Credit Risk Evaluation using Machine Learning

By Surya Vaddhiparthy

Under the guidance of Professor Dr. Guan Yue Hong

Fintech Companies

XGBoost Logistic Regression Scorecard Interpretability

Goal

Enable access to credit for people with limited credit history

Steps

EDA and Data wrangling methods used

307,511 x 122

Target [1,0]

Int64, float64 and object

100,000 missing values

Imputation

Outliers

```
a) pd.read_csv:
```

- b) df.head():
 df.rename(columns=str.lower):
- c) pd.set_option:
- d) df.dtypes:
- e) df.target.unique():
- f) df.describe().T
- g) df_missing=df.isna().sum():
- i) outliers = df[((df<(q1-1.5*IQR))) | (df>(q3+1.5*IQR)))]

Data Visualization

df.plot(kind='scatter',x==' ',y="')

df.plot(kind='pie',legend=True,figsize=(12,12)).

df.plot(kind='bar')

plt.boxplot

Logistic Regression

```
For the model: LogisticRegression(multi_class='ovr', random_state=0) , the training accuracy
is 0.9191205164059706 and the test accracy is 0.9196936684985854
[[56560
            5]
 [ 4934
            3]]
                          recall f1-score
              precision
                                              support
                             1.00
                   0.92
                                       0.96
                                                56565
                   0.38
                             0.00
                                       0.00
                                                 4937
                                       0.92
                                                61502
    accuracy
  macro avg
                   0.65
                             0.50
                                       0.48
                                                61502
weighted avg
                   0.88
                             0.92
                                       0.88
                                                61502
```


Image courtesy: ABC Network

Proportion of borrowers that defaulted

Preparing the data for Machine Learning

Extreme gradient boosting with synthetic minority over sampling

```
XGBClassifier(base_score=None, booster=None, callbacks=None,
              colsample bylevel=None, colsample bynode=None,
              colsample_bytree=None, early_stopping_rounds=None,
              enable categorical=False, eval metric='logloss',
              feature_types=None, gamma=None, gpu_id=None, grow_policy=None,
              importance_type=None, interaction_constraints=None,
              learning_rate=None, max_bin=None, max_cat_threshold=None,
              max_cat_to_onehot=None, max_delta_step=None, max_depth=None,
              max leaves=None, min child weight=None, missing=nan,
              monotone constraints=None, n_estimators=100, n_jobs=None,
              num parallel tree=None, predictor=None, random state=None, ...)
Mean cross-validation score: 0.95
K-fold CV average score: 0.95
[[41833
         5151
 [ 4122 38336]]
              precision
                          recall f1-score
                                              support
                                       0.95
                   0.91
                             0.99
                                                42348
                   0.99
                             0.90
                                       0.94
                                                42458
                                       0.95
                                                84806
    accuracy
                   0.95
                             0.95
                                       0.95
                                                84806
  macro avg
weighted avg
                   0.95
                             0.95
                                       0.95
                                                84806
```

Machine Learning Model Evaluation

Model	Precision	Recall	F1-score	Imbalanced
Logistic Regression	0.38	0.00	0.00	Yes
Stochastic Gradient Descent	0.05	0.00	0.00	Yes
XGBoost	0.55	0.02	0.04	Yes
Stochastic Gradient Descent	0.50	0.00	0.00	No
XGBoost	0.98	0.91	0.94	No
Random Forest	0.94	0.89	0.92	No

Future scope

Deploying the final ML model

continuous variable to generate credit score

Identification of more effective alternative data

Thank You!