätze:

- Dendriten:
 - kurze, baumartige Fortsätze des Zytoplasmas

■ zuführende Fortsätze: nehmen Erregungsimpuls aus Nachbarzelle auf + leiten sie zum Zellkörper weiter

Axone:

- =Neuriten; längliche Ausstülpungen des Zytoplasmas
- entspringen Axonhügel (= Verbindung zum Zellkörper)
- am Ende viele Endverzweigungen (=Axonterminale)
- wegführende Fortsätze: leiten elektrische Impulse zu anderen Nerven-, Drüsen- oder Muskelzellen weiter
- unterschiedliche L\u00e4ngen der Axone => wenige mm (innerhalb des ZNS), \u00fcber 1m (vom RM bis Fu\u00df)
- meisten Neurone haben mehrere Dendriten, aber nur 1 Axon!

Synapsen:

- = Schaltstellen für Kommunikation zwischen Neurone bzw. zwischen Neurone und anderen Zielzellen (zB. Muskelzelle)
 - Axone übertragen Impuls auf Dendriten des nächsten Neurons
 - Axonenden => verzweigt; an jeder Synapse knopfförmig zu präsynaptischen Endknöpfen aufgetrieben
 - präsynaptische Endknöpfchen enthalten Bläschen (synaptische Vesikel) => in Vesikel =
 Neurotransmitter gespeichert

Gliazellen:

= Stützzellen

Funktion:

- Stützfunktion
- Ernährungsfunktion
- elektrische + immunologische Schutzfunktion

4 Arten von Gliazellen im ZNS:

- Astrozyten => sternförmig, Blut-Hirn-Schranke
- Oligodendrozyten => Markscheiden
- Mikroglia => kleine bewegliche Phagozyten
- Ependymzellen => Liquorräume

Schwann-Zellen = Hauptgliazellen des PNS

Markscheiden:

- markhaltige Nervenfasern: durch Myelinschicht => Erhöhung der Übertragungsgeschwindigkeit
- saltatorische Erregungsleitung: Ranvier-Schnürringe = Unterbrechung der Myelinschicht
- marklosen Nervenfasern: nur dünne Myelinschicht => geringe Leitungsgeschwindigkeit

Organsysteme:

Verdauungssystem:

- Mundhöhle + Rachenraum
- Speiseröhre
- Magen
- Dünndarm
- Leber, Pankreas, Gallenwege + Gallenblase
- Dickdarm + Rektum

Verdauungstrakt (GIT) = durchgehendes Rohr von Mund bis zum Anus (After)

Peristaltik => zur mechanischen Zerkleinerung, Durchmischung der Nahrung und Transport

Mundhöhle:

Aufgabe: Aufnahme + Vorbereitung der Nahrung zur Weiterverdauung

Mundhöhlenschleimhaut = unverhorntes Plattenepithel

Zähne:

Milchgebiss: 20 Zähne (pro Kiefer: 4 Schneide-, 2 Eck- und 4 Mahlzähne

Erwachsenengebiss: 32 Zähne (pro Kiefer: 4 Schneide-, 1 Eck-, 2 Backen- und 3 Mahlzähne)

3 große paarige Speicheldrüsen:

- Ohrspeicheldrüse
- Unterkieferspeicheldrüse
- Unterzungenspeicheldrüse

Rachen:

während des Schluckens wird die Atmung reflektorisch gehemmt

Speiseröhre:

ca. 25 cm langer Muskelschlauch

verbindet Rachen mit Magen

Magen:

- 1,5 L Fassungsvermögen
- Abschnitte:
 - Magenmund = Mageneingang
 - Magengrund
 - Magenkörper
 - Pförtner = Abschluss des Magens + Übergang zum Dünndarm

Magenschleimhaut:

Aufbau:

- einreihiges Zylinderepithel = Oberflächenepithel des Magens
- Magensaft wird nur im Magengrund und Corpus produziert
- 3 Zellarten:
 - Belegzellen
 - Hauptzellen
 - Nebenzellen

- 1) Belegzellen: Hauptaufgaben: Herstellung von Salzsäure (HCI); Herstellung von Intrinsic Factor (Aufnahme von Vitamin B12 im Dünndarm)
- 2) Hauptzellen: Bildung von eiweißspaltenden Enzymen (Pepsinogene bzw. Pepsine (=aktive Form); Bildung geringer Mengen von Lipase (fettspaltend)
- 3) Nebenzellen: bilden muzinhaltigen Magenschleim (schützt Magenoberfläche vor HCl

Der Mageninhalt wird in kleinen Portionen an den Zwölffingerdarm weitergegeben

Dünndarm:

=> über 4m lang

Hauptaufgabe:

- Speisebrei zu Ende verdauen
- RESORPTION durch Dünndarmschleimhaut

Abschnitte:

- Zwölffingerdarm (ca. 25 cm lang, Ausführungsgang des Pankreas und der Galle münden hier)
- Leerdarm
- Krummdarm

Dünndarmschleimhaut:

=> Oberflächenvergrößerung auf 200 m² durch: Kerckring-Falten, Enterozyten und Mikrovilli

Moleküle werden durch Zotten aufgenommen und durch die Kapillaren oder zentrale Lymphgefäße abtransportiert.

Endokrine Zellen in der Dünndarmschleimhaut produzieren Hormone, die an der Regulation der Verdauung beteiligt sind.

Darmbewegungen sind durch den Sympatikus und Parasympatikus beeinflussbar.

Leber, Pankreas + Gallenblase:

Gallensaft wird von der Leber produziert und in der Gallenblase gespeichert

Pankreassaft wird vom Pankreas gebildet

Leber:

- = größte Drüse im Körper; Stoffwechselzentrale des Körpers
- in 2 Lappen unterteilt
- Leberpforte: Leberarterie, Pfortader, große Gallengänge
- Funktionen der Leber:
 - Produktion von Galle
 - Entgiftungsstation
 - Vitaminspeicher, KH- und Fettspeicher
 - bildet Proteine (Albumine, Gerinnungsfaktoren)
 - Beteiligung an Regulation des pH-Werts

Galle:

- 0,5 L Galle/Tag von Leber gebildet => 50-80 mL Gallenflüssigkeit (Eindickung in Gallenblase)
- über Gallenwege in Duodenum abgegeben

Pankreas:

- Abschnitte:
 - Pankreaskopf
 - Pankreaskörper
 - Pankreasschwanz
- exokrine UND endokrine Drüse

- Langerhans-Inseln:
 - 4 verschiedene Zellarten:
 - ◆ B-Zellen => Insulinproduktion
 - ◆ A-Zellen => Glukagonproduktion
 - ◆ D-Zellen
 - ◆ PP-Zellen
- Pankreassaft neutralisiert sauren Speisebrei aus Magen
- Pankreasenzyme => für endgültige Spaltung der Eiweise, KH und Fette notwendig
 - Trypsin = eiweißspaltendes Enzym
 - Peptidase => spaltet einzelne Aminosäuren
 - Alpha-Amylase => KH-Verdauung (spaltet Stärke zu Maltose ab)
 - Lipase => Fettverdauung

Verdauung + Resorption:

Eiweiße:

- beginnt im Magen (durch Pepsine + HCl)
- stoppt im Dünndarm

Kohlenhydrate:

- beginnt im Mund (durch alpha-Amylase)
- stoppt im Magen
- im Dünndarm weitere alpha-Amylasen aus Pankreas beigemischt

Fette:

- beginnt im Magen
- weiter im Dünndarm durch Galle + Pankreassaft

Dickdarm + Rektum:

=> bilden letzten Abschnitt des Verdauungstraktes

Aufgaben Dickdarm: Rückresorption von Wasser + Elektrolyten; Eindickung

Abschnitte:

- Blinddarm mit Appendix
- Kolon (=Grimmdarm)
 - 4 Abschnitte
- Dickdarmschleimhaut hat keine Zotten mehr, ausschließlich Krypten, Mikrovilli (Rückresorption von Wasser + Elektrolyte)
- Appendix => viele Lymphfollikel (Immunsystem)

Ernährung:

Makronährstoffe:

- Fette
- Eiweiße
- Kohlenhydrate

Mikronährstoffe:

- Vitamine
- Mineralstoffe

fettlösliche Vitamine: Vitamin A, D, E und K

wasserlösliche Vitamine: Vitamin C und B

Mineralstoffe (Salze + Elektrolyte):

Mengenelemente: K, Na, Ca, Cl, P, S, Mg

Spurenelemente: Fe, I, F, Co, Cr, Cu, Mn, Se, Zn

Herz-Kreislauf-System:

Einteilung:

- Vorhof (Atrium)
- Kammer (Ventrikel)

Herzklappen:

- Segelklappen (AV-Klappen) => zwischen Atrium + Ventrikel
 - links = Bikuspidalklappe =Mitralklappe (2 Segel)
 - rechts = Trikuspidalklappe (3 Segel)
- Taschenklappen => zwischen Ventrikel + großen Schlagadern
 - zwischen linker Kammer + Aorta = Aortenklappe
 - zwischen rechter Kammer + Lungenvene = Pulmonalklappe

