Model Theory and Non-Classical Logic

Hernán Ibarra Mejia

October 24, 2023

This is a set of lecture notes taken by me from the Part III course "Model Theory and Non-Classical Logic", lectured by Dr J. Siqueira in Michaelmas, 2023. I take full responsibility for any mistakes in these notes. Chapter 0 is my summary/expansion of [NOLAST]

Chapter 0

Logic Background

Definition 0.0.1 (Signature). A signature Σ is a triplet (Ω, Π, α) , where Ω and Π are disjoint sets and $\alpha \colon \Omega \cup \Pi \to \mathbb{N}$. We call the elements of Ω function symbols, those of Π we call predicate symbols, and if $s \in \Omega \cup \Pi$ we call $\alpha(s)$ the arity of s.

For the rest of this chapter, assume $\Sigma = (\Omega, \Pi, \alpha)$ is an arbitrary signature and that we are given a countable set $X = \{x_1, x_2 ...\}$, which we call the set of *variables*. This set does not contain any symbols in our signature (nor in the set of strings on our signature, see below).

0.1 Terms, formulae, and structures

Definition 0.1.1 (Terms). The set of Σ -terms is a subset of the set of strings on $\Omega \cup X$, defined inductively as follows.

- (a) If $x \in X$ then x is a term
- (b) If $t_1, \ldots t_n$ are terms, and $\omega \in \Omega$ with $\alpha(\omega) = n$ then $\omega(t_1, \ldots, t_n)$ is a term.
- (c) That is all.

Remark 0.1.2. Now assume that $X \cup \Omega \cup \Pi$ do not contain the symbols '=', '(',')', ' \bot ', ' \forall ' nor ' \Rightarrow ' (nor commas).

Definition 0.1.3 (Atomic formulae). Let T be the set of Σ -terms. We define the *atomic formulae* of Σ as certain strings on $T \cup \Pi \cup \{(,),=,,\}$ (note that the last comma is not a typo) according to the following rules.

- (a) If s and t are terms then (s = t) is an atomic formula.
- (b) If $\phi \in \Pi$, $\alpha(\phi) = n$ and t_1, \ldots, t_n are terms then $\phi(t_1, \ldots, t_n)$ is an atomic formula.

(c) That is all.

Definition 0.1.4 (Pre-formulae). Let T be the set of terms of Σ . We inductively define the set of Σ -pre-formulae as a subset of the set of strings on $T \cup \Pi \cup \{=, \bot, \forall, \Rightarrow, (,)\}$ satisfying the following.

- (a) Atomic formulae are pre-formulae
- (b) \perp is a pre-formula.
- (c) If p and q are pre-formulae then so is $(p \Rightarrow q)$.
- (d) If p is a pre-formula and $x \in X$ is a variable then $(\forall x)p$ is a pre-formula.
- (e) That's all.

Now we can define a function PFV (for pre-free variables) on the set of terms union with the set of pre-formulae by the following rules

$$PFV(x) = \{x\}$$

$$PFV(\omega t_1 \cdots t_n) = \bigcup_{i=1}^n PFV(t_i)$$

$$PFV(s = t) = PFV(s) \cup PFV(t)$$

$$PFV(\phi(t_1, \dots, t_n)) = \bigcup_{i=1}^n PFV(t_i)$$

$$PFV(\bot) = \emptyset$$

$$PFV(p \Rightarrow q) = PFV(p) \cup PFV(q)$$

$$PFV((\forall x)p) = PFV(p) \setminus \{x\}$$

Finally, we can define Σ -formulae to be all pre-formulae of Σ except those of the form $(\forall x)p$ where $x \notin PFV(p)$. Define FV to be the restriction of PFV so that it only applies to terms and formulae.

By the language \mathcal{L} of a signature Σ we mean the set of all terms and formulae of Σ . Instead of saying Σ -terms and Σ -formulae we say \mathcal{L} -terms and \mathcal{L} -formulae to mean the same thing.

Definition 0.1.5 (Language structures). An \mathcal{L} -structure is a set A together with functions $\omega_A \colon A^{\alpha(w)} \to A$ for each $\omega \in \Omega$ and relations $\phi_A \subseteq A^{\alpha(\phi)}$ for each $\phi \in \Pi$. We use the convention that S^0 is a singleton set (say $\{0\}$) for all sets S.

0.2 Derived symbols

Definition 0.2.1 (Derived operations). Let A be an \mathcal{L} -structure and t a term. In addition, suppose n is an integer with $\mathrm{FV}(t) \subseteq \{x_1, \ldots, x_n\}$. We define, $t_A(n)$ to be a function $A^n \to A$ as follows.

