Reinvestable Principal Guaranteed Note

HSBC Business School

First Intuition

- Economic Background
 - With low interest rate, we are seeking to develop an alternative investment opportunity.
- Product Feature
 - Principal guaranteed;
 - Track the performance of the market portfolio;
 - Eliminate liquidity preference;
 - Double win (bank and investors);
 - 'Bermudan' style

Product Description

- Initial investment: I;
- Maturity time: { T, 2T, 3T};
 Our product gives investors the option to continue or terminate the contract. Hence, the maturity is up to the investors' decision.
- **3** Decision time: $\{t^*, T + t^*\}$;
- Underlying Asset: S&P 500 Index;
- **5** Participation rate: π ;
- Payoff at $T: I + \pi \times max\{\overline{S}_{t^*}^T K, 0\}$. This is the payoff given that investor decided to continue the contract; otherwise, the payoff should be $I + \pi \times max\{S_T - K, 0\}$

Product Description

S&P 500 Index

Structuring the Product

- The issuer could use a *call on call*, or *call*² to structure this product;
- From the bank side, it needs a lookback call option which starts at t^* , and matures at T, with strike S_0 , and most importantly, priced as if $S_{t^*} = S_0$;
- Define

$$K^{lookback} \equiv Call_{t^*}^{lookback}(S_{t^*} = S_0, K = S_0, \tau = T - t^*)$$

• The 'outer' would be an European call option, with strike $K^{lookback}$, maturity of t^* , and the underlying is the above mentioned lookback option.

Participation Rate

- Denote by π the participation rate;
- The money allocated to the options should be $B = I \times \{1 e^{-rT}\};$
- Considering the premium paid for $call^2$ at t=0 and the strike price paid at $t=t^*$, the participation rate should satisfy

$$e^{rt^*}\Big[B-\pi \textit{Call}_0^2(\textit{K}^{\textit{lookback}})\Big]=\pi \textit{K}^{\textit{lookback}}, \ \ \textit{S}_{t^*}\geq \textit{S}_0.$$

$$\pi \equiv \frac{Be^{rt^*}}{K^{lookback} + e^{rt^*} Call_0^2(K^{lookback})}$$

Participation Rate

- If the realized $S_{t^*} > S_0$, i.e., the lookback option becomes more expensive than predicted, the bank could just exercise the $call^2$;
- On the other hand, if $S_{t^*} < S_0$, bank does not need to spend all the reserved money on buying the lookback options, which means bank could gain profit

$$\pi imes \Big(K^{lookback} - Call_{t^*}^{lookback} (S_{t^*}, K = S_0, \tau = T - t^*) \Big),$$

while still maintains the original participation rate for the investor.

Performance: Simulation

- We are seeking to evaluate the performance of this product;
- In simulation, we made several assumptions to simplify:
 - Investor may always choose to continue the contract;
 - Bank maintains no profit.
- The parameters used are

r : 2%

 μ : 8%

 σ : 25%

Simulated Performance

Simulated Invest Performance

Option Pricing

- We need to price two options: fixed strike lookback option and call on lookback;
- Under the Black-Scholes framework, $dS_t = rS_t dt + \sigma S_t dW_t$, there is explicit formula for the lookback option. Conze and Viswanathan (1991) gives

$$\begin{split} (M-K)e^{-r(T-t)} + Se^{-q(T-t)}N(d) - Me^{-r(T-t)}N(d - \sigma\sqrt{T-t}) \\ + & Se^{-r(T-t)}\frac{\sigma^2}{2(r-q)}\Big\{-\Big[\frac{S}{M}\Big]^{-\frac{2(r-q)}{\sigma^2}}N\Big[d - \frac{2(r-q)\sqrt{T-t}}{\sigma}\Big] + e^{(r-q)(T-t)}N\Big[d\Big]\Big\} \\ d = & \frac{\ln(S/M) + (r-q+\frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{T-t}}, \quad M = S \vee K \end{split}$$

• For the Call² option, we use Monte Carlo method to price.

Monte Carlo Pricing

Comparison Between Option Prices

Historical Data Application

- We examine the S&P 500 Index data;
- For the investor, the payoff should be
 - If continues to invest in the next period

$$I + \pi \times max\{\overline{S}_{t^*}^T - S_0, 0\};$$

• Else, the payoff should be

$$I + \pi \times \max\{S_T - S_0, 0\}.$$

Hedging

 Existing literatures suggest several methods to hedge a call on European call, which we will mention here;

• Dynamic hedging:

Theoretically, traditional *Delta Hedge* could be used to hedge a compound option. *Davis*, *et al.* (2000) has examined the performance of delta hedge, which is satisfactory.

Static hedging:

Thomas, (1999) has proposed static hedge. The issuer of the compound option could buy a European call option with maturity T and strike $K + e^{r(T-t_1)}p_1$, where K is the strike price of the 'inner' option, p_1 and t_1 are the strike price and maturity of the 'outer' option.

Limitations

Difficult to hedge

It might be difficult to buy 'call on call' in the market. Though we believe the hedging of a call on lookback should be somehow similar to that of a call on European, the implementation might not be trivial;

Investor behaviour

In reality, bank faces large amount of investors, which means bank needs to estimate the percentage of investors who might be willing to reinvest;

Bank revenue

Bank's revenue relies on the stock market. In worst case, the bank may not earn any profit.

Thanks!

Reference

- Conze, Viswanathan. 1991. Path Dependent Options: The Case of Lookback Options. Journal of Finance, 46, 1893-1907.
- B. Thomas. 1999. Exotic Options II. In Carol Alexander (editor): The Handbook of Risk Management and Analysis. John Wiley & Sons, Chichester, England.
- Davis, Schachermayer, Tompkins. 2000. Pricing, No-arbitrage Bounds and Robust Hedging of Installment Options. Working paper.
- S. G. Kou. 2002. A Jump-Diffusion Model for Option Pricing. Management Science, 48, 1086-1101.

Jump Model

- Kou (2002) proposed a model in which underlying follows a Brownian motion plus a compound Poisson process with jump sizes double exponentially distributed.
- Such a model could capture the dividend effect and close-open price jump;
- Also, this model may introduce fat tail, which is realistic.

$$dS_t = rS_{t-}dt + \sigma S_{t-}dW_t + d\Big(\prod_{i=1}^{N(t)} (V_i - 1)\Big),$$

or

$$S_t = S_0 \exp\left((r - \frac{1}{2}\sigma^2)t + \sigma W_t\right) \prod_{i=1}^{N(t)} V_i$$

where N(t) is a Poisson process, and $In(V_i)$ follows exponential distributions (up or down jump).

Static Hedging of Compound Option

For a call on European call, Davis, et al. (2000) proved

$$C(t, T, K + e^{r(T-t_1)}p_1) > C(t, T, K) - e^{-r(t_1-t)}p_1 + P(t, t_1, p_1)$$

where t_1 and T are the expiration times of the compound call and European call options; p_1 and K are the strike prices of the compound call and European call options; and $P(\cdot)$ is the price of a European put option.

If the compound option expires at t_1 in-the-money, we have

$$C(t_1, T, K + e^{r(T-t_1)}p_1) > C(t_1, T, K) - p_1$$

which means the issuer could sell the European call with strike $K + e^{r(T-t_1)}p_1$ and the proceedings are enough to cover the money paid to the counter party, $C(t_1, T, K) - p_1$.