

Probabilistic Graphical Models in Bioinformatics

Lecture 4: Conditional probability distributions; Gaussian Bayesian networks

Factorization and parametrization

P(I, D, G, S, L) = P(I) P(D) P(G|I, D) P(S|I) P(L|G)

Conditional probability distributions (CPD)

Tabular CPD

- Encode $P(X|Pa(X_i))$ as a table.
- Proper CPD requires all non-negative values and $\sum_{x} P(X = x | Pa(X_i)) = 1$

- Disadvantages?
 - Limited to discrete values
 - Number of parameters is exponential in the number of parents

С	В	D=1	D=0		
0	0	0.1	0.9		
0	1	0.7	0.3		
1	0	0.8	0.2		
1	1	0.9	0.1		

General CPD

• CPD $P(X \mid y_1, ..., y_k)$ specifies distribution over X for each assignment $y_1, ..., y_k$ but does not have to do so by listing each such value explicitly

• Different possibilities: deterministic CPDs, tree-structured CPDs, rule-based CPDs, linear Gaussian, ...

Deterministic CPDs

- Simplest type of non-tabular CPD
- X is a deterministic function of its parents Pa_X

$$P(x \mid pa_X) = \begin{cases} 1 & x = f(pa_X) \\ 0 & \text{otherwise.} \end{cases}$$

- Examples:
 - Binary variables: X is "or" of its parents, X = Y or Z.
 - Continuous variables: for example a linear function of its parents X=Y-3Z+1

Deterministic CPDs & independencies

 Need to modify d-separation in the presence of deterministic CPDs

C is a deterministic function of A and B.

• Not necessarily true if C were a non-deterministic function of its parents.

Context-specific CPDs

- Two common choices
 - Tree CPDS
 - Rule CPDs

• A tree-CPD for $P(J \mid A, S, L)$

$$J \perp_c L, S \mid A = a^0$$

Context-specific CPDs-Rule CPDs

• A rule-based CPD for $P(X \mid A, B, C)$

$$\begin{array}{lll} \rho_{1}:\langle a^{1},b^{1},x^{0};0.1\rangle & \rho_{2}:\langle a^{1},b^{1},x^{1};0.9\rangle \\ \rho_{3}:\langle a^{0},c^{1},x^{0};0.2\rangle & \rho_{4}:\langle a^{0},c^{1},x^{1};0.8\rangle \\ \rho_{5}:\langle b^{0},c^{0},x^{0};0.3\rangle & \rho_{6}:\langle b^{0},c^{0},x^{1};0.7\rangle \\ \rho_{7}:\langle a^{1},b^{0},c^{1},x^{0};0.4\rangle & \rho_{8}:\langle a^{1},b^{0},c^{1},x^{1};0.6\rangle \\ \rho_{9}:\langle a^{0},b^{1},c^{0};0.5\rangle & \rho_{8}:\langle a^{1},b^{0},c^{1},x^{1};0.6\rangle \end{array}$$

Corresponding tree-CPD

Results in the following CPD

X	$a^{0}b^{0}c^{0}$	$a^{0}b^{0}c^{1}$	$a^0b^1c^0$	$a^0b^1c^1$	$a^{1}b^{0}c^{0}$	$a^{1}b^{0}c^{1}$	$a^1b^1c^0$	$ \begin{array}{r} a^1b^1c^1 \\ 0.1 \\ 0.9 \end{array} $
x^0	0.3	0.2	0.5	0.2	0.3	0.4	0.1	0.1
x^1	0.7	0.8	0.5	0.8	0.7	0.6	0.9	0.9

Generalized linear models

- Independence of causal influence
 - The combined influence of the X_i 's on Y is a simple combination of the influence of each of the X_i 's on Y in isolation.

• Let Y be a binary-valued with k parents X_1, \ldots, X_k

$$P(y^1 \mid X_1, \dots, X_k) = \operatorname{sigmoid}(w_0 + \sum_{i=1}^k w_i X_i).$$

$$\operatorname{sigmoid}(z) = \frac{e^z}{1 + e^z}.$$

Easily extendable to multivariate Y

Continuous variables

Linear Gaussian model

Examples of continuous variables: weight, blood pressure, glucose level

 Nothing in formulation of Bayesian networks requires restricting attention to discrete variables

