Olympic Prediction

Janelle Anderson (square), Billy Cartwright (X), Kristina Castro (X), Matthew Price (triangle), Ricardo Robles (circle)

Project Overview and Purpose

Question to answer

Why do some countries outperform others in the Olympics?

What factors influence olympic performance at the country and athlete level?

What countries and athletes are most likely to have a stronger performance at the next olympics?

How we will answer

Using a dataset from the 2016 olympics, we seek to determine the most influential factors that relate to medal performance of olympic athletes, and build a predictive model that can forecast athlete performance for the next summer olympics.

Why we ask...

This analysis could provide multiple investment opportunities related to sports/olympic consumer market sizing, athlete endorsements, sports analytics, and sports betting, to name a few possibilities.

Data Set

We used the official dataset outlining olympic events, athletes, participating countries, and medal counts for the 2016 Rio Olympics.

https://www.kaggle.com/rio2016/olympic-games

Data Cleaning and Analysis

Python was the the main language used for data cleaning and analysis.
Several packages utilized, including Pandas, NumPy, SciKitLearn,
ImbalancedLearn, and DateTime functions.

Data Explorer

IIII athletes csu

countries.csv

794 05 kB

Summary

→ □ 3 files

Database & Exploration

4	id integer ▲	name text	nationality text	sex text	dob text ♠	height double precision	weight integer	sport text	gold integer	silver integer	bronze integer	population integer	gdp_per_capita double precision
1	736041664	A Jesu	ESP	male	10/17/	1.72	64	athletics	0	0	0	46418269	25831.582305295
2	532037425	A Lam	KOR	female	9/23/86	1.68	56	fencing	0	0	0	50617045	27221.524050966
3	435962603	Aaron	CAN	male	5/27/92	1.98	79	athletics	0	0	1	35851774	43248.52990934
4	521041435	Aaron	MDA	male	1/2/91	1.83	80	taekwon	0	0	0	3554150	1848.0618043042
5	33922579	Aaron	NZL	male	11/26/_	1.81	71	cycling	0	0	0	4595700	37807.967276044
6	173071782	Aaron	AUS	male	1/26/90	1.8	67	triathlon	0	0	0	23781169	56310.962993372
7	266237702	Aaron	USA	male	6/4/93	2.05	98	volleyball	0	0	1	321418820	56115.718426195
8	382571888	Aaron	AUS	male	9/25/91	1.93	100	aquatics	0	0	0	23781169	56310.962993372
9	87689776	Aauri L	ESP	female	12/14/	1.8	62	athletics	0	0	0	46418269	25831.582305295
10	997877719	Ababel	ETH	female	7/22/91	1.65	54	athletics	0	0	0	99390750	619.16940647589
11	343694681	Abadi	ETH	male	11/6/97	1.7	63	athletics	0	0	0	99390750	619.16940647589
12	591319906	Abbas	BRN	male	5/17/96	1.75	66	athletics	0	0	0	1377237	22600.214098103
13	376068084	Abbey	USA	female	5/25/92	1.61	49	athletics	0	0	0	321418820	56115.718426195
14	162792594	Abbey	USA	female	12/3/96	1.78	68	aquatics	-1	1	0	321418820	56115.718426195
15	521036704	Abbie	GBR	female	4/10/96	1.76	71	rugby se	0	0	0	65138232	43875.969614368
16	149397772	Abbos	UZB	male	7/7/98	1.61	57	wrestling	0	0	0	31299500	2132.0703684785
17	256673338	Abbub	RSA	male	2/18/94	1.75	64	football	0	0	0	54956920	5723.9733569021
18	337369662	Abby Er	NZL	female	11/20/_	1.75	68	football	0	0	0	4595700	37807.967276044
19	334169879	Abd Elh	EGY	male	6/3/89	2.1	88	volleyball	0	0	0	91508084	3614.7467661627
20	215053268	Abdala	MAR	male	3/25/87	1.73	57	athletics	0	0	0	34377511	2878.2013421591
21	763711985	Abdalel	QAT	male	1/1/97	1.85	80	athletics	0	0	0	2235355	73653.394434657
22	924593601	Abdalla	SUD	male	9/28/96	1.77	65	athletics	0	0	0	40234882	2414.7236010285
23	578032534	Abdel	EGY	male	12/10/	1.76	80	shooting	0	0	0	91508084	3614.7467661627
24	890222258	Abdela	MAR	male	2/27/93	1.9	72	athletics	0	0	0	34377511	2878.2013421591
25	803161695	Abdela	ESP	male	8/30/91	1.75	67	athletics	0	0	0	46418269	25831.582305295
26	189931373	Abdela	SUD	male	10/12/	1.81	72	aquatics	0	0	0	40234882	2414.7236010285
27	677622742	Abdelg	ALG	male	1/29/89	1.85	75	football	0	0	0	39666519	4206.0312324495
28	349871091	Abdelh	ALG	male	9/26/86	1.86	[null]	boxing	0	0	0	39666519	4206.0312324495
29	904808208	Abdelh	ALG	male	5/10/94	1.86	70	football	0	0	0	39666519	4206.0312324495
30	23564778	Abdelk	ALG	male	12/12/_	1.78	[null]	boxing	0	0	0	39666519	4206.0312324495
31	133974151	Abdelk	ALG	male	3/19/93	1.85	79	football	0	0	0	39666519	4206.0312324495
32	189886442	Abdelk	MAR	male	7/15/62	1.74	67	equestrian	0	0	0	34	

We used a PostgreSQL relational database for data storage because it facilitates finding connections between different tables and answering questions with the results. Furthermore, the static database can be integrated with Pandas to perform ETL procedures.

