

QD
65
.H3
1913

HANDBOOK
OR
CHEMISTRY AND PHYSICS

HAROLD B. LEE LIBRARY
BRIGHAM YOUNG UNIVERSITY
PROVO, UTAH

QD
65
.H3
1913

HANDBOOK
OF

(S)

CHEMISTRY AND PHYSICS

A READY-REFERENCE POCKET BOOK
OF CHEMICAL AND PHYSICAL DATA

PRICE, TWO DOLLARS

COMPILED FROM THE MOST
RECENT AUTHORITATIVE SOURCES
AND PUBLISHED BY

THE CHEMICAL RUBBER COMPANY
CLEVELAND, OHIO

1/28/05
DR

COPYRIGHT, 1913
BY
THE CHEMICAL RUBBER COMPANY
CLEVELAND, OHIO

COMPOSED AND PRINTED AT THE
WAVERLY PRESS
HAROLD B. LEE LIBRARY
BY THE BRIGHAM & WILKINS COMPANY
BALTIMORE, U. S. A.
BRIGHAM YOUNG UNIVERSITY
PROVO, UTAH

PREFACE TO CRC HANDBOOK OF CHEMISTRY AND PHYSICS FACSIMILE FIRST EDITION

To mark the appearance of the 85th Edition of the *CRC Handbook of Chemistry and Physics*, the publisher has produced this facsimile of the First Edition, which came out in 1913. Comparison of the first and eighty-fifth editions illustrates the progress of science over the intervening years. Publication of the First Edition coincided with the appearance of Niels Bohr's revolutionary paper on the hydrogen atom, and came only eight years after Einstein's "miraculous year" when he published his historic papers on relativity, Brownian motion, and the photoelectric effect. Only 81 elements were known in 1913, the electron had been discovered only 17 years before, and the proton and neutron were still unknown. Madame Curie had just won her second Nobel Prize, and Max Planck, Niels Bohr, and Albert Einstein had yet to be recognized with this honor.

The evolution of the *CRC Handbook of Chemistry and Physics* has paralleled the growth of modern science and the technological revolution that resulted. Since this first volume in 1913, the *Handbook* has been revised annually except for a few wartime years. It has grown steadily in both size and diversity of information. The 13th Edition in 1928 contained 1214 pages plus a few advertisements for rubber aprons and stoppers. Nine pages were devoted to atomic

PREFACE TO CRC HANDBOOK OF CHEMISTRY AND PHYSICS

spectra (compared to over 150 much more densely packed pages today). The charge of the electron was given to four figures (now ten figures). The 29th Edition in 1945 had reached 2640 pages, with no advertising, but was still in the smaller 4.5×7 inch page format. It included data on amino acids and artificial radioisotopes, and the charge of the electron was quoted to six figures. Post World War II editions expanded in step with the growth of the general scientific establishment, soon leading to the present large-page format. In the last three decades information has been added on lasers, the genetic code, global climate change, high temperature superconductors, and other topics that were unknown when many of us started our scientific education.

Throughout its history the *CRC Handbook* has emphasized three goals: accuracy, currency, and convenience. Data are taken whenever possible from evaluated sources and subjected to stringent quality control. The annual cycle for new editions permits new, improved data to be incorporated quickly and coverage of emerging scientific areas to be added. While the book passed the coat-pocket size long ago, we have retained the single volume format that finds its way to thousands of desks and laboratory benches. Development of an electronic version was started five years ago, and the full content, accompanied by powerful search and retrieval software, is now available on the Internet and as a CDROM product. As the needs of users change, new features and new delivery mechanisms will continue to be introduced.

We hope this reprint of the first edition will prove interesting to current *Handbook* users and that it will illustrate the enormous advances in scientific knowledge over the last century.

David R. Lide
Editor-in-Chief

PREFACE

In compliance with the requests of hundreds of our friends for a small but comprehensive book of reference on chemical and physical topics, we have designed and compiled this Pocket Manual of Chemistry and Physics.

We shall feel amply rewarded for our effort and expense if this volume proves to be of use and convenience to the profession whose support has been a conspicuous factor in the growth of our establishment.

The material here included has been carefully selected by W. R. Veazey, Ph. D., Chemistry Department, Case School of Applied Science. The compiler has been guided in his selections by the suggestions of more than a thousand members of high standing in the Chemical and Physical profession.

We desire to express our appreciation and thanks to the many persons who have co-operated with us in the preparation of this book.

THE CHEMICAL RUBBER COMPANY

Cleveland, Ohio

CONTENTS

	Page
International Atomic Weights 1911.....	7
Antidotes of Poisons.....	8
Vapor Tension of Water in Millimeters of Mercury.....	9, 10
Composition of Typical Engineering Alloys.....	10
Fusible Alloys.....	11
List of Apparatus and Material for Experiments in Physics. 12, 13	
List of Apparatus and Material for Experiments in Chemistry.....	13, 14, 15
Corrections of Barometer Readings for Temperature.....	15
Fundamental Chemical Laws.....	16, 17
Fundamental Chemical Theories.....	17
Definition of Chemical and Physical Terms.....	17, 18, 19
Critical Temperature and Pressure and Other Constants of Gases.....	20
Comparison of Wire Gauges.....	21
Conversion of Thermometer Degrees.....	21
Physical Constants of the Elements.....	22-31
One Hundred Completed Chemical Equations.....	32-34
The Method of Solving Chemical Problems.....	34-38
Density of Water at 0° to 36° C.....	38
Comparison of Metric and Customary Units from 1 to 10	39-44
Composition of Freezing Mixtures.....	45
Ionization Constants of Acids and Bases.....	45
Miscellaneous Data and Formulae.....	45
Electromotive Force Series of Metals.....	45
Tables Showing the Functions, Uses and Composition of Foods.....	45-47
Reduction of Gas Volumes to 0° and 760 mm.....	48, 49
Gravimetric Factors and Logarithms.....	50-55
Specific Gravity of Gases.....	56
Heats of Formation and Heats of Solution.....	57, 58
Basicity of Acids with Various Indicators.....	59
A Four-place Logarithm Table.....	60-62
Preparation and Proper Concentration of Laboratory Reagents.....	62, 63
Molecular and Atomic Weights and Logarithms.....	64-66
Value of Normal Solutions of Oxidizing and Reducing Agents	67, 68
Value of Normal Solutions of Acids and Bases.....	69
Periodic Arrangement of the Elements—Mendelejeffs Revised to 1911.....	70
Platinum Wire Table, Brown and Sharpe Gauge.....	71
Vapor Pressure of Mercury.....	71
Physical Constants of Inorganic Compounds.....	72-97
Separation of the Metals into Groups.....	98
Separation of Mercury, Lead, Bismuth, Cadmium and Copper.....	99

CONTENTS

	Page
Precipitation and Separation of Lead, Silver and Mercurous Mercury.....	98
Separation of Arsenic, Antimony and Tin.....	99
Separation of Nickel and Cobalt.....	99
Separation of Aluminum, Chromium Iron, Manganese, Zinc.	100
Separation of Barium, Strontium Calcium, Magnesium and Alkali Metals.....	101
Text-books, Manuals and Reference Books.....	102-104
Sulphuric Acid.....	105, 106
Nitric Acid.....	107, 108
Hydrochloric Acid.....	109, 110
Aqua Ammonia.....	111
Alcohol by Volume	112

HANDBOOK OF CHEMISTRY AND PHYSICS

INTERNATIONAL ATOMIC WEIGHTS 1911

Aluminum.....	Al	27.10	Molybdenum.....	Mo	96.00
Antimony.....	Sb	120.20	Neodymium.....	Nd	144.30
Argon.....	A	39.88	Neon.....	Ne	20.20
Arsenic.....	As	74.96	Nickel.....	Ni	56.68
Barium.....	Ba	137.37	Nitrogen.....	N	14.01
Bismuth.....	Bi	208.00	Osmium.....	Os	190.90
Boron.....	B	11.00	Oxygen.....	O	16.00
Bromine.....	Br	79.92	Palladium.....	Pd	106.70
Cadmium.....	Cd	112.40	Phosphorus.....	P	31.04
Caesium.....	Cs	132.81	Platinum.....	Pt	195.20
Calcium.....	Ca	40.09	Potassium.....	K	39.10
Carbon.....	C	12.00	Praseodymium.....	Pr	140.60
Cerium.....	Ce	140.25	Radium.....	Ra	226.40
Chlorine.....	Cl	35.46	Rhodium.....	Rh	102.90
Chromium.....	Cr	52.00	Rubidium.....	Rb	85.45
Cobalt.....	Co	58.97	Ruthenium.....	Ru	101.70
Columbium.....	Cb	93.50	Samarium.....	Sa	150.40
Copper.....	Cu	63.57	Scandium.....	Sc	44.10
Dysprosium.....	Dy	162.50	Selenium.....	Se	79.20
Erbium.....	Er	167.40	Silicon.....	Si	28.30
Europium.....	Eu	152.00	Silver.....	Ag	107.88
Fluorine.....	F	19.00	Sodium.....	Na	23.00
Gadolinium.....	Gd	157.30	Strontium.....	Sr	87.63
Gallium.....	Ga	69.90	Sulphur.....	S	32.07
Germanium.....	Ge	72.50	Tantalum.....	Ta	181.00
Glucinum.....	Gl	9.10	Tellurium.....	Te	127.50
Gold.....	Au	197.2	Terbium.....	Tb	159.20
Helium.....	He	3.99	Thallium.....	Tl	204.00
Hydrogen.....	H	1.008	Thorium.....	Th	232.00
Indium.....	In	114.80	Thulium.....	Tm	168.50
Iodine.....	I	126.92	Tin.....	Sn	119.00
Iridium.....	Ir	193.10	Titanium.....	Ti	48.10
Iron.....	Fe	55.85	Tungsten.....	W	184.00
Krypton.....	Kr	82.90	Uranium.....	U	238.50
Lanthanum.....	La	139.00	Vanadium.....	V	51.06
Lead.....	Pb	207.10	Xenon.....	Xe	130.20
Lithium.....	Li	6.94	Ytterbium.....	Yb	172.00
Lutecium.....	Lu	174.00	Yttrium.....	Y	89.00
Magnesium.....	Mg	24.32	Zinc.....	Zn	65.37
Manganese.....	Mn	54.93	Zirconium.....	Zr	90.06
Mercury.....	Hg	200.00			

ANTIDOTES OF POISONS

1. *Acetic Acid.*—Emetics, magnesia, chalk, soap, oil.
2. *Carbolic Acid.*—Any soluble nontoxic sulphate, after provoking vomiting with zinc sulphate; uncooked white of egg in abundance, milk of lime, saccharate of calcium, olive or castor oil with magnesia in suspension, ice, washing the stomach with equal parts water and vinegar; give alcohol or whisky or about 4 fluid ounces camphorated oil at one dose.
3. *Hydrochloric Acid.*—Magnesia, alkali carbonates, albumen, ice.
4. *Hydrocyanic Acid.*—Hydrogen peroxide internal, and artificial respiration, breathing ammonia or chlorine from chlorinated lime, ferrous sulphate followed by potassium carbonate, emetics, warmth.
5. *Nitric Acid.*—Same as for hydrochloric.
6. *Phosphoric Acid.*—Same as for hydrochloric.
7. *Sulphuric Acid.*—Same as for hydrochloric with the addition of soap or oil.
8. *Sulphurous Acid or Sulphur Dioxide.*—Mustard plaster on chest; narcotics, expectorants.
9. *Iodine.*—Emetics, stomach siphon, starchy foods in abundance, sodium thiosulphate.
10. *Lead Acetate.*—Emetics, stomach siphon, sodium, potassium or magnesium sulphates, milk, albumen.
11. *Mercuric Chloride or Corrosive Sublimate.*—Zinc sulphate, emetics, stomach siphon, white of egg, milk, chalk, castor oil, table salt, reduced iron.
12. *Sodium Hydroxide or Potassium Hydroxide.*—Vinegar, lemon juice, orange juice, oil, milk.

**VAPOR TENSION OF WATER IN MILLIMETERS OF
MERCURY - 2° TO + 36°C.**

According to Regnault, Broch, and Weibe

*C.	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	mm.									
-2	3.958	3.929	3.900	3.872	3.844	3.815	3.787	3.760	3.732	3.705
-1	4.258	4.227	4.197	4.166	4.136	4.106	4.076	4.046	4.016	3.987
-0	4.579	4.546	4.513	4.481	4.448	4.416	4.384	4.352	4.321	4.289
0	4.579	4.612	4.646	4.679	4.713	4.747	4.782	4.816	4.851	4.886
1	4.921	4.957	4.992	5.028	5.064	5.101	5.137	5.174	5.211	5.248
2	5.286	5.324	5.362	5.400	5.438	5.477	5.516	5.555	5.595	5.635
3	5.675	5.715	5.755	5.796	5.837	5.878	5.920	5.961	6.003	6.046
4	6.088	6.131	6.174	6.217	6.261	6.305	6.349	6.393	6.438	6.483
5	6.528	6.574	6.620	6.666	6.712	6.759	6.806	6.853	6.901	6.949
6	6.997	7.045	7.094	7.143	7.192	7.242	7.292	7.342	7.392	7.443
7	7.494	7.546	7.598	7.650	7.702	7.755	7.808	7.861	7.914	7.968
8	8.023	8.077	8.132	8.187	8.243	8.299	8.355	8.412	8.469	8.526
9	8.584	8.642	8.700	8.759	8.818	8.877	8.937	8.997	9.057	9.118
10	9.179	9.240	9.302	9.364	9.427	9.490	9.553	9.616	9.680	9.745
11	9.810	9.875	9.940	10.006	10.072	10.139	10.206	10.274	10.342	10.410
12	10.479	10.548	10.617	10.687	10.757	10.828	10.899	10.970	11.042	11.114
13	11.187	11.260	11.333	11.407	11.481	11.556	11.631	11.706	11.782	11.859
14	11.936	12.013	12.091	12.169	12.247	12.326	12.406	12.486	12.566	12.647
15	12.728	12.810	12.892	12.974	13.057	13.141	13.225	13.309	13.394	13.480
16	13.565	13.651	13.738	13.825	13.913	14.001	14.090	14.179	14.269	14.359
17	14.450	14.541	14.632	14.724	14.817	14.910	15.003	15.097	15.192	15.287
18	15.383	15.479	15.575	15.672	15.770	15.868	15.967	16.066	16.166	16.266
19	16.367	16.469	16.571	16.673	16.776	16.880	16.984	17.088	17.193	17.299
20	17.406	17.513	17.620	17.728	17.837	17.947	18.057	18.167	18.278	18.390
21	18.503	18.616	18.729	18.844	18.959	19.074	19.190	19.307	19.424	19.542
22	19.661	19.780	19.900	20.021	20.142	20.264	20.386	20.510	20.634	20.758
23	20.883	21.010	21.137	21.264	21.393	21.522	21.652	21.782	21.913	22.045
24	22.178	22.311	22.446	22.581	22.716	22.853	22.990	23.128	23.266	23.406
25	23.546	23.686	23.828	23.970	24.113	24.257	24.401	24.547	24.693	24.839
26	24.987	25.135	25.284	25.434	25.584	25.736	25.888	26.041	26.195	26.349
27	26.505	26.661	26.818	26.976	27.134	27.294	27.454	27.615	27.777	27.939
28	28.103	28.267	28.432	28.599	28.766	28.933	29.102	29.271	29.442	29.613
29	29.785	29.958	30.132	30.307	30.482	30.659	30.836	31.015	31.194	31.374
30	31.555	31.737	31.919	32.103	32.288	32.473	32.660	32.847	33.036	33.225
31	33.416	33.607	33.799	33.992	34.187	34.382	34.578	34.775	34.973	35.172
32	35.372	35.573	35.775	35.978	36.182	36.387	36.593	36.800	37.008	37.217
33	37.427	37.638	37.851	38.064	38.278	38.493	38.710	38.927	39.146	39.365
34	39.586	39.807	40.030	40.254	40.479	40.705	40.933	41.161	41.390	41.621
35	41.583	42.085	42.319	42.554	42.791	43.028	43.266	43.506	43.747	43.989

**VAPOR TENSION OF WATER IN MILLIMETERS OF
MERCURY + 30° TO + 230°C.**

According to Regnault, Broch, and Weibe

°C.	0	1	2	3	4	5	6	7	8	9
	mm.									
30	31.56	33.42	35.37	37.43	39.59	41.85	44.23	46.73	49.35	52.09
40	54.97	57.98	61.13	64.43	67.89	71.50	75.28	79.23	83.36	87.67
50	92.17	96.87	101.77	106.88	112.21	117.77	123.56	129.59	135.87	142.41
60	149.21	156.29	163.65	171.30	179.25	187.51	196.09	204.99	214.24	223.84
70	233.79	244.11	254.84	265.91	277.41	289.32	301.65	314.42	327.64	341.32
80	355.47	370.11	385.25	400.90	417.08	433.79	451.07	468.91	487.33	506.36
90	526.00	546.27	567.19	588.77	611.04	634.01	657.69	682.11	707.29	733.24
100	760.00	787.57	816.0	845.3	875.4	906.4	938.3	971.1	1004.9	1039.6
110	1075.4	1112.1	1149.8	1188.6	1228.4	1269.4	1311.5	1354.7	1399.0	1444.5
120	1491	1539	1588	1639	1691	1744	1798	1854	1911	1970
130	2030	2092	2155	2220	2286	2354	2423	2494	2567	2641
140	2718	2795	2875	2957	3040	3125	3213	3302	3393	3486
150	3581	3678	3778	3879	3983	4088	4196	4307	4419	4534
160	4651	4771	4893	5018	5145	5274	5406	5541	5678	5819
170	5961	6107	6255	6406	6560	6717	6877	7040	7205	7374
180	7546	7721	7899	8080	8265	8453	8644	8838	9036	9237
190	9442	9650	9862	10078	10296	10519	10745	10975	11209	11447
200	11688	11934	12183	12436	12694	12955	13220	13490	13764	14042
210	14324	14611	14901	15197	15496	15800	16109	16422	16740	17062
220	17389	17721	18058	18399	18745	19096	19452	19813	20179	20549
230	20925									

COMPOSITION OF SOME TYPICAL ENGINEERING ALLOYS

	IRON	TIN	ANTI-MONY	LEAD	COPPER	ZINC	BIS-MUTH	PHOS.
Bell metal.....		22.0			78.0			
Brass.....					72.0	28.0		
Brass (yellow).....					60.0	40.0		
Bronze for bearings.....		16.0			82.0	2.0		
Speculum metal.....		33.4			66.6			
Muntz metal....					60.0	40.0		
Mosaic gold....					65.0	35.0		
Gun metal....		91.0				9.0		
Bronze.....		94.0			1.0	5.0		
Babbitt metal.....		45.5	13.0	40.0	1.5			
Britannia metal.....		90.0	10.0					
Pewter.....		80.0		20.0				
Soft solder.....		50.0		50.0				
Tobin bronze....	0.2	0.9		0.4	61.2	37.3		
Phosphor bronze.....		10.0	9.5		79.7			
Rose metal.....		22.9		27.1				
Car-box metal....	0.61		14.38	84.33		0.68	50.0	0.8
"B" Alloy P.								
R. R.....		8.0		15.0	77.0			
White metal.....		82.0	12.0		6.0			
Type metal.....		3.0	15.0	82.0				trace

FUSIBLE ALLOYS

MELTING POINT, °C.	PERCENTAGE COMPOSITION				OBSERVER OR SPECIAL NAME
	Lead	Tin	Bis- muth	Cad- mium	
55.5	25.00	12.50	50.00	12.50	Wood
65.5	25.00	12.50	50.00	12.50	{ Wood
67.5	25.21	14.10	51.07	9.60	{ von Hauer
68.5	24.24	13.65	49.09	13.09	v. Hauer
70.0	28.60	14.30	50.00	7.10	Wood
75.5	25.80	14.70	52.40	7.00	Wood
76.5	34.38	9.37	50.00	6.25	v. Hauer
77.0	29.41	17.65	47.06	5.88	
80.0	25.00	25.00	43.75	6.25	Harper
82.0	42.86		50.00	7.14	Wood
88.0	42.86		50.00	7.14	n. v. Hauer
89.5	39.52		53.36	7.11	v. Hauer
90.0	34.97	29.90	35.13		Rose
91.6	30.00	20.00	50.00		{ Onions
93.0	25.00	25.00	50.00		{ Lichtenberg
94.0	42.10	15.80	42.10		{ Erman
95.0		33.33	50.00	16.67	{ Rose
95.0	58.33		33.33	8.34	Rose
98.0	31.25	18.75	50.00		v. Hauer
99.0	33.34	33.33	33.33		
100.0	50.00	30.00	20.00		
105.0	26.67	44.76	23.81	4.76	v. Hauer
111.0	40.00	20.00	40.00		Bismuth solder
119.0	48.39	38.71	12.90		
124.0	38.84	22.14	39.02		
128.0	44.45	44.44	11.11		
130.0	38.46	30.77	30.77		
132.0	28.00	47.00		25.00	v. Hauer
136.0	26.47	59.32		14.30	v. Hauer
140.0		68.29	31.71		
145.0	50.00	30.00	20.00		
150.0	40.74	44.44	14.82		
155.0	42.86	42.86	14.28		Bismuth solder
160.0	53.57	32.14	14.29		
165.0		75.65		24.35	v. Hauer
171.0	33.33	66.67			Soft quick solder
175.0	89.77	10.23			Spring
180.0	37.00	63.00			Drop solder
185.0	46.73	53.27			
190.0	41.23	58.77			
194-195	84.00	16.00			
200.0	50.00	50.00			

LIST OF APPARATUS AND MATERIAL FOR EXPERIMENTS IN PHYSICS

Tools and Measurements

Micrometer Caliper.
 Vernier Caliper (new design).
 Meter Stick, brass tipped.
 Wire Cutting Pliers, 5 inch.
 Metric Diagonal Scale.
 Wire Gauge.

Properties of Matter

Adhesion Disc.
 Cohesion Plates.
 Prince Rupert Drops.
 Capillary Tubes and Support.
 Osmose Apparatus.
 Inertia Apparatus.
 Elasticity of Flexure Apparatus.
 Breaking Strength of Wire Apparatus.

Mechanics of Solids

Collision Balls with No. 694 Arc.
 Composition of Forces.
 Lever Holders (3).
 Pulley, single, 2 hook.
 Pulley, double, 2 hook.
 Inclined Plane with Arc.
 Hall's Carriage.
 Center of Gravity Apparatus.
 Second Law of Motion Apparatus.
 Rotator (whirling table).
 Centrifugal Hoop.
 Two Balls on rod, for rotator.
 Ring, Chain and Cylinder.
 Gyroscope.
 Three Spring Balances, Met. and Eng., flat back.

Mechanics of Fluids

Equilibrium Tubes.
 Hall's Pressure Gauge.
 Bottle Imp and Jar.
 Hydraulic Press.
 Boyle's Law Tube.
 Siphon.
 Tantalus Cup.
 Archimedes Principle.

Lift Pump.

Force Pump.
 Demonstration Hydrometer.
 Hydrometer for heavy liquids.
 Hydrometer Jar, 12x2½.
 Barometer Tube, Cup and Pi-pette.

Pneumatics

Oil Sealed Air Pump.
 Vacuum Wax.
 Vacuum Gauge.
 Bell in Vacuo.
 Three Bursting Squares.
 Freezing Apparatus.
 Bell Glass, 1 gallon.
 Hand and Bladder Glass.
 Sheet Rubber, 1 square foot.
 Mercury Shower.
 Magdeburg Hemispheres.
 Bacchus Illustration.
 Spirometer (Seven-in-One).
 Water Hammer.
 Guinea and Feather Tube, Fountain in Vacuo and Aurora Tube combined.

Heat

Copper Boiler (Apparatus A).
 Air Thermometer.
 Chemical Thermometer.
 Conductometer.
 Ball and Ring.
 Compound Bar.
 Palm Glass.
 Linear Expansion Apparatus.
 Calorimeter.
 Tyndall's Specific Heat Apparatus.
 Fire Syringe.
 Convection Apparatus.
 Radiometer.
 Sectional Model of Steam Engine.
 Alcohol Lamp, 8 ounce.
 (Bunsen Burner substituted if desired).
 Tripod for same.

**LIST OF APPARATUS AND MATERIAL FOR EXPERIMENTS
IN PHYSICS—Continued**

<i>Magnetism</i>	One Pound Magnet Wire for connections.
Lodestone.	
Bar Magnet, 6 inch.	
Horseshoe Magnet, 6 inch.	
Iron Turnings.	
Electro Magnet.	
Magnetic Needle.	
Compass, 40 mm.	
<i>Electricity</i>	
Friction Rod, wax.	
Friction Rod, vulcanite.	
Catskin.	
Pith Balls, 1 dozen.	
Pith Images, pair.	
Electrical Pendulum.	
Electroscope.	
Toeppler-Holtz Electric Machine with attachment and shocking handles.	
Brass Chains with hook and snap.	
Leyden Jar, quart.	
Discharger.	
Image Plates.	
Hollow Globe.	
Proof Plane.	
Bell Chimes.	
Universal Support.	
Volta's Hail Storm.	
Electric Flier.	
Holder for Tubes, etc.	
Geissler Tube, 8 inch.	
Plunge Battery, 2 cell.	
Demonstration Coil.	
Electric Motor.	
Decomposition of Water.	
Galvanometer.	
	<i>Sound</i>
Savart's Wheel.	
Siren Disc.	
Tuning Fork.	
Tuning Fork on Resonant case.	
Sonometer.	
Violincello Bow.	
Organ Pipe.	
Chladni Plates and Clamp.	
Oscillograph.	
	<i>Wave Motion</i>
Crova's Disc.	
Spiral of Brass Wire.	
	<i>Light</i>
Newton's Disc.	
Concave and Convex Mirrors.	
Multiple Image Apparatus.	
Incidence and Reflection App.	
Sextant.	
Equilateral Prism, 4 inch.	
Demonstration Lenses, 2 inch.	
Lens, 10 cm. focus.	
Lens, 15 cm. focus.	
Index of Refraction.	
Blocks for supporting Meter Stick.	
Lens Support.	
Screen Support.	
Screen.	
Pin Support.	
Iceland Spar, medium.	
Newton's Rings.	

**LIST OF APPARATUS AND MATERIAL FOR EXPERIMENTS
IN CHEMISTRY**

Beakers, nest of 5 (3 to 20 oz.).	Corks, 2 dozen, assorted.
Blow Pipe, plain, 8 inch.	Cork Borers, set 1-3.
Bottles, W. M., two 8 oz.	Cork Screw, wood handle.
Bottles, N. M., two 8 oz.	Crucibles, Hessian, 2 nests
Burette, 25 cc. 1-10ths.	large 5s.

**LIST OF APPARATUS AND MATERIAL FOR EXPERIMENTS
IN CHEMISTRY—Continued**

Crucible Tongs, 9 in.	Thistle Tubes, Two.
Deflagrating Spoon, brass, $\frac{1}{2}$ inch.	U Tube, 6 inch.
Dish, Crystallizing, 4 inch.	Watch Glass, $2\frac{1}{2}$ inch.
Dish, Evaporating, 2 oz.	Watch Springs, for burning in oxygen, $\frac{1}{2}$ dozen.
Dish, Evaporating, 6 oz.	Wire Gauze, 4x4.
Dish, Lead, 3 inch.	Woulff Bottle, 3 neck, pint.
File, Triangular, 5 inch.	$\frac{1}{2}$ lb. Acetic Acid.
File, round, 5 inch.	1 lb. Hydrochloric Acid.
Filter Paper, 1 pkg., 5 inch.	1 lb. Nitric Acid.
Flasks, F. B., two 4 oz.	1 oz. Oxalic Acid.
Flask, F. B., 8 oz.	2 lbs. Sulphuric Acid.
Flask, F. B., 16 oz.	1 oz. Tartaric Acid.
Funnel, glass, $2\frac{1}{2}$ inch.	1 oz. Ammonium Carbonate.
Funnel, glass, 4 inch.	2 oz. Ammonium Chloride.
Gas Bag, with stopcock, 1 gal.	$\frac{1}{2}$ lb. Ammonium Hydrate.
Gas Generating Flask, quart.	1 oz. Ammonium Nitrate.
Glass Tubing, 1 lb., 3-16- $\frac{1}{4}$.	1 oz. Ammonium Sulphide.
Graduate, conical, 100 cc.	$\frac{1}{2}$ pt. Alcohol Methyl.
Hand Balance, 5 inch beam, with weights.	2 oz. Alum.
Hydrometer, for heavy liquids.	2 oz. Animal Charcoal.
Jar for Hydrometer, $12 \times 2\frac{1}{2}$.	1 oz. Antimony.
Jar, Specie, for deflagration, two 1 quart size.	1 oz. Arsenic Trioxide.
Lamp, Alcohol, 4 oz.	1 oz. Barium Chloride.
Mortar, Wedgewood, $3\frac{3}{4}$ inch.	1 oz. Barium Nitrate.
Pipette, Volumetric, 5 cc.	1 oz. Borax.
Pipette, Volumetric, 10 cc.	$\frac{1}{4}$ lb. Calcium Carbonate (marble).
Pneumatic Trough, student's.	2 oz. Calcium Chloride.
Reagent Bottles, 1 set of 24.	2 oz. Calcium Fluoride.
Retort, glass, plain, 16 oz.	$\frac{1}{4}$ lb. Calcium Sulphate.
Receiver for Retort, 8 oz.	1 oz. Carbon Bisulphide.
Reduction Tube for reducing metallic oxides.	1 oz. Cobalt Nitrate.
Retort Stand, 3 ring.	4 oz. Copper Sulphate.
Rubber Tubing, 6 feet, $\frac{1}{4}$ inch.	2 oz. Ether.
Sand Bath, 4 inch.	2 oz. Ferrous Sulphate.
Spatula, steel, 4 inch.	8 oz. Ferrous Sulphide.
Stirring Rods, 3, $5 \times 3-16$.	$\frac{1}{2}$ oz. Gall Nuts (powdered).
Test Glass, 2 oz.	$\frac{1}{8}$ oz. Gun Cotton.
Test Tubes, 2 dozen, assorted.	$\frac{1}{4}$ oz. Iodine.
Test Tubes, 1 dozen, $6 \times \frac{3}{4}$.	2 oz. Galena.
Test Tube Brush, sponge end.	1 oz. Lead Acetate.
Test Tube Holder, wire.	4 oz. Lead Oxide (red).
Test Tube Support, 13 tubes with drying pins.	4 oz. Lead Monoxide.
Thermometer, Paper Scale, 110°C .	$\frac{1}{2}$ oz. Litmus (best cubes).
	12 in. Magnesium Ribbon.
	4 oz. Magnesium Sulphate.
	1 lb. Manganese Dioxide (powdered).

**LIST OF APPARATUS AND MATERIAL FOR EXPERIMENTS
IN CHEMISTRY—Continued**

4 oz.	Mercury.	2 oz.	Potassium Nitrate.
$\frac{1}{2}$ oz.	Mercuric Chloride.	$\frac{1}{2}$ oz.	Potassium Permanganate.
$\frac{1}{2}$ oz.	Mercuric Oxide.	1 oz.	Potassium Sulphate.
12 in.	Platinum Wire.	$\frac{1}{8}$ oz.	Silver Nitrate.
$\frac{1}{2}$ oz.	Phosphorus.	$\frac{1}{4}$ oz.	Sodium (metallic).
$\frac{1}{8}$ oz.	Potassium (metallic).	1 oz.	Sodium Acetate.
$\frac{1}{2}$ lb.	Potassium Bichromate.	4 oz.	Sodium Carbonate.
1 oz.	Potassium Bromide.	2 oz.	Sodium Hydrate (sticks)
2 oz.	Potassium Carbonate.	2 oz.	Sodium Hyposulphite.
$\frac{1}{2}$ lb.	Potassium Chlorate.	2 oz.	Sodium Sulphate.
1 oz.	Potassium Chromate.	1 oz.	Sodium Phosphate.
$\frac{1}{2}$ oz.	Potassium Cyanide.	1 oz.	Strontium Nitrate.
2 oz.	Potassium Ferricyanide	$\frac{1}{2}$ lb.	Sulphur Roll.
2 oz.	Potassium Ferrocyanide	$\frac{1}{2}$ lb.	Zinc for making Hydrogen.
1 oz.	Potassium Hydrate (sticks).		
$\frac{1}{4}$ oz.	Potassium Iodide.		

**CORRECTIONS OF BAROMETER READINGS FOR
TEMPERATURE**

Glass Scale (Bunsen) mm. to be Deducted

BAROMETER READING	1°	2°	3°	4°	5°	6°	7°	8°	9°	10°
	mm.									
700	0.120	0.240	0.359	0.479	0.599	0.719	0.838	0.958	1.078	1.198
705	0.121	0.241	0.362	0.483	0.603	0.724	0.844	0.965	1.086	1.206
710	0.121	0.243	0.364	0.486	0.607	0.729	0.850	0.972	1.093	1.215
715	0.122	0.245	0.367	0.489	0.612	0.734	0.856	0.979	1.101	1.223
720	0.123	0.246	0.370	0.493	0.616	0.739	0.862	0.986	1.109	1.232
725	0.124	0.248	0.372	0.496	0.620	0.744	0.868	0.992	1.116	1.240
730	0.125	0.250	0.375	0.500	0.625	0.749	0.874	0.999	1.124	1.249
735	0.126	0.252	0.377	0.503	0.629	0.755	0.880	1.006	1.132	1.258
740	0.127	0.253	0.380	0.506	0.633	0.760	0.886	1.013	1.140	1.266
745	0.127	0.255	0.382	0.510	0.637	0.765	0.892	1.020	1.147	1.275
750	0.128	0.257	0.385	0.513	0.642	0.770	0.898	0.027	1.155	1.283
755	0.129	0.258	0.388	0.517	0.646	0.775	0.904	1.033	1.163	1.292
760	0.130	0.260	0.390	0.520	0.650	0.780	0.910	1.040	1.170	0.300
765	0.131	0.262	0.393	0.524	0.654	0.785	0.916	1.047	1.178	1.309
770	0.132	0.264	0.395	0.527	0.659	0.790	0.922	0.054	1.186	1.317
775	0.133	0.265	0.398	0.530	0.663	0.796	0.928	1.061	1.193	1.326
780	0.133	0.267	0.400	0.534	0.667	0.801	0.934	1.068	1.201	1.335
785	0.134	0.269	0.403	0.537	0.672	0.806	0.940	1.075	1.209	1.343
790	0.135	0.270	0.406	0.541	0.676	0.811	0.946	1.081	1.217	1.352
795	0.136	0.272	0.407	0.544	0.680	0.816	0.952	1.088	1.224	1.360
800	0.137	0.274	0.411	0.548	0.684	0.821	0.958	1.095	1.232	1.369

FUNDAMENTAL CHEMICAL LAWS

Scientific laws are statements of facts which have been established by direct experiment.

Boyle's Law for Gases.—At a constant temperature the volume of a given quantity of any gas varies inversely as the pressure to which the gas is subjected. This idea is expressed in the following formulae:

$$PV = \text{a constant, or } P_1 V_1 = 1/V_1 \text{, or } V = 1/P_1, \text{ or } PV = P_1 V_1$$

The Law of Combining Weights.—If the weights of elements which combine with each other be called their "combining weights," then elements always combine either in the ratio of their combining weights or of simple multiples of these weights.

Law of Definite Proportions.—In every sample of each compound substance the proportions by weight of the constituent elements are always the same.

Dalton's Law of Partial Pressures.—The pressure exerted by a mixture of gases is equal to the sum of the separate pressures which each gas would exert if it alone occupied the whole volume. This fact is expressed in the following formula:

$$PV = V(p_1 + p_2 + p_3, \text{ etc.})$$

Faraday's Law.—The amounts of decomposition effected by the passage of equal quantities of electricity through them are, for the same electrolyte equal, and for different electrolytes are proportional to the combining weights of the elements or radicles which are deposited.

Gay Lussac's Law for Gases (or Charles' Law).—At a constant pressure, the volume of a given quantity of any gas, increases about $1/273$ of its volume at 0°C . for each rise of 1°C . and at constant volume the pressure of a given quantity of any gas increases about $1/273$ of the pressure at 0°C . for each rise of 1°C . in temperature.

Gay Lussac's Law of Combining Volumes.—If gases interact and form a gaseous product, the volumes of the reacting gases and the volumes of the gaseous products are to each other in very simple proportions, which can be expressed by small whole numbers.

Hess's Law of Constant Heat Summation.—The amount of heat generated by a chemical reaction is the same whether reaction takes place in one step or in several steps, or all chemical reactions which start with the same original substances, and end with the same final substances, liberate the same amounts of heat, irrespective of the process by which the final state is reached.

Henry's Law.—The amount of gas which a liquid will dissolve is directly proportional to the pressure of the gas. This holds for all gases which do not unite chemically with the solvent.

The Law of Mass Action.—At a constant temperature the product of the active masses on one side of a chemical equation when divided by the product of the active masses on the other side of the chemical equation is a constant, regardless of the amounts of each substance present at the beginning of the action.

Law of Multiple Proportions.—Two elements may combine in more than one proportion by weight but if so, the weights of one

element which combine with a fixed weight of the other element, are always in a simple ratio to each other.

The Periodic Law.—The physical and chemical properties of the elements are functions of their atomic weights and most of these properties are periodic functions of the atomic weights.

FUNDAMENTAL CHEMICAL THEORIES

A scientific hypothesis is an endeavor to form a rational mental picture of the causes which lead to a group of observed facts even though these causes may not be subject to direct proof.

A scientific theory is an hypothesis whose consequences have been so thoroughly tested by experiment, that it has become generally accepted as the correct explanation for a group of facts.

The Atomic Theory.—All elementary forms of matter are composed of very small unit quantities called atoms. The atoms of a given element all have the same size and weight. The atoms of different elements have different size and weight. Atoms of the same or different elements unite with each other to form very small unit quantities of compound substances called molecules.

Avogadro's Theory.—Equal volumes of all gases under the same conditions of temperature and pressure contain equal numbers of molecules.

The Electrolytic Dissociation or Ionization Theory.—When an acid, base or salt, is dissolved in water or any other dissociating solvent, a part or all of the molecules of the dissolved substance are broken up into parts called ions, some of which are charged with positive electricity and are called cations, and an equivalent number of which are charged with negative electricity and are called anions.

Electrolytic Solution Tension Theory (or the Helmholtz Double Layer Theory).—When a metal, or any other substance capable of existing in solution as ion is placed in water or any other dissociating solvent, a part of the metal or other substance passes into solution in the form of ions, thus leaving the remainder of the metal or substance charged with an equivalent amount of electricity of opposite sign from that carried by the ions. This establishes a difference in potential between the metal and the solvent in which it is immersed.

The Electron Theory.—An atom of any element consists of a definite number of unit negative charges of electricity moving in orbits inside the atom with velocities which approach the velocity of light.

DEFINITION OF CHEMICAL AND PHYSICAL TERMS

Absolute zero is that temperature at which a gas would show no pressure (or no volume) if it obeyed Gay Lussac's law for gases under all conditions (i.e., 273°C.).

An acid is any substance which yields hydrogen ions.

An adiabatic expansion is an expansion of a gas which occurs in such a way that heat is neither given off nor absorbed during the process.

The active mass of a substance is the number of gram-molecular-weights per liter in solution, or in gaseous form.

Adsorption. The ability of a solid to condense gases, liquids, or dissolved substances on their surfaces is called adsorption. It is a manifestation of the force of adhesion.

An atom is the smallest unit quantity of an element that is capable of entering into chemical combination.

An ampere is a rate of flow of electricity equal to one coulomb per second.

A base is any substance which yields hydroxyl ions.

A balanced or reversible action is one which can be caused to proceed in either direction by suitable variation in the conditions of temperature, volume, pressure or of the quantities of reacting substances.

A British Thermal Unit or B.T.U. is the quantity of heat required to raise the temperature of 1 pound of water 1°F . 1 Large Calorie equals 3.9683 B.T.U.

The small calorie is the amount of heat required to raise 1 gram of water from 15°C . to 16°C . Symbol cal.

The Large Calorie is equal to 1000 small calories. Symbol Cal.

The Average Calorie is the amount of heat required to raise 1 gram of water from 0°C . to 100°C . under a pressure of 760 mm. It is equal to nearly 100 calories. Symbol K.

A Catalytic Agent is a substance which by its mere presence alters the velocity of a reaction, and may be recovered unaltered in nature or amount at the end of the reaction.

A Colligative property is a property which is numerically the same for a group of substances, independent of their chemical nature.

A Constitutive Property is a property which depends on the constitution or structure of the molecule.

A Cryohydrate is the solid which separates when a saturated solution freezes. It contains the solvent and the solute in the same proportions as they were in the saturated solution.

A Coulomb is that quantity of electricity which will deposit 1.118 milligrams of silver from a solution of a silver salt.

A Combining weight of an element or radicle is its atomic weight divided by its valence.

A Eutectic is that alloy of two or more metals which has the lowest melting point.

The Hydrogen Equivalent of a substance is the number of replaceable hydrogen atoms in 1 molecule or the number of atoms of hydrogen with which 1 molecule could react.

The Heat of Combustion of a substance is the amount of heat evolved by combustion of 1 gram of the substance.

An Ion is a charged atom or group of atoms in solution. Solutions always contain equivalent numbers of positive and negative ions.

A Kilowatt is equivalent to 1000 watt-hours.

A Molecule is the smallest unit quantity of matter which can exist by itself and retain all the properties of the original substance.

A Molar Solution contains 1 gram molecular weight of dissolved substance per liter of solution.

A Normal Solution contains 1 gram molecular weight of dissolved substance divided by the hydrogen equivalent of the substance, per liter of solution.

An Ohm is a resistance equal to that of a column of mercury 106.3 cm. long and 1 sq. cm. cross section at 0°C.

Oxidation is any process which increases the proportion of oxygen or acid forming element or radicle in a compound.

Reduction is any process which increases the proportion of hydrogen or base forming elements or radicle in a compound.

A Salt is any substance which yields ions, other than hydrogen or hydroxyl ions.

The Solubility Product or precipitation value is the product of the concentrations of the ions of a substance in a saturated solution of the substance.

A Volt is the intensity or electromotive force which will cause a flow of 1 ampere through a resistance of 1 ohm.

A Watt is the power to do the work, which is possessed by a current of 1 ampere with an intensity of 1 volt.

A Watt-Hour is the work equivalent to a current of 1 ampere at 1 volt, flowing for 1 hour.

