Грахов Павел, вариант 29

Условие: Написать программу блочного умножения двух матриц C = AB, где A – симметричная (хранится как верхне-треугольная), B – верхне-треугольная.

Общий алгоритм: Перемножение каждых двух блоков \hat{B} и \hat{B} рассматривается как перемножение квадратных матриц порядка n, в целях лучшей оптимизации элементы произведения $B=\hat{B}\tilde{B}$ вычисляются по формуле

$$B_{ij} = \sum_{k=1}^{n} \hat{B}_{ik} (\tilde{B}^T)_{jk}$$

Учитывая представление матрицы A и верхне-треугольность B, элемент произведения C=AB высчитывается по формуле

$$C_{ij} = \sum_{k=1}^{j} (H[k-i] * A_{i,k-i} + H[i-k-1] * A_{k,i-k}^{T}) B_{k,j-k}$$

где

$$H[n] = \begin{cases} 0, & n < 0, \\ 1, & n \ge 0 \end{cases}$$

Иные существенные оптимизации не проводились.

Результаты: Программу можно скомпилировать с предопределениями INBLOCK_PARALLEL (произведение каждых двух блоков выполняется в параллельном режиме) и OUTBLOCK_PARALLEL (параллелизация выполняется на уровне матриц, то есть каждый поток будет считать произведение своих двух блоков). Были произведены замеры скоростей при перемножении квадратных матриц случайных чисел порядка 2048 и 4096 при разных размерах блоков, результаты можно увидеть ниже в таблице (значения даны в секундах).

Порядок матрицы	Blocksize	8	16	32	64	128	256	512	1024	2048	4096
	Режим										
2048	No OMP	7.62	4.70	4.30	4.16	4.65	4.97	5.55	6.98	9.13	-
	INBLOCK	_	44.80	5.40	2.29	1.76	1.68	1.82	2.39	3.22	-
	OUTBLOCK	-	1.79	1.46	1.26	1.37	1.44	1.78	3.74	9.36	-
4096	No OMP	-	39.64	35.05	33.03	36.21	37.64	40.13	46.82	54.93	73.47
	INBLOCK	_	_	54.19	16.30	12.28	12.07	12.17	15.02	17.97	25.22
	OUTBLOCK	-	-	10.17	9.30	10.20	10.54	12.44	16.28	29.00	73.78

Замеры проводились на компьютере с 4-х ядерным процессором с частотой 2.7Ггц (ICi5), программа компилировалась со следующими ключами:

где_X_ – INBLOCK_PARALLEL либо OUTBLOCK_PARALLEL либо ничего.

Для наглядности еще был построен график зависимости времени вычислений от размера блока для случая матрицы 2048:

Вывод: Достаточно ожидаемо, что при режиме OUTBLOCK_PARALLEL лучший результат получался при использовании того же размера блока, что и при достижении лучшего результата без оптимизаций, в данном случае оптимальным размером блока будет 64. При режиме INBLOCK_PARALLEL лучшим размером блока оказался 64*4 = 256.