G del's Incompleteness Theorems

Nicholas Ang 29 November 2023

1. Proving Mathematical Statements

"Why do we want a formal system for Mathematics?"

2. Axiomatic Systems

"How do we construct such a system, and what are its desired properties?"

3. Godel's Theorem

"What limitations do we face in constructing such a system?"

4. Implications

"What effect does the Theorem have on Maths and Computer Science?"

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Why do we want to prove statements using a formal system?

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

- "21 + 25 = 46"
- "In a right-angled triangle, the sum of squares of the lengths of the shorter sides equals the sum of the hypotenuse squared"
- "The sum of angles in any triangle is 180 degrees"

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

• "21 + 25 = 46"

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

 "In a right-angled triangle, the sum of squares of the lengths of the shorter sides equals the sum of the hypotenuse squared"

Area =
$$(a+b)^2$$

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

 "In a right-angled triangle, the sum of squares of the lengths of the shorter sides equals the sum of the hypotenuse squared"

Area =
$$(a+b)^2$$

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

 "In a right-angled triangle, the sum of squares of the lengths of the shorter sides equals the sum of the hypotenuse squared"

Area =
$$(a+b)^2$$

Area =
$$2ab + c^2$$

$$(a+b)^2 = 2ab + c^2$$

 $a^2 + 2ab + b^2 = 2ab + c^2$
 $a^2 + b^2 = c^2$

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Limitations

- Potential for ambiguity, as I am appealing to abstractions
 - Abstraction of counting (1, 2, 3 ... 21, ... 25)
 - Abstraction of geometry (square, triangle)
 - Abstraction of algebraic manipulation (distributive rule, ...)
- "Intuitive" proofs of this sort become really difficult when it becomes difficult to visualise the abstractions
 - Complex numbers
 - Sets
 - Groups
 - etc...

"Natural language proof" -> "Formal system proof"

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

2. Axiomatic Systems

How do we go about formalising Mathematics?

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

We know how to formalise stuff already...

Programming	Pattern-Matching on Strings	Proving Things in Maths			
$\label{eq:warmup} \mbox{ In C, if initially x has value 3, what's the value of the following?} $$x+++++++++++++++++++++++++++++++++++$	"Give me all the strings that have 3 a's"	Prove Pythagoras' Theorem			
"Just type in my compiler and see the output / ask on StackOverflow"	Do you want Only consecutive a's? - Exactly 3 a's or (3 or more)? - Small or capital 'a'?	Area = (a+b)^2			
$(op +) \langle n_1 + n_2, s \rangle \longrightarrow \langle n, s \rangle \text{if } n = n_1 + n_2$ $(op \geq) \langle n_1 \geq n_2, s \rangle \longrightarrow \langle b, s \rangle \text{if } b = (n_1 \geq n_2)$ $(op1) \frac{\langle e_1, s \rangle \longrightarrow \langle e'_1, s' \rangle}{\langle e_1 op e_2, s \rangle \longrightarrow \langle e'_1 op e_2, s' \rangle}$ $(op2) \frac{\langle e_2, s \rangle \longrightarrow \langle e'_2, s' \rangle}{\langle v op e_2, s \rangle \longrightarrow \langle v op e'_2, s' \rangle}$ L1 Operational Semantics	Regular expressions (concrete syntax) over a given alphabet Σ . Let Σ' be the 6-element set $\{\varepsilon, \emptyset, , *, (,)\}$ (assumed disjoint from Σ) $ U = (\Sigma \cup \Sigma')^* \\ axioms: \overline{a} \overline{c} \overline{\emptyset} \\ rules: \overline{r} \overline{r} \overline{s} \overline{r} \overline{s} \overline{r}^* \\ (where a \in \Sigma and r, s \in U) (a b)^* a(a b)^* a(a b)^* a(a b)^* a(a b)^* $				

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

We know how to formalise stuff already...

