Parallel Kmeans

Ellouze Skander April 2019

Introduction

Introdution

Given a dataset x_i , the algorithm aims to separate it into **K** different Clusters C_j . This is done by generating **K** centroids c_j and assigning each point of the dataset to the cluster of the nearest centroid. The algorithm aims then to minimize:

$$J = \sum_{j \in \{1,..,K\}} \sum_{x_i \in C_j} ||x_i - c_j||^2 \text{ is minimal}$$

This problem is an **NP-problem**, but the K-Means Algorithm gives usually a satisfying solution.

Serial KMeans

Serial Kmeans

The serial algorithm consists of four steps:

- 1. Generate random centroids.
- 2. Assign each point to the cluster of the nearest centroid : $x \in C_k$ such that $k = argmin_i(||x c_i||^2)$
- 3. compute the new centroids : $c_j = \frac{1}{|C_i|} \sum_{x \in C_j} x$
- 4. These two last steps are repeated until convergence of J $(|J_{step+1}-J_{step}| \leq \epsilon)$

$$\Rightarrow T_s^* = O(N_{steps}KN)$$

Serial KMeans: Illustration

Fig. 1: Illustration of KMeans

Parallel Kmeans

Parallel Kmeans

- Centroids Initialization : Each Process choose randomly K centroids.
- 2. Assigning each point to the cluster: Each Process must have the global centroids.
- 3. Computing the new Centroids : This is done by recursive doubling, see next slide.
- 4. Computing the global cost : Assuming each process has computed the local cost $J_{local} = \sum_{j \in \{1,...,K\}} \sum_{x_i \in C_j} \|x_i c_j\|^2$ it's possible to sum all costs by recursive doubling : $J = \sum_{0 .$

Computing New Centroids : Recursive Doubling

- · Suppose we have 2 processes.
- Each of them has already computed its new local centroids $c_j^p = \frac{1}{m_p} \sum_{X_i \in C_i^p} X_i$.
- The global centroids should be $c_j = \frac{1}{m} \sum_{X_i \in C_j} X_i = \frac{1}{m^0 + m^1} \sum_{X_i \in C_j^0 \cup C_j^1} X_i = \frac{1}{m^0 + m^1} (\sum_{X_i \in C_j^0} X_i + \sum_{X_i \in C_j^1} X_i) \Rightarrow c_j = \frac{m_j^1 c_j^1 + m_j^0 c_j^0}{m_j^1 + m_j^0}.$
- Each process have to send (m_j^p, c_j^p) .

Computing New Centroids : Recursive Doubling

We Suppose that $P = 2^D$.

Algorithm 1: Recursive doubling for new centroids

```
Result: New Global Centroids for d = 0: D - 1 do | send((m_j, c_j)_{0 < K}, bitflip(p,d)) | receive((m', c')_{0 < K}, bitflip(p,d)) \forall j, c_j = \frac{m_j * c_j + m' * c'}{m_j + m'} \forall j, m_j = m_j + m'
```

end

KMeans: Parallel Algorithm

Algorithm 2: KMeans Parallel Algorithm

Result: K centroid/clusters

Randomly choose K points as the initial centroids : c_i

while
$$|J_{step+1} - J_{step}| \le \epsilon$$
 do

Assign each point x to the cluster corresponding to the nearest centroid: $\forall x \in D_p, x \in C_k$ such that $k = argmin_i(||x - c_i||^2)$

Compute the local new centroids and their weights:

$$m_j = |C_j| \& c_j = \frac{1}{m_i} \sum_{x \in C_j} x$$

Compute the global new centroids with recursive doubling.

Compute the local cost: $J_{local} = \sum_{j \in \{1,...,K\}} \sum_{x_i \in C_j} \|x_i - c_j\|^2$

Compute the global cost with recursive doubling:

$$J = \sum_{0 \le p \le P-1} J_{local}$$

end

In practice, we use the built-in function MPI_Allreduce to compute the global cost.

