

CE232 DIGITAL SYSTEM

Topic 8. Basic Sequential Circuit and Flip-Flop

Prepared by Nabila Husna Shabrina

Contact: nabila.husna@umn.ac.id

Subtopic

8.1 Block Diagram 8.2 Basic Latch **Sequential Circuit**

8.3 Flip Flop Circuit

8.4 RS Flip Flop

8.5 Clock SR Flip Flop

8.1 Block Diagram Sequential Circuit

8.1 Block Diagram Sequential Circuit

- Sequential circuit is a combinational circuit with memory
- The output of sequential circuit depends upon present inputs and present state (past output)
- The information stored in sequential circuit represents present state
- The present state and present inputs will define output and next state

8.1 Block Diagram Sequential Circuit

Block Diagram

- There are two types of memory elements based on the type of triggering that is suitable to operate it.
 - Latches
 - Flip-flops
- Latches are basic storage elements that operate with signal levels (rather than signal transitions)
- Flip flop operate with signal transition

S-R Latch

- Also called as Set Reset Latch
- Can store 1 bit at a time
- SR Latch is a circuit with:
 - 2 cross coupled NOR gate, or 2 cross coupled NAND gate
 - 2 inputs: S for SET and R for RESET
 - 2 output Q and Q'

SR Latch Logic Symbol

SR Latch with NOR Gate

Truth table (NOR gate)

S	R	Q	\overline{Q}
0	0	MEN	IORY
0	1	0	1
1	0	1	0
1	1	Not used	

S:0, R:1
$$Q = 0, \overline{Q} = \overline{0} = 1$$

S:0,R:0
$$\overline{Q} = \overline{0} = 1$$

S:1,R:0
$$\overline{Q} = \overline{1} = 0$$

MEMORY

S:0,R:0
$$Q = 1$$
, $Q = \overline{0} = 0$

S:1, R:1
$$Q = 0$$
, $\overline{Q} = 0$ NOT USED

SR Latch with NAND Gate

Truth table (NAND Gate)

S	R	Q	\overline{Q}
0	0	NOT I	JSED
0	1	1	0
1	0	0	1
1	1	MEN	IORY

Clock

- Clock or a clock signal is particular type of signal that oscillates between a high and a low state
- Clock can be used to activate the Flip Flops

Latch vs Flip Flops

- Latch is a level-triggered type, means that the output changes when the input changes
- A flip-flop is edge-triggered and only changes state when a control signal goes from high to low or low to high

- Flip-flop is a circuit that maintains a state until directed by input to change the state
- A basic flip-flop can be constructed using four-NAND or four-NOR gates
- Types of flip-flops:
 - SR Flip Flop
 - JK Flip Flop
 - D Flip Flop
 - T Flip Flop

SR Flip Flop

 SR Flip flop stands for SET-RESET Flip flop

$$S^* = \overline{(S . Clk)} = \overline{S} + \overline{Clk}$$

Truth table for SR Flip Flop

<i>S</i> *	R^*	Q	\overline{Q}
0	0	NOT I	JSED
0	1	1	0
1	0	0	1
1	1	MEM	10RY

Truth table for SR Flip Flop

Clk	S	R	Q	\overline{Q}
0	X	X	MEMORY	
1	0	0	MEN	10RY
1	0	1	0	1
1	1	0	1	0
1	1	1	NOT USED	

Clk	S	R	Qn+1
0	X	X	Qn
1	0	0	Qn
1	0	1	0
1	1	0	1
1	1	1	Invalid

Characteristic Table (when Clk =1)

Qn	S	R	Qn+1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	X
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	X

Excitation table

Input: Qn and Qn+1

Qn	Qn+1	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

Equation for RS Flip Flop

$$Q_{n+1} = S + Q_n R$$

D Flip Flop

- D Flip flop stands for Data or Delay Flip Flop
- D Flip flop is a type of flip flop that tracks the input, making transitions with match those of the input D

SR to D Flip Flop

Truth table for D Flip Flop

D:1
$$S = 1 R = 1$$

Clk	D	Qn+1
0	X	Qn
1	0	0
1	1	1

Characteristic Table for D Flip Flops

Qn	D	Qn+1
0	0	0
0	1	1
1	0	0
1	1	1

$$Q_{n+1} = D$$

Excitation Table

Qn	Qn+1	D
0	0	0
0	1	1
1	0	0
1	1	1

JK Flip Flop

- JK flip flop is one of the most used flip flops in digital circuits
- The JK flip flop is basically a gated SR flip-flop with the addition of a clock input circuit that prevents the illegal or invalid output condition that can occur when both inputs S and R are equal to logic level "1"

JK flip flop logic circuit

Truth table for JK Flip Flop

Clk	J	K	Qn+1
0	X	X	Qn (Memory)
1	0	0	Qn (Memory)
1	0	1	0
1	1	0	1
1	1	1	\overline{Qn} (toggle)

Characteristic table for JK Flip Flop

Qn	J	K	Qn+1
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Excitation table for JK Flip Flop

Qn	Qn+1	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Equation for JK Flip Flop

$$J = Q_{n+1}$$

$$K = \overline{Q_{n+1}}$$

Equation for JK Flip Flop

$$Q_{n+1} = \overline{Q_n} J + Q_n \overline{K}$$

T Flip Flop

- T flip flop is a single input flip flop
- T flip flop only works when a clock signal is high
- When the T signal is set low (0), it will not affect the present state of the output and the response will not change

Truth table for T Flip Flop

Clk	Т	Qn+1
0	X	Qn
1	0	Qn
1	1	\overline{Qn}

T flip flop logic circuit

Characteristic Table

Qn	Т	Qn+1
0	0	0
0	1	1
1	0	1
1	1	O

$$Q_{n+1} = Q_n XOR T$$

Excitation Table

Qn	Qn+1	Т
0	0	0
0	1	1
1	0	1
1	1	0

References

M. Morris Mano, Digital Design, 5th ed, Prentice Hall, 2012, Chapter 4

Next Topic : Sequential Circuit Analysis