

Metodi di ottimizzazione per problemi di registrazione di point cloud

Optimization methods for point cloud registration problems

Candidato: Athos Innocenti

Relatore: Prof. Fabio Tardella Correlatore: Prof. Marco Sciandrone

A.A. 2020/2021

Indice

- 1 Introduzione
 Il problema della registrazione
- 2 L'algoritmo ICP
- 3 Analisi delle prestazioni
- 4 Conclusioni
 Prospettive future

Introduzione

Registrazione: determinare la trasformazione spaziale che meglio allinea due immagini

Eterogeneità delle sorgenti come possibile classificazione degli algoritmi di registrazione

Point cloud: formato di riferimento per rappresentare il mondo tridimensionale

Problematiche di cui tener conto durante la registrazione:

- Limitazioni intrinseche dei sensori
- 2 Rumore e outliers
- Sovrapposizione parziale
- 4 Differenza di densità
- 6 Variazione di scala

Introduzione 3

Il problema della registrazione

- **1** $\mathbb{X} = \{ \mathbf{x_i} \in \mathbb{R}^3, i = 1, ..., M \}$
- **2** $\mathbb{Y} = \{ \mathbf{y_j} \in \mathbb{R}^3, j = 1, \ldots, N \}$
- 3 $\phi(.,\omega):\mathbb{R}^3\to\mathbb{R}^3$ funzione di trasformazione dipendente da un vettore di parametri $\omega\in\mathbb{R}^m$
 - Trasformazione rigida:

$$\phi(\mathbf{x},\,\omega)=\phi(\mathbf{x},\,R,\,\mathbf{T})=R\mathbf{x}+\mathbf{T}$$

con
$$R\in\mathbb{SO}(3)$$
 e $\mathbf{T}\in\mathbb{R}^3$

- Trasformazione non rigida: $\phi(., \omega)$ funzione non lineare
- 4 Variabili binarie

$$\delta_{ij} = \begin{cases} 1 & \text{se } i \to j \\ 0 & \text{altrimenti} \end{cases}$$

Il problema della registrazione

OBIETTIVO: trovare $\omega \in \mathbb{R}^m$ che meglio sovrappone le due point clouds

FORMULAZIONE: problema di programmazione mista

$$\begin{aligned} & \min_{\delta, \omega} \; \frac{1}{2} \sum_{i=1}^{M} \sum_{j=1}^{N} \delta_{ij} \, \| \, \phi(\mathbf{x_i}, \, \omega) - \mathbf{y_j} \, \|^2 \\ & \sum_{j=1}^{N} \delta_{ij} = 1 \quad i = 1, \, \dots, \, M \\ & \delta_{ij} \in \{0, \, 1\} \quad i = 1, \, \dots, \, M \; j = 1, \, \dots, \, N \end{aligned}$$

Il problema della registrazione

Nel caso di trasformazione rigida

$$\min_{\delta,\,R,\,\mathbf{T}}\;\frac{1}{2}\;\sum_{i=1}^{M}\sum_{j=1}^{N}\delta_{ij}\,\|\,R\mathbf{x_i}+\mathbf{T}-\mathbf{y_j}\,\|^2$$

Possibili schemi risolutivi

- PCA
- SVD
- 3 ICP

INPUT Point clouds da sovrapporre

- 1 Source (mobile minor numero di punti)
- 2 Target (fissa maggior numero di punti)

SCHEMA Tre fasi ripetute iterativamente

- Definizione delle corrispondenze tramite approccio nearest neighbor
- 2 Stima della matrice di trasformazione affine tramite SVD
- 3 Applicazione della trasformazione

L'algoritmo ICP 7

Point to point

Distanza euclidea per stimare le corrispondenze di punti

$$\hat{j} = \mathop{\mathrm{arg\,min}}_{i} \|\mathbf{p_i} - \mathbf{q_j}\|^2$$

• $R \in SO(3)$ e $\mathbf{T} \in \mathbb{R}^3$ stimati minimizzando il quadrato delle distanze tra le N corrispondenze

$$\hat{R}, \, \hat{\mathbf{T}} = \operatorname*{arg\,min}_{R,\,\mathbf{T}} \sum_{k=1}^{N} \| (R\mathbf{p_k} + \mathbf{T}) - \mathbf{q_k} \|^2$$

Point to plane

- Insieme di punti localmente più vicini al punto candidato
- Vettore normale n come il più piccolo autovettore della matrice di covarianza
- Si minimizza la proiezione scalare delle distanze euclidee sul piano definito da n

$$\hat{R},\,\hat{\mathbf{T}} = \operatorname*{arg\,min}_{R,\,\mathbf{T}} \sum_{k=1}^{N} \| [(R\mathbf{p_k} + \mathbf{T}) - \mathbf{q_k}] \mathbf{n_k} \|^2$$