Blutkreislauf:

O2-armes Blut => rechten Vorhof => Trikuspidalklappe => rechte Kammer => Pulmonalklappe => rechte + linke Lungen Arterie => Lungen => O2-reiches Blut => Lungenvenen => linker Vorhof => Mitralklappe => linke Kammer => Aortenklappe => Aorta => Körper

Aufbau der Herzwand:

3 Schichten:

- Endokard (=Herzinnenhaut), ermöglicht reibungsarmen Blutfluss
- Myokard (=Herzmuskelschicht); in linker Kammer dicker als in rechten Kammer
- Epikard

Herzbeutel: => 2 Blätter: Epikard + Perikard

Herzzyklus:

Systole => Kontraktionsphase der Herzhöhlen

Diastole => Erschlaffungsphase

Herzfrequenz bei Erwachsenen ca. 70 Schläge/Min in Ruhe

Kammerzyklus:

4 Phasen:

- Kammersystole
 - Anspannungsphase
 - Austreibungsphase
- Kammerdiastole
 - Entspannungsphase
 - Füllungsphase

Erregungsbildung des Herzens:

- Sinusknoten => bestimmt Herzfrequenz
- AV-Knoten
- His-Bündel =>Purkinje-Fasern => Kammermuskulatur

Herz-Zeit-Volumen = Schlagvolumen x Schlagfrequenz (zB. 70 ml x 70/min = 4900ml/min

in Ruhe => ca. 5 L Blut/min in Lungen- bzw. Körperkeislauf

bei körperlicher Anstrengung => bis zu 30 L/min

Arterien = Gefäße, die vom Herzen weg führen (im Körperkreislauf => O2 reiches Blut; im Lungenkreislauf => O2 armes Blut)

Venen = Gefäße, die zum Herzen hin führen (im Körperkreislauf => O2 armes Blut; im Lungenkreislauf => O2 reiches Blut)

Blutdruck = 120 mmHg (Systole) zu 80mmHg (Diastole)

Blut:

- Blutkörperchen = 40-45 % => Erythrozyten, Leukozyten, Thrombozyten
- Blutplasma = 55-60% => Wasser, Proteine, andere Faktoren (zB. lonen, Glukose,..)
- Blutserum = Blutplasma Fibrinogen + andere Gerinnungsfaktoren
- ca. 5 L Blut

Aufgaben des Blutes:

- Transportfunktion
- Abwehrfunktion
- Wärmeregulationsfunktion
- Pufferfunktion

Erythrozyten:

- transportieren O2 und CO2
- kernlose Zellen
- Hämoglobin verleiht Erythrozyten die rote Farbe
- Blutmauserung in Milz

Leukozyten:

- Abwehr von Krankheitserregern
- 3 Gruppen:
 - Granulozyten
 - neutrophile Granulozyten
 - eosinophile Granulozyten
 - basophile Granulozyten
 - Lymphozyten
 - ◆ T-Lymphozyten (Reifung im Thymus)
 - ◆ B-Lymphozyten (Reifung im Knochenmark)
 - ◆ B- und T-Lymphozyten => spezifische Abwehr; Plasmazellen => Produktion von spezifischen Antikörpern
 - Monozyten
- können ins Gewebe auswandern

Thrombozyten:

- an Blutgerinnung beteiligt
- im Knochenmark gebildet
- kernlos!

Blutgruppen:

Blutgruppe	Genotyp	Erythrozyten-Antigene	Serum-Antikörper
A	A0 oder AA	Α	Anti-B
В	B0 oder BB	В	Anti-A
AB	AB	AB	keine
0	00	keine	Anti-A und Anti-B

AB0-Sytem:

4 Blutgruppen:

- A
- B
- AB
- 0

Im Blutserum => Antikörper; an Erythrozyten => Antigene

Rhesus-System:

- Antigen D am bedeutsamsten
- Rhesus positiv => Antigen D auf Erythrozytenoberfläche => 86% der Bevölkerung
- Rhesus negativ => kein Antigen D => 14% der Bevölkerung
- Antikörper des Rhesus-Systems werden erst nach dem Kontakt mit Rhesus-positiven Erythrozyten gebildet
- Gefahr bei: Rhesus-negativen Schwangeren und Rhesus-positivem Ungeborenen => löst Anti-D-Antikörperbildung bei Mutter aus; wenn Mutter erneut mit einem Rhesus-positiven Kind schwanger wird, greifen die plazentagängigen IgG-Rhesusantikörper der Mutter die kindlichen Erythrozyten im Mutterleib an. Verhinderung durch: Injektion von Anti-D-Immunglobulin in 28.SSW + sofort nach Geburt des ersten Rhesus-positiven Kindes.

Lymphe:

• primär lymphatische Organe = Thymus + Knochenmark

über Blut- und Lymphbahnen zu sekundär lymphatische Organe

• sekundär lymphatische Organe = Lymphknoten, Mandeln, Rachenring, Milz, Peyer-Plaques des Dünndarm

besteht aus:

- lymphatischen Organen
- Lymphbahnen

3 Hauptaufgaben:

- Drainage des Interstitiums über die Lymphe
- Mitarbeit bei Immunabwehr
- Transport von Fetten aus Darm

Lymphkapillaren beginnen blind im Gewebe, verlaufen parallel zu venösen Gefäßen + vereinigen sich zu Lymphbahnen, über Lymphbahn kommt die Lymphe in die Lymphknoten

Atmungssystem:

- = respiratorisches System
 - äußere Atmung => Lungen nehmen O2 aus Atemluft auf und geben CO2 wieder ab
 - innere Atmung = Verbrennung von Nährstoffen in Körperzellen zur Energiegewinnung => O2 wird verbraucht
 - äußere Atmung = Voraussetzung für innere Atmung (stellt den benötigten O2 bereit)

Unterteilung der Atemwege:

- obere Atemwege: Nase, Nebenhöhlen, Rachen
- untere Atemwege: Kehlkopf, Luftröhre, Bronchien, Lungen

Nase:

Funktionen der Nase:

- Erwärmung, Vorreinigung + Anfeuchtung der Atemluft
- Beherbergung des Riechorgans
- Resonanzraum f
 ür die Stimme

Nasenschleimhaut = respiratorisches Epithel (mehrreihiges hochprismatisches Flimmerepithel mit Becherzellen dazwischen)

4 Nasennebenhöhlen: Stirnhöhlen, Kieferhöhlen, Siebbeinzellen und Keilbeinhöhlen

Luftröhre:

- beginnt unterhalb des Ringknorpels
- wird durch C-förmige Knorpelspangen offen gehalten
- respiratorisches Epithel => Flimmerepithel + Becherzellen

Bronchien+ Bronchiolen:

- Hauptbronchus teilt sich in kleinere Lappenbronchien
 - rechts => in 3 Lappenbronchien für 3 Lungenlappen
 - links => in 2 Lappenbronchien für 2 Lungenlappen

Alveolen:

- = das eigentlich atmende Lungengewebe
- Blut-Luft-Schranke
- Surfactant (=Oberflächenfaktor)
 - Alveolen sind von Surfactant überzogen, damit sie beim Ausatmen nicht zusammenfallen + sich wieder beim Einatmen leichter entfalten können
 - besteht aus Phosphorlipiden + setzt die Oberflächenspannung herab

Lungen:

=> Links 2 Lungenlappen, rechts 3 Lungenlappen

- Lungen erhalten von 2 Seiten Blut
 - Lungenkreislauf => ausschließlich für Gasaustausch
 - Körperkreislauf => für Eigenversorgung der Lunge über Bronchienartierien (entspringt der Aorta)
- Pleura (Brustfell) = Lungenfell + Rippenfell => umziehen die Lungen
- Inspiration (=Einatmung) => Lungen dehnen sich aus, O2 reiche Luft gelangt in Alveolen
- Expiration (=Ausatmung) => Lungen ziehen sich zusammen, CO2 reiche und O2 arme Luft gelangt nach außen (wird abgeatmet)
- Atemfrequenz bei Erwachsenen = 14-16/ min

Zwerchfell:

- trennt Brust + Bauchhöhle voneinander
- willkürlich innerviert

Lungen- und Atemvolumina:

Atemzugvolumen: ca. 500 ml je Atemzug

Atemminutenvolumen = Atemzeitvolumen: 7,5 L/min

Gasaustausch:

- findet in den Alveolen statt
- O2 diffundiert aus den Alveolen ins Blut
- CO2 diffundiert aus dem Blut in die Alveolen

- Alveolen werden von Kapillaren umzigen (zuführende und abführende Schenkel)
- Voraussetzungen für Gasaustausch:
 - ausreichende Lungenbelüftung (Ventilation)
 - Diffusion von O2 + CO2 in Blut/ Kapillaren
 - intakte Lungendurchblutung (Perfusion)
- der Gasaustusch folgt stehts einem Konzentrationsgefälle (von höherer Konzentration zu niedrigeren Konzentration)
- O2 Transport im Blut = 98,5% des Hämoglobins der Erythrozyten ist mit O2 gesättigt
- CO2 Transport im Blut = 80% in Form von Bicarbonat transportiert, 10% physikalisch gelöst und 10% des CO2 ist direkt ans Hämoglobinmolekül der Erythrozyten angelagert
 - ein gewisser CO2 Gehalt im Blut ist zur Aufrechterhaltung des physiologischen Blut-pH-Wertes und Steuerung der Atmung notwendig

	Einatemluft	Ausatemluft
Stickstoff N2	79%	79%
Sauerstoff O2	21%	17%
Kohlenstoffdioxid CO2	0,04%	4%

Jauci Stori OZ	21/0	17/0
Kohlenstoffdioxid CO2	0,04%	4%

Einteilung in:

...nach Lage:

- Zentrales Nervensystem (ZNS)
- peripheres Nervensystem (PNS)

...nach Funktion:

- willkürliches Nervensystem
- vegetatives Nervensystem

Das Gehirn wird gegliedert in: Großhirn, Zwischenhirn, Hirnstamm (= Mittelhirn, Brücke + verlängertes Mark) und Kleinhirn.

