

1.5A, 升压、降压转换用开 关调整器。

ON Semiconductor®

http://onsemi.com

MC34063A 系列是包含 DC-DC 转换器基本功能的单片集成控制电路。该器件的内部组成包括带温度补偿的参考电压、比较器、带限流电路的占空比控制振荡器、驱动器、大电流输出开关。该器件专用于降压、升压以及电压极性反转场合,可以减少外部元件的使用数量。获取更详细的设计参考信息,可参阅应用笔记

SOIC-8 D SUFFIX CASE 751

"AN920A/D"或 "AN954/D".

特性

- 工作输入电压 3.0V-40V
- 低静态电流
- 具有限流功能
- 输出开关电流可达 1.5A
- 输出电压可调
- 工作频率可至 100kHz
- 参考电压精度 2%
- 支持无铅封装

封装印记说明:

 $x = 3 \vec{\otimes} 4$

A = 封装地区

L, WL = 晶片批号

Y, YY =年份

W, WW = 周次

G 或■ = 无铅封装

⁸ Ц Д Д Д

3x063AP1

本手册"封装尺寸"部分有关于订货、包装的详细信息。

(底部视图)

该器件包含79个有源晶体管

图 1 等效原理图 MC34063A, MC33063A, SC34063A, SC33063A, NCV33063A

图 2 引脚分布

极限参数

参数	符号	数值	单位
电源电压	VCC	40	Vdc
比较器输入电压范围	V _{IR}	-0.3~+40	Vdc
开关级集电极电压	V _{C (switch)}	40	Vdc
开关级射极电压(V _{Pinl} =40V)	V _{E (switch)}	40	Vdc
开关级集电极-射极电压	V _{CE(switch)}	40	Vdc
驱动级集电极电压	V _{C(driver)}	40	Vdc
驱动级集电极电流 (注1)	$I_{C(driver)}$	100	mA
开关电流	I_{sw}	1.5	A
功耗与热特性			
塑料封装,P,P1 后缀			
$T_A=25^{\circ}\mathrm{C}$	$P_{_{D}}$	1.25	W
热阻	$R_{_{ heta JA}}$	115	°C/W
SOIC 封装,D 后缀			
T _A =25°C	$P_{_{D}}$	625	mW
热阻	$R_{_{ heta JA}}$	160	°C/W
DFN 封装			
$T_A=25^{\circ}C$	$P_{_{\mathrm{D}}}$	1.25	mW
热阻	$R_{_{ heta JA}}$	80	°C/W
工作结温	$T_{_{\mathrm{J}}}$	150	$^{\circ}$ C
工作环境温度范围	T _A		$^{\circ}$ C
MC34063A, SC34063A		0 到+70	
MC33063AV, NCV33063A		-40 到+125	
MC33063A, SC33063A		-40 到+85	
储存温度范围	$T_{ m stg}$	-65 到+150	$^{\circ}\mathbb{C}$

强制性地超出极限参数将损坏器件。极限参数只是强制性参数,不代表正常工作要超 出推荐工作条件,长期超出推荐工作条件的操作将影响器件的可靠性。

- 1. 必须注意封装的最大功耗限制。
- 2. 该系列器件具备静电放电防护,并通过了以下试验:人体放电模式 4000V,美军标 MIL-STD-883, 3015 方式. 机械模式 400V.
 - 3. NCV 前缀系列用于汽车电子。

MC34063A,MC33063A,SC34063A,SC33063A,NCV33063A 电气特性(VCC=5. OV,T_A=T_{Low}至 T_{high}【注 4】,除非另有说明。)