- (a) If $t \in X$ then $t = x_i$ for some $i \le n$. Let $t_A : A^n \to A$ be the *i*-th projection function.
- (b) Suppose $t = \omega t_1 \dots t_m$ where $\omega \in \Omega$ with $\alpha(\omega) = m$, and the t_i 's are terms for which we have defined $(t_i)_A(n)$. Then t_A is the composite

$$A^n \xrightarrow{((t_1)_A(n),(t_2)_A(n),\dots,(t_m)_A(n))} A^m \xrightarrow{\omega_A} A$$

Note that in the empty structure all derived operations are the empty function (there can't be any constant symbols).

Lemma 0.2.2 (Variable redundancy in terms). Let A be a structure and t a term with $FV(t) \subseteq \{x_1, \ldots, x_n\}$ for some n. Suppose we have two sequences of elements of A^n , say a and b, such that a and b agree on free variables, i.e. $a_k = b_k$ whenever $x_k \in FV(t)$. Then $t_A(n)(a) = t_A(n)(b)$.

Proof. Induction on t. Suppose $t = x_i \in X$. Then $t_A(n)(a)$ and $t_A(n)(b)$ are a_i and b_i respectively. We have assumed these are the same, as $x_i \in FV(t)$. Thus $t_A(n)(a) = t_A(n)(b)$.

Now suppose $t = \omega t_1 \cdots t_m$ where $\omega \in \Omega$ with $\alpha(\omega) = m$, and the t_i 's are terms. By inductive hypothesis, we may assume that for all $1 \le i \le n$ we have

$$(t_i)_A(n)(a) = (t_i)_A(n)(b).$$

It follows that

$$((t_1)_A(n), \dots, (t_m)_A(m))(a) = ((t_1)_A(n), \dots, (t_m)_A(n))(b).$$

Applying ω_A to both sides gives the result.

Definition 0.2.3. (Derived formulae) Let A be an \mathcal{L} -structure and p a formula. In addition, suppose n is an integer with $FV(p) \subseteq \{x_1, \ldots, x_n\}$. We define $p_A(n)$ to be subset of A^n , or equivalently a function $A^n \to 2$, as follows.

(a) If p is the formula (s = t) for terms s and t then

$$p_A(n) := \{ a \in A^n \mid s_A(n)(a) = t_A(n)(a) \}$$

(b) Suppose $p = \phi(t_1, ..., t_m)$ for some $\phi \in \Pi$, with $\alpha(\phi) = m$, and terms $t_1, ..., t_m$. Then (the characteristic function of) $p_A(n)$ is defined by

$$A^n \xrightarrow{((t_1)_A(n),(t_2)_A(n),\dots,(t_m)_A(n))} A^m \xrightarrow{\phi_A} 2$$

- (c) If $p = \bot$ then $p_A(n)$ is the empty set (i.e. its characteristic function is constant with value zero).
- (d) Suppose p is $(q \Rightarrow r)$ for formulas q and r, where $q_A(n)$ and $r_A(n)$ have already been defined. Then we define p_A by the composition

$$A^n \xrightarrow{(q_A(n), r_A(n))} 2 \times 2 \xrightarrow{\Rightarrow_2} 2$$

(e) Suppose $p = (\forall x_m)q$ for some formula q with $x_m \in FV(q)$. Define $N := \max(n, m)$. We can assume that $q_A(N)$ is defined. Let $a \in A^n$. We say that $a \in p_A(n)$ if and only if for all $a' \in A^N$ so that a' agrees with a in the first n terms—except possibly on the m-th term—we have that $a' \in q_A(N)$.

Lemma 0.2.4 (Variable redundancy in formulae). Let A be a structure and p a formula with $FV(p) \subseteq \{x_1, \ldots, x_n\}$ for some n. Suppose we have two elements of A^n , say a and b such that a and b agree on free variables, i.e. $a_k = b_k$ whenever $x_k \in FV(t)$. Then $a \in p_A(n)$ if and only if $b \in p_A(n)$.

Proof. By induction on p. If p is the formula (s = t) for terms s and t we have

$$a \in p_A(n) \iff s_A(n)(a) = t_A(n)(a)$$

 $\iff s_A(n)(b) = t_A(n)(b)$
 $\iff b \in p_A(n),$

where we have used Lemma 0.2.2.

Now suppose $p = \phi(t_1, \ldots, t_m)$ for some $\phi \in \Pi$ with $\alpha(\phi) = m$, and terms t_1, \ldots, t_m . Again by Lemma 0.2.2 we have

$$((t_1)_A(n),\ldots,(t_m)_A(m))(a)=((t_1)_A(n),\ldots,(t_m)_A(n))(b).$$

Applying ϕ_A to both sides gives the result. This finishes the induction in the case that p is an atomic formula.

If $p = \bot$ then $a, b \notin p_A(n)$ so the claim holds. Now let q, r be formulae with p being $(q \Rightarrow r)$. By inductive hypothesis

$$(q_A(n), r_A(n))(a) = (q_A(n), r_A(n))(b),$$

and applying \Rightarrow_2 to both sides gives the result.

