GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:18; Search time 32.5171 Seconds

(without alignments)

165.965 Million cell updates/sec

Title: US-09-843-221A-161

Perfect score: 34

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 1107863 seqs, 158726573 residues

Word size : (

Total number of hits satisfying chosen parameters: 75810

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : A Geneseq 19Jun03:*

1: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1980.DAT:*

2: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1981.DAT:*

3: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1982.DAT:*

4: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1983.DAT:*

5: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA1984.DAT:*

6: /SIDS1/qcqdata/qeneseq/qeneseqp-embl/AA1985.DAT:*

7: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1986.DAT:*

8: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1987.DAT:*

9: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1988.DAT:*

10: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1989.DAT:*

11: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1990.DAT:*

12: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1991.DAT:*

13: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1992.DAT:*

14: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1993.DAT:*

15: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1994.DAT:*

16: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1995.DAT:*

17: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1996.DAT:*

18: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1997.DAT:*

19: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1998.DAT:*

20: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA1999.DAT:*

21: /SIDS1/gcgdata/geneseq/geneseqp-embl/AA2000.DAT:*

22: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2001.DAT:*
23: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2002.DAT:*

24: /SIDS1/gcgdata/geneseq/geneseqp-emb1/AA2003.DAT:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

		ક				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	34	100.0	34	4	AAP30022	Human parathyroid-
2	34	100.0	34	6	AAP50377	[Met(0)8,18]hPTH-(
3	34	100.0	34	7	AAP60031	Sequence of the fi
4	34	100.0	34	11	AAR07919	Human parathyroid
5	34	100.0	34	13	AAR22283	Parathyroid hormon
6	34	100.0	34	14	AAR41549	[D-Ser3]hPTH (1-34
7	34	100.0	34	14	AAR41570	[Gln25]hPTH (1-34)
8	34	100.0	34	15	AAR58291	[Lys(For)26, Lys(F
9	34	100.0	34	15	AAR58228	[D-Asp30]-hPTH(1-3
10	34	100.0	34	15	AAR58016	N-alpha-Isopropyl-
11	34	100.0	34	15	AAR58017	[Lys(N-epsilon-Iso
12	34	100.0	34	15	AAR55724	Parathormone N-ter
13	34	100.0	34	16	AAR74521	Human parathyroid
14	34	100.0	34	17	AAW99449	Human parathyroid
15	34	100.0	34	17	AAR99978	Human parathyroid
16	34	100.0	34	17	AAR98951	Target peptide (PT
17	34	100.0	34	17	AAR98966	PTH(1-34). Not sp
18	34	100.0	34	17	AAR88835	Human parathyroid
19	34	100.0	34	18	AAW24273	Wild type parathyr
20	34	100.0	34	18	AAW19994	Cyclised human par
21	34	100.0	34	18	AAW20000	Cyclised human par
22	34	100.0	34	18	AAW20006	Cyclised human par
23	34	100.0	34	19	AAW67291	Parathyroid hormon
24	34	100.0	34	19	AAW61658	Parathyroid hormon
25	34	100.0	34	19	AAW65975	Human parathyroid
26	34	100.0	34	20	AAY50593	Resin bound cyclic
26 27	34	100.0	34	20	AAY17752	Human parathyroid
28	34	100.0	34	20	AAY14151	Human parathyroid
28 29	34	100.0	34	20		N-terminal 34 resi
					AAY02579	
30	34	100.0	34	20	AAW81871	Human PTH N-termin
31	34	100.0	34	21	ABJ10712	Human parathyroid
32	34	100.0	34	21	AAB07454	Amino acids 1-34 o
33	34	100.0	34	21	AAY98017	Human amino-termin
34	34	100.0	34	21	AAY82631	Human parathyroid
35	34	100.0	34	21	AAY68763	Amino acids 1-34 o
36	34	100.0	34	22	AAB84778	Native rat parathy
37	34	100.0	34	22	AAB96898	Human parathyroid
38	34	100.0	34	22	AAB81079	Human parathyroid
39	34	100.0	34	22	AAB91098	Parathyroid hormon
40	34	100.0	34	23	ABJ05328	Human PTH(1-34) pe
41	34	100.0	34	23	AAE23727	Human parathyroid
42	34	100.0	34	23	ABB06329	Human parathyroid
43	34	100.0	34	23	ABB08595	C-terminal truncat
44	34	100.0	34	23	AAE18395	Human PTH peptide
45	34	100.0	34	23	ABB07147	Parathyroid hormon
46	34	100.0	34	23	AAU73028	Parathyroid hormon
47	34	100.0	34	24	ABP71500	Human parathyroid
48	34	100.0	34	24	ABG74235	Human parathyroid
49	34	100.0	35	22	AAB91112	Parathyroid hormon
50	34	100.0	35	23	AAU73172	Parathyroid hormon

			2.0		33520450	Com Mal (hDTH 2 2E
51	34	100.0	36	14	AAR39450	Ser-Val-(hPTH 3-35 [D-Leu24]-hPTH(1-3
52	34	100.0	36	15	AAR58286	[D-Leu24] - HPTH (1-3 [D-Lys27] - hPTH (1-3
53	34	100.0	36	15	AAR58292	[D-Leu28] -hPTH(1-3
54	34	100.0	36	15	AAR58293	[D-Leu28]-HPTH(1-3 [D-Phe34]-hPTH(1-3
55	34	100.0	36	15	AAR58294	[D-Phe34]-hPTH(1-3 [D-Val35]-hPTH(1-3
56	34	100.0	36	15	AAR58295	
57	34	100.0	36	15	AAR58296	[Ala35] -hPTH(1-36)
58	34	100.0	36	15	AAR58297	[Pro35] - hPTH (1-36)
59	34	100.0	36	15	AAR58298	[NMeVal35] - hPTH (1-
60	34	100.0	36	15	AAR58299	[Thr35, Ala36] - hPTH
61	34	100.0	36	15	AAR58300	[D-Ala36] -hPTH(1-3
62	34	100.0	36	15	AAR58301	[NMeAla36] -hPTH(1-
63	34	100.0	36	15	AAR58260	[D-Val2]-hPTH(1-36
64	34	100.0	36	15	AAR58263	[D-Ile5]-hPTH(1-36
65	34	100.0	36	15	AAR58264	[D-Gln6]-hPTH(1-36
66	34	100.0	36	15	AAR58265	[D-Leu7] -hPTH(1-36
67	34	100.0	36	15	AAR58270	[D-Leu11] -hPTH(1-3
68	34	100.0	36	15	AAR58272	[D-Lys13] -hPTH(1-3
69	34	100.0	36	15	AAR58273	[D-Leu15]-hPTH(1-3
70	34	100.0	36	15	AAR58276	[Met (O2) 18] - hPTH (1
71	34	100.0	36	15	AAR58278	[D-Met18]-hPTH(1-3
72	34	100.0	36	15	AAR58280	[D-Arg20] -hPTH(1-3
73	34	100.0	36	15	AAR58281	[D-Val21] -hPTH(1-3
74	34	100.0	36	15	AAR58284	[D-Trp23]-hPTH(1-3
75	34	100.0	36	15	AAR58227	[D-Gln29] -hPTH(1-3
76	34	100.0	36	15	AAR58230	[D-Val31]-hPTH(1-3
77	34	100.0	36	15	AAR58233	[D-His32]-hPTH(1-3)
78	34	100.0	36	15	AAR58235	[D-Asn33] -hPTH(1-3
79	34	100.0	36	15	AAR58237	[NMePhe34]-hPTH(1-
80	34	100.0	36	15	AAR58238	[D-Asp30] -hPTH(1-3
81	34	100.0	36	15	AAR58242	[Lys(Isopropyl)13]
82	34	100.0	36	15	AAR58246	Acetyl-hPTH(1-36)-
83	34	100.0	36	15	AAR58249	[D-Ser1]-hPTH(1-36
84	34	100.0	36	15	AAR58196	[D-Phe34, D-Ala36]
85	34	100.0	36	15	AAR58198	[D-Ser3]-hPTH(1-36
86	34	100.0	36	15	AAR58199	[D-Glu4]-hPTH(1-36
87	34	100.0	36	15	AAR58200	[D-His9]-hPTH(1-36
88	34	100.0	36	15	AAR58202	[D-Asn10]-hPTH(1-3
89	34	100.0	36	15	AAR58210	[D-His14]-hPTH(1-3
90	34	100.0	36	15	AAR58211	[D-Asn16] -hPTH(1-3
91	34	100.0	36	15	AAR58213	[D-Ser17]-hPTH(1-3
92	34	100.0	36	15	AAR58215	[D-Glu19]-hPTH(1-3
93	34	100.0	36	15	AAR58220	[D-Lys26]-hPTH(1-3
94	34	100.0	36	15	AAR58171	[N-Me-Ser1]-hPTH(1
95	34	100.0	37	12	AAR11882	Parathyroid hormon
96	34	100.0	37	13	AAR24778	hPTH(1-37)-amide/e
97	34	100.0	37	15	AAR58244	[Ala0] -hPTH(1-36) -
98	34	100.0	37	15	AAR58245	[Pro0] -hPTH(1-36) -
99	34	100.0	37	22	AAB86226	Human parathyroid
100	34	100.0	37	22	AAB86229	Human parathyroid
101	34	100.0	37	23	ABB82203	Human parathyroid
102	34	100.0	38	15	AAR58282	[Trp (SO2Pmc) 23] -hP
103	34	100.0	38	15	AAR58283	[Trp (Pmc) 23] -hPTH(
104	34	100.0	38	15	AAR58018	Isopropyl-[Lys(Iso
105	34	100.0	38	15	AAR54234	PTH N-terminal. S
106	34	100.0	38	20	AAY02580	N-terminal 38 resi
107	34	100.0	38	22	AAB91101	Parathyroid hormon
±0,	J-1	100.0	50	22		

	2.4	100 0	2.0	2.2	33500000	Human parathyroid
108	34	100.0	38	23	AAE23729	Human PTH peptide
109	34	100.0	38	23	AAE18400	Parathyroid hormon
110	34	100.0	38	23	AAU73026	Human amino-termin
111	33	97.1	- 33	21	AAY98018	Human parathyroid
112	33	97.1	34	11	AAR07922	
113	33	97.1	34	18	AAW17955	Human parathyroid
114	33	97.1	34	19	AAW48392	Human parathyroid
115	33	97.1	34	21	AAY98010	Human amino-termin
116	33	97.1	34	21	AAY98011	Human amino-termin
117	33	97.1	34	21	AAY98014	Human amino-termin
118	33	97.1	34	22	AAB96929	Human parathyroid
119	33	97.1	34	22	AAB91113	Parathyroid hormon
120	33	97.1	34	23	AAE23728	Human parathyroid
121	33	97.1	34	23	AAE18399	Human PTH peptide
122	33	97.1	34	23	AAU73032	Parathyroid hormon
123	33	97.1	36	12	AAR15842	Human parathyroid
124	33	97.1	36	13	AAR23995	Human paprthyroid
125	33	97.1	36	15	AAR58254	[4-aminosalicylic
126	33	97.1	36	15	AAR58255	[TMSA1] - hPTH (1-36)
127	33	97.1	36	15	AAR58256	[Phe1]-hPTH(1-36)-
128	33	97.1	36	15	AAR58257	[Propargylglycin1]
129	33	97.1	36	15	AAR58262	[Ala1]-hPTH(1-36)-
130	33	97.1	36	15	AAR58243	Propargyl-[A1]-hPT
131	33	97.1	36	15	AAR58247	[Hyp1]-hPTH(1-36)-
132	33	97.1	36	15	AAR58248	N-Dimethyl-[Ala1]-
133	33	97.1	36	15	AAR58250	[Lys(For)1]-hPTH(1
134	33	97.1	36	15	AAR58251	[D-glyceric acid1]
135	33	97.1	36	15	AAR58252	[Asn1] -hPTH(1-36)-
136	33	97.1	36	15	AAR58253	[4-aminobenzoic ac
137	33	97.1	36	15	AAR58191	[Ala34]-hPTH(1-36)
138	33	97.1	36	15	AAR58169	[D-Pro1] -hPTH(1-36
139	33	97.1	36	15	AAR58170	[Nval] -hPTH(1-36)-
140	33	97.1	36	15	AAR58172	[Indole-2-carboxyl
141	33	97.1	36	15	AAR58173	[Indole-3-carboxyl
142	33	97.1	36	15	AAR58174	[Pyridine-3-carbox
143	33	97.1	36	15	AAR58175	[Pyridine-2-carbox
144	33	97.1	36	15	AAR58176	[Hexahydropyridazi
145	33	97.1	36	15	AAR58177	[Morpholine-2-carb
146	33	97.1	36	15	AAR58178	[Prol]-hPTH(1-36)-
147	33	97.1	36	15	AAR58179	[Leu1]-hPTH(1-36)-
148	33	97.1	36	15	AAR58180	[Ile1]-hPTH(1-36)-
149	33	97.1	36	15	AAR58026	N-alpha-methyl[Ala
150	33	97.1	36	15	AAR58168	[1-amino-cyclopent
151	33	97.1	37	23	AAU73027	Parathyroid hormon
152	33	97.1	38	3	AAP20248	Parathyroid hormon
153	33	97.1	38	15	AAR58019	N-alpha-methyl[Ala
154	33	97.1	38	15	AAR58022	[Ile1]-hPTH(1-38)-
155	33	97.1	38	15	AAR58028	[Thr1]-hPTH(1-38)-
156	33	97.1	38	15	AAR58029	[Leul]-hPTH(1-38)-
157	33	97.1	38	15	AAR58030	[Abul or Gabal]-hP
158	32	94.1	33	21	AAY98012	Human amino-termin
159	32	94.1	33	21	AAY98015	Human amino-termin
160	32	94.1	34	15	AAR58181	[Thr33, Ala34]-hPT
161	32	94.1	34	19	AAW42614	Human parathyroid
162	32	94.1	34	22	AAB61638	Peptide #1 that ca
163	32	94.1	36	15	AAR58259	[aBU2]-hPTH(1-36)-
164	32	94.1	36	15	AAR58261	[Tert.Leu]-hPTH(1-

	165	32	94.1	36	15	AAR58236	[Ala33] -hPTH(1-36)
	166	32	94.1	38	15	AAR58023	[Ala1, Abu2 or Nva2
	167	32	94.1	38	15	AAR58024	[Ala1, Ile2] -hPTH(1
	168	32	94.1	38	15	AAR58162	[Arg33] -hPTH(1-38)
	169	32	94.1	38	15	AAR58163	[Pro33]-hPTH(1-38)
	170	32	94.1	38	15	AAR58164	[Asp33] -hPTH(1-38)
	171	32	94.1	38	15	AAR58165	[Ile33]-hPTH(1-38)
	172	32	94.1	38	15	AAR58166	[Lys33] -hPTH(1-38)
	173	32	94.1	38	15	AAR58075	[Ser33] -hPTH(1-38)
	174	32	94.1	38	15	AAR58076	[Thr33] -hPTH(1-38)
	174 175	32	94.1	38	15	AAR58077	[Leu33] -hPTH(1-38)
	175	32	94.1	38	15	AAR58077	[Gly33] -hPTH(1-38)
		32 32	94.1	38	15	AAR58078 AAR58084	[Gln33]-hPTH(1-38)
	177		91.2	31	19	AAR38084 AAW42059	Human parathyroid
	178	31		31			Human parathyroid
	179	31	91.2		19	AAW42051	N-terminal 31 resi
	180	31	91.2	31	20	AAY02578	
	181	31	91.2	31	22	AAB81080	Human parathyroid
	182	31	91.2	31	22	AAB91097	Parathyroid hormon
	183	31	91.2	31	23	AAE23720	Human parathyroid
	184	31	91.2	31	23	AAU73039	Parathyroid hormon
	185	31	91.2	32	5	AAP40427	Parathyroid antago
	186	31	91.2	32	23	AAU73176	Parathyroid hormon
	187	31	91.2	34	14	AAR41550	[D-Ala3] hPTH (1-34
	188	31	91.2	34	15	AAR58232	[Lys32]-hPTH(1-34)
	189	31	91.2	34	18	AAW17957	Human parathyroid
	190	31	91.2	36	15	AAR58234	[Ala32]-hPTH(1-36)
	191	31	91.2	36	15	AAR58197	[Ala3]-hPTH(1-36)-
,	192	30	88.2	30	17	AAR88832	Human parathyroid
	193	30	88.2	30	23	AAE23752	Human parathyroid
	194	30	88.2	30	23	AAU73051	Parathyroid hormon
	195	30	88.2	31	5	AAP40760	Human parathyroid
	196	30	88.2	31	23	AAU73177	Parathyroid hormon
	197	30	88.2	32	23	AAE23735	Human parathyroid
	198	30	88.2	34	18	AAW17948	Human parathyroid
	199	30	88.2	34	18	AAW17968	Human parathyroid
	200	30	88.2	34	19	AAW67283	Parathyroid hormon
	201	30	88.2	36	15	AAR58231	[Ala31] -hPTH(1-36)
	202	30	88.2	38	15	AAR58167	[Ile31,Arg33]-hPTH
	203	29	85.3	29	17	AAR88836	Human parathyroid
	204	29	85.3	29	23	AAU73063	Parathyroid hormon
	205	29	85.3	30	23	AAU73055	Parathyroid hormon
	206	29	85.3	30	23	AAU73178	Parathyroid hormon
	207	29	85.3	34	19	AAW67290	Parathyroid hormon
	208	29	85.3	36	15	AAR58229	[Ala30] -hPTH(1-36)
	209	29	85.3	38	15	AAR58161	[Pro3, Thr33] -hPTH(
	210	28	82.4	28	13	AAR22064	Modified hPTH(7-34
	211	28	82.4	28	17	AAR88837	Human parathyroid
	212	28	82.4	28	21	AAY98052	Human parathyroid
	213	28	82.4	28	23	AAE23734	Human parathyroid
	214	28	82.4	28	23	AAU73044	Parathyroid hormon
	215	28	82.4	28	23	AAU73064	Parathyroid hormon
	216	28	82.4	29	12	AAR11731	Adenine-rich PTH-(
	217	28	82.4	29	23	AAU73179	Parathyroid hormon
	218	28	82.4	32	21		Antigenic peptide
	219	28	82.4	34	18	AAW01609	Parathryoid hormon
	220	28	82.4	34	18	AAW01610	Parathryoid hormon
	221	28	82.4	34	19	AAW67293	Parathyroid hormon
		-0	~ .	J.			

						r-7 and 1 mm/s as
222	28	82.4	36	15	AAR58190	[Ala29] -hPTH(1-36)
223	28	82.4	38	17	AAR98958	Target peptide (PT
224	27	79.4	28	13	AAR22065	Modified [Tyr_34]h
225	27	79.4	28	21	AAY98048	Human parathyroid
226	27	79.4	28	21	AAY98050	Human parathyroid
227	27	79.4	34	18	AAW17943	Human parathyroid
			34	18	AAW17947	Human parathyroid
228	27	79.4				
229	27	79.4	34	18	AAW17951	Human parathyroid
230	27	79.4	34	19	AAW67278	Parathyroid hormon
231	27	79.4	34	19	AAW67282	Parathyroid hormon
232	27	79.4	34	19	AAW67286	Parathyroid hormon
233	27	79.4	38	15	AAR58159	[Val28] -hPTH(1-38)
234	27	79.4	38	15	AAR58160	[Ile28] -hPTH(1-38)
235	26	76.5	28	17	AAR88838	Human parathyroid
236	26	76.5	28	21	ABJ10776	Human parathyroid
237	26	76.5	28	22	AAB81074	Human parathyroid
				17	AAR88839	Human parathyroid
238	26	76.5	29			
239	26	76.5	29	22	AAB81075	Human parathyroid
240	26	76.5	30	17	AAR88833	Human parathyroid
241	26	76.5	30	19	AAW42052	Human parathyroid
242	26	76.5	30	23	AAU73062	Parathyroid hormon
243	26	76.5	31	19	AAW42056	Human parathyroid
244	26	76.5	31	19	AAW42057	Human parathyroid
245	26	76.5	31	19	AAW42060	Human parathyroid
246	26	76.5	31	19	AAW42062	Human parathyroid
247	26	76.5	31	19	AAW42067	Human parathyroid
248	26	76.5	31	19	AAW42049	Human parathyroid
						Human parathyroid
249	26	76.5	31	19	AAW42050	
250	26	76.5	31	19	AAW42053	Human parathyroid
251	26	76.5	31	23	AAU73040	Parathyroid hormon
252	26	76.5	31	23	AAU82640	Analogue of human
253	26	76.5	33	17	AAR88841	Human parathyroid
254	26	76.5	34	13	AAR22293	Human parathyroid
255	26	76.5	34	13	AAR22298	Human parathyroid
256	26	76.5	34	13	AAR22299	Human parathyroid
257	26	76.5	34	14	AAR41554	[Thr27]hPTH (1-34)
258	26	76.5	34	14	AAR41555	[Asn27] hPTH (1-34)
259	26	76.5	34	14	AAR41558	[Ser27]hPTH (1-34)
260	26	76.5	34	14	AAR41559	[Gly27]hPTH (1-34)
261	26	76.5	34	14	AAR41560	[His27]hPTH (1-34)
	26	76.5	34	15		
262					AAR49697	Sequence of varian
263	26	76.5	34	15	AAR49698	Sequence of varian
264	26	76.5	34	17	AAR88829	Human parathyroid
265	26	76.5	34	17	AAR88834	Human parathyroid
266	26	76.5	34	18	AAW17969	Human parathyroid
267	26	76.5	34	19	AAW67292	Parathyroid hormon
268	26	76.5	34	19	AAW67297	Parathyroid hormon
269	26	76.5	34	19	AAW67299	Parathyroid hormon
270	26	76.5	34	19	AAW42054	Human parathyroid
271	26	76.5	34	19	AAW42055	Human parathyroid
272	26	76.5	34	21	ABJ10706	Human parathyroid
272	26	76.5	34	21	ABJ10714	Human parathyroid
						_
274	26	76.5	34	21	ABJ10717	Human parathyroid
275	26	76.5	34	21	ABJ10719	Human parathyroid
276	26	76.5	34	21	ABJ10722	Human parathyroid
277	26	76.5	34	21	ABJ10724	Human parathyroid
278	26	76.5	34	21	ABJ10727	Human parathyroid

279	26	76.5	34	21	ABJ10729	Human parathyroid
280	26	76.5	34	21	ABJ10730	Human parathyroid
281	26	76.5	34	21	ABJ10733	Human parathyroid
282	26	76.5	34	21	ABJ10736	Human parathyroid
283	26	76.5	36	15	AAR58266	[Nle8] -hPTH(1-36) -
284	26	76.5	36	15	AAR58267	[Phe8] -hPTH(1-36) -
285	26	76.5	36	15	AAR58268	[Cha8] -hPTH(1-36) -
286	26	76.5	36	15	AAR58222	[His27] -hPTH(1-36)
287	26	76.5	36	15	AAR58223	[Phe27]-hPTH(1-36)
288	26	76.5	36	15	AAR58224	[Nle27]-hPTH(1-36)
289	26	76.5	36	15	AAR58225	[Asn27] -hPTH(1-36)
290	26	76.5	36	15	AAR58226	[Ala27] -hPTH(1-36)
291	26	76.5	36	15	AAR58182	[Nva8] -hPTH(1-36)-
292	26	76.5	38	15	AAR58269	[Leu8] -hPTH(1-38) -
293	26	76.5	38	15	AAR58154	[Val27] -hPTH(1-38)
294	26	76.5	38	15	AAR58155	[Ile27]-hPTH(1-38)
295	26	76.5	38	15	AAR58156	[Leu27] -hPTH(1-38)
296	26	76.5	38	15	AAR58157	[Arg27] -hPTH(1-38)
297	26	76.5	38	15	AAR58158	[Ala27] -hPTH(1-38)
298	25	73.5	32	17	AAR88840	Human parathyroid
299	25	73.5	34	14	AAR41556	[Gln26,27]hPTH (1-
300	25	73.5	34	14	AAR41566	[Arg 26,27]hPTH (1
301	25	73.5	34	14	AAR41567	[Gln26]hPTH (1-34)
302	25	73.5	34	21	ABJ10772	Human parathyroid
303	25	73.5	34	21	ABJ10773	Human parathyroid
304	25	73.5	36	15	AAR58290	[Ala26] -hPTH(1-36)
305	25	73.5	36	15	AAR58218	[Gln26] -hPTH(1-36)
306	25	73.5	36	15	AAR58219	[Nle26] -hPTH(1-36)
307	25	73.5	38	15	AAR58153	[Arg26] -hPTH(1-38)
308	24	70.6	31	17	AAR88830	Human parathyroid
309	24	70.6	34	14	AAR34456	Human parathyroid
310	24	70.6	34	14	AAR34457	Human parathyroid
311	24	70.6	34	14	AAR41557	[Gln25, 26, 27] hPTH
312	24	70.6	34	17	AAW15812	[Trp(10)] - hPTH(1-3)
313	24	70.6	34	18	AAW08120	Human PTH derivati
314	24	70.6	34	18	AAW08109	Human parathyroid
315	24	70.6	34	18	AAW08114	Human PTH derivati
316	24	70.6	34	18	AAW08118	Human PTH derivati
317	24	70.6	34	18	AAW08119	Human PTH derivati
318	24	70.6	36	15	AAR58287	[Phe25] -hPTH(1-36)
319	24	70.6	36	15	AAR58288	[Lys25] -hPTH(1-36)
320	24	70.6	36	15	AAR58289	[Ala25] -hPTH(1-36)
321	24	70.6	36	15	AAR58192	[Gln25]-hPTH(1-36)
322	24	70.6	36	15	AAR58201	[Ala10] -hPTH(1-36)
323	23	67.6	34	13	AAR22292	Human parathyroid
324	23	67.6	34	13	AAR22294	Human parathyroid
325	23	67.6	34	13	AAR22296	Human parathyroid
326	23	67.6	34	18	AAW08108	Human parathyroid
327	23	67.6	34	18	AAW08113	Human PTH derivati
328	23	67.6	34	18	AAW08117	Human PTH derivati
329	23	67.6	34	18	AAW17949	Human parathyroid
330	23	67.6	34	18	AAW17941	Human parathyroid
331	23	67.6	34	18	AAW17945	Human parathyroid
332	23	67.6	34	18	AAW17939	Human parathyroid
333	23	67.6	34	18	AAW17950	Human PTH analogue
334	23	67.6	34	19	AAW67274	Parathyroid hormon
335	23	67.6	34	19	AAW67276	Parathyroid hormon

336	23	67.6	34	19	AAW67280	Parathyroid hormon
337	23	67.6	34	19	AAW67284	Parathyroid hormon
338	23	67.6	34	19	AAW67285	Parathyroid hormon
339	23	67.6	34	19	AAW67288	Parathyroid hormon
340	23	67.6	34	19	AAW67289	Parathyroid hormon
341	23	67.6	34	19	AAW67294	Parathyroid hormon
342	23	67.6	34	19	AAW67295	Parathyroid hormon
343	23	67.6	34	19	AAW67296	Parathyroid hormon
343	23	67.6	34	19	AAW67303	Parathyroid hormon
	23	67.6	34	21	ABJ10713	Human parathyroid
345		67.6	34	21	ABJ10737	Human parathyroid
346	23		34 34	21	ABJ10769	Human parathyroid
347	23	67.6	34 34	23	AAU73029	Parathyroid hormon
348	23	67.6				Parathyroid hormon
349	23	67.6	34	23	AAU73030	Parathyroid hormon
350	23	67.6	35	23	AAU73173	[Ala11] -hPTH(1-36)
351	23	67.6	36	15	AAR58271	
352	22	64.7	30	23	AAU73136	Parathyroid hormon
353	22	64.7	30	23	AAU73137	Parathyroid hormon
354	22	64.7	33	9	AAP82176	Sequence of parath
355	22	64.7	34	11	AAR08300	Human parathyroid
356	22	64.7	34	14	AAR34358	Human parathyroid
357	22	64.7	34	14	AAR34353	Human parathyroid
358	22	64.7	34	14	AAR34354	Human parathyroid
359	22	64.7	34	14	AAR34355	Human parathyroid
360	22	64.7	34	14	AAR34356	Human parathyroid
361	22	64.7	34	14	AAR34357	Human parathyroid
362	22	64.7	34	14	AAR34359	Human parathyroid
363	22	64.7	34	14	AAR34360	Human parathyroid
364	22	64.7	34	14	AAR34361	Human parathyroid
365	22	64.7	34	14	AAR34362	Human parathyroid
366	22	64.7	34	14	AAR34363	Human parathyroid
367	22	64.7	34	14	AAR34364	Human parathyroid
368	22	64.7	34	14	AAR34365	Human parathyroid
369	22	64.7	34	14	AAR34366	Human parathyroid
370	22	64.7	34	14	AAR34367	Human parathyroid
371	22	64.7	34	14	AAR34368	Human parathyroid
372	22	64.7	34	15	AAR58187	[Phe23,His25,His26
373	22	64.7	34	15	AAR58189	[F23,H25,H26,L27,I
374	22	64.7	34	18	AAW08121	Human PTH derivati
375	22	64.7	34	18	AAW08115	Human PTH derivati
376	22	64.7	34	18	AAW08116	Human PTH derivati
377	22	64.7	34	18	AAW17944	Human parathyroid
378	22	64.7	34	18	AAW17959	Human parathyroid
379	22	64.7	34	19	AAW67279	Parathyroid hormon
380	22	64.7	34	22	AAB91085	Parathyroid hormon
381	22	64.7	34	23	AAU73100	Parathyroid hormon
382	22	64.7	34	23	AAU73101	Parathyroid hormon
383	22	64.7	36	15	AAR58285	[Ala23]-hPTH(1-36)
384	22	64.7	36	15	AAR58203	[Ala12]-hPTH(1-36)
385	22	64.7	36	15	AAR58188	[Phe23]-hPTH(1-36)
386	22	64.7	38	15	AAR58089	[Arg12] -hPTH(1-38)
387	22	64.7	38	15	AAR58090	[Ser12] -hPTH(1-38)
388	21	61.8	28	13	AAR22066	Modified [D-Trp_12
389	21	61.8	30	23	AAU73138	Parathyroid hormon
390	21	61.8	30	23	AAU73139	Parathyroid hormon
391	21	61.8	31	19	AAW42063	Human parathyroid
392	21	61.8	31	19	AAW42065	Human parathyroid
						* *

202	0.1	61.0	21	10	77447066	Human parathyroid
393	21	61.8		19	AAW42066	
394	21	61.8		11	AAR08303	Human parathyroid
395	21	61.8	34	15	AAR58193	[L8,D10,K11,T33,A3
396	21	61.8	34	15	AAR58194	[A1, H5, L8, D10, K11,
397	21	61.8	34	18	AAW08112	Human PTH derivati
398	21	61.8	34	19	AAW67305	Parathyroid hormon
399	21	61.8	34	19	AAW67302	Parathyroid hormon
400	21	61.8	34	19	AAW67304	Parathyroid hormon
401	21	61.8	34	22	AAB96893	Rat parathyroid ho
402	21	61.8	34	22	AAB96930	Rat parathyroid ho
403	21	61.8	34	23	AAU73102	Parathyroid hormon
404	21	61.8	34	23	AAU73103	Parathyroid hormon
405	21	61.8	34	23	AAU73104	Parathyroid hormon
	21	61.8	34	23		Parathyroid hormon
406					AAU73140	
407	21	61.8	36	15	AAR58204	[Gln13] -hPTH(1-36)
408	21	61.8	36	15	AAR58205	[His13] -hPTH(1-36)
409	21	61.8	36	15	AAR58206	[Leu13] -hPTH(1-36)
410	21	61.8	36	15	AAR58207	[Ala13] -hPTH(1-36)
411	21	61.8	36	15	AAR58217	[Ala22] -hPTH(1-36)
412	21	61.8	38	15	AAR58145	[Gly22] -hPTH(1-38)
413	21	61.8	38	15	AAR58146	[Leu22]-hPTH(1-38)
414	21	61.8	38	15	AAR58147	[His22]-hPTH(1-38)
415	21	61.8	38	15	AAR58148	[Ala22]-hPTH(1-38)
416	21	61.8	38	15	AAR58149	[Ile22]-hPTH(1-38)
417	21	61.8	38	15	AAR58150	[Val22] -hPTH(1-38)
418	21	61.8	38	15	AAR58151	[Ser22] -hPTH(1-38)
419	21	61.8	38	15	AAR58152	[Arg22] -hPTH(1-38)
						
420	21	61.8	38	15	AAR58091	[Cys13] -hPTH(1-38)
421	21	61.8	38	15	AAR58092	[Ile13]-hPTH(1-38)
422	21	61.8	38	15	AAR58093	[Asn13] -hPTH(1-38)
423	21	61.8	38	15	AAR58094	[Trp13]-hPTH(1-38)
424	21	61.8	38	15	AAR58095	[Asp13] -hPTH(1-38)
425	21	61.8	38	15	AAR58096	[Val13] -hPTH(1-38)
426	21	61.8	38	15	AAR58097	[Thr13]-hPTH(1-38)
427	21	61.8	38	15	AAR58098	[Ser13]-hPTH(1-38)
428	21	61.8	38	15	AAR58099	[Tyr13]-hPTH(1-38)
429	21	61.8	38	15	AAR58100	[Met13]-hPTH(1-38)
430	21	61.8	38	15	AAR58101	[Gln13]-hPTH(1-38)
431	21	61.8	38	15	AAR58102	[Leu13]-hPTH(1-38)
432	21	61.8	38	15	AAR58103	[Ala13] -hPTH(1-38)
433	21	61.8	38	15	AAR58104	[Gly13] -hPTH(1-38)
434	20	58.8	30	6	AAP50665	Human parathyroid
435	20	58.8	34	18	AAW24276	Parathyroid hormon
436	20	58.8	34	18	AAW08129	Human PTH derivati
437	20	58.8	34	22	AAB84771	Parathyroid hormon
438	20	58.8	34	22	AAB84826	Parathyroid hormon
439	20	58.8	34	22	AAB96916	Parathyroid hormon
440	20	58.8	34	22	AAB96919	Parathyroid hormon
441	20	58.8	36	15	AAR58209	[Ala14] -hPTH(1-36)
442	20	58.8	36	15	AAR58216	[Ala21] -hPTH(1-36)
443	20	58.8	38	15	AAR58037	[Ser14]-hPTH(1-38)
444	20	58.8	38	15	AAR58138	[Ala21]-hPTH(1-38)
445	20	58.8	38	15	AAR58139	[Gly21]-hPTH(1-38)
446	20	58.8	38	15	AAR58140	[Phe21] -hPTH(1-38)
447	20	58.8	38	15	AAR58141	[Leu21] -hPTH(1-38)
448	20	58.8	38	15	AAR58142	[Asn21] -hPTH(1-38)
449	20	58.8	38	15	AAR58143	[Gln21] -hPTH(1-38)
117	20	20.0	50		121000143	[071121] HE HI(1-30)

450	20	58.8	38	15	AAR58144	[Ser21]-hPTH(1-38)
451	20	58.8	38	15	AAR58105	[Val14]-hPTH(1-38)
452	20	58.8	38	15	AAR58106	[Ala14]-hPTH(1-38)
453	20	58.8	38	15	AAR58107	[Lys14]-hPTH(1-38)
454	20	58.8	38	15	AAR58108	[Arg14]-hPTH(1-38)
455	20	58.8	38	15	AAR58109	[Thr14]-hPTH(1-38)
456	20	58.8	38	15	AAR58110	[Ile14]-hPTH(1-38)
457	20	58.8	38	15	AAR58111	[Tyr14]-hPTH(1-38)
458	19	55.9	30	23	AAU73052	Parathyroid hormon
459	19	55.9	30	23	AAU73053	Parathyroid hormon
460	19	55.9	31	17	AAR88831	Human parathyroid
461	19	55.9	34	18	AAW17942	Human parathyroid
462	19	55.9	34	18	AAW17952	Human parathyroid
463	19	55.9	34	19	AAW67277	Parathyroid hormon
464	19	55.9	34	19	AAW67287	Parathyroid hormon
465	19	55.9	34	19	AAW48394	Human PTH/PTHrP hy
466	19	55.9	35	23	AAU73174	Parathyroid hormon
467	19	55.9	36	15	AAR58274	[Ala15] -hPTH(1-36)
468	19	55.9	36	15	AAR58279	[Lys20] -hPTH(1-36)
469	19	55.9	38	15	AAR58061	[Ile15] -hPTH(1-38)
470	19	55.9	38	15	AAR58137	[Phe20] -hPTH(1-38)
471	19	55.9	38	15	AAR58112	[Tyr15] -hPTH (1-38)
472	19	55.9	38	15	AAR58113	[Arg15] -hPTH(1-38)
473	19	55.9	38	15	AAR58114	[Val15] hrm(1 30)
473 474	18	52.9	28	13	AAR22058	Modified bovine PT
475	18	52.9	28	21	AAX22036 AAY98046	Human parathyroid
475 476	18	52.9	28 28	23	AAU73046	Parathyroid hormon
	18	52.9	30	23	AAU73054	Parathyroid hormon
477	18	52.9	30	22	AAB91096	Parathyroid hormon
478			32 32	23		Bovine parathyroid
479	18 18	52.9 52.9	32	23	AAE23739	Bovine PTH peptide
480	18	52.9 52.9	32	23	AAE18402 AAU73042	Parathyroid hormon
481	18	52.9	34	23 11	AAR07918	Bovine parathyroid
482						
483	18	52.9	34	11	AAR08299	Bovine parathyroid
484	18	52.9	34	13	AAR22297	Human parathyroid
485	18	52.9	34	14	AAR41551	[Thr16]hPTH (1-34)
486	18	52.9	34	14	AAR41552	[Glu16]hPTH (1-34)
487	18	52.9	34	14	AAR41553	[Lys16] hPTH (1-34)
488	18	52.9	34	14	AAR41571	[D-Lys16] hPTH (1-3
489	18	52.9	34	14	AAR41573	[Gln16]hPTH (1-34)
490	18	52.9	34	14	AAR41574	[Ser16]hPTH (1-34)
491	18	52.9	34	14	AAR41575	[Gly16] hPTH (1-34)
492	18	52.9	34	14	AAR41576	[Lys16]hPTH (1-34)
493	18	52.9	34	17	AAR99979	Bovine parathyroid
494	18	52.9	34	18	AAW08124	Human PTH derivati
495	18	52.9	34	18	AAW08111	Human PTH derivati
496	18	52.9	34	18	AAW19995	Cyclised bovine pa
497	18	52.9	34	18	AAW20001	Cyclised bovine pa
498	18	52.9	34	18	AAW20007	Cyclised bovine pa
499	18	52.9	34	18	AAW17953	Human parathyroid
500	18	52.9	34	18	AAW17954	Human parathyroid
501	18	52.9	34	18	AAW17963	Human PTH analogue
502	18	52.9	34	19	AAW61659	Parathyroid hormon
503	18	52.9	34	19	AAW65976	Bovine parathyroid
504	18	52.9	34	19	AAW42615	Bovine parathyroid
505	18	52.9	34	20	AAW81872	Bovine PTH N-termi
506	18	52.9	34	22	AAB84775	Parathyroid hormon

507	18	52.9	34	22	AAB96922	Parathyroid hormon
508	18	52.9	34	23	AAE23738	Bovine parathyroid
509	18	52.9	34	23	AAE18394	Bovine PTH peptide
510	18	52.9	34	23	AAU73031	Parathyroid hormon
511	18	52.9	34	23	AAU73034	Parathyroid hormon
512	18	52.9	35	23	AAU73175	Parathyroid hormon
513	18	52.9	36	15	AAR58275	[Ala16] -hPTH(1-36)
514	18	52.9	36	15	AAR58214	[Ala19] -hPTH(1-36)
515	18	52.9	37	22	AAB86230	Bovine parathyroid
516	18	52.9	37	22	AAB86233	Canine parathyroid
517	18	52.9	37	23	ABB82204	Bovine parathyroid
517	18	52.9	38	15	AAR58036	[Gln16]-hPTH(1-38)
518	18	52.9	38	15	AAR58136	[Arg19] -hPTH(1-38)
520	18	52.9	38	15	AAR58115	[Lys16] -hPTH(1-38)
520 521	18	52.9	38	15	AAR58115 AAR58116	[Ser16] -hPTH(1-38)
		52.9	38	15	AAR58117	[Leu16] hr H (1 36)
522 523	18 18	52.9	38	15	AAR58117 AAR58118	[Ala16] -hPTH(1-38)
		52.9	38	15	AAR58118 AAR58119	[Gly16] -hPTH(1-38)
524	18	52.9	38	15	AAR58113 AAR58123	[Ser19] -hPTH(1-38)
525	18			15	AAR58123 AAR58124	[Lys19] -hPTH(1-38)
526	18	52.9	38 38	15		[Leu19] -hPTH(1-38)
527	18	52.9			AAR58125	[Ala19] -hPTH(1-38)
528	18	52.9	38	15	AAR58126	[Tyr19] -hPTH(1-38)
529	18	52.9	38	15	AAR58127	[Met19] -hPTH(1-38)
530	18	52.9	38	15	AAR58128	
531	18	52.9	38	15	AAR58129	[His19] -hPTH(1-38) [Val19] -hPTH(1-38)
532	18	52.9	38	15	AAR58130	
533	18	52.9	38	15	AAR58131	[Gly19] -hPTH(1-38)
534	18	52.9	38	15	AAR58132	[Pro19] -hPTH(1-38)
535	18	52.9	38	15	AAR58133	[Asp19] -hPTH(1-38)
536	18	52.9	38	15	AAR58134	[Ile19]-hPTH(1-38)
537	18	52.9	38	15	AAR58135	[Val19,Gln24]-hPTH
538	17	50.0	28	13	AAR22059	Modified [Tyr_34]b
539	17	50.0	28	13	AAR22060	Modified [D-Trp_12
540	17	50.0	28	21	AAY98041	Human parathyroid
541	17	50.0	28	21	AAY98042	Human parathyroid
542	17	50.0	28	21	AAY98044	Human parathyroid
543	17	50.0	28	22	AAB91115	Parathyroid hormon
544	17	50.0	28	23	AAE18405	Bovine PTH peptide
545	17	50.0	28	23	AAU73047	Parathyroid hormon
546	17	50.0	28	23	AAU73050	Parathyroid hormon
547	17	50.0	31	5	AAP40510	Bovine parathyroid
548	17	50.0	31	21	AAY96973	Parathyroid hormon
549	17	50.0	31	21	AAY96974	Parathyroid hormon
550	17	50.0	34	11	AAR07921	Bovine parathyroid
551	17	50.0	34	11	AAR08302	Bovine parathyroid
552	17	50.0	34	13	AAR22291	Human parathyroid
553	17	50.0	34	14	AAR41577	[Lys16, Asp17]hPTH
554	17	50.0	34	14	AAR41578	[Lys14,15,16,17]hP
555	17	50.0	34	14	AAR41579	[Lys15,15,17] hPTH
556	17	50.0	34	14	AAR41580	[Lys16,17]hPTH (1-
557	17	50.0	34	14	AAR41581	[Arg16,17] hPTH (1-
558	17	50.0	34	14	AAR41582	[Arg15,16,17] hPTH
559	17	50.0	34	17	AAW14308	Cyclic parathyroid
560	17	50.0	34	17	AAW14309	Cyclic parathyroid
561	17	50.0	34	17	AAW14310	Cyclic parathyroid
562	17	50.0	34	17	AAW14311	Cyclic parathyroid
563	17	50.0	34	17	AAW14312	Cyclic parathyroid

564	17	50.0	34	17	AAW14313	Cyclic parathyroid
565	17	50.0	34	17	AAW14314	Cyclic parathyroid
566	17	50.0	34	17	AAW14315	Cyclic parathyroid
567	17	50.0	34	18	AAW08122	Human PTH derivati
568	17	50.0	34	18	AAW08123	Human PTH derivati
569	17	50.0	34	18	AAW17958	Human parathyroid
570	17	50.0	34	19	AAW67298	Parathyroid hormon
571	17	50.0	34	19	AAW67300	Parathyroid hormon
572	17	50.0	34	19	AAW67301	Parathyroid hormon
573	17	50.0	34	21	ABJ10742	Human parathyroid
574	17	50.0	34	22	AAB91087	Parathyroid hormon
575	17	50.0	36	15	AAR58277	[Nle18] -hPTH(1-36)
576	17	50.0	36	15	AAR58212	[Ala17]-hPTH(1-36)
577	17	50.0	36	15	AAR58183	[Gln18] -hPTH(1-36)
578	17	50.0	36	15	AAR58184	[Tyr18] -hPTH(1-36)
579	17	50.0	36	15	AAR58185	[Lys18] -hPTH(1-36)
580	17	50.0	36	15	AAR58186	[Ala18] -hPTH(1-36)
		50.0	38	15	AAR58120	[Ala17] -hPTH(1-38)
581	17			15		[Met17] -hPTH(1-38)
582	17	50.0	38		AAR58121	[Ile17] -hPTH(1-38)
583	17	50.0	38	15	AAR58122	_
584	16	47.1	28	21	ABJ10775	Human parathyroid
585	16	47.1	28	22	AAB81078	Human parathyroid
586	16	47.1	28	23	AAU73105	Parathyroid hormon
587	16	47.1	28	23	AAU73106	Parathyroid hormon
588	16	47.1	31	22	AAB81077	Human parathyroid
589	16	47.1	34	13	AAR22295	Human parathyroid
590	16	47.1	34	15	AAR58239	Isopropyl-[Nle8,18
591	16	47.1	34	15	AAR58241	[Nle8,18,D-Asn33,D
592	16	47.1	34	17	AAW14316	Cyclic parathyroid
593	16	47.1	34	17	AAR99981	Porcine parathyroi
594	16	47.1	34	19	AAW61660	Parathyroid hormon
595	16	47.1	34	19	AAW65977	Porcine parathyroi
596	16	47.1	34	19	AAW42616	Porcine parathyroi
597	16	47.1	34	20	AAW92218	Analogue of parath
598	16	47.1	34	20	AAW92219	Analogue of parath
599	16	47.1	34	20	AAY03920	Analogue of parath
600	16	47.1	34	20	AAY03921	Analogue of parath
601	16	47.1	34	20	AAY03922	Analogue of parath
602	16	47.1	34	20	AAY03923	Analogue of parath
603	16	47.1	34	20	AAY03924	Analogue of parath
604	16	47.1	34	20	AAY03925	Analogue of parath
605	16	47.1	34	20	AAY03926	Analogue of parath
606	16	47.1	34	20	AAY03927	Analogue of parath
607	16	47.1	34	20	AAY03928	Analogue of parath
608	16	47.1	34	20	AAY03929	Analogue of parath
609	16	47.1	34	20	AAY03930	Analogue of parath
610	16	47.1	34	20	AAY03931	Analogue of parath
611	16	47.1	34	20	AAY03932	Analogue of parath
						Analogue of parath
612 613	16	47.1	34	20 20	AAY03933 AAW92236	Analogue of parath
613	16	47.1	34			Analogue of parath
614	16	47.1	34	20	AAW92237	
615	16	47.1	34	20	AAW92238	Analogue of parath
616	16	47.1	34	20	AAW92239	Analogue of parath
617	16	47.1	34	20	AAW92240	Analogue of parath
618	16	47.1	34	20	AAW92241	Analogue of parath
619	16	47.1	34	20	AAW92242	Analogue of parath
620	16	47.1	34	20	AAW92243	Analogue of parath

621	16	47.1	34	20	AAW92244	Analogue of parath
622	16	47.1	34	20	AAW92245	Analogue of parath
623	16	47.1	34	20	AAW92246	Analogue of parath
624	16	47.1	34	20	AAW92247	Analogue of parath
625	16	47.1	34	20	AAW92248	Analogue of parath
626	16	47.1	34	20	AAW92249	Analogue of parath
627	16	47.1	34	20	AAW92250	Analogue of parath
628	16	47.1	34	20	AAY03919	Analogue of parath
629	16	47.1	34	20	AAW92220	Analogue of parath
630	16	47.1	34	20	AAW92221	Analogue of parath
631	16	47.1	34	20	AAW92222	Analogue of parath
632	16	47.1	34	20	AAW92223	Analogue of parath
633	16	47.1	34	20	AAW92224	Analogue of parath
634	16	47.1	34	20	AAW92225	Analogue of parath
635	16	47.1	34	20	AAW92226	Analogue of parath
636	16	47.1	34	20	AAW92227	Analogue of parath
637	16	47.1	34	20	AAW92228	Analogue of parath
638	16	47.1	34	20	AAW92229	Analogue of parath
639	16	47.1	34	20	AAW92230	Analogue of parath
640	16	47.1	34	20	AAW92231	Analogue of parath
641	16	47.1	34	20	AAW92232	Analogue of parath
642	16	47.1	34	20	AAW92233	Analogue of parath
643	16	47.1	34	20	AAW92234	Analogue of parath
644	16	47.1	34	20	AAW92235	Analogue of parath
645	16	47.1	34	20	AAY03947	Analogue of parath
646	16	47.1	34	20	AAY03948	Analogue of parath
647	16	47.1	34	20	AAW92204	Analogue of parath
648	16	47.1	34	20	AAW92205	Analogue of parath
649	16	47.1	34	20	AAW92207	Analogue of parath
650	16	47.1	34	20	AAW92208	Analogue of parath
651	16	47.1	34	20	AAW92209	Analogue of parath
652	16	47.1	34	20	AAW92210	Analogue of parath
653	16	47.1	34	20	AAW92211	Analogue of parath
654	16	47.1	34	20	AAW92212	Analogue of parath
655	16	47.1	34	20	AAW92213	Analogue of parath
656	16	47.1	34	20	AAW92214	Analogue of parath
657	16	47.1	34	20	AAW92215	Analogue of parath
658	16	47.1	34	20	AAW92216	Analogue of parath
659	16	47.1	34	20	AAW92217	Analogue of parath
660	16	47.1	34	20	AAW92206	Analogue of parath
661	16	47.1	34	20	AAW92203	Analogue of parath
662	16	47.1	34	20	AAY03934	Analogue of parath
663	16	47.1	34	20	AAY03935	Analogue of parath
664	16	47.1	34	20	AAY03936	Analogue of parath
665	16	47.1	34	20	AAY03937	Analogue of parath
666	16	47.1	34	20	AAY03938	Analogue of parath
667	16	47.1	34	20	AAY03939	Analogue of parath
668	16	47.1	34	20	AAY03940	Analogue of parath
669	16	47.1	34	20	AAY03941	Analogue of parath
670	16	47.1	34	20	AAY03942	Analogue of parath
671	16	47.1	34	20	AAY03943	Analogue of parath
672	16	47.1	34	20	AAY03944	Analogue of parath
673	16	47.1	34	20	AAY03945	Analogue of parath
674	16	47.1	34	20	AAY03946	Analogue of parath
675	16	47.1	34	20	AAY03949	Analogue of parath
676	16	47.1	34	20	AAY03950	Analogue of parath
677	16	47.1	34	20	AAY03951	Analogue of parath

C70	16	47.1	34	20	AAY03952	Analogue of parath
678			34	20	AAY03953	Analogue of parath
679	16	47.1	34	20	AAY03954	Analogue of parath
680	16	47.1		20	AAY03955	Analogue of parath
681	16	47.1	34		AAY03956	Analogue of parath
682	16	47.1	34	20		Analogue of parath
683	16	47.1	34	20	AAW92198	Analogue of parath
684	16	47.1	34	20	AAW92199	Analogue of parath
685	16	47.1	34	20	AAW92200	Analogue of parath
686	16	47.1	34	20	AAW92201	
687	16	47.1	34	20	AAW92202	Analogue of parath
688	16	47.1	34	20	AAW92183	Analogue of parath
689	16	47.1	34	20	AAW92184	Analogue of parath
690	16	47.1	34	20	AAW92185	Analogue of parath
691	16	47.1	34	20	AAW92186	Analogue of parath
692	16	47.1	34	20	AAW92187	Analogue of parath
693	16	47.1	34	20	AAW92167	Analogue of parath
694	16	47.1	34	20	AAW92188	Analogue of parath
695	16	47.1	34	20	AAW92189	Analogue of parath
696	16	47.1	34	20	AAW92190	Analogue of parath
697	16	47.1	34	20	AAW92191	Analogue of parath
698	16	47.1	34	20	AAW92192	Analogue of parath
699	16	47.1	34	20	AAW92193	Analogue of parath
700	16	47.1	34	20	AAW92194	Analogue of parath
701	16	47.1	34	20	AAW92195	Analogue of parath
702	16	47.1	34	20	AAW92196	Analogue of parath
703	16	47.1	34	20	AAW92197	Analogue of parath
704	16	47.1	34	20	AAW92166	Analogue of parath
705	16	47.1	34	20	AAW92168	Analogue of parath
706	16	47.1	34	20	AAW92169	Analogue of parath
707	16	47.1	34	20	AAW92170	Analogue of parath
708	16	47.1	34	20	AAW92171	Analogue of parath
709	16	47.1	34	20	AAW92172	Analogue of parath
710	16	47.1	34	20	AAW92173	Analogue of parath
711	16	47.1	34	20	AAW92174	Analogue of parath
712	16	47.1	34	20	AAW92175	Analogue of parath
713	16	47.1	34	20	AAW92176	Analogue of parath
714	16	47.1	34	20	AAW92177	Analogue of parath
715	16	47.1	34	20	AAW92178	Analogue of parath
716	16	47.1	34		AAW92179	Analogue of parath
717	16	47.1	34	20	AAW92180	Analogue of parath
718	16	47.1	34	20	AAW92181	Analogue of parath
719	16	47.1	34	20	AAW92182	Analogue of parath
720	16	47.1	34	20	AAW92152	Analogue of parath
721	16	47.1	34	20	AAW92150	Analogue of parath
722	16	47.1	34	20	AAW92151	Analogue of parath
723	16	47.1	34	20	AAW92153	Analogue of parath
723	16	47.1	34	20	AAW92154	Analogue of parath
725	16	47.1	34	20	AAW92155	Analogue of parath
726	16	47.1	34	20	AAW92156	Analogue of parath
726 727	16	47.1	34	20	AAW92157	Analogue of parath
727	16	47.1	34	20	AAW92157 AAW92158	Analogue of parath
		47.1	34 34	20	AAW92156 AAW92159	Analogue of parath
729	16		34	20		Analogue of parath
730	16 16	47.1			AAW92160	Analogue of parath
731	16 16	47.1	34	20	AAW92161	Analogue of parath
732	16	47.1	34	20	AAW92162	Analogue of parath
733	16	47.1	34	20	AAW92164	Analogue of parath
734	16	47.1	34	20	AAW92164	marogue or parach

735	16	47.1	34 20		Analogue of parath
736	16	47.1	34 20	AAW92148	Analogue of parath
737	16	47.1	34 20	AAW92149	Analogue of parath
738	16	47.1	34 20	AAW81873	Porcine PTH N-term
739	16	47.1	34 21	ABJ10735	Human parathyroid
740	16	47.1	34 21	ABJ10739	Human parathyroid
741	16	47.1	34 21	ABJ10740	Human parathyroid
742	16	47.1	34 21		Human parathyroid
743	16	47.1	34 22		Parathyroid hormon
744	16	47.1	34 23		Parathyroid hormon
745	16	47.1	35 2	AAP10140	h-PTH antigen. Sy
746	16	47.1	36 15		[L8,D10,K11,L18]-h
747	16	47.1	36 15		[L8,D10,K11,A17,L1
748	16	47.1	36 15		[L8,Q18]-hPTH(1-36
	16	47.1	36 15		[L8,D10,A16,Q18]-h
749		47.1	36 15		[Aib3, Gln18]-hPTH
750	16				[L8,D10,K11,Q18]-h
751	16	47.1	36 15		[L8,D10,K11,Q10] II
752	16	47.1	36 15		
753	16	47.1	36 15		[A1,A3,L8,Q18]-hPT
754	16	47.1	36 15		[L8,K11,Q18]-hPTH(
755	16	47.1	36 15		Isopropyl-[L8,D10,
756	16	47.1	36 15		[L8, Y18] - hPTH(1-36
757	16	47.1	36 15		[1-amino-cyclopent
758	16	47.1	37 22		Porcine parathyroi
759	15	44.1	28 13		Modified [Nle_8,18
760	15	44.1	28 13		Modified [Nle_8,18
761	15	44.1	28 13		Modified [Nle_8,_1
762	15	44.1	28 13		Modified [Nle_8,_1
763	15	44.1	28 21		Human parathyroid
764	15	44.1	28 23		Bovine PTH peptide
765	15	44.1	28 23		Parathyroid hormon
766	15	44.1	28 23		Parathyroid hormon
767	15	44.1	28 23		Parathyroid hormon
768	15	44.1	28 23		Parathyroid hormon
769	15	44.1	28 23	AAU73108	Parathyroid hormon
770	15	44.1	28 23		Parathyroid hormon
771	15	44.1	30 22		Parathyroid hormon
772	15	44.1	30 22	AAB91092	Parathyroid hormon
773	15	44.1	30 23	AAU73059	Parathyroid hormon
774	15	44.1	31 5	AAP40511	Bovine parathyroid
775	15	44.1	31 5	AAP40761	Human parathyroid
776	15	44.1	31 21	. AAY96975	Parathyroid hormon
777	15	44.1	32 22	AAB91088	Parathyroid hormon
778	15	44.1	32 22	AAB91090	Parathyroid hormon
779	15	44.1	32 22	AAB91091	Parathyroid hormon
780	15	44.1	32 23	AAE18403	Bovine PTH peptide
781	15	44.1	32 23	3 AAU73041	Parathyroid hormon
782	15	44.1	32 23	3 AAU73043	Parathyroid hormon
783	15	44.1	34 6	AAP50517	Sequence of methio
784	15	44.1	34 13	L AAR07924	Bovine parathyroid
785	15	44.1	34 13	L AAR07925	Human parathyroid
786	15	44.1	34 13		Bovine parathyroid
787	15	44.1	34 13	L AAR08306	Human parathyroid
788	15	44.1	34 14	AAR41561	[Lys16, Gln27]hPTH
789	15	44.1	34 14	AAR41562	[Orn16, Gln27]hPTH
790	15	44.1	34 14	AAR41563	[Hci16, Gln27]hPTH
791	15	44.1	34 14	AAR41564	[Asp16, Gln27]hPTH

792	15	44.1	34	14	AAR41565	[Arg16, Gln27]hPTH
792	15	44.1	34	15	AAR45528	Parathyroid hormon
794	15	44.1	34	16	AAR69055	PTH analogue with
79 4 795	15	44.1	34	18	AAW13352	Truncated parathyr
796	15	44.1	34	18	AAW12651	Parathyroid hormon
		44.1	34	18	AAW08130	Human PTH derivati
797	15 15		34	18	AAW08130 AAW08132	Human PTH derivati
798		44.1	34 34	18	AAW20004	Cyclised [Nle 8,18
799	15	44.1				Cyclised [Nle 8,18
800	15	44.1	34	18	AAW19997	Cyclised [Nle 8,18
801	15	44.1	34	18	AAW19998	Cyclised [Nle 8,18
802	15	44.1	34	18	AAW20003	Cyclised [Nle 8,18
803	15	44.1	34	18	AAW20009	Cyclised [Nle 8,18
804	15	44.1	34	18	AAW20010	Human PTH analogue
805	15	44.1	34	18	AAW17940	Human PTH analogue
806	15	44.1	34	18	AAW17967	Human PTH analogue
807	15	44.1	34	18	AAW17970	_
808	15	44.1	34	18	AAW17964	Human PTH analogue
809	15	44.1	34	18	AAW17956	Human parathyroid
810	15	44.1	34	18	AAW17962	Human PTH analogue
811	15	44.1	34	19	AAW67275	Parathyroid hormon
812	15	44.1	34	19	AAW61725	Parathyroid hormon
813	15	44.1	34	19	AAW66053	Parathyroid hormon
814	15	44.1	34	19	AAW42602	Parathyroid hormon
815	15	44.1	34	19	AAW48395	Human PTH/PTHrP hy
816	15	44.1	34	20	AAW74396	Modified parathyro
817	15	44.1	34	20	AAW81945	Synthetic PTH and
818	15	44.1	34	21	ABJ10705	Human parathyroid
819	15	44.1	34	21	ABJ10707	Human parathyroid
820	15	44.1	34	21	ABJ10708	Human parathyroid
821	15	44.1	34	21	ABJ10709	Human parathyroid
822	15	44.1	34	21	ABJ10710	Human parathyroid
823	15	44.1	34	21	ABJ10711	Human parathyroid
824	15	44.1	34	21	ABJ10715	Human parathyroid
825	15	44.1	34	21	ABJ10716	Human parathyroid
826	15	44.1	34	21	ABJ10718	Human parathyroid
827	15	44.1	34	21	ABJ10720	Human parathyroid
828	15	44.1	34	21	ABJ10721	Human parathyroid
829	15	44.1	34	21	ABJ10723	Human parathyroid
830		44.1	34	21		Human parathyroid
831	15	44.1	34	21	ABJ10726	Human parathyroid
832	15	44.1	34	21	ABJ10728	Human parathyroid
833	15	44.1	34	21	ABJ10731	Human parathyroid
834	15	44.1	34	21	ABJ10732	Human parathyroid
835	15	44.1	34	21	ABJ10734	Human parathyroid
836	15	44.1	34	21	ABJ10738	Human parathyroid
837	15	44.1	34	21	ABJ10741	Human parathyroid
838	15	44.1	34	21	ABJ10744	Human parathyroid
839	15	44.1	34	21	ABJ10745	Human parathyroid
840	15	44.1	34	21	ABJ10746	Human parathyroid
841	15	44.1	34	21	ABJ10747	Human parathyroid
842	15	44.1	34	21	ABJ10748	Human parathyroid
843	15	44.1	34	21	ABJ10749	Human parathyroid
844	15	44.1	34	21	ABJ10750	Human parathyroid
845	15	44.1	34	21	ABJ10751	Human parathyroid
846	15	44.1	34	21	ABJ10752	Human parathyroid
847	15	44.1	34	21	ABJ10753	Human parathyroid
848	15	44.1	34	21	ABJ10754	Human parathyroid

849	15	44.1	34	21	ABJ10755	Human parathyroid
850	15	44.1	34	21	ABJ10756	Human parathyroid
851	15	44.1	34	21	ABJ10761	Human parathyroid
852	15	44.1	34	21	ABJ10762	Human parathyroid
853	15	44.1	34	21	ABJ10763	Human parathyroid
854	15	44.1	34	21	ABJ10764	Human parathyroid
855	15	44.1	34	21	ABJ10765	Human parathyroid
856	15	44.1	34	21	ABJ10766	Human parathyroid
857	15	44.1	34	21	ABJ10767	Human parathyroid
858	15	44.1	34	21	ABJ10768	Human parathyroid
859	15	44.1	34	21	ABJ10770	Human parathyroid
860	15	44.1	34	21	ABJ10771	Human parathyroid
861	15	44.1	34	21	ABJ10777	Human parathyroid
862	15	44.1	34	23	AAE18396	Bovine PTH peptide
863	15	44.1	34	23	AAE18397	Human PTH peptide
864	15	44.1	34	23	AAU73033	Parathyroid hormon
865	15	44.1	34	23	AAU73035	Parathyroid hormon
866	15	44.1	35	16	AAR74518	Parathyroid hormon
867	15	44.1	35	16	AAR74519	Parathyroid hormon
868	15	44.1	35	16	AAR74520	Parathyroid hormon
869	15	44.1	35	16	AAR74527	Human parathyroid
870	15	44.1	35	16	AAR74464	Parathyroid hormon
871	15	44.1	35	16	AAR74465	Parathyroid hormon
872	15	44.1	35	16	AAR74466	Parathyroid hormon
873	15	44.1	35	16	AAR74467	Parathyroid hormon
874	15	44.1	35	16	AAR74468	Parathyroid hormon
875	15	44.1	35	16	AAR74469	Parathyroid hormon
876	15	44.1	35	16	AAR74470	Parathyroid hormon
877	15	44.1	35	16	AAR74471	Parathyroid hormon
878	15	44.1	35	16	AAR74472	Parathyroid hormon
879	15	44.1	35	16	AAR74473	Parathyroid hormon
880	15	44.1	35	16	AAR74474	Parathyroid hormon
881	15	44.1	35	16	AAR74475	Parathyroid hormon
882	15	44.1	35	16	AAR74476	Parathyroid hormon
883	15	44.1	35	16	AAR74477	Parathyroid hormon
884	15	44.1	35	16	AAR74478	Parathyroid hormon
885	15	44.1	35	16	AAR74479	Parathyroid hormon
886	15	44.1	35	16	AAR74448	Parathyroid hormon
887	15	44.1	35	16	AAR74449	Parathyroid hormon
888	15	44.1	35	16	AAR74450	Parathyroid hormon
889	15	44.1	35	16	AAR74451	Parathyroid hormon
890	15	44.1	35	16	AAR74452	Parathyroid hormon
891	15	44.1	35	16	AAR74453	Parathyroid hormon
892	15	44.1	35	16	AAR74454	Parathyroid hormon
893	15	44.1	35	16	AAR74455	Parathyroid hormon
894	15	44.1	35	16	AAR74456	Parathyroid hormon
895	15	44.1	35	16	AAR74457	Parathyroid hormon
896	15	44.1	35	16	AAR74458	Parathyroid hormon
897	15	44.1	35	16	AAR74459	Parathyroid hormon
898	15	44.1	35	16	AAR74460	Parathyroid hormon
899	15	44.1	35	16	AAR74461	Parathyroid hormon
900	15	44.1	35	16	AAR74462	Parathyroid hormon
901	15	44.1	35	16	AAR74463	Parathyroid hormon
902	15	44.1	35	16	AAR74432	Parathyroid hormon
903	15	44.1	35	16	AAR74433	Parathyroid hormon
904	15	44.1	35	16	AAR74434	Parathyroid hormon
905	15	44.1	35	16	AAR74435	Parathyroid hormon
						-

						Devethered d hormon
906	15	44.1	35	16	AAR74436	Parathyroid hormon
907	15	44.1	35	16	AAR74437	Parathyroid hormon
908	15	44.1	35	16	AAR74438	Parathyroid hormon
909	15	44.1	35	16	AAR74439	Parathyroid hormon
910	15	44.1	35	16	AAR74440	Parathyroid hormon
911	15	44.1	35	16	AAR74441	Parathyroid hormon
912	15	44.1	35	16	AAR74442	Parathyroid hormon
913	15	44.1	35	16	AAR74443	Parathyroid hormon
914	15	44.1	35	16	AAR74444	Parathyroid hormon
915	15	44.1	35	16	AAR74445	Parathyroid hormon
916	15	44.1	35	16	AAR74446	Parathyroid hormon
917	15	44.1	35	16	AAR74447	Parathyroid hormon
918	15	44.1	35	16	AAR74429	Parathyroid hormon
919	15	44.1	35	16	AAR74430	Parathyroid hormon
920	15	44.1	35	16	AAR74431	Parathyroid hormon
					AAR7431 AAR74398	Parathyroid hormon
921	15	44.1	35	16		Parathyroid hormon
922	15	44.1	35	16	AAR74399	
923	15	44.1	35	16	AAR74400	Parathyroid hormon
924	15	44.1	35	16	AAR74394	Parathyroid hormon
925	15	44.1	35	16	AAR74395	Parathyroid hormon
926	15	44.1	35	16	AAR74396	Parathyroid hormon
927	15	44.1	35	16	AAR74397	Parathyroid hormon
928	15	44.1	36	15	AAR58041	[L8,D10,K11,S14,I1
929	15	44.1	36	15	AAR58043	[L8,Q16,D17,L18,R1
930	15	44.1	36	15	AAR58046	[L8,A16,D17,L18,A1
931	15	44.1	36	15	AAR58047	[L8,D10,A16,D17,L1
932	15	44.1	36	15	AAR58050	[L8,A16,D17,Q18,A1
933	15	44.1	36	15	AAR58051	[L8,A16,A17,Q18,A1
934	15	44.1	36	15	AAR58052	[L8,A17,Q18,A19]-h
935	15	44.1	36	15	AAR58067	[L8,A16,A17,A18,A1
936	15	44.1	36	15	AAR58069	Isopropyl-[L8,K(Is
937	15	44.1	36	15	AAR58070	Isopropyl-[L8,K(Is
938	15	44.1	36	15	AAR55822	[L8,D10,K11,A16,Q1
939	15	44.1	36	15	AAR55825	[L8,A16,Q18,A19]-h
940	15	44.1	36	15	AAR58086	[1-amino-cyclopent
941	14	41.2	28	23	AAU73066	Parathyroid hormon
942	14	41.2	30	23	AAU73057	Parathyroid hormon
943	14	41.2	30	23	AAU73060	Parathyroid hormon
		41.2	33	17	AAW15814	[Leu(8),Trp(10),Al
944	14				AAW13614 AAP82177	Sequence of parath
945	14	$41.2 \\ 41.2$	34 34	9 11	AAR07917	Rat parathyroid ho
946	14				AAR07917 AAR07920	Rat parathyroid ho
947	14	41.2	34	11		[Lys15,16 His27]hP
948	14	41.2	34	14	AAR41568	<u>-</u>
949	14	41.2	34	14	AAR41569	[Lys15, His27]hPTH
950	14	41.2	34	14	AAR41572	[Lys15,16,17, His2
951	14	41.2	34	15	AAR55817	[L8,Q18,T33,A34]-h
952	14	41.2	34	15	AAR55819	[L8,A16,Q18,T33,A3
953	14	41.2	34	15	AAR55821	[L8,D10,K11,Q18,T3
954	14	41.2	34	15	AAR55823	[L8,D10,K11,A16,Q1
955	14	41.2	34	15	AAR58021	[L8,D10,A16,Q18,T3
956	14	41.2	34	15	AAR58034	Isopropyl-[L8,K(Is
957	14	41.2	34	16	AAR62432	Accelerator peptid
958	14	41.2	34	17	AAW15813	[Leu(8), Trp(10), Al
959	14	41.2	34	17	AAW15815	[Leu(8), Trp(10), DL]
960	14	41.2	34	17	AAW15828	N-alpha-acylated [
961	14	41.2	34	17	AAR99980	Rat parathyroid ho
962	14	41.2	34	18	AAW19996	Cyclised rat parat

963	14	41.2	34	18	AAW20002
964	14	41.2	34	18	AAW20008
965	14	41.2	34	18	AAW17960
966	14	41.2	34	19	AAW48398
967	14	41.2	34	20	AAY02587
968	14	41.2	34	21	ABJ10757
969	14	41.2	34	22	AAB84777
970	14	41.2	34	22	AAB96897
971	14	41.2	34	22	AAB91100
972	14	41.2	34	23	AAU73037
973	14	41.2	34	24	ABP71489
974	14	41.2	34	24	ABP71499
975	14	41.2	35	16	AAR74515
976	14	41.2	35	16	AAR74516
977	14	41.2	35	16	AAR74517
978	14	41.2	35	16	AAR74480
979	14	41.2	35	16	AAR74401
980	14	41.2	35	16	AAR74409
981	14	41.2	35	16	AAR74412
982	14	41.2	37	22	AAB86231
983	13	38.2	32	22	AAB84835
984	13	38.2	32	22	AAB96906
985	13	38.2	34	15	AAR58195
986	13	38.2	34	15	AAR58045
987	13	38.2	34	15	AAR58049
988	13	38.2	34	15	AAR58056
989	13	38.2	34	15	AAR58058
990	13	38.2	34	15	AAR55818
991	13	38.2	34	18	AAW08131
992	13	38.2	34	21	ABJ10758
993	13	38.2	34	22	AAB84828
994	13	38.2	34	22	AAB96921
995	13	38.2	35	16	AAR74512
996	13	38.2	35	16	AAR74513
997	13	38.2	35	16	AAR74514
998	13	38.2	35	16	AAR74511
999	13	38.2	35	16	AAR74481
1000	13	38.2	35	16	AAR74482

Cyclised rat parat Cyclised rat parat Human PTH analogue Human PTH/PTHrP hy Parathyroid hormon Human parathyroid Native human parat Rat parathyroid ho Parathyroid hormon Parathyroid hormon Parathyroid hormon Rat parathyroid ho Parathyroid hormon Rat parathyroid ho Parathyroid hormon Parathyroid hormon [S14, I15, Q16, D17, L [L8,Q16,D17,L18,R1 [L8,D10,K11,Q16,D1 [L8,D10,K11,A16,Q1 [L8,D10,K11,A16,Q1 [L8, A16, Q18, A19, T3 Human PTH derivati Human parathyroid Parathyroid hormon Parathyroid hormon Parathyroid hormon Parathyroid hormon Parathyroid hormon Parathyroid hormon Parathyroid hormon

Parathyroid hormon

ALIGNMENTS

```
RESULT 1
AAP30022
     AAP30022 standard; peptide; 34 AA.
ID
XX
AC
     AAP30022;
XX
DT
     25-MAR-2003
                   (updated)
DT
     01-SEP-1992
                   (first entry)
XX
DE
     Human parathyroid-(1-34) amide.
XX
KW
     PTH; parathyroid gland; antibodies.
XX
OS
     Synthetic.
```

```
XX
                     Location/Qualifiers
FH
     Key
FT
     Modified-site
                     /note= "amidated"
FT
XX
     JP58096052-A.
PN
XX
PD
     07-JUN-1983.
XX
                    83JP-0193212.
PF
     30-NOV-1983;
XX
PR
     31-MAR-1981;
                    81JP-0048887.
XX
     (TOXN ) TOYO JOZO KK.
PΑ
XX
DR
     WPI; 1983-709291/28.
XX
     High activity human parathyroid hormone amide prodn. - by
PT
PT
     condensing protected aminoacid(s) and/or peptide(s) useful for
PT
     lowering parathyroid gland function
XX
     Claim 1; Page 1; 20pp; Japanese.
PS
XX
CC
     The human parathyroid hormone, hPTH(1-34)-amide was prepd. by
     the following steps: Firstly the carboxy gp. at the C-terminal
CC
     phenylalanine was converted into its amide form. The protected
CC
     individual amino acids were condensed, in order, by liquid phase
CC
     synthesis. The protecting groups were removed from the N-terminal
CC
     amino qp. and other functional qps. by acidolysis, and the
CC
     resulting hPTH(1-34)-amide purified by gel filtration
CC
     chromatography using a Sephadex G-25, G-50 or LH-20 column or by
CC
     column chromatography with carboxymethyl cellulose or ion exchange
CC
     resin. The peptide amide is useful in lowering the activity of the
CC
     parathyroid gland and in the prepn. of antibodies for diagnosis of
CC
     parathyroid gland function.
CC
     (Updated on 25-MAR-2003 to correct PR field.)
CC
XX
SQ
     Sequence
                34 AA;
                          100.0%; Score 34; DB 4; Length 34;
  Query Match
                          100.0%; Pred. No. 8.3e-27;
  Best Local Similarity
                                 0; Mismatches
                                                  0;
                                                                             0;
            34; Conservative
                                                       Indels
                                                                 0; Gaps
  Matches
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 2
AAP50377
ID
     AAP50377 standard; peptide; 34 AA.
XX
AC
     AAP50377;
XX
DT
     25-MAR-2003
                  (updated)
DT
                  (first entry)
     08-MAR-1992
XX
```

```
DE
     [Met(0)8,18]hPTH-(1-34).
XX
KW
     Human parathyroid hormone; calcium regulation.
XX
OS
     Homo sapiens.
XX
                     Location/Qualifiers
FH
     Key
     Modified-site
FT
                     /label= oxidised methionine
FT
FT
     Modified-site
                     /label= oxidised methionine
FT
XX
PN
     JP59204159-A.
XX
     19-NOV-1984.
PD
XX
     28-APR-1983;
                    83JP-0075607.
PF
XX
PR
     28-APR-1983;
                    83JP-0075607.
XX
     (TOXN ) TOYO JOZO KK.
PA
XX
DR
     WPI; 1985-003560/01.
XX
PT
     New (Met(0)8,18)hPTH-(1-34) peptide - increases calcium level in
PT
     blood and decreases level in urine.
XX
PS
     Claim 1; Page 1; 3pp; Japanese.
XX
     Unmodified hPTH(1-34) increases Ca in blood, decreases P in blood,
CC
     decreases Ca in urine and increases P in urine by increasing cAMP in
CC
     urine and enhancing vitamin D hydroxylase activity in kidneys. The
CC
     modified derivative only has the effect of lowering Ca levels in
CC
     urine and can be used when only this particular effect is required.
CC
CC
     (Updated on 25-MAR-2003 to correct PA field.)
CC
     (Updated on 25-MAR-2003 to correct DR field.)
XX
SO
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 34; DB 6; Length 34;
                          100.0%; Pred. No. 8.3e-27;
  Best Local Similarity
                                 0; Mismatches
            34; Conservative
                                                                             0;
  Matches
                                                   0;
                                                       Indels
                                                                 0; Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 3
AAP60031
     AAP60031 standard; peptide; 34 AA.
ID
XX
AC
     AAP60031;
XX
DT
     25-MAR-2003
                  (updated)
DT
     06-JUL-1991
                  (first entry)
XX
```

```
Sequence of the first 34 AA residues of a parathyroid hormone
DE
DΕ
     obtainable from a human or animal.
XX
KW
     Osteoporosis therapy.
XX
os
     Homo sapiens/animal.
XX
PN
     EP197514-A.
XX
PD
     15-OCT-1986.
ХХ
PF
     03-APR-1986;
                    86EP-0104562.
XX
PR
     04-APR-1985;
                   85US-0720018.
PR
     05-DEC-1986;
                    86US-0939308.
PR
     21-MAY-1987;
                   87US-0052383.
XX
     (GEHO ) GEN HOSPITAL CORP.
PA
XX
PΙ
     Potts JT, Neer RM, Slovik DM;
XX
     WPI; 1986-273437/42.
DR
XX
     Compsn. and kits for increasing bone mass in osteoporosis -
PT
     contg. parathyroid hormone or fragment with hydroxylated
PT
     vitamin/D cpd. or calcium salt
PT
XX
PS
     Claim 4; Page 24; 26pp; English.
XX
CC
     The peptide is used in a pharmaceutical compsn. together with a
CC
     hydroxylated vitamin D compound, or a non-toxic calcium salt, pref.
     CaCO3. The compsn. pref. contains 100-700 (pref. 200-600, esp. 400-
CC
CC
     500) units of the peptide. The vitamin D compound is pref. 1-alpha-
CC
     hydroxy vitamin D2 or 1-alpha, 25-dihydroxy vitamin D2.
     (Updated on 25-MAR-2003 to correct PA field.)
CC
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 34; DB 7; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 8.3e-27;
  Matches
            34; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 4
AAR07919
ID
     AAR07919 standard; protein; 34 AA.
XX
AC
     AAR07919;
XX
DT
     18-FEB-1991 (first entry)
XX
DΕ
     Human parathyroid hormone analogue, hPTH(7-34).
XX
```

```
Osteoporosis; hypercalcemia; hyperparathyroidism; hypertension.
KW
XX
     Homo sapiens.
OS
XX
PN
     US4968669-A.
XX
PD
     06-NOV-1990.
XX
PF
                   89US-0341597.
     21-APR-1989;
XX
PR
     21-APR-1989;
                   89US-0341597.
     09-MAY-1988;
                   88US-0191512.
PR
XX
     (MERI ) MERCK & CO INC.
PΑ
XX
PΙ
     Rosenblatt M, Chorev M;
XX
     WPI; 1990-354642/47.
DR
XX
PT
     New para:thyroid hormone analogues - which inhibit hormone
     activity by binding receptors while not producing second
PT
PT
     messenger molecules
XX
     Claim 1; Column 8; 6pp; English.
PS
XX
     Peptide analogues have high affinity for PTH cell surface receptors,
CC
     but do not stimulate production of secondary messenger molecules.
CC
CC
     They may be used in inhibition of PTH action, and in diagnosis and
     treatment of osteoporosis, hypercalcemia and hyperparathyroidism.
CC
     Analogues may also be used in treatment of tumours and other cells
CC
     overproducing peptide hormone-like substances, and immune diseases
CC
     eg. allergic inflammation and hyperactive lymphocytes.
CC
     Naturally occuring PTH levels may also be measured in vitro.
CC
XX
     Sequence
SQ
               34 AA;
  Query Match
                          100.0%; Score 34; DB 11; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
  Matches
            34; Conservative
                               0; Mismatches
                                                  0;
                                                      Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 5
AAR22283
ID
     AAR22283 standard; peptide; 34 AA.
XX
AC
     AAR22283;
XX
DT
     29-JUL-1992 (first entry)
XX
DE
     Parathyroid hormone analogue N-terminus [1-34].
XX
KW
     Human; hPTH; wound healing; hair growth; hyperproliferation skin;
KW
     disorders; psoriasis; cancer; burns.
```

```
XX
OS
    Homo sapiens.
XX
PN
    WO9204039-A.
XX
PD
     19-MAR-1992.
XX
PF
     30-AUG-1991;
                    91WO-US06218.
XX
     30-AUG-1990;
PR
                    90US-0575219.
XX
PΑ
     (HOLI/) HOLICK M F.
XX
ΡI
    Holick MF;
XX
DR
     WPI; 1992-114063/14.
XX
PT
     Use of peptide having homology with parathyroid hormone - for
PT
     enhancement of cell proliferation for wound healing
XX
PS
    Disclosure; Fig 1; 34pp; English.
XX
CC
     The peptide can be easily synthesised by recombinant DNA or solid
CC
     phase peptide synthesis techniques. The peptide has > 50 percent
CC
     homology with the N-terminal 1-34 amino acids of human parathyriod
CC
     hormone or hypercalcaemic region. It is esp. PTH (7-34). The
CC
     peptide may be used in a method for the treatment of hyperprolifer-
CC
     ation skin disorders e.g. psoriasis, cancers, burns or skin
CC
     ulcerations by inhibition of cell proliferation and enhancement of
CC
     cell differentiation (agonist activity). They are also used to
CC
     enhance cell proliferation (antagonist activity) for wound healing.
CC
     They are also applicable in the promotion of new hair growth or
CC
     stimulation of the rate of hair growth e.g. following chemotherapy
CC
     or for treating alopecia e.g. male pattern baldness.
XX
SO
     Sequence
                34 AA;
                          100.0%; Score 34; DB 13;
  Query Match
                                                      Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 8.3e-27;
 Matches
            34; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              111111111111111111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 6
AAR41549
ID
     AAR41549 standard; protein; 34 AA.
XX
AC
     AAR41549;
XX
DT
     25-MAR-2003
                  (updated)
DT
     11-APR-1994
                  (first entry)
XX
DΕ
     [D-Ser3] hPTH (1-34) NH2.
XX
```

```
PTH; parathyroid hormone; protease resistance; osteoporosis;
KW
KW
    hypoparathyroidism; hypertension.
XX
os
    Homo sapiens.
XX
FH
    Key
                    Location/Qualifiers
    Misc-difference 3
FT
                    /note = "D-form residue"
FT
FT
    Modified-site
                    /note = "C terminal is amidated"
FT
XX
PN
    EP561412-A1.
XX
PD
    22-SEP-1993.
XX
PF
    18-MAR-1993;
                   93EP-0104500.
XX
PR
    19-MAR-1992;
                   92JP-0063517.
     18-FEB-1993;
                   93JP-0029283.
PR
XX
PΑ
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Fukuda T, Nakaqawa S,
                            Taketomi S;
XX
DR
    WPI; 1993-296712/38.
XX
PT
    New parathyroid hormone derivs. - used for the treatment of
PT
     osteoporosis hypoparathyroidism and hypertension
XX
PS
     Example 1; Page 17; 37pp; English.
XX
CC
     Human parathyroid hormone (PTH) analogues (AAR41548 - generic sequence;
     AAR41549-R41582 - specific examples) show increased resistance to
CC
    proteases and a greater persistency of activity within the blood is
CC
     obtained. The proteins can be used to treat a number of bone and blood
CC
     disorders. This analogue was used as a test compound.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
CC
XX
SO
     Sequence
               34 AA;
  Query Match
                          100.0%; Score 34; DB 14; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
                              0; Mismatches
  Matches
           34; Conservative
                                                0; Indels
                                                                    Gaps
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 7
AAR41570
ID
     AAR41570 standard; protein; 34 AA.
XX
AC
    AAR41570;
XX
DT
     25-MAR-2003
                  (updated)
DT
     11-APR-1994
                  (first entry)
```

```
XX
DE
     [Gln25]hPTH (1-34).
XX
KW
     PTH; parathyroid hormone; protease resistance; osteoporosis;
KW
     hypoparathyroidism; hypertension.
XX
OS
     Homo sapiens.
XX
PN
     EP561412-A1.
XX
PD
     22-SEP-1993.
XX
PF
     18-MAR-1993;
                   93EP-0104500.
XX
PR
     19-MAR-1992;
                   92JP-0063517.
PR
     18-FEB-1993;
                   93JP-0029283.
XX
     (TAKE ) TAKEDA CHEM IND LTD.
PA
XX
PΙ
     Fukuda T, Nakagawa S, Taketomi S;
XX
DR
     WPI; 1993-296712/38.
XX
PT
     New parathyroid hormone derivs. - used for the treatment of
PT
     osteoporosis hypoparathyroidism and hypertension
XX
PS
     Example 1; Page 27; 37pp; English.
XX
CC
     Human parathyroid hormone (PTH) analogues (AAR41548 - generic sequence;
CC
     AAR41549-R41582 - specific examples) show increased resistance to
     proteases and a greater persistency of activity within the blood is
CC
CC
     obtained. The proteins can be used to treat a number of bone and blood
CC
     disorders. This analogue was used as a test compound.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SO
     Sequence
               34 AA;
  Query Match
                          100.0%; Score 34; DB 14;
  Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
  Matches
            34; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                             0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 8
AAR58291
ID
     AAR58291 standard; peptide; 34 AA.
XX
AC
     AAR58291;
XX
DT
     20-SEP-1994 (first entry)
XX
DE
     [Lys (For) 26, Lys (For) 27] -hPTH(1-34) -NH2.
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
```

```
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
     hypoparathyroidism.
KW
XX
OS
     Synthetic.
XX
FH
                     Location/Qualifiers
     Key
     Modified-site
FT
                     /label= Other
FT
                     /note= "Formyl-Lys."
FT
FT
     Modified-site
FT
                     /label= Other
FT
                     /note= "Formyl-Lys."
FT
     Modified-site
FT
                     /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                    92GB-0015009.
PR
     18-DEC-1992;
                    92GB-0026415.
PR
     23-DEC-1992;
                    92GB-0026859.
PR
     23-DEC-1992;
                    92GB-0026861.
PR
     28-JAN-1993;
                    93GB-0001691.
PR
     28-JAN-1993;
                    93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PΑ
     (SANO ) SANDOZ LTD.
PΑ
     (BAUE/) BAUER W.
     (SANO ) SANDOZ PATENT GMBH.
PΑ
PΑ
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
XX
PΤ
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PΙ
     Waelchli R, Rainer A;
XX
DR
     WPI; 1994-018352/03.
XX
PT
     New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
XX
PS
     Example 289; Page 47; 92pp; English.
XX
CC
     This peptide is an example of a highly generic formula covering
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
XX
SQ
     Sequence
                34 AA;
                          100.0%; Score 34; DB 15; Length 34;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 8.3e-27;
            34; Conservative 0; Mismatches
                                                 0; Indels
                                                                  0; Gaps
                                                                              0;
```

```
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 9
AAR58228
ID
     AAR58228 standard; peptide; 34 AA.
XX
AC
    AAR58228;
XX
DT
     20-SEP-1994 (first entry)
XX
DE
     [D-Asp30] - hPTH(1-34) - NH2.
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FH
                    Location/Qualifiers
FT
     Misc-difference 30
FT
                     /note= "D-form residue."
FT
     Modified-site
FT
                     /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                   93GB-0014384.
XX
PR
     15-JUL-1992;
                   92GB-0015009.
PR
     18-DEC-1992;
                   92GB-0026415.
PR
     23-DEC-1992;
                   92GB-0026859.
PR
     23-DEC-1992;
                   92GB-0026861.
PR
     28-JAN-1993;
                   93GB-0001691.
     28-JAN-1993;
PR
                   93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
     (SANO ) SANDOZ LTD.
PΑ
     (BAUE/) BAUER W.
PA
     (SANO ) SANDOZ PATENT GMBH.
PA
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
PΑ
XX
PΙ
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
ΡI
     Waelchli R, Rainer A;
XX
DR
     WPI; 1994-018352/03.
XX
PT
     New active para-thyroid hormone variants - used for treating or
PT
    preventing osteoporosis etc.
```

