3D Vision 1

Week 7

Image Formation
Camera Projection Matrix

Announcements

- Assignment 2 due in one week (11:59pm Friday 26 April)
 - This includes a one week extension that has already been applied
 - **Zero** marks if either report or code submitted late (unless extension)
 - Submit early; you can always resubmit an updated version later
 - Depending on your internet connection and load on the TurnItIn servers, uploading can sometimes be slow, so please factor this into your submission schedule
 - Submit your report (PDF) and code (ZIP file) separately under the correct tab in the submission box
 - Follow the instructions under Submission Requirements

Announcements

 Public holiday Thursday 25 April: Thursday lab rescheduled at 13:00-15:00 Tuesday Rm 109 CSIT Building

Weekly Study Plan: Overview

Wk	Starting	Lecture	Lab	Assessment
1	19 Feb	Introduction	Х	
2	26 Feb	Low-level Vision 1	1	
3	4 Mar	Low-level Vision 2	1	
4	11 Mar	Mid-level Vision 1 Mid-level Vision 2	1	CLab1 report due Friday
5	18 Mar	High-level Vision 1 High-level Vision 2	2	
6	25 Mar	High-level Vision 3 ¹	2	
	1 Apr	Teaching break	X	
	8 Apr	Teaching break	X	
7	15 Apr	3D Vision 1	2	CLab2 report due Friday
8	22 Apr	3D Vision 2	3	
9	29 Apr	3D Vision 3	3	
10	6 May	3D Vision 4	3	
		Mid-level Vision 3		
11	13 May	High-level Vision 4	X	CLab3 report due Friday
12	20 May	Course Review	Х	

Weekly Study Plan: Part B

Wk	Starting	Lecture	Ву
7	15 Apr	3D vision: introduction, camera model, single-view geometry	Dylan
8	22 Apr	3D vision: camera calibration, two-view geometry (homography)	Dylan
9	29 Apr	3D vision: two-view geometry (epipolar geometry, triangulation, stereo)	Dylan
10	6 May	3D vision: multiple-view geometry	Weijian
		Mid-level vision: optical flow, shape-from-X	Dylan
11	13 May	High-level vision: self-supervised learning, detection, segmentation	Dylan
12	20 May	Course review	Dylan

Outline

- 1. Introduction to 3D vision
- 2. Model fitting (line fitting)
 - 1. Least squares
 - 2. M-estimation
 - 3. RANSAC
 - 4. Hough transform
- 3. Image formation (review): pinhole camera model
- 4. Camera projection matrix and single view geometry
- 5. Camera calibration
- 6. Resectioning and camera pose

Hough Transform

Fitting Multiple Lines Using a Hough Transform

 Given a binary edge image, find the lines (or curves) that explain the data points best in the parameter space

This parameter space is called a Hough space

A point (x_1, y_1) is mapped to a line in Hough space

A point (x_2, y_2) is mapped to a line in Hough space

The intersection point

A point (x_3, y_3) is mapped to a line in Hough space

Hough Transform: Accumulator

- For each pixel, draw a line in the discretised Hough space, assigning a value of one to all the discretised positions it passes through
- Process all image pixels

Hough Transform

- Can detect multiple lines in an image
 - from multiple local maxima
- Can easily be extended for circles and ellipses
- Computationally efficient
- Problem: (m, b) are unbounded
 - E.g., the slope parameter *m* can have an infinite value

Hough Transform: Polar Form

Use a polar representation for the parameter space

•
$$x\cos\theta + y\sin\theta = \rho \rightarrow y = -\frac{\cos\theta}{\sin\theta}x + \frac{\rho}{\sin\theta}$$
 $(0 \le \theta \le 180^{\circ})$

• Note: ρ can have a positive or negative value

A point (x_1, y_1) is mapped to a sinusoid in the polar parameter space

$$p = x_1 \cos \theta + y_1 \sin \theta$$

$$= \alpha_1 \sin(\theta + \beta_1)$$

$$= \alpha_1 \sin \beta_1 \cos \theta + \alpha_1 \cos \beta_1 \sin \theta$$

$$= \alpha_1 \sin \beta_1 \cos \theta + \alpha_1 \cos \beta_1 \sin \theta$$

$$\alpha_1 = \sqrt{x_1^2 + y_1^2}$$

$$\sin \beta_1 = \frac{x_1}{\sqrt{x_1^2 + y_1^2}}$$

$$\cos \beta_1 = \frac{y_1}{\sqrt{x_1^2 + y_1^2}}$$

$$\beta_1 = \tan^{-1} \frac{x_1}{y_1}$$
Parameter (Hough) space
$$0 \le \theta \le 180^{\circ}$$