Programming	Pattern-Matching on Strings	Proving Things in Maths
$\label{eq:warmup} \begin{tabular}{ll} \textbf{Warmup} \\ \textbf{In C, if initially x has value 3, what's the value of the following?} \\ x++&+&x++&+&x++\\ \end{tabular}$	"Give me all the strings that have 3 a's"	Prove Pythagoras' Theorem
"Just type in my compiler and see the output / ask on StackOverflow"	Do you want Only consecutive a's? - Exactly 3 a's or (3 or more)? - Small or capital 'a'?	Area = (a+b)^2
$\begin{array}{ll} (\text{op +}) & \langle n_1 + n_2, s \rangle \longrightarrow \langle n, s \rangle & \text{if } n = n_1 + n_2 \\ \\ (\text{op } \geq) & \langle n_1 \geq n_2, s \rangle \longrightarrow \langle b, s \rangle & \text{if } b = (n_1 \geq n_2) \\ \\ (\text{op1}) & \frac{\langle e_1, s \rangle \longrightarrow \langle e_1', s' \rangle}{\langle e_1 \ op \ e_2, s \rangle \longrightarrow \langle e_1' \ op \ e_2} \end{array}$	Regular expressions (concrete syntax) over a given alphabet Σ . Let Σ' be the 6-element set $\{\varepsilon,\emptyset, ,*,(,)\}$ (assumed disjoint from Σ) $M = (\Sigma \cup \Sigma')^*$	ocl
$(op2) \ \frac{\langle e_2, s \rangle \longrightarrow \langle e_2', s' \rangle}{\langle v \ op \ e_2, s \rangle \longrightarrow \langle v \ op \ e_2',}$ L1 Operational Semantics	n we do the same? (y (a b)*a(a b)*a(a b)*	es:)

1 Mathematical **Statements**

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic **Systems**

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

	Regular Expressions	Mathematical Formalism
Alphabet	Characters {a, b, c}	Mathematical and Logical Symbols (= $x, 0, +,, \rightarrow, ^$)
Axioms	Arbitrary string of characters	
Derivation Rules	Star rule, concat rule,	
Deriving a string means that	The string matches the regular expression.	

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

	Regular Expressions	Mathematical Formalism
Alphabet	Characters {a, b, c}	Mathematical and Logical Symbols (= $x, 0, +,, \rightarrow, ^$)
Axioms	Arbitrary string of characters	
Derivation Rules	Star rule, concat rule,	
Deriving a string means that	The string matches the regular expression.	

Syntactically Correct (Well-formed)

Not Syntactically Correct (Not Well-formed)

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

	Regular Expressions	Mathematical Formalism
Alphabet	Characters {a, b, c}	Mathematical and Logical Symbols (= $x, 0, +,, \rightarrow$, ^)
Axioms	Arbitrary string of characters	Mathematical Statements that are intuitively true $(x + 0 = x)$ Logical Statements (A ^ B -> A)
Derivation Rules	Star rule, concat rule,	
Deriving a string means that	The string matches the regular expression.	

Syntactically Correct (Well-formed)

Not Syntactically Correct (Not Well-formed)

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

	Regular Expressions	Mathematical Formalism
Alphabet	Characters {a, b, c}	Mathematical and Logical Symbols (= $x, 0, +,, \rightarrow$, ^)
Axioms	Arbitrary string of characters	Mathematical Statements that are intuitively true $(x + 0 = x)$ Logical Statements (A ^ B -> A)
Derivation Rules	Star rule, concat rule,	Modus Ponens
Deriving a string means that	The string matches the regular expression.	

Syntactically Correct (Well-formed)

Not Syntactically Correct (Not Well-formed)

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

	Regular Expressions	Mathematical Formalism
Alphabet	Characters {a, b, c}	Mathematical and Logical Symbols (= $x, 0, +,, \rightarrow$, ^)
Axioms	Arbitrary string of characters	Mathematical Statements that are intuitively true $(x + 0 = x)$ Logical Statements (A ^ B -> A)
Derivation Rules	Star rule, concat rule,	Modus Ponens
Deriving a string means that	The string matches the regular expression.	The statement is true.

Syntactically Correct (Well-formed)

Not Syntactically Correct (Not Well-formed)

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Peano Language

Type	Symbol	Common Meaning
Constant	0	Zero element
Unary Operator	S	Successor
Binary Operator	+	Addition Operator
	×	Multiplication Operators
Logical Operator	=	Equality
	「「	Negation
	^	And
	(Bracket
)	Bracket
	\forall	For all
Free Variable	x	Used to quantify over numbers
	y	Used to quantify over numbers
	z	Used to quantify over numbers

The \Rightarrow , \vee , \exists symbols can be expressed from the composition of the above symbols.