XX

```
Example 226; Page 45; 92pp; English.
PS
XX
     This peptide is an example of a highly generic formula covering
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
XX
SO
     Sequence
               34 AA;
  Query Match
                          100.0%; Score 34; DB 15;
                                                     Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 8.3e-27;
            34; Conservative
                                 0; Mismatches
                                                  0;
                                                      Indels
                                                                 0; Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 10
AAR58016
ID
     AAR58016 standard; peptide; 34 AA.
XX
AC
     AAR58016;
XX
DT
     20-SEP-1994 (first entry)
XX
DE
     N-alpha-Isopropyl-hPTH(1-34)-NH2 parathyroid hormone variant.
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
KW
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FH
     Key
                     Location/Qualifiers
     Modified-site
FT
FT
                     /note= "N-alpha-isopropyl-Ser"
FT
     Modified-site
FT
                     /note= "in amide form"
XX
PN
     GB2269176-A.
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                    93GB-0014384.
XX
PR
     15-JUL-1992;
                    92GB-0015009.
PR
     18-DEC-1992;
                    92GB-0026415.
PR
     23-DEC-1992;
                    92GB-0026859.
PR
     23-DEC-1992;
                    92GB-0026861.
PR
     28-JAN-1993;
                    93GB-0001691.
PR
     28-JAN-1993;
                    93GB-0001692.
PR
     14-APR-1993;
                    93GB-0007673.
PR
     19-APR-1993;
                    93GB-0008033.
XX
PΑ
     (SANO ) SANDOZ LTD.
```

```
PΑ
     (BAUE/) BAUER W.
PΑ
     (SANO ) SANDOZ PATENT GMBH.
PΑ
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
XX
PΙ
     Albert R, Bauer W, Breckenridge R, Cardinaux F;
PΙ
     Gombert F, Gram H, Lewis I, Ramage P, Schneider H;
PI
     Waelchli R, Rainer A;
XX
DR
     WPI; 1994-018352/03.
XX
     New active para-thyroid hormone variants - used for treating or
PT
PT
     preventing osteoporosis etc.
XX
PS
     Example 1; Page 30; 92pp; English.
XX
     This peptide is an example of a highly generic formula covering
CC
CC
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 34; DB 15; Length 34;
                         100.0%; Pred. No. 8.3e-27;
 Best Local Similarity
                                                  0;
           34; Conservative 0; Mismatches
                                                      Indels
                                                                0; Gaps
                                                                            0;
QУ
            1 SVSEIOLMHNLGKHLNSMERVEWLRKKLODVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 11
AAR58017
ID
     AAR58017 standard; peptide; 34 AA.
XX
AC
    AAR58017;
XX
DT
     20-SEP-1994
                 (first entry)
XX
DE
     [Lys(N-epsilon-Isopropy1)26,27]-human parathyroid hormone(1-34)-NH2.
XX
KW
     Human parathyroid hormone; hPTH; variant; analogue;
     calcium; depletion; fixation; resorption; osteopathy; osteoporosis;
KW
KW
     hypoparathyroidism.
XX
OS
     Synthetic.
XX
FΗ
     Kev
                    Location/Qualifiers
FT
    Modified-site
FT
                     /note= "N-epsilon-Isopropyl-Lys"
FT
    Modified-site
FT
                    /note= "N-epsilon-Isopropyl-Lys"
FT
    Modified-site
FT
                    /note= "in amide form"
XX
PN
    GB2269176-A.
```

```
XX
PD
     02-FEB-1994.
XX
PF
     12-JUL-1993;
                   93GB-0014384.
XX
PR
     15-JUL-1992;
                   92GB-0015009.
PR
     18-DEC-1992;
                   92GB-0026415.
PR
     23-DEC-1992;
                   92GB-0026859.
PR
     23-DEC-1992;
                   92GB-0026861.
PR
     28-JAN-1993;
                   93GB-0001691.
PR
     28-JAN-1993;
                   93GB-0001692.
PR
     14-APR-1993;
                   93GB-0007673.
     19-APR-1993;
                   93GB-0008033.
PR
XX
PΑ
     (SANO ) SANDOZ LTD.
PΑ
     (BAUE/) BAUER W.
     (SANO ) SANDOZ PATENT GMBH.
PA
     (SANO ) SANDOZ-ERFINDUNGEN VERW GES MBH.
PA
XX
                         Breckenridge R, Cardinaux F;
PΙ
     Albert R, Bauer W,
PΙ
     Gombert F, Gram H,
                        Lewis I, Ramage P, Schneider H;
ΡI
     Waelchli R, Rainer A;
XX
DR
     WPI; 1994-018352/03.
XX
PT
     New active para-thyroid hormone variants - used for treating or
PT
     preventing osteoporosis etc.
XX
PS
     Example 2; Page 32; 92pp; English.
XX
CC
     This peptide is an example of a highly generic formula covering
     parathyroid hormone variants useful for treating or preventing bone
CC
     conditions associated with calcium depletion/resorption, in cases
CC
CC
     where calcium fixation is required (esp. osteoporosis) or to treat
CC
     hypoparathyroidism.
XX
SO
     Sequence
               34 AA;
  Query Match
                          100.0%; Score 34; DB 15; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
  Matches
            34; Conservative
                              0; Mismatches
                                                 0;
                                                      Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 12
AAR55724
ID
    AAR55724 standard; peptide; 34 AA.
XX
AC
    AAR55724;
XX
DT
     25-MAR-2003
                  (updated)
DT
     16-NOV-1994
                  (first entry)
XX
DE
     Parathormone N-terminal sequence.
```

```
XX
KW
     Parathormone; parathyroid hormone; fatty acyl-peptide; conjugate;
KW
     antiproliferative; tumor; psoriasis; docosahexaenoic acid; DHA;
     eicosapentaenoic acid; EPA; antitumor.
KW
XX
OS
     Synthetic.
XX
PN
     WO9412530-A1.
ХX
PD
     09-JUN-1994.
XX
PF
     29-NOV-1993;
                    93WO-HU00065.
XX
PR
     30-NOV-1992;
                   92US-0984293.
XX
PA
     (BIOS-) BIOSIGNAL KUTATO FEJLESZTO KFT.
     (SYNT-) SYNTHETIC PEPTIDES INC.
PΑ
XX
PΙ
     Balogh A, Cachia PJ, Hodges RS, Horvath A,
PΙ
     Szederkenyi F, Vadasz Z;
XX
DR
     WPI; 1994-200194/24.
XX
PT
     New fatty acyl-peptide conjugates for inhibiting cell
PT
     proliferation - more active than free peptide, partic. for
PT
     treating tumours, virus-infected cells, psoriasis, etc.
XX
PS
     Disclosure; Fig. 1; 45pp; English.
XX
CC
     The peptides given in AAR55718-48 can each be conjugated through an
CC
     amide linkage with a polyunsaturated fatty acid moiety, such as
CC
     docosahexaenoic acid (DHA) or eicosapentanoic acid, to improve
     antiproliferative activity. The parathormone N-terminal fragment
CC
CC
     inhibits osteoblast proliferation.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SO
     Sequence
               34 AA;
  Query Match
                          100.0%; Score 34; DB 15; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
  Matches
           34; Conservative
                                                                0; Gaps
                                0; Mismatches
                                                 0; Indels
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 13
AAR74521
ID
     AAR74521 standard; Peptide; 34 AA.
XX
AC
    AAR74521;
XX
DT
     25-MAR-2003
                  (updated)
DT
     04-DEC-1995
                  (first entry)
XX
DE
     Human parathyroid hormone (1-34).
```

```
XX
ΚW
     Analogue; truncated human parathyroid hormone; PTH; hPTH; substitution;
     osteoporosis; hypercalcaemia; hyperparathroidism;
KW
     metabolic bone disease; human; veterinary medicine;
ΚW
KW
     iontophoretic transdermal transport; recombinant E.coli.
XX
OS
     Homo sapiens.
XX
PN
     WO9511988-A1.
XX
PD
     04-MAY-1995.
XX
PF
     25-OCT-1994;
                   94WO-US12205.
XX
PR
     25-OCT-1993;
                   93US-0142551.
XX
PΑ
     (AFFY-) AFFYMAX TECHNOLOGIES NV.
XX
PΙ
     Oldenburg KR, Selick HE;
XX
DR
     WPI; 1995-178880/23.
XX
PT
     New active analogues of parathyroid hormone - with increased
PT
     activity, stability in serum etc., esp. for treating
PT
     osteoporosis, also related DNA and vectors
XX
PS
     Disclosure; Page 1; 109pp; English.
XX
CC
     This sequence represents residues 1-34 of human parathyroid hormone
CC
     (RPTH). This sequence was used in the production of analogues of the
CC
     truncated form of PTH. These analogues have increased activity and
CC
     longer serum half life than native PTH due to eg. substitution of Met
CC
     residues with Leu residues and replacing the carboxy Phe with Tyr.
CC
     carboxy terminal may also be modified by the addition of a homoserine
CC
     residue or analogue, or by the addition of residues 35-84 of wild type
CC
     PTH (see AAR74410). These PTH analogues may be used in the treatment of
CC
     osteoporosis or hypercalcaemia, hyperparathroidism or other metabolic
     bone diseases in human or veterinary medicine. These peptides may also
CC
CC
     have increased iontophoretic transdermal transport compared to wild type
CC
     PTH and can be produced in high yield in recombinant E.coli.
CC
     (Updated on 25-MAR-2003 to correct PN field.)
XX
SO
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 34; DB 16;
 Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
 Matches
           34; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                0;
                                                                    Gaps
                                                                            0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 14
AAW99449
ID
    AAW99449 standard; peptide; 34 AA.
```

XX

```
AC
    AAW99449;
XX
DT
     08-JUN-1999 (first entry)
XX
DE
    Human parathyroid hormone aa1-34.
XX
KW
     Parathyroid hormone; PTH; parathormone; premature birth; pregnancy;
KW
     spontaneous abortion; uterine contraction; human.
XX
OS
    Homo sapiens.
XX
PN
    US5880093-A.
XX
PD
    09-MAR-1999.
XX
PF
     05-APR-1995;
                   95US-0411726.
XX
PR
     28-SEP-1992;
                   92IT-MI02331.
XX
     (BAGN/) BAGNOLI F.
PA
XX
ΡI
    Bagnoli F;
XX
DR
    WPI; 1996-162392/17.
XX
PT
    Use of composition containing parathormone or fragments - for
PT
     preventing premature birth or spontaneous abortion or for treating
PT
     unwanted uterine contractions
XX
     Disclosure; Column 7-8; 11pp; English.
PS
XX
CC
     Peptides AAW99448-W99452 represent all or part of the parathyroid
     hormone (PTH; parathormone) sequence or related peptide. The peptides
CC
CC
     are used for preventing premature birth, spontaneous abortion or unwanted
CC
     uterine contractions in a pregnant human patient.
CC
     (Note: this patent is the first Major Country Equivalent to Italian
CC
     Patent IT1255388).
XX
SO
    Sequence
               34 AA;
  Query Match
                         100.0%; Score 34; DB 17; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
  Matches
           34; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 15
AAR99978
ID
    AAR99978 standard; peptide; 34 AA.
XX
AC
    AAR99978;
XX
DT
     30-APR-1997 (first entry)
XX
```

```
DE
     Human parathyroid hormone peptide fragment (1-34).
XX
KW
     cyclic parathyroid hormone fragment; calcium-regulating activity;
KW
     osteoporosis; inhibit proliferation; epidermal cell; psoriasis;
     improved half life; calcium retention; bone.
KW
XX
OS
     Synthetic.
XX
PN
     DE19508672-A1.
XX
PD
     12-SEP-1996.
XX
PF
     10-MAR-1995;
                    95DE-1008672.
XX
PR
     10-MAR-1995;
                   95DE-1008672.
XX
PΑ
     (BOEF ) BOEHRINGER MANNHEIM GMBH.
XX
PΤ
     Dony C, Esswein A, Hoffmann E, Honold K, Schaefer W;
XX
DR
     WPI; 1996-413519/42.
XX
PT
     Cyclic parathyroid hormone fragments with lactam bridge - have good
     in vivo half life and are useful for treating osteoporosis and
PT
PT
     preventing epidermal cell proliferation
XX
PS
     Disclosure; Page 9; 14pp; German.
XX
CC
     New cyclic parathyroid hormone fragments (CPTH) have the amino acid
CC
     sequence of h, b, p, r or cPTH(1-34), opt. extended by up to 4 amino
CC
     acids (aa) at the C-terminus and opt. shortened by up to 3 amino acids at
CC
     the N-terminus, and are cyclised between positions 13 and 17. One of
CC
     these positions is occupied by L- or D- Orn or Lys, and the other by L-
CC
     or D- Glu or Asp. CPTH have calcium-regulating activity (esp. for
     treating osteoporosis and inhibit proliferation of epidermal cells (for
CC
CC
     treating psoriasis). The CPTH have an improved half life in vivo than
     known PTH fragments, increased mitogenicity and DNA-synthesising
CC
CC
     capacity, reduced catabolic, calcium-mobilising activity and increased
CC
     activity for calcium retention and incorporation into bone. The
CC
     present sequence is that of human PTH peptide fragment (1-34).
XX
SO
     Sequence
               34 AA;
  Query Match
                          100.0%; Score 34; DB 17; Length 34;
 Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
 Matches
           34; Conservative
                               0; Mismatches
                                                  0;
                                                      Indels
                                                                0; Gaps
                                                                            0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 16
ID
    AAR98951 standard; peptide; 34 AA.
XX
AC
    AAR98951;
```

```
XX
DT
    15-JAN-1997 (first entry)
XX
DE
    Target peptide (PTH(1-34)) used in fusion protein construct.
XX
KW
    Fusion protein construct; isolation; purification;
    growth hormone releasing factor; glucagon-like peptide 1;
KW
    parathyroid hormone; inclusion body; carbonic anhydrase.
KW
XX
OS
    Synthetic.
XX
PN
    WO9617942-A1.
XX
PD
    13-JUN-1996.
XX
PF
    07-DEC-1995;
                   95WO-US15800.
XX
PR
    07-DEC-1994;
                   94US-0350530.
XX
PΑ
     (BION-) BIONEBRASKA INC.
ХХ
ΡI
    De LA MOTTE RS, Henriksen DB, Holmquist B, Manning SD;
    Partridge BE, Stout JS, Wagner FW;
ΡI
XX
DR
    WPI; 1996-287186/29.
XX
PT
     Isolation and purificn of peptide(s) from fusion protein constructs
PT
     - which include a carbonic anhydrase and a variable fused
PT
    polypeptide
XX
PS
    Claim 18; Page 48; 67pp; English.
XX
CC
    A new method for the isolation and/or purification of a recombinant
CC
    peptide employs a fusion protein construct (FPC) comprising a
     carbonic anhydrase and a variable fused polypeptide containing a
CC
    target peptide. The method comprises precipitating either the FPC or
CC
CC
     a fragment of the FPC including the carbonic anhydrase. An
CC
    alternative method of producing the peptide comprises expressing the
CC
    FPC as part of an inclusion body. The target peptides of the FPC are
    derived from growth hormone releasing factor (GRF), glucagon-like
CC
CC
    peptide 1 (GLP1) or parathyroid hormone (PTH). This sequence
    corresponds to amino acids 1-34 of PTH.
CC
XX
SO
    Sequence
               34 AA;
                         100.0%; Score 34; DB 17;
  Query Match
                                                     Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
  Matches
           34; Conservative
                               0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
```

RESULT 17 AAR98966

ID AAR98966 standard; Peptide; 34 AA.

```
XX
AC
     AAR98966;
XX
DT
     02-DEC-1996 (first entry)
XX
DE
     PTH (1-34).
XX
KW
     PTH; parathyroid hormone; parathormone; C-amide;
     C-amidated peptide; alpha-carboxamide; recombinant protein;
KW
KW
     fusion protein; transpeptidation.
XX
OS
     Not specified.
XX
PN
     WO9617941-A2.
XX
PD
     13-JUN-1996.
XX
PF
     07-DEC-1995;
                   95WO-US15799.
XX
PR
     07-DEC-1994;
                   94US-0350528.
XX
PΑ
     (BION-) BIONEBRASKA INC.
XX
ΡI
     Heriksen DB, Holmquist B, Patridge BE, Stout JS;
PΙ
     Wagner FW;
XX
     WPI; 1996-287185/29.
DR
XX
PT
     Production of C-terminal alpha-carboxamidated peptide(s) - by
PΤ
     cleavage and transpeptidation of recombinant multicopy peptide(s) or
PT
     fusion constructs
XX
PS
     Claim 12; Page 70; 93pp; English.
XX
CC
     GLP1(7-35), GRF(1-44) and PTH(1-34) peptides (AAR98964-66) can be
CC
     produced as C-terminal amidated peptides utilising novel recombinant
     protein constructs (see also AAR98967-72) in which single or multiple
CC
CC
     copies of the peptide are linked by intraconnecting peptides that
CC
     permit the construct to be selectively reacted to produce product
     peptides having a C-terminal alpha-carboxamide. Expression cassettes
CC
     (see also AAT34865-70) can be incorporated into vectors allowing prodn.
CC
CC
     of the recombinant proteins in transformed E. coli host cells.
XX
SO
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 34; DB 17; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 8.3e-27;
            34; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                0;
                                                                    Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
```

RESULT 18 AAR88835

ID AAR88835 standard; peptide; 34 AA.

```
XX
AC
     AAR88835;
XX
DT
     07-OCT-1996 (first entry)
XX
     Human parathyroid hormone analogue, cyclo-PTH(1-34)-NH2.
DE
XX
     Parathyroid hormone; PTH; analogue; osteoporosis; bone cell;
KW
     calcium regulation; reduced PKC activity; protein kinase C;
KW
     increased adenylyl cyclase activity; cAMPase; cyclic; bone loss.
KW
XX
OS
     Synthetic.
XX
FH
     Key
                     Location/Qualifiers
FT
     Modified-site
FT
                     /note= "forms peptide bond with Lys at posn. 26"
FT
     Modified-site
                     /note= "forms peptide bond with Asp at posn. 30"
FT
FT
     Modified-site
FT
                     /note= "forms peptide bond with Asn at posn. 10"
FT
     Modified-site
                     /note= "forms peptide bond with His at posn. 14"
FT
FT
     Modified-site
FT
                     /note= "amidated"
XX
PN
     CA2126299-A.
XX
PD
     21-DEC-1995.
XX
PF
     20-JUN-1994;
                    94CA-2126299.
XX
PR
     20-JUN-1994;
                    94CA-2126299.
XX
PA
     (WILL/) WILLICK G E.
XX
PΙ
     Neugebauer W,
                    Sung WL, Surewicz W, Whitfield JF;
     Willick GE;
PΙ
XX
DR
     WPI; 1996-151754/16.
XX
PT
     New human parathyroid hormone analogues - which have increased
     adenylyl cyclase activating activity, used for treating osteoporosis
PT
XX
PS
     Claim 3; Fig 8; 21pp; English.
XX
CC
     AAR88829-R88841 are human parathyroid hormone (hPTH) analogues. The
CC
     analogues increase G-protein coupled adenylyl cyclase (cAMPase)
CC
     activity and reduce protein kinase C (PKC) activity. The analogues
CC
     can reverse the loss of bone and increase bone mass and density
     without undesirable effects. They are useful for the treatment of
CC
CC
     osteoporosis and other bone related disorders and disorders
CC
     involving bone cell calcium regulation.
XX
SO
     Sequence
                34 AA;
                                   Score 34; DB 17; Length 34;
  Query Match
                          100.0%;
  Best Local Similarity
                          100.0%;
                                   Pred. No. 8.3e-27;
```

```
Matches
           34; Conservative
                                0; Mismatches
                                                  0: Indels
                                                                0; Gaps
                                                                            0;
            1 SVSEIOLMHNLGKHLNSMERVEWLRKKLODVHNF 34
Оv
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 19
AAW24273
     AAW24273 standard; protein; 34 AA.
ID
XX
AC
     AAW24273;
XX
DT
     17-OCT-1997 (first entry)
XX
DE
     Wild type parathyroid hormone.
XX
KW
     Analoque; parathyroid hormone; PTH; hirudin; hirulog;
KW
     electrotransportability; alpha-helix; beta-sheet.
XX
os
     Homo sapiens.
XX
PN
     W09639423-A2.
XX
PD
     12-DEC-1996.
XX
PF
     06-JUN-1996:
                   96WO-US09647.
XX
PR
     06-JUN-1995;
                   95US-0468275.
XX
PA
     (ALZA ) ALZA CORP.
XX
PΙ
     Holladay LA,
                 Oldenburg KR;
XX
DR
     WPI: 1997-043058/04.
XX
PT
     Prepn. of analogues of parent poly-peptide(s), esp. parathyroid
     hormone and hirulog - which exhibit better or enhanced
PT
PT
     electro-transportability through a body surface
XX
PS
     Claim 7; Fig 1A; 55pp; English.
XX
CC
     The sequences given in AAW24273-76 represent wildtype and analogues of
     parathyroid hormone (PTH). The analogues exhibit better/enhanced
CC
CC
     electrotransportability through a body surface, and are characterised
CC
     by substituting one or more amino acid residues of the parent
     polypeptide to disrupt one or more alpha-helical and/or beta-sheet
CC
CC
     segments of the parent polypeptide. An electrotransport device can
CC
     deliver the polypeptide analogue through a body surface by electro-
CC
     transport by including providing a therapeutically effective amount
CC
     of the polypeptide analogue in a donor reservoir of the electrotransport
CC
     device. The electrotransport flux of a polypeptide is increased by
CC
     reducing the potential of the polypeptide for forming alpha-helix or
CC
     beta-sheet segment.
XX
SO
```

Sequence

34 AA;

```
Query Match
                          100.0%; Score 34; DB 18; Length 34;
                         100.0%; Pred. No. 8.3e-27;
  Best Local Similarity
                               0; Mismatches
           34; Conservative
                                                 0: Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 20
AAW19994
     AAW19994 standard; peptide; 34 AA.
ID
XX
AC
     AAW19994;
XX
DT
     28-AUG-1997 (first entry)
XX
     Cyclised human parathyroid hormone (1-34) amide.
_{
m DE}
XX
     Parathyroid hormone; PTH; amino terminus; cyclic; analogue;
KW
KW
     adenylate cyclase activity; bone growth; osteoporosis; fracture;
KW
     antiresorptive therapy.
XX
os
     Homo sapiens.
XX
FH
     Key
                     Location/Oualifiers
     Misc-difference 13
FT
FT
                     /note= "joined via amide bond to residue 17"
FT
     Misc-difference 17
FT
                     /note= "joined via amide bond to residue 13"
FT
     Misc-difference 34
FT
                     /note= "amidated"
XX
PN
     WO9640193-A1.
XX
PD
     19-DEC-1996.
XX
PF
     06-JUN-1996;
                   96WO-US09674.
XX
PR
     07-JUN-1995;
                   95US-0488105.
XX
PΑ
     (BETH-) BETH ISRAEL HOSPITAL ASSOC.
XX
ΡI
     Chorev M, Rosenblatt M;
XX
DR
     WPI; 1997-051884/05.
XX
PT
     New cyclic analogues of parathyroid hormone - having di:sulphide or
PT
     amide bond between residues 13 and 17 and/or between residues 26 and
PT
     30, useful for treating osteoporosis and bone fractures
XX
PS
     Claim 4; Page -; 23pp; English.
XX
CC
     AAW19994 is a cyclised peptide derived from the N-terminal sequence
CC
     of human parathyroid hormone (PTH). The peptide is able to bind to
CC
     PTH receptors and stimulate adenylate cyclase activity. Cyclised
     PTH peptides stimulate bone growth and thus are useful in the
CC
```

```
CC
     treatment of osteoporosis and bone fractures. Optionally they may
CC
     be administered concurrently with antiresorptive therapy (e.g.
     bisphosphonate and calicitonin).
CC
CC
     N.B. sequence not given in the specification, created from known
     sequence of amino acids 1-34 of human PTH.
CC
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 34; DB 18;
                                                     Length 34;
                         100.0%; Pred. No. 8.3e-27;
  Best Local Similarity
                                0; Mismatches
  Matches
           34; Conservative
                                                  0;
                                                      Indels
                                                                0; Gaps
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 21
AAW20000
ID
     AAW20000 standard; peptide; 34 AA.
XX
AC
     AAW20000;
XX
DT
     28-AUG-1997 (first entry)
XX
DE
     Cyclised human parathyroid hormone (1-34) amide.
XX
     Parathyroid hormone; PTH; amino terminus; cyclic; analogue;
KW
KW
     adenylate cyclase activity; bone growth; osteoporosis; fracture;
     antiresorptive therapy.
KW
XX
os
     Homo sapiens.
XX
FH
     Key
                     Location/Qualifiers
FT
     Misc-difference 26
FT
                     /note= "joined via amide bond to residue 30"
FT
     Misc-difference 30
FT
                     /note= "joined via amide bond to residue 26"
FT
     Misc-difference 34
FT
                     /note= "amidated"
XX
ΡN
     WO9640193-A1.
XX
PD
     19-DEC-1996.
XX
PF
     06-JUN-1996;
                    96WO-US09674.
XX
     07-JUN-1995;
PR
                   95US-0488105.
XX
PΑ
     (BETH-) BETH ISRAEL HOSPITAL ASSOC.
XX
PΙ
     Chorev M, Rosenblatt M;
XX
DR
     WPI; 1997-051884/05.
XX
PT
     New cyclic analogues of parathyroid hormone - having di:sulphide or
PT
     amide bond between residues 13 and 17 and/or between residues 26 and
```

```
XX
PS
     Claim 6; Page -; 23pp; English.
XX
CC
     AAW20000 is a cyclised peptide derived from the N-terminal sequence
     of human parathyroid hormone (PTH). The peptide is able to bind to
CC
CC
     PTH receptors and stimulate adenylate cyclase activity. Cyclised
CC
     PTH peptides stimulate bone growth and thus are useful in the
CC
     treatment of osteoporosis and bone fractures. Optionally they may
     be administered concurrently with antiresorptive therapy (e.q.
CC
CC
     bisphosphonate and calicitonin).
CC
     N.B. sequence not given in the specification, created from known
CC
     sequence of amino acids 1-34 of human PTH.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 34; DB 18;
                                                      Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 8.3e-27;
  Matches
            34; Conservative
                                0; Mismatches
                                                   0;
                                                       Indels
                                                                 0;
                                                                     Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 22
AAW20006
ID
     AAW20006 standard; peptide; 34 AA.
XX
AC
     AAW20006;
XX
DT
     28-AUG-1997 (first entry)
XX
DE
     Cyclised human parathyroid hormone (1-34) amide.
XX
     Parathyroid hormone; PTH; amino terminus; cyclic; analogue;
KW
KW
     adenylate cyclase activity; bone growth; osteoporosis; fracture;
KW
     antiresorptive therapy.
XX
OS
     Homo sapiens.
XX
FH
     Key
                     Location/Qualifiers
FT
     Misc-difference 13
FT
                     /note= "joined via amide bond to residue 17"
FT
     Misc-difference 17
FT
                     /note= "joined via amide bond to residue 13"
FT
     Misc-difference 26
FT
                     /note= "joined via amide bond to residue 30"
FT
     Misc-difference 30
FT
                     /note= "joined via amide bond to residue 26"
FT
     Misc-difference 34
FT
                     /note= "amidated"
XX
PN
     WO9640193-A1.
XX
PD
     19-DEC-1996.
XX
```

30, useful for treating osteoporosis and bone fractures

PT

```
PF
     06-JUN-1996;
                   96WO-US09674.
XX
PR
     07-JUN-1995;
                   95US-0488105.
XX
PA
     (BETH-) BETH ISRAEL HOSPITAL ASSOC.
XX
ΡI
     Chorev M, Rosenblatt M;
XX
DR
     WPI; 1997-051884/05.
XX
PT
     New cyclic analogues of parathyroid hormone - having di:sulphide or
PT
     amide bond between residues 13 and 17 and/or between residues 26 and
PT
     30, useful for treating osteoporosis and bone fractures
XX
PS
     Claim 8; Page -; 23pp; English.
XX
CC
     AAW20006 is a cyclised peptide derived from the N-terminal sequence
CC
     of human parathyroid hormone (PTH). The peptide is able to bind to
CC
     PTH receptors and stimulate adenylate cyclase activity. Cyclised
     PTH peptides stimulate bone growth and thus are useful in the
CC
CC
     treatment of osteoporosis and bone fractures. Optionally they may
CC
     be administered concurrently with antiresorptive therapy (e.g.
CC
     bisphosphonate and calicitonin).
     N.B. sequence not given in the specification, created from known
CC
CC
     sequence of amino acids 1-34 of human PTH.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 34; DB 18; Length 34;
                         100.0%; Pred. No. 8.3e-27;
  Best Local Similarity
  Matches
           34; Conservative
                                0; Mismatches
                                                   0;
                                                      Indels
                                                                0; Gaps
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 23
AAW67291
     AAW67291 standard; peptide; 34 AA.
ID
XX
AC
    AAW67291;
XX
DT
     22-DEC-1998 (first entry)
XX
DE
     Parathyroid hormone analogue #18.
XX
KW
     Parathyroid hormone; parathormone; bone growth; bone fracture;
KW
     osteroporosis; anti-resorptive therapy; calcitonin.
XX
OS
     Synthetic.
OS
     Homo sapiens.
XX
FH
                    Location/Qualifiers
     Key
FT
     Modified-site
FT
                     /note= "1-amino-1-cyclohexanecarboxylic acid"
FT
     Modified-site
```

```
FT
                     /note= "C-terminal amide"
XX
PN
     WO9830590-A2.
XX
PD
     16-JUL-1998.
XX
PF
     08-DEC-1997;
                    97WO-US22498.
XX
PR
     07-MAR-1997;
                    97US-0813534.
PR
     07-JAN-1997;
                    97US-0779768.
XX
PA
     (BIOM-) BIOMEASURE INC.
XX
PI
     Dong ZX;
XX
DR
     WPI; 1998-399065/34.
XX
PT
     Parathyroid hormone analogue peptide compounds - used for
PT
     stimulating bone growth, e.g. in treatment of bone fractures or
PT
     osteoporosis
XX
PS
     Claim 6; Page -; 24pp; English.
XX
CC
     The invention relates to peptides of formula (I) containing at least one
CC
     Acc (i.e. 1-amino-1-(3-9C cycloalkane)-carboxylic acid) residue.
     (R1) (R2) A1-Val-A3-Glu-A5-Gln-A7-A8-His-Asn-A11-A12-Lys-His-A15-A-16-A17-
CC
CC
     A-18-A19-Arg-A21-A22-A23-A24-Arg-Lys-A27-A28-A29-A30-A31-A32-A33-A34-R3
CC
     (I); where A1 = Ser, Ala or Dap; A3, A17 = Ser, Thr or Aib; A5, A7, A11,
CC
     A15 = Leu, Nle, Ile, Cha, beta -Nal, Trp, Pal, Acc, Phe or p-(X)-Phe; X
     = OH, halo or Me; A8 = Met, Nva, Leu, Val, Ile, Cha, Acc or Nle; A12 =
CC
CC
     Gly, Acc or Aib; A16 = Ser, Asn, Ala or Aib; A18 = Met, Nva, Leu, Val,
CC
     Ile, Nle, Acc, Cha or Aib; A19 = Glu or Aib; A21 = Val, Acc, Cha or Met;
CC
     A22 = Acc or Glu; A'23 = Trp, Acc or Cha; A24, A28 = Leu, Acc or Cha; A27
CC
     = Lys, Aib, Leu, hArg, Gln, Acc or Cha; A29 = Glu, Acc or Aib; A30 = Asp
     or Lys; A31 = Val, Leu, Nle, Acc or Cha, or is deleted; A32 = His or is
CC
CC
     deleted; A33 = Asn or is deleted; A34 = Phe, Tyr, Amp or Aib, or is
CC
     deleted; R1,R2 = H, 1-12C alkyl, 2-12C alkenyl, 7-20C phenylalkyl,
     11-20C naphthylalkyl, 1-12C hydroxyalkyl, 2-12C hydroxyalkenyl, 7-20C
CC
CC
     hydroxyphenylalkyl or 11-20C hydroxy-naphthylalkyl; one of R1 and R2 may
CC
     also = COE; E = 1-12C alkyl, 2-12C alkenyl, 7-20C phenylalkyl, 11-20C
CC
     naphthylalkyl, 1-12C hydroxyalkyl, 2-12C hydroxyalkenyl, 7-20C
CC
     hydroxyphenylalkyl or 11-20C hydroxy-naphthylalkyl; R3 = OH, NH2, 1-12C
CC
     alkoxy or -NH-Y-CH2-Z; Y = 1-12C hydrocarbyl; Z = H, OH, COOH or CONH2.
CC
     The peptides are variants of fragments of parathyroid hormone (PTH) or
CC
     parathyroid hormone-related protein (PTHrP). They stimulate bone growth,
CC
     and are useful in the treatment of diseases or disorders associated with
CC
     bone growth deficiency, e.g. osteoporosis and bone fractures. They are
CC
     optionally used in conjunction with anti-resorptive therapy, e.g. with
     bis-phosphonates or calcitonin. The present sequence represents a
CC
CC
     specifically claimed peptide. NB: This sequence is not shown explicitly
CC
     in the patent but was generated using the sequence of human parathyroid
CC
     hormone as shown in Entrez Locus Number AAA29146.
XX
SQ
     Sequence
                34 AA;
```

100.0%; Score 34; DB 19; Length 34;

Pred. No. 8.3e-27;

100.0%;

Query Match

Best Local Similarity

```
0; Indels
  Matches
           34; Conservative
                                0; Mismatches
                                                                0; Gaps
                                                                            0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 24
AAW61658
    AAW61658 standard; peptide; 34 AA.
ID
XX
AC
    AAW61658;
XX
DT
     25-MAR-2003
                  (updated)
DT
     16-NOV-1998
                  (first entry)
XX
DE
    Parathyroid hormone analogue 1.
XX
KW
    parathyroid hormone; bone; osteoporosis; osteopenia.
XX
OS
    Homo sapiens.
XX
PN
    US5798225-A.
XX
PD
     25-AUG-1998.
XX
PF
    24-MAY-1995;
                   95US-0449500.
XX
PR
    18-JAN-1994;
                   94US-0184328.
PR
     14-JUL-1992;
                   92US-0915247.
PR
     24-MAY-1995;
                   95US-0449500.
XX
PΑ
     (SYNT ) SYNTEX USA INC.
XX
ΡI
     Bach CT, Ho TH, Krstenansky JL, Nestor JJ, Vickery BH;
XX
DR
     WPI; 1998-480381/41.
XX
PT
     Recombinant production of modified parathyroid hormone or related
PT
     peptide - having bone mass restoring activity which differs from
PT
     naturally occurring PTH or PTHrP by changes comprising substitutions
PT
     at one or more of positions 22-31
XX
PS
    Disclosure; Column 1/2; 65pp; English.
XX
CC
     The parathyroid hormone (PTH) analogues AAW61658-W61732 differ from
CC
     naturally occurring PTH by changes comprising substitutions at on or
CC
     more of positions 22-31. The bone mass restoring activity of the PTH
CC
     analogues can be used to treat or prevent conditions characterised by
CC
     a decrease in bone mass, e.g. osteoporosis or osteopenia.
CC
     (Updated on 25-MAR-2003 to correct PF field.)
XX
SQ
     Sequence
               34 AA;
  Query Match
                         100.0%; Score 34; DB 19; Length 34;
                         100.0%; Pred. No. 8.3e-27;
  Best Local Similarity
```

Matches 34; Conservative 0; Mismatches

0; Indels

0; Gaps

0;

```
1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 25
AAW65975
ID
     AAW65975 standard; peptide; 34 AA.
XX
AC
     AAW65975;
XX
DT
     25-MAR-2003
                  (updated)
DT
     13-NOV-1998
                  (first entry)
XX
     Human parathyroid hormone N-terminal fragment (residues 1-34).
DE
XX
KW
     Parathyroid hormone; PTH; parathyroid hormone related peptide; PTHrp;
KW
     bone mass; trabecular bone; bone resorption; osteoporosis.
XX
OS
     Homo sapiens.
XX
PN
     US5807823-A.
XX
PD
     15-SEP-1998.
XX
PF
     24-MAY-1995;
                   95US-0449317.
XX
PR
     18-JAN-1994;
                    94US-0184328.
                    92US-0915247.
PR
     14-JUL-1992;
PR
     24-MAY-1995;
                    95US-0449317.
XX
     (SYNT ) SYNTEX USA INC.
PA
XX
PΙ
     Krstenansky JL, Nestor JJ, Vickery BH;
XX
DR
     WPI; 1998-520168/44.
XX
PT
     Treatment of osteoporosis - by administration of modified
PT
     parathyroid hormone peptides
XX
PS
     Disclosure; Columns 1-2; 71pp; English.
XX
     The invention relates to treatment of mammalian conditions characterised
CC
CC
     by decreases in bone mass. The treatment comprises administering a
     modified parathyroid hormone (PTH) or parathyroid hormone related peptide
CC
     (PTHrp) that differs from naturally occurring PTH or PTHrp by one or more
CC
CC
     amino acid substitutions in positions 22-31. PTH and PTHrp are useful for
CC
     treatment of disorders characterised by decreasing bone mass, especially
CC
     osteoporosis. Use of PTH or PTHrp gives a sustainable increase in
CC
     trabecular bone by a different method to the prior art, which slowed down
CC
     bone resorption. The present sequence represents the N-terminal fragment
     of human PTH (residues 1-34).
CC
CC
     (Updated on 25-MAR-2003 to correct PF field.)
XX
```

SO

Sequence

34 AA;

```
Query Match
                          100.0%; Score 34; DB 19; Length 34;
                         100.0%; Pred. No. 8.3e-27;
  Best Local Similarity
                              0; Mismatches
  Matches
           34; Conservative
                                                 0;
                                                      Indels
                                                                0; Gaps
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 26
AAY50593
     AAY50593 standard; peptide; 34 AA.
ID
XX
AC
     AAY50593;
XX
DT
     09-FEB-2000 (first entry)
XX
DE
     Resin bound cyclic peptide 26.
XX
KW
     Cyclic peptide; resin bound; parathyroid hormone; osteopathic; disease;
     hypotensive; PTH receptor; treatment; hyper-calcemia; hypo-calcemia;
KW
KW
     osteoporosis; osteopenia; hyper-parathyroidism; hypo-parathyroidism;
KW
     Cushing's syndrome; renal failure; hypertension; bone fracture repair.
XX
OS
     Synthetic.
XX
PN
     WO9952933-A1.
XX
PD
     21-OCT-1999.
XX
PF
     15-APR-1999;
                    99WO-US08435.
XX
PR
     15-APR-1998;
                   98US-0081897.
XX
PΑ
     (RHON ) RHONE-POULENC RORER PHARM INC.
XX
PΙ
     Sledeski AW,
                  Mencel JJ;
XX
DR
     WPI; 1999-633822/54.
XX
PT
     Convergent synthesis of peptides for treating e.g. bone disorders -
XX
PS
     Disclosure; Page 69; 85pp; English.
XX
CC
     This invention describes a novel method for the preparation of peptides
CC
     (II) that contain both cyclic and linear peptide fragments comprises
CC
     sequential reaction of a resin-bound linear fragment with the cyclic
     fragment in N-protected form and optionally other linear fragments. The
CC
     products of the invention have osteopathic and hypotensive activity.
CC
CC
     (II) bind to hPTH receptors and act as agonists or antagonists of hPTH.
CC
     The method is particularly used to prepare cyclic peptide analogs of
CC
     parathyroid hormone (PTH) or PTH-related peptides which are useful for
CC
     treating diseases that respond to treatment with agents that bind to PTH
CC
     receptors (with or without activation of adenylyl cyclase activity),
CC
     e.g. hyper- or hypo-calcemia, osteoporosis, osteopenia, hyper- or hypo-
CC
     parathyroidism, Cushing's syndrome, renal failure and hypertension, also
CC
     for promoting repair of bone fractures. Separate synthesis of the cyclic
```

```
fragment allows convergent synthesis of resin-bound (II), with better
CC
CC
     yields and higher throughput. The difficulties associated with
     preparation of the bridged fragment are confined to a small peptide
CC
     which can be purified before reaction with the resin-bound component.
CC
CC
     AAY50568-Y50614 represent the peptide fragments described in the method
CC
     of the invention.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 34; DB 20; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 8.3e-27;
  Matches
                                 0; Mismatches
            34; Conservative
                                                       Indels
                                                                     Gaps
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 27
AAY17752
ID
     AAY17752 standard; protein; 34 AA.
XX
AC
    AAY17752;
XX
DT
     11-AUG-1999
                 (first entry)
XX
DE
     Human parathyroid hormone (1-34).
XX
KW
     Human; parathyroid hormone; PTH; crystalline; teriparatide;
KW
     osteoporosis; bone disorder.
XX
OS
     Homo sapiens.
XX
PN
    EP926158-A1.
XX
PD
     30-JUN-1999.
XX
PF
     16-DEC-1998;
                    98EP-0123878.
XX
PR
     18-DEC-1997;
                    97US-0069875.
XX
PA
     (ELIL ) LILLY & CO ELI.
XX
     Zhang F;
ΡI
XX
DR
     WPI; 1999-359617/31.
XX
PT
    New crystalline parathyroid hormone, especially teriparatide, useful
PT
     for treating osteoporosis and related bone disorders
XX
PS
     Claim 7; Page 7; 13pp; English.
XX
CC
     The present sequence represents human parathyroid hormone (1-34), also
CC
     called PTH(1-34). The present invention describes a parathyroid hormone
CC
     in crystalline form e.g. PTH(1-34), PTH(1-37), PTH(1-38), and PTH(1-41).
CC
     The crystalline hormone is useful for treating osteoporosis and related
CC
     bone disorders. The crystalline forms of the hormone are pure and has
```

```
good storage stability, with a longer shelf life. A crystalline form of
CC
     PTH is easily dissolved in a sterile solution for parenteral
CC
CC
     administration.
XX
SO
     Sequence
                34 AA;
                          100.0%; Score 34; DB 20;
                                                     Length 34;
  Query Match
                          100.0%; Pred. No. 8.3e-27;
  Best Local Similarity
  Matches
            34; Conservative
                                0; Mismatches
                                                                             0;
                                                  0; Indels
                                                                 0; Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 28
AAY14151
     AAY14151 standard; protein; 34 AA.
XX
AC
     AAY14151;
XX
DT
     26-JUL-1999 (first entry)
XX
DΕ
     Human parathyroid hormone PTH(1-34).
XX
     Parathyroid hormone; human; PTH(1-34); PTH(1-84); osteoporosis; therapy;
KW
KW
     bone related disorder; hypoparathyroidism; pseudohypoparathyroidism;
ΚŴ
     hypocalcaemic patient; diagnosis.
XX
os
     Homo sapiens.
XX
PN
     EP920873-A2.
XX
PD
     09-JUN-1999.
XX
PF
     07-DEC-1998;
                    98EP-0123225.
XX
PR
     09-DEC-1997;
                    97US-0069075.
XX
PA
     (ELIL ) LILLY & CO ELI.
XX
PΙ
     Chang C, Havel HA;
XX
     WPI; 1999-315253/27.
DR
XX
     New parathyroid hormone solution useful for treating osteoporosis
PT
     and related none disorders
PT
XX
PS
     Claim 3; Page 8; 9pp; English.
XX
CC
     This sequence represents the human parathyroid hormone PTH(1-34).
CC
     The invention relates to a parathyroid hormone solution comprising:
CC
     parathyroid hormone, a stabilising agent, a buffering agent to maintain
CC
     the pH of the solution between 3-7, and the balance being water.
CC
     The composition is useful for treating osteoporosis and bone related
CC
     disorders. The PTH composition is also useful for diagnosing
CC
     hypoparathyroidism and pseudohypoparathyroidism in hypocalcaemic
```

```
CC
     patients. The solution is storage stable and in sterile form and
CC
     comprises the elimination of the need for lyophilisation.
XX
SO
     Sequence
                34 AA;
                          100.0%; Score 34; DB 20;
                                                      Length 34;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 8.3e-27;
  Matches
            34; Conservative
                                0; Mismatches
                                                  0;
                                                       Indels
                                                                 0; Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 29
AAY02579
ID
     AAY02579 standard; peptide; 34 AA.
XX
AC
     AAY02579;
XX
DT
     16-JUL-1999 (first entry)
XX
DE
     N-terminal 34 residues of human parathyroid hormone (hPTH).
XX
KW
     Human parathyroid hormone; hPTH; bone mass;
KW
     3-(substituted phenoxy)benzo(b)thiophene compound;
KW
     bone loss treatment; osteoporosis.
XX
os
     Homo sapiens.
XX
     WO9918945-A1.
PN
XX
PD
     22-APR-1999.
XX
PF
     05-OCT-1998;
                    98WO-US20848.
XX
     14-OCT-1997;
PR
                    97US-0061800.
XX
PΑ
     (ELIL ) LILLY & CO ELI.
XX
PΙ
     Sato M;
XX
DR
     WPI; 1999-287871/24.
XX
PT
     Method of building bone mass by co-administration of a parathyroid
PT
     hormone with a 3-(substituted phenoxy) benzo(b) thiophene compound
XX
PS
     Claim 7; Page 39; 48pp; English.
XX
CC
     The present sequence represents a fragment of human parathyroid hormone
CC
     (hPTH). hPTH and its fragments are used in the method of the invention.
CC
     The specification describes a method for building bone mass, comprising
CC
     coadministration of a parathyroid hormone with a 3-(substituted
CC
     phenoxy) benzo(b) thiophene compound. The method is used for treatment
CC
     of bone loss, e.g. in osteoporosis.
XX
SO
     Sequence
                34 AA;
```

```
Query Match
                         100.0%; Score 34; DB 20; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
  Matches
           34; Conservative 0; Mismatches
                                                                0; Gaps
                                                 0;
                                                      Indels
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 30
AAW81871
     AAW81871 standard; peptide; 34 AA.
XX
AC
    AAW81871;
XX
DT
     05-FEB-1999
                 (first entry)
XX
DE
    Human PTH N-terminal peptide.
XX
KW
     PTH; parathyroid hormone; osteoporosis; treatment; osteopenia; PTHrP;
KW
     PTH-related peptide; analogue; bone mass.
XX
OS
    Homo sapiens.
XX
PN
    US5840837-A.
XX
PD
    24-NOV-1998.
XX
PF
    24-MAY-1995;
                   95US-0449447.
XX
PR
    18-JAN-1994;
                   94US-0184328.
PR
     14-JUL-1992;
                   92US-0915247.
PR
    24-MAY-1995;
                   95US-0449447.
XX
PΑ
     (SYNT ) SYNTEX USA INC.
XX
PΙ
    Ho TH,
            Krstenansky JL, Nestor JJ;
XX
DR
    WPI; 1999-034119/03.
XX
PT
     Production of modified parathyroid hormone polypeptides by chemical
PT
     synthesis - useful for restoring bone mass, in e.g. the treatment of
PT
    osteoporosis and osteopenia
XX
PS
    Disclosure; Column 49-50; 60pp; English.
XX
CC
    AAW81871-W81952 are peptide fragments used in a method where synthetic
CC
    polypeptide analogues of PTH (parathyroid hormone) or PTHrP (PTH-related
CC
    peptide) and physiologically active truncated homologues and analogues
CC
    of PTH and PTHrp are useful for the prophylaxis and treatment of
CC
    osteopenia and osteoporosis and for restoring bone mass.
XX
SQ
    Sequence
               34 AA;
                         100.0%; Score 34; DB 20; Length 34;
 Query Match
                         100.0%; Pred. No. 8.3e-27;
 Best Local Similarity
```

```
Matches
           34; Conservative
                                 0; Mismatches
                                                  0; Indels
                                                                            0;
                                                                 0; Gaps
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 31
ABJ10712
ID
     ABJ10712 standard; Peptide; 34 AA.
XX
AC
     ABJ10712;
XX
DT
     02-DEC-2002 (first entry)
XX
DE
     Human parathyroid hormone analogue #8.
XX
KW
     Human; parathyroid hormone; parathyroid hormone-related protein;
KW
     PTH; PTHrP; analogue; abnormal CNS function; pancreatic function;
KW
     mineral metabolism; male infertility; abnormal blood pressure;
KW
     hypothalmic disease.
XX
OS
     Homo sapiens.
OS
     Synthetic.
XX
FH
                     Location/Oualifiers
     Key
FT
     Misc-difference 8
FT
                     /note= "D-form residue"
FΤ
     Modified-site
FT
                     /note= "C-terminal amide"
XX
PN
     WO9957139-A2.
XX
PD
     11-NOV-1999.
XX
PF
     03-MAY-1999;
                   99WO-US09521.
XX
PR
     05-MAY-1998;
                    98US-0072956.
XX
PΑ
     (SCRC ) SOC CONSEILS RECH & APPL SCI.
XX
ΡI
     Chorev M, Dong ZX, Rosenblatt M;
XX
DR
     WPI; 2000-038790/03.
XX
     New parathyroid hormone analogs, used for treating e.g. abnormal CNS or
PT
PT
     pancreatic functions, abnormal mineral metabolism and homeostasis, male
PT
     infertility, abnormal blood pressure or hypothalmic disease -
XX
PS
     Claim 11; Page 38; 49pp; English.
XX
CC
     The present invention provides a number of parathyroid hormone (PTH) or
CC
     parathyroid hormone-related protein (PTHrP) analogues. These act as PTH2
CC
     receptor agonists or antagonists and can be used in the treatment of
CC
     disorders resulting from altered or excessive action of the PTH2
CC
     receptor, e.g. abnormal CNS functions, abnormal pancreatic functions,
CC
     divergence from normal mineral metabolism and homeostasis, male
```

```
CC
     infertility, abnormal blood pressure or a hypothalmic disease. The
CC
     present sequence is a peptide analogue of the invention.
XX
SO
     Sequence
               34 AA;
                         100.0%; Score 34; DB 21; Length 34;
 Query Match
 Best Local Similarity
                         100.0%;
                                  Pred. No. 8.3e-27;
 Matches
           34; Conservative 0; Mismatches
                                                  0;
                                                      Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 32
AAB07454
ID
    AAB07454 standard; peptide; 34 AA.
XX
AC
    AAB07454;
XX
DT
     20-OCT-2000 (first entry)
XX
DE
     Amino acids 1-34 of the human parathyroid hormone.
XX
KW
     Parathyroid hormone; pTH; membrane adenylate cyclase; slimming product;
     thigh; hip; cellulite; skin strengthening.
KW
XX
os
     Homo sapiens.
XX
PN
     WO200040611-A1.
XX
PD
     13-JUL-2000.
XX
PF
     09-DEC-1999;
                   99WO-FR03110.
XX
PR
     30-DEC-1998;
                   98FR-0016700.
XX
PA
     (SEDE-) SEDERMA.
XX
PΙ
     Lintner K;
XX
DR
     WPI; 2000-465954/40.
XX
PT
     New peptides from parathyroid hormone, useful as lipolytic agent in
PT
     cosmetic or dermatological compositions, particularly for slimming
XX
PS
     Disclosure; Page 1; 17pp; French.
XX
CC
     The present sequence represents the 1-34 amino acid region of
CC
     human parathyroid hormone (pTH). Peptides derived from this region
CC
     are used to modulate activity of membrane adenylate cyclase. The
CC
     peptides are active when applied topically, and their activity
CC
    may be increased by derivatisation with lipophilic groups. The
CC
    peptides are used in cosmetic or dermatological compositions,
CC
     especially as slimming products for application to thighs and hips,
CC
     also for treating cellulite and for strengthening the skin.
```

XX

```
SO
               34 AA;
     Sequence
  Query Match
                         100.0%; Score 34; DB 21; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
                               0; Mismatches
                                                      Indels
  Matches
           34; Conservative
                                                 0;
                                                                0; Gaps
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 33
AAY98017
     AAY98017 standard; peptide; 34 AA.
ID
XX
AC
     AAY98017;
XX
DT
     04-SEP-2000
                  (first entry)
XX
DE
     Human amino-terminal modified parathyroid hormone analogue # 8.
XX
KW
     Parathyroid hormone peptide; PTH; renal cell; osseous cell; human;
KW
     signal transduction; osteoporosis; amino-terminal modification;
KW
     bone disease; parathyroid hormone receptor; osteopaenia;
KW
     hypoparathyroidism; fracture repair; hypercalcaemia; cancer; osteopathic.
XX
OS
     Homo sapiens.
XX
FH
                    Location/Qualifiers
     Key
FT
     Modified-site
FT
                     /note= "Ser is desamino residue"
XX
PN
     WO200031137-A1.
XX
PD
     02-JUN-2000.
XX
PF
     23-NOV-1999;
                   99WO-US27656.
XX
PR
     25-NOV-1998;
                   98US-0110152.
XX
PΑ
     (BRIN/) BRINGHURST F R.
PΑ
     (TAKA/) TAKASU H.
PA
     (GARD/) GARDELLA T J.
XX
PΙ
     Bringhurst FR, Takasu H, Gardella TJ;
XX
DR
     WPI; 2000-400045/34.
XX
PT
     New parathyroid hormone (PTH) analogs having one or more amino acid
PT
     substitutions that confer PTH-1/PTH-2 receptor agonist properties,
PT
     useful for treating old age osteoporosis and post-menopausal
PT
     osteoporosis -
XX
PS
     Disclosure; Page 64; 69pp; English.
XX
CC
     Parathyroid hormone (PTH) binds to PTH receptors in renal and osseous
CC
     cells, initiating signal transduction. It has been identified that the
```

```
CC
     amino terminal is important for signal transduction. The present
CC
     sequence is a human PTH peptide, with an amino-terminal modification
CC
     which results in effective activation of the PTH-2 receptor and therefore
CC
     downstream signalling. Aberrant PTH activity has been implicated in a
CC
     number of disorders: osteoporosis, osteopaenia, hypoparathyroidism and
CC
     hypercalcaemia. In turn, hypercalcaemia is associated with hypernephroma
CC
     and a variety of cancers: breast, lung and prostate carcinoma, multiple
     myeloma and epidermoid cancers of the head, neck and oesophagus. This
CC
     peptide would be suitable for prophylaxis and treatment of the above
CC
CC
     disorders. In addition, the present sequence would be suitable for
CC
     fracture repair. The present sequence is modified to have a
CC
     desamino residue at position 1.
XX
SQ
     Sequence
               34 AA;
  Query Match
                          100.0%; Score 34; DB 21; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
  Matches
           34; Conservative
                                                  0;
                               0; Mismatches
                                                      Indels
                                                                0;
                                                                    Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 34
AAY82631
ID
    AAY82631 standard; peptide; 34 AA.
XX
AC
    AAY82631;
XX
DT
     02-AUG-2000 (first entry)
XX
DE
    Human parathyroid hormone related peptide 1-34 SEQ ID NO:2.
XX
KW
     Human; parathyroid hormone related protein; PTHrP; monoclonal antibody;
KW
    hypercalcaemia; rheumatoid arthritis; bone cancer; metastasis; pain;
     fracture; cachexia; tooth disease; periodontal disease; gingiva;
KW
KW
     sepsis; systemic inflammatory response syndrome; SIRS;
KW
     hypophosphataemia; antiarthritic; cytostatic; antiinflammatory.
XX
OS
    Homo sapiens.
XX
PN
    JP2000080100-A.
XX
PD
     21-MAR-2000.
XX
PF
    12-OCT-1998;
                   98JP-0304793.
XX
PR
    17-JUN-1998;
                   98JP-0188196.
PR
    26-JUN-1998;
                   98JP-0196729.
XX
PΑ
     (NISB ) JAPAN TOBACCO INC.
XX
DR
    WPI; 2000-286723/25.
XX
PT
    A human monoclonal antibody to parathyroid hormone related protein. -
```

carboxyl terminal of PTH is important for PTH receptor binding, while the

CC

```
PT
     useful for treating hypercalcemia, rheumatoid arthritis, cancer of bone
PT
     including metastasis, and pain
XX
PS
     Example 5; Page 30; 88pp; Japanese.
XX
CC
     The present invention describes a human monoclonal antibody to
CC
     parathyroid hormone related protein (PTHrP). The monoclonal antibody or
     its fragments, following the stimulation of PTHrP has the following
CC
CC
     properties: (a) inhibits intracellular elevation of cAMP; (b) inhibits
CC
     the release of calcium from bone; or (c) inhibits elevation of blood
CC
     calcium content. The monoclonal antibody can be used in the treatment
CC
     of hypercalcaemia, rheumatoid arthritis, cancer of bone including
CC
     metastasis, pain, fracture, cachexia, diseases of teeth, periodontal
CC
     diseases and gingiva, sepsis, systemic inflammatory response syndrome
CC
     (SIRS) and hypophosphataemia. It has antiarthritic, cytostatic and
     antiinflammatory activities. The present sequence represents a
CC
CC
     human PTHrP peptide amino acid sequence from the present invention.
XX
SO
     Sequence
                34 AA;
                          100.0%; Score 34; DB 21; Length 34;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 8.3e-27;
  Matches
            34; Conservative
                                 0; Mismatches
                                                  0;
                                                       Indels
                                                                 0; Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 35
AAY68763
ID
     AAY68763 standard; peptide; 34 AA.
XX
AC
     AAY68763;
XX
DT
     05-MAY-2000 (first entry)
XX
DE
     Amino acids 1-34 of a parathyroid hormone (pTH).
XX
     Parathyroid hormone; lipolysis; cosmetic; dermatological; skin care;
KW
KW
     slimming treatment; cellulite; skin firming.
XX
OS
     Unidentified.
XX
FH
     Key
                     Location/Qualifiers
FT
     Modified-site
                     /note= "this residue is H-Ser"
FT
FT
     Modified-site
FT
                     /note= "this residue is Phe-OH"
XX
PN
    WO200004047-A1.
XX
PD
     27-JAN-2000.
XX
PF
     07-JUL-1999;
                    99WO-FR01687.
XX
PR
     17-JUL-1998;
                    98FR-0009193.
```

```
XX
PΑ
     (SEDE-) SEDERMA.
XX
PΙ
     Lintner K;
XX
DR
     WPI; 2000-171243/15.
XX
PT
     New parathyroid hormone fragment peptides, used as lipolysis stimulants
     in topically applied cosmetic compositions for slimming treatment of
PT
     excessive weight in hips and thighs -
PT
XX
PS
     Disclosure; Page 1; 18pp; French.
XX
CC
     The present sequence represents a parathyroid hormone (pTH) fragment,
     comprising amino acids 1-34. Parathyroid hormone fragments of the
CC
     invention have lipolysis stimulating activity (especially when topically
CC
CC
     administered). The lipolytic activity of the peptides is enhanced when
CC
     they are chemically modified to increase their lipophilicity. The
CC
     peptides are used in cosmetic or dermatological compositions for skin
     care. They are especially used for slimming treatment of excessive
CC
CC
     weight in the thighs and hips, in the treatment of cellulite and for
CC
     skin firming.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 34; DB 21;
                                                     Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 8.3e-27;
            34; Conservative
                                0; Mismatches
                                                  0;
                                                       Indels
                                                                 0;
                                                                    Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 36
AAB84778
ID
     AAB84778 standard; Peptide; 34 AA.
XX
AC
     AAB84778;
XX
DT
     25-JUL-2001 (first entry)
XX
DΕ
     Native rat parathyroid hormone peptide fragment #2.
XX
KW
     Osteopathic; calcium homeostasis regulator; parathyroid hormome; PTH;
KW
     bone mass; osteoporosis.
XX
OS
     Rattus sp.
XX
PN
     WO200123521-A2.
XX
PD
     05-APR-2001.
XX
PF
     29-SEP-2000; 2000WO-US26818.
XX
PR
     29-SEP-1999;
                   99US-0156927.
     25-FEB-2000; 2000US-0185060.
PR
```

```
XX
PΆ
     (GEHO ) GEN HOSPITAL CORP.
XX
PΙ
     Gardella TJ,
                  Kronenberg HM, Potts JT,
                                             Juppner H;
XX
     WPI; 2001-374252/39.
DR
XX
PT
     New Parathyroid hormone (PTH) derivatives useful for treating
PΤ
     conditions characterized by decreases in bone mass -
XX
PS
     Example 2; Page 67; 97pp; English.
XX
     The present invention relates to parathyroid hormome (PTH) polypeptide
CC
CC
     derivatives, and the present sequence is one such derivative. PTH is a
CC
     major regulator of calcium homeostasis. The PTH polypeptide derivatives
CC
     are useful for treating conditions characterised by decreases in bone
CC
     mass, such as old age osteoporosis and post-menopausal osteoporosis. The
CC
     polypeptides are also useful for determining rates of bone reformation,
CC
     bone resorption and/or bone remodeling, by administering the polypeptide
CC
     to the patient and determining the uptake of the peptide into the bone,
CC
     and effective bone mass-increasing amount to the peptide is administered
CC
     by providing to the patient DNA encoding the peptide and expressing the
     peptide in vivo. The levels of cAMP and inositol phosphate can also be
CC
CC
     increased in a mammalian cell having PTH-1 receptors, by contacting the
     cell with a sufficient amount of the polypeptide.
CC
XX
SO
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 34; DB 22;
                                                     Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 8.3e-27;
  Matches
           34; Conservative
                                 0; Mismatches
                                                   0;
                                                      Indels
                                                                 0; Gaps
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 37
AAB96898
ID
     AAB96898 standard; peptide; 34 AA.
XX
AC
     AAB96898;
XX
DT
     13-JUL-2001 (first entry)
XX
DE
     Human parathyroid hormone (1-34).
XX
KW
     Rat; human; parathyroid hormone derivative; calcium homeostasis;
KW
     hypercalcaemia; anaemia; bone disease; renal impairment; ulcer;
KW
     myopathy; neuropathy; hyperparathyroidism; osteoporosis; fracture;
KW
     cartilage disorder.
XX
OS
     Homo sapiens.
XX
PN
     WO200123427-A1.
XX
PD
     05-APR-2001.
```

```
XX
PF
     25-FEB-2000; 2000WO-US04716.
XX
PR
     29-SEP-1999;
                   99US-0156927.
XX
PΑ
     (GEHO ) GEN HOSPITAL CORP.
XX
     Gardella TJ, Kronenberg HM, Potts JT,
PΙ
                                             Jueppner H;
XX
DR
     WPI; 2001-343161/36.
XX
PT
     Novel amino acid encoding polypeptides useful in the treatment of
     osteoporosis -
PT
XX
PS
     Example 2; Page 64; 100pp; English.
XX
CC
     The present invention provides a number of parathyroid hormone
CC
     derivatives based on the rat and human hormone sequences. These peptides
     can be used in the treatment of human skeletal conditions, including
CC
     osteoporosis, fractures and cartilage disorders, disruption of calcium
CC
CC
     homeostasis, which may cause severe bone disease, anaemia, renal
CC
     impairment, ulcers, myopathy and neuropathy, hypercalcaemia and
CC
     hyperparathyroidism. The present peptide was used in the exemplification
CC
     of the invention.
XX
SO
    Sequence
               34 AA;
  Query Match
                         100.0%; Score 34; DB 22; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
  Matches
           34; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 38
AAB81079
ID
    AAB81079 standard; peptide; 34 AA.
XX
AC
    AAB81079;
XX
DT
     26-JUN-2001 (first entry)
XX
DE
    Human parathyroid hormone 1-34.
XX
KW
     Parathyroid hormone; PTH; blood calcium level regulator; osteopathic;
KW
     vulnerary; bone growth; bone healing; osteoporosis; fracture; human.
XX
os
    Homo sapiens.
XX
PN
    WO200121643-A2.
XX
PD
    29-MAR-2001.
XX
PF
     21-SEP-2000; 2000WO-CA01083.
XX
```

```
PR
     22-SEP-1999;
                    99US-0406813.
XX
PA
     (CANA ) NAT RES COUNCIL CANADA.
XX
PΙ
     Barbier J, Morley P, Whitfield J, Willick GE;
XX
DR
     WPI; 2001-308081/32.
XX
PT
     New human parathyroid hormone (HPTH) analog useful for stimulating bone
     growth, for restoring bone, for promotion of bone healing, and for
PT
PT
     treating osteoporosis and normal fractures -
XX
PS
     Disclosure; Fig 1; 34pp; English.
XX
CC
     Parathyroid hormone (PTH) is a major regulator of blood calcium levels,
CC
     this invention relates to hPTH analogues, or their salts. Use of the
CC
     analogues results in osteopathic and vulnerary activity. The hPTH
CC
     analogues are useful for treating a warm-blooded animal for stimulating
CC
     bone growth, for restoring bone, and for the promotion of bone healing
CC
     during the treatment of osteoporosis and normal fractures. The present
CC
     sequence represents naturally occurring human parathyroid hormone.
XX
SQ
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 34; DB 22;
  Best Local Similarity
                                  Pred. No. 8.3e-27;
                          100.0%;
  Matches
           34; Conservative
                               0; Mismatches
                                                 0;
                                                      Indels
                                                                    Gaps
                                                                             0:
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 39
AAB91098
ID
    AAB91098 standard; Peptide; 34 AA.
XX
AC
    AAB91098;
XX
DT
     22-JUN-2001
                 (first entry)
XX
DE
     Parathyroid hormone (PTH) related peptide SEQ ID NO:272.
XX
     Protection; endogenous therapeutic peptide; peptidase; conjugation;
KW
    blood component; modification; succinimidyl; maleimido group; amino;
KW
KW
    hydroxyl; thiol; hormone; growth factor; neurotransmitter.
XX
OS
    Homo sapiens.
OS
     Synthetic.
XX
PN
    WO200069900-A2.
XX
    23-NOV-2000.
PD
XX
PF
    17-MAY-2000; 2000WO-US13576.
XX
PR
    17-MAY-1999;
                   99US-0134406.
```

```
PR
     10-SEP-1999:
                   99US-0153406.
PR
     15-OCT-1999;
                   99US-0159783.
XX
PA
     (CONJ-) CONJUCHEM INC.
XX
PΙ
                Ezrin AM,
                                                   Thibaudeau K;
     Bridon DP,
                           Milner PG,
                                       Holmes DL,
XX
DR
     WPI; 2001-112059/12.
XX
PT
     Modifying and attaching therapeutic peptides to albumin prevents
PT
     peptidase degradation, useful for increasing length of in vivo activity
РΤ
XX
PS
     Disclosure; Page 281; 733pp; English.
XX
CC
     The present invention describes a modified therapeutic peptide (I)
CC
     comprising a therapeutically active amino acid region (III) and a
CC
     reactive group (II) (e.g. succinimidyl and maleimido groups) attached to
CC
     a less therapeutically active amino acid region (IV), which covalently
CC
     bonds with amino/hydroxyl/thiol groups on blood components to form a
CC
     peptidase stabilised therapeutic peptide composed of 3-50 amino acids.
CC
     (I) are useful for modifying therapeutic peptides e.g. hormones, growth
CC
     factors and neurotransmitters, to protect them from peptidase activity
CC
     in vivo for the treatment of various disorders. Endogenous therapeutic
CC
     peptides are not suitable as drug candidates as they require frequent
CC
     administration due to rapid degradation by peptidases in the body.
CC
     Modifying and attaching therapeutic peptides to albumin prevents or
CC
     reduces the action of peptidases to increase length of activity (half
CC
     life) and specificity as bonding to large molecules decreases
CC
     intracellular uptake and interference with physiological processes.
CC
     AAB90829 to AAB92441 represent peptides which can be used in the
CC
     exemplification of the present invention.
XX
SO
     Sequence
                34 AA;
  Query Match
                          100.0%; Score 34; DB 22; Length 34;
  Best Local Similarity
                         100.0%;
                                  Pred. No. 8.3e-27;
 Matches
           34; Conservative
                                0; Mismatches
                                                 0;
                                                      Indels
                                                                 0;
                                                                    Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 40
ABJ05328
ID
     ABJ05328 standard; Peptide; 34 AA.
XX
AC
     ABJ05328;
XX
DT
     08-NOV-2002 (first entry)
XX
DE
     Human PTH(1-34) peptide.
XX
KW
     Target peptide production; fusion peptide; protease-susceptible linker;
KW
     parathyroid hormone; PTH; high expression rate;
KW
     pharmaceutical application.
```

```
XX
OS
     Homo sapiens.
XX
PN
     WO200236762-A1.
XX
PD
     10-MAY-2002.
XX
PF
     29-OCT-2001; 2001WO-JP09476.
XX
₽R
     30-OCT-2000; 2000JP-0331170.
     27-JUN-2001; 2001JP-0195522.
PR
XX
PA
     (TAKE ) TAKEDA CHEM IND LTD.
XX
PΙ
     Yamada T,
               Suenaga M;
XX
DR
     WPI; 2002-417275/44.
DR
     N-PSDB; ABT06798.
XX
PT
     Production of target peptide comprises cleavage of fusion peptide with
PT
     parathyroid hormone peptide for efficient manufacture of target peptide
     without the need to remove N-terminal methionine -
PT
XX
PS
     Disclosure; Page 14; 103pp; Japanese.
XX
CC
     The invention comprises a method of producing a target peptide. The
CC
     C-terminal end of the target peptide is fused via a protease-susceptible
CC
     linker to parathyroid hormone (PTH) residues 1-34. The method of the
CC
     invention is useful for the clean and efficient production of a target
     peptide at a high expression rate on an industrial scale without the need
CC
CC
     to remove the N-terminal methionine from the product. The peptides
CC
     produced by the method of the invention are suitable for pharmaceutical
CC
     and other uses. The present peptide sequence was used in the invention.
XX
SQ
     Sequence
               34 AA;
  Query Match
                         100.0%; Score 34; DB 23;
                                                     Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 8.3e-27;
  Matches
           34; Conservative
                                0; Mismatches
                                                  0;
                                                      Indels
                                                                0; Gaps
                                                                            0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
```

Search completed: January 14, 2004, 10:34:18 Job time : 36.5171 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:59; Search time 11.5452 Seconds

(without alignments)

124.604 Million cell updates/sec

Title: US-09-843-221A-161

Perfect score: 34

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 328717 seqs, 42310858 residues

Word size : 0

Total number of hits satisfying chosen parameters: 25778

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : Issued_Patents_AA:*

1: /cgn2_6/ptodata/1/iaa/5A_COMB.pep:*
2: /cgn2_6/ptodata/1/iaa/5B_COMB.pep:*
3: /cgn2_6/ptodata/1/iaa/6A_COMB.pep:*

4: /cgn2_6/ptodata/1/iaa/6B_COMB.pep:*
5: /cgn2_6/ptodata/1/iaa/PCTUS_COMB.pep:*
6: /cgn2_6/ptodata/1/iaa/backfiles1.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		ક				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	34	100.0	34	1	US-07-765-373-1	Sequence 1, Appli
2	34	100.0	34	1	US-08-033-099-1	Sequence 1, Appli
3	34	100.0	34	1	US-08-262-495C-1	Sequence 1, Appli
4	34	100.0	34	1	US-07-915-247A-1	Sequence 1, Appli
5	34	100.0	34	1	US-08-443-863-1	Sequence 1, Appli
6	34	100.0	34	1	US-08-448-070-1	Sequence 1, Appli
7	34	100.0	34	1	US-08-488-105-7	Sequence 7, Appli
8	34	100.0	34	1	US-08-468-275-6	Sequence 6, Appli
9	34	100.0	34	1	US-08-449-500-1	Sequence 1, Appli
10	34	100.0	34	1	US-08-449-317A-1	Sequence 1, Appli
11	34	100.0	34	2	US-08-142-551B-2	Sequence 2, Appli

```
12
            100.0
                       34
                            2
        34
                               US-08-477-022-1
                                                            Sequence 1, Appli
13
                       34
        34
            100.0
                           2
                               US-08-449-447-1
                                                            Sequence 1, Appli
                       34
14
        34
            100.0
                           2
                               US-08-835-231-13
                                                            Sequence 13, Appl
15
        34
            100.0
                       34
                           2
                               US-08-184-328-1
                                                            Sequence 1, Appli
16
                       34
                           2
        34
            100.0
                               US-08-411-726-2
                                                            Sequence 2, Appli
                           2
17
        34
            100.0
                       34
                               US-08-691-647C-5
                                                            Sequence 5, Appli
18
        34
            100.0
                       34
                            2
                               US-08-521-097-1
                                                            Sequence 1, Appli
19
        34
            100.0
                       34
                            3
                                                            Sequence 1, Appli
                               US-09-044-536A-1
        34
            100.0
                       34
                           3
                                                            Sequence 22, Appl
20
                               US-08-904-760B-22
        34
            100.0
                       34
                            3
21
                               US-09-108-661-13
                                                            Sequence 13, Appl
                       34
22
        34
             100.0
                            4
                               US-09-007-466-6
                                                            Sequence 6, Appli
23
        34
             100.0
                       34
                            4
                               US-09-406-813-1
                                                            Sequence 1, Appli
24
        34
             100.0
                       34
                               US-08-952-980B-6
                                                            Sequence 6, Appli
             100.0
25
                       34
        34
                            4
                                                            Sequence 1, Appli
                               US-09-228-990-1
26
        34
             100.0
                       34
                            4
                               US-09-447-800-8
                                                            Sequence 8, Appli
27
        34
             100.0
                       34
                            4
                               US-09-536-785A-22
                                                            Sequence 22, Appl
28
        34
             100.0
                       34
                            4
                               US-09-442-989-26
                                                            Sequence 26, Appl
29
        34
             100.0
                       34
                            5
                               PCT-US95-15800-22
                                                            Sequence 22, Appl
             100.0
                       35
30
        34
                            1
                               US-08-256-363-3
                                                            Sequence 3, Appli
             100.0
                       36
31
        34
                            1
                               US-08-256-363-4
                                                            Sequence 4, Appli
32
        34
             100.0
                       37
                            1
                               US-08-440-117-1
                                                            Sequence 1, Appli
33
                       37
        34
             100.0
                            3
                               US-09-068-738A-16
                                                            Sequence 16, Appl
34
        34
             100.0
                       38
                            1
                               US-08-112-024-1
                                                            Sequence 1, Appli
35
             100.0
                       38
        34
                            1
                                                            Sequence 1, Appli
                               US-08-232-849-1
                            2
36
        34
             100.0
                       38
                               US-08-625-586-1
                                                            Sequence 1, Appli
37
        34
             100.0
                       38
                            3
                               US-09-128-401-1
                                                            Sequence 1, Appli
38
        33
              97.1
                       33
                            4
                               US-09-447-800-9
                                                            Sequence 9, Appli
39
        33
              97.1
                       34
                            3
                               US-08-903-497A-1
                                                            Sequence 1, Appli
              97.1
                               US-09-635-076-1
                                                            Sequence 1, Appli
40
        33
                       34
                            4
41
        33
              97.1
                       34
                            4
                               US-09-447-800-1
                                                            Sequence 1, Appli
        33
                       34
42
              97.1
                            4
                               US-09-447-800-2
                                                            Sequence 2, Appli
43
        33
                       34
                            4
              97.1
                                                            Sequence 5, Appli
                               US-09-447-800-5
44
        33
              97.1
                       36
                               US-08-112-024-2
                                                            Sequence 2, Appli
45
        32
                       33
              94.1
                            1
                                                            Sequence 1, Appli
                               US-08-256-363-1
        32
46
              94.1
                       33
                            4
                               US-09-447-800-3
                                                            Sequence 3, Appli
47
        32
              94.1
                       33
                            4
                               US-09-447-800-6
                                                            Sequence 6, Appli
48
        32
              94.1
                       34
                            1
                                                            Sequence 2, Appli
                               US-08-256-363-2
49
        31
              91.2
                       31
                            1
                               US-08-262-495C-3
                                                            Sequence 3, Appli
50
        31
              91.2
                       31
                            2
                               US-08-691-647C-1
                                                            Sequence 1, Appli
        31
                       31
                            2
                                                            Sequence 6, Appli
51
              91.2
                               US-08-691-647C-6
                       31
52
        31
              91.2
                            3
                               US-08-904-760B-1
                                                            Sequence 1, Appli
53
        31
                       31
                            3
              91.2
                               US-08-904-760B-6
                                                            Sequence 6, Appli
54
        31
              91.2
                       31
                            3
                               US-08-904-760B-14
                                                            Sequence 14, Appl
55
                       31
        31
              91.2
                            3
                               US-08-904-760B-32
                                                            Sequence 32, Appl
56
        31
              91.2
                       31
                            4
                               US-09-406-813-2
                                                            Sequence 2, Appli
57
                               US-09-536-785A-1
        31
              91.2
                       31
                            4
                                                            Sequence 1, Appli
58
        31
              91.2
                       31
                            4
                               US-09-536-785A-6
                                                            Sequence 6, Appli
59
        31
              91.2
                       31
                            4
                               US-09-536-785A-14
                                                            Sequence 14, Appl
60
        31
              91.2
                       31
                            4
                               US-09-536-785A-32
                                                            Sequence 32, Appl
        30
              88.2
                       30
61
                            1
                               US-08-262-495C-5
                                                            Sequence 5, Appli
        29
                       34
62
              85.3
                            4
                               US-09-449-632-24
                                                            Sequence 24, Appl
        28
                       28
63
              82.4
                            4
                               US-09-448-867-12
                                                            Sequence 12, Appl
        28
64
              82.4
                       38
                            5
                               PCT-US95-15800-29
                                                            Sequence 29, Appl
65
        27
              79.4
                       28
                            4
                               US-09-448-867-8
                                                            Sequence 8, Appli
        27
66
              79.4
                       28
                            4
                               US-09-448-867-10
                                                            Sequence 10, Appl
67
        26
              76.5
                       28
                               US-09-406-813-3
                                                            Sequence 3, Appli
68
        26
                       29
              76.5
                               US-09-406-813-4
                                                            Sequence 4, Appli
```

```
69
         26
                        30
               76.5
                            1
                                US-08-262-495C-6
                                                             Sequence 6, Appli
 70
         26
               76.5
                        30
                            3
                                US-08-904-760B-7
                                                             Sequence 7, Appli
 71
         26
               76.5
                        30
                            4
                                US-09-536-785A-7
                                                             Sequence 7, Appli
 72
         26
               76.5
                        31
                            1
                                US-08-262-495C-4
                                                             Sequence 4, Appli
 73
         26
               76.5
                        31
                            2
                                US-08-691-647C-2
                                                             Sequence 2, Appli
 74
         26
               76.5
                        31
                            2
                                US-08-691-647C-3
                                                             Sequence 3, Appli
                        31
                            2
 75
         26
               76.5
                                US-08-691-647C-4
                                                             Sequence 4, Appli
 76
         26
               76.5
                        31
                            3
                                US-08-904-760B-2
                                                             Sequence 2, Appli
 77
                            3
         26
               76.5
                        31
                                US-08-904-760B-3
                                                             Sequence 3, Appli
 78
         26
               76.5
                        31
                            3
                                US-08-904-760B-4
                                                             Sequence 4, Appli
 79
         26
               76.5
                        31
                            3
                                US-08-904-760B-5
                                                             Sequence 5, Appli
 80
         26
                        31
               76.5
                            3
                                US-08-904-760B-8
                                                             Sequence 8, Appli
 81
         26
               76.5
                        31
                            3
                                US-08-904-760B-11
                                                             Sequence 11, Appl
 82
         26
               76.5
                        31
                            3
                                US-08-904-760B-12
                                                             Sequence 12, Appl
 83
         26
               76.5
                        31
                            3
                                US-08-904-760B-15
                                                             Sequence 15, Appl
 84
         26
               76.5
                        31
                            3
                                US-08-904-760B-16
                                                             Sequence 16, Appl
 85
         26
               76.5
                        31
                            3
                                US-08-904-760B-17
                                                             Sequence 17, Appl
 86
         26
               76.5
                        31
                            4
                                                             Sequence 2, Appli
                                US-09-536-785A-2
 87
         26
               76.5
                        31
                            4
                                US-09-536-785A-3
                                                             Sequence 3, Appli
 88
         26
               76.5
                        31
                            4
                                US-09-536-785A-4
                                                             Sequence 4, Appli
 89
         26
               76.5
                        31
                            4
                                US-09-536-785A-5
                                                             Sequence 5, Appli
 90
         26
               76.5
                        31
                                US-09-536-785A-8
                                                             Sequence 8, Appli
 91
         26
               76.5
                        31
                            4
                                US-09-536-785A-11
                                                             Sequence 11, Appl
 92
         26
               76.5
                        31
                            4
                                US-09-536-785A-12
                                                             Sequence 12, Appl
 93
         26
               76.5
                        31
                            4
                                US-09-536-785A-15
                                                             Sequence 15, Appl
 94
         26
               76.5
                        31
                            4
                                US-09-536-785A-16
                                                             Sequence 16, Appl
 95
         26
               76.5
                        31
                            4
                                US-09-536-785A-17
                                                             Sequence 17, Appl
 96
         26
               76.5
                        34
                            1
                                US-08-262-495C-2
                                                             Sequence 2, Appli
 97
         26
               76.5
                        34
                            3
                                US-08-904-760B-9
                                                             Sequence 9, Appli
 98
         26
                        34
                            3
               76.5
                                US-08-904-760B-10
                                                             Sequence 10, Appl
 99
         26
                        34
               76.5
                            4
                                US-09-536-785A-9
                                                             Sequence 9, Appli
100
         26
               76.5
                        34
                                US-09-536-785A-10
                                                             Sequence 10, Appl
101
         25
               73.5
                        31
                            3
                                US-08-904-760B-21
                                                             Sequence 21, Appl
102
         25
               73.5
                        31
                            4
                                US-09-536-785A-21
                                                             Sequence 21, Appl
103
         24
               70.6
                        34
                            1
                                US-07-773-098-5
                                                             Sequence 5, Appli
104
         24
               70.6
                        34
                            1
                                US-07-773-098-6
                                                             Sequence 6, Appli
105
         24
               70.6
                        34
                            3
                                US-09-044-536A-9
                                                             Sequence 9, Appli
106
         24
               70.6
                        34
                            3
                                US-09-044-536A-10
                                                             Sequence 10, Appl
         24
                            3
107
               70.6
                        34
                                                             Sequence 13, Appl
                                US-09-044-536A-13
108
         24
                        34
                            3
                                US-09-044-536A-14
               70.6
                                                             Sequence 14, Appl
109
         24
               70.6
                        34
                            3
                                US-09-044-536A-15
                                                             Sequence 15, Appl
         23
110
               67.6
                        34
                            3
                                US-09-044-536A-8
                                                             Sequence 8, Appli
111
         23
               67.6
                        34
                            3
                                US-09-044-536A-11
                                                             Sequence 11, Appl
112
         23
               67.6
                        34
                            3
                                US-09-044-536A-12
                                                             Sequence 12, Appl
113
         21
               61.8
                        31
                            3
                                US-08-904-760B-18
                                                             Sequence 18, Appl
114
         21
               61.8
                        31
                            3
                                US-08-904-760B-19
                                                             Sequence 19, Appl
115
         21
               61.8
                        31
                            3
                                US-08-904-760B-20
                                                             Sequence 20, Appl
116
         21
               61.8
                        31
                            4
                                US-09-536-785A-18
                                                             Sequence 18, Appl
117
         21
                        31
                            4
                                                             Sequence 19, Appl
               61.8
                                US-09-536-785A-19
118
         21
                        31
                            4
               61.8
                                US-09-536-785A-20
                                                             Sequence 20, Appl
119
         21
                        34
                            3
               61.8
                               US-09-044-536A-26
                                                             Sequence 26, Appl
120
         20
               58.8
                        34
                            3
                                US-09-044-536A-25
                                                             Sequence 25, Appl
121
         20
               58.8
                        34
                            4
                               US-08-952-980B-9
                                                             Sequence 9, Appli
122
         19
               55.9
                        34
                            3
                               US-08-903-497A-3
                                                             Sequence 3, Appli
123
         19
              55.9
                        34
                            4
                                US-09-635-076-3
                                                             Sequence 3, Appli
124
         18
               52.9
                        28
                            4
                               US-09-448-867-6
                                                             Sequence 6, Appli
125
         18
               52.9
                        34
                            1
                               US-07-915-247A-2
                                                            Sequence 2, Appli
```

```
126
         18
               52.9
                        34
                             1
                                US-08-443-863-2
                                                             Sequence 2, Appli
         18
                        34
                             1
127
               52.9
                                US-08-448-070-2
                                                             Sequence 2, Appli
128
         18
               52.9
                        34
                             1
                                US-08-488-105-2
                                                             Sequence 2, Appli
129
         18
               52.9
                        34
                             1
                                US-08-488-105-8
                                                             Sequence 8, Appli
130
         18
               52.9
                        34
                             1
                                US-08-449-500-2
                                                             Sequence 2, Appli
131
         18
               52.9
                        34
                             1
                                US-08-449-317A-2
                                                             Sequence 2, Appli
132
         18
               52.9
                        34
                             2
                                US-08-477-022-2
                                                             Sequence 2, Appli
133
         18
               52.9
                        34
                             2
                                US-08-449-447-2
                                                             Sequence 2, Appli
               52.9
                             2
134
         18
                        34
                                US-08-184-328-2
                                                             Sequence 2, Appli
         18
                             2
135
               52.9
                        34
                                US-08-521-097-2
                                                             Sequence 2, Appli
136
         18
               52.9
                        34
                             3
                                US-09-044-536A-18
                                                             Sequence 18, Appl
137
         18
               52.9
                        34
                             3
                                US-09-044-536A-19
                                                             Sequence 19, Appl
138
         17
               50.0
                        28
                                US-09-448-867-1
                                                             Sequence 1, Appli
139
         17
                        28
               50.0
                             4
                                US-09-448-867-2
                                                             Sequence 2, Appli
         17
140
               50.0
                        28
                             4
                                US-09-448-867-4
                                                             Sequence 4, Appli
141
         17
               50.0
                        34
                             1
                                US-08-488-105-1
                                                             Sequence 1, Appli
142
         17
               50.0
                        34
                             1
                                US-08-488-105-13
                                                             Sequence 13, Appl
143
         17
               50.0
                        34
                             1
                                US-08-488-105-14
                                                             Sequence 14, Appl
144
         17
               50.0
                        34
                             3
                                US-09-044-536A-16
                                                             Sequence 16, Appl
         17
145
               50.0
                        34
                             3
                                US-09-044-536A-17
                                                             Sequence 17, Appl
146
         16
               47.1
                        28
                             4
                                US-09-406-813-6
                                                             Sequence 6, Appli
147
         16
                        31
                             4
               47.1
                                US-09-406-813-5
                                                             Sequence 5, Appli
148
         16
                        34
               47.1
                                US-07-915-247A-3
                                                             Sequence 3, Appli
149
         16
               47.1
                        34
                             1
                                US-08-443-863-3
                                                             Sequence 3, Appli
150
         16
               47.1
                        34
                             1
                                US-08-448-070-3
                                                             Sequence 3, Appli
151
         16
               47.1
                        34
                             1
                                US-08-449-500-3
                                                             Sequence 3, Appli
152
         16
                        34
                             1
               47.1
                                US-08-449-317A-3
                                                             Sequence 3, Appli
153
         16
                        34
                             2
               47.1
                                US-08-477-022-3
                                                             Sequence 3, Appli
154
         16
               47.1
                        34
                             2
                                US-08-449-447-3
                                                             Sequence 3, Appli
                       ,34
155
         16
               47.1
                             2
                                US-08-184-328-3
                                                             Sequence 3, Appli
156
         16
               47.1
                        34
                             2
                                US-08-521-097-3
                                                             Sequence 3, Appli
157
         15
                        34
                             1
               44.1
                                US-08-488-105-4
                                                             Sequence 4, Appli
158
         15
                        34
                             1
               44.1
                                US-08-488-105-6
                                                             Sequence 6, Appli
159
         15
               44.1
                        34
                             1
                                US-08-488-105-10
                                                             Sequence 10, Appl
160
         15
               44.1
                        34
                             1
                                US-08-488-105-11
                                                             Sequence 11, Appl
161
         15
               44.1
                        34
                             1
                                US-08-488-105-16
                                                             Sequence 16, Appl
162
         15
               44.1
                        34
                             1
                                US-08-488-105-18
                                                             Sequence 18, Appl
163
         15
               44.1
                        34
                             1
                                US-08-449-500-79
                                                             Sequence 79, Appl
164
         15
               44.1
                        34
                             1
                                US-08-449-317A-79
                                                             Sequence 79, Appl
165
         15
                             2
               44.1
                        34
                                US-08-142-551B-3
                                                             Sequence 3, Appli
166
         15
               44.1
                        34
                             2
                                US-08-477-022-79
                                                             Sequence 79, Appl
167
         15
                        34
               44.1
                             2
                                US-08-449-447-79
                                                             Sequence 79, Appl
168
         15
                        34
                             2
               44.1
                                US-08-184-328-79
                                                             Sequence 79, Appl
169
         15
               44.1
                        34
                             2
                                US-08-521-097-79
                                                             Sequence 79, Appl
170
         15
               44.1
                        34
                             3
                                US-09-044-536A-27
                                                             Sequence 27, Appl
171
                                US-09-044-536A-29
         15
               44.1
                        34
                             3
                                                             Sequence 29, Appl
172
         15
               44.1
                        34
                             3
                                US-08-903-497A-4
                                                             Sequence 4, Appli
173
         15
               44.1
                        34
                                US-09-635-076-4
                                                             Sequence 4, Appli
174
         15
               44.1
                        35
                             2
                                US-08-142-551B-4
                                                             Sequence 4, Appli
175
         15
                        35
                             2
               44.1
                                US-08-142-551B-5
                                                             Sequence 5, Appli
176
         15
                        35
                             2
               44.1
                                US-08-142-551B-7
                                                             Sequence 7, Appli
177
         15
                        35
                             2
               44.1
                                US-08-142-551B-11
                                                             Sequence 11, Appl
178
         15
               44.1
                        35
                                US-08-142-551B-12
                                                             Sequence 12, Appl
179
         15
                        35
               44.1
                             2
                                                             Sequence 13, Appl
                                US-08-142-551B-13
180
         15
                        35
               44.1
                             2
                                US-08-142-551B-14
                                                             Sequence 14, Appl
181
         15
                        35
               44.1
                             2
                                US-08-142-551B-15
                                                             Sequence 15, Appl
182
         15
                        35
               44.1
                             2
                                US-08-142-551B-16
                                                             Sequence 16, Appl
```

