Projection-based Runtime Assertions for Testing and Debugging Quantum Programs

Gushu Li¹, Li Zhou², Nengkun Yu³, Yufei Ding¹, Mingsheng Ying³, and Yuan Xie¹

¹ University of California, Santa Barbara, USA
 ² Max Planck Institute for Security and Privacy, Germany
 ³ University of Technology, Sydney, Australia

Bio

- Name: Gushu Li
- 4-th Year Ph.D. student at ECE Department, UCSB
- Advisors: Yuan Xie, Yufei Ding
- Research interests: quantum computing, applications, programming language, compiler optimization, hardware architecture design, etc.

• FCRC 2019 in Phoenix, AZ, Jun 2019 (every 4 years)

Yipeng presented his assertion paper at ISCA 2019 (part of FCRC)

Huang, Y., & Martonosi, M. (2019, June). **Statistical assertions for validating patterns and finding bugs in quantum programs**. In *Proceedings of the 46th International Symposium on Computer Architecture* (pp. 541-553).

The first quantum program assertion for testing to my best.

- Yipeng presented his assertion paper at ISCA 2019 (part of FCRC)
- I met Yipeng during the conference.

- Yipeng presented his assertion paper at ISCA 2019 (part of FCRC)
- I met Yipeng during the conference.
- Li Zhou (the co-primary author) presented at PLDI 2019. He works on programming language theory for quantum computing.

- Yipeng presented his assertion paper at ISCA 2019 (part of FCRC).
- I met Yipeng during the conference.
- Li Zhou (the co-primary author) presented at PLDI 2019. He works on programming language theory for quantum computing.

• Li and I spent one afternoon together and formulated most of the ideas in this paper.

- Later that day, I summarized the major ideas and email our advisors.
- Then this project is formally initiated.

Gushu Li <gushuli@ece.u... Mon, Jun 24, 2019, 11:12 PM ☆ ←
to Li, Yufei, Mingsheng ▼

Dear Li,

It was nice talking to you today. The notes are attached based on today's discussion.

We will propose a runtime assertion scheme for debugging on a quantum computer.

The following three major contributions are expected:

- Later that day, I summarized the major ideas and email our advisors.
- Then this project is formally initiated.

- First submitted to PLDI 2020
 - It got rejected because I made some mistakes. I worked mostly on compiler optimization and hardware architecture before this project. It was my first time to submit to a PL conference.
- Then OOPSLA 2020
 - I learnt some basics and read more about PL. We spent another month incorporating reviews' feedback and rewriting most of the paper.

Outline

- Motivation
- Preliminary
- Assertion design (theoretical foundations)
- Assertion implementation (practical implementation issues)
- Some examples
- Summary

To improve the program reliability

• In this study, we target quantum program runtime testing and debugging on quantum computers.

To improve the program reliability

 In this study, we target quantum program runtime testing and debugging on quantum computers.

- Compared with verification
 - Verification may be able to guarantee the correctness, but it is usually very expensive.
 - Testing is cheaper. It can reveal some errors but not guarantee the correctness.
 - Still quite useful.

What is an assertion?

- A predicate on some program variables at a place in the program
- If the predicate is satisfied, pass.
- If not, abort.

Learn from quantum information processing?

Quantum State Tomography:

Yes, QST can fully characterize any state ρ , but it is too expensive. Repeat state preparation and measurement many times (exponential).

• Some computer science approaches?

Quantum State Tomography:

Yes, QST can fully characterize any state ρ , but it is too expensive. Repeat state preparation and measurement many times (exponential). Assertions for state property checking

Expressive power: describe a quantum state property using classical languages

Another implicit inefficiency: measurement in the assertion checking may destroy the tested state.

- We hope to have a new approach
 - Strong expressive power:

The language should naturally describe complex quantum state properties

• Efficient checking:

The predicate satisfactory can be checked within few executions

And after careful consideration, we select Projections

Preliminary

- Quantum computing basics
 - Qubit: *q*
 - Hilbert space: H, zero operator: 0_H , identity operator: I_H
 - State vector: $|\psi\rangle$, density operator: ρ (more general)
 - Unitary transformation (quantum gate): $U: |\psi\rangle \mapsto U|\psi\rangle$, $\rho \mapsto U\rho U^{\dagger}$
 - Measurement $M = \{M_m\}$
 - We will only discuss about projective measurement which is supported on most hardware platforms.

