Pré-cálculo: teoria dos conjuntos e funções

Thiago de Paula Oliveira

Escola Superior de Agricultura "Luiz de Queiroz"

4 de março de 2018

- Equações podem ser elaboradas a partir de quaisquer duas expressões, as quais possuem uma relação de igualdade;
- Funções são apenas tipos específicos de equações
 - Diferença: temos apenas um único valor de y para cada valor de x;

- Equações podem ser elaboradas a partir de quaisquer duas expressões, as quais possuem uma relação de igualdade;
- Funções são apenas tipos específicos de equações
 - Diferença: temos apenas um único valor de y para cada valor de x;
 - Ex. 1: y = x + 3,

- Equações podem ser elaboradas a partir de quaisquer duas expressões, as quais possuem uma relação de igualdade;
- Funções são apenas tipos específicos de equações
 - Diferença: temos apenas um único valor de y para cada valor de x;
 - Ex. 1: y = x + 3, é uma função para $\forall x \in \mathbb{R}$;

- Equações podem ser elaboradas a partir de quaisquer duas expressões, as quais possuem uma relação de igualdade;
- Funções são apenas tipos específicos de equações
 - Diferença: temos apenas um único valor de y para cada valor de x;
 - Ex. 1: y = x + 3, é uma função para $\forall x \in \mathbb{R}$;
 - Ex. 2: $y^2 + x^2 = 1$

- Equações podem ser elaboradas a partir de quaisquer duas expressões, as quais possuem uma relação de igualdade;
- Funções são apenas tipos específicos de equações
 - Diferença: temos apenas um único valor de y para cada valor de x;
 - Ex. 1: y = x + 3, é uma função para $\forall x \in \mathbb{R}$;
 - Ex. 2: $y^2 + x^2 = 1$ não é uma função $\forall x \in (-1,1)$, pois há múltiplos valores para y;

- Equações podem ser elaboradas a partir de quaisquer duas expressões, as quais possuem uma relação de igualdade;
- Funções são apenas tipos específicos de equações
 - Diferença: temos apenas um único valor de y para cada valor de x;
 - Ex. 1: y = x + 3, é uma função para $\forall x \in \mathbb{R}$;
 - Ex. 2: $y^2 + x^2 = 1$ não é uma função $\forall x \in (-1, 1)$, pois há múltiplos valores para y;

Tabela: Diferença entre equação e função

Equação	Função
$y = x^2 + 1$	$f(x) = x^2 + 1$
(x,y)	(x, f(x))

Função

Definição

Função: Sejam A e B dois conjuntos não vazios, uma função definida em A e com valores em B é uma lei que associa a cada elementos $x \in A$ um único valor $y \in B$.

Notação:

$$f: \left\{ \begin{array}{l} A \to B \\ x \mapsto y = f(x) \end{array} \right.$$

- **1** Quando $A \subseteq \mathbb{R}$ e $B \subseteq \mathbb{R}$ a função é dita real de variável real.
- O conjunto A é denominado domínio da função, enquanto que o conjunto B é o contradomínio

Teste da linha vertical

- Muitas das equações estudadas em cálculo são funções. No entanto, nem todas as equações são funções.
- Apenas funções podem passar no teste da linha vertical;
- **3 Teste**: f(x) só será uma função no intervalo [a, b] se para qualquer reta perpendicular ao eixo x (vertical) exista apenas um ponto de intersecção com y.

Definição

Domínio: O domínio de uma função é dado por todos os valores de $x \in A$ tal que f(x) exista.

Definição

Domínio: O domínio de uma função é dado por todos os valores de $x \in A$ tal que f(x) exista.

Definição

Imagem: Seja y = f(x) uma função definida em A com valores em B, o conjunto imagem da função é definito por $Im(f) = \{y \in B | y = f(x)\}$

Definição

Domínio: O domínio de uma função é dado por todos os valores de $x \in A$ tal que f(x) exista.

Definição

Imagem: Seja y = f(x) uma função definida em A com valores em B, o conjunto imagem da função é definito por $Im(f) = \{y \in B | y = f(x)\}$

Definição

Contra-domínio: É o conjunto que contém todas as imagens possíveis para a função.

Definição

Domínio: O domínio de uma função é dado por todos os valores de $x \in A$ tal que f(x) exista.