Finally, we consider the case where $p = (\forall x_m)q$ for some formula q and some variable $x_m \in \mathrm{FV}(q)$. Write $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$. By symmetry, we only need to show that $a \in p_A(n)$ implies $b \in p_A(n)$. So, suppose $a \in p_A$.

Let $N = \max(n, m)$ and let $b' \in A^N$ be a sequence agreeing with b in the first value except possibly on the m-th value, and call this value c_m . If we show that $b' \in q_A(N)$ then we are done.

Define $a' \in A^N$ to be the sequence b' but with its first n values replaced by a except the m-th value, which remains c_m . As $a \in p_A(n)$ it is clear by definition that $a' \in q_A(N)$. But a' and b' agree on free variables of q, which are $FV(p) \cup \{x_m\}$: the first n variables are just a and b, which agree on FV(p), only that we have specified that they agree on the m-th value c_m , and otherwise a' and b' are identical. Hence, by the inductive hypothesis, $b' \in q_A(N)$.

Variable redundancy implies that free variables are the only thing that affects the values of $t_A(n)$ and $p_A(n)$. Hence we will write t_A and p_A , without specifying n, we take n to be the minimum so that FV(t) (resp. FV(p)) is a subset of $\{x_1, \ldots, x_n\}$. And in any case, this only function only requires inputs a_k where x_k is a free variable of t (resp. p).

0.3 First-order theories

Definition 0.3.1 (Satisfying a formula). Let A be an \mathcal{L} -structure, and let p be a formula. We say that p is *satisfied* in A if the indicator function of p_A is constant with value 1. In this case we write $A \models p$.

Definition 0.3.2 (Sentences and universal closure). Let p be a formula. We say that p is a sentence if it has no free variables. (In this case p_A is a constant function since n = 0). In any case, we can obtain a sentence \bar{p} , called the universal closure of p, by prefixing p with universal quantifiers for each of the free variables of p (say, in decreasing order of subscripts).

We remark that if A is empty and p is not a sentence then the indicator $p_{\emptyset} \colon \emptyset^n \to 2$ is constant with value 1 since it sends all elements of $\emptyset^{\mathbb{N}}$ (which there are none) to 1 (this is a vacuous truth).

Proposition 0.3.3. For all \mathcal{L} -structures A and formulas p,

$$A \models p$$
 if and only if $A \models \bar{p}$.

Proof. We prove a weaker statement first. Let q be a formula with a free variable x_m . Then we claim that $A \models q$ if and only if $A \models (\forall x_m)q$. Indeed, $A \models \forall x_n q$ if and only if for all $a \in A^n$ (where n is the minimum so that $\mathrm{FV}((\forall x_m)q) \subseteq \{x_1,\ldots,x_n\}$) we have $a \in ((\forall x_m)q)_A(n)$. And this happens iff for all $a \in A^n$ and for all $a' \in A^N$ (where $N := \max(n,m)$) that agrees with a on the first n values except possibly in the m-th value we have $a' \in q_A(N)$.

This is clearly equivalent to saying that for all $a' \in A^N$ we have $a \in q_A(N)$, i.e. $A \models q_A$.

Now if p is a formula with k free variables we can use induction on k, together with the above result, to deduce the claim about \bar{p} .

Definition 0.3.4 (First-order theory). Let T be a set of \mathcal{L} -formulae and A a structure. We write $A \models T$ if $A \models p$ for all $p \in T$.

In the special case where T is a set of sentences we call it a *first-order theory*, and its formulae are called *axioms*. If $A \models T$ in this case we would say that A models the theory T.

0.4 Semantics and syntax

Recall that we had an arbitrary signature Σ that generated a language \mathcal{L} . We would like to add things to the signature (which will generate a difference language) from time to time. Here I will give some notation for a typical situation. Let S be a set. we denote by Σ_S the signature Σ but with |S| new constant symbols (i.e. function symbols of arity zero) added. Similarly, we denote by \mathcal{L}_S the language generated by Σ_S . Note that in the special case that S is an \mathcal{L} -structure we clearly have that S is an \mathcal{L}_S -structure: just interpret the new constant symbols as the elements of S.

Definition 0.4.1 (Semantic entailment). Let T be a theory and let p be a sentence. We say that T semantically entails p, written as $T \models p$, to mean that every model of T satisfies p.

In the case where T and p are not sentences simply consider the language

$$\mathcal{L}' := \mathcal{L}_{\mathrm{FV}(T) \cup \mathrm{FV}(p)},$$

where $\mathrm{FV}(T)$ is just the set of all free variables appearing in a formulae of T. Let T' and p' be the same formulae but with free variables replaced by the corresponding constants in \mathcal{L}' . Then $T' \cup \{p'\}$ is just a set of sentences in \mathcal{L}' , so declare that $T \models p$ in \mathcal{L} if and only if $T' \models p'$ in \mathcal{L}' .