A low n	ign					
特性	符号	最小值	典型值	最大值	单位	
频率(V_{Pin5} =0 V , C_{T} =1.0 nF , T_{A} =25 $^{\circ}$ C)	f _{osc}	24	33	42	kHz	
充电电流(VCC=5.0V~40V,T _A =25℃)	I _{chg}	24	35	42	μA	
放电电流(VCC=5.0V~40V,T _A =25℃)	I	140	220	260	μA	
放电与充电电流比(7 脚连 VCC,T _A =25℃)	I _{dischg} /I _{chg}	5.2	6.5	7.5	ı	
限流监测电压(I _{chg} =I _{dischg} ,T _A =25℃)	V _{ipk(sense)}	250	300	350	mV	
输出开关(注5)						
饱和电压,达林顿连接 (I _{sw} =1.0A,1、8 脚相连)	V _{CE(sat)}	-	1	1.3	V	
饱和电压(注 6) (I _{sw} =1.0A,R _{Pin8} 到 VCC=82 欧,强制 β=20)	V _{CE(sat)}	-	0.45	0.7	V	
直流电流增益(I _{SW} =1.0A,V _{CE} =5.0V,T _A =25°C)	h _{FE}	50	75	-	-	
集电极关断电流(V _{CE} =40V)	I _{C(off)}	-	0.01	100	μА	
 比较器						
阈值电压 T _A =25℃ T _A =T _{low} 到 T _{high}	V _{th}	1.225 1.21	1.25	1.275 1.29	V	
阈值电压线性调整(VCC=3.0V 到 40V) MC33063,MC34063 MC33063V,NCV33063	Reg _{line}	-	1.4 1.4	5.0 6.0	mV	
输入偏置电流(V _{in} =0V)	I _{IB}	-	-20	-400	nA	

4.对于 MC34063,SC34063,T_{low}=0℃;对于

MC33063, SC33063, MC33063V, NCV33063, T_{low}=-40℃; 对于

MC34063,SC34063, T_{high} =+70°C;对于MC33063,SC33063, T_{high} =+85°C;对于MC33063V,NCV33063, T_{high} =+125°C.

- 5.测试时采用了低占空比以保证结温尽可能接近环境温度。
- 6.在非达林顿配置下,开关电流 $\leq 300 \text{mA}$,驱动电流 $\geq 30 \text{mA}$ 时,若输出开关处于深度饱和状态,脱离饱和状态需花费 $2.0 \mu \text{s}$.在频率 $\geq 30 \text{kHz}$ 时,这一状态将缩短关断时间,该作用随温度升高而扩大。这一情况不会出现在达林顿连接中,因为输出开关不会饱和。若采用非达林顿连接,建议使用下面的驱动条件:强制输出开关 β : I_c 输出/ $(I_c$ 驱动- $7.0 \text{mA}^*) \geq 10$.
 - *驱动器射极的100欧电阻需要7.0mA电流使输出开关导通。

图 3 振荡频率

图 5 射极跟随器输出饱和压降 与射极电流的关系

图 7 限流监测电压与温度的关系

图 4 时基电容波形

图 6 共射极输出开关饱和电压 与集电极电流的关系

图 8 静态电流与电源电压的关系

7. 测试时采用了低占空比以保证结温尽可能接近环境温度。

测试项目	条件	结果
线性调整率	V _{in} =8. 0V~16V, I ₀ =175mA	30mV, \pm 0.05%
加载调整率	V _{in} =12V, I ₀ =75mA~175mA	10mV, ±0.017%
输出纹波	V _{in} =12V, I ₀ =175mA	400mVpp
效率	V _{in} =12V, I ₀ =175mA	87. 70%
带滤波电感输出纹波	V _{in} =12V, I ₀ =175mA	40mVpp

图 9 升压转换器

图 10 I_c大于 1. 5A 的外部扩流电路

测试项目	条件	结果
线性调整率	$V_{in} = 15V \sim 25V, I_0 = 500 \text{mA}$	12mV, ±0. 12%
加载调整率	V _{in} =25V, I ₀ =50mA~500mA	3mV, \pm 0.03%
输出纹波	V _{in} =25V, I ₀ =500mA	120mVpp
短路电流	V _{in} =25V,R _L =0. 1 欧	1. 1A
效率	V _{in} =25V, I ₀ =500mA	83. 70%
带滤波器输出纹波	V _{in} =25V, I ₀ =500mA	40mVpp

