

Technical University of Munich

DEPARTMENT OF MATHEMATICS

[Thesis Title]

Master's Thesis
von
[First Name Last Name]

Supervisor: Prof. Dr. [First Name Last Name]

Advisor: [First Name Last Name]

Submission Date: [Day. Month. Year]

I hereby declare that this thesis is my own work and that no other sources have been used except those clearly indicated and referenced.
Place, Date

original, hand-written signature

Acknowledgements

[text of acknowledgements]

German Abstract

[abstract text]

English Abstract

[abstract text]

Contents

1.	Introduction	1	
2.	Chapter 2	2	
3.	Chapter 3	3	
Α.	Sobolev spaces	4	
В.	Bochner spaces	5	
C.	Parabolic equations C.1. Application to inhomogeneous parabolic problems	22	
Bil	Bibliography		

1. Introduction

For referencing a book or an article. Said \int_{Ω} .

Moreover

$$\left(\bigcup_{i} B_{i}\right) \tag{1.0.1}$$

Moreover we get

$$1 + 1 = 2 \tag{1.0.2}$$

As seen in 1.0.1 and eq. (1.0.2). Interestingly enough:

Theorem 1.0.3

We are happy.

Here is a reference to theorem 1.0.3 and chapter 1

2. Chapter 2

3. Chapter 3

A. Sobolev spaces

Proposition A.0.1 (Characterization of $W^{1,\infty}$) Let Ω be a bounded Lipschitz domain, or \mathbb{R}^n . Then $W^{1,\infty}(\Omega) = C^{0,1} \cap L^{\infty}(\Omega)$.

This means that $u \in W^{1,\infty}(\Omega)$ if and only if u has a (unique) representative that is bounded, Lipschitz continuous. Weak and classical derivatives coincide a.e.

Proof.

Extension

In the case Ω is bounded Lipschitz, then Ω is an extension domain for $W^{1,\infty}(\Omega)$, meaning that there is $E:W^{1,\infty}(\Omega)\to W^{1,\infty}(\mathbb{R}^n)$ linear bounded with Eu=u a.e. on Ω (see [10], theorem 13.17 at page 425, 13.13 at page 424, and definition 9.57 at page 273).

The proof

Let $u \in W^{1,\infty}(\Omega)$. By [10], 11.50 at page 339, because Ω is an extension domain, we obtain that u has a representative \bar{u} that is bounded Lipschitz. Let $\phi \in C_c^{\infty}(\Omega)$. By The Kirszbraun theorem (see e.g. [kirszbraun]), we can extend \bar{u} to a Lipschitz function e on \mathbb{R}^n . Then, for a large enough cube Q containing Ω , $\int_{\Omega} \bar{u} \partial_i \phi = \int_{Q} e \partial_i \phi = -\int_{Q} \partial_i e \phi$, by Fubini's theorem and integration by parts for AC functions.

Because $e = \bar{u}$ on Ω , we conclude $\int_{\Omega} \bar{u} \partial_i \phi = -\int_{\Omega} \partial_i \bar{u} \phi$, so that $\nabla \bar{u} = \nabla u$ almost everywhere.

Conversely, let u be bounded Lipschitz. The above reasoning shows that u has essentially bounded weak derivatives equal to the a.e. classical derivatives.

B. Bochner spaces

Here are some useful results about Bochner spaces.

Proposition B.0.1 (Bochner integral and bounded operators)

Let X, Y be separable Banach, let $T \in L(X, T)$ be a linear bounded operator. For $f \in L^1(I, X)$ define Tf(t) := T(f(t)). Then $Tf \in L^1(I, Y)$ with $T \int_I f = \int_I Tf$.

Proof.

First of all, a clarification on the definition. What is really happening is that from the time equivalence class f, we select a g, and then Tf(t) := T(g(t)). Tf is then the equivalence class of $t \mapsto Tf(t)$. The definition is well posed, because $g_1(t) = g_2(t) \Longrightarrow T(g_1(t)) = T(g_2(t))$.

Let f_n be simple, $f_n \to f$ a.e., with $\lim_n \int_I f_n = \int_I f$ and $||f_n||_X \le C ||f||_X$ (see page 6, and corollary 2.7 at page 8 of [8]).

Measurability

For almost all $t, T(f_n(t)) \to T(f(t)) = Tf(t)$ in Y, so that Tf is measurable (strongly).

Integrability

By the assumptions, $||Tf_n|| \le ||T|| ||f_n|| \le C ||f|| \in L^1(I)$, so that by dominated convergence (corollary 2.6 of [8]) Tf is integrable too. Thus $\int_T Tf = \lim_n \int_I Tf_n = \lim_n T \int_I f_n$, because f_n is simple. And now, by the choice of f_n , $\int_T Tf = \lim_n T \int_I f_n = T \lim_n \int_I f_n = T \int_I f$.

Proposition B.0.2 (Derivations and bounded operators)

As before, let X, Y be separable Banach, let $T \in L(X,T)$ be a linear bounded operator.

For $k \geq 0$, $f \in H^k(I,X) \implies Tf \in H^k(I,Y)$, with weak derivatives $\partial_{t^i}Tf = T\partial_{t^i}f$, 0 < i < k.

The map $f \mapsto Tf$, $H^k(I,X) \to H^k(I,Y)$ is linear bounded.

Proof.

The case k = 0 is proved above.

We prove now that $\partial_{t} Tf = T\partial_{t} f$ for i = 1. Note that $T\partial_{t} f \in L^{2}(I, Y)$, which qualifies as weak derivative.

In fact, for
$$\phi \in C_c^{\infty}(I)$$
, we have $\int_I \phi T \partial_i f = \int_I T(\phi \partial_t f) = T \int_I \phi \partial_t f = -T \int_I \phi' f = -\int_I \phi' T f$.

Higher weak derivatives are treated analogously and the rest of the claims follow from the time stationarity of T and by $\|\partial_{t^i}Tf\| = \|T\partial_{t^i}f\| \le \|T\| \|\partial_{t^i}f\|$.

Proposition B.0.3 (Continuous representatives)

Let X be separable Banach. $f \in L^1(I,X)$ has at most a continuous representative on [0,T].

Proof.

Assume there exists two such continuous representatives, so that we get a function $\delta: [0,T] \to X$ that is zero almost everywhere and continuous. Hence, $[0,T] \ni t \mapsto \|\delta(t)\|$ is continuous in \mathbb{R} and zero a.e., so that it must be zero everywhere.

We now check that a vector valued test function has weak derivatives of all orders.

Proposition B.0.4 (Weak derivatives of test functions)

Let $\phi \in C^1([0,T],X)$, for X separable Banach. It means that the limit of the difference quotients exists for all points of I, that $t \mapsto \phi(t), \phi'(t)$ are continuous, and that they can be continuously extended to [0,T].

Then these classical derivatives coincide a.e. with the weak derivatives of u.

Proof.

We rely on proposition 3.8 of [8] at page 26.

Absolute continuity

Consider $\epsilon > 0$. Divide $[a, b] \subset \subset (0, T)$ into a uniform partition t_i . By theorem 6 at page 146 of [4], we get that $\|\phi(t_i) - \phi(t_{i-1})\|_X \leq (t_i - t_{i-1}) \|\phi(\xi_i)\|_X \leq (b-a) \|\phi'\|_{\infty} / n$, and by choosing n small enough, we conclude that ϕ is (locally) absolutely continuous.

Weak derivative

Therefore, ϕ is locally AC, differentiable everywhere and ϕ' is bounded, so that $\phi \in H^1(I, X)$ and weak and classical derivatives coincide.

And now, introduce a time dependent version of the trace operator which is useful for our computations, although "non-optimal" from a smoothness point of view.

