TEORI VEKTOR DAN MATRIKS TUGAS REVIEW MATERI

Skalar, Vektor, dan Matrik

1. Skalar

Skalar adalah sebuah kuantitas yang dideskripsikan oleh sebuah angka. Contohnya:

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 dengan a, b, c, d, e, f, g, h, dan I merupakan skalar.

2. Vektor

Vektor adalah nilai dari satu baris atau kolom dari suatu matriks. COntohnya seperti

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & u \end{bmatrix}$$

Vektor terbagi menjadi dua yaitu vektor baris dan vektor kolom. Vektor baris adalah vektor yang direpresentasikan dalam bentuk baris. Contohnya seperti $\begin{bmatrix} a & b & c \end{bmatrix}$. Sedangkan vektor

kolom adalah vektor yang direpresentasikan dalam bentuk kolom. Contohnya seperti $\begin{bmatrix} a \\ d \end{bmatrix}$.

3. Matriks

Matriks adalah kumpulan dari vektor kolom dan baris. Matriks memiliki ukuran yang direpresentasikan dengan $\mathbb{R}^{m\,x\,n}$ dengan m adalah baris dan n adalah kolom. Contohnya yaitu

$$\mathbb{R}^{3 \times 3} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & u \end{bmatrix}$$

Penjumlahan Vektor, perkalian vektor, dan Kombinasi Linear

1. Penjumlahan Vektor

Penjumlahan vektor berarti menjumlahkan setiap elemen dengan posisi yang sama pada vektor yang berbebda. Contohnya:

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u11 \\ u21 \\ u31 \end{bmatrix} + \begin{bmatrix} v11 \\ v21 \\ v31 \end{bmatrix} = \begin{bmatrix} u11 + v11 \\ u21 + v21 \\ u31 + v31 \end{bmatrix}$$

2. Perkalian Skalar

Perkalian skalar adalah perkalian antara vektor dengan suatu skalar n. Contohnya adalah

$$nv = n \begin{bmatrix} v11 \\ v21 \\ v31 \end{bmatrix} = \begin{bmatrix} nv11 \\ nv21 \\ nv31 \end{bmatrix}$$

3. Kombinasi Linear

Kombinasi Linear adalah penjumlahan dari semua perkalian skalar. Misalnya adalah kombinasi linear dari vektor b1,b2,...,bn dan bi $\in \mathbb{R}$ dengan skalar α 1, α 2,..., α m dapat ditulis sebagai: α 1b1+ α 2b2+...+ α 3b3.

Contoh representasi pada bidang 2 dimensi

Panjang Vektor dan Dot Product

1. Dot Product

Dot product adalah perkalian antar elemen vektor yang berada pada lokasi yang sama. Misalnya pada vektor a = (a1, a2, a3) dan vektor b = (b1, b2, b3) dapat dihitung dengan

$$a.b = a1b1 + a2b2 + a3b3$$

Dot product dapat dituliskan sebagai $a.b = ||a|| ||b|| \cos\theta$

Sifat dari dot product yaitu:

- $\bullet \quad U^T \ V = V^T \ U$
- $(\alpha U)^T V = \alpha (V^T U)$
- $\bullet \quad (U+V)^T W = U^T W + V^T W$
- 2. Panjang Vektor

Panjang suatu vektor v = (v1, v2, ..., vn) didefinisikan dengan

$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Apabila suatu vektor memiliki panjang sama dengan satu, maka vektor tersebut disebut vektor unit.

Beberapa formula penting

- Cosine formula: $\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}$
- Cauchy–Schwarz inequality: $|\mathbf{v} \cdot \mathbf{w}| \le ||\mathbf{v}|| ||\mathbf{w}||$
- Triangle inequality: $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$

Geometri dari persamaan linear

1. Menyelesaikan Persamaan Linear

Persamaan linear dapat diselesaikan dengan menggunakan matriks. Misalkan pada

dapat direpresentasikan dengan matriks yang berbentuk $\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ yang mana, kita telah mengetahui nilai x dari persamaan pertama yaitu x = 2. Sehingga, kita tahu nilai y dengan subtitusi nilai x yaitu y = 1.

2. Arti dari Ax

Misalkan kita mempunyai $\mathbf{x} = [x \ y]^T$

$$A\mathbf{x} = \begin{bmatrix} (row\ 1) \cdot \mathbf{x} \\ (row\ 2) \cdot \mathbf{x} \end{bmatrix}$$

Representasi baris

Representasi kolom
$$Ax = [x(column 1) + y(column 2)]$$

Representasi kolom adalah kombinasi linier dari kolom-kolom A. Representasi kolom akan sangat berguna untuk diskusi kedepan.

