Esercitazioni I

Docente: Fabio Zanasi, Tutor: Melissa Antonelli

melissa.antonelli2@unibo.it

1 Marzo 2023

Prima di iniziare

- Esercitazioni: (alcuni) mercoledì 9:15-11:35 (pausa 10:30).
- Esercizi scaricabili da virtuale e presentati in slide.
- Svolgete gli esercizi autonomamente ma per ogni dubbio chiedete alla tutor.
- Alcune soluzioni verranno presentate in slide.
- Dal pomeriggio troverete le soluzioni su virtuale.
- Per ulteriori dubbi: melissa.antonelli2@unibo.it.

Sulla Codifica

Quesito 1.

Cosa si intende per codifica di un problema di decisione? Quali proprietá deve rispettare?

Problema 1.

Siano *x* una variabile, *a*, *b*, *c* interi e:

$$q(x) = ax^2 + bx + c.$$

Consideriamo il problema decisionale dato dall'insieme di quadratiche su interi avente risposta SI quando esiste un intero x tale che q(x) = 0.

Presentare un *sistema di codifica* per processare questo problema tramite TM.

Problema 1.

Siano *x* una variabile, *a*, *b*, *c* interi e:

$$q(x) = ax^2 + bx + c.$$

Consideriamo il problema decisionale dato dall'insieme di quadratiche su interi avente risposta SI quando esiste un intero x tale che q(x) = 0.

Presentare un *sistema di codifica* per processare questo problema tramite TM.

Suggerimento.

Ogni quadratica considerata é definita da tre interi a, b, e c, quindi é sufficiente un sistema di codifica per tre interi consecutivi.

Abbiamo visto che...

 Per calcolare la risposta al problema decisionale serve un programma che riceva in input dati di tipo corretto e restituisca output SI/NO.

- Per calcolare la risposta al problema decisionale serve un programma che riceva in input dati di tipo corretto e restituisca output SI/NO.
- * Le TM calcolano funzioni $\mathbb{N}^k \to \mathbb{N}$.

- Per calcolare la risposta al problema decisionale serve un programma che riceva in input dati di tipo corretto e restituisca output SI/NO.
- * Le TM calcolano funzioni $\mathbb{N}^k \to \mathbb{N}$.
- Quindi, dobbiamo codificare il problema decisionale come funzione caratteristica di un linguaggio formale.

- Per calcolare la risposta al problema decisionale serve un programma che riceva in input dati di tipo corretto e restituisca output SI/NO.
- * Le TM calcolano funzioni $\mathbb{N}^k \to \mathbb{N}$.
- Quindi, dobbiamo codificare il problema decisionale come funzione caratteristica di un linguaggio formale.
- Dato un alfabeto Σ, un linguaggio formale é un sottoinsieme di Σ*.

- Per calcolare la risposta al problema decisionale serve un programma che riceva in input dati di tipo corretto e restituisca output SI/NO.
- * Le TM calcolano funzioni $\mathbb{N}^k \to \mathbb{N}$.
- Quindi, dobbiamo codificare il problema decisionale come funzione caratteristica di un linguaggio formale.
- Dato un alfabeto Σ, un linguaggio formale é un sottoinsieme di Σ*.
- * La funzione caratteristica di $L \in \chi_L : \Sigma^* \to \{0, 1\}$ tale che:

$$\chi_L(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{altrimenti.} \end{cases}$$

- Per calcolare la risposta al problema decisionale serve un programma che riceva in input dati di tipo corretto e restituisca output SI/NO.
- * Le TM calcolano funzioni $\mathbb{N}^k \to \mathbb{N}$.
- Quindi, dobbiamo codificare il problema decisionale come funzione caratteristica di un linguaggio formale.
- Dato un alfabeto Σ, un linguaggio formale é un sottoinsieme di Σ*.
- * La funzione caratteristica di $L \in \chi_L : \Sigma^* \to \{0, 1\}$ tale che:

$$\chi_L(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{altrimenti.} \end{cases}$$

$$dato \ \alpha \quad \stackrel{\text{schema di codifica}}{\Rightarrow} \quad code(\alpha) \in \Sigma^*$$

Abbiamo visto che...

