

Web Scraping

ZOLO.CA Real Estate Data Analyzing

Date: June 22nd, 2023

Contents

Introduction

Motivation

Data Study and Analysis

Conclusions and Challenges

Motivation

- Introducing Zolo.ca
- Motivation behind choosing Zolo.ca for web scraping:
 - O Data Availability
 - O Structured Website
 - O Updated Listings

Website

Toronto Rentals Reset Filters C

Market Stats Neighbourhoods 4032 Homes for Rent

\$4,300 0 3+2 bed 2 bath 20 Greyhound Drive, Toronto, ON · Bayview Woods-Steeles

\$4,300 0 3 bed 2 bath 900-999 sqft New 1112-403 Church Street, Toronto, ON . Church-Yonge Corrid...

Dataframe

• Recorded data of 12709 listings for cities: Toronto, Vancouver, Surrey, Burnaby

URL	Address	City	Suburb	Beds	Baths	Size	Price	Туре	Style	Taxes	Strata Fees	Walk Score	MLSID	Listed By
/www.zolo.ca/vancouver- real-estate/2510	2510 Fraser Street	Vancouver	Mount Pleasant Ve	3.00	3.00	1655.00	\$1,250,000	Townhouse	4 Level Split	\$4,191 /yr	\$1,185 /mo	89	R2781630	MACDONALD REALTY
/www.zolo.ca/vancouver- real-estate/180	519 - 180 2nd Avenue E	Vancouver	Mount Pleasant Ve	1.00	1.00	598.00	\$880,000	Apartment/Condo	Upper Unit	\$1,995 /yr	\$390 /mo	97	R2742811	RENNIE & ASSOCIATES REALTY LTD.
/www.zolo.ca/vancouver- real-estate/5955	607 - 5955 Birney Avenue	Vancouver	University Vw	2.00	2.00	1033.00	\$1,258,000	Apartment/Condo	Corner Unit	\$1,508 /yr	\$383 /mo	65	R2776687	UNILIFE REALTY INC.
/www.zolo.ca/vancouver- real-estate/63-w	207 - 63 2nd Avenue W	Vancouver	False Creek	2.00	2.00	957.00	\$1,188,000	Apartment/Condo	Upper Unit	\$2,658 /yr	\$645 /mo	94	R2789565	CENTURY 21 IN TOWN REALTY
/www.zolo.ca/vancouver- real-estate/161	108 - 161 King Edward Avenue W	Vancouver	Cambie	4.00	4.00	1837.00	\$2,599,900	Townhouse	3 Storey	No Data	\$569 /mo	65	R2777223	RENNIE & ASSOCIATES REALTY LTD.

Crawler

```
cities = ['toronto'] # Add more cities as needed
# Create an empty dictionary to store the URLs for each listing
listings urls = {}
for city in cities:
    for page number in range(1, 171): # Loop through pages 1 to 70
        # Generate the URL for the current city and page number
        url = f'https://www.zolo.ca/{city}-real-estate/page-{page number}'
        # Send a GET request to the current page
        driver.get(url)
        page source = driver.page source
        soup = BeautifulSoup(page source, 'html.parser')
        # Find the parent element by its ID
        parent element = soup.find('section', id='gallery')
        # Find all elements within the parent element that have an 'href' attribute
        link elements = parent element.find all(href=True)
        # Extract the URLs from the link elements and store them in the dictionary
        for link in link elements:
           listing id = link.get('data-listing-id')
           url = link['href']
           if listing id in listings urls:
               listings_urls[listing_id].add(url)
            else:
               listings urls[listing id] = {url}
```

```
for listing id, urls in listings urls.items():
   for url in urls:
# for url in urls:
   # Open the URL in Selenium-controlled browser
       driver.get(url)
       # Find and extract the desired information using Selenium's find element methods
       try:
           address element = driver.find element(By.CSS SELECTOR, '#listing > div > div > section.xs-grid.xs-gap-2.listing-summa
           address = address element.text.strip()
        except NoSuchElementException:
           address = ''
       try:
           country element = driver.find element(By.CSS SELECTOR, '#listing > div > div > section.xs-grid.xs-gap-2.listing-summa
           city = country element.text.strip()
       except NoSuchElementException:
           city = ''
       try:
           suburb_element = driver.find_element(By.CSS_SELECTOR, '#listing > div > div > section.xs-grid.xs-gap-2.listing-summar
           suburb = suburb element.text.strip()
        except NoSuchElementException:
           suburb = ''
           beds element = driver.find element(By.CSS SELECTOR, '#listing > div > div > section.xs-grid.xs-gap-2.listing-summary-
           beds = beds element.text.strip()
        except NoSuchElementException:
           beds = ''
```

