考研数学 常用公式手册

有道考神研发中心 编章

者研数学 常用公式手册

目 录

第一	一部分	高等数学	ź	••••••	••••••	•••••	•••••	1
	第一章	函数、	极限、	连续		••••••	••••••	1
	第二章	一元函	i数微分	▶学	••••••	•••••	••••••	15
	第三章	一元函	数积分	▶学	•••••		••••••	30
	第四章	微分方	程	••••••	•••••		•••••	44
	第五章	多元函	数微分	·学	•••••	•••••	•••••	50
	第六章	二重积	分	••••••	••••••	•••••	•••••	55
	第七章	无穷级	数(数:	学一、	三)	•••••	••••••	59
	第八章	向量代	数与空	间几何	「(数学	É—)		69
	第九章	三重积	分(数	(学一)		•••••	••••••	83
	第十章	曲线积	分(数	(学一)	•••••	•••••	••••••	86
	第十一	章 曲面和	只分(犭	数学一))	••••••	••••••	89
	第十二	章 场论袖	刃步(劉	数学一))			93

第二部分 线性代数95
第一章 行列式95
第二章 矩阵97
第三章 向量组103
第四章 线性方程组107
第五章 特征值与特征向量109
第六章 二次型 111
第三部分 概率论与数理统计(数学一、三)114
第一章 随机事件与概率114
第二章 随机变量及其分布120
第三章 多维随机变量及其分布123
第四章 随机变量的数字特征127
第五章 大数定律与中心极限定理130
第六章 数理统计的基本概念132
第七章 参数估计135
第八章 假设检验138

第一部分 高等数学

第一章 函数、极限、连续

一、基本初等函数及其性质

1.幂函数

- (1)函数形式: $y = x^{\mu} (\mu \in R)$.
- (2)计算性质:

$$y = x^{\frac{1}{n}} = \sqrt[n]{x}, y = x^{-n} = \frac{1}{x^n}, y = x^n \cdot x^m = x^{m+n}, y = (x^n)^m = x^{mn}.$$

(3)常见函数及其图像:

$$y = x, y = x^2, y = \sqrt{x}, y = x^3, y = \sqrt[3]{x}, y = \frac{1}{x}$$

2.指数函数

(1)函数形式: $y = a^x (a > 0 且 a \neq 1)$.

- (2)定义域: (-∞,+∞), 值域: (0,+∞).
- (3)单调性: a > 1时, $y = a^x$ 单调增加; a < 1时, $y = a^x$ 单调减少.

(4)常见函数及其图像:

- (5)极限: $\lim_{x\to +\infty} e^x = +\infty$, $\lim_{x\to -\infty} e^x = 0$.
- (6)特殊函数值: $a^0 = 1, e^0 = 1$.

3.对数函数

- (1)函数形式: $y = \log_a x (a > 0 \perp a \neq 1)$.
- (2)定义域: (0,+∞), 值域: (-∞,+∞).
- (3)单调性: a>1时, $y=\log_a x$ 单调增加; a<1时, $y=\log_a x$ 单调减少.
 - (4)特殊函数值: $\log_a 1 = 0, \log_a a = 1, \ln 1 = 0, \ln e = 1$.
 - (5)极限: $\lim_{x \to +\infty} \ln x = +\infty$, $\lim_{x \to 0^+} \ln x = -\infty$.

(6)常见函数及其图像:

(7)常用公式: $x = e^{\ln x} (x > 0), u^{\nu} = e^{\nu \ln u} (u > 0)$.

4.三角函数

- (1) 正弦函数、余弦函数
- ①函数形式: $v = \sin x, v = \cos x$
- ②定义域: (-∞,+∞), 值域: [-1,1].
- ③奇偶性: $y = \sin x$ 是奇函数, $y = \cos x$ 是偶函数.
- ④常见函数及其图像:

- ⑤常用公式:
 - (i) 平方公式: $\sin^2 x + \cos^2 x = 1$.
 - (ii) 二倍角公式: $\sin 2x = 2\sin x \cos x$,

$$\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1.$$

(iii) 降幂公式:
$$\sin^2 x = \frac{1 - \cos 2x}{2}, \cos^2 x = \frac{1 + \cos 2x}{2}$$
.

(iv) 诱导公式: 奇变偶不变, 符号看象限.

$$\sin(\frac{k\pi}{2} + x) = \begin{cases} \pm \sin x, k \text{为偶数}, & \pm \text{取决于}x \text{看作锐角时}, \\ \pm \cos x, k \text{为奇数}, & \sin(\frac{k\pi}{2} + x) \text{的符号}. \end{cases}$$

$$\sin(\pi - x) = \sin x, \quad \sin(\pi + x) = -\sin x, \quad \sin(\frac{\pi}{2} \pm x) = \cos x,$$

$$\cos(\frac{k\pi}{2} + x) = \begin{cases} \pm \cos x, k \text{为偶数}, & \pm \text{取决于} x \text{看作锐角时}, \\ \pm \sin x, k \text{为奇数}, & \cos(\frac{k\pi}{2} + x) \text{的符号}. \end{cases}$$

$$\cos(\pi \pm x) = -\cos x$$
, $\cos(\frac{\pi}{2} + x) = -\sin x$, $\cos(\frac{\pi}{2} - x) = \sin x$.

(v) 和角公式:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

(vi) 和差化积:

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

(vii) 积化和差:

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

$$\sin \alpha \sin \beta = -\frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

(2) 正切函数、余切函数

①函数形式: $y = \tan x, y = \cot x$.

②定义域:
$$y = \tan x, x \neq k\pi + \frac{\pi}{2}, y = \cot x, x \neq k\pi, k \in Z$$
;

值域: (-∞,+∞).

③奇偶性: $y = \tan x, y = \cot x$ 在对称的定义区间内都是奇

函数.

④常见函数及其图像:

⑤常用公式:

- (i) 平方公式: $tan^2 x + 1 = sec^2 x$.
- (ii) 二倍角公式: $\tan 2x = \frac{2 \tan x}{1 \tan^2 x}$, $\cot 2x = \frac{1 \cot^2 x}{2 \cot x}$.
- (iii) 和角公式: $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$.

5.反三角函数

(1) 反正弦函数、反余弦函数

- ①函数形式: $y = \arcsin x, y = \arccos x$.
- ②定义域: [-1,1], 值域: $\arcsin x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, $\arccos x \in [0,\pi]$.
- ③奇偶性: $y = \arcsin x$ 在定义域内是奇函数.
- ④有界性: $y = \arcsin x, y = \arccos x$ 在定义域内均有界.
- ⑤常用公式: $\arcsin x + \arccos x = \frac{\pi}{2}$.
- ⑥常见函数及其图像:

第一部分 高等数学///

(2) 反正切函数、反余切函数

- ①函数形式: $y = \arctan x, y = \operatorname{arc} \cot x$.
- ②定义域: $(-\infty, +\infty)$,值域: $\arcsin x \in (-\frac{\pi}{2}, \frac{\pi}{2})$, $\arccos x \in (0, \pi)$.
- ③奇偶性: $y = \arctan x$ 在定义域内是奇函数.
- ④有界性: $y = \arctan x, y = \operatorname{arc} \cot x$ 在定义域内均有界.
- ⑤常用公式: $\arctan x + \operatorname{arc} \cot x = \frac{\pi}{2}$,

 $\arctan x \pm \arctan y = \arctan(\frac{x \pm y}{1 \mp xy})$.

⑥常见函数及其图像:

⑦极限: $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$, $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$.

二、极限的概念、性质与计算

1.极限与左、右极限

$$(1) \lim_{x \to x_0} f(x) = A \Leftrightarrow \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = A$$

(2)
$$\lim_{x \to x_0} f(x) = A \Leftrightarrow f(x_0) = A + \alpha(x)$$
, $\sharp + \lim_{x \to x_0} \alpha(x) = 0$

2.极限的性质

(1)局部保号性: 设 $\lim_{x \to x_0} f(x) = A$,若 A > 0(或A < 0),则存在 $\delta > 0$,当 $x \in (x_0 - \delta, x_0 + \delta)$ 且 $x \neq x_0$ 时, f(x) > 0(或 f(x) < 0).

(2)局部有界性: 设 $\lim_{x\to x_0} f(x) = A$, 则存在 $\delta > 0$, 当 $x \in (x_0 - \delta, x_0 + \delta)$ 且 $x \neq x_0$ 时, f(x) 有界.

3.极限运算法则

 $\lim f(x) = A, \lim g(x) = B$,则:

(1)
$$\lim (f(x) \pm g(x)) = A \pm B$$
;

(2)
$$\lim f(x)g(x) = A \cdot B$$
;

$$(3)\lim \frac{f(x)}{g(x)} = \frac{A}{B}(B \neq 0) :$$

(4)若 A, B 不全为 0 ,则 $\lim_{x \to a} f(x)^{g(x)} = A^B$.

4. 无穷小的比较

设
$$\lim \alpha(x) = 0$$
, $\lim \beta(x) = 0$, $\beta(x) \neq 0$, 则:

若
$$\lim \frac{\alpha(x)}{\beta(x)} = 0$$
, 则 $\alpha(x)$ 是比 $\beta(x)$ 高阶的无穷小,

记为
$$\alpha(x) = o(\beta(x))$$
.

若
$$\lim \frac{\alpha(x)}{\beta(x)} = \infty$$
,则 $\alpha(x)$ 是比 $\beta(x)$ 低阶的无穷小.

若
$$\lim \frac{\alpha(x)}{\beta(x)} = c(c \neq 0)$$
,则 $\alpha(x)$ 与 $\beta(x)$ 是同阶无穷小,特别地,

若
$$\lim \frac{\alpha(x)}{\beta(x)} = 1$$
,则 $\alpha(x)$ 与 $\beta(x)$ 是等价的无穷小,记为 $\alpha(x) \sim \beta(x)$.

若
$$\lim \frac{\alpha(x)}{\beta^k(x)} = c(c \neq 0), k > 0, 则 \alpha(x) 是 \beta(x) 的 k 阶 无穷小,$$

特别地, 若 $\lim \frac{\alpha(x)}{x^k} = c(c \neq 0)$,则 $\alpha(x)$ 是x的k阶无穷小.

5.常见等价无穷小 $(x \rightarrow 0 \forall)$:

$$\begin{vmatrix}
\sin x \\
\arcsin x \\
\tan x \\
\arctan (1+x) \\
e^{x}-1
\end{vmatrix}
\sim x, \quad (1+x)^{\frac{1}{n}}-1 \sim \frac{1}{n}x, \\
1-\cos x \sim \frac{1}{2}x^{2}, \\
e^{x}-1$$

$$x-\sin x \sim \frac{1}{6}x^{3}, \\
x-\arcsin x \sim -\frac{1}{6}x^{3}, \\
x-\arcsin x \sim -\frac{1}{6}x^{3}, \\
\tan x - x \sim \frac{1}{3}x^{3}, \\
\arctan x - x \sim -\frac{1}{3}x^{3}.$$

<u>\\\\有道考神 考研数学常用公式手册</u>

6.极限存在准则与两个重要极限

(1)夹逼准则

设在 $x = x_0$ 的某去心邻域内,恒有 $\varphi(x) \le f(x) \le \phi(x)$,且

$$\lim_{x\to x_0}\varphi(x)=\lim_{x\to x_0}\phi(x)=A\;,\;\; \lim_{x\to x_0}f(x)=A\;.$$

(2)单调有界定理:单调有界的数列必有极限.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad , \quad \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = \epsilon$$

$\lim_{x\to 0} \frac{\sin x}{x} = 1$, $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$ (ID: djky66)

抓大头:
$$\lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + b_m} = \begin{cases} \frac{a_0}{b_0}, n = m\\ 0, n < m \end{cases}.$$

(4)几个常用极限:

$$\lim_{x \to 0} x^{\alpha} \ln^{\beta} x = 0, \alpha > 0, \beta > 0 , \lim_{x \to +\infty} \frac{x^{\alpha}}{e^{\beta x}} = 0, \alpha > 0, \beta > 0 ,$$

$$\lim_{x \to +\infty} \frac{\ln^{\beta} x}{x^{\alpha}} = 0, \, \alpha > 0, \, \beta > 0 \, , \quad \lim_{n \to \infty} \sqrt[n]{n} = 1 \, , \quad \lim_{x \to +0^{+}} x^{x} = 1 \, .$$

7.洛必达法则

设函数 f(x),g(x) 满足条件:

(1)
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$
 $\exists k \lim_{x \to x_0} f(x) = \infty$, $\lim_{x \to x_0} g(x) = \infty$;

(2)
$$f(x),g(x)$$
 在 x_0 的去心邻域内可导且 $g'(x) \neq 0$;

(3)
$$\lim_{x\to x_0} \frac{f'(x)}{g'(x)}$$
存在(或为∞);

$$\iiint \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

注: $x \to \infty$ 时有类似结论.

8.泰勒公式

设函数 f(x) 在点 x_0 处的某邻域内具有 n+1 阶导数,则对该邻域内异于 x_0 的任意点 x ,在 x_0 与 x 之间至少存在一个 ξ ,使得:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \cdots$$
$$+ \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x),$$

其中 $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$ 称为 f(x) 在点 x_0 处的 n 阶 泰勒余项.

$$f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(0)x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

称为带皮亚诺余项的麦克劳林公式。

常用函数在x=0 处的泰勒公式:

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \dots + \frac{1}{n!}x^{n} + o(x^{n})$$

$$\ln(1+x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \dots + (-1)^{n-1}\frac{x^{n}}{n} + o(x^{n})$$

$$\sin x = x - \frac{1}{3!}x^{3} + \dots + (-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!} + o(x^{2n-1})$$

$$\cos x = 1 - \frac{1}{2!}x^{2} + \dots + (-1)^{n}\frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$\tan x = x + \frac{1}{3}x^{3} + o(x^{3})$$

$$\arcsin x = x + \frac{1}{6}x^{3} + o(x^{3})$$

$$\arctan x = x - \frac{1}{3}x^{3} + o(x^{3})$$

$$\frac{1}{1-x} = 1 + x + x^{2} + \dots + x^{n} + o(x^{n})$$

$$\frac{1}{1+x} = 1 - x + x^{2} + \dots + (-1)^{n}x^{n} + o(x^{n})$$

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!}x^{2} + \dots$$

$$+ \frac{m(m-1) \dots (m-n+1)}{n!}x^{n} + o(x^{n})$$

三、连续性与间断点

1.连续概念

若
$$\lim_{x \to x_0} f(x) = f(x_0)$$
 , 则 $f(x)$ 在 $x = x_0$ 处连续.

2.间断点及其类型

(1)若 $\lim_{x \to x_0} f(x)$ 存在 $\neq f(x_0)$,则 f(x) 在 $x = x_0$ 处为可去间断点.

(2)若
$$\lim_{x \to x_0^+} f(x)$$
, $\lim_{x \to x_0^-} f(x)$ 存在但不相等,则 $f(x)$ 在 $x = x_0$ 处为跳跃间断点

(3)若
$$\lim_{x \to x_0^-} f(x) = \infty$$
或 $\lim_{x \to x_0^-} f(x) = \infty$,则 $f(x)$ 在 $x = x_0$ 处为无穷间断点.

(4)若 $x \to x_0$ 时,函数值 f(x) 在某个区间内变动无限多次,则 f(x) 在 $x = x_0$ 处为振荡间断点.

四、闭区间上连续函数的性质

1.连续函数的有界性

(1)设函数 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b] 上有界.

(2)设函数 f(x) 在 (a,b) 上连续,且 $\lim_{x\to a^-} f(x)$ 与 $\lim_{x\to b^-} f(x)$

都存在,则 f(x)在(a,b)上有界. 微信公众号:顶尖考研 (ID:djky66)

设函数 f(x) 在 [a,b] 上连续,则在 [a,b] 上 f(x) 存在最大 值与最小值,即存在m, M,使得 $m \le f(x) \le M$.

3.介值定理

函数 f(x) 在 [a,b] 上连续, C 是介于 f(a) 与 f(b) 之间 的任一实数,则在 $\xi \in (a,b)$,使得 $f(\xi) = C$.

推论: 若函数 f(x) 在 [a,b] 上连续, 且 $m \le C \le M$, 则存 在 $\xi \in [a,b]$, 使得 $f(\xi) = C$.

4.零点定理

设函数 f(x) 在 [a,b] 上连续, 且 $f(a) \cdot f(b) < 0$, 则存 在 $\xi \in (a,b)$, 使得 $f(\xi) = 0$.

第二章 一元函数微分学

一、导数的定义、性质与计算

1.导数的定义

(1)
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 (Δx 可以换成任意

趋于零而不等于零的量) 或
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
.

(2)左导数:
$$f'(x_0) = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 或

$$f'_{-}(x_0) = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}$$
.

右导数:
$$f'_+(x_0) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
 或

$$f'_{+}(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}.$$

(3) 充要条件
$$f'(x_0) = A \Leftrightarrow f'_-(x_0) = f'_+(x_0) = A$$
.

2.几何意义

(1)切线方程:
$$y - f(x_0) = f'(x_0)(x - x_0)$$
.

(2)法线方程:
$$y-f(x_0) = -\frac{1}{f'(x_0)}(x-x_0)$$
.

/// 有道考神 考研数学常用公式手册

3.微分的定义

设函数 f(x) 在 x_0 点的某个邻域内有定义,若实际增量 Δy 可用线性增量 $A\Delta x (A$ 不依赖于 $\Delta x)$ 近似代替,误差相对于 Δx 可以忽略不计,即 $\Delta y = A\Delta x + o(\Delta x)$,则称函数 y = f(x) 在 x_0 处可微,称 $A\Delta x$ 为函数 y = f(x) 在 x_0 处的微分,记作 $dy = A\Delta x$.

4.基本求导(微分)公式

(1)
$$y = c$$
 (常数) $y' = 0$ $dy = 0$

(2)
$$v = x^{\alpha} (\alpha 为实数)$$
 $v' = \alpha x^{\alpha-1}$ $dv = \alpha x^{\alpha-1} dx$

(3)
$$y = a^x$$
 $y' = a^x \ln a$ $dy = a^x \ln a dx$

$$y = e^x$$
 $(e^x)' = e^x$ $d(e^x) = e^x dx$

(4)
$$y = \log_a x$$
 $y' = \frac{1}{x \ln a}$ $dy = \frac{1}{x \ln a} dx$

$$y = \ln x \qquad (\ln x)' = \frac{1}{x} \qquad d(\ln x) = \frac{1}{x} dx$$

(5)
$$y = \sin x$$
 $y' = \cos x$ $d(\sin x) = \cos x dx$

(6)
$$y = \cos x$$
 $y' = -\sin x$ $d(\cos x) = -\sin x dx$

(7)
$$y = \tan x$$
 $y' = \sec^2 x$ $d(\tan x) = \sec^2 x dx$

(8)
$$y = \cot x$$
 $y' = -\csc^2 x$ $d(\cot x) = -\csc^2 x dx$

第一部分 高等数学///

(9)
$$y = \sec x$$
 $y' = \sec x \tan x$ $d(\sec x) = \sec x \tan x dx$

(10)
$$y = \csc x$$
 $y' = -\csc x \cot x$ $d(\csc x) = -\csc x \cot x dx$

(11)
$$y = \arcsin x$$
 $y' = \frac{1}{\sqrt{1 - x^2}}$ $d(\arcsin x) = \frac{1}{\sqrt{1 - x^2}} dx$

(12)
$$y = \arccos x \ y' = -\frac{1}{\sqrt{1 - x^2}} \ d(\arccos x) = -\frac{1}{\sqrt{1 - x^2}} dx$$

(13)
$$y = \arctan x$$
 $y' = \frac{1}{1+x^2}$ $d(\arctan x) = \frac{1}{1+x^2}dx$

(14)
$$y = \operatorname{arc} \cot x$$
 $y' = -\frac{1}{1+x^2}$ $d(\operatorname{arc} \cot x) = -\frac{1}{1+x^2}dx$

5.函数求导法则

(1)四则运算法则

$$(2)(uv)' = uv' + vu'$$

$$d(uv) = udv + vdu$$

$$(3) \left(\frac{u}{v}\right)' = \frac{vu' - uv'}{v^2} (v \neq 0) \qquad d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$$

(2)反函数求导法则

设y = f(x)在点x的某邻域内单调连续,在点x处可

导且 $f'(x) \neq 0$,则其反函数在点 x 所对应的 v 处可导,并且有

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}.$$

(3)复合函数求导法则

若 $\mu = \varphi(x)$ 在点 x 可导, 而 $y = f(\mu)$ 在对应点 $\mu(\mu = \varphi(x))$

可导,则复合函数 $y = f(\varphi(x))$ 在点 x 可导,且 $y' = f'(\mu) \cdot \varphi'(x)$

- (4)隐函数求导法则
- ①直接求.方程两边对x求导,注意y是x的函数,应按复合函数求导法则处理.
 - ②公式法.由 F(x,y) = 0 知 $\frac{dy}{dx} = -\frac{F'_x}{F'_y}$, 其中, F'_x , F'_y 分

别表示 F(x,y) 对 x 和 y 的偏导数.