图 11 降压转换器

图 12 I_c大于 1. 5A 的外部扩流电路

测试项目	条件	结果
线性调整率	V _{in} =4. 5V~6. 0V, I ₀ =100mA	3mV, \pm 0. 012%
加载调整率	V _{in} =5V, I ₀ =10mA~100mA	0. 022V, ±0. 09%
输出纹波	V _{in} =5V, I ₀ =100mA	500mVpp
短路电流	V _{in} =5V,R _L =0. 1 欧	910mA
效率	V _{in} =5V, I ₀ =100mA	62. 20%
带滤波器输出纹波	V _{in} =5V, I ₀ =100mA	70mVpp

图 13 电压极性转换器

图 14 I_c大于 1. 5A 的外部扩流电路

(底视)

(顶视,元件面)
图 15 印制电路板与元件布局

(对应图 9, 11, 13 的电路)

电感数据

转换器	电感(微亨)	圈数/线芯
升压	170	38 圈,AWG 22 #
降压	220	48 圏,AWG 22 #
极性反转	88	28 圏,AWG 22 #

所有电感均采用 Magnetics 公司 55117 环形磁芯绕制 www. mag-inc. com

MC34063A, MC33063A, SC34063A, SC33063A, NCV33063A

图 16 DFN 器件印制电路板

MC34063A, MC33063A, SC34063A, SC33063A, NCV33063A

Calculation	Step-Up	Step-Down	Voltage-Inverting
t _{on} /t _{off}	$\frac{V_{out} + V_{F} - V_{in(min)}}{V_{in(min)} - V_{sat}}$	$\frac{V_{\text{out}} + V_{\text{F}}}{V_{\text{in(min)}} - V_{\text{sat}} - V_{\text{out}}}$	$\frac{ V_{out} + V_F}{V_{in} - V_{sat}}$
$(t_{on} + t_{off})$	1 f	<u>1</u> f	<u>1</u> f
t _{off}	$\frac{t_{\text{on}} + t_{\text{off}}}{\frac{t_{\text{on}}}{t_{\text{off}}} + 1}$	$\frac{t_{\text{on}} + t_{\text{off}}}{\frac{t_{\text{on}}}{t_{\text{off}}}} + 1$	$\frac{t_{\text{on}} + t_{\text{off}}}{\frac{t_{\text{on}}}{t_{\text{off}}}} + 1$
t _{on}	$(t_{\text{on}} + t_{\text{off}}) - t_{\text{off}}$	$(t_{on} + t_{off}) - t_{off}$	$(t_{on} + t_{off}) - t_{off}$
C _T	4.0 x 10 ⁻⁵ t _{on}	4.0 x 10 ⁻⁵ t _{on}	$4.0 \times 10^{-5} t_{on}$
I _{pk(switch)}	$2I_{out(max)} \left(\frac{t_{on}}{t_{off}} + 1\right)$	21 _{out(max)}	$2I_{out(max)} \left(\frac{t_{on}}{t_{off}} + 1 \right)$
R _{sc}	0.3/l _{pk(switch)}	0.3/I _{pk(switch)}	0.3/l _{pk(switch)}
L _(min)	$\left(\frac{(V_{\text{in(min)}} - V_{\text{sat}})}{I_{\text{pk(switch)}}}\right)^{t_{\text{on(max)}}}$	$\left(\frac{(V_{\text{in(min)}} - V_{\text{sat}} - V_{\text{out}})}{I_{\text{pk(switch)}}}\right) t_{\text{on(max)}}$	$\left(\frac{(V_{\text{in}(\text{min})} - V_{\text{sat}})}{I_{\text{pk}(\text{switch})}}\right) t_{\text{on}(\text{max})}$
Co	9	I _{pk(switch)} (t _{on} + t _{off}) 8V _{ripple(pp)}	9 <mark>L_{out}ton Vripple(pp)</mark>

V_{sa}=输出开关饱和压降。

V₌输出滤波器正向压降。

V_{in}-----标称输入电压。

V_{out}——设计输出电压,|V_{out}|=1. 25(1+R2/R1).

