UTA, 2022 - 2023 LICENCE 1 ALGEBRE1

TRAVAUX DIRIGES

Exercice 1

Soit A = 1, 2, 3 complèter par $\in, \notin, \nsubseteq, \subseteq$

- a) 1 A
- a) $\{1\}$ A
- a) $\{4\}$ A
- a) $\{1\}\ \mathcal{P}(A)$
- a) Ø *A*
- a) $\emptyset \mathcal{P}(A)$
- a) $\{1,2\}$ A
- a) $A \mathcal{P}(A)$
- a) $\{1,5\}\ \mathcal{P}(A)$

Exercice 2

Disposer les éléments 1; 2; 3; 4; 5; 6; 7; 8; 9; 10 das un diagramme de Venn sachant que $A \cap C = \{1,4,5\}$ $B \setminus A = \{0,3,6\}$, $A \cup B \cup C = \{0,1,2,3,4,5,6,7,8\}$, $A \cap B = \{2,4,5,7\}$ $C \setminus A = \{0,8\}$ $A \cap B \cap C = \{4,5\}$

Exercice 3

Soit $A = \{1, 2, 3, 7\}$, $B = \{1, 3, 4, 5, 6, 7\}$ et $C = \{n \in \mathbb{N}/0 \le n \le 4\}$ et $D = \{0, 2\}$, déterminer les ensembles : $A \cap B$, $A \cap C$, $A \cup B$, $B \cup C$, $D \cap (A \cap B)$, $A \triangle B \triangle C$

Exercice 4

A,B et ${\cal C}$ désignent des parties d'un ensemble ${\cal E},$ montrer que :

- a) $\overline{\overline{A}} = A$
- b) $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- c) $A \cup \overline{A} = E$
- d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Exercice 5

Soit $E = \{a, b, c, d, e, f, g\}$; dans chacun des cas suivants, dire si la famille de parties est une partition de E.

a.
$$A_1 = \{a, b, e\}, A_2 = \{c, g\} \text{ et } A_3 = \{d\}$$

b.
$$B_1 = \{c, e, g\}, B_2 = \{a, d, f\} \text{ et } B_3 = \{b, e\}$$

c.
$$C_1 = \{a, b, e, g\}, C_2 = \{c, d\}$$

Exercice 6

En notant P et Q les affirmations suivantes :

- P: Jean est fort en Maths.
- Q: Jean est fort en Chimie.

Représenter les affirmations suivantes sous forme symbolique, à l'aide des lettres P et Q et des connecteurs usuels.

- d. Jean est fort en Maths mais faible en Chimie.
- b. Jean est fort en Math ou il est à la fois fort en chimie et faible en Maths.
- c. Jean n'est fort ni en Math ni en Chimie.
- d. Jean est fort en Maths s'il est fort en Chimie.

Exercice 7

Soit f, g deux fonctions de $\mathbb R$ dans $\mathbb R$. Traduire en termes de quantificateurs les expressions suivantes :

- 1. f est majorée;
- 2. f est bornée;
- 3. f est paire;
- 4. f est impaire;
- 5. f ne s'annule jamais;
- 6. f est périodique;
- 7. f est croissante;
- 8. f est strictement décroissante;
- 9. f n'est pas la fonction nulle;
- 10. f n'a jamais les mêmes valeurs en deux points distcincts;
- 11. f atteint toutes les valeurs de \mathbb{N} ;
- 12. f est inférieure à g;
- 13. f n'est pas inférieure à g.

Exercice 8

Soient les quatre assertions suivantes :

- 1. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0,$
- 2. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y > 0,$
- 3. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^2 > x$,
- 4. $\forall \varepsilon \in \mathbb{R}_+^*, \exists \alpha \in \mathbb{R}_+^*, |x| < \alpha \Rightarrow |x^2| < \varepsilon$.

Les assertions 1, 2, 3 et 4 sont elles vraies ou fausses? Donner leurs négations.

Exercice 9

Soit P, Q et R trois assertions.

a) A l'aide de tables de vérités, montrer que l'assertion $non(P \ et \ Q)$ et l'assertion $(non \ P)$ ou $(non \ Q)$ sont équivalentes;

- b) A l'aide de tables de vérités, montrer que l'assertion $non(P \ ou \ Q)$ et l'assertion $(non \ P)$ et $(non \ Q)$ sont équivalentes;
- c) A l'aide de tables de vérités, montrer que $(P \text{ ou } Q) \text{ ou } R \Leftrightarrow P \text{ ou } (Q \text{ ou } R)$.
- d) A l'aide de tables de vérités, montrer que

$$(P ou Q) et (P \Rightarrow R) et (Q \Rightarrow R) \Rightarrow R.$$

Exercice 10

- a) Montrer par récurrence que $\forall n \in \mathbb{N}^*$. $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.
- b) Montrer par l'absurde que $\forall x \neq -2$, $\frac{x+1}{x+2} \neq 1$
- c) Montrer par un raisonnement par contraposée que s'il existe $a, n \in mathbb{N}$ vérifiant $a^2 + 9 = 2^n$ alors a est impair.
- d) Montrer par contraposition que l'implication suivante : $x \neq y \Rightarrow x^3 + x \neq y^3 + y$ est vraie.

Exercice 11

Soit $E = \{1, 2, 3, 4\}$ et \mathcal{R} la relation binaire sur E dont le graphe est

$$\{(1;1); (1;2); (2;1); (2;2); (3;3); (3;4); (4;3); (4;4)\}$$

- 1. Vérifier que la relation \mathcal{R} est une relation d'équivalence.
- 2. Faire la liste des classes d'équivalences distinctes et donner l'ensemble quotient

Exercice 12

Soit \mathcal{R} la relation définie sur \mathbb{R} par

$$x\mathcal{R}y \Leftrightarrow x^2 - x = y^2 - y.$$

Montrer qu'il s'agit d'une relation d'équivalence et déterminer les classes d'équivalence de cette relation.

Exercice 13

1. Soit f l'application de l'ensemble $\{1,2,3,4\}$ dans lui-même définie par :

$$f(1) = 4,$$
 $f(2) = 1$ $f(3) = 2,$ $f(4) = 2.$

Déterminer $f^{-1}(A)$ lorsque $A = \{2\}, A = \{1, 2\}, A = \{3\}.$

- 2. Soit g l'application de \mathbb{R} dans \mathbb{R} définie par $g(x) = x^2$.
 - (a) Déterminer g(B) lorsque B = [-2; -1], B = [1, 2]
 - (b) Déterminer $g^{-1}(C)$ lorsque $C = \{1\}, C = [1, 2].$

Exercice 14

On dï; $\frac{1}{2}$ finit sur \mathbb{R} les lois * et \top par : x*y = ax + by - 1, $(a \in \mathbb{R}, b \in \mathbb{R})$, $x\top y = x + y - x \times y$ avec + et \times les opérations usuelles sur \mathbb{R} .

- 1) Déterminer les conditions sur a etb pour que * soit commutative dans \mathbb{R} .
- 2) Déterminer les conditions sur a etb pour que * soit associative dans \mathbb{R} .

On pose pose a = b = 1

- 3) Montrer que $(\mathbb{R}, *)$ est un groupe commutatif
- 4) Montrer que la loi \top est distributive par rapport à la loi *
- 5) $(\mathbb{R}, *, \top)$ est -il un corps commutatif?