Content

- Non linearity induced by H operator : $(Hx = (1 \alpha)x + \alpha x^3)$.
- Relinearization at outer loops level
- Influence of the σ^o and n_{obs}

Full resolution, varying α parameter with the same relinearization scheme : no=4, ni=6, spectral interpolation and projective B matrix, $\sigma^o=0.01$

Figure – $\alpha = 0$

Figure –
$$\alpha = 0$$

--- theoretical-planczosif--- standard-planczosif--- alternative-planczosif 10^{7} 10^{6} 10^{5} 15 10 20 lanczos - PlanczosIF iterations

FIGURE – $\alpha = 0.01$

FIGURE – $\alpha = 0.01$

--- theoretical-planczosif--- standard-planczosif--- alternative-planczosif 10^{7} 10^{6} 10^{5} 15 10 20 lanczos - PlanczosIF iterations

FIGURE – $\alpha = 0.02$

FIGURE – $\alpha = 0.02$

Full resolution; non linear H; J vs J^{nl}

--- theoretical-planczosif--- standard-planczosif--- alternative-planczosif 10^{7} Jul 10^{6} 15 10 20 lanczos - PlanczosIF $5 \stackrel{\times 10^{-2}}{\leftarrow}$

FIGURE – $\alpha = 0.05$

FIGURE – $\alpha = 0.05$

 $^{rac{1}{5}}$ $^{rac{10}{10}}$ $^{rac{15}{5}}$ $^{rac{20}{20}}$ m FIGURE-lpha=0.1

Figure – $\alpha = 0.1$

--- theoretical-planczosif--- standard-planczosif--- alternative-planczosif 10^{11} 10^{10} 10^{9} 15 10 20 lanczos - PlanczosIF iterations

FIGURE – $\alpha = 0.5$

FIGURE – $\alpha = 0.5$

 10^{9} Jul 10^{8} 15 10 20 lanczos - PlanczosIF $5 \stackrel{\times 10^{-2}}{\leftarrow}$

--- theoretical-lanczos --- standard-lanczos --- alternative-lanczosi
--- theoretical-planczosif--- standard-planczosif--- alternative-planczosif

Figure – $\alpha = 1$

Figure – $\alpha = 1$

Conclusion on the non linearity induced by H

- ullet Very sensitive to lpha even for small values.
- The case with $\alpha=1$ seems better than the case with $\alpha=0.05...$
 - → What could be the reason for it?
- It seems that there are too much inner loops before relinearization but the iteration at which the "jump" occurs seems NOT correlated to the value of α .
- \longrightarrow Need to study the number of inner iterations vs. outer iterations.

Full resolution, varying the number of inner and outer loops with a non linear H and the same total number of iterations ($n_o \times n_i = 24$) (spectral interpolation and projective B matrix, $\sigma^o = 0.01$)

Full resolution; non linear $H(\alpha = 0.05)$: J^{nl}

FIGURE – $n_0 = 2, n_i = 12$

FIGURE –
$$n_o = 4$$
, $n_i = 6$

Full resolution; non linear $H(\alpha=0.05)$: J^{nl}

FIGURE – $n_o = 4$, $n_i = 6$

FIGURE –
$$n_o = 6$$
, $n_i = 4$

Full resolution; non linear H ($\alpha = 0.05$): J

FIGURE – $n_0 = 2, n_i = 12$

FIGURE – $n_o = 4$, $n_i = 6$

Full resolution; non linear H ($\alpha = 0.05$): J

FIGURE –
$$n_o = 6$$
, $n_i = 4$

Full resolution; non linear H $(\alpha = 0.1)$: J^{nl}

FIGURE – $n_o = 4$, $n_i = 6$

FIGURE –
$$n_o = 6$$
, $n_i = 4$

Full resolution; non linear H ($\alpha = 0.1$): J

FIGURE –
$$n_o = 4$$
, $n_i = 6$

FIGURE –
$$n_o = 6$$
, $n_i = 4$

Nicolas Baillot d'Etivaux

Full resolution ; non linear H (lpha=1) : J^{nl}

FIGURE – $n_o = 4$, $n_i = 6$

FIGURE – $n_o = 6$, $n_i = 4$

Nicolas Baillot d'Etivaux

Full resolution; non linear H ($\alpha = 1$): J

FIGURE – $n_o = 6$, $n_i = 4$

Conclusion on the number of inner and outer loops

- As expected, the assimilation scheme with the more outer loops is equal or better than the others.
- There is often a "jump" in the linear cost function which is not necessarily at the same iteration than the eventual "jump" in the non linear one.
- Problem: The firsts inner iterations in the first case with 12 inner iterations seems better than the case with 6 inner iterations whereas the case with 6 inner iterations seems better than the case with 6 inner iterations:
 - \longrightarrow The problem is too much dependant on the initial background and observation states that are randomly generated (?): there is a difference of 10^7 at the beggining!

Short conclusion and questions :

lala