(19) 日本国特許庁 (JP)

①特許出願公開

⑫公開特許公報(A)

昭56—158746

f)Int. Cl.³C 07 C 103/50	識別記号	庁内整理番号 7375—4 H	❸公開 昭	和56年(1981)12月7日
A 61 K 31/165 31/195	AAC AAC	6408-4C 6408-4C	発明の数 審査請求] 未請求
31/22 31/255	AAC	6408—4 C 6408—4 C	田旦明八	八叶八
C 07 C 103/84 149/247	mo	7375—4H		
153/017		7162—4H 7142—4H		(全 16 頁)

60製薬用アミド

②特 願 昭56-54256

22出 願 昭56(1981)4月10日

優先権主張 ②1980年4月11日③イギリス

(GB) (98011986

⑫発 明 者 サムエル・ウイルキンソン イギリス国ケント・ベツケンハ ム・ペピントン・ロード12

⑪出 願 人 ザ・ウエルカム・フアウンデー - ション・リミテツド イギリス国ロンドン・エヌ・ダ

ブリユ1ユーストン・ロード18 3 - 193

個代 理 人 弁理士 浅村皓 外 4 名

1.発明の名称

製業用アミド

2. 特許請求の範囲

(1) 一般式

(犬中×は2イオンに対するりガンドとして機能 しりる基であり;

Pb はフェニル券であつてこれは場合によつては ハロおよびニトロ基から遺ぼれる一つまたは一つ 以上の世典者によつて世典される;

Y は式:

式中

R¹ は水朱宝たはメチルであり;

R^g は1個から3無までの炭素原子のアルキルで **ありまたはメテルテオメテルであり;そして** Z は式 -ORS または -NR⁴R⁵ の帯であつてそこで R⁵, R⁴ および R⁵ はそれぞれ水素または1個から4個 までの炭素原子のアルキルでありそして R⁵ は さ らにそれのアルキレン部分中に1個から3個まで の炭素原子を有するフェニルアルキル、またはフ エニルであることができる)の化合物および楽理 学的に受容し得るそれの塩基性塩。

(2) メがカルポキシルを表わす特許請求の範囲第 (1) 項に記載の化合物。

X がメルカプトまたは2個から5個までの炭 素原子を有するアルカノイルチオを表わす特許請 求の範囲第50項に記載の化合物。

Ph が非遺典フェニルである前配符許請求の 絶屈の何れかの項に記載の化合物。

Yが式

(D - または L - 形態の何れか)の夢である前記 特許請求の範囲の何れかの項に記載の化合物。 60 Yが式

(D - または L - 形態の何れか)の基である特許 請求の範囲第(I)から無(4) 項までの何れかの項に記 載の化合物。

(7) 2 が式 - OH または - NH₂ の基である前記特許 請求の範囲の何れかの項に記載の化合物。 (B) 式

$$\begin{array}{cccc} X_1 - CH^2 - CG_1 - G & \text{(II)} \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

(式中 Po は特許餅求の範囲第(1) 項中に定義する 適りであり; X¹ は特許請求の範囲第(1) 項中に定 義する X 基であるかまたは機能的に保護されたそ れの誘導体であり; Q はカルポキシルまたは機能 的に活性化されたそれの誘導体であっ); そして

に記載の処方物。

© 哺乳動物の治療上の処置に用いる式 (I) (特許球の範囲第四項中に定義する通り)の化合物および楽選学上のそれの塩基性塩。

は 人間の治療上の処置に用いる式(I)(特許請求の範囲第以項中に定義する通り)の化合物および祭理学上のそれの塩基性塩。

66 哺乳動物におけるエンケファリンの効果の延長および/または強化のために用いる式 (I) (特許 京の範囲 第 (1) 項中に定義する通り) の化合物。 ローモルヒネ同様の効果を持つ薬剤を必要とする 状態に対して哺乳動物の処置に用いる式 (I) (特許求の範囲 第 (1) 項に定義する通り) の化合物および薬理学上のそれの塩基性塩。

3. 発明の詳細な説明

、本発明はアミド頼およびそれらの調製方法、そ のような化合物を含む薬剤処方物およびそのよう 特開昭56-158746(2)

 Q^3 と Q^2 は共に水素または一緒に結合を形成する) の化合物を式

$$H-Y-Z^1 \qquad (\square)$$

(式中Yは特許請求の範囲第四項中に定義する強力であり; そして 2¹ は特許請求の範囲第四項中に定義する地であり; そして 2¹ は特許請求の範囲第四項中に定義するを表示。 2¹ ないまたは機能と反応である。 2¹ ないである。 2

(B) 格様上有効量の式(I) (特許請求の範囲祭(I) 項に定義する通りの)の化合物または聚理学的に 受容し得るそれの塩素性塩を受容しりるそれに対 する担体と共に合む薬理学的処方物。

9 経口の、直腸の、鼻の、局所の、腹のまたは 非経口の投与に適合させた特許請求の範囲第(9)項

な処方物の調製方法、人間および獣医用薬剤におけるそのような化合物の使用、およびブミド類の 調製において得られる価値のある中間物およびそ のような中間物の調製方法に関するものである。

1975年代 Bughes 等は(Nature 258巻、12月18日、1975、577から579頁まで)哺乳類の脳から強力な麻酔性働筋活性を持つ二つの関連したペンタペプチド即ちェンケファリンを確認した;

H. Tyr. Gly. Gly. Phe. Met. $OH(Met^8 - \pm \nu \tau \tau \tau \tau)$

H. Tyr. Oly. Oly. Phe. Leu. OH(Leu⁵-エンケ フ**ア**リン)

(ここに使用するアミノ酸およびそれらの差に対する省目形はこの技術では通例のものでありそして、例えば、 Biochemical Journal (1972) 126、773から780買までに見出せるであろう。上記中および以下の総ての参照文献を通して別記しない限り偶光(chiral) アミノ酸およびそれらの基のレー形態を称する)。

特開昭56-158746(3)

この発見以来エンケファリンは多くの研究者によってそして種々の研究法によって研究された。そのような研究法の一つはそれらの不活性化の研究に関係しそして最近の報告[例えば Malfroy 等、Nature 276巻、11月30日(1978)、523から526頁までおよび Gorenatein 等、Life Sciences 25巻(1979)2065から2070頁まで)は哺乳類の脳中に Gly³-Phe⁴ 結合を加水分解しうるジペプテジルカルポキンペプテギーゼ(「エンケファリナーゼ」)が存在することを示し:

H. Tyr. Gly.Gly. Phe. Met. OH Leu. OH そしてこのようにして生物学的に不活性なN-宋 塊トリペプチド断片を生み出した。即ち:

H. Tyr. Oly. Gly. OH がそれである。

このようにエンケファリナーゼは哺乳銀のアン ヤオテンシン交換酵素 (ACE, BC 3 , 4 , 1 5 . 1) とともかくも比較しうる役割を有するが使者は比 数的不活性なデカペプチド アンゼオテンシン [