Ⅰ_{。..}——设计输出电流。

 f_{min} ——在选定的 V_{in} 和 I_{o} 下需要的最小输出开关频率。

V_{ripple (pp)}——设计输出纹波的峰峰值。实际上,考虑到电容的等效串联电阻以及电路板布局,计算出来的电容值应该加大。输出纹波电压应保持一个较小的值,因为它直接影响电路的线性和加载调整率。

注: 更详尽的信息请参考应用笔记 "AN920A/D"与 "AN954/D".

图 17 设计公式表

		•
器件	封装	包装※
MC33063AD	SOIC-8	98 片/杆
MC33063ADG	SOIC-8(无铅)	98 片/杆
MC33063ADR2	SOIC-8	2500 片/卷
MC33063ADR2G	SOIC-8(无铅)	2500 片/卷
SC33063ADR2G	SOIC-8(无铅)	2500 片/卷
MC33063AP1	PDIP-8	50 片/杆
MC33063AP1G	PDIP-8(无铅)	50 片/杆
MC33063AVD	SOIC-8	98 片/杆
MC33063AVDG	SOIC-8(无铅)	98 片/杆
MC33063AVDR2	SOIC-8	
MC33063AVDR2G	SOIC-8(无铅)] 2500 片/卷
NCV33063AVDR2 *	SOIC-8	2000 / [//-]
NCV33063AVDR2G *	SOIC-8(无铅)	
MC33063AVP	PDIP-8	50 片/杆
MC33063AVPG	PDIP-8(无铅)	50 片/杆
MC34063AD	SOIC-8	98 片/杆
MC34063ADG	SOIC-8(无铅)	98 片/杆
MC34063ADR2	SOIC-8	2500 片/卷
MC34063ADR2G	SOIC-8(无铅)	2500 片/卷
SC34063ADR2G	SOIC-8(无铅)	2500 片/卷
MC34063AP1	PDIP-8	50 片/杆
MC34063AP1G	PDIP-8(无铅)	50 片/杆
SC34063AP1G	PDIP-8(无铅)	50 片/杆
MC33063MNTXG	DFN8(无铅)	4000 片/卷
		生 4 河 4 世 4 世 4 世 7 四

[※]获取编号顺序、卷带尺寸等有关卷带参数的详细信息,请参阅卷带包装参数手册 BRD8011/D.

^{*} NCV33063A:T_{low}=-40℃,T_{high}=+125℃.NCV 前缀系列用于汽车电子。

SOIC-8 NB

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MOLD PROTRIUSION.
 MAXIMUM MOLD PROTRIUSION 0.15 (0.006)
 PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRIUSION. ALLOWABLE DAMBAR
 PROTRIUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.
 751-01 THRU 751-06 ARE OBSOLETE. NEW
 STANDARD IS 751-07.

cresse.	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.050 BSC	
Н	0.10	0.25	0.004	0.010
7	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

获取更多关于无铅封装和焊接的详细信息,请下载《安森美半导体焊接与安装技术参考 手册》, SOLDERRM/D.

封装尺寸

PDIP-8 P, P1 SUFFIX CASE 626-05 ISSUE M

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
- 3. DIMENSION E IS MEASURED WITH THE LEADS RE-STRAINED PARALLEL AT WIDTH E2.

 4. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

	INCHES			MIL	LIMETE	RS
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			0.210			5.33
A1	0.015	/		0.38	8-4-	
b	0.014	0.018	0.022	0.35	0.46	0.56
C	0.008	0.010	0.014	0.20	0.25	0.36
D	0.355	0.365	0.400	9.02	9.27	10.02
D1	0.005			0.13		
E	0.300	0.310	0.325	7.62	7.87	8.26
E1	0.240	0.250	0.280	6.10	6.35	7.11
E2	(0.300 BSC		7.62 BSC)
E3			0.430			10.92
е	0.100 BSC		1	2.54 BSC	;	
Г	0.115	0.130	0.150	2.92	3.30	3.81

