UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y TRIGONOMETRIA 522115 Listado 5 (Números Complejos)

1.	Pruebe	aue	para	todo	z	\in	\mathbb{C}
T •	I I GCCC	que	para	ouc	\sim	_	•

a)
$$z \neq 0 \Longrightarrow |z^{-1}| = |z|^{-1}$$
.

$$d)$$
 $Im(iz) = Re(z),$

b)
$$Re(z) \le |z|$$
, $Im(z) \le |z|$,

$$e)$$
 $\overline{z^2} = (\overline{z})^2,$

c)
$$z \neq 0 \Longrightarrow z^{-1} = \frac{\overline{z}}{|z|^2},$$

$$f$$
) $(z - \overline{z})^2 \le 0$.

2. Demuestre que
$$\forall n \in \mathbb{N}$$
:

$$a) \quad i^{4n} = 1.$$

$$b)$$
 $i^{4n+1} = i$,

a)
$$i^{4n} = 1$$
, b) $i^{4n+1} = i$, c) $i^{4n+2} = -1$, d) $i^{4n+3} = -i$.

$$d) \quad i^{4n+3} = -i$$

a)
$$(1+i)^{40}$$

a)
$$(1+i)^{40}$$
, b) $(1-i)^{21}$,

c)
$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{16}$$
.

Evalúe los siguientes números complejos:

$$a) \quad \frac{1}{2+3i},$$

$$c) \quad i + \frac{1}{i^{11}},$$

b)
$$-4(1+\frac{i}{12})+4(1-\frac{1}{12i}),$$

$$d) \quad \frac{1+2i}{(1-2i)(-1-i)}.$$

Encuentre los valores de $x, y \in \mathbb{R}$ que satisafacen las siguientes ecuaciones:

a)
$$2(x+yi) = i(3-4i),$$

c)
$$(1+i)(x-yi) = i(14+7i) - (2+13i),$$

b)
$$(2-5i)x + (1+3i)y = 8-9i$$
,

d)
$$i^2(1-i)(1+i) = 3x + yi + i(y+xi)$$
.

6. Encuentre los valores de z = x + yi tal que:

$$a) \quad z^2 = i,$$

$$c) \quad iz = x + 1 + 2yi,$$

$$|z| = 1 - 2x + yi,$$

$$b) \quad |z-4| = z,$$

c)
$$iz = x + 1 + 2yi$$
, e) $|z| = 1 - 2x + yi$, d) $\left| \frac{z - 12}{z - 8i} \right| = 0$, f) $|z| - z = 1 + 2i$.

$$f) \quad |z| - z = 1 + 2i$$

7. Describir el conjunto de puntos z que satisfacen la condición dada.

$$a) \quad |z| \le 2$$

c)
$$|z+1-2i| > 3$$
.

1

c)
$$|z+1-2i| > 3$$
. e) $Re\left(\frac{1}{z}\right) \le \frac{1}{2}$

$$b) \quad |z - 5i| = 0$$

b)
$$|z - 5i| = 0;$$
 d) $Im(z - 4 + 2i) \le 3;$ f) $Re((1 + i)z) < 0.$

$$f) \quad Re((1+i)z) < 0$$

Escriba los siguientes números complejos en su forma polar.

$$a)$$
 $z=-7i,$

c)
$$z = \frac{\sqrt{3}}{4} - \frac{1}{4}i$$
,

b)
$$z = 6\sqrt{3} - 6i$$
,

d)
$$z = 5 + 5\sqrt{2}i$$
.

Escriba las siguiente expresiones en la forma x+yi y en la forma polar.

$$a) \quad (-2+2i)^5,$$

$$c) (1+i)^{\frac{-1}{4}},$$

$$e) \quad \left[2cis\left(\frac{-\pi}{3}\right)\right]^{-4},$$

b)
$$\left[3cis\left(\frac{-\pi}{4}\right)\right]^4$$
, d) $\frac{(1-i)^{13}}{1+i^{13}}$,

$$d) \quad \frac{(1-i)^{13}}{1+i^{13}}$$

$$f) \quad \frac{1+i\sqrt{3}}{1-i\sqrt{3}}$$

Utilice la fórmula de De Moivre para demostrar que:

a)
$$\cos(3\alpha) = 4\cos^3(\alpha) - 3\cos(\alpha)$$
,

a)
$$\cos(3\alpha) = 4\cos^3(\alpha) - 3\cos(\alpha)$$
, b) $\sin(3\alpha) = -4\sin^3(\alpha) + 3\sin(\alpha)$.

Para $a, b \in \mathbb{R}$, considere el producto (1 + ai)(1 + bi) y el argumento de cada uno de los factores para:

a) Verificar que:
$$\arctan (a) + \arctan (b) = \arctan \left(\frac{a+b}{1-ab}\right)$$
.

b) Demostrar que:
$$\frac{\pi}{4} = \arctan \left(\frac{1}{2}\right) + \arctan \left(\frac{1}{3}\right)$$
.

c) Encontrar una fórmula para:
$$\arctan \operatorname{tg}(a) + \operatorname{arc} \operatorname{tg}(b) + \operatorname{arc} \operatorname{tg}(c)$$
.

Resuelva las siguientes ecuaciones:

$$a) \quad z^2 + i = \sqrt{3},$$

c)
$$z^4 - i = 1$$
,

c)
$$z^4 - i = 1$$
, e) $z^{\frac{2}{3}} - i = 0$,

$$b) \quad z^6 - 2z^3 + 2 = 0,$$

$$d) \quad 5z^2 + 2z + 10 = 0,$$

b)
$$z^6 - 2z^3 + 2 = 0$$
, d) $5z^2 + 2z + 10 = 0$, f) $z^8 - \frac{\sqrt{3} + i}{\sqrt{3} - i} = 0$.

Determine todos los valores posibles de las siguientes expresiones:

$$a) \quad \sqrt[4]{1+i},$$

c)
$$\sqrt[3]{8}$$
,

$$e)$$
 $\sqrt[3]{i}$

b)
$$\sqrt{4\sqrt{3}-4i}$$

$$d) \quad \sqrt[5]{-i}$$

$$f) \quad \sqrt[4]{16 + 16i}$$

h)
$$\sqrt[3]{-125}$$

14. Pruebe que:
$$\forall n \in \mathbb{N} : (1 + i\sqrt{3})^n + (1 - i\sqrt{3})^n = 2^{n+1}\cos\left(\frac{n\pi}{3}\right)$$
.

15. Pruebe que: $\forall z \neq 0 \in \mathbb{C}, \forall p \in \mathbb{Q}: |z^p| = |z|^p$. Use este resultado para calcular:

a)
$$|(1-i)^{10}|$$
,

b)
$$|\sqrt[10]{8i-8}|$$
.

JAL

Primer Semestre de 2005.