これはエンケフアリナーゼおよびACBの両方を抑制することができると報告されたが(8werta 等、上記引用文中)しかし前者よりも後者の際果に対してはるかに大きな特殊性を有するので、ACBを505抑制するのに要する化合物の濃度はエンケファリナーゼを同程度抑制するのに要する濃度のおよそ1000倍も低い。

本発明は単に有利なエンケファリナーゼ抑制活性を有するだけでなく、また8 Q 14 225 とは 遠つて A C B に対するよりもずつと大きい特殊性をエンケファリナーゼに対して有する化合物の種類に関するものである。

本発明はこのように式 (I):

をそれの塩素性塩 (即ち式 (I) の化合物と塩素との反応によって形成される塩) と共に提供する。なお式中の

Xは2イオンに対するリガンドとして機能しう

の Phe ⁸-His⁹ 結合に作用して

H. Asp. Arg. Val. Tyr. Val. His. Pro. Phe. His. Leu. OH 独力な界圧剤オクタペプテド アンギオテンシンII H. Asp. Arg. Val. Tyr. Val. His. Pro. Phs. CH を遊離する。しかし二つの酵素は別個の種であることが示されている (Swerts 等、 <u>Buropean</u> Journal of Pharmacology 5 7 舎 (1 9 7 9) 2 7 9 頁から 2 8 1 頁まで)。

選択的にACBを抑制することによつてアンギオテンシュ」からのアンギオテンシュロの遊離を関節であることはしば、高血圧症の治療に対対ない。そしてそのような数の集別が記述された。一つの特に強力な化を引がして、カー・(D-3・メルカプト・2・メテルプリン(R,8)であり、別名カプトリルまたは3Q14225として知られておりそして次の構造を有する:

る基であり;

Ph はフェニル書であつてこれは場合によつて はハロ (即ちフルオロ、クロロ、プロモまたはイ オド)およびニトロから選ばれる一つまた一つ以 上の置換書によつて置換され;

Y は式:

の基でもつて式中

R¹ は水素またはメチルであり;

R² は 1 個から 3 個までの炭素原子のアルキルでありまたはメテルテオメテルであり; そして

2 は -OR⁵ または -NR⁴ R⁵ であつてそこでは R⁵, R⁴ および R⁵ はそれぞれ水素または 1 個から 4 個までの炭素原子のアルキルでありそして R⁵ はさらにそれのアルキレン部分中に 1 個から 3 個までの炭素原子を有するフェニルアルキルまたはフェニルであることができる。

上に定義したような式(1)は多数の非対称中心

特開昭56-158746 (4/

を含みそしてそれによつて含まれる光学異性体の 載ておよびそれらの混合物を含むことはいりまで もない。

式(I)のアミドの塩では薬理学的活性はアミドの塩では薬理学的活性目的上ででは、アニオン中に存在してして治療目のに対して薬理学的に対して薬理学的に対して薬理学的に対して、カー・シーンの塩塩、ナトリウムおどのカーのようなアルカリ土類金属塩、およびであたはアルカリールアミン例えばトリエタノールアミンの塩にはアルフェクトリエタノールアミンの塩では、サニタノールアミンの塩では、サニタノールアミンの塩では、サニタノールアミンの塩では、サニタノールアミンの塩では、サニタノールアミンの塩では、サニタノールアミンの塩では、サニタノールアミンの塩では、サニタノールアミンの塩では、サニタノールアミンの塩では、サールアミンの塩では、サールでは、サニタイトの塩では、サールでは、サニタノールでは、サールでは、サニタノールでは、サニタノールでは、サールでは、サールでは、サールでは、サールでは、サールでは、サールを発生がある。

びジェテルアミノエテルアミンのようなモノー、 ジーまたはトリー低級アルキルアミンから誘導されるアミン塩およびピペリジン、ピリジン、ピペラジンおよびモルホリンのような複素要式アミンとの塩を合む。

式(I)のアミドのサブクラスとして次のような 化合物を挙げることができる:

- ·(||) ×がカルポキシ、アルカノイルテオ(例えば アセテルテオ)またはメルカプトである;
- 側 Phが置換されていないフェニルである;
- Ψ が次式の基である(D または L 形態の何れか): -

y Zが~OHまたは-NHa である。

式 (I) のアミドおよびそれらの塩基性塩は類似 構造の化合物の調製についてこの技術で公知の何 れの方法によつても調製することができる。 従つ

てそれらは杖栗 (II) を杖栗 (III) と反応させて胸製 されるであろう。

$$X_1 - CH^2 - CG_1 - G$$
 HCG_2

(II) $H - A - C_1$

(III)

そこでは

Pn およびYは式 (I) において定義された通り である;

X¹ は式(I) 中で定義された通りの X 基または 機能的に保護されたそれの誘導体である;

Z¹ は式(1) 中で定義された通りの Z 基または 機能的に保護されたそれの誘導体である;

Q はカルポキシルまたは機能的に活性化された それの誘導体である;そして

Q¹ および Q² は共に水素でありまたは一緒に化学組合を形成する;

(Q¹ およびQ² が共に化学結合を形成する場合 には)その後その結合の選択的量元及び、運切な 場合には、生成物の保護解除そして生成物のアミ ドまたはそれの塩基性塩への転換が行なわれる。

(I)と(II)との反応はペプチド化学で標準である技術を使用しそしてペプチド合成の古典的方法または固相方法の使用によつて達成される。 纤瀬な 新の活性化 および保護 の詳細および 舒適な 反応 条件((II)と(III)の反応に対するものおよび保護 夢の除去に対するものの方)は次の文献中に見出すことができるがこれは全く例示のために与えられるものでありそしてこれは包括を意図せずまたは限定する意図でもない:

- a) Schröder * LU Lüebke, [The Peptides]

 (Academic Press) (1 9 6 5) .
- b) Bellean & I U Malek, J. Am. Chem. Soc., 90,165 (1968).
- c) Tilak, Tetrahedron Letters, 8 4 9 (1970).
- d) Beyerman, Helv. Chim. Acta., 5 6, 1729 (1975).
- e) Stewart and Young, 「劉相ペプチド合成」 (W. H. (Freeman and Co.) (1969)。

式 (I) のアミドのあるものはそれ自身が式 (I) の中にある前駆体から胸裂することもできる。 使つて、

(j) 2 が -OR⁵ でありそして R⁵ が水果である化合物は R⁵ がナルキル、フェニルアルキルまたはフェニルである対応する化合物の加水分解によって簡製可能である;

(創 2 が - OR³ でもりそして R³ がアルキル、フェニルアルキルまたはフェニルである化合物は R³ が水果である対応する化合物のエステル化によつて調製可能である;

(III) 2 が -NR⁴ R⁵ である化合物は 2 が -OR³ であり そしてその R³ がアルキル、フェニルアルキルま たはフェニルである対応する化合物と適切なアン モニアまたはモノ・またはジアルキルアミンとの 反応によつて資料することが可能である;

IN Xがメルカプトである化合物はXがアルカノイルテオ、ペンダイルチオまたはフエニルアルカノイルチオである対応する化合物からメメノール性アンモニア普級のような試察との処理によつて

特別856-158746(5)