CRITICAL TEMPERATURE AND PRESSURE AND OTHER CONSTANTS OF GASES

Freezing Point, Boiling Point (76 cm.), and Critical Data, *Van der Waal's Constants (for 1 gr.)*

FREEZING PT.	LAT. HT. OF FUS.	BOIL. PT.	CRT. DENS. AT BOIL. PT.	CRT. TEMP.	CRT. PRES. (ATM.)	CRT. DENS.	a	b
Hydrogen.....	-260.0	16.0	-252.5	200.0	0.070	-240.8	13.4-15	5160 9.28
Oxygen.....	-227.0 (9 mm.)		-181.5	52.0	1.135	-118.0	6.65 1320 0.98	
Nitrogen.....	-210.0 (94 mm.)		-194.0	48.0	0.790	-145.0	0.37 1700 1.40	
Air.....			-191.0			-142.0	34.0 37.8	
Argon.....	-188.0		-186.0		1.212	-117.0	52.0	810 0.77
Helium.....			-268.8			-268.0	2-3.0	0.15
Sulphur dioxide.....			-10.0	82.0	1.460	155.0	78.9	0.55 1610 0.87
Chlorine.....	-102.0		-33.6	67.0		146.0	93.5	
Ammonia.....	-75.0	108.0	-38.5	295.0		131.0	113.0	13800 2.11
Nitrogen peroxide.....			-22.5	93.0		171.2		
Carbon dioxide.....			-78.2			31.0	77.0	0.29 1857 0.971
Ethylene.....			-103.0			10.0	38.0	0.22
Acetylene.....						36.5	61.6	0.31 5930 1.80
Water.....	0.0	80.0	100.0	537.0		364.0	195.0	0.43 18000 1.84
Acetic acid.....	17.0	43.7	118.0	85.0		321.0	57.0	0.351 4884 1.78
Ethyl alcohol.....			78.3	201.5		240.0	64.0	0.228 5700 1.834
Benzol.....	5.4	30.2	80.2	93.0		288.0		
Acetone.....			56.4	125.3		238.0	52.0	
Carbon bisulphide.....			46.0	83.8		277.0	78.0	0.354
Ether.....			38.0	90.0		190.0	37.0	0.246 3180 1.82
Chloroform.....			60.1	59.0		260.0	55.0	

COMPARISON OF WIRE GAUGES

CONVERSION OF THERMOMETER DEGREES

$$\text{Degrees F} = \frac{9}{5} \text{Degrees C} + 32$$

$$\text{Degrees } \frac{F - 32}{\frac{9}{5}} = \text{Degrees C.}$$

$$\text{Degrees } \frac{R \times 9}{4} + 32 = \text{Degrees F.}$$

PHYSICAL CONSTANTS OF THE ELEMENTS

NAME	DERIVATION	SYMBOL	ATOMIC WEIGHT 0.16	SPECIFIC GRAVITY WATER 1 AIR 1 (A) HYDROGEN 1 (D)	SPECIFIC HEAT AT °C.	VALENCE (PRINCIPAL)	ELECTRICAL CON- DUCTIVITY AT °C.	THERMAL CONDUC- TIVITY K AT °C. Ag 1.00
1. Aluminum..	L. alum, alum.....	Al	27.1	2.583 at 4° C.	.2220	3	324000	.3435
2. Antimony..	LL. antimo- nium.....	Sb	120.2	6.62	.0495	3 or 5	27100	.0442
3. Argon, gas..	A	39.88	1.379 A00003894
4. Arsenic, Amorph..	L. arsenicum	As	74.96	4.716 at 14° C.	.0758	3 or 5	28600
5. Barium.....	Gr. barys, heavy.....	Ba	137.37	3.75	2
6. Bismuth....	G. (unknown origin).....	Bi	208.0	9.7474	.3013	3	9260	.0177
7. Boron.....	borax.....	B	11.0	2.45	.3066	3
8. Bromine, Gas.....	Gr. bromos stench.....	Br	79.92	5.8691 at 60° A	.0555	1
9. Liquid.....	3.1883 at 0°	.1071
10. Cadmium..	Gr. kadmeia, calamine...	Cd	112.4	8.642 at 17° C.	.0548	2	146000	.2213
11. Caesium....	L. caesius, sky blue....	Cs	132.81	.87 at 20° C.	.04817	1	25400
12. Calcium....	L. calx, lime.	Ca	40.09	1.145	.1453	2	95000
13. Carbon
14. Amorph..	L. carbo, charcoal...	C	12.0	1.75-2.10	.241	4 or 2
15. Graphite..	2.10-2.58	.202
16. Diamond..	3.47-3.558	.1469
17. Cerium....	Planet Ceres.	Ce	140.25	7.0424	.04479	4
18. Chlorine, Gas.....	Gr. chloros, green.....	Cl	35.46	2.491 at 0° A	.1241	1
19. Chromium..	Gr. chroma; color.....	Cr	52.0	6.92 at 20° C.	.1039	3 or 6
20. Cobalt.....	G. kobold, goblin.....	Co	58.97	8.718	.1030	2 or 3	83200
21. Columbium	Columbia (niobium)	Cb	93.5	7.06	3 or 5
22. Copper....	Cyprus.....	Cu	63.57	8.91-8.96	.0936	1 or 2	640600	.7198
23. Dysprosium..	Dy	162.5
24. Erbium....	Ytterby, a town in Sweden.....	Er	167.4	4.77	2 or 6
25. Fluorine, Gas.....	L. fluor, flow	F	19.0	1.31 A at 15°	1

PHYSICAL CONSTANTS OF THE ELEMENTS

LINEAR COEFF. ICIENT OF EXPAN- SION	at °C.	MELTING POINT °C.	BOILING POINT °C.	DISCOVERED	BY WHOM	WHERE AND HOW FOUND
1 .00002313	40	657	2200	1828	Wohler	In many rocks (the most abundant metal).
2 .00001152	40	630	1600	1450	Valentine	Chiefly as sulphide and in various metallic ores.
3	-187.9	-186.1	1894	Rayleigh and Ramsay	Rare element in the air.
4 .00000559	40	360	1694	Schroder	Native, as sulphide and in various metallic ores.
5	850	950	1808	Davy	In barite and witherite.
6 .00001346	40	269	1435	1450	Valentine	Native as sulphide and in rare minerals.
7	Infusible vol.	3500	1808	Davy	In borax and various minerals.
8	1828	Balard	Mainly in sea water and other natural brines.
9	-7.3	58.7
10 .00003069	40	321.7	778	1817	Stromeyer	In small amount in zinc ores.
11 .0003948	27	26.37	670	1860	Bunsen	In lepidolite, pollucite and mineral springs.
12	795	1808	Davy	In limestone and abundantly other rocks.
13 .0000054	40	sublimes	3500	Prehistoric	In coal, limestone and all organic matter.
14
15 .00000786	40	sublimes	3500
16 .00000118	40	sublimes	3500
17	623	1803	Berzelius	In cerite and other rare minerals.
18	-102	-33.6	1774	Scheele	In common salt (<chem>NaCl</chem>) and other chlorides.
19	1515	1797	Vauquelin	Mainly in chrome-iron ore.
20 .00001236	40	1464	1773	Brandt	In many metallic ores.
21	1950	1801	Hatchett	In columbite and other rare minerals.
22 .00001678	40	1065	2100	Prehistoric	Native and in many ores.
23
24	1843	Mosander	In rare minerals as gadolinite, etc.
25	-223	-187	1771	Scheele	In fluorite (<chem>CaF2</chem>) and other minerals.

PHYSICAL CONSTANTS OF THE ELEMENTS—Continued

NAME	DERIVATION	SYMBOL	ATOMIC WEIGHT 0.16	SPECIFIC GRAVITY WATER 1 AIR 1 (A) HYDROGEN 1 (D)	SPECIFIC HEAT AT °C.	VALENCE (PRINCIPAL)	ELECTRICAL CON- DUCTIVITY AT °C.	THERMAL CONDUC- TIVITY K AT °C. Ag 1.00
26. Gadolinium	Gadolin, a Russian chemist....	Gd	157.3	1.31	3
27. Gallium....	L. Gallia, France....	Ga	69.9	5.95 at 24	.079	3
28. Germanium	L. Germania Germany..	Ge	72.5	5.469 at 20	.0737	4
29. Glueinum (beryllium)	Gr. glykys, sweet	Gl	9.1	1.85 at 20	2
30. Gold.....	Aurum Anglo-Saxon	Au	197.2	19.32	.0136	3	468000	.7003
31. Helium, Gas	He	3.99	0.1368 A	00003386
32. Hydrogen, Gas.....	Gr. water-forming....	H	1.008	0.06949 A	3.41	1000327
33. Indium.....	From its Indigo Spectrum	In	114.8	7.12	.0569	3	119500
34. Iodine, solid	Gr. Iodes violet.....	I	126.92	4.948 at 17	.0541	1
35. Iridium, cryst....	L. Iris, a rainbow.....	Ir	193.1	22.42	.0323	3
36. Iron, pure..	L. ferrum, Anglo-Saxon iron....	Fe	55.85	7.85	.1162	2 or 3	131000	.1665
37. Krypton, Gas....	Kr	82.9	2.818 A	0
38. Lanthanum	Gr. lanthanon conceal....	La	139.0	6.1545	.04485	3
39. Lead.....	L. plumbum	Pb	207.1	11.34	.0310	2	50400	.0836
40. Lithium....	Gr. lithos, stone.....	Li	6.94	0.534 at 20	.8366	1	119000
41. Magnesium.	Magnesia, district in Thessaly..	Mg	24.32	1.72	.2456	2	230000	.376
42. Manganese.	L. magnes, magnet....	Mn	54.93	7.42	.1217	2 or 4 or 6
43. Mercury....	Hydrargyrum.....	Hg	200.0	13.5953	.03346	1 or 2	10630	.0148

PHYSICAL CONSTANTS OF THE ELEMENTS—Continued

LINEAR COEFF. OF EXPAN- SION	MELTING POINT °C.	BOILING POINT °C.	DISCOVERED	BY WHOM	WHERE AND HOW FOUND
	at °C.				
26			1886	Marignac	In rare minerals as gadolinite, etc.
27	30.15		1875	Baileyaudran	In certain zinc blenders.
28	900	vol. 1350	1886	Winkler	In argyrodite a rare mineral.
29	960		1828	Wohler	In beryl and several rare minerals.
30 .0000147	1060	2530	Prehistoric	Generally free, rarely combined in various ores.
31	-270	-268.7	1895	Ramsay and Travers	Rare element in the air and in the sun.
32		-256.5	-252.5	1786 Cavendish	Mainly in water and organic substances.
33 .0000417	40	115	red heat	1863 Reich and Richter	In certain zinc ores.
34 .0000837		113.7	185.5	1811 Courtois	Mainly in the ashes of seaweeds.
35 .000007	40	1950		1803 Tennant	In iridosmine.
36 .00001182		1505		1895 Ramsay and Travers	As oxide and sulphide and in nearly all rocks.
37		-169	-151.7		Rare element in the air.
38 .00002924		810		1839 Mosander	In cerite and other rare minerals.
39	327	1580	Prehistoric	In galena (PbS) and other ores.
40		180	1400	1817 Arfvedson	In lepidolite, spodumene, and some rare minerals.
41 .00002694		632.6	2200	1820 Bussy	In sea water magnesite and many rocks.
42		1207		1774 Gahn	In pyrolusite and many other minerals.
43 .000182		-38.85	357.33	Prehistoric Native and in cinnabar (HgS).

PHYSICAL CONSTANTS OF THE ELEMENTS—Continued

NAME	DERIVATION	SYMBOL	ATOMIC WEIGHT 0.16	SPECIFIC GRAVITY WATER 1 AIR 1 (A) HYDROGEN 1 (D)	SPECIFIC HEAT AT °C.	VALENCE (PRINCIPAL)	ELECTRICAL CON- DUCTIVITY AT °C.	THERMAL CONDUC- TIVITY K AT °C. Ag 1.00
44. Molybde- num.....	Gr. molyb- dos, lead...	Mo	96.0	8.8	.0659	3 or 6
45. Neodym- ium.....	Gr. neos, new and diby- mos, twin..	Nd	144.3	6.956
46. Neon.....		Ne	20.2	0.674 A	0
47. Nickel.....	Sw. abbr. of kupper- nickel.....	Ni	58.68	8.76	.1084	2 or 3	144200	.1420
48. Nitrogen, Gas.....	Gr. Niter- forming...	N	14.01	0.96737 A	.2438	3 or 50000524
49. Osmium....	Gr. osme, odor.....	Os	190.0	22.48	.03113	2 or 3 or 4 or 8	105300
50. Oxygen, gas	Dr. acid- forming....	O	16.00	1.10535 A	.2175	2000563
51. Palladium..	Planet Pallas	Pd	106.7	11.65	.0592	2 or 4	97900	.1683
52. Phosphor- ous yellow	Gr. light- bearing....	P	31.04	1.8232 at 20	.202	3 or 5
53. Phosphor- ous red....				2.296	1829	3 or 5
54. Platinum..	Sp. platina..	Pt	195.2	21.48 at 17.6	.0323	2 or 4	91200	.1664
55. Potassium..	Eng. Potash	K	39.10	0.8621 at 20	.1662	1	150500
56. Praesodym- ium.....	Gr. praseos, green and didymos, twin....	Pr	140.6	6.4754	3
57. Radium....		Ra	226.4	2
58. Rhodium..	Gr. rhodon, rose.....	Rh	102.9	12.1	.0580	3
59. Rubidium..	L. rubidius, red.....	Rb	85.45	1.532 at 20	1
60. Ruthenium cryst.....		Ru	101.7	12.26	.0611
61. Samarium.	Samarski, a Russian savant.....	Sm	150.4	7.75	3

PHYSICAL CONSTANTS OF THE ELEMENTS—Continued

LINEAR COEFFICIENT OF EXPANSION	MELTING POINT °C.	BOILING POINT °C.	DISCOVERED	BY WHOM	WHERE AND HOW FOUND
	at °C.				
44.....			1782	Hjelm	Mainly in molybdenite (MoS_2).
45.....	840	—243	1885	Weisbach	In cerite and other rare minerals.
46.....	—253		1895	Ramsay and Travers	Rare gas in the air.
47 .00001279	1435	1751	Cronstedt	Many metallic ores.
48.....	—213	—195.5	1772	Rutherford	In the atmosphere and organic matter.
49 .00000657	2500	1803	Tennant	In iridosmine and native platinum.
50.....	—233	—182.5	1774	Priestley	Free in air (Forms one-half the earth's crust combined).
51 .00001176	1546	1804	Wollaston	Native and with platinum and gold.
52 .000124	44.2	290	1669	Brandt	In bones and in apatite and many minerals.
53.....	350-yel			
54 .00000899	1753	1741	Wood	Mainly as native platinum in river gravels.
55 .000083	63.6	757.5	1807	Davy	In wood ashes and many rocks.
56.....	940	1885	Weisbach	In cerite and other rare minerals.
57.....			1903	Madame Curie	In pitchblend.
58 .0000085 40	1750	1804	Wollaston	With platinum and iridosmine.
59.....	38.55	696	1660	Bunsen	In lepidolite, and some mineral springs.
60.....	1950			
61.....			1879	Boisbaudran	In samarskite, cerite and other rare minerals.

PHYSICAL CONSTANTS OF THE ELEMENTS—Continued

NAME	DERIVATION	SYMBOL	ATOMIC WEIGHT 0.16	SPECIFIC GRAVITY WATER 1 AIR 1 (A) HYDROGEN 1 (D)	SPECIFIC HEAT AT °C.	VALENCE (PRINCIPAL)	ELECTRICAL CON- DUCTIVITY AT °C.	TERMINAL CONDU- CTIVITY K AT °C. Ag 1.00
62. Selenium, mono- clinic.....	Gr. selene, moon.....	Se	79.2	4.47 at 25	.084	2 or 4
63. Silicon cryst	L. silex, flint	Si	28.3	2.49 at 10	.1697	4
64. Silver, argentum	Anglo-Saxon Seolfor.....	Ag	107.88	10.53	.0559	1	681200	1.000
65. Sodium, natrum..	Eng. Soda	Na	23.00	0.9375 at 13	.2934	1	211000	0.365
66. Strontium..	Strontian, a town in Scotland...	Sr	87.63	2.54	2	40300
67. Sulphur, rhombic..	L. sulfur	S	32.07	2.06 at O	.1728	4 or 6
68. Tantalum..	Gr. Tantalus	Ta	181.0	14.49 at 16	.03017	5	60600
69. Tellurium, cryst.....	L. tellus, earth.....	Te	127.5	6.27	.0475	4 or 6	46600
70. Terbium...	Ytterby, a town in Sweden....	Tb	159.2	3
71. Thallium...	Gr. thallos, budding twig.....	Tl	204.0	11.85	.0326	1 or 3	56800
72. Thorium, cryst.....	God Thor...	Th	232.0	11.23	4
73. Thulium...	Thule Northland	Tm	168.5
74. Tin, gray stannum.	Anglo-Saxon	Sn	119.0	5.846 at 15	.0545	2 or 4	tetrag- onal	tetrag- onal
75. Titanium...	L. Titanes, Sons of earth.....	Ti	48.1	3.543	.1125	4 or 5	76600	.1528
76. Tungsten Wolfrani- um.....	Sw., heavy stone.....	W	184.0	18.77	.0336	6
77. Uranium...	Planet Uranus ...	U	238.5	18.685	.028	6
78. Vanadium..	Goddess Vanadis .	V	51.06	6.025 at 15	.0280	3 or 5
79. Xenon, gas.	Xe	130.2	4.422 A	0

PHYSICAL CONSTANTS OF THE ELEMENTS—Continued

LINEAR COEFFICIENT OF EXPANSION at °C.	MELTING POINT °C.	BOILING POINT °C.	DISCOVERED	BY WHOM	WHERE AND HOW FOUND
62 .0000368	40	175	690	1817 Berzelius	Mainly in sulphur as an impurity.
63 .00000763		1200	3500	1823 Berzelius	In quartz (SiO_2) most abundant element after oxygen.
64 .00001921		961.5	2050 Prehistoric	Native and in many ores.
65 .00072		97.6	877.5	1807 Davy	In common salt (NaCl) and many rocks.
66		900	1808 Davy	In celestite and strontianite
67 .00006413		114.5	444.6 Prehistoric	Native and in many sulphides and sulphates.
68 .000008		2300	1802 Ekeberg	In tantalite and other rare minerals.
69 .0000344		452	1390	1782 Reichenstein	In several rare minerals.
70	1843 Mosander		In rare minerals as gadolinite.
71 .00003021		301.7	1280	1862 Crookes	In pyrites and in flue dust of sulphuric acid works.
72		1515	1828 Berzelius	In thorite and other rare minerals.
73	tetragonal	1879 Cleve		In rare minerals as gadolinite.
74 .00002234	232	1525	Prehistoric	Mainly in cassiterite (SnO_2).
75	3000	1789 Gregor		Widely diffused in rocks and clays in small amounts.
76	2800	1781 d'Elhujar		Mainly in wolframite(MnFeWO_4).
77	800	1789 Klaproth		In pitchblend and other rare minerals.
78	1680	1830 Sefstron		In vanadinite and other rare minerals.
79	-140	-19.1	1895 Ramsay and Travers		Rare element in the air.

PHYSICAL CONSTANTS OF THE ELEMENTS—Continued

NAME	DERIVATION	SYMBOL	ATOMIC WEIGHT 0 16	SPECIFIC GRAVITY WATER 1 AIR 1 (A) HYDROGEN 1 (D)	SPECIFIC HEAT AT °C.	VALENCE (PRINCIPAL)	ELECTRICAL CON- DUCTIVITY AT °C.	THERMAL CONDUC- TIVITY K AT °C. Ag 1.00
80. Ytterbium.	Ytterby, a town in Sweden . . .	Yb	172.0	3
81. Yttrium....	Ytterby, a town in Sweden....	Y	89.0	3.80 at 15	3
82. Zinc.....	G. Zink.....	Zn	65.37	7.142 at 16	.09356	2	186000	.2653
83. Zirconium, cryst.....	Per. zargun, gold colored....	Zr	90.6	5.3	.0660	4

PHYSICAL CONSTANTS OF THE ELEMENTS—Continued

LINEAR COEFFICIENT OF EXPANSION	MELTING POINT °C.	BOILING POINT °C.	DISCOVERED	BY WHOM	WHEN AND HOW FOUND
80			1878	Marignac	In rare minerals as gadolinite.
81			1828	Wohler	In gadolinite and other rare minerals.
82 .00002918	419	918	1520	Paracelsus	In ores as oxide silicate, sulphide and carbonate.
83			1824	Berzelius	In zirkon and other rare minerals.

ONE HUNDRED COMPLETED CHEMICAL EQUATIONS

1. $\text{H}_2\text{PtCl}_6 + 2\text{KCl} = 2\text{HCl} + \text{K}_2\text{PtCl}_6$
 2. $\text{K}_2\text{PtCl}_6 + \text{heat} = 2\text{KCl} + \text{Pt} + 2\text{Cl}_2$
 3. $\text{KHC}_4\text{H}_4\text{O}_6 + \text{NaOH} = \text{KNaC}_4\text{H}_4\text{O}_6 + \text{H}_2\text{O}$
 4. $\text{Na}_2\text{O}_2 + 2\text{H}_2\text{O} = 2\text{NaOH} + \text{H}_2\text{O}_2$
 5. $2\text{KMnO}_4 + 4\text{H}_2\text{SO}_4 + 5\text{H}_2\text{O}_2 = 2\text{KHSO}_4 + 2\text{MnSO}_4 + 8\text{H}_2\text{O}$
- + 50
6. $2\text{KI} + \text{H}_2\text{O}_2 = 2\text{KOH} + \text{I}_2$
 7. $2\text{AuCl}_3 + 3\text{H}_2\text{O}_2 + 6\text{NaOH} = 6\text{NaCl} + 6\text{H}_2\text{O} + 3\text{O}_2 + 2\text{Au}$
 8. $\text{MnCl}_2 + 2\text{KOH} + \text{H}_2\text{O}_2 = 2\text{KCl} + \text{H}_2\text{O} + \text{MnO} \cdot (\text{OH})_2$
(brown)
 9. $2\text{NiCl}_2 + 4\text{KOH} + \text{H}_2\text{O}_2 = 4\text{KCl} + 2\text{Ni(OH)}_3$ (black)
 10. $2\text{CoCl}_2 + 4\text{KOH} + \text{H}_2\text{O}_2 = 4\text{KCl} + 2\text{Co(OH)}_3$ (black)
 11. $\text{MgCl}_2 + \text{Na}_2\text{HPO}_4 + \text{NH}_3 = 2\text{NaCl} + \text{MgNH}_4\text{PO}_4$
 12. $2\text{BaCl}_2 + \text{K}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{O} = 2\text{BaCrO}_4 + 2\text{HCl} + 2\text{KCl}$
 13. $\text{AlCl}_3 + 3\text{KOH} = 3\text{KCl} + \text{Al(OH)}_3$
 14. $\text{Al(OH)}_3 + 3\text{KOH} = 3\text{H}_2\text{O} + \text{Al(OK)}_3$
 15. $2\text{AlCl}_3 + 3\text{Na}_2\text{S}_2\text{O}_8 + 3\text{H}_2\text{O} = 6\text{NaCl} + 3\text{S} + 3\text{SO}_2 + 2\text{Al(OH)}_3$
 16. $2\text{CrCl}_3 + 3(\text{NH}_4)_2\text{S} + 6\text{H}_2\text{O} = 6\text{NH}_4\text{Cl} + 3\text{H}_2\text{S} + 2\text{Cr(OH)}_3$
 17. $\text{CrCl}_3 + 8\text{NaC}_2\text{H}_3\text{O}_2 + 4\text{H}_2\text{O} + 3\text{Cl}^- = 6\text{NaCl} + 8\text{HC}_2\text{H}_3\text{O}_2 + \text{Na}_2\text{CrO}_4$
 18. $2\text{CrCl}_3 + 3\text{MnO}_2 + 2\text{H}_2\text{O} = 3\text{MnCl}_2 + 2\text{H}_2\text{CrO}_4$
 19. $\text{K}_2\text{Cr}_2\text{O}_7 + 2\text{KOH} = \text{H}_2\text{O} + 2\text{K}_2\text{CrO}_4$
 20. $\text{K}_2\text{Cr}_2\text{O}_7 + 6\text{FeSO}_4 + 7\text{H}_2\text{SO}_4 = 7\text{H}_2\text{O} + \text{K}_2\text{SO}_4 + 3\text{Fe}_2(\text{SO}_4)_3 + \text{Cr}_2(\text{SO}_4)_3$
 21. $\text{K}_2\text{Cr}_2\text{O}_7 + 6\text{HI} + 4\text{H}_2\text{SO}_4 = \text{K}_2\text{SO}_4 + \text{Cr}_2(\text{SO}_4)_3 + 7\text{H}_2\text{O} + 6\text{I}$
 22. $\text{K}_2\text{Cr}_2\text{O}_7 + 14\text{HCl} = 2\text{KCl} + 2\text{CrCl}_3 + 7\text{H}_2\text{O} + 3\text{Cl}_2$
 23. $\text{FeCl}_2 + 2\text{KCN} = 2\text{KCl} + \text{Fe(CN)}_2$
 24. $\text{FeCN}_2 + 4\text{KCN} = \text{K}_4[\text{Fe(CN)}_6]$
 25. $\text{FeCl}_3 + 3\text{NaC}_2\text{H}_3\text{O}_2 = 3\text{NaCl} + \text{Fe(C}_2\text{H}_3\text{O}_2)_3$
 26. $\text{Fe(C}_2\text{H}_3\text{O}_2)_3 + 2\text{H}_2\text{O} = 2\text{HC}_2\text{H}_3\text{O}_2 + \text{Fe(OH)}_2(\text{C}_2\text{H}_3\text{O}_2)$
 27. $\text{K}_4[\text{Fe(CN)}_6] + 6\text{H}_2\text{SO}_4 + 6\text{H}_2\text{O} = 2\text{K}_2\text{SO}_4 + \text{FeSO}_4 + 3(\text{NH}_4)_2\text{SO}_4 + 6\text{CO}$
 28. $2\text{MnO}_2 + 8\text{HCl} = 4\text{H}_2\text{O} + 2\text{MnCl}_2 + 2\text{Cl}_2$
 29. $2\text{MnSO}_4 + 5\text{PbO}_2 + 6\text{HNO}_3 = 2\text{PbSO}_4 + 3\text{Pb}(\text{NO}_3)_2 + 2\text{H}_2\text{O} + 2\text{HMnO}_4$
 30. $2\text{HMnO}_4 + 14\text{HCl} = 8\text{H}_2\text{O} + 2\text{MnCl}_2 + 5\text{Cl}_2$
 31. $\text{MnSO}_4 + 2\text{Na}_2\text{CO}_3 + \text{O}_2 = 2\text{CO}_2 + \text{Na}_2\text{SO}_4 + \text{Na}_2\text{MnO}_4$
 32. $2\text{KMnO}_4 + 10\text{FeSO}_4 + 8\text{H}_2\text{SO}_4 = \text{K}_2\text{SO}_4 + 2\text{MnSO}_4 + 5\text{Fe}_2(\text{SO}_4)_3 + 8\text{H}_2\text{O}$
 33. $2\text{KMnO}_4 + 3\text{MnSO}_4 + 2\text{H}_2\text{O} = \text{K}_2\text{SO}_4 + 5\text{MnO}_2 + 2\text{H}_2\text{SO}_4$
 34. $\text{NiCl}_2 + 6\text{NH}_3 = \text{Ni}(\text{NH}_3)_6\text{Cl}_2$
 35. $\text{NiCl}_2 + 2\text{KCN} = 2\text{KCl} + \text{Ni(CN)}_2$
 36. $\text{Ni(CN)}_2 + 2\text{KCN} = \text{K}_2\text{Ni(CN)}_4$
 37. $\text{CoCl}_2 + 2\text{KNO}_2 = \text{Co}(\text{NO}_2)_2 + 2\text{KCl}$
 38. $\text{Co}(\text{NO}_2)_2 + 2\text{HNO}_2 = \text{H}_2\text{O} + \text{NO} + \text{Co}(\text{NO}_2)_2$
 39. $\text{Co}(\text{NO}_2)_2 + 3\text{KNO}_2 = \text{K}_3\text{Co}(\text{NO}_2)_6$
 40. $3\text{Zn} + 8\text{HNO}_3 = 3\text{Zn}(\text{NO}_3)_2 + 4\text{H}_2\text{O} + 2\text{NO}$
 41. $\text{Zn} + 2\text{KOH} = \text{K}_2\text{ZnO}_2 + \text{H}_2$
 42. $\text{Zn}(\text{OH})_2 + 2\text{NH}_4\text{Cl} + 4\text{NH}_3 = \text{Zn}(\text{NH}_3)_6\text{Cl}_2 + 2\text{H}_2\text{O}$
 43. $\text{ZnCl}_2 + 2\text{KCN} = 2\text{KCl} + \text{Zn}(\text{CN})_2$

44. $\text{Zn}(\text{CN})_2 + 2\text{KCN} = \text{K}_2\text{Zn}(\text{CN})_4$
45. $3\text{Hg} + 8\text{HNO}_3 = 3\text{Hg}(\text{NO}_3)_2 + 4\text{H}_2\text{O} + 2\text{NO}$
46. $\text{HgCl}_2 + 2\text{NH}_3 = \text{NH}_4\text{Cl} + \text{HgNH}_2\text{Cl}$
47. $3\text{HgCl}_2 + 2\text{H}_2\text{S} = 4\text{HCl} + \text{Hg}_3\text{Cl}_2\text{S}_2$ (white)
48. $\text{Hg}_3\text{Cl}_2\text{S}_2 + \text{H}_2\text{S} = 2\text{HCl} + 3\text{HgS}$
49. $3\text{Hg}(\text{NO}_3)_2 + 6\text{FeSO}_4 = 2\text{Fe}(\text{NO}_3)_3 + 2\text{Fe}_2(\text{SO}_4)_3 + 3\text{Hg}$
50. $2\text{HgCl} + 2\text{NH}_3 = \text{NH}_4\text{Cl} + \text{HgNH}_2\text{Cl} + \text{Hg}$
51. $\text{Hg}_2(\text{NO}_3)_2 + \text{H}_2\text{S} = 2\text{HNO}_3 + \text{HgS} + \text{Hg}$
52. $\text{Hg}_2(\text{NO}_3)_2 + 2\text{KCN} = 2\text{KNO}_3 + \text{Hg}(\text{CN})_2 + \text{Hg}$
53. $\text{Pb}(\text{NO}_3)_2 + 2\text{KOH} = \text{Pb}(\text{OH})_2 + 2\text{KNO}_3$
54. $\text{Pb}(\text{OH})_2 + 2\text{KOH} = \text{K}_2\text{PbO}_2 + 2\text{H}_2\text{O}$
55. $2\text{PbCl}_2 + \text{H}_2\text{S} = 2\text{HCl} + \text{PbCl}_2, \text{PbS}$ (orange)
56. $\text{PbCl}_2, \text{PbS} + \text{H}_2\text{S} = 2\text{PbS} + 2\text{HCl}$
57. $3\text{PbS} + 8\text{HNO}_3 = 3\text{Pb}(\text{NO}_3)_2 + 4\text{H}_2\text{O} + 2\text{NO} + 3\text{S}$
58. $\text{BiCl}_3 + \text{H}_2\text{O} = 2\text{HCl} + \text{BiOCl}$
59. $\text{SnCl}_2 + 2\text{KOH} = 2\text{KCl} + \text{Sn}(\text{OH})_2$ (white ppt.)
60. $\text{Sn}(\text{OH})_2 + 2\text{KOH} = \text{K}_2\text{SnO}_2 + 2\text{H}_2\text{O}$ (soluble)
61. $\text{BiCl}_3 + 6\text{KOH} = 2\text{Bi}(\text{OH})_3 + 6\text{KCl}$
62. $2\text{Bi}(\text{OH})_3 + 3\text{K}_2\text{SnO}_2 = 3\text{H}_2\text{O} + 3\text{K}_2\text{SnO}_3 + \text{Bi}_2$ (black)
63. $3\text{Cu} + 8\text{HNO}_3 = 4\text{H}_2\text{O} + 3\text{Cu}(\text{NO}_3)_2 + 2\text{NO}$
64. $\text{Cu} + \text{H}_2\text{SO}_4 = \text{H}_2\text{O} + \text{SO}_2 + \text{CuO}$
65. $\text{CuO} + \text{H}_2\text{SO}_4 = \text{CuSO}_4 + \text{H}_2\text{O}$
66. $2\text{CuSO}_4 + 2\text{NH}_4\text{OH} = (\text{NH}_4)_2\text{SO}_4 + \text{Cu}_2\text{SO}_4 \cdot (\text{OH})_2$
67. $\text{Cu}_2\text{SO}_4(\text{OH})_2 + (\text{NH}_4)_2\text{SO}_4 + 6\text{NH}_3 = 2[\text{Cu}(\text{NH}_3)_4](\text{SO}_4) \cdot \text{H}_2\text{O}$ (soluble, blue)
68. $2\text{Cu}(\text{NH}_3)_4\text{SO}_4 \cdot \text{H}_2\text{O} + 9\text{KCN} = \text{Cu}_2(\text{CN})_8\text{NH}_4 \cdot \text{K}_5 + 2\text{K}_2\text{SO}_4 + 6\text{NH}_3 + \text{H}_2\text{O} + \text{NH}_4\text{CNO}$
69. $\text{Cd}(\text{NO}_3)_2 + 2\text{KCN} = 2\text{KNO}_3 + \text{Cd}(\text{CN})_2$
70. $\text{Cd}(\text{CN})_2 + 2\text{KCN} = \text{K}_2\text{Cd}(\text{CN})_4$
71. $\text{K}_2\text{Cd}(\text{CN})_4 + \text{H}_2\text{S} = 2\text{KCN} + 2\text{HCN} + \text{CdS}$
72. $\text{H}_3\text{AsO}_4 + \text{H}_2\text{S} = \text{H}_2\text{O} + \text{S} + \text{H}_3\text{AsO}_3$
73. $\text{H}_3\text{AsO}_3 + 3\text{H}_2\text{S} = 6\text{H}_2\text{O} + \text{As}_2\text{S}_3$
74. $\text{As}_2\text{S}_3 + 3(\text{NH}_4)_2\text{S} = 2(\text{NH}_4)_3\text{AsS}_3$
75. $2(\text{NH}_4)_3\text{AsS}_3 + 6\text{HCl} = 6\text{NH}_4\text{Cl} + \text{As}_2\text{S}_3 + 3\text{H}_2\text{S}$
76. $\text{As}_2\text{S}_5 + 3(\text{NH}_4)_2\text{S} = 2(\text{NH}_4)_3\text{AsS}_4$.
77. $2(\text{NH}_4)_3\text{AsS}_4 + 6\text{HCl} = \text{As}_2\text{S}_5 + 3\text{H}_2\text{S} + 4\text{NH}_4\text{Cl}$. Antimony reactions same as arsenic
78. $3\text{Sn} + 4\text{HNO}_3 = \text{H}_2\text{O} + 3\text{H}_2\text{SnO}_3 + 4\text{NO}$
79. $\text{SnCl}_2 + \text{H}_2\text{S} = \text{SnS} + 2\text{HCl}$
80. $\text{SnS} + (\text{NH}_4)_2\text{S}_2 = (\text{NH}_4)_2\text{SnS}_3$
81. $(\text{NH}_4)_2\text{SnS}_3 + 2\text{HCl} = 2\text{NH}_4\text{Cl} + \text{H}_2\text{S} + \text{SnS}_2$
82. $\text{SnCl}_4 + 2\text{H}_2\text{S} = \text{SnS}_2 + 4\text{HCl}$
83. $\text{SnS}_2 + (\text{NH}_4)_2\text{S} = (\text{NH}_4)_2\text{SnS}_3$
84. $\text{SnO}_2 + 2\text{KCN} = 2\text{KCN} + \text{Sn}$ (fusion)
85. $2\text{Au} + 2\text{HNO}_3 + 6\text{HCl} = 4\text{H}_2\text{O} + 2\text{NO} + 2\text{AuCl}_3$
86. $2\text{AgNO}_3 + 2\text{KOH} = 2\text{KNO}_3 + \text{H}_2\text{O} + \text{Ag}_2\text{O}$
87. $\text{Ag}_2\text{O} + 2\text{NH}_4\text{OH} = 2(\text{AgNH}_3)\text{OH} + \text{H}_2\text{O}$
88. $\text{AgCl} + 2\text{NH}_4\text{OH} = 2\text{Ag}(\text{NH}_3)_2\text{Cl}$
89. $\text{AgCl} + 2\text{KCN} = \text{KAg}(\text{CN})_2 + \text{KCl}$
90. $6\text{NH}_4\text{OH} + 2\text{NH}_3 + 3\text{Cl}_2 = 6\text{H}_2\text{O} + 6\text{NH}_4\text{Cl} + \text{N}_2$
91. $6\text{NaOH} + 3\text{Cl}_2 = 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O}$
92. $\text{H}_2\text{SO}_4 + 2\text{HI} = \text{H}_2\text{O} + \text{H}_2\text{SO}_3 + \text{I}_2$

93. $\text{H}_2\text{SO}_4 + 8\text{HI} = 4\text{H}_2\text{O} + \text{H}_2\text{S} + 4\text{I}_2$
94. $2\text{Na}_2\text{S}_2\text{O}_3 + \text{I}_2 = 2\text{NaI} + \text{Na}_2\text{S}_4\text{O}_6$
95. $\text{H}_3\text{PO}_4 + 12(\text{NH}_4)_2\text{MoO}_4 + 21\text{HNO}_3 = (\text{NH}_4)_3\text{PO}_4 \cdot 12\text{MoO}_3 + 21(\text{NH}_4)\text{NO}_3 + 12\text{H}_2\text{O}$
96. $(\text{NH}_4)_3\text{PO}_4 \cdot 12\text{MoO}_3 + 24\text{NH}_4\text{OH} = (\text{NH}_4)_3\text{PO}_4 + 12(\text{NH}_4)_2\text{MoO}_3 + 12\text{H}_2\text{O}$
97. $6\text{FeSO}_4 + 3\text{H}_2\text{SO}_4 + 2\text{HNO}_3 = 3\text{Fe}_2(\text{SO}_4)_3 + 4\text{H}_2\text{O} + 2\text{NO}$
98. $\text{Fe}(\text{NO}_3)_2 + \text{NO} = \text{Fe}(\text{NO}_3)_2\text{NO}$
99. $\text{KClO}_3 + 3\text{H}_2\text{SO}_4 + 6\text{FeSO}_4 = 3\text{Fe}_2(\text{SO}_4)_3 + 3\text{H}_2\text{O} + \text{KCl}$
100. $\text{Na}_2\text{SiO}_3 + 2\text{NH}_4\text{Cl} + 2\text{H}_2\text{O} = 2\text{NaCl} + 2\text{NH}_4\text{OH} + \text{H}_2\text{SiO}_3$

THE METHOD OF SOLVING CHEMICAL PROBLEMS

Detailed solutions of a few typical problems are given below. The student should study these carefully, and assure himself that they are fully understood.

1. A "chemical factor" expresses the ratio between a specific quantity of a chemical compound and the *equivalent* quantity of some other body. For example, if it is wished to determine the weight of sulphur which corresponds to a specific weight of barium sulphate, the latter is multiplied by the factor, or ratio, represented by the fraction $\frac{\text{S}}{\text{BaSO}_4}$, or $\frac{32.07}{233.50} = 0.1373$. It may also

be expressed by the proportion $\text{BaSO}_4 : \text{S} = \text{wt. BaSO}_4 : x$, from which it is plain that $x = \frac{32.07}{233.50} \cdot \text{wt. BaSO}_4$.

Again, if the weight of FeO in Fe_2O_3 is desired, the factor becomes $\frac{2\text{FeO}}{\text{Fe}_2\text{O}_3} = \frac{144.04}{160.04} = 0.9000$. Similarly, the factor for the conversion of KCl to K_2O is $\frac{\text{K}_2\text{O}}{2\text{KCl}} = \frac{94.22}{149.12} = 0.6320$. The logarithmic equivalents of these values are called log factors.

In the calculation of these factors, the atomic or molecular relations of the two substances must be kept clearly in mind; thus, it is plainly *incorrect* to express the ratio of ferrous to ferric oxide by the fraction $\frac{\text{FeO}}{\text{Fe}_2\text{O}_3}$ since each molecule of the higher oxide must correspond to two molecules of the lower. Carelessness in this respect is one of the most frequent sources of error.

2. To calculate the volume of a reagent required for a specific operation, it is necessary to know the exact reaction which is to be brought about, and, as with the calculation of factors, to keep in mind the molecular relations between the reagent and the substance reacted upon. For example, to estimate the weight of barium chloride necessary to precipitate the sulphur from 0.1 gram

of pure pyrite (FeS_2), the proportion should stand $2\text{BaCl}_2 \cdot 2\text{H}_2\text{O} : 120.16 \text{FeS}_2 = x : 0.1$, where x represents the weight of the chloride required. Each of the two atoms of sulphur will form a mole-

^{488.70}

cule of sulphuric acid upon oxidation, which, in turn, will require a molecule of the barium chloride for precipitation. To determine the quantity of the barium chloride required, it is necessary to include in its molecular weight the water of crystallization, since this is inseparable from the chloride when it is weighed. This applies equally to other similar instances.

If the strength of an acid is expressed in percentage by weight, due regard must be paid to its specific gravity. For example, hydrochloric acid (sp. gr. 1.12) contains 23.8 per cent HCl by weight; *i.e.*, 0.2666 gram.

3. No rules for universal application to "indirect gravimetric analyses" can be laid down. A single example will be explained.

Given a mixture of KCl + NaCl weighing 0.15 gram, which contains 53 per cent chlorine, to calculate the weight of KCl and NaCl in the mixture.

The weight of chlorine in the mixture is (0.15×0.53) or 0.0795 gram. Assuming that this chlorine was all in combination with potassium, the corresponding weight of KCl would be 0.1672 gram ($\text{Cl} : \text{KCl} = 0.0795 : 0.1672$). This is an excess of 0.0172 gram over the actual weight of the mixture, and it is plain that this difference is occasioned by the replacement of certain of the molecules of potassium chloride, weighing 74.56 units, by molecules of sodium chloride weighing 58.50 units. To express this, let it be supposed that the mixture is made up of n molecules

$\overset{74.56}{\text{KCl}}$ and n' molecules $\overset{58.50}{\text{NaCl}}$; then it may be said that $n \overset{74.56}{\text{KCl}} + n' \overset{58.50}{\text{NaCl}} = 0.15$ gram, and $n \overset{74.56}{\text{KCl}} + n' \overset{74.56}{\text{KCl}} = 0.1672$ gram, then by subtracting the first equation from the second it is shown

$\overset{74.56}{\text{KCl}} - \overset{58.50}{\text{NaCl}} = 0.0172$ gram. That is, the difference in weight is equal to n' times the difference in the molecular weights of the two chlorides. The actual weight of NaCl present (x) is equal to $58.50n'$, or, since $n' = \frac{0.0172}{74.56 - 58.50}$, $x = 58.50 \left(\frac{0.0172}{74.56 - 58.50} \right)$.

This may be expressed in the form $(74.56 - 58.50) : 58.50 = 0.0172 : x$, from which $x = 0.0626$. The weight of NaCl subtracted from that of the mixture gives the weight of KCl.

The weights of the chlorides may also be calculated algebraically by solving the equations $x + y = 0.15$ and $\frac{35.45}{74.56}x + \frac{35.45}{58.50}y = 0.0795$, where x is the weight of KCl and y is the weight of NaCl in the mixture.

4. It is sometimes desirable to weigh out such a quantity of substance for analysis, that the number of cubic centimeters of standard solution entering into the reaction shall represent directly the percentage of the desired constituent. This may be readily done, by considering the relation of the solution to a normal solution and the atomic or molecular weight of the desired component. For example, suppose it is desired to calculate such a weight for K_2CO_3 in pearl ash, when a half-normal acid solution is used. Since half-normal acid and alkali solutions are equiva-

lent, and since by definition the half-normal K_2CO_3 solution contains 34.55 grams per liter, each cubic centimeter of the acid solution contains 34.55 grams per liter, each cubic centimeter of the acid solution must be equivalent to 0.03455 gram K_2CO_3 . Hence, 100 cc. would neutralize 3.455 grams pure K_2CO_3 and this becomes the desired weight of the pearl ash. Similarly the required weight of limonite where the iron (Fe) is to be determined by means of a deci-normal $K_2Cr_2O_7$ solution is 0.5602 gram.

5. One of the most frequently recurring cases in volumetric analysis is that in which it is wished to express the value of a specific solution in terms of some substance other than that against which it has been standardized as for instance, the value of a permanganate solution which has been standardized against oxalic acid, in terms of iron. Although such problems apparently vary widely, there are common principles which can be applied to them all. These are stated below, and the student should assure himself that they are fully understood.

Suppose, for example, it is desired to find the iron value (Fe of a permanganate solution, of which 1 cc. is equivalent to 0.006302 gram $C_2H_2O_4 \cdot 2H_2O$.

