Trabajo Autónomo 1.2 - Cálculo III

Tercer Ciclo A - Ingeniería de Software

Tema: Introducción a las Ecuaciones Diferenciales.

Estudiante: Ariel Alejandro Calderón

1. Determine el tipo, orden y la linealidad de las siguientes ecuaciones diferenciales:

Ecuación Diferencial	Orden	Linealidad	Tipo
y'' + 3y = 0	2	Lineal	Homogénea
y'' + 3y = 2x + 5	2	Lineal	No homogénea
y'' + 3yy' = 0	2	No lineal	Homogénea
$y''' + 2(y')^2 + 3y = 5$	3	No lineal	No homogénea
$y'' + 3x^4y = 0$	2	Lineal	Homogénea
$y' + 3xy^4 = e^{-2x}$	1	No lineal	No homogénea
$y''' + y' + \sin(y) = 0.2$	3	No lineal	No homogénea

2. Compruebe que $y_1=3e^{-2x}$ es solución de la ecuación diferencial y''-4y=0.

Comprobamos si $y_1=3e^{-2x}$ satisface la ecuación diferencial y''-4y=0.

Derivadas de y_1 :

$$y_1 = 3e^{-2x}, \quad y_1' = -6e^{-2x}, \quad y_1'' = 12e^{-2x}$$

Sustitución en la ecuación diferencial:

$$y'' - 4y = 12e^{-2x} - 4(3e^{-2x})$$

$$= 12e^{-2x} - 12e^{-2x} = 0$$

 \Rightarrow Por lo tanto, y_1 es solución.

3. Compruebe que $y_1 = \sin x$ y $y_2 = \frac{\sin 2x}{\sin x}$ son soluciones de y'' + y = 0.

Para $y_1 = \sin x$:

$$y_1' = \cos x, \quad y_1'' = -\sin x$$

Sustituyendo en la ecuación:

$$y_1'' + y_1 = -\sin x + \sin x = 0$$

 $\Rightarrow y_1$ es solución.

Para $y_2 = \frac{\sin 2x}{\sin x}$:

Reescribimos usando la identidad trigonométrica $\sin 2x = 2 \sin x \cos x$:

$$y_2 = \frac{2\sin x \cos x}{\sin x} = 2\cos x$$

Derivadas:

$$y_2' = -2\sin x, \quad y_2'' = -2\cos x$$

Sustituyendo en la ecuación diferencial:

$$y_2'' + y_2 = (-2\cos x) + (2\cos x) = 0$$

 $\Rightarrow y_2$ es solución.

- 4. Resolver por integración directa las siguientes ecuaciones diferenciales:
 - 1. Resolver y'' = 0:

Integrando una vez:

$$y' = C_1$$

Integrando nuevamente:

$$y = C_1 x + C_2$$

 \Rightarrow Solución general: $y = C_1x + C_2$.

2. Resolver y'' - x = 0:

Reescribimos:

$$y'' = x$$

Integrando una vez:

$$y' = \frac{x^2}{2} + C_1$$

Integrando nuevamente:

$$y = \frac{x^3}{6} + C_1 x + C_2$$

 \Rightarrow Solución general: $y = \frac{x^3}{6} + C_1 x + C_2$.

3. Resolver y''' - 5x = 0:

Reescribimos:

$$y''' = 5x$$

Integrando una vez:

$$y'' = \frac{5x^2}{2} + C_1$$

Integrando nuevamente:

$$y' = \frac{5x^3}{6} + C_1x + C_2$$

Integrando una última vez:

$$y = \frac{5x^4}{24} + \frac{C_1x^2}{2} + C_2x + C_3$$

 \Rightarrow Solución general: $y=\frac{5x^4}{24}+\frac{C_1x^2}{2}+C_2x+C_3.$