

Commissioning optics:

Larger dynamic aperture and Touschek Lifetime at the (temporary) cost of larger horizontal emittance in 4th generation light sources.

Tessa Charles, Rohan Dowd, Eugene Tan, Frank Zhang

Australian Synchrotron

Australian Synchrotron

- 3rd generation light source with double-bend achromat lattice
- Began operations in 2007
- Expected lifetime around 25 30 years
- What comes next?

Australian Synchrotron

Australian Synchrotron 2.0 (AS2)

- Greenfield, 4th generation light source proposal
- CDR in early stages of being developed

AS2

Preliminary design parameters

Parameter	value
Energy [GeV]	3
Circumference [m]	454.8
Emittance [pm]	50
Momentum compaction factor	0.56x10 ⁻⁴
dE/turn [keV]	785
Touschek lifetime [h]	7.3
Transverse tunes (Qx, Qy)	70.25, 20.81
Natural chromaticities	-151.522, -76.141
Bore radius [mm]	12.5
Max. Dipole [T]	1.048
Max. Quad [T/m]	110
Max. Sext [T/m ²]	10 000

MBA lattices \Rightarrow gentle bending & strong focusing \Rightarrow smaller ε_x

Traits & Challenges of 4th Gen Light Sources

MBA lattices ⇒ gentle bending & strong focusing.

Smaller $\eta_x \Rightarrow$ stronger sextupoles.

Stronger sextupoles ⇒ reduced DA and TLT.

In addition, stronger sextupoles & quadrupole ⇒ more sensitive to misalignment errors.

Traits & Challenges of 4th Gen Light Sources

Legend

: DA = 10 mm & LT = 20 h

Figure: Pantaleo Raimondi and Simone Liuzzo

Phys. Rev. Accel. and Beams 26, 021601 (2023)

Dynamic aperture reduction

Challenge: tighter focusing, smaller $\eta_x =>$ smaller DA and shorter lifetime.

- -> Factor of 4 reduction in the vertical available aperture
- -> Factor of 6 reduction in the horizonal available aperture

Assessing the magnitude of the commissioning challenge

Misalignments and field errors:

Type	$\Delta X \ (\mu m)$	$\Delta Y \ (\mu m)$	ΔPSI (μrad)	Fractional field error
Dipoles	30	30	100	1e-4
Quadrupoles	30	30	100	1e-4
Sextupoles	30	30	100	1e-4

Note: these alignments and field errors are not tolerances. Tolerance specifications still need to be determined.

As is the case for many 4th gen light sources, with realistic errors, the closed orbit does not exist.

Often it's **only after BBA and optics corrections are applied, that the DA be sufficient** for reasonable injection efficiency.

Our aim:

to find a more relaxed optics solution for commissioning, with larger DA

and lifetime.

The larger DA and TLT will reduce risk and allow for more rapid commissioning.

Commissioning optics

Nominal optics

Commissioning optics

Requires independent focusing in one family of combined function magnets.

Offset quadrupole

Reverse bends achieved with offset quadrupoles (CF).

Commissioning optics achieved by reducing quad strength by 78% and reinstating bend angle, through either:

1. Increasing offset by 574 μ m, or

CF

2. Additional coils (to quadrupole or vacuum chamber)

Optics	K ₁ (m⁻²)	θ (deg)	B_0 (T)	offset (mm)
Nominal	11	-0.2	0.233	-2.116
Commissioning	8.65	-0.2	0.233	-2.690

CF

Commissioning optics key parameters

	Nominal	Comm optics	
Natural chromaticities $(\xi_{x,0}, \xi_{y,0})$	-151.522, -76.141	-82.72, -67.09	CE K 72 /
Chromaticities (ξ_x, ξ_y)	0.99, 0.99	0.06, 0.05 —	$\begin{array}{c c} \mathbf{SF} & \mathbf{K_1} \downarrow 73.4 \\ \mathbf{SD} & \mathbf{K_1} \downarrow 45.5 \end{array}$
Momentum compaction (α_c)	0.056e-3	0.182e-3	3D K ₁ \$ 43.3
Hor. Emittance (ε_x)	50 pm	213 pm	
Espread	1.11e-3	4.22e-3	
Tunes	70.251, 20.811	53.084, 29.601	

Dynamic Apertures

Nominal optics

1000 turns

$$\beta_{x} = 9.8 \text{ m}$$

$$\beta_{y} = 4.8 \text{ m}$$

Commissioning optics

1000 turns

$$\beta_{x} = 14.6 \text{ m}$$

$$\beta_{\rm v} = 3.2 \, {\rm m}$$

Dynamic Apertures

Nominal optics

1000 turns

$$\beta_{x} = 9.8 \text{ m}$$

$$\beta_{\rm v}=4.8~{\rm m}$$

Commissioning optics

1000 turns

$$\beta_{x} = 14.6 \text{ m}$$

$$\beta_{y} = 3.2 \text{ m}$$

DA with sextupoles off, with errors included

Nominal optics

Commissioning optics

Without errors, turning off sextupoles reduces the DA. However when only calculated over only 10s of turns, the DA is increased.

Touschek lifetime and Momentum Acceptance

Parameter	Nominal Optics	Commissioning Optics	
Coupling	1%		
Total beam current	200 mA		
No. bunches	700		
Harmonic number, h	758		
Momentum compaction (α_c)	0.056e-3	0.182e-3	
Cavity voltage	2.3 MV	2.3 MV	
Momentum acceptance	7.87 %	3.99 %	
RMS bunch length	2.03 mm	13.94 mm	
Touschek lifetime	6.5 h	21.36 h	

Assessing the magnitude of the commissioning challenge

Misalignments and field errors:

Type	$\Delta X \ (\mu \mathrm{m})$	$\Delta Y \ (\mu m)$	ΔPSI (μrad)	Fractional field error
Dipoles	30	30	100	1e-4
Quadrupoles	30	30	100	1e-4
Sextupoles	30	30	100	1e-4

Note: these alignments and field errors are not tolerances. Tolerance specifications still need to be determined.

Example from Australian Synchrotron of Sextupole Realignment

Procedure to determine sextupole vertical alignment:

- 1. Shunt each sextupole family at different strengths
- 2. Perform LOCO and fit skew quad terms to each sextuople
- 3. Gradient of skew field vs sextupole field gives vertical offset
- 4. Shims of 25 μ m introduced to individual magnets

After realignment vertical emittances measured indirectly to be below 1 pm.

Conclusion

"Commissioning optics" is a more relaxed optics configuration, compatible with the nominal optics. We achieved this solution with an offset quadrupole at a greater relative offset.

Conclusion

Commissioning optics allows for...

Larger DA for more turns with errors

Greater likelihood of finding closed orbit

Better transmission during early stages of commissioning

Longer lifetime

Parameter	Nominal Optics	Commissioning Optics	
Coupling	1%		
Total beam current	200 mA		
No. bunches	700		
Harmonic number, h	758		
Momentum compaction (α_c)	0.056e-3	0.182e-3	
Cavity voltage	2.3 MV	2.0 MV	
Momentum acceptance	7.87 %	3.99 %	
RMS bunch length	2.03 mm	13.94 mm	
Touschek lifetime	7.16 h	21.36 h	

And reduces risk, allowing for smoother, more rapid commissioning.

Traits & Challenges of 4th Gen Light Sources

Original figure: Pantaleo Raimondi and Simone Liuzzo

Phys. Rev. Accel. and Beams 26, 021601 (2023)