異製することが可能である。

式 (I) のアミドはよく確立された技法によつて それの塩素性塩に転換してよく、そしてその逆も 可能である。

式(I)のアミドのあるものおよびそれの塩 著性塩の調製においてX がカルポキシルの場合には使い易い試薬(II)は D - (+) - 2 - ペンジル - 3 - カルプエトキシプロピオン酸 [(IV)、 Ph は式(I)中に定義する通りである] である。これは、例えは、対応する DL - ジェチル - 2 - ペンジルスクシナート (V)を Cohen 等、 Journal of the American Chemical Society (1968)90、3495、の手順に従つてキモトリプシンによつて分解することによつて得られ、酵素は必要とするカルポキシル 高を選択的に明らかにする。

別の手順においては試集(II) は3 - ペンジロキシカルポニル - 2 - ペンジリデンプロピオン酸 ((VI)、 Ph は式(I) で定義される通りでありそして Bz f はペンジルである)) であり、 これは対応するペンジリデン スクシン酸無水物(VI) を Cohen 等、 (同書)の手順に従いペンジル アルコールによつて優先的に開設させ再び要求されるカルポキシル基を与えて複数される。

酸 (VI) を上に定義したような試察 (Ⅲ) と反応させて (階) を与えそして後者の二重結合は、例えば、パラジウムカーボンの存在における水脈によつて量元する。水脈はまたペンジロキシカルボニル基の遊解 (保護されていない) カルポキシルへの転化を達成するであろう。そして [式(I) の希望では] (Ⅲ) 中の 2¹ にとつてペンジロキシであるととが侵害の基が同様に保護解除されるであろうから好都合である。

特爾昭56-158746(6)

上に記載した単単手膜が式(I)のアミドの光学 異性体または中間体の混合物、例えば、ジアステ レオ異性体の混合物をそれに加えて与える場合に は、個々の異性体は高性能液体クロマトグラフィ ー、予備的専
層クロマトグラフィーおよびこれに 類するもののような選切な強例の物理的技法によ つて分離されるであろう。

それらの選択的エンケファリナーゼー抑制活性のために式(I)のアミドおよびそれの塩基性塩は 試験管内または生体内における酵素の作用様式および役割およびそれの位置測定、単離および特製 の研究に価値の高いものである。

例えば本発明は式(I)のアミドまたはそれの塩 着性塩をエンケファリナーゼと接触させそしてエ ンケファリナーゼの酵素効果に対するアミドまた は塩の抑制効果を測定することを含む方法を提供 する。この方法は上配化合物のエンケファリナー で抑制効果を同様の効果を有する他の化合物との 比較に使用することができる。本発明に従つた化 合物は、要すれば、それらの抑制効果を助けるた めに放射性同位元素によって触別することができる。

それらの選択的エンケファリナーゼー抑制活性はまた式(I)のアミドおよび薬理学的および薬理学的に受容し得るそれらの塩基性塩に対して哺乳動物における内生的または外因的に発生するのが果なってリン効果の延長および/または強化の効果を、後者の場合には合成エンケファリン類似体を含めて与える。前記のアミドおよび塩はこのように内生の化合物に対して示されたように同一活性および有用性を有する。

特に式(L)のアミドおよび繁理学的にそして楽 剤的に受容しりるそれらの塩基性塩はモルヒネ模 像の(モルヒネ苦悩者)活性を有し従つて人間お よび獣医学の医薬品の両方の分野においてモルヒ 木類似の効果を持つ薬品を必要とするいずれの条 件においても哺乳類の治療に使用可能である。

モルヒネの集産学的性質および治療上の使用は 文献中によく立証されている[例えば次のものを 参照のこと、「治療学の薬理学的根拠」、

Goodman, LSおよび Gilman, A版、 Macmillan Publishing Co., Inc., New York, 第5版(1975)より出版、ISBN 0-02-544781-8、特に15章245頁から283頁まで、および「Martindale:The Extra

Parmacopoeia J 、 Wade, A 版 、 The

Pharmaceutical Press, London、第27版
(1977)によつて出版されている、ISBN
0-85369-114-2、特に970買から
974頁まで〕。そして前記のアミドおよびその
塩に対する特殊な効用には、例として、次のもの
を含む。

- 1) 苦痛の緩和(無痛覚)、例えば、腎臓のまた は胆汁の疝痛のような平滑筋のけいれんから生じ る痛み、末期癌のような末期の病気における痛み、 手術使の期間における痛み、および分娩痛。
- 2) 使移の誘発、例えば、回路瘻孔設置指また社 結筋造療術後。
- 3) 下朔または赤頬の処置。
- 4) 葵の抑圧。

- 5) 睡眠の誘発、特に不眠症が痛みまたは咳に差づく場合。
- 6) 無勢作用、例えば手術的の不安を必該するための前 麻酔薬の投票。
- 7) 無勢、例えば末期癌のような末期疾患の痛みの緩和と連合した場合、および一般に不安の緩和。 8) 幸福感の誘導および意気情沈の処置、例えば、
- 8) 単価感の誘導および意気情化の処置、例えば 末期癌のような末期疾患における痛みの緩和と連 合する場合。
- 9) 呼吸困難の兼和、例えば、激しい残された心 室の衰弱または節性水震の呼吸困難。

るでもろう。

上に述べた実益および象徴のそれぞれに対して 活性成分(上に定義したように)の必要量は処置 すべき条件の歌しさおよび受容体の個性を含めて 多数の因子によつて決まりそして結局は付談つて いる医師または獣医の判断によることになろう。 しかし一般的にはこれらの実益および微仮のそれ ぞれに対しては、好道かつ有効な服用量は 1 日当 り受容体(人間または人間以外)の体重1㎏につ き 0.0 7 5 #8 から 1 2 脚までの範囲、望ましく は1日当り体重1kg につき 0.7 5 //g から 1.2 型 までの範囲でありそして最も望ましいのは1日当 り体重1㎏につき7.5から120 #8 であり; 最 道服用量は1日当り体重1kg につき30 pg であ る。(別に示さない限り活性成分の能ての量は式 (I) のアミドとして計算し: それの塩に対しては 数量は比例して増加するであろう。)必要な服用 量は望ましくは1日を通して選切な間隔で投与さ れる2回と4回の間の分割服量として与えられる。 従つてる分割服用量を用いる場合には各服用量は

特閒昭56-158746(7)

活性成分を原料化学業として投与することは可能であるが医薬品処方調合剤として与えることが 望ましい。

獣医用および人間用の両方の本発明の処方物は上に記載したように者性成分と共に一つ以上の受

容し得る担体および場合によつてはその他の治療 成分を含む。担体は処方のその他の成分と相容性 でありそして受容者にとつて答案を及ぼさない意 味において「受容性」でなければならない。

経口投与に好源な本発明の処方物はそれぞれに 予め定めた量の活性物質を含有するカプセル、カ シエーまたは髪剤のような分離した単位として; 粉末または顆粒として;水性液体または非水性液 体中の痞液または懸傷液として;または水中油液 体エマルションまたは油中水液体エマルションと して提供される。 活性成分はまた大型丸薬、なめ 薬またはペーストとしても提供される。