This seems roundabout: why not define semantic entailment $T \models p$ as "for all $A \models T$ we have $A \models p$ "? This certainly makes sense when $T \cup \{p\}$ is not a set of sentences. The problem is that if we adopted this alternate definition we would have undesired consequences with the empty structure. For example, if $T = \{\neg(x_1 = x_1)\}$ and $p = \{\bot\}$ then the only model for T is the empty structure but $\emptyset \nvDash p$. However, since T is clearly a contradictory statement we would like to have $T \models p$ in this case, which is guaranteed by the real definition since the addition of constants invalidate the empty structure.

Now we turn to our system of deduction. If w is a formula, t is a term and x a variable, we define w[t/x] to be the formula obtained from w on replacing each free occurrence of x by t, provided no free variable of t occurs bound in w. More formally, we define

$$y[t/x] = \begin{cases} y & \text{if } x \neq y \\ t & \text{if } x = y \end{cases}$$

$$(\omega t_1 \dots t_n)[t/x] = \omega(t_1[t/x]) \dots (t_n[t/x])$$

$$(s = s')[t/x] = (s[t/x] = s'[t/x])$$

$$\phi(t_1, \dots, t_n)[t/x] = \phi((t_1[t/x]), \dots, (t_n[t/x]))$$

$$\perp [t/x] = \perp$$

$$(p \Rightarrow q)[t/x] = (p[t/x] \Rightarrow q[t/x])$$

$$((\forall y)p)[t/x] = \begin{cases} (\forall y)(p[t/x]) & \text{if } x \neq y \\ (\forall y)p & \text{if } x = y. \end{cases}$$

Lemma 0.4.2. Let w be a term or a formula, let x_m be a variable and let t be a term such that all free variables in t do not appear bound in w. Suppose A is an \mathcal{L} -structure and $a \in A^n$ where n is the minimum nonnegative integer so that $FV(w) \subseteq \{x_1, \ldots, x_n\}$. Denote by a' the sequence a but with the m-th value replaced by $t_A(a)$. Then we have

$$(w[t/x_n])_A(a) = w_A(a').$$

If
$$A = \emptyset$$
 then $(w[t/x_n])_A = w_A$

Proof. Suppose $A = \emptyset$. If w does not have x_n as a free variable then $w[t/x_n] = w$. It follows that $(w[t/x_n])_A = w_A$.

Now assume that x_n is a free variable of w. Clearly w is not a sentence. We claim that neither is $w[t/x_n]$. This is easily seen from the fact that t is not a constant (since otherwise the empty set could not be an \mathcal{L} -structure) and thus has free variables and in addition we assumed that no free variables of t are being bound in w. Thus, as neither w nor $w[t/x_n]$ are sentences, they are indicators $\emptyset^{\mathbb{N}} \to 2$ and thus equal. This proves the claim for the empty structure, so from now on assume $A \neq \emptyset$.

First suppose that w is a term. We use induction, so assume $w = x_m$ for some m. If $m \neq n$ then $w[t/x_n] = w$ and so we only need to show that $w_A(a) = w_A(a')$. This is immediate by variable redundancy: a and a' agree on the free variable x_m . Now suppose m = n. Then $w[t/x_n] = t$ and we need to show that $t_A(a) = (x_n)_A(a')$. Again, this is obvious: the right-hand side of the equation is the n-th value of a', which we assumed is $t_A(a)$. This closes the base case.

Now, suppose $w = \omega t_1 t_2 \cdots t_m$ for some $\omega \in \Omega$ with $\alpha(\omega) = m$ and where the t_i 's are terms. Clearly

$$w[t/x_n] = \omega(t_1[t/x_n])(t_2[t/x_n]) \cdots (t_m[t/x_n]).$$

It follows that

$$(w[t/x_n])_A(a) = \omega_A((t_1[t/x_n])_A(a), (t_2[t/x_n])_A(a), \dots, (t_m[t/x_n])_A(a))$$

= $\omega_A((t_1)_A(a'), (t_2)_A(a'), \dots, (t_m)_A(a'))$
= $w_A(a'),$

where we have used the inductive hypothesis. This closes the induction and proves the statement when w is a term.

Suppose now that w is a formula. We again use induction. If w is the formula (s = s') for terms s and s' we have that

$$w[t/x_n] = (s[t/x_n] = s'[t/x_n]).$$

Then,

$$a \in (s[t/x_n] = s'[t/x_n])_A \iff (s[t/x_n])_A(a) = (s'[t/x_n])_A(a)$$
$$\iff s_A(a') = t_A(a')$$
$$\iff a' \in w_A,$$

where we used the result for terms. Now suppose w is $\phi(t_1, \ldots, t_m)$ for some $\phi \in \Pi$ with $\alpha(\phi) = m$, and terms t_1, \ldots, t_m . Again, using the claim for terms, we have

$$((t_1[t/x_n])_A(a), \dots, (t_m[t/x_n])_A(a)) = ((t_1)_A(a'), \dots, (t_m)_A(a'))$$

and applying ϕ_A to both sides gives the result. This closes the base case, i.e. the case where w is an atomic formula.

