Regressió lineal múltiple

Regressió lineal múltiple

Regressió lineal múltiple

Regressió lineal Mínims quadrats Coeficient de determinació Intervals de confiança Tenim ara k variables (no necessàriament aleatòries) independents X_1, \ldots, X_k i una variable dependent Y Suposam el model

$$\mu_{Y|x_1,\ldots,x_k} = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k.$$

Els paràmetres β_i són desconeguts i els estimam a partir d'una mostra:

$$(x_{i1}, x_{i2}, \ldots, x_{ik}, y_i)_{i=1,\ldots,n}$$

amb n > k (el nombre d'observacions ha de ser més gran que el nombre de variables)

Escriurem
$$\underline{x}_i = (x_{i1}, x_{i2}, \dots, x_{ik})$$

Regressió lineal múltiple

Regressió lineal Mínims quadrats Coeficient de determinació Intervals de confianca

Regressió lineal múltiple

Traduïm aquest model en

$$Y|x_1,...,x_k = \beta_0 + \beta_1 x_1 + \cdots + \beta_k x_k + E_{x_1,...,x_k}$$

on

- $Y|x_1,\ldots,x_k$ és la v.a. que dóna el valor de Y quan cada $X_i = x_i$
- $E_{x_1,...,x_k}$ són les v.a. error, o residuals, i representen l'error aleatori del model associat a (x_1, \ldots, x_k)

A partir d'una mostra

$$(\underline{x}_i, y_i)_{i=1,2,\ldots,n}$$

obtendrem estimacions b_0, b_1, \ldots, b_k dels paràmetres $\beta_0, \beta_1, \ldots, \beta_k$

Regressió lineal múltiple

Regressió lineal múltiple

Regressió lineal Mínims quadrats Coeficient de determinació Intervals de confiança

Diguem

$$\widehat{y}_i = b_0 + b_1 x_{i1} + \dots + b_k x_{ik}$$

 $y_i = b_0 + b_1 x_{i1} + \dots + b_k x_{ik} + e_i$

Aleshores

- $\hat{y_i}$ és el valor predit de y_i a partir de $\underline{x_i}$ i els estimadors b_0, b_1, \dots, b_k dels paràmetres
- e_i estima l'error $E_{\underline{x}_i}$
- $e_i = y_i \widehat{y}_i$

Regressió lineal múltiple

Regressió lineal múltiple

Regressió lineal Mínims quadrats Coeficient de determinació Intervals de confiança Escrivim-ho en forma matricial. Diguem

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_k \end{pmatrix}, \ \widehat{\mathbf{y}} = \begin{pmatrix} \widehat{y}_1 \\ \widehat{y}_2 \\ \vdots \\ \widehat{y}_n \end{pmatrix}, \ \mathbf{e} = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_n \end{pmatrix}$$

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{pmatrix}$$

Regressió lineal múltiple

Regressió lineal múltiple

Regressió lineal Mínims quadrats Coeficient de determinació Intervals de confiança Les equacions

$$\hat{y}_i = b_0 + b_1 x_{i1} + \dots + b_k x_{ik}$$

 $y_i = b_0 + b_1 x_{i1} + \dots + b_k x_{ik} + e_i$

corresponen a

$$\begin{aligned} \widehat{y} &= Xb \\ y &= Xb + e \end{aligned}$$

Coeficient de determinació Intervals de confiança Definim l'error quadràtic SS_E com:

$$SS_{E} = \sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \widehat{y}_{i})^{2}$$
$$= \sum_{i=1}^{n} (y_{i} - b_{0} - b_{1}x_{i1} - \dots - b_{k}x_{ik})^{2}.$$

Els estimadors de $\beta_0, \beta_1, \ldots, \beta_k$ pel mètode de mínims quadrats seran els valors b_0, b_1, \ldots, b_k que minimitzin SS_E

Regressió lineal múltiple Regressió lineal

Mínims quadrats

Coeficient de determinació Intervals de confiança Per calcular-los, calculam les derivades parcials de SS_E respecte de cada b_i , les igualam a 0, les resolem, i comprovam que la solució (b_0, \ldots, b_k) trobada dóna un mínim...