			*			
183	15	44.1	35	2	US-08-142-551B-17	Sequence 17, Appl
184	15	44.1	35	2	US-08-142-551B-18	Sequence 18, Appl
185	15	44.1	35	2	US-08-142-551B-19	Sequence 19, Appl
186	15	44.1	35	2	US-08-142-551B-20	Sequence 20, Appl
187	15	44.1	35	2	US-08-142-551B-21	Sequence 21, Appl
188	15	44.1	35	2	US-08-142-551B-22	Sequence 22, Appl
189	15	44.1	35	2	US-08-142-551B-23	Sequence 23, Appl
190	15	44.1	35	2	US-08-142-551B-24	Sequence 24, Appl
191	15	44.1	35	2	US-08-142-551B-25	Sequence 25, Appl
192	15	44.1	35	2	US-08-142-551B-26	Sequence 26, Appl
193	15	44.1	35	2	US-08-142-551B-27	Sequence 27, Appl
194	15	44.1	35	2	US-08-142-551B-28	Sequence 28, Appl
195	15	44.1	35	2	US-08-142-551B-29	Sequence 29, Appl
196	15	44.1	35	2	US-08-142-551B-30	Sequence 30, Appl
197	15	44.1	35	2	US-08-142-551B-31	Sequence 31, Appl
198	15	44.1	35	2	US-08-142-551B-32	Sequence 32, Appl
199	15	44.1	35	2	US-08-142-551B-33	Sequence 33, Appl
200	15	44.1	35	2	US-08-142-551B-34	Sequence 34, Appl
201	15	44.1	35	2	US-08-142-551B-35	Sequence 35, Appl
202	15	44.1	35	2	US-08-142-551B-36	Sequence 36, Appl
203	15	44.1	35	2	US-08-142-551B-37	Sequence 37, Appl
204	15	44.1	35	2	US-08-142-551B-38	Sequence 38, Appl
205	15	44.1	35	2	US-08-142-551B-39	Sequence 39, Appl
206	15	44.1	35	2	US-08-142-551B-40	Sequence 40, Appl
207	15	44.1	35	2	US-08-142-551B-41	Sequence 41, Appl
208	15	44.1	35	2	US-08-142-551B-42	Sequence 42, Appl
209	15	44.1	35	2	US-08-142-551B-43	Sequence 43, Appl
210	15	44.1	35	2	US-08-142-551B-44	Sequence 44, Appl
211	15	44.1	35	2	US-08-142-551B-45	Sequence 45, Appl
212	15	44.1	35	2	US-08-142-551B-46	Sequence 46, Appl
213	15	44.1	35	2	US-08-142-551B-47	Sequence 47, Appl
214	15	44.1	35	2	US-08-142-551B-48	Sequence 48, Appl
215	15	44.1	35	2	US-08-142-551B-49	Sequence 49, Appl
216	15	44.1	35	2	US-08-142-551B-50	Sequence 50, Appl
217	15	44.1	35	2	US-08-142-551B-51	Sequence 51, Appl
218	15	44.1	35	2	US-08-142-551B-52	Sequence 52, Appl
219	15	44.1	35	2	US-08-142-551B-53	Sequence 53, Appl
220	15 15	44.1	35 35	2	US-08-142-551B-54	Sequence 54, Appl
221	15	44.1	35	2	US-08-142-551B-55	Sequence 55, Appl
222	15	44.1	35	2	US-08-142-551B-56	Sequence 56, Appl
223 224	15	44.1	35	2	US-08-142-551B-57	Sequence 57, Appl
. 225	15 15	44.1 44.1	35	2 2	US-08-142-551B-58	Sequence 58, Appl
226	15	44.1 44.1	35	2	US-08-142-551B-59	Sequence 59, Appl
227	15	$44.1 \\ 44.1$	35 35	2	US-08-142-551B-60	Sequence 60, Appl
228	15	44.1	35 35	2	US-08-142-551B-61	Sequence 61, Appl
229	15	44.1	35 35	2	US-08-142-551B-62 US-08-142-551B-63	Sequence 62, Appl
230	15	44.1	35	2	US-08-142-551B-64	Sequence 63, Appl Sequence 64, Appl
231	15	44.1	35	2	US-08-142-551B-65	Sequence 64, Appl Sequence 65, Appl
232	15	44.1	35	2	US-08-142-551B-66	
233	15	44.1	35 35	2	US-08-142-551B-67	Sequence 66, Appl Sequence 67, Appl
234	15	44.1	35 35	2	US-08-142-551B-68	Sequence 67, Appl Sequence 68, Appl
235	15	44.1	35	2	US-08-142-551B-70	Sequence 70, Appl
236	15	44.1	35	2	US-08-142-551B-73	Sequence 70, Appl Sequence 73, Appl
237	15	44.1	35	2	US-08-142-551B-80	Sequence 80, Appl
238	15	44.1	35	2	US-08-142-551B-90	Sequence 90, Appl
239	15	44.1	35	2	US-08-142-551B-94	Sequence 94, Appl Sequence 94, Appl
			23	_	-5 00 145 5510 74	pedaction lat What

```
240
          14
               41.2
                         34
                             1
                                 US-08-488-105-3
                                                              Sequence 3, Appli
          14
                         34
                             1
241
               41.2
                                 US-08-488-105-9
                                                              Sequence 9, Appli
242
          14
               41.2
                         34
                             1
                                 US-08-488-105-15
                                                              Sequence 15, Appl
243
          14
               41.2
                         34
                             3
                                 US-08-903-497A-7
                                                              Sequence 7, Appli
244
          14
               41.2
                         34
                             4
                                 US-09-635-076-7
                                                              Sequence 7, Appli
245
          14
               41.2
                         35
                             2
                                 US-08-142-551B-69
                                                              Sequence 69, Appl
          14
                         35
                             2
246
               41.2
                                 US-08-142-551B-71
                                                              Sequence 71, Appl
247
                         35
                             2
                                                              Sequence 115, App
          14
               41.2.
                                 US-08-142-551B-115
248
          14
               41.2
                         35
                             2
                                                              Sequence 116, App
                                 US-08-142-551B-116
                                                              Sequence 117, App
249
          14
               41.2
                         35
                             2
                                 US-08-142-551B-117
               41.2
250
          14
                         35
                             2
                                 US-08-142-551B-118
                                                              Sequence 118, App
251
          13
               38.2
                         30
                             3
                                 US-08-904-760B-33
                                                              Sequence 33, Appl
252
          13
               38.2
                         30
                                 US-08-904-760B-34
                                                              Sequence 34, Appl
253
                         30
          13
               38.2
                             3
                                 US-08-904-760B-35
                                                              Sequence 35, Appl
254
          13
               38.2
                         30
                             4
                                 US-09-536-785A-33
                                                              Sequence 33, Appl
255
          13
               38.2
                         30
                             4
                                US-09-536-785A-34
                                                              Sequence 34, Appl
256
          13
                         30
                             4
                                                              Sequence 35, Appl
               38.2
                                 US-09-536-785A-35
257
          13
                         34
                             3
               38.2
                                 US-09-044-536A-28
                                                              Sequence 28, Appl
258
          13
               38.2
                         35
                             2
                                                              Sequence 72, Appl
                                 US-08-142-551B-72
259
                             2
          13
               38.2
                         35
                                 US-08-142-551B-74
                                                              Sequence 74, Appl
260
          13
               38.2
                         35
                             2
                                 US-08-142-551B-75
                                                              Sequence 75, Appl
261
          13
                         35
                             2
               38.2
                                 US-08-142-551B-111
                                                              Sequence 111, App
262
          13
                         35
               38.2
                                 US-08-142-551B-112
                                                              Sequence 112, App
263
                         35
          13
                             2
               38.2
                                US-08-142-551B-113
                                                              Sequence 113, App
264
          13
               38.2
                         35
                             2
                                US-08-142-551B-114
                                                              Sequence 114, App
265
          12
               35.3
                         34
                             1
                                US-08-049-402-2
                                                              Sequence 2, Appli
266
          12
               35.3
                         34
                             1
                                US-08-526-987-2
                                                              Sequence 2, Appli
267
          12
                         34
               35.3
                                 US-08-903-497A-5
                                                              Sequence 5, Appli
268
          12
               35.3
                         34
                             4
                                US-09-635-076-5
                                                              Sequence 5, Appli
269
          12
               35.3
                         35
                             2
                                 US-08-142-551B-76
                                                              Sequence 76, Appl
270
          12
               35.3
                         35
                             2
                                 US-08-142-551B-77
                                                              Sequence 77, Appl
          12
                         35
271
                             2
               35.3
                                US-08-142-551B-78
                                                              Sequence 78, Appl
272
          12
                         35
               35.3
                             2
                                 US-08-142-551B-107
                                                              Sequence 107, App
273
                         35
          12
               35.3
                             2
                                US-08-142-551B-108
                                                              Sequence 108, App
274
          12
               35.3
                         35
                             2
                                US-08-142-551B-109
                                                              Sequence 109, App
275
          12
               35.3
                         35
                             2
                                US-08-142-551B-110
                                                              Sequence 110, App
276
          11
               32.4
                         34
                             1
                                US-08-488-105-5
                                                              Sequence 5, Appli
277
          11
               32.4
                         34
                                US-08-488-105-12
                                                              Sequence 12, Appl
278
         11
               32.4
                         34
                             1
                                US-08-488-105-17
                                                              Sequence 17, Appl
279
          11
               32.4
                         34
                             1
                                                              Sequence 61, Appl
                                US-08-449-500-61
280
          11
               32.4
                         34
                             1
                                US-08-449-317A-61
                                                              Sequence 61, Appl
281
         11
                         34
               32.4
                             2
                                US-08-477-022-61
                                                              Sequence 61, Appl
282
          11
               32.4
                         34
                             2
                                US-08-449-447-61
                                                              Sequence 61, Appl
283
         11
               32.4
                         34
                             2
                                US-08-184-328-61
                                                              Sequence 61, Appl
284
         11
               32.4
                         34
                             2
                                US-08-521-097-61
                                                              Sequence 61, Appl
285
         11
               32.4
                         34
                             4
                                US-09-449-632-22
                                                              Sequence 22, Appl
286
         11
               32.4
                         35
                             2
                                US-08-142-551B-79
                                                              Sequence 79, Appl
287
         11
               32.4
                         35
                             2
                                US-08-142-551B-81
                                                              Sequence 81, Appl
288
         11
               32.4
                         35
                             2
                                US-08-142-551B-104
                                                              Sequence 104, App
289
         11
                         35
                             2
                                                              Sequence 105, App
               32.4
                                US-08-142-551B-105
290
         11
                         35
                             2
               32.4
                                US-08-142-551B-106
                                                              Sequence 106, App
291
         11
                         35
                             2
               32.4
                                                              Sequence 121, App
                                US-08-142-551B-121
292
         11
               32.4
                         35
                             2
                                US-08-142-551B-122
                                                              Sequence 122, App
293
         11
               32.4
                         35
                             2
                                US-08-142-551B-123
                                                              Sequence 123, App
294
         10
               29.4
                         34
                             1
                                US-08-033-099-2
                                                              Sequence 2, Appli
295
         10
               29.4
                         34
                             3
                                US-09-044-536A-20
                                                              Sequence 20, Appl
296
         10
               29.4
                         34
                             3
                                US-09-044-536A-21
                                                              Sequence 21, Appl
```

	297	10	29.4	34	3	US-09-044-536A-22	Sequence 22, Appl
	298	10	29.4	34	3	US-09-044-536A-24	Sequence 24, Appl
	299	10	29.4	34	3	US-08-903-497A-6	Sequence 6, Appli
	300	10	29.4	34	4	US-09-635-076-6	Sequence 6, Appli
	301	10	29.4	35	2	US-08-142-551B-82	Sequence 82, Appl
	302	10	29.4	35	2	US-08-142-551B-83	Sequence 83, Appl
	303	10	29.4	35	2	US-08-142-551B-84	Sequence 84, Appl
	304	10	29.4	35	2	US-08-142-551B-101	Sequence 101, App
	305	10	29.4	35	2	US-08-142-551B-102	Sequence 101, App
	306	10	29.4	35	2	US-08-142-551B-103	Sequence 102, App
	307	10	29.4	35	2	US-08-142-551B-103	
	308	9	26.5				Sequence 120, App
	309			28	4	US-09-228-990-54	Sequence 54, Appl
		9	26.5	28	4	US-09-228-990-62	Sequence 62, Appl
	310	9	26.5	28	4	US-09-228-990-65	Sequence 65, Appl
	311	9	26.5	28	4	US-09-228-990-79	Sequence 79, Appl
	312	9	26.5	28	4	US-09-442-989-22	Sequence 22, Appl
	313	9	26.5	28	4	US-09-442-989-25	Sequence 25, Appl
	314	9	26.5	29	4	US-09-406-813-8	Sequence 8, Appli
	315	9	26.5	29	4	US-09-228-990-53	Sequence 53, Appl
	316	9	26.5	29	4	US-09-228-990-63	Sequence 63, Appl
	317	9	26.5	30	4	US-09-228-990-52	Sequence 52, Appl
	318	9	26.5	30	4	US-09-228-990-64	Sequence 64, Appl
	319	9	26.5	31	3	US-08-904-760B-13	Sequence 13, Appl
	320	9	26.5	31	4	US-09-228-990-3	Sequence 3, Appli
	321	9	26.5	31	4	US-09-228-990-4	Sequence 4, Appli
	322	9	26.5	31	4	US-09-228-990-5	Sequence 5, Appli
	323	9	26.5	31	4	US-09-228-990-6	Sequence 6, Appli
	324	9	26.5	31	4	US-09-228-990-7	
	325	9	26.5	31	4		Sequence 7, Appli
	326	9				US-09-228-990-8	Sequence 8, Appli
	327		26.5	31	4	US-09-228-990-9	Sequence 9, Appli
		9	26.5	31	4	US-09-228-990-10	Sequence 10, Appl
	328	9	26.5	31	4	US-09-228-990-20	Sequence 20, Appl
	329	9	26.5	31	4	US-09-228-990-21	Sequence 21, Appl
	330	9	26.5	31	4	US-09-228-990-22	Sequence 22, Appl
	331	9	26.5	31	4	US-09-228-990-23	Sequence 23, Appl
	332	9	26.5	31	4	US-09-228-990-24	Sequence 24, Appl
	333	9	26.5	31	4	US-09-228-990-25	Sequence 25, Appl
	334	9	26.5	31	4	US-09-228-990-26	Sequence 26, Appl
	335	9	26.5	31	4	US-09-228-990-27	Sequence 27, Appl
	336	9	26.5	31	4	US-09-228-990-36	Sequence 36, Appl
	337	9	26.5	31	4	US-09-228-990-37	Sequence 37, Appl
	338	9	26.5	31	4	US-09-228-990-38	Sequence 38, Appl
	339	9	26.5	31	4	US-09-228-990 - 39	Sequence 39, Appl
	340	9	26.5	31	4	US-09-228-990-47	Sequence 47, Appl
	341	9	26.5	31	4	US-09-228-990-48	Sequence 48, Appl
	342	9	26.5	31	4	US-09-228-990-49	Sequence 49, Appl
•	343	9	26.5	31	4	US-09-228-990-50	Sequence 50, Appl
	344	9	26.5	31	4	US-09-228-990-51	Sequence 51, Appl
	345	9	26.5	31	4	US-09-228-990-69	Sequence 69, Appl
	346	9	26.5	31	4	US-09-228-990-70	
	347	9	26.5	31	4	US-09-228-990-74	Sequence 70, Appl
	348	9	26.5		4		Sequence 74, Appl
	349			31		US-09-228-990-81	Sequence 81, Appl
		9	26.5	31	4	US-09-228-990-82	Sequence 82, Appl
	350	9	26.5	31	4	US-09-228-990-83	Sequence 83, Appl
	351	9	26.5	31	4	US-09-228-990-84	Sequence 84, Appl
	352	9	26.5	31	4	US-09-228-990-85	Sequence 85, Appl
	353	9	26.5	31	4	US-09-536-785A-13	Sequence 13, Appl

354	9	26.5	31	4	US-09-442-989-1	Sequence 1, Appli
355	9	26.5	31		US-09-442-989-2	Sequence 2, Appli
356	9	26.5	31		US-09-442-989-3	Sequence 3, Appli
357	9	26.5	31	4	US-09-442-989-4	Sequence 4, Appli
358	9	26.5	31	4	US-09-442-989-5	Sequence 5, Appli
359	9	26.5	31	4	US-09-442-989-6	Sequence 6, Appli
360	9	26.5	31	4	US-09-442-989-7	Sequence 7, Appli
361	9	26.5	31	4	US-09-442-989-8	Sequence 8, Appli
362	9	26.5	31	4	US-09-442-989-17	Sequence 17, Appl
363	9	26.5	31	4	US-09-442-989-32	Sequence 32, Appl
364	9	26.5	34	3	US-09-044-536A-2	Sequence 2, Appli
365	9	26.5	34	3	US-09-044-536A-23	Sequence 23, Appl
366 367	9 9	26.5 26.5	34 34	4 4	US-09-228-990-46 US-09-442-989-18	Sequence 46, Appl
368	9	26.5	34	4	US-09-442-989-18	Sequence 18, Appl Sequence 46, Appl
369	9	26.5	35	2	US-08-142-551B-85	Sequence 46, Appl Sequence 85, Appl
370	9	26.5	35	2	US-08-142-551B-86	Sequence 86, Appl
371	9	26.5	35	2	US-08-142-551B-87	Sequence 87, Appl
372	9	26.5	35	2	US-08-142-551B-88	Sequence 88, Appl
373	9	26.5	35	2	US-08-142-551B-89	Sequence 89, Appl
374	9	26.5	35	2		Sequence 91, Appl
375	9	26.5	35	2	US-08-142-551B-92	Sequence 92, Appl
376	9	26.5	35	2	US-08-142-551B-93	Sequence 93, Appl
377	9	26.5	35	2	US-08-142-551B-95	Sequence 95, Appl
378	9	26.5	35	2	US-08-142-551B-96	Sequence 96, Appl
379	9	26.5	35	2	US-08-142-551B-97	Sequence 97, Appl
380	9	26.5	35	2	US-08-142-551B-98	Sequence 98, Appl
381	9	26.5	35	2	US-08-142-551B-99	Sequence 99, Appl
382	9	26.5	35 35	2	US-08-142-551B-100	Sequence 100, App
383 384	9 9	26.5 26.5	35 36	3	US-09-044-536A-30 US-09-044-536A-31	Sequence 30, Appl
385	9	26.5	37		US-09-044-536A-32	Sequence 31, Appl Sequence 32, Appl
386	9	26.5	38	3		Sequence 32, Appl Sequence 33, Appl
387	9	26.5	39	3	US-09-044-536A-34	Sequence 34, Appl
388	9	26.5			US-09-044-536A-35	Sequence 35, Appl
389	8	23.5	28	4	US-09-228-990-78	Sequence 78, Appl
390	8	23.5	28	4	US-09-442-989-24	Sequence 24, Appl
391	8	23.5	29	1	US-07-778-926-6	Sequence 6, Appli
392	8	23.5	30	1	US-07-778-926-10	Sequence 10, Appl
393	8	23.5	31	1	US-07-778-926-14	Sequence 14, Appl
394	8	23.5	31	4	US-09-228-990-11	Sequence 11, Appl
395	8	23.5	31	4	US-09-228-990-19	Sequence 19, Appl
396	8	23.5	31	4	US-09-228-990-28	Sequence 28, Appl
397	8	23.5	31	4	US-09-228-990-35	Sequence 35, Appl
398 399	8	23.5 23.5	31 31	4 4	US-09-228-990-40 US-09-228-990-45	Sequence 40, Appl
400	8 8	23.5	31	4	US-09-228-990-66	Sequence 45, Appl
401	8	23.5	31	4	US-09-228-990-67	Sequence 66, Appl Sequence 67, Appl
402	8	23.5	31	4	US-09-228-990-68	Sequence 68, Appl
403	8	23.5	31	4	US-09-228-990-73	Sequence 73, Appl
404	8	23.5	31	4	US-09-228-990-76	Sequence 76, Appl
405	8	23.5	31	4	US-09-228-990-80	Sequence 80, Appl
406	8	23.5	31	4	US-09-442-989-16	Sequence 16, Appl
407	8	23.5	32	1	US-07-778-926-18	Sequence 18, Appl
408	8	23.5	33	1	US-07-778-926-7	Sequence 7, Appli
409	8	23.5	34	1	US-07-778-926-11	Sequence 11, Appl
410	8	23.5	34	1	US-07-773-098-3	Sequence 3, Appli

		•			i	
411	8	23.5	34	1	US-07-773-098-4	Sequence 4, Appli
412	8	23.5	34	4	US-09-228-990-75	Sequence 75, Appl
413	8	23.5	34	4	US-09-442-989-19	Sequence 19, Appl
414 415	8 8	23.5 23.5	35 36	1 1	US-07-778-926-15 US-07-778-926-19	Sequence 15, Appl
416	8	23.5	37	1	US-07-778-926-8	Sequence 19, Appl Sequence 8, Appli
417	8	23.5	38	1	US-07-778-926-12	Sequence 12, Appl
418	8	23.5	39	1	US-07-778-926-16	Sequence 16, Appl
419	8	23.5	40	1	US-07-778-926-20	Sequence 20, Appl
420	7	20.6	28	1	US-07-778-926-2	Sequence 2, Appli
421	7	20.6	31	4	US-09-406-813-9	Sequence 9, Appli
422	7	20.6	31	4	US-09-228-990-12	Sequence 12, Appl
423	7	20.6	31	4	US-09-228-990-18	Sequence 18, Appl
424	7	20.6	31	4	US-09-228-990-29	Sequence 29, Appl
425	7	20.6	31	4	US-09-228-990-34	Sequence 34, Appl
426	7	20.6	31	4	US-09-228-990-41	Sequence 41, Appl
427	7	20.6	31	4	US-09-228-990-44	Sequence 44, Appl
428 429	7 7	20.6 20.6	31	4	US-09-442-989-9	Sequence 9, Appli
430	7	20.6	31 32	4 1	US-09-442-989-15 US-07-778-926-3	Sequence 15, Appl
431	7	20.6	32	1	US-08-305-799A-1	Sequence 3, Appli Sequence 1, Appli
432	7	20.6	32	1	US-08-305-799A-2	Sequence 2, Appli
433	7	20.6	34	1	US-07-915-247A-23	Sequence 23, Appl
434	7	20.6	34	1	US-07-915-247A-24	Sequence 24, Appl
435	7	20.6	34	1	US-08-443-863-23	Sequence 23, Appl
436	7	20.6	34	1	US-08-443-863-24	Sequence 24, Appl
437	7	20.6	34	1	US-08-448-070-23	Sequence 23, Appl
438	7	20.6	34	1	US-08-448-070-24	Sequence 24, Appl
439	7	20.6	34	1	US-08-468-275-7	Sequence 7, Appli
440	7	20.6	34	1	US-08-468-275-8	Sequence 8, Appli
441	7	20.6	34	1	US-08-449-500-23	Sequence 23, Appl
442 443	7 7	20.6 20.6	34	1	US-08-449-500-24	Sequence 24, Appl
444	7	20.6	34 34	1 1	US-08-449-500-35 US-08-449-500-36	Sequence 35, Appl
445	7	20.6	34	1	US-08-449-317A-23	Sequence 36, Appl Sequence 23, Appl
446	7	20.6	34	1	US-08-449-317A-24	Sequence 24, Appl
447	7	20.6	34	1	US-08-449-317A-35	Sequence 35, Appl
4.48	7	20.6	34	1	US-08-449-317A-36	Sequence 36, Appl
449	7	20.6	34	2	US-08-477-022-23	Sequence 23, Appl
450	7	20.6	34	2	US-08-477-022 - 24	Sequence 24, Appl
451	7	20.6	34	2	US-08-477-022-35	Sequence 35, Appl
452	7	20.6	34	2	US-08-477-022-36	Sequence 36, Appl
453	7	20.6	34	2	US-08-449-447-23	Sequence 23, Appl
454	7	20.6	34	2	US-08-449-447-24	Sequence 24, Appl
455	7	20.6	34	2	US-08-449-447-35	Sequence 35, Appl
456 457	7 7	20.6	34	2	US-08-449-447-36	Sequence 36, Appl
457	7	20.6 20.6	34 34	2 2	US-08-184-328-23	Sequence 23, Appl
459	7	20.6	34	2	US-08-184-328-24 US-08-184-328-35	Sequence 24, Appl
460	7	20.6	34	2	US-08-184-328-36	Sequence 35, Appl Sequence 36, Appl
461	, 7	20.6	34	2	US-08-521-097-23	Sequence 23, Appl
462	7	20.6	34	2	US-08-521-097-24	Sequence 24, Appl
463	7	20.6	34	2	US-08-521-097-35	Sequence 35, Appl
464	7	20.6	34	2	US-08-521-097-36	Sequence 36, Appl
465	7	20.6	34	4	US-09-007-466-7	Sequence 7, Appli
466	7	20.6	34	4	US-09-007-466-8	Sequence 8, Appli
467	7	20.6	35	2	US-08-142-551B-10	Sequence 10, Appl

468	7	20.6	35	2	US-08-142-551B-124	Sequence 124, App
469	7	20.6	35	4	US-08-952-980B-7	Sequence 7, Appli
470	7	20.6	35	4	US-08-952-980B-8	Sequence 8, Appli
471	7	20.6	36	1	US-07-778-926-4	Sequence 4, Appli
472	6	17.6	30	4	US-09-536-785A-23	Sequence 23, Appl
473	6	17.6	31	3	US-08-904-760B-23	Sequence 23, Appl
474	6	17.6	31	4	US-09-406-813-7	Sequence 7, Appli
475	6	17.6	31	4	US-09-228-990-13	Sequence 13, Appl
				4		_
476	6	17.6	31	_	US-09-228-990-14	Sequence 14, Appl
477	6	17.6	31	4	US-09-228-990-15	Sequence 15, Appl
478	6	17.6	31	4	US-09-228-990-16	Sequence 16, Appl
479	6	17.6	31	4	US-09-228-990-17	Sequence 17, Appl
480	6	17.6	31	4	US-09-228-990-30	Sequence 30, Appl
481	6	17.6	31	4	US-09-228-990-31	Sequence 31, Appl
482	6	17.6	31	4	US-09-228-990-32	Sequence 32, Appl
483	6	17.6	31	4	US-09-228-990-33	Sequence 33, Appl
484	6	17.6	31	4	US-09-228-990-42	Sequence 42, Appl
485	6	17.6	31	4	US-09-228-990-43	Sequence 43, Appl
486	6	17.6	31	4	US-09-228-990-86	Sequence 86, Appl
487	6	17.6	31	4	US-09-228-990-87	Sequence 87, Appl
488	6	17.6	31	4	US-09-228-990-88	Sequence 88, Appl
489	6	17.6	31	4	US-09-536-785A-36	Sequence 36, Appl
490	6	17.6	31	4	US-09-442-989-10	
						Sequence 10, Appl
491	6	17.6	31	4	US-09-442-989-11	Sequence 11, Appl
492	6	17.6	31	4	US-09-442-989-12	Sequence 12, Appl
493	6	17.6	31	4	US-09-442-989-13	Sequence 13, Appl
494	6	17.6	31	4	US-09-442-989-14	Sequence 14, Appl
495	6	17.6	32	4	US-09-536-785A-37	Sequence 37, Appl
496	6	17.6	33	4	US-09-536-785A-38	Sequence 38, Appl
497	6	17.6	34	1	US-07-765-373-2	Sequence 2, Appli
498	6	17.6	34	1	US-08-049-402-1	Sequence 1, Appli
499	6	17.6	34	1	US-08-526-987-1	Sequence 1, Appli
500	6	17.6	34	4	US-09-536-785A-24	Sequence 24, Appl
501	6	17.6	35	4	US-09-536-785A-25	Sequence 25, Appl
502	6	17.6	36	4	US-09-536-785A-26	Sequence 26, Appl
503	6.	17.6	37	4	US-09-536-785A-27	Sequence 27, Appl
504	5	14.7	29	1	US-08-188-582-33	Sequence 33, Appl
505	5	14.7	29	1	US-08-646-715-33	Sequence 33, Appl
	_			_		
506	5	14.7	30	1	US-08-305-799A-7	Sequence 7, Appli
507	5	14.7	30	1	US-08-305-799A-9	Sequence 9, Appli
508	5	14.7	30	1	US-08-305-799A-10	Sequence 10, Appl
509	5	14.7	30	1	US-08-305-799A-11	Sequence 11, Appl
510	5	14.7	30	1	US-08-305-799A-12	Sequence 12, Appl
511	5	14.7	34	1	US-08-449-500-37	Sequence 37, Appl
512	5	14.7	34	1	US-08-449-317A-37	Sequence 37, Appl
513	5	14.7	34	2	US-08-477-022-37	Sequence 37, Appl
514	5	14.7	34	2	US-08-449-447-37	Sequence 37, Appl
515	5	14.7	34	2	US-08-184-328-37	Sequence 37, Appl
516	5	14.7	34	2	US-08-521-097-37	Sequence 37, Appl
517	5	14.7	38	1	US-08-444-005-19	Sequence 19, Appl
518	4	11.8	28	1	US-07-899-535A-4	Sequence 4, Appli
519	4	11.8	28	1	US-08-191-866D-76	Sequence 76, Appl
520	4	11.8	28	2	US-08-185-949B-76	Sequence 76, Appl
521	4	11.8	28	2	US-08-620-151-126	Sequence 126, App
522	4	11.8	28	2		
					US-08-818-253-22	Sequence 22, Appl
523	4	11.8	28	3	US-08-641-873-8	Sequence 8, Appli
524	4	11.8	28	3	US-08-818-252-22	Sequence 22, Appl

```
525
                         28
           4
               11.8
                             4
                                US-08-842-322-16
                                                              Sequence 16, Appl
526
           4
               11.8
                         28
                             4
                                US-09-316-919-38
                                                              Sequence 38, Appl
527
           4
               11.8
                         28
                             4
                                US-09-323-867A-153
                                                              Sequence 153, App
528
           4
               11.8
                         28
                             5
                                PCT-US92-07813-3
                                                              Sequence 3, Appli
529
           4
               11.8
                         29
                             4
                                US-09-227-357-386
                                                              Sequence 386, App
530
           4
                         29
                             4
                                                              Sequence 480, App
               11.8
                                US-09-227-357-480
531
           4
               11.8
                         29
                                US-09-695-458-8
                                                              Sequence 8, Appli
532
           4
               11.8
                         29
                             4
                                US-09-205-258-1006
                                                              Sequence 1006, Ap
533
           4
                         30
                             1
               11.8
                                US-08-305-799A-3
                                                              Sequence 3, Appli
534
           4
                         30
                             1
               11.8
                                US-08-305-799A-4
                                                              Sequence 4, Appli
535
           4
                         30
                             4
               11.8
                                US-09-205-258-821
                                                              Sequence 821, App
536
           4
               11.8
                         31
                             1
                                US-07-829-462-3
                                                              Sequence 3, Appli
537
           4
               11.8
                         31
                             1
                                US-08-340-812-3
                                                              Sequence 3, Appli
538
           4
               11.8
                         31
                             1
                                US-08-248-021A-5
                                                              Sequence 5, Appli
539
           4
               11.8
                         31
                             1
                                US-08-323-531-44
                                                              Sequence 44, Appl
540
           4
                         31
                             1
               11.8
                                US-08-323-531-50
                                                              Sequence 50, Appl
541
           4
               11.8
                         31
                             1
                                US-08-323-531-62
                                                              Sequence 62, Appl
                                US-08-198-094-44
542
           4
               11.8
                         31
                             1
                                                              Sequence 44, Appl
                                                              Sequence 50, Appl
543
           4
               11.8
                         31
                             1
                                US-08-198-094-50
544
           4
               11.8
                         31
                             1
                                US-08-198-094-62
                                                              Sequence 62, Appl
545
           4
                         31
                             1
               11.8
                                US-08-459-064B-3
                                                              Sequence 3, Appli
           4
546
               11.8
                         31
                             2
                                US-08-460-421A-3
                                                              Sequence 3, Appli
           4
547
               11.8
                         31
                             2
                                US-08-663-566A-32
                                                              Sequence 32, Appl
548
           4
               11.8
                         31
                             2
                                US-08-023-610-32
                                                              Sequence 32, Appl
549
           4
               11.8
                         31
                             2
                                US-08-288-065A-32
                                                              Sequence 32, Appl
550
           4
                         31
                             2
               11.8
                                US-08-362-240A-32
                                                              Sequence 32, Appl
551
           4
               11.8
                         31
                             3
                                                              Sequence 44, Appl
                                US-08-107-794A-44
                                                              Sequence 50, Appl
552
           4
               11.8
                         31
                             3
                                US-08-107-794A-50
553
           4
                         31
                             3
               11.8
                                US-08-107-794A-62
                                                              Sequence 62, Appl
554
           4
                         31
                                US-09-205-258-1001
               11.8
                             4
                                                              Sequence 1001, Ap
           4
555
                         31
                             5
               11.8
                                PCT-US93-00909-3
                                                              Sequence 3, Appli
556
           4
               11.8
                         31
                                PCT-US93-07424-44
                                                              Sequence 44, Appl
557
           4
               11.8
                         31
                             5
                                PCT-US93-07424-50
                                                              Sequence 50, Appl
558
           4
               11.8
                         31
                             5
                                PCT-US93-07424-62
                                                              Sequence 62, Appl
559
           4
               11.8
                         31
                             5
                                PCT-US95-02087-44
                                                              Sequence 44, Appl
560
           4
                             5
               11.8
                         31
                                PCT-US95-02087-50
                                                              Sequence 50, Appl
                             5
561
           4
               11.8
                         31
                                PCT-US95-02087-62
                                                              Sequence 62, Appl
562
           4
               11.8
                         31
                             5
                                PCT-US95-10245-32
                                                              Sequence 32, Appl
563
           4
                         32
               11.8
                             1
                                US-08-190-802A-110
                                                              Sequence 110, App
           4
                         32
564
               11.8
                             1
                                US-08-190-802A-114
                                                              Sequence 114, App
           4
565
                         32
               11.8
                             1
                                US-08-190-802A-183
                                                              Sequence 183, App
566
           4
               11.8
                         32
                                US-08-190-802A-216
                                                              Sequence 216, App
567
           4
               11.8
                         32
                             3
                                US-08-477-346-110
                                                              Sequence 110, App
568
           4
               11.8
                         32
                             3
                                US-08-477-346-114
                                                              Sequence 114, App
569
          4
               11.8
                         32
                             3
                                US-08-477-346-183
                                                              Sequence 183, App
570
           4
               11.8
                         32
                             3
                                US-08-477-346-216
                                                              Sequence 216, App
571
           4
               11.8
                         32
                                                              Sequence 110, App
                                US-08-473-089-110
572
           4
               11.8
                         32
                             4
                                US-08-473-089-114
                                                              Sequence 114, App
573
           4
                         32
               11.8
                             4
                                US-08-473-089-183
                                                              Sequence 183, App
574
          4
                         32
               11.8
                             4
                                US-08-473-089-216
                                                              Sequence 216, App
          4
575
                         32
                             4
               11.8
                                US-09-149-476-442
                                                              Sequence 442, App
576
          4
               11.8
                         32
                                US-08-487-072A-110
                                                              Sequence 110, App
577
          4
               11.8
                         32
                                US-08-487-072A-114
                                                              Sequence 114, App
578
          4
               11.8
                         32
                             4
                                US-08-487-072A-183
                                                              Sequence 183, App
579
          4
               11.8
                         32
                             4
                                US-08-487-072A-216
                                                              Sequence 216, App
580
          4
               11.8
                         33
                             1
                                US-08-781-020-10
                                                              Sequence 10, Appl
581
          4
               11.8
                         33
                                US-09-038-935-10
                                                              Sequence 10, Appl
```

```
Sequence 16, Appl
582
               11.8
                        33
                             3
                                US-09-023-731-16
          4
583
          4
               11.8
                        33
                            4
                                US-09-149-476-660
                                                             Sequence 660, App
584
          4
               11.8
                        33
                            4
                                US-09-122-144-4
                                                             Sequence 4, Appli
                                                             Sequence 368, App
585
          4
               11.8
                        33
                             4
                                US-09-205-258-368
586
          4
               11.8
                        34
                            1
                                US-08-007-775-1
                                                             Sequence 1, Appli
                        34
587
          4
               11.8
                            1
                                US-07-956-700B-7
                                                             Sequence 7, Appli
                            1
588
          4
               11.8
                        34
                                US-08-476-537-7
                                                             Sequence 7, Appli
589
          4
               11.8
                        34
                            1
                                US-08-485-607-7
                                                             Sequence 7, Appli
                             2
                                                             Sequence 7, Appli
590
               11.8
                        34
          4
                                US-08-475-879-7
591
          4
               11.8
                        34
                            4
                                US-09-433-043B-7
                                                             Sequence 7, Appli
592
          4
               11.8
                        35
                            1
                                US-08-463-660-6
                                                             Sequence 6, Appli
                        35
593
          4
               11.8
                             1
                                US-08-678-280-6
                                                             Sequence 6, Appli
594
                        35
          4
               11.8
                             4
                                US-09-227-357-486
                                                             Sequence 486, App
                        35
595
          4
               11.8
                             4
                                US-09-690-454-138
                                                             Sequence 138, App
596
          4
               11.8
                        36
                            1
                                US-08-477-727A-104
                                                             Sequence 104, App
597
          4
               11.8
                        36
                            1
                                US-08-471-675A-26
                                                             Sequence 26, Appl
                        36
                            2
598
          4
               11.8
                                US-08-892-549-30
                                                             Sequence 30, Appl
599
          4
               11.8
                        36
                            3
                                US-08-302-069A-25
                                                             Sequence 25, Appl
600
                        37
          4
               11.8
                            1
                                US-08-231-730A-45
                                                             Sequence 45, Appl
601
          4
               11.8
                        37
                             1
                                US-08-237-418-16
                                                             Sequence 16, Appl
602
          4
                        37
                             1
               11.8
                                US-08-477-727A-102
                                                             Sequence 102, App
603
          4
                        37
               11.8
                             1
                                US-08-477-727A-103
                                                             Sequence 103, App
604
                        37
          4
               11.8
                            1
                                US-08-477-727A-105
                                                             Sequence 105, App
605
               11.8
                        37
          4
                            1
                                US-08-477-727A-106
                                                             Sequence 106, App
606
          4
               11.8
                        37
                            1
                                US-08-477-727A-107
                                                             Sequence 107, App
607
          4
               11.8
                        37
                            1
                                US-08-471-675A-24
                                                             Sequence 24, Appl
608
                        37
          4
               11.8
                            1
                                US-08-471-675A-25
                                                             Sequence 25, Appl
609
                        37
          4
               11.8
                            1
                                US-08-471-675A-27
                                                             Sequence 27, Appl
610
          4
               11.8
                        37
                            1
                                US-08-471-675A-28
                                                             Sequence 28, Appl
611
          4
               11.8
                        37
                             1
                                US-08-471-675A-29
                                                             Sequence 29, Appl
612
          4
                        37
                             2
               11.8
                                US-08-259-762-12
                                                             Sequence 12, Appl
613
          4
                        37
                             2
               11.8
                                US-08-259-762-13
                                                             Sequence 13, Appl
614
                        37
          4
               11.8
                            2
                                US-08-283-917-12
                                                             Sequence 12, Appl
615
               11.8
                        37
          4
                             2
                                US-08-961-716-12
                                                             Sequence 12, Appl
616
          4
               11.8
                        37
                             2
                                US-08-505-486-50
                                                             Sequence 50, Appl
617
          4
               11.8
                        37
                            2
                                US-08-892-549-6
                                                             Sequence 6, Appli
618
          4
               11.8
                        37
                            2
                                US-08-892-549-28
                                                             Sequence 28, Appl
619
          4
               11.8
                        37
                            2
                                US-08-892-549-29
                                                             Sequence 29, Appl
620
               11.8
                        37
                            2
          4
                                US-08-892-549-31
                                                             Sequence 31, Appl
                            2
621
          4
               11.8
                        37
                                US-08-892-549-32
                                                             Sequence 32, Appl
622
          4
               11.8
                        37
                             2
                                US-08-892-549-33
                                                             Sequence 33, Appl
          4
                        37
623
                            3
               11.8
                                US-08-689-489C-45
                                                             Sequence 45, Appl
624
               11.8
                        37
          4
                            3
                                US-08-801-028-50
                                                             Sequence 50, Appl
625
                        37
          4
               11.8
                            3
                                US-09-340-154-50
                                                             Sequence 50, Appl
                        37
626
          4
               11.8.
                            3
                                US-08-302-069A-23
                                                             Sequence 23, Appl
627
          4
               11.8
                        37
                            3
                                US-08-302-069A-24
                                                             Sequence 24, Appl
628
          4
               11.8
                        37
                            3
                                US-08-302-069A-26
                                                             Sequence 26, Appl
629
          4
               11.8
                        37
                                US-08-302-069A-27
                                                             Sequence 27, Appl
630
          4
               11.8
                        37
                            3
                                                             Sequence 28, Appl
                                US-08-302-069A-28
                        37
631
          4
               11.8
                            3
                                US-09-232-802A-45
                                                             Sequence 45, Appl
                        37
632
          4
               11.8
                             3
                                US-08-468-337-16
                                                             Sequence 16, Appl
633
          4
                        37
               11.8
                            4
                                                             Sequence 50, Appl
                                US-09-482-611B-50
634
          4
               11.8
                        37
                             4
                                US-09-758-318-16
                                                             Sequence 16, Appl
635
          4
               11.8
                        37
                            5
                                PCT-US95-04718-45
                                                             Sequence 45, Appl
636
          4
                        37
               11.8
                            5
                                PCT-US95-09338-50
                                                             Sequence 50, Appl
637
          4
                        37
                            5
                                PCT-US95-09339-50
               11.8
                                                             Sequence 50, Appl
638
          4
               11.8
                        38
                            1
                                US-07-781-254A-18
                                                             Sequence 18, Appl
```

639	4	11.8	38	2	US-08-378-548-12	Sequence 12, Appl
640	4	11.8	39	4	US-09-227-357-384	Sequence 384, App
641	4	11.8	39	4	US-09-323-867A-25	Sequence 25, Appl
642	3	8.8	28	1	US-07-620-410-2	Sequence 2, Appli
643	3	8.8	28	1	US-07-690-300B-1	Sequence 1, Appli
644		8.8	28	1	US-07-690-300B-12	Sequence 12, Appl
645		8.8	28	1	US-07-690-300B-23	Sequence 23, Appl
646		8.8	28	1	US-07-690-300B-24	Sequence 24, Appl
647		8.8	28	1	US-07-690-300B-25	Sequence 25, Appl
648		8.8	28	1	US-07-690-300B-26	Sequence 26, Appl
649		8.8	28	1	US-07-690-300B-27	Sequence 27, Appl
650		8.8	28	1	US-07-690-300B-28	Sequence 28, Appl
651		8.8	28	1	US-07-690-300B-29	Sequence 29, Appl
652		8.8	28	1	US-07-690-300B-30	Sequence 30, Appl
653		8.8	28	1	US-07-690-300B-31	Sequence 31, Appl
654		8.8	28	1	US-07-690-300B-32	Sequence 32, Appl
655		8.8	28	1	US-07-690-300B-33	Sequence 33, Appl
656		8.8	28	1	US-07-690-300B-34	Sequence 34, Appl
657		8.8	28	1	US-07-690-300B-35	Sequence 35, Appl
658		8.8	28	1	US-07-690-300B-36	Sequence 36, Appl
659		8.8	28	1	US-07-690-300B-37	Sequence 37, Appl
660		8.8	28	1	US-07-690-300B-38	Sequence 38, Appl
661		8.8	28	1	US-07-690-300B-39	Sequence 39, Appl
662 663		8.8	28	1	US-07-690-300B-40	Sequence 40, Appl
664		8.8 8.8	28 28	1 1	US-07-690-300B-41	Sequence 41, Appl
665		8.8	28	1	US-07-690-300B-42	Sequence 42, Appl
666		8.8	28 28	1	US-07-690-300B-43 US-07-690-300B-44	Sequence 43, Appl
667		8.8	28	1	US-07-690-300B-45	Sequence 44, Appl
668		8.8	28	1	US-07-690-300B-46	Sequence 45, Appl Sequence 46, Appl
669		8.8	28	1	US-07-690-300B-47	Sequence 47, Appl
670		8.8	28	1	US-07-690-300B-47	Sequence 48, Appl
671		8.8	28	1	US-07-690-300B-49	Sequence 49, Appl
672		8.8	28	1	US-07-690-300B-50	Sequence 50, Appl
673		8.8	28	1	US-07-690-300B-51	Sequence 51, Appl
674		8.8	28	1	US-07-690-300B-52	Sequence 52, Appl
675		8.8	28	1	US-07-690-300B-53	Sequence 53, Appl
676		8.8	28	1	US-07-690-300B-54	Sequence 54, Appl
677		8.8	28	1	US-07-690-300B-55	Sequence 55, Appl
678		8.8	28	1	US-07-690-300B-56	Sequence 56, Appl
679		8.8	28	1	US-07-690-300B-63	Sequence 63, Appl
680		8.8	28	1	US-07-690-300B-64	Sequence 64, Appl
681		8.8	28	1	US-07-690-300B-68	Sequence 68, Appl
682	3	8.8	28	1	US-07-690-300B-71	Sequence 71, Appl
683	3	8.8	28	1	US-07-690-300B-78	Sequence 78, Appl
684	3	8.8	28	1	US-07-690-300B - 79	Sequence 79, Appl
685		8.8	28	1	US-07-690-300B-82	Sequence 82, Appl
686		8.8	28	1	US-07-690-300B-88	Sequence 88, Appl
687		8.8	28	1	US-07-690-300B-91	Sequence 91, Appl
688		8.8	28	1	US-07-690-300B-93	Sequence 93, Appl
689		8.8	28	1	US-07-663-413-29	Sequence 29, Appl
690		8.8	28	1	US-07-676-987A-1	Sequence 1, Appli
691		8.8	28	1	US-07-676-987A-2	Sequence 2, Appli
692		8.8	28	1	US-07-833-468-1	Sequence 1, Appli
693		8.8	28	1	US-08-052-681-10	Sequence 10, Appl
694		8.8	28	1	US-07-789-344A-11	Sequence 11, Appl
695	3	8.8	28	1	US-07-868-906-1	Sequence 1, Appli

```
696
           3
                8.8
                         28
                                US-08-201-092-1
                                                              Sequence 1, Appli
697
           3
                8.8
                         28
                             1
                                US-08-201-092-2
                                                              Sequence 2, Appli
698
           3
                         28
                8.8
                             1
                                US-08-055-530-29
                                                              Sequence 29, Appl
699
           3
                8.8
                         28
                             1
                                US-08-122-578-1
                                                              Sequence 1, Appli
700
           3
                8.8
                         28
                             1
                                US-08-032-848C-1
                                                              Sequence 1, Appli
           3
701
                8.8
                         28
                             1
                                US-07-966-187-2
                                                              Sequence 2, Appli
702
           3
                         28
                8.8
                             1
                                US-08-255-558B-6
                                                              Sequence 6, Appli
703
           3
                8.8
                         28
                             1
                                US-07-924-054-11
                                                              Sequence 11, Appl
           3
704
                8.8
                         28
                             1
                                US-08-243-082-1
                                                              Sequence 1, Appli
705
           3
                8.8
                         28
                             1
                                US-08-246-572-4
                                                              Sequence 4, Appli
706
           3
                8.8
                         28
                             1
                                US-08-246-572-5
                                                              Sequence 5, Appli
707
           3
                         28
                8.8
                             1
                                US-08-190-802A-84
                                                              Sequence 84, Appl
708
           3
                8.8
                         28
                             1
                                US-08-361-443-1
                                                              Sequence 1, Appli
           3
709
                8.8
                         28
                             1
                                US-08-311-611A-12
                                                              Sequence 12, Appl
710
           3
                8.8
                         28
                             1
                                US-08-311-611A-56
                                                              Sequence 56, Appl
711
           3
                8.8
                         28
                             1
                                US-08-311-611A-193
                                                              Sequence 193, App
712
           3
                8.8
                         28
                             1
                                US-08-311-611A-194
                                                              Sequence 194, App
713
           3
                8.8
                         28
                             1
                                US-08-311-611A-195
                                                              Sequence 195, App
714
           3
                8.8
                         28
                             1
                                US-08-311-611A-196
                                                              Sequence 196, App
715
           3
                8.8
                         28
                             1
                                US-07-938-782A-8
                                                              Sequence 8, Appli
716
           3
                8.8.
                         28
                             1
                                US-07-949-797B-1
                                                              Sequence 1, Appli
           3
717
                8.8
                         28
                             1
                                US-08-194-591-1
                                                              Sequence 1, Appli
718
           3
                         28
                8.8
                             1
                                US-08-194-591-2
                                                              Sequence 2, Appli
           3
719
                8.8
                         28
                             1
                                US-08-257-446-6
                                                              Sequence 6, Appli
720
           3
                8.8
                         28
                             1
                                US-08-372-783-12
                                                              Sequence 12, Appl
721
           3
                8.8
                         28
                             1
                                US-08-372-783-56
                                                              Sequence 56, Appl
           3
722
                8.8
                         28
                                US-08-372-783-193
                                                              Sequence 193, App
723
           3
                8.8
                         28
                             1
                                US-08-372-783-194
                                                              Sequence 194, App
724
           3
                8.8
                         28
                             1
                                US-08-372-783-195
                                                              Sequence 195, App
725
           3
                8.8
                         28
                             1
                                US-08-372-783-196
                                                              Sequence 196, App
726
           3
                8.8
                         28
                             1
                                US-07-794-288D-7
                                                              Sequence 7, Appli
727
           3
                8.8
                         28
                                US-07-794-288D-65
                                                              Sequence 65, Appl
728
           3
                         28
                8.8
                             1
                                US-07-794-288D-103
                                                              Sequence 103, App
729
           3
                8.8
                         28
                             1
                                US-07-977-630-42
                                                              Sequence 42, Appl
730
           3
                8.8
                         28
                             1
                                US-07-977-630-45
                                                              Sequence 45, Appl
731
           3
                         28
                8.8
                             1
                                US-07-977-630-47
                                                              Sequence 47, Appl
732
           3
                8.8
                         28
                             1
                                US-08-288-681A-1
                                                              Sequence 1, Appli
733
           3
                8.8
                         28
                             1
                                US-08-366-591-12
                                                              Sequence 12, Appl
734
           3
                8.8
                         28
                             1
                                US-07-776-272-26
                                                              Sequence 26, Appl
735
           3
                8.8
                         28
                             1
                                US-08-372-105-12
                                                              Sequence 12, Appl
736
           3
                8.8
                         28
                             1
                                US-08-372-105-56
                                                              Sequence 56, Appl
737
           3
                8.8
                         28
                             1
                                US-08-372-105-193
                                                              Sequence 193, App
738
           3
                8.8
                         28
                             1
                                US-08-372-105-194
                                                              Sequence 194, App
739
           3
                8.8
                         28
                             1
                                US-08-372-105-195
                                                              Sequence 195, App
740
           3
                8.8
                         28
                             1
                                US-08-372-105-196
                                                              Sequence 196, App
741
           3
                8.8
                         28
                             1
                                US-08-306-473A-12
                                                              Sequence 12, Appl
742
           3
                8.8
                         28
                             1
                                US-08-306-473A-56
                                                              Sequence 56, Appl
743
           3
                8.8
                         28
                             1
                                US-08-306-473A-193
                                                              Sequence 193, App
744
           3
                         28
                8.8
                             1
                                                              Sequence 194, App
                                US-08-306-473A-194
745
           3
                8.8
                         28
                             1
                                US-08-306-473A-195
                                                              Sequence 195, App
           3
746
                8.8
                         28
                             1
                                US-08-306-473A-196
                                                              Sequence 196, App
747
          3
                8.8
                         28
                             1
                                US-08-331-394-19
                                                              Sequence 19, Appl
748
          3
                         28
                8.8
                             1
                                US-08-308-729-1
                                                              Sequence 1, Appli
749
          3
                8.8
                         28
                             1
                                US-08-308-729-2
                                                              Sequence 2, Appli
750
          3
                8.8
                         28
                             1
                                US-08-308-729-3
                                                             Sequence 3, Appli
751
          3
                8.8
                         28
                             1
                                US-08-308-729-4
                                                              Sequence 4, Appli
752
          3
                8.8
                         28
                             1
                                US-08-308-729-5
                                                             Sequence 5, Appli
```

753	3	8.8	28	1	US-08-308-729-6	Sequence 6, Appli
754	3	8.8	28	1	US-08-308-729-7	Sequence 7, Appli
755	3	8.8	28	1	US-08-308-729-8	Sequence 8, Appli
756	3	8.8	28	1	US-08-308-729-9	Sequence 9, Appli
757	3	8.8	28	1	US-08-308-729-10	Sequence 10, Appl
758	3	8.8	28	1	US-08-308-729-11	Sequence 11, Appl
759	3	8.8	28	1	US-08-308-729-12	Sequence 12, Appl
760	3	8.8	28	1	US-08-308-729-13	Sequence 13, Appl
761	3	8.8	28	1	US-08-308-729-14	Sequence 14, Appl
762	3	8.8	28	1	US-08-308-729-15	Sequence 15, Appl
763	3	8.8	28	1	US-08-308-729-16	Sequence 16, Appl
764	3	8.8	28	1	US-08-308-729-17	Sequence 17, Appl
765	3	8.8	28	1	US-08-308-729-18	Sequence 18, Appl
766	3	8.8	28	1	US-08-308-729-19	= = = = = = = = = = = = = = = = = = = =
767	3	8.8	28	1	US-08-308-729-19 US-08-308-729-20	Sequence 19, Appl
768	3	8.8	28			Sequence 20, Appl
769	3	8.8	28	1 1	US-08-308-729-21	Sequence 21, Appl
770	3				US-08-308-729-22	Sequence 22, Appl
		8.8	28	1	US-08-308-729-23	Sequence 23, Appl
771	3	8.8	28	1	US-08-308-729-24	Sequence 24, Appl
772	3	8.8	28	1	US-08-308-729-25	Sequence 25, Appl
773	3	8.8	28	1	US-08-308-729-26	Sequence 26, Appl
774	3	8.8	28	1	US-08-308-729-27	Sequence 27, Appl
775	3	8.8	28	1	US-08-308-729-28	Sequence 28, Appl
776	3	8.8	28	1	US-08-308-729-29	Sequence 29, Appl
777	3	8.8	28	1	US-08-308-729-31	Sequence 31, Appl
778	3	8.8	28	1	US-08-308-729-33	Sequence 33, Appl
779	3	8.8	28	1	US-08-308-729-34	Sequence 34, Appl
780	3	8.8	28	1	US-08-308-729-35	Sequence 35, Appl
781	3	8.8	28	1	US-08-308-729-36	Sequence 36, Appl
782	3	8.8	28	1	US-08-308-729-37	Sequence 37, Appl
783	3	8.8	28	1	US-08-308-729-38	Sequence 38, Appl
784	3	8.8	28	1	US-08-308-729-39	Sequence 39, Appl
785	3	8.8	28	1	US-08-308-729-40	Sequence 40, Appl
786	3	8.8	28	1	US-08-308-729-41	Sequence 41, Appl
787	3	8.8	28	1	US-08-308-729-44	Sequence 44, Appl
788	3	8.8	28	1	US-08-308-729-45	Sequence 45, Appl
789	3	8.8	28	1	US-08-308-729-46	Sequence 46, Appl
790	3	8.8	28	1	US-08-308-729-47	Sequence 47, Appl
791	3	8.8	28	1	US-08-308-729-48	Sequence 48, Appl
792 ·	3	8.8	28	1	US-08-308-729-49	Sequence 49, Appl
793	3	8.8	28	1	US-08-308-729-50	Sequence 50, Appl
794	3	8.8	28	1	US-08-308-729-53	Sequence 53, Appl
795	3	8.8	28	1	US-08-308-729-54	Sequence 54, Appl
796	3	8.8	28	1	US-08-308-729-55	Sequence 55, Appl
797	3	8.8	28	1	US-08-308-729-56	Sequence 56, Appl
798	3	8.8	28	1	US-08-308-729-57	Sequence 57, Appl
799	3	8.8	28	1	US-08-308-729-58	Sequence 58, Appl
800	3	8.8	28	1	US-08-308-729-59	Sequence 59, Appl
801	3	8.8	28	1	US-08-308-729-60	Sequence 60, Appl
802	3	8.8	28	1	US-08-308-729-61	Sequence 61, Appl
803	3	8.8	28	1	US-08-308-729-62	Sequence 62, Appl
804	3	8.8	28	1	US-08-308-729-63	Sequence 63, Appl
805	3	8.8	28	1	US-08-308-729-64	Sequence 64, Appl
806	3	8.8	28	1	US-08-308-729-70	
807	3	8.8	28	1	US-08-308-729-70 US-08-308-729-71	Sequence 70, Appl
808	3	8.8	28	1	US-08-308-729-71 US-08-308-729-72	Sequence 71, Appl
809	3	8.8	28	1	US-08-308-729-72	Sequence 72, Appl
502	ر	0.0	20	_	00 00-000-127-13	Sequence 73, Appl

810	3	8.8	28	1	US-08-475-989-19	Sequence 19, Appl
811	3	8.8	28	1	US-08-630-524-8	Sequence 8, Appli
812	3	8.8	28	1	US-08-062-472B-40	Sequence 40, Appl
813	3	8.8	28	1	US-08-250-858-19	Sequence 19, Appl
814	3	8.8	28	1	US-08-171-701A-1	Sequence 1, Appli
815	3	8.8	28	1	US-08-171-701A-2	Sequence 2, Appli
816	3	8.8	28	1	US-08-261-660A-19	Sequence 19, Appl
817	3	8.8	28	1	US-08-741-678-1	Sequence 1, Appli
818	3	8.8	28	1	US-08-209-762-12	Sequence 12, Appl
819	3	8.8	28	1	US-08-209-762-56	Sequence 56, Appl
820	3	8.8	28	1	US-08-446-915-19	Sequence 19, Appl
821	3	8.8	28	1	US-08-404-731A-8	Sequence 17, Appl Sequence 8, Appli
822	3	8.8	28	1	US-08-438-870-1	Sequence 1, Appli
823	3	8.8	28	1	US-08-442-029-9	= = = = = = = = = = = = = = = = = = = =
824	3	8.8	28	1		Sequence 9, Appli
825	3	8.8	28	1	US-08-446-692-3	Sequence 3, Appli
826	3				US-08-473-344-12	Sequence 12, Appl
	3	8.8	28	1	US-08-473-344-56	Sequence 56, Appl
827		8.8	28	1	US-08-519-180-2	Sequence 2, Appli
828	3	8.8	28	1	US-08-944-133-4	Sequence 4, Appli
829	3	8.8	28	1	US-08-944-133-8	Sequence 8, Appli
830	3	8.8	28	1	US-08-944-133-22	Sequence 22, Appl
831	3	8.8	28	1	US-08-944-133-27	Sequence 27, Appl
832	3	8.8	28	1	US-08-944-133-39	Sequence 39, Appl
833	3	8.8	28	1	US-08-944-133-43	Sequence 43, Appl
834	3	8.8	28	1	US-08-615-279-16	Sequence 16, Appl
835	3	8.8	28	1	US-08-615-279-39	Sequence 39, Appl
836	3	8.8	28	2	US-08-520-535-25	Sequence 25, Appl
837	3	8.8	28	2	US-08-488-351A-3	Sequence 3, Appli
838	3	8.8	28	2	US-08-414-424-1	Sequence 1, Appli
839	3	8.8	28	2	US-08-621-803-30	Sequence 30, Appl
840	3	8.8	28	2	US-08-621-803-139	Sequence 139, App
841	3	8.8	28	2	US-08-621-803-140	Sequence 140, App
842	3	8.8	28	2	US-08-621-803-142	Sequence 142, App
843	3	8.8	28	2	US-08-621-803-143	Sequence 143, App
844	3	8.8	28	2	US-08-485-445A-12	Sequence 12, Appl
845	3	8.8	28	2	US-08-485-445A-56	Sequence 56, Appl
846	3	8.8	28	2	US-08-485-445A-193	Sequence 193, App
847	3	8.8	28	2	US-08-485-445A-194	Sequence 194, App
848	3	8.8	28	2	US-08-485-445A-195	Sequence 195, App
849	3	8.8	28	2	US-08-485-445A-196	Sequence 196, App
850	3	8.8	28	2	US-08-621-259A-5	Sequence 5, Appli
851	3	8.8	28	2	US-08-621-259A-110	Sequence 110, App
852	3	8.8	28	2	US-08-621-259A-111	Sequence 111, App
853	3	8.8	28	2	US-08-621-259A-113	Sequence 113, App
854	3	8.8	28	2	US-08-621-259A-114	Sequence 114, App
855	3	8.8	28	2	US-08-449-933-9	Sequence 9, Appli
856	3	8.8	28	2	US-08-744-139-19	Sequence 19, Appl
857	3	8.8	28	2	US-08-503-226B-8	Sequence 8, Appli
858	3	8.8	28	2	US-08-488-161-49	Sequence 49, Appl
859	3	8.8	28	2	US-08-598-873-43	Sequence 43, Appl
860	3	8.8	28	2	US-08-620-151-66	Sequence 66, Appl
861	3	8.8	28	2	US-08-620-151-129	Sequence 129, App
862	3	8.8	28	2	US-08-398-590A-43	Sequence 43, Appl
863	3	8.8	28	2	US-08-821-619-10	Sequence 10, Appl
864	3	8.8	28	2	US-08-635-007-8	Sequence 8, Appli
865	3	8.8	28	2	US-09-079-432-25	Sequence 25, Appl
866	3	8.8	28	2	US-08-859-106A-8	Sequence 8, Appli
	•					o' bb

	867	3	8.8	28	2	US-08-833-377-11	Sequence 11, Appl
	868	3	8.8	28	2	US-08-031-538-48	Sequence 48, Appl
	869	3	8.8	28	2	US-08-475-985-19	Sequence 19, Appl
	870	3	8.8	28	2	US-08-413-708B-1	Sequence 1, Appli
	871	3	8.8	28	2	US-08-413-708B-2	Sequence 2, Appli
	872	3	8.8	28	2	US-08-413-708B-8	Sequence 8, Appli
	873	3	8.8	28	2	US-08-563-892A-4	Sequence 4, Appli
	874	3	8.8	28	2	US-08-691-814B-73	Sequence 73, Appl
	875	3	8.8	28	2	US-08-818-253-37	Sequence 37, Appl
	876	3	8.8	28	2	US-08-897-624-1	Sequence 1, Appli
	877	3	8.8	28	2	US-08-897-624-2	Sequence 2, Appli
	878	3	8.8	28	3	US-09-110-953-8	Sequence 8, Appli
	879	3	8.8	28	3	US-08-930-845-1	Sequence 1, Appli
	880	3	8.8	28	3	US-08-486-099-84	Sequence 84, Appl
	881	3	8.8	28	3	US-08-486-099-136	Sequence 136, App
	882	3	8.8	28	3	US-08-433-522A-34	Sequence 34, Appl
	883	3	8.8	28	3	US-09-273-685-49	Sequence 49, Appl
	884	3	8.8	28	3	US-08-360-107A-94	Sequence 94, Appl
	885	3	8.8	28	3	US-08-256-839-19	Sequence 19, Appl
	886	3	8.8	28	3	US-08-788-231A-18	Sequence 18, Appl
	887	3	8.8	28	3	US-08-484-223B-84	Sequence 84, Appl
	888	3	8.8	28	3	US-08-484-223B-136	Sequence 136, App
	889	3	8.8	28	3	US-09-100-414B-38	Sequence 38, Appl
	890	3	8.8	28	3	US-08-665-259-18	Sequence 18, Appl
	891	3	8.8	28	3	US-08-921-887-23	Sequence 23, Appl
	892	3	8.8	28	3	US-08-921-887-24	Sequence 24, Appl
	893	3	8.8	28	3	US-08-921-887-25	Sequence 25, Appl
	894	3	8.8	28	3	US-08-921-887-26	Sequence 26, Appl
	895	3	8.8	28	3	US-08-921-887-27	Sequence 27, Appl
	896	3	8.8	28	3	US-08-921-887-28	Sequence 28, Appl
	897	3	8.8	28	3	US-08-921-887-29	= = =
	898	3	8.8	28	3	US-08-921-887-30	Sequence 29, Appl
	899	3	8.8	28	3	US-08-921-887-31	Sequence 30, Appl
	900	3					Sequence 31, Appl
	900	3	8.8 8.8	28	3	US-08-921-887-33	Sequence 33, Appl
	902	3		28	3	US-08-762-500-18	Sequence 18, Appl
		3	8.8	28	3 3	US-08-952-568-1	Sequence 1, Appli
	903	3	8.8	28	3	US-08-952-568-3	Sequence 3, Appli
	904		8.8	28	_	US-08-952-568-4	Sequence 4, Appli
	905	3	8.8	28	3	US-08-952-568-5	Sequence 5, Appli
	906	3	8.8	28	3	US-08-952-568-6	Sequence 6, Appli
	907	3	8.8	28	3	US-08-952-568-10	Sequence 10, Appl
	908	3	8.8	28	3	US-08-952-568-11	Sequence 11, Appl
	909	3	8.8	28	3	US-08-952-568-12	Sequence 12, Appl
	910	3	8.8	28	3	US-08-952-568-13	Sequence 13, Appl
	911	3	8.8	28	3	US-08-952-568-14	Sequence 14, Appl
	912	3	8.8	28	3	US-08-256-747C-50	Sequence 50, Appl
	913	3	8.8	28	3	US-08-919-597-84	Sequence 84, Appl
	914	3	8.8	28	3	US-08-919-597 - 136	Sequence 136, App
	915	3	8.8	28	3	US-09-119-263-12	Sequence 12, Appl
,	916	3	8.8	28	3	US-09-119-263-56	Sequence 56, Appl
	917	3	8.8	28	3	US-09-119-263-193	Sequence 193, App
	918	3	8.8	28	3	US-09-119-263-194	Sequence 194, App
	919	3	8.8	28	3	US-09-119-263-195	Sequence 195, App
	920	3	8.8	28	3	US-09-119-263-196	Sequence 196, App
	921	3	8.8		. 3	US-08-475-668A-84	Sequence 84, Appl
	922	3	8.8	28	3	US-08-475-668A-136	Sequence 136, App
	923	3	8.8	28	3	US-09-192-048-21	Sequence 21, Appl

924	3	8.8	28	3	US-08-485-551A-84	Sequence 84, Appl
925	3	8.8	28	3	US-08-485-551A-136	Sequence 136, App
926	3	8.8	28	3	US-08-838-413A-6	Sequence 6, Appli
927	3	8.8	28	3	US-09-135-166-34	Sequence 34, Appl
928	3	8.8	28	3	US-08-471-913A-84	Sequence 84, Appl
929	3	8.8	28	3	US-08-471-913A-136	Sequence 136, App
930	3	8.8	28	3	US-08-721-458B-8	Sequence 8, Appli
931	3	8.8	28	3	US-08-908-643C-43	Sequence 43, Appl
932	3	8.8	28	3	US-08-405-647B-39	Sequence 39, Appl
933	3	8.8	28	3	US-08-893-749-2	Sequence 2, Appli
934	3	8.8	28	3	US-08-893-749-3	Sequence 3, Appli
935	3	8.8	28	3	US-08-893-749-32	Sequence 32, Appl
936	3	8.8	28	3	US-09-388-890-12	Sequence 12, Appl
937	3	8.8	28	3	US-08-657-162-12	Sequence 12, Appl
938	3	8.8	28	3	US-08-657-162-56	Sequence 56, Appl
939	3	8.8	28	3	US-08-657-162-193	Sequence 193, App
940	3	8.8	28	3	US-08-657-162-194	Sequence 194, App
941	3	8.8	28	3	US-08-657-162-195	Sequence 195, App
942	3	8.8	28	3	US-08-657-162-196	Sequence 196, App
943	3	8.8	28	3	US-09-433-428D-62	Sequence 62, Appl
944	3	8.8	28	3	US-08-679-006-15	Sequence 15, Appl
945	3	8.8	28	3	US-09-224-480-12	Sequence 12, Appl
946	3	8.8	28	3	US-09-224-480-56	Sequence 56, Appl
947	3	8.8	28	3	US-09-224-480-193	Sequence 193, App
948	3	8.8	28	3	US-09-224-480-194	Sequence 194, App
949	3	8.8	28	3	US-09-224-480-195	Sequence 195, App
950	3	8.8	28	3	US-09-224-480-196	Sequence 196, App
951	3	8.8	28	3	US-08-796-899-30	Sequence 30, Appl
952	3	8.8	28	3	US-08-974-549A-166	Sequence 166, App
953	3	8.8	28	3	US-08-392-542-22	Sequence 22, Appl
954	, 3	8.8	28	3	US-08-819-286-29	Sequence 29, Appl
955	3	8.8	28	3	US-08-817-811-13	Sequence 13, Appl
956	3	8.8	28	3	US-08-817-811-14	Sequence 14, Appl
957	3	8.8	28	3	US-08-817-811-15	Sequence 15, Appl
958	3	8.8	28	3	US-08-817-811-66	Sequence 66, Appl
959	3	8.8	28	3	US-08-817-811-67	Sequence 67, Appl
960	3	8.8	28	3	US-08-379-580-7	Sequence 7, Appli
961	3	8.8	28	3	US-08-834-130A-50	Sequence 50, Appl
962	3	8.8	28	3	US-08-448-398-12	Sequence 12, Appl
963	3	8.8	28	3	US-09-058-459-19	Sequence 19, Appl
964	3	8.8	28	3	US-08-985-499-39	Sequence 39, Appl
965	3	8.8	28	3	US-08-818-252-37	Sequence 37, Appl
966	3	8.8	28	3	US-08-363-558-1	Sequence 1, Appli
967	3	8.8	28	3	US-09-066-046-19	Sequence 19, Appl
968	3	8.8	28	3	US-09-253-396A-223	Sequence 223, App
969	3	8.8	28	3	US-09-107-991-12	Sequence 12, Appl
970	3	8.8	28	3	US-09-093-539-12	Sequence 12, Appl
971	3	8.8	28	3	US-09-093-539-56	Sequence 56, Appl
972	3	8.8	28	3	US-08-485-264A-84	Sequence 84, Appl
973	3	8.8	28	3	US-08-485-264A-136	Sequence 136, App
974	3	8.8	28	3	US-09-303-323-38	Sequence 38, Appl
975	3	8.8	28	3	US-09-041-886-36	Sequence 36, Appl
976	3	8.8	28	3	US-09-041-886-37	Sequence 37, Appl
977	3	8.8	28	3	US-09-041-886-38	Sequence 38, Appl
978	3	8.8	28	3	US-09-041-886-39	Sequence 39, Appl
979	3	8.8	28	3	US-09-041-886-40	Sequence 40, Appl
980	3	8.8	28	3	US-09-041-886-42	Sequence 42, Appl
			-	-		4-000 In' ubbi

