Notas de Apoio ao SOLVER do EXCEL: Problema de T	ransporte
Elisa Correia de Barros	

Problema de Transporte (PT)

Para exemplificar a utilização do Solver na resolução de Problemas de Transporte (PT) iremos usar o seguinte exemplo:

Uma empresa possui 3 armazéns A1, A2 e A3 onde dispõe de 75, 150 e 75 unidades de um determinado produto, respetivamente. A partir desses armazéns abastece 5 clientes C1, C2, C3, C4 e C5 que necessitam de 100, 60, 40, 75 e 25 unidades desse produto, respetivamente.

Sabendo que os custos unitários de transporte são:

		C3	C4	C5
3	2	3	4	1
4	1	2	4	2
1	0	5	3	2
		C1 C2 3 2 4 1 1 0		

Pretende-se determinar a distribuição do produto pelos diferentes clientes, de forma a minimizar o custo total de transporte.

Neste caso o PT está equilibrado – a oferta é igual à procura. O entanto, há outras variantes do PT ter em conta:

- Oferta total > Procura total consideram-se as restrições associadas às origens como sendo do tipo "\(\leq\)".
- Oferta total < Procura total consideram-se as restrições associadas aos destinos como sendo do tipo "\le ".
- Ligações impossíveis quando uma origem não consegue abastecer um destino coloca-se um
 "0" na respetiva célula.

O primeiro passo consiste em criar uma folha de cálculo com a informação contida no modelo onde devemos ter:

- Produtos transportados (C12:C14 a G12:G14).
- Total da oferta (J12 a J14).
- Total da procura (C15 a G15).
- Total do produto enviado dos armazéns aos clientes (p.ex.: na célula H12 encontra-se o valor do somatório do armazém A1 transportado para os clientes C1a C5).
- Total do produto recebido pelos clientes dos armazéns (p.ex.: na célula C15 encontra-se o valor do somatório do cliente C1 recebido dos armazéns A1 a A3).
- É necessário indicar o sentido da otimização (minimização) e o tipo de restrições (igualdades).
- Na célula H15 encontra-se o custo total do produto transportado entre os armazéns e os clientes.

Na janela do lado direito (da imagem seguinte) aparece uma mensagem a dizer que o Solver encontrou uma solução que verifica as restrições e as condições de otimização. Aceita-se então a solução do Solver que se apresenta na figura seguinte:

A solução ótima dada pelo Solver é:

- O armazém A1 fornece os clientes C1, C3 e C5 de 25, 25 e 25 unidades do produto, respetivamente;
- O armazém A2 fornece os clientes C2, C3 e C4 de, respetivamente, 60, 40 e 50 unidades do produto;
- O armazém A3 fornece apenas o cliente C1 com 75 unidades do produto;
- O custo total de transporte entre os armazéns e os clientes é de 615 u.m..

Como nos problemas de PL, também os problemas de PT apresentam relatórios dados pelo Solver.

Estes 3 relatórios (Resposta, Sensibilidade e Limites) possuem uma leitura idêntica aos problemas de PL. Apenas é necessário ter em conta se o problema é equilibrado ou se é, por lado, há desigualdade entre a oferta e a procura.

Neste problema apresentamos apenas o relatório de Resposta:

Relatório de Resposta

Microsoft Excel 14.0 Relatório de Resposta Folha de Cálculo: [Exemplo (TA).xlsx]Folha1 Relatório Criado: 22-02-2015 01:07:44

Resultado: O Solver encontrou uma solução. Todas as restrições e condições de optimização foram satisfeitas.

Motor do Solver

Motor: LP Simplex

Tempo de Solução: 0,016 Segundos. Iterações: 14 Subproblemas: 0

Opções do Solver

Tempo Máximo Ilimitado, Iterações Ilimitado, Precision 0,000001

Máximo de Subproblemas Ilimitado, Máximo de Soluções de Número Inteiro Ilimitado, Tolerância de Número Inteiro 1%, Assumir Não Negativo

Célula de Objectivo (Mínimo)

Célula Nome		Valor Original	Valor Final	
\$H\$15	Total Total	0	615	

Células de Variável

Célula Nome	Valor Original	Valor Final	Número inteiro
\$C\$12 A1C1	0	25	Contin
\$D\$12 A1C2	0	0	Contin
\$E\$12 A1C3	0	0	Contin
\$F\$12 A1C4	0	25	Contin
\$G\$12 A1C5	0	25	Contin
\$C\$13 A2C1	0	0	Contin
\$D\$13 A2C2	0	60	Contin
\$E\$13 A2C3	0	40	Contin
\$F\$13 A2C4	0	50	Contin
\$G\$13 A2C5	0	0	Contin
\$C\$14 A3 C1	0	75	Contin
\$D\$14 A3 C2	0	0	Contin
\$E\$14 A3 C3	0	0	Contin
\$F\$14 A3C4	0	0	Contin
\$G\$14 A3 C5	0	0	Contin

Restrições

Célula	Nome	Valor da Célula	Fórmula	Estado	Margem
\$C\$15	Total C1	100	\$C\$15=\$C\$17	Enlace	0
\$D\$15	Total C2	60	\$D\$15=\$D\$17	Enlace	0
\$E\$15	Total C3	40	\$E\$15=\$E\$17	Enlace	0
\$F\$15	Total C4	75	\$F\$15=\$F\$17	Enlace	0
\$G\$15	Total C5	25	\$G\$15=\$G\$17	Enlace	0
\$H\$12	A1 Total	75	\$H\$12=\$J\$12	Enlace	0
\$H\$13	A2 Total	150	\$H\$13=\$J\$13	Enlace	0
\$H\$14	A3 Total	75	\$H\$14=\$J\$14	Enlace	0