

CF-OOD: Concentration-Free density estimation for Reliable Out-of-Distribution Detection

SISAP 2025

October 1st-3rd

Reykjavik, Iceland

Fabrizio Angiulli, Fabio Fassetti, Maria Pia Zupi⊠ fabrizio.angiulli@unical.it,fabio.fassetti@unical.it, mariapia.zupi@dimes.unical.it

1. Problem: OOD Detection – Seeing the Unseen

@ What is OOD Detection?

Most deep learning models assume that test data follow the same distribution as training data (in-distribution, ID). In practice, this assumption often fails: unseen or unexpected inputs called *out-of-distribution* (OOD) may lead to incorrect and overconfident predictions.

A Why It Matters?

In high-risk applications, misclassifying OOD inputs can have severe consequences:

- **Medical diagnostics**: the model may give overconfident predictions on unseen or unknown conditions, leading to misdiagnosis.;
- Autonomous driving: novel road scenarios may cause unsafe actions.

Recognizing OOD inputs enables better safety and robustness.

2. Solution: CFOF-score

Let \mathcal{D} be a reference set of n points in a space \mathbb{U} with a distance function dist. Given an instance $x \in \mathbb{U}$, the k-th nearest neighbor of x in \mathcal{D} , denoted $nn_k^{\mathcal{D}}(x)$, is the point such that exactly k-1 points in \mathcal{D} are closer to x. The set of k nearest neighbors of x is:

$$NN_k^{\mathcal{D}}(x) = \{nn_i^{\mathcal{D}}(x) : 1 \le i \le k\}.$$

Reverse neighborhood size: how many points have x as one of their k nearest neighbors:

$$N_k^{\mathcal{D}}(x) = \left| \{ y \in \mathcal{D} : x \in NN_k^{\mathcal{D}}(y) \} \right|.$$

CFOF anomaly score: given $\varrho \in (0, 1)$, the CFOF score of x is:

CFOF_D
$$(x) = \min_{1 \le k \le n} \left\{ \frac{k}{n} : N_k^{\mathcal{D}}(x) \ge n\varrho \right\}.$$

This score measures how many neighbors are needed for x to be "close" to at least a fraction ϱ of the dataset — the smaller the score, the more central x is.

CF-OOD score: applied in latent space via a representation function ϕ :

$$CF-OOD_{\mathcal{D}}(x) = CFOF_{\phi(\mathcal{D})}(\phi(x)).$$

5. Conclusion

- CF-OOD works across multiple deep learning models without retraining or changes to training, making it easy to integrate into existing pipelines.
- Extensive experiments show that **CF-OOD outperforms** state-of-the-art density-based methods (AUROC-based).
- In the latent space, OOD and ID samples become **clearly separable**, enabling robust detection.
- Future work includes broader indistribution datasets and exploring alternative hidden representations and normalizations.

3. Application: CF-OOD Approach

We apply the CF-OOD score to detect OOD samples using latent representations from a pretrained network. The procedure is:

- . \not Model setup: pre-trained f on $\mathcal{D}_{\text{train}}$.
- 2. Φ Reference sampling: select subset $\mathcal{D} \subset \mathcal{D}_{\text{train}}$ (size α).
- 3. ϕ_{x}^{x} Feature extraction: extract $\phi(\tilde{x})$ from penultimate layer.
- 4. $\triangle \hat{x}$ Normalization: compute $\hat{\phi}(\tilde{x}) = \phi(\tilde{x})/\|\phi(\tilde{x})\|$.
- 5. X Distance computation: compute Euclidean distances to reference set.
- 6. Scoring: apply CF-OOD via precomputed distance histograms.

4. Results

- The CFOF score allows effective discrimination in the **latent space**, the distributions become clearly distinguishable. In the **original space**, score distributions largely overlap.
- Table 1 shows AUROC-based pairwise comparisons. Each cell reports how often the row method outperforms the column. CF-OOD stands out: highest number of wins and rarely underperforms.

	MSp	Mq_{O}	ENERGY	THAN	REACT	KW	QOO_{AO}
MSP	_	37.5	37.5	57.5	57.5	10.0	5.0
ODIN	62.5	_	50.0	57.5	57.5	20.0	7.5
ENERGY	62.5	47.5	_	60.0	55.0	22.5	12.5
MAHAL	42.5	42.5	40.0	_	57.5	5.0	2.5
REACT	42.5	42.5	42.5	42.5	_	20.0	2.5
KNN+	90.0	80.0	77.5	95.0	80.0	_	15.0
CF-OOD	95.0	92.5	87.5	97.5	97.5	80.0	_

Table 1: Percentage of wins (AUROC)