Introduction to Computer Networks

Current Scenario:

 Explosive Growth in the users of worldwide Communication

Emergence of various communication Networks

 Usage of bandwidth hungry information's such as graphics, images, video,

Evolution in Internet:

- As per Ericsson, 29 billion connected devices by 2023
- As per HIS Markit, 125 billion connected devices by 2030

Connected Devices Per Person:

The number of devices connected to IP networks will be more than three times the global population by 2023

Current Scenario and Users Demands:

- Level of desired QoS is high: low latency
- Very high demand for channel bandwidth
- Broadband Applications such as video on demand, location based services, interactive multiparty gaming, IPTV and so many

A Communications Model:

- Source
 - Generates data to be transmitted
- Transmitter
 - Converts data into transmittable signals
- Transmission System
 - Carries data
- Receiver
 - Converts received signal into data
- Destination
 - Takes incoming data

Simplified Communications Model:

(b) Example

Simplified Network Model:

Important Tasks of Communications Systems:

- Transmission System Utilization
- Interfacing
- Signal Generation
- Synchronization
- Exchange Management
- Error Detection and Correction
- Addressing and Routing
- Recovery
- Message Formatting
- Security
- Network Management

Direction of Data Flow

Data Flow

Simplex

- Unidirectional
- As on a one-way street

• Half-duplex

- Both can transmit and receive, but not at the same time
- Like a one-lane road with two-directional traffic
- Walkie-talkie

Full-duplex

- Transmit and receive simultaneously
- Like a two-way street, telephone network
- Channel capacity must be divided between two directions

Serial Transmission:

Parallel Transmission:

Networks:

- Point to point communication not usually practical
 - Devices are too far apart
 - Large set of devices would need impractical number of connections
 - Multiplexing
- Approaches for Communication:
 - Broadcasting
 - Multicasting
 - Unicasting

Networking Topologies:

- Mesh
- Star
- Tree
- Bus
- Ring
- Hybrid

Mesh Topology:

- Dedicated point-to-point link to every other nodes
- A mesh network with n nodes has n(n-1)/2 links. A node has n-1
 I/O ports (links)
- Advantages: No traffic problems, robust, security, easy fault identification & isolation
- Disadvantages: Difficult installation/reconfiguration, space, cost,
 Hence, we go for multiplexing

Star Topology:

- Dedicated point-to-point link only to a central controller, called hub/switch
- No direct traffic between devices
- Advantages: Less expensive, robust
- Disadvantages: dependency of the whole on one single point

Tree Topology:

Bus Topology:

- One long cable that links all nodes
- Tap, drop line, cable end
- Limit on the number of devices, distance between nodes
- Advantages: Easy installation, cheap
- Disadvantages: Difficult reconfiguration, no fault isolation, a fault or break in the bus stops all transmission

Ring Topology:

- Dedicated point-to-point link only with the two nodes on each sides
- One direction, repeater
- Advantages: Easy reconfiguration, fault isolation
- Disadvantage: Unidirectional traffic, a break in the ring cab disable the entire network

Hybrid Topology:

- Example: Main star topology with each branch connecting several stations in a bus topology
- To share the advantages from various topologies

Wide Area Networks:

- Large Geographical Area
- Consists of large number of Interconnected nodes
- Routing is required
- Technologies:
 - Circuit Switching
 - Packet Switching
 - Virtual Switching
 - Frame Relay
 - Asynchronous Transfer Mode (ATM)

Metropolitan Area Network:

- Designed to extend to an entire city
- Cable TV network, a company's connected LANs
- Owned by a private or a public company

Local Area Network:

- Small Networks
 - Building or small campus
- Usually owned by same organization as attached devices
- Data rates much higher
- Usually broadcast systems

Single building LAN

Multiple building LAN

Circuit Switching:

 Dedicated communications path established for the duration of the conversation

• e.g. telephone network

Packet Switching:

Small chunk (packet) of data at a time

Data packets sent out in a sequence

Packets passed from node to node between source and destination

Inter Network (Internet):

- Two or more networks are connected by internetworking devices
- Internetworking Devices: Router, Gateway, etc.

Internetwork Example

A heterogeneous network : four WANs and two LANs

The Internet

 1967: ARPANET proposed by DoD's ARPA(Advanced Research Project Agency)

 1969: ARPANET in a reality: UCLA, UCSB, SRI, U. of Utah

1973: Vint Cerf and Bob Kahn proposed TCP

Later, TCP was split into two protocols TCP and IP

Internet Today

a. Structure of a national ISP

b. Interconnection of national ISPs

Standards Organisations:

- IEEE: Institute of Electrical and Electronics Engineers
- ANSI: American National Standards Institute
- ISO: International Standards Organization
- ITU-T: International Telecommunications Union-Telecommunication
- EIA: Electronics Industry Association
- TIA: Telecommunications Industry Association
- Internet Advisory Board
- Frame Relay Forum
- ATM Forum
- IETF: Internet Engineering Task Force
- IRTF: Internet Research Task Force