

FCC PART 15.247 TEST REPORT

For

Alinket Electronic Technology (Shanghai) Co., Ltd.

Room 403, No. 10, Lane 198, Zhangheng Road, Pudong, Shanghai, China

FCC ID: 2AELJ-ALXC12B

Report Type:		Product Type:
Original Report		Alinket wireless controller
Test Engineer:	Stone Zhang	Stone Zhang
Report Number:	RSHA18091800	03-00B
Report Date:	2018-10-29	
Reviewed By:	Oscar Ye RF Leader	Oscar. Ye
Prepared By:		88934268

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliant Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	4 1
TEST METHODOLOGY	
Measurement Uncertainty	5
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
SPECIAL ACCESSORIES	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	7
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
FCC §1.1310& §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUPEMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	14
TEST RESULTS SUMMARY	14
TEST DATA	
FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	18
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (1)-CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
TEST PROCEDURE	
FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST	42
Applicable Standard	
Test Procedure	

Bay Area Compliance Laboratories Corp. (Kunsh

Report No.: RSHA180918003-00B

TEST DATA	42
FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	45
APPLICABLE STANDARD	45
TEST PROCEDURE	45
TEST DATA	45
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	61
APPLICABLE STANDARD	61
TEST PROCEDURE	61
TEST DATA	61
FCC §15.247(d) - BAND EDGES TESTING	
APPLICABLE STANDARD	67
TEST PROCEDURE	
Test Data	67

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Alinket Electronic Technology (Shanghai) Co., Ltd.
Tested Model	ALXC12B
Product Type	Alinket wireless controller
Dimension	32 mm (L)* 16 mm (W)*3.1 mm(H)
Power Supply	DC 3.3V

Report No.: RSHA180918003-00B

Objective

This test report is prepared on behalf of Alinket Electronic Technology (Shanghai) Co., Ltd. in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules.

The tests were performed in order to determine Compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS submissions with FCC ID: 2AELJ-ALXC12B.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and 558074 D01 15.247 Meas Guidance v05.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.247 Page 4 of 73

^{*}All measurement and test data in this report was gathered from production sample serial number: 20180918003. (Assigned by the BACL. The EUT supplied by the applicant was received on 2018-09-18)

Measurement Uncertainty

	Item	Uncertainty
AC Power Lines Conducted Emissions		3.19dB
RF conduct	ed test with spectrum	0.9dB
RF Output Po	ower with Power meter	0.5dB
	30MHz~1GHz	6.11dB
De l'ete l'encieden	1GHz~6GHz	4.45dB
Radiated emission	6GHz~18GHz	5.23dB
	18GHz~40GHz	5.65dB
Occupied Bandwidth		0.5kHz
Temperature		1.0℃
	Humidity	6%

Report No.: RSHA180918003-00B

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15.247 Page 5 of 73

SYSTEM TEST CONFIGURATION

Description of Test Configuration

Channel list for Bluetooth:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	40	2442
1	2403		
	•••		•••
•••	•••	78	2480
39	2441	1	/

Report No.: RSHA180918003-00B

EUT was tested with Channel 0, 39 and 78.

EUT Exercise Software

The EUT was tested under the engineering mode.

GFSK Power level: 12 π/4-DQPSK Power level: 10 8DPSK Power level: 10

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	Notebook	GX620	D65874152
DELL	Adapter	LA65NS0-00	DF263
Alinket	Test Board	ALXC12_EVK	/
Alinket	Serial Board	/	/

FCC Part 15.247 Page 6 of 73

External I/O Cable

Cable Description	Length (m)	From Port	То
Power Cable	1.2	Notebook	Adapter

Block Diagram of Test Setup

For Conducted Emissions:

FCC Part 15.247 Page 7 of 73

For Radiated Emissions (Below 1GHz): Turntable 2m Diameter AC Source Test Board Notebook Adapter EUT Serial Board Non-Conductive Table 80cm above Ground Plane 1.5 Meter For Radiated Emissions(Above 1GHz): Turntable 2m Diameter AC Source Adapter Notebook Test Board EUT Serial Board Non-Conductive Table 150cm above Ground Plane 1.5 Meter

