

Objectives

- Etiologies of anemia
- Clinical presentations
- Methods of laboratory assessment
- Define classifications of anemias

Anemia

- Decreased ability of oxygen delivery
 - → RBC and/or J HGB
- High prevalence in clinical medicine
- Not a disease but expression of underlying disorder
- RBC Kinetics: RBC Mass = Production * Survival
- Anemia = RBC loss/destruction > production
 - Or = production impaired
- Classified as functional or morphological anemia

Screening for Anemia

- Relative HGB/HCT values to plasma, consider:
 - Hypervolemia († plasma) vs Hypovolemia
- Physician evaluates
 - Patient history, physical examination, symptoms
 - Laboratory results
- Acute blood loss
 - HGB normal → decreased
- High altitudes, smoking

Screening for Anemia

- Symptom presentations
 - Slight fatigue → life threatening reaction
- Acute hemorrhage (related to hypovolemia)
 - < 20% = normal at rest, tachycardia with exercise
 - -30-40% = circulatory collapse and shock
 - > 50% = death
- Slow developing
 - HGB \downarrow to 50% normal = body compensates

Body Compensation

- † oxygenated blood flow
 - † cardiac output and circulation rate
 - − † pulmonary O2 uptake
 - \downarrow blood viscosity $\rightarrow \uparrow$ blood flow
 - — ↑ blood flow to vital organs
- ↑ oxygen utilization (ODC shifts right)
 - ↑ 2,3-BPG in RBCs
 - Bohr effect → tissues create acidic environment

Diagnosis of Anemia

- Patient history and presentation
 - Symptom description/duration
 - Weakness/fatigue vs headache/vertigo/dyspnea
 - Slow vs severe HGB drop
 - Hematuria/emesis, bloody/black stools
 - Any blood loss
 - Dietary/medication changes
 - Chemical/toxin exposure

Diagnosis of Anemia

- Physical examination
 - Pale skin, hypotension, organomegaly
 - Koilonychia iron-deficiency anemia
 - Smooth tongue megaloblastic anemia
 - Jaundice, dark urine hemolytic anemias
 - Bone deformities, hepato-/spleno-megaly hereditary anemias or autoimmune anemias
 - Neurologic dysfunction pernicious anemia

Laboratory Diagnosis

- Screening tests
 - CBC: RBC indices, PLT, WBC
- Reflex tests
 - Retic, bilirubin, smear evaluation
 - Urine, stool evaluation

RBC Indices

- MCV, MCH, MCHC, RDW
 - Used in morphologic evaluation
 - Guide reflex testing
 - Micro/hypo
 - IDA
 - Macro/hypo
 - Vitamin B12/folate deficiency

- Reference: 0.5-2.5% or $25-75 \times 10^3/\mu L$)
- Indicates degree of BM compensation
- Manual and automated methods
 - Methylene blue and light scatter
 - Fluorescent flow cytometry
- Consider with severity of anemia

- Corrected Reticulocyte
 - Adjusts for severity of anemia

Corrected Retic =
$$\left(\frac{\text{HCT}_{\text{Pt}}}{\text{HCT}_{\text{Norm}}}\right) \times \%$$
 Retic

- $< 2\% \text{ or } 25-75 \text{ x} 10^3/\mu\text{L}$
 - → hypoproliferative anemias
- $->2\% \text{ or } 25-75 \text{ x} 10^3/\mu\text{L}$
 - → blood loss, hemolytic anemia

- Reticulocyte Production Index (RPI)
 - Account for stress retics (or shift retics)

$$RPI = \left(\frac{\text{HCT}_{\text{Pt}}}{\text{HCT}_{\text{Norm}}}\right) \times \left(\frac{\% \text{ Retic}}{\text{Retic Maturation}}\right)$$

- RPI > 2 = appropriate BM response
- RPI < 2 = inadequate BM response

HCT Levels	Retic Maturation
35%	1.5 days
25%	2.0 days
15%	2.5 days

- Automated Reticulocyte Indices
 - Assessment of maturity levels
 - BM response to anemia, response to therapy
 - Immature Reticulocyte Fraction (IRF)
 - Based on RNA concentration
 - CHr = Reticulocyte Mean [Hemoglobin]
 - Based on HGB concentration

