Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Курсовая работа

по дисциплине «Теория вероятностей и математическая статистика»

Выполнил студент гр. в3530904/00030		В.С. Баганов
Руководитель		И.В. Зайцев
	« »	202 г.

 $ext{Caнкт-} \Pi$ етербург 2023

Содержание

1.	Teo	Теория вероятностей и математическая статистика						
	1.1.	Прогр	амма работы	3				
			Выборка	4				
		1.1.2.	Нумерованный вариационный ряд	5				
		1.1.3.	Оценка параметров распределения по всей выборке	6				
		1.1.4.	Группирование данных	7				
		1.1.5.	Графики статистических распределений	8				
		1.1.6.	Точечная оценка характеристик распределения по сгруппирован-					
			ным данным.	10				
		1.1.7.	Оценка параметров распределения методом квантилей	12				
		1.1.8.	Построение доверительных интервалов	14				
		1.1.9.	Критерий хи-квадрат для проверки статистических гипотез	17				
		1.1.10.	Проверка гипотезы об однородности выборки с помощью критериев					
			знаков и Вилкоксона	19				

1. Теория вероятностей и математическая статистика

1.1. Программа работы

- 1. Написать таблицу чисел с четырьмя верными знаками размером 1х200.
- 2. Построить нумерованный вариационный ряд1 того же размера, что и у таблицы.
- 3. Произвести оценку математического ожидания, дисперсии (смещенную или несмещенную), медианы.
- 4. Сгруппировать значения варианты в 10 или 12 интервалов. Построить таблицу разбиения на интервалы.
 - 5. Построить полигон, гистограмму, ступенчатую кривую.
- 6. По сгруппированным данным построить оценки математического ожидания, дисперсии (смещенную и несмещенную), стандарта, моды, коэффициента вариации, коэффициента асимметрии, эксцесса.
- 7. В предположении нормальности генеральной совокупности, из которой сделана выборка, найти оценки параметров m и σ методом квантилей.
- 8. Считая, что первые двадцать значений таблицы представляют собой отдельную новую выборку из нормальной генеральной совокупности, построить нумерованный вариационный ряд; найти оценку математического ожидания, дисперсии и стандарта. Построить доверительные интервалы для математического ожидания, дисперсии, стандарта.
- 10. С помощью критерия хи-квадрат проверить гипотезы о принадлежности выборки генеральной совокупности, распределенной по законам: нормальному, равномерному и Пуассона.
- 11. Проверить гипотезу об однородности выборки, используя критерий знаков и критерий Вилкоксона, по первым и последним двадцати значениям выборки. 1

¹Вариационный ряд (упорядоченная выборка) – совокупность значений признака, записанных в порядке их возрастания. Сам признак называется вариантой (случайной величиной).

1.1.1. Выборка.

1	465	41	456	81	469	121	440	161	470
2	442	42	479	82	411	122	448	162	427
3	444	43	528	83	512	123	424	163	485
4	399	44	442	84	446	124	498	164	579
5	420	45	436	85	516	125	485	165	393
6	436	46	451	86	517	126	516	166	445
7	544	47	494	87	428	127	436	167	567
8	463	48	503	88	573	128	483	168	441
9	500	49	459	89	426	129	389	169	464
10	486	50	494	90	452	130	435	170	432
11	488	51	520	91	531	131	478	171	475
12	450	52	413	92	429	132	455	172	395
13	521	53	450	93	465	133	440	173	424
14	497	54	470	94	492	134	441	174	471
15	431	55	526	95	550	135	539	175	425
16	466	56	377	96	489	136	513	176	504
17	529	57	463	97	538	137	409	177	496
18	491	58	362	98	422	138	542	178	508
19	510	59	583	99	445	139	532	179	433
20	514	60	493	100	474	140	503	180	448
21	436	61	477	101	474	141	497	181	477
22	532	62	418	102	529	142	480	182	441
23	482	63	352	103	457	143	464	183	546
24	436	64	455	104	433	144	542	184	378
25	518	65	420	105	455	145	496	185	451
26	458	66	408	106	555	146	528	186	493
27	404	67	442	107	501	147	503	187	366
28	504	68	483	108	459	148	509	188	473
29	435	69	487	109	457	149	468	189	456
30	538	70	458	110	424	150	405	190	529
31	508	71	455	111	473	151	526	191	406
32	462	72	425	112	428	152	534	192	363
33	564	73	460	113	425	153	483	193	487
34	436	74	536	114	471	154	550	194	509
35	462	75	478	115	400	155	494	195	444
36	499	76	543	116	456	156	439	196	428
37	435	77	525	117	459	157	433	197	377
38	554	78	464	118	501	158	396	198	479
39	534	79	499	119	487	159	552	199	510
40	485	80	462	120	472	160	511	200	488

1.1.2. Нумерованный вариационный ряд.

