

hmen. IMI-4 (hCap2) 176 surise. EMI-4 (hCap2) 227 hmen. EMI-4 (hCap2) 157 hmen. EMI-4 (hCap1) 157 hmen. EMI-4 (hCap1) 157 hmeter. Adapt78 183 surise. EMI-4 (hCap1) 184 c. elegan 295 S. carwisiae 190 S. pombe	hmean_EART4 (hCmp2) 106 mnrine.EART4 (mCmp2) 157 hmean_DSCRI(hCmp1) 61 hmerine.DSCRI(mCmp1) 107 mnrine.DSCRI(mCmp1) 107 c. ollogans 1136 5.corvvisies 113 5.pombs 96	beneza, zazz-4 (bOrgó) seriesa, zázz-4 (aCegó) beneza, botzzi (bCegó) benezia, botzzi (aCegó) benezia, botzzi (aCegó) c. elegent s. oczwista	Imman. ERET - 4 (Norg2) merime. ERET - 4 (Norg2) Bhuman. DOCKI (Norg2) Immarine. DOCKI (Norg2) merine. DOCKI (Norg2) C. elagens 6. converiation 8. pombe
			1111111
	F	ENHAND SOCAR DE MONTALOS DACONAS DE SENTINGERA ANOMA (SENTINGER) DE MONTALES D	Achigo e la

Figure 1A

Figure 1B

Figure 2

Figure 3

A. RII-peptide-PO₄ + Cn → RII-peptide + Cn + PO₄

В.

A.

Figure 4

Assay for luciferase or β-galactosidase activity

human Csp1 promoter (2.5kb) (SEQ ID NO: 1)

Figure 9

				-tactaadaC	tatgataata	્્રે 🖟	•
1 4	rragattta (gctccctgag	gacacaaact	gicciaagac	ctcagctgtt	100	MyoD
- 7	rtaatcatag	gctccctgag (aaccgtgcac	atggcaagtt	CEGAALAGAC	gagagtaage		-
101	gatatactt	aaccgtgcac (tttgttataa (ttactaacac	ttcctaacta	a a a coa a cocca	200-	:
101	ctactctaag	tttgttataa aaaaaatata	actgtaattt	cacaaccccc	cttagtaata		•
201	ntacataaac	aaaaaatata agctaccatt	tattaagcac	tgactgaatt	tattataca	300	MyoD, NF-AT
201	ratetteatt	agctaccatt ttttcagat	gaggaaacta	agattcagct	cactetatea	•••	
201	agtagttaaa	aagcaaagct	gaaattcaga	cccaagttct	etetectcac	400	
201	toctatecaa	aagcaaagct aaaagaattc	tatttttcag	gaagagacac	geetgeede		NF-AT, NF-AT
401	tactycccau	aaaagaattc cttatttttc	cgctattccc	caaaqqaaaq	gggcgacccc	500	
401	ttgaggtttt	cttattttc cgttatgtcc	tattgtacat	agcatataat	ggtaatteag	500	
601	ctaattett	cgttatgtcc	taaattttca	caatggtata	gtgactaata	600	NF-AT
201	aaaaactacc	tctaattaca gaaaagtaag	gcattgttat	catggtctag	ttcagtcttt	000	tit 111.
	cgctgaaata	gaaaagtaag tatctgataa	tatacggtaa	gcatctaacc	acttgccagg	700	
601	attgcgacta	tatctgataa ccacagggag	actatotctc	gcttaaattc	ccaaaagtgg	100	•
	ggccacagag	ccacagggag ttcaaaacgt	ccccccatgg	gaaccacaaa	aacgttgcct	800	
701	gcccctgtgc	ttcaaaacgt	gccaagagc	cgaggactct	gcccggcgcc	800	MiraD
	ccccagttat	cacccaagg	CagaaaagCG	gaactgggga	cgaggacttt	000	MyoD
801	cttcagctgg	caccagetgt	ccctgaggct	tegggetteg	ggcggcagaa	900	MucD
	gcccctaacc	aacatggccg gtgaagagaa	ttccattcct	ttattggccc	cgtctcctgg	1000	MyoD
901	ggaaggtcac	gtgaagagaa tacaataacc	Caaccaacac	cggccttaaa	ggggccaccg	1000	
	aagggcgggg	tacaataacc	ccctagggC	tgggggggcg	gtcgccgcgc	4400	
1001	ttggatctgc	tacaataacc	acadaacadt	gacgggcggg	gctggcgctg	1100	
	cadacttcta	CCCCCCCC	9-33-	***********	taccaccaca		
1101	qqaqqccgtg	Ecgcigggag	acces	caaccaaaca	cggaccggag	1200	
	cgattccgag	ggggccaacy	909909	pageceacto	agacacacag		
1201	cacataaggc	e eccadeacacac	uug55 5	ataaccaata	cccagctcgg	1300	
	aatcacacag	gegeggggae	9949555	aacacaaaco	caacccaagg		
1301	qqccgcggcg	gaggeggegg	499099	agacaaccaa	ggcqgacgag	1400	
	tgacgctgcg	geeeeeegeg		gagatggagg	aggtggacct		
1401	ggcggcggcg	actggayeee	cacegaces	tracctggag	ccgcgcgtgt	1500	MyoD
	gcaggacctg	Cocaycycca		- caccaaacac	accatcadaa		
1501	tcgtggacgg	a condidence	gegeggee	caacacaaat	cqcaqcqccc	1600	MyoD
	cqqagggcgg	acacttycty	0009-55-55	acascatcco	ccaaactact		
1601	agtcccggc	s gegegegyyyy	09999-55	. aggacggcg	cccgagggtc	1700)
	cqqccqcqq	a cccgrcaggy		actcactg	agagtcccac		
1701	ccaatcccci	e ageaceeee	1 9990903.	actagtaca	a ctadddddd t	1800)
	aggetegee	c eggecees	. 90909	conceests	g cactetegee		
1801	l gaattcgcto	c cccaaggry	ggcagoga	gatcacctc	a ttcctaggga	1900	
	atcgccccg	c acceacing		ctcagtatt	c ataaatagga		NF-AT, TATA
190	l qqaqqaaac	a gacattyay	ggcgaoges	+ +442242333	a gccaatgttt	2000)
	cgacgtccc	e geatteeca		- acaactaac	c auttttggtg		_
200	l gggtgagga	t ccgtggrty		+ fragacett	t aggatattta	2100)
	gaattgtgt	E ggggggaag	9 99	aacttac	c accateggg		_
210	l gtcaagaac	c ttgccccc	guguguass	- eccacate	c ccccaccccc	2200	U .
	acacccagt	a carggggag	c ogue	nnachtaana	a caggtatgag		_
220	l gcaaaatcc	a cacaattta	g dedocation	+ tratttcaa	a tctgcagtta	230	U
	taatcaata	a eggeyyeyy	9 9099	- catcacada	a tgaaaccggt		_
230	1 ttgtgcaga	a taaaacycy	g accessors	é tatcaaaaa	a agcagtgctt	240	U
	ctttgagag	a tgccccatt	a gyayaycay	t gtcaatgaa	a agcagtgctt c tatagttgaa	١	
240					c tatagttgaa	248	4
	ggctgctgc	c aatacaaca	C Caccycgau	~,			