Teorema

Els estimadors per mínims quadrats de $\beta_0, \beta_1, \ldots, \beta_k$ a partir de la mostra $(\underline{x}_i, y_i)_{i=1,2,\ldots,n}$ són donats per l'equació següent:

$$\mathbf{b} = (\mathbf{X}^t \cdot \mathbf{X})^{-1} \cdot (\mathbf{X}^t \cdot \mathbf{y}).$$

Regressió lineal múltiple Regressió lineal

Mínims quadrats

Coeficient de determinació Intervals de confiança Es postula que l'alçada d'un nadó (y) té una relació lineal amb la seva edat en dies (x_1) , la seva alçada en néixer en cm (x_2) , el seu pes en kg en néixer (x_3) i l'augment en tant per cent del seu pes actual respecte del seu pes en néixer (x_4)

El model és

$$\mu_{Y|x_1,x_2,x_3,x_4} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$$

En una mostra de n=9 nins, els resultats varen ser els de la taula següent:

Regressió lineal múltiple Regressió lineal

Mínims quadrats Coeficient de determinació Intervals de confiança

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄
78	48.2	2.75	29.5
69	45.5	2.15	26.3
77	46.3	4.41	32.2
88	49	5.52	36.5
67	43	3.21	27.2
80	48	4.32	27.7
74	48	2.31	28.3
94	53	4.3	30.3
102	58	3.71	28.7
	78 69 77 88 67 80 74 94	78 48.2 69 45.5 77 46.3 88 49 67 43 80 48 74 48 94 53	78 48.2 2.75 69 45.5 2.15 77 46.3 4.41 88 49 5.52 67 43 3.21 80 48 4.32 74 48 2.31 94 53 4.3

Regressió lineal múltiple Regressió lineal

Mínims quadrats

Coeficient de determinació Intervals de confiança

$$\mathbf{X} = \begin{pmatrix} 1 & 78 & 48.2 & 2.75 & 29.5 \\ 1 & 69 & 45.5 & 2.15 & 26.3 \\ 1 & 77 & 46.3 & 4.41 & 32.2 \\ 1 & 88 & 49 & 5.52 & 36.5 \\ 1 & 67 & 43 & 3.21 & 27.2 \\ 1 & 80 & 48 & 4.32 & 27.7 \\ 1 & 74 & 48 & 2.31 & 28.3 \\ 1 & 94 & 53 & 4.3 & 30.3 \\ 1 & 102 & 58 & 3.71 & 28.7 \end{pmatrix}, \ \mathbf{y} = \begin{pmatrix} 57.5 \\ 52.8 \\ 61.3 \\ 67 \\ 53.5 \\ 62.7 \\ 56.2 \\ 68.5 \\ 69.2 \end{pmatrix}$$

b serà
$$(\mathbf{X}^t \cdot \mathbf{X})^{-1} \cdot (\mathbf{X}^t \cdot \mathbf{y})$$

Regressió lineal múltiple Regressió lineal

determinació Intervals de

Mínims quadrats Coeficient de

confianca

```
> X=
matrix(c(1,78,48.2,2.75,29.5,1,69,45.5,2.15,26.3,
 1,77,46.3,4.41,32.2,1,88,49,5.52,36.5,
 1,67,43,3.21,27.2,1,80,48,4.32,27.7,
 1,74,48,2.31,28.3,1,94,53,4.3,30.3,
 1,102,58,3.71,28.7),nrow=9,byrow=TRUE)
> y = cbind(c(57.5, 52.8, 61.3, 67, 53.5, 62.7, 56.2, 68.5,
  69.2))
```

```
Regressió lineal
múltiple
Regressió lineal
```

Mínims quadrats

Mínims quadrate Coeficient de

Coeficient de determinació Intervals de confianca

```
> t(X)%*%X
       [,1]
                 [,2]
                            [,3]
                                       [,4]
                                                  [,5]
[1,]
       9.00
               729.00
                        439.000
                                   32,6800
                                              266,700
    729.00
            60123.00
                      35947.200
                                 2702.4100
                                            21715.300
     439.00
            35947.20
                      21568.180
                                 1604.3880
                                            13026.010
      32.68
              2702.41
                        1604.388
                                  128,6602
                                              990.268
[5,] 266.70 21715.30 13026.010
                                  990.2680
                                             7980.830
> t(X)%*%y
           [,1]
       548.700
Г1.Т
     45001.000
     26946.890
      2035.521
     16348.290
```

Regressió lineal múltiple Regressió lineal

Mínims quadrats

Coeficient de determinació Intervals de confiança El producte X^tX és:

