15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

• The $H_m(z)$ are bandpass *analysis filters* and divide x[n] into frequency bands

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- The $H_m(z)$ are bandpass *analysis filters* and divide x[n] into frequency bands
- Subband processing often processes frequency bands independently

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- The $H_m(z)$ are bandpass *analysis filters* and divide x[n] into frequency bands
- Subband processing often processes frequency bands independently
- ullet The $G_m(z)$ are *synthesis filters* and together reconstruct the output

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- The $H_m(z)$ are bandpass *analysis filters* and divide x[n] into frequency bands
- Subband processing often processes frequency bands independently
- The $G_m(z)$ are synthesis filters and together reconstruct the output
- The $H_m(z)$ outputs are bandlimited and so can be subsampled without loss of information

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- The $H_m(z)$ are bandpass *analysis filters* and divide x[n] into frequency bands
- Subband processing often processes frequency bands independently
- The $G_m(z)$ are synthesis filters and together reconstruct the output
- The $H_m(z)$ outputs are bandlimited and so can be subsampled without loss of information
 - \circ Sample rate multiplied overall by $\sum \frac{1}{P_i}$

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- The $H_m(z)$ are bandpass *analysis filters* and divide x[n] into frequency bands
- Subband processing often processes frequency bands independently
- The $G_m(z)$ are synthesis filters and together reconstruct the output
- The $H_m(z)$ outputs are bandlimited and so can be subsampled without loss of information
 - o Sample rate multiplied overall by $\sum \frac{1}{P_i}$ $\sum \frac{1}{P_i} = 1 \Rightarrow \textit{critically sampled}$: good for coding

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror
 CME
- Filterbank (QMF)Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- The $H_m(z)$ are bandpass *analysis filters* and divide x[n] into frequency bands
- Subband processing often processes frequency bands independently
- The $G_m(z)$ are synthesis filters and together reconstruct the output
- The $H_m(z)$ outputs are bandlimited and so can be subsampled without loss of information
 - o Sample rate multiplied overall by $\sum \frac{1}{P_i}$ $\sum \frac{1}{P_i} = 1 \Rightarrow \textit{critically sampled}$: good for coding $\sum \frac{1}{P_i} > 1 \Rightarrow \textit{oversampled}$: more flexible

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- The $H_m(z)$ are bandpass *analysis filters* and divide x[n] into frequency bands
- Subband processing often processes frequency bands independently
- The $G_m(z)$ are synthesis filters and together reconstruct the output
- The $H_m(z)$ outputs are bandlimited and so can be subsampled without loss of information
 - o Sample rate multiplied overall by $\sum \frac{1}{P_i}$ $\sum \frac{1}{P_i} = 1 \Rightarrow \textit{critically sampled}$: good for coding $\sum \frac{1}{P_i} > 1 \Rightarrow \textit{oversampled}$: more flexible
- Goals:
 - (a) good frequency selectivity in $H_m(z)$

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- The $H_m(z)$ are bandpass *analysis filters* and divide x[n] into frequency bands
- Subband processing often processes frequency bands independently
- The $G_m(z)$ are synthesis filters and together reconstruct the output
- The $H_m(z)$ outputs are bandlimited and so can be subsampled without loss of information
 - o Sample rate multiplied overall by $\sum \frac{1}{P_i}$ $\sum \frac{1}{P_i} = 1 \Rightarrow \textit{critically sampled}$: good for coding $\sum \frac{1}{P_i} > 1 \Rightarrow \textit{oversampled}$: more flexible
- Goals:
 - (a) good frequency selectivity in $H_m(z)$
 - (b) perfect reconstruction: y[n] = x[n-d] if no processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- The $H_m(z)$ are bandpass *analysis filters* and divide x[n] into frequency bands
- Subband processing often processes frequency bands independently
- The $G_m(z)$ are synthesis filters and together reconstruct the output
- The $H_m(z)$ outputs are bandlimited and so can be subsampled without loss of information
 - o Sample rate multiplied overall by $\sum \frac{1}{P_i}$ $\sum \frac{1}{P_i} = 1 \Rightarrow \textit{critically sampled}$: good for coding $\sum \frac{1}{P_i} > 1 \Rightarrow \textit{oversampled}$: more flexible
- Goals:
 - (a) good frequency selectivity in $H_m(z)$
 - (b) perfect reconstruction: y[n] = x[n-d] if no processing
- Benefits: Lower computation, faster convergence if adaptive

