Projet Hydrogen

Abdoulaye Diabakhaté 23 mai 2018

Table des matières

1	Multivariate Distance Matrix Regression (MDMR)					
	1.1	Introduction				
	1.2	Calcul d'une matrice de distance				
	1.3	Dérivation de statistiques de test MDMR				
	1.4	Colinéarité				
	1.5	Tests de permutations				
	2.1	1				
	Con	nparaison de deux méthodes Méthode Adonis				

1 Multivariate Distance Matrix Regression (MDMR)

1.1 Introduction

L'analyse de régression matricielle à distance multivariée (MDMR) est une technique statistique qui consiste à calculer la distance entre toutes les paires d'individus (N individus) par rapport à P variables d'intérêt et à construire une matrice N*N dont les éléments reflètent ces distances.

Les tests de permutation peuvent être utilisés pour tester des hypothèses linéaires qui considèrent si les facteurs collectés sur les individus peuvent expliquer la variation des distances observées.

Le MDMR n'est pas différent de beaucoup de stratégies de réduction de données, mais il teste directement l'association entre les éléments de la matrice de distance ou de dissimilarité avec les variables auxiliaires et ne nécessite donc pas l'étape de réduction des données, souvent problématique.

Le MDMR peut être utilisé avec toutes les variables résultant d'un essai biologique ou d'un sous-ensemble, ce qui en fait un outil souple et attrayant pour identifier des modèles significatifs.

1.2 Calcul d'une matrice de distance

La formation d'une matrice de distance (ou dissemblance) appropriée est un ingrédient essentiel dans l'analyse du MDMR.

Cependant, il existe un grand nombre de mesures de distances potentilles que l'on pourrait utiliser (Webb,2002) et malheureusement, il y'a très peu de matériel publié pouvant guider un chercheur sur la mesure de distance la plus appropriée pour une situation donnée.

Par exemple, bien que la mesure de la distance euclidienne soit utilisée couramment dans les paramètres d'analyse de clusters traditionnels, les fonctions du coefficient de corrélation sont les mesures de distance les plus largement utilisées dans les analyses d'expression génique de haute dimension (D'Haeseleer, 2005).

Nous notons que les mesures de distance avec des propriétés métriques ou non métriques peuvent être utilisées dans les analyses MDMR (Gower and Krzanowski,1999). En supposant que l'on ait identifié une mesure de distance appropriée, une matrice de distance N*N est construite.

Que cette matrice de distance et ses éléments soient notés :

$$D = d_{ij}(i, j = 1, ..., N)$$

où d_{ij} reflète la distance entre les profils i et j.

1.3 Dérivation de statistiques de test MDMR

Une fois que l'on a calculé une matrice de distance,D,la relation entre M facteurs additionnels (c-à-d « prédicteurs » ou variables « régresseurs ») et la variation des distances entre et parmi les N individus représentés en D peut être explorée.

soit X, une matrice N*M contenant des informations sur les M facteurs qui seront modélisés comme les variables indépendantes ou régressives dont les relations avec les valeurs dans la matrice de distance sont intéressantes.

Calculons la matrice de projection standard:

$$H = X(X'X)^{-1}X'$$

généralement utilisée pour estimer les coefficients reliant les variables prédictives aux variables de résultat dans les contextes de régression multiple.

Ensuite, calculons la matrice :

$$A = (a_{ij}) = (-[\frac{1}{2}])d_{ij}^2$$

et centrons cette matrice en utilisant la transformation discutée par Gower (1966) et dénotons cette matrice G :

$$G = (\mathbb{I} - \frac{1}{N}11')A(\mathbb{I} - \frac{1}{N}11')$$

où, 1 est un vecteur N-dimensionnel de 1.

Une statistique F peut être construite pour tester l'hypothèse que les variables M régresseurs n'ont pas de relation avec la variation de distance ou de dissimilarité des N sujets reflétés des N sujets reflétés dans la matrice distance (McArdle and Anderson, 2001).

$$F = \frac{tr(HGH)/(m-1)}{tr[(I-H)G(I-H)]/(n-m)}$$

1.4 Colinéarité

Un problème fondamental avec toutes les techniques d'analyse basées sur la régression multiple est la colinéarité ou les fortes dépendances parmi les régresseurs.

La colinéarité peut créer des problèmes dans le calcul de la matrice de projection $H = X(X'X)^{-1}X'$ et entrainer des estimations de paramètres instables.

Bien qu'il existe des procédures qui peuvent être utilisées pour surmonter ce problème, comme la régression Ridge et la régression des principales composantes (Mason and Perreault, 1991), on peut utiliser la décomposition orthogonale-triangulaire (Gunst, 1983) pour former la matrice de projection et on peut dire que cela fonctionne bien dans le contexte de l'analyse du MDMR.

