SEQUENCE LISTING

<110> van Rooijen, Gijs Keon, Richard Glenn Boothe, Joseph Shen, Yin

Sileit, 11ii													
<120> Commercial Production of Chymosin in Plants													
<130> 9369-153													
<140> <141>													
<160> 4													
<170> PatentIn Ver. 2.0													
<210> 1 <211> 1173 <212> DNA <213> Bovine													
<220> <221> CDS <222> (1)(1173)													
<400> 1													
atg aac ttc ctt aag tct ttc cct ttc tac gct ttc ctt tgt ttc ggt 48 Met Asn Phe Leu Lys Ser Phe Pro Phe Tyr Ala Phe Leu Cys Phe Gly 1 5 10 15													
caa tac ttc gtt gct gtt act cac gct gct gag atc acc cgc att cct 96 Gln Tyr Phe Val Ala Val Thr His Ala Ala Glu Ile Thr Arg Ile Pro 20 25 30													
ctc tac aaa ggt aag tct ctc cgt aag gcg ctg aag gaa cat gga ctt 144 Leu Tyr Lys Gly Lys Ser Leu Arg Lys Ala Leu Lys Glu His Gly Leu 35 40 45													
cta gaa gac ttc ttg cag aaa caa cag tat ggc atc agc aag tac 192 Leu Glu Asp Phe Leu Gln Lys Gln Gln Tyr Gly Ile Ser Ser Lys Tyr 50 55 60													
tcc ggc ttc ggt gaa gtt gct agc gtg cca ctt acc aac tac ctt gat Ser Gly Phe Gly Glu Val Ala Ser Val Pro Leu Thr Asn Tyr Leu Asp 65 70 75 80													
agt caa tac ttt ggg aag atc tac ctc gga acc ccg cct caa gag ttc 288 Ser Gln Tyr Phe Gly Lys Ile Tyr Leu Gly Thr Pro Pro Gln Glu Phe 85 90 95													
acc gtt ctc ttt gat act ggt tcc tct gac ttc tgg gtt ccc tct atc 336 Thr Val Leu Phe Asp Thr Gly Ser Ser Asp Phe Trp Val Pro Ser Ile 100 105 110													
tac tgc aag agc aat gcc tgc aag aac cac caa aga ttc gat ccg aga 384 Tyr Cys Lys Ser Asn Ala Cys Lys Asn His Gln Arg Phe Asp Pro Arg 115 120 125													
aag tcg tcc acc ttc cag aac tta ggc aaa ccc ttg tct ata cac tac 432 Lys Ser Ser Thr Phe Gln Asn Leu Gly Lys Pro Leu Ser Ile His Tyr 130 135 140													

ggt aca ggt agc atg caa gga atc tta ggc tat gat acc gtc act gtc

480

Gly 145	Thr	Gly	Ser	Met	Gln 150	Gly	Ile	Leu	Gly	Tyr 155	Asp	Thr	Val	Thr	Val 160	
tcc Ser	aac Asn	att Ile	gtg Val	gac Asp 165	att Ile	caa Gln	cag Gln	aca Thr	gta Val 170	gga Gly	ctt Leu	agc Ser	acc Thr	caa Gln 175	gaa Glu	528
cca Pro	ggt Gly	gat Asp	gtc Val 180	ttc Phe	acc Thr	tat Tyr	gca Ala	gaa Glu 185	ttc Phe	gat Asp	ggc Gly	atc Ile	ctt Leu 190	ggt Gly	atg Met	576
				ctc Leu												624
				cac His												672
				cag Gln												720
				gga Gly 245												768
				act Thr												816
				gga Gly												864
				agc Ser												912
				cag Gln												960
agc Ser	tac Tyr	atg Met	cct Pro	aca Thr 325	gtt Val	gtc Val	ttt Phe	gag Glu	atc Ile 330	aac Asn	ggc Gly	aag Lys	atg Met	tac Tyr 335	cca Pro	1008
				gcc Ala												1056
				gag Glu												1104
ttc Phe	att Ile 370	cgt Arg	gag Glu	tac Tyr	tac Tyr	agc Ser 375	gtc Val	ttt Phe	gac Asp	agg Arg	gcc Ala 380	aac Asn	aac Asn	ctc Leu	gtt Val	1152
				gca Ala		tga										1173

