Package 'PSSTools'

February 7, 2024

reditary 7, 2024
Type Package
Title PSSTools: Power and Sample Size Tools
Version 0.1.0
Description This package accompanies the book Power and Sample Size in R by Catherine M. Crespi for calculating power and sample size requirements for designing studies.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.3.0
Suggests designsize, longpower, npsurvSS, powerSurvEpi, rPowerSampleSize, ssanv, testthat (>= 3.0.0)
Config/testthat/edition 3
Imports magrittr, mvtnorm, plyr, PowerTOST, Hmisc, stats
Depends R (>= 2.10)
R topics documented:
crossover_power 3 crossover_ss 4 delta.sign 5 multendpoints_Ck_ss 5 parallelCRT_power 6 parallelCRT_ss 7 pss.altprimary 8 pss.anovalway.c.bal 9 pss.anovalway.c.unbal 10

54

Index

pss.anova1way.F.bal		11
pss.anova1way.F.unbal	. . .	 12
pss.anova2way.c.bal		 12
pss.anova2way.c.unbal		 13
pss.anova2way.F.bal		14
pss.anova2way.F.unbal		15
pss.anova2way.se.bal		16
pss.anova2way.se.unbal		17
pss.chisq.gof		 18
pss.chisq.indep		19
pss.ci.mean		19
pss.ci.meandiff		20
pss.coprimary.t		21
pss.coprimary.z		22
pss.corr.1samp		23
pss.corr.2samp		24
pss.crt.parallel		24
pss.es.anova.f		26
pss.es.d		26
pss.es.fsq		27
pss.es.h		 28
pss.es.q		28
pss.mcnemar.test		29
pss.mlrF.overall		30
pss.mlrF.partial		31
pss.multisite.ate		32
pss.multisite.bin		33
pss.multisite.hte		34
pss.prop.1samp		34
pss.prop.2samp		35
pss.prop.test.equiv		36
pss.propodds		37
pss.ranksum		38
pss.rr		38
pss.signedrank		39
pss.signtest		 40
pss.slr		40
pss.t.test.1samp		41
pss.t.test.2samp		42
pss.t.test.paired		43
pss.z.test.1samp		44
pss.z.test.2samp		45
pss.z.test.paired		46
swd_1trt_power		47
swd_1trt_ss		48
swd_2trt_additive_power		49
swd_2trt_interaction_power		50
swd_2trt_linearcontrast_power		 52

crossover_power 3

Cross Over Power Calculation

Description

Calculate power for either repeated cross sectional or closed cohort cross over designs.

Usage

```
crossover_power(design = "RCS", alpha, J, m, rho, rho_b, xi = 0, d)
```

Arguments

design	Either "RCS" for repeated cross-sectional design or "Cohort" for closed cohort design. Default is "RCS".
alpha	The significance level or type 1 error rate
J	Number of clusters
m	The number of individuals in each cluster at each time period
rho	Intraclass correlation coefficient (ICC)
rho_b	Between period ICC (correlation between outcomes of two individuals in the same cluster but different time periods)
xi	Within-cluster, within-subject correlation (correlation between two measurements within the same subject). Note this is different from subject autocorrelation. We expect xi to be larger than rho and rho_b. This is 0 for RCS cross over designs.
d	The standardized effect size

Value

power

4 crossover_ss

Cross Over Sample Size Calculation

Description

Calculate sample size requirements for either repeated cross sectional or closed cohort cross over designs.

Usage

```
crossover_ss(design = "RCS", alpha, power, m, rho, rho_b, xi = 0, d)
```

Arguments

design	Either "RCS" for repeated cross-sectional design or "Cohort" for closed cohort design. Default is "RCS".
alpha	The significance level or type 1 error rate
power	Specified power level to achieve
m	The number of individuals in each cluster at each time period
rho	Intraclass correlation coefficient (ICC)
rho_b	Between period ICC (correlation between outcomes of two individuals in the same cluster but different time periods)
xi	Within-cluster, within-subject correlation (correlation between two measurements within the same subject). Note this is different from subject autocorrelation. We expect xi to be larger than rho and rho_b. This is 0 for RCS cross over designs.
d	The standardized effect size

Value

Calculated number of clusters required and adjusted number of clusters to account for normal approximation

```
# repeated cross sectional sample size as in Example 12.4 crossover_ss(design = "RCS", alpha = 0.05, power = 0.8, m = 30, rho = 0.05, rho_b = 0.025, xi = 0, d = 0.3) # closed cohort sample size requirement crossover_ss(design = "Cohort", alpha = 0.05, power = 0.8, m = 30, rho = 0.05, rho_b = 0.025, xi = 0.4, d = 0.3)
```

delta.sign 5

delta.sign Delta Sign Table

Description

A table documenting the sign of delta for tests comparing two parameters.

Usage

```
delta.sign
```

Format

```
## 'delta.sign' A data frame with 3 rows and 3 columns:
```

columns Whether the test is for noninferiority of superirority by a margin **rows** Whether a higher or lower parameter value is better

xij The sign of delta given the row & column

 $\begin{tabular}{ll} multendpoints_Ck_ss & Algorithm \ and \ sample \ size \ for \ multiple \ co-primary \ endpoint \ clinical \ trials \\ \end{tabular}$

Description

Calculate the solution to Ck, the integral equation to calculate power for multiple endpoints introduced by Sozu et al in Sample Size Determination in Clinical Trials with Multiple Endpoints 2015.

Usage

```
multendpoints_Ck_ss(K, alpha, power, rho, gamma, a, r, delta)
```

Arguments

K	The number of K co-primary continuous endpoints. $K \ge 2$.
alpha	The significance level.
power	The power level.
rho	The correlation matrix $(K \ x \ K)$ that describes the relationship between each endpoint. Diagonal entries are 1.
gamma	The ratio of effect size(s). This can be either a value $(K = 2)$ or a vector $(K > 2)$.
a	A vector of length K. For continuous endpoints, $a_1 = = a_K = 1$. For binary endpoints using the chi-square method (without CC), this is a vector where each element is the ratio between sigma_k^star and sigma_k.
r	The allocation ratio between the number of people in the control and treatment condition (n_C / n_T).
delta	The standardized effect size (value or vector) for each endpoint.

6 parallelCRT_power

Details

The sample size provided is the solution to equation (4.5) in the Sozu text. This is the simple formula provided for practical use to calculate sample size requirements as if there were a single endpoint. Specifically, this formula is $n = (Ck + z_alpha)^2 / (kappa * delta_K^2)$

Value

A dataframe with the solution to the Ck algorithm and the sample size requirements per group.

Examples

parallelCRT_power

Parallel Cluster Randomized Trial Power Calculation

Description

Parallel Cluster Randomized Trial Power Calculation

Usage

```
parallelCRT_power(alpha, J, m, d, rho, rho_c, rho_s)
```

Arguments

alpha	The significance level or type 1 error rate
J	Number of clusters
m	The number of individuals in each cluster at each time period
d	The standardized effect size
rho	Intraclass correlation coefficient (ICC)
rho_c	Cluster autocorrelation (proportion of cluster-level variance that is time invariant)
rho_s	Subject autocorrelation (This is 0 in repeated cross sectional designs because people are measured only once)

parallelCRT_ss 7

Value

power

Examples

```
# closed cohort design as in Example 12.1 parallelCRT_power(alpha = 0.05, J = 16, m = 30, d = 0.3, rho = 0.05, rho_c = 0.4, rho_s = 0.5) # repeated cross sectional design as in Example 12.1 parallelCRT_power(alpha = 0.05, J = 16, m = 30, d = 0.3, rho = 0.05, rho_c = 0.4, rho_s = 0)
```

parallelCRT_ss

Parallel Cluster Randomized Trial Sample Size Calculation

Description

Parallel Cluster Randomized Trial Sample Size Calculation

Usage

```
parallelCRT_ss(alpha, power, m, d, rho, rho_c, rho_s)
```

Arguments

alpha	The significance level or type 1 error rate
power	The specified level of power to achieve
m	The number of individuals in each cluster at each time period
d	The standardized effect size
rho	Intraclass correlation coefficient (ICC)
rho_c	Cluster autocorrelation (proportion of cluster-level variance that is time invariant)
rho_s	Subject autocorrelation (This is 0 in repeated cross sectional designs because people are measured only once)

Value

Calculated number of clusters required, adjusted number of clusters, and suggested number of clusters that includes the value of K

```
# example 12.2 parallelCRT_ss(alpha = 0.05, power = 0.8, m = 30, d = 0.3, rho = 0.05, rho_c = 0.4, rho_s = 0.5)
```