El producte $\mathbf{X}^t \mathbf{y}$ és

$$\mathbf{X}^{t}\mathbf{y} = \begin{pmatrix} 548.7 \\ 45001 \\ 26946.89 \\ 2035.52 \\ 16348.29 \end{pmatrix}$$

Regressió lineal múltiple Regressió lineal

Mínims quadrats

Coeficient de determinació Intervals de confiança El vector d'estimadors dels coeficients $\beta_0, \beta_1, \dots, \beta_4$ és

$$\mathbf{b} = \begin{pmatrix} 9 & 729 & 439 & 32.68 & 266.7 \\ 729 & 60123 & 35947.2 & 2702.41 & 21715.3 \\ 439 & 35947.2 & 21568.18 & 1604.388 & 13026.01 \\ 66.07 & 6108.19 & 3541.008 & 128.66 & 1948.561 \\ 266.7 & 21715.3 & 13026.01 & 990.27 & 7980.83 \end{pmatrix}^{-1}$$

```
Regressió lineal
múltiple
Regressió lineal
```

Mínims quadrats

Coeficient de determinació Intervals de

confianca

```
[,1]
[1,] 7.1475
```

> round(solve(t(X)%*%X)%*%(t(X)%*%y),4)

[2,] 0.1001

[3,] 0.7264

[4,] 3.0758

[5,] -0.0300

Regressió lineal múltiple Regressió lineal

Mínims quadrats

Coeficient de determinació Intervals de confiança Obtenim

$$\mathbf{b} = \begin{pmatrix} 7.1475 \\ 0.1001 \\ 0.7264 \\ 3.0758 \\ -0.03 \end{pmatrix}$$

La funció lineal de regressió cercada és:

$$\widehat{y} = 7.1475 + 0.1001x_1 + 0.7264x_2 + 3.0758x_3 - 0.03x_4.$$

```
Regressió lineal
múltiple
Regressió lineal
```

Mínims quadrats

Coeficient de determinació Intervals de confiança

Propietats

Regressió lineal múltiple

Regressió lineal Mínims quadrats

Coeficient de determinació Intervals de confiança • La recta de regressió passa pel vector mitjà $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_k, \overline{y})$:

$$\overline{y} = b_0 + b_1 \overline{x}_1 + \cdots + b_k \overline{x}_k$$

 La mitjana dels valors estimats és igual a la mitjana dels observats:

$$\overline{\widehat{y}} = \overline{y}$$

• Els errors $(e_i)_{i=1,...,n}$ tenen mitjana 0 i variància

$$s_e^2 = \frac{SS_E}{n}$$

Coeficient de

Intervals de confianca

Sumes de quadrats

Siguin

• $SS_T = \sum_{i=1}^n (y_i - \overline{y})^2$: suma de quadrats de totals.

$$SS_T = n \cdot s_y^2$$

• $SS_R = \sum_{i=1}^n (\widehat{y}_i - \overline{y})^2$: suma de quadrats de la regressió.

$$SS_R = n \cdot s_{\widehat{y}}^2$$

• $SS_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2$: suma de quadrats dels errors

$$SS_E = n \cdot s_e^2$$

Teorema

Si la regressió és per mínims quadrats,

$$SS_T = SS_R + SS_E$$
 o, equivalentment, $s_y^2 = s_{\widehat{y}}^2 + s_e^2$

Coeficient de determinació

Regressió lineal múltiple Regressió lineal Mínims quadrats

Coeficient de

Intervals de confianca

El coeficient de determinació d'una regressió lineal és

$$R^2 = \frac{SS_R}{SS_T} = \frac{s_{\widehat{y}}^2}{s_y^2}$$

Representa la fracció de la variabilitat de y que és explicada per la variabilitat del model de regressió lineal

El coeficient de correlació múltiple de y respecte de

$$x_1, \ldots, x_k$$
 és

$$R = \sqrt{R^2}$$

Intervals de

Coeficient de determinació

 R^2 tendeix a créixer amb k, fins i tot si les variables que afegim són redundants

