

Нормализация БД. Нормальные формы

Код и наименование специальности: 09.02.07. Информационные системы и программирование

Наименование программы: Основы проектирования баз данных

Модуль: Информационно-коммуникационные технологии в образовании

Авторы курса: Фридман Виктор Александрович

ГБПОУ Колледж бизнес-технологий

Рассматриваемые вопросы

- 1. Нормализация БД
- 2. Нормальные формы.
- 3. Первая нормальная форма
- 4. Вторая нормальная форма
- 5. Третья нормальная форма
- 6. Нормальная форма Бойса-Кодда
- 7. Четвертая нормальная форма
- 8. Пример нормализации БД

1. Нормализация БД

На этапе декомпозиции происходит процесс последовательной нормализации схем отношений

Каждому этапу нормализации соответствует своя нормальная форма Каждая нормальная форма обладает следующими свойствами

Каждая следующая нормальная форма улучшает в некотором смысле свойства предыдущей

При переходе к следующей нормальной форме свойства предыдущих нормальных форм сохраняются

Сохраняется эквивалентность схемы БД при переходе к следующей нормальной форме

В теории реляционных баз данных разработана следующая последовательность нормальных форм (НФ):

- первая нормальная форма (1НФ)
 - вторая нормальная форма (2НФ)
 - третья нормальная форма (ЗНФ)
 - нормальная форма Бойса-Кодда (БКНФ)
 - четвертая нормальная форма (4НФ)
 - пятая нормальная форма (5НФ)

Эквивалентные преобразования в нормальных формах основаны на анализе функциональных зависимостей между атрибутами отношения

Функциональная зависимость набора атрибутов В от набора

атрибутов A отношения R
$$R.A
ightarrow R.B$$
 или $A
ightarrow B$

называется такое соотношение проекций R[A] и R[B], при котором в каждый момент времени любому элементу проекций R[A] соответствует только один элемент проекций R[B], входящий вместе с ним в какой-либо кортеж отношения R

Пусть имеется следующее отношение R с набором данных

A	В	С	D
a ₁	b ₁	C ₁	d ₁
a_2	b ₂	C ₁	d ₁
a ₁	b ₁	C ₂	d ₂
a_3	b ₁	C ₂	d_3
a_2	b ₂	C ₃	d ₂
a ₁	b ₁	C ₃	d ₄
a ₄	b_3	C ₄	d ₂

Функциональные зависимости определяются не на текущем состоянии БД, а на всевозможных её состояниях.

Функциональные зависимости определяются исходя из глубокого анализа предметной области.

Пусть имеется следующее отношение

R (Имя, Дата рождения, Знак зодиака)

Определим функциональные зависимости

Знака зодиака от Даты рождения

решение

(Дата рождения) ->(Знак зодиака)

Функциональные зависимости определяются исходя из глубокого анализа предметной области.

Знак зодиака определяется по месяцу и дню рождения!

3. Первая нормальная форма

1НФ

Отношение находится в 1НФ тогда и только тогда, когда на пересечении каждого столбца и каждой строки находиться только элементарные значения атрибутов.

Признаки нахождения отношения в 1НФ

- 1. Все поля атомарны
- 2. Отсутствуют повторяющиеся группы
- 3. Определён первичный ключ
- 4. Все атрибуты зависят от первичного ключа

3. Первая нормальная форма

1НФ

Например, пусть имеется таблица расписания

Преподаватель	День недели	Номер пары	Дисциплина	Тип занятий	Группа
Петров	пн,вт,ср	1, 1, 2	ПА, АВМ,ОПБД	лк, лб, лб	8032, 7032, 7033
Сидоров	вт,вт,ср	2, 3, 1	АВМ,ПА, ОПБД	лк, лб, лб	7033, 7032, 8032
Иванов	пн,ср,пт	2, 3, 1	AOC, ΠΑ, AOC	лк, лб, лб	7032, 8032, 7033

3.Первая нормальная форма

Приведение таблицы расписания к 1НФ

Преподаватель РК	День недели РК	Номер пары РК	Дисциплина	Тип занятий	Группа
Петров	пн	1	ПА	лк	8032
Петров	ВТ	1	ABM	лб	7032
Петров	ср	2	опьд	лб	7033
Сидоров	ВТ	2	ABM	лк	7033
Сидоров	ВТ	3	ПА	лб	7032
Сидоров	ср	1	опьд	лб	8032
Иванов	пн	2	AOC	лк	7032
Иванов	ср	3	ПА	лб	8032
Иванов	пт	1	AOC	лб	7033

4. Вторая нормальная форма

2НФ

Отношение находится в 2НФ тогда и только тогда, когда оно находится в 1НФ и не содержит неполных функциональных зависимостей не первичных атрибутов от атрибутов первичного ключа.

