Baseline long survey

Abigail

2025-01-20

Installing packages and calling out libraries

Importing data set

The data was exported from CommCare on 23/12/2024.

Selecting indicators of interest

A sub set of the indicators were selected depending on the goal of the calculation and the indicators needed.

Number of peeople with diverse and adequate diet

I made a separate calculation for the child and the adult.

```
Selected_Child_indicators <- Mangwana_Baseline_Survey %>%
 select(form.Section_II_group.voc_tem_um_filho_entre_0_e_24_meses, form.Section_II_group.llquidos_form
        form.Section_II_group.sumos_ou_sumos_em_p, form.Section_II_group.refrescos_como_coca-cola_fant
        form.Section_II_group.tomate_repolho_quiabo_beringela_ou_cogumelos, form.Section_II_group.alfa
        form.Section_II_group.ovos, form.Section_II_group.queijo, form.Section_II_group.paloni_salsich
        form.Section_II_group.amendoim_manteiga_de_amendoim_amendoim_modo_castanhas_de_caj_ou_sementes
 rename(have_child = form.Section_II_group.voc_tem_um_filho_entre_0_e_24_meses,
        infant_formula = form.Section_II_group.llquidos_formula_infantil,
        animal_milk = form.Section_II_group.leite_de_origem_animal_incluindo_lquido_ou_em_p,
        chocolate_milk = form.Section_II_group.achocolatado_como_milo_cremora_ou_leite_condensado,
        juices = form.Section_II_group.sumos_ou_sumos_em_p,
        soft_drinks = `form.Section_II_group.refrescos_como_coca-cola_fanta_frozy_ou_fizz_ou_bebidas_e:
        plant_base_drink = form.Section_II_group.ch_caf_ou_bebidas__base_de_plantas_ou_ervas,
        soups_broth = form.Section_II_group.sopa_ou_caldo,
        yoghurt = form.Section_II_group.iogurte,
        processed_porridge = form.Section_II_group.arroz_po_massa_esparguete_xima_de_farinha_de_milho_
        green_leafy_vegetables = form.Section_II_group.brculos_espinafres_folhas_de_moringa_folhas_de_
        shrimp_snails = form.Section_II_group.camaro_voador_caracol_da_terra_trmita_ou_ishwa, # Flying
```

```
unprocessed_porridge = form.Section_II_group.xima_ou_papas_de_milho_no_processado_mexoeira_map
       root_crop_porridge = form.Section_II_group.batata_batata_doce_branca_inhame_mandioca_xima_de_m
       beans = form.Section_II_group.feijo_comum_feijo_nhemba_ervilha_feijo_boer_feijo_jugo_feijo_sor
       orange_vegetables = form.Section_II_group.cenoura_abbora_ou_batata_doce_de_polpa_alaranjada, #
       leafy_vegetables = form.Section_II_group.couve_folhas_de_abobora_folhas_de_cacana_folhas_de_ba
       tomato_cabbage_mushroom = form.Section_II_group.tomate_repolho_quiabo_beringela_ou_cogumelos,
       salad_vegetables = form.Section_II_group.alface_pepino_feijo_verde_ou_pimento_verde, # Lettuce
       yellow_fruits = form.Section_II_group.manga_madura_papaia_madura_ou_maracuj, # Ripe mango, rip
       citrus = form.Section_II_group.laranja_ou_tangerinas,
       long_cycle_fruits = form.Section_II_group.bananas_melancia_abacate_lichia_caju_anans_ou_malamb
       apples = form.Section_II_group.ma_pra_goiaba_massala_ata_mapfilo_tintsiva_ou_mafurra, # Apple,
       cakes = form.Section_II_group.bolos_bolinhos_bolachas_doces_argolas_fritas_bolas_de_berlim_ou_
       eggs = form.Section_II_group.ovos,
       cheese = form.Section_II_group.queijo,
       sausages = form.Section_II_group.paloni_salsichas_ou_enchidos_como_chourio_linguia_rachel_russ
       meat = form.Section_II_group.carne_de_vaca_carne_de_cabrito_carne_de_ovelha_gazela_ou_bufalo,
       pork_rabbit = form.Section_II_group.carne_de_porco_carne_de_ratazana_ou_coelho, # Pork, rat or
       poultry = form.Section_II_group.galinha_pato_peru_codorniz_ou_passarinhos, # Chicken, duck, tu