<210> 2 <211> 390 <212> PRT

<213> Bovine

<400> 2 Met Asn Phe Leu Lys Ser Phe Pro Phe Tyr Ala Phe Leu Cys Phe Gly Gln Tyr Phe Val Ala Val Thr His Ala Ala Glu Ile Thr Arg Ile Pro Leu Tyr Lys Gly Lys Ser Leu Arg Lys Ala Leu Lys Glu His Gly Leu Leu Glu Asp Phe Leu Gln Lys Gln Gln Tyr Gly Ile Ser Ser Lys Tyr Ser Gly Phe Gly Glu Val Ala Ser Val Pro Leu Thr Asn Tyr Leu Asp Ser Gln Tyr Phe Gly Lys Ile Tyr Leu Gly Thr Pro Pro Gln Glu Phe 85 90 95 Thr Val Leu Phe Asp Thr Gly Ser Ser Asp Phe Trp Val Pro Ser Ile 100 Tyr Cys Lys Ser Asn Ala Cys Lys Asn His Gln Arg Phe Asp Pro Arg Lys Ser Ser Thr Phe Gln Asn Leu Gly Lys Pro Leu Ser Ile His Tyr 135 Gly Thr Gly Ser Met Gln Gly Ile Leu Gly Tyr Asp Thr Val Thr Val Ser Asn Ile Val Asp Ile Gln Gln Thr Val Gly Leu Ser Thr Gln Glu Pro Gly Asp Val Phe Thr Tyr Ala Glu Phe Asp Gly Ile Leu Gly Met 185 Ala Tyr Pro Ser Leu Ala Ser Glu Tyr Ser Ile Pro Val Phe Asp Asn Met Met Asn Arg His Leu Val Ala Gln Asp Leu Phe Ser Val Tyr Met 215 Asp Arg Asn Gly Gln Glu Ser Met Leu Thr Leu Gly Ala Ile Asp Pro 230 235 Ser Tyr Tyr Thr Gly Ser Leu His Trp Val Pro Val Thr Val Gln Gln 250 Tyr Trp Gln Phe Thr Val Asp Ser Val Thr Ile Ser Gly Val Val Val Ala Cys Glu Gly Gly Cys Gln Ala Ile Leu Asp Thr Gly Thr Ser Lys 280 Leu Val Gly Pro Ser Ser Asp Ile Leu Asn Ile Gln Gln Ala Ile Gly Ala Thr Gln Asn Gln Tyr Gly Glu Phe Asp Ile Asp Cys Asp Asn Leu 310 315 Ser Tyr Met Pro Thr Val Val Phe Glu Ile Asn Gly Lys Met Tyr Pro 325 330 335330 Leu Thr Pro Ser Ala Tyr Thr Ser Gln Asp Gln Gly Phe Cys Thr Ser

350

Gly Phe Gln Ser Glu Asn His Ser Gln Lys Trp Ile Leu Gly Asp Val 355 360 365

Phe Ile Arg Glu Tyr Tyr Ser Val Phe Asp Arg Ala Asn Asn Leu Val 370 375 380

Gly Leu Ala Lys Ala Ile 385 390

<210> 3

<211> 3957

<212> DNA

<213> Artificial Sequence

<220>

<221> CDS

<222> (1554)..(2726)

<220>

<223> Description of Artificial Sequence: Figure 2

<400> 3

ctgcaggaat tcattgtact cccagtatca ttatagtgaa agttttggct ctctcgccgg 60 tggttttta cctctattta aaggggtttt ccacctaaaa attctggtat cattctcact 120