8 pss.altprimary

pss.altprimary	Power calculations for multiple alternative (at least one) primary continuous endpoints assuming known covariance matrix

Description

Power calculations for multiple alternative (at least one) primary continuous endpoints assuming known covariance matrix

Usage

```
pss.altprimary(
   K,
   n1 = NULL,
   n.ratio = 1,
   delta = NULL,
   Sigma,
   sd,
   rho,
   alpha = 0.025,
   power = NULL,
   tol = .Machine$double.eps^0.25
)
```

Arguments

K	The number of endpoints.
n1	The sample size for group 1.
n.ratio	The ratio n2/n1 between the sample sizes of two groups; defaults to 1 (equal group sizes).
delta	A vector of length K of the true mean differences mu1k - mu2k; must all be positive.
Sigma	The covariance matrix of the K outcomes, of dimension K x K.
sd	A vector of length K of the standard deviations of the K outcomes.
rho	A vector of length $0.5*K*(K-1)$ of the correlations among the K outcomes.
alpha	The significance level or type 1 error rate; defaults to 0.025. A one-sided test is assumed.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

```
pss.altprimary(K = 2, n1 = 100, delta = c(0.4, 0.5), sd = c(1, 1), rho = 0.3, alpha = 0.025, power = NULL)
```

pss.anova1way.c.bal 9

'	Power calculations for one-way balanced analysis of variance contrast test
---	--

Description

Power calculations for one-way balanced analysis of variance contrast test

Usage

```
pss.anova1way.c.bal(
  n = NULL,
  mvec = NULL,
  cvec = NULL,
  sd = 1,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05,
  power = NULL
)
```

Arguments

n	The sample size per group.
mvec	A vector of group means c(mu1, mu2,).
cvec	A vector of contrast coefficients c(c1, c2,).
sd	The estimated standard deviation within each group; defaults to 1.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

```
pss.anova1way.c.bal(n = 20, mvec = c(5, 10, 12), cvec = c(1, -1, 0), sd = 10, alpha = 0.025) pss.anova1way.c.bal(n = 20, mvec = c(5, 10, 12), cvec = c(1, 0, -1), sd = 10, alpha = 0.025)
```

pss.anova1way.c.unbal Power calculations for one-way unbalanced analysis of variance contrast test

Description

Power calculations for one-way unbalanced analysis of variance contrast test

Usage

```
pss.anova1way.c.unbal(
  nvec = NULL,
  mvec = NULL,
  cvec = NULL,
  sd = NULL,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05
)
```

Arguments

nvec	A vector of group sample sizes c(n1, n2,).
mvec	A vector of group mvec c(mu1, mu2,).
cvec	A vector of contrast coefficients c(c1, c2,).
sd	The estimated standard deviation within each group.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.

Value

A list of the arguments (including the computed power).

```
pss.anova1way.c.unbal(nvec = c(20, 20, 20), mvec = c(5, 10, 12), cvec = c(1, -1, 0), sd = 10, alpha = 0.025) pss.anova1way.c.unbal(nvec = c(20, 20, 20), mvec = c(5, 10, 12), cvec = c(1, 0, -1), sd = 10, alpha = 0.025)
```

pss.anova1way.F.bal 11

 ${\it pss.anova1way.F.ba1} \qquad {\it Power calculations for one-way balanced analysis of variance om-nibus F test}$

Description

Power calculations for one-way balanced analysis of variance omnibus F test

Usage

```
pss.anova1way.F.bal(
  n = NULL,
  mvec = NULL,
  sd = 1,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05,
  power = NULL
)
```

Arguments

n	The sample size per group.
mvec	A vector of group means c(mu1, mu2,).
sd	The estimated standard deviation within each group; defaults to 1.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

```
pss.anova1way.F.bal(n = 20, mvec = c(5, 10, 12), sd = 10)
pss.anova1way.F.bal(n = NULL, mvec = c(-0.25, 0.25), sd = 1, Rsq = 0.5^2, ncov = 1, power = 0.8)
```

12 pss.anova2way.c.bal

```
{\it pss.anova1way.F.unba1} \begin{tabular}{ll} {\it Power calculations for one-way unbalanced analysis of variance om- \\ {\it nibus F test} \end{tabular}
```

Description

Power calculations for one-way unbalanced analysis of variance omnibus F test

Usage

```
pss.anova1way.F.unbal(
  nvec = NULL,
  mvec = NULL,
  sd = NULL,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05
)
```

Arguments

nvec	A vector of group sample sizes c(n1, n2,).
mvec	A vector of group mvec c(mu1, mu2,).
sd	The estimated standard deviation within each group.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.

Value

A list of the arguments (including the computed power).

Examples

```
pss.anova1way.F.unbal(nvec = c(10, 20, 30), mvec = c(5, 10, 12), sd = 10)
```

```
pss.anova2way.c.bal Power calculations for two-way balanced analysis of variance contrast test
```

Description

Power calculations for two-way balanced analysis of variance contrast test

pss.anova2way.c.unbal 13

Usage

```
pss.anova2way.c.bal(
  n = NULL,
  mmatrix = NULL,
  cvec = NULL,
  factor = c("a", "b"),
  sd = 1,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05,
  power = NULL
)
```

Arguments

n	The sample size per group.
mmatrix	A matrix of group means (see example).
cvec	A vector of contrast coefficients c(c1, c2,).
factor	Either "a" or "b" depending on which factor the contrast test is being made on.
sd	The estimated standard deviation within each group; defaults to 1.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

Examples

```
mmatrix <- matrix(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.3), nrow = 2, byrow = TRUE) pss.anova2way.c.bal(n = 30, mmatrix = mmatrix, cvec = c(1, 0, -1), factor = "b", sd = 2, alpha = 0.05)
```

pss.anova2way.c.unbal Power calculations for two-way unbalanced analysis of variance contrast test

Description

Power calculations for two-way unbalanced analysis of variance contrast test

14 pss.anova2way.F.bal

Usage

```
pss.anova2way.c.unbal(
  nmatrix = nmatrix,
  mmatrix = NULL,
  cvec = NULL,
  factor = c("a", "b"),
  sd = NULL,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05
)
```

Arguments

nmatrix	A matrix of group sample sizes (see example).
mmatrix	A matrix of group means (see example).
cvec	A vector of contrast coefficients c(c1, c2,).
factor	Either "a" or "b" depending on which factor the contrast test is being made on.
sd	The estimated standard deviation within each group.
Rsq	The estimated $R^{\mbox{\scriptsize n}}2$ for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.

Value

A list of the arguments (including the computed one).

Examples

```
nmatrix <- matrix(c(30, 30, 30, 30, 30, 30), nrow = 2, byrow = TRUE)
mmatrix <- matrix(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.3), nrow = 2, byrow = TRUE)
pss.anova2way.c.unbal(nmatrix = nmatrix, mmatrix = mmatrix, cvec = c(1, 0, -1),
factor = "b", sd = 2, alpha = 0.05)</pre>
```

pss.anova2way.F.bal Power calculations for two-way balanced analysis of variance omnibus F test

Description

Power calculations for two-way balanced analysis of variance omnibus F test

```
pss.anova2way.F.bal(
  n = NULL,
  mmatrix = NULL,
  sd = 1,
  Rsq = 0,
```

pss.anova2way.F.unbal

```
ncov = 0,
alpha = 0.05,
power = NULL
)
```

Arguments

n	The sample size per group.
mmatrix	A matrix of group means (see example).
sd	The estimated standard deviation within each group; defaults to 1.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to θ .
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

Examples

```
\label{eq:matrix} $$ \operatorname{matrix}(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.9), \ \operatorname{nrow} = 2, \ \operatorname{byrow} = \operatorname{TRUE})$$ pss.anova2way.F.bal(n = 30, \ \operatorname{matrix} = \operatorname{mmatrix}, \ \operatorname{sd} = 2, \ \operatorname{alpha} = 0.05) $$ mmatrix <- \ \operatorname{matrix}(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.3), \ \operatorname{nrow} = 2, \ \operatorname{byrow} = \operatorname{TRUE}) $$ pss.anova2way.F.bal(n = 30, \ \operatorname{mmatrix} = \operatorname{mmatrix}, \ \operatorname{sd} = 2, \ \operatorname{alpha} = 0.05) $$ mmatrix <- \ \operatorname{matrix}(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.9), \ \operatorname{nrow} = 2, \ \operatorname{byrow} = \operatorname{TRUE}) $$ pss.anova2way.F.bal(n = 30, \ \operatorname{mmatrix} = \operatorname{mmatrix}, \ \operatorname{sd} = 2, \ \operatorname{Rsq} = 0.4, \ \operatorname{ncov} = 1, \ \operatorname{alpha} = 0.05) $$
```

pss.anova2way.F.unbal Power calculations for two-way unbalanced analysis of variance omnibus F test

Description

Power calculations for two-way unbalanced analysis of variance omnibus F test

```
pss.anova2way.F.unbal(
  nmatrix = NULL,
  mmatrix = NULL,
  sd = NULL,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05
)
```

pss.anova2way.se.bal

Arguments

nmatrix	A matrix of group sample sizes (see example).
mmatrix	A matrix of group means (see example).
sd	The estimated standard deviation within each group.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.

