Grundlagen: Mengen, Aussagen, Zahlensysteme

Zahlenmengen

N: Natürliche Zahlen {1,2,3,4,5,6,7,8,9,...} No: Natürliche Zahlen mit 0 {0.1.2.3.4.5.6.7.8.9....}

Z: Ganze Zahlen {...-5,-4,-3,-2,-1,0,1,2,3,4,5,...}

Q: Rationale Zahlen $\{\frac{1}{4}, \frac{1}{2}, \dots\}$ Brüche

R: Reelle Zahlen Alle Zahlen auf Zahlenstrahl

R+: Reelle Zahlen > 0 R-: Reellee Zahlen > 0

R\Q: Irrationale Zahlen $\sqrt{2}$. π

Zahlensysteme

Bsp. 7 Für B = 10 ist $71 = 1 \cdot 10^0 + 7 \cdot 10^1 = (71)_{10}$. Für B = 2 ist $71 = 1 \cdot 2^0 + 1 \cdot 2^1 + 1 \cdot 2^2 + 0 \cdot 2^3 + 0 \cdot 2^4 + 0 \cdot 2^5 + 1 \cdot 2^6 = (1000111)_3$.

Dual in Binär umrechnen: Jeweils durch 2 teilen, und rest (1 oder 0) aufschreiben. Rest von unten nach oben gelesen ergibt binär Zahl.

Wahrheitstabelle

A	В	$\neg (A \land B)$	$\neg (A \lor B)$	$\neg (A \ xor \ B)$	$(\neg A \lor B)$	$(A \lor \neg B)$	$(A \land \neg B)$
w	w	f	f	w	w	w	f
w	f	w	f	f	f	w	w
f	w	w	f	f	w	f	f
f	f	w	w	w	w	w	f

Mengengesetze

13) $A \cup B \setminus A = A \cup B$

Für Mengen A, B und C gelten die folgenden Sätze

9a) $(A \cap B) \cap C = A \cap (B \cap C)$ Assoziativgesetze für ∩ und ∪

10a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Distributivgesetze für \cap und \cup

10b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

11a) $4 \cap 4 = 4$ Idemnotenzaesetze für o und U 11b) $A \cup A = A$

12a) $A \cap (A \cup B) = A$ Absorptionsgesetze für ∩ und ∪ 12b) $A \cup (A \cap B) = A$

14) $A \cap B \setminus A = \emptyset$ Satz vom Widerspruch

Funktionsbegriff: Funktion, Linearität, Stetigkeit

Lineare Funktion $y = ax + b \rightarrow a$ Steigung der Geraden, b y-

Achsenahschnitt $a > 0 \rightarrow$ Gerade steigt von links nach rechts a < 0 → Gerade fällt von links nach rechts

Lineare Funktion, Steigung der Geraden Das Verhältnis ist konstant, das Verhältnis ist die

 $a = \frac{a}{1} = \frac{\Delta y}{\Delta x} = \frac{y2 - y1}{x2 - x1}$

Lineare Fkt., Berechnung a) Gerade hat Steigung 1.25 und verläuft durch P(4/3):

3 = 1.25 * 4 + bb berechnen und einsetzen. ergibt y = 1.25x - 2

Satz vom ausgeschlossenen Dritten

b) Gerade verläuft durch P1(-4/0.65) und P2(5.25/-4.9). Bestimme Funktionsgleichung: y2 - y1 - 4.9 - 0.65 $\frac{1}{x^2-x^1} = \frac{1}{5.25-(-4)}$ Und einsetzen ergiebt y = -0.6x - 1.75

PRGM → GERADE

Lineare Funktion, Aufgabe Handy

Prepaid: keine Aboaebühr, CHF 0.25 /Minute

Abo20: Abogebühr CHF 20 inkl. 60 min, CHF 0.20 pro weitere min.

Für wie viele Gesprächsminuten/Monat ist Prepaid günstiger?

 $[a, b] = \{x \in \mathbb{R} \mid a < x < b\}$

 $[a, b] = \{x \in \mathbb{R} \mid a \le x < b\}$

abgeschlossenes Intervall [a, b] = $\{x \in \mathbb{R} \mid a \le x \le b\}$

K1(x) = 0.25 x $K2(x) = \begin{cases} 20 & \text{für } x \le 60 \\ 20 + 0.2(x - 60) \text{für } x > 60 \end{cases}$

Linearer Kostenverlauf K(x) = 3.5x + 1000 Fixkosten sind 1000, variable Kosten sind 3.5x, variable Stückkosten sind 3.5

halboffenes Intervall halboffenes Intervall $[\mathbf{a}, \mathbf{b}] = \{ \mathbf{x} \in \mathbb{R} \mid \mathbf{a} < \mathbf{x} \le \mathbf{b} \}$

offenes Intervall

Intervalle

Kostenfunktion, Aufgabe K=Kosten, E=Erlös, G=Gewinn, p=Preis, x=Menge

Bei Produktion von 2000 Stk., Gesamtkosten von 26'000 Fr.. Bei

Produktion von 6000 Stk., Gesamtkosten von 40'000 Fr.

Variable Kosten: 40'000 Fr. - 26'000 Fr. = 14'000 Fr.

14'000 Fr./4000 Stk. (Mehrprod.) = 3.5x variable Kosten bzw. 3.5 variable Stückkosten.

Fixkosten: 2000 Stk. * 3.5 = 7000

26'000Fr. - 7000 Fr. = 19'000 Fr. Fixkosten.

Gesamtkosten bei 4250 Stk.: 4250 * 3.5 + 19'000 = 33'875 Fr.

Stückzahl zu 34'253 Fr. GK.: 34'253 - 19'000 = 15'253 Fr.

15'253 Fr. /3.5 = 4358 Stk.

