Supplementary Information

A molecular rheostat maintains ATP levels to drive a synthetic biochemistry system

Paul H. Opgenorth, Tyler P. Korman, Liviu Iancu and James U. Bowie#

Department of Chemistry and Biochemistry UCLA-DOE Institute for Genomics and Proteomics Molecular Biology Institute University of California, Los Angeles, Los Angeles, California

659 Boyer Hall UCLA 611 Charles E. Young Dr. E. Los Angeles, CA 90095-1570 (310) 206-4747 bowie@mbi.ucla.edu

Supplementary Results

Supplementary Note

Equations used for COPASI modeling

The copasi enzymatic equations 1-15 were used to model the production of Isobutanol from glucose using the described metabolic pathway consisting of glycolysis catabolic pathway and the isobutanol anabolic pathway. The equations were derived based off of established rate equations used to model yeast glycolysis.

Hexokinase vmax
$$\cdot A \cdot B$$

Kma \cdot Kmb $+ A \cdot$ Kmb $+ B \cdot$ Kma $+ A \cdot B$

$$\frac{\text{Vmax} \cdot A \cdot B}{\text{Kma} \cdot \text{Kmb} + A \cdot \text{Kmb} + B \cdot \text{Kma} + A \cdot B}$$
(2)

$$FBA \\ \frac{Vf \cdot \left(\text{substrate} - \frac{\text{productp \cdot productq}}{\text{Keq}} \right)}{\text{Kms} + \text{substrate} \cdot \left(1 + \frac{\text{productp}}{\text{Kip}} \right) + \frac{Vf}{\text{Vr \cdot Keq}} \cdot (\text{Kmq \cdot productp} + \text{Kmp \cdot productq} + \text{productp \cdot productq})}$$

$$GapN (5)$$

$$Vf \cdot \left(substratea \cdot substrateb - \frac{productp \cdot productq}{Keq} \right)$$

 $\frac{\text{Vf} \cdot \left(\text{substratea} \cdot \text{substrateb} - \frac{\text{productp} \cdot \text{productq}}{\text{Keq}} \right)}{\text{Substratea} \cdot \text{substratea} + \text{Kmb} \cdot \text{substratea} + \text{Kma} \cdot \text{substrateb} \cdot \left(1 + \frac{\text{productq}}{\text{Kiq}} \right) + \frac{\text{Vf}}{\text{Vr} \cdot \text{Keq}} \cdot \left(\text{Kmq} \cdot \text{productp} \cdot \left(1 + \frac{\text{substratea}}{\text{Kia}} \right) + \text{productq} \cdot \left(\text{Kmp + productp} \right) \right)}$

(6)

(7)

GapM6

$$\frac{\mathsf{Vmax} \cdot \left(A \cdot B \cdot C - \frac{P \cdot Q}{\mathsf{Keq}} \right)}{\mathsf{Keq}}$$

Kgap 'Knadp 'Kppi

$$\left(1 + \frac{A}{\mathsf{Kgap}}\right) \cdot \left(1 + \frac{B}{\mathsf{Knadp}}\right) \cdot \left(1 + \frac{C}{\mathsf{Kppi}}\right) + \frac{P}{\mathsf{Kbpg}} \cdot \left(1 + \frac{Q}{\mathsf{Knadph}}\right) - 1$$

PGK

 $\frac{ \text{Vf} \cdot \left(\text{substratea} \cdot \text{substrateb} - \frac{\text{productp} \cdot \text{productq}}{\text{Keq}} \right) }{ \text{substratea} \cdot \text{substratea} + \text{Kmb} \cdot \text{substratea} + \text{Kma} \cdot \text{substrateb} \cdot \left(1 + \frac{\text{productq}}{\text{Kiq}} \right) + \frac{\text{Vf}}{\text{Vr} \cdot \text{Keq}} \cdot \left(\text{Kmq} \cdot \text{productp} \cdot \left(1 + \frac{\text{substratea}}{\text{Kia}} \right) + \text{productq} \cdot \left(\text{Kmp} + \text{productp} \right) \right) }$