FCC Part 15.247 Page 8 of 73

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (I), §1.1310 & §2.1091	MAXIMUM PERMISSIBLE EXPOSURE (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
\$15.205, \$15.209 & \$15.247(d)	Radiated Emissions & Restricted Bands Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

FCC Part 15.247 Page 9 of 73

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Radiated Emission Test (Chamber 1#)						
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2017-11-12	2018-11-11	
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2016-12-26	2019-12-25	
Sonoma Instrunent	Pre-amplifier	310N	171205	2018-08-15	2019-08-14	
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/	
MICRO-COAX	Coaxial Cable	Cable-8	008	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-9	009	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-10	010	2018-08-15	2019-08-14	
	Radiated Em	ission Test (Chan	nber 2#)			
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2018-08-27	2019-08-26	
ETS-LINDGREN	Horn Antenna	3115	6229	2016-01-11	2019-01-10	
ETS-LINDGREN	Horn Antenna	3116	00084159	2016-10-18	2019-10-17	
A.H.Systems, inc	Amplifier	2641-1	466	2018-09-11	2019-09-10	
EM Electronics Corporation	Amplifier	EM18G40G	060726	2018-03-22	2019-03-21	
MICRO-TRONICS	Band notch Filter	BRM50702	G024	2018-08-05	2019-08-04	
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/	
MICRO-COAX	Coaxial Cable	Cable-6	006	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-11	011	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-12	012	2018-08-15	2019-08-14	
MICRO-COAX	Coaxial Cable	Cable-13	013	2018-08-15	2019-08-14	
	Rì	F Conducted Test				
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131/009	2017-11-12	2018-11-11	
Narda	Attenuator	10dB	010	2018-08-15	2019-08-14	
Alinket Electronic	RF Cable	AE0918003	C0918003	Each Time	/	
Conducted Emission Test						
Rohde & Schwarz	EMI Test Receiver	ESCS30	834115/007	2017-11-12	2018-11-11	
Rohde & Schwarz	LISN	ENV216	3560655016	2017-11-15	2018-11-14	
BACL	Auto test Software	BACL-EMC	CE001	/	/	
Narda	Attenuator/6dB	10690812-2	26850-6	2018-01-10	2019-01-09	
MICRO-COAX	Coaxial Cable	Cable-15	015	2018-08-15	2019-08-14	

Report No.: RSHA180918003-00B

FCC Part 15.247 Page 10 of 73

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310& §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RSHA180918003-00B

Applicable Standard

According to subpart §2.1091 and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Magnetic Field Power Density Averaging Time Strength (V/m) Strength (A/m) (mW/cm²) Averaging Time (minutes)					
0.3-1.34	614	1.63	*(100)	30		
1.34-30	824/f	2.19/f	*(180/f ²)	30		
30-300	27.5	0.073	0.2	30		
300-1500	/	1	f/1500	30		
1500-100,000	/	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency Mode Range		Anteni	Antenna Gain		e-up ucted wer	Evaluation Distance	Power Density	MPE Limit (mW/cm²)	
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(== ,,,,,===)	
Wi-Fi	2412~2462	2.70	1.86	19	79.43	20	0.0294	1.0	
BLE	2402~2480	2.70	1.86	10	10.00	20	0.0037	1.0	
BT	2402~2480	2.70	1.86	12	15.85	20	0.0059	1.0	

Conclusion: The EUT meets exemption requirement - RF exposure evaluation greater than 20cm distance specified in § 2.1091. If the device built into a host as a portable usage, the additional RF exposure evaluation may be required as specified by § 2.1093.

FCC Part 15.247 Page 11 of 73

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine Compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSHA180918003-00B

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has a FPC antenna for Bluetooth, which uses a unique type of connector to attach to the EUT, and the antenna gain is 2.7 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15.247 Page 12 of 73

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 13 of 73

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Corrected Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

Report No.: RSHA180918003-00B

The "Margin" column of the following data tables indicates the degree of Compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V) – Corrected Amplitude (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	20.2 ℃
Relative Humidity:	51 %
ATM Pressure:	101.3 kPa

The testing was performed by Stone Zhang on 2018-10-08.

