16 de janeiro de 2020

UNIVERSIDADE DO PORTO

Duração 2 horas. Prova com consulta de formulário, em folha A4, e uso de dispositivo de cálculo, apenas para fazer contas e não para consultar apontamentos, exames anteriores ou formulários. O dispositivo não pode estar ligado à rede e só pode executar um programa de cada vez.

Li e compreendi o texto acima:

1. (4 valores) A fonte no circuito representado no diagrama tem tensão eficaz de 100 V e frequência de 2 kHz. Calcule a corrente eficaz na resistência de 56 Ω, quando o interruptor estiver aberto e quando estiver fechado.

2. (4 valores) Um protão (massa 1.67×10^{-27} kg) encontra-se na origem, em t = 0, com velocidade $\vec{v} = 184 \hat{\imath}$ (km/s), dentro de uma região onde há vácuo e campo magnético uniforme: $\vec{B} = -0.062 \hat{j}$ (T). Determine a posição do protão em $t = 0.85 \,\mu s$.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- 3. Um condensador de 4 µF, inicialmente descarregado, e uma resistência de 50 k Ω , ligam-se em série a uma fonte de tensão variável. Se t representa o tempo, a partir do instante t = 0 em que são ligados os dispositivos, a expressão da tensão da fonte é 30 t, em unidades SI. Encontre a expressão para a voltagem na resistência, em função do tempo (em unidades SI).
 - (A) $6(t-e^{-5t})$
- **(D)** $6 t e^{-5 t}$
- **(B)** $6e^{-5t}$
- (C) $6(1-e^{-5t})$
- **(E)** $6(t+e^{-5t})$

Resposta:

4. Cada um dos três condensadores na figura tem o mesmo valor da capacidade, C. Determine a capacidade equivalente entre AeB.

- (A) C/2
- (C) C/3
- **(E)** 3C/2

- **(B)** 3*C*
- **(D)** 2C/3

Resposta:

- 5. Durante 8 segundos passaram 3×10^{16} eletrões de condução através de um condutor ligado a uma pilha com f.e.m. de 1.5 V. Determine a energia fornecida pela pilha durante esse intervalo.
 - (A) 13.68 mJ
- (C) 23.04 mJ
- (E) $7.2 \, \text{mJ}$

- (**B**) 2.16 mJ
- (**D**) 28.8 mJ

Resposta:

- **6.** Dentro do cubo definido por $0 \le x \le 3$, $0 \le y \le 3$ e $0 \le z \le 3$ existe campo elétrico dado pela expressão $\vec{E} = (4 + x) \hat{\imath}$ (unidades SI). Como tal, pode afirmar-se que dentro do cubo:
 - (A) A carga interna é negativa.
 - (B) A carga interna é nula.
 - (C) Existe um ponto de sela do campo.
 - (D) A carga interna é positiva.
 - (E) O fluxo elétrico é nulo.

Resposta:

7. Qual das setas representa a direção e sentido do campo magnético \vec{B} no ponto P, produzido pelos dois fios retilíneos e paralelos com correntes da mesma intensidade, nos sentidos indicados na figura?

- (A) Nenhuma, porque $\vec{B} = 0$
- **(B)** 3
- **(C)** 4

(E) 1

Resposta:

- 8. Uma resistência de 1.2 k Ω e um indutor de 2.3 H ligam-se em série a uma fonte de tensão alternada com voltagem máxima de 30 V e frequência f = 70 Hz. Determine a corrente máxima no sistema.
 - (A) 18.41 mA
- (C) 25.0 mA
- (E) 19.11 mA

- (B) 19.3 mA
- (**D**) 13.56 mA

Resposta:

9.	O valor da constante de Coulomb, k , em unidades ${\rm mN\cdot cm^2/nC^2}$ é aproximadamente:			14.	Três cargas pontuais, $q_1 = 4 \times 10^{-8}$ C, $q_2 = -5 \times 10^{-8}$ C e $q_3 = 2 \times 10^{-8}$ C encontram-se em 3 dos vértices dum quadrado com 4 cm de aresta, tal como mostra a figura. Determine o			
	(A) 0.09	(C) 90	(E) 9			odulo da força elétrica resultante na carga q_2 .		
	(B) 0.009	(D) 9000	(L) 9		,	q_1 q_2	0 12	
	Resposta:	(D) 3000						
10.	Num nó dum circuito de corrente alternada encontram-se 3 ramos diferentes. As correntes que entram no nó pelos ramos 1 e 2 são $3.7\cos(\pi\ t + 0.432)$ e $1.9\cos(\pi\ t + 0.123)$. Determine a expressão da corrente que sai pelo terceiro ramo.					$-q_3$		
	(A) $4.98\cos(\pi t + 0.$ (B) $5.99\cos(\pi t + 0.$ (C) $5.54\cos(\pi t + 0.$	252)	$28\cos(\pi \ t + 0.381)$ $39\cos(\pi \ t + 0.265)$		(A) 113.2 mN (B) 12.58 mN	(C) 4.19 mN (D) 2.52 mN	(E) 62.89 mN	
	Resposta:				Resposta:			
11.	Ligam-se em série duas resistências idênticas a uma bateria ideal (resistência interna desprezável) e observa-se que a potência dissipada pelas duas resistências é 80 W. Se as mesmas duas resistências fossem ligadas em paralelo à mesma bateria, qual seria a potência total que dissipavam nesse caso?				Liga-se uma bobina com indutância de 5.6 mH a uma fonte ideal de 1.5 V. Após 1.5 segundos, a corrente na bobina é igual a 4.7 mA. Calcule a força eletromotriz média induzida na bobina durante esse intervalo.			
	(A) 320.0 W	(C) 160.0 W	(E) 80.0 W		(A) $17.55 \mu\text{V}$	(C) $8.77 \mu\text{V}$	(E) 0.75 V	
	(B) 40.0 W	(D) 20.0 W			(B) 1.0 V	(D) 3.13 mV		
	Resposta:				Resposta:			
12.			rga no condensa- 16. ura de cima.		A carga total numa superfície condutora esférica de raio 5 cm é 4 nC. Uma segunda superfície condutora esférica, de raio 7 cm e concêntrica com a primeira, tem carga total 1 nC. Encontre o valor do potencial num ponto a 6 cm do centro das esferas, arbitrando potencial nulo no infinito.			
	}	15 WE			(A) 729 V	(C) 600 V	(E) 1500 V	
		± 1.5 μF	40 V		(B) 150 V	(D) 750 V		
	(A) 14 mA (B) 11 mA	(C) 10 mA (D) 8 mA	(E) 5 mA		Resposta:			
	Resposta:	(D) UHLI		17.	. Determine o módulo da impedância complexa entre os pontos A e B para uma tensão alternada com frequência $f=60~{ m Hz}.$			
13.	Se a resistência de uma barra de chumbo for 65Ω a 20° C, qual será a resistência dessa mesma barra a 56° C? (O coeficiente de temperatura do chumbo a 20° C, é igual a 0.0043).					2.3 H 1.2 kΩ		
	(A) 70.0 Ω	(C) 85.1 Ω	(E) 90.2 Ω		(A) $1.7 \text{ k}\Omega$	(C) $1.2 \text{ k}\Omega$	(E) $2.07 \text{ k}\Omega$	
	(B) 77.1 Ω	(D) 75.1 Ω	(1) 00.2 12		$(B) 1.66 k\Omega$	(D) 1.48 k Ω		
	Resposta:				Resposta:			

Resolução do exame de 16 de janeiro de 2020

Regente: Jaime Villate

Problema 1. Em qualquer sistema com impedância complexa Z, a relação entre a tensão eficaz e a corrente eficaz é a seguinte:

$$I_{\text{ef}} = \frac{V_{\text{ef}}}{|Z|}$$

Como a corrente eficaz através da resistência de 56 Ω é igual à corrente eficaz fornecida pela fonte, será igual à voltagem eficaz da fonte, sobre o módulo da impedância total equivalente entre os terminais da fonte $(100/|Z_t|)$.

