ICT303 – Advanced Machine Learning and Artificial Intelligence

Topic 5: Convolutional Neural Networks (CNN) – Part I

Hamid Laga H.Laga@murdoch.edu.au

Office: 245.1.020

How to Get in Touch with the Teaching Team

- Internal and External Students
 - Email: <u>H.Laga@murdoch.edu.au</u>.
- Important
 - In any communication, please make sure that you
 - Start the subject of your email with ICT303
 - Include your student ID, name, and the lab slot in which you are enrolled.
 - We will do all our best to answer your queries within 24 hrs.

In this Lecture

Introduction

- Recap of Linear regression, perceptron and MLP
- Why we need CNNs?
- Convolutional Neural Network (CNN)
 - Convolutions
 - Convolution layers
- Examples of CNNs
 - LeNet
- Summary

Learning objectives

- Understand CNN and the different components that compose it
- Implement CNNs in Python, NumPy and PyTorch

- Additional readings
 - Chapter 7 of the textbook, available at: https://d2l.ai/

Linear Methods for Regression and Classification (Recap)

Linear regression

A dense (fully connected, or linear) layer has parameters $\mathbf{W} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, it computes output $\mathbf{y} = \mathbf{W}\mathbf{x} + \mathbf{b} \in \mathbb{R}^m$

Classification

Multilayer Perceptron (MLP)

- Stacks multiple hidden layers (dense + activation) to get deeper models
- The activation function leads to non-linear models
 - Sigmoid, ReLU
- Hyper parameters
 - No. of hidden layers
 - No. of outputs of each hidden layers
- They are universal approximators
 - Can approximate any function

MLPs limitations

- Design an MLP composed of one single hidden layer
 - Input: RGB image of size 300 x 300 pixels
 - Output: The class of the object depicted in the image

Problem

- Consider the case where we:
 - have 1000 possible object classes (horse, dogs, tables,)
 - use a simple MLP composed of 1 input layer, two hidden layers, and one output layer
- How many parameters the network will have?
- If we randomly shuffle the image pixels, what would be the output produced by the network?

MLPs limitations

- Design an MLP composed of one single hidden layer
 - Input: RGB image of size 300 x 300 pixels
 - Output: The class of the object depicted in the image

Problem

- Consider the case where we:
 - have 1000 possible object classes (horse, dogs, tables,)
 - use a simple MLP composed of 1 input layer, two hidden layers, and one output layer
- How many parameters the network will have?
- If we randomly shuffle the image pixels, what would be the output produced by the network?

For 1 Single Hidden Layer (for 1 training example):

```
x = (300 \times 300 \times 3,1)

W = (1000,300 \times 300 \times 3)

b = (1000,1)

z = Wx + b
```

Total Parameters = 1000 x 300 x 300 x 3 + 1000 = 270 001 000

For 2 Hidden Layers (needed for processing m training examples):

```
x = (300 x 300 x 3,m)
W1 = (n_1,300x300x3)
b1 = (n_1,m)
W2 = (1000,n_1)
b2 = (1000,m)
```

Total Parameters = $n_1 \times 300 \times 300 \times 3 + 1000$ * $n_1 + n_1 * m + 1000 * m$

From MLPS to Convolution Neural Networks (CNN)

Issues with MLPs

- Images are structured into grids of pixels
 - MLPs treat them as a flattened vector ignoring the local relations between pixels
 - If you take an image and randomly shuffle its pixels, the MLP will produce the same result!
- Have a very large number of parameters
 - Thus, they are difficult to train for complex problems
- Convolutional Neural Networks (CNN or ConvNets)
 - A powerful family of neural networks specifically designed to
 - Capture the local spatial relationships between pixels
 - Reduce the number of parameters compared to MLPs
 - Uses convolutions

Convolution

$$\left[egin{array}{cccc} a & b & c \ d & e & f \ g & h & i \end{array}
ight]$$

Convolution - Example

2 + 10 + 4 + 26 + 100 + 30 + 8 + 12 + 6 = 198

Image courtesy of: https://dev.to/sandeepbalachandran/machine-learning-convolution-with-color-images-2p41