Per tenir-ho en compte, en lloc d'emprar

$$R^2 = \frac{SS_R}{SS_T} = \frac{SS_T - SS_E}{SS_T}$$

s'empra el coeficient de determinació ajustat

$$R_{adj}^2 = \frac{MS_T - MS_E}{MS_T}$$

on

$$MS_T = \frac{SS_T}{n-1}, MS_E = \frac{SS_E}{n-k-1}$$

Queda

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n - 1}{n - k - 1}$$

Regressió lineal múltiple Regressió lineal

Mínims quadrats Coeficient de

Intervals de confiança

Exemple 3

Coeficients de determinació del nostre exemple

- > # X i y ja definits
- > b=solve(t(X)%*%X)%*%(t(X)%*%y)
- > y.cap=X%*%b
- $> SS.T=sum((y-mean(y))^2)$
- > SS.R=sum((y.cap-mean(y))^2)
- > SS.E=sum((y.cap-y)^2)
- > round(c(SS.T,SS.R,SS.E),3)
- [1] 321.240 318.274 2.966

$$R^{2} = \frac{SS_{R}}{SS_{T}} = \frac{318.274}{321.24} = 0.991$$

$$R_{adj}^{2} = 1 - (1 - R^{2}) \left(\frac{9 - 1}{9 - 4 - 1}\right) = 0.982$$

```
Regressió lineal
múltiple
Regressió lineal
Mínims quadrats
Coeficient de
```

determinació Intervals de confianca

```
> Xd=X[,c(2:5)]
> summary(lm(y~Xd))
```

. . .

```
Residual standard error: 0.861 on 4 degrees of freedom Multiple R-squared: 0.9908, Adjusted R-squared: 0.9815 F-statistic: 107.3 on 4 and 4 DF, p-value: 0.0002541 > summary(lm(y~Xd))$r.squared [1] 0.9907683 > summary(lm(y~Xd))$adj.r.squared [1] 0.9815367
```

Regressió lineal múltiple Regressió lineal Mínims quadrats

Mínims quade Coeficient de determinació Intervals de Sovint ens interessarà comparar dos models lineals per a una mateixa variable dependent (per exemple, si afegim o llevam una variable, millora el model?)

Aquesta comparació se sol fer comparant els R^2_{adj} : qui el tengui més gran, guanya

```
> Xd=X[,c(2:5)]
> summary(lm(y~Xd))$adj.r.squared
[1] 0.9815367
> Xd1=X[,c(2:4)]
> summary(lm(y~Xd1))$adj.r.squared
[1] 0.9851091
```

El model és millor si no tenim en compte X_4 (l'augment de pes en %)

Regressió lineal múltiple Regressió lineal Mínims quadrats Coeficient de

Intervals de

Altres índexs que darrerament es fan servir per comparar models:

AIC (Akaike's Information Criterion)

$$AIC = n \ln(SS_E/n) + 2k$$

AIC quantifica quanta informació de Y es perd amb el model i quantes variables hi empram: el millor model és el que té un valor de AIC més petit

```
> AIC(lm(y~Xd))
[1] 27.54953
> AIC(lm(y~Xd1))
[1] 25.62252
```

Comparació de models

Regressió lineal múltiple Regressió lineal Mínims quadrats

Intervals de

Altres índexs que darrerament es fan servir per comparar models:

• BIC (Bayesian Information Criterion)

$$BIC = n \ln(SS_E/n) + k \ln(n)$$

BIC quantifica quanta informació de Y es perd amb el model i quantes variables i dades hi empram: el millor model és el que té un valor de BIC més petit

> BIC(lm(y~Xd))

[1] 28.73288

> BIC(lm(y~Xd1))

[1] 26.60864

Solen donar la mateixa conclusió, i si donen diferent és convenient dir-ho

Regressió lineal múltiple Regressió lineal Mínims quadrats

Coeficient de determinació confianca

Supòsits del model

Suposarem d'ara endavant que les variables aleatòries error $E_i = E_{x_i}$ són incorrelades, i totes normals de mitjana totes 0 i de variància totes σ_F^2

Teorema

Sota aquestes hipòtesis, els estimadors b_0, \ldots, b_k de β_0, \ldots, β_k són màxim versemblants i a més no esbiaixats. determinació Intervals de confianca

Teorema

Sota aquestes hipòtesis,

$$Cov(\beta_0, \beta_1, \dots, \beta_k) = \sigma_E^2 \cdot (X^t \cdot X)^{-1}$$

i un estimador no esbiaixat de σ_F^2 és

$$S^2 = \frac{SS_E}{n - k - 1}$$

Fa una estona a S^2 li hem dit MS_E

Regressió lineal múltiple Regressió lineal Mínims quadrats Coeficient de determinació

