# 浙江大学 20\_15 - 20\_16 学年 秋冬 学期 《大学物理实验》课程期末考试试卷 (A卷)

|                                 | 课程      | 号:0611                   | 80240, F       | F课学院:_ | 理学部_    |       |
|---------------------------------|---------|--------------------------|----------------|--------|---------|-------|
| 考试试                             | 卷: √A ¾ | 卷、B 卷(请                  | <b>f在选定项</b> 上 | ∴打√)   |         |       |
| 考试形                             | 式: √闭、  | 开卷(请在                    | E选定项上打         | 「√),允许 | 午带 _ 计算 | 器_入场  |
| 考试日                             | 期:201   | 16 年 1 月 20 日, 考试时间: 120 |                |        |         | 分钟    |
|                                 |         | 诚信考试,                    | 沉着应考,          | 杜绝违纪。  |         |       |
| 考生姓名:                           |         | 学号: _                    |                | 所属院    | 孫:      |       |
| 请写上原                            | 实验课时    | 间: 星期_                   |                | 午      |         |       |
| 题序                              | _       | _                        |                | 四      | 五.      | 总分    |
| 得分                              |         |                          |                |        |         |       |
| 评卷人                             |         |                          |                |        |         |       |
|                                 |         | 4分,共40                   |                |        | 的:      | 特点,偶然 |
| 误差有                             |         |                          |                |        |         | _的特点。 |
| 2. 大学物<br>有                     | 理实验中,   | 已经学过的                    | 减小误差提          | 高测量精度  | 色的方法    |       |
| 和                               |         |                          |                |        |         | _等。   |
|                                 |         | 在同一条件                    |                |        | 量,多次测量  | 量的目的  |
|                                 |         | A 的电流表                   |                |        |         |       |
| 偏,则并联电阻值偏,应将并联电阻<br>5. 逐差法的优越性是 |         |                          |                |        |         |       |
| 件是                              |         |                          |                | o      |         |       |
| 6. 实验测                          | 量结果的完   | 巴整表达式的                   | 三个要求:          |        |         | `     |
|                                 |         |                          | 和              |        |         | ۰     |

- 7. 在光学实验中, 为了消除或减小空程差, 常用的方法有:
- (3)
- 9. 在光学实验调整过程中视差是一种常见现象。

分光计中消除视差的方法:在分光计目镜前上下晃动眼睛并观察,当眼睛 向上移动时,若绿十字像向下移动,则说明绿十字像位置<u>在分划板</u>, 因此只需将<u>目镜</u>即可;反之,。。。反复多次调节,直至像与 标尺之间无相对移动即可完全消除视差。

提示: 分光计中的望远镜原理图如下所示:



( a-亮十字像, b-目镜, c-可调镜筒, d-物镜, e- 形叉丝, f-电珠, g-叉丝 分划板)

它由物镜、目镜、全反射小棱镜和带"十"形叉丝的分划板组成。其中, 小棱镜紧贴分划板的一面刻有透光的十字,小灯珠发出的光经小棱镜反射后再 经物镜投射到载物平台上的反射镜反射回来的像是一亮十字像。

10. 用螺旋测微计测量一颗钢珠的直径。如下图所示,图 a 为螺旋测微计零位示值,其读数为\_\_\_\_\_\_。图 b 为钢珠测量示值。其读数为\_\_\_\_\_\_。钢珠的半径是





## 二、根据不确定度大小,写出下列各量的正确表达式(12分)

$$1.X = 7.045 \pm 0.064 (mg)$$
 7. 0(  $\pm 0.07$  mg

$$2.X = (1.96 \times 10^{11} \pm 5.29 \times 10^{9}) N/m^{2}$$

$$3.X = 1.7251km \pm 25m$$
  $1725 \pm 25m$ 

$$4.X = 716350 \pm 450(cm)$$
 7164 ± 5 m

## 三、求其不确定度的传递式(6分)

$$N = \frac{x}{\sqrt{y + at^2}}$$
 (x, y, t为变量, a常数)

求: 
$$\frac{\Delta N}{N}$$

### 四、综合题 (每小题 10 分, 共 30 分)

试求出该物理量的测量值y±Δy。

1. 某物理量的测量公式为:  $y = \frac{l^2 m}{d} f$ , 某同学测得某种待测样品的长度、质量、直径和频率结果如下:  $l = 80.24 \pm 0.04 mm$ ,  $m = 305.2 \pm 0.3g$ ,  $d = 10.345 \pm 0.005 mm$ ,  $f = 1020.5 \pm 0.6 Hz$ 

- 2. 关于示波器
- (1) 右图为做示波器实验时从示波器(SS-7804)荧光屏上观察到的两个相互垂直的电振动合成的李萨如图形,输入信号分别接入 CH1 和 CH2 通道,已知 CH1 通道输入信号频率为  $f_1=600.0\pm0.7$  Hz,请给出 CH2 通道信号频率  $f_2$  的结果表达式。



(3) 用示波器观察 200Hz 正弦电压时,但在荧光屏上看到的波形是一条竖直线,如图 (2) 所示,请指出可能的原因。

- 3. 在分光计的调整中。
- (1) 用什么方法将望远镜调焦至无穷远,请画光路说明。

(2) 假如望远镜已经调焦无穷远,现需要调整望远镜光轴、载物台平面分别与分光计中心转轴垂直,请简述调整步骤,并用图示说明反光板的放置和相应调节方法,如图设载物平台三个可调螺钉为 a, b, c。

#### 五、实验设计(12分)

请设计一个实验方案,测量篮球与刚性地面碰撞时的恢复系数,并研究其恢复系数与主要相关参量的关系。方案主要包括:实验原理,实验内容,关系研究,误差分析,减小误差措施。

提示: 碰撞恢复系数 e 的定义,  $e = \frac{$ 碰后的分离速度}  $\frac{v_2' - v_1'}{v_1 - v_2}$