We can have many free variables and can define more operators (such as exponentiation) as we wish.

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Peano Axioms

Successor	PA1	$\forall x \neg (Sx = 0)$
	PA2	$\forall x \forall y (Sx = Sy \Rightarrow x = y)$
Addition	PA3	$\forall x(x+0=x)$
	PA4	$\forall x \forall y (x + Sy \Rightarrow S(x + y))$
Multiplication	PA3	$\forall x(x \times 0 = 0)$
	PA4	$\forall x \forall y (x \times Sy \Rightarrow (x \times y) + x)$
Induction Family of Axioms	PA(Ind)	$(\phi(0) \land \forall x (\phi(x) \Rightarrow \phi(Sx)) \Rightarrow \forall x \phi(x))$

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Computation Theory

Not Syntactically Correct (Not Well-formed)

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Computation Theory

Not Syntactically Correct (Not Well-formed)

Syntactically Correct (Well-formed)

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Computation Theory

Not Syntactically Correct (Not Well-formed)

Syntactically Correct (Well-formed)

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Computation Theory

Not Syntactically Correct (Not Well-formed)

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Computation Theory

Not Syntactically Correct (Not Well-formed)

If there exists a statement Q for which both Q and Not-Q can be derived from the axioms, then the system is inconsistent.

Not Syntactically Correct (Not Well-formed)

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Computation Theory

Syntactically Correct (Well-formed)

In a consistent system, for every statement Q that can be derived from the axioms, it is impossible to derive the negation of Q.

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Computation Theory

Syntactically Correct (Well-formed)

Imagine an inconsistent system that includes our typical laws of logic, where there exist proofs for A along with Not(A). Then the following derivation holds:

- 1. A is true.
- 2. Either (P is a prime number) or A is true.
- 3. Since A is not true, P must be a prime number for (2) to hold.

So any statement is provable in an inconsistent system (with Boolean logic axioms), which is undesirable!

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Completeness

In a complete system, there will always either be a derivation for Q or not Q (for every well-formed statement Q).

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Computation Theory

Syntactically Correct (Well-formed)

3. Godel's Theorem

Can we construct an axiomatic system for the natural numbers that is both consistent and complete?

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Step 1. Assume complete system

Step 2. Derive contradiction

Step 3. Profit

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Step 2. Derive contradiction

"This sentence is false!"

"I am lying!"

"The set of all sets that do not contain themselves contains itself"

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Step 2. Derive contradiction

"This sentence is false!"

"I am lying!"

"The set of all sets that do not contain themselves contains itself"

Self-reference

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Godel Numbering

							8				
Г	ō	()	f	′	+	\rightarrow	\forall	=	x	#

A statement's Godel Number is a concatenation of the number assigned to each symbol, to form a new number.	The statement x+0=x will be assigned B72AB
A sequence of statements is the Godel number of each statement separated by a delimiter (e.g. C).	The sequence of statements x+0=1, x=x will be B72ABCBAB

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Provability Relation

						8				
ō	()	f	,	+	\rightarrow	\forall	=	x	#

We can now convert statements about our sentence into arithmetic properties of numbers.

Property of a sentence	Property of a number
The statement P is of the form Not(Q) where Q is another statement.	The first digit of the Godel Number of Q is $1(13^n < G < 2 * 13^n$ where n is the length of P)
X corresponds to a list of statements that are of the form Modus Ponens.	The Godel Number G(X) is of the form $\varphi C \varphi 8 \varphi C \varphi$ (some complicated inequality)
List of statements X provides a proof for statement Y.	$(G(X), G(Y)) \in Prov$ where $Prov$ is a relation over the natural numbers

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Godel Sentence

This is our Prov relation from before...