EUT operation mode: Transmitting in high channel of GFSK mode (Worst case)

FCC Part 15.247 Page 14 of 73

AC 120V/60 Hz, Line

Frequency (MHz)	Corrected Amplitude (dBµV)	Detector (PK/AV/QP)	Bandwidth (kHz)	Line	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Comment
0.150	36.84	QP	9.000	L1	16.06	66.00	29.16	Compliant
0.150	17.22	AV	9.000	L1	16.06	56.00	38.78	Compliant
0.455	29.57	QP	9.000	L1	16.07	56.78	27.21	Compliant
0.455	18.48	AV	9.000	L1	16.07	46.78	28.30	Compliant
1.150	21.65	QP	9.000	L1	15.88	56.00	34.35	Compliant
1.150	15.67	AV	9.000	L1	15.88	46.00	30.33	Compliant
2.800	22.87	QP	9.000	L1	15.85	56.00	33.13	Compliant
2.800	16.78	AV	9.000	L1	15.85	46.00	29.22	Compliant
6.200	24.26	QP	9.000	L1	15.93	60.00	35.74	Compliant
6.200	16.38	AV	9.000	L1	15.93	50.00	33.62	Compliant
22.400	31.47	QP	9.000	L1	16.45	60.00	28.53	Compliant
22.400	15.24	AV	9.000	L1	16.45	50.00	34.76	Compliant

FCC Part 15.247 Page 15 of 73

AC 120V/60 Hz, Neutral

Frequency (MHz)	Corrected Amplitude (dBµV)	Detector (PK/AV/QP)	Bandwidth (kHz)	Line	Corrected Factor (dB)	Limit (dBµV)	Margin (dB)	Comment
0.180	37.29	QP	9.000	N	16.05	64.49	27.20	Compliant
0.180	14.94	AV	9.000	N	16.05	54.49	39.55	Compliant
0.425	29.38	QP	9.000	N	16.10	57.35	27.97	Compliant
0.425	16.72	AV	9.000	N	16.10	47.35	30.63	Compliant
1.150	21.27	QP	9.000	N	15.94	56.00	34.73	Compliant
1.150	15.59	AV	9.000	N	15.94	46.00	30.41	Compliant
2.950	22.66	QP	9.000	N	15.90	56.00	33.34	Compliant
2.950	17.29	AV	9.000	N	15.90	46.00	28.71	Compliant
6.800	24.43	QP	9.000	N	15.91	60.00	35.57	Compliant
6.800	17.09	AV	9.000	N	15.91	50.00	32.91	Compliant
21.850	33.36	QP	9.000	N	16.19	60.00	26.64	Compliant
21.850	17.36	AV	9.000	N	16.19	50.00	32.64	Compliant

Note

1) Corrected Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

2) Margin (dB) = Limit (dB μ V) – Corrected Amplitude (dB μ V)

FCC Part 15.247 Page 16 of 73

FCC $\S15.205$, $\S15.209$ & $\S15.247(d)$ – RADIATED EMISSIONS

Applicable Standard

FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

FCC Part 15.247 Page 17 of 73

EMI Test Receiver Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Report No.: RSHA180918003-00B

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1CHa	1MHz	3 MHz	/	PK
Above 1GHz	1MHz	3 MHz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude ($dB\mu V/m$) = Meter Reading ($dB\mu V$) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "Margin" column of the following data tables indicates the degree of Compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247.

FCC Part 15.247 Page 18 of 73

Test Data

Environmental Conditions

Temperature:	23.4 ℃-24.5 ℃
Relative Humidity:	49 %-51%
ATM Pressure:	101.1 kPa-101.3kPa

The testing was performed by Stone Zhang from 2018-10-14 to 2018-10-16.

EUT operation mode: Transmitting

Spurious Emission Test:

30MHz-1GHz:

Pre-Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK modes of operation in the X,Y and Z axes of orientation,, the worst case high channel of GFSK Mode in X-axis of orientation was recorded

Report No.: RSHA180918003-00B

Frequency	Corrected Amplitude	Ry Antenna			Corrected	Limit	Margin	
(MHz)	Quasi-peak (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)	
31.626215	18.17	199.0	Н	196.0	-5.0	40.00	21.83	
71.995100	25.23	101.0	V	308.0	-17.4	40.00	14.77	
99.591800	29.80	199.0	Н	1.0	-15.0	43.50	13.70	
156.917800	18.57	101.0	V	338.0	-12.6	43.50	24.93	
233.182600	31.90	101.0	Н	296.0	-12.2	46.00	14.10	
384.762400	26.03	101.0	Н	173.0	-8.4	46.00	19.97	