Given this 5x5 image, convolve with a 3x3 filter

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

1	2	1
1	2	1
1	2	1

Given this 5x5 image, convolve with a 3x3 filter

1	2	1	3	1
1	2	1	3	2
1	2	1	2	3
2	3	2	3	2
2	1	2	3	1

$$1x1 + 2x2 + 1x2 + 1x1 + 2x1 + 1x3 + 1x3 + 2x2 + 1x1$$

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

Given this 5x5 image, convolve with a 3x3 filter

1	1	2	1	1
1	1	2	1	2
3	1	2	1	3
2	3	2	3	2
2	1	2	3	1

$$1x2 + 2x2 + 1x3 + 1x1 + 2x3 + 1x3 + 1x2 + 2x1 + 1x2$$

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

Given this 5x5 image, convolve with a 3x3 filter

1	2	1	2	1
1	1	1	2	1
3	2	1	2	1
2	3	2	3	2
2	1	2	3	1

$$1x2 + 2x3 + 1x1 + 1x3 + 2x3 + 1x2 + 1x1 + 2x2 + 1x3$$

21	25	27

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

Given this 5x5 image, convolve with a 3x3 filter

1	2	2	3	1
1	2	1	3	2
1	2	1	2	3
1	2	1	3	2
2	1	2	3	1

$$1x1 + 2x1 + 1x3 + 1x3 + 2x2 + 1x1 + 1x2 + 2x3 + 1x2$$

21	25	27
25		

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

Given this 5x5 image, convolve with a 3x3 filter

1	2	2	3	1
1	1	2	1	2
3	1	2	1	3
2	1	2	1	2
2	1	2	3	1

$$1x1 + 2x3 + 1x3 + 1x2 + 2x1 + 1x2 + 1x3 + 2x2 + 1x3$$

21	25	27
25	26	

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

Given this 5x5 image, convolve with a 3x3 filter

1	2	2	3	1
1	1	2	1	2
3	1	2	1	3
2	1	2	1	2
2	1	2	3	1

$$1x1 + 2x3 + 1x3 + 1x2 + 2x1 + 1x2 + 1x3 + 2x2 + 1x3$$

21	25	27
25	26	

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

Given this 5x5 image, convolve with a 3x3 filter

1	2	2	3	1
1	1	3	3	2
1	2	1	2	3
1	2	1	3	2
1	2	1	3	1

$$1x3 + 2x2 + 1x1 + 1x2 + 2x3 + 1x2 + 1x2 + 2x1 + 1x2$$

21	25	27
25	26	29
24		

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

Given this 5x5 image, convolve with a 3x3 filter

1	2	2	3	1
1	1	3	3	2
3	1	2	1	3
2	1	2	1	2
2	1	2	1	1

$$1x2 + 2x1 + 1x2 + 1x3 + 2x2 + 1x3 + 1x1 + 2x2 + 1x3$$

21	25	27
25	26	29
24	24	

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

Given this 5x5 image, convolve with a 3x3 filter

1	2	2	3	1
1	1	3	3	2
3	2	1	2	1
2	3	1	2	1
2	1	1	2	1

$$1x1 + 2x2 + 1x3 + 1x2 + 2x3 + 1x2 + 1x2 + 2x3 + 1x1$$

21	25	27
25	26	29
24	24	27

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

Convolution - Example

- Edge detection with Sobel filter (or Sobel kernel)
 - Convolving the image I with this operator will result in Jv, the image of vertical edges

-1	0	1
-2	0	2
-1	0	1

 Convolving the image I with this operator will result in Jh, the image of horizontal edges

1	2	1
0	0	0
-1	-2	-1

Combine the two filters to give a single measure of gradient magnitude

$$J(x,y) = \sqrt{J_h(x,y)^2 + J_v(x,y)^2}$$

Convolution - Example

• Edge detection with Sobel filter (or Sobel kernel)

Input image

Vertical edges ly

Horizontal edges Ix

$$G = \sqrt{Ix^2 + Iy^2}$$

Convolution

- Question
 - Can you implement the Edge detector using neurons?

Convolution Layer

- At each image pixel p, unlike dense, or fully-connected, layer, convolutional layers take a weighted sum of the pixels around p
 - Think about it as a filter BUT the values of the filter (kernel) are unknown
 - The goal of training is to learn the values of the elements of the filter that best suit the task at hand

Convolution Layer – one filter case

Greyscale image

- Has d = 1 channel (for the grey level)
- The filter is then of size s x s (e.g., s can be 3, 5, 7, ..)

https://d2l.ai/chapter_convolutional-neural-networks/conv-layer.html

Color image

- Has d=3 channels (one for R, one for G, and another for B)
- The filter is then of size d x s x s (e.g., s can be 3, 5, 7, ..)

https://www.youtube.com/watch?v=3myNsOGhc3A&list=PLbNJQ-D5RH18U7BXm3NH8_6mnguQ45uRh&index=5

Convolution Layer – one filter case

- Convolutional layer
 - Cross correlates the input image and the kernel and adds a bias to produce an output
- The two (learnable) parameters of a convolutional layer are
 - The kernel values
 - The bias
- The hyper parameters (not learnable, set by the user) are
 - The kernel size
 - It defines the receptive field size
 - Receptive field refers to all the elements from the previous layer that may affect the calculation of the output value
- The output of a convolutional layer is called feature map

Convolution Layer – Multiple Feature Maps

- Apply different kernels to the input
 - Each kernel will produce one output, called feature map
 - Stack the feature maps together to produce a multichannel output
- Hyper parameters
 - The kernel size
 - It defines the receptive field size
 - Receptive field refers to all the elements from the previous layer that may affect the calculation of the output value
 - No. of output channels at each layer
 - It defines the no. of different filters to learn at each layer

Convolution Layer – Multiple Feature Maps

• Example – Edge detection with Sobel filter (or Sobel kernel)

Padding

- When you convolve an image with a filter, we will lose pixels at the boundary of the image

Fig. 7.3.1 Pixel utilization for convolutions of size 1×1 , 2×2 , and 3×3 respectively.

