VLSI Design Verification and Testing

Built-In Self-Test (BIST) - 2

Mohammad Tehranipoor

Electrical and Computer Engineering

University of Connecticut

23 April 2007

1

Overview: Logic BIST

- Motivation
- Built-in Logic Block Observer (BILBO)
- Test / clock systems
- Test / scan systems
- Circular self-test path (CSTP) BIST
- Circuit initialization
- Test point insertion
- Summary

Motivation

- Complex systems with multiple chips demand elaborate logic BIST architectures
 - BILBO and test / clock system
 - Shorter test length, more BIST hardware
 - STUMPS & test / scan systems
 - Longer test length, less BIST hardware
 - Circular Self-Test Path
 - Lowest hardware, lower fault coverage
- Benefits: cheaper system test, Cost: more hardware.
- Must modify fully synthesized circuit for BIST to boost fault coverage
 - Initialization, test point hardware

23 April 2007

3

Built-in Logic Block Observer (BILBO)

- Combined functionality of D flip-flop, pattern generator, response compacter, & scan chain
 - Reset all FFs to 0 by scanning in zeros

Example BILBO Usage

- SI Scan In
- 50 Scan Out
- Characteristic polynomial: $1 + x + ... + x^n$
- CUTs A and C: BILBO1 is MISR, BILBO2 is LFSR
- **BILBO1** is LFSR, BILBO2 is MISR CUT B:

23 April 2007

BILBO Serial Scan Mode

- *B*1 *B*2 = "00"
- Dark lines show enabled data paths

Test / Clock System Example

- New fault set tested every clock period
- Shortest possible pattern length
 - · 10 million BIST vectors, 200 MHz test / clock
 - $Test\ Time = 10,000,000\ /\ 200\ x\ 10^6 = 0.05\ s$
 - Shorter fault simulation time than test / scan

Test / Scan Systems

- STUMPS architecture
- Alternative test per scan systems
- Advantages and limitations of test/scan systems

23 April 2007

11

STUMPS: Architecture and example

- SR1 ... SRn 25 full-scan chains, each 200 bits
- 500 chip outputs, need 25 bit MISR (not 5000 bits)

STUMPS

Test procedure:

- 1. Scan in patterns from LFSR into all scan chains (200 clocks)
- 2. Switch to normal functional mode and clock 1 x with system clock
- 3. Scan out chains into MISR (200 clocks) where test results are compacted
 - Overlap Steps 1 & 3

Requirements:

- Every system input is driven by a scan chain
- Every system output is caught in a scan chain or drives another chip being sampled

23 April 2007

Alternative Test / Scan Systems SI LFSR Scan Register SRI LFSR Scan Register SRI CUT CUT CUT SO MISR Scan Register SRO (a) Simple system. (b) Alternative system.

Test / Scan System

- New fault tested during 1 clock vector with a complete scan chain shift
- Significantly more time required per test than test / clock
 - Advantage: Judicious combination of scan chains and MISR reduces MISR bit width
 - Disadvantage: Much longer test pattern set length, causes fault simulation problems
- Input patterns time shifted & repeated
 - Become correlated reduces fault detection effectiveness
 - Use XOR network to phase shift & decorrelate

23 April 2007

BILBO vs. STUMPS vs. ATE

15

- LSSD: Level-sensitive scan design
- ATE rate: 325 MHz
 System clock rate: 1 GHz
- P = # patterns L = max. scan chain length
- $CP = clock period = 10^{-9} s$
- Test times BILBO: Px CP STUMPS: Px Lx CP

ATE: $P \times L \times CP \times k$

External test & ATE: 307 x longer than BILBO

STUMPS: 100 x longer than BILBO

Due to extra scan chain shifting

Circular Self-Test Path (CSTP) BIST

- Combine pattern generator and response compacter into a single device
- Use synthesized hardware flip-flops configured as a circular shift register
 - Non-linear mathematical BIST system
 - · Superposition does not hold
 - Flip-flop self-test cell XOR's D with Q state from previous FF in CSTP chain
- MISR characteristic polynomial: $f(x) = x^n + 1$
- Hard to compute fault coverage

Examples of CSTP Systems

- CSTP BIST for 4 ASICs at Lucent Technologies:
 - Tested everything on 3 of the 4, except for:
 - Input/Output buffers and Input MUX
- BIST overheads: logic 20 %, chip area 13 %
- Stuck-at fault coverage 92 %

23 April 2007

19

Circuit Initialization

- Full-scan BIST shift in scan chain seed before starting BIST
- Partial-scan BIST critical to initialize all FFs before BIST starts
 - Otherwise we clock Xs into MISR and signature is not unique and not repeatable
- Discover initialization problems by:
 - 1. Modeling all BIST hardware
 - 2. Setting all FFs to X's
 - 3. Running logic simulation of CUT with BIST hardware

23 April 2007

20

Circuit Initialization (continued)

- If MISR finishes with BIST cycle with Xs in signature, Design-for-Testability initialization hardware must be added
- Add MS (master set) or MR (master reset) lines on flip-flops and excite them before BIST starts
- Otherwise:
 - 1. Break all cycles of FF's
 - 2. Apply a partial BIST synchronizing sequence to initialize all FF's
 - 3. Turn on the MISR to compact the response

23 April 2007

Isolation from System Inputs

- Must isolate BIST circuits and CUT from normal system inputs during test:
 - Input MUX
 - Blocking gates
 - AND gate apply 0 to 2nd AND input, block normal system input
- Note: Neither all of the *Input MUX* nor the blocking gate hardware can be tested by BIST
 - Must test externally or with Boundary Scan (covered later)

Test Point Insertion

- BIST does not detect all faults:
 - Test patterns not rich enough to test all faults
- Modify circuit after synthesis to improve signal controllability
- Observability addition Route internal signal to extra FF in MISR or XOR into existing FF in MISR

23 April 2007

23

Summary

- Logic BIST system architecture --
 - Advantages:
 - Higher fault coverage
 - At-speed test
 - Less system test, field test & diagnosis cost
 - Disadvantage: Higher hardware cost
- Architectures: BILBO, test / clock, test / scan
- Needs DFT for initialization, and test points

23 April 2007

24