# Lossy Image Compression using SVD Coding Algorithm

K M Aishwarya

## Why is compression needed?

- To store data efficiently
- To transmit data efficiently
- To save:
- Memory
- Bandwidth
- Cost

# Why SVD?

- Image compression alone can experience redundancies which can be overcome by Singular Value Decomposition (SVD) of the image matrix.
- Image compression and coding techniques explore 3 types of redundancies:
  - Coding redundancy
  - Interpixel redundancy
  - Psycho-visual redundancy

#### How to compress?



## What is SVD?

#### Basic idea:

Taking a high dimensional, highly variable set of data points and reducing it to a lower dimensional space that exposes the substructure of the original data more clearly and orders it from most variation to the least.

#### Definition:

In linear algebra, the singular value decomposition is a factorization of a real or complex, square or non-square matrix. Consider a matrix A with m rows and n columns with rank r. Then A can be factorized into three matrices:

$$A = USV^{T}$$

## SVD – Overview I

Diagrammatically,

$$A = \begin{bmatrix} u_1 & \cdots & u_r & \cdots & u_m \end{bmatrix} \begin{bmatrix} \sigma_1 & & & & & \\ & \ddots & & & \\ & & \sigma_r & & & \\ & & & \ddots & \\ & & & 0 \end{bmatrix} \begin{bmatrix} v_1^T \\ \vdots \\ v_r^T \\ \vdots \\ v_n^T \end{bmatrix}$$

#### where,

- U is an  $m \times m$  orthogonal matrix
- $V^T$  is the conjugate transpose of the  $n \times n$  orthogonal matrix.
- S is an  $m \times n$  diagonal matrix with non-negative real numbers on the diagonal which are known as the singular values of A.
- The *m* columns of U and *n* columns of V are called the left-singular and right-singular vectors of A respectively.
- The numbers  $\sigma_1^2 \ge ... \ge \sigma_r^2$  are the eigenvalues of  $AA^T$  and  $A^TA$ .

#### SVD – Overview II

- SVD takes a matrix, square or non-square, and divides it into two orthogonal matrices and a diagonal matrix
- Simply applying SVD on an image does not compress it
- To compress an image, after applying SVD:
  - Retain the first few singular values (containing maximum image info)
  - Discard the lower singular values (containing negligible info)
- The singular vectors form orthonormal bases, and the important relation

$$A v_i = s_i u_i$$

 shows that each right singular vectors is mapped onto the corresponding left singular vector, and the "magnification factor" is the corresponding singular value

#### Mathematical steps to calculate SVD of a matrix

- 1. Given an input image matrix A.
- 2. First, calculate  $AA^{T}$  and  $A^{T}A$ .
- 3. Use  $AA^T$  to find the eigenvalues and eigenvectors to form the columns of U:  $(AA^T \lambda I) \ddot{x} = 0$ .
- 4. Use  $A^TA$  to find the eigenvalues and eigenvectors to form the columns of V:  $(A^TA \lambda I) \ddot{x} = 0$ .
- 5. Divide each eigenvector by its magnitude to form the columns of U and V.
- 6. Take the square root of the eigenvalues to find the singular values, and arrange them in the diagonal matrix S in descending order:  $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r \ge 0$

In MATLAB: [U,W,V] = svd(A,0)

## **SVD Compression Measures**

- Parameters for quantitative and qualitative compression of image:
  - Compression Ratio (CR):

$$C_R = \frac{uncompressed\ image\ file\ size}{compressed\ image\ file\ size}$$

Mean Square Error (MSE):

$$MSE = \frac{1}{mn} \sum_{y=1}^{m} \sum_{x=1}^{n} (f_A(x, y) - f_{A_k}(x, y))$$

Signal to Noise Ratio (SNR):

$$SNR = \frac{P_{signal}}{P_{noise}} = \left(\frac{A_{signal}}{A_{noise}}\right)^2$$

Peak Signal to Noise Ratio (PSNR):

$$PSNR = 10log_{10} \left( \frac{MAX_I^2}{MSE} \right) = 20log_{10} \left( \frac{MAX_I}{\sqrt{MSE}} \right)$$

# Storage Space Calculations

$$A = USV^{T}$$

$$A = \sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$$

$$A_{k} = \sigma_{1} u_{1} v_{1}^{T} + \sigma_{2} u_{2} v_{2}^{T} + \dots + \sigma_{r} u_{r} v_{r}^{T}$$

When performing SVD compression, the sum is not performed to the very last Singular Values (SV's); the SV's with small enough values are dropped. The values which fall outside the required rank are equated to zero. The closet matrix of rank k is obtained by truncating those sums after the first k terms:

$$\longrightarrow A_k = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \ldots + \sigma_k u_k v_k^T$$

• Total storage for  $A_k$  will be:

$$\longrightarrow$$
  $A_k = k(m+n+1)$ 

• The digital image corresponding to  $A_k$  will still have very close resemblance to the original image

# Lowest rank-k approximations

- Since  $\sigma_1 > \cdots > \sigma_n > 0$ , in the singular matrix, the first term of this series will have the largest impact on the total sum, followed by the second term, then the third term, etc.
- This means we can approximate the matrix A by adding only the first few terms of the series.
- As *k* increases, the image quality increases, but so too does the amount of memory needed to store the image. This means smaller ranked SVD approximations are preferable.
- Hence *k* is limit bound to ensure SVD compressed image occupies lesser space than original image.

Necessary condition: 
$$k < \frac{mn}{m+n+1}$$

#### Examples of SVD compression in MATLAB

#### Original Image:



Rank of image = 202  $A_k = 31840$   $C_R = 0.580$ 

#### SVD compressed images for different values of *k*



Ak = 30796 CR = 61.046



Ak = 31679 CR = 23.588





Ak = 31699 CR = 12.101



Ak = 31781CR = 5.72

k = 22

k = 52

### Observation & Inference

- \* k represents the number of Eigen values used in the reconstruction of the compressed image
- Smaller the value of k, more is the compression ratio but image quality deteriorates
- As the value of k increases, image quality improves (i.e. smaller MSE & larger PSNR) but more storage space is required to store the compressed image
- When k is equal to the rank of the image matrix (202 here), the reconstructed image is almost same as the original one

## Conclusion

- SVD's applications in world of image and data compression are very useful and resource-saving.
- SVD allows us to arrange the portions of a matrix in order of importance. The most important singular values will produce the most important unit eigenvectors.
- We can eliminate large portions of our matrix without losing quality.
- Therefore, an optimum value for 'k' must be chosen, with an acceptable error, which conveys most of the information contained in the original image, and has an acceptable file size too.

## Thank You