

Development and programming trajectory planning algorithms for large scale airspace

Julien Lavandier (ENAC-OPTIM), Marcel Mongeau (ENAC), Supatcha Chaimatanan (GISTDA)

Introduction

Due to air traffic growth, the airspace will be saturated. The solution is either adapting demand to airspace's capacity or adapting airspace's capacity to demand. ATM capacity increase -> reduce the mental workload on the controller.

Delays at the time of departure -> snowball effect -> more workload on the controller

Spatio-temporal separability of the air traffic to solve smaller problems.

Figure 1. Global Air Passengers Growth (pessimist and optimist scenarios) [1,2].

Methods

Choose metric to evaluate the controller's workload. [3]

- → Linear Dynamical System (Slow, robust)
- → Speed covariance + distance (Fast, less robust)

Figure 2. Vector field produced by the Linear Dynamic System

Identify spatio-temporal clusters

- → Define spatio-temporal distance (4D volume intersection)
- → Numerical Analysis (Reduce bandwidth of interaction matrix) [4]

Figure 3. Two flights with original and alternate orthodromic trajectories.

First algorithm

Selective Simulated Annealing [5] process is chosen. The algorithm is based on the classic Simulated Annealing with the difference of selecting and changing the choices of the worse flights first.

Figure 4. Only decision 4 & 9 are selected and changed by the neighboring operator

First results

Selective Simulated Annealing results on the French air traffic for a full day is shown in Figure 5.

Figure 5. Complexity of French air traffic before and after optimization with FL, routes, and time of departure choices.

Perspectives

- → Solve smaller problems defined by the spatiotemporal clusters
- → Linear Dynamic System implementation on GPU

References

- [1] IATA, Passenger forecast infographic
- [2] Data World Bank, Air transport, passengers carried
- [3] D. Delahaye and S. Puechmorel, Modeling and Optimization of Air Traffic. Wiley, 2013, p. 352. doi: 10.1002/9781118743805.
- [4] E. Cuthill and J. McKee, "Reducing the bandwidth of sparse symmetric matrices," in Proceedings of the 1969 24th national conference, New York, NY, USA, Aug. 1969, pp. 157–172. doi: 10.1145/800195.805928.
- [5] J. Lavandier, A. Islami, D. Delahaye, S. Chaimatanan, and A. Abecassis, "Selective Simulated Annealing for Large Scale Airspace Congestion Mitigation," Aerospace, vol. 8, no. 10, p. 288, 2021.