Полная функциональная зависимость – это когда значение в каждом не ключевом столбце однозначно определяется значением всех столбцов первичного ключа

Пример. Отношение R моделирующее сдачу сессии со следующими атрибутами R(ФИО; Ном.ЗК; Группа; Дисциплина; Оценка)

 $Hom3K \rightarrow \Phi MO$

 $Hom3K \rightarrow \Gamma pynna$

Для приведения отношения ко 2НФ следует разбить его на проекции: переместить неключевые атрибуты, между которыми существует неполная зависимость, в другое отношение

4. Вторая нормальная форма

2НФ

Пример. Отношение R моделирующее сдачу сессии со следующими атрибутами

5. Третья нормальная форма

3НФ

Отношение находится в ЗНФ тогда и только тогда, когда оно находится в 2НФ и не содержит транзитивных зависимостей (ни один не ключевой атрибут не зависит от другого не ключевого атрибута, а зависит только от первичного ключа).

Функциональная зависимость А->В называется транзитивной, если существует набор атрибутов С такой, что С не является подмножеством А и не включает в

себя B , $C \not\subset A$ $B \not\subset C$ существует зависимости $A \to C$ $C \to B$ не существует зависимость $C \not\to A$

5. Третья нормальная форма

Пример. Пусть имеется отношение R

R(ФИО; Ном.ЗК; Специальность; Группа)

PΚ

 $Hom3K \rightarrow \Phi ИO$

 $Hom3K \rightarrow \Gamma pynna$

 $Hom3K \rightarrow Cneциальность$

Группа → Специальность

Для приведения отношения ко 3НФ следует разбить его на проекции: переместить не ключевые атрибуты, между которыми существует зависимость, в другое отношение

 $Hom3K \rightarrow \Gamma pynna \rightarrow Cneциальность$

5. Третья нормальная форма

3НФ

6. Нормальная форма Бойса-Кодда

БКНФ

Отношение находится в БКНФ тогда и только тогда, когда оно находится в ЗНФ и каждый детерминант отношения является возможным ключом отношения Детерминантом наз. любой атрибут, от значения которого зависят значения других атрибутов

Условия, когда отношение находится в ЗНФ, но не находится в БКНФ:

- 1. Отношение имеет 2 или более потенциальных ключа;
 - 2. Потенциальные ключи являются составными.
 - 3. Потенциальные ключи перекрываются, т.е. имеют, по крайней мере, один общий атрибут.

6. Нормальная форма Бойса-Кодда

Пример. Пусть имеется отношение R, моделирующее сдачу экзаменационной сессии со следующими условиями:

- можно сдавать экзамен по одному предмету несколько раз
- для идентификации студента используется уникальный номер

R(ИД; Ном.3К; Дисциплина; Дата; Оценка) PK

Потенциальные ключи:

Функциональные зависимости

Ном.ЗК+ Дисциплина + Дата

Ном3К + Дисциплина+ Дата → Оценка

ИД+ Дисциплина + Дата

 $ИД + Дисциплина + Дата \rightarrow Оценка$

6. Нормальная форма Бойса-Кодда

Для приведения отношения ко БКНФ следует разбить его на проекции: переместить в другое отношение зависимую часть с детерминантом, который не является потенциальным ключом

7. Четвертая нормальная форма

4НФ

Отношение находится в 4НФ тогда и только тогда, когда оно находится в БКНФ и если в случае существования многозначной зависимости А->>В все остальные атрибуты функционально зависят от А (т.е. если существует многозначная зависимость, то только одного атрибута).

В отношении R(A,B,C) существует многозначная зависимость В от А (A->>B) в том и только в том случае, если множество значений В, соответствующее паре значений А и С, зависит только от А и не зависит от С

7. Четвертая нормальная форма

Этап декомпозиции

4НФ

Пример. Пусть имеется отношение R

R(Ном.ЗК; Группа; Дисциплина)

PK

Здесь имеются многозначные зависимости

Группа ->> Дисциплина

Группа ->> Ном.ЗК

Ном.ЗК	Группа	Дисциплина
20-01	20	AOC
20-02	20	AOC
20-03	20	AOC
20-01	20	ABM
20-02	20 <	ABM
20-03	20	ABM
20-01	20	ОПБД
20-02	20	ОПБД
20-03	20	ОПБД
21-01	21	AOC
21-02	21	AOC

