Siemens S7-1200

CPU 1212C AC/DC/Relay

Bit Logic Operations

Understanding NO/ NC and OUT

• Exercise Example Codeand

Bit Logic Instructions in LAD - NO

Normally Open Contact

Symbol

The Normally Open contact is **closed (ON)** when the assigned bit value **IO.0** is **TRUE** or equal to 1 and is **Open (OFF)** when **IO.0** is **FALSE** or equal to 0.

Siemens TIA

Normally Open contact

Example in Series – AND Logic

10.0	10.1	Output
0	0	FALSE
0	1	FALSE
1	0	FALSE
1	1	TRUE

Example in Parallel- OR Logic

	10.0	10.1	Output
Ī	0	0	FALSE
	0	1	TRUE
	1	0	TRUE
	1	1	TRUE

Bit Logic Instructions in FBD- NO

Normally Open Contact

Symbol

The block "&" is **TRUE** when the assigned bit value **IO.0** is **TRUE** or equal to 1 and is **FALSE** when the assigned bit value **IO.0** is **FALSE** or equal to 0.

Siemens TIA

Normally Open contact

Example in Series – AND Logic

10.0	10.1	Output
0	0	FALSE
0	1	FALSE
1	0	FALSE
1	1	TRUE

Example in Parallel- OR Logic

10.0	10.1	Output
0	0	FALSE
0	1	TRUE
1	0	TRUE
1	1	TRUE

Bit Logic Instructions in LAD- NC

Normally Close Contact

The Normally Close contact is **closed (ON)** when the assigned bit value **I0.0** is **FALSE** or equal to 0 and it's **open (OFF)** when the assigned bit value **I0.0** is **TRUE** or equal to 1.

Siemens TIA

Normally Close contact

Example in Series - NOR Logic

%lo.o	%10.1
"Tag_1"	"Ta g_2"
/	<u> </u>

	10.0	10.1	Output	
	0	0	TRUE	
	0	1	FALSE	
	1	0	FALSE	
_	1	1	FALSE	4}

Example in Parallel- NAND Logic

10.0	10.1	Output
0	0_	TRUE
0	1	TRUE
1	0	TRUE
1_	1	FALSE
		~

Bit Logic Instructions in FBD- NC

Normally Close Contact

The block "&" is **TRUE** when the assigned bit value **I0.0** is **FALSE** or equal to **0** and is **FALSE** when the assigned bit value **I0.0** is **TRUE** of equal to **1**

Siemens TIA

Normally close contact

Example in Series – NOR Logic

| 10.0 | 10.1 Output | 0 0 TRUE | 0 1 FALSE | 1 0 FALSE | 1 1 FALSE | 1 FALSE | 1 1 FALSE

Example in Parallel- NAND Logic

10.0	10.1	Output
0	0	TRUE
0	1	TRUE
1	0	TRUE
1	1	FALSE

Bit Logic Instructions in LAD & FBD- OUT

Output Coil

The **coil output instruction** writes a value for an output bit. The OUT instruction is TRUE when state before in the branch is TRUE

Siemens TIA or Combite c

Example in Ladder

Truth Table

10.0	10.1	Q0.0
0	0	FALSE
0	1	FALSE
1	0	FALSE
1	1	TRUE

SERVING

Exercise Example

</>>

1. Design XOR gate such that output is TRUE if only one of the two inputs is TRUE. - Assume you have two toggle buttons connected to PLC input

Required Condition

10.0	10.1	Q0.0
0	0	FALSE
0	1	TRUE
1	0	TRUE
1	1	FALSE

What did we learn in this lesson?

- The Normally Open contact is closed (ON) when the assigned bit value is equal to 1.
- The Normally Closed contact is closed (ON) when the assigned bit value is equal to 0.
- The LAD **NOT contact inverts** the logical state of power flow input.
- If there is power flow through an output coil or an FBD "=" box is enabled, then the output bit is set to 1.

Thank you

Get copy of this presentation in the course!

Code and Compile
Learning Made Easy

www.codeandcompile.com