Funktionen der einzelnen Hirnbereiche:

Großhirn:

- Sitz aller bewussten Empfindungen
- Handlungen und Gedanken
- limbisches System (=> Gefühle); Mandelkern, Hippocampus, Teile des Hypothalamus
- Windungen + Furchen; 2 Hemisphären durch Balken miteinander verbunden
- Graue (Gehirnrinde) und weiße (Gehirnmark) Substanz

Zwischenhirn:

- besteht aus => Thalamus, Epithalamus, Hypophyse, Hypothalamus
- Schaltstelle zwischen Großhirn und Hirnstamm

Hirnstamm:

- u.a. für Steuerungen lebenswichtiger Körperfunktionen (z.B. Kreislauf)
- hier werden auch Aufmerksamkeit und Schlaf gesteuert

Kleinhirn:

• Koordinationszentrum für Motorik

Rückenmark:

- Es entspringen 31 Paar Rückenmarksnerven
- Beim Erwachsenen endet das RM auf Höhe des 1.-2.Lendenwirbels, beim Säugling auf Höhe des 3. Lendenwirbels

Ruhemembranpotential = -70 mV

Depolarisation: Aktionspotential kann ausgebildet werden

Aktionspotential: "Alles-oder-nichts-Prinzip" +30 mV

Repolarisation: Rückkehr zum Ruhemembranpotential

Refraktärperiode: während und unmittelbar nach dem Aktionspotential ist das Neuron nicht neu erregbar => schützt Neuronen vor Dauererregung und verhindert, dass das Aktionspotential auf das Axon Richtung Zellkörper zurück wandert

Aufbau der chemischen Synapse:

3 Anteile:

- präsynaptisches Neuron = synaptische Endköpfchen + synaptische Bläschen (mit Neurotransmitter)
- postsynaptische Zelle = beinhaltet Rezeptoren für Transmitter
- synaptischer Spalt = zwischen prä- und postsynaptischer Zelle, mit Extrazellulärflüssigkeit gefüllt

Funktion der Synapse:

Aus den präsynaptischen Axon werden Neurotransmitter aus den synaptischen Bläschen in den synaptischen Spalt freigesetzt. Die Neurotransmitter binden an den Rezeptoren der postsynaptischen Membran. Die Ionenkanäle an der postsynaptischen Membran ändert sich (Membranleitfähigkeit). Ein postsynaptisches Potential entsteht.

Neurotransmitter:

- = Botenstoffe, die erregend oder hemmend auf die postsynaptische Membran wirken
 - Acetylcholin
 - Noradrenalin
 - Serotonin
 - Dopamin
 - GABA

Vegetatives Nervensystem:

- Sympathikus
- Parasympathikus
- Darmnervensystem (=enterisches Nervensystem)

Grundsätzlich gilt: der Sympathikus hat eine Steigerung der Körperfunktionen (Fight or Flight), der Parasympathikus hat eine Verminderung der Körperfunktionen (Rest and Digest) zur Folge.

Haut:

Ca. 2 m² Fläche; größtes Organ des Körpers

- Aufgaben: Schutz, Abgrenzung, Sinnesorgan, Teil der Immunabwehr, Kommunikation, Regulation des Wasserhaushalts, Speicher + Stoffwechselaufgaben
- Aufbau: 3 Schichten:
 - Oberhaut (Epidermis)
 - = gefäßlos!
 - Mehrschichtiges verhorntes Plattenepithel
 - Keratinozyten = Hauptzellen der Oberhaut
 - Keratin
 - Hautschichten:
 - Basalschicht
 - Stachelschicht
 - Körnerschicht
 - Glanzschicht
 - Hornschicht
 - Lederhaut (Dermis)
 - Unterhaut (Subcutis) => besteht aus lockerem Bindegewebe
- 2 Hauttypen:
 - Leistenhaut (an Handflächen und Fußsohlen) => nur Schweißdrüsen
 - o Felderhaut (am Rest des Körpers) => Schweißdrüsen, Talgdrüsen, Duftdrüsen + Haare

Hautanhangsgebilde:

- Haare
 - Lanugohaare (bei Feten)
 - o Wollhaare (Vellushaare): kaum sichtbare Haare im Gesicht, Rücken, Bauch etc.
 - Terminalhaare (Langhaare): sichtbaren Haare (Augenbrauen, Kopfhaare, Wimpern,..)
- Hautdrüsen
- Nägel

Sinnesorgane:

- Tastsinn
 - Mechanorezeptoren
 - U.a. Merkel-Zellen, Meissner-Tastkörperchen
 - Temperatursensoren
 - Wärmerezeptoren
 - Kälterezeptoren
 - o Schmerzrezeptoren (Nozirezeptoren)
- Geruchssinn = Kontrollstation f
 ür Atemluft
- Geschmackssinn
 - 5 Geschmäcker:
 - Süß
 - Salzig
 - Bitter
 - Sauer
 - Umami
- Sehsinn
- Hör- und Gleichgewichtssinn

Auge:

- Äußere Augenhaut
 - Sklera = formgebend
 - Kornea => an Lichtbrechung beteiligt
- Mittlere Augenhaut
 - Aderhaut
 - Ziliarkörper (Nah+Fernakkomodation)
 - Kammerwasser => Ernährung von Hornhaut + Linse
 - Regenbogenhaut (Iris)

- o Pupille
- Innere Augenhaut
 - Netzhaut (Retina) => enthält Sinneszellen + Pigmentepithel
 - Zapfen: fürs Farbsehen + für scharfes Sehen verantwortlich
 - Gelber Fleck = Ort des schärfsten Sehens
 - Stäbchen: viel häufiger als Zapfen vorhanden; für Dämmerungssehen, Schwarz/Weiß
 - Blinder Fleck = dort wo Sehnerv austritt, hier sind weder Stäbchen noch Zapfen vorhanden

Lichtbrechende Strukturen:

- Hornhaut
- Linse
- Glaskörper
- Kammerwasser

	Alterssichtigkeit:	Kurzsichtigkeit: Weitsichtigkeit:	
Ursache:	Linse hat an Elastizität	Augapfel ist zu <u>lang</u>	Augapfel ist zu <u>kurz</u>
	verloren		
Bildlage:	Bild liegt <u>hinter</u>	Bild liegt <u>vor</u>	Bild liegt <u>hinter</u>
	Netzhautebene	Netzhautebene	Netzhautebene
Korrekturmechanismen:	Sammellinse zur	Zerstreuungslinse zur	Sammellinse zur
	Korrektur	Korrektur	Korrektur

Hör- und Gleichgewichtssinn:

Das Gehör dient zur Aufnahme von Schallreizen, das Gleichgewichtsorgan registriert Körperlage und Körperbewegung im Raum.

Hörorgan:

- Äußeres Ohr:
 - Ohrmuschel
 - o Äußerer Gehörgang: enthält Drüsen, die Ohrenschmalz bilden + einzelne Haare
 - o Trommelfell = Grenze zwischen äußeren Ohr und Mittelohr
- Mittelohr:
 - Eustach´sche Röhre = Ohrtrompete: verbindet Mittelohr mit Rachen
 - Ovales Fenster
 - Rundes Fenster: Verbindung zum Innenohr
 - Gehörknöchelchen:
 - Hammer
 - Amboss
 - Steigbügel
- Innenohr:
 - Cochlea (=Schnecke)
 - o Bogengänge
 - Vorhof

Die Schallwellen werden von der Ohrmuschel aufgenommen, durch den äußeren Gehörgang zum Trommelfell geleitet. Das Trommelfell schwingt und überträgt diese Schwingungen auf die Gehörknöchelchen, zum ovalen Fenster. Die Schwingungen der Perilymphe der Scala vestibuli (Vorhoftreppe) werden an die Schnecke weitergegeben und wandern bis zur Schneckenspitze und werden durch die Haarzellen zum 8.Hirnnerv (Hörnerv) aufgenommen.

