APPLIED DATA SCIENCE

IBM NAAN MUTHALVAN PHASE 3

TEAM MEMBERS:

- PRIYADHARSHINI.E
- **KEERTHANA.S**
- **♣** GAYATHRI.B
- DHARSNI RITIKA .KG

PROJECT TITLE:

CUSTOMER SEGMENTATION USING DATA SCIENCE.

DEVEOPMENT PART:

- In this part you will begin building your project by loading and preprocessing the dataset.
- ❖ Begin the customer segmentation project by loading and preprocessing the customer data.
- Collect and preprocess the customer data for analysis.

SOURCE TOOLS:

- Data Loading.
- Data preprocessing.
- Data Set Explanation.

- Building the Project by Load The Data Set.
- Preprocess Data Set.
- Different Analysis Needs.

DATA LOADING:

- Ensure your data is in a structured format like CSV, Excel, or a database.
- ❖ Use appropriate libraries in your programming language (e.g., pandas in Python) to load the data into a Data Frame or any suitable data structure.

Exploring the Data:

- Check the first few rows to understand the structure and format of the data.
- ❖ Investigate the data types of each column (numerical, categorical, etc.).
- ❖ Look for missing values, outliers, or any inconsistencies in the data.

Data Cleaning:

- Handle missing values by removing or imputing them based on the context.
- Address outliers either removing them or transforming them to be within an acceptable range.

Splitting the Data:

Split the data into training and testing sets to evaluate the model's performance.

Example in Python using the pandas library:

LANGE PREPROCESSING:

- # Data preprocessing steps go here (handling missing values.)
- # Split data into features (X) and target variable (y)

```
X = customer_data.drop('target_column', axis=1) # Features y = customer_data['target_column'] # Target variable
```

Split data into training and testing sets from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random state=42).

DATASET EXPLANATION:

- In the context of customer segmentation, a dataset typically consists of various attributes or features related to customers.
- These features can include demographic information (such as age, gender, Spending score, Annual income).

Customer segmentation involves dividing the customer base into distinct groups based on similarities in these attributes.

For example, Dataset for customer segmentation, you might have the following columns:

- Customer ID : A unique identifier for each customer.
- Age : Age of the customer.
- ❖ Gender: Gender of the customer (male, female, other).
- Annual Income: Income level of the customer.
- Spending Score: score of purchasing.

Dataset Link: https://www.kaggle.com/datasets/akram24/mall-customers

BUILDING THE PROJECT BY LOAD THE DATASET.

Import Libraries.

python import pandas as pd

Load the Dataset.

Assuming your dataset is in a CSV file dataset = pd.read_csv('your_dataset.csv')

Explore the Data.

Print the first few rows of the dataset to understand its structure print(dataset.head())

python program,

import pandas as pd

Load the dataset from a CSV file file_path = 'path/to/your/dataset.csv' # Replace this with the actual file path dataset = pd.read_csv(file_path)

Now 'dataset' holds your data and you can start working with it print(dataset.head())

Display the first few rows to verify the data has been loaded correctly

In the code above:

- ❖ `pd.read_csv(file_path)` loads the CSV file into a pandas DataFrame.
- `print(dataset.head())` displays the first few rows of the dataset, allowing you to check if the data is loaded correctly.

PREPROCESS DATASET:

1. Handling Missing Values.

- ❖ Identify and handle missing values in the dataset.
- ❖ You can either remove rows with missing values or fill them using techniques like mean, median, or interpolation, depending on the context.

```
# Remove rows with missing values
dataset_clean = dataset.dropna()
```

Or fill missing values with mean dataset_filled = dataset.fillna(dataset.mean())

2. Encoding Categorical Variables.

- Convert categorical variables into numerical representations. One-hot encoding creates binary columns for each category,
- * while label encoding assigns a unique number to each category.
- # One-hot encoding

```
dataset_encoded = pd.get_dummies(dataset, columns=['categorical_column'])

# Label encoding
    from sklearn.preprocessing import LabelEncoder
    label_encoder = LabelEncoder()

dataset['categorical_column']=label_encoder.fit_transform(dataset['categorical_column'])
```

3. Feature Scaling.

Scale numerical features to a standard range (e.g., using Min-Max scaling or Z-score normalization) to ensure they have a similar scale.

4. Handling Outliers.

- ❖ Identify and handle outliers in numerical features using statistical methods or visualization techniques.
- ❖ You can remove outliers or transform them to be within an acceptable range.

