Theoretic Exercises

Andrés Felipe Tamayo

David Plazas Escudero

aftamayoa@eafit.edu.co

dplazas@eafit.edu.co

Juan Sebastián Cárdenas-Rodríguez

jscardenar@eafit.edu.co

Mathematical Engineering, Universidad EAFIT

September 4, 2020

Exercise 1

Exercise a)

Question. Prove that a decreasing sequence of sets (in the inclusion sense) is convergent. Give examples of a convergent and a divergent sequence of sets.

Proof. Let $\{A_n\}_{n\in\mathbb{N}}$ be a decreasing sequence of sets, that is, $\forall n\in\mathbb{N}, A_{n+1}\subset A_n$. Recall that a sequence of sets $\{B_n\}_{n\in\mathbb{N}}$ is said to be convergent if

$$\limsup_{n \to \infty} B_n = \liminf_{n \to \infty} B_n$$

where

$$\limsup_{n\to\infty} B_n = \bigcap_{n\in\mathbb{N}} \bigcup_{m=n}^{\infty} B_m, \quad \text{and} \quad \liminf_{n\to\infty} B_n = \bigcup_{n\in\mathbb{N}} \bigcap_{m=n}^{\infty} B_m.$$

Let us see that $\{A_n\}_{n\in\mathbb{N}}$ is convergent. Since $\{A_n\}_{n\in\mathbb{N}}$, it is clear that

$$\bigcup_{m=n}^{\infty} A_m = A_n$$

and that

$$\bigcap_{m=n}^{\infty} A_m = \bigcap_{m=1}^{\infty} A_m.$$

Hence,

$$\liminf_{n \to \infty} A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{m=n}^{\infty} A_m = \bigcap_{m=1}^{\infty} A_m = \bigcap_{m \in \mathbb{N}} \bigcup_{n=m}^{\infty} = \limsup_{m \to \infty} A_m$$

and by renaming m as n in the right-most expression we conclude that $\{A_n\}_{n\in\mathbb{N}}$ is convergent.

An example of convergent sequence in \mathbb{R} is the sequence $\{A_n\}_{n\in\mathbb{N}}$, where $A_n=[-1,n]$. It is clear that this in an monotone increasing sequence of sets, since $n< n+1 \implies A_n \subset A_{n+1}$. Furthermore,

$$\lim_{n \to \infty} \inf A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{m=n}^{\infty} [-1, m] = \bigcup_{n \in \mathbb{N}} [-1, n] = [-1, \infty]$$

and

$$\limsup_{n \to \infty} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{m=n}^{\infty} [-1, m] = \bigcap_{n \in \mathbb{N}} [-1, \infty] = [-1, \infty]$$

On the other hand, an example of divergent sequence of sets is $\{B_n\}_{n\in\mathbb{N}}$, where $B_n = \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}\}$. In this case, it can be proved that

$$\bigcup_{m=n}^{\infty} B_m = \mathbb{Q} \cap [0,1]$$

and therefore,

$$\limsup_{n\to\infty} B_n = \mathbb{Q} \cap [0,1].$$

It can also be seen that

$$\bigcap_{m=n}^{\infty} B_m = \{0, 1\}$$

and thus,

$$\liminf_{n \to \infty} B_n = \{0, 1\}$$

Therefore, $\{B_n\}_{n\in\mathbb{N}}$ is divergent.

Exercise b)

Question. Prove that any open ball is an open set.

Proof. Let (X,d) be a metric space. Let $x \in X$, the open ball with radius r_x is defined as the set

$$B(x, r_x) = \{ y \in X \mid d(x, y) < r_x \}.$$

Let us see that $B(x, r_x)$ is an open set as well. For that we must prove that $\forall y \in B(x, r_x), \exists r_y \in \mathbb{R}_+$ such that $B(y, r_y) \subseteq B(x, r_x)$.

Let $y \in B(x, r_x)$ and let $r_y \in \mathbb{R}_+$ such that

$$d(x,y) + r_y < r_x \tag{1}$$

Let $y' \in B(y, r_y)$, since $d(\cdot, \cdot)$ is a metric, it must satisfy the triangle inequality. Therefore, $d(x, y') \le d(x, y) + d(y, y')$. Considering this with (1), we get $d(x, y') < r_x - r_y + r_y = r_x$. Hence, $y' \in B(x, r_x) \implies B(y, r_y) \subseteq B(x, r_x)$. Consequently, $B(x, r_x)$ is an open set.

