Danza y Robótica

Sensores, Actuadores y Control

Índice

- 1. Metodología para un proyecto artechne
- 2. Sistema interactivo y control
- 3. Sensores
- 4. Actuadores
- 5. Controlador

Diálogo arte y tencología

- > Contenidos.
 - Estética y técnica: el fin y el medio.
 - La idea artística es el centro, y el fin.
 - > La articulación técnica es una *prótesis*.
 - Lenguaje técnico frente al lenguaje artístico.

Diálogo arte y tencología

- Tiempos.
 - Artes escénicas y danza: improvisación,
 modificación de la obra a la vez que la propia obra.
 - Tecnología: planificación, implementación, test y depuración. Modificación fuera del funcionamiento.

Danza •	Pasos básicos marcación, ondulación		Técnica más compleja Trabajo con elementos		Estilos Coreografías complejas
Robótica _	Mecánica. Materiales físicos	Electrónica. Sensores y Actuadores		Control Informática	Depuración
tiempo					

Diálogo arte y tencología: proyecto conjunto

- Contenidos y tiempos coordinados.
- Partir de unidades ya realizadas: elementos.
- > Trabajar sobre un mismo *concepto*, una misma *idea*.
- Diálogo. Conocimiento mutuo: posibilidades, necesidades

"Dionisos habla la lengua de Apolo, pero Apolo habla finalmente la lengua de Dionisos" (F. Nietzsche "El nacimiento de la tragedia en el espíritu de la música", 1872)

Proyecto conjunto desde la tecnología

tiempo

Robótica

Mecánica. Materiales físicos Electrónica. Sensores y Actuadores Control Informática

Depuración

- 1. **Mecánica:** materiales, conexiones, arquitectura y escultura de la obra.
- 2. Electrónica: sensores y actuadores.
- 3. **Control:** algoritmos, implementación, informática.

1. Mecánica

Materiales estructurales y funcionales:

- Alambre moldeable.
- Cilindros, cajas, placas de plástico.
- Gomas, cuerdas, cartón,...
- Pistola de silicona y taladradora Dremel.
- Reciclaje: juguetes, muñecos, botes,

2. Sensores

Sensores

Sensores de proximidad:

- IR (Infrarrojos), SONAR, LASER.
- PIR: Passive Infrared Sensor.
- Capacitivos.

Sensores ópticos:

- Camaras.
- KINECT.
- LDR: Light Depending Resistor.

Sensores "olfativos":

- Alcohol. Radiación.
- Brújula. Magnéticos.

Sensores mecánicos:

- Piezoeléctricos: vibraciones, golpes.
- Micrófono.
- Sensor de presión. Extensiómetros.
- Acelerómetros. Giróscopos. Inclinómetros.
- Odometría. Tacómetros.
- Switch. Tap. Sensores final de carrera.
- Sensores de efecto *Hall*.
- Potenciómetro.
- Sensores de flujo del aire.

Sensores temperatura:

- Termómetros.
- Pirómetros. Detectores de llama.

Características principales de un sensor

- Alimentación: pasivios / activos.
- Señal: analógicos / digitales.
- Naturaleza de la magnitud que miden.

- Rango: límite físico dentro del cual el sensor funciona.
- Precisión: mínima variación física que es capaz de detectar.

Sensores para este curso

- > Optosensores.
- > Sensores de movimiento.
- Sensores de fuerza.
- > Telémetros.
- Cámaras.

LDR: Lighting Dependent Resistor

Sensor pasivo, analógico

Símbolo electrónico

LDR cambia su resistencia entre *Mega ohmios* y décimas de *ohmio*.

Sensores de fuerza y extensión

Sensor pasivo, analógico

- Percepción de fuerza o de deformación del sensor.
- Señal análoga a la deformación que sufre el sensor.
- Cambian la resistencia según esta deformación.

Calibración de un sensor pasivo

Sensores pasivos que cambian su resistencia en un rango impreciso.

- Ejem: LDR cambia su resistencia entre *Mega ohmios* y décimas de *ohmio*.
- > Se coloca en serie con una resistencia en mitad del rango y se divide la tensión.
- Calibración: señal de salida en el rango [0, Vcc].

Piezoeléctrico

Sensor pasivo, analógico

- Percepción de vibraciones y golpes.
- Sirve también como actuador: como altavoz o vibrador.
- Funciona mediante un cristal de cuarzo.
- Da tensiones muy altas, luego se suele colocar una resistencia del orden de Megaohmios en paralelo, para evitar daños en el circuito de lectura.
- > Se suele utilizar como sensor *todo-nada*.

Sensores

Acelerómetros y Giróscopos

- Sensor activo analógico
- Miden la aceleración y el ángulo de inclinación respectivamente.
- Rango: señal análoga que va entre [0, Vcc]
- Precisión: depende número bits de muestreo.
 - Ejem: 10bits => 1024 valores => 180°/1024 = 0,18°
- Los hay de 2 o 3 ejes cartesianos X, Y, Z.
- Sensibilidad del acelerómetro en función de g: 3G 5G, etc.