FCC Part 15.247 Page 19 of 73

1GHz-18GHz:

Pre-Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK modes of operation in the X,Y and Z axes of orientation,, the worst case **GFSK Mode in X-axis of orientation** was recorded

Report No.: RSHA180918003-00B

Note:

- 1. This test was performed with the 2.4-2.5 GHz notch filter.
- 2. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) Amplifier Factor (dB) Corrected Amplitude (dB μ V /m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) Corrected Amplitude (dB μ V /m)

Low Channel: 2402MHz

Frequency	Corrected Amplitude		Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	May Dook Ayonaga Haight Dolon	Degree	Factor (dB/m)	(dBµV/m)	(dB)			
1605.200000		23.61	150.0	V	206.0	-7.2	54.00	30.39
1605.200000	34.09		150.0	V	206.0	-7.2	74.00	39.91
3842.400000		33.71	200.0	Н	70.0	0.3	54.00	20.29
3842.400000	43.18		200.0	Н	70.0	0.3	74.00	30.82
4804.000000		37.36	150.0	Н	111.0	1.8	54.00	16.64
4804.000000	48.44		150.0	Н	111.0	1.8	74.00	25.56
7206.000000		41.24	200.0	Н	186.0	8.9	54.00	12.76
7206.000000	48.76		200.0	Н	186.0	8.9	74.00	25.24
10424.800000		41.17	200.0	V	250.0	12.7	54.00	12.83
10424.800000	51.31		200.0	V	250.0	12.7	74.00	22.69
17592.000000		47.10	150.0	V	80.0	17.3	54.00	6.90
17592.000000	56.77		150.0	V	80.0	17.3	74.00	17.23

FCC Part 15.247 Page 20 of 73

Middle Channel: 2441MHz

Full Spectrum

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Turntable Corrected Limit		Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1595.000000		29.60	150.0	V	205.0	-7.2	54.00	24.40
1595.000000	38.30		150.0	V	205.0	-7.2	74.00	35.70
3903.600000		33.36	150.0	Н	193.0	0.5	54.00	20.64
3903.600000	43.34		150.0	Н	193.0	0.5	74.00	30.66
4882.000000		37.01	150.0	Н	356.0	1.9	54.00	16.99
4882.000000	48.94		150.0	Н	356.0	1.9	74.00	25.06
7323.000000		42.87	200.0	Н	186.0	9.2	54.00	11.13
7323.000000	53.05		200.0	Н	186.0	9.2	74.00	20.95
10445.200000		40.21	150.0	V	282.0	12.7	54.00	13.79
10445.200000	51.57		150.0	V	282.0	12.7	74.00	22.43
17544.400000		47.05	200.0	V	333.0	17.2	54.00	6.95
17544.400000	57.36		200.0	V	333.0	17.2	74.00	16.64

FCC Part 15.247 Page 21 of 73

High Channel: 2480MHz

Full Spectrum

Frequency	Corrected Amplitude		Rx A	ntenna	Turntable	Corrected	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1595.000000		29.47	200.0	V	199.0	-7.2	54.00	24.53
1595.000000	36.86		200.0	V	199.0	-7.2	74.00	37.14
3407.200000		30.43	150.0	V	257.0	-0.9	54.00	23.57
3407.200000	40.80		150.0	V	257.0	-0.9	74.00	33.20
4960.000000		40.62	150.0	Н	180.0	2.0	54.00	13.38
4960.000000	50.67		150.0	Н	180.0	2.0	74.00	23.33
7440.000000		49.55	200.0	Н	186.0	9.6	54.00	4.45
7440.000000	57.61		200.0	Н	186.0	9.6	74.00	16.39
10632.200000		41.17	150.0	V	333.0	12.9	54.00	12.83
10632.200000	51.33		150.0	V	333.0	12.9	74.00	22.67
17524.000000		46.95	200.0	V	264.0	17.2	54.00	7.05
17524.000000	57.45		200.0	V	264.0	17.2	74.00	16.55