Michael Baumli

Nutzenschwelle: E(x) = K(x) Bsp. Nutzenschwelle=5000 Stk. \rightarrow $K(5000)=3.5*5000+19000=36'500 \rightarrow Verkaufspreis bestimmen$ $E(x)=p^*x \rightarrow E(5000) = p * 5000 = 36'500 \rightarrow p = 7.3 \rightarrow E(x) = 7.3x$ Gewinn bei 5500 Stk.: $G(x) = E(x)-K(x) = 7.3x - (3.5x + 19'000) \rightarrow G(x)$ $= 3.8x - 19000 \rightarrow G(5'500) = 1900$

Steuerabzug Aufgabe

Vorwegabzug (V) = 18% des Bruttoeinkommens (E), V darf 6000 Fr. abzüglich 16% von E nicht übersteigen.

E mit Vorwegabzug von 18%: 0.18E = 6000 - 0.16E = 17647.05

Max. Vorwegabzug: Vmax = 0.18E * 17647.05 = 3176.46 Vorwegabzug(V) in Abhängigkeit des Bruttoeinkommens(E):

 $0.18E \text{ für } E \in [0,17647.05]$ $V(E) = \begin{cases} 6000 - 0.16E \text{ für } E \in]17647.05,37500] \end{cases}$ $0 \ f\ddot{u}r \ E \in > 37500$

Miet- Ausleihwagen Aufgabe

Firma Miecar AG: Pro Tag CHF 157 inkl. Vollkasko u. 350 km. Mehrkilometer CHF 0.61. Kollege Gschwind: Pro Tag CHF 0.75 pro Mehrkilometer, aber max, CHF 300.

 $\begin{cases} 157 & x \le 350 \\ 0.61x - 56.5 & x \ge 350 \\ 0.61x - 56.5 & x \ge 350 \end{cases} 0.61(x - 350) + 157$ $Miecar\ K(x) = \left\{\begin{array}{c} 157 \\ 2 \end{array}\right.$ $Kollege K(x) = \begin{cases} 0.75x \\ 300 \end{cases}$ $\begin{cases} x \le 400 \\ x > 400 \end{cases} 0.75 x = 157$

Welcher günstiger? X1 und X2 für obige GL ausrechnen. Kollege günstiger für x≤209 und ≥584

Funktionsbegriff: Rationale Funktionen

Potenzfunktion

 $f(x) = a*x^n$

Gerader Exponent: Graph positiv (nach oben geöffnet). Ungerader Exponent: Graph negativ (S-Form)

Polynomfunktion

Besteht aus mehreren Potenzfunktionen (z.B. x³-3x²-6x+8). Wenn x gegen unendlich geht, ist nur der Term mit der höchsten Potenz von Bedeutung. (z.B. x³)

a) Gleichung lösen: Gleichung auf 0 setzen und mit dem Solver

b) Schnittpunkte bestimmen: Beide Funktionen in TR eingeben

c) Nullstellen: Gleichung auf 0 setzen und in TR eingeben, dann

d) Max- Minimum: 2ND → CALC → 3:MINIMUM / 4:MAXIMUM

Gebrochen rationale Funktion

 $Polynom\ m-ten\ Grades$

- $f(x) = \frac{1}{Polynom \, n ten \, Grades}$
- Definitionsbereich (DB) = R \ {Nullstellen von N}
- x ist Nullstelle von $f \leftrightarrow Z(x_0) = 0 \delta \land N(x_0) \neq 0$ (Z = Zähler, N = Nenner), Achtung: N berechnen ob N ≠0
- f hat an der Stelle x eine senkrechte Asymptote $\leftrightarrow Z(x_A) \neq 0 \land N(x_A) = 0$

Quadratische Gleichung

$$ax^2 + bx + c = 0$$
 PRGM \rightarrow QUADGL

Scheitelpunkt: PRGM → SCHEITP

Menge:
$$x = -\frac{b}{\frac{2a}{a}}$$

Preis: $y = c - \frac{b^2}{\frac{b^2}{a}}$

Determinante: $D = b^2 - 4ac$

Nullstellen, Gleichungen, Schnittpunkte

ausrechnen MATH → 0:SOLVER

2ND CALC → 5:INTERSECT

Kosten, Erlös, Gewinn, Aufgabe

 $K(x) = 0.0001x^2 + 2x + 12'000$

Somit ist Lösung: 20'000 ME

 $K(x) = 0.1x^3 - 1.2x^2 + 6x + 9.8$ (Y1)

2ND → CALC → ZERO

E(x) = 7x (Y2)

E(x)p * x

Nutzengrenze 2ND → CALC → INTERSECT b) Lösungen bestimmen: MATH →0:SOLVER

 $G(x) = 6x - 0.0001x^2 - 2x - 12000$

PRGM → SCHEITP → A=-0.0001, B=4, C=12000

 $G(x) = p * x - 0.0001x^2 - 2x - 12000$

 $G(x) = -0.0001x^2 + (p-2)x - 12000$

 $G(x) = -0.0001x^2 + 4x - 12000$

c) Gewinnmaximale Erzeugung: G(x) Maximum 2ND \rightarrow CALC \rightarrow 4:

a) Berechne gewinnmaximale Erzeugungsmenge für p = 6

b) Berechne gewinnmaximale Erzeugungsmenge in Abhäng. v. p

 $x = \frac{-b}{2a} = \frac{p-2}{0.0002} = 5000(p-2) = 5000p - 10000$

Engelsches Gesetz (Konsumfunktion) Gewinnmaximale Menge, Aufgabe

N=Ausgaben/Monat

C=Gesamtkonsum/Monat

→ Die Ausgaben eines Haushaltes für Nahrungsmittel nehmen bei

steigendem Gesamtkonsum weniger stark zu als die Gesamtkonsumausgaben.