Intervals de confianca

En el nostre exemple, una estimació de la variància comuna dels errors σ_F^2 és

$$S^2 = \frac{2.9656}{9 - 4 - 1} = 0.7414$$

i una estimació de la matriu de covariàncies de β_0, \ldots, β_4 és

$$S^2 \cdot (X^t \cdot X)^{-1}$$

$$= \begin{pmatrix} 270.919 & 5.325 & -12.521 & -13.743 & -1.4 \\ 5.325 & 0.115 & -0.266 & -0.326 & -0.0176 \\ -12.521 & -0.266 & 0.618 & 0.742 & 0.0416 \\ -13.743 & -0.326 & 0.742 & 1.122 & -0.00598 \\ -1.4 & -0.0176 & 0.0416 & -0.00598 & 0.0277 \end{pmatrix}$$

Regressió lineal múltiple Regressió lineal Mínims quadrats Coeficient de determinació

Intervals de confiança

R ens dóna la S:

> summary(lm(y~Xd))

. . .

Residual standard error: 0.861 on 4 degrees of freedom Multiple R-squared: 0.9908, Adjusted R-squared: 0.9815 F-statistic: 107.3 on 4 and 4 DF, p-value: 0.0002541

$$S = 0.861, \quad S^2 = 0.7413$$

Regressió lineal múltiple Regressió lineal Mínims quadrats Coeficient de

determinació Intervals de confianca

Teorema

Sota aquestes hipòtesis,

• L'error estàndard de cada estimador b_i és

$$\sqrt{(\sigma_E^2\cdot(X^tX)^{-1})_{ii}}$$

(l'arrel quadrada de la i-èsima entrada de la diagonal de $\sigma_E^2 \cdot (X^t X)^{-1}$, començant per i=0)

Intervals de confiança

Regressió lineal múltiple Regressió lineal Mínims quadrats Coeficient de determinació

Intervals de confiança R us en dóna les estimacions

```
> summary(lm(y~Xd))
```

. . .

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
             7.14753
                        16.45961
                                   0.434
                                            0.6865
Xd1
             0.10009
                         0.33971
                                   0.295
                                            0.7829
Xd2
             0.72642
                         0.78590
                                   0.924
                                            0.4076
Xd3
             3.07584
                         1.05918
                                   2.904
                                            0.0439 *
Xd4
            -0.03004
                         0.16646
                                  -0.180
                                            0.8656
```

. . .

Regressió lineal múltiple Regressió lineal Mínims quadrats Çoeficient de

Intervals de

Teorema

Sota aquestes hipòtesis,

Cada fracció

$$\frac{\beta_i - b_i}{\sqrt{(S^2 \cdot (X^t X)^{-1})_{ii}}}$$

segueix un llei t de Student amb n-k-1 graus de llibertat

• Un interval de confiança del $(1-\alpha)\cdot 100\%$ per β_i és

$$b_i \pm t_{n-k-1,1-\frac{\alpha}{2}} \cdot \sqrt{(S^2 \cdot (X^t X)^{-1})_{ii}}$$

Regressió lineal múltiple Regressió lineal Mínims quadrats Coeficient de determinació

Intervals de confiança Al nostre exemple, cerquem un interval de confiança del 95% per β_2 .

Recordem els b_i i calculem la diagonal de $S^2 \cdot (X^t X)^{-1}$:

```
> round(t(b),4)
       [,1] [,2] [,3] [,4] [,5]
[1,] 7.1475 0.1001 0.7264 3.0758 -0.03
> S2=SS.E/(9-4-1)
> round(diag(S2*solve(t(X)%*%X)),4)
[1] 270.9188 0.1154 0.6176 1.1219 0.0277
```

Regressió lineal múltiple

Regressió lineal Mínims quadrats Coeficient de determinació

Intervals de confiança Per tant, serà

$$\beta_2 = 0.7264 \pm t_{4,0.975} \sqrt{0.6176}$$

= $0.7264 \pm 2.776 \sqrt{0.6176} = 0.7265 \pm 2.1816$

 $Obtenim \]-1.455, 2.908[\\$

Regressió lineal múltiple Regressió lineal Mínims quad<u>rats</u>

Coeficient de determinació Intervals de confiança Calculem l'interval de confiança al 95% per β_0 :

Regressió lineal múltiple Regressió lineal

Mínims quadrats Coeficient de determinació

Intervals de confiança Calculem l'interval de confiança al 95% per β_0 :

$$\beta_0 = 7.1475 \pm t_{4,0.975} \sqrt{270.9188}$$

= $7.1475 \pm 2.776 \sqrt{270.9188} = 7.1475 \pm 45.6919$

Obtenim] -38.5444, 52.8394[