FCC Part 15.247 Page 22 of 73

18GHz-25GHz:

Pre-Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK modes of operation in the X,Y and Z axes of orientation,, the worst case **GFSK Mode in X-axis of orientation** was recorded

Report No.: RSHA180918003-00B

Date: 16.0CT.2018 10:41:52

Vertical

Date: 16.0CT.2018 11:05:34

FCC Part 15.247 Page 23 of 73

Fundamental Test & Restricted Bands Emissions:

Pre-Scan with GFSK, $\pi/4$ -DQPSK, 8DPSK modes of operation in the X,Y and Z axes of orientation,, the worst case **GFSK Mode in X-axis of orientation** was recorded

Report No.: RSHA180918003-00B

Note:

1. Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) – Amplifier Factor (dB) Corrected Amplitude (dB μ V /m) = Corrected Factor (dB/m) + Reading (dB μ V) Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V /m)

Engguenar	Corrected	Amplitude	Rx A	ntenna	Turntable	Corrected	Limit	Mangin			
Frequency (MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	Margin (dB)			
	Low Channel: 2402MHz										
2402.000000	107.37		200.0	Н	277.0	6.1	/	/			
2402.000000		106.51	200.0	Н	277.0	6.1	/	/			
2402.000000	105.20		150.0	V	147.0	6.1	/	/			
2402.000000		104.34	150.0	V	147.0	6.1	/	/			
2390.000000	47.37		200.0	Н	240.0	6.0	74.00	26.63			
2390.000000		38.73	200.0	Н	240.0	6.0	54.00	15.27			
		I	Middle Cha	nnel: 2441]	MHz						
2441.000000	107.84		150.0	Н	237.0	6.2	/	/			
2441.000000		106.57	150.0	Н	237.0	6.2	/	/			
2441.000000	105.35		150.0	V	176.0	6.2	/	/			
2441.000000		104.50	150.0	V	176.0	6.2	/	/			
			High Char	nnel: 2480N	ſНz						
2480.000000	108.60		200.0	Н	199.0	6.3	/	/			
2480.000000		107.71	200.0	Н	199.0	6.3	/	/			
2480.000000	106.48		100.0	V	178.0	6.3	/	/			
2480.000000		105.33	100.0	V	178.0	6.3	/	/			
2483.500000	51.87		150.0	Н	49.0	6.3	74.00	22.13			
2483.500000		46.65	150.0	Н	49.0	6.3	54.00	7.35			

FCC Part 15.247 Page 24 of 73

Conducted Spurious Emissions at Antenna Port

BDR (GFSK): Low Channel

BDR (GFSK): Middle Channel

FCC Part 15.247 Page 25 of 73

Report No.: RSHA180918003-00B

BDR (GFSK): High Channel

EDR (π/4-DQPSK): Low Channel

FCC Part 15.247 Page 26 of 73

EDR ($\pi/4$ -DQPSK): Middle Channel

EDR (π/4-DQPSK): High Channel

FCC Part 15.247 Page 27 of 73

Report No.: RSHA180918003-00B

EDR (8DPSK): Middle Channel

FCC Part 15.247 Page 28 of 73

Report No.: RSHA180918003-00B

EDR (8DPSK): High Channel

FCC Part 15.247 Page 29 of 73

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Report No.: RSHA180918003-00B

Test Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a. Span: Wide enough to capture the peaks of two adjacent channels.
- b. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c. Video (or average) bandwidth $(VBW) \ge RBW$.
- d. Sweep: Auto.
- e. Detector function: Peak.
- f. Trace: Max hold.
- g. Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Test Data

Environmental Conditions

Temperature:	23.4 °C-23.5 °C
Relative Humidity:	49 %-51%
ATM Pressure:	101.1 kPa-101.3kPa

The testing was performed by Stone Zhang on 2018-10-14 to 2018-10-16.

EUT operation mode: Transmitting

Test Result: Compliance.