Definition B.0.5 (Time dependent trace)

Let Ω be a bounded Lipschitz domain. For $k \geq 0$ we define $\operatorname{tr}: H^k(I, H^1(\Omega)) \to H^k(I, H^{1/2}(\partial\Omega))$ by $\operatorname{tr}(u)(t) := \operatorname{tr}(u(t))$

Below are some properties of this operator.

Proposition B.0.6 (Properties of trace operator)

The trace operator just defined:

- 1. is well posed
- 2. is linear bounded
- 3. admits a linear bounded right inverse, for instance, E(g)(t) := E(g(t)) (for E a right inverse of the static trace)
- 4. tr and E, in the case of $k \in \mathbb{N}_0$, coincide (in the time a.e. sense) for the case $l \geq k$
- 5. for $k \ge 1$, $tru(0) = 0 \iff u(0) = 0$
- 6. it coincides with the trace treated for instance in [11]

Proof.

Proof of the proposition

We recall that the trace operator is bounded surjective onto $H^{1/2}(\partial\Omega)$, with a right inverse E (see theorem 3.37 at page 102 of [12]).

The first three points are consequences of this fact and of proposition B.0.1.

The fourth property follows by the definition of tr, E and the fact that $H^l \subseteq H^k$, for $k \leq l$.

Let now $k \geq 1$. We know that $H^1, H^{1/2}$ are separable and Banach (the latter is separable because the continuous image of H^1 separable, and Banach because of the existence of E, for instance). Therefore, by [3], theorem 2 of page 286, we obtain the embeddings $H^k(I, H^1) \hookrightarrow C([0, T], H^1)$ and the same goes for $H^k(I, H^{1/2})$. The embedding is U, the

unique continuous representative of a certain time equivalence class (proposition B.0.3). We also introduce brackets to indicate equivalence classes in time, so, u = [Uu].

We want to prove $(Uu)(0) = 0 \iff U(\operatorname{tr} u)(0) = 0$. But we have $[t \mapsto U(\operatorname{tr} u)(t)] = tru := [t \mapsto \operatorname{tr}((Uu)(t))]$. So, $U(\operatorname{tr} u)(t) = \operatorname{tr}((Uu)(t))$ for all $t \in [0, T]$ by continuity.

For the last point, let k = 0. We have:

- 1. $H^1(\Omega) \cap C^1(\overline{\Omega})$ is dense in $H^1(\Omega)$ (see [1], theorem 3.18 at page 54, where being Ω bounded Lipschitz is important)
- 2. functions $\sum_{i\leq m} \phi_i(t) f_i$ for $\phi_i \in C_c^{\infty}(I)$, $f_i \in H^1(\Omega) \cap C^1(\overline{\Omega})$ are dense in $L^2(I, H^1)$ (see [7], page 39, lemma 1.9)

It follows by the third point that $C^1(\overline{\Omega \times I})$ is dense in $L^2(I, H^1)$, so that $u \mapsto u|_{I \times \partial \Omega}$ admits a unique extension by continuity to $L^2(I, H^1)$, so that this definition of trace coincides with the one from the literature in the case of the space $H^{1,0} := L^2(I, H^1)$ (see [11], theorem 4.1), we expand this argument below.

Proof of leftover facts

We call $C^k(\overline{\Omega}) := \{ u \in C^k(\Omega) \text{ with } \partial_{\alpha} f \text{ extendable by continuity to } \overline{\Omega} \}.$

Consider $u(x,t) := \phi(t)v(x)$, for $\phi \in C^1([0,T]), v \in C^1(\overline{\Omega})$. Then, it has partial derivatives $u_t = \phi_t v, u_i = \phi u_i$. u and all its partial derivatives are continuous on $I \times \Omega$, meaning that $u \in C^1(\Omega \times I)$.

Moreover, $u, u_i, u_t \in C([0, T], C(\overline{\Omega}))$. We claim $C([0, T], C(\overline{\Omega})) = C(\overline{\Omega} \times \overline{I})$. In fact, one direction is trivial, and so, let $f \in C([0, T], C(\overline{\Omega})) = C(\overline{\Omega})$. Fix $(t, x) \in \overline{\Omega} \times \overline{I}$. Then, $|f(s, y) - f(t, x)| \leq |f(t, y) - f(t, x)| + |f(t, y) - f(s, y)| \leq |f(t, y) - f(t, x)| + |f(t, y) - f(s, y)|_{\infty}$. If now s is close to t, and t is close to t, then |f(s, y) - f(t, x)| is small.

This shows $u, u_i, u_t \in C([0,T], C(\overline{\Omega})) \in C(\overline{\Omega \times I})$, i.e. $u \in C^1(\overline{Q \times I})$.

To conclude, let $u \in L^2(I, H^1)$. Approximate u by $u_k := \sum_{i \leq m_k} \phi_i^k(t) f_i^k$ as in point 2, and approximate f_i^k by suitable $g_i^k \in H^1(\Omega) \cap C^1(\overline{\Omega})$, to obtain $u_k := \sum_{i \leq m_k} \phi_i^k(t) g_i^k$

Then $||u-w_k||_{L^2(I,H^1)} \leq ||u_k-w_k||_{L^2(I,H^1)} + ||u_k-u||_{L^2(I,H^1)}$. We only need to estimate $||u_k-w_k||_{L^2(I,H^1)} \leq T \sum_{i\leq m_k} ||\phi_i^k||_{\infty} ||f_i^k-g_i^k||_{H^1}$. By the first point, $||f_i^k-g_i^k||_{H^1}$ can be made as small as it is necessary to conclude.

Last remarks

Again with reference to [11], consider the anisotropic spaces $H^{r,s} := L^2(I, H^r) \cap H^s(I, L^2)$. We restrict to the case r = 1, $s \ge 0$. Denote the traces tr_s defined in theorem 4.1, mapping $H^{1,s}(\Omega \times I) \to H^{1/2,s/2}(\partial \Omega \times I)$. For $\partial \Omega$ Lipschitz this theorem is still valid, as

 $1/2 \le 1$, see the discussion above lemma 2.4 in [2]. As stated in [11], tr_s is an extension of $u \mapsto u|_{I \times \partial \Omega}$, defined on the dense suspace $C^{\infty}(\overline{Q \times I})$ of $H^{1,s}$ (that this space is dense can be proved as in lemma 2.22 of [2]). So, let $C^{\infty}(\overline{Q \times I}) \ni u_n \to_{H^{r,s}} u \in H^{1,s}$.

We have $\operatorname{tr}_s u_n = \operatorname{tr}_0 u_n$. Then, $u_n \to_{H^{1/s}} u$, $u_n \to_{H^{1/0}} u$, so that $\operatorname{tr}_s u_n \to_{H^{1/2,s/2}} \operatorname{tr}_s u$ (hence $\operatorname{tr}_0 u_n \to_{H^{1/2,0}} \operatorname{tr}_s u$) and $\operatorname{tr}_0 u_n \to_{H^{1/2,0}} \operatorname{tr}_\sigma u$.

Thus $tr_0u = tr_su$.

Using what we derived before, we can conclude the characterization of the traces in the anisotropic settign define

And now some sanity checks in the case of Gelfand triples.

Proposition B.0.7

(Sanity checks for Gelfand triples)

Consider the following Gelfand triples:

Here $W \subseteq V \subseteq H$ are all separable Hilbert spaces, a,b,c the trivial injections, r the Riesz isomorphism of H. We denote by i_V the Gelfand triple embedding $V \hookrightarrow V^*$, so, $i_V = a^*ra$.