ttacttgtta ctttaatttc tcataatctt tggttgaaat tatcacgctt ccgcacacga 180

tatccctaca aatttattat ttgttaaaca ttttcaaacc gcataaaatt ttatgaagtc 240

ccgtctatct ttaatgtagt ctaacatttt catattgaaa tatataattt acttaatttt 300

agcgttggta gaaagcataa agatttattc ttattcttct tcatataaat gtttaatata 360

caatataaac aaattettta eettaagaag gattteeeat titatattit aaaaatatat 420

ttatcaaata tttttcaacc acgtaaatct cataataata agttgtttca aaagtaataa 480

aatttaactc cataattttt ttattcgact gatcttaaag caacacccag tgacacaact 540

agccattttt ttctttgaat aaaaaaatcc aattatcatt gtattttttt tatacaatga 600

aaatttcacc aaacaatcat ttgtggtatt tctgaagcaa gtcatgttat gcaaaattct 660

ataattccca tttgacacta cggaagtaac tgaagatctg cttttacatg cgagacacat 720

cttctaaagt aattttaata atagttacta tattcaagat ttcatatatc aaatactcaa 780

tattacttct aaaaaattaa ttagatataa ttaaaatatt acttttttaa ttttaagttt 840

aattgttgaa tttgtgacta ttgatttatt attctactat gtttaaattg ttttatagat 900

agtttaaagt aaatataagt aatgtagtag agtgttagag tgttacccta aaccataaac 960

tataacattt atggtggact aattttcata tatttcttat tgcttttacc ttttcttggt 1020

atgtaagtcc gtaactagaa ttacagtggg ttgccatggc actctgtggt cttttggttc 1080

atgcatgggt cttgcgcaag aaaaagacaa agaacaaaga aaaaagacaa aacagagaga 1140

caaaacgcaa tcacacaacc aactcaaatt agtcactggc tgatcaagat cgccgcgtcc 1200

atgtatgtct aaatgccatg caaagcaaca cgtgcttaac atgcacttta aatggctcac 1260

ccatctcaac ccacacacaa acacattgcc tttttcttca tcatcaccac aaccacctgt 1320 atatatteat tetetteege caceteaatt tetteaette aacacagte aacetgeata 1380 tgcgtgtcat cccatgccca aatctccatg catgttccaa ccaccttctc tcttatataa 1440 Met aac ttc ctt aag tct ttc cct ttc tac gct ttc ctt tgt ttc ggt caa 1604 Asn Phe Leu Lys Ser Phe Pro Phe Tyr Ala Phe Leu Cys Phe Gly Gln tac ttc gtt gct gtt act cac gct gct gag atc acc cgc att cct ctc 1652 Tyr Phe Val Ala Val Thr His Ala Ala Glu Ile Thr Arg Ile Pro Leu 25 tac aaa ggt aag tct ctc cgt aag gcg ctg aag gaa cat gga ctt cta 1700 Tyr Lys Gly Lys Ser Leu Arg Lys Ala Leu Lys Glu His Gly Leu Leu 35 gaa gac ttc ttg cag aaa caa cag tat ggc atc agc agc aag tac tcc 1748 Glu Asp Phe Leu Gln Lys Gln Gln Tyr Gly Ile Ser Ser Lys Tyr Ser ggc ttc ggt gaa gtt gct agc gtg cca ctt acc aac tac ctt gat agt 1796 Gly Phe Gly Glu Val Ala Ser Val Pro Leu Thr Asn Tyr Leu Asp Ser caa tac ttt ggg aag atc tac ctc gga acc ccg cct caa gag ttc acc 1844 Gln Tyr Phe Gly Lys Ile Tyr Leu Gly Thr Pro Pro Gln Glu Phe Thr 90 1892 gtt ctc ttt gat act ggt tcc tct gac ttc tgg gtt ccc tct atc tac Val Leu Phe Asp Thr Gly Ser Ser Asp Phe Trp Val Pro Ser Ile Tyr 105 tgc aag agc aat gcc tgc aag aac cac caa aga ttc gat ccg aga aag 1940 Cys Lys Ser Asn Ala Cys Lys Asn His Gln Arg Phe Asp Pro Arg Lys 1988 tcg tcc acc ttc cag aac tta ggc aaa ccc ttg tct ata cac tac ggt Ser Ser Thr Phe Gln Asn Leu Gly Lys Pro Leu Ser Ile His Tyr Gly 135 140 aca ggt agc atg caa gga atc tta ggc tat gat acc gtc act gtc tcc 2036 Thr Gly Ser Met Gln Gly Ile Leu Gly Tyr Asp Thr Val Thr Val Ser 155 aac att gtg gac att caa cag aca gta gga ctt agc acc caa gaa cca 2084 Asn Ile Val Asp Ile Gln Gln Thr Val Gly Leu Ser Thr Gln Glu Pro 165 170 ggt gat gtc ttc acc tat gca gaa ttc gat ggc atc ctt ggt atg gca 2132 Gly Asp Val Phe Thr Tyr Ala Glu Phe Asp Gly Ile Leu Gly Met Ala 185 tac cca tcg ctc gcg tca gag tac tcg ata cct gtg ttt gac aac atg 2180 Tyr Pro Ser Leu Ala Ser Glu Tyr Ser Ile Pro Val Phe Asp Asn Met 195 200 205 atg aac cga cac cta gta gct caa gac ttg ttc tcg gtt tac atg gac 2228 Met Asn Arg His Leu Val Ala Gln Asp Leu Phe Ser Val Tyr Met Asp 220

