Aula 10 – Técnicas de Desenvolvimento de Algoritmos: Divisão e Conquista

Norton Trevisan Roman norton@usp.br

20 de setembro de 2018

 No método de construção incremental, temos os seguintes passos:

- No método de construção incremental, temos os seguintes passos:
 - Inicialmente, resolvemos o problema para um subconjunto dos elementos da entrada

- No método de construção incremental, temos os seguintes passos:
 - Inicialmente, resolvemos o problema para um subconjunto dos elementos da entrada
 - Então adicionamos os demais elementos um a um

- No método de construção incremental, temos os seguintes passos:
 - Inicialmente, resolvemos o problema para um subconjunto dos elementos da entrada
 - Então adicionamos os demais elementos um a um
 - Em muitos casos, se os elementos forem adicionados em uma ordem ruim, o algoritmo não será eficiente.

- No método de construção incremental, temos os seguintes passos:
 - Inicialmente, resolvemos o problema para um subconjunto dos elementos da entrada
 - Então adicionamos os demais elementos um a um
 - Em muitos casos, se os elementos forem adicionados em uma ordem ruim, o algoritmo não será eficiente.
- Exemplo:
 - Cálculo recursivo de n!

 Na divisão e conquista, o problema principal é decomposto em subproblemas menores

- Na divisão e conquista, o problema principal é decomposto em subproblemas menores
 - Combinando então as respostas de cada um desses subproblemas

- Na divisão e conquista, o problema principal é decomposto em subproblemas menores
 - Combinando então as respostas de cada um desses subproblemas
- É mais um paradigma de projeto de algoritmos baseado no princípio da indução

- Na divisão e conquista, o problema principal é decomposto em subproblemas menores
 - Combinando então as respostas de cada um desses subproblemas
- É mais um paradigma de projeto de algoritmos baseado no princípio da indução
 - Informalmente, podemos dizer que o paradigma incremental representa o projeto de algoritmos por indução fraca, enquanto o paradigma de divisão e conquista representa o projeto por indução forte

Dividir para Conquistar

 Dividir o problema em determinado número de subproblemas

- Dividir o problema em determinado número de subproblemas
- Conquistar os subproblemas, resolvendo-os recursivamente

- Dividir o problema em determinado número de subproblemas
- Conquistar os subproblemas, resolvendo-os recursivamente
 - Se o tamanho do subproblema for pequeno o bastante, então a solução é direta (caso base)

- Dividir o problema em determinado número de subproblemas
- Conquistar os subproblemas, resolvendo-os recursivamente
 - Se o tamanho do subproblema for pequeno o bastante, então a solução é direta (caso base)
- Combinar as soluções fornecidas pelos subproblemas, a fim de produzir a solução para o problema original

Dividir para Conquistar

 A busca binária recursiva utiliza essa técnica?

Entrada: arranjo arr, elemento x

Se o arranjo tiver 1 elemento, compare com ${\tt x}$

Se x=arr[meio], meio é o índice do elemento procurado Se x<arr[meio], repete a busca no subarranjo de O a meio-1 Senão

Dividir para Conquistar

- A busca binária recursiva utiliza essa técnica?
- Dividir:
 - Divide o problema em sub-problemas?

Entrada: arranjo arr, elemento x

Se o arranjo tiver 1 elemento, compare com ${\bf x}$

Se x=arr[meio], meio é o índice do elemento procurado Se x<arr[meio], repete a busca no subarranjo de O a meio-1 Senão

Dividir para Conquistar

- A busca binária recursiva utiliza essa técnica?
- Dividir:
 - Divide o problema em sub-problemas?

```
Entrada: arranjo arr, elemento x
Se o arranjo tiver 1 elemento,
```

```
Se x=arr[meio], meio é o índice
do elemento procurado
Se x<arr[meio], repete a busca
no subarranjo de 0 a meio-1
Senão
```

repete a busca no subarranjo de meio+1 ao fim de arr

compare com x

Dividir para Conquistar

- A busca binária recursiva utiliza essa técnica?
- Dividir:
 - Divide o problema em sub-problemas?
- Conquistar:
 - Resolve os sub-problemas recursivamente?

Entrada: arranjo arr, elemento \mathbf{x}

Se o arranjo tiver 1 elemento, compare com \mathbf{x}

Se x=arr[meio], meio é o índice do elemento procurado Se x<arr[meio], repete a busca no subarranjo de O a meio-1 Senão

Dividir para Conquistar

- A busca binária recursiva utiliza essa técnica?
- Dividir:
 - Divide o problema em sub-problemas?
- Conquistar:
 - Resolve os sub-problemas recursivamente?

Entrada: arranjo arr, elemento x

Se o arranjo tiver 1 elemento, compare com ${\tt x}$

Se x=arr[meio], meio é o índice do elemento procurado Se x<arr[meio], repete a busca no subarranjo de 0 a meio-1 Senão

Dividir para Conquistar

Combinar:

 Forma a solução final a partir da combinação das soluções dos sub-problemas? Entrada: arranjo arr, elemento x

Se o arranjo tiver 1 elemento, compare com ${\bf x}$

Se x=arr[meio], meio é o índice do elemento procurado Se x<arr[meio], repete a busca no subarranjo de O a meio-1 Senão

Dividir para Conquistar

Combinar:

 Forma a solução final a partir da combinação das soluções dos sub-problemas?

```
Entrada: arranjo arr, elemento {\tt x}
```

```
Se o arranjo tiver 1 elemento, compare com {\bf x}
```

```
Se x=arr[meio], meio é o índice
do elemento procurado
Se x<arr[meio], repete a busca
no subarranjo de O a meio-1
Senão
```