PGM (8)

Vf 'substrate Vr 'product Kms Kmp

$$1 + \frac{\text{substrate}}{\text{Kms}} + \frac{\text{product}}{\text{Kmp}}$$

(9)**Enolase**

Vf $\cdot \left(\text{substrate} - \frac{\text{product}}{\text{Keq}} \right)$

substrate $\cdot \left(1 + \frac{\text{product}}{\text{Kii}}\right) + \text{Kms} \cdot \left(1 + \frac{\text{product}}{\text{Kmp}}\right)$

Pyk (10)vmax · A · B

 $Kma \cdot Kmb + A \cdot Kmb + B \cdot Kma + A \cdot B$

AlsS (11)

vmax · A · B

 $Kma \cdot Kmb + A \cdot Kmb + B \cdot Kma + A \cdot B$

$$\frac{\text{IlvC}}{\text{Vf} \cdot \left(\text{substratea} \cdot \text{substrateb} - \frac{\text{productp} \cdot \text{productq}}{\text{Keq}}\right)}{\text{substratea} \cdot \text{substratea} + \text{Kmb} \cdot \text{substratea} + \text{Kma} \cdot \text{substrateb} \cdot \left(1 + \frac{\text{productq}}{\text{Kiq}}\right) + \frac{\text{Vf}}{\text{Vr} \cdot \text{Keq}} \cdot \left(\text{Kmq} \cdot \text{productp} \cdot \left(1 + \frac{\text{substratea}}{\text{Kia}}\right) + \text{productq} \cdot \left(\text{Kmp} + \text{productp}\right)\right)}$$

$$IIvD Vf \cdot \left(\text{substrate} - \frac{\text{product}}{\text{Keq}}\right)$$
 (13)

$$\text{substrate} \cdot \left(1 + \frac{\text{product}}{\text{Kii}}\right) + \text{Kms} \cdot \left(1 + \frac{\text{product}}{\text{Kmp}}\right)$$

Km + substrate

$$\frac{\text{YahK}}{\text{Vf} \cdot \left(\text{substratea} \cdot \text{substrateb} - \frac{\text{productp} \cdot \text{productq}}{\text{Keq}}\right)}{\text{substratea} \cdot \text{substratea} + \text{Kmb} \cdot \text{substratea} + \text{Kma} \cdot \text{substrateb} \cdot \left(1 + \frac{\text{productq}}{\text{Kiq}}\right) + \frac{\text{Vf}}{\text{Vr} \cdot \text{Keq}} \cdot \left(\text{Kmq} \cdot \text{productp} \cdot \left(1 + \frac{\text{substratea}}{\text{Kia}}\right) + \text{productq} \cdot \left(\text{Kmp} + \text{productp}\right)\right)}$$

Supplementary Figures

Supplementary Figure 1. Detailed schematic of the stoichiometric pathway and rheostat pathway

Supplementary Figure 2. *Engineering of mGAPDH*. A crystal structure of GsGapDH bound to NAD+ is shown with a modeled phosphate at the 2' position to indicate how NADP+ could bind.

Supplementary Figure 3. Enzyme activity over time in 0, 4, and 8% isobutanol

Supplementary Figure 4. Activity of *Hexokinase*, *GapN and KivD incubated in various concentrations of isobutanol.*

Supplementary Tables

Supplementary Table 1. ATPase activity in enzyme preparations.

