Предсказание стоимости акции

Команда: Гарасев Никита

Тишин Роман

Куратор: Ижеев Сергей

Объект

- В качестве объекта исследования была выбрана банковская отрасль, а именно 4 банка США:
- Bank of America
- Citi Bank
- JP Morgan Bank
- Wells Fargo & Company

Сбор данных

Первоначально были собраны данные с сайта investing.com.

К информации о ценах акций была добавлена мета-информация о безработице, курсе доллара и прочее.

Wells Fargo & Company (WFC)

55.05 -0,54 (-0,97%) ▼

Закрыт · 02/03

Перед открытием 55,05 0,00 (0,00%) 12:49:37

Затем данные были приведены к единому формату, и собраны в один датасет.

От каждого банка были добавлены: объем и цена закрытия на каждую дату (наши таргеты).

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 965 entries, 0 to 964
Data columns (total 20 columns):
                          Non-Null Count Dtype
     Column
                                          datetime64[ns]
    date
                          965 non-null
    WFC Close
                                          float64
                          965 non-null
    WFC Volume
                          965 non-null
                                          float64
    JPM Close
                          965 non-null
                                          float64
    JPM Volume
                          965 non-null
                                          float64
                         965 non-null
    Citi Close
                                          float64
    Citi Volume
                          965 non-null
                                          float64
                                          float64
    BAC Close
                          965 non-null
    BAC Volume
                          965 non-null
                                          float64
    S&P 500
                          965 non-null
                                          float64
    Index USD
                          965 non-null
                                          float64
                          965 non-null
                                          float64
11 UnEm
12 Nominal GDP Index
                                          float64
                          965 non-null
    Real GDP Index
                                          float64
                          965 non-null
14
    CPI
                          965 non-null
                                          float64
    RD
                          965 non-null
15
                                          float64
    Trade Balance
                          965 non-null
                                          float64
   Consumer Confidence 965 non-null
                                          float64
    Industry PMI
                          960 non-null
                                          float64
   Service PMI
                          960 non-null
                                          float64
dtypes: datetime64[ns](1), float64(19)
memory usage: 158.3 KB
```

Были заполнены пропуски, и сгенерирована предварительная матрица корреляции признаков.

- 1.00

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

-0.50

- -0.75

С помощью теста Дики-Фуллера были проверены все данные на стационарность.

Далее все признаки были приведены к стационарным с помощью рекурсивного дифференцирования.

Это необходимо для того, чтобы избавиться от мнимой корреляции, из-за тренда параметров.

```
def data_adf_transform(df):
  black_list = ["date"]
  # пройтись по всем столбцам
  for column in df.columns:
    # пройти мимо столбцов из блек листа
    if column in black list:
      continue
    print(column)
    # диффиринцировать пока не будет стационарным
    while not check_adf_test(df[column]):
      print(i)
     i += 1
      diff values = df[column].diff()
      diff_values.fillna(diff_values.iloc[1], inplace=True)
      df[column] = diff values
  return df
test_df = data_adf_transform(union_df.copy())
```

В результате чего матрица корреляции после преобразований стала выглядеть следующим образом.

В ходе дальнейших исследований, было выявлено, что признак "Rate Desicion" является константным, а следовательно никак не повлияет на обучение моделей.

Генерация новых признаков

Для генерации новых признаков была выбрана библиотека tsfresh, которая предоставляет несколько генераторов наборов признаков.

```
def _extract_features(df):
    return extract_features(
         df,
         column_id='segment',
         column_sort='timestamp',
         default_fc_parameters=EXTRACTION_SETTINGS
)
```

Преобразование датасета

В качестве фреймворка для работы с моделями был выбран фреймворк - etna.

Для этого необходимо было преобразовать наш pandas датасет к датасету временных рядов фреймворка etna.

Обучение наивной модели

В качестве модели была наивная модель.

первой выбрана

Результаты наивной модели

Наивная модель показала нормальный результат. К началу предсказываемой области предсказания расположены ближе к тестовым данным.

Обучение модели AutoARIMA

Следующая модель для обучения - AutoARIMAModel

Результаты модели AutoARIMA

Данный момент остался загадкой. Почему по цифрам все лучше чем у наивной модели, а по графикам мы предсказываем только на 1 день вперед (хотя lag = 30 выставлен).

	SMAPE	MAE	MAPE	fold_number
segment				
BAC_Close	5.791058	1.673995	5.808026	2.0
Citi_Close	4.065619	1.793008	4.133011	2.0
JPM_Close	5.174156	7.413530	5.086601	2.0
WFC Close	6.743407	2.782365	6.658970	2.0

Обучение модели Prophet

Следующая модель для обучения - ProphetModel