982							
983 3 8.8 28 3 US-09-041-886-53 Sequence 53, Ag 984 3 8.8 28 3 US-09-041-886-54 Sequence 54, Ag 985 3 8.8 28 3 US-09-041-886-56 Sequence 56, Ag 986 3 8.8 28 3 US-07-966-049A-9 Sequence 2, Apg 987 3 8.8 28 3 US-07-966-049A-9 Sequence 9, Apg 988 3 8.8 28 3 US-08-995-369-1 Sequence 1, Apg 989 3 8.8 28 3 US-09-171-654-1 Sequence 1, Apg 990 3 8.8 28 3 US-08-605-430-43 Sequence 43, Ag 991 3 8.8 28 3 US-08-894-327-22 Sequence 22, Ag 992 3 8.8 28 3 US-09-082-279B-54 Sequence 54, Ag 993 3 8.8 28 3 US-09-082-279B-982 Sequence 62, Ag 994 3 8.8 28 3 US-09-082-279B-1279 <	981	3	8.8	28	3	US-09-041-886-47	Sequence 47, Appl
984 3 8.8 28 3 US-09-041-886-54 Sequence 54, Ag 985 3 8.8 28 3 US-09-041-886-56 Sequence 56, Ag 986 3 8.8 28 3 US-09-127-680-2 Sequence 2, Apg 987 3 8.8 28 3 US-07-966-049A-9 Sequence 9, Apg 988 3 8.8 28 3 US-08-995-369-1 Sequence 1, Apg 989 3 8.8 28 3 US-09-171-654-1 Sequence 1, Apg 990 3 8.8 28 3 US-08-605-430-43 Sequence 43, Ag 991 3 8.8 28 3 US-08-894-327-22 Sequence 22, Ag 992 3 8.8 28 3 US-09-082-279B-54 Sequence 54, Ag 993 3 8.8 28 3 US-09-082-279B-62 Sequence 62, Ag 994 3 8.8 28 3 US-09-082-279B-1279 Sequence 982, Ag 995 3 8.8 28 3 US-09-082-279B-1314	982	3	8.8	28	3	US-09-041-886-50	Sequence 50, Appl
985	983	3	8.8	28	3	US-09-041-886-53	Sequence 53, Appl
986 3 8.8 28 3 US-09-127-680-2 Sequence 2, Appende 2, Appende 2, Appende 2, Appende 3, A	984	3	8.8	28	3	US-09-041-886-54	Sequence 54, Appl
987 3 8.8 28 3 US-07-966-049A-9 Sequence 9, App 988 3 8.8 28 3 US-08-995-369-1 Sequence 1, App 989 3 8.8 28 3 US-09-171-654-1 Sequence 1, App 990 3 8.8 28 3 US-08-605-430-43 Sequence 43, App 991 3 8.8 28 3 US-08-894-327-22 Sequence 22, App 992 3 8.8 28 3 US-09-082-279B-54 Sequence 54, App 993 3 8.8 28 3 US-09-082-279B-62 Sequence 62, App 994 3 8.8 28 3 US-09-082-279B-982 Sequence 982, App 995 3 8.8 28 3 US-09-082-279B-1279 Sequence 1279, Sequence 1279, Sequence 1279, Sequence 1280, Sequence 1280, Sequence 1280, Sequence 1280, Sequence 1314, Sequence 1314, Sequence 1314, Sequence 1314, Sequence 1315, Sequence 1316, Sequence 13	985	3	8.8	28	3	US-09-041-886-56	Sequence 56, Appl
988 3 8.8 28 3 US-08-995-369-1 Sequence 1, App 989 3 8.8 28 3 US-09-171-654-1 Sequence 1, App 990 3 8.8 28 3 US-08-605-430-43 Sequence 43, App 991 3 8.8 28 3 US-08-894-327-22 Sequence 22, App 992 3 8.8 28 3 US-09-082-279B-54 Sequence 54, App 993 3 8.8 28 3 US-09-082-279B-62 Sequence 62, App 994 3 8.8 28 3 US-09-082-279B-982 Sequence 982, App 995 3 8.8 28 3 US-09-082-279B-1279 Sequence 1279, Sequence 1279, Sequence 1280, Sequence 1280, Sequence 1280, Sequence 1280, Sequence 1314, Sequence 1314, Sequence 1314, Sequence 1314, Sequence 1315, Sequence 1316, App 132 Sequence 1316, Sequence 1316, App 132 Sequence 1316, App 133 Se	986	3	8.8	28	3	US-09-127-680-2	Sequence 2, Appli
989 3 8.8 28 3 US-09-171-654-1 Sequence 1, Apple 990 3 8.8 28 3 US-08-605-430-43 Sequence 43, Apple 991 3 8.8 28 3 US-08-894-327-22 Sequence 22, Apple 992 3 8.8 28 3 US-09-082-279B-54 Sequence 54, Apple 993 3 8.8 28 3 US-09-082-279B-62 Sequence 62, Apple 994 3 8.8 28 3 US-09-082-279B-982 Sequence 62, Apple 995 3 8.8 28 3 US-09-082-279B-1279 Sequence 1279, 996 3 8.8 28 3 US-09-082-279B-1280 Sequence 1280, 997 3 8.8 28 3 US-09-082-279B-1314 Sequence 1314, 998 3 8.8 28 3 US-09-082-279B-1315 Sequence 1315, 999 3 8.8 28 3 US-09-082-279B-1315 Sequence 84, Apple 998 3 8.8 28 3 US-09-082-279B-1315 Sequence 84, Apple 999 3 8.8 28 3 US-09-082-279B-1315 Sequence 84, Apple 999 3 8.8 28 3 US-08-477-346-84 Sequence 84, Apple 990 3 8.8 28 3 US-08-477-346-84 Sequence 990 3 8.8 28 3 US-08-477-346-84 Sequenc	987	3	8.8	28	3	US-07-966-049A-9	Sequence 9, Appli
990 3 8.8 28 3 US-08-605-430-43 Sequence 43, Ap 991 3 8.8 28 3 US-08-894-327-22 Sequence 22, Ap 992 3 8.8 28 3 US-09-082-279B-54 Sequence 54, Ap 993 3 8.8 28 3 US-09-082-279B-62 Sequence 62, Ap 994 3 8.8 28 3 US-09-082-279B-982 Sequence 62, Ap 995 3 8.8 28 3 US-09-082-279B-1279 Sequence 1279, 996 3 8.8 28 3 US-09-082-279B-1280 Sequence 1280, 997 3 8.8 28 3 US-09-082-279B-1314 Sequence 1314, 998 3 8.8 28 3 US-09-082-279B-1315 Sequence 1315, 999 3 8.8 28 3 US-08-477-346-84 Sequence 84, Ap	988	3	8.8	28	3	US-08-995-369-1	Sequence 1, Appli
991 3 8.8 28 3 US-08-894-327-22 Sequence 22, Apple 23 8.8 28 3 US-09-082-279B-54 Sequence 54, Apple 24 3 8.8 28 3 US-09-082-279B-62 Sequence 62, Apple 25 3 8.8 28 3 US-09-082-279B-982 Sequence 62, Apple 26 3 8.8 28 3 US-09-082-279B-1279 Sequence 1279, 1279 Sequence 1280, 1279 Sequence	989	3	8.8	28	3	US-09-171-654-1	Sequence 1, Appli
992 3 8.8 28 3 US-09-082-279B-54 Sequence 54, Apply 3 8.8 28 3 US-09-082-279B-62 Sequence 62, Apply 3 8.8 28 3 US-09-082-279B-982 Sequence 982, Apply 3 8.8 28 3 US-09-082-279B-1279 Sequence 1279, 996 3 8.8 28 3 US-09-082-279B-1280 Sequence 1280, 997 3 8.8 28 3 US-09-082-279B-1314 Sequence 1314, 998 3 8.8 28 3 US-09-082-279B-1315 Sequence 1315, 999 3 8.8 28 3 US-08-477-346-84 Sequence 84, Apply 3 8.8 28 3 US-08-477-346-84 Sequence 84, Apply 3 8.8 28 3 US-08-477-346-84	990	3	8.8	28	3	US-08-605-430-43	Sequence 43, Appl
993 3 8.8 28 3 US-09-082-279B-62 Sequence 62, Ag 994 3 8.8 28 3 US-09-082-279B-982 Sequence 982, 2995 3 8.8 28 3 US-09-082-279B-1279 Sequence 1279, 996 3 8.8 28 3 US-09-082-279B-1280 Sequence 1280, 997 3 8.8 28 3 US-09-082-279B-1314 Sequence 1314, 998 3 8.8 28 3 US-09-082-279B-1315 Sequence 1315, 999 3 8.8 28 3 US-08-477-346-84 Sequence 84, Ag	991	3	8.8	28	3	US-08-894-327-22	Sequence 22, Appl
994 3 8.8 28 3 US-09-082-279B-982 Sequence 982, 295 3 8.8 28 3 US-09-082-279B-1279 Sequence 1279, 996 3 8.8 28 3 US-09-082-279B-1280 Sequence 1280, 997 3 8.8 28 3 US-09-082-279B-1314 Sequence 1314, 998 3 8.8 28 3 US-09-082-279B-1315 Sequence 1315, 999 3 8.8 28 3 US-08-477-346-84 Sequence 84, Applied to the control of th	992	3	8.8	28	3	US-09-082-279B-54	Sequence 54, Appl
995 3 8.8 28 3 US-09-082-279B-1279 Sequence 1279, 996 3 8.8 28 3 US-09-082-279B-1280 Sequence 1280, 997 3 8.8 28 3 US-09-082-279B-1314 Sequence 1314, 998 3 8.8 28 3 US-09-082-279B-1315 Sequence 1315, 999 3 8.8 28 3 US-08-477-346-84 Sequence 84, Applied to the sequence of the sequence of the sequence and the	993	3	8.8	28	3	US-09-082-279B-62	Sequence 62, Appl
996 3 8.8 28 3 US-09-082-279B-1280 Sequence 1280, 997 3 8.8 28 3 US-09-082-279B-1314 Sequence 1314, 998 3 8.8 28 3 US-09-082-279B-1315 Sequence 1315, 999 3 8.8 28 3 US-08-477-346-84 Sequence 84, Ap	994	3	8.8	28	3	US-09-082-279B-982	Sequence 982, App
997 3 8.8 28 3 US-09-082-279B-1314 Sequence 1314, 998 3 8.8 28 3 US-09-082-279B-1315 Sequence 1315, 999 3 8.8 28 3 US-08-477-346-84 Sequence 84, Ap	995	3	8.8	28	3	US-09-082-279B-1279	Sequence 1279, Ap
998 3 8.8 28 3 US-09-082-279B-1315 Sequence 1315, 999 3 8.8 28 3 US-08-477-346-84 Sequence 84, Ap	996	3	8.8	28	3	US-09-082-279B-1280	Sequence 1280, Ap
999 3 8.8 28 3 US-08-477-346-84 Sequence 84, Ap	997	3	8.8	28	3	US-09-082-279B-1314	Sequence 1314, Ap
	998	3	8.8	28	3	US-09-082-279B-1315	Sequence 1315, Ap
1000 3 8.8 28 3 US-08-942-046-34 Sequence 34, A	999	3	8.8	28	3	US-08-477-346-84	Sequence 84, Appl
	1000	3	8.8	28	3	US-08-942-046-34	Sequence 34, Appl

ALIGNMENTS

```
RESULT 1
US-07-765-373-1
; Sequence 1, Application US/07765373
 Patent No. 5393869
  GENERAL INFORMATION:
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: KAWASE, Masahiro
    APPLICANT: YAMAZAKI, Iwao
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES
    NUMBER OF SEQUENCES: 2
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DAVID G. CONLIN; DIKE, BRONSTEIN, ROBERTS &
                  CUSHMAN
      ADDRESSEE:
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/07/765,373
      FILING DATE: 19910925
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: WILLIAMS, Gregory D.
      REGISTRATION NUMBER: 30901
      REFERENCE/DOCKET NUMBER: 41289
```

```
TELECOMMUNICATION INFORMATION:
;
      TELEPHONE: (617) 523-3400
      TELEFAX: (617)523-6440
      TELEX: 20091 STRE UR
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: AMINO ACID
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FRAGMENT TYPE: N-terminal
US-07-765-373-1
 Query Match
                         100.0%; Score 34; DB 1; Length 34;
                         100.0%; Pred. No. 5.4e-25;
  Best Local Similarity
 Matches
          34; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                          0;
Oy
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Db
RESULT 2
US-08-033-099-1
; Sequence 1, Application US/08033099
; Patent No. 5434246
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES
    NUMBER OF SEQUENCES: 2
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DAVID G.CONLIN; DIKE, BRONSTEIN, ROBERTS &
      ADDRESSEE: CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/033,099
      FILING DATE: 19930316
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: WILLIAMS, Gregory D
      REGISTRATION NUMBER: 30901
      REFERENCE/DOCKET NUMBER: 42528
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617) 523-3400
      TELEFAX: (613)523-6440
      TELEX: 200291 STRE UR
```

```
INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: AMINO ACID
      TOPOLOGY: linear
    MOLECULE TYPE: protein
    FRAGMENT TYPE: N-terminal
US-08-033-099-1
  Query Match
                        100.0%; Score 34; DB 1; Length 34;
  Best Local Similarity 100.0%; Pred. No. 5.4e-25;
 Matches
           34; Conservative 0; Mismatches 0; Indels
                                                              0;
                                                                  Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 3
US-08-262-495C-1
; Sequence 1, Application US/08262495C
 Patent No. 5556940
  GENERAL INFORMATION:
    APPLICANT: WILLICK, Gordon E.
    APPLICANT: WHITFIELD, James F.
    APPLICANT: SUREWICZ, Witold
    APPLICANT:
                SUNG, Wing L.
    APPLICANT: NEUGENBAUER, Witold
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Kirby, Eades, Gale, Baker
      STREET: 112 Kent Street, Suite 770,
      CITY: Ottawa
      COUNTRY: Canada
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC Compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: Wordperfect 5.1
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/262,495C
      FILING DATE:
      CLASSIFICATION: 530
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER:
      FILING DATE:
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: EADES, No. 5556940ris M.
      REGISTRATION NUMBER: 5,263
      REFERENCE/DOCKET NUMBER: 36210
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (613)-237-6900
      TELEFAX: (613)-237-0045
  INFORMATION FOR SEQ ID NO: 1:
```

```
SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-262-495C-1
 Query Match
                         100.0%; Score 34; DB 1; Length 34;
 Best Local Similarity 100.0%; Pred. No. 5.4e-25;
           34; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                          0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 4
US-07-915-247A-1
; Sequence 1, Application US/07915247A
 Patent No. 5589452
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
ï
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 34
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/07/915,247A
      FILING DATE: 19920714
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO:
;
;
   SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
```

```
TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-07-915-247A-1
 Query Match
                         100.0%; Score 34; DB 1; Length 34;
 Best Local Similarity 100.0%; Pred. No. 5.4e-25;
 Matches
           34; Conservative
                              0; Mismatches 0; Indels
                                                             0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 5
US-08-443-863-1
; Sequence 1, Application US/08443863
; Patent No. 5693616
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 34
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/443,863
      FILING DATE: 14-JUL-1992
      CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEO ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
```

```
MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
     FRAGMENT TYPE: N-terminal
US-08-443-863-1
  Query Match
                         100.0%; Score 34; DB 1; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 5.4e-25;
           34; Conservative
                              0; Mismatches
                                                0;
                                                              0; Gaps
                                                     Indels
                                                                          0;
Qy :
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 6
US-08-448-070-1
; Sequence 1, Application US/08448070
; Patent No. 5695955
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 34
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/448,070
      FILING DATE: 14-JUL-1992
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
```

```
HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-448-070-1
                         100.0%; Score 34; DB 1; Length 34;
  Query Match
  Best Local Similarity
                         100.0%; Pred. No. 5.4e-25;
 Matches
          34; Conservative 0; Mismatches 0; Indels
                                                              0;
                                                                  Gaps
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 7
US-08-488-105-7
; Sequence 7, Application US/08488105
; Patent No. 5717062
  GENERAL INFORMATION:
    APPLICANT: Chorev, Michael
    APPLICANT: Rosenblatt, Michael
    TITLE OF INVENTION: CYCLIC ANALOGS OF PTH AND PTHrP
    NUMBER OF SEQUENCES: 22
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Fish & Richardson P.C.
      STREET: 225 Franklin Street
      CITY: Boston
      STATE: MA
      COUNTRY: USA
      ZIP: 02110-2804
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/488,105
      FILING DATE: 07-JUN-1995
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: Tsao, Y. Rocky
      REGISTRATION NUMBER: 34,053
      REFERENCE/DOCKET NUMBER: 00537/112001
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 617/542-5070
      TELEFAX: 617/542-8906
      TELEX: 200154
   INFORMATION FOR SEQ ID NO: 7:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: not relevant
      TOPOLOGY: linear
    MOLECULE TYPE: protein
    FEATURE:
      OTHER INFORMATION: The side chains of Lys at
      OTHER INFORMATION: position 26 and Asp at position 30 are linked by an
amide bond,
```

```
OTHER INFORMATION: and this sequence has an amide C-terminus (i.e.,
CONH2), rather
     OTHER INFORMATION: than a carboxy C-terminus (i.e., COOH).
US-08-488-105-7
 Query Match
                         100.0%; Score 34; DB 1; Length 34;
 Best Local Similarity 100.0%; Pred. No. 5.4e-25;
           34; Conservative 0; Mismatches
                                               0;
                                                     Indels
                                                              0; Gaps
                                                                          0;
Оy
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 8
US-08-468-275-6
; Sequence 6, Application US/08468275
; Patent No. 5747453
  GENERAL INFORMATION:
    APPLICANT: HOLLADAY, LESLIE A.
    APPLICANT: OLDENBURG, KEVIN R.
    TITLE OF INVENTION: METHOD FOR INCREASING THE
    TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
    NUMBER OF SEQUENCES: 10
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: ALZA CORPORATION
      STREET: 950 PAGE MILL ROAD
      CITY: PALO ALTO
      STATE: CALIFORNIA
      COUNTRY: USA
      ZIP: 94303-0802
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/468,275
      FILING DATE: 06-JUN-1995
      CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: MILLER, D. BYRON
       REGISTRATION NUMBER: 30,661
      REFERENCE/DOCKET NUMBER: 0360-0002; ARC-2349
    TELECOMMUNICATION INFORMATION:
       TELEPHONE: (415) 496-8150
       TELEFAX: (415) 496-8048
   INFORMATION FOR SEQ ID NO: 6:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-468-275-6
```

100.0%; Score 34; DB 1; Length 34;

Query Match

```
Best Local Similarity 100.0%; Pred. No. 5.4e-25;
  Matches
          34; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                         0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 9
US-08-449-500-1
; Sequence 1, Application US/08449500
; Patent No. 5798225
; GENERAL INFORMATION:
     APPLICANT: Krstenansky, John L.
     APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
     TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
     TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
     TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
     ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/449,500
;
      FILING DATE: 18-JAN-1994
      CLASSIFICATION: 435
   ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
;
   SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-449-500-1
 Query Match
                        100.0%; Score 34; DB 1; Length 34;
 Best Local Similarity 100.0%; Pred. No. 5.4e-25;
```

```
Matches
           34; Conservative
                               0; Mismatches
                                                0; Indels
                                                             0; Gaps
                                                                        0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 10
US-08-449-317A-1
; Sequence 1, Application US/08449317A
; Patent No. 5807823
  GENERAL INFORMATION:
    APPLICANT: Vickery, Brian H.
    TITLE OF INVENTION: METHOD FOR TREATMENT OF CORTICOSTEROID
    TITLE OF INVENTION: INDUCED OSTEOPENIA
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/449,317A
      FILING DATE: 07-JUN-1995
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P2
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-449-317A-1
  Query Match
                        100.0%; Score 34; DB 1; Length 34;
 Best Local Similarity 100.0%; Pred. No. 5.4e-25;
 Matches
          34; Conservative 0; Mismatches 0; Indels
                                                             0; Gaps
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
```

```
RESULT 11
US-08-142-551B-2
; Sequence 2, Application US/08142551B
; Patent No. 5814603
   GENERAL INFORMATION:
     APPLICANT: Oldenburg, Kevin R.
     APPLICANT: Selick, Harold E.
     TITLE OF INVENTION: COMPOUNDS WITH PTH ACTIVITY AND
     TITLE OF INVENTION: RECOMBINANT DNA VECTORS ENCODING SAME
     NUMBER OF SEQUENCES: 132
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Burns, Doane, Swecker & Mathis
       STREET: 699 Prince Street
       CITY: Alexandria
       STATE: Virginia
       COUNTRY: US
       ZIP: 22313
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/142,551B
       FILING DATE: 25-OCT-1993
       CLASSIFICATION: 435
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: US 08/077,296
       FILING DATE: 14-JUN-1993
     PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 07/898,219
       FILING DATE: 12-JUN-1992
     PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 07/965,677
       FILING DATE: 22-OCT-1992
    ATTORNEY/AGENT INFORMATION:
      NAME: Swiss, Gerald F.
       REGISTRATION NUMBER: 30,113
      REFERENCE/DOCKET NUMBER: 000324-010
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (415) 854-7400
       TELEFAX: (415) 854-8275
   INFORMATION FOR SEO ID NO: 2:
     SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: unknown
    MOLECULE TYPE: protein
    FEATURE:
      NAME/KEY: Peptide
      LOCATION: 1..34
      OTHER INFORMATION:
                          /note= "The sequence of the 34
      OTHER INFORMATION: amino acid truncated human PTH peptide,
      OTHER INFORMATION: designated: Human PTH."
US-08-142-551B-2
```

```
Query Match
                        100.0%; Score 34; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 5.4e-25;
           34; Conservative 0; Mismatches
                                               0; Indels
                                                             0; Gaps
                                                                        0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Dh
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 12
US-08-477-022-1
; Sequence 1, Application US/08477022
 Patent No. 5821225
   GENERAL INFORMATION:
    APPLICANT: Vickery, Brian H.
    TITLE OF INVENTION: METHOD FOR TREATMENT OF CORTICOSTEROID
    TITLE OF INVENTION: INDUCED OSTEOPENIA
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/477,022
      FILING DATE: 07-JUN-1995
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
ï
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P2
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
;
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-477-022-1
 Query Match
                        100.0%; Score 34; DB 2; Length 34;
 Best Local Similarity
                        100.0%; Pred. No. 5.4e-25;
          34; Conservative
 Matches
                             0; Mismatches
                                              0; Indels
                                                             0; Gaps
                                                                        0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
```

```
RESULT 13
US-08-449-447-1
; Sequence 1, Application US/08449447
; Patent No. 5840837
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT:
                Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/449,447
      FILING DATE: 18-JAN-1994
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
US-08-449-447-1
 Query Match
                         100.0%; Score 34; DB 2; Length 34;
 Best Local Similarity 100.0%; Pred. No. 5.4e-25;
 Matches
          34; Conservative 0; Mismatches
                                              0; Indels
                                                              0; Gaps
                                                                          0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
QУ
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
```

```
RESULT 14
US-08-835-231-13
; Sequence 13, Application US/08835231
 Patent No. 5861284
  GENERAL INFORMATION:
    APPLICANT: NISHIMURA, Osamu
    APPLICANT: KURIYAMA, Masato
    APPLICANT: KOYAMA, No. 5861284uyuki
    APPLICANT: FUKUDA, Tsunehiko
    TITLE OF INVENTION: METHOD FOR PRODUCING A BIOLOGICALLY
     TITLE OF INVENTION: ACTIVE RECOMBINANT CYSTEINE-FREE
    NUMBER OF SEQUENCES: 37
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN, LLP
      STREET: 130 WATER STREET
      CITY: BOSTON
      STATE: MA
      COUNTRY: USA
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
      OPERATING SYSTEM: DOS
      SOFTWARE: FastSEO Version 1.5
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/835,231
      FILING DATE:
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/350,709
      FILING DATE: 07-DEC-1994
      APPLICATION NUMBER: 07/838,857
      FILING DATE: 18-FEB-1992
      APPLICATION NUMBER: JP 024841
      FILING DATE: 19-FEB-1991
      APPLICATION NUMBER: JP 0271438
      FILING DATE: 18-OCT-1991
    ATTORNEY/AGENT INFORMATION:
      NAME: DAVID, RESNICK S
      REGISTRATION NUMBER: 34,235
      REFERENCE/DOCKET NUMBER: 41614-FWC
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 617-523-3400
      TELEFAX: 617-523-6440
      TELEX: 200291 STRE
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    ANTI-SENSE: NO
    FRAGMENT TYPE: N-terminal
```

```
ORIGINAL SOURCE:
US-08-835-231-13
  Query Match
                         100.0%; Score 34; DB 2; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 5.4e-25;
           34; Conservative 0; Mismatches
                                                0;
                                                     Indels
                                                               0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 15
US-08-184-328-1
; Sequence 1, Application US/08184328
; Patent No. 5874086
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT:
                Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/184,328
      FILING DATE: 18-JAN-1994
      CLASSIFICATION: 435
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    FRAGMENT TYPE: N-terminal
```

TOPOLOGY: linear

```
Query Match
                         100.0%; Score 34; DB 2; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 5.4e-25;
  Matches
           34; Conservative
                               0; Mismatches
                                                0;
                                                    Indels
                                                               0;
                                                                  Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 16
US-08-411-726-2
; Sequence 2, Application US/08411726
; Patent No. 5880093
  GENERAL INFORMATION:
    APPLICANT: BAGNOLI, Franco
    TITLE OF INVENTION: Use of Parathormone, Its Biologically
    TITLE OF INVENTION: Active Fragments and Correlated Peptides, for The
Preparation of
    TITLE OF INVENTION: Pharmaceutical Compositions Useful for The Treatment
of Pregnanc
    NUMBER OF SEQUENCES: 5
ï
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Kenyon & Kenyon
      STREET: 1 Broadway
      CITY: New York
      STATE: NY
      COUNTRY: US
      ZIP: 10004
    COMPUTER READABLE FORM:
      MEDIUM TYPE: 3.5 Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS 6.2
      SOFTWARE: WordPerfect 6.1 for Windows
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/411,726
      FILING DATE: 05-APR-1995
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: PCT/EP93/02755
      FILING DATE: 08-OCT-1993
      APPLICATION NUMBER: MI-92A002331
      FILING DATE: 09-OCT-1992
    ATTORNEY/AGENT INFORMATION:
      NAME: PALMESE, Maria Luisa
      REGISTRATION NUMBER: 34,402
      REFERENCE/DOCKET NUMBER:
                              2111/1300
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 212-425-7200
      TELEFAX: 212-425-5288
  INFORMATION FOR SEQ ID NO: 2:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
```

```
MOLECULE TYPE: protein
US-08-411-726-2
  Query Match 100.0%; Score 34; DB 2; Length 34; Best Local Similarity 100.0%; Pred. No. 5.4e-25;
           34; Conservative 0; Mismatches
                                                0;
                                                      Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 17
US-08-691-647C-5
; Sequence 5, Application US/08691647C
; Patent No. 5955425
  GENERAL INFORMATION:
    APPLICANT: Barbier, Jean-Rene
     APPLICANT: Morley, Paul
     APPLICANT: Neugebauer, Witold
     APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
     TITLE OF INVENTION: CYCLIC PARATHYROID HORMONE ANALOGUES
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 6
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE, P.C.
       STREET: 1100 New York Avenue, 8th Floor
       CITY: Arlington
       STATE: Virginia
       COUNTRY: U.S.A.
       ZIP: 22201-4714
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: ASCII Text
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/691,647C
       FILING DATE: August 2, 1996
       CLASSIFICATION: 514
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
      REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER: 1339-5
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (703) 816-4005
      TELEFAX: (703) 816-4100
      TELEX: N/A
   INFORMATION FOR SEQ ID NO: 5:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-691-647C-5
```

```
Query Match
                         100.0%; Score 34; DB 2; Length 34;
 Best Local Similarity 100.0%; Pred. No. 5.4e-25;
          34; Conservative 0; Mismatches
                                               0;
                                                   Indels
                                                              0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 18
US-08-521-097-1
; Sequence 1, Application US/08521097
; Patent No. 5977070
  GENERAL INFORMATION:
    APPLICANT: Krstenansky, John L.
    APPLICANT: Nestor Jr., John J.
    APPLICANT: Ho, Teresa H.
    APPLICANT: Vickery, Brian H.
    APPLICANT: Bach, Chinh T.
    TITLE OF INVENTION: ANALOGS OF PARATHYROID HORMONE AND
    TITLE OF INVENTION: PARATHYROID HORMONE RELATED PEPTIDE: SYNTHESIS AND USE
    TITLE OF INVENTION: FOR THE TREATMENT OF OSTEOPOROSIS
    NUMBER OF SEQUENCES: 86
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Patent Dept., Syntex (U.S.A.), Inc.
      STREET: 3401 Hillview Ave.
      CITY: Palo Alto
      STATE: CA
      COUNTRY: USA
      ZIP: 94303
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/521,097
      FILING DATE: 29-AUG-1995
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/184,328
      FILING DATE: 18-JAN-1994
    ATTORNEY/AGENT INFORMATION:
      NAME: Schmonsees, William
      REGISTRATION NUMBER: 31,796
      REFERENCE/DOCKET NUMBER: 27610-P1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-855-6593
      TELEFAX: 415-496-3529
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
```

```
FRAGMENT TYPE: N-terminal
US-08-521-097-1
  Query Match
                         100.0%; Score 34; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 5.4e-25;
  Matches
          34; Conservative 0; Mismatches 0;
                                                    Indels
                                                              0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
                                                                    1
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 19
US-09-044-536A-1
; Sequence 1, Application US/09044536A
; Patent No. 6025467
  GENERAL INFORMATION:
    APPLICANT: FUKUDA, Tsunehiko
    APPLICANT: NAKAGAWA, Shizue
    APPLICANT: HABASHITA, Junko
    APPLICANT: TAKETOMI, Shigehisa
    TITLE OF INVENTION: PARATHYROID HORMONE DERIVATIVES AND THEIR USE
    NUMBER OF SEQUENCES: 36
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN
      STREET: 130 Water Street
      CITY: Boston
      STATE: Massachusetts
      COUNTRY: US
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/044,536A
      FILING DATE: 19-MAR-1998
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/662,871
      FILING DATE: 12-JUN-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: CONLIN, David G
      REGISTRATION NUMBER: 27,026
      REFERENCE/DOCKET NUMBER: 46509-DIV
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (617)523-3400
      TELEFAX: (617)523-6440
  INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: partial peptide
```

```
LOCATION: 1..34
US-09-044-536A-1
 Query Match
                         100.0%; Score 34; DB 3; Length 34;
 Best Local Similarity
                        100.0%; Pred. No. 5.4e-25;
           34; Conservative 0; Mismatches
                                                0;
                                                     Indels
                                                               0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 20
US-08-904-760B-22
; Sequence 22, Application US/08904760B
; Patent No. 6110892
  GENERAL INFORMATION:
    APPLICANT: Jean-Rene, Barbier
    APPLICANT: Neugebauer, Witold
    APPLICANT: Ross, Virginia
    APPLICANT: Whitfield, James
    APPLICANT: Willick, Gordon E.
    TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE
                        TREATMENT OF OSTEOPOROSIS
    TITLE OF INVENTION:
    NUMBER OF SEQUENCES: 35
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIXON & VANDERHYE P.C.
      STREET: 1100 No. 6110892th Glebe Rd. 8th floor
      CITY: Arlington
      STATE: VA
      COUNTRY: USA
      ZIP: 22201-4741
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/904,760B
      FILING DATE: 01-AUG-1997
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
     APPLICATION NUMBER: 08/691,647
      FILING DATE: 02-AUG-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: Crawford, Arthur R.
      REGISTRATION NUMBER: 25,327
      REFERENCE/DOCKET NUMBER:
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 703-816-4000
      TELEFAX: 703-816-4100
  INFORMATION FOR SEQ ID NO: 22:
    SEQUENCE CHARACTERISTICS:
     LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
```

```
MOLECULE TYPE: protein
US-08-904-760B-22
 Query Match
                         100.0%; Score 34; DB 3; Length 34;
 Best Local Similarity
                         100.0%; Pred. No. 5.4e-25;
           34; Conservative 0; Mismatches
                                               0;
                                                     Indels
                                                               0;
                                                                  Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 21
US-09-108-661-13
; Sequence 13, Application US/09108661
; Patent No. 6287806
  GENERAL INFORMATION:
    APPLICANT: NISHIMURA, Osamu
    APPLICANT: KURIYAMA, Masato
    APPLICANT: KOYAMA, No. 6287806uyuki
    APPLICANT: FUKUDA, Tsunehiko
    TITLE OF INVENTION: METHOD FOR PRODUCING A BIOLOGICALLY
    TITLE OF INVENTION: ACTIVE RECOMBINANT CYSTEINE-FREE
    NUMBER OF SEQUENCES: 37
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: DIKE, BRONSTEIN, ROBERTS & CUSHMAN, LLP
      STREET: 130 WATER STREET
      CITY: BOSTON
      STATE: MA
      COUNTRY: USA
      ZIP: 02109
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
      OPERATING SYSTEM: DOS
      SOFTWARE: FastSEQ Version 1.5
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/108,661
      FILING DATE:
      CLASSIFICATION: 435
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/350,709
      FILING DATE: 07-DEC-1994
      APPLICATION NUMBER: 07/838,857
      FILING DATE: 18-FEB-1992
      APPLICATION NUMBER: JP 024841
      FILING DATE: 19-FEB-1991
      APPLICATION NUMBER: JP 0271438
      FILING DATE: 18-OCT-1991
    ATTORNEY/AGENT INFORMATION:
      NAME: DAVID, RESNICK S
      REGISTRATION NUMBER: 34,235
      REFERENCE/DOCKET NUMBER: 41614-FWC
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 617-523-3400
      TELEFAX: 617-523-6440
```

TELEX: 200291 STRE

```
INFORMATION FOR SEQ ID NO: 13:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
     HYPOTHETICAL: NO
     ANTI-SENSE: NO
     FRAGMENT TYPE: N-terminal
     ORIGINAL SOURCE:
US-09-108-661-13
  Query Match
                         100.0%; Score 34; DB 3; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 5.4e-25;
           34; Conservative 0; Mismatches 0; Indels
  Matches
                                                               0;
                                                                   Gaps
                                                                           0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Dh
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 22
US-09-007-466-6
; Sequence 6, Application US/09007466
 Patent No. 6313092
  GENERAL INFORMATION:
    APPLICANT: HOLLADAY, LESLIE A.
    APPLICANT: OLDENBURG, KEVIN R.
    TITLE OF INVENTION: METHOD FOR INCREASING THE
    TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
    NUMBER OF SEQUENCES: 10
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: ALZA CORPORATION
      STREET: 950 PAGE MILL ROAD
      CITY: PALO ALTO
      STATE: CALIFORNIA
      COUNTRY: USA
      ZIP: 94303-0802
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/007,466
      FILING DATE:
      CLASSIFICATION:
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 08/468,275
      FILING DATE: 06-JUN-1995
    ATTORNEY/AGENT INFORMATION:
      NAME: MILLER, D. BYRON
      REGISTRATION NUMBER: 30,661
      REFERENCE/DOCKET NUMBER: 0360-0002; ARC-2349
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (415) 496-8150
```

```
TELEFAX: (415) 496-8048
   INFORMATION FOR SEO ID NO: 6:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: linear
     MOLECULE TYPE: protein
US-09-007-466-6
  Query Match
                         100.0%; Score 34; DB 4; Length 34;
  Best Local Similarity 100.0%; Pred. No. 5.4e-25;
                              0; Mismatches
           34; Conservative
                                               0; Indels
                                                              0; Gaps
                                                                          0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Dh
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 23
US-09-406-813-1
; Sequence 1, Application US/09406813
; Patent No. 6316410
; GENERAL INFORMATION:
  APPLICANT: Barbier, Jean-Rene
  APPLICANT: Morley, Paul
  APPLICANT: Whitfield, James
  APPLICANT: Willick, Gordon E.
  TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
  TITLE OF INVENTION: OSTEOPOROSIS
  FILE REFERENCE: 10688-1B
  CURRENT APPLICATION NUMBER: US/09/406,813
  CURRENT FILING DATE: 1999-09-22
  PRIOR APPLICATION NUMBER: 08/904,760
  PRIOR FILING DATE: 1997-08-01
  NUMBER OF SEQ ID NOS: 9
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 1
    LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-406-813-1
  Query Match
                        100.0%; Score 34; DB 4; Length 34; 100.0%; Pred. No. 5.4e-25;
  Best Local Similarity
           34; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
QУ
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Dh
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 24
US-08-952-980B-6
; Sequence 6, Application US/08952980B
; Patent No. 6333189
; GENERAL INFORMATION:
```

```
APPLICANT: HOLLADAY, LESLIE A.
     APPLICANT: OLDENBURG, KEVIN R.
     TITLE OF INVENTION: METHOD FOR INCREASING THE
     TITLE OF INVENTION: ELECTROTRANSPORT FLUX OF POLYPEPTIDES
     NUMBER OF SEQUENCES: 12
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: ALZA CORPORATION
    STREET: 950 PAGE MILL ROAD
       CITY: PALO ALTO
       STATE: CALIFORNIA
       COUNTRY: USA
       ZIP: 94303-0802
     COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/952,980B
      FILING DATE: 20-NOV-1997
      CLASSIFICATION: 530
    ATTORNEY/AGENT INFORMATION:
      NAME: MILLER, D. BYRON
      REGISTRATION NUMBER: 30,661
      REFERENCE/DOCKET NUMBER: 2349 CIP 1
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (650) 496-8150
      TELEFAX: (650) 496-8048
   INFORMATION FOR SEO ID NO: 6:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: protein
US-08-952-980B-6
  Query Match
                         100.0%; Score 34; DB 4; Length 34;
  Best Local Similarity 100.0%; Pred. No. 5.4e-25;
           34; Conservative 0; Mismatches 0; Indels
  Matches
                                                              0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 25
US-09-228-990-1
; Sequence 1, Application US/09228990
; Patent No. 6472505
  GENERAL INFORMATION:
    APPLICANT: Condon, Stephen M.
    APPLICANT: Morize, Isabelle
    TITLE OF INVENTION: PEPTIDE PARATHYROID HORMONE ANALOGS
    NUMBER OF SEQUENCES: 88
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Rhone-Poulenc Rorer Inc.
```

```
CITY: Collegeville
       STATE: PA
       COUNTRY: USA
       ZIP: 19426
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/09/228,990
       FILING DATE:
       CLASSIFICATION:
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: US 60/046,472
       FILING DATE: 14-MAY-1997
     ATTORNEY/AGENT INFORMATION:
       NAME: Martin Esq., Michael B.
       REGISTRATION NUMBER: 37,521
       REFERENCE/DOCKET NUMBER: A2678B-WO
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (610) 454-2793
       TELEFAX: (610) 454-3808
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS:
       TOPOLOGY: not relevant
     MOLECULE TYPE: peptide
     FRAGMENT TYPE: N-terminal
US-09-228-990-1
  Query Match
                          100.0%; Score 34; DB 4; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 5.4e-25;
 Matches
           34; Conservative
                             0; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
QУ
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              111111111111111111
Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 26
US-09-447-800-8
; Sequence 8, Application US/09447800
; Patent No. 6537965
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630001
  CURRENT APPLICATION NUMBER: US/09/447,800
  CURRENT FILING DATE: 1999-11-23
  EARLIER APPLICATION NUMBER: 60/110,152
```

STREET: 500 Arcola Road, Mailstop 3C43

;

```
NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 8
   LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
    FEATURE:
    NAME/KEY: MOD RES
    LOCATION: (1)
    OTHER INFORMATION: Desamino Ser
US-09-447-800-8
  Query Match
                         100.0%; Score 34; DB 4; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 5.4e-25;
          34; Conservative 0; Mismatches 0; Indels
  Matches
                                                                           0;
QУ
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 27
US-09-536-785A-22
; Sequence 22, Application US/09536785A
; Patent No. 6541450
; GENERAL INFORMATION:
  APPLICANT: BARBIER, JEAN-RENE
  APPLICANT: MORLEY, PAUL
   APPLICANT: NEUGEBAUER, WITOLD
   APPLICANT: ROSS, VIRGINIA J.S.
  APPLICANT: WHITFIELD, JAMES F.
   APPLICANT: WILLICK, GORDON E.
   TITLE OF INVENTION: PARATHYROID HORMONE ANALOGUES FOR THE TREATMENT OF
   TITLE OF INVENTION: OSTEOPOROSIS
  FILE REFERENCE: 1339-9
  CURRENT APPLICATION NUMBER: US/09/536,785A
  CURRENT FILING DATE: 2000-03-28
  PRIOR APPLICATION NUMBER: 08/904,760
  PRIOR FILING DATE: 1997-08-01
  PRIOR APPLICATION NUMBER: 08/691,647
  PRIOR FILING DATE: 1996-08-02
  PRIOR APPLICATION NUMBER: 08/262,495
  PRIOR FILING DATE: 1994-06-20
  PRIOR APPLICATION NUMBER: 60/040,560
  PRIOR FILING DATE: 1997-03-14
  NUMBER OF SEQ ID NOS: 39
  SOFTWARE: PatentIn Ver. 2.1
 SEO ID NO 22
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-536-785A-22
 Query Match
                         100.0%; Score 34; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 5.4e-25;
 Matches 34; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                          0:
```

EARLIER FILING DATE: 1998-11-25

```
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 28
US-09-442-989-26
; Sequence 26, Application US/09442989
; Patent No. 6569993
; GENERAL INFORMATION:
  APPLICANT: Sledeski, Adam W.
  APPLICANT: Mencel, James J.
  TITLE OF INVENTION: PROCESS FOR THE PREPARATION OF RESIN-BOUND CYCLIC
  TITLE OF INVENTION: PEPTIDES
  FILE REFERENCE: A3113B-US
  CURRENT APPLICATION NUMBER: US/09/442,989
  CURRENT FILING DATE: 1999-11-18
  EARLIER APPLICATION NUMBER: 60/081,897
  EARLIER FILING DATE: 1998-04-15
  NUMBER OF SEQ ID NOS: 46
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 26
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
US-09-442-989-26
 Query Match
                        100.0%; Score 34; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 5.4e-25;
 Matches
           34; Conservative 0; Mismatches 0;
                                                    Indels
                                                              0; Gaps
                                                                         0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 29
PCT-US95-15800-22
; Sequence 22, Application PC/TUS9515800
  GENERAL INFORMATION:
    APPLICANT: BioNebraska, Inc.
    TITLE OF INVENTION: PRODUCTION OF PEPTIDES USING
    TITLE OF INVENTION: RECOMBINANT FUSION PROTEIN CONSTRICTS
    NUMBER OF SEQUENCES: 33
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Merchant & Gould
      STREET: 3100 Norwest Center, 90 S. 7th Street
      CITY: Minneapolis
      STATE: MN
      COUNTRY: U.S.A.
      ZIP: 55402
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Diskette
      COMPUTER: IBM Compatible
      OPERATING SYSTEM: DOS
      SOFTWARE: FastSEQ Version 1.5
```

```
CURRENT APPLICATION DATA:
       APPLICATION NUMBER: PCT/US95/15800
       FILING DATE: 07-DEC-1995
       CLASSIFICATION:
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: 08/350,530
       FILING DATE: 07-DEC-1994
     ATTORNEY/AGENT INFORMATION:
       NAME: Carter, Charles G
       REGISTRATION NUMBER: 35,093
       REFERENCE/DOCKET NUMBER: 8648.45USWO
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 612/332-5300
       TELEFAX: 612/332-9081
       TELEX:
   INFORMATION FOR SEQ ID NO: 22:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: NO
    ANTI-SENSE: NO
    FRAGMENT TYPE: internal
    ORIGINAL SOURCE:
PCT-US95-15800-22
  Query Match
                         100.0%; Score 34; DB 5; Length 34;
  Best Local Similarity 100.0%; Pred. No. 5.4e-25;
  Matches
           34; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
             Dh
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 30
US-08-256-363-3
; Sequence 3, Application US/08256363
; Patent No. 5783558
  GENERAL INFORMATION:
    APPLICANT: DUVOS, CHRISTIAN
    APPLICANT: MAYER, HUBERT
    APPLICANT: MUELLER-BECKMANN, BERND
    APPLICANT: STREIN, KLAUS
    APPLICANT: WINGENDER, EDGAR
    TITLE OF INVENTION: PARATHYROID HORMONE FRAGMENTS, THEIR
    TITLE OF INVENTION: PREPARATION AND MEDICAMENTS CONTAINING THE SAME
    NUMBER OF SEQUENCES: 4
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIKAIDO, MARMELSTEIN, MURRAY, AND ORAM
      STREET: 655 15th ST. N.W. SUITE 330- G ST. LOBBY
      CITY: WASHINGTON
      STATE: D.C.
      COUNTRY: U.S.A.
      ZIP: 2005 5701
```

```
COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/256,363
       FILING DATE:
       CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: DE P 42 03 040.4
       FILING DATE: 04-FEB-1992
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: PCT/EP93/00259
       FILING DATE: 04-FEB-1993
     ATTORNEY/AGENT INFORMATION:
      NAME: KLESNER, SHARON N.
       REGISTRATION NUMBER: 36,335
      REFERENCE/DOCKET NUMBER: P1614-4025
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (202) 638-5000
       TELEFAX: (202) 638-4810
   INFORMATION FOR SEQ ID NO: 3:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 35 amino acids
       TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
     MOLECULE TYPE: peptide
US-08-256-363-3
  Query Match
                         100.0%; Score 34; DB 1; Length 35;
  Best Local Similarity 100.0%; Pred. No. 5.5e-25;
  Matches
           34; Conservative 0; Mismatches
                                                0;
                                                    Indels
                                                               0; Gaps
                                                                           0:
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 31
US-08-256-363-4
; Sequence 4, Application US/08256363
; Patent No. 5783558
  GENERAL INFORMATION:
    APPLICANT: DUVOS, CHRISTIAN
    APPLICANT: MAYER, HUBERT
    APPLICANT: MUELLER-BECKMANN, BERND
    APPLICANT:
                STREIN, KLAUS
    APPLICANT:
                WINGENDER, EDGAR
    TITLE OF INVENTION: PARATHYROID HORMONE FRAGMENTS, THEIR
    TITLE OF INVENTION: PREPARATION AND MEDICAMENTS CONTAINING THE SAME
    NUMBER OF SEQUENCES: 4
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: NIKAIDO, MARMELSTEIN, MURRAY, AND ORAM
      STREET: 655 15th ST. N.W. SUITE 330- G ST. LOBBY
      CITY: WASHINGTON
```

```
STATE: D.C.
       COUNTRY: U.S.A.
       ZIP: 2005 5701
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/256,363
       FILING DATE:
       CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: DE P 42 03 040.4
       FILING DATE: 04-FEB-1992
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: PCT/EP93/00259
       FILING DATE: 04-FEB-1993
     ATTORNEY/AGENT INFORMATION:
       NAME: KLESNER, SHARON N.
       REGISTRATION NUMBER: 36,335
       REFERENCE/DOCKET NUMBER: P1614-4025
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (202) 638-5000
       TELEFAX: (202) 638-4810
   INFORMATION FOR SEQ ID NO: 4:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 36 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
US-08-256-363-4
  Query Match 100.0%; Score 34; DB 1; Length 36; Best Local Similarity 100.0%; Pred. No. 5.7e-25;
  Query Match
            34; Conservative 0; Mismatches
                                                 0;
                                                      Indels
                                                                    Gaps
                                                                             0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 32
US-08-440-117-1
; Sequence 1, Application US/08440117
; Patent No. 5744444
   GENERAL INFORMATION:
     APPLICANT: Forssmann, Wolf-Georg
     APPLICANT: Herbst, Franz
     APPLICANT:
                Schulz-Knappe, Peter
     APPLICANT: Adermann, Knut
     APPLICANT:
                Gagelmann, Michael
     TITLE OF INVENTION: hPTH-FRAGMENT-(1-37), THE PREPARATION
     TITLE OF INVENTION: THEREOF, MEDICAMENTS CONTAINING SAME AND THE USE
THEREOF
     NUMBER OF SEQUENCES: 1
```

```
CORRESPONDENCE ADDRESS:
       ADDRESSEE: Wegner, Cantor, Mueller & Player
       STREET: 1233 20th Street, N.W.
       CITY: Washington
       STATE: D.C.
       COUNTRY: U.S.A.
       ZIP: 20036-8218
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/440,117
       FILING DATE:
       CLASSIFICATION: 435
     PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US/08/155,658
      FILING DATE:
      APPLICATION NUMBER: 07/863,291
      FILING DATE: 06-JUN-1992
      APPLICATION NUMBER: DE p3935738.4
       FILING DATE: 27-OCT-1989
     PRIOR APPLICATION DATA:
      APPLICATION NUMBER: PCT/EP90/01807
       FILING DATE: 25-OCT-1990
    ATTORNEY/AGENT INFORMATION:
      NAME: Wegner, Helmuth A
      REGISTRATION NUMBER: 17,033
      REFERENCE/DOCKET NUMBER:
                               P-9650-23333
     TELECOMMUNICATION INFORMATION:
      TELEPHONE: 202-887-0400
      TELEFAX: 202-835-0605
      TELEX: 440706
   INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 37 amino acids
      TYPE: amino acid
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
    HYPOTHETICAL: YES
    FRAGMENT TYPE: N-terminal
    ORIGINAL SOURCE:
      ORGANISM: Human
US-08-440-117-1
  Query Match
                         100.0%; Score 34; DB 1; Length 37;
  Best Local Similarity
                         100.0%; Pred. No. 5.8e-25;
 Matches
           34; Conservative
                             0; Mismatches
                                               0; Indels
                                                              0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
```

RESULT 33 US-09-068-738A-16

```
; Sequence 16, Application US/09068738A
  Patent No. 6136564
   GENERAL INFORMATION:
     APPLICANT: KOPETZKI, Erhard
     TITLE OF INVENTION: PROCESS FOR THE PREPARATION OF PEPTIDES VIA
     TITLE OF INVENTION: STREPTAVIDIN FUSION PROTEINS
     NUMBER OF SEQUENCES: 17
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: ARENT FOX KINTNER PLOTKIN & KAHN
       STREET: 1050 CONNECTICUT AVENUE, NW, SUITE 600
       CITY: Washington
       STATE: DC
       COUNTRY: USA
       ZIP: 20036-5339
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/09/068,738A
       FILING DATE: June 25, 1998
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: PCT/EP 96/04850
       FILING DATE: 11-NOV-1996
     ATTORNEY/AGENT INFORMATION:
       NAME: Berman, Richard J.
       REGISTRATION NUMBER: 39,107
       REFERENCE/DOCKET NUMBER: P108341-08035
   INFORMATION FOR SEQ ID NO: 16:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 37 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
       TOPOLOGY: linear
     MOLECULE TYPE: peptide
US-09-068-738A-16
  Query Match
                         100.0%; Score 34; DB 3; Length 37;
  Best Local Similarity 100.0%; Pred. No. 5.8e-25;
  Matches
           34; Conservative
                             0; Mismatches
                                               0; Indels
                                                               0; Gaps
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 34
US-08-112-024-1
; Sequence 1, Application US/08112024
; Patent No. 5578567
  GENERAL INFORMATION:
    APPLICANT: Cardinaux, Francois
    APPLICANT: Oechslein, Christine
    APPLICANT: Rummelt, Andreas
    TITLE OF INVENTION: Nasal Pharmaceutical Composition
    NUMBER OF SEQUENCES: 2
```

```
CORRESPONDENCE ADDRESS:
       ADDRESSEE: Sandoz Corporation
       STREET: 59 Route 10
       CITY: East Hanover
       STATE: New Jersey
       COUNTRY: U.S.A.
       ZIP: 07936
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/112,024
       FILING DATE: 25-AUG-1993
       CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 08/028,852
       FILING DATE: 10-MAR-1993
     PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 07/948,366
       FILING DATE: 21-SEP-1992
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: US 07/762,825
       FILING DATE: 19-SEP-1991
     PRIOR APPLICATION DATA:
      APPLICATION NUMBER: GB 9020544
       FILING DATE: 20-SEP-1990
    ATTORNEY/AGENT INFORMATION:
      NAME: Battle, Carl W
       REGISTRATION NUMBER: 30,731
      REFERENCE/DOCKET NUMBER: 100-7639/CONT3
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 201-503-8177
       TELEFAX: 201-503-8807
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 38 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: protein
    HYPOTHETICAL: NO
    ANTI-SENSE: NO
    FEATURE:
      NAME/KEY: Modified-site
      LOCATION: 38
      OTHER INFORMATION: /note= "This terminal glycine ends
      OTHER INFORMATION: either with a normal carboxy group or with an
      OTHER INFORMATION: amide group."
US-08-112-024-1
  Query Match
                         100.0%; Score 34; DB 1; Length 38;
  Best Local Similarity 100.0%; Pred. No. 5.9e-25;
 Matches 34; Conservative 0; Mismatches
                                               0;
                                                    Indels
                                                               0; Gaps
                                                                           0;
```

```
RESULT 35
US-08-232-849-1
; Sequence 1, Application US/08232849
; Patent No. 5607915
   GENERAL INFORMATION:
     APPLICANT: Patton, John S.
     TITLE OF INVENTION: Pulmonary Delivery of Active Fragments
     TITLE OF INVENTION: of Parathyroid Hormone
     NUMBER OF SEQUENCES: 1
     CORRESPONDENCE ADDRESS:
       ADDRESSEE: Townsend and Townsend Khourie and Crew
       STREET: One Market Plaza, Steuart Tower, Suite 2000
       CITY: San Francisco
       STATE: California
       COUNTRY: USA
       ZIP: 94105
     COMPUTER READABLE FORM:
       MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
       OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/232,849
       FILING DATE:
       CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 07/953,397
       FILING DATE: 29-SEP-1992
     ATTORNEY/AGENT INFORMATION:
       NAME: Heslin, James M.
       REGISTRATION NUMBER: 29,541
       REFERENCE/DOCKET NUMBER: 15225-3
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: 415-326-2400
       TELEFAX: 415-326-2422
   INFORMATION FOR SEQ ID NO: 1:
     SEQUENCE CHARACTERISTICS:
      LENGTH: 38 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-08-232-849-1
  Query Match
                         100.0%; Score 34; DB 1; Length 38;
  Best Local Similarity 100.0%; Pred. No. 5.9e-25;
  Matches
           34; Conservative
                              0; Mismatches
                                                0;
                                                     Indels
                                                                0; Gaps
                                                                           0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              11111111111111111
Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
```

```
RESULT 36
US-08-625-586-1
; Sequence 1, Application US/08625586
 Patent No. 5814607
  GENERAL INFORMATION:
    APPLICANT: Patton, John S.
     TITLE OF INVENTION: Pulmonary Delivery of Active Fragments
     TITLE OF INVENTION: of Parathyroid Hormone
    NUMBER OF SEQUENCES: 1
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Townsend and Townsend and Crew LLP
      STREET: Two Embarcadero Center, 8th Floor
      CITY: San Francisco
      STATE: California
       COUNTRY: USA
       ZIP: 94111-3834
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
       COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
       SOFTWARE: PatentIn Release #1.0, Version #1.25
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/08/625,586
      FILING DATE: 27-MAR-1996
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 08/232,849
      FILING DATE: 25-APR-1994
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 07/953,397
      FILING DATE: 29-SEP-1992
    ATTORNEY/AGENT INFORMATION:
      NAME: Heslin, James M.
      REGISTRATION NUMBER: 29,541
      REFERENCE/DOCKET NUMBER: 15225-000310
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: 415-576-0200
      TELEFAX: 415-576-0300
  INFORMATION FOR SEQ ID NO:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 38 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-08-625-586-1
 Query Match
                         100.0%; Score 34; DB 2; Length 38;
 Best Local Similarity 100.0%; Pred. No. 5.9e-25;
 Matches
           34; Conservative
                             0; Mismatches
                                                     Indels
                                               0;
                                                              0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
```

```
US-09-128-401-1
; Sequence 1, Application US/09128401
; Patent No. 6080721
   GENERAL INFORMATION:
     APPLICANT: Patton, John S.
     TITLE OF INVENTION: Pulmonary Delivery of Active Fragments
     TITLE OF INVENTION: of Parathyroid Hormone
     NUMBER OF SEQUENCES: 1
     CORRESPONDENCE ADDRESS:
      ADDRESSEE: Townsend and Townsend and Crew LLP
      STREET: Two Embarcadero Center, Eighth Floor
      CITY: San Francisco
     STATE: California
     COUNTRY: USA
      ZIP: 94111-3834
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/128,401
      FILING DATE: 03-AUG-1998
      CLASSIFICATION: 514
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 07/953,397
      FILING DATE: 29-SEP-1992
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 08/232,849
      FILING DATE: 25-APR-1994
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: US 08/625,586
      FILING DATE: 28-MAR-1996
    ATTORNEY/AGENT INFORMATION:
      NAME: Heslin, James M.
      REGISTRATION NUMBER: 29,541
      REFERENCE/DOCKET NUMBER: 015225-000330US
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (415) 576-0200
      TELEFAX: (415) 576-0300
   INFORMATION FOR SEQ ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 38 amino acids
      TYPE: amino acid
      STRANDEDNESS:
      TOPOLOGY: linear
    MOLECULE TYPE: peptide
US-09-128-401-1
                         100.0%; Score 34; DB 3; Length 38;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 5.9e-25;
 Matches
           34; Conservative 0; Mismatches 0; Indels 0; Gaps
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
```

```
RESULT 38
US-09-447-800-9
; Sequence 9, Application US/09447800
; Patent No. 6537965
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630001
  CURRENT APPLICATION NUMBER: US/09/447,800
  CURRENT FILING DATE: 1999-11-23
  EARLIER APPLICATION NUMBER: 60/110,152
  EARLIER FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
 SEO ID NO 9
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD_RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ser
US-09-447-800-9
  Query Match
                         97.1%; Score 33; DB 4; Length 33;
  Best Local Similarity 100.0%; Pred. No. 4.4e-24;
 Matches
           33; Conservative
                               0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHN 33
Qу
              Dh
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHN 33
RESULT 39
US-08-903-497A-1
; Sequence 1, Application US/08903497A
 Patent No. 6147186
  GENERAL INFORMATION:
    APPLICANT: Gardella, Thomas J.
    APPLICANT: J ppner, Harald
    TITLE OF INVENTION: No. 6147186el Parathyroid Hormone-Related
    TITLE OF INVENTION:
                         Peptide Analogs
    NUMBER OF SEQUENCES:
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Sterne, Kessler, Goldstein and Fox P.L.L.C.
      STREET: 1100 New York Avenue, N.W., Suite 600
      CITY: Washington
      STATE: DC
      COUNTRY: USA
      ZIP: 20005
    COMPUTER READABLE FORM:
      MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
```

```
OPERATING SYSTEM: PC-DOS/MS-DOS
ï
       SOFTWARE: PatentIn Release #1.0, Version #1.30
     CURRENT APPLICATION DATA:
       APPLICATION NUMBER: US/08/903,497A
       FILING DATE: 30-JUL-1997
       CLASSIFICATION: 514
     PRIOR APPLICATION DATA:
       APPLICATION NUMBER: US 60/025,471
       FILING DATE: 31-JUL-1996
     ATTORNEY/AGENT INFORMATION:
       NAME: Markowicz, Karen R.
       REGISTRATION NUMBER: 36,351
       REFERENCE/DOCKET NUMBER: 0609.4310001/JAG/KRM
     TELECOMMUNICATION INFORMATION:
       TELEPHONE: (202) 371-2600
       TELEFAX: (202) 371-2540
   INFORMATION FOR SEQ ID NO: 1:
     SEQUENCE CHARACTERISTICS:
       LENGTH: 34 amino acids
       TYPE: amino acid
       STRANDEDNESS: single
      TOPOLOGY: not relevant
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY:
                 MODIFIED-SITE
      LOCATION:
                 34
      OTHER INFORMATION: CARBOXY-TERMINAL MODIFICATION OF TYROSINE-
      OTHER INFORMATION: AMIDE
US-08-903-497A-1
  Query Match
                         97.1%; Score 33; DB 3; Length 34;
  Best Local Similarity 100.0%; Pred. No. 4.5e-24;
  Matches
           33; Conservative 0; Mismatches
                                               0; Indels
                                                               0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODVHN 33
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHN 33
RESULT 40
US-09-635-076-1
; Sequence 1, Application US/09635076
; Patent No. 6362163
  GENERAL INFORMATION:
    APPLICANT: Gardella, Thomas J.
    APPLICANT: J ppner, Harald
    TITLE OF INVENTION: No. 6362163el Parathyroid Hormone-Related
    TITLE OF INVENTION: Peptide Analogs
    NUMBER OF SEQUENCES: 7
    CORRESPONDENCE ADDRESS:
      ADDRESSEE: Sterne, Kessler, Goldstein and Fox P.L.L.C.
      STREET: 1100 New York Avenue, N.W., Suite 600
      CITY: Washington
      STATE: DC
      COUNTRY: USA
      ZIP: 20005
    COMPUTER READABLE FORM:
```

```
MEDIUM TYPE: Floppy disk
      COMPUTER: IBM PC compatible
      OPERATING SYSTEM: PC-DOS/MS-DOS
      SOFTWARE: PatentIn Release #1.0, Version #1.30
    CURRENT APPLICATION DATA:
      APPLICATION NUMBER: US/09/635,076
      FILING DATE:
      CLASSIFICATION:
    PRIOR APPLICATION DATA:
      APPLICATION NUMBER: 08/903.497
      FILING DATE:
    ATTORNEY/AGENT INFORMATION:
     NAME: Markowicz, Karen R.
      REGISTRATION NUMBER: 36,351
      REFERENCE/DOCKET NUMBER: 0609.4310001/JAG/KRM
    TELECOMMUNICATION INFORMATION:
      TELEPHONE: (202) 371-2600
      TELEFAX: (202) 371-2540
   INFORMATION FOR SEO ID NO: 1:
    SEQUENCE CHARACTERISTICS:
      LENGTH: 34 amino acids
      TYPE: amino acid
      STRANDEDNESS: single
      TOPOLOGY: not relevant
    MOLECULE TYPE: peptide
    FEATURE:
      NAME/KEY: MODIFIED-SITE
      LOCATION:
                 34
      OTHER INFORMATION: CARBOXY-TERMINAL MODIFICATION OF TYROSINE-
      OTHER INFORMATION: AMIDE
US-09-635-076-1
 Query Match
                        97.1%; Score 33; DB 4; Length 34;
 Best Local Similarity 100.0%; Pred. No. 4.5e-24;
 Matches 33; Conservative 0; Mismatches 0;
                                                             0; Gaps
                                                   Indels
                                                                         0;
Qy
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHN 33
             1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHN 33
Db
```

Search completed: January 14, 2004, 10:43:28 Job time: 16.5452 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:19; Search time 10.0623 Seconds

(without alignments)

324.949 Million cell updates/sec

Title: US-09-843-221A-161

Perfect score: 34

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 283308 seqs, 96168682 residues

Word size : (

Total number of hits satisfying chosen parameters: 3709

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database : PIR_76:*

1: pir1:* 2: pir2:*

3: pir3:*

4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
1 2 3 4 5 6 7 8 9 10 11 12	5 5 5 4 4 4 4 4 4 4 4 4 4	14.7 14.7 11.8 11.8 11.8 11.8 11.8 11.8 11.8	34 34 35 28 29 29 29 30 31 31 31	2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A84241 B97032 E95098 T09594 A55527 S01614 I78537 S78412 S63531 S44471 S44472 D70236 F23454	hypothetical prote transcription regu hypothetical prote gene LFY protein - pyrroloquinoline q dystrophin - rat (copper transportin ribosomal protein hypothetical prote glucagon G1 - Nort glucagon G2 - Nort hypothetical prote ovalbumin phosphos
						_

14	4	11.8	32	2	D31461	T-cell receptor de
15	4	11.8	32	2	G84161	hypothetical prote
16	4	11.8	33	2	E81714	hypothetical prote
17	4	11.8	35	2	D23454	ovalbumin phosphos
18	4	11.8	35	2	G23454	ovalbumin phosphos
19	4	11.8	35	2	D82125	_
20						hypothetical prote
	4	11.8	36	2	S70806	hypothetical prote
21	4	11.8	36	2	F95057	hypothetical prote
22	4	11.8	36	2	A84774	hypothetical prote
23	4	11.8	36	2	S46227	hypothetical prote
24	4	11.8	37	2	S71912	hemoglobin, extrac
25	4	11.8	37	2	T12635	homeotic protein H
26	4	11.8	39	1	CKFHCS	sarcotoxin IC - fl
27	4	11.8	39	2	S71913	
28						hemoglobin, extrac
	4	11.8	39	2	S77164	ycf32 protein - Sy
29	3	8.8	28	2	A42272	brain-type creatin
30	3	8.8	28	2	C32416	phospholipase A2 (
31	3	8.8	28	2	B60071	vasoactive intesti
32	3	8.8	28	2	A60304	vasoactive intesti
33	3	8.8	28	2	S58386	T-cell receptor be
34	3	8.8	28	2	PN0047	
35	3	8.8	28	2	S56121	signal transductio
						type I DNA methylt
36	3	8.8	28	2	S70894	hypothetical prote
37	3	8.8	28	2	S22469	hypothetical prote
38	3	8.8	28	2	S26254	rel protein - chic
39	3	8.8	28	2	I59477	antigen, T-cell re
40	3	8.8	28	2	F46522	T-cell receptor et
41	3	8.8	28	2	H85908	hypothetical prote
42	3	8.8	29	1	GCCB	glucagon - Chinchi
43	3	8.8	29	2	S39968	
44	3	8.8				probable hydro-lya
			29	2	A61509	islet amyloid poly
45	3	8.8	29	2	S17147	galanin - chicken
46	3	8.8	29	2	T44245	ribosomal protein
47	3	8.8	29	2	A05272	gelsolin, cytosoli
48	3	8.8	29	2	B44101	calmodulin, vasoac
49	3	8.8	29	2	S42642	probable rhicadhes
50	3	8.8	29	2	A00774	3-oxoadipate enol-
51	3	8.8	29	2	B81136	hypothetical prote
52	3	8.8	29	2	I84189	_ _
53	3	8.8				cyclic AMP recepto
			29	2	S65747	CDP-paratose synth
54	3	8.8	29	2	S65748	CDP-paratose synth
55	3	8.8	29	2	B41476	probable antigen 2
56	3	8.8	29	2	S68094	2,3-dihydroxybenzo
57	3	8.8	29	2	A27688	mammary-derived gr
58	3	8.8	29	2	T31443	cytochrome bc chai
59	3	8.8	29	2	F85570	hypothetical prote
60	3	8.8	29	2	I49732	NADH2 dehydrogenas
61	3	8.8	29	2	A59479	
62						NADP phosphatase I
	3	8.8	30	2	S40309	tyrosine 3-monooxy
63	3	8.8	30	2	C21897	ornithine carbamoy
64	3	8.8	30	2	A28562	glutathione transf
65	3	8.8	30	2	A05315	pancreatic ribonuc
66	3	8.8	30	2	A44598	endo-1,4-beta-xyla
67	3	8.8	30	2	A61333	trypsin (EC 3.4.21
68	3	8.8	30	2	S21815	H+-exporting ATPas
69	3	8.8	30	2	A44912	cysteine proteinas
70	3	8.8	30	2	B61125	
. 0	3	J. 0	30	4		glucagon-like pept

71	3	8.8	30	2	C61125	mlumaman lika want
72	3	8.8	30	2	F32502	glucagon-like pept
73	3	8.8	30	2	PD0013	T-cell receptor de
74	3	8.8	30	2	S11617	cAMP response elem
75	3	8.8	30	2	S21195	ribosomal protein
76	3	8.8	30	2	PC4172	spectrin beta chai
77	3	8.8	30	2	A34461	profilin - rat (fr
78	3	8.8	30	2	A22977	heat shock protein
79	. 3	8.8	30	2	A44913	delta-endotoxin -
80	3	8.8	30	2	S08565	34K core flagella
81	3	8.8	30	2	S30333	ribulose-bisphosph
82	3	8.8	30	2	PQ0444	N-carbamoyl-D-amin
83	3	8.8	30	2	B95020	hypothetical prote
84	3	8.8	30	2	H95021	hypothetical prote
85	3	8.8	30	2	D72276	hypothetical prote
86	3	8.8	30	2	D72276	hypothetical prote
87	3	8.8	30	2	B70165	conserved hypothet
88	3	8.8	30	2	B81956	hypothetical prote
89	3	8.8		2		hypothetical prote
90	3	8.8	30	2	E82294	hypothetical prote
91	3		30		D82251	hypothetical prote
92	3	8.8	30	2	S72626	small-cell-variant
93	3	8.8 8.8	30	2	A35687	probable 39K inorg
	3		30	2	S73316	photosystem I chai
94 95		8.8	30	2	A32946	trypsin-like serin
95 96	3	8.8	30	2	PL0189	Ig light chain - s
96 97	3 3	8.8	30	2	S65519	carcinoembryonic a
97 98		8.8	30	2	S34765	4-hydroxybutyryl-C
	3	8.8	30	2	D81532	hypothetical prote
99 100	3	8.8	30	2	A48923	retrovirus-related
100	3 3	8.8	30	2	B56586	storage hexamer 2
	3	8.8	30	2	F81360	very hypothetical
102 103		8.8	30	2	S15650	NADH2 dehydrogenas
	3	8.8	30	2	H97596	hypothetical prote
104	3	8.8	30	4	152605	hypothetical MLL/E
105	3	8.8	31	1	A28805	leiurotoxin I [val
106	3	8.8	31	1	A49078	leiurotoxin I-like
107	3	8.8	31	1	S34504	photosystem I prot
108	3	8.8	31	2	T44925	hypothetical prote
109	3 3	8.8	31	2	S39019	glucagon-like pept
$\begin{array}{c} 110 \\ 111 \end{array}$	3	8.8	31	2	A58793	relaxin chain B -
112	3	8.8	31	2	A58586	conotoxin MrVIA -
113	3	8.8	31	2	F30608	Ig kappa chain V-I
114		8.8	31	2	D30608	Ig kappa chain V-I
115	3 3	8.8	31	2	F31461	T-cell receptor de
116	3	8.8	31	2	S03295	Ig alpha chain C r
117		8.8	31	2	S03297	Ig alpha chain C r
118	3 3	8.8	31	2	I52232	tau protein - huma
119		8.8	31	2	A36162	neutrophil-activat
120	3 3	8.8	31	2	S04980	ferritin heavy cha
$\frac{120}{121}$	3	8.8	31	2	S32610	antiviral protein
121	3	8.8 8.8	31	2	S38881	inner membrane pro
123	3		31	2	G95018	hypothetical prote
123	3	8.8	31	2	G95022	hypothetical prote
124	3	8.8	31	2	A95085	hypothetical prote
		8.8	31	2	H95093	hypothetical prote
126	3	8.8	31	2	E95140	hypothetical prote
127	3	8.8	31	2	E95151	hypothetical prote
	•					

128	3	8.8	31	2	E70202		hypothetical prote
129	3	8.8	31	2	E70223		hypothetical prote
130	3	8.8	31	2	H70225		hypothetical prote
131	3	8.8	31	2	C70240		hypothetical prote
132	3	8.8	31	2	H70252		
133	3	8.8	31	2			hypothetical prote
	3				E64562		hypothetical prote
134		8.8	31	2	S49191		hypothetical prote
135	3	8.8	31	2	H82353		hypothetical prote
136	3	8.8	31	2	A05051		hypothetical prote
137	3	8.8	31	2	B23605	-	histone H1.3 - whe
138	3	8.8	31	2	S78738		protein YOL038c-a
139	3	8.8	31	2	A36221		cecropin P1 - pig
140	3	8.8	31	2	S27112		sarcolipin - rabbi
141	3	8.8	31	2	C84082		hypothetical prote
142	3	8.8	31	2	D81591		
143	3	8.8	31	2			hypothetical prote
					G81558		hypothetical prote
144	3	8.8	31	2	G82816		hypothetical prote
145	3	8.8	31	2	F82565		hypothetical prote
146	3	8.8	32	1	TCEE		calcitonin - Japan
147	3	8.8	32	1	TCON2		calcitonin 2 - soc
148	3	8.8	32	1	TCON2C		calcitonin 2 - chu
149	3	8.8	32	1	TCON2P		calcitonin 2 - pin
150	3	8.8	32	1	TCON3		calcitonin 3 - coh
151	3	8.8	32	2	S20719		alcohol dehydrogen
152	3	8.8	32	2	A61143		trypsin (EC 3.4.21
153	3	8.8	32	2	D32502		
154	3	8.8	32	2	A32502		T-cell receptor de
155	3	8.8					T-cell receptor de
			32	2	B40186		ubiquitin / riboso
156	3	8.8	32	2	S57780	•	histone H3 - rice
157	3	8.8	32	2	A24047		gap junction prote
158	3	8.8	32	2	S51524		anchorin CII - bov
159	3	8.8	32	2	S36809		GTP-binding regula
160	3	8.8	32	2	A29743		translation initia
161	3	8.8	32	2	A03367		lectin - Macrotylo
162	3	8.8	32	2	A44900		fimbrin, SEF 21 -
163	3	8.8	32	2	S03273		photosystem II oxy
164	3	8.8	32	2	C46107		polyomavirus enhan
165	3	8.8	32	2	S08482		regulatory protein
166	3	8.8	32	2	E87694		
167	3	8.8	32	2			hypothetical prote
168	3				D70222		hypothetical prote
		8.8	32	2	E70225		hypothetical prote
169	3	8.8	32	2	B70241		hypothetical prote
170	3	8.8	32	2	B70257		hypothetical prote
171	3	8.8	32	2	D82353		hypothetical prote
172	3	8.8	32	2	E82279		hypothetical prote
173	3	8.8	32	2	E82089		hypothetical prote
174	3	8.8	32	2	H82416		hypothetical prote
175	3	8.8	32	2	T17394		vrlN protein - Dic
176	3	8.8	32	2	S23476		hypothetical prote
177	3	8.8	32	2	S22304		hypothetical prote
178	3	8.8	32	2	\$78323		
179	3	8.8	32	2			photosystem II pro
180	3				A05015		hypothetical prote
		8.8	32	2	I38619		zinc finger protei
181	3	8.8	32	2	S28398		t-complex protein
182	3	8.8	32	2	T14569		hypothetical prote
183	3	8.8	32	2	H84081		hypothetical prote
184	3	8.8	32	2	F82833		hypothetical prote
							-

185	3	8.8	32	2	JC5802	ovulation stimulat
186	3	8.8	32	2	E85588	
187	3	8.8	33	2	S43312	41 1
188	3	8.8	33	2		· · · · · · · · · · · · · · · · · · ·
189	3	8.8			S26859	
			33	2	152219	-
190	3	8.8	33	2	153221	-
191	3	8.8	33	2	PC2300	<u> </u>
192	3	8.8	33	2	156451	 -
193	3	8.8	33	2	E32502	—
194	3	8.8	33	2	A31461	★
195	3	8.8	33	2	B31461	- · · · -
196	3	8.8	33	2	A03150	
197	3	8.8	33	2	C46027	neurotransmitter t
198	3	8.8	33	2	PQ0150	dnaK-type molecula
199	3	8.8	33	2	B44906	Ll protein - human
200	3	8.8	33	2	PQ0418	matrix protein M1
201	3	8.8	33	2	S34505	
202	3	8.8	33	2	G95006	
203	3	8.8	33	2	C95200	
204	3	8.8	33	2	A87213	2 4 L
205	3	8.8	33	2	F84163	11 1
206	3	8.8	33	2	E82135	21
207	3	8.8	33	2	H82475	**
208	3	8.8	33	2	S68096	**
209	3	8.8	33	2	E82526	1 - 1 J
210	3	8.8	33	2	G85600	hypothetical prote
211	3	8.8	33	2	H85651	- _
212	3	8.8	33	2	AC1012	hypothetical prote
213	3	8.8	33	2	C97406	hypothetical prote
214	3	8.8	34	2	S57282	hypothetical prote
215	3	8.8	34	2	A40298	phospholipase A2 (
216	3	8.8	34	2		dermaseptin - Sauv
217	3	8.8		2	JS0426	big gastrin - goat
218			34		I48887	
210	3	8.8	34	2	132502	
	3	8.8	34	2	H31461	• • • • • • • • • • • • • • • • • • •
220	3	8.8	34	2	A19197	class II histocomp
221	3	8.8	34	2	D48147	troponin I (altern
222	3	8.8	34	2	A43564	neurogenic protein
223	3	8.8		2	H95047	4.4
224	3	8.8	34	2	D95189	
225	3	8.8	34	2	C90973	hypothetical prote
226	3	8.8	34	2	F70242	hypothetical prote
227	3	8.8	34	2	B70252	hypothetical prote
228	3	8.8	34	2	F81919	hypothetical prote
229	3	8.8	34	2	H81883	hypothetical prote
230	3	8.8	34	2	F81044	hypothetical prote
231	3	8.8	34	2	F82163	hypothetical prote
232	3	8.8	34	2	E82100	hypothetical prote
233	3	8.8	34	2	B82449	hypothetical prote
234	3	8.8	34	2	S13662	cellulase (EC 3.2.
235	3	8.8		2	A60110	repetitive protein
236	3	8.8	34	2	S44828	F54F2.3 protein -
237	3	8.8	34	2	S40662	P-cadherin - mouse
238	3	8.8	34	2	F84079	hypothetical prote
239	3	8.8	34	2	H81600	hypothetical prote
240	3	8.8	34	2	H82820	hypothetical prote
241	3	8.8	34	2	C82819	hypothetical prote

242	3	8.8	34	2	C82764	hypothetical prote
243	3	8.8	34	2	B82679	hypothetical prote
244	3	8.8	34	2	G85820	unknown protein en
245	3	8.8	34	2	S12554	hydroxymethylgluta
246	3	8.8	35	2	E38601	Ig kappa chain V r
247	3	8.8	35	2	A05302	hemoglobin beta ch
248	3	8.8	35	2	A29663	histone H4 - starf
249	3	8.8	35	2	S27154	ribosomal protein
250	3	8.8	35	2	E48401	ribosomal protein
251	3	8.8	35	2	S13435	lectin III - furze
252	3	8.8	35	2	S74556	photosystem II psb
253	3	8.8	35	2	S18224	filamentous hemagg
254	3	8.8	35	2	S18226	opacity protein op
255	3	8.8	35	2	T07870	major latex protei
256	3	8.8	35	2	B33770	hypothetical prote
257	3	8.8	35	2	PS0439	potassium channel
258	3	8.8	35	2	I48925	homeobox protein -
259	3	8.8	35	2	F87622	hypothetical prote
260	3	8.8	35	2	C96619	protein T30E16.7 [
261	3	8.8	35	2	B84674	hypothetical prote
262	3	8.8	35	2	F84395	hypothetical prote
263	3	8.8	35	2	B82012	hypothetical prote
264	3	8.8	35	2	H81948	hypothetical prote
265	3	8.8	35	2	A82151	hypothetical prote
266	3	8.8	35	2	F82051	hypothetical prote
267	3.	8.8	35	2	I64003	hypothetical prote
268	3	8.8	35	2	S58708	neutral phosphatas
269	3	8.8	35	2	F69827	hypothetical prote
270	3	8.8	35	2	C69977	hypothetical prote
271	3	8.8	35	2	S65772	early nodulin 40 -
272	3	8.8	35	2	G60529	hemocyanin M3' - c
273	3	8.8	35	2	A38107	mammalian toxin -
274	3	8.8	35	2	S49309	oncofetal protein
275	3	8.8	35	2	C81560	hypothetical prote
276	3	8.8	35	2	B85708	unknown protein en
277	3	8.8	36	2	H32502	T-cell receptor de
278	3	8.8	36	2	C32502	T-cell receptor de
279	3	8.8	36	2	S08552	ribosomal protein
280	3	8.8	36	2	S72299	ribosomal protein
281	3	8.8	36	2	B44400	myosin heavy chain
282	3	8.8	36	2	I46593	myosin - pig (frag
283	3	8.8	36	2	B31872	retinoic acid-bind
284	3	8.8	36	2	S35572	zona pellucida pro
285	3	8.8	36	2	B41481	virulence-associat
286	3	8.8	36	2	A38659	methanol dehydroge
287	3	8.8	36	2	C95218	conserved domain p
288	3	8.8	36	2	E84416	hypothetical prote
289	3	8.8	36	2	S17834	acetyl-CoA carboxy
290	3	8.8	36	2	E70220	hypothetical prote
291	3	8.8	36	2	E70238	hypothetical prote
292	3	8.8	36	2	F64604	hypothetical prote
293	3	8.8	36	2	G81853	hypothetical prote
294	3	8.8	36	2	S16552	hypothetical prote
295	3	8.8	36	2	G82281	hypothetical prote
296	3	8.8	36	2	A82163	hypothetical prote
297	3	8.8	36	2	C82111	hypothetical prote
298	3	8.8	36	2	A82092	hypothetical prote

299	2	0 0	26	2	nanaa	handbation moto
	3	8.8	36	2	B82093	hypothetical prote
300	3	8.8	36	2	A82437	hypothetical prote
301	3	8.8	36	2	A38729	pyruvate decarboxy
302	3	8.8	36	2	A69326	hypothetical prote
303	3	8.8	36	2	S67795	probable membrane
304	3	8.8	36	2	T22263	hypothetical prote
305	3	8.8	36	2	A57443	guanylate cyclase
306	3	8.8	36	2	D83682	hypothetical prote
307	3	8.8	36	2	A83870	hypothetical prote
308	3	8.8	36	2	F84074	hypothetical prote
309	3	8.8	36	2	A56634	
310		8.8		2		neuropeptide F - A
	3 .		36		S77071	probable plastoqui
311	3	8.8	36	2	AF1015	hypothetical prote
312	3	8.8	36	2	AI1841	hypothetical prote
313	3	8.8	37	1	S32792	iberiotoxin - east
314	3	8.8	37	1	HSWT93	histone H2A.3 - wh
315	3	8.8	37	2	S48656	fusicoccin recepto
316	3	8.8	37	2	S03570	trypsin (EC 3.4.21
317	3	8.8	37	2	S39367	proteinase omega -
318	3	8.8	37	2	S06217	transforming prote
319	3	8.8	37	2	S05037	insulinoma amyloid
320	3	8.8	37	2	A30607	Ig kappa chain V-I
321	3	8.8	37	2	PC1121	antifungal 25K pro
322	3	8.8	37	2	G01887	MEK kinase - human
323	3	8.8	37	2		
					S07517	gene 6.3 protein -
324	3	8.8	37	2	G70223	hypothetical prote
325	3	8.8	37	2	E70241	hypothetical prote
326	3	8.8	37	2	D83199	hypothetical prote
327	3	8.8	37	2	H82304	hypothetical prote
328	3	8.8	37	2	S21132	photosystem II cyt
329	3	8.8	37	2	F59103	hypothetical prote
330	3	8.8	37	2	T36662	small hypothetical
331	3	8.8	37	2	T11815	hypothetical prote
332	3	8.8	37	2	A57127	diuretic hormone 1
333	3	8.8	37	2	C32112	R15 gamma peptide
334	3	8.8	37	2	B48845	sterol regulatory
335	3	8.8	37	2	S68261	hypothetical prote
336	3	8.8	37	2	S49982	Tcell receptor alp
337	3	8.8	37	2	B39030	
338	3	8.8	37	2		androgen-binding p
339			37 37	2	PN0550	metabotropic gluta
	3	8.8			S70931	histone-like prote
340	3	8.8	37	2	F81403	hypothetical prote
341	3	8.8	38	1	R5EC36	ribosomal protein
342	3	8.8	38	2	C34047	stylar glycoprotei
343	3	8.8	38	2	T11763	acetyl-CoA carboxy
344	3	8.8	38	2	S39034	lipid transfer pro
345	3	8.8	38	2	A42974	natriuretic peptid
346	3	8.8	38	2	A49165	pituitary adenylat
347	3	8.8	38	2	A61070	pituitary adenylat
348	3	8.8	38	2	PS0129	H-2 class I histoc
349	3	8.8	38	2	S50764	ribosomal protein
350	3	8.8	38	2	E72247	ribosomal protein
351	3	8.8	38	2	H83113	50S ribosomal prot
352	3	8.8	38	2	AG0028	50S ribosomal prot
353	3	8.8	38	2		_
					D91149	50S ribosomal subu
354	3	8.8	38	2	AF1008	50S ribosomal chai
355	3	8.8	38	2	PH1920	annexin-like 40K p

I

356	3	8.8	38	2	S72344		pilE protein - Nei
357	3	8.8	38	2	A60216		hyperglycemic horm
358	3	8.8	38	2	S65416		pyruvate synthase
359	3	8.8	38	2	B95069		hypothetical prote
360	3	8.8	38	2	A95139		hypothetical prote
361	3	8.8	38	2	H91111		hypothetical prote
362	3	8.8	38	2	D90631		
363	3	8.8	38	2			hypothetical prote
					E72306		hypothetical prote
364	3	8.8	38	2	E81873		hypothetical prote
365	3	8.8	38	2	T14885		hypothetical prote
366	3	8.8	38	2	A82478		hypothetical prote
367	3	ξ 8.8	38	2	E82463		hypothetical prote
368	3	8.8	38	2	A82450		hypothetical prote
369	3	8.8	38	2	D37842		hypothetical prote
370	3	8.8	38	2	B69492		hypothetical prote
371	3	8.8	38	2	S23173		photosystem I chai
372	3	8.8	38	2	T01992		hypothetical prote
373	3	8.8	38	2	S58601		hypothetical prote
374	3	8.8	38	2	T01741		hypothetical prote
375	3	8.8	38	2	B39888		synapsin I - bovin
376	3	8.8	38	2	B49012		orf 5' of meg1 - m
377	3	8.8	38	2	A83863		
378	3	8.8	38	2	H81603		hypothetical prote
379							hypothetical prote
	3	8.8	38	2	E82858		hypothetical prote
380	3	8.8	38	2	G71305		probable ribosomal
381	3	8.8	38	2	B97327		hypothetical prote
382	3	8.8	38	2	E86077		hypothetical prote
383	3	8.8	38	2	H85994	•	50S ribosomal subu
384	3	8.8	38	2	T08652		hypothetical prote
385	3	8.8	38	2	AB0747		hypothetical prote
386	3	8.8	38	2	AH0774		hypothetical prote
387	3	8.8	38	2	C97551		hypothetical prote
388	3	8.8	39	1	CTDFAS		corticotropin - sp
389	3	8.8	39	1	HWGH3Z		exendin-3 - Mexica
390	3	8.8	39	1	HWGH4G		exendin-4 - Gila m
391	3	8.8	39	2	B45946		gamma-glutamyltran
392	3	8.8	39	2	I55325		aspartate transami
393	3	8.8	39	2	S09645		hygromycin-B kinas
394	3	8.8	39	2	A01458		
395	3	8.8	39	2	PN0127		corticotropin - fi
396	3	8.8	39	2	A61127		corticotropin - se
397	3						adrenocorticotropi
		8.8	39	2	A01459		corticotropin - os
398	3	8.8	39	2	A01457		corticotropin - ra
399	3	8.8	39	2	C55995		prostaglandin E2 r
400	3	8.8	39	2	S07458		Ig kappa chain V r
401	3	8.8	39	2	PH0878		Ig kappa chain V r
402	3	8.8	39	2	S72459		ribosomal protein
403	3	8.8	39	2	PQ0011		tubulin beta chain
404	3	8.8	39	2	S63482		tubulin beta chain
405	3	8.8	39	2	A45793		actin - nematode (
406	3	8.8	39	2	AH2286		photosystem II pro
407	3	8.8	39	2	G64944		yebJ protein - Esc
408	3	8.8	39	2	A85795		hypothetical prote
409	3	8.8	39	2	S78008		fucosyltransferase
410	3	8.8	39	2	A48110		RNA recognition mo
411	3	8.8	39	2	H95146		hypothetical prote
412	3	8.8	39	2	D70239		hypothetical prote
	5	0.0	ر		2.0201		mypoemecical proce

413	3 .	8.8	39	2	C70254	hypothetical prote
414	3	8.8	39	2	G81899	
415	3	8.8	39	2	B81912	hypothetical prote
416	3	8.8	39	2		hypothetical prote
417	3	8.8		2	B81954	very hypothetical
417	3		39		F82329	hypothetical prote
	3	8.8	39	2	A43591	43K outer membrane
419	3	8.8	39	2	A44918	lactococcin G pept
420 421		8.8	39	2	S67938	hypothetical prote
	3	8.8	39	2	S73118	photosystem II pro
422	3 3	8.8	39	2	PC4294	high mobility grou
423		8.8	39	2	T15158	hypothetical prote
424	3	8.8	39	2	I46466	luteinizing hormon
425	3	8.8	39	2	B40984	finger protein zfe
426	3	8.8	39	2	T03365	gene e2 protein -
427	3	8.8	39	2	F81587	hypothetical prote
428	3	8.8	39	2	E81540	hypothetical prote
429	3	8.8	39	2	T12905	hypothetical prote
430	3	8.8	39	2	AD0162	hypothetical prote
431	3	8.8	39	2	AE3109	hypothetical prote
432	3	8.8	40	1	SWFGS	sauvagine - Sauvag
433	3	8.8	40	2	B61320	plastocyanin - Aqu
434	3	8.8	40	2	S52343	hypothetical prote
435	3	8.8	40	2	S00264	creatine kinase (E
436	3	8.8	40	2	S34407	adenylate kinase (
437	3	8.8	40	2	PQ0202	endo-1,4-beta-xyla
438 439	3 3	8.8	40	2	S50021	trypsin-like prote
440	3	8.8 8.8	40 40	2	B60908 B41440	beta-lactamase (EC
441	3	8.8	40	2	A19940	protein disulfide-
442	3	8.8	40	2	B59005	antithrombin III -
443	3	8.8	40	2	A59005	thymosin beta - sc
444	3	8.8	40	2	B31791	thymosin beta - se
445	3	8.8	40	2	S07969	sarcotoxin ID - fl T-cell receptor al
446	3	8.8	40	2	150012	MHC class I protei
447	3	8.8	40	2	150012	MHC class I protei
448	3	8.8	40	2	S61539	ribosomal protein
449	3	8.8	40	2	A60171	proteoglycan core
450	3	8.8	40	2	A60645	tubulin beta chain
451	3	8.8	40	2	A29184	vitellogenin - tur
452	3	8.8	40	2	S65907	conglutin gamma -
453	3	8.8	40	2	S08656	protein VI - human
454	3	8.8	40	2	A53708	indolepyruvate syn
455	3	8.8	40	2	T08107	nonenzymatic prote
456	3	8.8	40	2	S71917	hemoglobin, extrac
457	3	8.8	40	2	S58853	homeotic protein u
458	3	8.8	40	2	H95063	hypothetical prote
459	3	8.8	40	2	H91281	hypothetical prote
460	3	8.8	40	2	A87642	hypothetical prote
461	3	8.8	40	2	F87419	hypothetical prote
462	3	8.8	40	2	C32338	hypothetical 4K pr
463	3	8.8	40	2	C72398	hypothetical prote
464	3	8.8	40	2	S44935	hypothetical prote
465	3	8.8	40	2	A82203	hypothetical prote
466	3	8.8	40	2	G82484	hypothetical prote
467	3	8.8	40	2	A82382	hypothetical prote
468	3	8.8	40	2	I39944	regulatory extrace
4 69	3	8.8	40	2	F69677	phosphatase (RapK)

