Modeling and Predicting the Occurrence of Diabetes using Machine Learning Algorithm for Classification

2024-05-06

Results

Load the Required Libraries

Load the Data

	gender	age	hypertension	heart	_disease	smoking	_history	bmi	HbA1c_level
1	${\tt Female}$	80	0		1		never	25.19	6.6
2	${\tt Female}$	54	0		0		${\tt No\ Info}$	27.32	6.6
3	Male	28	0		0		never	27.32	5.7
4	${\tt Female}$	36	0		0		$\operatorname{current}$	23.45	5.0
5	Male	76	1		1		current	20.14	4.8
	blood_g	gluco	se_level dia	betes					
1			140	0					
2			80	0					
3			158	0					
4			155	0					
5			155	0					

Summary Statistics

	vars	n	mean	sd	mediar	1trimme	dmad	\min	max	range	skew	kurtosis	se
age	1	100000	41.89	22.52	43.00	42.00	26.69	0.08	80.00	79.92	-	-1.00	0.07
											0.05		
hypertension	2	100000	0.07	0.26	0.00	0.00	0.00	0.00	1.00	1.00	3.23	8.44	0.00
$heart_disease$	3	100000	0.04	0.19	0.00	0.00	0.00	0.00	1.00	1.00	4.73	20.41	0.00
bmi	4	100000	27.32	6.64	27.32	26.91	4.51	10.01	95.69	85.68	1.04	3.52	0.02
$HbA1c_level$	5	100000	5.53	1.07	5.80	5.57	1.19	3.50	9.00	5.50	-	0.22	0.00
											0.07		
blood_glucose_	_lev@el	100000	138.06	40.71	140.00	134.88	28.17	80.00	300.00	220.00	0.82	1.74	0.13
diabetes	7	100000	0.09	0.28	0.00	0.00	0.00	0.00	1.00	1.00	2.98	6.86	0.00

Model Estimation

Model One: Classification and Regression Tree (CART) Model

```
gender age hypertension heart_disease smoking_history bmi HbA1c_level 1 Female 80 0 1 never 25.19 6.6
```

2	Female	54		0	0	No Info	27.32	6.6
3	Male	28		0	0	never	27.32	5.7
4	Female	36		0	0	current	23.45	5.0
5	Male	76		1	1	current	20.14	4.8
6	Female	20		0	0	never	27.32	6.6
7	Female	44		0	0	never	19.31	6.5
8	Female	79		0	0	No Info	23.86	5.7
9	Male	42		0	0	never	33.64	4.8
10	Female	32		0	0	never	27.32	5.0
	blood_g	luco	se_level	diabetes				
1			140	No				
2			80	No				
3			158	No				
4			155	No				
5			155	No				
6			85	No				
7			200	Yes				
8			85	No				
9			145	No				
10			100	No				

Take a sample of 300 observations for easier code execusion

	gender	age	hypertension	heart	disease	smoking_history	bmi	HbA1c level
41964	Female	_	J1 (- 0	•	27.64	_
15241	Male	77	()	1	not current	26.68	6.5
33702	Female	57	()	0	nevei	26.14	6.1
83023	Female	18	()	0	nevei	19.79	6.6
80756	Female	59	()	0	nevei	33.49	5.8
85374	Male	80	()	0	never	21.14	4.5
68158	${\tt Female}$	38	()	0	never	32.84	4.0
59944	Male	51	()	0	forme	26.38	5.7
68536	${\tt Female}$	14	()	0	No Info	25.45	4.8
17380	${\tt Female}$	80	()	1	ever	23.29	3.5
	blood_g	gluc	ose_level dia	betes				
41964			160	No				
15241			140	No				
33702			130	No				
83023			126	No				
80756			240	Yes				
85374			140	No				
68158			155	No				
59944			140	No				
68536			80	No				
17380			85	No				

Model Summary

CART

300 samples 8 predictor 2 classes: 'No', 'Yes' No pre-processing

Resampling: Cross-Validated (5 fold, repeated 10 times)
Summary of sample sizes: 241, 240, 239, 240, 240, 241, ...

