МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Радиофизический факультет Кафедра теории колебаний и автоматического регулирования

Направление «Радиофизика»

ОТЧЕТ ПО УЧЕБНОЙ ПРАКТИКЕ

Практика по получению первичных профессиональных умений и навыков

ИССЛЕДОВАНИЕ ДИНАМИКИ НЕЙРОНА ПОД ВОЗДЕЙСТВИЕМ ШУМА

Научный руководитель:	
доцент, к.фм.н.,	<u> </u>
Студент 1-го курса магистратуры:	Есюнин Д.В.

Введение

В больших нейронных сетях, где имеется огромное количество нейронов, организованных в сети функционально сходных нейронов, типичный кортикальный нейрон получает сигналы тысячи синапсов, большинство из них от соседних нейронов; воздействие одного пресинаптического спайка на постсинаптическую клетку относительно невелико. Более того, моменты генерации спайков кортикальных нейронов в высшей степени стохастичны и нерегулярны, следовательно, существует много шума в синхронизации сети. Возникает вопрос о том, передает ли наблюдаемая нерегулярность последовательности спайков информацию или, скорее, отражает влияние различных источников шума, присутствующих в клетке. Даже если время межспайковых интервалов от отдельных клеток зашумлено, информация все равно может передаваться в средней активности слабо коррелированных нейронов.

Целью работы является исследование динамики нейрона под воздействием шума с помощью уравнения Фоккера-Планка. Полученные характеристики выходного сигнала позволят в дальнейшем изучить возникающие режимы в больших нейроны сетях.

1. Модель нейрона «накопление и сброс»

Для описания динамики нейронов применяются модели разного уровня сложности. Одна из простейших моделей нейрона «накопление и сброс». Эта система описывается следующим дифференциальным уравнением:

$$C_m \frac{dV(t)}{dt} = -g_L(V(t) - V_L) + I(t)$$
(1)

Мембранный потенциал V(t) изменяется в ответ на инжектируемый ток I(t), $C_m=0.2$ - емкость мембраны, $g_L=20$ - проводимость утечки, V_L - потенциал покоя. Согласно модели "накопление и сброс" нейрон рассматривается как RC-цепь с постоянной времени

$$\tau_m = \frac{C_m}{q_L} = 10 \text{MC} \tag{2}$$

Генерация спайка происходит в момент достижения мембранного потенциала порогового напряжения $V_{\rm th}$ таким образом, что нейрон, испускает спайк в момент времени $t_{\rm spk}$ всякий раз, когда $V(t=t_{\rm spk})=V_{\rm th}=-50$ мВ, после чего его потенциал мгновенно приобретает значение $U_r=-60$ мВ. После этого система находится в состоянии сброса U_r в течение времени рефрактерности $\tau_r=2$ мс, затем вновь начинает эволюционировать в соответствие с уравнением (1). I(t) представляет собой общий синаптический ток, который равен линейной сумме вкладов каждого отдельного синапса.

Начнем с простейшего описания взаимодействия между пре- и пост-синаптическими нейронами. Это сводится к предположению, что каждый пресинаптический спайк вызывает мгновенное изменение постсинаптического напряжения, которое не зависит от текущего значения этого напряжения и зависит только от параметра J, измеряющего силу синапса. Если одна клетка связана с другими нейронами C синапсами с величиной связи

 $J_i(i=1,\ldots,C)$, то ток, поступающий в клетку может быть представлен как

$$I(t) = \sum_{i}^{C} J_i \sum_{j} \delta(t - t_j^i)$$
(3)

где t_i^j - время j-го спайка от i-го пресинаптического нейрона. Если нейрон изначально находится в состоянии покоя, а спайк приходит в момент времени t=0, то путем интегрирования уравнения (1) получается

$$V(t) = V_L + \frac{J_i}{C_m} exp(-\frac{t}{\tau_m})\Theta(t)$$
(4)

Мы рассматриваем нейрон, получающий синаптический вход от большого числа возбуждающих и тормозящих клеток. Мы делаем два важных предположения относительно активности этих входов: во-первых, каждый из них генерирует спайки в соответствии со стационарным процессом Пуассона, то есть с постоянной вероятностью испускания спайка в единицу времени. Во-вторых, эти пуассоновские процессы независимы от клетки к клетке, то есть возникновение спайка из любой данной клетки не дает никакой информации о вероятности срабатывания любого другого нейрона.