③利用微分形式不变性.由F(x,y) = 0 知 $F'_x dx + F'_y dy = 0$,

所以
$$\frac{dy}{dx} = -\frac{F_x'}{F_y'}$$
.

(5)参数方程求导法则

设
$$y = f(x)$$
 由参数方程
$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 确定,则:

$$(2) y'' = \frac{dy'}{dx} = \frac{dy'/dt}{dx/dt} = \frac{h'(t)}{x'(t)}$$

6. 高阶导数

(1)莱布尼兹公式

若
$$u(x),v(x)$$
均 n 阶可导,则 $(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)}$,其

$$u^{(0)} = u$$
, $v^{(0)} = v$.

(2)常用高阶导数

$$(1) (a^{x})^{(n)} = a^{x} \ln^{n} a \quad (a > 0) \qquad (e^{x})^{(n)} = e^{x}$$

$$(\sin kx)^{(n)} = k^n \sin(kx + n \cdot \frac{\pi}{2})$$

$$(3) (\cos kx)^{(n)} = k^n \cos(kx + n \cdot \frac{\pi}{2})$$

$$(4)(x^m)^{(n)} = m(m-1)\cdots(m-n+1)x^n$$

(5)
$$(\ln x)^{(n)} = (-1)^{(n-1)} \frac{(n-1)!}{x^n}$$

③ $(\cos kx)^{(n)} = k^n \cos(kx + n \cdot \frac{\pi}{2})$ 《信公众号:顶尖考研》 (ID: djky66)

7.连续、可导、可微的关系

可导 〇 可微, 可导必连续, 连续未必可导.

二、导数的应用

1.单调性与极值

(1)设函数 f(x) 在 (a,b) 区间内可导,如果对 $\forall x \in (a,b)$,

都有 f'(x) > 0 (或 f'(x) < 0),则函数 f(x) 在 (a,b) 内是单调

(人) 有道考神 考研数学常用公式手册

增加的(或单调减少).

(2) 极值的必要条件

设函数 f(x) 在 x_0 处可导,且在 x_0 处取极值,则 $f'(x_0) = 0.$

(3)极值的第一充分条件

设函数 f(x) 在 x_0 的某一邻域内可微,且 $f'(x_0) = 0$ (或 f(x) 在 x_0 处连续,但 $f'(x_0)$ 不存在):

- ① f'(x) 在 x_0 处左"+"右"-",则 $x = x_0$ 为 f(x) 的极大值;
- ② f'(x) 在 x_0 处左"-"右"+",则 $x = x_0$ 为 f(x) 的极小值;
- ③ f'(x) 在 x_0 处左右同号,则 $x = x_0$ 不是 f(x) 的极值.
- (4) 极值的第二充分条件

设 f(x) 在点 x_0 处有 $f''(x) \neq 0$,且 $f'(x_0) = 0$,则:

- ①当f''(x) < 0时, $f(x_0)$ 为极大值;
- ②当 f''(x) > 0 时, $f(x_0)$ 为极小值.
- ③如果 f''(x) = 0,此方法失效.

2.函数最值的求法

(1)若 f(x) 在闭区间 [a,b] 上连续,则比较 f(x) 的端点值、

驻点值、不可导点处函数值的大小,最大的则为最大值,最小的则为最小值.

(2)若 f(x) 在开区间 (a,b) 内可导且有唯一驻点,则该点必为极小(大)值点,且此极小(大)值必为函数 f(x) 在开区间 (a,b) 内的最小(大)值点.

3.凹凸性与拐点

(1)凹凸性的定义

设函数 f(x) 在区间 I 上连续,任取两点 $x_1, x_2 \in I$,恒有 $\frac{f(x_1) + f(x_2)}{2} > (<) f\left(\frac{x_1 + x_2}{2}\right), 则称曲线 <math>y = f(x)$ 在区间 I 是 凹 (凸) 的.

(2)凹凸性的判别定理

若在 $I \perp f''(x) < 0$ (或 f''(x) > 0),则 f(x) 在I 上是凸的(或凹的).

(3)拐点的判别定理 1

若在 $x = x_0$ 处 f''(x) = 0 , (或 f''(x) 不存在), f''(x) 在 $x = x_0$ 处左右异号,则 $(x_0, f(x_0))$ 为拐点.

(4)拐点的判别定理 2

设 f(x) 在 $x=x_0$ 点的某邻域内有三阶导数,且 f''(x)=0, $f'''(x) \neq 0$,则 $(x_0,f(x_0))$ 为拐点.

4.渐近线

(1)水平渐近线

若 $\lim_{x \to +\infty} f(x) = a$, 或 $\lim_{x \to -\infty} f(x) = a$, 则 y = a 称为函数 y = f(x) 的水平渐近线.

(2)铅直渐近线

若
$$\lim_{x \to x_0^-} f(x) = \infty$$
,或 $\lim_{x \to x_0^+} f(x) = \infty$,则 $x = x_0$ 称为 $y = f(x)$

的铅直渐近线.

(3)斜渐近线

若
$$k = \lim_{x \to \infty} \frac{f(x)}{x}$$
, $b = \lim_{x \to \infty} [f(x) - kx]$, 则 $y = kx + b$ 称 为

y = f(x) 的斜渐近线

三、徽分中值定理

1.费马定理

若函数 f(x) 满足条件:

(1)函数 f(x) 在 x_0 的某邻域内有定义,并且在此邻域内

恒有 $f(x) \le f(x_0)$ 或 $f(x) \ge f(x_0)$;

(2) f(x) 在 x_0 处可导;

则有 $f'(x_0) = 0$.

2.罗尔定理

设函数 f(x) 满足条件:

- (1)在闭区间[a,b]上连续;
- (2)在开区间(a,b)内可导;
- (3) f(a) = f(b) ;

则存在 $\xi \in (a,b)$, 使得 $f'(\xi) = 0$.

3.拉格朗日中值定理

设函数 f(x) 满足条件:

- (1)在闭区间[a,b]上连续;
- (2)在开区间(a,b)内可导;

则存在
$$\xi \in (a,b)$$
,使得 $\frac{f(b)-f(a)}{b-a}=f'(\xi)$.

或存在
$$\theta \in (0,1)$$
 , 使得 $\frac{f(b)-f(a)}{b-a} = f'(a+(b-a)\theta)$.

4.柯西中值定理

设函数 f(x), g(x)满足条件:

1道考神 考研数字常用公式工业 (1)在闭区间[a,b]上连续; (2)在开区间(a,b)内可导,且g'(x)よりこのはなりのではあった。 (2)在开区间(a,b)内可导,且g'(x)よりに対象のではあった。

则存在 $\xi \in (a,b)$,使得 $\frac{f(b)-f(a)}{\sigma(b)-\sigma(a)} = \frac{f'(\xi)}{\sigma'(\xi)}$.

5. 泰勒中值定理

设函数 f(x) 在点 x_0 处的某邻域内具有 n+1 阶导数,则对 该邻域内异于 x_0 的任意点x,在 x_0 与x之间至少存在一个 ξ ,

使得:
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \cdots$$

 $+ \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}.$

四、弧微分与曲率(仅数学一、二要求)

1.弧微分

$$ds = \lim_{\Delta x \to 0} \sqrt{\Delta x^2 + \Delta y^2} = \begin{cases} \sqrt{1 + y'^2} \, dx \\ \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt \\ \sqrt{r^2 + r'^2} \, d\theta \end{cases}$$

2.曲率

(1)公式

曲率
$$K = \left| \frac{d\alpha}{ds} \right| = \frac{|y''|}{(1+y'^2)^{3/2}}$$
, 曲率半径 $R = \frac{1}{K}$.

(2)推导

又因为
$$ds = \sqrt{1 + {y'}^2} dx$$
,所以, $K = \left| \frac{d\alpha}{ds} \right| = \frac{|y''|}{(1 + {y'}^2)^{3/2}}$.

(3)性质

- ①曲率圆的圆心在该点凹侧的法线上,半径等于曲率的 倒数,曲率圆与曲线在该点处相切;
- ②该点曲率越大,曲率圆的半径越小,该点处弯曲程度越大;
- ③在该点处,曲线与曲率圆具有相同的切线与曲率,即有相同的一阶导数值与二阶导数值,且凹向相同,可以近似代替.
 - ④在该点的某邻域内,曲线夹在切线与曲率圆之间.

五、导数的经济学应用(仅数学三要求)

1.边际的概念

如果函数 y=f(x) 在 x_0 处可导,则在 $(x_0,x_0+\Delta x)$ 内的 平均 变 化 率 为 $\frac{\Delta y}{\Delta x}$; 在 $x=x_0$ 处 的 瞬 时 变 化 率 为 $\lim_{\Delta x \to 0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} = f'(x_0)$, 经济学中称 $f'(x_0)$ 为 f(x) 在 $x=x_0$ 处的边际函数值.

设函数 y = f(x) 在 x 处可导,则称导数 f'(x) 为 f(x) 的边际函数. f'(x) 在 x_0 处的值 $f'(x_0)$ 为边际函数值. 其意义为: 当 $x = x_0$ 时,x 改变一个单位的绝对量,y 改变 $f'(x_0)$ 个单位的绝对量.

2.经济学中常见的边际函数

(1)边际成本: C'(Q)

(2)平均边际成本:
$$\left(\frac{C(Q)}{Q}\right)^r$$

(3)边际需求: Q'(P)

(4)边际收益: R'(Q) = P(Q) + QP'(Q)

(5)边际利润: L'(Q) = R'(Q) - C'(Q)

【注】利润最大原则: L'(Q) = 0, L''(Q) < 0, 即

$$R'(Q) = C'(Q), R''(Q) < C''(Q)$$

3.弹性的概念

如果函数 y = f(x) 在点 x_0 处可导,且 $x_0 \neq 0$,称函数的相对改变量 $\frac{\Delta y}{y_0}$ 与自变量的相对改变量 $\frac{\Delta x}{x_0}$ 之比 $\frac{\Delta y}{\Delta x} \cdot \frac{x_0}{y_0}$ 为函数从 x_0 到 x_0 + Δx 两点间的平均相对变化率,或称为 x_0 与 x_0 + Δx 两点间的弹性.

设函数
$$y = f(x)$$
 在 x 处可导,则称 $E_{yx} = \frac{dy}{dx} \cdot \frac{x}{y}$ 为 $f(x)$

的弹性函数. E_{yx} 在 x_0 处的值称为弹性函数值,简称弹性. 其意义为: 当 $x=x_0$ 时,x 改变 1% 的相对量,y 改变 $\left|E_{yx}\right|$ % 的相对量.

4.经济学中常见的弹性函数

(1)需求价格弹性:
$$E_{dp} = -\frac{dQ}{dP} \cdot \frac{P}{Q}$$

【注】需求价格弹性通常也记作 η ;

(人) 有道考神 考研数学常用公式手册

当 η <1时,称商品需求在此处缺乏弹性;

当 $\eta > 1$ 时,称商品需求在此处富有弹性;

当 $\eta=1$ 时,称商品需求在此处具有单位弹性.

(2)供给价格弹性:
$$E_{sp} = \frac{dS}{dP} \cdot \frac{P}{S}$$

(3)成本需求弹性:
$$E_{cq} = \frac{dC}{dO} \cdot \frac{Q}{C}$$

(4)收益价格弹性:
$$E_{rp} = \frac{dR}{dP} \cdot \frac{P}{R}$$

【注】
$$E_{rp} = [Q + P\frac{dQ}{dP}] \cdot \frac{P}{PQ} = 1 + \frac{dQ}{dP} \cdot \frac{P}{Q} = 1 - \eta$$

可以看出:

若 η <1,即商品为缺乏需求弹性的商品,则价格上涨1%时,总收益上涨 $|1-\eta|$ %;

若 $\eta=1$,即商品为单位需求弹性的商品,则价格的变化不会引起总收益的变化.

(5)收益需求弹性:
$$E_{rq} = \frac{dR}{dO} \cdot \frac{Q}{R}$$

【注】
$$E_{rq} = \left[\frac{dP}{dQ}Q + P\right] \cdot \frac{Q}{PQ} = 1 + \frac{dP}{dQ} \cdot \frac{Q}{P} = 1 - \frac{1}{\eta}$$

可以看出:

若 η <1,即商品为缺乏需求弹性的商品,则销量上涨1%

时,总收益下降
$$\left|1-\frac{1}{\eta}\right|$$
%;

若 $\eta > 1$,即商品为富有需求弹性的商品,则销量上涨1%

时,总收益上涨
$$\left|1-\frac{1}{\eta}\right|$$
%;

若 $\eta = 1$,即商品为单位需求弹性的商品,则销量的变化不会引起总收益的变化。

第三章 一元函数积分学

一、不定积分

1.原函数与不定积分的概念

如果在区间 I 上,可导函数 F(x) 的导函数为 f(x);即对任一 $x \in I$ 都有 F'(x) = f(x) 或 dF(x) = f(x)dx,那么函数 F(x) 就称为 f(x) 或 f(x)dx 在区间 I 上的一个原函数;称 $\int f(x)dx = F(x) + C \, \text{为} \, f(x) \, \text{ox} \, f(x)dx$ 在区间 I 上不定积分.

2.原函数的存在性

- (1)连续函数一定存在原函数.
- (2)含有可去间断点、跳跃间断点、无穷间断点的函数一 定没有原函数.
 - (3)含有振荡间断点的函数可能存在原函数.

3.不定积分的计算性质

- $(1) \int k f(x) dx = k \int f(x) dx \quad (k \neq 0) 为常数)$
- $(2) \int [f_1(x) \pm \dots \pm f_k(x)] dx = \int f_1(x) dx \pm \dots \pm \int f_k(x) dx$

(3)求导:
$$[\int f(x)dx]' = f(x)$$
 或微分: $d\int f(x)dx = f(x)dx$

$$(4)\int F'(x)dx = F(x) + C$$
 或 $\int dF(x) = F(x) + C$ (C 是任意

常数)

4.基本积分公式

$$(1) \int x^k dx = \frac{1}{k+1} x^{k+1} + C \quad (k \neq -1)$$

$$(2)\int \frac{1}{x^2} dx = -\frac{1}{x} + C \qquad \qquad \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + C$$

$$(3) \int \frac{1}{x} dx = \ln|x| + C$$

$$(4) \int a^{x} dx = \frac{a^{x}}{\ln a} + C(a > 0, a \neq 1) \qquad \int e^{x} dx = e^{x} + C$$

$$(5) \int \cos x dx = \sin x + C \qquad \qquad \int \sin x dx = -\cos x + C$$

$$(6) \int \frac{1}{\cos^2 x} dx = \int \sec^2 x dx = \tan x + C$$

$$(7)\int \frac{1}{\sin^2 x} dx = \int \csc^2 x dx = -\cot x + C$$

$$(8) \int \frac{1}{\sin x} dx = \int \csc x dx = \ln|\csc x - \cot x| + C$$

$$(9) \int \frac{1}{\cos x} dx = \int \sec x dx = \ln|\sec x + \tan x| + C$$

(10)
$$\int \sec x \tan x dx = \sec x + C$$
 $\int \csc x \cot x dx = -\csc x + C$

$$(11) \int \tan x dx = -\ln|\cos x| + C \qquad \int \cot x dx = \ln|\sin x| + C$$

$$(12)\int \frac{dx}{a^2 + x^2} = \frac{1}{a}\arctan\frac{x}{a} + C \qquad \int \frac{dx}{1 + x^2} = \arctan x + C$$

$$(13) \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C \qquad \int \frac{dx}{\sqrt{1 - x^2}} = \arcsin x + C$$

$$(14) \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C \qquad \int \frac{dx}{1 - x^2} = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right| + C$$

(15)
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

5.常见的几种凑微分形式 (第一类换元法)

$$(1)\int f(ax+b)dx = \frac{1}{a}\int f(ax+b)d(ax+b)(a\neq 0)$$

$$(2) \int f(ax^{n} + b)x^{n-1} dx = \frac{1}{na} \int f(ax^{n} + b)d(ax^{n} + b)(a \neq 0)$$

$$(3) \int f(e^x) e^x dx = \int f(e^x) de^x$$

$$(4) \int \frac{f(\frac{1}{x})}{x^2} dx = -\int f(\frac{1}{x}) d(\frac{1}{x})$$

$$(5) \int \frac{f(\ln x)}{x} dx = \int f(\ln x) d(\ln x)$$

$$(6) \int \frac{f(\sqrt{x})}{\sqrt{x}} dx = 2 \int f(\sqrt{x}) d(\sqrt{x})$$

$$(7) \int f(\sin x) \cos x dx = \int f(\sin x) d(\sin x)$$

$$(8) \int f(\cos x) \sin x dx = -\int f(\cos x) d(\cos x)$$

$$(9) \int f(\tan x) \sec^2 x dx = \int f(\tan x) d(\tan x)$$

$$(10) \int f(\cot x) \csc^2 x dx = -\int f(\cot x) d(\cot x)$$

$$(11) \int \frac{f(\arcsin x)}{\sqrt{1-x^2}} dx = \int f(\arcsin x) d(\arcsin x)$$

$$(12) \int \frac{f(\arctan x)}{1+x^2} dx = \int f(\arctan x) d(\arctan x)$$

6.去根号(第二类换元法)

(1)根号下 x 是一次幂,整体换元

例如:
$$\int f(\sqrt{1+x})dx = \frac{\diamondsuit\sqrt{1+x}=t, x=t^2-1}{\int} f(t) \cdot 2t dt.$$

(2)根号下x是二次幂,三角换元

根式类型	三角换元	辅助三角形
$\sqrt{a^2-x^2}$	$x = a \sin t$ $dx = a \cos t dt$	$\underbrace{\frac{a}{t}}_{\sqrt{a^2-x^2}} x$

$\sqrt{a^2 + x^2}$	$x = a \tan t$ $dx = a \sec^2 t dt$	
$\sqrt{x^2 - a^2}$	$x = a \sec t$ $dx = a \sec t \tan t dt$	$\sqrt{x^2-a^2}$

7.分部积分

 $\int udv = uv - \int vdu$, 选 u 的顺序为"对、反、幂、三、指".

8.有理函数积分

直分式拆分模板(其中等号左边均为真分式,(1),(2),(3) 代表x的一次多项式,a,b,c 为待定系数):

$$\frac{?}{(1)(2)} = \frac{a}{(1)} + \frac{b}{(2)},$$

$$\frac{?}{(1)(2)(3)} = \frac{a}{(1)} + \frac{b}{(2)} + \frac{c}{(3)},$$

$$\frac{?}{(1)(2)^2} = \frac{a}{(1)} + \frac{b}{(2)} + \frac{c}{(2)^2},$$

$$\frac{?}{x(1+x^2)} = \frac{a}{x} + \frac{bx+c}{1+x^2}.$$

1.可积(即常义积分、定积分)的充分条件

- (1)设函数 f(x) 在 [a,b] 上连续,则 f(x) 在 [a,b] 上可积.
- (2)设函数 f(x) 在 [a,b] 上有界,且只有限个间断点,则
- f(x)在[a,b]上可积.

 2.可积 (即常义积分、定积分)的必要 微信公众号:顶尖考页 (ID:djky66)

3.定积分的基本性质

(1)定积分与积分变量无关: $\int_a^b f(x)dx = \int_a^b f(t)dt = \int_a^b f(u)du$

$$(2)\int_a^b f(x)dx = -\int_b^a f(x)dx$$

$$(3)\int_a^b dx = b - a$$

$$(4) \int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

$$(5)\int_a^b kf(x)dx = k\int_a^b f(x)dx(k为常数)$$

$$(6) \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

(7) 设
$$f(x) \le g(x), x \in [a,b],$$
则 $\int_a^b f(x)dx \le \int_a^b g(x)dx.$

推论: 当
$$f(x) \ge 0, x \in [a,b]$$
时, $\int_a^b f(x)dx \ge 0$;

$$(8) \left| \int_a^b f(x) dx \right| \le \int_a^b \left| f(x) \right| dx$$

(9)佔值定理: 设 $m \le f(x) \le M, x \in [a,b]$, 其中m, M 为常数,则 $m(b-a) \le \int_0^b f(x)dx \le M(b-a)$.

