Isogeny graphs in cryptography: the good, the bad and the ugly

Luca De Feo

Université Paris Saclay - UVSQ

May 13, 2019, Università di Roma 3, Roma

Slides online at https://defeo.lu/docet/

I power 70% of WWW traffic!

The Q Menace

Post-quantum cryptographer?

Elliptic curves of the world, UNITE!

And so, they found a way around the Q...

And so, they found a way around the Q...

And so, they found a way around the Q...

What's scalar multiplication?

$$[n]: P \mapsto \underbrace{P + P + \dots + P}_{n \text{ times}}$$

- ullet A map ${m E} o {m E}$,
- a group morphism,
- with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$[n]: P \mapsto \underbrace{P + P + \dots + P}_{n \text{ times}}$$

- ullet A map E
 ightarrow E ,
- a group morphism,
- with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \ : \ P \mapsto \phi(P)$$

- A map $E \rightarrow E$,
- a group morphism,
- with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map $E o E \!\!\!\!/ E'$,
- a group morphism,
- ullet with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map $E o E\!\!\!\!/ E'$,
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

What's \$\dallak/\mu\U\\i\\dallak\light\lig

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map $E o E \!\!\!\!/ E'$,
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree $h^2 \# H$.

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map $E o E \!\!\!\!/ E'$,
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree h/2 # H.

(Separable) isogenies ⇔ finite subgroups:

$$0 o H o E \stackrel{\phi}{ o} E' o 0$$

The kernel H determines the image curve E' up to isomorphism

$$E/H\stackrel{\mathsf{def}}{=} E'$$
.

Isogenies: an example over \mathbb{F}_{11}

$$E': y^2 = x^3 - 4x$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

Isogenies: an example over \mathbb{F}_{11}

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.
- ullet Analogous to $x\mapsto x^2$ in \mathbb{F}_q^* .

Vélu's formulas

```
Input: A subgroup H \subset E,
```

Output: The isogeny $\phi: E \to E/H$.

Complexity: $O(\ell)$ — Vélu 1971, ...

Why? • Evaluate isogeny on points $P \in E$;

Walk in isogeny graphs.

Vélu's formulas

Input: A subgroup $H \subset E$,

Output: The isogeny $\phi: E \to E/H$.

Complexity: $O(\ell)$ — Vélu 1971, ...

Why? • Evaluate isogeny on points $P \in E$;

Walk in isogeny graphs.

Explicit Isogeny Problem

Input: Curve E, (prime) integer ℓ

Output: All subgroups $H \subset E$ of order ℓ .

Complexity: $\tilde{\mathcal{O}}(\ell^2)$ — Elkies 1992

Why? • List all isogenies of given degree;

Count points of elliptic curves;

Compute endomorphism rings of elliptic curves;

Walk in isogeny graphs.

Explicit Isogeny Problem (2)

Input: Curves E, E', isogenous of degree ℓ .

Output: The isogeny $\phi: E \to E'$ of degree ℓ .

Complexity: $O(\ell^2)$ — Elkies 1992; Couveignes 1996; Lercier and Sirvent 2008; De Feo 2011; De Feo, Hugounenq, Plût, and Schost 2016;

Lairez and Vaccon 2016, ...

Why? • Count points of elliptic curves.

Explicit Isogeny Problem (2)

Input: Curves E, E', isogenous of degree ℓ .

Output: The isogeny $\phi: E \to E'$ of degree ℓ .

Complexity: $O(\ell^2)$ — Elkies 1992; Couveignes 1996; Lercier and Sirvent 2008; De Feo 2011; De Feo, Hugounenq, Plût, and Schost 2016;

Lairez and Vaccon 2016, ...

Why? • Count points of elliptic curves.

Isogeny Walk Problem

Input: Isogenous curves E, E'.

Output: An isogeny $\phi: E \to E'$ of smooth degree.

Complexity: Generically hard — Galbraith, Hess, and Smart 2002, ...

Why? • Cryptanalysis (ECC);

Foundational problem for isogeny-based cryptography.

