SVD разложение.

Выполнила: Ворончихина Елизавета Вячеславовна, группа 24151.

Описание задания: реализовано SVD разложение прямоугольной матрицы

 $A = U\Sigma V^T$ в СЛАУ Ac = b. Столбцы матрицы U являются собственными векторами матрицы AA^T . Столбцы матрицы V являются собственными векторами матрицы $B = A^TA$, а квадраты сингулярных чисел являются ее собственными числами.

Для поиска собственных значений и собственных векторов матрицы B использовался QR-алгоритм. Мы разлагаем матрицу B^k , полученную на k —м шаге алгоритма ($B^0=B$), k=0,1,2,..., на ортогональный Q^k и правый треугольный R^k сомножители и далее, поменяв их местами, умножаем друг на друга, образуя следующее приближение B^{k+1} . Все матрицы B^k , k=0,1,2,..., ортогонально подобны друг другу и исходной матрице B. Собственные значения всех матриц B^k совпадают с собственными значениями B. Тогда предельная матрица — верхняя треугольная, и в этом случае собственные числа треугольной матрицы располагаются на её диагонали. Итерационный процесс продолжается до тех пор, пока не выполнится условие:

$$\max_{i} |\lambda_{i}^{n+1} - \lambda_{i}^{n}| < \varepsilon$$

Где λ_i^n-i -ое собственное значение, полученное на n-ой итерации, $\varepsilon=10^{-12}$.

Чтобы получить собственные векторы матрицы, нужно перемножить все матрицы Q^k .

Сложность алгоритма при использовании QR-разложения: $N_{iter}\left(2n^2n-\frac{2}{3}n\right)=O(N_{iter}n^3)$

В качестве базиса полиномиального пространства использовались мономы, для реализации QR-алгоритма использовался метод Хаусхолдера. Программа написана на языке C++.

Данные № 3
Таблица 1. Результаты численных экспериментов для данных № 3

N	$\mu(A^TA)$	$\mu(A)$	NRMSE(SVD)	Время расчетов, с
1	3.42e+02	1.85e+01	4.58e-02	5.14e+00
2	1.45e+05	3.81e+02	2.03e-02	6.30e+00
3	6.5e+07	8.06e+03	4.62e-03	6.70e+00
4	3.01e+10	1.74e+04	4.58e-03	9.74e+00
5	1.43e+13	3.77e+06	4.32e-03	1.10e+01
6	6.77e+15	8.23e+07	3.33e-03	1.26e+01
7	1.58e+16	1.81e+09	3.20e-03	1.43e+01
8	8.76e+16	4.01e+10	2.65e-03	1.59e+01
9	7.91e+17	8.9e+11	2.34e-03	1.73e+01
10	8.75e+17	1.98e+13	2.32e-03	1.81e+01
11	1.67e+19	4.44e+14	2.32e-03	1.92e+01

Рисунок 1. Графики данных и их приближений для данных № 3

Данные № 4

Таблица 2. Результаты численных экспериментов для данных № 4

N	$\mu(A^TA)$	$\mu(A)$	NRMSE(SVD)	Время расчетов, с
1	1.92e+01	4.39e+00	2.10e-02	8.87e-02
2	5.22e+02	2.28e+01	3.49e-09	1.1e-01
3	1.54e+04	1.24e+02	3.38e-09	1.39e-01
4	4.73e+05	6.88e+02	3.31e-09	1.68e-01
5	1.48e+07	3.85e+03	3.26e-09	1.97e-01
6	4.7e+08	2.17e+04	3.21e-09	2.47e-01
7	1.51e+10	1.23e+05	3.18e-09	2.76e-01
8	4.86e+11	6.97e+05	3.15e-09	3.6e-01
9	1.58e+13	3.97e+06	3.13e-09	3.2e-01
10	5.14e+14	2.27e+07	3.11e-09	3.3e-01
11	1.75e+16	1.30e+08	3.22e-09	3.5e-01

Рисунок 2. Графики данных и их приближений для данных № 4

Данные № 5

Таблица 3. Результаты численных экспериментов для данных № 5

N	$\mu(A^TA)$	$\mu(A)$	NRMSE(SVD)	Время расчетов, с
1	1.92e+01	4.39e+00	8.83e-04	1.08e-01
2	5.22e+02	2.28e+01	7.05e-05	1.19e-01
3	1.54e+04	1.24e+02	4.29e-06	1.50e-01
4	4.73e+05	6.88e+02	2.11e-07	1.68e-01
5	1.48e+07	3.85e+03	8.70e-09	2.23e-01
6	4.70e+08	2.17e+04	6.32e-10	3.15e-01
7	1.51e+10	1.23e+05	5.42e-10	3.21e-01
8	4.86e+11	6.97e+05	5.37e-10	4.12e-01
9	1.58e+13	3.97e+06	5.33e-10	3.20e-01
10	5.14e+14	2.27e+07	5.30e-10	3.44e-01
11	1.75e+16	1.30e+08	5.46e-10	3.60e-01

Рисунок 3. Графики данных и их приближений для данных № 5

Выводы.

Число обусловленности характеризует чувствительность решения по отношению к возмущениям матрицы и правой части. С увеличением N числа обусловленности матриц A^TA и A быстро растут, причём $\mu(A^TA)$ сильно больше $\mu(A)$. Чем больше число обусловленности матрицы, тем системы с такими матрицами решаются с плохой точностью, поэтому полиномы могут обладать большой погрешностью.

Для всех данных с ростом степени монома N значения NRMSE убывают, достигая машинной точности, также до определённого N они не отличимы до 4 знака. Начиная с некоторого N, NRMSE возрастает, что происходит из-за накапливания ошибки округления. Значение NRMSE для данных № 3 имеет порядок выше, чем NRMSE в данных № 4,5. В данных № 3 количество точек около семи тысяч, и полиномы вплоть до 11 степени приближают такие данные с плохой точностью (так как существует единственный полином степени не превосходящей n, который принимает заданные значения в n+1 точке). Значение NRMSE для данных $N ext{ o} 4$ резко понижает порядок при значении степени полинома N=2, значит, что аппроксимируется функция второго порядка. Значение NRMSE для данных № 5 \mathbf{c} увеличением степени Nпонижает порядок, значит, аппроксимируемая функция дифференцируемая, то есть для неё можно найти производные. Поэтому чем больше членов ряда Тейлора и полиномы более высокой степени используются, тем точнее полученное приближённое решение.