Exercise c)

Question. The finite sum of metrics is a metric. Is the infinite sum of metrics a metric?

Proof. Let $d_i: V \times V \to \mathbb{R}^+$ be metrics, for i = 1, ..., n. Let's show that the sum of all the metrics is a metric, i.e.

$$d(x,y) = \sum_{i=1}^{n} d_i(x,y)$$

- Let's show that $d(x,y) = 0 \iff x = y$.
 - (\Rightarrow) Let's suppose that d(x,y)=0, for a $x,y\in V$.. In this manner, it is seen that:

$$d(x,y) = \sum_{i=1}^{n} d_i(x,y) = 0$$

As all d_i are metrics then it is clear that

$$d_i(x,y) \ge 0$$

Hence, for the sum to be 0 each of the components must be equal to 0. Therefore, for all i:

$$d_i(x,y) = 0$$
 $x = y$

As d_i is a metric.

(\Leftarrow) Let's suppose that x=y. As d_i are metric, it occurs that if x=y, $d_i(x,y)=0$. In this manner:

$$d(x,y) = \sum_{i=1}^{n} d_i(x,y)$$
$$= \sum_{i=1}^{n} 0$$
$$= 0$$

Hence, by the previous two proofs it is seen that $d_i(x,y) = 0 \iff x = y$.

• Let's show that d(x,y) = d(y,x) for all $x,y \in V$. It is known that for all i it happens that $d_i(x,y) = d_i(y,x)$ as their are metrics. Then

$$d(x,y) = \sum_{i=1}^{n} d_i(x,y)$$
$$= \sum_{i=1}^{n} d_i(y,x)$$
$$= d(y,x)$$

Therefore, it is symmetric.

• Let's show that $d(x,y) \leq d(x,z) + d(z,y)$, for all $x,y,z \in V$. Similarly to previous proofs, it is known that for all $i, d_i(x,y) \leq d_i(x,z) + d_i(z,y)$ as their are metrics. Hence

$$d(x,y) = \sum_{i=1}^{n} d(x,y)$$

$$\leq \sum_{i=1}^{n} (d_i(x,z) + d_i(z,y))$$

$$= \sum_{i=1}^{n} d_i(x,z) + \sum_{i=1}^{n} d_i(z,y)$$

$$= d(x,z) + d(z,y)$$

Therefore, the triangular inequality holds.

For all the three proofs done, it is concluded that the finite sum of metrics is also a metric. \Box

Exercise d)

Question. Show that a convex linear combination of metric is a metric.

Proof. Let $d_i: V \times V \to \mathbb{R}^+$ be metrics, for $i = 1, \ldots, n$. Let's show that for $\lambda_i \in [0, 1]$ such that:

$$\sum_{i=1}^{n} \lambda_i = 1$$

the linear combination is also a metric, i.e.

$$d(x,y) = \sum_{i=1}^{n} \lambda_i d_i(x,y)$$

- Let's show that $d(x,y) = 0 \iff x = y$.
 - (\Rightarrow) Let's suppose that d(x,y)=0, for a $x,y\in V$.. In this manner, it is seen that:

$$d(x,y) = \sum_{i=1}^{n} \lambda_i d_i(x,y) = 0$$

As all d_i are metrics and all λ_i are positives then it is clear that

$$\lambda_i d_i(x, y) \ge 0$$

Hence, for the sum to be 0 each of the components must be equal to 0. Therefore, for all i:

$$\lambda_i d_i(x,y) = 0$$

As the sum of all λ_i is equal to 1, there must be at least one λ_j such that $\lambda_j > 0$. In this manner, for i = j:

$$\lambda_i d_i(x, y) = 0$$

$$d_j(x, y) = 0$$

 $x = y$, As d_j is a metric.

 (\Leftarrow) Let's suppose that x = y. As d_i are metric, it occurs that if x = y, $d_i(x, y) = 0$. In this manner:

$$d(x,y) = \sum_{i=1}^{n} \lambda_i d_i(x,y)$$
$$= \sum_{i=1}^{n} \lambda_i \cdot 0$$
$$= 0$$

Hence, by the previous two proofs it is seen that $d_i(x,y) = 0 \iff x = y$.