murine Csp1 (SEQ ID NO: 2) 31 ATG GAG GAG GTG GAT CTG CAG GAC CTG CCG AGC GCC ACC ATC GCC TGC CAC CTG GAC CCG 91 CGC GTG TTC GTG GAC GGC CTG TGC CGG GCC AAA TTT GAA TCC CTC TTC AGA ACA TAT GAC AAG GAC ACC TTC CAG TAT TTT AAG AGC TTC AAA CGT GTC CGG ATA AAC TTC AGC AAC 211 CCC TTA TCT GCA GCC GAT GCC AGG CTG CGG CTG CAC AAG ACC GAG TTC CTG GGG AAG GAA ATG AAG TTG TAT TTT GCT CAG ACT TTA CAC ATA GGA AGT TCA CAC CTG GCT CCG CCC AAT 331 CCC GAC AAA CAG TTC CTC ATC TCC CCT CCG GCC TCT CCC GTT GGC TGG AAA CAA GTA 391 GAA GAT GCC ACC CCC GTC ATA AAT TAC GAT CTT TTA TAT GCC ATC TCC AAG CTG GGG CCA 451 GGA GAG AAG TAT GAA CTG CAT GCA GCG ACA GAC ACC ACT CCC AGT GTG GTG GTC CAC GTG 511 TGT GAG AGT GAC CAA GAG AAT GAG GAG GAA GAG GAG ATG GAG AGA ATG AAG AGA CCC AAG CCC AAA ATC ATC CAG ACA CGG AGA CCG GAG TAC ACA CCC ATC CAC CTC AGC TGA

coding sequence: 597 nucleotides

				,											•		
murine Csp2	(SE	o ii) NO:	3)				31									
1 GAA TTC GTC		`				~~»	ממר י	GTC.	CGC	TTG	GGG	CAG	CAG	GCA	TCT	ATC	CCT
GAA TTC GTC	GAC (CCA	CGC	GTC	CGC	CCA	·	91	-			9. 3.					
61					~~~	mcc	TYCC	ATA	GAC	AGA	GAC	TGG	GCT	GTC	ACT	CAG	TGT
61 GAA GAT GGG	GGA	CTT	TTC	TIC	CIC	IGC	100	151									
121 TTT GCT GAA				~~~	CCI	Carca	ΔСТ	GAC	TTC	AGT	GAT	CTC	CCC	AAC	TCA	TTG	TTT
TTT GCT GAA	GAG	GCC	TTC	CAA	GCA	CIC	2.02	211									
181 GCC TGC AAT			an a	myymr	CTC	Talah	GAA	GAA	GAG	GAG	AGC	AAG	GAA	AAA	TTC	GAG	GGA
GCC TGC AAT	GTT	CAC	CAG	101	GIO			271									
241 CTG TTC CGG		ma m	CNT	CAA	TGT	GTG	ACG	TTC	CAG	CTG	TTT	AAG.	AGT	TTC	CGA	CGG	GIT
CTG TTC CGG	ACC	TAI	GAI	0241		-		331								~~~	B (247)
301 CGA ATA AAT	mmc	NGC	САТ	CCC	AAA	TCT	GCA	GCC	CGT	GCC	CGG	ATA	GAG	CTT	CAT	GAG	ACI
CGA ATA AAT	TIC	AGC	٠	•	•		•	391							a. a	303	CD TO
361 CAG TTC AGA	ccc	n n G	AAG	CTA	AAA	CTC	TAC	TTC	GCC	CAG	GTC	CAG	ACC	CCA	GAG	ACA	GAI
CAG TTC AGA	GGG	Ano						451					~~~	B.000	m/1h	ccc	CCT
421 GGA GAC AAA	CIK	CAT	TTG	GCA	CCT	CCA	CAG	CCT	GCC	AAA	CAG	TTC	CIC	AIC	ICA	CCC	CC1
GGA GAC AAA								511				223	ama	CALC.	י אאר	тат	GAC
481 TCA TCT CCA	тст	GTT	GGC	TGG	AAG	CCT	ATC	AGC	GAT	GCC	ACA	CCA	GIC	CIC	Anc	1	00
TCA TCT CCA.								571			man		CTC	CAC	GCT	GGA	ACT
541 CTT CTT TAT	GCT	GTG	GCC	AAA	CTA	GGA	CCA	GGA	GAG	AAA	IAI	GAG	CIO				
601								631		3 N.C.C	. GDC	י מיינ	GAG	AGG	GAG	GAG	GAC
601 GAG TCT ACC	CCG	AGC	GTC	GTG	GTG	CAI	GTG	TGI	GAC	. AGC	. GAC	. AIC	0				
661 CCA AAG ACT								691	'	r ccc	: CGC	CCT	GGC	CTC	CCA	CCC	TTC
CCA AAG ACT	TCC	CCP	OAA /	CCA	AAA A	ATC	; AA1	CAC	, ACC		,						
721																	-
GGT CAC TGA	A																