       fish = form.Section_II_group.peixe_fresco_ou_seco_camaro_fresco_ou_seco_caranguejo_lulas_ou_am
       nuts = form.Section_II_group.amendoim_manteiga_de_amendoim_amendoim_modo_castanhas_de_caj_ou_s
       popcorns = form.Section_II_group.chips_pipocas_de_pacote_ou_niknaks, # Chips, popcorn or NikNa
       instant_pasta = form.Section_II_group.massa_instantnea,
       fries = form.Section_II_group.batatas_fritas_badjia_peixe_frito_ou_frango_frito, # Deep fried
       palm_oil = form.Section_II_group.leo_de_palma_vermelho,
       fast_foods = `form.Section_II_group.copy-1-of-leo_de_palma_vermelho`, # KFC, Debonairs Pizza,
       sweets = form.Section_II_group.chupa_chupa_ou_doces_bombom_chocolate_sorvete_ou_gelinho) %>%
mutate(
  across(c(have_child,infant_formula,animal_milk,chocolate_milk,juices,soft_drinks,plant_base_drink,s
           beans, orange_vegetables,leafy_vegetables,green_leafy_vegetables,tomato_cabbage_mushroom,s
          fish, nuts, popcorns, instant_pasta, fries, palm_oil, fast_foods, sweets), ~ ifelse(. == "sim", 1
) %>%
mutate(
 mdd_w = (rowSums(tibble(processed_porridge, unprocessed_porridge, root_crop_porridge) == 1) > 0) +
    (rowSums(tibble(beans) == 1) > 0) + # Pulses
    (rowSums(tibble(nuts) == 1) > 0) + # Nuts and seeds
    (rowSums(tibble(animal_milk, cheese, yoghurt) == 1) > 0) + # Dairy
    (rowSums(tibble(meat, sausages, pork_rabbit, poultry, fish, shrimp_snails) == 1) > 0) + # Meat, p
    (rowSums(tibble(green_leafy_vegetables, leafy_vegetables) == 1) > 0) + # Dark green leafy vegetab
    (rowSums(tibble(eggs) == 1) > 0) + # Eggs
    (rowSums(tibble(orange_vegetables, tomato_cabbage_mushroom, yellow_fruits, citrus, apples) == 1)
    (rowSums(tibble(long_cycle_fruits) == 1) > 0),# Other fruits
  all_5 = (rowSums(tibble(processed_porridge, unprocessed_porridge, root_crop_porridge) == 1) > 0) +
    (rowSums(tibble(green_leafy_vegetables, leafy_vegetables, orange_vegetables, tomato_cabbage_mushr
    (rowSums(tibble(yellow_fruits, citrus,long_cycle_fruits, apples) == 1) > 0) + # Fruits
    (rowSums(tibble(beans,nuts) == 1) > 0) + # Pulses, nuts and seeds
    (rowSums(tibble(animal_milk, yoghurt, eggs, cheese, sausages, meat, poultry, fish, shrimp_snails)
  ncd_protect = (rowSums(tibble(unprocessed_porridge) == 1) > 0) + # Whole grain
    (rowSums(tibble(beans) == 1) > 0) + # Pulses
    (rowSums(tibble(nuts) == 1) > 0) + # Nuts and seeds
    (rowSums(tibble(citrus) == 1) > 0) + # Citrus
```

```
(rowSums(tibble(orange_vegetables) == 1) > 0) + # Vitamin A-rich orange vegetable
  (rowSums(tibble(green_leafy_vegetables, leafy_vegetables) == 1) > 0) + # Dark green leafy vegetab
  (rowSums(tibble(apples, yellow_fruits) == 1) > 0) + # Vitamin A-rich fruits
  (rowSums(tibble(tomato_cabbage_mushroom) == 1) > 0) + # Other vegetables
  (rowSums(tibble(long_cycle_fruits) == 1) > 0),# Other fruits
ncd_risk = (rowSums(tibble(chocolate_milk, juices, soft_drinks) == 1) > 0) + # Represents: Soft dri
  (rowSums(tibble(cakes) == 1) > 0) + # Baked/grain-based sweets
  (rowSums(tibble(sweets) == 1) > 0) + # Other sweets
  2 * (rowSums(tibble(sausages) == 1) > 0) + # Processed meat
  (rowSums(tibble(meat, pork_rabbit) == 1) > 0) + # Unprocessed meat
  (rowSums(tibble(fries) == 1) > 0) + # Deep fried food
  (rowSums(tibble(fast_foods, instant_pasta) == 1) > 0) + # Fast food & instant noodles
  (rowSums(tibble(popcorns) == 1) > 0), # Packaged ultra-processed salty snacks
mdd_w_binary = ifelse(mdd_w >= 5, 1,0), # Calculating binary MDD_W
all_5_binary = ifelse(all_5 == 5, 1,0), # Calculating binary All- 5
gdr_score = (ncd_protect - ncd_risk) + 9, # Calculating General Dietary Recommendation (GDR score)
```