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror
 Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror
 Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $U_0[n]$ U_0

$$V_m(z) = H_m(z)X(z)$$
 [$m \in \{0, 1\}$]

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror
 Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $U_0[n]$ U_0

$$V_m(z) = H_m(z)X(z)$$

$$U_m(z) = \frac{1}{K} \sum_{k=0}^{K-1} V_m(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}})$$

$$[m \in \{0, 1\}]$$

$$[K=2]$$

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror
 Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $u_0[r]$ $u_0[n]$ u_0

$$V_m(z) = H_m(z)X(z) \qquad [m \in \{0, 1\}]$$

$$U_m(z) = \frac{1}{K} \sum_{k=0}^{K-1} V_m(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}}) = \frac{1}{2} \left\{ V_m(z^{\frac{1}{2}}) + V_m(-z^{\frac{1}{2}}) \right\}$$

$$[K = 2]$$

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror
 Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $H_0(z)$ $v_0[n]$ $2:1$ $u_0[r]$ $1:2$ $w_0[n]$ $G_0(z)$ $U_0[n]$ $U_1[n]$ $U_1[n]$

$$V_m(z) = H_m(z)X(z) \qquad [m \in \{0, 1\}]$$

$$U_m(z) = \frac{1}{K} \sum_{k=0}^{K-1} V_m(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}}) = \frac{1}{2} \left\{ V_m\left(z^{\frac{1}{2}}\right) + V_m\left(-z^{\frac{1}{2}}\right) \right\}$$

$$W_m(z) = U_m(z^2) = \frac{1}{2} \left\{ V_m(z) + V_m(-z) \right\} \qquad [K = 2]$$

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror
 Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $H_0(z)$ $v_0[n]$ $2:1$ $u_0[r]$ $1:2$ $w_0[n]$ $G_0(z)$ $U_0[n]$ $U_1[n]$ $U_1[n]$

$$V_{m}(z) = H_{m}(z)X(z) \qquad [m \in \{0, 1\}]$$

$$U_{m}(z) = \frac{1}{K} \sum_{k=0}^{K-1} V_{m} \left(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}}\right) = \frac{1}{2} \left\{ V_{m} \left(z^{\frac{1}{2}}\right) + V_{m} \left(-z^{\frac{1}{2}}\right) \right\}$$

$$W_{m}(z) = U_{m}(z^{2}) = \frac{1}{2} \left\{ V_{m}(z) + V_{m}(-z) \right\} \qquad [K = 2]$$

$$= \frac{1}{2} \left\{ H_{m}(z)X(z) + H_{m}(-z)X(-z) \right\}$$

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $H_0(z)$ $v_0[n]$ $2:1$ $u_0[r]$ $1:2$ $w_0[n]$ $G_0(z)$ $U_0[n]$ $U_1[n]$ $U_1[n]$

$$V_{m}(z) = H_{m}(z)X(z) \qquad [m \in \{0, 1\}]$$

$$U_{m}(z) = \frac{1}{K} \sum_{k=0}^{K-1} V_{m} \left(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}}\right) = \frac{1}{2} \left\{ V_{m} \left(z^{\frac{1}{2}}\right) + V_{m} \left(-z^{\frac{1}{2}}\right) \right\}$$

$$W_{m}(z) = U_{m}(z^{2}) = \frac{1}{2} \left\{ V_{m}(z) + V_{m}(-z) \right\} \qquad [K = 2]$$

$$= \frac{1}{2} \left\{ H_{m}(z)X(z) + H_{m}(-z)X(-z) \right\}$$

$$Y(z) = \begin{bmatrix} W_0(z) & W_1(z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix}$$

