Algebraic Number Theory

Lectured by Prof Tony Scholl Typed by David Kurniadi Angdinata

Lent 2021

Syllabus

Contents

1	Absolute values and places	3
	1.1 Absolute values	
	1.2 Places	 . 4
2	Number fields	6
	2.1 Dedekind domains	 . 6
	2.2 Places of number fields	
0		10
3	Different and discriminant	10
	3.1 Discriminant	
	3.2 Different	 . 12
4	Example: quadratic fields	14
5	Example: cyclotomic fields	15
6	Ideles and adeles	17
	6.1 Adeles	
	6.2 Ideles	
7	Geometry of numbers	21
	7.1 Minkowski's theorem	
	7.2 Compactness of \mathcal{C}_K^1	
	7.3 Finiteness of $Cl(K)$ and S-unit theorem	
	7.4 Strong approximation theorem	 . 25
8	Idele class group and class field theory	26
	8.1 Artin reciprocity law	 . 26
	8.2 Finite quotients of \mathcal{C}_K	 . 27
	8.3 Specific open subgroups of \mathcal{C}_K	
	8.4 Properties of $\operatorname{Art}_{L/K}$	
	8.5 Examples	
	8.6 Comparing \mathcal{C}_K and $\operatorname{Gal}\left(K^{\operatorname{ab}}/K\right)$	
9	ζ -functions	34
•	9.1 Riemann ζ -function	
	9.2 Dedekind ζ -function	
	9.3 Local Fourier analysis	
	9.4 Local Fourier transform	
	9.5 Local ζ -integrals	 . 39
	9.6 Global Fourier analysis	
	9.7 Global ζ -integral	
	9.8 Proof of Poisson summation formula	
	9.9 Proof of functional equation and analytic class number formula	
	9.10 Description of $E \subset \mathbb{J}_K^1$	
. ^		
10	L-functions	48
	10.1 Hecke characters	
	10.3 Global ζ -integral	
	10.4 Artin L-functions*	 . 5Z

Absolute values and places 1

Absolute values 1.1

Lecture 1 Thursday

Let K be a field. Recall that an absolute value (AV) on K is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ such that for all $x, y \in K$

21/01/21

- 1. |x| = 0 if and only if x = 0,
- 2. $|xy| = |x| \cdot |y|$, and
- 3. $|x+y| \le |x| + |y|$.

Also assume

4. there exists $x \in K$ such that $|x| \neq 0, 1$.

This excludes the trivial AV

$$|x| = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}.$$

An AV is a non-archimedean if

$$3^{\text{NA}}$$
. $|x+y| \leq \max(|x|,|y|)$,

and archimedean otherwise. An AV determines a metric d(x,y) = |x-y| which makes K a topological **field**, so +, \times , and $(\cdot)^{-1}$ are continuous.

Remark. It is convenient to weaken 3 to

3'. there exists $\alpha > 0$ such that for all x and $y, |x+y|^{\alpha} \le |x|^{\alpha} + |y|^{\alpha}$.

For non-archimedean AV, makes no difference. Does mean that if $|\cdot|$ is an AV, then so is $|\cdot|^{\alpha}$ for any $\alpha > 0$. The point is that we want the function $z \mapsto z\overline{z}$ on \mathbb{C} to be an AV. Explain why later.

Let us suppose $|\cdot|$ is a non-archimedean AV. Then

$$R = \{x \in K \mid |x| \le 1\}$$

is a subring of K. It is a **local ring** with maximal ideal

$$\mathfrak{m}_R = \{ |x| < 1 \}$$
.

It is a valuation ring of K, so if $x \in K \setminus R$ then $x^{-1} \in R$.

Lemma 1.1. R is a maximal subring of K.

Proof. Let $x \in K \setminus R$. Then |x| > 1. Then if $y \in K$, there exists $n \ge 0$ such that $|yx^{-n}| = |y|/|x|^n \le 1$, that is $y \in x^n R$ for $n \gg 0$. So R[x] = K, hence R is maximal.

Remark. There is a general notion of valuation, not necessarily R-valued, seen in algebraic geometry. The valuations we are considering here are rank one valuations, and they have this maximality property.

AVs $|\cdot|$ and $|\cdot|'$ are **equivalent** if there exists $\alpha > 0$ such that $|\cdot|' = |\cdot|^{\alpha}$.

Proposition 1.2. The following are equivalent.

- $|\cdot|$ and $|\cdot|'$ are equivalent.
- for all $x, y \in K$, $|x| \le |y|$ if and only if $|x|' \le |y|'$.
- for all $x, y \in K$, |x| < |y| if and only if |x|' < |y|'.

Proof. See local fields.

A corollary is if $|\cdot|$ and $|\cdot|'$ are non-archimedean AVs with valuation rings R and R', then $|\cdot|$ and $|\cdot|'$ are equivalent if and only if R = R', if and only if $R \subset R'$, by 1.1.

Equivalent AVs define equivalent metrics on K, hence the completion of K with respect to $|\cdot|$ depends only on the equivalence class of $|\cdot|$. Inequivalent AVs determine independent topologies, in the following sense.

Proposition 1.3 (Weak approximation). Let $|\cdot|_i$ for $1 \leq i \leq n$ be pairwise inequivalent AVs on K, let $a_1, \ldots, a_n \in K$, and let $\delta > 0$. Then there exists $x \in K$ such that for all $i, |x - a_i|_i < \delta$.

Proof. Suppose $z_j \in K$ such that $|z_j|_j > 1$ and $|z_j|_i < 1$ for all $i \neq j$. Then $\left|z_j^N / \left(z_j^N + 1\right)\right|_i \to 0$ as $N \to \infty$ if $i \neq j$ but $\left|z_j^N / \left(z_j^N + 1\right) - 1\right|_i = \left|1 / \left(z_j^N + 1\right)\right|_i \to 0$. So

$$x = \sum_{j} a_j \frac{z_j^N}{z_j^N + 1}$$

works if N is sufficiently large. So it is enough to find z_j , and by symmetry take j=1. Induction on n.

n = 1. Trivial.

n>1. Suppose have y with $|y|_1>1$ and $|y|_2,\ldots,|y|_{n-1}<1$. If $|y|_n<1$, finished. Otherwise, pick $w\in K$ with $|w|_1>1>|w|_n$, such as by 1.2. If $|y|_n=1$, then $z=y^Nw$ works, for N sufficiently large. If $|y|_n>1$, then $z=y^Nw/\left(y^N+1\right)$ works, for N sufficiently large.

Remark. If $K = \mathbb{Q}$ and $|\cdot|_1, \ldots, |\cdot|_n$ are p_i -adic AVs for distinct primes p_i , and $a_i \in \mathbb{Z}$, then weak approximation says that for all $n_i \geq 1$, there exists $x \in \mathbb{Q}$, which is a p_i -adic integer for all $i \in \{1, \ldots, n\}$ and $x \equiv a_i \mod p_i^{n_i}$. This of course follows from CRT, which guarantees there exists $x \in \mathbb{Z}$ satisfying this.

1.2 Places

Definition. A place of K is an equivalence class of AVs on K.

Example. If $K = \mathbb{Q}$, by Ostrowski's theorem, every AV on \mathbb{Q} is equivalent to one of

- a p-adic AV $|\cdot|_p$ for p prime, or
- a Euclidean AV $|\cdot|_{\infty}$.

So places of \mathbb{Q} are in bijection with $\{\text{primes}\} \cup \{\infty\}$. We will usually simply denote the places of \mathbb{Q} by $\{2, 3, \ldots, \infty\} = \{p \leq \infty\}$.

Notation. Let

- V_K be the places of K,
- $V_{K,\infty}$ be the places given by archimedean AVs, the **infinite places**, and
- $V_{K,f}$ be the places given by non-archimedean AVs, the finite places.

Often use letters v and w, decorated suitably, to denote places. If $v \in V_K$, then K_v will denote the completion. If $v: K^{\times} \to \mathbb{R}$ is a valuation, will also use v to denote the corresponding place, that is the class of AVs $x \mapsto r^{-v(x)}$ for r > 1.

Can restate weak approximation in terms of places.

Proposition 1.4. Let v_1, \ldots, v_n be distinct places of K. Then the image of the diagonal inclusion

$$K \hookrightarrow \prod_{1 \le i \le n} K_{v_i}$$

is dense, for the product topology.

Let L/K be finite separable, and let v and w be places of K and L respectively. Say w lies over, or divides, v, denoted $w \mid v$, if $v = w \mid_K$ is the restriction of w to K. Then there exists a unique continuous $K_v \hookrightarrow L_w$ extending $K \hookrightarrow L$.

Proposition 1.5. There is a unique isomorphism of topological rings mapping

$$\begin{array}{ccc} L \otimes_K K_v & \longrightarrow & \prod_{w \in \mathcal{V}_L, \ w \mid v} L_w \\ x \otimes y & \longmapsto & (xy)_w \end{array}.$$

In the local fields course, proved this for finite places of number fields.

Proof. Let L = K(a), and let $f \in K[T]$ be the minimal polynomial, which is separable. Factor $f = \prod_i g_i$ for $g_i \in K_v[T]$ irreducible and distinct. Let $L_i = K_v[T] / \langle g_i \rangle$. Then $L \otimes_K K_v = K_v[T] / \langle f \rangle \xrightarrow{\sim} \prod_i L_i$ by CRT. Let $w \mid v$, inducing $\iota_w : L \hookrightarrow L_w$. Let $g_w \in K_v[T]$ be the minimal polynomial of $\iota_w(a)$ over K_v . Then $g_w \mid f$ so $g_w \in \{g_i\}$ and $L_w = K_v(\iota_w(a))$ is some L_i . Conversely, K_v is complete and L_i/K_v is finite, so there exists a unique extension of v to L_i , so there is a bijection $\{g_i\} \leftrightarrow \{w \mid v\}$, and thus

$$L\otimes_K K_v\cong \prod_w L_w.$$

For the topological isomorphism, use that both sides are finite-dimensional normed K_v -spaces. For the left hand side, choose a basis of L/K for $L \otimes_K K_v \cong K_v^{[L:K]}$ with norm $\|(x_i)\| = \sup_i |x_i|_v$, where $|\cdot|_v$ is an AV in class of v satisfying triangle inequality. For the right hand side, $\|(y_w)\| = \sup_w |y_w|_w$, where $|\cdot|_w$ is the AV in class of w extending $|\cdot|_v$. A fact is that any two norms on a finite-dimensional vector space over a field complete with respect to an AV are equivalent. For local fields, exactly the same proof as for $\mathbb R$, and in general not much harder. See Cassels and Fröhlich, Chapter II, Section 8.

Corollary 1.6.

 \bullet $\{w \mid v\}$ is finite, non-empty, and

$$\sum_{w|v} \left[L_w : K_v \right] = \left[L : K \right].$$

• For all $x \in L$,

$$N_{L/K}(x) = \prod_{w|v} N_{L_w/K_v}(x), \qquad \operatorname{Tr}_{L/K}(x) = \sum_{w|v} \operatorname{Tr}_{L_w/K_v}(x).$$

Let L/K be a finite Galois extension with $G = \operatorname{Gal}(L/K)$. Then G acts on places w of L lying over a given place v of K. If $|\cdot|$ is an AV on L, then for all $g \in G$, the map $x \mapsto |g^{-1}(x)|$ is an AV on L, agreeing with $|\cdot|$ on K. So this defines a left action of G on $\{w \mid v\}$ by $g(w) = w \circ g^{-1}$. If $w = v_{\mathfrak{p}}$ for a prime \mathfrak{p} in a Dedekind domain, then $g(w) = v_{g(\mathfrak{p})}$.

Lecture 2 Saturday 23/01/21

Definition. Define the **decomposition group** D_w or G_w to be the stabiliser of w in G.

If $g \in G_w$, then it is continuous for the topology induced by w on L, so extends to an automorphism of L_w , the completion. Then $G_w \hookrightarrow \operatorname{Aut}(L_w/K_v)$, by continuity, so $\#G_w \leq [L_w : K_v]$, and

$$\#G = \left(G:G_w\right) \#G_w \leq \left(G:G_w\right) \left[L_w:K_v\right] = \sum_{g \in G/G_w} \left[L_{g(w)}:K_v\right] \leq \sum_{w' \mid v} \left[L_{w'}:K_v\right] = \left[L:K\right] = \#G,$$

by 1.6. So have equality, hence $[L_w:K_v]=\#G_w$, and so L_w/K_v is Galois with group $\operatorname{Gal}(L_w/K_v) \xrightarrow{\sim} G_w \subset G$, and G acts transitively on places over v.

Notation. Suppose v is discrete valuation of L, so a finite place, and the valuation ring is a DVR. Then so is any $w \mid v$, and define $f(w \mid v) = f_{L_w/K_v}$ to be the degree of residue class extension and $e(w \mid v)$ to be the ramification degree. Then

$$[L_w : K_v] = e(w \mid v) f(w \mid v).$$

2 Number fields

Remark. A lot of theory applies to other global fields, that is **function fields** $K/\mathbb{F}_p(t)$ that are finite extensions. These are less interesting, at least to number theorists, since there are no infinite places.

2.1 Dedekind domains

Let K be a **number field**, a finite extension of \mathbb{Q} , with **ring of integers** \mathcal{O}_K , the integral closure of \mathbb{Z} in K. A basic property is that \mathcal{O}_K is a Dedekind domain, that is

- 1. Noetherian, in fact, by finiteness of integral closure, \mathcal{O}_K is a finitely generated \mathbb{Z} -module,
- 2. integrally closed in K, by definition, and
- 3. every non-zero prime ideal is maximal, so Krull dimension at most one.

The following are basic results about Dedekind domains.

Theorem 2.1.

- 1. A local domain is Dedekind if and only if it is a DVR.
- 2. For a domain R, the following are equivalent.
 - (a) R is Dedekind.
 - (b) R is Noetherian and for all non-zero prime $\mathfrak{p} \subset R$, $R_{\mathfrak{p}}$ is a DVR.
 - (c) Every fractional ideal of R is invertible.
- 3. A Dedekind domain with only finitely many prime ideals, so **semi-local**, is a PID.

A fractional ideal of R is a non-zero R-submodule $I \subset K$ such that for some $0 \neq x \in R$, $xI \subset R$ is an ideal, and I is invertible if there exists a fractional ideal I^{-1} such that $II^{-1} = R$.

Proof.

- 1. A DVR is a local PID. Proved in local fields. The forward direction is the hardest part.
- 2. Let $K = \operatorname{Frac} R$.
- $(a) \implies (b)$. Enough to check ¹ that properties 1 to 3 are preserved under localisation, then use part 1.
- (b) \implies (c). To prove (c), may assume $I \subset R$ is an ideal. Let

$$I^{-1} = \{ x \in K \mid xI \subset R \}.$$

If $0 \neq y \in I$, then $R \subset I^{-1} \subset y^{-1}R$, so I^{-1} is a fractional ideal and $I^{-1}I \subset R$. Let $\mathfrak{p} \subset R$ be prime, so $R_{\mathfrak{p}}$ is a DVR. It suffices to prove $I^{-1}I \not\subset \mathfrak{p}$. Let $I = \langle a_1, \ldots, a_n \rangle$ for $a_i \in R$. Without loss of generality, $v_{\mathfrak{p}}(a_1) \leq v_{\mathfrak{p}}(a_i)$ for all i. Then $IR_{\mathfrak{p}} = a_1R_{\mathfrak{p}}$, so for all i, $a_i/a_1 = x_i/y_i \in R_{\mathfrak{p}}$ for $x_i \in R$ and $y_i \in R \setminus \mathfrak{p}$. Then $y = \prod_i y_i \notin \mathfrak{p}$ as \mathfrak{p} is prime, and $ya_i/a_1 \in R$ for all i, so $y/a_1 \in I^{-1}$. Thus $y \in II^{-1} \setminus \mathfrak{p}$.

- $(c) \implies (a)$. Check the following.
 - R is Noetherian. Let $I \subset R$ be an ideal. Then $II^{-1} = R$, so $1 = \sum_{i=1}^{n} a_i b_i$ for $a_i \in I$ and $b_i \in I^{-1}$. Let $I' = \langle a_1, \dots, a_n \rangle \subset I$. Then $I'I^{-1} = R = II^{-1}$, so I' = I. So I is finitely generated.
 - R is integrally closed. Let $x \in K$, integral over R. Then $I = R[x] = \sum_{0 \le i < d} Rx^i \subset K$, where d is the degree of the polynomial of integral independence, is a fractional ideal. Obviously $I^2 = I$, so $I = I^2I^{-1} = II^{-1} = R$, that is $x \in R$.
 - Every non-zero prime is maximal. Let $\{0\} \neq \mathfrak{q} \subset \mathfrak{p} \subsetneq R$ for \mathfrak{p} and \mathfrak{q} prime. Then $R \subsetneq \mathfrak{p}^{-1} \subset \mathfrak{q}^{-1}$, so $\mathfrak{q} \subsetneq \mathfrak{p}^{-1}\mathfrak{q} \subset R$, and $\mathfrak{p}(\mathfrak{p}^{-1}\mathfrak{q}) = \mathfrak{q}$, so as \mathfrak{q} is prime and $\mathfrak{p}^{-1}\mathfrak{q} \not\subset \mathfrak{q}$, so $\mathfrak{p} \subset \mathfrak{q}$, that is $\mathfrak{p} = \mathfrak{q}$.

 $^{^{1}}$ Exercise

3. Let R be semi-local Dedekind with non-zero primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$. Choose $x \in R$ with $x \in \mathfrak{p}_1 \setminus \mathfrak{p}_1^2$ and $x \notin \mathfrak{p}_2, \ldots, \mathfrak{p}_n$. Then $\mathfrak{p}_1 = \langle x \rangle$, and every ideal is a product of powers of $\{\mathfrak{p}_i\}$, by below, so R is a PID.

Theorem 2.2. Let R be Dedekind. Then

1. the group of fractional ideals is freely generated by the non-zero prime ideals, and

$$I = \prod_{\mathfrak{p}} \mathfrak{p}^{\mathrm{v}_{\mathfrak{p}}(I)}, \qquad \mathrm{v}_{\mathfrak{p}}\left(I\right) = \inf\left\{\mathrm{v}_{\mathfrak{p}}\left(x\right) \mid x \in I\right\},$$

2. if $(R:I) < \infty$ for all $I \neq 0$, then for all I and J,

$$\left(R:IJ\right) =\left(R:I\right) \left(R:J\right) .$$

Proof.

1. If $I \neq R$, then $I \subset \mathfrak{p}$ for some prime ideal \mathfrak{p} . Then $I = \mathfrak{p}I'$ where $I' = I\mathfrak{p}^{-1} \supsetneq I$ then by Noetherian induction, using the ascending chain condition on ideals, I is a product of powers of prime ideals, $I = \prod_{\mathfrak{p}} \mathfrak{p}^{a_{\mathfrak{p}}}$. Then get the same for fractional ideals $J = x^{-1}I$. Consider the homomorphisms

The composition is $I \mapsto v_{\mathfrak{p}}(I)$, and if $\mathfrak{q} \neq \mathfrak{p}$ then $v_{\mathfrak{p}}(\mathfrak{q}) = 0$. So

$$(\mathbf{v}_{\mathfrak{p}})_{\mathfrak{p}}$$
: {fractional ideals of R } $\longrightarrow \bigoplus_{\mathfrak{p}} \mathbb{Z}$

$$\prod_{\mathfrak{p}} \mathfrak{p}^{a_{\mathfrak{p}}} \longmapsto (a_{\mathfrak{p}})_{\mathfrak{p}}.$$

So $a_{\mathfrak{p}}$ are unique and $(v_{\mathfrak{p}})_{\mathfrak{p}}$ is an isomorphism.

2. By unique factorisation of ideals in 1,

Lecture 3 Tuesday 26/01/21

$$\prod_{\mathfrak{p}} \mathfrak{p}^{a_{\mathfrak{p}}} \cap \prod_{\mathfrak{p}} \mathfrak{p}^{b_{\mathfrak{p}}} = \prod_{\mathfrak{p}} \mathfrak{p}^{\max(a_{\mathfrak{p}},b_{\mathfrak{p}})},$$

so if I + J = R, then $IJ = I \cap J$, so by CRT, $R/IJ \cong R/I \times R/J$ so the result holds if I + J = R. So reduced to showing that $(R : \mathfrak{p}^{n+1}) = (R : \mathfrak{p})(R : \mathfrak{p}^n)$. Now $R/\mathfrak{p}^n \cong R_{\mathfrak{p}}/\mathfrak{p}^n R_{\mathfrak{p}}$, so without loss of generality, R is local, so a DVR, $\mathfrak{p} = \langle \pi \rangle$, and

$$\cdot \pi : R/\langle \pi^n \rangle \xrightarrow{\sim} \langle \pi \rangle / \langle \pi^{n+1} \rangle$$

hence
$$\left(R:\mathfrak{p}^{n+1}\right)=\left(R:\mathfrak{p}\right)\left(\mathfrak{p}:\mathfrak{p}^{n+1}\right)=\left(R:\mathfrak{p}\right)\left(R:\mathfrak{p}^{n}\right).$$

The quotient group

$$\operatorname{Cl} R = \{ \text{fractional ideals of } R \} / \{ \text{principal fractional ideals } aR \text{ for } a \in K^{\times} \}$$

is the class group of R, or the **Picard group** Pic R. If K is a number field, write $Cl(K) = Cl \mathcal{O}_K$, the ideal class group of K.

Fact. For a number field K, Cl(K) is finite.

2.2 Places of number fields

Recall that $V_{\mathbb{Q}} = \{p \mid p \text{ prime}\} \cup \{\infty\}$. Let K be a number field. Let $\mathfrak{p} \subset \mathcal{O}_K$ be non-zero prime. Then \mathfrak{p} determines a discrete valuation $v_{\mathfrak{p}}$ of K and so a non-archimedean $AV |x|_{\mathfrak{p}} = r^{-v_{\mathfrak{p}}(x)}$ for r > 1.

Theorem 2.3. There is a bijection

Proof. Let $\mathfrak{p} \neq \mathfrak{q}$. Then there exists $x \in \mathfrak{p} \setminus \mathfrak{q}$, and then $|x|_{\mathfrak{p}} < 1 = |x|_{\mathfrak{q}}$, so $|\cdot|_{\mathfrak{p}}$ and $|\cdot|_{\mathfrak{q}}$ are inequivalent, so the map is injective. Let $|\cdot|$ be a non-archimedean AV on K, with valuation ring $R = \{x \in K \mid |x| \leq 1\}$. As $|\cdot|$ is non-archimedean, $\mathbb{Z} \subset R$, hence $R \supset \mathcal{O}_K$, as R is integrally closed, and so $R \supset \mathcal{O}_{K,\mathfrak{p}}$ for some prime $\mathfrak{p} = \mathfrak{m}_R \cap \mathcal{O}_K$. Thus $R = \mathcal{O}_{K,\mathfrak{p}}$, since by 1.1 $\mathcal{O}_{K,\mathfrak{p}}$ is a maximal subring of K, so $|\cdot|$ and $|\cdot|_{\mathfrak{p}}$ are equivalent. \square

Notation. If $v \in V_{K,f}$, then

- \mathfrak{p}_v is the corresponding prime ideal of \mathcal{O}_K ,
- K_v is a complete discretely valued field, the completion of K,
- $\mathcal{O}_v = \mathcal{O}_{K_v} \subset K_v$ is the valuation ring, not to be confused with $\mathcal{O}_{K,\mathfrak{p}_v}$,
- $\pi_v \in \mathcal{O}_v$ is any generator of the maximal ideal, the **uniformiser**, often assuming $\pi_v \in K$,
- $v: K^{\times} \to \mathbb{Z}$ is the normalised discrete valuation such that $v(\pi_v) = 1$,
- $\kappa_v = \mathcal{O}_K/\mathfrak{p}_v \cong \mathcal{O}_v/\langle \pi_v \rangle$ is finite of order $q_v = p^{\mathfrak{f}_v}$ for a prime p such that $v \mid p$, and
- $|x|_v = q_v^{-v(x)}$ is the **normalised AV**, so $|\pi_v|_v = 1/q_v$.

Theorem 2.4. There is a bijection

$$\begin{cases} homomorphisms \ \sigma: K \hookrightarrow \mathbb{C} \} \, / \, (\sigma \sim \overline{\sigma}) & \longrightarrow & \mathcal{V}_{K,\infty} \\ \sigma & \longmapsto & |\sigma \left(\cdot \right)| \end{cases} .$$

Proof. Recall that if L/K is a finite separable field extension and v is a place of K, then $L \otimes_K K_v \cong \prod_{w|v} L_w$. There is a unique infinite place ∞ of \mathbb{Q} and $\mathbb{Q}_{\infty} = \mathbb{R}$. So

$$K \otimes_{\mathbb{Q}} \mathbb{R} \xrightarrow{\sim} \prod_{v \in \mathcal{V}_{K,\infty}} K_v.$$

Each K_v is a finite extension of \mathbb{R} , so either

- $K_v = \mathbb{R}$, and v is **real**, or
- $K_v \cong \mathbb{C}$, and v is complex.

In the second case, as $K \subset K_v$ is dense, $K \not\subset \mathbb{R}$. On the other hand, by Galois theory, the group of homomorphisms $\sigma: K \hookrightarrow \mathbb{C}$ has order $n = [K:\mathbb{Q}]$ and there is an isomorphism

$$\begin{array}{ccc} K \otimes_{\mathbb{Q}} \mathbb{C} & \longrightarrow & \prod_{\sigma: K \hookrightarrow \mathbb{C}} \mathbb{C} \\ x \otimes z & \longmapsto & (\sigma(x) z)_{\sigma} \end{array} \tag{1}$$

Complex conjugation acts on both sides of (1) by $x \otimes z \mapsto x \otimes \overline{z}$ and $(z_{\sigma})_{\sigma} \mapsto (\overline{z_{\overline{\sigma}}})_{\sigma}$. Let

$$\sigma_1, \dots, \sigma_{r_1} : K \hookrightarrow \mathbb{R}, \qquad \sigma_{r_1+1} = \overline{\sigma_{r_1+r_2+1}}, \dots, \sigma_{r_1+r_2} = \overline{\sigma_{r_1+2r_2}} : K \hookrightarrow \mathbb{C}, \qquad r_1 + 2r_2 = n.$$

Then taking fixed points under complex conjugation of (1),

$$K \otimes_{\mathbb{Q}} \mathbb{R} \xrightarrow{\sim} \prod_{\sigma \text{ real}} \mathbb{R} \times \prod_{(\sigma, \overline{\sigma}), \ \sigma \neq \overline{\sigma}} \{(z, \overline{z}) \in \mathbb{C} \times \mathbb{C}\} \cong \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}.$$

Notation. Define

$$K_{\infty} = K \otimes_{\mathbb{Q}} \mathbb{R} \cong \prod_{v \in \mathcal{V}_{K,\infty}} K_v \cong \mathbb{R}^{\{\text{real } v\}} \times \mathbb{C}^{\{\text{complex } v\}},$$

where for v complex, $K_v \cong \mathbb{C}$ is well-defined up to complex conjugation. For normalised AVs,

- v real corresponds to $\sigma: K \hookrightarrow \mathbb{R}$ and $|x|_v = |\sigma(x)|$ is the Euclidean AV, and
- v complex corresponds to $\sigma \neq \overline{\sigma} : K \hookrightarrow \mathbb{C}$ and $|x|_v = \sigma(x)\overline{\sigma}(x) = |\sigma(x)|^2$ is the square of modulus.

Let L/K be an extension of number fields, and let $w \mid v$.

- If L_w/K_v is a finite extension of non-archimedean local fields $[L_w:K_v] = e(w \mid v) f(w \mid v)$.
- If $L_w/K_v \cong \mathbb{R}/\mathbb{R}$ or $L_w/K_v \cong \mathbb{C}/\mathbb{C}$, then f = e = 1. If $L_w/K_v \cong \mathbb{C}/\mathbb{R}$, then v is ramified, and e = 2 and f = 1. Neukirch has a different terminology.

Proposition 2.5. Let $x \in L$ and $v \in V_K$. Then

$$\left| \mathcal{N}_{L/K} \left(x \right) \right|_{v} = \prod_{w \mid v} \left| x \right|_{w}.$$

Proof. $N_{L/K}(x) = \prod_{w|v} N_{L_w/K_v}(x)$ so it is enough to show $|N_{L_w/K_v}(x)|_v = |x|_w$. If v is finite, it is enough to take $x = \pi_w \in L$, and

$$\left| \mathbf{N}_{L_w/K_v} \left(\pi_w \right) \right|_v = \left| u \pi_v^{\mathbf{f}(w|v)} \right|_v = \mathbf{q}_v^{-\mathbf{f}(w|v)} = \mathbf{q}_w^{-1} = \left| \pi_w \right|_w, \qquad u \in \mathcal{O}_{K_v}^{\times}.$$

If v is infinite, need only consider $L_w/K_v \cong \mathbb{C}/\mathbb{R}$ and $N_{\mathbb{C}/\mathbb{R}}(z) = z\overline{z}$.

Theorem 2.6 (Product formula). Let $x \in K^{\times}$. Then $|x|_{y} = 1$ for all but finitely many v and

$$\prod_{v \in \mathcal{V}_K} |x|_v = 1.$$

Proof. Let x = a/b for $a, b \in \mathcal{O}_K \setminus \{0\}$. Then

$$\{v \in V_K \mid |x|_v \neq 1\} \subset V_{K,\infty} \cup \{v \in V_{K,f} \mid v(a) > 0 \text{ or } v(b) > 0\}$$

is a finite set. Now

$$\prod_{v \in \mathcal{V}_K} \lvert x \rvert_v = \prod_{p \leq \infty} \prod_{v \mid p} \lvert x \rvert_v = \prod_{p \leq \infty} \left\lvert \mathcal{N}_{K/\mathbb{Q}} \left(x \right) \right\rvert_p.$$

So it is enough to prove for $K = \mathbb{Q}$, and by multiplicativity, reduce to

• x = q prime, where

$$|q|_p = \begin{cases} \frac{1}{q} & p = q \\ 1 & p \neq q, \infty \\ q & p = \infty \end{cases},$$

• x = -1, where $|-1|_p = 1$ for all $p \le \infty$.

Remark.