Value

A list of the arguments (including the computed power).

Examples

```
nmatrix <- matrix(c(30, 30, 30, 30, 30, 30), nrow = 2, byrow = TRUE) mmatrix <- matrix(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.9), nrow = 2, byrow = TRUE) pss.anova2way.F.unbal(nmatrix = nmatrix, mmatrix = mmatrix, sd = 2, alpha = 0.05) nmatrix <- matrix(c(30, 30, 30, 30, 30, 30), nrow = 2, byrow = TRUE) mmatrix <- matrix(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.3), nrow = 2, byrow = TRUE) pss.anova2way.F.unbal(nmatrix = nmatrix, mmatrix = mmatrix, sd = 2, alpha = 0.05) nmatrix <- matrix(c(30, 30, 30, 30, 30, 30), nrow = 2, byrow = TRUE) mmatrix <- matrix(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.9), nrow = 2, byrow = TRUE) pss.anova2way.F.unbal(nmatrix = nmatrix, mmatrix = mmatrix, sd = 2, Rsq = 0.4^2, ncov = 1, alpha = 0.05)
```

pss.anova2way.se.bal Power calculations for two-way balanced analysis of variance simple effects test

Description

Power calculations for two-way balanced analysis of variance simple effects test

```
pss.anova2way.se.bal(
  n = NULL,
  mmatrix = NULL,
  cmatrix = NULL,
  sd = 1,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05,
  power = NULL
```

Arguments

n	The sample size per group.
mmatrix	A matrix of group means (see example).
cmatrix	A matrix of contrast coefficients (see example).
sd	The estimated standard deviation within each group; defaults to 1.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

Examples

```
\label{eq:matrix} $$ \operatorname{matrix}(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.3), \ \operatorname{nrow} = 2, \ \operatorname{byrow} = \operatorname{TRUE})$$ $$ \operatorname{matrix}(c(-1, 0, 0, 1, 0, 0), \ \operatorname{nrow} = 2, \ \operatorname{byrow} = \operatorname{TRUE})$$ $$ \operatorname{pss.anova2way.se.bal}(n = 30, \ \operatorname{mmatrix} = \operatorname{mmatrix}, \ \operatorname{cmatrix} = \operatorname{cmatrix}, \ \operatorname{sd} = 2, \ \operatorname{alpha} = 0.025)$
```

```
pss.anova2way.se.unbal
```

Power calculations for two-way unbalanced analysis of variance simple effects test

Description

Power calculations for two-way unbalanced analysis of variance simple effects test

Usage

```
pss.anova2way.se.unbal(
  nmatrix = NULL,
  mmatrix = NULL,
  cmatrix = NULL,
  sd = 0,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05
)
```

Arguments

nmatrix	A matrix of sample sizes (see example).
mmatrix	A matrix of group means (see example).
cmatrix	A matrix of contrast coefficients (see example).
sd	The estimated standard deviation within each group.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to θ .
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.

pss.chisq.gof

Value

A list of the arguments (including the computed power).

Examples

```
nmatrix <- matrix(c(30, 30, 30, 30, 30, 30), nrow = 2, byrow = TRUE)
mmatrix <- matrix(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.3), nrow = 2, byrow = TRUE)
cmatrix <- matrix(c(-1, 0, 0, 1, 0, 0), nrow = 2, byrow = TRUE)
pss.anova2way.se.unbal(nmatrix = nmatrix, mmatrix = mmatrix, cmatrix = cmatrix,
sd = 2, alpha = 0.025)</pre>
```

pss.chisq.gof

Power calculations for chi-square goodness-of-fit test

Description

Power calculations for chi-square goodness-of-fit test

Usage

```
pss.chisq.gof(p0vec = NULL, p1vec = NULL, N = NULL, alpha = 0.05, power = NULL)
```

Arguments

p0vec	The first vector of probabilities (under the null).
p1vec	The second vector of probabilities (under the alternative hypothesis).
N	The number of total observations.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

```
pss.chisq.gof(p0vec = c(0.5, 0.3, 0.2), p1vec = c(0.7, 0.2, 0.1), N = 50)
```

pss.chisq.indep 19

ncc	chica	.indep
poo.	CIII	. Indep

Power calculations for chi-square test of independence

Description

Power calculations for chi-square test of independence

Usage

```
pss.chisq.indep(pmatrix = NULL, N = NULL, alpha = 0.05, power = NULL)
```

Arguments

pmatrix The two-way probability table under the alternative hypothesis.

N The number of total observations.

alpha The significance level or type 1 error rate; defaults to 0.05.

power The specified level of power.

Value

A list of the arguments (including the computed one).

Examples

```
pss.chisq.indep(pmatrix = matrix(c(0.050, 0.350, 0.100, 0.075, 0.250, 0.175), nrow = 2, byrow = TRUE), N = 230) pss.chisq.indep(pmatrix = matrix(c(0.3, 0.2, 0.4, 0.1), nrow = 2, byrow = TRUE), N = 200)
```

pss.ci.mean

Power calculations for precision analysis for one mean

Description

Power calculations for precision analysis for one mean

```
pss.ci.mean(
  N = NULL,
  halfwidth = NULL,
  sd = 1,
  alpha = 0.05,
  power = NULL,
  cond = FALSE
```

20 pss.ci.meandiff

Arguments

N The sample size.

halfwidth The desired halfwidth.

sd The estimated standard deviation; defaults to 1.

alpha The significance level or type 1 error rate; defaults to 0.05.

power The specified level of power.

cond Specify using unconditional or conditional probability. Defaults to FALSE.

Value

A list of the arguments (including the computed one).

Examples

```
pss.ci.mean(N = NULL, halfwidth = 0.25, power = 0.8)
pss.ci.mean(N = 62, halfwidth = 0.25, power = NULL)
pss.ci.mean(N = 73, halfwidth = 0.25, cond = TRUE)
```

pss.ci.meandiff

Power calculations for precision analysis for a difference between means

Description

Power calculations for precision analysis for a difference between means

Usage

```
pss.ci.meandiff(
  n1 = NULL,
  n.ratio = 1,
  halfwidth = NULL,
  sd = 1,
  alpha = 0.05,
  power = NULL,
  cond = FALSE
)
```

Arguments

n1 The sample size for group 1.

n.ratio The ratio n2/n1 between the sample sizes of two groups; defaults to 1 (equal

group sizes).

halfwidth The desired halfwidth for the difference in means. sd The estimated standard deviation; defaults to 1.

alpha The significance level or type 1 error rate; defaults to 0.05.

power The specified level of power.

cond Specify using unconditional or conditional probability. Defaults to FALSE.

pss.coprimary.t 21

Value

A list of the arguments (including the computed one).

Examples

```
pss.ci.meandiff(n1 = NULL, halfwidth = 0.25, power = 0.8) pss.ci.meandiff(n1 = 134, halfwidth = 0.25, cond = TRUE)
```

pss.coprimary.t

Power calculations for multiple co-primary continuous endpoints assuming unknown covariance matrix

Description

Power calculations for multiple co-primary continuous endpoints assuming unknown covariance matrix

Usage

```
pss.coprimary.t(
  Κ,
  n1 = NULL,
  n.ratio = 1,
  delta = NULL,
  Sigma,
  sd,
  rho,
  alpha = 0.025,
  power = NULL,
  M = 10000,
 min.n = NULL,
  max.n = NULL,
  tol = .Machine$double.eps^0.25,
  use.uniroot = TRUE
)
```

Arguments

K	The number of endpoints.
n1	The sample size for group 1.
n.ratio	The ratio n2/n1 between the sample sizes of two groups; defaults to 1 (equal group sizes).
delta	A vector of length K of the true mean differences $mu1k$ - $mu2k$; $must$ all be positive.
Sigma	The covariance matrix of the K outcomes, of dimension K x K.
sd	A vector of length K of the standard deviations of the K outcomes.
rho	A vector of length $0.5*K*(K-1)$ of the correlations among the K outcomes.
alpha	The significance level or type 1 error rate; defaults to 0.025. A one-sided test is assumed.