History of isogeny-based cryptography

- 1996 Couveignes introduces Hard Homogeneous Spaces. His work stays unpublished for 10 years.
- 2006 Rostovtsev & Stolbunov independently rediscover Couveignes ideas, suggest isogeny-based Diffie–Hellman as a quantum-resistant primitive.
- 2006-2010 Other isogeny-based protocols by Teske and Charles, Goren & Lauter.
 - 2011-2012 D., Jao & Plût introduce SIDH, an efficient post-quantum key exchange inspired by Couveignes, Rostovtsev, Stolbunov, Charles, Goren, Lauter.
 - 2017 SIDH is submitted to the NIST competition (with the name SIKE, only isogeny-based candidate).
 - 2018 D., Kieffer & Smith resurrect the Couveignes–Rostovtsev–Stolbunov protocol, Castryck, Lange, Martindale, Panny & Renes publish an efficient variant named CSIDH.

Isogeny graphs

We look at the graph of elliptic curves with isogenies up to isomorphism. We say two isogenies ϕ , ϕ' are isomorphic if:

Example: Finite field, ordinary case, graph of isogenies of degree 3.

Endomorphisms

Theorem (Hasse)

Let E be defined over a finite field \mathbb{F}_q . Its Frobenius map π satisfies a quadratic equation

$$\pi^2 - t\pi + q = 0$$

for some $|t| \leq 2\sqrt{q}$, called the trace of π . The trace t is coprime to q if and only if E is ordinary.

Endomorphisms

An isogeny $E \to E$ is also called an endomorphism. Examples:

- scalar multiplication [n],
- Frobenius map π .

With addition and composition, the endomorphisms form a ring $\operatorname{End}(E)$.

The endomorphism ring

Theorem (Deuring)

Let E be an ordinary elliptic curve defined over a finite field \mathbb{F}_q . Let π be its Frobenius endomorphism, and $D_{\pi}=t^2-4q<0$ the discriminant of its minimal polynomial.

Then ${\rm End}(E)$ is isomorphic to an order ${\mathcal O}$ of the quadratic imaginary field ${\mathbb Q}(\sqrt{D_\pi}).^a$

In this case, we say that E has complex multiplication (CM) by \mathcal{O} .

Theorem (Serre-Tate)

CM elliptic curves E, E' are isogenous iff $\operatorname{End}(E) \otimes \mathbb{Q} \simeq \operatorname{End}(E') \otimes \mathbb{Q}$.

Corollary: E/\mathbb{F}_p and E'/\mathbb{F}_p are isogenous over \mathbb{F}_p iff $\#E(\mathbb{F}_p)=\#E'(\mathbb{F}_p)$.

 $^{^{\}sigma}$ An order is a subring that is a $\mathbb{Z}-$ module of rank 2 (equiv., a 2-dimensional $\mathbb{R}-$ lattice).

Endomorphism rings of ordinary curves

Classifying quadratic orders

Let K be a quadratic number field, and let \mathcal{O}_K be its ring of integers.

- Any order $\mathcal{O} \subset K$ can be written as $\mathcal{O} = \mathbb{Z} + f\mathcal{O}_K$ for an integer f, called the conductor of \mathcal{O} , denoted by $[\mathcal{O}_K : \mathcal{O}]$.
- If D_K is the discriminant of K, the discriminant of \mathcal{O} is f^2D_K .
- If \mathcal{O} , \mathcal{O}' are two orders with discriminants D, D', then $\mathcal{O} \subset \mathcal{O}'$ iff D'|D.

Let E, E' be curves with respective endomorphism rings $\mathcal{O}, \mathcal{O}' \subset K$. Let $\phi: E \to E'$ be an isogeny of prime degree ℓ , then:

$$\begin{split} &\text{if } \mathcal{O} = \mathcal{O}', & \phi \text{ is horizontal;} \\ &\text{if } [\mathcal{O}':\mathcal{O}] = \ell, & \phi \text{ is ascending;} \\ &\text{if } [\mathcal{O}:\mathcal{O}'] = \ell, & \phi \text{ is descending.} \end{split}$$

Ordinary isogeny volcano of degree $\ell = 3$.

Let E be ordinary, $\operatorname{End}(E) \subset K$.

 \mathcal{O}_K : maximal order of K, \mathcal{D}_K : discriminant of K.

$$\left(\frac{D_K}{\ell}\right) = -1$$

$$\left(\frac{D_K}{\ell}\right) = 0$$

$$\left(\frac{D_K}{\ell}\right) = +1$$

		Horizontal	Ascending	Descending
$oldsymbol{\ell} mid \left[\mathcal{O}_K:\mathcal{O} ight]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
$\boldsymbol{\ell} \mid [\mathcal{O}_K : \mathcal{O}]]$	$oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	$\hat{m{\ell}}$
$\boldsymbol{\ell} \mid [\mathcal{O}_K : \mathcal{O}]]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	

Let E be ordinary, $\operatorname{End}(E) \subset K$.

 \mathcal{O}_K : maximal order of K, \mathcal{D}_K : discriminant of K.

$$\mathsf{Height} = \textit{v}_{\ell}([\mathcal{O}_{K}:\mathbb{Z}[\pi]]).$$

		Horizontal	Ascending	Descending
$oldsymbol{\ell} mid \left[\mathcal{O}_K:\mathcal{O} ight]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$ig oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
	$ig \; m{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	$\hat{\ell}$
$oldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$oldsymbol{\ell} mid \left[\mathcal{O} : \mathbb{Z}[\pi] ight]$		1	

Let E be ordinary, $\operatorname{End}(E) \subset K$.

 \mathcal{O}_K : maximal order of K,

 D_K : discriminant of K.

$$\mathsf{Height} = \mathit{v}_{\ell}([\mathcal{O}_K : \mathbb{Z}[\pi]]).$$

How large is the crater?

		Horizontal	Ascending	Descending
$oldsymbol{\ell} mid \left[\mathcal{O}_K:\mathcal{O} ight]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
	$ig \; m{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	$\hat{\ell}$
$oldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$ig oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	

How large is the crater of a volcano?

Let
$$\operatorname{End}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$$
. Define

- $\mathcal{I}(\mathcal{O})$, the group of invertible fractional ideals,
- $\mathcal{P}(\mathcal{O})$, the group of principal ideals,

The class group

The class group of \mathcal{O} is

$$Cl(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$$

- It is a finite abelian group.
- Its order $h(\mathcal{O})$ is called the class number of \mathcal{O} .
- It arises as the Galois group of an abelian extension of $\mathbb{Q}(\sqrt{-D})$.

Complex multiplication

The a-torsion

- Let $\mathfrak{a} \subset \mathcal{O}$ be an (integral invertible) ideal of \mathcal{O} ;
- Let $E[\mathfrak{a}]$ be the subgroup of E annihilated by \mathfrak{a} :

$$E[\mathfrak{a}] = \{ P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a} \};$$

ullet Let $\phi: E o E_{\mathfrak{a}}$, where $E_{\mathfrak{a}} = E/E[\mathfrak{a}]$.

Then $\operatorname{End}(E_{\mathfrak a})=\mathcal O$ (i.e., ϕ is horizontal).

Theorem (Complex multiplication)

The action on the set of elliptic curves with complex multiplication by \mathcal{O} defined by $\mathfrak{a}*j(E)=j(E_{\mathfrak{a}})$ factors through $\mathrm{Cl}(\mathcal{O})$, is faithful and transitive.

Corollary

Let $\operatorname{End}(E)$ have discriminant D. Assume that $\left(\frac{D}{\ell}\right)=1$, then E is on a crater of size N of an ℓ -volcano, and $N|h(\operatorname{End}(E))$

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$).

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$). Edges are horizontal

isogenies of bounded prime degree.

— degree 2

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$).

Edges are horizontal isogenies of bounded prime degree.

— degree 2

— degree 3

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$).

Edges are horizontal isogenies of bounded prime degree.

- degree 2
- degree 3
 - degree 5

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$).

Edges are horizontal isogenies of bounded prime degree.

- degree 2
- degree 3
- degree 5

Isomorphic to a Cayley graph of $Cl(\mathcal{O}_K)$.

- A commutative group G acting on a set X;
- A starting point $x \in X$;
- A subset

$$G\supset S=\{s_1,s_2,s_3,\dots\}.$$

- .
- ·
- •
- - •

- A commutative group G acting on a set X;
- A starting point $x \in X$;
- A subset $G \supset S = \{s_1, s_2, s_3, \dots\}.$
- Alice takes a secret random walk $s_A = s_1^{e_1} \cdot s_2^{e_2} \cdot s_3^{e_3} \cdot \cdots$ landing on $x_A = s_A * x$;

- A commutative group G acting on a set X;
- A starting point $x \in X$;
- A subset $G \supset S = \{s_1, s_2, s_3, \dots\}.$
- Alice takes a secret random walk $s_A = s_1^{e_1} \cdot s_2^{e_2} \cdot s_3^{e_3} \cdots$ landing on $x_A = s_A * x$;
- Bob does the same;

$$x_A$$

$$x_B \bullet$$

- A commutative group G acting on a set X;
- A starting point $x \in X$;
- A subset $G \supset S = \{s_1, s_2, s_3, \dots\}.$
- **Alice** takes a secret random walk $s_A = s_1^{e_1} \cdot s_2^{e_2} \cdot s_3^{e_3} \cdots$ landing on $x_A = s_A * x$;
- 2 Bob does the same;
- 3 They publish x_A and x_B ;

- A commutative group G acting on a set X;
- A starting point $x \in X$;
- A subset $G \supset S = \{s_1, s_2, s_3, \dots\}.$
- Alice takes a secret random walk $s_A = s_1^{e_1} \cdot s_2^{e_2} \cdot s_3^{e_3} \cdot \cdots$ landing on $x_A = s_A * x$;
- **Bob** does the same;
- **1** They publish x_A and x_B ;
- **4 Alice** repeats her secret walk s_A starting from x_B .

- A commutative group G acting on a set X;
- A starting point $x \in X$;
- A subset $G \supset S = \{s_1, s_2, s_3, \dots\}.$
- Alice takes a secret random walk $s_A = s_1^{e_1} \cdot s_2^{e_2} \cdot s_3^{e_3} \cdots$ landing on $x_A = s_A * x$;
- Bob does the same;
- ullet They publish x_A and x_B ;
- Alice repeats her secret walk s_A starting from x_B.
- **Solution Bob** repeats his secret walk s_B starting from x_A .

Couveignes-Rostovtsev-Stolbunov key exchange

Now, with isogenies

- $G = Cl(\mathcal{O}_K)$, a class group;
- X = elliptic curves with CM by O_K;
- A starting curve *E*;
- S = set of small degree isogenies.

Couveignes-Rostovtsev-Stolbunov key exchange

Now, with isogenies

- $G = Cl(\mathcal{O}_K)$, a class group;
- X = elliptic curves with CM by O_K;
- A starting curve *E*;
- S = set of small degree isogenies.

But why?!

Couveignes-Rostovtsev-Stolbunov key exchange

Now, with isogenies

- $G = Cl(\mathcal{O}_K)$, a class group;
- X = elliptic curves with CM by O_K;
- A starting curve *E*;
- S = set of small degree isogenies.

But why?!

Because the Shor/Kitaev quantum algorithm does not apply to Diffie-Hellman on Cayley graphs!

CSIDH (pron.: sea-side)

Speeding up the CRS key exchange (De Feo, Kieffer, and Smith 2018)

- Choose p such that $\ell \mid (p+1)$ for many small primes ℓ ;
- Look for random ordinary curves such that:

HARD!

- technical condition;
- Use Vélu's formulas for those primes ℓ.

CSIDH (Castryck, Lange, Martindale, Panny, and Renes 2018)

- Choose p such that $\ell \mid (p+1)$ for many small primes ℓ ;
- Select a supersingular curve E/\mathbb{F}_p , automatically

- $\#E(\mathbb{F}_p)=p+1,$
- technical condition always satisfied;
- ∼100ms for a 128 bits secure key exchange

Supersingular graphs

- Quaternion algebras have many maximal orders.
- For every maximal order type of $B_{p,\infty}$ there are 1 or 2 curves over \mathbb{F}_{p^2} having endomorphism ring isomorphic to it.
- There is a unique isogeny class of supersingular curves over $\overline{\mathbb{F}}_p$ of size $\approx p/12$.
- Left ideals act on the set of maximal orders like isogenies.
- The graph of ℓ -isogenies is $(\ell+1)$ -regular.

Figure: 3-isogeny graph on \mathbb{F}_{97^2} .

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

Good news: there is no action of a commutative class group.

Bad news: there is no action of a commutative class group.

Idea: Let Alice and Bob walk in two different isogeny graphs on the same vertex set.

Figure: 2- and 3-isogeny graphs on \mathbb{F}_{97^2} .

- Fix small primes ℓ_A , ℓ_B ;
- No canonical labeling of the ℓ_A and ℓ_B -isogeny graphs; however...

Walk of length
$$e_A$$
 $=$ Isogeny of degree $\ell_A^{e_A}$ $=$ Kernel $\langle P \rangle \subset E[\ell_A^{e_A}]$

$$\ker \phi = \langle P
angle \subset E[\ell_A^{e_A}]$$
 $\ker \psi = \langle Q
angle \subset E[\ell_B^{e_B}]$
 $\ker \phi' = \langle \psi(P)
angle$
 $\ker \psi' = \langle \phi(Q)
angle$

SIKE: Supersingular Isogeny Key Encapsulation

Submission to the NIST PQ competition:

SIKE.PKE: El Gamal-type system with IND-CPA security proof, SIKE.KEM: generically transformed system with IND-CCA security proof.

- Security levels 1, 3 and 5.
- Smallest communication complexity among all proposals in each level.
- Slowest among all benchmarked proposals in each level.
- A team of 14 submitters, from 8 universities and companies.
- Visit https://sike.org/.

	p	,	q. security	speed	comm.
	$2^{250}3^{159}-1$		84 bits	10ms	0.4KB
	$2^{372}3^{239}-1$	188 bits	125 bits	30ms	0.6KB
SIKEp964	$2^{486}3^{301} - 1$	241 bits	161 bits		0.8KB

1996

Open problems

From easier to harder:

- Give a convincing constant-time implementation of CSIDH.
- Find new isogeny-based primitives/protocols.
- Precisely asses the quantum security of CRS/CSIDH.
- Find an efficient post-quantum isogeny-based signature scheme.
- Exploit the extra information transmitted in SIDH/SIKE for cryptanalytic purposes.
- Sample supersingular curves without revealing endomorphism rings.
- Compute endomorphism rings of supersingular curves.

SIDH vs SIDH	CSIDH	SIDH	
Speed (NIST 1)	<100ms	∼ 10ms	
Public key size (NIST 1)	64B	378B	
Key compression ¹			
speed		\sim 15ms 2	
ե size		222B	
Constant time impl.	not yet	yes	
Submitted to NIST	no	yes	
Best classical attack	$p^{1/4}$	$p^{1/4}$	
Best quantum attack	$\tilde{\mathcal{O}}\left(3^{\sqrt{\log_3 p}}\right)$	$p^{1/6}$	
Key size scales	quadratically	linearly	
Security assumption	isogeny walk problem	ad hoc	
CPA security	yes	yes	
CCA security	yes	Fujisaki-Okamoto	
Non-interactive key ex.	yes	no	
Signatures	short but slooow!	big and slow	

¹Zanon, Simplicio, Pereira, Doliskani, and Barreto 2018.

²https://twitter.com/PatrickLonga/status/1002313366466015232?s=20

Signatures (a different story)

- No analogue of Schnorr signatures for DH on Cayley graphs.
- All known isogeny constructions are basic Fiat-Shamir applied to zero-knowledge identification protocols.