```
Regressió lineal
múltiple
Regressió lineal
```

Mínims quadrats Coeficient de determinació

Intervals de confiança

Regressió lineal múltiple Regressió lineal Mínims quadrats

Coeficient de determinació Intervals de confiança

Teorema

Siguin $\underline{x}_0 = (x_{01}, \dots, x_{0k})$ una observació de X_1, \dots, X_k i $\mathbf{x}_0 = (1, x_{01}, \dots, x_{0k})$. Sota les nostres hipòtesis,

• L'error estàndard de \widehat{y}_0 com a estimador de $\mu_{Y|_{X_0}}$ és

$$S\sqrt{\mathbf{x}_0\cdot(X^t\cdot X)^{-1}\cdot\mathbf{x}_0^t}$$

• L'error estàndard de \hat{y}_0 com a estimador de y_0 és

$$S\sqrt{1+\mathsf{x}_0\cdot(X^t\cdot X)^{-1}\cdot\mathsf{x}_0^t}$$

Regressió lineal múltiple Regressió lineal Mínims quadrats Coeficient de

Intervals de

Teorema

Siguin $\underline{x}_0 = (x_{01}, \dots, x_{0k})$ una observació de X_1, \dots, X_k i $\mathbf{x}_0 = (1, x_{01}, \dots, x_{0k})$. Sota les nostres hipòtesis,

Les fraccions

$$\frac{\mu_{Y|\underline{\mathsf{x}}_0} - \widehat{y}_0}{S\sqrt{\mathsf{x}_0 \cdot (X^t \cdot X)^{-1} \cdot \mathsf{x}_0^t}}$$
$$\frac{y_0 - \widehat{y}_0}{S\sqrt{1 + \mathsf{x}_0 \cdot (X^t \cdot X)^{-1} \cdot \mathsf{x}_0^t}}$$

segueixen lleis t de Student amb n-k-1 graus de llibertat

Intervals de confiança

Regressió lineal múltiple Regressió lineal Mínims quadrats Coeficient de

determinació Intervals de confianca

Teorema

Siguin $\underline{x}_0 = (x_{01}, \dots, x_{0k})$ una observació de X_1, \dots, X_k i $\mathbf{x}_0 = (1, x_{01}, \dots, x_{0k})$. Sota les nostres hipòtesis,

• Un interval de confiança del $(1-lpha)\cdot 100\%$ per $\mu_{Y|\underline{x}_0}$ és

$$\widehat{y}_0 \pm t_{n-k-1,1-rac{lpha}{2}} \cdot S\sqrt{\mathbf{x}_0 \cdot (X^t \cdot X)^{-1} \cdot \mathbf{x}_0^t}$$

• Un interval de confiança del $(1-\alpha)\cdot 100\%$ per y_0 és

$$\widehat{y}_0 \pm t_{n-k-1,1-rac{lpha}{2}} \cdot S\sqrt{1+\mathsf{x}_0\cdot(X^t\cdot X)^{-1}\cdot \mathsf{x}_0^t}$$

Regressió lineal múltiple Regressió lineal Mínims quadrats

Coeficient de

Al nostre exemple, volem trobar intervals de confiança del 95% per $\mu_{Y|x_0}$ i y_0 per a $\underline{x}_0 = (69, 45.5, 2.15, 26.3)$.

