Reference Dependence and Monetary Incentive

-Evidence from Major League Baseball-

Reio TANJI

Osaka University

Dec 14th, 2018

Abstract

- Empirical research that specifies the existance of reference point dependence observed in field setting:
 We pick up evidence of Major League Baseball (MLB)
- Players take some round numbers of the batting performance indexes as reference points, and adjust their effort level to meet the goals
- There are NOT observed any evidence for the monetary incentives that is paid to the players if they achieve these internal goals

Introduction

- Reference dependence is one of the two main charactaristics of the Tversky and Kahneman (1992)'s prospect theory: Individuals evaluate outcomes by the relative value to their internal benchmarks, or reference point, not by their absolute ones.
- Prospect theory enabled us to interpret some inconsistent empirical decision making with the traditional microeconomic theory, by applying additional assumptions.
- There are a lot of following researches that tests the reference dependence in field or laboratory settings.

Contents

- Introduction
- 2 literature and Contribution
- 3 Frameworks and Empirical Methods
- Results
- Conclusions

Literature

Pope and Simonsohn (2011)

- presents three empirical evidences that verify the reference dependence, with the reference points "round numbers."
- One of them picked up Major League Baseball (MLB) players, about the observed attitude to their performance indexes.
- MLB position players manipulate their batting-average (AVG), in order to meet their internal goals: .300
- As a results, there is observed excess mass, or "bunching" around .300 of AVG.

Contribution

- Professional athletes receive monetary rewards according to the contracts they signed.
- Their contracts might include some incentivesed parts, which pay them additional bonus when their AVG reaches a certain cutoff point.
- If so, the observed behavior might be caused by the discontinuity of their profit function, not by the reference dependence.
- The contribution of our research is to examine this: examine if there exists any monetary incentives that make players make effort to the cutoff point.

Theoretical Frameworks

Figure: discontinuous utility function

- Following Allen et al. (2016) assume utility function u(x) that jumps at the cutoff point, or the reference point.
 - *x* stands for the performance index.
- This disconituity generates excess mass, or "bunching" around the possible reference point.
- We consider if this utility is derived by the descontinuous design of the monetary reward of the players.

Specification: Manipulation

- We exploit the McCrary (2007)'s manipulation test, which is used in regression discontinuity design.
- Local-linear regression of undersmoothed histgram around the given cutoff point: .300 of AVG, 20 homeruns, ...

•

Specification: Contract Design

 Discontinuity of the contract design is tested by RDD methodology:

$$w_{it} = \beta_0 X_{it} + \beta_1 ABOVE_{it}$$

• To check the robustness of our results, we also conduct the same local regression including the interaction term of X_{it} and ABOVE $_{it}$.

$$w_{it} = \beta_0 X_{it} + \beta_1 ABOVE_{it} + \beta_2 X_{it} \times ABOVE_{it}$$

Data

We obtain information about the players' stats (indexes) and annual salary.

- Stats Data
 - From fangraphs
 - Play stats from 1957 to 2018
 - We restrict the sample to the players with at least 200 plate-appearances N=18143
- Salary Data
 - From USA TODAY and Baseball Prospectus
 - Salary information from 1987 to 2017 N=8915

Results: Manipulation

Figure: Histgram of Batting-Average

Figure: Discontinuity at .300 of AVG

Table: Test for Manipulation, leastPA = 200

index	type	cutpoint	binsize	bandwidth	θ	Z
AVG	rate	.300	.001	.019	.499	7.442***
					(.067)	
		.250	.001	.024	.212	5.061***
					(.042)	
OBP	rate	.350	.001	.024	.139	2.854**
					(.049)	
HR	cumulative	20	1	5.309	.259	3.465***
					(.075)	
RBI	cumulative	100	4	15.423	.311	3.295***
					(.094)	
SB	cumulative	30	1	10.000	.529	4.274***
					(.124)	
		40	1	11.505	.481	2.764**
					(.174)	
PA	cumulative	500	1	.003	.160	2.515*
					(.063)	
Н	cumulative	200	1	18.922	.453	2.547 *
					(.178)	

Note ***: p < 0.1%, **: p < 1%, *: p < 5%.