Selecting indicators for child's diverse and adequate diet

```
head(Selected_Child_indicators)
```

Displaying updated data and calculation

```
## # A tibble: 6 x 45
     have_child infant_formula animal_milk chocolate_milk juices soft_drinks
          <dbl>
                                      <dbl>
                                                     <dbl> <dbl>
                                                                         <dbl>
##
                         <dbl>
## 1
              0
                              0
                                          0
                                                          0
                                                                             0
                                                                 0
## 2
                              0
                                                          0
                                                                             0
              1
                                          0
                                                                 0
## 3
              0
                              0
                                          0
                                                          0
                                                                 0
                                                                             0
## 4
              1
                              0
                                          0
                                                          0
                                                                 0
                                                                             0
## 5
                              0
                                          0
                                                          0
                                                                             0
              1
                                                                 0
## 6
                              0
## # i 39 more variables: plant_base_drink <dbl>, soups_broth <dbl>,
## #
       yoghurt <dbl>, processed_porridge <dbl>, green_leafy_vegetables <dbl>,
## #
       shrimp_snails <dbl>, unprocessed_porridge <dbl>, root_crop_porridge <dbl>,
       beans <dbl>, orange_vegetables <dbl>, leafy_vegetables <dbl>,
## #
       tomato_cabbage_mushroom <dbl>, salad_vegetables <dbl>, yellow_fruits <dbl>,
       citrus <dbl>, long_cycle_fruits <dbl>, apples <dbl>, cakes <dbl>,
## #
## #
       eggs <dbl>, cheese <dbl>, sausages <dbl>, meat <dbl>, ...
```

mean_mdd_w_score <- round(mean(Selected_Child_indicators\$mdd_w),1) # Calculating the average MDD-W sc print(mean_mdd_w_score)

```
## [1] 1
```

```
mean_all_5_score <- round(mean(Selected_Child_indicators$all_5),1) # Calculating the average All 5 sc
print(mean_all_5_score)

## [1] 0.9

mean_gdr_score <- round(mean(Selected_Child_indicators$gdr_score),1) # Calculating the average GDR sc
print(mean_gdr_score)</pre>
```

[1] 9.7

Selecting indicators to calculate adult diverse and adequate diet

Note: I did not find any adult data in the Excel file downoaded or ODataFeed. I tried answering survey questions but did not see the questions in th mobile App. Therefore questions under this section "ler__agora_gostaria_de_lhe_fazer_algumas_perguntas_de_sim_ou_no_sobre_os_al" do not appear in the survey. I confirmed it by filling a form myself. After the "KFC, Debonairs Pizza, Teka Famba, Burger House, Flaming Dogs or other places that serve pizza or burgers?" question, the survey moves to Section III.

Selecting indicators for Resilience to shocks

```
Resilience <- Mangwana Baseline Survey %>%
  select(form.Section_III_group.missed_food, form.Section_III_group.Months_missed_food, form.Section_II
         form.Section_III_group.not_enough_food,form.Section_III_group.how_many_times_not_enough_food,
  mutate(
   months_adequate_food = 12 - sapply(strsplit(ifelse(form.Section_III_group.Months_missed_food == "--
      across(c(form.Section_III_group.how_may_times_HH_not_have_enough_food, form.Section_III_group.how
   hhs_score = form.Section_III_group.how_may_times_HH_not_have_enough_food + form.Section_III_group.h
   hunger_scores = case_when(hhs_score <= 1 ~ "Little to no hunger in the household",
                              hhs_score <= 3 ~ "Moderate hunger in the household",</pre>
                              hhs score <=6 ~ "Severe hunger in the household") # Classified the househ
  )
Average_months_of_adequate_food <- round(mean(Resilience$months_adequate_food),1) # Average months hous
print(Average_months_of_adequate_food)
## [1] 10.7
Median_hhs_score <- median(Resilience$hhs_score) # Median value of HHS score
print(Median hhs score)
## [1] 0
```

```
head(Resilience)
```