Blood Smear Evaluation

- RBC Size
 - Micro/Normo/Macrocytes, Anisocytosis
- RBC Color
 - Hypo/Normochromia
- RBC Shape and Inclusions
 - Poikilocytosis

Tests for RBC Destruction

- Used to evaluate RBC survival due to extravascular hemolysis
 - ↑ hemosiderinuria
 - — ↓ plasma haptoglobin and hemopexin
 - ↑ methemalbumin
 - – ↑ serum unconjugated bilirubin
 - ↑ uric acid
 - ↑ LDH = lactate dehydrogenase

Classification of Anemia

- Morphology
 - RBC size and HGB concentration
- Pathophysiology (functional)
 - Proliferation defect (decreased production)
 - Maturation defect
 - Survival defect (increased destruction)
 - Use Retic count, IRF or RPI, serum iron studies

Morphologic Classification

- Microcytic hypochromic
 - Defective HGB synthesis
 - Serum iron studies, HGB HPLC/electrophoresis
- Normocytic normochromic
 - Hypoproliferative anemias (RPI < 2)
 - Survival defects (RPI > 2)
- Macrocytic normochromic
 - Hemolytic anemia (RPI > 2)
 - Nuclear maturation defects (RPI < 2)

- Proliferation defect (decreased production)
 - Normal RBCs, retic, IRF, RPI, serum iron studies
 - Inappropriate EPO or cytokine regulator production
 - BM infiltrated fibrous/neoplastic tissue
 - BM damaged by chemicals, drugs, radiation
 - Hypoplasia

- Maturation defect
 - Disruption in development (BM erythroid hyperplasia)
 - Normal retic, IRF, RPI
 - Nuclear (macrocytic)
 - Affects all cell lines (megaloblastic)
 - Cytoplasmic (microcytic)
 - Only RBC lineage
 - Abnormal HGB production

- Survival defect (increased destruction)
 - RBC normo/macrocytic normochromic
 - † retic, IRF, RPI, abnormal serum iron studies
 - Loss of circulating RBCs
 - Compensated hemolytic anemia
 - Hemolytic crisis
 - Aplastic crisis

- Survival defect (increased destruction)
 - Schistocytes and spherocytes most common
 - Intravascular hemolysis (extrinsic anemias)
 - Complement activation, physical/mechanical trauma
 - \property haptoglobin, \property hemopexin, \partial LDH (early indicator)
 - Extravascular hemolysis (extrinsic/intrinsic anemias)
 - ↑ serum bilirubin, ↓ haptoglobin, and hemopexin if severe or chronic, +DAT

- Intrinsic anemias
 - Hereditary abnormality
- Extrinsic anemias
 - Antagonist to RBC

Anemias of Disordered Iron Metabolism and Heme Synthesis

Objectives

- *Review hemoglobin production lecture*
- Distribution of iron in the body
- Systemic iron kinetics/balance
- Laboratory assessment of iron
- Pathophysiology, clinical, and laboratory features
 - IDA, ACD, Hemochromatosis
 - Sideroblastic Anemia, Porphyrias

Hemoglobin Production

- Disruption related to:
 - Iron => Iron Deficiency Anemia, Anemia of Chronic Disease
 - Cytokines + EPO
 - Anemia of Chronic Disease
 - Heme Enzymes
 - Sideroblastic Anemias, Porphyrias

Iron

- Metabolism: required by every cell
- Distribution: two types of iron-containing compounds
 - Transport (transferrin) and storage (ferritin)
 - Metabolic (HGB) and enzymatic
- [Re] Absorption: macrophages, hepato/enterocytes (ferritin)
 - [Ferritin] directly related to [total iron storage]
- Transport: transferrin (binds ferric iron, Fe⁺⁺⁺)

Iron

- Transport : transferrin (not APR/APP)
 - Total iron-binding capacity (TIBC)
 - 250–450 μg of iron/dL of serum
 - 95% serum iron complexed with transferrin
 - TIBC ↔ % transferrin saturation (normal ~33%)
 - Unsaturated iron-binding capacity (UIBC)
- Storage : ferritin (APR/APP)
 - Hemosiderin in macrophages of RES

APR = Acute Phase Reactant

APP = Acute Phase Protein

Iron Requirements

- Normally, body iron concentration is constant
- Normal factors that † iron requirements
 - Menstruation
 - Pregnancy
 - Growth in infants and children
- Pathologic factors that † iron requirements
 - Blood loss, malabsorption