Dividir para Conquistar

Combinar:

- Forma a solução final a partir da combinação das soluções dos sub-problemas?
- Nesse caso, a etapa de combinar tem custo zero, pois o resultado do subproblema já é o resultado do problema maior

Entrada: arranjo arr, elemento ${\tt x}$

Se o arranjo tiver 1 elemento, compare com ${\tt x}$

Se x=arr[meio], meio é o índice do elemento procurado Se x<arr[meio], repete a busca no subarranjo de O a meio-1 Senão

Solução 1: Indução Fraca

• Calcule a^n para todo real a e inteiro $n \ge 0$

- Calcule a^n para todo real a e inteiro $n \ge 0$
- Caso base:

- Calcule a^n para todo real a e inteiro $n \ge 0$
- Caso base:
 - $n = 0 \Rightarrow a^0 = 1$

- Calcule a^n para todo real a e inteiro $n \ge 0$
- Caso base:
 - $n = 0 \Rightarrow a^0 = 1$
- Hipótese de indução:

- Calcule a^n para todo real a e inteiro $n \ge 0$
- Caso base:
 - $n = 0 \Rightarrow a^0 = 1$
- Hipótese de indução:
 - Para qualquer inteiro n > 0 e real a sei calcular a^{n-1}

- Calcule a^n para todo real a e inteiro $n \ge 0$
- Caso base:
 - $n = 0 \Rightarrow a^0 = 1$
- Hipótese de indução:
 - Para qualquer inteiro n > 0 e real a sei calcular a^{n-1}
- Passo:

- Calcule a^n para todo real a e inteiro $n \ge 0$
- Caso base:
 - $n = 0 \Rightarrow a^0 = 1$
- Hipótese de indução:
 - Para qualquer inteiro n > 0 e real a sei calcular a^{n-1}
- Passo:
 - $a^n = a \times a^{n-1}$. Pela H.I., sei calcular a^{n-1} , logo sei calcular a^n

Solução 1: Indução Fraca

• Então...

```
double exp(double a, int n)
{
  if (n == 0) return(1);
  return(a * exp(a,n-1));
}
```

- Então...
- E qual a complexidade dessa solução?

```
T(n) =
```

```
double exp(double a, int n)
{
  if (n == 0) return(1);
  return(a * exp(a,n-1));
}
```

se
$$n = 0$$

para $n \ge 1$

- Então...
- E qual a complexidade dessa solução?

```
T(n) = \begin{cases} O(1) \end{cases}
```

```
double exp(double a, int n)
{
  if (n == 0) return(1);
  return(a * exp(a,n-1));
}
```

se
$$n = 0$$
 para $n \ge 1$

- Então...
- E qual a complexidade dessa solução?

```
double exp(double a, int n)
{
  if (n == 0) return(1);
  return(a * exp(a,n-1));
}
```

$$T(n) = egin{cases} O(1) & ext{se } n=0 \ T(n-1) & ext{para } n \geq 1 \end{cases}$$

- Então...
- E qual a complexidade dessa solução?

```
double exp(double a, int n)
{
  if (n == 0) return(1);
  return(a * exp(a,n-1));
}
```

$$\mathcal{T}(n) = egin{cases} O(1) & ext{se } n=0 \ \mathcal{T}(n-1) + O(1) & ext{para } n \geq 1 \end{cases}$$

Solução 1: Indução Fraca

• E...

```
T(n) = T(n-1) + O(1) \qquad \begin{tabular}{ll} \mbox{double exp(double a, int n)} \\ & & \mbox{if (n == 0) return(1);} \\ & & \mbox{return(a * exp(a,n-1));} \\ \mbox{} \end{tabular}
```

Solução 1: Indução Fraca

• E...

```
T(n) = T(n-1) + O(1) double exp(double a, int n) 
= O(1) + \sum_{i=1}^{n} O(1) if (n == 0) return(1); 
return(a * exp(a,n-1));
```

Solução 1: Indução Fraca

• E...

```
T(n) = T(n-1) + O(1) double exp(double a, int n) 
= O(1) + \sum_{i=1}^{n} O(1) if (n == 0) return(1);
= O(1) + nO(1) return(a * exp(a,n-1));
```

Solução 1: Indução Fraca

• E...

```
T(n) = T(n-1) + O(1) double exp(double a, int n) { 
 = O(1) + \sum_{i=1}^{n} O(1) if (n == 0) return(1); 
 = O(1) + nO(1) return(a * exp(a,n-1)); 
 = O(n)
```

Solução 2: Indução Forte

• Calcule a^n para todo real a e inteiro $n \ge 0$

- Calcule a^n para todo real a e inteiro $n \ge 0$
- Caso base:

- Calcule a^n para todo real a e inteiro $n \ge 0$
- Caso base:
 - $n = 0 \Rightarrow a^0 = 1$

- Calcule a^n para todo real a e inteiro $n \ge 0$
- Caso base:
 - $n = 0 \Rightarrow a^0 = 1$
- Hipótese de indução:

- Calcule a^n para todo real a e inteiro $n \ge 0$
- Caso base:
 - $n = 0 \Rightarrow a^0 = 1$
- Hipótese de indução:
 - Para qualquer inteiro $n \ge 0$ e real a sei calcular $a^k, 0 \le k \le n-1$

- Calcule a^n para todo real a e inteiro $n \ge 0$
- Caso base:
 - $n = 0 \Rightarrow a^0 = 1$
- Hipótese de indução:
 - Para qualquer inteiro $n \ge 0$ e real a sei calcular $a^k, 0 \le k \le n-1$
- Passo:

- Calcule a^n para todo real a e inteiro $n \ge 0$
- Caso base:
 - $n = 0 \Rightarrow a^0 = 1$
- Hipótese de indução:
 - Para qualquer inteiro $n \ge 0$ e real a sei calcular $a^k, 0 \le k \le n-1$
- Passo:
 - Vamos calcular a^n . Como ficaria o cálculo de a^n se soubéssemos $a^{\frac{n}{2}}$ (de fato, $a^{\lfloor \frac{n}{2} \rfloor}$)?

