Modular Arithmetic

Fix a positive integer m.

For any two integers a and b, we say a is **congruent** to b **modulo** m, denoted by $a \equiv b \pmod{m}$, if m divides the difference a - b evenly.

Intuitively, $a \equiv b \pmod{m}$ if a and b have the same remainder when each is divided by m.

For example, $7 \equiv 3 \pmod{4}$, $11 \equiv 1 \pmod{5}$, $5 \equiv -2 \pmod{7}$, $8 \equiv 0 \pmod{8}$.

Of course, $a \equiv a \pmod{m}$ for any m > 0.

Here are some nice properties:

- $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \Rightarrow a + c \equiv b + d \pmod{m}$
- $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \Rightarrow a c \equiv b d \pmod{m}$
- $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \Rightarrow ac \equiv bd \pmod{m}$
- $a \equiv b \pmod{m} \Rightarrow a^k \equiv b^k \pmod{m}$ for all integers k > 0

Example: $7 \equiv 3 \pmod{4}$, $1 \equiv 9 \pmod{4} \Rightarrow 8 \equiv 12$, $6 \equiv -6$, $7 \equiv 27 \pmod{4}$

Exercises:

$$2006 \equiv ?? \pmod{2}, ?? \pmod{3}, ?? \pmod{5}, ?? \pmod{10}, ??$$

 $-2006 \equiv ?? \pmod{2}, ?? \pmod{3}, ?? \pmod{5}, ?? \pmod{10}, ??$

Q: What is the advantage of using modular arithmetic?

A· To work with smaller numbers

Application #1: An integer > 0 is divisible by 3 if this integer's digit sum is divisible by 3. Here is an illustration by using modular arithmetic.

$$123456 = 1 \cdot 100000 + 2 \cdot 10000 + 3 \cdot 1000 + 4 \cdot 100 + 5 \cdot 10 + 6$$

= $1 \cdot 1 + 2 \cdot 1 + 3 \cdot 1 + 4 \cdot 1 + 5 \cdot 1 + 6 = 1 + 2 + 3 + 4 + 5 + 6 \pmod{3}$

Therefore, 123456 is divisible by 3
$$\Leftrightarrow$$
 123456 \equiv 0 (mod 3) \Leftrightarrow 1 + 2 + 3 + 4 + 5 + 6 \equiv 0 (mod 3) \Leftrightarrow the digit sum of 123456 is divisible by 3

Exercise: Use the divisibility test to determine if 123456789 is divisible by 3.

Here is an illustration by using modular arithmetic.

$$123453 = 1 \cdot 100000 + 2 \cdot 10000 + 3 \cdot 1000 + 4 \cdot 100 + 5 \cdot 10 + 3$$

$$\equiv 1 \cdot 1 + 2 \cdot 1 + 3 \cdot 1 + 4 \cdot 1 + 5 \cdot 1 + 3 \pmod{9} \equiv 1 + 2 + 3 + 4 + 5 + 3 \pmod{9}$$

Therefore, 123453 is divisible by 9 \iff 123453 \equiv 0 (mod 9)

 \Leftrightarrow 1 + 2 + 3 + 4 + 5 + 3 \equiv 0 (mod 9) \Leftrightarrow the digit sum of 123453 is divisible by 9

Exercise: Use the divisibility test to determine if 123456789 is divisible by 9.

Application #3: An integer > 0 is divisible by 11 if the alternating sum of this integer's digits is divisible by 11.

```
123453 = 1 \cdot 100000 + 2 \cdot 10000 + 3 \cdot 1000 + 4 \cdot 100 + 5 \cdot 10 + 3
\equiv 1 \cdot 10^5 + 2 \cdot 10^4 + 3 \cdot 10^3 + 4 \cdot 10^2 + 5 \cdot 10^1 + 3
\equiv 1(-1)^5 + 2(-1)^4 + 3(-1)^3 + 4(-1)^3 + 5(-1)^1 + 3 \pmod{11}
\equiv -1 + 2 - 3 + 4 - 5 + 3 \equiv 0 \pmod{11}
```

Exercise: Use the divisibility test to determine if 123456789 is divisible by 11.

Application #4: If (a, b, c) is a Pythagorean triple, i.e., $a^2 + b^2 = c^2$, such that a, b, and c can not be divided by any integer greater than 1, then one of a and b must be odd and the other must be even. (Familiar Pythagorean triples: (3, 4, 5), (5, 12, 13), (7, 24, 25), (8, 15, 17))

It is much easer to see why a and b can't be both even – otherwise, c will also be even. This is imply that a, b, and c will all be divisible by 2, a contradiction.

Assuming that both a and b are odd. Then, $a \equiv 1$, 3 (mod 4), $b \equiv 1$, 3 (mod 4). $\Rightarrow a^2 \equiv 1$, $b^2 \equiv 1 \pmod{4} \Rightarrow c^2 = a^2 + b^2 \equiv 2 \pmod{4}$.

However, $c \equiv 0, 1, 2, 3 \pmod{4} \Rightarrow c^2 \equiv 0, 1 \pmod{4}$. $\rightarrow \leftarrow$

Exercise: Show that $(m^2 - n^2, 2mn, m^2 + n^2)$ is a Pythagorean triple for any m, n > 0. Find a Pythagorean triple (117, ..., ...).

No, because $6a^2 - 5b \equiv 6a^2 \pmod{5} \equiv a^2 \pmod{5} \equiv 0, 1, 4 \neq 3 \pmod{5}$.

Exercise: Show that the equation $7a^2 - 3b = 2$ has no integer solutions.

Application #6: Finding the last few digits of an integer.

The last digit of $2006^3 \equiv 6^3 \equiv 6 \cdot 6 \cdot 6 \equiv 6 \pmod{10}$. The last two digits of $923^4 \equiv 23^4 \equiv (23)^2(23)^2 \equiv (29)(29) \equiv 41 \pmod{100}$. The last three digits of $1234998^{10} \equiv (-2)^{10} \equiv 2^{10} \equiv 1024 \equiv 24 \pmod{1000}$

Exercises:

- Find the last digit of 919⁵.
- Find the last two digits of 2006⁴.
- Find the last three digits of 959697⁵.

Application #7: Finding the last few digits of large powers of integers.

The last digit: Note that $k^4 \equiv 1 \pmod{10}$ for all k = 1, 3, 7, 9. Therefore, $923^{2006} \equiv 3^{2006} \equiv 3^{2004} \cdot 3^2 \equiv 1.9 \equiv 9 \pmod{10}$.

The last two digits: Note that $k^{40} \equiv 1 \pmod{10}$ for all $1 \le k \le 99$ and (k, 100) = 1Therefore, $923^{2006} \equiv 23^{2006} \equiv 23^{2000} \cdot 23^6 \equiv 1.148035889 \equiv 89 \pmod{100}$

The last three digits: Note that $k^{400} \equiv 1 \pmod{10}$ for all $1 \le k \le 999$ and (k, 1000) = 1Therefore, $923^{2006} \equiv 923^{2006} \equiv 923^{2000} \cdot 923^6 \equiv (-77)^6 \equiv 77^6 \equiv 208422380089 \equiv 89 \pmod{1000}$

Exercises:

- Find the last digit of 917^{50001} .
- Find the last two digits of 1234567^{50002} .
- Find the last three digits of 123456789⁵⁰⁰⁰³.