直島投与の処方物はカカオ脂のような通常の担体と共作坐集として提供する。

鼻からの投与に好選な処方物では担体が固体の場合には数子寸法が例えば20から500ミクロンまでの範囲を有する租粉末を含みこれを扱い込みができるように投与する。即ち鼻に近接して保

特開昭56-158746(8)

たれる粉末容器から鼻の通路を通つて無悪化吸入させる。祖体が液体である舒道な処方物は投与に は例えば鼻用噴霧または鼻の点薬として与え、活 性物質の水性または油性溶液を含む。

ロ中の局所投与に好運な処方物は活性成分を香味をつけた基剤、通常は農糖とアカシアまたはトラガカントゴム、中に含むロゼンジ;および活性 成分をゼラチンおよびグリセリン、または農糖と アカシア中に含む香錠を含む。

酸投与化好道な処方物は活性成分化加えてこの 技術で通切なものとして知られている担体を含む ペッサリー、クリーム、ペーストまたはスプレー 処方物として提供されるであろう。

非経口的投与化好適な処方物は水性および非水性無菌注射溶液を含みこれは酸化防止剤、緩衝剤、制菌剤および常図する受偶者の血液と処方物を等調ならしめる溶質を含むことが可能であり;および水性および非水性無菌懸濁液を含みこれは懸潤剤および増粘剤を含む。処方物は単位投寒量でまたは多投寒量容器中に、例えば密勢アンデールお

よび小瓶で提供されそして腹筋乾燥条件において 貯蔵が可能でありそして無酸体担体の扱加を要す るだけで、例えば使用直前に注射のための水を加 える。急ごしらえの注射溶液および最溶液は前に 記載した程の無額の粉末、顆粒および袋剤から欝 製が可能である。

望ましい単位投票量処方物は上記で述べたよう に日本の投票量または単位の日本の分割投票量、 または適切なそれの分数の活性成分である。

上記で特に普及した成分に加えて本発明の処方物は現に問題の処方のタイプに考えられるこの技術において遺偶の他の薬品を含んでよく、例えば経口投与に好達な処方は各味剤を含むであろう。

上記中または以下の文中に確認される総での参 考文献はことに参照して記述する。

薬理学的にそして製薬上受容できない塩基性塩 は標準方法によつて受容されるアミドそれ自身お よびそれの塩に転換してよい。

前の記述から本発明はここに記載する何れの新 換な特徴も含むであろうことが理解されるであろ

- り。 主としてしかし排他的でなく例えば:
- (a) これまでに定義した式(I)のアミドおよび それらの塩基性塩。
- (b) 上の(a) に従つた化合物の調製について前に記載した方法、併せてそのように調製した場合の化合物。
- (c) 前記で定義した通りの治療学的に有効な量の 式(I)のアミドを含む薬剤処方物または薬理学的 だそして製薬上受容できるそれの塩基性塩と併せ て受容できる祖体。
- (d) 定義したような活性成分を担体と共に含む上記(c)に従つた処方物の調製方法。
- (e) 哺乳動物の治療上の処置に使用するための前配に定義した途りの式 (I) のすミドおよび楽理学的にそして製薬上受容できるそれらの塩基性塩。
- (d) 人間の治療上の処置に使用するための斡記で 定義した通りの式 (I) のアミドおよび寮選学的に そして製製上受容できるそれらの塩差性塩。
- (g) 哺乳動物の内生的または外因的エンケファリン効果の延長および/または強化に使用するため

の前記で定義した通りの式 (I) の アミドおよび 裏理学的 にそして製業上受容できるそれらの 塩 善性 塩。

- (i) モルヒオ様効果を持つ薬品を必要とする状態 に対して哺乳動物の処置に使用するための前記で 定義した進りの式(I)のアミドおよび薬理学的に そして製薬上受容できるそれらの塩基性塩。
- (1) 上文で 1), 2), 3), 4), 5), 6), 7), 8) または 9) の項で明確に確認したものから選ばれる状態に対する哺乳動物の処置において使用するための前記で定義した過りの式 (I) のアミドおよび楽趣学的にそして製楽上受容できるそれらの塩基性塩。
- (j) 非審性で治療上有効量の前配に定義した通りの式(1)のアミドまたは緊張学的にそして製薬上受容できる塩基性塩の哺乳動物への投与を含む内生的または外因的エンケフアリンの哺乳動物における効果の延長および/または強化のための方法。 (以) モルヒネ同様の効果を持つ薬剤を必要とする状態に対して非常性で治療上有効量の前配に定義

特開昭56-158746(9)

した通りの式(I)のアミドまたは楽理学的にそして観察上受容できるそれの塩茶性頃の哺乳動物への投与を含む哺乳動物の処置方法。

(1) 上文で1)、2)、3)、4)、5)、6)、7)、8)または9)の項の下で明確に確認したものから選はれる状態に対して非常性で拾便上有効量の前配に定義した通りの式(I)のアミドまたは緊選学的にそして製果上受容できるそれの塩基性塩の哺乳動物への投与を含む哺乳動物の処置方法。

(□ 哺乳動物が人である上記(j),(k)または(1)に記 ・戦の方法。

(ロ) 前に定義した通りの式(II), (II), (IV), (V), (VI), (VI), はよび(資)の新規化合物。

以下の実施例は本発明の例証として与えられる ものでいずれにしてもそれを削限するものと解し てはならない。総ての包度は長氏である。

突旋例 1

<u>(28)-2[(2R8)-2-ペンジル-3-カルボキンテロパンアミド)-4-メテルペンタン数</u>(化合物1)

駅して严適した。严敬を D でに冷やしそして 2 N の塩酸(2 0・8 M) 添加によつて酸性化しそして酢酸エテル(1 5 0 M)によつて 2 回抽出した。合体した抽出物を 5 0 8 - 飽和の塩化ナトリウム 溶液(2 5 M)によつて洗い、乾燥しそして蒸発させた。 残留物をエーテルで粉末になし、 固体を沪過しそして水性エタノールから無色の柱状に結晶させた。 融点 1 6 5 ° - 1 6 7 ℃;

 $(\alpha)_D^{83} = -22.7^{\circ}$ 、 C = 1.0 エタノール中; Rf 0.55^{1} および 0.66^{1} 、 0.62^{2} 。 分析 $C_{1} \sim H_{83}NO_{5}$

必要做 C , 6 3.5 5; H , 7.1 7; N , 4.3 6 % 突倒催 C , 6 3.6 3; H , 7.1 5; N , 4.4 3 % 突艇例 2

(28)-2-((2<u>R8</u>)-2-ペンジル-5-カルポキンプロパン丁ミド)-4-メテル・ペン メン駅(化合物1)

股階(a): N - (3 - ペンジロキシカルボニル - 2 - ペンジリデンプロパノイル) - L - ロイシン ペンジル エステル

股階(a): N - (D L - 2 - ペンジル - 3 - カルナ エトキシナロパノイル) - L - ロイ·シン メチル エステル

上記のエステルを、強例の手順に従つて出 - 2 - ペンジル - 3 - カルナエトキンプロピオン酸 (5.07 8)をL - ロイシン メチル エステル塩酸塩 (3.90 8)と共にジメチルホルムアミド (50 ml)中で 1 - ヒドロキンペンサチアザール (5.80 8)、ジシクロヘキシルカルポジイミド (4.438) およびトリエチルアミン (2.97 ml)の存在において組合させて舞製した。生成物は油 (6.858)であつた。