Clearly $(\perp [t/x_n])_A(a) = \perp_A(a) = 0 = \perp_A(a')$. Now, if w is $(p \Rightarrow q)$ then, by the inductive hypothesis

$$((p[t/x_n])_A(a), (q[t/x_n])_A(a)) = (p_A(a'), q_A(a')).$$

Applying \Rightarrow_2 to both sides gives the result.

Finally, suppose $w = (\forall x_m)p$. Then we have two cases. If m = n then $w[t/x_n] = w$ and so we need to show that $w_A(a) = w_A(a')$. But in this case clearly x_n is not a free variable of w, so a and a' agree on free variables, and the claim follows by variable redundancy.

Now assume $m \neq n$. Then $w[t/x_n] = (\forall x_m)(p[t/x_n])$. First, note that that

$$a = (a_1, a_2, \ldots) \in ((\forall x_m)(p[t/x_n]))_A$$

if and only if

$$(a_1, \ldots, a_{m-1}, c, a_{m+1}, \ldots) \in (p[t/x_n])_A$$
 for all $c \in A$.

For $c \in A$ let $\alpha(c)$ be the sequence above, i.e. a but the m-th value replaced by c. Similarly, let $\alpha'(c)$ be the sequence a' but replacing the m-th value with c. Finally, let $\alpha^*(c)$ be the sequence $\alpha(c)$ but with the n-th value replaced by $t_A(\alpha(c))$ Then we can reformulate our statement as so:

$$\alpha(c) \in (p[t/x_n])_A \text{ for all } c \in A.$$

By the inductive hypothesis, this new statement is equivalent to

$$\alpha^*(c) \in p_A$$
 for all $c \in A$.

Note that, for all c, we have that $\alpha^*(c)$ and $\alpha'(c)$ agree on all values (including the m-th) except possibly on the n-th value, where we have $t_A(\alpha(c))$ and $t_A(a)$ fro $\alpha^*(c)$ and $\alpha'(c)$ respectively. We claim that in fact they do agree on the n-th value, i.e. $t_A(\alpha(c)) = t_A(a)$.

Indeed, by definition, a and $\alpha(c)$ agree on all values except possibly on the m-th value. However, we assumed (and this is the first and only time we use the assumption when $A \neq \emptyset$) that the free variables of t do not appear bound in w. Clearly x_m is bound in w (recall that we insist that variables that are being bound appear in the formula). Thus x_m cannot be a free variable of t, which implies that a and $\alpha(c)$ agree on free variables; hence $t_A(\alpha(c)) = t_A(a)$ by variable redundancy. Thus $\alpha^*(c)$ is the same sequence as $\alpha'(c)$. Therefore we can, once again, reformulate our statement:

$$\alpha'(c) \in p_A$$
 for all $c \in A$.

This is manifestly equivalent to $a' \in ((\forall x_m)p)_A$, as desired.

We now postulate our axioms to be substitution instances of these propositions.

- (a) $(p \Rightarrow (q \Rightarrow p))$
- (b) $((p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r)))$
- (c) $(\neg \neg p \Rightarrow p)$ (here p, q, r may be any formulae of \mathcal{L})
- (d) $((\forall x)p \Rightarrow p[t/x])$ (here p is any formula with $x \in FV(p)$, t any term whose free variables don't occur bound in p)
- (e) $((\forall x)(p \Rightarrow q) \Rightarrow (p \Rightarrow (\forall x)q))$ $(p, q \text{ formulae}, x \notin FV(p))$
- (f) $(\forall x)(x=x)$
- (g) $(\forall x, y)((x = y) \Rightarrow (p \Rightarrow p[y/x]))$ (p any formula with $x \in FV(p)$, y not bound in p and distinct from x)

Proposition 0.4.3. All the axioms above are tautologies.

Proof. Let p,q,r be formulae in $\mathcal L$ and let A be an $\mathcal L$ -structure.

(a) First suppose that $A = \emptyset$. Then, if there are free variables in p or q then it is clear that $\emptyset \models (p \Rightarrow (q \Rightarrow p))$. Otherwise, p and q are sentences and so they have a truth value. Case-by-case analysis reveals that $\emptyset \models (p \Rightarrow (q \Rightarrow p))$. Now assume that A is nonempty.

