Propriedades Coligativas

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

2F03

Nível I

PROBLEMA 1.1

2F01

Em uma amostra de água do mar dissolve-se um pouco de sacarose. Considere as proposições.

- 1. A pressão de vapor da água diminui.
- 2. A pressão osmótica da solução aumenta.
- A condutividade elétrica da solução permanece praticamente inalterada.
- 4. A temperatura de congelamento diminui.

Assinale a alternativa que relaciona as proposições corretas.

- A 1, 2 e 3
- **B** 1, 2 e 4
- **c** 1, 3 e 4
- **D** 2, 3 e 4
- **E** 1, 2, 3 e 4

PROBLEMA 1.4

PROBLEMA 1.3

c 100 °C

Dados

102°C

• $k_h(H_2O) = 0.51 \, \text{K kg mol}^{-1}$

2F04

Assinale a alternativa que mais se aproxima da temperatura de congelamento de uma solução $0,2\,\mathrm{mol\,kg}^{-1}$ do analgésico codeína, $C_{18}H_{21}NO_{3}$, em benzeno.

Assinale a alternativa que mais se aproxima da temperatura de ebulição de uma solução 2 mol kg^{-1} de sacarose, $C_{11}H_{22}O_{11}$.

B 99°C

D 101 °C

- **A** 4,0 °C
- **B** 4,5 °C
- **c** 5,0 °C

- **D** 6,0 °C
- **E** 6,5 °C

PROBLEMA 1.2

2F02

Considere as seguintes afirmações sobre equilíbrio de fases e propriedades coligativas.

- 1. A adição de um soluto não volátil a um solvente puro, em uma dada temperatura constante, sempre provoca uma diminuição na pressão de vapor.
- 2. O valor absoluto do abaixamento no ponto de congelamento de uma solução é menor se o soluto dimeriza parcialmente no solvente, comparado ao sistema nas mesmas condições em que não há a dimerização do soluto.
- **3.** A pressão osmótica é a pressão exercida pelas moléculas de soluto sob uma membrana semipermeável.
- **4.** Uma mistura formada por duas substâncias nunca solidifica inteiramente em uma única temperatura.

Assinale a alternativa que relaciona as proposições corretas.

A 1

- B 2
- C 1 e 2

- **D** 1, 2 e 3
- **E** 1, 2 e 4

Dados

- $k_b(C_6H_6) = 5,12 \,\mathrm{K\,kg\,mol}^{-1}$
- $T_{fus}(C_6H_6) = 5.5 \,{}^{\circ}C$

PROBLEMA 1.5

2F05

A adição de $0,24\,\mathrm{g}$ de enxofre a $100\,\mathrm{g}$ de tetracloreto de carbono abaixa o ponto de congelamento do solvente em $0,28\,^\circ\mathrm{C}$. **Assinale** a alternativa com a fórmula molecular das moléculas de enxofre.

- $A S_2$
- B S
- $\mathsf{C} \mathsf{S}_6$

- $D S_8$
- \mathbf{E} S_{12}

Dados

• $k_b(CCl_4) = 29.8 \, \text{K kg mol}^{-1}$

A adição de 250 mg de eugenol, o composto responsável pelo odor do óleo de cravo-da-índia, a 100 g de cânfora, abaixa o ponto de congelamento do solvente em 0,62 °C.

Assinale a alternativa que mais se aproxima da massa molar do eugenol.

- **B** $140 \, \text{g mol}^{-1}$
- $160 \,\mathrm{g} \,\mathrm{mol}^{-1}$
- **D** $180 \,\mathrm{g} \,\mathrm{mol}^{-1}$
- $\mathbf{E} \quad 200 \,\mathrm{g} \,\mathrm{mol}^{-1}$

Dados

• $k_b(C_{10}H_{16}O) = 39,7 \, \text{K kg mol}^{-1}$

PROBLEMA 1.7

2F07

Assinale a alternativa que mais se aproxima da temperatura de ebulição de uma solução 2 mol kg⁻¹ de cloreto de cálcio.