coding sequence: 729 nucleotides

murine Csp1 (SEQ'ID NO: 4) 31/11 ATG GAG GAG GTG GAT CTG CAG GAC CTG CCG AGC GCC ACC ATC GCC TGC CAC CTG GAC CCG MEEVDLQDLPSATIAC.HLDP 91/31 CGC GTG TTC GTG GAC GGC CTG TGC CGG GCC AAA TTT GAA TCC CTC TTC AGA ACA TAT GAC R V F V D G L C R A K F E S L F R T Y D 151/51 AAG GAC ACC ACC TTC CAG TAT TTT AAG AGC TTC AAA CGT GTC CGG ATA AAC TTC AGC AAC T F Q Y F K S F K R V R I N K D 211/71 CCC TTA TCT GCA GCC GAT GCC AGG CTG CGG CTG CAC AAG ACC GAG TTC CTG GGG AAG GAA P L S A A D A R L R L H K T E F L 271/91 ATG AAG TTG TAT TTT GCT CAG ACT TTA CAC ATA GGA AGT TCA CAC CTG GCT CCG CCC AAT M K L Y F A Q T L H I G S S H L A 331/111 CCC GAC AAA CAG TTC CTC ATC TCC CCT CCG GCC TCT CCC GTT GGC TGG AAA CAA GTA PDKQFLISPPASPPVGWKQV 391/131 GAA GAT GCC ACC CCC GTC ATA AAT TAC GAT CTT TTA TAT GCC ATC TCC AAG CTG GGG CCA E D A T P V I N Y D L L Y A I S 451/151 GGA GAG AAG TAT GAA CTG CAT GCA GCG ACA GAC ACC ACT CCC AGT GTG GTG GTC CAC GTG G E K Y E L H A A T D T T P S V V V 511/171 TGT GAG AGT GAC CAA GAG AAT GAG GAG GAA GAG GAG ATG GAG AGA ATG AAG AGA CCC C E S D Q E N E E E E E M E R M 571/191 AAG CCC AAA ATC ATC CAG ACA CGG AGA CCG GAG TAC ACA CCC ATC CAC CTC AGC TGA

198 amino acids and 597 nucleotides

murine Csp2 (SEO'ID NO: 5) 31/11 GAA TTC GTC GAC CCA CGC GTC CGC CCA CGC GTC CGC TTG GGG CAG CAG GCA TCT ATC CCT E F V D P R V R P R V R L G Q Q A S GAA GAT GGG GGA CTT TTC TTC CTC TGC TGC ATA GAC AGA GAC TGG GCT GTC ACT CAG TGT G G L F F L C C I D R D W A V 151/51 TTT GCT GAA GAG GCC TTC CAA GCA CTC ACT GAC TTC AGT GAT CTC CCC AAC TCA TTG TTT DLPN D F S F A E E A F Q A L T 211/71 GCC TGC AAT GTT CAC CAG TCT GTG TTT GAA GAA GAG GAG AGC AAG GAA AAA TTC GAG GGA A C N V H Q S V F E E E E S K E K F E G 271/91 CTG TTC CGG ACC TAT GAT GAA TGT GTG ACG TTC CAG CTG TTT AAG AGT TTC CGA CGG GTT F K S F 331/111 CGA ATA AAT TTC AGC CAT CCC AAA TCT GCA GCC CGT GCC CGG ATA GAG CTT CAT GAG ACT RINFSHPKSAARARIELHET 391/131 CAG TTC AGA GGG AAG AAG CTA AAA CTC TAC TTC GCC CAG GTC CAG ACC CCA GAG ACA GAT Q F R G K K L K L Y F A Q V Q T P E 451/151 GGA GAC AAA CTG CAT TTG GCA CCT CCA CAG CCT GCC AAA CAG TTC CTC ATC TCA CCC CCT G D K L H L A P P Q P A K Q F L I S * 511/171 TCA TCT CCA TCT GTT GGC TGG AAG CCT ATC. AGC GAT GCC ACA CCA GTC CTC AAC TAT GAC S S P S V G W K P I S D A T P V L 571/191 CTT CTT TAT GCT GTG GCC AAA CTA GGA CCA GGA GAG AAA TAT GAG CTG CAC GCT GGA ACT LLYAVAKLGPGEKYELHAGT 631/211 GAG TCT ACC CCG AGC GTC GTG GTG CAT GTG TGT GAC AGC GAC ATG GAG AGG GAG GAC ESTPSVVVHVCDSDMER Ε 691/231 CCA AAG ACT TCC CCA AAG CCA AAA ATC AAT CAG ACC CGG CGG CCT GGC CTG CCA CCC TTC S P K P K I N Q T R R P G L P K T 721/241 GGT CAC TGA G H

242 amino acids and 729 nucleotides.

Figure 14

Figure 15

Figure 16

Figure 17

Murine Csp3 (SEQ ID No: 22) cDNA Nucleic acid sequence (coding)

cDNA nucleic acid sequence (entire coding + 5' and 3' UTR) (SEQ ID No: 23)

Murine Csp3 (SEQ ID NO: 24) Amino acid sequence

MLRDSLKSWNDSQSDLCSSDQEEEEEMVFGENEDGLEEMMDLSDLPTSLFACSVHEAV FEVQEQKERFEALFTLYDDQVTFQLFKSFRRVRINFSKPARARIELHESEFHGRKLKLYF AQVQVSGEARDKSYLLPPQPTKQFLISPPASSPVGWKQSEDAMPVINYDLLCAVSKLGP GEKYELHAGTESTPSVVVHVCESETEEEEDTKNPKQKITQTRRPEAPTAALSERLDCALZ