Displaying updated data and calculation

```
## # A tibble: 6 x 11
     form.Section_III_group.missed_~1 form.Section_III_gro~2 form.Section_III_gro~3
##
                                        <chr>
                                                                <chr>>
## 1 yes
                                        august
                                                                yes
## 2 yes
                                        october
                                                                yes
## 3 yes
                                        september
                                                               yes
## 4 no
                                                               no
## 5 yes
                                       september
                                                                yes
## 6 no
## # i abbreviated names: 1: form.Section_III_group.missed_food,
       2: form.Section_III_group.Months_missed_food,
       3: form.Section_III_group.you_feared_HH_not_have_enough_food
## # i 8 more variables:
       {\tt form.Section\_III\_group.how\_may\_times\_HH\_not\_have\_enough\_food <dbl>,}
       form.Section_III_group.not_enough_food <chr>,
## #
       form.Section_III_group.how_many_times_not_enough_food <dbl>, ...
print(Average_months_of_adequate_food)
## [1] 10.7
print(Median_hhs_score)
## [1] 0
```

Agriculture indicators

```
## Data manipulation
Baseline_drought <- Drought_repeat_Survey %>%
  mutate(number = as.character(number 0)) %>%
  inner_join(Mangwana_Baseline_Survey %>% select(number,form.Section_IV_ProductionAreas.que_tipo_de_in
  filter(form.Section_IV_ProductionAreas.que_tipo_de_inqurito_est_a_realizar == "inqurito_de_base_para_
  mutate(across(everything(), ~ case_when(. == "---" ~ "0",
                                          . == " " ~ "0",
                                          is.na(.) ~ "0",
                                          TRUE ~ as.character(.)))) %>%
  rename(qty_crops_produced = form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason.crop_drought_s
         days_per_week_fieldwork = `form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason.crop_dro
         hours_per_day_fieldwork = `form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason.crop_dro
         assist_days_perweek_fieldwork = form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason.cro
         assist_hoursper_fieldwork = form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason.crop_dr
         paidlabour_days_perweek_fieldwork = form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason
         paidlabour_hours_per_fieldwork = form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason.cr
         price_per_unit_sold = form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason.crop_drought_
         seed_expense = form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason.crop_drought_season.
         equipment_expense = form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason.crop_drought_se
         fert_expense = form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason.crop_drought_season.
         labour_expense = form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason.crop_drought_season
         other_expense = form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason.crop_drought_season
         pesticide_expense = form.Section_IV_ProductionAreas.Section_IV_I_DroughtSeason.crop_drought_se
  mutate(across(c(qty_crops_produced, days_per_week_fieldwork, hours_per_day_fieldwork, assist_days_per
                paidlabour_hours_per_fieldwork,price_per_unit_sold, seed_expense,equipment_expense, fer
  ## Calculating Labour days and productivity
  mutate(total_weeks_fieldwork = rowSums(across(c(days_per_week_fieldwork,assist_days_perweek_fieldwork
         personallabour_time= days_per_week_fieldwork*hours_per_day_fieldwork,
         assistedlabour_time = assist_days_perweek_fieldwork * assist_hoursper_fieldwork,
         paidlabour time = paidlabour days perweek fieldwork * paidlabour hours per fieldwork,
         personallabour_days = (personallabour_time*number_dryseason_weeks)/Standard_workhours,
         assistedlabour_days = (assistedlabour_time*number_dryseason_weeks)/Standard_workhours,
         paidlabour_days = (paidlabour_time*number_dryseason_weeks)/Standard_workhours,
         total_labour_days = rowSums(across(c(personallabour_days, assistedlabour_days, paidlabour_days
         crops_income = qty_crops_produced*price_per_unit_sold,
         productivity = crops_income/total_labour_days,
         total_expense = rowSums(across(c(seed_expense,pesticide_expense,fert_expense,equipment_expense
         gross_agric_income = crops_income - total_expense)
## Productivity
total_crop_income <-sum(Baseline_drought$crops_income)</pre>
print(total_crop_income)
```

[1] 8592384

```
## Agriculture gross income
agric_gross <- sum(Baseline_drought$gross_agric_income)
agric_gross
## [1] 7667173</pre>
```