Then:

- 1. $H^1(I,V) \subseteq W(I,V)$ with continuous embedding. The W(I,V) derivative of $u \in H^1(I,V)$ is $i_V u_t$.
- 2. for $u \in W(I, W)$ with $(i_W u)' \in L^2(I, H)$ (i.e. $(i_W u)_t = b^* r h$ for h in $L^2(I, H)$) we obtain $u \in W(I, V)$ (i.e. $cu \in W(I, V)$), with derivative $(i_V cu)' = a^* r h$, so that also $(i_V cu)' \in L^2(I, H)$. It also holds $(i_V cu)'|_W = (i_W u)'$. h is also the weak derivative $L^2(I, H)$ of bu.
- 3. let $u, v \in W(I, V)$ with $u v \in W$. Then $u v \in W(I, W)$ with derivative $(i_W(u v))' = (i_V u)'|_W (i_V v)'|_W$.

Proof.

We use several times that time integrals and bounded linear static operators commute, see proposition B.0.1. ϕ denotes $\phi \in C_c^{\infty}(I)$.

First point

We need to check that $a^*rau \in H^1(I, V^*)$. This follows from proposition B.0.2, so that $(a^*rau)_t = a^*rau_t$.

Second point

At first we claim that h is a weak derivative of $bu \in L^2(I, H)$. In fact, $b^*r \int_I bu\phi' = \int_I (i_W u)\phi' = \{ u \in W(I, W) \} = -\int_I (i_W u)'\phi = -\int_I b^*rh = b^*r - \int_I h\phi$. By density (definition of Gelfand triple), b^* is injective, r is too, and thus $\int_I bu\phi' = -\int_I h\phi$, which shows that bu has weak derivative h.

And now $\int_I i_V cu\phi' = \int_I a^* racu\phi' = a^* r \int_I bu\phi' = \{ \text{ by what we just proved } \} = -a^* r \int_I h\phi$, proving that $(i_V cu)' = a^* rh$.

Morevoer $(i_V cu)'|_W = c^* a^* rh = b^* rh = \{ \text{ assumption } \} = (i_w u)'.$

Third point

We check the derivative. We have $\int_i i_W(u-v)\phi'=\{u-v\in W\subseteq V\}=\int_I b^*ra(u-v)=c^*\int_I (i_Vu-i_Vv)\phi'=-\int c^*((i_Vu)'-(i_Vv)')\phi.$

C. Parabolic equations

Assumption C.0.1 (Basic assumption for parabolic problems)

Let $V \subseteq H$ be real separable Hilbert spaces, V dense in H. Then $H \hookrightarrow V^*$ is also dense, as stated in [13] at page 147. This embedding is $H \ni f \mapsto (f, \cdot)_H$. We thus obtain a Gelfand triple, and we have $W(I, V) \subseteq C(I, H)$.

Let $A: V \to V^*$ be linear bounded, $u \in W(I; V)$, $f \in L^2(I, V^*)$ and $u_0 \in H$.

We also assume that $\langle Av, v \rangle_{V^*, V} + \lambda \|v\|_H^2 \ge \alpha \|v\|_V^2$ for $\lambda \ge 0, \alpha > 0$.

We are interested in the following problem:

Problem C.0.2 (Abstract parabolic equation)

$$u_t + Au = f$$
 in V^* and for a.e. $t \in (0, T)$ (C.0.3)

$$u(0) = u_0$$
 (C.0.4)

Theorem C.0.5 (Basic well posedness of problem C.0.2)

Under assumption C.0.1, problem C.0.2 has a unique solution u. Moreover u satisfies the energy estimate:

$$||u||_{W(I,V)} + ||u||_{C([0,T],H)} \le c(\lambda, \alpha, ||A||_{V^*}, T)(||u_0||_H + ||f||_{L^2(I,V^*)})$$
(C.0.6)

Proof.

We can also obtain additional regularity. Here are further assumptions to make this possible.

Assumption C.0.7 (Assumptions for additional regularity)

We assume $u_0 \in V$, $f = f_1 + f_2 \in L^2(I, H) + H^1(I, V^*)$. We also need A to be symmetric (i.e. $\langle Au, v \rangle_{V^*, V} = \langle Av, u \rangle_{V^*, V}$).

Theorem C.0.8 (Regularity of time derivative)

Suppose assumption C.0.1 and assumption C.0.7. Then $u_t \in L^2(I, H)$ with the estimate:

$$||u||_{W(I,V)} + ||u||_{C(I,H)} + ||u_t||_{L^2(I,H)} \le$$
 (C.0.9)

$$c(\lambda, \alpha, ||A||_{V^*}, T)(||u_0||_V + ||f_1||_{L^2(I,H)} + ||f_2||_{H^1(I,V^*)})$$
 (C.0.10)

That $u_t \in L^2(I, H)$ means precisely that there is $h \in L^2(I, H)$ with $a^*rh = (i_V u)'$, with the notation introduced in proposition B.0.8.

Proof.

We refer to page 26 of [5], theorem 28, and only prove the necessary modifications.

Product rule for A

We have

$$\int_{0}^{t} \langle Au_{n}, u'_{n} \rangle_{V^{*}, V} = \sum_{k, l \leq n} \langle Aw_{k}^{n}, w_{l}^{n} \rangle_{V^{*}, V} \int_{0}^{t} g_{k}^{n} g_{l}^{n'} = \sum_{k, l \leq n} \langle Aw_{k}^{n}, w_{l}^{n} \rangle_{V^{*}, V} \left(-\int_{0}^{t} g_{k}^{n'} g_{l}^{n} + g_{k}^{n}(t) g_{l}^{n}(t) - g_{k}^{n}(0) g_{l}^{n}(0) \right)$$

By linearity at first and then symmetry we get:

$$= \langle Au_n, u_n \rangle_{V^*, V}(t) - \langle Au_n, u_n' \rangle_{V^*, V}(0) - \int_0^t \langle Au_n', u_n \rangle_{V^*, V} =$$

$$= \langle Au_n, u_n \rangle_{V^*, V}(t) - \langle Au_n, u_n' \rangle_{V^*, V}(0) - \int_0^t \langle Au_n', u_n' \rangle_{V^*, V}(0) - \int_0^t \langle Au_n, u_n' \rangle_{V^*,$$

so that:

$$\int_{0}^{t} \langle Au_{n}, u'_{n} \rangle_{V^{*}, V} = \frac{1}{2} \left(\langle Au_{n}, u_{n} \rangle_{V^{*}, V}(t) - \langle Au_{n}, u'_{n} \rangle_{V^{*}, V}(0) \right)$$

Estimate for right hand side

We have:

$$\int_0^t \langle f_2, u_n' \rangle_{V^*, V} = \sum_{k \le n} \int_0^t g_k^{n'} \langle f_2, w_k^n \rangle_{V^*, V}$$

By the smoothness of f_2 we have that $t \mapsto \langle f_2(t), w_k^n \rangle_{V^*, V}$ is $H^1(0, T)$, in particular AC[0, t], so that we can integrate by parts:

$$= -\sum_{k \le n} \int_0^t g_k^n \langle f_2', w_k^n \rangle_{V^*, V} + \sum_{k \le n} g_k^n(t) \langle f_2(t), w_k^n \rangle_{V^*, V} - \sum_{k \le n} g_k^n(0) \langle f_2(0), w_k^n \rangle_{V^*, V} =$$

$$- \int_0^t \langle f_2', u_n \rangle_{V^*, V} + \langle f_2, u_n \rangle_{V^*, V}(t) - \langle f_2, u_n \rangle_{V^*, V}(0) =$$

Here we have used proposition B.0.2 to take the derivative inside the bracket.