Engelfunktion: $C(Y) = \frac{a*Y+b}{Y+c}$ $a = \frac{S"attigung}{1}$

- 1.) a berechnen: Sättigung entspricht der horizontalen Asymtote → a = y-Wert der Stättigung
- 2.) Beliebiger Punkt auf Graph auswählen, welcher gut "aufgeht" z.B.
- 3.) b berechnen: Nullpunkt P(0/0) in a*Y+b einsetzen
- 4.) c berechnen: a und b, sowie Punkt P(5/2) in C(Y) einsetzen und nach c auflösen.

$$2 = \frac{4 * 5 + 0}{5 + c} \quad |(5 + c)$$

- $10 + 2c = 20 \quad |-10$
- 5.) $C(Y) = \frac{2Y-10}{1}$

Funktionsbegriff: Umkehrfunktion

Zusammenhang von Preis und nachgefragter Menge.

1. $f: x \rightarrow p = 1.25x + 9$

2. $f^{1}:p \rightarrow x = -0.8p + 7.2$ (Umkehrfunktion)

Nachfragefunktion: $x_N(p) \rightarrow Umkehrfunktion P_N(x)$ Angebotsfunktion: $x_{\Delta}(p) \rightarrow Umkehrfunktion P_{\Delta}(x)$

Ökonomisch sinnvoller sind $x_N(p)$ und $x_A(p)$ da der Preis p unabhängige und die Menge x die abhängige Variabel ist.

Nachfrage und Angebot, Aufgabe

Nachfrage: $x_1 = 2$, $p(y_1) = 6.5$ und $x_2=6$, $p(y_2)=1.5$ Angebot: $x_1=1$, $p(y_1)=3.75$ und $x_2=4$, $p(y_2)=6$

a) Bestimme p in Abhängigkeit von x, d.h. P_N(x) Umformung, d.h nach x auflösen: PGRM → GERADE → Nachfrage

Werte eingeben (x₁, y₁, x₂, y₂)

 $P_N(x) = 1.25x + 9 = p$ 9 = p + 1.25x9 - p = 1.25x

 $9 - p = \frac{5}{4}x + \frac{4}{5}$

1

 $\frac{\pi}{5} * 9 - \frac{\pi}{5} p = x = 7.2 - 0.8p = X_N(p)$

b) Bestimme das Marktgleichgewicht (Schnittpunkt) $X_A(p) = P_N(x) \rightarrow 2ND \rightarrow CALC \rightarrow INTERSECT$

c) Umkehrfunktion
$$X_N(p)$$
 berechnen $P_N(x) = 3 * e^{-0.01x} = p$ | : 3

$$e^{-0.01x} = \frac{p}{3} \qquad | ln$$

$$\ln(e^{-0.01x}) = \ln\left(\frac{p}{3}\right)$$
$$-0.01x = \ln\left(\frac{p}{3}\right) \qquad |*100$$

$$x = -100 \ln \left(\frac{p}{3}\right) = X_N(p)$$

d) Umkehrfunktion X_A(p) berechnen

$$P_A(x) = \ln(0.2x + 5) = p$$
 | e
 $0.2x + 5 = e^p$ | -
 $0.2x = e^p - 5$ | *

$$x = 5(e^p - 5) = X_A(p)$$

Michael Baumli

Untersuchung von Funktionen: Grenzfunktionen (Grenzkfunktions Satz ist immer ungefähr!)

Grenzkostenfunktion, Aufgaben

E(x) = x(p) * p bzgl. Preis od. x*p(x) bzgl. MengeErlösfunktion Grenzerlösfunktion E'(p) bzgl, Preis od, E'(x) bzgl, Menge

a) Errechne den Grenzerlös bei Verkauf v. 50 Stk.

$$p(x)=150-0.5x$$

 $E(x) = x * p(x) = 150x - 0.5x^2$

$$E(x) = x + p(x) = 150x - 0.5$$

 $E'(x) = 150 - x$

E'(50) = 100

Das heisst, erhöht man ausgehend von einem Verkaufsvolumen von 50 die Menge um 1, so steigt der Erlös um etwa 100.

b) Errechne den Grenzerlös bei Preis von 100

Gleiches Vorgehen, iedoch: Erhöht man ausgehend von einem Preisniveau von 100 um eine Geldeinheit, so sinkt der Erlös um etwa 100 Geldeinheiten.

Grenzproduktivität, Grenzertrag x'(r)

Gibt an, um wieviele Outputeinheiten die Produktion zu oder abnimmt, wenn die Einsatzmenge r des variablen Produktionsfaktors um eine Einheit zunimmt.

Grenzgewinn G'(x)

Gewinn für eine zusätzlich produzierte ME in GE/ME

Grenzkosten K'(x)

Gibt an, um wieviel die Gesamtkosten ungefähr steigen, wenn die Produktionsmenge um eine zusätzliche Einheit steigen.

Marginale Konsum- und Sparquote, Aufgabe

Haushalt teilt sein Einkommen Y in Konsum C und Sparen S.