• Let's show that d(x,y) = d(y,x) for all $x,y \in V$. It is known that for all i it happens that $d_i(x,y) = d_i(y,x)$ as their are metrics. Then

$$d(x,y) = \sum_{i=1}^{n} \lambda_i d_i(x,y)$$
$$= \sum_{i=1}^{n} \lambda_i d_i(y,x)$$
$$= d(y,x)$$

Therefore, it is symmetric.

• Let's show that $d(x,y) \leq d(x,z) + d(z,y)$, for all $x,y,z \in V$. Similarly to previous proofs, it is known that for all $i, d_i(x,y) \leq d_i(x,z) + d_i(z,y)$ as their are metrics. Hence

$$d(x,y) = \sum_{i=1}^{n} \lambda_i d(x,y)$$

$$\leq \sum_{i=1}^{n} \lambda_i (d_i(x,z) + d_i(z,y))$$

$$= \sum_{i=1}^{n} \lambda_i d_i(x,z) + \sum_{i=1}^{n} \lambda_i d_i(z,y)$$

$$= d(x,z) + d(z,y)$$

Therefore, the triangular inequality holds.

For all the three proofs done, it is concluded that a convex linear combination of metrics is also a metric. \Box

Excercise e)

Question. Show that Mahalanobis distance is a metric.

Mahalanobis distance can be defined as a dissimilarity measure between two random vectors \vec{x} and \vec{y} of the same distribution with the covariance matrix S:

$$d(\vec{x}, \vec{y}) = \sqrt{(\vec{x} - \vec{y})^T S^{-1} (\vec{x} - \vec{y})}$$

Proof. In order to prove that $d(\vec{x}, \vec{y}) \geq 0$ we have to show that $(\vec{x} - \vec{y})^T S^{-1}(\vec{x} - \vec{y}) \geq 0$. Note that this holds if we prove that S^{-1} is definite positive. Let's consider a sample of vector $x_i = (x_{i1}, \dots, x_{ik})^T$, with $i = 1, \dots, n$, the sample mean vector is

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

and the sample covariance matrix is

$$S = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x})^T$$

Then, for a nonzero vector $y \in \mathbb{R}^n$, we have

$$y^{T}Sy = y^{T} \left(\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})(x_{i} - \overline{x})^{T} \right) y$$
$$= \frac{1}{n} \sum_{i=1}^{n} y^{T} (x_{i} - \overline{x})(x_{i} - \overline{x})^{T} y$$
$$= \frac{1}{n} \sum_{i=1}^{n} ((x_{i} - \overline{x})^{T} y)^{2} \ge 0 \quad *$$

By this, S is always positive semi-definite. Now, we have to show that S is definite. Let's define $z_i = (x_i - \overline{x})$, for i = 1, ..., n. For any nonzero $y \in \mathbb{R}^n$, (*) is zero iff $z_i^T y = 0$, for each i = 1, ..., n. Let's suppose now that the set $\{z_1, ..., z_n\}$ spans over \mathbb{R}^n . Then there are real numbers $\alpha_1, ..., \alpha_n$ such hat $y = \alpha_1 z_1 + ... + \alpha_n z_n$. But then we have $y^T y = \alpha_1 z_1^T y + ... + \alpha_n z_n^T y = 0$, which yields that y = 0, a contradiction. Hence, if the z_i spans over \mathbb{R}^n , then S is positive definite.

We conclude that S is a definite positive matrix, hence

$$d(\vec{x}, \overline{x}) > 0$$

We have to prove now that $d(\vec{x}, \vec{y}) = 0$ iff $\vec{x} = \vec{y}$. This is obvious from the definition of the mahalanobis distance, because

$$d(\vec{x}, \vec{y}) = \sqrt{(\vec{x} - \vec{y})^T S^{-1} (\vec{x} - \vec{y})} = \sqrt{(\vec{x} - \vec{x})^T S^{-1} (\vec{x} - \vec{x})}$$

since \vec{x} and \vec{y} have the same dimensions.

We continue with the proof that $d(\vec{x}, \vec{y}) = d(\vec{y}, \vec{x})$. This holds because of S is a symmetric matrix, and hence we have finish.

