

1.1

Les ensembles de nombres

Maths 2nde 7 - JB Duthoit

Histoire

Au fil de l'histoire, les mathématiciens ont progressivement pris conscience qu'il existait une infinité de nombres, de natures très variées. Ils se sont aperçus qu'il était possible de « ranger » en grandes familles les nombres ayant des propriétés identiques.

Cette typologie fut l'œuvre de trois mathématiciens de la deuxième moitié du XIXe siècle et du début du XXe siècle : l'Allemand Richard Dedekind (1831-1916), le Russe Georg Cantor (1845-1918) et l'Italien Giuseppe Peano (1858-1932).

1.1.1 L'ensemble des réels

Définition

L'ensemble de tous les nombres connus en seconde s'appelle l'ensemble des r'eels. Il est noté \mathbb{R} .

Remarque

On peut représenter chaque nombre réel par un point d'une droite graduée. Et inversement : Chaque point de la droite graduée correspond à un réel et un seul.

Exercices47 à 50 page 22

1.1.2 Les autres ensembles de nombres

Définition

Il existe des réels particuliers :

- L'ensemble des *entiers naturels* , noté \mathbb{N} : $0; 1; 2; 3; 4; \dots$
- L'ensemble des *entiers relatifs* , noté \mathbb{Z} : ... -3; -2; -1; 0; 1; 2; 3; ...
- L'ensemble des *nombres décimaux*, noté \mathbb{D} : Un décimal est un nombre qui peut s'écrire sous la forme d'un quotient d'entiers dont le dénominateur est une puissance de 10.
- L'ensemble des *nombres rationnels*, noté \mathbb{Q} : Un nombre rationnel est un nombre qui peut s'écrire sous la forme d'un quotient d'entiers.

Exemple

- 1.25 est un décimal car il peut s'écrire sous la forme $\frac{125}{100}$. 1.25 est donc aussi un nombre rationnel. On note $1.25 \in \mathbb{D}$ et $1.25 \in \mathbb{Q}$.
- $\frac{2}{3}$ est un nombre rationnel (sans être un décimal). On note $\frac{2}{3} \in \mathbb{Q}$.
- -5 est un entier relatif. C'est aussi un décimal car $-5 = \frac{-50}{10}$, et c'est également un nombre rationnel. On note $-5 \in \mathbb{Z}$, $-5 \in \mathbb{D}$, $-5 \in \mathbb{Q}$ et bien évidemment $-5 \in \mathbb{R}$.

 $\frac{1}{3}$ Montrons que $\frac{1}{3}$ n'est pas un nombre décimal.

1.1.3 Propriétés

Propriété (admise) | On a : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$.

Exemple

Savoir-Faire 1.1

SAVOIR DÉTERMINER À QUEL(S) ENSEMBLE(S) APPARTIENT UN NOMBRE Indiquer par une croix à quel plus petit ensemble de nombres appartiennent les nombres suivants (Attention, deux colonnes):

Dans le tableau apparaissent les nombre a et b qui sont définis de la façon suivante :

- a est l'inverse de 5
- b est la somme de 7 et de l'opposé de 8.
- ☆ Si ce n'est pas évident, il faut expliquer!

	N	\mathbb{Z}	\mathbb{D}	Q	\mathbb{R}		N	\mathbb{Z}	\mathbb{D}	Q	\mathbb{R}
-3						π					
$-\sqrt{144}$						$\sqrt{7}$					
$\frac{12}{3}$						0					
$-\frac{2}{3}$						$\frac{77}{25}$					
$\frac{-56874}{3}$						$\frac{4}{7}$					
a						b					

82 page 24, 86 et 87 page 25 (+ déterminer à quel ensemble appartiennent les nombres) .

Exercices

97 page 25, 143 page 29.

Algorithme 1.1

 $\sqrt{2}$ est irrationnel, on ne peut donc pas l'écrire sous la forme d'une fraction. On cherche

 $\sqrt{2} \text{ est irrationnel, on ne peut donc pas recine some all donc à déterminer une valeur approchée à l'aide de l'informatique.}$ Question préliminaire : Donner deux entiers consécutifs a et b tel que $a \leq \sqrt{2} \leq b$. Or obtient ainsi un encadrement de $\sqrt{2}$ à l'unité près.

Déterminer par balayage un encadrement de $\sqrt{2}$ d'amplitude inférieure ou égale à 10^{-n} . Question préliminaire : Donner deux entiers consécutifs a et b tel que $a \le \sqrt{2} \le b$. On