Bayesian Growth Curve Modeling with Measurement Error in Time

Lijin Zhang¹, Wen Qu², Zhiyong Zhang³

¹ Stanford University

² Fudan University

³ University of Notre Dame

August 31, 2023

Growth Curve

► Tracking changes over time is vital for understanding the nature of development in abilities, personality, behavioral problems, and more.

Growth Curve Modeling (GCM)

- ► GCM is powerful approach for tracing and describing patterns of change over time.
- A beauty of GCM lies in its ability to encapsulate both individual variation and population trends.
- ► Linear Growth Curve Modeling

$$y_{nt} = i_n + sl_n \cdot (t - k) + \epsilon_{nt}, \quad n = 1, ..., N, t = 1, ..., T$$
 (1)

- \triangleright y_{nt} : Response of individual n at time t
- $ightharpoonup i_n$: Intercept for the individual n
- $ightharpoonup sl_n$: Linear slope
- ϵ_{nt} : Measurement error of y_{nt} , $\sim N(0, \psi_t)$

Quadratic Growth Curve Model

▶ If the linear growth curve does not fit well and a non-linear trend emerges from the longitudinal plot, researchers might opt for the quadratic growth model:

$$y_{nt} = i_n + sI_n \cdot (t - k) + sq_n \cdot (t - k)^2 + \epsilon_{nt}$$
 (2)

Quadratic Growth Curve Model

$$y_{nt} = i_n + sl_n \cdot (t - k) + sq_n \cdot (t - k)^2 + \epsilon_{nt}$$
 (3)

If we assume t = 1, 2, ..., 7 and k = 1, the loading matrix Λ linking the latent and observed variables:

$$\mathbf{\Lambda} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \\ 1 & 5 & 25 \\ 1 & 6 & 36 \end{bmatrix} \tag{4}$$

Bayesian GCM Lijin, Wen, Johnny 5/33

Time Intervals

- ► The growth curve model does not require the measurement to be equally spaced.
- Consider a scenario where measurements are taken in the 1st, 3rd, 6th, and 7th years.

$$\mathbf{\Lambda} = \begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 5 \\ 1 & 6 \end{bmatrix} \tag{5}$$

Strict Assumption

- Measurements should be conducted strictly at pre-set intervals.
- Specifically, the time interval between each measurement for each participant should be exactly maintained as designed.

Measurement Error in Time

- ► This error can be broadly classified into two types: systematic and random.
- Systematic errors could be attributed to minor deviations from an ideal measurement schedule.
- Random errors might arise from the duration of the data collection process.
- Very common in real-world analysis, but the traditional model does not account for this error, assuming that all measurements strictly adhere to the pre-defined interval.

Aim

- ► Investigate the consequence of ignoring the measurement error in time.
- ▶ Develop a model that can integrate prior knowledge regarding both the measurement schedule and the error in time.

Modeling Error in Time

- t_{nt} denotes the recorded time value for the n-th individual at the t-th time point.
- $ightharpoonup t_{nt}^*$ is the true time value.
- \triangleright e_{nt} is the measurement error in time.

When the individual time values are known ($t_{nt} = t_{nt}^*$), t_{nt}^* can be directly included into the model:

$$y_{nt} = i_n + sI_n \cdot (t_{nt} - k) + sq_n \cdot (t_{nt} - k)^2 + \epsilon_{nt}$$
 (6)

The individualized loading matrix Λ_n :

$$\Lambda_{n} = \begin{bmatrix}
1 & t_{n1} - k & (t_{n1} - k)^{2} \\
1 & \dots & \dots \\
1 & t_{nt} - k & (t_{nt} - k)^{2} \\
1 & \dots & \dots \\
1 & t_{nT} - k & (t_{nT} - k)^{2}
\end{bmatrix}$$
(7)

When the individual time information is unavailable $(t_{nt} = t)$, we proposed to model t_{nt}^* as an unobserved variable.

We anchor k and t_{1n}^* at 1 to help interpret the intercept parameter as the initial status for each individual.

We use Bayesian estimation to assign priors to t_{nt}^* starting from the second time point, which are centered around μ_t :

$$y_{nt} = i_{n} + sl_{n} \cdot (t_{nt}^{*} - 1) + sq_{n} \cdot (t_{nt}^{*} - 1)^{2} + \epsilon_{nt}$$

$$t_{nt}^{*} \sim TN(\mu_{t}, \tau_{r}^{2}, t - 0.99, t + 0.99), \mu_{t} \sim N(t, \tau_{s}^{2}), \text{ for } t = 2, \dots, T$$

$$\epsilon_{nt} \sim N(0, \psi_{t})$$

$$X_{n} \sim \text{MVN}\left(\left[\begin{array}{ccc} \mu_{i} & \mu_{sl} & \mu_{sq} \end{array}\right]^{T}, \Phi\right), X_{n} = \left[\begin{array}{ccc} i_{n} & sl_{n} & sq_{n} \end{array}\right]^{T}$$
(8)

Modeling Error in Time

- This approach incorporates the prior knowledge about the measurement schedule and addresses the error in time by modeling t^{*}_{nt}.
- ► The time t_{nt}^* is approximately fixed at t but allows slight variations.
- ▶ This greatly simplifies the interpretation of the slopes.

Simulation Studies

- ► Simulation 1: Consequences of Ignoring the Measurement Error in Time
- ► Simulation 2: Growth Curve Modeling with Known t_{nt}^*
- ightharpoonup Simulation 3: Growth Curve Modeling with Unknown t_{nt}^*

Simulation Study 1

Consequences of Ignoring the Measurement Error in Time.

True Model:

- The means of time (μ_t) . Two scenarios were considered: $\mu_{t0} = (1, 2, 3, 4, 5, 6, 7)$, and an alternate sequence $\mu_{t1} = (1, 2.1, 2.9, 4.1, 4.9, 6.1, 6.9)$ with systemic derivation from μ_{t0} .
- ▶ The standard deviations (τ_r) . 0, 0.1, 0.2, 0.3.
- ▶ Latent means for the intercept and slopes were set at 1 and 0.2 / 1 and 0.5, respectively.
- ▶ The residual variances for y_{nt} were established as either 1 or 4.
- ► Sample size: 250 and 500.

We simulated each condition 100 times.

Model Estimation

For the latent means, the variance-covariance matrix of the latent variables, and the residual variances of observed variables, we assigned either diffuse or weakly informative priors.

For example, priors for the quadratic growth curve model:

$$\begin{bmatrix} i_{n} \\ sl_{n} \\ sq_{n} \end{bmatrix} \sim MVN \begin{pmatrix} \begin{bmatrix} \mu_{i} \\ \mu_{sl} \\ \mu_{sq} \end{bmatrix}, \Phi \end{pmatrix}$$

$$\mu_{i}, \mu_{sl}, \mu_{sq} \sim N(0, 10)$$

$$\Phi^{-1} \sim Wishart(I, 3)$$

$$\psi_{t}^{-1} \sim Gamma(1, 1)$$

$$(9)$$

Bayesian GCM Lijin, Wen, Johnny 17/33

Model Estimation

- ► Software: JAGS
- Two MCMC chains were generated for convergence check and model estimation.
- ▶ Burn-in phase: 5,000 100,000 iterations.
- ▶ If the model converged within 100,000 iterations (EPSR < 1.1), 5,000 more iterations would be generated for estimation.

Results: High convergence rate (>95%) and power for latent means (>90%) across all modeling conditions.

Table 1: Results of the Linear Growth Curve Models.

		$\boldsymbol{\mu}_t$)		$oldsymbol{\mu}_{t1}$					
	$ au_r$ =	= 0	τ_r :	= 0.2	τ_r	=0	$\tau_r = 0.2$			
	RB(%)	RMSE	RB	RMSE	RB	RMSE	RB	RMSE		
μ_i	0.31	0.05	-0.16	0.05	0.96	0.05	0.48	0.06		
μ_{sl}	-0.11	0.05	-1.95	0.05	-1.23	0.05	-3.07	0.05		
ϕ_i	-0.60	0.09	0.72	0.09	1.87	0.09	3.17	0.10		
ϕ_{sl}	-0.68	0.06	-0.22	0.07	-2.91	0.07	-2.53	0.07		
$\phi_{i,sl}$	-1.10	0.06	-1.90	0.05	5.83	0.06	5.14	0.05		
ψ_1	1.59	0.08	1.49	0.10	2.65	0.08	2.59	0.11		
ψ_2	1.68	0.08	5.21	0.10	1.66	0.08	5.31	0.10		
ψ_3	0.34	0.08	4.04	0.08	2.10	0.08	5.85	0.09		
ψ_4	1.10	0.07	4.01	0.08	2.92	0.08	5.69	0.09		
ψ_5	-0.07	0.09	5.39	0.10	0.09	0.09	5.65	0.10		
ψ_6	-0.48	0.09	6.29	0.12	5.84	0.11	13.17	0.17		
ψ_7	3.18	0.12	3.66	0.12	-1.17	0.11	-0.78	0.11		

$$y_{nt} = i_n + sI_n \cdot (t - k) + \epsilon_{nt}$$
 (10)

Bayesian GCM Lijin, Wen, Johnny 19/33

Quadratic Growth Curve - Relative Bias

Summary

- ▶ The measurement error in time seems to be captured by the residual error ϵ_{nt} of y_{nt} in the linear growth curve model (Equation 1), thereby having little influence on other parameter estimates.
- ▶ As τ_r increased under the μ_{t0} conditions, the relative bias of μ_{sl} , $\phi_{i,sl}$, and $\phi_{sl,sq}$ increased.
- When there were systematic deviations from the measurement schedule, considerable bias emerged (with |RB| > 0.1) for almost every parameter, except for μ_i .

Simulation Study 2

Models Comparison: Fixed t (traditional model) vs Known t_{nt}^*

- ▶ In practical scenarios, responses can be precisely timed, often through online surveys.
- ▶ We selected two conditions from the simulation study 1 where N = 500, $\tau_r = 0.2$ and $\mu_{sl} = \mu_{sq} = 0.2$.
- We varied the average response times: $\mu_t = \mu_{t0}$ or μ_{t1} .
- ► We saved the true individual time values from data generation for subsequent estimation.

Table 2: Results of the Simulation Study 2.

	Model	t					Known t_{nt}^*				
		μ	t0	μ	t1		u_{t0}	-	$oldsymbol{u}_{t1}$		
	TRUE	RB(%)	RMSE	RB	RMSE	RB	RMSE	RB	RMSE		
μ_i	1	0.27	0.06	0.59	0.06	0.26	0.06	0.27	0.06		
μ_{sl}	0.2	3.92	0.06	19.57	0.07	1.96	0.05	1.94	0.05		
μ_{sq}	0.2	0.64	0.05	-4.70	0.04	0.82	0.05	0.82	0.05		
ϕ_i	1	-3.82	0.16	-3.66	0.15	-2.23	0.13	-2.68	0.13		
ϕ_{sl}	1	-1.68	0.14	14.27	0.22	-1.70	0.11	-1.95	0.11		
ϕ_{sq}	1	-1.40	0.07	-10.81	0.12	-0.58	0.07	-0.58	0.07		
$\phi_{i,sl}$	0.4	11.97	0.11	32.54	0.17	3.72	0.08	4.50	0.09		
$\phi_{i,sq}$	0.4	-1.21	0.07	-4.57	0.07	-1.34	0.07	-1.43	0.07		
$\phi_{sl,sq}$	0.4	6.90	0.07	33.66	0.15	0.12	0.05	0.18	0.05		
ψ_1	1	6.23	0.15	7.31	0.16	3.98	0.12	4.47	0.13		
ψ_2	1	28.95	0.31	38.58	0.41	0.54	0.07	0.52	0.07		
ψ_3	1	85.23	0.88	122.30	1.25	-0.34	0.09	-0.38	0.09		
ψ_4	1	170.87	1.74	243.23	2.47	2.15	0.08	2.25	0.08		
ψ_5	1	298.60	3.03	353.47	3.58	-0.32	0.09	-0.34	0.09		
ψ_6	1	445.47	4.53	906.59	9.15	-0.03	0.12	-0.22	0.13		
ψ_7	1	623.08	6.44	321.02	3.74	3.33	0.26	3.44	0.25		

Simulation Study 3

- We varied two factors in data generation, including:
 - 1 The average response times, denoted as μ_t , were set to either $\mu_{t0} = (1, 2, 3, 4, 5, 6, 7)$ or $\mu_{t1} = (1, 2.1, 2.9, 4.1, 4.9, 6.1, 6.9)$;
 - 2 The standard deviation, τ_r , was set to either 0 or 0.2.
- All other settings were consistent with those of study 2 (e.g., $\mu_{sl} = \mu_{sq} = 0.2$, N = 500).
- ▶ Model comparison: Fixed t vs Unknown t_{nt}^*
- For the parameters τ_r and τ_s , we utilized hyper-priors to derive their values:

$$t_{nt}^* \sim TN(\mu_t, \tau_r^2, t-0.99, t+0.99), \mu_t \sim N(t, \tau_s^2), \text{ for } t = 2, 3, \dots, 7$$

 $\tau_r^{-2} \sim U(100, 10000), \tau_s^{-2} \sim U(1000, 10000)(11)$

Table 3: Results of the Simulation Study 3.

	t							Unknown t_{nt}^*								
	$oldsymbol{\mu}_{t0}$				$oldsymbol{\mu}_{t1}$				$oldsymbol{\mu}_{t0}$		$oldsymbol{\mu}_{t1}$					
	τ_r =	= 0	$\tau_r =$	0.2	τ_r :	= 0	$\tau_r =$	0.2	τ_r	= 0	$\tau_r =$	0.2	τ_r	= 0	$\tau_r =$	0.2
	RB(%)	RMSE	RB	RMSE	RB	RMSE	RB	RMSE	RB	RMSE	RB	RMSE	RB	RMSE	RB	RMSE
μ_i	-0.29	0.07	0.27	0.06	-0.34	0.07	0.59	0.06	-0.24	0.07	0.41	0.06	0.38	0.07	0.64	0.06
μ_{sl}	-0.49	0.06	3.92	0.06	19.81	0.07	19.57	0.07	-0.98	0.06	-2.45	0.06	7.81	0.06	-0.99	0.06
μ_{sq}	-2.13	0.05	0.64	0.05	-8.88	0.05	-4.70	0.04	-1.84	0.05	2.37	0.05	-5.24	0.05	1.67	0.05
ϕ_i	-3.15	0.13	-3.82	0.16	-8.69	0.15	-3.66	0.15	-4.39	0.14	-4.08	0.16	-4.52	0.14	-4.28	0.16
ϕ_{sl}	-1.20	0.10	-1.68	0.14	11.78	0.16	14.27	0.22	-2.06	0.10	-2.47	0.14	6.10	0.13	-1.87	0.14
ϕ_{sq}	-0.48	0.07	-1.40	0.07	-13.17	0.14	-10.81	0.12	-0.32	0.06	1.72	0.07	-5.27	0.08	0.74	0.07
$\phi_{i,sl}$	2.23	0.09	11.97	0.11	37.69	0.17	32.54	0.17	4.18	0.09	5.13	0.10	17.37	0.12	10.36	0.11
$\phi_{i,sq}$	-2.96	0.06	-1.21	0.07	-14.32	0.08	-4.57	0.07	-2.76	0.07	1.64	0.08	-3.87	0.07	3.21	0.08
$\phi_{sl,se}$, 0.86	0.06	6.90	0.07	42.13	0.18	33.66	0.15	0.07	0.06	-8.63	0.07	16.69	0.10	-6.42	0.06
ψ_1	5.13	0.14	6.23	0.15	12.96	0.18	7.31	0.16	6.23	0.15	5.90	0.15	8.05	0.16	7.35	0.16
ψ_2	1.39	0.08	28.95	0.31	0.81	0.08	38.58	0.41	1.19	0.08	18.67	0.21	1.42	0.08	22.32	0.25
ψ_3	-0.99	0.08	85.23	0.88	46.04	0.48	122.30	1.25	-1.46	0.08	43.72	0.47	-1.32	0.08	40.54	0.43
ψ_4	1.73	0.10	170.87	1.74	69.10	0.71	243.23	3 2.47	1.03	0.10	78.26	0.81	0.83	0.10	83.02	0.85
ψ_5	1.10	0.09	298.60	3.03	54.79	0.57	353.47	3.58	-0.17	0.09	120.32	1.24	-0.38	0.09	117.29	1.21
ψ_6	-0.48	0.12	445.47	4.53	354.77	3.56	906.59	9.15	-3.04	0.12	156.26	1.63	-1.78	0.13	164.81	1.73
ψ_7	4.54	0.27	623.08	6.44	-66.94	0.67	321.02	3.74	3.09	0.27	227.81	2.50	-0.41	0.24	216.21	2.37

Model Selection

- ► We further evaluated how the DIC (Deviance Information Criterion) differentiates between the two models.
- ► For every replication, we used the DIC to identify the model with a better fit, as indicated by a lower DIC value.

Table: Model Selection Rates between Model t and Model t_{nt}^* using DIC.

	μ	t0	μ_{t1}			
	t	t_{nt}^*	t	t_{nt}^*		
$\tau_r = 0$	0.59	0.41	0	1		
$\tau_r = 0.2$	1	0	0.17	0.83		

Empirical Data

- ► Early Childhood Longitudinal Study—Kindergarten (ECLS-K): Investigated the early educational experiences of children in the United States who began kindergarten in the 1998–1999 school year.
- ▶ We extracted 500 samples of the math IRT (Item Response Theory) scale scores from five waves of the ECLS-K: the fall of kindergarten, and the spring of kindergarten, 1st, 3rd, and 5th grades.
- ► The ECLS-K study extended over many years in different US locations.
- ► This makes it challenging to ensure consistent measurement intervals for each individual, which could result in the measurement error in time.