Resampling results across tuning parameters:

cp Accuracy Kappa 0.0000000 0.9487114 0.5134720 0.2291667 0.9526788 0.5296865 0.4583333 0.9353380 0.2666150

Accuracy was used to select the optimal model using the largest value. The final value used for the model was cp = 0.2291667.

Confusion Matrix

Confusion Matrix and Statistics

Reference
Prediction No Yes
No 276 13
Yes 0 11

Accuracy : 0.9567

95% CI : (0.927, 0.9767)

No Information Rate : 0.92 P-Value [Acc > NIR] : 0.0084864

Kappa: 0.6089

Mcnemar's Test P-Value : 0.0008741

Sensitivity : 0.45833
Specificity : 1.00000
Pos Pred Value : 1.00000
Neg Pred Value : 0.95502
Prevalence : 0.08000
Detection Rate : 0.03667
Detection Prevalence : 0.03667
Balanced Accuracy : 0.72917

'Positive' Class : Yes

Variable Importance

rpart variable importance

	Overall
blood_glucose_level	100.00
HbA1c_level	71.98
hypertension	28.45
age	22.35

heart_disease	14.66
genderOther	0.00
'smoking_historynot current'	0.00
smoking_historynever	0.00
smoking_historyever	0.00
genderMale	0.00
smoking_historyformer	0.00
'smoking_historyNo Info'	0.00
bmi	0.00

Plot the Variable Importance

Model Two: Random Forest

```
Random Forest

300 samples
8 predictor
2 classes: 'No', 'Yes'

No pre-processing
Resampling: Cross-Validated (5 fold, repeated 10 times)

Summary of sample sizes: 241, 240, 239, 240, 240, 241, ...
```

Resampling results across tuning parameters:

```
mtry Accuracy Kappa
2 0.9470225 0.4504402
7 0.9610406 0.6657376
13 0.9560069 0.6506096
```

Accuracy was used to select the optimal model using the largest value. The final value used for the model was mtry = 7.

Confusion Matrix

Confusion Matrix and Statistics

Reference
Prediction No Yes
No 276 0
Yes 0 24

Accuracy : 1

95% CI : (0.9878, 1)

No Information Rate: 0.92

P-Value [Acc > NIR] : 0.0000000001369

Kappa : 1

Mcnemar's Test P-Value : NA

| Sensitivity : 1.00 | Specificity : 1.00 | Pos Pred Value : 1.00 | Neg Pred Value : 1.00 | Prevalence : 0.08 | Detection Rate : 0.08

'Positive' Class : Yes

Balanced Accuracy: 1.00

Obtain variable importance

rf variable importance

	Overall
blood_glucose_level	100.000
HbA1c_level	66.716
age	32.644
bmi	20.844
heart_disease	8.551
hypertension	6.125
smoking_historyever	5.350
smoking_historyformer	3.531

genderMale	2.564
smoking_historynever	2.215
smoking_historyNo Info	2.087
smoking_historynot current	1.489
genderOther	0.000

Variable Importance for the Random Forest Model

Model Three: k-Nearest Neighbors

View the Final Model

k-Nearest Neighbors

```
300 samples
8 predictor
2 classes: 'No', 'Yes'

Pre-processing: centered (13), scaled (13)
Resampling: Cross-Validated (5 fold, repeated 10 times)
Summary of sample sizes: 241, 240, 239, 240, 240, 241, ...
Resampling results across tuning parameters:
```

k Accuracy Kappa 5 0.9340103 0.2845934 7 0.9363440 0.3020008

```
9 0.9326937 0.2466591
11 0.9290210 0.1662212
13 0.9273542 0.1381262
```

Accuracy was used to select the optimal model using the largest value. The final value used for the model was k = 7.