Marginale Konsum- und Sparquote

Konsumfunktion: $C(Y) = 6 * \frac{Y+1}{Y+5}$ Sparfunktion: $S(Y) = Y - C(Y) = Y - 6 * \frac{Y+1}{Y+5}$

a) Sättigungsgrenze des Konsums

$$C(Y)\infty = \lim_{Y \to \infty} 6 * \frac{Y+1}{Y+5} = 6 \text{ (weil } \frac{\infty}{\infty} = 1)$$

b) Marginale Konsumquote bestimmen (Grenzneigung zum Konsum) C'(Y) allgemein und speziell für Y=5. Interpretieren Sie S'(5) Marginale Konsumquote → C'(Y)

$$C'(Y) = 6 * \frac{1 * (Y+5) - (Y+1) * 1}{(Y+5)^2} = \frac{24}{(Y+5)^2} = 0.24$$

(Quotientenregel) Bei einem Einkommen von CHF 5000 gilt: Von einem zusätzlichen Einkommen von CHF 100 werden näherungsweise CHF 24 für den Konsum verwendet.

c) Marginale Sparquote bestimmen(Grenzneigung zum Sparen) C'(Y) allgemein und speziell für Y=5. Interpretieren Sie S'(5)

Marginale Sparquote → S'(Y)

Wegen S=Y-C folgt: S'=1-C', also
$$S'(Y) = 1 - \frac{24}{(Y+5)^2}$$

 $S'(5) = 1 - 0.24 = 0.76$

Bei Einkommen von CHF 5000 gilt: Bei zusätzlichem Einkommen von CHF 100 werden ca. CHF 76 gespart.

Untersuchung von Funktionen: Monotonie, Krümmung, Extrema, Wendepunkte

Monotonie

Monoton heisst, dass der Graph in einem Anschnitt nur steigend oder nur fallend ist.

monoton steigend/fallend: Der Funktionsgraph darf an mehreren Stellen Null sein (Graph kann horizontale Abschnitte aufweisen). streng monoton steigend/fallend: Der Funktionsgraph darf maximal an einem einzigen Punkt Null betragen (z.B. bei einem Wendepunkt).

a) Zeige mittels Abl., dass KA streng monoton wachsend ist.

$$K_A(x) = 10\sqrt{0.1x + 1}$$

 $K_A(x) = 10(0.1x + 1)^{0.5}$
 $K_A'(x) = 10 * 0.5(0.1x + 1)^{-0.5} * 0.1$
 $K_A'(x) = 0.5(0.1x + 1)^{-0.5} > 0$ (z, B, mit 1 probleren.)

b) Untersuche folgende Funktion auf Monotonie

$$g(x) = xe^{-x}$$

$$g(x) = e^{-x} + x(-e^x)$$

$$g(x) = e^{-x} - xe^{-x}$$

$$g'(x) = e^{-x}(1-x) \begin{cases} > 0 \text{ für } x < 1 \\ < 0 \text{ für } x < 1 \end{cases}$$

$$g'\text{ist streng monoton} \begin{cases} \text{steigend für } x < 1 \\ \text{fallend für } x > 1 \end{cases}$$

Extremum

Relatives Maximum

Relatives Minimum

$$f'(x_0) = 0$$
 $f'(x_0) = 0$
 $f''(x_0) < 0$ $f''(x_0) > 0$

(D.h. nur dann kann f extremal sein!)

a) Extrema berechnen

1.
$$t(z) = z^2 + \frac{1}{z^2}$$

 $t(z) = z^2 + z^{-2}$
 $t'(z) = 2z - 2z^{-3}$ MATH \rightarrow SOLVER {z.B. +10 u. -10} / QUADGL
 $t''(z) = 2 + 6z^{-4}$

x = 1 und x = -1 (von MATH SOLVER)

2. X = 1 und x =-1 ieweils in t" einsetzen:

$$t''(1) = 2 + 6 * 1^{-4}$$

 $t''(1) = 8 > 0$

$$t''(-1) = 2 + 6 * (-1)^{-4}$$

$$t''(-1) = 8 > 0$$

 $t''(\pm 1)$ hat an den Stellen $z = \pm 1$ relative Minima.

Abb. 6.2.12 f'(x) > 0 (d.h. f steigt) (f'(x) < 0) (d.h. f fallt) f'(x) > 0 dh. f' steigt f ist steigend und konvex f ist fallend und konvex f wächst progressiv (oder überlinear) (mit zunehmender positiver Steigungsrate) f fällt mit negativer, zunehmender Steiungsrate (nimmt weniger stark ab als linear f'(x) > 0f''(x) < 0 f steigt f' fallt f fall f'(x) < 0 (d.h. f' fällt ⇒ f konkav) f ist steigend und konkay f ist fallend und konkay

a) Zeige mittels Abl., dass KA degressiv wachsend bzw. konkav ist (s.h. a) bei Monotonie)

$$K_A''(x) = 0.5(-0.5)(0.1x + 1)^{-1.5} * (0.1)$$

 $K_A''(x) = -0.025(0.1x + 1)^{-1.5} < 0$
 $-0.025 < 0$ und $(0.1x+1)-1.5 > 0$ das heisst – mal + gleich -, also < 0

b) Untersuche folgende Funktion auf die Krümmung

$$K(x) = \frac{1}{15}x^3 - 2x^2 + 6x + 900$$

$$K'(x) = 0.2x^2 - 4x + 6$$

$$K''(x) = 0.4x - 4 \begin{cases} > 0 \text{ für } x > 10 \\ < 0 \text{ für } x < 10 \end{cases}$$

K ist konkav für x 0 bis 10 ME, $f \ddot{u} r x > 10 ME$ ist K konvex.

Wachstumsverhalten ökonomischer Funktionen

Zu finden sind Wendepunkt, Maximum, Nullstelle

$$x(r) = -0.5r^{3} + 1.5r^{2} + 0.075r$$

$$x'(r) = -1.5r^{2} + 3r + 0.075$$

$$x''(r) = -3r + 3$$

$$x'''(r) = -3 < 0$$
b) Wendepunkt

x'''(r) = -3 < 0 konvex/konkaver Wendepunkt

c) Maximum

$$\chi'(r) = 1.5r^2 + 3r + 0.075 \Rightarrow \text{MATH} \Rightarrow \text{SOLVER}$$
 $x_1 = -0.024$

 $x_2 = 2.0247$ (Maximum)

In 2. Ableitung einsetzen $\rightarrow x''(2.0247) = -3.0741 < 0$

d) Nullstelle

2ND → CALC → ZERO

Wendepunkte

Sind immer dann, wenn Übergang von einer Linkskrümmung in eine Rechtskrümmung, oder umgekehrt.