Iron Imbalances

- Iron deficiency
 - Insufficient dietary intake
 - Impaired absorption
 - Bleeding
- Iron overload
 - Abnormal increase in absorption
 - Multiple transfusions
 - Iron injections

Systemic Iron Balance

- Hepcidin (APP)
 - Master iron-regulator
 - Inhibits iron absorption and/or transport
 - Degrades ferroportin (cellular iron exporter)
- HFE
 - Binds cellular transferrin receptors triggering cellular uptake/absorption
 - Regulating cellular absorption of iron
 - Modulates hepcidin levels

Lab Assessment of Iron

- Iron studies
 - Transferrin (measured as TIBC)
 - \uparrow storage iron = \uparrow serum iron = \downarrow TIBC
 - \downarrow storage iron = \downarrow serum iron = \uparrow TIBC
 - Ferritin = direct relation to total storage iron
 - sTfR = inverse relation to total body iron
 - ZPP = zinc incorporated into heme
 - Measure fluorescence of blood

CBC

- RBC indices
 - Microcytic hypochromic vs normocytic, normochromic
 - RDW
- CHr (mean cell hemoglobin of reticulocytes)
 - Early indicator of iron-restricted erythropoiesis

Iron Deficiency Anemia (IDA)

- Most common nutritional deficiency in the world
- Etiology = dietary, blood loss, hemodialysis, malabsorption
- Pathophysiology = sequential stage development
 - Iron depletion
 - Iron deficient erythropoiesis
 - Iron deficiency anemia

IDA – Pathophysiology

- Iron depletion
 - No anemia
 - → serum ferritin
 - Hospitalized patients normal to ↑
 - RBCs normal (SL ↑ RDW)
- Iron deficient erythropoiesis
- Iron deficiency anemia

IDA — Pathophysiology

- Iron depletion
- Iron deficient erythropoiesis
 - ZPP develops and remains throughout RBC life
 - RBC SL microcytic
 - Develop ↑ RDW
 - − ↓ CHr
- Iron deficiency anemia

IDA – Pathophysiology

- Iron depletion
- Iron deficient erythropoiesis
- Iron deficiency anemia
 - Iron studies abnormal
 - RBC microcytic, hypochromic anemia

IDA — Clinical Features

- Insidious onset
- Variety of abnormalities
 - Koilonychia, glossitis, muscle dysfunction
- Pica syndrome (unusual cravings)
 - Phagophagia (ice-eating), Geophagia (dirt/clay-eating),
 Amylophagia (starch-eating)
- Iron deficient infants = poor mental/motor development
- Iron deficient children = irritability, loss of memory

IDA — Laboratory Features

- CBC
 - MCV 55 74 fL (microcytic)
 - MCH 14 − 26 pg
 - MCHC 22 31 g/dL (hypochromic)
 - − ↑ RDW
 - Target cells, ellipt/ovalocytes, teardrops
 - %/# retic normal to ↑, RPI < 2
 - WBC normal to ↑, PLT variable

IDA — Laboratory Features

IDA — Laboratory Features

- Iron studies
 - ↓ = Serum Fe, % transferrin saturation (<16%), ferritin
 - $-\uparrow$ = TIBC, sTfR, ZPP (later stages)
- Bone marrow
 - — ↑ erythroid hyperplasia with ineffective erythropoiesis
 - — ↓ Iron stores (macrophages, sideroblasts)
- Therapy
 - Change in blood picture

Anemia of Chronic Disease (ACD)

- Prevalence second to IDA
- aka Anemia of inflammation or infection (1/3 hospitalized)
 - Chronic infections, Chronic inflammatory disorders,
 Trauma, Organ failure, Neoplastic disorders
- Low serum iron
- Normal iron stores

ACD — Pathophysiology/Clinical

- Pathophysiology
 - Multifactorial, mostly linked to inflammatory cytokines
 - † hepcidin (APP), serum ferritin, BM macrophage iron stores
 - — ↓ transferrin/TIBC/saturation
- Clinical
 - Signs/symptoms of underlying disorder

ACD — Laboratory Features

- Nonspecific
- CBC
 - Mild anemia
 - HGB > 9 g/dL
 - HCT > 27%
 - RBC normocytic, normochromic
 - RPI < 2
 - WBC and platelet normal

