Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{i}{k(1+2k^2)(r_1-2r_3-r_5)}$	$\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$	0	$\frac{1}{\frac{-r_1+2r_3+r_5}{(1+2k^2)^2}} + \frac{6k^2}{t_1}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	$\frac{1}{\frac{-r_1+2r_3+r_5}{2(k+2k^3)^2}}$	0	$-\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{k^2 (-r_1 + 2 r_3 + r_5)}$	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	0	$\frac{i}{k(1+2k^2)(-r_1+2r_3+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\!$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} \dagger^{lphaeta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$t_1^{#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_1^{\#1} +^{\alpha}$	$t_1^{#2} + ^{\alpha}$

	$\omega_{1}^{\sharp 1}{}_{lphaeta}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-}\alpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1}$ † lpha	0	0	0	$k^2 \left(-r_1 + 2 r_3 + r_5 \right) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u> </u>
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3} \bar{i} k t_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1}\dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\tau_{0}^{\#2} == 0$	1			
$\tau_{0}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{i}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5			
Total constraints:	16			

0	0	$k^2 r_1 + \frac{t_1}{2}$
$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0
$_{2}^{#1}$ $+^{\alpha\beta}$	$_{2}^{#1}$ $+^{\alpha\beta}$	$\omega_{2}^{#1} +^{\alpha\beta\chi}$
	$\frac{t_1}{2}$	$\frac{t_1}{2} - \frac{\sqrt{2}}{\sqrt{2}}$

	$ au_0^{\sharp}$	^{‡2} †	0			0	0	
	$\sigma_{\scriptscriptstyle m C}^{\scriptscriptstyle \#}$	^{‡1} †	0			0	0	
						_		
	$\omega_{0}^{\#1}$	0	0	0	7	-61		
:	$f_{0}^{\#1} f_{0}^{\#2}$	0	0	0	C)		
	$f_{0}^{\#_{\perp}}$	0	0	0	0	0		
		(

0

0

•				
$f_{0}^{#2}$	0	0	0	0
$f_{0}^{\#1}$	0	0	0	0
$\omega_0^{\#1}$	$6 k^2 (-r_1 + r_3)$	0	0	0
	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_{0}^{#2}$ †	$\omega_{0}^{\#1} \dotplus$

Massive and massless spectra

Quadratic pole				
Pole residue:	$\frac{1}{(r_1 - 2r_3 - r_5)t_1^2} > 0$			
Polarisations:	2			

Unitarity conditions

 $r_1 < 0 \&\& r_5 < r_1 - 2 r_3 \&\& t_1 > 0$