Abb. 6.2.34	f steigt in W	f fällt in W	f ist stationär in W
konvex-/konkav- Wendepunkt W	w	July 1	
konkav-/konvex- Wendepunkt W	<u>"</u>		

Minimale Steigung

Maximale Steigung
$$f''(x_0) = 0$$

$$f''(x_0) = 0$$

 $f'''(x_0) > 0$

$$f''(x_0) = 0$$

 $f'''(x_0) < 0$

a) Extrema berechnen

$$f(x) = x^3 - 16x^2 + 6x - 4$$

 $f'(x) = 3x^2 - 32x + 6$
 $f''(x) = 6x - 32$ MATH → SOLVER (z.B. +100 u. -100)
 $f'''(x) = 6$

$$f''(x) = 6x - 32 = 0 \Leftrightarrow x = \frac{16}{3} bzw. 5.33 (MATH SOLVER)$$

 $f'''\left(\frac{16}{3}\right) = 6 > 0$

Steigung minimal, d. h. konkav/konvex Wendepunkt

Ableitung: Grundidee der Ableitung

Ableitung Zeichnen

Ableitung: Grundidee der Ableitung

Ableitung mit TR zeichnen lassen

Y1 im TR
$$\rightarrow f(x) = x^2 + 3$$

Um die Steigung der Tangente von $f(x) = x^2 + 3$ anzuzeigen: 2ND \rightarrow CALC \rightarrow dy/dx \rightarrow Zahl \rightarrow ergibt Steigung bei x. Um die Wertetabelle von Y2 aufzurufen: → 2ND → TABLE

Michael Baumli 3 Michael Baumli

Ableitungsregeln	r Ableitung: Ableitungsregeln	1	
Erste Regeln f(x) = c	\rightarrow f'(x) = 0 (Ganze Zahl fällt weg) \rightarrow f'(x) = 1	$f(x) = \frac{1}{x} = x^{-1}$ $h(x) = \sqrt[7]{x^3} = x^{\frac{3}{7}}$	
Faktorregel $f(x) = c * g(x)$	$\Rightarrow f'(x) = c * g'(x)$	$f(x) = \frac{3x^7}{2}$	$f'(x) = 4 * 3x^{2} = 12x^{2}$ $f'(x) = \frac{3}{2} * 7x^{6} = 10.5x^{6} (\frac{3}{2} ist c, x^{7} ist g)$ $f'(x) = (-6) * (-3) * x^{-4} = 18x^{-4} = \frac{18}{x^{4}}$
. , . , . ,		; , (, , , , , , , , , , , , , , , , ,	$-3x + 2$ $+6*(x^2)' - 3*(x)' + (2)'$ $6*2x - 3*1 + 0 = 15x^2 + 12x - 3$
Produktregel $f(x) = u(x) * v(x) \longrightarrow f'(x) = u'(x) * v(x) + u(x) * v'(x)$		Beispiel $f(x) = x^2 * (x - 1)$ $f'(x) = (x^2)' * (x$ f'(x) = 2x * (x - 1) $f'(x) = 2x^2 - 2x$	$(x^2 - 1) + x^2 * (x - 1)'$ 1) + $x^2 * 1$

Produktregel
$$f(x) = u(x) * v(x) \rightarrow f'(x) = u'(x) * v(x) + u(x) * v'(x)$$

$$f'(x) = (x^2)' * (x - 1) + x^2 * (x - 1)'$$

$$f'(x) = (x^2)' * (x - 1) + x^2 * 1$$

$$f'(x) = 2x * (x - 1) + x^2 * 1$$

$$f'(x) = 2x^2 - 2x + x^2$$

$$f'(x) = 3x^2 - 2x$$
Kontrolle durch ausmultiplizieren: $f(x) = x^2 * (x - 1)$, ergibt $f(x) = x^3 - x^2$ und somit $f'(x) = 3x^2 - 2x$

Quotientenregel
$$f(x) = \frac{u(x)}{v(x)} \Rightarrow f'(x) = \frac{u'(x) * v(x) - u(x) * v'(x)}{v(x)^2}$$
Beispiele
$$f(x) = \frac{2x + 1 [u]}{x - 1 [v]}$$

$$f'(x) = \frac{(2x + 1)'(x - 1) - (2x + 1)(x - 1)'}{(x - 1)^2}$$

$$f'(x) = \frac{2(x - 1) - (2x + 1) * 1}{(x - 1)^2}$$

$$f'(x) = \frac{2x - 2 - 2x - 1}{(x - 1)^2} = \frac{-3}{(x - 1)^2}$$

$$f(x) = \frac{\ln x}{x} \Rightarrow \frac{(\ln x)' * (x) - (\ln x) * (x)'}{x^2} \Rightarrow f'(x) = \frac{\frac{1}{x} * x - \ln x * 1}{x^2} \Rightarrow \frac{1 - \ln x}{x^2}$$

Kettenregel
$$f(x) = h(g(x)) = h(u) \ mit \ u = g(x)$$

$$\Rightarrow f'(x) = h'(u) * g'(x)$$
Geschachtelte Funktionen einzeln ableiten und anschliessend miteinander multiplizieren.

