Árboles recubridores minimales: Algoritmo de Kruskal

Bautista Marelli

Octubre 22, 2019

1 Demostración de que el algoritmo termina

Como G = (V, E) es un grafo, que como sabemos, tiene una cantidad finita de aristas y vértices, el algoritmo termina cuando tenemos n-1 aristas (|V| = n)

Suponemos que T es disconexo luego de considerar todas las aristas (T es el resultado del algoritmo). Como G es conexo, admite al menos una arista e de menor peso que une dos componentes distintas de T. Luego, al momento de ser considerada, e debió haber sido agregada a T (por unir dos componentes distintas de T también en ese momento). Esta contradicción muestra que en alguna iteración T se vuelve conexo y el algoritmo se detiene. Además, T no tiene ciclos puesto que la adición de una arista que une componentes distintas no introduce un ciclo. De esta forma concluimos que la salida T del algoritmo es un grafo conexo y sin clico, es decir, un árbol.

2 Demostración de la corrección

Sea G=(V,E) un grafo ponderado no dirigido, conexo y sin lazos, sea T un subgrafo de G generado por el algoritmo. Como T es un árbol, T es conexo y no tiene ciclos.

Luego, sea T_1 el árbol recubridor de peso mínimo de G y que tenga la mayor cantidad de aristas en común con T. Si $T=T_1$ entonces listo, T es un árbol recubridor de peso mínimo. En el caso contrario, sea $e \in E(T)$ la primera arista considerada por el algoritmo $/e \notin E(T_1)$.

Sean H_1 y H_2 las componentes de T que conecta la arista e. Ya que T_1 es un árbol, entonces $T_1 + e$ tiene un ciclo $y \exists v$ arista en ese ciclo que también conecta a las componentes H_1 y H_2 (es decir, $v \in E(T_1)$). Entonces si remplazamos en T_1 la arista v por la e, $T_2 = T_1 - v + e$ tenemos también un árbol recubridor. Ya que e fue considerada antes que v por el algoritmo de Kruskal, tenemos $p(e) \leq p(v)$ y como T_1 es un árbol recubridor de peso mínimo, se tiene que p(e) = p(v).

 T_2 es un árbol recubridor de peso mínimo con mas aristas en común con T que T_1 , lo que contradice con la hipótesis que establecimos para T_1 . De esta forma probamos que T es un árbol recubridor de peso mínimo.