Identification of a Third Calcipressin Family Member, Csp3

csp2 csp3 csp1	1 1 1	MLRDSLKSVWD SQSDLCSSDQEEEEEHVFGEWEDGLEEHUDISDIPT SUFACSVHEAVFE
csp2 csp3 csp1	20 61 25	MQETKEKFEGLFRIIDECTIFQLFKSFRRYRINFSHPKSAARARIELHETQFRGKKLKLY VQEQKERFEALFILYDDQYTFQLFKSFRRYRINFSHPARARIELHESEFHGRKLKLY DGLCRAKFESLFRIIDKDTTFQTFKSFERYRINFSHPLSAADARIELHKTEFLGKEHKLY
csp2 csp3 csp1	80 118 85	FAQYQTPETDGDEHLAPPQPAKQFLISPPSSPSVGVKPISDATPYHNYDLLYAYAKLGP FAQYQVSGEARDKSTLIPPQPTKQFLISPPASSPYGVKQSEDATPYINYDLLGAYSKLGP FAQTINIGSSHLAPPTPDKQFLISPPASPPYGVKQVEDATPYINYDLLYATSKLGP
csp2 csp3 csp1	140 178 141	GEKYELHAGTESTPSYVYHYCDSDHEREEDPETSPKPKIHQTRRPGLPPFYSIGEKYELHAGTESTPSYVYHYCESETEE EE DTKIPKQKITQTRRPEAPTAAL SER GEKYELHAATDTTPSYVYHYCESDQENEE EE EE HERHKRPKPKIIQTRRPEYTPIHLS
csp2 csp3 csp1	232	LDCAL

A third calcipressin family member, termed csp3, was cloned from murine T cells and found to have high sequence homology with csp1 and csp2.

Calcipressin 3 Inhibits Calcineurin Mediated Translocation of NFAT

Figure 22

Panel A demonstrates the cytoplasmic expression pattern of the transcription factor NFAT tagged with green fluorescent protein (GFP) in the absence of stimulus. Upon co-expression of calcineurin (CN), NFAT shuttles into the nucleus as seen in panel B.

Panel C demonstrates the cytoplasmic expression of NFAT in the presence of calcineurin and calcipressin 3 (Csp3), suggesting inhibition of CN activity by Csp3. Csp3 co-expression is demonstrated in panel D by immunostaining with an anti-myc antibody to detect the myc-tagged Csp3 protein.

Generation of anti-Csp2 and anti-Csp1 Monoclonal Antibodies

Figure 23

Myc-Csp2 transfected BHKcells

Myc-Csp1 transfected BHK cells

Monoclonal antibodies (mAb) were generated against Csp1 and Csp2. 3F4A mAb was biotinylated and demonstrated to recognize cells transfected with both myc-tagged csp2 (top panel) and csp1 (bottom panel), as verified by immunostaining with a myc pAb.

Figure 24A

10 	20	30	40	50	60	70
GCCAAATTTGAATC			004040040	CTTCCACTAT	 	<u> </u>
GTGTCCGGATAAAC	TTCACCAACCC	CA I A I GACAA	CCCCATCC	ACCETACION	TOGACAGGET	TCAAAC,70
CCTGGGGAAGGAAA		. A C G A	TAAOTOTOT	AGGC I GEGGE	TGUALAAGAC	CGAGTT 140
AAAGCACCTTATAC	ATTOCAMACOT	1	TCAAAACAC	1CATIGIGAA	GCGGGTTCCT	CCCGGC 210
GGTCTCCCTGCTGT	MIIGGAAACCII CTAAACCCATC	4GAGG1CACC	CACACTAAC	ACAGGATICE CCTOOACCTT	AACCTIGAGT	TCTTAA 280
					CCTGGGITAA	ACCGTG 350
360	370	380	390	400	410	420
AACCAACCACACA	ACCTTOCCTTO		******	 	 	
AAGGAAGGAGAGCA	AGC I I C C C I I G C	I LALLAGAA	AGCTTAGGG	AIIIGGAGGG	GAGAAGAGGG	CATCGC 420
TGCCCCCCTCCCTG	CACACTAGICA	STTOTALIGG	GAL I AGGUU	AGUGACUTGT	CAAGAGCTGT	CTCAAG 490
CCAGTGCAGGTTCT	LCACGUU I UAUI	. I I G I AAGUU	CTOACCOC	ATCAGCACAG	GGCTGTCAGT	CGGGGC 560
AGGGGTGAGGGTCA	1 CACA 1 GG 1 1 GA	AGALILITAG ACCTTCAACC	CACCTCCCA	AGAAAAGGGG	GC I G I GGATG	AGTTGT 630
CCATTGTTCTGCCA						GGGACT 700
710	720	730	740	750	760	770
CCTACATCCCACCT		TOO 6 4 4 2 2 2 2 2	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			
GGTAGATCGCAGCTT		TCCTCCAGGI	AAIGICAGI	LUTTGUUAGGI	CICIGAAGCC	CTTCC 770
TERCECTEACCE	10 1 AUAU 1 UAU 1 2001 AATOOT AC	ATTTTOACC	L	AGUGGAGIUU	IGIGGAGTGT	GCTCA 840
TGGCCCTCACCTCTC	. G G T A A T G G T A C	ACTTACOCA	A I GAAA I ALU	CILIGIGGU	CAIGIAITT	GAATAC 910
TCCCCACCCACACACACACACACACACACACACACACAC	116CAG1111AC	CACCCCACC	ACTITAGGAU CCCTTOTCAG	361666666	CUTAAAGGAA	NIGAGA 980
TCCCCGAGGCAGACT						
1060	1070	1080	1090	1100	1110	1120
GCACCATGTAACAGG		TTCTCCACC			CTOTTTTOTO	
CCTATGATGGCTGCG	11 1 ACCACAGGC	TOTOACCOA	- 1	CAIGACAICE	GILITITE	1120
CTGTCATAGACACTT	CACTCTCGAAC	CCAACACAC	3641AA66CC ^^	.1166666111 CCCCAATTCAC	TECTTECTT	CAGGG 1190
TATACAGACCACATT	1016011176	CAATCACAGG	TEGTEEAR	CCCCCACCAT	1001100110 1000TCT0000	ALUIU 1200
TGCTTGCCTTCCAGA	AGCTTCCATGA.	ACTRTCRTCA	ACCTCCCTCC	CTTCCTCCAI	CGG C GCCC	TCATT 1/100
1410	1420	1430	1440			
		1430		1450	1460	1470
TCTCTCCTCAGACTT	TACACATAGGA	VCTTCVCVC	TEECTCCC	CCAATCCCCA		CTCAT 1/170
CTCCCCTCCGGCCTC	TETTOOTTOOT	CLICACACA	AGTAGAAGA	TCCAATCCCGA	CHAACAGIIC	ACCAT 15/10
CTTTTATATGCCATC	TCCAAGCTGGG	CCLACKIVA		CACCTCCCA	ACTOTOCOCA	CCTCT 1610
GGAGAGACTCTCTGG	GGTCCCCAGGC	CTCACGCGCC	OTOSTACIO	TOTATOT	TCACCCCTCC	GTTAT 1680
TCCACATTGCTGCAG	CTCGTGCTGGA	GTGTGTGCCC	CTTGGAGGA	TTCCAGGAGA	TGGTAGCAAC	CTCTC 1750
1760	1770	1780	1790	1800	1810	
ستلسلنسا			.,,90	1800	1810	1820
GGTTTGTGCACCACT	GTCCCCCCCA	AGTGTCCCCC	GAATCTATC	CCTTCACCCA	GC V GGC V C V C	CTCTC 1820
TGGCTCACTCCAGGC	CCCAGATCATG	TTGTTCCAG	TGGGATGGG	AAAGGGCAAA	CAGACCAACC	TCTAG 1890
GGAGTCTCGTCAACT	GTCATTCCTAC	TTCCGTACTG	GGTGGGAGG	GATGTGCGCA	TOTOTOACCO	CACAC 1960
AGCAAGCCGAATCAG	CACTGCCCATC	AGCCCCTCGT	CATCTGAAG	TICCITTAGG	CCAACCCTTT	TATTT 2030
TCATGGCTCATCAGC						

