1.Importing Libraries

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import matplotlib.axes as ax

from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import confusion_matrix,accuracy_score
    import seaborn as sns
```

2.Loading Data

In [2]: data = pd.read_csv(r'C:\Users\G.SAI KRISHNA\Desktop\ML_Projects\ML_GFG\7.Logistic Regressic
data.head()

Out[2]:

	area	perimeter	compactness	length	width	asymmetry	length_kernel_groove	kernel
0	15.26	14.84	0.8710	5.763	3.312	2.221	5.220	0
1	14.88	14.57	0.8811	5.554	3.333	1.018	4.956	0
2	14.29	14.09	0.9050	5.291	3.337	2.699	4.825	0
3	13.84	13.94	0.8955	5.324	3.379	2.259	4.805	0
4	16.14	14.99	0.9034	5.658	3.562	1.355	5.175	0

In [3]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210 entries, 0 to 209
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	area	210 non-null	float64
1	perimeter	210 non-null	float64
2	compactness	210 non-null	float64
3	length	210 non-null	float64
4	width	210 non-null	float64
5	asymmetry	210 non-null	float64
6	length_kernel_groove	210 non-null	float64
7	kernel	210 non-null	int64

dtypes: float64(7), int64(1)

memory usage: 13.2 KB

```
In [4]: data.describe()
```

Out[4]:

	area	perimeter	compactness	length	width	asymmetry	length_kernel_groove	ke
count	210.000000	210.000000	210.000000	210.000000	210.000000	210.000000	210.000000	210.00
mean	14.847524	14.559286	0.870999	5.628533	3.258605	3.700201	5.408071	1.00
std	2.909699	1.305959	0.023629	0.443063	0.377714	1.503557	0.491480	0.81
min	10.590000	12.410000	0.808100	4.899000	2.630000	0.765100	4.519000	0.00
25%	12.270000	13.450000	0.856900	5.262250	2.944000	2.561500	5.045000	0.00
50%	14.355000	14.320000	0.873450	5.523500	3.237000	3.599000	5.223000	1.00
75%	17.305000	15.715000	0.887775	5.979750	3.561750	4.768750	5.877000	2.00
max	21.180000	17.250000	0.918300	6.675000	4.033000	8.456000	6.550000	2.00

3.Data Splitting

```
In [5]: x=data.drop(['kernel'],axis=1)
y=data['kernel']
```

In [6]: x.head()

Out[6]:

	area	perimeter	compactness	length	width	asymmetry	length_kernel_groove
0	15.26	14.84	0.8710	5.763	3.312	2.221	5.220
1	14.88	14.57	0.8811	5.554	3.333	1.018	4.956
2	14.29	14.09	0.9050	5.291	3.337	2.699	4.825
3	13.84	13.94	0.8955	5.324	3.379	2.259	4.805
4	16.14	14.99	0.9034	5.658	3.562	1.355	5.175

In [7]: y.head()

Out[7]: 0

0 0

1 0

2 0

3 0

Name: kernel, dtype: int64

4.Data Scaling

5. Training & Testing Data

```
In [9]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=0)
In [10]: x_train.shape
Out[10]: (147, 7)
In [11]: x_test.shape
Out[11]: (63, 7)
In [12]: y_train.shape
Out[12]: (147,)
In [13]: y_test.shape
Out[13]: (63,)
```

6.Logistic Regression Classification

Training the Model

Predicting Test Values

0, 1, 1, 0, 0, 1, 0, 1, 2, 2, 1, 0, 1, 1, 1, 1, 2, 1, 1],

Visualizing Model Performance

dtype=int64)

In [16]: cm = confusion_matrix(y_test,y_pred)


```
In [18]: print("Accuracy : "+str(accuracy_score(y_test,y_pred)*100)+"%")
```

Accuracy: 95.23809523809523%