Mensch: 20 Hz-20 kHz

Gleichgewichtsorgan:

- Vorhof (Vestibulum)
 - o Utrikulus
 - Sacculus
- 3 Bogengänge (liegen im knöchernen Labyrinth)
 - o 1 vorderer vertikaler
 - o 1 hinterer vertikaler
 - o 1 seitlicher horizontaler

Endokrines System:

Aufgaben von Hormonen:

- Regulation
- Wachstum + Entwicklung
- Steuern Reproduktionsvorgänge
- Beeinflussen psychische Vorgänge + Verhalten

Endokrine Drüsen im Körper:

- Hypothalamus
- Hypophyse
- Epiphyse
- Schilddrüse + Nebenschilddrüse
- Thymus
- Nebenniere
- Pankreas
- Eierstöcke
- Hoden

Übersicht Hormone:

Klasse	Hormon	Hauptbildungsort	
Aminosäureabkömmlinge	Thyroxin (T4) + Trijodthyronin (T3)	Schilddrüse	
	Katecholamine:	Nebennierenrinde	
	 Adrenalin 		
	 Noradrenalin 		
Peptidhormone und	Oxytocin, ADH (Adiuretin),	Hypothalamus	
Proteohormone	Releasing-Hormone (RH),		
	Inhibiting-Hormone (IH)		
	Wachstumshormone, Prolaktin,	Hypophysenvorderlappen	
	TSH, ACTH, FSH, LH		
	Kalzitonin	Schilddrüse	
	Parathormon (PTH)	Nebenschilddrüse	
	Insulin	Pankreas	
Steroidhormone	Aldosteron, Cortisol	Nebennierenrinde	
	Testosteron	Hoden	
	Östrogene + Progesteron	Eierstöcke	

Oxytocin: leitet Wehen ein

ADH: Wasserrückresorption

FSH: stimuliert Östrogenbildung + Follikelstimulation bei Frau und Spermienentwicklung beim Mann

LH: stimuliert Eisprung + Gelbkörperbildung bei Frau und Testosteronproduktion beim Mann

Somatotropin = Wachstumshormon

Insulin: senkt Blutzuckerspiegel; Glukagon: erhöht Blutzuckerspiegel

Immunsystem:

Bestandteile des Abwehrsystems:

- Unspezifische (angeborene) Immunabwehr
 - = antigenunabhängig
 - Sehr schnell + sorgt dafür dass beispielsweise Bakterien, die über eine kleine Wunde in den Körper eingedrungen sind rasch unschädlich gemacht werden
- Spezifische (erworbene) Immunabwehr
 - Schaltet sich ein, wenn der Erreger nicht mit der unspezifischen Immunabwehr abgetötet werden konnte
 - = gegen ein spezielles Antigen gerichtet
 - o Braucht länger, dafür große Selektivität

- Zelluläre Abwehrmechanismen
 - o Abwehrzellen, die direkt an der Beseitigung des Erregers beteiligt sind
- Humorale Abwehrmechanismen
 - o Besteht aus diversen Eiweißfaktoren, Enzymen und Antikörpern

Abwehrsystem	Zellulär	Humoral
Unspezifisches	 Makrophagen 	 Komplementsystem
	 Neutrophile 	 Zytokine
	Granulozyten	 Lysozym
	 Natürliche Killerzellen 	
Spezifisches	T-Zellen:	 Antikörper
	 T-Helferzellen 	(produziert von
	 Zytotoxische T-Zellen 	stimulierten B-Zellen =
	 T-Zell-Gedächhtnis 	Plasmazellen)

Organe des Abwehrsystems:

• Alle Abwehrzellen werden im Knochenmark gebildet + vermehren sich dort, danach wandern sie in lymphatische Organe zu Weiterentwicklung ein

Primär lymphatische Organe:

- Thymus
- Knochenmark

Über Blut- und Lymphbahnen gelangen die Abwehrzellen in...

... sekundär lymphatische Organe:

- Lymphknoten
- Mandeln
- Milz
- Lymphatischer Rachenring
- Peyer-Plaques des Dünndarms

Funktionen der wichtigsten Abwehrzellen:

Name	Funktion		
Monozyten	Vorläufer der Makrophagen im Blut		
Makrophagen	Phagozytieren in allen Geweben + in		
	Lymphflüssigkeit		
Antigenpräsentierende Zellen	Präsentieren T-Zellen Antigene + starke		
	Immunantwort; zB. Makrophagen, B-Zellen, dendritische Zellen		
Granulozyten:			
Neutrophile Granulozyten	 Phagozytieren Bakterien, Viren + Pilze im Blut, am häufigsten vorkommend 		
Eosinophile Granulozyten	 Abwehr von Parasiten, Beteiligung an allergischen Reaktionen 		
Basophile Granulozyten und Mastzellen	 Abwehr von Parasiten, Beteiligung an allergischen Reaktionen (Histaminausschüttung=> Juckreiz, Ödeme) 		
B-Zellen:			
 B-Lymphozyten 	 Vorläufer der Plasmazellen 		
 Plasmazellen 	 Antikörper produzierende Zellen 		
B-Gedächtnis-Zellen	 Ständige "Erinnerung" von B-Zellen an Antigene 		
T-Zellen:			
T-Helferzellen	Aktivieren B-Lymphozyten zur		
	Differenzierung => Plasmazellen erkennen Antigene auf antigenpräsentierenden Zelle		
Zytotoxische T-Zellen	 Erkennen + zerstören von Viren befallener Körperzellen + Tumorzellen; reagieren auf bestimmte Antigene d. Zielzelle 		
T-Gedächtnis-Zellen	 Ständige "Erinnerung" von T-Zellen an Antigene 		
Natürliche Killerzellen	Greifen unspezifische virusinfizierte Zellen + antikörperbestückte Tumorzellen an		

Antikörperklassen:

- IgG: als einzige plazentagängig
- IgM: ist erstes Antikörper nach einer Infektion
- IgA
- IgE: bei Abwehr von Parasiten + Allergien
- IgD

Harnorgane:

Nieren:

Ein Nephron ist die kleinste funktionelle Einheit der Niere. Sie besteht aus Nierenkörperchen und Tubulusapparat. In den Nierenkörperchen wird der Primärharn durch Abpressen des Blutfiltrats hergestellt.

Es werden 180 L Primärharn pro Tag gebildet, aber nur ca. 1,5 L Harn abgegeben. Der Großteil des Primärharns werden in den Tubuli und der Sammelrühre rückresorbiert. Die Rückresorption werden durch die Hormone Aldosteron + ADH (Adiuretin) bestimmt.

Die Niere ist ein endokrines Organ und bildet Renin und Erythropoetin.

Harn besteht zu 95% aus Wasser, der Rest sind harnpflichtige Substanzen, wie Harnstoff, Harnsäure, Kreatinin, etc.

Aufgaben der Niere:

- Harnproduktion- und ausscheidung
- Ausscheidung von Stoffwechselendprodukten, Medikamenten + Umweltgifte
- Regulation der Elektrolytkonzentrationen
- Regulation des Blutdrucks
- Aufrechterhaltung des Säure-Basen-Gleichgewichts
- Bildung von Renin + Erythropoetin
- Etc.

Nephron:

- Hier erfolgt die Urinbildung
- Jede Niere hat ca. 1 Mio. Nierenkörperchen über die gesamte Nierenrinde verteilt
- Im Tubulusapparat wird Primärharn durch Resorptionsvorgänge stark konzentriert, durch Sekretionsvorgänge mit Stoffwechselprodukten angereichert und als Sekundärharn in den Nierenkelch weitergeleitet

- Nierenkörperchen bestehen aus: Glomerulus und Bowmann-Kapsel, die den Glomerulus umgibt
- Im Kapselraum wird das Glomerulusfiltrat abgepresst

Ableitende Harnwege:

- Beginnen mit Sammelrohren, die sich zu Papillengängen vereinigen => münden in Nierenpapillen (= Spitzen der Markpyramiden)
- Urin fließt in einen der 8-10 Nierenkelche, die sich am Nierenhilum zum Nierenbecken vereinigen
- Der gesamte Harntrakt ist von Urothel (=Übergangsepithel) ausgekleidet
- Die Nierenbecken vereinigen sich zum Harnleiter (Ureter) und ziehen ins kleine Becken und münden dann in die Harnblase

Der Wasserhaushalt wird durch die folgenden 3 Hormone reguliert: ADH (erhöht Wasserrückresorption), Aldosteron (erhöht Resorption von Salz + Flüssigkeit im distalen Tubulus) und ANP (= natriuretisches Peptid).

Geschlechtsorgane:

Männliche Geschlechtsorgane:

- Inneren Geschlechtsorgane:
 - o **Hoden**
 - Nebenhoden
 - Samenleiter (im Samenstrang eingebettet)
 - Geschlechtsdrüsen:
 - Prostata
 - Samenbläschen
 - Cowper-Drüsen
- Äußere Geschlechtsorgane:
 - Penis => in dem Harn + Samenwege gleichzeitig verlaufen
 - Hodensack

Hodenabstieg: ab dem 3.SSM wandern Hoden in Hodensack

Im Hodensack ist es 2-5°C kühler als im Körper (Temperatur für normale Spermienbildung wichtig).