<u>段階(b)</u>: (28)-2-((288)-2-ペン ジル--3-カルポキシープロパンアミド)-4-メチルペンタン数

設階(a)からの油(6.85 g)をメタノール(75 ml)および水(8 ml)中に密かしそして出 1 2.0 において 1 N の水酸化ナトリウムでけん化した。4 1.5 mlのアルカリを加えた後、進合物を実空中で譲縮してメタノールを除去し、2 5 mlの水で希

政階(b): <u>(23)-2-((2R3)-2-ペン</u> ジル-3-カルポキシープロパンフミド)-4-メチルペンタン数

設階(a)からの前(148)を10重量をのカーボン担押パラジウム触鉄(28)の存在においてメタノール(250㎡)中で水転した。水鉄の鉄収が止つたときに触鉄を护別しそして記載を実空

中で最難すると数価物を与えこれはエーテルで粉砕したときに固化しそして実施例 1 の生成物と同一であることが判明した。 [α] $_{1}^{10}$ = $-24.6°、C=1.0メタノール中:Rf0.35<math>^{1}$ および0.66 1 、沃米/銀粉試薬を置いた場合 2 点は同一強度であった。

実施例3

実施例 2 の生成物をシリカ ゲル カートリッジ (Preppak 5 0 0) およびメタノール (4 4) と 水酢酸 (1 4) を含む密列系メテレン ジクロリドを使用し Water Associates Preparative L C (システム 5 0 0) 上で分種した。成分は酸加水分解によつて次のようにその組成分を確認した: (2 \underline{a}) - 2 - (($\underline{2}$ \underline{R}) - 2 - ペンジル・3-カルボキシプロペン $\underline{7}$ $\underline{1}$ $\underline{6}$ $\underline{8}$ $\underline{1}$ $\underline{1}$ 3 $\underline{9}$ - 1 4 0 $\underline{1}$ 0、生じたのは $\underline{1}$ $\underline{1}$ - $\underline{1}$ $\underline{1}$ 4 $\underline{1}$ 5 $\underline{1}$ 0、生じたのは $\underline{1}$ - $\underline{1}$ - $\underline{1}$ 2 $\underline{1}$ 3 $\underline{1}$ - $\underline{1}$ 4 $\underline{1}$ 0 $\underline{1}$ 0、生じたのは $\underline{1}$ - $\underline{1}$ - $\underline{1}$ 2 $\underline{1}$ 3 $\underline{1}$ - $\underline{1}$ 2 $\underline{1}$ 0 $\underline{1}$ 4 $\underline{1}$ 0 $\underline{1}$ 0、生じたのは $\underline{1}$ - $\underline{1}$ 0 $\underline{1}$ 0 $\underline{1}$ 5 $\underline{1}$ 5 $\underline{1}$ 6 $\underline{1}$ 6 $\underline{1}$ 7 $\underline{1}$ 8 $\underline{1}$ 7 $\underline{1}$ 9 $\underline{1}$ 1 $\underline{1}$ 0 $\underline{1$

された。 Rf $0.4~4^4$ 、 0.5~5 (メチルエチルケトン)。

分析 CloHasNaO4 :

分析 C1 7H24N2O4:

必要値 C 、 6 3.7 5 ; H 、 7.5 0 ; N 、8.75 参 実測値 C 、 6 3.8 9 ; H 、 7.6 8 ; N 、8.80 参 実施例 5

第三プチル(2<u>8</u>)-2-((2<u>R8</u>)-3-プ

- 持閒昭56-158746 (10)

パンアミド] - 4 - メテルペンタン酸 (化合物 5) である。 $(\alpha)_D^{18}=-74.5^\circ$ 、 C=1.0 メタノール中; Rf 0.56° ; 融点 199-2010、 L- ロイシンおよび (-) - ペンジルースクシン酸を生じた。

実施例4

(<u>2B</u>)-2-((2<u>B</u>)-2-ペンジル-3-カルポキンテョパンフミド)-4-メテルペンタ ンアミド(化合物4)

段階(a): N - { D - 2 - ペンジル - 3 - カルナエ トキシナロパノイル } - L - ロイシンアミド

上記のアミドをジメチルホルムアミド(50 ml)中の(+)-2-ペンジル-3-カルプェトキンプロピオン酸(4.628)、L-ロイシンアミド塩酸(3.268)、1-ヒドロキンペンプトリアプール(5.298)、ジンクロヘキシルカルボジイミド(4.038)およびトリエテルアミン(2.71ml)から襲車手順によつて調製した。生成物はジイソプロピルエーテルとインプロパノールからの化酸によつて非晶質固体(3.718)として単能

セテルテオ・2 - ペンジルプロパン - Tミド] -4 - メチルペンタノアート(化合動5)

取階(a): DL-3-アセチルチオ-2-ペンジル プロピオン酸

2‐ペンジルアクリル酸(16.2g)

[C. Mannich および R. Risert, <u>Ber</u>. (1924) <u>57</u>、1116の手順に従つてジェチル ペンジルマロナートから調製される)を環境温度においてテオール酢酸(10 M)と共に1時間かきませた。次いで混合物を水蒸気浴上で1時間加熱し、被圧下で濃縮しそして次にペンゼン(50 M)と共に5回再蒸発させた。

我留物を無水エーテル(20㎡)とヘキサン(50㎡)の混合物中化溶かしそしてヘキサン(50㎡)中のジンクロヘキンルアミン(19.5㎡)を加えて再業をした。結晶ジンクロヘキシルアミン塩(33.5g)を沪別してしてヘキサンで洗つた。酸点102~103℃。

分析、 Ca4Hs yNOs8:

必要値: C 、 6 8.7 4 ; H 、 8.8 3 ; N , 3.34%

契側 催: C,68.85; H,8.99; N, 3.13 s

塩を酢酸エチル(200 11)中に腫瘍させそして水(50 11)に溶かした硫酸水素カリウム(168)と共に微しくかきませた。酢酸エチル相を分離し、水(50 111)で洗い、乾燥させ(無水硫酸ナトリウム)そして真空中で濃縮すると生成物の酸が抽状(19.8 8)で得られた。

設階(b): 菓三アテル(2 <u>g</u>) - 2 [2 <u>R g</u>) - 5 -アセルテオ - 2 - ペンジル - プロパンアミド) -4 - メテルペンタノアート

D L - 5 - アセテルチオ・2 - ペンジルプロピオン酸(5.3 9 8)を二塩化メチレン(7 5 ㎡)中に押かしそしてー10 でに冷却した。1 - ヒドロキシペングトリアゲール(6.1 1 8)とジンクロヘキシルカルがジイミド(4.6 6 8)を加えた。2 0 分間かきませた後、L - ロイシン 第三プテルエステル(4.2 4 8)を加えそしてかきませをサイでで2 4 時間続けた。ジンクロヘキシル尿素を沪別しそして严核を真空中で機能した。残電物を酢像エチル(5 0 ㎡)に務かしそして冷凍した