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror
 Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $H_0(z)$ $v_0[n]$ $2:1$ $u_0[r]$ $1:2$ $w_0[n]$ $G_0(z)$ $Y[n]$ $H_1(z)$ $v_1[n]$ $2:1$ $u_1[r]$ $1:2$ $w_1[n]$ $G_1(z)$

$$V_{m}(z) = H_{m}(z)X(z)$$

$$U_{m}(z) = \frac{1}{K} \sum_{k=0}^{K-1} V_{m} \left(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}}\right) = \frac{1}{2} \left\{ V_{m} \left(z^{\frac{1}{2}}\right) + V_{m} \left(-z^{\frac{1}{2}}\right) \right\}$$

$$W_{m}(z) = U_{m}(z^{2}) = \frac{1}{2} \left\{ V_{m}(z) + V_{m}(-z) \right\}$$

$$= \frac{1}{2} \left\{ H_{m}(z)X(z) + H_{m}(-z)X(-z) \right\}$$

$$[K = 2]$$

$$Y(z) = \begin{bmatrix} W_0(z) & W_1(z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} X(z) & X(-z) \end{bmatrix} \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix}$$

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $H_0(z)$ $v_0[n]$ $2:1$ $u_0[r]$ $1:2$ $w_0[n]$ $G_0(z)$ $Y[n]$ $H_1(z)$ $v_1[n]$ $2:1$ $u_1[r]$ $1:2$ $w_1[n]$ $G_1(z)$

$$V_{m}(z) = H_{m}(z)X(z)$$

$$U_{m}(z) = \frac{1}{K} \sum_{k=0}^{K-1} V_{m} \left(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}}\right) = \frac{1}{2} \left\{ V_{m} \left(z^{\frac{1}{2}}\right) + V_{m} \left(-z^{\frac{1}{2}}\right) \right\}$$

$$W_{m}(z) = U_{m}(z^{2}) = \frac{1}{2} \left\{ V_{m}(z) + V_{m}(-z) \right\}$$

$$= \frac{1}{2} \left\{ H_{m}(z)X(z) + H_{m}(-z)X(-z) \right\}$$

$$[K = 2]$$

$$Y(z) = \begin{bmatrix} W_0(z) & W_1(z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} X(z) & X(-z) \end{bmatrix} \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix}$$

$$= \begin{bmatrix} X(z) & X(-z) \end{bmatrix} \begin{bmatrix} T(z) \\ A(z) \end{bmatrix}$$

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror
 Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $U_0[n]$ U_0

$$V_{m}(z) = H_{m}(z)X(z) \qquad [m \in \{0, 1\}]$$

$$U_{m}(z) = \frac{1}{K} \sum_{k=0}^{K-1} V_{m} \left(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}}\right) = \frac{1}{2} \left\{ V_{m} \left(z^{\frac{1}{2}}\right) + V_{m} \left(-z^{\frac{1}{2}}\right) \right\}$$

$$W_{m}(z) = U_{m}(z^{2}) = \frac{1}{2} \left\{ V_{m}(z) + V_{m}(-z) \right\} \qquad [K = 2]$$

$$= \frac{1}{2} \left\{ H_{m}(z)X(z) + H_{m}(-z)X(-z) \right\}$$

$$Y(z) = \begin{bmatrix} W_0(z) & W_1(z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} X(z) & X(-z) \end{bmatrix} \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix}$$

$$= \begin{bmatrix} X(z) & X(-z) \end{bmatrix} \begin{bmatrix} T(z) \\ A(z) \end{bmatrix}$$

We want (a)
$$T(z) = \frac{1}{2} \left\{ H_0(z) G_0(z) + H_1(z) G_1(z) \right\} = z^{-d}$$

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror
 Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $H_0(z)$ $v_0[n]$ 2:1 $u_0[r]$ 1:2 $w_0[n]$ $G_0(z)$ $U_1[n]$ 2:1 $u_1[r]$ 1:2 $u_1[n]$ $U_1[n$

$$V_{m}(z) = H_{m}(z)X(z) \qquad [m \in \{0, 1\}]$$

$$U_{m}(z) = \frac{1}{K} \sum_{k=0}^{K-1} V_{m} \left(e^{\frac{-j2\pi k}{K}} z^{\frac{1}{K}}\right) = \frac{1}{2} \left\{ V_{m} \left(z^{\frac{1}{2}}\right) + V_{m} \left(-z^{\frac{1}{2}}\right) \right\}$$

$$W_{m}(z) = U_{m}(z^{2}) = \frac{1}{2} \left\{ V_{m}(z) + V_{m}(-z) \right\} \qquad [K = 2]$$

