Module 4 - Part 2

Prepared by:
Asst. Prof. POOJA P P
ECE Department
GCEK

Inter Symbol Interference

- Arises due to imperfections in the frequency response of the channel.
- Occurs when a pulse spreads out in such a way that it interfere with adjacent pulses at the sample instants.
- Example:

Baseband binary data transmission. (a) Block diagram of the system, depicting its constituent components all the way from the source to destination. (b) Simplified representation of the system.

- b_k input binary data stream.
- At time $t = kT_b$, T_b is the bit duration, $k = 0, \pm 1, \pm 2, \pm 3...$
- The binary data stream b_k is applied to a line encoder, the purpose of which is to produce a level-encoded signal denoted by a_k

$$a_k = \begin{cases} +1 \text{ if symbol } b_k \text{ is } 1\\ -1 \text{ if symbol } b_k \text{ is } 0 \end{cases} ---- \to (1)$$

- The level-encoded signal a_k is applied to a transmit filter to produce a sequence of pulses, whose basic shape is denoted in the time and frequency domains by g(t) and G(f) respectively.
- Transmitted signal **s**(**t**)

$$s(t) = \sum_{k=-\infty}^{\infty} a_k g(t - kT_b) \quad ----- (2)$$

- The signal s(t) is modified and transmitted over the channel whose impulse response is **h(t)**.
- The channel adds the white gaussian noise (random noise) $\mathbf{w}(\mathbf{t})$ to the signal at the receiver input.
- The noisy signal $\mathbf{x}(\mathbf{t})$ is then passed through a receiver filter of impulse response $\mathbf{c}(\mathbf{t})$.
- The resulting filter output y(t) sampled and given to the decision device.
- ➤ If sampled value is more than the threshold we will say it as binary '1'.
- ➤ If the sampled value is lower than threshold we will say it as binary '0'.
- The channel output is

$$x_0(t) = s(t) * h(t)$$
 * represents convolution

• The receiver filter input

$$x(t) = x_0(t) + w(t) = [s(t)*h(t)] + w(t)$$

$$x(t) = \sum_{k} a_{k} [g(t - kT_{b}) * h(t)] + w(t)$$

• The receiving filter output

$$y(t) = x(t) * c(t)$$

$$y(t) = x(t) * c(t) = \left[\sum_{k} a_{k} [g(t - kT_{b}) * h(t)] + w(t) \right] * c(t)$$

$$y(t) = \sum_{k} a_{k} [g(t - kT_{b}) * h(t) * c(t)] + w(t) * c(t) - \rightarrow (3)$$

• The scaled pulse **p(t)** is obtained by double convolution of impulse response of transmitter g(t), the impulse response of channel h(t) and impulse response of receiving filter c(t), as

$$p(t) = g(t)*h(t)*c(t)$$

• We assume that p(t) is normalized by setting p(0) = 1.

• Convolution in time domain is transformed into multiplication in frequency domain.

$$P(f) = G(f) H(f) C(f)$$

Where P(f), G(f), H(f) and C(f) are frequency response of p(t), g(t), h(t) and c(t) respectively.

• Using Inverse Fourier Transform

$$g(t - kT_b) * h(t) * c(t) = F^{-1}[e^{-j2\pi fkT_b}G(f)H(f) C(f)]$$

$$=\Rightarrow g(t-kT_b)*h(t)*c(t) = \int\limits_{-\infty}^{\infty} e^{-j2\pi fkT_b}G(f) \ H(f) \ C(f) \ e^{j2\pi ft} \ df$$

==>
$$g(t - kT_b) * h(t) * c(t) = \int_{-\infty}^{\infty} G(f) H(f) C(f) e^{j2\pi f(t-kT_b)} df$$

==>
$$g(t - kT_b) * h(t) * c(t) = \int_{-\infty}^{\infty} P(f) e^{j2\pi f(t-kT_b)} df$$

$$==> g(t - kT_b) * h(t) * c(t) = p(t - kT_b)$$

Where, $p(t) = \int_{-\infty}^{\infty} P(f) e^{j2\pi ft} df$

From eq (3),
$$y(t) = \sum_{k} a_{k} p(t - kT_{b}) + n(t)$$

Where, n(t) = w(t) * c(t)

• The received filter output y(t) is sampled at $t_i = kT_b$, T_b is the bit duration, $k = 0, \pm 1, \pm 2, \pm 3...$

$$y(t_i) = \sum_{k} a_k p(t_i - kT_b) + n(t_i)$$

$$= > y(t_i) = \sum_{k} a_k p(iT_b - kT_b) + n(iT_b)$$

$$y(t_i) = \sum_{k} a_k p[(i - k)T_b] + n(t_i)$$

The above equation has two terms (if noise ignored):

- (i) First term is produced by the ith transmitted bit. Theoretically, only this term should be present.
- (i) Second term represents the residual effect of all the transmitted bits, obtained at the time of sampling the ith bit. This residual effect is known as the inter symbol interference(ISI).

