Copyrighted by Hyunyoung Lee. Do not distribute!

CSCE 222 Discrete Structures for Computing – Fall 2023 Hyunyoung Lee Homework 4 Solutions

Total 100 + 5 (bonus) points.

Problem 1. (15 points) Section 4.1, Exercise 4.3

Solution. We prove this by induction on n. Let P(n) denote the claimed equation, Eqn (4.3).

Base case. The equation P(n) holds for n = 1, since

$$\sum_{k=1}^{1} k^2 = 1^2 = \frac{1(1+1)(2\cdot 1+1)}{6}.$$

Inductive step. We show that $[P(n) \to P(n+1)]$ holds for all $n \ge 1$. As the induction hypothesis, suppose that P(n) is true. Then

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2 \text{ by the definition of } \sum$$

$$= \frac{n(n+1)(2n+1)}{6} + (n+1)^2 \text{ by the induction hypothesis}$$

$$= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6} \text{ by a common denominator}$$

$$= \frac{(n+1)(2n^2 + n + 6n + 6)}{6} \text{ by factoring out } (n+1)$$

$$= \frac{(n+1)(2n^2 + 7n + 6)}{6} \text{ simplifying}$$

$$= \frac{(n+1)(n+2)(2n+3)}{6} \text{ to have the right-hand side of } P(n+1)$$

$$= \frac{(n+1)((n+1)+1)(2(n+1)+1)}{6} \text{ exactly the right-hand side of } P(n+1)$$

so P(n+1) holds. Therefore, the implication $P(n) \to P(n+1)$ is true for all $n \ge 1$.

It follows by induction that P(n) is true for all $n \ge 1$.

Problem 2. (15 points) Section 4.1, Exercise 4.4

Solution. Let P(n) denote the claimed equation, Eqn (4.4), that is,

$$\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2 = \frac{n^2(n+1)^2}{4}.$$

We prove the claim by induction on n.

Base case. The equation P(n) holds for n = 1, since

$$\sum_{k=1}^{1} k^3 = 1^3 = (1)^2 = \frac{1^2 \cdot (1+1)^2}{4}.$$

Inductive step. We need to show that the implication $[P(n) \to P(n+1)]$ holds for all $n \ge 1$. As the induction hypothesis, suppose that P(n) is true. Then

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3 \text{ by definition of } \sum$$

$$= \frac{n^2(n+1)^2}{4} + (n+1)^3 \text{ by the induction hypothesis}$$

$$= \frac{n^2(n+1)^2 + 4(n+1)^3}{4} \text{ by a common denominator}$$

$$= \frac{(n+1)^2(n^2 + 4(n+1))}{4} \text{ by factoring out } (n+1)^2$$

$$= \frac{(n+1)^2(n^2 + 4n + 4)}{4} = \frac{(n+1)^2(n+2)^2}{4} \text{ by simplifying}$$

$$= \frac{(n+1)^2((n+1)+1)^2}{4}.$$

Also, since $(1 + 2 + \cdots + n + (n+1)) = (n+1)(n+2)/2$, we have

$$\sum_{k=1}^{n+1} k^3 = (1+2+\dots+n+n+1)^2 = \left(\frac{(n+1)(n+2)}{2}\right)^2 = \frac{(n+1)^2(n+2)^2}{4}.$$

Therefore, P(n+1) is true. Hence, $P(n) \to P(n+1)$ holds for all $n \ge 1$. Therefore, P(n) holds for all $n \ge 1$ by induction. **Problem 3.** (15 points) Section 4.1, Exercise 4.5

Solution. We prove this by induction on n. Let P(n) denote the claimed equation, Eqn (4.5).

Base case. The equation P(n) holds for n=1, since

$$\sum_{k=1}^{1} (2k-1)^2 = 1^2 = 1 = \frac{1}{3}(3) = \frac{1}{3}(4-1) = \frac{1}{3}(4 \cdot 1^3 - 1).$$