A point (x_2, y_2) is mapped to a sinusoid in the polar parameter space

A point (x_3, y_3) is mapped to a sinusoid in the polar parameter space

Issue: the grid size needs to be adjusted...

Hough Transform: 1) Image -> Canny Edges

Hough Transform: 2) Canny Edges -> Votes

Hough Transform: 3) Votes -> Lines

threshold + non-maximum suppression

Find peaks and post-process

24

Hough Transform: Pros and Cons

Pros:

- All points processed independently, so can cope with occlusion
- Some robustness to noise: noisy points are unlikely to contribute consistently to any single bin
- Can detect multiple instances of line/circle/ellipse in a single pass

Cons:

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- Quantization: hard to pick a grid size

Image Formation (Review)

Pinhole Camera Model

Photometric Image Formation

Pinhole Camera

Lensed Camera

- A lens focuses light onto the film: captures more light
- Rays passing through the centre do not deviate

Pinhole Camera Model

- Pinhole camera is an abstract model to approximate the imaging process: perspective projection
- If we treat the pinhole as a point, only one ray from any given point can enter the camera

Camera Projection Matrix and Single View Geometry

Homogeneous Coordinates

from Cartesian to homogeneous

- To homogeneous: $(x,y) \to (x,y,1)$ $(x,y,z) \to (x,y,z,1)$
- From homogeneous: $(x,y,w) \to (x/w,y/w)$ $(x,y,z,w) \to (x/w,y/w,z/w)$ from homogeneous to Cartesian

• Invariant to scaling:
$$k \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} kx \\ ky \\ kw \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{kx}{kw} \\ \frac{ky}{kw} \end{bmatrix} = \begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \end{bmatrix}$$

Homogeneous Cartesian

 A point in Cartesian coordinates is a ray in homogeneous coords k in (-inf, +inf)

Perspective Projection

Perspective Projection

in camera coordinate

By similar triangles:

$$u = f \frac{x}{z}$$

$$v = f \frac{y}{z}$$

Perspective Projection

- $(x, y, z) \mapsto (\frac{fx}{z}, \frac{fy}{z})$ In Catesian coord: 3D \rightarrow 2D
- Using homogeneous coordinates:

2D:
$$(\frac{fx}{z}, \frac{fy}{z}) \mapsto (\frac{fx}{z}, \frac{fy}{z}, 1) = (fx, fy, z)$$

3D: $(x, y, z) \mapsto (x, y, z, 1)$
Cart. Homo.
• Linear projection in homogeneous coordinates!

In homogeneous coord: $3D \rightarrow 2D$

Perspective Projection

= 3×4 homogeneous camera projection matrix

Principal Point

• The point where the principal axis intersects with the image plane

Principal Point Offset

https://au.mathworks.com/help/vision/ug/camera-calibration.html

• So far, we have assumed that the origin of points in the image plane is at principal point

However, origin is often elsewhere (e.g., at image corner)

• Inhomogeneous: $(X,Y,Z) \mapsto (fX/Z + p_x, fY/Z + p_y)$

• Homogeneous: $\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX + Zp_x \\ fY + Zp_y \\ Z \end{pmatrix} = \begin{bmatrix} f & \text{proj. mat.} \\ p_x & 0 \\ p_y & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$

Camera (Intrinsic) Calibration Matrix

x_world (homo) x_img (homo) $\begin{pmatrix} fX + Zp_{\chi} \\ fY + Zp_{y} \end{pmatrix} = \begin{bmatrix} f & p_{\chi} & 0 \\ f & p_{y} & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$ calibration matrix $= \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} A \\ Y \\ Z \end{pmatrix}$ $=\mathbf{K}[I\mid 0]\mathbf{X}$ $\mathbf{K} = \begin{bmatrix} f & p_x \\ f & p_y \end{bmatrix} = \begin{array}{c} \text{camera} \\ \text{calibration matrix} \end{array}$