(10)积分中值定理: 设f(x)在[a,b]上连续,则在[a,b]上至少存在一个 ξ ,使 $\int_a^b f(x)dx = (b-a)f(\xi)$.

(11) 平均值公式:
$$\overline{f(x)} = \frac{1}{h-a} \int_a^b f(x) dx$$
.

4.牛顿--莱布尼兹公式

(1)设函数 f(x) 在 [a,b] 上连续, F(x) 是 f(x) 的一个原函数,则 $\int_a^b f(x)dx = F(x)|_a^b = F(b) - F(a)$.

(2) ($\xi \in (a,b)$ 的积分中值定理) 设函数 f(x) 在 [a,b] 上 连续, F(x) 是 f(x) 的一个原函数,则

$$\int_{a}^{b} f(x)dx = F(b) - F(a) = (b - a)F'(\xi) = (b - a)f(\xi), \xi \in (a, b).$$

5.定积分的常用结论

(1)普通对称性

设 f(x) 在 [-l,l] 上连续,则

$$\int_{-t}^{t} f(x)dx = \begin{cases} 2\int_{0}^{t} f(x)dx, f(x)$$
 为偶函数
$$0, \qquad f(x)$$
 为奇函数

(2)重要换元

设函数 f(x) 在 [a,b] 上连续,令 x = a + b - t ,则定积分

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-t)dt = \frac{1}{2} \int_{a}^{b} [f(x) + f(a+b-x)]dx.$$

特别地,设函数 f(x) 在 [-l,l] 上连续,令 x=-t,则

$$\int_{-l}^{l} f(x)dx = \int_{-l}^{l} f(-t)dt = \frac{1}{2} \int_{-l}^{l} [f(x) + f(-x)]dx = \int_{0}^{l} [f(x) + f(-x)]dx.$$

(3)设f(x)是以T为周期的连续函数,a为任意实数,则

$$\int_{a}^{a+T} f(x)dx = \int_{0}^{T} f(x)dx = \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x)dx.$$

$$(4) \int_{a}^{a} \sqrt{a^{2} - x^{2}} dx = \frac{1}{-\pi} a^{2}$$

(5)华里士公式(点火公式)

$$\int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n x dx \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{1}{2} \cdot \frac{\pi}{2}, \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{2}{3} \cdot 1, \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{2}{n-2} \cdot 1, \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{2}{3} \cdot 1, \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{2}{3} \cdot 1, \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{2}{n-2} \cdots \frac{2}{n-2} \cdot 1, \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{2}{n-2} \cdots \frac{2}{n$$

(6)三角函数系(以下 m,n 为不同时取 0 的非负整数)

$$\int_{-\pi}^{\pi} \sin nx \sin mx dx = \int_{0}^{2\pi} \sin nx \sin mx dx = \begin{cases} \pi, n = m \\ 0, n \neq m \end{cases}$$

$$\int_{-\pi}^{\pi} \sin nx \cos mx dx = \int_{0}^{2\pi} \sin nx \cos mx dx = 0$$

$$\int_{-\pi}^{\pi} \cos nx \cos mx dx = \int_{0}^{2\pi} \cos nx \cos mx dx = \begin{cases} \pi, n = m \\ 0, n \neq m \end{cases}$$

6.定积分的计算

(1)换元法

设函数f(x)在[a,b]上连续,若x=q(t) 满足:

- ① $\varphi(t)$ 在[α,β]上连续,且 $\varphi'(t)\neq 0$.
- ② $\varphi(\alpha) = a, \varphi(\beta) = b$,并且当t在[α, β]上变化时, $\varphi(t)$ 的 值在[a,b]上变化,则

$$\int_a^b f(x)dx = \int_a^\beta f[\varphi(t)]\varphi'(t)dt.$$

(2)分部积分公式

设u(x),v(x)在[a,b]上具有连续导函数u'(x),v'(x),则

$$\int_a^b u(x)v'(x)dx = u(x)v(x)\big|_a^b - \int_a^b v(x)u'(x)dx.$$

7.柯西不等式

设函数 f(x),g(x) 在 [a,b] 上连续,则

$$\left(\int_a^b f(x)g(x)dx\right)^2 \le \int_a^b f^2(x)dx \int_a^b g^2(x)dx.$$

三、变限积分

设函数 f(x) 在 [a,b] 上连续,则 $F(x) = \int_a^x f(t)dt$ 在 [a,b] 上可导,且 F'(x) = f(x) ,这也说明 F(x) 是 f(x) 在 [a,b] 上的一个原函数.

推论 1 设
$$F(x) = \int_{a}^{\varphi(x)} f(t)dt$$
,则 $F'(x) = f[\varphi(x)] \cdot \varphi'(x)$.
推论 2 $[\int_{\varphi_1(x)}^{\varphi_2(x)} f(t)dt]_x' = f[\varphi_2(x)]\varphi_2'(x) - f[\varphi_1(x)]\varphi_1'(x)$
推论 3 $[\int_{a}^{\varphi(x)} f(t)g(x)dt]_x' = [g(x)\int_{a}^{\varphi(x)} f(t)dt]_x'$
 $= g'(x)\int_{a}^{\varphi(x)} f(t)dt + g(x)f[\varphi(x)] \cdot \varphi'(x)$
推论 4 $F(x) = \int_{a}^{x} f(x-t)dt$,则 $\Rightarrow u = x - t$ $\Rightarrow x = x +$

四、反常积分

1.反常积分的计算

(1)无穷限的广义积分(无穷积分)

设 f(x) 连续,则

(2) 无界函数的广义积分(瑕积分)

①
$$\int_a^b f(x)dx = \lim_{\epsilon \to 0} \int_a^{b-\epsilon} f(x)dx, (x = b \mapsto f(x))$$
的 瑕点)

②
$$\int_a^b f(x)dx = \lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f(x)dx, (x = a \to f(x))$$
的 瑕点)

(x = c 为 f(x) 的 瑕点)

2.反常积分敛散性的判定

(1)比较审敛原理 1

设函数 f(x),g(x) 在区间 $[a,+\infty]$ 上连续:

如果
$$0 \le f(x) \le g(x)$$
 $(a \le x \le +\infty)$,并且 $\int_a^{+\infty} g(x) dx$ 收敛,

那么 $\int_{a}^{+\infty} f(x)dx$ 也收敛.

如果
$$0 \le g(x) \le f(x)$$
 $(a \le x \le +\infty)$, 并且 $\int_a^{+\infty} g(x) dx$ 发散,

那么 $\int_{-\infty}^{+\infty} f(x)dx$ 也发散.

(2)极限审敛法 1

设函数 f(x),g(x)在区间 $[a,+\infty]$ 上连续,

如果
$$\lim_{x\to +\infty} \frac{f(x)}{g(x)} = l \neq 0$$
,则 $\int_a^{+\infty} f(x) dx$ 与 $\int_a^{+\infty} g(x) dx$ 同敛散.

如果
$$\lim_{x\to +\infty} \frac{f(x)}{g(x)} = 0$$
,且 $\int_a^{+\infty} g(x) dx$ 收敛,则 $\int_a^{+\infty} f(x) dx$ 也收敛.

如果
$$\lim_{x\to\infty} \frac{f(x)}{g(x)} = +\infty$$
,且 $\int_a^{+\infty} g(x)dx$ 发散,则 $\int_a^{+\infty} f(x)dx$ 也发散.

(3)比较审敛原理 2

设函数 f(x),g(x) 在区间 (a,b] 上连续, x=a 为 f(x) 的瑕点:

如果 $0 \le f(x) \le g(x)$ $(a < x \le b)$,并且 $\int_a^b g(x)dx$ 收敛,那么

$\int_{a}^{b} f(x)dx$ 也收敛.

如果 $0 \le g(x) \le f(x)$ $(a < x \le b)$,并且 $\int_a^b g(x)dx$ 发散,那么 $\int_a^b f(x)dx$ 也发散.

(4)极限审敛法 2

设函数 f(x),g(x) 在区间 (a,b] 上连续, x=a 为 f(x) 的瑕点:

如果
$$\lim_{x\to a^+} \frac{f(x)}{g(x)} = l \neq 0$$
,则 $\int_a^b f(x)dx$ 与 $\int_a^b g(x)dx$ 同敛散.

如果
$$\lim_{x\to a'} \frac{f(x)}{g(x)} = 0$$
,且 $\int_a^b g(x)dx$ 收敛,则 $\int_a^b f(x)dx$ 也收敛.

如果
$$\lim_{x\to a'} \frac{f(x)}{g(x)} = +\infty$$
,且 $\int_a^b g(x)dx$ 发散,则 $\int_a^b f(x)dx$ 也发散.

(5)常见反常积分

①
$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx \left\{ \psi \otimes, p > 1 \atop \xi \otimes, p \leq 1 \right\}, \quad \int_{2}^{+\infty} \frac{1}{x \ln^{p} x} dx \left\{ \psi \otimes, p > 1 \atop \xi \otimes, p \leq 1 \right\}.$$

②
$$\int_0^1 \frac{1}{x^p} dx \begin{cases} \psi \otimes, p < 1 \\ \xi \otimes p \geq 1 \end{cases}.$$

- ③ $\int_{1}^{+\infty} x^k e^{-x^p} dx, k$ 为任意常数且p > 0 时均收敛.
- ④ $\int_0^1 \frac{\ln^k x}{x^p} dx, k$ 为任意常数且p < 1 时均收敛.

五、定积分的应用

1.求面积

(1)直角坐标系

微信公众号:顶尖考研 (ID:djky66)

在 $x \in [a,b]$ 上,由函数y = f(x), y = g(x)所围图形的面积

为:
$$S = \int_a^b |f(x) - g(x)| dx$$
.

(2)极坐标系

在 $\theta \in [\alpha, \beta]$ 上,由函数 $r = r_1(\theta), r = r_2(\theta)$ 所围图形的面积

为:
$$S = \frac{1}{2} \int_{\alpha}^{\beta} |r_1^2(\theta) - r_2^2(\theta)| d\theta$$
.

2.求体积

(1)旋转体体积

由曲线 y = f(x) 与直线 x = a, x = b 以及 x 轴所围平面图 形,绕 x 轴旋转一周所得旋转体体积 $V_x = \int_a^b \pi f^2(x) dx$;绕 y 轴旋转一周所得旋转体体积 $V_y = \int_a^b 2\pi |xf(x)| dx$.

(2)已知平行截面面积的立体体积: $V = \int_a^b S(x) dx$

3.求弧长(仅数学一、二要求)

(1)
$$L: y = f(x), a \le x \le b, l = \int_a^b \sqrt{1 + {y'}^2} dx$$
.

(2)
$$L:\begin{cases} x = x(t) \\ y = y(t) \end{cases}, a \le t \le b, l = \int_a^b \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$$
.

(3)
$$L: r = r(\theta), \alpha \le \theta \le \beta, l = \int_{\alpha}^{\beta} \sqrt{r^2 + r'^2} d\theta$$
.

4.侧面积(仅数学一、二要求)

由曲线 y=f(x) 与直线 x=a,x=b 以及 x 轴所围平面图 形,绕 x 轴旋转一周所得旋转体侧面积 $S=\int_a^b 2\pi f(x)ds$,其中 ds 为弧微分.

第四章 微分方程

一、一阶微分方程

1.可分离变量方程

形如:
$$y' = f(x)g(y)$$

解法: 分离变量得
$$\frac{dy}{g(y)} = f(x)dx$$
, 所以 $\int \frac{dy}{g(y)} = \int f(x)dx$.

2.齐次微分方程

形如:
$$y' = f\left(\frac{y}{x}\right)$$

解法: 令 $u = \frac{y}{x}$, 则y = ux, $y' = u + x \frac{du}{dx}$ 于是,原方程

$$\Rightarrow u + x \frac{du}{dx} = f(u) \Rightarrow \frac{du}{f(u) - u} = \frac{dx}{x} \Rightarrow \int \frac{du}{f(u) - u} = \ln|x| + C.$$

3.一阶线性微分方程

形如:
$$y' + p(x)y = q(x)$$

解法:方程两边同乘积分因子 $e^{\int p(x)dx}$,然后分别积分并

化简得:
$$y = e^{-\int p(x)dx} \left[\int q(x)e^{\int p(x)dx} dx + C \right]$$
.

4.伯努利方程(仅数学一要求)

形如: v' + p(x)v = q(x)v''

解法: 方程两边同除 v'', 然后令 $z = v^{1-n}, z' = (1-n)v^{-n}v'$, 则方程化为一阶线性微分方程 z'+(1-n)p(x)z=(1-n)q(x),解 法同上.

5.全微分方程(数学一要求,数学二了解)

形如:
$$P(x,y)dx + Q(x,y)dy = 0, \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

解法一: 凑全微分(数学二要求)

解決: 根据曲线积分与路径无关(仅数学一要求)

$$\int_{x_0}^{x} P(x, y) dx + \int_{y_0}^{y} Q(x_0, y) dy = C \text{ id } \int_{x_0}^{x} P(x, y_0) dx + \int_{y_0}^{y} Q(x, y) dy = C$$

二、可降阶的微分方程

1.不显含 v 型

形如:
$$G(x, y', y'') = 0$$

解法: 令 y' = p, y'' = p', 代入方程得 G(x, p, p') = 0, 化 为一阶微分方程,解得 $p = y' = p(x,C_i)$,继续解一阶微分方 程得 $v = v(x,C_1,C_2)$.

2.不显含 x 型

形如:
$$G(v, v', v'') = 0$$

解法: 令 $y'=p,y''=p\frac{dp}{dy}$,代入方程得 $G(x,p,p\frac{dp}{dy})=0$,化为一阶微分方程,解得 $p=y'=p(y,C_1)$,继续解一阶微分方程得 $y=y(x,C_1,C_2)$.

三、常系数线性微分方程

1.线性微分方程解的结构

二阶线性方程的一般形式为 y'' + p(x)y' + q(x)y = f(x), 其中 p(x),q(x),f(x) 均为连续函数,当右端 $f(x) \equiv 0$ 时,称为 二阶线性齐次方程,否则称为非齐次方程.

解的性质与结构(以下性质可推广到任意高阶的线性方程) 分以下几种:

- (1)若 $y_1(x), y_2(x)$ 为齐次方程 y'' + p(x)y' + q(x)y = 0 的两个特解,则其线性组合 $C_1y_1(x) + C_2y_2(x)$ 仍为齐次方程的解.特别地,若 $y_1(x), y_2(x)$ 线性无关 (即 $\frac{y_1(x)}{y_2(x)} \neq \lambda$ (常数)),则齐次方程的通解为 $y(x) = C_1y_1(x) + C_2y_2(x)$.
- (2)设 $y_1(x)$, $y_2(x)$ 为非线性方程 y'' + p(x)y' + q(x)y = f(x) 的两个特解,则其差 $y_1(x) y_2(x)$ 为相应齐次方程的特解.
 - (3)设 v'(x) 为非齐次方程 v'' + p(x)v' + q(x)v = f(x) 的一

个特解,y(x) 为齐次方程的任意特解,则其和 $y^*(x)+y(x)$ 为 y''+p(x)y'+q(x)y=f(x) 的解,特别地,若 $y_1(x),y_2(x)$ 为齐次方程的两个线性无关的特解,则y''+p(x)y'+q(x)y=f(x) 的通解为 $y(x)=y^*(x)+C_1y_1(x)+C_2y_2(x)$,其中 C_1,C_2 为任意常数.

2.二阶常系数齐次线性微分方程

形如: y'' + py' + qy = 0 其中 p,q 均为常数

解法:特征方程: $\lambda^2 + p\lambda + q = 0$

- (1) 当 λ_1, λ_2 为不同的特征根时,齐次方程的通解为 $y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$.
 - (2)当 $\lambda = \lambda_1$ 时,齐次方程的通解为 $y(x) = (C_1 + C_2 x)e^{\lambda_1 x}$.
- (3)当 $\lambda = \alpha \pm i\beta$ (复根)时,齐次方程的通解为 $y(x) = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$

3.二阶常系数非齐次线性微分方程

(1)求解步骤

形如: y'' + py' + qy = f(x) 其中 p,q 均为常数

解法: ①求对应齐次方程的通解 y(x)

- ②求出非齐次方程的特解 y*(x)
- ③非齐次方程的通解 y = v(x) + v*(x)
- (2)非齐次方程的特解 $y^*(x)$ 的求法有三种:微分算子法、常数变易法、待定系数法.
 - (3)待定系数法设特解形式如下:
 - ①若 $f(x) = P_n(x)e^{rx}$, $P_n(x)$ 为 x 的某一具体的 n 次多项式,

$$Q_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
.

②若 $f(x) = e^{\alpha x} (A\cos\beta x + B\sin\beta x), A, B, \alpha, \beta$ 为给定的常

数,则令 $y^*(x) = e^{\alpha x} (a\cos\beta x + b\sin\beta x) \cdot x^k$,其中a,b为待定系

数,
$$k = \begin{cases} 0, \alpha \pm \beta i$$
不是特征方程的根 $1, \alpha \pm \beta i$ 是特征方程的单根 .

③ 若 $f(x) = e^{ax} (A_m(x)\cos\beta x + B_n(x)\sin\beta x), A_m(x), B_n(x)$

为 x 多项式,则令 $y^*(x) = e^{\alpha x} (P_t(x) \cos \beta x + Q_t(x) \sin \beta x) \cdot x^k$,

其中 $l = \max\{m,n\}$, $k = \begin{cases} 0, \alpha \pm \beta i$ 不是特征方程的根 $1, \alpha \pm \beta i$ 是特征方程的单根

4.欧拉方程(仅数学一要求)

形如: $x^2y'' + a_1xy' + a_2y + = f(x)$, 其中 a_1, a_2 为常数.

解法: 当x > 0时, 令x = e', 则:

$$x\frac{dy}{dx} = \frac{dy}{dt} = Dy, x^2 \frac{d^2y}{dx^2} = \frac{d^2y}{dt^2} - \frac{dy}{dt} = D(D-1)y$$
.

代入原方程得: $\frac{d^2y}{dt^2} + (a_1 - 1)\frac{dy}{dt} + a_2y = f(e^t)$.这是一个以 t 为

自变量, y(t) 为未知函数的二阶常系数线性微分方程.

当x < 0时,令x = -e'可得类似结论.

5.一阶差分方程

形如: $y_{t+1} - ay_t = f(t)$

解法: (1)先求齐次方程 $y_{t+1} - ay_t = 0$ 的通解: 特征方程为

$$r-a=0, : r=a, : \overline{y}_{t}=Ca'$$
.

(2)再求非齐次方程的特解:

若
$$f(t) = P_n(t)d'$$
 , 则令 $y_i^* = Q_n(t)d' \cdot t^k$, $k = \begin{cases} 0, d = a \\ 1, d \neq a \end{cases}$, 代

入非齐次方程解出 y_i , 则 $y_i = y_i + y_i^* = Ca' + y_i^*$.

第五章 多元函数微分学

一、多元函数的偏导数与全微分

1.偏导数

$$f'_{x}(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x};$$

$$f'_{y}(x,y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}.$$

2.可微

记
$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y), A = f'_x(x, y), B = f'_y(x, y),$$

$$\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}, \quad \ddot{\pi} \lim_{\rho \to 0} \frac{\Delta z - [A\Delta x + B\Delta y]}{\rho} = 0, \quad \text{则 } f(x, y) \text{ 在}$$

$$(x, y) 处可微.$$

3.全徽分

若 f(x,y)在 (x,y)处可微,则在该点处 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 必存在,且 $f(z) = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$.

若 f(x,y) 在 (x,y) 处的两个一阶偏导数 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 连续,则 f(x,y) 在 (x,y) 处可微.

4.二阶混合偏导数与次序无关

设z = f(x, y)的两个混合偏导数 $f_{xy}(x, y), f_{yx}(x, y)$ 在区域

D内连续,则有 $f_{xy}(x,y) = f_{yx}(x,y)$.

