Дефиниция 0.1. Казваме, че $\mathcal{F} \subseteq \mathcal{P}(X)$ е затворена относно включване фамилия от подмножества на X, ако за всяко множество $A \in \mathcal{F}$:

$$\forall B(B \subseteq A \to \mathcal{F}).$$

Дефиниция 0.2. Нека X е крайно множество, а $\mathcal{F} \subseteq \mathcal{P}(X)$. Казваме, че \mathcal{F} е матроид над X, ако изпълнява следните две свойства:

- 1. ${\cal F}$ е непразна затворена затворена фамилия от множества.
- 2. винаги когато $A,B\in\mathcal{F}$ и |A|>|B|, има елемент $a\in A\setminus B$, за който $B\cup\{a\}\in\mathcal{F}.$

Лема 0.1. Нека $X \subseteq \mathbb{R}^d$ е крайно множество от вектори. Нека $\mathcal{F} \subseteq \mathcal{P}(X)$ е фамилията, която се състои от всички подмножества на X, които представляват множества от линейно независими вектори. Тогава \mathcal{F} е матроид на X.

Доказателство. Ясно е, че ако $A \subseteq X$ са линейно независими и $B \subseteq A$, то и B е множество от линейно независими вектори. Следователно, \mathcal{F} е затворено относно включване. Нека сега $A, B \in \mathcal{F}$ и |A| > |B| = m. Нека, $a_1, a_2, \ldots, a_{m+1} \in A$ са различни вектори. Да допуснем, че $B \cup \{a_i\} \notin \mathcal{F}$ за всяко $i \leq m+1$. Тогава a_i е линейна комбинация на векторите от B за всяко i, защото B е линейно независимо. Тъй като dim(span(B)) = m, то това означава, че $\{a_1, \ldots, a_{m+1}\}$ са линейно зависими. Противоречие.

Дефиниция 0.3. Нека X е крайно множество, $\mathcal{F} \subseteq \mathcal{P}(X)$ е затворено надолу, а $Y \subseteq X$. Казваме $A \subseteq Y$ е максимално по включване подмножество Y спрямо \mathcal{F} , ако за всеки елемент $y \in Y \setminus A$, $A \cup \{y\} \notin \mathcal{F}$.

Казваме, че \mathcal{F} е балансирано ако за всяко $Y \subseteq X$ и всеки две максимални по включване множества $A, B \subseteq Y$ относно $\mathcal{F}, |A| = |B|$.

Лема 0.2. Нека G = (V, E) е неориентиран граф, $\mathcal{F} \subseteq \mathcal{P}(E)$ е фамилията от онези множества от ребра $E' \subseteq E$, за които (V, E') е гора. Тогава \mathcal{F} е балансирано множество над E.

Доказателство. Да си примоним, че един граф е гора точно когато е ацикличен. Съответно компонентите на свързаност на всяка гора са дървета. И така, нека $E' \in \mathcal{F}$ и $E'' \subseteq E$. Тъй като (V, E') е ацикличен граф, то и (V, E'') е ацикличен граф и следователно е гора. Това показва, че $E'' \in \mathcal{F}$, тоест \mathcal{F} е затворено относно включване. Нека сега $Y \subseteq E$. Нека C_1, \ldots, C_k са компонентите на свързаност на графа (V, Y), а $E' \subseteq Y$ е елемент на \mathcal{F} . Ясно е, че всяка компонента на свързаност на (G, E') се съдържа в някоя от компонентите C_i . Нещо, повече ако има различни компоненти C', C'' в графа (V, E'), които се съдържат в една и съща компонента на свързаност C_i , то в C_i прост път от C' до C'', да кажем $u \to_{C_i}^* v$. Тогава, ако w е последният връх по този път, който принадлежи на C', то реброто ww', което следва w, не е от E'. Следователно $E' \cup \{ww'\} \in \mathcal{F}$ и $E' \cup \{ww'\} \subseteq Y$. Следователно, E' е максимално по включване подмножество на Y относно \mathcal{F} точно когато (V, E') има k компоненти на свързаност. Но тъй като (V, E') е гора, то това означава, че |E'| = |V| - k, което не зависи от избора на максималното по

Лема 0.3. Нека \mathcal{F} е матроид над X, тогава \mathcal{F} е балансирано.