Rectangular Pixels: CCD Cameras

Charge-Coupled Device (CCD)

• From image plane to pixel coordinates

$$\mathbf{K} = \begin{bmatrix} \alpha_x & x_0 \\ & \alpha_y & y_0 \\ & 1 \end{bmatrix} = \begin{bmatrix} m_x \\ & m_y \\ & 1 \end{bmatrix} \begin{bmatrix} f & p_x \\ & f & p_y \\ & 1 \end{bmatrix}$$

$$\begin{cases} x_0 = m_x p_x \text{ offsets} \times \text{\#pixels per offset} \\ y_0 = m_y p_y \\ \alpha_x = m_x f \end{cases} \text{, with } \begin{cases} m_x = \text{\# pixels / unit distance along x on the} \\ m_y = \text{\# pixels / unit distance along y image plane} \end{cases}$$

Camera Parameters

World coordinates Pixel coordinates [XYZ][x y]Rigid Projective 3-D to 3-D 3-D to 2-D Extrinsic parameters Intrinsic parameters

- So far: intrinsic camera parameters

 - How to map spatial directions to pixel coordinates

 p_x, p_y (offsets)
 m_x, m_y

 Focal length, principal point, pixel width/height

$$\mathbf{K} = \begin{bmatrix} \alpha_{\chi} & x_0 \\ & \alpha_{y} & y_0 \\ & 1 \end{bmatrix} = \begin{bmatrix} m_{\chi} & \\ & m_{y} \\ & 1 \end{bmatrix} \begin{bmatrix} f & p_{\chi} \\ & f & p_{y} \\ & 1 \end{bmatrix}$$

- What else? Extrinsic camera parameters
 world → cam
 How to transform a 3D point into the camera frame

 - Depends on the camera rotation and translation

Extrinsic Parameters

The extrinsic parameters consist of a rotation, R, and a translation, t. The origin of the camera's coordinate system is at its optical center and its x- and y-axis define the image plane.

Intrinsic Parameters

The intrinsic parameters include the focal length the optical center also known as the principal point, and the skew coefficient. The camera intrinsic matrix, K, is defined as:

$$\begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

The pixel skew is defined as:

 $\begin{bmatrix} c_x & c_y \end{bmatrix}$ — Optical center (the principal point), in pixels.

 (f_x, f_y) – Focal length in pixels.

 $f_x = F/p_x$

 $f_{\rm v} = F/p_{\rm v}$

F — Focal length in world units, typically expressed in millimeters.

 (p_x, p_y) – Size of the pixel in world units.

s — Skew coefficient, which is non-zero if the image axes are not perpendicular.

 $s = f_x \tan \alpha$

Extrinsic Camera Parameters

- Camera rotation and translation
- R: Rotation matrix
 - Orthogonal + unit determinant
 - SO(3)
- C: Camera centre (vector) C_world
 - Location of the camera in the world coordinate system (X_world - C_world)
- $X_{cam} = R(X C)$ (in camera coordinates)

World coordinates

•
$$X_{cam} = \begin{bmatrix} \mathbf{R} & -\mathbf{RC} \\ 0 & 1 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{RC} \\ 0 & 1 \end{bmatrix} X_{world}$$
 (in homogeneous coordinates)

ixel coordinates

Rotation About Coordinate Axes in 3D

- Express 3D rotation as series of rotations around coordinate coordinate axes by angles α, β, γ
- The overall rotation is the product of these elementary rotations:
- $\mathbf{R} = \mathbf{R}_{x}\mathbf{R}_{y}\mathbf{R}_{z}$ rotation matrix
- They describe clockwise rotations

$$\mathbf{R}_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$\mathbf{R}_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$\mathbf{R}_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Complete Camera Matrix

```
3*1 (homo)
                                     4*1 (homo)
X_img
                                       X_cam
   \bullet \mathbf{x} = \mathbf{K}[\mathbf{I} \mid 0] \mathbf{X}_{cam}
                     3*3 K (intrinsic)
                                                                 x_0 = m_x p_x offsets \times #pixels per offset
           Camera
                          Camera
                                                               \begin{cases} y_0=m_yp_y\\ \alpha_x=m_xf \end{cases} , with \begin{cases} m_x=\text{\# pixels / unit distance along x on the}\\ m_y=\text{\# pixels / unit distance along y image plane}\\ \alpha_y=m_yf \end{cases}
                         extrinsics
          intrinsics
             3*3
                      - 3x4 projective camera matrix
```