Processing the dataset

Transform the data

- Normalization: Scaling numerical data to a common range (e.g., between 0 and 1) to ensure equal importance.
- Standardization: Transforming data to have zero mean and unit variance, which helps when certain calculations

- Removing duplicates: Identifying and eliminating duplicate records
- Handling missing values: Addressing missing data by either imputing values or removing incomplete observations (Year Build, Walk Score)
- Correcting errors: Identifying and rectifying inaccurate or erroneous data entries (Price, Walk Score)

Analyzing & Visualization

- Calculating summary statistics such as mean, median, and standard deviation, to summarize the dataset's central tendencies and dispersion.
- Data profiling: Generating data summaries, frequency tables, and basic statistical analyses to gain initial insights into the data
- Creating bar plots, pie plots, scatter plots, histograms to show data

Select the features

- Selecting the most informative features for the specific analysis
- Choosing the most related labels regarding the business problems and modeling task

Interesting findings

Findings of the data

- Types (Condos/Apt, House/Townhouse)
 Walk Scores (1-100)
- Meaningful and Meaningless labels
- Price, lot size, bedrooms, bathrooms

Data #	columns (total Column	18 columns): Non-Null Count	Dtype
0	URL	2122 non-null	object
1	Address	2121 non-null	object
2	City	2121 non-null	object
3	Suburb	2110 non-null	object
4	Beds	1879 non-null	object
5	Baths	1880 non-null	float64
6	Size	663 non-null	object
7	Offering Type	2120 non-null	object

2044 non-null float64

9 Type

10 Style 11 Lot Size

14 MLS ID 15 Source 16 Listed By 17 final size

12 Year Built 13 Walk Score

RangeIndex: 2122 entries, 0 to 2121

Interesting real estate

- Price Distribution
- Main Resource for the real estate data
- Types of properties for sale on the market
- 200 Prices change vs Neibourghhood, Type Correlation
- 50 highest-price vs lowest-price properties
- Prices change vs Lot Size Correlation
- Prices vs Bedrooms and Bathrooms Correlation

Analyzing the dataset of Toronto

	Baths	Price	final size
count	1880.000000	1.930000e+03	2044.000000
mean	3.604787	2.371595e+06	5968.915403
std	1.723172	2.150753e+06	7990.188459
min	1.000000	1.000000e+00	0.000000
25%	2.000000	1.249000e+06	2748.130200
50%	3.000000	1.749900e+06	4596.500000
75%	5.000000	2.695000e+06	6608.727950
max	19.000000	2.800000e+07	156711.766200

Insights

The frequency of listings' shows the most popular price of properties for sale

Insights

Statistic data for the three numeric labels of the dataset

Analyzing the dataset: Zoom In and Out

Pie Chart of Resource over Toronto data

Pie Chart of Resource over the 4-city data

Analyzing the dataset

Pie Chart of types over properties Deep-In (ALL TYPES VS HOUSE TYPE DEEP-IN)

Analyzing the dataset – Business Sense

Analyzing the dataset – Bias vs Patterns

Conclusions

Conclusion

Enabling comprehensive data collection for market analysis, property valuation, and identifying investment opportunities

Empowering informed decision-making in the real estate industry.

Investment Opportunities

Challenges of the project

Web Scraping

- Captchas and IP Blocking Locating the target labels from the HTML/Jason
- 2. Load chuck data

Data Processing

- 1. Data Consistency
- 2. Missing Data
- 3. Data Quality

Data Analyzing

- 1. Complex Data Relationships
- 2. Selection of Appropriate Analysis Techniques
- 3. Effective Visualization Design

Make the RIGHT recommendations/predictions/decisions

THANK YOU

QUESTIONS?

Date: June 22nd, 2023