FELADATKIÍRÁS

A feladatkiírást a tanszéki adminisztrációban lehet átvenni, és a leadott munkába eredeti, tanszéki pecséttel ellátott és a tanszékvezető által aláírt lapot kell belefűzni (ezen oldal *helyett*, ez az oldal csak útmutatás). Az elektronikusan feltöltött dolgozatban már nem kell beleszerkeszteni ezt a feladatkiírást.

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék

A NES videojáték konzol FPGA alapú megvalósítása

DIPLOMATERV

 $\it K\'esz\'itette$ Varga Dominik

 $Konzulens \\ {\bf Raikovich~Tam\'{a}s}$

Tartalomjegyzék

Ki	Kivonat											i
Al	Abstract											ii
1. Bevezetés												1
2.	2. Felhasznált technológiák 2.1. Altium Designer											
3.	3. Nintendo Entertainmain System ismertetése											3
	3.1. Képalkotás - Picture process unit						 				 	3 3 3
1	4. NES FPGA alapú újra gondolása											4
4.	4.1. Képalkotás											$\frac{4}{4}$
5.	5. PCB terv ismertetése											5
	5.1. FPGA NES megvalósítása		 				 				 	5 5 6
	5.1.5. Digital Analog Converter és erősítő		 				 				· · · · · ·	6 7 7 7
	5.2. PCB layout		 				 				 	8 8 8

6.	FPC	GA tervezés						9
	6.1.	. Működési órajel választása		 	 	 		9
	6.2.	. Picture Process Unit		 	 	 		9
		6.2.1. PPU felkészítése VGA rendelés	shez	 	 	 		9
		6.2.2. Háttér rendering állapot gép		 	 	 		9
		6.2.3. Sprite rendering állapot gép .		 	 	 		11
		6.2.4. Memória elérés						
		6.2.5. Irányító regiszterek és PPU ad	atbusz	 	 	 		11
	6.3.	. Memória felépítése		 	 	 		11
	6.4.	. CPU		 	 	 		11
	6.5.	. APU		 	 	 		11
	6.6.	. Irányítás inputok kezelése		 	 	 		11
7.	A n	működéshez szükséges szoftver						12
8.	A N	NES tesztelése						13
9.	Öss	szefoglalás, jövőbeli tervek						14
K	öször	netnyilvánítás						15
\mathbf{Ir}	odalo	lomjegyzék						16
Fi	iggel	elék						17
	F.1.	. FPGA NES kártya kapcsolási rajza .		 	 	 		18
		F.1.1. Tápegység						18
		F.1.2. HDMI és MicroSD kártya csatl	akozó	 	 	 		19
		F.1.3. DAC, erősítő és kontroller áran	nkörök .	 	 	 		20
		F.1.4. SRAM és SPI-Flash		 	 	 		21
		F.1.5. FPGA OSC és JTAG \dots		 	 	 		22
		F.1.6. FPGA IO bankok		 	 	 		23

HALLGATÓI NYILATKOZAT

Alulírott Varga Dominik, szigorló hallgató kijelentem, hogy ezt a diplomatervet meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2023. június 2.	
	$Varga\ Dominik$
	hallgató

Kivonat

Jelen dokumentum egy diplomaterv sablon, amely formai keretet ad a BME Villamosmérnöki és Informatikai Karán végző hallgatók által elkészítendő szakdolgozatnak és diplomatervnek. A sablon használata opcionális. Ez a sablon IATEX alapú, a TeXLive TEXimplementációval és a PDF-IATEX fordítóval működőképes.

Abstract

This document is a LATeX-based skeleton for BSc/MSc theses of students at the Electrical Engineering and Informatics Faculty, Budapest University of Technology and Economics. The usage of this skeleton is optional. It has been tested with the *TeXLive* TeX implementation, and it requires the PDF-LATeX compiler.

Bevezetés

A bevezető tartalmazza a diplomaterv-kiírás elemzését, történelmi előzményeit, a feladat indokoltságát (a motiváció leírását), az eddigi megoldásokat, és ennek tükrében a hallgató megoldásának összefoglalását.

A bevezető szokás szerint a diplomaterv felépítésével záródik, azaz annak rövid leírásával, hogy melyik fejezet mivel foglalkozik.

