Bin packing, linear programming and rounding

Can we do better than Next Fit?

First tool: linear programming relaxation

An integer program

Given n items and K unit bins, is there a packing?

Variables: $\mathbf{x}_{ij} \in \{0,1\}$ $\mathbf{x}_{ij} = 1$ iff item i is placed in bin j

An integer program

Constraint: every item must go somewhere

Item b must go into bin 1,2,3 or 4

$$x_{b1} + x_{b2} + x_{b3} + x_{b4} = 1$$

An integer program

Constraint: must not exceed bin capacity

Item sizes in bin j sum to at most 1.

$$x_{aj}s_a + x_{bj}s_b + \cdots + x_{fj}s_f \le 1$$

Integer program

n items, K bins $x_{ij} = \text{whether item } i \text{ goes into bin } j$ $\forall i: \sum_{j} x_{ij} = 1$ $\forall j: \sum_{i} x_{ij} s_{i} \leq 1$ $\forall i, j: x_{ij} \in \{0, 1\}$

feasible iff items can be packed into K bins

Linear programming relaxation

n items, K bins $\forall i: \sum_{j} x_{ij} = 1$ $\forall j: \sum_{i} x_{ij} s_{i} \leq 1$ $\forall i, j: 0 \leq x_{ij} \leq 1$

Algorithm: use the LP relaxation to pack items (somehow) How good is the relaxation?

A bad example

n items, K bins

$$m$$
 frems, K fins
 $\forall i: \sum_{j} x_{ij} = 1$
 $\forall j: \sum_{i} x_{ij} s_{i} \leq 1$
 $\forall i, j: 0 \leq x_{ij} \leq 1$

$$s_1 = \dots = s_5 = .6$$

 $\forall \mathbf{i}, \mathbf{j} \ \mathbf{x_{ij}} = \mathbf{1}/3$

LP: 3 bins OPT: 5 bins

Bin packing, linear programming and rounding