- \mathbb{R} , with standard measure dx, transforms under $a \in \mathbb{R}^{\times}$ by d(ax) = |a| dx.
- \mathbb{C} , with standard measure dxdy, transforms under $a \in \mathbb{C}^{\times}$ by $d(ax) d(ay) = |a|^2 dxdy$, with the normalised AV on \mathbb{C} .

Fact. On K_v , for any v, there is a translation-invariant measure, the Haar measure, $d_v x$, and for all $a \in K_v^{\times}$, $d_v(ax) = |a|_v d_v x$ where $|\cdot|_v$ is the normalised AV.

Lecture 4 Thursday 28/01/21

3 Different and discriminant

3.1 Discriminant

Let $R \subset S$ be rings, commutative with unity, such that S is a free R-module of finite rank $n \geq 1$. Then we have a trace map given by

$$\begin{array}{cccc} \operatorname{Tr}_{S/R} & : & S & \longrightarrow & R \\ & & x & \longmapsto & \operatorname{Tr} \left(y \mapsto xy \right) \end{array},$$

the trace of the R-linear map $S \to S \cong \mathbb{R}^n$. If $x_1, \ldots, x_n \in S$, define

$$\operatorname{disc}_{S/R}(x_i) = \operatorname{disc}(x_i) = \operatorname{det}(\operatorname{Tr}_{S/R}(x_i x_j)) \in R.$$

If $y_i = \sum_{j=1}^n r_{ji}x_j$ for $r_{ji} \in R$, then $\operatorname{Tr}_{S/R}(y_iy_j) = \sum_{k,l} r_{ki}r_{lj}\operatorname{Tr}_{S/R}(x_kx_l)$, so

$$\operatorname{disc}(y_i) = \det(r_{ij})^2 \operatorname{disc}(x_i). \tag{2}$$

Definition. Let $S = \bigoplus_{i=1}^n Re_i$. Then the **discriminant**

$$\operatorname{disc}(S/R) = \operatorname{disc}_{S/R}(e_i) R \subset R$$

is an ideal of R, independent of the basis by (2).

The following are obvious properties.

• If $S = S_1 \times S_2$ for S_i free over R, then

$$\operatorname{disc}(S/R) = \operatorname{disc}(S_1/R)\operatorname{disc}(S_2/R)$$
.

• If $f: R \to R'$ is a ring homomorphism, then

$$\operatorname{disc}(S \otimes_R R'/R') = f \left(\operatorname{disc}(S/R)\right) R'.$$

• If R is a field, then $\operatorname{disc}(S/R) = R$ or $\operatorname{disc}(S/R) = 0$, and $\operatorname{disc}(S/R) = R$ if and only if the R-bilinear form

$$\begin{array}{ccc} S \times S & \longrightarrow & R \\ (x,y) & \longmapsto & \operatorname{Tr}_{S/R}(xy) \end{array}$$

is non-degenerate, that is there is a duality of the R-vector space S with itself.

By field theory, if L/K is a finite field extension, then $\operatorname{disc}(L/K) = K$ if and only if the trace form is non-degenerate, if and only if there exists $x \in L$ with $\operatorname{Tr}_{L/K}(x) \neq 0$, if and only if L/K is separable. More generally is the following.

Theorem 3.1. Let k be a field, and let A be a finite-dimensional k-algebra. Then $\operatorname{disc}(A/k) \neq 0$, so $\operatorname{disc}(A/k) = k$, if and only if $A = \prod_i K_i$ for K_i/k a finite separable field extension.

Proof. Write $A = \prod_{i=1}^m A_i$ where A_i are indecomposable k-algebras, so A_i is local. So may assume A is local with maximal ideal \mathfrak{m} . If $\mathfrak{m} = 0$, that is A is a field, reduced to the previous statement. If not, then every element of \mathfrak{m} is nilpotent, since $\dim_k A < \infty$. So there exists $x \in \mathfrak{m} \setminus \{0\}$ nilpotent. So the endomorphism $y \mapsto xy$ of A is nilpotent and for all $r \in A$, so is $y \mapsto (rx)y$, so for all $r \in A$, $\operatorname{Tr}_{A/k}(rx) = 0$. So the trace form is degenerate, and the discriminant is zero. See Atiyah-Macdonald chapter on Artinian rings for an explanation of $A = \prod_i A_i$.

Let R be a Dedekind domain, let $K = \operatorname{Frac} R$, let L/K be finite separable, and let S be the integral closure of R in L. Say S/R is an **extension of Dedekind domains**. Then S is a finitely generated R-module, but need not be free.

Proposition 3.2. S is locally free R-module of rank n = [L:K], that is for all $\mathfrak{p} \subset R$, $S_{\mathfrak{p}} \cong R_{\mathfrak{p}}^n$.

Proof. $S \subset L$ so S is torsion-free, hence so is $S_{\mathfrak{p}}$, and $R_{\mathfrak{p}}$ is a PID, so $S_{\mathfrak{p}}$ is free, clearly of rank $\dim_K L = n$. \square

Lecture 5

Lemma 3.3. If $x \in S$, then $\operatorname{Tr}_{L/K}(x) \in R$.

Proof. If R is local, then S is a free R-module so $\operatorname{Tr}_{L/K}(x) = \operatorname{Tr}_{S \otimes_R K/K}(x \otimes 1) = \operatorname{Tr}_{S/R}(x) \in R$. So in general, for all $0 \neq \mathfrak{p} \subset R$, $y = \operatorname{Tr}_{L/K}(x) \in R_{\mathfrak{p}}$ and

$$\bigcap_{\mathfrak{p}}R_{\mathfrak{p}}=\left\{ x\in K\mid\forall\mathfrak{p},\ \mathrm{v}_{\mathfrak{p}}\left(x\right)\geq0\right\} =R.$$

Then there are two equivalent definitions of disc (S/R).

Definition. disc (S/R) is defined to be the ideal of R generated by

$$\left\{ \operatorname{disc}_{L/K}(x_1,\ldots,x_n) \mid x_1,\ldots,x_n \in S \right\}.$$

If S/R is free, this gives the previous definition. As $S \otimes_R K = L$ is separable over K, disc $(L/K) = K \neq 0$ and so disc $(S/R) \neq 0$. This is how we prove that S/R is finitely generated.

Proposition 3.4. disc $(S/R) R_{\mathfrak{p}} = \operatorname{disc} (S_{\mathfrak{p}}/R_{\mathfrak{p}})$ for all \mathfrak{p} .

Proof. Claim there exist $x_1, \ldots, x_n \in S$ which is an $R_{\mathfrak{p}}$ -basis for $S_{\mathfrak{p}}$. Certainly there exist $e_1, \ldots, e_n \in S_{\mathfrak{p}}$ which is an $R_{\mathfrak{p}}$ -basis. Let

$$Q = \{ \text{primes } \mathfrak{q} \subset S \mid \exists i, \ v_{\mathfrak{q}}(e_i) < 0 \}$$

be a finite set. By CRT, there exist $a_i \in S$ such that $v_{\mathfrak{q}}(a_i) + v_{\mathfrak{q}}(e_i) \geq 0$ for all $\mathfrak{q} \in \mathcal{Q}$ and $a_i - 1 \in \mathfrak{p}S$. Then $x_i = a_i e_i \in S$ and $x_i \equiv e_i \mod \mathfrak{p}S$. So (x_i) is an R/\mathfrak{p} -basis for $S/\mathfrak{p}S = S_{\mathfrak{p}}/\mathfrak{p}S_{\mathfrak{p}}$, so (x_i) is an $R_{\mathfrak{p}}$ -basis for $S_{\mathfrak{p}}$. Thus $\mathrm{disc}(S_{\mathfrak{p}}/R_{\mathfrak{p}}) = \mathrm{disc}(x_i)R_{\mathfrak{p}}$, and $\mathrm{disc}(x_i) \in \mathrm{disc}(S/R)$. So $\mathrm{disc}(S_{\mathfrak{p}}/R_{\mathfrak{p}}) \subset \mathrm{disc}(S/R)R_{\mathfrak{p}}$ and the other inclusion is obvious.

There is an alternative definition of $\operatorname{disc}(S/R)$. If $x_1, \ldots, x_n \in S$ is a K-basis for L, then $\operatorname{disc}_{L/K}(x_i) \neq 0$. Let

$$\mathcal{P} = \left\{ \mathfrak{p} \subset R \mid v_{\mathfrak{p}} \left(\operatorname{disc}_{L/K} \left(x_{i} \right) \right) > 0 \right\}$$

be a finite set. So for all $\mathfrak{p} \notin \mathcal{P}$, disc $(S_{\mathfrak{p}}/R_{\mathfrak{p}}) = R_{\mathfrak{p}}$.

Definition. Define

$$\operatorname{disc}\left(S/R\right) = \prod_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}^{\operatorname{v}_{\mathfrak{p}}\left(\operatorname{disc}\left(S_{\mathfrak{p}}/R_{\mathfrak{p}}\right)\right)},$$

which is equivalent by 3.4 to the previous definition.

Theorem 3.5. $v_{\mathfrak{p}}(\operatorname{disc}(S/R)) = 0$ if and only if \mathfrak{p} is unramified in S and for all $\mathfrak{q} \subset S$ over \mathfrak{p} , the residue field extension $(S/\mathfrak{q})/(R/\mathfrak{p})$ is separable.

Proof. May assume R is local, so S is free over R. Have $\mathfrak{p}S = \prod_{\mathfrak{q}} \mathfrak{q}^{e_{\mathfrak{q}}}$, so

$$S \otimes_R (R/\mathfrak{p}) \cong S/\mathfrak{p}S \cong \prod_{\mathfrak{q}} S/\mathfrak{q}^{e_{\mathfrak{q}}}.$$

So $v_{\mathfrak{p}}(\operatorname{disc}(S/R)) = 0$ if and only if $\operatorname{disc}((S/\mathfrak{p}S) / (R/\mathfrak{p})) = R/\mathfrak{p}$, if and only if each $S/\mathfrak{q}^{e_{\mathfrak{q}}}$ is a finite separable field extension of R/\mathfrak{p} by 3.1, if and only if for all \mathfrak{q} , $e_{\mathfrak{q}} = 1$ and $(S/\mathfrak{q}) / (R/\mathfrak{p})$ is separable.

Corollary 3.6. In an extension S/R of Dedekind domains, only finitely many primes are ramified, just the \mathfrak{p} such that $v_{\mathfrak{p}}(\operatorname{disc}(S/R)) > 0$.

Proposition 3.7. Let $\mathfrak{p} \subset R$. Then

$$v_{\mathfrak{p}}\left(\operatorname{disc}\left(S/R\right)\right) = \sum_{\mathfrak{q}\supset\mathfrak{p}} v_{\mathfrak{p}}\left(\operatorname{disc}\left(\widehat{S_{\mathfrak{q}}}/\widehat{R_{\mathfrak{p}}}\right)\right).$$

Proof. By 3.4 may assume R is local, so S is a free R-module, and $S \otimes_R \widehat{R} \cong \prod_{\mathfrak{q} \subset S} \widehat{S_{\mathfrak{q}}}$ so

$$\mathrm{v}_{\mathfrak{p}}\left(\mathrm{disc}\left(S/R\right)\right)=\mathrm{v}_{\mathfrak{p}}\left(\mathrm{disc}\left(S\otimes_{R}\widehat{R}/\widehat{R}\right)\right)=\sum_{\mathfrak{q}}\mathrm{v}_{\mathfrak{p}}\left(\mathrm{disc}\left(\widehat{S_{\mathfrak{q}}}/\widehat{R}\right)\right).$$

3.2 Different

There is a finer invariant of ramification.

Definition. The inverse different $\mathcal{D}_{S/R}^{-1}$ of an extension S/R of Dedekind domains is

$$\mathcal{D}_{S/R}^{-1} = \left\{ x \in L \mid \forall y \in S, \ \operatorname{Tr}_{L/K}(xy) \in R \right\}.$$

This is the dual of S with respect to the trace form $(x,y) \mapsto \operatorname{Tr}_{L/K}(xy)$, which is non-degenerate and clearly an S-submodule of L. If $\bigoplus_{i=1}^n Rx_i \subset S$, let (y_i) be the dual basis to (x_i) for the trace form, that is $\operatorname{Tr}_{L/K}(x_iy_j) = \delta_{ij}$. Then $S \subset \mathcal{D}_{S/R}^{-1} \subset \bigoplus_{i=1}^n Ry_i$, so $\mathcal{D}_{S/R}^{-1}$ is a fractional ideal, since it is finitely generated.

Definition. $\mathcal{D}_{S/R}$ is an ideal of S, the **different**.

Proposition 3.8.

- 1. If $\mathfrak{p} \subset R$, then $\mathcal{D}_{S_{\mathfrak{p}}/R_{\mathfrak{p}}} = \mathcal{D}_{S/R}S_{\mathfrak{p}}$.
- 2. $N_{L/K}(\mathcal{D}_{S/R}) = \operatorname{disc}(S/R)$.
- 3. Let $\mathfrak{q} \subset S$ lying over $\mathfrak{p} \subset R$. Then $v_{\mathfrak{q}}\left(\mathcal{D}_{S/R}\right) = v_{\mathfrak{q}}\left(\mathcal{D}_{\widehat{S_{\mathfrak{q}}}/\widehat{R_{\mathfrak{p}}}}\right)$.

Proof.

- 1. Exercise. ²
- 2. By 1 and 3.4, can suppose R is local. Then S is a PID by 2.1.3. So $\mathcal{D}_{S/R}^{-1} = x^{-1}S$ for some $0 \neq x \in S$. Let (e_i) be a basis for S over R. Then there exists a basis (e'_i) for S over R such that $\operatorname{Tr}_{L/K}\left(e_ix^{-1}e'_j\right) = \delta_{ij}$. Let $x^{-1}e'_j = \sum_k b_{kj}e_k$ for $b_{kj} \in K$. Then

$$\langle 1 \rangle = \left\langle \det \left(\operatorname{Tr}_{L/K} \left(e_i x^{-1} e'_j \right) \right) \right\rangle = \left\langle \det \left(\operatorname{Tr}_{L/K} \left(e_i e_j \right) \right) \det \left(b_{ij} \right) \right\rangle = \det \left(b_{ij} \right) \operatorname{disc} \left(S/R \right).$$

But $N_{L/K}(x^{-1})$ is $\det(b_{ij})$ times some unit in R. So $\langle 1 \rangle = \langle N_{L/K}(x^{-1}) \rangle \operatorname{disc}(S/R)$.

Lecture 6 Tuesday 02/02/21

3. Assume R is local and $\mathfrak{p} = \langle \pi_{\mathfrak{p}} \rangle$. Write $\widehat{K} = \operatorname{Frac} \widehat{R}$ and for $\mathfrak{q} = \langle \pi_{\mathfrak{q}} \rangle \subset S$ write $\widehat{L_{\mathfrak{q}}} = \operatorname{Frac} \widehat{S_{\mathfrak{q}}}$. So say

$$L\otimes_K \widehat{K}\supset S\otimes_R \widehat{R}\xrightarrow{\sim} \prod_{\mathfrak{q}} \widehat{S_{\mathfrak{q}}}\subset \prod_{\mathfrak{q}} \widehat{L_{\mathfrak{q}}},$$

and

$$\operatorname{Tr}_{L\otimes_{K}\widehat{K}/\widehat{K}}\left(x\right)=\sum_{\mathfrak{q}}\operatorname{Tr}_{\widehat{L_{\mathfrak{q}}}/\widehat{K}}\left(x\right).\tag{3}$$

Let $S = \bigoplus_{i=1}^n Rx_i$, and $\bigoplus_{i=1}^n Ry_i = \mathcal{D}_{S/R}^{-1} = \prod_{\mathfrak{q}} \pi_{\mathfrak{q}}^{-a_{\mathfrak{q}}} S$ for some $a_{\mathfrak{q}} \geq 0$ and $y_i \in L$, the dual basis to x_i . Then as $S \otimes_R \widehat{R} = \bigoplus_{i=1}^n \widehat{R}(x_i \otimes 1)$,

$$\begin{split} \mathcal{D}_{S \otimes_{R} \widehat{R} / \widehat{R}}^{-1} &= \left\{ x \in L \otimes_{K} \widehat{K} \; \middle| \; \forall y \in S \otimes_{R} \widehat{R}, \; \operatorname{Tr}_{L \otimes_{K} \widehat{K} / \widehat{K}} \left(x y \right) \in \widehat{R} \right\} \\ &= \bigoplus_{i=1}^{n} \widehat{R} \left(y_{i} \otimes 1 \right) = \mathcal{D}_{S / R}^{-1} \left(S \otimes_{R} \widehat{R} \right) = \prod_{\mathfrak{q}} \pi_{\mathfrak{q}}^{-a_{\mathfrak{q}}} \left(S \otimes_{R} \widehat{R} \right) \subset L \otimes_{K} \widehat{K}, \end{split}$$

since $\operatorname{Tr}_{L/K}(x_iy_j) = \delta_{ij}$ and trace commutes with base change. On the other hand, by (3) and the definitions

$$\mathcal{D}_{S\otimes_R \widehat{R}/\widehat{R}}^{-1} \cong \prod_{\mathfrak{q}} \mathcal{D}_{\widehat{S}_{\widehat{\mathfrak{q}}}/\widehat{R}}^{-1} \subset \prod_{\mathfrak{q}} \widehat{L}_{\mathfrak{q}},$$

so

$$\mathcal{D}_{\widehat{S_{\mathfrak{q}}}/\widehat{R}}^{-1} = \prod_{\mathfrak{q}'} \pi_{\mathfrak{q}'}^{-a_{\mathfrak{q}'}} \widehat{S_{\mathfrak{q}}} = \pi_{\mathfrak{q}}^{-a_{\mathfrak{q}}} \widehat{S_{\mathfrak{q}}},$$

as $v_{\mathfrak{q}}(\pi_{\mathfrak{q}'}) = 0$ if $\mathfrak{q}' \neq \mathfrak{q}$.

 $^{^2}$ Exercise: the same idea as 3.4

Use this to prove the following.

Theorem 3.9. Assume all extensions of residue fields are separable. Let $\mathfrak{p}S = \prod_{i=1}^g \mathfrak{q}_i^{e_i} \subset S$. Then $\mathfrak{q}_i \mid \mathcal{D}_{S/R}$ if and only if $e_i > 1$, and $\mathfrak{q}_i^{e_i-1} \mid \mathcal{D}_{S/R}$.

Proof. First assume R is complete local and $\mathfrak{p} = \langle \pi_{\mathfrak{p}} \rangle$. Then S is also local, and complete, with unique prime $\mathfrak{q} = \langle \pi_{\mathfrak{q}} \rangle$, so g = 1. So $\mathcal{D}_{S/R} = \langle \pi_{\mathfrak{q}} \rangle^d$ for $d \geq 0$. By 3.8.2, $\operatorname{disc}(S/R) = \langle N_{L/K}(\pi_{\mathfrak{q}})^d \rangle = \langle \pi_{\mathfrak{p}} \rangle^{df}$. So as $v_{\mathfrak{p}}(\operatorname{disc}(S/R)) = 0$ if and only if \mathfrak{p} is unramified by 3.5, get the first statement. For the second, claim $\operatorname{Tr}_{L/K}(\mathfrak{q}) \subset \mathfrak{p}$. Let $x \in \mathfrak{q}$. Then multiplication by x is a nilpotent endomorphism of $S \otimes_R (R/\mathfrak{p}) \cong S/\mathfrak{q}^e$, so $\operatorname{Tr}_{S\otimes_R(R/\mathfrak{p})/(R/\mathfrak{p})}(x\otimes 1) = 0$, that is $\operatorname{Tr}_{L/K}(x) = \operatorname{Tr}_{S/R}(x) \in \mathfrak{p}$. Hence the claim. Therefore $\operatorname{Tr}_{L/K}(\mathfrak{q}^{1-e}) = \operatorname{Tr}_{L/K}(\pi_{\mathfrak{p}}^{-1}\mathfrak{q}) \subset R$, so $\mathfrak{q}^{1-e} \subset \mathcal{D}_{S/R}^{-1}$, that is $\mathfrak{q}^{e-1} \mid \mathcal{D}_{S/R}$. For the general case, apply the above to $\widehat{S}_{\mathfrak{q}_i}/\widehat{R_{\mathfrak{p}}}$ and use 3.8.3.

Fact.

- If $\mathfrak{p} \nmid e_i$ then $v_{\mathfrak{q}_i}(\mathcal{D}_{S/R}) = e_i 1$. If $\mathfrak{p} \mid e_i$ then $v_{\mathfrak{q}_i}(\mathcal{D}_{S/R}) \geq e_i$. More precisely, $v_{\mathfrak{q}_i}(\mathcal{D}_{S/R})$ is determined by the orders of the higher ramification groups, for a Galois closure of L/K. See for example Serre, Local fields, Chapter 4, Section 1, Proposition 4.
- If S = R[x], and x has minimal polynomial $f \in R[T]$ then $\mathcal{D}_{S/R} = \langle f'(x) \rangle$ where f' is the derivative. See example sheet 1. This means that $\mathcal{D}_{S/R}$ is the annihilator of the cyclic S-module $\Omega_{S/R}$ of Kähler differentials, generated by dx.

For an extension L/K of number fields write

$$\mathcal{D}_{L/K} = \mathcal{D}_{\mathcal{O}_L/\mathcal{O}_K} \subset \mathcal{O}_L, \qquad \delta_{L/K} = \operatorname{disc}\left(\mathcal{O}_L/\mathcal{O}_K\right) \subset \mathcal{O}_K.$$

Remark. Let K/\mathbb{Q} , and let (e_i) be a \mathbb{Z} -basis for \mathcal{O}_K . Then $\delta_{K/\mathbb{Q}} \subset \mathbb{Z}$ is $\langle \operatorname{disc}(e_i) \rangle$ and if (e'_i) is another basis such that $e'_i = \sum_{i,j} a_{ji} e_j$, then $\operatorname{disc}(e'_i) = (\det(a_{ij}))^2 \operatorname{disc}(e_i) = \operatorname{disc}(e_i)$, since $\det(a_{ij}) = \pm 1$. So the integer $\operatorname{disc}(e_i)$ is independent of the basis, not just the ideal it generates. This is called the **absolute discriminant** $\operatorname{d}_K \in \mathbb{Z} \setminus \{0\}$ of K. The sign is significant.

Theorem 3.10 (Kummer-Dedekind criterion). Let S/R be an extension of Dedekind domains, and let $x \in S$ such that L = K(x). Suppose $\mathfrak{p} \subset R$ such that $S_{\mathfrak{p}} = R_{\mathfrak{p}}[x]$. Let $g \in R[T]$ be the minimal polynomial of x and $g = \prod_i \overline{g_i}^{e_i} \in (R/\mathfrak{p})[T]$ the factorisation of reduction of g into powers of distinct monic irreducibles $\overline{g_i}$. Let $g_i \in R[T]$ be any monic lifting of $\overline{g_i}$ and $f_i = \deg g_i = \deg \overline{g_i}$. Then

$$\mathfrak{q}_i = \mathfrak{p}S + \langle q_i(x) \rangle \subset S$$

is prime with $[S/\mathfrak{q}_i:R/\mathfrak{p}]=f_i$, if $i\neq j$ then $\mathfrak{q}_i\neq\mathfrak{q}_j$, and $\mathfrak{p}S=\prod_i\mathfrak{q}_i^{e_i}$.

Proof. Can assume R is local, so then S = R[x]. Set $\mathfrak{p} = \langle \pi \rangle$ and $R/\mathfrak{p} = \kappa$.

- \mathfrak{q}_i is prime with residue degree f_i , since $S/\mathfrak{q}_i \cong \kappa[T]/\langle \overline{g_i} \rangle$, and $\overline{g_i}$ is irreducible of degree f_i .
- If $i \neq j$, there exist $a, b \in R[T]$ such that $\overline{ag_i} + \overline{bg_j} = 1 \in \kappa[T]$, so $1 = ag_i + bg_j + \pi c$ for some $c \in R[T]$. Then $1 \in \langle \pi, g_i(x), g_j(x) \rangle = \mathfrak{q}_i + \mathfrak{q}_j$, so $\mathfrak{q}_i \neq \mathfrak{q}_j$.

Let $g = \prod_{i} g_i^{e_i} + \pi h$ for $h \in R[T]$. Then

$$\prod_{i} \mathfrak{q}_{i}^{e_{i}} = \prod_{i} \left\langle \pi, g_{i}\left(x\right)\right\rangle^{e_{i}} \subset \prod_{i} \left\langle \pi, g_{i}\left(x\right)^{e_{i}}\right\rangle \subset \left\langle \pi, \prod_{i} g_{i}\left(x\right)^{e_{i}}\right\rangle = \left\langle \pi, \pi h\left(x\right)\right\rangle \subset \left\langle \pi\right\rangle = \mathfrak{p}S.$$

Now

$$\dim_{\kappa} \left(S/\mathfrak{p} S \right) = n = \left[L:K \right], \qquad \dim_{\kappa} \left(S/\mathfrak{q}_{i}^{e_{i}} \right) = \sum_{j=0}^{e_{i}-1} \dim_{\kappa} \left(\mathfrak{q}_{i}^{j}/\mathfrak{q}_{i}^{j+1} \right) = e_{i} \dim_{\kappa} \left(S/\mathfrak{q}_{i} \right) = e_{i} f_{i},$$

so $\prod_i \mathfrak{q}_i^{e_i} \subset \mathfrak{p}S$ gives $\sum_i e_i f_i \geq n$. As $\sum_i e_i f_i = \sum_i e_i \deg \overline{g_i} = \deg \overline{g} = n$, have equality.

4 Example: quadratic fields

Let $K = \mathbb{Q}\left(\sqrt{d}\right)$ for $d \in \mathbb{Q}^{\times}$ not a square. Multiplying d by a square, can assume $d \in \mathbb{Z} \setminus \{0,1\}$ is squarefree. Then

Lecture 7 Thursday 04/02/21

$$\mathcal{O}_K \supset \mathbb{Z}\left[\sqrt{d}\right] = \mathbb{Z} \oplus \mathbb{Z}\sqrt{d}.$$

Since $\operatorname{Tr}_{K/\mathbb{Q}}\left(1\right)=2$ and $\operatorname{Tr}_{K/\mathbb{Q}}\left(\sqrt{d}\right)=0$, $\operatorname{disc}\left(1,\sqrt{d}\right)=4d$, so either $\operatorname{d}_{K}=4d$, and

$$\mathcal{O}_K = \mathbb{Z}\left[\sqrt{d}\right],$$

or $d_K = d$, and $\left(\mathcal{O}_K : \mathbb{Z}\left[\sqrt{d}\right]\right) = 2$. This holds if and only if there exist $m, n \in \mathbb{Z}$ not both even with $\frac{m+n\sqrt{d}}{2} \in \mathcal{O}_K$, if and only if $\frac{1+\sqrt{d}}{2} \in \mathcal{O}_K$ since obviously $\frac{1}{2}, \frac{\sqrt{d}}{2} \notin \mathcal{O}_K$, if and only if $d \equiv 1 \mod 4$ since the minimal polynomial of $\frac{1+\sqrt{d}}{2}$ is $\left(T - \frac{1}{2}\right)^2 - \frac{d}{4} = T^2 - T - \frac{d-1}{4}$, in which case

$$\mathcal{O}_K = \mathbb{Z} \oplus \mathbb{Z} \frac{1+\sqrt{d}}{2} = \mathbb{Z} \left[\frac{1+\sqrt{d}}{2} \right].$$

The dual basis of $\left(1,\sqrt{d}\right)$ for the trace form is $\left(\frac{1}{2},\frac{1}{2\sqrt{d}}\right)$, so

$$\mathcal{D}_{K/\mathbb{Q}} = \begin{cases} \left\langle 2\sqrt{d} \right\rangle & d \not\equiv 1 \mod 4 \\ \left\langle \sqrt{d} \right\rangle & d \equiv 1 \mod 4 \end{cases}.$$

Decomposition of primes by Kummer-Dedekind.

- If $p \neq 2$ or $d \not\equiv 1 \mod 4$ then $p \nmid \left(\mathcal{O}_K : \mathbb{Z}\left\lceil \sqrt{d} \right\rceil\right)$. So applying the criterion to $T^2 d$, see that
 - $-\langle p\rangle = \mathfrak{p}^2$ is ramified if $p \mid d$, so $\mathfrak{p} = \langle p, \sqrt{d} \rangle$,
 - $-\langle p\rangle = \mathfrak{p}$ is inert if $\left(\frac{d}{p}\right) = -1$, and
 - $\langle p \rangle = \mathfrak{p}\mathfrak{p}' \text{ is split if } \left(\frac{d}{p}\right) = 1, \text{ so if } d \equiv a^2 \mod p \text{ then } \mathfrak{p} = \left\langle p, \sqrt{d} a \right\rangle \neq \left\langle p, \sqrt{d} + a \right\rangle = \mathfrak{p}'.$
- The remaining case is p=2 and $d\equiv 1\mod 4$. Factoring $T^2-T-\frac{d-1}{4}\mod 4$ modulo two, get
 - $-\langle 2 \rangle$ is inert if $d \equiv 5 \mod 8$, and
 - $-\ \langle 2 \rangle = \mathfrak{p}\mathfrak{p}' \text{ is split if } d \equiv 1 \mod 8 \text{ and } \mathfrak{p} = \left\langle 2, \frac{\sqrt{d}+1}{2} \right\rangle \neq \left\langle 2, \frac{\sqrt{d}-1}{2} \right\rangle = \mathfrak{p}'.$

Go through the calculations if you have not seen them before. ³

³Exercise

5 Example: cyclotomic fields

Recall some Galois theory. Let n > 1, and let K be a field of characteristic zero or characteristic $p \nmid n$. Suppose $L = K(\zeta_n)$, where $\zeta_n \in L$ is a primitive n-th root of unity, that is $\zeta_n^m \neq 1$ for all $1 \leq m < n$. Equivalently, ζ_n is a root of the n-th cyclotomic polynomial $\Phi_n \in \mathbb{Z}[T]$ of degree $\phi(n)$, defined recursively by

$$T^{n}-1=\prod_{d\mid n}\Phi_{d}\left(T\right) .$$

Then L/K is Galois, with abelian Galois group, and

$$\begin{array}{ccc} \operatorname{Gal}\left(L/K\right) & \longrightarrow & \left(\mathbb{Z}/n\mathbb{Z}\right)^{\times} \\ g & \longmapsto & \text{unique } a \mod n \text{ such that } g\left(\zeta_n\right) = \zeta_n^a \end{array}.$$

is an injective homomorphism.