Going to the absolute values:

$$\left| \int_{0}^{t} \langle f_{2}, u'_{n} \rangle_{V^{*}, V} \right| \leq \int_{0}^{T} \left| \langle f'_{2}, u_{n} \rangle_{V^{*}, V} \right| + \|f_{2}(t)\|_{V^{*}} \|u_{n}(t)\|_{V} + \|f_{2}(0)\|_{V^{*}} \|u_{n}(0)\|_{V} \leq \frac{1}{2} \|f'_{2}\|_{L^{2}(I, V^{*})}^{2} + \frac{1}{2} \|u_{n}\|_{L^{2}(I, V)}^{2} + \frac{\alpha}{4} \|u_{n}(t)\|_{V}^{2} + \frac{4}{\alpha} \|f_{2}\|_{L^{\infty}(I, V^{*})}^{2} + \frac{1}{2} \|f_{2}\|_{L^{\infty}(I, V^{*})}^{2} + \frac{1}{2} \|u_{n0}\|_{V}^{2}$$

Now, u_n converges weakly in $L^2(I,V)$ by estimate (59) of [5] and thus $\frac{1}{2} \|u_n\|_{L^2(I,V)}$ is bounded. The term $\frac{\alpha}{4} \|u_n(t)\|_V$ can be pulled to the left hand side, u_{0n} is V convergent hence bounded. Therefore as in [5] we are able to conclude that u'_n is bounded in $L^2(I,H)$. We want to conclude $u_t \in L^2(I,H)$. We know for sure that $\langle u'_m, w_j \rangle_{V^*,V} = \langle f - Au_m, w_j \rangle_{V^*,V}$, so that muliplication by a test function and integration yields $\int_I \langle u'_m, w_j \phi \rangle_{V^*,V} = \int_I \langle f - Au_m, w_j \phi \rangle_{V^*,V}$. Because $u_m \to u$ in $L^2(I,V)$ we observe that, by proposition B.0.1 applied on $A \in L(V,V^*)$, it holds $\int_I \langle u'_m, w_j \phi \rangle_{V^*,V} \to \int_I \langle u', w_j \phi \rangle_{V^*,V}$.

What's more, is that $u'_m \rightharpoonup h$ in $L^2(I,H)$, so that $\int_I \langle h, w_j \rangle_{V^*,V} \phi = \int_I \langle u', w_j \rangle_{V^*,V} \phi$. It means that for almost all t, $\langle h, w_j \rangle_{V^*,V} = \langle u', w_j \rangle_{V^*,V}$. And now we can really say that $u' \in L^2(I,H)$, which even more precisely means $(i_V u)' = a^* r h$ almost everywhere.

We also obtain that u_t is bounded by $c(\alpha)(\|f_2\|_{L^{\infty}(I,V^*)} + \|f_2\|_{L^2(I,V^*)} + \|u_0\|_V + \|u\|_{L^2(I,V)})$.

Note that, by [3], theorem 2 of page 286, we can estimate $||f_2||_{L^{\infty}(I,V^*)}$ by $c(T) ||f_2||_{H^1(I,V^*)}$, so that the claim for the time derivative u_t is proven.

For the case where $H=L^2$, $H^1\supseteq V\supseteq H_0^1$, $f_2|_{H_0^1}=0$ we have even more regularity available.

Theorem C.0.11 (Additional regularity)

Suppose assumption C.0.1 and assumption C.0.7.

Let additionally $H=L^2$, $H^1\supseteq V\supseteq H^1_0$, $f_2|_{H^1_0}=0$. Then $Au|_{H^1_0}$ extends to $\overline{Au_{H^1_0}}\in L^2(I,H)$ with:

$$||u||_{W(I,V)} + ||u||_{C([0,T],H)} + ||u_t||_{L^2(I,H)} + ||\overline{Au|_{H_0^1}}||_{L^2(I,H)} \le$$
(C.0.12)

$$c(\lambda, \alpha, ||A||_{V^*}, T)(||u_0||_V + ||f_1||_{L^2(I,H)} + ||f_2||_{H^1(I,V^*)})$$
 (C.0.13)

Moreover $u_t + \overline{Au_{H_0^1}} = f_1$ in $L^2(0, T, L^2) \cong L^2(Q)$ and $\overline{Au|_{H_0^1}} = Au$ on H_0^1 .

Proof.

For $v \in H_0^1$ we get $\langle Au, v \rangle_{V^*,V} = \langle f_1 - u_t, v \rangle_{V^*,V} = (f_1 - u_t, v)_H$, for almost all $t \in (0,T)$. From here we conclude that Au(t) extends for a.a. t to an element of H with $(\overline{Au} - f_1 + u_t, v)_{L^2} = 0$ for all $v \in H_0^1$, almost all t. By density, $\overline{Au} - f_1 + u_t = 0$ in H for almost all t, so that $\overline{Au} = f_1 - u_t$ in $L^2(0,T,L^2) \cong L^2(Q)$.

This isometric isomorphism is stated in [13], page 144.

For our applications we also need to track the constants more precisely, which is accomplished in the next proposition.

Proposition C.0.14 (Tracking the costants)

With assumption C.0.1 there holds:

$$||u||_{C([0;T],H)}^{2} + \alpha ||u||_{L^{2}(I,V)}^{2} \le \exp(2\lambda T)(||u_{0}||_{H}^{2} + \alpha^{-1} ||f||_{L^{2}(I,V^{*})}^{2})$$
 (C.0.15)

$$||u'||_{L^{2}(I,V^{*})} \le ||A||_{L(V,V^{*})} \alpha^{-1/2} \sqrt{\exp(2\lambda T)} ||u_{0}||_{H} +$$
 (C.0.16)

$$\left(\|A\|_{L(V,V^*)} \alpha^{-1} \sqrt{\exp(2\lambda T)} + 1\right) \|f\|_{L^2(I,V^*)}$$
 (C.0.17)

With additionally assumption C.0.7 we obtain:

$$C \|u'\|_{L^{2}(I,H)}^{2} \le (1 + (1 + C_{0})\alpha^{-1}) \|f_{2}\|_{H^{1}(I,V^{*})}^{2} +$$
 (C.0.18)

$$(1 + ||A||_{L(V,V^*)}) ||u_0||_V^2 + C_0 ||u_0||_H^2 +$$
 (C.0.19)

$$||f_1||_{L^2(I,H)}^2 + C_0 \alpha^{-1} ||f_1||_{L^2(I,V^*)}^2$$
 (C.0.20)

with C > 0 a number independent of the problem.

Here
$$C_0 = 2^{-1} \max(1, \lambda) \max(1, \alpha^{-1}) \exp(2\lambda T)$$
.

Proof.

No regularity

From page 21 of [5] we obtain that $\|u\|_{C([0;T],H)}^2 + \alpha \|u\|_{L^2(I,V)}^2 \leq \exp(2\lambda T)(\|u_0\|_H^2 + \alpha^{-1} \|f\|_{L^2(I,V^*)}^2)$.

In particular, $\sqrt{\alpha} \|u\|_{L^2(I,V)} \leq \sqrt{\exp(2\lambda T)} (\|u_0\|_H + \alpha^{-1/2} \|f\|_{L^2(I,V^*)})$, or $\|u\|_{L^2(I,V)} \leq \alpha^{-1/2} \sqrt{\exp(2\lambda T)} (\|u_0\|_H + \alpha^{-1/2} \|f\|_{L^2(I,V^*)})$.

