2024 春近世代数期中考试

叶郁

2024.4.26

题目 1. (15分)

- (1) 设一群 G 的阶为 p^r ,其中 p 为素数,而 r 为正整数。证明该群有非平凡的中心。
 - (2) 设一群 G 的阶为 27,且非交换,证明该群的中心同构于 3 阶循环群。
 - (3) 举一 27 阶非交换群的例子。

题目 2. (25分)

设 M 为一有限半群。定义左幺元为 M 中的一元素 e,使得 ex = x 对 M 中的每个元素 x 都成立。称 M 有左消去律,若对于任意的 $x,y,z \in M$,如果有 xy = xz,则有 y = z。类似的定义右幺元和右消去律。

- (1) 若 M 同时有左幺元和右幺元,证明 M 为幺半群。
- (2) 若 M 有左消去律,证明 M 有左幺元。
- (3) 证明 M 为群当且仅当 M 同时有左消去律和右消去律。
- (4) 举一有左消去律但无右消去律的半群的例子(不要求有限)。
- (5)(3)中的结论对无限半群成立吗?给出你的判断并陈述理由。

题目 3. (15分)

设 G 为一群,而 N_1, N_2 为 G 的两个正规子群,且 $N_1 \cap N_2 = \{e\}$ 。

- (1) 证明 $N_1 \triangleleft C_G(N_2)$ 。
- (2) 若 |G| = 665, 证明 G 为循环群。
- (3) 在 (2) 的条件下,求 G 的自同构数量。

题目 4. (15分)

- (1) 证明群 (\mathbb{Q}^+, \times) 为自由群,并写出该群的一组基。
- (2) 是否存在从群 (\mathbb{Q}^+ ,×) 到群 (\mathbb{Q} ,+) 的非平凡群同态?给出你的判断并陈述理由。
 - (3) 决定所有的 1800 阶 Abel 群。

题目 5. (25 分)

- (1) 找出 S_4 的所有正规子群。
- (2) 给出 S₄ 和 S₆ 的一个 Sylow 2-子群。
- (3) 若 $f: S_4 \to S_4$ 为 S_4 到自身的群同态,证明对于任意的 $x, y \in S_4$,若 x, y 同型,f(x), f(y) 同型。
- (4) 在 (3) 的基础上,若更进一步,f 为 S_4 到自身的群同构,证明对于任意的 $x \in S_4$, x = f(x) 同型。

(5) 证明 S_4 的自同构只有内自同构。

题目 6. (15分)

设 V 为一 n 维的 \mathbb{R} 上的线性空间,称一长为 n+1 的子空间列为 V 中的完备旗,若: $\{\mathbf{0}\} = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_{n-1} \subset V_n = V$,且 $\dim(V_i) = i \ (i = 0, 1, \ldots, n)$ 。记 $G = \operatorname{GL}_n(\mathbb{R})$,而所有完备旗组成的集合为 \mathcal{F} 。

- (1) 证明 G 在 V 上的左乘作用诱导了 G 在 \mathcal{F} 上的群作用。
- (2) 设 $W_k = \bigoplus_{i=1}^k \mathbb{R} e_i \ (k=1,2,\ldots,n)$,其中 e_i 为只有第 i 个分量为 1,其余分量均为 0 的向量。求完备旗 $(W_0,W_1,\ldots,W_n) \in \mathcal{F}$ 在(1)所示的群作用下的稳定子群。
- (3) 设 $T \leq G$ 为所有可逆上三角阵全体,试给出 G 关于 T 的一个左陪集完全代表元系。