$$= \frac{1}{2} \left\{ H_{m}(z)X(z) + H_{m}(-z)X(-z) \right\}$$

$$\begin{split} Y(z) &= \left[\begin{array}{cc} W_0(z) & W_1(z) \end{array} \right] \left[\begin{array}{c} G_0(z) \\ G_1(z) \end{array} \right] \\ &= \frac{1}{2} \left[\begin{array}{cc} X(z) & X(-z) \end{array} \right] \left[\begin{array}{cc} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{array} \right] \left[\begin{array}{c} G_0(z) \\ G_1(z) \end{array} \right] \\ &= \left[\begin{array}{cc} X(z) & X(-z) \end{array} \right] \left[\begin{array}{cc} T(z) \\ A(z) \end{array} \right] \quad \text{[$X(-z)$$$$$$$$$$$$$$$$$[X(-z)$$$$$A(z)$ is "aliased" term]} \end{split}$$

We want (a)
$$T(z)=\frac{1}{2}\left\{H_0(z)G_0(z)+H_1(z)G_1(z)\right\}=z^{-d}$$
 and (b) $A(z)=\frac{1}{2}\left\{H_0(-z)G_0(z)+H_1(-z)G_1(z)\right\}=0$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$\frac{1}{2} \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} z^{-d} \\ 0 \end{bmatrix}$$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$\frac{1}{2} \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} z^{-d} \\ 0 \end{bmatrix}$$

Hence:
$$\begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix}^{-1} \begin{bmatrix} 2z^{-d} \\ 0 \end{bmatrix}$$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$\frac{1}{2} \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} z^{-d} \\ 0 \end{bmatrix}$$

Hence:
$$\begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix}^{-1} \begin{bmatrix} 2z^{-d} \\ 0 \end{bmatrix}$$

$$= \frac{2z^{-d}}{H_0(z)H_1(-z) - H_0(-z)H_1(z)} \begin{bmatrix} H_1(-z) & -H_1(z) \\ -H_0(-z) & H_0(z) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$\frac{1}{2} \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} z^{-d} \\ 0 \end{bmatrix}$$

Hence:
$$\begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix}^{-1} \begin{bmatrix} 2z^{-d} \\ 0 \end{bmatrix}$$

$$= \frac{2z^{-d}}{H_0(z)H_1(-z)-H_0(-z)H_1(z)} \begin{bmatrix} H_1(-z) & -H_1(z) \\ -H_0(-z) & H_0(z) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \frac{2z^{-d}}{H_0(z)H_1(-z)-H_0(-z)H_1(z)} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix}$$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

For perfect reconstruction without aliasing, we require

$$\frac{1}{2} \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} z^{-d} \\ 0 \end{bmatrix}$$

Hence:
$$\begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix}^{-1} \begin{bmatrix} 2z^{-d} \\ 0 \end{bmatrix}$$

$$= \frac{2z^{-d}}{H_0(z)H_1(-z) - H_0(-z)H_1(z)} \begin{bmatrix} H_1(-z) & -H_1(z) \\ -H_0(-z) & H_0(z) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \frac{2z^{-d}}{H_0(z)H_1(-z)-H_0(-z)H_1(z)} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix}$$

For all filters to be FIR, we need the denominator to be

$$H_0(z)H_1(-z) - H_0(-z)H_1(z) = cz^{-k}$$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

For perfect reconstruction without aliasing, we require

$$\frac{1}{2} \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} z^{-d} \\ 0 \end{bmatrix}$$

Hence:
$$\begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix}^{-1} \begin{bmatrix} 2z^{-d} \\ 0 \end{bmatrix}$$

$$= \frac{2z^{-d}}{H_0(z)H_1(-z)-H_0(-z)H_1(z)} \begin{bmatrix} H_1(-z) & -H_1(z) \\ -H_0(-z) & H_0(z) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \frac{2z^{-d}}{H_0(z)H_1(-z)-H_0(-z)H_1(z)} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix}$$

For all filters to be FIR, we need the denominator to be

$$H_0(z)H_1(-z) - H_0(-z)H_1(z) = cz^{-k}$$
 , which implies

$$\begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \frac{2}{c} z^{k-d} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix}$$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