Solução 2: Indução Forte

• Passo:

- Passo:
 - Podemos escrever aⁿ como

$$a^n = \begin{cases} \left(a^{\lfloor \frac{n}{2} \rfloor}\right)^2, & \text{se } n \text{ par} \end{cases}$$

- Passo:
 - Podemos escrever aⁿ como

$$a^n = egin{cases} (a^{\lfloor rac{n}{2}
floor})^2, & ext{se } n ext{ par} \ a imes (a^{\lfloor rac{n}{2}
floor})^2 & ext{se } n ext{ impar} \end{cases}$$

Solução 2: Indução Forte

- Passo:
 - Podemos escrever aⁿ como

$$a^n = egin{cases} (a^{\lfloor rac{n}{2}
floor})^2, & ext{se } n ext{ par} \ a imes (a^{\lfloor rac{n}{2}
floor})^2 & ext{se } n ext{ impar} \end{cases}$$

• Pela H.I., sei calcular $a^{\lfloor \frac{n}{2} \rfloor}$, então sei calcular a^n

```
double exp(double a,int n){
  if (n == 0) return 1;
  else {
    double aux = exp(a,n/2);
    double an = aux * aux;
    if (n % 2 == 1)
        an = an * a;
    return an;
  }
}
```

Solução 2: Indução Forte

 E qual a complexidade disso?

```
return an;
T(n) = 
                     se n=0
```

else {

double exp(double a,int n){ if (n == 0) return 1;

if (n % 2 == 1)

para n > 1

an = an * a;

double aux = exp(a,n/2); double an = aux * aux;

Solução 2: Indução Forte

 E qual a complexidade disso?

```
double exp(double a,int n){
  if (n == 0) return 1;
  else {
    double aux = exp(a,n/2);
    double an = aux * aux;
    if (n \% 2 == 1)
      an = an * a;
    return an;
      se n=0
      para n > 1
```

$$T(n) = \begin{cases} O(1) \end{cases}$$

Solução 2: Indução Forte

 E qual a complexidade disso?

```
double exp(double a,int n){
  if (n == 0) return 1;
  else {
    double aux = \exp(a,n/2);
    double an = aux * aux;
    if (n \% 2 == 1)
      an = an * a;
    return an;
      se n=0
      para n > 1
```

 $T(n) = \begin{cases} O(1) \\ T(\frac{n}{2}) \end{cases}$

Solução 2: Indução Forte

E qual a complexidade disso?

```
double exp(double a, int n){
  if (n == 0) return 1;
  else {
    double aux = exp(a,n/2);
    double an = aux * aux;
    if (n \% 2 == 1)
      an = an * a;
    return an;
```

$$T(n) = egin{cases} O(1) & ext{se } n=0 \ T(rac{n}{2}) + O(1) & ext{para } n \geq 1 \end{cases}$$

Solução 2: Indução Forte

• Mas $T(n) = T(\frac{n}{2}) + O(1)$ é também a complexidade da busca binária

- Mas $T(n) = T(\frac{n}{2}) + O(1)$ é também a complexidade da busca binária
- Que já vimos ser $T(n) = O(log_2(n))$

- Mas $T(n) = T(\frac{n}{2}) + O(1)$ é também a complexidade da busca binária
- Que já vimos ser $T(n) = O(log_2(n))$
- Então, em sua versão incremental, a exponenciação é O(n), enquanto que em sua versão por divisão e conquista é $O(log_2(n))$

- Mas $T(n) = T(\frac{n}{2}) + O(1)$ é também a complexidade da busca binária
- Que já vimos ser $T(n) = O(log_2(n))$
- Então, em sua versão incremental, a exponenciação é O(n), enquanto que em sua versão por divisão e conquista é $O(log_2(n))$
 - Lembrando que $n > log_2(n)$, para $n \ge 1$.

- Mas $T(n) = T(\frac{n}{2}) + O(1)$ é também a complexidade da busca binária
- Que já vimos ser $T(n) = O(log_2(n))$
- Então, em sua versão incremental, a exponenciação é O(n), enquanto que em sua versão por divisão e conquista é $O(log_2(n))$
 - Lembrando que $n > log_2(n)$, para $n \ge 1$.
 - Mas isso, claro, vai depender das constantes multiplicativas

Solução 1: Indução Fraca

• Dado um arranjo S de $n \ge 2$ números reais, determine o maior e o menor elemento de S

- Dado um arranjo S de $n \ge 2$ números reais, determine o maior e o menor elemento de S
- Caso base:

- Dado um arranjo S de $n \ge 2$ números reais, determine o maior e o menor elemento de S
- Caso base:
 - n = 2: Compare um com o outro e veja qual o maior

- Dado um arranjo S de $n \ge 2$ números reais, determine o maior e o menor elemento de S
- Caso base:
 - n = 2: Compare um com o outro e veja qual o maior
- Hipótese de indução:

- Dado um arranjo S de $n \ge 2$ números reais, determine o maior e o menor elemento de S
- Caso base:
 - n = 2: Compare um com o outro e veja qual o maior
- Hipótese de indução:
 - Sei o maior e o menor dentre os n-1 primeiros elementos do arranjo