Definição

Imagem: Seja y = f(x) uma função definida em A com valores em B, o conjunto imagem da função é definito por $Im(f) = \{y \in B | y = f(x)\}$

Definição

Contra-domínio: É o conjunto que contém todas as imagens possíveis para a função.

Exemplos: (a)
$$f(x) = x + 1$$
, $(b)f(x) = \frac{3}{x+1}$, $(c)y = \sqrt{x-3}$

Definição

Sobrejetora: Seja uma função $f: A \to B$. A função f é sobrejetora, se e somente se, para todo elemento $x_1 \in A$ existir um elemento de $y_1 \in B$ tal que $f(x_1) = y_1$, ou seja, CD(f) = Im(f).

Definição

Sobrejetora: Seja uma função $f: A \to B$. A função f é sobrejetora, se e somente se, para todo elemento $x_1 \in A$ existir um elemento de $y_1 \in B$ tal que $f(x_1) = y_1$, ou seja, CD(f) = Im(f).

$$f: \mathbb{R} \to [0, \infty)$$
, dada por $f(x) = x^2$

Definição

Injtora: Seja uma função $f: A \to B$. A função f é injetora quando para quaisquer elementos $x_1 \neq x_2 \in A$ resulte em $f(x_1) \neq f(x_2) \in B$.

Definição

Injtora: Seja uma função $f: A \to B$. A função f é injetora quando para quaisquer elementos $x_1 \neq x_2 \in A$ resulte em $f(x_1) \neq f(x_2) \in B$.

$$f:[0,\infty)\to\mathbb{R}, \text{ dada por } f(x)=x^2$$

Definição

Bijetora: Uma função $f: A \rightarrow B$ é bijetora quando é injetora e sobrejetora ao mesmo tempo.

Definição

Bijetora: Uma função $f: A \rightarrow B$ é bijetora quando é injetora e sobrejetora ao mesmo tempo.

$$f:[0,\infty)\to[0,\infty), \text{ dada por } f(x)=x^2$$

Exemplos

•
$$f(x) = x$$
, para $\forall x \in \mathbb{R}$

- ② $f(x) = x^2$, para $\forall x \in [-1, 2]$
- **3** $f(x) = x^3$, para $\forall x \in [-2, 2]$

1
$$h(x) = f(x) + g(x) =$$

1
$$h(x) = f(x) + g(x) = \frac{x^4 + x + 1}{x^2}$$
;

$$b(x) = f(x) \times g(x) =$$

1
$$h(x) = f(x) + g(x) = \frac{x^4 + x + 1}{x^2};$$

2
$$h(x) = f(x) \times g(x) = 1 + x$$
;

3
$$h(x) = f(g(x)) =$$

1
$$h(x) = f(x) + g(x) = \frac{x^4 + x + 1}{x^2}$$
;

2
$$h(x) = f(x) \times g(x) = 1 + x$$
;

3
$$h(x) = f(g(x)) = \left(\frac{1+x}{x^2}\right)^2$$
;

4
$$h(x) = f(g(x)) =$$

1
$$h(x) = f(x) + g(x) = \frac{x^4 + x + 1}{x^2};$$

2
$$h(x) = f(x) \times g(x) = 1 + x$$
;

3
$$h(x) = f(g(x)) = \left(\frac{1+x}{x^2}\right)^2$$
;

$$h(x) = f(g(x)) = [f(x)]^{g(x)} = x^{\frac{2+2x}{x^2}}$$

Visualização de funções

A forma mais comum de visualizar uma função é por meio gráfico. Se f é uma função com domínio D, então seu gráfico é o conjunto de pares ordenados

$$\{(x, f(x))|x \in D\}$$

Exemplo

Exemplo: Um container retangular para estoque de alimentos tem o seu topo aberto e deve ter um volume de $10\,m^3$. O tamanho de seu comprimento deve ser duas vezes sua largura. O material para a base tem um custo de 30 reais por metro quadrado; o material para as laterais tem um custo de 20 reais por metro quadrado. Expresse o custo de materiais como uma função da largura de sua base.

Exemplo

Exemplo: Um container retangular para estoque de alimentos tem o seu topo aberto e deve ter um volume de $10\,m^3$. O tamanho de seu comprimento deve ser duas vezes sua largura. O material para a base tem um custo de 30 reais por metro quadrado; o material para as laterais tem um custo de 20 reais por metro quadrado. Expresse o custo de materiais como uma função da largura de sua base.