agg aat ggc cag gag agc atg ctc acg ctt gga gct att gat cca tcc 227 Arg Asn Gly Gln Glu Ser Met Leu Thr Leu Gly Ala Ile Asp Pro Ser 230 235 240	6
tac tac aca gga tct ctt cac tgg gtt cca gtc act gtg cag cag tac 232 Tyr Tyr Thr Gly Ser Leu His Trp Val Pro Val Thr Val Gln Gln Tyr 245 250 255	4
tgg caa ttc act gtg gac agt gtc acc atc agc ggt gtg gtt gtt gca 237 Trp Gln Phe Thr Val Asp Ser Val Thr Ile Ser Gly Val Val Val Ala 260 265 270	2
tgt gaa ggt gga tgt caa gct atc ttg gat acc ggt acg tcc aag ctg 242 Cys Glu Gly Gly Cys Gln Ala Ile Leu Asp Thr Gly Thr Ser Lys Leu 275 280 285	0
gtc gga cct agc agc gac att ctc aac att cag caa gct att gga gcc 246 Val Gly Pro Ser Ser Asp Ile Leu Asn Ile Gln Gln Ala Ile Gly Ala 290 295 300 305	8
aca cag aac cag tac ggt gag ttt gac ata gat tgc gac aac ctt agc 251 Thr Gln Asn Gln Tyr Gly Glu Phe Asp Ile Asp Cys Asp Asn Leu Ser 310 315 320	.6
tac atg cct aca gtt gtc ttt gag atc aac ggc aag atg tac cca ctg 256 Tyr Met Pro Thr Val Val Phe Glu Ile Asn Gly Lys Met Tyr Pro Leu 325 330 335	4
acc ccc tcc gcc tat acc agc cag gat caa ggg ttc tgc acc agt gga 261 Thr Pro Ser Ala Tyr Thr Ser Gln Asp Gln Gly Phe Cys Thr Ser Gly 340 345 350	2
ttc cag agt gag aac cat tcc cag aaa tgg atc ttg gga gat gtg ttc 266 Phe Gln Ser Glu Asn His Ser Gln Lys Trp Ile Leu Gly Asp Val Phe 355 360 365	0
att cgt gag tac tac agc gtc ttt gac agg gcc aac aac ctc gtt ggg 270 Ile Arg Glu Tyr Tyr Ser Val Phe Asp Arg Ala Asn Asn Leu Val Gly 370 385	8
cta gct aaa gca atc tga agcttaataa gtatgaacta aaatgcatgt 275 Leu Ala Lys Ala Ile 390	6
aggtgtaaga gctcatggag agcatggaat attgtatccg accatgtaac agtataataa 281	.6
ctgageteca teteaettet tetatgaata aacaaaggat gttatgatat attaacaete 287	6
tatctatgca ccttattgtt ctatgataaa tttcctctta ttattataaa tcatctgaat 293	6
cgtgacggct tatggaatgc ttcaaatagt acaaaaacaa atgtgtacta taagactitc 299	6
taaacaattc taactttagc attgtgaacg agacataagt gttaagaaga cataacaatt 305	6
ataatggaag aagtttgtct ccatttatat attatatatt acccacttat gtattatatt 311	.6
aggatgttaa ggagacataa caattataaa gagagaagtt tgtatccatt tatatattat 317	6
atactaccca tttatatatt atacttatcc acttatttaa tgtctttata aggtttgatc 323	6
catgatattt ctaatatttt agttgatatg tatatgaaag ggtactattt gaactctctt 329	6
actetgtata aaggttggat eateettaaa gtgggtetat ttaattttat tgettettae 335	6
agataaaaaa aaaattatga gttggtttga taaaatattg aaggatttaa aataataata 341	6