Inductive step. We show that $[P(n) \to P(n+1)]$ holds for all $n \ge 1$. As the induction hypothesis, suppose that P(n) is true. Then

$$\sum_{k=1}^{n+1} (2k-1)^2 = \sum_{k=1}^{n} (2k-1)^2 + (2(n+1)-1)^2 \text{ by the definition of } \sum$$

$$= \frac{1}{3} (4n^3 - n) + (2(n+1)-1)^2 \text{ by the induction hypothesis}$$

$$= \frac{1}{3} (4n^3 - n) + (2n+1)^2 \text{ since } 2(n+1) - 1 = 2n+2-1 = 2n+1$$

$$= \frac{1}{3} (4n^3 - n + 3(2n+1)^2) \text{ by a common denominator}$$

$$= \frac{1}{3} (4n^3 - n + 3(4n^2 + 4n + 1)) \text{ by expanding } (2n+1)^2$$

$$= \frac{1}{3} (4n^3 - n + 12n^2 + 12n + 3) \text{ by distributing } 3$$

$$= \frac{1}{3} (4n^3 + 12n^2 + 12n + 4 - n - 1) \text{ by rearranging terms}$$

$$= \frac{1}{3} (4(n^3 + 3n^2 + 3n + 1) - (n+1)) \text{ regroup, factor out } 4, \text{ and } -1, \text{ resp.}$$

$$= \frac{1}{3} (4(n+1)^3 - (n+1)) \text{ exactly the right-hand side of } P(n+1)$$

so P(n+1) holds. Therefore, the implication $P(n) \to P(n+1)$ is true for all positive integers n.

It follows by induction that P(n) is true for all positive integers n.

Problem 4. (20 points) Section 4.1, Exercise 4.6

Solution. Base case. For n = 1, the integer $2^{2 \cdot 1} - 1 = 3$ is divisible by 3.

Inductive step. As the induction hypothesis, suppose that $2^{2n}-1$ is divisible by 3, that is, $2^{2n}-1=3k$ for some integer $k\geq 1$. We need to show that this implies that $2^{2(n+1)}-1$ is divisible by 3. Indeed, expanding the exponent and rewriting yields

$$2^{2(n+1)} - 1 = 2^{2n+2} - 1 = 2^{2n} \cdot 2^2 - 1 = 4 \cdot 2^{2n} - 1 = (3+1)2^{2n} - 1$$

$$= 3 \cdot 2^{2n} + (2^{2n} - 1)$$

$$= 3 \cdot 2^{2n} + 3k \quad \text{by the induction hypothesis}$$

$$= 3(2^{2n} + k) \quad \text{by factoring out 3}$$

which is divisible by 3 since $2^{2n} + k$ is an integer ≥ 1 , thus the inductive step holds.

Thus, the claim holds by induction on n.

Problem 5. (20 points) Section 4.3, Exercise 4.15

Solution. Let P(n) denote the claimed equation. We prove the claim by induction on n.

Base case. The equation P(n) is true for n=1, since

$$\sum_{k=1}^{1} f_{2k} = f_{2\cdot 1} = 1 = 2 - 1 = f_3 - 1 = f_{2\cdot 1+1} - 1.$$

Inductive step. We claim that $P(n) \to P(n+1)$ holds for all $n \ge 1$. Indeed, as the induction hypothesis, suppose that P(n) is true. Then

$$\sum_{k=1}^{n+1} f_{2k} = \sum_{k=1}^{n} f_{2k} + f_{2n+2} \text{ by definition of } \sum$$

$$= f_{2n+1} - 1 + f_{2n+2} \text{ by the induction hypothesis}$$

$$= f_{2n+3} - 1 \text{ by definition of } f_{2n+3} = f_{2n+2} + f_{2n+1}$$

$$= f_{2(n+1)+1} - 1.$$

Therefore, P(n+1) holds.

Thus, we can conclude by induction that P(n) holds for all $n \geq 1$.

Problem 6. (20 points) Section 4.6, Exercise 4.31

Solution. Let P(n) denote the predicate $f_n = n!$. Base cases. There are three base cases: P(1), P(2), and P(3) hold since

$$f_1 = 1 = 1!$$
, $f_2 = 2 = 2!$, and $f_3 = 6 = 3!$.

Inductive step. Suppose that n > 3 and that P(k) holds for all k in the range $1 \le k < n$. By definition and induction hypothesis, we have

$$f_n = (n^3 - 3n^2 + 2n) f_{n-3} = (n^3 - 3n^2 + 2n) (n-3)!$$

Since $n^3 - 3n^2 + 2n = n(n^2 - 3n + 2) = n(n - 1)(n - 2)$, we can conclude that

$$f_n = (n^3 - 3n^2 + 2n)f_{n-3} = n(n-1)(n-2) \cdot (n-3)! = n!,$$

so P(n) holds. Therefore, the claim follows by strong induction.