Методы машинного обучения. Обучение без учителя: векторизация графовых и текстовых данных

Bоронцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: k.vorontsov@iai.msu.ru

материалы курса:

github.com/MSU-ML-COURSE/ML-COURSE-24-25 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 1 апреля 2025

Методы обучения без учителя (unsupervised learning)

Выявление структуры данных на основе сходства:

- кластеризация (clustering) и квантизация (quantization)
- оценивание плотности распределения (density estimation)
- одноклассовая классификация (anomaly detection)

Преобразование признакового пространства:

- автокодировщики (autoencoders)
- метод главных компонент (principal components analysis)
- многомерное шкалирование (multidimensional scaling)
- разложения графов (graph factorization)
- матричные разложения (matrix factorization)

Поиск взаимосвязей в данных или синтез учителя:

- частичное обучение (semi-supervised learning)
- поиск ассоциативных правил (association rule learning)
- самостоятельное обучение (self-supervised learning)

Содержание

- Многомерное шкалирование
 - Постановка задачи многомерного шкалирования
 - Визуализация данных
 - Векторизация отношения соседства
- 2 Векторные представления графов
 - Модели матричных разложений
 - Модель случайных блужданий
 - Графовые автокодировщики
- Векторные представления текста
 - Гипотеза дистрибутивной семантики
 - Модели word2vec
 - Модель FastText

Дано: $(i,j) \in E$ — выборка рёбер графа $\langle V, E \rangle$ R_{ii} — расстояния между вершинами ребра (i,j)Например, R_{ii} — длина кратчайшего пути по графу (IsoMAP)

Найти: векторные представления вершин $z_i \in \mathbb{R}^d$, так, чтобы близкие вершины (в смысле малого R_{ii}) имели близкие z_i и z_i

Критерий стресса (stress):

$$\sum_{(i,j)\in E} R_{ij}^{\gamma} (\rho(z_i,z_j) - R_{ij})^2 \to \min_{Z}, \quad Z \in \mathbb{R}^{V \times d},$$

где $\rho(z_i, z_i) = ||z_i - z_i||$ — обычно евклидово расстояние, R_{ii}^{γ} — веса, важнее расстояния большие $(\gamma \! > \! 0)$ или малые $(\gamma \! < \! 0)$

Обычно решается методом стохастического градиента (SG)

I. Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.

Многомерное шкалирование для визуализации данных

При d=2 осуществляется проекция выборки на плоскость

- Используется для визуализации кластерных структур
- Форму облака точек можно настраивать весами и метрикой
- Недостаток искажения неизбежны
- Наиболее популярная модификация MDS t-SNE

Метод векторного представления соседства (Stochastic Neighbor Embedding, SNE)

Дано: исходные точки $x_i \in \mathbb{R}^n$, $i=1,\ldots,\ell$

Найти: точки на карте-проекции $z_i \in \mathbb{R}^d$, $i=1,\ldots,\ell$, $d \ll n$ Критерий: расстояния $\|z_i-z_i\|$ близки к исходным $\|x_i-x_i\|$

Вероятностная модель события (i) является соседом i на основе перенормированных гауссовских распределений:

$$p(j|i) = \displaystyle \operatorname*{norm}_{j
eq i} \exp \left(- \frac{1}{2\sigma_i^2} \|x_i - x_j\|^2 \right) -$$
в исходном пространстве;

$$q(j|i) = \displaystyle \operatorname*{norm} \exp igl(-\|z_i - z_j\|^2 igr) - ext{в пространстве проекции;}$$

где
$$p(j) = \operatorname{norm}(z_j) = \frac{z_j}{\sum_k z_k}$$
 — операция нормировки вектора.

Максимизация правдоподобия (стохастическим градиентом):

$$\sum_i \sum_{j \neq i} p(j|i) \ln q(j|i) \rightarrow \max_{\{z_i\}}$$

Преимущества метода SNE

- Преобразование расстояний в вероятности устраняет дисбалансы между большими и малыми расстояниями
- Дисбаланс между точками с большой и малой плотностью соседей выравнивается настройкой σ_i по перплексии

$$H(i) = -\sum_{j} p(j|i) \log_2 p(j|i)$$
 — энтропия распределения $p(j|i)$; $2^{H(i)}$ это перплексия = «эффективное число соседей у x_i » (если $p(j|i) = \frac{1}{k}$, то $2^{H(i)} = k$); обычно перплексия = 5..50.

