Изоляция транзакций

Содержание

- 🖲 Теория сериализации
- Статическое и динамическое управление выполнением транзакций
- Конфликтные ситуации
- 🖲 Протокол блокировок и уровни изоляции
- Уровни изоляции в SQL
- 🔘 Предикатные блокировки
- Гранулированные блокировки
- 🔘 Пессимистичные и оптимистичные методы
- Метод Field-By-Value
- Многоверсионность и метод временных меток
- 🔘 Проблема взаимоблокировок

Теория сериализации

- Изолированность создание видимости, что в системе одновременно выполняется только одна транзакция
- Скрытие проблем совместного выполнения
- Упорядочивание транзакций в процессе выполнения

Блокировка транзакций

- Блокировки механизм разграничения доступа к объектам
- При обращении к объекту транзакция блокирует объект (получает в пользование, владеет)
- Если объект уже заблокирован, то транзакция приостанавливается и попадает в очередь ожидания
- Транулированность блокировок
- Автоматическое выполнение блокировок в СУБД

Статическое планирование

- I(Ti) множество читаемых данных
- О(Ті) множество модифицируемых данных
- Конфликт с Тј, если
 - O(Ti) & (I(Tj) U O(Tj)) □□Ø или
 - O(Tj) & (I(Ti) U O(Ti)) □□Ø
- Недостаток
 - До выполнения нельзя описать множество используемых данных (зависит от результатов работы прикладного алгоритма)

Динамическое планирование

- 🖲 Транзакции: Ті
- 🖲 Объекты: Ој
- Во время выполнения:
 Ті связывается с Ој (владеет объектом)
- Современный широко используемый подход
- Недостаток: возможны взаимоблокировки

Зависимости между

- 4 варианта совместного выполнения 2-х разных транзакций
- Т1 READ A; Т2 READ A нет проблем
- Версии объекта < 0,1>, < 0,2>... < 0,n>
- Если транзакция выполняет READ <0,i>, то она зависит от версии объекта
- Если транзакция выполняет WRITE < 0,i > , то версия объекта зависит от транзакции

История выполнения транзакции

Потоки данных

Зависимости при изменении данных:

- READ WRITE
 - T1 READ e
 - T2 WRITE e
- WRITE READ
 - T1 WRITE e
 - T2 READ e
- WRITE WRITE
 - T1 WRITE e
 - T2 WRITE e

Конфликтные ситуации между транзакциями

Потерянные изменения (lost update)

T2 READ < c,1>

T1 WRITE <c,2>

T2 WRITE <c,3>

Конфликтные ситуации между транзакциями

Грязное чтение (dirty read)

T2 WRITE <c,2>

T1 READ <c,2>

T2 WRITE <c,3>

Конфликтные ситуации между транзакциями

Неповторяемое чтение (unrepeatable read)

T1 READ <c,1>

T2 WRITE <c,2>

T1 READ <c,2>

Теория сериализации

- Наличие циклов в потоках данных между транзакциями приводит к конфликтным ситуациям
- При отсутствии циклов возможно упорядоченное выполнение транзакций без конфликтов

12

Протокол блокировок

- З оператора для работы с блокировками
 - LOCK READ (SHARED LOCK)
 - LOCK WRITE(EXCLUSIVE LOCK)
 - UNLOCK
- Правильно сформированная транзакция
- Двухфазная транзакция

Совместимость блокировок

		Текущий режим			
		нет	SLOCK	XLOCK	
Требуем ый режим	SLOCK	+	+	-	
	XLOCK	+	-	-	

История выполнения

Транзакций Допустимая Н

Допустимая Допустимая Недопустимая последовательная непоследовательная непоследовательная непоследовательная

T1	SLOCK	A
T1	XLOCK	В
T1	READ	A
T1	WRITE	В
T1	UNLOCK	Α
T1	UNLOCK	В
T2	SLOCK	A
T2	READ	A
T2	XLOCK	В
T2	WRITE	В
T2	WRITE	В
T2	UNLOCK	Α
T2	UNLOCK	В

T2	SLOCK	A
T1	SLOCK	A
T2	READ	A
T2	XLOCK	В
T2	WRITE	В
T2	WRITE	В
T2	UNLOCK	A
T2	UNLOCK	В
T1	XLOCK	В
T1	READ	Α
T1	WRITE	В
T1	UNLOCK	Α
T1	UNLOCK	В

T1	SLOCK	A
T1	XLOCK	В
T2	SLOCK	A
T2	READ	A
<i>T2</i>	XLOCK	В
T2	WRITE	В
T2	WRITE	В
T2	UNLOCK	Α
T2	UNLOCK	В
T1	READ	A
T1	WRITE	В
T1	UNLOCK	A
T1	UNLOCK	В

T1 Begin		T₽ Begin
T1 Slock A		T2 Slock A
T1 Xlock B		T2 Read A
T1 Read A		T2 Xlock B
T1 Write B		T2 Write B
T1 Commit		T2 Rollback
	7	
	- V	

T Begin	T' Begin
T Slock A	T' Slock A
T Xlock B	T Read A
T Read A	T' Xlock B
T Write B	T Write B
T Commit	T' Rollback

Теория сериализации

- Если транзакция является правильно сформированной и двухфазной, то все истории выполнения транзакции являются допустимыми и последовательными (допускает изоляцию)
- Если транзакций не является двухфазной или правильно сформированной, то существует допустимая, но не последовательная история выполнения транзакции