						•	
470	3	8.8	40	2	I 414 76		probable antigen 9
471	3	8.8	40	2	S27709		hypothetical prote
472	3	8.8	40	2	F45095		photosystem I ligh
473	3	8.8	40	2	T11811		hypothetical prote
474	3	8.8	40	2	T07472		hypothetical prote
475	3	8.8	40	2	T07516		hypothetical prote
476	3.	8.8	40	2	T07523		hypothetical prote
477	3	8.8	40	2	T07560		hypothetical prote
478	3	8.8	40	2	T48629		hypothetical prote
479	3	8.8	40	2	S53001		mitotic-specific c
480	3	8.8	40	2	T03831		hypothetical prote
481	3	8.8	40	2	S71295		deoxyguanosine kin
482	3	8.8	40	2	S56768		
483	3	8.8	40	2	T07206		capsid protein - L
484	3	8.8	40	2	H81592		hypothetical prote
485	3	8.8	40	2	H81520		hypothetical prote
486	3	8.8	40	2	F81511		hypothetical prote
487	3	8.8	40	2	G82620		hypothetical prote
488	3	8.8	40	2			hypothetical prote
489	3	8.8	40	2	A82590		hypothetical prote
490	3	8.8	40		A86123		hypothetical prote
491	2	5.9	28	2 1	B97413		hypothetical prote
492	2	5.9	28	1	LFSEW		trp operon leader
493	2	5.9	28		LFEBLT		leu operon leader
494	2	5.9	28 28	1	LFECL		leu operon leader
495	2	5.9		1	G9BPSV		gene 9 protein - s
496	2	5.9	28 28	2	S41774		ubiquinol-cytochro
497	2	5.9	28	2	S71598		cytochrome P450 HP
498	2	5.9	28		S04341		cytochrome P450 PB
499	2	5.9 5.9		2	PX0033		cytochrome P450 te
500	2	5.9	28	2	S66436		allophycocyanin al
501	2	5.9	28 28	2	S47624		D-aspartate oxidas
502	2	5.9	28	2	T14210		NADH2 dehydrogenas
502	2	5.9		2	T14213		NADH2 dehydrogenas
504	2	5.9	28 28	2	T12301		NADH2 dehydrogenas
505	2	5.9	28 28	2	PC1162		cytochrome-c oxida
506	2	5.9	28	2	S21278		glutathione transf
507	2	5.9	28		C33948		glutathione transf
508	2	5.9	28	2	A34244		hexokinase (EC 2.7
509	2	5.9		2	D38578		protein kinase 4 (
510	2		28	2	B39116		epidermal growth f
510	2	5.9	28	2	A31859		deoxycytidine kina
512	2	5.9 5.9	28 28	2	B54257		deoxynucleoside ki
513	2	5.9		2	I55596		lysosomal acid lip
513	2		28	2	B35948		phospholipase A2 (
514	2	5.9	28	2	C35948		phospholipase A2 (
		5.9	28	2	A35115		hypothetical prote
516	2	5.9	28	2	A61281	•	lysozyme homolog A
517	2	5.9	28	2	A61529		chymotrypsin (EC 3
518	2	5.9	28	2	A60291		24K proteinase (EC
519 520	2	5.9	28	2	S08186		proteasome beta ch
520	2	5.9	28	2	S55729	•	orotidine-5'-monop
521	2	5.9	28	2	I40034		trpE protein - Bac
522	2	5.9	28	2	A32643		deoxyribodipyrimid
523	2	5.9	28	2	S77854		glutamate-tRNA lig
524	2	5.9	28	2	JX0059		serine proteinase
525	2	5.9	28	2	S07156		trypsin inhibitor
526	2	5.9	28	2	JX0058		trypsin inhibitor

		·				
527	2	5.9	28	2	B45041	trypsin inhibitor
528	2	5.9	28	2	S20393	trypsin inhibitor
529	2	5.9	28	2	A25802	
						2S seed storage pr
530	2	5.9	28	2	T47196	RAS protein [impor
531	2	5.9	28	2	A61322	somatostatin-28 -
532	2	5.9	28	2	B60583	glycoprotein hormo
533	2	5.9	28	2	A38232	vasoactive intesti
534	2	5.9	28	2	A60303	
						vasoactive intesti
535	2	5.9	28	2	JT0412	bombyxin-IV chain
536	2	5.9	28	2	A56366	intestinal trefoil
537	2	5.9	28	2	C44180	alpha-neurotoxin-l
538	2	5.9	28	2	C39327	long neurotoxin -
539	2	5.9	28	2	I32529	
	2					Ig lambda chain V
540		5.9	28	2	PC1001	Ig light chain V r
541	2	5.9	28	2	B47719	T-cell receptor al
542	2	5.9	28	2	D47719	T-cell receptor al
543	2	5.9	28	2	S58389	T-cell receptor be
544	2	5.9	28	2	PH0250	
						T-cell receptor Vb
545	2	5.9	28	2	PH0247	T-cell receptor Vb
546	2	5.9	28	2	A49829	T-cell receptor va
547	2	5.9	28	2	D49829	T-cell receptor va
548	2	5.9	28	2	PH1908	T-cell receptor al
549	2	5.9	28	2	D41912	
	2					T-cell receptor be
550		5.9	28	2	G47719	house-dust-mite-re
551	2	5.9	28	2	E49533	T-cell receptor be
552	2	5.9	28	2	I46921	gene Bota protein
553	2	5.9	28	2	S11618	ribosomal protein
554	2	5.9	28	2	S51060	
555	2					ribosomal protein
		5.9	28	2	S51067	ribosomal protein
556	2	5.9	28	2	S72460	ribosomal protein
557	2	5.9	28	2	S08569	ribosomal protein
558	2	5.9	28	2	S10052	ribosomal protein
559	2	5.9	28	2	S55442	beta A2 crystallin
560	2	5.9	28	2	A45626	
	2					beta 2-tubulin - n
561		5.9	28	2	S21231	calcium-binding pr
562	2	5.9	28	2	A23691	apolipoprotein C-I
563	2	5.9	28	2	A05296	fibrinogen alpha c
564	2	5.9	28	2	A61113	cellular retinol-b
565	2	5.9	28	2	B35577	cell adhesion rece
566	2	5.9	28	2		
					I48349	fibronectin - mous
567	2	5.9	28	2	A61233	retinol-binding pr
568	2	5.9	28	2	I45911	dnaK-type molecula
569	2	5.9	28	2	PQ0263	dnaK-type molecula
570	2	5.9	28	2	A03356	omega-gliadin - ei
571	2	5.9	28	2	A60359	
572	2					pollen allergen DG
		5.9	. 28	2	A60752	outer membrane pro
573	2	5.9	28	2	PQ0691	photosystem I 5.6K
574	2	5.9	28	2	G32351	34K class B flagel
575	2	5.9	28	2	S47614	zinc finger protei
576	2	5.9	28	2	S49924	stp protein (Baker
577	2	5.9	28			
				2	B39227	calcium channel pr
578	2	5.9	28	2	F54346	pyruvate synthase
579	2	5.9	28	2	A36153	major allergen Ole
580	2	5.9	28	2	B54127	dolichyl-diphospho
581	2	5.9	28	2	S56746	alpha-synuclein, N
582	2	5.9	28	2	I48178	
583	2	5.9		2		orphan receptor -
J0J	4	٦.٦	28	4	PC4429	peroxisome prolife

Section
586 2 5.9 28 2 S29136 aminopyrine N-deme 587 2 5.9 28 2 PN0625 homeobox JRX prote 588 2 5.9 28 2 B56779 tetM 5'-region lea 590 2 5.9 28 2 G90638 leu operon leader 591 2 5.9 28 2 G90638 leu operon leader 591 2 5.9 28 2 G90638 leu operon leader 591 2 5.9 28 2 B64666 hypothetical prote 592 2 5.9 28 2 B64669 hypothetical prote 594 2 5.9 28 2 S129 28 2 S16228 Hypothetical prote Hypothe
586 2 5.9 28 2 S29136 aminopyrine N-deme 587 2 5.9 28 2 PN0625 homeobox JRX prote 589 2 5.9 28 2 B56779 tetM 5'-region lea 590 2 5.9 28 2 G90638 leu operon leader 591 2 5.9 28 2 G90639 fruR leader peptid 592 2 5.9 28 2 B40669 hypothetical prote 594 2 5.9 28 2 B64669 hypothetical prote 595 2 5.9 28 2 S15235 hypothetical prote 596 2 5.9 28 2 S15235 hypothetical prote 596 2 5.9 28 2 S1529 28 2 B17391 597 2 5.9 28 2 B31291 hypothetical prote 601 2
587 2 5.9 28 2 PNO625 homeobox JRX prote 588 2 5.9 28 2 B56779 tetM 5'-region lea 589 2 5.9 28 2 JU0297 fruR-shl operon le 590 2 5.9 28 2 G90639 fruR leader peptid 591 2 5.9 28 2 C90639 fruR leader peptid 592 2 5.9 28 2 B64656 hypothetical prote 594 2 5.9 28 2 B64669 hypothetical prote 595 2 5.9 28 2 S15235 hypothetical prote 596 2 5.9 28 2 C56622 uvrB 3'-region hyp 597 2 5.9 28 2 J6064 phosphorybosylpyro 598 2 5.9 28 2 B39191 hypothetical prote 600 2 5.9
588 2 5.9 28 2 B56779 tetM 5'-region lea 589 2 5.9 28 2 J00297 fruR-shl operon leader 591 2 5.9 28 2 C90638 leu operon leader 591 2 5.9 28 2 C90639 fruR leader peptid 593 2 5.9 28 2 B64669 hypothetical prote 594 2 5.9 28 2 B64669 hypothetical prote 595 2 5.9 28 2 S15235 hypothetical prote 596 2 5.9 28 2 S15235 hypothetical prote 597 2 5.9 28 2 B61239 hypothetical prote 600 2 5.9 28 2 B61239 hypothetical prote 601 2 5.9 28 2 A71331 hypothetical prote 601 2 5.9
Sep
Section
Section
592 2 5.9 28 2 BA7310 MHVS28AA - murine 593 2 5.9 28 2 B64656 hypothetical prote 595 2 5.9 28 2 B64656 hypothetical prote 595 2 5.9 28 2 S56262 uvrB 3'-region hyp 597 2 5.9 28 2 B51939 hypothetical prote 598 2 5.9 28 2 B610364 phosphorybosylpyro 599 2 5.9 28 2 T17391 hypothetical prote 600 2 5.9 28 2 T17391 hypothetical prote 601 2 5.9 28 2 A6449 brevicin-27 Lact 602 2 5.9 28 2 B6499 brevicin-27 Lact 603 2 5.9 28 2 B7143 hypothetical prote 604 2
593 2 5.9 28 2 B64669 hypothetical prote hypothetical hypothetic
System
System
Section
597 2 5.9 28 2 E81239 hypothetical prote 598 2 5.9 28 2 160364 phosphorybosylpyro 600 2 5.9 28 2 B39191 hypothetical prote 601 2 5.9 28 2 A56499 brevicin-27 - Lact 601 2 5.9 28 2 A56499 brevicin-27 - Lact 602 2 5.9 28 2 A41476 probable antigen 1 603 2 5.9 28 2 A56499 brevicin-27 - Lact 604 2 5.9 28 2 PS0106 2-phosphinomethylm 605 2 5.9 28 2 PS0106 2-phosphinomethylm 606 2 5.9 28 2 PS0259 hypothetical prote 607 2 5.9 28 2 T06925 hypothetical prote 608 2 5.9
598 2 5.9 28 2 160364 phosphorybosylpyro 599 2 5.9 28 2 B39191 hypothetical prote 600 2 5.9 28 2 T17391 hypothetical prote 601 2 5.9 28 2 A56499 brevicin-27 - Lact 602 2 5.9 28 2 A56499 brevicin-27 - Lact 602 2 5.9 28 2 A61476 probable antigen 1 603 2 5.9 28 2 R5106 probable antigen 1 605 2 5.9 28 2 F80106 2-phosphinomethylm 606 2 5.9 28 2 G69384 conserved hypothetical prote 607 2 5.9 28 2 A69259 hypothetical prote 608 2 5.9 28 2 T06045 rpNA N-pOthetical prote 610 2<
Section
600
601 2 5.9 28 2 A56499 brevicin-27 - Lact 602 2 5.9 28 2 A41476 probable antigen 1 603 2 5.9 28 2 S16228 aryl acylamidase - 604 2 5.9 28 2 F30106 2-phosphinomethylm 605 2 5.9 28 2 F30106 2-phosphinomethylm 606 2 5.9 28 2 G69384 conserved hypothetical prote 607 2 5.9 28 2 T06925 hypothetical prote 608 2 5.9 28 2 T06925 hypothetical prote 609 2 5.9 28 2 S38524 rRNA N-glycosidase 610 2 5.9 28 2 S21742 3-oxoacyl-[acyl-ca 611 2 5.9 28 2 F00800 calmodulin antagon 612 2 5.9 28 2 T06799 hypothetical prote 614 2 5.9 28 2 T07599 hypothetical prote 615 2 5.9 28 2 T07599 hypothetical prote 616 2 5.9 28 2 T07599 hypothetical prote 617 2 5.9 28 2 J00272 hypothetical frote 618 2 5.9 28 2 S46250 fatty-acid-binding 617 2 5.9 28 2 S46250 fatty-acid-binding 617 2 5.9 28 2 S46701 hypothetical prote 619 2 5.9 28 2 T38041 similarity to yeas 620 2 5.9 28 2 A60698 trichocyst protein 621 2 5.9 28 2 A60698 trichocyst protein 622 2 5.9 28 2 S06668 toxin-like protein 623 2 5.9 28 2 C34923 comega-agatoxin IIA 626 2 5.9 28 2 C34923 comega-agatoxin IIA 627 2 5.9 28 2 A44877 cell surface prote 628 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 S68643 nicotinic acetylch 631 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 S54338 cytochrome P450 CY
602
603
604 2 5.9 28 2 T37143 hypothetical prote 605 2 5.9 28 2 PS0106 2-phosphinomethylm 606 606 2 5.9 28 2 G69384 conserved hypothet 607 2 5.9 28 2 A69259 hypothetical prote 608 2 5.9 28 2 T06925 hypothetical prote 609 2 5.9 28 2 S38524 rRNA N-glycosidase 610 2 5.9 28 2 S21742 3-oxoacyl-[acyl-ca calmodulin antagon 612 2 5.9 28 2 T06340 ribosomal protein 613 2 5.9 28 2 T07599 hypothetical prote 614 2 5.9 28 2 T07599 hypothetical prote 615 2 5.9 28 2 JQ0272 hypothetical grote 616 2 5.9 28 2 JQ0272 hypothetical 3K pr 616 2 5.9 28 2 JQ0272 hypothetical 3K pr 616 2 5.9 28 2 S46250 fatty-acid-binding 617 2 5.9 28 2 S46250 fatty-acid-binding 619 2 5.9 28 2 S64701 hypothetical prote 619 2 5.9 28 2 S64701 hypothetical prote 619 2 5.9 28 2 S64701 hypothetical prote 620 2 5.9 28 2 A60698 trichocyst protein 621 2 5.9 28 2 A60698 trichocyst protein 622 2 5.9 28 2 S06668 toxin-like protein 624 2 5.9 28 2 S06668 toxin-like protein 624 2 5.9 28 2 S06668 toxin-like protein 624 2 5.9 28 2 S07826 venom protein - Am 625 2 5.9 28 2 A44877 cell surface prote 627 2 5.9 28 2 A44877 cell surface prote 628 2 5.9 28 2 A44877 cell surface prote 629 2 5.9 28 2 A61273 interleukin-l - st 629 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY
605
606 2 5.9 28 2 PS0106 2-phosphinomethylm 606 2 5.9 28 2 G69384 conserved hypothet 607 2 5.9 28 2 A69259 hypothetical prote 608 2 5.9 28 2 T06925 hypothetical prote 609 2 5.9 28 2 S38524 rRNA N-glycosidase 610 2 5.9 28 2 S21742 3-oxoacyl-[acyl-ca 611 2 5.9 28 2 PQ0800 calmodulin antagon 612 2 5.9 28 2 T06940 ribosomal protein 613 2 5.9 28 2 T07599 hypothetical prote 614 2 5.9 28 2 T07599 hypothetical prote 615 2 5.9 28 2 JQ0272 hypothetical grote 616 2 5.9 28 2 JQ0272 hypothetical 3K pr 616 2 5.9 28 2 S46250 fatty-acid-binding 617 2 5.9 28 2 S46250 fatty-acid-binding 617 2 5.9 28 2 S464701 hypothetical prote 619 2 5.9 28 2 T38041 similarity to yeas 620 2 5.9 28 2 A60698 trichocyst protein 621 2 5.9 28 2 A60698 trichocyst protein 622 2 5.9 28 2 S06668 toxin-like protein 623 2 5.9 28 2 S07826 venom protein - Am 625 2 5.9 28 2 C34923 omega-agatoxin IIA 626 2 5.9 28 2 A44877 cell surface prote 627 2 5.9 28 2 A61273 interleukin-l - st 629 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 S68643 nicotinic acetylch 631 2 5.9 28 2 S54388 cytochrome P450 CY 633 2 5.9 28 2 S54388 cytochrome P450 CY 633 2 5.9 28 2 S54388 cytochrome P450 CY 633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S54338 cytochrome P450 CY 6633 2 5.9 28 2 S563438 cytochrome P450 CY 6633 2 5.9 28 2 S563438 cytochrome P450 CY 6633 2 5.9 28 2 S563438 cytochrome P450 CY 6633 2 5.9 28 2 S563438 cytochrome P450 CY 6633 2 5.9 28 2 S563438 cytochrome P450 CY 6633 2 5.9 2
606
607 2 5.9 28 2 A69259 hypothetical prote 608 2 5.9 28 2 T06925 hypothetical prote 609 2 5.9 28 2 S38524 rRNA N-glycosidase 610 2 5.9 28 2 S21742 3-oxoacyl-[acyl-ca 611 2 5.9 28 2 PQ0800 calmodulin antagon 612 2 5.9 28 2 T06340 ribosomal protein 613 2 5.9 28 2 T07599 hypothetical prote 614 2 5.9 28 2 T07599 hypothetical prote 614 2 5.9 28 2 JQ0272 hypothetical 3K pr 616 2 5.9 28 2 JQ0272 hypothetical 3K pr 616 2 5.9 28 2 S46250 fatty-acid-binding 617 2 5.9 28 2 S44250 fatty-acid-binding 618 2 5.9 28 2 S64701 hypothetical prote 619 2 5.9 28 2 S64701 hypothetical prote 620 2 5.9 28 2 A60698 trichocyst protein 621 2 5.9 28 2 A27261 proteinase inhibit 622 2 5.9 28 2 S06668 toxin-like protein 624 2 5.9 28 2 S07826 venom protein - Am 625 2 5.9 28 2 C34923 omega-agatoxin IIA 626 2 5.9 28 2 A61273 interleukin-l - st 629 2 5.9 28 2 S54838 cytochrome P450 CY 633 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 S54338 cytochrome P450 CY
608
609
610
611 2 5.9 28 2 PQ0800 calmodulin antagon 612 2 5.9 28 2 T06340 ribosomal protein 613 2 5.9 28 2 T07599 hypothetical prote 614 2 5.9 28 2 PH0220 peroxidase (BC 1.1 615 2 5.9 28 2 JQ0272 hypothetical 3K pr 616 2 5.9 28 2 S46250 fatty-acid-binding 617 2 5.9 28 2 A44923 carboxypeptidase 3 618 2 5.9 28 2 S64701 hypothetical prote 619 2 5.9 28 2 T38041 similarity to yeas 620 2 5.9 28 2 A60698 trichocyst protein 621 2 5.9 28 2 A60698 trichocyst protein 621 2 5.9 28 2 A6698 trichocyst protein 622 2 5.9 28 2 S06668 toxin-like protein 623 2 5.9 28 2 S06668 toxin-like protein 624 2 5.9 28 2 C34923 omega-agatoxin IIA 625 2 5.9 28 2 A44877 cell surface prote 627 2 5.9 28 2 A61273 interleukin-1 - st 629 2 5.9 28 2 F02162 angiotensin II rec 631 2 5.9 28 2 S5438 cytochrome P450 CY 633 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
612
613 2 5.9 28 2 T07599 hypothetical prote 614 2 5.9 28 2 PH0220 peroxidase (EC 1.1 615 2 5.9 28 2 JQ0272 hypothetical 3K pr 616 2 5.9 28 2 S46250 fatty-acid-binding 617 2 5.9 28 2 A44923 carboxypeptidase 3 618 2 5.9 28 2 S64701 hypothetical prote 619 2 5.9 28 2 T38041 similarity to yeas 620 2 5.9 28 2 A60698 trichocyst protein 621 2 5.9 28 2 A27261 proteinase inhibit 622 2 5.9 28 2 A61417 bdellin B-3 - medi 623 2 5.9 28 2 S06668 toxin-like protein 624 2 5.9 28 2 S07686 venom protein - Am 625 2 5.9 28 2 C34923 omega-agatoxin IIA 626 2 5.9 28 2 A44877 cell surface prote 627 2 5.9 28 2 A61273 interleukin-1 - st 629 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
614 2 5.9 28 2 PH0220 peroxidase (EC 1.1 615 2 5.9 28 2 JQ0272 hypothetical 3K pr 616 2 5.9 28 2 S46250 fatty-acid-binding 617 2 5.9 28 2 A44923 carboxypeptidase 3 hypothetical prote 619 2 5.9 28 2 T38041 similarity to yeas 620 2 5.9 28 2 A60698 trichocyst protein 621 2 5.9 28 2 A60698 trichocyst protein 621 2 5.9 28 2 A61417 bdellin B-3 - medi 623 2 5.9 28 2 S06668 toxin-like protein 624 2 5.9 28 2 S06668 toxin-like protein 624 2 5.9 28 2 S07826 venom protein - Am 625 2 5.9 28 2 C34923 omega-agatoxin IIA 626 2 5.9 28 2 A44877 cell surface prote 627 2 5.9 28 2 JW0019 mast cell degranul 628 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
615
616 2 5.9 28 2 S46250 fatty-acid-binding 617 2 5.9 28 2 A44923 carboxypeptidase 3 618 2 5.9 28 2 S64701 hypothetical prote 619 2 5.9 28 2 T38041 similarity to yeas 620 2 5.9 28 2 A60698 trichocyst protein 621 2 5.9 28 2 A27261 proteinase inhibit 622 2 5.9 28 2 A61417 bdellin B-3 - medi 623 2 5.9 28 2 S06668 toxin-like protein 624 2 5.9 28 2 S07826 venom protein - Am 625 2 5.9 28 2 C34923 omega-agatoxin IIA 626 2 5.9 28 2 A44877 cell surface prote 627 2 5.9 28 2 JW0019 mast cell degranul 628 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 FC2162 angiotensin II rec 631 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
617
618
619 2 5.9 28 2 T38041 similarity to yeas 620 2 5.9 28 2 A60698 trichocyst protein 621 2 5.9 28 2 A27261 proteinase inhibit 622 2 5.9 28 2 A61417 bdellin B-3 - medi 623 2 5.9 28 2 S06668 toxin-like protein 624 2 5.9 28 2 S07826 venom protein - Am 625 2 5.9 28 2 C34923 omega-agatoxin IIA 626 2 5.9 28 2 A44877 cell surface prote 627 2 5.9 28 2 JW0019 mast cell degranul 628 2 5.9 28 2 A61273 interleukin-1 - st 629 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 FC2162 angiotensin II rec 631 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
620
621 2 5.9 28 2 A27261 proteinase inhibit 622 2 5.9 28 2 A61417 bdellin B-3 - medi 623 2 5.9 28 2 S06668 toxin-like protein 624 2 5.9 28 2 S07826 venom protein - Am 625 2 5.9 28 2 C34923 omega-agatoxin IIA 626 2 5.9 28 2 A44877 cell surface prote 627 2 5.9 28 2 JW0019 mast cell degranul 628 2 5.9 28 2 A61273 interleukin-1 - st 629 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 PC2162 angiotensin II rec 631 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 <td< td=""></td<>
622 2 5.9 28 2 S06668 toxin-like protein 624 2 5.9 28 2 S07826 venom protein - Am 625 2 5.9 28 2 C34923 omega-agatoxin IIA 626 2 5.9 28 2 A44877 cell surface prote 627 2 5.9 28 2 JW0019 mast cell degranul 628 2 5.9 28 2 A61273 interleukin-1 - st 629 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 PC2162 angiotensin II rec 631 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
623 2 5.9 28 2 S06668 toxin-like protein 624 2 5.9 28 2 S07826 venom protein - Am 625 2 5.9 28 2 C34923 omega-agatoxin IIA 626 2 5.9 28 2 A44877 cell surface prote 627 2 5.9 28 2 JW0019 mast cell degranul 628 2 5.9 28 2 A61273 interleukin-1 - st 629 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 PC2162 angiotensin II rec 631 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
624 2 5.9 28 2 S07826 venom protein - Am 625 2 5.9 28 2 C34923 omega-agatoxin IIA 626 2 5.9 28 2 A44877 cell surface prote 627 2 5.9 28 2 JW0019 mast cell degranul 628 2 5.9 28 2 A61273 interleukin-1 - st 629 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 PC2162 angiotensin II rec 631 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
625 2 5.9 28 2 C34923 omega-agatoxin IIA 626 2 5.9 28 2 A44877 cell surface prote 627 2 5.9 28 2 JW0019 mast cell degranul 628 2 5.9 28 2 A61273 interleukin-1 - st 629 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 PC2162 angiotensin II rec 631 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
626 2 5.9 28 2 A44877 cell surface prote 627 2 5.9 28 2 JW0019 mast cell degranul 628 2 5.9 28 2 A61273 interleukin-1 - st 629 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 PC2162 angiotensin II rec 631 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
627 2 5.9 28 2 JW0019 mast cell degranul 628 2 5.9 28 2 A61273 interleukin-1 - st 629 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 PC2162 angiotensin II rec 631 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
628 2 5.9 28 2 A61273 interleukin-1 - st 629 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 PC2162 angiotensin II rec 631 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
629 2 5.9 28 2 S68643 nicotinic acetylch 630 2 5.9 28 2 PC2162 angiotensin II rec 631 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
630 2 5.9 28 2 PC2162 angiotensin II rec 631 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
630 2 5.9 28 2 PC2162 angiotensin II rec 631 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
631 2 5.9 28 2 I54183 cell adhesion regu 632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
632 2 5.9 28 2 S54338 cytochrome P450 CY 633 2 5.9 28 2 I52627 erythrocyte chemok
633 2 5.9 28 2 I52627 erythrocyte chemok
635 2 5.9 28 2 PH1335 Ig heavy chain DJ
636 2 5.9 28 2 S37683 protein IEF SSP 91
637 2 5.9 28 2 S37686 protein IEF SSP 92
638 2 5.9 28 2 PH1911 T-cell receptor al
639 2 5.9 28 2 T39288 7E3 domain himan
639 2 5.9 28 2 I39288 ZF3 domain - human 640 2 5.9 28 2 PL0005 pepsin A (EC 3.4.2

641	2	5.9	28	2	A60692	proline-rich prote
642	2	5.9	28	2	PC2239	heat shock protein
643	2	5.9	28	2	PT0366	T-cell receptor be
644	2	5.9	28	2	I58115	cystic fibrosis tr
645	2	5.9	28	2	A46690	sialic acid-specif
646	2	5.9	28	2	C83797	hypothetical prote
647	2	5.9	28	2	C83969	hypothetical prote
648	2	5.9	28	2	S51593	
649	2	5.9		2		myrB protein - Mic
			28		C85490	fruR leader peptid
650	2	5.9	28	2	C97078	hypothetical prote
651	2	5.9	28	2	F97000	hypothetical prote
652	2	5.9	28	2	G85489	leu operon leader
653	2	5.9	28	2	AB1093	hypothetical prote
654	2	5.9	28	2	T06490	probable ribulose-
655	2	5.9	28	2	S73563	H+-transporting tw
656	2	5.9	28	2	AG0516	leu operon leader
657	2	5.9	28	4	I68614	frame shifted FMR1
658	2	5.9	28	4	JN0014	GABA(A) receptor a
659	2	5.9	29	1	TIPU	trypsin inhibitor
660	2	5.9	29	1	TIPU3	
661	2	5.9		1		trypsin inhibitor
			29		TIPU2B	trypsin inhibitor
662	2	5.9	29	1	GCOPV	glucagon - North A
663	2	5.9	29	1	GCDK	glucagon - duck
664	2	5.9	29	1	A61583	glucagon - ostrich
665	2	5.9	29	1	GCFLE	glucagon - Europea
666	2	5.9	29	1	GCDF	glucagon - smaller
667	2	5.9	29	1	GCEN	glucagon - elephan
668	2	5.9	29	1	GCTTS	glucagon - slider
669	2	5.9	29	1	TNLJBR	trans-activating t
670	2	5.9	29	1	Q1BP57	gene 1.5 protein -
671	2	5.9	29	2	A60558	cytochrome P450 HL
672	2	5.9	29	2	T17079	NADH2 dehydrogenas
673	2	5.9	29	2	T17076	
674	2	5.9	29	2	A48427	NADH2 dehydrogenas
675	2	5.9		2		flavohemoglobin hm
			29		A54234	cytochrome-c oxida
676	2	5.9	29	2	S08201	peroxidase (EC 1.1
677	2	5.9	29	2	A26208	acetyl-CoA C-acety
678	2	5.9	29	2	A22018	phosphotransferase
679	2	5.9	29	2	S46211	kallikrein rK8 (pK
680	2	5.9	29	2	S28174	heat-shock protein
681	2	5.9	29	2	A32414	bothrolysin (EC 3.
682	2	5.9	29	2	S17432	H+-transporting tw
683	2	5.9	29	2	S02578	H+-transporting tw
684	2	5.9	29	2	S23122	peptidylprolyl iso
685	2	5.9	29	2	JU0211	squash-type trypsi
686	2	5.9	29	2	T03653	phospholipid trans
687	2	5.9	29	2	C24536	
688	2	5.9		2		alpha-amylase/tryp
689			29		C25310	alpha-amylase/tryp
	2	5.9	29	2	D55998	brevinin-2Ed - edi
690	2	5.9	29	2	D53578	brevinin-2Ee - edi
691	2	5.9	29	2	A91740	glucagon - turkey
692	2	5.9	29	2	A91741	glucagon - rabbit
693	2	5.9	29	2	A91742	glucagon - Arabian
694	2	5.9	29	2	S07211	glucagon - marbled
695	2	5.9	29	2	A61135	glucagon - bigeye
696	2	5.9	29	2	C39258	glucagon - common
697	2	5.9	29	2	C60840	glucagon I - Europ
		-			-	areceases i naioh

698	2	5.9	29	2	C20010	aluanaan haufi-
699	2				S39018	glucagon - bowfin
		5.9	29	2	A39462	cholestokinin - do
700	2	5.9	29	2	A60791	toxin II.9 - scorp
701	2	5.9	29	2	JH0699	omega-conotoxin MV
702	2	5.9	29	2	A58537	omega-conotoxin MV
703	2	5.9	29	2	I52628	low affinity nerve
704	2	5.9	29	2	C61233	conceptus protein
705	2	5.9	29	2	S10061	Ig heavy chain (cl
706	2	5.9	29	2	PH1328	Ig heavy chain DJ
707	2	5.9	29	2	PH0239	T-cell receptor Vb
708	2	5.9	29	2	PH0251	T-cell receptor Vb
709	2	5.9	29	2	PH0254	T-cell receptor Vb
710	2	5.9	29	2	PH0233	T-cell receptor Vb
711	2	5.9	29	2	E31485	Ig heavy chain V r
712	2	5.9	29	2	H31485	Ig kappa chain V r
713	2	5.9	29	2	G31461	
714	2	5.9	29	2		T-cell receptor de
	2	5.9			C47719	T-cell receptor al
715			29	2	E47719	house-dust-mite-re
716	2	5.9	29	2	PS0134	H-2 class I histoc
717	2	5.9	29	2	PS0132	H-2 class I histoc
718	2	5.9	29	2	D32533	class II histocomp
719	2	5.9	29	2	I37534	gene HLA-DRB prote
720	2	5.9	29	2	I37535	gene HLA-DRB prote
721	2	5.9	29	2	I37536	MHC class II histo
722	2	5.9	29	2	I37301	MHC class II histo
723	2	5.9	29	2	I37303	HLA-DR beta - huma
724	2	5.9	29	2	I37306	HLA-DR beta - huma
725	2	5.9	29	2	I50214	protein-tyrosine-p
726	2	5.9	29	2	S07771	histone H2B.2, spe
727	2	5.9	29	2	T04412	histone H3 - barle
728	2	5.9	29	2	S51070	ribosomal protein
729	2	5.9	29	2	S08555	ribosomal protein
730	2	5.9	29	2	PC4231	ribosomal protein
731	2	5.9	29	2	S10050	ribosomal protein
732	2	5.9	29	2	S10030	
733	2	5.9		2		ribosomal protein
734	2	5.9	29		S26229	ribosomal protein
	2		29	2	A27561	Meth A tumor-speci
735		5.9	29	2	S10725	calmodulin-binding
736	2	5.9	29	2	E33208	calreticulin, uter
737	2	5.9	29	2	C33208	calreticulin, slow
738	2	5.9	29	2	D33208	calreticulin, brai
739	2	5.9	29	2	A45474	thrombospondin 2 -
740	2	5.9	29	2	G39690	neural cell adhesi
741	2	5.9	29	2	A61166	endometrial proges
742	2	5.9	29	2	I52402	alpha-fetoprotein
743	2	5.9	29	2	S00564	enamel protein - r
744	2	5.9	29	2	S57232	homeotic protein s
745	2	5.9	29	2	S06854	chorion class B pr
746	2	5.9	29	2	A43038	auxin-binding prot
747	2	5.9	29	2	T12082	proline-rich prote
748	2	5.9	29	2	S70328	gamma35 secalin -
749	2	5.9	29	2	S29208	avenin gamma-3 - o
750	2	5.9	29	2	S07055	photosystem I prot
751	2	5.9	29	2	S05032	
752	2	5.9	29	2	S08088	photosystem II pro
752 753	2	5.9	29 29	2	F42075	gene VII protein -
753 754	2	5.9	29 29	2		finger protein (cl
,54	4	٦.٦	43	2	T51116	probable precorrin

755	2	5.9	29	2	A53145	high conductance c
756	. 2	5.9	29	2	A35121	hypothetical prote
757	2	5.9	29	2	S03277	photosystem II 5K
758	2	5.9	29	2	S63509	glycine reductase
759	2	5.9	29	2		-
760	2				A55891	delta-conotoxin Gm
		5.9	29	2	S32730	homeotic protein -
761	2	5.9	29	2	S57225	labial protein (cl
762	2	5.9	29	2	S32732	homeotic protein -
763	2	5.9	29	2	S32734	homeotic protein -
764	2	5.9	29	2	S32733	homeotic protein -
765	2	5.9	29	2	G90719	hypothetical prote
766	2	5.9	29	2	S07513	gene 5.1 protein -
767	2	5.9	29	2	S14040	
768	2	5.9	29	2		hypothetical prote
769					E64586	hypothetical prote
	2	5.9	29	2	B64607	hypothetical prote
770	2	5.9	29	2	G64674	hypothetical prote
771	. 2	5.9	29	2	G83440	KdpF protein PA163
772	2	5.9	29	2	A49288	alcohol dehydrogen
773	2	5.9	29	2	A81078	hypothetical prote
774	2	5.9	29	2	B81006	hypothetical prote
775	2	5.9	29	2	T48910	KdpF protein [vali
776	2	5.9	29	2	A35445	
777	2	5.9	29	2		repY protein - Esc
					S19943	aadB protein - Kle
778	2	5.9	29	2	A49914	S-layer protein va
779	2	5.9	29	2	E64036	hypothetical prote
780	2	5.9	29	2	B48363	2-hydroxyglutaryl-
781	2	5.9	29	2	C40638	orf 3' of cycI - R
782	2	5.9	29	2	S05224	photosystem I 4.8K
783	2	5.9	29	2	B56817	photosystem I chai
784	2	5.9	29	2	S74572	hypothetical prote
785	2	5.9	29	2	C60743	
786	2	5.9	29			putrescine carbamo
787				2	S67989	HA-19/HA-52 protei
	2	5.9	29	2	S14099	12-alpha-hydroxyst
788	2	5.9	29	2	<i>S</i> 77569	plantaricin SA6 -
789	2	5.9	29	2	S21222	48K protein – Euba
790	2	5.9	29	2	S03947	hydrogen dehydroge
791	2	5.9	29	2	T34643	hypothetical prote
792	2	5.9	29	2	T37120	hypothetical prote
793	2	5.9	29	2	T36654	probable small mem
794	2	5.9	29	2	B43937	endo-1,4-beta-xyla
795	2	5.9	29	2	S09556	
796	2	5.9	29	2	T06904	hypothetical prote
797	2					hypothetical prote
		5.9	29	2	S73197	hypothetical prote
798	2	5.9	29	2	S78326	conserved hypothet
799	2	5.9	29	2	S78310	hypothetical prote
800	2	5.9	29	2	S78360	hypothetical prote
801	2	5.9	29	2	S01572	hypothetical prote
802	2	5.9	29	2	T07450	hypothetical prote
803	2	5.9	29	2	S01448	hypothetical prote
804	2	5.9	29	2	S38525	rRNA N-glycosidase
805	2	5.9	29	2	T52557	
806	2	5.9	29			translation elonga
807				2	PQ0862	allantoinase (EC 3
	2	5.9	29	2	PQ0486	globulin 2a - taro
808	2	5.9	29	2	S02200	prolamin alpha-1 -
809	2	5.9	29	2	A60683	malate dehydrogena
810	2	5.9	29	2	JQ0212	hypothetical 3K pr
811	2	5.9	29	2	S58541	hypothetical prote

812	2	5.9	29	2	PC2035	alanine transamina
813	2	5.9	2.9	. 2	S78714	protein YDR524w-a
814	2	5.9	29	2	B21112	variant surface gl
815	2	5.9	29	2	C60110	repetitive protein
816	2	5.9	29	2	D24802	cuticle protein 36
817	2	5.9	29	2	A56591	E75 steroid recept
818	2	5.9	29	2	A61613	-
819	2	5.9	29	2	B61613	ceratotoxin A - Me
820	2	5.9				ceratotoxin B - Me
821			29	2	PH1230	lectin - namazu (f
	2	5.9	29	2	A32860	biotin-binding pro
822	2	5.9	29	2	I50382	c-mil protein - ch
823	2	5.9	29	2	I50695	non-collagenous al
824	2	5.9	29	2	B54197	70k thyroid autoan
825	2	5.9	29	2	A35891	carcinoembryonic a
826	2	5.9	29	2	I77372	CD44SP - human
827	2	5.9	29	2	S54340	diazepam binding i
828	2	5.9	29	2	A41683	hyaluronate recept
829	2	5.9	29	2	C54037	splicing regulator
830	2	5.9	29	2	S35924	T-cell receptor ga
831	2	5.9	29	2	C61384	trachael mucin gly
832	2	5.9	29	2	A60604	glutathione peroxi
833	2	5.9	29	2	S57204	oviduct-specific s
834	2	5.9	29	2	I47025	
835	2	5.9	29	2	A49410	antigen WC1 [impor
836	2	5.9		2		t-complex polypept
837	2		29		PS0125	H-2 class I histoc
		5.9	29	2	S46929	teg169 protein - m
838	2	5.9	29	2	S38749	vimentin homolog -
839	2	5.9	29	2	S42764	Ca2+/calmodulin-de
840	2	5.9	29	2	A49708	synaptosomal-assoc
841	2	5.9	29	2	H83777	hypothetical prote
842	2	5.9	29	2	C83833	hypothetical prote
843	2	5.9	29	2	F83870	hypothetical prote
844	2	5.9	29	2	B84144	hypothetical prote
845	2	5.9	29	2	PC4421	multactivase (EC 3
846	2	5.9	29	2	B85840	hypothetical prote
847	2	5.9	29	2	C85840	hypothetical prote
848	2	5.9	29	2	G86058	hypothetical prote
849	2	5.9	29	2	E89904	hypothetical prote
850	2	5.9	29	2	H89949	hypothetical prote
851	2	5.9	29	2	A59278	neurotoxin BmK A3-
852	2	5.9	29	2	S17496	inorganic diphosph
853	2	5.9	29	2	PQ0782	
854	2	5.9	29	2	S34762	NADH2 dehydrogenas
855	2	5.9	29	2	AB0717	L-serine ammonia-l
856	2	5.9	29	2	AC0717	hypothetical prote
857	2	5.9	29	2		hypothetical prote
858	2	5.9			AH2338	PetN protein [impo
859	2		29	4	I58970	hypothetical prote
860		5.9	30	1	AIBSAF	thermophilic amino
	2	5.9	30	1	TIPU1W	trypsin inhibitor
861	2	5.9	30	1	OEON2K	beta-endorphin II
862	2	5.9	30	1	IRTRC3	protamine CIII, ma
863	2	5.9	30	1	IRTRC2	protamine la - rai
864	2	5.9	30	1	IRTR78	protamine CIII, mi
865	2	5.9	30	1	IRTR4	protamine pTP4 - r
866	2	5.9	30	1	CLHRY2	protamine YII - Pa
867	2	5.9	30	1	CLHR2A	protamine YII - At
868	2	5.9	30	1	SNUMP	sillucin - Rhizomu

869	2	5.9	30	2	I57689	ubiquinol-cytochro
870	2	5.9	30	2	I52254	gene CYP11B2 prote
871	2	5.9	30	2	B56859	fatty acid omega-h
872	2	5.9	30	2	A27375	photosystem I iron
873	2	5.9	30	2	S11131	
874	2	5.9	30	2	S14214	NADH2 dehydrogenas
875	2	5.9				NADH2 dehydrogenas
876	2		30	2	S08202	peroxidase (EC 1.1
		5.9	30	2	S08204	peroxidase (EC 1.1
877	2	5.9	30	2	S08203	peroxidase (EC 1.1
878	2	5.9	30	2	A39089	hydrogenase (EC 1.
879	2	5.9	30	2	I38066	nitric-oxide synth
880	2	5.9	30	2	I39799	CAT-66 - Bacillus
881	2	5.9	30	2	A18780	dimethylallyltrans
882	2	5.9	30	2	S03283	methionine adenosy
883	2	5.9	30	2	S71865	glutathione transf
884	2	5.9	30	2	B27103	aspartate transami
885	2	5.9	30	2	A27103	aspartate transami
886	2	5.9	30	2	155427	
887	2	5.9	30	2		aspartate transami
888	2				A49955	protein-tyrosine k
		5.9	30	2	S68639	nigroxin A - black
889	2	5.9	30	2	S68640	nigroxin B - black
890	2	5.9	30	2	A05004	pancreatic ribonuc
891	2	5.9	30	2	D57001	endo-1,4-beta-xyla
892	2	5.9	30	2	A43937	endo-1,4-beta-xyla
893	2	5.9	3.0	2	PC2361	alpha-glucosidase
894	2	5.9	30	2	PX0073	epoxide hydrolase
895	2	5.9	30	2	B60291	30K serine protein
896	2	5.9	30	2	A27634	major fecal allerg
897	2	5.9	30	2	B27634	major fecal allerg
898	2	5.9	30	2	I77411	renin-2 - mouse (f
899	2	5.9	30	2	PC2328	
900	2	5.9	30	2	A34486	proteasome endopep
901	2	5.9	30	2		inorganic diphosph
902	2				S21816	H+-exporting ATPas
903		5.9	30	2	S21814	H+-exporting ATPas
	2	5.9	30	2	S74121	fructose-bisphosph
904	2	5.9	30	2	S25666	phosphopyruvate hy
905	2	5.9	30	2	S69600	peptidylprolyl iso
906	2	5.9	30	2	A60517	alpha-1-antitrypsi
907	2	5.9	30	2	S24979	proteinase inhibit
908	2	5.9	-30	2	JX0057	trypsin inhibitor
909	2	5.9	30	2	JS0579	squash-type trypsi
910	2	5.9	30	2	JQ1958	trypsin inhibitor
911	2	5.9	30	2	PC1113	proteinase inhibit
912	2	5.9	30	2	C42842	antifungal 2S stor
913	2	5.9	30	2	S70341	napin large chain
914	2	5.9	30	2	S70343	
915	2	5.9	30	2	A33308	napin large chain
916	2	5.9	30	2		thrombomodulin - r
917	2				S01657	atrial natriuretic
		5.9	30	2	A61130	somatotropin - Ame
918	2	5.9	30	2	S44473	glucagon-like pept
919	2	5.9	30	2	A59076	defensin alpha-1 -
920	2	5.9	30	2	B59076	defensin alpha-2 -
921	2	5.9	30	2	C59076	defensin alpha-3 -
922	2	5.9	30	2	B60791	toxin II.6 - scorp
923	2	5.9	30	2	A31187	neurotoxin II.22.5
924	2	5.9	30	2	I68109	interferon alpha-W
925	2	5.9	30	2	C49533	T-cell receptor al
						i iiii iiiii ai

926	2	5.9	30	2	S20778	Ig heavy chain V r
927	2	5.9	30	2	PL0092	Ig heavy chain V r
928	2	5.9	30	2	PH0245	T-cell receptor Vb
929	2	5.9	30	2	PH0228	T-cell receptor Vb
930	2	5.9	30	2	PH0252	T-cell receptor Vb
931	2	5.9	30	2	PH0882	Ig kappa chain V r
932	2	5.9	30	2	E31461	
933	2	5.9	30	2	PH0235	T-cell receptor de
934	2	5.9	30	2	A49533	T-cell receptor Vb
935	2	5.9	30	2	C27579	T-cell receptor al
936	2	5.9	30	2	137626	T-cell receptor be
937	2	5.9	30	2		Fc gamma (IgG) rec
938	2	5.9	30		PS0121	H-2 class I histoc
939	2			2	S74192	crotoxin inhibitor
	2	5.9	30	2	A05253	hemoglobin epsilon
940		5.9	30	2	A21680	hemoglobin epsilon
941	2	5.9	30	2	A05254	hemoglobin epsilon
942	2	5.9	30	2	S68618	histone H2B - sea
943	2	5.9	30	2	PD0014	cAMP response elem
944	2	5.9	30	2	PN0651	restriction endonu
945	2	5.9	30	2	S11613	ribosomal protein
946	2	5.9	30	2	A60511	gamma-crystallin -
947	2	5.9	30	2	I49412	gamma-crystallin-3
948	2	5.9	30	2	S12965	gamma-crystallin -
949	2	5.9	30	2	S69269	ezrin homolog - bo
950	2	5.9	30	2	A61189	tubulin beta chain
951	2	5.9	30	2	I52806	Duchenne muscular
952	2	5.9	30	2	S21153	calcium-binding pr
953	2	5.9	30	2	A26188	lipocortin I - pig
954	2	5.9	30	2	A56790	annexin, isoform P
955	2	5.9	30	2	A34622	fibrinogen beta ch
956	2	5.9	30	2	A03148	retinol-binding pr
957	2	5.9	30	2	A48299	taurine transporte
958	2	5.9	30	2	B61511	serum albumin, mil
959	2	5.9	30	2	B39819	neutrophil chemota
960	2	5.9	30	2	A38933	vitronectin - bovi
961	2	5.9	30	2	S57234	fushi tarazu segme
962	2	5.9	30	2	S69124	rRNA N-glycosidase
963	2	5.9	30	2	S69125	rRNA N-glycosidase
964	2	5.9	30	2	S07065	
965	2	5.9	30	2	A31836	rRNA N-glycosidase
966	2	5.9	30	2	PQ0669	17K antigen - Rick
967	2	5.9	30	2	E45095	photosystem I 17.5
968	2	5.9	30	2		photosystem I ligh
969	2	5.9	30	2	B45095	photosystem I ligh
970	2	5.9			B24987	regulatory protein
971	2		30	2	S30757	genome polyprotein
972		5.9	30	2	S30760	genome polyprotein
973	2	5.9	30	2	S30759	genome polyprotein
	2	5.9	30	2	B44314	intracisternal A p
974	2	5.9	30	2	S13753	replication initia
975 076	2	5.9	30	2	S26175	tail tubular prote
976	2	5.9	30	2	S69352	N-methylhydantoin
977	2	5.9	30	2	S68312	glucuronosyltransf
978	2	5.9	30	2	PH1228	D-aminoacylase (EC
979	2	5.9	30	2	S42364	aromatic-amino-aci
980	2	5.9	30	2	S05223	photosystem I 6.5K
981	2	5.9	30	2	S28991	antifungal protein
982	2	5.9	30	2	PC2307	X-Pro aminopeptida

983	2	5.9	30	2	PQ0484	globulin 1b - taro
984	2	5.9	30	2	C43591	51K outer membrane
985	2	5.9	30	2	B43591	45K outer membrane
986	2	5.9	30	2	S06411	killer plasmid 28K
987	2	5.9	30	2	B49292	GDP dissociation i
988	2	5.9	30	2	A60914	pheromone-binding
989	2	5.9	30	2	PS0437	potassium channel
990	2	5.9	30	2	PS0438	potassium channel
991	2	5.9	30	2	A47607	immunogenic protei
992	2	5.9	30	2	S02088	blood group Rh-rel
993	2	5.9	30	2	S29138	aniline monooxygen
994	2	5.9	30	2	S57227	proboscipedia prot
995	2	5.9	30	2	H95008	hypothetical prote
996	2	5.9	30	2	C95030	hypothetical prote
997	2	5.9	30	2	G95031	hypothetical prote
998	2	5.9	30	2	E95079	hypothetical prote
999	2	5.9	30	2	F95118	hypothetical prote
1000	2	5.9	30	2	E95145	hypothetical prote

```
ALIGNMENTS
RESULT 1
A84241
hypothetical protein Vng0840h [imported] - Halobacterium sp. NRC-1
C; Species: Halobacterium sp. NRC-1
C; Date: 02-Feb-2001 #sequence revision 02-Feb-2001 #text change 02-Feb-2001
C; Accession: A84241
R;Ng, W.V.; Kennedy, S.P.; Mahairas, G.G.; Berquist, B.; Pan, M.; Shukla, H.D.;
Lasky, S.R.; Baliga, N.; Thorsson, V.; Sbrogna, J.; Swartzell, S.; Weir, D.;
Hall, J.; Dahl, T.A.; Welti, R.; Goo, Y.A.; Leithauser, B.; Keller, K.; Cruz,
R.; Danson, M.J.; Hough, D.W.; Maddocks, D.G.; Jablonski, P.E.; Krebs, M.P.;
Angevine, C.M.; Dale, H.; Isenbarger, T.A.; Peck, R.F.; Pohlschrod, M.; Spudich,
J.L.; Jung, K.H.; Alam, M.; Freitas, T.
Proc. Natl. Acad. Sci. U.S.A. 97, 12176-12181, 2000
A; Authors: Hou, S.; Daniels, C.J.; Dennis, P.P.; Omer, A.D.; Ebhardt, H.; Lowe,
T.M.; Liang, P.; Riley, M.; Hood, L.; DasSarma, S.
A; Title: Genome sequence of Halobacterium species NRC-1.
A; Reference number: A84160; MUID: 20504483; PMID: 11016950
A; Accession: A84241
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-34 <STO>
A; Cross-references: GB: AE004437; NID: g10580410; PIDN: AAG19293.1; GSPDB: GN00138
C; Genetics:
A; Gene: VNG0840H
  Query Match
                          14.7%; Score 5; DB 2;
                                                   Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 98;
             5; Conservative
                                 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           24 LRKKL 28
              1111
```

Db

26 LRKKL 30

```
RESULT 2
B97032
transcription regulator, AcrR family [imported] - Clostridium acetobutylicum
C; Species: Clostridium acetobutylicum
C; Date: 14-Sep-2001 #sequence revision 14-Sep-2001 #text change 14-Sep-2001
C; Accession: B97032
R; Nolling, J.; Breton, G.; Omelchenko, M.V.; Markarova, K.S.; Zenq, Q.; Gibson,
R.; Lee, H.M.; Dubois, J.; Qiu, D.; Hitti, J.; Wolf, Y.I.; Tatusov, R.L.;
Sabathe, F.; Doucette-Stamm, L.; Soucaille, P.; Daly, M.J.; Bennett, G.N.;
Koonin, E.V.; Smith, D.R.
J. Bacteriol. 183, 4823-4838, 2001
A; Title: Genome Sequence and Comparative Analysis of the Solvent-Producing
Bacterium Clostridium acetobutylicum.
A; Reference number: A96900; MUID: 21359325; PMID: 21359325
A; Accession: B97032
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-34 < KUR>
A;Cross-references: GB:AE001437; PIDN:AAK79045.1; PID:g15023984; GSPDB:GN00168
A; Experimental source: Clostridium acetobutylicum ATCC824
C; Genetics:
A; Gene: CAC1071
  Query Match
                          14.7%; Score 5; DB 2;
                                                   Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 98;
  Matches
             5; Conservative 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
            1 SVSEI 5
              Dh
           30 SVSEI 34
RESULT 3
E95098
hypothetical protein SP0853 [imported] - Streptococcus pneumoniae (strain TIGR4)
C; Species: Streptococcus pneumoniae
C;Date: 03-Aug-2001 #sequence revision 03-Aug-2001 #text_change 03-Aug-2001
C; Accession: E95098
R; Tettelin, H.; Nelson, K.E.; Paulsen, I.T.; Eisen, J.A.; Read, T.D.; Peterson,
S.; Heidelberg, J.; DeBoy, R.T.; Haft, D.H.; Dodson, R.J.; Durkin, A.S.; Gwinn,
M.; Kolonay, J.F.; Nelson, W.C.; Peterson, J.D.; Umayam, L.A.; White, O.;
Salzberg, S.L.; Lewis, M.R.; Radune, D.; Holtzapple, E.; Khouri, H.; Wolf, A.M.;
Utterback, T.R.; Hansen, C.L.; McDonald, L.A.; Feldblyum, T.V.; Angiuoli, S.;
Dickinson, T.; Hickey, E.K.; Holt, I.E.
Science 293, 498-506, 2001
A; Authors: Loftus, B.J.; Yang, F.; Smith, H.O.; Venter, J.C.; Dougherty, B.A.;
Morrison, D.A.; Hollingshead, S.K.; Fraser, C.M.
A; Title: Complete Genome Sequence of a virulent isolate of Streptococcus
pneumoniae.
A; Reference number: A95000; MUID: 21357209; PMID: 11463916
A; Accession: E95098
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-35 < KUR>
A; Cross-references: GB: AE005672; PIDN: AAK74982.1; PID: g14972326; GSPDB: GN00164;
TIGR:SP4SP0853
A; Experimental source: strain TIGR4
```

```
C:Genetics:
A;Gene: SP0853
  Query Match
                           14.7%; Score 5; DB 2; Length 35;
  Best Local Similarity
                          100.0%; Pred. No. 1e+02;
             5; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           26 KKLQD 30
               11111
Db
           30 KKLQD 34
RESULT 4
T09594
gene LFY protein - Monterey pine (fragment)
C; Species: Pinus radiata (Monterey pine)
C;Date: 16-Jul-1999 #sequence revision 16-Jul-1999 #text_change 16-Jul-1999
C; Accession: T09594
R; Izquierdo, L.Y.; Vergara, R.F.; Alvarez-Buylla, E.R.
submitted to the EMBL Data Library, August 1996
A; Description: Partial characterization of Pinus radiata meristem identity
homolog gene (LFY).
A; Reference number: Z16756
A; Accession: T09594
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-28 <IZQ>
A; Cross-references: EMBL: U66725; NID: g1513305; PID: g1513306
C: Genetics:
A; Gene: LFY
C; Function:
A; Description: controls meristem identity
  Query Match
                          11.8%; Score 4; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 9.9e+02;
            4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                  0; Gaps
                                                                              0;
           24 LRKK 27
Qу
              1111
Db
           15 LRKK 18
RESULT 5
A55527
pyrroloquinoline quinone precursor pqqD - Methylobacterium extorquens
C; Species: Methylobacterium extorquens
C;Date: 18-Feb-2000 #sequence revision 18-Feb-2000 #text change 18-Feb-2000
C; Accession: A55527
R; Morris, C.J.; Biville, F.; Turlin, E.; Lee, E.; Ellermann, K.; Fan, W.H.;
Ramamoorthi, R.; Springer, A.L.; Lidstrom, M.E.
J. Bacteriol. 176, 1746-1755, 1994
A; Title: Isolation, phenotypic characterization, and complementation analysis of
mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline
quinone and sequences of pqqD, pqqG, and pqqC.
A; Reference number: A55527; MUID: 94179111; PMID: 8132470
A; Accession: A55527
```

A; Status: preliminary

```
A; Molecule type: DNA
A; Residues: 1-29 < MOR>
A;Cross-references: GB:L25889; NID:g414589; PIDN:AAA17878.1; PID:g414590
C; Genetics:
A; Gene: pgqD
C; Superfamily: pyrroloquinoline quinone precursor pqqA
C; Keywords: quinoprotein
F;16,20/Product: pyrroloquinoline quinone #status predicted <MAT>
F;16-20/Cross-link: pyrroloquinoline quinone (Glu, Tyr) #status predicted
  Query Match
                          11.8%; Score 4; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 1e+03;
            4; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
            2 VSEI 5
Qу
              Db
            8 VSEI 11
RESULT 6
S01614
dystrophin - rat (fragment)
C; Species: Rattus norvegicus (Norway rat)
C;Date: 07-Sep-1990 #sequence revision 07-Sep-1990 #text change 20-Jun-2000
C; Accession: S01614
R; Nudel, U.; Robzyk, K.; Yaffe, D.
Nature 331, 635-638, 1988
A; Title: Expression of the putative Duchenne muscular dystrophy gene in
differentiated myogenic cell cultures and in the brain.
A; Reference number: S01614; MUID: 88122671; PMID: 3340214
A; Accession: S01614
A; Status: translation not shown
A; Molecule type: DNA
A; Residues: 1-29 < NUD>
A; Cross-references: EMBL: X07000; NID: g56137; PIDN: CAA30057.1; PID: g1334214
C; Genetics:
A; Map position: X
C; Superfamily: dystrophin; alpha-actinin actin-binding domain homology;
spectrin/dystrophin repeat homology; WW repeat homology
C; Keywords: actin binding; cytoskeleton
  Query Match
                          11.8%; Score 4; DB 2; Length 29;
  Best Local Similarity 100.0%; Pred. No. 1e+03;
             4; Conservative 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           27 KLOD 30
              1111
Db
           12 KLQD 15
RESULT 7
I78537
copper transporting P-type ATPase - human (fragment)
C; Species: Homo sapiens (man)
C;Date: 29-May-1998 #sequence revision 29-May-1998 #text change 21-Jul-2000
C; Accession: I78537
R; Thomas, G.R.; Forbes, J.R.; Roberts, E.A.; Walshe, J.M.; Cox, D.W.
```

```
Nature Genet. 9, 210-217, 1995
A; Title: The Wilson disease gene: spectrum of mutations and their consequences.
A; Reference number: I58128; MUID: 95235569; PMID: 7626145
A; Accession: 178537
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: DNA
A; Residues: 1-29 < RES>
A; Cross-references: GB:S77450; NID:g957354; PIDN:AAB34087.1; PID:g957355
C; Genetics:
A; Gene: GDB: ATP7B
A; Cross-references: GDB:120494; OMIM:277900
A; Map position: 13q14.3-13q21.1
  Ouery Match
                          11.8%; Score 4; DB 2; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 1e+03;
  Matches
            4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0:
Qу
            3 SEIQ 6
              Db
           14 SEIO 17
RESULT 8
S78412
ribosomal protein RL22/RL24, mitochondrial [validated] - rat (tentative
sequence) (fragment)
C; Species: Rattus norvegicus (Norway rat)
C;Date: 25-Feb-1998 #sequence revision 13-Mar-1998 #text_change 21-Jul-2000
C; Accession: S78412; S78413
R;Goldschmidt-Reisin, S.; Graack, H.R.
submitted to the Protein Sequence Database, February 1998
A; Reference number: S78411
A; Accession: S78412
A; Molecule type: protein
A; Residues: 1-29 <GOL>
A; Note: the protein is designated as mitochondrial ribosomal protein L22
A; Accession: S78413
A; Molecule type: protein
A; Residues: 1-10, 'XXP', 14-15, 'X', 17-24 <GO2>
A; Note: the protein is designated as mitochondrial ribosomal protein L24
C; Keywords: mitochondrion; protein biosynthesis; ribosome
  Query Match
                          11.8%; Score 4; DB 2; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 1e+03;
            4; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0:
           24 LRKK 27
QУ
              1111
Db
            4 LRKK 7
RESULT 9
S63531
hypothetical protein 1 - Sulfolobus solfataricus (fragment)
C; Species: Sulfolobus solfataricus
C;Date: 28-Oct-1996 #sequence revision 13-Mar-1997 #text_change 17-Mar-1999
C; Accession: S63531
```

```
R; Jones, C.E.; Fleming, T.M.; Cowan, D.A.; Littlechild, J.A.; Piper, P.W.
Eur. J. Biochem. 233, 800-808, 1995
A; Title: The phosphoglycerate kinase and glyceraldehyde-3-phosphate
dehydrogenase genes from the thermophilic archaeon Sulfolobus solfataricus
overlap by 8-bp: isolation, sequencing of the genes and expression in
Escherichia coli.
A; Reference number: S63528; MUID: 96085144; PMID: 8521845
A; Accession: S63531
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-30 < JON>
A; Cross-references: EMBL: X80178
  Query Match
                          11.8%; Score 4; DB 2; Length 30;
  Best Local Similarity
                          100.0%; Pred. No. 1e+03;
            4; Conservative
  Matches
                                0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           23 WLRK 26
Qу
              1111
Db
           11 WLRK 14
RESULT 10
S44471
glucagon G1 - North American paddlefish (Polyodon spathula)
C; Species: Polyodon spathula
C;Date: 18-Sep-1997 #sequence revision 18-Sep-1997 #text change 07-May-1999
C; Accession: S44471
R; Nguyen, T.M.; Mommsen, T.P.; Mims, S.M.; Conlon, J.M.
Biochem. J. 300, 339-345, 1994
A; Title: Characterization of insulins and proglucagon-derived peptides from a
phylogenetically ancient fish, the paddlefish (Polyodon spathula).
A; Reference number: S44467; MUID: 94271144; PMID: 8002937
A; Accession: S44471
A; Molecule type: protein
A; Residues: 1-31 <NGU>
A; Experimental source: pancreas
C; Superfamily: glucagon
C; Keywords: carbohydrate metabolism; duplication; hormone; pancreas
F;1-31/Product: glucagon G1 #status predicted <MAT>
  Query Match
                          11.8%; Score 4; DB 2; Length 31;
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
             4; Conservative 0; Mismatches
                                                                  0; Gaps
                                                   0; Indels
                                                                              0;
           21 VEWL 24
Qу
              Db
           23 VEWL 26
RESULT 11
S44472
glucagon G2 - North American paddlefish (Polyodon spathula)
C; Species: Polyodon spathula
C;Date: 19-Mar-1997 #sequence revision 12-Dec-1997 #text_change 07-May-1999
C; Accession: S44472
R; Nguyen, T.M.; Mommsen, T.P.; Mims, S.M.; Conlon, J.M.
```

```
Biochem. J. 300, 339-345, 1994
A; Title: Characterization of insulins and proglucagon-derived peptides from a
phylogenetically ancient fish, the paddlefish (Polyodon spathula).
A; Reference number: S44467; MUID: 94271144; PMID: 8002937
A; Accession: S44472
A; Molecule type: protein
A; Residues: 1-31 < NGU>
A; Note: the sequence from Fig. 3 is inconsistent with that from Fig. 5 in having
29-Glu
C; Superfamily: glucagon
C; Keywords: carbohydrate metabolism; duplication; hormone; pancreas
F;1-31/Product: glucagon G2 #status predicted <GCN>
  Query Match
                          11.8%; Score 4; DB 2; Length 31;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
  Matches
            4; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
           21 VEWL 24
Qу
              1111
Db
           23 VEWL 26
RESULT 12
D70236
hypothetical protein BBH11 - Lyme disease spirochete plasmid H/lp28-3
C; Species: Borrelia burgdorferi (Lyme disease spirochete)
C;Date: 13-Feb-1998 #sequence_revision 13-Feb-1998 #text_change 08-Oct-1999
C; Accession: D70236
R; Fraser, C.M.; Casjens, S.; Huang, W.M.; Sutton, G.G.; Clayton, R.; Lathiqra,
R.; White, O.; Ketchum, K.A.; Dodson, R.; Hickey, E.K.; Gwinn, M.; Dougherty,
B.; Tomb, J.F.; Fleischmann, R.D.; Richardson, D.; Peterson, J.; Kerlavage,
A.R.; Quackenbush, J.; Salzberg, S.; Hanson, M.; Vugt, R.V.; Palmer, N.; Adams,
M.D.; Gocayne, J.; Weidman, J.; Utterback, T.; Watthey, L.; McDonald, L.;
Artiach, P.; Bowman, C.; Garland, S.; Fujii, C.; Cotton, M.D.; Horst, K.;
Roberts, K.; Hatch, B.
Nature 390, 580-586, 1997
A; Authors: Smith, H.O.; Venter, J.C.
A; Title: Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi.
A; Reference number: A70100; MUID: 98065943; PMID: 9403685
A; Accession: D70236
A; Status: preliminary; nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-31 < KLE>
A; Cross-references: GB: AE000784; NID: g2690041; PIDN: AAC66002.1; PID: g2690058;
TIGR: BBH11
A; Experimental source: strain B31
C; Genetics:
A;Genome: plasmid
  Ouery Match
                          11.8%; Score 4; DB 2; Length 31;
  Best Local Similarity 100.0%; Pred. No. 1.1e+03;
 Matches
             4; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           26 KKLQ 29
Qу
              1111
Db
           26 KKLQ 29
```

```
RESULT 13
F23454
ovalbumin phosphoserine peptide - fulvous whistling-duck (fragments)
C; Species: Dendrocygna bicolor (fulvous whistling-duck)
C; Date: 05-Jun-1987 #sequence revision 05-Jun-1987 #text change 13-Mar-1998
C; Accession: F23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: F23454
A; Molecule type: protein
A; Residues: 1-32 < HEN>
C; Superfamily: antithrombin III
  Query Match
                          11.8%; Score 4; DB 2; Length 32;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
 Matches
           4; Conservative 0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
            1 SVSE 4
              1111
           26 SVSE 29
RESULT 14
D31461
T-cell receptor delta chain BDN7, thymus - mouse (fragment)
C; Species: Mus musculus (house mouse)
C;Date: 05-Oct-1989 #sequence revision 05-Oct-1989 #text change 30-May-1997
C; Accession: D31461
R; Lacy, M.J.; McNeil, L.K.; Roth, M.E.; Kranz, D.M.
Proc. Natl. Acad. Sci. U.S.A. 86, 1023-1026, 1989
A; Title: T-cell receptor delta-chain diversity in peripheral lymphocytes.
A; Reference number: A31461; MUID: 89128840; PMID: 2783779
A; Accession: D31461
A; Status: preliminary; not compared with conceptual translation
A; Molecule type: mRNA
A; Residues: 1-32 <LAC>
C; Superfamily: immunoglobulin V region; immunoglobulin homology
C; Keywords: T-cell receptor
 Query Match
                          11.8%; Score 4; DB 2; Length 32;
 Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
 Matches
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
           18 MERV 21
QУ
              Db
           8 MERV 11
RESULT 15
G84161
hypothetical protein Vng0019h [imported] - Halobacterium sp. NRC-1
C; Species: Halobacterium sp. NRC-1
C;Date: 02-Feb-2001 #sequence_revision 02-Feb-2001 #text_change 02-Feb-2001
```

```
C; Accession: G84161
R;Ng, W.V.; Kennedy, S.P.; Mahairas, G.G.; Berquist, B.; Pan, M.; Shukla, H.D.;
Lasky, S.R.; Baliga, N.; Thorsson, V.; Sbrogna, J.; Swartzell, S.; Weir, D.;
Hall, J.; Dahl, T.A.; Welti, R.; Goo, Y.A.; Leithauser, B.; Keller, K.; Cruz,
R.; Danson, M.J.; Hough, D.W.; Maddocks, D.G.; Jablonski, P.E.; Krebs, M.P.;
Angevine, C.M.; Dale, H.; Isenbarger, T.A.; Peck, R.F.; Pohlschrod, M.; Spudich,
J.L.; Jung, K.H.; Alam, M.; Freitas, T.
Proc. Natl. Acad. Sci. U.S.A. 97, 12176-12181, 2000
A; Authors: Hou, S.; Daniels, C.J.; Dennis, P.P.; Omer, A.D.; Ebhardt, H.; Lowe,
T.M.; Liang, P.; Riley, M.; Hood, L.; DasSarma, S.
A; Title: Genome sequence of Halobacterium species NRC-1.
A; Reference number: A84160; MUID: 20504483; PMID: 11016950
A; Accession: G84161
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-32 <STO>
A; Cross-references: GB: AE004437; NID: g10579667; PIDN: AAG18659.1; GSPDB: GN00138
C; Genetics:
A; Gene: VNG0019H
  Query Match
                          11.8%; Score 4; DB 2; Length 32;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
  Matches
           4; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           27 KLOD 30
Qу
              1111
Db
           13 KLQD 16
RESULT 16
E81714
hypothetical protein TC0337 [imported] - Chlamydia muridarum (strain Nigg)
C; Species: Chlamydia muridarum, Chlamydia trachomatis MoPn
C;Date: 31-Mar-2000 #sequence revision 31-Mar-2000 #text change 11-May-2000
C; Accession: E81714
R; Read, T.D.; Brunham, R.C.; Shen, C.; Gill, S.R.; Heidelberg, J.F.; White, O.;
Hickey, E.K.; Peterson, J.; Utterback, T.; Berry, K.; Bass, S.; Linher, K.;
Weidman, J.; Khouri, H.; Craven, B.; Bowman, C.; Dodson, R.; Gwinn, M.; Nelson,
W.; DeBoy, R.; Kolonay, J.; McClarty, G.; Salzberg, S.L.; Eisen, J.; Fraser,
C.M.
Nucleic Acids Res. 28, 1397-1406, 2000
A; Title: Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae
AR39.
A; Reference number: A81500; MUID: 20150255; PMID: 10684935
A; Accession: E81714
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-33 <TET>
A; Cross-references: GB: AE002301; GB: AE002160; NID: g7190372; PIDN: AAF39200.1;
PID:g7190379; GSPDB:GN00121; TIGR:TC0337
A; Experimental source: strain Nigg (MoPn)
C; Genetics:
A;Gene: TC0337
  Query Match
                          11.8%; Score 4; DB 2; Length 33;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+03;
 Matches
           4; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
```

```
24 LRKK 27
QУ
               111
Db
           26 LRKK 29
RESULT 17
D23454
ovalbumin phosphoserine peptide - golden pheasant (fragments)
C; Species: Chrysolophus pictus (golden pheasant)
C;Date: 05-Jun-1987 #sequence_revision 05-Jun-1987 #text_change 13-Mar-1998
C; Accession: D23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: D23454
A; Molecule type: protein
A; Residues: 1-35 < HEN>
C; Superfamily: antithrombin III
  Query Match
                           11.8%; Score 4; DB 2; Length 35;
  Best Local Similarity
                          100.0%; Pred. No. 1.2e+03;
  Matches
            4; Conservative 0; Mismatches
                                                   0;
                                                       Indels
                                                                  0; Gaps
                                                                              0;
            1 SVSE 4
Qу
              | | | | |
Db
           29 SVSE 32
RESULT 18
G23454
ovalbumin phosphoserine peptide - magpie goose (fragments)
C; Species: Anseranas semipalmata (magpie goose)
C;Date: 05-Jun-1987 #sequence_revision 05-Jun-1987 #text_change 13-Mar-1998
C; Accession: G23454
R; Henderson, J.Y.; Moir, A.J.G.; Fothergill, L.A.; Fothergill, J.E.
Eur. J. Biochem. 114, 439-450, 1981
A; Title: Sequences of sixteen phosphoserine peptides from ovalbumins of eight
species.
A; Reference number: A91106; MUID: 81164535; PMID: 6783411
A; Accession: G23454
A; Molecule type: protein
A; Residues: 1-35 < HEN>
C; Superfamily: antithrombin III
  Query Match
                          11.8%; Score 4; DB 2; Length 35;
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
            1 SVSE 4
Qу
              1111
Db
           29 SVSE 32
```

```
D82125
hypothetical protein VC2034 [imported] - Vibrio cholerae (strain N16961
serogroup 01)
C; Species: Vibrio cholerae
C;Date: 18-Aug-2000 #sequence revision 20-Aug-2000 #text change 02-Feb-2001
C; Accession: D82125
R; Heidelberg, J.F.; Eisen, J.A.; Nelson, W.C.; Clayton, R.A.; Gwinn, M.L.;
Dodson, R.J.; Haft, D.H.; Hickey, E.K.; Peterson, J.D.; Umayam, L.A.; Gill,
S.R.; Nelson, K.E.; Read, T.D.; Tettelin, H.; Richardson, D.; Ermolaeva, M.D.;
Vamathevan, J.; Bass, S.; Qin, H.; Dragoi, I.; Sellers, P.; McDonald, L.;
Utterback, T.; Fleishmann, R.D.; Nierman, W.C.; White, O.; Salzberg, S.L.;
Smith, H.O.; Colwell, R.R.; Mekalanos, J.J.; Venter, J.C.; Fraser, C.M.
Nature 406, 477-483, 2000
A; Title: DNA Sequence of both chromosomes of the cholera pathogen Vibrio
cholerae.
A; Reference number: A82035; MUID: 20406833; PMID: 10952301
A; Accession: D82125
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-35 <HEI>
A; Cross-feferences: GB:AE004278; GB:AE003852; NID:g9656579; PIDN:AAF95182.1;
GSPDB:GN00126; TIGR:VC2034
A; Experimental source: serogroup O1; strain N16961; biotype El Tor
C; Genetics:
A; Gene: VC2034
A; Map position: 1
  Query Match
                          11.8%; Score 4; DB 2; Length 35;
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
  Matches
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           26 KKLQ 29
              Db
           24 KKLO 27
RESULT 20
S70806
hypothetical protein 5 - Vibrio cholerae (fragment)
N; Alternate names: flagellar protein flaA homolog
C; Species: Vibrio cholerae
C;Date: 12-Feb-1998 #sequence revision 20-Feb-1998 #text_change 26-Aug-1999
C; Accession: S70806
R; Camilli, A.; Mekalanos, J.J.
Mol. Microbiol. 18, 671-683, 1995
A; Title: Use of recombinase gene fusions to identify Vibrio cholerae genes
induced during infection.
A; Reference number: S70798; MUID: 96414469; PMID: 8817490
A; Accession: S70806
A; Status: preliminary; nucleic acid sequence not shown
A; Molecule type: DNA
A; Residues: 1-36 < CAM>
A; Cross-references: EMBL: U25820; NID: g1165195; PIDN: AAC43560.1; PID: g1165196
C; Superfamily: flagellin
  Query Match
                          11.8%; Score 4; DB 2; Length 36;
  Best Local Similarity
                          100.0%; Pred. No. 1.2e+03;
```

```
Matches
             4; Conservative
                                  0; Mismatches
                                                    0; Indels
                                                                   0; Gaps
                                                                               0;
QУ
           17 SMER 20
               | | | |
Db
           14 SMER 17
RESULT 21
F95057
hypothetical protein SP0497 [imported] - Streptococcus pneumoniae (strain TIGR4)
C; Species: Streptococcus pneumoniae
C;Date: 03-Aug-2001 #sequence revision 03-Aug-2001 #text_change 03-Aug-2001
C; Accession: F95057
R; Tettelin, H.; Nelson, K.E.; Paulsen, I.T.; Eisen, J.A.; Read, T.D.; Peterson,
S.; Heidelberg, J.; DeBoy, R.T.; Haft, D.H.; Dodson, R.J.; Durkin, A.S.; Gwinn,
M.; Kolonay, J.F.; Nelson, W.C.; Peterson, J.D.; Umayam, L.A.; White, O.;
Salzberg, S.L.; Lewis, M.R.; Radune, D.; Holtzapple, E.; Khouri, H.; Wolf, A.M.;
Utterback, T.R.; Hansen, C.L.; McDonald, L.A.; Feldblyum, T.V.; Angiuoli, S.;
Dickinson, T.; Hickey, E.K.; Holt, I.E.
Science 293, 498-506, 2001
A; Authors: Loftus, B.J.; Yang, F.; Smith, H.O.; Venter, J.C.; Dougherty, B.A.;
Morrison, D.A.; Hollingshead, S.K.; Fraser, C.M.
A; Title: Complete Genome Sequence of a virulent isolate of Streptococcus
pneumoniae.
A; Reference number: A95000; MUID: 21357209; PMID: 11463916
A; Accession: F95057
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-36 < KUR>
A; Cross-references: GB: AE005672; PIDN: AAK74655.1; PID: g14971969; GSPDB: GN00164;
TIGR: SP4SP0497
A; Experimental source: strain TIGR4
C; Genetics:
A; Gene: SP0497
  Query Match
                          11.8%; Score 4; DB 2; Length 36;
  Best Local Similarity
                          100.0%; Pred. No. 1.2e+03;
  Matches
             4; Conservative
                               0; Mismatches
                                                    0;
                                                       Indels
                                                                  0; Gaps
                                                                               0;
Qу
           26 KKLO 29
              Db
           10 KKLQ 13
RESULT 22
A84774
hypothetical protein At2g35870 [imported] - Arabidopsis thaliana
C; Species: Arabidopsis thaliana (mouse-ear cress)
C;Date: 02-Feb-2001 #sequence_revision 02-Feb-2001 #text_change 02-Feb-2001
C; Accession: A84774
R; Lin, X.; Kaul, S.; Rounsley, S.D.; Shea, T.P.; Benito, M.I.; Town, C.D.;
Fujii, C.Y.; Mason, T.M.; Bowman, C.L.; Barnstead, M.E.; Feldblyum, T.V.; Buell,
C.R.; Ketchum, K.A.; Lee, J.J.; Ronning, C.M.; Koo, H.; Moffat, K.S.; Cronin,
L.A.; Shen, M.; VanAken, S.E.; Umayam, L.; Tallon, L.J.; Gill, J.E.; Adams,
M.D.; Carrera, A.J.; Creasy, T.H.; Goodman, H.M.; Somerville, C.R.; Copenhaver.
G.P.; Preuss, D.; Nierman, W.C.; White, O.; Eisen, J.A.; Salzberg, S.L.; Fraser,
C.M.; Venter, J.C.
```

```
Nature 402, 761-768, 1999
A; Title: Sequence and analysis of chromosome 2 of the plant Arabidopsis
A; Reference number: A84420; MUID: 20083487; PMID: 10617197
A; Accession: A84774
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-36 <STO>
A; Cross-references: GB: AE002093; NID: g4510382; PIDN: AAD21470.1; GSPDB: GN00139
C:Genetics:
A; Gene: At2q35870
A; Map position: 2
  Query Match
                          11.8%; Score 4; DB 2; Length 36;
  Best Local Similarity
                          100.0%; Pred. No. 1.2e+03;
  Matches
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0:
QУ
           26 KKLO 29
              1111
Db
            4 KKLQ 7
RESULT 23
S46227
hypothetical protein - Streptomyces chrysomallus (fragment)
C; Species: Streptomyces chrysomallus
C;Date: 19-Mar-1997 #sequence revision 29-Aug-1997 #text change 28-May-1999
C; Accession: S46227
R; Pahl, A.; Keller, U.
EMBO J. 13, 3472-3480, 1994
A; Title: Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting of
two FK506 binding domains; its gene is transcriptionally coupled to the FKBP-12
gene.
A; Reference number: S46227; MUID: 94341259; PMID: 8062824
A; Accession: S46227
A; Molecule type: DNA
A; Residues: 1-36 < PAH>
A; Cross-references: GB:Z34523; NID:g535270; PIDN:CAA84281.1; PID:g633645
A; Experimental source: strain ATCC 11523
                          11.8%; Score 4; DB 2; Length 36;
  Best Local Similarity 100.0%; Pred. No. 1.2e+03;
  Matches
           4; Conservative 0; Mismatches
                                                                 0; Gaps
                                                  0; Indels
           19 ERVE 22
Qу
              27 ERVE 30
Db
RESULT 24
S71912
hemoglobin, extracellular, chain A1 - polychaete (Perinereis aibuhitensis)
(fragment)
C; Species: Perinereis aibuhitensis
C;Date: 14-Apr-1998 #sequence revision 08-May-1998 #text_change 02-Jul-1998
C; Accession: S71912
```

```
R; Matsubara, K.; Yamaki, M.; Nagayama, K.; Imai, K.; Ishii, H.; Gotoh, T.;
Ebina, S.
Biochim. Biophys. Acta 1290, 215-223, 1996
A; Title: Wheat germ agglutinin-reactive chains of giant hemoglobin from the
polychaete Perinereis aibuhitensis.
A; Reference number: S71912; MUID: 96350431; PMID: 8765123
A; Accession: S71912
A; Molecule type: protein
A; Residues: 1-37 < MAT>
C; Superfamily: globin; globin homology
C; Keywords: chromoprotein; heme; iron; oxygen carrier
  Query Match
                          11.8%; Score 4; DB 2; Length 37;
  Best Local Similarity
                          100.0%; Pred. No. 1.3e+03;
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
           19 ERVE 22
QУ
              Db
           25 ERVE 28
RESULT 25
T12635
homeotic protein HAHB-2 - common sunflower (fragment)
C; Species: Helianthus annuus (common sunflower)
C;Date: 13-Aug-1999 #sequence revision 13-Aug-1999 #text change 21-Jul-2000
C; Accession: T12635
R; Chan, R.L.; Gonzalez, D.H.
Plant Physiol. 106, 1687-1688, 1994
A; Title: A cDNA encoding an HD-zip protein from sunflower.
A; Reference number: Z17563; MUID: 95148747; PMID: 7846169
A; Accession: T12635
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: mRNA
A; Residues: 1-37 < CHA>
A; Cross-references: EMBL:L22849; NID:g349258; PIDN:AAA63766.1; PID:g349259
C; Keywords: DNA binding; homeobox; transcription regulation
  Query Match
                          11.8%; Score 4; DB 2; Length 37;
  Best Local Similarity 100.0%; Pred. No. 1.3e+03;
  Matches
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           25 RKKL 28
              Db
            6 RKKL 9
RESULT 26
CKFHCS
sarcotoxin IC - flesh fly (Sarcophaga peregrina)
C; Species: Sarcophaga peregrina
C;Date: 31-Mar-1988 #sequence_revision 31-Mar-1988 #text_change 08-Dec-1995
C; Accession: C22625
R;Okada, M.; Natori, S.
J. Biol. Chem. 260, 7174-7177, 1985
A; Title: Primary structure of sarcotoxin I, an antibacterial protein induced in
the hemolymph of Sarcophaga peregrina (flesh fly) larvae.
```

```
A:Accession: C22625
A; Molecule type: protein
A; Residues: 1-39 < OKA>
C; Comment: Sarcotoxins, which are potent bactericidal proteins, are produced in
response to injury. They are cytotoxic to both Gram positive and Gram negative
bacteria.
C; Superfamily: cecropin
C; Keywords: amidated carboxyl end; antibacterial; hemolymph
F;39/Modified site: amidated carboxyl end (Arq) #status predicted
                          11.8%; Score 4; DB 1; Length 39;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 1.3e+03;
  Matches
             4; Conservative
                                0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
           23 WLRK 26
Qу
              1111
Db
            2 WLRK 5
RESULT 27
S71913
hemoglobin, extracellular, chain A2 - polychaete (Perinereis aibuhitensis)
(fragment)
C; Species: Perinereis aibuhitensis
C; Date: 14-Apr-1998 #sequence revision 08-May-1998 #text change 02-Jul-1998
C; Accession: S71913
R; Matsubara, K.; Yamaki, M.; Nagayama, K.; Imai, K.; Ishii, H.; Gotoh, T.;
Ebina, S.
Biochim. Biophys. Acta 1290, 215-223, 1996
A; Title: Wheat germ agglutinin-reactive chains of giant hemoglobin from the
polychaete Perinereis aibuhitensis.
A; Reference number: S71912; MUID: 96350431; PMID: 8765123
A; Accession: S71913
A; Molecule type: protein
A; Residues: 1-39 <MAT>
C; Superfamily: globin; globin homology
C; Keywords: chromoprotein; heme; iron; oxygen carrier
  Query Match
                          11.8%; Score 4; DB 2; Length 39;
  Best Local Similarity 100.0%; Pred. No. 1.3e+03;
             4; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
           19 ERVE 22
Qу
              Db
           27 ERVE 30
RESULT 28
S77164
ycf32 protein - Synechocystis sp. (strain PCC 6803)
N; Alternate names: protein sml0007
C; Species: Synechocystis sp.
A; Variety: PCC 6803
C;Date: 25-Apr-1997 #sequence_revision 25-Apr-1997 #text_change 20-Jun-2000
C; Accession: S77164
```

