Part III – Algebraic Topology (Ongoing course, rough)

Based on lectures by Professor I. Smith Notes taken by Bhavik Mehta

${\it Michaelmas}~2018$

Contents

0	Introduction	2
).1 Singular (co)chains	4

0 Introduction

Algebraic topology concerns the connectivity properties of topological spaces. Recall a space X is **connected** if we cannot write $X = U \cup V$ where U, V are non-empty, open and disjoint.

Example. \mathbb{R} is connected (with its Euclidean topology), $\mathbb{R} \setminus \{0\}$ is not connected.

Corollary (Intermediate value theorem). If $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(x) > 0, f(y) < 0, then there is some z lying between x, y such that f(z) = 0.

Proof. If
$$f(z) \neq 0$$
 for all z, then $\mathbb{R} = f^{-1}(-\infty, 0) \cup f^{-1}(0, \infty)$ is disconnected.

For nice spaces, connected \iff path-connected. Recall: a space X is path-connected if $\forall x,y\in X, \exists \gamma:[0,1]\to X$ continuous such that $\gamma(0)=x,\gamma(1)=y$. Informally, any two maps of a point to X can be continuously deformed into one another.

Definition (Homotopy). If X, Y are topological spaces and $f, g : X \to Y$ are (continuous) maps, then f is **homotopic** to g if

$$\exists F: X \times [0,1] \to Y$$

continuous such that

$$F|_{X\times\{0\}} = f, F|_{X\times\{1\}} = g.$$

Write $f \simeq g$ or $f \simeq_F g$ and schematically

Definition (Simply connected). A path-connected space X is **simply connected** if every two continuous maps $S^1 \to X$ are homotopic. Here $S^n = \{x \in \mathbb{R}^{n+1} \mid ||x|| = 1\}$ is the n dimensional sphere, S^1 is the circle $\subseteq \mathbb{C}$.

Example. \mathbb{R}^2 is simply connected but $\mathbb{R}^2 \setminus \{0\}$ is not. In fact, continuous maps $S^1 \xrightarrow{\gamma} \mathbb{R}^2 \setminus \{0\}$ have a degree $\deg(\gamma) \in \mathbb{Z}$, invariant under homotopy. (If γ was differentiable, we could set $\deg(\gamma) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z} \in \mathbb{Z}$.) If $\gamma_n : S^1 \to \mathbb{R}^2 \setminus \{0\}$ has $t \mapsto e^{2\pi i n t}$ then $\deg(\gamma_n) = n$.

Corollary (Fundamental theorem of algebra). Every nonconstant complex polynomial has a root.

Proof. Let $f(z) = z^n + a_1 z^{n-1} + a_2 z^{n-2} + \cdots + a_n$ be a complex polynomial and suppose $f(z) \neq 0 \ \forall z \in \mathbb{C}$. Let $\gamma_R(t) = f(Re^{2\pi it})$ so $\gamma_R : S^1 \to \mathbb{R}^2 \setminus \{0\}$. Now γ_0 is a constant map, so $\deg(\gamma_0) = 0$. By homotopy invariance of degree, $\deg(\gamma_R) = 0 \ \forall R$.

If $R \gg \sum_i |a_i|$, we can consider $f_s(z) = z^n + s(a_1 z^{n-1} + \dots + a_n)$ for $0 \le s \le 1$, and on the circle $Re^{2\pi it}$, f_s also takes values in $\mathbb{R}^2 \setminus \{0\}$. If $\gamma_{R,s}(t) = f_s(Re^{2\pi it})$, then $\gamma_{R,1} = \gamma_R$ but $\gamma_{R,0} : z \mapsto z^n$, which has degree n. Now $\deg(\gamma_0) = \deg(\gamma_R) = \deg(\gamma_{R,1}) = \deg(\gamma_{R,0})$, so n = 0 and f is constant.

Fact. Any two maps $S^n \to \mathbb{R}^{n+1}$ are homotopic but maps $S^n \xrightarrow{f} \mathbb{R}^{n+1} \setminus \{0\}$ have a degree $\deg(f) \in \mathbb{Z}$, invariant up to homotopy. Moreover, the degree of the constant map is 0 and the degree of inclusion is 1.

Corollary (Brouwer's fixed point theorem). If $B^n = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$, any continuous map $f: B^n \to B^n$ has a fixed point.

Proof. Suppose f has no fixed point. Let $\gamma_R: S^{n-1} \to \mathbb{R}^n \setminus \{0\}$ be the map $v \mapsto R_v - f(R_v)$ for $0 \le R \le 1$. So γ_0 is a constant, so has degree 0. Hence $\deg(\gamma_1) = 0$.