Telémetro IR

- Los más utilizados son de la marca SHARP.
- Miden el ángulo del haz de rebote.
- > Dan una señal analógica entre [0, Vcc] de la distancia que miden.
- Rango entre 60 cm y 80m dependiendo del modelo.

Sensor cámara Kinect

Sensor activo digital

- Sensor activo mezcla de: cámara y reconocedor de patrones.
- Emite una red de puntos de IR y analiza su deformación.
- Devuelve información de profundidad.
- Incluye una matriz de micrófonos para la localización sonora.

Características de la Kinect

- Cámara web: imagen normal de jpg.
- Cámara de profundidad: imagen de píxeles en 3D.
- Matriz de micrófonos.

- > Rango: 60cm a 14 metros
- Mútiples librerías disponibles.

Kinect software

- Rango: 60cm a 14 metros
- Librerías a utilizar.

3. Actuadores

Actuadores

Motores:

- [>] Continua. Velocidad análoga a la tensión de entrada. *Drive*.
- > *Stepper*. Movimiento *controlado* por pasos.
- > Servos. Movimiento controlado por PWM (*Pulse Width Modulation*).
- > Neumáticos/Hidráulicos. Para una necesidad alta de fuerza.
- Solenoides. Para crear campos magnéticos, percusores, etc.

Otros actuadores:

- [>] Altavoces. Piezoeléctrico como altavoz.
- [>] Generador de olores USB.
- Ferrofluidos. Toman forma análoga al campo magnético que se crea.

Actuadores ópticos:

- LED: Light-Emitting Diode.
- Proyector.

Actuadores

- Motores DC
- Servos
- LEDs

MotoresDC

- Velocidad de giro es proporcional a la tensión de entrada.
- Funcionan en lazo abierto, luego necesitan sistema de control.
- Funcionan con corriente continua entre sus bornas.
- El sentido de la corriente establece el sentido de giro.
- Drive: dispositivo que intercede (interfaz) entre el sistema de control y el suministro de corriente.
- Puente H. Es un drive especial que actúa como un amplificador para ambos sentidos de movimiento del motor.

Motores DC y control mediante tacómetro

Motor: Función de Transferencia

Figura 1.- Respuesta de un sistema de 1er orden ante entrada escalón unitario.

Puente H. Es un *drive* especial que actúa como un amplificador para ambos sentidos de movimiento del motor.

Circuito puente H de control de motor

- Funcionan con una señal PWM (Pulse Width Modulation).
- Necesitan de un controlador (driver) para generar las señales de entrada.
- Movimiento preciso autocontrolado.

LED: Light Emitting Diode

LED conexión

- Anodo a polo positivo.
- Cátodo a tierra

- > El color marca la caida de tensión.
- > Tope de consumo de corriente.

VF	IF A
1.5	0,015
1,8	0,015
1.8	0.015
2,8	0,02
2	0,02
3	0,02
3	0,02
2	0,02
	V 1,5 1,8 1,8 2,8 2

LED conexión

- > Colocación de una resistencia en serie.
- Varios LEDs se conectan en serie.

R =	V_s	-n	$\overline{V_f}$
Λ-		$\overline{I_f}$	

Section 2	VF	IF
LED	V	Α
Rojo std	1,5	0,015
Verde std	1,8	0,015
Amarillo std	1.8	0,015
Blanco	2,8	0,02
Amarillo brillante	2	0,02
Verde brillante	3	0,02
Azul brillante	3	0,02
Rojo brillante	2	0,02

 V_s : tensión de alimentación

n: número de LEDs

 V_f : tensión de caida en el LED-

 I_{f} : corriente máxima de consumo

LED conexión ejemplo

- > LED rojo a 3V => R \sim 100 Ω
- > LED rojo a 5V => R \sim 500 Ω
- \rightarrow LED amarillo a 3V nos da una R del orden de 50 Ω

10.00	VF	IF.
LED	V	Α
Rojo std	1,5	0,015
Verde std	1,8	0,015
Amarillo std	1.8	0,015
Blanco	2,8	0,02
Amarillo brillante	2	0,02
Verde brillante	3	0,02
Azul brillante	3	0,02
Rojo brillante	2	0,02

$$R = \frac{V_s - nV_f}{I_f}$$

 V_s : tensión de alimentación

n: número de LEDs

 V_f : tensión de caida en el LED-

I_f: corriente máxima de consumo

LED conexión

- > Colocación de una resistencia en serie.
- Varios LEDs se conectan en serie.

