PSY9511: Seminar 3

Regularization and variable selection

Esten H. Leonardsen 11.09.24

Shrinkage

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

 $\beta_n \to 0$

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

 $\beta_n \to 0$

1. $\beta_1 = 0 \implies$ One less degree of freedom in our function

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

 $\beta_0 \to 0$

1. $\beta_1 = 0 \implies$ One less degree of freedom in our function

mse=bias²+variance+irreducible error

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

 $\beta_0 \to 0$

1. $\beta_1 = 0 \implies$ One less degree of freedom in our function

mse=bias²+variance+irreducible error

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

 $\beta_n \to 0$

- 1. $\beta_1 = 0 \implies$ One less degree of freedom in our function
- 2. A little more bias \implies A lot less variance

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

 $\beta_n \to 0$

- 1. $\beta_1 = 0 \implies$ One less degree of freedom in our function
- 2. A little more bias \implies A lot less variance

$$y \sim \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6$$

$$\downarrow$$

$$y \sim \beta_0 + \frac{\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6}{\beta_n \rightarrow 0}$$

- 1. $\beta_1 = 0 \implies$ One less degree of freedom in our function
- 2. A little more bias \implies A lot less variance
- Parameters depend on eachother ⇒
 Fewer degrees of freedom

$$loss_{mse} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$y \sim \beta 0 + \beta_1 x_1 + \beta_2 x_2, x_1 \in [0, 1], 2 \in [0, 1000]$$

z-score standardization

z-score standardization

$$X = \frac{X - \mu_X}{\sigma_X}$$

for col in predictors:

z-score standardization

$$X = \frac{X - \mu_X}{\sigma_X}$$

```
print(f'{col}: {np.mean(df[col]):.2f} ({np.std(df[col]):.2f})')

# z-score standardization
for col in predictors:
    df[col] = (df[col] - np.mean(df[col])) / np.std(df[col])

for col in predictors:
    print(f'{col} after: {np.mean(df[col]):.2f} ({np.std(df[col]):.2f})')

Out[1]:

cylinders: 5.47 (1.70)
    displacement: 194.41 (104.51)
    horsepower: 104.47 (38.44)
    cylinders after: -0.00 (1.00)
    displacement after: -0.00 (1.00)
    horsepower after: -0.00 (1.00)
```


In[1]:

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(\chi_{i} \sum_{j=0}^{p} \beta_{j} \chi_{ij} \right)^{2} + \lambda \sum_{j=0}^{p} \beta_{j}^{2}$$

$$loss_{ridge} = \sum_{i=0}^{n} \left(y_i - \sum_{j=0}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} \beta_j^2$$

http://localhost:8888/notebooks/notebooks/Live%20coding.ipynb

