

ساختمان دادهها (۲۲۸۲۲)

مدرس: حسین بومری [زمستان 99]

جلسه ۸: مرتبه زمانی

در جلسه گذشته در حال محاسبه تابع بازگشتی بودیم و این جلسه ادامه مطالب و تعریف master theoryمی پردازیم و یکم هم از ساختمان داده می گوییم.

۱ معدله بازگشتی

مثال:

معادله ۱

$$T(0)=a_0, \quad T(1)=a_1, \quad T(n)=T(n-1)+2$$
معادله مشخصه $au^2-r-1=0 \quad au r_1, r_2=rac{1\pm \sqrt[2]{5}}{2}$ $T(n)=c_1r_1^n+c_2r^n+2$

 \boxtimes

مثال:

معادله ۲:

$$T(n) = 4T(n-1) + 4T(n-2) + f(n)$$

$$r^{2} - 4r^{2} + 4 = 0 \rightarrow (r-2)^{2} = 0 \rightarrow r = 2$$

$$T(n) = c_{1}2^{n} + c_{2}n2^{n} + f(n)$$

که از $O(n2^n)$ است

 \boxtimes

مثال:

معادله ۳:

$$T(n) = 2T(n-1) + 2^n = 4T(n-2) + 2^n + 2^n = 2^n T(0) + n2^n$$

پس از $O(n2^n)$ است.

 \boxtimes

مثال:

معادله ۴ (merge sort):

$$T(n) = 2T(n/2) + 2$$

$$T(2^n) = 2T(2^{n-1}) + 2^n \to S(m) = 2S(m-1) + 2^m$$

$$S(m) = m2^m \to T(n) = nLgn \qquad (2^m = n \to m = Lgn)$$

 \boxtimes

مثال:

معادله ۵ :

$$T(n) = 2T(n/2) + 1 \qquad T(n) = Lgn$$

با توجه به نمودار درختی به وضوح معلوم میشود .

 \boxtimes

مثال:

معادله ۶:

$$T(n)=2T(n/2)+nLgn$$

$$S(m)=2S(m-1)+m2^m \quad \to 2(2T(m-2)+2^{m-1}(m-1))$$

$$=4T(m-2)+2^m(m-1)$$

$$4T(m-2)<2^m(m-1)$$

$$\rightarrow 2^{m}(m+m-1+m-2+...) \rightarrow S(m) = m^{2}2^{m} \rightarrow T(n) = n\log^{2}n$$

 \boxtimes

Mater theory

$$T(n) = aT(n/b) + F(n), c = \log_b^a$$
$$1)F(n) \in \theta(n^{c'}), c' > c \to T(n) = \theta(n^{c'})$$
$$2)F(n) \in \theta(n^{c'}), c' < c \to T(n) = \theta(n^c)$$

$$3)F(n) \in \theta(n^c) \to T(n) = O(n^c lgn)$$

مثال:

$$T(n) = 2T(n/2) + \frac{n}{\log n}$$

$$T(2^m) = 2T(2^{m-1}) + \frac{2^m}{m}$$

$$S(m) = 2S(m-1) + \frac{2^m}{m}$$

$$2S(m-2) + 2^m(\frac{1}{m} + \frac{1}{m-1} + \dots)$$

$$2^m S(0) + 2^m(\sigma \frac{1}{i})$$

$$\to S(m) = 2^m \log m \to T(n) = n\log(\log n)$$

 \boxtimes

مثال:

جست و جوی دودویی

$$T(n) = T(n/2) + O(1)$$

$$c = log_2^1 = 0, n^0 = 0 \rightarrow T(n) = \theta(logn)$$

 \boxtimes

ساختمان داده ها

search, max, min, size, delete, add, insert, pop, ielemnt در ساختمان داده های اولیه انتظار داریم که بتوانیم عملیات هایی مانند وانجام دهیم را انجام دهیم

هر کدام از عملیات های بالا را برای آرایه میتوانیم در مرتبه زمانی های زیر پیدا کنیم:

$$search = O(n)$$
 , $iElement = O(1)$, $size = O(1)$
$$max = O(n)$$
 , $min = O(n)$, $iSorted = O(n)$
$$delete = O(n)$$
 , $add = O(n)$, $insert = O(n)$, $pop = O(1)$