Heterofl: Computation and communication efficient federated learning for heterogeneous clients

Enmao Diao, Jie Ding, Vahid Tarokh

Duke University, University of Minnesota-Twin Cities

ICI R 2020

概述

- 背景
 - 用户的计算和通信能力有所不同, 甚至动态变化
- 贡献
 - 提出HeteroFL来训练各种各样的(heterogeneous)本地模型, 得到一个 全局模型

假设(Heterogeneous Models)

- 本地模型可以有相似的网络结构, 但可以缩减复杂度
- 隐藏通道数不同
- 计算复杂度等级:W_|^p ⊂ W_|^{p-1}··· ⊂W_|¹
- 处于中间复杂度的模型的参数被大模型完全覆盖,部分被小模型影响

$$W_g = W_l^1 = W_l^p \cup (W_l^{p-1} \setminus W_l^p) \cup \dots \cup (W_l^1 \setminus W_l^2)$$

static BN & Scaler

- sBN
 - 不追踪运行数据, 仅对批数据进行归一化
 - 服务器按序询问本地服务器, 同时更新全局BN数据
- Scaler(不同计算复杂度的模型参数会偏离到不同规模)
 - \circ 在训练阶段,缩放表达 $rac{1}{r^{p-1}}$
 - 推理阶段,全局模型不进行缩放
- 整个流程

```
y = \phi(\text{sBN}(\text{Scaler}(X_m W_m^p + b_m^p)))
```

Algorithm 1: HeteroFL: Heterogeneous Federated Learning

Input: Data X_i distributed on M local clients, the fraction C of active clients per communication round, the number of local epochs E, the local minibatch size B, the learning rate η , the global model parameterized by W_q , the channel shrinkage ratio r,

and the number of computation complexity levels P.

```
System executes:
```

```
Initialize W_q^0 and local capabilities information L_{1:K}
for each communication round t = 0, 1, 2, \dots do
     M_t \leftarrow \max(C \cdot M, 1)
     S_t \leftarrow \text{random set of } M_t \text{ clients}
     for each client m \in S_t in parallel do
          Determine computation complexity level p based on L_m
         r_m \leftarrow r^{(p-1)}, d_m \leftarrow r_m d_a, k_m \leftarrow r_m k_a
         W_m^t \leftarrow W_q^t[:d_m,:k_m]
         W_m^{t+1} \leftarrow \text{ClientUpdate}(m, r_m, W_m^t)
     end
     for each computation complexity level p do
         W_g^{p-1,t+1} \setminus W_g^{p,t+1} \leftarrow \frac{1}{M_t - M_{n:P,t}} \sum_{i=1}^{M_t - M_{p:P,t}} W_i^{p-1,t+1} \setminus W_i^{p,t+1}
     end
    W_a^{t+1} \leftarrow \bigcup_{n=1}^P W_a^{p-1,t+1} \setminus W_q^{p,t+1}
     Update L_{1:K}, \eta (Optional)
end
Query representation statistics from local clients (Optional)
```

ClientUpdate (m, r_m, W_m) :

 $B_m \leftarrow \text{Split local data } X_m \text{ into batches of size } B$ for each local epoch e from 1 to E do for batch $b_m \in B_m$ do $W_m \leftarrow W_m - \eta \nabla \ell(W_m, r_m; b_m)$

end end

Return W_m to server

实验结果

实验结果

Model	Ratio	Parameters	FLOPs	Space (MB)	Accuracy		
					IID	Non-IID	
						Local	Global
a	1.00	1.6 M	80.5 M	5.94	99.53	99.85	98.92
a-e	0.50	782 K	40.5 M	2.98	99.46	99.89	98.96
a-b-c-d-e	0.27	416 K	21.6 M	1.59	99.46	99.85	98.29
b	1.00	391 K	20.5 M	1.49	99.53	99.87	99.10
b-e	0.51	199 K	10.4 M	0.76	99.51	99.67	98.51
b-c-d-e	0.33	131 K	6.9 M	0.50	99.52	99.88	98.99
c	1.00	99 K	5.3 M	0.38	99.35	99.56	96.34
с-е	0.53	53 K	2.9 M	0.20	99.39	99.79	97.27
c-d-e	0.44	44 K	2.4 M	0.17	99.31	99.76	97.85
d	1.00	25 K	1.4 M	0.10	99.17	99.86	97.86
d-e	0.63	16 K	909 K	0.06	99.19	99.63	97.70
e	1.00	7 K	400 K	0.03	98.66	99.07	92.84
Standalone (Liang et al. 2020)	1.00	633 K	1.3 M	2.42	86.24	98.72	30.41
FedAvg (Liang et al., 2020)	1.00	633 K	1.3 M	2.42	97.93	98.20	98.20
LG-FedAvg (Liang et al., 2020)	1.00	633 K	1.3 M	2.42	97.93	98.54	98.17

总结

- 结果表明在iid和non.iid的情况下效果不错
- 规定了模型仅宽度不同

FedMD: Heterogenous Federated Learning via Model Distillation

Daliang Li, Junpu Wang Harvard University, Yale University NeurIPS workshop 2019

概述

- 背景
 - 因为隐私和知识产权,参与者不愿分享模型的细节
- 成果
 - 提出FedMD,服务器无需控制模型架构
 - 在参与者间翻译知识

框架

Algorithm 1: The FedMD framework enabling federated learning for heterogeneous models.

Input: Public dataset \mathcal{D}_0 , private datasets \mathcal{D}_k , independently designed model f_k , $k = 1 \dots m$, **Output:** Trained model f_k

Transfer learning: Each party trains f_k to convergence on the public \mathcal{D}_0 and then on its private \mathcal{D}_k . **for** i=1,2...P **do**

Communicate: Each party computes the class scores $f_k(x_i^0)$ on the public dataset, and transmits the result to a central server.

Aggregate: The server computes an updated consensus, which is an average $\tilde{f}(x_i^0) = \frac{1}{m} \sum_k f_k(x_i^0)$.

Distribute: Each party downloads the updated consensus $\tilde{f}(x_i^0)$.

Digest: Each party trains its model f_k to approach the consensus \tilde{f} on the public dataset \mathcal{D}_0 . **Revisit:** Each party trains its model f_k on its own private data for a few epochs

Revisit: Each party trains its model f_k on its own private data for a few epochs.

实验结果

总结

- 工作较为简单
- 每个参与方要达到共识可能比较麻烦