Task 1: Quadratics

1.1) State the number of real solutions + explain using discriminant

Discriminant equation

$$b^2 - 4ac$$

a)
$$-x^2-3x-10=0$$

Discriminant

$$-> -3^2 - 4(-1)(-10)$$

$$-> 9 - 4 \times 10$$

$$-> = -31$$

There are no real solutions as the discriminant is negative, $\sqrt{-31}$ being a complex number.

b)
$$5x^2 - 150 = 0$$

Discriminant

$$-> 0^2 - 4(5)(-150)$$

$$-> -20 \times -150$$

$$-> -2 \cancel{0} \times -15 \cancel{0}$$

There are two real solutions as the discriminant is a positive, non-zero value.

$$25x^2 - 20x + 4 = 0$$

Discriminant

$$-> -20^2 - 4(25)(4)$$

$$-> 400 - 100 \times 4$$

$$-> 400 - 400 = 0$$

The discriminant is zero, meaning there is only one unique solution.

1.2) Complete the square and identify stationary points

a)
$$y = x^2 - 6x + 17$$

Find
$$\frac{b^2}{4}$$

Find
$$\frac{b^2}{4}$$
 -> $\frac{-6^2}{4} = \frac{36}{4} = 9$

Add $\frac{b^2}{4}$ to the equation

->
$$y = x^2 - 6x + 9 + 17 - 9$$

$$-> y = x^2 - 6x + 9 + 8$$

Form a perfect square

->
$$y = (x^2 - 6x + 9) + 8$$

->
$$-3 \times -3 = 9$$
 and $-3 + -3 = -6$

->
$$y = (x-3)^2 + 8$$

Extract the vertex

$$y = (x-3)^2 + 8$$

->
$$x$$
 is translated by -3 , so $x=3$

$$-> y = 8$$

Vertex = (3, 8)

Verification

$$x=rac{-b}{2a}
ightarrowrac{--6}{2(1)}=rac{6}{2}=3$$

$$y = 3^2 - 6(3) + 17$$

$$-> 9 - 18 + 17$$

$$-> y = -9 + 17 = 8$$

(3, 8)

b)
$$y = 3x^2 - 12x + 6$$

Divide by a

$$y = 3x^2 - 12x + 6$$

->
$$y = \frac{3x^2}{2} - \frac{12x}{2} + \frac{6}{2}$$

$$-> 3(x^2 - 4x + 2)$$

Find $\frac{b^2}{4}$

$$3(x^2 - 4x + 2)$$

$$->\frac{-4^2}{4}=\frac{16}{4}=4$$

Add $\frac{b^2}{4}$ to the equation

$$3(x^2 - 4x + 2)$$

->
$$3(x^2 - 4x + 4 + 2 - 4)$$

$$-> 3(x^2-4x+4-2)$$

Form a perfect square

$$3(x^2-4x+4-2)$$

$$-> 3((x^2-4x+4)-2)$$

->
$$-2 \times -2 = 4$$
, added they $= -4$. -2 is therefore the factor.

$$-> 3((x-2)^2-2)$$

Extract the vertex

$$y = 3((x-2)^2 - 2)$$

->
$$x$$
 is translated by -2 , so $x=2$

$$-> y = 3(-2) = -6$$

Vertex = (2, -6)

Verification

$$x = \frac{-b}{2a} = \frac{--12}{2(3)} = \frac{12}{6} = 2$$

$$-> x = 2$$

$$y = 3x^2 - 12x + 6$$

$$-> 3(2^2) - 12(2) + 6$$

$$-> 3(4) - 24 + 6$$

$$-> 12 - 24 + 6$$

$$-> -12 + 6$$

$$-> y = -6$$

$$= (2, -6) = vertex$$

1.3) Find the solutions for $4x^2 - 3x = 10$

$$4x^2 - 3x = 10$$

$$-> 4x^2 - 3x - 10 = 0$$

->
$$4x^{2} - 3x - 10 = 0$$

-> $x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4(4)(-10)}}{2(4)}$
-> $x = \frac{3 \pm \sqrt{9 - 160}}{8}$
-> $x = \frac{3 \pm \sqrt{169}}{8}$
-> $x = \frac{3 \pm 13}{8}$

$$-> x = \frac{3\pm\sqrt{9--160}}{2}$$

$$-> x = \frac{3 \pm \sqrt{169}}{3}$$

$$-> x = \frac{3\pm 13}{8}$$

$$x^{+} = \frac{3+13}{8} = \frac{16}{8} = 2$$
 $x^{-} = \frac{3-13}{8} = \frac{-10}{8} = -\frac{5}{4}$