Figure 24B

/				•		1.5	
21	10	2120	2130	2140	2150	2160	2170
	سلسسا	سلسسلس		بالسيساليين		- بيانيان	
AACTGAGAC	TCACGTTA	CTAGTGCTAA	TTGTAGCATO	GAAGGTCAAA	AGTGGAAACG	GCCAGTGTGA	GCAA 2170
GGAGACGGC	TCAGCATO	GCGGCTCTCA	GCACAGTTGA	AGGGGTCTGT	TGTCTGTGGA	TGTGTTATACA	ATGG 2240
VCVCVCVCC.	TOCATOTO	CCCCAAGGGA	ACAGGCTGTI	CCAGAGGCA	GGAATTGAGG	CGAGCCTTCT	STCT 2310
TTAACAACC			CCTCAAACAT	TTCTACCAG	GGCCATGACA	CARTTOTOCAL	ACC 2380
CACAGGGGG	CARACCA	AAA I GAAGGG	COCOCCTOCA	LAACCCCCC	TGTGGAGAGC	ACTOTOLOGIC	TOAT 2050
CAGAGLLAG	LACACTIC	AGICAGCCII				•	
24	60	2470	2480	2490	2500	2510	2520
							
CCACGAAGT	TAGTGCTG	TGTGTGTCTG	TGCGTGCCCG	CAGCTCTCT	ACCTTTGGGC	CAAGGGTAGAT	TAGG 2520
TATAGAAAC	SCCCCCTO	CACTTACAGT	TTTCCCAGCA	AGCCCTCAAC	ACTTGGGGAG/	AGCCGAGCTC	CTTC 2590
CTTTTTTTA	CCTCATI	CCTCCCCTAC	AGAGGCCATE	TOUTOUTORT	TGTTCATGAG'	TTCTGTGCCTC	CCA 2660
CATCTATCC		. 4 4 4 4 4 C C 4 C C	CACCCTCACC	. V V C C C C C T V	CAGCAGCTGG	, , , , , , , , , , , , , , , , , , ,	CCTT 2730
TAACAACAC	AGCAGAC I	CCCOOCCET	CAGCCTCACC	. MAGCCGC 1 A	CCTTGTCTAG	TOTAC TOCCO	2000
28	10	2820	2830	2840	2850	2860	2870
	سلسببا	سلسسلس	uluulu			ullight	
ACCCTCCATT	LTGTAAAT	CTAGGTGGCA	TTTGTCAAGG	STATGTATGT	CATGAGCCCG	CCGCTGGGCGT	TTTT 2870
GGATTTGTT	CTCTCATG	GAAATGGCCC	CACCAATGCC	TTTGCTGCC	CCATTTACAGA	AGGAGGCGAA <i>A</i>	AGGC 2940
ACAAAGAAG	EGAGACAG	CCCGGGGACA	AGTCCTCATO	CACTCACTC	CCCACCATACA	ACGGCCACTC	CGCC 3010
ATRCCACCTO	CCCTCAG	TRICIAGISC	AGACCCCCTC	CAAGGGÁAAT	CCCAGACCCT	CCTTTCCAGO	CAG 3080
CTTTCTTCC	TOACAGAA	CCCCCATCCT	AATCTTCCTA	TCCCACAGT	GGTGTGAAGG	TRCTTGARCCT	rece 3150
				3190	3200	3210	3220
. 31		3170	3180		3200 		
					TAGATAGATA		
CAAGUTCAG	SUTAGULU	AGAAGAGCAA	GGAGGGAGCG	A I AGA I AGA	TAGATAGATA	3A I AGA I AGA I	1AGA 3220
TAGATAGATA	AGATAGAT	AGATGGATGA	TGGTGTGGCT	GAAGGIGIU	ACTTGGGCAT	AAGLACTIG	3290
CCAGTGTCAG	CATAAATC	CAGGCATGGTG	GTGCAGAACC	TCTGGTCCC	AGCATCCAGA	AGGIGAGGCAA	AGAG 3360
CAGCAGACAT	CTAAGGT	CAAATGCAGC	CATCAGTGAG	STTCCAGGCA	GCTCATACATA	AAACAATATA	NAAC 3430
CAAGGAAAGG	GATGTTAA	GGTTGAGCAG	ATTCACCTGG	GGCTCTCTG	CTGCCATGCT	CTGGAGCCCCA	ACCT 3500
35		3520	3530	3540	3550	3560	3570
لتستلسب	سلسن	سلسسلي	ببلينيان	بليتيلين	حليسيلس	سلسسلس	
ACAGGACATI	TGTCTCC	AGCAGTGGCA	TTTGCTCATG	TTTTCTCTG	TACTGATGCC	TCCCATAACC1	rgcc 3570
CTTGGAGAA1	CCTCCTC	GGAGCCCCTG	GGTGGACATG	AGAAAGGTT	AGCGAACAGC	CTTGACTGAG	GAGC 3640
AATTOTOCOO	CTCCAAAT	CTTCTCTCTT	CTCAATAAGT	TATCCATGA	GGAGGCACAA	GGCAGACTGI	TGTC 3710
TOOCCAACCA	MACCCE	CTCTCCCTCC	ACCTCCCTCC	CCTCCATGC	TCAGGGACAA	CCCCCCTTAC	CAC 3780
TOACCATOCT	144666	CCTTCCCCCA	CC4C4C4ACT	TATEAACTEC	ATGCAGCGACA	700000011YC	CCA 3850
38		3870	3880	3890	3900	3910	3920
<u></u>	سلسب					· · · · · · · · · · · · · · · · · · ·	2020
GTGTGGTGGT	rccacgtg	TGTGAGAGTG	ACCAAGAGAA	TGAGGAGGA	AGAGGAAGAG	AIGGAGAGAAI	GAA 3920
GAGACCCAAG	CCCAAAA	TCATCCAGAC	ACGGAGACCG	GAGTACACA	CCCATCCACC	rcagetga 39	984

