

Ahmad Mongy Saad Aboelnaga Ahmad.Aboelnaga@ejust.edu.eg

Questions 1:2

- 1) Obtain the 1's and 2's complements of the following binary numbers:
 - a. 00010000
 - b. 00000000
 - c. 11011010
 - c. 10101010

Solution:

Binary Number	1's complement	2's complement
a) 00010000	11101111	11110000
b) 00000000	11111111	100000000
c) 11011010	00100101	00100110
d) 10101010	01010101	01010110

- 2) Perform subtraction on the given unsigned binary numbers using the 2's complement of the subtrahend. Where the result should be negative, find its 2's complement and affix a minus sign:
 - a. 10011 10010
 - b. 100010 100110
 - c. 1001 110101
 - d. 101000 10101

Solution:

- a) $10011 10010 \rightarrow (10011 + 01110)_2 = 100001 \Rightarrow 00001$ (Discard the Carry)
- b) $100010 100110 \rightarrow (100010 + 011010)_2 = 111100 \Rightarrow -000100$
- c) $1001 110101 \rightarrow (1001 + 001011)_2 = 010100 \Rightarrow -101100$
- d) $101000-10101 \rightarrow (101000+01011)_2 = 110011 \Rightarrow 10011$ (Discard the Carry)

Questions 3 3) Formulate a weighted binary code for the decimal digits, using the following weights:

- a. 6, 3, 1, 1.
- b. 6, 4, 2, 1.

Solution:

Decimal digit	6,3,1,1	6,4,2,1
0	0000	0000
1	0001	0001
2	0011	0010
3	0100	0011
4	0101	0100
5	0111	0101
6	1000	1000
7	1001	1001
8	1011	1010
9	1100	1011
10	1101	1100
11	1111	1101
12		1110
13		1111

Questions 4:5

4) Describe how can we assign a binary code in some orderly manner to the 52 playing cards. Use the minimum number of bits.

Solution:

Each card of the 52 has one of four suits(symbols) and a number from 1 to 10 or face cards(King,Queen,Jack); therefore a binary code that indicates the suit and the card number or face will suffice. For that we need a total of 6-bits and we can do the following

	a (00) b (01) b (10) co (11)
	$ \spadesuit (00) \spadesuit (01) \spadesuit (10) \heartsuit (11)$
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
King	1011
Queen	1100
Jack	1101

5) Convert decimal 6,514 to both BCD and ASCII codes. For ASCII, an even parity bit is to be appended at the left.

Solution:

In BCD : $6\ 5\ 1\ 4 \Rightarrow 0110\ 0101\ 0001\ 0100$

In ASCII : 6 5 1 4 \Rightarrow 00110110 00110101 10110001 10110100 1st bit of every ASCII is the even parity bit

Questions 6:8

6) Decode the following ASCII code: 1010011 1110100 1100101 1110110 1100101 0100000 1001010 1101111 1100010 1110011.

Solution:

S t e v e SP J o b s \rightarrow Steve Jobs

- 7) The following is a string of ASCII characters whose bit patterns have been converted into hexadecimal for compactness: 73 F4 E5 76 E5 4A EF 62 73. Of the eight bits in each pair of digits, the leftmost is a parity bit. The remaining bits are the ASCII code:
 - a. Convert the string to bit form and decode the ASCII.
 - b. Determine the parity used: odd or even?

Solution:

a)

In bit form:

Decoded ASCII:

s t e v e J o b s \rightarrow steveJobs

- b) Odd Parity is used
- 8) What bit must be complemented to change an ASCII letter from capital to lowercase and vice versa?

Solution:

Only bit-6 as capital letters start with 100 while lowercase letters start with 110 and both uppercase and lowercase letters agree on the remaining 4 bits

Questions 9

- 9) The state of a 12-bit register is 100010010111. What is the decimal equivalent of its content in each case if it represents?
 - a. Three decimal digits in BCD.
 - b. Three decimal digits in the excess-3 code.
 - c. Three decimal digits in the 8.4 2 1 code.
 - d. A binary number.

Solution:

- a) (897)
- b) (564)
- c) (871)
- d) (2199)

Tools used in creating this document:

- Texmaker 5.0.4
- Spyder IDE 5.1.5 with python 3.8.5
- ©All questions in this file has been adapted from the sheet provided by the course instructor, I have only reorganized the sheet and attempted to answer it. Please do not share without the permission of the owner.

Ahmad.Aboelnaga@ejust.edu.eg ID:120200033, CSE01