5.极限、连续、偏导数、可微、方向导数(仅数学一)的关系

二、多元函数微分法

1.多元复合函数求偏导

$$(1)设z = f(u,v), u = \varphi(x,y), v = \phi(x,y), 则$$

$$\begin{cases} \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} \end{cases}$$

$$(2)设z = f(u,v), u = \varphi(x), v = \phi(x), 则$$

$$\frac{dz}{dx} = \frac{\partial z}{\partial u} \cdot \frac{du}{dx} + \frac{\partial z}{\partial v} \cdot \frac{dv}{dx}$$

(人) 有道考神 考研数学常用公式手册

$$\begin{cases} \frac{\partial z}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} \\ \frac{\partial z}{\partial y} = 0 + \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} \end{cases}$$

注:复合函数一定要设中间变量,抽象函数的高阶偏导数,其中间变量用数字1,2,3.....表示更简洁。

2.多元隐函数求偏导

(1)设
$$F(x, y) = 0$$
,则 $\frac{dy}{dx} = -\frac{F'_x(x, y)}{F'_y(x, y)}$

(2)
$$F(x, y, z) = 0$$
, $\mathbb{M} \frac{\partial z}{\partial x} = -\frac{F'_{x}(x, y, z)}{F'_{z}(x, y, z)}$, $\frac{\partial z}{\partial y} = -\frac{F'_{y}(x, y, z)}{F'_{z}(x, y, z)}$

(3)设由方程组
$${F(x,y,z)=0 \atop G(x,y,z)=0}$$
确定的隐函数 $y=y(x),z=z(x),$

则 $\frac{dy}{dx}$, $\frac{dz}{dx}$ 可通过解关于 $\frac{dy}{dx}$, $\frac{dz}{dx}$ 的线性方程组

$$: \begin{cases} F'_{x} + F'_{y} \frac{dy}{dx} + F'_{z} \frac{dz}{dy} = 0 \\ G'_{x} + G'_{y} \frac{dy}{dx} + G'_{z} \frac{dz}{dx} = 0 \end{cases} \Rightarrow \begin{cases} F'_{y} \frac{dy}{dx} + F'_{z} \frac{dz}{dx} = -F'_{x}, \\ G'_{y} \frac{dy}{dx} + G'_{z} \frac{dz}{dx} = -G'_{x} \end{cases}$$

来求解.

三、多元函数的极值与条件极值

1.多元函数的极值

(1)定义:

设函数z = f(x,y)在 $P(x_0,y_0)$ 的某邻域内有定义, 若 对于 该 邻域内异于 $P(x_0,y_0)$ 点的任一 点Q(x,y) 恒有

$$f(x, y) > f(x_0, y_0) (\vec{y} < f(x_0, y_0))$$

则称 $f(x_0, y_0)$ 为f(x, y)的极小值(极大值).

(2)必要条件

设z = f(x, y)在 $P(x_0, y_0)$ 点的一阶偏导数存在,且

$$P(x_0, y_0)$$
是 $z = f(x, y)$ 的极值点,则 $\begin{cases} f_x(x_0, y_0) = 0 \\ f_y(x_0, y_0) = 0 \end{cases}$.

(3)充分条件

设 z=f(x,y)在 $P(x_0,y_0)$ 点的某邻域内有连续的偏导数,且 $f_x'(x_0,y_0)=0$, $f_y'(x_0,y_0)=0$.记 $A(x,y)=f_{xx}''(x,y)$, $B(x,y)=f_{xy}''(x,y), C(x,y)=f_{yy}''(x,y):$

①若 $AC - B^2 > 0$, 则 $P(x_0, y_0)$ 是z = f(x, y)的一个极值点.若 A > 0则 $P(x_0, y_0)$ 为极小值点.若 A < 0则 $P(x_0, y_0)$ 为极大值点.

②若 $AC - B^2 < 0$, 则 $P(x_0, y_0)$ 不是z = f(x, y)的极值点.

2.条件极值

(1)目标函数 z = f(x, y) , 已知条件 $\varphi(x, y) = 0$.

解题步骤:

①构造辅助函数 $F(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y)$;

②解方程组
$$\begin{cases} f_x'(x,y) + \lambda \varphi_x'(x,y) = 0 \\ f_y'(x,y) + \lambda \varphi_y'(x,y) = 0 , 求得驻点; \\ \varphi(x,y) = 0 \end{cases}$$

- ③根据实际问题,判断驻点是否为极值点或最值点。
- (2)目标函数 z = f(x, y), 已知条件 $\varphi(x, y) = 0$, $\varphi(x, y) = 0$.

解题 步骤:

①构造辅助函数 $F(x,y,\lambda) = f(x,y) + \lambda \varphi_1(x,y) + \mu \varphi_2(x,y)$;

②解方程组
$$\begin{cases} f_x'(x,y) + \lambda \varphi_{1x}'(x,y) + \mu \varphi_{2x}'(x,y) = 0 \\ f_y'(x,y) + \lambda \varphi_{1y}'(x,y) + \mu \varphi_{2y}'(x,y) = 0 \\ \varphi_1(x,y) = 0 \\ \varphi_2(x,y) = 0 \end{cases}$$
,求得驻

点:

③根据实际问题,判断驻点是否为极值点或最值点.

第六章 二重积分

一、二重积分的概念

1.概念

$$\iint\limits_{D} f(x,y)d\sigma.$$

微信公众号:顶尖考研 (ID:djky66)

2.几何意义

当 $z = f(x,y) \ge 0$, $(x,y) \in D$ 时,二重积分表示以z = f(x,y)为曲项,以D为底的曲项柱体的体积.

3.物理意义

当 $z = f(x,y) \ge 0$, $(x,y) \in D$ 时,二重积分表示 平面薄片的质量.

二、二重积分的性质

1.基本性质

$$(1) \iint_{D} kf(x,y)d\sigma = k \iint_{D} f(x,y)d\sigma, k 为常数$$

$$(2) \iint_{D} [f(x,y) \pm g(x,y)] d\sigma = \iint_{D} f(x,y) d\sigma \pm g(x,y) d\sigma$$

、、、、有道考神 考研数学常用公式手册

(3)
$$\iint_D f(x,y)d\sigma = \sum_{i=1}^n \iint_D f(x,y)d\sigma$$
, 其中 D_i 为 D 的区域划

分且任两个子域最多只有边界重叠 $(i=1,2,\cdots,n)$.

$$(4)\iint_D d\sigma = A, 其中A为D的面积.$$

(5)比较定理

若在
$$D$$
上恒有 $f(x,y) \le g(x,y)$,则 $\iint_D f(x,y)d\sigma \le \iint_D g(x,y)d\sigma$

(6)估值定理

设M,m分别为f(x,v)在闭域D上的最大与最小值,A为D的面积,

则:
$$mA \leq \iint_D f(x,y)d\sigma \leq MA$$
.

(7)中值定理

若f(x,v)在闭域D上连续,A为D的面积,则在D上至少存在

一点
$$(\xi, \eta)$$
使 $\iint_D f(x, y)d\sigma = f(\xi, \eta)A$.

2.普通对称件

如果积分域D关于x轴对称, f(x,v)为v的奇偶函数, 则

二重积分
$$\iint_{\Omega} f(x,y)d\sigma$$

$$=\begin{cases} 0, f 关于y为奇函数, 即 f(x,-y) = -f(x,y) \\ 2\iint\limits_{D_1} f(x,y) d\sigma, f 关于y为偶函数, 即 f(x,-y) = f(x,y) \end{cases}$$

D,为D在上半平面部分.这个性质的几何意义见图(a),(b)

(2) 如果积分域D关于v轴对称,f(x,v)为x的奇偶函数,

则二重积分
$$\iint_{\Omega} f(x,y) d\sigma$$

$$= \begin{cases} 0, f 关于x的奇函数, 即 f(-x, y) = -f(x, y) \\ 2 \iint_{D_2} f(x, y) d\sigma, f 关于x 为偶函数, 即 f(-x, y) = f(x, y) \end{cases}$$

D,为D在右半平面部分

(3) 如果D关于原点对称, f(x,y)同时为x,y的奇偶函数,

则二重积分
$$\iint_{\mathbb{D}} f(x,y) d\sigma$$

$$= \begin{cases} 0, f 关于x, y$$
的奇函数, 即 $f(-x, -y) = -f(x, y) \\ 2 \iint_{D_2} f(x, y) d\sigma, f 关于x, y$ 为偶函数, 即 $f(-x, -y) = f(x, y) \end{cases}$

 D_1 为D在上半平面部分.

3.轮换对称性

任何情况下均有
$$I = \iint_{D_n} f(x,y) dx dy = \iint_{D_n} f(y,x) dy dx 成立$$
,

因为二重积分与变量无关,对换x,v不影响结果.

若积分区域 D_{xx} 关于 y=x 对称,即 $D_{xx}=D_{xx}$,则二重积

若 f(x, y) = f(y, x), 即被积函数具有轮换对称性,则二

重积分 $I = \frac{1}{2} \iint_{D_{xy}} f(x,y) dx dy$,其中 D_{xy}, D_{yx} 最多只有边界重

叠.

三、二重积分的计算

步骤:

- ① 画积分区域 D: 观察对称性:
- ②观察被积函数,选择积分次序:
- ③选择坐标系, 化为累次积分;

$$\iint_{D} f(x,y)d\sigma = \begin{cases} \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x,y)dy \\ \int_{c}^{d} dy \int_{x_{1}(y)}^{x_{2}(y)} f(x,y)dx \\ \int_{\alpha}^{\beta} d\theta \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r\cos\theta, r\sin\theta)rdr \end{cases}$$

④计算, 先计算后面, 再代入前面进行计算,

第七章 无穷级数(数学一、三)

一、数项级数

1.级数的敛散性

- (1)设 $c \neq 0$ 的常数,则 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} cu_n$ 有相同敛散性
- (2)设有两个数级 $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} v_n$

若
$$\sum_{n=1}^{\infty} u_n = s$$
, $\sum_{n=1}^{\infty} v_n = \sigma$, 则 $\sum_{n=1}^{\infty} (u_n \pm v_n) = s \pm \sigma$.

若
$$\sum_{n=1}^{\infty} u_n$$
收 敛 , $\sum_{n=1}^{\infty} v_n$ 发 散 ,则 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 发 散 .

若
$$\sum_{n=1}^{\infty} u_n \sum_{n=1}^{\infty} v_n$$
均 发 散 ,则 $\sum_{n=1}^{\infty} (u_n \pm v_n)$ 敛 散 性 不 确 定 .

注:添加或去消有限项不影响一个级数的敛散性.

设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则对其各项任意加括号后所得新级数

仍收敛于原级数的和

2.正项级数敛散性的判定

(1)比较判敛法: 设0 ≤ u ... ≤ v ... , 若

$$\sum_{n=1}^{\infty} u_n$$
收敛,则 $\sum_{n=1}^{\infty} v_n$ 收敛; $\sum_{n=1}^{\infty} u_n$ 发散,则 $\sum_{n=1}^{\infty} v_n$ 发散

(2)比较法的极限形式:设 $\sum_{n=0}^{\infty} u_n \mathcal{Q} \sum_{n=0}^{\infty} v_n$ 均为正项级数

$$\coprod \lim_{n\to\infty}\frac{u_n}{v_n}=A(v_n\neq 0)$$

- ① 若 $A \neq 0$ 且为常数,则 $\sum_{n=1}^{\infty} u_n$, $\sum_{n=1}^{\infty} v_n$ 同敛散
- ②若A = 0,且 $\sum_{n=1}^{\infty} v_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛
- ③ 若A为 + ∞ , 且 $\sum_{n=1}^{\infty} v_n$ 发散,则 $\sum_{n=1}^{\infty} u_n$ 发散

两个常用的比较级数:

① 等比级数
$$\sum_{n=1}^{\infty} ar^{n-1} = \begin{cases} \frac{a}{1-r}, |r| < 1 \\ \text{发散}, |r| \ge 1 \end{cases}$$

②
$$p-$$
级数 $\sum_{n=1}^{\infty}\frac{1}{n^{p}}=$ $\begin{cases} \psi$ 敛, $p>1$ 时 发散, $p\leq 1$ 时

(3)比值判别法(达朗贝尔准则)(适用于通项 u_n 中含有 n!

或关于 n 的若干连乘积形式)

若
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \rho$$

$$\begin{cases} \rho > 1 \text{ iff } \sum_{n=1}^{\infty} u_n \text{ 发散} \\ \rho = 1 \text{ iff } , \text{ 方法失效} \\ \rho < 1 \text{ iff } \sum_{n=1}^{\infty} u_n \text{ 收敛} \end{cases}$$

3.交错级数敛散性的判定

莱布尼兹准则:

若交错级数
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n, (u_n > 0)$$
满足条件:

$$(1)u_n \ge u_{n+1}, (n=1,2,\dots); (2) \lim_{n\to\infty} u_n = 0,$$

则交错级数收敛,其和 $S \le u_1$, 其 n 项余和的绝对值 $|R_n| \le u_{n+1}$.

4.一般级数敛散性的判定

- (1)绝对收敛:若 $\sum_{n=1}^{\infty}|u_n|$ 收敛,称级数 $\sum_{n=1}^{\infty}u_n$ 绝对收敛,且此时, $\sum_{n=1}^{\infty}u_n$ 一定也收敛.
- (2)条件收敛: 若 $\sum_{n=1}^{\infty} u_n$ 收敛, $\sum_{n=1}^{\infty} |u_n|$ 发散,则称级数 $\sum_{n=1}^{\infty} u_n$ 条件收敛.

二、幂级数

1.幂级数的概念

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots = \sum_{n=0}^{\infty} a_n x^n$$
收敛半径,若 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$,则 $R = \frac{1}{\rho}$.

2.函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 收敛域的求法步骤

(1)用比值(或根值)法求 $\rho(x)$,即

$$\lim_{n\to\infty}\frac{|u_{n+1}(x)|}{|u_n(x)|}=\rho(x)(\exists x \lim_{n\to\infty}\sqrt[n]{|u_n(x)|}=\rho(x));$$

- (2)解不等式方程 $\rho(x)$ < 1, 求出 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛区间(a,b);
- (3)考察x = a(或x = b) 时, $\sum_{n=1}^{\infty} u_n(a)($ 或 $\sum_{n=1}^{\infty} u_n(b))$ 的敛散性
- (4) 写出 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛域

3.幂级数的四则运算性质

设
$$\sum_{n=0}^{\infty} a_n x^n = f(x)$$
, $\sum_{n=0}^{\infty} b_n x^n = g(x)$, 其收敛半径分别为

$$R_1, R_2, R = \min(R_1, R_2)$$
, 则对 $\forall x \in (-R, R)$,有:

(1)
$$\sum_{n=0}^{\infty} a_n x^n \pm \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n \pm b_n) x^n = f(x) \pm g(x)$$
, \coprod $\stackrel{\cdot}{\coprod}$

(-R,R) 内绝对收敛.

$$(2) \left(\sum_{n=0}^{\infty} a_n x^n \right) \left(\sum_{n=0}^{\infty} b_n x^n \right) = \sum_{n=0}^{\infty} (a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0) x^n$$
$$= f(x) g(x) .$$

利用多项式的长除法可得: $C_0 = \frac{a_0}{b_0}, C_1 = \frac{a_1b_0 - a_0b_1}{b_0^2}, \dots$

4.幂级数的分析性质

设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为R,则在(-R,R)内有

- $(1)\sum_{n=0}^{\infty}a_{n}x^{n}$ 的和函数f(x) 是连续的。
- (2) $\sum_{n=0}^{\infty} a_n x^n$ 可逐项微分,且 $f_x' = (\sum_{n=0}^{\infty} a_n x^n)'$

$$= \sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=0}^{\infty} n a_n x^{n-1}$$

《《有道考神》考研数学常用公式手册

(3)
$$\sum_{n=0}^{\infty} a_n x^n$$
可逐项积分,且 $\int_0^x f(t)dt = \int_0^x (\sum_{n=0}^{\infty} a_n t^n)dt$

$$= \sum_{n=0}^{\infty} \left(\int_{0}^{x} a_{n} t^{n} dt \right) = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1}$$

5.函数的幂级数展开

设f(x)在x=x。的某一邻域内具有任意阶导数,级数

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \cdots$$

称为f(x)在 $x = x_0$ 处的泰勒级数.

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots$$

称为麦克劳林级数.

设f(x)在 $x = x_0$ 某领域内具有任意阶导数,则泰勒级数

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
收敛于 $f(x)$ 的充分条件 $\lim_{n \to \infty} R_n(x) = 0$, 其中
$$R_n(x) = \frac{1}{(n+1)!} f^{(n+1)} [x_0 + \theta(x - x_0)] (x - x_0)^{n+1}, 0 < \theta < 1.$$

6.常见的幂级数展开式

$$(1)\frac{1}{1-u}=1+u+u^2+\cdots+u^n+\cdots=\sum_{n=0}^{\infty}u^n,(-1,1)$$

$$(2)\frac{1}{1+u}=1-u+u^2-\cdots+(-1)^nu^n+\cdots=\sum_{n=0}^{\infty}(-1)^nu^n,(-1,1)$$

(3)
$$e^{u} = 1 + u + \frac{u^{2}}{2!} + \dots + \frac{u^{n}}{n!} + \dots = \sum_{n=0}^{\infty} \frac{u^{n}}{n!}, (-\infty, +\infty)$$

(4)
$$\sin u = u - \frac{u^3}{3!} + \dots + (-1)^n \frac{u^{2n+1}}{(2n+1)!} + \dots$$

$$=\sum_{n=0}^{\infty}(-1)^{n}\frac{u^{2n+1}}{(2n+1)!},(-\infty,+\infty)$$

(5)
$$\cos u = 1 - \frac{u^2}{2!} + \frac{u^4}{4!} - \dots + (-1)^n \frac{u^{2n}}{(2n)!} + \dots$$

$$=\sum_{n=0}^{\infty}(-1)^{n}\frac{u^{2n}}{(2n)!},(-\infty,+\infty)$$

(6)
$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \dots + (-1)^n \frac{u^{n+1}}{n+1} + \dots$$

$$=\sum_{n=0}^{\infty}(-1)^n\frac{u^{n+1}}{n+1},(-1,1)$$

$$(7)(1+u)^a = 1 + au + \frac{a(a-1)}{2!}u^2 + \dots + \frac{a(a-1)\cdots(a-n+1)}{n!}u^n \cdots$$

(随 a 的不同而不同,但在(-1,1)总有意义)

三、傅里叶级数

1.傅里叶级数的概念

微信公众号:顶尖考研 (ID:djky66)

设f(x)是以 2π 为周期的函数,且在 $[-\pi,\pi]$ 或 $[0,2\pi]$ 上可积,则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos nx dx, (n = 0, 1, 2, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx dx, (n = 1, 2, \dots)$$

称为f(x)的傅立叶系数.

以傅立叶系数为系数的三角级数 $\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$

称为f(x)的傅立叶级数,记为 $f(x) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$

设f(x)是以2l为周期的函数,且 $H \rightarrow 1$,I]上可积,则以

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi}{l} x dx, (n = 0, 1, 2 \cdots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi}{l} x dx, (n = 0, 1, 2 \cdots)$$

为系数的三角级数
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi}{l}x + b_n \sin \frac{n\pi}{l}x)$$
称为 $f(x)$

的傅立叶级数,记为
$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x).$$

3.狄利克雷收敛定理

设函数f(x)在 $[-\pi,\pi]$ 上满足条件:

- (1)除有限个第一类间断点外都连续。
- (2)只有有限个极值点,则f(x)的傅立叶级数在 $[-\pi,\pi]$ 上收敛

且
$$S(x) = \begin{cases} f(x), x \to f(x)$$
的连续点;

$$\frac{1}{2} [f(x_0 - 0) + f(x_0 + 0)], x_0 \to f(x)$$
的第一类间断点;

$$\frac{1}{2} [f(-\pi + 0) + f(\pi_0 + 0)], x = \pm \pi.$$

4.正弦级数、余弦级数

(1) f(x) 为 [0, l] 上的非周期函数,令:

为偶函数,则
$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi}{l} x$$
 (余弦级数),

其中:
$$a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi}{l} x dx$$
 (n=0, 1, 2,).

(2) f(x) 为[0,I] 上的非周期函数,令:

$$F(x) = \begin{cases} f(x), 0 \le x \le l \\ -f(-x), -l \le x < 0 \end{cases}, \ F(x) \Leftrightarrow x = 0 \text{ \oint } \text{\not E \boxtimes $iii } [-\pi, \pi]$$

上为奇函数,则 $f(x) \sim \sum_{n=1}^{\infty} b_n \sin \frac{n\pi}{l} x$ (正弦级数),

其中:
$$b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi}{l} x dx$$
 (n=1, 2,)

第八章 向量代数与空间几何(数学一)

一、向量的概念,向量的线性运算

1.向量

既有大小又有方向的量,又称向量,

2.向量的模

向量 \bar{a} 的大小.记为 $|\bar{a}|$.