From a comparison of the reactions it is seen that 10 molecules of ferrous sulphate and 5 molecules of oxalic acid each react with the same amount (2 molecules) of the permanganate. These two quantities being, then, equivalent to the same third quantity, must be equivalent to each other; in other words, 10 molecules of ferrous sulphate and 5 molecules of oxalic acid have the same reducing power. But, as stated above, the value is desired in terms of metallic iron (Fe), not $FeSO_4$, but as it is plain that $10FeSO_4$ are equivalent to 10Fe, it is proper to make the proportion

$$\frac{560.2}{10 \text{ Fe}} : \frac{630.25}{5C_2H_2O_4 \cdot 2H_2O} = x : 0.006302$$

in which $x = 0.005602$ gram. Here, again, as in example 2, it is necessary to include the water of crystallization in the molecular weight of the oxalic acid, as it is weighed with it.

The same conclusion is arrived at, if we consider the relation of the solution to the normal. As given, it is deci-normal and must, therefore, be equivalent to a deci-normal solution of iron. From the equations cited, it is seen that $10FeSO_4$, unite with 5O, therefore each molecule is equivalent to 1 hydrogen atom in reducing power. The normal solution must, then, contain 1 gram-molecule of ferrous sulphate, or 56.02 grams Fe, and each cubic centimeter of the deci-normal solution would contain 0.005602 gram, the value obtained above.

Again, suppose the value of the same permanganate solution were desired in terms of molybdenum (Mo), the reactions with permanganate being

It is plain that in these equations as they stand, the molecular quantities of oxidizing agent are not equal. They can be made so by simply multiplying the second equation by 17, and they then become,

It is now possible to reason in the same way as before, and to conclude that 85 molecules of the oxalic acid have the same reducing power as 5 molecules of the oxide $\text{Mo}_{12}\text{O}_{19}$, or 60 atoms of molybdenum. Accordingly,

$$\frac{5758.8}{60\text{Mo}} : \frac{10714.25}{85\text{C}_2\text{H}_2\text{O}_4 \cdot 2\text{H}_2\text{O}} :: x : 0.006302$$

in which x 0.003387 gram.

Since $5\text{Mo}_{12}\text{O}_{19}$ unite with 85O, a normal solution of the former as a reducing agent, would contain 1/170 of the 5 gram-molecules or 33.87 grams Mo, and the deci-normal solution 3.387 grams per liter. This agrees with the values already obtained.

6. It is sometimes necessary to calculate the value of solutions according to the principles just explained, when several successive reactions are involved. Such problems may be solved by a series of proportions, but it is usually possible, after stating these to eliminate the common factors and solve but a single one.

For example, suppose it is desired to express the value of a permanganate solution, of which 1 cc. = 0.008 gram iron (Fe), in terms of calcium oxide (CaO). The reactions involved in the volumetric determination of calcium are the following; $\text{CaCl}_2 + (\text{NH}_4)_2\text{C}_2\text{O}_4 = \text{CaC}_2\text{O}_4 + 2\text{NH}_4\text{Cl}$; $\text{CaC}_2\text{O}_4 + \text{H}_2\text{SO}_4 + 2\text{H}_2\text{O} = \text{CaSO}_4 + \text{C}_2\text{H}_2\text{O}_4 \cdot 2\text{H}_2\text{O}$; $5\text{C}_2\text{H}_2\text{O}_4 \cdot 2\text{H}_2\text{O} + 2\text{KMnO}_4 + 3\text{H}_2\text{SO}_4 = \text{K}_2\text{SO}_4 + \text{MnSO}_4 + 10\text{CO}_2 + 18\text{H}_2\text{O}$.

From the considerations stated under 5, the following proportions may be made.

$$10\text{Fe} : 5\text{C}_2\text{H}_2\text{O}_4 \cdot 2\text{H}_2\text{O} = 0.008 : x$$

$$5\text{C}_2\text{H}_2\text{O}_4 \cdot 2\text{H}_2\text{O} : 5\text{CaC}_2\text{O}_4 = x : y$$

$$5\text{CaC}_2\text{O}_4 : 5\text{CaO} = y : x$$

Canceling the common factors, there remains simply

$$\frac{560.2}{10\text{Fe}} : \frac{280.4}{5\text{CaO}} = 0.008 : z$$

Similarly, from the reactions, the equivalent of the iodine liberated may be calculated in terms of MnO_2 as follows: Supposing the weight of iodine to be 0.5 gram then

$$2\text{I} : 2\text{KI} = 0.5 : x$$

$$2\text{KI} : 2\text{Cl} = x : y$$

$$2\text{Cl} : 2\text{HCl} = y : z$$

$$2\text{HCl} : \text{MnO}_2 = z : w$$

Canceling the common factors, there remains

$$2\text{I} : \text{MnO}_2 = 0.5 : w$$

To solve such problems as 5 and 6, it is necessary to know the reactions involved, and the way in which the various components break up; then to compare the reactions and to search for those molecular quantities of the compounds in question, which are *equivalent* in their action upon a common agent. Having found these, as shown above, express the molecular ratio between them

253.7 86.99

in the form of a proportion; as, for example, $2 I : MnO_2 = 0.5 : w$.

Expressed in the form $w = \frac{86.99}{253.7} 0.5$, it is plain that this ratio is

in no way different in principle from the chemical factor mentioned in paragraph 1; indeed, it is the factor for the conversion of iodine to manganese dioxide.

DENSITY OF WATER AT 0° TO 36°

Weight in grams of 1 cc. of water free from air at temperatures of 0 to 36°C. by the hydrogen thermometer—according to Thiesen, Scheel, and Diesselhorst Wiss. Abh. d. Phys.—Techn. Reichsanst. 3, 68: 1900.

DEGREES	TENTHS OF DEGREES									
	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0	0.999868	874	881	887	893	899	905	911	916	922
1	927	932	936	941	945	950	954	957	961	965
2	968	971	974	977	980	982	985	987	989	991
3	992	994	995	996	997	998	999	999	*000	*000
4	1.000000	000	000	*999	*999	*998	*997	*996	*995	*993
5	0.999992	990	988	986	984	982	979	977	974	971
6	986	965	962	958	954	951	947	943	938	934
7	929	925	920	915	910	904	899	893	888	882
8	876	870	864	857	851	844	837	830	823	816
9	808	801	793	785	778	769	761	753	744	736
10	727	718	709	700	691	681	672	662	652	642
11	632	622	612	601	591	580	569	558	547	536
12	525	513	502	490	478	466	454	442	429	417
13	404	391	379	366	353	339	326	312	299	285
14	271	257	243	229	215	200	186	171	156	141
15	126	111	096	081	065	050	034	018	002	*986
16	0.998970	953	937	920	904	887	870	853	836	819
17	801	784	766	749	731	713	695	677	659	640
18	622	603	585	566	547	528	509	490	471	451
19	432	412	392	372	352	332	312	292	271	251
20	230	210	189	168	147	126	105	083	062	040
21	019	*997	*975	*953	*931	*909	*887	*864	*842	*819
22	0.997797	774	751	728	705	682	659	635	612	588
23	565	541	517	493	469	445	421	396	372	347
24	323	298	273	248	223	198	173	147	122	096
25	071	045	019	*994	*968	*941	*915	*889	*863	*836
26	0.996810	783	756	730	703	676	648	621	594	567
27	539	512	484	456	428	400	372	344	316	288
28	259	231	202	174	145	116	087	058	029	000
29	0.995971	941	912	882	853	823	793	763	733	703
30	0.99567	537	505	473	440	406	371	336	299	262
40	224	186	147	107	066	025	*982	*940	*896	*852
50	0.98807	762	715	669	621	573	525	475	425	375
60	324	272	220	167	113	059	005	*950	*894	*838
70	0.97781	723	666	607	548	489	429	368	307	245
80	183	121	057	*994	*930	*865	*800	*734	*668	*601
90	0.96534	467	399	330	261	192	122	051	*981	*909
100	0.95838	765	693							

COMPARISON OF METRIC AND CUSTOMARY UNITS FROM 1 TO 10

Length

		Length							
INCHES	MILLI-METERS	INCHES	CENTI-METERS	FEET	METERS	U. S. YARDS	METERS	U. S. MILES	KILO-METERS
0.03937 =	1	0.3937 =	1	1	= 0.304801	1	= 0.914402	0.62137 =	1
0.07874 =	2	0.7874 =	2	2	= 0.609601	1	= 1.828804	1.24274 =	1.60935
0.11811 =	3	1.1811 =	3	3	= 0.914402	2	= 2.187222	2	1.86411 = 3
0.15748 =	4								
0.19685 =	5	1.5748 =	4	4	= 1.219202	3	= 2.743205	2.48548 =	3.21869
0.23622 =	6	1.9685 =	5	5	= 1.524003	3	= 3.280833	3	2.48548 = 4
0.27559 =	7	2.3622 =	6	6	= 1.828804	4	= 3.657607	3	4.82804 = 5
0.31496 =	8	2.7559 =	7	6	= 2.133604	5	= 4.374444	4	3.10685 = 6
0.35433 =	9								
1	= 25.4001	3	= 7.62002	8	= 2.438405	5	= 5.468056	5	4.34959 = 7
2	= 50.8001	3.1496	= 8	9	= 2.743205	6	= 5.486411	4	6.43739 = 7
3	= 76.2002	3.5433	= 9	9	= 9.84250	3	= 6.561667	6	4.97096 = 8
4	= 101.6002	4	= 10.16002	13.12333	= 4	7	= 6.400813	5	8.04674 = 8
5	= 127.0003	5	= 12.70003	16.40417	= 5	7	= 7.655278	7	5.59233 = 9
6	= 152.4003	6	= 15.24003	19.68500	= 6	8	= 7.315215	6	9.65608 = 9
7	= 177.8004	7	= 17.78004	22.96583	= 7	8	= 8.748889	7	11.26543 = 11
8	= 203.2004	8	= 20.32004	26.24667	= 8	9	= 8.229616	8	12.87478 = 12
9	= 228.6005	9	= 22.86005	29.52750	= 9	9	= 9.842500	9	14.48412 = 14

COMPARISON OF METRIC AND CUSTOMARY UNITS FROM 1 TO 10—Continued

Area

SQUARE INCHES	SQUARE MILLI-METERS	SQUARE INCHES	SQUARE CENTI-METERS	SQUARE FEET	SQUARE METERS	SQUARE YARDS	SQUARE METERS	SQUARE MILES	SQUARE KILO-METERS
0.00155	= 1	0.1550	= 1	1	= 0.09290	1	= 0.8361	0.3861	= 1
0.00310	= 2	0.3100	= 2	2	= 0.18581	1.1960	= 1	0.7722	= 2
0.00465	= 3	0.4650	= 3	3	= 0.27871	2	= 1.6723	1.1583	= 3
0.00620	= 4	0.6200	= 4	4	= 0.37161	2.3920	= 2		
0.0075	= 5	0.7750	= 5	5	= 0.46452	3	= 2.5084	1.5444	= 4
0.00930	= 6	0.9300	= 6	6	= 0.55742	3.5880	= 3	1.9305	= 5
0.01085	= 7	1	= 6.452	7	= 0.65032	4	= 3.3445	2	= 5.1800
0.01240	= 8	1.0850	= 7	8	= 0.74323	4.7839	= 4	2.3166	= 6
0.01395	= 9	1.2400	= 8	9	= 0.83613	5	= 4.1807	2.7027	= 7
1	= 645.16	1.3950	= 9	10	764 = 1	5.9799	= 5	3	= 7.7700
2	= 1,290.33	2	= 12.903	21.528	= 2	6	= 5.0168	3.0888	= 8
3	= 1,935.49	3	= 19.355	32.292	= 3	7	= 5.8529	3.4749	= 9
4	= 2,580.65	4	= 25.807	43.055	= 4	7.1759	= 6	4	= 10.3600
5	= 3,225.81	5	= 32.258	53.819	= 5	8	= 6.6890	5	= 12.9500
6	= 3,870.98	6	= 38.710	64.583	= 6	8.3719	= 7	6	= 15.5400
7	= 4,516.14	7	= 45.161	75.347	= 7	9	= 7.5252	7	= 18.1300
8	= 5,161.30	8	= 51.613	86.111	= 8	9	= 9.5679	8	= 20.7200
9	= 5,806.46	9	= 58.065	96.875	= 9	10.7639	= 9	9	= 23.3100

COMPARISON OF METRIC AND CUSTOMARY UNITS FROM 1 TO 10—Continued

AREA—Continued

		Volume		Cubic Yards		Cubic Meters		Acres		Hectares	
Cubic Inches	Cubic Milli-meters	Cubic Inches	Cubic Centi-meters	Cubic Feet	Cubic Meters	Cubic Yards	Cubic Meters	Acre	Hectare		
0.000061 =	1	0.0610 =	1	1	= 0.02832	1	= 0.7646	1	= 0.4047		
0.000122 =	2	0.1220 =	2	2	= 0.05663	1.3079 =	1	2	= 0.8094		
0.000183 =	3	0.1831 =	3	3	= 0.08495	2	= 1.5291	2.471 =	1		
0.000244 =	4	0.2441 =	4	4	= 0.11327	2.6159 =	2	3	= 1.2141		
0.000305 =	5	0.3051 =	5	5	= 0.14159	3	= 2.2937	4	= 1.6187		
0.000366 =	6	0.3661 =	6	6	= 0.16990	3.9238 =	3	4.942 =	2		
*0.000427 =	7	0.4272 =	7	7	= 0.19822	4	= 3.0582	5	= 2.0234		
0.000488 =	8	0.4882 =	8	8	= 0.22654	5	= 3.8228	6	= 2.4281		
0.000549 =	9	0.5492 =	9	9	= 0.25485	5.2318 =	4	7	= 2.8328		
1	= 16,387.2	1	= 16.3872	35.314 =	1	6	= 4.5874	7.413 =	3		
2	= 32,774.3	2	= 32.7743	70.629 =	2	6.5397 =	5	8	= 3.2375		
3	= 49,161.5	3	= 49.1615	105.943 =	3	7	= 5.3519	9	= 3.6422		
4	= 65,548.6	4	= 65.5486	141.258 =	4	7.8477 =	6	9.884 =	4		
5	= 81,935.8	5	= 81.9358	176.572 =	5	8	= 6.1165	12.355 =	5		
6	= 98,323.0	6	= 98.3230	211.887 =	6	9	= 6.8810	14.826 =	6		
7	= 114,710.1	7	= 114.7101	247.201 =	7	9	= 7.1556	17.297 =	7		
8	= 131,097.3	8	= 131.0973	282.516 =	8	10	= 4.635	19.768 =	8		
9	= 147,484.5	9	= 147.4845	317.830 =	9	11	= 7.715	22.239 =	9		

COMPARISON OF METRIC AND CUSTOMARY UNITS FROM 1 TO 10—Continued

Capacity

<i>Capacity</i>								
MILLI-LITERS (cc.)	U. S. LIQUID OUNCEs	MILLI-LITERS (cc.)	U. S. APOTHE-CARIES, SCRUPLES	MILLI-LITERS (cc.)	U. S. LIQUID QUARTS	U. S. LIQUID GALLONS	LITERS	
1	= 0.03381	0.2705	0.8115	1	1	0.26417	1	
2	= 0.06763	0.5410	1.6231	2	1	0.52834	2	
3	= 0.10144	0.8115	2	2.4645	2	0.79251	3	
4	= 0.13526	3.6967	1	2.11336	2	1	3.78543	
5	= 0.16907	4	1.0820	2.4346	3	0.94636	1	
6	= 0.20288	5	1.3525	3	1.05668	1	0.26417	
7	= 0.23670	6	1.6231	3.2461	2	1.89272	2	
8	= 0.27051	7	1.8936	4	2.11336	2	1.84919	
9	= 0.30432	7.3934	2	4.0577	5	2	7.57087	
10	29.574	8	2.1641	4.8692	6	5.28341	5	
59.147	= 1	9	2.4346	5	6.1612	6	5.67815	
88.721	= 2	11.0901	3	5.6807	7	6.34009	6	
118.295	= 3	14.7869	4	6	7.3934	7	6.62451	
147.869	= 4							
177.442	= 5							
207.016	= 6							
236.590	= 7							
266.163	= 8							
33.2704	= 9							

COMPARISON OF METRIC AND CUSTOMARY UNITS FROM 1 TO 10—Continued

U. S. DRY QUARTS	LITERS	U. S. PECKS	LITERS	DEKA-LITERS	U. S. PECKS.	U. S. BUSHELS	HECTO-LITERS	U. S. BUSHELS PER ACRE	HECTO-LITERS PER HECTARE
0.9081 = 1	1	0.11351	1	0.8810 = 1	1	= 0.35239	1	= 0.87078	
1 = 1.1012		0.22702	2	1 = 1.1351	2	= 0.70479	1.14840 = 1		
1.8162 = 2		0.34053	3	1.7620 = 2	2	= 2.83774 = 1	2 = 1.74156		
2 = 2.2025		0.45404	4	2 = 2.2702	3	= 1.05718	2.29680 = 2		
2.7242 = 3		0.56755	5	2.6429 = 3	4	= 1.40957	3 = 2.61233		
3 = 3.3037		0.68106	6	3 = 3.4053	5	= 1.76196	3.44519 = 3		
3.6323 = 4		0.79457	7	3.5239 = 4	5	= 5.67548 = 2	4 = 3.48311		
4 = 4.4049		0.90808	8	4 = 4.5404	6	= 2.11436	4.59359 = 4		
4.5404 = 5		1	= 8.80982	4.4049 = 5	7	= 2.46675	5 = 4.35389		
5 = 5.5061		1.02157	9	5 = 5.6755	8	= 2.81914	5.74199 = 5		
5.4485 = 6		2	= 17.61964	5.2859 = 6	8	= 8.51323 = 3	6 = 5.22467		
6 = 6.6074		3	= 26.42946	6 = 6.8106	9	= 3.17154	6.89039 = 6		
6.3565 = 7		4	= 35.23928	6.1669 = 7	11.35097 = 4		7 = 6.09545		
7 = 7.7086		5	= 44.04910	7 = 7.9457	14.18871 = 5				
7.2646 = 8		6	= 52.85892	7.0479 = 8	17.02645 = 6				
8 = 8.8098		7	= 61.66874	7.9288 = 9	19.86420 = 7				
8.1727 = 9		8	= 70.47856	8 = 9.0808	22.70194 = 8				
9 = 9.9110		9	= 79.28838	9 = 10.2159	25.53968 = 9				
					10.33558 = 9				

COMPARISON OF METRIC AND CUSTOMARY UNITS FROM 1 TO 10—Continued

HANDBOOK OF CHEMISTRY AND PHYSICS

Weight (or Mass)

GRAINS	GRAMS	AVOIRDU- POIS OUNCEs	AVOIRDU- POIS OUNCEs	TROY OUNCEs	GRAMS	AVOIRDU- POIS OUNCEs	POUNDS	KILO- GRAMS	TROY POUNDS	KILO- GRAMS
1	= 0.06480	0.03527	= 1	0.03215	= 1	1	= 0.45359	1	= 0.37324	
2	= 0.12960	0.07055	= 2	0.06430	= 2	2	= 0.90718	2	= 0.74648	
3	= 0.19440	0.10582	= 3	0.09645	= 3	2.20462	= 1	2.67923	= 1	
4	= 0.25920	0.14110	= 4	0.12860	= 4	3	= 1.36078	3	= 1.11973	
5	= 0.32399	0.17637	= 5	0.16075	= 5	4	= 1.81437	4	= 1.49297	
6	= 0.38879	0.21164	= 6	0.19290	= 6	4.40924	= 2	5	= 1.86621	
7	= 0.45359	0.24692	= 7	0.22506	= 7	5	= 2.26796	5	= 2.35846	= 2
8	= 0.51839	0.28219	= 8	0.25721	= 8	6	= 2.72155	6	= 2.23945	
9	= 0.58319	0.31747	= 9	0.28936	= 9	6.61387	= 3	7	= 2.61269	
15.4324	= 1	1	= 28.3495	1	= 31.10348	7	= 3.17515	8	= 2.98593	
30.8647	= 2	2	= 56.6991	2	= 62.20696	8	= 3.62874	8.03769	= 3	
46.2971	= 3	3	= 85.0486	3	= 93.31044	8.81849	= 4	9	= 3.35918	
61.7294	= 4	4	= 113.3981	4	= 124.41392	9	= 4.08233	10.71691	= 4	
77.1618	= 5	5	= 141.7476	5	= 155.51740	11.02311	= 5	13.39614	= 5	
92.5941	= 6	6	= 170.0972	6	= 186.62088	13.22773	= 6	16.07537	= 6	
108.0265	= 7	7	= 198.4467	7	= 217.72437	15.43236	= 7	18.75460	= 7	
123.4589	= 8	8	= 226.7962	8	= 248.82785	17.63698	= 8	21.43383	= 8	
138.8912	= 9	9	= 255.1457	9	= 279.93133	19.84160	= 9	24.11306	= 9	

COMPOSITION OF FREEZING MIXTURES

<i>Lowest temperature</i>	<i>Composition of mixture</i>
-22.4°C.	30 grams salt (NaCl) 100 grams ice finely pulverized and well mixed.
-37°C.	Equal weights H ₂ SO ₄ and ice.
-55°C.	42.5 parts anhydrous calcium chloride and 100 parts ice.

IONIZATION CONSTANTS OF ACIDS AND BASES

Formic acid.....	0.000214
Acetic acid.....	0.000018
Chloracetic acid.....	0.00155
Trichloracetic acid.....	1.21
Benzoic acid.....	0.00006
Ammonium hydroxide.....	0.000023
Carbonic acid.....	0.0000003040
Hydrogen sulphide.....	0.0000000570
Boric acid.....	0.0000000017
Hydrocyanic acid.....	0.0000000013

MISCELLANEOUS DATA AND FORMULAE

3.14159

Radius of circle, R; its diameter, D; then D, 2R.

The circumference, 2R; the area, 2R.

The radius of a sphere, R; the surface area, 4R.

The volume, 4/3R.

Area of a triangle of base, b; height, h; 1/2 b h

ELECTROMOTIVE FORCE SERIES OF METALS

Al.....	1.276	Pb.....	0.148
Mn.....	1.075	H.....	0.000
Zn.....	0.770	Cu.....	0.336
Cd.....	0.420	Hg.....	0.748
Fe.....	0.340	Ag.....	0.771
Co.....	0.232	Pt.....	0.863
Ni.....	0.228	Au.....	1.079
Sn.....	0.192		

TABLES SHOWING THE FUNCTIONS, USES AND COMPOSITIONS OF FOODS

*Functions and Uses of Food in the Body**Protein*.—Builds and repairs tissue:

Albumen (white of eggs)	{ All serve as fuel to yield energy Casein (curd of milk)
Casein (curd of milk)	
Lean meat	
Gluten of grains	

in the forms of heat and muscular power

Fats.—Are stored as fat:

Fat of meats, butter, olive oil, oils of corn, wheat and other grains

Carbohydrates.—Are transformed into fat:

Sugar, starch, etc.

Mineral Matter of Ash.—Share in forming bones and assist in processes of digestion.

Phosphates of lime potash, soda, etc.

Food is that which, taken into the body, builds tissue and yields energy.

Dietary Standards

For a man in full vigor at moderate muscular work, per day

	PROTEIN	ENERGY
	grams	calories
Food eaten	100	3.500
Food digested	95	3.200

Mineral Matter (required per day.)

	grams
Phosphoric acid, (P_2O_5).....	3 to 4
Sulphuric acid, (SO_3).....	2 to 3.5
Potassium oxide, (K_2O).....	2 to 3
Sodium oxide, (Na_2O).....	4 to 6
Calcium oxide, (CaO).....	0.7 to 1.0
Magnesium oxide, (MgO).....	0.3 to 0.5
Iron, (Fe).....	0.006 to 0.012
Chlorine, (Cl).....	6 to 8

These tables are compiled from charts of the United States Department of Agriculture, prepared by C. F. Langworthy, expert in charge of nutrition investigations.

NAME OF THE FOOD MATERIAL	PROTEIN	FAT	CARBO-HYDRATES	ASH	WATER	FUEL VALUE IN CALORI PER LB.
Apple.....	0.4	0.5	4.2	0.3	84.6	290
Bacon.....	9.4	67.4		4.4	18.8	3030
Beef suet.....	4.7	81.8		0.3	13.2	3510
Butter.....	1.0	85.0		0	11.0	3410
Buckwheat.....	10.0	2.2	73.2	2.0	12.6	1600
Beefsteak.....	18.6	18.5		1.0	61.9	1130
Buttermilk.....	3.0	0.5	4.8	0.7	91.0	160
Bean, fresh shelled.....	9.4	0.6	29.1	2.0	58.9	740
Bean, green string.....	2.3	0.3	7.4	0.8	89.2	195
Bean, navy dry.....	22.5	1.8	59.6	3.5	12.6	1600
Banana.....	1.3	0.6	22.0	0.8	75.3	460
Cod fish, fresh.....	12.8	0.4		1.2	82.6	325
Cod fish, salt.....	21.5	0.3		24.7	53.5	410
Corn, dried.....	10.0	4.3	73.4	1.5	10.8	1800
Corn, green.....	3.1	1.1	19.7	0.7	75.4	500
Corn bread.....	7.9	4.7	46.3	2.2	38.9	1205
Cream cheese.....	25.9	33.7	2.4	3.8	34.2	1950
Cottage cheese.....	20.9	1.0	4.3	1.8	72.0	510
Cream.....	2.5	18.5	4.5	0.5	74.0	865

TABLES SHOWING THE FUNCTIONS, USES AND COMPOSITIONS OF FOODS—Continued

NAME OF THE FOOD MATERIAL	PROTEIN	FAT	CARBO-HYDRATES	ASH	WATER	FUEL VALUE IN CALORIES PER LB.
Candy stick.....			96.5	0.5	3.0	1785
Celery.....	1.1		3.4	1.0	94.5	85
Chestnut.....	10.7	7.0	74.2	2.2	5.9	1875
Cocoanut, dried.....	6.3	57.4	31.5	1.3	3.5	3125
Dried beef.....	30.0	6.6		9.1	54.3	840
Egg, whole.....	14.8	10.5		1.0	73.7	700
Egg, white.....	13.0	0.2		0.6	86.2	265
Egg, yolk.....	16.1	33.3		1.1	49.5	1608
Fig, dried.....	4.3	0.3	74.2	2.4	18.8	1475
Fruit, canned.....	1.1	0.1	21.1	0.5	77.2	415
Grapes.....	1.3	1.6	19.2	0.5	77.4	450
Grape juice, unfermented.....	0.2		7.4	0.2	92.2	150
Herring, smoked.....	36.4	15.8		13.2	34.6	1355
Honey.....	0.4		81.2	0.2	18.2	1520
Jelly, fruit.....			78.3	0.7	21.0	1455
Lard.....		100.0				4080
Lamb chop.....	17.6	28.3		1.0	53.1	1540
Mackerel.....	18.3	7.1		1.2	73.4	645
Macaroni.....	3.0	1.5	15.8	1.3	78.4	415
Milk, whole.....	3.3	4.0	5.0	0.7	87.0	310
Milk, skimmed.....	3.4	0.3	5.1	0.7	90.5	165
Molasses.....	2.4		69.3	3.2	25.1	1290
Oat.....	11.8	5.0	69.2	3.0	11.0	1720
Olive oil.....		100.0				4080
Oyster.....	6.2	1.2	3.7	2.0	86.9	235
Onion.....	1.6	0.3	9.9	0.6	87.6	225
Pork chop.....	16.9	30.1		1.0	52.0	1580
Parsnip.....	1.6	0.5	13.5	1.4	83.0	230
Potato.....	2.2	0.1	18.4	1.0	78.3	385
Peanut.....	25.8	38.6	22.4	2.0	9.2	2500
Peanut butter.....	29.3	46.5	17.1	5.0	2.1	2825
Rye.....	12.2	1.5	73.9	1.9	10.5	1750
Rice.....	8.0	2.0	77.0	1.0	12.0	1720
Rolled oats, cooked.....	2.8	0.5	11.5	0.7	84.5	285
Raisins.....	2.6	3.3	76.1	3.4	14.6	1605
Smoked ham.....	16.1	38.8		4.8	40.3	1940
Sugar granulated.....			100.0			1860
Sugar, maple.....			82.8	0.9	16.3	1540
Strawberry.....	1.0	0.6	7.4	0.6	90.4	180
Toasted bread.....	11.5	1.6	61.2	1.7	24.0	1420
Wheat.....	12.2	1.7	73.7	1.8	10.6	1750
White bread.....	9.2	1.3	53.1	1.1	35.3	1215
Whole wheat bread.....	9.7	0.9	49.7	1.3	38.4	1140
Walnut.....	16.6	63.4	16.1	1.4	2.5	3285

REDUCTION OF GAS. VOLUMES TO 0° AND 760 MM.

$$\text{Volume at } 0^\circ \text{ and } 750 \text{ mm.} = v \left(\frac{1}{760(1+0.00367t)} \right) \text{ (and } P-p\text{).}$$

v = observed volume of gas

t = observed temperature of gas in degrees Centigrade

P = observed barometric pressure, corrected, in millimeters

p = tension of aqueous vapor in millimeters

The logarithm of the volume at 0° and 76 mm. is obtained by

adding the logs of *v* and $\left(\frac{1}{760(1+0.00367t)} \right)$ and $(P-p)$

°C.	LOGARITHM OF $\frac{1}{760(1+0.00367t)}$		°C.	LOGARITHM OF $\frac{1}{760(1+0.00367t)}$		°C.	LOGARITHM OF $\frac{1}{760(1+0.00367t)}$		mm.
	TENSION AQUEOUS VAPOR	mm.		TENSION AQUEOUS VAPOR	mm.		TENSION AQUEOUS VAPOR	mm.	
0.0	3.11919	4.60	6.4	3.10911	7.19	12.8	3.09925	11.04	
0.2	3.11887	4.65	6.6	3.10880	7.29	13.0	3.09895	11.19	
0.4	3.11855	4.71	6.8	3.10848	7.39	13.2	3.09864	11.33	
0.6	3.11824	4.78	7.0	3.10818	7.49	13.4	3.09834	11.48	
0.8	3.11792	4.85	7.2	3.10786	7.60	13.6	3.09804	11.63	
1.0	3.11760	4.92	7.4	3.10755	7.70	13.8	3.09773	11.78	
1.2	3.11728	4.99	7.6	3.10724	7.81	14.0	3.09743	11.94	
1.4	3.11696	5.06	7.8	3.10693	7.91	14.2	3.09713	12.09	
1.6	3.11665	5.14	8.0	3.10662	8.02	14.4	3.09682	12.25	
1.8	3.11633	5.21	8.2	3.10631	8.13	14.6	3.09652	12.41	
2.0	3.11601	5.29	8.4	3.10600	8.24	14.8	3.09622	12.57	
2.2	3.11570	5.36	8.6	3.10570	8.36	15.0	3.09592	12.73	
2.4	3.11538	5.44	8.8	3.10538	8.47	15.2	3.09561	12.89	
2.6	3.11507	5.52	9.0	3.10508	8.58	15.4	3.09531	13.06	
2.8	3.11475	5.60	9.2	3.10477	8.70	15.6	3.09501	13.23	
3.0	3.11443	5.68	9.4	3.10446	8.82	15.8	3.09471	13.39	
3.2	3.11412	5.76	9.6	3.10415	8.94	16.0	3.09441	13.57	
3.4	3.11380	5.84	9.8	3.10384	9.06	16.2	3.09411	13.74	
3.6	3.11349	5.92	10.0	3.10354	9.18	16.4	3.09381	13.91	
3.8	3.11317	6.00	10.2	3.10323	9.30	16.6	3.09351	14.09	
4.0	3.11286	6.09	10.4	3.10292	9.43	16.8	3.09321	14.27	
4.2	3.11255	6.17	10.6	3.10262	9.55	17.0	3.09291	14.45	
4.4	3.11223	6.26	10.8	3.10231	9.68	17.2	3.09261	14.63	
4.6	3.11192	6.35	11.0	3.10200	9.81	17.4	3.09231	14.82	
4.8	3.11160	6.44	11.2	3.10170	9.94	17.6	3.09201	15.00	
5.0	3.11129	6.53	11.4	3.10139	10.07	17.8	3.09171	15.19	
5.2	3.11098	6.62	11.6	3.10108	10.21	18.0	3.09141	15.38	
5.4	3.11067	6.71	11.8	3.10178	10.34	18.2	3.09111	15.58	
5.6	3.11036	6.81	12.0	3.10047	10.48	18.4	3.09081	15.77	
5.8	3.11004	6.90	12.2	3.10017	10.62	18.6	3.09051	15.97	
6.0	3.10973	7.00	12.4	3.09986	10.76	18.8	3.09021	16.17	
6.2	3.10942	7.09	12.6	3.09956	10.90	19.0	3.08992	16.37	

REDUCTION OF GAS. VOLUMES TO 0° AND 760 MM.—Con.

°C.	LOGARITHM OF 1 760 (1+0.00367t)		°C.	LOGARITHM OF 1 760 (1+0.00367t)		°C.	LOGARITHM OF 1 760 (1+0.00367t)		TENSION AQUEOUS VAPOR mm.
	TENSION AQUEOUS VAPOR	mm.		TENSION AQUEOUS VAPOR	mm.		TENSION AQUEOUS VAPOR	mm.	
19.2	3.08962	16.57	24.6	3.08165	22.99	30.0	3.07383	31.56	
19.4	3.08932	16.78	24.8	3.08136	23.27	30.2	3.07354	31.92	
19.6	3.08902	16.98	25.0	3.08107	23.55	30.4	3.07325	32.29	
19.8	3.08873	17.19	25.2	3.08078	23.83	30.6	3.07297	32.66	
20.0	3.08843	17.41	25.4	3.08048	24.11	30.8	3.07268	33.04	
20.2	3.08813	17.62	25.6	3.08019	24.40	31.0	3.07239	33.42	
20.4	3.08783	17.84	25.8	3.07990	24.69	31.2	3.07211	33.80	
20.6	3.08754	18.06	26.0	3.07961	24.99	31.4	3.07182	34.19	
20.8	3.08724	18.28	26.2	3.07932	25.28	31.6	3.07154	34.58	
21.0	3.08695	18.50	26.4	3.07903	25.58	31.8	3.07125	34.97	
21.2	3.08665	18.73	26.6	3.07874	25.89	32.0	3.07097	35.37	
21.4	3.08635	18.96	26.8	3.07844	26.19	32.2	3.07068	35.77	
21.6	3.08606	19.19	27.0	3.07816	26.50	32.4	3.07039	36.18	
21.8	3.08576	19.42	27.2	3.07787	26.82	32.6	3.07011	36.59	
22.0	3.08547	19.66	27.4	3.07758	27.13	32.8	3.06983	37.01	
22.2	3.08517	19.90	27.6	3.07729	27.45	33.0	3.06954	37.43	
22.4	3.08488	20.14	27.8	3.07700	27.78	33.2	3.06926	37.85	
22.6	3.08458	20.39	28.0	3.07671	28.10	33.4	3.06897	38.28	
22.8	3.08429	20.63	28.2	3.07642	28.43	33.6	3.06869	38.71	
23.0	3.08400	20.88	28.4	3.07613	28.77	33.8	3.06841	39.15	
23.2	3.08370	21.14	28.6	3.07584	29.10	34.0	3.06812	39.59	
23.4	3.08341	21.39	28.8	3.07555	29.44	34.2	3.06784	40.03	
23.6	3.08312	21.65	29.0	3.07527	29.78	34.4	3.06756	40.48	
23.8	3.08282	21.91	29.2	3.07498	30.13	34.6	3.06727	40.93	
24.0	3.08253	22.18	29.4	3.07469	30.48	34.8	3.06699	41.39	
24.2	3.08224	22.45	29.6	3.07440	30.84	35.0	3.06671	41.85	
24.4	3.08194	22.72	29.8	3.07411	31.19				

GRAVIMETRIC FACTORS AND THEIR LOGARITHMS

A	WEIGHED OR FOUND	REQUIRED	A		B	
B	REQUIRED	WEIGHED OR FOUND	Factor	Logarithm	Factor	Logarithm
Aluminum, Al 27.1						
Al ₂ O ₃	Al.....	0.53033	1.72455	1.8856	0.27545	
	K ₂ SO ₄					
	Al ₂ (SO ₄) ₃					
	24H ₂ O.....	9.28650	0.96785	0.10768	1.03215	
Ammonium, NH ₄ 18.04						
HCl.....	NH ₄ Cl.....	1.46690	0.16641	0.68169	1.83359	
N.....	NH ₃	1.21530	0.08477	0.82268	1.91523	
	NH ₄ Cl.....	3.81870	0.58191	0.26187	9.41809	
	(NH ₄) ₂ SO ₄	4.71620	0.67359	0.21203	1.32641	
(NH ₄) ₂ PtCl ₆	NH ₃	0.07673	2.88501	13.0320	1.11499	
Antimony, Sb 120.2						
Sb.....	Sb ₂ O ₃	1.19970	0.07907	0.83355	1.92093	
	Sb ₂ O ₅	1.33280	0.12476	0.75031	1.87524	
Sb ₂ S ₃	Sb.....	0.71419	1.85381	1.40010	0.14619	
	Sb ₂ O ₃	0.85680	1.93288	1.16720	0.06712	
	Sb ₂ O ₅	0.95185	1.97857	1.05060	0.02143	
Arsenic, As 75						
As ₂ O ₃	As.....	0.75756	1.87942	1.32000	0.12058	
	As ₂ O ₅	1.16162	0.06506	0.86088	1.93494	
As ₂ O ₅	As.....	0.65230	1.81438	1.53330	0.18562	
As ₂ O ₃	As.....	0.60623	1.78478	1.64140	0.21522	
	As ₂ O ₃	0.80419	1.90536	1.24350	0.09464	
Mg ₂ As ₂ O ₇	As.....	0.48287	1.68383	2.07090	0.31617	
	As ₂ O ₃	0.63739	1.80441	1.56890	0.19559	
	As ₂ S ₃	0.79259	1.89905	1.26160	0.10095	
Barium, Ba 137.37						
BaCO ₃	Ba.....	0.69611	1.84261	1.43680	0.15739	
	BaCl ₂	1.05510	0.02339	0.94757	1.97661	
BaCrO ₄	Ba.....	0.54195	1.73396	1.84750	0.26604	
BaSO ₄	Ba.....	0.58851	1.76975	1.70100	0.23025	
	BaCl ₂	0.89234	1.95054	1.12070	0.04947	
	BaCl ₂ H ₂ O.....	1.04660	0.01982	0.95539	1.98018	
	BaCO ₃	0.84555	1.92714	1.18270	0.07286	
	Ba(NO ₃) ₂	1.19180	0.04915	0.89299	1.95085	
	BaO.....	0.65705	1.81760	1.52190	0.18240	
CO ₂	BaCO ₃	4.48570	0.65183	0.22293	1.34817	
Bismuth, Bi 208.0						
Bi.....	Bi ₂ O ₃	1.11540	0.04743	0.89654	1.95257	
BiOCl.....	Bi.....	0.80166	1.90399	1.24740	0.09601	
Bromine, Br 79.92						
Ag.....	Br.....	0.74083	1.86972	1.34980	0.13028	
	HBr.....	0.75053	1.87537	1.33240	0.12463	
AgBr.....	Br.....	0.42556	1.62896	2.34980	0.37104	
	HBr.....	0.43113	1.63461	2.31950	0.36539	
Cadmium, Cd 112.4						
CdS.....	Cd.....	0.77802	1.89099	1.28530	0.10901	
	CdCl ₂	1.26870	0.10338	0.78817	1.89662	
	Cd(NO ₃) ₂	1.63640	0.21391	0.61107	1.78609	

GRAVIMETRIC FACTORS AND THEIR LOGARITHMS—Con.

A	WEIGHED OR FOUND	REQUIRED	A		B	
B	REQUIRED	WEIGHED OR FOUND	Factor	Logarithm	Factor	Logarithm
Calcium, Ca=40.09						
BaSO ₄	CaSO ₄	0.58332	1.76591	1.71440	0.23409	
	CaSO ₄ ·H ₂ O.....	0.73758	1.86787	1.35560	0.13213	
CaCO ₃	Ca.....	0.40055	1.60265	2.49660	0.39735	
	CaCl ₂	1.10900	0.04493	0.90172	1.95507	
	CaO.....	0.58040	1.74850	1.78440	0.25150	
	CaSO ₄	1.36040	0.13366	0.73509	1.86634	
	CaSO ₄ ·H ₂ O.....	1.72040	0.23562	0.58128	1.76438	
CaO.....	Ca.....	0.71474	1.85415	1.39910	0.14585	
	CaCl ₂	1.97890	0.29643	0.50532	1.70357	
	CaCO ₃	1.78440	0.25150	0.56040	1.74850	
	CaSO ₄	2.42750	0.38516	0.41195	1.61484	
	CaSO ₄ ·H ₂ O.....	3.06980	0.48712	0.32575	1.51288	
CaSO ₄	Ca.....	0.29443	1.46899	3.39640	0.53101	
	CaCl ₂	0.81521	1.91127	1.22669	0.08873	
	CaCO ₃	0.73509	1.86634	1.36040	0.13366	
	CaF ₂	0.57353	1.75855	1.74360	0.24145	
	CaO.....	0.41195	1.61484	2.42750	0.38516	
	CaCO ₃	2.27480	0.35694	0.43960	1.64306	
Carbon, C=12.00						
CO ₂	BaCO ₃	4.48570	0.65183	0.22293	1.34817	
	C.....	0.27273	1.43573	3.66676	0.56427	
	CaCO ₃	2.27480	0.35694	0.43960	0.64306	
	K ₂ CO ₃	3.14090	0.49706	0.31838	1.50294	
	KHCO ₃	2.27520	0.35702	0.43952	1.64298	
	K ₂ O.....	2.14090	0.33060	0.46709	1.66940	
	MgCO ₃	1.91640	0.28248	0.52182	1.71752	
	MgO.....	0.91637	1.96207	1.09130	0.03793	
	MnCO ₃	2.61210	0.41698	0.38284	1.58302	
Carbon, CO ₂	Na ₂ CO ₃	2.40910	0.38186	0.41509	1.61814	
	NaHCO ₃	1.90930	0.28087	0.52376	1.71913	
	Na ₂ O.....	1.40910	0.14894	0.70968	1.85106	
	(NH ₄) ₂ CO ₃	2.18360	0.33918	0.45795	1.66082	
	Pb ₃ CO ₃	6.07050	0.78322	0.16473	1.21678	
Chlorine, Cl=35.46						
Ag.....	Cl.....	0.32870	1.51680	3.04230	0.48320	
	HCl.....	0.33796	1.52886	2.95900	0.47114	
AgCl.....	Cl.....	0.24738	1.39337	4.04230	0.60663	
Na.....	Cl.....	1.54170	0.18801	0.64862	1.81199	
NaCl.....	Cl.....	0.60657	1.78288	1.64860	0.21712	
NH ₄	Cl.....	1.96560	0.29350	0.50874	1.70650	
Chromium, Cr=52.1						
BaCrO ₄	Cr.....	0.20554	1.31291	4.86510	0.68709	
	Cr ₂ O ₃	0.30022	1.47745	3.33080	0.52255	
	CrO ₃	0.39491	1.59650	2.53220	0.40350	
Cr ₂ O ₃	Cr.....	0.68463	1.83546	1.46063	0.16454	
PbCrO ₄	Cr.....	0.16121	1.20737	6.20340	0.79263	
	Cr ₂ O ₃	0.23546	1.37191	4.24711	0.62809	
Copper, Cu=63.57						
Cu.....	CuO.....	1.25170	0.09750	0.79891	1.90250	
	CuSO ₄ ·H ₂ O.....	3.92830	0.59420	0.25457	1.40580	
CuO.....	Cu.....	0.79891	1.90250	1.25170	0.09750	
	CuSO ₄ ·H ₂ O.....	3.13830	0.49670	0.31864	1.50330	

GRAVIMETRIC FACTORS AND THEIR LOGARITHMS—Con.

