Name:

Student ID:

1. (2 points) Honor Code

I promise that I will complete this quiz independently and will not use any electronic products or paper-based materials during the quiz, nor will I communicate with other students during this quiz.

I will not violate the Honor Code during this quiz.

/	True	\bigcirc	Folge
1/	True	()	False

2. (4 points) True or False

Determine whether the following statements are true or false.

- (a) (1') The Floyd-Warshall algorithm can return the shortest path between all pairs of nodes in a connected graph with n nodes in $O(|V|^3)$, while it only needs $O(|V|^2)$ to find the shortest path between a given pair of nodes in the graph(for worst case). \bigcirc True \checkmark False
- (b) (1') We can modify the Floyd-Warshall algorithm to detect whether there exists a negative cycle or not in a directed graph.

 True False
- (c) (1') Since the solutions of DP problems depend on other subproblems, one needs to at least give out the solutions of some subproblems to solve the problem.

 True False
- (d) (1') We could always use recursion in DP and hence do not need to allocate extra space to store solutions of subproblems, which could save the memory use.

 True

 False

3. (4 points) Floyd-Warshall's Algorithm

Given the Floyd-Warshall's algorithm, Please write the fill in the blanks below. Write the most precise and simplified form.

Hint: Mind the order of loop!

Algorithm 1 Floyd-Warshall's algorithm

```
1: procedure FLOYD-WARSHALL(V, E)
       let dist be a |V| \times |V| array of minimum distances initialized to \infty (infinity)
 2:
        for each edge (u, v) \in E do
 3:
            dist[u][v] \leftarrow w(u,v)
                                                                                       \triangleright The weight of the edge (u, v)
 4:
       end for
 5:
        for each vertex v \in V do
 6:
            dist[v][v] \leftarrow 0
 7:
       end for
 8:
        for i from 1 to |V| do
9:
            for j from 1 to |V| do
10:
                for k from 1 to |V| do
11:
                   if dist[i][k] > dist[i][i] + dist[i][k] then
12:
                       dist[j][k] \leftarrow dist[j][i] + dist[i][k]
13:
                   end if
14:
               end for
15:
           end for
16:
17:
        end for
        return dist
18:
19: end procedure
```

4. (10 points) Remove the road sign

There is a road from your home to school. The length of the road is L kilometers, and your home is located at coordinate 0, and the school is located at coordinate L. There are n signs along the road, where the i 'th sign has a value a_i , indicating that you must travel at a speed of exactly a_i minutes per kilometer until you reach the next sign. There is also a sign at coordinate 0 which sets the initial speed. We can use the signs to calculate the time to travel from home to school. For example, in Fig. 1, the total time is $3 \times 5 + 1 \times 8 + 4 \times 3 + 2 \times 6 = 47$ minutes.

We now want to remove at most k signs in a way that minimizes the time it takes to travel from home to school. You cannot remove the sign at coordinate 0. We want to design a dynamic programming algorithm.

(a) (6') Define OPT(i,j) be the minimum time needed to spend if we already walk to sign i, and choose j signs (i.e remove i-j signs). Give your Bellman equation and explanation to solve the subproblems. (Write the Bellman Equation will receive 4 points, while the explanation will receive 2 points)

Solution:

$$OPT(i,j) = \begin{cases} 0 & i, j = 1\\ \min_{l=1}^{i-1} \{OPT(l, j-1) + a_l(s_i - s_l)\} & \text{otherwise} \end{cases}$$

For all $1 \le j \le i \le n$, s_i should be the distance from the start.

We can prove its correctness since every time we transfer the state from a lower sign to a higher sign, the problem is stated to "select enough signs and make total time minimized.

(b) (2') What is the answer to this question in terms of your subproblems?

Solution:

$$\min \left\{ OPT(i,j) + a_i(L-s_i) \mid n-k \le i \le n, n-k \le j \le i \right\}$$

(c) (2') What is the runtime complexity of your algorithm?

Solution: Since we have total $\Theta(n^2)$ states, and each state needs $\Theta(n)$ time to transfer from. Hence it's $\Theta(n^3)$ time complexity.