Theorem 5.1. Let $L = \mathbb{Q}(\zeta_n)$ for n odd or $4 \mid n$. Then

- 1. Gal $(L/\mathbb{Q}) \xrightarrow{\sim} (\mathbb{Z}/n\mathbb{Z})^{\times}$,
- 2. p ramifies in L if and only if $p \mid n$, and
- 3. $\mathcal{O}_L = \mathbb{Z}[\zeta_n]$.

Remark. 1 if and only if Φ_n is irreducible over \mathbb{Q} , if and only if $[L:\mathbb{Q}] = \phi(n)$.

Proof. Let $n=p^rm$ for $r\geq 1$ and $p\nmid m$ prime, so $r\geq 2$ if p=2. Let $\zeta_m=\zeta_n^{p^r}$ and $\zeta_{p^r}=\zeta_n^m$. Then there exist $a,b\in\mathbb{Z}$ such that $p^ra+mb=1$, so $\zeta_n=\zeta_m^a\zeta_{p^r}^b$. Let $K=\mathbb{Q}\left(\zeta_m\right)$. Then $L=K\left(\zeta_{p^r}\right)$. Will prove that

- Φ_{p^r} is irreducible over K,
- if $v \in V_{K,f}$ and $v \nmid p$ then v is unramified in L/K,
- if $v \mid p$ then v is totally ramified in L/K, since $p^r \geq 3$ so $L \neq K$, and
- $\mathcal{O}_L = \mathcal{O}_K \left[\zeta_{p^r} \right].$

This proves 5.1 by induction on n. For a place w of L, write $x_w \in L_w$ for the image of ζ_{p^r} under $L \hookrightarrow L_w$. Suppose $v \mid p$. By induction, p is unramified in K/\mathbb{Q} , so v(p) = 1. Then

$$\Phi_{p^r}(T+1) = \frac{(T+1)^{p^r} - 1}{(T+1)^{p^{r-1}} - 1}$$

is an Eisenstein polynomial in $\mathcal{O}_{K_v}[T]$. Indeed $\Phi_{p^r}(T+1) \equiv T^{p^{r-1}(p-1)} \mod p$, and the constant coefficient is p, so has valuation one. Then from local fields,

- Φ_{p^r} is irreducible over K_v , hence over K,
- L/K is totally ramified at v, and
- if w is the unique place of L over v, then $\mathcal{O}_{L_w} = \mathcal{O}_{K_v} [\pi_w]$ where $\pi_w = x_w 1$ is the root of $\Phi_{p^r} (T+1)$ in L_w .

Now let $v \mid q \neq p$. Then Φ_{p^r} is separable modulo q. Have

$$K_v \otimes_K L \cong \prod_{w|v} L_w = \prod_{w|v} K_v (x_w).$$

Let $f_w \in \mathcal{O}_{K_v}[T]$ be the minimal polynomial of x_w over K_v . Then

- $\prod_{w|v} f_w = \Phi_{p^r}$, so the reduction of f_w at v is separable, hence L_w/K_v is unramified, and
- by local fields again, $\mathcal{O}_{L_w} = \mathcal{O}_{K_v}[x_w]$.

Thus for all $v \in V_{K,f}$,

$$\mathcal{O}_{K_{v}} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{K} \left[\zeta_{p^{r}} \right] \cong \mathcal{O}_{K_{v}} \left[T \right] / \left\langle \Phi_{p^{r}} \right\rangle \cong \prod_{w \mid v} \mathcal{O}_{K_{v}} \left[T \right] / \left\langle f_{w} \right\rangle = \prod_{w \mid v} \mathcal{O}_{L_{w}} \cong \mathcal{O}_{K_{v}} \otimes_{\mathcal{O}_{K}} \mathcal{O}_{L},$$

by CRT, so must have $\mathcal{O}_K[\zeta_{p^r}] = \mathcal{O}_L$.

Recall Frobenius elements. Let L/K be a Galois extension of number fields, let $w \mid v$ be finite places, and let $G = \text{Gal}(L/K) \supset G_w \cong \text{Gal}(L_w/K_v)$ be the decomposition group of w. Then

$$1 \to I_w \to G_w \to \operatorname{Gal}(\ell_w/\kappa_v) \to 1$$
,

where I_w is the inertia subgroup. Suppose w is unramified in L/K, if and only if v is unramified in L/K. Then $I_w = 1$. Define the **Frobenius** at w to be the unique element $\sigma_w \in G_w$ mapping to the generator $x \mapsto x^{q_v}$ of $\operatorname{Gal}(\ell_w/\kappa_v)$. So $\operatorname{ord} \sigma_w = \operatorname{f}(w \mid v) = [\ell_w : \kappa_v] = [\ell_{w'} : \kappa_v]$ for any $w' \mid v$, as G acts transitively on $\{w'\}$. In particular, $\sigma_w = 1$ if and only if v splits completely in L/K, that is there exist [L : K] places of L over v. Suppose G is abelian. Then G_w and σ_w are independent of w, so depends only on v.

Notation. $\sigma_v = \sigma_{L/K,v} = \sigma_w$ is the **arithmetic Frobenius** at v. There are other notations, such as $\phi_{L/K,v}$ or (v, L/K), the **norm residue symbol**.

Remark. Let L/F/K where L/K is abelian. Then $\sigma_{L/K}|_F = \sigma_{F/K}$ by definition.

Let $L = \mathbb{Q}(\zeta_n)$, let $K = \mathbb{Q}$, and let n > 2. Have an isomorphism

$$\begin{array}{cccc} \lambda & : & (\mathbb{Z}/n\mathbb{Z})^{\times} & \longrightarrow & \operatorname{Gal}\left(L/\mathbb{Q}\right) \\ & a & \operatorname{mod} n & \longmapsto & (\zeta_n \mapsto \zeta_n^a) \end{array}.$$

Claim that if $p \nmid n$,

$$\sigma_p = \sigma_{L/\mathbb{Q},p} = \lambda (p \mod n) = (\zeta_n \mapsto \zeta_n^p) \in \operatorname{Gal}(L/\mathbb{Q}).$$

Indeed, σ_p is characterised by for all $v \mid p$, σ_p induces $x \mapsto x^p$ on the residue field $\mathbb{Z}[\zeta_n]/\mathfrak{p}_v$, whereas $\lambda(p)$ induces $x \mapsto x^p$ over $\mathbb{Z}[\zeta_n]/\langle p \rangle$.

Lecture 8 Saturday 06/02/21

Remark.

- These elements σ_p generate $\operatorname{Gal}(L/\mathbb{Q})$, since every integer prime to n is a product of $p \nmid n$, so gives, with some thought, another proof that $\operatorname{Gal}(L/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- If $\sigma: L \hookrightarrow \mathbb{C}$ is any embedding, then $\overline{\sigma(\zeta_n)} = \sigma(\zeta_n^{-1})$. So $\lambda(-1 \mod n)$ is complex conjugation, for any $\sigma: L \hookrightarrow \mathbb{C}$.

Specialise to the case n=q>2 is prime. Then $\operatorname{Gal}(L/\mathbb{Q})=(\mathbb{Z}/q\mathbb{Z})^{\times}$ is cyclic of order q-1, so has a unique index two subgroup $H\cong \left((\mathbb{Z}/q\mathbb{Z})^{\times}\right)^2$. Let $K=L^H$ be a quadratic extension of \mathbb{Q} . Every $p\neq q$ is unramified in L, hence also in K. So $K=\mathbb{Q}(\sqrt{\pm q})$, and as $\langle 2 \rangle$ is unramified in K, must have

$$K = \mathbb{Q}\left(\sqrt{q^*}\right), \qquad q^* = \begin{cases} q & q \equiv 1 \mod 4 \\ -q & q \equiv 3 \mod 4 \end{cases}, \qquad d_K = q^*.$$

Now let $p \neq q$ be an odd prime. Then

$$\sigma_{K/\mathbb{Q},p} = 1 \qquad \Longleftrightarrow \qquad \sigma_{L/\mathbb{Q},p} = \lambda\left(p\right) \in H \qquad \Longleftrightarrow \qquad \left(\frac{p}{q}\right) = 1.$$

But

$$\sigma_{K/\mathbb{Q},p} = 1 \qquad \iff \qquad p \text{ splits completely in } K \qquad \iff \qquad \left(\frac{q^*}{p}\right) = 1.$$

That is, $\binom{p}{q} = \binom{q^*}{p}$. Combine with $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$ to get the quadratic reciprocity law. In algebraic number theory, quadratic reciprocity says that splitting of p in K/\mathbb{Q} depends only on the congruence class of p modulo something. Class field theory tells us that a similar thing holds for any abelian extension of number fields, since there is a law describing the decomposition of primes in an abelian extension which is just a congruence condition.

6 Ideles and adeles

To study congruences modulo p^n for $n \geq 1$ Hensel introduced \mathbb{Z}_p and \mathbb{Q}_p such that $\mathbb{Q} \hookrightarrow \mathbb{Z}_p$. For congruences to arbitrary moduli, or to study local-global problems in general, it would be nice to simultaneously embed $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$ for all $p \leq \infty$, which are locally compact. The first guess is $\mathbb{Q} \hookrightarrow \prod_{p \leq \infty} \mathbb{Q}_p$, but this product is not nice, for example not locally compact. Better is to notice that if $x \in \mathbb{Q}$, then the image of x lies in \mathbb{Z}_p for all but finitely many p. So Chevalley introduced a small product with better properties, for any number field K, the ring of adeles or valuation vectors \mathbb{A}_K of K and the group of ideles $\mathbb{J}_K = \mathbb{A}_K^{\times}$ of K. These are topological rings and groups respectively. They are highly disconnected, that is have plenty of open subgroups. Open subgroups are closed, so if $H \subset G$ is an open subgroup, then G/H is discrete, that is $G = \bigcup_x xH$ is a topological disjoint union.

6.1 Adeles

Let K be a number field, let $V_K = V_{K,\infty} \sqcup V_{K,f}$, and let K_v be its completions. If $v \in V_{K,f}$, have $\mathcal{O}_v = \mathcal{O}_{K_v} = \{x \mid |x|_v \leq 1\} \subset K_v$.

Definition. The adele ring of K is

$$\mathbb{A}_K = \left\{ (x_v) \in \prod_{v \in \mathcal{V}_K} K_v \; \middle| \; \text{for all but finitely many } v, \; x_v \in \mathcal{O}_v \right\} = \bigcup_{\text{finite } S \subset \mathcal{V}_{K,f}} \mathcal{U}_{K,S} \subset \prod_{v \in \mathcal{V}_K} K_v,$$

where

$$U_{K,S} = \prod_{v \in V_{K,\infty}} K_v \times \prod_{v \in S} K_v \times \prod_{v \in V_{K,f} \setminus S} \mathcal{O}_v.$$

Notation. Let

$$K_{\infty} = \prod_{v \in V_{K,\infty}} K_v = K \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}.$$

Then \mathbb{A}_K is a ring. The topology on \mathbb{A}_K is generated by all open $V \subset U_{K,S}$ as S varies, and where $U_{K,S}$ has the product topology, so

$$V = \prod_{v \in S} X_v \times \prod_{v \notin S} \mathcal{O}_{K_v},$$

where S is finite, containing $V_{K,\infty}$, and X_v is open in K_v . This means in particular that every $U_{K,S} \subset \mathbb{A}_K$ is open, so

$$U_{K,\emptyset} = K_{\infty} \times \prod_{v \in V_{K,f}} \mathcal{O}_v = K_{\infty} \times \widehat{\mathcal{O}_K},$$

where $\widehat{\mathcal{O}_K}$ is the profinite completion, is open and has the product topology. This completely determines the topology on \mathbb{A}_K . See example sheet 1 exercise 1(ii).

Example. Let $K = \mathbb{Q}$. Then

$$\mathbb{A}_{\mathbb{Q}} = \mathbb{R} \times \left\{ (x_p)_p \in \prod_{p < \infty} \mathbb{Q}_p \mid \text{for all but finitely many } p, \ x_p \in \mathbb{Z}_p \right\}.$$

So, letting $m \in \mathbb{Z}_{>0}$ be the product of the denominators p^i of x_p see that $m(x_p)_p \in \prod_{p < \infty} \mathbb{Z}_p = \widehat{\mathbb{Z}}$, that is $(x_p)_p \in (1/m)\widehat{\mathbb{Z}} \subset \prod_p \mathbb{Q}_p$. Let ⁴

$$\widehat{\mathbb{Q}} = \bigcup_{m \geq 1} \frac{1}{m} \widehat{\mathbb{Z}} \cong \widehat{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q}.$$

Then $\mathbb{A}_{\mathbb{Q}} = \mathbb{R} \times \widehat{\mathbb{Q}}$.

⁴Exercise: easy

Proposition 6.1. \mathbb{A}_K is Hausdorff and locally compact, so every point has a compact neighbourhood.

Proof. $U_{K,\emptyset}$ is Hausdorff, and is locally compact, since K_{∞} is locally compact and $\widehat{\mathcal{O}_K}$ is compact, and it is an open neighbourhood of zero. So by translation, \mathbb{A}_K is Hausdorff and locally compact.

There is a diagonal embedding $K \hookrightarrow \mathbb{A}_K$.

Proposition 6.2. K is discrete in \mathbb{A}_K .

Proof. Find a neighbourhood of zero containing only $0 \in K$. Let

$$U = \left\{ x = (x_v) \in \mathbb{A}_K \mid \begin{array}{l} \forall v \in \mathcal{V}_{K,f}, |x_v|_v \le 1 \\ \forall v \in \mathcal{V}_{K,\infty}, |x_v|_v < 1 \end{array} \right\}.$$

Then $U \subset \mathbb{A}_K$ is open. If $x \in K \cap U$, then $|x_v|_v \leq 1$ for all $v \nmid \infty$ implies that $x \in \mathcal{O}_K$, and $|x_v|_v < 1$ for all $v \mid \infty$ implies that $|\mathcal{N}_{K/\mathbb{Q}}(x)| < 1$, that is x = 0. So zero is isolated in K. Thus K is discrete.

Let L/K be an extension of number fields. For all $v \in V_K$, $K_v \hookrightarrow \prod_{w|v} L_w$ induces an inclusion of rings $\mathbb{A}_K \hookrightarrow \mathbb{A}_L$ visibly continuous.

Lecture 9 Tuesday 09/02/21

Proposition 6.3. Let (a_1, \ldots, a_n) be a K-basis for L. Consider

$$\begin{pmatrix}
\mathbb{A}_K^n & \xrightarrow{f} & \mathbb{A}_K \otimes_K L & \xrightarrow{g} & \mathbb{A}_L \\
\left(x^{(i)}\right)_{1 \leq i \leq n} & \longmapsto & \sum_{i} x^{(i)} \otimes a_i & \longmapsto & \sum_{i} a_i x^{(i)}
\end{pmatrix},$$

viewing $x^{(i)} \in \mathbb{A}_K \hookrightarrow \mathbb{A}_L$ as above. Then g is a ring isomorphism, f is an \mathbb{A}_K -module isomorphism, and $g \circ f$ is a homeomorphism. This then defines a unique topology on $\mathbb{A}_K \otimes_K L$ such that g is an isomorphism of topological rings.

Proof. Since $L = \bigoplus_i Ka_i \cong K^n$, f is an \mathbb{A}_K -module isomorphism. By definition, g is a ring homomorphism. So it suffices to prove $g \circ f$ is bijective, and that it maps $X^n = \left(K_\infty \times \widehat{\mathcal{O}_K}\right)^n$ homeomorphically to an open subgroup of \mathbb{A}_L . Note that multiplication by any $x \in K^\times$ is a self-homeomorphism of \mathbb{A}_K with itself, since the inverse is multiplication by x^{-1} . Similarly for \mathbb{A}_L . So may replace (a_i) by non-zero K-multiples, so without loss of generality, $a_i \in \mathcal{O}_L$. Let

$$S = \left\{ v \in \mathcal{V}_{K,f} \mid v\left(\left(\mathcal{O}_L : \sum_i a_i \mathcal{O}_K\right)\right) > 0 \right\}$$

be a finite subset of $V_{K,f}$. Then for all $v \in V_{K,f} \setminus S$,

$$(a_i): \mathcal{O}_{K_v}^n \xrightarrow{\sim} \mathcal{O}_{K_v} \otimes_{\mathcal{O}_K} \mathcal{O}_L \cong \prod_{w|v} \mathcal{O}_{L_w},$$

and for all $v \in S$, $\sum_i a_i \mathcal{O}_{K_v} = M_v$ is an open \mathcal{O}_{K_v} -submodule of $\prod_{w|v} \mathcal{O}_{L_w}$. Then

$$g \circ f : \left(K_{\infty} \times \widehat{\mathcal{O}_K}\right)^n \xrightarrow{\sim} L_{\infty} \times \prod_{v \notin S} \prod_{w \mid v} \mathcal{O}_{L_w} \times \prod_{v \in S} M_v$$

is a homeomorphism onto an open subgroup in \mathbb{A}_L . Moreover, for any finite $S' \supset S \cup V_{K,\infty}$,

$$g \circ f : U_{K,S'} = \left(\prod_{v \in S'} K_v \times \prod_{v \notin S'} \mathcal{O}_{K_v}\right)^n \xrightarrow{\sim} \prod_{w \mid v \in S'} L_w \times \prod_{w \mid v \notin S'} \mathcal{O}_{L_w}.$$

So $g \circ f$ is bijective.

In particular, $\mathbb{A}_K = \mathbb{A}_{\mathbb{O}} \otimes_{\mathbb{O}} K$.

Corollary 6.4. \mathbb{A}_L is a free \mathbb{A}_K -module of rank [L:K], and the diagram

$$\prod_{w|v} L_w \longleftrightarrow \mathbb{A}_L \xleftarrow{\sim} \mathbb{A}_K \otimes_K L \longleftrightarrow L$$

$$\downarrow^{\sum_w \operatorname{Tr}_{L_w/K_v}} \bigvee^{\operatorname{Tr}_{\mathbb{A}_L/\mathbb{A}_K}} \bigvee^{\operatorname{Ir}_{\mathbb{A}_L/\mathbb{A}_K}} \bigvee^{\operatorname{Id} \otimes \operatorname{Tr}_{L/K}} \bigvee^{\operatorname{Tr}_{L/K}}$$

$$K_v \longleftrightarrow \mathbb{A}_K \longleftrightarrow \mathbb{A}_K \otimes_K K \longleftrightarrow K$$

commutes, where the left hand inclusions are

$$(x_w)_{w|v} \mapsto (y_w), \qquad y_w = \begin{cases} x_w & w \mid v \\ 0 & otherwise \end{cases}$$

Proof. Exercise. ⁵

Theorem 6.5. \mathbb{A}_K/K is compact Hausdorff.

Proof. Since K is discrete in \mathbb{A}_K and \mathbb{A}_K is Hausdorff, K is closed in \mathbb{A}_K , so \mathbb{A}_K/K is Hausdorff. By 6.3, $\mathbb{A}_K/K \cong (\mathbb{A}_{\mathbb{Q}}/\mathbb{Q})^{[K:\mathbb{Q}]}$ as topological groups, so may assume $K = \mathbb{Q}$. Let $X = [0,1] \times \widehat{\mathbb{Z}} \subset \mathbb{A}_{\mathbb{Q}}$. Then X is compact. So it is enough to show that $X + \mathbb{Q} = \mathbb{A}_{\mathbb{Q}}$, as then $X \twoheadrightarrow \mathbb{A}_{\mathbb{Q}}/\mathbb{Q}$. Let $x = (x_p)_{p < \infty} \in \mathbb{A}_{\mathbb{Q}}$. Let

$$S = \{ p < \infty \mid x_p \notin \mathbb{Z}_p \}$$

be a finite set. There exists $r_p \in \mathbb{Z}[1/p]$ such that $x_p - r_p \in \mathbb{Z}_p$ for all $p \in S$. Let $r = \sum_{p \in S} r_p \in \mathbb{Q}$. For all $p < \infty$, $x_p - r \in \mathbb{Z}_p$, that is $x - r \in \mathbb{R} \times \widehat{\mathbb{Z}}$, and then for suitable $m \in \mathbb{Z}$, $x - (r + m) \in [0, 1] \times \widehat{\mathbb{Z}}$.

From 6.3 also get $\mathbb{A}_K = K_{\infty} \times \widehat{K}$ where

$$\widehat{K} = \widehat{\mathcal{O}_K} \otimes_{\mathbb{Z}} \mathbb{Q} = \widehat{\mathcal{O}_K} \otimes_{\mathcal{O}_K} K,$$

where $\widehat{\mathcal{O}_K} \cong \prod_{\mathfrak{p}} \widehat{\mathcal{O}_{K,\mathfrak{p}}} = \prod_{v \nmid \infty} \mathcal{O}_{K_v}$ is the profinite completion of \mathcal{O}_K .

6.2 Ideles

Definition. The **idele group** of K is the group of units of \mathbb{A}_K ,

$$\mathbb{J}_K = \mathbb{A}_K^{\times} = \left\{ (x_v) \in \prod_{v \in \mathcal{V}_K} K_v^{\times} \, \middle| \text{ for all but finitely many finite } v, \ x_v \in \mathcal{O}_v^{\times} \right\} = \bigcup_{\text{finite } S \subset \mathcal{V}_{K,f}} \mathbb{J}_{K,S},$$

where

$$\mathbb{J}_{K,S} = K_{\infty}^{\times} \times \prod_{v \in S} K_{v}^{\times} \times \prod_{v \in \mathcal{V}_{K,f} \setminus S} \mathcal{O}_{v}^{\times}.$$

The topology on \mathbb{J}_K is generated by open subsets of $\mathbb{J}_{K,S}$, as S varies, and $\mathbb{J}_{K,S}$ is given the product topology. In particular, $K_{\infty}^{\times} \times \prod_{v \nmid \infty} \mathcal{O}_v^{\times}$ is an open subgroup, and has the product topology.

Remark. $\mathbb{J}_K \hookrightarrow \mathbb{A}_K$ is continuous, by the definitions, but is not a homeomorphism onto its image, since $x \mapsto x^{-1}$ on \mathbb{A}_K^{\times} is not continuous for the \mathbb{A}_K -topology, by example sheet 1 exercise 8, but

is a homeomorphism of \mathbb{J}_K onto the closed subset $\{xy=1\}\subset \mathbb{A}^2_K$. In geometry, $\mathrm{GL}_n\,K\subset \mathbb{A}^{n^2}$ and

$$\operatorname{GL}_n K \longrightarrow \mathbb{A}^{n^2+1}$$
 $(a_{ij}) \longmapsto \left(a_{ij}, \det(a_{ij})^{-1}\right)$

has closed image.

Then $K^{\times} \hookrightarrow \mathbb{J}_K$ since if $x \in K^{\times}$ then $|x|_v = 1$ for all but finitely many v. The image is called the **subgroup** of **principal ideles**, which is discrete, since $\mathbb{J}_K \hookrightarrow \mathbb{A}_K$ is continuous and $K \subset \mathbb{A}_K$ is discrete.

⁵Exercise

Definition. The idele class group of K is

Lecture 10 Thursday 11/02/21

$$\mathcal{C}_K = \mathbb{J}_K/K^{\times}$$
.

This is a Hausdorff and locally compact topological group. There are two important homomorphisms.

Definition. Let $x = (x_v) \in \mathbb{J}_K$. Then for all $v, |x_v|_v \neq 0$, and for all but finitely many $v, |x_v|_v = 1$. So can define the **idele norm** homomorphism

$$\begin{array}{cccc} \left|\cdot\right|_{\mathbb{A}} & : & \mathbb{J}_{K} & \longrightarrow & \mathbb{R}_{>0} \\ & & (x_{v}) & \longmapsto & \prod_{v \in \mathcal{V}_{K}} \left|x_{v}\right|_{v} \end{array},$$

This is continuous, since the restriction to $\mathbb{J}_{K,S}$ is $\prod_v |\cdot|_v \circ \pi : \mathbb{J}_{K,S} \to \prod_{v \in S \cup V_{K,\infty}} K_v^{\times} \to \mathbb{R}_{>0}$. Clearly $|\cdot|_{\mathbb{A}}$ is surjective, since $K_{\infty}^{\times} \subset \mathbb{J}_{K}$. A key fact is that for all $x \in K^{\times}$, $|x|_{\mathbb{A}} = 1$ by the product formula, so $|\cdot|_{\mathbb{A}} : \mathbb{J}_{K} \to \mathcal{C}_{K} \to \mathbb{R}_{>0}$.

Definition. Let

$$\mathbb{J}_{K}^{1} = \{x \in \mathbb{J}_{K} \mid |x|_{\mathbb{A}} = 1\}, \qquad \mathcal{C}_{K}^{1} = \mathbb{J}_{K}^{1}/K^{\times}.$$

Proposition 6.6.

$$\mathbb{J}_K \cong \mathbb{J}_K^1 \times \mathbb{R}_{>0}, \qquad \mathcal{C}_K \cong \mathcal{C}_K^1 \times \mathbb{R}_{>0}.$$

Proof. Have $|\cdot|_{\mathbb{A}} : \mathbb{J}_K \to \mathbb{R}_{>0}$. Consider

Because $|x|_v$ is the Euclidean AV if v is real and the square of modulus if v is complex, this homomorphism is a right inverse to $|\cdot|_{\mathbb{A}}$. So defines a splitting $\mathbb{J}_K \cong \mathbb{J}_K^1 \times \mathbb{R}_{>0}$. As i $(\mathbb{R}_{>0}) \cap K^{\times} = 1$, also have $\mathcal{C}_K \cong \mathcal{C}_K^1 \times \mathbb{R}_{>0}$. \square

Recall \mathfrak{p}_v is the prime ideal corresponding to a finite place v. Write v also for the corresponding normalised discrete valuation.

Definition. The **content map** is

$$\begin{array}{cccc} \mathbf{c} & : & \mathbb{J}_K & \longrightarrow & \mathbf{I}(K) \\ & & (x_v) & \longmapsto & \prod_{v \in \mathbf{V}_{K,\mathbf{f}}} \mathfrak{p}_v^{v(x_v)} \end{array},$$

where

$$I(K) = \{\text{group of fractional ideals of } K\} \cong \{\text{free abelian group generated by } V_{K,f}\}.$$

This is a continuous homomorphism, for the discrete topology on I(K), since $\ker c = \mathbb{J}_{K,\emptyset} = K_{\infty}^{\times} \times \prod_{v \nmid \infty} \mathcal{O}_{v}^{\times}$ is open. If $x \in K^{\times}$ then c(x) is the principal fractional ideal $\langle x \rangle$. So c descends to a homomorphism

$$c: \mathcal{C}_K = \mathbb{J}_K/K^{\times} \to \operatorname{Cl}(K) = \operatorname{I}(K)/\operatorname{P}(K),$$

where P(K) is the group of principal fractional ideals. Then c is clearly surjective, since $v: K_v^{\times} \to \mathbb{Z}$. So $\mathcal{C}_K \to \operatorname{Cl}(K)$. As $c \circ i: \mathbb{R}_{>0} \to \operatorname{Cl}(K)$ is zero, have a continuous surjection $\mathcal{C}_K^1 \to \operatorname{Cl}(K)$. Now prove that \mathcal{C}_K^1 is compact. A corollary is that $\operatorname{Cl}(K)$ is finite, since compact and discrete. The following is a variant.

Definition. Let $S \subset V_{K,f}$ be a finite subset. Define

$$c^{S} : \mathbb{J}_{K} \longrightarrow \mathbf{I}^{S}(K)$$

$$(x_{v}) \longmapsto \prod_{v \in \mathcal{V}_{K,f} \setminus S} \mathfrak{p}_{v}^{v(x_{v})} ,$$

where

$$I^{S}(K) = \{\text{fractional ideals prime to } S\} = \{I \mid \forall v \in S, \ v(I) = 0\}.$$

This will be useful later on.

7 Geometry of numbers

7.1 Minkowski's theorem

Classically, embed

$$\sigma: K \hookrightarrow K_{\infty} = \prod_{v \mid \infty} K_v \cong \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} \cong \mathbb{R}^n,$$

and study the image $\sigma(I) \subset \mathbb{R}^n$ for I a fractional ideal.

Definition. Let U be a finite-dimensional real vector space. A **lattice** $\Lambda \subset U$ is a discrete subgroup such that U/Λ is compact.

Proposition 7.1. A subgroup $\Lambda \subset U$ is a lattice if and only if $\Lambda = \bigoplus_{1 \leq i \leq n} \mathbb{Z}e_i$, where (e_i) is an \mathbb{R} -basis for U where $n = \dim_{\mathbb{R}} U$.

Proof. Example sheet. \Box

Theorem 7.2 (Minkowski's theorem). Let $\Lambda \subset \mathbb{R}^n$ be a lattice, and let $\mu_{\Lambda} = \text{meas}(\mathbb{R}^n/\Lambda)$, the **covolume** of Λ . Let $X \subset \mathbb{R}^n$ be a compact subset, which is

- convex, that is if $t \in [0,1]$ and $x, y \in X$ then $tx + (1-t)y \in X$, and
- symmetric about the origin, that is if $x \in X$ then $-x \in X$.

If meas $(X) > 2^n \mu_{\Lambda}$, then $X \cap \Lambda \neq \{0\}$.

Remark. \mathbb{R}^n has a Lebesgue measure, and meas (X) is the measure of X. The Lebesgue measure defines a measure on \mathbb{R}^n/Λ , and μ_{Λ} is the measure of \mathbb{R}^n/Λ . Naively, if $\Lambda = \bigoplus_i \mathbb{Z}e_i$ for (e_i) linearly independent over \mathbb{R} and $\mathcal{P} = \{\sum_i x_i e_i \mid 0 \leq x_i < 1\}$, then \mathcal{P} is a set of coset representatives for $\Lambda \subset \mathbb{R}^n$, and $\mu_{\Lambda} = \text{meas}(\mathcal{P}) = |\det(e_{ij})|$, which is independent of the basis.