A	WEIGHED OR FOUND	REQUIRED	A		B	
B	REQUIRED	WEIGHED OR FOUND	Factor	Logarithm	Factor	Logarithm
Erbitum, Er=167.4						
Fluorine, F=19						
CaF ₂	F.....	0.48661	1.68718	2.05500	0.31282	
	HF.....	0.51244	1.70964	1.95150	0.29036	
	H ₂ SiF ₅	1.84810	0.26672	0.54110	1.73328	
Gold, Au=197.2						
Au.....	AuCl ₃	1.53940	0.18736	0.64595	1.81264	
Hydrogen, H=1.008						
H ₂ O.....	H.....	0.11190	1.04884	8.93630	0.95116	
Iodine, I=126.92						
AgI.....	HI.....	0.54484	1.73627	1.83540	0.26372	
	I.....	0.54055	1.73283	1.85000	0.26717	
Iron, Fe=55.85						
Fe.....	FeO.....	1.28650	0.10941	0.77730	1.89059	
	Fe ₂ O ₃	1.42980	0.15525	0.69944	1.84475	
	FeSO ₄	2.72020	0.43460	0.36762	1.56540	
	FeSO ₄ ·7H ₂ O..	4.97820	0.69707	0.20087	1.30293	
	FeSO ₄ (NH ₄) ₂ SO ₄ ·6H ₂ O..	7.02200	0.84646	0.14241	1.15354	
Fe ₂ O ₃	Fe.....	0.69944	1.84475	1.42980	0.15525	
	FeCl ₃	2.03170	0.30786	0.49222	1.69214	
	Fe(HCO ₃) ₂ ..	2.22760	0.34783	0.44892	1.65217	
	FeO.....	0.89982	1.95416	1.11130	0.04584	
	Fe ₂ O ₄	0.96657	1.98523	1.03460	0.01477	
	FeSO ₄	1.90260	0.27935	0.52559	1.72065	
	FeSO ₄ ·7H ₂ O..	3.48200	0.54182	0.28719	1.45818	
	FeSO ₄ (NH ₄) ₂ SO ₄ ·6H ₂ O..	4.91140	0.69121	0.20360	1.30879	
	Fe ₃ (SO ₄) ₂	2.50420	0.39867	0.39933	1.60133	
FeS.....	FePO ₄	1.88920	0.27627	0.52934	1.72373	
	Fe.....	0.63522	1.80293	1.57430	0.19707	
	FeO.....	0.81723	1.91234	1.22370	0.08766	
	Fe ₂ O ₃	0.90820	1.95818	1.10110	0.04182	
	FeSO ₄	1.89730	0.27815	0.52705	1.72185	
Lead. Pb=207.1						
Pb.....	PbO.....	1.07720	0.03232	0.92828	1.96768	
	PbCO ₃	1.28970	0.11049	0.77537	1.88951	
	(PbCO ₃) ₂					
	Pb(OH) ₂	1.24790	0.09618	0.80135	1.90382	
PbCl ₃	Pb.....	0.74492	1.87211	1.34240	0.12789	
	PbO.....	0.80248	1.90443	1.24610	0.09557	
PbCrO ₄	Pb.....	0.64078	1.80671	1.56060	0.19329	
	Pb(C ₂ H ₅ O ₂) ₂ 3H ₂ O.....	1.17330	0.06940	0.85231	1.93060	
	(PbCO ₃) ₂					
	Pb(OH) ₂	0.79964	1.90289	1.25050	0.09711	
	PbO.....	0.69029	1.83803	1.44860	0.18097	
	Pb ₂ O ₄	0.70679	1.84929	1.41480	0.15071	
	PbSO ₄	0.93803	1.97222	1.06610	0.02778	
PbSO ₄	BaSO ₄	0.76998	1.88648	1.29880	0.11352	

HANDBOOK OF CHEMISTRY AND PHYSICS

GRAVIMETRIC FACTORS AND THEIR LOGARITHMS—Con.

A	WEIGHED OR FOUND	REQUIRED	A		B	
B	REQUIRED	WEIGHED OR FOUND	Factor	Logarithm	Factor	Logarithm
Lead, Pb=207.1 PbSO ₄	Pb.....	0.68311	1.83449	1.46390	0.16551	
	Pb(C ₂ H ₅ O ₂) ₂ 3H ₂ O.....	1.25070	0.09718	0.79947	1.90282	
	PbCO ₃	0.88101	1.94498	1.13510	0.05502	
	(PbCO ₃) ₂ Pb(OH) ₂	0.85245	1.93067	1.17310	0.06933	
	Pb ₃ O ₄	0.75348	1.87707	1.32720	0.12293	
	Pb.....	0.86591	1.93747	1.15490	0.06253	
	PbSO ₄	1.26760	0.10298	0.78890	1.89702	
Magnesium, Mg=24.32 BaSO ₄	MgSO ₄	0.51576	1.71245	1.93890	0.28755	
	MgSO ₄ ·7H ₂ O.....	1.05600	0.02368	0.94693	1.97632	
	Co ₂	1.91640	0.28248	0.52182	1.71752	
	MgO.....	0.91637	1.96207	1.09130	0.03793	
	MgCO ₃	3.46720	0.53997	0.28842	1.46003	
	Mg.....	0.60317	1.78044	1.65790	0.21956	
	MgCO ₃	2.09120	0.32041	0.47818	1.67959	
	MgSO ₄	2.98590	0.47507	0.33491	1.52493	
	Mg ₂ P ₂ O ₇	0.21846	1.33938	4.57740	0.66062	
	MgCO ₃	0.75745	1.87935	1.32030	0.12065	
Manganese, Mn=54.93 Mn.....	MgO.....	0.36219	1.55894	2.76100	0.44106	
	MnO.....	1.29130	0.11102	0.77442	1.88898	
	Mn ₂ O ₃	1.43690	0.15744	0.69593	1.84256	
	Mn.....	0.72026	1.85749	1.38840	0.14251	
	Mn ₂ O ₃	1.03490	0.01492	0.96623	1.98508	
	MnO ₂	1.13980	0.05685	0.87730	1.94315	
	Mn.....	0.38703	1.58774	2.5839	0.41228	
	MnO ₂	0.61249	1.78710	1.6327	0.21290	
Mercury, Hg=200 Hg.....	HgCl ₂	1.35460	0.13181	0.72822	1.86819	
	HgO.....	1.07990	0.03342	0.92593	1.96658	
	HgS.....	1.16030	0.06459	0.96181	1.93541	
	HgCl ₂	1.16740	0.06722	0.85661	1.93278	
Nickel, Ni=58.68 Ni.....	NiO.....	1.27260	0.10471	0.78576	1.89529	
	N ₂ O ₅	0.53417	1.72768	1.87210	0.27232	
	HNO ₃	4.49820	0.65304	0.22231	1.34696	
	NO ₂	3.28410	0.51641	0.30450	1.48359	
	N ₂ O ₃	2.71310	0.43346	0.36858	1.56654	
	NO ₃	4.42610	0.64602	0.22593	1.35398	
	N ₂ O ₅	3.85510	0.58603	0.25940	1.41397	
Phosphorus, P=31.0 (NH ₄) ₂ PO ₄ (MoO ₃) ₁₂	P.....	0.27847	1.44478	3.59110	0.55522	
	P ₂ O ₅	0.63780	1.80468	1.56790	0.19532	
	P.....	0.01651	2.21787	60.5520	1.78213	
	P ₂ O ₅	0.03782	2.57777	26.4380	1.42223	
	P.....	0.43662	1.64010	2.29030	0.35990	

GRAVIMETRIC FACTORS AND THEIR LOGARITHMS—Con.

A WEIGHED OR FOUND		REQUIRED	A		B	
B REQUIRED	WEIGHED OR FOUND		Factor	Logarithm	Factor	Logarithm
Platinum, Pt=195.0	Pt.....		0.40127	1.60343	2.49210	0.39657
Potassium, K=39.10	KI.....	0.70707	1.84946	1.41430	0.15054	
AgI.....	KCl.....	2.10260	0.32277	0.47558	1.67723	
I.....	KI.....	1.30810	0.11663	0.76448	1.88337	
	K ₂ CO ₃	0.92677	1.96697	1.07900	0.03303	
	K ₂ Cr ₂ O ₇	1.97420	0.29540	0.50652	1.70460	
	KNO ₃	1.35600	0.13228	0.73742	1.86772	
	K ₂ O.....	0.63169	1.80051	1.58300	0.19949	
	K ₂ SO ₄	1.16860	0.06768	0.85570	1.93232	
KOH.....	K ₂ CO ₃	1.23150	0.09044	0.81201	1.90956	
	K ₂ O.....	0.83942	1.92398	1.19130	0.07602	
K ₂ O.....	K.....	0.83015	1.91916	1.20460	0.08084	
	K ₂ CO ₃	1.46710	0.16646	0.68161	1.83354	
	K ₂ Cr ₂ O ₇	3.12520	0.49489	0.31997	1.50511	
	K ₂ SO ₄	1.85000	0.26717	0.54055	1.73283	
K ₂ PtCl ₆	K.....	0.16092	1.20661	6.21430	0.79339	
	K ₂ CO ₃	0.28439	1.45391	3.51630	0.54609	
	KCl.....	0.30686	1.48694	3.25890	0.51308	
	K ₂ O.....	0.19384	1.28745	5.15880	0.71255	
	K ₂ SO ₄ Al ₂ (SO ₄) ₃ 24H ₂ O.....	1.95300	0.29070	0.51204	1.70930	
Silicon, Si=28.3	H ₂ SiO ₃	1.29880	0.11355	0.76993	1.88645	
	SiO ₂	0.46933	1.67147	2.13070	0.32853	
	SiF ₄	1.72960	0.23796	0.57815	1.76204	
Silver, Ag=107.88						
Ag.....	AgNO ₃	1.57480	0.19723	0.63499	1.80277	
AgBr.....	Ag.....	0.57443	1.75924	1.74080	0.24076	
AgCl.....	Ag.....	0.75261	1.87657	1.32870	0.12343	
Sodium, Na=23.00						
Cl.....	Na.....	0.64862	1.81199	1.54170	0.18801	
	NaCl.....	1.64860	0.21712	0.60657	1.78288	
	Na ₂ O.....	0.87422	1.94162	1.14390	0.05838	
CO ₂	Na ₂ CO ₃	2.40910	0.38186	0.41509	1.61814	
H ₂ BO ₃	Na ₂ B ₄ O ₇	0.81420	1.91073	1.22820	0.08927	
	Na ₂ B ₄ O ₇ 10H ₂ O.....	1.54040	0.18763	0.64918	1.81237	
NaCl.....	Na.....	0.39343	1.59487	2.54180	0.40513	
	Na ₂ CO ₃	0.90661	1.95742	1.10300	0.04258	
	NaHCO ₃	1.43700	0.15746	0.69589	1.84254	
	Na ₂ O.....	0.53028	1.72451	1.88580	0.27549	
Na ₂ CO ₃	Na.....	0.43396	1.63745	2.30440	0.36255	
	NaHCO ₃	1.58500	0.2004	0.63090	1.79996	
	NaOH.....	0.75486	1.87787	1.32470	0.12213	
NaHCO ₃	Na.....	0.27379	1.43741	3.65250	0.56259	
	Na ₂ O.....	0.36901	1.56704	2.71000	0.43296	
Na ₂ SO ₄	Na.....	0.32378	1.51026	3.08850	0.48974	
	Na ₂ CO ₃	0.74613	1.87281	1.34030	0.12719	
	Na ₂ CO ₃ 10H ₂ O.....	2.01420	0.30411	0.40646	1.69589	
	Na ₂ O.....	0.43640	1.63989	2.29150	0.36011	

HANDBOOK OF CHEMISTRY AND PHYSICS

GRAVIMETRIC FACTORS AND THEIR LOGARITHMS—Con.

A	WEIGHED OR FOUND	REQUIRED	A		B	
B	REQUIRED	WEIGHED OR FOUND	Factor	Logarithm	Factor	Logarithm
Sodium, Na=23.00	SO ₃	Na ₂ O.....	0.77432	1.88892	1.29140	0.11108
		Na ₂ SO ₄	1.77430	0.24903	0.56360	1.75097
Sulphur, S=32.07	BaSO ₄	H ₂ S.....	0.14604	1.16446	6.84760	0.83554
		H ₂ SO ₃	0.35166	1.54612	2.84370	0.45388
Tin, Sn=119.0	Sn.....	H ₂ SO ₄	0.42020	1.62345	2.37990	0.37655
		S.....	0.13738	1.13793	7.27900	0.86207
Tungsten, W=184	W ₆	SO ₃	0.27446	1.43848	3.64350	0.56152
		SO ₃	0.34300	1.53530	2.91540	0.46470
Zinc, Zn=65.37	Zn.....	SO ₄	0.41155	1.61442	2.42980	0.38558
		SnCl.....	1.59600	0.20303	0.62657	1.79697
ZnO.....	ZnCO ₃	SnCl ₂ H ₂ O.....	1.89880	0.27847	0.52666	1.72153
		SnCl ₄	2.19200	0.34083	0.45621	1.65917
ZnCl.....	(NH ₄ Cl) ₂	SnO.....	1.13440	0.05478	0.88149	1.94522
		SnO ₂	1.26891	0.10343	0.78808	1.89657
Zn ₂ P ₂ O ₇	ZnS.....	Sn.....	0.78808	1.89657	1.26891	0.10343
		SnCl ₂	1.25780	0.09960	0.79506	1.90040
Zn ₂ P ₂ O ₇	ZnO.....	SnCl ₂ H ₂ O.....	1.49630	0.17504	0.66828	1.82496
		SnCl ₄	1.72740	0.23740	0.57890	1.76260
ZnCl.....	(NH ₄ Cl) ₂	ZnO.....	2.43600	0.38668	0.41051	1.61332
		ZnO.....	0.89402	1.95135	1.11854	0.04865
Zn ₂ P ₂ O ₇	ZnS.....	Tl.....	0.60051	1.77852	1.66520	0.22148
		W.....	0.79310	1.89933	1.26090	0.10067

SPECIFIC GRAVITY OF GASES

NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY, AIR = 1		WEIGHT IN GRAMS OF 1 LITER AT 0° 760 MM. AT SEA LEVEL, LAT. 45°
			Calculated	Observed	
Acetylene.....	C ₂ H ₂	26.016	0.8988	0.92	1.1620
Air.....			1.0000		1.2926
Ammonia.....	NH ₃	17.034	0.5895	0.5963	0.7708
Argon.....	A	39.9	1.379	1.3778	1.7828
Arsine.....	AsH ₃	78.024	2.696	2.695	3.485
Bromine.....	Br ₂	159.84	5.5249	5.524 (227.9°)	7.1426
Butane.....	C ₄ H ₁₀	58.08	2.0065	2.01	2.594
Carbon dioxide.....	CO ₂	44.00	1.5201	1.52932	1.9768
Carbon Monoxide.....	CO	28.00	0.9673	0.96735	1.2504
Carbon oxysulphide.....	COS	60.07	2.0749	2.1046	2.6825
Chlorine.....	Cl ₂	70.92	2.489	2.491	3.1666
Cyanogen.....	C ₂ N ₂	52.08	1.7993	1.8064	2.3261
Ethane.....	C ₂ H ₆	30.048	1.0381	1.075	1.3421
Ethylene.....	C ₂ H ₄	28.032	0.9784	0.9852	1.2520
Fluorine.....	F ₂	38.0	1.313	1.26	1.697
Helium.....	He	4.0	0.1382	0.1368	0.1787
Hydrobromic acid.....	HBr	80.928	2.7973	2.71	3.6163
Hydrochloric acid.....	HCl	36.468	1.2595	1.2686	1.6398
Hydrofluoric acid.....	HF	20.008	0.691	0.7126	0.894
Hydroiodic acid.....	HI	127.93	4.4172	4.3757	5.7106
Hydrogen.....	H ₂	2.016	0.06965	0.06953	0.089873
Hydrogen selenide.....	H ₂ Se	81.216	2.806	2.795	3.627
Hydrogen sulphide.....	H ₂ S	34.086	1.1773	1.1895	1.5230
Hydrogen telluride.....	H ₂ Te	129.52	4.478	4.489	5.789
Krypton.....	Kr	81.8	2.826	2.818	3.654
Methane.....	CH ₄	16.032	0.5539	0.5576	0.7160
Neon.....	Ne	20.00	0.691	0.674	0.893
Nitric oxide.....	NO	30.01	1.0378	1.0368	1.3402
Nitrous oxide.....	N ₂ O	44.02	1.5229	1.5300	1.9777
Nitrogen.....	N ₂	28.02	0.9701	0.96758	1.2507
atmospheric.....	N ₂ +A etc.			0.97209	1.25718
Nitrogen dioxide.....	NO ₂	46.01	1.5906	1.60 (135°)	2.0563
Nitrogen dioxide.....	N ₂ O ₄	92.02	3.1812	2.65 (26.7°)	4.1126
Nitrosyl chloride.....	NOCl	65.47	2.2625	2.31	2.925
Oxygen.....	O ₂	32.00	1.1055	1.1055	1.4290
Phosphine.....	PH ₃	34.024	1.175	1.214	1.520
Propylene.....	C ₃ H ₆	42.048	1.4527	1.498	1.8780
Silicon fluoride.....	SiF ₄	104.4	3.607	3.60	4.663
Sulphur dioxide.....	SO ₂	64.06	2.2131	2.2641	2.9266
Xenon.....	X	128.00	4.422	4.422	5.717

HEATS OF FORMATION AND HEATS OF SOLUTION

The unit is the large calorie = 1000 common calories. The negative sign signifies that heat is absorbed during the formation of the compound.

COMPOUND	CHEMICAL SYMBOL	HEAT OF FORMATION	HEAT OF SOLUTION
Ozone.....	O ₃	-34.1 ²	
Water, vapor.....	H ₂ O	{ 58.7	
Water, liquid.....		{ 68.4	
Hydrogen dioxide.....	H ₂ O ₂	45.2	
Hydrochloric acid.....	HCl	22.0	20.3
Hydrobromic acid..... (gaseous bromine)	HBr	12.1	19.9
Hydriodic acid..... (solid iodine)	HI	-6.1	19.2
Hydrogen sulphide.....	H ₂ S	2.7	4.6
Sulphuric acid.....	H ₂ SO ₄	193.1	17.8
Ammonia.....	NH ₃	12.0	8.4
Nitric acid.....	HNO ₃	41.9	7.2
Nitrous oxide.....	N ₂ O	-18.0	
Nitric oxide.....	NO	-21.6	
Nitrogen peroxide.....	{ N ₂ O ₄	- 2.6	
	NO ₂	- 7.7	
Nitrogen pentoxide.....	N ₂ O ₅	13.1	
Phosphoric acid.....	H ₃ PO ₄	302.9	2.7
Carbon dioxide..... (from amorphous carbon)	CO ₂	97.6	6.0
Carbon monoxide.....	CO	29.0	
Methane.....	CH ₄	22.4	
Carbon tetrachloride.....	CCl ₄	21.6	
Carbon bisulphide.....	CS ₂	-19.0	
Hydrocyanic acid.....	HCN	-27.6	
Potassium hydroxide.....	KOH	103.2	13.3
Potassium chloride.....	KCl	104.3	- 3.1
Potassium chlorate.....	KClO ₃	95.9	
Potassium perchlorate.....	KClO ₄	113.1	-12.1
Potassium bromide.....	KBr	95.1	- 5.1
Potassium iodide.....	KI	80.1	- 5.1
Potassium sulphate.....	K ₂ SO ₄	344.6	- 6.4
Potassium nitrate.....	KNO ₃	119.5	- 8.5
Potassium sulphide.....	K ₂ S	101.2	10.0
Potassium carbonate.....	K ₂ CO ₃	281.1	- 6.5
Potassium permanganate.....	KMnO ₄	195.0	-10.4
Sodium hydroxide.....	NaOH	101.9	10.9
Sodium chloride.....	NaCl	97.6	1.2
Sodium bromide.....	NaBr	85.8	- 0.2
Sodium sulphide.....	Na ₂ S	87.0	15.0
Sodium hyposulphite.....	Na ₂ S ₂ O ₃ 5aq	265.2	-11.4
Sodium sulphite.....	Na ₂ SO ₃	268.5	-11.1

HEATS OF FORMATION AND HEATS OF SOLUTION— Continued

COMPOUND	CHEMICAL SYMBOL	HEAT OF FORMATION	HEAT OF SOLUTION
Sodium sulphate.....	Na ₂ SO ₄	328.8	0.2
Sodium nitrate.....	NaNO ₃	111.3	-5.0
Sodium carbonate.....	Na ₂ CO ₃	272.6	5.60
Ammonium chloride.....	NH ₄ Cl	75.8	-4.0
Ammonium sulphate.....	(NH ₄) ₂ SO ₄	282.2	-2.6
Ammonium nitrate.....	NH ₄ NO ₃	88.0	-6.2
Calcium hydroxide.....	Ca(OH) ₂	215.0	3.0
Calcium oxide.....	CaO	131.0	(Heat of hydration =15.5)
Calcium chloride.....	CaCl ₂	170.0	17.4
Calcium carbonate.....	CaCO ₃	270.0	
Magnesium hydroxide.....	Mg(OH) ₂	217.3	
Magnesium sulphate.....	MgSO ₄	502.0	20.3
Aluminum hydroxide.....	Al(OH) ₃	297.0	
Manganese hydroxide.....	Mn(OH) ₂	163.0	
Ferrous hydroxide.....	Fe(OH) ₂	136.7	
Ferrous chloride.....	FeCl ₂	82.0	17.9
Ferrous sulphate.....	FeSO ₄ ·aq	235.6	
Ferric hydroxide.....	Fe(OH) ₃	198.0	
Ferric chloride.....	FeCl ₃	96.1	63.3
Cobalt hydroxide.....	Co(OH) ₂	131.8	
Cobalt chloride.....	CoCl ₂	76.5	18.3
Nickel hydroxide.....	Ni(OH) ₂	129.2	
Nickel chloride.....	NiCl ₂	74.5	19.2
Zinc oxide.....	ZnO	85.8	
Zinc chloride.....	ZnCl ₂	97.0	15.6
Zinc sulphide.....	ZnS·aq	39.6	
Zinc sulphate.....	ZnSO ₄	230.0	18.5
Cadmium hydroxide.....	Cd(OH) ₂	134.1	
Cadmium chloride.....	CdCl ₂	93.2	3.0
Cupric oxide.....	CuO	37.2	
Cupric chloride.....	CuCl ₂	51.6	11.1
Cupric sulphate.....	CuSO ₄	182.6	15.8
Cupric nitrate.....	Cu(NO ₃) ₂ ·aq	82.3	
Cuprous oxide.....	Cu ₂ O	40.8	
Cuprous chloride.....	Cu ₂ Cl ₂	65.7	
Mercurous oxide.....	Hg ₂ O	22.2	
Mercurous chloride.....	Hg ₂ Cl ₂	62.6	
Mercuric oxide.....	HgO	20.7	
Mercuric chloride.....	HgCl ₂	53.2	-3.3
Potassium amalgam.....	KHg ₁₂	34.0	
Sodium amalgam.....	NaHg ₆	21.1	
Silver oxide.....	Ag ₂ O	5.9	

BASICITY OF ACIDS WITH VARIOUS INDICATORS ACCORDING TO R. T. THOMPSON

The numbers indicate in each case the number of molecules of a univalent base, such as caustic soda, which will have combined with one molecule of the acid when the solution reacts neutral to the indicator given. Thompson divided indicators into three classes. Methyl orange is typical of the first class which also includes lacmoid, dimethyl amidobenzene, cochineal, iodoeosine and congo red. Phenolphthalein is typical of the second class which includes turmeric, curcuma and flavescin. Litmus is typical of the third class, which includes rosolic acid, phenacetolin, fluorescein, gallein, and hematoxylin.

ACIDS		METHYL ORANGE	PHENOL- PHTHALEIN		LITMUS	
Name	Formula	Cold	Cold	Boiling	Cold	Boiling
Sulphuric	H ₂ SO ₄	2	2	2	2	2
Hydrochloric....	HCl	1	1	1	1	1
Nitric.....	HNO ₃	1	1	1	1	1
Thiosulphuric ..	H ₂ S ₂ O ₃	2	2	2	2	2
Carbonic.....	H ₂ CO ₃	0	1	0		0
Sulphurous.....	H ₂ SO ₃	1	2			
Hydrosulphuric .	H ₂ S	0	1	0		0
Phosphoric.....	H ₃ PO ₄	1	2			
Arsenic.....	H ₃ AsO ₄	1	2			
Arsenous.....	H ₃ AsO ₃	0			0	0
Nitrous.....	HNO ₂		1		1	
Silicic.....	H ₄ SiO ₄	0			0	0
Boric.....	H ₃ BO ₃	0				
Chromic.....	H ₂ CrO ₄	1	2	2		
Oxalic.....	H ₂ C ₂ O ₄		2	2	2	2
Acetic.....	HC ₂ H ₃ O ₂		1		1 nearly	
Butyric.....	HC ₄ H ₇ O ₂		1		1 nearly	
Succinic.....	H ₂ C ₄ H ₄ O ₄		2		2 nearly	
Láctic.....	HC ₃ H ₅ O ₃		1		1	
Tartaric	H ₂ C ₄ H ₄ O ₆		2		2	
Citric.....	H ₃ C ₆ H ₅ O ₆		3			

A FOUR PLACE LOGARITHM TABLE

Logarithms of numbers from 1 to 1000

NO.	0	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428
35	5441	5453	5465	5478	5490	5502	5515	5527	5539	5551
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981

A FOUR PLACE LOGARITHM TABLE.—Continued

NO.	0	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538

A FOUR PLACE LOGARITHM.—Continued

NO.	0	1	2	3	4	5	6	7	8	9
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996

PREPARATION AND PROPER CONCENTRATION OF
LABORATORY REAGENTS FOR GENERAL USE

Dilute Acids of 5N Strength.—Sulphuric acid, 5N. One volume strong acid to 6 volumes water.

Nitric acid, 5N. One volume strong acid to 2 volumes water.

Hydrochloric acid, 5N. Five volumes strong acid to 8 volumes water.

Acetic acid, 5N. One volume strong acid to $2\frac{1}{2}$ volumes water.

Dilute Bases of 5N Strength.—Potassium hydroxide, 5N. 280 grams per liter of solution with water.

Sodium hydroxide, 5N. 200 grams per liter of solution with water.

Ammonium hydroxide, 5N. One volume strong ammonia (sp. gr. 90) to 2 vol. water.

Other Reagents of 5N Strength.—Ammonium sulphide, 5N. 600 cc. 5N ammonium hydroxide is saturated with hydrogen sulphide. Dilute to one liter with 5N ammonium hydroxide.

Sodium sulphide, 5N. Dissolve 200 grams sodium hydroxide in 800 cc. water. Saturate 400 cc. of this solution with hydrogen sulphide. Add the remaining 400 cc. of sodium hydroxide and dilute the whole to one liter.

Ammonium chloride, 5N. 267.5 grams per liter of solution with water.

Ammonium carbonate, 5N. 200 grams solid salt dissolved in 350 cc. 5N ammonium hydroxide and dilute with water to 1 liter.

Ammonium acetate 5N. Dilute 300 cc. strong acetic acid with 300 cc. water and neutralize with strong ammonia. Dilute to 1 liter.

Reagents of N Strength.—Sodium acetate, 136.14 grams per liter with water.

Sodium phosphate, 119.45 grams per liter with water.

Calcium chloride, 109.51 grams per liter with water.

Magnesium sulphate, 123.28 grams per liter with water.

Barium chloride, 122.17 grams per liter with water.

Ferric chloride, 54.11 grams per liter with water and add sufficient HCl to keep in solution.

Potassium ferrocyanide, 105.72 grams per liter with water.

Lead acetate, 189.51 grams per liter with water.

Stannous chloride, 112.72 grams of the solid salt plus 200 cc. 5N HCl diluted to one liter with water. Add metallic tin to the solution in the bottle to keep it from oxidizing.

Mercurous nitrate, 262.34 grams per liter with water. Add sufficient nitric acid to keep solution clear and put metallic mercury in the bottle to prevent oxidization.

Cobalt nitrate, 145 grams per liter with water.

Reagents of N/2 Strength.—Ammonium oxalate, 35.5 grams per liter with water.

Mercuric chloride, 67.8 grams per liter with water.

Zinc sulphate, 71.9 grams per liter with water.

Manganese sulphate, 55.78 grams per liter with water.

Nickel sulphate, 70.22 grams per liter with water.

Cadmium sulphate, 64.05 grams per liter with water.

Copper sulphate, 62.4 grams per liter with water.

Miscellaneous Reagents.—Aqua regia, mix 1 part HNO₃ with three parts of concentrated HCl.

Silver nitrate N/10, 17 grams per liter with water.

Magnesia mixture N, dissolve 68 grams crystallized MgCl₂ and 165 grams NH₄Cl in 300 cc. water. Add 300 cc. 5N ammonium hydroxide and dilute to one liter.

Molybdate solution, dissolve 60 grams molybdic oxide (MoO₃) in 440 cc. of water and 60 cc. strong ammonia (sp. gr. 90). Pour into 500 cc. of cold nitric acid which has been diluted 250 cc. concentrated acid to 250 cc. water. Let stand in a warm place several days. Decant or filter before using.

Phenolsulphonic acid, dissolve 150 grams of phenol in 600 grams of concentrated sulphuric acid.

Yellow ammonium sulphide, 50 to 75 grams of sulphur to a liter of colorless ammonium sulphide.

Ferrous sulphate, dissolve 200 grams FeSO₄.7H₂O in a liter of water. Place scraps of iron in the solution and add a few drops of H₂SO₄ from time to time.

MOLECULAR AND ATOMIC WEIGHTS AND THEIR LOGARITHMS

FORMULA	FORMULA WEIGHT		FORMULA	FORMULA WEIGHT	
	Number	Loga- rithm		Number	Loga- rithm
Ag.....	107.88	2.03394	CaCO ₃	100.09	2.00039
AgBr.....	187.80	2.27370	CaF ₂	78.09	1.89260
AgCl.....	143.34	2.15637	Ca(NO ₃) ₂	164.11	2.21514
AgI.....	234.80	2.37070	CaO.....	56.09	1.74889
AgNO.....	169.89	2.23017	CaOCl ₂	127.00	2.10380
Ag ₂ O.....	231.76	2.36504	Ca(OH) ₂	74.116	1.86992
Ag ₂ PO ₄	418.64	2.62184	Ca ₃ (PO ₄) ₂	310.27	2.49174
Al.....	27.10	1.43297	CaS.....	72.16	1.85830
AlCl.....	133.48	2.12542	CaSO ₄	136.16	2.13405
AlK(SO ₄) ₂ 12H ₂ O.....	474.53	2.67627	CaSO ₄ ·2H ₂ O.....	172.19	2.23601
AlNH ₄ (SO ₄) ₂	453.47	2.65655	CaSiO ₃	116.39	2.06592
Al ₂ O ₃	102.20	2.00945	Cd.....	112.40	2.05077
AlPO ₄	122.10	2.08672	CdCl ₂	183.32	2.26316
Al ₂ (SO ₄) ₃	342.41	2.53454	CdCl ₂ ·2H ₂ O.....	219.33	2.34110
Al ₂ (SO ₄) ₃ 18H ₂ O.....	666.70	2.82393	CdCO ₃	172.40	2.23654
As.....	75.00	1.87506	Cd(NO ₃) ₂	236.42	2.37369
AsCl ₃	181.38	2.25859	Cd(NO ₃) ₂ ·4H ₂ O.....	308.48	2.48922
As ₂ O ₃	198.00	2.29667	CdO.....	128.40	2.10857
As ₂ O ₅	230.00	2.36173	CdS.....	144.46	2.15978
As ₂ S ₃	246.21	2.39131	CdSO ₄	208.47	2.31905
As ₂ S ₅	310.35	2.49185	Ce.....	140.25	2.14691
Au.....	197.20	2.29491	Co.....	58.97	1.77063
AuCl ₃	303.58	2.48227	CoCl ₂ ·6H ₂ O.....	238.00	2.37658
AuCl ₂ H ₂ O.....	339.61	2.53098	Co(NO ₃) ₂ ·6H ₂ O.....	291.09	2.46402
B.....	11.00	1.04139	Co(NO ₃) ₂ ·(KNO ₃) ₂	452.33	2.65536
B ₂ O ₃	70.00	1.84510	CoO.....	74.97	1.87489
Ba.....	137.37	2.13789	Co ₃ O ₄	240.91	2.38186
BaCl ₂	208.29	2.31867	CoSO ₄	155.04	1.90440
BaCl ₂ H ₂ O.....	244.32	2.38796	CoSO ₄ ·7H ₂ O.....	281.15	2.44894
BaCO ₃	197.37	2.29528	Cr.....	52.10	1.71584
BaCrO ₄	253.47	2.40393	Cr ₂ O ₃	152.20	2.18241
Ba(NO ₃) ₂	261.39	2.41729	CrO ₃	100.10	2.00043
BaO.....	153.37	2.18574	CrO ₄	116.10	2.06483
Ba(OH) ₂	171.386	2.23398	Cr ₂ O ₇	216.20	2.33486
BaS.....	169.44	2.22901	FeSO ₄ ·7H ₂ O.....	278.03	2.44409
BaSO ₄	233.44	2.36814	FeSO ₄ ·(NH ₄) ₂ SO ₄ 6H ₂ O.....	392.17	2.59348
Bi.....	208.00	2.31806	Fe ₂ (SO ₄) ₃	399.91	2.60196
Bi(NO ₃) ₃ 5H ₂ O.....	484.11	2.68495	H.....	1.008	0.00346
Bi ₂ O ₃	464.00	2.66652	H ₂	2.016	0.30449
BiOCl.....	259.46	2.41407	H ₃ AsO ₃	126.024	2.10046
BiONO ₃	286.01	2.45639	H ₃ AsO ₄	142.02	2.15235
Bi ₂ S ₃	512.21	2.70945	H ₃ BO ₃	62.024	1.79256
Br.....	79.92	1.90266	HBr.....	80.93	1.90811
C.....	12.00	1.07918	H ₂ C ₂ O ₄	90.016	1.95432
CH ₃	16.032	1.20498	H ₂ C ₂ O ₄ ·2H ₂ O.....	126.05	2.10054
C ₂ H ₂	26.016	1.41524	H ₂ C ₃ H ₈ O ₂	60.032	1.77838
C ₂ H ₄	28.032	1.44765	H ₂ C ₄ H ₈ O ₂	90.05	1.95447
C ₂ H ₆	30.048	1.477781	H ₂ C ₄ H ₈ O ₆	150.05	2.17623
C ₆ H ₆	78.05	1.89237	H ₃ C ₆ H ₈ O ₇	192.06	2.28345
Cn.....	26.01	1.41514	HCl.....	36.47	1.56194
CNS.....	58.08	1.76403	HClO ₃	84.47	1.92670
CO.....	28.00	1.44718	HCN.....	27.02	1.43169
CO ₂	44.00	1.64345	HCO ₃	45.008	1.65329
CS ₂	76.14	1.88161	HF.....	20.008	1.30121
Ca.....	40.09	1.60304	HI.....	127.93	
CaC ₂	64.09	1.80679	K.....	39.10	1.59218
CaCl ₂	111.01	2.04532	K ₂	78.20	1.89321
CaCl ₂ ·6H ₂ O.....	219.11	2.34068			

MOLECULAR AND ATOMIC WEIGHTS AND THEIR LOGARITHMS—Con.

FORMULA	FORMULA WEIGHT		FORMULA	FORMULA WEIGHT	
	Number	Logarithm		Number	Logarithm
KAl(SO ₄) ₂ 12H ₂ O	474.53	2.67627	MnSO ₄ 4H ₂ O	223.06	2.34842
KBr	119.02	2.07562	MnSO ₄ 7H ₂ O	277.11	2.44266
K ₂ C ₄ H ₄ O ₆	226.23	2.35455	Mo	96.00	1.98227
KCl	74.56	1.87251	MoO ₃	144.00	2.15836
KClO ₃	122.56	2.08835	MoS ₃	192.21	2.28377
KClO ₄	138.56	2.14164	N	14.01	1.14644
KCN	65.11	1.81365	N ₂	28.02	1.44747
KCNS	97.18	1.98758	NH ₃	17.03	1.23121
K ₂ CO ₃	138.20	2.14051	NH ₄ Al(SO ₄) ₂ 12H ₂ O	453.47	2.65655
K ₂ CrO ₄	194.30	2.28847	NH ₄ Br	97.96	1.99109
K ₂ Cr ₂ O ₇	294.40	2.46894	NH ₄ Cl	53.50	1.72835
KCr(SO ₄) ₂ 12H ₂ O	499.53	2.69857	(NH ₄) ₂ C ₂ O ₄ 2H ₂ O	160.11	2.20442
K ₃ Fe(CN) ₆	329.21	2.51747	NH ₄ Fe(SO ₄) ₂ 12H ₂ O	482.22	2.68325
K ₄ Fe(CN) ₆ 3H ₂ O	368.34	2.56625	(NH ₄) ₂ Fe(SO ₄) ₂ 6H ₂ O	392.17	2.50348
K ₄ Fe(CN) ₆ 3H ₂ O	422.36		(NH ₄) ₂ MoO ₄	196.08	2.29244
KHC ₄ H ₄ O ₆	188.14	2.27448	NH ₄ NO ₃	80.05	1.90336
KHCO ₃	100.11	2.00047	NH ₄ NaHPO ₄ 4H ₂ O	209.11	2.32037
KHSO ₄	136.18	2.13411	NH ₄ OH	35.05	1.54469
KI	166.02	2.22016	(NH ₄) ₃ PO ₄ 12MoO ₃	1877.13	3.27349
KIO ₃	214.02	2.33045	(NH ₄) ₂ PtCl ₆	443.84	2.64723
KMnO ₄	158.03	2.19874	(NH ₄) ₂ SO ₄	132.15	2.12106
K ₂ MnO ₄	197.13	2.29476	NH ₄ CNS	76.12	1.88150
KNO ₂	85.13	1.93008	N ₂ O	44.02	1.64365
KNO ₃	101.11	2.00479	N ₂ O ₃	76.02	1.88093
KNaC ₄ H ₄ O ₆	210.15	2.33253	NO ₃	62.01	1.79246
K ₂ O	94.20	1.97405	N ₂ O ₅	108.02	2.03350
KOH	56.11	1.74904	Na	23.00	1.36173
K ₂ PtCl ₆	485.96	2.68660	Na ₂ B ₄ O ₇	202.00	2.30535
K ₂ S	110.27	2.04256	Na ₂ B ₄ O ₇ 10H ₂ O	382.16	2.58225
K ₂ SO ₄	174.27	2.24122	Na ₂ Br	102.92	2.01250
KSbOC ₄ H ₄ O ₆ ·H ₂ O	332.34	2.52158	Na ₂ C ₂ H ₃ O ₂	82.02	1.91392
L ₁	7.00	0.84510	Na ₂ C ₂ H ₃ O ₂ 3H ₂ O	136.07	2.13370
LiCl	42.46	1.62798	Na ₂ Cl	55.46	1.76686
Li ₂ CO ₃	74.00	1.86923	Na ₂ CN	40.01	1.69028
Li ₂ O	30.00	1.47712	Na ₂ CO ₃	106.00	2.02531
Mg	24.36	1.38596	Na ₂ CO ₃ 10H ₂ O	286.16	2.45661
Mg ₂ As ₂ O ₇	210.64	2.49226	Na ₂ HCO ₃	84.01	1.92432
MgBr ₂	184.16	2.26519	Na ₂ HPO ₄	142.01	2.15231
MgBr ₂ 6H ₂ O	292.26	2.46577	NaI	149.92	2.17586
MgCl ₂	95.24	1.97882	NaNH ₄ HPO ₄ 4H ₂ O	209.11	2.32037
MgCl ₂ 6H ₂ O	203.34	2.30823	NaNO ₂	69.01	1.83891
MgCl ₂ KCl6H ₂ O	277.90	2.44389	NaNO ₃	85.01	1.92947
MgCO ₃	84.320	1.92593	Na ₂ O	62.00	1.79239
MgNH ₄ PO ₄ 6H ₂ O	245.46	2.38998	Na ₂ O ₂	78.00	1.89209
MgO	40.32	1.60552	NaOH	40.01	1.60215
Mg ₂ P ₂ O ₇	222.64	2.34761	Na ₃ PO ₄	164.00	2.21484
MgSO ₄	120.39	2.08059	Na ₂ S	78.07	1.89248
MgSO ₄ 7H ₂ O	246.50	2.39182	Na ₂ SO ₃	126.07	2.10064
Mn	54.93		Na ₂ SO ₃ 7H ₂ O	252.18	2.40171
MnCO ₃	114.93	2.06043	Na ₂ S ₂ O ₃ 5H ₂ O	248.22	2.39483
MnCl ₄ 2H ₂ O	197.91	2.29647	Na ₂ SO ₄	142.07	2.15250
MnO	70.93	1.85083	Na ₂ SO ₄ 10H ₂ O	322.23	2.50817
MnO ₂	86.93	1.93917	Ni	58.68	1.76849
Mn ₂ O ₃	157.86	2.19828	NiCl ₂ 6H ₂ O	237.68	2.37603
Mn ₃ O ₄	228.79	2.35944	Ni(NC ₆) ₂ 6H ₂ O	290.89	2.46359
Mn ₂ P ₂ O ₇	283.86	2.45310			
MnS	87.00	1.93952			
MnSO	151.00	2.17898			

HANDBOOK OF CHEMISTRY AND PHYSICS

 MOLECULAR AND ATOMIC WEIGHTS AND THEIR
LOGARITHMS—Con.