22 pss.coprimary.z

power	The specified level of power.
М	The number of simulation.
min.n	Minimum value of n1; used in search for n1 to achieve desired power.
max.n	Maximum value of n1; used in search for n1 to achieve desired power.

Value

A list of the arguments (including the computed one).

Examples

```
pss.coprimary.t(K = 2, n1 = 100, delta = c(0.4, 0.5), sd = c(1, 1), rho = 0.3, alpha = 0.025, power = NULL)
```

pss.coprimary.z Power calculation

Power calculations for multiple co-primary continuous endpoints assuming known covariance matrix

Description

Power calculations for multiple co-primary continuous endpoints assuming known covariance matrix

Usage

```
pss.coprimary.z(
    K,
    n1 = NULL,
    n.ratio = 1,
    delta = NULL,
    Sigma,
    sd,
    rho,
    alpha = 0.025,
    power = NULL,
    tol = .Machine$double.eps^0.25
)
```

Arguments

K	The number of endpoints.
n1	The sample size for group 1.
n.ratio	The ratio $n2/n1$ between the sample sizes of two groups; defaults to 1 (equal group sizes).
delta	A vector of length K of the true mean differences $mu1k$ - $mu2k$; $must$ all be positive.
Sigma	The covariance matrix of the K outcomes, of dimension K x K.
sd	A vector of length K of the standard deviations of the K outcomes.
rho	A vector of length $0.5*K*(K-1)$ of the correlations among the K outcomes.

pss.corr.1samp 23

alpha The significance level or type 1 error rate; defaults to 0.025. A one-sided test is

assumed.

power The specified level of power.

Value

A list of the arguments (including the computed one).

Examples

```
pss.coprimary.z(K = 2, n1 = 100, delta = c(0.4, 0.5), sd = c(1, 1), rho = 0.3, alpha = 0.025, power = NULL)
```

pss.corr.1samp

Power calculations for one correlation coefficient

Description

Power calculations for one correlation coefficient

Usage

```
pss.corr.1samp(
  N = NULL,
  rho0 = 0,
  rhoA = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

N The sample size.

rho0 The correlation coefficient under the null hypothesis; defaults to 0.

rhoA The correlation coefficient under the alternative hypothesis.

alpha The significance level or type 1 error rate; defaults to 0.05.

power The specified level of power.

sides Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

```
pss.corr.1samp(N = 100, rhoA = 0.2, sides = 1)
pss.corr.1samp(N = 100, rho0 = 0.2, rhoA = 0.4, sides = 1)
```

24 pss.crt.parallel

pss.corr.2samp	Power calculations for comparing two correlation coefficients
----------------	---

Description

Power calculations for comparing two correlation coefficients

Usage

```
pss.corr.2samp(
  n1 = NULL,
  n.ratio = 1,
  rho1 = NULL,
  rho2 = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

n1	The sample size for group 1.
n.ratio	The ratio $n2/n1$ between the sample sizes of two groups; defaults to 1 (equal group sizes).
rho1	The correlation coefficient in group 1.
rho2	The correlation coefficient in group 2.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

Examples

```
pss.corr.2samp(n1 = 300, rho1 = 0.3, rho2 = 0.1, sides = 1)
```

pss.crt.parallel	Power for test of treatment effect in cluster randomized trials

Description

Power for test of treatment effect in cluster randomized trials

pss.crt.parallel 25

Usage

```
pss.crt.parallel(
  m = NULL,
  m.sd = 0,
  J1 = NULL,
  J.ratio = 1,
  delta = NULL,
  sd = 1,
  icc1 = 0,
  icc2 = 0,
  ncov = 0,
  RsqB = 0,
  RsqW = 0,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

m	The number of subjects per cluster or the mean cluster size (if unequal number of participants per cluster).
m.sd	The standard deviation of cluster sizes (provide if unequal number of participants per cluster); defaults to 0.
J1	The number of clusters in arm 1.
J.ratio	The ratio J2/J1 between the number of clusters in the two arms; defaults to 1 (equal clusters per arm).
delta	The difference between the intervention and control means in the outcome variable.
sd	The total standard deviation of the outcome variable; defaults to 1.
icc1	The intraclass correlation coefficient in arm 1; defaults to 0.
icc2	The intraclass correlation coefficient in arm 2; defaults to 0.
ncov	The number of cluster-level and individual-level covariates; defaults to 0.
RsqB	The estimated proportion of total variance explained by cluster-level covariates; defaults to 0.
RsqW	The estimated proportion of total variance explained by individual-level covariates; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

26 pss.es.d

Examples

```
pss.crt.parallel(m = 30, J1 = 8, delta = 0.4, icc1 = 0.05, icc2 = 0.05)
pss.crt.parallel(m = NULL, J1 = 6, delta = 0.5, icc1 = 0.05, icc2 = 0.05, power = 0.8)
pss.crt.parallel(m = 25, m.sd = 15, J1 = NULL, delta = 0.3, icc1 = 0.05, icc2 = 0.05, power = 0.8)
pss.crt.parallel(m = 20, J1 = 15, delta = 0.3, icc1 = 0.05, icc2 = 0.05,
RsqB = 0.1, ncov = 1, sides = 1)
pss.crt.parallel(m = 20, J1 = 15, delta = 0.3, icc1 = 0.05, icc2 = 0.05,
RsqW = 0.5^2, ncov = 0, sides = 1)
```

pss.es.anova.f

Cohen's f effect size calculation for one- or two- way analysis of variance

Description

Cohen's f effect size calculation for one- or two- way analysis of variance

Usage

```
pss.es.anova.f(means = NULL, sd = NULL)
```

Arguments

means

A vector or matrix of group means.

sd

The estimated standard deviation within each group.

Value

A list of the arguments and various f effect sizes.

Examples

```
pss.es.anova.f(means = c(5, 10, 12), sd = 10)
mmatrix <- matrix(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.9), nrow = 2, byrow = TRUE)
pss.es.anova.f(means = mmatrix, sd = 2)
```

pss.es.d

Cohen's d effect size calculation for one or two means

Description

Cohen's d effect size calculation for one or two means

```
pss.es.d(delta = NULL, sd = 1)
```

pss.es.fsq 27

Arguments

means: DeltaA (the true difference mu1 - mu2) - Delta0 (the difference under

the null).

sd The estimated standard deviation; defaults to 1.

Value

A list of the arguments and the d effect size.

Examples

```
pss.es.d(delta = 6.5 - 5.7, sd = 0.4)
```

pss.es.fsq

Cohen's f^2 effect size calculation for overall F test

Description

Cohen's f^2 effect size calculation for overall F test

Usage

```
pss.es.fsq(Rsq = 0.02)
```

Arguments

Rsq

The squared sample multiple correlation coefficient.

Value

A list of the arguments and the f^2 effect size.

```
pss.es.fsq(Rsq = 0.02)
```

28 pss.es.q

pss.es.h

Cohen's h effect size calculation for two proportions

Description

Cohen's h effect size calculation for two proportions

Usage

```
pss.es.h(p1 = NULL, p2 = NULL)
```

Arguments

p1 The proportion in group 1. p2 The proportion in group 2.

Value

A list of the arguments and the h effect size.

Examples

```
pss.es.h(p1 = 0.8, p2 = 0.6)
```

pss.es.q

Cohen's q effect size calculation for two correlation coefficients

Description

Cohen's q effect size calculation for two correlation coefficients

Usage

```
pss.es.q(rho1 = NULL, rho2 = NULL)
```

Arguments

rho1 The correlation coefficient in group 1. rho2 The correlation coefficient in group 2.

Value

A list of the arguments and the q effect size.