Вариационным рядом называется последовательность всех элементов выборки, расположенных в неубывающем порядке. Одинаковые элементы повторяются.

1	352	· ·	433				485		513
2	362	42	435	82	458	122	485	162	514
3	363	43	435	83	459	123	485	163	516
4	366	44	435	84	459	124	486	164	516
5	377	45	436	85	459	125	487	165	517
6	377	46	436	86	460	126	487	166	518
7	378	47	436	87	462	127	487	167	520
8	389	48	436	88	462	128	488	168	521
9	393	49	436	89	462	129	488	169	525
10	395	50	436	90	463	130	489	170	526
11	396	51	439	91	463	131	491	171	526
12	399	52	440	92	464	132	492	172	528
13	400	53	440	93	464	133	493	173	528
14	404	54	441	94	464	134	493	174	529
15	405	55	441	95	465	135	494	175	529
16	406	56	441	96	465	136	494	176	529
17	408	57	442	97	466	137	494	177	531
18	409	58	442	98	468	138	496	178	532
19	411	59	442	99	469	139	496	179	532
20	413	60	444	100	470	140	497	180	534
21	418	61	444	101	470	141	497	181	534
22	420	62	445	102	471	142	498	182	536
23	420	63	445	103	471	143	499	183	538
24	422		446	104	472	144	499	184	538
25	424	65	448	105	473	145	500	185	539
26	424	66	448	106	473	146	501	186	542
27	424	67	450	107	474	147	501	187	542
28	425	68	450	108	474	148	503	188	543
29	425	69	451	109	475	149	503	189	544
30	425	70	451	110	477	150	503	190	546
31	426	71	452	111	477	151	504	191	550
32	427	72	455	112	478	152	504	192	550
33	428	73	455	113	478	153	508	193	552
34	428	74	455	114	479	154	508	194	554
35	428	75	455	115	479	155	509	195	555
36	429	76	456	116	480	156	509	196	564
37	431	77	456	117	482	157	510	197	567
38	432	78	456	118	483	158	510	198	573
39	433	7 9	457	119	483	159	511	199	579
40	433	80	457	120	483	160	512	200	583

1.1.3. Оценка параметров распределения по всей выборке.

Математическое ожидание (среднее арифметическое):

$$\overline{x} = \frac{1}{n} * \sum_{i=1}^{n} x_i = \frac{1}{200} * 94324 = 471.62$$

Смещенная оценка дисперсии:

$$s^{2} = \frac{1}{n} * \sum_{i=1}^{n} x_{i}^{2} - \overline{x^{2}} = 2157, 2655$$

Несмещенная оценка дисперсии:

$$s^{*2} = \frac{n * s^2}{n-1} = s^2 + \frac{1}{n-1} * s^2 = 2168,1061$$

Среднее квадратическое отклонение (стандартное отклонение):

$$s = \sqrt{s^2} = 46.56$$

Оценка медианы*:

а) Если число членов вариационного ряда нечетное (n=2k+1):

$$\widetilde{M}_e = X_{k+1}$$

где

$$X_{k+1}$$

(k+1)-й член вариационного ряда.

b) При четном числе членов (n=2k) в качестве медианы принимают

$$\widetilde{M}_e = \frac{X_k + X_{k+!}}{2} = 470.0$$

2

Мат. ожидание: 469.42

Смещенная дисперсия: 3048.3536000000013 3048.353599999973

CKO: 55.21189726861414

Квадрат несмещенной дисперсии: 3063.671959798996

Смещенная дисперсия: 55.35044678951558

Медиана: 469.5

 $^{^{2}}$ Медиана – значение варианты, которое делит вариационный ряд на две равные по числу членов части.

