Differential Geometry

Claudio Arezzo June 3, 2020

Contents

1 1 3

1 1

Definition 1.1. 1. A parametrized differentiable curve is a map $\alpha: I \to \mathbb{R}^3$, $I(a,b) \subset \mathbb{R}$.

- 2. the vector $\alpha'(t) = (x'(t), y'(t), z'(t))$ is called the **tangent vector** of α at $\alpha(t)$
- 3. α is called **planar** if there exists a plane $P \subset \mathbb{R}^3$ s.t. $\alpha(I) \subset P$. By a rigid motion $P = \{z = 0\}$ and $\alpha(t) = (x(t), y(t), 0)$
- 1. α is not required to be injective, e.g. $\alpha(t) = (t^3 4t, t^2 4)$