 $\text{Moreover } \|u'\|_{L^2(I,V^*)} \leq \|Au\|_{L^2(I,V^*)} + \|f\|_{L^2(I,V^*)} \leq \|A\| \|u\|_{L^2(I,V)} + \|f\|_{L^2(I,V^*)}.$

All in all, we obtain:

$$||u||_{C([0;T],H)}^{2} + \alpha ||u||_{L^{2}(I,V)}^{2} \le \exp(2\lambda T)(||u_{0}||_{H}^{2} + \alpha^{-1} ||f||_{L^{2}(I,V^{*})}^{2})$$

and:

$$||u'||_{L^{2}(I,V^{*})} \leq ||A||_{L(V,V^{*})} \alpha^{-1/2} \sqrt{\exp(2\lambda T)} (||u_{0}||_{H} + \alpha^{-1/2} ||f||_{L^{2}(I,V^{*})}) + ||f||_{L^{2}(I,V^{*})}$$

More regularity

We tie back to page 25 of [5]. In particular:

$$\int_0^t \|u_n'\|_H^2 + \int_0^t \langle Au_n, u_n' \rangle_{V^*, V} = \int_0^t (f_1, u_n')_H + \int_0^t \langle f_2, u_n' \rangle_{V^*, V}$$

Then:

$$\int_{0}^{t} \langle Au_{n}, u'_{n} \rangle_{V^{*}, V} \geq \frac{\alpha}{2} \|u_{n}(t)\|_{V}^{2} - \frac{\lambda}{2} \|u_{n}(t)\|_{H}^{2} - \frac{\|A\|}{2} \|u_{n0}\|_{V}^{2}$$

whereas, as in the proof of theorem C.0.8:

$$\left| \int_{0}^{t} \langle f_{2}, u'_{n} \rangle_{V^{*}, V} \right| \leq \frac{1}{2} \|f'_{2}\|_{L^{2}(I, V^{*})}^{2} + \frac{1}{2} \|u_{n}\|_{L^{2}(I, V)}^{2} + \frac{\alpha}{4} \|u_{n}(t)\|_{V}^{2} + \frac{4}{\alpha} \|f_{2}\|_{L^{\infty}(I, V^{*})}^{2} + \frac{1}{2} \|f_{2}\|_{L^{\infty}(I, V^{*})}^{2} + \frac{1}{2} \|u_{n0}\|_{V}^{2}$$

Also:

$$\int_0^t (f_1, u_n')_H \le \frac{1}{2} \|f_1\|_{L^2(I, H)}^2 + \frac{1}{2} \int_0^t \|u_n'\|_H^2$$

Putting all together:

$$\begin{split} \int_{0}^{t} \left\| u_{n}' \right\|_{H}^{2} + \frac{\alpha}{2} \left\| u_{n}(t) \right\|_{V}^{2} - \frac{\lambda}{2} \left\| u_{n}(t) \right\|_{H}^{2} - \frac{\left\| A \right\|}{2} \left\| u_{n0} \right\|_{V} \\ \frac{1}{2} \left\| f_{2}' \right\|_{L^{2}(I,V^{*})}^{2} + \frac{1}{2} \left\| u_{n} \right\|_{L^{2}(I,V)}^{2} + \frac{\alpha}{4} \left\| u_{n}(t) \right\|_{V}^{2} + \\ + \frac{4}{\alpha} \left\| f_{2} \right\|_{L^{\infty}(I,V^{*})}^{2} + \frac{1}{2} \left\| f_{2} \right\|_{L^{\infty}(I,V^{*})}^{2} + \frac{1}{2} \left\| u_{n0} \right\|_{V}^{2} + \\ + \frac{1}{2} \left\| f_{1} \right\|_{L^{2}(I,H)}^{2} + \frac{1}{2} \int_{0}^{t} \left\| u_{n}' \right\|_{H}^{2} \end{split}$$

which brings us to:

$$\frac{1}{2} \int_{0}^{t} \|u_{n}'\|_{H}^{2} + \frac{\alpha}{4} \|u_{n}(t)\|_{V}^{2} - \frac{\lambda}{2} \|u_{n}(t)\|_{H}^{2} \leq \frac{1}{2} \|f_{2}'\|_{L^{2}(I,V^{*})}^{2} + \frac{1}{2} \|u_{n}\|_{L^{2}(I,V)}^{2} + \frac{8+\alpha}{2\alpha} \|f_{2}\|_{L^{\infty}(I,V^{*})}^{2} + \frac{1+\|A\|}{2} \|u_{n0}\|_{V}^{2} + \frac{1}{2} \|f_{1}\|_{L^{2}(I,H)}^{2}$$

and thus, because norms are lower semicontinuous and because we have weak convergence of the time derivative, and V-strong convergence of the initial data:

$$\frac{1}{2} \int_{0}^{T} \|u'\|_{H}^{2} \leq \frac{1}{2} \|f'_{2}\|_{L^{2}(I,V^{*})}^{2} + \frac{8+\alpha}{2\alpha} \|f_{2}\|_{L^{\infty}(I,V^{*})}^{2} + \frac{1+\|A\|}{2} \|u_{0}\|_{V}^{2} + \frac{1}{2} \|f_{1}\|_{L^{2}(I,H)}^{2} + \lim\sup_{n} \left(\frac{\lambda}{2} \|u_{n}\|_{C([0,T],H)}^{2} + \frac{1}{2} \|u_{n}\|_{L^{2}(I,V)}^{2}\right)$$

Using a purely numeric constant C without dependences on the problem we can write:

$$\int_{0}^{T} \|u'\|_{H}^{2} \leq \|f_{2}'\|_{L^{2}(I,V^{*})}^{2} + C(1+\alpha^{-1}) \|f_{2}\|_{L^{\infty}(I,V^{*})}^{2} + C(1+\|A\|) \|u_{0}\|_{V}^{2} + \|f_{1}\|_{L^{2}(I,H)}^{2} + C(1+\alpha^{-1}) \|f_{2}\|_{L^{2}(I,V^{*})}^{2} + C(1+\|A\|) \|u_{0}\|_{V}^{2} + \|f_{1}\|_{L^{2}(I,H)}^{2} + C(1+\alpha^{-1}) \|f_{2}\|_{L^{2}(I,V)}^{2} + C(1+\|A\|) \|u_{0}\|_{V}^{2} + \|f_{1}\|_{L^{2}(I,H)}^{2} + C(1+\alpha^{-1}) \|f_{2}\|_{L^{2}(I,V)}^{2} + C(1+\|A\|) \|u_{0}\|_{V}^{2} + \|f_{1}\|_{L^{2}(I,H)}^{2} + C(1+\alpha^{-1}) \|f_{2}\|_{L^{2}(I,V^{*})}^{2} + C(1+\|A\|) \|u_{0}\|_{V}^{2} + \|f_{1}\|_{L^{2}(I,H)}^{2} + C(1+\alpha^{-1}) \|f_{2}\|_{L^{2}(I,V^{*})}^{2} + C(1+\alpha$$

For the last term, employing the exact argument as in the first part of the proof:

$$\limsup_{n} \left(\frac{\lambda}{2} \|u_{n}\|_{C([0,T],H)}^{2} + \frac{1}{2} \|u_{n}\|_{L^{2}(I,V)}^{2} \right) \leq$$

$$2^{-1} \max(1,\lambda) \max(1,\alpha^{-1}) \lim \sup_{n} \left(\|u_{n}\|_{C([0,T],H)}^{2} + \alpha \|u_{n}\|_{L^{2}(I,V)}^{2} \right) \leq$$

$$2^{-1} \max(1,\lambda) \max(1,\alpha^{-1}) \exp(2\lambda T) (\|u_{0}\|_{H}^{2} + \alpha^{-1} \|f_{1} + f_{2}\|_{L^{2}(I,V^{*})}^{2}) \leq$$

$$2^{-1} \max(1,\lambda) \max(1,\alpha^{-1}) \exp(2\lambda T) (\|u_{0}\|_{H}^{2} + 2\alpha^{-1} \|f_{1}\|_{L^{2}(I,V^{*})}^{2} + 2\alpha^{-1} \|f_{2}\|_{L^{2}(I,V^{*})}^{2}) \leq$$

$$CC_{0} (\|u_{0}\|_{H}^{2} + \alpha^{-1} \|f_{1}\|_{L^{2}(I,V^{*})}^{2} + \alpha^{-1} \|f_{2}\|_{L^{2}(I,V^{*})}^{2})$$

where $C_0 = 2^{-1} \max(1, \lambda) \max(1, \alpha^{-1}) \exp(2\lambda T)$ and C is a purely numeric constant without dependences on the problem.