- **A** 102 °C
- **B** 104 °C
- **c** 106 °C
- **D** 108 °C
- **E** 110 °C

Dados

• $k_b(H_2O) = 0.51 \, \text{K kg mol}^{-1}$

PROBLEMA 1.8

2F08

Uma solução de sacarose foi dividida em duas amostras. A primeira amostra foi imediatamente resfriada, sendo $-1\,^{\circ}$ C a temperatura de início de solidificação. Algumas gotas de ácido clorídrico foram adicionadas à segunda amostra e essa foi aquecida a 90 °C por um período de 24 horas, hidrolisando integralmente a sacarose em glicose e frutose. A segunda solução possui temperatura de congelamento $-2\,^{\circ}$ C.

Assinale a alternativa que mais se aproxima da temperatura de fusão do solvente.

- **A** 0 ° C
- **B** 1 ° C
- c 2°C

- **D** 3 ° C
- **E** 4°C

Considere as soluções aquosas.

1. $0,1 \text{ mol } L^{-1} \text{ de KCl}$

PROBLEMA 1.9

- **2.** $0.3 \text{ mol } L^{-1} \text{ de } K_2 SO_4$
- **3.** $0.3 \text{ mol } L^{-1} \text{ de } C_{11}H_{12}O_{11}$
- **4.** $0.6 \, \text{mol} \, L^{-1} \, \text{de} \, CO(NH_2)_2$

Assinale a alternativa com a ordem de pressão osmótica a 20 °C.

- $oxed{D} 1 < 3 < 2 < 4$
- $\boxed{\textbf{E}} \quad 1 < 2 \approx 3 < 4$

PROBLEMA 1.10

2F10

A pressão osmótica devido a 2,2 g de polietileno (PE) dissolvido no benzeno necessário para produzir 100 mL de solução foi 1,1 kPa a 25 $^{\circ}$ C.

Assinale a alternativa que mais se aproxima da massa molar média de polietileno.

- \mathbf{A} 29 kg mol⁻¹
- \mathbf{B} 39 kg mol⁻¹
- \mathbf{c} 49 kg mol⁻¹
- **D** 59 kg mol^{-1}
- \mathbf{E} 69 kg mol⁻¹

PROBLEMA 1.11

2F11

A catalase, uma enzima do fígado, é solúvel em água. A pressão osmótica de 10 mL de uma solução que contém 166 mg de catalase é 1,2 Torr em 20 °C.

Assinale a alternativa que mais se aproxima da massa molar da catalase.

- \mathbf{A} 2,0 kg mol⁻¹
- **B** $2,5 \, \text{kg mol}^{-1}$
- **c** $3.0 \, \text{kg mol}^{-1}$
- \mathbf{D} 3,5 kg mol⁻¹
- \mathbf{E} 4,0 kg mol⁻¹

PROBLEMA 2.1 2F13

Considere as soluções aquosas.

- 1. 10 mmol L^{-1} de HF
- 2. $10 \,\mathrm{mmol}\,\mathrm{L}^{-1}$ de HCl
- 3. $10 \,\mathrm{mmol}\,\mathrm{L}^{-1}$ de HBr
- 4. $10 \,\mathrm{mmol}\,\mathrm{L}^{-1}\,\mathrm{de}\,\mathrm{HI}$

Assinale a alternativa com a ordem de pressão osmótica a 20 °C.

- $B \quad 1 < 2 < 3 \approx 4$
- $1 < 2 \approx 3 \approx 4$
- $\mathbf{E} \mathbf{4} < \mathbf{3} < \mathbf{2} < \mathbf{1}$

PROBLEMA 2.2 2F14

Em um experimento de determinação da massa molar usando o abaixamento do ponto de congelamento, é possível cometer os seguintes erros.

- **1.** Havia poeira na balança, o que fez a massa do soluto parecer maior do que é de fato.
- 2. A água foi medida em volume, pressupondo que sua densidade fosse 1 g cm⁻³, mas a água estava mais quente e menos densa do que o considerado.
- **3.** O termômetro não foi calibrado com precisão e, por essa razão, o ponto de congelamento real é 0,5 °C superior ao registrado.
- **4.** A solução não foi agitada o suficiente, e o soluto não dissolveu totalmente.

Assinale a alternativa que relaciona os erros que resultariam em uma massa molar calculada *superior* ao valor real.

