8. Storage Interface

Special Topics in Computer Systems:

Modern Storage Systems (IC820-01)

Instructor:

Prof. Sungjin Lee (sungjin.lee@dgist.ac.kr)

DAS, NAS, and SAN

- Directly-Attached Storage (DAS)
 - Direct-attached storage device
 - Generally attached/dedicated to a specific server

Application File System Protocols: SATA, SAS, NVMe Storage

DAS, NAS, and SAN (Cont.)

- Network-Attached Storage (NAS)
 - Connected to a server via a network
 - Can be shared or dedicated

DAS, NAS, and SAN (Cont.)

- Storage-Area Network (SAN)
 - Connected to a server via a storage network
 - Can be shared or dedicated

Outline

- Directly-Attached Storage (DAS)
- Network-Attached Storage (NAS)
- Storage-Area Network (SAN)

Storage Interface

- Hard drives and SSDs use four major interfaces to communicate with the host system
 - PATA: Parallel Advanced Technology Attachment
 - SATA: Serial Advanced Technology Attachment
 - SAS: Serial-Attached SCSI
 - NVMe: NVMe over peripheral component interconnect express
 - DIMM: The memory channel

Parallel ATA

- A direct connection to the 16-bit ISA bus introduced with the IBM PC/AT
 - Use the Integrated Drive Electronics (IDE) protocol
 - With a 16-bit bus, two bytes are transmitted per bus transaction
 - Double-edge clocking mechanism for DMA transfers

100 MB/s =

25 MHz strobe x **2** (double data rate clocking) x **16 bits** per edge / 8 bits per byte

- Provide up to the maximum throughput of 133 MB/s
 - No further development

Motherboard sockets

IDE Cable

Serial ATA

- The proactive evolution of the ATA interface from a parallel bus to a serial bus architecture
 - Overcome the electrical constraints that are increasing the difficulty of continued speed enhancements of the parallel communication
 - Use either the IDE or Intel's Advanced Host Controller Interface (AHCI) protocol

150 MB/s =

1500 MHz clock x 1 bit per clock x 8b/10b encoding / 8 bits per byte

■ SATA 3.0 provides up to 600 MB/s throughput

SATA Cable and Connector

Serial-Attached SCSI

- Based on Small Computing System Interface (SCSI) by a floppy disk maker
 - Improved to support a parallel bus later
- Higher performance with full duplex
 - The link can transfer data to and from the device simultaneously
- High reliability and scalability
 - High-Availability (HA): two ports for failover, error recovery, and error correction
 - A large number of disks: up to 255
 - But, need a special controller (e.g., HBA)
- SAS 3.0 provides up to 1.2 GB/s throughput

PCIe/NVMe

- For nonvolatile memory attached to a computer over the high-speed PCIe bus (which is devised to support graphics)
- Provide much greater storage bandwidth than SATA and SAS
 - Support multiple lanes (e.g., 1x, 2x, 4x, 8x, 16x): 1 GB/s per lane (PCIe 3.0)
 - Support multiple queues for better performance
 - 65,535 command queues (c.f., a single queue in AHCI)
 - 65,535 outstanding commands (c.f., 32 in AHCI)
 - Support full duplex

NVMe SSD with M.2 form factor

DIMM

- The fastest interface to the CPU, outperforming the NVMe/PCIe interface
 - Storage media is seen as byte-addressable memory
 - No interrupt interrupts and deterministic latency
- Products available in market
 - NVDIMM-N:
 - Standard DRAM with the addition of NAND flash that stores DRAM's data in event of power failure
 - NVDIMM-F:
 - Connect multiple SSDs to the DRAM bus
 - Optane DIMM: (Introduced in 2019)
 - Based on Intel's 3D-Xpoint memory