Выбор перплексии может существенно влиять на вид проекции:

G.E. Hinton, S. T. Roweis. Stochastic Neighbor Embedding. 2002.

Вероятностная модель t-SNE: два усовершенствования SNE

Проблема скученности в SNE: окрестность вмещает гораздо больше точек в n-мерном пространстве, чем в d-мерном

• Использование t-распределения Стьюдента с более тяжёлым хвостом и симметричного совместного распределения q(i,j):

$$q(i,j) = \underset{(i,j): i \neq j}{\mathsf{norm}} (1 + ||z_i - z_j||^2)^{-1}$$

ullet Использование совместного распределения p(i,j):

$$p(i,j) = \frac{1}{2\ell} (p(j|i) + p(i|j))$$

Максимизация правдоподобия (стохастическим градиентом):

$$\sum_{(i,j):\,j\neq i} p(i,j) \ln q(i,j) \to \max_{\{z_i\}}$$

L.J.P. van der Maaten, G.Hinton. Visualizing data using t-SNE. 2008

Преимущества и недостатки t-SNE

Лучшее представление структур сходства по сравнению с другими методами многомерного шкалирования (mnist)

Ложные кластерные структуры при низкой перплексии Размеры кластеров и расстояния между ними неинформативны Трудно отличить реальные структуры от артефактов метода Нет ясного критерия качества для подбора перплексии

M. Wattenberg, F. Viegas, I. Johnson (Google). How to use t-SNE effectively. 2016. https://distill.pub/2016/misread-tsne

Матричные разложения (graph factorization)

Дано: $(i,j) \in E$ — выборка рёбер графа $\langle V, E \rangle$, S_{ii} — близость между вершинами ребра (i,j). Например, $S_{ii} = [(i,j) \in E]$ — матрица смежности вершин.

Найти: векторные представления вершин, так, чтобы близкие (по графу) вершины имели близкие векторы.

Критерий для **не**ориентированного графа (S симметрична):

$$\|S - ZZ^{\mathsf{T}}\|_{E} = \sum_{(i,j)\in E} (\langle z_i, z_j \rangle - S_{ij})^2 \to \min_{Z}, \quad Z \in \mathbb{R}^{V \times d}$$

Критерий для ориентированного графа (S несимметрична):

$$\left\|S - \Phi\Theta^{\mathsf{T}}\right\|_{\mathcal{E}} = \sum_{(i,i)\in\mathcal{E}} \left(\langle arphi_i, heta_j
angle - S_{ij}
ight)^2
ightarrow \min_{\Phi,\Theta}, \quad \Phi,\Theta \in \mathbb{R}^{V imes d}$$

Обычно решается методом стохастического градиента (SG).

I. Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.

Модель случайных блужданий для больших графов

Дано: $(i,j) \in E$ — выборка рёбер графа $\langle V,E \rangle$ $S_{ij} = [j$ достижима из i коротким путём]

$$\sum_{i \in V} \left(\sum_{j \in C_i} \log \sigma \left(\langle \varphi_i, \theta_j \rangle \right) + \sum_{j \in \bar{C}_i} \log \sigma \left(-\langle \varphi_i, \theta_j \rangle \right) \right) \to \max_{\Phi, \Theta},$$

 C_i — окрестность («контекст») вершины i, сэмплируемая случайным блужданием длины k (DeepWalk, node2vec), \bar{C}_i — вершины, далёкие от i, сэмплируемые $j \sim p(j)^{3/4}$

Параметризация случайных блужданий: вероятность $p(v \rightarrow w)$ после перехода $t \rightarrow v$

 $p \downarrow q \uparrow$ — ближе к поиску в ширину (BFS)

 $p \uparrow q \downarrow -$ ближе к поиску в глубину (DFS)

B.Perozzi et al. DeepWalk: online learning of social representations. SIGKDD-2014. A.Grover, J.Leskovec. Node2vec: scalable feature learning for networks. SIGKDD-2016.

Векторные представления графов как автокодировщики

Все рассмотренные выше методы векторных представлений графов суть автокодировщики данных о рёбрах:

- ullet многомерное шкалирование: $R_{ij}
 ightarrow \|z_i z_j\|$
- SNE и t-SNE: $p(i,j) o q(i,j) \propto K(\|z_i z_j\|)$
- ullet матричные разложения: $S_{ij}
 ightarrow \langle z_i, z_j
 angle$ или $\langle arphi_i, heta_j
 angle$

Вход кодировщика:

 \bullet W_{ij} — данные о ребре графа (i,j)

Выход кодировщика:

векторные представления вершин z;

Выход декодировщика:

ullet аппроксимация \hat{W}_{ij} , вычисляемая по (z_i,z_j)

I. Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.

