Dept Copy

Department of Statistics
University of Wisconsin, Madison
PhD Qualifying Exam Part I
August 31, 2010
12:30-4:30pm, Room 133 SMI

- There are a total of FOUR (4) problems in this exam. Please do a total of THREE (3) problems.
- Each problem must be done in a separate exam book.
- Please turn in THREE (3) exam books.
- Please write your code name and NOT your real name on each exam book.

- 1. Let $X_1, ..., X_n$ be independent and identically distributed with the uniform distribution on the interval (θ_1, θ_2) , where n > 2 and $-\infty < \theta_1 < \theta_2 < \infty$. Let $X_{(1)}$ and $X_{(n)}$ be the smallest and largest order statistics, respectively.
 - (a) Derive the conditional distribution of X_1 given $X_{(n)} = x$.
 - (b) Derive the conditional distribution of $X_{(1)}$ given $X_{(n)} = x$.
 - (c) Let $\alpha \in (0,1)$. Derive a uniformly most accurate unbiased (UMAU) upper confidence bound for θ_1 with confidence coefficient 1α .

- 2. Suppose that $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim}$ a cumulative distribution function F. Consider the use of the chi-square goodness-of-fit test. Let $A_1 = (-\infty, 0]$ and $A_2 = (0, +\infty)$. Define $n_j = \sum_{i=1}^n \mathrm{I}(X_i \in A_j)$. Define $p_j = P(X \in A_j)$, j = 1, 2. Define $\chi^2(p) = \sum_{j=1}^2 \frac{(n_j np_j)^2}{np_j}$.
 - (a) Consider the null hypothesis $H_0^{(1)}: \mathbf{p} = \mathbf{p}_0$, where $\mathbf{p}_0 = (p_{0;1}, p_{0;2})^T$ is fully specified. Find the limit distribution of $\chi^2(\mathbf{p})$ under $H_0^{(1)}$.
 - (b) Consider the null hypothesis $H_0^{(2)}: F = N(\mu, 1)$, where μ is unknown. Let $p_j(\mu)$ denote p_j as a function of μ . Suppose we estimate μ by \overline{X} . Define $\widehat{\boldsymbol{p}} = (\widehat{p}_1, \widehat{p}_2)$, where $\widehat{p}_j = p_j(\overline{X})$. Find the limit distribution of $\chi^2(\widehat{\boldsymbol{p}})$ under $H_0^{(2)}$.
 - (c) Find the minimum chi-square test statistic, $\inf_{\boldsymbol{p}\in\mathcal{P}_0}\chi^2(\boldsymbol{p})$, where $\mathcal{P}_0=\{\boldsymbol{p}=(p_1,p_2):p_1\geq 0,\ p_2\geq 0,\ p_1+p_2=1\}.$

3. Suppose that y_j , $j=1,\dots,n$, are independent observations with y_j following binomial distribution $Bin(m,\pi_j)$, where

$$\log\left(\frac{\pi_j}{1-\pi_i}\right) = \beta_0 + \beta_1 x_j,\tag{1}$$

 $x_1 < \cdots < x_n$ are covariates, $\sum x_j/n = 0$, $\sum x_j^2/n = 1$, and β_0 and β_1 are unknown parameters.

- (a) Find the MLE of β_0 and β_1 .
- (b) Compute the Fisher information for β_0 and β_1 .
- (c) Establish the limiting distribution for the MLE of β_0 and β_1 as $n \to \infty$ assuming appropriate conditions.
- (d) Construct an asymptotic level α test with asymptotic power converging to one for testing the following hypothesis under model (1):

$$H_0$$
: $\pi_1 = \pi_2 = \cdots = \pi_n$.

4. Suppose we have n i.i.d. observations: $\mathbf{y} = (y_1, \dots, y_n)$ with the density function g() with respect to a reference measure μ .

State all the regularity conditions you need when answering the following questions.

- (a) Consider a parametric family $\mathcal{F} = \{f(y|\boldsymbol{\theta}), \boldsymbol{\theta} \in \Theta\}$ to approximate $g(\cdot)$. Assume $g(\cdot) \notin \mathcal{F}$. Let $\ell(\boldsymbol{y}|\boldsymbol{\theta})$ be the log likelihood function based on the parametric family \mathcal{F} and $\hat{\boldsymbol{\theta}}_{\boldsymbol{y}}$ be the MLE obtained as the solution of $\partial \ell(\boldsymbol{y}|\boldsymbol{\theta})/\partial \boldsymbol{\theta} = 0$. When $n \to \infty$, does $\hat{\boldsymbol{\theta}}_{\boldsymbol{y}}$ converge or diverge? If you think it diverges, prove it. If you think it converges to a $\boldsymbol{\theta}^*$, give the formula for $\boldsymbol{\theta}^*$ and find the asymptotic distribution of $\sqrt{n}(\hat{\boldsymbol{\theta}}_{\boldsymbol{y}} \boldsymbol{\theta}^*)$.
- (b) Consider K candidate parametric families $\mathcal{F}_k = \{f_k(y|\boldsymbol{\theta}_k), \boldsymbol{\theta}_k \in \Theta_k\}, \ k = 1, \ldots, K,$ to approximate $g(\cdot)$. Assume $g(\cdot) \notin \mathcal{F}_k$, $k = 1, \ldots, K$. Prior to observing data, the investigator's belief in the kth family is indexed by π_k . The investigator's prior beliefs about the parameter vector $\boldsymbol{\theta}_k$ are summarized by the prior density $m_k(\boldsymbol{\theta}_k)$. The posterior probability of the kth family is

$$Pr(\mathcal{F}_k|\boldsymbol{y}) = \frac{f_k(\boldsymbol{y})\pi_k}{\sum_{k=1}^K f_k(\boldsymbol{y})\pi_k},$$

where $f_k(\mathbf{y}) = \int f_k(\mathbf{y}|\theta_k) m_k(\boldsymbol{\theta}_k) d\boldsymbol{\theta}_k$.

Let $\ell_k(\boldsymbol{y}|\boldsymbol{\theta}_k)$ denote the log likelihood function based on the parametric family \mathcal{F}_k and $\widehat{\boldsymbol{\theta}}_k$ be the MLE obtained as the solution of $\partial \ell_k(\boldsymbol{y}|\boldsymbol{\theta}_k)/\partial \boldsymbol{\theta}_k = 0$.

Prove that

$$\log[\pi_k f_k(\boldsymbol{y})] = BIC_k + O_p(1),$$

where $BIC_k = \log[f_k(\boldsymbol{y}|\widehat{\boldsymbol{\theta}}_k)] - p_k \log(n)/2$ with $p_k = \dim(\boldsymbol{\theta}_k)$.