Monotonicidade

Definição

Monotonicidade: seja y = f(x) uma função real e(a, b) um subintervalo do domínio dessa função, se:

- $\forall x_1, x_2 \in (a, b) \ com \ x_1 < x_2 \ se \ verifique \ f(x_1) < f(x_2), \ então \ y = f(x)$ é uma função estritamente crescente em (a, b)
- $\forall x_1, x_2 \in (a, b) \ com \ x_1 > x_2 \ se \ verifique \ f(x_1) > f(x_2), \ então \ y = f(x)$ é uma função estritamente decrescente em (a, b)
- **3** Quando a função é crescente ou decrescente em todo o seu domínio diz-se que ela é absolutamente monótona

Monotonicidade

Definição

Monotonicidade: seja y = f(x) uma função real e(a, b) um subintervalo do domínio dessa função, se:

- $\forall x_1, x_2 \in (a, b) \ com \ x_1 < x_2 \ se \ verifique \ f(x_1) < f(x_2), \ então \ y = f(x)$ é uma função estritamente crescente em (a, b)
- ② $\forall x_1, x_2 \in (a, b) \ com \ x_1 > x_2 \ se \ verifique \ f(x_1) > f(x_2), \ então \ y = f(x)$ é uma função estritamente decrescente em (a, b)
- **3** Quando a função é crescente ou decrescente em todo o seu domínio diz-se que ela é absolutamente monótona

Ex.: (a)
$$f(x) = x + 2$$
 (b) $f(x) = x^2 - 5x + 6$

Paridade de funções

9 Seja $A \subseteq \mathbb{R}$ um conjunto com a seguinte propriedade de simetria em relação à origem:

$$x \in A \Longrightarrow -x \in A$$

- **1** Uma função $f: A \to \mathbb{R}$ é dita **par** se f(x) = f(-x);
- **Q** Uma função $f:A\to\mathbb{R}$ é dita **ímpar** se f(-x)=-f(x);

Paridade de funções

- Propriedades:
 - A única função que é par e ímpar ao mesmo tempo é a função nula (f(x) = 0);
 - 4 Há funções que não são pares e nem ímpares;
 - Uma função ímpar definida na origem é nula na origem;
 - A soma de duas funções de mesma paridade mantem essa paridade;
 - O produto de duas funções com paridades distintas é uma função ímpar;
 - A derivada de uma função par é uma função ímpar;
 - A derivada de uma função ímpar é uma função par;

Paridade de funções

Exercício: Seja $f(x) = x^5$ e $g(x) = 1 - x^4$, verifique a paridade:

(a)
$$h(x) = f(x) + f(x)$$
 (b) $h(x) = f(x) \times f(x)$

(c)
$$h(x) = g(x) + f(x)$$
 (d) $h(x) = f(x) \times g(x)$

(e)
$$h(x) = x^3 + x^2$$
 (f) $h(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}x^2)$

Gráfico: paridade

Funções compostas

Definição

Função composta: considere três conjuntos não vazios, A, B e C e duas funções reais f(x) e g(x), tais que:

$$g: \left\{ \begin{array}{ll} A \to B \\ x \mapsto g(x) \end{array} \right. \quad f: \left\{ \begin{array}{ll} B \to C \\ g(x) \mapsto f(g(x)) \end{array} \right.$$
 (1)

- f(g(x)) é denominada função composta de f em $g \to f \circ g(x)$
- O domínio de $f \circ g(x)$ é determinado pelos valores reais de x para os quais g(x) exista, sendo que todos os valores reais de g(x) estarão no domínio de f.

Funções compostas

Definição

Função composta: considere três conjuntos não vazios, A, B e C e duas funções reais f(x) e g(x), tais que:

$$g: \left\{ \begin{array}{ll} A \to B \\ x \mapsto g(x) \end{array} \right. \quad f: \left\{ \begin{array}{ll} B \to C \\ g(x) \mapsto f(g(x)) \end{array} \right.$$
 (1)

- f(g(x)) é denominada função composta de f em $g \to f \circ g(x)$
- O domínio de $f \circ g(x)$ é determinado pelos valores reais de x para os quais g(x) exista, sendo que todos os valores reais de g(x) estarão no domínio de f.