1.1.4. Группирование данных

При большом объеме выборки для удобства вычислений прибегают к группированию данных в интервалы. Ширина интервала (шаг разбиения) вычисляется по формуле:

$$\Delta X = \frac{R}{l} = 23$$

где R – размах варьирования (широта распределения), т.е. разность между наибольшим и наименьшим значением варианты, а l – число интервалов.

$$R = X_{max} - X_{min} = 583 - 352 = 231$$

Предполагая нормальное распределение, число интервалов l=11

№ интервала	Границы интервалов	Частота	Частототность	Середина
л- интервала	т рапицы интервалов	в интервале	в интревале	интервала
1	340-363	3	0,015	351,55
2	363-386	4	0,02	374,65
3	386-409	11	0,055	397,75
4	409-432	20	0,1	420,85
5	432-455	37	0,185	443,95
6	455-478	38	0,19	467,05
7	478-501	34	0,17	490,15
8	501-524	21	0,105	513,25
9	524-547	22	0,11	536,35
10	547-571	7	0,035	559,45
11	571-594	3	0,015	582,55

1.1.5. Графики статистических распределений

Для наглядности распределение выборочных данных изображают графически несколькими способами.

Полигон: на оси абсцисс откладываются интервалы значений величины x, в серединах интервалов строятся ординаты, пропорциональные частотам (или частостям), и концы ординат соединяются отрезками прямых линий.

 Γ истограмма: над каждым отрезком оси абсцисс, изображающим интервал значений x, строится прямоугольник, площадь которого пропорциональна частоте (или частости) в данном интервале.

Ступенчатая кривая: над каждым отрезком оси абсцисс, изображающим расстояние между серединами интервалов значений х, проводится отрезок горизонтальной прямой на высоте, пропорциональной накопленной частоте (или накопленной частости) в данном интервале3. Концы отрезков соединяются.

Рисунок 1.1. Полигон

 $^{^3}$ Накопленная частота в данном интервале – сумма всех частот, начиная с первого интервала до данного интервала включительно.

Рисунок 1.2. Гистограмма

Рисунок 1.3. Ступенчатая кривая

1.1.6. Точечная оценка характеристик распределения по сгруппированным данным.

Эмпирические числовые характеристики случайных величин подобно теоретическим характеристикам подразделяются на характеристики положения центра группирования и характетистики рассевания.

Меры центральной тенденции:

Математическое ожидание (среднее арифметическое):

$$\overline{x} = \frac{1}{n} * \sum_{i=1}^{11} x_i * \nu_i = 471.62$$

где хі

- середина интервала,

l - число интервалов,

 V_i

-частота в интервале,

n -число элементов в выборке.

Мода: Самые многочисленные интервалы — это интервалы №5 и №6 с границами 432-455 и 455-478 соответственно.

Моды сгруппированной выборки – их середины: 443,95 и 467,05

$$\widetilde{M}_0 = 467, 05$$

равна середине самого многочисленного интервала

Меры изменчивости:

Смещенная оценка дисперсии:

$$\overline{x} = \frac{1}{n} * \sum_{i=1}^{11} x_i * \nu_i - \overline{x^2} =$$

Несмещенная оценка дисперсии:

$$s^{*2} = s^2 - \frac{(\Delta x)^2}{12}$$

Среднее квадратическое отклонение (стандартное отклонение):

$$s = \sqrt{s^2} = 46.56$$

Коэффициент вариации:

$$\upsilon = \frac{S}{\overline{x}} = 0, 01, (\overline{x} \neq 0)$$

Коэффициент асимметрии:

$$\widetilde{S_k} = \frac{m_3}{s^3} = -0,0129$$

Эксцесс:

$$\widetilde{E_x} = \frac{m_4}{s^4} - 3 = -0,3208$$

Для нормального распределения Sk=0 и Ex=0 Поэтому показатели асимметрии и эксцесса, отличные от нуля, указывают на отклонение рассматриваемого распределения от нормального.

Выборочные асимметрия и эксцесс, как и все оценки, являются случайными величинами и могут не совпадать с теоретическими. Критические значения коэффициента асимметрии и коэффициента эксцесса (объем выборки n=200, уровень значимости $\alpha=1$ k(crit ical value) = 0.403 x(crit ical value) = 0.832 k < k(crit ical value) и x < x(crit ical value), т.е. вычисленные значения коэффициента асимметрии и коэффициента эксцесса не попадают в критические области, следовательно гипотезу о том, что выборочные данные распределены нормально, нельзя считать ошибочной.

1.1.7. Оценка параметров распределения методом квантилей.

Квантилем, отвечающим заданному уровню вероятности р, называют такое значение варианты $\mathbf{x} = x_p$ при котором функция распределения принимает вид:

$$F(X_p) = p$$

Некоторые квантили получили особые названия. Например, медианой распределения \widetilde{M}_e называют квантиль, отвечающий значению p=0.5; квантили, соответствующие значениям p=0.25 и p=0.75, называют нижним и верхним квартилями.

