Prova tipo C

P1 de Álgebra Linear I – 2003.2 Data: 15 de setembro de 2003.

Nome:	Matrícula:
Assinatura:	Turma:

Questão	Valor	Nota	Revis.
1	3.0		
2a	0.5		
2b	0.5		
2c	0.5		
2d	1.0		
3a	0.5		
3b	0.5		
3c	0.5		
3d	0.5		
4a	0.5		
4b	0.5		
4c	0.5		
4d	0.5	_	
4e	0.5		
Total	10.0		

Instruções:

- Não é permitido usar calculadora. Mantenha o celular desligado. Escreva de forma clara e legível.
- É proibido desgrampear a prova e as folhas de rascunho. Prova com folhas faltando ou rasuradas terá nota zero.
- V. somente deverá entregar este caderno com as respostas. Faça os cálculos nas folhas de rascunho.

Marque no quadro as respostas da primeira questão. Não é necessário justificar esta questão.

ATENÇÃ0: resposta errada vale ponto negativo!, a questão pode ter nota negativa!

1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque **com caneta** sua resposta no quadro abaixo. **Atenção:** responda **todos** os itens, use "N= não sei" caso você não saiba a resposta. Cada resposta certa vale 0.3, cada resposta errada vale -0.1, cada resposta N vale 0. Respostas confusas e ou rasuradas valerão -0.1.

Itens	V	\mathbf{F}	N
1.a			
1.b			
1.c			
1.d			
1.e			
1.f			
1.g			
1.h			
1.i			
1.j			

- 1.a) Considere vetores u e w de \mathbb{R}^3 . Como $u \times u = \overline{0}$, então se verifica $u \times (u \times w) = (u \times u) \times w = \overline{0}.$
- **1.b)** Sejam u, w, h e ℓ quatro vetores coplanares de \mathbb{R}^3 . Então se verifica $(u \times w) \times (\ell \times h) = \overline{0}.$

1.c) Sejam $u \in w$ vetores de \mathbb{R}^3 de mesmo módulo. Então

$$(u+w)\cdot(u-w)=0.$$

- **1.d)** A área do triângulo de vértices A = (1, 2, 1), B = (0, 1, 1) e C = (1, 1, 1) é 1/2.
- **1.e)** Considere vetores u, w e ℓ não nulos de \mathbb{R}^2 . Sejam $P_{\ell}(u)$ e $P_{\ell}(w)$ as projeções ortogonais de u e w (respetivamente) no vetor ℓ . Suponha que

$$P_{\ell}(u) = P_{\ell}(w).$$

Então u = w.

1.f) Considere a reta r_1 paralela ao vetor u contendo o ponto P. Considere a reta r_2 paralela ao vetor w contendo o ponto Q. Suponha que o produto misto

$$\overline{PQ} \cdot (u \times w) = 0.$$

Então as retas se interceptam.

1.g) Considere os vetores

$$u = (111, 222, 333)$$
 e $w = (5467 + 111t, 9156789 + 222t, 1543 + 333t).$

O produto vetorial $u \times w$ é independente de t.

1.h) Considere os planos de equação cartesianas

$$\pi: x - y - z = 4$$
 e $\rho: x - y - z = 1$.

A distância entre π e ρ é 4-1=3.

- **1.i)** Considere os pontos P=(a,b,c) e (-P)=(-a,-b,-c) e o plano $\pi\colon ax+by+cz=d$. Se as distâncias de P e (-P) a π são iguais então o plano π contem a origem.
- **1.j)** Considere um ponto $P = (p_1, p_2, p_3)$ e o plano π . Sejam R um ponto de π e n o vetor normal de π . Seja $w = (w_1, w_2, w_3)$ o vetor projeção ortogonal de \overline{PR} em n. O ponto T = P + w,

$$T = (p_1 + w_1, p_2 + w_2, p_3 + w_3),$$

é o ponto de π mais próximo de P.

2) Considere o plano de equação cartesiana

$$\pi$$
: $x + y - z = 1$

e os pontos A=(2,-1,0) e B=(1,0,0) do plano $\pi.$

- a) Determine o vetor \overline{AB} .
- **b)** Determine um vetor w paralelo ao plano π e ortogonal ao vetor \overline{AB} .
- c) Determine um vetor u paralelo a w e de mesmo módulo que o vetor \overline{AB} .
- d) Determine as coordenadas de pontos C e D tais que A, B, C, e D são os vértices de um quadrado contido no plano π .

Respostas:

a)
$$\overline{AB} =$$

$$\mathbf{b)} \qquad w =$$

c)
$$u =$$

d)
$$C = D =$$

3) Considere a reta r_1 de equações paramétricas

$$r_1: (2t, 1+t, -1+t) \quad t \in \mathbb{R}$$

e a reta r_2 de equações cartesianas

$$x + 2y - 2z = 2$$
, $x - y = 2$.

- a) Escreva a reta r_1 como interseção de dois planos π e ρ (escritos em equações cartesianas) tais que π seja paralelo ao eixo \mathbb{X} e ρ seja paralelo ao eixo \mathbb{Z} .
- b) Determine uma equação paramétrica da reta r_2 .
- c) Determine a posição relativa das retas r_1 e r_2 (reversas, paralelas ou se interceptam).
- d) Calcule a distância d entre as retas r_1 e r_2 .

Respostas:

d)
$$d =$$

4)	Considere os	pontos $A = 0$	(1, 1, 1)	$A \in B = 0$	(2, 0,	.1)	١.
	Computation on	POIIIOO II - I	. 19 19 1	\prime	(/ 9 O 9	, _ ,	, .

- a) Determine uma equação paramétrica da reta r determinada pelos pontos $A \in B$.
- b) Determine o ponto médio M do segmento AB.
- c) Determine a equação cartesiana do plano π cujos pontos são todos equidistantes de A e B.
- d) Considere o ponto C=(19,21,17). Determine explicitamente um ponto D a distância 17 de C.
- e) Considere o plano ρ : x-y+z=0. Determine a equação cartesiana de um plano τ a distância 5 de ρ .

Respostas:

.tespo	suas.
a)	r:
b)	M =
c)	π :
d)	D
e)	au: