UNIVERSITY OF TECHNOLOGY

[Turn over

								© Utech		
Nan	ne :		• • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			8	/	
Roll No.:										
Invigilator's Signature :										
CS/B.TECH(ECE)/SEM-5/EC-513/2011-12										
2011										
CONTROL SYSTEM										
Time Allotted: 3 Hours							Full Marks: 70			
		Th	e figu	res in the i	margin i	ndica	te full mo	arks.		
Candidates are required to give their answers in their own words										
as far as practicable.										
GROUP – A										
(Multiple Choice Type Questions)										
1.	1. Choose the correct alternatives for any <i>ten</i> of the following:									
								10 × 1	= 10	
	i) If the maximum overshoot is 100%, the damping ratio is									
		a)	1			b)	0			
		c)	0.5			d)	∞ .			
	ii)	If	the	character	istic e	quati	on of	a system	is	
	$s^2 + 8s + 25 = 0$, the value of ξ_n and ω_n will be									
		a)	0.8,	5 rad/s		b)	0.8, 0.5	rad/s		
		c)	0.5,	8 rad/s		d)	5, $\sqrt{8}$ r	ad/s.		

CS/B.TECH(ECE)/SEM-5/EC-513/2011-12

- Addition of a pole to the close loop transfer function iii)
 - a) increases rise time
- decreases rise time b)
- increases overshoot c)
- d) has no effect.
- iv) The transfer function of a system having a gain of 9 and a pole zero map as in figure below is

- a) $\frac{9(s+1)(s+2)(s+3)}{s}$ b) $\frac{9(s-1)(s-2)(s-3)}{s}$ c) $\frac{9s(s+1)}{(s+2)(s+3)}$ d) $\frac{9s}{(s+1)(s+2)(s+3)}$.
- The TF of a network $\frac{1+0\cdot5 s}{2+s}$ is known as v)
 - High pass system a)
 - Lead network b)
 - c) Lag network
 - d) Proportional controller.
- If the Nyquist plot of a certain feedback system crosses the negative real axis at -0.1 point, the gain margin of the system is given by
 - 0.1a)

10 b)

c) 100 d) none of these.

http://www.makaut.com

CS/B.TECH(ECE)/SEM-5/EC-513/2011-1

- vii) For a system defined by $G(s) = \frac{e^{-0.15}}{s}$, the phase crossover frequency is
 - a) $\frac{\pi}{2}$

b) $\frac{\pi}{10}$

c) $\frac{\pi}{0.2}$

- d) $\frac{\pi}{4}$.
- viii) Integral error control
 - a) increases the order of the system
 - b) decreases the order of the system
 - c) increases steady-state error
 - d) decreases steady-state error.
- ix) The steady-state error due to a step input for the system shown below is

a) zero

b) $\frac{1}{1+kk_n}$

c) $\frac{kk_p}{1+kk_p}$

- d) infinite.
- x) If the phase margin is negative, it indicates the system is
 - a) highly stable
 - b) unstable
 - c) oscillatory
 - d) it has nothing to do with stability.

5403

3

[Turn over

CS/B.TECH(ECE)/SEM-5/EC-513/2011-12

- xi) The root locus is symmetrical w.r.t.
 - a) negative real axis
 - b) positive real axis
 - c) imaginary axis
 - d) positive & negative real axis.
- xii) A feedback control system is basically
 - a) high pass filter
- b) band pass filter
- c) low pass filter
- d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following $3 \times 5 = 15$

2. Consider the following mechanical translational system shown in figure below. F denotes force, x denotes displacement, M denotes mass and B denotes friction coefficient and K denotes spring constant.

- i) Write down the differential equation(s) governing the above system.
- ii) Draw the corresponding electrical equivalent circuit using force-voltage analogy.

3. Using Routh criterion investigate the stability of the unity feedback control system whose open loop transfer function is

$$G(s) = \frac{e^{-sT}}{s(s+2)}$$

For what value of T will the system be stable?

4. A system is represented by

$$\dot{X} = \begin{bmatrix} -3 & -2 \\ -1 & -2 \end{bmatrix} X + \begin{bmatrix} 1 \\ 1 \end{bmatrix} U(t)$$

$$Y = \begin{bmatrix} 1 & 2 \end{bmatrix} X$$

Find the poles of the system. Assume D = 0.

- 5. Find the *Z*-transfer function of the system defined by y(n) 0.5y(n-1) = x(n-2) 5x(n-2) + 6x(n) where y(n) and x(n) denote output and input sequences respectively.
- 6. For the system defined by $G(s) = \frac{5(s-1)}{(s+2)(s+5)}$ draw the approximate root-locus diagram.
- 7. Using Mason's Gain formula, determine the transfer function of the system.

8. Obtain the *Z*-transform for a unit-step function.

5403

5

[Turn over

5

CS/B.TECH(ECE)/SEM-5/EC-513/2011-12

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

9. a) A unity feedback control system has an open loop transfer function

$$G(s) = \frac{k}{(s^2 + 8s + 32)}$$

Sketch the root locus of the system and deduce how the peak overshoot varies with increasing k if the loop is closed. 5+5

- b) What kind of controller would you recommend for this system?
- 10. Prove that for a standard second order system defined by $G(s) = \frac{W_n^2}{s^2 + 2 \xi W_n s + W_n^2}, \text{ the peak overshoot due to a step}$ input depends on ξ only. Prove further that the constant

input depends on ξ only. Prove further that the constant ξ lines pass through the origin of the $(\sigma i j \omega)$ plane. 10 + 5

- 11. a) Derive the transfer function for a zero-order hold. 5
 - b) A continuous function y(t) is sampled by an impulse sampler as shown below:

Obtain the Laplace transform for $\overset{*}{y}(t)$

c) Obtain the *Z*-transform for $x[n] = |a|^n$ and comment on the ROC.

12. The open-loop transfer function of a unity feedback control system is given by

$$G(s) = \frac{s + 0 \cdot 25}{s^2(s+1)(s+0\cdot 5)}$$

Determine the closed-loop stability by applying Nyquist criterion.

13. Sketch the Bode Plot for the transfer function defined by

$$G(s) H(s) = \frac{2(s+0\cdot 2)}{s^2 + (s+1)(s+0\cdot 5)}$$

Determine

- a) phase cross-over frequency
- b) gain cross-over frequency
- c) gain margin
- d) phase margin.

7 + 8

14. a) Determine the transfer matrix for a system whose A, B, C matrices are :

$$A = \begin{bmatrix} 1 & -2 \\ 4 & -5 \end{bmatrix}, \quad B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

b) Is the system stable?

- 4
- c) Is the system controllable? Assume D = 0.

========

5403

7

[Turn over