Respiration essay in Hexachlamys edulis

Figure 1: A caption

Immature and mature ubajay fruits were selected and randomly distributed in 4 jars, 2 immature and 2 mature, then respiration was quantified from accumulated CO2 every 15 minutes for 150 minutes.

CO₂ acumulation

Descriptive table

##	# .	A tibble:	20 x 7					
##	#	Groups:	time_min [[10]				
##		time_min	matu carb	on_ac_n	carbon_ac_Mean	carbon_ac_sd	carbon_ac_min	carbon_ac_max
##		<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	15	I	2	42.5	4.97	39.0	46.1
##	2	15	M	2	39.6	1.86	38.3	40.9
##	3	30	I	2	62.2	5.13	58.5	65.8
##	4	30	M	2	59.4	2.79	57.4	61.4
##	5	45	I	2	75.2	5.23	71.5	78.9
##	6	45	M	2	76.6	0.110	76.6	76.7
##	7	60	I	2	94.9	5.39	91.1	98.7
##	8	60	M	2	99.0	4.66	95.7	102.
##	9	75	I	2	108.	5.50	104.	112.
##	10	75	M	2	116.	1.97	115.	118.
##	11	90	I	2	124.	10.3	117.	132.
##	12	90	M	2	136.	2.91	134.	138.
##	13	105	I	2	137.	10.4	130.	145.
##	14	105	M	2	153.	0.221	153.	153.
##	15	120	I	2	157.	10.5	150.	164.
##	16	120	M	2	176.	4.77	172.	179.
##	17	135	I	2	170.	10.6	163.	178.
##	18	135	M	2	190.	6.59	185.	194.
##	19	150	I	2	186.	15.4	176.	197.
##	20	150	M	2	213.	3.02	211.	215.

Correlations over time

Covariance matrix

```
##
          15
                30
                      45
                            60
                                   75
                                          90
                                                 105
                                                        120
                                                               135
                                                                      150
## 15
       12.28 12.95
                   7.38
                          7.79
                                 2.21
                                         7.31
                                                1.73
                                                       2.14
                                                              2.50
                                                                     1.66
## 30
       12.95 13.93
                    7.77
                          9.75
                                 3.59
                                         9.42
                                                3.25
                                                       5.23
                                                              6.22
                                                                     4.90
                                               25.37
## 45
        7.38
             7.77
                    9.77 11.46
                                13.46
                                       23.37
                                                      27.07
                                                             27.76
                                                                    38.97
##
  60
        7.79
              9.75 11.46 22.55
                                24.26
                                       38.94
                                               40.66
                                                     51.74
                                                             56.09
        2.21
              3.59 13.46 24.26
                                34.14
                                       52.90
                                               62.77
                                                     73.57
                                                             77.63 102.21
                                52.90
##
  90
        7.31 9.42 23.37 38.94
                                       83.40
                                               97.35 112.92 118.82 157.38
  105
       1.73
              3.25 25.37 40.66
                                62.77
                                       97.35 119.47 134.76 140.36 191.45
  120
       2.14 5.23 27.07 51.74 73.57 112.92 134.76 159.43 168.68 220.61
## 135
       2.50 6.22 27.76 56.09 77.63 118.82 140.36 168.68 179.37 231.42
       1.66 4.90 38.97 68.14 102.21 157.38 191.45 220.61 231.42 309.86
## 150
```

Marginal model with first-order autoregressive structure

```
## gls(model = (carbon_ac) ~ time_min * matu + basal, data = resp2w,
## correlation = corAR1(form = ~1 | rep))
```

Assumptions


```
##
## Shapiro-Wilk normality test
##
## data: e
## W = 0.9761627, p-value = 0.549824
```

Model coefficients

##	(Intercept)	time_min30	time_min45	time_min60	time_min75	time
##	-1088.309859117	19.625054307	32.708423844	52.333478151	65.416847689	81.78
##	time_min150	matuM	basal	time_min30:matuM	time_min45:matuM	time_min6
##	143.954392798	24.020301930	43.217057762	0.171220178	4.327249699	7.05
##	<pre>time_min120:matuM</pre>	<pre>time_min135:matuM</pre>	time_min150:matuM			
##	21.518898568	22.485337162	29.098326710			

Anova

Denom. DF: 19

```
numDF
                         F-value p-value
                   1 12422.59816 <.0001
## (Intercept)
                                 <.0001
## time min
                    9
                       497.67981
## matu
                        23.52445 0.0001
                    1
## basal
                   1
                       18.30623 0.0004
                        4.64451 0.0024
## time min:matu
                    9
```