Let $\gamma_{1,s}(v) := v - sf(v)$, for $0 \le s \le 1$ and $v \in S^{n-1}$. Note $\gamma_{1,s}$ has image in $\mathbb{R}^n \setminus \{0\}$: if s = 1, this is because $v \ne f(v) \ \forall v$ and if s < 1 then |v| > |sf(v)|. Therefore $\gamma_1 = \gamma_{1,1}$ has the same degree as $\gamma_{1,0}$ which is the inclusion $S^{n-1} \hookrightarrow \mathbb{R}^n \setminus \{0\}$, a contradiction.

Definition (Homotopy equivalence). We say spaces X, Y are **homotopy equivalent** if \exists maps $f: X \to Y$ and $g: Y \to X$ such that $g \circ f \simeq \operatorname{id}_X$ and $f \circ g \simeq \operatorname{id}_Y$. We write $X \simeq Y$.

Example.

- Trivial case: if X, Y are homeomorphic, i.e. $X \cong Y$, then clearly $X \simeq Y$.
- $\mathbb{R}^n \simeq \{0\}$, the single point. A space homotopy equivalent to a point is sometimes called contractible.
- $\mathbb{R}^n \setminus \{0\} \simeq S^{n-1}$. If $i: S^{n-1} \hookrightarrow \mathbb{R}^n \setminus \{0\}$ inclusion, and $p: \mathbb{R}^n \setminus \{0\} \to S^{n-1}$ is projection $v \mapsto \frac{v}{\|v\|}$, then $p \circ i = \mathrm{id}_{S^{n-1}}$ and $i \circ p \simeq \mathrm{id}_{\mathbb{R}^n \setminus \{0\}}$ via the homotopy

$$F: \mathbb{R}^n \setminus \{0\} \times [0,1] \longrightarrow \mathbb{R}^n \setminus \{0\}$$
$$(v,t) \longmapsto tv + (1-t) \frac{v}{\|v\|}$$

Algebraic topology is the study of the set of spaces up to homotopy equivalence via the set of groups up to isomorphism.

The first naive attempt would be homotopy groups: Loops (continuous maps $S^1 \to X$) with a common base-point can be concatenated and this induces a group structure on the set of homotopy classes of maps $(S^1,*) \to (X,x_0)$. Recall this refers to continuous maps $S^1 \to X$ taking $* \mapsto x_0$ and a based homotopy $F: f \simeq g$ of two such is one such that $F|_{S \times \{t\}}$ sends * to $x_0 \forall t$.

Again, there is a group structure on the set of based homotopy classes of maps $(S^n, *) \to (X, x_0)$ calld $\pi_n(X, x_0)$, the *n*-th homotopy group of X.

Fact. $\{\pi_n(S^2, x)\}_{n\geq 1}$ is not known. Indeed, there is no simply connected manifold of dimension > 0 for which all π_n are known.

Instead, we will focus on homology theory, more precisely singular (co)homology. We will obtain invariants of spaces in a two-step process:

- (a) Associate to X a chain complex (or cochain complex).
- (b) take (co)homology of that complex.

This will be rather computable for simple spaces. In this course, we will mostly focus on studying manifolds.

Definition (Chain complex, cochain complex). A **chain complex** (C_*, d) is a sequence of abelian groups and homomorphisms

$$\cdots \longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{d_{n-1}} C_{n-2} \longrightarrow \cdots$$

(indexed by \mathbb{N} or \mathbb{Z}) with the key property that $\forall n \ d_{n-1} \circ d_n = 0$ Then image $(d_{n+1}) \subseteq \ker(d_n)$ and the *n*-th homology group $H_n(C_*, d)$ of the chain complex is the quotient

$$H_n(C_*,d) \coloneqq \frac{\ker(d_n)}{\operatorname{im}(d_{n+1})}.$$

A **cochain complex** (C^*,d) is a sequence of abelian groups and homomorphisms

$$\cdots \longrightarrow C_{n+1} \stackrel{d_{n-1}}{\longrightarrow} C_n \stackrel{d_n}{\longrightarrow} C_{n+1} \longrightarrow \cdots$$

such that $d^n \circ d^{n-1} \equiv 0 \ \forall n$ The n-th cohomology group $H^n(C^*, d)$ is the quotient

$$H^n(C^*,d) \coloneqq \frac{\ker(d^n)}{\operatorname{im}(d^{n-1})}.$$

0.1 Singular (co)chains

Definition (Simplex). A simplex in a topological space X is defined as follows.

