Derivative

22 Juin, 2023

Lucas

1. The Derivative

1.1. Definition

The Derivative is the rate of change of function f(x) with respect to an independent variable $\langle x \rangle$. It's the slope of the tangent line at a point x

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Example:

$$\begin{split} f(x) &= x^2 \\ \frac{df}{dx} &= \lim_{\Delta x \to 0} \frac{\left(x + \Delta x\right)^2 + -x^2}{\Delta x} \\ \lim_{\Delta x \to 0} \frac{x^2 + 2x\Delta x + \left(\Delta x\right)^2 - x^2}{\Delta x} \\ \lim_{\Delta x \to 0} \frac{2x\Delta x}{\Delta x} + \frac{\left(\Delta x\right)^2}{\Delta x} \\ \lim_{\Delta x \to 0} 2x + \Delta x \\ \lim_{\Delta x \to 0} 2x \end{split}$$

Power law: derivative of $f(x) = x^n = nx^{n-1}$

Chain law: Two function f(x),g(x) $\frac{d}{dx}f(g(x)) = \frac{df}{dx}(g(x)) \cdot \frac{dg}{dx}(x) = f'(g(x)) \cdot g'(x)$

Example:

$$f(x) = in(x)$$

 $g(x) = x^3$
 $f(g(x)) = in(x^3)$
 $f'(g(x)) = 3co(x^3)x^2$

1.2. Links

• <u>Identities</u>