Summary

Interface	Mnemonic Meaning	Transfer Speed	Characteristics
SATA	Serial ATA	0.6 GB/s	Low cost
SAS	Serial Attached SCSI	1.2 GB/s	Supports multiple ports Error detection/correction
NVMe	Nonvolatile memory express over PCIe	1 GB/s per lane (3.0) 2 GB/s per lane (4.0)	Up to 16 lanes High command queue support
DIMM	Nonvolatile memory on memory channel	Up to 1 GB/s over 64-bit bus	Very low latency No interrupt Deterministic

- NVMe is becoming a standard interface both for desktop or server systems based on its high performance
- Optane DIMM will be alternative that will replace costly DRAM and slow SSD cache

Storage Bandwidth Hierarchy

Outline

- Directly-Attached Storage (DAS)
- Network-Attached Storage (NAS)
- Storage-Area Network (SAN)

Evolution of Storage System

Computation & Storage Separation

- Computation and storage are often separated in large scale systems
 - Scalability: add new application or storage servers depending on client's needs
 - Better management: automatically back up user data
 - Availability / Reliability: failure of a single server does not affect other servers
 - Sharing: easy to share user contents
 - Cost: thin provisioning, deduplication, and compression

NAS Detail

- Provides file-level access to storage
 - Ethernet connectivity through TCP/IP
 - NFS (Network File System)
 - CIFS (Common Internet File System)
 - SMB (Server Message Block)
- Networked file system allows for concurrent access to data
- Several layers between data request and receipt

NFS*

- A distributed file system protocol developed by Sun Microsystems in 1984
- Allow a user on a client computer to access files over a computer network much like local storage is accessed
- The NFS is an open standard defined in a Request for Comments (RFC), allowing anyone to implement the protocol

^{*} Design and Implementation of the Sun Network Filesystem, USENIX ATC '85

Enterprise NAS Server

- Responsible for servicing user requests over the network
- Hardware specification is similar to high-end enterprise servers
- Perform lots of jobs internally

[Solidfire HW Architecture]

Enterprise NAS Server Features

- Support various file-sharing protocols
 - Windows (CIFS), UNIX (NFS), Web (HTTP), FTP
- Disk management
 - Manage many disks (32 ~ 250 HDDs or SSDs)
- Scales from GBs to TBs
 - Scale up & scale out
- Fault tolerant
 - Dual, redundant, hot-swap components
- Data protection
 - RAID, Backup to disks & tape
- Management software
 - Manage & setup from remote location
- Diagnostic software
 - Predictive failure analysis and alters

NAS Gateway

Offers benefits and characteristics of NAS

- Connect to IP networks
- Performs as a file server
- Heterogeneous file sharing
- Data protection
- Clustering and failover features

NAS gateway is a NAS appliance with one exception

- Supports direct attachment to Fibre Channel storage or connection to a storage device across SAN
- Do not have integrated disks for data storage

Outline

- Directly-Attached Storage (DAS)
- Network-Attached Storage (NAS)
- Storage-Area Network (SAN)

SAN Detail

- SAN storage devices are connected over the network to servers
- Provides block-level storage that can be accessed by the applications running on any networked servers

Differences between SAN and NAS

- While SANs provide block-level storage for servers, a NAS device provides file-level storage for end users
- OS sees a SAN as a disk, while they see a NAS device as a file server
- → Latest storage boxes support ether NAS, SAN, or both, depending on configuration

SAN Architecture

Fibre Channel

- Fibre Channel (FC) stands for a set of protocols, technologies and services used to build a "classic" SAN network
 - Fibre Channel Protocol (FCP) data transfer protocol that lets through SCSI commands.
 - Fibre optic infrastructure used to transmit data to and/or from FC devices.
 - Name Service acts as a database for connected devices. It is quite similar to a domain name system (DNS).
 - Set of flow control service.

Fibre Channel (Cont.)

