Example of Booth's technique for 9 × -13

N=8 (8 bit numbers)

M=9=00001001b, -M=not-bitwise(9)+1=11110111b R=-13=11110011b

s (step)	M (multiplicand)	P product	Notes
	0000 0001	0000 0000 1111 0011 0	Initialize values
8	0000 0001	1111 0111 1111 0011 0 1111 1011 1111 1001 1	10 => P=P-M arithmetic shift right
7	0000 0001	1111 1101 1111 1100 1	arithmetic shift right
6	0000 0001	0000 0110 1111 1100 1 0000 0011 0111 1110 0	01 => P=P+M arithmetic shift right
5	0000 0001	0000 0001 1011 1111 0	arithmetic shift right
4	0000 0001	1111 1000 1011 1111 0 1111 1100 0101 1111 1	10 => P=P-M arithmetic shift right
3	0000 0001	1111 1110 0010 1111 1	arithmetic shift right
2	0000 0001	1111 1111 0001 0111 1	arithmetic shift right
1	0000 0001	1111 1111 1000 1011 1	arithmetic shift right
0	0000 0001	1111 1111 1000 1011	extract final 16-bit product

NOTES ARE COLOR CODED ACCORDING TO THE ALGORITHM FLOW CHART

 $[\]begin{aligned} & \underline{\textbf{Check the answer}}\\ & \text{P=1111 1111 1000 1011}\\ & = \cdot 2^{15} + 2^{14} + 2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^{9} + 2^{8} + 2^{7} + 2^{3} + 2^{1} + 2^{0} \\ & = \cdot 32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 8 + 2 + 1 \end{aligned}$

⁼⁻¹¹⁷