R =	V_s	-n	V_f
Λ-		$\overline{I_f}$	

SALARY S	VF	IF
LED	V	Α
Rojo std	1,5	0,015
Verde std	1,8	0,015
Amarillo std	1.8	0,015
Blanco	2,8	0,02
Amarillo brillante	2	0.02
Verde brillante	3	0,02
Azul brillante	3	0,02
Rojo brillante	2	0,02

 V_s : tensión de alimentación

n: número de LEDs

 V_f : tensión de caida en el LED-

I; corriente máxima de consumo

4. Control

Diagrama de bloques de un sistema de control

- Planta: sistema que se quiere controlar
- Sensor: percepción del estado del mundo (externo)
- Controlador: adaptación del estado del mundo hacia el mundo deseado.

Ejemplos sistemas de control

- Fototropismo
- Orientación del crecimiento de una planta fotosensible hacia la luz.

- Sensor:Fototropina, receptor de la luz.
- Actuador:Auxina, hormona de crecimiento.
- Controlador: Crecimiento diferencial debido al fototropismo negativo.
- Planta: La planta.

Arduino Controlador

- Entradas /Salidas Analógicas/Digitales. UNO:
- Control mediante programación de un

PIC (Peripheral Interface Controller).

- □ 14 Digital programmable Inputs/Outputs.
- "setMode(int pin_number, INPUT/OUTPUT)
- □ 6 PWM analog outputs:
 - D3, D5, D6, D9. D10, D11.

analogWrite(int pin_number, int value)

- 8 bits, 0 255, 0 5V.
- [□] 6 Analog Inputs.

int value analogRead(int pin_number)

- 0 1023. 0 5V 16 bits.
- ver analogReference()

Interfaz de programación de Arduino

#define MACRO valor

- Primitiva al compilador para que sustituya MACRO por *valor* en el resto del código.

- Variables globales. Son visibles y accesibles en cualquier parte del código dentro del mismo fichero.

- Declaración de variables. Antes de utilizar una variable hay que declararla del siguiente modo: type variable_name;

void setup()

 Se ejecuta una sola vez cuando la placa se enciende.

void loop()

- Se ejecuta constantemente en bucle.

Principales interfaces de Arduino

MIDI

Ableton LIVE

Bluetooth

OSC

Puredata

Zig Bee

- Programación de salidas/entradas como
 MIDI / OSC.
 - Control de dispositivos MIDI / OSC:
 sintetizadores, secuenciadores, luces,...
- Unión con software externo: Processing (síntesis visual), Ableton LIVE (sonido),
 Puredata (sonido y multimedia), etc.
- Ethernet.
- Bluetooth y ZigBee. Sensores en red *wireless*. Protocolo SDA/SCL: conexión directa de varias placas entre si.

5. Ejemplo

Ejemplo Arduino "opto-Theremin"

Proyecto conjunto desde la tecnología

tiempo

Robótica

Mecánica. Materiales físicos Electrónica. Sensores y Actuadores Control Informática

Depuración

- 1. **Mecánica:** materiales, conexiones, arquitectura y escultura de la obra.
- 2. Electrónica: sensores y actuadores.
- 3. **Control:** algoritmos, implementación, informática.

Mecánica del "Theremin"

LDR como sensor de luz

Sensor de luz protegido mediante un cilindro de cartulina

Electrónica del "Theremin"

Electrónica "Theremin"

- > LDR colocado en serie con otra resistencia para calibrarlo.
- Circuito sensorial como entrada analógica en AO.
- Altavoz como salida analógica directa de arduino por D6.

Control indicado en pseudo-código


```
Setup() {
//configurate digital inputs/outputs
//turn lights on
//express that setup was OK.
Loop() {
//check if calibration
//Read LDR value
//Normalize to audible range (20 HZ to 2kHz for example)
//Calculate pitch
//Play pitch
```

Implementación código del opto-Theremin


```
/**
@brief Opto thermin, is a sine audio signal modulated in amplitude and freccuency by
two independent optical sensors.
*/
#include <Tone.h>
#define LDR PIN 1
#define SPEAKER PIN 6
#define MAX_PITCH 2000
#define MIN_PITCH 20
#define CALIBRATION PIN 13
#define LDR MAX 380
#define LDR MIN 10
Tone theremin;
```

Implementación código del opto-Theremin


```
void setup(){
  theremin.begin( SPEAKER_PIN );
  pinMode( CALIBRATION_PIN, INPUT );

theremin.play( 440 );
  delay(1000);
  theremin.stop();
}
```

Implementación código de control


```
void loop() {
 pitch = analogRead( LDR_PIN );
 double A = (MAX PITCH - MIN PITCH);
 A = A / (LDR MAX - global Idr min);
 double B = MIN PITCH * LDR MAX;
 B = B - (MAX PITCH * global ldr min);
 B = B / (LDR MAX - global Idr min);
// pitch = (MAX PITCH - MIN PITCH) / (LDR MAX - global ldr min) *
analogRead(LDR PIN)+
// + (MIN PITCH*LDR MAX – MAX PITCH * blogal ldr min) / (LDR MAX -
global Idr min)
 pitch = A * pitch;
 pitch = pitch + B;
// Serial.print( "pitch = " ); Serial.println( pitch );
 theremin.play(pitch);
}
```