	G AND DIGITAL I from the academic		
	SEMESTER -	III	
Course Code	18CS33	CIE Marks	40
Number of Contact Hours/Week	3:0:0	SEE Marks	60
Total Number of Contact Hours	40	Exam Hours	03
	CREDITS -3	3	10.000

- Course Learning Objectives: This course (18CS33) will enable students to:

 Explain the use of photoelectronics devices, 555 timer IC, Regulator ICs and uA741 opamap IC
 - Make use of simplifying techniques in the design of combinational circuits.
 - Illustrate combinational and sequential digital circuits

 - Demonstrate the use of flipflops and apply for registers
 Design and test counters, Analog-to-Digital and Digital-to-Analog conversion techquiues.

Module 1	Contact Hours
Photodiodes, Light Emitting Diodes and Optocouplers ,BJT Biasing :Fixed bias ,Collector to base Bias , voltage divider bias, Operational Amplifier Application Circuits: Multivibrators using IC-555, Peak Detector, Schmitt trigger, Active Filters, Non-Linear Amplifier, Relaxation Oscillator, Current-to-Voltage and Voltage-to-Current Converter , Regulated Power Supply Parameters, adjustable voltage regulator ,D to A and A to D converter.	08
Text Book 1 :Part A:Chapter 2(Section 2.9,2.10,2.11), Chapter 4(Section 4.2,4.3,4.4),Chapter 7 (section (7.2,7.3.1,7.4,7.6 to 7.11), Chapter 8 (section (8.1,8.5), Chapter 9	
RBT: L1, L2 Module 2	
Karnaugh maps: minimum forms of switching functions, two and three variable Karnaugh maps, four variable karnaugh maps, determination of minimum expressions using essential prime implicants, Quine-McClusky Method: determination of prime implicants, The prime implicant chart, petricks method, simplification of incompletely specified functions, simplification using map-entered variables	08
Text book 1:Part B: Chapter 5 (Sections 5.1 to 5.4) Chapter 6(Sections 6.1 to 6.5)	
RBT: L1, L2	
Module 3 Combinational circuit design and simulation using gates: Review of Combinational circuit design, design of circuits with limited Gate Fan-in ,Gate delays and Timing diagrams, Hazards in combinational Logic, simulation and testing of logic circuits	08
Multiplexers, Decoders and Programmable Logic Devices: Multiplexers, three state buffers, decoders and encoders, Programmable Logic devices, Programmable Logic Arrays, Programmable Array Logic.	
Text book 1:Part B: Chapter 8,Chapter 9 (Sections 9.1 to 9.6) RBT: L1, L2	
Module 4	
Introduction to VHDL: VHDL description of combinational circuits, VHDL Models for	08

multiplexers, VHDL Modules.	
Latches and Flip-Flops: Set Reset Latch, Gated Latches, Edge-Triggered D Flip Flop 3,SR Flip Flop, J K Flip Flop, T Flip Flop, Flip Flop with additional inputs, Asynchronous Sequential Circuits Text book 1:Part B: Chapter 10(Sections 10.1 to 10.3),Chapter 11 (Sections 11.1 to 11.9) RBT: L1, L2	
Module 5	
Registers and Counters: Registers and Register Transfers, Parallel Adder with accumulator, shift registers, design of Binary counters, counters for other sequences, counter design using SR and J K Flip Flops, sequential parity checker, state tables and graphs Text book 1:Part B: Chapter 12(Sections 12.1 to 12.5),Chapter 13(Sections 13.1,13.3	08
RRT- I.1 I.2	1

RBT: L1, L2 Course Outcomes: The student will be able to :

- Design and analyze application of analog circuits using photo devices, timer IC, power supply and regulator IC and op-amp.
- Explain the basic principles of A/D and D/A conversion circuits and develop the same.
- Simplify digital circuits using Karnaugh Map , and Quine-McClusky Methods Explain Gates and flip flops and make us in designing different data processing circuits, registers
- and counters and compare the types.

 Develop simple HDL programs

Question Paper Pattern:

- The question paper will have ten questions.
 Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Charles H Roth and Larry L Kinney, Analog and Digital Electronics, Cengage Learning, 2019

Reference Books:

- 1. Anil K Maini, Varsha Agarwal, Electronic Devices and Circuits, Wiley, 2012.
- 2. Donald P Leach, Albert Paul Malvino & Goutam Saha, Digital Principles and Applications, 8th Bohald T Each, Albert an Marini & Goulain Sana, Digital Thichies and Applicant Edition, Tata McGraw Hill, 2015.
 M. Morris Mani, Digital Design, 4th Edition, Pearson Prentice Hall, 2008.
 David A. Bell, Electronic Devices and Circuits, 5th Edition, Oxford University Press, 2008