Обозначим частоту срабатывания возбуждающих (тормозящих) нейронов, как $\nu_{E_j}(\nu_{I_j})$, а величину воздействия соответствующих возбуждающих (тормозящих) синапсов, как $J_{E_j}(J_{I_j})$. Для простоты мы сначала предположим, что все частоты срабатывания и величины воздействия из каждой пресинаптической популяции идентичны, т. е. $\nu_{E_j} = \nu_E$ и $J_{E_j} = J_E$ для всех j и аналогично для тормозящих нейронов. В этой простой ситуации среднее значение общего тока по времени является постоянным во времени и задается

$$\langle I(t) \rangle = \mu_C = \sum_{j=1}^{C_E} J_{E_j} \nu_{E_j} - \sum_{j=1}^{C_I} J_{I_j} \nu_{I_j} = C_E J_E \nu_E - C_I J_I \nu_I$$
 (5)

где C_E и C_I - количество возбуждающих и тормозящих нейронов. Для процесса Пуассона s(t) с интенсивностью $\nu < (s(t) - \nu)(s(t') - \nu) >= \nu \delta(t - t')$. Таким образом, используя тот факт, что входы являются Пуассоновскими и независимыми, корреляционная функция полного тока задается

$$\langle (I(t) - \langle I \rangle)(I(t') - \langle I \rangle) \rangle = \left[\sum_{j=1}^{C_E} J_{E_j}^2 \nu_{E_j} - \sum_{j=1}^{C_I} J_{I_j}^2 \nu_{I_j} \right] \delta(t - t') =$$

$$= \left[C_E J_E^2 \nu_E - C_I J_I^2 \nu_I \right] \delta(t - t') = \sigma_C^2 \delta(t - t')$$
(6)

При большом количестве нейронов в сети N>>1 и небольшом значении величины связи J<<1 пуассоновский процесс большой интенсивности $\sigma_C^2>>1$ хорошо аппроксимируется постоянной составляющей $\mu_C=\frac{\sigma_C^2}{C_m^2}$ и белым шумом с интенсивностью $\sigma_V^2=\frac{\sigma_C^2\tau_m}{C_m^2}$. Тогда уравнение, описывающее динамику мембранного потенциала принимает следующий вид

$$\frac{dV(t)}{dt} = \frac{V(t) - V_{ss}}{\tau_m} + \frac{\sigma_V^2}{2\tau_m} \eta(t) \tag{7}$$

где $V_{ss} = V_L + \frac{\mu_C}{g_L}$, а $\eta()t$ - белый шум с нулевым средним и единичной интенсивностью. Это приближение позволяет описывать динамику одного нейрона под воздействием шума с помощью уравнения Фоккера-Планка.

2. Численное решение уравнения Фоккера-Планка

Поскольку сигналы, поступающие на нейрон, считаются стохастическими, то для описания динамики мембранного потенциала можно рассмотреть функцию условной плотности вероятности $\rho(V,t|V_0,t_0)$ для $V(t)\in [V,V+dV]$ при условии, что $V(t_0)=V_0$. Если мы рассмотрим ансамбль одинаковых нейронов с разным реализациями, то $\rho(V,t|V_0,t_0)$ - это доля нейронов в ансамбле с мембранным потенциалом [V,V+dV], учитывая, что все нейроны находились в V_0 при $t=t_0$. Уравнение, описывающее динамику функции $\rho(V,t|V_0,t_0)$ называется уравнением Фоккера-Планка.

$$\frac{\partial \rho(V, t|V_0, t_0)}{\partial t} = \frac{\partial}{\partial V} \left[\frac{V - V_{ss}}{\tau_m} \rho(V, t|V_0, t_0) \right] + \frac{\sigma_V^2}{2\tau_m} \frac{\partial^2}{\partial V^2} \left[\rho(V, t|V_0, t_0) \right]$$
(8)