Projection: definition and property

- Definition: for each closed subspace X of a Hilbert space H, we can define a projection ${\cal P}_X$
 - For every $|\psi\rangle \in H$, we have $|\psi\rangle = |\psi_X\rangle + |\psi_0\rangle$, with $|\psi_X\rangle \in X$ and $|\psi_0\rangle \in X^{\perp}$. (X^{\perp}) is the orthocomplement of X)

Then, $P_X: H \mapsto X$ is defined by $P_X | \psi \rangle = | \psi_X \rangle$ for every $| \psi \rangle \in H$.

Projection: definition and property

- Definition: for each closed subspace X of a Hilbert space H, we can define a projection ${\cal P}_X$
 - For every $|\psi\rangle \in H$, we have $|\psi\rangle = |\psi_X\rangle + |\psi_0\rangle$, with $|\psi_X\rangle \in X$ and $|\psi_0\rangle \in X^{\perp}$. (X^{\perp}) is the orthocomplement of X)

Then, $P_X: H \mapsto X$ is defined by $P_X | \psi \rangle = | \psi_X \rangle$ for every $| \psi \rangle \in H$.

Property:

- One-to-one correspondence between the closed subspaces of H and the projections in it. (We denote P_X as P and do not distinguish a projection and its corresponding subspace)
- When $|\psi\rangle$ (or ρ) is in P, we have $P|\psi\rangle = |\psi\rangle$ (or $P\rho P = \rho$).

Projective measurement

• Definition:

 A quantum measurement in which all the measurement operators are projections

•
$$M = \{P_m\}, \sum P_m = I_H, P_m P_n = \begin{cases} P_m, & m = n \\ 0_H, & m \neq n \end{cases}$$

- After a projective measurement
 - With probability $p(m) = \langle \psi | P_m^\dagger P_m | \psi \rangle$ (resp. $tr(P_m \rho)$), the state is changed to $\frac{P_m |\psi\rangle}{\sqrt{\langle \psi | P_m^\dagger P_m |\psi\rangle}} \left(\frac{P_m \rho P_m^\dagger}{tr(P_m \rho)}\right), \sum p(m) = 1$
 - A projective measurement will apply projection operators on a state

Projective measurement

- When a projective measurement will not change the measured state?
 - Recall that when $|\psi\rangle$ (or ρ) is in P, we have $P|\psi\rangle=|\psi\rangle$ (or $P\rho P=\rho$).
- For a projective measurement $M=\{P_m\}$, when $|\psi\rangle$ (or ρ) is in P_m , the state after the measurement is still $|\psi\rangle$ (or ρ) with probability 1.

Why using projections

• 1. Projections can naturally represent predicates

Projection-based Predicates: Suppose P is a projection on a Hilbert space H, a state ρ is said to satisfy a projection P (written $\rho \models P$) if $\operatorname{supp}(\rho) \subseteq X$.

 $(\operatorname{supp}(\rho))$ is the subspace spanned by the eigenvectors of ρ with non-zero eigenvalues)

Note that: $\rho \models P \Longrightarrow P\rho = \rho$

Why using projections

- 1. Projections can naturally represent predicates
- 2. Can be checked upon projective measurements

```
For projection P, we can define: M_P = \{M_{true} = P, M_{false} = I - P\}
The measurement outcome will tell us whether the tested state \rho is in P.
```

There are some practical issues when physically implementing the constructed measurement. We will discuss them later.

- 1. Strong expressive power
 - Much more expressive compared with classical language description
 - Projections can have different ranks (different dimensions of the subspaces)
 - e.g., $P = |00\rangle\langle00|$, the correct state must be the $|00\rangle$ state.
 - $P=|00\rangle\langle00|+|11\rangle\langle11|$, the correct state can be the linear combination of $|00\rangle$ and $|11\rangle$
 - Specify subspaces of any dimensions

10/12/20 25

- 1. Strong expressive power
 - Much more expressive compared with classical language description
 - Projections can have different ranks (different dimensions of the subspaces)
 - e.g., $P = |00\rangle\langle00|$, the correct state must be the $|00\rangle$ state.
 - $P=|00\rangle\langle00|+|11\rangle\langle11|$, the correct state can be the linear combination of $|00\rangle$ and $|11\rangle$
 - Specify subspaces of any dimensions
 - Indistinguishable states, $\rho = \alpha |00\rangle\langle 00| + \beta |11\rangle\langle 11|$
 - Because we are not doing tomography
 - And this will allow efficient checking

- 1. Strong expressive power
- 2. Efficient checking
 - Recall that $P\rho P = \rho$ when $\rho \models P$
 - Therefore in the measurement $M_P = \{M_{true} = P, M_{false} = I P\}$
 - If $\rho \models P$, we will always have outcome 'true' and the state is not changed in the measurement
 - If $\rho \not\models P$ and we have outcome 'false', we will know that the state is wrong.
 - If $\rho \not\models P$ and we have outcome 'true', the state ρ' after the measurement will satisfy P because the projective measurement maps ρ back to the correct subspace.
 - (<u>This allows runtime checking</u>. We can run multiple assertions in one execution. A passed assertion will not affect the following execution.)

- 1. Strong expressive power
- 2. Efficient checking
 - How many executions do we need?
 - For k execution, the probability of not observing 'false' outcome is $tr(P\rho)^k$, it exponentially.

- 1. Strong expressive power
- 2. Efficient checking
 - How many executions do we need?
 - What if $1 tr(P\rho)$ is small?
 - The 'error' is not severe in such cases
 - Because the semantics of quantum programs are trace-nonincreasing quantum operations.

- 1. Strong expressive power
- 2. Efficient checking
 - How many executions do we need?
 - What if $1 tr(P\rho)$ is small?
 - The 'error' is not severe in such cases
 - Because the semantics of quantum programs are trace-nonincreasing quantum operations

Correct state
$$\rho$$
 \longrightarrow Program S \longrightarrow Final state ρ_f Small-error state ρ' \longrightarrow Program S \longrightarrow Final state ρ'_f \longrightarrow We have $D(\rho_f, \rho'_f) < \epsilon$ \supset The final state is also only slightly affected.

- 1. Strong expressive power
- 2. Efficient checking
 - How many executions do we need?
 - What if $1 tr(P\rho)$ is small?
 - The 'error' is not severe in such cases
 - Because the semantics of quantum programs are trace-nonincreasing quantum operations

$$D(\rho_f, \rho_f') = 0 \text{ iff } \rho_f = \rho_f'$$

When the trace distance between two states are small, their measurement output distributions will always be 'similar' no matter how you measure them

$$D(\rho, \rho') < \epsilon$$
D is the trace distance

We have $D(\rho_f, \rho_f') < \epsilon$ The final state is also only slightly affected.

Projection-based assertion primitive

- $assert(\bar{q}; P)$, P is a projection, \bar{q} is a set of qubits
- The semantics:
 - Construct a projective measurement $M_P = \{M_{true} = P, M_{false} = I P\}$
 - If the measurement outcome is 'true', continue
 - If the measurement outcome is 'false', abort and report the termination location.

Multiple assertions per execution

- Divide the program into segments, and then inject assertions.
- S_1 ; assert(\bar{q}_1 ; P_1); S_2 ; assert(\bar{q}_2 ; P_2) ...; S_l ; assert(\bar{q}_l ; P_l)

- We quantitatively evaluate the *statistical properties* of checking such a program with multiple assertions.
- Also approximate projection-based assertion.
- Details are available in the paper.

Practical implementation issues

- $M_P = \{M_{true} = P, M_{false} = I P\}$
- This constructed measurement may not be directly executable on a quantum computer.
- There are two constraints.

Practical constraints

- 1. Limited measurement basis
 - Most physical quantum computers only support measurement along the computational basis

•
$$M_P = \{M_{true} = |0\rangle\langle 0|, M_{false} = |1\rangle\langle 1|\},$$

•
$$M_P = \{M_{true} = |+\rangle\langle+|, M_{false} = |-\rangle\langle-|\}$$

Practical constraints

1. Limited measurement basis

 Most physical quantum computers only support measurement along the computational basis

•
$$M_P = \{M_{true} = |0\rangle\langle 0|, M_{false} = |1\rangle\langle 1|\},$$

•
$$M_P = \{M_{true} = |+\rangle\langle+|, M_{false} = |-\rangle\langle-|\}$$

• 2. Dimension mismatch

- 2^n -dimensional space for n qubits
- Measure one qubit, the space is reduced by half, 2^{n-1} -dimensional space
- We can only measure an integer number of qubits
- Only support rank $P \in \{2^{n-1}, 2^{n-2}, ..., 2^0\}$
- $P = |00\rangle\langle00| + |01\rangle\langle01| + |11\rangle\langle11|$

- We first solve the measurement basis problem
- Add a unitary transformation of adjust the measurement basis

Proposition: For projection P with rank $P=2^m$, there exists a unitary transformation U_P such that: $U_P P U_P^{\dagger} = Q_{q_1} \otimes Q_{q_2} \otimes \cdots \otimes Q_{q_n} = \bigotimes_{i=1}^n Q_{q_i} \triangleq Q_P$ where $Q_{q_i} \in \{|0\rangle\langle 0|, |1\rangle\langle 1|, I\}$

ullet Apply U_P , check for Q_P , then apply U_P^\dagger

10/12/20

- We first solve the measurement basis problem
- An example:

One CNOT gate and one H gate

- We then solve the dimension mismatch problem
- Combine two projections to implement a projection with small dimension
 - Intersections of subspaces are still subspaces

Proposition: For projection P with rank $P < 2^{n-1}$, there exists P_1, P_2, \ldots, P_l satisfying rank $P_i = 2^{n_i}, n_i$ s are integers and $P = P_1 \cap P_2 \cap \ldots \cap P_l$

10/12/20

- We then solve the dimension mismatch problem
- Combine two projections to implement a projection with small dimension
 - Intersections of subspaces are still subspaces

Proposition: For projection P with rank $P < 2^{n-1}$, there exists P_1, P_2, \ldots, P_l satisfying rank $P_i = 2^{n_i}, n_i$ s are integers and $P = P_1 \cap P_2 \cap \ldots \cap P_l$

- $assert(\bar{q}; P)$ is now transformed to $assert(\bar{q}; P_1); assert(\bar{q}; P_2); ...; assert(\bar{q}; P_1)$
- There are no dimension mismatch for these sub-assertions.

- What about rank $P > 2^{n-1}$?
 - Can we use disjunction $P = P_1 \cup P_2$?
 - Mathematically it is OK but it may lose checking efficiency

When a state is in P_2 but not in P_1 , checking P_1 for it will destroy the state.

(Recall when projective measurement will not change the measured state)

We should not use disjunction

- What about rank $P > 2^{n-1}$?
 - We always have rank $P < 2^n = 2^{(n+1)-1}$
 - rank $P < 2^{n-1}$ Let n := n+1

10/12/20

- What about rank $P > 2^{n-1}$?
- Introduce an auxiliary qubit $a = |0\rangle$
- We now have n+1 qubits, but we can check for P
- $\operatorname{rank}(|0\rangle_a\langle 0|\otimes P) = \operatorname{rank} P < 2^n$
- $assert(\bar{q}; P)$ is now transformed to $assert(a, \bar{q}; |0\rangle_a\langle 0|\otimes P);$

How to apply those techniques

- For $assert(\overline{q}; P)$
- If rank $P > 2^{n-1}$, introduce an auxiliary qubit, implement $assert(a, \overline{q}; |0\rangle_a \langle 0| \otimes P);$
- If rank $P \notin \{2^{n-1}, 2^{n-2}, \dots, 2^0\}$, find an array of sub-assertions
- Apply unitary transformations to implement the assertions

What about automation?

- We need to manipulate operator of size 2^n
- Decomposing a large unitary into single-qubit gates and two-qubit gates is hard

 How can we find simple implementations that are manageable by classical computers?

Local projection

- We can trade in some checking accuracy by only observing part of the entire system.
- Key idea: by taking the partial trace on the projection, we can find a sound approximation of the original assertion with P
- The local projection assertions will be applied a smaller number of qubits and the operators are smaller.

Local projection

• An example:

If a bug is on qubit r (e.g., missing a H gate), the local projection will not be able to detect it.

What projections we should use?

- This question is not about the assertion itself.
- We expect that the programmers should understand their programs.
- An example:
 - Chemistry simulation: simulating two electrons on four orbitals
 - $|0011\rangle$ is a two-electron state, $|0111\rangle$ is a three-electron state (not valid, the number of particles should not change in a chemical process)
 - A valid solution should be in the subspace: $span(\{|0011\rangle, |0101\rangle, |0110\rangle, |1001\rangle, |1010\rangle, |1100\rangle\})$, a 6-dimensional subspace in a 16-dimensional Hilbert space
- Projection-based assertions depend on the programs

Take-home message

• Fundamental difficulty: a quantum state has a very large size $(O(\exp(n)))$, but one measurement can only probe limited information (O(n)) and may destroy the tested state.

- **Key:** Checking/Testing a state ≠ Knowing everything about the state
 - The difference between classical and quantum
 - In projection-based assertion checking, we only know about whether the tested state is a subspace. And we know about the target subspace.

• A 'more quantum' assertion design for quantum PL

Summary

- We propose to check quantum program states with projections.
- A sweet point between expressive power and checking efficiency.
- We consider some practical constraints and propose several transformation techniques to make the assertions executable.

- More examples (assertion examples, numerical simulations) and formal descriptions can be found in the paper.
- https://arxiv.org/abs/1911.12855 (proofs available)

Q&A

• Thank you!