CO 250: Introduction to Optimization

Module 4: Duality Theory (Strong Duality)

©University of Waterloo

Recap: Weak Duality

	(P _{max})			(P _{min})	
		≤ constraint	≥ 0 variable		
max	$c^{\top}x$	= constraint	free variable	min	$oldsymbol{b}^{ op} oldsymbol{y}$
subject to		≥ constraint	≤ 0 variable	subject to	
	Ax? b	≥ 0 variable	≥ constraint		$A^{\top}y$? c
	x ? 0	free variable	= constraint		y ? 0
		≤ 0 variable	\leq constraint		-

Last lecture: we described a method to construct the dual of a general linear program.

E.g.: consider the primal LP, (P), on the right – a max LP that falls in the first two columns of the table.

 \longrightarrow The dual of (P) is a min LP.

$$\max (2, -1, 3)x \qquad (P)$$
s.t. $\begin{pmatrix} 1 & 0 & -1 \\ 0 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$

$$x_1 \ge 0, x_2 \le 0, x_3 \text{ free}$$

©University of Waterloo 2/1

Recap: Weak Duality

	(P _{max})			(P _{min})	
max subject to	$c^{\top}x$ $Ax?b$ $x?0$	= constraint ≥ constraint ≥ 0 variable free variable	≥ 0 variable free variable ≤ 0 variable ≥ constraint = constraint ≤ constraint	min subject to	$b^{\top}y$ $A^{\top}y$? c y ? 0

$$\max (2, -1, 3)x \qquad \qquad \text{(P)} \qquad \min (2, 1, -2)y \qquad \qquad \text{(D)}$$

$$\text{s.t.} \begin{pmatrix} 1 & 0 & -1 \\ 0 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \qquad \text{s.t.} \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 1 \\ -1 & 1 & 0 \end{pmatrix} y \overset{\geq}{\leq} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$

$$x_1 > 0, x_2 < 0, x_3 \text{ free} \qquad \qquad y_1 > 0, y_2 \text{ free, } y_3 < 0$$

©University of Waterloo 3/1

Recap: Weak Duality

$$\max (2, -1, 3)x \qquad (P) \qquad \min (2, 1, -2)y \qquad (D)$$
s.t.
$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & -2 & 1 \\ 1 & 1 & 0 \end{pmatrix} x = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \qquad \text{s.t. } \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 1 \\ -1 & 1 & 0 \end{pmatrix} x \leq \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$

$$x_1 > 0, x_2 < 0, x_3 \text{ free} \qquad y_1 > 0, y_2 \text{ free, } y_3 < 0$$

Weak Duality Theorem

if \bar{x} is feasible for (P) and \bar{y} is feasible for (D),

$$\implies c^T \bar{x} \le b^T \bar{y}$$

If $c^T \bar{x} = b^T \bar{y}$, then both \bar{x} and \bar{y} are optimal.

©University of Waterloo 4/

This Lecture: Strong Duality

	(P _{max})			(P _{min})	
max	$c^{\top}x$	_	≥ 0 variable free variable	min	$b^{ op}y$
subject to	Ax?b	_	\leq 0 variable \geq constraint	subject to	$A^{\top}y$? c
	<i>x</i> ? 0	free variable	= constraint ≤ constraint		y ? 0

Question

Can we always find feasible solutions \bar{x} and \bar{y} to a primal-dual pair, (P_{max}), (P_{min}), such that $c^T\bar{x}=b^T\bar{y}$?

Strong Duality Theorem

If (P_{max}) has an optimal solution \bar{x} , then (P_{min}) has an optimal solution \bar{y} such that $c^T\bar{x}=b^T\bar{y}$.

©University of Waterloo 5/

Strong Duality - for LPs in SEF

Let us prove the Strong Duality Theorem in the special case where (P) is in SEF.

Let's assume (P) has an optimal solution.

 \rightarrow 2-Phase Simplex terminates with an optimal basis B (Why?)