FCC Part 15.247 Page 30 of 73

Mode	Channel	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
BDR (GFSK)	Low	2402	0.944	0.689	Pass
	Adjacent	2403			
	Middle	2441	1.010	0.693	Pass
	Adjacent	2442			
	High	2480	1.010	0.681	Pass
	Adjacent	2479			
EDR (π/4-DQPSK)	Low	2402	1.010	0.914	Pass
	Adjacent	2403			
	Middle	2441	0.998	0.914	Pass
	Adjacent	2442			
	High	2480	1.004	0.914	Pass
	Adjacent	2479			
EDR (8DPSK)	Low	2402	0.992	0.886	Pass
	Adjacent	2403			
	Middle	2441	0.992	0.882	Pass
	Adjacent	2442			
	High	2480	0.998	0.886	Pass
	Adjacent	2479			

Note: Limit = 20 dB bandwidth*2/3

BDR (GFSK): Low Channel

FCC Part 15.247 Page 31 of 73

BDR (GFSK): Middle Channel

BDR (GFSK): High Channel

FCC Part 15.247 Page 32 of 73

EDR ($\pi/4$ -DQPSK): Low Channel

EDR (π/4-DQPSK): Middle Channel

FCC Part 15.247 Page 33 of 73

EDR ($\pi/4$ -DQPSK): High Channel

EDR (8DPSK): Low Channel

FCC Part 15.247 Page 34 of 73

EDR (8DPSK): Middle Channel

EDR (8DPSK): High Channel

FCC Part 15.247 Page 35 of 73

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Report No.: RSHA180918003-00B

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	50 %
ATM Pressure:	101.3 kPa

The testing was performed by Stone Zhang on 2018-10-16.

EUT operation mode: Transmitting

Test Result: Compliance.

FCC Part 15.247 Page 36 of 73

Mode	Channel	Frequency (MHz)	20 dB Emission Bandwidth (MHz)
	Low	2402	1.034
BDR (GFSK)	Middle	2441	1.040
(GI SIK)	High	2480	1.022
EDR (π/4-DQPSK)	Low	2402	1.371
	Middle	2441	1.371
	High	2480	1.371
EDR (8DPSK)	Low	2402	1.329
	Middle	2441	1.323
	High	2480	1.329

BDR (GFSK): Low Channel

FCC Part 15.247 Page 37 of 73

BDR (GFSK): Middle Channel

BDR (GFSK): High Channel

FCC Part 15.247 Page 38 of 73

EDR ($\pi/4$ -DQPSK): Low Channel

EDR($\pi/4$ -DQPSK): Middle Channel

FCC Part 15.247 Page 39 of 73

EDR ($\pi/4$ -DQPSK): High Channel

EDR (8DPSK): Low Channel

FCC Part 15.247 Page 40 of 73

EDR (8DPSK): Middle Channel

EDR (8DPSK): High Channel

FCC Part 15.247 Page 41 of 73

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: RSHA180918003-00B

Test Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c. $VBW \ge RBW$.
- d. Sweep: Auto.
- e. Detector function: Peak.
- f. Trace: Max hold.
- g. Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies.

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	50 %
ATM Pressure:	101.3 kPa

The testing was performed by Stone Zhang on 2018-10-14.

EUT operation mode: Hopping

Test Result: Compliance.

FCC Part 15.247 Page 42 of 73

Mode	Frequency Range (MHz)	Number of Hopping Channel (CH)	Limit (CH)
BDR (GFSK)	2400-2483.5	79	≥15
EDR (π/4-DQPSK)	2400-2483.5	79	≥15
EDR (8DPSK)	2400-2483.5	79	≥15

BDR (GFSK): Number of Hopping Channels

FCC Part 15.247 Page 43 of 73

EDR ($\pi/4$ -DQPSK): Number of Hopping Channels

EDR (8DPSK): Number of Hopping Channels

FCC Part 15.247 Page 44 of 73

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: RSHA180918003-00B

Test Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a Span: Zero span, centered on a hopping channel.
- b RBW shall be \leq channel spacing and where possible RBW should be set \geq 1 / T, where T is the expected dwell time per channel.
- c Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d Detector function: Peak.
- e Trace: Max hold.

Test Data

Environmental Conditions

Temperature:	23.3 ℃
Relative Humidity:	50 %
ATM Pressure:	101.1 kPa

The testing was performed by Stone Zhang on 2018-10-29.