Linguaggio che codifica problema di decisione é:

$$L = \{x \in \Sigma^* \mid x = \mathsf{code}(\alpha)\mathsf{per} \ \mathsf{dato} \ \alpha \ \mathsf{e} \ \alpha \mathsf{istanza} \ \mathsf{positiva} \ \mathsf{del} \ \mathsf{problema} \}$$

- * Proprietá di code:
 - se $\alpha \neq \beta$, allora code(α) \neq code(β)
 - possiamo verificare se $x \in \Sigma^*$ é code(α), per qualche α
 - possiamo calcolare α a partire da code(α).

Soluzione 1.

Sistema di codifica con alfabeto $\Sigma = \{0, 1\}$:

- ogni n (positivo) é codificato da stringa di 1 di lunghezza n
- ▶ ogni −n (negativo) é codificato da uno 0 seguito da una stringa di 1 di lunghezza n
- 0 é codificato da 000
- la tripla é codificata dalle codifiche di ciascuno dei suoi elementi separate da 0.

Soluzione 1.

Sistema di codifica con alfabeto $\Sigma = \{0, 1\}$:

- ogni n (positivo) é codificato da stringa di 1 di lunghezza n
- ▶ ogni −n (negativo) é codificato da uno 0 seguito da una stringa di 1 di lunghezza n
- 0 é codificato da 000
- la tripla é codificata dalle codifiche di ciascuno dei suoi elementi separate da 0.

Esempio

La quadratica $x^2 - 2x + 3$ é codificata dalla striga:

Soluzione 1.

Sistema di codifica con alfabeto $\Sigma = \{0, 1\}$:

- ogni n (positivo) é codificato da stringa di 1 di lunghezza n
- ▶ ogni −n (negativo) é codificato da uno 0 seguito da una stringa di 1 di lunghezza n
- 0 é codificato da 000
- la tripla é codificata dalle codifiche di ciascuno dei suoi elementi separate da 0.

Esempio.

La quadratica $x^2 - 2x + 3$ é codificata dalla striga:

100110111.

Problema 2.1 Problema 2.2 Problema 2.3

Macchine di Turing

Quesito 2.

Definisci intuitivamente e formalmente la TM standard.

Problema 2.1.

Considera l'alfabeto $\Sigma = \{0, 1\}$ e definisci una TM tale che:

- * se la stringa in input contiene 101, si ferma e accetta l'input
- * altrimenti, rifiuta l'input.

Soluzione 2.1.

Problema 2.2.

Rappresenta una TM che decide il linguaggio delle stringhe dispari su alfabeto $\Sigma = \{1\}.$

Soluzione 2.2.

Problema 2.3.

Sia l'alfabeto Σ costituito da a, b, c.

- a. Definisci una TM \mathcal{T} tale che:
 - * quando l'input contiene ab, si fermi e accetti l'input;
 - altrimenti, si fermi e rigetti l'input.

(Sia l'input la stringa finita di caratteri in Σ seguita da \sqcup .)

Problema 2.3.

Sia l'alfabeto Σ costituito da a, b, c.

- a. Definisci una TM \mathcal{T} tale che:
 - * quando l'input contiene ab, si fermi e accetti l'input;
 - * altrimenti, si fermi e rigetti l'input.

(Sia l'input la stringa finita di caratteri in Σ seguita da \sqcup .)

b. Quale $regular\ expression$ descrive il linguaggio deciso da \mathcal{T} ?

Soluzione 2.3.

Soluzione 2.3.

Le espressioni che descrivono il linguaggio deciso da $\mathcal T$ sono della forma:

$$(a|b|c)^*ab(a|b|c)^*$$
.

