Orientations and orientability Linear algebra: V vector space of dimension n. . An overtextur of V is · a choice of equivalence class of bosis (v1,-, vn) under the equipment relation (VI, -, Vh) ~ [VI, -, wh) if the linear map T:V >> V has det(T)>0. lexercus: chech-thox one equilat). · a choice of generator $x \in N^V$ (in particle non-zer) up to the equiv. relater of real positive scaling. , din(V) The set of enerthetes of V is $Or(V) := (N^n V V O) / R + = {basis of} / {equaletty, a choice of connected corporates of <math>I^n V O$ Note: when dian V = O, $A^{din V} V = R$, so the notion of an enerthalia (second version) so $V = S_0$ still makes 2150, and is sayly equally to a choice of sign [+, -] 1.e., or ([0]) = {+, -}. (= 2/2 es a 2/2-set) For any vector space V, or (V) has to elevent, but cannot be consorically identified $\sqrt{1+-1}$. It is howeve a $\mathbb{Z}/2$ -set under the map $\mathbb{Z} \cdot [i\omega] := [-\omega]$. e.g. or (R2) A pair (V, 6) is an anentral vector spice { [e, 1 e2], [e219]) Alnear iso, T: (V,6) => (W,6w) is overtition-preserving if T+6v = 6v. Observe: $T: (V, G_V) \rightarrow (V, G_V)$ is orientative proservy iff det(T) >0. iff T:(V, -6,) -> (V, -6,) is overtative presens.

Therefore we simply say T:V-) V is metator present of det(T) >0_

Now, let M"be a connected marifold, E - 1	M" a vector budle of ronk n.
We say E→M is onerhole if 1 mk(E)=n E	(zero section) has exactly two
Conforats.	wege of $p \mapsto (p, 0)$
(know it has at most two components, essentially	H→ΛE.
ble MEp/O) has to compared for	èrever pexerise.)
If E-) M is onertable, an overtation of F is	a choice of component of
MPE/ zero section.	CATOPE is trivializable.
Rule: E > M is onertible iff there exists	s a souther varishing SET (1th E)
(execise, = is more straightforward)	10,1]×R (0,+)~(1,-+).
Noa-ex: E = Möbius-budle (rank 1)	
S ¹ .	(2005 Cho)
Def: Say Mis onertable : E	(90) /0~1.
TM > M is overtable. An overtation of M.	1
(RML: Linearalgebra lenna states that given C) -> V-) W-> Z-> O "exact "
(RML: Linear abgebra lemma states that given Converning is seen a surprise of the contraction of the contrac	ends in(i) to 0 and induces
then an eventsher of 2/2 of vector spaces of	cononially dotemes as arestotal of third one)
=> NCM submerifold. Then an one-take	

which soid An Ato(E/u) to [e,n --nen] Conentation of R induced by chosen onestate of F. component containing constact section: pm (p,ein-nen). Then, check each Ing: Un Up -> GL(u,R) lands in GL(1,R) (as it knds [en--nen) -> [en-nen), in (R)p, i.e., overthe presery & p & U2). (b) => (c). Give {Ux}, \$\P_{\pi}\$ "positive" tovializate of Eas in (b) -chook a partition of unity (Pa) suborduct + U. · have In: Ely => RM/u, & on RHS have $\omega_{\alpha} = \left(e_{1}n - ne_{n}\right)$ const. section of $\Lambda^{n}(|R^{n}|_{U_{\infty}})$. conside Σ $\Psi_{\lambda}(\bar{\Psi}^{-1})$ W_{λ} ; thought of as a section of $\Lambda^{+}E$ one M.

Lextend $\Psi_{\lambda}(\bar{\Psi}^{-1})$ W_{λ} to be 0-section artide Ux.

Claim:

· w varishes nowher? At each peM,

we go a finite sum of $P_{\alpha}(p)(P_{\alpha}^{-1})_{\alpha}(\omega_{\alpha})_{p}$. $\omega_{p} \neq 0$?

Prehing - pertedu ω_{p} , P_{p} to push formed along $\omega_{p} \neq 0 \iff (P_{\alpha}\omega_{p} \neq 0 \iff 0)$

Obs:
$$(\overline{P}_{p}\overline{P}_{a}^{-1})_{*}e_{1}$$
 e_{1} e_{2} e_{3} e_{4} e_{5} e_{6} e_{6

(c) => (a). Say
$$\omega \in \Gamma(\Lambda^{+p}E)$$
 nowhere vanishing, so $\omega_p \neq 0 \quad \forall p$.

Let $\Delta_{+}^{+} = \{(p, q) \in \Lambda^{+p}E \mid q = c \omega_p \text{ for some } c > 0\}$.

 $\Lambda^{+p}E$

Then, note: /the E (Section) = 1 + 1 1, so /the E (section) is disconnected >> E-M orestable.