Data Analysis

Overall, there appeared to be a small but significant correlation between a country's GDP per capita and their total medal counts, although the strength of the correlation varied between sports

Overall r = .37 --> low correlation

Note: Correlations calculated using the Pearson Correlation Coefficient (r)

Rowing r = .47 --> moderate correlation

Table Tennis r = -.002 --> no correlation

Machine Learning Models

Approach 1

Initial approach using country GDP and athlete descriptors as independent variables, and a binary "placed" variable for the dependent variable

Independent Variables: Country GDP per Capita, Sport (dummy), Athlete Descriptors (Age, Weight, Height), **Dependant Variable:** "Placed" Variable (binary output of 0 = didnt win a medal and 1= won a medal at Rio)

Observations: 10,109 **Columns/Features:** 33

Models: Logistic Regression and Random Forest

Approach 2

Same as Approach 1, but with added dummy variables for every country.

Independent Variables: Country (dummy variable), Country GDP per Capita, Sport (dummy), Athlete Descriptors (Age,

Weight, Height)

Dependant Variable: "Placed" Variable (binary variable with 0 = didnt win a medal vs. 1= won a medal at Rio)

Observations: 10,109 **Columns/Features:** 198

Models: Logistic Regression and Random Forest

Approach 1

First pass without country dummy variables.

Model	Sampling Methods	Balanced Accuracy Score	Confusion Matrix	Precision	Recall	Specificity	F1
Logistic Regression	Naive Random Oversampling	0.5	[[2128 0] [400 0]]	0	0	1	0
Logistic Regression	SMOTE	0.6	[[1286 842] [162 238]]	0.22	0.6	0.6	0.32
Logistic Regression	Undersampling with Cluster Centroids	0.58	[[1204 924] [160 240]]	0.21	0.6	0.57	0.31
Logistic Regression	SMOTEENN	0.56	[[907 1221] [123 277]]	0.18	0.69	0.43	0.29
Random Forest	none	0.73	[[1541 587] [108 292]]	0.33	0.73	0.72	0.46
Random Forest	Easy Ensemble Classifier	0.64	[[1290 838] [128 272]]	0.25	0.68	0.61	0.36

Approach 2

Added Country dummy variables improved the Random Forest accuracy scores

Model	Sampling Methods	Balanced Accuracy Score	Confusion Matrix	Precision	Recall	Specificity	F1
Logistic Regression	Naive Random Oversampling	0.5	[[2128 0] [400 0]]	0	0	1	0
Logistic Regression	SMOTE	0.6	[[1473 655] [199 201]]	0.23	0.5	0.69	0.32
Logistic Regression	Undersampling with Cluster Centroids	0.58	[[1204 924] [160 240]]	0.21	0.6	0.57	0.31
Logistic Regression	SMOTEENN	0.56	[[909 1219] [122 278]]	0.19	0.7	0.43	0.29
Random Forest	none	0.79	[[1676 452] [84 316]]	0.41	0.79	0.79	0.54
Random Forest	Easy Ensemble Classifier	0.68	[[1318 810] [104 296]]	0.27	0.74	0.62	0.39

Dashboard

The group created a Tableau dashboard to present the findings and allow users to sort and filter data based on their required analysis.

Model	View
viouei	view

Country	Total	Prediction	Difference
United States	264	211	
Germany	160	128	
United Kingdom	145	116	
Russia	115	92	
China	113	90	
France	95	76	
Australia	82	66	
Null	74	59	
Italy	72	58	
Canada	69	55	
Japan	65	52	
Brazil	51	41	
Netherlands	47	38	
Spain	45	36	
Denmark	41	33	
New Zealand	36	29	
Jamaica	30	24	
Sweden	28	22	
Korea, South	26	21	
Croatia	24	19	
South Africa	23	18	
Umnem	-00		

,

al Medals

SA	GBR	FRA	JPN			
		AUS	SRB			
	RUS		BRA			
ER	a	ITA				
	CHN	CAN				

Medals per Athlet

© 2021 Mapbox © OpenStreetMap

264 0.0000

Recommendations

This analysis was done over a short period of time and with limited data.

- A major set back of this analysis is that we only had access to data for one year of Olympic games results. Access to additional years would have allowed us to further test predictions.
- The analysis would be stronger if we had time to build a more sophisticated model that looked at outliers (i.e. countries with low GDP per Capita but high performance.)

New question: could we use a similar model to predict number of new games being added to the Olympics