ウム粉液で洗い、乾かし(無水硫酸ナトリウム) そして真空中で濃縮した。ゴム状態留物(6.58)を酢酸エチル(3.0 配) に搭かしそして再業 徹したジシクロヘキシルアミン(4.4 配)を加えた。結晶塩を护別し冷酢酸エチルで洗いアセトニトリルから無色柱状 結晶として再結晶させた。酸点 1.4.4-1.4.6 で; $[\alpha)_D^{1.9}=-1.6.5.8^\circ$ 、 c=1.0 メタノール中; $Rr.0.6.8^1$

分析 C50H48N8O48、 1.5 H8O

必要値 C , 6 4.4 0 ; H , 9.1 2 ; N , 5.0 0 \$
実制値 C , 6 4.7 4 ; H , 9.0 0 ; N , 4.8 8 \$
実施例 7

(2<u>s</u>)-2-((2<u>R</u>8)-2-ペンジル-5-メルカナトプロパン.Tミド)-4-メテルペンタ ン酸、ジンクロヘキンルTミン塩(化合物 7)

実施例6の生成物ジンクロへキシルブミン塩 (6.2 g)を酢酸エチル(100 ml)中に懸濁させそして水(20 ml)に溶かした硫酸水素カリウム(2.1 g)と共に激しくかきませた。酢酸エチルの相を水(25 ml)で洗い、乾かし(無水硫酸 特爾昭56-158746(11)

侵追加の尿素を評別して徐いた。 評核を酢酸エテルで 3 5 0 単化希釈しそして連続的に 5 0 単 づつの 5 単くえん酸、 5 0 年 - 飽和塩化ナトリウム、飽和炭酸水素ナトリウムおよび 5 0 年 - 飽和塩化ナトリウムの各溶液で洗つた。溶液を乾かし(無水硫酸ナトリウム) そして真空中で濃縮して結晶固体を得、これを軽質石油から再結晶させた。 融点 8 0 - 8 1 で。

実施例も

(<u>2 8) - 2 - [(2 R.8 - 5 - アセチルチォ - 2 - ペンジルナロパンアミド] - 4 - メテルペン</u>メン酸、ジシクロヘキシルアミン塩(化合物6)

実施例5の第三サテル エステル生成物(98) を再蒸馏した三弗化酢酸(100㎡)およびアニソール(50㎡)と共に環境復産において1時間かきませた。混合物を真空中で機縮しそして残留物を飽和炭酸水素ナトリウム腎液および酢酸エテル(250㎡)間に分配した。水性相を酸性化しそして酢酸エテル(150㎡)によつて2回抽出した。合体した抽出液を50%-飽和塩化ナトリ

ナトリウム)そして真空中で濃縮した。

分析 CasH46NaO38 :

必要値 C 、 6 8.5 7 ; H 、 9.3 9 ; N 、 5.7 1 s 実践値 C 、 6 8.1 9 ; H 、 9.1 7 ; N 、 5.6 1 s 生成物は一 8 H に対してアルカリ性ナトリウム ニトロプルシンドによりおよびナトリウム アジ

特開昭56-158746(12)

ドノ矢象岩液により陽性反応を与えた。

実施例 B

(<u>2 B</u>) - 2 - ((<u>2 R B</u>) - 3 - アセテルテオ-2 - ペンタルアロパンブミド) - 4 - メテルペン メンフミド (化合物 B)

D L - 3 - アセテルチオ - 2 - ペンジルプロピオン駅(実施例 5、 (a) 段階)(4.8 2 8)、1 - はいまたのでは、サールのでは

ンプミド (化合物 10)

この物質は対応する(2<u>B</u>)-2-(2<u>R</u>)化合物4(実施例4)と類似の方法で、代りにD-ロイシンアミド塩酸塩を第一段階に使用して跨載 した。

必要値 C 、 6 3.7 5 ; H 、 7.5 0 ; N . 8.7 5 % 突倒値 C 、 6 3.5 8 ; H , 7.2 0 ; N , 8.6 0 % 突旋倒 1 1

実施例1に説明したのと類似の手順によつて、 設備(a)中のL-ロイシン メテル エステル塩酸塩 の代りにそれぞれD-ロイシン メテル エステル 塩酸塩、D-メチオニン メテル エステル塩酸塩 およびL-メチオニン メチル エステル塩酸塩 代用して、次のものを調製した:

(2<u>R</u>) - 2 - ((2<u>R</u>B) - 2 - ペンジルー 3 - カルボキシプロパンフミド) - 4 - メテルペ 分析 C50H49N5Os8

必要値で、6 1.7 1; H、7.4 3; N,8.00 % 実制値で、6 1.8 5; H、7.2 7; N,8.35 % 実施例 9

(28)-2((2<u>R</u>8)-2-ペンジル-3-メルカプトプロパンブミド)-4-メテルペンタ ン<u>ブミド</u>(化合物9)

実施例 8 の生成物(3.658)をアルゴン下でメタノール(502)中の 5.5 R アンモニアと 2 時間かきまぜた。 混合物を真空中で濃縮し、 残留物を水で粉砕しそして固体を护別しそして水性インプロパノールから 再結晶させる と無色針状 結晶を得る。 融点 1450 (α) $_{\rm D}^{20}$ = -45.1°、 0.10 0

分析 CleHs4N2Os8, D.5 H2O

必要値 C , 6 0.5 7; H , 7.8 9; N , 8.83 年 実制値 C , 6 0.4 4; H , 7.4 5; N , 8.38 年 実施例 1 0

(2<u>R) - 2 - [(2<u>R</u>) - 2 - ペンジル - 3 -カルボキシテロパンTミド] - 4 - メテルペンタ</u>

ンタン数(化合物11);

無色柱状、融点164-166℃; (ベ)²²=+25.7℃、C=0.5メタノール中; Rf D.35¹および0.66¹、0.21²。

分析 C17H83NOs:

必要値で、63.55; H, 7.17; N, 4.365 実制値で、63.42; H, 7.12; N, 4.435 (2<u>R</u>) - 2 - ((2<u>R8</u>) - 2 - ペンジル -3 - カルボキシテロパンアミド) - 4 - (メチル ナオ) ナタン酸(化合物 12):

必要値に、5 6.6 4; H, 6.1 9; N, 4.13 5 実践値に、5 6.6 1; H, 6.2 4; N, 4.13 5。
(2<u>B</u>) - 2 - ((2<u>RB</u>) - 2 - ペンジル 5 - カルボキンプロパンアミド) - (メテルチオ)
ブタン酸(化合物 1 3);

無色柱状、敝点157−159℃;

 $(\alpha)_D^{g1} = -7.48^{\circ}$ 、 C = 0.5 メタノール中; Rf $0.55^1 ** まび 0.45^3$; 0.51^2 ; 0.69^5 。分析 $C_{16Hg1NOg8}$

必要能C , 5 6.6 4; H , 6.1 9; N , 4.13 % 类制低C , 5 6.6 1; H , 6.2 6; N , 4.15 % 疾能例 1 2