- Linear Gaussian model
 - Continuous variable Y with continuous parents X_1, \dots, X_k

$$p(Y \mid x_1, ..., x_k) = N(\beta_0 + \beta_1 x_1 + ... + \beta_k x_k; \sigma_Y^2)$$

Question

•
$$p(B) = N(\beta_{B,0}; \sigma_B^2)$$

•
$$p(D) = N(\beta_{D,0}; \sigma_D^2)$$

•
$$p(A \mid B, D) = N(\beta_{A,0} + \beta_{A,1}b + \beta_{A,2}d; \sigma_A^2)$$

•
$$p(C \mid B, D) = N(\beta_{C,0} + \beta_{C,1}b + \beta_{C,2}d; \sigma_C^2)$$

- How many parameters?
- Inference: e.g. $P(-3 < C < 3 \mid A = 2)$

Multivariate Gaussians

- Univariate Gaussian is defined in terms of two parameters: a mean and a variance $N(\mu, \sigma^2)$.
- A multivariate Gaussian distribution over $X_1, ..., X_n$ is characterized by an n-dimensional mean vector μ and a symmetric $n \times n$ covariance matrix Σ .
- The joint density function:

$$p(\boldsymbol{x}) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right]$$
 the determinant of Σ

Example

$$\mu = \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & -5 \\ \hline -2 & -5 & 8 \end{pmatrix}$$

• X_3 is negatively correlated with X_1 : when X_1 goes up, X_3 goes down (and similarly for X_3 and X_2).

Alternative parametrization of multivariate Gaussians

• Information matrix (or precision matrix) is defined as inverse covariance matrix $J = \Sigma^{-1}$.

$$-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu}) = -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^T J(\boldsymbol{x} - \boldsymbol{\mu})$$
$$= -\frac{1}{2} \left[\boldsymbol{x}^T J \boldsymbol{x} - 2 \boldsymbol{x}^T J \boldsymbol{\mu} + \boldsymbol{\mu}^T J \boldsymbol{\mu} \right]$$

• The formulation of Gaussian density in information form

$$p(\boldsymbol{x}) \propto \exp\left[-\frac{1}{2}\boldsymbol{x}^T J \boldsymbol{x} + (J \boldsymbol{\mu})^T \boldsymbol{x}\right]$$

Marginalization

• Given joint Gaussian distribution over $\{X,Y\}$ where $X \in \mathcal{R}^n$ and $Y \in \mathcal{R}^m$:

$$p(X,Y) = \mathcal{N}\left(\left(\begin{array}{c} \mu_X \\ \mu_Y \end{array}\right); \left[\begin{array}{cc} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{array}\right]\right)$$

where Σ_{XX} is a matrix of size $n \times n$, Σ_{XY} is a matrix of size $n \times m$, Σ_{YY} is a matrix of size $m \times m$.

• Marginal distribution over Y is a normal distribution $N(\mu_Y; \Sigma_{YY})$.

Marginal independencies:

- Let $X = X_1, ..., X_n$ have a joint normal distribution $N(\mu; \Sigma)$. Then X_i and X_j are independent if and only if $\Sigma_{i,j} = 0$.
- This property does not hold in general. For a non-Gaussian distribution, it is possible Cov(X,Y)=0 while X and Y are dependent.

Conditional independencies:

- Let $J=\Sigma^{-1}$ be the information matrix. Then $J_{i,j}=0$ if and only if $X_i\perp X_j\mid \mathcal{X}-\{X_i,X_j\}$
- Example: $J_{1,3} = 0$ indicates $X_1 \perp X_3 \mid X_2$. $J = \begin{pmatrix} 0.3125 & -0.125 & 0 \\ -0.125 & 0.5833 & 0.3333 \\ 0 & 0.3333 & 0.3333 \end{pmatrix}$

From linear Gaussian models to multivariate Gaussians

Theorem:

- Given:
 - Y be a linear Gaussian of its parents X_1, \dots, X_k
 - $X_1, ..., X_k$ are jointly Gaussian with distribution $N(\mu; \Sigma)$

 $P(Y \mid x) = N(\beta_0 + \boldsymbol{\beta}^T \mathbf{x}; \sigma^2)$

- Then:
 - $P(Y) = N(\mu_Y; \sigma_Y^2)$ where
 - $\mu_Y = \beta_0 + \boldsymbol{\beta}^T \boldsymbol{\mu}$
 - $\sigma_Y^2 = \sigma^2 + \boldsymbol{\beta}^T \Sigma \boldsymbol{\beta}$.
 - The joint distribution over $\{X, Y\}$ is a normal distribution where:
 - $Cov[X_i; Y] = \sum_{j=1}^k \beta_j \Sigma_{i,j}$

University of

Example: Consider the linear Gaussian network $X_1 \rightarrow X_2 \rightarrow X_3$, where

$$p(X_1) = \mathcal{N}(1;4)$$

 $p(X_2 \mid X_1) = \mathcal{N}(0.5X_1 - 3.5;4)$
 $p(X_3 \mid X_2) = \mathcal{N}(-X_2 + 1;3)$.

