CS1231 Review 19

1. Let G be an undirected graph.

Two distinct vertices a, b in G are adjacent or neighbours if \underline{ab} is an edge. An edge e and a vertex a in G are incident if e = ax for some x

2. Draw graph G if its adjacency matrix is as follows.

Then we compute

$$A^{2} = \begin{array}{c} a & b & c \\ \hline a & 8 & 4 & 2 \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline a & 8 & 4 & 2 \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline a & 8 & 4 & 2 \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline a & 8 & 4 & 2 \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline b & 4 & 6 & 5 \\ \hline c & 2 & 5 & 5 \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

$$\begin{array}{c} a & b & c \\ \hline \end{array}$$

How many paths are there in G connecting a and c of length 2?

- 3. The **degree** of a vertex u in G, denoted by $\underline{deg(u)}$, is $\underline{the number}$, with each loop counted as $\underline{2}$.
- 4. A vertex is **isolated** if its degree is 0.
- 5. Handshaking Theorem. Let G = (V, E) be a graph. Then $\frac{\sum_{v \in E} deg(v) = 2|E|}{|V|E|E|}$.
- 6. The complete graph on n vertices, denoted by $\frac{k_n}{n}$, is the simple graph. How many edges are there? $\frac{\binom{n}{2}}{2}$.
- 7. The cycle, denoted by $\frac{C_n}{N}$, $n \ge 1$, consists of $\frac{N}{N} \frac{V_0 V_1 V_2}{V_1 V_2} \cdots V_n$ and $\frac{V_1 V_2}{V_1 V_2} \cdots V_n \frac{V_1 V_2}{V_1 V_$
- adding a vertex and connect it to all others e.g W5

- 9. The *n*-dimensional hypercube or *n*-cube, denoted by <u>Qr</u>, is the simple graph whose vertices represent <u>hit string</u> of <u>length</u>. Two vertices are adjacent iff the bit string they represent diff at exactly one bit
- 10. A simple graph G = (V, E) is called **bipartite** if V can be divided into V such that All edges are connecting V. When this condition holds, we call (V_1, V_2) a bipartition of V.
- 11. A graph is bipartite iff it contains no odd cycle.

 12. Let $m, n \in \mathbb{Z}^+$. A complete bipartite graph on (m, n) vertices, denoted (m, n) is
- 12. Let $m, n \in \mathbb{Z}^+$. A **complete** bipartite graph on (m, n) vertices, denoted $\underline{\mathsf{km}}_{n}$ is a simple graph with vertices vertices $v_1, v_2, \ldots, v_m, w_1, w_2, \ldots, w_n$ and edges $\underline{\mathsf{V}}_{i}, \underline{\mathsf{v}}_{i}, \underline{\mathsf{v}}_{i}$
- 13. A graph H=(W,F) is a **subgraph** of a graph G=(V,E) if ______. and $W\subseteq V$ $F\subseteq E$