A; Reference number: A92536; MUID: 85207747; PMID: 3888997

```
R; Kaneko, T.; Sato, S.; Kotani, H.; Tanaka, A.; Asamizu, E.; Nakamura, Y.;
Miyajima, N.; Hirosawa, M.; Sugiura, M.; Sasamoto, S.; Kimura, T.; Hosouchi, T.;
Matsuno, A.; Muraki, A.; Nakazaki, N.; Naruo, K.; Okumura, S.; Shimpo, S.;
Takeuchi, C.; Wada, T.; Watanabe, A.; Yamada, M.; Yasuda, M.; Tabata, S.
DNA Res. 3, 109-136, 1996
A; Title: Sequence analysis of the genome of the unicellular cyanobacterium
Synechocystis sp. PCC6803. II. Sequence determination of the entire genome and
assignment of potential protein-coding regions.
A; Reference number: S74322; MUID: 97061201; PMID: 8905231
A; Accession: S77164
A; Status: nucleic acid sequence not shown; translation not shown
A; Molecule type: DNA
A; Residues: 1-39 < KAN>
A; Cross-references: EMBL: D90908; GB: AB001339; NID: g1652725; PIDN: BAA17722.1;
PID:q1652803
A; Note: the nucleotide sequence was submitted to the EMBL Data Library, June
1996
C; Genetics:
A; Gene: ycf32
C; Superfamily: hypothetical protein ycf32
  Query Match
                          11.8%; Score 4; DB 2; Length 39;
  Best Local Similarity
                          100.0%; Pred. No. 1.3e+03;
             4; Conservative
                                 0; Mismatches
                                                    0;
                                                       Indels
                                                                  0; Gaps
                                                                              0;
Qу
           28 LQDV 31
              Db
           31 LQDV 34
RESULT 29
A42272
brain-type creatine kinase, peptide B - spiny dogfish (fragment)
C; Species: Squalus acanthias (spiny dogfish)
C;Date: 04-Mar-1993 #sequence revision 18-Nov-1994 #text_change 11-Apr-1997
C; Accession: A42272
R; Friedman, D.L.; Roberts, R.
J. Biol. Chem. 267, 4270-4276, 1992
A; Title: Purification and localization of brain-type creatine kinase in sodium
chloride transporting epithelia of the spiny dogfish, Squalus acanthias.
A; Reference number: A42272; MUID: 92156175; PMID: 1310991
A; Accession: A42272
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 <FRI>
A; Note: sequence extracted from NCBI backbone (NCBIP:82919)
C; Superfamily: creatine kinase; creatine kinase repeat homology
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
             3; Conservative
                                0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           26 KKL 28
              Db
           10 KKL 12
```

```
RESULT 30
C32416
phospholipase A2 (EC 3.1.1.4) pseudexin chain C - red-bellied black snake
(fragment)
C; Species: Pseudechis porphyriacus (red-bellied black snake)
C;Date: 05-Oct-1989 #sequence revision 05-Oct-1989 #text change 23-Jun-1993
C; Accession: C32416
R; Schmidt, J.J.; Middlebrook, J.L.
Toxicon 27, 805-818, 1989
A; Title: Purification, sequencing and characterization of pseudexin
phospholipases A-2 from Pseudechis porphyriacus (Australian red-bellied black
snake).
A; Reference number: A32416; MUID: 89388835; PMID: 2675391
A; Accession: C32416
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 <SCH>
C; Superfamily: phospholipase A2
C; Keywords: carboxylic ester hydrolase
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
  Matches
          3; Conservative 0; Mismatches 0; Indels
                                                                              0;
            5 IOL 7
Qу
              3 IQL 5
Db
RESULT 31
B60071
vasoactive intestinal peptide - rhesus macaque
C; Species: Macaca mulatta (rhesus macaque)
C;Date: 28-Apr-1993 #sequence revision 28-Apr-1993 #text change 20-Mar-1998
C; Accession: B60071
R;Yu, J.; Xin, Y.; Eng, J.; Yalow, R.S.
Regul. Pept. 32, 39-45, 1991
A; Title: Rhesus monkey gastroenteropancreatic hormones: relationship to human
sequences.
A; Reference number: A60071; MUID: 91164506; PMID: 2003150
A; Accession: B60071
A; Status: protein sequence not shown
A; Molecule type: protein
A; Residues: 1-28 < YUA>
A; Note: the sequence is identical with the human sequence
C; Superfamily: glucagon
C; Keywords: duplication; hormone; intestine; neuropeptide; vasodilator
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
 Best Local Similarity 100.0%; Pred. No. 1.1e+04;
            3; Conservative
                              0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
           15 LNS 17
Qу
              Db
           23 LNS 25
```

```
RESULT 32
A60304
vasoactive intestinal peptide - dog
N; Alternate names: VIP
C; Species: Canis lupus familiaris (dog)
C; Date: 15-Jan-1993 #sequence revision 15-Jan-1993 #text change 20-Mar-1998
C; Accession: A60304
R; Eng, J.; Pan, Y.C.E.; Raufman, J.P.; Yalow, R.S.
Regul. Pept. Suppl. 3, S14, 1985
A; Title: Purification and sequencing of dog and guinea pig VIP's.
A; Reference number: A60304
A; Accession: A60304
A; Molecule type: protein
A; Residues: 1-28 < ENG>
C; Superfamily: glucagon
C; Keywords: duplication; hormone; intestine; neuropeptide; vasodilator
  Query Match
                            8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity
                           100.0%; Pred. No. 1.1e+04;
  Matches
             3; Conservative
                               0; Mismatches
                                                     0; Indels
                                                                   0; Gaps
                                                                                0;
Qу
           15 LNS 17
              \parallel \parallel \parallel
Db
           23 LNS 25
RESULT 33
S58386
T-cell receptor beta-chain Vb11-Jb2.4 - mouse (fragment)
C; Species: Mus musculus (house mouse)
C;Date: 29-Nov-1995 #sequence_revision 01-Mar-1996 #text change 23-Jul-1999
C; Accession: S58386
R; Johnston, S.L.; Strausbauch, M.; Sarkar, G.; Wettstein, P.J.
Nucleic Acids Res. 23, 3074-3075, 1995
A; Title: A novel method for sequencing members of multi-gene families.
A; Reference number: S58384; MUID: 95388532; PMID: 7659534
A; Accession: S58386
A; Status: preliminary; nucleic acid sequence not shown
A; Molecule type: mRNA
A; Residues: 1-28 < JOH>
A; Cross-references: EMBL: U20300; NID: g663123; PIDN: AAA62247.1; PID: g663124
A; Note: the nucleotide sequence was submitted to the EMBL Data Library, January
1995
A; Note: only a part of the coding sequence is given
C; Superfamily: immunoglobulin V region; immunoglobulin homology
C; Keywords: T-cell receptor
  Query Match
                            8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
             3; Conservative 0; Mismatches 0; Indels
                                                                   0; Gaps
                                                                               0;
           19 ERV 21
Qу
              111
Db
           12 ERV 14
```

```
signal transduction protein QM0017 - mouse (fragments)
C; Species: Mus musculus (house mouse)
C;Date: 29-Oct-1997 #sequence_revision 29-Oct-1997 #text_change 15-Oct-1999
C; Accession: PN0047
R; Kato, H.
Kawasaki Igakkaishi 22, 245-259, 1996
A; Title: Analysis of proteins isolated by two dimensional electrophoresis of
mouse neuroblastoma cells.
A; Reference number: PN0041
A; Accession: PN0047
A; Molecule type: protein
A; Residues: 1-28 < KAT>
A; Experimental source: neuroblastoma cell
C; Comment: The molecular mass is 25,600 and the pI is 6.07. The amino-terminus
is blocked.
C; Superfamily: signal transduction protein DJ-1
C; Keywords: brain
                           8.8%; Score 3; DB 2; Length 28;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
           3; Conservative 0; Mismatches
                                                   0; Indels 0; Gaps
                                                                             0;
           10 NLG 12
QУ
              Db
           14 NLG 16
RESULT 35
S56121
type I DNA methyltransferase M. EcoR124I chain HsdS - Escherichia coli
(fragments)
C; Species: Escherichia coli
C;Date: 27-Oct-1995 #sequence_revision 03-Nov-1995 #text_change 03-Nov-1995
C; Accession: S56121
R; Webb, M.; Taylor, I.A.; Firman, K.; Kneale, G.G.
J. Mol. Biol. 250, 181-190, 1995
A; Title: Probing the domain structure of the type IC DNA methyltransferase
M.EcoR124I by limited proteolysis.
A; Reference number: S56121; MUID: 95333175; PMID: 7608969
A; Accession: S56121
A; Status: preliminary
A; Molecule type: protein
A; Residues: 1-28 <WEB>
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
  Matches
          3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
Qу
           30 DVH 32
              111
Db
           8 DVH 10
RESULT 36
hypothetical protein 1 - Vibrio anguillarum (fragment)
```

PN0047

```
C; Species: Vibrio anguillarum
C;Date: 19-Mar-1997 #sequence revision 25-Apr-1997 #text change 08-Oct-1999
C; Accession: S70894
R;O'Toole, R.; Milton, D.L.; Wolf-Watz, H.
Mol. Microbiol. 19, 625-637, 1996
A; Title: Chemotactic motility is required for invasion of the host by the fish
pathogen Vibrio anguillarum.
A; Reference number: S70894; MUID: 96228710; PMID: 8830252
A; Accession: S70894
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-28 <OTO>
A; Cross-references: GB: U36378; EMBL: L47344; NID: g1020321; PIDN: AAB38488.1;
PID:g1723992
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
  Matches
            3; Conservative 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           15 LNS 17
              Db
           18 LNS 20
RESULT 37
S22469
hypothetical protein 1 - Prochlorothrix hollandica
C; Species: Prochlorothrix hollandica
C;Date: 13-Jan-1995 #sequence_revision 13-Jan-1995 #text_change 15-Oct-1999
C; Accession: S22469; S16850
R; Greer, K.L.; Golden, S.S.
Plant Mol. Biol. 19, 355-365, 1992
A; Title: Conserved relationship between psbH and petBD genes: presence of a
shared upstream element in Prochlorothrix hollandica.
A; Reference number: S22469; MUID: 92322967; PMID: 1623188
A; Accession: S22469
A; Status: preliminary
A; Molecule type: DNA
A; Residues: 1-28 <GRE>
A; Cross-references: EMBL: X60313; NID: q45528; PIDN: CAA42858.1; PID: q45529
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
            3; Conservative 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
            1 SVS 3
Qу
              111
            4 SVS 6
Db
RESULT 38
S26254
rel protein - chicken
C; Species: Gallus gallus (chicken)
C;Date: 25-Feb-1994 #sequence_revision 10-Nov-1995 #text_change 06-Dec-1996
C; Accession: S26254
R; Capobianco, A.J.; Gilmore, T.D.
```

```
Oncogene 6, 2203-2210, 1991
A; Title: Repression of the chicken c-rel promoter by vRel in chicken embryo
fibroblasts is not mediated through a consensus NF-kappaB binding site.
A; Reference number: S26254; MUID: 92115319; PMID: 1766669
A; Accession: S26254
A; Status: preliminary; translation not shown
A; Molecule type: DNA
A; Residues: 1-28 < CAP>
A; Cross-references: EMBL: X59588
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 1.1e+04;
             3; Conservative 0; Mismatches
                                                    0; Indels
                                                                   0; Gaps
                                                                               0;
           20 RVE 22
Qу
              Db
            1 RVE 3
RESULT 39
I59477
antigen, T-cell receptor - human (fragment)
C; Species: Homo sapiens (man)
C;Date: 02-Jul-1996 #sequence revision 02-Jul-1996 #text change 21-Jul-2000
C; Accession: I59477
R; Mathioudakis, G.; Chen, P.
Scand. J. Immunol: 38, 31-36, 1993
A; Title: Preferential rearrangements of the V gamma I subgroup of the gamma-
chain of the T-cell antigen receptor to J gamma 2C gamma 2 gene segments in
peripheral blood lymphocyte transcripts from normal donors.
A; Reference number: I59477; MUID: 93318104; PMID: 8392223
A; Accession: I59477
A; Status: preliminary; translated from GB/EMBL/DDBJ
A; Molecule type: mRNA
A; Residues: 1-28 < RES>
A; Cross-references: GB: M89844; NID: q181657; PIDN: AAA02695.1; PID: q181658
C; Keywords: T-cell receptor
  Query Match
                           8.8%; Score 3; DB 2; Length 28;
  Best Local Similarity 100.0%; Pred. No. 1.1e+04;
  Matches
             3; Conservative 0; Mismatches 0; Indels
                                                                   0; Gaps
                                                                               0;
Qу
           26 KKL 28
              \parallel \parallel \parallel
Db
           10 KKL 12
RESULT 40
F46522
T-cell receptor eta chain - rat (fragment)
C; Species: Rattus norvegicus (Norway rat)
C; Date: 18-Jun-1993 #sequence revision 18-Nov-1994 #text change 05-Nov-1999
C; Accession: F46522; I56191
R; Jensen, J.P.; Cenciarelli, C.; Hou, D.; Rellahan, B.L.; Dean, M.; Weissman,
A.M.
J. Immunol. 150, 122-130, 1993
```

A; Title: T cell antigen receptor-eta subunit. Low levels of expression and limited cross-species conservation. A; Reference number: A46522; MUID: 93107707; PMID: 8417118 A; Accession: F46522 A; Status: preliminary; not compared with conceptual translation A; Molecule type: nucleic acid A; Residues: 1-28 < JEN> A; Cross-references: GB:S51404; NID:g262180; PIDN:AAB24606.1; PID:g262181 A; Note: sequence extracted from NCBI backbone (NCBIP:120909) R; Itoh, Y.; Matsuura, A.; Kinebuchi, M.; Honda, R.; Takayama, S.; Ichimiya, S.; Kon, S.; Kikuchi, K. J. Immunol. 151, 4705-4717, 1993 A; Title: Structural analysis of the CD3 zeta/eta locus of the rat. Expression of zeta but eta transcripts by rat T cells. A; Reference number: I56191; MUID: 94014415; PMID: 8409430 A; Accession: I56191 A; Status: preliminary; translated from GB/EMBL/DDBJ A; Molecule type: DNA A; Residues: 1-28 < RES> A; Cross-references: GB:D13556; NID:g436580; PIDN:BAA02754.1; PID:g436581 C; Keywords: T-cell receptor Query Match 8.8%; Score 3; DB 2; Length 28; Best Local Similarity 100.0%; Pred. No. 1.1e+04; Matches 3; Conservative 0; Mismatches 0; Indels 0; Gaps 0; Qу 25 RKK 27 | | |

Search completed: January 14, 2004, 10:37:20 Job time: 22.0623 secs

13 RKK 15

Db

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:37:44; Search time 22.8785 Seconds

(without alignments)

303.882 Million cell updates/sec

Title:

US-09-843-221A-161

Perfect score:

34

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched:

762491 seqs, 204481190 residues

Word size :

Total number of hits satisfying chosen parameters:

28045

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database :

Published Applications AA:*

- 1: /cgn2 6/ptodata/1/pubpaa/US07 PUBCOMB.pep:*
- /cgn2 6/ptodata/1/pubpaa/PCT NEW PUB.pep:*
- 3: /cgn2_6/ptodata/1/pubpaa/US06 NEW PUB.pep:*
- 4: /cgn2_6/ptodata/1/pubpaa/US06_PUBCOMB.pep:*
- 5: /cgn2 6/ptodata/1/pubpaa/US07_NEW_PUB.pep:*
- /cgn2_6/ptodata/1/pubpaa/PCTUS PUBCOMB.pep:*
- /cgn2 6/ptodata/1/pubpaa/US08_NEW_PUB.pep:* 7:
- 8: /cgn2 6/ptodata/1/pubpaa/US08 PUBCOMB.pep:*
- 9: /cgn2_6/ptodata/1/pubpaa/US09A_PUBCOMB.pep:*
- 10: /cgn2 6/ptodata/1/pubpaa/US09B PUBCOMB.pep:*
- 11: /cgn2_6/ptodata/1/pubpaa/US09C_PUBCOMB.pep:*
- 12: /cgn2_6/ptodata/1/pubpaa/US09_NEW_PUB.pep:*
- 13: /cgn2_6/ptodata/1/pubpaa/US10A PUBCOMB.pep:*
- 14: /cgn2 6/ptodata/1/pubpaa/US10B_PUBCOMB.pep:*
- 15: /cgn2_6/ptodata/1/pubpaa/US10C_PUBCOMB.pep:* 16:
- /cgn2_6/ptodata/1/pubpaa/US10_NEW PUB.pep:* /cgn2_6/ptodata/1/pubpaa/US60_NEW_PUB.pep:* 17:
- 18: /cgn2_6/ptodata/1/pubpaa/US60 PUBCOMB.pep:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result Query

> No. Score Match Length DB ID

Description

```
1
            100.0
        34
                       34
                           9
                              US-09-169-786-3
                                                           Sequence 3, Appli
 2
            100.0
                       34
                          10
                                US-09-928-047B-6
                                                            Sequence 6, Appli
        34
 3
            100.0
                       34 11
                               US-09-843-221A-16
                                                            Sequence 16, Appl
                                US-09-843-221A-161
 4
        34
            100.0
                       34
                           11
                                                            Sequence 161, App
 5
        34
            100.0
                       34
                          12
                                US-09-928-048A-6
                                                            Sequence 6, Appli
 6
        34
            100.0
                       34
                          12
                                US-10-361-928-8
                                                            Sequence 8, Appli
 7
        34
            100.0
                      - 34
                           12
                                US-10-340-484-15
                                                            Sequence 15, Appl
        34
            100.0
 8
                       34
                           12
                                US-10-340-484-16
                                                            Sequence 16, Appl
        34
            100.0
 9
                       34
                           14
                                US-10-016-403-5
                                                            Sequence 5, Appli
10
        34
            100.0
                       34
                           14
                                US-10-097-079-1
                                                            Sequence 1, Appli
11
        34
            100.0
                       37
                           12
                               US-10-168-185-9
                                                            Sequence 9, Appli
12
        34
            100.0
                       38
                           9
                              US-09-169-786-4
                                                           Sequence 4, Appli
13
        34
            100.0
                       38
                           11
                               US-09-843-221A-14
                                                            Sequence 14, Appl
14
        34
            100.0
                       38
                           12
                                US-10-245-707-1
                                                            Sequence 1, Appli
15
        33
             97.1
                       33
                           12
                                US-10-361-928-9
                                                            Sequence 9, Appli
             97.1
16
        33
                       34
                           11
                                US-09-843-221A-20
                                                            Sequence 20, Appl
17
        33
             97.1
                       34
                           12
                                US-10-361-928-1
                                                            Sequence 1, Appli
18
        33
             97.1
                       34
                           12
                                US-10-361-928-2
                                                            Sequence 2, Appli
19
        33
             97.1
                       34
                           12
                                US-10-361-928-5
                                                            Sequence 5, Appli
                       37
20
        33
             97.1
                           11
                                US-09-843-221A-15
                                                            Sequence 15, Appl
21
        32
                       33
                           12
             94.1
                               US-10-361-928-3
                                                            Sequence 3, Appli
22
        32
             94.1
                       33
                           12
                               US-10-361-928-6
                                                            Sequence 6, Appli
23
        31
             91.2
                       31
                           9
                              US-09-169-786-2
                                                           Sequence 2, Appli
24
        31
             91.2
                       31
                           11
                               US-09-843-221A-27
                                                            Sequence 27, Appl
25
        31
             91.2
                       31
                           11
                               US-09-843-221A-165
                                                            Sequence 165, App
26
        30
             88.2
                       30
                           11
                               US-09-843-221A-39
                                                            Sequence 39, Appl
27
        30
             88.2
                       30
                           11
                               US-09-843-221A-166
                                                            Sequence 166, App
28
        29
             85.3
                       29
                           11
                               US-09-843-221A-51
                                                            Sequence 51, Appl
29
        29
             85.3
                       29
                           11
                                US-09-843-221A-167
                                                            Sequence 167, App
30
        29
             85.3
                       30
                           11
                                US-09-843-221A-43
                                                            Sequence 43, Appl
31
        29
             85.3
                       34
                          - 12
                                                            Sequence 24, Appl
                               US-10-372-095-24
32
        28
             82.4
                       28
                           11
                               US-09-843-221A-32
                                                            Sequence 32, Appl
33
        28
             82.4
                       28
                           11
                               US-09-843-221A-52
                                                            Sequence 52, Appl
34
        28
             82.4
                       28
                           11
                               US-09-843-221A-168
                                                            Sequence 168, App
35
        28
                               US-10-016-403-6
             82.4
                       34
                           14
                                                            Sequence 6, Appli
36
        28
             82.4
                       34
                           14
                               US-10-016-403-7
                                                            Sequence 7, Appli
37
        26
             76.5
                       30
                           11
                               US-09-843-221A-50
                                                            Sequence 50, Appl
38
        26
             76.5
                       31
                           11
                               US-09-843-221A-28
                                                            Sequence 28, Appl
39
        26
             76.5
                       31
                           12
                               US-10-031-874A-206
                                                            Sequence 206, App
40
        23
             67.6
                       34
                           11
                               US-09-843-221A-17
                                                            Sequence 17, Appl
41
        23
             67.6
                       34
                           11
                                                            Sequence 18, Appl
                               US-09-843-221A-18
        23
42
             67.6
                       34
                           11
                               US-09-843-221A-162
                                                            Sequence 162, App
43
        23
             67.6
                       34
                           11
                               US-09-843-221A-163
                                                            Sequence 163, App
44
        22
             64.7
                       30
                           11
                               US-09-843-221A-124
                                                            Sequence 124, App
45
        22
             64.7
                               US-09-843-221A-125
                       30
                           11
                                                            Sequence 125, App
             64.7
46
        22
                       34
                           11
                               US-09-843-221A-88
                                                            Sequence 88, Appl
             64.7
47
        22
                       34
                           11
                               US-09-843-221A-89
                                                            Sequence 89, Appl
48
        21
             61.8
                       30
                           11
                               US-09-843-221A-126
                                                            Sequence 126, App
49
        21
             61.8
                       30
                           11
                               US-09-843-221A-127
                                                            Sequence 127, App
50
        21
                       34
             61.8
                           11
                               US-09-843-221A-90
                                                            Sequence 90, Appl
51
        21
             61.8
                       34
                           11
                               US-09-843-221A-91
                                                            Sequence 91, Appl
52
        21
             61.8
                       34
                           11
                               US-09-843-221A-92
                                                            Sequence 92, Appl
53
        21
             61.8
                       34
                           11
                               US-09-843-221A-128
                                                            Sequence 128, App
54
        19
             55.9
                       30
                           11
                               US-09-843-221A-40
                                                            Sequence 40, Appl
55
        19
             55.9
                       30
                           11
                               US-09-843-221A-41
                                                            Sequence 41, Appl
56
        18
             52.9
                       28
                           11
                               US-09-843-221A-34
                                                            Sequence 34, Appl
```

```
57
          18
               52.9
                         30
                                  US-09-843-221A-42
                             11
                                                               Sequence 42, Appl
 58
          18
               52.9
                         32
                             11
                                  US-09-843-221A-30
                                                               Sequence 30, Appl
 59
          18
               52.9
                         34
                             11
                                  US-09-843-221A-19
                                                               Sequence 19, Appl
 60
          18
               52.9
                         34
                             11
                                  US-09-843-221A-22
                                                               Sequence 22, Appl
 61
          18
               52.9
                         34
                             11
                                  US-09-843-221A-164
                                                               Sequence 164, App
 62
          18
               52.9
                         34
                             12
                                  US-10-340-484-18
                                                               Sequence 18, Appl
 63
          18
               52.9
                         34
                             12
                                  US-10-340-484-20
                                                               Sequence 20, Appl
 64
          18
               52.9
                         40
                             15
                                  US-10-014-162-111
                                                               Sequence 111, App
 65
          17
               50.0
                         28
                             11
                                                               Sequence 35, Appl
                                  US-09-843-221A-35
 66
          17
               50.0
                         34
                             12
                                  US-10-340-484-17
                                                               Sequence 17, Appl
 67
          16
               47.1
                         28
                             11
                                  US-09-843-221A-93
                                                               Sequence 93, Appl
 68
          16
               47.1
                         28
                             11
                                  US-09-843-221A-94
                                                               Sequence 94, Appl
 69
          16
               47.1
                         34
                             11
                                  US-09-843-221A-24
                                                               Sequence 24, Appl
 70
          16
               47.1
                         34
                             12
                                  US-10-340-484-19
                                                               Sequence 19, Appl
 71
          15
               44.1
                         28
                             11
                                  US-09-843-221A-33
                                                               Sequence 33, Appl
 72
          15
               44.1
                         28
                             11
                                  US-09-843-221A-36
                                                               Sequence 36, Appl
 73
          15
               44.1
                         28
                             11
                                  US-09-843-221A-95
                                                               Sequence 95, Appl
 74
          15
               44.1
                         28
                             11
                                  US-09-843-221A-96
                                                               Sequence 96, Appl
 75
          15
               44.1
                         28
                                                               Sequence 97, Appl
                             11
                                  US-09-843-221A-97
 76
          15
               44.1
                         30
                             11
                                  US-09-843-221A-47
                                                               Sequence 47, Appl
 77
          15
               44.1
                         32
                             11
                                  US-09-843-221A-29
                                                               Sequence 29, Appl
 78
          15
               44.1
                         32
                             11
                                  US-09-843-221A-31
                                                               Sequence 31, Appl
 79
          15
               44.1
                         34
                             11
                                  US-09-843-221A-21
                                                               Sequence 21, Appl
 80
          15
               44.1
                         34
                             11
                                  US-09-843-221A-23
                                                               Sequence 23, Appl
 81
          14
               41.2
                         28
                             11
                                 US-09-843-221A-54
                                                               Sequence 54, Appl
 82
          14
               41.2
                         30
                             11
                                 US-09-843-221A-45
                                                               Sequence 45, Appl
 83
          14
               41.2
                         30
                             11
                                 US-09-843-221A-48
                                                               Sequence 48, Appl
 84
          14
               41.2
                         34
                             9
                                US-09-169-786-11
                                                              Sequence 11, Appl
 85
          14
               41.2
                         34
                             11
                                 US-09-843-221A-25
                                                               Sequence 25, Appl
 86
          14
               41.2
                         34
                             12
                                 US-10-340-484-22
                                                               Sequence 22, Appl
 87
          14
               41.2
                         34
                             12
                                 US-10-340-484-23
                                                               Sequence 23, Appl
 88
          12
               35.3
                         28
                             11
                                 US-09-843-221A-53
                                                               Sequence 53, Appl
 89
          12
               35.3
                         28
                             11
                                 US-09-843-221A-55
                                                               Sequence 55, Appl
 90
          12
               35.3
                         30
                             11
                                 US-09-843-221A-44
                                                               Sequence 44, Appl
 91
          12
               35.3
                         30
                             11
                                 US-09-843-221A-46
                                                               Sequence 46, Appl
 92
          11
               32.4
                         34
                                 US-09-843-221A-26
                             11
                                                               Sequence 26, Appl
 93
          11
               32.4
                         34
                             12
                                 US-10-372-095-22
                                                               Sequence 22, Appl
          10
 94
               29.4
                         31
                             9
                                US-09-169-786-9
                                                              Sequence 9, Appli
 95
          9
               26.5
                         28
                             14
                                 US-10-097-079-54
                                                               Sequence 54, Appl
 96
          9
               26.5
                         28
                             14
                                 US-10-097-079-62
                                                               Sequence 62, Appl
 97
           9
               26.5
                         28
                             14
                                 US-10-097-079-65
                                                               Sequence 65, Appl
 98
          9
               26.5
                         28
                             14
                                 US-10-097-079-79
                                                               Sequence 79, Appl
 99
           9
               26.5
                         29
                             14
                                 US-10-097-079-53
                                                               Sequence 53, Appl
100
           9
               26.5
                         29
                             14
                                                               Sequence 63, Appl
                                 US-10-097-079-63
101
          9
               26.5
                         30
                             14
                                 US-10-097-079-52
                                                               Sequence 52, Appl
102
          9
               26.5
                         30
                             14
                                 US-10-097-079-64
                                                               Sequence 64, Appl
103
          9
               26.5
                         31
                             14
                                 US-10-097-079-3
                                                               Sequence 3, Appli
104
          9
             . 26.5
                         31
                             14
                                 US-10-097-079-4
                                                               Sequence 4, Appli
105
          9
               26.5
                         31
                             14
                                 US-10-097-079-5
                                                               Sequence 5, Appli
106
          9
               26.5
                         31
                             14
                                 US-10-097-079-6
                                                               Sequence 6, Appli
          9
107
               26.5
                         31
                             14
                                 US-10-097-079-7
                                                               Sequence 7, Appli
108
          9
               26.5
                         31
                             14
                                 US-10-097-079-8
                                                               Sequence 8, Appli
109
          9
               26.5
                         31
                             14
                                 US-10-097-079-9
                                                               Sequence 9, Appli
          9
110
               26.5
                         31
                             14
                                 US-10-097-079-10
                                                               Sequence 10, Appl
111
          9
               26.5
                         31
                                                               Sequence 20, Appl
                             14
                                 US-10-097-079-20
112
          9
               26.5
                         31
                             14
                                 US-10-097-079-21
                                                               Sequence 21, Appl
113
          9
               26.5
                         31
                             14
                                 US-10-097-079-22
                                                               Sequence 22, Appl
```

```
114
           9
                26.5
                          31
                              14
                                  US-10-097-079-23
                                                                Sequence 23, Appl
115
           9
                26.5
                          31
                              14
                                  US-10-097-079-24
                                                                Sequence 24, Appl
116
           9
                26.5
                          31
                              14
                                  US-10-097-079-25
                                                                Sequence 25, Appl
117
           9
                26.5
                          31
                              14
                                  US-10-097-079-26
                                                                Sequence 26, Appl
118
           9
                26.5
                          31
                              14
                                  US-10-097-079-27
                                                                Sequence 27, Appl
119
           9
                26.5
                          31
                              14
                                  US-10-097-079-36
                                                                Sequence 36, Appl
120
           9
                26.5
                          31
                              14
                                  US-10-097-079-37
                                                                Sequence 37, Appl
121
           9
                26.5
                                  US-10-097-079-38
                         31
                              14
                                                                Sequence 38, Appl
122
           9
                26.5
                         31
                              14
                                  US-10-097-079-39
                                                                Sequence 39, Appl
123
           9
                26.5
                         31
                              14
                                  US-10-097-079-47
                                                                Sequence 47, Appl
124
           9
                26.5
                         31
                              14
                                  US-10-097-079-48
                                                                Sequence 48, Appl
125
           9
                26.5
                         31
                              14
                                  US-10-097-079-49
                                                                Sequence 49, Appl
126
           9
                26.5
                         31
                              14
                                  US-10-097-079-50
                                                                Sequence 50, Appl
127
           9
                26.5
                         31
                              14
                                  US-10-097-079-51
                                                                Sequence 51, Appl
128
           9
                26.5
                         31
                              14
                                  US-10-097-079-69
                                                                Sequence 69, Appl
129
           9
                26.5
                         31
                              14
                                  US-10-097-079-70
                                                                Sequence 70, Appl
130
           9
                26.5
                         31
                              14
                                  US-10-097-079-74
                                                                Sequence 74, Appl
131
           9
                26.5
                         31
                              14
                                  US-10-097-079-81
                                                                Sequence 81, Appl
132
           9
                26.5
                         31
                              14
                                  US-10-097-079-82
                                                                Sequence 82, Appl
133
           9
                26.5
                         31
                              14
                                  US-10-097-079-83
                                                                Sequence 83, Appl
134
           9
                26.5
                         31
                              14
                                  US-10-097-079-84
                                                                Sequence 84, Appl
135
           9
               26.5
                         31
                              14
                                  US-10-097-079-85
                                                                Sequence 85, Appl
136
           9
               26.5
                         34
                              14
                                  US-10-097-079-46
                                                                Sequence 46, Appl
137
           8
               23.5
                         28
                              14
                                  US-10-097-079-78
                                                                Sequence 78, Appl
138
           8
               23.5
                         30
                              11
                                  US-09-843-221A-49
                                                                Sequence 49, Appl
139
           8
               23.5
                         30
                              11
                                  US-09-843-221A-158
                                                                Sequence 158, App
140
           8
               23.5
                         30
                              11
                                  US-09-843-221A-159
                                                                Sequence 159, App
141
           8
               23.5
                         31
                              9
                                 US-09-169-786-10
                                                              Sequence 10, Appl
142
           8
               23.5
                         31
                             14
                                  US-10-097-079-11
                                                                Sequence 11, Appl
143
           8
               23.5
                         31
                              14
                                  US-10-097-079-19
                                                                Sequence 19, Appl
144
           8
               23.5
                         31
                             14
                                  US-10-097-079-28
                                                                Sequence 28, Appl
145
           8
               23.5
                         31
                             14
                                  US-10-097-079-35
                                                                Sequence 35, Appl
146
           8
               23.5
                         31
                             14
                                  US-10-097-079-40
                                                                Sequence 40, Appl
147
           8
               23.5
                         31
                             14
                                  US-10-097-079-45
                                                                Sequence 45, Appl
148
           8
               23.5
                         31
                             14
                                  US-10-097-079-66
                                                                Sequence 66, Appl
149
           8
               23.5
                         31
                             14
                                  US-10-097-079-67
                                                                Sequence 67, Appl
150
           8
               23.5
                         31
                             14
                                  US-10-097-079-68
                                                                Sequence 68, Appl
151
           8
               23.5
                         31
                             14
                                  US-10-097-079-73
                                                                Sequence 73, Appl
152
           8
               23.5
                         31
                             14
                                  US-10-097-079-76
                                                                Sequence 76, Appl
153
           8
               23.5
                         31
                             14
                                  US-10-097-079-80
                                                               Sequence 80, Appl
154
           8
               23.5
                         34
                             11
                                  US-09-843-221A-122
                                                                Sequence 122, App
155
           8
               23.5
                         34
                             11
                                  US-09-843-221A-123
                                                               Sequence 123, App
156
           8
               23.5
                         34
                             14
                                  US-10-097-079-75
                                                               Sequence 75, Appl
157
           7
               20.6
                         31
                             14
                                  US-10-097-079-12
                                                               Sequence 12, Appl
158
           7
               20.6
                         31
                             14
                                  US-10-097-079-18
                                                               Sequence 18, Appl
           7
159
               20.6
                         31
                             14
                                  US-10-097-079-29
                                                               Sequence 29, Appl
160
           7
               20.6
                         31
                             14
                                 US-10-097-079-34
                                                               Sequence 34, Appl
161
           7
               20.6
                         31
                             14
                                 US-10-097-079-41
                                                               Sequence 41, Appl
162
           7
               20.6
                         31
                             14
                                                               Sequence 44, Appl
                                 US-10-097-079-44
163
           7
               20.6
                         34
                             12
                                 US-10-340-484-24
                                                               Sequence 24, Appl
          6
164
               17.6
                         30
                             11
                                 US-09-843-221A-77
                                                               Sequence 77, Appl
165
          6
               17.6
                         31
                             14
                                 US-10-097-079-13
                                                               Sequence 13, Appl
166
          6
               17.6
                         31
                             14
                                 US-10-097-079-14
                                                               Sequence 14, Appl
167
          6
               17.6
                         31
                             14
                                 US-10-097-079-15
                                                               Sequence 15, Appl
168
          6
               17.6
                         31
                             14
                                 US-10-097-079-16
                                                               Sequence 16, Appl
169
          6
               17.6
                         31
                             14
                                 US-10-097-079-17
                                                               Sequence 17, Appl
170
          6
               17.6
                         31
                             14
                                 US-10-097-079-30
                                                               Sequence 30, Appl
```

```
171
           6
                17.6
                          31
                              14
                                  US-10-097-079-31
                                                                Sequence 31, Appl
172
           6
                17.6
                          31
                              14
                                  US-10-097-079-32
                                                                Sequence 32, Appl
173
           6
                17.6
                         31
                              14
                                  US-10-097-079-33
                                                                Sequence 33, Appl
174
           6
                17.6
                         31
                              14
                                  US-10-097-079-42
                                                                Sequence 42, Appl
175
           6
                17.6
                         31
                              14
                                  US-10-097-079-43
                                                                Sequence 43, Appl
176
           6
                17.6
                         31
                              14
                                  US-10-097-079-86
                                                                Sequence 86, Appl
177
           6
                17.6
                         31
                              14
                                                               Sequence 87, Appl
                                  US-10-097-079-87
178
           6
                17.6
                         31
                              14
                                  US-10-097-079-88
                                                                Sequence 88, Appl
179
                17.6
           6
                         36
                              11
                                  US-09-843-221A-65
                                                                Sequence 65, Appl
180
           5
                14.7
                                  US-09-843-221A-69
                         28
                              11
                                                                Sequence 69, Appl
181
           5
                14.7
                         28
                              11
                                  US-09-843-221A-169
                                                               Sequence 169, App
182
           5
                14.7
                         34
                              9
                                 US-09-864-761-38558
                                                              Sequence 38558, A
183
           5
                14.7
                         34
                              12
                                  US-10-317-832-178
                                                               Sequence 178, App
184
           5
                14.7
                         38
                              9
                                 US-09-864-761-49110
                                                              Sequence 49110, A
185
           4
                11.8
                         28
                              9
                                 US-09-864-761-37690
                                                              Sequence 37690, A
186
           4
                11.8
                         28
                              9
                                 US-09-929-818-122
                                                              Sequence 122, App
187
           4
                11.8
                                 US-09-929-818-200
                         28
                              9
                                                              Sequence 200, App
188
           4
                11.8
                         28
                              10
                                  US-09-003-869-153
                                                               Sequence 153, App
189
           4
               11.8
                         28
                              10
                                  US-09-999-745-38
                                                               Sequence 38, Appl
190
           4
                11.8
                         28
                              10
                                  US-09-554-000-22
                                                               Sequence 22, Appl
191
           4
               11.8
                         28
                             11
                                  US-09-756-690A-153
                                                               Sequence 153, App
192
           4
                                  US-09-776-724A-198
               11.8
                         28
                              11
                                                               Sequence 198, App
193
                11.8
                         28
                              11
                                  US-09-899-495-104
                                                               Sequence 104, App
194
           4
               11.8
                         28
                              12
                                  US-10-029-386-28289
                                                               Sequence 28289, A
195
           4
               11.8
                         28
                             15
                                  US-10-157-224A-153
                                                               Sequence 153, App
196
           4
               11.8
                         28
                             15
                                  US-10-187-051-153
                                                               Sequence 153, App
197
           4
               11.8
                         29
                             9
                                 US-09-730-379B-5
                                                              Sequence 5, Appli
198
           4
               11.8
                         29
                             11
                                  US-09-983-802-386
                                                               Sequence 386, App
199
           4
               11.8
                         29
                             11
                                  US-09-983-802-480
                                                               Sequence 480, App
200
           4
               11.8
                         29
                                  US-09-969-730-133
                             11
                                                               Sequence 133, App
201
           4
               11.8
                         29
                             11
                                  US-09-095-478-24
                                                               Sequence 24, Appl
202
           4
               11.8
                         29
                             12
                                  US-09-933-767-1006
                                                               Sequence 1006, Ap
203
           4
               11.8
                         29
                             15
                                  US-10-023-282-1006
                                                               Sequence 1006, Ap
204
           4
               11.8
                         29
                             15
                                  US-10-106-698-5404
                                                               Sequence 5404, Ap
205
           4
               11.8
                         29
                             15
                                 US-10-197-954-111
                                                               Sequence 111, App
206
           4
               11.8
                         30
                             9
                                US-09-864-761-41441
                                                              Sequence 41441, A
207
           4
               11.8
                         30
                             9
                                 US-09-864-761-46868
                                                              Sequence 46868, A
208
           4
               11.8
                         30
                             10
                                 US-09-756-983-20
                                                               Sequence 20, Appl
209
           4
               11.8
                         30
                             11
                                 US-09-774-639-191
                                                               Sequence 191, App
210
           4
               11.8
                         30
                             12
                                 US-09-911-261A-20
                                                               Sequence 20, Appl
211
           4
               11.8
                         30
                             12
                                 US-10-310-113-19
                                                               Sequence 19, Appl
212
           4
               11.8
                         30
                             12
                                 US-09-933-767-821
                                                               Sequence 821, App
213
           4
               11.8
                         30
                             12
                                 US-10-173-551-40
                                                               Sequence 40, Appl
214
           4
               11.8
                         30
                             15
                                 US-10-188-947-11
                                                               Sequence 11, Appl
215
           4
               11.8
                         30
                             15
                                 US-10-057-408-20
                                                               Sequence 20, Appl
216
           4
               11.8
                         30
                             15
                                 US-10-023-282-821
                                                               Sequence 821, App
217
           4
               11.8
                         30
                             15
                                 US-10-267-209-3
                                                               Sequence 3, Appli
218
           4
               11.8
                         31
                             9
                                US-09-864-761-38725
                                                              Sequence 38725, A
219
           4
               11.8
                         31
                             9
                                US-09-864-761-40464
                                                              Sequence 40464, A
220
          4
               11.8
                         31
                             9
                                US-09-864-761-44182
                                                              Sequence 44182, A
221
          4
               11.8
                         31
                             10
                                 US-09-738-626-6281
                                                               Sequence 6281, Ap
222
          4
               11.8
                         31
                             12
                                 US-10-360-053-20
                                                               Sequence 20, Appl
223
          4
               11.8
                         31
                             12
                                 US-09-933-767-1001
                                                               Sequence 1001, Ap
224
          4
               11.8
                         31
                             12
                                 US-10-029-386-32285
                                                               Sequence 32285, A
225
          4
               11.8
                         31
                             12
                                 US-10-264-049-3767
                                                               Sequence 3767, Ap
226
          4
               11.8
                         31
                             15
                                 US-10-023-282-1001
                                                               Sequence 1001, Ap
227
               11.8
                         31
                             15
                                 US-10-106-698-7956
                                                               Sequence 7956, Ap
```

```
228
           4
                11.8
                          32
                              9
                                 US-09-864-761-48632
                                                               Sequence 48632, A
229
           4
                11.8
                          32
                              9
                                 US-09-281-717-16
                                                               Sequence 16, Appl
230
           4
                11.8
                          32
                              11
                                  US-09-809-391-442
                                                                Sequence 442, App
231
           4
                11.8
                          32
                              12
                                  US-09-882-171-442
                                                                Sequence 442, App
232
           4
                11.8
                          32
                              12
                                  US-10-310-113-23
                                                                Sequence 23, Appl
233
           4
                11.8
                          32
                              12
                                  US-10-310-113-134
                                                                Sequence 134, App
234
           4
                11.8
                          32
                              12
                                  US-10-310-113-135
                                                                Sequence 135, App
235
           4
                11.8
                         32
                              12
                                  US-10-310-113-136
                                                                Sequence 136, App
236
                         32
           4
                11.8
                              12
                                  US-10-164-279-39
                                                                Sequence 39, Appl
237
           4
                11.8
                         32
                              12
                                  US-10-164-279-43
                                                                Sequence 43, Appl
238
           4
                         32
                11.8
                              15
                                  US-10-174-410-212
                                                                Sequence 212, App
239
           4
                11.8
                         33
                              9
                                 US-09-864-761-35714
                                                               Sequence 35714, A
240
           4
                11.8
                         33
                              9
                                 US-09-864-761-38816
                                                               Sequence 38816, A
241
           4
                11.8
                         33
                              9
                                 US-09-864-761-48253
                                                               Sequence 48253, A
242
           4
                11.8
                         33
                              9
                                 US-09-864-761-49019
                                                               Sequence 49019, A
243
           4
                11.8
                         33
                              9
                                 US-09-925-299-1526
                                                               Sequence 1526, Ap
244
           4
                11.8
                         33
                              10
                                  US-09-911-969-16
                                                                Sequence 16, Appl
245
           4
                11.8
                         33
                              11
                                                                Sequence 1526, Ap
                                  US-09-925-299-1526
246
           4
                11.8
                         33
                              11
                                  US-09-809-391-660
                                                                Sequence 660, App
247
           4
                11.8
                         33
                              12
                                  US-09-882-171-660
                                                                Sequence 660, App
248
           4
                         33
                11.8
                              12
                                  US-09-933-767-368
                                                                Sequence 368, App
249
           4
                11.8
                         33
                              12
                                  US-10-164-279-63
                                                                Sequence 63, Appl
250
           4
                11.8
                         33
                              14
                                  US-10-215-297-4
                                                                Sequence 4, Appli
251
           4
               11.8
                         33
                              15
                                  US-10-215-298-4
                                                                Sequence 4, Appli
252
           4
               11.8
                         33
                              15
                                  US-10-081-816-110
                                                                Sequence 110, App
253
           4
               11.8
                         33
                              15
                                  US-10-023-282-368
                                                                Sequence 368, App
254
           4
               11.8
                         34
                              9
                                 US-09-864-761-44185
                                                               Sequence 44185, A
255
           4
               11.8
                         34
                              9
                                 US-09-864-761-44916
                                                               Sequence 44916, A
256
           4
               11.8
                         34
                              9
                                 US-09-864-761-45430
                                                               Sequence 45430, A
257
           4
               11.8
                         34
                              9
                                 US-09-864-761-48511
                                                               Sequence 48511, A
258
           4
               11.8
                         34
                             12
                                  US-10-231-417-538
                                                                Sequence 538, App
259
           4
               11.8
                         34
                                  US-10-029-386-27795
                             12
                                                                Sequence 27795, A
260
           4
               11.8
                         34
                             15
                                  US-10-106-698-8037
                                                                Sequence 8037, Ap
261
           4
               11.8
                         35
                             9
                                 US-09-925-299-1258
                                                               Sequence 1258, Ap
262
           4
               11.8
                         35
                             10
                                  US-09-811-824-7
                                                                Sequence 7, Appli
263
               11.8
           4
                         35
                             11
                                  US-09-983-802-486
                                                                Sequence 486, App
264
           4
                                  US-09-820-843A-106
               11.8
                         35
                             11
                                                                Sequence 106, App
265
           4
               11.8
                         35
                             11
                                  US-09-925-299-1258
                                                               Sequence 1258, Ap
266
           4
               11.8
                         35
                             12
                                  US-10-289-660-75
                                                               Sequence 75, Appl
267
           4
               11.8
                         35
                             12
                                  US-10-340-484-13
                                                               Sequence 13, Appl
268
           4
               11.8
                         35
                             12
                                  US-10-012-952A-147
                                                               Sequence 147, App
269
           4
               11.8
                         35
                             12
                                  US-10-062-599-138
                                                               Sequence 138, App
270
           4
               11.8
                         35
                             15
                                  US-10-133-128-75
                                                               Sequence 75, Appl
271
           4
               11.8
                         35
                             15
                                  US-10-062-831-138
                                                               Sequence 138, App
272
           4
               11.8
                         36
                             8
                                US-08-851-965-24
                                                              Sequence 24, Appl
273
           4
               11.8
                         36
                             9
                                US-09-864-761-34257
                                                              Sequence 34257, A
274
           4
               11.8
                         36
                             9
                                 US-09-864-761-39771
                                                              Sequence 39771, A
275
           4
               11.8
                         36
                             9
                                US-09-864-761-46707
                                                              Sequence 46707, A
276
           4
               11.8
                         36
                             9
                                US-09-864-761-48628
                                                              Sequence 48628, A
277
           4
                                 US-09-454-533-30
               11.8
                         36
                             10
                                                               Sequence 30, Appl
278
           4
               11.8
                         36
                             12
                                  US-10-340-484-12
                                                               Sequence 12, Appl
279
           4
               11.8
                         36
                             14
                                  US-10-002-344A-205
                                                               Sequence 205, App
280
           4
               11.8
                         36
                             15
                                 US-10-050-704-192
                                                               Sequence 192, App
281
           4
               11.8
                         37
                             8
                                US-08-851-965-22
                                                              Sequence 22, Appl
282
           4
                                US-08-851-965-23
               11.8
                         37
                             8
                                                              Sequence 23, Appl
283
           4
               11.8
                         37
                             8
                                US-08-851-965-25
                                                              Sequence 25, Appl
284
          4
               11.8
                         37
                             8
                                US-08-851-965-26
                                                              Sequence 26, Appl
```

```
285
           4
                11.8
                         37
                              8
                                 US-08-851-965-27
                                                              Sequence 27, Appl
286
           4
                11.8
                         37
                              9
                                 US-09-758-318-16
                                                              Sequence 16, Appl
287
                11.8
           4
                         37
                              9
                                 US-09-864-761-38287
                                                              Sequence 38287, A
288
           4
                11.8
                         37
                              9
                                 US-09-864-761-41884
                                                              Sequence 41884, A
289
                         37
           4
                11.8
                              9
                                 US-09-864-761-42087
                                                              Sequence 42087, A
290
           4
                11.8
                         37
                              10
                                  US-09-908-805B-79
                                                               Sequence 79, Appl
291
           4
                11.8
                         37
                              10
                                  US-09-454-533-6
                                                               Sequence 6, Appli
292
           4
                11.8
                         37
                              10
                                  US-09-454-533-28
                                                               Sequence 28, Appl
293
                11.8
           4
                         37
                              10
                                  US-09-454-533-29
                                                               Sequence 29, Appl
294
           4
                11.8
                         37
                              10
                                  US-09-454-533-31
                                                               Sequence 31, Appl
295
           4
                         37
                11.8
                              10
                                  US-09-454-533-32
                                                               Sequence 32, Appl
296
           4
                11.8
                         37
                              10
                                  US-09-454-533-33
                                                               Sequence 33, Appl
297
           4
                11.8
                         37
                              11
                                  US-09-764-872-347
                                                               Sequence 347, App
298
           4
                11.8
                         37
                              12
                                  US-10-340-783-16
                                                               Sequence 16, Appl
299
           4
                11.8
                         37
                              12
                                  US-10-012-952A-209
                                                               Sequence 209, App
300
           4
                11.8
                         37
                              12
                                  US-10-339-740-265
                                                               Sequence 265, App
301
           4
               11.8
                         37
                             12
                                  US-10-283-403-9
                                                               Sequence 9, Appli
302
           4
                11.8
                         37
                             12
                                  US-10-370-570-10
                                                               Sequence 10, Appl
303
           4
               11.8
                         37
                             15
                                  US-10-082-830-161
                                                               Sequence 161, App
304
           4
               11.8
                         37
                             15
                                  US-10-106-698-6085
                                                               Sequence 6085, Ap
305
           4
               11.8
                         38
                             9
                                 US-09-250-883-21
                                                              Sequence 21, Appl
306
           4
               11.8
                         38
                             9
                                US-09-864-761-34617
                                                              Sequence 34617, A
307
           4
               11.8
                         38
                                US-09-864-761-38489
                                                              Sequence 38489, A
308
           4
               11.8
                         38
                             9
                                US-09-864-761-42372
                                                              Sequence 42372, A
309
           4
               11.8
                         38
                             9
                                US-09-864-761-44123
                                                              Sequence 44123, A
310
           4
               11.8
                         38
                             9
                                US-09-864-761-44436
                                                              Sequence 44436, A
311
           4
               11.8
                         39
                             9
                                US-09-864-761-41089
                                                              Sequence 41089, A
312
           4
               11.8
                         39
                             9
                                US-09-864-761-41410
                                                              Sequence 41410, A
313
           4
               11.8
                         39
                             10
                                 US-09-003-869-25
                                                               Sequence 25, Appl
314
           4
               11.8
                         39
                             11
                                  US-09-983-802-384
                                                               Sequence 384, App
315
           4
               11.8
                         39
                             11
                                  US-09-756-690A-25
                                                               Sequence 25, Appl
316
           4
               11.8
                         39
                             15
                                  US-10-157-224A-25
                                                               Sequence 25, Appl
317
           4
               11.8
                         39
                                 US-10-187-051-25
                             15
                                                               Sequence 25, Appl
318
           4
               11.8
                         39
                             15
                                 US-10-106-698-7822
                                                               Sequence 7822, Ap
319
           4
               11.8
                         40
                             11
                                 US-09-764-891-2762
                                                               Sequence 2762, Ap
320
           4
               11.8
                         40
                             12
                                 US-10-058-053A-81
                                                               Sequence 81, Appl
321
           4
               11.8
                         40
                             12
                                 US-10-058-053A-264
                                                               Sequence 264, App
322
           4
               11.8
                         40
                             15
                                 US-10-091-572-223
                                                               Sequence 223, App
323
           3
                8.8
                         28
                             8
                                US-08-908-884-7
                                                              Sequence 7, Appli
324
           3
                8.8
                         28
                             9
                                US-09-799-983-16
                                                              Sequence 16, Appl
325
           3
                8.8
                         28
                             9
                                US-09-799-983-18
                                                              Sequence 18, Appl
326
           3
                8.8
                         28
                             9
                                US-09-730-379B-10
                                                              Sequence 10, Appl
327
           3
                8.8
                             9
                         28
                                US-09-765-527-30
                                                              Sequence 30, Appl
           3
328
                8.8
                         28
                             9
                                US-09-765-527-139
                                                              Sequence 139, App
329
           3
                8.8
                         28
                             9
                                US-09-765-527-140
                                                              Sequence 140, App
330
           3
                8.8
                         28
                             9
                                US-09-765-527-142
                                                              Sequence 142, App
331
          3
                8.8
                         28
                             9
                                US-09-765-527-143
                                                              Sequence 143, App
332
           3
                8.8
                         28
                             9
                                US-09-895-072-27
                                                              Sequence 27, Appl
           3
333
                8.8
                         28
                             9
                                US-09-864-761-33837
                                                              Sequence 33837, A
                        28
334
          3
                8.8
                             9
                                US-09-864-761-34933
                                                              Sequence 34933, A
335
          3
                8.8
                         28
                             9
                                US-09-864-761-34971
                                                              Sequence 34971, A
          3
336
                8.8
                         28
                             9
                                US-09-864-761-35640
                                                              Sequence 35640, A
337
          3
                8.8
                         28
                             9
                                US-09-864-761-35827
                                                              Sequence 35827, A
338
          3
                8.8
                         28
                             9
                                US-09-864-761-36728
                                                              Sequence 36728, A
339
          3
                8.8
                         28
                             9
                                US-09-864-761-37848
                                                             Sequence 37848, A
340
          3
                8.8
                         28
                             9
                                US-09-864-761-37919
                                                             Sequence 37919, A
341
          3
                8.8
                         28
                             9
                                US-09-864-761-37927
                                                             Sequence 37927, A
```

342	3	8.8	28	9	US-09-864-761-39084	Sequence 39084, A
343	3	8.8	28	9	US-09-864-761-39493	Sequence 39493, A
344	3	8.8	28	9	US-09-864-761-39762	Sequence 39762, A
345	3	8.8	28	9	US-09-864-761-39984	
346	3	8.8	28	9		Sequence 39984, A
347	3			-	US-09-864-761-40300	Sequence 40300, A
		8.8	28	9	US-09-864-761-41015	Sequence 41015, A
348	3	8.8	28	9	US-09-864-761-41850	Sequence 41850, A
349	3	8.8	28	9	US-09-864-761-42022	Sequence 42022, A
350	3	8.8	28	9	US-09-864-761-42177	Sequence 42177, A
351	3	8.8	28	9	US-09 - 864-761-42253	Sequence 42253, A
352	3	8.8	28	9	US-09-864-761-43275	Sequence 43275, A
353	3	8.8	28	9	US-09-864-761 - 43290	Sequence 43290, A
354	3	8.8	28	9	US-09-864-761-43834	Sequence 43834, A
355	3	8.8	28	9	US-09-864-761-43979	Sequence 43979, A
356	3	8.8	28	9	US-09-864-761-44041	Sequence 44041, A
357	3	8.8	28	9	US-09-864-761-44733	Sequence 44733, A
358	3	8.8	28	9	US-09-864-761-45427	Sequence 45427, A
359	3	8.8	28	9	US-09-864-761-46128	Sequence 46128, A
360	3	8.8	28	9	US-09-864-761-47128	Sequence 47128, A
361	3	8.8	28	9	US-09-864-761-47465	
362	3	8.8	28	9		Sequence 47465, A
363	3	8.8	28		US-09-864-761-47968	Sequence 47968, A
364	3	8.8		9	US-09-864-761-48171	Sequence 48171, A
365			28	9	US-09-864-761-48316	Sequence 48316, A
	3	8.8	28	9	US-09-864-761-49082	Sequence 49082, A
366	3	8.8	28	9	US-09-962-055-26	Sequence 26, Appl
367	3	8.8	28	9	US-09-925-301-1524	Sequence 1524, Ap
368	3	8.8	28	9	US-09-925-299-1173	Sequence 1173, Ap
369	3	8.8	28	9	US-09-728-721-19	Sequence 19, Appl
370	3	8.8	28	9	US-09-728-721-23	Sequence 23, Appl
371	3	8.8	28	9	US-09-908-323-7	Sequence 7, Appli
372	3	8.8	28	9	US-09-881-490-5	Sequence 5, Appli
373	3	8.8	28	9	US-09-881-490-110	Sequence 110, App
374	3	8.8	28	9	US-09-881-490-111	Sequence 111, App
375	3	8.8	28	9	US-09-881-490-113	Sequence 113, App
376	3	8.8	28	9	US-09-881-490-114	Sequence 114, App
377	3	8.8	28	9	US-09-879-666-4	Sequence 4, Appli
378	3	8.8	28	9	US-09-929-818-1	Sequence 1, Appli
379	3	8.8	28	9	US-09-929-818-2	Sequence 2, Appli
380	3	8.8	28	9	US-09-929-818-3	Sequence 3, Appli
381	3	8.8	28	9	US-09-929-818-4	
382	3	8.8	28	9	US-09-929-818-5	Sequence 4, Appli
383	3	8.8	28	9		Sequence 5, Appli
384	3	8.8			US-09-929-818-6	Sequence 6, Appli
385			28	9	US-09-929-818-7	Sequence 7, Appli
	3	8.8	28	9	US-09-929-818-8	Sequence 8, Appli
386	3	8.8	28	9	US-09-929-818-9	Sequence 9, Appli
387	3	8.8	28	9	US-09-929-818-10	Sequence 10, Appl
388	3	8.8	28	9	US-09-929-818-11	Sequence 11, Appl
389	3	8.8	28	9	US-09-929-818-12	Sequence 12, Appl
390	3	8.8	28	9	US-09-929-818-13	Sequence 13, Appl
391	3	8.8	28	9	US-09-929-818-14	Sequence 14, Appl
392	3	8.8	28	9	US-09-929-818-15	Sequence 15, Appl
393	3	8.8	28	9	US-09-929-818-16	Sequence 16, Appl
394	3	8.8	28	9	US-09-929-818-17	Sequence 17, Appl
395	3	8.8	28	9	US-09-929-818-18	Sequence 18, Appl
396	3	8.8	28	9	US-09-929-818-19	Sequence 19, Appl
397	3	8.8	28	9	US-09-929-818-20	Sequence 20, Appl
398	3	8.8	28	9	US-09-929-818-21	Sequence 21, Appl
			-	-		4

399	3	8.8	28 9	US-09-929-818-22	Sequence 22, Appl
400	3	8.8	28 9	US-09-929-818-23	Sequence 23, Appl
401	3	8.8	28	US-09-929-818-24	Sequence 24, Appl
402	3	8.8	28 9	US-09-929-818-25	Sequence 25, Appl
403	3	8.8	28 9	US-09-929-818-26	Sequence 26, Appl
404	3	8.8	28 9	US-09-929-818-27	Sequence 27, Appl
405	3	8.8	28 9		Sequence 28, Appl
406	3	8.8	28 9		Sequence 29, Appl
407	3	8.8	28 9		Sequence 30, Appl
408	3	8.8	28 9		Sequence 31, Appl
409	3	8.8	28 9		Sequence 32, Appl
410	3	8.8	28 9		Sequence 33, Appl
411	3	8.8	28 9		Sequence 34, Appl
412	3	8.8	28 9		
413	3	8.8	28 9		Sequence 35, Appl
414	3	8.8	28 9		Sequence 36, Appl
415	3	8.8			Sequence 37, Appl
416	3				Sequence 38, Appl
		8.8	28 9		Sequence 39, Appl
417	3	8.8	28 9		Sequence 40, Appl
418	3	8.8	28 9		Sequence 41, Appl
419	3	8.8	28 9		Sequence 42, Appl
420	3	8.8	28 9		Sequence 43, Appl
421	3	8.8	28 9	- - -	Sequence 44, Appl
422	3	8.8	28 9	· · · · · · · · · · · · · · · · · · ·	Sequence 45, Appl
423	3	8.8	28 9	US-09-929-818-46	Sequence 46, Appl
424	3	8.8	28 9	US-09-929-818-47	Sequence 47, Appl
425	3	8.8	28 9	US-09-929-818-48	Sequence 48, Appl
426	3	8.8	28 9	US-09-929-818-49	Sequence 49, Appl
427	3	8.8	28 9	US-09-929-818-50	Sequence 50, Appl
428	3	8.8	28 9	US-09-929-818-51	Sequence 51, Appl
429	3	8.8	28 9	US-09-929-818-52	Sequence 52, Appl
430	3	8.8	28 9	US-09-929-818-53	Sequence 53, Appl
431	3	8.8	28 9	US-09-929-818-54	Sequence 54, Appl
432	3	8.8	28 9		Sequence 61, Appl
433	3	8.8	28 9		Sequence 62, Appl
434	3	8.8	28 9		Sequence 66, Appl
435	3	8.8	28 9		Sequence 69, Appl
436	3	8.8	28 9		Sequence 76, Appl
437	3	8.8	28 9		Sequence 77, Appl
438	3	8.8	28 9		Sequence 80, Appl
439	3	8.8	28 9		Sequence 87, Appl
440	3	8.8	28 9	· · · · · · · · · · · · · · · · · · ·	Sequence 94, Appl
441	3	8.8	28 9		
442	3	8.8	28 9		Sequence 95, Appl
443	3	8.8	28 9		Sequence 97, Appl
444	3	8.8	28 9		Sequence 99, Appl
445	3	8.8	28 9		Sequence 100, App
446	3	8.8	28 9		Sequence 101, App
447	3	8.8	28 9		Sequence 102, App
448	3	8.8	28 9		Sequence 103, App
449	3	8.8	28 9		Sequence 104, App
450	3	8.8			Sequence 105, App
451	3				Sequence 106, App
452	3	8.8	28 9		Sequence 107, App
		8.8	28 9		Sequence 108, App
453 454	3	8.8	28 9		Sequence 109, App
454 455	3 3	8.8	28 9		Sequence 110, App
455	3	8.8	28 9	US-09-929-818-111	Sequence 111, App

456	3	8.8	28	9	US-09-929-818-112	Sequence 112	, App
457	3	8.8	28	9	US-09-929-818-113	Sequence 113	
458	3	8.8	28	9	US-09-929-818-114	Sequence 114	
459	3	8.8	28	9	US-09-929-818-115	Sequence 115	
460	3	8.8	28	9	US-09-929-818-116	Sequence 116	
461	3	8.8	28	9	US-09-929-818-117	Sequence 117	
462	3	8.8	28	9	US-09-929-818-118	Sequence 118	
463	3	8.8	28	9	US-09-929-818-119	Sequence 119	
464	3	8.8	28	9	US-09-929-818-120	Sequence 120	
465	3	8.8	28	9	US-09-929-818-121	Sequence 121	
466	3	8.8	28	9	US-09-929-818-123	Sequence 123	
467	3	8.8	28	9	US-09-929-818-124	Sequence 124	
468	3	8.8	28	9	US-09-929-818-125	Sequence 125	
469	3	8.8	28	9	US-09-929-818-126	Sequence 126	
470	3	8.8	28	9	US-09-929-818-127	Sequence 127	
471	3	8.8	28	9	US-09-929-818-128	Sequence 128	
472	3	8.8	28	9	US-09-929-818-129	Sequence 129	
473	3	8.8	28	9	US-09-929-818-130	Sequence 130	
474	3	8.8	28	9	US-09-929-818-131	Sequence 131	
475	3	8.8	28	9	US-09-929-818-132	Sequence 132	
476	3	8.8	28	9	US-09-929-818-133	Sequence 133	
477	3	8.8	28	9	US-09-929-818-134	Sequence 134	
478	3	8.8	28	9	US-09-929-818-135	Sequence 135	
479	3	8.8	28	9	US-09-929-818-136	Sequence 136	
480	3	8.8	28	9	US-09-929-818-137	Sequence 137	
481	3	8.8	28	9	US-09-929-818-138	Sequence 138	
482	3	8.8	28	9	US-09-929-818-139	Sequence 139	
483	3	8.8	28	9	US-09-929-818-140	Sequence 140	
484	3	8.8	28	9	US-09-929-818-141	Sequence 141	
485	3	8.8	28	9	US-09-929-818-142	Sequence 142	
486	3	8.8	28	9	US-09-929-818-143	Sequence 143	
487	3	8.8	28	9	US-09-929-818-144	Sequence 144	
488	3	8.8	28	9	US-09-929-818-145	Sequence 145	
489	3	8.8	28	9	US-09-929-818-146	Sequence 146	
490	3	8.8	28	.9	US-09-929-818-147	Sequence 147	
491	3	8.8	28	9	US-09-929-818-148	Sequence 148	
492	3	8.8	28	9	US-09-929-818-149	Sequence 149	
493	3	8.8	28	9	US-09-929-818-150	Sequence 150	
494	3	8.8	28	9	US-09-929-818-151	Sequence 151	
495	3	8.8	28	9	US-09-929-818-152	Sequence 151	
496	3	8.8	28	9	US-09-929-818-153	Sequence 153	
497	3	8.8	28	9	US-09-929-818-154	Sequence 154	
498	3	8.8	28	9	US-09-929-818-155	Sequence 155	
499	3	8.8	28	9	US-09-929-818-156		
500	3	8.8	28	9	US-09-929-818-157	Sequence 156	
501	3	8.8	28	9	US-09-929-818-158	Sequence 157	
502	3	8.8	28	9	US-09-929-818-159	Sequence 158,	
503	3	8.8	28	9	US-09-929-818-160	Sequence 159	
504	3	8.8	28	9	US-09-929-818-161	Sequence 160,	
505	3	8.8	28	9	US-09-929-818-162	Sequence 161, Sequence 162,	
506	3	8.8	28	9	US-09-929-818-163	Sequence 163,	
507	3	8.8	28	9	US-09-929-818-164		
508	3	8.8	28	9	US-09-929-818-165	Sequence 164, Sequence 165,	
509	3	8.8	28	9	US-09-929-818-166		
510	3	8.8	28		US-09-929-818-167	Sequence 166,	
511	3	8.8	28		US-09-929-818-168	Sequence 167,	
512	3	8.8	28		US-09-929-818-169	Sequence 168,	
	-	.	_0	_	05 05 525 010-103	Sequence 169,	App

513	3	8.8	28	9	US-09-929-818-170	Sequence 170, App
514	3	8.8	28	9	US-09-929-818-171	Sequence 171, App
515	3	8.8	28	9	US-09-929-818-172	Sequence 172, App
516	3	8.8	28	9	US-09-929-818-173	Sequence 173, App
517	3	8.8	28	9	US-09-929-818-174	Sequence 174, App
518	3	8.8	28	9	US-09-929-818-175	Sequence 175, App
519	3	8.8	28	9	US-09-929-818-176	Sequence 176, App
520	3	8.8	28	9	US-09-929-818-177	Sequence 177, App
521	3	8.8	28	9	US-09-929-818-178	Sequence 178, App
522	3	8.8	28	9	US-09-929-818-179	Sequence 179, App
523	3	8.8	28	9	US-09-929-818-180	Sequence 180, App
524	3	8.8	28	9	US-09-929-818-181	Sequence 181, App
525	3	8.8	28	9	US-09-929-818-182	Sequence 182, App
526	3	8.8	28	9	US-09-929-818-183	Sequence 183, App
527	3	8.8	28	9	US-09-929-818-184	Sequence 184, App
528	3	8.8	28	9	US-09-929-818-185	Sequence 185, App
529	3	8.8	28	9	US-09-929-818-186	Sequence 186, App
530	3	8.8	28	9	US-09-929-818-187	Sequence 187, App
531	3	8.8	28	9	US-09-929-818-188	Sequence 188, App
532	3	8.8	28	9	US-09-929-818-189	Sequence 189, App
533	3	8.8	28	9	US-09-929-818-190	Sequence 190, App
534	3	8.8	28	9	US-09-929-818-191	Sequence 191, App
535	3	8.8	28	9	US-09-929-818-192	Sequence 192, App
536	3	8.8	28	9	US-09-929-818-193	Sequence 193, App
537	3	8.8	28	9	US-09-929-818-194	Sequence 194, App
538	3	8.8	28	9	US-09-929-818-195	Sequence 195, App
539	3	8.8	28	9	US-09-929-818-196	Sequence 196, App
540	3	8.8	28	9	US-09-929-818-197	Sequence 197, App
541	3	8.8	28	9	US-09-929-818-198	Sequence 198, App
542	3	8.8	28	9	US-09-929-818-199	Sequence 199, App
543	3	8.8	28	9	US-09-929-818-201	Sequence 201, App
544	3	8.8	28	9	US-09-929-818-202	Sequence 202, App
545	3	8.8	28	9	US-09-929-818-207	Sequence 207, App
546	3	8.8	28	10	US-09-117-380B-4	Sequence 4, Appli
547	3	8.8	28	10	US-09-003-869-40	Sequence 40, Appl
548	3	8.8	28	10	US-09-003-869-90	Sequence 90, Appl
549	3	8.8	28	10	US-09-003-869-91	Sequence 91, Appl
550	3	8.8	28	10	US-09-003-869-92	Sequence 92, Appl
551	3	8.8	28	10	US-09-003-869-95	Sequence 95, Appl
552	3	8.8	28	10	US-09-003-869-104	Sequence 104, App
553	3	8.8	28	10	US-09-003-869-105	Sequence 105, App
554	3	8.8	28	10	US-09-003-869-106	Sequence 106, App
555	3	8.8	28	10	US-09-003-869-107	Sequence 107, App
556	3	8.8	28	10	US-09-003-869-108	Sequence 108, App
557	3	8.8	28		, US-09-003-869-109	Sequence 109, App
558	3	8.8	28	10	US-09-003-869-111	Sequence 111, App
559	3	8.8	28	10	US-09-003-869-113	Sequence 113, App
560	3	8.8	28	10	US-09-003-869-115	Sequence 115, App
561	3	8.8	28	10	US-09-003-869-117	Sequence 117, App
562	3	8.8	28	10	US-09-003-869-119	Sequence 119, App
563	3	8.8	28	10	US-09-003-869-121	Sequence 121, App
564	3	8.8	28	10	US-09-003-869-123	Sequence 123, App
565 566	3	8.8	28	10	US-09-003-869-125	Sequence 125, App
566 567	3	8.8	28	10	US-09-003-869-127	Sequence 127, App
567	3	8.8	28	10	US-09-003-869-129	Sequence 129, App
568 569	3	8.8	28	10	US-09-003-869-131	Sequence 131, App
569	ے	8.8	28	10	US-09-003-869-133	Sequence 133, App

.

570	3	8.8	28	10	US-09-003-869-135	Sequence 135, App
571	3	8.8	28	10	US-09-003-869-137	Sequence 137, App
572	3	8.8	28	10	US-09-003-869-139	Sequence 139, App
573	3	8.8	28	10	US-09-003-869-141	Sequence 141, App
574	3	8.8	28	10	US-09-003-869-143	Sequence 143, App
575	3	8.8	-28	10	US-09-003-869-145	Sequence 145, App
576	3	8.8	28	10	US-09-003-869-147	
577	3	8.8	28	10	US-09-003-869-149	Sequence 147, App
578						Sequence 149, App
	3	8.8	28	10	US-09-003-869-151	Sequence 151, App
579	3	8.8	28	10	US-09-003-869-155	Sequence 155, App
580	3	8.8	28	10	US-09-003-869-163	Sequence 163, App
581	3	8.8	28	10	US-09-003-869-165	Sequence 165, App
582	3	8.8	28	10	US-09-903-456-116	Sequence 116, App
583	3	8.8	28	10	US-09-989-903-23	Sequence 23, Appl
584	3	8.8	28	10	US-09-880-149-10	Sequence 10, Appl
585	3	8.8	28	10	US-09-880-149-11	Sequence 11, Appl
586	3	8.8	28	10	US-09-986-552-27	Sequence 27, Appl
587	3	8.8	28	10	US-09-934-060A-20	Sequence 20, Appl
588	3	8.8	28	10	US-09-999-745-53	Sequence 53, Appl
589	3	8.8	28	10	US-09-981-876-241	Sequence 241, App
590	3	8.8	28	10	US-09-880-498-1	Sequence 1, Appli
591	3	8.8	28	10	US-09-554-000-37	Sequence 37, Appl
592	3	8.8	28	10	US-09-880-132-10	
593	3	8.8	28			Sequence 10, Appl
594				10	US-09-880-132-11	Sequence 11, Appl
	3	8.8	28	10	US-09-848-967-3	Sequence 3, Appli
595	3	8.8	28	10	US-09-848-967-4	Sequence 4, Appli
596	3	8.8	28	10	US-09-976-740-26	Sequence 26, Appl
597	3 ·	8.8	28	11	US-09-983-802-481	Sequence 481, App
598	3	8.8	28	11	US-09-983-802-531	Sequence 531, App
599	3	8.8	28	11	US-09-999-724-28	Sequence 28, Appl
600	3	8.8	28	11	US-09-148-545-241	Sequence 241, App
601	3	8.8	28	11	US-09-974-879-269	Sequence 269, App
602	3	8.8	28	11	US-09-974-879-520	Sequence 520, App
603	3	8.8	28	11	US-09-974-879-543	Sequence 543, App
604	3	8.8	28	11	US-09-974-879-579	Sequence 579, App
605	3	8.8	28	11	US-09-756-690A-40	Sequence 40, Appl
606	3	8.8	28	11	US-09-756-690A-90	Sequence 90, Appl
607	3	8.8	28	11	US-09-756-690A-91	Sequence 91, Appl
608	3	8.8	28	11	US-09-756-690A-92	Sequence 92, Appl
609	3	8.8	28	11	US-09-756-690A-95	Sequence 95, Appl
610	3	8.8	28	11	US-09-756-690A-104	
611	3	8.8	28	11	US-09-756-690A-105	Sequence 104, App
612	3	8.8	28	11		Sequence 105, App
613	3	8.8	28		US-09-756-690A-106	Sequence 106, App
				11	US-09-756-690A-107	Sequence 107, App
614	3	8.8	28	11	US-09-756-690A-108	Sequence 108, App
615	3	8.8	28	11	US-09-756-690A-109	Sequence 109, App
616	3	8.8	28	11	US-09-756-690A-111	Sequence 111, App
617	3	8.8	28	11	US-09-756-690A-113	Sequence 113, App
618	3	8.8	28	11	US-09-756-690A-115	Sequence 115, App
619	3	8.8	28	11	US-09-756-690A-117	Sequence 117, App
620	3	8.8	28	11	US-09-756-690A-119	Sequence 119, App
621	3	8.8	28	11	US-09-756-690A-121	Sequence 121, App
622	3	8.8	28	11	US-09-756-690A-123	Sequence 123, App
623	3	8.8	28	11	US-09-756-690A-125	Sequence 125, App
624	3	8.8	28	11	US-09-756-690A-127	Sequence 127, App
625	3	8.8	28	11	US-09-756-690A-129	Sequence 129, App
626	3	8.8	28	11	US-09-756-690A-131	Sequence 131, App
		- -			0, 00 0,01 1,01	bequeited 151, App

627	3	8.8	28	11	US-09-756-690A-133	Sequence 133, App
628	3	8.8	28	11	US-09-756-690A-135	Sequence 135, App
629	3	8.8	28	11	US-09-756-690A-137	Sequence 137, App
630	3	8.8	28	11	US-09-756-690A-139	Sequence 139, App
631	3	8.8	28	11	US-09-756-690A-141	Sequence 141, App
632	3	8.8	28	11	US-09-756-690A-143	Sequence 143, App
633	3	8.8	28	11	US-09-756-690A-145	Sequence 145, App
634	3	8.8	28	11	US-09-756-690A-147	Sequence 147, App
635	3	8.8	28	11	US-09-756-690A-149	Sequence 149, App
636	3	8.8	28	11	US-09-756-690A-151	Sequence 151, App
637	3	8.8	28	11	US-09-756-690A-155	Sequence 155, App
638	3	8.8	28	11	US-09-756-690A-163	Sequence 163, App
639	3	8.8	28	11	US-09-756-690A-165	Sequence 165, App
640	3	8.8	28	11	US-09-843-221A-72	Sequence 72, Appl
641	3	8.8	28	11	US-09-843-221A-75	Sequence 75, Appl
642	3	8.8	28	11	US-09-843-221A-104	Sequence 104, App
643	3	8.8	28	11	US-09-925-299-1173	Sequence 1173, Ap
644	3	8.8	28	11	US-09-945-917-23	Sequence 23, Appl
645	3	8.8	28	11	US-09-813-153-220	Sequence 220, App
646	3	8.8	28	11	US-09-876-904A-230	Sequence 230, App
647	3	8.8	28	11	US-09-892-877-335	Sequence 335, App
648	3	8.8	28	11	US-09-910-180-19	Sequence 19, Appl
649	3	8.8	28	11	US-09-305-736-285	Sequence 285, App
650	3	8.8	28	11	US-09-305-736-522	Sequence 522, App
651	3	8.8	28	11	US-09-305-736-545	Sequence 545, App
652	· 3	8.8	28	11	US-09-305-736-580	Sequence 580, App
653	3	8.8	28	11	US-09-948-783-348	Sequence 348, App
654	3	8.8	28	11	US-09-866-066-31	Sequence 31, Appl
655	3	8.8	28	12	US-10-195-730-307	Sequence 307, App
656	3	8.8	28	12	US-10-195-730-354	Sequence 354, App
657	3	8.8	28	12	US-10-309-422-4	Sequence 4, Appli
658	3	8.8	28	12	US-10-334-405-4	Sequence 4, Appli
659	3	8.8	28	12	US-10-251-703-21	Sequence 21, Appl
660	3	8.8	28	12	US-10-306-686-27	Sequence 27, Appl
661	3	8.8	28	12	US-09-991-225-35	Sequence 35, Appl
662	3	8.8	28	12	US-10-100-256B-1	Sequence 1, Appli
663	3	8.8	28	12	US-10-345-281-10	Sequence 10, Appl
664	3	8.8	28	12	US-10-345-281-11	Sequence 11, Appl
665	3	8.8	28	12	US-10-254-569A-1	Sequence 1, Appli
666	3	8.8	28	12	US-10-254-569A-2	Sequence 2, Appli
667	3	8.8	28	12	US-10-254-569A-3	Sequence 3, Appli
668	3	8.8	28	12	US-10-254-569A-4	Sequence 4, Appli
669 ·	3	8.8	28	12	US-10-254-569A-5	Sequence 5, Appli
670	3	8.8	28	12	US-10-254-569A-6	Sequence 6, Appli
671	3	8.8	28	12	US-10-254-569A-7	Sequence 7, Appli
672	3	8.8	28	12	US-10-254-569A-8	Sequence 8, Appli
673	3	8.8	28	12	US-10-254-569A-9	Sequence 9, Appli
674	3	8.8	28	12	US-10-254-569A-10	Sequence 10, Appl
675	3	8.8	28	12	US-10-254-569A-11	Sequence 10, Appl Sequence 11, Appl
676	3	8.8	28	12	US-10-254-569A-12	
677	3	8.8	28	12	US-10-254-369A-12 US-10-156-911-116	Sequence 12, Appl Sequence 116, App
678	3	8.8	28	12	US-09-845-917A-23	
679	3	8.8	28	12	US-10-322-746-7	Sequence 23, Appl
680	3	8.8	28	12	US-10-322-748-7 US-10-411-224-108	Sequence 7, Appli
681	3	8.8	28	12	US-09-829-922-22	Sequence 108, App
682	3	8.8	28	12	US-10-231-417-591	Sequence 22, Appl
683	3	8.8	28	12	US-10-312-691-2	Sequence 591, App
-	_		20	-4	05 10 512 051-2	Sequence 2, Appli

684	3	8.8	28	12	US-10-314-506-16	Sequence 16, Appl
685	3	8.8	28	12	US-10-314-506-17	Sequence 17, Appl
686	3	8.8	28	12	US-10-408-736-81	Sequence 81, Appl
687	3	8.8	28	12	US-09-933-767-626	Sequence 626, App
688	3	8.8	28	12	US-09-933-767-638	Sequence 638, App
689	3	8.8	28	12	US-09-933-767-1089	- · · · · · · · · · · · · · · · · · · ·
690	3					Sequence 1089, Ap
		8.8	28	12	US-10-105-232-329	Sequence 329, App
691	3	8.8	28	12	US-10-131-686A-19	Sequence 19, Appl
692	3	8.8	28	12	US-10-289 -1 35A-36	Sequence 36, Appl
693	3	8.8	28	12	US-10-276-392-1	Sequence 1, Appli
694	3	8.8	28	12	US-10-276-392-7	Sequence 7, Appli
695	3	8.8	28	12	US-10-276-392-8	Sequence 8, Appli
696	3	8.8	28	12	US-10-276-392-9	Sequence 9, Appli
697	3	8.8	28	12	US-10-276-392-10	Sequence 10, Appl
698	3	8.8	28	12	US-10-276-392-11	
699	3	8.8	28	12	US-10-276-392-11	Sequence 11, Appl
700						Sequence 12, Appl
	3	8.8	28	12	US-10-276-392-13	Sequence 13, Appl
701	3	8.8	28	12	US-10-276-392-14	Sequence 14, Appl
702	3	8.8	28	12	US-10-276-392-15	Sequence 15, Appl
703	3	8.8	28	12	US-10-276-392 - 16	Sequence 16, Appl
704	3	8.8	28	12	US-10-276-392-17	Sequence 17, Appl
705	3	8.8	28	12	US-10-276-392-18	Sequence 18, Appl
706	3	8.8	28	12	US-10-276-392-19	Sequence 19, Appl
707	3	8.8	28	12	US-10-276-392-20	Sequence 20, Appl
708	3	8.8	28	12	US-10-276-392-21	Sequence 21, Appl
709	3	8.8	28	12	US-10-330-872-9	
710	3	8.8	28	12		Sequence 9, Appli
711	3				US-10-351-641-54	Sequence 54, Appl
		8.8	28	12	US-10-351-641-62	Sequence 62, Appl
712	3	8.8	28	12	US-10-351-641-982	Sequence 982, App
713	3	8.8	28	12	US-10-351-641-1279	Sequence 1279, Ap
714	3	8.8	28	12	US-10-351-641-1280	Sequence 1280, Ap
715	3	8.8	28	12	US-10-351-641-1314	Sequence 1314, Ap
716	3	8.8	28	12	US-10-351-641-1315	Sequence 1315, Ap
717	3	8.8	28	12	US-10-351-641-1689	Sequence 1689, Ap
718	3	8.8	28	12	US-10-029-386-27986	Sequence 27986, A
719	3	8.8	28	12	US-10-029-386-28154	Sequence 28154, A
720	3	8.8	28	12	US-10-029-386-28548	Sequence 28548, A
721	3	8.8	28	12	US-10-029-386-31090	Sequence 31090, A
722	3	8.8	28	12	US-10-029-386-31138	-
723	3	8.8	28	12	US-10-029-386-31138	Sequence 31138, A
724	3	8.8				Sequence 31267, A
			28	12	US-10-029-386-31429	Sequence 31429, A
725	3	8.8	28	12	US-10-029-386-33289	Sequence 33289, A
726	3	8.8	28	12	US-10-029-386-33582	Sequence 33582, A
727	3	8.8	28	12	US-10-189-437-316	Sequence 316, App
728	3	8.8	28	12	US-10-189-437-669	Sequence 669, App
729	3	8.8	28	12	US-10-080-254-100	Sequence 100, App
730	3	8.8	28	12	US-10-080-608A-1	Sequence 1, Appli
731	3	8.8	28	12	US-09-818-683-285	Sequence 285, App
732	3	8.8	28	12	US-09-818-683-522	Sequence 522, App
733	3	8.8	28	12	US-09-818-683-545	Sequence 545, App
734	3	8.8	28	12	US-09-818-683-580	Sequence 580, App
735	3	8.8	28	12	US-10-370-685-90	
736	3	8.8	28	12		Sequence 90, Appl
737	3				US-09-873-155-43	Sequence 43, Appl
		8.8	28	12	US-10-366-493-24	Sequence 24, Appl
738	3	8.8	28	12	US-10-391-399-86	Sequence 86, Appl
739	3	8.8	28	12	US-10-211-689-8	Sequence 8, Appli
740	3	8.8	28	12	US-10-324-143-148	Sequence 148, App