Hoden:

- Aufbau:
 - Hodenläppchen
 - Hodenkanälchen
 - Hodennetz
 - o Sertoli-Stützzellen
 - Leydig-Zwischenzellen => produzieren Testosteron

Männliche Sexualhormone:

- Pubertät: Hypophysenvorderlappen (HVL) stimuliert GnRH mit Ausschüttung von FSH + LH
 - FSH => f\u00f6rdert Spermienreifung
 - LH => regt Leydig-Zellen zur Ausschüttung von Testosteron an

Spermium:

Aufbau:

- Kopf => enthält einfachen Chromosomensatz + Akrosom (zum Eindringen in die Eizelle)
- Hals => verbindet Kopf und Mittelstück
- Mittelstück => enthält viele Mitochondrien zur Energiegewinnung für Bewegung
- Hauptstück
- Endstück

Spermatogenese:

- Setzt mit Beginn der Pubertät ein + findet in Hodenkanälchen statt
- Im Nebenhoden werden reifen Spermien gespeichert
- Spermatogonien (2n) teilen sich durch Mitosen zu Spermatozyten I. Ordnung => nach DNA-Verdopplung sind diese diploid mit 4 Chromatiden pro Chromosomenpaar => durch 1. Reifeteilung entstehen Spermatozyten II. Ordnung mit 23 Chromosomen aus je 2 Chromatiden (haploid, 2n) => 2.Reifeteilung => Spermatiden mit 23 Chromosomen, 1n => Reifung zum befruchtungsfähigen Spermium erfolgt ohne weitere Teilungen; gespeichert werden die reifen Spermien im Nebenhoden.

Weibliche Geschlechtsorgane:

- Innere Geschlechtsorgane (liegen geschützt im kleinen Becken):
 - Eierstöcke
 - o Eileiter
 - Paarig
 - Hier findet die Befruchtung der Eizelle statt
 - Gebärmutter

- Vagina (saures Milieu)
- Äußere Geschlechtsorgane:
 - o Große + kleine Schamlippen
 - Klitoris
 - Scheidenvorhof mit seinen Drüsen

Eierstöcke - Aufgabe:

- Bildung der weibl. Sexualhormone: Östrogen + Progesteron
- Bereitstellung von befruchtungsfähigen Eizellen

Oogenese:

- VOR Geburt teilen sich die aus Urkeimzellen entstandenen Oogonien (diploid = 46 Chromosomen, 2n) durch Mitosen
- Teil der Oogonien vergößern sich + tritt in Prophase der 1. Reifeteilung ein => Oozyte I. Ordnung (primäre Oozyte)
- Oozyten I. Ordnung verharren mind. Bis zur Pubertät höchstens bis zur Menopause in Prophase (diploid, 4n) => Diktyotän!
- Zum Zeitpunkt der Geburt hat jeder Eierstock ca. 400 000 Primärfollikel
- Hormonell bedingt werden jedes Monat aus den Primärfollikel Sekundärfollikel und dann Tertiärfollikel
- Sekundär- und Tertiärfollikel produzieren u.a. Östrogen => regt Gebärmutterschleimhaut zum Wachstum an
- Tertiärfollikel kann zugrunde gehen oder zum sprungreifen Graaf-Follikel heranreifen
- Kurz vor Eisprung vollendet Oozyte I. Ordnung die erste Reifeteilung + teilt sich in Oozyte II. Ordnung (23 Chromosomen, 2n)
- Im Follikel tritt Oozyte II. Ordnung noch die 2. Reifeteilung ein, beendet sie jedoch nicht vollständig
- Mitte des Monatszyklus springt Oozyte aus Graaf-Follikel (= Ovulation => durch LH-Peak ausgelöst)
- Nach Ovulation wandert Oozyte durch Eileiter
- Erst unmittelbar nach der Befruchtung wird die 2. Reifeteilung abgeschlossen
 - O Aus der reifen Eizelle => 23 Chromosomen, 1n + ein Polkörperchen
 - Der leere Graaf-Follikel bildet sich zum Gelbkörper um + bildet Progesteron

Eizellbildung: es entstehen 1 Eizelle und 3 Polkörperchen

Spermienbildung: es entstehen 4 gleich große haploide Zellen, die je zu einem Spermium heranreifen

Eizelle =ca. 0,2 mm groß

Weibliche Sexualhormone:

Mit Pubertät Sekretion von FSH + LH

- FSH: v.a. in ersten Zyklushälfte vom HVL ausgeschüttet
 - o Follikelreifung zum Graaf-Follikel
 - o Ausschüttung von Östrogenen aus Eierstöcken
- LH: v.a. in Zyklusmitte
 - o Bewirkt mit FSH den Eisprung
 - Umwandlung von Graaf-Follikel in Gelbkörper (=> produziert Progesteron)
- Progesteron:
 - o Führt zum Anstieg der Körpertemperatur um 0,5°C
 - o Bereitet Gebärmutterschleimhaut auf Befruchtung vor
 - Lässt Zervixschleim zäher werden

Fortpflanzung:

Weiblicher Zyklus:

Menstruationszyklus:

Menarche = 1. Menstruation ; Menopause = letzte Menstruation ; Zykluslänge: normal zwischen 25-35 Tagen

Phasen des Menstruationszyklus:

4 Phasen:

- Menstruation
- Proliferationsphase (Aufbauphase)
- Sekretionsphase
- Ischämiephase

Der weibliche Zyklus beginnt mit der Menstruation. Einige Tage zuvor nehmen die Konzentrationen von den Hormonen FSH und LH im Blut zu. Der Follikel reift heran. Der heranwachsende Follikel bildet immer mehr Östrogene (v.a. Östradiol). Diese Hormone stimulieren das Wachstum der Uterusschleimhaut. Etwa 3 Tage vor dem Eisprung: LH aktiviert Enzyme die das Platzen des Follikels veranlassen und die Bildung des Gelbkörpers setzt ein. Der Gelbkörper bildet Östrogene und Gestagene (Progesteron). Durch die Progesteronbildung steigt die Körpertemperatur nach der Ovulation um 0,3° bis 1°C an. Wird die Eizelle nicht befruchtet, stirbt sie innerhalb von wenigen Stunden ab, der Gelbkörper degeneriert. Die Uterusschleimhaut wird durch Abnahme der Hormonkonzentrationen im Blut abgestoßen (die Körpertemperatur sinkt).

Schwangerschaft:

Die Einnistung der Blastozyste wird durch Progesteron ermöglicht. Der eingenistete Embryo zeigt HCG (humane Choriongonadotropin) an, welches den Gelbkörper in Funktion hält. Die Uterusschleimhaut wird durch Weiterbildung von Progesteron und Östrogenen nicht abgestoßen.

HCG lässt sich ab 2 Wochen nach der Befruchtung im Blut feststellen. Progesteron und Östrogene regen den Uterus und die Brustdrüsen zum Wachstum an.

Befruchtung + Einnistung:

Die Befruchtung findet im Anfangsteil des Eileiters statt. Nach etwa 3-4 Tagen erreicht die Eizelle die Gebärmutter und nistet sich etwa am 5.-6. Tag in die Uterusschleimhaut ein. Die Zygote furcht sich anfänglich total-äqual. Es entsteht eine Morula die dann zur Blastozyste (32-Zell-Stadium) wird.

Die Blastozyste besteht aus:

- Epithelschicht
- Trophoblast (an Entwicklung der Plazenta beteiligt)
- Embryoblast
- Keimhöhle mit Flüssigkeit gefüllt

Die Einnistung der Blastozyste wird durch das Progesteron ermöglicht, bis zum 12. Tag nach der Befruchtung entsteht im Embryoblast das Amnion mit Amnionhöhle und Dottersack mit Dottersackhöhle. Das Amnion entwickelt sich zur Fruchtblase, aus dem Dottersack entwickeln sich die Stammzellen des Knochenmarks und die Urkeimzellen. Zwischen Amnion und der Dottersackhöhle liegt das 2-schichtige Keimschild. In die 2-schichtige Keimplatte schiebt sich eine dritte Keimschicht. Diese besteht nun aus Ektoderm, Entoderm und Mesoderm. Nach 3 Wochen etwa beginnt das Herz des Embryos zum Schlagen. Bis zum Ende der 4. Woche entsteht das Neuralrohr und die Anlagen für Augen, Ohren, Leber, Lunge, Darm und Extremitäten entstehen. In der 5.-8. Woche entwickeln sich alle Organe = Embryonalperiode. Ab der 9.SSW wird der Embryo Fetus bezeichnet, da mit Ende der 8. Woche die Organbildung größtenteils abgeschlossen ist.

In der 9.-12. Woche formt sich das Gesicht, in der 8.-12. Woche gliedert sich das Gehirn in 5 Abschnitte und das Geschlecht des Babys ist erkennbar.

Eine Schwangerschaft dauert 280 Tage bzw. 40 Wochen.

