13. Принцип рівномірної обмеженості

В цій лекції ми розглянемо види збіжності послідовностей лінійних неперервних операторів і з'ясуємо, коли простір $\mathcal{L}(E,F)$ є банаховим в розумінні тої чи іншої збіжності.

Озн. 13.1. Послідовність операторів $\left\{A_n\right\}_{n=1}^{\infty}$, що діють із нормованого простору E в нормований простір F, збігається до оператора A **поточково** в просторі $\mathcal{L}(E,F)$ при $n \to \infty$, якщо $\forall x \in E \lim_{n \to \infty} A_n x = Ax$.

Озн. 13.2. Послідовність операторів $\left\{A_n\right\}_{n=1}^{\infty}$, що діють із нормованого простору E в нормований простір F, збігається до оператора A **рівномірно** в просторі $\mathcal{L}(E,F)$ при $n \to \infty$, якщо $\lim_{n \to \infty} \left\|A_n - A\right\| = 0$

Зауваження 13.1. Якщо $F = \mathbb{R}$, то простір $\mathcal{L}(E,\mathbb{R})$ є спряженим простором, поточкова збіжність є аналогом слабкої збіжності в спряженому просторі, а рівномірна збіжність є аналогом сильної збіжності в спряженому просторі.

Лема 13.1. Якщо послідовність лінійних обмежених операторів $A_n: E \to F$, де E, F — нормовані простори, є такою, що послідовність $\left\{ \left\| A_n \right\| \right\}_{n=1}^{\infty}$ є необмеженою, то послідовність $\left\{ \left\| A_n x \right\| \right\}_{n=1}^{\infty}$ є необмеженою в будь-якій замкненій кулі.

Доведення. Припустимо супротивне: послідовність $\left\{ \left\| A_n x \right\| \right\}_{n=1}^{\infty} \varepsilon$ обмеженою в деякій замкненій кулі $\overline{S}(x_0, \varepsilon)$:

$$\exists (\overline{S}(x_0, \varepsilon), C > 0) : \forall n \in N \ \forall x \in \overline{S}(x_0, \varepsilon) \ \|A_n x\|_F \leq C.$$

Кожному елементу $\xi \in E$ поставимо у відповідність елемент

$$x = \frac{\varepsilon}{\|\xi\|_E} \xi + x_0$$
, якщо $\xi \neq 0$. Елементу $\xi = 0$ поставимо у

відповідність елемент $x = x_0$.

$$\xi \neq 0 \Longrightarrow \left\| x - x_0 \right\|_E = \left\| \frac{\varepsilon}{\left\| \xi \right\|_E} \xi + x_0 - x_0 \right\|_E = \left\| \frac{\varepsilon}{\left\| \xi \right\|_E} \xi \right\|_E = \varepsilon.$$

Це означає, що для довільних $\xi \in E$ всі елементи $x \in \overline{S}(x_0, \varepsilon)$.

Оцінимо наступну величину (використовуючи допоміжну нерівність $||x|| - ||y|| \le ||x + y||$.

$$\left| \frac{\varepsilon}{\|\xi\|_{E}} \|A_{n}\xi\|_{F} - \|A_{n}x_{0}\|_{F} \right| \leq \left\| \frac{\varepsilon}{\|\xi\|_{E}} A_{n}\xi + A_{n}x_{0} \right\|_{F} =$$

$$= \left\| A_{n} \left(\frac{\varepsilon}{\|\xi\|_{E}} \xi + x_{0} \right) \right\|_{F} \leq C$$

Отже,

$$\frac{\varepsilon}{\|\xi\|_{E}} \|A_{n}\xi\|_{F} - \|A_{n}x_{0}\|_{F} \leq C.$$

Звідси випливає, що

$$\left\|A_{n}\xi\right\|_{F} \leq \frac{C + \left\|A_{n}x_{0}\right\|_{F}}{\varepsilon} \left\|\xi\right\|_{E} \leq \frac{2C}{\varepsilon} \left\|\xi\right\|_{E}.$$

Отже,

$$\exists C_1 = \frac{2C}{\varepsilon} > 0 : \forall \xi \in E \ \|A_n \xi\|_E \le C_1 \|\xi\|_E \Rightarrow \|A_n\| \le C_1.$$

Отримане протиріччя доводить лему.

Теорема 13.1 (Банаха-Штейнгауза). Нехай послідовність лінійних обмежених операторів $\left\{A_n\right\}_{n=1}^{\infty}$, що відображають банахів простір E в нормований простір F, поточково збігається до оператора A при $n \to \infty$. Тоді послідовність $\left\{\|A_n\|\right\}_{n=1}^{\infty}$ є обмеженою, оператор A є лінійним і неперервним, а $A_n x \to Ax$ рівномірно по n на кожному компакті $K \subset E$ (тобто n не залежить від x).