Поскольку $\rho(V,t|V_0,t_0)=0$, плотность вероятности должна быть равна нулю при $V>V_{th}$ так как мембранный потенциал ни одного нейрона не может быть больше V_{th} , то $\rho(V_{th},t|V_0,t_0)=0$ также равна нулю и на границе, в противном случае производная по напряжению была бы бесконечной при $V=V_{th}$, что соответствовало бы бесконечному потоку вероятности на поглощающей границе $V=V_{th}$. Поэтому мы имеем следующее граничное условия

$$\rho(V_{th}, t|V_0, t_0) = 0 \tag{9}$$

Условия того, что плотность вероятности исчезает достаточно быстро при $V \to -\infty$, дает дополнительное условие на левой границе

$$\lim_{V \to -\infty} \rho(V, t | V_0, t_0) = 0 \tag{10}$$

Для решения уравнения в частных производных будем использовать метод сеток. Рассмотрим отрезок $[V_L, V_{th}]$ и разобьем его на n частей с шагом $h = \frac{V_L - V_{th}}{n}$. Перейдем от уравнения в частных производных к системе уравнений в полных производных по времени. Для этого заменим производные по напряжению в уравнении (7) на разностные суммы:

$$\frac{\partial \rho(V, t | V_0, t_0)}{\partial V} = \frac{\rho_{i+1} - \rho_i}{2h}$$

$$\frac{\partial^2 \rho(V, t | V_0, t_0)}{\partial V^2} = \frac{\rho_{i+1} - 2\rho_i + \rho_{i-1}}{h^2}$$
(11)

где $\rho_i(t)$ - определяет вероятность нахождения мембранного потенциала V в ячейке с номером i в момент времени t, то есть $V \in [V_L + h \cdot (i-1), V_L + h \cdot i]$. С учетом граничных условий (9) и (10) получим систему дифференциальных уравнений вида:

мент времени
$$t$$
, то сеть $v \in [v_L + h^{-\epsilon}(t-1), v_L + h^{-\epsilon}]$. С учетом граничных (10) получим систему дифференциальных уравнений вида:
$$\begin{cases} \rho_1 = 0 \\ \frac{d\rho_i}{dt} = \frac{V_i - V_{ss}}{2\tau_m} \cdot \frac{\rho_{i+1} - \rho_i}{2h} + \frac{\rho_i}{\tau_m} + \frac{\sigma_V^2}{2\tau_m} \cdot \frac{\rho_{i+1} - 2\rho_i + \rho_{i-1}}{h^2} \\ \vdots \\ \rho_n = 0 \end{cases}$$
 (12)

Начальное распределение условной плотности равно $\rho(V, t_0|V_0, t_0) = \delta(V - V_r)$. Метод сеток для решения уравнения Фоккера-Планка устойчив только в том случае, если начальное распределение условной плотности вероятности имеет ширину, сравнимую с величиной шага h. Известно, что решением уравнения Фоккера-Планка в случае начального распределения в виде дельта-функции при отсутствии поглощающей границы V_{th} является нормальное распределение вида

$$\rho(V,t) = \frac{1}{\sqrt{2\pi D_V(t)}} exp\left(-\frac{(V(t) - V_{mean}(t))}{2D_V(t)}\right)$$
(13)

Где $V_{mean}(t)$ - среднее значение условной плотности вероятности, а $D_V(t)$ - ее дисперсия.

В таком случае можно задать распределение условной плотности вероятности через момент времени t' в виде нормального распределения с заданным средним и дисперсией. Мы должны рассматривать достаточно малый интервал времени t', чтобы не учитывать наличие поглощающего барьера на границе $V=V_{th}$, то есть нужно полагать, что хвост гауссова распределения в точке $V=V_{th}$ меньше погрешности решения системы уравнений (11).