(2<u>8</u>)-2-((2<u>R</u>8)-5-カルボキシ-<u>2-(4-=トロペンジル)ナロパンアミド)-</u> <u>4-メテルペンタン酸</u>(化合物 1 4)

ジェチル ペンジルマロナートを発展補限によって処理して調製したジェチル(p-ニトロペンジル)マロナートをp-ニトロペンジル・スクシン酸に、そしてそこからジェテル(p-ニトロペンジル)スクシナートに通何の手順によつて転換してを着のジェステルを Cohen 等、J.A.C.8.(1968)90、3495に従つてキモトリアシンによつて分解した。それによつて得た (+) -3-カルプエトキシー2-(4-ニトロペンジル)プロピオン酸をL-ロイシン メテルエステル塩酸塩と適常の方法で1-ヒドロキンペンテトリア

ンプトリアプール(5.4 g)およびジシクロヘキシルカルがジイミド(4.1 1 g)を加えた。 1 時間後に、D-メテオニン 都三プテル エステル(4.0 9 g)を加えそして攪拌を + 4 でで一晩続けた。 混合物を計過しそして評談を真空中で濃縮した。 残留物を酢酸エテル(3 5 0 ㎡)中に溶かしそして連続的に5 0 ㎡宛の5 0 号館和の塩化ナトリウム溶液;5 号くえん酸溶液;飽和炭酸水素ナトリウム:5 0 号館和塩化ナトリウム溶液で洗つた。 密放を乾かし(Mg804)そして真空中で濃縮して油(8.0 g)を得た。 Rr 0.8 2°; 0.794; 0.8 8°。

政階(b) (2 R) - 2 - (2 RS - 5 - アセテルチオ - 2 - ペンデルプロパンアミド) - 4 - (メテルチオ) ナタン欧

(a) 設修で併た油をアニソール(50 ㎡)中代密かし、三弗化酢酸(100㎡)を加えそして溶液を環境温度において2時間かきませた。 混合物を実空中で濃縮して油状残留物(6.979)を得た。Rr 0.76⁶

. 特別部56-158746 (13)

ゲールおよびジンクロヘキシルカルポジイミドの存在下で反応させそしてその結果生じた保護された生成物をN水酸化ナトリウムによつてけん化して裸記の化合物を生じた。

必要値 C 、 5 5.7 4 ; H 、 6.0 1 ; N 、7.65 \$ 実制値 C 、 5 5.9 7 ; H 、 6.2 8 ; N 、7.99 6 実施例 1 3

(2 R) - 2 - (2 R8 - 2 - ペンジル・5 - メ ルカプトプロパンブミド) - 4 - (メテルテオ) アタン酸(化合物 1 5)

股階(a) 第三プチル(2R) - 2 - (2R8 - 3 -アセチルチオ - 2 - ペンジルプロパンアミド) -4 - (メテルテオ)プタノアート

3 - アセルチオ - 2 - ペンジルプロピオン酸 (4.7 5 g) を二塩化メテレン (7 5 ml) 中に答 かし - 1 0 でに冷却しそして 1 - ヒドロキシ - ペ

数階(c) (2R)-2-[2R8-2-ペンジル-3-メルカナト-ナロパンフミド]-4-(メチ ルチオ)ナメン酸

(対象階で得た抽状残留物を環境温度においてアルゴン下でメタノール(75㎡)中の5.08 N アンモニアと共に2時間かきませた。若被を真空中で蒸発させそして残留物を酢酸エテル(125㎡)に若かし、15㎡宛の5 がくえん酸溶液および5 0 が飽和塩化ナトリウム溶液で洗い、乾かし(Mg804)そして真空中で最都して抽を得た。

この抽を無水エーテル(50m)に溶かしそしてジシクロヘキシルアミン(3.2m)を加えた。 1450でかきませた役化搬を沪しそして乾かした。 融点 1550; $[\alpha]_D^{21}=+7.9$ ° (C=0.5 メタノール中); Rr 0.70°。

分析 CayH44N2O382 :

必要値: C , 6 3.7 8; H , 8.6 6; N , 5.51 s 実制値: C , 6 3.8 6; H , 8.9 4; N , 5.5 0 s 以下の実施例においては、Rr 数値は Merck シ リカゲル プレートおよび下記の器制系を使用す

特開昭56-158748(14)

引 7.7 0、組織の 8 当 り 3 D ml) 中で 均質化しそ

して減心分離した(50,000815分)。その

結果生じた上部の被を脱索しそして幾個小球(ペ

む最衡板に潜かしそしてる7℃において45分培

養した。 唇刺物を次に100,00008で60分間

進心分離にかけそして上肢中に含まれる溶解した

酵素をDBAB・セルロース カラム クロマト

グラフィーによつて分離した。エンケファリナー

せんはさらに Sephacryl 8.300 クロマトグラ

エンケファリナーゼ - 抑制活性は下記の手服に

エンケファリン (〔チロ·シル - 3 , 5 - 3H)

よつて評価した。 1.7 5 #8 のロイシン エンケフ プリン(0.5 1 7 W/W)、 0.5 #8 の ³H - ロイ

Radiochemical Centre, Amersham, England } #6

よび前のような萎萄液 5.7 5 μ8 を 3 0 ℃において

10分間2 #8の試験化合物の搭款(50 5ェメノー

エンケフアリン (5 - L - ロイシン)、 The

フィーによつて精製した。

る群暦クロマトグラフィーを称する:

- 1) クロロホルム:メタノール:5% (V/V) 酢酸 (120:90:5)
- 3) n プタノール:酢酸:水(3:1:1)
- 4) クロロホルム:メタノール(8:1) :
- 5) メチル エテル ケトン
- 6) クロロホルム: メタノール: 5 2 5 酢酸 .・(1 2 D: 9 D: 5)

試験管内での活性

化合物は以下の方法を使用してエンケファリナ - 世抑制活性について調べた。

A) 下記の手順に従つて精製したエンケファリナーせんを得た (governate in and Snyder, Life Science, 25 告、2065-2070頁、1979の方法の改良法)。

「ねずみを断頭によつて殺しそして糖条体 (atriata)を氷上で切断した。一緒にした組織 をよく殆えたトリス/塩酸緩鬱液(50 mM。

> レーション小瓶中に置いた。次いでピオフラワー (bioflour)試察(10g)を加えそして液体 シンチレーション計数によつて放射能を制定した。 試験化合物の存在において発生した。H - TOG

> (対限実験数値の多として表現)を次いで計算し そしておよその ICs。数値(SH - TGG 発生の 5 0 s抑制に必要な試験化合物の機度)をそのあ とで図表的に決定した。

> B) 下配の方法け Malfroy 等: Nature 276巻、11月30日、1978年523-526頁の方法の改良方法である。

三匹のねずみを断験によつて殺しそして紛条体を氷上で切断した。合体した組織をよく冷したトリス/塩酸緩衝散(50mM、計7.60、10.0元)中で均質化しそして速心分離した(1000分、10分)。その結果生じた上澄液を再速心分離し(47.000分、20分)そしてこの終二次上極液を廃棄した。ペレットを2回洗いそして最後に前のように緩衝液(9.6元)中に懸傷させそしてこの懸濁液の少量(1.9元)を22でで培養

