Digital Image Processing Homework 4

Bodong Zhang u0949206

4(a)

According to Wiener Filter, if the Fourier Transform of original image is I, H is the degradation in Fourier domain, K is Sn/Sf, Io is the output image.

```
Then the best filter W to minimize E(|f-\tilde{f}|^2) is W(u,v) = \frac{H(u,v)^*}{H(u,v)H(u,v)^* + \frac{S_n}{S_f}}
```

G=HF+N, \tilde{F} =WG. N is noise, \tilde{F} is estimated original image in frequency domain.

```
function Io= WienerReject(I,H,K)
%where I is the degraded input image (spatial domain), H is the degradation
in the Fourier domain(shifted), K is the
% % %parameter for Wiener filtering and Io is the output image(spatial
domain).
           if(ndims(I) == 3)
                        I=rgb2gray(I);
           end
           %intensity should between 0 and 1
           if \max(\max(I)) > 1
                        display('Intensity should not exceed 1');
                        pause;
           end
           if min(min(I))<0</pre>
                        display('Intensity should not be smaller than 0');
                        pause;
           %transform image into frequency domain
           I fre=fft2(I);
            I fre shift=fftshift(I fre);
            [m,n]=size(I fre shift);
           if size(I fre shift) ~= size(H)
                        display('size(I fre shift)~=size(H)');
                        pause;
           end
           I_fre_shift_filtered=zeros(size(I_fre_shift));
            %Wiener Filtering
            for u=1:m
                        for v=1:n
I\_fre\_shift\_filtered(u,v) = I\_fre\_shift(u,v) *conj(H(u,v)) / (abs(H(u,v)) * (abs(H(u,v))) + (abs(H(u,v))) * (abs(H(u,v))) *
```

```
abs(H(u,v))+K);
    end
end
%Transform into spatial domain
I_fre_filtered=ifftshift(I_fre_shift_filtered);
Io=ifft2(I_fre_filtered);
```

end

(b) The original image and degraded image by Blur Degradation is

Original Image

Degraded Image

The MSE of Degraded Image is 1516.9

Rewrite Degradation function as

```
function [gblur, H blurdegradation] = BlurDegradation(f)
%range 0-255
f = double(f);
M = size(f,1);
N = size(f, 2);
sigma n = max(f(:))*0.05;
sigmaspatial = 4;
Hblur=zeros(size(f));
sigmafreq = sqrt(1/(4*pi^2*(sigmaspatial/512)^2));
for u=1:size(f,1)
   for v=1:size(f,2)
      %create H
      Hblur(u,v) = \exp(-((u-M/2).^2+(v-N/2).^2)/(2*sigmafreq^2));
   end;
end;
H blurdegradation=Hblur;
Hblur = ifftshift(Hblur);
```

```
gblur = real(ifft2(Hblur.*fft2(f)))+sigma_n*randn(M,N);
end
```

We add another output to receive H.

We would use different K to apply Wiener Filtering and calculate the MSE to find the best K. First we try K=0.1 to 1 with interval 0.05 and draw the MSE line.

So the best K should between 0 and 0.1.

We try K=0.01 to 0. 1 with interval of 0.01 and draw the MSE line.

So the best K should between 0 and 0.01.

We try K=0.001 to 0. 01 with interval of 0.001 and draw the MSE line.

So the best K should between 0.003 and 0.005.

As a result, the best K is 0.0041. The MSE is 794.7705. K should not be too small or large. If K is too small, then W=1/H, if H(u,v) is too small in some area, then recovered image would be greatly influenced by noise. If K is too large, then the detail would be suppressed.

The Wiener Filtered Images with different K are shown below

Original Image
The MSE of Degraded Image is 513.459

Degraded Image

We would use different K to apply Wiener Filtering and calculate the MSE to find the best K. First we try K=0.01 to 0. 1 with interval 0.01 and draw the MSE line.

So the best K should between 0 and 0.03

We try K=0.001 to 0. 03 with interval of 0.003 and draw the MSE line.

	р ⋊ рТ	x y x	tau 🗶 🗴	bbT 🗶 a	II_p ≍ fing	erprint_gblur	× I_01	≍ Io_real	× H_blure	legradation	× save_N	/ISE_wiener	
■ 3x10 double													
	1	2	3	4	5	6	7	8	9	10	11	12	13
1	1.0000e-03	0.0040	0.0070	0.0100	0.0130	0.0160	0.0190	0.0220	0.0250	0.0280			
2	513.4379	513.4379	513.4379	513.4379	513.4379	513.4379	513.4379	513.4379	513.4379	513.4379			
3	970.9140	417,9026	345,3380	320.331	309,5698	304.9261	303,4908	303,9759	305,7323	308.3988			

So the best K should between 0.016 and 0.022

We try K=0.016 to 0. 022 with interval of 0.001 and draw the MSE line.

	р җ∫рТ	× y ×	tau ⊠ xl	obT × all_	p x ∫ fing	erprint_gblur	×	∝ lo_real	× H_blur	degradation	≍ save_N	ISE_wiener	⊠ MSE_w
\blacksquare	⊞ 3x7 double												
	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0.0160	0.0170	0.0180	0.0190	0.0200	0.0210	0.0220						
2	513.0351	513.0351	513.0351	513.0351	513.0351	513.0351	513.0351						
3	305.8582	305.0711	304.5773	304.3314	304.2977	304.4475	304.7574						
3													

As a result, the best K is 0.020. The MSE is 304.2977. K should not be too small or large. If K is too small, then W=1/H, if H(u,v) is too small in some area, then recovered image would be greatly influenced by noise. If K is too large, then the detail would be suppressed.

The Wiener Filtered Images with different K are shown below