Note that for all $a \in A^{\mathbb{N}}$ we have

$$(p \Rightarrow (q \Rightarrow p))_A(a) = (\Rightarrow_2)(p_A(a), (\Rightarrow_2)(p_A(a), q_A(a)))$$

as elements of $2 = \{0, 1\}$. Plugging in the possible values for $p_A(a)$ and $q_A(a)$ we conclude that in all cases $(p \Rightarrow (q \Rightarrow p))_A(a) = 1$.

- (b) Similar to (a).
- (c) Similar to (a).
- (d) Suppose $x \in FV(p)$ and t is any term whose free variables don't occur bound in p. It is easy to see that the axiom is never a sentence, so \emptyset models it. Assume now that $A \neq \emptyset$.

Let $a = (a_1, a_2, \ldots) \in A^{\mathbb{N}}$ and consider

$$(\Rightarrow_2)(((\forall x)p)_A(a), p[t/x]_A(a))$$

If $((\forall x)p)_A(a) = 0$ then the above equals 1, clearly. Now suppose $((\forall x)p)_A(a) = 1$ and let $x = x_n$ for some n. This means that, for all $a'_n \in A$ we have

$$(a_1,\ldots,a_{n-1},a'_n,a_{n+1},\ldots) \in p_A.$$

Set $a'_n := t_A(a)$. By Lemma 0.4.2, the above implies that $p[t/x]_A(a) = 1$, as desired.

(e) Let $x \notin FV(p)$. If the axiom is not a sentence then it has \emptyset as a model. Suppose now that the axiom is a sentence; this is easily seen to imply that q has x as its only free variable. Clearly $(\forall x)(p \Rightarrow q)$ is satisfied in \emptyset . Note that $(\forall x)q$ is also a satisfied sentence in \emptyset . Therefore the whole axiom is seen to be satisfied in \emptyset . Now assume $A \neq \emptyset$.

Let $a = (a_1, a_2, ...) \in A^{\mathbb{N}}$. If $((\forall x)(p \Rightarrow q))_A(a) = 0$ then the formula is true for a. So, assume that $a \in ((\forall x)(p \Rightarrow q))_A$. Let $x = x_n$ for some n. We have that, for all $a'_n \in A$:

$$(a_1, \ldots, a_{n-1}, a'_n, a_{n+1}, \ldots) \in (p \Rightarrow q)_A.$$

In other words, for all $a'_n \in A$:

$$(\Rightarrow_2)(p_A, q_A)(a_1, \dots, a_{n-1}, a'_n, a_{n+1}, \dots) = 1$$

But, as $x_n \notin FV(p)$, the value $p_A(a_1, \ldots, a_{n-1}, a'_n, a_{n+1}, \ldots)$ does not depend on a'_n by variable redundancy. Thus we conclude that for all $a'_n \in A$.

$$(\Rightarrow_2)(p_A(a), q_A((a_1, \dots, a_{n-1}, a'_n, a_{n+1}, \dots))) = 1.$$

From this, it is easy to deduce that $a \in (p \Rightarrow (\forall x)q)_A$, as desired.

(f) The empty set is easily seen to model this axiom. Let $a = (a_1, a_2, ...) \in A^{\mathbb{N}}$ and let $x = x_n 1$ Then $a \in ((\forall x)(x = x))_A$ iff for all $a'_n \in A$ we have

$$(a_1, \ldots, a_{n-1}, a'_n, a_{n+1}, \ldots) \in (x = x)_A.$$

This happens iff for all a'_n we have

$$x_A(a_1,\ldots,a_{n-1},a'_n,a_{n+1},\ldots) = x_A(a_1,\ldots,a_{n-1},a'_n,a_{n+1},\ldots),$$

which is manifestly true.

(g) The empty set is easily seen to model this axiom. Let $x = x_n \in FV(p)$ and $y = x_m$ be not bound in p with $n \neq m$. Have some $a = (a_1, a_2, ...) \in A^{\mathbb{N}}$. We need to show that

$$a \in ((\forall x_n)(\forall x_m)((x_n = x_m) \Rightarrow (p \Rightarrow p[x_m/x_n])))_A$$

For $c_n, c_m \in A$ define $\alpha(c_n, c_m)$ to be the sequence a but with the i-th value replaced by c_i for $i \in \{n, m\}$ (recall that $n \neq m$). Then the above proposition is equivalent to

$$\alpha(c_n, c_m) \in ((x_n = x_m) \Rightarrow (p \Rightarrow p[x_m/x_n]))_A \text{ for all } c_n, c_m \in A$$

We need to prove the above. To that end, let $c_n, c_m \in A$ be arbitrary. If $\alpha(c_n, c_m) \notin (x_n = x_m)_A$ then we do have the inclusion above. So, assume

 $\alpha(c_n, c_m) \in (x_n = x_m)_A$; this clearly implies that $c := c_n = c_m$. Now, we need to show that

$$\alpha(c,c) \in (p \Rightarrow p[x_m/x_n])_A.$$

If $\alpha(c,c) \notin p_A$ then the above is true. Therefore we can suppose $\alpha(c,c) \in p_A$. We want to prove that $\alpha(c,c) \in (p[x_m/x_n])_A$. As x_m is not bound in p we can apply Lemma 0.4.2 which tells us that it suffices to show that $\alpha(c,c)' \in p_A$, where $\alpha(c,c)'$ denotes the sequence $\alpha(c,c)$ but replacing the n-th value by $(x_m)_A(\alpha(c,c)) = c$. Clearly $\alpha(c,c)' = \alpha(c,c)$ and we supposed at the start that $\alpha(c,c) \in A$. Thus we are done.