FORMULA	FORMULA WEIGHT		FORMULA	FORMULA WEIGHT	
	Number	Loga- rithm		Number	Loga- rithm
NiO.....	74.68	1.87320	SbCl ₃	297.50	2.47349
NiSO ₄	154.75	2.18963	Sb ₂ O ₃	288.40	2.46000
NiSO ₄ ·6H ₂ O.....	262.85	2.41971	Sb ₂ O ₅	320.40	2.50569
NiSO ₄ ·7H ₂ O.....	280.86	2.44849	SbOCl.....	171.66	2.23467
O.....	16.00	1.20412	SbOKC ₄ H ₄ O ₆ ·H ₂ O.....	332.34	2.52158
O ₂	32.00	1.50515	Sb ₂ S ₃	336.61	2.52712
O ₃	48.00	1.68124	Sb ₂ S ₅	400.75	2.60287
OH.....	17.008	1.23065	Si.....	28.30	1.45179
P.....	31.00	1.49136	SiF ₄	104.30	2.01828
P ₂	62.00	1.79239	SiO ₂	60.30	1.78032
PCl ₃	137.38	2.13783	Si(OH) ₄	96.33	1.98376
PCl ₅	208.30	2.31869	Sn.....	119.00	2.07555
P ₂ O ₅	142.00	2.15229	SnCl ₂	189.92	2.27858
Pb.....	207.10	2.31618	SnCl ₂ ·H ₂ O.....	225.95	2.35402
Pb(C ₂ H ₅ O ₂) ₂ ·3H ₂ O.....	379.20	2.57887	SnCl ₄	260.84	2.41638
PbCl ₂	277.02	2.44407	SnO.....	135.00	2.13033
PbCO ₃	267.10	2.42667	SnO ₂	151.00	2.17898
(PbCO ₃) ₂ Pb(OH) ₂	775.31	2.88948	SnS.....	151.07	2.17918
PbCrO ₄	323.20	2.50947	Sr.....	87.62	1.94260
PbI ₂	460.94	2.66365	SrCl ₂	158.54	2.20014
Pb(NO ₃) ₂	331.12	2.51999	SrCl ₂ ·6H ₂ O.....	266.64	2.42593
PbO.....	223.10	2.34850	SrCO ₃	147.62	2.16915
PbO ₂	239.10	2.37858	Sr(NO ₃) ₂	211.64	2.32560
Pb ₂ O ₄	685.30	2.83588	SrSO ₄	183.69	2.26408
PbS.....	239.17	2.37871	Zn.....	65.37	1.81538
PbSO ₄	303.17	2.48169	ZnCl ₂	136.29	2.13447
Pt.....	195.00	2.29003	ZnCO ₃	125.37	2.09819
PtCl ₄	336.84	2.52742	ZnO.....	81.37	1.91046
S.....	32.07	1.50610	Zn ₂ P ₂ O ₇	304.74	2.48393
SO ₂	64.07	1.80665	ZnS.....	97.44	1.98874
SO ₃	80.07	1.90347	ZnSO ₄	161.44	2.20801
Sb.....	120.20	2.07990	ZnSO ₄ ·7H ₂ O.....	287.55	2.45872
SbCl ₃	226.58	2.35522			

VALUE OF NORMAL SOLUTIONS OF OXIDIZING
AND REDUCING AGENTS

SUBSTANCE TITRATED		ATOMIC OR MOLECULAR WEIGHT	1 CC. OF NORMAL SOLUTION IS EQUAL TO GRAMS	
Name	Formula		Number	Logarithm
Ammonium oxalate.....	(NH ₄) ₂ C ₂ O ₄	124.144	0.06272	2.79741
Antimony.....	Sb	120.20	0.06010	2.77887
Arsenic.....	As	75.00	0.0375	2.57403
Arsenous acid.....	H ₃ AsO ₃	126.024	0.06301	2.79942
Oxide.....	As ₂ O ₃	198.00	0.0495	2.69461
Sulphide.....	As ₂ S ₃	246.18	0.06154	2.78920
Barium peroxide....	BaO ₂	169.40	0.0847	2.92788
Peroxide.....	BaO ₂ .8H ₂ O	313.53	0.15676	1.19524
Thiosulphate....	BaS ₂ O ₃ .H ₂ O	267.54	0.26754	1.42739
Bleaching powder..	CaOCl ₂	127.00	0.0635	2.80277
Bromine.....	Br	79.96	0.07996	2.90287
Calcium.....	Ca	40.10	0.02005	2.30211
Carbonate.....	CaCO ₃	100.10	0.05005	2.69940
Oxide.....	CaO	56.10	0.02805	2.44793
Chlorine.....	Cl	35.45	0.03545	2.54962
Chromic anhydride.	CrO ₃	100.10	0.03337	2.52336
Oxide.....	Cr ₂ O ₃	152.20	0.02537	2.40432
Copper.....	Cu	63.60	0.0636	2.80346
Oxide.....	CuO	79.60	0.0796	2.90091
Sulphate.....	CuSO ₄	159.66	0.15966	1.20319
Sulphate.....	CuSO ₄ .5H ₂ O	249.74	0.24974	1.39749
Ferric oxide.....	Fe ₂ O ₃	159.80	0.0799	2.90255
Ferrous oxide.....	FeO	71.90	0.0719	2.85673
Sulphate.....	FeSO ₄ .7H ₂ O	278.072	0.27807	1.44415
Ammonium sul- phate.....	FeSO ₄ (NH ₄) ₂ SO ₄ .6H ₂ O	392.26	0.39226	1.59358
Hydrogen peroxide.	H ₂ O ₂	34.016	0.1701	2.23065
Hydrogen sulphide.	H ₂ S	34.076	0.01704	2.23142
Iodine.....	I	126.97	0.12697	1.10370
Iron.....	Fe	55.90	0.0559	2.74741
Lead peroxide.....	PbO ₂	238.90	0.11945	1.07719
Manganese peroxide	MnO ₂	87.00	0.0435	2.63849
Nitrous acid.....	HNO ₂	47.048	0.04705	2.67254
Oxalic acid.....	H ₂ C ₂ O ₄	90.016	0.04501	2.65329
Oxalic acid.....	H ₂ C ₂ O ₄ .2H ₂ O	126.048	0.06302	2.79951
Potassium acid iodate.....	KH(IO ₃) ₂	390.098	0.03250	2.51199
Chlorate.....	KClO ₃	122.60	0.02043	2.31033
Chromate.....	K ₂ CrO ₄	194.40	0.0648	2.81158
Dichromate.....	K ₂ Cr ₂ O ₇	294.50	0.04908	2.69093
Ferrocyanide.....	K ₄ Fe(CN) ₆	368.74	0.36874	1.56672

VALUE OF NORMAL SOLUTIONS OF OXIDIZING
AND REDUCING AGENTS—Con.

SUBSTANCE TITRATED		ATOMIC OR MOLECULAR WEIGHT.	1 CC. OF NORMAL SOLUTION IS EQUAL TO GRAMS	
Name	Formula		Number	Logarithm
Potassium Ferrocyanide cyst.	K ₄ Fe(CN) ₆ .3H ₂ O	422.79	0.4228	1.62613
Iodate.....	KIO ₃	214.12	0.03569	2.55251
Nitrite.....	KNO ₂	85.19	0.08519	2.93039
Perchlorate.....	KClO ₄	138.60	0.01733	2.23868
Permanganate....	KMnO ₄	158.15	0.03163	2.50010
Tetroxalate.....	KH ₃ (C ₂ O ₄) ₂ .2H ₂ O	254.21	0.06355	2.80314
Sodium chlorate....	NaClO ₃	122.50	0.02042	2.30999
Ferrocyanide.....	Na ₄ Fe(CN) ₆	304.34	0.03434	1.48336
Thiosulphate.....	Na ₂ S ₂ O ₃ .5H ₂ O	248.30	0.24830	1.39498
Stannous Chloride..	SnCl ₂	189.90	0.09495	2.97749
Stannous.....	SnCl ₂ .2H ₂ O	225.932	0.11297	1.05294
Tin.....	Sn	119.00	0.0595	2.77452

VALUE OF NORMAL SOLUTIONS OF ACIDS AND BASES.

SUBSTANCE	FORMULA	ATOMIC OR MOLEC- ULAR WEIGHT	GRAMS NEUTRALIZED BY 1 CC. NORMAL SOLUTION		INDI- CATOR
			Number	Loga- rithm	
Acetic acid	H.C ₂ H ₃ O ₂	60.032	0.05803	2.76367	P.
Ammonia	NH ₃	17.064	0.01706	2.23208	M., L.
Hydroxide	NH ₄ OH	35.08	0.03508	2.54506	M., L.
Barium					
Carbonate	BaCO ₃	197.40	0.09870	2.99432	M.
Hydroxide	Ba(OH) ₂	171.416	0.08571	2.93302	
Oxide	BaO	153.40	0.07670	2.88480	
Calcium					
Carbonate	CaCO ₃	100.10	0.05005	2.69940	M.
Hydroxide	Ca(OH) ₂	74.116	0.03706	2.56889	
Oxide	CaO	56.10	0.02805	2.44793	
Carbon dioxide	CO ₂	44.00	0.04400	2.64345	P.
Hydrobromic acid	HBr	80.968	0.08097	2.90831	
Hydrochloric acid	HCl	36.458	0.03646	2.56180	
Hydroiodic acid	HI	127.98	0.01280	2.10713	
Magnesium					
Carbonate	MgCO ₃	84.36	0.04218	2.62511	M.
Oxide	MgO	40.36	0.02018	2.30492	M.
Nitric acid	HNO ₃	63.048	0.06305	2.79968	
Nitrous acid	HNO ₂	47.048	0.04705	2.67254	P.
Oxalic acid	H ₂ C ₂ O ₄	90.016	0.04501	2.65329	
Oxalic acid	H ₂ C ₂ O ₄ .2H ₂ O	126.048	0.06302	2.79951	
Phosphoric acid	H ₃ PO ₄	98.024	0.09802	2.99133	M.
Potassium					
Bicarbonate	KHCO ₃	100.158	0.10016	1.00067	M.
Carbonate	K ₂ CO ₃	138.30	0.06915	2.83979	M.
Hydroxide	KOH	56.158	0.05616	2.74931	
Oxide	K ₂ O	94.30	0.04715	2.67348	
Sodium					
Bicarbonate	NaHCO ₃	84.058	0.08406	2.92458	M.
Carbonate	Na ₂ CO ₃	106.10	0.05305	2.72469	M.
Diphosphate	Na ₂ HPO ₄	142.108	0.14211	1.15261	P.
Diphosphate	Na ₂ HPO ₄	358.30	0.35830	1.55425	P.
Hydroxide	NaOH.12H ₂ O	40.058	0.04006	2.60269	
Oxide	Na ₂ O	62.10	0.03105	2.49206	
Sulphuric acid	H ₂ SO ₄	98.076	0.04904	2.69053	

PERIODIC ARRANGEMENT OF THE ELEMENTS—MENDELEJEFFS (REVISED TO 1911)

NUMBER	ZERO GROUP	GROUP I R ₂ O	GROUP II RO		GROUP III R ₂ O ₃ , RH ₄		GROUP IV RO ₂ , RH ₄		GROUP V R ₂ O ₅ , RH ₅		GROUP VI RO ₃ , RH ₆		GROUP VII R ₂ O ₇		GROUP VIII	
0		Hydrogen H = 1.008														
1		Lithium Li = 6.94	Glucinium (Beryllium) G1 = 9.1	Boron B = 11.0	Carbon C = 12.00	Nitrogen N = 14.01	Oxygen O = 16.00	Fluorine F = 19.0								
2	Helium He = 3.99	Sodium Na = 23.00	Magnesium Mg = 24.32	Aluminum Al = 27.1	Silicon Si = 28.3	Phosphorus P = 31.04	Sulphur S = 32.07	Chlorine Cl = 35.46								
3	Neon Ne = 20.2	Potassium K = 39.10	Calcium Ca = 40.09	Scandium Sc = 44.1	Titanium Ti = 48.1	Vanadium V = 51.06	Chromium Cr = 52.0	Manganese Mn = 54.93	Iron Fe = 55.85	Cobalt Co = 58.97	Nickel (Cu)	Ni = 58.68				
4	Argon A = 39.88	Zinc Zn = 65.37	Gallium Ga = 69.9	Germanium Ge = 72.5	Arsenic As = 74.96	Selenium Se = 79.2	Bromine Br = 79.92	Ruthenium Ru = 101.7	Rhodium Rh = 102.9	Palladium (Ag)	Pd = 106.7					
5	Krypton Kr = 82.9	Rubidium Rb = 85.46	Strontium Sr = 87.63	Yttrium Y = 89.0	Zirconium Zr = 90.6	Columbium (Nobium) Cb = 93.5	Molybdenum Mo = 96.0									
6		Silver Ag = 107.88	Cadmium Cd = 112.40	Indium In = 114.8	Thin Sn = 119.0	Antimony Sb = 120.2	Tellurium Te = 127.5	Iodine I = 126.92								
7		Caesium Cs = 132.81	Barium Ba = 137.37	Lanthanum La = 139.0	Cerium Ce = 140.25	Praseodym- ium Pr = 140.6	Neodymium Nd = 144.3									
8	Xenon Xe = 130.2	Samarium Sa = 150.4		Gadolinium Gd = 157.3	Terbium Tb = 159.2	Erbium Er = 167.4										
9		Thulium Tm = 168.5		Ytterbium (Neoytter- bium) Yb = 172.0		Tantalum Ta = 181.0	Tungsten W = 184.0									
10		Gold Au = 197.2	Mercury Hg = 200.0		Lead Pb = 207.10	Bismuth Bi = 208.0										
11		Radium Ra = 226.4		Thorium Th = 232.0												
12															Uranium U = 238.5	

HANDBOOK OF CHEMISTRY AND PHYSICS

PLATINUM WIRE TABLE, BROWN AND SHARPE GAUGE

Giving Diameter and Approximate Weight

GAUGE No.	10	11	12	13	14	15	16
Diameter in Dec. In. Approximate weight in grams, per foot }	0.106	0.091	0.081	0.072	0.064	0.057	0.051
	37.5	28.0	22.0	17.5	14.0	11.0	9.0
GAUGE No.	17	18	19	20	21	22	
Diameter in Dec. In. Approximate weight in grams, per foot }	0.045	0.041	0.036	0.032	0.029	0.026	
	7.0	5.7	4.4	3.4	2.9	2.3	
GAUGE No.	23	24	25	26	27	28	
Diameter in Dec. In. Approximate weight in grams, per foot }	0.023	0.020	0.018	0.016	0.014	0.013	
	1.8	1.4	1.1	0.9	0.7	0.6	
GAUGE No.	29	30	31	32	33	34	35
Diameter in Dec. In. Approximate weight in grams, per foot }	0.0115	0.010	0.009	0.008	0.007	0.0063	0.0056
	0.45	0.35	0.28	0.22	0.17	0.15	0.11

VAPOR PRESSURE OF MERCURY

TEMPERATURE	PRESSURE	TEMPERATURE	PRESSURE
	<i>mm.</i>		<i>mm.</i>
0	0.02	170	8.091
+20	0.04	180	11.000
40	0.08	190	14.84
60	0.16	200	19.90
80	0.35	210	26.35
100	0.746	220	34.70
110	1.073	230	45.35
120	1.534	240	58.82
130	2.175	250	75.75
140	3.059	260	96.73
150	4.266	270	123.01
160	5.900	280	155.17

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS

	NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY WATER, 1 AIR, 1 (A) H ₂ , 1 (D)	MELTING POINT °C.	BOILING POINT °C.
1	Acetic acid.....	H ₃ C ₂ O ₂	60.03	1.0607	17°	118.0°
2	Aluminum.....	Al.....	27.10	2.583 ^{4°}	657°	2200.0°
3	Acetate normal.....	Al(C ₂ H ₃ O ₂) ₃	204.17	decomp.
4	Bromide.....	Al ₂ Br ₆	533.72	2.54	93°	263.3°
5	Carbide.....	Al ₄ C ₃	144.40	2.36
6	Chloride.....	Al ₂ Cl ₆	266.96	190°, 2½ At	182.0°
7	Chloride.....	Al ₂ Cl ₆ .12H ₂ O.....	483.09
8	Fluoride.....	Al ₂ F ₆	168.20	3.10
9	Hydroxide mono-.....	Al ₂ O ₃ .H ₂ O.....	120.22	3.43
10	Hydroxide di-.....	Al ₂ O ₃ .2H ₂ O.....	138.23
11	Hydroxide tri-.....	Al ₂ O ₃ .3H ₂ O.....	156.25	2.423	2H ₂ O, 300°
12	Iodide.....	Al ₂ I ₆	815.72	2.63	185°	360.0°
13	Nitride.....	Al ₂ N ₂	82.22
14	Nitrate.....	Al(NO ₃) ₃ .9H ₂ O	375.27	73°	dec. 134°
15	Oxide.....	Al ₂ O ₃	102.20	3.73-3.99	white heat
16	Phosphate.....	AlPO ₄	122.10	2.59	infusible
17	Sulphate.....	Al ₂ (SO ₄) ₃	342.41	2.71
18	Sulphate.....	Al ₂ (SO ₄) ₃ .18H ₂ O.....	666.70	1.62	decomp.
19	Sulphide.....	Al ₂ S ₃	150.41	2.37
20	Alum ammonium.....	Al ₂ (SO ₄) ₃ . (NH ₄) ₂ SO ₄ . 24H ₂ O.....	906.95	1.645 ^{2.00}	94.5°	23H ₂ O, 190°
21	Ammonium chrom..	Cr ₂ (SO ₄) ₃ . (NH ₄) ₂ SO ₄ . 24H ₂ O.....	956.95	1.719
22	Ammonium iron.....	Fe ₂ (SO ₄) ₃ . (NH ₄) ₂ SO ₄ . 24H ₂ O.....	964.45	1.712
23	Potassium.....	Al ₂ (SO ₄) ₃ .K ₂ SO ₄ . 24H ₂ O.....	949.06	1.7571 ^{2.00}	84.5°	23H ₂ O, 190°
24	Potassium chrom....	Cr ₂ (SO ₄) ₃ .K ₂ SO ₄ . 24H ₂ O.....	999.06	1.812780°	89.0°
25	Potassium iron.....	Fe ₂ (SO ₄) ₃ .K ₂ SO ₄ . 24H ₂ O.....	1006.50	1.806
26	Potassium manga- nese.....	Mn ₂ (SO ₄) ₃ .K ₂ SO ₄ .24H ₂ O	1004.70
27	Sodium	Al ₂ (SO ₄) ₃ .Na ₂ SO ₄ . 24H ₂ O.....	916.86	1.675 ^{2.00}	61.0°
28	Ammonia.....	NH ₃	17.03	0.5971 0.6234° ^{1q}	0.89° 77.05°	38.5° 38.5°
29	Ammonium acetate...	NH ₄ C ₂ H ₃ O ₂	77.07	89.0°
30	Bromide.....	NH ₄ Br.....	97.96	2.327	sublimes
31	Carbamate.....	NH ₄ HCO ₃ . NH ₄ CO ₂	157.15	sublimes
32	Carbonate.....	(NH ₄) ₂ CO ₃ .H ₂ O.....	114.10	dec. 85°
33	Carbonate acid.....	NH ₄ HCO ₃	79.05	1.586	dec. 36-60°
34	Chlorate.....	NH ₄ ClO ₃	101.50	expl. 102°
35	Chloride.....	NH ₄ Cl.....	53.50	1.520 ^{17°}
36	Chloroplatinate.....	(NH ₄) ₂ PtCl ₆	443.84	94-3.06	decomp.
37	Cyanate.....	NH ₄ CNO.....	60.05	decomp.
38	Molybdate.....	(NH ₄) ₂ MoO ₄	196.08	2.38-2.95	decomp.

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS

SOLUBILITY IN 100 PARTS

	Cold water	Hot water	Alcohol, acids, alkalies, etc.	CRYSTALLINE FORM AND COLOR
1	∞	∞	∞ soluble alcohol	
2	insoluble	decomp.	sol. HCl, H_2SO_4 , alk.; s. sol. NHO_2	octahedral
3	soluble	decomp.	soluble CS_2 , alcohol	
4	soluble		soluble acids	yellow hexagonal
5	decomposes, gives CH_4		soluble $CHCl_3$, CCl_4 , ether	
6	69.87		soluble ether; 50 alcohol	
7	40.0	v. soluble		
8	soluble	soluble	insoluble acids, alkalies	trimetric
9	insoluble	insoluble	insoluble acids, alkalies	amorphous
10	insoluble	insoluble	soluble acids, alkalies	hexagonal
11	insoluble	insoluble		
12				
13	slowly decomposes		soluble alkalies	yellow crystals
14	v. soluble	insoluble	soluble alkalies, 100 alcohol	rhombic
15	insoluble	insoluble	soluble conc. H_2SO_4 , alkalies, HCl	rhombohedral
16	insoluble		sol. acids, alkalies; insol. $H.C_2H_3O_2$	amorphous
17	36.1	89.1		
18	87.	1132.0	insoluble alcohol	octahedral
19	decomp.		soluble acids	yellow crystals
20	3.9	357.0	insoluble alcohol	regular
21	3.95	15.0	soluble alcohol	violet or green regular
22	40.0	400.0	insoluble alcohol	regular
23	5.2	422.0		regular
24	20.0	50.0	insoluble alcohol	green regular
25	20.0	v. soluble	insoluble alcohol	violet regular
26	decomposes	soluble		violet regular
27	107.1	v. soluble	insoluble alcohol	regular
28	104960 cc.	72722 cc.		crystals
	89.9	67.8	14.8 alcohol, ether	
29	148.0			
30	66.2	128.2	soluble alcohol, ether	regular
31	25.0	67.0		
32	100.0		insoluble alcohol	plates
33	11.9	27.0	Insoluble alcohol	rhombic or monoclinic
34	soluble		soluble alcohol	monoclinic
35	29.4	77.3	s. sol. alcohol, NH_3 methyl alcohol	regular or tetragonal
36	0.67	1.25	0.005 alcohol	yellow regular
37	soluble	decomp.	s. soluble alcohol	
38	decomposes	decomp.	insoluble alcohol	monoclinic

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

	NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY WATER, 1 AIR, 1 (A) H ₂ , 1 (D)	MELTING POINT °C.	BOILING POINT °C.
40	Ammonium molybdate hepta-	(NH ₄) ₆ Mo ₇ O ₂₄ .4H ₂ O	1236.3			
41	Nitrite.....	NH ₄ NO ₂	64.05	1.69	decomp.	
42	Nitrate.....	NH ₄ NO ₃	80.05	1.725	153°-166°	dec. 210°
43	Oxalate.....	(NH ₄) ₂ C ₂ O ₄ .H ₂ O.....	142.10	1.502		
44	Persulphate.....	(NH ₄) ₂ S ₂ O ₈	228.20		decomp.	
45	Phosphate di.....	(NH ₄) ₂ HPO ₄	132.09	1.619		
46	Phosphate mono.....	NH ₄ H ₂ PO ₄	115.06	1.803		
47	Phosphate meta.....	(NH ₄) ₄ P ₄ O ₁₂	388.17			
48	Phosphomolybdate.....	(NH ₄) ₈ PO ₄ 12MoO ₃ H ₂ O	1931.2			
49	Sulphate.....	(NH ₄) ₂ SO ₄	132.14	1.7687 ^a	140°	dec. 280°
50	Sulphide.....	(NH ₄) ₂ S.....	68.15		decomp.	
51	Sulphide penta.....	(NH ₄) ₂ S ₅	196.43			
52	Sulphydrate.....	NH ₄ HS.....	51.12		decomp.	
53	Sulphocyanate.....	NH ₄ CNS.....	76.12	1.3057 ^b	159°	
54	Thiosulphate.....	(NH ₄) ₂ S ₂ O ₃	148.22			
55	Antimonic acid.....	H ₃ SbO ₄	169.21	6.6	decomp.	
56	Antimonic acid pyro.....	H ₃ Sb ₂ O ₇	356.43		H ₂ O 200°	
57	Antimonous acid.....	H ₅ SbO ₃	153.21		decomp.	
58	Antimony.....	Sb.....	120.2	6.62	630°	1500°-1700°
59	Chloride tri.....	SbCl ₃	226.58	3.0642 ^b	73.2	223.5°
60	Chloride penta.....	SbCl ₅	287.50	2.3461 ^b	-6°	102°-103°
61	Hydride (stibine).....	SbH ₃	123.22	4.3441 ^b A	-91.5°	-18°
62	Oxide tri.....	Sb ₂ O ₃	288.4	5.2-5.67	red heat	1550°
63	Oxide tetr.....	Sb ₂ O ₄	304.4	4.07	O, 800°	
64	Oxide pent.....	Sb ₂ O ₅	320.40	3.78	O, 300°	
65	Oxychloride (ous).....	SbOCl.....	171.66			
66	Oxychloride (-ic).....	SbOCl ₃	242.58		decomp.	
67	Sulphate.....	Sb ₂ (SO ₄) ₃	528.41	4.89	decomp.	
68	Sulphide tri.....	Sb ₂ S ₃	336.61	4.652	fusible	volatile
69	Antimony, potassium tartrate.....	K(SbO)C ₄ H ₄ O ₅ . $\frac{1}{2}$ H ₂ O	332.33	2.6	$\frac{1}{2}$ H ₂ O, 100°	
70	Argon.....	A.....	39.9	1.379 A	-187-9°	
				19.96 D		
71	Arsenic crystalline.....	As ₄	300.0	5.7271 ^a		
72	Acid.....	H ₃ AsO ₄ . $\frac{1}{2}$ H ₂ O.....	151.03	2.5	35.5°	H ₂ O, 160°
73	Pentoxide.....	As ₂ O ₅	230.0	3.99-4.25	red heat	decomp.
74	Sulphide di-(regular).....	As ₂ S ₂	214.14	3.4-3.6	307°	565°
75	Sulphide penta.....	As ₂ S ₅	310.35		v. fusible	sublimes
76	Chloride.....	AsCl ₃	181.38	2.205 ^b	-18°	130.2°
77	Hydride (arsine).....	AsH ₃	78.02	2.695 A	-113.5°	-54.8°
78	Oxide.....	As ₂ O ₅	396.0	3.65-4.15	sublimes	125°-150°
79	Oxychloride.....	AsOCl.....	126.46		fusible	
80	Sulphide (orpiment).....	As ₂ S ₃	246.21	3.40-3.46	300°	700°
81	Auric chloride.....	AuCl ₄	303.58		288°	
82	Chloride.....	AuCl ₃ .2H ₂ O.....	339.61		decomp.	
83	Cyanide.....	Au(CN) ₃ .6H ₂ O.....	383.33			
84	Sulphide.....	Au ₂ S ₃	490.61			
85	Auroauric chloride.....	AuCl ₂	268.12		dec. 250°	
86	Sulphide.....	AuS.....	229.27		dec. 140°	
87	Aurous chloride.....	AuCl.....	232.66			
88	Barium.....	Ba.....	137.37	3.78	850°	
89	Acetate.....	Ba(C ₂ H ₃ O ₂) ₂ .H ₂ O.....	273.43	2.02	decomp.	

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

SOLUBILITY IN 100 PARTS

CRYSTALLINE FORM
AND COLOR

Cold water	Hot water	Alcohol, acids, alkalies, etc.	
40 soluble			monoclinic
41 soluble	871 ¹⁰⁰	3.8 ^{20°} alcohol	rhomb. or tetragonal
42 118°	decomp.	soluble alcohol
43 4.2	41.34		trimetric prisms
44 58.20°			monoclinic
45 25	decomp.	Insoluble alcohol	monoclinic
46 171°	260 st		tetragonal
47 soluble			tetragonal
48 0315°	Insoluble	insol. alcohol, HNO ₃ ; sol. alkalies	yellow
49 71°	103.3 ¹⁰⁰ °	insoluble alcohol	rhombic prisms
50 v. soluble			
51 soluble			orange red
52 v. soluble			rhombic
53 122°	162 ²⁰ °	soluble alcohol
54 soluble		soluble alcohol	rhombic
55 s. soluble		soluble acids and KOH
56 s. soluble		soluble KOH
57 insoluble		insoluble alcohol
58 insoluble		soluble hot conc. H ₂ SO ₄ , aq. r.	hexagonal rhombic
59 601.6°	4531 ⁶⁰ °	soluble alcohol, HCl, H ₂ C ₄ H ₆ O ₅	rhombic
60 decomposes	decomp.	soluble HCl
61 20 cc.	4	1500 cc. alcohol, 2500 cc. CS ₂
62 0.00182 ¹⁵	0.01	soluble HCl, KOH, H ₂ C ₄ H ₆ O ₅	trimetric octahedral
63 insoluble		soluble hot concentrated HCl
64 insoluble		soluble HCl, KOH, HI	yellow
65 insoluble	decomp.	Insoluble alcohol; soluble HCl, CS ₂	monoclinic
66 insoluble	decomp.	soluble alcohol	yellow
67 decomposes	decomp.	soluble H ₂ SO ₄
68 0.000175	decomp.	soluble alkalies, NH ₄ HS, K ₂ S, HCl	black hexagonal
69 5.26	35.7		octahedral
70 5.6 cc.	2.57 cc.	insoluble alcohol
71 insoluble			gray rhombohedral
72 16.7	insoluble	sol. HNO ₃ , Cl ₂ H ₂ O, aq. r., hot alk.
73 150	50	soluble alkalies	amorphous
74 insoluble	v. soluble	v. soluble	red monoclinic
75 insoluble	insoluble	soluble K ₂ S, NaHCO ₃	yellow
76 decomposes	insoluble	soluble alkalies, HNO ₃	needles
77	decomp.	soluble HBr, HCl, alcohol, ether
78 1.7	10.14	s. soluble alkalies	amorphous
79 decomposes	decomp.	sol. alk.; alk. carbonates; HCl, al.
80 0.00005	s. soluble	soluble alkalies; alkalies carbonates	yellow or red
81 68	v. soluble	soluble alcohol, ether	red brown leaf
82 soluble	soluble	soluble alcohol	orange
83 v. soluble	v. soluble	soluble alcohol
84 insoluble		soluble Na ₂ S, K ₂ S, insoluble acids	brown
85 decomposes		insoluble acids; soluble (NH ₄) ₂ S	dark red
86 insoluble		soluble alcohol, acids; insoluble benzol, petroleum	black
87 insoluble			yellowish white
88 decomposes			silvery crystals
89 62.9°	80.5 ⁹⁰ °	insoluble alcohol	prisms

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

	NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY WATER, 1 AIR, 1 (A) H ₂ , 1 (D)	MELTING POINT °C.	BOILING POINT °C.
90	Barium Carbide	BaC ₂	161.37	3.75
91	Carbonate	BaCO ₃	197.37	4.275	1380°	dec. 1450°
92	Chloride	BaCl ₂	208.29	3.856	960°
93	Chloride	BaCl ₂ .2H ₂ O.....	244.32	3.097	860°
94	Chromate	BaCrO ₄	253.47	4.498 ¹⁵ °
95	Hydride	BaH ₂	139.39	4.21°	volatile	1400°
96	Hydroxide	Ba(OH) ₂ .8H ₂ O.....	315.51	1.656	78°	103°
97	Iodide	BaI ₂	391.21	5.150 ³⁵ °	539°-740°
98	Nitrate	Ba(NO ₃) ₂	261.39	3.244 ²³ °	575°	decomp.
99	Oxalate	BaC ₂ O ₄ .H ₂ O.....	243.39	2.6578
100	Oxide	BaO.....	153.37	4.73-5.46	BaO ₂ , 450°
101	Peroxide	BaO ₂	169.37	4.96	O, 450°
102	Platinocyanide	BaPt(CN) ₄ . 4H ₂ O.....	508.47	3.054
103	Sulphate	BaSO ₄	233.44	4.476	1580°
				4.330		
104	Sulphite	BaSO ₃	217.44
105	Bismuth	Bi.....	208.0	9.7474	269°	1435°
106	Carbonate sub-	Bi ₂ O ₃ CO ₃ .H ₂ O.....	526.02	6.86	decomp.
107	Chloride di-	BiCl ₂	278.9	4.86	163°	dec. 300°
108	Chloride tri-	BiCl ₃	314.38	4.56 ¹¹ °	227°	435°-447°
109	Hydroxide	Bi(OH) ₃	259.02	H ₂ O, 100°
110	Nitrate	Bi(NO ₃) ₃ .5H ₂ O.....	484.11	2.78	74°	dec. 75°-80°
111	Nitrate sub-	Bi(ONO ₃) ₂ .H ₂ O.....	304.03	4.928 ¹⁵ °	dec. 260°
112	Oxide tri-	Bi ₂ O ₃	464.00	8.8-9.0	820°-860°
113	Oxide penta-	Bi ₂ O ₅	496.00	O, 150°	O ₂ , 357°
114	Oxychloride	BiOCl.....	259.46	7.717	red heat
115	Sulphate	Bi ₂ (SO ₄) ₃	704.21
116	Sulphide	Bi ₂ S ₃	512.21	7.00-7.81	decomp.
117	Boric acid	H ₃ BO ₃	62.02	1.4347 ¹⁵ °	184°-186°
118	Boron	B.....	11.0	2.45 2.53-2.68	infusible infusible	sublimes 3500°
119	Chloride	BCl ₃	117.38	1.434 ²	18.2°
120	Oxide	B ₂ O ₃	70.00	1.75-1.83	577°	high temp.
121	Sulphide tri-	B ₂ S ₃	118.21	1.55	310°
122	Sulphide penta-	B ₂ S ₅	182.35	1.85	390°
123	Bromine	Br ₂	159.84	3.1883°	-7.3°	58.7°
124	Cadmium	Cd.....	112.4	8.6421 ⁷ °	321.7°	778°
125	Carbonate	CdCO ₃	172.40	4.258	decomp.
126	Chloride	CdCl ₂	183.32	4.05	560°	861°-812°
127	Chloride	CdCl ₂ .2H ₂ O.....	219.35	3.327
128	Hydroxide	Cd(OH) ₂	146.42	4.79 ¹⁵ °	H ₂ O, 300
129	Nitrate	Cd(NO ₃) ₂ . 4H ₂ O.....	308.48	2.455	59.5	132°
130	Phosphate	Cd ₃ (PO ₄) ₂	527.2
131	Sulphate	CdSO ₄	208.47	4.72	1000
132	Sulphate	3CdSO ₄ .8H ₂ O.....	769.54	3.05
133	Sulphide artificial	CdS.....	144.47	3.9-4.8	wht. heat
134	Calcium	Ca.....	40.09	1.5446 ^{29.2} °	780°-810°
135	Acetate	Ca(C ₂ H ₃ O ₂) ₂ . H ₂ O.....	176.15	decomp.
136	Aluminate	CaAl ₂ O ₄	158.3	3.671 ²⁰ °
137	Ammonium phosphate	CaNH ₄ PO ₄ . 7H ₂ O.....	279.24	1.56115 ⁰ °	decomp.

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

SOLUBILITY IN 100 PARTS

	Cold water	Hot water	Alcohol, acids, alkalies, etc.	CRYSTALLINE FORM AND COLOR
90	decomposes to C ₂ H ₂ . 0.0022° 0.0065 ^{100°}	decomposes by acids soluble acids, NH ₄ Cl insoluble alcohol; s. soluble HCl HNO ₃	gray crystals rhombic
91	30.9°	62.7 ^{100°}
92	36.2	73.5
93	0.00038 ^{18°}	0.0043	yellow rhombic
94	5.56 ^{15°}	decomp. 182.7 ^{80°}	crystalline
95	decomposes	272 ^{100°}	tetragonal
96	1700°	32.2 ^{100°}	rhombic
97	5.2°	0.0228 ^{100°}	regular
98	0.0093 ^{18°}	90.8 ^{90°}	amorphous
99	1.5°	decomp.
100	insoluble
101	31°
102	0.000172 ^{90°}	0.0003 ^{84°}	0.006, 3% HCl; soluble conc. H ₂ SO ₄	gray to yellow mono. rhombic
103
104	0.0197 ^{20°}	0.00177 ^{80°}	v. soluble HCl	hexagonal
105	insoluble	insoluble	soluble HNO ₃ , aq. r., conc.	reddish rhombic
106	insoluble	soluble acids; insoluble Na ₂ CO ₃
107	decomposes	black needles
108	decomposes
109	insoluble	soluble alcohol, acids, acetone
110	decomposes	soluble acids; insoluble alkalies
111	insoluble	soluble acids, 40° acetone
112	insoluble	soluble acids	hexagonal plates
113	insoluble	soluble acids; insoluble alkalies	yellow tetragonal
114	insoluble	soluble acids, concentrated, KOH	brown
115	decomp.	soluble acids; insoluble H ₂ C ₄ H ₄ O ₆	quadratic
116	0.000018	soluble acids	needles
117	3.91°	34 ^{100°}	soluble HNO ₃	brown rhombic
118	insoluble	insoluble	0.24 ^{25°} ether, soluble alcohol, 28 ^{20°} , 72 ^{100°} glycerine	triclinic monoclinic
119	insoluble	insoluble	insol. alcohol, ether; sol. conc.	monoclinic
120	decomposes	HNO ₃ , concentrated H ₂ SO ₄
121	1.1°	16.4 ^{102°}	decomposed by alcohol
122	decomposes	soluble alcohol, concentrated acids
123	4.17°	3.49 ^{80°}	s. soluble, PCl ₃ , SCl ₂	crystals
124	insoluble	insoluble	soluble alkalies, CS ₂ , ether, alcohol,	crystalline
125	insoluble	insoluble	CHCl ₃ , KBr, H ₂ O	brown red crystals
126	140 ^{20°}	150 ^{100°}	soluble acids, NH ₄ NO ₃	crystalline
127	168 ^{20°}	180 ^{100°}	soluble acid, NH ₄ salts
128	0.00026 ^{25°}	insoluble	1.52 ^{15°} alcohol
129	143.4°	2.05 ^{15°} methyl alcohol
130	insoluble	alkalies; soluble acids, NH ₄
131	76.5°	60.8 ^{100°}
132	114.2°	87 ^{100°}
133	{ 0.0013 }	coloidal sol.	v. s. soluble NH ₄ OH; soluble acids
134	insoluble	decomp.	soluble acids, sodium; insoluble	yellow hexagonal
135	43.6°	34.3 ^{100°}	s. soluble alcohol	silvery hexagonal
136	decomposes	insoluble benzene; soluble HCl	needles
137	insoluble	insoluble	soluble acids	prismatic needles
				monoclinic

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

	NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY WATER, 1 AIR, 1 (A) H ₂ , 1 (D)	MELTING POINT °C.	BOILING POINT °C.
138	Calcium					
139	Carbide.....	CaC ₂	64.09	2.22 ¹⁸ °		
140	Carbonate.....	CaCO ₃	100.09	2.72-2.95	dec. 825°	
141	Chloride.....	CaCl ₂	111.01	2.26 ²⁰ °	774°	
142	Chloride.....	CaCl ₂ .H ₂ O.....	129.03			
143	Chromate.....	CaCrO ₄ .2H ₂ O.....	192.22		2H ₂ O, 200°	
144	Fluoride.....	CaF ₂	78.09	3.15-18	902°-1330°	
145	Fluosilicate.....	CaSiF ₆	183.39	2.662017 ⁵ °		
146	Hydroxide.....	Ca(OH) ₂	74.11	2.078		
147	Hypochlorite.....	Ca(ClO) ₂ .4H ₂ O.....	215.07		decomp.	
148	Nitrate.....	Ca(NO ₃) ₂	184.11	2.36	561°-499°	
149	Nitrate.....	Ca(NO ₃) ₂ .4H ₂ O.....	236.17	1.82	42.31°	132°
150	Oxalate.....	CaC ₂ O ₄ .H ₂ O.....	146.11	2.2	decomp.	
151	Oxide.....	CaO.....	56.09	3.15-3.40	infusible	
152	Phosphate.....	Ca ₃ (PO ₄) ₂	310.27	3.18		
153	Phosphate di-	CaHPO ₄ .2H ₂ O.....	172.13	2.317 ¹⁵ °	decomp.	
154	Phosphate mono-	CaH ₄ (PO ₄) ₂ .H ₂ O.....	252.14	2.02	H ₂ O, 100°	dec. 200°
155	Silicate.....	CaSiO ₃	116.39	2.88	1512°	
157	Sulphate.....	CaSO ₄	136.16	2.964		
158	Sulphate (gypsum).	CaSO ₄ .2H ₂ O.....	172.19	2.32	2H ₂ O, 80°	
159	Carbon amorphous.	C.....	12.00	1.75-2.10	sublimes	
160	Carbon graphite.	C.....	12.00	2.255	at	
161	Carbon diamond.	C.....	12.00	3.47-3.5585	3500°	
162	Chloride tetra-	CCl ₄	153.84	1.5817 ² ₄	-23.77°	76.74°
163	Dioxide gaseous.	CO ₂	44.00	1.53 A		
164	Dioxide liquid.	CO ₂	44.00	1.057 ³⁴ °	-65°	78.2°
165	Dioxide solid.	CO ₂	44.00	1.56 ⁷⁹ °	-65°	78.2°
166	Disulphide.....	CS ₂	76.14	1.292 ²² .63 A	-110	46.2°
167	Monoxide.....	CO.....	28.00	0.9870 A	-203°	190°
168	Chlorine.....	Cl ₂	70.92	2.491 ⁰ ° A	-102°	-33.6°
169	Hydrate.....	Cl.5H ₂ O.....	125.54	1.23	-50°	
170	Oxide mon-	Cl ₂ O.....	86.92	2.977 A	-20°	-5°
171	Oxide di- or per-	ClO ₂	67.46	1.5, 2.315 A	-79°	9.9°
172	Oxide hept.-	Cl ₂ O ₇	182.92			82°
173	Chromium.....	Cr.....	52.1	6.92 ²⁰ °	1515°	
174	Dioxide.....	CrO ₂	84.10		190, O, 300°	
175	Trioxide.....	CrO ₃	100.10	2.67-2.82	196°	decomp.
176	Carbide.....	Cr ₃ C ₂	180.3	5.62		
177	Chlortide.....	CrCl ₄	158.48	2.757 ¹⁴ °	1200°-1500°	
178	Chloride.....	CrCl ₄ .6H ₂ O.....	266.58		sublimes	
179	Hydroxide.....	Cr(OH) ₃	103.12			
180	Nitrate.....	Cr(NO ₃) ₃ .9H ₂ O.....	400.27		37°	125.5°
181	Oxide.....	Cr ₂ O ₃	152.20	5.04	dec. 400°	
182	Sulphate.....	Cr ₂ (SO ₄) ₃	392.41	3.012		
183	Chromous					
184	Carbonate.....	CrCO ₃	112.10			
185	Chloride.....	CrCl ₂	123.02	2.751 ¹⁴ °		
186	Hydroxide.....	Cr(OH) ₃	86.12			
187	Sulphate.....	CrSO ₄ .7H ₂ O.....	274.28			
188	Sulphide.....	CrS.....	84.17	4.08		
189	Chromyl trichloride.	CrO ₃ Cl ₂	155.02	1.9617 ² ₄		115.9°
190	Cobalt.....	Co.....	58.97	8.718 ² ₄	1464°	
191	Cobaltic chloride.	CoCl ₃	165.38	2.94	sublimes	

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

SOLUBILITY IN 100 PARTS			CRYSTALLINE FORM AND COLOR
Cold water	Hot water	Alcohol, acids, alkalies, etc.	
133 decomp. to 0.0013	C_2H_2	0.1 CO_2 aqua; sol. acids, NH_4Cl	crystalline rhombic
139 59.5°	154°	soluble alcohol	
140 59.1°	205°	soluble alcohol	
141 117.4°		soluble alcohol	
142 22.2°	4.3°	soluble alcohol, acids	hexagonal yellow prisms
143 0.001618		s. soluble concentrated acids	regular
145 s. soluble 0.17°	0.081°	soluble HF, HCl , alcohol	hexagonal
146 deliquescent	decomp.	soluble NH_4Cl	
148 93.1°	351.2°	14° alcohol; soluble amyl. alcohol	prisms
149 134°	506°	0.3 alcohol	monoclinic
150 0.0006825°	0.001425	soluble a.; insoluble $\text{H}_2\text{C}_2\text{H}_2\text{O}_2$	octahedral
151 0.13°	0.061°	soluble acids	regular
152 0.003–0.008	decomp.	soluble acids; insoluble alcohol	amorphous
153 0.028	decomp.	insol. alcohol; soluble $\text{H}_4\text{C}_6\text{H}_7\text{O}_7$	monoclinic plates
154 41°	decomp.		
155 0.00954°		soluble HCl	rhombic
157 0.179°	0.178°	soluble acid $\text{Na}_2\text{S}_2\text{O}_3\text{NH}_4$ salts	monocl. or hexagonal
158 0.241°	0.222°	soluble HCl, NaCl , glycerine	rhombic
159 insoluble	insoluble	insoluble in acids, alkalies; soluble in molten metals	monoclinic
160 insoluble	insoluble		black amorphous
161 insoluble	insoluble		black hexagonal
162 insoluble			regular
163 179.67 cc.	190.14 cc. ²⁰	283 cc. ^{22.5°} alcohol, soluble alkalies	
164 insoluble		soluble alcohol, ether	crystalline
165			
166 0.2°	0.014°	soluble alcohol, ether	
167 3.5 cc. °	1.6 cc. 50°	0.20566° alcohol soluble Cu_2Cl_2	
0.0044°	0.0018°	CS_2 , $\text{C}_2\text{H}_5\text{H}$, $\text{C}_2\text{H}_5\text{O}_2$	
168 150°, 300°	180° cc.	soluble alkalies	greenish yellow
169 soluble			octahedral
170 200 cc. °			reddish yellow
171 20000 cc. 4°	decomp.	soluble conc. H_2SO_4 alkalies	yellowish green oil
172 soluble		soluble benzene	gray crystalline
173 insoluble	insoluble	soluble HCl, dil. H_2SO_4 ; insoluble	dark gray
174 insoluble			red triclinic
175 183.4°	206.7°	soluble alcohol ether H_2SO_4	gray crystals
176 insoluble	insoluble	soluble dilute HCl	pink crystals
177 insoluble	s. soluble	insoluble acids; soluble trace CrCl_2	violet plates
178 v. soluble		soluble alcohol	{ violet plates
179 insoluble		soluble a., alkalies; s. sol. NH_3 aq	{ gray hexagonal plates
180 soluble			{ gray green or
181 insoluble		s. soluble acids	{ purple prisms
182 insoluble		insoluble acids	dark green hexagonal
183			
184 insoluble		insoluble ether	amorphous
v. soluble			crystalline
185 decomps.		soluble acids	yellow brown
186 12.35°		s. soluble alcohol	blue
187 insoluble		v. soluble acids	black powder
188 decomps.		soluble acids	dark red
189 insoluble			
190 soluble			
191			