https://d2l.ai/chapter_convolutional-neural-networks/padding-and-strides.html

Padding

- When you convolve an image with a filter, we will loose pixels at the boundary of the image

Solution → Padding

- Add extra pixels (set to 0) of filler around the boundary of the input image

https://d2l.ai/chapter_convolutional-neural-networks/padding-and-strides.html

Padding

- When you convolve an image with a filter, we will loose pixels at the boundary of the image

Solution → Padding

- Add extra pixels (set to 0) of filler around the boundary of the input image
- Typically, we use kernels with odd height and width, e.g., 1, 3, 5, 7

https://d2l.ai/chapter_convolutional-neural-networks/padding-and-strides.html

Typically,

- The convolution window starts at the upper-left corner, and then we slide it over all locations both down and to the right
- We slide the window one element at a time
- For computational efficient (and to downsample)
 - Slide the window more than one elements, skipping the intermediate locations
- The number of rows (and columns) skipped is called stride

Hyper parameters

- The kernel size
- No. of output channels
- Padding
- The stride

Given this 5x5 image, convolve with a 3x3 filter

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

1	2	1
1	2	1
1	2	1

Given this 5x5 image, convolve with a 3x3 filter with Stride = 2

1	2	1	3	1
1	2	1	3	2
1	2	1	2	3
2	3	2	3	2
2	1	2	3	1

$$1x1 + 2x2 + 1x2 + 1x1 + 2x1 + 1x3 + 1x3 + 2x2 + 1x1$$

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

Given this 5x5 image, convolve with a 3x3 filter with Stride = 2

		*		
1	2	1	2	1
1	1	1	2	1
3	2	1	2	1
2	3	2	3	2
2	1	2	3	1

Move the filter over the entire image from left to right, top to bottom skipping 2 columns or rows respectively

$$1x2 + 2x3 + 1x1 + 1x3 + 2x3 + 1x2 + 1x1 + 2x2 + 1x3$$

21	28

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

Given this 5x5 image, convolve with a 3x3 filter with Stride = 2

Move the filter over the entire image from left to right, top to bottom skipping 2 columns or rows respectively

$$1x3 + 2x2 + 1x1 + 1x2 + 2x3 + 1x2 + 1x2 + 2x1 + 1x2$$

21	28
24	

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

Given this 5x5 image, convolve with a 3x3 filter with Stride = 2

Move the filter over the entire image from left to right, top to bottom skipping 2 columns or rows respectively

$$1x1 + 2x2 + 1x3 + 1x2 + 2x3 + 1x2 + 1x2 + 2x3 + 1x1$$

21	28
24	27

1	2	2	3	1
1	1	3	3	2
3	2	1	2	3
2	3	2	3	2
2	1	2	3	1

Pooling Layer

- Pooling is the operation of aggregating the values within a window around a pixel to produce one singe value, e.g.,
 - Max pooling
 - takes the maximum of all the values within a window around a pixel
 - Min pooling
 - takes the minimum of all the values within a window around a pixel
 - Average pooling
 - takes the minimum of all the values within a window around a pixel

Pooling Layer

- Pooling is the operation of aggregating the values within a window around a pixel to produce one singe value, e.g.,
 - Max pooling
 - takes the maximum of all the values within a window around a pixel
 - Min pooling
 - takes the minimum of all the values within a window around a pixel
 - Average pooling
 - takes the minimum of all the values within a window around a pixel
- It is important when stacking multiple layers
 - Reduces the size of the output of a layer before feeding it to the next layer
- Advantages
 - Reduce the size of the feature map
 - Although the size of the filters remain the same, the receptive field will increase with the depth of the network thus subsequent layers will capture bigger context

Illustration of Max Pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

f = 2

s = 2

In this Lecture

- Introduction
 - Linear regression, perceptron and MLP
 - Why we need CNNs
- Convolutional Neural Network (CNN)
 - Convolutions
 - Convolution layers
- Examples of CNNs
 - LeNet
- Summary

Learning objectives

- Understand CNN and the different components that compose it
- Implement CNNs in Python, NumPy and PyTorch

- Additional readings
 - Chapter 7 of the textbook, available at: https://d2l.ai/

Convolutional Neural Networks: LeNet

- LeNet, the first published CNN (by Yann LeCun in 1998), used to recognize handwritten digits in images
 - Used to recognize digits for processing deposits in ATM machines (1990s)
 - Some ATM machines are still using this code!

Convolutional encoder composed of 2 convolutional layers (5x5 kernel), each layer has sigmoid activation and is followed by 2x2 average pooling

Two fully connected layers

Convolutional Neural Networks: LeNet

• LeNet, the first published CNN (by Yann LeCun in 1998), used to recognize

handwritten digits in images

- Also used to recognize digits for processing deposits in ATM machin ATM machines are still using this code!

- In the lab,
 - You will create the network and train it on the MNIST dataset

Summary

- We derived the structure of convolutional layers
- In the lab
 - You will create and train LeNet
- Next week
 - Training (including data preparation), validation and testing
 - Tuning the hyper parameters
 - Modern Convolutional Neural Networks

Questions