Funções compostas

Figura: Ilustração da composição das funções f(x) e g(x)

Exemplos

Seja
$$f(x) = x^2 + 1$$
 e $g(x) = 2x$, $\forall x \in \mathbb{R}$. Calcule

- **1** Encontre as leis e propriedades das funções $f \circ g(x)$ e $g \circ f(x)$.
 - i) Propriedades: domínio, imagem, se ela é sobrejetora, injetora ou bijetora e monotonicidade.
- **2** f(g(2))
- **3** f(g(-1))

Funções definidas por partes

• Uma função pode ser definida por diferentes fórmulas em diferentes partes do seu domínio.

$$f(x) = \begin{cases} 1 - x, & \text{se } x \le 1 \\ x^2, & \text{se } x > 1 \end{cases}$$
 (2)

Funções definidas por partes

• Uma função pode ser definida por diferentes fórmulas em diferentes partes do seu domínio.

$$f(x) = \begin{cases} 1 - x, & \text{se } x \le 1\\ x^2, & \text{se } x > 1 \end{cases}$$
 (2)

② Outra função definida por partes é a função modular $|x| \ge 0$

$$f(x) = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0 \end{cases}$$
 (3)

Exemplos

Em um experimento utilizando uma espécies de tesourinha (*Doru ssp.*) o pesquisador avalia o seu crescimento ao longo do tempo (dias). Suponha que o crescimento (mm) do inseto em função do tempo pode ser descrita pela função

$$f(x) = (a + b x)^{c}, \forall a, b > 0 e 0 < c < 1.$$

Agora, suponha que para o intervalo de dias $t \in [0,7)$ o crescimento do inseto seja dado por g(x) = f(x) enquanto que para o intervalo de dias $t \in [7,15]$ seja dado por g(x) = f(x) + h(x). Defina a função g(x) para cada um dos intervalos sabendo que $h(x) = \sqrt{x} - 2.645$. Esboce o gráfico da função considerando a = 1, b = 3, c = 0.7.

Função modular

Definição

Valor absoluto ou módulo. Para qualquer número real x, o valor absoluto ou módulo de x é denotado por |x|, o qual é definido por:

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0 \end{cases}$$

O valor absoluto de x é sempre um valor positivo ou nulo, porém nunca negativo, mesmo para x < 0.

Função modular

Definição

Valor absoluto ou módulo. Para qualquer número real x, o valor absoluto ou módulo de x é denotado por |x|, o qual é definido por:

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0 \end{cases}$$

O valor absoluto de x é sempre um valor positivo ou nulo, porém nunca negativo, mesmo para x < 0.

Função modular: propriedades

Propriedades fundamentais:

- **1** $|x| = \sqrt{x^2}$
- $|x| \ge 0 \Longrightarrow$ não-negativo;
- **3** $|x| = 0 \iff x = 0$

- $oldsymbol{0} \left| \frac{x}{y} \right| = \frac{|x|}{|y|}$ para $y \neq 0 \Longrightarrow$ preservação da divisão

Função modular: exemplo

Sejam as funções f(x) = 2x - 1 e g(x) = |x|. Esboce os gráficos especificando o domínio e o conjunto imagem de cada uma das funções a seguir:

2
$$f \circ g(x) = f(g(x))$$

Função exponencial

- f O São funções da forma a^x , e que a é uma constante positiva
- ② Caso especial: quando a=e, em que e é o número de Leonhard Euler (1727)
- **③** e ≈ 2,71828
- pode ser expresso como e^x ou $\exp(x)$

Exemplo I

A função de Shumacher (1939) foi a primeira tentativa de definir uma função para relacionar o crescimento florestal com o tempo. A função baseia-se na hipótese de que a taxa relativa de crescimento decresce de forma não linear ao longo do tempo e é dada por

$$f(t) = a \, \exp\left(-k\frac{1}{t}\right),\,$$

em que a é uma constante real.

Faça o gráfico da função assumindo a=10 e $t=\{0,1,2,\ldots,10\}$. Interprete.