EUT operation mode: Hopping

FCC Part 15.247 Page 45 of 73

Mod	e	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result
		Low	0.435	0.139	0.4	Pass
	DIII	Middle	0.445	0.142	0.4	Pass
	DH1	High	0.443	0.142	0.4	Pass
		Note: DH1:Dwell time = Pulse time*(1600/2/79)*31.6S				
		Low	1.709	0.273	0.4	Pass
BDR	DH2	Middle	1.703	0.272	0.4	Pass
(GFSK)	DH3	High	1.733	0.277	0.4	Pass
		N	ote: DH3:Dwell t	ime = Pulse time*	(1600/4/79)*31.	6S
		Low	2.962	0.316	0.4	Pass
	DHE	Middle	3.042	0.324	0.4	Pass
	DH5	High	2.972	0.317	0.4	Pass
		N	ote: DH5:Dwell t	ime = Pulse time*	(1600/6/79)*31.	6S
		Low	0.455	0.146	0.4	
	2DH1	Middle	0.441	0.141	0.4	Pass
	20111	High	0.439	0.140	0.4	Pass
		Note: 2DH1:Dwell time = Pulse time*(1600/2/79)*31.6S				
		Low	1.709	0.273	0.4	Pass
EDR	2DH3	Middle	1.739	0.278	0.4	Pass
(π/4-DQPSK)		High	1.709	0.273	0.4	Pass
		Note: 2DH3:Dwell time = Pulse time*(1600/4/79)*31.6S				
		Low	3.002	0.320	0.4	Pass
		Middle	2.992	0.319	0.4	Pass
	2DH5	High	2.982	0.318	0.4	Pass
		Note: 2DH5:Dwell time = Pulse time*(1600/6/79)*31.6S				
	2011	Low	0.453	0.145	0.4	Pass
		Middle	0.435	0.139	0.4	Pass
EDR (8DPSK) 3DF	3DH1	High	0.441	0.141	0.4	Pass
		Ne	ote:3 DH1:Dwell	time = Pulse time	*(1600/2/79)*31	.6S
	20113	Low	1.709	0.273	0.4	Pass
		Middle	1.727	0.276	0.4	Pass
	3DH3	High	1.715	0.274	0.4	Pass
		Ne	ote: 3DH3:Dwell	time = Pulse time	*(1600/4/79)*31	.6S
	3DH5	Low	3.072	0.328	0.4	Pass
		Middle	2.972	0.317	0.4	Pass
		High	2.982	0.318	0.4	Pass
		Ne	ote: 3DH5:Dwell	time = Pulse time	*(1600/6/79)*31	.6S