Parallel KMeans

Fig. 2: Parallel KMeans using ${\it N}=1000$ and K=4

Performance Study

Speedup

Computation Time (For a single step):

- Assigning points to clusters : $t = 8 * \frac{N}{P}Kt_a$
- Computing the local centroids : $t=10*\frac{\textit{N}}{\textit{P}}\textit{Kt}_{\textit{a}}$
- Computing the local cost : $t = 7 * \frac{N}{P}t_a$
- Computing the global centroids(Recursive doubling): $t = 12 * log(P)Kt_a$
- Computing the global cost(Recursive doubling): $t = log(P)t_a$

Speedup

- · Communication Time (For a single step):
 - Compute the global centroids recursive doubling : $t = log(P)(t_{st} + 2Kt_{data})$
 - Compute the global cost recursive doubling : $t = log(P)(t_{st} + t_{data})$

$$\Rightarrow T_P = N_{Steps}((18\frac{N}{P}K + 7*\frac{N}{P} + (1+12K)log(P))t_a + 2log(P)t_{st} + (2K+1)log(P)t_{data})$$

$$\Rightarrow T_P = O(N_{Steps}(\frac{N}{P}K + Klog(P))) \text{ if } 1 \ll N, P$$

Speedup

$$\begin{split} S_{P} &= \frac{(18K+7)Nt_{a}}{(18\frac{N}{P}K+7*\frac{N}{P}+(1+12K)log(P))t_{a}+2log(P)t_{st}+(2K+1)log(P)t_{data}} \\ &= P \frac{1}{1+\frac{(1+12K)Plog(P)}{(18K+7)N}+\frac{2Plog(P)}{(18K+7)N}\frac{t_{st}}{t_{a}}+\frac{(18K+7)Plog(P)}{(18K+7)N}\frac{t_{data}}{t_{a}}} \\ &\Rightarrow S_{P} &= \frac{P}{1+APlog(P)} \end{split}$$

- If P is fixed, increasing N will increase the Speedup.
- If N is fixed, the speedup will degrade if P gets extremely large (communication overhead).

Experimental Results

Exp1: Large Inputs

- We run our algorithm for : $N=10^8$, K=4 and $P\in[1..48]$
- · We use optimization O2 when compiling.
- The next figure shows the **Speedup**.
- The curve accelerates quickly at the beginning.
- The Speedup seems to stagnate after P = 12.

Exp1: Large Inputs

Fig. 3: $S_P = f(P)$ using $N = 10^8$ and K=4

Exp2: Communication Overhead

- We run our algorithm for : N = 1000, K=2 and P \in [1..48]
- The next figure shows the Speedup.
- The first part is similar to exp1.
- For P>30, the Speedup drops from 2.30 to 1.18 (Confirms the Theory).

Exp2: Communication Overhead

Fig. 4: $S_P = f(P)$ using $N = 10^8$ and K=4

Reducing the communication overhead

Solution 1: Merging the two communication operations

- Merging the computing cost and the computing new centroids operations.
- The algorithm will compute the cost of the previous iteration.
- This will add an iteration to the algorithm.
- The Setup Time of Communication is divided by 2.

Solution 1: Results

Fig. 5: Speedup Curves for normal method & improved method 1

Solution 2 : Gather results every two iterations

- · limit the communication to one iteration out of two.
- one iteration out of two the program will only calculate the local centroids.
- This will also add some iterations to the algorithm.
- The communication time is divided by 2.

Solution 2: Results

Fig. 6: Speedup Curves for normal method, improved method 1 improved method 2

Conclusion

- · All the curves have the same shape.
- Modifications made it possible to increase the speedup and to dampen the fall
- The results are only valid for a small input N (N≤100P).
 Otherwise, the results are the opposite.

Conclusion

Conclusion

Conclusion

- The KMeans Algorithm gives a satisfying solution to the Clustering Problem.
- The KMeans Algorithms is easily parallelizable.
- In the case of communication overhead, reducing the number of communication operations (at the expense of computation time) may accelerate the Algorithm.