Therefore:

$$C \int_{0}^{T} \|u'\|_{H}^{2} \leq \|f'_{2}\|_{L^{2}(I,V^{*})}^{2} + (1+\alpha^{-1}) \|f_{2}\|_{L^{\infty}(I,V^{*})}^{2} + (1+\|A\|) \|u_{0}\|_{V}^{2} + \|f_{1}\|_{L^{2}(I,H)}^{2} + C_{0}(\|u_{0}\|_{H}^{2} + \alpha^{-1} \|f_{1}\|_{L^{2}(I,V^{*})}^{2} + \alpha^{-1} \|f_{2}\|_{L^{2}(I,V^{*})}^{2})$$

The embedding $H^1(I, V^*) \hookrightarrow C([0, T], V^*)$ has norm that only depends on T, which follows from the equality $f_2(t) = f_2(s) + \int_s^t f_2'$, for $0 \le s \le t \le T$, a bound being 1 + T.

Thus:

$$C \int_{0}^{T} \|u'\|_{H}^{2} \leq (1 + (1 + C_{0})\alpha^{-1}) \|f_{2}\|_{H^{1}(I,V^{*})}^{2} + (1 + \|A\|) \|u_{0}\|_{V}^{2} + C_{0} \|u_{0}\|_{H}^{2} + \|f_{1}\|_{L^{2}(I,H)}^{2} + C_{0}\alpha^{-1} \|f_{1}\|_{L^{2}(I,V^{*})}^{2}$$

C.1. Application to inhomogeneous parabolic problems

C.1.1. Inhomogeneous Dirichlet problem

We make the following assumption.

Assumption C.1.1.1 (Assumptions for problem C.1.1.2)

We assume $\Omega \subset\subset D$ to be bounded Lipschitz domains, so that $U:=D\setminus\Omega$ is bounded Lipschitz too and the trace operator is bounded surjective onto $H^{1/2}(\partial U)$, with a right inverse E (see theorem 3.37 at page 102 of [12]). For such a choice we also have $H_0^1=H^1\cap\ker$ tr, see [10], page 595, theorem 18.7.

Moreover, we select $f \in H^1(I, H^{1/2}(\Gamma_f)), f(0) = 0$.

Note that, given a bounded extension operator $E: H^{1/2}(\partial U) \to H^1(U)$, we obtain by proposition B.0.2 that $Ef \in H^2(I, H^1(U))$. We have defined tru(t) := tr(u(t)) and analogously Eu(t) := E(u(t)).

Call $H = L^2(U)$, $V = \{v \in H^1(U), \text{tr}u = 0 \text{ on } \Gamma_m\} =: H_c^1$. V is a closed subspace of H^1 , which is Hilbert separable, hence also Hilbert separable. We norm it with the full H^1 norm. Because $H_0^1(U)$ is dense in H, so is V and we obtain a Gelfand triple.

We define $A := H^1 \to H^{1*}$ by $(Au)v := \int_u \nabla u \nabla v$. This operator can be the restricted to $V \to H^{-1}$ and $V \to V^*$.

The problem under consideration is the following. For $U = D \setminus \Omega$ we have:

Problem C.1.1.2 (Inhomogeneous heat equation, Dirichlet conditions)

$$u_t - \Delta u = 0 \text{ in } (0, T) \times U \tag{C.1.1.3}$$

$$u(\Sigma_f) = f \tag{C.1.1.4}$$

$$u(\Sigma_m) = 0 \tag{C.1.1.5}$$

$$u(0) = 0 (C.1.1.6)$$

By this we mean:

$$u \in W(I, H_c^1)$$
 (C.1.1.7)

$$u_t|_{H^{-1}} + Au = 0 \text{ in } H^{-1} \text{ and for a.e. } t \in (0, T)$$
 (C.1.1.8)

$$\operatorname{tr} u = f \text{ on } \Sigma_f$$
 (C.1.1.9)

$$u(0) = 0$$
 (C.1.1.10)

Note that $u_t \in L^2(I, V^*)$, so $u_t \in V^*$ for a.a. t and so, we can say that $u_t \in H^{-1}$ for a.a. t.

Theorem C.1.1.11 (Well posedness and regularity for problem C.1.1.2) Given assumption C.1.1.1, the solution u to problem C.1.1.2 is unique with $u_t \in L^2(I, H)$. The uniqueness holds in more generally in $L^2(I, V) \cap H^1(I, H^{-1})$.

The problem is equivalent to:

Problem C.1.1.12 (Equivalent formulation with extension)

$$u_0 \in W(I, H_0^1)$$
 (C.1.1.13)

$$u'_0 + Au_0 = -((\bar{u}', \cdot)_H + A\bar{u}) \text{ in } H^{-1} \text{ and for a.e. } t \in (0, T)$$
 (C.1.1.14)

$$u_0(0) = 0$$
 (C.1.1.15)

with \bar{u} any given $\bar{u} \in H^1(I, H^1_c(U))$ such that $\operatorname{tr}\bar{u} = f$ on Σ_f , and with $\bar{u}(0) = 0$. This means that u solves problem C.1.1.2 $\Longrightarrow u - \bar{u}$ solves problem C.1.1.12, and if $u_0(\bar{u})$ solves problem C.1.1.12, then $\bar{u} + u_0(\bar{u})$ solves problem C.1.1.2.

Furthermore:

$$||u||_{C([0;T],H)}^{2} + ||u||_{L^{2}(I,H)}^{2} + ||\nabla u||_{L^{2}(I,H)}^{2} + ||u'||_{L^{2}(I,H)}^{2} \le C(T) ||\bar{u}||_{H^{1}(I,V)}^{2}$$
 (C.1.1.16)

with C > 1, only dependent on T, smoothly, exploding for large T.

There holds the estimate:

Proof.

Extension of the boundary data

Let $\bar{u} \in H^1(I, H^1_c(U))$ be such that $\operatorname{tr}\bar{u} = f$ on Σ_f , and with $\bar{u}(0) = 0$. We can choose for instance $E\tilde{f}$, see proposition B.0.7, where $\tilde{f} = 0$ on Σ_m , $\tilde{f} = f$ on Σ_f . $\tilde{f} \in H^1(I, H^{1/2}(\partial U))$, because Γ_f and Γ_m have positive distance (see the definition of the norm in [6], page 20).

Reformulation (first part)

Consider the following commutative diagram, where $V = H_c^1$:

Here, a, b, c are the trivial injections, r the Riesz isomorphism $h \mapsto (h, \cdot)_H$.

Now $(i_W(u-\bar{u}))' + A(u-\bar{u}) = (i_V u)'|_{H^{-1}} - (i_V \bar{u})'|_{H^{-1}} + Au - A\bar{u} = \{ \text{ proposition B.0.8 } \} = (i_V u)'|_{H^{-1}} - (i_V \bar{u}_t)|_{H^{-1}} + Au - A\bar{u} = -(i_V \bar{u}_t)|_{H^{-1}} - A\bar{u} \text{ if } u \text{ solves problem C.1.1.2, where } \bar{u}_t \text{ is the weak derivative of } \bar{u}. \text{ Call } u_0 = u - \bar{u}. \text{ By again proposition B.0.8, } u_0 \in W(I, H_0^1).$

This motivates us to consider the problem:

$$u_0 \in W(I, H_0^1)$$
 (C.1.1.17)

$$u'_0 + Au_0 = -(f_1 + f_2)$$
 in H^{-1} and for a.e. $t \in (0, T)$ (C.1.1.18)

$$u_0(0) = 0$$
 (C.1.1.19)

Here, $f_1 := (i_V \bar{u}_t)|_{H^{-1}} = c^* a^* r a \bar{u}_t = b^* r (a \bar{u}_t) \in L^2(I, H)$.