FCC Part 15.247 Page 46 of 73

BDR (GFSK): Pulse time, Low Channel, DH1

BDR (GFSK): Pulse time, Middle Channel, DH1

FCC Part 15.247 Page 47 of 73

BDR (GFSK): Pulse time, High Channel, DH1

BDR (GFSK): Pulse time, Low Channel, DH3

FCC Part 15.247 Page 48 of 73

BDR (GFSK): Pulse time, Middle Channel, DH3

BDR (GFSK): Pulse time, High Channel, DH3

FCC Part 15.247 Page 49 of 73

BDR (GFSK): Pulse time, Low Channel, DH5

BDR (GFSK): Pulse time, Middle Channel, DH5

FCC Part 15.247 Page 50 of 73

BDR (GFSK): Pulse time, High Channel, DH5

EDR ($\pi/4$ -DQPSK): Pulse time, Low Channel, 2DH1

FCC Part 15.247 Page 51 of 73

EDR (π/4-DQPSK):Pulse time, Middle Channel, 2DH1

EDR (π/4-DQPSK):Pulse time, High Channel, 2DH1

FCC Part 15.247 Page 52 of 73

EDR (π/4-DQPSK):Pulse time, Low Channel, 2DH3

EDR (π/4-DQPSK):Pulse time, Middle Channel, 2DH3

FCC Part 15.247 Page 53 of 73

EDR (π/4-DQPSK):Pulse time, High Channel, 2DH3

EDR (π/4-DQPSK):Pulse time, Low Channel, 2DH5

FCC Part 15.247 Page 54 of 73

EDR (π/4-DQPSK):Pulse time, Middle Channel, 2DH5

EDR (π/4-DQPSK):Pulse time, High Channel, 2DH5

FCC Part 15.247 Page 55 of 73

EDR (8DPSK): Pulse time, Low Channel, 3DH1

EDR (8DPSK): Pulse time, Middle Channel, 3DH1

FCC Part 15.247 Page 56 of 73

EDR (8DPSK): Pulse time, High Channel, 3DH1

EDR (8DPSK): Pulse time, Low Channel, 3DH3

FCC Part 15.247 Page 57 of 73

EDR (8DPSK): Pulse time, Middle Channel, 3DH3

EDR (8DPSK): Pulse time, High Channel, 3DH3

FCC Part 15.247 Page 58 of 73

EDR (8DPSK): Pulse time, Low Channel, 3DH5

EDR (8DPSK): Pulse time, Middle Channel, 3DH5

FCC Part 15.247 Page 59 of 73

EDR (8DPSK): Pulse time, High Channel, 3DH5

FCC Part 15.247 Page 60 of 73

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Report No.: RSHA180918003-00B

Test Procedure

- a. Use the following spectrum analyzer settings:
 - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - 2) RBW > 20 dB bandwidth of the emission being measured.
 - 3) VBW \geq RBW.
 - 4) Sweep: Auto.
 - 5) Detector function: Peak.
 - 6) Trace: Max hold.
- b. Allow trace to stabilize.
- c. Use the marker-to-peak function to set the marker to the peak of the emission.
- d. The indicated level is the peak output power, after any corrections for external attenuators and cables.
- e. A plot of the test results and setup description shall be included in the test report.

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	50 %
ATM Pressure:	101.2 kPa

The testing was performed by Stone Zhang on 2018-10-14.

EUT operation mode: Transmitting

Test Result: Compliance.

FCC Part 15.247 Page 61 of 73

Mode	Frequency	Output Power		Limit
	(MHz)	(dBm)	(mW)	(mW)
	2402	10.49	11.19	125
BDR (GFSK)	2441	11.22	13.24	125
(GI SIL)	2480	11.85	15.31	125
EDR (π/4-DQPSK)	2402	8.70	7.41	125
	2441	9.50	8.91	125
	2480	9.99	9.98	125
EDR (8DPSK)	2402	8.81	7.60	125
	2441	9.50	8.91	125
	2480	9.99	9.98	125

BDR (GFSK): 2402MHz

FCC Part 15.247 Page 62 of 73

BDR (GFSK): 2441MHz

BDR (GFSK): 2480MHz

FCC Part 15.247 Page 63 of 73

$EDR(\pi/4-DQPSK)$: 2402MHz

EDR($\pi/4$ -DQPSK): 2441MHz

FCC Part 15.247 Page 64 of 73

EDR($\pi/4$ -DQPSK): 2480MHz

EDR(8DPSK): 2402MHz

FCC Part 15.247 Page 65 of 73

EDR(8DPSK): 2441MHz

EDR(8DPSK): 2480MHz

FCC Part 15.247 Page 66 of 73

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates Compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Report No.: RSHA180918003-00B

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	23.2 ℃
Relative Humidity:	50 %
ATM Pressure:	101.3 kPa

The testing was performed by Stone Zhang on 2018-10-14.

EUT operation mode: Transmitting & Hopping

Test Result: Compliance.

FCC Part 15.247 Page 67 of 73

BDR (GFSK): Left Side

Report No.: RSHA180918003-00B

BDR (GFSK): Right Side

FCC Part 15.247 Page 68 of 73

Report No.: RSHA180918003-00B

EDR ($\pi/4$ -DQPSK): Right Side

FCC Part 15.247 Page 69 of 73

EDR (8DPSK): Left Side

EDR (8DPSK): Right Side

FCC Part 15.247 Page 70 of 73

BDR (GFSK): Left Side - Hopping

BDR (GFSK): Right Side- Hopping

FCC Part 15.247 Page 71 of 73

EDR ($\pi/4$ -DQPSK): Left Side- Hopping

EDR (π/4-DQPSK): Right Side- Hopping

FCC Part 15.247 Page 72 of 73

EDR (8DPSK): Left Side-Hopping

Report No.: RSHA180918003-00B

EDR (8DPSK): Right Side- Hopping

***** END OF REPORT *****

FCC Part 15.247 Page 73 of 73