	ATPase
Enzyme	2Activity*
	(nm/μg/hour)
Sc Hk	0.71
Gt PgiA	0.12
Gs PfkA	0.18
Sa FBA	0.15
Gs TPI	0.06
Sm GapN	0.07
Gs PGK	6.28
Gs PGM	0.09
Ec Enolase	0.17
Ec PykF	0.06
Bs AlsS	0.15
Ec IIvC	0.36
Re IlvD	0.10
Ll KivD	0.19
Ec YahK	0.35

^{*} The background ATPase (no enzyme control) at room temperature is 0.8 nm/hour

Supplementary Table 2. Kinetic parameters for the wild-type and mGapDH enzymes

Enzyme	Cofactor	kcat (μM/min/mg)	KM (mM)	kcat/Km
ganDU M/T	NAD+	21.8 ± 2.6	1.5 ± 0.3	14.5
gapDH WT	NADP+	1.2 ± 0.1	1.6 ± 0.5	2.1
ma Cam DIII	NAD+	0.2 ± 0.04	0.6 ± 0.4	0.4
mGapDH	NADP+	3.2 ± 0.1	0.3 ± 0.04	11.9

Supplementary Table 3. Enzymes and Expression conditions.

Enzyme	Name	Accession number	Source Organism	Expression Time	expression Temp (C°)
Sc Hk	Hexokinase	-	S. Cerevisiae	N/A	N/A
Gt PgiA	Phosphoglucoisomerase	ABO68222	G. thermodenitrificans NG80-2	Overnight	37
Gs PfkA	Phosphoglucokinase	KOR92562	G. stearothermophilus ATCC12980	Overnight	18
Sa FBA	Fructose 1,6 bisphosphate aldolase	BAR10119	S. aureus subsp. Aureus	Overnight	18
Gs TPI	Triose Phosphate isomerase	KOR95273	G. stearothermophilus ATCC12980	Overnight	37
Sm GapN	Non- phosphorylating Glyceraldehyde 3 phosphate dehydrogenase	NP_J721104	S. mutans	Overnight	18
Gs mGapDH	Phosphorylating Glyceraldehyde-3- phosphate Dehydrogenase	WP_033015082	G. stearothermophilus ATCC12980	Overnight	18
Gs PGK	Phosphoglycerate Kinase	WP_033015089	G. stearothermophilus ATCC12980	Overnight	18
Gs PGM	Phosphoglycerate Mutase	KOR95274	G. stearothermophilus ATCC12980	Overnight	37
Ec Enolase	Enolase	NP_417259	E. coli K12 sp MG1655	Overnight	18
Ec PykF	Pyruvate Kinase	NP_416191	E. coli K12 sp MG1655	Overnight	18
Bs AlsS	Acetolactate Synthase	NP_391482	B. Subtilis subtilis 168	Overnight	18
Ec IIvC	Ketol-Acid Reductoisomerase	AKK14493	E. coli K12 sp MG1655	Overnight	18
Re IlvD	Dihydroxy-Acid Dehydratase	Q0K4J3	R. eutropha	Overnight	18
Ll KivD	Keto-Isovalerate Decarboxylase	CAG34226	L. lactis subsp. Lactis	Overnight	18
Ec YahK	Alcohol Dehydrogenase	NC_000913.3	E. coli K12	3 hours	37

Supplementary Table 4. Enzyme assay conditions

enzyme	coupled enzymes	cofactors	metabolites
hexokinase	zwf	0.5mM NADP+	5mM glucose
Pgi	Pfk, Pyk, LDH	0.25mM NADH, 5mM PEP, 1mM ATP	5mM glucose-6-phosphate
Pfk	Pyk, LDH	0.25mM NADH, 5mM PEP, 1mM ATP	5mM fructose-6-phosphate
Ald	GapN, Tpi	0.5mM NADP+	5mM fructose-1,6-bisphosphate
GapN	Ald, Tpi	0.5mM NADP+	5mM fructose-1,6-bisphosphate
GapM6	Ald, Tpi, PGK	0.5mM NADP+	5mM fructose-1,6-bisphosphate
PGK	GapM6,	0.25mM NADPH, 0.5mM, 1mM ATP	2.5mM 3-phosphoglycerate
		0.25mM NADPH, 0.5mM, 1mM ATP, .25 mM 2,3	
Pgm	PGK, GapM6	BPG*	2.5mM 2-phosphoglycerate
eno	Pyk, LDH	0.25mM NADH, 5mM PEP,1mM ATP	2.5mM 2-phosphoglycerate
Pyk	LDH	0.25mM NADH, 1mM ATP	5mM PEP
AlsS	IIvC	0.25mM NADPH	5mM pyruvate
IlvC	AlsS	0.25mM NADPH	5mM pyruvate
IlvD	KivD, YahK	0.25mM NADPH	2.5mM 2,3-dihydroxyisovalerate
KivD	YahK	0.25mM NADPH	2.5 mM 2-ketoisovalerate
YahK	KivD	0.25mM NADPH	2.5 mM 2-ketoisovalerate