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

	NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY WATER, 1 AIR, 1 (A) H ₂ , 1 (D)	MELTING POINT °C.	BOILING POINT °C.
192	Chloride purpureo.	Co(NH ₃) ₅ Cl ₃ .	250.57	1.802 ^{15°}		
193	Hydroxide.	Co(OH) ₃ .	110.02			
194	Oxide.	Co ₂ O ₃ .	166.09	4.81-5.60	dec. red	heat
195	Sulphate.	Co ₂ (SO ₄) ₃ .	406.15			
196	Sulphide.	Co ₂ S ₃ .	214.15	4.8		
197	Cobaltocobaltic Oxide.	Co ₃ O ₄ .	240.91	5.8-6.3		
198	Carbonate.	CoCO ₃ .	118.97		decomp.	
199	Carbonate basic.	2CoCO ₃ .3Co(OH) ₂ .	516.90			
200	Chloride.	CoCl ₂ .	129.89	2.348 ^{25°}	sublimes	
201	Chloride.	CoCl ₂ .6H ₂ O.	238.00	1.84	88.75°	
202	Cobaltous cyanide.	Co(CN) ₂ .2H ₂ O	147.02		2H ₂ O, 280°	
203	Hydroxide.	Co(OH) ₂ .	93.00	3.597 ^{15°}		
204	Nitrate.	Co(NO ₃) ₂ .6H ₂ O	291.09	1.83 ^{14°}	56°	
205	Oxalate.	CoC ₂ O ₄ .2H ₂ O.	183.00	2.325 ^{19°}		
206	Oxide.	CoO.	74.97	5.6-5.75		
207	Phosphate.	Co ₃ (PO ₄) ₂ .	366.91			
208	Sulphate.	CoSO ₄ .	155.04	3.472 ^{15°}	980°	
209	Sulphate.	CoSO ₄ .7H ₂ O.	281.15	1.918 ^{15°}	96.8°	
210	Sulphide.	CoS.	91.04	5.45		
211	Copper nitride.	Cu ₃ N.	204.72		dec. 300°	
212	Cupric acetate.	Cu(C ₂ H ₃ O ₂) ₂ .H ₂ O.	199.63	1.9	dec. 240°	
213	Aceto-arsenite.	(CuOAs ₂ O ₃) ₃ .				
		Cu(C ₂ H ₃ O ₂) ₂	966.36			
214	Ammonium chloride.	CuCl ₂ ·NH ₄ Cl.2H ₂ O.	277.53	1.96-1.97	2H ₂ O, 120°	
215	Arsenite paris green.	CuHAsO ₃ .	187.58		decomp.	
216	Carbonate basic.	CuCO ₃ .Cu(OH) ₂ .	221.16	3.7-4.0	decomp.	
217	Carbonate basic.	2CuCO ₃ .Cu(OH) ₂ .	344.73	3.88	decomp.	
218	Chloride.	CuCl ₂ .	134.49	3.054	498°	
219	Chloride.	CuCl ₂ .2.H ₂ O	170.52	2.47-2.535	2H ₂ O, 100	decomp.
220	Chromate basic.	CuCrO ₄ .2CuO.2H ₂ O.	374.84		2H ₂ O, 260	
221	Ferricyanide.	Cu ₃ [Fe(CN) ₆] ₂ .	678.13			
222	Ferrocyanide.	Cu ₂ Fe(CN) ₆ .7H ₂ O.	465.16			
223	Hydroxide.	Cu(OH) ₂ .	97.59	3.368	decomp.	
224	Nitro prusside.	CuFe(CN) ₃ .NO.2H ₂ O.	331.51			
225	Nitrate.	Cu(NO ₃) ₂ .3H ₂ O	241.64	2.174	114.5°	
226	Nitrate.	Cu(NO ₃) ₂ .6H ₂ O	295.69	2.074	26.4°	
227	Oxalate.	CuC ₂ O ₄ . $\frac{1}{2}$ H ₂ O	160.58			
228	Oxide.	CuO.	79.57	6.32-6.43	1004°	
229	Cupric phosphate.	Cu ₃ (PO ₄) ₂ .3H ₂ O	434.76			
230	Sulphate.	CuSO ₄ .	159.64	3.516 ^{33°}		
231	Sulphate.	CuSO ₄ .5H ₂ O.	249.72	2.284 ^{15°}	4H ₂ O, 110°	
232	Sulphide.	CuS.	95.64	3.8-4.16		
233	Cuprous chloride.	Cu ₂ Cl ₂ .	198.06	3.38-3.68	434°	954°-1032°
234	Ferricyanide.	Cu ₃ Fe(CN) ₆ .	402.62			
235	Ferrocyanide.	Cu ₄ Fe(CN) ₆ .	466.19			
236	Hydroxide.	CuOH.	80.58		4H ₂ O, 360°	
237	Oxide.	Cu ₂ O.	143.14	5.75-6.09	red heat	
238	Sulphide.	Cu ₂ S.	159.21	5.52-5.82	1100°	
239	Sulphocyanate.	CuCNS.	121.65			
240	Cyanogen chloride.	CNCI.	61.47	2.13 D	-18°	15.5°

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

SOLUBILITY IN 100 PARTS			CRYSTALLINE FORM AND COLOR
Cold water	Hot Water	Alcohol, acids, alkalies, etc.	
192 0.232°	1.031 ^{46.4°}	insoluble alcohol	black
193 insoluble	insoluble	insol. alcohol; sol. conc. cold acids	steel gray
194 insoluble	insoluble	soluble concentrated acids	blue cryst. powder
195 sol. with dec.	soluble concentrated, H ₂ SO ₄	black crystals
196 insoluble	decomposes by acids	
197 insoluble	insoluble	soluble concentrated H ₂ SO ₄	black
198 insoluble	insoluble	insoluble conc. HCl, HNO ₃	red rhombohedral
199 insoluble	decomp.	soluble (NH ₄) ₂ CO ₃	red colored
200 45°	105 ^{96°}	31 alcohol, 8.62 acetone	blue crystals
201 76.7°	190.7 ^{100°}	v. soluble ether, glycoll	red monoclinic
202 insoluble	soluble KCN, HCl, NH ₃ aqua	buff colored
203 insoluble	insoluble	insoluble alkalies; soluble NH ₄ salts	rose red
204 133.8°	100 ^{12.5°} alcohol	red monoclinic
205 insoluble	insoluble	soluble acid, NH ₃ aqua	reddish white
206 insoluble	insoluble	sol. acid, NH ₃ aqua; insol. alkalies	greenish brown
207 insoluble	soluble H ₃ PO ₄ NH ₃ aqua	reddish
208 26.2°	82.6 ^{99°}	1.041 ^{80°} methyl alcohol	red powder
209 60.4°	soluble	2.5° alcohol	
210 0.00038	soluble conc. HCl., aq. r., alcohol	brown needles
211	decomposes by acids	
212 7.2	20	7.143 alcohol; soluble ether	dark green
213 insoluble	soluble acids NH ₃ aqua	green
214 33.8°	90.3 ^{90°}	soluble alcohol	light blue rhombic
215 insoluble	soluble acids, NH ₃ aqua	light green
216 insoluble	decomp.	0.026, CO ₂ aqua; soluble KCN	dark green monoclinic
217 insoluble	decomp.	soluble NH ₃ aq., hot NaHCO ₃ aq.	
218 70.6°	137.9 ^{100°}	53 ^{15.5°} alcohol, 68 ^{15.5°} methyl	brownish yellow
319 110.4°	192.4 ^{100°}	sol. NH ₄ Cl ether alcohol	blue rhombic
320 insoluble	soluble HNO ₃ , NH ₃ aqua	yellowish brown
321 insoluble	insoluble HCl; soluble NH ₃ aqua	yellowish green
322 insoluble	insoluble acids, soluble NH ₃ aqua	brown red
323 insoluble	decomp.	soluble alcohol, NH ₄ Cl Na ₂ S ₂ O ₃	blue crystals
324 insoluble	decomposes by alkalies	greenish
225 137.8°	1270 ^{100°}	100 ^{12.5°} alcohol	blue prismatic
226 243.7°	soluble alcohol	crystalline
227 insoluble	insoluble H ₂ C ₂ H ₂ O ₂	bluish white
228 hygroscopic	soluble acids, NH ₄ Cl, KCN	black monoclinic
229 insoluble	soluble acids, NH ₃ aqua	blue green
230 20°	194 ^{100°}	insoluble	
231 31.61°	203.3 ^{100°}	insoluble alcohol K ₂ S	blue triclinic
232 0.0001	soluble HNO ₃ , KCN; insoluble	black
233 insoluble	soluble HCl, NH ₃ aqua, NH ₄ Cl	tetrahedral
234 insoluble	soluble NH ₃ aqua, insoluble HCl	brownish red
235 insoluble	soluble NH ₃ aqua, insoluble NH ₄ Cl	brown red
236 insoluble	soluble acids, NH ₃ aqua	yellow
237 insoluble	soluble NH ₃ aqua NH ₄ Cl, HCl	carmine (red)
238 0.0005	soluble HNO ₃ alcohol, ether	rhombic or regular
239 25 cc.	4.4 cc. alcohol, soluble ether	
240 soluble	v. soluble alcohol, ether	prisms

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

	NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY WATER, 1 AIR, 1 (A) H ₂ , 1 (D)	MELTING POINT °C.	BOILING POINT °C.
241	Ferric acetate basic...	FeOH (C ₂ H ₃ O ₂) ₂	190.91			
242	Chloride.....	FeCl ₃	162.23	2.804	301°	
243	Chloride.....	FeCl ₃ .6H ₂ O.....	270.33		37°	280°-285°
244	Ferrocyanide (prussian blue)....	Fe ₄ [Fe(CN) ₆] ₃	859.13		decomp.	
245	Hydroxide.....	Fe(OH) ₃	106.87	3.4-3.9	1½H ₂ O, 500°	
246	Nitrate.....	Fe(NO ₃) ₃ .9H ₂ O	404.02	1.6835 ²⁰ °	47.2°	decomp.
247	Oxalate.....	Fe ₂ (C ₂ O ₄) ₃	375.70		dec. 100°	
248	Oxide.....	Fe ₂ O ₃	159.70	5.12-5.24		
249	Phosphate.....	FePO ₄ .4H ₂ O.....	222.91	2.87		
250	Sulphate.....	Fe ₂ (SO ₄) ₃	399.91	3.097	decomp. at	
251	Sulphate.....	Fe ₂ (SO ₄) ₃ .9H ₂ O.....	562.05	2-2.1		
252	Sulphide.....	Fe ₂ S ₃	207.91	4.25-4.41	decomp.	
253	Ferrous Ammonium sulphate.....	FeSO ₄ (NH ₄) ₂ SO ₄ .6H ₂ O.....	392.17	1.865		
254	Carbonate.....	FeCO ₃	115.85	3.70-3.87	decomp.	
255	Carbonate.....	FeCO ₃ .H ₂ O.....	133.87		decomp.	
256	Chloride.....	FeCl ₂	126.77	2.988		
257	Chloride.....	FeCl ₂ .4H ₂ O.....	198.83	1.93		
258	Ferricyanide (turnbullis blue)....	Fe ₃ [Fe(CN) ₆] ₂	591.37		decomp.	
259	Ferrocyanide.....	Fe ₂ Fe(CN) ₆	323.61			
260	Hydroxide.....	Fe(OH) ₂	89.87			
261	Nitrate.....	Fe(NO ₃) ₂ .6H ₂ O	287.97		60.5°	
262	Sulphate.....	FeSO ₄ .7H ₂ O.....	278.03	1.86-1.90	64°	
263	Sulphide.....	FeS.....	87.92	4.75-5.04	red heat	
264	Ferroso-ferric (chloride)	FeCl ₂ .2FeCl ₃ . 18H ₂ O.....	613.27		dec. 50°	
265	Ferricyanide (prussian green)....	Fe''',Fe'' ₃ [Fe(CN) ₆] ₃	1662.4		dec. 180°	
266	Hydrate.....	Fe ₃ O ₄ .4H ₂ O.....	303.61		decomp.	
267	Oxide.....	Fe ₃ O ₄	231.55	4.96-5.40		
268	Fluorine.....	F ₂	38.0	{ 1.31 ¹⁵ A 1.14-187 }	-223°	-187°
269	Fluosilicic acid.....	H ₂ SiF ₆	144.32			
270	Gold.....	Au.....	197.2	19.32	1060°	2530°
271	Colloidal.....	Au.....	197.2			
272	Helium.....	He.....	4.0	{ 0.1368 A 1.98 D }	-271.3°	-267°
273	Hydrazine.....	NH ₂ NH ₂	32.05	1.013 ¹⁵	1.4°	113.5°
274	Hydroxide.....	N ₂ H ₄ H ₂ O.....	50.07	1.0305 ²¹	-40°	119°
275	Sulphate.....	N ₂ H ₄ .H ₂ SO ₄	130.14		254°	
276	Nitrate.....	N ₂ H ₄ .HNO ₃	95.07		69°	
277	Hydrazoic acid.....	HN ₃	43.04		-80°	37°
278	Hydrobromic acid.....	HBr.....	80.93	1.278 A	-86.13°	-68.7°
279	Hydrobromic acid.....	HBr. H ₂ O.....	98.95	1.78		
280	Hydrochloric acid.....	HCl.....	36.47	1.195 ⁸ °	-112.5°	83.1°
281	Hydrocyanic acid.....	HCN.....	27.02	0.6971 ⁸ °	-15°	26.1°
282	Hydrofluoric acid.....	HF.....	20.01	0.9879 ¹⁵ °	-92.3°	19.44°
283	Hydroiodic acid.....	HI.....	127.93	4.3737 A	-51.3°	36.7
284	Hydrogen.....	H ₂	2.016	0.06949	-256.5°	-252.5°
285	Peroxide.....	H ₂ O ₂	34.02	1.4584	-2°	80.2°
286	Sulphide.....	H ₂ S.....	34.09	0.91.1895 A	-85.5°	-61.8
287	Hydroxylamine.....	NH ₂ OH.....	33.03	1.227 ¹⁴	33.05°	70.60mm.
288	Hydrochloride.....	NH ₂ OH.HCl.....	69.50		151°	decomp.
289	Iodic acid.....	HIO ₃	175.93	4.629°	½H ₂ O° 190°	

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

SOLUBILITY IN 100 PARTS

	Cold water	Hot water	Alcohol, acids, alkalies, etc.	CRYSTALLINE FORM AND COLOR
241	insoluble		soluble alcohol, acids	amorphous
242	74. 39°	536. 6100°	v. soluble alcohol, ether + HCl	brown hexagonal
243	246°	625. 8	soluble alcohol	
244	insoluble	{ insoluble alcohol, ether soluble concentrated HCl, H ₂ SO ₄	dark blue crystals
245	insoluble	insoluble	insoluble alcohol, ether	reddish brown
246	v. soluble	v. soluble	soluble alcohol	rhombic
247	v. soluble	insoluble alcohol	amorphous or monocl.
248	hygroscopic	insoluble	soluble acids	
249	insoluble	0.067	insoluble H. C ₂ H ₃ O ₂	yellow rhombic
250	s. soluble	decomp.	insoluble concentrated H ₂ SO ₄	amorphous
251	v. soluble	decomp.	dec. by alcohol; soluble ab. alcohol	yellow rhombic
252	decomp.	decomposes by acids	greenish yellow
253	18°	78. 275°	blue green monoclinic
254	insoluble	insoluble	insoluble alcohol	
255	s. soluble	soluble CO ₂ aqua	amorphous
256	64. 41°	105. 7100°	soluble acids, CO ₂ aqua	
257	160. 11°	415. 5100°	100 alcohol	blue green monoclinic
258	insoluble	soluble alcohol	
259	insoluble	insoluble alcohol, dilute acids	deep blue
260	0.00067	soluble NH ₄ Cl acids	white blue amorphous
261	200°	300. 25°	pale green crystals
262	32. 8°	196. 47°	insoluble alcohol	crystals
263	0.00089	soluble acids	blue green monoclinic
264	deliques	black hexagonal
265	insoluble	yellow
266	insoluble	insoluble	soluble concentrated hot HCl	green
267	insoluble	insoluble	soluble acids	black
268	decomp.	decomp.	Insoluble alcohol	black octahedral
269	soluble	greenish yellow
270	insoluble	insoluble	
271	soluble	
272	1. 487 cc. 0.5	1. 371 cc. 25	insoluble acid; soluble KCN, aq. r. Insoluble acid; sol. alkalies, aq. r.	
273	v. soluble	absorbed by platinum	yellow regular
274	v. soluble	soluble alcohol	blue violet
275	s. soluble	v. soluble	soluble alcohol; Insoluble ether	crystalline
276	insoluble alcohol	crystalline
277	tables
278	221. 29°	130100°	soluble alcohol	liquid
279	soluble alcohol	crystalline
280	82. 51°	56. 160°	soluble alcohol, ether	
281	soluble alcohol, ether	crystalline
282	264	soluble alcohol	
283	42500 cc. 10°	soluble palladium, charcoal	
284	2. 1 cc. 0.50°	soluble ether, alcohol	
285	9. 542° vol. al.	prisms
286	437 cc. 0°	186 cc. 40°	soluble alcohol, acids	
287	soluble	decomp.	soluble alcohol; Insoluble ether	crystalline
288	v. soluble	v. soluble alcohol, HNO ₃	monoclinic
289	286°	47180°	trimetric

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

	NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY WATER, 1 AIR, 1 (A) H ₂ , 1 (D)	MELTING POINT °C.	BOILING POINT °C.
290	Iodine.....	I ₂	253.84	4.9487°	114.2°	184.35°
291	Iron pure.....	Fe.....	55.85	7.85-7.88	1505°
292	Wrought.....	Fe.....	55.85	7.86	1600°
293	White pig.....	Fe.....	55.85	7.58-7.73	1075°
294	Gray pig.....	Fe.....	55.85	7.03-7.13	1275°
295	Steel.....	Fe.....	55.85	7.60-7.80
296	Cast Steel.....	Fe.....	55.85	1357°
297	Boride.....	FeB.....	66.85	7.15 ¹⁸ °
298	Carbide.....	Fe ₃ C.....	179.55	7.07 ¹⁸ °
299	Carbide.....	FeC ₄	103.85
300	Disulphide.....	FeS ₂	120.02	4.86-5.18	1171°	decomp.
301	Nitride.....	Fe ₂ N.....	125.71	6.35	dec. 200°
302	Krypton.....	Kr.....	81.8	{ 2.818A { 40.78D }	-169°	151.7°
303	Lead.....	Pb.....	207.1	11.34	327°	1580°
304	Acetate sugar.....	Pb(C ₂ H ₅ O ₂) ₂ . 3H ₂ O.....	379.20	2.50	75°, 3H ₂ O	280°
305	Acetate basic.....	Pb ₂ (C ₂ H ₅ O ₂) ₄ . OH.....	608.28
306	Acetate basic.....	Pb(C ₂ H ₅ O ₂) ₂ . Pb(OH) ₂ . H ₂ O.....	584.28
307	Acetate basic.....	Pb(C ₂ H ₅ O ₂) ₂ . 2Pb(OH) ₂	807.38
308	Carbonate.....	PbCO ₃	267.10	6.43
309	Carbonate basic.....	2PbCO ₃ . Pb (OH) ₂	775.31	decomp.
310	Chloride.....	PbCl ₂	277.02	5.80	498°	861°-954°
311	Chromate.....	PbCrO ₄	323.20	6.123 ¹⁵ °	fusible
312	Chromate basic (chrome red).....	PbCrO ₄ . PbO.....	546.30
313	Hydroxide.....	2PbO. H ₂ O.....	484.22	dec. 145°
314	Hydroxide.....	3PbO. H ₂ O.....	687.32	7.592	H ₂ O. 130°
315	Iodide.....	PbI ₂	460.94	6.12	373°	851°-954°
316	Nitrate.....	Pb(NO ₃) ₂	331.12	4.53 ²⁴ °
317	Oxalate.....	PbC ₂ O ₄	294.9	5.025	dec. 300°
318	Oxide mon-.....	PbO.....	223.10	9.375	906°	white heat
319	Oxide mon-.....	PbO.....	223.10	8.74 ¹⁴ °	white heat
320	Oxide mon-.....	PbO.....	223.10	9.2-9.5	red heat	white heat
321	Oxide sub-.....	Pb ₂ O ₃	430.20	8.342
322	Oxide sesqui-.....	Pb ₂ O ₃	462.20	dec. 370°
323	Oxide red (miniumum).....	Pb ₃ O ₄	685.30	9.096	dec. 500°
324	Oxide per-.....	PbO ₂	239.10	8.91	decomp.
325	Phosphate.....	Pb ₃ (PO ₄) ₂	811.30	6.9-7.3
326	Sulphate.....	PbSO ₄	303.17	6.23	937°
327	Sulphate acid.....	Pb(HSO ₄) ₂ . H ₂ O.....	419.27
328	Sulphate basic.....	PbSO ₄ . PbO.....	526.27
329	Sulphide.....	PbS.....	239.17	7.13-7.7	1015°	1085°
330	Lithium.....	Li.....	7.00	0.534 ²⁰ °	186°	1400°
331	Carbonate.....	Li ₂ CO ₃	74.00	2.111	618°-710°
332	Chloride.....	LiCl.....	42.46	1.998-2.074	491°-600°
333	Hydroxide.....	LiOH.....	24.01	red heat
334	Iodide.....	LiI.....	133.92	4.063 ²⁵ °	330°-446°
335	Nitrate.....	LiNO ₃	69.07	2.334-2.442	253°-264°
336	Oxide.....	Li ₂ O.....	30.00	2.102
337	Sulphate.....	Li ₂ SO ₄	110.07	2.210 ¹⁵ °	818°-853°
338	Magnesium.....	Mg.....	24.32	1.69-1.75	632.6°	2200°

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

SOLUBILITY IN 100 PARTS			CRYSTALLINE FORM AND COLOR
Cold water	Hot water	Alcohol, acids, alkalies, etc.	
290 0.0182°	0.0925°	soluble KI, CS ₂ , alcohol CHCl ₃ ; soluble acids; insoluble alkalies	gray black
291 Insoluble	insoluble	soluble acids; insoluble alkalies	cubical or regular
292 Insoluble	insoluble	soluble acids; insoluble alkalies
293 Insoluble	insoluble	soluble acids; insoluble alkalies
294 Insoluble	insoluble	soluble acids; insoluble alkalies
295 Insoluble	insoluble	soluble acids; insoluble alkalies
296 Insoluble	insoluble	soluble acids; insoluble alkalies
297 Insoluble	soluble HNO ₃ , hot conc. H ₂ SO ₄ ; soluble acids
298 Insoluble	insoluble	s. soluble HCl	gray crystals
299 Insoluble	insoluble dilute acids	regular
300 0.000049	soluble HCl, H ₂ SO ₄	gray crystals
301 decomp.	yellow, reg. or shombe
302
303 Insoluble	insoluble	soluble HNO ₃ , hot concentrated	regular or monoclinic
304 45.64°	200°	insoluble alcohol	monoclinic
305 v. soluble	s. soluble alcohol
306 v. soluble	v. soluble alcohol	needles
307 5.55	18.2	soluble alcohol	needles
308 0.00198	decomp.	insoluble alcohol	rhombic
309 Insoluble	insoluble	0.02 CO ₂ aqua	amorphous
310 0.673°	3.341°	0.09 dilute HCl, insoluble alcohol	rhombic
311 .0000218°	insoluble	soluble acids, alkalies; insoluble	yellow monoclinic
312 Insoluble	insoluble	soluble acids, alkalies	red crystals
313 s. soluble	s. soluble	soluble alkalies
314 0.014	soluble alkalies	regular
315 0.044°	0.4361°	insoluble alcohol, soluble KI	yellow hexagonal
316 39°	138.91°	8.772° alcohol	octahedral
317 0.00018	insoluble alcohol, soluble HNO ₃
318 0.013-02	soluble alkalies, lead	yellow rhombic
319 0.0013	acetate NH ₄ Cl, CaCl ₂	red hexagonal
320 Insoluble	insoluble	SrCl ₂	amorphous
321 Insoluble	decomposes by acids, alkalies	grayish black
322 Insoluble	decomp.	decomposes	reddish yellow
323 Insoluble	soluble glacial H ₂ C ₂ H ₂ O ₂	scarlet
324 Insoluble	insoluble alcohol; soluble glacial H sol. HNO ₃ ; Insol. H ₂ C ₂ H ₂ O ₂	brown hexagonal
325 0.0000142°	soluble conc. H ₂ SO ₄ -HCl NH ₄ salts
326 0.00422°	s. soluble	insoluble alcohol	rhombic
327 s. soluble	s. soluble H ₂ SO ₄	crystalline
328 0.0044°	s. soluble	s. soluble H ₂ SO ₄
329 0.0001	insoluble	soluble conc.; acids insoluble KOH	black regular
330 decomp.	decomp.	soluble acids	silvery
331 1.539°	0.7281°	insoluble alcohol	prisms
332 63.78°	129.96°	2.4755° alcohol soluble ether	octahedral
333 12.70°	17.51°	s. soluble alcohol	crystalline
334 151°	476.99°	crystalline
335 48.3°	227.34°	soluble alcohol	rhombohedral
336 5.22°	6.261°	crystalline
337 35.34°	29.241°	insoluble 80% alcohol
338 Insoluble	s. decomp.	soluble acid, NH ₄ salts

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

	NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY WATER, 1 AIR, 1 (A) H ₂ , 1 (D)	MELTING POINT °C.	BOILING POINT °C.
339	Magnesium					
	Ammon. chloride...	MgCl ₂ .NH ₄ Cl.6H ₂ O.....	256.84	1.456		
340	Ammon. phosphate.	MgNH ₄ PO ₄ .6H ₂ O.....	245.46	1.71 ¹⁵ °	decomp.	
341	Ammon. sulphate...	MgSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O.....	360.64	1.723 ² °		
342	Carbonate.....	MgCO ₃	84.32	3.04	dec. 350°	
343	Carbonate basic....	4MgCO ₃ .Mg(OH) ₂ .5H ₂ O.....	485.70	2.18		
344	Chloride.....	MgCl ₂	95.24	2.177	708°	red heat
345	Chloride.....	MgCl ₂ .6H ₂ O.....	203.34	1.569 ¹⁷	2H ₂ O, 100°	decomp.
346	Hydroxide.....	Mg(OH) ₂	58.34	2.36 ¹⁵ °	decomp.	
347	Nitrate.....	Mg(NO ₃) ₂ .6H ₂ O.....	256.50	1.464	90°	
348	Oxalate.....	MgC ₂ O ₄ .2H ₂ O.....	148.35		decomp.	
349	Oxide.....	MgO.....	40.32	3.22-3.654	1890°-1940°	
350	Phosphate pyro-	Mg ₂ P ₂ O ₇	222.64	2.40		
351	Potassium chloride.	MgCl ₂ .KCl.6H ₂ O.....	277.90			
352	Potassium sulphate.	MgSO ₄ .K ₂ SO ₄ .6H ₂ O.....	402.76	2.0277 ² °		
353	Sulphate.....	MgSO ₄	120.39	2.65		
354	Sulphate.....	MgSO ₄ .7H ₂ O.....	246.50	1.678 ¹⁶ °		
355	Manganese.....	Mn.....	54.93	7.42	1207°	
356	Acetate.....	Mn(C ₂ H ₃ O ₂) ₂ .4H ₂ O.....	245.04	1.6		
357	Ammon. phosphate.	NH ₄ MnPO ₄ .H ₂ O.....	185.99			
358	Carbide.....	Mn ₃ C.....	176.79	6.891 ⁷ °		
359	Carbonate.....	MnCO ₃	114.93	3.125-3.66	decomp.	
360	Chloride.....	MnCl ₂	125.85	2.478	red heat	
361	Chloride.....	MnCl ₂ .4H ₂ O.....	197.91	1.913	87.5°	106°
362	Chloride per-	MnCl ₄	196.77			
363	Ferrocyanide.....	Mn ₂ Fe(CN) ₆ .7H ₂ O.....	447.88			
364	Hydroxide (ous)...	Mn(OH) ₂	88.95	3.258	decomp.	
365	Hydroxide (ic)...	Mn ₂ O ₃ .H ₂ O.....	175.88	4.335	decomp.	
366	Nitrate.....	Mn(NO ₃) ₂ .6H ₂ O.....	287.05	1.82	25.8°	129.4°
367	Oxalate.....	MnC ₂ O ₄ .2H ₂ O.....	187.97	2.453 ²⁰ °	dec. 150°	
368	Oxide (ous).....	MnO.....	70.93	5.09-5.18	white heat	
369	Oxide (ic).....	Mn ₂ O ₃	157.86	4.325-4.82		
370	Oxide di-.....	MnO ₂	86.93	5.026	decomp.	
371	Oxide tri-.....	MnO ₃	102.93		decomp.	
372	Oxide hept-.....	Mn ₂ O ₇	221.86	1.84	-20°	explodes
373	Pyrophosphate.....	Mn ₂ P ₂ O ₇	283.86	3.5847 ²⁰ °		
374	Sulphate (ic).....	Mn ₂ (SO ₄) ₃	398.07		decomp.	160°
375	Sulphate (ous).....	MnSO ₄ .4H ₂ O.....	151.00	2.954	decomp.	
376	Sulphide (ic).....	MnS ₂	119.07	0.463	decomp.	
377	Sulphide (ous).....	MnS.....	87.00	3.63 ¹⁷	decomp.	
378	Sulphide (ous).....	MnS.....	87.00	3.55 ¹⁷	decomp.	
379	Manganomanganese oxide.....	Mn ₃ O ₄	228.79	4.33-4.9	infusible	
380	Mercuridiammonium chloride infusible white ppt.	NHg ₂ Cl. NH ₄ Cl.....	502.97	5.700	volatile	
381	Mercuro ammonium chloride.....	NH ₃ HgCl.....	252.49		decomp.	

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

SOLUBILITY IN 100 PARTS			CRYSTALLINE FORM AND COLOR
Cold water	Hot water	Alcohol, acids, alkalies, etc.	
339	16.7	
340	0.01322	tetragonal
341	13.49°	68.8775	prisms
342	0.0106	hexag. rhombohedral
343	0.04	0.011
344	52.2°	65.878°	crystalline
345	167.0	367.0	monoclinic
346	0.0009	rhombohedral
347	200.0	monoclinic
348	0.0716	0.0810°
349	0.00062	regular or hexagonal
350	insoluble	insoluble
351	hexagonal
352	19.26°	81.7075°	
353	26.9°	73.8100°	
354	76.9°	671.2100°	tetragonal
355	decomp.	decomp.	reddish clinic
356	3.0	pale red monoclinic
357	0.0031	0.05
358	decomp.	decomp.	tetrahedral
359	0.013	insoluble	rose col. rhombohedral
360	62.1610°	123.8100-3°
361	151°	rose col. monoclinic
362	soluble	soluble	green
363	insoluble
364	insoluble	insoluble	hexagonal
365	insoluble	insoluble	tetragonal
366	426.4°	
367	0.05	0.0810°	
368	insoluble	insoluble	grass green regular
369	insoluble	insoluble	black regular
370	insoluble	insoluble
371	soluble	decomp.	reddish
372	v. soluble	decomp.	dark red oil
373	insoluble
374	deliques.	decomp.	green crystals
375	53.2°	6775°
376	insoluble	insoluble	black regular
377	0.00047	insoluble	green crystals
378	0.0006	insoluble	red
379	insoluble	insoluble	brown tetragonal
380	0.14	decomp.
381	insoluble	black

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

	NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY WATER, 1 AIR, 1 (A) H_2 , 1 (D)	MELTING POINT °C.	BOILING POINT °C.
382	Mercuric acetate.....	$Hg(C_2H_3O_2)_2$	318.05	3.2544 ²² °
383	Carbonate basic.....	$2HgO \cdot HgCO_3$	692.00	303°-307°
384	Chloride.....	$HgCl_2$	270.92	5.32-5.46	265°
385	Fulminate.....	$HgC_2N_2O_2$	284.02	4.42	explodes
386	Hydrate.....	$Hg(OH)_2$	234.02	H_2O , 175
387	Iodide red.....	HgI_2	453.84	6.2-6.32	241°-257°	349°
388	Iodide yellow.....	HgI_2	453.84	5.91-6.06	241°	349°
389	Nitrate.....	$Hg(NO_3)_2$
		$2H_2O$	342.04	decomp.
390	Oxide.....	HgO	216.00	11.00-11.29	decomp.
391	Phosphate.....	$Hg_3(PO_4)_2$	790.00
392	Potassium iodide.....	$2HgI_2 \cdot 2KI$
		$3H_2O$	1293.9	4.2892 ³⁻⁵ °
393	Sulphate.....	$HgSO_4$	296.07	6.466	dec. red ht.
394	Sulphate basic.....	$HgSO_4 \cdot 2HgO$	728.07	6.44
395	Sulphide.....	HgS	232.07	7.55-7.70
396	Sulphide.....	HgS	232.07	8.06-8.12	sublimes
397	Mercurous carbonate.....	Hg_2CO_3	460.00	dec. 130°
398	Chloride.....	$HgCl$	235.46	6.993-7.18	sublimes
		$HgCl$	235.46	6.482	400°-500°
399	Chloride.....	HgI	326.92	7.70	290°	310°
400	Iodide.....	$HgNO_3 \cdot 2H_2O$	298.04	4.78	decomp.
401	Nitrate.....	Hg_2O	416.00	8.95-10.69	decomp.
402	Oxide.....	Hg_2SO_4	496.07	7.56	decomp.
403	Sulphate.....	Hg_2S	432.07	melts	decomp.
404	Sulphide.....	HgN_3	242.03	dec. at 0
405	Trinitride.....	Hg	200.00	13.5953 ² °	explodes
406	Mercury.....	Mo	96.00	8.6-9.01	-38.85°	357.33°
407	Molybdenum.....	MoO_2	128.00	6.44
408	Oxide di-.....	Mo_2O_3	240.00
409	Oxide sesqui-.....	MoO_3	144.00	4.392 ¹ °	75°	sublimes
410	Oxide tri-.....	MoS_2	160.14	4.80 ¹⁴ °	oxidizes
411	Sulphide di-.....	MoS_2 (Mineral)	160.14	4.44-4.80
412	Sulphide di-.....	MoS_3	192.21	loses S
413	Sulphide tri-.....	MoS_4	224.28	oxidizes.
414	Sulphide tetra-.....	H_2MoO_4	162.02
415	Molybdic acid.....	$H_2MoO_4 \cdot H_2O$	180.03	3.124	H_2O , 70°
416	Molybdic acid.....	Ni	58.68	8.6-8.93	1435°
417	Nickel.....	$Ni(C_2H_3O_2)_2$	176.73	1.799	decomp.
418	Acetate.....	$NiCl_2 \cdot NH_4^+$
419	Ammon. chloride.....	$Cl \cdot 6H_2O$	291.24	1.645
420	Ammon. sulphate.....	$NiSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$	395.00	1.929 ²⁴ °
421	Carbonate.....	$NiCO_3$	118.68	decomp.
422	Chloride.....	$NiCl_2$	129.60	2.56	sublimes
423	Chloride.....	$NiCl_2 \cdot 6H_2O$	237.70
424	Chloride ammonia.....	$NiCl_2 \cdot 6NH_3$	231.74
425	Cyanide.....	$Ni(CN)_2 \cdot 4H_2O$	110.72	$4H_2O$, 200°	decomp.
426	Hydroxide (ous).....	$4Ni(OH)_2 \cdot H_2O$	388.80	4.36	decomp.
427	Hydroxide (lc.).....	$Ni(OH)_2$	109.70	decomp.
428	Iodide ammonia.....	$NiI_2 \cdot 6NH_3$	414.66	2.101	decomp.
429	Nitrate.....	$Ni(NO_3)_2 \cdot 6H_2O$	290.80	2.0651 ⁴ °	56.7°	136.7°
430	Nitrate ammonia.....	$Ni(NO_3)_2 \cdot 4NH_3 \cdot 2H_2O$	286.83
431	Oxide mon-.....	NiO	74.68	6.6-6.8
432	Oxide sesqui-.....	Ni_2O_3	165.36	4.841 ⁶ °
433	Potassium cyanide.....	$Ni(CN)_2 \cdot 2KCN \cdot H_2O$	258.94	1.875	H_2O , 100°
434	Sulphate.....	$NiSO_4$	154.75	3.4181 ⁶ °

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

SOLUBILITY IN 100 PARTS

CRYSTALLINE FORM
AND COLOR

Cold water	Hot water	Alcohol, acids, alkalies, etc.	
382 251°	100 100°	soluble alcohol	micaceous
383 insoluble			brown scales red
384 5.73°	53.961 00°	43.5 alcohol, 33 ether	rhombic
385 s. soluble	soluble	soluble alcohol, NH_3	octahedral
386 insoluble		soluble acids HNO_3	
387 $0.000447\cdot 5^{\circ}$		1.18 18° alcohol; soluble	red tetragonal
388 insoluble		$\text{Na}_2\text{S}_2\text{O}_3$ alkalies, salts	yellow rhombic
389 v. soluble			
390 0.005152°	decomp.	soluble HNO_3 , insoluble alcohol	crystalline
391 insoluble	0.03951 00°	insoluble alcohol; soluble acid	plates or red
	s. soluble	soluble acid, NH_4Cl ; insol. alcohol	
392 decomp.			
393 decomp.		soluble alcohol, ether, KI	
394 0.002		soluble acids, insoluble alcohol	yellow
395 0.0025		soluble acids, insoluble alcohol	black amorphous
396 insoluble		soluble Na_2S ; insoluble HNO_3	rhombohedral or
397 insoluble		soluble aqua regia	black or yellow
398 0.00031	decomp.	soluble NH_4Cl	rhombic
	0.01	insol. al., ether; sol. $\text{Hg}(\text{NO}_3)_2$ aq.r.	
399 0.00031			
400 0.0417	0.01	s. soluble hot, HNO_3	tetragonal
401 v. soluble		soluble KI ; insoluble alcohol	yellow tetragonal
402 insoluble			monoclinic
403 0.2	decomp.	soluble glacial, $\text{H}_2\text{C}_2\text{H}_2\text{O}_2$ Insoluble	black
404 insoluble	insoluble	soluble $\text{H}_2\text{SO}_4\text{HNO}_3$	monoclinic
405 insoluble		insoluble acids, $(\text{NH}_4)_2\text{S}$	black
406 Insoluble			crystalline
407 Insoluble		soluble HNO_3 concentrated H_2SO_4	silvery octahedral
408 Insoluble		soluble HNO_3 concentrated H_2SO_4	gray
409 Insoluble		s. soluble, conc. H_2SO_4 , insoluble	red prisms
410 0.1071°		insoluble acids, alkalies	black to yellow
411 insoluble		soluble acids, NH_3 aqua	rhombic
412 insoluble		soluble H_2SO_4 , aqua regia	black powder
413 s. soluble			
414 Insoluble		soluble alkalies, sulphides	red brown
415 s. soluble		soluble alkalies, sulphide	brown powder
416 0.1331°		soluble NH_3 aqua	needles
417 insoluble		soluble acids, NH_3 aqua, NH	yellow monoclinic
418 16.6		soluble diluted HNO_3 ; s. soluble	
		insoluble alcohol	apple green prisms
419 v. soluble			
			green rhombic
420 2.5°	39.2 8°	s. soluble $(\text{NH}_4)_2\text{SO}_4$ aqua	green crystals
421 insoluble	insoluble	insoluble acids	greenish rhombic
422 53.8°	87.6 00°	soluble alcohol, NH_3 aqua	yellow scales
423 179.3°	599 100°	v. soluble alcohol	green hexagonal
424 soluble		insoluble alcohol; soluble NH_3 aqua	
425 insoluble		soluble KCN ; insoluble dil. KCl	apple green
426 insoluble		sol. acid, NH_3 aqua, insol. alkalies	pale green
427 insoluble		soluble acids, NH_3 aqua	black
428 decom.		soluble NH_3 aqua	
429 238.5°		soluble alcohol NH_3 aqua	green monoclinic
430 v. soluble		insoluble alcohol	
431 insoluble		soluble acids NH_3 aqua	green octahedral
432 insoluble		soluble HCl , NH_3 aqua	black
433 soluble			red yellow
434 29.3°	83.7 100°	decomposes by acids	yellow monocl. regular
		insoluble alcohol, ether	

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

	NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY WATER, 1 AIR, 1 (A) H ₂ , 1 (D)	MELTING POINT °C.	BOILING POINT °C.
435	Nickel sulphate.....	NiSO ₄ .7H ₂ O	280.86	1.98	98°-100°
436	Sulphide monoclinic	NiS.....	90.75	4.60
437	Sulphide sub-.....	Ni ₂ S.....	149.43	5.52
438	Nickelo-nickelic oxide.	Ni ₃ O ₄	240.04
439	Nitric acid.....	HNO ₃	63.02	1.530 ¹⁵	41.3°	86°
440	Nitrogen.....	N ₂	28.02	0.96737 A	-210.5°	-195.5°
441	Oxide mon- (nitrous)	N ₂ O.....	44.02	0.9371.530 A	-102.3°	89.8°
442	Oxide di- (nitric).....	NO(N ₂ O ₂).....	30.01	1.0367 A	150°	149.9°
443	Oxide tri-.....	N ₂ O ₃	76.02	1.4474 ²	-111°	3.5°
444	Oxide tetr-.....	NO ₂ (N ₂ O ₄).....	46.01	1.4903 ²	10.1°	21.64°
445	Oxide pent-.....	N ₂ O ₅	108.02	1.6421 ⁸	30°	45°-50°
446	Oxalic Acid.....	H ₂ C ₂ O ₄ .2H ₂ O	126.05	1.65318 ⁵	98°
447	Oxygen.....	O ₂	32.00	1.10535 A	-230°	182.7°
448	Ozone.....	O ₃	48.00	1.658 A	dec. 270°	-119°
449	Perchloric acid.....	HClO ₄	100.47	1.764 ²²	39°
450	Periodic acid.....	HIO ₄ .2H ₂ O	227.96	130°	734°
451	Permanganic acid.....	HMnO ₄	119.96
452	Phosphine.....	PH ₃	34.02	1.185 A	-133.5°	-85°
453	Phosphine liquid.....	P ₂ H ₄	66.03	1.007-016	-10°	57°-58°
454	Phosphine solid.....	(P ₄ H ₂) ₃	378.05	burns 200°
455	Phosphoric acid.....	H ₄ P ₂ O ₆	162.03	55°	dec. 70°
456	Hypo-.....	HPO ₃	80.01
457	Meta-.....	H ₃ PO ₄	98.02	1.88418 ²⁰	38.6°
458	Ortho-.....	H ₄ P ₂ O ₇	178.03	61°	-10°
459	Pyro-.....
460	Phosphorous acid.....	H ₈ PO ₂	66.02	1.49318 ⁸	26.5°	decomp.
461	Hypo-.....	H ₃ PO ₂	82.02	1.65121 ²	70.1°
462	Ortho-.....	H ₄ P ₂ O ₅	146.03	38°
463	Pyro-.....	P ₄	124.00	1.83118 ⁰	44.2°	290°
464	Phosphorous yellow.....	P ₄	124.00	2.29616 ⁰	350° (yel.)
465	Phosphorous red.....
466	Chloride tri-.....	PCl ₃	137.38	1.6128 ⁹	111.8°	76°
467	Chloride penta-.....	PCl ₅	208.30	3.60246 ⁸	D 148°	160°-165°
468	Oxide tri-.....	P ₄ O ₆	220.00	2.1352 ¹	22.5°	173.1°
469	Oxide tetr-.....	P ₂ O ₄	126.00	2.53722 ⁶	100°	180°
470	Oxide pent-.....	P ₂ O ₅	142.00	2.387
471	Oxychloride.....	POCl ₃	153.38	1.71163 ⁹	1.5°	107.2°
472	Platinic acid chlor.....	H ₂ PtCl ₆ .6H ₂ O	517.87	2.431	decomp.
473	Platinum.....	Pt.....	195.00	21.4817 ⁶	1753°
474	Chloride di-.....	PtCl ₂	265.92	5.871 ¹
475	Chloride tetra-.....	PtCl ₄	336.84	decomp.
476	Hydroxide (ous).....	Pt(OH) ₂	229.02
477	Sulphide mono-.....	PtS.....	227.07	8.897	decomp.
478	Sulphide di-.....	PtS ₂	259.14	5.27	decomp.
479	Sulphide sesqui-.....	Pt ₂ S ₃	486.21	5.52	decomp.
480	Sulphate.....	Pt(SO ₄) ₂ .4H ₂ O	459.20
481	Potassium.....	K.....	39.10	0.87513 ⁰	62.5°	757.5°
482	Acetate.....	KC ₂ H ₃ O ₂	98.12
483	Aluminate.....	K ₂ Al ₂ O ₄ .3H ₂ O	250.45
484	Antimonate.....	KSbO ₃	207.30
485	Antimonyl tartrate.....	K ₂ SbOC ₄ H ₄ O ₆ . ¹ H ₂ O.....	332.34	2.6	¹ H ₂ O, 100°
486	Arsenate.....	K ₃ AsO ₄	256.30
487	Arsenate.....	K ₂ HAsO ₄	218.21
488	Bromate.....	KBrO ₃	167.02	3.271 ^{17.15}	434°	decomp.
489	Bromide.....	KBr.....	119.02	2.756 ²⁰	710°-750°
490	Carbonate.....	K ₂ CO ₃	138.20	2.3312 ¹⁷	860°-898°