Linguaggi Decidibili e Riconoscibili

Quesito 3.

Cosa si intende per linguaggio decidibile? E per linguaggio riconoscibile?

Problema 3.

Esiste un linguaggio che sia decidibile ma non riconoscibile?

Linguaggi Decidibili e Riconoscibili

Linguaggi Decidibili e Riconoscibili

Abbiamo visto che...

* un linguaggio L si dice decidibile quando esiste una TM che decide L

Linguaggi Decidibili e Riconoscibili

- st un linguaggio L si dice decidibile quando esiste una TM che decide L
- * un linguaggio L si dice *riconoscibile* quando esiste una TM che semi-decide L (cioé si ferma per ogni input $x \in L$ e non si ferma per ogni input $x \notin L$).

Soluzione 3.

No.

Soluzione 3.

No.

Assumiamo per assurdo tale L esista. Per decidibilitá deve esistere una TM $\mathcal M$ che decide L. In $\mathcal M$ sostituiamo lo stato N con loop infinito. Per definizione, questa nuova TM $riconosce\ L$, da cui si ha contraddizione.

Esistono invece linguaggi riconoscibili ma non decidibili.

Halting Problem

Quesito 4.

Enuncia la tesi di Church-Turing. Perché in questo contesto la TM é un modello computazionale concettualmente rilevante? Sapresti indicare almeno due modelli equivalenti alla TM standard?

Problema 4.

Dimostra per assurdo che *HALT*⁻ non é riconoscibile da una TM.

Halting Problem

Abbiamo visto che...

il linguaggio del problema della fermata

$$\mathsf{HALT} = \{ \langle y, x \rangle \in \Sigma^* \times \Sigma^* \mid y = \mathsf{code}(\mathcal{M}) \& \mathcal{M} \text{ ferma su } x \}$$

non é decidibile

il complemento di HALT,

$$\begin{aligned} \mathsf{HALT}^- &= \{ \langle y, x \rangle \in \Sigma^* \times \Sigma^* \mid y \neq \mathsf{code}(\mathcal{M}) \; \mathsf{per} \; \mathsf{ogni} \; \mathcal{M} \; \mathsf{or} \\ y &= \mathsf{code}(\mathcal{M}) \; \& \; \mathcal{M} \; \mathsf{non} \; \mathsf{ferma} \; \mathsf{su} \; x \}. \end{aligned}$$

non é riconoscibile.

Suggerimento.

La dimostrazione é per assurdo. Assumi $HALT^-$ sia riconoscibile quindi esista TM \mathcal{M}_{H^-} che lo riconosce.

Suggerimento.

La dimostrazione é per assurdo. Assumi $HALT^-$ sia riconoscibile quindi esista TM \mathcal{M}_{H^-} che lo riconosce. Definiamo nuova TM \mathcal{M}'' tale che, per ogni $z \in \Sigma^*$, esegue \mathcal{M}_{H^-} su $\langle z,z \rangle$ e si ferma se la macchina si ferma; altrimenti entra in loop.

Soluzione 4.

Assumi \mathcal{M}_{H^-} si fermi su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle$.

Soluzione 4.

Assumi \mathcal{M}_{H^-} si fermi su $\langle \mathsf{code}(\mathcal{M}''), \mathsf{code}(\mathcal{M}'') \rangle$. Per Df. di \mathcal{M}'' , \mathcal{M}'' si ferma su $\mathsf{code}(\mathcal{M}'')$.

Soluzione 4.

Assumi \mathcal{M}_{H^-} si fermi su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle$. Per Df. di \mathcal{M}'' , \mathcal{M}'' si ferma su $\operatorname{code}(\mathcal{M}'')$. Per Df. di HALT^- , $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle \not\in \operatorname{HALT}^-$.

Soluzione 4.