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x \tag{P'}$$
 s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b$ $x \ge 0$

Thus, $\bar{x}_N = \mathbb{O}$ and $\bar{x}_B = A_B^{-1}b$

$$\max c^T x \qquad (P)$$
s.t. $Ax = b$

x > 0

$$\min b^T y \qquad \qquad (\mathsf{D})$$
s.t. $A^T y \ge c$

where:

$$\bar{y} = A_B^{-T} c_B$$
$$\bar{c}^T = c^T - \bar{y}^T A$$

©University of Waterloo 6/

Strong Duality - for LPs in SEF

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x$$
 (P')
$$\text{s.t. } x_B + A_B^{-1} A_N x_N = A_B^{-1} b$$

$$x \geq 0$$

Thus,
$$\bar{x}_N=\mathbb{0}$$
 and $\bar{x}_B=A_B^{-1}b$

Recall that (P) and (P') are equivalent!

 $\longrightarrow \bar{x}$ has same value in (P) and (P')

$$\begin{array}{rcl} c^T \bar{x} & = & \bar{y}^T b + \bar{c}^T \bar{x} \\ & = & \bar{y}^T b + \bar{c}_N^T \bar{x}_N \\ & = & b^T \bar{y} \end{array}$$

Goal: Show that \bar{y} is dual feasible.

$$\max c^T x \qquad (P)$$
s.t. $Ax = b$

$$x \ge 0$$

$$\min b^T y \qquad \qquad (\mathsf{D})$$
 s.t. $A^T y \ge c$

where:

$$\bar{y} = A_B^{-T} c_B$$
$$\bar{c}^T = c^T - \bar{y}^T A$$

©University of Waterloo 7 /

Strong Duality - for LPs in SEF

We can rewrite (P) for basis B:

$$\max z = \bar{y}^T b + \bar{c}^T x \tag{P'}$$
 s.t. $x_B + A_B^{-1} A_N x_N = A_B^{-1} b$ $x \ge \emptyset$

Thus,
$$\bar{x}_B = A_B^{-1}b$$
 and $\bar{x}_N = \mathbb{O}$ and $c^T\bar{x} = b^T\bar{y}$.

Note that B is an optimal basis $\longrightarrow \bar{c} \leq 0$

$$\longrightarrow c^T - \bar{y}^T A \le 0$$

Equivalently, $A^T \bar{y} \geq c$, meaning \bar{y} is dual feasible!

$$\max c^T x$$
 (P) s.t. $Ax = b$ $x \ge 0$

$$\min b^T y \qquad \qquad (\mathsf{D})$$
s.t. $A^T y \ge c$

where:

$$\bar{y} = A_B^{-T} c_B$$
$$\bar{c}^T = c^T - \bar{y}^T A$$

Strong Duality Theorem

Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal solution, then (D) has one, and their objective values equal.

Note: (P) is feasible and (D) is feasible \longrightarrow (P) cannot be unbounded Fundamental Theorem of LP \longrightarrow (P) has an optimal solution.

Subtly different version via previous results:

Strong Duality Theorem - Feasibility Version

Let (P) and (D) be primal-dual pair of LPs. If both are feasible, then both have optimal solutions of the same objective value.

©University of Waterloo 9/

Possible Outcomes of Primal-Dual Pair (P), (D)

(D)(P)	optimal solution	unbounded	infeasible	
optimal solution	possible (1)	impossible 2	impossible ③	
unbounded	impossible 4	impossible (5)	possible 6	
infeasible	impossible 7	possible 8	possible 9	

- 1, 6, and 8 many examples exist
- ② follows directly from Weak Duality as follows:

Suppose, for a contradiction, that (D) has an optimal solution \bar{y} . $c^T \bar{x} \leq b^T \bar{y}$ for all feasible primal solutions \bar{x} by Weak Duality \longrightarrow (P) is bounded! Similar arguments apply to 4 and 5

- 3, 7 follow directly from Strong Duality
- I'll leave 9 for you to do as an exercise!

$$\max c^T x \qquad (\mathsf{P})$$
s.t. $Ax = b$

$$x \geq \mathbb{O}$$

$$\min b^T y \qquad (\mathsf{D})$$

$$\text{s.t. } A^Ty \geq c$$

©University of Waterloo

Recap

Strong Duality Theorem

Let (P) and (D) be a primal-dual pair of LPs. If (P) has an optimal solution, then (D) has one, and their objective values equal.

(D)(P)	optimal solution	unbounded	infeasible	
optimal solution	possible 1	impossible 2	impossible ③	
unbounded	impossible 4	impossible (5)	possible 6	
infeasible	impossible 7	possible 8	possible 9	

©University of Waterloo