```
[90]: def prophet(ts):
    train_ts, test_ts = ts.train_test_split(test_size=HORIZON)

prophet_model = ProphetModel()
pipeline = Pipeline(model=prophet_model, horizon=HORIZON)

metrics_df, forecast_df, fold_info_df = pipeline.backtest(
    ts=ts, metrics=[SMAPE(), MAE(), MAPE()], n_jobs=10
)
print(metrics_df.groupby(['segment']).mean())

pipeline.fit(train_ts)
forecast_ts = pipeline.forecast()
plot_forecast(forecast_ts=forecast_ts, test_ts=test_ts, train_ts=train_ts, n_train_samples=30)
```

Результаты модели Prophet

Данная модель без каких либо настроек и трансформаций не показала должный результат, хотя по показателям выглядит не плохо.

	SMAPE	MAE	MAPE	fold_number
segment				
BAC_Close	7.789928	2.211883	7.646612	2.0
Citi_Close	6.413228	2.944044	6.636153	2.0
JPM_Close	6.301839	9.299269	6.410339	2.0
WFC_Close	6.826897	2.797316	6.633459	2.0

Обучение модели Catboost

Следующая модель обучения ДЛЯ Catboost. Для обучения этой модели необходимо произвести несколько трансформаций ДЛЯ улучшения качества полученных результатов.

```
def catboost(ts):
    train_ts, test_ts = ts.train_test_split(test_size=HORIZON)
    catboost model = CatBoostMultiSegmentModel(iterations = 750, depth = 5, learning rate = 0.001)
    stl = STLTransform(in_column="target", period=30, model="arima")
    anomaly = DensityOutliersTransform(in column="target", window size=5, distance coef=2.5)
    seg = SegmentEncoderTransform()
    lags = LagTransform(in_column="target", lags=list(range(HORIZON, 365)), out_column="lag")
    transforms = [stl, seg, lags, anomaly]
    pipeline = Pipeline(model=catboost_model, transforms=transforms, horizon=HORIZON)
    metrics df, forecast df, fold info df = pipeline.backtest(
        ts=ts, metrics=[SMAPE(), MAE(), MAPE()], n_jobs=10
    print(metrics df.groupby(['segment']).mean())
    pipeline.fit(train ts)
    forecast_ts = pipeline.forecast()
    plot_forecast(forecast_ts=forecast_ts, test_ts=test_ts, train_ts=train_ts, n_train_samples=100)
    return forecast ts
```

Неудачный опыт

Библиотека tsfresh предлагает несколько наборов для генерации признаков, некоторые из которых генерировали по 9 тыс. признаков для нашего датасета для каждого из таргетов. Однако в ходе экспериментов, после многочисленных ошибок, предположительно выявлено, что для обучения модели catboost невозможна ситуация, когда число признаков больше числа строк в датасете. Хотелось бы узнать об это раньше и вернуть потраченное время). Пришлось взять набор с минимальным количеством признаков.

Снижение размерности

Для снижения размерности датасета, были убраны все константные или близкие к константе признаки. В дальнейших планах: попробовать набор из большего числа признаков и избавиться от ненужных. Для этого найти хорошо попарно скоррелированные признаки и удалить тот, что оказывает меньший эффект на целевые переменные.

Планы на будущее

Доделать снижение размерности. Затем разработать телеграмм бота, который мог бы предсказывать цену закрытия для каждого из банков на заданный ему день.