Moreover, $A \in L(V, H^{-1})$, so, by proposition B.0.2, $f_2 := A\bar{u} \in H^1(I, H^{-1})$.

Existence

By theorem C.0.11 we get a solution of the above problem with $u'_0 \in L^2(I, H)$.

And now, let $u := \bar{u} + cu_0 = \bar{u} + u_0$. We claim it is a solution. The initial and boundary conditions are surely satisfied. We check it is in W(I, V) and is satisfies the partial differential equation.

By proposition B.0.8, we have both $\bar{u}, cu_0 \in W(I, V)$. The derivatives are $i_V \bar{u}_t$ and $a^*r(bu_0)'$, with $(bu_0)'$ the $L^2(I, H)$ weak derivative of bu_0 , which exists by proposition B.0.8. Therefore $(i_V(\bar{u} + cu_0))'|_{H_0^1} = c^*(i_V(\bar{u} + cu_0))' = c^*i_V\bar{u}_t + c^*i_V(bu_0)' = b^*r(a\bar{u}_t) + i_W(u_0)'$ by proposition B.0.8.

Using the pde of u_0 , ... = $b^*r(a\bar{u}_t) - Au_0 - f_1 - f_2 = -A(u_0 + \bar{u})$.

Uniqueness

For two solutions u_1, u_2 of C.1.1.2 we can form $d := u_1 - u_2 \in W(I, H_0^1)$ by proposition B.0.8. Clearly, d(0) = 0. Moreover, $(i_{H_0^1}d)' = \{ \text{ proposition B.0.8 } \} = (i_V u_1)'|_{H_0^1} - (i_V u_2)'|_{H_0^1} = A(u_1 - u_2)$.

By uniqueness stated in theorem C.0.5 we obtain d = 0 in $L^2(I, H)$, so that the solution is unique and doesn't depend on the choice of the extension of the Dirichlet datum.

Reformulation (part 2)

Therefore $u = \bar{u} + u_0$ above is the unique solution of problem C.1.1.2. So, given any $\bar{u} \in H^1(I, H_c^1(U))$ such that $\operatorname{tr}\bar{u} = f$ on Σ_f , and with $\bar{u}(0) = 0$, we can construct u_0 as above and get $u = \bar{u} + u_0$ solving problem C.1.1.2.

Viceversa, let u solve problem C.1.1.2. Call $u_0 = u - \bar{u}$. Then, as seen above, $u_0 \in W(I, H_0^1)$ and $(i_V(u - \bar{u}))'|_{H^{-1}} + A(u - \bar{u}) = (i_V u)'|_{H^{-1}} - (i_V \bar{u})'|_{H^{-1}} + Au - A\bar{u} = \{\text{ proposition B.0.8}\} = (i_V u)'|_{H^{-1}} - (i_V \bar{u}_t)|_{H^{-1}} + Au - A\bar{u} = -(i_V \bar{u}_t)|_{H^{-1}} - A\bar{u} \text{ if } u \text{ solves problem C.1.1.2, where } \bar{u}_t \text{ is the weak derivative of } \bar{u}$. Call $u_0 = u - \bar{u}$. By again proposition B.0.8, $(i_W(u - \bar{u}))' + A(u - \bar{u}) = (i_V u)'|_{H^{-1}} - (i_V \bar{u})'|_{H^{-1}} + Au - A\bar{u} = (i_V u)'|_{H^{-1}} - (i_V \bar{u}_t)|_{H^{-1}} + Au - A\bar{u} = -(i_V \bar{u}_t)|_{H^{-1}} - A\bar{u} = -b^*r(a\bar{u}_t)$. Moreover, $u_0(0) = 0$, so that u_0 solves problem C.1.1.12.

Stability

Let $\bar{u} \in H^1(I, H^1_c(U))$ such that $\operatorname{tr}\bar{u} = f$ on Σ_f , and with $\bar{u}(0) = 0$. Consider u_0 . Then, by C.0.14:

$$\|u_0\|_{C([0;T],H)}^2 + \alpha \|u_0\|_{L^2(I,H_0^1)}^2 \le \exp(2\lambda T)\alpha^{-1} \|(\bar{u}',\cdot)_H + A\bar{u}\|_{L^2(I,H^{-1})}^2$$

$$C \|u_0'\|_{L^2(I,H)}^2 \le (1 + (1 + C_0)\alpha^{-1}) \|A\bar{u}\|_{H^1(I,H^{-1})}^2 + \|(\bar{u}',\cdot)_H\|_{L^2(I,H)}^2 + C_0\alpha^{-1} \|(\bar{u}',\cdot)_H\|_{L^2(I,H^{-1})}^2$$

 $C_0 = 2^{-1} \max(1, \lambda) \max(1, \alpha^{-1}) \exp(2\lambda T).$

We norm H_0^1 with the full H^1 norm too. Then:

$$\begin{split} \sup_{\|v\|_{L^2(I,H_0^1)} = 1} \|\bar{u}'\|_{L^2(I,H)} \|v\|_{L^2(I,H)} + \|\nabla \bar{u}\|_{L^2(I,H)} \|\nabla v\|_{L^2(I,H)} \leq \\ C(\|\bar{u}'\|_{L^2(I,H)} + \|\nabla \bar{u}\|_{L^2(I,H)}) \end{split}$$

By proposition B.0.2, $||A\bar{u}||_{H^1(I,H^{-1})} \le ||A||_{L(V,H^{-1})} ||\bar{u}||_{H^1(I,V)}$ (we could apply it since H^{-1} is separable, as a dual of a reflexive Banach space).

Finally,
$$\|(\bar{u}',\cdot)_H\|_{L^2(I,H^{-1})}^2 \le \|\bar{u}'\|_{L^2(I,H)}$$
.

We can then say:

$$\|u_0\|_{C([0;T],H)}^2 + C\alpha \|u_0\|_{L^2(I,H_0^1)}^2 \le \exp(2\lambda T)\alpha^{-1} \|\bar{u}\|_{H^1(I,V)}^2$$

$$C \|u_0'\|_{L^2(I,H)}^2 \le ((1 + (1 + C_0)\alpha^{-1}) \|A\|_{L(V,H^{-1})}^2 + 1 + C_0\alpha^{-1}) \|\bar{u}\|_{H^1(I,V)}^2$$

Now, $\langle Av, v \rangle_{H^{-1}, H_0^1} + 1 \cdot \|v\|_H^2 = 1 \cdot \|v\|_{H_0^1}^2$, so that $\alpha = \lambda = 1$. Moreover, $\langle Au, v \rangle_{H^{-1}, H_0^1} \le \|u\|_V \|v\|_{H_0^1}$, i.e. $\|A\|_{L(V, H^{-1})} \le 1$.

Therefore $\|u_0\|_{C([0;T],H)}^2 + \|u_0\|_{L^2(I,H_0^1)}^2 + \|u_0'\|_{L^2(I,H)}^2 \le C(T) \|\bar{u}\|_{H^1(I,V)}^2$ with C > 1, only dependent on T, smoothly, exploding for large T.

Now, let's analyse the norms of \bar{u} . Because $\bar{u} \in H^1(I,V)$, then, $\bar{u} \in C([0,T],V) \hookrightarrow C([0,T],H)$, where the embedding is non-expansive by the choice of the norm of V. Therefore $\bar{u}_{C([0;T],H)} \leq \bar{u}_{C([0;T],V)} \leq (1+T)\bar{u}_{H^1(I,V)}$. We can therefore conclude that $\|u\|_{C([0;T],H)}^2 + \|u\|_{L^2(I,H_0^1)}^2 + \|u'\|_{L^2(I,H)}^2 \leq C(T) \|\bar{u}\|_{H^1(I,V)}^2$ with C > 1, only dependent on T, smoothly, exploding for large T.

C.1.2. Inhomogeneous Neumann-Dirichlet problem

We make the following assumption.