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

SOLUBILITY IN 100 PARTS			CRYSTALLINE FORM AND COLOR
Cold water	Hot water	Alcohol, acids, alkalies, etc.	
435 75. 615 ^{5°}	475. 81 ^{00°}	v. soluble alcohol	green rhombic
436 0.00036	decomp.	soluble HNO ₃ aqua regia	black hexagonal
437 insoluble	soluble HNO	yellow crystals
438 insoluble	soluble acids	gray
439			
440 2. 348 cc. ^{00°}	1.542 cc. ^{20°}	s. soluble alcohol	crystals
441 130. 52 ^{0°}	60. 82 ^{24°}	soluble alcohol, conc. H ₂ SO ₄
442 7. 3 cc. ^{0°}	0. 0 cc. ^{100°}	3. 5 cc. concentrated H ₂ SO ₄
443 soluble	soluble HNO ₃ H ₂ SO ₄ ether	blue solid or red
444 soluble	soluble CS ₂ CHCl ₃ , concentrated	reddish yellow
445 soluble	rhombic
446 4. 9 ^{0°}	120. 7 ^{0°}	soluble alcohol	crystalline
447 4. 89 cc. ^{0°}	2.61 cc. 30°	sol. melted Ag.; s. sol. alcohol
448 0. 88	oil of turpentine and cinnamon
449 soluble	oily
450 v. soluble	soluble alcohol, ether	monoclinic
451 soluble	decomp.
452 s. soluble	insoluble	soluble alcohol, ether, Cu ₂ Cl ₂
453 insoluble	soluble alcohol, turpentine
454 insoluble	insoluble	insoluble alcohol	yellow
455 soluble	crystals
456 soluble	soluble	glassy
457 v. soluble	rhombic
458 v. soluble	decomp.	needles
459			
460			
461 decomp.		tablets
462 0. 00033	s. soluble	1. 5 ^{0°} , 10 ^{31°} ; benzol, 0.4; alcohol, 1000; CS ₂ , 4300; 2 ³⁵ ether; sol. alk.	crystalline
463 insoluble	insoluble	insoluble ether, CS ₂ ; sol. alkalies	needles
464 decomp.	decomp.	yellow regular
465 decomp.	soluble CS ₂ ether, CHCl ₃	red hexag. rhomboh.
466 soluble	decomp.	soluble CS ₂ , C ₆ H ₅ COCl
467 soluble	soluble CS ₂ , ether, CHCl ₃	yellow rhombic
468 v. soluble	soluble concentrated H ₂ SO ₄	liquid or monoclinic
469 decomp.	decomp.	decomposes	ortheorhombic
470 v. soluble	v. soluble	soluble alcohol, ether	plates
471 insoluble	insoluble	soluble aqua regia, fused alkalies	tablets
472 insoluble	insoluble	soluble HCl, NH ₃ aqua	red brown
473 v. soluble	soluble alcohol, ether	grayish
474 insoluble	insoluble	soluble HCl, HBr, SO ₂ aqua, alkalies	brown
475 insoluble	insoluble acids, soluble (NH ₄) ₂ S	brown
476 insoluble	soluble (NH ₄) ₂ S, aqua regia	black
477 insoluble	insoluble acids; soluble aqua regia	black needles
478 soluble	decomp.	soluble acids, alcohol, ether	black or gray
479 decomp.	decomp.	soluble acids, alcohol, mercury	steel gray
480 183 ^{2°}	492 ^{62°}	33 alcohol; insoluble ether	yellow plates
481 v. soluble	insoluble alcohol; soluble alkalies
482 Insoluble	s. soluble	soluble warm KOH	crystals
483 5 ^{8°}	52 ^{100°}	insoluble alcohol	crystals
484 18. 87	v. soluble	4 alcohol	octahedral
485 soluble	needles
486 3. 1 ^{0°}	50 ^{100°}	insoluble alcohol
487 53. 48 ^{0°}	102. 04 ^{100°}	s. soluble alcohol, ether	rhombohedral
488 89. 4 ^{0°}	156 ^{100°}	insoluble alcohol	regular

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

	NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY WATER, 1 AIR, 1 (A) H_2 , 1 (D)	MELTING POINT °C.	BOILING POINT °C.
489	Potassium Carbonate.	$2K_2CO_3 \cdot 3H_2O$.	330.45			
490	Chlorate.	$KClO_3$.	122.56	2.3441 ¹⁷ °	370°	
491	Chloride.	KCl .	74.56	1.9942 ²	772°	subl. w.h.
492	Chromate.	K_2CrO_4 .	194.30	2.721 ⁴	971°	
493	Cobaltinitrite.	$2Co(NO_3)_2 \cdot 6KNO_2 \cdot 3H_2O$.	958.71		dec. 200°	
494	Cobaltocyanide.	$K_4Co(CN)_6$.	371.43			
495	Cyanide.	KCN .	65.11	1.521 ⁶ °	red heat	red heat
496	Dichromate.	$K_2Cr_2O_7$.	294.40	2.692 ⁴ °	396°	dec. 1000°
497	Ferricyanide.	$K_3Fe(CN)_6$.	329.21	1.81091 ⁷ °	decomp.	
498	Ferrocyanide.	$K_4Fe(CN)_6 \cdot 3H_2O$.	422.36	1.85331 ⁷ °		
499	Formate.	$KCHO_2$.	84.11	1.908	150°	decomp.
500	Hydrosulphide.	KSH .	72.18	2.	decomp.	
501	Hydroxide.	KOH .	56.11	2.044	red heat	subl. w.h.
502	Iodate.	KIO_3 .	214.02	3.9751 ⁸ °	560°	
503	Iodate acid.	$KH(IO_3)_2$.	389.95			
504	Iodide.	KI .	166.02	3.0432 ⁴ °	614°-723°	
505	Iodide tri-.	KI_3 .	419.86	3.4981 ⁵ °	45°	
506	Magnesium chloride. (carnallite)	$MgCl_2 \cdot KCl \cdot 6H_2O$.	277.90	1.618		
507	Manganate.	K_2MnO_4 .	197.13		dec. 190°	
508	Nitrate.	KNO_3 .	101.11	2.14°	333°	decomp.
509	Nitrite.	KNO_2 .	85.11	1.1952 ⁵ °		
510	Nitroprusside.	$K_2Fe(CN)_5 \cdot NO \cdot 2H_2O$.	330.14			
511	Oxalate.	$K_2C_2O_4 \cdot H_2O$.	184.22	2.08	decomp.	
512	Oxalate tetr-.	$KH_2(C_2O_4)_2 \cdot 2H_2O$.	254.16	1.836	decomp.	
513	Oxide.	K_2O .	94.20	2.32%	red heat	
514	Oxide per-.	K_2O_4 .	142.20		red heat	decomp.
515	Permanganate.	$KMnO_4$.	158.03	2.70322 ⁴ °	dec. 240°	
516	Persulphate.	$K_2S_2O_8$.	270.34		dec. 100°	
517	Phosphate ortho-.	K_3PO_4 .	212.30			
518	Phosphate hydrogen	K_2HPO_4 .	174.21		decomp.	
519	Phosphate Dihydrogen.	KH_2PO_4 .	136.12	2.3382 ² °	96°	H_2O , 400°
520	Phosphate pyro-.	$K_4P_2O_7 \cdot 3H_2O$.	384.45	2.33	$3H_2O$, 300°	
521	Phosphate meta-.	$K_4P_4O_{12} \cdot 2H_2O$.	472.40	2.26414 ⁵ °	$2H_2O$, 100°	
522	Phosphite.	K_2HPO_3 .	158.21		decomp.	
523	Silicate.	K_2SiO_3 .	154.50			
524	Sulphate acid.	$KHSO_4$.	136.18	2.245	200°	decomp.
525	Sulphide mono-.	K_2S .	110.27	2.13		
526	Tartrate.	$K_2C_4H_4O_6 \cdot \frac{1}{2}H_2O$.	235.24	1.975		
527	Tartrate acid.	$KHC_4H_4O_6$.	188.14	1.956		
528	Radium bromide.	$RaBr_2$.	386.24			
529	Chloride.	$RaCl_2$.	296.9		1650°	
530	Silicic acid meta-.	H_2SiO_4 .	78.32	1.813		
531	Silicic acid ortho-.	H_4SiO_4 .	96.33	1.57617 ⁰ °		
532	Silicon cryst.	Si .	28.3	2.491 ⁶ °	1200°	3500°
533	Graphitic.	Si .	28.3	2.00-2.50		3500°
534	Amorphous.	Si .	28.3	2.00		3500°
535	Carbide.	SiC .	40.30	3.121 ⁵ °		
536	Chloride tetra-.	$SiCl_4$.	170.14	1.524 ²	-89°	59.6°
537	Fluoride.	SiF_4 .	104.30	3.57 Å	-77°	-65°
538	Hydride.	SiH_4 .	32.33			
539	Oxide di-amorphous	SiO_2 .	60.30	2.2015-8°	1600°	

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

SOLUBILITY IN 100 PARTS

CRYSTALLINE FORM
AND COLOR

Cold water	Hot water	Alcohol, acids, alkalies, etc.	
489 129.4°	268.3100°	monoclinic
490 3.3°	60.04.8	0.833 alcohol; soluble alkalies	monoclinic
491 28.5°	56.6100°	soluble alcohol, alkalies	regular
492 61.5°	81.8100.1°	insoluble alcohol	yellow rhombic
493 0.09°	s. soluble	insoluble alcohol, ether	yellow tetragonal
494 soluble	insoluble alcohol, ether	amethyst needles
495 v. soluble	122.2103.2°	soluble glycerine, alcohol	octahedral
496 4.9°	102100°	insoluble alcohol	red tri- or monoclinic
497 334.5°	77.5100°	s. soluble alcohol	red monoclinic
498 27.812.2°	90.696.3°	insoluble alcohol	yellow monoclinic
499 33118°	65799°	rhombic
500 soluble	soluble	v. soluble alcohol	yellow rhombic
501 10715°	178100°	v. soluble alcohol, ether	rhombohedral (2H ₂ O)
502 4.74°	32.3100°	insoluble alcohol; soluble KI	regular
503 1.3315°	rhombic or monoclinic
504 126.1°	205.6100.7°	14.28 alcohol; soluble ether	regular
505 v. soluble	soluble alcohol, KI	dark blue needles
506 64.518.75	decomp.	decomposes by alcohol	hexagonal
507 decomp.	soluble KOH	dark green rhombic.
508 13.36°	247100°	insoluble alcohol, ether
509 30015.8°	insoluble alcohol	prismatic
510 10014°	soluble alcohol	red monoclinic
511 331°	yellowish plates
512 1.813°	triclinic
513 v. soluble	v. soluble	soluble alcohol, ether	gray octahedral
514 decomp.	decomposes by alcohol	yellowish leaflets
515 2.83°	32.3575°	soluble concentrated H ₂ SO ₄	dark red rhombic.
516 0.564°	4.084°	insoluble alcohol	prismatic
517 s. soluble	soluble	insoluble alcohol	rhombic
518 v. soluble	v. soluble	v. soluble alcohol
519 257°	insoluble alcohol	tetragonal
520 soluble	v. soluble	insoluble alcohol
521 s. soluble	soluble acids	amorphous
522 v. soluble	insoluble alcohol
523 soluble	insoluble alcohol
524 36.3°	121.6100°	decomposes by alcohol	monoclinic
525 soluble	v. soluble	sol. alcohol, glycerine; insol. ether	brown crystals
526 133°	15823°	s. soluble alcohol	monoclinic
527 0.37°	6.1100°	insol. alcohol, H ₂ C ₂ H ₃ O ₂ ; soluble	rhombic
528 soluble	soluble	soluble alcohol
529	yellowish regular
530 insoluble	soluble alkalies; insoluble NH ₄ Cl	amorphous
531 s. soluble	soluble alkalies; insoluble NH ₄ Cl	amorphous
532 insoluble	insoluble	insoluble HF; soluble HNO ₃	gray octahedral
533 insoluble	insoluble	insoluble HF; soluble HNO ₃	crystalline
534 insoluble	insoluble	soluble HF, KOH	brown amorphous
535 insoluble	insoluble	insoluble acids	rhombic plates
526 decomp.	decomposes by alcohol	yellow
537 decomp.	soluble alcohol, ether, HNO ₃	gas
538 insoluble	decomposes by KOH
539 insoluble	soluble hot alkalies, HF	amorphous

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

	NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY WATER, 1 AIR, 1 (A) H ₂ , 1 (D)	MELTING POINT °C.	BOILING POINT °C.
540	Silicon					
	Oxide di cryst.	SiO ₂	60.30	2.318-2.654	175°	
541	Sulphide	SiS ₂	92.44			white heat
542	Silver	Ag.....	107.88	10.53	961.5°	2050°
543	Silver	Ag.....	107.88		955° in air	2050°
544	Acetate	AgC ₂ H ₃ O ₂	166.90	3.259	decomp.	
545	Bromide	AgBr.....	187.80	6.473 ²⁵	427°	
546	Carbonate	Ag ₂ CO ₃	275.76	6.0 ^{17.5} ^b	dec. 200°	
547	Chloride	AgCl.....	143.34	5.561	451°-460°	
548	Chromate	Ag ₂ CrO ₄	331.86	5.523		
549	Cyanide	AgCN.....	133.89	3.95	decomp.	
550	Iodide	AgI.....	234.80	5.675 ²⁴	526°-556°	
551	Nitrate	AgNO ₃	169.89	4.352 ¹⁹	218°	decomp.
552	Oxide	Ag ₂ O.....	231.76	7.521	O, 300°-340°	
553	Oxide per-	AgO.....	123.88	5.474	dec. 100°	
554	Sulphate	Ag ₂ SO ₄	311.83	5.40	654°-676°	decomp.
555	Sulphide	Ag ₂ S.....	247.83	6.85-7.32	812°	oxidizes
556	Sulphocyanate	AgCNS.....	165.96			
557	Sodium	Na.....	23.00	0.97351 ^{2.5}	97.6°	877.5°
558	Acetate	NaC ₂ H ₃ O ₂ . 3H ₂ O.....	136.7	1.4	58°	
559	Aluminate	Na ₂ Al ₂ O ₄	164.2			
560	Ammonium phos.	NaNH ₄ HPO ₄ . 4H ₂ O.....	209.11	1.554	decomp.	
561	Antimonate	2NaSbO ₃ .7H ₂ O	508.51			
562	Arsenite	Na ₂ HAsO ₃	170.01	1.87		
563	Borate tetra-	Na ₂ B ₄ O ₇	202.00	2.387	878°	
564	Borate tetra-borax	Na ₂ B ₄ O ₇ .10H ₂ O	382.16	1.69417°	red heat	
565	Borate meta-	Na ₂ B ₂ O ₄ .4H ₂ O	204.06		57°	
566	Bromide	NaBr.....	102.92	2.95-3.08	757.7°	
567	Carbide	Na ₂ C ₂	70.00	1.575 ¹⁶		700°
568	Carbonate	Na ₂ CO ₃	106.00	2.43-2.51	849°	decomp.
569	Carbonate	Na ₂ CO ₃ .10H ₂ O	288.16	1.446 ¹⁷	34°	103°
570	Carbonate acid	NaHCO ₃	84.01	2.19-2.22		
571	Chloride	NaCl.....	58.46	2.1741	804°	white heat
572	Chromate	Na ₂ CrO ₄ . 10H ₂ O.....	342.26	2.71 ¹⁶	19.92°	
573	Cyanide	NaCN.....	49.01			
574	Dichromate	Na ₂ Cr ₂ O ₇ .2H ₂ O	298.23	2.52 ¹⁶		
575	Hydroxide	NaOH.....	40.01	2.13	1098°	white heat
576	Iodide	NaI.....	149.92	3.654 ^{18.2}	603°-695°	
577	Nitrite	NaNO ₂	69.01	2.157 ²⁵	213°	
578	Nitroprusside	Na ₂ Fe(CN) ₅ . NO.2H ₂ O.....	297.84	1.6803 ¹⁷		
579	Oxide	Na ₂ O.....	62.00	2.25	red heat	sublimes
580	Phosphate trisodium	Na ₃ PO ₄ .12H ₂ O	380.19	1.618-1.645	77°	
581	Phosphate disodium	Na ₂ HPO ₄ . 12H ₂ O.....	358.2	1.5235 ¹⁶	35°	
582	Phosphate mono-	NaH ₂ PO ₄ .H ₂ O	138.03	2.040	2H ₂ O, 200°	
583	Phosphate meta-	Na ₄ P ₄ O ₁₂	408.00	2.476	617°	
584	Phosphate pyro-	Na ₄ P ₂ O ₇ .10H ₂ O	446.16	1.824	anh. 970°	
585	Phosphate pyro-	Na ₂ H ₂ P ₂ O ₇ . 6H ₂ O.....	330.11	1.848		
586	(disodium)	Na ₂ HPO ₄ .5H ₂ O	216.09		53°	
587	Phosphite	2NaH ₂ PO ₃ . 5H ₂ O.....	298.11		42°	
588	Phosphite acid	Na ₂ SiO ₃	122.30		10.07°	
589	Silicate	Na ₂ Si ₄ O ₉	303.20			
590	Silicate water glass	Na ₂ SnO ₃ .3H ₂ O	267.05			
591	Stannate	Na ₂ SO ₄	142.07	2.671 ²⁴	888°	

HANDBOOK OF CHEMISTRY AND PHYSICS

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

SOLUBILITY IN 100 PARTS

CRYSTALLINE FORM
AND COLOR

Cold water	Hot water	Alcohol, acids, alkalies, etc.	
540 insoluble	insoluble alkalis; soluble HF	hexagonal prisms
541 decomp.	sol. dil. alkalies; decomp. by alcohol	needles
542 insoluble	insoluble	{ soluble HNO ₃ , hot concentrated { H ₂ SO ₄ ; insoluble alkalies
543
544 1.0214°	2.5280°	0.051 NH ₃ aqua; soluble KCN	laminae
545 0.00002625°	0.0001410°	sol. NH ₃ aq., Na ₂ S ₂ O ₃ ; insol. alcohol	pale yellow octahedral
546 0.003115°	0.0510°	soluble conc. HCl, NH ₃ aqua	regular
547 0.00015280°	0.0022100°	soluble acids, NH ₃ aqua, KCN	dark red crystals
548 0.002818°	soluble NH ₃ aqua, KCN, HNO ₃	white curdy
549 0.000002125°	soluble KCN, Na ₂ S ₂ O ₃ , NaCl	yellow hexagonal
550 0.00003521°	66 alcohol, ether, glycerine	rhombic or hexagonal
551 122°	940100°	soluble NH ₃ aqua, KCN	brown powder
552 0.00432°	soluble concentrated H ₂ SO ₄ , HNO ₃	black octahedral
553 insoluble	1.45100°	soluble H ₂ SO ₄ , HNO ₃ , NH ₃	rhombic
554 0.58	soluble concentrated H ₂ SO ₄ , HNO ₃	gray black regular
555 0.00002	0.0002310°	insoluble dil. acids; soluble NH ₃ aq.	curdy
556 0.00002125°	decomp.	insoluble benzol, kerosene
557
558 26°	200	soluble alcohol, 2.1 soluble acids	monoclinic prisms
559 soluble	v. soluble	insoluble alcohol	amorphous
560 16.7	100
561 .0312.3°	insoluble alcohol	monoclinic
562 v. soluble	s. soluble	s. soluble alcohol, NH ₄ salts	octahedral
563 1.35°	52.5100°
564 2.83°	201.4100°	insoluble alcohol	monoclinic
565 soluble	v. soluble	insoluble acids; soluble glycerine	monoclinic
566 79.5°	114.9100°	regular
567 decomp.	decomp.	s. soluble alcohol	powder
568 7.1°	45.4100°	soluble acids, decomposes alcohol
569 21.33°	114238°	insoluble alcohol	monoclinic
570 6.90°	16.4060°	insoluble alcohol	monoclinic
571 35.7°	39100°	insoluble conc. HCl; s. sol. alcohol	regular
572 87.36	yellow triclinic
573 soluble	v. soluble	s. soluble alcohol
574 239°	122698°	s. soluble alcohol	red triclinic
575 133.318°	25080°	v. soluble alcohol, ether, glycerine
576 158.70°	312.5100°	v. soluble alcohol	regular
577 83.320°	v. soluble	0.31 ether; alcohol, 4.43	crystalline
578 4015°	red triclinic
579 decomp.	decomp.	decomposes alcohol	grayish
580 28.315°	hexagonal
581 6.3°	insoluble alcohol	rhombic
582 v. soluble	insoluble alcohol	rhombic
583 insoluble	soluble acids, alkalies
584 5.4°	93	insoluble alcohol	monoclinic
585
586
587 soluble	v. soluble	insoluble alcohol	rhombohedral
588 56°	193
589 soluble	soluble	insoluble alcohol, Na and K salts
590 soluble	soluble	insoluble alcohol, Na and K salts	amorphous
591 67.4°	61.320°	insoluble alcohol	hexagonal plates
592 4.8°	42.5100°	insoluble alcohol	rhombic monoclinic

HANDBOOK OF CHEMISTRY AND PHYSICS

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

	NAME	FORMULA	MOLECULAR WEIGHT	SPECIFIC GRAVITY WATER, 1 AIR, 1 (A) H ₂ , 1 (D)	MELTING POINT °C.	BOILING POINT °C.
593	Sodium					
	Sulphide mono-	Na ₂ S.....	78.07	2.471	infusible	
594	Sulphide penta-	Na ₂ S ₅	206.35		
595	Sulphite.....	Na ₂ SO ₃	126.07	150°	decomp.
596	Sulphite.....	Na ₂ SO ₃ .7H ₂ O.....	252.18	1.561	7H ₂ O, 150°	decomp.
597	Sulphite acid.....	NaHSO ₃	104.08	1.48	
598	Stannic acid meta-	H ₁ Sn ₅ O ₁₅	845.08	
599	Chloride.....	SnCl ₄	260.84	2.2788 ²	-33°	114°
600	Oxide.....	SnO ₂	151.00	6.6-6.9	1127°	
601	Oxide cryst.	SnO ₂	151.00	6.7-6.85	infusible	
602	Sulphide.....	SnS ₂	183.14	4.42-4.60	
603	Stannous chloride.....	SnCl ₂	189.92	249.3°	603°-623°
604	Chloride tin salt.....	SnCl ₂ .2H ₂ O.....	225.95	2.71 5-6°	37.7°	decomp.
605	Hydroxide.....	Sn(OH) ₂	153.02	
606	Oxide.....	SnO.....	135.00	6.3	decomp.	
607	Sulphate.....	SnSO ₄	215.07	
608	Strontium.....	Sr.....	87.62	2.54	900°	burns
609	Carbonate.....	SrCO ₃	147.62	3.62	dec. 1155°	
610	Chloride.....	SrCl ₂	158.54	3.054	872°	
611	Chloride.....	SrCl ₂ .6H ₂ O.....	266.64	1.96415-7°	112°	
612	Chromate.....	SrCrO ₄	203.72	3.89515°	
613	Hydroxide.....	Sr(OH) ₂	121.64	3.625	
614	Nitrate.....	Sr(NO ₃) ₂	211.64	2.9815-8°	645°	
615	Oxalate.....	SrC ₂ O ₄ .H ₂ O.....	193.64	decomp.	
616	Oxide.....	SrO.....	103.62	4.45-4.75	3000°	
617	Sulphate.....	SrSO ₄	183.69	3.71-3.97	
618	Sulphur amorph soft.....	S ₈	256.56	1.95560°	120°	444.6°
619	Yellow.....	S ₈	256.56	2.046	444.6°
620	Colloidal S ₈	S ₈	256.56	444.6°
621	Plastic S _γ	S ₈	256.56	1.92	444.6°
622	Monoclinic S _β	S ₈	256.56	1.958	119.25°	444.6°
623	Rhomboic S _α	S ₈	256.56	2.05-2.07	114.5°	444.6°
624	Chloride tetra-	SCl ₄	173.91	-30°	
625	Oxide di-.....	SO ₂	64.07	2.2639 D 1.43368°	-76.1	10°
626	Oxide sesqui-.....	S ₂ O ₃	112.14	decomp.	
627	Oxide α-tri-.....	SO ₃	80.07	2.75 D 1.972°	14.8°	46.2°
628	Oxide β-tri-.....	(SO ₄) ₂	160.14	1.040	50°	
629	Oxide hepta-.....	S ₂ O ₇	176.14	0°	decomp.
630	Sulphuric acid.....	H ₂ SO ₄	98.09	1.83421 ⁸	10.46°	
631	Tin.....	Sn.....	119.00	6.53-6.56	sta. 170°	2200°
632	Tin.....	Sn.....	119.00	7.298415°	232°	
633	Tin.....	Sn.....	119.00	5.846615 ^a	sta. 20°	
634	Titanic acid.....	H ₂ TiO ₃	98.12	
635	Titanium.....	Ti.....	48.1	3.543	3000°	
636	Tungsten.....	W.....	184.00	18.77	2800°	
637	Zinc.....	Zn.....	65.37	7.14215°	419°	918°
638	Acetate.....	Zn(C ₂ H ₃ O ₂) ₂	183.42	1.84	242°	
639	Chloride.....	ZnCl ₂	136.29	2.911 ⁵	365	730°
640	Hydroxide.....	Zn(OH) ₂	99.39	3.053	decomp.	
641	Nitrate.....	Zn(NO ₃) ₂ .6H ₂ O.....	297.49	2.06515°	36.4°	131°
642	Oxalate.....	ZnC ₂ O ₄ .2H ₂ O.....	189.04	2.53217-5°	
643	Oxide.....	ZnO.....	81.37	5.78	
644	Oxide per-.....	ZnO ₂	97.37	
645	Phosphate.....	Zn ₃ (PO ₄) ₂	386.11	3.99815°	red heat	
646	Phosphate pyro-.....	Zn ₂ P ₂ O ₇	304.74	
647	Sulphate.....	ZnSO ₄	161.44	3.623515°	dec. 400°	
648	Sulphate.....	ZnSO ₄ .7H ₂ O.....	287.55	1.964	50°	
649	Sulphate.....	ZnSO ₄ .6H ₂ O.....	269.54	2.07	
650	Sulphide.....	ZnS.....	97.44	3.98	1049°	
651	Sulphide (blende).....	ZnS.....	97.44	4.03-4.07	1049°	

PHYSICAL CONSTANTS OF INORGANIC COMPOUNDS—Con.

SOLUBILITY IN 100 PARTS

CRYSTALLINE FORM
AND COLOR

Cold water	Hot water	Alcohol, acids, alkalies, etc.	
593 15.4 ^{10°}	59.2 ^{90°}	s. soluble alcohol; insoluble ether	flesh colored amorph.
594 soluble	soluble	s. soluble alcohol
595 14.1 ^{0°}	49.5 ^{40°}	insoluble alcohol
596 32.83 ^{0°}	196 ^{40°}	insoluble alcohol	monoclinic prism
597 s. soluble	soluble	insoluble alcohol
598 insoluble	insoluble	insoluble acids; sol. KOH	amorphous
599 soluble	decomp.	sol. alcohol, CS ₂ , oil of turpentine	liquid
600 insoluble	insoluble	soluble concentrated H ₂ SO ₄	amorphous
601 insoluble	insoluble	soluble concentrated H ₂ SO ₄	tetragonal, hexagonal
602 0.00002	insoluble	soluble conc. HCl, alkalies, sul.	yellow hexagonal
603 83.9 ^{0°}	269.8 ^{15°}	sol. alkalies, alcohol, tartaric acid
604 118.7 ^{0°}	sol. alkalies, alcohol, tartaric acid
605 insoluble	decomp.	sol. dil. acids, alkalies, insoluble
606 insoluble	soluble acids, NH ₄ Cl; insol. alkalies
607 18.9 ^{10°}	18.2 ^{100°}	soluble H ₂ SO ₄
608 decomp.	decomp.	soluble acids, alcohol
609 0.00111 ^{15°}	0.12 H ₂ CO ₃ aqua; soluble acids
610 44.2 ^{0°}	101.9 ^{100°}	soluble absolute alcohol
611 106.2 ^{0°}	205.8 ^{40°}
612 0.12 ^{15°}	soluble acetic acid, NH ₄ salts	monoclinic prisms
613 0.41 ^{0°}	21.83 ^{100°}	soluble NH ₄ Cl
614 39.5 ^{0°}	101.1 ^{130°}	0.012 absolute alcohol	regular octahedral
615 0.00511 ^{15°}	5 ^{100°}	soluble HCl
616 decomp.	s. soluble alcohol, insoluble ether	gray white
617 0.0114 ^{15°}	0.0104 ^{100°}	insoluble diluted H ₂ SO ₄ , alcohol	rhombic
618 insoluble	insoluble	partly soluble CS ₂	pale yellow amorph.
619 insoluble	insoluble CS ₂	amorphous
620 soluble	insoluble NaCl	pale yellow
621 insoluble	insoluble CS ₂	citron yellow amorph.
622 insoluble	soluble CS ₂ , alcohol, CH ₂ Cl, C ₆ H ₆	yellow prisms
623 insoluble	24, 181.3, CS ₂	yellow octahedral
624 decomp.	decomp.	yellow brown liquid
625 7979 cc. ^{50°}	1560 cc. ^{50°}	soluble alcohol, H ₂ SO ₄ , H.C ₂ H ₃ O ₂
626 decomp.	decomposes by alcohol, ether	blue green crystals
627 decomp.	decomp.	soluble concentrated H ₂ SO ₄	prismatic crystals
628 decomp.	decomp.
629 decomp.	decomp.	silky needles
630	needles
631 insoluble	insoluble	soluble concentrated H ₂ SO ₄
632 insoluble	insoluble	decomposes alcohol
633
634 insoluble	insoluble	soluble HCl, H ₂ SO ₄ , dilute HNO ₃ ,
635 insoluble	decomp.	aqua regia, hot KOH
636 insoluble	insoluble
637 insoluble	insoluble	insol. alcohol, sol. acids, alkalies
638 30 ^{25°}	44.6 ^{100°}	soluble acids
639 209 ^{0°}	616 ^{100°}	soluble HNO ₃ aqua. regia, conc. hot
640 0.000421 ^{15°}	insoluble	soluble acids, alkalies, HC ₂ H ₃ O ₂
641 324.5 ^{0°}	2.82 ^{25°} 166.7 ^{0°} alcohol
642 0.0081 ^{15°}	100 ^{12.5} alcohol, v. soluble ether
643 0.001	soluble acids, alkalies
644 insoluble	v. soluble alcohol
645 insoluble	soluble acids, alkalies
646 insoluble	soluble acids, alkalies, NH ₄ Cl
647 43.02 ^{0°}	95.03 ^{100°}	decomposes by acids
648 115.2 ^{0°}	633.59 ^{100°}	salts
649	soluble acids, alkalies, NH ₄ aqua.
650 0.00069	insoluble	s. soluble alcohol
651 0.000065	insoluble	s. soluble alcohol
		v. soluble acids; insoluble H ₂ SO ₄
		soluble acids, NH ₃ aqua.

SEPARATION OF THE METALS INTO GROUPS

Outline of the process

Solution containing all the metals: add HCl .

Precipitate: $AgCl$, $HgCl_2$, $PbCl_2$.	Filtrate: add H_2S .	Precipitate: HgS , PbS , Bi_2S_3 , CdS , CuS , As_2S_3 , Sb_2S_3 , SnS , SnS_2 . Add $(NH_4)_2Sx$.	Filtrate: add NH_4OH and $(NH_4)_2S$.
Residue: HgS , PbS , Bi_2S_3 , CdS , CuS .	Solution: $(NH_4)_2AsS_4$, $(NH_4)_2SbS_4$, $(NH_4)_2SnS_2$.	Precipitate: AlO_2H_2 , CrO_3H_2 , CoS , NiS , FeS , ZnS , MnS .	Filtrate: add $(NH_4)_2CO_3$, $BaCO_3$, Mg . K and $SrCO_3$, Na salts. $CaCO_3$.

PRECIPITATION AND SEPARATION OF LEAD, SILVER AND MERCURIOUS MERCURY

Outline of the process

Precipitate: $AgCl$, $HgCl$, $PbCl_2$ add hot water

Residue: $AgCl$, $HgCl$. add NH_4OH .	Solution: $PbCl_2$		
Residue: NH_2HgCl	Solution: add HNO_3	add H_2SO_4 to one part	add H_2S to another
Hg.	Precipitate: $AgCl$.	Precipitate: $PbSO_4$	Precipitate: PbS .

SEPARATION OF MERCURY, LEAD, BISMUTH, CADMIUM AND COPPER

Outline of the process

Precipitate: HgS , PbS , Bi_2S_3 , CdS , CuS . Boil with HNO_3 .

Residue: HgS .	Solution: add H_2SO_4 .		
Dissolve in HCl and $KClO_3$; add $SnCl_2$.	Precipitate: $PbSO_4$. BiO_3H_3 . <i>Dissolve in HCl, and add to H_2O.</i>		
Precipitate: $HgCl$	Precipitate: $BiOCl$.	Filtrate: add KCN and H_2S .	Precipitate: CdS . Solution: $KCN.CuCN$

SEPARATION OF ARSENIC, ANTIMONY AND TIN

Outline of the process

Precipitate: As_2S_3 , Sb_2S_3 , SnS_2 . Add strong HCl .

Residue: As_2S_3 .	Solution: $SbCl_4$, $SnCl_4$ (and small amount of H_3AsO_4). <i>Place in hydrogen generator.</i>		
Dissolve in HCl and $KClO_3$; add NH_4OH , NH_4Cl , and $MgCl_2$.	Residue: Sn. <i>Dissolve in strong HCl and add $HgCl_2$.</i>		
Precipitate: $MgNH_4AsO_4$.	Residue: Sn . <i>Deposit: Sb (and As).</i>	Gas evolved: SbH_3 (and AsH_3). <i>Pass through a hot tube.</i>	
	Precipitate: $HgCl$.	Treat with $NaOCl$.	
		Residue: Sb.	Solution: (H_3AsO_4) .

SEPARATION OF NICKEL AND COBALT

Outline of the process

Precipitate: AlO_4H_3 , CrO_4H_3 , CoS , NiS , FeS , MnS , ZnS , $[Ba_2(PO_4)_2$, $Sr_2(PO_4)_2$, $Ca_2(PO_4)_2$, $MgNH_4PO_4$]. Treat with dilute HCl .

Residue: CoS, NiS (FeS in small amount). Dissolve in aqua regia and add NH_4OH .	Solution.
Precipitate: FeO_4H_3 .	Filtrate: expel NH_4 salts, add KNO_3 and $HC_2H_3O_2$.
	Precipitate: $Co(NO_3)_3$, $3KNO_2$. Solution: add $NaOH$.
	Precipitate: NiO_2H_3 . <i>Test in borax bead.</i>

SEPARATION OF ALUMINUM, CHROMIUM IRON, MANGANESE, ZINC

Outline of the process

Solution: AlCl_3 , CrCl_3 , FeCl_3 , MnCl_2 , ZnCl_2 , BaCl_2 , SrCl_2 , CaCl_2 , MgCl_2 , H_3PO_4 .Boil the rest with HNO_3 , add FeCl_3 and BaCO_3 .Add H_2SO_4 and alcohol to a part.Boil a part with HNO_3 and add $\text{K}_4\text{Fe}(\text{CN})_6$.

Precipitate: Filtrate. Reject.

 BaSO_4 , SrSO_4 , CaSO_4 .Fuse with Na_2CO_3 ; add water.Residue: BaCO_3 , SrCO_3 , CaCO_3 .Add HNO_3 .Solution: $\text{Ba}(\text{NO}_3)_2$, $\text{Sr}(\text{NO}_3)_2$, $\text{Ca}(\text{NO}_3)_2$.Add H_2SO_4 and alcohol to a part.Boil a part with HNO_3 and add $\text{K}_4\text{Fe}(\text{CN})_6$.Precipitate: FeO_3H_3 , AlO_3H_3 , CrO_3H_3 , FePO_4 (BaCO_3).Dissolve in HCl and add H_2SO_4 .Precipitate: MnS , ZnS .Dissolve in HCl and add NaOH .Precipitate: MnO_2 , ZnS .Dissolve in HCl and add NaOH .Precipitate: MnO_2H_2 .Fuse with Na_2CO_3 .Precipitate: ZnS .Precipitate: CaCO_3 .Fuse with Na_2CO_3 .Precipitate: CaC_2O_4 .

Reject.

Precipitate: MgNH_4PO_4 .

Formed.

Precipitate: Na_2CrO_4 .

Formed.

SEPARATION OF BARIUM, STRONTIUM CALCIUM, MAGNESIUM AND ALKALI METALS

*Outline of the process*Solution: Ba, Sr, Ca, Mg, K, Na, and NH₄ salts. Add (NH₄)₂CO₃.

Precipitate: BaCO ₃ , SrCO ₃ , CaCO ₃ . Dissolve in HNO ₃ and evaporate the solution to dryness. Treat the residue with alcohol-ether mixture.	Filtrate. Add (NH ₄) ₂ C ₂ O ₄ and (NH ₄) ₂ SO ₄ .	Precipitate: CaC ₂ O ₄ , BaSO ₄ .	Filtrate. Divide into two parts.
Residue: Ba(NO ₃) ₂ , Sr(NO ₃) ₂ . Dissolve in water, and add K ₂ CrO ₄ .	Solution: add dilute H ₂ SO ₄ .	Precipitate: CaSO ₄ .	Add NH ₄ OH and NaHPO ₄ . Test in flame.
Precipitate: BaCrO ₄ .	Solution: add (NH ₄) ₂ CO ₃ .	Precipitate: MgNH ₄ PO ₄ .	Add H ₂ PtCl ₆ .
		Precipitate: Na.	Precipitate: K ₂ PtCl ₆ .

TEXT BOOKS, MANUALS AND REFERENCE BOOKS

Physics

- Adams' "Physical Laboratory Manual."
- Ames' "Theory of Physics."
- Ames' "Text Book of General Physics"
- Ames and Bliss' "Manual of Experiments in Physics."
- Avery's "School Physics."
- Ayrton's "Practical Electricity."
- Bonney's "Induction Coils." (A practical manual for amateur coil makers.)
- Bottone's "Electrical Instrument Making."
- Bottone's "Galvanic Batteries."
- Boys' "Soap Bubbles and Forces Which Mould Them."
- Carhart's "Electrical Measurements."
- Carhart's "Primary Batteries."
- Carhart's "University Physics." Part I, Part II.
- Carhart and Chute's "High School Physics."
- Carhart and Patterson's "Electrical Measurements."
- Chester, Dean and Timmerman's "Laboratory Manual in Physics."
- Chute's "Practical Physics."
- Chute's "Laboratory Manual."
- Coleman's "Laboratory Manual."
- Cooley's "Student's Manual of Physics."
- Crew's "Elements of Physics."
- Crew's "General Physics."
- Crew and Tatnall's "Laboratory Manual of Physics."
- Cajori's "History of Physics in Its Elementary Branches."
- Dolbear's "First Principles of Natural Philosophy."
- Dolbear's "Art of Projection."
- Derr's "Photography for Students of Physics and Chemistry."
- Everett's "C. G. S. System of Units."
- Ferry's "Brief Course in Elementary Dynamics."
- Ferry's "Practical Physics."
- Gage's "Principles of Physics." (Revised by Goodspeed.)
- Gage's "Laboratory Manual and Note Book."
- Ganot's "Elements of Physics." (Seventeenth edition.)
- Hall and Bergen's "Text Book of Physics."
- Harvard "Descriptive List of Elementary Physics Experiments."
- Hastings and Beach's "Text Book of General Physics."
- Hoadley's "Brief Course in Physics."
- Hopkins' "Experimental Science." (Twenty-third edition.) Two volumes.
- Jackson's "Elementary Electricity and Magnetism."
- Kerr's "Wireless Telegraphy."
- Lockyer's "Spectrum Analysis."
- Lodge's "Elementary Mechanics."
- Mann's "Manual of Advanced Optics."
- Mann and Twiss' "Physics."
- Meadowcroft's "A, B, C of Electricity."
- Miller's "Laboratory Physics."
- Millikan's "Mechanics, Molecular Physics and Heat."

- Millikan and Gale's "A First Course in Physics."
Millikan and Gale's "A Laboratory Course in Physics."
Millikan and Mill's "Electricity, Sound and Light."
Mumper's "Text Book of Physics."
Michelson's "The Velocity of Light."
Michelson's "Light Waves and Their Uses."
Nichols' "Outlines of Physics."
Nichols' "Laboratory Manual of Applied Electricity and Magnetism." Vol. I, Vol. II.
Nichols' Smith and Turton's "Manual of Experimental Physics."
Ostwald's "Manual of Physical and Chemical Measurements."
Rood's "Modern Chromatics."
Roscoe's "Spectrum Analysis."
Salomon's "Experiments with Vacuum Tubes."
Sabine's "Laboratory Course in Physical Measurements."
Shearer's "Notes and Questions in Physics."
Smithsonian "Instrument Tables."
Stewart and Gee's "Lessons in Elementary Practical Physics."
Stewart's "Lessons in Elementary Physics."
Twiss' "Laboratory Lessons in Physics."
Thompson's "Elementary Lessons in Electricity and Magnetism."
Thompson's "Dynamo and Electric Machinery."
Thompson's "Light Visible and Invisible."
Trevert's "A, B, C of Wireless Telegraphy."
Tyndall's "Heat."
Tyndall's "Sound."
Watson's "Text Book of Physics."
Watson's "Text Book of Practical Physics."
Wentworth and Hill's "Text Book of Physics."
Wentworth and Hills' "Laboratory Exercises in Physics."
Whiting's "Physical Measurements."
Whiting's "Mathematical and Physical Tables."