1.5 Tests de permutations

Les propriétés distributionnelles de la statistique F seraient compliquées à dériver analytiquement pour différentes mesures de distance non euclidienne, en particulier lorsque ces meures de distance sont calculées pour plus d'une variable.

Des tests basés sur la signification, tels que les tests de permutation, peuvent alors être utilisés pour évaluer la signification statistique de la pseudo statistique F comme alternatives à l'utilisation de tests basés sur la distribution asymptotique de la statistique F (Jockel, 1986; Edgington, 1995; Manly,1997; Good, 2000).

Les tests de permutations peuvent être poursuivis en permutant les variables indépendantes ou prédictives, en recalculant la statistique MDMR, en répétant ce processus et en additionnant le nombre de fois que les statistiques calculées avec les données permutées sont plus grandes que la statistique générée avec les données réelles.

Nous notons également que les variables M régresseurs évaluées dans une analyse MDMR peuvent être testées individuellement ou par étapes (McArdle and Anderson, 2001; Zapala and Schork, 2006

2 Résultats statistiques

:2.036e-03

Max.

Max.

2.1 Résumé statistique avant centrage réduction

> summary(new_des[,-c(1,17)]) # Avant Centrage Réduction									
Lat	Long	T	Sal	Chla					
Min. :-62.038				Min. :0.0000					
1st Qu.:-20.935	1st Qu.: -60.06	1st Qu.:19.7948	1st Qu.:35.11	1st Qu.:0.1287					
Median : -8.779	Median : 17.56	Median :24.8154	Median :35.75	Median :0.2348					
Mean : -4.047	Mean : -9.53	Mean :22.1673	Mean :36.18	Mean : 0.2700					
3rd Qu.: 18.537	3rd Qu.: 40.22	3rd Qu.:26.5390	3rd Qu.:36.75	3rd Qu.:0.3297					
Max. : 42.173	Max. : 73.90	Max. :30.4624	Max. :40.37	Max. :1.6421					
02	$NO3_m$	NO3	NO2	NH4					
Min. :134.5	Min. : 0.001139	Min. :-1.55908	Min. :0.00404	17 Min. :0.001					
1st Qu.:187.1	1st Qu.: 0.006881	1st Qu.: 0.03762	1st Qu.:0.00946	64 1st Qu.:0.011					
Median :199.6	Median : 0.051411	Median : 0.77125	Median :0.02678	33 Median :0.015					
Mean :207.4	Mean : 2.707273	Mean : 4.29566	Mean : 0.06947	75 Mean :0.021					
3rd Qu.:218.2	3rd Qu.: 3.319110	3rd Qu.: 3.33247	3rd Qu.:0.05889	97 3rd Qu.:0.022					
Max. :343.7	Max. :26.624906	Max. :31.00000	Max. :0.57316	30 Max. :0.125					
Fe	SSD	Phos	Si	depth					
Min. :5.035e-	06 Min. : 582.0	Min. :0.00000	Min. : 0.319	Min. : 2.00					
1st Qu.:3.295e-	04 1st Qu.: 657.8	1st Qu.:0.07591	1st Qu.: 1.056	1st Qu.: 5.00					
Median :6.855e-	04 Median : 706.0	Median :0.22517	Median : 1.756	Median: 5.00					
Mean :7.535e-	04 Mean : 713.7	Mean : 0.45307	Mean : 5.219	Mean : 31.09					
3rd Qu.:1.139e-	03 3rd Qu.: 726.8	3rd Qu.:0.50356	3rd Qu.: 2.660	3rd Qu.: 58.75					

:2.68675

 ${\tt Max.}$

:180.00

:81.820

Max.

 ${\tt Max}$.