Task 2: Logarithms and Exponentials

2.1) Solve for x using log and exponent rules

a)
$$2y = 10 + e^{3x-4}$$

->
$$2y - 10 = e^{3x-4}$$

->
$$ln(2y - 10) = ln(e^{3x-4})$$

->
$$ln(2y-10) = 3x-4$$

->
$$ln(2y-10)+4=3x$$

$$x=rac{ln(2y-10)+4}{3}$$

b)
$$\ln(2x-3) + \ln(x+2) = \ln(9x-24)$$

Apply $log_a(a) = 1$ to both sides of the equation

->
$$e^{ln(2x-3)} + e^{ln(x+2)} = e^{ln(9x-24)}$$

$$-> 2x - 3 + x + 2 = 9x - 24$$

$$-> 3x - 1 = 9x - 24$$

$$-> -1 + 24 = 9x - 3x$$

$$-> 23 = 6x$$

 $x = \frac{23}{6}$

2.2) Expand and simplify $(2e^{2x}-e^{-2x})^2$

Verification

$$4e^{4x} + e^{-4x} - 4$$
-> $4e^{4(0)} + e^{-4(0)} - 4$
-> $4 * 1 + 1 - 4$
-> $4 + 1 - 4 = 1$

$$(2e^{2x} - e^{-2x})^2$$
-> $2e^{2(0)} - e^{-2(0)}$
-> $(2 - 1)^2 = (1)^2$
-> 1

2.3) Simply $2ln(xy) + ln(x) - ln(x^3y^2)$

$$2ln(xy) + ln(x) - ln(x^3y^2)$$

Prepare 2ln(xy) for addition using the expansion log law

$$log_a(m^n) = (n)log_a(m)$$

-> $2ln(xy)
ightarrow ln((xy)^2)$

Add them together using the addition log law

$$log_a(m) + log_a(n) = log_a(mn)$$
-> $ln((xy)^2 \times x)$
-> $x^2y^2 \times x$
-> x^3y^2
 $ln(x^3y^2)$

Subtraction

$$log_{a}(m) - log_{a}(n) = log_{a}(\frac{m}{n})$$
-> $ln(x^{3}y^{2}) - ln(x^{3}y^{2}) = ln(\frac{x^{3}y^{2}}{x^{3}y^{2}})$
-> $ln(\frac{x^{3}y^{2}}{x^{3}y^{2}})$

->
$$ln(\frac{x^0y^0}{x^0y^0})$$

-> $ln(\frac{1\times 1}{1\times 1})$

$$ln(1) = 0$$

Task 3: Trigonometry

FIGURE 1. Triangle

3.1) Find b's length, θ , and ϕ . Angles must be in radians and to 4 decimal places.

$$b=4\sqrt{2}$$

 $\theta = 0.8911 \text{ radians}$

 $\phi = 0.6797$ radians

$$b = \sqrt{c^2 - a^2}$$

->
$$b = \sqrt{9^2 - 7^2}$$

->
$$b = \sqrt{81 - 49}$$

->
$$b=\sqrt{32}$$

$$-> 32 = 2 * 16$$

->
$$b = \sqrt{16}\sqrt{2}$$

$$b=4\sqrt{2}$$

$$heta=\arctan\left(rac{7}{4\sqrt{2}}
ight)=0.8911$$
 radians

•
$$\theta = \arccos\left(\frac{4\sqrt{2}}{9}\right) = 0.8911 \text{ radians}$$

•
$$\theta = \arcsin(\frac{7}{9}) = 0.8911$$
 radians

 $360^\circ = 2\pi$ radians, so $180^\circ = \pi$ radians and $90^\circ = \frac{\pi}{2}$ radians

According to the triangle law, a triangle's sum of angles is 180° .

->
$$180^{\circ} - 51.06^{\circ} - 90^{\circ} = 38.94^{\circ}$$

$$\pi - 0.8911 - rac{\pi}{2} = 0.6797$$
 radians

3.2) If $\cos(\theta) = \frac{-\sqrt{3}}{2}$ and $\sin(\theta) = \frac{-1}{2}$, which quadrant does angle θ belong to?

A negative value divided by a positive still leads to a negative value, so $\cos = -x$ and $\sin = -y$. Following ASTC, Angle θ must therefore belong to the third quadrant as \tan would be positive when both \sin and \cos are

3.3) Sketch $y=2\cos(x)$ for $x\in[0,2\pi]$. What is the range and x/y-intercepts?

The domain is $0 \le x \le 2\pi$.

The range of \cos is $-1 \le x \le 1$, but as it is multiplied by $2 \times$, the range of this function is $-2 \le x \le 2$

y-intercept

 $y = 2\cos(x)$

-> $y = 2\cos(0)$

-> $y = 2 \times 1$

y = 2

x-intercept

 $y = 2\cos(x)$

 $-> 0 = 2\cos(x)$

 $-> \frac{0}{2} = \cos(x)$

 $\rightarrow \arccos(0) = x$

 $x = 1.5708 = \frac{\pi}{2}$

It took $x=\frac{\pi}{2}$ to do half of a full dip, reaching y=0. \cos waves rise back up, so it must take $\frac{\pi}{2}$ for the first half of the down dip to reach y=0, $\frac{\pi}{2}$ for the second half of the dip (y=-1), and on the upwards rise, another $\frac{\pi}{2}$, totalling $3\frac{\pi}{2}=\frac{3\pi}{2}$ where y=0 again.

At this point, it will have reached another x intercept. So, the x intercepts are $\frac{\pi}{2}$ and $\frac{3\pi}{2}$. A general formula found with the help of the internet is $\frac{\pi}{2}+2\pi n$.

Graph