3.向量的坐标表示

若向量用坐标表示 $\bar{a}=x\bar{i}+y\bar{j}+z\bar{k}=\{x,y,z\}$,则

$$\left| \vec{a} \right| = \sqrt{x^2 + y^2 + z^2}$$

4.向量的运算法则

(1)加减运算 设有向量 $\bar{a} = \{x_1, y_1, z_1\}$, $\bar{b} = \{x_2, y_2, z_2\}$,

则 $\vec{a} \pm \vec{b} = \{x_1 \pm x_2, y_1 \pm y_2, z_1 \pm z_2\}.$

(2)数乘运算 数乘运算定义为向量ā与一数量 l 之积

$$\lambda \bar{a}$$
 , $\lambda \bar{a} = \begin{cases} |\lambda \bar{a}| \overline{a^0} & \lambda > 0,$ 即与 \bar{a} 同向
$$\lambda = 0,$$
即为零向量 ,设 $\bar{a} = \{x_1, y_1, z_1\}$,则
$$-|\lambda \bar{a}| \overline{a^0} & \lambda < 0,$$
即与 \bar{a} 反向

$$\lambda \vec{a} = \{\lambda x_1, \lambda y_1, \lambda z_1\}.$$

二、向量的数量积、向量积、混合积

1.向量的数量积(点积,内积)

向量
$$\bar{a}$$
与 \bar{b} 的数量积 $\bar{a}\cdot\bar{b}=|\bar{a}||\bar{b}|\cos(\widehat{\bar{a},\bar{b}})$.

设
$$\bar{a} = \{x_1, y_1, z_1\}$$
, $\bar{b} = \{x_2, y_2, z_2\}$, 则 $\bar{a} \cdot \bar{b} = x_1 x_2 + y_1 y_2 + z_1 z_2$.

2.向量的向量积(叉积,外积)

设有两个向量 \bar{a} 与 \bar{b} ,若存在一个向量 \bar{c} ,满足如下条件

(1)
$$|\vec{c}| = |\vec{a}| |\vec{b}| \sin(\vec{a}, \vec{b})$$
;

- (2) $\bar{c} \perp \bar{a}, \bar{c} \perp \bar{b}$, 即 \bar{c} 垂直于 \bar{a} , \bar{b} 所确定的平面;
- (3) \bar{a} , \bar{b} , \bar{c} 成右手系.则称向量 \bar{c} 为向量 \bar{a} 与 \bar{b} 的向量积,记 $\bar{c}=\bar{a}\times\bar{b}$.

设
$$\bar{a} = \{x_1, y_1, z_1\}$$
 $\bar{b} = \{x_2, y_2, z_2\}$, 则

$$\bar{a} \times \bar{b} = \begin{vmatrix} \bar{i} & \bar{j} & \bar{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \bar{i} - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \bar{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \bar{k}.$$

3.向量的混合积

设有三个向量 \bar{a},\bar{b},\bar{c} ,若先作 \bar{a} , \bar{b} 的叉积 $\bar{a}\times\bar{b}$,再与 \bar{c} 作点积 $(\bar{a}\times\bar{b})\cdot\bar{c}$,则这样的数积称为向量 \bar{a} , \bar{b} , \bar{c} 的混合积,

记为
$$(a,b,c)$$
, 即 $(a,b,c) = (\bar{a} \times \bar{b}) \cdot \bar{c}$.

设
$$\vec{a} = \{x_1, y_1, z_1\}$$
 , $\vec{b} = \{x_2, y_2, z_2\}$, $\vec{c} = \{x_3, y_3, z_3\}$,

则
$$(a,b,c) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

三、向量的位置关系

1.向量之间的位置关系及结论

设
$$\bar{a} = \{x_1, y_1, z_1\}$$
, $\bar{b} = \{x_2, y_2, z_2\}$, $\bar{c} = \{x_3, y_3, z_3\}$

(1)
$$\bar{a} \perp \bar{b} \Leftrightarrow \bar{a} \cdot \bar{b} = 0 \Leftrightarrow x_1 x_2 + y_1 y_2 + z_1 z_3 = 0$$
;

(2)
$$\vec{a}//\vec{b} \Leftrightarrow \vec{a} \times \vec{b} = \vec{0} \Leftrightarrow \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$$
;

其中 x_2, y_2, z_2 之中有一个为"0",如 $x_2 = 0$,应理解为 $x_1 = 0$;

- (3) \bar{a} , \bar{b} 不共线 \Leftrightarrow 3 不全为零的数 λ , μ 使 $\lambda \bar{a} + \mu \bar{b} = \bar{0}$;
- (4) 向量 \bar{a} 与 \bar{b} 的夹角,可由下式求出

$$\cos(\bar{a}^{\wedge}\bar{b}) = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}};$$

(5) \bar{a} , \bar{b} , \bar{c} 共面 \Leftrightarrow 3 不全为零的数 λ, μ, ν , 使

$$\lambda \bar{a} + \mu \bar{b} + \nu \bar{c} = \vec{0}$$
 或者 $(a,b,c) = 0$

2.单位向量

模为 1 的向量. 向量 \bar{a} 的单位向量记作 \bar{a}^{0} ,

$$\overline{a^0} = \frac{\overline{a}}{|\overline{a}|} = \left\{ \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right\}.$$

3.向量的方向余弦

$$\cos \alpha = \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \cos \beta = \frac{y}{\sqrt{x^2 + y^2 + z^2}},$$

$$\cos \gamma = \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$
, 其中 α, β, γ 为向量 \bar{a} 与各坐标轴正向的

夹角.

4.单位向量的方向余弦

显然 $\overline{a^0} = \{\cos \alpha, \cos \beta, \cos \gamma\}$, 且有 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

四、空间平面与直线

1.平面方程

(1)一般式方程

$$Ax + Bv + Cz + D = 0$$
, 法向量 $\vec{n} = \{A, B, C\}$

若方程中某个坐标不出现,则平面就平行于该坐标轴,例如平面 Ax + Cz + D = 0 // y 轴.

(2)平面的点法式方程

$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$
 $M(x_0,y_0,z_0)$ 为平面上

已知点, $\vec{n} = \{A, B, C\}$ 为法向量.

(3)三点式方程

(3)三点式方程
$$\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} M_1(x_1,y_1,z_1) , M_2(x_2,y_2,z_2) ,$$

$$M_3(x_3,y_3,z_3)$$
 为平面上的三个点. (4)截距式方程
$$(4)$$
 (1D: djky66)

 $\frac{x}{c} + \frac{y}{b} + \frac{z}{c} = 1$, a,b,c 分别为平面上坐标轴上的截距,

平面通过三点 (a,0,0),(0,b,0),(0,0,c).

2.直线方程

(1)一般式方程(两平面交线)

$$\begin{cases} A_1 x + B_1 y + C_1 x + D_1 = 0 & \text{Pim } \pi_1 \\ A_2 x + B_2 y + C_2 x + D_2 = 0 & \text{Pim } \pi_2 \end{cases}$$

平面 π , 与平面 π , 的法向量分别为 $\overline{n} = \{A,B,C\}$,

$$\overrightarrow{n_2} = \{A_2, B_2, C_2\}$$
 ,直线的方向向量为 $\overrightarrow{s} = \overrightarrow{n_1} \times \overrightarrow{n_2} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{vmatrix}$

(2)标准式方程

$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$

 $M(x_0,y_0,z_0)$ 为直线上已知点, $\overline{s}=\{l,m,n\}$ 为直线的方向向量.

(3)两点式方程

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

其中 $M_1(x_1, y_1, z_1)$, $M_2(x_2, y_2, z_2)$ 为直线上的两点。

(4)参数式方程

$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt & M(x_0, y_0, z_0)$$
 为直线上已知点, $\vec{s} = \{l, m, n\} \\ z = z_0 + nt \end{cases}$

为直线的方向向量。

3.平面间的关系

设有两个平面: 平面 π_1 : $A_1x + B_1y + C_1z + D_1 = 0$ 和平面 π_2 :

$$A_2 x + B_2 y + C_2 z + D_2 = 0$$

(1)平面
$$\pi_1$$
 // 平面 $\pi_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$

(2)平面
$$\pi_1 \perp$$
平面 $\pi_2 \Leftrightarrow A_1A_2 + B_1B_2 + C_1C_2 = 0$

(3)平面 π , 与平面 π , 的夹角 θ , 由下式确定

>>>有道考神 考研数学常用公式手册

$$\cos \theta = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$$

4.平面与直线间关系

直线
$$L: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$$

$$\stackrel{\mathrm{TP}}{\coprod} \stackrel{\mathrm{II}}{\coprod} \pi_1: \quad A_1 x + B_1 y + C_1 z + D_1 = 0$$

$$(1)L//\pi \Leftrightarrow Al + Bm + Cn = 0$$

(2)
$$L \perp \pi \Leftrightarrow \frac{A}{l} = \frac{B}{m} = \frac{C}{n}$$

(3) L 与 π 的夹角 θ ,由下式确定

$$\sin \theta = \frac{Al + Bm + Cn}{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}}$$

5.直线间关系

设有两直线: 直线
$$L_1$$
: $\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$
直线 L_2 : $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$

(1)
$$L_1 // L_2 \Leftrightarrow \frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$$

$$(2) L_1 \perp L_2 \Leftrightarrow l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$$

(3)直线 L 与 L, 的夹角 θ , 由下式确定

$$\cos\theta = \frac{\left|l_1 l_2 + m_1 m_2 + n_1 n_2\right|}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}}$$

6.点到平面的距离

 $M(x_0, y_0, z_0)$ 到平面 $\pi: Ax + By + Cz + D = 0$ 的距离为

到平面
$$\pi : Ax + By + Cz + D = 0$$
 的距离为
$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$
(ID: djky66)

7.点到直线的距离

$$M(x_0, y_0, z_0)$$
 到直线 $L_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$ 距离为

$$d = \frac{\left| \overrightarrow{M_1 M_0} \times \overrightarrow{M_1 P} \right|}{\overrightarrow{M_1 P}} = \frac{\left| \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_0 - x_1 & y_0 - y_1 & z_0 - z_1 \\ l & m & n \end{vmatrix} \right|}{\sqrt{l^2 + m^2 + n^2}}$$

五、空间曲面与曲线

1.准线为各种形式的柱面方程的求法

(1)准线为
$$_{\Gamma}$$
:
$$\begin{cases} f(x,y)=0, & \text{GP}(z) \text{ and } z \text{ a$$

$$f(x,y)=0,$$

准线为
$$\Gamma$$
:
$$\begin{cases} \varphi(x,z) = 0 \\ y = 0 \end{cases}$$
, 母线 // y 轴的柱面方程为

$$\varphi(x,z)=0.$$

准线为
$$\Gamma:\begin{cases} \psi(y,z)=0\\ x=0 \end{cases}$$
, 母线//x 轴的柱面方程为

$$\psi(y,z)=0.$$

(2) 准线为
$$\Gamma$$
:
$$\begin{cases} f(x,y,z)=0\\ g(x,y,z)=0 \end{cases}$$
, 母线的方向向量为

{l,m,n} 的柱面方程的求法

首先,在准线上任取一点(x,y,z),则过点(x,y,z)的母线

方程为
$$\frac{X-x}{l} = \frac{Y-y}{m} = \frac{Z-z}{n}$$

其中X,Y,Z为母线上任一点的流动坐标,消去方程组

$$\begin{cases} f(x, y, z) = 0 \\ g(x, y, z) = 0 \\ \frac{X - x}{I} = \frac{Y - y}{m} = \frac{Z - z}{n} \end{cases}$$

中的x,y,z便得所求的柱面方程.

2.常见柱面方程

常见的柱面方程				
名称	方程		图形	
圆柱面	$x^2 + y^2 = R^2$			
椭圆柱面	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$		ł.	
双曲柱面	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$., o	
抛物柱面	$x^2 = 2py, (p > 0)$		1 2	
标准二次方程及其图形				
名称	方程		图形	

椭球面	$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1$ (a,b,c 均为正数)	lz c o by
单叶双曲面	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ (a,b,c 均为正数)	z v
双叶双曲面	$-\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} = 1$ $(a,b,c \ 均为正数)$	z , v , v , v , v , v , v , v , v , v ,
椭圆的抛物面	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2pz$ (a,b,p) 为正数)	x, 0

双曲抛物面 (又名马鞍面)	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz$ $(a,b,p 均为正数)$	
二次锥面	$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ (a,b,c 为正数)	o y

六、空间曲线的切线、法平面与空间曲面的切平面、法线

1.曲线的切线及法平面方程

(1)曲线
$$\begin{cases} x = x(t) \\ y = y(t) 在(x_0, y_0, z_0) \leftrightarrow t = t_0 \text{ 处的切线方程:} \\ z = z(t) \end{cases}$$
$$\frac{x - x_0}{x'(t_0)} = \frac{y - y_0}{y'(t_0)} = \frac{z - z_0}{z'(t_0)}$$

法平面方程:

$$x'(t_0)(x-x_0) + y'(t_0)(y-y_0) + z'(t_0)(z-z_0) = 0$$

(2)空间曲线Γ的一般式方程为
$$\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$$

则在曲线 Γ 的 $P(x_0,y_0,z_0)$ 处的切线方程:

$$\frac{x - x_0}{\frac{\partial(F,G)}{\partial(y,z)}\Big|_p} = \frac{y - y_0}{\frac{\partial(F,G)}{\partial(z,x)}\Big|_p} = \frac{z - z_0}{\frac{\partial(F,G)}{\partial(x,y)}\Big|_p}$$

法线方程:

$$\frac{\partial(F,G)}{\partial(y,z)}\bigg|_{p}(x-x_{0})+\frac{\partial(F,G)}{\partial(z,x)}\bigg|_{p}(y-y_{0})+\frac{\partial(F,G)}{\partial(x,y)}\bigg|_{p}(z-z_{0})$$

2.空间曲面的切平面和法线方程

(1)设曲面
$$\sum$$
为显示方程 $= f(x, y)$,则在 \sum 上一点 $P(x_0, y_0, z_0)$ 处的

切平面方程:
$$\frac{\partial z}{\partial x}\Big|_{p}(x-x_0) + \frac{\partial z}{\partial y}\Big|_{p}(y-y_0) - (z-z_0) = 0.$$

法线方程:
$$\frac{x-x_0}{\frac{\partial z}{\partial x}\Big|_p} = \frac{y-y_0}{\frac{\partial z}{\partial y}\Big|_p} = \frac{z-z_0}{-1}$$

(2)设曲面
$$\sum$$
为隐式方程 $F(x,y,z) = 0$,则在 \sum 上一点 $P(x_0,y_0,z_0)$ 的

切平面方程:
$$F'_x | (x-x_0) + F'_y |_p (y-y_0) + F'_z |_p (z-z_0) = 0$$

法线方程:
$$\frac{x-x_0}{F'_x|_p} = \frac{y-y_0}{F'_y|_p} = \frac{z-z_0}{F'_y|_p}$$

第九章 三重积分(数学一)

一、三重积分的概念

1.概念

$$\iiint\limits_{\Omega} f(x,y,z)dv.$$

2.物理意义

当 $f(x,y,z) \ge 0$, $(x,y,z) \in \Omega$ 时,三重积分表示 空间物体的质量。

二、三重积分的性质

1.基本性质

$$(1) \iiint\limits_{\Omega} kf(x,y,z)dv = k \iiint\limits_{\Omega} f(x,y,z)dv, k 为常数$$

$$(2) \iiint_{\Omega} [f(x,y,z) + g(x,y,z)] dv = \iiint_{\Omega} f(x,y,z) dv + \iiint_{\Omega} g(x,y,z) dv$$

(3)
$$\iint\limits_{\Omega} f(x,y,z)dv = \sum_{i=1}^{n} \iiint\limits_{\Omega_{i}} f(x,y,z)dv,$$
其中 Ω_{i} 为 Ω 的区域

划分且任两个子域最多只有边界重叠 $(i=1,2,\cdots,n)$.

$$(4)$$
 $\iint_{\Omega} dv = A$, 其中 A 为 Ω 的体积.

(5)比较定理

若在Ω上恒有
$$f(x,y,z) \le g(x,y,z)$$
,则 $\iint_{\Omega} f(x,y,z) dv \le \iint_{\Omega} g(x,y,z) dv$

(6)估值定理

设M,m分别为f(x,y,z)在闭域 Ω 上的最大与最小值,A为 Ω 的体积,

则:
$$mA \leq \iiint_{\Omega} f(x,y,z)dv \leq MA$$
.

(7)中值定理

若f(x,y,z)在闭域 Ω 上连续,A为 Ω 的体积,则在 Ω 内至少存在

一点
$$(\xi,\eta,\gamma)$$
使 $\iint_{\Omega} f(x,y,z)dv = Af(\xi,\eta,\gamma)$.

2.普通对称性

(1) 如果积分域 Ω 关于xoz面对称, f(x, y, z)为y的奇偶函数,则

三重积分
$$\iint_{\Omega} f(x,y,z)dv$$

$$= \begin{cases} 0, f 关于y为奇函数, 即 f(x,-y,z) = -f(x,y,z) \\ 2 \iiint\limits_{\Omega_i} f(x,y,z) dv, f 关于y为偶函数, 即 f(x,-y,z) = f(x,y,z) \end{cases}$$

 Ω_1 为 Ω 在y > 0一侧的部分.

(2)Ω 关于其他坐标面对称有类似结论.

3.轮换对称性

若积分区域 Ω 具有轮换对称性,即对换坐标x,y,z后, Ω

不变, 则三重积分
$$\iiint_{\Omega} f(x,y,z)dv = \iiint_{\Omega} f(y,x,z)dv = \iiint_{\Omega} f(z,y,x)dv$$
.

三、三重积分的计算

步骤:

- ①画积分区域Ω;观察对称性;
- ②观察被积函数,选择积分次序;
- ③选择坐标系,化为累次积分;

截面法:
$$\iiint_{\Omega} f(x,y,z)dv = \int_{a}^{b} dz \iint_{D_{a}} f(x,y,z)dxdy$$

投影法:
$$\iiint\limits_{\Omega} f(x,y,z)dv = \iint\limits_{D_{R}} dxdy \int_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z)dz$$

柱面坐标:

$$\iiint_{\Omega} f(x, y, z) dv = \int_{\alpha}^{\beta} d\theta \int_{r_{1}(\theta)}^{r_{2}(\theta)} r dr \int_{z_{1}(\theta, r)}^{z_{2}(\theta, r)} f(r \cos \theta, r \sin \theta, z) dz$$

球面坐标:
$$\iint_{\Omega} f(x,y,z)dv$$

$$= \int_{a}^{\beta} d\theta \int_{\varphi_{i}(\theta)}^{\varphi_{2}(\theta)} d\varphi \int_{\eta_{i}(\theta,\varphi)}^{r_{2}(\theta,\varphi)} f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^{2} \sin\varphi dr$$

④计算, 先计算后面, 再代入前面进行计算.

第十章 曲线积分(数学一)

一、第一类曲线积分

1.概念

 $\int_{\mathcal{A}} f(x,y)ds$, 代表曲线状物体的质量.

2.性质

若曲线L关于y轴对称,L为曲线L在y轴右侧部分,则

$$\int_{L} f(x,y)ds = \begin{cases} 2\int_{L_{1}} f(x,y)ds, \, \Xi f(-x,y) = f(x,y) \\ 0, & \Xi f(-x,y) = -f(x,y) \end{cases}.$$

若曲线L关于x轴对称,有类似结论.

若曲线L关于y=x对称,即L具有轮换对称性,则

$$\int_{L} f(x, y) ds = \int_{L} f(y, x) ds = \frac{1}{2} \int_{L} [f(x, y) + f(y, x)] ds.$$

3.计算

$$\int_{L} f(x, y) ds = \begin{cases} \int_{a}^{b} f(x, y(x)) \sqrt{1 + {y'}^{2}} dx \\ \int_{c}^{d} f(x(t), y(t)) \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dt \\ \int_{a}^{\beta} f(r(\theta) \cos \theta, r(\theta) \sin \theta) \sqrt{r^{2} + {r'}^{2}} d\theta \end{cases}$$

二、第二类曲线积分

1.概念

$$\int_{\mathcal{C}} P(x,y)dx + Q(x,y)dy$$

2.性质

若曲线L关于v轴对称,L为曲线L在v轴右侧部分,则

$$\int_{L} P(x,y)dx = \begin{cases}
2 \int_{L_{1}} P(x,y)dx, & \exists P(-x,y) = P(x,y) \\
0, & \exists P(-x,y) = -P(x,y)
\end{cases} :$$

$$\int_{L} Q(x,y)dy = \begin{cases}
0, & \exists Q(-x,y) = Q(x,y) \\
2 \int_{L} Q(x,y)dx, & \exists Q(-x,y) = -Q(x,y)
\end{cases} .$$

若曲线 L 关于 x 轴对称, 有类似结论.