	741	3	8.8	28	12	US-10-242-355-646	Sequence 646, App
	742	3	8.8	28	12	US-10-245-871-32	Sequence 32, Appl
	743	3	8.8	28	12	US-10-154-884B-11082	Sequence 11082, A
	744	3	8.8	28	12	US-10-264-049-2573	Sequence 2573, Ap
	745	3	8.8	28	12	US-10-264-049-3158	Sequence 3158, Ap
	746	3	8.8	28	14	US-10-014-269-16	Sequence 16, Appl
	747	3	8.8	28	14	US-10-014-269-17	Sequence 17, Appl
	748	3	8.8	28	14	US-10-023-529-26	Sequence 26, Appl
	749	3	8.8	28	14	US-10-105-931-19	Sequence 19, Appl
•	750	3	8.8	28	14	US-10-105-931-23	Sequence 23, Appl
	751	3	8.8	28	14	US-10-090-109A-1	Sequence 1, Appli
	752	3	8.8	28	14	US-10-023-523-26	Sequence 26, Appl
	753	3	8.8	28	14	US-10-044-722-8	Sequence 8, Appli
	754	3	8.8	28	14	US-10-002-974-16	Sequence 16, Appl
	755	3	8.8	28	14	US-10-002-974-17	Sequence 17, Appl
	756	3	8.8	28	14	US-10-118-984-19	
	757	3	8.8	28	14	US-10-118-984-23	Sequence 19, Appl
	758	3	8.8	28	15	US-10-118-384-23 US-10-014-162-48	Sequence 23, Appl
	759	3	8.8	28	15	US-10-014-162-48 US-10-000-256A-219	Sequence 48, Appl
	760	3 .	8.8	28	15	US-10-000-256A-219 US-10-068-564-23	Sequence 219, App
	761	3	8.8				Sequence 23, Appl
	762	3		28	15	US-10-078-090-126	Sequence 126, App
	762		8.8	28	15	US-10-004-530A-17	Sequence 17, Appl
		3	8.8	28	15	US-10-131-433-6	Sequence 6, Appli
	764	3	8.8	28	15	US-10-097-065-486	Sequence 486, App
	765	3	8.8	28	15	US-10-097-065-598	Sequence 598, App
	766	3	8.8	28	15	US-10-059-261-324	Sequence 324, App
	767	3	8.8	28	15	US-10-150-111-131	Sequence 131, App
	768	3	8.8	28	15	US-10-211-994-1	Sequence 1, Appli
	769	3	8.8	28	15	US-10-157-224A-40	Sequence 40, Appl
	770	3	8.8	28	15	US-10-157 - 224A-90	Sequence 90, Appl
	771	3	8.8	28	15	US-10-157-224A-91	Sequence 91, Appl
	772	3	8.8	28	15	US-10-157-224A-92	Sequence 92, Appl
	773	3	8.8	28	15	US-10-157-224A-95	Sequence 95, Appl
	774	3	8.8	28	15	US-10-157-224A-104	Sequence 104, App
	775	3	8.8	28	15	US-10-157-224A-105	Sequence 105, App
	776	3	8.8	28	15	US-10-157-224A-106	Sequence 106, App
	777	3	8.8	28	15	US-10-157-224A-107	Sequence 107, App
	778	3	8.8	28	15	US-10-157-224A-108	Sequence 108, App
	779	3	8.8	28	15	US-10-157-224A-109	Sequence 109, App
	780	3	8.8	28	15	US-10-157-224A-111	Sequence 111, App
	781	3	8.8	28	15	US-10-157-224A-113	Sequence 113, App
	782	3	8.8	28	15	US-10-157-224A-115	Sequence 115, App
	783	3	8.8	28	15	US-10-157-224A-117	Sequence 117, App
	784	3	8.8	28	15	US-10-157-224A-119	Sequence 119, App
	785	3	8.8	28	15	US-10-157-224A-121	Sequence 121, App
	786	3	8.8	28	15	US-10-157-224A-123	Sequence 123, App
	787	3	8.8	28	15	US-10-157-224A-125	Sequence 125, App
	788	3	8.8	28	15	US-10-157-224A-127	Sequence 127, App
	789	3	8.8	28	15	US-10-157-224A-129	Sequence 129, App
	790	3	8.8	28	15	US-10-157-224A-131	
	791	3	8.8	28	15	US-10-157-224A-131	Sequence 131, App
	792	3	8.8	28	15	US-10-157-224A-135	Sequence 133, App
	793	3	8.8	28	15	US-10-157-224A-137	Sequence 135, App
	794	3	8.8	28	15		Sequence 137, App
	795	3	8.8			US-10-157-224A-139	Sequence 139, App
	796	3	8.8	28 28	15 15	US-10-157-224A-141	Sequence 141, App
	79 0 797	3			15	US-10-157-224A-143	Sequence 143, App
	131	3	8.8	28	15	US-10-157-224A-145	Sequence 145, App

798	3	8.8	28	15	US-10-157-224A-147	Sequence 147, App
799	3	8.8	28	15	US-10-157-224A-149	Sequence 149, App
800	3	8.8	28	15	US-10-157-224A-151	Sequence 151, App
801	3	8.8	28	15	US-10-157-224A-155	Sequence 155, App
802	3	8.8	28	15	US-10-157-224A-163	Sequence 163, App
803	3	8.8	28	15	US-10-157-224A-165	Sequence 165, App
804	3	8.8	28	15	US-10-187-051-40	Sequence 40, Appl
805	3	8.8	28	15	US-10-187-051-90	Sequence 90, Appl
806	3	8.8	28	15	US-10-187-051-91	Sequence 91, Appl
807	3	8.8	28	15	US-10-187-051-92	Sequence 92, Appl
808	3	8.8	28	15	US-10-187-051-95	Sequence 95, Appl
809	3	8.8	28	15	US-10-187-051-104	Sequence 104, App
810	3	8.8	28	15	US-10-187-051-105	Sequence 105, App
811	3	8.8	28	15	US-10-187-051-106	Sequence 106, App
812	3	8.8	28	15	US-10-187-051-107	Sequence 107, App
813	3	8.8	28	15	US-10-187-051-108	Sequence 108, App
814	3	8.8	28	15	US-10-187-051-109	Sequence 109, App
815	3	8.8	28	15	US-10-187-051-111	Sequence 111, App
816	3	8.8		15	US-10-187-051-113	Sequence 113, App
817	3	8.8	28	15	US-10-187-051-115	Sequence 115, App
818	3	8.8	28	15	US-10-187-051-117	Sequence 117, App
819	3	8.8	28	15	US-10-187-051-119	Sequence 119, App
820	3	8.8	28	15	US-10-187-051-121	Sequence 121, App
821	3	8.8	28	15	US-10-187-051-123	Sequence 121, App
822	3	8.8	28	15	US-10-187-051-125	Sequence 125, App
823	3	8.8	28	15	US-10-187-051-127	Sequence 123, App
824	3	8.8	28	15	US-10-187-051-129	Sequence 127, App
825	3	8.8	28	15	US-10-187-051-131	Sequence 131, App
826	3	8.8	28	15	US-10-187-051-133	Sequence 133, App
827	3	8.8	28	15	US-10-187-051-135	Sequence 135, App
828	3	8.8	28	15	US-10-187-051-137	Sequence 137, App
829	3	8.8	28	15	US-10-187-051-139	Sequence 137, App
830	3	8.8	28	15	US-10-187-051-141	Sequence 141, App
831	3	8.8	28	15	US-10-187-051-143	Sequence 141, App
832	3	8.8	28	15	US-10-187-051-145	Sequence 143, App
833	3	8.8	28	15	US-10-187-051-147	Sequence 143, App
834	3	8.8	28	15	US-10-187-051-149	Sequence 147, App Sequence 149, App
835	3	8.8	28	15	US-10-187-051-151	Sequence 151, App
836	3	8.8	28	15	US-10-187-051-155	
837	3	8.8	28	15	US-10-187-051-163	Sequence 155, App Sequence 163, App
838	3	8.8	28	15	US-10-187-051-165	Sequence 165, App
839	3	8.8	28	15	US-10-023-282-626	Sequence 626, App
840	3	8.8	28	15	US-10-023-282-638	Sequence 626, App
841	3	8.8	28	15	US-10-023-282-1089	Sequence 638, App
842	3	8 : 8	28	15 15	US-10-255-532-6	Sequence 1089, Ap
843	3	8.8	28	15	US-10-075-869-24	Sequence 6, Appli
844	3	8.8	28	15	US-10-202-724-3	Sequence 24, Appl
845	3	8.8	28	15	US-10-262-017-3	Sequence 3, Appli
846	3	8.8	28	15	US-10-202-017-3 US-10-106-698-5608	Sequence 3, Appli
847	3	8.8	28	15		Sequence 5608, Ap
848	3	8.8	28 28	15	US-10-106-698-6764	Sequence 6764, Ap
849	3	8.8	28 28	15	US-10-106-698-7736	Sequence 7736, Ap
850	3	8.8	28 28	15	US-10-106-698-7875	Sequence 7875, Ap
851	3	8.8	28 28		US-10-106-698-8447	Sequence 8447, Ap
852	3	8.8	28 28	15 15	US-10-192-283A-12	Sequence 12, Appl
853	3	8.8	28 28	15	US-10-197-954-62	Sequence 62, Appl
854	3	8.8	28 28	15	US-10-197-954-145	Sequence 145, App
J J I	J	0.0	40	τO	US-10-283-500-19	Sequence 19, Appl

855	3	8.8	28	15	US-10-295-981-19	Sequence 19, Appl
856	3	8.8	28	15		Sequence 23, Appl
857	3	8.8	28	15		Sequence 22, Appl
858	3	8.8	29	8	US-08-913-430-4	Sequence 4, Appli
859	3	8.8	29	9	US-09-205-658-71	Sequence 71, Appl
860	3	8.8	29	9	US-09-730-379B-4	
861	3	8.8	29	9		Sequence 4, Appli
862	3	8.8	29	9	US-09-765-527-13	Sequence 13, Appl
863	3	8.8	29	9	US-09-765-527-64	Sequence 64, Appl
864	3	8.8	29	9	US-09-005-243-73	Sequence 73, Appl
865	3	8.8	29		US-09-904-380-23	Sequence 23, Appl
866	3			9	US-09-224-683-73	Sequence 73, Appl
867	3	8.8	29	9	US-09-932-161-1	Sequence 1, Appli
		8.8	29	9	US-09-844-353A-71	Sequence 71, Appl
868	3	8.8	29	9	US-09-864-761-33834	Sequence 33834, A
869	3	8.8	29	9	US-09-864-761-34011	Sequence 34011, A
870	3	8.8	29	9	US-09-864-761-34337	Sequence 34337, A
871	3	8.8	29	9	US-09-864-761-35314	Sequence 35314, A
872	3	8.8	29	9	US-09-864-761-36235	Sequence 36235, A
873	3	8.8	29	9	US-09-864-761-37068	Sequence 37068, A
874	3	8.8	29	9	US-09-864-761-37579	Sequence 37579, A
875	3	8.8	29	9	US-09-864-761-37814	Sequence 37814, A
876 .	3	8.8	29	9	US-09-864-761-37955	Sequence 37955, A
877	3	8.8	29	9	US-09-864-761-38222	Sequence 38222, A
878	3	8.8	29	9	US-09-864-761-38638	Sequence 38638, A
879	3	8.8	29	9	US-09-864-761-38968	Sequence 38968, A
880	3	8.8	29	9	US-09-864-761-39320	Sequence 39320, A
881	3	8.8	29	9	US-09-864-761-40067	Sequence 40067, A
882	3	8.8	29	9	US-09-864 - 761-40393	Sequence 40393, A
883	3	8.8	29	9	US-09-864-761-40727	Sequence 40727, A
884	3	8.8	29	9	US-09-864-761-40944	Sequence 40944, A
885	3	8.8	29	9	US-09-864-761-41199	Sequence 41199, A
886	3	8.8	29	9	US-09-864-761-41596	Sequence 41596, A
887	3	8.8	29	9	US-09-864-761-42035	Sequence 42035, A
888	3	8.8	29	9	US-09-864-761-42321	Sequence 42321, A
889	3	8.8	29	9	US-09-864-761-42342	Sequence 42342, A
890	3	8.8	29	9	US-09-864-761-42467	Sequence 42467, A
891	3	8.8	29	9	US-09-864-761-42588	Sequence 42588, A
892	3	8.8	29	9	US-09-864-761-42832	Sequence 42832, A
893	3	8.8	29	9	US-09-864-761-42924	Sequence 42924, A
894	3	8.8	29	9	US-09-864-761-43064	Sequence 43064, A
895	3	8.8	29	9	US-09-864-761-43635	Sequence 43635, A
896	3	8.8	29	9	US-09-864-761-44716	Sequence 44716, A
897	3	8.8	29	9	US-09-864-761-44947	Sequence 44947, A
898	3	8.8	29	9	US-09-864-761-45036	Sequence 45036, A
899	3	8.8	29	9	US-09-864-761-45207	Sequence 45207, A
900	3	8.8	29	9	US-09-864-761-45581	Sequence 45581, A
901	3	8.8	29	9	US-09-864-761-45777	Sequence 45777, A
902	3	8.8	29	9		Sequence 45815, A
903	3	8.8	29	9	US-09-864-761-45948	Sequence 45948, A
904	3	8.8	29	9	US-09-864-761-46618	Sequence 46618, A
905	3	8.8	29		US-09-864-761-47028	Sequence 47028, A
906	3	8.8	29		US-09-864-761-47383	Sequence 47383, A
907	3	8.8	29		US-09-864-761-47524	Sequence 47524, A
908	3	8.8	29		US-09-864-761-48176	Sequence 48176, A
909	3	8.8			US-09-864-761-48505	Sequence 48505, A
910	3	8.8	29		US-09-864-761-48518	Sequence 48518, A
911	3	8.8	29		US-09-864-761-48746	Sequence 48746, A
					- · · · · · · · · · · · · · · · · · · ·	<u> </u>

912	3	8.8	29	9	US-09-876-388-22	Sequence 22, Appl
913	3	8.8	29	9	US-09-925-299-1270	Sequence 1270, Ap
914	3	8.8	29	9	US-09-764-869-638	Sequence 638, App
915	3	8.8	29	9	US-09-764-869-674	Sequence 674, App
916	3	8.8	29	9	US-09-881-490-3	Sequence 3, Appli
917	3	8.8	29	9	US-09-789-836-13	Sequence 13, Appl
918	3	8.8	29	10	US-09-927-112-5	Sequence 5, Appli
919	3	8.8	29	10	US-09-927-112-6	Sequence 6, Appli
920	3	8.8	29	10	. US-09-872-864-17	Sequence 17, Appl
921	3	8.8	29	10	US-09-872-864-18	Sequence 18, Appl
922	3	8.8	29	10	US-09-872-864-19	Sequence 19, Appl
923	3	8.8	29	10	US-09-872-864-20	Sequence 20, Appl
924	3	8.8	29	10	US-09-922-261-258	Sequence 258, App
925	3	8.8	29	10	US-09-908-664-8	Sequence 8, Appli
926	3	8.8	29	10	US-09-908-664-9	Sequence 9, Appli
927	3	8.8	29	10	US-09-908-664-18	Sequence 18, Appl
928	3 ′	8.8	29	10	US-09-905-831-12	Sequence 12, Appl
929	3	8.8	29	10	US-09-905-831-15	Sequence 15, Appl
930	3	8.8	29	10	US-09-003-869-79	Sequence 79, Appl
931	3	8.8	29	10	US-09-003-869-98	Sequence 98, Appl
932	3	8.8	29	10	US-09-911-969-7	Sequence 7, Appli
933	3	8.8	29	10	US-09-880-149-52	Sequence 52, Appl
934	3	8.8	29	10	US-09-880-149-55	Sequence 55, Appl
935	3	8.8	29	10	US-09-764-877-1395	Sequence 1395, Ap
936	3	8.8	29	10	US-09-867-852-152	Sequence 152, App
937	3	8.8	29	10	US-09-071-838-189	Sequence 189, App
938	3	8.8	29	10	US-09-071-838-242	Sequence 242, App
939	3	8.8	29	10	US-09-956-206A-1	Sequence 1, Appli
940	3	8.8	29	10	US-09-984-245-227	Sequence 227, App
941	3	8.8	29	10	US-09-880-132-52	Sequence 52, Appl
942	3	8.8	29	10	US-09-880-132-55	Sequence 55, Appl
943	3	8.8	. 29	11	US-09-956-940-38	Sequence 38, Appl
944	3	8.8	29	11	US-09-974-879-406	Sequence 406, App
945	3	8.8	29	11	US-09-974-879-511	Sequence 511, App
946	3	8.8	29	11	US-09-974-879-527	Sequence 527, App
947	3	8.8	29	11	US-09-974-879-580	Sequence 580, App
948	3	8.8	29	11	US-09-259-658-15	Sequence 15, Appl
949	3	8.8	29	11	US-09-756-690A-79	Sequence 79, Appl
950	3	8.8	29	11	US-09-756-690A-98	Sequence 98, Appl
951	3	8.8	29	11	US-09-843-221A-152	Sequence 152, App
952	3	8.8	29	11	US-09-925-299-1270	Sequence 132, App Sequence 1270, Ap
953	3	8.8	29	11	US-09-847-102A-80	Sequence 80, Appl
954	3	8.8	29	11	US-09-813-153-218	Sequence 218, App
955	3	8.8	29	11	US-09-966-262-227	Sequence 218, App Sequence 227, App
956	3	8.8	29	11	US-09-969-730-196	Sequence 196, App
957	3	8.8	29	11	US-09-983-966-227	Sequence 196, App Sequence 227, App
958	3	8.8	29 29	11	US-09-876-904A-28	- · · · · · · · · · · · · · · ·
959	3	8.8	29	11	US-09-764-891-4191	Sequence 28, Appl
960	3	8.8	29 29			Sequence 4191, Ap
961	3	8.8	29 29	11 11	US-09-764-891-4851	Sequence 4851, Ap
962	3				US-09-892-877-436	Sequence 436, App
963	3	8.8	29	11	US-09-847-208-125	Sequence 125, App
		8.8	29	11	US-09-305-736-406	Sequence 406, App
964 965	3	8.8	29	11	US-09-305-736-512	Sequence 512, App
965 966	3	8.8	29	11	US-09-305-736-529	Sequence 529, App
966 967	3	8.8	29	11	US-09-305-736-581	Sequence 581, App
967	3 3	8.8	29	11	US-09-095-478-25	Sequence 25, Appl
968	3	8.8	29	11	US-09-908-139-19	Sequence 19, Appl

969	3	8.8	29	11	US-09-908-139-21	Sequence 21, Appl
970	3	8.8	29	11	US-09-491-614-14	Sequence 14, Appl
971	3	8.8	29	11	US-09-491-614-15	Sequence 15, Appl
.972	3	8.8	29	11	US-09-948-783-438	Sequence 438, App
973	3	8.8	29	11	US-09-910-082A-158	Sequence 158, App
974	3	8.8	29	11	US-09-910-082A-368	Sequence 368, App
975	3	8.8	29	12	US-10-153-604A-72	Sequence 72, Appl
976	3	8.8	29	12	US-10-231-894-44	Sequence 44, Appl
977	3	8.8	29	12	US-10-345-281-52	Sequence 52, Appl
978	3	8.8	29	12	US-10-345-281-55	Sequence 55, Appl
979	3	8.8	29	12	US-10-234-816-95	Sequence 95, Appl
980	3	8.8	29	12	US-09-789-831-13	Sequence 13, Appl
981	3	8.8	29	12	US-09-935-384-757	Sequence 757, App
982	3	8.8	29	12	US-09-935-384-758	Sequence 758, App
983	3	8.8	29	12	US-10-131-909A-4	Sequence 4, Appli
984	3	8.8	29	12	US-10-131-909A-7	Sequence 7, Appli
985	3	8.8	29	12	US-10-096-777-1	Sequence 1, Appli
986	3	8.8	29	12	US-10-008-524A-123	Sequence 123, App
987	. 3	8.8	29	12	US-10-340-458-4	Sequence 4, Appli
988	3	8.8	29	12	US-10-340-458-21	Sequence 21, Appl
989	3	8.8	29	12	US-09-933-767-1182	Sequence 1182, Ap
990	3	8.8	29	12	US-09-963-693-71	Sequence 71, Appl
991	3	8.8	29	12	US-10-105-232-319	Sequence 319, App
992	3	8.8	29	12	US-10-105-232-512	Sequence 512, App
993	3	8.8	29	12	US-10-280-066-334	Sequence 334, App
994	3	8.8	29	12	US-10-289-135A-25	Sequence 25, Appl
995	3	8.8	29	12	US-10-029-386-27545	Sequence 27545, A
996	3	8.8	29	12	US-10-029-386-27995	Sequence 27995, A
997	3	8.8	29	12	US-10-029-386-29238	Sequence 29238, A
998	3	8.8	29	12	US-10-029-386-30063	Sequence 30063, A
999	3	8.8	29	12	US-10-029-386-30256	Sequence 30256, A
1000	3	8.8	29	12	US-10-029-386-31071	Sequence 31071, A

ALIGNMENTS

```
RESULT 1
US-09-169-786-3
; Sequence 3, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
; APPLICANT: Sato, Masahiko
  TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
  FILE REFERENCE: X-11480
  CURRENT APPLICATION NUMBER: US/09/169,786B
  CURRENT FILING DATE: 1998-10-09
  EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
  NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
; SEQ ID NO 3
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-169-786-3
```

```
Query Match
                        100.0%; Score 34; DB 9; Length 34;
  Best Local Similarity 100.0%; Pred. No. 6.4e-28;
 Matches
          34; Conservative 0; Mismatches 0; Indels
                                                              0; Gaps
                                                                         0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
QУ
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 2
US-09-928-047B-6
; Sequence 6, Application US/09928047B
; Patent No. US20020160945A1
; GENERAL INFORMATION:
  APPLICANT: Cantor, Thomas
  TITLE OF INVENTION: CYCLASE INHIBITING PARATHYROID HORMONE
  TITLE OF INVENTION: ANTAGONIST OR MODULATORS AND OSTEOPOROSIS
  FILE REFERENCE: 53221-20002.00
  CURRENT APPLICATION NUMBER: US/09/928,047B
  CURRENT FILING DATE: 2001-08-10
  PRIOR APPLICATION NUMBER: US 60/224,446
  PRIOR FILING DATE: 2000-08-10
  NUMBER OF SEQ ID NOS: 8
  SOFTWARE: FastSEQ for Windows Version 4.0
 SEQ ID NO 6
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-928-047B-6
 Query Match
                        100.0%; Score 34; DB 10; Length 34;
 Best Local Similarity 100.0%; Pred. No. 6.4e-28;
 Matches
           34; Conservative 0; Mismatches 0;
                                                    Indels
                                                              0; Gaps
                                                                         0;
QУ
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 3
US-09-843-221A-16
; Sequence 16, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
```

```
PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 16
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-16
 Query Match
                         100.0%; Score 34; DB 11; Length 34;
                         100.0%; Pred. No. 6.4e-28;
 Best Local Similarity
           34; Conservative
                               0; Mismatches
                                                      Indels
                                                  0;
                                                                0; Gaps
                                                                           0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 4
US-09-843-221A-161
; Sequence 161, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 161
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (34)..(34)
   OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-161
 Query Match
                         100.0%;
                                  Score 34; DB 11;
                                                     Length 34;
 Best Local Similarity
                         100.0%; Pred. No. 6.4e-28;
                                                                           0;
           34; Conservative
 Matches
                               0; Mismatches
                                                                0; Gaps
                                                  0;
                                                      Indels
```

FEATURE:

RESULT 5 US-09-928-048A-6 ; Sequence 6, Application US/09928048A ; Publication No. US20030138858A1 ; GENERAL INFORMATION: APPLICANT: Scantibodies Laboratory, Inc. APPLICANT: Cantor, Thomas L. TITLE OF INVENTION: METHODS AND DEVICES FOR DIRECT TITLE OF INVENTION: DETERMINATION OF CYCLASE INHIBITING PARATHYROID HORMONE FILE REFERENCE: 53221-20015.00 CURRENT APPLICATION NUMBER: US/09/928,048A CURRENT FILING DATE: 2000-08-10 NUMBER OF SEQ ID NOS: 8 SOFTWARE: FastSEO for Windows Version 4.0 SEQ ID NO 6 LENGTH: 34 TYPE: PRT ORGANISM: Homo sapiens US-09-928-048A-6 Query Match 100.0%; Score 34; DB 12; Length 34; Best Local Similarity 100.0%; Pred. No. 6.4e-28; Matches 34; Conservative 0; Mismatches 0; Indels 0; Gaps 0; 1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34 Qу Db 1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34 RESULT 6 US-10-361-928-8 ; Sequence 8, Application US/10361928 ; Publication No. US20030144209A1 ; GENERAL INFORMATION: APPLICANT: BRINGHURST, F. RICHARD APPLICANT: TAKASU, HISASHI APPLICANT: GARDELLA, THOMAS J. TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH) TITLE OF INVENTION: ANALOGS FILE REFERENCE: 0609.4630002 CURRENT APPLICATION NUMBER: US/10/361,928 CURRENT FILING DATE: 2003-02-11 PRIOR APPLICATION NUMBER: 09/447,800 PRIOR FILING DATE: 1999-11-23 PRIOR APPLICATION NUMBER: 60/110,152 PRIOR FILING DATE: 1998-11-25 NUMBER OF SEQ ID NOS: 10 SOFTWARE: PatentIn Ver. 2.1 SEQ ID NO 8 LENGTH: 34 TYPE: PRT ORGANISM: Homo sapiens

```
NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ser
US-10-361-928-8
  Query Match
                         100.0%; Score 34; DB 12; Length 34;
  Best Local Similarity
                        100.0%; Pred. No. 6.4e-28;
           34; Conservative
                              0; Mismatches
                                                0; Indels
                                                              0; Gaps
                                                                         0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Dh
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 7
US-10-340-484-15
; Sequence 15, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
  TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
  TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
  CURRENT APPLICATION NUMBER: US/10/340,484
  CURRENT FILING DATE: 2003-01-10
  PRIOR APPLICATION NUMBER: 60/347,215
  PRIOR FILING DATE: 2002-01-10
  PRIOR APPLICATION NUMBER: 60/353,296
  PRIOR FILING DATE: 2002-02-01
  PRIOR APPLICATION NUMBER: 60/368,955
  PRIOR FILING DATE: 2002-03-28
  PRIOR APPLICATION NUMBER: 60/379,125
  PRIOR FILING DATE: 2002-05-08
  NUMBER OF SEQ ID NOS: 27
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 15
   LENGTH: 34
   TYPE: PRT
    ORGANISM: Homo sapiens
US-10-340-484-15
  Query Match
                        100.0%; Score 34; DB 12; Length 34;
  Best Local Similarity 100.0%; Pred. No. 6.4e-28;
           34; Conservative
                              0; Mismatches
                                               0; Indels
                                                              0; Gaps
                                                                         0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 8
US-10-340-484-16
; Sequence 16, Application US/10340484
; Publication No. US20030171288A1
; GENERAL INFORMATION:
  APPLICANT: Stewart, Andrew F.
  TITLE OF INVENTION: Treatment of Bone Disorders with Skelatal Anabolic
```

```
TITLE OF INVENTION: Drugs
  FILE REFERENCE: 25200-501
  CURRENT APPLICATION NUMBER: US/10/340,484
  CURRENT FILING DATE: 2003-01-10
  PRIOR APPLICATION NUMBER: 60/347,215
  PRIOR FILING DATE: 2002-01-10
  PRIOR APPLICATION NUMBER: 60/353,296
  PRIOR FILING DATE: 2002-02-01
  PRIOR APPLICATION NUMBER: 60/368,955
  PRIOR FILING DATE: 2002-03-28
  PRIOR APPLICATION NUMBER: 60/379,125
  PRIOR FILING DATE: 2002-05-08
  NUMBER OF SEQ ID NOS: 27
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 16
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Macaca fascicularis
US-10-340-484-16
                         100.0%; Score 34; DB 12; Length 34;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 6.4e-28;
 Matches
           34; Conservative
                               0; Mismatches
                                                0; Indels
                                                                0;
                                                                   Gaps
                                                                            0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 9
US-10-016-403-5
; Sequence 5, Application US/10016403
 Publication No. US20020107505A1
   GENERAL INFORMATION:
        APPLICANT: Holladay, Leslie A.
        TITLE OF INVENTION: MODIFICATION OF POLYPEPTIDE DRUGS TO
                            INCREASE ELECTROTRANSPORT FLUX
        NUMBER OF SEQUENCES: 10
        CORRESPONDENCE ADDRESS:
             ADDRESSEE: Stroud, Stroud, Willink, Thompson & Howard
             STREET: 25 West Main Street
             CITY: Madison
             STATE: WI
             COUNTRY: USA
             ZIP: 53701-2236
        COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
             COMPUTER: IBM PC compatible
             OPERATING SYSTEM: PC-DOS/MS-DOS
             SOFTWARE: PatentIn Release #1.0, Version #1.25
        CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/016,403
             FILING DATE: 10-Dec-2001
             CLASSIFICATION: <Unknown>
        PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 08/466,610
             FILING DATE: 1995-JUN-06
```

```
ATTORNEY/AGENT INFORMATION:
              NAME: Frenchick, Grady J.
              REGISTRATION NUMBER: 29,018
              REFERENCE/DOCKET NUMBER: 8734.28
         TELECOMMUNICATION INFORMATION:
              TELEPHONE: 608-257-2281
              TELEFAX: 608-257-7643
    INFORMATION FOR SEQ ID NO: 5:
         SEQUENCE CHARACTERISTICS:
              LENGTH: 34 amino acids
              TYPE: amino acid
              TOPOLOGY: linear
        FEATURE:
              NAME/KEY: Peptide
             LOCATION:
                       1..34
             OTHER INFORMATION: /note= "parathyroid hormone"
         SEQUENCE DESCRIPTION: SEQ ID NO: 5:
US-10-016-403-5
  Query Match
                         100.0%; Score 34; DB 14; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 6.4e-28;
 Matches
           34; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 10
US-10-097-079-1
; Sequence 1, Application US/10097079
; Publication No. US20020132973A1
   GENERAL INFORMATION:
        APPLICANT: Condon, Stephen M.
                   Morize, Isabelle
         TITLE OF INVENTION: PEPTIDE PARATHYROID HORMONE ANALOGS
        NUMBER OF SEQUENCES: 88
        CORRESPONDENCE ADDRESS:
             ADDRESSEE: Rhone-Poulenc Rorer Inc.
             STREET: 500 Arcola Road, Mailstop 3C43
             CITY: Collegeville
             STATE: PA
             COUNTRY: USA
             ZIP: 19426
        COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
             COMPUTER: IBM PC compatible
             OPERATING SYSTEM: PC-DOS/MS-DOS
             SOFTWARE: PatentIn Release #1.0, Version #1.30
        CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/097,079
             FILING DATE: 13-Mar-2002
             CLASSIFICATION: <Unknown>
        PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 09/228,990
             FILING DATE: <Unknown>
             APPLICATION NUMBER: US 60/046,472
```

```
FILING DATE: 14-MAY-1997
        ATTORNEY/AGENT INFORMATION:
             NAME: Martin Esq., Michael B.
             REGISTRATION NUMBER: 37,521
             REFERENCE/DOCKET NUMBER: A2678B-WO
        TELECOMMUNICATION INFORMATION:
             TELEPHONE: (610) 454-2793
             TELEFAX: (610) 454-3808
   INFORMATION FOR SEQ ID NO: 1:
        SEQUENCE CHARACTERISTICS:
             LENGTH: 34 amino acids
             TYPE: amino acid
             STRANDEDNESS: <Unknown>
             TOPOLOGY: No. US20020132973A1 Relevant
        MOLECULE TYPE: peptide
        FRAGMENT TYPE: N-terminal
        SEQUENCE DESCRIPTION: SEQ ID NO: 1:
US-10-097-079-1
 Query Match
                         100.0%; Score 34; DB 14; Length 34;
 Best Local Similarity 100.0%; Pred. No. 6.4e-28;
 Matches
           34; Conservative 0; Mismatches
                                               0; Indels
                                                               0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 11
US-10-168-185-9
; Sequence 9, Application US/10168185
; Publication No. US20030175802A1
; GENERAL INFORMATION:
  APPLICANT: Armbruster, Franz Paul
  APPLICANT: Missbichler, Albert
  APPLICANT: Schmidt-Gayk, Heinrich
  APPLICANT: Roth, Heinz-Jurgen
  TITLE OF INVENTION: Method for Determining Parathormone
  TITLE OF INVENTION: Activity in a Human Sample
  FILE REFERENCE: HLZ-004US
  CURRENT APPLICATION NUMBER: US/10/168,185
  CURRENT FILING DATE: 2002-06-17
  PRIOR APPLICATION NUMBER: PCT/EP00/12911
 PRIOR FILING DATE: 2000-12-18
  PRIOR APPLICATION NUMBER: DE 19961350
  PRIOR FILING DATE: 1999-12-17
  NUMBER OF SEQ ID NOS: 11
  SOFTWARE: FastSEQ for Windows Version 4.0
 SEQ ID NO 9
   LENGTH: 37
   TYPE: PRT
   ORGANISM: Homo sapiens
US-10-168-185-9
                         100.0%; Score 34; DB 12; Length 37;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 6.8e-28;
 Matches 34; Conservative 0; Mismatches 0; Indels
                                                                  Gaps
                                                                          0;
```

```
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 12
US-09-169-786-4
; Sequence 4, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
  APPLICANT: Sato, Masahiko
  TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
  FILE REFERENCE: X-11480
  CURRENT APPLICATION NUMBER: US/09/169,786B
  CURRENT FILING DATE: 1998-10-09
  EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
  NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
 SEO ID NO 4
   LENGTH: 38
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-169-786-4
 Query Match
                         100.0%; Score 34; DB 9; Length 38;
 Best Local Similarity
                        100.0%; Pred. No. 7e-28;
          34; Conservative
 Matches
                              0; Mismatches
                                              0; Indels
                                                              0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 13
US-09-843-221A-14
; Sequence 14, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
```

```
; SEQ ID NO 14
    LENGTH: 38
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-14
  Query Match
                         100.0%; Score 34; DB 11; Length 38;
  Best Local Similarity
                         100.0%; Pred. No. 7e-28;
  Matches
           34; Conservative
                              0; Mismatches
                                                0; Indels
                                                              0; Gaps
                                                                          0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 14
US-10-245-707-1
; Sequence 1, Application US/10245707
; Publication No. US20030171282A1
; GENERAL INFORMATION:
   APPLICANT: Patton, John S.
   TITLE OF INVENTION: Pulmonary Delivery of Active Fragments of Parathyroid
Hormone
  FILE REFERENCE: 032055-047
   CURRENT APPLICATION NUMBER: US/10/245,707
   CURRENT FILING DATE: 2003-03-11
   PRIOR APPLICATION NUMBER: US 09/577,264
   PRIOR FILING DATE: 2000-05-22
   PRIOR APPLICATION NUMBER: US 09/128,401
   PRIOR FILING DATE: 1998-08-03
   PRIOR APPLICATION NUMBER: US 08/625,586
   PRIOR FILING DATE: 1996-03-28
   PRIOR APPLICATION NUMBER: US 08/232,849
   PRIOR FILING DATE: 1994-04-25
   PRIOR APPLICATION NUMBER: US 07/953,397
   PRIOR FILING DATE: 1992-09-29
   NUMBER OF SEQ ID NOS: 1
   SOFTWARE: FastSEQ for Windows Version 4.0
 SEO ID NO 1
   LENGTH: 38
    TYPE: PRT
    ORGANISM: Artificial Sequence
   OTHER INFORMATION: parathyroid hormone (PTH) fragment molecues
US-10-245-707-1
  Query Match
                         100.0%; Score 34; DB 12; Length 38;
  Best Local Similarity
                        100.0%; Pred. No. 7e-28;
          34; Conservative
 Matches
                              0; Mismatches
                                               0;
                                                    Indels
                                                              0; Gaps
                                                                          0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
```

RESULT 15 US-10-361-928-9

```
; Sequence 9, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT:
              TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 9
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ser
US-10-361-928-9
 Query Match
                         97.1%; Score 33; DB 12; Length 33;
 Best Local Similarity
                         100.0%; Pred. No. 6.6e-27;
 Matches
           33; Conservative
                                0; Mismatches
                                                     Indels
                                                0;
                                                               0; Gaps
                                                                           0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHN 33
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHN 33
RESULT 16
US-09-843-221A-20
; Sequence 20, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
```

```
SOFTWARE: PatentIn version 3.1
 SEQ ID NO 20
   LENGTH: 34
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: modified human PTH
US-09-843-221A-20
  Query Match
                         97.1%; Score 33; DB 11; Length 34;
  Best Local Similarity 100.0%; Pred. No. 6.7e-27;
  Matches
           33; Conservative
                              0; Mismatches 0; Indels
                                                              0; Gaps
                                                                         0;
Qу
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 17
US-10-361-928-1
; Sequence 1, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 1
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: UNSURE
   LOCATION: (1)
   OTHER INFORMATION: Can be desamino Ser, desamino Ala, or desamino Gly
US-10-361-928-1
  Query Match
                        97.1%; Score 33; DB 12; Length 34;
 Best Local Similarity 100.0%; Pred. No. 6.7e-27;
 Matches
           33; Conservative
                              0; Mismatches
                                              0; Indels
                                                              0; Gaps
                                                                         0;
Qу
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
```

```
US-10-361-928-2
; Sequence 2, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
 NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 2
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Gly
US-10-361-928-2
  Query Match
                         97.1%; Score 33; DB 12; Length 34;
  Best Local Similarity 100.0%; Pred. No. 6.7e-27;
           33; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
Qу
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 19
US-10-361-928-5
; Sequence 5, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
; NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 5
```

```
LENGTH: 34
    TYPE: PRT
    ORGANISM: Homo sapiens
    FEATURE:
    NAME/KEY: MOD RES
    LOCATION: (1)
    OTHER INFORMATION: Desamino Ala
US-10-361-928-5
  Query Match
                         97.1%; Score 33; DB 12; Length 34;
  Best Local Similarity 100.0%; Pred. No. 6.7e-27;
  Matches
           33; Conservative
                               0; Mismatches
                                                0; Indels
                                                              0; Gaps
Qу
            2 VSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
              Db
            2 VSEIQLMHNLGKHLNSMERVEWLRKKLODVHNF 34
RESULT 20
US-09-843-221A-15
; Sequence 15, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
  SEQ ID NO 15
   LENGTH: 37
    TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-15
  Query Match
                         97.1%; Score 33; DB 11; Length 37;
  Best Local Similarity
                        100.0%; Pred. No. 7.2e-27;
           33; Conservative
  Matches
                              0; Mismatches
                                               0;
                                                    Indels
                                                              0; Gaps
                                                                         0;
Qу
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34
             Db
           1 VSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 33
```

RESULT 21 US-10-361-928-3

```
; Sequence 3, Application US/10361928
; Publication No. US20030144209A1
; GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
             TAKASU, HISASHI
  APPLICANT:
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
  NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
 SEQ ID NO 3
   LENGTH: 33
   TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Gly
US-10-361-928-3
 Query Match
                         94.1%; Score 32; DB 12; Length 33;
 Best Local Similarity
                         100.0%; Pred. No. 7e-26;
 Matches
           32; Conservative
                                0; Mismatches
                                                0; Indels
                                                               0;
                                                                   Gaps
Qу
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQDVHN 33
             Db
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQDVHN 33
RESULT 22
US-10-361-928-6
; Sequence 6, Application US/10361928
 Publication No. US20030144209A1
 GENERAL INFORMATION:
  APPLICANT: BRINGHURST, F. RICHARD
  APPLICANT: TAKASU, HISASHI
  APPLICANT: GARDELLA, THOMAS J.
  TITLE OF INVENTION: AMINO-TERMINAL MODIFIED PARATHYROID HORMONE (PTH)
  TITLE OF INVENTION: ANALOGS
  FILE REFERENCE: 0609.4630002
  CURRENT APPLICATION NUMBER: US/10/361,928
  CURRENT FILING DATE: 2003-02-11
  PRIOR APPLICATION NUMBER: 09/447,800
  PRIOR FILING DATE: 1999-11-23
  PRIOR APPLICATION NUMBER: 60/110,152
  PRIOR FILING DATE: 1998-11-25
 NUMBER OF SEQ ID NOS: 10
  SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 6
   LENGTH: 33
```

```
TYPE: PRT
   ORGANISM: Homo sapiens
   FEATURE:
   NAME/KEY: MOD RES
   LOCATION: (1)
   OTHER INFORMATION: Desamino Ala
US-10-361-928-6
  Query Match
                        94.1%; Score 32; DB 12; Length 33;
 Best Local Similarity
                        100.0%; Pred. No. 7e-26;
          32; Conservative 0; Mismatches
                                                0; Indels
                                                              0; Gaps
                                                                         0;
 Matches
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQDVHN 33
Qу
             Db
           2 VSEIQLMHNLGKHLNSMERVEWLRKKLQDVHN 33
RESULT 23
US-09-169-786-2
; Sequence 2, Application US/09169786B
; Patent No. US20020025929A1
; GENERAL INFORMATION:
  APPLICANT: Sato, Masahiko
  TITLE OF INVENTION: METHOD OF BUILDING AND MAINTAINING BONE
  FILE REFERENCE: X-11480
  CURRENT APPLICATION NUMBER: US/09/169,786B
  CURRENT FILING DATE: 1998-10-09
  EARLIER APPLICATION NUMBER: US 60/061,800
  EARLIER FILING DATE: 1997-10-14
  NUMBER OF SEQ ID NOS: 12
  SOFTWARE: PatentIn Ver. 2.0
 SEQ ID NO 2
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-169-786-2
                        91.2%; Score 31; DB 9; Length 31;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 7e-25;
           31; Conservative
                              0; Mismatches
                                               0; Indels
                                                              0; Gaps
                                                                         0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDV 31
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDV 31
RESULT 24
US-09-843-221A-27
; Sequence 27, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
```

```
FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
; PRIOR FILING DATE: 2000-06-28
; PRIOR APPLICATION NUMBER: 60/200,053
 PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 27
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-27
 Query Match
                         91.2%; Score 31; DB 11; Length 31;
 Best Local Similarity 100.0%; Pred. No. 7e-25;
 Matches
          31; Conservative 0; Mismatches
                                                0; Indels
                                                               0; Gaps
                                                                           0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDV 31
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDV 31
RESULT 25
US-09-843-221A-165
; Sequence 165, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
; TITLE OF INVENTION: RELATED PROTEIN
 FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 165
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (31)..(31)
   OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
```

```
Query Match
                         91.2%; Score 31; DB 11; Length 31;
  Best Local Similarity
                         100.0%; Pred. No. 7e-25;
  Matches
          31; Conservative 0; Mismatches
                                                0; Indels
                                                              0; Gaps
                                                                         0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLODV 31
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDV 31
RESULT 26
US-09-843-221A-39
; Sequence 39, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
 SEO ID NO 39
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-39
  Query Match
                        88.2%; Score 30; DB 11; Length 30;
 Best Local Similarity 100.0%; Pred. No. 7.3e-24;
           30; Conservative 0; Mismatches
                                              0; Indels
                                                              0; Gaps
                                                                         0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQD 30
QУ
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLOD 30
RESULT 27
US-09-843-221A-166
; Sequence 166, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
; APPLICANT: LIU, CHUAN-FA
; APPLICANT: LACEY, DAVID LEE
```

```
TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 166
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (30)..(30)
    OTHER INFORMATION: Optional linker and Fc domain attached at the C-terminus
US-09-843-221A-166
  Query Match
                         88.2%; Score 30; DB 11; Length 30;
  Best Local Similarity
                         100.0%; Pred. No. 7.3e-24;
           30; Conservative 0; Mismatches
                                                0; Indels
                                                                0; Gaps
                                                                            0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQD 30
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQD 30
RESULT 28
US-09-843-221A-51
; Sequence 51, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION:
                       RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 51
```

```
LENGTH: 29
    TYPE: PRT
    ORGANISM: Homo sapiens
US-09-843-221A-51
  Query Match
                         85.3%; Score 29; DB 11; Length 29;
  Best Local Similarity
                         100.0%; Pred. No. 7.5e-23;
           29; Conservative
                               0; Mismatches
                                                 0; Indels
                                                               0;
                                                                  Gaps
                                                                          0;
QУ
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
RESULT 29
US-09-843-221A-167
; Sequence 167, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 167
   LENGTH: 29
   TYPE: PRT
   ORGANISM: Artificial Sequence
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (1)..(1)
   OTHER INFORMATION: Fc domain attached at the N-terminus through optional
linker
US-09-843-221A-167
 Query Match
                         85.3%; Score 29; DB 11; Length 29;
 Best Local Similarity 100.0%; Pred. No. 7.5e-23;
 Matches
           29; Conservative
                              0; Mismatches
                                                 0; Indels
                                                              0; Gaps
                                                                          0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLO 29
Qу
             Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQ 29
```

```
US-09-843-221A-43
; Sequence 43, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION:
                       RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 43
   LENGTH: 30
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-43
  Query Match
                          85.3%; Score 29; DB 11; Length 30;
 Best Local Similarity
                         100.0%; Pred. No. 7.7e-23;
 Matches
           29; Conservative
                                0; Mismatches
                                                 0; Indels
                                                                 0; Gaps
                                                                            0;
Qу
            2 VSEIQLMHNLGKHLNSMERVEWLRKKLQD 30
              111111111111111111
Db
            2 VSEIQLMHNLGKHLNSMERVEWLRKKLQD 30
RESULT 31
US-10-372-095-24
; Sequence 24, Application US/10372095
; Publication No. US20030162256A1
; GENERAL INFORMATION:
  APPLICANT: Juppner, Harald
  APPLICANT: Rubin, David A.
  TITLE OF INVENTION: PTH1R and PTH3R Receptors, Methods and Uses Thereof
  FILE REFERENCE: 0609.4740002
  CURRENT APPLICATION NUMBER: US/10/372,095
                        2003-02-25
  CURRENT FILING DATE:
  PRIOR APPLICATION NUMBER: 09/449,632
  PRIOR FILING DATE: 1999-11-30
  PRIOR APPLICATION NUMBER: US 60/110,467
  PRIOR FILING DATE: 1998-11-30
  NUMBER OF SEQ ID NOS: 25
 SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 24
```

RESULT 30

```
LENGTH: 34
   TYPE: PRT
   ORGANISM: Homo sapiens
US-10-372-095-24
  Query Match
                      85.3%; Score 29; DB 12; Length 34;
  Best Local Similarity 100.0%; Pred. No. 8.5e-23;
           29; Conservative 0; Mismatches
                                              0; Indels
                                                              0; Gaps
                                                                         0;
           4 EIQLMHNLGKHLNSMERVEWLRKKLQDVH 32
Qу
             Db
           4 EIQLMHNLGKHLNSMERVEWLRKKLQDVH 32
RESULT 32
US-09-843-221A-32
; Sequence 32, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEQ ID NO 32
   LENGTH: 28
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-32
 Query Match
                        82.4%; Score 28; DB 11; Length 28;
 Best Local Similarity
                        100.0%; Pred. No. 7.7e-22;
 Matches
          28; Conservative 0; Mismatches
                                               0; Indels
                                                              0; Gaps
                                                                         0;
           7 LMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
             1 LMHNLGKHLNSMERVEWLRKKLQDVHNF 28
Db
RESULT 33
US-09-843-221A-52
; Sequence 52, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
; APPLICANT: KOSTENUIK, PAUL
```

```
APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 52
   LENGTH: 28
   TYPE: PRT
   ORGANISM: Homo sapiens
US-09-843-221A-52
 Query Match
                         82.4%; Score 28; DB 11; Length 28;
 Best Local Similarity
                         100.0%; Pred. No. 7.7e-22;
 Matches
           28; Conservative
                               0; Mismatches
                                                 0;
                                                     Indels
                                                                0; Gaps
                                                                            0;
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
Qу
              1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 34
US-09-843-221A-168
; Sequence 168, Application US/09843221A
 Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 168
   LENGTH: 28
   TYPE: PRT
   ORGANISM: Artificial Sequence
```

```
FEATURE:
   OTHER INFORMATION: Preferred embodiments - PTH
   NAME/KEY: misc feature
   LOCATION: (1)..(1)
   OTHER INFORMATION: Fc domain attached at the N-terminus through optional
linker
US-09-843-221A-168
 Query Match
                         82.4%; Score 28; DB 11; Length 28;
 Best Local Similarity 100.0%; Pred. No. 7.7e-22;
           28; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 35
US-10-016-403-6
; Sequence 6, Application US/10016403
; Publication No. US20020107505A1
   GENERAL INFORMATION:
        APPLICANT: Holladay, Leslie A.
        TITLE OF INVENTION: MODIFICATION OF POLYPEPTIDE DRUGS TO
                            INCREASE ELECTROTRANSPORT FLUX
        NUMBER OF SEQUENCES: 10
        CORRESPONDENCE ADDRESS:
             ADDRESSEE: Stroud, Stroud, Willink, Thompson & Howard
             STREET: 25 West Main Street
             CITY: Madison
             STATE: WI
             COUNTRY: USA
             ZIP: 53701-2236
        COMPUTER READABLE FORM:
             MEDIUM TYPE: Floppy disk
             COMPUTER: IBM PC compatible
             OPERATING SYSTEM: PC-DOS/MS-DOS
             SOFTWARE: PatentIn Release #1.0, Version #1.25
        CURRENT APPLICATION DATA:
             APPLICATION NUMBER: US/10/016,403
             FILING DATE: 10-Dec-2001
             CLASSIFICATION: <Unknown>
        PRIOR APPLICATION DATA:
             APPLICATION NUMBER: 08/466,610
             FILING DATE: 1995-JUN-06
        ATTORNEY/AGENT INFORMATION:
             NAME: Frenchick, Grady J.
             REGISTRATION NUMBER: 29,018
             REFERENCE/DOCKET NUMBER: 8734.28
        TELECOMMUNICATION INFORMATION:
             TELEPHONE: 608-257-2281
             TELEFAX: 608-257-7643
   INFORMATION FOR SEQ ID NO: 6:
        SEQUENCE CHARACTERISTICS:
             LENGTH: 34 amino acids
             TYPE: amino acid
             TOPOLOGY: linear
```

```
FEATURE:
              NAME/KEY: Peptide
              LOCATION: 1..34
              OTHER INFORMATION: /note= "modified parathyroid
              hormone"
         SEQUENCE DESCRIPTION: SEQ ID NO: 6:
US-10-016-403-6
                          82.4%; Score 28; DB 14; Length 34;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 9e-22;
  Matches
            28; Conservative 0; Mismatches
                                                                0; Gaps
                                                0; Indels
                                                                            0;
            7 LMHNLGKHLNSMERVEWLRKKLQDVHNF 34
Qу
              Db
            7 LMHNLGKHLNSMERVEWLRKKLQDVHNF 34
RESULT 36
US-10-016-403-7
; Sequence 7, Application US/10016403
 Publication No. US20020107505A1
    GENERAL INFORMATION:
         APPLICANT: Holladay, Leslie A.
         TITLE OF INVENTION: MODIFICATION OF POLYPEPTIDE DRUGS TO
                             INCREASE ELECTROTRANSPORT FLUX
         NUMBER OF SEQUENCES: 10
         CORRESPONDENCE ADDRESS:
              ADDRESSEE: Stroud, Stroud, Willink, Thompson & Howard
              STREET: 25 West Main Street
              CITY: Madison
              STATE: WI
              COUNTRY: USA
              ZIP: 53701-2236
         COMPUTER READABLE FORM:
              MEDIUM TYPE: Floppy disk
              COMPUTER: IBM PC compatible
              OPERATING SYSTEM: PC-DOS/MS-DOS
              SOFTWARE: PatentIn Release #1.0, Version #1.25
         CURRENT APPLICATION DATA:
              APPLICATION NUMBER: US/10/016,403
              FILING DATE: 10-Dec-2001
              CLASSIFICATION: <Unknown>
         PRIOR APPLICATION DATA:
              APPLICATION NUMBER: 08/466,610
              FILING DATE: 1995-JUN-06
         ATTORNEY/AGENT INFORMATION:
              NAME: Frenchick, Grady J.
              REGISTRATION NUMBER: 29,018
              REFERENCE/DOCKET NUMBER: 8734.28
         TELECOMMUNICATION INFORMATION:
              TELEPHONE: 608-257-2281
              TELEFAX: 608-257-7643
    INFORMATION FOR SEQ ID NO: 7:
         SEQUENCE CHARACTERISTICS:
              LENGTH: 34 amino acids
              TYPE: amino acid
              TOPOLOGY: linear
```

```
FEATURE:
              NAME/KEY: Peptide
              LOCATION: 1..34
              OTHER INFORMATION: /note= "modified parathyroid
              hormone"
         SEQUENCE DESCRIPTION: SEQ ID NO: 7:
US-10-016-403-7
  Query Match
                          82.4%; Score 28; DB 14; Length 34;
  Best Local Similarity
                         100.0%; Pred. No. 9e-22;
  Matches
            28; Conservative 0; Mismatches
                                                  0; Indels
                                                                0; Gaps
                                                                            0;
Qу
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
              111111111111111111111111111111
Dh
            1 SVSEIQLMHNLGKHLNSMERVEWLRKKL 28
RESULT 37
US-09-843-221A-50
; Sequence 50, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
   APPLICANT: KOSTENUIK, PAUL
   APPLICANT: LIU, CHUAN-FA
   APPLICANT: LACEY, DAVID LEE
   TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
   TITLE OF INVENTION: RELATED PROTEIN
   FILE REFERENCE: A-665B
   CURRENT APPLICATION NUMBER: US/09/843,221A
   CURRENT FILING DATE: 2001-04-26
   PRIOR APPLICATION NUMBER: 60/266,673
   PRIOR FILING DATE: 2001-02-06
   PRIOR APPLICATION NUMBER: 60/214,860
   PRIOR FILING DATE: 2000-06-28
   PRIOR APPLICATION NUMBER: 60/200,053
   PRIOR FILING DATE: 2000-04-27
   NUMBER OF SEQ ID NOS: 170
   SOFTWARE: PatentIn version 3.1
 SEO ID NO 50
   LENGTH: 30
    TYPE: PRT
    ORGANISM: Artificial Sequence
    FEATURE:
    OTHER INFORMATION: modified human PTH
US-09-843-221A-50
  Query Match
                         76.5%; Score 26; DB 11; Length 30;
  Best Local Similarity 100.0%; Pred. No. 9.2e-20;
           26; Conservative
                             0; Mismatches 0; Indels
                                                               0; Gaps
                                                                           0;
            1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
Qу
              Db
           1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
```

```
US-09-843-221A-28
; Sequence 28, Application US/09843221A
; Publication No. US20030039654A1
; GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
  NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
 SEQ ID NO 28
   LENGTH: 31
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
   OTHER INFORMATION: modified human PTH
US-09-843-221A-28
 Query Match 76.5%; Score 26; DB 11; Length 31; Best Local Similarity 100.0%; Pred. No. 9.4e-20;
 Query Match
 Matches
           26; Conservative
                               0; Mismatches 0; Indels
                                                                     Gaps
            1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
Qу
              Db
            1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
RESULT 39
US-10-031-874A-206
; Sequence 206, Application US/10031874A
 Publication No. US20030190598A1
; GENERAL INFORMATION:
  APPLICANT: TANHA, JAMSHID
  APPLICANT: DUBUC, GINETTE
  APPLICANT: NARANG, SARAN
  TITLE OF INVENTION: SINGLE-DOMAIN ANTIGEN-BINDING ANTIBODY FRAGMENTS
  TITLE OF INVENTION: DERIVED FROM LLAMA ANTIBODIES
  FILE REFERENCE: 11054-1
  CURRENT APPLICATION NUMBER: US/10/031,874A
  CURRENT FILING DATE: 2002-11-14
  PRIOR APPLICATION NUMBER: 60/207,234
  PRIOR FILING DATE: 2000-05-26
 NUMBER OF SEQ ID NOS: 212
 SOFTWARE: PatentIn Ver. 2.1
; SEQ ID NO 206
  LENGTH: 31
```

```
; TYPE: PRT
   ORGANISM: Lama glama
US-10-031-874A-206
                        76.5%; Score 26; DB 12; Length 31;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 9.4e-20;
          26: Conservative 0: Mismatches 0: Indels
                                                             0; Gaps
 Matches
           1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
QУ
             1 SVSEIQLMHNLGKHLNSMERVEWLRK 26
Db
RESULT 40
US-09-843-221A-17
; Sequence 17, Application US/09843221A
; Publication No. US20030039654A1
: GENERAL INFORMATION:
  APPLICANT: KOSTENUIK, PAUL
  APPLICANT: LIU, CHUAN-FA
  APPLICANT: LACEY, DAVID LEE
  TITLE OF INVENTION: MODULATORS OF RECEPTORS FOR PARATHYROID HORMONE AND
PARATHYROID HORMONE-
  TITLE OF INVENTION: RELATED PROTEIN
  FILE REFERENCE: A-665B
  CURRENT APPLICATION NUMBER: US/09/843,221A
  CURRENT FILING DATE: 2001-04-26
  PRIOR APPLICATION NUMBER: 60/266,673
  PRIOR FILING DATE: 2001-02-06
  PRIOR APPLICATION NUMBER: 60/214,860
  PRIOR FILING DATE: 2000-06-28
  PRIOR APPLICATION NUMBER: 60/200,053
  PRIOR FILING DATE: 2000-04-27
 NUMBER OF SEQ ID NOS: 170
  SOFTWARE: PatentIn version 3.1
; SEO ID NO 17
   LENGTH: 34
   TYPE: PRT
   ORGANISM: Artificial Sequence
   FEATURE:
    OTHER INFORMATION: modified human PTH
US-09-843-221A-17
  Query Match
                        67.6%; Score 23; DB 11; Length 34;
                        100.0%; Pred. No. 1.2e-16;
  Best Local Similarity
          23; Conservative 0; Mismatches 0;
                                                   Indels
                                                             0; Gaps
                                                                         0:
QУ
          12 GKHLNSMERVEWLRKKLQDVHNF 34
             12 GKHLNSMERVEWLRKKLQDVHNF 34
Dh
```

Search completed: January 14, 2004, 11:15:02 Job time: 23.8785 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:19; Search time 25.4206 Seconds

(without alignments)

345.145 Million cell updates/sec

US-09-843-221A-161 Title:

Perfect score: 34

Sequence: 1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34

Scoring table: OLIGO

Gapop 60.0 , Gapext 60.0

Searched: 830525 seqs, 258052604 residues

Word size :

Total number of hits satisfying chosen parameters: 13497

Minimum DB seg length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database :

SPTREMBL 23:* 1: sp_archea:*

2: sp_bacteria:*

3: sp fungi:*

4: sp human:*

5: sp invertebrate:*

6: sp_mammal:*

7: sp mhc:*

8: sp_organelle:*

9: sp phage:*

10: sp_plant:*

11: sp_rodent:*

12: sp virus:*

13: sp vertebrate:*

14: sp unclassified:*

15: sp rvirus:*

16: sp_bacteriap:*

17: sp archeap:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

응

Result Query

No. Score Match Length DB ID

Description

	1 4	47.0		4.4	
1	14	41.2	31	11 Q91Y90	Q91y90 peromyscus
2	14	41.2	31	11 Q91Y91	Q91y91 peromyscus
3	5	14.7	34	5 017148	O17148 echinococcu
4	5	14.7	34	16 Q97K50	Q97k50 clostridium
5	5	14.7	34	17 Q9HR65	Q9hr65 halobacteri
6	5	14.7	35	11 Q8BTB9	
7	5				Q8btb9 mus musculu
		14.7	35	16 Q97RG6	Q97rg6 streptococc
8	4	11.8	28	10 024285	O24285 pinus radia
9	4	11.8	28	10 Q8GZQ8	Q8gzq8 hordeum vul
10	4	11.8	29	2 Q49148	Q49148 methylobact
11	4	11.8	29	4 Q9UCL2	Q9ucl2 homo sapien
12	4	11.8	29	4 Q96PP3	Q96pp3 homo sapien
13	4	11.8	29	5 Q25603	= =
					Q25603 onchocerca
14	4	11.8	29	8 Q9TI61	Q9ti61 allosyncarp
15	4	11.8	29	13 013043	013043 scyliorhinu
16	4	11.8	30	2 Q9JMV3	Q9jmv3 escherichia
17	4	11.8	30	4 Q9UBV5	Q9ubv5 homo sapien
18	4	11.8	30	16 Q8DZP7	Q8dzp7 streptococc
19	4	11.8	31	1 Q55314	Q55314 sulfolobus
20	4	11.8	31		
				4 Q8NEI8	Q8nei8 homo sapien
21	4	11.8	31	8 Q9MS77	Q9ms77 phacus acum
22	4	11.8	31	16 050669	O50669 borrelia bu
23	4	11.8	32	11 Q9QZQ2	Q9qzq2 mus musculu
24	4	11.8	32	17 Q9HSZ0	Q9hsz0 halobacteri
25	4	11.8	33	5 Q95SD4	Q95sd4 drosophila
26	4	11.8	33	16 Q9PKX3	
27	4	11.8		~	Q9pkx3 chlamydia m
			34	2 Q9ZG81	Q9zg81 chlamydia t
28	4	11.8	34	2 Q8GFK2	Q8gfk2 staphylococ
29	4	11.8	34	11 Q8C4P4	Q8c4p4 mus musculu
30	4	11.8	34	13 Q90ZJ4	Q90zj4 gallus gall
31	4	11.8	34	16 Q98FK5	Q98fk5 rhizobium 1
32	4	11.8	34	16 Q8G2Q2	Q8g2q2 brucella su
33	4	11.8	35	4 Q15421	
34	4	11.8	35		Q15421 homo sapien
35				-	Q8v6j8 halovirus h
	4	11.8	. 35	16 Q9KQG4	Q9kqg4 vibrio chol
36	4	11.8	35	16 Q8F102	Q8f102 leptospira
37	4	11.8	36	2 Q53920	Q53920 streptomyce
38	4	11.8	36	2 068941	068941 rhodospiril
39	4	11.8	36	4 Q8WXW8	Q8wxw8 homo sapien
40	4	11.8	36	10 Q9SJ63	Q9sj63 arabidopsis
41	4	11.8	36	12 Q9PXD1	
42	4	11.8	36	-	Q9pxd1 hepatitis c
					Q91d77 ttv-like mi
43	4	11.8	36	13 Q9YHT9	Q9yht9 brachydanio
44	4	11.8	36	16 Q97S91	Q97s91 streptococc
45	4	11.8	37	2 Q8KYJ0	Q8kyj0 bacillus an
46	4	11.8	37	5 Q9N2L2	Q9n2l2 caenorhabdi
47	4	11.8	37	10 Q39942	Q39942 helianthus
48	4	11.8	37	13 Q8AWW8	
49	4	11.8	37		Q8aww8 oncorhynchu
50				16 Q8F6U2	Q8f6u2 leptospira
	4	11.8	37	16 Q8F5H3	Q8f5h3 leptospira
51	4	11.8	37	16 Q8F419	Q8f419 leptospira
52	. 4	11.8	37	16 Q8EXV9	Q8exv9 leptospira
53	4	11.8	38	2 Q8KWH7	Q8kwh7 lactobacill
54	4	11.8	38	5 Q9NBE3	Q9nbe3 chironomus
55	4	11.8	38	5 Q9NBE5	Q9nbe5 chironomus
56	4	11.8	38	5 Q9NBE8	Q9nbe8 chironomus
57	4	11.8	38	~	
J /	**	11.0	20	5 Q9NBE4	Q9nbe4 chironomus

50				_		
58	4	11.8	38	5	Q9NBE7	Q9nbe7 chironomus
59	4	11.8	38	11	Q91VC8	Q91vc8 mus musculu
60	4	11.8	38	13	Q8AWW9	Q8aww9 oncorhynchu
61	4	11.8	38	16	Q8E0D2	Q8e0d2 streptococc
62	4	11.8	39	2	Q8GPQ8	Q8gpq8 pseudomonas
63	4	11.8	39	10		Q9feyl heterocapsa
64	4	11.8	39	12		
65	4	11.8	39			Q68847 hepatitis c
				.12	Q68845	Q68845 hepatitis c
66	4	11.8	39	12	Q68846	Q68846 hepatitis c
67	4	11.8	39	13	Q90776	Q90776 gallus gall
68	4	11.8	39	16	Q9KYH4	Q9kyh4 streptomyce
69	4	11.8	39	16	Q8F0C7	Q8f0c7 leptospira
70	4	11.8	39	16	Q8EZ33	Q8ez33 leptospira
71	4	11.8	40	2	Q8GCS7	Q8gcs7 eubacterium
72	4	11.8	40	4	P78340	
73	4	11.8	40	6		P78340 homo sapien
					Q29283	Q29283 sus scrofa
74	4	11.8	40	10	Q8H192	Q8h192 arabidopsis
75	4	11.8	40	12	Q91JZ7	Q91jz7 hepatitis c
76	4	11.8	40	12	Q8V647	Q8v647 rabies viru
77	3	8.8	28	2	Q01303	Q01303 treponema p
78	3	8.8	28	2	Q05574	Q05574 prochloroth
79	3	8.8	28	2	Q9ZB83	Q9zb83 vibrio angu
80	3	8.8	28	3	Q8TGT8	<u> </u>
81	3	8.8				Q8tgt8 saccharomyc
			28	4	Q96SD9	Q96sd9 homo sapien
82	3	8.8	28	4	Q16326	Q16326 homo sapien
83	3	8.8	28	4	Q96EU0	Q96eu0 homo sapien
84	3	8.8	28	4	075980	075980 homo sapien
85	3	8.8	28	4	095737	095737 homo sapien
86	3	8.8	28	5	Q8MUW0	Q8muw0 schistosoma
87	3	8.8	28	5	Q8MPY2	Q8mpy2 caenorhabdi
88	3	8.8	28	5	Q9BM68	Q9bm68 glottidia p
89	3	8.8	28	5	Q9BJE4	
90	3					Q9bje4 pauropus sp
		8.8	28	6	062821	062821 bubalus bub
91	3	8.8	28	6	Q9XS89	Q9xs89 equus cabal
92	3	8.8	28	8	Q8WBC8	Q8wbc8 cucurbita e
93	3	8.8	28	8	Q9TIE9	Q9tie9 centella er
94	3	8.8	28	8	Q9TIE8	Q9tie8 centella as
95	3	8.8	28	8	Q9MR96	Q9mr96 crocodylus
96	3	8.8	28	8	Q9TIE6	Q9tie6 centella hi
97	3	8.8	28	8	Q9ZYS4	Q9zys4 leishmania
98	3	8.8	28	8	Q9MR94	
99	3	8.8	28	8		Q9mr94 chelonia my
100	3				Q9TIE7	Q9tie7 centella tr
		8.8	28	8	Q8HS23	Q8hs23 pisum sativ
101	3	8.8	28	8	Q8HS11	Q8hs11 spathiphyll
102	3	8.8	28	8	Q8HS07	Q8hs07 welwitschia
103	3	8.8	28	8	Q8HKF0	Q8hkf0 rhipicephal
104	3	8.8	28	9	Q9AZJ9	Q9azj9 bacteriopha
105	3 .	8.8	28	9	Q38269	Q38269 bacteriopha
106	3	8.8	28	10	Q8S526	Q8s526 ipomoea bat
107	3	8.8	28	10	Q8W232	-
108	3	8.8				Q8w232 zea mays (m
			28	10	Q9LMD6	Q91md6 arabidopsis
109	3	8.8	28	10	Q944P1	Q944p1 manihot esc
110	3	8.8	28	11	Q9ESI4	Q9esi4 petromus ty
111	3	8.8	28	11	Q9ESI5	Q9esi5 thryonomys
112	3	8.8	28	11	Q9ESI6	Q9esi6 hystrix afr
113	3	8.8	28	11	Q99PL9	Q99pl9 mus musculu
114	3	8.8	28	11	Q9ESI2	Q9esi2 cryptomys h
			-	_	~	Sacrific Crabcomas II

-115	3	8.8	28	11	Q9EP60	Q9ep60 heliophobiu
116	3	8.8	28	11		Q9esi0 cryptomys s
117	3	8.8	28	11		Q91xp0 rattus norv
118	3	8.8	28	11		P70651 mus sp. bet
119	3	8.8	28	11		Q9ep59 georychus c
120	3	8.8	28	11		Q9esil cryptomys d
121	3	8.8	28	11		P97914 rattus norv
122	3	8.8	28	11		Q9ep61 heterocepha
123	3	8.8	28	11		
124	3	8.8	28	11	Q9ESH9	Q9esh8 bathyergus
125	3	8.8	28			Q9esh9 bathyergus
126	3	8.8	28	11		Q9qxb4 mus musculu
127	3			11	Q9ESI3	Q9esi3 cryptomys h
128		8.8	28	12	Q68087	Q68087 hepatitis c
	3	8.8	28	12	Q67786	Q67786 human adeno
129	3	8.8	28	12	Q68095	Q68095 hepatitis c
130	3	8.8	28	12	Q68097	Q68097 hepatitis c
131	3	8.8	28	12	Q68092	Q68092 hepatitis c
132	3	8.8	28	12	Q68091	Q68091 hepatitis c
133	3	8.8	28	12	Q68093	Q68093 hepatitis c
134	3	8.8	28	12	Q68099	Q68099 hepatitis c
135	3	8.8	28	12	Q68096	Q68096 hepatitis c
136	3	8.8	28	12	Q68098	Q68098 hepatitis c
137	3	8.8	28	12	Q83181	Q83181 cauliflower
138	3	8.8	28	12	Q68086	Q68086 hepatitis c
139	3	8.8	28	12	Q68552	Q68552 hepatitis c
140	3	8.8	28	12	Q68094	Q68094 hepatitis c
141	3	8.8	28	12	Q9WNI4	Q9wni4 tt virus. o
142	3	8.8	28	13	Q9PRE8	Q9pre8 oryzias lat
143	3	8.8	28	13	Q9PRI9	Q9pri9 amia calva
144	3	8.8	28	13	Q9PRN8	Q9prn8 carassius a
145	3	8.8	28	15	071346	071346 human endog
146	3	8.8	28	15	Q9QEY3	Q9qey3 human immun
147	3	8.8	28	16	Q8X415	Q8x415 escherichia
148	3	8.8	28	16	Q8NVB8	Q8nvb8 staphylococ
149	3	8.8	28	16	Q8ENT7	Q8ent7 oceanobacil
150	3	8.8	28	16	Q8CK95	Q8ck95 yersinia pe
151	3	8.8	29	2	Q9ZGG4	Q9zgg4 heliobacill
152	3	8.8	29	2	Q54200	Q54200 streptomyce
153	3	8.8	29	2	Q9X3E3	Q9x3e3 prochloroco
154	3	8.8	29	2	Q9X3J9	Q9x3j9 prochloroco
155	3	8.8	29	2	Q47650	Q47650 escherichia
156	3	8.8	29	2	Q9AKV1	Q9akv1 neisseria g
157	. 3	8.8	29	2	Q9R526	Q9r526 vibrio chol
158	3	8.8	29	3	P78747	P78747 saccharomyc
159	3	8.8	29	3	Q8TGQ5	Q8tgq5 saccharomyc
160	3	8.8	29	4	Q9Y3G1	Q9y3g1 homo sapien
161	3	8.8	29	4	Q9H2A1	Q9h2a1 homo sapien
162	3	8.8	29	4	Q9UN87	Q9un87 homo sapien
163	3	8.8	29	4	Q9H465	Q9h465 homo sapien
164	3	8.8	29	4	Q8NEF6	Q8nef6 homo sapien
165	3	8.8	29	4	Q8TDW8	Q8tdw8 homo sapien
166	3	8.8	29	4	Q961R5	Q96ir5 homo sapien
167	3	8.8	29	4	Q9BSQ3	Q9bsq3 homo sapien
168	3	8.8	29	5	Q95VB2	Q95vb2 spirometra
169	3	8.8	29	5	Q95NF4	Q95nf4 drosophila
170	3	8.8	29	5	Q24683	Q24683 dugesia tiq
171	3	8.8	29	5	Q8T936	Q8t936 folsomia ca

172	3	8.8	29	6	Q9TRG5	Q9trg5 sus scrofa
173	3	8.8	29	8	Q8WBB9	Q8wbb9 cucurbita f
174	3	8.8	29	8	Q9TI57	Q9ti57 corymbia pa
175	3	8.8	29	8	Q8W7W7	Q8w7w7 cucurbita p
176	3	8.8	29	8	Q9GF70	Q9gf70 trochodendr
177	3	8.8	29	8	Q8W7W4	Q8w7w4 cucurbita a
178	3	8.8	29	8	Q8W7W6	
179	3	8.8	29	8	Q8WBC1	Q8w7w6 cucurbita p
180	3	8.8	29	8	Q9B5Z6	Q8wbc1 cucurbita o
181	3	8.8	29			Q9b5z6 pseudostylo
182	3			8	Q8W7W5	Q8w7w5 cucurbita p
		8.8	29	8	Q9B938	Q9b938 eupristina
183	3	8.8	29	8	Q9G370	Q9g370 draco blanf
184	3	8.8	29	8	Q8WBD0	Q8wbd0 cucurbita a
185	3	8.8	29	8	Q8WBB6	Q8wbb6 citrullus l
186	3	8.8	29	8	Q8W7W9	Q8w7w9 cucurbita f
187	3	8.8	29	8	Q8W7W8	Q8w7w8 cucurbita m
188	3	8.8	29	8	Q8HS21	Q8hs21 rheum x cul
189	3	8.8	29	9	Q9FZX6	Q9fzx6 bacteriopha
190	3	8.8	29	10	P82196	P82196 spinacia ol
191	3	8.8	29	11	Q9Z2C0	Q9z2c0 mus musculu
192	3	8.8	29	. 11	Q921Z6	Q921z6 mus musculu
193	3	8.8	29	11	Q9Z2C1	Q9z2c1 mus musculu
194	3	8.8	29	11	070564	070564 mus musculu
195	3	8.8	29	11	Q9QY65	
196	3	8.8	29	11	Q62300	Q9qy65 mus musculu
197	3	8.8	29	11	008980	Q62300 mus musculu
198	3	8.8	29			008980 mus musculu
199	3	8.8		11	Q8CGM8	Q8cgm8 mus musculu
200			29	12	Q91HB1	Q91hb1 porcine cir
	3	8.8	29	12	092646	092646 hepatitis e
201	3	8.8	29	12	Q919A5	Q919a5 porcine rep
202	3	8.8	29	12	Q919A7	Q919a7 porcine rep
203	3	8.8	29	12	Q86872	Q86872 cauliflower
204	3	8.8	29	12	092648	092648 hepatitis e
205	3	8.8	29	12	056835	056835 vibrio chol
206	3	8.8	29	13	P82235	P82235 rana tempor
207	3	8.8	29	13	Q8AYR0	Q8ayr0 oryzias lat
208	3	8.8	29	13	Q8AWC2	Q8awc2 gallus gall
209	3	8.8	29	15	072001	072001 human endog
210	3	8.8	29	15	071342	O71342 human endog
211	3	8.8	29	15	071339	071339 human endog
212	3	8.8	29	15	071347	071347 human endog
213	3	8.8	29	15	071340	071340 human endog
214	3	8.8	29	15	071343	071343 human endog
215	3	8.8	29	15	Q9IQJ8	
216	3	8.8	29	15	071991	Q9iqj8 human immun
217	3	8.8	29	15	Q9IQJ1	071991 human endog
218	3	8.8	29	15	071994	Q9iqj1 human immun
219	3	8.8	29	15		071994 human endog
220	3	8.8			071341	071341 human endog
221			29	15	071345	071345 human endog
222	3	8.8	29	15	071336	071336 human endog
	3	8.8	29	15	071344	071344 human endog
223	3	8.8	29	15	071338	071338 human endog
224	3	8.8	29	15	071992	071992 human endog
225	3	8.8	29	15	071337	071337 human endog
226	3	8.8	29	15	Q9IQJ9	Q9iqj9 human immun
227	3	8.8	29	15	071997	071997 human endog
228	3	8.8	29	15	071335	071335 human endog
						, and the second se

229	3	8.8	29	16	Q9JZN6	Q9jzn6 neisseria m
230	3	8.8	29	16	Q8X419	Q8x419 escherichia
231	3	8.8	29	17	Q8Q0H5	Q8q0h5 methanosarc
232	3	8.8	30	2	Q9JP75	Q9jp75 salmonella
233	3	8.8	30	2	Q9L8W9	Q918w9 streptomyce
234	3	8.8	30	2	Q9L8X1	Q918x1 streptomyce
235	3	8.8	30	2	Q9R4Z6	Q9r4z6 clostridium
236	3	8.8	30	2	Q9REI5	
237	3	8.8	30	2	Q9R4J2	Q9rei5 acidiphiliu
238	3	8.8	30	2	Q8VUW9	Q9r4j2 helicobacte
239	3	8.8	30			Q8vuw9 staphylococ
240	3			2	Q9R4I5	Q9r4i5 mycoplasma
240		8.8	30	2	Q9R5Q3	Q9r5q3 leuconostoc
	3	8.8	30	2	Q93GF6	Q93gf6 staphylococ
242	3	8.8	30	2	Q45966	Q45966 coxiella bu
243	3	8.8	30	2	Q9R5C4	Q9r5c4 comamonas.
244	3	8.8	30	2	Q9R5K3	Q9r5k3 leptospira
245	3	8.8	30	2	Q9R4I6	Q9r4i6 mycoplasma
246	3	8.8	30	2	Q9RER6	Q9rer6 enterobacte
247	3	8.8	30	3	Q8TGM3	Q8tgm3 saccharomyc
248	3	8.8	30	3	Q9URB0	Q9urb0 candida alb
249	3	8.8	30	3	Q8J172	Q8j172 trichoderma
250	3	8.8	30	3	Q8J171	Q8j171 hypocrea li
251	3	8.8	30	4	Q16330	Q16330 homo sapien
252	3	8.8	30	4	095595	095595 homo sapien
253	3	8.8	30	4	P78460	
254	3	8.8	30	4	Q8N563	P78460 homo sapien
255	3	8.8	30			Q8n563 homo sapien
256	3			4	P78542	P78542 homo sapien
		8.8	30	4	Q8IU66	Q8iu66 homo sapien
257	3	8.8	30	5	Q8SZJ6	Q8szj6 drosophila
258	3	8.8	30	5	Q9TWH7	Q9twh7 ancylostoma
259	3	8.8	30	5	Q968N1	Q968n1 tritrichomo
260	3	8.8	30	5	P82214	P82214 bombyx mori
261	3	8.8	30	6	Q9BDK1	Q9bdk1 bos taurus
262	3	8.8	30	6	Q9TTF9	Q9ttf9 ateles belz
263	3	8.8	30	8	Q8W7L1	Q8w7l1 cucurbita m
264	3	8.8	30	8	Q8W7K9	Q8w7k9 cucurbita p
265	3	8.8	30	8	Q8W7H8	Q8w7h8 cucurbita a
266	3	8.8	30	8	Q8WBC2	Q8wbc2 cucurbita o
267	3	8.8	30	8	Q8W7K8	Q8w7k8 cucurbita p
268	3	8.8	30	8	Q8W7H6	Q8w7h6 cucurbita m
269	3	8.8	30	8	Q8WBC4	Q8wbc4 cucurbita p
270	3	8.8	30	8	Q8W7L2	Q8w712 cucurbita a
271	3	8.8	30	8	Q8WBC6	
272	3	8.8	30	8	Q8WBB7	Q8wbc6 cucurbita a
273	3	8.8	30	8	Q99328	Q8wbb7 sechium edu
274	3	8.8				Q99328 meloidogyne
275	3		30	8	Q8W7H7	Q8w7h7 cucurbita e
		8.8	30	8	Q8WBC0	Q8wbc0 cucurbita f
276	3	8.8	30	8	Q9T2T8	Q9t2t8 bos taurus
277	3	8.8	30	8	Q8W7L0	Q8w7l0 cucurbita p
278	3	8.8	30	8	Q9TI56	Q9ti56 eucalyptus
279	3	8.8	30	8	Q8HKG1	Q8hkg1 rhipicephal
280	3	8.8	30	9	Q8W674	Q8w674 enterobacte
281	3	8.8	30	10	Q958T2	Q9s8t2 cicer ariet
282	3	8.8	30	10	023933	023933 flaveria tr
283	3	.8.8	30	10	Q8RUD1	Q8rud1 zea mays (m
284	3	8.8	30	10	Q93WY2	Q93wy2 oryza sativ
285	3	8.8	30	11	Q63885	Q63885 mus sp. cys
						Esses was Sp. Cla

286	3	8.8	30	11	088549	088549 mesocricetu
287	3	8.8	30	11	Q8VDL1	Q8vdl1 mus musculu
288	3	8.8	30	11	Q9QV18	Q9qv18 rattus sp.
289	3	8.8	30	11	Q9QV14	Q9qv14 mus sp. col
290	3	8.8	30	11	Q9QV19	Q9qv19 rattus sp.
291	3	8.8	30	11	Q10753	Q10753 rattus norv
292	3	8.8	30	11	Q8BR32	Q8br32 mus musculu
293	3	8.8	30	12	Q91HB7	Q91hb7 tt virus. o
294	3	8.8	30	12	Q91HC4	Q91hc4 tt virus. o
295	3	8.8	30	12	Q9IJV5	Q9ijv5 norwalk vir
296	3	8.8	30	12	Q86870	Q86870 cauliflower
297	3	8.8	30	12	Q91HC3	Q91hc3 tt virus. o
298	3	8.8	30	12	Q9WLK3	Q9wlk3 hepatitis e
299	3	8.8	30	12	Q91HC0	Q91hc0 tt virus. o
300	3	8.8	30	13	042551	042551 brachydanio
301	3	8.8	30	13	Q9PRW0	Q9prw0 struthio ca
302	3	8.8	30	13	Q9PT00	Q9pt00 oncorhynchu
303	3	8.8	30	15	Q86599	Q86599 human endog
304	3	8.8	30	15	Q991P5	Q991p5 human immun
305	3	8.8	30	16	050822	O50822 borrelia bu
306	3	8.8	30	16	Q9X0W9	Q9x0w9 thermotoga
307	3	8.8	30	16	Q9PP53	Q9pp53 campylobact
308	3	8.8	30	16	Q9KU55	Q9ku55 vibrio chol
309	3	8.8	30	16	Q9KT75	Q9kt75 vibrio chol
310	3	8.8	30	16	Q9JWF4	Q9jwf4 neisseria m
311	3	8.8	30	16	Q97SY9	Q97sy9 streptococc
312	3	8.8	30	16	Q97SX5	Q97sx5 streptococc
313	3	8.8	30	16	Q9K1W7	Q9k1w7 chlamydia p
314	3	8.8	30	16	Q8U566	Q8u566 agrobacteri
315	3	8.8	30	16	Q8KE55	Q8ke55 chlorobium
316	3	8.8	30	16	Q93RS7	Q93rs7 streptomyce
317	3	8.8	30	16	Q8G1R1	Q8g1r1 brucella su
318	3	8.8	30	16	Q8FZX9	Q8fzx9 brucella su
319	3	8.8	30	16	Q8CU88	Q8cu88 staphylococ
320	3	8.8	30	17	Q8ZZF0	Q8zzf0 pyrobaculum
321	3	8.8	30	17	Q8ZVL0	Q8zvl0 pyrobaculum
322	3	8.8	31	2	Q9S619	Q9s619 prochloroco
323	. 3	8.8	31	2	Q8KYK0	Q8kyk0 bacillus an
324	3	8.8	31	2	Q9JMV2	Q9jmv2 escherichia
325	3	8.8	31	2	Q9X3C3	Q9x3c3 prochloroco
326	3	8.8	31	2	068825	068825 pseudomonas
327	3	8.8	31	2	Q9KH08	Q9kh08 thermus aqu
328	3	8.8	31	2	Q93GF7	Q93gf7 staphylococ
329	3	8.8	31	2	Q47323	Q47323 escherichia
330	3	8.8	31	2	Q9RHF9	Q9rhf9 acinetobact
331	3	8.8	31	2	Q9R4X1	Q9r4x1 treponema d
332	3	8.8	31	2	Q8KYI9	Q8kyi9 bacillus an
333	3	8.8		2	Q8RTS5	Q8rts5 uncultured
334	3	8.8	31	2	Q8L3D3	Q813d3 colwellia m
335	3	8.8	31	2	Q93PE1	Q93pel yersinia ps
336	3	8.8	31	3	094120	094120 saccharomyc
337	3	8.8	31	4	Q96A45	Q96a45 homo sapien
338	3	8.8	31		Q9UHM9	Q9uhm9 homo sapien
339	3	8.8	31		Q9UEA9	Q9uea9 homo sapien
340	3	8.8	31		Q8WYF5	Q8wyf5 homo sapien
341	3	8.8	31		Q8N5X3	Q8n5x3 homo sapien
342	3	8.8	31	4	Q9BXM4	Q9bxm4 homo sapien