At last, we have to prove the triangle inequality. Let S be a symmetric $n \times n$ matrix (This because the definition of covariance matrix). And let's rename the mahalanobis norm as

$$\|x\|_S = \sqrt{x^T S x}$$

We have shown that S is positive-definite. By spectral theorem for symmetrix matrices, there are a diagonal $n \times n$ matrix $\Lambda = diag(\lambda_1, \ldots, \lambda_n)$ and an orthogonal $n \times n$ matrix Q (i.e. $Q^TQ = I$), such that $Q^T = Q^{-1}$ and:

$$S = Q^T \Lambda Q$$

Because of the matrix S is positive-definite we have that

$$\lambda_1 > 0$$

$$\lambda_2 > 0$$

$$\dots$$

$$\lambda_n > 0$$

Let the matrix

$$U = diag(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_n})Q,$$

note that:

$$S = U^T U$$

set now $\overline{x} = Ux$ and $\overline{y} = Uy$. Let $||v||_E = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^n}$ the usual euclidean distance. Then is clearly that

$$\begin{aligned} \|x\|_S &= \|\overline{x}\|_E \\ \|y\|_S &= \|\overline{y}\|_E \\ \|x + y\|_S &= \|\overline{x} + \overline{y}\|_E \end{aligned} \tag{**}$$

By usual triangular inequality we have:

$$\|\overline{x} + \overline{y}\|_E \le \|\overline{x}\|_E + \|\overline{y}\|_E$$

By the equality (**) we have

$$||x+y||_S \le ||x||_S + ||y||_S$$

Exercise f)

Question. Prove that if $d: X \times X \to \mathbb{R}$ is a metric, then so is $\bar{d}(x,y) = \frac{d(x,y)}{1+d(x,y)}$.

Proof. Let (X,d) be a metric space. Let us prove that $\bar{d}(\cdot,\cdot)$ also satisfy the conditions to be metric. For the following steps, assume that $x,y,z\in X$.

1. Since $d(\cdot,\cdot)$ is a metric, it satisfies that $d(x,y)\geq 0$. Then, $d(x,y)+1\geq 1>0$ and finally $\bar{d}(x,y)=\frac{d(x,y)}{1+d(x,y)}\geq 0$.

- 2. Since $d(\cdot, \cdot)$ is a metric, it satisfies that d(x, y) = d(y, x). Then $\bar{d}(x, y) = \frac{d(x, y)}{1 + d(x, y)} = \frac{d(y, x)}{1 + d(y, x)} = \bar{d}(y, x)$.
- 3. " \Longrightarrow " Suppose $\bar{d}(x,y)=0=\frac{d(x,y)}{1+d(x,y)}$, hence d(x,y)=0 and as $d(\cdot,\cdot)$ is metric, x=y. " \Longleftrightarrow " Suppose that x=y, then d(x,y)=0 since it is a metric; now, $\bar{d}(x,y)=\frac{d(x,y)}{1+d(x,y)}=\frac{0}{1+0}=0$. Consequently, $\bar{d}(x,y)=0 \iff x=y$.
- 4. Consider the function $f(t) = \frac{t}{1+t}$ on $[0,\infty)$. Note that $\bar{d}(x,y) = f(d(x,y))$. It is clear that $f'(t) = \frac{1}{(t+1)^2}$, and hence f(t) is a positive increasing function on $[0,\infty)$. Now, as d(x,y) = 0 is a metric, it satisfies the triangle inequality, hence $d(x,y) \leq d(x,z) + d(z,y)$. As f(t) increases on $[0,\infty)$, the inequality is preserved when applied to this last expression: $f(d(x,y)) \leq f(d(x,z) + d(z,y))$. This yields

$$f(d(x,z) + d(z,y)) = \frac{d(x,z) + d(z,y)}{1 + d(x,z) + d(z,y)} \le \frac{d(x,z)}{1 + d(x,z)} + \frac{d(z,y)}{1 + d(z,y)} \le \frac{\bar{d}(x,z) + \bar{d}(z,y)}{1 + \bar{d}(z,y)}$$

and finally,

$$\bar{d}(x,y) = f(d(x,y)) \le f(d(x,z) + d(z,y)) \le \bar{d}(x,z) + \bar{d}(z,y).$$

Exercise i)

Question. Prove that the Frobenius norm satisfy the properties for a matrix norm.

Proof. Let $A \in \mathbb{R}^{m \times n}$. Recall that the Frobenius norm of A is given by

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n (a_{ij})^2} = \sqrt{\operatorname{tr}(A^T A)}.$$

For the following proofs, assume $A, B \in \mathbb{R}^{m \times n}$ and $\alpha \in \mathbb{R}$.

1.