• An *n*-simplex is the convex hull of (n+1) ordered points v_0, \ldots, v_n in \mathbb{R}^m such that $\{v_i - v_0 \mid 1 \leq i \leq n\}$ are linearly independent. Write this as $[v_0, \ldots, v_n] = \sigma$.

The standard *n*-simplex is $\Delta^n = \{ (t_0, \dots, t_n) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^n t_i = 1, t_i \ge 0 \ \forall i \}$, e.g.

Note any n-simplex is canonically the image of Δ^n under a linear homeomorphism $\Delta^n \to \sigma$ given by $(t_i) \mapsto \Sigma t_i v_i \in \sigma$.

An n simplex in X is a continuous map $\sigma: \Delta^n \to X$, or from any n-simplex to X. Note any n-simplex has faces $\Delta^{n-1}_i \subseteq \Delta^n$ is defined by $\{t_i = 0\}$ and then this defines a corresponding face of any σ via the map $\Delta^n \to \sigma$. Write ith face of σ as $[v_0, \ldots, \hat{v_i}, \ldots, v_n] \subseteq [v_0, \ldots, v_n]$ (so a hat over a vertex means omit it).

Note the edges of any simplex are canonically oriented via $v_i \rightarrow v_j$ if i < j.

Definition (Singular chain complex). If X is a space, the **singular chain complex** $C_*(X; \mathbb{Z})$ or just $C_*(X)$ is defined as follows:

$$\left\{ \left. \sum_{i=1}^{N} h_i \sigma_i \right| N \in \mathbb{N}_{\geq 0}, h_i \in \mathbb{Z}, \sigma_i : \Delta^n \to X \text{ an } n\text{-simplex in } X \right\}$$

the free abelian group on n-simplices in X.

Definition (Boundary map). The boundary map $d: C_n(X) \to C_{n-1}(X)$ is defined by

$$d\sigma = \sum_{i=0}^{n} (-1)^{i} \sigma|_{[v_0 \cdots \hat{v_i} \cdots v_n]}$$

on $\sigma = [v_0 \cdots v_n]$ and extend to $C_n(X)$ by linearity.

Example. For the simplex $\sigma = [v_0 v_1 v_2], d(\sigma) = [v_0 v_1] - [v_0 v_2] + [v_1 v_2].$

Lemma. $d^2 = 0$, i.e. $d_{n-1} \circ d_n = 0 \ \forall n$.

Proof.

$$d \circ d(\sigma) = d \left(\sum_{i=0}^{n} (-1)^{i} \sigma|_{[v_{0} \dots \hat{v_{i}} \dots v_{n}]} \right)$$

$$= \sum_{j < i} (-1)^{i} (-1)^{j} \sigma|_{[v_{0} \dots \hat{v_{j}} \dots \hat{v_{i}} \dots v_{n}]}$$

$$+ \sum_{j > i} (-1)^{i} (-1)^{j+1} \sigma|_{[v_{0} \dots \hat{v_{i}} \dots \hat{v_{j}} \dots v_{n}]}.$$

Exchanging i and j, these two terms exactly cancel.

The resulting homology theory $H_*(X)$ or $H_*(X;\mathbb{Z})$ is called **singular homology**.

The \mathbb{Z} keeps track of the fact that $h_i \in \mathbb{Z}$, we could similarly define $C_*(X,G)$ and $H_*(X,G)$ for any abelian group G. Note $H_*(X,\mathbb{Z})$ is tautologically a homeomorphism invariant of X.

The idea is that d takes the boundary of a region covered by simplices.

Elements of $\ker(d: C_i(X) \to C_{i-1}(X))$ are called cycles or *i*-cycles. Elements in $\operatorname{im}(d)$ are called boundaries.

Definition (Cochain complex). The singular **cochain** complex of a space X, $C^*(X, \mathbb{Z})$ or $C^*(X)$, has cochain groups $C^n(X) := \text{Hom}(C_n(X), \mathbb{Z})$ and coboundary map $d^* : C^n(X) \to C^{n+1}(X)$ by $(d^*\psi)(\sigma) := \psi(d\sigma)$. Here $\sigma \in C_{n+1}(X)$ and $d\sigma \in C_n(X)$, i.e. $d\sigma = d_{n+1}\sigma$.

