Vision Transformer and attention modules

Antoine DIEZ LATTEUR

V2

ViT Principe de fonctionnement

Self-attention in ViT

Figure 1: The Transformer - model architecture.

Dataset MSTAR

Nombre d'images : 2740

Nombre de classes : 10

Tailles des images : 200x200

(après pré-traitements)

Images par classes	
Classe 1	292
Classe 2	233
Classe 3	298
Classe 4	256
Classe 5	233
Classe 6	299
Classe 7	299
Classe 8	232
Classe 9	299
Classe 10	299

Fig. 2 MSTAR database. (a) and (b) Visible light images for BMP2, BTR70, T72, BTR60, 2S1, BRDM2, D7, T62, ZIL131, and ZSU23/4. (c) and (d) Corresponding SAR images for 10 targets measured at azimuth angle of 45 deg.

Pre traitement

Transforms:

- Grayscale
- Resize 224x224
- Horizontal Flip
- Normalize

Our ViT model

86M paramètres

Têtes d'attention : 12

Blocs transformers: 12

Patchs: 16x16

Bloc	Description	Dimensions	7
Input	Image d'entrée : 224x224x3	224x224x3	E
Patch Embedding	Divise l'image en patches de 16x16 et les projette en un espace de dimension 768	14x14x768 (patches)	F
Position Embedding	Ajoute un encodage de position à chaque patch	197x768	
Class Token	Un token spécial ajouté pour la classification	1x768	
Transformer Layers (12 blocs)	Chaque bloc contient: - Multi-head Self-Attention (12 heads) - Norm Layer - MLP Layer (2 linéaires, GELU)	197x768 par bloc	
Layer Norm (LN)	Normalisation des couches	197x768	
Classification Head	Projection linéaire pour obtenir les classes finales	1000 (sortie finale)	

ViT full training

Hyperparamètres	valeurs
Batch size	32
Epoch	10
Learning rate	1e-3
Optimizer	Adam
Loss function	Cross Entropy Loss

Les résultats ne sont pas concluant

Les ViT nécessites de très grosses bases de données d'apprentissage

ViT fined Tuning of the classification Head

Hyperparamètres	valeurs
Batch size	32
Epoch	20
Learning rate	1e-4
Optimizer	Adam
Loss function	Cross Entropy Loss

Validation accuracy: 90.4%

Precision: 91.3%

Recall: 90.4%

F1 score: 90.1%

Major issues with class 2

ViT Fined Tuned

Hyperparamètres	valeurs
Batch size	32
Epoch	10
Learning rate	1e-4
Optimizer	Adam
Loss function	Cross Entropy Loss

Validation accuracy: 97.1%

Precision: 97.1%

Recall: 97.1%

F1 score: 97.1%

Issues with class partially corrected

Attention Modules

- Channel attention
- Spatial attention

FIGURE 4.3 – Module d'attention par canal.

FIGURE 4.2 – FCAB proposé.

FIGURE 4.4 – Module d'attention spatiale.

CNN₁

CNN₂

• Precision: 98.4%

• Recall: 98.3%

• F1 score: 98.3%

Learnable parameters :

- 0.8

- 0.6

0.4

0.2

Spatial attention model

- Accuracy: 98.3%
- Precision: 98.6%
- Recall:98.3%
- F1 score:98.2%
- Trainable parameters: 205M

CBAM model

Validation accuracy: 96.4%

• Precision : 96.5%

• Recall: 96.4%

• F1 score: 96.3%

Learnable parameters