Solução 1: Indução Fraca

• Passo:

- Passo:
 - Pela H.I., consigo calcular o maior e o menor entre os n-1 primeiros elementos de S

- Passo:
 - Pela H.I., consigo calcular o maior e o menor entre os n-1 primeiros elementos de $\cal S$
 - Se o n-ésimo elemento for maior que o maior em n-1, então ele é o maior de todos. Senão, o resultado de n-1 é o maior

- Passo:
 - Pela H.I., consigo calcular o maior e o menor entre os n-1 primeiros elementos de S
 - Se o n-ésimo elemento for maior que o maior em n-1, então ele é o maior de todos. Senão, o resultado de n-1 é o maior
 - Se o n-ésimo elemento for menor que o menor em n-1, então ele é o menor de todos. Senão, o resultado de n-1 é o menor

```
double[] mM(double s[],
                              else {
                   int n) {
                                resp = mM(s,n-1);
                                if (s[n-1] > resp[0])
  double[] resp;
  if (n==2) {
                                       resp[0] = s[n-1];
                                if (s[n-1] < resp[1])
    resp = new double[2];
    if (s[0]>s[1]) {
                                       resp[1] = s[n-1];
      resp[0] = s[0];
      resp[1] = s[1];
                              return(resp);
    else {
      resp[0] = s[1];
      resp[1] = s[0];
```

```
double[] mM(double s[],
                               else {
                   int n) {
                                 resp = mM(s,n-1);
                                 if (s[n-1] > resp[0])
  double[] resp;
  if (n==2) {
                                       resp[0] = s[n-1];
                                 if (s[n-1] < resp[1])
    resp = new double[2];
    if (s[0]>s[1]) {
                                       resp[1] = s[n-1];
      resp[0] = s[0];
      resp[1] = s[1];
                               return(resp);
    else {

    E qual a complexidade

      resp[0] = s[1];
      resp[1] = s[0];
                                 disso?
```

```
double[] mM(double s[], int n) {
                                      else {
  double[] resp;
                                        resp = mM(s,n-1);
  if (n==2) {
                                        if (s[n-1] > resp[0])
   resp = new double[2];
                                              resp[0] = s[n-1];
   if (s[0]>s[1]) {
                                        if (s[n-1] < resp[1])
      resp[0] = s[0];
                                              resp[1] = s[n-1];
      resp[1] = s[1];
   } else {
                                      return(resp);
      resp[0] = s[1];
      resp[1] = s[0];
              T(n) = 
                                           se n=2
                                           se n > 2
```

Solução 1: Indução Fraca

```
double[] mM(double s[], int n) {
                                         else {
  double[] resp;
                                           resp = mM(s,n-1);
  if (n==2) {
                                           if (s[n-1] > resp[0])
    resp = new double[2];
                                                 resp[0] = s[n-1];
    if (s[0]>s[1]) {
                                           if (s[n-1] < resp[1])
                                                  resp[1] = s[n-1];
      resp[0] = s[0];
      resp[1] = s[1];
    } else {
                                         return(resp);
      resp[0] = s[1];
      resp[1] = s[0];
              T(n) = \begin{cases} O(1) \end{cases}
                                              se n=2
                                              se n > 2
```

Solução 1: Indução Fraca

```
double[] mM(double s[], int n) {
                                         else {
  double[] resp;
                                            resp = mM(s,n-1);
  if (n==2) {
                                            if (s[n-1] > resp[0])
    resp = new double[2];
                                                  resp[0] = s[n-1];
    if (s[0]>s[1]) {
                                            if (s[n-1] < resp[1])
      resp[0] = s[0];
                                                  resp[1] = s[n-1];
      resp[1] = s[1];
    } else {
                                         return(resp);
      resp[0] = s[1];
      resp[1] = s[0];
    }
               T(n) = \begin{cases} O(1) \\ T(n-1) \end{cases}
                                               se n=2
                                               se n > 2
```

Solução 1: Indução Fraca

```
double[] mM(double s[], int n) {
                                             else {
  double[] resp;
                                               resp = mM(s,n-1);
  if (n==2) {
                                               if (s[n-1] > resp[0])
    resp = new double[2];
                                                      resp[0] = s[n-1];
    if (s[0]>s[1]) {
                                               if (s[n-1] < resp[1])
       resp[0] = s[0];
                                                      resp[1] = s[n-1];
       resp[1] = s[1];
    } else {
                                             return(resp);
       resp[0] = s[1];
       resp[1] = s[0];
                T(n) = \begin{cases} O(1) & \text{se } n = 2 \\ T(n-1) + O(1) & \text{se } n > 2 \end{cases}
```

Solução 1: Indução Fraca

```
double[] mM(double s[], int n) {
                                      else {
  double[] resp;
                                        resp = mM(s,n-1);
  if (n==2) {
                                        if (s[n-1] > resp[0])
                                              resp[0] = s[n-1];
    resp = new double[2];
    if (s[0]>s[1]) {
                                        if (s[n-1] < resp[1])
      resp[0] = s[0];
                                              resp[1] = s[n-1];
      resp[1] = s[1];
    } else {
                                      return(resp);
      resp[0] = s[1];
      resp[1] = s[0];
```

E $T(n) \in O(n)$ (idem à busca sequencial)

Solução 2: Indução Forte

• Dado um arranjo S de $n \ge 2$ números reais, determine o maior e o menor elemento de S

- Dado um arranjo S de $n \ge 2$ números reais, determine o maior e o menor elemento de S
- Caso base:

- Dado um arranjo S de $n \ge 2$ números reais, determine o maior e o menor elemento de S
- Caso base:
 - n = 2: Compare um com o outro e veja qual o maior