Ab der 29. Woche ist ein Baby lebensfähig.

Plazenta:

Bildet sich aus:

- Fetalem Gewebe
- Zottenhaut
- Teil der Uterusschleimhaut

Nährstoffe, Gifte etc. können über die Plazenta von der Mutter zum Fetus gelangen. Abfallstoffe werden über die Plazenta vom Fetus an die Mutter weitergegeben. Die Plazenta bildet Hormone (HCG und Progesteron).

Die Plazenta ist ca. 500g schwer und wird nach der Geburt des Kindes ausgestoßen (Nachgeburt).

Verhütungsmethoden:

- Natürliche Methoden:
 - o Coitus interruptus
 - o Kalendermethode
 - Temperaturmethode
- Mechanische Methoden:
 - Kondom => Pearl-Index: 3-14
 - Femidom (=Kondom für die Frau)
 - o Portioklappe (= ähnlich dem Diaphragma)
 - o Diaphragma
 - o Interunterinpessar oder Soirale
- Chemische Methoden:
 - o Salben, Gelees, Zäpfchen, Schaum, Spray, die Spermizide enthalten
- Hormonelle Methoden:
 - Pille => Pearl-Index 0,1-3
 - 1-Phasen-Präparat
 - 2-Phasen-Präparat
 - 3-Phasen-Präparat
 - Mikropille
 - Minipille
 - Pille danach (=hochkonzentriert, nur nach dem Geschlechtsverkehr, bei vergessenen Verhütungsmethoden)
 - Implanon (Hormonstäbchen => unter die Haut des Oberarms)
 - Hormonpflaster
- Chirurgische Methoden:
 - Sterilisation der Frau
 - Sterilisation des Mannes

Genetik:

Mendel'sche Regeln:

Voraussetzung: Ausprägung wird nur von einem Gen bestimmt z.B. Erbsen, Blutgruppen

- Uniformitätsregel:
 - Kreuzt man zwei homozygote (reinerbige) Individuen miteinander, die sich nur in einem Merkmal unterscheiden, so sind alle Individuen der n\u00e4chsten Filialgeneration F1 untereinander gleich.
 - Dominant-rezessiver Erbgang:
 - Es gibt keine Mischform der beiden Allele (ein Allel alleine bewirkt die Ausprägung des Merkmals)
 - Intermediärer Erbgang:
 - Es wird eine Mischform in der 1. Generation gebildet
- Spaltungsregel:
 - Im dominant-rezessiven Erbgang spalten sich die Merkmale der F2 Generation im Verhältnis 3:1 auf. ¼ davon sind dominant homozygot und 2/4 davon dominant heterozygot ausgebildet
 - o Im intermediären Erbgang spaltet sich die F2 Generation im Verhältnis 1:2:1 auf
- Unabhängigkeitsregel:
 - In einem dihybriden Erbgang sind die einzelnen Erbanlagen untereinander frei kombinierbar bzw. werden unabhängig voneinander vererbt

Zellteilung:

Mitose:

Der Zellzyklus wird in folgende verschiedene Phasen geteilt: G1-Phase, S-Phase, G2-Phase (Interphase) und M-Phase (Mitose).

- G1-Phase: Nach der Mitose beginnt die Zelle zu wachsen
- S-Phase: =Synthesephase; hier erfolgt die Replikation der DNA
- G2-Phase: die Zelle bereitet sich auf die Mitose vor
- M-Phase: = Mitose; hier erfolgt die Teilung der Chromosomen, des Zellkerns und der Zelle; wird in Prophase, Prometaphase, Metaphase, Anaphase und Telophase eingeteilt. Im Anschluss an die Mitose folgt die Zytokinese (=Zellleibteilung)
- GO-Phase: =Ruhephase; ausdifferenzierte Zellen (zB. Nervenzellen, Muskelzellen oder Erythrozyten) verbleiben in dieser Phase; Krebszellen umgehen diese Phase

Mitose Übersicht:

Prophase	Centrosomen trennen sich und wandern an die	
	entgegengesetzten Zellpole, Chromatiden	
	verdichten sich und werden sichtbar	
Prometaphase	Kernhülle zerfällt, Chromosomen sammeln sich in	
	der Mitte der Zelle	
Metaphase	Chromosomen sind in der Äquatorialebene	
	ausgerichtet	
Anaphase	Beide Chromatiden eines Chromosoms werden	
	durch Spindelfasern an Spindelpole gezogen	
Telophase	Kernhülle wird wieder gebildet, Chromatin	
	dekondensiert wieder	

Auf die Telophase folgt die Zytokinese, die Teilung der Zelle.

Meiose:

Die Meiose läuft, im Gegensatz zur Mitose (in allen Körperzellen, außer Gameten), nur in den Keimzellen ab. Sie ist ähnlich der Mitose, hat aber 2 Zyklen, wobei der zweite Zyklus einer Mitose entspricht.

Sie wird eingeteilt in die Phasen:

- Prophase I
 - o Leptotän
 - o Zygotän
 - o Pachytän
 - o Diplotän
 - Diakinese
- Metaphase I
- Anaphase I
- Telophase I
- Prophase II
- Metaphase II
- Anaphase II
- Telophase II

Meiose I:

- Interphase: Chromatin verdichtet sich zu sichtbaren Chromosomen
- Prophase: Crossing-over zwischen den synaptonemalen Homologen, unterteilt in: Leptotän, Zygotän, Pachytän, Diplotän und Diakinese
- Metaphase: Chromosomen maximal verkürzt und verdickt, Chiasmata als einzige Verbindung zwischen Nichtschwesterchromatiden, jede Tetrade tritt mit Spindelfasern in Wechselwirkung
 Bewegung zur Metaphasenplatte
- Anaphase: eine Hälfte einer jeden Tetrade (Dyade) wird zu einem Pol der sich teilenden Zelle gezogen
 Grundlage für Disjunction (ohne Crossing-over würde jede Dyade nur aus väterlichen oder mütterlichen Chromatiden bestehen)
- Telophase: Zellkernmembran bildet sich um die Dyaden

Chiasmata entstehen an Stellen, an denen es bei Nichtschwesterchromatiden zu einem genetischen Austausch kommt (Crossing-over)

Synaptonemaler Komplex vermittelt die Paarung der Homologen und ihrer anschließenden Segregation

Tetrade: vier Chromatiden zweier gepaarter Chromosomen Homologe: Nichtschwesterchromatiden, ein Chromosom von \mathfrak{P} , eines von \mathfrak{P} , Partner eines jeden Chromosomenpaares

Schwesterchromatiden: durch Verdopplung auseinander hervorgegangene Chromatiden

Meiose II:

Siehe Mitose

Chromosomentheorie der Vererbung:

Grundlagen:

=> genetische Information einer Zelle ist auf den Chromosomen lokalisiert (laut Sutton + Boveri)

Erbinformation ist in Molekülen von DNA codiert (genetischer Code); Chromosomen => als Hauptkomponente DNA enthalten

Verhalten der Chromosomen während Mitose + Meiose => durch Kreuzungsexperimente

Chromosomen = Kopplungsgruppen

Geschlechtschromosomen-gebundene Vererbung => belegt, dass auf Chromosomen Erbinformation lokalisiert ist

Crossing-over => getrennte Vererbung normalerweise gekoppelter Merkmale

Alle möglichen gametischen Kambinationen sind gleich wahrscheinlich.

1/4

Gen-Kopplung:

Gekoppelte bzw. linked Gene sind Gene, die am selben Chromosom sitzen und gemeinsam vererbt werden. Dieses Phänomen tritt auf, da die Anzahl der Gene die Anzahl der homologen Chromosomenpaare bei weitem übersteigt. Nach Mendel dürfte dies nicht sein, da er meinte alle Gene würden unabhängig voneinander vererbt werden --> Unabhängigkeitsregel Ausnahme: durch Crossing-Over kommt es zu einer Neuverteilung der Allele zwischen den homologen Chromosomen. Gene, die auf dem gleichen Chromosom liegen, können durch Crossing over "entkoppelt" werden.

Je näher die räumliche Position 2er Gene, desto geringer ist die Wahrscheinlichkeit, dass sie während der Meiose getrennt werden

Rekombinationsfähigkeit steigt mit Entfernung der Gene zueinander

Werden zwei Gene in einem Fall pro 100 Meiosen getrennt, besitzen sie per Definition einen Abstand von 1 centiMorgan (cM). Beim Menschen entspricht ein 1 cM ungefähr 1 Million Basenpaaren.

