2.1.3 Определение c_p/c_v по скорости звука в газе

Анна Назарчук Б02-109

1 Аннотация

Цель: 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу 2) определение показателя адиабаты с помощью уравнения состояния идеального газа

Оборудование: звуковой генератор, электронный осциллограф, раздвижная труба, теплоизолированная труба, обогреваемая водой из термостата, баллон со сжатым углекислым газом, газгольдер.

2 Теоретические сведения

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}} \tag{1}$$

R - газовая постоянная, T -температура газа, μ - молярная масса, γ - показатель адиабаты Тогда:

$$\gamma = \frac{\mu}{RT}c^2\tag{2}$$

Условие резонанса (амплитуда звуковых колебаний резко возрастает):

$$L = n\frac{\lambda}{2} \tag{3}$$

Связь параметров волны:

$$c = \lambda f \tag{4}$$

Подбор условий резонанса: 1) f = const, $L \neq const$

$$L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2} \tag{5}$$

Тогда $\frac{\lambda}{2}$ - угловой коэффициент графика зависимости L от k. 2) L = const, $f \neq const$

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k)$$
 (6)

Тогда:

$$f_{k+1} = f_1 + \frac{c}{2L}k\tag{7}$$

Тогда c/2L - угловой коэффициент графика зависимости частоты от номера резонанса.

3 Экспериментальная установка

В работе используются две установки (рис. 1, 2). Первая установка содержит раздвижную трубу с миллиметровой шкалой, наполняется газом из газгольдера. Производятся измерения для разных газов: воздуха и углекислого газа. Вторая установка содержит теплоизолированную трубу, которая нагревается водой из термостата. Измеряется зависимость скорости звука от температуры.

Рис. 1: Схема установки с раздвижной трубой

Рис. 2: Схема установки с термостатом

4 Измерения и обработка данных

4.1 Измерения при постоянной длине трубы

Данные измерений представлены в таблице 1 и на графике (рис. 3). Длина трубы $L=740\pm1{\rm MM}$

Таблица 1: Зависимость частоты от номера резонанса при разных температурах для постоянной длины

t =	$t = 22.4 {}^{\circ}C$		$t = 30.1 {}^{\circ}C$		$t = 40.2 {}^{\circ}C$		$t = 50.1 ^{\circ}C$		$t = 55.1 {}^{\circ}C$		$t = 60.1 ^{\circ}C$	
k	f, Гц	k	f, Гц	k	f, Гц	k	f, Гц	k	f, Гц	k	f, Гц	
0	251.4	0	256.5	0	257.8	0	260.4	0	263.9	0	264.1	
1	476.4	1	481.6	1	488.9	1	498.1	1	501.1	1	505.1	
2	703.1	2	711.9	2	722.7	2	734.5	2	739.7	2	745.3	
3	931.1	3	942.3	3	957.1	3	972.8	3	980.1	3	987.3	
4	1160.7	4	1174.9	4	1194.1	4	1212.3	4	1221.9	4	1230.7	
		5	1408.9	5	1435.7	5	1453.5	5	1464.2	5	1475.5	
		6	1641.9	6	1668.2	6	1694.1	6	1707.3			
		7	1876.1									

Коэффициент наклона графика - c/2L. Для каждой температуры по-

Рис. 3: Зависимость частоты от номера резонанса для разных температур считаем скорость звука и представим в таблице 2 и на графике 4

Таблица 2: Зависимость скорости звука от температуры

с, м/с	σ_c , м/с	T, K
336.448	0.884	295.4
342.907	0.914	303.1
348.656	1.033	313.2
353.598	0.75	323.1
356.183	0.85	328.1
358.405	0.798	333.1

Из коэффициента наклона графика и формулы:

$$\gamma = \frac{\mu}{RT}c^2 \tag{8}$$

Найдем значение для показателя адиабаты в воздухе: $\gamma = 1.35 \pm 0.01$

Рис. 4: Зависимость квадрата скорости звука от температуры

4.2 Измерения при постоянной температуре для воздуха

Данные измерений представлены в таблице $\frac{3}{5}$ и на графике (рис. $\frac{5}{5}$). Температура T=293K.