Figure 25A

10	20	30	40	50	60	70
ليسلسسلسي	ليبيليين	ليبيلينيا	بينتلينيا	<u>ىپئېتلىيىيا</u>	ستثلسنا	ــــــــــــــــــــــــــــــــــــــ
GAAAAATTOGAGGGA	CIGITOCCG	ACCTATGATG	ATGIGIGAO	GITCCAGCIG	TTAAGAGTT	TOOGAC 70
GGGTTCGAATAAATT						
CAGAGGGAAGAAGCT						
GAGGAOGIGIIGCTA						
GGIGCCCTCCTCTGA						
360	370	380	390	400	410	420
لسيلسيلسد	ليتبليبيا					
CATACACACACAGTA						
AAAAAGTCATTGTTA						
ATGCAGTTAAGAAAG						
ATAATTGTTTGTAAO						
GTTTGCTGTTACAGT!						
710	720	730	740	7 . 50	760	770
لستأسيليينا						
GICAACATICTAGCA						
TTGATGGATGCTTGG						
GGATGGTCCCACACCC						
ACGAGGAAGGGAAAGC	EAATGGAAGC	AAATCTGATC	TTATATAAAA	TATACATGTA	TGAAATCCTC	OGAGC 980
TATTTATACATGIATO	AAATCCTCT	GAGCTAATGI	TCTTAAAATA	AGGAAAGAAA	CAGACACTGA	CAGIG 1050
1060	1070	1080	1090	1100	1110	1120
يسبلييبليين	لستليب		ليسلس	استلسر		
AGTTCCAGATTGAGCZ	GIATCIGIG	ICCTAGGACA	GAGGCTCTAA	GACCIGCCAA	GCTAAGITCI	AACTA 1120
GGACAAGTCTCAGAAC						
CCATGTAGCTGCTGTC	'ATGGTGACA'	IGGAAAGCIG	IGIGCAGCIG	TGCCTAGATT	ICTGGTAAAG	GGACA 1260
ATAATTTCCAGCTAGG	AACTGCAAC	AGAACIGATC	ICACCACAGO	CGACTCCTAA	CCTTCCCGAC	AGGGT 1330
TGTGATTAAAATTTAA	ATGATATGT	TATEOTAAT!	ACTAAATACA	TTCATGATAA	AAAGTTATAA	ATCCA 1400
1410	1420	1430	1440	1450	1460	14 70
بالسياسيليسا		ليبيليين	لتتبليين	لتتبليين	لتتبليين	
TGAAAATTAATTGTAT	GTTTTGCAA	AGCCAAATACT	CATTATOCT	GAACAGGGAT	CONTAGRICATION CONTROL	TAGGG 1470
ATGITCATGAAGOCCA	CAGCACTAG	MGICGGIAM	CACTCTCCA'	ICAAGGCCTTZ	ATCCATCACT	AGGCA 1540
ACAGICACCICICAAG	GATGGCTTCA	AGCTGCTGACT	CCTGCTAAA	ATCCTACATC:	CTTATAAAT	TCATG 1610
TAGCTAGAACAATCTT	AGATCATCAT	YAAAATTATT	CTGCATCAG	AACTAGITGI	GICAGCIGIA	GACTC 1680
CIGCIAAAATCCTACA	TCTCTTACAZ	ATTCATGTAC	CTAGAACAC	ACTTAGATCAT	CATTTATTA	AAACC 1750