Simple effects

```
## $emmeans
## time_min = 15:
                           SE df
                                       lower.CL
   matu
                                                   upper.CL
         29.0559310 3.99641289 4.38 18.3274684 39.7843936
## M
         53.0762329 3.99641289 4.26 42.2426703 63.9097956
##
## time_min = 30:
   matu
             emmean
                            SE df
                                       lower.CL
                                                  upper.CL
##
         48.6809853 3.99641289 4.37 37.9473496 59.4146210
##
         72.8725074 3.99641289 4.38 62.1474410 83.5975738
##
## time_min = 45:
   matu
             emmean
                            SE df
                                       lower.CL
                                                   upper.CL
##
         61.7643548 3.99641289 4.23 50.9066429 72.6220667
##
         90.1119065 3.99641289 4.30 79.3151857 100.9086272
##
## time_min = 60:
##
  matu
                            SE
                               df
                                       lower.CL
                                                   upper.CL
         81.3894091 3.99641289 4.35 70.6412810 92.1375372
##
        112.4650564 3.99641289 4.37 101.7314207 123.1986921
##
## time_min = 75:
##
   matu
             emmean
                            SE
                                 df
                                       lower.CL
                                                   upper.CL
##
         94.4727787 3.99641289 4.28 83.6565866 105.2889707
        129.7044554 3.99641289 4.31 118.9126401 140.4962708
##
## time min = 90:
   matu
                            SE df
                                       lower.CL
                                                   upper.CL
        110.8456545 3.99641289 4.38 100.1171919 121.5741172
##
        149.5007299 3.99641289 4.26 138.6671673 160.3342926
##
## time min = 105:
                            SE df
                                       lower.CL
##
   matu
             emmean
                                                   upper.CL
        123.9290241 3.99641289 4.37 113.1953884 134.6626598
##
        166.7401290 3.99641289 4.38 156.0150626 177.4651953
##
## time_min = 120:
             emmean
   matu
                            SE df
                                       lower.CL
                                                   upper.CL
        143.5540784 3.99641289 4.23 132.6963665 154.4117903
##
##
        189.0932789 3.99641289 4.30 178.2965581 199.8899996
##
## time_min = 135:
## matu
             emmean
                            SE
                                       lower.CL
      156.6374479 3.99641289 4.35 145.8893198 167.3855760
```

```
203.1430870 3.99641289 4.37 192.4094513 213.8767227
##
## time min = 150:
## matu emmean SE df lower.CL upper.CL
      173.0103238 3.99641289 4.28 162.1941317 183.8265159
## M
       226.1289524 3.99641289 4.31 215.3371371 236.9207678
## Degrees-of-freedom method: satterthwaite
## Results are given on the ( (not the response) scale.
## Confidence level used: 0.95
##
## $contrasts
## time_min = 15:
## contrast estimate SE df t.ratio p.value
## I - M -24.0203019 7.19762359 6.29 -3.337 0.0146
##
## time_min = 30:
## contrast estimate SE df t.ratio p.value
## I - M -24.1915221 7.19762359 6.30 -3.361 0.0141
##
## time_min = 45:
## contrast estimate SE df t.ratio p.value
## I - M -28.3475516 7.19762359 4.51 -3.938 0.0135
## time min = 60:
## contrast estimate SE df t.ratio p.value
## I - M -31.0756472 7.19762359 6.28 -4.317 0.0045
## time_min = 75:
## contrast estimate SE df t.ratio p.value
## I - M -35.2316768 7.19762359 6.24 -4.895 0.0024
##
## time_min = 90:
## contrast estimate SE df t.ratio p.value
## I - M -38.6550754 7.19762359 6.29 -5.371 0.0015
## time min = 105:
## contrast estimate SE df t.ratio p.value
## I - M -42.8111049 7.19762359 6.30 -5.948 0.0008
##
## time min = 120:
## contrast estimate SE df t.ratio p.value
## I - M -45.5392005 7.19762359 4.51 -6.327 0.0021
##
## time_min = 135:
## contrast estimate SE df t.ratio p.value
## I - M -46.5056391 7.19762359 6.28 -6.461 0.0005
##
## time_min = 150:
## contrast estimate SE df t.ratio p.value
## I - M -53.1186286 7.19762359 6.24 -7.380 0.0003
## Note: contrasts are still on the ( scale
## Degrees-of-freedom method: satterthwaite
```

Statistically significant differences were found in the CO2 respiration rate in each time between immature and mature Hexachlamys edulis fruits.

Comparison chart

Fitted model plot