Felhasznált technológiák

- 2.1. Altium Designer
- 2.2. Xilinx ISE

Nintendo Entertainmain System ismertetése

- 3.1. Képalkotás Picture process unit
- 3.2. 6502 Central processing unit
- 3.3. Audio process unit
- 3.4. Belső memória
- 3.5. játék kártyák mapperek

NES FPGA alapú újra gondolása

- 4.1. Képalkotás
- 4.2. Audio
- 4.3. Játékok tárolása
- 4.4. Kompakt hordozható méret

PCB terv ismertetése

5.1. FPGA NES megvalósítása

5.1. ábra. NES kártya blokkdiagramja

5.1.1. Tápellátás

5.1.2. Órajel források

Órajel forrás	FPGA láb
50 MHz-es oszcillátor	P85
Fejlesztői port CLK vonala	P95

5.1. táblázat. FPGA órajel forrásainak bekötése

5.1.3. Memória - SRAM

Címbusz									
SRAM	A0	A1	A2	A3	A4	A5	A6	A7	A8
FPGA láb	P47	P46	P45	P44	P43	P34	P33	P32	P30
SRAM	A9	A10	A11	A12	A13	A14	A15	A16	A17
FPGA láb	P29	P7	P6	P5	P2	P1	P139	P138	P137

5.2. táblázat. SRAM memória címbusz bekötése

Adatbusz										
SRAM	D0	D1	D2	D3	D4	D5	D6	D7		
FPGA láb	P40	P17	P21	P22	P23	P24	P26	P27		
SRAM	D8	D9	D10	D11	D12	D13	D14	D15		
FPGA láb	P8	P9	P10	P11	P12	P14	P15	P16		

5.3. táblázat. SRAM memória adatbusz bekötése

Vezérlő jelek									
SRAM	CSn	WEn	OEn	LBn	UBn				
FPGA láb	P41	P35	P140	P142	P141				

5.4. táblázat. SRAM memória vezérlő jelek bekötése

- 5.1.4. Soros Flash memória
- 5.1.5. Digital Analog Converter és erősítő
- 5.1.6. HDMI és I2C szint illesztő

5.2. ábra. aljzat anya

Funkció	Láb	Funkció	Láb
TMDS Data2+	1	TMDS Clock Shield	11
TMDS Data2 Shield	2	TMDS Clock-	12
TMDS Data-	3	CEC	13
TMDS Data1+	4	Reserved	14
TMDS Data1 Shield	5	SCL	15
TMDS Data1-	6	SDA	16
TMDS Data0+	7	DDC/CEC Ground	17
TMDS Data0 Shield	8	+5 V Power	18
TMDS Data0-	9	Hot Plug Detected	19
TMDS Clock+	10		

 ${\bf 5.5.}$ táblázat. HDMI pin kiosztás

5.1.7. Eredeti kontroller portok

5.1.8. MicroSD kártya

5.1.9. FPGA konfigurációs módok

Jumper állása	Konfigurációs mód	Leírás
JTAG SPI	JTAG	Az FPGA-t a JTAG interfacen keresztül kell felkonfigurálni.
JTAG SPI	SPI	Az FPGA az SPI buszos soros FLASH memóriából konfigurálja fel magát a tápfeszültség bekapcsolása vagy a PROG gomb megnyomását követően.

5.6. táblázat. Fejlesztői port bekötése

5.1.10. LOGSYS fejlesztői port

jel	Irány	FPGA láb
MOSI	bemenet	P104
MISO	kimenet	P144
CLK	bemenet	P95
RST	bemenet	P94

5.3. ábra. Fejlesztői port tűsorának kiosztása **5.7. táblázat.** Fejlesztői port bekötése

5.2. PCB layout

5.2.1. Komponensek elhelyezése

5.4. ábra. 3D PCB rajzolat

- 5.2.2. Réteg beállítások
- 5.2.3. Coplanar differential pair rooting
- 5.2.4. Táp vonalak kialakítása