Напоминание. Автокодировщики для частичного обучения

Данные: размеченные $(x_i, y_i)_{i=1}^k$, неразмеченные $(x_i)_{i=k+1}^\ell$ **Совместное обучение** кодировщика, декодировщика и предсказательной модели (классификации, регрессии или др.):

$$\sum_{i=1}^{\ell} \mathcal{L}(g(f(x_i,\alpha),\beta),x_i) + \lambda \sum_{i=1}^{k} \tilde{\mathcal{L}}(\hat{y}(f(x_i,\alpha),\gamma),y_i) \to \min_{\alpha,\beta,\gamma}$$

$$z_i = f(x_i, \alpha)$$
 — кодировщик $\hat{x}_i = g(z_i, \beta)$ — декодировщик $\hat{y}_i = \hat{y}(z_i, \gamma)$ — предиктор

Функции потерь:

$$\mathscr{L}(\hat{x}_i,x_i)$$
 — реконструкция $\tilde{\mathscr{L}}(\hat{y}_i,y_i)$ — предсказание

GraphEDM: обобщённый автокодировщик на графах

Graph Encoder Decoder Model — обобщает более 30 моделей:

 $W \in \mathbb{R}^{V imes V}$ — входные данные о рёбрах

 $X \in \mathbb{R}^{V imes n}$ — входные данные о вершинах, признаковые описания

 $Z \in \mathbb{R}^{V imes d}$ — векторные представления вершин графа

 $\mathsf{DEC}(Z;\Theta^D)$ — декодер, реконструирующий данные о рёбрах

 $\operatorname{DEC}(Z;\Theta^S)$ — декодер, решающий supervised-задачу

 y^{S} — (semi-)supervised данные о вершинах или рёбрах

 \mathcal{L} — функции потерь

I. Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.

Дистрибутивная гипотеза и виды семантической близости слов

«Смысл слова определяется множеством его контекстов»

- Words that occur in the same contexts tend to have similar meanings [Harris, 1954].
- You shall know a word by the company it keeps [Firth, 1957].

Синтагматическая близость слов:	
сочетаемость слов в одном контексте	
(здание-строитель, кран-вода, функция-точка)	
Парадигматическая близость слов:	
взаимозаменяемость слов в одном контексте	
(здание-дом, кран-смеситель, функция-отображение)	

Z. Harris. Distributional structure. 1954.

J.R. Firth. A synopsis of linguistic theory 1930-1955. Oxford, 1957.

P. Turney, P. Pantel. From frequency to meaning: vector space models of semantics. 2010.

Формализация дистрибутивной гипотезы

Дано: текст $(w_1 \dots w_n)$, последовательность слов словаря W

Найти: векторные представления слов $v_w \in \mathbb{R}^d$, так, чтобы близкие по смыслу слова имели близкие векторы

Модель Skip-gram для предсказания вероятности слов контекста $C_i = (w_{i-k} \dots w_{i-1} w_{i+1} \dots w_{i+k})$ по слову w_i :

$$p(w|w_i) = \operatorname{SoftMax}_{w \in W} \langle u_w, \frac{\mathbf{v}_{w_i}}{\rangle}$$

 v_w — вектор предсказывающего слова,

 u_w — вектор предсказываемого слова, в общем случае $u_w
eq v_w.$

Критерий максимума \log -правдоподобия, $U, V \in \mathbb{R}^{|W| \times d}$:

$$\sum_{i=1}^n \sum_{w \in C_i} \log p(w|w_i) \to \max_{U,V}$$

T.Mikolov et al. Efficient estimation of word representations in vector space, 2013.