Exemplo II

Suponha um experimento em que uma cultura de bactéria contendo 100 indivíduos é colocada em um recipiente contendo um determinado conteúdo nutritivo. Então, pose-de quantificar o número de bactérias em função do tempo, ou seja, N=f(t), em que N é o número de bactérias. Supondo $f(t)=100\ e^t$, a Tabela 1 apresenta o resultado desse experimento:

Tabela: N como uma função de t

Tempo (horas)	N = f(t)
0	100
1	272
2	739
3	2.009
4	5.460
5	14.841
6	40.343

Faça o esboço do gráfico da função.

Definição

Uma função f é chamada função um-para-um se quaisquer dois elementos de $x_1, x_2 \in A$ não tem a mesma imagem, ou seja,

$$f(x_1) \neq f(x_2), \quad \forall \ x_1 \neq x_2.$$

Portanto, a função inversa (f^{-1}) existirá, sem perda de generalidade, se e somente se f for uma função bijetora.

Definição

Uma função f é chamada função um-para-um se quaisquer dois elementos de $x_1, x_2 \in A$ não tem a mesma imagem, ou seja,

$$f(x_1) \neq f(x_2), \quad \forall \ x_1 \neq x_2.$$

Portanto, a função inversa (f^{-1}) existirá, sem perda de generalidade, se e somente se f for uma função bijetora.

Cuidado: O -1 de f não é um expoente.

$$f^{-1}(x) \neq \frac{1}{f(x)} = [f(x)]^{-1}$$

Definição

Uma função f é chamada função um-para-um se quaisquer dois elementos de $x_1, x_2 \in A$ não tem a mesma imagem, ou seja,

$$f(x_1) \neq f(x_2), \quad \forall \ x_1 \neq x_2.$$

Portanto, a função inversa (f^{-1}) existirá, sem perda de generalidade, se e somente se f for uma função bijetora.

Cuidado: O -1 de f não é um expoente.

$$f^{-1}(x) \neq \frac{1}{f(x)} = [f(x)]^{-1}$$

Exemplos:

1
$$g(x) = x^2$$
, para $x \in [-3,3]$ e $g(x) = x^2$, para $x \in [0,3]$

2
$$g(x) = x$$
, para $x \in [-3, 3]$

Definição

Seja f uma função um-para-um com domínio A e imagem B. Então, sua função inversa f^{-1} tem domínio B e imagem A e é definida por

$$f^{-1}(y) = x \iff f(x) = y, \quad \forall \ y \in B.$$

Passo a passo para encontrar uma função um-para-um

- Escreva y=f(x)
- 2 Resolva essa equação para x em função de y, caso possível.
- ullet Expresse f^{-1} como uma função de x, trocando x e $y \Longleftrightarrow y = f^{-1}(x)$

Definição

Seja f uma função um-para-um com domínio A e imagem B. Então, sua função inversa f^{-1} tem domínio B e imagem A e é definida por

$$f^{-1}(y) = x \iff f(x) = y, \quad \forall \ y \in B.$$

Passo a passo para encontrar uma função um-para-um

- Escreva y=f(x)
- 2 Resolva essa equação para x em função de y, caso possível.
- **3** Expresse f^{-1} como uma função de x, trocando x e $y \iff y = f^{-1}(x)$

Exemplos: (a)
$$f(x) = x + 1$$
 (b) $f(x) = x^3 + 2$

outra $t = f^{-1}(N)$.

Suponha um experimento em que uma cultura de bactéria contendo 100 indivíduos é colocada em um recipiente contendo um determinado conteúdo nutritivo. Então, pose-de quantificar o número de bactérias em função do tempo, ou seja, N=f(t), em que N é o número de bactérias. Supondo f(t)=100 e^t e $t\in\{0,1,2,3\}$, faça uma tabela para N=f(t) e

Suponha um experimento em que uma cultura de bactéria contendo 100 indivíduos é colocada em um recipiente contendo um determinado conteúdo nutritivo. Então, pose-de quantificar o número de bactérias em função do tempo, ou seja, N = f(t), em que N é o número de bactérias.

Supondo f(t)=100 e^t e $t\in\{0,1,2,3\}$, faça uma tabela para N=f(t) e outra $t=f^{-1}(N)$.

Tabela: (a) número de bactérias em função do tempo e (b) tempo em função do número de bactérias

(a) $N = f(t)$	
t (horas)	N = f(t)
0	100
1	272
2	739
3	2.009

(.) NI ((.)