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n (a_{ij})^2} \ge 0, \ \forall a_{ij} \in \mathbb{R}.$$

2.

$$\|\alpha A\| = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} (\alpha a_{ij})^2} = \sqrt{\alpha^2} \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} (a_{ij})^2} = |\alpha| \|A\|_F$$

 $3. \text{ "} \Longrightarrow \text{"}$

$$||A||_F = 0 \implies \sqrt{\sum_{i=1}^m \sum_{j=1}^n (a_{ij})^2} = 0$$

which directly implies that each $a_{ij} = 0$, since it is a positive sum.

" = "

$$A = 0 \implies a_{ij} = 0, \ \forall i, j \implies \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} (a_{ij})^2} = 0 \implies ||A||_F = 0.$$

Then, $||A||_F = 0 \iff A = 0$.

4. For the triange inequality, we may use the trace definition

$$\|A\|_F = \sqrt{\operatorname{tr}(A^T A)}$$

and use the fact that the Frobenius norm comes from the inner product defined as

$$\langle A, B \rangle = \operatorname{tr}(A^T B).$$

Let us work with the inner product as follows:

$$\langle A+B,A+B\rangle = \langle A,A\rangle + 2\langle A,B\rangle + \langle B,B\rangle$$
$$\|A+B\|_F^2 = \|A\|_F^2 + 2\langle A,B\rangle + \|B\|_F^2,$$

using the Cauchy-Schwarz inequality $\langle A, B \rangle \leq ||A||_F ||B||_F$, we get

$$\begin{split} \|A+B\|_F^2 \leq & \|A\|_F^2 + 2\|A\|_F \|B\|_F + \|B\|_F^2 \\ \|A+B\|_F^2 \leq & (\|A\|_F + \|B\|_F)^2 \\ \|A+B\|_F \leq & \|A\|_F + \|B\|_F \end{split}$$

With the 4 points above proven, $||A||_F$ is a norm for matrices.

Exercise g)

Question. If $d: X \times X \to \mathbb{R}$ is a metric, then $\overline{d}(x,y) = \min\{1, d(x,y)\}$ also is.

Proof. Let's show that $\overline{d}(x,y) = \min\{1, d(x,y)\}\$ is a metric

- $\overline{d}(x,y) \ge 0$. We have three cases.
 - If 1 = d(x, y) then min $\{1, d(x, y)\} = 1$, therefore $\overline{d}(x, y) \ge 0$.
 - If 1 < d(x,y) then min $\{1,d(x,y)\} = 1$, therefore $\overline{d}(x,y) \ge 0$.
 - If $d(x,y) \le 1$ then min $\{1,d(x,y)\} = d(x,y)$. We have that d(x,y) is a metric, $d(x,y) \ge 0$, therefore $\overline{d}(x,y) \ge 0$
- $\overline{d}(x,y) = 0$ iff x = y.
 - $\overline{d}(x,y) = 0 \Rightarrow x = y.$

We have that $\overline{d}(x,y) = 0$, but this means min $\{1, d(x,y)\} = 0$. Clearly $1 \neq 0$. Then d(x,y) = 0 iff x = y, but d is a metric. Therefore x = y.

$$-x = y \Rightarrow \overline{d}(x,y) = 0.$$

Let's suppose that x=y, then $\overline{d}(x,y)=\min\{1,d(x,y)\}=0$. This because d is a metric, and therefore d(x,y)=0 if x=y hence $\overline{d}(x,y)=0$.

- $\overline{d}(x,y) = \overline{d}(y,x)$. $\overline{d}(x,y) = \min\{1, d(x,y)\}$, because d is a metric d(x,y) = d(y,x), then $\overline{d}(x,y) = \min\{1, d(x,y)\} = \min\{1, d(y,x)\} = \overline{d}(y,x)$.
- $\overline{d}(x,z) \leq \overline{d}(x,y) + \overline{d}(y,z)$. $\overline{d}(x,z) = \min\{1, d(x,z)\}$. Because d is a metric we have $d(x,z) \leq d(x,y) + d(y,z)$. Therefore

$$\overline{d}(x,z) \le \min \{1, d(x,y) + d(y,z)\}
\le \min \{1, d(x,y)\} + \min \{1, d(y,z)\}
= \overline{d}(x,y) + \overline{d}(y,z)$$

Exercise h)

Question. If $A \subset B$, both subsets of \mathbb{R}^n , then for any $x \in \mathbb{R}^n$ and d a metric, we have that $d(x,A) \geq d(x,B)$.