Bandwidth is optimized following the method of McCrary(2008).

Results: Contract Design

Table: RDD Test for Monetary Incentives

bandwidth

index,cutpoint	Other Control	bw type	bandwidth	Observations	Estimate	Std. Error	Z
AVG, .300	No	LATE	.084	8514	.047	.061	.773
		Half-BW	.042	5599	.088	.075	1.174
		Double-BW	.170	8915	.067	.056	1.184
	Yes	LATE	.045	5930	.034	.056	.615
		Half-BW	.023	3005	.061	.077	.788
		Double-BW	.090	8605	.016	.045	.354
AVG, .250	No	LATE	.036	6110	.019	.068	.286
		Half-BW	.018	3496	.015	.092	.161
		Double-BW	.072	8539	.034	.054	.636
	Yes	LATE	.048	7271	.070	.052	1.340
		Half-BW	.024	4402	.066	.069	.953
		Double-BW	.096	8810	.075	.044	1.713
HR, 20	No	LATE	3.32	1315	.071	.175	.406
		Half-BW	1.66	562	.073	.127	.576
		Double-BW	6.64	2582	004	.109	034
	Yes	LATE	3.30	1307	002	.141	015
		Half-BW	1.65	560	.030	.102	.299
		Double-BW	6.61	2558	032	.088	364
OBP, .350	No	LATE	.044	6440	038	.065	592
		Half-BW	.021	3542	076	.089	849
		Double-BW	.087	8656	029	.051	570
	Yes	LATE	.045	6525	013	.049	272
		Half-BW	.022	3673	055	.069	807
		Double-BW	.089	8637	.004	.039	.107
DDI 100	No	LATE	/ NO	202	072	200	250

index cutacint

Summary

Discussion

- By-Time analysis
 - Replicate the same examination, but now we devide the sample by histrical terms:
 - Before the system of free agency regulated (-1975)
 - Before the Strike of Players Association (-1994)
 - Before Moneyball (Lewis) was published (-2003)
 - Afterward (2004-)

Conclusion

Main Findings

- Players manipulate their performance indexes to meet them with some round numbers.
- There exist no monetary incentives in their contracts that makes players to do so.
- Tendency of the manipulation changes through the history of baseball.
 - Among them, especially, .300 of AVG shows consistent results, which shows it is solid benchmarks for the players.

Reference

Pope and Simonsohn. 2011. Round Numbers as Goals: Evidence From Baseball, SAT Takers, and the Lab Psychological Science 22(1) 7179

Hakes and Sauer. 2006. An Economic Evaluation of the Moneyball Hypothesis Journal of Economic Perspectives Volume 20, Number 3-Summer 2006-Pages 173185

Allen, Dechow, Pope and Wu. 2016. Reference-Dependent Preferences: Evidence from Marathon Runners Management Science 63(6):1657-1672.

Pope and Schweizer. 2011. Is Tiger Woods Loss Averse? Persistent Bias in the Face of Experience, Competition, and High Stakes American Economic Review 101 (February 2011): 129157

Kahneman and Tversky, 1979, Prospect Theory: An Analysis of Decision under Risk, Econometrica Journal of the Econometric Society47 (2):263291.

McCrary, 2007. Manipulation of the running variable in the regression discontinuity design: A density test Journal of Econometrics 142 (2008) 698-714

Krautmann and Oppenheimer. 2002. Contract Length and the Return to Performance in Major League Baseball Journal of Sports Economics February 2002

Tversky and Kahneman, 1992, Advances in Prospect Theory: Cumulative Representation of Uncertainty Journal of Risk and Uncertainty, 5:297-323 (1992)

Imbens and Kalvanaraman, 2009, NBER Working Paper Series, 14726

Alex Rees-Jones, 2018, Quantifying Loss-Averse Tax Manipulation Review of Economic Studies (2018) 85, 1251-1278