For perfect reconstruction without aliasing, we require

$$\frac{1}{2} \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} z^{-d} \\ 0 \end{bmatrix}$$

Hence:
$$\begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix}^{-1} \begin{bmatrix} 2z^{-d} \\ 0 \end{bmatrix}$$

$$H_1(z)$$
 $H_1(-z)$
 $\begin{bmatrix} 2z^{-d} \\ 0 \end{bmatrix}$

$$= \frac{2z^{-d}}{H_0(z)H_1(-z)-H_0(-z)H_1(z)} \begin{bmatrix} H_1(-z) & -H_1(z) \\ -H_0(-z) & H_0(z) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \frac{2z^{-d}}{H_0(z)H_1(-z)-H_0(-z)H_1(z)} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix}$$

For all filters to be FIR, we need the denominator to be

$$H_0(z)H_1(-z) - H_0(-z)H_1(z) = cz^{-k}$$
 , which implies

$$\begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \frac{2}{c} z^{k-d} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix} \stackrel{d=k}{=} \frac{2}{c} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix}$$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

For perfect reconstruction without aliasing, we require

$$\frac{1}{2} \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} z^{-d} \\ 0 \end{bmatrix}$$

Hence:
$$\begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \begin{bmatrix} H_0(z) & H_1(z) \\ H_0(-z) & H_1(-z) \end{bmatrix}^{-1} \begin{bmatrix} 2z^{-d} \\ 0 \end{bmatrix}$$

$$= \frac{2z^{-d}}{H_0(z)H_1(-z)-H_0(-z)H_1(z)} \begin{bmatrix} H_1(-z) & -H_1(z) \\ -H_0(-z) & H_0(z) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \frac{2z^{-d}}{H_0(z)H_1(-z)-H_0(-z)H_1(z)} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix}$$

For all filters to be FIR, we need the denominator to be

$$H_0(z)H_1(-z) - H_0(-z)H_1(z) = cz^{-k}$$
 , which implies

$$\begin{bmatrix} G_0(z) \\ G_1(z) \end{bmatrix} = \frac{2}{c} z^{k-d} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix} \stackrel{d=k}{=} \frac{2}{c} \begin{bmatrix} H_1(-z) \\ -H_0(-z) \end{bmatrix}$$

Note: c just scales $H_i(z)$ by $c^{\frac{1}{2}}$ and $G_i(z)$ by $c^{-\frac{1}{2}}$.

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror
 Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $U_0[n]$ U_0

QMF satisfies:

(a) $H_0(z)$ is causal and real

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $H_0(z)$ $v_0[n]$ $2:1$ $u_0[r]$ $1:2$ $w_0[n]$ $G_0(z)$ $U_0[n]$ $U_1[n]$ $U_1[n]$

QMF satisfies:

- (a) $H_0(z)$ is causal and real
- (b) $H_1(z)=H_0(-z)$: i.e. $\left|H_0(e^{j\omega})\right|$ is reflected around $\omega=\frac{\pi}{2}$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $H_0(z)$ $v_0[n]$ $2:1$ $u_0[r]$ $1:2$ $w_0[n]$ $G_0(z)$ $U_1[n]$ $U_1[n]$

QMF satisfies:

- (a) $H_0(z)$ is causal and real
- (b) $H_1(z)=H_0(-z)$: i.e. $\left|H_0(e^{j\omega})\right|$ is reflected around $\omega=\frac{\pi}{2}$
- (c) $G_0(z) = 2H_1(-z) = 2H_0(z)$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $H_0(z)$ $v_0[n]$ $2:1$ $u_0[r]$ $1:2$ $w_0[n]$ $G_0(z)$ $U_1[n]$ $U_1[n]$

QMF satisfies:

- (a) $H_0(z)$ is causal and real
- (b) $H_1(z)=H_0(-z)$: i.e. $\left|H_0(e^{j\omega})\right|$ is reflected around $\omega=\frac{\pi}{2}$
- (c) $G_0(z) = 2H_1(-z) = 2H_0(z)$
- (d) $G_1(z) = -2H_0(-z) = -2H_1(z)$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)

Polyphase QMF

- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $u_0[r]$ $u_0[r]$ $u_0[n]$ u_0

QMF satisfies:

- (a) $H_0(z)$ is causal and real
- (b) $H_1(z)=H_0(-z)$: i.e. $\left|H_0(e^{j\omega})\right|$ is reflected around $\omega=\frac{\pi}{2}$
- (c) $G_0(z) = 2H_1(-z) = 2H_0(z)$
- (d) $G_1(z) = -2H_0(-z) = -2H_1(z)$

QMF is alias-free:

$$A(z) = \frac{1}{2} \left\{ H_0(-z)G_0(z) + H_1(-z)G_1(z) \right\}$$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $H_0(z)$ $v_0[n]$ $2:1$ $u_0[r]$ $1:2$ $w_0[n]$ $G_0(z)$ $y[n]$ $H_1(z)$ $v_1[n]$ $2:1$ $u_1[r]$ $1:2$ $w_1[n]$ $G_1(z)$

QMF satisfies:

- (a) $H_0(z)$ is causal and real
- (b) $H_1(z)=H_0(-z)$: i.e. $\left|H_0(e^{j\omega})\right|$ is reflected around $\omega=\frac{\pi}{2}$
- (c) $G_0(z) = 2H_1(-z) = 2H_0(z)$
- (d) $G_1(z) = -2H_0(-z) = -2H_1(z)$

QMF is alias-free:

$$A(z) = \frac{1}{2} \left\{ H_0(-z)G_0(z) + H_1(-z)G_1(z) \right\}$$
$$= \frac{1}{2} \left\{ 2H_1(z)H_0(z) - 2H_0(z)H_1(z) \right\} = 0$$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $H_0(z)$ $v_0[n]$ $2:1$ $u_0[r]$ $1:2$ $w_0[n]$ $G_0(z)$ $U_1[n]$ $U_1[n]$

QMF satisfies:

- (a) $H_0(z)$ is causal and real
- (b) $H_1(z)=H_0(-z)$: i.e. $\left|H_0(e^{j\omega})\right|$ is reflected around $\omega=\frac{\pi}{2}$
- (c) $G_0(z) = 2H_1(-z) = 2H_0(z)$
- (d) $G_1(z) = -2H_0(-z) = -2H_1(z)$

QMF is alias-free:

$$A(z) = \frac{1}{2} \left\{ H_0(-z)G_0(z) + H_1(-z)G_1(z) \right\}$$
$$= \frac{1}{2} \left\{ 2H_1(z)H_0(z) - 2H_0(z)H_1(z) \right\} = 0$$

QMF Transfer Function:

$$T(z) = \frac{1}{2} \left\{ H_0(z) G_0(z) + H_1(z) G_1(z) \right\}$$

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

$$x[n]$$
 $H_0(z)$ $v_0[n]$ $2:1$ $u_0[r]$ $1:2$ $w_0[n]$ $G_0(z)$ $Y[n]$ $H_1(z)$ $v_1[n]$ $2:1$ $u_1[r]$ $1:2$ $w_1[n]$ $G_1(z)$

QMF satisfies:

- (a) $H_0(z)$ is causal and real
- (b) $H_1(z)=H_0(-z)$: i.e. $\left|H_0(e^{j\omega})\right|$ is reflected around $\omega=\frac{\pi}{2}$
- (c) $G_0(z) = 2H_1(-z) = 2H_0(z)$
- (d) $G_1(z) = -2H_0(-z) = -2H_1(z)$

QMF is alias-free:

$$A(z) = \frac{1}{2} \left\{ H_0(-z)G_0(z) + H_1(-z)G_1(z) \right\}$$
$$= \frac{1}{2} \left\{ 2H_1(z)H_0(z) - 2H_0(z)H_1(z) \right\} = 0$$

QMF Transfer Function:

$$T(z) = \frac{1}{2} \{ H_0(z)G_0(z) + H_1(z)G_1(z) \}$$

= $H_0^2(z) - H_1^2(z) = H_0^2(z) - H_0^2(-z)$

A *half-band filterbank* divides the full band into two equal halves.

A *half-band filterbank* divides the full band into two equal halves.

A half-band filterbank divides the full band into two equal halves.

You can repeat the process on either or both of the signals $u_1[p]$ and $v_1[p]$.

A half-band filterbank divides the full band into two equal halves.

You can repeat the process on either or both of the signals $u_1[p]$ and $v_1[p]$.

