Correctness of the decider for cyclers bbchallenge

Tristan Stérin

Abstract

We give the pseudocode of the decider for the "Cyclers" family of bbchallenge and we prove its correctness. For more context please refer to https://bbchallenge.org/. The implementation of this decider is available at: https://github.com/bbchallenge/bbchallenge-deciders/.

1 Pseudocode

The goal of this decider is to recognise Turing machines that cycle through the same configurations for ever where a configuration is defined by the 3-tuple: (i) state (ii) position of the head (iii) content of the memory tape. Such machines never halt. The method is simple: remember every configuration seen by a machine and return true if one is visited twice. A time limit (maximum number of steps) is also given for running the test in practice: the algorithm recognises any machine whose cycle fits within this limit ¹.

We assume that we are given a procedure **TuringMachineStep**(machine,configuration) which computes the next configuration of a machine from the given configuration or **nil** if the machine halts at that step.

Algorithm 1 DECIDER-CYLERS

```
1: struct Configuration {
      int state
2:
3:
      int headPosition
      int \rightarrow int tape
4:
6: procedure DECIDER-CYLERS(machine,timeLimit)
      Configuration currConfiguration = \{.state = 0, .headPosition = 0, .tape = \{0:0\}\}
 7:
      Set < Configuration > configurations Seen = \{\}
8:
9:
      int currTime = 0
       while currTime < timeLimit do
10:
          if currConfiguration in configurationsSeen then
11:
12:
          configurationsSeen.insert(currConfiguration)
13:
          currConfiguration := TuringMachineStep(machine,currConfiguration)
14:
          currTime += 1
15:
16:
          if currConfiguration == nil then
             return false //machine has halted
17:
       return false
18:
```

2 Correctness

The set \mathbb{N} denotes $\{0,1,2...\}$. The Turing machines that are studied in the context of bbchallenge use a binary alphabet and a single bi-infinite tape. A *configuration* is defined by the 3-tuple: (i) state (ii) position of the head (iii) content of the memory tape. In the context of bbchallenge, the initial configuration of a machine is always (i) state is 0, i.e. the first state to appear in the machine's description (ii) head's position is 0 (iii) the initial tape is all-0 – i.e. each memory cell is containing 0. In one step,

¹In practice, for machines with 5 states the decider was run with 1000 steps time limit.

machine \mathcal{M} transitions from configuration c to c' and we write $c \to_{\mathcal{M}} c'$. If the machine halts during that step we write $c \to_{\mathcal{M}} \bot$. By convention, $\bot \to_{\mathcal{M}} \bot$ is a valid transition for any machine \mathcal{M} . The operator $\to_{\mathcal{M}}^n$ is $\to_{\mathcal{M}}$ applied $n \in \mathbb{N}$ times. We write $c \to c'$ when the machine is clear from context.

Theorem 1. Let \mathcal{M} be a Turing machine and $t \in \mathbb{N}$ a time limit. Let c_0 be the initial configuration of the machine. There exists $i \in \mathbb{N}$ and $j \in \mathbb{N}$ such that $c_0 \to^i c_i \to^j c_i$ with $i + j \leq t$ if and only if DECIDER-CYCLERS (\mathcal{M},t) returns true.

Proof. This follows directly from the behavior of DECIDER-CYCLERS(\mathcal{M},t): all intermediate configurations below time t are recorded and the algorithm returns true if and only if one is visited twice. This mathematically translates to there exists $i \in \mathbb{N}$ and $j \in \mathbb{N}$ such that $c_0 \to^i c_i \to^j c_i$ with $i + j \leq t$, which is what we want.

Corollary 2. Let \mathcal{M} be a Turing machine and $t \in \mathbb{N}$ a time limit. If DECIDER-CYCLERS (\mathcal{M},t) returns true then the behavior of \mathcal{M} from all-0 tape has been decided: \mathcal{M} does not halt.

Proof. By Theorem 1, there exists $i \in \mathbb{N}$ and $j \in \mathbb{N}$ such that $c_0 \to^i c_i \to^j c_i$ with $i+j \leq t$. It follows that for all $k \in \mathbb{N}$, $c_0 \to^{i+kj} c_i$. The machine never halts as it will visit c_i infinitely often.