A 1 e 2

B 1 e 4

C 2 e 4

- **D** 1, 2 e 4
- **E** 1, 2, 3 e 4

PROBLEMA 2.3

Uma amostra de $10\,\mathrm{g}$ de um composto orgânico é dissolvida em $80\,\mathrm{g}$ de benzeno. O ponto de congelamento da solução é $1,2\,^\circ\mathrm{C}$. Em outro experimento, a queima do mesmo composto orgânio com excesso de oxigênio formou $528\,\mathrm{mg}$ de dióxido de carbono, $36\,\mathrm{mg}$ de água e $146\,\mathrm{mg}$ de ácido clorídrico.

- a. **Determine** a massa molar do composto.
- b. **Determine** a fórmula molecular do composto.

Dados

- $k_b(C_6H_6) = 5.12 \,\mathrm{K\,kg\,mol^{-1}}$
- $T_{fus}(C_6H_6) = 5.5 \,^{\circ}C$

PROBLEMA 2.4

2F16

2F15

Uma amostra de 20 g de uma mistura de sacarose, $C_{12}H_{22}O_{11}$, e cloreto de sódio é dissolvida em água até formar 1 L de solução. O ponto de congelamento da solução é $-0.0426\,^{\circ}\text{C}$.

Assinale a alternativa que mais se aproxima da fração mássica de sacarose na amostra.

- A 7,5%
- **B** 27,5%
- **c** 50,0%

- **D** 72,5%
- **E** 92,5%

Dados

• $k_b(H_2O) = 1,86 \, \text{K kg mol}^{-1}$

PROBLEMA 2.5

2F17

Uma amostra de 500 mg de uma mistura de cloreto de sódio e cloreto de magnésio é dissolvida água até formar 1 L de solução. A pressão osmótica da solução a 25 °C é 0,395 atm. **Assinale** a alternativa que mais se aproxima da fração mássica

de cloreto de magnésio na amostra.

- A 12%
- **B** 32%
- **c** 52%

- **D** 72%
- **E** 92%

A quitosana tem sido utilizada em cicatrização de ferimentos, remoção de proteínas alergênicas de alimentos e liberação controlada de fármacos. Um experimento de laboratório envolveu a síntese da quitosana através tratamento da quitina com excesso de hidróxido de sódio:

$$(C_8H_{13}O_5N)_n\xrightarrow{NaOH}(C_6H_{11}O_4N)_n$$

O produto da reação foi isolado e uma amostra de 10,2 g foi adicionada em 100 mL de água destilada. O ponto de congelamento desta solução é $-0,000\,38\,^{\circ}$ C. A solução foi aquecida, mantendo o sistema sob agitação e em refluxo, por um longo tempo, garantindo a quebra completa das unidades poliméricas formando os monômeros. O ponto de congelamento da solução resultante é $-1,14\,^{\circ}$ C.

- a. Determine o número médio de unidades monoméricas na estrutura da quitosana.
- b. **Determine** a eficiência da síntese da quitosana utilizando hidróxido de sódio.

Dados

• $k_b(H_2O) = 1,86 \, \text{K kg mol}^{-1}$

PROBLEMA 2.7

2F19

Uma solução 1% de sulfato de magnésio em massa tem ponto de congelamento igual a -0.192 °C.

Assinale a alternativa que mais se aproxima do grau de dissociação do sal nessa solução.

- A 13%
- **B** 23%
- **c** 33%

- **D** 43%
- **E** 53%

Dados

• $k_b(H_2O) = 1,86 \, \text{K kg mol}^{-1}$

PROBLEMA 2.8

2F20

Uma solução 0,124 mol L $^{-1}$ em ácido tricloroacético tem ponto de congelamento igual a $-0,423\,^{\circ}$ C.

Assinale a alternativa que mais se aproxima do grau de ionização do ácido nessa solução.

- A 50%
- **B** 60%
- **c** 70%

- **D** 80%
- **E** 90%

Dados

• $k_b(H_2O) = 1,86 \, \text{K kg mol}^{-1}$

Em solução de tetracloreto de carbono, o tetracloreto de vanádio sofre dimerização formando $V_2 C l_8$. Em um experimento, 6,76 g de $VC l_4$ foram dissolvidos em 100 g de tetracloreto de carbono a 0 °C. Após certo tempo a mistura alcançou o equilíbrio, sendo a densidade 1,78 g cm $^{-3}$. A mistura foi resfriada com nitrogênio líquido, sendo registrada a variação da temperatura com o tempo.