Beispiele
$$f(x) = (x^3 + 1)^2$$
Äussere Funktion $h(u) = u^2$ $h'(u) = 2u$
Innere Funktion $g(x) = x^3 + 1 = u$ $g'(x) = 3x^2$

$$f'(x) = h'(u) * g'(x)$$

$$f'(x) = 2u * 3x^2$$

$$f'(x) = 6x^2(x^3 + 1)$$

$$f(x) = (4x + 9)^{0.5}$$

$$f'(x) = 2(4x + 9)^{-0.5} * 4$$

$$f'(x) = 2(4x + 9)^{-0.5}$$

$$f'(x) = 2(4x + 9)^{-0.5}$$

$$f'(x) = 2(4x + 9)^{-0.5}$$

$$f'(x) = \frac{2}{\sqrt{4x + 9}}$$

$$f'(x) = \frac{e\sqrt{x}}{2\sqrt{x}}$$

Michael Baumli

x = -ln100

x = -4.6

Potenzen, Wurzel und Logarithmengesetze Potenzgesetze Wurzelgesetze Logarithmengesetze $Def: a^{0} = 1$ $Def: y = a^x \leftrightarrow x = \log_a y$ $Def: \sqrt[n]{a} = a^{\frac{1}{n}}$ $P1: a^m * a^n = a^{m+n}$ $W1: \sqrt[n]{a * b} = \sqrt[n]{a} * \sqrt[n]{b}$ $W2: \sqrt[n]{\frac{a}{b}} = \sqrt[n]{\frac{a}{\sqrt{b}}}$ $L1: \log_a(u * v) = \log_a u + \log_a v$ $P2: (a^m)^n = a^{m*n}$ L2: $\log_a\left(\frac{u}{v}\right) = \log_a u - \log_a v$ $P3: (axb)^n = a^n * b^n$ L3: $\log_a(u^n) = n * \log_a u$

Matrizen u. Gleichungssysteme: Lineare Gleichungssysteme

Das System | 2x - y + z = -4 |8x -5y +2z = -15-11x +7y -3z = 22

Wenn z.B. y Wert in Matrix fehlt dann entspricht dies beim Umformen einer 0.

Umformen

$$\begin{pmatrix} 2 & -1 & 1 \\ 8 & -5 & 2 \\ -11 & 7 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -4 \\ -15 \\ 22 \end{pmatrix}$$

Berechnung

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -4 \\ -15 \\ 22 \end{pmatrix} \qquad \begin{pmatrix} 2 & -1 & 1 \\ 8 & -5 & 2 \\ -11 & 7 & -3 \end{pmatrix}^{-1} * \begin{pmatrix} -4 \\ -15 \\ 22 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$$

$$2ND \Rightarrow MATRIX \Rightarrow EDIT \Rightarrow A MATRIX UND B MATRIX$$

$$EINGEBEN \Rightarrow BEI NAMES A AUSWÄHLEN \Rightarrow X-1 TASTE$$

$$\Rightarrow * \Rightarrow 2ND MATRIX \Rightarrow BEI NAMES B MATRIX$$

$$AUSWÄHLEN \Rightarrow ENTER (ERR:SINGULAR MAT \Rightarrow Matrix$$

$$ist singulär, invertieren nicht möglich.$$

$$K(x) = ax^3 + bx^3 + cx + d$$

Beispiel

- a) Eine Gesamtfunktion soll durch eine Polynomfunktion 3. Grades K(x)=ax³+bx²+cx+d beschrieben werden.
 - 1. Fixkosten betragen 16GE
 - 2. Gesamtkosten der Produktion von 1 ME beträgt 38GE
- 3. Gesamtkosten der Produktion von 4 ME beträgt 56 GE
- 4. Grenzkosten der Produktion von 1 ME betragen 15GE/ME

Wie heisst die Funktionslgeichung K?

1. $K(x) = ax^3 + bx^3 + cx + 16$
2. $K(1) = a * 1^3 + b * 1^2 + c * 1 + 16$
K(1) = a + b + c + 16 = 38 -16
K(1) = a+b+c=22
3. $K(4) = a * 4^3 + 6 * 4^2 + c + 16 = 64a + 16b + 4c = 40$
4. $K'(x) = 3ax^2 + 2b + c = 15$
$\begin{vmatrix} a & +b & +c & = 22 \\ 64a & +16b & +4c & = 40 \\ 3a & +2b & +c & = 15 \end{vmatrix} \leftrightarrow \begin{pmatrix} 1 & 1 & 1 \\ 64 & 16 & 4 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 22 \\ 40 \\ 15 \end{pmatrix}$
$ 64a + 16b + 4c = 40 \leftrightarrow (64 \ 16 \ 4)(b) = (40)$
$\begin{vmatrix} 3a + 2b + c \end{vmatrix} = 15 \begin{vmatrix} 3 & 2 & 1 \end{vmatrix} \begin{pmatrix} c \end{vmatrix} $
$\begin{pmatrix} 1 & 1 & 1 \\ 64 & 16 & 4 \\ 3 & 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 22 \\ 40 \\ 15 \end{pmatrix} = \begin{pmatrix} 1 \\ -9 \\ 30 \end{pmatrix} \rightarrow K(x) = x^3 - 9x^2 + 30x + 16$
$\begin{pmatrix} 64 & 16 & 4 \end{pmatrix}$ $\begin{pmatrix} 40 \end{pmatrix} = \begin{pmatrix} -9 \end{pmatrix} \rightarrow K(x) = x^3 - 9x^2 + 30x + 16$
$\frac{3}{3}$ 2 1/ $\frac{15}{30}$

Matrizen u. Gleichungssysteme: Matrizenrechnung

Produktionskoeffizienzen

Arbeitsstunden pro Mengenenmeit (Matrix II)						
	Produkt 1	Produkt 2	Produkt 3			
Maschine 1	2	4	0.5			
Maschine 2	1	3	1.5			

- a) Es sollen hergestellt werden: 3 ME Produkt 1.5 ME Produkt 2. 2 ME Produkt 3. (Matrix X)
 - H*X ergibt die benötigten Betriebsstunden für Maschine 1 und Maschine 2 und somit die neue (Matrix V)

Potriobskoston (Matrix O)

Unterhaltskst. 0.5

Michael Baumli

bethebskosten (wath Q)					
	Maschine 1	Maschine 2			
Stromkosten	1.5	2			
Unterhaltskst.	0.2	0.1			

b) Strom und Unterhaltskosten für die Produktion der Produkte. Q*V ergibt die Stromkosten (82500) und Unterhaltskosten (7500) für die gesamte Produktion.