Proof. By the definition of distance between sets we know that

$$d(x,B) = \inf\{d(x,b) : x \in \mathbb{R}^n, b \in B\}$$

Let's denote $\Gamma(x,A) = \{d(x,a) : x \in \mathbb{R}^n, a \in A\}$. Therefore, by definition $d(x,A) = \inf \Gamma(x,A)$. It is easily seen that for every other lower bound λ of $\Gamma(x,A)$ it happens that:

$$\lambda \le d(x, A) \tag{2}$$

as the infimum is the largest lower bound of the set. On the other hand, it is clear that for all $b \in B$:

$$d(x,B) \le d(x,b)$$

In particular, for all $b \in A$ as $A \subset B$. Therefore d(x, B) is a lower bound for $\Gamma(x, A)$. In this manner, by Equation 2 it occurs that:

Exercise j)

Question. Show that the 2-norm of a real-valued matrix A of size $n \times n$ defined as

$$||A||_2 = \max_{||x||_2 \neq 0} \frac{||Ax||_2}{||x||_2}$$

is the maximum eigen value of A.

Proof. Let λ_i be the eigen values of the matrix $B = A^T A$ for i = 1, ..., n and v_i be non-null vectors such that

$$(A^T A)v_i = \lambda_i v_i$$

It is seen that B is a Hermitian matrix, therefore it's eigen vectors are orthonormal ang generate a basis for the vector space. Therefore, for all vector x there exists a_i such that

$$x = \sum_{i=1}^{n} a_i v_i$$

Let $j \in \{1, ..., n\}$ such that $j = \max_i |\lambda_i|$.

(\leq) Let's show that $||A||_2 \leq \sqrt{|\lambda_j|}$. Hence:

$$||Ax||_{2}^{2} = \langle Ax, Ax \rangle >$$

$$= \langle x, A^{T}Ax \rangle$$

$$= \langle x, Bx \rangle$$

$$= \langle \sum_{i=1}^{n} a_{i}v_{i}, B \sum_{i=1}^{n} a_{i}v_{i} \rangle$$

$$= \langle \sum_{i=1}^{n} a_{i}V_{i}, \sum_{i=1}^{n} \lambda_{i}^{2}a_{i}V_{i} \rangle$$

$$= \sum_{i=1}^{n} a_{i}^{2}\lambda_{i}$$

$$\leq \lambda_{j} \sum_{i=1}^{n} a_{i}^{2}$$

$$= \lambda_{j}||x||_{2}^{2}$$

Therefore, $||Ax||_2 \le \sqrt{\lambda_j} ||x||_2$. Hence, $||A||_2 \le \sqrt{\lambda_j}$.

 (\geq) Let's show that $||A||_2 \geq \sqrt{|\lambda_j|}$. Using the obtained previous result it can be seen that for v_j

$$||A||_{2}^{2} \ge \frac{\langle v_{j}, Bv_{j} \rangle}{||v_{j}||_{2}}$$

$$= \frac{\langle v_{j}, \lambda_{j}v_{j} \rangle}{||v_{j}||_{2}}$$

$$= \lambda_{j}$$

Therefore, $||A||_2 \leq \sqrt{\lambda_j}$. Then, it must happen that $||A||_2 = \sqrt{\lambda_j}$.

Exercise 2

Question. Define what it is a pseudometric and show a few examples of pseudometrics.

Definition 0.1. A pseudometrix space (E,d) is a set E together with a non-negative real-valued function $d: E \times E \to \mathbb{R}_{\geq 0}$ (called a **pseudometric**) such that for every $x, y, z \in E$,

- 1. $d(x,y) \ge 0$
- 2. d(x,x) = 0
- 3. d(x, y) = d(y, x)
- 4. $d(x,z) \le d(x,y) + d(y,z)$

Example 1. For a set E, define d(x,y) = 0 for all $x,y \in E$. We call d the trivial pseudometric on E: all distances are 0.

Example 2. Every measure space Ω, \mathcal{A}, μ) can be viewed as a pseudometric space by defining

$$d(A,B) := \mu(A \triangle B)$$

for all $A, B \in \mathcal{A}$, where the triangle denotes symmetric difference.

Example 3. For vector spaces V, a seminorm p induces a pseudometric on V, as

$$d(x,y) = p(x-y)$$