- Dado um arranjo S de $n \ge 2$ números reais, determine o maior e o menor elemento de S
- Caso base:
 - n = 2: Compare um com o outro e veja qual o maior
- Hipótese de indução:

- Dado um arranjo S de $n \ge 2$ números reais, determine o maior e o menor elemento de S
- Caso base:
 - n = 2: Compare um com o outro e veja qual o maior
- Hipótese de indução:
 - Sei encontrar o maior e o menor elemento em sub-arranjos de tamanho $2 \le k \le n-1$

Solução 2: Indução Forte

Passo:

- Passo:
 - Vejamos para um arranjo de n elementos. Pela H.I., sei o menor o maior elemento em sub-arranjos de tamanho $\lfloor \frac{n}{2} \rfloor$

- Passo:
 - Vejamos para um arranjo de n elementos. Pela H.I., sei o menor o maior elemento em sub-arranjos de tamanho $\lfloor \frac{n}{2} \rfloor$
 - Então, se n for par, o maior elemento será o maior dentre as respostas de $\lfloor \frac{n}{2} \rfloor$ que correspondem às 2 metades do arranjo. O mesmo vale para o menor.

- Passo:
 - Vejamos para um arranjo de n elementos. Pela H.I., sei o menor o maior elemento em sub-arranjos de tamanho $\lfloor \frac{n}{2} \rfloor$
 - Então, se n for par, o maior elemento será o maior dentre as respostas de $\lfloor \frac{n}{2} \rfloor$ que correspondem às 2 metades do arranjo. O mesmo vale para o menor.
 - Se n for impar, o maior será o maior dentre S[n] e o maior dos dois sub-arranjos de $\lfloor \frac{n}{2} \rfloor$, que correspondem às 2 metades do arranjo de n-1 elementos restante ao retirarmos S[n]. O mesmo vale para o menor.

Solução 2: Indução Forte

Solução 2: Indução Forte

$$T(n) = \begin{cases} O(1) & \text{se } n = 2\\ 2T(\frac{n}{2}) + O(1) & \text{se } n > 2 \end{cases}$$

Solução 2: Indução Forte

• E qual a complexidade desse algoritmo?

$$T(n) = \begin{cases} O(1) & \text{se } n = 2\\ 2T(\frac{n}{2}) + O(1) & \text{se } n > 2 \end{cases}$$

• Temos então que $T(n) \in O(n)$

Solução 2: Indução Forte

$$T(n) = \begin{cases} O(1) & \text{se } n = 2\\ 2T(\frac{n}{2}) + O(1) & \text{se } n > 2 \end{cases}$$

- Temos então que $T(n) \in O(n)$
 - A demonstração fica por sua conta

Solução 2: Indução Forte

$$T(n) = \begin{cases} O(1) & \text{se } n = 2\\ 2T(\frac{n}{2}) + O(1) & \text{se } n > 2 \end{cases}$$

- Temos então que $T(n) \in O(n)$
 - A demonstração fica por sua conta
- Não houve melhora em relação à versão anterior

Solução 2: Indução Forte

$$T(n) = \begin{cases} O(1) & \text{se } n = 2\\ 2T(\frac{n}{2}) + O(1) & \text{se } n > 2 \end{cases}$$

- Temos então que $T(n) \in O(n)$
 - A demonstração fica por sua conta
- Não houve melhora em relação à versão anterior
 - Você esperaria mesmo ser menor que O(n)?

 A complexidade de tempo de algoritmos divisão e conquista, para uma entrada de tamanho n, é:

- A complexidade de tempo de algoritmos divisão e conquista, para uma entrada de tamanho n, é:
 - T(n) = Dividir(n) + Conquistar(n) + Combinar(n)

- A complexidade de tempo de algoritmos divisão e conquista, para uma entrada de tamanho n, é:
 - T(n) = Dividir(n) + Conquistar(n) + Combinar(n)
 - Para entradas pequenas, isto é, para $n \le c$, c pequeno, podemos assumir que $T(n) = \Theta(1)$ (caso base)

- A complexidade de tempo de algoritmos divisão e conquista, para uma entrada de tamanho n, é:
 - T(n) = Dividir(n) + Conquistar(n) + Combinar(n)
 - Para entradas pequenas, isto é, para $n \le c$, c pequeno, podemos assumir que $T(n) = \Theta(1)$ (caso base)
- Vamos supor que o problema seja dividido em a subproblemas, cada um com $\frac{1}{b}$ do tamanho original

- A complexidade de tempo de algoritmos divisão e conquista, para uma entrada de tamanho n, é:
 - T(n) = Dividir(n) + Conquistar(n) + Combinar(n)
 - Para entradas pequenas, isto é, para $n \le c$, c pequeno, podemos assumir que $T(n) = \Theta(1)$ (caso base)
- Vamos supor que o problema seja dividido em a subproblemas, cada um com $\frac{1}{b}$ do tamanho original
- Como fica a "Conquista" C(n)?