$$(\overline{X}, \overline{Y}) \in Prov \triangleq X \text{ proves } Y$$

from which we can construct another relation, NP which roughly translates to "n is not the Godel number of a proof of F instantiated with F's Godel's number"

$$(n, \overline{F(x)}) \in NP \triangleq (n, \overline{F(\overline{F})}) \notin Prov$$

allowing us to define the following statement that roughly translates to "For the Godel number \bar{X} representing statement X, there is no statement that proves $X(\bar{X})$ "

$$P(x) \triangleq \forall y.(y,x) \in NP$$

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Godel Sentence

$$(\overline{X}, \overline{Y}) \in Prov \triangleq X \text{ proves } Y$$
 $(n, \overline{F(x)}) \in NP \triangleq (n, \overline{F(\overline{F})}) \notin Prov$

$$P(x) \triangleq \forall y.(y, x) \in NP$$

Assume complete: $\exists n \in \mathbb{N}.(n, \overline{P(\overline{P})}) \in Prov \vee (n, \neg \overline{P(\overline{P})}) \in Prov.$

$$\exists n \in \mathbb{N}. (n, \overline{P(\overline{P})}) \in Prov$$
 (by definition of NP)
$$\exists y. (y, \overline{P}) \notin NP$$
 (by definition of exists)
$$\neg (\forall y. (y, \overline{P}) \in NP)$$
 (by definition of forall)
$$\forall y. (y, \overline{P}) \notin NP$$
 (by definition of P)

This is a derivation of the negation, so our system is inconsistent.

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

First Incompleteness Theorem (informally)

 Any axiomatic system (not just PA!) that includes statements which range over all natural numbers cannot be both complete and consistent.

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

4. Implications

Why does it matter?

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

There are unprovable statements

 Modern Mathematics chooses a consistent axiomatic system (typically ZFC) – so there are unprovable statements in ZFC

 Alternatively: abandon the formal framework (e.g. Mathematical Intuitionism)

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Computation Theory

• In the 1930s, Alan Turing applied the same idea to analysing models of computation

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Computation Theory

 Question: Can a sufficiently powerful computer solve all decision problems?

Input	1	2	3	4	5	6	•••	
Is the input a prime number?	No	Yes	Yes	No	Yes	No	•••	

Input	а	aa	abb	bab	abba	ba	•••
Is the string a palindrome?	Yes	Yes	No	Yes	Yes	No	•••

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Implications

 No, because there is no algorithm to decide if a program (written as a string) terminates

Input	<pre>while (True) { i = 1; } return;</pre>	<pre>i = 0; while (i < 5) { i = i + 1; } return;</pre>	•••
Does this program terminate?	No	Yes	•••

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Implications

 Assume we have a machine that takes in a program input string S, and outputs ("Yes" or "No") which is the answer to the Halting Problem

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Implications

- Now we augment the machine, such that if the answer prints "Yes", we go into an infinite loop.
- What does the Machine do when supplied with its own source code?

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

Thank you!

Slides and further reading available at https://github.com/angnicholas/godeltalk

Mathematical Epistemology (1)

- Realism (Plato)
 - Mathematical statements appeal to a World of Forms (perfect sphere, perfect circle, perfect 'one', ...)
- Logicism
 - Mathematical statements are an extension of systems of logic
- Formalism
 - Mathematical statements are true (relative to some axiomatic system) if they can be derived in that axiomatic system
- Intuitionism
 - Mathematical statements are dependent on appeals to mental constructs

Mathematical Epistemology (2)

- Since the failure of Hilbert's Program demonstrates that a "perfect" formalisation of Mathematics is not possible, appeals to utility become more apparent
 - ZFC is "good enough" for our purposes
- Mathematics as a tool for modelling real-world abstractions ("unreasonable effectiveness") – largely driven forward by what is "useful"

Provability Relation

List of statements X provides a proof for statement Y.

 $(G(X), G(Y)) \in Prov$ where Prov is a relation over the natural numbers

We look back at our earlier derivation:

This is in the relation:

This is also in the relation.

This is not in the relation:

1 Mathematical Statements

Proving Statements

Limitations of Natural Language Proofs

2 Axiomatic Systems

Formalising Maths

The Peano Axioms

Consistency

Completeness

3 Godel's Theorem

Godel Numbering

Mapping Sentences to Numbers

Godel Sentence

4 Implications

Foundations of Mathematics

