Estructura de la Materia I

Práctica 5 ~ Flujos unidimensionales compresibles y ondas de choque

- Considere un propulsor de cohete como una cámara donde se genera gas a alta presión, con velocidad prácticamente nula, que es descargado al exterior a través de una tobera. Si alrededor del vehículo la presión puede considerarse uniforme e igual a p_0 , determine el empuje que sufre el cohete aplicando el teorema del flujo de la cantidad de movimiento. Tenga en cuenta que el propulsor presenta dos superficies; la externa en contacto con la a tmósfera a presión p_0 , y la in terna (cámara de combustible y tobera) en contacto con los gases de la combustión. En particular, muestre que el empuje es máximo si la tobera es adaptada; esto es, si la presión de los gases en el área de salida de la tobera es igual a la presión externa p_0 .
- 5.2 La cámara de combustión de un cohete produce G ki logramos por segundo de gas a alta temperatura T^* (puede considerarse el gas como perfecto con exponente γ , y despreciarse la energía cinética con que es inyectado en la cámara). Si la tobera de descarga tiene un cuello de área A_{\min} , determine la presión que soporta la cámara de combustión. (suponga que la presión externa es suficientemente baja, menor que p_{crit}). Calcule el empuje para el caso de ser la tobera adaptada.
- 5.3 Determine la forma de una tobera cuya sección de entrada es A_0 , y en la que ingresa un gas ideal de exponente γ con número de Mach M_0 , para que, en régimen adaptado, alcance un número de Mach M_s a la salida. Grafique cualitativamente para todos los casos posibles: subsónico-supersónico, supersónico-subsónico-subsónico con $M_0 < M_s$, ídem con $M_0 > M_s$, supersónico-supersónico con $M_0 < M_s$, ídem con $M_0 > M_s$.

- 5.4 Un avión supersónico se mueve a 3000 km/h a través del aire, a una altura en la que la presión vale 0,5 atm, y la temperatura es de 270 K. Si se forma un choque normal en el frente del avión, ¿cuál es la temperatura y cuál la pres ión inmediatamente detrás del choque?
- 5.5 A través de un tubo de área constante fluye aire a 300 K de temperatura, presión 1 atm y velocidad 60 m/s. Súbitamente se cierra una válvula, con lo que una onda de choque se propaga corriente arriba. Ca lcule la velocidad del frente de choque (aclare el sistema de referencia) y la presión y temperatura del aire detrás de dicho frente.
- En aire quieto a presión p_0 y temperatura T_0 se propaga una onda de choque con número de Mach M. Dicha onda incide normalmente sobre una pared rígida plana y rebota sobre ella. Determine el estado del aire inmediatamente detrás del choque reflejado (aire entre la pared y el choque reflejado).