Crossing-over:

= beschreibt Mechanismus während 1. Reifeteilung der Meiose I

Austausch von genetischen Informationen zwischen 2 homologen Chromosomen

Bivalente Chromatiden werden gekreuzt => Bruch des DNA-Strangs => Rekombination

Fehlerhafte Crossing-overs fürhen zur Translokation von Gensequenzen oder Chromosomenteilen

Nicht-chromosomale Vererbung - Mitochondrien:

= extra-chromosomale Vererbung (=betroffenen Gene befinden sich nicht auf Chromosomen im Zellkern, sondern in Mitochondrien)

mitochondriale Vererbung erfolgt beim Menschen ausschließlich maternal (d.h. sie wird nur von der Mutter auf ihre Nachkommen weitergegeben; Grund: bei Befruchtung nur Kopf des Spermiums OHNE Mitochondrien in Eizelle eindringt)

Mitochondriales Genom:

Ringförmiger Doppelstrang (mtDNA) => 16,5 kb

Replikation von mitochodrialen Genom = Zellzyklusunabhängig; durch Teilung weitergegeben

Aufbau des Genoms bei Eukaryoten:

Genome der Eukaryoten => enthalten mehr DNA als Prokaryoten; es besteht aber kein Zusammenhang zwischen Genomgröße und Komplexität des Organismus

Eukaryotische DNA befindet sich im Zellkern => Transkription + Translation laufen räumlich getrennt ab (im Gegensatz zu Prokaryoten)

- Doppelsträngige DNA als Informationsspeicher
- Kerngenom und Plastom
- Chromosomen lineare DNA-Moleküle
- Genomgröße Homo sapiens: 3,75 x 10⁹
- Mensch: ca. 25 000 30 000 Gene
- Anteil der nicht-codierender DNA => 98% (Introns, repetitive Sequenzen)
- 23 homologe Chromosomenpaare = 46 Chromosomen

Mutationen:

- Genmutationen: entsteht durch Änderung der Nukleotidsequenz der Gene
 - o Oft eine einzige Aminosäure gegen andere ausgetauscht = Punktmutation
 - Transition
 - Transversion
 - Insertion
 - Deletion
- Chromosomenmutationen: Veränderung eines oder mehrerer Chromosomen; Abfolge der Gene auf Chromosomen verändert sich
- Genommutationen: entstehen durch Fehler bei Chromosomenweitergabe während der Meiose
 - Aneuploidie = numerische Chromosomenaberration (einzelne Chromosomen sind zusätzlich vorhanden oder fehlen)
 - Trisomie: Trisomie 21 (=Down-Syndrom), Trisomie 13 (Patau-Syndrom),
 Trisomie 18 (Edwards-Syndrom + Klinefelter-Syndrom), Tripple-X-Syndrom
 - Monosomie (ein Chromosom fehlt)
 - o Polyploidie: mehr als 2 Chromosomensätze (oft bei Pflanzen)
- Auslöser von Mutationen:
 - o Chemische Substanzen: Säuren etc.
 - UV-Strahlung
 - Ionisierende Strahlung (Röntgenstrahlung + Neutronen)

DNA / Desoxyribonukleinsäure

Zucker- Phosphat-

Molekulare Genetik:

DNA:

Aufbau:

- Struktur 1953 von Watson + Crick entschlüsselt
- Doppelhelix mit Phosphatrückgrat + Zucker (Desoxyribonukleinsäure) + Base
- 4 verschiedene Basen: Adenin (A), Guanin (G), Cytosin (C), Thymin (T) (in RNA: Uracil (U))
 - A paart sich mit T (mit 2 Wasserstoffbrücken miteinander verbunden)
 - o C paart sich mit G (mit 3 Wasserstoffbrücken miteinander verbunden)
- Basen sind durch Wasserstoffbrücken miteinander verbunden
- 3 aufeinanderfolgende Basen bilden ein Basentriplett (Codon)
 - Jedes Basentriplett steht für eine der 20 Aminosäuren, aus denen Proteine aufgebaut sind

Replikation:

- Semikonservative Replikation: 1 alter + 1 neuer Strang
- Replikation läuft von 5' nach 3' Ende
- DNA-Doppelstrang wird durch Helicase (=Enzym) entwunden, Single-strand-binding Proteine verhindern dabei, dass sich Einzelstränge wieder verbinden => Einzelstränge dienen der DNA-Polymerase 3 als Matrize für Synthese des Komplementärstrangs => Folgestrang wird diskontinuierlich repliziert => DNA-Polymerase synthetisiert in 5´ 3´ Richtung => Primase synthetisiert an versch. Stellen RNA-Primer (=Ansatzstelle der DNA-Polymerase) => synthetisiert Okazaki-Fragmente (=DNA-Fragmente), die später durch eine Ligase zusammen gespliced werden=> DNA-Polymerase 1 tauscht Ribonukleotide durch Desoxyribonukleotide aus um DNA-Strang zu bilden => nun verbindet Ligase mit Phosphodiesterbindungen die Okazaki-Fragmente miteinander; Leitstrang wird genauso repliziert, mit der Ausnahme, dass keine Okazaki-Fragmente gebildet werden, da die Replikation hier kontinuierlich verlaufen kann

http://www.biologie-schule.de/replikation.php

Reparatur:

- Reparaturmechanismen:
 - o Korrekturlesefunktion: 3´-5´ Exonukleaseaktivität
 - Exzisionsreperatur: fehlerhafte DNA-Abschnitt wird herausgeschnitten und durch richtige Sequenz ersetzt, Ligase verbindet die Stränge wieder miteinander
 - o Rekombinationsreparatur

Vom Gen zum Merkmal:

Genetischer Code:

 Codon = Basentriplett für 3 aufeinanderfolgende Purin- bzw. Pyrimidinbasen codierend für die 20 Aminosäuren

- Universeller Code => gilt nahezu (außer mtDNA) fast überall
- Startcodon: AUG (Methionin)
 - => Startpunkt der Translation
- Stopcodons: UAA, UAG und UGA
 - => zur Beendung der Proteinbiosynthese

Aufbau eukaryotischer Gene:

- Exons
- Introns
- Regulatorische Elemente (z.B. Enhancer, Promotor)

Informationsfluss Gen => Protein:

- 1. Schritt: Transkription (im Zellkern): Übersetzung der DNA in mRNA
- 2. Schritt : Translation (im Zytoplasma): Übersetzung der mRNA in Aminosäuresequenzen
- 3. Schritt: Prozessierung: Faltung, Reifung und Modifikation des Polypeptids
- 4. Schritt: Transport von membranständigen Proteinen an die Zelloberfläche

RNA und Splicing:

- rRNA und tRNA werden als Vorläufermoleküle gebildet und nach der Transkription im Zellkern in Einzelmoleküle zerlegt
- mRNA ist noch nicht sofort brauchbar => muss erst Processing durchlaufen
 - am 5´ Ende wird eine CAP- Struktur w\u00e4hrend Transkription angef\u00fcgt => hilft bei der Bindung der mRNA an das Ribosom (wichtig f\u00fcr Translationsstart)
 - o am 3' Ende wird ein Poly-A-tail mit bis zu 200 Adenylresten angehängt
 - Splicing

Splicing:

- Innerhalb der Gene wechseln sich kodierende (Exons) und nicht-kodierende (Introns) Sequenzen ab
- Die nicht-kodierenden Sequenzen (Introns) werden herausgespliced
- Prä-mRNA = mRNA mit Introns
- Spleißosomen (bestehen aus snRNA + Proteinen) => schneiden Introns heraus
- Reife mRNA (ohne Introns) wird zur Translation aus Zellkern ins Zytoplasma transportiert

Proteinsynthese:

= Erzeugung von Proteinen; Translation

Translation:

- An Ribosomen werden ausgehend von der mRNA Proteine synthetisiert
- tRNAs (Kleeblattstruktur) liefern die Aminosäuren => = beladene tRNA mit Codon
- Translationsstart:
 - Initiationskomplex bildet sich
 - AUG = Startcodon
 - Elongation: kleine ribosomale UE bindet an mRNA => große ribosomale UE lagert sich an => Ablesen der mRNA erfolgt von 5′ nach 3′=> Verlängerung der Aminosäurekette findet am Erkennungs- und Bindungsort des Ribosoms statt: 3 Schritte: Bindung der beladenen tRNA, Ausbildung der Peptidbindung + Vorbereitung auf nächsten Elongationsschritt => Wiederholung so lange, bis ein Stopcodon kommt
 - o Termination: Ende der Translation wenn ein Stopcodon: UAG, UAA oder UGA auftaucht

http://www.organische-chemie.ch/chemie/2006dez/proteinbiosynthese.shtm

Evolution:

"Evolution ist der Naturvorgang, der dem Verlauf der Stammesgeschichte von den Vorstufen des Lebens bis zu den heutigen Arten entstehen und sich entwickeln. Die Stammesgeschichte ist als eine Folge der Evolution zu betrachten. Evolution ist Zunahme an Information, ist eine Evolution der Arten" von Zimmermann.

Entstehung des Lebens:

Erste Atmosphäre (vor 4,5 Mrd. Jahren) bestand aus Wasserstoff und Helium.

2. Atmosphäre (Uratmosphäre vor 3,5-4 Mrd. Jahren) entstand durch Vulkanismus und bestand aus Vielzahl organischer + anorganischer Verbindungen (Methan, Wasserstoff, Ammoniak, Wasser, Formaldehyd und Cyanwasserstoffsäure); war reduzierend und enthielt keinen freien Sauerstoff.