Quando o interruptor estiver aberto, a resistência de $56\,\Omega$ estará em série com o condensador, tal como mostra o diagrama à direita. Como tal, em unidades SI,

$$Z_{\rm t} = 56 - \frac{\rm i}{2\pi \times 2000 \times 0.3 \times 10^{-6}} = 56 - \rm i\,265.3$$

$$|Z_{\rm t}| = \sqrt{56^2 + 265.3^2} = 271.1 \implies I_{\rm ef} = \frac{100}{271.1} = 0.369 \,\text{A}$$

Quando o interruptor estiver fechado (diagrama à direita), a resistência de 56 Ω estará em série com o conjunto do condensador em paralelo com a resistência de 200 Ω . Em unidades SI,

$$Z_{\rm t} = 56 + \left(\frac{1}{200} + i2\pi \times 2000 \times 0.3 \times 10^{-6}\right)^{-1}$$

$$Z_{t} = 56 + \frac{1}{0.005 + i0.00377} = \frac{1.28 + i0.2111}{0.005 + i0.00377} \implies |Z_{t}| = \frac{\sqrt{1.28^{2} + 0.2111^{2}}}{\sqrt{0.005^{2} + 0.00377^{2}}} = 207.2$$

E a corrente eficaz é:

$$I_{\text{ef}} = \frac{100}{207.2} = 0.483 \,\text{A}$$

Problema 2. Em t = 0, a força magnética sobre o protão é (unidades SI):

$$\vec{F}_0 = 1.602 \times 10^{-19} (184 \times 10^3 \,\hat{\imath} \times (-0.062 \,\hat{\jmath})) = -1.8276 \times 10^{-15} \,\hat{k}$$

Observe-se que o peso do protão, 1.637×10^{-26} N, é 11 ordens de grandeza inferior e, como tal, pode ser ignorado e não é necessário saber a direção da vertical.

Em t=0, o protão será desviado na direção negativa do eixo dos z; mais tarde, a força terá outra direção diferente, mas sempre no plano xz (plano perpendicular a \vec{B}). Como tal, a trajetória do protão estará no plano xz. Como a força magnética é sempre perpendicular à velocidade, o módulo desta não muda e o módulo da força normal (magnética) permanece constante. O resultado é um movimento circular uniforme, no plano xz, com centro no semieixo negativo dos z, tal como mostra a figura ao lado.

Basta uma variável para descrever a posição do protão, que pode ser o ângulo $\theta(t)$ indicado na figura, com $\theta=0$ em t=0. O vetor posição em qualquer instante $t\geq 0$ é:

$$\vec{r} = R\left(\sin\theta\,\hat{\imath} + \cos\theta\,\hat{k}\right) - R\,\hat{k} \tag{1}$$

O raio da trajetória determina-se igualando o módulo da força magnética à massa vezes a aceleração normal:

$$1.8276 \times 10^{-15} = 1.67 \times 10^{-27} \left(\frac{184000^2}{R} \right) \implies R = \frac{5.654 \times 10^{-17}}{1.8276 \times 10^{-15}} = 0.03094 \,\mathrm{m}$$

E a velocidade angular (constante) é igual a,

$$\omega = \frac{v}{R} = \frac{184000}{0.03094} = 5.947 \times 10^6 \,\mathrm{s}^{-1}$$

O ângulo em $t = 0.85 \,\mu s$ obtém-se integrando a equação diferencial:

$$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t} \implies 5.947 \times 10^6 \int_0^{0.85 \times 10^{-6}} \mathrm{d}t = \int_0^{\theta} \mathrm{d}\theta \implies \theta = 5.947 \times 0.85 = 5.055$$

Finalmente, o vetor posição encontra-se substituindo R e θ na equação 1 (resposta em metros):

$$\vec{r} = -0.02914 \,\hat{\imath} - 0.02055 \,\hat{k}$$

Perguntas

3. C

6. D

9. A

12. B

15. A

4. E

7. E

10. C

13. D

16. A

5. E

8. E

11. A

14. B

17. D

Critérios de avaliação

Problema 1

Cálculo da impedância total com o interruptor aberto	0.8
Módulo dessa impedância	0.4
Cálculo da corrente eficaz com o interruptor aberto	0.4
Cálculo da impedância total com o interruptor fechado	1.6
Módulo dessa impedância	0.4
Cálculo da corrente eficaz com o interruptor fechado	0.4
Problema 2	
Determinação do plano da trajetória	0.4
• Identificação do movimento circular uniforme e posição do centro da trajetória	0.8
Cálculo do raio da trajetória	0.4
Cálculo da velocidade angular	0.4
Cálculo do ângulo no instante final	0.4
• Expressão para o vetor posição e cálculo desse vetor no instante final	1.6