To our deductive system we add the following rules of inference.

- (MP) From p and $(p \Rightarrow q)$, we may infer q, provided either q has a free variable or p is a sentence.
- (Gen) From p we may infer $(\forall x)p$, provided x does not occur free in any premiss which has been used in the proof of p (but is a free variable of p).

Formally, we define our concept of deduction as follows.

Definition 0.4.4 (Deduction sequence). Let S be a set of formulae. A *deduction sequence* on S is a finite sequence on the set of formulae of \mathcal{L} , defined inductively below.

- (i) The empty sequence is a deduction sequence.
- (ii) If (p_1, \ldots, p_n) is a deduction sequence and p is an axiom or an element of S, then (p_1, \ldots, p_n, p) is a deduction sequence.
- (iii) Let (p_1, \ldots, p_n) be a deduction sequence. Suppose there are $1 \leq i, j \leq n$ so that p_j is the formula $(p_i \Rightarrow p)$ for some p, and, in addition either p_i is a sentence or p has a free variable. Then (p_1, \ldots, p_n, p) is a deduction sequence.
- (iv) Suppose (p_1, \ldots, p_n) is a deduction sequence so that p_n has a free variable x but x is not a free variable of p_i for i < n, and $p_n \notin S$. Then, if $p = (\forall x)p_n$, we have that (p_1, \ldots, p_n, p) is a deduction sequence.
- (v) That is all.

Definition 0.4.5 (Syntactic entailment). Let S be a set of formulae and p a formula. We say that S syntactically entails p, written as $S \vdash p$, if there is a deduction sequence terminating at p.

0.5 Properties of first-order languages

Again, we fix a language \mathcal{L} with a set of variables $X = \{x_1, x_2, \ldots\}$

0.6 Completeness

The aim of this section is to prove the Completeness theorem. Before that, we need to prove the Soundness theorem. First, a couple of lemmata.

Lemma 0.6.1. Let S be a set of formulae and let p and q be formulae so that either q has a free variable or p is a sentence. If $S \models p$ and $S \models (p \Rightarrow q)$, then $S \models q$.

Proof. Let A be an \mathcal{L} -structure. We want to show that one of the two following statements holds:

- (I) A is empty and there is a non-sentence in $S \cup \{q\}$.
- (II) $\bigcap_{r \in S} r_A \subseteq q_A$.

We know that one of these two statements holds:

- (a) A is empty and there is a non-sentence in $S \cup \{p\}$.
- (b) $\bigcap_{r \in S} r_A \subseteq p_A$.

Suppose (a) holds. If there is a non-sentence in S then there is a non-sentence in $S \cup \{q\}$ and A is empty, i.e. (I) holds. Otherwise, if p is a non-sentence, then, by the premiss of the statement q is a non-sentence and again (I) holds. So, from now on, assume (b) holds

Similarly, we also know that one of the two statements below holds:

- (a') A is empty and there is a non-sentence in $S \cup \{p,q\}$.
- (b') $\bigcap_{r \in S} r_A \subseteq (p \Rightarrow q)_A$.

Suppose (a') holds. If q is a non-sentence then (I) holds, and if instead the non-sentence is in $S \cup \{p\}$ we have reduced to case (a). So, we can assume (b') holds. But (b) and (b') are easily seen to imply (II), even when A is empty. \square

Lemma 0.6.2. Let S be a set of formulae, p a formula, and x a variable so that x does not occur free in any formulae of S. If $S \models p$ then $S \models (\forall x)p$.

Proof. Let A be an \mathcal{L} -structure. As before, we want to show that one of the two following statements holds:

- (I) A is empty and there is a non-sentence in $S \cup \{(\forall x)p\}$.
- (II) $\bigcap_{r \in S} r_A \subseteq ((\forall x)p)_A$.

The hypothesis is that one of the two following statements holds. (We know that p is a non-sentence already)

- (a) A is empty
- (b) $\bigcap_{r \in S} r_A \subseteq p_A$.