Функция нормального распределения:

$$F(X_p) = \frac{(x_p - m)}{\delta} + 0.5 = p$$

где $\Phi(x)$ – функция Лапласа.

Чтобы определить два неизвестных параметра закона нормального распределения – математическое ожидание (m) и среднее квадратическое отклонение (δ), необходимо составить два уравнения, используя формулу, приведенную выше. Для этого из вариационного ряда возьмем два произвольных значения варианты вблизи медианы – x_{p1} и x_{p2} с соответствующими им вероятностями p_1 и p_2 . Вероятности p_1 и p_2 равны порядковому номеру выбранных вариант, деленному на 200 (т.к. число элементов выборки n = 200).

Решение:

Пусть $x_{p1} = 462$, $p_1 = 80/200 = 0.4$, $x_{p2} = 472$, $p_2 = 120/200 = 0.6$. Подставляя эти значения в формулу функции нормального распределения, получаем уравнения5:

$$\begin{cases} F(X_{p1}) = \frac{(x_p - m)}{\delta} + 0.5 = 0.4, \\ F(X_{p2}) = \frac{(x_p - m)}{\delta} + 0.5 = 0.6, \end{cases}$$

4 5

Упорщая:

$$\begin{cases} F(X_{p1}) = \frac{(x_p - m)}{\delta} = -0.1, \\ F(X_{p2}) = \frac{(x_p - m)}{\delta} = 0.1, \end{cases}$$

Функция Лапласа – нечетная, поэтому $-\Phi(x) = \Phi(-x)$. Тогда

$$\begin{cases} F(X_{p1}) = \frac{(x_p - m)}{\delta} = 0.1, \\ F(X_{p2}) = \frac{(x_p - m)}{\delta} = 0.1, \end{cases}$$

Воспользуемся таблицей значений функции Лапласа.

Вероятности р попадания случайной величины в интервалы (x_{p1}, M_e) и (M_e, x_{p2}) одинаковые и составляют по 0.1. Тогда согласно таблице, если $\Phi(x) = 0.1$, то $x \approx 0.255$.

⁴Квантиль – значение, которое заданная случайная величина не превышает с фиксированной вероятностью. Если вероятность задана в процентах, то квантиль называется процентилем или перцентилем.

 $^{^{5}}$ Предпочтительно брать квантиль даже более близкие к медиане (но не саму медиану).

Преобразовываем уравнения к следующему виду:

$$\begin{cases} F(X_{p1}) = \frac{(x_p - m)}{\delta} = 0.1, \\ F(X_{p2}) = \frac{(x_p - m)}{\delta} = 0.1, \end{cases}$$

Затем вычитаем одно уравнение из другого:

$$\begin{cases} F(X_{p1}) = \frac{(462-m)}{\delta} = 0.255, \\ F(X_{p2}) = \frac{(472-m)}{\delta} = 0.255, \end{cases}$$

Решая систему уравнений, находим, что $\delta = 45.4$, m = 470.4

Таким образом, полученные значения параметров m $\,^{\sim}$ и $\delta\,^{\sim}$ (с учетом небольшой погрешности) соответствуют вычисленным ранее (в пункте 3) значениям математического ожидания (x = 471.62) и стандартного отклонения (s = 46.5) .

1.1.8. Построение доверительных интервалов.

Выборка из первых 20 значений таблицы и Нумерованный вариационный ряд:

	- F			
No хі изм.	xi	No xi изм.	xi	xi^2
1	465	7	544	295936
2	442	17	529	279841
3	444	13	521	271441
4	399	20	514	264196
5	420	19	510	260100
6	436	9	500	250000
7	544	14	497	247009
8	463	18	491	241081
9	500	11	488	238144
10	486	10	486	236196
11	488	16	466	217156
12	450	1	465	216225
13	521	8	463	214369
14	497	12	450	202500
15	431	3	444	197136
16	466	2	442	195364
17	529	6	436	190096
18	491	15	431	185761
19	510	5	420	176400
20	514	4	399	159201

Математическое ожидание (среднее арифметическое):

$$\overline{x} = \frac{1}{n} * \sum_{i=1}^{n} x_i = \frac{1}{20} * 9496 = 474.8$$

Смещенная оценка дисперсии:

$$s^{2} = \frac{1}{n} * \sum_{i=1}^{n} x_{i}^{2} - \overline{x^{2}} = 2157, 2655$$