aataataaat aacatataat atatgtatat aaatttatta taatataaca tttatctata 3476

<210> 4 <211> 390 <212> PRT <213> Artificial Sequence

Gln Tyr Phe Val Ala Val Thr His Ala Ala Glu Ile Thr Arg Ile Pro 20 25 30

Leu Tyr Lys Gly Lys Ser Leu Arg Lys Ala Leu Lys Glu His Gly Leu 35 40 45

Leu Glu Asp Phe Leu Gln Lys Gln Gln Tyr Gly Ile Ser Ser Lys Tyr 50 55 60

Ser Gly Phe Gly Glu Val Ala Ser Val Pro Leu Thr Asn Tyr Leu Asp 65 70 75 80

Ser Gln Tyr Phe Gly Lys Ile Tyr Leu Gly Thr Pro Pro Gln Glu Phe 85 90 95

Thr Val Leu Phe Asp Thr Gly Ser Ser Asp Phe Trp Val Pro Ser Ile 100 105 110

Tyr Cys Lys Ser Asn Ala Cys Lys Asn His Gln Arg Phe Asp Pro Arg 115 120 125

Lys Ser Ser Thr Phe Gln Asn Leu Gly Lys Pro Leu Ser Ile His Tyr 130 135 140

Gly Thr Gly Ser Met Gln Gly Ile Leu Gly Tyr Asp Thr Val Thr Val 145 150 155

Ser Asn Ile Val Asp Ile Gln Gln Thr Val Gly Leu Ser Thr Gln Glu 165 170 175

Pro Gly Asp Val Phe Thr Tyr Ala Glu Phe Asp Gly Ile Leu Gly Met 180 185 190

Ala Tyr Pro Ser Leu Ala Ser Glu Tyr Ser Ile Pro Val Phe Asp Asn 195 200 205

Met Met Asn Arg His Leu Val Ala Gln Asp Leu Phe Ser Val Tyr Met 210 215 220

Asp A: 225	rg Asn	Gly	Gln	Glu 230	Ser	Met	Leu	Thr	Leu 235	Gly	Ala	Ile	Asp	Pro 240
Ser T	yr Tyr	Thr	Gly 245	Ser	Leu	His	Trp	Val 250	Pro	Val	Thr	Val	Gln 255	Gln
Tyr T	rp Gln	Phe 260	Thr	Val	Asp	Ser	Val 265	Thr	Ile	Ser	Gly	Val 270	Val	Val
Ala C	ys Glu 275	Gly	Gly	Cys	Gln	Ala 280	Ile	Leu	Asp	Thr	Gly 285	Thr	Ser	Lys
	al Gly 90	Pro	Ser	Ser	Asp 295	Ile	Leu	Asn	Ile	Gln 300	Gln	Ala	Ile	Gly
Ala Ti 305	hr Gln	Asn	Gln	Tyr 310	Gly	Glu	Phe	Asp	Ile 315	Asp	Cys	Asp	Asn	Leu 320
Ser T	yr Met	Pro	Thr 325	Val	Val	Phe	Glu	Ile 330	Asn	Gly	Lys	Met	Tyr 335	Pro
Leu T	hr Pro	Ser 340	Ala	Tyr	Thr	Ser	Gln 345	Asp	Gln	Gly	Phe	Cys 350	Thr	Ser
Gly P	he Gln 355	Ser	Glu	Asn	His	Ser 360	Gln	Lys	Trp	Ile	Leu 365	Gly	Asp	Val
	le Arg 70	Glu	Tyr	Tyr	Ser 375	Val	Phe	Asp	Arg	Ala 380	Asn	Asn	Leu	Val
Gly Lo 385	eu Ala	Lys	Ala	Ile 390										