MATH 503: Mathematical Statistics Dr. Kimberly F. Sellers, Instructor Homework 5

- 1. Let X_1, X_2, \ldots, X_n be a random sample from each of the following distributions involving the parameter θ . In each case, find the MLE of θ and show that it is a sufficient statistic for θ and hence a minimal sufficient statistic.
 - (a) Binomial(1, θ), where $0 < \theta < 1$.
 - (b) Poisson with mean $\theta > 0$.
 - (c) Gamma with $\alpha = 3$ and $\beta = \theta > 0$.
 - (d) $N(\theta, 1)$ where $-\infty < \theta < \infty$.
 - (e) $N(0, \theta)$ where $0 < \theta < \infty$.
- 2. Let $Y_1 < Y_2 < Y_3 < Y_4$ denote the order statistics of a random sample of size n=4 from a distribution having pdf $f(x;\theta) = \frac{1}{\theta}, 0 < x < \theta$, zero elsewhere, where $0 < \theta < \infty$. Argue that the complete sufficient statistic, Y_4 for θ , is independent of each of the statistics $\frac{Y_1}{Y_4}$ and $\frac{Y_1 + Y_2}{Y_3 + Y_4}$.
- 3. Let $Y_1 < \cdots < Y_n$ be the order statistics of a random sample from a $\mathbf{N}(\theta, \sigma^2)$, $-\infty < \theta < \infty$, distribution. Show that the distribution of $Z = Y_n \bar{X}$ does not depend on θ . Thus $\bar{Y} = \sum_{i=1}^n Y_i/n$, a complete sufficient statistic for θ , is independent of Z.
- 4. Let X_1, X_2, \ldots, X_n be iid with the distribution $\mathbf{N}(\theta, \sigma^2)$, $-\infty < \theta < \infty$. Prove that a necessary and sufficient condition that the statistics $Z = \sum_{i=1}^n a_i X_i$ and $Y = \sum_{i=1}^n X_i$, a complete sufficient statistic for θ , are independent is that $\sum_{i=1}^n a_i = 0$.
- 5. Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution with pdf $f(x; \theta) = \frac{1}{2}\theta^3 x^2 e^{-\theta x}$, $0 < x < \infty$, zero elsewhere, where $0 < \theta < \infty$.
 - (a) Find the MLE of θ . Is it unbiased? Hint: find the pdf of $Y = \sum_{i=1}^{n} X_i$ and then compute $E(\hat{\theta})$.
 - (b) Argue that Y is a complete sufficient statistic for θ .
 - (c) Find the UMVUE of θ .
 - (d) Show that $\frac{X_1}{Y}$ and Y are independent.
 - (e) What is the distribution of $\frac{X_1}{V}$?
- 6. If X_1, \ldots, X_N are iid Binomial(n, p) random variables, find the UMVUE of $\theta = p^n = P(X_1 = n)$.