3.计算

(1)直接法

$$\int_{L} P(x,y)dx + Q(x,y)dy$$

$$= \begin{cases} \int_{a}^{b} [P(x, y(x)) + Q(x, y(x))y'(x)]dx \\ \int_{c}^{d} [P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)]dt \\ \int_{a}^{\beta} [P(r\cos\theta, r\sin\theta)(r\cos\theta)' + Q(r\cos\theta, r\sin\theta)(r\sin\theta)']d\theta \end{cases}$$

(2)间接法

①平面曲线积分与路径无关的四个等价条件

设函数 P(x,y), Q(x,y) 在单连通区域 D上具有一阶连续偏

导数,则 $\int_{\Gamma} Pdx + Qdy$ 与路径无关

$$\Leftrightarrow \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}, \forall (x, y) \in D$$

$$\Leftrightarrow \oint_{L} Pdx + Qdy = 0, L$$
 为一简单分段光滑封闭曲线

 \Leftrightarrow 存在函数 $u(x,y),(x,y) \in D$ 使 du(x,y) = Pdx + Qdy, 且

$$u(x, y) = \int_{(x_0, y_0)}^{(x, y)} Pdx + Qdy$$

②格林公式

设平面上的有界闭区域 D 由分段光滑的曲线 L 围成,函数 P(x,y),Q(x,y) 在有 D 连续的一阶偏导数,则有

$$\oint_L P dx + Q dy = \iint_D (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy \ .$$

第十一章 曲面积分(数学一)

一、第一类曲面积分

1.概念

 $\iint_S f(x,y,z)dS$ 代表空间曲面薄片的质量.

2.性质

若 Σ 关于 yoz 面对称, 记 Σ ₁ 为 Σ 在 x > 0 的部分,则

$$\iint_{\Sigma} f(x,y,z)dS = \begin{cases} 2\iint_{\Sigma_{1}} f(x,y,z)dS, \stackrel{\text{def}}{=} f(x,y,z) = f(-x,y,z) \\ 0 \qquad \qquad \text{def}f(x,y,z) = -f(-x,y,z) \end{cases}$$

若Σ关于其他坐标面对称,有类似结论.

若Σ具有轮换对称性,即对换x,y,z,Σ不变,则

$$\iint\limits_{\Sigma} f(x, y, z) dS = \iint\limits_{\Sigma} f(y, x, z) dS = \iint\limits_{\Sigma} f(z, y, x) dS$$

3.计算

一投、二代、三计算

$$\iint_{\Sigma} f(x, y, z) dS = \iint_{D_{\Sigma}} f(x, y, z(x, y)) \sqrt{1 + (z'_{x})^{2} + (z'_{y})^{2}} dx dy$$

往其他坐标面投影具有类似结论.

二、第二类曲面积分

1.概念

$$\iint_{\Sigma} P(x,y,z) dy dz + Q(x,y,z) dx dz + R(x,y,z) dx dy$$
 代表穿过有向曲面的流量.

2.性质

若 Σ 关于 yoz 面对称, 记 Σ , 为 Σ 在 x > 0 的部分, 则

若Σ关于其他坐标面对称,具有类似结论,

3.计算

(1)直接法

①一投、二代、三定号

 $\iint_{\Sigma} R(x,y,z) dx dy = \pm \iint_{\Omega} R(x,y,z(x,y)) dx dy, \pm$ 取决于有向曲面

的法向量与 z 轴正向的夹角, 若为锐角则取正, 若为钝角则为

②轮换投影法(向量点积法)

$$\iint\limits_{\Sigma} P dy dz + Q dx dz + R dx dy = \iint\limits_{\Sigma} (P,Q,R) (-z'_x,-z'_y,1) dx dy \ .$$

(2)间接法(高斯公式)

设 Ω 是空间中的有界闭区域,由分块光滑的曲面所 S 围成,函数 P(x,y,z), Q(x,y,z), R(x,y,z) 在 Ω 由连续的一阶偏导数,则

$$\iint\limits_{S} P dy dz + Q dz dx + R dx dy = \iiint\limits_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dV$$

三、两类曲面积分之间的关系

$$\iint\limits_{S} P dy dz + Q dz dx + R dx dy = \iint\limits_{S} (P \cos \alpha + Q \cos \beta + R \cos \gamma) dS$$

这里 S 是 Ω 的整个边界的外侧(即取外法向), $\cos \alpha, \cos \beta, \cos \gamma$ 是 S 上点(x,y,z) 处的外法向量的方向余弦.

四、空间曲线积分

$$\int_{\mathcal{L}} Pdx + Qdy + Rdz$$

①将
$$L$$
 化为参数方程
$$\begin{cases} x = x(t) \\ y = y(t), \text{ 直接代入计算} \\ z = z(t) \end{cases}$$

$$\int_{L} P dx + Q dy + R dz$$

$$= \int_{a}^{b} [P(x(t), y(t), z(t))x'(t) + Q(x(t), y(t), z(t))y'(t) + R(x(t), y(t), z(t))z'(t)]dt$$

②斯托克斯公式

设L为分段光滑的又向闭曲线,S是以L为边界的分块 光滑有向曲面,L的正向与S的侧(即法向量的指向)符合右手 法则,函数 P(x, y, z), O(x, y, z), R(x, y, z) 在包含 S 的一个空间 区域内有连续的一阶偏导数,则有

$$\int_{L} Pdx + Qdy + Rdz = \iint_{S} \begin{vmatrix} dydz & dzdx & dxdy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} \overrightarrow{\mathbb{E}}_{X}$$

$$\int_{L} Pdx + Qdy + Rdz = \iint_{S} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & O & R \end{vmatrix} dS$$

第十二章 场论初步(数学一)

一、方向导数与梯度

1.可微函数的方向导数

(1)设 z = f(x,y) 在 $M_0(x_0,y_0)$ 处可微,则 f(x,y) 在点 $M_0(x_0,y_0)$ 沿任意方向 $l = (\cos\alpha,\cos\beta)$ 存在方向导数且

$$\frac{\partial f(x_0, y_0)}{\partial l} = \frac{\partial f(x_0, y_0)}{\partial x} \cos \alpha + \frac{\partial f(x_0, y_0)}{\partial y} \cos \beta$$

在平面上1除了用方向角表示外也可用极角表示:

 $l = (\cos \theta, \sin \theta)$, $\theta \in I$ 的极角, $\theta \in [0, 2\pi]$ 此时相应的方向导

数的计算公式为
$$\frac{\partial f(x_0, y_0)}{\partial l} = \frac{\partial f(x_0, y_0)}{\partial x} \cos \theta + \frac{\partial f(x_0, y_0)}{\partial y} \sin \theta$$

$$(2)$$
设三元函数 $u=f(x,y,z)$ 在 $M_0(x_0,y_0,z_0)$ 处可微,则
$$u=f(x,y,z)$$
 在点 $M_0(x_0,y_0,z_0)$ 沿任意方向 $l=(\cos\alpha,\cos\beta,\cos\gamma)$

存在方向导数且有

$$\frac{\partial f(x_0, y_0, z_0)}{\partial l} = \frac{\partial f(x_0, y_0, z_0)}{\partial x} \cos \alpha + \frac{\partial f(x_0, y_0, z_0)}{\partial y} \cos \beta$$
$$+ \frac{\partial f(x_0, y_0, z_0)}{\partial z} \cos \gamma$$

2.梯度

$$\begin{split} & \operatorname{grad}f(x_0,y_0) = (\frac{\partial f(x_0,y_0)}{\partial x}, \frac{\partial f(x_0,y_0)}{\partial y}) \\ & \frac{\partial f(x_0,y_0)}{\partial l} 随 l 而变化 \, , \quad l = \frac{\operatorname{grad}(f(x_0,y_0)}{|\operatorname{grad}(f(x_0,y_0))|} \, \operatorname{即沿梯度方向} \end{split}$$

设
$$\overline{A} = P(x,y,z)\overline{i} + Q(x,y,z)\overline{j} + R(x,y,z)\overline{k}; P,Q,R$$
均可导,

则
$$\overline{A}$$
 在 $P(x,y,z)$ 点处的散度为 $div\overline{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$

2.旋度的计算公式

设有向量场
$$\overline{A}=P(x,y,z)\overline{i}+Q(x,y,z)\overline{j}+R(x,y,z)\overline{k}$$
 , 其中

P.O.R 均有连续的一阶偏导数,则旋度 $rot \overline{A}$ 为:

$$rot\overline{A} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

第二部分 线性代数

第一章 行列式

1.行列式的定义

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{22} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{cases} (1) \text{取数相乘, 来自不同行不同列} \\ (2) 冠以符号, (-1)^{r(j_1, j_2, \cdots, j_n)} \\ (3) 全部相加, \sum_{n!} (-1)^r a_{1j_1} a_{2j_2} \cdots a_{nj_n} \end{cases}$$

2.行列式按行(列)展开定理

设
$$A = (a_{ij})_{n \times n}$$
,则 $a_{i1}A_{j1} + a_{i2}A_{j2} + \dots + a_{im}A_{jn} = \begin{cases} |A|, i = j \\ 0, i \neq j \end{cases}$

或
$$a_{1i}A_{1j} + a_{2i}A_{2j} + \dots + a_{ni}A_{nj} = \begin{cases} |A|, i = j \\ 0, i \neq j \end{cases}$$

即
$$AA^{\bullet} = A^{\bullet}A = |A|E$$
, 其中

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix} = (A_{ji}) = (A_{ij})^T$$

3.行列式的重要结论

(1)设
$$A,B$$
为 n 阶方阵,则 $|AB| = |A||B| = |B||A| = |BA|$

 $\left(\left| A \pm B \right| = \left| A \right| \pm \left| B \right| \right|$ 不一定成立.

- (2)| kA|= k" | A|, A为n阶方阵
- (3) 设A为n阶方阵,则 $|A^T| = |A|$; $|A^{-1}| = |A|^{-1}$;

(若A可逆) | A* |=| A |"-1 (n ≥ 2)

$$(4) \begin{vmatrix} A & O \\ O & B \end{vmatrix} = \begin{vmatrix} A & C \\ O & B \end{vmatrix} = \begin{vmatrix} A & O \\ C & B \end{vmatrix} = |A||B|, A, B为方阵,$$

$$\left. \left(\frac{O}{B_{n \times n}} \quad \frac{A_{m \times m}}{O} \right| = (-1)^{mn} \cdot |A| |B|.$$

(5)范德蒙行列式
$$D_n = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \cdots & \cdots & \cdots & \cdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (x_i - x_j)$$

设 A 是 n 阶方阵, $\lambda_i(i=1,2\cdots,n)$ 是 A 的 n 个特征值, 则 $\mid A \mid = \prod_{i=1}^{n} \lambda_{i} .$

第二章 矩阵

一、矩阵的概念、运算

1.矩阵的概念

$$m \times n$$
个数 a_{ij} 排成 m 行 n 列的表格
$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 称为

矩阵,简记为 A或 $(a_{ij})_{m\times n}$.

若m=n,则称 A 是n 阶矩阵或n 阶方阵.

2.矩阵的运算

(1)矩阵的加法

设 $A = (a_{ii}), B = (b_{ii})$ 是两个 $m \times n$ 矩阵, 则 $m \times n$ 矩阵

$$C = (c_{ij}) = a_{ij} + b_{ij}$$
 称为矩阵 A 与 B 的和,记为 $A + B = C$

(2)矩阵的数乘

设 $A = (a_{ij})$ 是 $m \times n$ 矩阵, k 是一个常数,则 $m \times n$ 矩阵 (ka_{ii}) 称为数 k 与矩阵 A 的数乘,记为 kA.

(3)矩阵的乘法

《《有道考神》考研数学常用公式手册

设 $A = (a_{ii})$ 是 $m \times n$ 矩阵, $B = (b_{ii})$ 是 $n \times s$ 矩阵, 那么 $m \times s$

矩阵
$$C = (c_{ij})$$
 ,其中 $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$ 称

为 A与 B 的乘积,记为 C = AB.

二、方阵的一些结论

1. A^T 、 A^{-1} 、 A^* 三者之间的关系

$$(1)(A^T)^T = A, (AB)^T = B^T A^T, (kA)^T = kA^T, (A \pm B)^T = A^T \pm B^T$$

(2)
$$(A^{-1})^{-1} = A, (AB)^{-1} = B^{-1}A^{-1}, (kA)^{-1} = \frac{1}{k}A^{-1},$$
 [4]

$$(A \pm B)^{-1} = A^{-1} \pm B^{-1}$$
不一定成立,

$$(3)(A^*)^* = |A|^{n-2} A(n \ge 3), \quad (AB)^* = B^*A^*,$$

$$(kA)^* = k^{n-1}A^*(n \ge 2)$$
. 但 $(A \pm B)^* = A^* \pm B^*$ 不一定成立

$$(4)(A^{-1})^T = (A^T)^{-1}, (A^{-1})^* = (A^*)^{-1}, (A^*)^T = (A^T)^*$$

2.有关 A*的结论

$$(1)AA^* = A * A = |A|E$$

(2)
$$|A^*| = |A|^{n-1}$$
 $(n \ge 2), (kA)^* = k^{n-1}A^*, (A^*)^* = |A|^{n-2}$ $A(n \ge 3)$

(3)若
$$A$$
 可逆,则 $A^* = |A| A^{-1}, (A^*)^* = \frac{1}{|A|} A$

(4)若
$$A$$
 为 n 阶方阵,则 $r(A^*) = \begin{cases} n, & r(A) = n \\ 1, & r(A) = n-1 \\ 0, & r(A) < n-1 \end{cases}$

3.有关 A^{-1} 的结论

A可逆 $\Leftrightarrow AB = E : \Leftrightarrow |A| \neq 0 : \Leftrightarrow r(A) = n$:

- → 4可以表示为初等矩阵的乘积:

三、初等矩阵与秩

1.初等矩阵与对角矩阵

(I)初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵:

(2)
$$\Lambda = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$
, 左乘矩阵 A , λ , 乘 A 的各行

元素; 右乘, 礼乘 A 的各列元素;

(3)对调两行或两列,符号E(i,j),且 $E(i,j)^{-1} = E(i,j)$,

例如:
$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix};$$

(4)倍乘某行或某列,符号 E(i(k)) ,且 $E(i(k))^{-1} = E(i(\frac{1}{k}))$,

>></>【有道考神 考研数学常用公式手册

例如:
$$\begin{pmatrix} 1 & & \\ & k & \\ & & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & & \\ & \frac{1}{k} & \\ & & 1 \end{pmatrix} (k \neq 0) ;$$

(5)倍加某行或某列,符号 E(ii(k)).且

$$E(ij(k))^{-1} = E(ij(-k))$$
, U : $\begin{pmatrix} 1 & k \\ & 1 \\ & & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -k \\ & 1 \\ & & 1 \end{pmatrix} (k \neq 0)$;

2.有关矩阵秩的结论

- (1)秩 r(A,,,,)=行秩=列秩;
- $(2) r(A_{max}) \leq \min(m, n);$
- (3) $A \neq 0 \Rightarrow r(A) \geq 1$;
- $(4) 0 \le r(A_{m \times n}) \le \min(m, n) ;$
- $(5) r(A^T) = r(A) :$
- (6)若 $A \sim B$,则r(A) = r(B):
- (7)若 P 、 O 可逆,则 r(A) = r(PA) = r(AO) = r(PAO);

(可逆矩阵不影响矩阵的秩)

- (8) $\max(r(A), r(B)) \le r(A, B) \le r(A) + r(B)$;
- $(9) r(A+B) \le r(A) + r(B)$;
- $(10) r(AB) \leq \min(r(A), r(B)) ;$
- (11)如果 $A \in m \times n$ 矩阵, $B \in n \times s$ 矩阵, 且 AB = 0,

则:

① B 的列向量全部是齐次方程组 AX = 0 解(转置运算后的结论):

$$2r(A)+r(B) \leq n$$

(12)若
$$A$$
 、 B 均为 n 阶方阵,则 $r(AB) \ge r(A) + r(B) - n$;

若
$$r(A_{max}) = n \Rightarrow r(AB) = r(B)$$
;

若
$$r(A_{max}) = n \Rightarrow r(AB) = r(A)$$
;

$$(13)r(A_{max}) = n \Leftrightarrow Ax = 0$$
 只有零解.

$$(14) r(A^{*}) = \begin{cases} n & r(A) = n \\ 1 & r(A) = n - 1 \\ 0 & r(A) < n - 1 \end{cases}$$

四、矩阵等价

1.等价的概念

(1)矩阵行等价: $A \sim B \Leftrightarrow PA = B$ (左乘, P可逆) $\Leftrightarrow Ax = 0 = Bx = 0$

- (2)矩阵列等价: $A \sim B \Leftrightarrow AQ = B$ (右乘, Q可逆);
- (3)矩阵等价: $A \sim B \Leftrightarrow PAQ = B (P \lor Q 可逆)$;

2.对于矩阵 A____ 与 B_/x_n:

(1)若 A 与 B 行等价,则 A 与 B 的行秩相等;

<u> 有道考神 考研数学常用公式手册</u>

(2)若 A 与 B 行等价,则 Ax = 0 与 Bx = 0 同解,且 A 与 B 的任何对应的列向量组具有相同的线性相关性;

- (3)矩阵的初等变换不改变矩阵的秩;
- (4)矩阵 A 的行秩等于列秩;

五、分块矩阵

1.分块矩阵的行列式

$$\begin{vmatrix} A & O \\ O & B \end{vmatrix} = \begin{vmatrix} A & C \\ O & B \end{vmatrix} = \begin{vmatrix} A & O \\ C & B \end{vmatrix} = |A||B|$$

$$\begin{vmatrix} O & A_m \\ B_n & O \end{vmatrix} = \begin{vmatrix} C & A_m \\ B_n & O \end{vmatrix} = \begin{vmatrix} O & A_m \\ B_n & C \end{vmatrix} = (-1)^{mn} |A||B|$$

2.分块矩阵的逆矩阵

$$\begin{pmatrix} A & O \\ O & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix};$$

$$\begin{pmatrix} A & C \\ O & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \end{pmatrix};$$

$$\begin{pmatrix} A & O \\ C & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ -B^{-1}CA^{-1} & B^{-1} \end{pmatrix};$$

$$\begin{pmatrix} O & A \\ B & O \end{pmatrix}^{-1} = \begin{pmatrix} O & B^{-1} \\ A^{-1} & O \end{pmatrix} 这里 A, B 均为可逆方阵.$$

第三章 向量组

一、向量组的线性相关性

1.有关向量组的线性表示

- $(1)\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性相关 \Leftrightarrow 至少有一个向量可以用其余向量线性表示.
- (2) 岩 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关, $\alpha_1,\alpha_2,\cdots,\alpha_s$, β 线性相关 \Rightarrow β 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 惟一线性表示.
 - (3) β 可以由 $\alpha_1,\alpha_2,\dots,\alpha_s$ 线性表示
- $\Leftrightarrow r(\alpha_1, \alpha_2, \dots, \alpha_s) = r(\alpha_1, \alpha_2, \dots, \alpha_s, \beta)$

2.有关向量组的线性相关性

- (1)部分相关,整体相关;整体无关,部分无关.
- (2) ① $\mathbf{n} \wedge \mathbf{n}$ 维向量 $\alpha_1, \alpha_2 \cdots \alpha_n$ 线性无关 $\boldsymbol{\alpha}_1, \alpha_2, \cdots, \alpha_n \neq 0$, $\mathbf{n} \wedge \mathbf{n}$ 维向量 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性相关 $\boldsymbol{\alpha}_1, \alpha_2, \cdots, \alpha_n \neq 0$.
 - ② n+1 个 n 维向量线性相关.
- ③若 $\alpha_1,\alpha_2\cdots\alpha_s$ 线性无关,则添加分量后仍线性无关;或一组向量线性相关,去掉某些分量后仍线性相关。

(人) 有道考神 考研数学常用公式手册

二、向量组的线性表示、极大无关组与秩

1.向量组的线性表示

- (1)α₁,α₂,···,α₃,线性相关 ⇔ 至少有一个向量可以用其余向量线性表示.
- (2) 若 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关, $\alpha_1,\alpha_2,\cdots,\alpha_s$, β 线性相关 $\Leftrightarrow \beta$ 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 惟一线性表示.
 - (3) β 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表示

$$\Leftrightarrow r(\alpha_1, \alpha_2, \dots, \alpha_n) = r(\alpha_1, \alpha_2, \dots, \alpha_n, \beta)$$

2.向量组的秩

等价于矩阵的秩, 化行阶梯型, 看台阶数.

