

Inhaltsangabe

- Problemstellung
- Annahme
- Himmelskoordinaten
- Horizontale und vertikale Ausrichtung der PV-Module
- Optimale Ausrichtung
- Nachgeführte Anlage
- MatLab

Problemstellung

- Berechnung der Sonnenposition (Deklination, Stundenwinkel, Höhenwinkel, Azimut)
- Analyse von Anlagenkonfiguration: horizontal, vertikal, optimal, nachgeführt
- Vergleich der Energieerträge für verschiedenen Zeiträume
- Innsbruck 47.26 Breite und 11.39 Länge

Annahmen für die Berechnung

- Ebene Oberfläche (ohne topografische Hindernisse wie Berge oder Täler)
- Wolkenfreier Himmel/ keine atmosphärischen Einflüsse
- Photovoltaik- Modul ohne Verschmutzung und Verluste
- Photovoltaik- Modul mit Wirkungsgrad: η=1
- Gleichmäßige Sonneneinstrahlung ohne Abschattungen

Himmelskoordinaten

- **Deklination**
- Stundenwinkel
- Höhenwinkel
- **Azimut**

Abbildung 1: Neigung der Erde zur Sonne

Abbildung 2: Winkel

Deklination δ

= Die Deklination ist der Winkel zwischen den Himmelsäquator und der Position der Sonne.

Deklination variiert zwischen:

- **21. Juni**: δ= +23,45° (längster Tag)
- **21. Dezember**: δ = -23,45° (kürzester Tag)
- 21. März $\delta = 0^{\circ}$
- **23. September** $\delta = 0^{\circ}$

Abbildung 1: Neigung der Erde zur Sonne

Berechnung der Deklination

Winkel der Sonnenposition: 0,986° pro Tag oder 0,0172 Rad

Stundenwinkel, Höhenwinkel, Azimut

Stundenwinkel

Ν W 0

Abbildung 3: Stundenwinkel

Höhenwinkel, Azimut

Abbildung 2: Winkel

Stundenwinkel - Höhenwinkel - Azimut

Stundenwinkel

1 Stunde = 15°

Höhenwinkel

$$\sin \alpha = \sin \varphi \cdot \sin \delta + \cos \varphi \cdot \cos \delta \cdot \cos H$$

$$\varphi ... 47.26 Breitengrad$$

Azimut

$$\cos\alpha_Z = \frac{\sin\delta - \sin\alpha \cdot \sin\varphi}{\cos\alpha \cdot \cos\varphi}$$

Horizontale und vertikale Ausrichtung

Vertikale Ausrichtung

besser für Winter

Horizontale Ausrichtung

besser für Sommer

Abbildung 4: Ausrichtung zur Sonne

Effizienz von PV-Anlagen: Vertikal oder **Horizontal?**

Datum	Vertikale Ausrichtung [Wh]	Horizontale Ausrichtung [Wh]
21. März	1122.1	1036.9
21. Juni	465.5	1759.5
21. September	1363.3	671.73
21. Dezember	1359.3	356.85
Σ übers Jahr	373 398.80	382 407.46

Optimale Orientierung

Optimale Neigungswinkel: 62.39°

Optimale Ausrichtung: 33.73°

Energie mit Optimaler Ausrichtung:

419 686.12 Wh

Nachgeführte Anlage

1- Achsig

2- Achsig

Vertikale	Horizontale	Optimale	Nachgeführte Anlage
Ausrichtung	Ausrichtung	Winkel	(2- Achsig)
373 398.80 Wh	382 407.46 Wh	419 686.12 Wh	

Code veview m:t Kevin:

MatLab

Nun sehen wir uns den Code in MatLab an.

Danke für ihre Aufmerksamkeit

PS: Energie wird umgewandelt nicht produziert.

Interesse?

https://github.com/V4Cmeister/ MCI_PV_Orientation.git

Literaturverzeichnis

- Abbildung 1: Neigung der Erde zur Sonne (Quelle: timeanddate.de, <u>Link-Abb1</u>)
- Abbildung 2: Winkel (Quelle: timeanddate.de, <u>Link-Abb2</u>)
- Abbildung 3: Stundenwinkel (Quelle: eigene Darstellung)
- Abbildung 4: Ausrichtung zur Sonne (Quelle: eigene Darstellung)