3. Representasi Baris

Row Picture of a Set of Linear Equations with 2 Unknowns.

$$1x + 0y = 2$$

Representasi diatas adalah representasi dari persamaan 1x + 2y = 4.

Titik perpotongan antara garis-garis ini adalah solusi untuk himpunan persamaan diatas.

4. Representasi Kolom

Column Picture of a Set of Linear Equations with 2 Unknowns.

$$1x + 0y = 2$$

Representasi diatas adalah representasi dari persamaan 1x + 2y = 4. Kita tau bahwa persamaan itu dapat dituliskan dengan

$$xv_1 + yv_2 = x \begin{bmatrix} 1 \\ 1 \end{bmatrix} + y \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Sehingga, seperti terlihat di gambar diatas, penyelesaian persamaan dapat dilihat dengan

perbesaran vektor
$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 sebesar $x = 2$, dan vektor $v_2 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ sehingga hasil atau resultan

Non Singular dan Singular

1. Non singular

Ketika kombinasi linier dua vektor dapat memenuhi setiap titik/vektor pada bidang 2-D, disebut sebagai Kasus Non-Singular.

2. Singular

Ketika satu set persamaan linear memiliki solusi tak terhingga atau tidak ada solusi, disebut sebagai Kasus Singular

Gaussian Elimination

1. Matriks Triangular

Matriks triangular adalah suatu matriks persegi yang elemen elemen pada bagian bawah atau atas diagonal utamanya bernilai 0. Contohnya yaitu

$$\begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
 Upper Triangular Matrix
$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
 Lower Triangular Matrix

2. Eliminasi Gauss

 Now, let us take a look at the second example, a set of equations with 3 unknowns as follow:

• The representation in matrix form is given by :

$$\begin{bmatrix}
1 & 2 & 1 & 2 \\
3 & 8 & 1 & 12 \\
0 & 4 & 1 & 2
\end{bmatrix}$$
(12)

 The first step is by subtracting the 2nd row, by 3 times the 1st row, so that :

$$\begin{bmatrix}
1 & 2 & 1 & 2 \\
3 & 8 & 1 & 12 \\
0 & 4 & 1 & 2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 2 & 1 & 2 \\
0 & 2 & -2 & 6 \\
0 & 4 & 1 & 2
\end{bmatrix}$$

• Finally, we can subtract the 3rd row, by 2 times the 2nd row :

$$\left[\begin{array}{ccc|ccc|c} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 4 & 1 & 2 \end{array}\right] \rightarrow \left[\begin{array}{cccc|ccc|c} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 0 & 5 & -10 \end{array}\right]$$

Dari Upper triangular matriks diatas. Kita dapat menemukan solusi yaitu

$$x = 2$$
 ; $y = 1$; $z = -2$

Perkalian Matriks

Matriks A dapat dikalikan dengan matriks B jika dan hanya jika jumlah kolom dari matriks A sama dengan jumlah baris dari matriks B.

$$\begin{bmatrix} m \text{ rows} \\ n \text{ columns} \end{bmatrix} \times \begin{bmatrix} n \text{ rows} \\ p \text{ columns} \end{bmatrix} = \begin{bmatrix} m \text{ rows} \\ p \text{ columns} \end{bmatrix}$$

1. Element-wise: Dot Product of two vectors Misalkan hasil perkalian A dan B adalah C

$$\begin{bmatrix} * & * & * & * & * & * \\ * & * & C_{ij} & * & * & * \\ * & * & * & * \end{bmatrix} = \begin{bmatrix} * & * & b_{1j} & * & * & * \\ a_{i1} & a_{i2} & \cdots & a_{i5} \\ * & * & b_{2j} & b_{3j} \\ b_{4j} & b_{5i} & b_{5i} \end{bmatrix} \times \begin{bmatrix} * & * & b_{1j} & * & * & * \\ b_{2j} & b_{3j} & b_{4j} \\ b_{5i} & b_{5i} & b_{5i} & b_{5i} \end{bmatrix}$$

Nilai C_{ij} dapat dicari dengan

$$c_{ij} = A_i^T B_j = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{i5}b_{5j}$$

= $\sum_{k=1}^{5} a_{ik}b_{kj}$

Atau untuk kasus umum dapat dicari dengan

$$c_{ij} = A_i^T B_j = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj}$$

= $\sum_{k=1}^n a_{ik} b_{kj}$

Formula diatas sama dengan formula untuk mencari dot product vektor

$$A_i^T = (a_{i1}, a_{i2}, \cdots, a_{in}) \text{ and } B_j = (b_{1j}, b_{2j}, \cdots, b_{nj})^T$$

Sehingga, dapat disimpulkan bahwa hasil C pada baris ke I dan kolom ke j adalah dot product dari baris ke i vektor dari matriks A dan kolom ke j vektor dari matriks B.