Assumption C.1.2.1 (Assumptions for problem C.1.1.2)

We keep assumption C.1.1.1 (apart from the Dirichlet datum). We consired $g \in H^1(I, L^2(\Gamma_f))$, g(0) = 0.

Again, call $H = L^2(U)$, $V = \{v \in H^1(U), \text{tr} u = 0 \text{ on } \Gamma_m\} =: H_c^1$. H, V induce a Gelfand triple as seen before.

The problem under consideration is:

Problem C.1.2.2 (Inhomogeneous heat equation, Neumann conditions)

$$u_t - \Delta u = 0 \text{ in } (0, T) \times U \tag{C.1.2.3}$$

$$\partial_{\nu} u(\Sigma_f) = g \tag{C.1.2.4}$$

$$u(\Sigma_m) = 0 \tag{C.1.2.5}$$

$$u(0) = 0 (C.1.2.6)$$

By this we mean:

$$u \in W(I, H_c^1) \tag{C.1.2.7}$$

$$u_t + Au = G \text{ in } V^* \text{ and for a.e. } t \in (0, T)$$
 (C.1.2.8)

$$u(0) = 0$$
 (C.1.2.9)

where $\langle G(t), v \rangle_{V^*,V} := \int_{\Gamma_f} g(t) \operatorname{tr} v d\sigma$, σ the 1-codimensional Hausdorff measure, and A was introduced before in $L(V, H^{-1})$.

By proposition B.0.2, $G \in H^1(I, V^*)$. In fact, define $T : L^2(\Sigma_f) \to V^*$ by $\langle Tg, v \rangle_{V^*, V} := \int_{\Gamma_f} g \operatorname{tr} v d\sigma$. Then, $\langle Tg, v \rangle_{V^*, V} \le \|g\|_{L^2(\Gamma_f)} \|v\|_V$ by trace theory. Now, G(t) = Tg(t).

Moreover, $\langle Av, v \rangle_{V^*, V} + 1 \cdot \|v\|_H = 1 \cdot \|V\|$, so that we can immediately conclude:

Theorem C.1.2.10 (Well posedness and regularity for problem C.1.2.2) Given assumption C.1.2.1, the solution u to problem C.1.2.2 is unique with $u_t \in L^2(I, H)$.

Furthermore:

$$\|u\|_{C([0:T],H)}^{2} + \|u\|_{L^{2}(I,H)}^{2} + \|\nabla u\|_{L^{2}(I,H)}^{2} + \|u'\|_{L^{2}(I,H)}^{2} \le C(T) \|g\|_{H^{1}(I,L^{2}(\Gamma_{t}))}^{2} \quad (C.1.2.11)$$

with C > 1, only dependent on T, smoothly, exploding for large T.

Proof.

It is an application of theorem C.0.5, theorem C.0.8 and proposition C.0.14.

C.2. Reformulation of parabolic equations

We just saw that the two parabolic equations of interest can be recasted into the problem of finding $u \in W(I, V)$, u(0) = 0, $u_t + Au = f$ for a.e. t in V^* , with notation from preceding sections.

In particular, $f \in L^2(I, V^*)$ and so is Au (because $A \in L(V, V^*)$, and by B.0.2).

Call then $E(u) := u_t + Au - f \in L^2(I, V^*)$ and $W_0(I, V)$ the W(I, V) functions with zero initial value. Then, the differential equation reads $\langle E(u)(t), v \rangle_{V^*, V} = 0$ for all $v \in V$, for a.a. t, equivalently, E(u) = 0 for a.a. t. Thus, we are interested in the abstract problem:

C. Parabolic equations

Problem C.2.1 (Even more abstract parabolic equation)

Given a function $E: W(I,V) \to L^2(I,V^*)$, find $u \in W_0(I,V)$, such that E(u) = 0 for a.a. t.

We can view $L^2(I, V^*) \cong L^2(I, V)^*$.

Hence $\langle E(u),v\rangle_{L^2(I,V)^*,L^2(I,V)}=\int_I\langle E(u)(t),v(t)\rangle_{V^*,V}dt$ (see [7], theorem 1.31 at page 39).

Now, by proposition B.0.4, we get $C_c^{\infty}(I,V) \cap H^1(I,V) \subseteq W(I,V)$. Actually, $C_c^{\infty}(I,V) \subseteq W^0(I,V)$, the functions of W(I,V) having zero terminal values.

We have therefore $C_c^{\infty}(I,V) \subseteq W^0(I,V) \subseteq L^2(I,V)$, which implies that $W^0(I,V) \subseteq L^2(I,V)$ is dense in $L^2(I,V)$. We can then formulate:

Proposition C.2.2 (Equivalent testing)

Let $E: W(I, V) \to L^2(I, V^*)$, and $u \in W_0(I, V)$.

Then:

$$E(u) = 0$$

$$\Leftrightarrow \langle E(u), v \rangle_{L^2(I,V)^*, L^2(I,V)} = 0 \quad \forall v \in L^2(I,V)$$

$$\Leftrightarrow \langle E(u), v \rangle_{L^2(I,V)^*, L^2(I,V)} = 0 \quad \forall v \in W^0(I,V)$$

Bibliography

- [1] R.A. Adams. Sobolev Spaces. Adams. Pure and applied mathematics. Academic Press, 1975. URL: https://books.google.it/books?id=JxzpSAAACAAJ.
- [2] Martin Costabel. "Boundary Integral Operators for the Heat Equation". In: *Integral Equations and Operator Theory* 13 (July 1990), pp. 498–552. DOI: 10.1007/BF01210400.
- [3] L.C. Evans. Partial Differential Equations. Graduate studies in mathematics. American Mathematical Society, 2010. ISBN: 9780821849743. URL: https://books.google.it/books?id=Xnu0o_EJrCQC.
- [4] Thomas Muirhead Flett. "Mean value theorems for vector-valued functions". In: Tohoku Mathematical Journal, Second Series 24.2 (1972), pp. 141–151.
- [5] G. Gilardi. "Equazioni paraboliche astratte: impostazione variazionale".
- [6] P. Grisvard. *Elliptic Problems in Nonsmooth Domains*. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 2011. ISBN: 9781611972023. URL: https://books.google.it/books?id=lJTtujsZSgkC.
- [7] M. Hinze et al. *Optimization with PDE Constraints*. Mathematical Modelling: Theory and Applications. Springer Netherlands, 2008. ISBN: 9781402088391. URL: https://books.google.it/books?id=PFbqxa2uDS8C.
- [8] M. Kreuter. "Sobolev Spaces of Vector-Valued Functions". MA thesis. Ulm University, 2015.
- [9] A. Kufner, O. John, and S. Fucik. Function Spaces. Mechanics: Analysis. Springer Netherlands, 1977. ISBN: 9789028600157. URL: https://books.google.it/books?id=7WZ150M2SPsC.
- [10] G. Leoni. A First Course in Sobolev Spaces. Graduate studies in mathematics. American Mathematical Society, 2017. ISBN: 9781470429218. URL: https://books.google.it/books?id=qoA8DwAAQBAJ.
- [11] J.L. Lions, P. Kenneth, and E. Magenes. Non-Homogeneous Boundary Value Problems and Applications: Volume II. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2012. ISBN: 9783642652172. URL: https://books.google.it/books?id=xD71CAAAQBAJ.
- [12] W. McLean and W.C.H. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, 2000. ISBN: 9780521663755. URL: https://books.google.it/books?id=RILqjEeMfK0C.

Bibliography

[13] F. Tröltzsch and J. Sprekels. Optimal Control of Partial Differential Equations: Theory, Methods, and Applications. Graduate studies in mathematics. American Mathematical Society, 2010. ISBN: 9780821849040. URL: https://books.google.it/books?id=04yDAwAAQBAJ.