UNIVERSIDADE NOVA DE LISBOA Faculdade de Ciências e Tecnologia Departamento de Química 2829-516 Caparica - Portugal

2º teste de Química Física 2, 2020/04/29, 17:00 H Teste não-presencial para a Licenciatura de Química Aplicada

Seja o seu nº de aluno **abcde** (5 algarismos). **Y=a+b+c+d+e**. Por exemplo, para o nº de aluno 56432, Y=20, (d+e)=5, (d-e)=1, d*e=6, (b+d)=9, etc, etc.

1. A decomposição da fosfina foi seguida através de medidas de pressão, a YºC.

$$4PH_3(g) \rightarrow P_4(g) + 6H_2(g)$$

P/bar	Y/150	Y/100
t/min	0	80

Sabendo que a reação é de 1ª ordem em relação à fosfina, calcule a constante cinética a esta temperatura. Não se esqueça de indicar o resultado em unidades de min⁻¹. Insira só o valor numérico.

2. As soluções aquosas do ião azul de bromofenol (ABF²⁻) perdem a cor quando este ião reage com OH⁻ à temperatura **Y^oC.**

Preparou-se uma solução-mãe de ABF²⁻ (sal de sódio) **Yx10⁻⁵ M** e uma solução-mãe de NaOH **Yx10⁻³ M**. Estudou-se a reação de descoloração do ABF²⁻ para várias concentrações do eletrólito NaCl, a partir de uma solução-mãe de NaCl 1 M, e calcularam-se as constantes cinéticas.

	1	2	3
V _{ABF} ²⁻ /cm ³	10	10	10
V _{NaOH} /cm ³	5	5	5
V _{NaCI} /cm ³	5	15	35
V _{H2O} /cm ³	30	20	0
k/M ⁻¹ s ⁻¹	0,005	0,015	0,057

Nesta tabela estão representados os volumes usados de cada uma das soluções-mãe.

Sabendo que a constante A da equação de Bronsted-Bjerrum é aproximadamente 0,5 a essa temperatura, calcule o produto das cargas dos iões presentes no Complexo Ativado (aproxime a 1 casa decimal).

3. A reação de decomposição do óxido nitroso

$$N_2O(g) \rightarrow N_2(g) + \frac{1}{2}O_2(g)$$

foi estudada medindoo a pressão total do sistema ao longo do tempo.

Calcular ∆S[≠] previsto pela Teoria do Complexo Ativado, a **35xY K**, sabendo que as constantes cinéticas a **30xY K** e a **40xY K** são 2x10⁻⁶ bar⁻¹s⁻¹ e 3x10⁻⁴ bar⁻¹s⁻¹, respetivamente. Não se esqueça de indicar o resultado em unidades de J mol⁻¹ K⁻¹. Insira só o valor numérico.

4. Sabendo que o fator pré-exponencial obtido experimentalmente para a reação bimolecular

$$H_2(g) + CH_3(g) \rightarrow CH_4(g) + H(g)$$

é de (d+e+5)x10⁷ M⁻¹s⁻¹ e que os diâmetros das espécies reativas são d(CH₃·)=350 pm e d(H₂)=251 pm, calcule, de acordo com a Teoria das Colisões, a 298 K, a seção de reação para este sistema. Não se esqueça de indicar o resultado em unidades de m². Insira só o valor numérico.

5. Para uma dada reação do tipo A + B ⇒ C + D registaram-se, a Y °C, os seguintes valores:

v ₀ / M s ⁻¹	[A] ₀ / M	[B] ₀ / M
0,0063	0,21	0,70
0,0041	0,15	0,90
0,0125	0,21	1,39
0,0208	0,38	0,70

A lei de velocidade da reação pode ser descrita como v=k (A) a (B) b

Os valores de **a**, **b**, **k**, são, respetivamente (com as unidades de k coerentes com as unidades que aparecem na tabela)

- a) 1, 2, 0,204
- b) 2, 2, 0,204
- c) 2, 1, 0,204
- d) 1, 1, 0,402
- e) 1, 2, 0,402
- f) 2, 1, 0,402
- g) 1, 1, 0,004
- h) 2, 2, 0,402
- i) 2, 1, 0,004
- j) 1, 2, 0,004
- k) 2, 2, 0,004
- I) 1, 1, 0,204

6. A isomerização A ↔ B é de 1ª ordem quer no sentido direto quer no sentido inverso e ambas as reações se dão num único passo elementar.

A 25° C o patamar da figura abaixo para a concentração de A normalizada ([A]/[A]₀) a tempos longos situa-se nos **0,02xY**. A constante cinética no sentido direto (k₁) é **Yx10**⁻⁴ s⁻¹

Quanto tempo tem de se esperar a esta temperatura para que a concentração do B seja igual à do A?

$$\frac{[A]}{[A]_0} = \frac{k_{-1} + k_1 e^{-(k_1 + k_{-1})t}}{k_1 + k_{-1}}$$

$$\frac{[B]}{[A]_0} = \frac{k_1 - k_1 e^{-(k_1 + k_{-1})t}}{k_1 + k_{-1}}$$

Não se esqueça de indicar o resultado em segundos. Insira só o valor numérico.

7. Seja a reação

$$PH_3(aq) + H^+(aq) \leftrightarrow PH_4^+(aq)$$

Esta reação foi estudada usando técnicas de saltos de temperatura induzidos por laser, analisando a relaxação do sistema. Os tempos de relaxação são dados por

$$\tau = \frac{1}{k_{-1} + k_1([A] + [B])}$$

e foram medidos para várias concentrações de equilíbrio, a 25ºC.

[H+]x10 ³ /M	[PH ₃]x10 ³ /M	τ/ns
5	2	(d+e+5)
1	1	(d+e+15)

Calcule a razão das constantes cinéticas direta e inversa, k_1/k_{-1} . Não se esqueça de indicar o resultado em unidades de M^{-1} . Insira só o valor numérico.

8. Num mecanismo de Lindemann para reações unimoleculares

$$A + A \xrightarrow{k_1} A^* + A$$

$$A^* + A \xrightarrow{k_2} P$$

$$A^* \xrightarrow{k_2} P$$

a espécie A* representa uma molécula ativada, com energia mais elevada. Utilizando a aproximação do estado estacionário à molécula excitada, A*, chegue à equação de velocidade de formação do produto P.

Se o seu nº Y estiver entre **7 e 19**, diga o que acontece quando [A] é elevada Se o seu nº Y estiver entre **20 e 22**, diga o que acontece quando [A] é baixa Se o seu nº Y estiver entre **23 e 26**, diga o que acontece quando k -1 é muito pequeno Se o seu nº Y estiver entre **27 e 35**, diga o que acontece quando k₂ é muito pequeno

- (A) elevada e k2 pequeno dá v = (k1 k2/k-1) (A)
- (A) baixa e k-1 pequeno dá v= k1 (A)2