Matrices definitivamente positivas

Definición 1. Una matriz $A = [a_{i,j}]_{1 \le i,j \le n}$, de $n \times n$, se llama definitivamente positiva si satisface:

1. para todo vector renglón $v = (v_1, \dots, v_n) \in \mathbb{R}^n$

$$vAv^t > 0$$

donde v^t denota la transpuesta de v, por lo que v^t es un vector columna, donde la expresión anterior se entiende como multiplicación de matrices.

2. Si v es un vector distinto de cero, entonces $vAv^t > 0$.

Ejemplo 1. En \mathbb{R}^2 tomar

$$A = \left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right]$$

con $\lambda_1 > 0$ y $\lambda_2 > 0$. Entonces A es completamente positiva.

Razón, tomando el vector v = (x, y)

$$vAv^t = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} \lambda_1 x \\ \lambda_2 y \end{bmatrix} = \lambda_1 x^2 + \lambda_2 y^2$$

Ya que $\lambda_1 > 0$ y $\lambda_2 > 0$ es claro que, para todo $v, vAv^t \geq 0$.

Adem'as, si $v \neq 0$, entonces $x^2 > 0$ o $y^2 > 0$. Como $\lambda_1 > 0$ y $\lambda_2 > 0$, se sigue que $\lambda_1 x^2 + \lambda_2 y^2 > 0$.

Por estas dos condiciones A es definitivamente positiva.

Nota: de manera similar, si se toma la matriz A una matriz diagonal de $n \times n$, donde las entradas de la diagonal sean todos números positivos, se obtiene que A es definitivamente positiva.

Las matrices definitivamente positivas se llaman así pues comparten algunas propiedades con los números positivos.

Proposición 1. Sean A y B dos matrices de $n \times n$, definitivamente positivas. Sea c > 0 un número positivo. Entonces la matriz A + cB es definitivamente positiva.

Proof. Sea $v \in \mathbb{R}^n$. Por las propiedades de la multiplicación de las matrices

$$v(A+cB)v^t = vAv^t + c(vBv^t).$$

Como A y B son definitivamente positivas, $vAv^t \geq 0$ y $vBv^t \geq 0$. Como c > 0 se sigue que $vAv^t + c(vBv^t) \geq 0$, por lo que $v(A + cB)v^t \geq 0$.

Ahora supongamos que v es distinto de cero. Como A y B son definitivamente positivas, $vAv^t > 0$ y $vBv^t > 0$. Ya que c > 0 se sigue $vAv^t + c(vBv^t) > 0$, por lo tanto $v(A + cB)v^t > 0$.

Por las dos condiciones mostradas, se concluye que A+cB es definitivamente positiva.

Definición 2. Una matriz C se llama definitivamene negativa si -C es definitivamente positiva.

Un aspecto en que las matrices difieren completamente de los números reales que una matriz distinto de cero no tiene por que ser definitivamente positiva ni definitivamente negativa.

Ejemplo 2. La matriz

$$M = \left[\begin{array}{cc} -1 & 0 \\ 0 & 3 \end{array} \right]$$

No es ni definitivamente negativa ni definitivamente positiva.

Proof. Supongamos que M es definitivamente positiva. Entonces, para todo vector v=(x,y)

$$vMv^t \ge 0 \tag{1}$$

Tomando v=(1,0) resulta

$$vMv = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = -1$$

en contradicción con (1).

Ahora supongamos que M es definitivamente negativa. Entonces N:=-M es definitivamente positiva, por lo que, para todo vector v

$$vNv^t \ge 0 \tag{2}$$

Tomando v = (0, 1) resulta

$$vNv = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -3 \end{bmatrix} = -3$$

en contradicción con (2).