Non linear ICP

 Huber loss function come compromesso tra ottimizzazione L1 e L2

$$e(n) = \begin{cases} \frac{n^2}{2} & \text{se } |n| \le k \\ k|n| - \frac{k^2}{2} & \text{se } |n| > k \end{cases}$$

k soglia definita empiricamente, n la misura della distanza

• Formulazione del problema:

$$\hat{R},\,\hat{\mathbf{T}} = \operatorname*{arg\,min}_{R,\,\mathbf{T}} \sum_{k=1}^{N} e^2(n_k) = \operatorname*{arg\,min}_{R,\,\mathbf{T}} \sum_{k=1}^{N} e^2(\|(R\mathbf{p_k} + \mathbf{T}) - \mathbf{q_k}\|)$$

• Per ottenere \hat{R} , $\hat{\mathbf{T}}$ si implementa l'algoritmo *Levenberg - Marquardt*

L'algoritmo ICP 10

Metrica: point to point

Tolleranze: [0.001, 0.001] MaxIters: [50, 100, 200, 400]

Output: rmse, registrazione

Prove: 100 prove per modello con condizioni iniziali casuali:

- Matrice di rotazione 3D
- 2 Vettore di traslazione

Rotazione Max: 2π Traslazione Max: 1.0

Caso ideale e Sovrapposizione dei baricentri

Immagini non deformate e prive di alcun tipo di rumore

		Iterazioni massime				
		50	100	200	400	
Modello	Sedia	6	6	6	7	
	Tavolo	16	25	29	29	
	Tazza	3	5	7	9	
	Cappello	0	2	7	27	

Rmse diminuisce di un ordine di grandezza dopo aver eseguito ICP e di un ulteriore ordine in corrispondenza dell'ottimo globale Vettore di traslazione definito come la differenza tra i baricentri delle due nuvole così da sovrapporli

		Iterazioni massime				
		50	100	200	400	
	Sedia	13	15	16	17	
Modello	Tavolo	24	25	24	24	
	Tazza	4	5	10	10	
	Cappello	19	27	40	44	

Considerevole incremento del numero di sovrapposizioni corrette

Deformazione

Deformazione della moving point cloud seguita da roto traslazione iniziale

Trasformazioni applicate:

1 Scaling

$$SC = \left(egin{array}{cccc} SC_X & 0 & 0 & 0 \\ 0 & SC_Y & 0 & 0 \\ 0 & 0 & SC_Z & 0 \\ 0 & 0 & 0 & 1 \end{array}
ight)$$

2 Shearing

$$SH = \left(egin{array}{cccc} 1 & SH_{Y_x} & SH_{Z_x} & 0 \ SH_{X_y} & 1 & SH_{Z_y} & 0 \ SH_{X_z} & SH_{Y_z} & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

		Iterazioni massime				
		50	100	200	400	
	Sedia	5	6	7	7	
Modello	Tavolo	16	23	26	26	
	Tazza	3	3	3	4	
	Cappello	7	11	11	11	

Rumore

Aggiunti 2000 nuovi punti alla moving point cloud prima della roto - traslazione iniziale e l'esecuzione di ICP

		Iterazioni massime				
		50	100	200	400	
Modello	Sedia	9	10	11	11	
	Tavolo	13	19	20	23	
	Tazza	5	6	10	14	
	Cappello	7	33	35	36	

Algoritmo di rimozione del rumore:

- 1 Calcola i k-NN
- 2 μ e σ delle distanze tra ciascun punto ed i suoi k vicini
- 3 Rimuove i punti con media esterna all'intervallo $\mu \pm \alpha \sigma$

		Iterazioni massime			
		50	100	200	400
Modello	Sedia	6	6	7	7
	Tavolo	21	25	26	26
	Tazza	3	6	9	13
	Cappello	4	29	41	42

Conclusioni

- Soddisfacente percentuale di successi nello stimare una trasformazione rigida corretta
- 2 La preventiva sovrapposizione dei baricentri aumenta sensibilmente il numero di successi
- 3 L'algoritmo di rimozione del rumore non ha apportato variazioni degne di nota
- 4 Riesce ad allineare le point clouds anche se deformate

Conclusioni 15

Prospettive future

Ottimo globale raggiunto in tutti i casi esaminati, ad eccezione di quello in cui è stata introdotta una *deformazione*

Prospettive future

Ottimo globale raggiunto in tutti i casi esaminati, ad eccezione di quello in cui è stata introdotta una *deformazione*

- Trasformazione non rigida per sopperire ad eventuali deformazioni delle point clouds e limitazioni di ICP
- Algoritmo di segmentazione per ottimizzare la ricerca delle corrispondenze e la stima della trasformazione

Grazie per l'attenzione!