включване множество E'. Следователно $\mathcal F$ е балансирано.

Доказателство. Наистина, ако A и B са максимални по включване подмножества на $Y \subseteq X$ спрямо \mathcal{F} . Да допуснем, че $|A| \neq |B|$ и нека, без ограничение на общността, нека |A| > |B|. Тогава има $a \in A \setminus B$, за който $B \cup \{a\} \in \mathcal{F}$. Тъй като $a \in A \subseteq Y$, то $B \subseteq B \cup \{a\} \subseteq Y$, тоест B не е максимално по включване подмножество на Y спрямо \mathcal{F} . Противоречие, следователно |A| = |B|.

Лема 0.4. Нека X е крайно, а $\mathcal{F} \subseteq \mathcal{P}(X)$ е непразна, затворена надолу фамилия от множества. Ако \mathcal{F} е балансирано, то \mathcal{F} е матроид.

Доказателство. Нека $A, B \in \mathcal{F}$ са произволни и |A| > |B|. Тогава $Y = A \cup B \subseteq X$. Нека $A' \subseteq Y$ е максимално по включване подмножество на Y спрямо \mathcal{F} , което съдържа A. Тъй като Y е крайно, такова има. Тъй като $|A'| \ge |A| > |B|$ и \mathcal{F} е балансирано, то B не е максимално по включване. Следователно има $a \in Y \setminus B$, за което $B \cup \{a\} \in \mathcal{F}$. Но $Y = A \cup B$ и тъй като $a \notin B$, то $a \in A$.

Като директно следствие получаваме, че:

Corollary 0.1. Нека G=(V,E) е неориентиран граф, $\mathcal{F}\subseteq\mathcal{P}(E)$ е фамилията от онези множества от ребра $E'\subseteq E$, за които (V,E') е гора. Тогава \mathcal{F} е матроид на X.

Дефиниция 0.4. Базис на матроид \mathcal{F} над X наричаме множеството $\mathcal{B}(\mathcal{F})$ от максималните по включване подмножества на X спрямо \mathcal{F} .

Теорема 0.1. Нека X е крайно множество, а $\mathcal{F} \subseteq \mathcal{P}(X)$ е непразна затворена фамилия от подмножества на X. Тогава следните са еквивалентни:

- 1. \mathcal{F} е матроид.
- 2. за всяка функция $w: X \to \mathbb{Q}_0^+$ алчният алгоритъм за (X, \mathcal{F}, w) намира множество $A \in \mathcal{F}$, което максимизира w(A), m.e.:

$$w(A) = \max\{w(B) \mid B \in \mathcal{F}\}\$$

3. за всяка функция $w: X \to \mathbb{Q}$ алчният алгоритъм за (X, \mathcal{F}, w) намира множество $A \in \mathcal{B}(\mathcal{F})$, което максимизира w(A).

$$w(A) = \max\{w(B) \mid B \in \mathcal{B}(\mathcal{F})\}\$$

4. за всяка функция $w: X \to \mathbb{Q}$ дуалният алчен алгоритъм за (X, \mathcal{F}, w) намира множество $A \in \mathcal{B}(\mathcal{F})$, което минимизира w(A).

$$w(A) = \min\{w(B) \mid B \in \mathcal{B}(\mathcal{F})\}\$$

Доказателство. Нека за всяка функция алчният $w: X \to \mathbb{Q}^+_0$ алчният алгоритъм за (X, \mathcal{F}, w) намира множество $A \in \mathcal{F}$, което максимизира w(A), т.е.:

$$w(A) = \max\{w(B) \mid B \in \mathcal{F}\}\$$

Нека $A, B \in \mathcal{F}$ и |A| > |B|. Нека a = |A|, b = |B|. Нека $w : X \to \mathbb{Q}_0^+$ е функцията, за която:

$$w(x) = \begin{cases} \frac{1}{b} - \frac{1}{a^2}, \text{ ако } x \in B\\ \frac{1}{a}, \text{ ако } x \in A \setminus B\\ 0, \text{ ако } x \not\in A \cup B \end{cases}.$$