Chemistry

- Arrhenius' "Immuno-Chemistry."
Baskerville's "General Inorganic Chemistry."
Baskerville and Curtis' "Laboratory Manual."
Brownlee and Others "Principles of Chemistry."
Brownlee and Others "Laboratory Manual."
"Chicago High School Manual of Chemistry."
Clarke and Dennis' "Elementary Chemistry."
Clarke and Dennis' "Laboratory Manual."
Blount's "Practical Electro-Chemistry."
Cohen's "Tests and Reagents."
Fresenius' "Quantitative Chemical Analysis." Two volumes.
Getman's "Blow Pipe Analysis."
Hempel's "Methods of Gas Analysis."
Hessler & Smith's "Essentials of Chemistry with Manual."
Irish's "Qualitative Analysis for Secondary Schools."
Jones' "Elements of Physical Chemistry."
Jones' "Electrolytic Dissociation."

- Jones' "Elements of Inorganic Chemistry."
Le Blanc's "Text Book of Electro-Chemistry."
Linebarger's "Elementary Chemistry."
McGregory's "Manual of Qualitative Chemical Analysis."
McPherson and Henderson's "An Elementary Study in Chemistry."
McPherson and Henderson's "Exercises in Chemistry."
Nernst's "Theoretical Chemistry from Standpoint of Avagadro's Rule and Thermo-Dynamics."
Newell's "Descriptive Chemistry."
Newell's "Experimental Chemistry."
Newell's "Manual of Experiments."
Noyes' "Qualitative Chemical Analysis."
Noyes' "Elements of Qualitative Chemical Analysis."
Noyes' "Organic Chemistry."
Ostwald's "Manual of Physical and Chemical Measurements."
Ostwald's "Principles of Inorganic Chemistry."
Rolle's "The Polariscopic in the Chemical Laboratory."
Smith and Hale's "Laboratory Outline in General Chemistry."
Stoddard's "Outline of Qualitative Analysis."
Storer and Lindsay's "Elementary Manual of Chemistry."
Remsen's "Organic Chemistry."
Remsen's "Inorganic Chemistry."
Remsen's "College Text Book in Chemistry."
Remsen's "Introduction to Study of Chemistry."
Remsen's "Laboratory Manual."
Talbot & Blanchard's "Electrolytic Dissociation Theory."
Walker's "Introduction to Physical Chemistry."
Williams' "Elements of Chemistry."
Williams' "Introduction to Chemical Science."
Williams' "Chemical Experiments."
Williams' "Laboratory Manual in Inorganic Chemistry."
Williams' "Laboratory Manual in General Chemistry."
Young's "Fractional Distillation."

SULPHURIC ACID

Lunge and Isler

SPECIFIC GRAVITY 15° / 4° IN VACUO	100 PARTS BY WEIGHT CORRESPOND TO		1 LITER CONTAINS GRAMS		SPECIFIC GRAVITY 15° / 4° IN VACUO	100 PARTS BY WEIGHT CORRESPOND TO		1 LITER CONTAINS GRAMS	
	SO ₃	H ₂ SO ₄	SO ₃	H ₂ SO ₄		SO ₃	H ₂ SO ₄	SO ₃	H ₂ SO ₄
per cent per cent						per cent per cent			
1.000	0.07	0.09	1	1	1.265	28.69	35.14	363	444
1.005	0.68	0.83	7	8	1.270	29.15	35.71	370	454
1.010	1.28	1.57	13	16	1.275	29.62	36.20	377	462
1.015	1.88	2.30	19	23	1.280	30.10	36.87	385	472
1.020	2.47	3.03	25	31	1.285	30.57	37.45	393	481
1.025	3.07	3.76	32	39	1.290	31.04	38.03	400	490
1.030	3.67	4.49	38	46	1.295	31.52	38.61	408	500
1.035	4.27	5.23	44	54	1.300	31.99	39.19	416	510
1.040	4.87	5.96	51	62	1.305	32.46	39.77	424	519
1.045	5.45	6.67	57	71	1.310	32.94	40.35	432	529
1.050	6.02	7.37	63	77	1.315	33.41	40.93	439	538
1.055	6.59	8.07	70	85	1.320	33.88	41.50	447	548
1.060	7.16	8.77	76	93	1.325	34.35	42.08	455	557
1.065	7.73	9.47	82	102	1.330	34.80	42.66	462	567
1.070	8.32	10.19	89	109	1.335	35.27	43.20	471	577
1.075	8.90	10.90	96	117	1.340	35.71	43.74	479	586
1.080	9.47	11.60	103	125	1.345	36.14	44.28	486	596
1.085	10.04	12.30	109	133	1.350	36.58	44.82	494	605
1.090	10.60	12.99	116	142	1.355	37.02	45.35	502	614
1.095	11.16	13.67	122	150	1.360	37.45	45.88	509	624
1.100	11.71	14.35	129	158	1.365	37.80	46.41	517	633
1.105	12.27	15.03	136	166	1.370	38.32	46.94	525	643
1.110	12.82	15.71	143	175	1.375	38.75	47.47	533	653
1.115	13.36	16.36	149	183	1.380	39.18	48.00	541	662
1.120	13.89	17.01	156	191	1.385	39.62	48.53	549	672
1.125	14.42	17.66	162	199	1.390	40.05	49.06	557	682
1.130	14.95	18.31	169	207	1.395	40.48	49.59	564	692
1.135	15.48	18.96	176	215	1.400	40.91	50.11	573	702
1.140	16.01	19.61	183	223	1.405	41.33	50.63	581	711
1.145	16.54	20.26	189	231	1.410	41.76	51.15	589	721
1.150	17.07	20.91	196	239	1.415	42.17	51.66	597	730
1.155	17.59	21.55	203	248	1.420	42.57	52.15	604	740
1.160	18.11	22.19	210	257	1.425	42.96	52.63	612	750
1.165	18.64	22.83	217	266	1.430	43.36	53.11	620	759
1.170	19.16	23.47	224	275	1.435	43.75	53.59	628	769
1.175	19.69	24.12	231	283	1.440	44.14	54.07	636	779
1.180	20.21	24.76	238	292	1.445	44.53	54.55	643	789
1.185	20.73	25.40	246	301	1.450	44.92	55.03	651	798
1.190	21.26	26.04	253	310	1.455	45.31	55.50	659	808
1.195	21.78	26.68	260	319	1.460	45.69	55.97	667	817
1.200	22.30	27.32	268	328	1.465	46.07	56.43	675	827
1.205	22.82	27.95	275	337	1.470	46.45	56.90	683	837
1.210	23.33	28.58	282	346	1.475	46.83	57.37	691	846
1.215	23.84	29.21	290	355	1.480	47.21	57.83	699	856
1.220	24.36	29.84	297	364	1.485	47.57	58.28	707	865
1.225	24.88	30.48	305	373	1.490	47.95	58.74	715	876
1.230	25.39	31.11	312	382	1.495	48.34	59.22	723	885
1.235	25.88	31.70	320	391	1.500	48.73	59.70	731	896
1.240	26.35	32.28	327	400	1.505	49.12	60.18	739	906
1.245	26.83	32.86	334	409	1.510	49.51	60.65	748	916
1.250	27.29	33.43	341	418	1.515	49.89	61.12	756	926
1.255	27.76	34.00	348	426	1.520	50.28	61.59	764	936
1.260	28.22	34.57	356	435	1.525	50.66	62.06	773	946

SULPHURIC ACID—Continued

Lunge and Isler

SPECIFIC GRAVITY 15° 4° IN VACUO	100 PARTS BY WEIGHT CORRESPOND TO		1 LITER CONTAINS GRAMS		SPECIFIC GRAVITY 15° 4° IN VACUO	100 PARTS BY WEIGHT CORRESPOND TO		1 LITER CONTAINS GRAMS	
	SO ₃	H ₂ SO ₄	SO ₃	H ₂ SO ₄		SO ₃	H ₂ SO ₄	SO ₃	H ₂ SO ₄
	per cent	per cent	per cent	per cent		per cent	per cent	per cent	per cent
1.530	51.04	62.53	781	957	1.750	66.58	81.56	1165	1427
1.535	51.43	63.00	789	967	1.755	66.94	82.00	1175	1439
1.540	51.78	63.43	797	977	1.760	67.30	82.44	1185	1451
1.545	52.12	63.85	805	987	1.765	67.65	82.88	1194	1463
1.550	52.46	64.26	813	996	1.770	68.02	83.32	1204	1475
1.555	52.79	64.67	821	1006	1.775	68.49	83.90	1216	1489
1.560	53.12	65.08	829	1015	1.780	68.88	84.50	1228	1504
1.565	53.46	65.49	837	1025	1.785	69.47	85.10	1240	1519
1.570	53.80	65.90	845	1035	1.790	69.96	85.70	1252	1534
1.575	54.13	66.30	853	1044	1.795	70.46	86.30	1265	1549
1.580	54.46	66.71	861	1054	1.800	70.94	86.90	1277	1564
1.585	54.80	67.13	869	1064	1.805	71.50	87.60	1291	1581
1.590	55.18	67.59	877	1075	1.810	72.08	88.30	1305	1598
1.595	55.55	68.05	886	1085	1.815	72.69	89.05	1319	1621
1.600	55.93	68.51	894	1096	1.820	73.51	90.05	1338	1639
1.605	56.30	68.97	904	1107	1.821	73.63	90.20	1341	1643
1.610	56.68	69.43	913	1118	1.822	73.80	90.40	1345	1647
1.615	57.05	69.89	921	1128	1.823	73.96	90.60	1348	1651
1.620	57.40	70.32	930	1139	1.824	74.12	90.80	1352	1656
1.625	57.75	70.74	938	1150	1.825	74.29	91.00	1356	1661
1.630	58.09	71.16	947	1160	1.826	74.49	91.25	1360	1666
1.635	58.43	71.57	955	1170	1.827	74.69	91.50	1364	1671
1.640	58.77	71.99	964	1181	1.828	74.86	91.70	1368	1676
1.645	59.10	72.40	972	1192	1.829	75.03	91.90	1372	1681
1.650	59.45	72.82	981	1202	1.830	75.19	92.10	1376	1685
1.655	59.78	73.23	989	1212	1.831	75.35	92.30	1380	1690
1.660	60.11	73.64	998	1222	1.832	75.53	92.52	1384	1695
1.665	60.46	74.07	1007	1233	1.833	75.72	92.75	1388	1700
1.670	60.82	74.51	1016	1244	1.834	75.96	93.05	1393	1706
1.675	61.20	74.97	1025	1256	1.835	76.27	93.43	1400	1713
1.680	61.57	75.42	1034	1267	1.836	76.57	93.80	1405	1722
1.685	61.93	75.86	1043	1278	1.837	76.90	94.20	1412	1730
1.690	62.29	76.30	1053	1289	1.838	77.23	94.60	1419	1739
1.695	62.64	76.73	1062	1301	1.839	77.55	95.00	1426	1748
1.700	63.00	77.17	1071	1312	1.840	78.04	95.60	1436	1759
1.705	63.35	77.60	1080	1323	1.8405	78.33	95.95	1441	1765
1.710	63.70	78.04	1089	1334	1.8410	79.19	97.00	1458	1786
1.715	64.07	78.48	1099	1346	1.8415	79.76	97.70	1469	1799
1.720	64.43	78.92	1108	1357	1.8410	80.16	98.20	1476	1808
1.725	64.78	79.36	1118	1369	1.8405	80.57	98.70	1483	1816
1.730	65.14	79.80	1127	1381	1.8400	80.98	99.20	1490	1825
1.735	65.50	80.24	1136	1392	1.8395	81.18	99.45	1494	1830
1.740	65.86	80.68	1146	1404	1.8390	81.39	99.70	1497	1834
1.745	66.22	81.12	1156	1416	1.8385	81.59	99.95	1500	1838

NITRIC ACID

By W. C. Ferguson

DEGREES BAUMÉ	SPECIFIC GRAVITY 60° 60° F.	DEGREES TWADDELL	PER CENT HNO ₃	DEGREES BAUMÉ	SPECIFIC GRAVITY 60° 60° F.	DEGREES TWADDELL	PER CENT HNO ₃
10.00	1.0741	14.82	12.86	23.75	1.1959	39.18	31.58
10.25	1.0761	15.22	13.18	24.00	1.1983	39.66	31.94
10.50	1.0781	15.62	13.49	24.25	1.2008	40.16	32.31
10.75	1.0801	16.02	13.81	24.50	1.2033	40.66	32.68
11.00	1.0821	16.42	14.13	24.75	1.2058	41.16	33.05
11.25	1.0841	16.82	14.44	25.00	1.2083	41.66	33.42
11.50	1.0861	17.22	14.76	25.25	1.2109	42.18	33.80
11.75	1.0881	17.62	15.07	25.50	1.2134	42.68	34.17
12.00	1.0902	18.04	15.41	25.75	1.2160	43.20	34.56
12.25	1.0922	18.44	15.72	26.00	1.2185	43.70	34.94
12.50	1.0943	18.86	16.05	26.25	1.2211	44.22	35.33
12.75	1.0964	19.28	16.39	26.50	1.2236	44.72	35.70
13.00	1.0985	19.70	16.72	26.75	1.2262	45.24	36.09
13.25	1.1006	20.12	17.05	27.00	1.2288	45.76	36.48
13.50	1.1027	20.54	17.38	27.25	1.2314	46.28	36.87
13.75	1.1048	20.96	17.71	27.50	1.2340	46.80	37.26
14.00	1.1069	21.38	18.04	27.75	1.2367	47.34	37.67
14.25	1.1090	21.80	18.37	28.00	1.2393	47.86	38.06
14.50	1.1111	22.22	18.70	28.25	1.2420	48.40	38.46
14.75	1.1132	22.64	19.02	28.50	1.2446	48.92	38.85
15.00	1.1154	23.08	19.36	28.75	1.2473	49.46	39.25
15.25	1.1176	23.52	19.70	29.00	1.2500	50.00	39.66
15.50	1.1197	23.94	20.02	29.25	1.2527	50.54	40.06
15.75	1.1219	24.38	20.36	29.50	1.2554	51.08	40.47
16.00	1.1240	24.80	20.69	29.75	1.2582	51.64	40.89
16.25	1.1262	25.24	21.03	30.00	1.2609	52.18	41.30
16.50	1.1284	25.68	21.36	30.25	1.2637	52.74	41.72
16.75	1.1306	26.12	21.70	30.50	1.2664	53.28	42.14
17.00	1.1328	26.56	22.04	30.75	1.2692	53.84	42.58
17.25	1.1350	27.00	22.38	31.00	1.2719	54.38	43.00
17.50	1.1373	27.46	22.74	31.25	1.2747	54.94	43.44
17.75	1.1395	27.90	23.08	31.50	1.2775	55.50	43.89
18.00	1.1417	28.34	23.42	31.75	1.2804	56.08	44.34
18.25	1.1440	28.80	23.77	32.00	1.2832	56.64	44.78
18.50	1.1462	29.24	24.11	32.25	1.2861	57.22	45.24
18.75	1.1485	29.70	24.47	32.50	1.2889	57.78	45.68
19.00	1.1508	30.16	24.82	32.75	1.2918	58.36	46.14
19.25	1.1531	30.62	25.18	33.00	1.2946	58.92	46.58
19.50	1.1554	31.08	25.53	33.25	1.2975	59.50	47.04
19.75	1.1577	31.54	25.88	33.50	1.3004	60.08	47.49
20.00	1.1600	32.00	26.24	33.75	1.3034	60.68	47.95
20.25	1.1624	32.48	26.61	34.00	1.3063	61.26	48.42
20.50	1.1647	32.94	26.96	34.25	1.3093	61.86	48.90
20.75	1.1671	33.42	27.33	34.50	1.3122	62.44	49.35
21.00	1.1694	33.88	27.67	34.75	1.3152	63.04	49.83
21.25	1.1718	34.36	28.02	35.00	1.3182	63.64	50.32
21.50	1.1741	34.82	28.36	35.25	1.3212	64.24	50.81
21.75	1.1765	35.30	28.72	35.50	1.3242	64.84	51.30
22.00	1.1789	35.78	29.07	35.75	1.3273	65.46	51.80
22.25	1.1813	36.26	29.43	36.00	1.3303	66.06	52.30
22.50	1.1837	36.74	29.78	36.25	1.3334	66.68	52.81
22.75	1.1861	37.22	30.14	36.50	1.3364	67.28	53.32
23.00	1.1885	37.70	30.49	36.75	1.3395	67.90	53.84
23.25	1.1910	38.20	30.86	37.00	1.3426	68.52	54.36
23.50	1.1934	38.68	31.21	37.25	1.3457	69.14	54.89

NITRIC ACID—Continued

DEGREES BAUMÉ	SPECIFIC GRAVITY 60° F. 60° F.	DEGREES TWADDELL	PER CENT HNO ₃	DEGREES BAUMÉ	SPECIFIC GRAVITY 60° F. 60° F.	DEGREES TWADDELL	PER CENT HNO ₃
37.50	1.3488	69.76	55.43	43.25	1.4251	85.02	71.15
37.75	1.3520	70.40	55.97	43.50	1.4286	85.72	71.98
38.00	1.3551	71.02	56.52	43.75	1.4321	86.42	72.82
38.25	1.3583	71.66	57.08	44.00	1.4356	87.12	73.67
38.50	1.3615	72.30	57.65	44.25	1.4392	87.84	74.53
38.75	1.3647	72.94	58.23	44.50	1.4428	88.56	75.40
39.00	1.3679	73.58	58.82	44.75	1.4464	89.28	76.28
39.25	1.3712	74.24	59.43	45.00	1.4500	90.00	77.17
39.50	1.3744	74.88	60.06	45.25	1.4536	90.72	78.07
39.75	1.3777	75.54	60.71	45.50	1.4573	91.46	79.03
40.00	1.3810	76.20	61.38	45.75	1.4610	92.20	80.04
40.25	1.3843	76.86	62.07	46.00	1.4646	92.92	81.08
40.50	1.3876	77.52	62.77	46.25	1.4684	93.68	82.18
40.75	1.3909	78.18	63.48	46.50	1.4721	94.42	83.33
41.00	1.3942	78.84	64.20	46.75	1.4758	95.16	84.48
41.25	1.3976	79.52	64.93	47.00	1.4796	95.92	85.70
41.50	1.4010	80.20	65.67	47.25	1.4834	96.68	86.98
41.75	1.4044	80.88	66.42	47.50	1.4872	97.44	88.32
42.00	1.4078	81.56	67.18	47.75	1.4910	98.20	89.76
42.25	1.4112	82.24	67.95	48.00	1.4948	98.96	91.35
42.50	1.4146	82.92	68.73	48.25	1.4987	99.74	93.13
42.75	1.4181	83.62	69.52	48.50	1.5026	100.52	95.11
43.00	1.4216	84.32	70.33				

Specific Gravity determinations were made at 60° F., compared with water at 60° F.

From the Specific Gravities, the corresponding degrees Baumé were calculated by the following formula:

$$\text{Baumé} = 145 - \frac{145}{\text{Sp. Gr.}}$$

Baumé Hydrometers for use with this table must be graduated by the above formula, which formula should *always* be printed on the scale.

Atomic weights from F. W. Clarke's table of 1901. O = 16.

Allowance for temperature:

- At 10° — 20° Bé. — 1/30° Bé. or 0.00029 Sp. Gr. = 1° F.
- 20° — 30° Bé. — 1/23° Bé. or 0.00044 Sp. Gr. = 1° F.
- 30° — 40° Bé. — 1/20° Bé. or 0.00060 Sp. Gr. = 1° F.
- 40° — 48.5° Bé. — 1/17° Be. or 0.00084 Sp. Gr. = 1° F.

Authority—W. C. Ferguson

HYDROCHLORIC ACID

By W. C. Ferguson

DEGREES BAUMÉ	SPECIFIC GRAVITY	DEGREES TWADDELL	PER CENT HCl	DEGREES BAUMÉ	SPECIFIC GRAVITY	DEGREES TWADDELL	PER CENT HCl
1.00	1.0069	1.38	1.40	16.7	1.1301	26.02	25.72
2.00	1.0140	2.80	2.82	16.8	1.1310	26.20	25.89
3.00	1.0211	4.22	4.25	16.9	1.1319	26.38	26.05
4.00	1.0284	5.68	5.69	17.0	1.1328	26.56	26.22
5.00	1.0357	7.14	7.15	17.1	1.1336	26.72	26.39
5.25	1.0375	7.50	7.52	17.2	1.1345	26.90	26.56
5.50	1.0394	7.88	7.89	17.3	1.1354	27.08	26.73
5.75	1.0413	8.26	8.26	17.4	1.1363	27.26	26.90
6.00	1.0432	8.64	8.64	17.5	1.1372	27.44	27.07
6.25	1.0450	9.00	9.02	17.6	1.1381	27.62	27.24
6.50	1.0469	9.38	9.40	17.7	1.1390	27.80	27.41
6.75	1.0488	9.76	9.78	17.8	1.1399	27.98	27.58
7.00	1.0507	10.14	10.17	17.9	1.1408	28.16	27.75
7.25	1.0526	10.52	10.55	18.0	1.1417	28.34	27.92
7.50	1.0545	10.90	10.94	18.1	1.1426	28.52	28.09
7.75	1.0564	11.28	11.32	18.2	1.1435	28.70	28.26
8.00	1.0584	11.68	11.71	18.3	1.1444	28.88	28.44
8.25	1.0603	12.06	12.09	18.4	1.1453	29.06	28.61
8.50	1.0623	12.46	12.48	18.5	1.1462	29.24	28.78
8.75	1.0642	12.84	12.87	18.6	1.1471	29.42	28.95
9.00	1.0662	13.24	13.26	18.7	1.1480	29.60	29.13
9.25	1.0681	13.62	13.65	18.8	1.1489	29.78	29.30
9.50	1.0701	14.02	14.04	18.9	1.1498	29.96	29.48
9.75	1.0721	14.42	14.43	19.0	1.1508	30.16	29.65
10.00	1.0741	14.82	14.83	19.1	1.1517	30.34	29.83
10.25	1.0761	15.22	15.22	19.2	1.1526	30.52	30.00
10.50	1.0781	15.62	15.62	19.3	1.1535	30.70	30.18
10.75	1.0801	16.02	16.01	19.4	1.1544	30.88	30.35
11.00	1.0821	16.42	16.41	19.5	1.1554	31.08	30.53
11.25	1.0841	16.82	16.81	19.6	1.1563	31.26	30.71
11.50	1.0861	17.22	17.21	19.7	1.1572	31.44	30.90
11.75	1.0881	17.62	17.61	19.8	1.1581	31.62	31.08
12.00	1.0902	18.04	18.01	19.9	1.1590	31.80	31.27
12.25	1.0922	18.44	18.41	20.0	1.1600	32.00	31.45
12.50	1.0943	18.86	18.82	20.1	1.1609	32.18	31.64
12.75	1.0964	19.28	19.22	20.2	1.1619	32.38	31.82
13.00	1.0985	19.70	19.63	20.3	1.1628	32.56	32.01
13.25	1.1006	20.12	20.04	20.4	1.1637	32.74	32.19
13.50	1.1027	20.54	20.45	20.5	1.1647	32.94	32.38
13.75	1.1048	20.96	20.86	20.6	1.1656	33.12	32.56
14.00	1.1069	21.38	21.27	20.7	1.1666	33.32	32.75
14.25	1.1090	21.80	21.68	20.8	1.1675	33.50	32.93
14.50	1.1111	22.22	22.09	20.9	1.1684	33.68	33.12
14.75	1.1132	22.64	22.50	21.0	1.1694	33.88	33.31
15.00	1.1154	23.08	22.92	21.1	1.1703	34.06	33.50
15.25	1.1176	23.52	23.33	21.2	1.1713	34.26	33.69
15.50	1.1197	23.94	23.75	21.3	1.1722	34.44	33.88
15.75	1.1219	24.38	24.16	21.4	1.1732	34.64	34.07
16.0	1.1240	24.80	24.57	21.5	1.1741	34.82	34.26
16.1	1.1248	24.96	24.73	21.6	1.1751	35.02	34.45
16.2	1.1256	25.12	24.90	21.7	1.1760	35.20	34.64
16.3	1.1265	25.30	25.06	21.8	1.1770	35.40	34.83
16.4	1.1274	25.48	25.23	21.9	1.1779	35.58	35.02
16.5	1.1283	25.66	25.39	22.0	1.1789	35.78	35.21
16.6	1.1292	25.84	25.56	22.1	1.1798	35.96	35.40

HYDROCHLORIC ACID—Continued

DEGREES BAUMÉ	SPECIFIC GRAVITY	DEGREES TWADDELL	PER CENT HCl	DEGREES BAUMÉ	SPECIFIC GRAVITY	DEGREES TWADDELL	PER CENT HCl
22.2	1.1808	36.16	35.59	23.9	1.1973	39.46	39.18
22.3	1.1817	36.34	35.78	24.0	1.1983	39.66	39.41
22.4	1.1827	36.54	35.97	24.1	1.1993	39.86	39.64
22.5	1.1836	36.72	36.16	24.2	1.2003	40.06	39.86
22.6	1.1846	36.92	36.35	24.3	1.2013	40.26	40.09
22.7	1.1856	37.12	36.54	24.4	1.2023	40.46	40.32
22.8	1.1866	37.32	36.73	24.5	1.2033	40.66	40.55
22.9	1.1875	37.50	36.93	24.6	1.2043	40.86	40.78
23.0	1.1885	37.70	37.14	24.7	1.2053	41.06	41.01
23.1	1.1895	37.90	37.36	24.8	1.2063	41.26	41.24
23.2	1.1904	38.08	37.58	24.9	1.2073	41.46	41.48
23.3	1.1914	38.28	37.80	25.0	1.2083	41.66	41.72
23.4	1.1924	38.48	38.03	24.1	1.2093	41.86	41.99
23.5	1.1934	38.68	38.26	25.2	1.2103	42.06	42.30
23.6	1.1944	38.88	38.49	25.3	1.2114	42.28	42.64
23.7	1.1953	39.06	38.72	25.4	1.2124	42.48	43.01
23.8	1.1963	39.26	38.95	25.5	1.2134	42.68	43.40

Specific Gravity determinations were made at 60° F., compared with water at 60° F.

From the Specific Gravities, the corresponding degrees Baumé were calculated by the following formula:

$$\text{Baumé} = 145 - \frac{145}{\text{Sp. Gr.}}$$

Atomic weights from F. W. Clarke's table of 1901. O = 16.

Allowance for temperature:

10 – 15° Bé. – 1/40° Bé. or 0.0002 Sp. Gr. for 1° F.

15 – 22° Bé. – 1/30° Bé. or 0.0003 Sp. Gr. for 1° F.

22 – 25° Bé. – 1/28° Bé. or 0.00035 Sp. Gr. for 1° F.

AQUA AMMONIA

According to W. C. Ferguson

DEGREES BAUMÉ	SPECIFIC GRAVITY $\frac{60^{\circ} \text{ F.}}{60^{\circ} \text{ F.}}$	PER CENT NH_3	DEGREES BAUMÉ	SPECIFIC GRAVITY $\frac{60^{\circ} \text{ F.}}{60^{\circ} \text{ F.}}$	PER CENT NH_3
10.00	1.0000	0.00	19.75	0.9349	17.28
10.25	0.9982	0.40	20.00	0.9333	17.76
10.50	0.9964	0.80	20.25	0.9318	18.24
10.75	0.9947	1.21	20.50	0.9302	18.72
11.00	0.9929	1.62	20.75	0.9287	19.20
11.25	0.9912	2.04	21.00	0.9272	19.68
11.50	0.9894	2.46	21.25	0.9256	20.16
11.75	0.9876	2.88	21.50	0.9241	20.64
12.00	0.9859	3.30	21.75	0.9226	21.12
12.25	0.9842	3.73	22.00	0.9211	21.60
12.50	0.9825	4.16	22.25	0.9195	22.08
12.75	0.9807	4.59	22.50	0.9180	22.56
13.00	0.9790	5.02	22.75	0.9165	23.04
13.25	0.9773	5.45	23.00	0.9150	23.52
13.50	0.9756	5.88	23.25	0.9135	24.01
13.75	0.9739	6.31	23.50	0.9121	24.50
14.00	0.9722	6.74	23.75	0.9106	24.99
14.25	0.9705	7.17	24.00	0.9091	25.48
14.50	0.9689	7.61	24.25	0.9076	25.97
14.75	0.9672	8.05	24.50	0.9061	26.46
15.00	0.9655	8.49	24.75	0.9047	26.95
15.25	0.9639	8.93	25.00	0.9032	27.44
15.50	0.9622	9.38	25.25	0.9018	27.93
15.75	0.9605	9.83	25.50	0.9003	28.42
16.00	0.9589	10.28	25.75	0.8989	28.91
16.25	0.9573	10.73	26.00	0.8974	29.40
16.50	0.9556	11.18	26.25	0.8960	29.89
16.75	0.9540	11.64	26.50	0.8946	30.38
17.00	0.9524	12.10	26.75	0.8931	30.87
17.25	0.9508	12.56	27.00	0.8917	31.36
17.50	0.9492	13.02	27.25	0.8903	31.85
17.75	0.9475	13.49	27.50	0.8889	32.34
18.00	0.9459	13.96	27.75	0.8875	32.83
18.25	0.9444	14.43	28.00	0.8861	33.32
18.50	0.9428	14.90	28.25	0.8847	33.81
18.75	0.9412	15.37	28.50	0.8833	34.30
19.00	0.9396	15.84	28.75	0.8819	34.79
19.25	0.9380	16.32	29.00	0.8805	35.28
19.50	0.9365	16.80			

Specific Gravity determinations were made at 60° F., compared with water at 60° F.

From the Specific Gravities the corresponding degrees Baumé were calculated by the following formula:

$$\text{Baumé} = \frac{140}{\text{Sp. Gr.}} - 130.$$

ALCOHOL BY VOLUME

Squibb

PERCENT ALCOHOL BY VOLUME	SPECIFIC GRAVITY AT 15.56° 15.56° C.						
1	0.9985	26	0.9698	51	0.9323	76	0.8745
2	.9970	27	.9691	52	.9303	77	.8721
3	.9956	28	.9678	53	.9283	78	.8696
4	.9942	29	.9665	54	.9262	79	.8664
5	.9930	30	.9652	55	.9242	80	.8639
6	.9914	31	.9643	56	.9221	81	.8611
7	.9898	32	.9631	57	.9200	82	.8581
8	.9890	33	.9618	58	.9178	83	.8557
9	.9878	34	.9609	59	.9160	84	.8526
10	.9869	35	.9593	60	.9135	85	.8496
11	.9855	36	.9578	61	.9113	86	.8466
12	.9841	37	.9565	62	.9090	87	.8434
13	.9828	38	.9550	63	.9069	88	.8408
14	.9821	39	.9535	64	.9047	89	.8373
15	.9815	40	.9519	65	.9025	90	.8340
16	.9802	41	.9503	66	.9001	91	.8305
17	.9789	42	.9490	67	.8973	92	.8272
18	.9778	43	.9470	68	.8949	93	.8237
19	.9768	44	.9452	69	.8925	94	.8199
20	.9760	45	.9434	70	.8900	95	.8164
21	.9753	46	.9416	71	.8875	96	.8125
22	.9741	47	.9396	72	.8850	97	.8084
23	.9728	48	.9381	73	.8825	98	.8041
24	.9716	49	.9362	74	.8799	99	.7995
25	.9700	50	.9343	75	.8769	100	.7946

INDEX

- Absolute zero, 17
Acids, definitions of
 acetic, 8
 carbolic, 8
 hydrochloric, 8
 hydrocyanic, 8, 109, 110
 nitric, 8, 107, 108
 phosphoric, 8
 sulphuric, 8, 105, 106
 sulphurous, 8
 basicity of, 59
 ionization of constants, 45
Acid, hydrochloric, 110
 nitric, 107, 108
 sulphuric, 105, 106
Active mass, definition of, 18
Adiabatic expansion, 17
Adsorption, definition of, 18
Alloys, composition of, 10, 11
 babbitt metal, 10
 bell metal, 10
 "B" alloy P. R. R., 10
 brass, 10
 britannia, 10
 bronze, 10
 car-box, metal, 10
 fusible, 11
 muntz, 10
 mosaic gold, 10
 pewter, 10
 phosphor bronze, 10
 rose metal, 10
 soft solder, 10
 speculum metal, 10
 tobin bronze, 10
 type, 10
 white metal, 10
 wood metal, 10
Alcohol, 112
 grams per 100 cc., 112
 percent of volume, 112
 percent of weight, 112
 specific gravity of, 112
Ampere, definition of, 18
Ammonia, aqua, 111
Analysis scheme, qualitative, 98-101
Antidotes of poisons, 8
Apparatus list, 12, 13, 14, 15
 chemistry, 13, 14, 15
 physics, 12, 13
Aqua, ammonia, 111
 degrees Baume, 111
 percent NH_3 , 111
 specific gravity, 111
Areas, comparison of metric and customary, 45
Atom, definition of, 18
Atomic theory, 17
 weight 7, 64-66
 weight of elements 7, 22-31
Avagadro's hypothesis 17
Babbit metal, composition of, 10
Balanced reaction, definition of, 18
Barometer readings, corrections of, 15
Bases, ionization constants of, 45
 normal solutions of, 69
Base, definition of, 18
Basicity of acids, 59
Baume degrees to degrees Twaddell, 107
 108, 109
 degrees or Twaddell to specific gravity, 107, 108
 degrees, 107-111,
Bell metal, composition of, 10
"B" alloy P. R. R., 10
B. T. U., 18
Boiling point of gases, 18
Books, text, names of 102, 103, 104
Boyle's law, for gases, 16
Brass, 10
Britannia metal, composition of, 10
British thermal unit 18.
Calorie, small, 18
 large, 18
 average, 18
Capacity, comparison of metric and customary, 39-44
Car-box metal, composition of, 10
Catalytic agent, 18
Centigrade degrees to other scales, 21
Charles' law, 16
Chemical apparatus list, 13, 14, 15
 equations completed, 32-44
 factors 50-55
 laws, 16
 Boyle's for gases, 16
 Charles', 16
 combining weights, 16
 definite proportion, 16
 Faraday's, 16
 Gay Lussac's for gases, 16
 Gay Lussac's of combining volumes, 16
 Henry's, 16
 Hess's of constant heat summation, 16
 mass action, 16
 multiple proportions, 16
 partial pressures, 16
 periodic, 16
 problems, method of solving, 34-38
 theories, 17
 atomic, 17
 Avagadro's, 17
 electrolytic solution tension, 17
 electron, 17
Chemistry apparatus list, 13, 14, 15
 apparatus for experiments, 13, 14, 15
Colligative property, 18
Color of inorganic compounds, 72-97
Combining weight, 18

- Comparison of wire gauges, 20
 Comparison of metric and customary lengths, 39
 areas, 40, 41
 volumes, 41
 capacity, 42, 43
 weight, 44
 masses, 44
 Composition of freezing mixtures, 45
 Compounds, formulae of, 72-97
 inorganic, 22-31, 72-97
 Constitutive property, 18
 Constants of ionizations, 45
 Van der Waal's, 20
 of gases, 20
 of inorganic compounds, 72-97
 Conversion of thermometer degrees, 21
 Corrections of barometer readings, 15
 Coulomb, 18
 Critical density of gases, 20
 temperature of gases, 20
 pressure of gases, 20
 data of gases, 20
 Cryohydrate, 18
 Crystalform, inorganic compounds, 72-97
 Definite proportions, Law of, 16
 Definition of terms,
 absolute zero, 17
 acids, 17
 active mass, 18
 adrabatic expansion, 17
 adsorption, 18
 ampere, 18
 atom, 18
 balanced reaction, 18
 base, 18
 British thermal unit, 18
 B. T. U., 18
 calorie, small, 18
 calorie, large, 18
 calorie, average, 18
 catalytic agent, 18
 coligative property, 18
 combining weight, 18
 constitutive property, 18
 coulomb, 18
 cryohydrate, 18
 eutectic, 18
 heat of combustion, 18
 hydrogen equivalent, 18
 ton, 18
 kilowatt, 18
 molar solution, 19
 molecule, 18
 normal solution, 19
 ohm, 19
 oxidation, 19
 reductions, 19
 reversible reaction, 18
 salt, 19
 solubility product, 19
 volt, 19
 watt, 19
 watt-hour, 19
 Degrees Baume, nitric acid, 107, 108
 Baume to degrees Twaddell, 107-110
 Degrees Baume or Twaddell to specific gravity, 107-110
 Baume, 107-110
 Baume, aqua ammonia, 111
 Twaddell, 107-110
 Density of water, 38
 of gas, 20
 Diameter, platinum wire, 71
 Dissociation theory, electrolytic, 17
 Electrolytic dissociation theory, 17
 Electrolytic solution tension theory, 17
 Electron theory, 17
 Elements, constants of, 22-31
 atomic weight of, 7, 22-31
 boiling point of, 22-31
 co-efficient of expansion, 22-31
 discovery of 22-31
 discoverer of 22-31
 electrical conductivity of, 22-31
 melting point of, 22-21
 name, derivation of 22-31
 occurrence of, 22-31
 periodic table of, 70
 symbol of, 22-31
 specific gravity of 22-31
 specific heat of, 22-31
 thermal conductivity of, 22-31
 valence of, 22-31
 Electromotive force of metals, 45
 Engineering alloys, 10
 Equations, chemical, completed, 32-34
 Eutectic, 18
 Experiments, apparatus for, 12, 13, 14, 15
 chemistry, 14, 15
 physics, 12, 13
 Factors, gravimetric, 50-55
 chemical, 50-55
 Fahrenheit degrees to other scales, 21
 Faradays' Law, 16
 Foods, 45-47
 composition of, 46, 47
 fuel value of, 45, 46
 functions of, 45, 46
 uses of, 45, 46
 Formulae, 45
 area of triangle, 45
 circumference of, 45
 radius of circle, 45
 radius of triangle, 45
 of gases, 56
 of compounds, 72-97
 Formation, heats of, 57, 58
 Freezing mixtures, composition of, 45
 point of gases, 20
 Fusible alloys, 11
 Gas volumes, reduction of, to standard conditions, 48, 49
 Gases, Boyle's law for gases, 16
 critical temperature of, 20
 critical pressure of, 20
 freezing point of, 20
 boiling point of, 18
 specific gravity of, 56
 molecular weight of, 56, 64-65
 formulae of, 56
 weight in grams per liter, 56

INDEX

- Gauges, wire, comparison of, 21
Gay Lussac law for gases, 16
of combining volumes, 16
Gauge numbers, platinum wire, 71
Gravimetric factors, 50-55
Gun metal, composition of, 10
- Heat of fusion of gases, 18
of combustion, 18
Heats of formation, 20
of solution, 57
Helmholtz double layer theory, 17
Henry's law, 16
Hess' law of constant heat summation, 16
Hydrogen equivalent, 18
Hydrochloric acid, 109, 110
degrees Baume, 109, 110
degrees Twaddell, 109, 110
percent HCl, 109, 110
specific gravity 109, 110
- Indicators, use of, 59
Inorganic compounds, 72-97
boiling point of, 72-97
constants of, 72-97
crystal form, 72-97
color of, 72-97
formulae of, 72-97
molecular weight of, 72-97
melting point of, 72-97
solubility, 72-97
specific gravity of, 72-97
- Iodine, 8
Ion, 18
Ionization theory, 17
constants of acids and bases, 45
- Kilowatt, 18
- Laboratory reagents, preparation and strength, 62, 63
Laws, chemical, 16
Lead acetate, 8
Lengths, comparison of metric and customary, 39
List, apparatus, 12, 13, 14, 15
chemistry 13, 14, 15,
physics 13, 14, 15
Logarithm table, 60, 61, 62
- Mass action law, 16
Masses, comparison of metric and customary, 39-44
Method of solving chemical problems, 19
Metals, electromotive force of, 45
Metric and customary weights, comparison of, 39-44
Mercury, vapor pressure of, 71
Mercuric chloride, 8
Mixtures, freezing, 45
Molecule, 18
Molar solution, 19
Molecular weight of gases, 64-66
Molecular weights, 64-66
Mosaic gold, composition of, 10
Multiple proportions, law of, 16
Muntz metal, composition of, 10
- Nitric acid, 107, 108
degrees Baume, 107, 108
degrees Twaddell, 107, 108
percent nitric acid, 107, 108
specific gravity, 107, 108
Normal solutions, 18, 67, 68, 69
- Ohm, 19
Oxidation, 19
Oxidizing and reducing agents, 67, 68
- Partial pressures, law of, 16
Periodic law, 16
table of elements, 70
Percent nitric acid, 170, 108
NH₃ ammonia aqua, 111
by volume, alcohol, 112
by weight, alcohol, 112
Pewter, composition of, 10
Phosphor bronze, composition of, 10
Physics, apparatus list, 12, 13
Physical constants of the elements 7, 22-31
atomic weight of elements 7, 22-31
boiling point of, 22-31
co-efficient of expansion, of elements, 22-31
discovery of elements, 22-31
discoverer of elements, 22-31
electrical conductivity of elements, 22-31
melting point of elements, 22-31
name, derivation of, of elements, 22-31
occurrence, 22-31
symbol of elements, 22-31
specific gravity of elements, 22-31
specific heat of elements, 22-31
thermal conductivity of elements, 22-31
valence of elements, 22-31
Physical constants of inorganic compounds, 72-97
Platinum wire, 71
diameter, 71
gauge numbers, 71
weight of, 71
Poisons, antidotes of, 8
Potassium hydroxide, 8
Pressures, partial, law of, 16
Pressure, critical, of gases, 20
Preparation and strength laboratory reagents, 62, 63
Problems, chemical, method of solving, 34-38
Proportions definite, law of, 16
Proportions, multiple, laws of, 16
- Qualitative analysis scheme, 98-101
- Readings, barometer, corrections of, 16
Reagents, laboratory, preparation and strength, 62, 63
Reduction, 19
of gas volumes to standard conditions, 48, 49
Reference books, names of, 102-104
Reversible reaction, 18
Rose metal, 10

INDEX

- Salt, 19
Scheme analysis, qualitative, 98-101
Sodium hydroxide, 8
Soft solder, composition of, 10
Solubility product, 19
Solution, heats of, 57, 58
 tension theory electrolytic, 17
Solving of chemical problems, 19
Specific gravity, of sulphuric acid, 105
 106
 nitric acid, 107, 108
 degrees Baume or Twaddell, 105-111
 of gases, 56
 hydrochloric acid, 109, 110
 ammonia aqua, 111
 of alcohol, 112
Speculum metal, composition of, 10
Stoichiometry, 34-38
Strength and preparation laboratory
 reagents, 69
Sulphuric acid, 105, 106
 one liter contains, 105, 106
 percent SO₃ in, 105, 106
 percent SO₄ in, 105, 106
 specific gravity of, 105, 106
Table of logarithm, 60, 61, 62
 periodic, of elements, 70
Terms, definition of—see definitions,
 17, 18, 19
Temperature correction of barometer, 15
 critical, of gases, 20
Text books, names of, 102-104
Thermometer degrees, conversion of, 21
Theories chemical, 17
Tobin bronze, composition of, 10
Twaddell degrees, to degrees Baume,
 107-110
 Baume or, to specific gravity, 107-110
 degrees, 107-110
Type, composition of, 10
Vapor, tension of water, 9, 10
Van der Waal's constants, 20
Volt, 19
Volumes, comparision of metric to cus-
 tomary,
 41
 reduction of gas, 48, 49
Watt, 19
Watt-hour, 19
Water, density of, 38
 vapor tension, of, 9, 10
Weight atomic 7, 22-31, 64-66
 of, platinum wire, 71
Weights, combining, 18
 comparison of metric and customary,
 44
 molecular, 64-66
White metal, composition of, 10
Wire, gauges, comparison of, 21
Wire, platinum, 71
Wood metal, composition of, 11

BRIGHAM YOUNG UNIVERSITY

3 1197 22362 3569