SIDH signatures

- Identification protocol also proposed by D.F., Jao, Plût;
- Only one bit per iteration → 128 iterations of SIDH primitive;
- Slow, large signatures;
- Even slower variants by Galbraith, Petit, and Silva 2016.

CSIDH signatures (SeaSign)

- (Flawed) id protocol already realized by Couveignes, Stolbunov;
- SeaSign (De Feo and Galbraith 2019): fixes flaw using Fiat-Shamir with aborts (Lyubashevsky 2009) (+ hash trees);
- Small signatures, still extremely slow (minutes).

Article citations I

"Isogénies entre courbes elliptiques."

In: Comptes Rendus de l'Académie des Sciences de Paris 273, Pp. 238-241.

"Explicit isogenies."

manuscript, Boston MA.

"Computing I-Isogenies Using the p-Torsion."

In: ANTS-II: Proceedings of the Second International Symposium on Algorithmic Number Theory.

London, UK: Springer-Verlag, Pp. 59-65.

Article citations II

Lercier, Reynald and Thomas Sirvent (2008).

"On Elkies subgroups of ℓ -torsion points in elliptic curves defined over a finite field."

In: Journal de théorie des nombres de Bordeaux 20.3, Pp. 783–797.

De Feo, Luca (May 2011).

"Fast algorithms for computing isogenies between ordinary elliptic curves in small characteristic."

In: Journal of Number Theory 131.5, Pp. 873–893.

De Feo, Luca, Cyril Hugounenq, Jérôme Plût, and Éric Schost (2016).

"Explicit isogenies in quadratic time in any characteristic."

In: LMS Journal of Computation and Mathematics 19.A, Pp. 267–282.

Article citations III

Lairez, Pierre and Tristan Vaccon (2016).

"On p-Adic Differential Equations with Separation of Variables."

In: Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation.

ISSAC '16.

Waterloo, ON, Canada: ACM, Pp. 319–323.

Galbraith, Steven D., Florian Hess, and Nigel P. Smart (2002). "Extending the GHS Weil descent attack."

In: Advances in cryptology—EUROCRYPT 2002 (Amsterdam).

Vol. 2332.

Lecture Notes in Comput. Sci.

Berlin: Springer,

Pp. 29-44.

Article citations IV

De Feo, Luca, Jean Kieffer, and Benjamin Smith (2018). "Towards Practical Key Exchange from Ordinary Isogeny Graphs." In: Advances in Cryptology – ASIACRYPT 2018. Ed. by Thomas Peyrin and Steven D. Galbraith. Springer International Publishing, Pp. 365–394.

Castryck, Wouter, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes (2018).

"CSIDH: An Efficient Post-Quantum Commutative Group Action." In: Advances in Cryptology – ASIACRYPT 2018. Ed. by Thomas Peyrin and Steven D. Galbraith.

Springer International Publishing,

Pp. 395-427.

Article citations V

Zanon, Gustavo H. M., Marcos A. Simplicio, Geovandro C. C. F. Pereira, Javad Doliskani, and Paulo S. L. M. Barreto (2018).

"Faster Isogeny-Based Compressed Key Agreement."

In: Post-Quantum Cryptography.

Ed. by Tanja Lange and Rainer Steinwandt.

Cham: Springer International Publishing,

Pp. 248-268.

Galbraith, Steven D., Christophe Petit, and Javier Silva (2016). Signature Schemes Based On Supersingular Isogeny Problems. Cryptology ePrint Archive, Report 2016/1154. http://eprint.iacr.org/2016/1154.

De Feo, Luca and Steven D. Galbraith (2019).

"SeaSign: Compact isogeny signatures from class group actions." In: Eurocrypt 2019.

Article citations VI

Lyubashevsky, Vadim (2009).

"Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures."

In: ASIACRYPT 2009.

Ed. by M. Matsui.

Vol. 5912.

LNCS.

Springer,

Pp. 598-616.