Уровни изоляции

- 0□: Транзакции устанавливают short xlocks (правильно сформированная относительно write, не двухфазная)
- 1□: Транзакции устанавливают long xlocks (правильно сформированная относительно write, двухфазная)
- 2□: Транзакция устанавливает short slocks (правильно сформированная, недвухфазная)
- 3□: Транзакция устанавливает long slocks

(правильно сформированная, двухфазная)

Сравнение уровней изоляции

	0	1	2	3
Название	Xaoc	Browse, Read uncomitted	Cursor stability, Read committed	Serializible, Repeatable read
Защита	Позволяют другим работать	+ Нет потерянных изменений	+ Нет грязного чтения	+ Нет неповторяемо го чтения
Согласование изменений	Изменения видны сразу	Изменения вид транзакции	ны после заверц	ІЕНИЯ
Протокол блокировок	Short XLOCK	Long XLOCK	Long XLOCK + Short SLOCK	Long XLOCK + Long SLOCK
Структура транзакции	Правильно сф. для WRITE	Правильно сф. для WRITE + 2Ф	Правильно сформирован ная	Правильно сф. + 2Ф
Совместный доступ	Отличный			Плохой

Уровни изоляции в SQL

```
SET ISOLATION LEVEL TO

[ READ UNCOMMITED |

READ COMMITED |

REPEATABLE READ |

SERIALIZABLE ]
```

OPEN CURSOR C – "cursor stability"

Проблема фантомных записей

- Т1: Select phone from ... where NAME='Иванов' (5 записей)
- Т2: Insert into ... values(77, 'Иванов',....)
- Т1: Select phone from ... where NAME='Иванов' (6 записей!)
- **UNREPEATABLE READ!**

Гранулированные блокировки

Гранулированные блокировки

Блокировка Intent

		Текущий режим				
		IS	IX	SIX	S	X
Требу емый режи м	IS	+	+	+	-	-
	IX	+	+	-	-	-
	SIX	+	-	-	-	-
	S	-	-	-	+	-
	X	+	-	-	-	-

Порядок блокирования

- 🖲 От корня дерева к узлам
- Если S блокировка, то вышестоящая как минимум IS (IX, S, SIX, U, X)
- Если X блокировка, то вышестоящая как минимум IX (SIX, U, X)
- Блокировка обновления Update
- Порог эскалацииблокировок = N

Гранулированные блокировки

- Достоинства:
 - Решение проблемы фантомных записей
 - Меньше ресурсов при массовых обновлениях

Предикатные блокировки

- T1: Select PHONE from ... where NAME='Иванов'
 <T1, SLOCK, STUDENTS.NAME='Иванов'>
- ▼ T2: Insert into ... values(77, 'Иванов',....)

 <T2, XLOCK, STUDENTS.NAME='Иванов' and STUDENTS.ID=77>
- Проверка совместимости предикатов
- Транзакция приостанавливается, если возможно существование записей, делающих оба предиката истинными

Предикатные блокировки

- Достоинства
- Недостатки
 - Оложное выделение предикатов
 Опожное выделение выде
 - Сложность задачи определения совместимости предикатов (NP-полная задача)
 - Пессимистичное поведение (записей может и не быть в БД, а транзакция будет ждать). Пример, "в БД нет синеглазых шатенов"

Точные блокировки

- Проверка конфликтов на момент извлечения или модификации данных
- Select ... from ... where eye='blue'
- <T1, READ, eye=blue>
- Insert into ... values(5773,'Иванов','grey')
- <T2, WRITE, 'id=5773, name=Иванов, eye=grey>

Точные блокировки

- Достоинства
 - Решается проблема фантомных записей
 - Простая проверка на конфликты
- Недостатки
 - Высокая вероятность взамного блокирования

Пессимистичные и оптимистичные методы блокирования

- Пессимистичные высокая вероятность обращения к одним и тем же данным разных транзакция
- Оптимистичные низкая вероятность работы с одними и теми же данными
- Ключевые отличия:

 - Блокируют все записи на все время работы транзакции/блокируют только для проверки
- Hot Spot записи в БД

Снимки значений

- Снимки значений:
 - Сохранить старое значение каждого объекта
 - Откладываем обновления до фазы 2
 - Фаза 1 СОММІТ: если значение поменялось, то откат, иначе блокируем XLOCK
 - Фаза 2 COMMIT: выполняем все изменения, снимаем все блокировки

Отметки времени

- Отметки времени:
 - Сохранить время обновления каждого объекта
 - Откладываем обновления до фазы 2
 - Фаза 1 СОММІТ: если время поменялось, то откат, иначе блокируем XLOCK
 - Фаза 2 СОММІТ: выполняем все изменения, снимаем все блокировки

Многоверсионность

- Запись R хранит историю изменений
- R: [T0..T1): V0, [T1...T2) V1, [T2....) V3.
- Ті время выполнения СОММІТ транзакцией
- Последняя версия в история актуальная версия
- При старте транзакции запоминаем время ti
- При чтении транзакция читает значения записей на момент ti
- При изменении записи создается частная версия
- При выполнении СОММІТ выполняется согласование

Взаимное блокирование

- Определение момента блокирования
- Разрешение конфликтной ситуации
- T1 SLOCK A
- T1 READ A
- T2 SLOCK B
- T2 READ B
- T1 XLOCK B
- T2 XLOCK A

Определение взаимоблокировок

• Определение циклов в графе зависимостей

Разрешение конфликта

- Откатывается транзакция, кторая привела к образованию цикла
- Откатывается транзакция, на повторное выполнение которой будет затрачено меньшее количество ресурсов

Вопросы?