Таблица 3: Зависимость длины трубы от номера резонанса при разных частотах для постоянной температуры для воздуха

f =	= 4412 Гц	f =	= 3707 Гц	$f=3011\ \Gamma$ ц		$f=5092$ Γ ц		f=5406 Гц	
k	L, мм	k	L, мм	k	L, мм	k	L, мм	k	L, мм
0	20	0	36	0	58	0	8	0	35
1	55	1	87	1	115	1	41	1	99
2	96	2	129	2	172	2	76	2	133
3	131	3	180	3	229	3	109	3	160
4	172	4	220			4	143	4	197

Угловой коэффициент - $\lambda/2$. Найдем длину волны для каждой частоты, результаты в таблице 4 и на графике 6.

Тогда скорость звука - угловой коэффициент на графике. ($c=357.8\pm$

Рис. 5: Зависимость длины трубы от номера резонанса для воздуха

Таблица 4: Зависимость длины волны от частоты для воздуха

λ , MM	f, Гц	σ_{λ} , mm				
76.0	4412	1.443				
92.2	3707	2.217				
114.0	3011	0.794				
67.6	5092	0.954				
77.0	5406	7.564				

15.8м/с)В таком случае из него и формулы:

$$\gamma = \frac{\mu}{RT}c^2\tag{9}$$

Найдем значение для показателя адиабаты в воздухе: $\gamma=1.53\pm0.2$ Погрешность столь велика из-за неточного поиска длин трубы, при которых происходит резонанс.

4.3 Измерения при постоянной температуре для углекислого газа

Данные измерений представлены в таблице 5 и на графике (рис. 7). Температура T=293K.

Рис. 6: Зависимость частоты от обратного к длине волны для воздуха и углексилого газа при постоянной температуре

Таблица 5: Зависимость длины трубы от номера резонанса при разных частотах для постоянной температуры для углекислого газа

$f=4398$ Γ ц		$f=4665$ Γ ц		$f=3506$ Γ ц		$f = 3039 \ \Gamma$ ц		$f=2624\Gamma$ ц	
k	L, мм	k	L, мм	k	L, мм	k	L, мм	k	L, mm
0	52	0	99	0	47	0	50	0	45
1	81	1	127	1	86	1	94	1	95
2	112	2	157	2	124	2	138	2	146
3	143	3	184	3	163	3	182	3	197
4	173	4	213		199	4	226		
5	203								

Угловой коэффициент - $\lambda/2$. Найдем длину волны для каждой частоты, результаты в таблице 6 и на графике 6.

Тогда скорость звука - угловой коэффициент на графике. ($c=266.6\pm0.3 \mathrm{m/c}$)В таком случае из него и формулы:

$$\gamma = \frac{\mu}{RT}c^2\tag{10}$$

Найдем значение для показателя адиабаты в углекислом газе: $\gamma = 1.29 \pm 0.01$

Рис. 7: Зависимость длины трубы от номера резонанса для углекислого газа

Таблица 6: Зависимость длины волны от частоты для углекислого газа

λ , mm	f, Гц	σ_{λ} , mm
60.686	4398	0.548
57.0	4665	0.577
76.2	3506	0.86
88.0	3039	0.638
101.4	2624	0.908

5 Вывод

- 1. Получена зависимость скорости звука в газе от температуры, полученная корень-зависимость совпадает с теоретическим расчетом.
- 2. Получены значения показателя адиабаты для воздуха: $\gamma_1=1.53\pm0.2,\ \gamma_2=1.35\pm0.01$ (для изменения длины трубы и частоты соответственно). Теоретическое значение $\gamma=1.4,$ что лежит в погрешности полученных значений.
- 3. Получено значение показателя адиабаты для углекислого газа: $\gamma=1.29\pm0.01$. Теоретическое значение $\gamma=1.3$, что схоже с полученным результатом.