:1161.0

2.2 Résumé statistique après centrage réduction

				•				
> summary(new_des_CR) # Après Centrage Réduction Lat Long T Sal Chla								
Lat	Long	T	Sal	Chla				
Min. :-2.1818	Min. :-1.9564	Min. :-3.3847	Min. :-1.6290	Min. :-1.1010				
1st Qu.:-0.6354	1st Qu.:-0.7431	1st Qu.:-0.3492	1st Qu.:-0.6595	1st Qu.:-0.5764				
Median :-0.1780	Median : 0.3984	Median : 0.3898	Median :-0.2662	Median :-0.1436				
Mean : 0.0000	Mean : 0.0000	Mean : 0.0000	Mean : 0.0000	Mean : 0.0000				
3rd Qu.: 0.8497	3rd Qu.: 0.7317	3rd Qu.: 0.6435	3rd Qu.: 0.3556	3rd Qu.: 0.2433				
Max. : 1.7390	Max. : 1.2269	Max. : 1.2210	Max. : 2.5906	Max. : 5.5941				
02	NO3_m	NO3	NO2	NH4				
Min. :-1.8461	Min. :-0.4984	Min. :-0.7406	Min. :-0.53771	Min. :-0.892				
1st Qu.:-0.5156	1st Qu.:-0.4974	1st Qu.:-0.5386	1st Qu.:-0.49319	1st Qu.:-0.452				
Median :-0.1984	Median :-0.4892	Median :-0.4458	Median :-0.35086	Median :-0.243				
Mean : 0.0000	Mean : 0.0000	Mean : 0.0000	Mean : 0.00000	Mean : 0.000				
3rd Qu.: 0.2731	3rd Qu.: 0.1127	3rd Qu.:-0.1218	3rd Qu.:-0.08693	3rd Qu.: 0.050				
Max. : 3.4494	Max. : 4.4052	Max. : 3.3780	Max. : 4.13946	Max. : 4.685				
Fe	SSD	Phos	Si	depth				
Min. :-1.4401			Min. :-0.3518					
1st Qu.:-0.8158	1st Qu.:-0.49235	1st Qu.:-0.58880	1st Qu.:-0.2988	1st Qu.:-0.66				
Median :-0.1307	Median :-0.06765	Median :-0.35578	Median :-0.2486	Median :-0.66				
Mean : 0.0000	Mean : 0.00000	Mean : 0.00000	Mean : 0.0000	Mean : 0.00				
3rd Qu.: 0.7419	3rd Qu.: 0.11499	3rd Qu.: 0.07883	3rd Qu.:-0.1837	3rd Qu.: 0.70				
Max. : 2.4670	Max. : 3.93727	Max. : 3.48709	Max. : 5.4995	Max. : 3.77				

3 Comparaison de deux méthodes

3.1 Méthode Adonis

```
Lat
          1
                12903 12903.4 4.7293 0.04614
                                               0.001 ***
Long
          1
                19900 19900.1
                               7.2938 0.07116
                                               0.001 ***
Τ
          1
                22267 22266.9 8.1612 0.07962
                                               0.001 ***
          1
                 8741 8741.2 3.2038 0.03126 0.001 ***
Sal
Chla
          1
                 6559 6559.3
                               2.4041 0.02345 0.001 ***
02
          1
                 8420 8419.8
                               3.0860 0.03011
                                               0.001 ***
          1
                 9918 9917.8 3.6351 0.03546 0.001 ***
NO3_m
NO2
          1
                 6812 6812.0
                               2.4967 0.02436
                                              0.001 ***
NH4
          1
                 8685 8685.1
                               3.1833 0.03106 0.001 ***
                                               0.037 *
Fe
          1
                 3872 3872.2 1.4192 0.01385
SSD
          1
                 7485 7485.2
                               2.7435 0.02676
                                               0.001 ***
Phos
          1
                 3801
                       3800.9 1.3931 0.01359
                                               0.036 *
Si
                 5553
                       5552.5
                               2.0351 0.01985
                                               0.002 **
                 4688 4688.4 1.7184 0.01676
                                               0.005 **
depth
          1
Residuals 55
               150060 2728.4
                                      0.53657
Total
         69
                                      1.00000
               279665
               0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Signif. codes:
```

3.2 Méthode MDMR.

```
> mdmr.res <- mdmr(X = new_des_CR,D)
100 % of permutation test statistics computed.
> summary(mdmr.res)
```

	Statistic	${\tt Numer.DF}$	Pseudo.R2	Permutation.p.value	
(Omnibus)	1.4281	15	0.5881	<0.002	***
Lat	0.0920	1	0.0379	<0.002	***
Long	0.0884	1	0.0364	<0.002	***
T	0.0525	1	0.0216	<0.002	***
Sal	0.0611	1	0.0252	<0.002	***
Chla	0.0364	1	0.0150	0.012	*
02	0.0332	1	0.0137	0.024	*
NO3_m	0.0654	1	0.0269	<0.002	***
NO3	0.0571	1	0.0235	0.002	**
NO2	0.0624	1	0.0257	<0.002	***
NH4	0.0553	1	0.0228	<0.002	***
Fe	0.0248	1	0.0102	0.150	
SSD	0.0521	1	0.0215	<0.002	***
Phos	0.0679	1	0.0280	<0.002	***
Si	0.0377	1	0.0155	0.008	**
depth	0.0372	1	0.0153	0.016	*

Signif. Codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1