- "FC SAN" implies a storage network built up of dedicated hardware adapters and switches, connected using fiber optics
 - As the network is developed for high-loaded storage devices, it uses a strong cyclic redundancy check (CRC) – data is not corrupted when transmitted
 - Fewer retransmissions compared to TCP/IP and connection retries due to loss of data
 - More isolated compared to TCP/IP-based networks lower security risks
 - Support 8Gbps, 16Gbps, and 32Gbps

Disadvantage

Expensive – FC requires buying special network switches and storage adapters

iSCSI

- The basic concept of iSCSI is simply putting SCSI commands inside of a typical TCP/IP channel
 - Just install iSCSI Target/Initiator software onto your storage server and its clients
- Ethernet and TCP/IP are widely deployed and dominant
 - Well understood technology; Low acquisition cost; Unlimited distance
 - A scalable technology with 10/100/1000/10000 Mbps
 - Allow the creation of a single physical network using familiar standards
 - VLAN may be used for separating storage traffic from intranet traffic
 - Bring interoperability & Ethernet economics to storage

iSCSI (Cont.)

- **TCP/IP** over Ethernet are designed for common usage
- No strong data flow controls or built-in storage discovery services
 - IP addresses of iSCSI storage and clients, frame sizes, LUN visibility, etc
 - Optimize the network for large data block transfers to get relatively high performance
 - Hardware-accelerated network adapters to offload iSCSI processing from a host server or client

iSCSI Connectivity

- Initiators and targets can be implemented in H/W or S/W
- Session between initiator and target
 - One or more TCP connections per session
 - Login phase begins each connection
- Services (e.g., authentication, security) negotiated during login
- TCP protocol provides
 - Delivery of SCSI commands in order
 - Recovery from lost connections

CPU Load

TCP/IP Overhead

- Every TCP/IP connection that is part of an iSCSI session has processing overhead
 - Connection setup / teardown
 - TCP state machine:
 - Acknowledge, timeout, and retransmission
 - Window management
 - Congestion control
 - Checksum calculation
 - TCP segmentation
- *TCP/IP Offload Engine* (TOE) helps at GbE NICs!
 - 1 GbE links will not require full integrated TOEs
 - Increasing CPU performance might be sufficient
 - For higher than 10 GbE, TOE is necessary!

iSCSI & TOE Adapters

Outline

- Directly-Attached Storage (DAS)
- Network-Attached Storage (NAS)
- Storage-Area Network (SAN)
 - NVMe-over-Fabric (NVMe-oF)

NVMe-oF

- NVMe-OF is a communication protocol that allows one computer to access
 NVMe devices attached to another computer
 - Contrary to the standard NVMe protocol where NVMe devices are connected directly to PCIe bus
- Combined with remote direct-memory access (RDMA)
 - One computer can access another computer's memory as if that memory actually resided within the first computer
 - Don't need to go through the OS's I/O stack run at speeds closer to the speed of memory
- Implemented over Ethernet or InfiniBand
- NVMe-oF will replace iSCSI in the future!

Why NVMe-oF?

 Protocol conversion bridge is required to access the data over network which increases I/O latency

Why NVMe-oF? (Cont.)

- NVMe-oF removes a burden on converting iSCSI comds to NVME cmds
- Enable us to take advantage of unique features of NVMe devices like multiple-queue architectures for fast storage

Front End Fabric

Back End Fabric

What is RDMA?

- RDMA is a host-offload, host-bypass technology that allows an application (including storage) to make data transfers directly to/from another application's memory space
- The RDMA-capable Ethernet NICs (RNICs) not the host manage reliable connections between source and destination
- Applications communicate with the RDMA NIC using dedicated Queue Pairs (QPs) and Completion Queues (CQs)
 - Suitable for the NVMe architecture

Benefits of RDMA

- Bypass of system SW stack components that processes network traffic
 - For user applications, RDMA bypasses the kernel altogether
 - For kernel applications, RDMA bypasses the OS stack and the system drivers
- Direct data placement of data from one machine (real or virtual) to another machine – without copies
- Increased bandwidth while lowering latency, jitter, and CPU utilization
- Great for networked storage!

How NVMe-oF w/ RDMA Works?

NVMe-oF initiator

NVMe-oF target

End of Chapter 8