Рассмотрим уравнение (7) и введем коэффициенты $a(V) = \frac{V - V_{ss}}{\tau_m}, \ b(V) = \frac{\sigma_V^2}{\tau_m}.$ Представим их в виде

$$a(V) = a(V_{mean}) + a'(V_{mean})(V - V_{mean}), b(V) = b(V_{mean})$$
 (14)

Подставив (13) в уравнение (7) и приравняв члены при одинаковых степенях разности $V-V_{mean}$ получим систему из двух обыкновенных дифференциальных уравнений

$$\begin{cases}
\frac{dV_{mean}}{dt} = \frac{V_{ss} - V_{mean}}{\tau_m} \\
\frac{dD_V}{dt} = 2D_V a'(V_{mean}) + b(V_{mean})
\end{cases}$$
(15)

Таким образом получим выражение для смещения центра $V_{mean} = V_{ss} - (V_{ss} - V_r)e^{-\frac{t}{\tau_m}}$ и ширины условной плотности вероятности $\sigma(t) = \frac{\sigma_V}{\sqrt{2}} \left[1 - e^{-\frac{2t}{\tau_m}}\right]^{1/2}$

Определим время t', когда СКО сравнимо с шагом сетки $\sigma(t')=ch$, где $c=1,2,\ldots$

$$ch = \frac{\sigma_V}{\sqrt{2}} \left[1 - e^{-\frac{2t'}{\tau_m}} \right]^{1/2} \tag{16}$$

Решая это уравнение получим $t'=rac{ au_m}{2}lnrac{1}{1-rac{2c^2h^2}{\sigma_V^2}}$

Численное решение системы уравнений (11) было найдено с помощью метода Рунге-Кутта 5 порядка при использовании встроенной функции ode45 в среде Matlab. Вид условной плотности вероятности в разные моменты времени представлен на рис. 1.

Рис. 1: Условная плотность вероятности ho(V,t) в разные моменты времени при $V_0=V_r$

Введем функцию вероятности выживания $S(t) = \int_{V_L}^{V_{th}} \rho(V,t) dV$, которая характеризует вероятность нахождения мембранного потенциала к моменту времени t в интервале $V \in [V_L, V_{th}]$. В таком случае функция 1 - S(t) характеризует вероятность срабатывания нейрона к моменту времени t, то есть является интегральной функцией распределения межспайкового интервала. Продифференцировав это выражение по t получим условную плотность вероятности межспайкового интервала. Вид этой функции представлен на рис. 2.

Рис. 2: Условная плотность вероятности межспайкового интервала $\rho_{ISI}(t)$

3. Сравнение решения уравнения Фоккера-Планка с микроскопической системой

Поскольку уравнение Фоккера-Планка описывает условную плотность вероятности нахождения мембранного потенциала клетки в интервале $V \in [V_L, V_{th}]$ для большого числа частиц, то возникает необходимость сравнить распределения, получаемые в результате численного решения уравнения $\Phi\Pi$, с распределениями, получаемыми в результате моделирования большого числа нейронов N, чтобы убедиться в верности численного решения уравнения Φ оккера-Планка.

Ансамбль, состоящий из N таких нейронов, называется микроскопической системой. Для того, чтобы найти условную плотность вероятности $\rho(V,t)$ для этой системы, необходимо промоделировать динамику N нейронов под воздействием белого шума с заданными характеристиками $\mu_C = g_L(V_{ss} - V_L)$ и $\sigma = \sigma_V$. График зависимости условной плотности вероятности в фиксированный момент времени представлен на рис. 3.

Рис. 3: Условная плотность вероятности $\rho(V,t)$ при численном решении уравнения $\Phi\Pi$ и для микроскопической системы (MC) в момент времени t=15 мс

Очевидно, что при $N \to \infty$ относительная ошибка $\epsilon(N)$ распределений в случае решения уравнения ФП и микроскопической системы в зависимости от числа нейронов в системе N будет стремиться к нулю, но на программном уровне нельзя выбрать сколько угодно большое число N, так как это приводит к неограниченному росту времени симуляции. В качестве значения числа нейронов в системе мы остановились на величине $N=10^6$. График зависимости $\epsilon(N)$ представлен на рис. 4.

Рис. 4: Относительная ошибка $\epsilon(N)$ от числа нейронов в микроскопической системе N

При фиксированном числе нейронов в микроскопической системе стоит также следить за количеством ячеек по напряжению n. Так как с одной строны шаг ячейки должен быть мал по сравнению со всем интервалом напряжений $h << \Delta V$, но с другой строны в одну ячейку должно попадать большое число нейронов из микроскопической системы $\frac{N}{n} >> 1$. Из этих условий получим ограничение на количество ячеек в интервале напряжений 1 << n << N. В качестве оптимального значения n выберем среднее геометрическое из левой и правой границы неравенства $n \sim \sqrt{N}$. Проанализируем зависимость относительной ошибки $\epsilon(n)$ от количества ячеек в интервале напряжений n. График $\epsilon(n)$ представлен на рис. 5

Рис. 5: Относительная ошибка $\epsilon(n)$ от числа ячеек в интервале напряжений n при $N=10^5$ По графику видно, что предположение $n \sim \sqrt{N}$ подтверждается с хорошей точностью.