- A complexidade de tempo de algoritmos divisão e conquista, para uma entrada de tamanho n, é:
 - T(n) = Dividir(n) + Conquistar(n) + Combinar(n)
 - Para entradas pequenas, isto é, para $n \le c$, c pequeno, podemos assumir que $T(n) = \Theta(1)$ (caso base)
- Vamos supor que o problema seja dividido em a subproblemas, cada um com $\frac{1}{b}$ do tamanho original
- Como fica a "Conquista" C(n)?
 - $C(n) = aT\left(\frac{n}{b}\right)$

• Se levamos D(n) para dividir o problema em subproblemas e C(n) para combinar suas soluções, então tem-se a recorrência T(n):

• Se levamos D(n) para dividir o problema em subproblemas e C(n) para combinar suas soluções, então tem-se a recorrência T(n):

$$T(n) = egin{cases} \Theta(1) & ext{se } n \leq c \ aT(n/b) + D(n) + C(n) & ext{caso contrário} \end{cases}$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

 A expressão geral de recorrência de um algoritmo de divisão e conquista é então

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Onde:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

- Onde:
 - a representa o número de subproblemas obtidos na divisão

$$T(n) = aT(\frac{n}{b}) + f(n)$$

- Onde:
 - a representa o número de subproblemas obtidos na divisão
 - $\frac{n}{b}$ representa seu tamanho

$$T(n) = aT(\frac{n}{b}) + f(n)$$

- Onde:
 - a representa o número de subproblemas obtidos na divisão
 - $\frac{n}{b}$ representa seu tamanho
 - f(n) é a função que dá a complexidade das etapas de divisão e combinação

$$T(n) = aT(\frac{n}{b}) + f(n)$$

- Onde:
 - a representa o número de subproblemas obtidos na divisão
 - $\frac{n}{b}$ representa seu tamanho
 - f(n) é a função que dá a complexidade das etapas de divisão e combinação
 - $\bullet \ f(n) = D(n) + C(n)$

Relação:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

• Relação:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

 Haveria um meio mais fácil de calcularmos a complexidade desse tipo de expressão?

Relação:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

 Haveria um meio mais fácil de calcularmos a complexidade desse tipo de expressão?

O Teorema Mestre

Teorema Mestre

• Sejam $a \ge 1$ e b > 1 constantes. Seja f(n) uma função, e seja T(n) definida para os inteiros não negativos pela relação de recorrência

$$T(n) = aT(n/b) + f(n)$$

- Então T(n) pode ser limitada assintoticamente da seguinte maneira:
 - Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
 - 2 Se $f(n) \in \Theta(n^{\log_b a})$, então $T(n) \in \Theta(n^{\log_b a} \log n)$
 - Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = 9T(n/3) + n
- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = 9T(n/3) + n
 - a = 9, b = 3, f(n) = n
- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = 9T(n/3) + n
 - a = 9, b = 3, f(n) = n
- Testamos as opções

- 1 Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = 9T(n/3) + n
 - a = 9, b = 3, f(n) = n
- Testamos as opções
 - Note que $n^{log_39} = n^2$ aparece em todas as 3 alternativas

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = 9T(n/3) + n
 - a = 9, b = 3, f(n) = n
- Testamos as opções
 - Note que $n^{log_39} = n^2$ aparece em todas as 3 alternativas
 - ullet Temos que $n\in O(n^{log_39-\epsilon})$, para $\epsilon=1$ (Caso 1)

- 1 Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = 9T(n/3) + n
 - a = 9, b = 3, f(n) = n
- Testamos as opções
 - Note que $n^{log_39} = n^2$ aparece em todas as 3 alternativas

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$
- Temos que $n \in O(n^{log_39-\epsilon})$, para $\epsilon=1$ (Caso 1)
- Ou seja, $n \in O(n^{2-1}) = O(n)$

- T(n) = 9T(n/3) + n
 - a = 9, b = 3, f(n) = n
- Testamos as opções
 - Note que $n^{log_39} = n^2$ aparece em todas as 3 alternativas

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$
- Temos que $n \in O(n^{log_39-\epsilon})$, para $\epsilon=1$ (Caso 1)
- Ou seja, $n \in O(n^{2-1}) = O(n)$
- Então, pelo teorema, $T(n) \in \Theta(n^2)$

•
$$T(n) = T(2n/3) + 1$$

- Se $f(n) \in O(n^{log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{log_b a})$
- Se $f(n) \in \Theta(n^{log_ba})$, então $T(n) \in \Theta(n^{log_ba}log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = T(2n/3) + 1
 - $a = 1, b = \frac{3}{2}, f(n) = 1$
- Se $f(n) \in O(n^{log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = T(2n/3) + 1
 - $a = 1, b = \frac{3}{2}, f(n) = 1$
- Testamos a 1ª opção:

- Se $f(n) \in O(n^{log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = T(2n/3) + 1
 - $a = 1, b = \frac{3}{2}, f(n) = 1$
- Testamos a 1ª opção:
 - $n^{\log_{3/2} 1} = n^0 = 1$

- Se $f(n) \in O(n^{log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = T(2n/3) + 1
 - $a = 1, b = \frac{3}{2}, f(n) = 1$
- Testamos a 1^a opção:
 - $n^{\log_{3/2} 1} = n^0 = 1$
 - $f(n) = O(n^{\log_b a \epsilon})$?

- Se $f(n) \in O(n^{log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = T(2n/3) + 1
 - $a = 1, b = \frac{3}{2}, f(n) = 1$
- Testamos a 1^a opção:
 - $n^{\log_{3/2} 1} = n^0 = 1$
 - $f(n) = O(n^{\log_b a \epsilon})$?
 - Se for, então $1 = O(n^{0-\epsilon})$

- Se $f(n) \in O(n^{log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{log_b a})$
- $egin{aligned} egin{aligned} \operatorname{Se} f(n) \in \Theta(n^{log_ba}), & \operatorname{ent ilde{ao}} \ T(n) \in \Theta(n^{log_ba}log \ n) \end{aligned}$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = T(2n/3) + 1
 - $a = 1, b = \frac{3}{2}, f(n) = 1$
- Testamos a 1^a opção:
 - $n^{\log_{3/2} 1} = n^0 = 1$
 - $f(n) = O(n^{\log_b a \epsilon})$?
 - Se for, então $1 = O(n^{0-\epsilon})$
 - $\bullet \Rightarrow 1 = O(\frac{1}{n^{\epsilon}}), \epsilon > 0$