Trajectory Plot

▶ We set the time interval unit as semester. This resulted in five waves: the first, second, fourth, eighth, and twelfth semesters.

Model Comparison

The first model had a fixed loading matrix:

$$\mathbf{\Lambda} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 3 & 9 \\ 1 & 7 & 49 \\ 1 & 11 & 121 \end{bmatrix} \tag{12}$$

▶ The second model integrated the unknown t_{nt}^* and allowed slight deviations from the designed measurement schedule:

$$t = 2, t_{n2}^* \sim TN(\mu_2, \tau_r^2, 1.01, 2.99), \mu_2 \sim N(2, \tau_s^2)$$

$$t = 4, t_{n4}^* \sim TN(\mu_4, \tau_r^2, 3.01, 4.99), \mu_4 \sim N(4, \tau_s^2)$$

$$t = 8, t_{n8}^* \sim TN(\mu_8, \tau_r^2, 7.01, 8.99), \mu_8 \sim N(8, \tau_s^2)$$

$$t = 12, t_{n,12}^* \sim TN(\mu_{12}, \tau_r^2, 11.01, 12.99), \mu_{12} \sim N(12, \tau_s^2)$$

$$\tau_r^{-2}, \tau_s^{-2} \sim U(1000, 10000)$$
(13)

Priors

► Echoing the simulation study, we utilized diffuse or weakly informative priors for other parameters in both models:

$$\mu_i \sim N(20, 100), \qquad \mu_{sl}, \mu_{sq} \sim N(0, 100)
\Phi^{-1} \sim Wishart(I, 3), \quad \psi_t^{-1} \sim Gamma(1, 1)$$
(14)

► Two MCMC chains were generated, with 50,000 iterations for burn-in and another 50,000 for inference. Both models reached convergence within the burn-in phase (EPSR < 1.1).

Bayesian GCM Lijin, Wen, Johnny 30/33

 ${\bf Table~5:~Results~of~the~Empirical~Study}.$

Model		t		t_{nt}^*				
Parameter	Estimate	SD	HPD	Estimate	SD	HPD		
$\overline{\mu_i}$	26.182	0.997	(25.157, 27.352)	25.499	0.507	(24.484, 26.467)		
μ_{sl}	3.896	0.354	(3.477, 4.254)	4.155	0.176	(3.807, 4.498)		
μ_{sq}	0.135	0.028	(0.105, 0.168)	0.116	0.014	(0.087, 0.144)		
ϕ_i	82.684	7.765	(69.348, 97.082)	81.426	6.684	(68.713, 94.82)		
ϕ_{sl}	2.986	0.746	(1.938, 4.017)	2.935	0.503	(1.96, 3.916)		
ϕ_{sq}	0.027	0.005	(0.02, 0.035)	0.027	0.003	(0.02, 0.034)		
$\phi_{i,sl}$	14.711	1.479	(11.911, 17.5)	14.402	1.352	(11.801, 17.085)		
$\phi_{i,sq}$	-1.035	0.127	(-1.282, -0.797)	-1.001	0.116	(-1.234, -0.778)		
$\phi_{sl,sq}$	-0.217	0.058	(-0.301, -0.135)	-0.210	0.040	(-0.29, -0.134)		
ψ_1	43.148	12.286	(34.487, 51.072)	36.870	3.397	(30.521, 43.783)		
ψ_2	33.717	19.797	(26.746, 39.244)	29.814	2.846	(24.372, 35.44)		
ψ_3	22.386	17.344	(16.655, 27.691)	23.345	2.709	(18.164, 28.771)		
ψ_4	83.617	11.534	(70.738, 95.98)	76.804	5.984	(65.249, 88.563)		
ψ_5	2.051	10.116	(0.119, 6.507)	1.969	2.293	(0.129, 6.335)		
$ au_r$	-	-	-	0.015	0.005	(0.01, 0.025)		
$ au_s$	-	-	-	0.031	0.001	(0.03, 0.032)		
DIC		13928	86.85	118853.67				

Takeaways

- ▶ Ignoring the measurement error in time can lead to biased results in quadratic growth curve modeling.
- ► The proposed model introduces underlying individual time values that exist behind the preset measurement schedule.
- ▶ It outperforms the traditional model that ignores time errors in terms of estimation accuracy.
- Even in the absence of time errors, this model continues to provide excellent performance with acceptable bias.

Thanks for Listening!

Slides:

https://lijinzhang.com/share/230831_gcm.pdf