Доведення. Припустимо, що послідовність $\left\{ \left\| A_n \right\| \right\}_{n=1}^{\infty} \epsilon$ необмеженою. Тоді за лемою 13.1 послідовність $\left\{ \left\| A_n x \right\| \right\}_{n=1}^{\infty} \epsilon$ необмеженою на довільній замкненій кулі $\overline{S}\left(x_0, \mathbf{\epsilon}_0\right)$.

Отже,
$$\exists (n_1 \in N, x_1 \in \overline{S}(x_0, \varepsilon_0) : ||A_{n_1}x_1||_{E} > 1$$
.

Оскільки A_{n_1} — неперервний оператор,

$$\exists \overline{S}(x_1, \varepsilon_1) \subset \overline{S}(x_0, \varepsilon_0) \colon \|A_{n_1} x\|_F > 1 \ \forall x \in \overline{S}(x_1, \varepsilon_1).$$

На кулі $\overline{S}\left(x_1, \mathbf{\epsilon}_1\right)$ послідовність $\left\{\left\|A_n x\right\|_F\right\}_{n=1}^{\infty}$ також ϵ необмеженою. Отже,

$$\exists \overline{S}(x_2, \varepsilon_2) \subset \overline{S}(x_1, \varepsilon_1) \colon \|A_{n_2} x\|_{\varepsilon} > 2 \ \forall x \in \overline{S}(x_2, \varepsilon_2)$$

Нехай $A_{n_1}, A_{n_2}, ..., A_{n_k}$ і $x_1, x_2, ..., x_k$:

$$n_1 < n_2 < ... < n_k \text{ i } \overline{S}(x_0, \varepsilon_0) \supset \overline{S}(x_1, \varepsilon_1) \supset ... \supset \overline{S}(x_k, \varepsilon_k).$$

Продовжуючи цей процес при $k \to \infty$, отримуємо послідовність вкладених замкнених куль, таких що

$$\|A_{n_k}x\|_F > k \ \forall x \in \overline{S}(x_k, \varepsilon_k), \ \varepsilon_k \to 0.$$

Оскільки E — повний простір, за принципом вкладених куль

$$\exists x^* \in \bigcap_{k=1}^{\infty} S(x_k, \varepsilon_k) : \|A_{n_k} x^*\|_F \ge k \quad \forall k \in \mathbb{N}.$$

Звідси випливає, що $\exists x^* \in E$ така, що послідовність $\left\{A_n x^*\right\}$ не збігається. Це суперечить умові теореми, згідно якої послідовність операторів $\left\{A_n x\right\}_{n=1}^{\infty}$ поточково збігається в кожній точці простору E.

Покажемо, що оператор A — лінійний. Оскільки

$$A_n(x+y) = A_n(x) + A_n(y), A_n(\lambda x) = \lambda A_n(x),$$

маємо

$$A(x+y) = \lim_{n \to \infty} A_n(x+y) = \lim_{n \to \infty} A_n(x) + \lim_{n \to \infty} A_n(y) = Ax + Ay$$

$$A(\lambda x) = \lim_{n \to \infty} A_n(\lambda x) = \lambda \lim_{n \to \infty} A_n(x) = \lambda Ax.$$

Крім того,

$$||A_n x||_F \le C ||x||_E \Rightarrow \lim_{n \to \infty} ||A_n x||_F = ||\lim_{n \to \infty} A_n x||_F = ||Ax||_E \le C ||x||_E$$

Отже, А — лінійний і обмежений, а значить, неперервний.

Нехай $K \subset E$ — компакт, $\varepsilon > 0$. За теоремою Хаусдорфа існує скінчена $\frac{\varepsilon}{3C}$ -сітка M :

$$\forall x \in K \ \exists x_{\alpha} \in M : \|x - x_{\alpha}\|_{E} < \frac{\varepsilon}{3C}, \alpha \in \mathfrak{A},$$

де 21 — скінчена множина.

Оскільки послідовність $\left\{A_n x\right\}_{n=1}^{\infty}$ поточково збігається в кожній точці простору E , то вона збігається і в кожній точці сітки M :

$$\forall x_{\alpha} \in M \ \exists n_{\alpha} \in N \ \forall n \ge n_{\alpha} \ \|A_{n}x_{\alpha} - Ax_{\alpha}\|_{F} < \frac{\varepsilon}{3}.$$

Нехай
$$n_0 = \max_{\alpha \in \mathfrak{A}} n_\alpha$$
. Тоді $\forall \left(n \geq n_0, \, x \in S\left(x_\alpha, \frac{\varepsilon}{3C}\right) \right)$ (сітка

M ϵ скінченою, тому максимум існує)

$$||A_n x - Ax||_F \le ||A_n x - A_n x_\alpha + A_n x_\alpha - Ax_\alpha + Ax_\alpha - Ax||_F \le ||A_n x - A_n x_\alpha + A_n x_\alpha - Ax_\alpha + Ax_\alpha + Ax_\alpha - Ax_\alpha + Ax_$$

$$\leq \|A_n(x-x_\alpha)\|_F + \|A_nx_\alpha - Ax_\alpha\|_F + \|A(x_\alpha - x)\|_F <$$

$$< C\|x-x_\alpha\|_F + \frac{\varepsilon}{3} + C\|x-x_\alpha\|_F = \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Отже,
$$\forall (n \ge n_0, x \in K) \|A_n x - Ax\|_F < \varepsilon$$
,

до того ж номер n_0 не залежить від точки x . Це означає, що $A_n x \to A x$ рівномірно по n на кожному компакті $K \subset E$.

