Análisis de estabilidad y $R_{ m 0}$

Ecología teórica

Gerardo Martín

28-08-2023

El modelo SIR con dinámica

poblacional

Las ecuaciones

$$\dot{S} = \mu - \beta SI - \mu S \tag{1}$$

$$\dot{I} = \beta SI - (\mu + \gamma)I \tag{2}$$

$$\dot{R} = \gamma I - \mu R \tag{3}$$

$$\dot{N} = dN/dt$$

$$N = S + I + R = 1$$

Condiciones para distribución de equilibrio

Igualamos la ecuación para $\dot{I}=0$:

$$\beta SI - (\mu + \gamma)I = 0$$

Factorizando I, tenemos:

$$I(\beta S - (\mu + \gamma)) = 0$$

Condiciones para distribución de equilibrio

Con lo que hay dos soluciones evidentes:

$$I^* = 0 \tag{4}$$

$$I^* = 0 \tag{4}$$

$$S^* = \frac{\mu + \gamma}{\beta} \tag{5}$$

(6)

- 1. El equilibrio libre de enfermedad (I^*)
- 2. El equilibrio endémico (S^*)

Relación con ${\cal R}_0$

La ecuación para R_0 :

$$R_0 = \frac{\beta}{\gamma + \mu}$$

Por lo que:

$$S^* = \frac{1}{R_0}$$

La distribución de equilibrio estable

- \cdot Cuando hay infecciones, el nivel de susceptibles será S^{st}
- · Para encontrar la fracción de infectados, sustituimos $S^{st}=1/R_0$ en:

$$\mu - \beta SI - \mu S = 0$$

de donde resolvemos para I, obteniendo:

$$I^* = \frac{\mu}{\beta}(R_0-1)$$

6

Encontrando R^{st}

Tomando en cuenta que:

$$S^* + I^* + R^* = 1$$

y que por lo tanto:

$$R^*=1-S^*-I^*$$

Sustituimos S^{\ast} e I^{\ast}

La distribución del equilibrio endémico

$$R^* = 1 - \frac{1}{R_0} - \frac{\mu}{\beta}(R_0 - 1)$$

Tenemos entonces que:

$$(S^*,I^*,R^*) = \left(\frac{1}{R_0},\frac{\mu}{\beta}(R_0-1),1-\frac{1}{R_0}-\frac{\mu}{\beta}(R_0-1)\right)$$

Interpretación de condiciones de

equilibrio

En el modelo SIR con dinámicas

- Oscilaciones
- · Decrecen con tiempo
- · Amplitud disminuye
- · Período aumenta

Simulación

Valores de parámetros y condiciones iniciales:

- $\cdot \ 1/\mu = 70 \ \mathrm{a ilde{n}os}$
- $\cdot \ \beta = 520 \ \mathrm{por} \ \mathrm{a\tilde{n}o}$
- $\cdot \ 1/\gamma = 7 \, \mathrm{dias}$
- $\cdot \ S(0) = 0.1 \, \mathrm{y} \, I(0) = 2.5 \times 10^{-4}$
- $\cdot \ R_0 \approx 10$ (para cálculo hay que homogeneizar unidades de parámetros)

Código de deSolve

```
parms <- list(</pre>
  mu = 1/(70 * 365),
  beta = 520 / 365,
  gamma = 1/7
y = c(S = 0.1, I = 2.5E-4, R = 0)
t < - seq(0, 60*365)
```

Código de deSolve

```
sir <- function(t, y, parms){</pre>
  S <- v[1]
  I < -y[2]
  R < -y[3]
  with(parms, {
    dS <- mu - beta * S * I - mu * S
    dI \leftarrow beta * S * I - (mu + gamma) * I
    dR <- gamma * I - mu * R
    return(list(c(dS, dI, dR)))
    })
```

Código de deSolve

Resultado

Actividad

Actividad

Calcula de las condiciones de equilibrio endémico con los valores de los parámetros utilizados

Un marco más generalizable para el análisis de estabilidad

La matriz Jacobiana (J)

$$J = \begin{bmatrix} \frac{\partial f_1^*}{\partial N_1} & \frac{\partial f_1^*}{\partial N_2} & \cdots & \frac{\partial f_1^*}{\partial N_n} \\ \frac{\partial f_2^*}{\partial N_1} & \frac{\partial f_2^*}{\partial N_2} & \cdots & \frac{\partial f_2^*}{\partial N_n} \\ \vdots & \ddots & & \vdots \\ \frac{\partial f_n^*}{\partial N_1} & \frac{\partial f_n^*}{\partial N_2} & \cdots & \frac{\partial f_n^*}{\partial N_n} \end{bmatrix}$$
(7)

Desmenuzando

- $f_1^* \rightarrow \dot{S} = 0$
- $\cdot f_2^* \rightarrow I^*$
- $f_3^* \to R^*$
- $\cdot \ \partial S^*/\partial S$ quiere decir que es una derivada parcial
 - $\cdot\,$ Se calcula igual, pero se considera que todo lo demás es constante

Obteniendo las derivadas parciales

$$S^* = \mu - \beta S^*I^* - \mu S^*$$

Si sólo consideramos que ${\cal S}$ es una variable:

$$\frac{\partial S^*}{\partial S} = -\beta I * -\mu$$

Obteniendo las derivadas parciales

En la derivada parcial con respecto de I, tratamos a S como constante y a I como variable:

$$\frac{\partial S^*}{\partial I} = -\beta S^*$$

Y en la de R, S e I son constantes

$$\frac{\partial S^*}{\partial R} = 0$$

La matriz completa una vez que

calculamos todas las parciales

$\operatorname{Matriz} J \operatorname{de} SIR$

$$J = \begin{bmatrix} -\beta I^* - \mu & -\beta S^* & 0\\ \beta I^* & \beta S^* - (\gamma + \mu) & 0\\ 0 & \gamma & -\mu \end{bmatrix}$$
(8)

Qué se hace con ${\cal J}$

- Para encontrar cómo se llegará al equilibrio endémico, calculamos los valores propios (λ_J)
- · Si tenemos 3 compartimentos, habrá 3 valores propios
- · λ puede ser complejo, (p. ej. $\lambda=1-3\sqrt{-1}=1-3i$)
- · Si $\lambda \in \mathbb{Z} \to \operatorname{se}$ llegará al equilibrio endémico por medio de oscilaciones
- \cdot Si la parte real de $\lambda < 0$ el sistema eventualmente se equilibrará

Ejercicio 2

Ejercicio 2

Sustituye los parámetros en ${\cal J}$ y calcula los valores propios (puedes usar cualquier herramienta).

Para finalizar

- \cdot Las funciones f^* para J pueden ser cualesquiera
- Método se puede aplicar para todo tipo de infecciones en una población
- Otras cantidades importantes a calcular son la edad promedio de primera infección cuando la infección es endémica
 - \cdot Expresión derivada de J se puede utilizar en análisis de datos provenientes de poblaciones

Literatura

Keeling y Rohani (2007). Modeling Infectious Diseases in Humans and Animals. Princeton (en existencia en la biblioteca).