Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа 3220	К работе допущен
Студент Гафурова Фарангиз Фуркатовна	Работа выполнена
Преподаватель <u>Терещенко Георгий</u> <u>Викторович</u>	Отчет принят

Рабочий протокол и отчет по лабораторной работе 3.13

Магнитное поле Земли

1. Цель работы

Исследование силовых характеристик магнитного поля Земли

2. Задачи, решаемые при выполнении задачи

- Провести измерения направления суммарного магнитного поля, создаваемого Землей и системой катушек Гельмгольца.
- Определить горизонтальную составляющую магнитного поля Земли.

3. Объект исследования

• Суперпозиция магнитного поля колец Гельмгольца и геомагнитного поля.

4. Метод экспериментального исследования

• Многократные прямые измерения физической величины с последующей обработкой.

5. Рабочие формулы и исходные данные

Физические величины:

В – индукция магнитного поля в пространстве между кольцами

 B_h - горизонтальная составляющая вектора индукции магнитного поля Земли

 B_c — величина магнитного поля катушек Гольмгольца

I — сила тока в катушках

 $\langle I \rangle$ – среднее значение силы тока

n – число витков (100)

R – радиус колец (0,15 м)

 ϕ — угол между направлением пробного поля и земного магнитного поля (160^{0})

 α — угол между направлением результирующего поля и земного магнитного поля

Формулы:

$$B = \mu_0 \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{In}{R} \tag{1}$$

$$\gamma = \frac{\sin(\alpha)}{\sin(\varphi - \alpha)}$$
 (2)

$$B_c = B_h * \gamma \tag{3}$$

$$< I \ge \frac{I_1 + I_2 + I_3}{3}$$
 (4)

6. Измерительные приборы

Nº	Прибор	Используемый диапазон	Погрешность
1	Амперметр	[0, 0.4] A	0.001 A
2	Транспортир	[0,160] deg	0.5 <i>deg</i>
3	Амперметр	[0, 300]мА	0.1 мА

7. Схема установки

Рисунок 1. Параметры установки R = 0.15 м - радиус катушек;

n = 100 - число витков в каждой из катушек

8. Результаты прямых измерений и их обработки

$\varphi = 160^{0}$	Ток в катушках, мА			γ		
α	I_1	I_2	I_3	< <i>I</i> >	$\frac{\sin(\alpha)}{\sin(\varphi-\alpha)}$	B_{c} , мк ${ m T}$ л
10^{0}	14.5 мА	13.9 мА	14.6 мА	14.3 мА	0.34729 рад	8.592 мкТл
20^{0}	21 мА	21.1 мА	22.5 мА	21.5 мА	0.53208 рад	12.908 мкТл
30^{0}	27 мА	25.1 мА	27.1 мА	26.4 мА	0.6527 рад	15.825 мкТл
40^{0}	30.5 мА	30.5 мА	30.5 мА	30.5 мА	0.74222 рад	18.283 мкТл
50^{0}	32.8 мА	33.1 мА	31.8 мА	32.6 мА	0.8152 рад	19.522 мкТл
60^{0}	35.3 мА	35.5 мА	34.1 мА	35 мА	0.87938 рад	20.96 мкТл
70^{0}	36.7 мА	38.2 мА	37.2 мА	37.4 мА	0.93969 рад	22.399 мкТл
80^{0}	39.3 мА	40 мА	39.5 мА	39.6 мА	1 рад	23.738 мкТл
90^{0}	41.9 мА	42.6 мА	41.6 мА	42 мА	1.06417 рад	25.196 мкТл
100^{0}	45.1 мА	45.3 мА	44.4 мА	45 мА	1.13715 рад	26.935 мкТл
110^{0}	47.6 мА	48.8 мА	47.6 мА	48 мА	1.22668 рад	28.773 мкТл

120 ⁰	50.9 мА	53.2 мА	52.4 мА	52.2 мА	1.34729 рад	31.27 мкТл

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов) Примеры расчетов:

$$\gamma_1 = \frac{\sin(lpha)}{\sin(arphi - lpha)} = \frac{\sin 10^0}{\sin (160^0 - 10^0)} = 0.35$$
 рад; аргумент \sin в градусах

$$B_h = b = \frac{B_c}{\gamma} = \frac{\Sigma B_{c_i} \gamma_i}{\Sigma \gamma_i^2} = 24.78 \text{ мкТл} \qquad a = 0$$

Нашли значения магнитной индукции катушек Гельмгольца по формуле (1) и средних значений токов, а потом по МНК узнаем значение коэффициента B_h в линейно зависимости $B_c = B_c(\gamma)$. $D = \Sigma(\gamma_i - \bar{\gamma})^2 = 2.13507$.

$$D = \Sigma (\gamma_i - \bar{\gamma})^2 = 2.13507.$$

10. Графики

График 1: Зависимость магнитной индукции B_c от коэффициента γ

11.Окончательные результаты

$$B_h = (24.78 \pm 0.289) \ {
m Mк}{
m T}{
m J}$$
 $arepsilon = 2,1524\%$

12.Выводы и анализ результатов

В результате проделанной лабораторной работы были получены

следующие теоретические сведения: для оценки значения горизонтальной составляющей магнитной индукции геомагнитного поля необходимо создать магнитное поле катушек Гельмгольца и регистрировать суперпозицию таких векторов магнитной индукции. В зависимости от угла поворота магнитной стрелки под действием поля колец можно по теореме синусов узнать зависимость значений магнитной индукции колец (формула для которых известна из теории и в нашем случае зависит от силы тока) от коэффициента $\frac{\sin(\alpha)}{\sin(\phi-\alpha)}$.

Значение получили меньше, чем истинное (14.92 мкТл в Санкт-Петербурге), но это можно объяснить неточностью в измерениях и неидеальностью установки.