Agroforestry indicators

```
## Calculating agroforestry indicators
## Importing data
Agroforestry_repeat_Survey <- read_excel("Mangwana - Baseline Survey.xlsx",
                                  sheet = "Repeat- product_silviculture")
## Selecting a subset of data
Baseline_drought_agroforestry <- Agroforestry_repeat_Survey %>%
  mutate(number = as.character(number__0)) %>%
  inner_join(Mangwana_Baseline_Survey %>% select(number,form.Section_IV_ProductionAreas.que_tipo_de_in
  filter(form.Section_IV_ProductionAreas.que_tipo_de_inqurito_est_a_realizar == "inqurito_de_base_para_
  mutate(across(everything(), ~ case_when(. == "---" ~ "0",
                                          . == " " ~ "0",
                                           is.na(.) ~ "0",
                                          TRUE ~ as.character(.)))) %>%
  rename(agro_sale_price = form.Section_IV_ProductionAreas.Section_IV_III_Silviculture.product_silvicul
         agro_qty_sold = form.Section_IV_ProductionAreas.Section_IV_III_Silviculture.product_silviculture
         seed_cost = form.Section_IV_ProductionAreas.Section_IV_III_Silviculture.product_silviculture.e
         pesticide_cost = form.Section_IV_ProductionAreas.Section_IV_III_Silviculture.product_silvicult
         fert_cost = form.Section_IV_ProductionAreas.Section_IV_III_Silviculture.product_silviculture.e
         {\tt labour\_cost} = {\tt form.Section\_IV\_ProductionAreas.Section\_IV\_III\_Silviculture.product\_silviculture}
         equipment_expense = form.Section_IV_ProductionAreas.Section_IV_III_Silviculture.product_silvic
         other_expense = form.Section_IV_ProductionAreas.Section_IV_III_Silviculture.product_silviculture
  mutate(across(c(agro_sale_price,agro_qty_sold,seed_cost,pesticide_cost,fert_cost,labour_cost,equipmen
  mutate(crop_income = agro_sale_price * agro_qty_sold,
         total_expenses = rowSums(across(c(seed_cost,pesticide_cost,fert_cost,labour_cost,equipment_exp
         gross_income = crop_income - total_expenses)
## Agroforestry gross income
agroforestry_gross <- sum(Baseline_drought_agroforestry$gross_income)</pre>
agroforestry_gross
```

Livestock indicators

```
## Importing data
Animal_repeat_Survey <- read_excel("Mangwana - Baseline Survey.xlsx",</pre>
                                         sheet = "Repeat- Animals Raised")
Baseline_drought_animals <- Animal_repeat_Survey %>%
  mutate(number = as.character(number__0)) %>%
  inner_join(Mangwana_Baseline_Survey %>% select(number,form.Section_IV_ProductionAreas.que_tipo_de_in
  filter(form.Section_IV_ProductionAreas.que_tipo_de_inqurito_est_a_realizar == "inqurito_de_base_para_
  mutate(across(everything(), ~ case_when(. == "---" ~ "0",
                                          . == " " ~ "0".
                                          is.na(.) ~ "0",
                                          TRUE ~ as.character(.)))) %>%
  rename(qty_sold = form.Section_IV_ProductionAreas.Section_IV_Livestock.Animals_Raised.qty_sale_liv
         price_livestock = form.Section_IV_ProductionAreas.Section_IV_IV_Livestock.Animals_Raised.price
         feeding_expense = form.Section_IV_ProductionAreas.Section_IV_IV_Livestock.Animals_Raised.expen
         labour_expense = form.Section_IV_ProductionAreas.Section_IV_IV_Livestock.Animals_Raised.expense
         medical_expense = form.Section_IV_ProductionAreas.Section_IV_IV_Livestock.Animals_Raised.expen
         equipment_expense = form.Section_IV_ProductionAreas.Section_IV_IV_Livestock.Animals_Raised.exp
         maintain_expense = form.Section_IV_ProductionAreas.Section_IV_IV_Livestock.Animals_Raised.expe
  mutate(across(c(qty_sold,price_livestock,feeding_expense, labour_expense, medical_expense, equipment_
  mutate(animal_income = qty_sold * price_livestock,
         total_expense = rowSums(across(c(feeding_expense,labour_expense, medical_expense, equipment_ex
         gross_animal_income = animal_income - total_expense)
 gross_animal <- sum(Baseline_drought_animals$gross_animal_income)</pre>
 gross_animal
```

[1] -172886