Green Function And Discretized Laplacian Operator

Shuang Hu

2023.3.4

Statement

I would like to acknowledge the help from Huiteng Li.

1 Introduction

Definition 1.1. For a fixed $\bar{x} \in [0,1]$, the **Green's function** $G(x;\bar{x})$ is the function of x that solves the BVP

$$\begin{cases} u''(x) = \delta(x - \bar{x}); \\ u(0) = u(1) = 0, \end{cases}$$
 (1)

where $\delta(x - \bar{x})$ is the Dirac delta function.

Discretize equation (1), then find the inverse of matrix

$$A = \frac{1}{h^2} \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$
 (2)

by Green's function. In (2), for $n \times n$ matrix $A, h = \frac{1}{n+1}$. A is discretized Laplacian operator.

2 Discretize the dirac delta function

Dirac delta function isn't a usual continuous function, so we should find a new method to discretize it. In fact, when we discretize a function, we exactly find a **grid function** to approximate it. For delta function $\delta(x-\bar{x})$, it satisfies:

- $\forall x \neq \bar{x}, \, \delta(x \bar{x}) = 0.$
- $\int_{-\infty}^{+\infty} \delta(x \bar{x}) dx = 1.$

So, assume $\bar{x} = x_j$ is on the discretized grid set $X := \{x_j\}_{j=1}^n$, the discretized grid function $\delta_g : X \to \mathbb{R}$ satisfies:

- $\delta_g(x_i) = \delta_{ij}$ while δ_{ij} is the Kronecker symbol.
- $\|\delta_q\|_1 = 1$, $\|\cdot\|$ means the **q-norm** of grid function.

Then:

$$\delta_g(x_i) = \begin{cases} 0, i \neq j; \\ \frac{1}{h}, i = j. \end{cases}$$
 (3)

So, for $\bar{x} = x_j$, the discretized linear system for equation (1) is:

$$-AU = \frac{1}{h}e_j. \tag{4}$$

When $h \to 0$, $\delta_g \to \delta$ and $A \to -\Delta$, so we can use (4) to discretize equation (1).

Inverse of discretized Laplacian operator

If we admit (4) has no truncated error, we can use green's function to derive the inverse of matrix A. For $B=A^{-1}$, mark $B=[b_1,\cdots,b_n]$, we can see:

$$Ab_j = e_j. (5)$$

If U_j satisfies (4), $b_j = -hU_j$. By the definition of green's function, when $\bar{x} = x_j$, the solution of equation (1) is $G(x; x_j)$. Its restriction operator on X is $G(x_i; x_i)$. So, if truncated error $\tau = 0$, we can see:

$$U_{j} = \begin{bmatrix} G(x_{1}; x_{j}) \\ G(x_{2}; x_{j}) \\ \vdots \\ G(x_{n}; x_{j}) \end{bmatrix}.$$

$$(6)$$

So, if $B = A^{-1}$, we can see $b_{ij} = -hG(x_i; x_j)$. We can verify that B is indeed the inverse of A.

Discussion

How to show (4) has no truncated error?