1.1

Produkt 3

3.75

0.25

c) Betriebskosten der für die Produktion der Produkte.

Q*H ergibt d	bt die folgenden Betriebskosten:		
	Produkt 1	Produkt 2	
Stromkosten	5	12	

Kostenfunktion Aufgabe

Bestimme Kostenfunktion $K(x)=ax^3+bx^2+cx+d$, so dass:

1. Fixkosten 20 GE. 2. Minimalen Grenzkosten 0.3GE/ME. 3. Minimalen Grenzkosten bei Menge von 40 ME realisiert wird, 4. Bei Produktions Menge von 40 ME die Durchschnittskosten genau 2 GE/ME betragen.

$$K(x) = ax^3 + bx^2 + cx + 20$$

 $K'(x) = 3ax^2 + 2bx + c$
 $K''(x) = 6ax + 2b$

Durchschnittskosten:

$$k(x) = \frac{K(x)}{x} = ax^2 + bx + c + \frac{20}{x}$$

Bedingungen übersetzten:

$$K'(40) = 0.3$$
 $4800a + 80b + c = 0.3$
 $K''(40) = 0$ $240a + 2b = 0$
 $k(40) = 2$ $1600a + 40b + c + 0.5 = 2$

Da alle drei Bedingungen linear, in das LGS in Matrizenform schreiben:

$$\begin{pmatrix} 4800 & 80 & 1 \\ 240 & 2 & 0 \\ 1600 & 40 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0.3 \\ 0 \\ 1.5 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 4800 & 80 & 1 \\ 240 & 2 & 0 \\ 1600 & 40 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 0.3 \\ 0 \\ 1.5 \end{pmatrix} = \begin{pmatrix} 0.00075 \\ -0.09 \\ 3.9 \end{pmatrix}$$

$$K(x) = 0.00075x^3 - 0.09x^2 + 3.9x + 20$$

Bei Grenzfunktion handelt es sich immer um ungefähre Werte! Übersicht ökonomische Funktionen