Тогава, лесно се вижда, че $\frac{1}{b}-\frac{1}{a^2}>\frac{1}{a}$. Наистина, това неравенство е еквивалентно на $a^2>b(a+1)$ и последното е очевидно, защото $b\leq a-1$. Поради това, алчният алгоритъм ще разгледа първо всичко елементи на B, след това всички елементи на A и накрая всички останали. Тъй като $B\in\mathcal{F}$, то след като разгледа елементите от B, алгоритъмът ще е акумулирал точно B, чиято цена ще е $w(B)=1-\frac{b}{a^2}$. Ако никой елемнт на $A\setminus B$ не може да се добави, то алгоритъмът ще намери множество с цена $w(B)=1-\frac{b}{a^2}$. От друга страна:

$$w(A) = \sum_{x \in A \backslash B} w(x) + \sum_{x \in A \cap B} w(x) = \sum_{x \in A \backslash B} \frac{1}{a} + \sum_{x \in A \cap B} \left(\frac{1}{b} - \frac{1}{a^2}\right) > \sum_{x \in A \backslash B} \frac{1}{a} + \sum_{x \in A \cap B} \frac{1}{a} = \frac{|A|}{a} = 1.$$

Тъй като алгоритъмът е коректен, то той добавя поне един елемент от $A \setminus B$ към B и следователно има $a \in A \setminus B$, за което $B \cup \{a\} \in \mathcal{F}$. Следователно \mathcal{F} е матроид.

Нека сега $\mathcal F$ е матроид и $w: X \to \mathbb Q_0^+$. Нека $w(x_1) \ge w(x_2) \cdots \ge w(x_n)$ е редът, в който алчният алгоритъм разглежда елементите на X. Нека A е множеството, което намира алчният алгоритъм и $Y_i = \{x_1, \ldots, x_i\}$, а $A_i = Y_i \cap A$. Да забележим, че A_i а максимално по включване подмножество на Y_i спрямо $\mathcal F$. Наистина, ако това не е вярно, то има елемент $x_j \in Y_i \setminus A_i$, за който $A_i \cup \{x_j\} \subseteq \mathcal F$. Но тогава, понеже $\mathcal F$ е затворено относно включване, то $A_i \cap Y_j \cup \{x_j\} \in \mathcal F$. Това означава, че $A_j \cup \{x_j\} \in \mathcal F$ и в същото алгоритъмът не е добавил x_j към A. Това е абсурд. Сега да забележим, че ако $B \subseteq X$ и $B_i = B \cap Y_i$, то $w(B_{i+1}) - w(B_i) = w(x_{i+1})(|B_{i+1}| - |B_i|)$. Оттук получаваме, че:

$$w(B) = \sum_{i=1}^{n} (w(B_i) - w(B_{i-1})) = \sum_{i=1}^{n} w(x_i)(|B_i| - |B_{i-1}|) = \sum_{i=2}^{n} |B_i|(w(x_i) - w(x_{i-1})) + |B_1|w(x_1).$$

Сега, ако $B \in \mathcal{F}$, то $|B_i| \leq |A_i|$ и тъй като $w(x_i) - w(x_{i-1}) \geq 0$, то $|A_i|(w(x_i) - w(x_{i-1})) \geq |B_i|(w(x_i) - w(x_{i-1}))$. Накрая, ако $|B_1| \neq 0$, то $B_1 = \{x_1\} \in \mathcal{F}$ и следователно $A_1 = \{x_1\}$. Тъй като $w(x_1)$, това означава, че $|B_1|w(x_1) \leq |A_1|w(x_1)$. С това показахме, че $w(A) \geq w(B)$ за всяко $b \in \mathcal{F}$.

Останалата част от теоремата може да се види така. Първо, от предишната лема всеки два елемента $A, B \in \mathcal{B}(\mathcal{F})$ имат равен брой елементи. Следователно оптимизацията на w(B) за $B \in \mathcal{B}(\mathcal{F})$ е еквивалентна на оптимизацията на w'(B), където w'(x) = w(x) + c за произволна фиксирана константа $c \in \mathbb{Q}$.