Proof. Let $\pi: \mathbb{R}^n \to \mathbb{R}^n/2\Lambda$. Then

$$\operatorname{meas}(\pi(X)) \leq \operatorname{meas}(\mathbb{R}^n/2\Lambda) = 2^n \operatorname{meas}(\mathbb{R}^n/\Lambda) \leq \operatorname{meas}(X)$$
.

So $X \to \pi(X)$ is not one-to-one, so there exist $x \neq y$ in X such that $x - y = 2\lambda \in 2\Lambda$. Then $0 \neq \lambda = (x - y)/2 = \frac{1}{2}x + \frac{1}{2}(-y) \in X$ as $-y \in X$, by symmetry, and X is convex.

Theorem 7.3. There exists a constant $r_K > 0$ such that, if $(d_v)_{v \in K}$ are positive reals with

- $d_v \in |K_v^{\times}|_v = \{|x|_v \mid x \in K_v^{\times}\} \subset \mathbb{R}_{>0} \text{ for all } v,$
- $d_v = 1$ for all but finitely many v, and
- $\prod_{v \in V_{\mathcal{L}}} d_v > \mathbf{r}_K$,

then $\{x \in K \mid \forall v, |x|_v \leq d_v\} \neq \{0\}.$

Proof. For $v \nmid \infty$, write $d_v = q_v^{-n_v}$ for $n_v \in \mathbb{Z}$. Let

$$I = \{x \in K \mid \forall v \nmid \infty, |x|_v \le d_v\} = \prod_v \mathfrak{p}_v^{n_v}$$

be a fractional ideal of K. Then $mI \subset \mathcal{O}_K$ for m > 0, so

$$\mu_{\sigma(I)} = m^{-n} \mu_{\sigma(mI)} = m^{-n} \mu_{\sigma(\mathcal{O}_K)} \left(\sigma\left(\mathcal{O}_K\right) : \sigma\left(mI\right) \right) = m^{-n} \mu_{\sigma(\mathcal{O}_K)} \mathcal{N}\left(mI\right) = \mu_{\sigma(\mathcal{O}_K)} \prod_{v} q_v^{n_v}, \tag{4}$$

and $\sigma(I)$ is a lattice in \mathbb{R}^n , by the non-vanishing of the discriminant. Let

$$X = \left\{ x \in \prod_{v \mid \infty} K_v \cong \mathbb{R}^n \mid \forall v, |x_v|_v \le d_v \right\} = \prod_{v \text{ real}} [-d_v, d_v] \times \prod_{v \text{ complex}} \left\{ |z|^2 \le d_v \right\} \subset K_\infty \cong \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}.$$

This is convex, compact, symmetric, and

$$\operatorname{meas}(X) = 2^{\mathbf{r}_1} \pi^{\mathbf{r}_2} \prod_{v \mid \infty} d_v > 2^n \prod_{v \nmid \infty} d_v^{-1} \mu_{\sigma(\mathcal{O}_K)} = 2^n \mu_{\sigma(I)},$$

by (4), provided

$$\prod_v d_v > \mathbf{r}_K = \left(\frac{4}{\pi}\right)^{\mathbf{r}_2} \mu_{\sigma(\mathcal{O}_K)} = \left(\frac{2}{\pi}\right)^{\mathbf{r}_2} |\mathbf{d}_K|^{\frac{1}{2}}.$$

Then applying 7.2, $X \cap \sigma(I) \neq \{0\}$ and any $x \in X \cap \sigma(I)$ has $|x|_v \leq d_v$ for all v.

This is the translation of a classical result that if $0 \neq I$ is an ideal then there exists $x \in I \setminus \{0\}$ such that $|\mathcal{N}_{K/\mathbb{Q}}(x)| < \mathcal{N}_{K/\mathbb{Q}}(x)$.

Lecture 11 Saturday 13/02/21

Remark. Used Minkowski's theorem, with convex symmetric set $X = [-d_v, d_v]^{r_1} \times \{|z|^2 \le d_v\}^{r_2}$ and obtained $r_K = \left(\frac{4}{\pi}\right)^{r_2} \mu_{\sigma(\mathcal{O}_K)}$. Using better chosen X, can get a better bound, the Minkowski bound c_K , which is useful for computation.

7.2 Compactness of \mathcal{C}_K^1

Recall $K^{\times} \subset \mathbb{J}_{K}^{1} = \ker\left(\left|\cdot\right|_{\mathbb{A}} : \mathbb{J}_{K} \to \mathbb{R}_{>0}\right)$ is discrete. Based on 7.3 and the following.

Proposition 7.4. Let $\rho_v > 0$ for $v \in V_K$, with $\rho_v = 1$ for all but finitely many v. Then

$$X = \left\{ x \in \mathbb{J}_K^1 \mid \forall v, |x_v|_v \le \rho_v \right\}$$

is compact.

This is false for \mathbb{J}_K . Note that $|x_v|_v \leq \rho_v$ for all v defines a compact subset of \mathbb{A}_K .

Proof. Let $R = \prod_{v} \rho_{v}$, and let

$$S = V_{K,\infty} \cup \{v \mid \rho_v \neq 1\} \cup \{v \in V_{K,f} \mid q_v \leq R\}$$

be a finite set of places, since the last set is contained in $\{v \mid p \mid p \leq R\}$, which is finite. If $v \notin S$, and $x \in X$, since $\rho_v = 1$,

$$1 \ge |x_v|_v = \prod_{w \ne v} |x_w|_w^{-1} \ge \prod_{w \ne v} \rho_w^{-1} = R^{-1}.$$

As $q_v > R$, this forces $|x_v|_v = 1$. So $X = X' \times \prod_{v \notin S} \mathcal{O}_v^{\times}$, where

$$X' = \left\{ (x_v) \in \prod_{v \in S} K_v^{\times} \mid \prod_{v \in S} |x_v|_v = 1, \ \forall v \in S, \ |x_v|_v \le \rho_v \right\},\,$$

which is a closed subset of

$$X'' = \left\{ (x_v) \in \prod_{v \in S} K_v^{\times} \mid \forall v \in S, \ \frac{\rho_v}{R} \le |x_v|_v \le \rho_v \right\},\,$$

which is compact. So X' is compact, hence so is X, since $\prod_{v \notin S} \mathcal{O}_v^{\times}$ is compact.

Theorem 7.5. C_K^1 is compact.

Proof. Let r_K be as in 7.3. Pick any $y \in \mathbb{J}_K$ with $|y|_{\mathbb{A}} > r_K$, and let

$$X = \left\{ x \in \mathbb{J}_K^1 \mid \forall v \in \mathcal{V}_K, |x_v|_v \le |y_v|_v \right\},\,$$

which is compact by 7.4. Show that

$$\mathbb{J}_{K}^{1} = K^{\times} X = \left\{ ax \mid a \in K^{\times}, \ x \in X \right\}.$$

Let $z \in \mathbb{J}_K^1$. Then $\prod_v |y_v z_v|_v = |y|_{\mathbb{A}} > \mathbf{r}_K$. So by 7.3, there exists $b \in K^\times$ such that for all $v \in \mathbf{V}_K$, $|b|_v \le |y_v z_v|_v$. Therefore $bz^{-1} \in X$, that is $z^{-1} \in b^{-1}X \subset K^\times X$.

7.3 Finiteness of Cl(K) and S-unit theorem

The following are two corollaries.

Corollary 7.6. The ideal class group Cl(K) is finite.

Proof. $\mathcal{C}_K^1 \to \operatorname{Cl}(K)$ by the content map, which is continuous, so $\operatorname{Cl}(K)$ is discrete and compact, therefore finite.

Corollary 7.7 (S-unit theorem). Let $S \subset V_{K,f}$ be finite, possibly empty, and let

$$\mathcal{O}_{K,S} = \{ x \in K \mid \forall v \in V_{K,f} \setminus S, |x|_v \leq 1 \}$$

be the S-integers of K, sometimes written $\mathcal{O}_K[1/S]$. Then

$$\mathcal{O}_{K,S}^{\times} = \mu\left(K\right) \times \mathbb{Z}^{\mathbf{r}_1 + \mathbf{r}_2 - 1 + \#S},$$

where $\mu(K) = \{ roots \ of \ unity \ in \ K \}$ is finite.

The case $S = \emptyset$ is Dirichlet's unit theorem,

$$\mathcal{O}_K^{\times} = \mu(K) \times \mathbb{Z}^{r_1 + r_2 - 1}.$$

Proof.

• First explain the proof for $S = \emptyset$. Recall

$$\mathbb{J}_{K,\emptyset} = K_{\infty}^{\times} \times \prod_{v \nmid \infty} \mathcal{O}_{v}^{\times} \supset K_{\infty}^{\times,1} \times \prod_{v \nmid \infty} \mathcal{O}_{v}^{\times} = \mathbb{J}_{K,\emptyset}^{1}, \qquad K_{\infty}^{\times,1} = \left\{ (x_{v}) \in K_{\infty}^{\times} \ \bigg| \ \prod_{v \mid \infty} |x_{v}|_{v} = 1 \right\}.$$

Then $\mathbb{J}_{K,\emptyset} \cap K^{\times} = \mathbb{J}_{K,\emptyset}^{1} \cap K^{\times} = \mathcal{O}_{K}^{\times}$ is discrete in $\mathbb{J}_{K,\emptyset}^{1}$ and by 7.5, the closed $\mathbb{J}_{K,\emptyset}^{1}/\mathcal{O}_{K}^{\times} \subset \mathcal{C}_{K}^{1}$ is compact. Let

$$\lambda : \mathbb{J}_{K,\emptyset} \longrightarrow \mathcal{L}_K = \prod_{v \mid \infty} \mathbb{R} \cong \mathbb{R}^{r_1 + r_2}$$
$$(x_v)_v \longmapsto (\log|x_v|_v)_v$$

be the **logarithm map**, such that

$$\lambda\left(\mathbb{J}_{K,\emptyset}^{1}\right)\subset\mathcal{L}_{K}^{0}=\left\{ (l_{v})\in\mathcal{L}_{K}\;\middle|\;\sum_{v}l_{v}=0\right\} .$$

Then

$$\ker \lambda = \{(x_v) \in \mathbb{J}_K \mid \forall v, |x_v|_v = 1\} = \{\pm 1\}^{r_1} \times \mathrm{U}(1)^{r_2} \times \prod_{v \nmid \infty} \mathcal{O}_v^{\times}, \qquad \mathrm{U}(1) = \{z \in \mathbb{C} \mid |z| = 1\}$$

is compact. So $\ker \lambda \cap \mathcal{O}_K^{\times}$ is discrete and compact, hence finite. Obviously $\mu(K) \subset \ker \lambda$, so $\mu(K)$ is finite and equals $\ker \lambda \cap \mathcal{O}_K^{\times}$. Next, show $\lambda\left(\mathcal{O}_K^{\times}\right) \subset \mathcal{L}_K^0 \cong \mathbb{R}^{r_1+r_2-1}$ is a lattice. Then we get

$$1 \to \mu\left(K\right) \to \mathcal{O}_K^{\times} \to \lambda\left(\mathcal{O}_K^{\times}\right) \cong \mathbb{Z}^{r_1 + r_2 - 1} \to 0,$$

which gives 7.7. Now

$$\mathbb{J}_{K,\emptyset} \cong \prod_{v \mid \infty} \mathbb{R}_{>0} \times \ker \lambda$$

$$\downarrow^{\pi_1} ,$$

$$\mathcal{L}_K \longleftarrow^{\sim} \prod_{v \mid \infty} \mathbb{R}_{>0}$$

where $\mathbb{R}_{>0} \hookrightarrow K_v^{\times} \subset \mathbb{C}^{\times}$ for all $v \mid \infty$. Hence λ has the property that for all compact Y in its target, $\lambda^{-1}(Y)$ is compact, so λ is a **proper** map. A simple fact is if $f: X \to Y$ is a continuous proper map of topological spaces, with Y locally compact and Hausdorff, then if $Z \subset X$ is discrete then f(Z) is discrete. Finally,

$$\lambda: \mathbb{J}_{K,\emptyset}^1/\mathcal{O}_K^{\times} \twoheadrightarrow \mathcal{L}_K^0/\lambda\left(\mathcal{O}_K^{\times}\right),$$

so $\mathcal{L}_{K}^{0}/\lambda\left(\mathcal{O}_{K}^{\times}\right)$ is compact, by 7.5. Thus $\lambda\left(\mathcal{O}_{K}^{\times}\right)$ is a lattice.

• For the general case, the difference is mainly notational. Let $S_{\infty} = S \cup V_{K,\infty}$, so

Lecture 12 Tuesday 16/02/21

$$\mathbb{J}_{K,S} = \prod_{v \in S_{\infty}} K_v^{\times} \times \prod_{v \notin S_{\infty}} \mathcal{O}_v^{\times}, \qquad \mathcal{L}_{K,S} = \prod_{v \mid \infty} \mathbb{R} \times \prod_{v \in S} \log q_v \mathbb{Z} \cong \mathbb{R}^{r_1 + r_2} \times \mathbb{Z}^{\#S}.$$

Let

$$\lambda_S : \mathbb{J}_{K,S} \longrightarrow \mathcal{L}_{K,S} (x_v)_v \longmapsto (\log|x_v|_v)_{v \in S_{\infty}}$$

be the S-logarithm map, such that

$$\lambda_{S}\left(\mathbb{J}_{K,S}^{1}\right)\subset\mathcal{L}_{K,S}^{0}=\left\{\left(l_{v}
ight)\in\mathcal{L}_{K,S}\;\middle|\;\sum_{v}l_{v}=0
ight\}.$$

Note that $\mathcal{L}_{K,S}^0 \cong \mathbb{R}^{r_1+r_2-1} \times \mathbb{Z}^{\#S}$ since

$$\mathcal{L}_{K,S}^{0} \xrightarrow{\pi_{2}} \prod_{v \in S} \log \mathbf{q}_{v} \mathbb{Z}$$

$$\mathbb{R}$$

$$\mathbb{Z}^{\#S}$$

is surjective with kernel $\mathbb{R}^{r_1+r_2-1}$, so there exists a splitting as $\mathbb{Z}^{\#S}$ is free. Then

$$\ker \lambda_S \cong \{\pm 1\}^{\mathbf{r}_1} \times \mathrm{U}(1)^{\mathbf{r}_2} \times \prod_{v \nmid \infty} \mathcal{O}_v^{\times},$$

as before, and

$$\mathbb{J}_{K,S} = \prod_{v \mid \infty} \mathbb{R}_{>0} \times \prod_{v \in S} \langle \pi_v \rangle \times \ker \lambda_S \cong \prod_{v \mid \infty} \mathbb{R}_{>0} \times \mathbb{Z}^{\#S} \times \ker \lambda_S,$$

where $\pi_v \in K_v^{\times}$ such that $v(\pi_v) = 1$, so λ_S is proper and surjective. Then $\mathbb{J}_{K,S} \cap K^{\times} = \mathbb{J}_{K,S}^1 \cap K^{\times} = \mathcal{O}_{K,S}^{\times}$ is discrete and closed in $\mathbb{J}_{K,S}^1$. As before, $\ker \lambda_S \cap \mathcal{O}_{K,S}^{\times} = \mu(K)$, since it is discrete and compact, and $\lambda_S\left(\mathcal{O}_{K,S}^{\times}\right) \subset \mathcal{L}_{K,S}^0$ is discrete and cocompact. Then prove that if $G \cong \mathbb{R}^m \times \mathbb{Z}^{\#S} \supset H$ is a discrete and cocompact subgroup then $H \cong \mathbb{Z}^{m+\#S}$. Then

$$1 \to \mu\left(K\right) \to \mathcal{O}_{K,S}^{\times} \to \lambda_{S}\left(\mathcal{O}_{K,S}^{\times}\right) \cong \mathbb{Z}^{\mathbf{r}_{1}+\mathbf{r}_{2}-1+\#S} \to 0,$$

and so done.

Let $T \subset V_K$ be finite, not necessarily containing $V_{K,\infty}$. What can we say about the group

$$\left\{x \in K^{\times} \mid \forall v \notin T, |x|_v = 1\right\}?$$

The answer is non-trivial and depends on K. See example sheet.

⁶Exercise: a hint is to take a compact neighbourhood V of some f(z) for $z \in Z$ and use compactness of $f^{-1}(V)$ ⁷Exercise

7.4 Strong approximation theorem

Earlier, weak approximation implies that K is dense in any finite product of K_v 's. Also, $K \hookrightarrow \mathbb{A}_K$ is discrete. **Theorem 7.8** (Strong approximation). Let $T \subset V_K$ be finite, and set

$$\mathbb{A}_{K}^{T} = \left\{ x = (x_{v}) \in \prod_{v \notin T} K_{v} \mid \text{for all but finitely many } v, |x_{v}|_{v} \leq 1 \right\},$$

so $\mathbb{A}_K = \prod_{v \in T} K_v \times \mathbb{A}_K^T$, with the adelic topology. Then if $T \neq \emptyset$, then K is dense in \mathbb{A}_K^T .

There are various ways to rewrite this.

• If $T \neq \emptyset$, then $K + \prod_{v \in T} K_v$ is dense in \mathbb{A}_K , where $K \hookrightarrow \mathbb{A}_K$ is the diagonal inclusion and $K_v \subset \mathbb{A}_K$ by

$$y \mapsto (x_w), \qquad x_w = \begin{cases} y & w = v \\ 0 & w \neq v \end{cases}.$$

It is enough to prove 7.8 for $T = \{v_0\}$. Will actually prove the following.

- Let $S \subset V_K$ be finite such that $v_0 \notin S$, let $y_v \in K_v$ for all $v \in S$, and let $\epsilon > 0$. Then there exists $x \in K$ such that
 - for all $v \in S$, $|x y_v|_v \le \epsilon$, and
 - for all $v \notin S$ such that $v \neq v_0, |x|_v \leq 1$.

Take $y \in A_K$ with component y_v at $v \in S$ and zero elsewhere. This is equivalent to strong approximation for $T = \{v_0\}$, by definition of the topology.

Proof. Free to enlarge S. Then by the proof of compactness of \mathbb{A}_K/K , there exists R>0 such that if

$$X = \left\{ (x_v) \in \mathbb{A}_K \middle| \begin{array}{c} \forall v \in S, |x_v|_v \leq R \\ \forall v \notin S, |x_v|_v \leq 1 \end{array} \right\},$$

then $X + K = \mathbb{A}_K$. For example, assume $S \supset V_{K,\infty}$ and let $\mathcal{O}_K = \bigoplus_i \mathbb{Z}e_i$, then $\mathbb{A}_K = \bigoplus_i \mathbb{A}_{\mathbb{Q}}e_i$ and $\mathbb{A}_{\mathbb{Q}} = [0,1] \times \widehat{\mathbb{Z}} + \mathbb{Q}$. Claim that there exists $z \in K \setminus \{0\}$ such that

$$\left|z\right|_{v} \leq \begin{cases} \frac{\epsilon}{R} & v \in S \\ 1 & v \notin S, \ v \neq v_{0} \end{cases}.$$

Apply Minkowski 7.3 with

- $d_v = 1$ for all $v \notin S \cup \{v_0\}$,
- $d_v < \epsilon/R$ for all $v \in S$, and
- $d_{v_0} > \mathbf{r}_K \left(\prod_{v \in S} d_v \right)^{-1}$.

This defines a box in \mathbb{A}_K whose intersection with K is not $\{0\}$, since $\prod_v d_v > r_K$. Now write $z^{-1}y = a + t$ for $a \in X$ and $t \in K$. Then x = zt = y - za has

$$|x - y_v|_v = |zt - y_v|_v = |za_v|_v \le \begin{cases} \frac{\epsilon}{R} \cdot R = \epsilon & v \in S \\ 1 \cdot 1 = 1 & v \notin S, \ v \ne v_0 \end{cases},$$

so done. \Box

A special case is $T = V_{K,\infty}$, so \mathbb{A}_K^T are the finite adeles. Then 7.8 says

$$K \hookrightarrow \mathbb{A}_K^T = \widehat{K} = \widehat{\mathcal{O}_K} \otimes_{\mathbb{Z}} \mathbb{Q}$$

is dense, which is equivalent to the density of

$$\mathcal{O}_K \hookrightarrow \widehat{\mathcal{O}_K} = \prod_{v \nmid \infty} \mathcal{O}_{K_v} = \prod_{v \nmid \infty} \varprojlim_r \mathcal{O}_K/\mathfrak{p}_v^r \cong \varprojlim_{I \subset \mathcal{O}_K} \mathcal{O}_K/I,$$

by CRT. So strong approximation is a generalisation of CRT.

8 Idele class group and class field theory

Recall if $L = \mathbb{Q}(\zeta_m)$, then there is an isomorphism

Lecture 13 Thursday 18/02/21

$$\begin{array}{ccc} \operatorname{Gal}\left(L/\mathbb{Q}\right) & \longrightarrow & \left(\mathbb{Z}/m\mathbb{Z}\right)^{\times} \\ \sigma_{p} & \longmapsto & p \mod m \end{array}, \qquad p \nmid m,$$

given by the action on ζ_m . In particular, σ_p depends only on the congruence class of $p \mod m$, which implies quadratic reciprocity. As σ_p determines the decomposition of $\langle p \rangle$ in L, since $f(v \mid p) = \operatorname{ord} D_v = \operatorname{ord} \sigma_p$, this says that the decomposition of $\langle p \rangle$ in L depends only on $p \mod m$. A consequence is if $g \in \operatorname{Gal}(L/\mathbb{Q})$, then there exist infinitely many p such that $g = \sigma_p$, by Dirichlet's theorem on primes in arithmetic progressions. The following is a general problem. Let L/K be a Galois extension of number fields, and let v be a finite place of K, unramified in L. Then

$$\Sigma_v = \{ \sigma_w \mid w \in V_{L,f}, \ w \mid v \}$$

is a conjugacy class in $G = \operatorname{Gal}(L/K)$, and Σ_v describes the decomposition of v in L.

- How does Σ_v depend on v?
- Can it be any conjugacy class in G?

For the first question, do not know the answer for general L/K. This is non-abelian class field theory or the Langlands programme. The second question is answered in the 1920s.

Theorem (Chebotarev density theorem). Let $C \subset G$ be a conjugacy class. Then there exist infinitely many v for which $C = \Sigma_v$.

Example. Let $C = \{1\}$. There exist infinitely many v such that $\Sigma_v = \{1\}$, that is such that v splits completely in L/K.

Class field theory answers the first question completely for L/K abelian.

8.1 Artin reciprocity law

Theorem (Artin reciprocity law). Let L/K be an abelian extension of number fields. Then there exists a unique continuous homomorphism

$$\operatorname{Art}_{L/K}: \mathcal{C}_K \to \operatorname{Gal}(L/K)$$
,

such that for all unramified $v \in V_{K,f}$ in L/K,

$$\begin{array}{ccccc} \operatorname{Art}_{L/K} & : & K_v^\times \hookrightarrow \mathcal{C}_K & \longrightarrow & \operatorname{Gal}\left(L/K\right) \\ & x & \longmapsto & \sigma_v^{-v(x)} \end{array} .$$

Moreover, $\operatorname{Art}_{L/K}$ is surjective with kernel $K^{\times}\operatorname{N}_{L/K}(\mathbb{J}_L)$.

How does this generalise the cyclotomic theory? Since \mathbb{C}^{\times} is connected, the only open subgroup is \mathbb{C}^{\times} , and the only open subgroups of \mathbb{R}^{\times} are \mathbb{R}^{\times} and $\mathbb{R}_{>0}$. Then ker $\operatorname{Art}_{L/K}$ is open, so contains some $K^{\times}U$, where

$$U = \prod_{v \text{ complex}} \mathbb{C}^{\times} \times \prod_{v \text{ real}} \mathbb{R}_{>0} \times \prod_{v \in S} U_v \times \prod_{v \in V_{K,f} \setminus S} \mathcal{O}_v^{\times}, \qquad U_v = \left\{ x \in \mathcal{O}_v^{\times} \mid v\left(x-1\right) \geq m_v \right\}, \qquad m_v > 0,$$

where say S contains all ramified places. If $w \notin S$ is unramified,

$$\operatorname{Art}_{L/K}: K^{\times}(\ldots, 1, 1, \pi_w^{-1}, 1, 1, \ldots) = K^{\times}(\ldots, \pi_w, \pi_w, 1, \pi_w, \pi_w, \ldots) \mapsto \sigma_w,$$

where $\pi_w \in \mathcal{O}_K$ is a uniformiser at w such that $w(\pi_w) = 1$. So if

- 1. $\sigma(\pi_w) > 0$ for all $\sigma: K \hookrightarrow \mathbb{R}$,
- 2. $v(\pi_w 1) \ge m_v$ for all $v \in S$, and
- 3. $\pi_w \in \mathcal{O}_v^{\times}$ for all $v \notin S$ such that $v \neq w$,

which are congruence conditions on w, then $\sigma_w = 1$. In particular, if $\mathfrak{p}_w = \langle \pi_w \rangle$ is principal, then 3 is automatic. So just a congruence condition on π_w modulo some ideal divisible only by primes in S, and positivity.

Example. Let $L = \mathbb{Q}(\zeta_m)/K = \mathbb{Q}$. Then

$$\left(\mathbb{R}^{\times} \times \widehat{\mathbb{Q}}^{\times}\right) / \mathbb{Q}^{\times} \xleftarrow{\sim} \left(\mathbb{R}^{\times} \times \widehat{\mathbb{Z}}^{\times}\right) / \left\{\pm 1\right\} \xleftarrow{\sim} \mathbb{R}_{>0} \times \widehat{\mathbb{Z}}^{\times} \longrightarrow \prod_{q \mid m} \mathbb{Z}_{q}^{\times}$$

$$\mathcal{C}_{\mathbb{Q}} \xleftarrow{\sim} \mathbb{J}_{\mathbb{Q},\emptyset} / \left\{\pm 1\right\} \qquad (\mathbb{Z}/m\mathbb{Z})^{\times} \xleftarrow{\sim} \prod_{q \mid m} (\mathbb{Z}_{q}/q\mathbb{Z}_{q})^{\times}$$

$$\operatorname{Gal}(L/\mathbb{Q})$$

Claim this is $\operatorname{Art}_{L/\mathbb{Q}}$. Let \mathbb{Q}^{\times} $(\ldots, 1, 1, p^{-1}, 1, 1, \ldots) = \mathbb{Q}^{\times}$ $(\ldots, p, p, 1, p, p, \ldots) \in \mathcal{C}_{\mathbb{Q}}$ for $p \nmid m$. Then

So via $\mathcal{C}_{\mathbb{Q}} \cong \mathbb{R}_{>0} \times \widehat{\mathbb{Z}}^{\times}$, $\operatorname{Art}_{L/\mathbb{Q}}$ is just the cyclotomic map.

8.2 Finite quotients of \mathcal{C}_K

Proposition 8.1. Let G be a discrete group.

- 1. Any continuous homomorphism $\alpha: \mathcal{C}_K \to G$ has finite image.
- 2. There is a bijection

$$\left\{\begin{array}{c} continuous\ homomorphisms \\ \alpha: \mathbb{J}_K \to G \end{array}\right\} \qquad \leftrightsquigarrow \qquad \left\{\begin{array}{c} families\ \left(\alpha_v: K_v^\times \to G\right)_{v \in \mathcal{V}_K} \\ such\ that\ \alpha_v\left(\mathcal{O}_v^\times\right) = 1 \\ for\ all\ but\ finitely\ many\ v \in \mathcal{V}_{K,\mathrm{f}} \end{array}\right\}.$$

Notation. $\alpha_v : K_v^{\times} \to G$ is **unramified** if $\alpha_v (\mathcal{O}_v^{\times}) = 1$. See local class field theory, where \mathcal{O}_v^{\times} corresponds to the inertia.

Proof.

- 1. $\mathbb{J}_K \cong \mathbb{R}_{>0} \times \mathbb{J}_K^1$, and $\alpha(\mathbb{R}_{>0}) = 1$ so $\alpha(\mathcal{C}_K) = \alpha(\mathcal{C}_K^1)$, which is compact and discrete so finite.
- 2. The subgroup

$$\bigoplus_{v} K_{v}^{\times} = \{(x_{v}) \mid x_{v} = 1 \text{ for all but finitely many } v\} \subset \mathbb{J}_{K}$$

is dense, since $\bigoplus_v \mathcal{O}_v^{\times} \subset \prod_v \mathcal{O}_v^{\times}$ is dense for the product topology. So a continuous $\alpha: \mathbb{J}_K \to G$ is determined by its restrictions $\alpha_v = \alpha|_{K_v^{\times}} : K_v^{\times} \to G$. As $\ker \alpha$ is open, $\alpha_v(\mathcal{O}_v^{\times}) = 1$ for all but finitely many v. So have $\{\alpha\} \hookrightarrow \{(\alpha_v)_v\}$. Conversely, if $(\alpha_v: K_v^{\times} \to G)_v$ is such a family, then $\alpha((x_v)) = \prod_v \alpha_v(x_v)$ is a finite product for any $(x_v) \in \mathbb{J}_K$, as $x_v \in \mathcal{O}_v^{\times}$ and $\alpha_v(\mathcal{O}_v^{\times}) = 1$ for all but finitely many v, and defines a continuous homomorphism $\alpha: \mathbb{J}_K \to G$.

Lecture 14 Saturday 20/02/21

Proposition 8.2. Let $\alpha, \alpha' : \mathcal{C}_K \to G$ be continuous homomorphisms, where G is finite, unramified at all $v \in V_{K,f} \setminus S$, where S is finite. Then if $\alpha_v = \alpha'_v$ for all $v \notin S$ such that v is finite, that is $\alpha_v(\pi_v) = \alpha'_v(\pi_v)$, have $\alpha = \alpha'$.

Proof. Look at α/α' , so without loss of generality $\alpha'=1$. Then $\alpha: \mathcal{C}_K \to G$ satisfies for all $v \in V_{K,f} \setminus S$, $\alpha_v=1$. Let $w \in S_\infty = V_{K,\infty} \cup S$ and $y \in K_w^\times$. Then by weak approximation, for any $\epsilon > 0$, there exists $x \in K^\times$ such that $|x-y|_w < \epsilon$ and $|x-1|_v < \epsilon$ for all $v \in S_\infty \setminus \{w\}$. Hence $\alpha_v(x) = 1$ for all $v \in S_\infty \setminus \{w\}$, so $\alpha_v(x) = 1$ for all $v \neq w$. Since $\alpha(K^\times) = 1$, $\alpha_w(x) = 1$, so $\alpha_w(y) = 1$. So $\alpha_w = 1$, so $\alpha = 1$.