3.向量组的极大无关组

- (1)部分组,来自组内的向量
- (2)线性无关
- (3)个数等于向量组的秩

4.向量组的秩与线性相关性

(1)若 $r(A_{m \times n}) = r = m$,则A的行向量组线性无关.

- (2)若 $r(A_{m\times n}) = r < m$,则 A 的行向量组线性相关.
- (3)若 $r(A_{max}) = r = n$,则 A 的列向量组线性无关.
- (4)若 $r(A_{max}) = r < n$,则A的列向量组线性相关

三、向量空间

1.基变换公式及过渡矩阵(仅数学一要求)

若 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 与 $\beta_1,\beta_2,\cdots,\beta_n$ 是向量空间 V 的两组基,则基变换公式为

$$(\beta_{1}, \beta_{2}, \dots, \beta_{n}) = (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix} = (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n})C$$

其中 C 是可逆矩阵,称为由基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 到基 $\beta_1,\beta_2,\cdots,\beta_n$ 的过渡矩阵

2.坐标变换公式(仅数学一要求)

若向量 γ 在基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 与基 $\beta_1,\beta_2,\cdots,\beta_n$ 的坐标分别是 $X=(x_1,x_2,\cdots,x_n)^T$, $Y=(y_1,y_2,\cdots,y_n)^T$ 即 $\gamma=x_1\alpha_1+x_2\alpha_2+\cdots+x_n\alpha_n=y_1\beta_1+y_2\beta_2+\cdots+y_n\beta_n$,则向量坐标变换公式为 X=CY或 $Y=C^{-1}X$.其中 C 是从基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 到

\\\有道考神 考研数学常用公式手册

基 $\beta_1, \beta_2, \dots, \beta_n$ 的过渡矩阵.

3.施密特正交化(全体要求)

若 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关,则可构造 $\beta_1,\beta_2,\cdots,\beta_s$ 使其两两正交,且 β_i 仅是 $\alpha_1,\alpha_2,\cdots,\alpha_i$ 的线性组合 $(i=1,2,\cdots,n)$,再把 β_i 单位化,记 $\gamma_i=\frac{\beta_i}{|\beta_i|}$,则 $\gamma_1,\gamma_2,\cdots,\gamma_i$ 是规范正交向量组.其中 $\beta_1=\alpha_1$

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1$$

$$\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_3, \beta_2)} \beta_2$$

.....

$$\beta_s = \alpha_s - \frac{(\alpha_s, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_s, \beta_2)}{(\beta_2, \beta_2)} \beta_2 - \dots - \frac{(\alpha_s, \beta_{s-1})}{(\beta_{s-1}, \beta_{s-1})} \beta_{s-1}$$

4.正交基及规范正交基(仅数学一要求)

向量空间一组基中的向量如果两两正交,就称为正交基; 若正交基中每个向量都是单位向量,就称其为规范正交基.

第四章 线性方程组

一、齐次线性方程组解的结构与解的判定

(1)齐次方程组 Ax = 0 恒有解(必有零解).当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此 Ax = 0 的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是 n-r(A),解空间的一组基称为齐次方程组的基础解系.

- $(2)\eta_1,\eta_2,\dots,\eta_r$ 是 Ax = 0 的基础解系,即
- ① $\eta_1, \eta_2, \dots, \eta_r$ 是 Ax = 0 的解:
- ② $\eta_1, \eta_2, \dots, \eta_r$ 线性无关;
- ③ Ax = 0 的任一解都可以由 $\eta_1, \eta_2, \dots, \eta_r$ 线性表出.

 $k_1\eta_1 + k_2\eta_2 + \dots + k_i\eta_i$, 是 Ax = 0 的通解,其中 k_1, k_2, \dots, k_i 是任意常数.

(3)若 $r(A_{m\times n}) = n$,则 Ax = 0 只有零解;若 $r(A_{m\times n}) < n$,则 Ax = 0 有非零解;

(()有道考神 考研数学常用公式手册

二、非齐次线性方程组解的结构与解的判定

- (1)设 A 为 $m \times n$ 矩阵,若 $r(A_{m \times n}) = m$,则对 Ax = b 而言 必有 r(A) = r(A : b) = m,从而 Ax = b 有解.
- (2)设 $x_1, x_2, \dots x_s$ 为 Ax = b 的解,则 $k_1x_1 + k_2x_2 + \dots + k_sx_s$ 当 $k_1 + k_2 + \dots + k_s = 1$ 时仍为 Ax = b 的解;但当 $k_1 + k_2 + \dots + k_s = 0$ 时,则为 Ax = 0的解.特别 $\frac{x_1 + x_2}{2}$ 为 Ax = b 的解; $2x_3 (x_1 + x_2)$ 为 Ax = 0 的解.
- (3)非齐次线性方程组 Ax = b 无解 $\Leftrightarrow r(A) + 1 = r(\overline{A}) \Leftrightarrow b$ 不能由 A 的列向量 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表示.

三、克拉默法则

线性方程组 $\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases} , \quad \text{如果系数行列}$

式 $D=|A|\neq 0$,则方程组有唯一解 $x_1=\frac{D_1}{D}, x_2=\frac{D_2}{D}, \cdots, x_n=\frac{D_n}{D}$,其中 D_j 是把 D 中第 j 列元素换成方程组右端的常数列所得的行列式.

第五章 特征值与特征向量

一、特征值与特征向量的概念

(1)设 λ 是A的一个特征值,则

 $kA,aA+bE,A^2,A^m,f(A),A^T,A^{-1},A*$ 有一个特征值分别为 $k\lambda,a\lambda+b,\lambda^2,\lambda^m,f(\lambda),\lambda,\lambda^{-1},\dfrac{|A|}{\lambda}$,且对应特征向量相同(A^T

例外).

(2) 若 $\lambda_1, \lambda_2, \dots, \lambda_n$ 为 A 的 n 个 特 征 值 , 则 $\sum_{i=1}^n \lambda_i = \sum_{i=1}^n a_{ii}, \prod_{i=1}^n \lambda_i = |A| \text{ 从而} |A| \neq 0 \Leftrightarrow A$ 没有特征值.

(3)设 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 为 A 的 s 个特征值,对应特征向量为 $\alpha_1, \alpha_2, \cdots, \alpha_s$, 若 $\alpha = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_s\alpha_s$,则 $A''\alpha = k_1A''\alpha_1 + k_2A''\alpha_2 + \cdots + k_sA''\alpha_s = k_1\lambda_1''\alpha_1 + k_2\lambda_2''\alpha_2 + \cdots + k_s\lambda_s''\alpha_s$

二、相似矩阵的结论

若 A,B 相似,则

(1) A^T, B^T; A⁻¹, B⁻¹; A*, B* 分别相似

(2)
$$|A| = |B|, \sum_{i=1}^{n} A_{ii} = \sum_{i=1}^{n} b_{ii}, r(A) = r(B)$$

/// 有道考神 考研数学常用公式手册

(3) | $\lambda E - A$ | = | $\lambda E - B$ |, 从而 A, B有相同的特征值

三、相似对角化

- (1) 先求特征值 礼,礼,礼,
- (2) 再求特征向量 $\alpha_1,\alpha_2,\alpha_3$

$$(3) \diamondsuit \ P = (\alpha_1, \alpha_2, \alpha_3) \ , \\ \ddot{A} \ P \ \vec{\cup} \ \ \dot{\mathcal{D}} \ P^{-1} A P = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{pmatrix}.$$

四、实对称矩阵的性质与对角化

1.实对称矩阵的性质

- (1)实对称矩阵一定可对角化
- (2)实对称矩阵不同的特征值对应的特征向量正交

2.实对称矩阵的合同对角化

- (1) 先求特征値 4, 2, 2,
- (2)再求特征向量 $\alpha_1,\alpha_2,\alpha_3$
- (3)正交化得: β_1,β_2,β_3
- (4)单位化得: γ₁,γ₂,γ₃

$$(5) \diamondsuit Q = (\gamma_1, \gamma_2, \gamma_3), \quad \text{M} \ Q^T A Q = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{pmatrix}$$

第六章 二次型

一、二次型的概念

n个变量 x_1, x_2, \dots, x_n 的二次齐次函数

$$f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i y_j$$
, $\sharp \mapsto a_{ij} = a_{ji} (i, j = 1, 2, \dots, n)$,

称为n元二次型,简称二次型. 若令

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix},$$

这二次型 f 可改写成矩阵向量形式 $f = x^T Ax$.其中 A 称为二次型矩阵,

因为 $a_{ij} = a_{ji}(i, j = 1, 2, \dots, n)$,所以二次型矩阵均为对称矩阵,且二次型与对称矩阵——对应,并把矩阵 A 的秩称为二次型的秩.

二、惯性定理与二次型的标准形、规范形

1.惯性定理

对于任一二次型,不论选取怎样的合同变换使它化为仅

\\\有道考神 考研数学常用公式手册

含平方项的标准型,其正负惯性指数与所选变换无关,这就 是所谓的惯性定理.

2.标准形

(1)二次型 $f = (x_1, x_2, \cdots, x_n) = x^T A x$ 经过合同变换 x = C y 化为 $f = x^T A x = y^T C^T A C y = \sum_{i=1}^r d_i y_i^2$ 称为 $f(r \le n)$ 的标准形. 在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由 r(A的秩) 唯一确定.

- (2)正交变换法化标准形的步骤
- ①先求特征值 4, 2, 2,
- ②再求特征向量 $\alpha_1,\alpha_2,\alpha_3$
- ③正交化得: $\beta_1, \beta_2, \beta_3$
- ④单位化得: γ₁,γ₂,γ₃
- ⑤令 $Q = (\gamma_1, \gamma_2, \gamma_3)$,则在正交变换x = Qv下,二次型的标准形为 $\lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2$.

3.规范形

任一实二次型 f 都可经过合同变换化为规范形

 $f=z_1^2+z_2^2+\cdots+z_p^2-z_{p+1}^2-\cdots-z_r^2$, 其中 r为A的秩, p为正惯性指数, r-p为负惯性指数,且规范型唯一.

三、二次型的正定性

1.正定的充要条件

$$A$$
 正定 $\Leftrightarrow f(x) = x^T Ax > 0, \forall x \neq 0$

- ⇔ A 的各阶顺序主子式全大于零
- ⇔ A 的所有特征值大于零
- ⇔ A 的正惯性指数为 n
- \Leftrightarrow 目可逆阵 P 使 $A = P^T P$

会存在正交矩阵 Q, 使
$$Q^TAQ = Q^{-1}AQ = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

其中 $\lambda_i > 0, i = 1, 2, \dots, n$. 正定 $\Rightarrow kA(k > 0), A^T, A^{-1}, A^*$ 正定;

$$|A| > 0$$
, A 可逆; $a_{ii} > 0$,且 $|A_{ii}| > 0$

2.正定的必要条件

设 A 正定 $\Rightarrow kA(k > 0), A^T, A^{-1}, A^*$ 正定; |A| > 0, A 可逆;

 $a_{ii} > 0$, $\mathbb{E} | A_{ii} | > 0$

A.B正定 $\Rightarrow A+B$ 正定,但 AB, BA不一定正定.

第三部分 概率论与数理统计(数学一、三)

第一章 随机事件与概率

一、基本概念与运算

1.事件的关系与运算

微信公众号:顶尖考研(ID:djky66)

- (1)子事件: $A \subset B$, 若 A 发生,则 B 发生.
- (2)相等事件: A = B, 即 $A \subset B$, 且 $B \subset A$.
- (3)和事件: AUB (或 A+B), A 与 B 中至少有一个发生.
- (4)差事件: A-B, A 发生但 B 不发生.
- (5)积事件: $A \cap B$ (或 AB), A 与 B 同时发生.
- (6) 互斥事件 (互不相容): $A \cap B = \emptyset$.
- (7)互逆事件(对立事件): $A \cap B = \emptyset$, $A \cup B = \Omega$,

 $idA = \overline{B}$ 或 $B = \overline{A}$

2.运算律

- (1)交换律: $A \cup B = B \cup A$, $A \cap B = B \cap A$
- (2)结合律: $(A \cup B) \cup C = A \cup (B \cup C)$; $(A \cap B) \cap C = A \cap (B \cap C)$
- (3)分配律: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

3.德 • 摩根律

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cup B} = \overline{A} \cup \overline{B}$$

4.完全事件组

 A_1 , A_2 …, A_n , 两两互斥,且和事件为必然事件,即 $A_i \cap A_j = \emptyset, \ i \neq j, \quad \bigcup_{i=1}^n = \Omega.$

二、概率与古典概型、几何概型

1.概率

事件发生的可能性大小的度量,其严格定义如下:

概率 P(•) 为定义在事件集合上的满足下面 3 个条件的函数:

- (1)对任何事件 A, P(A)≥0;
- (2)对必然事件 Ω , $P(\Omega)=1$;

(3)对
$$A_1$$
, A_2 ,…, A_n ,…,若 $A_iA_j = \emptyset(i \neq j)$,则 $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A)$.

2.概率的基本性质

$$(1) P(\overline{A}) = 1 - P(A);$$

$$(2) P(A-B) = P(A) - P(AB);$$

$$(3) P(A \cup B) = P(A) + P(B) - P(AB)$$
;特别,

当
$$B \subset A$$
时, $P(A-B) = P(A) - P(B)$ 且 $P(B) \leq P(A)$;

\\\有道考神 考研数学常用公式手册

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC) - P(AC) + P(ABC);$

(4)若
$$A_1, A_2, \dots, A_n$$
 两两互斥,则 $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n (P(A_i).$

3.古典型概率

实验的所有结果只有有限个,且每个结果发生的可能性相同,其概率计算公式:

$$P(A) = \frac{\text{$\P A$} \text{χ} \text{ξ} \text{ξ} \text{ξ} \text{ξ} \text{ξ}}{\text{ξ} \text{ξ} \text{ξ} \text{ξ}}$$

4.几何型概率

样本空间 Ω 为欧氏空间中的一个区域,且每个样本点的出现具有等可能性,其概率计算公式:

$$P(A) = \frac{A \text{的度量 (长度、面积、体积)}}{\Omega \text{的度量 (长度、面积、体积)}}$$

三、概率计算公式与事件独立性

1.概率的基本公式

(1)条件概率:

 $P(B|A) = \frac{P(AB)}{P(A)}$, 表示A发生的条件下, B发生的概率

(2)全概率公式:

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i), B_i B_j = \emptyset, i \neq j, \bigcup_{i=1}^{n} B_i = \Omega.$$

(3) Bayes 公式:
$$P(B_j \mid A) = \frac{P(A \mid B_j)P(B_j)}{\sum_{i=1}^{n} P(A \mid B_i)P(B_i)}, j = 1, 2, \dots, n$$

注:上述公式中事件 B_i 的个数可为可列个.

(4)乘法公式:

$$P(A_1A_2) = P(A_1)P(A_2 \mid A_1) = P(A_2)P(A_1 \mid A_2)$$

$$P(A_1 A_2 \cdots A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 A_2) \cdots P(A_n \mid A_1 A_2 \cdots A_{n-1})$$

2.事件的独立性

(1)A 与 B 相互独立
$$\Leftrightarrow P(AB) = P(A)P(B)$$

(2)A, B, C 两两独立

$$\Leftrightarrow P(AB) = P(A)P(B);$$

$$P(BC) = P(B)P(C);$$

$$P(AC) = P(A)P(C);$$

(3)A, B, C 相互独立

$$\Leftrightarrow P(AB) = P(A)P(B);$$

$$P(BC) = P(B)P(C);$$

\\\有道考神 考研数学常用公式手册

$$P(AC) = P(A)P(C);$$

$$P(ABC) = P(A)P(B)P(C)$$
.

3.独立重复试验

微信公众号:顶尖3 (ID:djky66 将某试验独立重复 n 次, 若每次实验中事件 A 发生的概 率为 p,则 n 次试验中 A 发生 k 次的概率为:

$$P(X = k) = C_n^k p^k (1-p)^{n-k}$$
.

4.重要公式与结论

$$(1)P(\overline{A}) = 1 - P(A)$$

$$(2)P(A \cup B) = P(A) + P(B) - P(AB)$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC)$$
$$-P(AC) + P(ABC)$$

$$(3)P(A-B) = P(A) - P(AB)$$

$$(4)P(A\bar{B}) = P(A) - P(AB), P(A) = P(AB) + P(A\bar{B}),$$

$$P(A \cup B) = P(A) + P(\overline{AB}) = P(AB) + P(A\overline{B}) + P(\overline{AB})$$

(5)条件概率 $P(\cdot|B)$ 满足概率的所有性质,

例如:
$$P(\overline{A}_1 | B) = 1 - P(A_1 | B)$$

$$P(A_1 \cup A_2 \mid B) = P(A_1 \mid B) + P(A_2 \mid B) - P(A_1 \mid A_2 \mid B)$$

第三部分 概率论与数理统计///

$$P(A_1A_2 | B) = P(A_1 | B)P(A_2 | A_1B)$$

(6)若 A_1, A_2, \dots, A_n 相互独立,则 $P(\bigcap^n A_i) = \prod^n P(A_i)$,

$$P(\bigcup_{i=1}^{n} A_i) = \prod_{i=1}^{n} (1 - P(A_i))$$

 $P(\bigcup_{i=1}^{n} A_i) = \prod_{i=1}^{n} (1 - P(A_i))$ (7) 互斥、互逆与独立性之间的关系: (ID: djky66)

A 与 B 互逆 ⇒ A 与 B 互斥,但反之不成立,A 与 B 互

斥(或互逆)且均非零概率事件 ⇒ A 与 B 不独立.

- (8) 若 A, A, ..., A, B, B, ..., B 相 互 独 立 , 则 $f(A_1,A_2,\cdots,A_m)$ 与 $g(B_1,B_2,\cdots,B_n)$ 也相互独立, 其中 $f(\bullet),g(\bullet)$ 分别表示对相应事件做任意事件运算后所得的事 件.
 - (9)概率为1(或0)的事件与任何事件相互独立.

第二章 随机变量及其分布

- 一、随机变量的概念与性质
- 1.随机变量及概率分布

取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律

2.分布函数的概念与性质

定义:
$$F(x) = P(X \le x), -\infty < x < +\infty$$

性质:
$$(1)0 \le F(x) \le 1$$
, $F(-\infty) = 0, F(+\infty) = 1$

- (2) F(x) 单调不减
- (3)右连续 F(x+0) = F(x)
- 二、随机变量的概率分布
- 1.离散型随机变量的概率分布

$$P(X = x_i) = p_i, i = 1, 2, \dots, n, \dots$$
 $p_i \ge 0, \sum_{i=1}^{\infty} p_i = 1$

2.连续型随机变量的概率密度

概率密度 f(x): 非负可积,且

$$(2)\int_{-\infty}^{+\infty} f(x)dx = 1$$

(3) x为f(x)的连续点,则f(x) = F'(x)分布函数

$$F(x) = \int_{-\pi}^{x} f(t)dt .$$

三、常见分布

(1) 0-1 分布:
$$P(X=k) = p^{k}(1-p)^{1-k}, k=0,1$$

(2) 二项分布 B(n, p):

$$P(X = k) = C_{-}^{k} p^{k} (1-p)^{n-k}, k = 0, 1, \dots, n$$

(3) Poisson 分布 $p(\lambda)$:

$$P(X = k) = \frac{\lambda^{k}}{k!} e^{-\lambda}, \lambda > 0, k = 0, 1, 2 \cdots$$

(4) 均匀分布 U (a, b):
$$f(x) = \begin{cases} \frac{1}{b-a}, a < x < b \\ 0, 其他 \end{cases}$$

(5) 正态分布 $N(\mu,\sigma^2)$:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \sigma > 0, -\infty < x < +\infty$$

(6)指数分布
$$E(\lambda)$$
: $f(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0, \lambda > 0 \\ 0, 其他 \end{cases}$

(7)几何分布

111有道考神 考研数学常用公式手册

$$G(p): P(X = k) = (1-p)^{k-1}p, 0$$

(8)超几何分布

$$H(N, M, n): P(X = k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}, \ k = 0, 1, \dots, \min(n, M)$$

四、随机变量函数的分布

(1)离散型:
$$P(X = x_1) = p_i, Y = g(X)$$
 则

$$P(Y = y_j) = \sum_{g(x_i) = y_i} P(X = x_i)$$

(2)连续型:
$$X \sim f_x(x), Y = g(x)$$
 则

$$F_{y}(y) = P(Y \le y) = P(g(X) \le y) = \int_{g(x) \le y} f_{x}(x) dx$$
, $f_{Y}(y) = F'_{Y}(y)$

五、重要公式与结论

$$(1)X \sim N(0,1) \Rightarrow \varphi(0) = \frac{1}{\sqrt{2\pi}}, \Phi(0) = \frac{1}{2},$$

$$\Phi(-a) = P(X \le -a) = 1 - \Phi(a)$$

$$(2)X \sim N(\mu, \sigma^2) \Rightarrow \frac{X - \mu}{\sigma} \sim N(0, 1) \coprod P(X \le a) = \Phi(\frac{a - \mu}{\sigma})$$

$$(3)X \sim E(\lambda) \Rightarrow P(X > s + t \mid X > s) = P(X > t)$$

$$(4)X \sim G(p) \Rightarrow P(X = m + k \mid X > m) = P(X = k)$$

(5)离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数.