(b) $t = f^{-1}(N)$		
N	$t = f^{-1}(N)$	
100	0	
272	1	
739	2	
2.009	3	

Função inversa: gráfico

Definição

Se a>0 e $a\neq 1$, a função exponencial $f(x)=a^x$ pode ser crescente (a>1) ou decrescente (0< a<1). Assim, sua função inversa f^{-1} é chamada função logarítmica com base a e é denotada por \log_a , ou seja,

$$\log_a x = y \Longleftrightarrow a^y = x$$

Definição

Se a>0 e $a\neq 1$, a função exponencial $f(x)=a^x$ pode ser crescente (a>1) ou decrescente (0< a<1). Assim, sua função inversa f^{-1} é chamada função logarítmica com base a e é denotada por \log_a , ou seja,

$$\log_a x = y \Longleftrightarrow a^y = x$$

Definicão

Leis dos logaritmos. Se x e y são números positivos, então

- $\log_a \left(\frac{x}{y}\right) = \log_a x \log_a y$

Propriedades

$$a^{\log_a x} = x, \ \forall \ x > 0$$

Propriedades

2
$$a^{\log_a x} = x, \ \forall \ x > 0$$

Exemplos:

- Use as leis dos logaritmos para calcular
 - a) $\log_4 20 + \log_4 10$
 - b) $\log_2 10 \log_2 2$
- Simplifique

 - $\log_a (2b^2 + 2) \log_a [2(b^2 + 2bc + c^2)]$

Logaritmo natural

Definição

O logaritmo cuja base é o número e chama-se logaritmo natural e tem uma notação especial

$$\log_e x = \ln x.$$

Utilizando as definições e propriedades dos logaritmos temos que:

- **3** $e^{\ln x} = x, \ \forall \ x > 0$

Exemplo:

- **1** Calcule a inversa de $f(t) = 100 e^x$
- 2 Encontre o domínio e a imagem de $f(x) = 1 + e^{x^2}$ e de $f(x) = e^{-x}$

Gráfico: experimento bactéria

- Funções trigonométricas são funções de um ângulo. Elas relacionam os ângulos de um triângulo com o comprimento de seus lados.
- São utilizadas para modelar fenômenos periódicos como o som, direção do vôo de pássaros, variações na temperatura média

Considere, no primeiro quadrante, o ângulo θ que define o arco \overrightarrow{AP} . Por definição:

1 Domínio: $D(f(\theta)) = \{\theta \in \mathbb{R}\}$

 $\hbox{\it Contra-domínio: } CD(f(\theta))=\{y\in[-1,1]\}$ $-1\leq {\rm sen} \; \theta\leq 1 \quad -1\leq {\rm cos} \, \theta\leq 1$

f 3 Uma propriedade importante: função periódica cujo período é 2π

$$sen(\theta + 2\pi) = sen \theta cos(\theta + 2\pi) = cos \theta$$

Preto: sen θ e cos θ

Vermelho: $sen(\theta + 1) e cos(\theta + 1)$

Roxo: $sen(\theta - 1) e cos(\theta - 1)$

Funções trigonométricas: tangente

• Relaciona as funções seno e cosseno:

$$tg \theta = \frac{sen \theta}{cos \theta}$$

2 Ela não é definida quando $\cos \theta = 0$, ou seja,

$$heta
eq \left\{\ldots,-rac{\pi}{2},-rac{3\pi}{2},rac{\pi}{2},rac{3\pi}{2},\ldots
ight\}=rac{(2k+1)\pi}{2},\quad k\in\mathbb{Z}$$

- **3** Domínio: $D(f(\theta)) = \left\{ \theta \in \mathbb{R} | \theta \neq \frac{(2k+1)\pi}{2}, \quad k \in \mathbb{Z} \right\}$
- Contra-domínio: $CD(f(\theta)) = \{y \in [-\infty, \infty]\}$

Funções trigonométricas: tangente

Considere, no primeiro quadrante, o ângulo a que define o arco \widehat{AP} . Por definição:

1 tg
$$\theta = \text{tg } \widehat{AP} = \overline{AT}$$
 e $\cot \theta = \cot \widehat{AP} = \overline{BQ}$

Relações trigonométricas fundamentais

Definição

Seja θ um ângulo associado a um arco AM e $k \in \mathbb{Z}$. Podemos definir as seguintes identidades trigonométricas:

3
$$\csc \theta = \frac{1}{\sec \theta}, \quad \theta \neq k\pi$$

6
$$\sec^2 \theta = 1 + \tan^2 \theta$$
, $\theta \neq \frac{(2k+1)\pi}{2}$

Definição

Função trigonométrica: é toda função definida por uma relação trigonométrica. Ao definir essa função deve-se observar:

- 1 as condições de sua existência (domínio)
- o conjunto imagem
- o período da função

Definição

Função trigonométrica: é toda função definida por uma relação trigonométrica. Ao definir essa função deve-se observar:

- 1 as condições de sua existência (domínio)
- o conjunto imagem
- o período da função

Definição

Função periódica: uma função y = f(x), com $x \in D \subseteq \mathbb{R}$, é dita periódica se existe um número positivo p tal que f(x + p) = f(x) para todo $x \in D$. O menor valor de p para o qual se verifica essa relação é chamado de período da função.

Considere a função

$$f: \left\{ \begin{array}{c} \mathbb{A} \subseteq \mathbb{R} \to \mathbb{B} \subseteq \mathbb{R} \\ \theta \mapsto y = \cos \theta \end{array} \right.$$

cujo gráfico é denifido na Figura 2. Determine o domínio, imagem e periodicidade (p).

Figura: Função cosseno

- Domínio $D(f) = \mathbb{R}$ e conjunto imagem Im(f) = [-1, 1];
- ② $\cos(\theta + 2\pi) = \cos\theta$, $\forall x \in \mathbb{R}$, ou seja, o período da função é $p = 2\pi$.
- $oldsymbol{3}$ A função cosseno da forma como está definida não admite inversa \Longrightarrow

- **①** Domínio $D(f) = \mathbb{R}$ e conjunto imagem Im(f) = [-1, 1];
- ② $\cos(\theta + 2\pi) = \cos\theta$, $\forall x \in \mathbb{R}$, ou seja, o período da função é $p = 2\pi$.
- 3 A função cosseno da forma como está definida não admite inversa ⇒ não é bijetora.
- **①** Considere $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, a função $\cos \theta$ possui inversa? Justifique.

- Domínio $D(f) = \mathbb{R}$ e conjunto imagem Im(f) = [-1, 1];
- ② $\cos(\theta + 2\pi) = \cos\theta$, $\forall x \in \mathbb{R}$, ou seja, o período da função é $p = 2\pi$.
- A função cosseno da forma como está definida não admite inversa

 não é bijetora.
- **3** Considere $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, a função $\cos \theta$ possui inversa? Justifique.

$$f: \left\{ \begin{array}{c} \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1] \\ \theta \mapsto y = \cos \theta \end{array} \right.$$

A função passa a ser bijetora e, portanto, existe f^{-1}

$$f^{-1}: \left\{ egin{array}{l} [-1,1]
ightarrow \left[-rac{\pi}{2},rac{\pi}{2}
ight] \ y \mapsto \operatorname{arcsen} y \end{array}
ight.$$

Exercícios

- Expresse a função $f(x) = (2x + x^2)^2$ na forma $f \circ g$.
- 2 Esboce o gráfico da função f(x) = |x+2|
- Uma companhia elétrica cobra uma taxa base de 10 reais por mês mais 6 centavos por kilowatt-hora (kWh) para os primeiros 1200 kWh. Ultrapassado esse limite, são cobrados 7 centavos por kWh adicional mais uma taxa de 100 reais. Expresse o custo mensal C como uma função da quantidade x, em kWh, de energia consumida. Em seguida, faça o gráfico da função C para 0 ≤ x ≤ 2.000.
- **1** Encontre o domínio e a imagem das funções f(x) = |x| x e $f(x) = \frac{4-x^2}{2-x}$.

Definição

função do 1° **grau**: A função $f: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ x \mapsto y = ax + b \end{array} \right.$ com $a,b \in \mathbb{R}$ é uma função do primeiro grau.