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = T(2n/3) + 1
 - $a = 1, b = \frac{3}{2}, f(n) = 1$
- Testamos a 1ª opção:
 - $n^{\log_{3/2} 1} = n^0 = 1$
 - $f(n) = O(n^{\log_b a \epsilon})$?
 - Se for, então $1 = O(n^{0-\epsilon})$
 - $\Rightarrow 1 = O(\frac{1}{n^{\epsilon}}), \epsilon > 0$
 - Não, pois isso implica $1 \le c \frac{1}{n^{\epsilon}}, \epsilon > 0$

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = T(2n/3) + 1
 - $a = 1, b = \frac{3}{2}, f(n) = 1$
- Testamos a 2^a opção:
- Se $f(n) \in O(n^{log_ba-\epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{log_ba})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = T(2n/3) + 1
 - $a = 1, b = \frac{3}{2}, f(n) = 1$
- Testamos a 2ª opção:
 - $n^{\log_{3/2} 1} = n^0 = 1$

- Se $f(n) \in O(n^{log_ba-\epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{log_ba})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = T(2n/3) + 1
 - $a = 1, b = \frac{3}{2}, f(n) = 1$
- Testamos a 2^a opção:
 - $n^{\log_{3/2} 1} = n^0 = 1$
 - Pelo Caso 2, temos que $1 \in \Theta(n^0) \Rightarrow 1 \in \Theta(1)$

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- T(n) = T(2n/3) + 1
 - $a = 1, b = \frac{3}{2}, f(n) = 1$
- Testamos a 2ª opção:
 - $n^{\log_{3/2} 1} = n^0 = 1$
 - Pelo Caso 2, temos que $1 \in \Theta(n^0) \Rightarrow 1 \in \Theta(1)$
 - Então $T(n) \in \Theta(n^0 \log n) \Rightarrow T(n) \in \Theta(\log n)$

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- 2 Se $f(n) \in \Theta(n^{\log_b a})$, então $T(n) \in \Theta(n^{\log_b a} \log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
- 1 Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$

- 1 Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 1^a opção:

- Se $f(n) \in O(n^{log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 1^a opção:
 - $n^{\log_b a} = n^{\log_4 3} = n^{0.793}$

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_ba})$, então $T(n) \in \Theta(n^{log_ba}log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 1^a opção:
 - $n^{\log_b a} = n^{\log_4 3} = n^{0.793}$
 - $f(n) = O(n^{\log_b a \epsilon})$?

- 1 Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

Teorema Mestre: Exemplo

- T(n) = 3T(n/4) + $n \times log n$
 - a = 3, b = 4, f(n) = $n \times log n$
- Testamos a 1^a opção:
 - $n^{\log_b a} = n^{\log_4 3} = n^{0.793}$

- **1** Se f(n) ∈ $O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- \bigcirc Se $f(n) \in \Theta(n^{\log_b a})$, então $T(n) \in \Theta(n^{\log_b a} \log n)$
- $oxlime{3}$ Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se af(n/b) < cf(n), para alguma constante c < 1 e todo nsuficientemente grande, então $T(n) \in \Theta(f(n))$

• $f(n) = O(n^{\log_b a - \epsilon})$? Se for, então $n \times \log n = O(n^{\log_4 3 - \epsilon})$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 1^a opção:
 - $n^{\log_b a} = n^{\log_4 3} = n^{0.793}$

- 1 Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$
- $f(n) = O(n^{log_b a \epsilon})$? Se for, então $n \times log \ n = O(n^{log_4 3 \epsilon})$
- $\Rightarrow n \times \log n = O(n^{0.793-\epsilon}), \epsilon > 0$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 1^a opção:
 - $n^{\log_b a} = n^{\log_4 3} = n^{0.793}$

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$
- $f(n) = O(n^{log_b a \epsilon})$? Se for, então $n \times log \ n = O(n^{log_4 3 \epsilon})$
- $\Rightarrow n \times \log n = O(n^{0.793-\epsilon}), \epsilon > 0$
- Não, pois isso implica $n \times log \ n = O(n^c), c < 1$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 2ª opção:

- 1 Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 2^a opção:
 - $f(n) = \Theta(n^{\log_b a})$?

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 2^a opção:
 - $f(n) = \Theta(n^{\log_b a})$?
 - Se for, então $n \times log \ n = \Theta(n^{log_43}) = \Theta(n^{0,793})$

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 2^a opção:
 - $f(n) = \Theta(n^{\log_b a})$?
 - Se for, então $n \times log \ n = \Theta(n^{log_43}) = \Theta(n^{0.793})$
 - Não, pois isso implica $n \times log \ n = \Theta(n^c), c < 1$

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 3ª opção:

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 3ª opção:
 - $f(n) = \Omega(n^{\log_b a + \epsilon})$?

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 3^a opção:
 - $f(n) = \Omega(n^{\log_b a + \epsilon})$?

- 1 Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

• Se for, então
$$n imes log \ n = \Omega(n^{log_43+\epsilon}) = \Omega(n^{0,793+\epsilon}), \epsilon > 0$$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 3^a opção:
 - $f(n) = \Omega(n^{\log_b a + \epsilon})$?
 - Se for, então $n imes log \ n = \Omega(n^{log_43+\epsilon}) = \Omega(n^{0,793+\epsilon}), \epsilon > 0$
 - Fazendo $\epsilon \approx 0, 2$, temos que $n \times \log n = \Omega(n^1)$

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
 - Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
 - 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 3^a opção:
 - E $af(n/b) \leq cf(n)$?