第三章 多维随机变量及其分布

一、二维随机变量的分布

1.二维随机变量及其联合分布

由两个随机变量构成的随机向量(X,Y), 联合分布为

$$F(x, y) = P(X \le x, Y \le y)$$

2.离散型随机变量的概率分布

(1)联合概率分布律

$$P\{X = x_i, Y = y_i\} = p_{ii}; i, j = 1, 2, \dots$$

(2)边缘分布律

$$p_{i.} = \sum_{i=1}^{\infty} p_{ij}, i = 1, 2, \dots; p_{.j} = \sum_{i=1}^{\infty} p_{ij}, j = 1, 2, \dots$$

(3)条件分布律

$$P\{X = x_i \mid Y = y_j\} = \frac{p_{ij}}{p_{ij}}$$
 ; $P\{Y = y_j \mid X = x_i\} = \frac{p_{ij}}{p_{ij}}$

3.连续型随机变量的概率分布

(1)联合概率密度 f(x,y):

①
$$f(x, y) \ge 0$$

(2)分布函数

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

(3)边缘概率密度:

$$f_{X}(x) = \int_{-x}^{+\infty} f(x, y) dy$$
; $f_{Y}(y) = \int_{-x}^{+\infty} f(x, y) dx$

(4)条件概率密度

$$f_{X|Y}(x \mid y) = \frac{f(x,y)}{f_{Y}(y)}; f_{Y|X}(y \mid x) = \frac{f(x,y)}{f_{Y}(x)}$$

二、常见二维随机变量的联合分布

(1)二维均匀分布

$$(x,y) \sim U(D)$$
 , $f(x,y) = \begin{cases} \frac{1}{S(D)}, (x,y) \in D \\ 0, 其他 \end{cases}$

(2)二维正态分布

$$(X, Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$$

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \bullet$$

$$\exp\left\{\frac{-1}{2(1-\rho^2)}\left[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}\right]\right\}$$

三、两个随机变量函数的概率分布

(1)离散型:

$$P(X = x_i, Y = y_i) = p_{ij}, Z = g(X, Y)$$

$$P(Z = z_k) = P\{g(X, Y) = z_k\} = \sum_{g(x_i, y_i) = z_i} P(X = x_i, Y = y_j)$$

(2)连续型:

$$(X,Y) \sim f(x,y), Z = g(X,Y),$$
则:

①分布函数法

$$F_z(z) = P\left\{g(X,Y) \le z\right\} = \iint\limits_{g(x,y) \le z} f(x,y) dx dy \;,$$

$$f_z(z) = F'_z(z)$$

②公式法

由 Z = g(X,Y)解得 y = y(x,z), x = x(y,z),则

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f(x, y(x, z)) \cdot \left| \frac{\partial y(x, z)}{\partial z} \right| dx$$

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f(x(y, z), y) \cdot \left| \frac{\partial x(y, z)}{\partial z} \right| dy$$

四、一些重要公式与结论

(1)边缘密度公式:

$$f_{Y}(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$
,; $f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx$.

`\\\有道考神 考研数学常用公式手册

$$(2) P\{(X,Y) \in D\} = \iint_D f(x,y) dx dy$$

(3)若(X, Y)服从二维正态分布 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$ 则 有:

- $\textcircled{1} X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$
- ②X 与 Y 相互独立 $\Leftrightarrow \rho = 0$,即 X 与 Y 不相关.
- $3C_1X + C_2Y \sim N(C_1\mu_1 + C_2\mu_2, C_1^2\sigma_1^2 + C_2^2\sigma_2^2 + 2C_1C_2\sigma_1\sigma_2\rho).$
- ④X 关于 Y=v 的条件分布为:

$$N(\mu_1 + \rho \frac{\sigma_1}{\sigma_2}(y - \mu_2), \sigma_1^2(1 - \rho^2))$$
.
⑤Y 关于 X=x 的条件分布为: $N(\mu_2 + \rho \frac{\sigma_2}{\sigma_2}(x - \mu_1), \sigma_2^2(1 - \rho^2))$.

$$N(\mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x - \mu_1), \sigma_2^2(1 - \rho^2)).$$

(4)若 X 与 Y 独立,且分别服从 $N(\mu_1, \sigma_1^2)$, $N(\mu_1, \sigma_2^2)$, 则:

$$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, 0),$$

$$C_1X + C_2Y \sim N(C_1\mu_1 + C_2\mu_2, C_1^2\sigma_1^2 + C_2^2\sigma_2^2).$$

(5)若 X 与 Y 相互独立, f(x)和g(x) 为连续函数,

则 f(X)与g(Y) 也相互独立.

随机变量的数字特征 第四章

一、期望

1.数学期望

微信公众号:顶尖考研 (ID:djky66) 离散型: $P\{X=x_i\}=p_i, E(X)=\sum x_i p_i$:

连续型:
$$X \sim f(x), E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

2.性质

$$(1) E(C) = C, E[E(X)] = E(X)$$

(2)
$$E(C_1X + C_2Y) = C_1E(X) + C_2E(Y)$$

(3)若 X 和 Y 独立,则
$$E(XY) = E(X)E(Y)$$

$$(4) [E(XY)]^{2} \leq E(X^{2})E(Y^{2})$$

3.随机变量函数的数学期望

(1)对于函数Y = g(x)

$$X$$
 为离散型: $P\{X = x_i\} = p_i, E(Y) = \sum g(x_i)p_i$:

$$X$$
 为连续型: $X \sim f(x), E(Y) = \int_{-\infty}^{+\infty} g(x) f(x) dx$

(2)
$$Z = g(X, Y)$$
:

\\\有道考神 考研数学常用公式手册

$$(X,Y) \sim P\{X = x_i, Y = y_j\} = p_{ij}; E(Z) = \sum_i \sum_j g(x_i, y_j) p_{ij}$$

$$(X,Y) \sim f(x,y)$$
; $E(Z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dxdy$

二、方差

1.定义及公式

(1)方差:
$$D(X) = E[X - E(X)]^2 = E(X^2) - [E(X)]^2$$

$$(2)$$
标准差: $\sqrt{D(X)}$,

(3)离散型:
$$D(X) = \sum_{i} [x_i - E(X)]^2 p_i$$

(4)连续型:
$$D(X) = \int_{0}^{+\infty} \left[x - E(X)\right]^{2} f(x) dx$$

2.性质

$$(1) D(C) = 0, D[E(X)] = 0, D[D(X)] = 0$$

(2)X 与 Y 相互独立, 则
$$D(X \pm Y) = D(X) + D(Y)$$

(3)
$$D(C_1X + C_2) = C_1^2 D(X)$$

$$(4)$$
一般有 $D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y)$

$$(5) D(X) < E(X - C)^2, C \neq E(X)$$

(6)
$$D(X) = 0 \Leftrightarrow P\{X = C\} = 1$$

三、协方差

1.定义及计算公式

$$(1) Cov(X,Y) = E \left[(X - E(X)(Y - E(Y))) \right]$$

$$(2) Cov(X,Y) = E(XY) - E(X)E(Y)$$

2.性质

$$(1) Cov(X,Y) = Cov(Y,X)$$

$$(2) Cov(aX, bY) = abCov(Y, X)$$

(3)
$$Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$$

四、相关系数

1.定义

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

2.性质

$$(1) \left| \rho(X, Y) \right| \le 1$$

(2)
$$\rho(X,Y) = 1 \Leftrightarrow P(Y = aX + b) = 1$$
, $\sharp P(A = aX + b) = 1$, $\sharp P(A = aX + b) = 1$, $\sharp P(A = aX + b) = 1$, $\sharp P(A = aX + b) = 1$

(3)下面 5 个条件互为充要条件:

$$\rho(X,Y)=0$$

$$\Leftrightarrow Cov(X,Y) = 0$$

$$\Leftrightarrow E(X,Y) = E(X)E(Y)$$

$$\Leftrightarrow D(X \pm Y) = D(X) + D(Y)$$

第五章 大数定律与中心极限定理

一、切比雪夫不等式

$$P\{|X - E(X)| \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2} \stackrel{\text{def}}{\Rightarrow} P\{|X - E(X)| < \varepsilon\} \ge 1 - \frac{D(X)}{\varepsilon^2}$$

二、大数定律

1.切比雪夫大数定律

设
$$X_1, X_2, \cdots, X_n, \cdots$$
相互独立,且 $E(X_i) = \mu, D(X_i) = \sigma^2$

$$(i=1,2,\cdots)$$
,则对于任意正数 ε ,有 $\lim_{n\to\infty} P\left\{\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| < \varepsilon\right\} = 1$.

2.伯努利大数定律

设 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立,同 0-1 分布B(1, p),则对

任意正数
$$\varepsilon$$
 ,有 $\lim_{n\to\infty} P\left\{\left|\frac{1}{n}\sum_{i=1}^n X_i - p\right| < \varepsilon\right\} = 1$.

3.辛钦大数定律

设 $X_1, X_2, \dots, X_n, \dots$ 相互独立同分布, $EX_i = \mu, i = 1, 2, 则对$

于任意正数
$$\varepsilon$$
 ,有 $\lim_{n\to\infty} P\left\{\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| < \varepsilon\right\} = 1$.

第三部分 概率论与数理统计///

微信公众号:顶尖考研 (ID:djky66)

三、中心极限定理

1.棣莫弗---拉普斯定理

设 $\eta_n \sim B(n,p)$, (即 X_1, X_2, \dots, X_n ,相互独立且同服从 0-1

分布
$$\eta_n = \sum_{i=1}^n X_i$$
)则有

$$\lim_{n\to\infty} P\left\{\frac{\eta_n - np}{\sqrt{np(1-p)}} \le x\right\} = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

2.列维---林德伯格定理

设
$$X_1, X_2, \dots, X_n, \dots$$
相互独立分布, $E(X_i) = \mu$,

$$D(X_i) = \sigma^2(\sigma \neq 0)i = 1, 2, \dots, M$$

$$\lim_{n\to\infty} P\left\{\frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n\sigma}} \le x\right\} = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt.$$

第六章 数理统计的基本概念

一、基本概念

1.总体

研究对象的全体,它是一个随机变量,用 X 表示

2.个体

组成总体的每个基本元素

3.简单随机样本

来自总体 X 的 n 个相互独立且与总体同分布的随机变量 X_1, X, \dots, X_n , 称为容量为 n 的简单随机样本,简称样本

4.统计量

设 $X_1, X_2, ..., X_n$, 是 来 自 总 体 X 的 一 个 样 本 , $g(X_1, X_2, ..., X_n)$) 是样本的连续函数,且 $g(\bullet)$ 中不含任何未知参数,则称 $g(X_1, X_2, ..., X_n)$ 为统计量

5.样本均值

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

6.样本方差

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

7.样本矩

样本 k 阶原点矩:
$$A_k = \frac{1}{n} \sum_{i=1}^{n} X_i^k, k = 1, 2, \cdots$$

样本k阶中心矩:
$$B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^k, k = 1, 2, \cdots$$

二、三大抽样分布

1.三大分布

$$\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2 \sim \chi^2(n)$$
, 其中 X_1, X_2, \dots, X_n , 相互

独立, 且同服从 N(0,1)

(2)t 分布

$$T = \frac{X}{\sqrt{Y/n}} \sim t(n) \quad \text{\sharp $\stackrel{\cdot}{=}$ $X \sim N(0,1), $Y \sim \chi^2(n)$, $\stackrel{\cdot}{=}$ X, Y}$$

相互独立

(3)F 分布

$$F = \frac{X/n_1}{Y/n_2} \sim F(n_1, n_2), \quad \text{\sharp r} + X \sim \chi^2(n_1), Y \sim \chi^2(n_2), \; \text{\sharp χ}.$$

Y相互独立

\\\有道考神 考研数学常用公式手册

(4)分位数

若 $P(X \le x_{\alpha}) = \alpha$, 则称 x_{α} 为 X 的 α 分位数

2.正态总体下的抽样分布

设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu, \sigma^2)$ 的样本,

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2, \text{ M}:$$

$$(1) \overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \stackrel{\mathbf{I}}{\otimes} \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

$$(2)\frac{(n-1)S^2}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 \sim \chi^2(n-1)$$

$$(3)\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$$

$$(4)\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$$

三、重要公式与结论

(1)
$$E(\overline{X}) = E(X), E(S^2) = D(X), D(\overline{X}) = \frac{D(X)}{n}$$
;

(2)对于
$$\chi^2 \sim \chi^2(n)$$
, 有 $E(\chi^2(n)) = n, D(\chi^2(n)) = 2n$;

(3)对于
$$T \sim t(n)$$
 ,有 $E(T) = 0, D(T) = \frac{n}{n-2}(n > 2)$;

(4)对于
$$F \sim F(m,n)$$
,有 $\frac{1}{F} \sim F(n,m)$, $F_{a/2}(m,n) = \frac{1}{F_{L-a/2}(n,m)}$.

第七章 参数估计

一、点估计

1.矩估计

- (1)思想: 样本均值等于理论均值
- (2)令 $EX = \overline{X}$,解得估计量.

2.最大似然估计

- (1)思想: 样本值在理论上出现的可能性尽可能大
- (2)结论: $\hat{\theta}$ 为 θ 的极大似数估计,g(x) 为单调函数,则 $g(\hat{\theta})$ 为 $g(\theta)$ 的极大似然估计.

二、估计量的评选标准

1.无偏性

- (1)若 $E\hat{\theta} = \theta$,则 $\hat{\theta}$ 为 θ 的无偏估计量.
- (2) $E(\overline{X})=E(X)$, $E(S^2)=D(X)$, 即 \overline{X} , S^2 分别为总体 E(X), D(X) 的无偏估计量.

\\\有道考神 考研数学常用公式手册

2.有效性

若 $D\hat{\theta}_1 < D\hat{\theta}_2$,则 $\hat{\theta}_1$ 比. $\hat{\theta}_2$ 更有效.

3.一致性

- (1)若 $\hat{\theta} \xrightarrow{P} \theta$,则 $\hat{\theta}$ 为 θ 的一致估计量.
- (2)由大数定律易知 \overline{X} , S^2 也分别是E(X), D(X) 的一 致估量.
 - (3)若 $E(\hat{\theta}) = \theta, D(\hat{\theta}) \to 0 (n \to \infty)$ 则 $\hat{\theta}$ 为 θ 的一致估计.

三、区间估计(仅数学一要求)

1.概念

岩 $P\{\hat{\theta_i} \leq \theta \leq \hat{\theta_2}\} = 1 - \alpha$,则称 $(\hat{\theta_i}, \hat{\theta_2})$ 为 θ 的置信度是 $1-\alpha$ 的置信区间.

2.结论

若 $(\hat{ heta}_1,\hat{ heta}_2)$ 为heta的置信度是1-lpha的置信区间,g(x)为单 调增加(或单调减少)函数,则 $(g(\hat{\theta}_1),g(\hat{\theta}_1))$ 或 $g(\hat{\theta}_2)$, $g(\hat{\theta}_1)$ 为 $g(\theta)$ 的置信度是 $1-\alpha$ 的置信区间

第三部分 概率论与数理统计///

2.正态总体均值与方差的置信区间

2.正态总体均值与万层的显旧区内 (ID:djky6							
待估参数		抽样分布	<u> </u>				
μ	σ² 已知	$U = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$	$(\overline{X} - \mu_{\frac{a}{2}}, \overline{X} + \mu_{\frac{a}{2}})$ $P\{ \mu \ge \mu_{\frac{a}{2}}\} = \alpha$				
	σ² 未知	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$	$(\overline{X} - t_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}})$ $P\{ T \ge t_{\frac{\alpha}{2}}\} = \alpha$				
σ^2	<i>μ</i> 己知	$W' = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \mu)^2$ $\sim \chi^2(n)$	$\sum_{\substack{i=1\\ \left(\frac{i-1}{2}(X_i - \mu)^2\right) \\ \frac{\alpha}{2}(n)}}^{n}, \sum_{\substack{i=1\\ \left(X_i - \mu\right)^2 \\ \frac{\alpha}{2}(n)}}^{n}$ $P\{W^i \ge \chi^2_{\frac{\alpha}{2}}(n)\} = \frac{\alpha}{2}$ $P\{W^i \le \chi^2_{\frac{\alpha}{2}}(n)\} = \frac{\alpha}{2}$				
	μ 未知	$W = \frac{(n-1)S^2}{\sigma^2}$ $\sim \chi^2 (n-1)$	$\frac{\left(\frac{(n-1)S^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}\right)}{\left(\frac{(n-1)S^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n-1)}\right)}$				

第八章 假设检验

一、假设检验的一般步骤

- (1)确定所要检验的基本假设 H_0 :
- (2)选择检验的统计量,并要求知道其在一定条件下的分布;
- (3)对确定的显著性水平 α , 查相应的概率分布, 得临界值, 从而确定否定域;
- (4)由样本计算统计量,并判断其是否落入否定域,从而 对假设 H₀ 作出拒绝还是接受的判断

二、假设检验的两类错误

统计推断是由样本推断总体,所作的结论不能保证绝对 不犯错误,而只能以较大概率来保证其可靠性.

第一类错误是否定了真实的假设,即假设本来成立,但被错误地否认了,成为"弃真",检验水平 α 就是犯第一类错误的概率的最大允许值.

第二类错误是把本来不成立的假设错误地接受了, 称为

"存伪".犯这类错误的大小一般用 β 表示,它的大小要视具体 情况而定.

三、单个正态总体的均值和方差的假设检验

	原假设 <i>H</i> ₀	H。下的检验统计量及分布	H _a 的拒绝域
	$\mu = \mu_0$ (σ^2 已知)	$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$ $\sim N(0,1)$	$ u = \left \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right \ge u_{\frac{a}{2}}$
一	$\mu = \mu_0$ (σ^2 未知)	$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$ $\sim t(n-1)$	$ t = \left \frac{\overline{x} - \mu_0}{S / \sqrt{n}} \right \ge t_{\frac{\alpha}{2}}(n-1)$
正态	$\sigma^2 = \sigma_0^2$	$W = \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma_0} \right)^2$	$w = \sum_{i=1}^{n} \left(\frac{x_i - \mu}{\sigma_0} \right)^2$ $\geq \chi_{\frac{a}{2}}^2(n)$
总体	(μ 已知)	$\sim \chi^2(n)$	或 $w \le \chi_{1-\frac{a}{2}}^2(n)$
	$\sigma^2 = \sigma_0^2$ (μ 未知)	$W = \frac{(n-1)S^2}{\sigma_0^2}$ $\sim \chi^2(n-1)$	$w = \frac{(n-1)S^{2}}{\sigma_{0}^{2}} \ge \chi_{\frac{a}{2}}^{2}(n-1)$ $\vec{x} \ w \le \chi_{1-\frac{a}{2}}^{2}(n-1)$

微信公众号:顶尖考研 (ID:djky66)

• 有道考神考研