- **1** Raiz da função: $x = -\frac{b}{a}$
- **②** O gráfico de f é uma reta, cujo coeficiente angular é dado por $a=\operatorname{tg}\theta$.
- 3 Taxa de crescimento ou decrescimento; constante;
- **4** Essa reta intercepta o eixo Oy no ponto (0, b);
- se a = 0 tem-se a função constante f(x) = b, cuja reta é constante ao eixo Ox;

- Se b = 0 tem-se a função linear f(x) = ax, cuja reta passa pela origem;
- 2 Se $a, b \neq 0$ a função é denominada afim;
- **3** Se a > 0 a função é absolutamente crescente para $\forall x \in \mathbb{R}$;
- **4** Se a < 0 a função é absolutamente decrescente para $\forall x \in \mathbb{R}$;

Exemplo:

Esboce o gráfico das funções f(x) = 3x - 2 e f(x) = -2(x - 1). Essas funções possuem inversa? Justifique.

Gráfico: função do 1° grau

Definição

função do 2° **grau**. A função $f: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ x \mapsto y = ax^2 + bx + c \end{array} \right.$ com $a,b,c \in \mathbb{R}$ e $a \neq 0$ \acute{e} uma função do segundo grau ou quadrática.

• Raízes da função (Báskara): $\frac{-b \pm \sqrt{\Delta}}{2a}$, em que $\Delta = b^2 - 4ac$

Definição

função do 2° **grau**. A função $f: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ x \mapsto y = ax^2 + bx + c \end{array} \right.$ com a, $b, c \in \mathbb{R}$ e $a \neq 0$ é uma função do segundo grau ou quadrática.

- **1** Raízes da função (Báskara): $\frac{-b \pm \sqrt{\Delta}}{2a}$, em que $\Delta = b^2 4ac$
- 2 Se $\Delta < 0$, então a função não terá raízes reias;
- $oldsymbol{\circ}$ Se $\Delta=0$, a função terá duas raízes reais idênticas;

Definição

função do 2° **grau**. A função $f: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ x \mapsto y = ax^2 + bx + c \end{array} \right.$ com $a,b,c \in \mathbb{R}$ e $a \neq 0$ \acute{e} uma função do segundo grau ou quadrática.

- **1** Raízes da função (Báskara): $\frac{-b \pm \sqrt{\Delta}}{2a}$, em que $\Delta = b^2 4ac$
- ② Se Δ < 0, então a função não terá raízes reias;
- $oldsymbol{\circ}$ Se $\Delta=0$, a função terá duas raízes reais idênticas;
- O gráfico dessa função é uma parábola com eixo de simetria paralelo ao eixo Oy

Definição

função do 2° **grau**. A função $f: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ x \mapsto y = ax^2 + bx + c \end{array} \right.$ com $a,b,c \in \mathbb{R}$ e $a \neq 0$ \acute{e} uma função do segundo grau ou quadrática.

- **1** Raízes da função (Báskara): $\frac{-b \pm \sqrt{\Delta}}{2a}$, em que $\Delta = b^2 4ac$
- ② Se $\Delta < 0$, então a função não terá raízes reias;
- $oldsymbol{3}$ Se $\Delta=0$, a função terá duas raízes reais idênticas;
- O gráfico dessa função é uma parábola com eixo de simetria paralelo ao eixo Oy
- **5** Concavidade: a > 0 concava para cima ou a < 0 concava para baixo;

- **1** As coordenadas do vértice da parábola são $\left(x_v = -\frac{b}{2a}, y_v = -\frac{\Delta}{4a}\right)$;
- ② Se a>0, então $Im(f)=\{y\in\mathbb{R}|y\geq y_v\}$ ou se a<0, então $Im(f)=\{y\in\mathbb{R}|y\leq y_v\}$;

Funções polinomiais: exemplos

Encontre o domínio, conjunto imagem e vértice da parábola, estude a monotonicidade e paridade e esboçe o gráfico das seguintes funções:

- **2** $f(x) = x^2 2x 15$ para $\forall x \in \mathbb{R}$;
- $f(x) = -x^2 + x + 5 \text{ para } \forall x \in \mathbb{R};$

Classificação de funções

- 1 Polinomial: Linear, Quadrática, Cúbica, ...
- 2 Potência: Raiz quadrada, recíproca (y = 1/x)
- 3 Racional: $\frac{x^3+2}{x^2+x}$
- ¶ Funções transcedentais: logarítmica, exponencial, trigonométricas, inversa trigonométricas
- Algébricas: combinação das demais funções;