Применение PINN в SIR модели игры среднего поля

Неверов Андрей Вячеславович Институт математики им. Соболева СО РАН a.neverov@g.nsu.ru

Соавторы: Криворотько Ольга Игоревна

Секция: Прикладная математика и математическое моделирование

Рассматривается пространственная эпидемиологическая SIR модель, в которой люди распределены в некотором населенном пункте и стремятся не стать инфицированными. Для реализации взаимодействия большого населения в условиях эпидемии применен подход игр среднего поля [1], характеризующийся совместным решением систем уравнений в частных производных типа Колмогорова-Фоккера-Планка и Гамильтона-Якоби-Беллмана.

Для численной реализации математического моделирования распространения эпидемии в популяции с учетом оптимального управления применяется метод машинного обучения, а именно физически информированные нейронные сети (PINN) с различными модификациями [2]. Рассматривается возможность решения коэффициентных обратных задач, где информация вводится в виде дополнительных уравнений.

Работа выполнена в рамках государственного задания Института математики им. С. Л. Соболева СО РАН, проект FWNF-2024-0002 "Обратные некорректные задачи и машинное обучение в биологических, социально-экономических и экологических процессах".

- [1] V. Petrakova, O. Krivorotko, Mean Field Optimal Control Problem for Predicting the Spread of Viral Infections, 19th International Asian School-Seminar on Optimization Problems of Complex Systems (OPCS), (2023), 79-84.
- [2] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, *Journal of Computational Physics*, 378 (2019), 686-707.