4. Анализ динамики нейрона в зависимости от параметров входного сигнала

Мы полагаем, что на вход клетки поступает пуассоновский поток событий, в таком случае выходным сигналом также должен являться сигнал с распределением Пуассона для организации большой сети. В таком случае фактор Фано должен стремиться к единице $f = \frac{< T_{ISI}>}{\sigma(T_{ISI})} \to 1$. При фиксированном значении интенсивности шума можно выделить различные режимы работы нейрона в зависимости от среднего значения входного сигнала. Когда интенсивность шума мала по сравнению со средним значением входного сигнала, поступающего на нейрон, клетка будет генерировать последовательность спайков близкую к регулярной с высокой частотой, почти не реагируя на шумовую составляющую входного сигнала. В случае, когда интенсивность шума довольно велика по сравнению с величиной среднего входного сигнала, нейрон будет срабатывать нерегулярно и редко. Попробуем приближенно найти область параметров входного сигнала для этих режимов работы нейрона.

Область регулярного срабатывания нейронов Будем полагать, что начальное распределение плотности вероятности является δ -функцией в точке V_r . Рассмотри решение уравнения Фоккера-Планка в отсутствии границы. Тогда ширина ΔV условной плотности вероятности в момент, когда ее центр проходит точку V_{th} должна быть много меньше $\lim_{t\to\infty}\sigma(t)=\frac{\sigma_V}{\sqrt{2}}\left[1-e^{-\frac{2t}{\tau_m}}\right]^{1/2}=\Delta V_{ss}=\frac{\sigma_V}{\sqrt{2}},$ то есть $\Delta V<<\frac{\sigma_V}{\sqrt{2}}$ Используя уравнение (14) можно найти ширину $\Delta V=\sigma(t)=\frac{\sigma_V}{\sqrt{2}}\left[1-\left(\frac{V_{th}-V_{ss}}{V_r-V_{ss}}\right)^2\right]^{1/2}$. Регулярное срабатывание означает, что СКО межспайкового интервала должно быть много меньше среднего значения $\Delta T_{ISI}<<< T_{ISI},$ тогда $\Delta T_{ISI}=\frac{\Delta V}{\dot{V}|_{t=T_ISI}}<<< T_{ISI}$. В итоге получим ограничение на эту область

$$\frac{\sigma_V}{\sqrt{2}} \left[1 - \left(\frac{V_{th} - V_{ss}}{V_r - V_{ss}} \right)^2 \right]^{1/2} << (V_{ss} - V_{th}) ln \frac{V_r - V_{ss}}{V_{th} - V_{ss}}$$
(17)

Область редкого срабатывания нейронов Будем также полагать, что начальное распределение плотности вероятности является δ -функцией в точке V_r . В таком случае достижение этого режима возможно, если $\Delta V_{ss} << V_{th} - V_{ss}$, то есть будет справедливо следующее соотношение

$$\frac{\sigma_V}{\sqrt{2}} << V_{th} - V_{ss} \tag{18}$$

На рис. 6 представлено разбиение пространства параметров на области, описываемые уравнениями (16) и (17), где неравенство << переходит в уравнение =. На диаграмме также представлены значения Фано-фактра в зависимости от интенсивности шума σ_V и постоянного воздействия μ_C .

Рис. 6: Область параметров внешнего воздействия

Заключение

В данной работе была рассмотрена динамика нейрона "накопление и сброс" под воздействием шума. Было показано, что статистические характеристики, полученные в результате решения уравнения Фоккера-Планка, имеют хорошее соответствие с характеристиками, полученными в микроскопической системе. Этот факт позволяет в дальнейшем рассматривать коллективную динамику сети на основе уравнения ФК, а не микроскопического распределения, что значительно сильно экономить временные ресурсы на моделирование сети.