Observe $d^*(d^*\psi)(\sigma) = d^*(\psi|_{d\sigma}) = \psi|_{d\circ d(\sigma)}$ and $d\circ d(\sigma) = 0$, so $(d^*)^2 = 0$. So indeed $(C^*(X), d^*)$ is a cochain complex and the cohomology $H^*(X, \mathbb{Z})$ or $H^*(X)$ is called **singular cohomology**.

Note $H^*(X,\mathbb{Z}) \neq \operatorname{Hom}_{\mathbb{Z}}(H_*(X,\mathbb{Z}),\mathbb{Z})$ in general. Observe if $f: X \to Y$ is continuous and $\sigma: \Delta^n \to X$ is continuous, then I get $f \circ \sigma: \Delta^n \to Y$ is an *n*-simplex in Y, so I get

$$f_*: C_*(X) \to C_*(Y)$$

$$f_*: C_n(X) \to C_n(Y) \ \forall n$$

are group homomorphisms.

Key observation: $df_* = f_*d$ since $f \circ (\sigma|_{[v_0 \cdots \hat{v_i} \cdots v_n]}) = (f \circ \sigma)|_{[v_0 \cdots \hat{v_i} \cdots v_n]}$ i.e. a continuous map $f: X \to Y$ induces a **chain map** of chain complexes

$$\dots \longrightarrow C_{n+1}(X) \xrightarrow{d} C_n(X) \xrightarrow{d} C_{n-1}(X) \xrightarrow{d} \dots$$

$$\downarrow^{f_*} \qquad \downarrow^{f_*} \qquad \downarrow^{f_*} \qquad \downarrow^{f_*}$$

$$\dots \longrightarrow C_{n+1}(Y) \xrightarrow{d} C_n(Y) \xrightarrow{d} C_{n-1}(Y) \xrightarrow{d} \dots$$

and each square commutes.

Lemma. If C_* and D_* are chain complexes and $f_*: C_* \to D_*$ is a chain map, then f_* indexes homomorphisms $f_*: H_i(C_*) \to H_i(D_*)$ for every i.

Proof. Let $a \in H_i(C_*) = \frac{\ker(d_i:C_i \to C_{i-1})}{\operatorname{im}(d_{i+1}:C_{i+1} \to C_i)}$, so a is represented by some i-cycle $\alpha \in C_i$, where $d\alpha = 0$.

Then $f_*(d\alpha)=0=d(f_*\alpha) \Longrightarrow f_*(\alpha) \in D_i$ is a cycle in the D_* -chain complex, and hence defines an element in $H_i(D_*)=\frac{\ker(d:D_i\to D_{i-1})}{\operatorname{im}(d:D_{i+1}\to D_i)}$. Call this element b and set $f_*(a)=b$. This is well-defined. If α' also repesents $a\in H_i(C_*)$, then $\alpha-\alpha'$ is a boundary, i.e. $\alpha-\alpha_i=d_{i+1}(\gamma)$ for some $\gamma\in C_{i+1}$. Then $f_*(\alpha)-f_*(\alpha')=f_*(d_{i+1}\gamma)=d_{i+1}f_*(\gamma)$ so $f_*(\alpha')$ and $f_*(\alpha)$ differ by a boundary, so define some element $b\in H_i(D_*)$. It is an easy exercise to check that this map $f_*:H_i(C_*)\to H_i(D_*)$ is indeed a homomorphism of groups. \square

The upshot of this is that if $f: X \to Y$ is a continuous map of spaces, it induces maps $f_*: H_i(X) \to H_i(Y)$ for all i.

Lemma. If $X \xrightarrow{f} Y \xrightarrow{g} Z$, then $(g \circ f)_* = g_* \circ f_*$, $id_* = id$.

Proof. Exercise.
$$\Box$$

In category-theoretic language, the association $X \mapsto H_*(X)$ is a functor from the category of topological spaces to the set of graded abelian groups. Observe $f: X \to Y$ induces $f_*: C_*(X) \to C_*(Y)$ and this has an adjoint $f^*: C^*(Y) \to C^*(X)$. Note this goes the other way. This again induces a map $H^*(Y) \to H^*(X)$.

Lemma.

$$H_*(\mathrm{pt}) = \begin{cases} \mathbb{Z} & * = 0\\ 0 & \text{otherwise} \end{cases}$$

Proof. Note for each $n \geq 0$, there is a *unique n*-simplex in $X = \{pt\}$, namely the constant map $\sigma_n : \Delta^n \to \{pt\}$. So the chain complex $(C_*(pt), d)$ is as follows.

$$\ldots \longrightarrow C_n(X)$$