Несмещенная оценка дисперсии:

$$s^{*2} = \frac{n * s^2}{n-1} = s^2 + \frac{1}{n-1} * s^2 = 2168,1061$$

Среднее квадратическое отклонение (стандартное отклонение):

$$s = \sqrt{s^2} = 37,34$$

Доверительный интервал для истинного математического ожидания mx6:

$$\overline{x} - t_{q,n-1} \frac{s}{\sqrt{n-1}} < m_x < \overline{x} + t_{q,n-1} \frac{s}{\sqrt{n-1}}$$

где двустороннее обратное t-распределение Стьюдента вычисляется с помощью LibreOffice*. *На вход функции T.INV.T(q, df) подается два параметра: уровень значимости (вероятность ошибки) q, а также число степеней свободы df = n - 1 = 19.

Доверительный интервал для истинной дисперсии

и истинного среднего квадратического отклонения (стандартного отклонения)

 s_x :

где пределы χ_1^{22}

вычисляются средствами LibreOffice*.

*На вход функции CHISQ.INV(p, df) подается два параметра:

вероятности

$$p_1 = 1 - \frac{1}{2} * \frac{q}{100}$$

для χ_1^2

$$p_2 = \frac{1}{2} * \frac{q}{100}$$

для χ_2^2

(где q – уровень значимости), а также число степеней свободы $\mathrm{df}=\mathrm{n}$ - $\mathrm{1}=\mathrm{19}.$

Определим доверительные интервалы для математического ожидания mx, задаваясь различными уровнями значимости q. Значения квантилей

$$\overline{x} + t_{q,n-1}$$

берутся из таблиц распределения Стьюдента по двум входам: по числу степеней свободы (n-1) и уровнями значимости q. Уровень значимости q здесь и в дальнейшем предполагается заданным.

Определим доверительные интервалы для математического ожидания mx, задаваясь различными уровнями значимости q. Значения квантилей берутся из таблиц распределения Стьюдента по двум входам: по числу степеней свободы (n-1) и уровнями значимости q. Уровень значимости q здесь и в дальнейшем предполагается заданным.

Для q=5%:

t = 2,093

$$394,125 < m_x < 597,775$$

Для q=10%: t=1,7295

$$394,125 < m_x < 597,775$$

Для q=1%: t=2,860935

$$394,125 < m_x < 597,775$$

Уровень значимости q здесь примем за 1% и получаем такие доверительные интервалы:

Для q=1%:

$$7,97 < \sigma^2 < 37,83$$

$$2.82 < \sigma < 6.15$$

Для q=10%:

$$10,61 < \sigma^2 < 24,78$$

$$3,26 < \sigma < 4,98$$

Для q=5%:

$$9,58 < \sigma^2 < 28,54$$

 $3,10 < \sigma < 5,34$

Таким образом, определенны доверительные интервалы для параметров

$$\sigma^2 \sigma$$
.

T.к. интервалы (297.010, 884.937) и (17.234, 29.748) охватывают истинные значения дисперсии sx2=410.204 и стандартного отклонения sx=20.253 соответственно, получившиеся неравенства являются верными.

1.1.9. Критерий хи-квадрат для проверки статистических гипотез.

Примем гипотезу о том, что выборка из 200 элементов подчиняется нормальному закону распределения. Для проверки этой гипотезы используется критерий χ2:

$$x^{2} = \sum_{i=1}^{n} \frac{(v_{i} - n * \widetilde{p}_{l})^{2}}{n * \widetilde{p}_{l}} = 474.8$$

Если полученное значение $\chi 2$ попадёт в область допустимых значений

 $\chi 2 < \chi 2_{(critical value)}$

то данные выборки не противоречат гипотезе о нормальности распределения. В противном случае гипотеза отвергается.

Если же численное значение критерия χ^2 попадет в критическую область $\chi^2 > \chi^2$ (critical value), то гипотеза отвергается.

Вычисления критерия удобно свести в табл.

Сумма, называемая критерием x2, асимптотически распределена как xu- квадрат. При практических расчетах для нахождения критического значения этой суммы можно пользоваться таблицами распределения xu-квадрат только в том случае, если для всех интервалов

Поэтому в табл. 7 интервалы из табл. 6 с номерами 1, 2, 3 и 10, 11 объединены. Оценку вероятности :

$$\widetilde{P}_i = P(\alpha < X < \beta) = \phi(\frac{\beta - \overline{x}}{s}) - \phi(\frac{\beta - \overline{x}}{s})$$

где α и β – нижняя и верхняя границы интервалов, x и s вычислены по сгруппированным данным выборки (в пункте 6), а значения функции Лапласа находятся с помощью LibreOffice*.