Operasi dot product memerlukan dua vektor dengan dimensi yang sama.

2. Kombinasi kolom

Misalkan perkalian matriks A dengan kolom vektor B₁ seperti

$$c = AB_{1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{n1} \end{bmatrix}$$

$$= b_{11} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + b_{21} \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \cdots + b_{n1} \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} c_{11} \\ c_{21} \\ \vdots \\ c_{m1} \end{bmatrix}$$

Hasil vektor kolom c adalah kombinasi linear dari kolom vektor A.

• Suppose that we have several column vectors $B_1, B_2, \cdots B_p$, arranged into matrix B:

$$B = \begin{bmatrix} B_1 & B_2 & \cdots & B_p \end{bmatrix}$$

• Therefore, the multiplication between matrix A and B is given by :

$$C = AB = A \begin{bmatrix} B_1 & B_2 & \cdots & B_p \end{bmatrix} = \begin{bmatrix} AB_1 & AB_2 & \cdots & AB_p \end{bmatrix}$$

i.e. the columns of C is a linear combination of columns of A.

• This result indicates the multiplication between matrix A and B can be seen as if we are transforming each column vector of B into new column vectors AB_1, AB_2, \cdots, AB_p .

3. Kombinasi baris

Misalkan baris Vektor A₁^T dikalikan dengan matriks B seperti

$$A_{1}^{\mathsf{T}}B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix}$$

$$= a_{11} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \end{bmatrix} + \cdots + a_{1n} \begin{bmatrix} b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix}$$

$$= \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1p} \end{bmatrix}$$

Vektor baris hasil yang dihasilkan adalah kombinasi linear dari baris vektor B.

• Suppose that we have several row vectors $A_1^T, A_2^T, \cdots A_m^T$, arranged into matrix A:

$$\begin{array}{c}
A_1 \\
A_2^T \\
\vdots \\
A_m^T
\end{array}$$

• Therefore, the multiplication between matrix A and B is given by :

$$C = AB = \begin{bmatrix} A_1^T \\ A_2^T \\ \vdots \\ A_m^T \end{bmatrix} B = \begin{bmatrix} A_1^T B \\ A_2^T B \\ \vdots \\ A_m^T B \end{bmatrix} = \begin{bmatrix} C_1^T \\ C_2^T \\ \vdots \\ C_m^T \end{bmatrix}$$

- This result indicates in a multiplication between matrix A and B, each rows of the resulting matrix can be seen as the different sets of linear combination of row vectors in matrix B.
- It can also be seen that the rows of C is a linear combinations of rows of B
- 4. Perkalian kolom dengan baris (Outer Product)
 - Suppose that the multiplication between matrix A and B is given as follow:

$$AB = \begin{bmatrix} col_1 & col_2 & \cdots & col_n \end{bmatrix} \begin{bmatrix} row_1^T \\ row_2^T \\ \vdots \\ row_n^T \end{bmatrix}$$

$$= col_1 row_1^T + col_2 row_2^T + \cdots + col_n row_n^T$$

 To understand the meaning of this operation, let us take a look in an example :

$$AB = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} -2 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 3 & 3 \end{bmatrix}$$

• Suppose that we re-write the aforementioned equation as follow :

$$AB = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} -2 & -1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 3 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{v}_{11} & \mathbf{v}_{12} \end{bmatrix} + \begin{bmatrix} \mathbf{v}_{21} & \mathbf{v}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 \end{bmatrix}$$

• The illustration above shows the movement of each column vectors as each additional terms is added to the calculation.