Ещё одна формализация дистрибутивной гипотезы

Дано: текст $(w_1 \dots w_n)$, последовательность слов словаря W

Найти: векторные представления слов $v_w \in \mathbb{R}^d$, так, чтобы близкие по смыслу слова имели близкие векторы

Mодель CBOW (continuous bag-of-words) для вероятности слова w_i в заданном контексте $C_i = (w_{i-k} \dots w_{i-1} w_{i+1} \dots w_{i+k})$:

$$p(w_i = w|C_i) = \underset{w \in W}{\mathsf{SoftMax}} \langle u_w, v[C_i] \rangle,$$

 $v[C_i] = rac{1}{|C_i|} \sum_{w \in C_i} v_w$ — средний вектор слов из контекста C_i ,

 v_w — векторы предсказывающих слов,

 u_w — вектор предсказываемого слова, в общем случае $u_w
eq v_w.$

Критерий максимума \log -правдоподобия, $U, V \in \mathbb{R}^{|W| \times d}$:

$$\sum_{i=1}^n \log p(w_i|C_i) \to \max_{U,V}$$

Сравнение моделей CBOW и Skip-gram

• Различие — в структуре оптимизационного критерия:

$$\begin{array}{ll} \mathsf{Skip\text{-}gram} \colon & \sum_{i=1}^n \sum_{c \in \mathcal{C}_i} \mathsf{log} \, \mathsf{SoftMax} \langle u_c, v_{w_i} \rangle \to \max_{U,V} \\ \\ \mathsf{CBOW} \colon & \sum_{i=1}^n \mathsf{log} \, \mathsf{SoftMax} \bigg(\frac{1}{|\mathcal{C}_i|} \sum_{c \in \mathcal{C}_i} \langle u_{w_i}, v_c \rangle \bigg) \to \max_{U,V} \end{array}$$

- Skip-gram точнее моделирует вероятности редких слов
- Обе модели можно обучать с помощью SGD
- Обе модели реализованы в программе word2vec [Mikolov]
- Оба критерия трудно оптимизировать из-за SoftMax
- Что делать? Заменять либо SoftMax, либо критерий

T.Mikolov et al. Efficient estimation of word representations in vector space, 2013.

Иерархический SoftMax

Идея: заменить SoftMax на другую функцию потерь, сложность вычисления которой $O(\log |W|)$ вместо O(|W|).

Предварительный этап:

- По словарю частот строится бинарное дерево Хаффмана
 - каждому слову $w \in W$ соответствует ровно один лист
 - путь от корня до w тем короче, чем выше частота w
- ullet Каждая внутренняя вершина n хранит вектор $u_n \in \mathbb{R}^d$
- ullet Каждый лист хранит вектор $v_w \in \mathbb{R}^d$ для слова w
- Модель перехода из внутренней вершины n в дочернюю:

направо:
$$p(+1|n,w)=\sigma(\langle u_n,v_w\rangle)$$

налево: $p(-1|n,w)=\sigma(-\langle u_n,v_w\rangle)=1-p(+1|n,w)$

 $\mathsf{O}\mathsf{б}\mathsf{y}\mathsf{ч}\mathsf{a}\mathsf{\omega}\mathsf{\tau}\mathsf{c}\mathsf{g}$ векторы v_w в листьях и u_n во внутренних вершинах

F.Morin, Y.Bengio. Hierarchical probabilistic neural network language model. 2005. A.Mnih, G.E.Hinton. A scalable hierarchical distributed language model. 2009.

Иерархический SoftMax: обучение модели

Модель $p(w|w_i)$, гарантирующая нормировку $\sum_w p(w|w_i) = 1$:

$$p(w|w_i) = \prod_{j=1}^{\ell(w)} p(\beta_{jw}|n_{jw}, w_i) = \prod_{j=1}^{\ell(w)} \sigma(\beta_{jw}\langle u_{n_{jw}}, v_{w_i}\rangle)$$

где $\ell(w)$ — длина пути от корня дерева к листу w n_{jw} — j-я внутренняя вершина на пути к листу w $eta_{jw} \in \{-1,+1\}$ — переход из n_{jw} в дочернюю на пути к w

Пример:
$$p(w|w_i) = p(-1|n_{1w}, w_i) p(-1|n_{2w}, w_i) p(+1|n_{3w}, w_i)$$

На каждом уровне дерева сохраняется нормировка $\sum_w p(w|w_i) = 1$

Третья формализация: классификация пар слов на два класса

Критерий log-loss для SGNS (Skip-gram Negative Sampling):

$$\sum_{i=1}^n \sum_{w \in C_i} \left(\log p(+1|w,w_i) + \log p(-1|\bar{w},w_i) \right) \to \max_{U,V}$$

где $p(y|w,w_i)=\sigma(y\langle u_w,v_{w_i}\rangle)$ — модель классификации, $y=\pm 1$; y=+1, если пара слов (w,w_i) находится в общем контексте; y=-1, если пара слов (w,w_i) не находится в общем контексте; $\bar{w}\sim p(w)^{3/4}$ сэмплируется из $W\backslash C_i$ в методе SG.