Так как по данным выборки мы оценили два параметра mx и σx нормального закона (т.е. c=2), то в нашем случае число степеней свободы будет равно: k=l' - c - l=8 - l=1 - l=1

р ї (теоретическая частотность) — вероятность попадания в интервал при действительно нормальном распределении.

*На вход функции NORM.S.DIST(аргумент функции Лапласа, 1) подается два параметра: а также число 1, чтобы NORM.S.DIST вычисляла ss интегральную функцию Лапласа.

Следует отметить, что критерий $\chi 2$ нормально работает, когда каждый интервал содержит не менее 5 точек. Поэтому интервалы, где $\nu i < 5$, необходимо объединить с соседними интервалами.

χ2(critical value) также вычисляется средствами LibreOffice*.

*На вход функции CHISQ.INV.RT(q, df) подается два параметра: уровень значимости (вероятность ошибки) q, а также число степеней свободы df = l - 3 (или = l' - 3 в случае объединения нескольких интервалов).

Поскольку в начале и в конце таблицы имеются интервалы с частотой (vi) < 5, объединим их с соседними интервалами прежде чем начнем вычислять взвешенные квадраты уравнений

№ Интервала	Начало	Конец	Середина	Fi частота в интревале	Частотность в интервале Fi / N	acc Fi / N	Рі теор частоность	Fi теор частота	F теор (x)	Fт(x) - Fэ(x)
1	340	363,1	351,55	3	0,015	0,015	0,0075	1,5	0,0075	0,007
2	363,1	386,2	374,65	4	0,02	0,035	0,0234	4,7	0,0309	0,004
3	386,2	409,3	397,75	11	0,055	0,09	0,0571	11,4	0,088	0,002
4	409,3	432,4	420,85	20	0,1	0,19	0,1094	21,9	0,1975	0,007
5	432,4	455,5	443,95	37	0,185	0,375	0,1648	33	0,3622	0,012
6	455,5	478,6	467,05	38	0,19	0,565	0,195	39	0,5572	0,007
7	478,6	501,7	490,15	34	0,17	0,735	0,1813	36,3	0,7385	0,003
8	501,7	524,8	513,25	21	0,105	0,84	0,1324	26,5	0,8709	0,030
9	524,8	547,9	536,35	22	0,11	0,95	0,076	15,2	0,947	0,00
10	547,9	571	559,45	7	0,035	0,985	0,0343	6,9	0,9812	0,003
11	571	594,1	582,55	3	0,015	1	0,0121	2,4	0,9934	0,006
			Sum:	200	1					0,030
				Fi частота в	Частотность в		Рі теор	Fi теор		FT(x) -
№ Интервала	Начало	Конец	Середина	интревале	интервале Fi / N	acc Fi/N	частоность	частота	F теор (x)	F ₃ (x)
1										
2										
3	340	409	374,5	4	0,02	0,02	0,087	17,4	0,087	0,067
4	409,3	432,4	420,85	19	0,095	0,115	0,1094	21,9	0,1964	0,0814
5	432,4	455,5	443,95	36	0,18	0,295	0,1648	33	0,3612	0,0662
6	455,5	478,6	467,05	38	0,19	0,485	0,195	39	0,5562	0,0712
7	478,6	501,7	490,15	33	0,165	0,65	0,1813	36,3	0,7375	0,0875
8	501,7	524,8	513,25	31	0,155	0,805	0,1324	26,5	0,8699	0,0649
9	524,8	547,9	536,35	21	0,105	0,91	0,076	15,2	0,9459	0,0359
10	547,9	594	570,95	18	0,09	1	0,0464	9,3	0,9923	0,0077
11						1	0	0	0,9923	0,0077
			Sum:	200	1					0,087

Вычислим сумму значений взвешенных квадратных отклонений:

$$\sum_{i=1}^{8} \frac{(v_i - n * \widetilde{p}_l)^2}{n * \widetilde{p}_l} = 3,71257$$

Таким образом, $\chi 2 = 3{,}71257$

По таблице распределения хи-квадрат найдем значения $\chi 2$ для числа степеней свободы k=5 и уровней значимости q, равным 1%, 5% и 10%.

