ECE335 Summer 2019 - Assignment 4

Section 2.3 - More Operations on Sets

- 2.3.1 . Analyze the logical forms of the following statements
 - a. $\mathcal{F} \subseteq \mathcal{P}(A)$

Using the definition of subset we first expand

$$\forall x (x \in \mathcal{F} \to x \in \mathcal{P}(A))$$

Then applying the definition of powerset, i.e. that an element of the powerset is a textit subset gives

$$\forall x (x \in \mathcal{F} \to \forall y (y \in x \to y \in A))$$

b. $A \subseteq \{2n+1 | n \in \mathbb{N}\}$

Using the definition of subset we first expand

$$\forall x (x \in A \to x \in \{2n+1 | n \in \mathbb{N}\}\)$$

Then rewriting the elementhood test gives

$$\forall x (x \in A \to \exists n \in \mathbb{N}(x = 2n + 1))$$

c.
$$\{n^2 + n + 1 | n \in \mathbb{N}\} \subseteq \{2n + 1 | n \in \mathbb{N}\}\$$

Using the definition of subset we first expand

$$\forall x (x \in \{n^2 + n + 1 | n \in \mathbb{N}\} \to x \in \{2n + 1 | n \in \mathbb{N}\}\$$

Since the n's in both equations may be different for the same x we can more consistly write the statement by using m and n as

$$\forall n \in \mathbb{N} \exists m \in \mathbb{N} (n^2 + n + 1 = 2m + 1)$$

d. $\mathbb{P}(\bigcup_{i \in I} A_i) \not\subseteq \bigcup_{i \in I} \mathbb{P}(A_i)$

Using the definition of not a subset (which implies there exists an element not in the superset) we first expand

$$\exists x (x \in \mathbb{P}(\cup_{i \in I} A_i) \land x \notin \cup_{i \in I} \mathbb{P}(A_i))$$

Now expanding the first term using the definition of powerset gives

$$\exists x (\forall y (y \in x \to y \in (\cup_{i \in I} A_i)) \land \neg (x \notin \cup_{i \in I} \mathbb{P}(A_i)))$$

Using the definition of indexed set union gives

$$\exists x (\forall y (y \in x \to \exists i \in I (y \in A_i)) \land \neg \exists i \in I (x \in \mathbb{P}(A_i)))$$

Expanding the second powerset term gives

$$\exists x (\forall y (y \in x \to \exists i \in I (y \in A_i)) \land \neg \exists i \in I (\forall y (y \in x \to y \in A_i)))$$

Negating the quantifier in the second term and using DeMorgan's law (after converting the conditional to \vee) gives

$$\exists x (\forall y (y \in x \to \exists i \in I (y \in A_i)) \land \forall i \in I (\exists y (y \in x \land y \not\in A_i)))$$

2.3.8 . Let
$$I = \{2,3\}$$
 and for each $i \in I$ let $A_i = \{i,2i\}$ and $B_i = \{i,i+1\}$

a. List the elements of the sets A_i and B_i for $i \in I$.

Substituting in the two values for i produces 4 sets

$$A_2 = \{2, 4\}, A_3 = \{3, 6\}, B_2 = \{2, 3\}, B_3 = \{3, 4\}$$

b. Find $\cap_{i \in I} (A_i \cup B_i)$ and $(\cap_{i \in I} A_i) \cup (\cap_{i \in I} B_i)$

First, to find $\cap_{i \in I} (A_i \cup B_i)$ we compute the unions for both indicies giving

$$(A_2 \cup B_2) = \{2, 3, 4\}$$
 and $(A_3 \cup B_3) = \{3, 4, 6\}$

Taking the intersection of these two sets gives

$$\cap_{i\in I}(A_i\cup B_i)=\{3,4\}$$

Second, to find $(\cap_{i\in I} A_i) \cup (\cap_{i\in I} B_i)$ we compute the two family intersections giving

$$(\cap_{i\in I} A_i) = \emptyset$$
 and $(\cap_{i\in I} B_i) = \{3\}$

Taking the union of these two sets gives

$$(\cap_{i\in I} A_i) \cup (\cap_{i\in I} B_i) = \{3\}$$

which is clearly different than the first result.

c. What can you conclude about whether or not these statements are equivalent?

Since part (b) gives two sets that provide a *counterexample*

$$\cap_{i \in I} (A_i \cup B_i) \neq (\cap_{i \in I} A_i) \cup (\cap_{i \in I} B_i)$$

i.e. family intersection does not distribute over indexed set union.