Suppose (a) is true. If there is a non-sentence in $S \cup \{(\forall x)p\}$ then (I) holds, so assume that S is a set of sentences, and that $(\forall x)p$ is a sentence. But then, as A is empty, we have that the indicator of $((\forall x)p)_A$ is constant with value 1, implying that (II) holds.

Now suppose (a) is not true. Then A is nonempty and (b) holds. Let $a = (a_1, a_2, \ldots) \in r_A \subseteq A^{\mathbb{N}}$ for all $r \in S$. We would like to show that $a \in ((\forall x)p)_A$, which, if $x = x_n$, is equivalent to the statement

$$(a_1, \ldots, a_{n-1}, a'_n, a_{n+1}, \ldots) \in p_A \text{ for all } a'_n \in A.$$

So, fix some $a'_n \in A$ and set $a' := (a_1, \ldots, a_{n-1}, a'_n, a_{n+1}, \ldots)$. By assumption x_n is not a free variable of r for all $r \in S$. By variable redundancy, we conclude that $a' \in r_A$ for all $r \in S$. Finally, (b) implies that $a' \in p_A$, as desired.

Proposition 0.6.3 (the Soundness Theorem). Let S be a set of formulae and p a formula. If $S \vdash p$ then $S \models p$.

Proof. It is enough to show that, for all deduction sequences σ , all formulae of σ are semantically entailed by S. We use induction on the set of deduction sequences.

The claim is vacuously true when σ is the empty sequence. Suppose $\sigma = (p_1, \ldots, p_n, p)$, where $S \models p_i$ for all i, and p is an axiom or an element of S. It easily follows that $S \models p$ (recall axioms are tautologies).

Now suppose that $\sigma = (p_1, \ldots, p_n, p)$, where $S \models p_i$ for all i, and there are $1 \leq i, j, \leq n$ so that p_j is the formula $(p_i \Rightarrow p)$, and, in addition, either p_i is a sentence or p has a free variable. Then Lemma 0.6.1 says that $S \models p$.

Finally, suppose that $\sigma = (p_1, \dots, p_n, p)$, where $S \models p_i$ for all i, and that $p_n \notin S$ has a free variable x but x is not a free variable of p_i for i < n. In addition, we suppose $p = (\forall x)p_n$. Let $S' = \{p_1, \dots, p_{n-1}\}$. We claim that $S' \models p_n$

Chapter 1

Model Theory

1.1 Substructures and diagrams

Definition 1.1.1 (\mathcal{L} -homomorphism). Let M and N be \mathcal{L} -structures. An \mathcal{L} -homomorphism is a map $\eta: M \to N$ such that given $\bar{a} = (a_1, \dots, a_n) \in M^n$:

• for all function symbols f of arity n we have that

$$\eta(f^M(\bar{a})) = f^N(\eta^n(\bar{a})),$$

in other words the diagram

$$\begin{array}{ccc} M^n & \xrightarrow{\eta^n} & N^n \\ f^M & & & \downarrow f^N \\ M & \xrightarrow{\eta} & N \end{array}$$

commutes;

• for all relation symbols R of arity n we have that

$$\bar{a} \in R^M$$
 if and only if $\eta^n(\bar{a}) \in R^N$.

An injective \mathcal{L} -homomorphism is an \mathcal{L} -embedding and an invertible one is an \mathcal{L} -isomorphism. If $M \subseteq N$ and the inclusion map is an \mathcal{L} -homomorphism we say that M is a substructure of N, and N is an extension of M.

We are going to stop writing $\bar{m} \in M^n$ where n is the length of \bar{m} and just write $\bar{m} \in M$ when n can be inferred or its unimportant.

Examples 1.1.2.

(a) Let \mathcal{L} be the language of groups. Then $(\mathbb{N}, +, 0)$ is a subset of the the integers $(\mathbb{Z}, +, 0)$, but it is not a substructure.

- (b) If M is an \mathcal{L} -structure and $X \subseteq M$ then X is the domain of a substructure of M iff it is closed under the interpretation of all function symbols.
 - Indeed, the inclusion $\iota \colon X \to M$ clearly preserves relations. But if it is not closed under some function f^M then there is no way to interpret f^X .
- (c) It follows from the previous point that the intersection of a family of substructures is a substructure: indeed, applying a function f^M to anything in the intersection will land on all substructures (since these are closed under function symbols) and thus in the intersection.

The substructure generated by $X \subseteq M$ is defined to be the intersection of all substructures of M containing X; it is denoted by $\langle X \rangle_M$. Again, by the previous point, $\langle X \rangle_M$ is also the intersection of all subsets of M that are closed under function symbols.

Hence

$$\langle X \rangle_M = X \cup \{t^M(\bar{m}) \mid t \text{ a term and } \bar{m} \in X\}.$$

Indeed, the RHS is obviously closed under function symbols and no strict subset of it could possibly be. Therefore $|\langle X \rangle_M| \leq |X| + |\mathcal{L}|$.