Для q = 1%:

 $\chi 2 = 15,0862$

Поскольку $3{,}71257{<}15{,}0862$, то гипотеза о нормальности выборки не противоречит данным измерений.

Для q = 5%:

 $\chi 2 = 11,0705$

Поскольку $3{,}71257{<}11{,}0705$, то гипотеза о нормальности выборки не противоречит данным измерений.

Для q = 10%:

 $\chi 2 = 9,2363$

Поскольку $3{,}71257{<}9{,}2363$, то гипотеза о нормальности выборки не противоречит данным измерений.

1.1.10. Проверка гипотезы об однородности выборки с помощью критериев знаков и Вилкоксона.

Введем нулевую гипотезу Н0 о том, что выборка из 200 элементов является однородной. Для проверки этой гипотезы возьмем двадцать первых и двадцать последних значений выборки.

Воспользуемся непараметрическими (независимыми от формы распределения) критериям: критерием знаков и критерием Вилкоксона.

Критерий знаков

Вычислим знаки разностей zi = xi - yi, где i = 1, 2, ..., 20 – порядковые номера первых xi и последних yi двадцати значений выборки, используя средства LibreOffice*.

*Функция SIGN(xi - yi).

Затем посчитаем количество положительных kn(+) и отрицательных kn(-) знаков разностей zi (n=20) с помощью функции LibreOffice*. *На вход функции COUNTIF(range, sign) подается два параметра: весь диапазон значений zi, а также положительное число 1 (для вычисления kn(+)) или отрицательное число -1 (для вычисления kn(-)).

Зная q и n, находим в таблице "Критерий знаков" критическое значение mn для минимального числа из kn(+) и kn(-). Если меньшее из чисел знаков разностей окажется меньше mn, то гипотеза об однородности выборки отвергается, а если меньшее из чисел знаков разностей окажется больше mn, то следует признать, что гипотеза не противоречит данным выборки.

Решение:

	<u>тение:</u>		
№	Выборка No1	Выборка No2	zi = xi - yi
J.V.=	(первые 20 элементов)	(последние 20 элементов)	$\begin{bmatrix} z_1 - x_1 - y_1 \end{bmatrix}$
1	465	448	1
2	442	477	-1
3	444	441	1
4	399	546	-1
5	420	378	1
6	436	451	-1
7	544	493	1
8	463	366	1
9	500	473	1
10	486	456	1
11	488	529	-1
12	450	406	1
13	521	363	1
14	497	487	1
15	431	509	-1
16	466	444	1
17	529	428	1
18	491	377	1
19	510	479	1
20	514	510	1

Подсчет показывает, что положительных знаков

k20(+)=15 и отрицательных знаков k20(-)=5

Пусть уровень значимости

q = 1% (0.01). по таблице m20 = 4

q=5% (0.05). по таблице m20=5

q = 10% (0.1). по таблице m20 = 5

Тогда согласно таблице "Критерий знаков" критическое значение m20=4. Поскольку сравнивайся минимальное из чисел k20(+) и k20(-), а именно 5, получаем 5>4 (т.е. k20(+)>m20). Таким образом, можно заключить, что гипотеза H0 об однородности выборки не противоречит данным выборки. Нет оснований чтобы утверждать нулевую гипотезу.

Критерий Вилкоксона

Данный критерий основан на числе инверсий. Элементы двух выборок располагаются в общую последовательность в порядке возрастания их значений.

где x1, x2, ..., x5 – элементы первой выборки, а y1, y2, ..., y5 – элементы второй выборки.

Если какому-либо значению х предшествует некоторый у, значит эта пара дает инверсию. Так, в приведенной выше последовательности х1 имеет одну инверсию с у1,ах2,х3, х4 даютпотриинверсии(су1, у2, у3)ит.д.Общее число инверсий u=1+3+3+3+6=16.

Гипотеза H0 об однородности выборки из 200 элементов отвергается, если число и выходит за пределы вычисленных в соответствии с уровнем значимости q границ. Критическая область определяется исходя из того, что при объемах n>10 и m>10 выборок число инверсий и имеет нормальное распределение с центром

$$M[u] = \frac{mn}{2}$$

Дисперсией:

$$D[u] = \frac{mn}{12}(m+n+1)$$

И средним квадратическим отклонением:

$$\sigma[u] = \sqrt{D[u]}$$

Чтобы найти нижнюю и верхнюю границы критической области для числа u, воспользуемся возможностями LibreOffice*: с помощью обратной функции Лапласа вычислим расстояние (выраженное в количестве стандартных отклонений σ) от среднего до каждой из двух границ.