5. Feature Engineering (Optional).

- Create new features based on existing ones to enhance the model's performance.
- This could involve operations like combining features, extracting relevant information, or creating interaction terms.

```
# Creating a new feature by combining existing features dataset['new feature'] = dataset['feature1'] * dataset['feature2']
```

6. Data Splitting.

Split the data into features (X) and the target variable (y) for model training and testing purposes.

```
X = dataset.drop('target_column', axis=1)
y = dataset['target_column']
```

Different Analysis Needs:

1.Descriptive Statistics.

Calculate basic statistics such as mean, median, standard deviation, minimum, maximum, and percentiles. This helps in understanding the central tendency and spread of numerical features in your dataset.

```
# Descriptive statistics
print(dataset.describe())
```

2.Data Visualization.

- Visualize our data using charts and graphs.
- Common plots include histograms, box plots, scatter plots, and bar charts.
- Visualization provides an intuitive understanding of the data distribution and relationships between variables.

```
import matplotlib.pyplot as plt
import seaborn as sns

# Example: Histogram
plt.hist(dataset['numeric_column'])
plt.xlabel('Numeric Column')
plt.ylabel('Frequency')
plt.show()

# Example: Scatter plot
plt.scatter(dataset['feature1'], dataset['feature2'])
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
```

3. Correlation Analysis.

- Compute the correlation between numerical variables to identify relationships.
- Positive and negative correlations indicate the direction of the relationship.

```
# Correlation matrix
correlation_matrix = dataset.corr()
print(correlation_matrix)
```

4. Hypothesis Testing.

- Use statistical tests (t-tests, ANOVA, etc.) to test hypotheses about your data.
- For example, you might want to test if the means of two groups are significantly different.

from scipy.stats import ttest_ind

```
group1 = dataset[dataset['group'] == 1]['target_column']
group2 = dataset[dataset['group'] == 2]['target_column']
t_stat, p_value = ttest_ind(group1, group2)
print(f'T-statistic: {t_stat}, p-value: {p_value}')
```

5. Predictive Modeling.

- Build machine learning models to predict the target variable based on the features.
- Evaluate the model's performance using metrics like accuracy, precision, recall, or mean squared error, depending on the type of problem (classification or regression).

```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = RandomForestClassifier()

model.fit(X_train, y_train)

predictions = model.predict(X_test)
accuracy = accuracy_score(y_test, predictions)
print(f'Accuracy: {accuracy}')
```

6. Clustering Analysis.

- Apply clustering algorithms like K-means to group similar data points together.
- This is useful for discovering patterns or segments within your data.

from sklearn.cluster import KMeans

```
kmeans = KMeans(n_clusters=3).
clusters = kmeans.fit_predict(X).
```

PROGRAM:

```
# Importing necessary libraries
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
# Load your dataset (replace 'data.csv' with your dataset file)
data = pd.read_csv('data.csv')
# Handling missing values (replace 'column_name' with the appropriate column name)
data['column_name'].fillna(data['column_name'].mean(), inplace=True)
# Encoding categorical variables using one-hot encoding
data = pd.get_dummies(data, columns=['categorical_column'])
# Feature scaling using StandardScaler (replace 'feature_column' with the appropriate
column name)
scaler = StandardScaler()
data['feature_column'] = scaler.fit_transform(data['feature_column'].values.reshape(-1,
1))
# Splitting the data into features and target variable
X = data.drop('target_column', axis=1) # Features
y = data['target_column'] # Target variable
# Splitting the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Now you can use X_train, X_test, y_train, y_test for your machine learning model
training.
```

CONCLUSION:

- In conclusion, data preprocessing is a vital step in the field of data science. It involves cleaning, transforming, and organizing raw data into a format suitable for analysis.
- Proper data preprocessing ensures that the data used for analysis is accurate, consistent, and relevant, leading to more meaningful insights and better decision-making.
- Key steps in data preprocessing include handling missing values, encoding categorical variables, scaling features, and splitting the data into training and testing sets.
- ❖ These steps prepare the data for machine learning algorithms, enabling the development of accurate predictive models.
- It's important to note that the specific preprocessing techniques used may vary based on the nature of the data and the requirements of the analysis or modeling task.
- ❖ Regular exploration and understanding of the data are essential for choosing the most appropriate preprocessing methods.