2.3.10 . Show that for any sets A and B that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

We shall show this equivalency by showing that $x \in \mathcal{P}(A \cap B)$ is equivalent to $x \in \mathcal{P}(A) \cap \mathcal{P}(B)$.

$$x \in \mathcal{P}(A \cap B) = x \subseteq (A \cap B) \qquad \text{definition of powerset}$$

$$= \forall y (y \in x \to y \in (A \cap B)) \qquad \text{definition of subset}$$

$$= \forall y (y \in x \to (y \in A \land y \in B)) \qquad \text{definition of intersection}$$

$$= \forall y (\neg (y \in x) \lor (y \in A \land y \in B)) \qquad \text{conditional law}$$

$$= \forall y ((\neg (y \in x) \lor (y \in A)) \land (\neg (y \in x) \lor (y \in B))) \qquad \text{distributive law}$$

$$= \forall y ((\neg (y \in x) \lor (y \in A)) \land \forall y (\neg (y \in x) \lor (y \in B))) \qquad \text{quantifier distribution}$$

$$= \forall y (y \in x \to y \in A) \land \forall y (y \in x \to y \in B) \qquad \text{conditional law}$$

$$= (x \subseteq A) \land (x \subseteq B) \qquad \text{definition of subset}$$

$$= (x \in \mathcal{P}(A)) \land (x \in \mathcal{P}(B)) \qquad \text{definition of powerset}$$

$$= x \in \mathcal{P}(A) \cap \mathcal{P}(B) \qquad \text{definition of intersection}$$

Thus $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$

Section 3.1 - Proof Strategies

3.1.8 . Suppose $A \setminus B \subseteq C \cap D$ and $x \in A$. Prove that if $x \notin D$ then $x \in B$.

$$\begin{array}{ll} Givens & Goal \\ A \setminus B \subseteq C \cap D & x \not\in D \rightarrow x \in B \\ x \in A & \end{array}$$

We can modify the goal by assuming $x \notin D$ as a given thus transforming the goal into

$$\begin{array}{ll} Givens & Goal \\ A \setminus B \subseteq C \cap D & x \in B \\ x \in A \\ x \not\in D \end{array}$$

At this point we begin by noting that since $x \notin D$ that $x \notin C \cap D$ and therefore since $A \setminus B \subseteq C \cap D \Rightarrow x \notin A \setminus B$. But since $x \in A$, for $x \notin A \setminus B$ we must have $x \in B$.

Formally,

Theorem. Suppose $A \setminus B \subseteq C \cap D$ and $x \in A$. If $x \notin D$ then $x \in B$.

Proof. Suppose $x \notin D$. Then this implies that $x \notin (C \cap D)$ and therefore $x \notin (A \setminus B)$. But since $x \in A$ for $x \notin (A \setminus B)$ means that $x \in B$. Thus if $x \notin D$ then $x \in B$.

3.1.11 . Suppose a, b, c, and d are real numbers, 0 < a < b and d > 0. Prove that if $ac \ge bd$ then c > d.

$$\begin{array}{ll} \textit{Givens} & \textit{Goal} \\ a,b,c,d \in \mathbb{R} & \textit{ac} \geq bd \rightarrow c > d \\ 0 < a < b \\ d > 0 \end{array}$$

Consider proving the contrapositive of the goal giving

Givens
$$Goal$$

 $a, b, c, d \in \mathbb{R}$ $c \le d \to ac < bd$
 $0 < a < b$
 $d > 0$

Then using the conditional proof technique, we move the first part of the goal to the givens

$$Givens & Goal \\ a,b,c,d \in \mathbb{R} & ac < bd \\ 0 < a < b \\ d > 0 \\ c \le d$$

Since a>0 we can multiply both sides of the last given without reversing the inequality giving $ac \leq ad$. Likewise, since d>0 we can multiply both sides of the second given without reversing the inequality giving ad < bd. Combining these two inequalities gives $ac \leq ad < bd \Rightarrow ac < bd$ which is the desired goal.

Formally

Theorem. Suppose a, b, c, and d are real numbers, 0 < a < b and d > 0. If $ac \ge bd$ then c > d.

Proof. We will prove by contrapositive, thus suppose $c \leq d$. Multiplying by the positive number a gives $ac \leq ad$. Similarly multiplying by the positive number d gives ad < bd. Combining $ac \leq ad$ and ad < bd we can conclude that ac < bd. Thus if $ac \geq bd$ then c > d.

Section 3.2 - Proofs Involving Negations and Conditionals

3.2.5. Use the method of contradiction to prove that supposing $A \cap C \subseteq B$ and $a \in C$, that $a \notin (A \setminus B)$.

Since the initial goal is $a \notin (A \setminus B)$ we will instead use proof by contradiction by assuming $a \in (A \setminus B)$ and attempt to reach a contradiction. Thus our givens and goals are

Givens
$$Goal$$

 $A \cap C \subseteq B$ contradiction
 $a \in C$
 $a \in (A \setminus B)$

Since $a \in (A \setminus B) \Rightarrow (a \in A \land a \notin B)$. Thus we can add those to our givens (since they both must be true)

Givens
$$Goal$$

 $A \cap C \subseteq B$ contradiction
 $a \in C$
 $a \in A$
 $a \notin B$

Since by givens 2 and 3, $a \in A$ and $a \in C$, therefore $a \in (A \cap C)$. By given 1, this implies that $a \in B$ which contradicts the last given. Thus our initial assumption was incorrect, hence $a \notin (A \setminus B)$.

Formally,

Theorem. Suppose $A \cap C \subseteq B$ and $a \in C$. Then $a \notin (A \setminus B)$.

Proof. Suppose not, then $a \in (A \setminus B)$. This implies that $a \in A$ and $a \notin B$. Since $a \in C$ we have that $a \in (A \cap C)$. But since $A \cap C \subseteq B$, this means that $a \in B$ which contradicts the fact that $a \notin B$. Thus $a \notin (A \setminus B)$.