FPGA tervezés

- 6.1. Működési órajel választása
- 6.2. Picture Process Unit
- 6.2.1. PPU felkészítése VGA rendeléshez
- 6.2.2. Háttér rendering állapot gép

```
1
             //rendering in visible frame
 2
             always@(*)
 3
             begin
             case (bgrender_state)
 4
 5
 6
             if (x_rendercntr[1:0] == 2'b01) // stay in visible frame or Pre rendering maybe should use
          this (& y_renderingcntr <= 9'd239 | x_rendercntr[1:0] == 2'b01 & y_renderingcntr == 9'd261)
 7
             next_state <= NT;</pre>
 8
             else
 9
            next_state <= IDLE;</pre>
10
             end
             NT:begin
11
12
             if (x_rendercntr[9:0] == 10'd681 & y_renderingcntr == 9'd261)begin // (341*2)-1 = 681 odd
          frame jump to NT in the last line of PPU rendering
13
             if(oddframe)
             next_state <= NT;</pre>
14
15
             else
16
             next_state <= IDLE;</pre>
17
             else if (x_rendercntr[9:0] == 10'd681 & y_renderingcntr <= 9'd239) // (341*2)-1 = 681 sleep
18
          just between 0-239
19
             next_state <= SLEEP;</pre>
             else if (x_rendercntr[9:0] == 10'd677) // (339*2)-1 = 677
20
21
             next_state <= NT;</pre>
             else if (x_rendercntr[1:0] == 2'b01)
22
23
             next_state <= AT;</pre>
24
             else
25
             next_state <= NT;</pre>
26
             end
27
             AT:begin
             if (x_rendercntr[1:0] == 2'b01)
28
29
             next_state <= BG_Lsb;</pre>
30
             else
31
             next_state <= AT;</pre>
32
             end
33
             BG_Lsb:begin
34
             if (x_rendercntr[1:0] == 2'b01)
35
             next_state <= BG_Msb;</pre>
36
             else
37
             next_state <= BG_Lsb;</pre>
38
             end
39
             BG_Msb:begin
             if (x_rendercntr[9:0] == 10'd513) // (257*2)-1 = 513
```

```
41
             next_state <= GB_NT_1;</pre>
             else if (x_rendercntr[1:0] == 2'b01)
42
43
             next_state <= NT;</pre>
44
             else
45
             next_state <= BG_Msb;</pre>
46
             end
47
             GB_NT_1:begin
48
             if (x_rendercntr[1:0] == 2'b01)
49
             next_state <= GB_NT_2;</pre>
50
             else
             next_state <= GB_NT_1;</pre>
51
52
             end
53
             GB_NT_2:begin
             if (x_rendercntr[1:0] == 2'b01)
54
55
             next_state <= SP_Lsb;</pre>
56
             next_state <= GB_NT_2;</pre>
57
58
             end
59
             SP_Lsb:begin
60
             if (x_rendercntr[1:0] == 2'b01)
61
             next_state <= SP_Msb;</pre>
62
             else
             next_state <= SP_Lsb;</pre>
63
64
65
             SP_Msb:begin
             if (x_rendercntr[9:0] == 10'b641) // (321*2)-1 = 641
66
67
             next_state <= NT;</pre>
68
             else if (x_rendercntr[1:0] == 2'b01)
69
             next_state <= GB_NT_1;</pre>
70
             else
             next_state <= SP_Msb;</pre>
71
72
             end
73
             //PPU and CPU en off just VGA rendering goes
74
             SLEEP:begin
75
             if (x_rendercntr == 11'd1363 & y_renderingcntr == 9'd239)
76
             next_state <= VBLANK;</pre>
             else if (x_rendercntr == 11'd1363 & y_renderingcntr < 9'd239) // (341*4)-1 = 1363</pre>
77
78
             next_state <= IDLE;</pre>
79
             else
80
             next_state <= SLEEP;</pre>
81
             end
             /\!/\!I take prost-rendering line and VBlank together just one bit set in this section
82
83
             VBLANK:begin
             if (x_rendercntr[9:0] == 10'd681 & y_renderingcntr <= 9'd260) //(341*2)-1 = 681</pre>
84
85
             next_state <= IDLE;</pre>
86
             else
             next_state <= VBLANK;</pre>
87
88
89
             default:
90
             next_state <= 4'bxxxx;</pre>
91
             endcase
92
             end
93
```

- 6.2.3. Sprite rendering állapot gép
- 6.2.4. Memória elérés
- 6.2.5. Irányító regiszterek és PPU adatbusz
- 6.3. NES memória felépítése FPGA-ban
- 6.4. CPU
- 6.5. APU
- 6.6. Játék vezérlők kezelése

A működéshez szükséges szoftver

A NES tesztelése

Összefoglalás, jövőbeli tervek

Köszönetnyilvánítás

Ez nem kötelező, akár törölhető is. Ha a szerző szükségét érzi, itt lehet köszönetet nyilvánítani azoknak, akik hozzájárultak munkájukkal ahhoz, hogy a hallgató a szakdolgozatban vagy diplomamunkában leírt feladatokat sikeresen elvégezze. A konzulensnek való köszönetnyilvánítás sem kötelező, a konzulensnek hivatalosan is dolga, hogy a hallgatót konzultálja.

Irodalomjegyzék

Függelék

F.1. FPGA NES kártya kapcsolási rajza

F.1.1. Tápegység

${\rm F.1.2.~HDMI}$ és MicroSD kártya csatlakozó

F.1.3. DAC, erősítő és kontroller áramkörök

F.1.4. SRAM és SPI-Flash

F.1.5. FPGA OSC és JTAG

F.1.6. FPGA IO bankok