- Se $f(n) \in O(n^{log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{log_b a})$
- Se $f(n) \in \Theta(n^{\log_b a})$, então $T(n) \in \Theta(n^{\log_b a} \log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 3ª opção:
 - E af $(n/b) \leq cf(n)$?
 - $\Rightarrow 3\frac{n}{4}\log\frac{n}{4} \le cn\log n$?

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_ba})$, então $T(n) \in \Theta(n^{log_ba}log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 3ª opção:
 - E af $(n/b) \leq cf(n)$?
 - $\Rightarrow 3\frac{n}{4}\log\frac{n}{4} \le cn\log n$?
 - $\Rightarrow \frac{3}{4} n \log \frac{n}{4} \le cn \log n$.

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 3^a opção:
 - E af $(n/b) \leq cf(n)$?
 - $\Rightarrow 3\frac{n}{4}\log\frac{n}{4} \le cn\log n$?
 - $\Rightarrow \frac{3}{4} n \log \frac{n}{4} \le c n \log n$. Para $c = \frac{3}{4}$ isso é verdadeiro

- 1 Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 3T(n/4) + n \times \log n$
 - $a = 3, b = 4, f(n) = n \times log n$
- Testamos a 3ª opção:
 - E $af(n/b) \le cf(n)$?
 - $\Rightarrow 3\frac{n}{4}\log\frac{n}{4} \le cn\log n$?
 - $\Rightarrow \frac{3}{4} n \log \frac{n}{4} \le c n \log n$. Para $c = \frac{3}{4}$ isso é verdadeiro
 - Portanto $T(n) = \Theta(n \log n)$

- Se $f(n) \in O(n^{\log_b a \epsilon})$, para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- 2 Se $f(n) \in \Theta(n^{log_b a})$, então $T(n) \in \Theta(n^{log_b a} log n)$
- 3 Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e todo n suficientemente grande, então $T(n) \in \Theta(f(n))$

- $T(n) = 4T(n/2) + n \log n$, T(1) = 1
 - Caso 1

- $T(n) = 4T(n/2) + n \log n$, T(1) = 1
 - Caso 1
- T(n) = 2T(n/2) + n, T(1) = 1
 - Caso 2

- $T(n) = 4T(n/2) + n \log n$, T(1) = 1
 - Caso 1
- T(n) = 2T(n/2) + n, T(1) = 1
 - Caso 2
- $T(n) = T(n/2) + n \log n$, T(1) = 1
 - Caso 3

•
$$T(n) = T(n-1) + n \log n$$
, $T(1) = 1$

- $T(n) = T(n-1) + n \log n$, T(1) = 1
- T(n) = T(n-a) + T(a) + n, T(b) = 1 (para inteiros a > 1, b < a)

- $T(n) = T(n-1) + n \log n$, T(1) = 1
- T(n) = T(n-a) + T(a) + n, T(b) = 1 (para inteiros $a \ge 1$, $b \le a$)
- $T(n) = T(\alpha n) + T((1 \alpha)n) + n$, T(1) = 1 (para $0 < \alpha < 1$)

- $T(n) = T(n-1) + n \log n$, T(1) = 1
- T(n) = T(n-a) + T(a) + n, T(b) = 1 (para inteiros $a \ge 1$, $b \le a$)
- $T(n) = T(\alpha n) + T((1-\alpha)n) + n$, T(1) = 1 (para $0 < \alpha < 1$)
- T(n) = T(n-1) + log n, T(1) = 1

- $T(n) = T(n-1) + n \log n$, T(1) = 1
- T(n) = T(n-a) + T(a) + n, T(b) = 1 (para inteiros $a \ge 1$, $b \le a$)
- $T(n) = T(\alpha n) + T((1-\alpha)n) + n$, T(1) = 1 (para $0 < \alpha < 1$)
- T(n) = T(n-1) + log n, T(1) = 1
- $T(n) = 2T(n/2) + n \log n$, T(1) = 1

Teorema Mestre: Observação

 Trabalhamos até então com relações de recorrência do tipo

$$T(n) = aT(n/b) + f(n)$$

Teorema Mestre: Observação

 Trabalhamos até então com relações de recorrência do tipo

$$T(n) = aT(n/b) + f(n)$$

 Contudo, a relação não está bem definida, pois n/b pode não ser inteiro

Teorema Mestre: Observação

 Trabalhamos até então com relações de recorrência do tipo

$$T(n) = aT(n/b) + f(n)$$

- Contudo, a relação não está bem definida, pois n/b pode não ser inteiro
- De fato, relaxamos a definição, mas o correto seria usar $T(\lceil n/b \rceil)$ ou $T(\lfloor n/b \rfloor)$

Teorema Mestre: Observação

 Trabalhamos até então com relações de recorrência do tipo

$$T(n) = aT(n/b) + f(n)$$

- Contudo, a relação não está bem definida, pois n/b pode não ser inteiro
- De fato, relaxamos a definição, mas o correto seria usar $T(\lceil n/b \rceil)$ ou $T(\lfloor n/b \rfloor)$
 - Não importa qual usar, pois isso não afeta o comportamento assintótico da recorrência

Referências

- Ziviani, Nivio. Projeto de Algoritmos: com implementações em Java e C++. Cengage. 2007.
- Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., Stein, Clifford. Introduction to Algorithms. 2a ed. MIT Press, 2001.
- Gersting, Judith L. Fundamentos Matemáticos para a Ciência da Computação. 3a ed. LTC. 1993.