З'ясуємо, коли простір $\mathcal{L}(E,F)$ є повним у розумінні рівномірної або точкової збіжності.

Теорема 13.2. Якщо нормований простір F — банахів, то $\mathcal{L}(E,F)$ — банахів у розумінні рівномірної збіжності.

 $\left\{A_n
ight\}_{n=1}^{\infty}$ — фундаментальна Доведення. Нехай послідовність операторів, тобто

$$||A_n - A_m|| \to 0, n, m \to \infty.$$

Тоді $\forall x \in E$

$$||A_n x - A_m x|| \le ||A_n - A_m|| \cdot ||x|| \to 0, n, m \to \infty.$$

Для кожного фіксованого $x \in E$ послідовність $\{A_n x\}$ є фундаментальною в F . Оскільки простір F ϵ повним за умовою теореми, то послідовність $\{A_n x\}$ збігається до певного елемента $y \in F$. Позначимо $y = \lim_{n \to \infty} A_n x$. Отже, ми $A: E \to F$. Його лінійність відображення властивостей границі. Прокажемо i3 випливає обмеженість.

$$\begin{split} & \left\|A_n - A_m\right\| \to 0 \,, \qquad n, m \to \infty \qquad \Rightarrow \\ & \left\|A_n\right\| - \left\|A_m\right\| \to 0, n, m \to \infty \Rightarrow \\ & \Rightarrow \left\{\left\|A_n\right\|\right\}_{n=1}^{\infty} \quad -\text{фундаментальна в } \mathbb{R} \, \Rightarrow \\ & \Rightarrow \quad \left\{\left\|A_n\right\|\right\}_{n=1}^{\infty} \quad -\text{обмежена} \quad \text{в} \quad \mathbb{R} \quad \Rightarrow \\ & \exists C > 0 \, \left\|A_n\right\| \le C \ \, \forall n \in \mathbb{N} \,. \end{split}$$

Отже,

$$||A_n x|| \le ||A_n|| \cdot ||x|| \le C ||x||.$$

Внаслідок неперервності норми, маємо

$$||Ax|| = \lim_{n \to \infty} ||A_n x|| \le C ||x||.$$

Покажемо, що A_n рівномірно збігається до A в просторі $\mathcal{L}(E,F)$. Задамо $\varepsilon>0$ і виберемо n_0 так, щоб

$$\left\|A_{n+p}x-A_nx\right\|<\varepsilon \ \text{для}\ n\geq n_0,\ p>0\ \text{i}\ \text{для}\ \text{будь-якого}$$

$$x:\left\|x\right\|\leq 1\,.$$

Нехай $p \rightarrow \infty$. Тоді

$$\forall n \geq n_0, x : \|x\| \leq 1 \|Ax - A_n x\| < \varepsilon \Rightarrow$$

$$\Rightarrow \|A_n - A\| = \sup_{\|x\| \leq 1} \|(A_n - A)x\| \leq \varepsilon \Rightarrow$$

$$\Rightarrow A = \lim_{n \to \infty} A_n \quad \text{в розумінні рівномірної}$$

збіжності.

Отже, $\mathcal{L}(E,F)$ є банаховим. ■

Теорема 13.3. Якщо нормовані просторі E і F — банахові, то $\mathcal{L}(E,F)$ — банахів у розумінні точкової збіжності.

Доведення. Розглянемо точку $x \in E$ і фундаментальну у розумінні поточкової збіжності послідовність $\left\{A_n\right\}_{n=1}^{\infty}$. Оскільки F — банахів простір, то існує елемент $y = \lim_{n \to \infty} A_n x$. Таким чином, визначений оператор $A \colon E \to F$, такий що y = Ax. Лінійність цього оператора випливає із лінійності границі, а обмеженість — із теореми Банаха-Штейнгауза.

$$||Ax|| = ||\lim_{n \to \infty} A_n x|| \le \lim_{n \to \infty} ||A_n|| \cdot ||x|| = C ||x||.$$

Література

- 1. Садовничий В,А. Теория операторов. М.: Изд-во Моск. ун-та, 1986. с.96–102.
- 2. Ляшко И.И., Емельянов В.Ф., Боярчук А.К. Основы классического и современного математического анализа. М.: Выща школа, 1988. с. 576-578.