^{*2,3} BPG is an allosteric activator

Supplementary Table 5. Enzyme activity and units added for the final reaction

Enzyme	Stock concentration (mg/mL)	Enzyme Activity (uM/min/mg)	Units/mL added to reaction
Sc Hk	2.73	7.2 ± 0.1	0.025
Gt PgiA	5.7	19.2 ± 0.2	1.094
Gs PfkA	8.49	9.6 ± 0.2	3.260
Sa FBA	9.84	21.1 ± 0.3	8.305
Gs TPI	12.75	96.6 ± 5.4	12.317
Sm GapN	16.09	20.6 ± 2.7	9.944
Gs Gap M6	4.47	7.9 ± 0.4	0.177
Gs PGK	6.28	102.3 ± 2.9	3.212
Gs PGM	12.16	97.2 ± 13.0	17.729
Ec Enolase	26.09	82.5 ± 0.1	53.485
Ec PykF	16.39	365.3 ± 37.9	299.363
Bs AlsS	6.22	6.94 ± 1.22	1.727
Ec IIvC	21.43	0.88 ± 0.23	1.509
Re IlvD	11.58	3.4 ± 0.3^{1}	1.575
Ll KivD	6.27	13.39 ± 2.28	0.672
Ec YahK	2.18	3.64 ± 0.37	0.635

Supplementary Table 6. COPASI modeling parameters used

Enzyme	Vmax	Km (forward)	Km (reverse)	Keq
Sc Hk	7.2	glucose: 0.08 ATP: 0.15	g6p: 30 ADP: 0.2	2000
Gt PgiA	19.2	g6p: 1.4	f6p: 0.3	0.29
Gs PfkA	9.6	f6p: 0.1 ATP: 0.7	f1,6bp: 0.1 ADP: 0.7	5
Sa FBA	21.1	F1,6bp: 0.3	g3p: 0.3	0.1
Sm GapN	20.6	g3p: 0.1 NADP+: 0.2	3pg: 0.5 NADPH: 0.3	10
Gs Gap M6	7.9	g3p: 0.3 NADP+: 0.3	1,3bpg: 0.3 NADPH: 0.3	10
Gs PGK	6.28	1,3bpg: 0.03 ADP: 0.2	3pg: 0.5 ATP: 0.3	3200
Gs PGM	12.16	3pg: 0.2	2pg: 0.08	0.2
Ec Enolase	26.09	2pg: 0.04	pep: 0.5	6.7
Ec PykF	16.39	pep: 0.14 ATP: 2.1		irreversible
Bs AlsS	6.22	pyr: 3.2		irreversible
Ec IIvC	0.88	aclac: 0.5 NADPH: 0.3	2,3dhv: 0.5 NADP+: 0.3	0.2
Re IlvD	11.58	2,3dhv: 0.3	2kiv: 0.5	0.3
Ll KivD	6.27	2kiv: 0.1		Irreversable
Ec YahK	3.64	isobual: 0.4 NADPH: 0.1	Isobuol: 0.3 NADP: 0.3	5