Эвристики и прочие замечания:

- Dynamic window: случайный выбор $k \sim [3..10]$
- Итоговые векторы слов: $\alpha v_w + (1 \alpha) u_w$
- Приём NS применяют, когда не хватает второго класса
- Что делать со словами, которые встречаются впервые?

Связь word2vec с матричными разложениями

d — размерность векторов слов v_w и u_w

 $V=(v_w)_{W imes d}$ — матрица предсказывающих векторов слов

 $U=(u_w)_{W imes d}$ — матрица предсказываемых векторов слов

SGNS строит матричное разложение $P \approx UV^{\mathsf{T}}$ матрицы Shifted PMI (Point-wise Mutual Information):

$$P_{ab} = \ln \frac{n_{ab}n}{n_a n_b} - \ln k,$$

 n_{ab} — частота пары слов a,b в окне $\pm k$ слов, n_a,n_b — число пар с участием слова a и b соответственно, n — число всех пар слов в коллекции.

В качестве эвристики используют также Shifted Positive PMI:

$$P_{ab}^{+} = \left(\ln \frac{n_{ab}n}{n_{a}n_{b}} - \ln k \right)_{+}.$$

O. Levy, Y. Goldberg. Neural word embedding as implicit matrix factorization. 2014.

Проверка на задачах семантической близости и аналогии слов

Задача семантической близости слов:

по выборке пар слов (a,b) оценивается корреляция Спирмена между $\cos(v_a,v_b)$ и экспертными оценками близости y(a,b)

Задача семантической аналогии слов:

по трём словам угадать четвёртое

Модель векторных представлений FastText

Идея: векторное представление слова w определяется как сумма векторов всех его буквенных n-грамм G(w):

$$u_w = \sum_{g \in G(w)} u_g$$

В Skip-gram вместо векторов слов u_w обучаются векторы u_g

Пример: G(дармолюб $) = \{ \langle да, арм, рмо, мол, олю, люб, юб<math>\rangle \}$

Преимущества:

- Это решает проблемы новых слов и слов с опечатками
- Подходит для обработки текстов социальных медиа
- Словарь 2- и 3-грамм обычно меньше словаря W
- Существует много предобученных моделей

Модели векторных представлений для текстов и графов

word2vec: эмбединги (векторные представления) слов T. Mikolov et al. Efficient estimation of word representations in vector space. 2013.

paragraph2vec: эмбединги фрагментов или документов Q.Le, T.Mikolov. Distributed representations of sentences and documents. 2014.

sent2vec: эмбединги предложений

M.Pagliardini et al. Unsupervised learning of sentence embeddings using compositional n-gram features. 2017.

FastText: эмбединги символьных *n*-грамм

https://github.com/facebookresearch/fastText

node2vec: эмбединги вершин графа

A. Grover, J. Leskovec. Node2vec: scalable feature learning for networks. 2016.

graph2vec: более общие эмбединги на графах A. Narayanan et al. Graph2vec: learning distributed representations of graphs. 2017.

StarSpace: эмбединги чего угодно от Facebook Al Research

L. Wu, A. Fisch, S. Chopra, K. Adams, A. B. J. Weston. StarSpace: embed all the things! 2018.

BERT: контекстно-зависимые эмбединги от Google Al Language

J. Devlin et al. BERT: pre-training of deep bidirectional transformers for language understanding, 2018.

GPT-3: эмбединги, предобученные по 570Gb текстов от OpenAl T.B. Brown et al. Language Models are Few-Shot Learners. 2020.

Разновидности векторизации данных:

- Автокодировщики синтез векторных представлений (эмбедингов) объектов, обычно с понижением размерности
- Матричные разложения графовых данных (GF, graph2vec)
 и многомерное шкалирование (MDS, SNE) синтез
 эмбедингов объектов по данным об их взаимодействии
- Обобщённая модель GraphEDM синтез эмбедингов объектов по данным об объектах и их взаимодействии

Методы обучения — на основе SG

Текстовые данные — частный случай графовых данных:

- слова вершины графа, сочетаемость пары слов ребро
- слова и документы вершины двух разных долей графа, вхождение слова в документ ребро двудольного графа