Supplementary Materials: Derivation of a Dynamic Model for Palmitate-induced NF κ B Signaling Pathway through Systems Biology Approach

Dongheon Lee, Yufang Ding, Arul Jayaraman, and Joseph Sang-Il Kwon

TABLE I: Model Equations for the AMPK-SIRT1 regulation model

```
\frac{dNAD^{+}}{dt} = k_{gn} + k_{gne} \frac{pAMPK}{pAMPK + K_{gne}} - 7k_{bo} \cdot pAMPK \frac{Pal}{Pal + K_{bo}} - k_{c1} \cdot NAD^{+} + k_{c2} \cdot NADH - NAD^{+} \frac{v_{dnad}}{NAD^{+} + K_{dnad}} - k_{dn} \cdot NAD^{+} \frac{dNADH}{dt} = 7k_{bo} \cdot pAMPK \frac{Pal}{Pal + K_{bo}} + k_{c1} \cdot NAD^{+} - k_{c2} \cdot NADH
\frac{dPal_{o}}{dt} = -k_{tran} \cdot Pal_{o}
\frac{dPal_{o}}{dt} = -k_{tran} \cdot Pal_{o} - k_{bo} \cdot pAMPK \frac{pAMPK}{pAMPK + K_{bo}} - k_{dc} \cdot \frac{Pal}{Pal + K_{dc}} + k_{ps}
\frac{dCer}{dt} = k_{dc} \frac{Pal}{Pal + K_{dc}} - k_{sc} \cdot Cer + k_{cs}
\frac{dPAMPK}{dt} = -(k_{aa} + K_{1max} \frac{Cer}{Cer + K_{1}}) \cdot PP2A \frac{pAMPK}{pAMPK + K_{M}} - k_{a2c} \cdot PP2C \frac{pAMPK}{pAMPK + K_{M}}
+ (k_{p} + k_{spmax} \frac{SIRT1}{SIRT1 + K_{sp}}) \cdot (AMPK_{t} - pAMPK)
\frac{dPP2C}{dt} = k_{syn} + k_{synmax} \frac{TNFRa}{TNFRa + K_{2}} - k_{d1} \cdot PP2C
\frac{dNF\kappa Ba}{dt} = -a_{1} \cdot k_{v} \cdot I\kappa Bn \cdot NF\kappa Ba + k_{ac} \cdot NF\kappa Bn - (k_{da} + k_{damax} \frac{SIRT1}{SIRT1 + K_{da}})NF\kappa Ba
\frac{dNF\kappa Bn}{dt} = i_{1}NF\kappa B - a_{1} \cdot k_{v} \cdot I\kappa Bn (NF\kappa Bn + NF\kappa Ba) - e_{2a} \cdot NF\kappa Bn - I\kappa Ba
\frac{dNF\kappa Bn - I\kappa Bn}{dt} = a_{1} \cdot k_{v} \cdot I\kappa Bn (NF\kappa Bn + NF\kappa Ba) - e_{2a} \cdot NF\kappa Bn - I\kappa Ba
```

TABLE II: Model parameters in the AMPK-SIRT1 regulation model

k_{gn}	constitutive NAD^+ generation rate constant	k_{gne}	rate constant of NAD^+ generation due to pAMPK
\check{K}_{gne}	Michaelis constant of pAMPK-induced NAD^+ generation	k_{bo}	palmitate oxidation rate constant
K_{bo}	Michaelis constant of palmitate oxidation	k_{c1}	rate constant for conversion from NAD^+ to NADH
k_{c2}	rate constant for conversion from NADH to NAD^+	v_{dad}	maximum degradation rate for NAD^+
K_{dnad}	Michaelis constant for NAD^+ degradation	k_{dn}	nonspecific degradation rate constant
k_{tran}	rate constant of palmitate translocation to cytoplasm	k_{dc}	ceramide generation rate constant from palmitate
K_{dc}	Michaelis constant for ceramide degradation	k_{ps}	constitutive palmitate synthesis rate constant
k_{sc}	ceramide degradation rate constant	k_{cs}	constitutive ceramide synthesis rate constant
k_{aa}	PP2A-induced AMPK dephosphorylation rate constant	K_{1max}	maximum AMPK dephosphorylation rate due to ceramide
K_1	Michaelis constant for Cer-induced AMPK dephosphorylation	k_{a2c}	PP2C-induced AMPK dephosphorylation rate constant
K_M	Michaelis constant for PP2C-induced AMPK dephosphorylation	k_p	constitutive AMPK phosphorylation rate constant
k_{spmax}	SIRT1-induced AMPK phosphorylation rate constant	K_{sp}	Michaelis constant for SIRT1-induced AMPK phosphorylation
k_{syn}	constitutive PP2C synthesis rate constant	k_{synmax}	maximum PP2C synthesis rate enhanced by TNFRa
K_2	Michaelis constant for TNFRa-induced PP2C synthesis	k_{d1}	PP2C degradation rate constant
k_{da}	constitutive NF κ B deacetylation rate	k_{damax}	maximum SIRT1-induced NF κ B deactylation rate
K_{da}	Michaelis constant for SIRT1-induced NF κ B deactylation	PP2A	the number of PP2A molecules