```
pss.es.q(rho1 = 0.3, rho2 = 0.1)
```

pss.mcnemar.test 29

pss.mcnemar.test	Power approximation for McNemar's test for two correlated proportions

Description

Power approximation for McNemar's test for two correlated proportions

Usage

```
pss.mcnemar.test(
  N = NULL,
  p1 = NULL,
  p2 = NULL,
  phi = NULL,
  paid = NULL,
  psi = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

N	The sample size; the number of pairs.
p1	The proportion in condition 1.
p2	The proportion in condition 2.
phi	The estimated correlation between the two conditions.
paid	The smaller of the two discordant probabilities. Either p1, p2, and phi, OR paid and psi must be specified.
psi	The discordant proportion ratio. Either p1, p2, and phi, OR paid and psi must be specified.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

```
pss.mcnemar.test(N = NULL, p1 = 0.8, p2 = 0.9, phi = 0, power = 0.9, sides = 2) pss.mcnemar.test(N = NULL, paid = 0.08, psi = 0.18 / 0.08, power = 0.9, sides = 2)
```

30 pss.mlrF.overall

pss.mlrF.overall

Power calculations for a multiple linear regression overall F test

Description

Power calculations for a multiple linear regression overall F test

Usage

```
pss.mlrF.overall(
  N = NULL,
  p = NULL,
  Rsq = NULL,
  fsq = NULL,
  alpha = 0.05,
  power = NULL,
  random = FALSE
)
```

Arguments

١	١	The sample size.
ŗ)	The number of predictors.
F	Rsq	The squared sample multiple correlation coefficient.
f	² sq	The squared f effect size. Either Rsq OR fsq must be specified.
ć	alpha	The significance level or type 1 error rate; defaults to 0.05.
þ	oower	The specified level of power.
r	andom	Whether the values of the predictors are random; defaults to FALSE.

Value

A list of the arguments (including the computed one).

```
pss.mlrF.overall(N = 400, p = 2, Rsq = 0.02)
pss.mlrF.overall(N = 400, p = 2, fsq = 0.02 / (1 - 0.02))
pss.mlrF.overall(N = 109, p = 1, Rsq = 0.3^2)
pss.mlrF.overall(N = 50, p = 1, Rsq = 0.2)
pss.mlrF.overall(N = 50, p = 3, Rsq = 0.2)
pss.mlrF.overall(N = 50, p = 5, Rsq = 0.2)
pss.mlrF.overall(N = 400, p = 2, Rsq = 0.02, random = TRUE)
```

pss.mlrF.partial 31

pss.mlrF.partial	Power calculations for a multiple linear regression partial F test

Description

Power calculations for a multiple linear regression partial F test

Usage

```
pss.mlrF.partial(
  N = NULL,
  p = NULL,
  q = NULL,
  pc = NULL,
  Rsq.red = NULL,
  Rsq.full = NULL,
  alpha = 0.05,
  power = NULL
)
```

Arguments

N	The sample size.
р	The number of control predictors.
q	The number of test predictors.
рс	The partial correlation coefficient. Either both Rsq terms OR pc must be specified.
Rsq.red	The squared sample multiple correlation coefficient in the reduced model.
Rsq.full	The squared sample multiple correlation coefficient in the full model.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

```
pss.mlrF.partial(N = 80, p = 3, q = 2, Rsq.red = 0.25, Rsq.full = 0.35) pss.mlrF.partial(N = 150, p = 4, pc = 0.2)
```

32 pss.multisite.ate

pss.multisite.ate

Power for test of average treatment effect in multisite trials

Description

Power for test of average treatment effect in multisite trials

Usage

```
pss.multisite.ate(
  m = NULL,
  m.sd = 0,
  alloc.ratio = 1,
  J = NULL,
  delta = NULL,
  sd = 1,
  icc0 = NULL,
  icc1 = NULL,
  Rsq = 0,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

m	The number of subjects per site or the mean cluster size (if unequal number of participants per site).
m.sd	The standard deviation of cluster sizes (provide if unequal number of participants per site); defaults to 0.
alloc.ratio	The allocation ratio of intervention/control per site; defaults to 1.
J	The number of sites.
delta	The difference between the intervention and control means in the outcome variable.
sd	The total standard deviation of the outcome variable; defaults to 1.
icc0	The proportion of total variance of the outcome attributable to variation in site-level means.
icc1	The proportion of total variance of the outcome attributable to variation in the treatment effect across sites.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

pss.multisite.bin 33

Examples

```
 pss.multisite.ate(m = 20, J = 10, delta = 3, sd = sqrt(40), icc0 = 0.1, icc1 = 0) \\ pss.multisite.ate(m = 20, J = 10, delta = 3, sd = sqrt(48), icc0 = 0.095, icc1 = 0.048) \\ pss.multisite.ate(m = 20, alloc.ratio = 1.5, J = 10, delta = 0.43, icc0 = 0.095, icc1 = 0.048) \\ pss.multisite.ate(m = 10, J = NULL, delta = 0.5, sd = 1, icc0 = 0, icc1 = 0.05, power = 0.8) \\ pss.multisite.ate(m = 20, m.sd = 5, J = 10, delta = 3, sd = sqrt(48), icc0 = 0.095, icc1 = 0.048) \\ pss.multisite.ate(m = 20, J = 10, delta = 3, sd = sqrt(48), icc0 = 0.095, icc1 = 0.048, Rsq = 0.5^2) \\
```

pss.multisite.bin

Power for multisite trials with binary outcomes

Description

Power for multisite trials with binary outcomes

Usage

```
pss.multisite.bin(
  m = NULL,
  alloc.ratio = 1,
  J = NULL,
  pc = NULL,
  pt = NULL,
  sigma.u = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

m	The number of subjects per site.
alloc.ratio	The allocation ratio of intervention/control per site; defaults to 1.
J	The number of sites.
рс	The probability of the outcome in the control condition.
pt	The probability of the outcome in the treatment condition.
sigma.u	Standard deviation of the treatment effect across sites.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

```
pss.multisite.bin(m = 30, J = 25, pc = 0.1, pt = 0.2, sigma.u = 0.4, power = NULL) pss.multisite.bin(m = 30, J = NULL, pc = 0.1, pt = 0.2, sigma.u = 0.4, power = 0.9)
```

pss.prop.1samp

pss.multisite.hte

Power for test of heterogeneity of treatment effect in multisite trials

Description

Power for test of heterogeneity of treatment effect in multisite trials

Usage

```
pss.multisite.hte(
    m = NULL,
    J = NULL,
    ssq.u1 = NULL,
    ssq.e = NULL,
    alpha = 0.05
)
```

Arguments

m	The number of subjects per site.
J	The number of sites.
ssq.u1	The variance of the site-level treatment effects (sigma squared u1) under the alternative.
ssq.e	The variance of the observations within sites (sigma squared epsilon) under the alternative.
alpha	The significance level or type 1 error rate; defaults to 0.05.

Value

A list of the arguments (including the computed power).

Examples

```
pss.multisite.hte(m = 10, J = 30, ssq.u1 = 8, ssq.e = 36)
```

pss.prop.1samp

Power calculations for one sample proportion tests

Description

Power calculations for one sample proportion tests

pss.prop.2samp 35

Usage

```
pss.prop.1samp(
  N = NULL,
  p0 = NULL,
  pA = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

N The sample size.

p0 The proportion under the null.

pA The true proportion.

alpha The significance level or type 1 error rate; defaults to 0.05.

power The specified level of power.

sides Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

Examples

```
pss.prop.1samp(N = NULL, p0 = 0.2, pA = 0.3, power = 0.8, sides = 1) pss.prop.1samp(N = NULL, p0 = 0.4, pA = 0.5, power = 0.8, sides = 1)
```

pss.prop.2samp

Power calculations for two sample proportion tests

Description

Power calculations for two sample proportion tests

```
pss.prop.2samp(
  n1 = NULL,
  n.ratio = 1,
  p1 = NULL,
  p2 = NULL,
  delta = 0,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

36 pss.prop.test.equiv

Arguments

n1	The sample size for group 1.
n.ratio	The ratio $n2/n1$ between the sample sizes of two groups; defaults to 1 (equal group sizes).
p1	The proportion in group 1.
p2	The proportion in group 2.
delta	The margin of noninferiority or superiority; defaults to 0 . See delta.sign for guidance on the sign of delta.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

Examples

```
pss.prop.2samp(n1 = NULL, p1 = 0.6, p2 = 0.8, alpha = 0.025, power = 0.9, sides = 1) pss.prop.2samp(n1 = NULL, p1 = 0.25, p2 = 0.25, delta = 0.1, alpha = 0.025, power = 0.8, sides = 1)
```

pss.prop.test.equiv

Power calculations for test of equivalence of two proportions

Description

Power calculations for test of equivalence of two proportions

Usage

```
pss.prop.test.equiv(
  n1 = NULL,
  n.ratio = 1,
  p1 = NULL,
  p2 = NULL,
  delta = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

n1	The sample size for group 1.
n.ratio	The ratio n2/n1 between the sample sizes of two groups; defaults to 1 (equal group sizes).
p1	The outcome proportion in group 1.
p2	The outcome proportion in group 2.

pss.propodds 37

delta	The equivalence margin.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

Examples

```
pss.prop.test.equiv(n1 = NULL, p1 = 0.5, p2 = 0.5, delta = 0.1, alpha = 0.05, power = 0.8, sides = 1)
```

pss.propodds	Power calculations for ordinal categorical variable under proportional odds assumption

Description

Power calculations for ordinal categorical variable under proportional odds assumption

Usage

```
pss.propodds(pC, OR, n1, n.ratio = 1, alpha = 0.05, power = NULL)
```

Arguments

рС	Vector of response probabilities in control group (group 1). Must sum to 1. Categories are ordered from best to worst.
OR	Odds ratio when the alternative is true. Must be greater than 1.
n1	Sample size for group 1 (control group).
n.ratio	The ratio n2/n1 between the sample sizes of two groups; defaults to 1 (equal group sizes).
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power; defaults to 0.8.

Value

A list of the arguments (including the computed one).

```
library(Hmisc)
pC <- c(0.2, 0.5, 0.2, 0.1)
pss.propodds(pC = pC, OR = 2.5, n1 = 65, n.ratio = 1, alpha = 0.05)
```

38 pss.rr

DSS.	ran	ksum

Power calculations for rank-sum test

Description

Power calculations for rank-sum test

Usage

```
pss.ranksum(
  n1 = NULL,
  n.ratio = 1,
  p = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

n1	The sample size in group 1.
n.ratio	The ratio n2/n1 between the sample sizes of two groups; defaults to 1 (equal group sizes).
p	The probability that an observation in group 2 is greater than an observation in group 1 ($P(Y>X)$).
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two-sided hypothesis test.

Value

A list of the arguments (including the computed one).

Examples

```
pss.ranksum(n1 = 10, n.ratio = 1, p = 0.8, alpha = 0.05, power = NULL, sides = 2)
```

pss.rr

Power calculations for relative risk

Description

Power calculations for relative risk

pss.signedrank 39

Usage

```
pss.rr(
    n1 = NULL,
    n.ratio = 1,
    p1 = NULL,
    p2 = NULL,
    RR0 = 1,
    alpha = 0.05,
    power = NULL,
    sides = 2
)
```

Arguments

n1	The sample size for group 1.
n.ratio	The ratio $n2/n1$ between the sample sizes of two groups; defaults to 1 (equal group sizes).
p1	The proportion in group 1.
p2	The proportion in group 2.
RR0	The relative risk under the null; defaults to 1.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

Examples

```
pss.rr(n1 = NULL, n.ratio = 1/6, p1 = 0.1, p2 = 0.1 * 2, power = 0.8)
```

pss.signedrank

Power calculations for signed-rank test

Description

Power calculations for signed-rank test

Usage

```
pss.signedrank(N = NULL, ps = NULL, alpha = 0.05, power = NULL, sides = 2)
```

Arguments

N	The sample size; number of observations or paired differences.
ps	The probability that the sum of two values exceeds zero when the alternative hypothesis is true.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two-sided hypothesis test.

40 pss.slr

Value

A list of the arguments (including the computed one).

Examples

```
pss.signedrank(N = 20, p = 0.87, power = NULL, sides = 2)
```

pss.signtest

Power calculations for sign test (one sample median)

Description

Power calculations for sign test (one sample median)

Usage

```
pss.signtest(N = NULL, p = NULL, alpha = 0.05, power = NULL, sides = 2)
```

Arguments

N The sample size.

p The probability of a positive difference when the alternative hypothesis is true.

alpha The significance level or type 1 error rate; defaults to 0.05.

power The specified level of power.

sides Either 1 or 2 (default) to specify a one- or two-sided hypothesis test.

Value

A list of the arguments (including the computed one).

Examples

```
pss.signtest(N = 40, p = 0.7, power = NULL, alpha = 0.05, sides = 1)
```

pss.slr

Power calculations for a simple linear regression

Description

Power calculations for a simple linear regression

pss.t.test.1samp 41

Usage

```
pss.slr(
  N = NULL,
  beta10 = 0,
  beta1A = NULL,
  sd.x.sq = NULL,
  sigma.e = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

N	The sample size.
beta10	The slope regression coefficient under the null hypothesis.
beta1A	The slope regression coefficient under the alternative hypothesis.
sd.x.sq	The sample variance of the covariate X.
sigma.e	The estimated standard deviation of the error terms.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

Examples

```
# Yi = beta0 + beta1 * Xi + ei, i = 1,...,N pss.slr(N = 100, beta10 = 1, beta1A = 1.5, sd.x.sq = 25, sigma.e = 10, sides = 1)
```

pss.t.test.1samp

Power calculations for one sample t tests

Description

Power calculations for one sample t tests

Usage

```
pss.t.test.1samp(
  N = NULL,
  delta = NULL,
  sd = 1,
  alpha = 0.05,
  power = NULL,
  sides = 2,
  strict = TRUE
```

42 pss.t.test.2samp

Arguments

N	The sample size.
delta	muA (the true mean) - mu0 (the mean under the null).
sd	The estimated standard deviation; defaults to 1.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.
strict	Use strict interpretation in two-sided case; defaults to TRUE.

Value

A list of the arguments (including the computed one).

Examples

```
pss.t.test.1samp(N = 36, delta = 4.9 - 5.7, sd = 2, sides = 1)
pss.t.test.1samp(N = 36, delta = 6.3 - 5.7, sd = 2, sides = 1)
pss.t.test.1samp(N = 36, delta = 4.9 - 5.7, sd = 2, sides = 2)
pss.t.test.1samp(delta = 0.6, sd = 1, power = 0.8, sides = 1)
```

pss.t.test.2samp

Power calculations for two sample t tests allowing for unequal sample sizes and/or variances

Description

Power calculations for two sample t tests allowing for unequal sample sizes and/or variances

Usage

```
pss.t.test.2samp(
  n1 = NULL,
  n.ratio = 1,
  delta = NULL,
  sd = 1,
  sd.ratio = 1,
  df.method = c("welch", "classical"),
  alpha = 0.05,
  power = NULL,
  sides = 2,
  strict = TRUE
)
```

Arguments

n1 The sample size for group 1.

n.ratio The ratio n2/n1 between the sample sizes of two groups; defaults to 1 (equal group sizes).

pss.t.test.paired 43

delta	DeltaA (the true difference mu1 - mu2) - Delta0 (the difference under the null) - d. See delta.sign for guidance on the sign of d.
sd	The estimated standard deviation for group 1; defaults to 1 (equal standard deviations in the two groups).
sd.ratio	The ratio sd2/sd1 between the standard deviations of the two groups.
df.method	Method for calculating the degrees of freedom: "welch" (default) or "classical".
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.
strict	Use strict interpretation in two-sided case; defaults to TRUE.

Value

A list of the arguments (including the computed one).

Examples

```
pss.t.test.2samp(n1 = 50, delta = 2, sd = 5, sides = 1)
pss.t.test.2samp(n1 = NULL, n.ratio = 2, delta = 0.5, sd = 1, power = 0.8, sides = 2)
pss.t.test.2samp(n1 = 49, n.ratio = 2, delta = 0.5, sd = 1, power = NULL, sides = 2)
pss.t.test.2samp(n1 = 25, n.ratio = 3, delta = 3, sd = 4, sd.ratio = 1.5, alpha = 0.025, sides = 1)
pss.t.test.2samp(n1 = NULL, delta = 0.5, sd = 1, power = 0.8, sides = 2)
```

pss.t.test.paired

Power calculations for paired t tests

Description

Power calculations for paired t tests

Usage

```
pss.t.test.paired(
  N = NULL,
  delta = NULL,
  sd1 = 1,
  sd2 = 1,
  rho = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2,
  strict = TRUE
)
```

pss.z.test.1samp

Arguments

N	The sample size; the number of pairs.
delta	$Delta A \ (the \ true \ mean \ difference) - Delta 0 \ (the \ mean \ difference \ under \ the \ null).$
sd1	The estimated pre standard deviation; defaults to 1.
sd2	The estimated post standard deviation; defaults to 1.
rho	The estimated correlation between pre and post measurements on the same individual.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.
strict	Use strict interpretation in two-sided case; defaults to TRUE.

Value

A list of the arguments (including the computed one).

Examples

```
pss.t.test.paired(N = NULL, delta = 4, sd1 = 10, sd2 = 10, rho = 0.4, power = 0.8, sides = 2)
```

pss.z.test.1samp

Power calculations for one sample z tests

Description

Power calculations for one sample z tests

Usage

```
pss.z.test.1samp(
  N = NULL,
  delta = NULL,
  sd = 1,
  alpha = 0.05,
  power = NULL,
  sides = 2,
  strict = TRUE
)
```

Arguments

N	The sample size.
delta	muA (the true mean) - mu0 (the mean under the null).
sd	The estimated standard deviation; defaults to 1.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.
strict	Use strict interpretation in two-sided case; defaults to TRUE.

pss.z.test.2samp 45

Value

A list of the arguments (including the computed one).

Examples

```
pss.z.test.1samp(N = NULL, delta = 6.5 - 5.7, sd = 2, power = 0.8, sides = 2) pss.z.test.1samp(N = 40, delta = NULL, sd = 1, power = 0.9, sides = 2) pss.z.test.1samp(N = NULL, delta = 0.6, sd = 1, power = 0.8, sides = 1)
```

pss.z.test.2samp

Power calculations for two sample z tests allowing for unequal sample sizes and/or variances

Description

Power calculations for two sample z tests allowing for unequal sample sizes and/or variances

Usage

```
pss.z.test.2samp(
  n1 = NULL,
  n.ratio = 1,
  delta = NULL,
  sd = 1,
  sd.ratio = 1,
  alpha = 0.05,
  power = NULL,
  sides = 2,
  strict = TRUE
)
```

Arguments

n1	The sample size for group 1.
n.ratio	The ratio n2/n1 between the sample sizes of two groups; defaults to 1 (equal group sizes).
delta	DeltaA (the true difference mu1 - mu2) - Delta0 (the difference under the null) - delta. See delta.sign for guidance on the sign of delta.
sd	The estimated standard deviation for group 1; defaults to 1 (equal standard deviations in the two groups).
sd.ratio	The ratio sd2/sd1 between the standard deviations of the two groups.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.
strict	Use strict interpretation in two-sided case; defaults to TRUE.

Value

A list of the arguments (including the computed one).

pss.z.test.paired

Examples

```
pss.z.test.2samp(n1 = NULL, n.ratio = 1, delta = 0.5, sd = 1, power = 0.8, sides = 2)
```

pss.z.test.paired

Power calculations for paired z tests

Description

Power calculations for paired z tests

Usage

```
pss.z.test.paired(
  N = NULL,
  delta = NULL,
  sd1 = 1,
  sd2 = 1,
  rho = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2,
  strict = TRUE
)
```

Arguments

N	The sample size; the number of pairs.
delta	DeltaA (the true mean difference) - Delta0 (the mean difference under the null).
sd1	The estimated pre standard deviation; defaults to 1.
sd2	The estimated post standard deviation; defaults to 1.
rho	The estimated correlation between pre and post measurements on the same individual.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.
strict	Use strict interpretation in two-sided case; defaults to TRUE.

Value

A list of the arguments (including the computed one).

```
pss.z.test.paired(N = NULL, delta = 4, sd1 = 10, sd2 = 10, rho = 0.4, power = 0.8, sides = 2)
```

swd_1trt_power 47

aal 14 .a4 .aaaa.	C4 J.W. J. D D C. J. J	4
swd_1trt_power	Stepped Wedge Design Power Calculation with 1 Tre	eaimeni

Description

Calculates power for stepped wedge design with one treatment and one control condition.

Usage

```
swd_1trt_power(alpha = 0.05, J, m, K, b, d, rho, rho_c, rho_s)
```

Arguments

alpha	The significance level or type 1 error rate
J	Number of clusters
m	The number of individuals in each cluster at each time period
K	The number of steps (if one baseline period, then this is periods - 1)
b	The number of baseline periods
d	The standardized effect size
rho	Intraclass correlation coefficient (ICC)
rho_c	Cluster autocorrelation (proportion of cluster-level variance that is time invariant)
rho_s	Subject autocorrelation (This is 0 in repeated cross sectional designs because people are measured only once)

Value

power

48 swd_1trt_ss

ئامىيم	1 44	
swd 1	ltrt	SS

Stepped Wedge Design Sample Size Calculation with 1 Treatment

Description

Calculates sample size requirements for stepped wedge design with one treatment and one control condition.

Usage

```
swd_1trt_ss(alpha, power, m, K, b, d, rho, rho_c, rho_s)
```

Arguments

alpha	The significance level or type 1 error rate
power	The specified level of power
m	The number of individuals in each cluster at each time period
K	The number of steps (if one baseline period, then this is periods - 1)
b	The number of baseline periods
d	The standardized effect size
rho	Intraclass correlation coefficient (ICC)
rho_c	Cluster autocorrelation (proportion of cluster-level variance that is time invariant)
rho_s	Subject autocorrelation (This is 0 in repeated cross sectional designs because people are measured only once)

Value

Calculated number of clusters required, adjusted number of clusters, and suggested number of clusters that includes the value of \boldsymbol{K}

```
swd_2trt_additive_power
```

Additive Treatments Stepped Wedge Design Power Calculation

Description

Calculate power for detecting treatment effects in a two-treatment stepped wedge design with additive treatment effects. We only consider complete designs. This function is based on Power Analysis for Stepped Wedge Trials with Two Treatments published in Stat Med in 2022 by Phillip Sundin and Catherine Crespi. This manuscript uses the normal distribution and the Wald Test to derive power.

Usage

```
swd_2trt_additive_power(
  RhoW,
  ModelChoice,
  n.individuals,
  n.clusters,
  n.periods,
  delta_1,
  delta_2,
  RhoA,
  IAC,
  Sequence_Tx1,
  Sequence_Tx2,
  typeIerror
)
```

Arguments

RhoW The intraclass correlation coefficient, which re-	efers to the correlation between
--	----------------------------------

outcomes of two different individuals in the same cluster at the same time.

ModelChoice A string indicating either a repeated cross sectional design ("RCS"), nested ex-

changeable ("NEC"), Cohort ("Cohort"), or any one of these three designs in their standardized form. Only one of "RCS Standardized", "RCS", "Cohort Standardized", "Cohort", "NEC Standardized", or "NEC" can be specified. The standardized design refers to dividing by the standard deviation of y (the out-

come) in the covariance specification.

n.individuals The number of individuals in each condition at one time period.

n.clustersn.periodsThe number of clustersn.periods

delta_1 The standardized effect size for treatment 1 delta_2 The standardized effect size for treatment 2

RhoA The correlation between two observations in the same individual in the same

cluster but different time periods. RCS models assume RhoW = RhoA, and

Cohort models assume RhoA >= RhoW.

IAC The individual auto-correlation, which is the proportion of the individual-level

variance that is time-invariant. IAC = 0 in a RCS.

Sequence_Tx1 A vector representing the time points (periods) at which each cluster transitions from control to treatment 1 (ie the first occurence).

Sequence_Tx2 A vector representing the time points (periods) at which each cluster transitions from control to treatment 2 (ie the first occurence).

typeIerror The significance level.

Value

A list with power for detecting treatment effect for treatment 1 and 2

Examples

```
## For example, the 3 cluster, 4 period SWD,
##
       0 1 1 1
##
       0 0 1+2 1+2
##
       0 0 2 1+2
## where 0 denotes control condition, 1 denotes the condition with only
## treatment 1, 2 denote the condition with only treatment 2, and 1+2 denotes the condition
## where a cluster receives both treatment 1 and 2
## would have Sequence1 <- c(2,3,4) and Sequence2 <- c(NA,3,3)
## notice sequence 1 cluster 3 has time period 4 even though time period 3 had treatment 2,
## so it is the first occurrence of trt 1 in this cluster.
# 12-cluster concurrent repeated cross sectional design
# Sequencing has 2 clusters transition to treatment 1 at time 2,
# 2 clusters transition to treatment 1 at time 3, and 2 clusters transition
# to treatment 1 at time 3. These clusters never receive treatment 2
Sequence_Tx1 <- c(2, 2, 3, 3, 4, 4, NA, NA, NA, NA, NA, NA, NA)
# similar sequencing for treatment 2
Sequence_Tx2 \leftarrow c(NA, NA, NA, NA, NA, NA, 4, 4, 3, 3, 2, 2)
swd_2trt_additive_power(RhoW = 0.05, ModelChoice = "RCS", RhoA = 0.2, IAC = 0,
          n.individuals = 30, n.clusters = 12, n.periods = 4, delta_1 = 0.4, delta_2 = 0.1,
               Sequence_Tx1 = Sequence_Tx1, Sequence_Tx2 = Sequence_Tx2,
               typeIerror = 0.05)
```

swd_2trt_interaction_power

Stepped Wedge Design Power Calculation for Interaction Term

Description

Calculate power for detecting interaction effects in a two-treatment stepped wedge design. We only consider complete designs. This function is based on Power Analysis for Stepped Wedge Trials with Two Treatments published in Stat Med in 2022 by Phillip Sundin and Catherine Crespi. This manuscript uses the normal distribution and the Wald Test to derive power.

Usage

```
swd_2trt_interaction_power(
  RhoW,
  ModelChoice,
  n.individuals,
```

```
n.clusters,
n.periods,
delta_1,
delta_2,
delta_3,
RhoA,
IAC,
typeIerror,
Sequence_Tx1,
Sequence_Tx2
```

Arguments

RhoW The intraclass correlation coefficient, which refers to the correlation between

outcomes of two different individuals in the same cluster at the same time.

ModelChoice A string indicating either a repeated cross sectional design ("RCS"), nested ex-

changeable ("NEC"), Cohort ("Cohort"), or any one of these three designs in their standardized form. Only one of "RCS Standardized", "RCS", "Cohort Standardized", "Cohort", "NEC Standardized", or "NEC" can be specified. The standardized design refers to dividing by the standard deviation of y (the out-

come) in the covariance specification.

n.individuals The number of individuals in each condition at one time period.

n.clusters The number of clusters

n.periods The number of time periods.

delta_1 The standardized effect size for treatment 1 delta_2 The standardized effect size for treatment 2

delta_3 The standardized effect size for the interaction effect.

RhoA The correlation between two observations in the same individual in the same

cluster but different time periods. RCS models assume RhoW = RhoA, and

Cohort models assume RhoA >= RhoW.

IAC The individual auto-correlation, which is the proportion of the individual-level

variance that is time-invariant. IAC = 0 in a RCS.

typeIerror The significance level.

Sequence_Tx1 A vector representing the time points (periods) at which each cluster transitions

from control to treatment 1 (ie the first occurence).

Sequence_Tx2 A vector representing the time points (periods) at which each cluster transitions

from control to treatment 2 (ie the first occurence).

Value

A matrix with the standard error, statistic, and power for detecting effects for treatment 1, treatment 2, and interaction effects.

```
delta_2 = 0.6, delta_3 = 0.6, typeIerror = 0.05/3,
Sequence_Tx1 = c(2,3,2,3,4,5,NA,NA), Sequence_Tx2 = c(NA,NA,2,3,4,5,3,2))
```

```
swd_2trt_linearcontrast_power
```

Stepped Wedge Design Power Calculation for Linear Contrasts of Treatment Effects

Description

Calculate the power for detecting linear contrasts of two treatment effects in a two-treatment stepped wedge design (SWD) with additive treatment effects. We only consider complete designs. This function is based on Power Analysis for Stepped Wedge Trials with Two Treatments published in Stat Med in 2022 by Phillip Sundin and Catherine Crespi. This manuscript uses the normal distribution and the Wald Test to derive power.

Usage

```
swd_2trt_linearcontrast_power(
  RhoW,
  ModelChoice,
  n.individuals,
  n.clusters,
  n.periods,
  delta_12,
  RhoA,
  IAC,
  Sequence_Tx1,
  Sequence_Tx2,
  typeIerror
)
```

Arguments

RhoW The intraclass correlation coefficient, which refers to the correlation between

outcomes of two different individuals in the same cluster at the same time.

ModelChoice A string indicating either a repeated cross sectional design ("RCS"), nested ex-

changeable ("NEC"), Cohort ("Cohort"), or any one of these three designs in their standardized form. Only one of "RCS Standardized", "RCS", "Cohort Standardized", "Cohort", "NEC Standardized", or "NEC" can be specified. The standardized design refers to dividing by the standard deviation of y (the out-

come) in the covariance specification.

n.individuals The number of individuals in each condition at one time period.

n.clusters The number of clustersn.periods The number of time periods.

delta_12 The standardized difference between the two treatment effects to be powered on.

RhoA The correlation between two observations in the same individual in the same

cluster but different time periods. RCS models assume RhoW = RhoA, and

Cohort models assume RhoA >= RhoW.

IAC	The individual auto-correlation, which is the proportion of the individual-level variance that is time-invariant. IAC = 0 in a RCS.
Sequence_Tx1	A vector representing the time points (periods) at which each cluster transitions from control to treatment 1 (ie the first occurence).
Sequence_Tx2	A vector representing the time points (periods) at which each cluster transitions from control to treatment 2 (ie the first occurence).
typeIerror	The significance level.

Value

Power for detecting the difference of treatment effects

```
# Late factorial SWD design with 12 clusters
swd_2trt_linearcontrast_power(RhoW = 0.2, ModelChoice="RCS", IAC = 0,
                      RhoA = 0.2, n.individuals = 15, delta_12 = 0.4,
                      n.clusters = 12, n.periods = 4,
                      Sequence_Tx1 = c(2,2,3,3,4,4,4,4,4,4,4,4),
                      Sequence_Tx2 = c(4,4,4,4,4,4,2,2,3,3,4,4),
                      typeIerror = 0.05)
# Example where there are different potential designs to be considered #
#creating data frame for power as a function of rho_w
PowerTable <- data.frame(RhoW = c(rep(seq(0,0.4,by=0.01),times=3)))
PowerTable$DesignChoice <- c(rep('"Late" Factorial Design, 12 clusters',times=41),
                             rep('"Early" Factorial Design, 10 clusters',times=41),
                             rep("Concurrent Design, 12 clusters",times=41))
PowerTable$n.clusters <- c(rep(12,times=41), rep(10,times=41), rep(12,times=41))
PowerTable\$Sequence1 <- c(rep(list(c(2,2,3,3,4,4,4,4,4,4,4,4)),times=41),
                          rep(list(c(2,2,2,3,4,4,3,4,4,4)),times=41),
                          rep(list(c(2,2,3,3,4,4,NA,NA,NA,NA,NA,NA)),times=41))
PowerTableSequence2 <- c(rep(list(c(4,4,4,4,4,4,2,2,3,3,4,4)),times=41),
                          rep(list(c(4,4,4,3,4,4,3,2,2,2)),times=41),
                          rep(list(c(NA,NA,NA,NA,NA,4,4,3,3,2,2)),times=41))
PowerTable$Power <- mapply(swd_2trt_linearcontrast_power,</pre>
                        RhoW = PowerTable$RhoW,
                        ModelChoice="RCS",
                        IAC = 0, RhoA = PowerTable$RhoW,
                        n.individuals = 15, delta_12 = 0.4,
                        n.clusters = PowerTable$n.clusters,
                        n.periods = 4, typeIerror = 0.05,
                        Sequence_Tx1 = PowerTable$Sequence1,
                        Sequence_Tx2 = PowerTable$Sequence2)
##removing unnecessary columns of clusters
PowerTable <- PowerTable[ ,-which(names(PowerTable) %in%</pre>
           c("Sequence1", "Sequence2", "n.clusters"))]
PowerTable
```

Index

```
* datasets
    delta.sign, 5
crossover_power, 3
crossover_ss, 4
delta.sign, 5
multendpoints_Ck_ss, 5
parallelCRT_power, 6
parallelCRT_ss, 7
pss.altprimary, 8
pss.anova1way.c.bal, 9
pss.anova1way.c.unba1, 10
pss.anova1way.F.bal, 11
pss.anova1way.F.unbal, 12
pss.anova2way.c.bal, 12
pss.anova2way.c.unbal, 13
pss.anova2way.F.bal, 14
pss.anova2way.F.unbal, 15
pss.anova2way.se.bal, 16
pss.anova2way.se.unbal, 17
pss.chisq.gof, 18
pss.chisq.indep, 19
pss.ci.mean, 19
pss.ci.meandiff, 20
pss.coprimary.t, 21
pss.coprimary.z, 22
pss.corr.1samp, 23
pss.corr.2samp, 24
pss.crt.parallel, 24
pss.es.anova.f, 26
pss.es.d, 26
pss.es.fsq, 27
pss.es.h, 28
pss.es.q, 28
pss.mcnemar.test, 29
pss.mlrF.overall, 30
pss.mlrF.partial, 31
pss.multisite.ate, 32
pss.multisite.bin, 33
pss.multisite.hte, 34
pss.prop.1samp, 34
```

```
pss.prop.2samp, 35
pss.prop.test.equiv, 36
pss.propodds, 37
pss.ranksum, 38
pss.rr, 38
pss.signedrank, 39
pss.signtest, 40
pss.slr, 40
pss.t.test.1samp, 41
pss.t.test.2samp, 42
pss.t.test.paired, 43
pss.z.test.1samp, 44
pss.z.test.2samp, 45
pss.z.test.paired, 46
swd_1trt_power, 47
swd_1trt_ss, 48
swd_2trt_additive_power, 49
swd_2trt_interaction_power, 50
swd_2trt_linearcontrast_power, 52
```