IMPERIAL

SMC-Guided Diffusion for General Optimisation

Brendan Dowling, Dr O. Deniz Akyildiz September 6, 2024

Imperial College London

Table of contents

- 1. Introduction
- 2. Background
- 3. SMCDiffOpt
- 4. Experimental Results
- 5. Conclusion

Introduction

First Frame

Hello, world! Akyildiz et al. (2020), Anderson (1982), Del Moral (2011), Dou and Song (2023), and Ho et al. (2020)

Background

Annealing

Inverse Problems

Diffusion Models

Sequential Monte Carlo

SMCDiffOpt

Heuritic Motivation

Algorithm

Geometric Interpretation

Appyling to Inverse Problems

Experimental Results

GMM Experiment

GMM Experiment

GMM Experiment

Branin Experiment

Branin Experiment

Branin Experiment

Black-Box Experiment

Black-Box Experiment

Black-Box Experiment

Conclusion

Future Work

Final Remarks

Thank you!

References i

- Akyildiz, Ö. D., Crisan, D., & Míguez, J. (2020). Parallel sequential Monte Carlo for stochastic gradient-free nonconvex optimization. Statistics and Computing, 30(6), 1645–1663. https://doi.org/10.1007/s11222-020-09964-4
 - Anderson, B. D. (1982).Reverse-time diffusion equation models. Stochastic Processes and their Applications, 12(3), 313–326. https://doi.org/10.1016/0304-4149(82)90051-5
- Del Moral, P. (2011). Central Limit Theorems. In Feynman-Kac formulae: Genealogical and interacting particle systems with applications (pp. 291–330). Springer.

 OCLC: 1063493341.

References ii

Retrieved June 8, 2024. from https://openreview.net/forum?id=tplXNcHZs1

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising Diffusion Probabilistic Models.

https://doi.org/10.48550/ARXIV.2006.11239