Figure 25B

					N. C. V.	•
1760	1770	1780	1790	1800	1810	1820
<u> بلسباسيان</u>	سلسسلت	بليتيلين	بلينيلين	ىلىتىنلىن	بالسنبائر	<u></u>
TGCATCAGGACCAGTTC	EGCCTGAGGC	AGGAGACCTIC	CATTCAAGG	CCACCCIGAG	CTATCCAGTA	AÇCT 1820
CCTGTCTCAAAAAGAC	releielele	icicicicici	CICICICIC	TGIGIGIGIG	ididididid	iGIG 1890
TTTAATATGIGIGIGIGI						
ATGATACATACATACAT	IGATAGACAC	ATACATAGATA	CATACATAG	CTATATAGAT	ACCAGAGAGA	GACA 2030
GAGAGAGATTTCCA	TAAAAGATA	ACATOGAGTTA	CATGIGAC	ICGTAAATTC	TCTTCTAGGT	ICTA 2100
2110	2120	2130	2140	2150	2160	2170
بالبساليساليس	بليبيلين	بيلينيلين	بالتستليد	علىتتلين	علىسلىت	ــــــــــــــــــــــــــــــــــــــ
AAAATCATGAACTCAAA	CAAATAGTT	AAGCAAGAATI	CACAGCAGC	ACTGTTCACA	ATAGGCCAAC	AGIG 2170
AGAACTACCTAAAGAT	TITCAACAGAT	I'AAAGGGATAA	AGAGACAAT	AGTATGTTCA	CACAAAGGAAT	PATT 2240
ATTCAGCTGAGAGAGA	AGAGAGAGA	ATGITGATAA	TOCATCACC	OCOTAGTAAA	CTTTAAAATC	CAA 2310
TGGAAGCTAGACACAAA	AGCICATCI	TICIGIGGII	CCATTCTCAY	IAAAAGAGTT	AGATAAGITC	AGAG 2380
AAGTAGACACAGCTTG	CAACCATCAC	OCCTACTACE	AAACTACAT	iagiagiogi	I'ATTTAAGGGZ	ATCC 2450
2460	2470	2480	2490		2510	2520
بىلىسىلىسىلىس.	ببلييتلين	بالبييلين	سلىسىلىد	سسسلس	udand	سلب
ATACTTGGGGTTGGAG	GATGACTTAC	CAGTTAAGAG	CACIGAATG	CICTITOGAA	3CCCCTGAGIT	CAA 2520
ATCCCAGCAACCATATC	ETGGCTCAC	ACCATCCATA	ATGAGATCT	GATGCCCTTT	ICIGGAGIGIC	TGG 2590
AGACAGCTACCATGTAC	TCACATATA	ATAAATAAAT	AATCTTTTI	AAAAAAAGGGG	icicicicici	ATA 2660
GITATCCITAGAGCCAT						
ACTCATGAAGTGGTGAT	.0000AGCCA(ZAAAATCCTTT	TOGITICOTO	TTTATAACT	JIAATTTTIGCI	AGT 2800
2810	2820	2830	2840	2850	2860	2870
بىلىسىلىسىلىس.	بالتبياب	ببلينيلين	علىبىلىد	حلىجىلىن	utuutu	<u> </u>
ACTATGAATTATGATAC	CACIGIGIG	GTTTTCTGAT	GGICTTAGG	CAGCACTCTG	CITICCTCACC	ATC 2870
TAGOCTAACCTTATTGG						
AGGACATTAGAAGTTGT	CCACTAGCIT	CCACATGIAC	ACACTCATA!	AGGGCACACA	ATGTAGTACAC	3010 xxxx
TIGGIGACCCTGGTGCT						
CCACACTGTGTACTGT	ACCACICATI	GCTACTGCAG	TCTGGCCCTC	CAGIGAAGCC	CIGCCCAGCIC	CAA 3150
3160	3170	3180	3190	3200	3210	3220
بىلىنىلىنىلىن	ببليينيلين	بيلينيلين	حلىساند	سلسسلت	سلسسلس	
GCATGGACAATCACAT						
GCATTIGGCACCICCAC						
AAGOCTATCAGOGATGO	CACACCAGIC	CTCAACTATG	ACCTTCTTT?	AIGCIGIGGCX	CAAACTAGGAC	CAG 3360

Figure 26A

10	20	30	40	50	60 Luar I	70
CGGAAGCTGAAGCT CCGCTCCAGCACGG GACTTTACACATAC AACACCTAAGGGGT CGAAGTTGGCAGAT	TTACTTCGCACA GGTCAGAGGTCT GTCATTTCATGT TCATTTTTCTGC TAAACACTGTGC	AGGTAATGGC IGTGAGGTCA IATTTTAGGA GCGATTTTGC CATCTAAAAT	CGTTCTGCGC GCAGTCACGT GCACATTAAG TCAGCTAGGG GGCACCGAGG	CCTGCGCACAC TGAGCCAGGGC GCCTCTGTTCA GCTCTGTGAGG BACATGACATC	CAGCCTGCTCC CTGCCGTGCTT ATGTTTCTCTG GGAAGTCCTGA CCGTGGGAAAA	AGTTC 70 TTTCT 140 AGACG 210 TACTT 280
360	370 	380 	390 	400	- 410	420
CAAAACCTTCAAGG TTTGATCCCAGGAA AGTTTTCTCTCTC ACTGTGACCAAAAG GGGAAGCCAAGGCA	GTCATCAAGATG CTCATCCACGGG TGAGACAGTAGT CACCCAGGAGAC AGAACTCAACCT	GCCCAGGGG TGGAAGGAA GTGTTAGTC AAAAGGTGT GGGCAGAAA	GTGAAGGTGC AGAACCAACC AGCCCTTCCC ATGTACTTTA CCTGGAGGCA	TTGCCACCAA TGTGTCCTCT AGCGAATTAG CTTATAATGA GAGGCCATGG	AGCCTGGCAGC GAGGACCACA STTACTGGGAT ATCACCATTC AGGGGCGCTG	CCGAG 420 TATGC 490 GAGAC 560 ATTGA 630
710	720 LL	730 	740 	750 	760 	770
TGGCTCCTCATGGCC CTCTGTATAGCCCTC TGCCTCTGCCTCCCC AGAACCTAGAACCAC GAAAACTTCCTGCCT	GGCTGTCCTGAA GAGTGCTGGGAT CAACCCAGGCTG	ACTCACTCT TAAAGGCGT GTATCATCC	GTAGACCAGG GTGCCACTGT ACAGTGGGCA	CTGGCCTCGA GCCTGGCTTC GGGCCTTCCC	ACTCAGAAAT AGCCTGCTTT CACATTGGTC	CCGCC 840 CTTAT 910 ACTAA 980
1060	1070	1080	1090	1100	1110	1120
AAAGCTTGCATCAGG TCAGCTGTAAAGGAG CTGTGAGCCTGCTGT AGAGTAAGGGGTTGG AAGGCTCCCAGTTTG	STTGACATATAG SAAAAGTCTCGG GCAGTAGCACA GGGTTCCACTGT	TAGCCAGCA(CTTGTGGTT TAGGGGCAGA CCCTTAGGG	CACCCACTCA TGCAGGTTTC AGCAAAGCTC TATGTCCCCA TCTATTTACT	CACCACTAGC AGTCTGCATG TTCACTTCGT TGACTAAAGG	AAATACCTGG TGATTGGCAC TCATGGGAAG CCTCCCTGCC CAAGGGTCAC	GAGAG 1120 TTTTC 1190 CAGGA 1260 TCCTG 1330 TTAGA 1400
and the little	بالسبيطيني		لتتبلسب	milim	1460	1470
GCCCAGACCACAGAG AGGTCACAGACAGTT AATGAAAGCCCTGTG AGTCAGGCCTACAGA AGAAAGGACAGCTGC	TGAGAGACAGT GTGATGGTGCA GTGAGTTCCAG TCACAAGCACG	TTTAATCACO GGCCTTTAAT GACAGCCAGO CCTTTCCCTO	CCTCCAAGA CTAAGAACT GGATACACGG GCAGGTGCAG	AAGTAACAAT GGAGGCAGAG AGAAACCCTG GTGTCCGGGG	TACCATAAAG` ACCGTGAGAT(TCTCAGAAAAA AGGCCCGggaa	TTGGA 1540 CTGTG 1610 AGAAA 1680
1760	1770 	بالمسلمان	السيالين	1800 	1810	1820
cctacttaCTGCCAC GAAGCAGAGTGAAGA GGTACTGCATTCCAC GTATGGGGTGCAGAG CACTCGAGCTGTACA	CACAGCCCACCA TGCAATGCCAG CTTCGCTCTCCC CCCAGCAACACC	AAGCAGTTCO TGATCAACTA GCGTCCTCGG CAGCACCGTC	TCATCTCCC TGACCTGCTC ACATTGCTG CAGTGGGCG	CTCCCGCCTC/ CTGCGCTGTC TTCTGTGTGTC GTGTGGCCAC/	ACCCCCGTG(TCCAAGCTGG(TGGAGACTGT(ACCAGTCTGA(GGGTG 1820 GCCCA 1890 GTGCA 1960 GTTCA 2030

