"Análisis de redes sociales para mejorar el rendimiento de tarjetas de crédito"

MSc. Leda Basombrio

Tarjetas de Crédito – Puntos de Contacto Cliente

Los bancos saben utilizar esta información.

Los bancos todavía no aprovechan el máximo potencial de esta información.

Los clientes ya comparten sus ideas en redes sociales...

@zonkabe (991+) *

Joseantonio Quiñones

@BCPComunica buenos días, hace 20 minutos que intento comunicarme via telefnica para cancelar mi tarjeta de crédito, a quien tengo q matar?

@sebastianosses (1,331+) * 🔛 느

Sebastián Ossés

@BCPComunica No entiendo como es posible que cobren, para permitir ver el estado de cuenta de la tarjeta de crédito en su app móvil.

@Neocriosc (14+) * III

CÉSAR RIOS

@interbank señores todo el.dia de ayer ha sido imposible banca por internet hoy no puedo acceder a Mi tarjeta de credito.hasta cuándo?

Pero, ¿los bancos están escuchando?

Objetivos del Proyecto

Desarrollar modelos (POC) para evaluar el valor de la información de Twitter para la toma de decisiones del negocio de tarjetas de crédito.

- Fuga de clientes BCP
- Pérdida de saldos de clientes BCP
- Incremento de saldos de clientes BCP
- Adquisición de clientes BCP
- Fuga de clientes de la competencia

Amenaza

Oportunidad

Fuentes de información

Fuentes

Proveedor Quantico Trends Palabras clave:

- Principales bancos (4)
- Productos, servicios y canales bancarios
- Estudios, vacaciones, viajes

Información de deudores publicada por SBS

- Saldos de productos
- Comportamiento de riesgo

Muestra variables internas

BCP

• Del modelo actual de fuga

Observaciones

Periodo: Ago13 - Oct16

DNI's únicos por mes se agrupan para el análisis

La mayoría de tweets corresponden a la mención de bancos

98% de los tweets mencionan a un banco y 36% al BCP.

Tweets por banco y trimestre

Fuente: BCP Quantico Trends

BCP tiene el puntaje de sentimiento general más bajo

Los tweets de tarjetas de créditos disminuyen el sentimiento.

Matriz de Variables - Twitter

Agregación Tweets:

Periodo: 1, 3, 6 meses

Cadena Texto: Solo Usuario / Historia Retweet / Tweet

Generales

 Ctd de posts, caracteres, palabras, mayusc, emoticons, menciones por banco

422

Términos

- Frecuencia
 Términos (TF)
- TF Frec. Doc. Inversa (TF-IDF)
- Uni/Bi grams

240-1,200

Modelo Sentimiento

- Datos de tweets con marca de sentimiento (TASS¹)
- Target: Sent. Positivo
- Variables: TF / TF-IDF
- Método: SVM
- AUC (k-folds Prom): 94.5%
- Score modelo (flags)

18

<u>Limpieza Variables:</u> Outliers capped al P99, No-informativas excluidas, Variable con mayor IV seleccionada si Corr Pearson > 0.8

^{1.} TASS es un Workshop de Análisis de Sentimiento en Español auspiciado anualmente por la Sociedad Española de Procesamiento Natural del Lenguaje (SEPLN).

Definición de Variable Target

Fuga de Tarjetas de Crédito BCP

- <u>Público objetivo:</u>
 Clientes con TC BCP con al menos un tweet el último mes.
- Variable Target:

 El cliente cancela su TC en 4 meses
 (variable binaria).
- V. Análisis (X) V. Oculta V. Predicción. (Y)

 -3 -2 -1 H H E

 Público objetivo Variable Target

7.1k registros con 1.5% de target

Tasa Variables Target

Marco Metodológico

Modelo Fuga TC BCP – Coeficiente de Gini Prom

Random Forests obtiene los mejores resultados.

La información de Twitter tiene mejores resultados para predecir Fuga de TC BCP

Variables Twitter mejoran el modelo interno de Fuga TC BCP

Nota: 80% cruce entre bases (5.7k obs). Se usó Random Forest y muestreo de eventos Doble.

	Variable	Internas+Twitter
Score	Behavior TC Max6	12%
🕒 # Seg	uidores Prom3	11%
# Am	gos Prom3	10%
Ingres	50	10%
⊕ % Trx	s ATM 1m	8%
# Trxs	TC Prom6	7%
# Trxs	POS Tiendas Dpto Prom6	8%
Palab	ras por Tweet Prom3	7%
Total	Palabras 3m	7%
6 % Tw	eets réplica banco 3m	6%
€ % Tw	eets horario oficina 3m	3%
	rograma Fidelidad LATAM 1m	3%
Mese	s desde último crédito	2%
Flag L	ima	2%
	ervicios Financieros Avg6	2%
Flag S	entimiento Pos. Predicho 1m	3%

Estrategia de Negocio

Experimento de Retención

- Piloto de oferta de retención con un grupo de control, para medir el valor agregado de la acción e identificar el mejor corte para el modelo.
- Los beneficios de los clientes retenidos deben cubrir los costos de la acción.

Los resultados esperados son limitados por la baja identificación de DNI's en Twitter.

Incrementar Cobertura Twitter

Twitter ID y DNI:
 Puntos de contacto,
 onboarding, campañas

 Extender Tweet Scraping: Evaluar temas y usuarios

Redes Sociales Adicionales

 Incluir otras redes sociales en el monitoreo (Facebook, Foros en línea, etc.)

Conclusión

• La información de Twitter es valiosa para predecir el comportamiento de tarjetas de crédito, especialmente la fuga.

¡Los bancos deberían escuchar!

Gracias...

Estructura del Código

Text Mining

Data Twitter

Tweets colapsados por usuario

Limpieza Texto

- Remover puntuación, números, pág. web
- Homogeneizar palabras
- Eliminar stopwords
- Stemming (truncar palabras a su raíz)

Extracción Variables

- Creación de matriz de términos
- Uni/bi gram
- Frecuencia Términos (absoluta/ponderada)

Otras variables continuas + Target

Limpieza de variables

Limpieza univariada

- Outliers
- Missing values
- Vars no informativas (0s, constantes)

Limpieza Multivariada

- Matriz de correlaciones
- Selección de mejor entre pares correlacionados según Information Value

Tablón Final

Simulación de modelos