Classification Accuracy

Confusion Matrix and Statistics

Reference
Prediction No Yes
No 275 18
Yes 1 6

Accuracy : 0.9367

95% CI: (0.9029, 0.9614)

No Information Rate : 0.92 P-Value [Acc > NIR] : 0.1694788

Kappa : 0.3641

Mcnemar's Test P-Value : 0.0002419

Sensitivity : 0.25000
Specificity : 0.99638
Pos Pred Value : 0.85714
Neg Pred Value : 0.93857
Prevalence : 0.08000
Detection Rate : 0.02000
Detection Prevalence : 0.02333
Balanced Accuracy : 0.62319

'Positive' Class : Yes

Variable Importance

 ${\tt ROC}$ curve variable importance

	Importance
age	100.00
HbA1c_level	91.65
blood_glucose_level	88.87
bmi	58.51
hypertension	38.30
smoking_history	27.73
heart_disease	16.65
gender	0.00

Variable Importance for the K-NN Model

Model Four: Naive Bayes

View the Model

```
Naive Bayes
300 samples
 8 predictor
 2 classes: 'No', 'Yes'
Pre-processing: centered (13), scaled (13)
Resampling: Cross-Validated (5 fold, repeated 10 times)
Summary of sample sizes: 241, 240, 239, 240, 240, 241, ...
Resampling results across tuning parameters:
  usekernel Accuracy
                        Kappa
             0.6518562 0.2228126
 FALSE
  TRUE
             0.9436779 0.4067932
Tuning parameter 'laplace' was held constant at a value of 0
Tuning
parameter 'adjust' was held constant at a value of 1
```

Accuracy was used to select the optimal model using the largest value. The final values used for the model were laplace = 0, usekernel = TRUE

and adjust = 1.

Prediction and Classification Accuracy

Confusion Matrix and Statistics

Reference
Prediction No Yes
No 276 16
Yes 0 8

Accuracy : 0.9467

95% CI : (0.9148, 0.9692)

No Information Rate : 0.92 P-Value [Acc > NIR] : 0.0492508

Kappa : 0.4792

Mcnemar's Test P-Value : 0.0001768

Sensitivity : 0.33333 Specificity : 1.00000 Pos Pred Value : 1.00000 Neg Pred Value : 0.94521 Prevalence : 0.08000 Detection Rate : 0.02667

Detection Prevalence : 0.02667 Balanced Accuracy : 0.66667

'Positive' Class : Yes

Variable Importance

ROC curve variable importance

	Importance
age	100.00
HbA1c_level	91.65
blood_glucose_level	88.87
bmi	58.51
hypertension	38.30
smoking_history	27.73
heart_disease	16.65
gender	0.00

Variable for the Naive Bayes Model

Model Five: Support Vector Machine (SVM)

View the Model

```
Support Vector Machines with Linear Kernel
```

```
300 samples
8 predictor
```

2 classes: 'No', 'Yes'

Pre-processing: centered (13), scaled (13)

Resampling: Cross-Validated (5 fold, repeated 10 times)
Summary of sample sizes: 241, 240, 239, 240, 240, 241, ...

Resampling results:

Accuracy Kappa 0.9433946 0.5337302

Tuning parameter 'C' was held constant at a value of 1

Prediction and Classification Accuracy

Confusion Matrix and Statistics

Reference

Prediction No Yes No 273 10 Yes 3 14

Accuracy : 0.9567

95% CI: (0.927, 0.9767)

No Information Rate : 0.92 P-Value [Acc > NIR] : 0.008486

Kappa : 0.6604

Mcnemar's Test P-Value : 0.096092

Sensitivity : 0.58333 Specificity : 0.98913 Pos Pred Value : 0.82353 Neg Pred Value : 0.96466 Prevalence : 0.08000 Detection Rate : 0.04667

Detection Prevalence: 0.05667 Balanced Accuracy: 0.78623

'Positive' Class : Yes

Variable Importance

ROC curve variable importance

Importance
100.00
91.65
88.87
58.51
38.30
27.73
16.65
0.00

Variable Importance for Support Vector Machine

Reference

 $Mustafa,\ M.\ (2023).\ Diabetes\ prediction\ dataset.\ Kaggle.com.\ https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset$