010000101 010100111 01001101 ESM-Tools

A Tool for Earth-System Modellers

Deniz Ural

AWI, Climate Dynamics

5th Workshop on Coupling Technologies for Earth System Models (CW2020)

September 24, 2020

BETTER SOFTWARE BETTER RESEARCH

DON'T WORRY,
YOU DON'T HAVE
TO START YOUR
CODE FROM
SCRATCH.

Carole Goble https://ieeexplore.ieee.org/document/6886129

http://phdcomics.com/comics/archive/phd031214s.gif

OUTLINE

- What are ESM-Tools? Motivation, General Structure, Comparison, Advantages
- Components, Supported Systems

How we develop ESM-Tools

User Support & Information

1 What are ESM-Tools?

- Collection of scripts to download, compile, configure, and run different simulation models for the Earth system
- Standalone Atmosphere, Ocean, Geo-Biochemistry, Hydrology, Sea-Ice and Ice-sheet models as well as coupled systems
- Researchers should focus on science and less on technical details

- Provide a common infrastructure for
 - Models and coupled systems
 - HPC environment
 - Setup and run model experiments
 - Consistent file / directory structure

What ESM-Tools are / do

What ESM-Tools are / do not

- A unified infrastructure for ESM modelling
- Build the models without knowing the details of the HPC system
- Provide easy to read/write YAML based configuration
- Run your simulation as easy as possible
- Generate a log documentation
- Organize files / directories (eg. input, forcing, output, log, executables, ...)
- One interface: standardize the modelling process for all of your models

- A new model
- A new programming language or DSL
- Change the model code / build process

1 Why do we need ESM-Tools?

- Target audience: Earth-System Modellers (Atmosphere, Ocean, Land-Surface, Earth, ...) working on HPC machines
- ESM are complex softwares that require technical knowledge
- Build is difficult:
 - Many different models & different build systems & different configurations
 - Different HPC and batch systems
 - **Setup & Run** are difficult:
 - Complex configurations & Couplings
 - Requires and generates many files
 - Requires a consistent directory structure, CMORization
 - Automatization: Repeating the same simulation multiple times
 - Reproducibility

Old Workflow

VS

ESM-Tools workflow

- Obtain the model source code (usually a tar ball)
- Build the model
 - 1. configure
 - 2. make
 - **3. FAIL:** Read the HPC documentation and repeat (libraries, compilers, modules, ...)
- 3. Prepare the data folders (input, boundary conditions, output, ...)
- 4. Setup the namelist for the models
- 5. Submit your job to the HPC system
- 6. Resubmit / Iterative coupling
- 7. Move the data to the storage disk
- 8. Postprocessing of the results

Repeat the whole process for the next run or write a shell script for automatization.

- Obtain and build the model code (from a repository)

 esm master install-awicm-2.0
- Prepare YAML based runscript (samples are available)
- [OPTIONAL] Check if your run would run successfully:

 esm_runscripts my_awicm_runscript.yaml -e my_first_test -c
- [Checkt your log] Submit your job to the system esm_runscripts my_awicm_runscript.yaml -e my_first_test
- Postprocess the results (esmviz, in progress)

Notes:

- esm master <operation>-<software>-<version>
- AWICM = ECHAM + FESOM
 - esm_runscripts <runscript.yaml> -e <experiment_ID>

Old Workflow

VS

ESM-Tools workflow

```
echam prepare forcing()
   # forcing
   if [[ "v$setup name" = "vecham standalone" ]]; then
        case $SCENARIO echam in
           1850 | PI-CTRL*)
               add_to ${echam_INPUT_DIR}/${RES_echam}/${RES_echam}${OCERES_echam}_piControl-LR_sst_1880-2379.nc unit.20
               add to ${echam INPUT DIR}/${RES echam}/${RES echam} piControl-LR sic 1880-2379.nc unit.96
           HIST )
for ((yr = YR0_echam + -2; yr <= YRN_echam + 2; ++yr)); do</pre>
   if [ $yr -le 1849 ] ; then
        eval add to ${echam INPUT DIR}/${RES echam}/ozone/$ozonefile 1850 ozon$yr
    elif [ $yr -le 2014 ] ; then
        eval add to ${echam INPUT DIR}/${RES echam}/ozone/$ozonefile hist ozon$yr
    else
        eval add to ${echam INPUT DIR}/${RES echam}/ozone/$ozonefile scen ozon$yr
   if [ $yr -le 1849 ] ; then
        add to ${echam INPUT DIR}/${RES echam}/volcano aerosols/strat aerosol ir ${RES echam} 1850.nc
strat aerosol ir ${yr}.nc
        add to ${echam INPUT DIR}/${RES echam}/volcano aerosols/strat aerosol sw ${RES echam} 1850.nc
strat_aerosol_sw_${yr}.nc
    elif [ $yr -le 2024 ] ; then
        add_to ${echam_INPUT_DIR}/${RES_echam}/volcano_aerosols/strat_aerosol_ir_${RES_echam}_${yr}.nc
        add to ${echam INPUT DIR}/${RES echam}/volcano aerosols/strat aerosol sw ${RES echam} ${yr}.nc
strat_aerosol_sw_${yr}.nc
    elif [ $yr -gt 2024 ] ; then
        add to ${echam INPUT DIR}/${RES echam}/volcano aerosols/strat aerosol ir ${RES echam} 2024.nc
strat aerosol ir ${yr}.nc
        add to ${echam INPUT DIR}/${RES echam}/volcano aerosols/strat aerosol sw ${RES echam} 2024.nc
strat aerosol sw ${yr}.nc
```

```
general:
   setup name: "awicm"
   compute time: "00:15:00"
   initial date: "2000-01-01"
   final date:
                  "2000-02-29"
   base dir: "/work/ollie/dbarbi/esm yaml tests/"
   nmonth: 1
   nyear: 0
awicm:
   version: "CMIP6"
   postprocessing: false
   scenario: "PI-CTRL"
   model dir: "/work/ollie/dbarbi/modelcodes/awicm-CMIP6/"
fesom:
   pool dir: "/work/ollie/pool/FESOM/"
   mesh dir: "/work/ollie/pool/FESOM/meshes default/core/"
   restart rate: 1
   restart unit: "m"
   restart first: 1
   further reading:
        - "fesom output control.yaml"
```

Components of the ESM-Tools

2 Supported Models & Couplings, Partners

FOCI FOCI-OIFS ICON FESOM-RECOM NEMO AWIESM RECOM OIFSCL AMIP AWICM AWICM3 FESOM OIFSAMIP Scope AWICMCR MPIESM Echam YAC fesom_mesh_part oasis3mct	Coupled Systems	Components
FESOM-RECOM AWIESM OIFSCL AMIP AWICM AWICM3 FESOM OIFSAMIP Scope AWICMCR MPIESM Echam YAC fesom_mesh_part	FOCI	VILMA
AWIESM RECOM OIFSCL AMIP AWICM debm AWICM3 FESOM OIFSAMIP scope AWICMCR xios MPIESM Echam YAC fesom_mesh_part	FOCI-OIFS	ICON
OIFSCL AMIP AWICM debm AWICM3 FESOM OIFSAMIP scope AWICMCR xios MPIESM Echam YAC fesom_mesh_part	FESOM-REcoM	NEMO
AWICM AWICM3 FESOM OIFSAMIP Scope AWICMCR Xios MPIESM Echam YAC fesom_mesh_part	AWIESM	REcoM
AWICM3 OIFSAMIP scope AWICMCR xios MPIESM Echam YAC fesom_mesh_part	OIFSCL	AMIP
OIFSAMIP scope AWICMCR xios MPIESM Echam YAC fesom_mesh_part	AWICM	debm
AWICMCR xios MPIESM Echam YAC fesom_mesh_part	AWICM3	FESOM
MPIESM Echam YAC fesom_mesh_part	OIFSAMIP	scope
YAC fesom_mesh_part	AWICMCR	xios
fesom_mesh_part	MPIESM	Echam
		YAC
oasis3mct		fesom_mesh_part
		oasis3mct
rnfmap		rnfmap
MPIOM		MPIOM
PISM		PISM
nemobasemodel		nemobasemodel
OIFS		OIFS

2 Summary: Why you should use ESM-Tools?

For Users

- (extended) YAML syntax is easy to read
- Sample runscripts are already available
- Well maintained
- Issues on GitHub (and we will take care of them)
- Updated regularly
- Portable & Tested
- Documentation (sphinx, readthedocs)
- Workshops

For Developers

- python
- Easier to read / write (compared to sh)
- OOP, High level data structures
- Easier to debug (via pdb, ipdb)
- Configuration files are «inherited»
- Hosted on GitHub & robust branching model
- Open-source development is encouraged
- [In progress] CI/CD, DevOps, Automated tests

3 How we develop ESM-Tools?

Core development team + external developers (total >30 people)

Release

- Default branch
- Latest stable release
- Full user support
- Update only at next planned release date
- Bugfixes will be merged at any time

Develop branch(es)

- Branch to collect new features and bugfixes for next release
- Testing
- Work in progress
- Will be merged into release at next planned release date

Hotfix

Urgent bugfixes

4 Future Goals & Information

- More users & HPC systems
- More models
 - More features (eg. online monitoring & visualization, GUI, CI/CD, ...)

https://doi.org/10.5194/gmd-2020-100
© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Submitted as: development and technical paper

ESM-Tools Version 4.0: A modular infrastructure for stand-alone and coupled Earth System

Preprints

Abstract Discussion Metrics

11 Aug 2020

Review status

This preprint is currently under review for the journal GMD.

Dirk Barbi¹, Nadine Wieters¹, Paul Gierz¹, Fatemeh Chegini^{1,3}, Sara Khosravi², and Luisa Cristini¹

- ¹Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- ²Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Potsdam, Germany

Modelling (ESM)

³Max Planck Institute for Meteorology, Hamburg, Germany

4 Contact

https://www.esm-tools.net

https://esm-tools.readthedocs.io

@ToolsEsm

ESMTools

Monthly newsletter

Thank you very much for your attention!