Camera (Intrinsic) Calibration Matrix

• K is a 3×3 upper triangular matrix, the "camera calibration matrix"

$$\mathbf{K} = \begin{bmatrix} \alpha_x & x_0 \\ \alpha_y & y_0 \\ 1 \end{bmatrix}$$
 measured by # pixels

- Four parameters:
 - The scaling in the image x and y directions, α_x and α_y
 - The principal point (x_0, y_0) , which is the point where the optical axis

intersects the image plane

• The aspect ratio is
$$\alpha_y/\alpha_x$$

$$\begin{cases} x_0 = m_x p_x \text{ offsets} \times \text{\#pixels per offset} \\ y_0 = m_y p_y \\ \alpha_x = m_x f \\ \alpha_y = m_y f \end{cases}$$
, with
$$\begin{cases} m_x = \text{\# pixels / unit distance along x on the} \\ m_y = \text{\# pixels / unit distance along y image plane} \end{cases}$$

Radial Lens Distortion

Radial distortion occurs when light rays bend more near the edges of a lens than they do at its optical center. The smaller the lens, the greater the distortion.

- There is no such thing as a perfect lens
- Straight lines are no longer straight!

http://foto.hut.fi/opetus/260/luennot/11/atkinson_6-11_radial_distortion_zoom_lenses.jpg

Radial Lens Distortion

- Due to spherical lenses (cheaper)
 - Barrel distortion
 - Image magnification decreases with distance from optical axis
 - Pincushion distortion
 - Image magnification increases with distance from optical axis
 - Mustache distortion
 - A mixture of both types

Radial Lens Distortion

- Model for radial distortion:
 - Change based on distance of point on image plane from principal point
 If x = PX_{world} = KR[I | -C]X_{world} = K[I | 0]X_{cam}

$$= \mathbf{K} \begin{bmatrix} X/Z \\ Y/Z \\ 1 \end{bmatrix} = \mathbf{K} \begin{bmatrix} x_{cam} \\ y_{cam} \\ 1 \end{bmatrix}$$

$$= \mathbf{K} \begin{bmatrix} X/Z \\ Y/Z \end{bmatrix} = \mathbf{K} \begin{bmatrix} x_{cam} \\ y_{cam} \\ 1 \end{bmatrix} \qquad X_{cam} = \begin{bmatrix} \mathbf{R} & -\mathbf{RC} \\ 0 & 1 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{RC} \\ 0 & 1 \end{bmatrix} X \text{ (in homogeneous coordinates)}$$

we change to
$$\mathbf{x} = \mathbf{K} \begin{bmatrix} r \\ r \\ 1 \end{bmatrix} [\mathbf{I} \mid 0] \mathbf{X}_{\mathsf{Cam}}$$
 with $r = 1 + k_1(x_{cam}^2 + y_{cam}^2) + k_2(x_{cam}^2 + y_{cam}^2)^2$ x_cam and y_cam are from homo X_cam when Z=1 (X, Y devided by Z)

Summary: Camera Projection Matrix

- image plane
- ightharpoonup camera centre C
- ightharpoonup principal axis z_{cam}
- ightharpoonup image coordinates $oldsymbol{x}$
- ightharpoonup world coordinates X
- ightharpoonup camera coordinates X_{cam}

Summary: Camera Projection Matrix

- image plane
- lacktriangle camera centre C

 y_{cam}

$$= \begin{bmatrix} m_x f_x & \gamma & m_x p_x \\ 0 & m_y f_y & m_y p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \hat{\boldsymbol{X}} \times_{\text{world}}$$

Next Week

- How to calibrate a perspective camera
- How to find the P matrix
- How to estimate camera focal length, etc.
- The DLT algorithm

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \propto \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$P_{\{3\times 4\}}$$