ENE 3031 - Fall 2014

Homework3 Solution

#1.

$$X_0 = 27, \ a = 8, \ c = 47, \ m = 100$$

$$X_1 = (8 \times 27 + 47) \bmod{100} = 63, \ R_1 = 63/100 = .63$$

$$X_2 = (8 \times 63 + 47) \bmod{100} = 51, \ R_2 = 51/100 = .51$$

 $X_3 = (8 \times 51 + 47) \mod 100 = 55, \quad R_3 = 55/100 = .55$

#2.

Let ten intervals be defined each from (10i-9) to (10i) where $i=1,2,\ldots,10$. By counting the numbers that fall within each interval and comparing this to the expected value for each interval, $E_i = 10$, the following table is generated:

Interval	O_i	$(O_i - E_i)^2 / E_i$
(01-10)	9	0.1
(11-20)	9	0.1
(21-30)	9	0.1
(31-40)	6	1.6
(41-50)	17	4.9
(51-60)	5	2.5
(61-70)	10	0.0
(71-80)	12	0.4
(81-90)	7	0.9
(91-00)	16	3.6
	100	$14.2 = \chi_0^2$

From Table A.6, $\chi^2_{.05,9} = 16.9$. Since $\chi^2_0 < \chi_{.05,9}$, then the null hypothesis of no difference between the sample distribution and the uniform distribution is not rejected.

#3.

	Case (a)	Case (b)	Case (c)	Case (d)
i	X_i	X_i	X_i	X_{i}
0	7	8	7	8
1	13	8	1	8
2	15		7	8
3	5			
4	7			

Inferences:

Maximum period, p = 4, occurs when X_0 is odd and a = 3 + 8k where k = 1. Even seeds have the minimal possible period regardless of a.

#4.

N=20

of runs (A) = 12

$$E(A) = 2*20/3 = 40/3 = 13$$

 $Var(A) = 16*20-29/90 \approx 3.23333$

 $Z0 = (12-13)/sqrt(3.23333) \approx -0.55613$

If alpha = 0.10, then 0.55613 < 1.645 and fail to reject H0.

If alpha = 0.05, then 0.55613 < 1.96 and also fail to reject H0.

Thus, they are approximately independent.

#5.

Step 1.

$$cdf = F(x) = \begin{cases} 1 - x + x^2/4, & 2 \le x < 3 \\ x - x^2/12 - 2, & 3 < x \le 6 \end{cases}$$

Step 2. Set F(X) = R on $2 \le X \le 6$

Step 3. Solve for X to obtain

$$X = \left\{ \begin{array}{ll} 2 + 2\sqrt{2} & 0 \le R \le 1/4 \\ 6 - 2\sqrt{3} - 3R & 1/4 < R \le 1 \end{array} \right.$$

The true mean is (a+b+c)/3 = (2+3+6)/3 = 11/3.