8.3 Specific open subgroups of C_K

Definition. A modulus is a finite formal sum

$$\mathfrak{m} = \sum_{v \in \mathcal{V}_K} \mathbf{m}_v\left(v\right), \qquad \mathbf{m}_v \ge 0.$$

The support and finite support of \mathfrak{m} are

$$\operatorname{supp} \mathfrak{m} = \{ v \in V_K \mid m_v > 0 \}, \quad \operatorname{supp}_f \mathfrak{m} = \operatorname{supp} \mathfrak{m} \cap V_{K,f}.$$

We may use also $\mathfrak{m}_{\mathrm{f}} = \sum_{v \in \mathrm{V}_{K,\mathrm{f}}} \mathrm{m}_{v}(v)$, the finite part of \mathfrak{m} , which can think of as an ideal of \mathcal{O}_{K} . Define

$$\mathbf{U}_{K,\mathfrak{m}} = \prod_{v \in \mathbf{V}_K} \mathbf{U}_v^{\mathbf{m}_v}, \qquad K_v^{\times} \supset \mathbf{U}_v^m = \begin{cases} \mathcal{O}_v^{\times} & v \in \mathbf{V}_{K,\mathbf{f}}, \ m = 0 \\ 1 + \pi_v^m \mathcal{O}_v & v \in \mathbf{V}_{K,\mathbf{f}}, \ m > 0 \\ \mathbb{R}^{\times} & v \text{ real, } m = 0 \\ \mathbb{R}_{>0} & v \text{ real, } m > 0 \\ \mathbb{C}^{\times} & v \text{ complex} \end{cases}.$$

Note that in the definition of the modulus, we may as well forget about v complex, and for v real, take $m_v \in \{0,1\}$. Then $U_{K,\mathfrak{m}} \subset \mathbb{J}_K$ is an open subgroup, and every open subgroup of \mathbb{J}_K contains some $U_{K,\mathfrak{m}}$.

Proposition 8.3. $C_K/U_{K,\mathfrak{m}}$ is finite.

Proof. $C_K \to C_K/U_{K,\mathfrak{m}}$ with discrete image, since $U_{K,\mathfrak{m}}$ is open. So by 8.1.1, the image is finite.

So every finite quotient of C_K is a quotient of some $C_K/U_{K,\mathfrak{m}}$.

Definition. The ray class group of K modulo \mathfrak{m} is

$$\mathrm{Cl}_{\mathfrak{m}}(K) = \mathcal{C}_K/\mathrm{U}_{K,\mathfrak{m}}.$$

Example. If $\mathfrak{m} = 0$, then $U_{K,\mathfrak{m}} = \ker c$, where $c : \mathbb{J}_K \to I(K)$ is the content map, and $\mathrm{Cl}_{\mathfrak{m}}(K) = \mathrm{Cl}(K)$. Now relate to ideals.

Notation. Let $x \in K^{\times}$. Write $x \equiv 1 \mod^* \mathfrak{m}$ if

- for all $v \in \operatorname{supp}_{f} \mathfrak{m}$, $v(x-1) \geq m_v$, and
- for all real $v \in \operatorname{supp} \mathfrak{m}, x \in (K_v^{\times})^+ = \mathbb{R}_{>0}$.

Let

$$\begin{split} K_{\mathfrak{m}}^{\times} &= \left\{ x \in K^{\times} \mid x \equiv 1 \mod^* \mathfrak{m} \right\}, \\ \mathrm{I}_{\mathfrak{m}}\left(K\right) &= \left\{ \text{fractional ideals prime to } \mathrm{supp}_{\mathrm{f}} \, \mathfrak{m} \right\} \cong \left\{ \text{free abelian group on } \mathrm{V}_{K,\mathrm{f}} \setminus \mathrm{supp}_{\mathrm{f}} \, \mathfrak{m} \right\}, \\ \mathrm{P}_{\mathfrak{m}}\left(K\right) &= \left\{ x \mathcal{O}_{K} \mid x \in K_{\mathfrak{m}}^{\times} \right\} \subset \mathrm{I}_{\mathfrak{m}}\left(K\right). \end{split}$$

Theorem 8.4.

$$\mathrm{Cl}_{\mathfrak{m}}\left(K\right)\cong\mathrm{I}_{\mathfrak{m}}\left(K\right)/\mathrm{P}_{\mathfrak{m}}\left(K\right).$$

Example. Assume K has real places, and let $\mathfrak{m} = \sum_{v \text{ real}} (v)$. Then $I_{\mathfrak{m}}(K) = I(K)$ and $P_{\mathfrak{m}}(K)$ is the group of principal fractional ideals $x\mathcal{O}_K$ where x is **totally positive**, that is for all $\sigma : K \hookrightarrow \mathbb{R}$, $\sigma(x) > 0$. Then $\operatorname{Cl}_{\mathfrak{m}}(K)$ is called the **narrow ideal class group** of K, also written $\operatorname{Cl}^+(K)$. Obviously $\operatorname{Cl}^+(K) \twoheadrightarrow \operatorname{Cl}(K)$ with kernel killed by two.

Precisely is the following.

Theorem 8.5. Let $S \subset V_{K,f}$ be finite, containing $\operatorname{supp}_f \mathfrak{m}$. Then there exists a unique continuous homomorphism

$$\alpha = (\alpha_v) : \mathcal{C}_K \to \mathrm{I}_{\mathfrak{m}}(K) / \mathrm{P}_{\mathfrak{m}}(K),$$

such that for all $v \in V_{K,f} \setminus S$, $\alpha_v(\mathcal{O}_v^{\times}) = 1$ and $\alpha_v(\pi_v) \in \mathfrak{p}_v^{-1}$. Moreover, α induces an isomorphism

$$\mathcal{C}_K/\mathrm{U}_{K,\mathfrak{m}} \xrightarrow{\sim} \mathrm{I}_{\mathfrak{m}}(K)/\mathrm{P}_{\mathfrak{m}}(K)$$
.

Proof. By 8.2, α is unique. For existence, let

$$\mathbb{J}_{K,\mathfrak{m}} = \{(x_v) \in \mathbb{J}_K \mid \forall v \in \operatorname{supp} \mathfrak{m}, \ x_v \in \mathcal{U}_v^{m_v} \},\,$$

the open subgroup generated by $U_{K,\mathfrak{m}}$ and $\{K_v^{\times} \mid v \notin \operatorname{supp} \mathfrak{m}\}$. Then by weak approximation, $K^{\times} \mathbb{J}_{K,\mathfrak{m}} = \mathbb{J}_K$, and by definition, $K_{\mathfrak{m}}^{\times} = K^{\times} \cap \mathbb{J}_{K,\mathfrak{m}}$, so

$$\iota: \mathcal{C}_K/\mathrm{U}_{K,\mathfrak{m}} \stackrel{\sim}{\leftarrow} \mathbb{J}_{K,\mathfrak{m}}/K_{\mathfrak{m}}^{\times}\mathrm{U}_{K,\mathfrak{m}}.$$

Also, there is an isomorphism

$$\begin{array}{cccc} \mathbf{c}^{S} & : & \mathbb{J}_{K,\mathfrak{m}}/\mathbf{U}_{K,\mathfrak{m}} & \longrightarrow & \mathbf{I}_{\mathfrak{m}}\left(K\right) \\ & & & (x_{v}) & \longmapsto & \prod_{v \in \mathbf{V}_{K,\mathbf{f}}, \ v \notin \mathrm{supp}_{\mathbf{f}} \ \mathfrak{m}} \mathfrak{p}_{v}^{v(x_{v})} \end{array}.$$

Then

$$\mathcal{C}_{K}/\mathbf{U}_{K,\mathfrak{m}} \xleftarrow{\iota} \mathbb{J}_{K,\mathfrak{m}}/K_{\mathfrak{m}}^{\times}\mathbf{U}_{K,\mathfrak{m}} \xrightarrow{\mathbf{c}^{S}} \mathbf{I}_{\mathfrak{m}}\left(K\right)/\mathbf{P}_{\mathfrak{m}}\left(K\right),$$

and this is the map $x \mapsto \alpha(x^{-1})$

Remark. The isomorphism $C_K/U_{K,\mathfrak{m}} \to I_{\mathfrak{m}}(K)/P_{\mathfrak{m}}(K)$ is not induced by the S-content map $\mathbb{J}_K \to I_{\mathfrak{m}}(K)$ but only on the subgroup $\mathbb{J}_{K,\mathfrak{m}}$. Fröhlich called this the **fundamental mistake of class field theory**.

Example. Let $K = \mathbb{Q}$, let m > 1, and let $\mathfrak{m} = (m)(\infty) = \sum_{p|m} v_p(m)(p) + (\infty)$. If $I \in I_{\mathfrak{m}}(\mathbb{Q})$, then $I = (a/b)\mathbb{Z}$ for unique positive coprime $a, b \in \mathbb{Z}$ with (ab, m) = 1. Set

This clearly defines an isomorphism such that

$$\begin{split} p\mathbb{Z} \in I_{\mathfrak{m}}\left(\mathbb{Q}\right) / P_{\mathfrak{m}}\left(\mathbb{Q}\right) & \xrightarrow{\Theta} \left(\mathbb{Z}/m\mathbb{Z}\right)^{\times} \ni p \mod m \\ & \qquad \qquad \uparrow \\ \mathbb{Q}^{\times}\left(\dots, 1, 1, p^{-1}, 1, 1, \dots\right) \in \mathcal{C}_{\mathbb{Q}} & \xrightarrow{\sim} \mathbb{R}_{>0} \times \widehat{\mathbb{Z}}^{\times} \ni (\dots, p, p, 1, p, p, \dots) \end{split}$$

commutes

This is the reason for using \mathfrak{p}_v^{-1} , and σ_v^{-1} in the reciprocity law, since it means that for $\mathbb{Q}\left(\zeta_m\right)/\mathbb{Q}$, recover the usual map $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_m\right)/\mathbb{Q}\right)\cong\left(\mathbb{Z}/m\mathbb{Z}\right)^{\times}$. Older treatments of class field theory use σ_v and end up with the inverse of the usual map. Another reason is that the inverse $\operatorname{Fr}_v=\sigma_v^{-1}$, the so-called **geometric Frobenius**, is what occurs naturally in algebraic geometry. The modern normalisation of class field theory maps a uniformiser at an unramified v to the geometric Frobenius σ_v^{-1} .

8.4 Properties of $Art_{L/K}$

Corollary 8.6 (Uniqueness). Art_{L/K} is unique.

Lecture 15 Tuesday 23/02/21

П

A consequence is if L'/K' is an abelian extension, and have isomorphisms

$$L \xrightarrow{\widetilde{\tau}} L'$$

$$\uparrow \qquad \uparrow$$

$$K \xrightarrow{\sim} K'$$

then get isomorphisms

$$\begin{array}{cccc} \tau & : & \operatorname{Gal}\left(L/K\right) & \longrightarrow & \operatorname{Gal}\left(L'/K'\right) \\ & g & \longmapsto & \widetilde{\tau} \circ g \circ \widetilde{\tau}^{-1} \end{array}.$$

As extensions are abelian, any other $\widetilde{\tau}'$ with $\widetilde{\tau}'|_K = \tau$ is $\widetilde{\tau}' = \widetilde{\tau} \circ h$ for $h \in \operatorname{Gal}(L/K)$, so $\widetilde{\tau}' \circ g \circ \widetilde{\tau}'^{-1} = \widetilde{\tau} \circ h \circ g \circ h^{-1} \circ \widetilde{\tau}^{-1} = \widetilde{\tau} \circ g \circ \widetilde{\tau}^{-1}$. So this isomorphism depends only on τ . Then

$$\begin{array}{ccc} \mathcal{C}_{K} & \xrightarrow{\operatorname{Art}_{L/K}} & \operatorname{Gal}\left(L/K\right) \\ \tau \Big| \sim & \sim \Big| \tau \\ \mathcal{C}_{K'} & \xrightarrow{\operatorname{Art}_{L'/K'}} & \operatorname{Gal}\left(L'/K'\right) \end{array}$$

commutes, by uniqueness. This sort of argument is often called transport of structure.

Example. Suppose L/K/F is Galois such that L/K is abelian and K/F is Galois. Take $\tau = g \in \operatorname{Gal}(K/F)$. As L/K is abelian, $\operatorname{Gal}(K/F)$ acts by conjugation on $\operatorname{Gal}(L/K)$. Let K = K' and L = L'. Then

$$\operatorname{Art}_{L/K}(gx) = g \circ \operatorname{Art}_{L/K}(x) \circ g^{-1}, \qquad g \in \operatorname{Gal}(K/F), \qquad x \in \mathcal{C}_K.$$
 (5)

Proposition 8.7 (Norm functoriality). Suppose L/K and L'/K' are abelian such that $L \subset L'$ and $K \subset K'$. Then

$$\begin{array}{ccc}
\mathcal{C}_{K'} & \xrightarrow{\operatorname{Art}_{L'/K'}} \operatorname{Gal}\left(L'/K'\right) \\
\operatorname{N}_{K'/K} \downarrow & & \downarrow g \mapsto g|_{L} \\
\mathcal{C}_{K} & \xrightarrow{\operatorname{Art}_{L/K}} \operatorname{Gal}\left(L/K\right)
\end{array}$$

commutes.

Proof. It is enough to check for $\pi_w \in K_w'^{\times} \subset \mathcal{C}_{K'}$ for w outside a finite set. Assume w is unramified in L'/K' such that $w \mid v \in V_{K,f}$ where v is unramified in L/K. If $\sigma_w \in D_w \subset Gal(L'/K')$, then

$$|\sigma_w|_L = (x \mapsto x^{\mathbf{q}_w})|_L = (x \mapsto x^{\mathbf{q}_v})^{\mathbf{f}(w|v)} = \sigma_v^{\mathbf{f}(w|v)}.$$

If $\pi_w \in K_w'^{\times}$ is a uniformiser, then

$$N_{K'_w/K_v}(\pi_w) = u\pi_v^{f(w|v)}, \qquad u \in \mathcal{O}_{K_v}^{\times},$$

since
$$\pi_v^{\left[K_w':K_v\right]} = \mathcal{N}_{K_w'/K_v}\left(\pi_v\right)$$
 and $\pi_v = u\pi_w^{\mathrm{e}(w|v)}$.

Example. A special case is K' = L = L'. Then $1 = \operatorname{Art}_{L/L}(x) = \operatorname{Art}_{L/K}(\operatorname{N}_{L/K}(x))$ for $x \in \mathbb{J}_L$, so

$$N_{L/K}(\mathbb{J}_L) \subset \ker \operatorname{Art}_{L/K}$$
.

By the reciprocity law, there is a map from abelian extensions of K to finite quotients of \mathcal{C}_K .

Theorem 8.8 (Existence theorem). Let $U \subset \mathbb{J}_K$ be an open subgroup. Then there exists an abelian extension L/K with

$$\ker \operatorname{Art}_{L/K} = K^{\times}U.$$

Combining with the reciprocity law,

$$\varprojlim_{\text{open subgroups }U\subset\mathbb{J}_K}\mathbb{J}_K/K^\times U\xrightarrow{\sim}\operatorname{Gal}\left(K^{\mathrm{ab}}/K\right).$$

In particular, if \mathfrak{m} is a modulus, and $U = U_{K,\mathfrak{m}}$, there is a corresponding abelian extension of K, called the ray class field.

Example. Let $K = \mathbb{Q}$ with $\mathfrak{m} = (m)(\infty)$. Then the ray class field is $\mathbb{Q}(\zeta_m)$. So should think of ray class fields as analogues of cyclotomic fields. Maybe later will discuss ray class fields for $\mathbb{Q}(\sqrt{-d})$, which correspond to elliptic curves.

Theorem 8.9 (Relation with local class field theory). Let L/K be abelian, let $v \in V_K$, and let $w \mid v$. Then

$$\begin{array}{ccc}
\mathcal{C}_{K} & \xrightarrow{\operatorname{Art}_{L/K}} & \operatorname{Gal}\left(L/K\right) \\
\uparrow & & \cup & \cdot \\
K_{v}^{\times} & \xrightarrow{\psi_{v}} & D_{v} = \operatorname{Gal}\left(L_{w}/K_{v}\right)
\end{array}$$

Indeed, in the proof of the reciprocity law, it is usual to start with the local Artin maps ψ_v .

Example. Let $v \mid \infty$.

- If $K_v = L_w$, then $\psi_v = 1$.
- If $K_v = \mathbb{R}$ and $L_w \cong \mathbb{C}$, then $\psi_v = \text{sign} : \mathbb{R}^{\times} \to \{\pm 1\} \cong \text{Gal}(L_w/K_v)$ with kernel $\mathbb{R}_{>0} = N_{\mathbb{C}/\mathbb{R}}(\mathbb{C}^{\times})$.

The (ψ_v) combine to give

$$\mathbb{J}_{K}/\mathrm{N}_{L/K}\left(\mathbb{J}_{L}\right) \xrightarrow{\mathrm{Art}_{L/K}} \mathrm{Gal}\left(L/K\right)
\sim \uparrow \qquad \qquad \uparrow^{\mathrm{D}_{v}\subset\mathrm{Gal}(L/K)}
\bigoplus_{v} K_{v}^{\times}/\mathrm{N}_{L_{w}/K_{v}}\left(L_{w}^{\times}\right) \xrightarrow{\sim} \bigoplus_{v} \mathrm{D}_{v}$$

So the fact that $\operatorname{Art}_{L/K}(K^{\times}) = 1$, the hard part of the reciprocity law, is equivalent to knowing the relations between the various $\operatorname{D}_v \subset \operatorname{Gal}(L/K)$. Why are ideles better than ideals?

- Ideals only will tell you about relations between D_v for v unramified.
- Need ideles to understand properly ramification.

8.5 Examples

Let K be arbitrary with modulus $\mathfrak{m} = 0$. Then $\mathrm{Cl}_{\mathfrak{m}}(K) = \mathrm{Cl}(K)$. By the existence theorem, there is a corresponding abelian extension H/K, the **Hilbert class field**, with

$$\operatorname{Art}_{H/K}:\operatorname{Cl}(K)\xrightarrow{\sim}\operatorname{Gal}(H/K)$$
.

Then H/K satisfies the following.

- It is abelian.
- For all $v \in V_{K,f}$, it is unramified at v, since $\mathcal{O}_v^{\times} \subset U_{K,\mathfrak{m}}$ for all v.
- At an infinite place $v, K_v^{\times} \subset U_{K,\mathfrak{m}}$, so the local decomposition group at v is trivial, that is if v is a real place of K, then if $w \mid v$ then w is also real.

Thus H/K is unramified at all places of K, and H is the maximal extension with these properties.

Example. Let $K = \mathbb{Q}\left(\sqrt{-23}\right)$, so $\mathcal{O}_K = \mathbb{Z}\left[\frac{1+\sqrt{-23}}{2}\right]$. By a standard computation, $\operatorname{Cl}(K) \cong \mathbb{Z}/3\mathbb{Z}$ is generated by $[\mathfrak{p}]$ for $\mathfrak{p} = \left\langle 2, \frac{1+\sqrt{-23}}{2} \right\rangle$. Let $\tau \in \operatorname{Gal}(K/\mathbb{Q})$ be complex conjugation. Then $\tau(\mathfrak{p}) = \left\langle 2, \frac{1-\sqrt{-23}}{2} \right\rangle$ and $\mathfrak{p} \cdot \tau(\mathfrak{p}) = \left\langle 2 \right\rangle$, that is $\tau([\mathfrak{p}]) = [\mathfrak{p}]^{-1}$, so τ acts as -1 on $\operatorname{Cl}(K)$. Let H be the Hilbert class field of K, which is the maximal abelian extension of K which is unramified at all $v \in V_{K,f}$, that is $\delta_{H/K} = \mathcal{O}_K$. Then [H:K] = 3 and Galois. By (5) above, τ acts as -1 on $\operatorname{Gal}(H/K)$, so H/\mathbb{Q} is an \mathcal{S}_3 -extension. Show that H is the splitting field of $f = T^3 - T + 1$ with discriminant -23.

⁸Exercise

The following arose in a research problem.

Lecture 16 Thursday 25/02/21

Proposition 8.10. There is no S_3 -extension L/\mathbb{Q} , so Galois with group S_3 , which is unramified outside $2,7,\infty$, with quadratic subfield $K=\mathbb{Q}(\sqrt{-7})$ or $K=\mathbb{Q}(\sqrt{2})$.

Proof. Let

$$\operatorname{Art}_{L/K}: \mathcal{C}_K \twoheadrightarrow \operatorname{Gal}(L/K) \cong \mathbb{Z}/3\mathbb{Z}.$$

The condition that L/\mathbb{Q} is Galois with group S_3 is

$$\operatorname{Art}_{L/K}(\tau(x)) = \operatorname{Art}_{L/K}(x^{-1}),$$

by (5), since $\operatorname{Gal}(K/\mathbb{Q}) = \langle \tau \rangle$ acts on $\operatorname{Gal}(L/K)$ by conjugation non-trivially. For both $\mathbb{Q}(\sqrt{-7})$ and $\mathbb{Q}(\sqrt{2})$, $\operatorname{Cl}(K) = 1$. So

$$\mathcal{C}_K \stackrel{\sim}{\leftarrow} \mathbb{J}_{K,\emptyset}/\mathcal{O}_K^{\times} = \left(K_{\infty}^{\times} \times \widehat{\mathcal{O}_K}^{\times}\right)/\mathcal{O}_K^{\times}.$$

Then $\operatorname{Art}_{L/K}: K_{\infty}^{\times} = (\mathbb{R}^{\times})^{r_1} \times (\mathbb{C}^{\times})^{r_2} \hookrightarrow \mathbb{J}_{K,\emptyset} \to \mathbb{Z}/3\mathbb{Z}$ is trivial on \mathbb{C}^{\times} and $\mathbb{R}_{>0}$, and even on \mathbb{R}^{\times} , since there is no non-zero continuous homomorphism $\mathbb{R}^{\times} \to \mathbb{Z}/3\mathbb{Z}$. So $\operatorname{Art}_{L/K}$ factors through $\widehat{\mathcal{O}_{K}}^{\times}/\mathcal{O}_{K}^{\times}$, and since L/K is unramified at $v \nmid 14$, factors further by

$$C_K \cong \mathbb{J}_{K,\emptyset}/\mathcal{O}_K^{\times} \longrightarrow \widehat{\mathcal{O}_K}^{\times}/\mathcal{O}_K^{\times}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Gal}(L/K) \cong \mathbb{Z}/3\mathbb{Z} \twoheadleftarrow_{\psi} \longrightarrow \left(\prod_{v|14} \mathcal{O}_v^{\times}\right)/\mathcal{O}_K^{\times}$$

since $\operatorname{Art}_{L/K}(\mathcal{O}_v^{\times}) = 1$ for all $v \nmid 14$. Thus

$$\psi \circ \tau = -\psi. \tag{6}$$

- Let $K = \mathbb{Q}(\sqrt{-7})$, so $\mathcal{O}_K^{\times} = \{\pm 1\}$.
 - Since $-7 \equiv 1 \mod 8$, 2 splits in K, so $\prod_{v|2} \mathcal{O}_v^{\times} = \mathbb{Z}_2^{\times} \times \mathbb{Z}_2^{\times}$ is a pro-2 group, so $\psi\left(\prod_{v|2} \mathcal{O}_v^{\times}\right) = 0$.
 - 7 ramifies, so if $v \mid 7$, then $\mathcal{O}_v^{\times} = \mathbb{F}_7^{\times} \times (1 + \pi_v \mathcal{O}_v)$, where \mathbb{F}_7^{\times} is the Teichmüller and $1 + \pi_v \mathcal{O}_v$ is a pro-7 group.

So ψ factors through \mathbb{F}_7^{\times} , and $\tau \in \operatorname{Gal}(K/\mathbb{Q})$ acts trivially on \mathbb{F}_7 . So by (6), there is no possible ψ . There does exist a ψ with $\psi \circ \tau = \psi$, unique up to inverse, corresponding to an abelian L/\mathbb{Q} , which has to be $\mathbb{Q}(\zeta_7)$.

- Let $K = \mathbb{Q}(\sqrt{2})$, so $\mathcal{O}_K^{\times} = \langle -1, \epsilon = 1 + \sqrt{2} \rangle$.
 - 2 ramifies, so if $v \mid 2$, then $\mathcal{O}_v^{\times} = 1 + \pi_v \mathcal{O}_v$ is a pro-2 group and $\psi(\mathcal{O}_v^{\times}) = 0$.
 - Since $7 = (3 + \sqrt{2})(3 \sqrt{2})$, $\prod_{v|7} \mathcal{O}_v^{\times} = \mathbb{Z}_7^{\times} \times \mathbb{Z}_7^{\times} \cong \mathbb{F}_7^{\times} \times \mathbb{F}_7^{\times} \times (1 + 7\mathbb{Z}_7)^2$, where $1 + 7\mathbb{Z}_7$ is a pro-7 group, so $\psi(1 + 7\mathbb{Z}_7) = 0$.

So ψ factors through $\psi: (\mathbb{F}_7^{\times} \times \mathbb{F}_7^{\times}) / \mathcal{O}_K^{\times} \twoheadrightarrow \mathbb{Z}/3\mathbb{Z}$. Then $\tau: (x,y) \mapsto (y,x)$, so

$$\psi\left(x,x\right) = 0,\tag{7}$$

by (6). Now

$$\epsilon = 1 + \sqrt{2} \equiv \begin{cases} -2 & \mod 3 + \sqrt{2} \\ 4 & \mod 3 - \sqrt{2} \end{cases},$$

that is $\psi(-2, 4) = 0$. By this and (7), $\psi = 0$.

8.6 Comparing \mathcal{C}_K and $\operatorname{Gal}\left(K^{\operatorname{ab}}/K\right)$

Fix $K \subset \overline{\mathbb{Q}}$. Let

$$\operatorname{Art}_K: \mathcal{C}_K \to \operatorname{Gal}\left(K^{\operatorname{ab}}/K\right) = \varprojlim_{\text{finite abelian } K \subset L \subset \overline{\mathbb{Q}}} \operatorname{Gal}\left(L/K\right),$$

where K^{ab} is the **maximal abelian extension** of K in $\overline{\mathbb{Q}}$, the union of all finite abelian L/K, so $\operatorname{Gal}(K^{ab}/K)$ is profinite. As $\mathcal{C}_K^1 \to \operatorname{Gal}(L/K)$ for all L and \mathcal{C}_K^1 is compact, $\mathcal{C}_K^1 \to \operatorname{Gal}(K^{ab}/K)$, since the image is dense and compact. The existence theorem is equivalent to the statement that $\operatorname{Gal}(K^{ab}/K)$ is the maximal profinite quotient of \mathcal{C}_K , or of \mathcal{C}_K^1 . There is a diagram

$$1 \longrightarrow \mathbb{J}_{K,\emptyset}/\mathcal{O}_{K}^{\times} \longrightarrow \mathcal{C}_{K} \stackrel{c}{\longrightarrow} \operatorname{Cl}(K) \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \sim \qquad ,$$

$$1 \longrightarrow \operatorname{Gal}(K^{\operatorname{ab}}/H) \longrightarrow \operatorname{Gal}(K^{\operatorname{ab}}/K) \longrightarrow \operatorname{Gal}(H/K) \longrightarrow 1$$

where H is the Hilbert class field. What is the kernel of the vertical maps?

