

# ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА по курсу «Data Science»

Прогнозирование конечных свойств новых материалов (композиционных материалов)

Слушатель: Балакин Андрей Сергеевич

## Постановка задачи

Необходимо спрогнозировать ряд конечных свойств получаемых композиционных материалов имея данные о начальных свойствах компонентов (количество связующего, наполнителя, температурный режим отверждения и т.д.).

Для этого необходимо:

- 1) провести разведочный анализ предложенных данных;
- 2) провести предобработку данных;
- 3) обучить нескольких моделей для прогноза модуля упругости при растяжении и прочности при растяжении;
- 4) написать нейронную сеть, которая будет рекомендовать соотношение матрица-наполнитель;
- 5) разработать приложение с графическим интерфейсом или интерфейсом командной строки, которое будет выдавать прогноз.



## Статистические сведения о данных

|                                                   | count  | mean        | std        | min         | 25%         | 50%         | 75%         | max         |
|---------------------------------------------------|--------|-------------|------------|-------------|-------------|-------------|-------------|-------------|
| Соотношение матрица-наполнитель                   | 1023.0 | 2.930366    | 0.913222   | 0.389403    | 2.317887    | 2.906878    | 3.552660    | 5.591742    |
| Плотность, кг/м3                                  | 1023.0 | 1975.734888 | 73.729231  | 1731.764635 | 1924.155467 | 1977.621657 | 2021.374375 | 2207.773481 |
| модуль упругости, ГПа                             | 1023.0 | 739.923233  | 330.231581 | 2.436909    | 500.047452  | 739.664328  | 961.812526  | 1911.536477 |
| Количество отвердителя, м.%                       | 1023.0 | 110.570769  | 28.295911  | 17.740275   | 92.443497   | 110.564840  | 129.730366  | 198.953207  |
| Содержание эпоксидных групп,%_2                   | 1023.0 | 22.244390   | 2.406301   | 14.254985   | 20.608034   | 22.230744   | 23.961934   | 33.000000   |
| Температура вспышки, С_2                          | 1023.0 | 285.882151  | 40.943260  | 100.000000  | 259.066528  | 285.896812  | 313.002106  | 413.273418  |
| Поверхностная плотность, г/м2                     | 1023.0 | 482.731833  | 281.314690 | 0.603740    | 266.816645  | 451.864365  | 693.225017  | 1399.542362 |
| Модуль упругости при <mark>растяжении, ГПа</mark> | 1023.0 | 73.328571   | 3.118983   | 64.054061   | 71.245018   | 73.268805   | 75.356612   | 82.682051   |
| Прочность при растяжении, МПа                     | 1023.0 | 2466.922843 | 485.628006 | 1036.856605 | 2135.850448 | 2459.524526 | 2767.193119 | 3848.436732 |
| Потребление смолы, г/м2                           | 1023.0 | 218.423144  | 59.735931  | 33.803026   | 179.627520  | 219.198882  | 257.481724  | 414.590628  |
| Угол нашивки, град                                | 1023.0 | 44.252199   | 45.015793  | 0.000000    | 0.000000    | 0.000000    | 90.000000   | 90.000000   |
| <b>Шаг нашивки</b>                                | 1023.0 | 6.899222    | 2.563467   | 0.000000    | 5.080033    | 6.916144    | 8.586293    | 14.440522   |
| Плотность нашивки                                 | 1023.0 | 57.153929   | 12.350969  | 0.000000    | 49.799212   | 57.341920   | 64.944961   | 103.988901  |



## Гистограмма распределения данных



данные до предобработки

данные после предобработки



## «Ящик с усами»





данные до предобработки

данные после предобработки



## Попарная диаграмма рассеяния



данные до предобработки

данные после предобработки



## Корреляционная матрица



угол нашивки 90 градусов

угол нашивки 0 градусов



## Результаты применения модели линейной регрессии для прогноза





модуля упругости при растяжении

прочности при растяжении



# Результаты применения модели градиентного бустинга для прогноза





модуля упругости при растяжении

прочности при растяжении



## Результаты применения модели случайного леса для прогноза





модуля упругости при растяжении

прочности при растяжении



## Результаты применения модели полиномиальной регрессии для прогноза





модуля упругости при растяжении

прочности при растяжении



## Результаты тестирования моделей:

| Модель                                                             | Прогноз модуля       | упругости              | Прогноз прочности при растяжении |                       |  |
|--------------------------------------------------------------------|----------------------|------------------------|----------------------------------|-----------------------|--|
| модель                                                             | MSE                  | R²                     | MSE                              | R²                    |  |
| 1                                                                  | 2                    | 3                      | 4                                | 5                     |  |
| Линейная<br>регрессия                                              | 0.027345286816019446 | 0.00031270815893347237 | 0.029649401268432553             | -0.029467652046270665 |  |
| Градиентный<br>бустинг                                             | 0.029467297660744712 | -0.07726363210377118   | 0.02983422117720099              | -0.035884851361989156 |  |
| Случайный<br>лес                                                   | 0.027802607282353512 | -0.016405984958784092  | 0.028720337795920776             | 0.0027906989062314036 |  |
| Полиномиальная регрессия (преобразование в функции взаимодействия) | 0.029053128732401397 | -0.06212247022362982   |                                  |                       |  |
| Полиномиальная регрессия (преобразование во 2-ю степень)           | 0.029346061183560812 | -0.07283147652377098   | 0.03298482318652948              | -0.14527805035818364  |  |
| Полиномиальная регрессия (преобразование в 3-ю степень)            |                      |                        | 0.15914794481839756              | -4.525833712352958    |  |



## Построение нейронной сети

Построена нейронная сеть для расчета рекомендованных соотношений «матрица-наполнитель» со следующими параметрами:

- 1) входной слой нормализации 12 признаков;
- 2) выходной слой для 1 признака;
- 3) скрытых слоев: 2;
- 4) нейронов в скрытых слоях: 64 в каждом слое;
- 5) активационная функция скрытых слоев: relu;
- 6) оптимизатор: Adam;
- 7) loss-функция: MeanAbsoluteError.

#### Структура модели:

Model: "sequential"

| Output Shape         | Param #                                |                 |
|----------------------|----------------------------------------|-----------------|
| nalizatio (None, 12) | ====================================== |                 |
| (None, 64)           | 832                                    |                 |
| (None, 64)           | 4160                                   |                 |
| (None, 1)            | 65                                     |                 |
|                      | (None, 64) (None, 64)                  | (None, 64) 4160 |

Total params: 5,082 Trainable params: 5,057 Non-trainable params: 25

\_\_\_\_\_



### Визуализация результатов нейросети



б 5 - 4 - 2 - 4 - 5 - 6 - 1 - 2 - 3 - 4 - 5 - 6

График ошибки обучения сети

График сравнения прогноза с данными валидации



#### Заключение

На основании проведенного исследования можно сделать следующие основные выводы:

- коэффициенты корреляции между парами признаков стремятся к нулю;
- примененные модели не показали высокой эффективности в прогнозировании свойств композитов;
- необходимы дополнительные вводные данные для улучшения моделей.

Исходя из основных выводов, требуется вернуться на этап сбора данных, более тщательно оценить точность и качество входных данных, кол-во входных параметров и исследовать их содержательно, в том числе выявив наиболее важные переменные, после чего разработать новые гипотезы, выбрать и построить оптимальные модели.





#### СПАСИБО ЗА ВНИМАНИЕ!