Supplementary Table 7. List of primers used in this work

	Enzyme	Primer Sequence (F: Forward Primer, R: Reverse Primer, M: Mutagenic Primer)
1	Hex	From sigma
2	Pgi	F: 5' GGTGCCGCGCGCAGCCATATGACCCATATTCGTTTCGAC 3' R: 5' CAGTGGTGGTGGTGGTGCTCGAGTTATTTCAACCGTTTCTCCAGTTC 3'
3	Pfk	F: 5' CCTGGTGCCGCGCGCAGCCATATGAAACGCATTGGTGTGTTG 3' R: 5' CAGTGGTGGTGGTGGTGCTCGAGTTAAATGGACAATTCTTTCGAC 3'
4	Fba	F: 5' GCCGCGCGCAGCCATATGAATAAAGAGCAATTAGAAAAAATGAAAAATGGAAAAAGGC 3' R: 5' GGTGGTGGTGGTGCTCGAGTTAGTTTTTGTTTACAGATGCGTCGTAG 3'
5	Трі	F: 5' GGTGCCGCGCGCACCATATGAGAAAACCGATCATTGCAGG 3' R: 5' GGTGGTGGTGGTGCTCGAGTTACTCATGACGCCCCGC 3'
6	GapN	F: 5' TTAACTTTAAGAAGGAGATATACCATGGGCATGACAAAACAATATAAAAATTATGTC 3' R: 5' GTGGTGGTGGTGGTGCTCGAGTTTGATATCAAATACGACGGATTTAAC 3'
7	mGap	F: 5' CCTGGTGCCGCGCGCAGCCATATGGCAGTCAAAGTGGGAATCAAC 3' R: 5' CAGTGGTGGTGGTGGTGCTCGAGTTACAGCCCTTTCGAGGCGGTG 3'
		M: 5' TGGTGGCGGTGAACGCGCGTAAAGATGCGAATACGCTT 3'
8	Pgk	F: 5' GGTGCCGCGCGGCAGCCATATGAACAAGAAGACGATCCGC 3' R: 5' GGTGGTGGTGGTGCTCGAGTTATTTGTCTTCGAGTGCGACG 3'
9	Pgm	ASKA Clone
10	Eno	F: 5' GGTGCCGCGCGCAGCCATATGTCCAAAATCGTAAAAATCATCGGTCGTGAAATC 3' R: 5' GGTGGTGGTGGTGGTGCTCGAGTTATGCCTGGCCTTTGATCTCTTTACGACC 3'
11	Dule	F: 5' GGTGCCGCGCGCAGCCATATGAAAAAGACCAAAATTGTTTGCACCATCGGACC 3'
11	Pyk	R: 5' CAGTGGTGGTGGTGGTGCTCGAGTTACAGGACGTGAACAGATGCGGTG 3'
12	AlsS	F: 5' GGTGCCGCGCGCAGCCATATGTCAGAACGTTTCCCAAATGACGTGG 3'
12	AISS	R: 5' GGTGGTGGTGGTGCTCGAGTTACGCCAGACGCGGGTTAACTTTATC 3'
13	IIvC	ASKS clone
14	IIvD	F: 5' GCCTGGTGCCGCGCGCAGCCATATGATGGCATTCAACAAACGCTCGCAGAAC 3' R: 5' GGTGGTGGTGGTGCTCGAGTCAGTCCGTCACTGCCCCCTTG 3'
15	KivD	F: 5' GCCTGGTGCCGCGCGCAGCCATATGATGGCATTCAACAAACGCTCGCAGAAC 3'
15	KIVD	R: 5' GGTGGTGGTGGTGCTCGAGTCAGTCCGTCACTGCCCCCTTG 3'
16	YahK	ASKA Clone

 Lu, J., Brigham, C. J., Plassmeier, J. K. & Sinskey, A. J. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16. *Appl. Microbiol. Biotechnol.* 99, 761–774 (2015).