• If $K = \mathbb{Q}$, then

$$\operatorname{Art}_{\mathbb{Q}}:\mathcal{C}_{\mathbb{Q}}\cong\mathbb{R}_{>0}\times\widehat{\mathbb{Z}}^{\times}\twoheadrightarrow\widehat{\mathbb{Z}}^{\times}=\operatorname{Gal}\left(\mathbb{Q}^{\operatorname{ab}}/\mathbb{Q}\right).$$

• If $K = \mathbb{Q}(\sqrt{-d})$, then $\mu(K)$ is finite, so the maximal profinite quotient is

$$\operatorname{Art}_{K}: \mathbb{J}_{K,\emptyset}/\mathcal{O}_{K}^{\times} \cong \left(\mathbb{C}^{\times} \times \widehat{\mathcal{O}_{K}}^{\times}\right) / \mu\left(K\right) \twoheadrightarrow \widehat{\mathcal{O}_{K}}^{\times} / \mu\left(K\right) = \operatorname{Gal}\left(K^{\operatorname{ab}}/K\right).$$

• Let $K = \mathbb{Q}\left(\sqrt{2}\right)$, so $\operatorname{Cl}\left(K\right) = 1$ and $\mathcal{O}_K^{\times} = \left\langle -1, \epsilon = 1 + \sqrt{2} \right\rangle$. Then $\operatorname{N}_{K/\mathbb{Q}}\left(\epsilon\right) = -1$ and ϵ has signature (1, -1). Let $\epsilon_+ = \epsilon^2$ be the least totally positive unit. Then the maximal profinite quotient is

$$\mathcal{C}_{K} = \mathbb{J}_{K,\emptyset}/\mathcal{O}_{K}^{\times} \xleftarrow{\sim} \left(\mathbb{R}_{>0}^{2} \times \widehat{\mathcal{O}_{K}}^{\times}\right) / \left\langle \epsilon_{+} \right\rangle$$

$$\mathcal{C}_{K}^{1} = \mathbb{J}_{K,\emptyset}^{1}/\mathcal{O}_{K}^{\times} \xleftarrow{\sim} \left(\mathbb{R}_{>0} \times \widehat{\mathcal{O}_{K}}^{\times}\right) / \left\langle \epsilon_{+} \right\rangle \xrightarrow{\operatorname{Art}_{K}^{1}} \widehat{\mathcal{O}_{K}}^{\times} / \overline{\left\langle \epsilon_{+} \right\rangle} = \operatorname{Gal}\left(K^{\operatorname{ab}}/K\right)$$

If $G = \varprojlim_i G_i$ is a profinite group and $g \in G$, there exists a unique continuous $\phi : \widehat{\mathbb{Z}} \to G$ such that $\phi(1) = g$. So have

$$\begin{array}{ccc} \widehat{\mathbb{Z}} & \longrightarrow & \overline{\langle \epsilon_{+} \rangle} \subset \widehat{\mathcal{O}_{K}}^{\times} \\ 1 & \longmapsto & \epsilon_{+} \end{array}.$$

One can show that $\widehat{\mathbb{Z}} \xrightarrow{\sim} \overline{\langle \epsilon_+ \rangle}$, so there is an isomorphism

$$\ker \operatorname{Art}_K^1 = \left(\mathbb{R}_{>0} \times \overline{\langle \epsilon_+ \rangle} \right) / \langle \epsilon_+ \rangle \cong \left(\mathbb{R} \times \widehat{\mathbb{Z}} \right) / \mathbb{Z} = \mathbb{A}_{\mathbb{Q}} / \mathbb{Q},$$

where $\mathbb{A}_{\mathbb{Q}}/\mathbb{Q}$ is compact and connected, that is have

$$1 \to \mathbb{A}_{\mathbb{Q}}/\mathbb{Q} \to \mathcal{C}_K^1 \to \operatorname{Gal}\left(K^{\mathrm{ab}}/K\right) \to 1.$$

• For general K, what happens is that

$$1 \longrightarrow \mathcal{C}_{K}^{\circ} \longrightarrow \mathcal{C}_{K} \xrightarrow{\operatorname{Art}_{K}} \operatorname{Gal}\left(K^{\operatorname{ab}}/K\right) \longrightarrow 1$$

$$1 \longrightarrow \mathcal{C}_{K}^{\circ} \longrightarrow \mathbb{J}_{K,\emptyset}/\mathcal{O}_{K}^{\times} \longrightarrow \operatorname{Gal}\left(K^{\operatorname{ab}}/H\right) \longrightarrow 1$$

$$\left(\left\{\pm 1\right\}^{\operatorname{r}_{1}} \times \widehat{\mathcal{O}_{K}}^{\times}\right)/\overline{\mathcal{O}_{K}^{\times}}$$

where the maximal connected subgroup of \mathcal{C}_K , the closure of $\mathbb{R}^{r_1}_{>0} \times (\mathbb{C}^{\times})^{r_2}$, is

$$\mathcal{C}_{K}^{\circ} \cong \mathbb{R}_{>0} \times \mathrm{U}\left(1\right)^{\mathrm{r}_{2}} \times \left(\mathbb{A}_{\mathbb{Q}}/\mathbb{Q}\right)^{\mathrm{r}_{1}+\mathrm{r}_{2}-1}.$$

 $^{^9\}mathrm{Exercise:}$ easy

9 ζ-functions

9.1 Riemann ζ -function

The **Riemann** ζ -function is

$$\zeta\left(s\right) = \sum_{n \geq 1} \frac{1}{n^{s}} = \prod_{p} \frac{1}{1 - p^{-s}}, \qquad s \in \mathbb{C}, \qquad \operatorname{Re} s > 1,$$

by unique factorisation in \mathbb{Z} . Define

$$Z(s) = \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s).$$

Theorem 9.1 (Functional equation for Riemann ζ -function).

$$Z(s) = Z(1 - s),$$

with analytic continuation to \mathbb{C} except for simple poles at s=0,1 with residues ± 1 .

Proof. There are three steps.

Step 1. The **Mellin transform** of $\frac{1}{2}(\Theta(y) - 1)$ is

$$Z(2s) = \pi^{-s} \sum_{n \ge 1} \frac{1}{n^{2s}} \int_0^\infty e^{-t} t^{s-1} dt = \int_0^\infty \sum_{n=1}^\infty e^{-\pi n^2 y} y^{s-1} dy = \int_0^\infty \frac{1}{2} (\Theta(y) - 1) \frac{y^s}{y} dy,$$

where Θ is the **theta function**

$$\Theta(y) = \sum_{n=-\infty}^{\infty} e^{-\pi n^2 y}.$$

Step 2. If $f: \mathbb{R} \to \mathbb{C}$ is nice, then the **Poisson summation formula** is

$$\sum_{n=-\infty}^{\infty}f\left(n\right) =\sum_{n=-\infty}^{\infty}\widehat{f}\left(n\right) ,$$

where \widehat{f} is the **Fourier transform**

$$\widehat{f}(u) = \int_{-\infty}^{\infty} e^{-2\pi i u x} f(x) \, \mathrm{d}x.$$

Take $f(x) = e^{-\pi x^2 y}$. Then $\widehat{f}(u) = y^{-1/2} e^{\pi u^2 / y}$, so $\Theta(y) = y^{-1/2} \Theta(1/y)$.

Step 3. In step 1, split

$$\int_{0}^{\infty} \frac{1}{2} (\Theta(y) - 1) \frac{y^{s}}{y} dy = \int_{1}^{\infty} \frac{1}{2} (\Theta(y) - 1) \frac{y^{s}}{y} dy + \int_{0}^{1} \frac{1}{2} (\Theta(y) - 1) \frac{y^{s}}{y} dy,$$

and in the second term, use step 2 to make into

$$\int_0^1 \frac{1}{2} \left(\Theta \left(y \right) - 1 \right) \frac{y^s}{y} \, \mathrm{d}y = \int_1^\infty \frac{1}{2} \left(\Theta \left(\frac{1}{y} \right) - 1 \right) \frac{y^{-s}}{y} \, \mathrm{d}y,$$

by $y \mapsto 1/y$. Get that

$$Z(2s) = \frac{1}{2} \int_{1}^{\infty} (\Theta(y) - 1) \left(y^{s} + y^{\frac{1}{2} - s} \right) \frac{1}{y} dy + \frac{1}{2s - 1} - \frac{1}{2s},$$

where the first term is an entire function of s since $\Theta(y) - 1 \to 0$ rapidly as $y \to \infty$, so Z(2s) = Z(1-2s).

27/02/21

Lecture 17

Saturday

9.2 Dedekind ζ -function

Let K be a number field. The **Dedekind** ζ -function of K is

$$\zeta_K(s) = \sum_{0 \neq \mathfrak{a} \subset \mathcal{O}_K \text{ ideals}} \frac{1}{\operatorname{N}(\mathfrak{a})^s}.$$

Proposition 9.2 (Euler product).

$$\zeta_K(s) = \prod_{v \in V_{K,f}} \frac{1}{1 - q_v^{-s}},$$

absolutely convergent for Re s > 1.

Proof. Formally, if $\mathfrak{a} \subset \mathcal{O}_K$ such that $\mathfrak{a} = \prod_v \mathfrak{p}_v^{n_v}$ then $N(\mathfrak{a})^{-s} = \prod_v q_v^{-n_v s}$, so

$$\zeta_K(s) = \prod_v (1 + q_v^{-s} + \dots) = \prod_v \frac{1}{1 - q_v^{-s}}.$$

Now $\#\{v \mid p\} \le n = [K : \mathbb{Q}]$, and if $v \mid p$ then $q_v \ge p$, so the product converges by comparison with $\prod_p (1 - p^{-s})^{-n} = \zeta(s)^n$.

The $1/(1-q_v^{-s})$ are **Euler factors at** v. Define

$$\Gamma_{\mathbb{R}}\left(s\right) = \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right), \qquad \Gamma_{\mathbb{C}}\left(s\right) = 2\left(2\pi\right)^{-s}\Gamma\left(s\right),$$

the Euler factors for the infinite places, and

$$Z_{K}(s) = |d_{K}|^{\frac{s}{2}} \Gamma_{\mathbb{R}}(s)^{r_{1}} \Gamma_{\mathbb{C}}(s)^{r_{2}} \zeta_{K}(s).$$

The following is a generalisation of 9.1.

Theorem 9.3.

1. (Functional equation for Dedekind ζ -function) $Z_K(s)$ has an analytic continuation to \mathbb{C} , apart from simple poles at s = 0, 1, and

$$Z_K(1-s) = Z_K(s).$$

2. (Analytic class number formula) $\zeta_K(s)$ has a zero of order $r = r_1 + r_2 - 1$ at s = 0, and

$$\lim_{s \to 0} \frac{1}{s^r} \zeta_K(s) = -\frac{\mathbf{h}_K \mathbf{R}_K}{\mathbf{w}_K}.$$
 (8)

Here, $h_K = \# \operatorname{Cl}(K)$ is the class number, $w_K = \#\mu(K)$ is the number of roots of unity in K, and R_K is the **regulator** of K. If $\epsilon_1, \ldots, \epsilon_r$ are generators for $\mathcal{O}_K^{\times}/\mu(K) \cong \mathbb{Z}^r$, by the unit theorem, R_K is the absolute value of any $(r \times r)$ -minor of the matrix

$$(\log |\epsilon_j|_v)_{1 \le j \le r, v \in V_{K,\infty}}$$
.

Note that by the product formula, the sum of the columns of this matrix is zero, so minors are equal up to sign. Then $R_K \neq 0$ by the proof of the unit theorem. More usual to write (8) at s = 1 but more complicated.

Example. If $K = \mathbb{Q}$, then $\zeta(0) = -\frac{1}{2}$.

There are two ways to prove this.

- Hecke, using theta functions.
- Tate, using adeles. Generalises much more easily to other L-functions, such as L-functions of characters of \mathcal{C}_K .

Tate's proof is an adelic version of 9.1. The idea is to first interpret $\zeta_K(s)$, or $Z_K(s)$, as an adelic integral. Assuming we know how to integrate on \mathbb{Q}_p ,

$$\int_{\mathbb{Z}_p\setminus\{0\}} |x|_p^{s-1} dx = \sum_{n\geq 0} \int_{p^n \mathbb{Z}_p\setminus p^{n+1} \mathbb{Z}_p} p^{-n(s-1)} dx = \sum_{n\geq 0} p^{-n(s-1)} \operatorname{meas} \left(p^n \mathbb{Z}_p \setminus p^{n+1} \mathbb{Z}_p\right).$$

Then

$$\mathbb{Z}_p = \bigsqcup_{a=0}^{p^n - 1} a + p^n \mathbb{Z}_p, \quad \text{meas} (a + p^n \mathbb{Z}_p) = \frac{1}{p^n} \operatorname{meas} (\mathbb{Z}_p),$$

so

$$\int_{\mathbb{Z}_p \setminus \{0\}} |x|_p^{s-1} \, \mathrm{d}x = \sum_{n \geq 0} p^{-n(s-1)} \left(\frac{1}{p^n} - \frac{1}{p^{n+1}} \right) \operatorname{meas} \left(\mathbb{Z}_p \right) = \left(1 - p^{-1} \right) \operatorname{meas} \left(\mathbb{Z}_p \right) \frac{1}{1 - p^{-s}},$$

where $1/(1-p^{-s})$ is the Euler factor at p in $\zeta(s)$. Suggests that $\zeta(s)$ is a product of p-adic integrals over all p, an adelic integral.

- The Γ -factor will be an integral at an infinite place.
- Have to normalise measure to get $1/(1-p^{-s})$ for almost all p.
- The functional equation will come from a Fourier transform.

9.3 Local Fourier analysis

On \mathbb{R} ,

$$\widehat{f}(y) = \int_{-\infty}^{\infty} e^{-2\pi i x y} f(x) \, \mathrm{d}x,$$

which has three ingredients. Define \hat{f} replacing \mathbb{R} by any local field F, of characteristic zero.

Definition. The additive character is a continuous homomorphism $1 \neq \psi : F \to U(1) = \{|z| = 1\} \subset \mathbb{C}^{\times}$.

- If $F = \mathbb{R}$, then $\psi(x) = e^{-2\pi ix}$.
- If $F = \mathbb{C}$, then $\psi(z) = e^{-2\pi i \operatorname{Tr}_{\mathbb{C}/\mathbb{R}}(z)} = e^{-2\pi i (z+\overline{z})}$.
- Let F/\mathbb{Q}_p be finite. Since $\mathbb{Q}_p = \mathbb{Z}[1/p] + \mathbb{Z}_p$, define

$$\psi_p : \mathbb{Q}_p/\mathbb{Z}_p \longrightarrow U(1) \\ x \longmapsto e^{2\pi i y} , \qquad y \in \mathbb{Z}\left[\frac{1}{p}\right], \qquad x - y \in \mathbb{Z}_p,$$

which is well-defined. Let $\psi = \psi_p \circ \operatorname{Tr}_{F/\mathbb{Q}_p} : F \to \mathrm{U}(1)$.

Why the sign in the case F/\mathbb{R} ? If $x \in \mathbb{Q}$, then $\psi_{\infty}(x) \prod_{p} \psi_{p}(x) = 1$.

Tuesday 02/03/21

Lecture 18

Definition. The **Haar measure** $d_F x$ is translation-invariant.

- If $F = \mathbb{R}$, then $d_F x$ is the usual Lebesgue measure dx.
- If $F = \mathbb{C}$, then $d_F z = 2dxdy$ for z = x + iy, which is twice the Lebesgue measure.
- Let F/\mathbb{Q}_p . Our functions will be locally constant, that is sums of multiples of characteristic functions of $a + \pi^n \mathcal{O}_F$ for $a \in F$ and $n \in \mathbb{Z}$. If $n \geq 0$, then $\mathcal{O}_F = \bigsqcup_a a + \pi^n \mathcal{O}_F$ is a disjoint union of q^n cosets, so

meas
$$(a + \pi^n \mathcal{O}_F) = \text{meas}(\pi^n \mathcal{O}_F) = \frac{1}{q^n} \text{meas}(\mathcal{O}_F),$$

and will normalise meas $(\mathcal{O}_F) = q^{-\delta/2}$ where $\delta = \delta_{F/\mathbb{Q}_p} = \mathrm{v}\left(\mathcal{D}_{F/\mathbb{Q}_p}\right)$, that is

$$\int_{F} \mathbb{1}_{a+\pi^{n}\mathcal{O}_{F}} d_{F} x = \operatorname{meas} (a + \pi^{n}\mathcal{O}_{F}) = q^{-n - \frac{\delta}{2}}.$$

In each case, $d_F(ax) = |a|_F d_F x$ for $a \in F^{\times}$.

Definition. The class of functions to integrate is the **Schwartz space** $\mathcal{S}(F)$.

• If $F = \mathbb{R}$, then

$$\mathcal{S}\left(F\right) = \left\{\mathbf{C}^{\infty}\text{-functions } f: F \to \mathbb{C} \; \middle| \; \forall n \geq 0, \; \forall \alpha \in \mathbb{N}, \; \lim_{|x| \to \infty} \left(\left|x\right|^{n} \left| \frac{\mathrm{d}^{\alpha} f}{\mathrm{d} x^{\alpha}} \right| \right) = 0 \right\}.$$

For example, $e^{-dx|^2}$ for c > 0.

• If $F = \mathbb{C}$, then

$$\mathcal{S}\left(F\right) = \left\{\mathbf{C}^{\infty}\text{-functions } f: F \to \mathbb{C} \; \middle| \; \forall n \geq 0, \; \forall \alpha \in \mathbb{N}^{2}, \; \lim_{|z| \to \infty} \left(\left|z\right|^{n} \middle| \frac{\partial^{\alpha} f}{\partial x^{\alpha_{1}} \partial y^{\alpha_{2}}} \middle| \right) = 0 \right\}.$$

• If F/\mathbb{Q}_p , then

$$\mathcal{S}\left(F\right) = \left\{\text{locally constant } f: F \to \mathbb{C} \text{ of compact support}\right\}$$
$$= \left\{\text{span of characteristic functions } \mathbb{1}_{a+\pi^n\mathcal{O}_F}\right\}.$$

If $f \in \mathcal{S}(F)$, write

$$\int_{F} f(x) \, \mathrm{d}_{F} x$$

for the integral. If F/\mathbb{Q}_p and $f = \mathbb{1}_{a+\pi^n\mathcal{O}_F}$, then

$$\int_{F} f(x) d_{F} x = \operatorname{meas} (a + \pi^{n} \mathcal{O}_{F}),$$

that is p-adic integrals are basically just finite sums. Also write

$$\int_{U} f(x) d_{F} x = \int_{F} \mathbb{1}_{U} f(x) d_{F} x,$$

for $U \subset F$ compact open.

Lemma 9.4. Let F/\mathbb{Q}_p , and let $\mathfrak{a} \subset F$ be a fractional ideal. Then

$$\int_{\mathfrak{a}} \psi(x) \, d_{F} x = \int_{F} \mathbb{1}_{\mathfrak{a}} \psi(x) \, d_{F} x = \begin{cases} \operatorname{meas}(\mathfrak{a}) & \mathfrak{a} \subset \mathcal{D}_{F/\mathbb{Q}_{p}}^{-1} \\ 0 & otherwise \end{cases}$$

where $\mathbb{1}_{\mathfrak{a}}\psi \in \mathcal{S}(F)$.

Proof.

- If $\mathfrak{a} \subset \mathcal{D}_{F/\mathbb{Q}_p}^{-1}$, then $\operatorname{Tr}_{F/\mathbb{Q}_p}(\mathfrak{a}) \subset \mathbb{Z}_p$ so $\psi|_{\mathfrak{a}} = 1$, as $\psi_p|_{\mathbb{Z}_p} = 1$.
- If $\mathfrak{a} \not\subset \mathcal{D}_{F/\mathbb{Q}_p}^{-1}$, there exists $x \in \mathfrak{a}$ such that $\operatorname{Tr}_{F/\mathbb{Q}_p}(x) \notin \mathbb{Z}_p$, so $\psi(x) \neq 1$. As $x + \mathfrak{a} = \mathfrak{a}$, and $\operatorname{d}_F(x+y) = \operatorname{d}_F y$,

$$\int_{\mathfrak{a}} \psi(y) d_{F} y = \int_{\mathfrak{a}} \psi(x+y) d_{F} y = \psi(x) \int_{\mathfrak{a}} \psi(y) d_{F} y,$$

so the integral is zero.

Compare to

$$\sum_{g \in G} \chi(g) = \begin{cases} \#G & g = e \\ 0 & \text{otherwise} \end{cases}$$

for G finite abelian.

9.4 Local Fourier transform

Definition. Let $f \in \mathcal{S}(F)$. Define the **Fourier transform**

$$\widehat{f}(y) = \int_{F} \psi(xy) f(x) d_{F} x,$$

where $\psi(xy) f(x) \in \mathcal{S}(F)$.

Proposition 9.5.

1. If
$$F = \mathbb{R}$$
 and $f(x) = e^{-\pi x^2}$, then $\widehat{f} = f$.

2. If
$$F = \mathbb{C}$$
 and $f(z) = \frac{1}{\pi}e^{-2\pi z\overline{z}}$, then $\widehat{f} = f$.

3. If
$$F/\mathbb{Q}_p$$
 and $f = \mathbb{1}_{\pi^n \mathcal{O}_F}$, then

$$\widehat{f} = q^{-n-\frac{\delta}{2}} \mathbb{1}_{\pi^{-n} \mathcal{D}_{F/\mathbb{Q}_n}^{-1}} = q^{-n-\frac{\delta}{2}} \mathbb{1}_{\pi^{-n-\delta} \mathcal{O}_F}.$$

Proof.

1. Changing the contour of f,

$$\widehat{f}(y) = \int_{-\infty}^{\infty} e^{-2\pi i x y - \pi x^2} dx = e^{-\pi y^2} \int_{-\infty}^{\infty} e^{-\pi (x + i y)^2} dx = e^{-\pi y^2} \int_{-\infty}^{\infty} e^{-\pi x^2} dx = e^{-\pi y^2}.$$

2. Exercise. ¹⁰

3. By 9.4,

$$\widehat{f}(y) = \int_{\pi^n \mathcal{O}_F} \psi(xy) \, d_F x = \begin{cases} \operatorname{meas}(\pi^n \mathcal{O}_F) & y \in \pi^{-n} \mathcal{D}_{F/\mathbb{Q}_p}^{-1} \\ 0 & y \notin \pi^{-n} \mathcal{D}_{F/\mathbb{Q}_p}^{-1} \end{cases}$$

which gives the answer.

Fact. If $f \in \mathcal{S}(F)$, then $\widehat{f} \in \mathcal{S}(F)$.

- For F/\mathbb{R} , this is standard analysis, using $\widehat{f^{(n)}}(y) = (2\pi i y)^n \widehat{f}(y)$.
- For F/\mathbb{Q}_p , this is an exercise in sheet 3.

Proposition 9.6 (Inversion formula).

$$\widehat{\widehat{f}}(x) = f(-x).$$

Proof.

- For $F = \mathbb{R}$, this is standard analysis.
- For $F = \mathbb{C}$, notice that if f(z) = f(x+iy) = g(x,y), then $\widehat{f}(w) = \widehat{f}(u+iv) = 2\widehat{g}(2u,-2v)$ since $zw + \overline{zw} = 2(ux vy)$, so $\widehat{\widehat{f}}(z) = f(-z)$ easily.
- For F/\mathbb{Q}_p , if $f = \mathbb{1}_{\mathcal{O}_F}$, then

$$\widehat{\widehat{f}} = q^{-\frac{\delta}{2}} \widehat{\mathbb{1}_{\mathcal{D}_{F/\mathbb{Q}_p}^{-1}}} = q^{-\frac{\delta}{2}} q^{\delta - \frac{\delta}{2}} \mathbb{1}_{\mathcal{O}_F},$$

by 9.5.3 twice. ¹¹

This explains the choice of constants in $d_F x$, a **self-dual** Haar measure, otherwise we would get $\widehat{\widehat{f}}(x) = cf(-x)$.

 $^{^{10} \}mathrm{Exercise}$

 $^{^{11}\}mathrm{Exercise}\colon$ the rest is in example sheet

Lemma 9.7. Let $c \in F^{\times}$, and let g(x) = f(cx). Then

$$\widehat{g}(y) = |c|_F^{-1} \widehat{f}(c^{-1}y).$$

Proof. By $x = c^{-1}t$,

$$\widehat{g}\left(y\right) = \int_{F} \psi\left(xy\right) f\left(cx\right) \, \mathrm{d}_{F} \, x = \int_{F} \psi\left(c^{-1}ty\right) f\left(t\right) \, \mathrm{d}_{F} \left(c^{-1}t\right) = \left|c\right|_{F}^{-1} \int_{F} \psi\left(tc^{-1}y\right) f\left(t\right) \, \mathrm{d}_{F} \, t = \left|c\right|_{F}^{-1} \widehat{f}\left(c^{-1}y\right).$$

9.5 Local ζ -integrals

Definition. Define the **Haar measure** $d_F^{\times} x$ on the multiplicative group F^{\times} by

Lecture 19 Thursday 04/03/21

$$\mathbf{d}_{F}^{\times} x = \begin{cases} \frac{1}{|x|_{F}} \, \mathbf{d}_{F} \, x & F/\mathbb{R} \\ \frac{q^{\frac{\delta}{2}}}{1 - q^{-1}} \frac{1}{|x|_{F}} \, \mathbf{d}_{F} \, x & F/\mathbb{Q}_{p} \end{cases},$$

where q is the residue field order and $\delta = v(\mathcal{D}_{F/\mathbb{Q}_p})$.

Since $d_F(ax) = |a|_F d_F x$, $d_F^{\times}(ax) = d_F^{\times} x$. If F/\mathbb{Q}_p , then

$$\operatorname{meas}\left(\mathcal{O}_{F}^{\times}\right) = \int_{\mathcal{O}_{F}^{\times}} d_{F}^{\times} x = \frac{q^{\frac{\delta}{2}}}{1 - q^{-1}} \int_{\mathcal{O}_{F} \setminus \pi \mathcal{O}_{F}} d_{F} x = \frac{q^{\frac{\delta}{2}}}{1 - q^{-1}} \left(q^{-\frac{\delta}{2}} - q^{-1 - \frac{\delta}{2}}\right) = 1.$$

This is the reason to normalise in this way.

Definition. Let $f \in \mathcal{S}(F)$, and let $s \in \mathbb{C}$. Define local ζ -integrals

$$\zeta\left(f,s\right) = \int_{F^{\times}} f\left(x\right) |x|_{F}^{s} \, \operatorname{d}_{F}^{\times} x = c \lim_{\epsilon \to 0} \int_{\left\{x \in F \, \left| \, |x|_{F} \ge \epsilon \right\} \right.} f\left(x\right) |x|_{F}^{s-1} \, \operatorname{d}_{F} x, \qquad c = \begin{cases} 1 & F/\mathbb{R} \\ \frac{\delta}{2} & F/\mathbb{Q}_{p} \end{cases}.$$

If F/\mathbb{Q}_p , this is just a finite sum. Since f is continuous and tends rapidly to zero as $|x|_F \to \infty$ if F/\mathbb{R} and has compact support if F/\mathbb{Q}_p , the limit exists for Re $s \ge 1$.

Proposition 9.8.

1. If
$$F = \mathbb{R}$$
 and $f(x) = e^{-\pi x^2}$, then $\zeta(f, s) = \Gamma_{\mathbb{R}}(s)$.

2. If
$$F = \mathbb{C}$$
 and $f(z) = \frac{1}{\pi}e^{-2\pi z\overline{z}}$, then $\zeta(f,s) = \Gamma_{\mathbb{C}}(s)$.

3. If
$$F/\mathbb{Q}_p$$
 and $f = \mathbb{1}_{\pi^n \mathcal{O}_F}$, then

$$\zeta\left(f,s\right) = \frac{q^{-ns}}{1 - q^{-s}}.$$

Recall

$$\Gamma\left(s\right) = \int_{0}^{\infty} \frac{e^{-t}t^{s}}{t} \, \mathrm{d}t, \qquad \Gamma_{\mathbb{R}}\left(s\right) = \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right), \qquad \Gamma_{\mathbb{C}}\left(s\right) = 2\left(2\pi\right)^{-s}\Gamma\left(s\right).$$

Proof.

- 1. Follows from the definition of $\Gamma(s)$ after a change of variables.
- 2. Follows from the definition of $\Gamma(s)$ after a change of variables and polar coordinates.

3.

$$\begin{split} \zeta\left(\mathbbm{1}_{\pi^{n}\mathcal{O}_{F}},s\right) &= \int_{\pi^{n}\mathcal{O}_{F}\backslash\{0\}} |x|_{F}^{s} \ \mathrm{d}_{F}^{\times} \, x = \sum_{m=n}^{\infty} \int_{\pi^{m}\mathcal{O}_{F}\backslash\pi^{m+1}\mathcal{O}_{F}} \frac{q^{-ms}}{q^{-m}} \frac{q^{\frac{\delta}{2}}}{1-q^{-1}} \ \mathrm{d}_{F} \, x \\ &= \sum_{m=n}^{\infty} q^{m(1-s)+\frac{\delta}{2}} \frac{1}{1-q^{-1}} \max\left(\pi^{m}\mathcal{O}_{F} \setminus \pi^{m+1}\mathcal{O}_{F}\right) \\ &= \sum_{m=n}^{\infty} q^{m(1-s)+\frac{\delta}{2}} \frac{1}{1-q^{-1}} q^{-\frac{\delta}{2}} \left(\frac{1}{q^{m}} - \frac{1}{q^{m+1}}\right) = \sum_{m=n}^{\infty} q^{-ms} = \frac{q^{-ns}}{1-q^{-s}}. \end{split}$$

Example. $\zeta(\mathbb{1}_{\mathcal{O}_F}, s) = 1/(1 - q^{-s}).$

A variant is to also consider, for a continuous homomorphism $\chi: F^{\times} \to \mathbb{C}^{\times}$,

$$\zeta\left(f,\chi,s\right) = \int_{F^{\times}} f\left(x\right) \chi\left(x\right) \left|x\right|_{F}^{s} \, \operatorname{d}_{F}^{\times} x,$$

defined as a limit in the same way.

9.6 Global Fourier analysis

Let K be a number field with completions K_v , and let $\psi_v : K_v \to U(1)$, $d_v x$, $d_v^{\times} x$, $\mathcal{S}(K_v)$, and δ_v be the objects defined above for $F = K_v$. Let

$$V_{K,r} = \{v \in V_{K,f} \mid v \text{ ramified in } F/\mathbb{Q}_p\} = \{v \in V_{K,f} \mid \delta_v \neq 0\}.$$

Then

$$\mathbb{A}_K = \bigcup_{S} \left(\prod_{v \in S} K_v \times \prod_{v \notin S} \mathcal{O}_v \right),$$

where $S \subset V_K$ is finite containing $V_{K,\infty}$.

Definition. Let $f_v \in \mathcal{S}(K_v)$ for $v \in V_K$ such that for all but finitely many $v \in V_{K,f}$, $f_v = \mathbb{1}_{\mathcal{O}_v}$. Then if $x = (x_v) \in \mathbb{A}_K$, for all but finitely many $v, f_v(x_v) = 1$. So can define

$$f\left(x\right) = \prod_{v \in V_K} f_v\left(x_v\right),\,$$

and write $f = \prod_v f_v$, or better, $f = \bigotimes_v f_v$. The **global Schwartz space** $\mathcal{S}(\mathbb{A}_K)$ is the space of finite linear combinations of f of this type.

Definition. Let $f = \bigotimes_v f_v \in \mathcal{S}(\mathbb{A}_K)$ where $f_v = \mathbb{1}_{\mathcal{O}_v}$ for all $v \notin S$ for a finite set $S \supset V_{K,\infty} \cup V_{K,r}$. Then f = 0 outside $\prod_{v \in S} K_v \times \prod_{v \notin S} \mathcal{O}_v$ and can define the **global integral**

$$\int_{\mathbb{A}_{K}} f(x) d_{\mathbb{A}} x = \prod_{v} \int_{K_{v}} f_{v}(x) d_{v} x = \prod_{v \in S} \int_{K_{v}} f_{v}(x) d_{v} x,$$

since if $v \notin S$,

$$\int_{K_{v}} f_{v}(x) d_{v} x = \int_{\mathcal{O}_{v}} d_{v} x = 1.$$

Definition. Let the global additive character be

$$\psi_{\mathbb{A}} = \prod_{v} \psi_{v} : \mathbb{A}_{K} \longrightarrow \mathrm{U}(1)$$

$$(x_{v}) \longmapsto \prod_{v} \psi_{v}(x_{v}) ,$$

which is a finite product, since for all but finitely many $v \in V_{K,f}$, $x_v \in \mathcal{O}_v$ so $\psi_v(x_v) = \psi_p\left(\operatorname{Tr}_{K_v/\mathbb{Q}_p}(x_v)\right) = 1$.