ACD –
Laboratory
Features

ACD — Laboratory Features

- Iron studies
 - ↓ serum iron,
 - to normal TIBC, % transferrin saturation
 - Normal to ↑ serum ferritin (different from IDA), ZPP
 - Normal sTfR
- Bone marrow
 - ↑ M:E
 - → BM macrophage iron stores (hemosiderin)

ACD – Laboratory Features

Hemochromatosis

- Progressive iron overload
 - _ ↑ serum ferritin, % transferrin saturation
 - Excess iron deposits (stores)
- Hereditary (genetic mutations)
 - — ↑ iron absorption in the gut + uncontrolled release to plasma
- Secondary (other hematology diseases)
 - Ineffective erythropoiesis + ↑ iron absorption in the gut

Abnormal Heme Synthesis Anemias

- Enzyme defects of heme production pathway
 - Abnormal heme sythesis
- Include
 - Sideroblastic anemias
 - Porphyrias
- † iron stores, serum ferritin

Sideroblastic Anemias

- Mutation affecting formation of ALA
- Classified as hereditary or acquired
- All types characterized by:

 - Ring sideroblasts in the BM
 - Hypochromic anemia

Sideroblastic Anemias

- Hereditary
 - Defective X-linked recessive gene, abnormal ALAS2
 - Carrier females: anemia rare, possible dimorphic RBCs
 - Males show signs/symptoms of SA
- Acquired (more common, idiopathic)
 - RARS (refractory anemia with ring sideroblasts)
 - Either sex affected, may terminate to leukemia
 - Secondary to drugs/toxins

Sideroblastic Anemias

- Other Acquired (more common, idiopathic)
 - Lead poisoning (plumbism)
 - Children lead paint ingestion
 - Adults lead compounds inhalation
 - Alcoholism
 - Ringed sideroblasts associated with malignancy (not SA)

SA – Laboratory Features

- CBC
 - Moderate/severe anemia (with dimorphic RBC)
 - RPI < 2
 - Target cells, pappenheimer bodies, basophilic stippling
- Iron studies
 - — ↑ serum iron, serum ferritin, % transferrin saturation
 - Normal to ↓ TIBC
- Bone marrow
 - Erythroid hyperplasia, ringed sideroblasts, ↑ macrophage iron stores

Sideroblastic Anemias

Porphyrias

- Block in porphyrin synthesis (review heme synthesis)
 - Accumulation of porphyrin heme precursors
 - Porphyrins are functionless
 - Fluoresce red with UV light
- Two erythropoietic porphyrias
 - Congenital erythropoietic porphyria (CEP)
 - Erythropoietic protoporphyria (EPP)

Congenital Erythropoietic Porphyria

- Excess of Type I porphyrins
- Urine pink to reddish brown
- Extreme sunlight photosensitivity
- Mild to severe hemolytic [normocytic] anemia
 - RBC lifespan ~ 18 days (↓ haptoglobin)
- ↑ anisopoikilocytosis, polychromasia + nRBCs
- BM erythroid hyperplasia
 - Erythroblasts fluoresce under UV light

Erythropoietic Protoporphyria

- Overproduction of protoporphyrin
- Photosensitivity not severe
- RBCs fluoresce intensely
- No hemolytic anemia
- Blood/BM ~ normal

References

- American Society for Clinical Laboratory Science. (2016). Hematology and Hemostasis Medical Laboratory Sciences Science Science.
- American Society for Clinical Pathology. (2021). Medical Laboratory Scientist, MLS(ASCP) Examination Content Guideline. American Society for Clinical Pathology.
- Greer, J. (2014). Wintrobe's clinical hematology (Thirteenth ed.). Philadelphia, Pennsylvania: Lippincott Williams & Wilkins.
- Kaushansky, Kenneth. (2016). Williams hematology (9th ed.). New York: McGraw Hill Education. McKenzie, S. B., & Williams, J. L. (2015). Clinical laboratory hematology (3rd ed.). Boston: Pearson.
- McPherson, R., & Pincus, M. (2017). Henry's clinical diagnosis and management by laboratory methods (23rd ed., ClinicalKey). St. Louis, Mo.: Elsevier.
- Rodak, B. F., & Carr, J. H. (2015). Clinical Hematology Atlas. Elsevier Health Sciences.