Name	Kürzel	Input Variable	Output Variable	Zusammenhänge
Kostenfunktion oder	K(x)	Produktionsmenge x in ME	Gesamtkosten in GE	$K(x) = K_v(x) + K_f$
Gesamtkostenfunktion Variable Kosten	K, (x)	Produktionsmenge x in ME	Gesamtkosten in GE	$K_{\nu}(x) = K(x) - K_{f}$
=Outputabhängige Kosten Fixkosten		-	-	$K_f = K(0)$
=Outputunabhängige Kosten	K_f			
Durchschnittskosten (falls Produktion in Stück, dann auch gesamte Stückkosten)	k (x)	Produktionsmenge x in ME	Kosten pro produzierte Mengeneinheit in GE/ME	$k(x) = \frac{K(x)}{x}$
variable Durchschnittskosten	$k_{v}(x)$	Produktionsmenge x in ME	Kosten pro produzierte Mengeneinheit in GE/ME	$k_v(x) = \frac{K_v(x)}{x}$
Grenzkosten	K'(x)	Produktionsmenge x in ME	Kosten für eine zusätzlich produzierte ME in GE/ME	
variable Grenzkosten	$K_{\nu}'(x)$	Produktionsmenge x in ME	Variable Kosten für eine zusätzlich produziere ME in GE/ME	$K'(x) = K_y'(x)$
Grenzdurchschnittlskosten oder Grenzstückkosten durchschnittliche Gesamtkosten	k '(x)	Produktionsmenge x in ME	Veränderung der Durchschnittskosten bei der Veränderung der Produktion um 1 ME in GE/ME ²	$k'(x) = \left(\frac{K(x)}{x}\right)$
Gewinnfunktion	G(x)	Produktionsmenge x in ME	Gewinn in GE	G(x) = E(x) - K(x)
Grenzgewinnfunktion	G'(x)	Produktionsmenge x in ME	Gewinn für eine zusätzlich produzierte ME in GE/ME	G'(x) = E'(x) - K'(x)
Stückgewinnfunkion Durchschnittsgewinn	g(x)	Produktionsmenge x in ME	Durchschnittlicher Gewinn pro produzierte ME in GE/ME	$g(x) = \frac{G(x)}{g(x)} = \frac{E(x)}{g(x)} - \frac{K(x)}{g(x)}$
Grenzstückgewinn	g'(x)	Produktionsmenge x in ME	Veränderung des Durchschnittsgewinns für eine zusätzliche produzierte ME (GE/ME)/ME	$g'(x) = \left(\frac{G(x)}{x}\right)$
Gesamtdeckungsbeitrag	$G_D(x)$	Produktionsmenge x in ME	Deckungsbeitrag in GE	$G_D(x) = E(x) - K_v(x)$
Grenzdeckungsbeitrag	$G_D(x)$ $G_D'(x)$	Produktionsmenge x in ME	Deckungsbeitrag für eine zusätzlich produzierte ME in	$G_D(x) = E(x) - K_v(x)$ $G_D'(x) = E'(x) - K_v'(x)$
Grenzstückdeckungsbeitrag	$g_{\mathcal{D}}'(x)$	Produktionsmenge x in ME	GE/ME Durchschnittlicher Deckungsbeitrag pro produzierte ME in	$g_D(x) = \frac{G_D(x)}{\pi} = \frac{E(x)}{\pi} - \frac{K_v(x)}{\pi}$
			GE/ME	X X X
Erlösfunktion	E(x)	Produktionsmenge x in ME	Erlös in GE $p(x) \times x = Angebots monopol$	$E(x) = p \times x$ oder $E(x) = p(x) \times x$ p(x): Nachfragefunktion bzw. Pre Absatz-Funktion
Erlösfunktion p: Preis (GE/ME), x=nachgefragte Menge	E(p)	Preis in GE	Erlös in GE	$E(p) = x(p) \times p$ x(p): Umkehrfunktion der Nachfragefunktion
Grenzerlös (bzgl. der Menge)	E'(x)	Produktionsmenge x in ME	Erlös für eine zusätzlich produzierte ME in GE/ME	racinageiunk/011
Grenzerlös (bzgl. des Preises)	E'(p)	Preis in GE/ME	$E=x \cdot p(x) \Rightarrow E'$ ableiten GE/(GE/ME) $p(x) \rightarrow x(p) E(p) = x(p) p \Rightarrow E'$ ableiten Erlösveränderung bei einer Preiszunahme von einer	
Grenzgewinn bzgl. der Menge			Geldeinheit x(p) = ? →z.B. x(100) in p einsetzen -2.5p+375=125ME danach G' (125) ableiten (GE/ME)	
Sparfunktion	S(Y)	Einkommen in GE	Gesparter Betrag in GE	$S(Y) = Y - C(Y) \rightarrow Y = S(Y) + C(Y)$
Konsumfunktion	C(Y)	Einkommen in GE	Konsum in GE C(Y) = 0.4Y	Y = S(Y) + C(Y)
Durchschnittliche Konsumquote	C(Y)		Bsp. 1000 + 0.2Y= 0.4Y → Y=5000 GE (CY) : Y = Konsumquote; für Y wird immer eine Einkommenshöhe gegeben (z.B. 1000 GE) C(1000)=0.2 1000 + 1000 = 1.2 (Konsum 120% des 1000 =	$C(Y) = \frac{C(Y)}{Y}$
Marginale Sparquote (Grenzneigung zum Sparen)	S'(Y)= dC / dY	Einkommen in GE z.B. 1000 GE C(Y)=1'000 + 0.2Y	Gesparter Betrag für eine zusätzlich eingenommenen GE 1Ableitung der Konsumfunktion = GE/GE S (Y) = Y-4(1000 + 0.2Y) = (0.8 Y - 1000 + 3 Y) + 0.8 (Y) =	S'(Y)=1-C'(Y)
Marginale Konsumquote (Grenzneigung zum Konsum)	$\frac{dC}{dY} = C'(Y)$	Einkommen in GE	Konsumierter Betrag für eine zusätzlich eingenommene GE 1. Ableitung der Sparfunktion = GE/GE	C'(Y)=1-S'(Y)
Produktionsfunktion	x(r)	r: Inputfaktor in ME _r	X: Produktionsmenge in ME _x	Bsp: $x'(r) = -0.3r^2 + 12r + 15$
Grenzproduktivität	x'(r)	Inputfaktor in ME,	Zusätzlicher Output bei der Erhöhung des Inputs um eine ME, in ME, / ME,	$x^{r}(r) = dx/dr$ gibt an, um wie viele Outputeinehiten die Pruduktion zu- oderabnimmt, wenn r eine Einheit zunimmt
Anstieg Grenzproduktivität	x''(r)	Inputfaktor in ME _r	(MEx/MEr)/MEr	
Produktivität (=Durchschnittsertrag)		Inputfaktor in ME _r	MEx/MEr	$\frac{x(r)}{r}$
Output durchschnittl. Var. Kosten			von durchschnittlichen var. Kosten (siehe zu oberst) Ableitung und dann = 0 setzen und mit Solver =ME	
durch. Gesamtkosten Anstieg 0			von Grenzstückkosten (siehe fast zu oberst) Ableitung und dann = 0 setzen und mit Solver berechnen Grenzkosten und Grenzstückkosten gleichsetzen und dann	
Grenzkosten = Stückkosten			addieren / subtrahieren u. dann auf 0 setzen & Solver, Calc Zero	
Grenzgewinn=0 im Verh zum Marktpr.			Grenzgewinn G'(x) mit Solver oder quadr. GI berechnen und dann Resultat mit Preis-Absatz-Funktion p(x) multiplizieren= GE/ME	
Grenzkosten=Grenzerlös (Output) Grenzkostenfunktion=horiz.			G'(x) 0 = E'(x) – K'(x) Grenzgewinn ermitteln und mit Solver ausrechnen → G'(x)=? ME Doppelte Ableitung der Grenzkostenfunktion K"(x) und dann	
Tangente		FAIF	auf Solver setzen und berechnen x=? ME dE =-0.5 (Erlösminderung) = -5	
Marktpreis, bei dem eine Preiserhöl Erlösminderung von ca. 0.5 GE			dp 0.1 (Preiserhöhung) $E'(p) = -5 \rightarrow p = ? GE/ME$ dx = 0.1 (Produktionsmengensteigerng) = 0,05	
Faktoreinsatzmenge, bei der zusätz Produktionsmenge um ca. 0.1 MEx	steigert		dr 2 (Faktoreinsatzmenge) $x'(r)= = 0.05 \rightarrow r=? MEr$ dk = -0.4 (Stückkostensenkung) = -0.4	
Output, bei dem die Stückkosten ur eine ME gesteigert			$ \frac{dx}{dx} \frac{1 \text{ (ME Steigerung)}}{k'(x)=} = -0.4 \rightarrow x=? \text{ ME} $ $ G(x) = E(x) - K(x) $	
maximaler Gewinn (Bei welcher Pro Gewinn)	oduktionsmenge	e erzielt man den maximalen	E'(x) = E(x) - K(x) $E'(x) = K'(x)$	
			1 = \-(-) ** \/*/	

Michael Baumli