- a. **Determine** o grau de dimerização do tetracloreto de vaná-
- b. **Determine** a concentração de VCl₄ e V₂Cl₈ no equilíbrio.

Dados

- Pf(CCl4)
- $k_b(CCl_4) = 29.8 \, \text{K kg mol}^{-1}$

PROBLEMA 2.10

2F22

4

O ácido acético comporta-se diferentemente em dois solventes distintos. O ponto de congelamento de uma solução 5%, em massa, de ácido acético em água é 21,72 °C. Em benzeno, o abaixamento do ponto de congelamento associado a uma solução 5%, em massa, de ácido acético é 2,47 °C.

- a. **Explique** a diferença no comportamento do ácido acético em solução.
- b. Determine o grau de reação do ácido acético em água.
- c. **Determine** o grau de reação do ácido acético em benzeno.

Dados

- $k_h(H_2O) = 1.86 \, \text{K kg mol}^{-1}$
- $k_b(C_6H_6) = 5,12 \,\mathrm{K\,kg\,mol^{-1}}$

PROBLEMA 2.11 2F23

Uma amostra de água do mar possui densidade $1,05~{\rm g\,mL^{-1}}$, a concentração média de espécies dissolvidas é $0,8~{\rm mol\,L^{-1}}$ e a temperatura média $290~{\rm K}$. Com o objetivo de purificar a amostra de água, uma das extremidades abertas de um longo tubo contendo a solução é envolvido com uma membrana semipermeável, a qual será imersa na água do mar.

Assinale a alternativq que mais se aproxima profundidade mínima que o tubo deveria ser imerso.

A 9 m

B 19 m

C 74 m

D 183 m

E 1930 m

PROBLEMA 2.12

2F24

A pressão osmótica de uma solução de poliisobutileno sintético em benzeno foi determinada a 25 °C. Uma amostra contendo 0,2 g de soluto por $100\,\rm cm^3$ de solução subiu até uma altura de 2,4 mm quando foi atingido o equilíbrio osmótico. A massa específica da solução no equilíbrio é 0,88 g mL $^{-1}$.

Determine a massa molecular do poliisobuteno.

PROBLEMA 2.13

2F26

Em uma região onde a água é muito dura, unidades de osmose reversa são utilizadas para purificação. Nessa região, a água apresenta $560\,\mu\mathrm{g\,mL}^{-1}$ de carbonato de magnésio. Uma unidade pode exercer uma pressão máxima de 8 atm operando a $27\,^\circ\mathrm{C}$.

- a. **Determine** o volume de água que deve entrar na unidade por minuto para produzir 45 L de água purificada por dia.
- b. **Verifique** se a unidade de osmose reversa pode ser utilizada para purificar água do mar, $0,6\,\mathrm{mol}\,\mathrm{L}^{-1}$ em cloreto de sódio.

PROBLEMA 2.14

2F27

A entalpia de fusão de certa substância é 10,14 kJ mol⁻¹. Uma amostra desta substância está contaminada com uma quantidade desconhecida de impurezas. Quando esta amostra é aquecida a 181,85 K, 28% da amostra passa para a fase líquida; a 182,25 K, esta fração aumenta para 53%.

- a. **Determine** a temperatura de fusão para a substância.
- b. **Determine** a temperatura de fusão para a amostra.

Gabarito

Nível I

- 1. E 2. C 3. D
- 6. D 7. C 8. A 9. A 10. C

5. **D**

11. B

Nível II

- 1. C
- 2. D
- 3. a. $148 \,\mathrm{g}\,\mathrm{mol}^{-1}$
 - b. $C_6H_4Cl_2$
- 4. D
- 5. D
- **6.** a. 3000
 - b. 79%
- 7. B
- 8. D
- **9.** a. 85%
 - b. $84\,\mathrm{mmol}\,\mathrm{L}^{-1}$ e $234\,\mathrm{mmol}\,\mathrm{L}^{-1}$
- **10.** a. O ácido acético sofre ionização em água e dimerização em ácido acético.
 - b. 5%
 - c. 96,5%
- 11. D
- **12.** $240 \,\mathrm{kg} \,\mathrm{mol}^{-1}$
- **13.** a. 46 L
 - b. Não pode ser utilizada.
- **14.** a. 182,7 K
 - b. 182,2 K