Figure 26B

~							
نہ	2110 	2120	2130	2140	2150	- 2160	2170
T	CTAAGGATTAAAC	CLICICION	CCTCATAAC		بنيانتيا	لىنشئلىيى	Lul
Ġ	CTAAGGATTAAAC	TGCTTTTTGT	CGIGAIAAC TCCAACCCA	TOAGCCAT	CAGCCAGAAG	TTAATAŢAGG	CGGTTA 2170
G	TGAACATCCTCAC TGACAGTGACAATO		CTTCCAAAA	TOTATOTO	IGICIGACGT	TTGGCAGCTG	CTTTGG 2240
T	TTTCTTGCTCGGT	TOACTOATOT	TTAATACTO	TATUTUT	CICICITATO	ACTTETTACT	TCCTTC 2310
T	TTTCTTGCTCGGT(MIGCICATOR	1 1 MM 1 MC 1 GC	AAGAAGUUG	ALICITETAGO	GGCACTTCAG	AGGCTT 2380
·	TGAGAAGGCACTCT	0470	ac GGN I GAGU	ICTICGATG		TACCGTAGAC/	ACCGCT 2450
		2470	2480	2490	ىز 2500	2510	2520
-		<u> </u>	untini	l	لنسلسنا	• •	
G		AGIGUUTEEE	7 1 66 6 6 6 6 6 6 6	*************	OTO 4 4 TTT 4 4 6		
	,	10 I FAGLA I I I		111001100	T A T T T A T O T A A	T 4 T 4 4 T + 1	
_		MULALAMAISLI	. 41-41-144(21	A I A I A A I A I A	****	404044	_
11		ACGCGCAGTTG	BAAAATCATG	GAGATGAACA	TGGTGGACAG	GGTGTGCTTG	GGTTC 2800
	2810	2820	2830	28//0	2050	0000	
-	TTCCACCATCAAC	<u></u>	udual				2870
a	, i i ucacca i gaag	1 1 LAL 1 A	ΔΔΙΔΛΩΛΩΛ	人 ひ ひ ん て ひ ひ て す す	T A A OO T O T O T	AA-4	
GT	CCCTGCTTGCTCC	AGCCCAAAGAT	TTATTTATT	ATATATATA	AGTACACTET	ACCTCACTTC	404C0 21C0
	3160	3170	3180	3190	3200		
4	ulumlini	ر ار دیدانیت				3210	3220
TA	CCAGAAGAGGACAT	CAGATCTCAT	TGCGGGTAGI	TOTOACCCA	CTATOTOOTT	307000	
	· · · · · · · · · · · · · · · · · · ·	UUIIUGIAL.II.		121 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	***********		
		GILC LACACAGE	I SAISI I AAAA	TEACHER LONG	PPT		
TT	TTGTTTTTTTTTTT	GTTTTTTTA	ATGCCAGCA	CTTCCCACA	TOOAAOCACA	OAATTACAGE	GAGT 3430
	3510	3520	3530				TCAA 3500
			3330	3540	3550	3560	3570
GG.	CAGCCTCAGCTAC	AGCAGCAAGTT	TOTAACTOO				
AA	AAAAAATCAGCCA GGGAGTAAGGCTC	CTGAATGACGT	101MAC1GG	CC	LAIGAGAUGCA	GICTTAAAAA	AAAA 3570
AC1	GGGAGTAAGGCTC	CTICCIGICCI	TREARROA	CAAATACOA	AGATAGAAGA	ACTIGATITO	CTTC 3640
CCC	AGTA 3717		· GCAGGGGA	GAAATAUGAA	AUTGUAUGUGG	GAACCGAGTC	CACC 3710

Figure 27

Schematic Representation of the Gene-targeting Vectors Used to Disrupt the Csp1, -2, and -3 Genes

This schematic diagram shows the organization of the Csp genes (top) and the targeting vectors (middle)constructed to disrupt the Csp genes. Our targeting vector will replace exon 6 with the neomycin drug resistance genes. This exon contains the start of the inhibitory, or c-terminal domain of all three genes which should effectively destroy the calcineurin inhibition activity. The genomic structure of all three genes is relatively similar with different size introns (15, 16). Exons are denoted by the shaded boxes with numbers.

Constructs Used to Generate Tissue-Specific Expression of Csp1 in Transgenic Mice

Figure 28

T-Cell Specific Expression:

This schematic diagram demonstrates the constructs injected into blastocysts to generate transgenic mice. Wild-type full length myc-tagged Csp1 under the control of a myosin heavy chain (MHC) promoter (top half) will ensure cardiac specific expression. Similarly Csp1 with the sequence element, amino acids,188-191,"RRPE" deleted is also expressed under the MHC promoter.

Myc-tagged wild type Csp1 and Csp1∆RRPE are also expressed under the LCK promoter which will ensure T-cell specific expression (bottom half).