• Goal: computing the joint Gaussian distribution $p(X_1, X_2, X_3)$.

$$P(Y) = N(\mu_Y; \sigma_Y^2)$$
 where $\mu_Y = \beta_0 + \boldsymbol{\beta}^T \boldsymbol{\mu}$ $\sigma_Y^2 = \sigma^2 + \boldsymbol{\beta}^T \Sigma \boldsymbol{\beta}$. $Cov[X_i; Y] = \sum_{j=1}^k \beta_j \Sigma_{i,j}$

Computing the mean of X_2 and X_3 :

$$\mu_2 = 0.5\mu_1 - 3.5 = 0.5 \cdot 1 - 3.5 = -3$$

 $\mu_3 = (-1)\mu_2 + 1 = (-1) \cdot (-3) + 1 = 4.$

Computing the variance of X_2 and X_3 :

$$\Sigma_{22} = 4 + (1/2)^2 \cdot 4 = 5$$

 $\Sigma_{33} = 3 + (-1)^2 \cdot 5 = 8.$

Computing the covariance:

$$\Sigma_{12} = (1/2) \cdot 4 = 2$$
 $\Sigma_{23} = (-1) \cdot \Sigma_{22} = -5$
 $\Sigma_{13} = (-1) \cdot \Sigma_{12} = -2$.

$$p(X_1, X_2, X_3)$$
:

$$\mu = \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & -5 \\ -2 & -5 & 8 \end{pmatrix}$$

Probability query

Theorem 7.4

Let $\{X,Y\}$ have a joint normal distribution defined in equation (7.3). Then the conditional density

$$p(Y \mid \boldsymbol{X}) = \mathcal{N}\left(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{X}; \sigma^2\right),$$

is such that:

$$\beta_0 = \mu_Y - \Sigma_{YX} \Sigma_{XX}^{-1} \mu_X$$

$$\beta = \Sigma_{XX}^{-1} \Sigma_{YX}$$

$$\sigma^2 = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY}$$

Example: $P(X_1 | X_3 = 2)$?

$$\mu = \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 4 & 2 & -2 \\ 2 & 5 & -5 \\ -2 & -5 & 8 \end{pmatrix}$$

$$p(\boldsymbol{X},\boldsymbol{Y}) = \mathcal{N}\left(\left(\begin{array}{c} \boldsymbol{\mu}_{\boldsymbol{X}} \\ \boldsymbol{\mu}_{\boldsymbol{Y}} \end{array}\right); \left[\begin{array}{cc} \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}} & \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}} \\ \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{X}} & \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{Y}} \end{array}\right]\right)$$

Hybrid Models

Hybrid Models

- Incorporate both discrete and continuous variables
- We need to address two types of dependencies:
 - Case 1: the continuous variable X with continuous parents Y and discrete parents U.
 - Simplest solution: define different set of parameters for every value u $\in Val(U)$

$$p(X \mid \boldsymbol{u}, \boldsymbol{y}) = \mathcal{N}\left(a_{\boldsymbol{u},0} + \sum_{i=1}^{k} a_{\boldsymbol{u},i} y_i; \sigma_{\boldsymbol{u}}^2\right)$$

$$p(C) = \begin{cases} N(10+2b;1) & A=0\\ N(20-3b;4) & A=1 \end{cases}$$

Hybrid Models

- Case 2: discrete child with continuous parents
 - One possibility: generalized linear models
 - Example: a sensor has three values: low, medium, high
 - It depends on a continuous parent X.

Conditional Gaussian Bayesian Network

- A special case of hybrid models
- Also referred to as conditional linear Gaussian (CLG) model.

• Important: in this model, continuous variables cannot have discrete children.

- Distribution is a mixture of Gaussians
 - One component for each instantiation of discrete variables.

Conditional Gaussian Bayesian Network of Cachexia