7. Четвертая нормальная форма

4НФ

Теорема Фейджина: Отношение R(A,B,C) можно спроецировать без потерь в отношения $R_1(A,B)$ и $R_2(A,C)$ в том и только том случае, когда существует многозначная зависимость A->>B и A->>C

R(Ном.ЗК; Группа; Дисциплина)

R₁(Ном.ЗК; Группа)

PK

Ном.ЗК	Группа
20-01	20
20-02	20
20-03	20
21-01	21
21-02	21

PK

 R_2 (Группа; Дисциплина)

PK			
Группа	Дисциплина		
20	AOC		
20	ABM		
20	ОПБД		
21	ABM		
21	ОПБД		

8. Пример нормализации БД

Заказы
Код заказа РК
Дата заказа
Номер накладной
Фирма заказчика
Город
Адрес заказчика
Тел-факс
Контактное лицо (должность)
ФИО контактного лица
ФИО сотрудника
Должность сотрудника
Наименование товара
Спецификация товара
Количество
Цена
Сумма
Общая сумма

Пример нормализации таблиц БД ИС торговой фирмы

Заказы Код заказа РК К 1НФ Дата заказа Номер накладной Фирма заказчика Город Адрес заказчика Тел-факс Контактное лицо (должность) ФИО контактного лица ФИО сотрудника атрибутов Повторяющаяся Должность сотрудника

Общая сумма

8. Пример нормализации БД

Этап декомпозиции

Пример нормализации таблиц БД ИС торговой фирмы

Заказы
Код заказа РК
Дата заказа
Номер накладной
Фирма заказчика
Город
Адрес заказчика
Тел-факс
Контактное лицо
(должность)
ФИО контактного лица
ФИО сотрудника
Должность сотрудника
Общая сумма

К 3НФ_

8. Пример норалиазации БД

технологий

Этап декомпозиции

Пример нормализации таблиц БД ИС торговой фирмы

Полные функциональные зависимости:

(Код заказа, Наименование товара, Спецификация товара --> Количество, Сумма)

Не полные функциональные зависимости:

Наименование товара, Спецификация товара ->Цена (Код заказа-/-> Цена)

8. Пример нормализации БД

Пример нормализации таблиц БД ИС торговой фирмы

К 2НФ

Склад
Наименование товара РК
Спецификация товара РК
Организация - поставщик
Город
Адрес поставщика
Телфакс
Контактное лицо (должность)
ФИО контактного лица
Дата поставки
Номер накладной
Количество
Цена

Склад Поставщики Наименование товара Код поставщика Спецификация товара РК Организация - поставщик ∞ Код поставщика FK PK Город Дата поставки Адрес поставщика Номер накладной Тел.-факс Количество Контактное лицо (должност ФИО контактного лица Цена Сумма

Транзитивные зависимости:

Наименование товара, Спецификация товара -> Организация-> Город

8. Пример нормализации БД

Этап декомпозиции

К ЗНФ

Пример нормализации таблиц БД ИС торговой фирмы

Склад PK Код товара Наименование товара Спецификация товара Код поставщика Дата поставки Номер накладной Количество Цена Сумма

Склад	
Код склада РК	
Код товара FK	α
Спецификация товара	
Код поставщика	
Дата поставки	
Номер накладной	
Количество	
Цена	
Сумма	
Остаток на складе	

1 Каталог товаров Код товара РК
Наименование товара

Транзитивные зависимости:

Пример нормализации БД

ФИО контактного лица

сотрудника

Конечная схема БД после этапа нормализации

Вопросы для самопроверки

- 1. Таблица, в которой все атрибуты имеют единственное значение находится в ... нормальной форме.
- 2. Таблица, не содержащая частично зависимых атрибутов, находится в ...нормальной форме.
- 3. Таблица, в которой все не ключевые атрибуты полностью зависят от первичного составного ключа находится в ...нормальной форме.
- 4. Таблица, в которой нет зависимостей между не ключевыми атрибутами находится в ...нормальной форме.
- 5. Как называется зависимость не ключевого атрибута от части составного ключа?
- 6. Как называется зависимость не ключевого атрибута всего составного ключа?
- 7. Даны таблицы: Товар (Наименование, цена, название фирмы-производителя) и Фирма–производитель (Код фирмы, Название, Адрес). Определите внешний ключ.

Спасибо за внимание

>Спасибо за внимание!!!!!