Mit Entstehung von Chlorophyll und Photosynthese vor 3,4 Mrd. Jahren entstand Sauerstoff

Versuch von Miller und Urey (Ursuppenexperiment) 1953:

Vulkanismus, Gewitter mit elektr. Entladungen, UV-Strahlung, kosmische ionisierende Strahlung => Bildung von Aminosäuren, Purinen, Pyrimidinen, Zuckern, Ethylen, Ethan, Harnstoff und Cyanwasserstoffsäure => sind gut wasserlöslich = Ursuppe

http://de.academic.ru/dic.nsf/dewiki/959504

Die in der Ursuppe gelösten Purine, Pyrimidine und Polyphosphate reagierten zu => Nukleinsäuren

Endosymbiontentheorie:

= Theorie zur Entstehung der Organellen der eukaryotischen Zelle.

Mitochondrien sind in der Evolution der Zelle durch Symbiose von Ur-Eukaryoten mit aeroben Prokaryoten entstanden; die Prokaryoten wurden von den Eukaryoten durch Phagozytose aufgenommen => Anzeichen: Doppelmembran der Mitochondrien, Mitochondrien vermehren sich unabhängig vom Zellzyklus durch Teilung + Bakterienähnliche (ringförmige) DNA

Vorläufer der Plastiden (Chloroplasten) sind Cyanobakterien;

Vorläufer der Mitochondrien sind Proteobakterien

Grundeigenschaften der Lebewesen:

- Stoffwechsel
- Wachstum
- Fortpflanzung
- Reizbarkeit (=Reaktion auf Umweltreize)
- Bewegung

Darwin:

= Begründer der modernen Evolutionstheorie; Buch: "The Origin of Species"; beobachtete Finken auf den Galapagos-Inseln (Schnabelform an Nahrung angepasst)

Dawin's 4 Hypothesen:

- Veränderlichkeit
- Gemeinsame Abstammung
- Allmähliche Evolution
- Natürliche Selektion

Artbegriff:

Art = Gruppen von sich fortpflanzenden Populationen, die reproduktiv von anderen Gruppen isoliert sind

Artbildung = Entstehung neuer Arten

Mechanismen der Artbildung:

- Separation: z.B. durch geografische Isolation
- Mutation: Entstehung neuer Gene
- Selektion: vorteilhafte Phänotypen überleben länger + haben bessere Gelegenheiten sich fortzupflanzen
- Gendrift: = zufällige Änderung des Genpools einer Population; z.B. Population durch Bottleneck
- **Rekombination**: genetische Variabilität; neue Genotypen => neue Phänotypen

Evolutionsfaktoren = Prozesse durch die der Genpool verändert wird; = Ursache aller evolutiven Veränderungen; => Rekombination, Mutation, Selektion, Gendrift

Entwicklung des Menschen:

Out-of Africa-Theorie:

Alle Menschen stammen aus Afrika.

Savannen-Theorie: => Aufrechter Gang:

- => Veränderung des Beckens, Werkzeuggebrauch, Hirnvolumen, Schwitzen etc.
 - Homo habilis: "der geschickte Mensch"
 => Werkzeuggebrauch
 - Homo erectus: "der aufrechte Mensch"
 - Homo heidelbergensis
 - Homo sapiens neanderthalensis
 - Homo sapiens sapiens: tritt erstmals in Afrika auf

http://www.thur.de/philo/kp/anthro2.gif

Ökologie:

Biotop = Lebensraum

Biotop (= Pflanzen, Tiere, Mikroorgansimen) bilden eine Lebensgemeinschaft.

Lebensgemeinschaft = Biozönose

Ökosystem (z.B. Teich) = Einheit von Lebensraum + Lebensgemeinschaft

Produzenten = grüne Pflanzen => werden von Tieren gefressen

Konsumenten = Tiere

Destruenten = Mikroorganismen, die Konsumenten (Leichen, Ausscheidungen) abbauen

Ökosystem = offenes System, aber Zahl + Art der Individuen bleiben in etwa konstant

Biologisches Gleichgewicht = Ökosystem (z.B. Teich) hat Fähigkeit zur Selbstregulation, d.h. Anzahl + Art der Organismen bleiben weitgehend gleich

Lebewesen sind von Umgebung unabhängig

Abiotische Faktoren: (= auch als Standardfaktoren bezeichnet)

- Einflüsse der unbelebten Umwelt auf Organismus
 - o Licht
 - o Temperatur
 - Wasserverfügbarkeit
 - o Mineralstoffgehalt des Bodens
 - Salzgehalt
 - o O2-Verfügbarkeit
 - o pH-Wert

Biotische Faktoren:

- Einflüsse von anderen Lebewesen
 - Wirkungen von Feinden + Parasiten
 - Nahrung

Population = alle Individuen einer Art in einem Lebensraum

Ökologische Nische = Gesamtheit aller biotischen + abiotischen Umweltfaktoren, die für die Existenz einer bestimmten Art wichtig ist (z.B. Nahrungsnische)

Konkurrenzausschlussprinzip => Es besiedeln nie 2 Arten mit selben Ansprüchen eine ökologische Nische

Konvergenz = Arten, die in geografisch getrennten Gebieten leben können ähnlich ökologische Nischen nutzen; deshalb viele Ähnlichkeiten in Gestalt + Lebensweise => sind aber nicht miteinander verwandt

Ökosysteme:

Biosphäre = Gesamtheit aller Ökosysteme

- ⇒ Ist ein offenes System
- ⇒ Einfluss z.B. durch Sonneneinstrahlung

3 Lebensbereiche der Biosphäre:

- Festland = terrestrisches Ökosystem
- Meer = marines Ökosystem
- Süßwasser = limnisches Ökosystem

Nahrungsbeziehungen:

Von Nettoprimärproduktion entstandene Biomasse => ernähren sich primäre Konsumenten oder Destruenten; auch indirekt Nahrungsquelle von Konsumenten höherer Ordnung

Nahrungskette => Nahrungsnetz

Nahrungskette nimmt Biomasse jeweils 10% von Stufe zu Stufe ab

Nahrungspyramide:

Konsumenten 3. Ordnung

z.B. Raubfische, Raubwale, Mensch (Fleischfresser höherer Ordnung)

Konsumenten 2. Ordnung

z.B. Fische

Konsumenten 1. Ordnung

z.B. Zooplankton

Produzenten

z.B. Phytoplankton

Nahrungskette: Pflanzen => Pflanzenfresser => Fleischfresser

Energiefluss:

- ⇒ Lange Nahrungskette => große Energieverluste
- ⇒ Energiemenge nimmt von einer auf nächste Stufe um 1/10 (10%) ab!

Immunbiologie:

Antikörper:

= Immunglobuline Ig

Antikörper = Proteine, die als Reaktion auf bestimmte Stoffe (Antigene) gebildet werden; werden ausschließlich von B-Lymphozyten produziert

Molekülstruktur: Y – Struktur, an dessen Enden jeweils 2 identische, spezifische Antigenbindungsstellen lokalisiert, durch diese sie sich untereinander voneinander unterscheiden, werden

5 Klassen von Antikörpern:

- IgA
- IgD
- IgE: an Allergien beteiligt
- IgG: wird erst verzögert gebildet (nach ca. 3 Wochen) und bleibt lange erhalten; Nachweis auf Infektion od. Impfung
- IgM: erste Antikörper, die mit Kontakt von Antikörpern gebildet werden

Gene der Antikörper:

Blutgruppen:

Blutgruppe	Genotyp	Erythrozyten-	Serum-	Verträglichkeit
		Antigene	Antikörper	
Α	A0 oder AA	Α	Anti-B	A und 0
В	B0 oder BB	В	Anti-A	B und 0
AB	AB	AB	keine	A, B und 0
				(=Universalempfänger)
0	00	keine	Anti-A und Anti-B	0 (0 neg. =
				Universalspender)

AB0-Sytem:

4 Blutgruppen:

- A
- B
- AB
- 0

Im Blutserum => Antikörper; an Erythrozyten => Antigene

Das ABO- System unterscheidet die Blutgruppen anhand der Antigene auf der Oberfläche der roten Blutkörperchen. Die Existenz von den Antigenen A und B wird durch ein Gen bestimmt, das auf Chromosom 9 lokalisiert ist. Jedes Individuum hat entweder das Antigen A (=Blutgruppe A), das Antigen B (= Blutgruppe B), beide Antigene (= Blutgruppe AB) oder überhaupt kein Antigen (= Blutgruppe 0).

Die Antigene A und B bestehen aus Kohlenhydratgruppen, welche an Fettmoleküle der Membran von roten Blutkörperchen gebunden sind.

Heterozygote Individuen mit A und B sind codominant, das heißt, dass beide

Kohlenhydratgruppen an die Oberfläche der Erythrozyten gebunden werden.

Individuen der Blutgruppe 0 können keine der beiden anderen Kohlenhydratgruppen binden. Dies erklärt auch wieso es AO als Phänotyp nicht gibt, AB allerdings schon. A ist gegenüber = dominant, während A und B codominant sind!