Lecture 20

Proposition 9.9. $\psi_{\mathbb{A}}$ is continuous, and $\psi_{\mathbb{A}}(x) = 1$ if $x \in K$.

Proof. Take a finite $S \supset V_{K,\infty}$. The restriction of $\psi_{\mathbb{A}}$ to $\prod_{v \in S} K_v \times \prod_{v \notin S} \mathcal{O}_v$ factors through $\prod_{v \in S} \psi_v : \prod_{v \in S} K_v \to U(1)$, which is continuous. Now $\psi_{\mathbb{A}}(x) = \psi_{\mathbb{A}_{\mathbb{Q}}}\left(\operatorname{Tr}_{K/\mathbb{Q}}(x)\right)$, as $\operatorname{Tr}_{K/\mathbb{Q}}(x) = \sum_{v|p} \operatorname{Tr}_{K_v/\mathbb{Q}_p}(x)$ for all $p \leq \infty$, so it is enough to consider $K = \mathbb{Q}$. Write $x \in \mathbb{Q}$ as partial fractions $x = \sum_i y_i/p_i^{k_i}$ for $y_i \in \mathbb{Z}$ and $k_i \geq 0$. Then $\psi_{p_i}(x) = e^{2\pi i y_i/p_i^{k_i}}$ as for $j \neq i$, $y_j/p_j^{k_j} \in \mathbb{Z}_{p_i}$, and $\psi_p(x) = 1$ if $p \notin \{p_i\}$. Thus $\prod_{p \leq \infty} \psi_p(x) = e^{2\pi i x} = \psi_{\infty}(x)^{-1}$.

Definition. Define the global Fourier transform of $f \in \mathcal{S}(\mathbb{A}_K)$ as

$$\widehat{f}\left(y\right) = \int_{\mathbb{A}_{K}} \psi_{\mathbb{A}}\left(xy\right) f\left(x\right) \, d_{\mathbb{A}} \, x = \prod_{v} \widehat{f}_{v}\left(y_{v}\right), \qquad f = \bigotimes_{v} f_{v}.$$

Note that for all but finitely many $v, f_v = \mathbb{1}_{\mathcal{O}_v} = \widehat{f}_v$.

9.7 Global ζ -integral

Definition. Let $f = \bigotimes_v f_v \in \mathcal{S}(\mathbb{A}_K)$. Define the global ζ -integral

$$\zeta\left(f,s\right) = \int_{\mathbb{J}_{K}} f\left(x\right) \left|x\right|_{\mathbb{A}}^{s} d_{\mathbb{J}} x = \prod_{v \in V_{K}} \int_{K_{v}^{\times}} f_{v}\left(x\right) \left|x\right|_{v}^{s} d_{v}^{\times} x = \prod_{v \in V_{K}} \zeta\left(f_{v},s\right),$$

which really is a genuine infinite product.

If $a \in \mathbb{J}_K$, then there is an isomorphism

so if $f \in \mathcal{S}(\mathbb{A}_K)$ then $f \circ a \in \mathcal{S}(\mathbb{A}_K)$. Then $d_{\mathbb{A}}(ax) = |a|_{\mathbb{A}} d_{\mathbb{A}} x$, since holds locally, and $d_{\mathbb{I}}(ax) = d_{\mathbb{I}} x$.

Proposition 9.10. The product $\zeta(f,s)$ converges absolutely for Re s>1.

Proof. Assume $f = \bigotimes_v f_v$ such that $f_v = \mathbbm{1}_{\mathcal{O}_v}$ for all $v \notin S$. Then $\zeta(f_v, s) = 1/(1 - q_v^{-s})$ for $v \notin S$, which gives convergence by 9.2, the product for $\zeta_K(s)$.

Theorem 9.11 (Functional equation for $\zeta(f,s)$). $\zeta(f,s)$ has a meromorphic continuation to \mathbb{C} , with at worst simple poles at s=0,1. Moreover,

$$\zeta(f,s) = \zeta(\widehat{f}, 1-s),$$

with

$$\operatorname{Res}_{s} \zeta \left(f,s \right) = \begin{cases} \widehat{f} \left(0 \right) \kappa & s = 1 \\ -f \left(0 \right) \kappa & s = 0 \end{cases}, \qquad \kappa = \operatorname{meas} \left(\mathcal{C}_{K}^{1} \right) > 0.$$

Let $n = [K : \mathbb{Q}]$. Then

$$\mathbf{i} : \mathbb{R}_{>0} \longrightarrow K_{\infty}^{\times} = \prod_{v \mid \infty} K_{v}^{\times} \hookrightarrow \mathbb{J}_{K}$$

$$t \longmapsto \left(t^{\frac{1}{n}}\right)_{v}$$

so $|i(t)|_{\mathbb{A}} = t$. So there is an isomorphism

$$\begin{array}{cccc} \mathbb{R}_{>0} \times \mathbb{J}_K^1 & \longrightarrow & \mathbb{J}_K \\ (t,x) & \longmapsto & \mathrm{i}\,(t)\,x \end{array}.$$

Write t in place of i(t). Use this to define a measure $d_{\mathbb{I}^1} x$ on \mathbb{I}^1_K such that

$$\int_{\mathbb{J}_K} f(x) \, d_{\mathbb{J}} x = \int_0^\infty \left(\int_{\mathbb{J}_{-\epsilon}^1} f(tx) \, d_{\mathbb{J}^1} x \right) \frac{1}{t} \, dt. \tag{9}$$

The most concrete way to do this is to pick $\phi: \mathbb{R}_{>0} \to \mathbb{R}$, C^{∞} of compact support such that

$$\int_0^\infty \frac{\phi(t)}{t} \, \mathrm{d}t = 1.$$

Given f on \mathbb{J}_K^1 , let

$$\widetilde{f_{\phi}} : \mathbb{J}_{K} \longrightarrow \mathbb{C} \\
tx \longmapsto \phi(t) f(x) ,$$

and define

$$\int_{\mathbb{J}_{K}^{1}}f\left(x\right) \,\mathrm{d}_{\mathbb{J}^{1}}\,x=\int_{\mathbb{J}_{K}}\widetilde{f_{\phi}}\left(y\right) \,\mathrm{d}_{\mathbb{J}}\,y.$$

Lemma 9.12.

- 1. This is independent of ϕ .
- 2. The identity (9) holds.

 $\textit{Proof.} \ \text{If} \ y \in \mathbb{J}_K \ \text{such that} \ y = tx \ \text{for} \ t > 0 \ \text{and} \ x \in \mathbb{J}^1_K, \ \text{then} \ x = y/|y|_{\mathbb{A}} \ \text{and} \ t = |y|_{\mathbb{A}}.$

 $1. \ \text{So} \ \widetilde{f_{\phi}} \left(y \right) = \phi \left(\left| y \right|_{\mathbb{A}} \right) f \left(y / \left| y \right|_{\mathbb{A}} \right). \ \text{Putting} \ s' = \left| y \right|_{\mathbb{A}} \ \text{and} \ y' = sy/s', \ \text{so} \left| y' \right|_{\mathbb{A}} = s,$

$$\begin{split} \int_{\mathbb{J}_{K}^{1}} f\left(x\right) \, \mathrm{d}\mathbb{J}^{1} \, x &= \int_{0}^{\infty} \, \frac{\psi\left(s\right)}{s} \, \mathrm{d}s \int_{\mathbb{J}_{K}} \widetilde{f_{\phi}}\left(y\right) \, \mathrm{d}\mathbb{J} \, y \\ &= \int_{0}^{\infty} \, \left(\int_{\mathbb{J}_{K}} \psi\left(s\right) \phi\left(\left|y\right|_{\mathbb{A}}\right) f\left(\frac{y}{\left|y\right|_{\mathbb{A}}}\right) \, \mathrm{d}\mathbb{J} \, y \right) \frac{1}{s} \, \, \mathrm{d}s \\ &= \int_{0}^{\infty} \, \left(\int_{\mathbb{J}_{K}} \psi\left(\left|y'\right|_{\mathbb{A}}\right) \phi\left(s'\right) f\left(\frac{y'}{\left|y'\right|_{\mathbb{A}}}\right) \, \mathrm{d}\mathbb{J} \, y' \right) \frac{1}{s'} \, \, \mathrm{d}s' \\ &= \int_{0}^{\infty} \, \frac{\phi\left(s'\right)}{s'} \, \, \mathrm{d}s' \int_{\mathbb{J}_{K}} \widetilde{f_{\psi}}\left(y\right) \, \mathrm{d}\mathbb{J} \, y = \int_{\mathbb{J}_{K}^{1}} f\left(x\right) \, \mathrm{d}\mathbb{J}^{1} \, x. \end{split}$$

We need to check the homomorphism

$$\begin{array}{cccc} \lambda & : & \mathbb{R}_{>0} \times \mathbb{J}_K & \longrightarrow & \mathbb{R}_{>0} \times \mathbb{J}_K \\ & & (s,y) & \longmapsto & (s',y') \end{array}$$

is measure-preserving. Since $|t|_{\mathbb{A}} = t$, $\lambda^2 : (s, y) \mapsto (s, y)$, that is $\lambda^2 = \mathrm{id}$. The Haar measure is unique up to a constant, so

$$\lambda : d_{\mathbb{T}} y \times \frac{1}{\varsigma} ds \mapsto c d_{\mathbb{T}} y \times \frac{1}{\varsigma} ds, \qquad c > 0,$$

so since $c^2 = 1$, c = 1. If you like, it is easy to reduce to the computation just on K_{∞}^{\times} .

2. If $g_t(x) = f(tx)$, then $\widetilde{g}_t(y) = \phi(|y|_{\mathbb{A}}) f(ty/|y|_{\mathbb{A}})$, so putting $s = |y|_{\mathbb{A}}$ and x = ty/s,

$$\int_{0}^{\infty} \left(\int_{\mathbb{J}_{K}^{1}} f(tx) \, d\mathbb{J} \, x \right) \frac{1}{t} \, dt = \int_{0}^{\infty} \left(\int_{\mathbb{J}_{K}} \phi \left(|y|_{\mathbb{A}} \right) f\left(\frac{ty}{|y|_{\mathbb{A}}} \right) \, d\mathbb{J} \, y \right) \frac{1}{s} \, ds$$

$$= \int_{0}^{\infty} \frac{\phi(s)}{s} \, ds \int_{\mathbb{J}_{K}} f(x) \, d\mathbb{J} \, x = \int_{\mathbb{J}_{K}} f(x) \, d\mathbb{J} \, x.$$

So

$$\zeta\left(f,s\right) = \int_{0}^{\infty} \frac{\zeta_{t}\left(f,s\right)}{t} \, \mathrm{d}t, \qquad \zeta_{t}\left(f,s\right) = t^{s} \int_{\mathbb{J}_{t}^{1}} f\left(tx\right) \, \mathrm{d}\mathbb{J}^{1} \, x.$$

Recall that \mathcal{C}_K^1 is compact. Will show next time that there exists $E \subset \mathbb{J}_K^1$, the **fundamental domain**, with meas $(E) < \infty$ and \overline{E} compact such that

$$\mathbb{J}_K^1 = \bigsqcup_{a \in K^\times} aE.$$

Let $\kappa = \text{meas}(E)$.

Proposition 9.13 (Functional equation for $\zeta_t(f,s)$).

$$\zeta_t(f,s) + \kappa f(0) t^s = \zeta_{t-1} (\widehat{f}, 1-s) + \kappa \widehat{f}(0) t^{s-1}.$$

This is an analogue of the functional equation of $\Theta(t) = \sum_{n \in \mathbb{Z}} e^{-\pi n^2 t}$. The proof uses the following.

Theorem 9.14 (Poisson summation formula). Let $f \in \mathcal{S}(\mathbb{A}_K)$. Then

$$\sum_{a \in K} f(a) = \sum_{a \in K} \widehat{f}(a),$$

and both sums are absolutely convergent.

Corollary 9.15. Let $x \in \mathbb{J}_K$. Then

$$\sum_{a \in K} f(xa) = |x|_{\mathbb{A}}^{-1} \sum_{a \in K} \widehat{f}(x^{-1}a).$$

Proof. Apply 9.14 to $f \circ x$ and use 9.7.

Proof of 9.13. Write the integral over \mathbb{J}_K^1 as an integral over E of a sum over K^{\times} . By 9.15,

$$\begin{split} \zeta_{t}\left(f,s\right) + \kappa f\left(0\right)t^{s} &= t^{s} \int_{E} \sum_{a \in K^{\times}} f\left(atx\right) \, \mathrm{d}_{\mathbb{I}^{1}} \, x + \kappa f\left(0\right)t^{s} = t^{s} \int_{E} \sum_{a \in K} f\left(atx\right) \, \mathrm{d}_{\mathbb{I}^{1}} \, x \\ &= t^{s} \int_{E} \sum_{a \in K} |tx|_{\mathbb{A}}^{-1} \, \widehat{f}\left(t^{-1}x^{-1}a\right) \, \mathrm{d}_{\mathbb{I}^{1}} \, x = t^{s-1} \int_{E} \sum_{a \in K^{\times}} \widehat{f}\left(t^{-1}x^{-1}a\right) \, \mathrm{d}_{\mathbb{I}^{1}} \, x + \kappa \widehat{f}\left(0\right)t^{s-1} \\ &= t^{s-1} \int_{\mathbb{I}_{K}^{1}} \widehat{f}\left(t^{-1}x^{-1}\right) \, \mathrm{d}_{\mathbb{I}^{1}} \, x + \kappa \widehat{f}\left(0\right)t^{s-1} = \zeta_{t^{-1}}\left(\widehat{f}, 1 - s\right) + \kappa \widehat{f}\left(0\right)t^{s-1}, \end{split}$$

since $|x|_{\mathbb{A}} = 1$ on E.

Proof of 9.11. Now, if $\operatorname{Re} s > 1$,

$$\zeta(f,s) = \int_0^\infty \frac{\zeta_t(f,s)}{t} dt = \int_1^\infty \frac{\zeta_t(f,s)}{t} dt + \int_0^1 \frac{\zeta_t(f,s)}{t} dt = \int_1^\infty \frac{\zeta_t(f,s) + \zeta_{t-1}(f,s)}{t} dt$$

$$= \int_1^\infty \frac{\zeta_t(f,s) + \zeta_t(\widehat{f}, 1-s) - \kappa f(0) t^{-s} + \kappa \widehat{f}(0) t^{1-s}}{t} dt$$

$$= \int_1^\infty \frac{\zeta_t(f,s) + \zeta_t(\widehat{f}, 1-s)}{t} dt + \kappa \left(\frac{\widehat{f}(0)}{s-1} - \frac{f(0)}{s}\right).$$

Say $f \in \mathcal{S}(\mathbb{A}_K)$ such that $f = f_{\infty}f^{\infty}$ for $f_{\infty} = \bigotimes_{v|\infty} f_v \in \mathcal{S}(K_{\infty})$ and $f^{\infty} = \bigotimes_{v\nmid\infty} f_v \in \mathcal{S}(\widehat{K})$, which has compact support. So if $x \in \mathbb{J}_K^1$ and $f^{\infty}(x) \neq 0$, then there exists a finite $S \subset V_{K,f}$ such that if $v \in V_{K,f} \setminus S$ then $f_v = \mathbbm{1}_{\mathcal{O}_v}$ so $|x_v|_v \leq 1$, and if $v \in S$ then $|x_v|_v \leq c_v$. As $\prod_v |x_v|_v = |x|_{\mathbb{A}} = 1$, $\prod_{v|\infty} |x_v|_v \geq c = \prod_{v\nmid\infty} c_v > 0$, and

$$\int_{\mathbb{J}_{K}^{1}} f\left(tx\right) \, \mathrm{d}\mathbb{J}_{1} \, x \leq c \int_{\prod_{v \mid \infty} \left|x_{v}\right|_{v} \geq c'} f_{\infty}\left(tx\right) \mathrm{d}^{\times} x = c \int_{\prod_{v \mid \infty} \left|x_{v}\right|_{v} \geq tc'} f_{\infty}\left(x\right) \mathrm{d}^{\times} x \to 0$$

rapidly as $t \to \infty$, so $\zeta_t(f, s)$ is rapidly decreasing, as $t \to \infty$. That implies that

$$\int_{1}^{\infty} \frac{\zeta_{t}\left(f,s\right)}{t} dt = \lim_{T \to \infty} \int_{1}^{T} \frac{\zeta_{t}\left(f,s\right)}{t} dt,$$

with uniform limit for $\sigma_1 \leq \operatorname{Re} s \leq \sigma_2$, is an analytic function for all $s \in \mathbb{C}$, which gives a meromorphic continuation of $\zeta(f,s)$ with poles at s=0,1, and $\zeta(f,s)=\zeta(\widehat{f},1-s)$.

Morally, $\zeta_t(f,s)$ is Θ deprived of the constant term.

Lecture 21

Tuesday 09/03/21

9.8 Proof of Poisson summation formula

Start off with the classical Poisson formula.

• If $f \in \mathcal{S}(\mathbb{R})$, then

$$\sum_{m \in \mathbb{Z}} f(m) = \sum_{n \in \mathbb{Z}} \widehat{f}(n),$$

since $g(x) = \sum_{m \in \mathbb{Z}} f(x+m) : \mathbb{R}/\mathbb{Z} \to \mathbb{C}$ has Fourier expansion $g(x) = \sum_{n \in \mathbb{Z}} c_n e^{2\pi i nx}$ with

$$c_{n} = \int_{0}^{1} e^{-2\pi i n x} g\left(x\right) dx = \int_{0}^{1} \sum_{m \in \mathbb{Z}} e^{-2\pi i n x} f\left(x+m\right) dx = \int_{-\infty}^{\infty} e^{-2\pi i n x} f\left(x\right) dx = \widehat{f}\left(n\right),$$

so

$$\sum_{m} f(m) = g(0) = \sum_{n} c_n = \sum_{n} \widehat{f}(n).$$

Similarly for $f \in \mathcal{S}(\mathbb{R}^k)$,

$$\sum_{m \in \mathbb{Z}^k} f(m) = \sum_{n \in \mathbb{Z}^k} \widehat{f}(n),$$

by the same proof.

One method is abstract Fourier analysis.

• Let G be a locally compact abelian group, and let H be a countable discrete subgroup such that G/H is compact. If f is a nice function on G, then

$$\begin{split} \widehat{f} &: \quad \widehat{G} = \operatorname{Hom}_{\operatorname{cts}} \left(G, \operatorname{U} \left(1 \right) \right) & \longrightarrow \quad \mathbb{C} \\ \chi &\longmapsto \quad \int_{G} \chi \left(x \right) f \left(x \right) \, \mathrm{d}x \end{split}$$

Then $\widehat{G/H}$ is discrete, and

$$\sum_{h \in H} f(h) = \sum_{\chi \in \widehat{G/H}} \widehat{f}(\chi) \operatorname{meas} (G/H)^{-1},$$

with proof the same as for (\mathbb{R}, \mathbb{Z}) . Apply with $G = \mathbb{A}_K$ and H = K, where $G \cong \widehat{G}$, via $\psi_{\mathbb{A}}$, and $\widehat{G/H} \cong H$.

The following is a more basic proof.

Proof of 9.14.

• Let V be a real vector space with dim $V < \infty$ and dx an invariant measure, let $\Lambda \subset V$ be a lattice with $\mu = \text{meas}(V/\Lambda) < \infty$, and let

$$V' = \operatorname{Hom}(V, \mathbb{R}) \supset \Lambda' = \operatorname{Hom}(\Lambda, \mathbb{Z}) = \{ y \in V' \mid \forall x \in \Lambda, \langle x, y \rangle \in \mathbb{Z} \}.$$

If $f \in \mathcal{S}(V)$, then $\widehat{f} \in \mathcal{S}(V')$ and

$$\widehat{f}(y) = \int_{V} e^{-2\pi i \langle x, y \rangle} dx.$$

Then

$$\sum_{x \in \Lambda} f(x) = \mu^{-1} \sum_{y \in \Lambda'} \widehat{f}(y),$$

since scaling dx, may assume $\mu = 1$, then fix $\mathbb{Z}^k \xrightarrow{\sim} \Lambda$, so $\mathbb{R}^k \cong V \cong V'$ and this reduces to the previous Poisson summation for $(\mathbb{R}^k, \mathbb{Z}^k)$.

• A special case is a fractional ideal $\mathfrak{a} \subset K$. Suppose $f \in \mathcal{S}(\mathbb{A}_K)$ such that $f = f_{\infty} \otimes f_{\mathfrak{a}}$ for $f_{\infty} \in \mathcal{S}(K_{\infty})$ and $f_{\mathfrak{a}} : \widehat{K} \to \mathbb{C}$ the characteristic function of $\widehat{\mathfrak{aO}_K} = \prod_{v \nmid \infty} \mathfrak{aO}_v \subset \prod_{v \nmid \infty} K_v$. Then

$$\widehat{f} = \widehat{f_{\infty}} \otimes |\mathrm{d}_K|^{-\frac{1}{2}} \mathrm{N} \left(\mathfrak{a} \right)^{-1} f_{\mathfrak{b}}, \qquad \mathfrak{b} = \mathcal{D}_{K/\mathbb{Q}}^{-1} \mathfrak{a}^{-1},$$

by the local computation of $\widehat{\mathbb{1}_{\pi^n\mathcal{O}_F}}$. Now $\sigma:\mathfrak{a}\hookrightarrow K_\infty$. On K_∞ we have the trace form $\mathrm{Tr}_{K_\infty/\mathbb{R}}(xy)$ identifying K_∞ with its dual, and by definition of $\mathcal{D}_{K/\mathbb{Q}}$, the dual of \mathfrak{a} is \mathfrak{b} . Moreover, the covolume of $\sigma(\mathfrak{a})$ is $|\mathrm{d}_K|^{1/2} N(\mathfrak{a})$. So

$$\sum_{x \in K} f\left(x\right) = \sum_{x \in \mathfrak{a}} f_{\infty}\left(x\right) = \left| \mathrm{d}_{K} \right|^{-\frac{1}{2}} \mathrm{N}\left(\mathfrak{a}\right)^{-1} \sum_{y \in \mathfrak{b}} \widehat{f_{\infty}}\left(y\right) = \sum_{y \in \mathfrak{b}} \widehat{f}\left(y\right),$$

by the Poisson summation for lattices.

• For the general case, every element of $\mathcal{S}(\mathbb{A}_K)$ is a sum of functions g(x) = f(x+a) where $f = f_{\infty} \otimes f_{\mathfrak{a}}$ as above and $a \in \widehat{K}$. By strong approximation, may assume $a \in K$. Then

$$\widehat{g}\left(y\right)=\int_{\mathbb{A}_{K}}\psi_{\mathbb{A}}\left(xy\right)f\left(x+a\right)\,\mathrm{d}_{\mathbb{A}}\,x=\psi_{\mathbb{A}}\left(ay\right)^{-1}\widehat{f}\left(y\right),$$

and by the previous,

$$\sum_{x \in K} g\left(x\right) = \sum_{x \in K} f\left(x\right) = \sum_{y \in K} \widehat{f}\left(y\right) = \sum_{y \in K} \psi_{\mathbb{A}}\left(ay\right) \widehat{g}\left(y\right) = \sum_{y \in K} \widehat{g}\left(y\right),$$

as $\psi_{\mathbb{A}}|_{K} = 1$.

9.9 Proof of functional equation and analytic class number formula

Now use the functional equation of $\zeta(f,s)$ to deduce the same for $\zeta_K(s)$.

Proof of 9.3.1. Choose

$$f_v = \begin{cases} e^{-\pi x^2} & v \text{ real} \\ \frac{1}{\pi} e^{-2\pi z \overline{z}} & v \text{ complex} , \\ \mathbb{1}_{\mathcal{O}_v} & v \text{ finite} \end{cases} \qquad \widehat{f_v} = \begin{cases} e^{-\pi x^2} & v \text{ real} \\ \frac{1}{\pi} e^{-2\pi z \overline{z}} & v \text{ complex} \\ \frac{-\delta_v}{q_v} \mathbb{1}_{\mathcal{D}_{K_v/\mathbb{Q}_p}^{-1}} & v \text{ finite} \end{cases},$$

by 9.5. By 9.8,

$$\zeta\left(f,s\right) = \Gamma_{\mathbb{R}}\left(s\right)^{\mathbf{r}_{1}}\Gamma_{\mathbb{C}}\left(s\right)^{\mathbf{r}_{2}}\prod_{v\nmid\infty}\frac{1}{1-\mathbf{q}_{v}^{-s}}.$$

If $v \mid \infty$, then $\zeta(\widehat{f}_v, 1-s) = \zeta(f_v, 1-s)$. If v is finite,

$$\zeta\left(\widehat{f}_{v}, 1-s\right) = q_{v}^{-\frac{\delta_{v}}{2}} \frac{q_{v}^{\delta_{v}(1-s)}}{1-q_{v}^{-(1-s)}} = q_{v}^{\delta_{v}\left(\frac{1}{2}-s\right)} \zeta\left(f_{v}, 1-s\right).$$

Thus

$$Z_{K}(s) = |d_{K}|^{\frac{s}{2}} \zeta(f, s) = |d_{K}|^{\frac{s}{2}} \zeta(\widehat{f}, 1 - s) = |d_{K}|^{\frac{s}{2} + (\frac{1}{2} - s)} \zeta(f, 1 - s) = Z_{K}(1 - s),$$

giving all of 9.3.1.

Lecture 22 Thursday

11/03/21

For part 2, have to compute $\kappa = \text{meas}(\mathcal{C}_K^1)$.

Theorem 9.16.

$$\kappa = \frac{2^{\mathbf{r}_1} \left(2\pi\right)^{\mathbf{r}_2} \mathbf{h}_K \mathbf{R}_K}{\mathbf{w}_K}.$$

Proof. Replacing \mathbb{J}_K^1 by $\mathbb{J}_K = \mathbb{J}_K^1 \times i(\mathbb{R}_{>0})$, by 9.12.2,

$$\begin{aligned} \operatorname{meas}\left(\mathcal{C}_{K}^{1}\right) &= \operatorname{meas}\left(\mathcal{C}_{K}^{1} \times \mathbb{R}_{>0} / \langle e \rangle\right) & \int_{1}^{e} \frac{1}{t} \, \mathrm{d}t = 1 \\ &= \operatorname{meas}\left(\mathcal{C}_{K} / \langle \mathrm{i}\left(e\right) \rangle\right) & \mathrm{d}_{\mathbb{F}}x = \mathrm{d}_{\mathbb{F}^{1}}\,y \times \frac{1}{t} \, \mathrm{d}t \\ &= \operatorname{h}_{K} \operatorname{meas}\left(\mathbb{J}_{K,\emptyset} / \mathcal{O}_{K}^{\times} \langle \mathrm{i}\left(e\right) \rangle\right) & 1 \to \mathbb{J}_{K,\emptyset} / \mathcal{O}_{K}^{\times} \to \mathcal{C}_{K} \to \operatorname{Cl}\left(K\right) \to 1 \\ &= \frac{\operatorname{h}_{K}}{\operatorname{w}_{K}} \operatorname{meas}\left(\mathbb{J}_{K,\emptyset} / \langle \epsilon_{1}, \dots, \epsilon_{r}, \mathrm{i}\left(e\right) \rangle\right) & \mathcal{O}_{K}^{\times} = \mu\left(K\right) \times \langle \epsilon_{1}, \dots, \epsilon_{r} \rangle \\ &= \frac{\operatorname{h}_{K}}{\operatorname{w}_{K}} \operatorname{meas}\left(K_{\infty}^{\times} / \langle \epsilon_{1}, \dots, \epsilon_{r}, \mathrm{i}\left(e\right) \rangle\right) & \operatorname{meas}\left(\widehat{\mathcal{O}_{K}}^{\times}\right) = \prod_{v \nmid \infty} \operatorname{meas}\left(\mathcal{O}_{v}^{\times}\right) = 1. \end{aligned}$$

Let $K_{\infty} = \prod_{v \mid \infty} K_v^{\times}$.

• If v is real, there is an isomorphism

$$\begin{array}{cccc} K_v^\times = \mathbb{R}^\times & \longrightarrow & \{\pm 1\} \times \mathbb{R} \\ & x & \longmapsto & (\operatorname{sign} x, \log |x|_v) \ , \\ & \operatorname{d}_v^\times x & \longmapsto & \mu \times \mathrm{d} y \end{array}$$

where μ is the counting measure.

• If v is complex, there is an isomorphism

$$\begin{split} K_v^\times &\cong \mathbb{C}^\times &\longrightarrow & \mathrm{U}\left(1\right) \times \mathbb{R} \\ z &= r e^{i\theta} &\longmapsto & \left(e^{i\theta}, 2\log r\right) \\ \mathrm{d}_v^\times z &= \frac{1}{|z|_v} \mathrm{d}_{\mathbb{C}} z = \frac{1}{r^2} 2r \mathrm{d} r \mathrm{d} \theta &\longmapsto & \mathrm{d} \theta \times \mathrm{d} r \end{split}$$

Then

$$1 \longrightarrow \{\pm 1\}^{r_1} \times \mathrm{U}(1)^{r_2} \longrightarrow K_{\infty}^{\times} \xrightarrow{\lambda = \left(\log \cdot |_{v}\right)_{v}} \mathcal{L}_{K} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 \longrightarrow \{\pm 1\}^{r_1} \times \mathrm{U}(1)^{r_2} \longrightarrow K_{\infty}^{\times} / \langle \epsilon_{1}, \dots, \epsilon_{r}, \mathrm{i}(e) \rangle \xrightarrow{\lambda} \mathcal{L}_{K} / \Lambda \longrightarrow 0$$

where $\Lambda = \langle \lambda\left(\epsilon_{1}\right), \dots, \lambda\left(\epsilon_{r}\right), \lambda\left(\mathrm{i}\left(e\right)\right) \rangle \subset \mathcal{L}_{K}$ is a lattice, by the unit theorem, and

$$\lambda\left(\mathrm{i}\left(e\right)\right) = \left(\log\left|e^{\frac{1}{n}}\right|_{v}\right)_{v} = \left(\frac{\mathrm{e}_{v}}{n}\right)_{v}, \qquad \mathrm{e}_{v} = \begin{cases} 1 & v \text{ real} \\ 2 & v \text{ complex} \end{cases}.$$

Then

meas
$$(\{\pm 1\}^{r_1} \times U(1)^{r_2}) = 2^{r_1} (2\pi)^{r_2}$$
,

and meas (\mathcal{L}_K/Λ) is the absolute value of the determinant of the $(r+1)\times(r+1)$ matrix with rows

$$\left(\frac{\mathbf{e}_v}{n}, \log|\epsilon_1|_v, \dots, \log|\epsilon_r|_v\right), \quad v \in \mathbf{V}_{K,\infty}.$$

The sum of the rows is $(1,0,\ldots,0)$, as $|\epsilon_j|_{\mathbb{A}}=1$. So the determinant, up to ± 1 , is any $(r\times r)$ -minor of the matrix $\left(\log|\epsilon_j|_v\right)_{i,v}$, so

meas
$$(\mathcal{L}_K/\Lambda) = R_K$$
.