Assumi \mathcal{M}_{H^-} si fermi su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle$. Per Df. di \mathcal{M}'' , \mathcal{M}'' si ferma su $\operatorname{code}(\mathcal{M}'')$. Per Df. di HALT^- , $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle \not\in \mathit{HALT}^-$. Per Df. di \mathcal{M}_{H^-} , \mathcal{M}_{H^-} non si ferma su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle$.

Soluzione 4.

Assumi \mathcal{M}_{H^-} si fermi su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle$. Per Df. di \mathcal{M}'' , \mathcal{M}'' si ferma su $\operatorname{code}(\mathcal{M}'')$. Per Df. di HALT^- , $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle \not\in \mathit{HALT}^-$. Per Df. di \mathcal{M}_{H^-} , \mathcal{M}_{H^-} non si ferma su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle$. \Rightarrow Contraddizione.

Assumi \mathcal{M}_{H^-} non si fermi su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}\mathcal{M}'' \rangle$.

Assumi \mathcal{M}_{H^-} non si fermi su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}\mathcal{M}'' \rangle$. Per Df. di $\mathcal{M}'', \mathcal{M}''$ non si ferma su $\operatorname{code}(\mathcal{M}'')$.

Assumi \mathcal{M}_{H^-} non si fermi su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle$. Per Df. di $\mathcal{M}'', \mathcal{M}''$ non si ferma su $\operatorname{code}(\mathcal{M}'')$. Per Df. di HALT^- , $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle \in \operatorname{HALT}^-$.

Soluzione 4. (continua)

Assumi \mathcal{M}_{H^-} non si fermi su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle$. Per Df. di $\mathcal{M}'', \mathcal{M}''$ non si ferma su $\operatorname{code}(\mathcal{M}'')$. Per Df. di HALT^- , $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle \in \operatorname{HALT}^-$. Per Df. di \mathcal{M}_{H^-} concludiamo che \mathcal{M}_{H^-} si ferma su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle$.

Soluzione 4. (continua)

Assumi \mathcal{M}_{H^-} non si fermi su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}\mathcal{M}'' \rangle$. Per Df. di $\mathcal{M}'', \mathcal{M}''$ non si ferma su $\operatorname{code}(\mathcal{M}'')$. Per Df. di HALT^- , $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle \in \operatorname{HALT}^-$. Per Df. di \mathcal{M}_{H^-} concludiamo che \mathcal{M}_{H^-} si ferma su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle$. \Rightarrow Contraddizione.

Assumi \mathcal{M}_{H^-} non si fermi su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}\mathcal{M}'' \rangle$. Per Df. di $\mathcal{M}'', \mathcal{M}''$ non si ferma su $\operatorname{code}(\mathcal{M}'')$. Per Df. di HALT^- , $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle \in \operatorname{HALT}^-$. Per Df. di \mathcal{M}_{H^-} concludiamo che \mathcal{M}_{H^-} si ferma su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle$. \Rightarrow Contraddizione.

L'unica assunzione per costruire \mathcal{M}'' é l'esistenza di una TM \mathcal{M}_{H^-} che riconosce HALT^- .

Assumi \mathcal{M}_{H^-} non si fermi su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle$. Per Df. di $\mathcal{M}'', \mathcal{M}''$ non si ferma su $\operatorname{code}(\mathcal{M}'')$. Per Df. di HALT^- , $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle \in \operatorname{HALT}^-$. Per Df. di \mathcal{M}_{H^-} concludiamo che \mathcal{M}_{H^-} si ferma su $\langle \operatorname{code}(\mathcal{M}''), \operatorname{code}(\mathcal{M}'') \rangle$. \Rightarrow Contraddizione.

L'unica assunzione per costruire \mathcal{M}'' é l'esistenza di una TM \mathcal{M}_{H^-} che riconosce HALT^- .

Poiché \mathcal{M}_{H^-} non esiste, $HALT^-$ non é riconoscibile.