A half-band filterbank divides the full band into two equal halves.

You can repeat the process on either or both of the signals $u_1[p]$ and $v_1[p]$.

Dividing the lower band in half repeatedly results in an *octave* band filterbank.

A half-band filterbank divides the full band into two equal halves.

You can repeat the process on either or both of the signals $u_1[p]$ and $v_1[p]$.

Dividing the lower band in half repeatedly results in an *octave* band filterbank.

A half-band filterbank divides the full band into two equal halves.

You can repeat the process on either or both of the signals $u_1[p]$ and $v_1[p]$.

Dividing the lower band in half repeatedly results in an *octave* band filterbank. Each subband occupies one octave (= a factor of 2 in frequency) except the first subband.

A *half-band filterbank* divides the full band into two equal halves.

You can repeat the process on either or both of the signals $u_1[p]$ and $v_1[p]$.

Dividing the lower band in half repeatedly results in an *octave* band filterbank. Each subband occupies one octave (= a factor of 2 in frequency) except the first subband.

The properties "perfect reconstruction" and "allpass" are preserved by the iteration.

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror

Filterbank (QMF)

- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- Half-band filterbank:
 - \circ Reconstructed output is T(z)X(z) + A(z)X(-z)
 - \circ Unwanted alias term is A(z)X(-z)

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- Half-band filterbank:
 - \circ Reconstructed output is T(z)X(z) + A(z)X(-z)
 - \circ Unwanted alias term is A(z)X(-z)
- Perfect reconstruction: imposes strong constraints on analysis filters $H_i(z)$ and synthesis filters $G_i(z)$.

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- Half-band filterbank:
 - \circ Reconstructed output is T(z)X(z) + A(z)X(-z)
 - \circ Unwanted alias term is A(z)X(-z)
- Perfect reconstruction: imposes strong constraints on analysis filters $H_i(z)$ and synthesis filters $G_i(z)$.
- Quadrature Mirror Filterbank (QMF) adds an additional symmetry constraint $H_1(z) = H_0(-z)$.
 - Perfect reconstruction now impossible except for trivial case.
 - \circ Neat polyphase implementation with A(z)=0
 - \circ Johnston filters: Linear phase with T(z)pprox 1
 - \circ Allpass filters: Elliptic or Butterworth with |T(z)|=1

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror
 Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- Half-band filterbank:
 - \circ Reconstructed output is T(z)X(z) + A(z)X(-z)
 - \circ Unwanted alias term is A(z)X(-z)
- Perfect reconstruction: imposes strong constraints on analysis filters $H_i(z)$ and synthesis filters $G_i(z)$.
- Quadrature Mirror Filterbank (QMF) adds an additional symmetry constraint $H_1(z) = H_0(-z)$.
 - Perfect reconstruction now impossible except for trivial case.
 - \circ Neat polyphase implementation with A(z)=0
 - \circ Johnston filters: Linear phase with T(z)pprox 1
 - $\circ\quad$ Allpass filters: Elliptic or Butterworth with |T(z)|=1
- Can iterate to form a tree structure with equal or unequal bandwidths.

15: Subband Processing

- Subband processing
- 2-band Filterbank
- Perfect Reconstruction
- Quadrature Mirror Filterbank (QMF)
- Polyphase QMF
- QMF Options
- Linear Phase QMF
- IIR Allpass QMF
- Tree-structured filterbanks
- Summary
- Merry Xmas

- Half-band filterbank:
 - \circ Reconstructed output is T(z)X(z) + A(z)X(-z)
 - \circ Unwanted alias term is A(z)X(-z)
- Perfect reconstruction: imposes strong constraints on analysis filters $H_i(z)$ and synthesis filters $G_i(z)$.
- Quadrature Mirror Filterbank (QMF) adds an additional symmetry constraint $H_1(z) = H_0(-z)$.
 - Perfect reconstruction now impossible except for trivial case.
 - \circ Neat polyphase implementation with A(z)=0
 - \circ Johnston filters: Linear phase with T(z)pprox 1
 - \circ Allpass filters: Elliptic or Butterworth with |T(z)|=1
- Can iterate to form a tree structure with equal or unequal bandwidths.

See Mitra chapter 14 (which also includes some perfect reconstruction designs).