Proof of 9.3.2. Since $f_{\mathbb{C}}(z) = \frac{1}{\pi}e^{-2\pi z\overline{z}}$,

$$-\pi^{-r_2}\kappa = -f(0)\kappa = \operatorname{Res}_{s=0}\zeta(f,s) = \operatorname{Res}_{s=0}Z_K(s) = \lim_{s \to 0}s\left(\frac{2}{s}\right)^{r_1+r_2}\zeta_K(s),$$

as $\Gamma_{\mathbb{R}}(s) \sim 2/s \sim \Gamma_{\mathbb{C}}(s)$ since $\Gamma(s) \sim 1/s$ at s = 0, so

$$\lim_{s \to 0} s^{-r} \zeta_K(s) = -2^{-r_1} (2\pi)^{-r_2} \kappa = -\frac{h_K R_K}{w_K}, \qquad r = r_1 + r_2 - 1,$$

by 9.16. \Box

Remark. A criticism is that this method only tells us about $\zeta_K(s)$, as for almost all v, $f_v = \mathbb{1}_{\mathcal{O}_v}$ and $\zeta(f_v, s) = 1/(1 - q_v^{-s})$. Next is to generalise to L-functions.

9.10 Description of $E \subset \mathbb{J}^1_K$

After the proof, exhibit an explicit $E \subset \mathbb{J}^1_K$ such that

$$\mathbb{J}_{K}^{1} = \bigsqcup_{a \in K^{\times}} aE.$$

Let $y_1, \ldots, y_h \in \mathbb{J}_K^1$, where $h = h_K = \# \operatorname{Cl}(K)$, be coset representatives for $\mathbb{J}_{K,\emptyset}^1/\mathcal{O}_K^{\times} \subset \mathcal{C}_K^1$. We will find $E_0 \subset \mathbb{J}_{K,\emptyset}^1$ such that

$$\mathbb{J}^1_{K,\emptyset} = \bigsqcup_{a \in \mathcal{O}_K^{\times}} aE_0.$$

Then

$$E = \bigsqcup_{i=1}^{h} y_i E_0$$

will do. Let

$$\mathcal{P} = \left\{ \sum_{j=1}^{r} t_j \lambda\left(\epsilon_j\right) \middle| t_j \in [0, 1) \right\} \subset \mathcal{L}_K^0$$

be a set of coset representatives for $\langle \lambda(\epsilon_1), \dots, \lambda(\epsilon_r) \rangle \subset \mathcal{L}_K^0$, so

$$E_1 = \lambda^{-1} (\mathcal{P}) \times \widehat{\mathcal{O}_K}^{\times}$$

is a set of coset representatives for $\langle \epsilon_1, \dots, \epsilon_r \rangle$ in $K_{\infty}^{\times, 1} \times \widehat{\mathcal{O}_K}^{\times} = \mathbb{J}_{K, \emptyset}^1$. Let $v_0 \in V_{K, \infty}$, assumed complex if $w_K > 2$. Then

$$E_0 = \left\{ x \in E_1 \mid \arg x_{v_0} \in \left[0, \frac{2\pi}{\mathbf{w}_K} \right) \right\},\,$$

and clear that this works. If v_0 is real and $w_K = 2$, this says $x_{v_0} > 0$.

10 L-functions

Example. A Dirichlet character is a homomorphism $\phi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$. The Dirichlet L-series is

$$L(\phi, s) = \sum_{n \ge 1, (n, N) = 1} \frac{\phi(n)}{n^s} = \prod_{p \nmid N} \frac{1}{1 - \phi(p) p^{-s}},$$

which occurs in the theorem on primes in arithmetic progressions. Then get a continuous

$$\chi: \mathcal{C}_{\mathbb{Q}} \cong \mathbb{R}_{>0} \times \widehat{\mathbb{Z}}^{\times} \to \widehat{\mathbb{Z}}^{\times} \to \prod_{p|N} \left(\mathbb{Z}_p / N \mathbb{Z}_p \right)^{\times} \cong \left(\mathbb{Z} / N \mathbb{Z} \right)^{\times} \xrightarrow{\phi} \mathbb{C}^{\times},$$

Exercise.

$$\left\{ \begin{array}{c} \text{continuous } \chi: \mathcal{C}_{\mathbb{Q}} \to \mathbb{C}^{\times} \\ \text{of finite order} \end{array} \right\} \qquad \Longleftrightarrow \qquad \left\{ \begin{array}{c} \text{Dirichlet characters } \phi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times} \\ \text{which are primitive} \end{array} \right\},$$

where ϕ is **primitive** if it does not factor

$$(\mathbb{Z}/N\mathbb{Z})^{\times} \xrightarrow{\mod M} (\mathbb{Z}/M\mathbb{Z})^{\times} \to \mathbb{C}^{\times}, \qquad M \mid N, \qquad M < N.$$

10.1 Hecke characters

Definition. An idele class character, or **Hecke character**, of K is a continuous homomorphism χ : $\mathcal{C}_K \to \mathbb{C}^{\times}$.

Note that do not require $|\chi| = 1$. In Tate, these are called **quasi-characters**.

Example. A simple but important example is

$$\chi(x) = |x|_{\mathbb{A}}^{s}, \quad s \in \mathbb{C},$$

as $|K^{\times}|_{\mathbb{A}} = 1$. For $K = \mathbb{Q}$, every Hecke character is $|\cdot|_{\mathbb{A}}^{s}$ times a finite order χ . But for $K \neq \mathbb{Q}$, there exist lots of other interesting ones.

Proposition 10.1. Let G be a profinite group. Then any continuous homomorphism $\chi: G \to \mathbb{C}^{\times}$ has open kernel, so finite image, that is it is continuous for the discrete topology on \mathbb{C}^{\times} .

Proof. $\chi(G)$ is compact so $\chi(G) \subset U(1)$. Let

$$V = \left\{ e^{i\theta} \in \mathrm{U}\left(1\right) \;\middle|\; -\frac{\pi}{2} < \theta < \frac{\pi}{2} \right\} = \mathrm{U}\left(1\right) \cap \left\{ \mathrm{Re}\,z > 0 \right\}.$$

Then $\chi^{-1}(V) \subset G$ is an open neighbourhood of the identity, so contains an open subgroup $H \subset G$. Then $\chi(H) \subset V \subset \mathrm{U}(1)$ is a subgroup. But this implies $\chi(H) = 1$, since if $1 \neq z \in \mathrm{U}(1)$, some integer power z^n has $\mathrm{Re}\,z^n \leq 0$.

Corollary 10.2.

Saturday 13/03/21

Lecture 23

- 1. Let F/\mathbb{Q}_p , and let $\chi: F^{\times} \to \mathbb{C}^{\times}$ be continuous. Then there exists $n \geq 0$ such that $\chi(x) = 1$ for all $x \in (1 + \pi^n \mathcal{O}_F) \cap \mathcal{O}_F^{\times}$. The least such n is the **conductor** of χ .
- 2. Let $\chi: \mathbb{J}_K \to \mathbb{C}^{\times}$ be a continuous homomorphism, and let $\chi_v = \chi|_{K_v^{\times}}: K_v^{\times} \to \mathbb{C}^{\times}$. Then,
 - (a) for all but finitely many $v \in V_{K,f}$, χ_v is unramified, that is $\chi_v(\mathcal{O}_v^{\times}) = 1$, and
 - (b) $\chi(x) = \prod_{v \in V_K} \chi_v(x_v)$, a finite product by (a), and conversely, if (χ_v) is a family of continuous homomorphisms $\chi_v : K_v^{\times} \to \mathbb{C}^{\times}$ satisfying (a), their product $\chi(x) = \prod_v \chi_v(x_v)$ is a well-defined continuous homomorphism $\mathbb{J}_K \to \mathbb{C}^{\times}$.

Proof.

1. Apply 10.1 with $G = \mathcal{O}_F^{\times}$.

2.

- (a) Apply 10.1 with $G = \widehat{\mathcal{O}_K}^{\times} \subset \mathbb{J}_K$. Then $\chi = 1$ on an open subgroup of $\widehat{\mathcal{O}_K}^{\times} = \prod_{v \nmid \infty} \mathcal{O}_v^{\times}$, so $\chi|_{\mathcal{O}_v^{\times}} = 1$ for all but finitely many $v \in V_{K,f}$.
- (b) The same as 8.1.2, for $\mathbb{J}_K \to \mathbb{C}^{\times}$ discrete.

So what is a continuous homomorphism $F^{\times} \to \mathbb{C}^{\times}$?

• Let F/\mathbb{Q}_p . If $\chi: F^{\times} \to \mathbb{C}^{\times}$ is unramified then it factors

$$F^{\times} \xrightarrow{|\cdot|_F} q^{\mathbb{Z}} \xrightarrow{q \mapsto q^s} \mathbb{C}^{\times}, \qquad s \in \mathbb{C},$$

unique modulo $(2\pi i/\log q)\mathbb{Z}$, that is $\chi(x) = |x|_F^s$. In general, $\chi_1(x) = \chi(x)/\chi(\pi)^{v(x)}$ factors

$$F^{\times} \to F^{\times} / \langle \pi \rangle \cong \mathcal{O}_F^{\times} \to \mathbb{C}^{\times},$$

which has finite image by 10.2.1, and χ/χ_1 is unramified as $\chi|_{\mathcal{O}_F^{\times}} = \chi_1|_{\mathcal{O}_F^{\times}}$, that is $\chi = \chi_1|\cdot|_F^s$ and $\chi_1(\pi) = 1$ has finite order.

• Let F/\mathbb{R} . Then

$$F^{\times} = \begin{cases} \{\pm 1\} \times \mathbb{R}_{>0} & F = \mathbb{R} \\ \mathrm{U}(1) \times \mathbb{R}_{>0} & F = \mathbb{C} \end{cases},$$

and 12

$$\operatorname{Hom}_{\operatorname{cts}}\left(\mathbb{R}_{>0}, \mathbb{C}^{\times}\right) = \{x \mapsto x^{s} \mid s \in \mathbb{C}\} \cong \mathbb{C}.$$

So continuous homomorphisms $\chi: F^{\times} \to \mathbb{C}^{\times}$ are

$$\chi = \begin{cases} x \mapsto |x|^s & \text{and } x \mapsto \operatorname{sign} x |x|^s & F = \mathbb{R} \\ z \mapsto \left(\frac{z}{|z|^{\frac{1}{2}}}\right)^n |z|^s & \text{for } n \in \mathbb{Z} & F = \mathbb{C} \end{cases},$$

so $\chi = \chi_1 |\cdot|_F^s$ where $\chi_1|_{\mathbb{R}_{>0}} = 1$.

Globally is the following.

Proposition 10.3. Let $\chi: \mathcal{C}_K \to \mathbb{C}^{\times}$. There exists a unique $\chi = \chi_1 |\cdot|_{\mathbb{A}}^s$ for $s \in \mathbb{C}$ such that $\chi_1|_{\mathbb{R}_{>0}} = 1$. Moreover, $\chi_1(\mathbb{J}_K) \subset \mathrm{U}(1)$.

Proof. There exists a unique $s \in \mathbb{C}$ such that for all $x \in \mathbb{R}_{>0} \subset \mathbb{J}_K$, $\chi(x) = |x|^s = |x|^s$. Then $\chi_1 = \chi|\cdot|^{-s}_{\mathbb{A}}$ is trivial on $K^{\times}\mathbb{R}_{>0}$. As $\mathcal{C}_K/\mathbb{R}_{>0}$ is compact, $\chi_1(\mathbb{J}_K) \subset \mathrm{U}(1)$.

The following is the relation between the local s_v and the global s.

Proposition 10.4. Let $\chi = \prod_v \chi_v : \mathcal{C}_K \to \mathbb{C}^\times$ such that $\chi = \chi_1 |\cdot|_{\mathbb{A}}^s$ and $\chi_v = \chi_{v,1} |\cdot|_v^{s_v}$ as above. Then $\operatorname{Re} s = \operatorname{Re} s_v$ for all v.

Proof. Let $x \in K_v^{\times} \subset \mathbb{J}_K$. Then as $|\chi_{v,1}| = 1$ and $|\chi_1| = 1$,

$$|x|_{v}^{\operatorname{Re} s_{v}} = |\chi_{v}(x)| = |\chi(x)| = |x|_{\mathbb{A}}^{\operatorname{Re} s} = |x|_{v}^{\operatorname{Re} s}.$$

Note that suppose s = 0, need not have $s_v = 0$, since if v is unramified, $\chi_v(\pi_v) = q_v^{-s_v} \neq 1$, usually.

 $^{^{12}}$ Exercise

10.2 Hecke L-functions

Definition. Let $\chi = \prod_v \chi_v : \mathcal{C}_K \to \mathbb{C}^{\times}$ be a Hecke character, and let

$$S = V_{K,\infty} \cup \{v \in V_{K,f} \mid \chi_v \text{ is ramified}\}.$$

The Hecke L-series or Hecke L-function of χ is

$$L\left(\chi,s\right) = \prod_{v \notin S} \frac{1}{1 - \chi_v\left(\pi_v\right) q_v^{-s}},$$

which does not depend on the choice of π_v .

Remark.

- If $\chi = 1$, then $L(\chi, s) = \zeta_K(s)$.
- If $K = \mathbb{Q}$ and $\chi|_{\mathbb{R}_{>0}} = 1$, that is χ is of finite order, then $L(\chi, s)$ is a Dirichlet L-series.
- If $t \in \mathbb{C}$, then $L\left(\chi|\cdot|_{\mathbb{A}}^t, s\right) = L\left(\chi, s+t\right)$ as $|\pi_v|_v = q_v^{-1}$. So there is a redundancy in the definition. We can get all L-functions if either
 - restrict to s = 0, since $L(\chi, s) = L(\chi|\cdot|_{\mathbb{A}}^{s}, 0)$, or
 - restrict to χ with $\chi|_{\mathbb{R}_{>0}} = 1$, using $L\left(\chi|\cdot|_{\mathbb{A}}^t, s\right) = L\left(\chi, s+t\right)$, in particular χ is unitary.

Both are useful.

Proposition 10.5. If $\chi|_{\mathbb{R}>0}=1$, and more generally, if $|\chi|=1$, then $L(\chi,s)$ converges absolutely for $\mathrm{Re}\,s>1$

Proof. Since $|\chi_v(\pi_v)| = 1$, follows by comparison with $\zeta_K(s)$.

The following is the main theorem.

Theorem 10.6 (Functional equation for Hecke L-function). Let χ be a Hecke character.

• There exist $a_v \in \mathbb{C}$ for $v \in V_{K,\infty}$ and $\epsilon(\chi,s) = AB^s$ for some $A \in \mathbb{C}^\times$ and B > 0 such that if

$$\Lambda\left(\chi,s\right) = \prod_{v\mid\infty} \Gamma_{K_v}\left(s + a_v\right) L\left(\chi,s\right),\,$$

then $\Lambda(\chi, s)$ has a meromorphic continuation to \mathbb{C} , and

$$\Lambda(\gamma, s) = \epsilon(\gamma, s) \Lambda(\gamma^{-1}, 1 - s)$$
.

If $\chi \neq |\cdot|_{\mathbb{A}}^t$ for some $t \in \mathbb{C}$, then $\Lambda(\chi, s)$ is entire.

$$\epsilon\left(\chi,s\right) = \prod \epsilon_v\left(\chi_v,s\right),$$

where the **local** ϵ -factors are $\epsilon_v(\chi_v, s) = 1$ for all but finitely many v, and only depends on χ_v .

Remark. If $\chi = |\cdot|_{\mathbb{A}}^t$, then $\Lambda(\chi, s) = Z_K(s+t)$ and we know the poles, and residues.

$$K_v = \mathbb{R}$$
. If $\chi_v = |\cdot|_v^t$, then $a_v = t$ and $\epsilon_v(\chi_v, s) = 1$. If $\chi_v = \text{sign}|\cdot|_v^t$, then $a_v = t + 1$ and $\epsilon_v(\chi_v, s) = -i$.

$$K_v = \mathbb{C}$$
. If $\chi_v = \left(z/|z|_v^{1/2}\right)^n |z|_v^t$ for $n \in \mathbb{Z}$, then $a_v = t + |n|/2$ and $\epsilon_v \left(\chi_v, s\right) = i^{-|n|}$.

¹³Exercise

 K_v/\mathbb{Q}_p . If χ_v is unramified,

$$\epsilon_{v}\left(\chi_{v},s\right) = \begin{cases} 1 & K_{v}/\mathbb{Q}_{p} \text{ is unramified, so } \delta_{v} = 0\\ \frac{\delta_{v}\left(\frac{1}{2} - s\right)}{Q_{v}\left(\pi_{v}\right)^{\delta_{v}}} & \text{in general} \end{cases}$$

If χ_v is ramified,

$$\epsilon_{v}(\chi_{v}, s) = \int_{K_{v}^{\times}} \chi_{v}(x)^{-1} |x|_{v}^{-s} \psi_{v}(x) \, d_{v} x = \sum_{n} \int_{\pi_{v}^{-n} \mathcal{O}_{v}^{\times}} \chi_{v}(x)^{-1} |x|_{v}^{-s} \psi_{v}(x) \, d_{v} x,$$

which is a Gauss sum, and in fact the integral is non-zero for only $n = \delta_v + m_v$ where m_v is the conductor of χ_v .

10.3 Global (-integral

Definition. Let $f \in \mathcal{S}(\mathbb{A}_K)$. Then

Lecture 24 Tuesday 16/03/21

$$\zeta\left(f,\chi,s\right) = \int_{\mathbb{J}_{K}} f\left(x\right)\chi\left(x\right)\left|x\right|_{\mathbb{A}}^{s} d_{\mathbb{J}} x = \prod_{v} \int_{F^{\times}} f_{v}\left(x\right)\chi_{v}\left(x\right)\left|x\right|_{v}^{s} d_{F}^{\times} x = \prod_{v} \zeta_{v}\left(f_{v},\chi_{v},s\right), \qquad f = \bigotimes_{v} f_{v}.$$

Can restrict to s = 0 and changing χ .

Theorem 10.7 (Global functional equation for $\zeta(f, \chi, s)$).

1002 5112 1011 (ζ (ζ (ζ (ζ (ζ) ζ)).

 $\zeta(f,\chi,s) = \zeta(\widehat{f},\chi^{-1},1-s),$

 $meromorphic\ on\ \mathbb{C}.$

• If $\chi \neq |\cdot|_{\mathbb{A}}^t$ for some $t \in \mathbb{C}$, then $\zeta(f, \chi, s)$ is entire, so no poles.

Proof. Modify the proof of 9.11 to include χ . Without loss of generality, $\chi|_{\mathbb{R}_{>0}} = 1$, by changing s. Replace $\zeta_t(f,s)$ by

$$\zeta_{t}\left(f,\chi,s\right) = t^{s} \int_{\mathbb{J}_{K}^{1}} f\left(tx\right) \chi\left(x\right) \, d\mathbb{J} \, x = t^{s} \int_{E} \sum_{a \in K^{\times}} f\left(atx\right) \chi\left(x\right) \, d\mathbb{J} \, x$$
$$= t^{s} \int_{E} \sum_{a \in K} f\left(atx\right) \chi\left(x\right) \, d\mathbb{J} \, x - f\left(0\right) t^{s} \int_{E} \chi\left(x\right) \, d\mathbb{J} \, x,$$

as $\chi|_{K^{\times}} = 1$ and $\mathbb{J}_{K}^{1} = \bigsqcup_{a \in K^{\times}} aE$.

- If $\chi = 1$, the latter integral is κ as before.
- If $\chi \neq 1$, choosing $b \in E$ such that $\chi(b) \neq 1$ and putting $x \mapsto bx$, the latter integral is zero.

Then apply the Poisson summation and the rest of the proof as for 9.11.

To get the functional equation for $\Lambda(\chi, s)$, need a suitable f. The following is the nicest way to see this.

Theorem 10.8 (Local functional equation for $\zeta(f,\chi,s)$). Let F be local, and let $\chi:F^{\times}\to\mathbb{C}^{\times}$. Then for all $f\in\mathcal{S}(F)$,

$$\frac{\zeta\left(\widehat{f},\chi^{-1},1-s\right)}{\operatorname{L}\left(\chi^{-1},1-s\right)} = \epsilon\left(\chi,s\right) \frac{\zeta\left(f,\chi,s\right)}{\operatorname{L}\left(\chi,s\right)}.$$

Here L and ϵ are the local factors from above, so for F/\mathbb{R} , these are $\Gamma_F(s+a_F)$.

Proof of 10.6. Multiplying the local and global functional equations, get the functional equation for $\Lambda(\chi, s)$.

Ш

Proposition 10.9. *Let* $f, g \in \mathcal{S}(F)$ *. Then*

$$\zeta(f,\chi,s)\zeta(\widehat{g},\chi^{-1},1-s) = \zeta(\widehat{f},\chi^{-1},1-s)\zeta(g,\chi,s).$$

Proof. Changing variables t' = x, x' = t, y' = ty/x, so x'/y' = x/y and yt = y't',

$$\begin{split} \zeta\left(f,\chi,s\right)\zeta\left(\widehat{g},\chi^{-1},1-s\right) &= \int_{F^{\times}} \int_{F^{\times}} f\left(x\right)\widehat{g}\left(y\right)\chi\left(\frac{x}{y}\right) \left|\frac{x}{y}\right|_{F}^{s} \left|y\right|_{F} \, \operatorname{d}_{F}^{\times} x \, \operatorname{d}_{F}^{\times} y \\ &= c \int_{F} \int_{F^{\times}} \int_{F^{\times}} f\left(x\right)g\left(t\right)\psi\left(yt\right)\chi\left(\frac{x}{y}\right) \left|\frac{x}{y}\right|_{F}^{s} \left|yt\right|_{F} \, \operatorname{d}_{F}^{\times} x \, \operatorname{d}_{F}^{\times} y \, \operatorname{d}_{F}^{\times} t \\ &= c \int_{F^{\times}} \int_{F^{\times}} \int_{F} f\left(t'\right)g\left(x'\right)\psi\left(y't'\right)\chi\left(\frac{x'}{y'}\right) \left|\frac{x'}{y'}\right|_{F}^{s} \left|y't'\right|_{F} \, \operatorname{d}_{F}^{\times} t' \, \operatorname{d}_{F}^{\times} y' \, \operatorname{d}_{F}^{\times} x' \\ &= \int_{F^{\times}} \int_{F^{\times}} \widehat{f}\left(y'\right)g\left(x'\right)\chi\left(\frac{x'}{y'}\right) \left|\frac{x'}{y'}\right|_{F}^{s} \left|y'\right|_{F} \, \operatorname{d}_{F}^{\times} y' \, \operatorname{d}_{F}^{\times} x' \\ &= \zeta\left(\widehat{f},\chi^{-1},1-s\right)\zeta\left(g,\chi,s\right) \, . \end{split}$$

Proof of 10.8.

• The independence of f, by 10.9.

• Just have to find a suitable f, depending on χ , such that we can compute $\zeta(f, \chi, s)$ and $\zeta(\widehat{f}, \widehat{\chi}, 1 - s)$. For $\chi = 1$ did earlier. For general χ , see example sheet 4.

A special global case is when $L(\chi^{-1}, s) = L(\chi, s + t)$, such as $\chi^2 = 1$. More generally, there exists $g \in Aut(K/\mathbb{Q})$ such that $\chi^{-1} = (\chi \circ g)|\cdot|_{\mathbb{A}}^t$. For an example, see example sheet 4, question 8. Then

$$\Lambda\left(\chi,s\right)=\epsilon\left(\chi,s\right)\Lambda\left(\chi,1-s\right)=\epsilon\left(\chi,s\right)\epsilon\left(\chi,1-s\right)\Lambda\left(\chi,s\right),$$

that is $AB^{s}AB^{1-s} = 1$ so $A^{2} = B^{-1} > 0$, so

$$\epsilon(\chi, s) = w(\chi) B^{s - \frac{1}{2}},$$

where $w(\chi) \in \{\pm 1\}$ is the **root number** and

$$\Lambda\left(\chi, s + \frac{1}{2}\right) = w\left(\chi\right) B^{s} \Lambda\left(\chi, -s + \frac{1}{2}\right).$$

Thus w (χ) determines the parity of the order of $\Lambda(\chi, s)$ at $s = \frac{1}{2}$.

10.4 Artin L-functions*

Let $\chi: \mathcal{C}_K \to \mathbb{C}^{\times}$ be of finite order. Then by class field theory, $\chi = \theta \circ \operatorname{Art}_{L/K}$ for some abelian L/K and $\theta: \operatorname{Gal}(L/K) \hookrightarrow \mathbb{C}^{\times}$. Then

$$L(\chi, s) = \prod_{v \notin S} \frac{1}{1 - \theta(\operatorname{Fr}_v) \operatorname{q}_v^{-s}},$$

where Fr_v is the geometric Frobenius. The local factor at $v \mid \infty$ is

- $\Gamma_{\mathbb{C}}(s)$ if v is complex, and
- $\Gamma_{\mathbb{R}}(s)$ if $\theta(c) = 1$ and $\Gamma_{\mathbb{R}}(s+1)$ if $\theta(c) = -1$ if v is real, where c is complex conjugation at v.

This suggests to try to define $L(\rho, s)$ for any representation $\rho : Gal(L/K) \to GLV$ for L/K Galois and $V \cong \mathbb{C}^d$. Thinking about $\rho = \bigoplus_i \theta_i$ leads to the following.

Definition. The Artin L-function of ρ is

$$L\left(\rho,s\right) = \prod_{v \in V_{K,f}} L_v\left(\rho_v,s\right), \qquad L_v\left(\rho_v,s\right) = L_v\left(\left.\rho\right|_{\mathcal{D}_v},s\right) = \det\left(1 - \rho\left(\operatorname{Fr}_v\right) \operatorname{q}_v^{-s} \mid V^{\rho(\mathcal{I}_v)}\right)^{-1},$$

which is well-defined on $V^{\rho(I_v)}$.

- For v complex, $L_v(\rho_v, s) = \Gamma_{\mathbb{C}}(s)^d$.
- For v real, $L_v(\rho_v, s) = \Gamma_{\mathbb{R}}(s)^{d_+} \Gamma_{\mathbb{R}}(s+1)^{d_-}$, where $d_{\pm} = \dim V^{\rho(c)=\pm 1}$.

Proposition 10.10.

- 1. $L(\rho_1 \oplus \rho_2, s) = L(\rho_1, s) L(\rho_2, s)$.
- 2. If $L/K_1/K$ and $\rho_1 : \operatorname{Gal}(L/K_1) \to \operatorname{GL} V$, then $\operatorname{L}(\rho_1, s) = \operatorname{L}\left(\operatorname{Ind}_{\operatorname{Gal}(L/K_1)}^{\operatorname{Gal}(L/K)} \rho_1, s\right)$.

Proof.

- 1. Obvious.
- 2. It is easy to check locally. At $v \mid \infty$, this reduces to $\Gamma_{\mathbb{R}}(s) \Gamma_{\mathbb{R}}(s+1) = \Gamma_{\mathbb{C}}(s)$, which explains the normalisation of $\Gamma_{\mathbb{C}}(s)$.

Theorem 10.11. $\Lambda(\rho, s) = \prod_{v} L(\rho_v, s)$ has a meromorphic continuation and a functional equation

$$\Lambda(\rho, s) = \epsilon(\rho, s) \Lambda(\rho^{\vee}, 1 - s),$$

where ρ^{\vee} is the contragredient representation $g \mapsto \rho \left(g^{-1}\right)^{\mathsf{T}} \in \operatorname{GL} V^*$.

Proof by reduction to the abelian case.

Theorem 10.12 (Brauer). Let G be a finite group, and let $\rho: G \to \operatorname{GL}_d \mathbb{C}$. Then there exist subgroups $H_i \subset G$, homomorphisms $\chi_i: H_i \to \mathbb{C}^{\times}$, and integers m_i , such that

$$\operatorname{Tr} \rho = \sum_{i} m_i \chi_i,$$

that is

$$\rho \oplus \sum_{m_i < 0} -m_i \chi_i = \sum_{m_i > 0} m_i \chi_i.$$

Then

$$L(\rho, s) = \prod_{i} L(\chi_{i}, s)^{m_{i}}.$$

Some m_i may be negative, so no control over poles.

Conjecture 10.13 (Artin conjecture). If ρ does not contain trivial representations, then L (ρ, s) is entire.

Mostly still unsolved, now viewed as a problem in the Langlands programme, or non-abelian class field theory. The status is

- true if dim V = 1, so Hecke L-functions, where ρ is $\chi : \mathcal{C}_K \to \mathbb{C}^{\times}$,
- true if all $m_i \geq 0$, such as if G is a nilpotent group, and
- true if dim V=2 and either
 - $-\operatorname{im} \rho \subset \operatorname{GL}_2 \mathbb{C}$ is solvable, using automorphic base change, or
 - K is totally real and $\rho(c) \sim {\binom{-1}{0}}{\binom{0}{1}}$ for all complex conjugations $c \in \operatorname{Gal}(L/K)$, using the proof of Serre's conjecture and generalisations to totally real fields, that is lots of automorphic theory, modularity lifting theorems, etc,

where ρ is an automorphic representation π of $GL_d \mathbb{A}_K$.

Ignore the comment in Neukirch's book, where he says the conjecture is true for solvable extensions.