Eliminasi dengan Matriks

- 1. Perkalian Matriks: Kombinasi baris
 - Let us take a look at some examples below.

$$C_1 = A_1 B = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

$$C_2 = A_2 B = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 7 & 8 & 9 \end{bmatrix}$$

$$C_3 = A_3 B = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 3 \end{bmatrix}$$

- The resulting vectors :
 - C₁: 1st row of B
 - C2 : 3rd row of B
 - C₃: (2nd row of B) (1st row of B)
- Gauss Elimination can be represented using Matrix Multiplication
- 2. Augmented Matriks

 Now, let us take a look at a set of equations with 3 unknowns as follow:

 This set of equations can be represented as matrix multiplication as follow:

$$\underbrace{\begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} 2 \\ 12 \\ 2 \end{bmatrix}}_{b}$$

• This set of equations is usually written as :

$$Ax = b$$

 Augmented Matrix is a matrix where b is included as an extra column of A:

Augmented Matrix =
$$[A \mid b]$$

- 3. Eliminasi dengan Matriks
 - The augmented matrix for the aforementioned set of linear equations is given by :

$$\left[\begin{array}{ccc|c}
1 & 2 & 1 & 2 \\
3 & 8 & 1 & 12 \\
0 & 4 & 1 & 2
\end{array}\right]$$

 The first step is to make the element (2,1) equal to zero. It is performed by subtracting the 2nd row, by 3 times the 1st row (Row 2=Row 2 - 3 × Row 1):

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{E_{21}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 3 & 8 & 1 & 12 \\ 0 & 4 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 4 & 1 & 2 \end{bmatrix}$$

- And then we can continue to the second step to make the elements (3,1) and (3,2) equal to zero.
- Can you see what matrix makes the element (3,1) equal to zero?

• For (3,1), we do nothing. Or to be "exact" subtracting the 3rd row by 0 times the first row (Row 3=Row 3 - 0× Row 1):

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{F_{2}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 4 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 4 & 1 & 2 \end{bmatrix}$$

• For (3,2), it is performed by subtracting the 3rd row, by 2 times the 2nd row ($R_3 = R_3 - 2 \times R_2$):

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}}_{F_{32}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 4 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 0 & 5 & -10 \end{bmatrix}$$

• Therefore, we can conclude that for this case, the Gauss Elimination process can be represented as :

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}}_{E_{32}} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{E_{31}} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{E_{21}} \underbrace{\begin{bmatrix} 1 & 2 & 1 & 2 \\ 3 & 8 & 1 & 12 \\ 0 & 4 & 1 & 2 \end{bmatrix}}_{E_{21}}$$

$$= \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 0 & 5 & -10 \end{bmatrix}$$

 It can be also represented using a single elimination matrix E as follow:

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 6 & -2 & 1 \end{bmatrix}}_{E=E_{32}E_{31}E_{21}} \underbrace{\begin{bmatrix} 1 & 2 & 1 & 2 \\ 3 & 8 & 1 & 12 \\ 0 & 4 & 1 & 2 \end{bmatrix}}_{[A \mid b]} \rightarrow \underbrace{\begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 2 & -2 & 6 \\ 0 & 0 & 5 & -10 \end{bmatrix}}_{[U \mid Eb]}$$

- The elimination matrix E_{ij} indicates the operation to make the element (i, j) equal to zero.
- Finally, we can re-write the aforementioned matrix operation using a single equation :

$$Ax = b \rightarrow EAx = Eb \rightarrow Ux = Eb$$

where

$$U = EA$$

is the resulting upper triangular matrix.

Inverse Matriks

Matriks A invertible ketika ada matriks A-1 yang menginverse A

$$A^{-1}A = AA^{-1} = I$$

Dimana I adalah matriks identitas.

Matriks A invertible jika dan hanya jika matriks A adalah matriks non singular.

Factorization A=LU

Pembuktiannya:

- 1. Kita mengetahui persamaan awal Ax=b dan jika kita mengalikan E kepada A akan menghasilkan Upper triangular
- 2. Maka, EAx=Eb, dengan EA adalah Upper tringular
- 3. EA = U. Maka, $A = E^{-1}U$ dan kita tahu bahwa invers dari matriks E adalah lower triangular $(E^{-1}U = L)$
- 4. Jadi, A = LU

Pengerjaannya:

1. Subtitusikan nilai A=LU kepada persamaan awal Ax=b

- 2. Maka, LUx=b. nah di sini, kita misalkan nilai Ux itu adalah c
- 3. Jadi Lc=b, nanti kita akan mendapatkan nilai c
- 4. Lalu, subtitusi nilai c ke Ux dan dapatka nilai x

Factorization PA=LU

Cara pengerjaan:

- 1. Dengan persamaan awal Ax=b, kita kalikan 2 ruas dengan P(matriks permutasi)
- 2. Lalu didapat, PAx=Pb. Nah kita mengetahui bahwa PA= LU
- 3. Persamaannya menjadi LUx=Pb, kembali kita misalkan nilai Ux sebagai c
- 4. Maka, Lc=Pb nanti kita akan dapatkan nilai c
- 5. Terakhir, kita subtitusi nilai c ke Ux untuk mendapatkan nilai x.