Nyquist Criterion for Distortion less Baseband Binary Transmission

• We know,

$$y(t_i) = a_i + \sum_{k=-\infty}^{\infty} a_k p[(i-k)T_b] + n(t_i)$$

- TIME DOMAIN CRITERION:
- From the above equation, the second term must be zero to eliminate the effect of ISI. This is possible if the received pulse p(t) is controlled such that,

$$p[(i-k)T_b] = \begin{cases} 1 \text{ for } i = k \\ 0 \text{ for } i \neq k \end{cases} --- \rightarrow (1)$$

- Use a pulse shape that has a nonzero amplitude at its center and zero amplitude at $t = \pm nT$ b (n = 1, 2, 3,).
- If p(t) satisfies the above condition, then we get a signal which is free from ISI. ie $y(t_i) = a_i$.

• FREQUENCY DOMAIN CRITERION:

$$\sum_{b=-\infty}^{\infty} P(f - nf_b) = \frac{1}{f_b} = T_b$$

- The pulse that have zero ISI, should have a spectrum if shifted to the multiple value of the rate should result in a constant.
- Above equation is called Nyquist pulse shaping criterion for baseband transmission

Ideal Nyquist Channel

• The simplest way of satisfying

$$\sum_{n=-\infty}^{\infty} P(f - nf_b) = T_b (or) \sum_{n=-\infty}^{\infty} P(f - nR_b) = T_b \longrightarrow (1)$$

- For n =0, the LHS corresponds to P(f) and it represents a frequency function with the narrowest band which satisfies the above equation.
- The range of frequencies for P(f) will extend from -W to +W ($-B_0$ to $+B_0$) where W or B_0 corresponds to half the bit rate.
- This equation is to specify the frequency function P(f) to be in the form of a rectangular function

$$P(f) = \begin{cases} \frac{1}{2W}; & -W < f < W \\ 0; & |f| > W \end{cases}$$

 R_h - Nyquist Rate W – Nyquist Bandwidth

$$P(f) = \frac{1}{2W} \operatorname{rect}\left(\frac{f}{2W}\right) \qquad W = \frac{R_b}{2} = \frac{1}{2T_b}$$

$$W = \frac{R_b}{2} = \frac{1}{2T_b}$$

• The signal that produces zero ISI can be obtained by taking the IFT of P(f)

$$p(t) = F^{-1}[P(f)] ==> p(t) = F^{-1}\left[\frac{1}{2W}rect\left(\frac{f}{2W}\right)\right]$$

==> p(t) =
$$sinc(2Wt)$$
 (or) p(t) = $\frac{sin(2\pi Wt)}{2\pi Wt}$

Advantages of using Sinc Pulse

- Bandwidth requirement (of the channel) is reduced.
- ISI is reduced.

Possible difficulties;

- The function P(f) varies from -W to +W and zero elsewhere. This is physically unrealizable because of abrupt transitions at the edges $\pm W$.
- Sinc pulse is not fast decaying (decays very slowly 1/t rate)
- Practical solution is the Raised Cosine Channel.

Raised Cosine Channels or Raised Cosine Spectrum

- We extend the minimum value of $W = \frac{R_b}{2}$ to an adjustable value between W and 2W.
- We know

$$\sum_{n=-\infty}^{\infty} P(f - nf_b) = T_b \text{ (or) } \sum_{n=-\infty}^{\infty} P(f - nR_b) = T_b = \frac{1}{R_b} = \frac{1}{f_b}$$

... + P(f + 3R_b) + P(f + 2R_b) + P(f + R_b) + P(f) + P(f - R_b)
+ P(f - 2R_b) + P(f - 3R_b) ... =
$$\frac{1}{R_b}$$
 = T_b

• We will consider only three terms (three harmonics) and restrict the bandwidth to (-W,+W)

$$P(f + 2W) + P(f) + P(f - 2W) = \frac{1}{2W}; -W \le f \le W$$
 $W = \frac{R_b}{2}$ $R_b = 2W$

- There are several possible band-limited functions to satisfy the above equation.
- Of great practical interest is the raised cosine spectrum.
- Raised Cosine spectrum consists of
- Flat portion, which occupies the frequency band $0 \le |f| \le f_1$ for some f_1 parameter to be defined.
- **Roll-off portion**, which occupies the frequency band $f_1 < |f| < 2W f_1$
- The mathematical representation of raised cosine pulse is

$$P(f) = \begin{cases} \frac{1}{2W}; & \text{(flat portion)} & 0 \le |f| \le f_1 \\ \frac{1}{4W} \left\{ 1 - \sin \left[\frac{\pi(|f| - W)}{2W - 2f_1} \right] \right\}; & f_1 \le |f| < 2W - f_1 \\ 0; & |f| \ge 2W - f_1 \end{cases}$$

• The frequency parameter f_1 & bandwidth W are related by

$$\alpha = 1 - \frac{f_1}{W}$$

- α Roll off factor, indicates the excess bandwidth over the ideal solution W.
- The transmission Bandwidth B_T

$$B_T = 2W-f_1 = => B_T = W(1+\alpha)$$

Fig. Responses for different roll-off factors, $\boldsymbol{\alpha}$

Eye Pattern or Eye Diagram

How ISI is measured?

- In CRO, it is measured as eye diagram.
- At x terminal received signal is connected and at y terminal sawtooth wave is connected.
- More the opening of eye --- Less ISI

- a. Ideal channel, infinite BW, pulse received without distortion.
- b. Distortion channel, finite
 BW, received signal will
 rounded and spread out.
 full opening at mid-pt
- c. Noise channel, ISI is not zero, the eye close partially at the mid-pt