$$\widehat{y}_0 = b_0 + b_1 x_{01} + b_2 x_{02} + b_3 x_{03} + b_4 x_{04}$$

= 7.1475 + 0.1001 \cdot 69 + 0.7264 \cdot 45.5
+ 3.0758 \cdot 2.15 - 0.03 \cdot 26.3 = 52.929

Calculem

culem
$$\mathbf{x}_{0}(X^{t}X)^{-1}\mathbf{x}_{0}^{t} = (1, 69, 45.5, 2.15, 26.3) \cdot (X^{t}X)^{-1} \cdot \begin{pmatrix} 1 \\ 69 \\ 45.5 \\ 2.15 \\ 26.3 \end{pmatrix}$$

- > xvec=rbind(c(1,69,45.5,2.15,26.3))
- > xvec%*%solve(t(X)%*%X)%*%t(xvec)

[1.] 0.3614889

Regressió lineal múltiple Regressió lineal

Mínims quadrats Coeficient de determinació

Intervals de confiança L'interval de confiança per $\mu_{Y|\underline{\mathsf{x}_0}}$ és

$$\mu_{Y|\underline{\mathsf{x}}_0} = \widehat{y}_0 \pm t_{9-4-1,0.975} \cdot S\sqrt{\mathbf{x}_0 \cdot (X^t \cdot X)^{-1} \cdot \mathbf{x}_0^t}$$

$$= 52.929 \pm 2.776 \cdot \sqrt{0.7414} \cdot \sqrt{0.3615}$$

$$= 52.929 \pm 1.437$$

Dóna]51.492, 54.366[

Regressió lineal múltiple Regressió lin<u>eal</u>

Mínims quadrats Coeficient de determinació

Intervals d confiança L'interval de confiança per $\mu_{Y|\underline{\mathsf{x}_0}}$ és

$$\mu_{Y|\underline{x}_0} = \widehat{y}_0 \pm t_{9-4-1,0.975} \cdot S \sqrt{x_0 \cdot (X^t \cdot X)^{-1} \cdot x_0^t}$$

$$= 52.929 \pm 2.776 \cdot \sqrt{0.7414} \cdot \sqrt{0.3615}$$

$$= 52.929 \pm 1.437$$

Dóna]51.492, 54.366[

L'interval de confiança per y_0 és

Coeficient de determinació Intervals de confianca L'interval de confiança per $\mu_{Y|\underline{\mathsf{x}_0}}$ és

$$\mu_{Y|\underline{x}_0} = \widehat{y}_0 \pm t_{9-4-1,0.975} \cdot S\sqrt{\mathbf{x}_0 \cdot (X^t \cdot X)^{-1} \cdot \mathbf{x}_0^t}$$

$$= 52.929 \pm 2.776 \cdot \sqrt{0.7414} \cdot \sqrt{0.3615}$$

$$= 52.929 \pm 1.437$$

Dóna]51.492, 54.366[

L'interval de confiança per y_0 és

$$y_0 = \hat{y}_0 \pm t_{9-4-1,0.975} \cdot S\sqrt{1 + x_0 \cdot (X^t \cdot X)^{-1}} \cdot x_0^{t}$$

= 52.929 \pm 2.776 \cdot \sqrt{0.7414} \cdot \sqrt{1 + 0.3615}
= 52.929 \pm 2.789

Dóna]50.14, 55.718[

Regressió lineal múltiple Regressió lineal Mínims quadrats Coeficient de determinació

Intervals de confiança

```
Per calcular-ho amb R, convé organitzar les observacions en un data frame (ja ho hauríem d'haver fet abans!)
```

```
> names(X.df)=c("y","x1","x2","x3","x4")
> str(X.df)
'data.frame': 9 obs. of 5 variables:
$ y : num 57.5 52.8 61.3 67 53.5 62.7 56.2 68.5 69.2
```

\$ x1: num 78 69 77 88 67 80 74 94 102

> X.df=as.data.frame(cbind(y,Xd))

\$ x2: num 48.2 45.5 46.3 49 43 48 48 53 58

\$ x3: num 2.75 2.15 4.41 5.52 3.21 4.32 2.31 4.3 3.71

\$ x4: num 29.5 26.3 32.2 36.5 27.2 27.7 28.3 30.3 28.7

```
Regressió lineal
múltiple
Regressió lineal
Mínima quadrats
Coeficient de
determinació
```

Intervals de confiança

> newdata=data.frame(x1=69,x2=45.5,x3=2.15,x4=26.3)

```
Regressió lineal
múltiple
Regressió lineal
Mínims quadrats
Coeficient de
determinació
```

Intervals de confiança

```
> predict.lm(regressio,newdata,
    interval="prediction",level=0.95)
        fit lwr upr
1 52.92898 50.13952 55.71845
> predict(regressio,newdata,
    interval="confidence",level=0.95)
        fit lwr upr
1 52.92898 51.49164 54.36633
```

Té sentit una regressió lineal?

Regressió lineal múltiple Regressió lineal

Mínims quadrats
Coeficient de
determinació

Intervals c confiança Com en el cas simple, ens interessa el contrast

$$\begin{cases} H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0 \\ H_1: \text{hi ha qualque } \beta_i \neq 0 \end{cases}$$

Si acceptam la hipòtesi nul·la, l'estimació donada per la regressió és constant i el model lineal no és adequat

Intervals d

Això es pot fer amb k contrastos

$$\begin{cases}
H_0: \beta_i = 0 \\
H_1: \beta_i \neq 0
\end{cases}$$

emprant l'estadístic corresponent

$$\frac{\beta_i - b_i}{\sqrt{(S^2 \cdot (X^t X)^{-1})_{ii}}}$$

que segueix una llei t de Student amb n-k-1 graus de llibertat

Però són k contrastos, i no independents, per tant mantenir el nivell de significació global és complicat

Una altra possibilitat és emprar un ANOVA:

Si

$$\beta_1 = \beta_2 = \dots = \beta_k = 0,$$

aleshores

$$\mu_{Y|\underline{\mathsf{x}}_1} = \cdots = \mu_{Y|\underline{\mathsf{x}}_n} (=\beta_0)$$

Per tant, si al contrast

$$\begin{cases} H_0: \mu_{Y|\underline{x}_1} = \dots = \mu_{Y|\underline{x}_n} \\ H_1: \text{no \'es veritat que}... \end{cases}$$

rebutjam la hipòtesi nul·la, implica que podem rebutjar que $\beta_1 = \beta_2 = \cdots = \beta_k = 0$ i el model tendrà sentit

ANOVA en la regressió lineal

Regressió lineal múltiple Regressió lineal Mínims quadrats Coeficient de determinació

La taula és

Font de	Graus de	Suma de	Quadrats	F	p-valor
variació	llibertat	quadrats	mitjans		
Regressió	k	SS_R	MS_R	MS_R/MS_E	p-valor
Error	n-k-1	SS_E	MS_E		

on

$$MS_R = \frac{SS_R}{k}, \quad MS_E = \frac{SS_E}{n-k-1}, \quad F = \frac{MS_R}{MS_E}$$

i si la hipòtesi nul·la és vertadera (i els errors són normals), F segueix una llei F de Fisher amb k i n-k-1 graus de llibertat:

$$p
-valor = P(F_{k,n-k-1} \geqslant F)$$

Regressió lineal múltiple Regressió lineal Mínims quadrats Coeficient de

determinació Intervals de confianca La taula en el nostre exemple és

Font de	Graus de	Suma de	Quadrats	F	p-valor
variació	llibertat	quadrats	mitjans		
Regressió	4	318.274	79.569	107.323	≈ 0
Error	4	2.9656	0.7414		

Concloem que el model lineal és adequat segons aquesta anàlisi

```
Regressió lineal
múltiple
Regressió lineal
Mínims quadrats
Coeficient de
determinació
```

Intervals de confiança

```
> anova(lm(y ~ Xd))
```

Analysis of Variance Table

```
Response: y
```

Amb R

```
Df Sum Sq Mean Sq F value Pr(>F)
Xd 4 318.27 79.569 107.32 0.0002541 ***
```

Residuals 4 2.97 0.741

Regressió lineal múltiple Regressió lineal Mínima quadrats Coeficient de determinació

Intervals de confiança També us ho dóna el summary(lm())

```
> summary(lm(y~Xd))
```

Residual standard error: 0.861 on 4 degrees of freedom Multiple R-squared: 0.9908, Adjusted R-squared: 0.9815 F-statistic: 107.3 on 4 and 4 DF, p-value: 0.0002541

Regressió lineal múltiple Regressió lineal Mínims quadrats Coeficient de

determinació Intervals de confiança R també fa tots els contrastos

$$\begin{cases}
H_0: \beta_i = 0 \\
H_1: \beta_i \neq 0
\end{cases}$$

dins el 1m

```
> summary(lm(y~Xd))
```

. . .

Coefficients:

	Estimate	Std.	Error	t	value	Pr(> t)	
(Intercept)	7.14753	16	.45961		0.434	0.6865	
Xd1	0.10009	0	.33971		0.295	0.7829	
Xd2	0.72642	0	.78590		0.924	0.4076	
Xd3	3.07584	1	.05918		2.904	0.0439	*
Xd4	-0.03004	0	.16646	-	-0.180	0.8656	

. . .