*На вход функции NORM.S.DIST(number) подается следующий параметр: 1 q для $\sigma 1$ (нижняя граница) и 1-1 q для $\sigma 2$ (верхняя граница).

Затем преобразуем стандартные отклонения $\sigma 1$ и $\sigma 2$ в конкретные значения:

$$u_{lower} = M[u] + \sigma_1 * \sigma[u]$$
$$u_{upper} = M[u] + \sigma_2 * \sigma[u]$$

Если верно неравенство

$$u_{lower} < u < u_{upper}$$

, то оснований для отклонения гипотезы H0 нет, поскольку вероятность того, что данное значение и было получено не случайно и выборка из 200 элементов действительно является однородной, составляет $100-\mathrm{q}$

Решение:

Номер выборки	Значение	Количество инверсий		
2	363	0		
2	366	0		
2	377	0		
2	378	0		
1	399	4		
2	406	0		
1	420	5		
2	428	0		
1	431	6		
1	436	6		
2	441	0		
1	442	7		
1	444	7		
2	444	0		
2	448	0		
1	450	9		
2	451	0		
2	456	0		
1	463	11		
1	465	11		
1	466	11		
2	473	0		
2	477	0		
2	479	0		
1	486	14		
2	487	0		
1	488	15		
1	491	15		
2	493	0		
1	497	16		
1	500	16		
2	509	0		
1	510	17		
2	510	0		
	514	18		
1	521	18		
1	529	18		
2	529	0		
1	544	19		
2	546	0		
<u> </u>	сумма	243		

Объединим элементы выборок в одну последовательность в порядке возрастания их значений и поставим напротив всех элементов из первой выборки число "1", а напротив всех элементов из второй — число "2".

Затем посчитаем число инверсий иі для каждого элемента с помощью LibreOffice* и вычислим общее значение и как сумму всех иі.

*В каждой ячейке задается условие =IF(Ai=2, 0, COUNTIF(A1:Ai, 2)), где A1 – номер ячейки первого элемента последовательности, а i – индекс текущего элемента.

Получаем:

Найдем M[u], D[u] и $\sigma[u]$, при условии m=n=20:

$$M[u] = \frac{mn}{2} = 200$$

Дисперсией:

$$D[u] = \frac{mn}{12}(m+n+1) = 1366,667$$

И средним квадратическим отклонением:

$$\sigma[u] = \sqrt{D[u]} = 36,968$$

Построим критическую область, задавшись уровнем значимости q=1%:

$$\sigma_1 = NORM.S.DIST(0.005) = -2.5758$$

$$\sigma_2 = NORM.S.DIST(0.095) = 2.5758$$

Границы критической области:

$$u_{lower} = M[u] + \sigma * \sigma[u] = 200 - 36,968 * 2.5758 = 104.776$$

$$u_{upper} = M[u] + \sigma * \sigma[u] = 200 + 36,968 * 2.5758 = 295.224$$

Теперь определим границы критической области для уровня значимости q=5%:

$$\sigma_1 = NORM.S.DIST(0.05) = -1.96$$

$$\sigma_2 = NORM.S.DIST(0.95) = 1.96$$

Границы критической области:

$$u_{lower} = M[u] + \sigma * \sigma[u] = 200 - 36,968 * 1.96 = 127.54$$

$$u_{umer} = M[u] + \sigma * \sigma[u] = 200 + 36,968 * 1.96 = 275.45$$

Теперь определим границы критической области для уровня значимости q=10%:

$$\sigma_1 = NORM.S.DIST(0.05) = -1.645$$

$$\sigma_2 = NORM.S.DIST(0.95) = 1.645$$

Границы критической области:

$$u_{lower} = M[u] + \sigma * \sigma[u] = 200 - 36,968 * 1.645 = 139.192$$

$$u_{upper} = M[u] + \sigma * \sigma[u] = 200 + 36,968 * 1.645 = 260.808$$

Поскольку в обоих случаях неравенство

$$u_{lower} < u < u_{upper}$$

верно (т.к.

), гипотеза Н0 об однородности выборки не противоречит полученным данным.

И оснований для отклонения гипотезы H0 нет, нулевая гипотеза верна, и выборка из 200 элементов действительно является однородной.

При всех рассмотренных уровнях значимости число инверсий и не лежит в критической области, а потому нулевая гипотеза H0 об однородности выборки не противоречит данным выборки.