ル/ 0.1 M 炭酸水素ナトリウムまたは蒸溜水の何れかの中)または対照実験としての密剤単独と共作培養した。 1 0 m8 の精製したエンケファリナーゼルを 3 0 つでにおいて加えそして培養をさらに 3 0 分間継続した(全培養時間 4 0 分、最終ロインン エンケファリン濃度 5 × 1 0 − 5 M 、最終 3 H − ロインン エンケファリン濃度 1 2.5 p Ci / ml)。 培養の完了時に 3 μ8 の 0.1 6 M 塩酸を加きそして培養混合物を氷上で冷やした。

ァ レット)を5回先つた。洗つたペレットを前の半 分の容量で1.0容量もの Triton X - 100を含

した。培養を始めて5分後に20 #8の試験化合 物の搭兼く前と同様の最衡液中またはエタノール 求いはジメチルスルホキシド中)または対照実験 としての答剤単数を加えさられ5分径に⁵N - ¤ イシン エンケファリンの落骸(The

Radiochemical Centre, Amersham, England) (80 Ms、最終推定5×10-PM、1.25 M C1/NI)を加え次いで培養をさらに30分続けた (金格養時間40分)。培養完了使N塩酸(50 #8)を加え、混合物を沸騰水裕中で15分間加 熱しそして沈毅物質を次いで速心分離(1500 8、10分)によつて除去した。

上産被中の

- b) 未要化 5H ロイシン エンケファリン、
- (D) エンケフアリンによつてb)から生じた ⁵H -Tyr - G8y - G8y - OH(3H-TGG),
- (c) アミノペプテドーゼ(3)によつて(a)および(b)か 5生じた 3H - Tyr - OH
- の分離および引続く手順は前記の A) 中に記載し · たより化して行つた。この方法においては ICso

特開昭 56-158746 (15)

の数値は組織の均等質中のアミノペプチダーゼ(8) により、一度生じると、SH - TOG の分解代謝の ために近似値にすぎなくなる(前記を参照のこと)

離果は次表中に並配するが、 暴印を付けた数字 は B 法を使用して得たものであり、その他のもの は人法を使用した。比較の目的で Captopril 化対 する ICao 数値(上のA佉を用いて得たもの)も また与えてある。

化合物	近似值 IC50(M)
1	1.7×10^{-8}
2	7.2 × 1 0 ^{-6♠}
5	4.0 × 1 0 ^{-6♠}
4	> 1.0 × 1 0-4
6	1.1 × 1 0 ⁻⁵
7	1.4 × 1 0 ⁻⁷
9	3.3 × 1 0 ⁻⁷
1 0	> 1.0 × 1 0-4 *
1 1	> 5 × 1 0 ⁻⁴
1 2	1.9 × 1 0-6
1 3	4.3 × 1 0 ⁻⁶
1 4	6.5 × 1 0 ⁻⁸
1 5	1.5 × 1 0 ⁻⁷
(Capitoril	3 × 1 0 ⁻³)

抗痛觉活性

下記の方法を使用して化合物Iの抗癌覚活性を はつかねずみの生体内で試験した:一

方法

Siegmund 等の苦悩実験(Proc. Soc. exp. Biol. Med., 1957. 95: 727-731) の改良法を使用した。食塩水に虧かした化合物 I、 または食塩単波を下配の投与量によつて5匹のマ ウス群の内都脳皇(i.c.v.) 中に投与した。 1 時 間または2時間後に、マウスに最初の個所に病覚 朝後、即ちり6容量もの酢酸水溶液を往射後20 分で2.5分内に示した苦悩の固数を飲えた。抗病 党化合物は苦悩の国数を被らすであろう。従つて これを抑制のまとして表わすことが可能である: 多抑制一

(食塩水で処置した (薬品で処置した もの)の苦悩回数 一 もの)の苦悩回数

-×100

(食塩水で処量したもの)の苦 悩 回 数

特開昭56~158746(16)

結果

苦悩の抑制が							
酢酸の前の時間							
1 時 (6)	2時間						
7 5	8 -4						
5 2	4 4						
28	4 8						
催かに	3 6						
	酢酸の飲 1 時間 7 5 3 2 2 8						

胸刺処方

下記の調剤処方中に使用する式 (I) の化合物は上記に定義した何れの式 (I) の化合物またはそれの塩基性塩でもよい。

A) <u>候則処方(0.5 %/</u>鏡剂)

	犬		()	Ø	化	合	•										0.5	₩)
	٤	9	P	ろ	ح	L	僚	₩								1	0	*
	ポ	ŋ	Ľ	=	n	مع.	•	ŋ	k,	×							2 .	N Q
	ス	₹	7	IJ	ン		•	•	本	シ	?	•					2	*
	乳.		糖								ŧ	: <i>D</i> II	九	τ	1	0	0	₩
式	(1)	9	化	đ	90		Ħ.	#	#	ı	び	Ł	•	ę	ろ	ے	レ業	₩ £

式(I)の化合物と乳糖を一緒にして混合する。 50 リエタノール中のポリピニルピロリドン溶散 によつて顆粒にする。 顆粒を乾かし、 ステ アリン 酸マグネシウムを加え適当な形のパンチによつて 加圧する。 1 個 4 1 0 写のペッサリーに作る。

D) 凍結乾燥在射 D.5 专/小瓶

式(I)の化合物	0.5 🕪
マンニット	9 9.5 📭
注射用水を加えて	.2.0 ml
	ドナム 。

住射用水中に式 (I) の化合物およびマンニットを帯かす。孔寸法 D-2 pm の評過額を通過させて 帯液を敷飾し評談を無額受器に集める。無額条件 下で2 ul/小瓶の無額ガラス小瓶中に充たし凍結 乾燥する。アルミニウム密封を付した無額ゴム蓋 によつて小瓶を對止する。

住射は役与に先だつて住射のための都合のよい 量の水または無数会塩水を加えて再構成する。

代理人 後 村 略

外 4 名

一緒に混合する。水に善かしたポリピニルピロリドンの善液によつて標粒にする。 類粒を乾燥し、ステアリン酸マグネシウムを加えそして錠剤に加圧する。 1 錠 1 0 0 町。

B) _ 監察(0.5 PV / 製品)

式(1)の化合物

25 🗫

趣楽 義利 (Massa

Reterium C)

加えて100号

图察基剤を40℃で験解する。式(I)の化合物を 製粉状で祭々に混入しそして均質になるまで混合 する。適当な型の中に住入し、1型2gにして固 まらせる。Masea Esterium Cは飽和植物脂肪酸 のモノー、ダ、およびトリーグリセリドから成る 市版の磁薬基剤である。これは Henkel

International, Dusseldorf によつて販売される。

c) ペッチリー(0.5 */製品)

式(I) の化合物 0.5 秒 乳糖 4 0 0 秒 ポリピニルピロリドン 5 秒 ステアリン酸マグネシウム 4.5 秒