343	3	8.8	31	4	Q9UDE5	Q9ude5 homo sapien
344	3	8.8	. 31	5	Q8IQV3	Q8iqv3 drosophila
345	3	8.8	31	5	Q8IEY3	
346	3					Q8iey3 trypanosoma
		8.8	31	6	Q8MI94	Q8mi94 tupaia tana
347	3	8.8	31	6	Q9GLD6	Q9gld6 sus scrofa
348	3	8.8	31	6	Q8MIH5	Q8mih5 canis famil
349	3	8.8	31	6	077625	077625 bos taurus
350	3	8.8	31	6	Q8MIC3	Q8mic3 ochotona pr
351	3	8.8	31	6	Q95LC0	Q951c0 sus scrofa
352	3	8.8	31	6	Q9N1C8	·-
						Q9n1c8 ovis aries
353	3	8.8	31	6	Q8MIC9	Q8mic9 nycticebus
354	3	8.8	31	6	Q9GKL4	Q9gkl4 canis famil
355	3	8.8	31	6	Q8MIG4	Q8mig4 cynocephalu
356	3	8.8	31	6	Q9XSB9	Q9xsb9 ateles belz
357	3	8.8	31	7	Q29868	Q29868 homo sapien
358	3	8.8	31	8	Q9MNM2	
359	3					Q9mnm2 bufo americ
		8.8	31	8	Q9MS59	Q9ms59 euglena san
360	3	8.8	31	8	080011	080011 enallagma a
361	3	8.8	31	8	Q9MS62	· Q9ms62 euglena myx
362	3	8.8	31	8	Q34922	Q34922 limulus pol
363	3	8.8	31	8	Q8WEJ4	Q8wej4 gnetum gnem
364	3	8.8	31	8	Q9MS74	
365	3	8.8	31	8		Q9ms74 euglena ana
					Q9MS68	Q9ms68 euglena des
366	3	8.8	31	8	Q8M9Y3	Q8m9y3 chaetosphae
367	3	8.8	31	8	Q9MS53	Q9ms53 euglena vir
368	3	8.8	31	8	Q9MNL2	Q9mnl2 torrentophr
369	3	8.8	31	8	Q9MS56	Q9ms56 euglena ste
370	3	8.8	31	8	Q9MS78	Q9ms78 phacus acum
371	3	8.8	31	8	Q9MNL3	
372	3	8.8	31	9		Q9mnl3 torrentophr
373					Q38499	Q38499 bacteriopha
	3	8.8	31	10	Q9XIT0	Q9xit0 glycine max
374	3	8.8	31	10	Q8LKB4	Q81kb4 musa acumin
375	3	8.8	31	11	Q8K1W2	Q8k1w2 cavia porce
376	3	8.8	31	11	Q9QXB6	Q9qxb6 mus musculu
377	3	8.8	31	11	Q99KK6	Q99kk6 mus musculu
378	3	8.8	31	11	Q8K1P4	Q8k1p4 sciurus vul
379	3	8.8	31	11	Q8CGM7	the state of the s
380	3					Q8cgm7 mus musculu
		8.8	31	12	Q919E5	Q919e5 human papil
381	3	8.8	31	12	Q919E4	Q919e4 human papil
382	3	8.8	31	12	056713	O56713 hepatitis c
383	3	8.8	31	12	Q919F7	Q919f7 human papil
384	3	8.8	31	12	Q919E6	Q919e6 human papil
385	3	8.8	31	12	056692	O56692 hepatitis c
386	3	8.8	31	12		= ;
387	3				Q919F3	Q919f3 human papil
		8.8	31	12	056707	O56707 hepatitis c
388	3	8.8	31	12	056687	O56687 hepatitis c
389	3	8.8	31	12	Q919F8	Q919f8 human papil
390	3	8.8	31	12	056691	O56691 hepatitis c
391	3	8.8	31	12	Q919E1	Q919e1 human papil
392	3	8.8	31	12	056701	
393	3	8.8	31	12		O56701 hepatitis c
394					056694	O56694 hepatitis c
	3	8.8	31	12	Q919D9	Q919d9 human papil
395	3	8.8	31	12	Q919F6	Q919f6 human papil
396	3	8.8	31	12	Q919E3	Q919e3 human papil
397	3	8.8	31	12	056712	056712 hepatitis c
398	3	8.8	31	12	Q919E8	Q919e8 human papil
399	3	8.8	31	12	056710	
	_				030,10	O56710 hepatitis c

400	3	8.8	31	12	056688	O56688 hepatitis c
401	3	8.8	31	12	056696	O56696 hepatitis c
402	3	8.8	31	12	056695	O56695 hepatitis c
403	3	8.8	31	12	056698	O56698 hepatitis c
404	3	8.8	31	12	056702	O56702 hepatitis c
405	3	8.8	31	12	056703	O56703 hepatitis c
406	3	8.8	31	12	056697	O56697 hepatitis c
407	3	8.8	31	12	Q919F0	Q919f0 human papil
408	3	8.8	31	12		O56709 hepatitis c
409	3	8.8	31	12	Q919F4	Q919f4 human papil
410	3	8.8	31	12	056689	O56689 hepatitis c
411	3	8.8	31	12	Q919F2	Q919f2 human papil
412	3	8.8	31	12	Q919F1	Q91912 human papil Q919f1 human papil
413	3	8.8	31	12	056711	056711 hepatitis c
414	3	8.8	31	12	Q919E2	
415	3	8.8	31	12	Q919D8	Q919e2 human papil
416	3	8.8	31	12	056686	Q919d8 human papil
417	3	8.8	31	12	Q9WMX5	056686 hepatitis c Q9wmx5 human echov
418	3	8.8	31	12	056690	
419	3	8.8	31	12	Q919E9	056690 hepatitis c
420	3	8.8	31	12	056706	Q919e9 human papil
421	3	8.8	31	12	056700	O56706 hepatitis c
422	3	8.8	31	12	056704	O56700 hepatitis c
423	3	8.8	31	12	Q919D7	O56704 hepatitis c
424	3	8.8	31	12		Q919d7 human papil
425	3	8.8	31	12	Q919F5 O56693	Q919f5 human papil
426	3	8.8	31	12		O56693 hepatitis c
427	3	8.8	31	12	O56685 O56708	056685 hepatitis c
428	3	8.8	31	12		O56708 hepatitis c
429	3	8.8	31	12	Q919E0 O56705	Q919e0 human papil
430	3	8.8	31	12	Q919E7	O56705 hepatitis c
431	3	8.8	31	12		Q919e7 human papil
432	3	8.8	31	12	Q914M9	Q914m9 sulfolobus
433.	3	8.8	31	13	056699	056699 hepatitis c
434	3	8.8	31	13	O42540 Q91763	042540 brachydanio
435	3	8.8	31	13		Q91763 xenopus lae
436	3	8.8	31	13	Q9PSU1	Q9psul xenopus lae
437	. 3	8.8	31	15	Q91816 Q83937	Q91816 xenopus lae
438	3	8.8	31	16	Q03937 O25108	Q83937 ovine lenti
439	3	8.8	31	16	050709	025108 helicobacte
440	3	8.8	31	16	050818	050709 borrelia bu
441	3	8.8	31	16	050858	O50818 borrelia bu O50858 borrelia bu
442	3	8.8	31	16	051007	O51007 borrelia bu
443	3	8.8	31	16	Q9PGF2	
444	3	8.8	31	16	Q9PGFZ Q9PAW4	Q9pgf2 xylella fas
445	3	8.8	31	16	Q9KVF3	Q9paw4 xylella fas Q9kvf3 vibrio chol
446	3	8.8	31	16	Q9KVF3 Q9K7A8	·-
447	3	8.8	31	16	Q975Z9	Q9k7a8 bacillus ha
448	3	8.8	31	16	Q97529 Q97SW8	Q97sz9 streptococc
449	3	8.8	31	16	Q97SW8 Q97QJ4	Q97sw8 streptococc
450	3	8.8	31	16		Q97qj4 streptococc
451	3	8.8	31	16	Q97QB7	Q97qb7 streptococc
452	3	8.8	31	16	Q97CV6	Q97cv6 streptococc
452	3	8.8	31		Q9K2A0	Q9k2a0 chlamydia p
453	3	8.8	31	16 16	Q9K236	Q9k236 chlamydia p
455	3	8.8	31	16 16	Q8P9W1	Q8p9w1 xanthomonas
455 456	3	8.8	31	16	O8KEV8	Q8kev8 chlorobium
-10U	J	0.0	2.1	ΤQ	Q8KCQ0	Q8kcq0 chlorobium

457	3	8.8	31	16	Q8KBJ8	Olihia ahlamahium
458	3	8.8	31			Q8kbj8 chlorobium
459	3			16	Q8EIW8	Q8eiw8 shewanella
		8.8	31	16	Q8EI77	Q8ei77 shewanella
460	3	8.8	31	16	Q8E9Y5	Q8e9y5 shewanella
461	3	8.8	31	16	Q8E8G1	Q8e8g1 shewanella
462	3	8.8	31	16	Q8CTW3	Q8ctw3 staphylococ
463	3	8.8	31	16	Q8CTA2	Q8cta2 staphylococ
464	3	8.8	32	2	Q9AJ41	Q9aj41 buchnera ap
465	3	8.8	32	2	Q00491	Q00491 streptomyce
466	3	8.8	32	2	Q49249	Q49249 mycoplasma
467	3	8.8	32	2	Q44499	Q44499 anabaena va
468	3	8.8	32		Q9S629	Q9s629 prochloroco
469	3	8.8	32		Q8KYN3	Q8kyn3 bacillus an
470	3	8.8	32		Q44509	Q44509 azotobacter
471	3	8.8	32		Q45534	Q45534 bacillus su
472	3	8.8	32		Q8VN21	
473	3	8.8	32		Q8 VN21 Q9R5Q7	Q8vn21 kluyvera ci
474	3	8.8	32			Q9r5q7 aeromonas h
					Q8KYM4	Q8kym4 bacillus an
475	3	8.8	32		032493	032493 bacteroides
476	3	8.8	32		Q8VNT6	Q8vnt6 enterobacte
477	3	8.8	32		Q9L373	Q91373 rhizobium 1
478	3	8.8	32		Q8GF58	Q8gf58 zymomonas m
479	3	8.8	32		Q01058	Q01058 kluyveromyc
480	3	8.8	32	3	Q8TGT3	Q8tgt3 saccharomyc
481	3	8.8	32	4	Q12900	Q12900 homo sapien
482	3	8.8	32	4	Q9UEB0	Q9ueb0 homo sapien
483	3	8.8	32	4	Q8TC25	Q8tc25 homo sapien
484	3	8.8	32		Q96GM7	Q96gm7 homo sapien
485	3	8.8	32		Q9HAX8	Q9hax8 homo sapien
486	3	8.8	32		Q8TBQ3	Q8tbq3 homo sapien
487	3	8.8	32		Q96I20	Q96i20 homo sapien
488	3	8.8	32		Q9UN69	Q9un69 homo sapien
489	3	8.8	32		Q9UQV1	
490	3	8.8	32		Q9GPD9	Q9uqv1 homo sapien
491	3	8.8	32			Q9gpd9 drosophila
492	3	8.8			Q8T382	Q8t382 leishmania
493	3				096634	096634 trypanosoma
		8.8			Q9TWR8	Q9twr8 procambarus
494	3	8.8			018606	O18606 branchiosto
495	3	8.8			Q8 T 757	Q8t757 branchiosto
496	3	8.8			Q9TR67	Q9tr67 sus scrofa
497	3	8.8			Q9TR69	Q9tr69 sus scrofa
498	3	8.8			Q9TSE6	Q9tse6 oryctolagus
499	3	8.8	32	6	Q8MJ91	Q8mj91 macaca mula
500	3	8.8	32	7	Q8SNF1	Q8snf1 gallinago m
501	3	8.8	32	7	019722	O19722 homo sapien
502	3	8.8	32	8	Q36494	Q36494 farfantepen
503	3	8.8	32	8	Q8SL89	Q8sl89 euglena ste
504	3	8.8	32	8	Q9GF95	Q9gf95 cercidiphyl
505	3	8.8	32	8	Q31736	Q31736 beta vulgar
506	3	8.8			~ Q8 <i>S</i> L87	Q8sl87 euglena vir
507	3	8.8			Q31735	Q31735 beta vulgar
508	3	8.8			Q9MNM0	Q9mnm0 bufo andrew
509	3	8.8			Q9MNL0	Q9mnl0 bufo danate
510	3	8.8			Q951Q4	Q951q4 renilla ren
511	3	8.8			Q9GF72	
512	3	8.8			Q9MBU5	Q9gf72 saururus ce
513	3	8.8		10	Q8 <i>\$</i> 527	Q9mbu5 chlamydia p
J # J	ی	0.0	24	ΤU	Q0334/	Q8s527 ipomoea bat

-	F14	2	0 0	2.0	1.0	000005		
	514	3	8.8	32	10			arabidopsis
	515	3	8.8	32	10	-		oryza sativ
4	516	3	8.8	32	11		· ·	rattus norv
	517	3	8.8	32	11	~		mus musculu
	518	3	8.8	32	11	~ ~		mus musculu
	519	3	8.8	32	11		Q9qwb2	rattus sp.
	520	3	8.8	32	11	Q9QXX1	Q9qxx1	mus musculu
	521	3	8.8	32	11	Q8C2N8	Q8c2n8	mus musculu
	522	3	8.8	32	11	Q8BS12	Q8bs12	mus musculu
	523	3	8.8	32	12	Q9PXV2	Q9pxv2	hepatitis b
	524	3	8.8	32	12	Q9WNI5	Q9wni5	tt virus. o
	525	3	8.8	32	12	Q914F9	Q914f9	sulfolobus
	526	3	8.8	32	12	Q8QYT4		grapevine v
	527	3	8.8	32	12	Q8QYT7		grapevine v
	528	3	8.8	32	12			grapevine v
	529	3	8.8	32	12			shope fibro
	530	3	8.8	32	13			oncorhynchu
	531	3	8.8	32	13			salmo salar
	532	3	8.8	32	13			oncorhynchu
	533	3	8.8	32	13	Q9PS21		carassius a
	534	3	8.8	32	13	Q8QG84		oncorhynchu
	535	3	8.8	32	13	Q8QG83		oncorhynchu
	536	3	8.8	32	13	Q8QG82		oncorhynchu
	537	3	8.8	32	13	Q8QG70		_
	538	3	8.8	32	13	P82780		salvelinus
	539	3	8.8	32	13	Q9W7P3		rana catesb
	540	3	8.8	32	13	Q9W7P2		morone saxa
	541	3	8.8	32	16	050706		morone saxa
	542	3	8.8	32	16	050708		borrelia bu
	543	3	8.8	32				borrelia bu
	544	3	8.8	32 32	16	050865		borrelia bu
	545	3			16	051003		borrelia bu
	546	3	8.8 8.8	32	16	Q9PGT0		xylella fas
	547	3		32	16	Q9KVF7		vibrio chol
	547 548	3	8.8	32	16	Q9KTV2		vibrio chol
			8.8	32	16	Q9KPN9		vibrio chol
	549	3	8.8	32	16	Q9KLF0		vibrio chol
	550 551	3	8.8	32				bacillus ha
	551	3	8.8	32	16	Q9A2H0		caulobacter
	552	3	8.8	32	16	Q98AB6		rhizobium l
	553	3	8.8	32	16	Q8X3V6		escherichia
	554	3	8.8	32	16	Q8KG49		chlorobium
	555	3	8.8	32	16	Q8KEZ9		chlorobium
	556	3	8.8	32	16	Q8KCV3	Q8kcv3 (chlorobium
	557	3	8.8	32	16	Q9K4G0	Q9k4g0 :	streptomyce
	558	3	8.8	32	16	Q8EJ44	Q8ej44 :	shewanella
	559	3	8.8	32	16	Q8EAD5		shewanella
	560	3	8.8	32	16	Q8CU60	Q8cu60 s	staphylococ
	561	3	8.8	32	16	Q8CTR7	Q8ctr7 s	staphylococ
	562	3	8.8	32	16	Q8CRE7	Q8cre7 s	staphylococ
	563	3	8.8	32	17	Q8ZZF7		pyrobaculum
	564	3	8.8	33	1	Q9UWL4		ethanopyru
	565	3	8.8	33	2	Q8KH96		seudomonas
	566	3	8.8	33	2	Q9S624	-	rochloroco
	567	3	8.8	33	2	Q9R2M3	-	rochloroco
	568	3	8.8	33	2	Q9X3M5		rochloroco
	569	3	8.8	33	2	Q9S651		reptococc
	570	3	8.8	33	2	Q9K533		isteria mo
							~	-

571	3	8.8	33	2	Q9K370	Q9k370 rhizobium l
572	3	8.8	33	2	Q9F2C4	Q9f2c4 salmonella
573	3	8.8	33	2	Q9S3N5	
574	3	8.8				Q9s3n5 bacillus ce
			33	2	Q8KQ80	Q8kq80 vibrio chol
575 576	3	8.8	33	2	Q56414	Q56414 escherichia
576	3	8.8	33	2	Q9S622	Q9s622 prochloroco
577	3	8.8	33	2	Q9K2V1	Q9k2v1 rhizobium l
578	3	8.8	33	2	Q9F1F4	Q9f1f4 enterococcu
579	3	8.8	33	2	Q9KI23	Q9ki23 helicobacte
580	3	8.8	33	2	Q8GQU2	Q8gqu2 leptospira
581	3	8.8	33	3	Q8TGR1	Q8tgrl saccharomyc
582	3	8.8	33	4	Q99950	Q99950 homo sapien
583	3	8.8	33	4	Q9UP36	Q9up36 homo sapien
584	3	8.8	33	4	Q15285	Q15285 homo sapien
585	3	8.8	33	4	Q9UDI1	
586	3	8.8	33	4	Q9P1T8	Q9udil homo sapien
587	3	8.8				Q9p1t8 homo sapien
			33	4	Q9BV16	Q9bv16 homo sapien
588	3	8.8	33	4	Q92668	Q92668 homo sapien
589	3	8.8	33	5	Q9GTB2	Q9gtb2 eimeria ten
590	3	8.8	33	5	Q9GT93	Q9gt93 cryptospori
591	3	8.8	33	5	Q26673	Q26673 tethya aura
592	3	8.8	33	5	Q26672	Q26672 tethya aura
593	3	8.8	33	5	Q9GTC2	Q9gtc2 plasmodium
594	3	8.8	33	5	Q27637	Q27637 drosophila
595	3	8.8	33	5	Q9GTB3	Q9gtb3 eimeria ten
596	3	8.8	33	5	Q9GTA6	Q9gta6 sarcocystis
597	3	8.8	33	5	Q9GTA1	Q9gtal babesia bov
598	3	8.8	33	5	Q17293	
599	3	8.8	33	5	Q27310	Q17293 cancer ante
600	3	8.8	33	5		Q27310 paramecium
601					Q9GTA9	Q9gta9 sarcocystis
	3	8.8	33	5	017147	017147 echinococcu
602	3	8.8	33	5	Q9GT95	Q9gt95 cryptospori
603	3	8.8	33	5	Q9GTA2	Q9gta2 babesia bov
604	3	8.8	33	5	Q9VHD7	Q9vhd7 drosophila
605	3	8.8	33	6	Q28788	Q28788 papio hamad
606	3	8.8	33	6	018916	018916 sus scrofa
607	3	8.8	33	6	Q9TSX7	Q9tsx7 sus scrofa
608	3	8.8	33	6	Q95M05	Q95m05 bos taurus
609	3	8.8	33	7	Q8MGU2	Q8mgu2 bos taurus
610	3	8.8	33	7	Q8SNF0	Q8snf0 gallinago m
611	3	8.8	33	8	Q9BAC6	Q9bac6 euglena gra
612	3	8.8	33	8	Q8W9G0	Q8w9g0 meloidogyne
613	3	8.8	33	8	Q9BAC1	Q9bac1 euglena ste
614	3	8.8	33	8	Q9XNP3	
615	3	8.8	33	8	O78857	Q9xnp3 boophilus m
616	3	8.8				078857 phytophthor
	3		33	8	Q9T2N1	Q9t2n1 nicotiana t
617		8.8	33	8	Q9BAC4	Q9bac4 euglena mut
618	3	8.8	33	8	Q8WEJ5	Q8wej5 ginkgo bilo
619	3	8.8	33	8	Q8HUH3	Q8huh3 chlamydomon
620	3	8.8	33	8	Q8HS33	Q8hs33 hydrastis c
621	3	8.8	33	9	Q38588	Q38588 bacteriopha
622	3	8.8	33	9	Q38551	Q38551 bacteriopha
623	3	8.8	33	10	049775	049775 arabidopsis
624	3	8.8	33	10	Q9S8V5	Q9s8v5 zea mays (m
625	3	8.8	33	10	Q9AYQ5	Q9ayq5 cucumis sat
626	3	8.8	33	11	Q9QVM2	Q9qvm2 mus sp. glu
627	3	8.8	33	12	072982	072982 hepatitis c
*	-	- • •		-4	0,2702	Olypos Hebacicis C

628		3	8.8	33	12	073068	O73068 hepatitis c
629		3	8.8	33	12	Q90085	Q90085 human papil
630		3	8.8	33	12	072979	072979 hepatitis c
631		3	8.8	33	12	Q91J04	Q91j04 tt virus. o
632		3	8.8	33	12	072996	072996 hepatitis c
633		3	8.8	33	12	Q91J14	Q91j14 tt virus. o
634		3	8.8	33	12	O72988	072988 hepatitis c
635		3	8.8	33	12	072992	072992 hepatitis c
636		3	8.8	33	12	Q91J12	Q91j12 tt virus. o
637		3	8.8	33	12	Q91J15	Q91j15 tt virus. o
638		3	8.8	33	12	Q91J07	Q91j07 tt virus. o
639		3	8.8	33	12	072995	072995 hepatitis c
640		3	8.8	33	12	Q91J09	Q91j09 tt virus. o
641		3	8.8	33	12	072990	
642		3	8.8	33	12	073010	072990 hepatitis c
643		3	8.8	33	12	Q86912	073010 hepatitis c
644		3	8.8	33	12	Q8V5G7	Q86912 hepatitis c
645		3	8.8	33	12		Q8v5g7 hepatitis c
646		3				072981	072981 hepatitis c
647		э 3	8.8	33		Q91J08	Q91j08 tt virus. o
			8.8	33	12	072997	072997 hepatitis c
648		3	8.8	33	12	073008	073008 hepatitis c
649		3	8.8	33	12	Q83963	Q83963 avian influ
650		3	8.8	33	12	072986	072986 hepatitis c
651		3	8.8	33	12	072993	072993 hepatitis c
652		3	8.8	33	12	Q91J06	Q91j06 tt virus. o
653		3	8.8	33	12	072984	072984 hepatitis c
654		3	8.8	33	12	073005	073005 hepatitis c
655		3	8.8	33	12	073067	073067 hepatitis c
656		3	8.8	33	12	072985	072985 hepatitis c
657	•	3	8.8	33	12	072999	072999 hepatitis c
658		3	8.8	33	12	Q91J16	Q91j16 tt virus. o
659	:	3	8.8	33	12	072998	072998 hepatitis c
660		3	8.8	33	12	Q91J11	Q91j11 tt virus. o
661	•	3	8.8	33	12	072994	072994 hepatitis c
662		3	8.8	33	12	Q8V5H0	Q8v5h0 hepatitis c
663		3	8.8	33	12	Q91J13	Q91j13 tt virus. o
664		3	8.8	33	12	Q8V5G8	Q8v5g8 hepatitis c
665		3	8.8	33	12	072983	072983 hepatitis c
666		3	8.8	33	12	073007	073007 hepatitis c
667		3	8.8	33	12	Q91J10	Q91j10 tt virus. o
668		3	8.8	33	12	072987	072987 hepatitis c
669		3	8.8	33	12	Q91J17	Q91j17 tt virus. o
670		3	8.8	33	12	Q69461	
671		3	8.8	33	12	Q8V5G9	Q69461 human herpe
672		3	8.8	33	12	072978	Q8v5g9 hepatitis c
673		3	8.8	33	12		072978 hepatitis c
674		3	8.8	33	12	073009	073009 hepatitis c
675		3				073004	073004 hepatitis c
676			8.8	33	12	Q99138	Q99138 avian influ
		3	8.8	33	13	P82740	P82740 rana tempor
677		3	8.8	33	13	P82236	P82236 rana tempor
678		3	8.8	33	15	Q9DZ98	Q9dz98 human immun
679	3		8.8	33	15	Q86107	Q86107 simian sarc
680	3		8.8	33	16	Q9PA23	Q9pa23 xylella fas
681	3		8.8	33	16	Q9KQP4	Q9kqp4 vibrio chol
682	3		8.8	33	16	Q9KML1	Q9kml1 vibrio chol
683	3		8.8	33	16	Q97T91	Q97t91 streptococc
684	3	3	8.8	33	16	Q97PC1	Q97pcl streptococc
							- -

685	. 3	8.8	33	16	Q932N2	Q932n2 staphylococ
686	3	8.8	33	16	Q8ZKL2	Q8zkl2 salmonella
687	3	8.8	33	16	Q8Z1V4	Q8zlv4 salmonella
688	3	8.8	33	16	Q8XAJ9	Q8xaj9 escherichia
689	3	8.8	33	16	Q8U5M4	Q8u5m4 agrobacteri
690	3	8.8	33	16	Q8VK01	Q8vk01 mycobacteri
691	3	8.8	33	16	Q8NUL1	Q8nul1 staphylococ
692	3	8.8	33	16	Q8NT95	Q8nt95 corynebacte
693	3	8.8	33	16	Q8NLP2	· · · · · · · · · · · · · · · · · · ·
694	3	8.8	33	16	Q8KG99	Q8nlp2 corynebacte
695	3	8.8	33	16	Q8KBZ0	Q8kg99 chlorobium
696	3	8.8	33	16	Q8G0U8	Q8kbz0 chlorobium
697	3	8.8	33	16	Q86006 Q8FZ67	Q8g0u8 brucella su
698	3	8.8	33			Q8fz67 brucella su
699	3	8.8		16	Q8FYR6	Q8fyr6 brucella su
700	3		33	16	Q8FY86	Q8fy86 brucella su
701		8.8	33	16	Q8FSG0	Q8fsg0 corynebacte
	3	8.8	33	16	Q8EJH6	Q8ejh6 shewanella
702	3	8.8	33	16	Q8EGA9	Q8ega9 shewanella
703	3	8.8	33	16	Q8EE59	Q8ee59 shewanella
704	3	8.8	33	16	Q8EE42	Q8ee42 shewanella
705	3	8.8	33	16	Q8E8W4	Q8e8w4 shewanella
706	3	8.8	33	16	Q8E1Y5	Q8ely5 streptococc
707	3	8.8	33	16	Q8CTR8	Q8ctr8 staphylococ
708	3	8.8	33	16	Q8CQY7	Q8cqy7 staphylococ
709	3	8.8	33	17	Q9HSX6	Q9hsx6 halobacteri
710	3	8.8	33	17	Q8U2X8	Q8u2x8 pyrococcus
711	3	8.8	34	2	Q54427	Q54427 spiroplasma
712	3	8.8	34	2	Q9X3L6	Q9x316 prochloroco
713	3	8.8	34	2	Q9R5U1	Q9r5ul campylobact
714	3	8.8	34	2	Q44208	Q44208 pseudomonas
715	3	8.8	34	2	Q9X7J6	Q9x7j6 pseudomonas
716	3	8.8	34	2	Q8KYH2	Q8kyh2 bacillus an
717	3	8.8	34	2	031061	O31061 butyrivibri
718	3	8.8	34	2	Q9R8A2	Q9r8a2 chlamydia t
719 720	3	8.8	34	2	Q9RZW6	Q9rzw6 borrelia bu
720 721	3	8.8	.34	2	Q8GJC8	Q8gjc8 campylobact
721	3	8.8	34	2	Q8G8C9	Q8g8c9 pseudomonas
	3	8.8	34	3	Q00377	Q00377 coccidioide
723 724	3	8.8	34	4	Q99910	Q99910 homo sapien
724	3	8.8	34	4	Q9H3R8	Q9h3r8 homo sapien
725 726	3	8.8	34	4	Q9UI64	Q9ui64 homo sapien
727	3 3	8.8	34	4	Q8WY57	Q8wy57 homo sapien
		8.8	34	4	Q8WW51	Q8ww51 homo sapien
728	3	8.8	34	4	Q9BSP7	Q9bsp7 homo sapien
729	3	8.8	34	4	Q9H4L8	Q9h4l8 homo sapien
730	3	8.8	34	4	Q8NEQ3	Q8neq3 homo sapien
731	3	8.8	34	4	Q15251	Q15251 homo sapien
732	3	8.8	34	4	Q9NQY9	Q9nqy9 homo sapien
733	3	8.8	34	5	Q9BIP7	Q9bip7 cooperia pu
734	3	8.8	34	5	Q27821	Q27821 trichomonas
735	3	8.8	34	5	Q9GQE5	Q9gqe5 branchiosto
736 737	3 3	8.8	34	5	Q8N063	Q8n063 plasmodium
		8.8	34	6	Q9TS91	Q9ts91 oryctolagus
738	3	8.8	34	6	P79429	P79429 capra hircu
739 740	3	8.8	34		Q9TRI2	Q9tri2 sus scrofa
740	3 3	8.8 8.8	34		P82908	P82908 bos taurus
,11	J	0.0	34	8	079025	079025 enallagma v

742	3	8.8	34	8	Q9T2T7	Q9t2t7 bos taurus
743	3	8.8	34	8	Q8MCA2	Q8mca2 phaseolus a
744	3	8.8	34	8	Q8HKE1	Q8hke1 rhipicephal
745	3	8.8				
			34	10	Q8W2H0	Q8w2h0 paspalum no
746	3	8.8	34	10	Q8VWL0	Q8vwl0 paspalum no
747	3	8.8	34	10	Q9SCA3	Q9sca3 lycopersico
748	3	8.8	34	11	Q923Z1	Q923z1 mus musculu
749	3	8.8	34	11	Q8R557	Q8r557 mus musculu
750	3	8.8	34	11	Q9ET72	Q9et72 mus musculu
751	3	8.8	34	11	Q99KM9	
752	3					Q99km9 mus musculu
		8.8	34	11	Q99KX7	Q99kx7 mus musculu
753	3	8.8	34	11	Q64170	Q64170 mus sp. b-r
754	3	8.8	34	11	Q8VHL4	Q8vhl4 rattus norv
755	3	8.8	34	12	Q9DW68	Q9dw68 rat cytomeg
756	3	8.8	34	13	042521	042521 scyliorhinu
757	3	8.8	34	13	013101	Ol3101 ambystoma m
758	3	8.8	34	13	Q8QGG2	
759	3					Q8qgg2 oncorhynchu
		8.8	34	13	Q8QFM9	Q8qfm9 oncorhynchu
760	3	8.8	34	13	042526	O42526 scyliorhinu
761	3	8.8	34	13	Q9PRE7	Q9pre7 oryzias lat
762	3	8.8	34	13	Q8QGG1	Q8qgg1 oncorhynchu
763	3	8.8	34	13	Q8QGF7	Q8qgf7 oncorhynchu
764	3	8.8	34	13	Q98TM8	Q98tm8 platichthys
765	3	8.8	34	15	040445	
766	3	8.8				040445 human immun
			34	15	Q9WR32	Q9wr32 human immun
767	3	8.8	34	15	Q9W8Y1	Q9w8y1 chimpanzee
768	3	8.8	34	16	050812	050812 borrelia bu
769	3	8.8	34	16	050877	050877 borrelia bu
770	3	8.8	34	16	Q9PGH3	Q9pgh3 xylella fas
771	3	8.8	34	16	Q9PGF8	Q9pgf8 xylella fas
772	3	8.8	34	16	Q9PFA5	
773	3	8.8	34			Q9pfa5 xylella fas
				16	Q9PDD0	Q9pdd0 xylella fas
774	3	8.8	34	16	Q9KRA8	Q9kra8 vibrio chol
775	3	8.8	34	16	Q9KPW9	Q9kpw9 vibrio chol
776	3	8.8	34	16	Q9KM63	Q9km63 vibrio chol
777	3	8.8	34	16	Q9K7C6	Q9k7c6 bacillus ha
778	3	8.8	34	16	Q9JY24	Q9jy24 neisseria m
779	3	8.8	34	16	Q9JVP3	Q9jvp3 neisseria m
780	3	8.8	34	16		
781					Q9JUR9	Q9jur9 neisseria m
	3	8.8	34	16	Q97SF7	Q97sf7 streptococc
782	3	8.8	34	16	Q97PI6	Q97pi6 streptococc
783	3	8.8	34	16	Q9K2B9	Q9k2b9 chlamydia p
784	3	8.8	34	16	Q8X4V1	Q8x4v1 escherichia
785	. 3	8.8	34	16	Q8U5V2	Q8u5v2 agrobacteri
786	3	8.8	34	16	Q8VIY1	Q8viy1 mycobacteri
787	3	8.8	34	16	Q8RIC7	Q8ric7 fusobacteri
788	3	8.8	34	16		
789					Q8NWX3	Q8nwx3 staphylococ
	3	8.8	34	16	Q8NV10	Q8nv10 staphylococ
790	3	8.8	34	16	Q8KEQ8	Q8keq8 chlorobium
791	3	8.8	34	16	Q8KEL5	Q8kel5 chlorobium
792	3	8.8	34	16	Q8KDE4	Q8kde4 chlorobium
793	3	8.8	34	16	Q8F897	Q8f897 leptospira
794	3	8.8	34	16	Q8F830	Q8f830 leptospira
795	3	8.8	34	16		
796	3				Q8F827	Q8f827 leptospira
		8.8	34	16	Q8F5Y7	Q8f5y7 leptospira
797	3	8.8	34	16	Q8F0V9	Q8f0v9 leptospira
798	3	8.8	34	16	Q8EZR6	Q8ezr6 leptospira

799		3	8.8	34	16	Q8EZ37	Q8ez37 leptospira
800		3	8.8	34	16	Q8EYW8	Q8eyw8 leptospira
801		3	8.8	34	16		
802		3					~ 15 1
			8.8	34	16		~
803		3	8.8	34	16		Q8exa8 leptospira
804		3	8.8	34	16	Q8EJ65	Q8ej65 shewanella
805		3	8.8	34	16	Q8EI45	Q8ei45 shewanella
806		3	8.8	34	16	Q8EHU5	Q8ehu5 shewanella
807		3	8.8	34			
					16	Q8E8Y3	Q8e8y3 shewanella
808		3	8.8	34	16	Q8E8W3	Q8e8w3 shewanella
809		3	8.8	34	16	Q8E173	Q8e173 streptococc
810		3	8.8	34	16	Q8CRY3	Q8cry3 staphylococ
811		3	8.8	34	17	Q8U1I1	Q8uli1 pyrococcus
812		3	8.8	35	2	Q9R624	
813		3					Q9r624 bacillus su
			8.8	35	2	Q9JPG9	Q9jpg9 neisseria m
814		3	8.8	35	2	Q9R625	Q9r625 bacillus su
815		3	8.8	35	2	Q9X3D6	Q9x3d6 prochloroco
816		3	8.8	35	2	Q9R5I3	Q9r5i3 thermoanaer
817		3	8.8	35	2	Q9FCX4	Q9fcx4 clostridium
818		3					
			8.8	35	2	Q9XBK0	Q9xbk0 bacillus ce
819		3	8.8	35	2	Q53564	Q53564 neisseria g
820		3	8.8	35	2	Q46537	Q46537 bacteroides
821		3	8.8	35	2	Q9ZG35	Q9zg35 chlamydia t
822		3	8.8	35	2	Q9RHG5	Q9rhg5 bacillus ce
823		3	8.8	35	2	Q9R4A1	Q9r4al klebsiella
824	1	3	8.8	35	2		
						030661	030661 vibrio chol
825		3	8.8	35	2	Q9ZG68	Q9zg68 chlamydia t
826		3	8.8	35	2	Q8RKG3	Q8rkg3 clostridium
827		3	8.8	35	2	Q8RIW2	Q8riw2 clostridium
828		3	8.8	35	2	Q9R626	Q9r626 bacillus su
829		3,	8.8	35	2	P81927	P81927 lactobacill
830		3	8.8	35	3	Q96UT3	
831		3	8.8				Q96ut3 saccharomyc
				35	4	Q9BVR9	Q9bvr9 homo sapien
832		3	8.8	35	4	Q13380	Q13380 homo sapien
833		3	8.8	35	4	Q9BS62	Q9bs62 homo sapien
834		3	8.8	35	4	Q13165	Q13165 homo sapien
835		3	8.8	35	4	Q13828	Q13828 homo sapien
836		3	8.8	35	4	Q13264	Q13264 homo sapien
837		3	8.8	35			
838					4	Q9Y634	Q9y634 homo sapien
		3	8.8	35	4	Q9BU09	Q9bu09 homo sapien
839		3	8.8	35	4	Q8IU77	Q8iu77 homo sapien
840		3	8.8	35	5	Q27754	Q27754 pisaster oc
841		3	8.8	35	5	Q9U780	Q9u780 boophilus a
842		3	8.8	35	5	Q26372	Q26372 tribolium c
843		3	8.8	35	5	Q9U782	
844		3					Q9u782 boophilus m
			8.8	35	5	Q9TVJ7	Q9tvj7 boophilus m
845		3	8.8	35	5	Q9U783	Q9u783 boophilus m
846		3	8.8	35	5	Q9U784	Q9u784 boophilus m
847		3	8.8	35	5	Q9U781	Q9u781 boophilus m
848		3	8.8	35	5	Q8IF21	Q8if21 trypanosoma
849		3	8.8	35	6	Q95N74	Q95n74 equus cabal
850		3	8.8	35	6	Q9MZA7	
851		3	8.8	35			Q9mza7 sus scrofa
					8	Q951Q6	Q951q6 protoptilum
852		3	8.8	35	8	Q8W7S9	Q8w7s9 colpomenia
853		3	8.8	35	8	Q9GF85	Q9gf85 ginkgo bilo
854		3	8.8	35	8	Q8W7T0	Q8w7t0 petalonia b
855		3	8.8	35	8	Q8W7S8	Q8w7s8 petalonia f
						-	games possibility I

856	3	8.8	35	8	Q8WE70	Q8we70 miliaria ca
857	3	8.8	35	8	Q8W7S7	Q8w7s7 scytosiphon
858	3	8.8	35	8	Q9GF98	Q9gf98 ceratophyll
859	3	8.8	. 35	8	Q95766	Q95766 cerataphis
860	3	8.8	35	8	Q94P82	Q94p82 corallium r
861	3	8.8	35	8	Q8WEJ7	
862	3	8.8	35	8	Q951S7	Q8wej7 cycas circi
863	3	8.8				Q951s7 anthothela
			35	8	Q951R1	Q951r1 narella nut
864	3	8.8	35	8	Q951S1	Q951s1 corallium k
865	3	8.8	35	8	Q8WII3	Q8wii3 colpomenia
866	3	8.8	35	8	Q951R3	Q951r3 anthomurice
867	3	8.8	35	8	Q8WIH9	Q8wih9 scytosiphon
868	3	8.8	35	8	Q8WIH5	Q8wih5 hydroclathr
869	3	8.8	35	8	Q951S9	Q951s9 protodendro
870	3	8.8	35	8	Q8WII1	Q8wiil scytosiphon
871	3	8.8	35	8	Q951Q9	Q951q9 narella sp.
872	3	8.8	35	8	Q951S4	Q951s4 paragorgia
873	3	8.8	35	8	Q951R5	
874	3	8.8	35	10	Q9SPU2	Q951r5 corallium s
875	3	8.8				Q9spu2 arabidopsis
			35	10	Q9MAB1	Q9mab1 arabidopsis
876	3	8.8	35	10	Q9ZUW2	Q9zuw2 arabidopsis
877	3	8.8	35	10	Q9S9G9	Q9s9g9 lycopersico
878	3	8.8	35	10	P92971	P92971 arabidopsis
879	3	8.8	35	10	Q9LV08	Q9lv08 arabidopsis
880	3	8.8	35	10	Q9LQ64	Q9lq64 arabidopsis
881	3	8.8	35	10	Q941S4	Q94is4 pinus radia
882	3	8.8	35	10	Q39297	Q39297 brassica na
883	3	8.8	35	10	Q8RVJ7	Q8rvj7 populus eur
884	3	8.8	35	10	Q9FJ84	Q9fj84 arabidopsis
885	3	8.8	35	10	Q8GUX4	
886	3	8.8	35	11	Q63397	Q8gux4 picea maria
887	3	8.8	35	11		Q63397 rattus norv
888	3				Q9JLA4	Q9jla4 mus musculu
		8.8	35	11	Q60608	Q60608 mus musculu
889	3	8.8	35	11	Q9QV50	Q9qv50 rattus sp.
890	3	8.8	35	11	Q9QV30	Q9qv30 rattus sp.
891	3	8.8	35	11	Q922H5	Q922h5 mus musculu
892	3	8.8	35	11	Q8BK89	Q8bk89 mus musculu
893	3	8.8	35	12	Q90151	Q90151 bombyx mori
894	3	8.8	35	12	Q65380	Q65380 banana bunc
895	3	8.8	35	12	Q83333	Q83333 murine hepa
896	3	8.8	35	12	055549	O55549 measles vir
897	3	8.8	35	12	Q8BB50	Q8bb50 human papil
898	3	8.8	35	13	Q90XB5	
899	3	8.8	35	13	P83224	Q90xb5 xenopus lae
900	3	8.8	35			P83224 oxyuranus m
901				13	P83225	P83225 oxyuranus s
	3	8.8	35	13	P83227	P83227 oxyuranus m
902	3	8.8	35	13	P83228	P83228 oxyuranus s
903	3	8.8	35	13	P83229	P83229 oxyuranus s
904	3	8.8	35	13	P83226	P83226 oxyuranus s
905	3	8.8	35	15	Q75981	Q75981 human immun
906	3	8.8	35	15	Q70328	Q70328 human immun
907	3	8.8	35	15	Q70380	Q70380 human immun
908	3	8.8	35	15	Q70319	Q70319 human immun
909	3	8.8	35	15	Q79465	Q79465 human immun
910	3	8.8	35	15	Q70426	Q70426 human immun
911	3	8.8	35	15	Q9J3S2	
912	3	8.8	35	15	071950	Q9j3s2 human immun
	3	J . J	J.)	٠,	0,1700	071950 human immun

913	3	8.8	35	15	Q9IPY2	Q9ipy	2 human	immun
914	3	8.8	35	15	Q80574	Q8057	4 human	immun
915	3	8.8	35	15	Q70425	07042	5 human	immun
916	3	8.8	35	15	Q70362		2 human	
917	3	8.8	35	15	Q80601		1 human	
918	3	8.8	35	15	Q8QDX6	— -		
919						·	6 human	
	3	8.8	35	15	Q77702		2 human	
920	3	8.8	35	15	Q9QFA0	-	0 human	
921	3	8.8	35	15	Q70330	Q7033	0 human	immun
922	3	8.8	35	15	Q77584	Q7758	4 human	immun
923	3	8.8	35	15	Q70317	Q7031	7 human	immun
924	3	8.8	35	15	Q70316	07031	6 human	immun
925	3	8.8	35	15	Q70402		2 human	
926	3	8.8	35	15	Q9YM80		0 human	
927	3	8.8	35	15	Q8QDY0	=	0 human	
928	3	8.8	35	15	Q75970			
929	3	8.8					0 human	
			35	15	Q70409		9 human	
930	3	8.8	35	15	Q70325		5 human	
931	3	8.8	35	15	Q9YM17		7 human	
932	3	8.8	35	15	Q79468	Q7946	8 human	immun
933	3	8.8	35	15	Q9YM96	Q9ym9	5 human	immun
934	3	8.8	35	15	Q70363	Q7036	3 human	immun
935	3	8.8	35	15	Q70321		1 human	
936	3	8.8	35	15	Q9YM22	· · · · · · · · · · · · · · · · · · ·	2 human	
937	3	8.8	35	15	Q75990		0 human	
938	3	8.8	35	15	Q70323		3 human	
939	3	8.8	35	15	Q75989			
940	3	8.8	35				9 human	
941				15	Q70428		3 human	
	3	8.8	35	15	Q9YM67		7 human	
942	3	8.8	35	15	Q77585		5 human	
943	3	8.8	35	15	Q70403	Q7040	3 human	immun
944	3	8.8	35	15	Q70327	Q7032	7 human	immun
945	3	8.8	35	15	Q77250	Q7725) human	immun
946	3	8.8	35	15	Q75955	Q7595	5 human	immun
947	3	8.8	35	15	Q9IPY4	09ipy	4 human	immun
948	3	8.8	35	15	Q70424		1 human	
949	3	8.8	35	15	Q77582		2 human	
950	3	8.8	35	16	007593		B bacill	
951	3	8.8	35	16	Q9KR18		3 vibrio	
952	3	8.8	35	16	Q9KNU1			
953	3	8.8	35	16			l vibrio	
954	3				Q9JWX5	_	neisse	
		8.8	35	16	Q9JV38	·- •	neisse	
955	3	8.8	35	16	Q9A427		7 caulob	
956	3	8.8	35	16	Q9K241	Q9k24:	l chlamy	⁄dia p
957	3	8.8	35	16	Q8XZB7	Q8xzb	7 ralsto	nia s
958	3	8.8	35	16	Q8X4F4	Q8x4f	escher	richia
959	3	8.8	35	16	Q8KCA6	Q8kca	5 chlore	bium
960	3	8.8	35	16	Q8G2D4		brucel	
961	3	8.8	35	16	Q8F9H5		leptos	
962	3	8.8	35	16	Q8F8D4		leptos	-
963	3	8.8	35	16	Q8F1W8		leptos leptos	_
964	3	8.8	35	16	Q8EYH6		leptos leptos	
965	3	8.8	35	16	Q8ETH6 Q8EGT2			
966	3	8.8	35 35				shewan	
967	3			16	Q8EGC0		shewan	
		8.8	35 25	16	Q8EG97		shewan	
968	3	8.8	35	16	Q8EEP3	-	shewan	
969	3	8.8	35	16	Q8E9Z1	Q8e9zi	. shewan	ella

970	3	8.8	35	16	Q8DUY1	Q8duy1 streptococc
971	3	8.8	35	17	Q9HMP1	Q9hmp1 halobacteri
972	3	8.8	35	17		Q8zxx9 pyrobaculum
973	3	8.8	36	2	006954	006954 salmonella
974	3	8.8	36	2	Q8VTS7	Q8vts7 listeria in
975	3	8.8	36	2	Q9ZG79	Q9zg79 chlamydia t
976	3	8.8	36	2	Q9RHE3	Q9rhe3 pediococcus
977	3	8.8	36	2	Q8VTS5	Q8vts5 listeria we
978	3	8.8	36	2	Q44437	Q44437 agrobacteri
979	3	8.8	36	2	Q9LB55	Q9lb55 helicobacte
980	3	8.8	36	2	Q48507	Q48507 lactococcus
981	3	8.8	36	2	Q99094	Q99094 salmonella
982	3	8.8	36	2	Q9S635	Q9s635 prochloroco
983	3	8.8	36	2	Q8VTR8	Q8vtr8 listeria iv
984	3	8.8	36	2	Q8VTS0	Q8vts0 listeria mo
985	3	8.8	36	2	Q8KYW1	Q8kyw1 uncultured
986	3	8.8	36	2	Q9R4X9	Q9r4x9 azotobacter
987	3	8.8	36	2	Q9R5L0	Q9r5l0 sarcina ven
988	3	8.8	36	2	Q9X3G2	Q9x3g2 prochloroco
989	3	8.8	36	2	086086	086086 shewanella
990	3	8.8	36	2	Q9R536	Q9r536 sphingomona
991	3	8.8	36	2	Q8GRH1	Q8grhl pectobacter
992	3	8.8	36	3	Q96W36	Q96w36 ophiostoma
993	3	8.8	36	4	Q9UNV7	Q9unv7 homo sapien
994	3	8.8	36	4	Q9P1E9	Q9p1e9 homo sapien
995	3	8.8	36	4	Q9UPB7	Q9upb7 homo sapien
996	3	8.8	36	4	Q9UML4	Q9uml4 homo sapien
997	3	8.8	36	4	Q8NE47	Q8ne47 homo sapien
998	3	8.8	36	5	Q9GSY9	Q9gsy9 carcinus ma
999	3	8.8	36	5	Q9NGN1	Q9ngn1 strongyloce
1000	3	8.8	36	5	Q27730	Q27730 plasmodium

ALIGNMENTS

```
Q91Y90
ID
     Q91Y90
                 PRELIMINARY;
                                    PRT;
                                            31 AA.
     Q91Y90;
AC
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DE
     Parathyroid hormone (Fragment).
GN
OS
     Peromyscus maniculatus (Deer mouse).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Sigmodontinae;
OC
OC
     Peromyscus.
OX
     NCBI_TaxID=10042;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     Prince K.L., Dewey M.J.;
RA
RL
     Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AF382953; AAK63072.1; -.
DR
     InterPro; IPR001415; Parathyrd hrm.
DR
     InterPro; IPR003625; Pthyrhorm_sub.
```

RESULT 1

```
DR
     ProDom; PD010687; Pthyrhorm sub; 1.
DR
     PROSITE; PS00335; PARATHYROID; 1.
FT
     NON TER
                   1
     NON TER
FT
                  31
                         31
SQ
     SEQUENCE
                31 AA; 3461 MW; A208B0E772B9B55B CRC64;
  Query Match
                          41.2%; Score 14; DB 11; Length 31;
  Best Local Similarity 100.0%; Pred. No. 5e-08;
            14; Conservative
                                0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
Ov
            2 VSEIQLMHNLGKHL 15
              Db
           14 VSEIQLMHNLGKHL 27
RESULT 2
Q91Y91
ID
     Q91Y91
                 PRELIMINARY;
                                   PRT:
                                           31 AA.
AC
     Q91Y91;
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DT
DE
     Parathyroid hormone (Fragment).
GN
OS
     Peromyscus polionotus (Oldfield mouse).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Sigmodontinae;
OC
     Peromyscus.
     NCBI TaxID=42413;
OX
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RA
     Prince K.L., Dewey M.J.;
RL
     Submitted (MAY-2001) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AF382952; AAK63071.1; -.
DR
     InterPro; IPR001415; Parathyrd hrm.
     InterPro; IPR003625; Pthyrhorm sub.
DR
DR
     Pfam; PF01279; Parathyroid; 1.
DR
     ProDom; PD010687; Pthyrhorm sub; 1.
     PROSITE; PS00335; PARATHYROID; 1.
DR
FT
     NON TER
                  1
                          1
FT
     NON TER
                  31
                         31
                31 AA; 3461 MW; A208B0E772B9B55B CRC64;
SO
     SEQUENCE
  Query Match
                          41.2%; Score 14; DB 11; Length 31;
  Best Local Similarity
                         100.0%; Pred. No. 5e-08;
  Matches
           14; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
            2 VSEIQLMHNLGKHL 15
              Db
           14 VSEIQLMHNLGKHL 27
RESULT 3
017148
ID
    017148
                PRELIMINARY;
                                  PRT;
                                          34 AA.
AC
    017148;
```

DR

Pfam; PF01279; Parathyroid; 1.

```
01-JAN-1998 (TrEMBLrel. 05, Created)
DT
     01-JAN-1998 (TrEMBLrel. 05, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
DE
     Antigen B/1 (Fragment).
GN
     AGB/1.
OS
     Echinococcus vogeli.
     Eukaryota; Metazoa; Platyhelminthes; Cestoda; Eucestoda;
OC
     Cyclophyllidea; Taeniidae; Echinococcus.
OC
OX
     NCBI TaxID=6213;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RX
     MEDLINE=94359533; PubMed=8078520;
RA
     Frosch P., Hartmann M., Muhlschlegel F., Frosch M.;
     "Sequence heterogeneity of the echinococcal antigen B.";
RT
RL
     Mol. Biochem. Parasitol. 64:171-175(1994).
RN
     [2]
     SEQUENCE FROM N.A.
RP
RA
     Haag K.L., Zaha A., Gottstein B.;
RT
     "E. vogeli AgB/1 coding sequence.";
     Submitted (SEP-1997) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AF024665; AAB81611.1; -.
FT
     NON_TER
                  1
                          1
FT
     NON TER
                  34
                         34
SO
     SEQUENCE
                34 AA; 3964 MW; 3BE894E129CF84F3 CRC64;
  Query Match
                          14.7%; Score 5; DB 5; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3e+02;
  Matches
             5; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           24 LRKKL 28
              11111
Db
           15 LRKKL 19
RESULT 4
Q97K50
ΙD
     Q97K50
                 PRELIMINARY;
                                   PRT;
                                           34 AA.
AC
     Q97K50;
DT
     01-OCT-2001 (TrEMBLrel. 18, Created)
DT
     01-OCT-2001 (TrEMBLrel. 18, Last sequence update)
DT
     01-OCT-2001 (TrEMBLrel. 18, Last annotation update)
DΕ
     Transcriptional regulator, AcrR family.
GN
     CAC1071.
OS
     Clostridium acetobutylicum.
OC
     Bacteria; Firmicutes; Clostridia; Clostridiales; Clostridiaceae;
OC
     Clostridium.
OX
     NCBI TaxID=1488;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=ATCC 824 / DSM 792 / VKM B-1787;
RX
     MEDLINE=21359325; PubMed=11466286;
     Noelling J., Breton G., Omelchenko M.V., Makarova K.S., Zeng Q.,
RA
     Gibson R., Lee H.M., Dubois J., Qiu D., Hitti J., Wolf Y.I.,
RA
RA
     Tatusov R.L., Sabathe F., Doucette-Stamm L., Soucaille P., Daly M.J.,
     Bennett G.N., Koonin E.V., Smith D.R.;
RA
     "Genome sequence and comparative analysis of the solvent-producing
RT
RT
     bacterium Clostridium acetobutylicum.";
```

```
DR
     EMBL; AE007622; AAK79045.1; -.
KW
     Complete proteome.
SO
     SEQUENCE
                34 AA; 4031 MW; 38D1A2A7C2F86E90 CRC64;
  Query Match
                          14.7%; Score 5; DB 16; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 3e+02;
  Matches
            5; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
            1 SVSEI 5
QУ
              Db
           30 SVSEI 34
RESULT 5
Q9HR65
ID
     Q9HR65
                 PRELIMINARY;
                                   PRT;
                                           34 AA.
AC
     Q9HR65;
     01-MAR-2001 (TrEMBLrel. 16, Created)
DT
DT
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
     01-MAR-2001 (TrEMBLrel. 16, Last annotation update)
DT
DE
     Vng0840h.
GN
     VNG0840H.
OS
     Halobacterium sp. (strain NRC-1).
OC
     Archaea; Euryarchaeota; Halobacteria; Halobacteriales;
OC
     Halobacteriaceae; Halobacterium.
OX
     NCBI TaxID=64091;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=20504483; PubMed=11016950;
ŔA
     Ng W.V., Kennedy S.P., Mahairas G.G., Berquist B., Pan M.,
RA
     Shukla H.D., Lasky S.R., Baliga N.S., Thorsson V., Sbrogna J.,
RA
     Swartzell S., Weir D., Hall J., Dahl T.A., Welti R., Goo Y.A.,
     Leithauser B., Keller K., Cruz R., Danson M.J., Hough D.W.,
RA
     Maddocks D.G., Jablonski P.E., Krebs M.P., Angevine C.M., Dale H.,
RA
RA
     Isenbarger T.A., Peck R.F., Pohlschroder M., Spudich J.L., Jung K.-H.,
     Alam M., Freitas T., Hou S., Daniels C.J., Dennis P.P., Omer A.D.,
RA
RA
     Ebhardt H., Lowe T.M., Liang P., Riley M., Hood L., DasSarma S.;
     "Genome sequence of Halobacterium species NRC-1.";
RT
RL
     Proc. Natl. Acad. Sci. U.S.A. 97:12176-12181(2000).
     EMBL; AE005025; AAG19293.1; -.
DR
KW
     Complete proteome.
SQ
     SEQUENCE
               34 AA; 3731 MW; BA957904338DCD45 CRC64;
  Query Match
                          14.7%; Score 5; DB 17;
                                                   Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 3e+02;
           5; Conservative 0; Mismatches 0; Indels
  Matches
                                                                 0; Gaps
Qу
           24 LRKKL 28
              26 LRKKL 30
RESULT 6
Q8BTB9
ID
     Q8BTB9
                PRELIMINARY;
                                  PRT;
                                           35 AA.
AC
     Q8BTB9;
```

RL

J. Bacteriol. 183:4823-4838(2001).

```
01-MAR-2003 (TrEMBLrel. 23, Created)
DT
DT
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DΕ
     Translin.
OS
     Mus musculus (Mouse).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OX
     NCBI TaxID=10090;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=C57BL/6J; TISSUE=Body;
     MEDLINE=22354683; PubMed=12466851;
RX
RA
     The FANTOM Consortium,
     the RIKEN Genome Exploration Research Group Phase I & II Team;
RA
RT
     "Analysis of the mouse transcriptome based on functional annotation of
RT
     60,770 full-length cDNAs.";
RL
     Nature 420:563-573(2002).
DR
     EMBL; AK011220; BAC25325.1; -.
SO
     SEOUENCE
               35 AA; 3967 MW; F81156686390ECD8 CRC64;
  Query Match
                          14.7%; Score 5; DB 11; Length 35;
  Best Local Similarity 100.0%; Pred. No. 3.1e+02;
  Matches
           5; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
            1 SVSEI 5
Qу
              1111
Db
            2 SVSEI 6
RESULT 7
Q97RG6
ID
     Q97RG6
                 PRELIMINARY;
                                   PRT;
                                           35 AA.
AC
     Q97RG6;
     01-OCT-2001 (TrEMBLrel. 18, Created)
DT
DT
     01-OCT-2001 (TrEMBLrel. 18, Last sequence update)
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
DE
     Hypothetical protein SP0853.
GN
     SP0853.
OS
     Streptococcus pneumoniae.
     Bacteria; Firmicutes; Lactobacillales; Streptococcaceae;
OC
OC
     Streptococcus.
OX
     NCBI_TaxID=1313;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=TIGR4;
RX
     MEDLINE=21357209; PubMed=11463916;
     Tettelin H., Nelson K.E., Paulsen I.T., Eisen J.A., Read T.D.,
RA
     Peterson S., Heidelberg J., DeBoy R.T., Haft D.H., Dodson R.J.,
RA
     Durkin A.S., Gwinn M., Kolonay J.F., Nelson W.C., Peterson J.D.,
RA
     Umayam L.A., White O., Salzberg S.L., Lewis M.R., Radune D.,
RA
     Holtzapple E., Khouri H., Wolf A.M., Utterback T.R., Hansen C.L.,
RA
RA
     McDonald L.A., Feldblyum T.V., Angiuoli S., Dickinson T., Hickey E.K.,
RA
     Holt I.E., Loftus B.J., Yang F., Smith H.O., Venter J.C.,
     Dougherty B.A., Morrison D.A., Hollingshead S.K., Fraser C.M.;
RA
     "Complete genome sequence of a virulent isolate of Streptococcus
RT
RT
     pneumoniae.";
RL
     Science 293:498-506(2001).
```

```
EMBL; AE007391; AAK74982.1; -.
DR
     TIGR; SP0853; -.
KW
     Hypothetical protein; Complete proteome.
SQ
                35 AA; 4276 MW; 6B8813CC028D6C7B CRC64;
  Query Match
                          14.7%; Score 5; DB 16; Length 35;
  Best Local Similarity
                          100.0%; Pred. No. 3.1e+02;
  Matches
             5; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0:
Qy
           26 KKLQD 30
              Db
           30 KKLQD 34
RESULT 8
024285
ΙD
     024285
                 PRELIMINARY;
                                   PRT;
                                           28 AA.
AC
     024285;
     01-JAN-1998 (TrEMBLrel. 05, Created)
DT
DT
     01-JAN-1998 (TrEMBLrel. 05, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DE
     LFY protein (Fragment).
GN
     LFY.
OS
     Pinus radiata (Monterey pine).
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
OC
     Spermatophyta; Coniferopsida; Coniferales; Pinaceae; Pinus.
OX
     NCBI TaxID=3347;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     TISSUE=Vegetative;
RA
     Izquierdo L.Y., Vergara R.F., Alvarez-Buylla E.R.;
     "Partial characterization of Pinus radiata meristem identity homolog
RT
RT
     gene (LFY).";
RL
     Submitted (AUG-1996) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; U66725; AAB06792.1; -.
FT
     NON TER
                   1
                          1
     NON TER
FT
                  28
                         28
SQ
     SEOUENCE
                28 AA; 3376 MW; 1736738622B4EE74 CRC64;
  Query Match
                          11.8%; Score 4; DB 10; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 3.1e+03;
  Matches
             4; Conservative
                               0; Mismatches
                                                                 0; Gaps
                                                   0; Indels
                                                                              0;
           24 LRKK 27
Qу
              1111
Db
           15 LRKK 18
RESULT 9
Q8GZQ8
ID
     Q8GZQ8
                 PRELIMINARY;
                                   PRT;
                                           28 AA.
AC
     Q8GZQ8;
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DE
     SNF-1 related kinase (Fragment).
GN
    BKIN12.
```

DR

```
Hordeum vulgare var. distichum (Two-rowed barley).
OS
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
     Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; Pooideae;
OC
OC
     Triticeae; Hordeum.
OX
     NCBI TaxID=112509;
RN
     [1]
     SEQUENCE FROM N.A.
RP
RC
     STRAIN=cv. Igri;
RA
     Clark J.S.C., Dani M., Barker J.H.A., Halford N.G., Karp A.;
RT
     "Bkin12 Promoter Variants - Examples of Functional Biodiversity?";
     Submitted (NOV-2001) to the EMBL/GenBank/DDBJ databases.
RL
     EMBL; AF448389; AAN76447.1; -.
DR
KW
     Kinase.
     NON TER
FT
                  28
                         2.8
     SEQUENCE
SO
                28 AA; 2950 MW; 853EDC11F6BB2C6C CRC64;
  Query Match
                          11.8%; Score 4; DB 10; Length 28;
  Best Local Similarity 100.0%; Pred. No. 3.1e+03;
             4; Conservative 0; Mismatches
                                                    0;
                                                        Indels
                                                                  0; Gaps
                                                                              0;
           10 NLGK 13
Qу
              || || || ||
Db
           18 NLGK 21
RESULT 10
Q49148
ID
     Q49148
                 PRELIMINARY;
                                   PRT;
                                           29 AA.
AC
     049148:
     01-NOV-1996 (TrEMBLrel. 01, Created)
DТ
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
     01-NOV-1998 (TrEMBLrel. 08, Last annotation update)
DE
     PQQ biosynthesis polypeptide.
GN
OS
     Methylobacterium extorquens.
OC
     Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
OC
     Methylobacteriaceae; Methylobacterium.
OX
     NCBI TaxID=408;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=AM1;
RX
     MEDLINE=94179111; PubMed=8132470;
RA
     Morris C.J., Biville F., Turlin E., Lee E., Ellermann K., Fan W.H.,
RA
     Ramamoorthi R., Springer A.L., Lidstrom M.E.;
RT
     "Isolation, phenotypic characterization, and complementation analysis
RT
     of mutants of Methylobacterium extorquens AM1 unable to synthesize
     pyrroloquinoline quinone and sequences of pqqD, pqqG, and pqqC.";
RT
RL
     J. Bacteriol. 176:1746-1755(1994).
DR
     EMBL; L25889; AAA17878.1; -.
SO
     SEQUENCE
               29 AA; 3222 MW; B4831562CF76973C CRC64;
  Query Match
                          11.8%; Score 4; DB 2; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 3.2e+03;
  Matches
           4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
Qу
            2 VSEI 5
              IIII
```

```
Db
```

```
RESULT 11
Q9UCL2
ID
     Q9UCL2
                  PRELIMINARY;
                                    PRT;
                                            29 AA.
AC
     Q9UCL2;
DT
     01-MAY-2000 (TrEMBLrel. 13, Created)
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
     Renal intestinal-type alkaline phosphatase (Fragment).
DE
OS
     Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OX
     NCBI TaxID=9606;
RN
     [1]
RP
     SEOUENCE.
RX
     MEDLINE=93092315; PubMed=1458595;
RA
     Nishihara Y., Hayashi Y., Adachi T., Koyama I., Stigbrand T.,
RA
     Hirano K.;
RT
     "Chemical nature of intestinal-type alkaline phosphatase in human
RT
     kidney.";
RL
     Clin. Chem. 38:2539-2542(1992).
DR
     InterPro; IPR001952; Alk_phosphtse.
     ProDom; PD001868; Alk_phosphtse; 1.
DR
SQ
                29 AA; 3250 MW; 30501BB7BEEAD8D0 CRC64;
     SEQUENCE
  Query Match
                          11.8%; Score 4; DB 4; Length 29;
  Best Local Similarity 100.0%; Pred. No. 3.2e+03;
             4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                  0; Gaps
                                                                              0;
Qу
           26 KKLO 29
              1111
Db
           23 KKLQ 26
RESULT 12
Q96PP3
ID
     Q96PP3
                 PRELIMINARY;
                                    PRT:
                                            29 AA.
AC
     096PP3;
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DE
     Lympho-epithelial Kazal type-related inhibitor LEKTI (Fragment).
GN
     SPINK5.
OS
     Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OX
     NCBI TaxID=9606;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     Sprecher E., Chavanas S., DiGiovanna J.J., Amin S., Nielsen K.,
RA
     Prendiville J.S., Silverman R., Esterly N.B., Spraker M.K., Guelig E.,
RA
     de Luna M.L., Williams M.L., Buehler B., Pfendner E., Bale S.J.,
RA
RA
     Uitto J., Hovnanian A., Richard G.;
     "The spectrum of pathogenic mutations in SPINK 5 in 19 families with
RT
     Netherton syndrome - Implications for mutation detection and first
RT
```

```
RT
     case of prenatal diagnosis.";
RL
     J. Invest. Dermatol. 0:0-0(2001).
DR
     EMBL; AF295783; AAK97140.1; -.
FT
     NON TER
                  1
                          1
FT
     NON TER
                  29
                         29
SQ
     SEQUENCE
                29 AA; 3449 MW; 9F31E2AD857EC1BB CRC64;
  Query Match
                          11.8%; Score 4; DB 4; Length 29;
  Best Local Similarity 100.0%; Pred. No. 3.2e+03;
  Matches
            4; Conservative 0; Mismatches 0; Indels
                                                               0; Gaps
           10 NLGK 13
Qу
              111
Db
           14 NLGK 17
RESULT 13
Q25603
ID
     025603
                 PRELIMINARY; PRT;
                                           29 AA.
AC
     Q25603;
DT
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DE
     Tubulin.
OS
     Onchocerca volvulus.
OC
     Eukaryota; Metazoa; Nematoda; Chromadorea; Spirurida; Filarioidea;
OC
     Onchocercidae; Onchocerca.
OX
     NCBI TaxID=6282;
RN
     [1]
     SEQUENCE FROM N.A.
RP
RA
     Chandrashekar R., Curtis K.C., Weil G.J.;
     "Onchocerca volvulus cDNA clone.";
RT
RL
     Submitted (SEP-1994) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; U15095; AAA50364.1; -.
SO
     SEQUENCE 29 AA; 3539 MW; B917126A923EF884 CRC64;
  Query Match
                          11.8%; Score 4; DB 5; Length 29;
  Best Local Similarity 100.0%; Pred. No. 3.2e+03;
  Matches
          4; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                            0;
Qу
            2 VSEI 5
              1111
Db
           4 VSEI 7
RESULT 14
Q9TI61
ID
     Q9TI61
                PRELIMINARY;
                                  PRT;
                                          29 AA.
AC
     Q9TI61;
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
     01-MAY-2000 (TrEMBLrel. 13, Last annotation update)
DT
DE
     Photosystem Q(B) protein (Fragment).
GN
     PSBA.
OS
    Allosyncarpia ternata.
OG
     Chloroplast.
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
```

```
OC
     Spermatophyta, Magnoliophyta; eudicotyledons; core eudicots; Rosidae;
OC.
     eurosids II, Myrtales; Myrtaceae; Allosyncarpia.
OX
     NCBI TaxID=34307;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
     Udovicic F., Ladiges P.Y.;
RA
     "Informativeness of nuclear and chloroplast DNA regions and the
RT
     phylogeny of the eucalypts and related genera (Myrtaceae).";
RT
RL
     Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AF190370; AAF15265.1; -.
KW
     Chloroplast.
FT
     NON TER
                   1
                          1
SO
     SEQUENCE
                29 AA; 3501 MW; 977D8E6E67E1D833 CRC64;
  Query Match
                          11.8%; Score 4; DB 8; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 3.2e+03;
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
Оy
           31 VHNF 34
              1111
Dh
            7 VHNF 10
RESULT 15
013043
ID
     013043
                 PRELIMINARY;
                                   PRT;
                                           29 AA.
AC
     013043;
     01-JUL-1997 (TrEMBLrel. 04, Created)
DT
DT
     01-JUL-1997 (TrEMBLrel. 04, Last sequence update)
DT
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DE
     Whn transcription factor (Fragment).
GN
OS
     Scyliorhinus canicula (Spotted dogfish) (Spotted catshark).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Chondrichthyes;
OC
OC
     Elasmobranchii; Galeomorphii; Galeoidea; Carcharhiniformes;
OC
     Scyliorhinidae; Scyliorhinus.
OX
     NCBI TaxID=7830;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
     MEDLINE=97268658; PubMed=9108066;
RX
     Schlake T., Schorpp M., Nehls M., Boehm T.;
RA
     "The nude gene encodes a sequence-specific DNA binding protein with
RT
     homologs in organisms that lack an anticipatory immune system.";
RT
RL
     Proc. Natl. Acad. Sci. U.S.A. 94:3842-3847(1997).
DR
     EMBL; Y11539; CAA72302.1; -.
DR
     InterPro; IPR001766; TF Fork head.
DR
     Pfam; PF00250; Fork head; 1.
DR
     ProDom; PD000425; TF Fork head; 1.
FT
     NON TER
                   1
                          1
FT
     NON TER
                  29
                         29
SO
     SEOUENCE
                29 AA; 3243 MW; 62AE51F2BE7311E2 CRC64;
  Query Match
                          11.8%; Score 4; DB 13; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 3.2e+03;
          4; Conservative 0; Mismatches 0; Indels
                                                                             0;
```

```
||||
Db 17 VSEI 20
```

```
RESULT 16
Q9JMV3
ID
     Q9JMV3
                 PRELIMINARY;
                                    PRT;
                                            30 AA.
AC
     Q9JMV3;
DT
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DE
     Luciferase alpha-subunit (Fragment).
GN
     LUXA.
OS
     Escherichia coli.
OC
     Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC
     Enterobacteriaceae; Escherichia.
OX
     NCBI TaxID=562;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=HB101:
RA
     Lotz W., Bauer T.;
     "luxAB/kan-cassette for site-directed insertion mutagenesis and
RT
RT
     bacterial transcription studies.";
RL
     Submitted (SEP-1999) to the EMBL/GenBank/DDBJ databases.
RN
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=HB101;
     Olsson O., Koncz C., Szalay A.;
RA
     "The use of luxA gene ofthe bacterial luciferase operon as a reporter
RT
RT
     gene.":
RL
     Mol. Gen. Genet. 215:1-9(1998).
RN
     [3]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=HB101;
RX
     MEDLINE=92114868; PubMed=1685011;
RA
     Escher A., O'Kane D.J., Szalay A.;
RT
     "The beta subunit polypeptide of Vibrio harveyi luciferase determines
RT
     light emission at 42 degrees C.";
RL
     Mol. Gen. Genet. 230:385-393(1991).
     EMBL; AJ249443; CAB96206.1; -.
DR
DR
     HSSP; P07740; 1LUC.
DR
     InterPro; IPR002103; Bac luciferase.
     Pfam; PF00296; bac_luciferase; 1.
DR
FT
     NON TER
                  30
                        30
SQ
     SEQUENCE
                30 AA; 3454 MW; 2FC87235BDBE72FD CRC64;
  Query Match
                          11.8%; Score 4; DB 2; Length 30;
  Best Local Similarity
                          100.0%; Pred. No. 3.3e+03;
 Matches
            4; Conservative 0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
QУ
           10 NLGK 13
              Db
           26 NLGK 29
```

RESULT 17 O9UBV5

```
ID
     O9UBV5
                  PRELIMINARY;
                                    PRT;
                                            30 AA.
AC
     Q9UBV5;
      01-MAY-2000 (TrEMBLrel. 13, Created)
DT
DT
      01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
      01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DE
     Intestinal alkaline phosphatase (Fragment).
OS
     Homo sapiens (Human).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OC
OX
     NCBI TaxID=9606;
RN
     [1]
RP
     SEQUENCE.
RX
     MEDLINE=93092315; PubMed=1458595;
     Nishihara Y., Hayashi Y., Adachi T., Koyama I., Stigbrand T.,
RA
RA
     Hirano K.;
RT
     "Chemical nature of intestinal-type alkaline phosphatase in human
RT
     kidney.";
RL
     Clin. Chem. 38:2539-2542(1992).
DR
     InterPro; IPR001952; Alk phosphtse.
DR
     ProDom; PD001868; Alk phosphtse; 1.
SO
               30 AA; 3349 MW; 30501BB7BEB9BDE6 CRC64;
     SEQUENCE
  Query Match
                           11.8%; Score 4; DB 4; Length 30;
  Best Local Similarity
                           100.0%; Pred. No. 3.3e+03;
  Matches
             4; Conservative 0; Mismatches
                                                    0;
                                                       Indels
                                                                  0;
                                                                      Gaps
                                                                               0;
           26 KKLQ 29
Qу
               24 KKLQ 27
Db
RESULT 18
Q8DZP7
ID
     Q8DZP7
                 PRELIMINARY;
                                    PRT;
                                            30 AA.
     Q8DZP7;
AC
     01-MAR-2003 (TrEMBLrel. 23, Created)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DE
     Hypothetical protein.
GN
     SAG1053.
OS
     Streptococcus agalactiae (serotype V).
     Bacteria; Firmicutes; Lactobacillales; Streptococcaceae;
OC
OC
     Streptococcus.
OX
     NCBI TaxID=216466;
RN
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=2603 V/R / Serotype V;
RX
     MEDLINE=22222988; PubMed=12200547;
RA
     Tettelin H., Masignani V., Cieslewicz M.J., Eisen J.A., Peterson S.,
     Wessels M.R., Paulsen I.T., Nelson K.E., Margarit I., Read T.D.,
RA
     Madoff L.C., Wolf A.M., Beanan M.J., Brinkac L.M., Daugherty S.C.,
RA
     DeBoy R.T., Durkin A.S., Kolonay J.F., Madupu R., Lewis M.R.,
RA
     Radune D., Fedorova N.B., Scanlan D., Khouri H., Mulligan S.,
RA
RA
     Carty H.A., Cline R.T., Van Aken S.E., Gill J., Scarselli M., Mora M.,
     Iacobini E.T., Brettoni C., Galli G., Mariani M., Vegni F., Maione D.,
RA
     Rinaudo D., Rappuoli R., Telford J.L., Kasper D.L., Grandi G.,
RA
RA
     Fraser C.M.;
```

```
RT
     "Complete genome sequence and comparative genomic analysis of an
RT
     emerging human pathogen, serotype V Streptococcus agalactiae.";
RL
     Proc. Natl. Acad. Sci. U.S.A. 99:12391-12396(2002).
DR
     EMBL; AE014240; AAM99934.1; -.
DR
     TIGR; SAG1053; -.
KW
     Hypothetical protein; Complete proteome.
SQ
     SEQUENCE
                30 AA; 3492 MW; 8BC8F7525007AE91 CRC64;
  Query Match
                          11.8%; Score 4; DB 16; Length 30;
  Best Local Similarity
                          100.0%; Pred. No. 3.3e+03;
  Matches
            4; Conservative
                               0; Mismatches
                                                    0;
                                                       Indels
                                                                  0; Gaps
                                                                              0;
           26 KKLO 29
QУ
              1111
Db
           23 KKLQ 26
RESULT 19
055314
ID
     Q55314
                 PRELIMINARY;
                                   PRT;
                                           31 AA.
AC
     055314;
DT
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DE
     Urf2 protein (Fragment).
GN
     URF2.
     Sulfolobus solfataricus.
OS
OC
     Archaea; Crenarchaeota; Thermoprotei; Sulfolobales; Sulfolobaceae;
OC
     Sulfolobus.
OX
     NCBI TaxID=2287;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=96085144; PubMed=8521845;
RA
     Jones C.E., Fleming T.M., Cowan D.A., Littlechild J.A., Piper P.W.;
RT
     "The phosphoglycerate kinase and glyceraldehyde-3-phosphate
RT
     dehydrogenase genes from the thermophilic archaeon Sulfolobus
RT
     solfataricus overlap by 8bp. Isolation, sequencing of the genes and
RT
     expression on Escherichia coli.";
RL
     Eur. J. Biochem. 233:800-808(1995).
RN
     [2]
     SEQUENCE FROM N.A.
RP
RX ·
     MEDLINE=94082761; PubMed=8259927;
RA
     Arcari P., Russo A.D., Ianniciello G., Gallo M., Bocchini V.;
RT
     "Nucleotide sequence and molecular evolution of the gene coding for
RT
     glyceraldehyde-3-phosphate dehydrogenase in the thermoacidophilic
RT
     archaebacterium Sulfolobus solfataricus.";
RL
     Biochem. Genet. 31:241-251(1993).
DR
     EMBL; X80178; CAA56461.1; -.
FT
     NON TER
                  31
                         31
     SEQUENCE
                31 AA; 3554 MW; 9A2538F911C7309A CRC64;
SO
 Query Match
                          11.8%; Score 4; DB 1; Length 31;
 Best Local Similarity
                          100.0%; Pred. No. 3.4e+03;
 Matches
             4; Conservative 0; Mismatches
                                                0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           23 WLRK 26
```

1111

```
Db
```

```
RESULT 20
Q8NEI8
ID
     Q8NEI8
                 PRELIMINARY;
                                    PRT;
                                            31 AA.
AC
     Q8NEI8;
DT
     01-OCT-2002 (TrEMBLrel. 22, Created)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DE
     Hypothetical protein (Fragment).
OS
     Homo sapiens (Human).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OX
     NCBI TaxID=9606;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     TISSUE=Kidney;
RA
     Strausberg R.;
     Submitted (JUN-2002) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; BC030993; AAH30993.1; -.
KW
     Hypothetical protein.
FT
     NON TER
                   1
                          1
SO
     SEQUENCE
                31 AA; 3437 MW; 72DCD0761839F7F7 CRC64;
  Query Match
                          11.8%; Score 4; DB 4; Length 31;
  Best Local Similarity 100.0%; Pred. No. 3.4e+03;
  Matches
             4; Conservative 0; Mismatches
                                                    0; Indels
                                                                  0;
                                                                      Gaps
                                                                               0;
            2 VSEI 5
Qу
              1111
Db
           18 VSEI 21
RESULT 21
Q9MS77
ID
     Q9MS77
                 PRELIMINARY;
                                    PRT:
                                            31 AA.
AC
     Q9MS77;
DT
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DΕ
     Photosystem I protein M.
GN
     PSAM.
OS
     Phacus acuminata.
OG
     Chloroplast.
OC
     Eukaryota; Euglenozoa; Euglenida; Euglenales; Phacus.
OX
     NCBI TaxID=130316;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=21080550; PubMed=11212923;
RA
     Doetsch N.A., Thompson M.D., Favreau M.R., Hallick R.B.;
RT
     "Comparison of psbK operon organization and group III intron content
RT
     in chloroplast genomes of 12 Euglenoid species.";
RL
     Mol. Gen. Genet. 264:682-690(2001).
DR
     EMBL; AF241276; AAF82438.1; -.
KW
     Chloroplast.
SQ
     SEQUENCE
                31 AA; 3449 MW; 2FFB2AF4B4ACDEC8 CRC64;
```

```
Query Match
                          11.8%; Score 4; DB 8; Length 31;
  Best Local Similarity 100.0%; Pred. No. 3.4e+03;
            4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
           10 NLGK 13
Qу
              1111
Db
           24 NLGK 27
RESULT 22
050669
ID
     050669
                 PRELIMINARY;
                                   PRT;
                                           31 AA.
AC
     050669;
DT
     01-JUN-1998 (TrEMBLrel. 06, Created)
DT
     01-JUN-1998 (TrEMBLrel. 06, Last sequence update)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
DE
     Hypothetical protein BBH11.
GN
     BBH11.
OS
     Borrelia burgdorferi (Lyme disease spirochete).
OG
     Plasmid 1p28-3.
     Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Borrelia.
OC
OX
     NCBI TaxID=139;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=ATCC 35210 / B31;
RX
     MEDLINE=98065943; PubMed=9403685;
     Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R.A.,
RA
RA
     Lathigra R., White O., Ketchum K.A., Dodson R., Hickey E.K., Gwinn M.,
     Dougherty B., Tomb J.-F., Fleischmann R.D., Richardson D.,
RA
RA
     Peterson J., Kerlavage A.R., Quackenbush J., Salzberg S., Hanson M.,
RA
     van Vugt R., Palmer N., Adams M.D., Gocayne J.D., Weidman J.,
RA
     Utterback T., Watthey L., McDonald L., Artiach P., Bowman C.,
RA
     Garland S., Fujii C., Cotton M.D., Horst K., Roberts K., Hatch B.,
RA
     Smith H.O., Venter J.C.;
RT
     "Genomic sequence of a Lyme disease spirochaete, Borrelia
RT
     burgdorferi.";
RL
     Nature 390:580-586(1997).
DR
     EMBL; AE000784; AAC66002.1; -.
DR
     TIGR; BBH11; -.
     Hypothetical protein; Plasmid; Complete proteome.
KW
SO
              31 AA; 3892 MW; 8C9F6B9E72D10FBA CRC64;
  Query Match
                          11.8%; Score 4; DB 16; Length 31;
  Best Local Similarity 100.0%; Pred. No. 3.4e+03;
  Matches
             4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           26 KKLQ 29
              1111
           26 KKLQ 29
Db
RESULT 23
Q9QZQ2
ID
     Q9QZQ2
                 PRELIMINARY;
                                   PRT;
                                           32 AA.
AC
    Q9QZQ2;
DT
     01-MAY-2000 (TrEMBLrel. 13, Created)
```

```
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DE
     Neurotensin receptor (Fragment).
GN
     NTSR OR NTR1.
OS
     Mus musculus (Mouse).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OC
OX
     NCBI TaxID=10090;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=129:
RX
     MEDLINE=99445567; PubMed=10514493;
RA
     Tavares D., Tully K., Dobner P.R.;
     "Sequences required for induction of neurotensin receptor gene
RT
RT
     expression during neuronal differentiation of N1E-115 neuroblastoma
RT
     cells.";
     J. Biol. Chem. 274:30066-30079(1999).
RL
DR
     EMBL; AF172326; AAD51806.1; -.
DR
     MGD; MGI:97386; Ntsr.
KW
     Receptor.
     NON TER
FT
                  32
SO
     SEOUENCE
                32 AA; 3447 MW; 7F7EA4FA2CCF2EFB CRC64;
  Query Match
                          11.8%; Score 4; DB 11; Length 32;
  Best Local Similarity
                          100.0%; Pred. No. 3.5e+03;
  Matches
             4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
           14 HLNS 17
Qу
              2 HINS 5
RESULT 24
Q9HSZ0
ID
     O9HSZ0
                 PRELIMINARY;
                                   PRT;
                                            32 AA.
AC
     Q9HSZ0;
DT
     01-MAR-2001 (TrEMBLrel. 16, Created)
DT
     01-MAR-2001 (TrEMBLrel. 16, Last sequence update)
DT
     01-MAR-2001 (TrEMBLrel. 16, Last annotation update)
DE
     Vnq0019h.
     VNG0019H.
GN
OS
     Halobacterium sp. (strain NRC-1).
     Archaea; Euryarchaeota; Halobacteria; Halobacteriales;
OC
OC
     Halobacteriaceae; Halobacterium.
OX
     NCBI TaxID=64091;
RN
     [1]
RР
     SEQUENCE FROM N.A.
RX
     MEDLINE=20504483; PubMed=11016950;
RA
     Ng W.V., Kennedy S.P., Mahairas G.G., Berquist B., Pan M.,
     Shukla H.D., Lasky S.R., Baliga N.S., Thorsson V., Sbrogna J.,
RA
RA
     Swartzell S., Weir D., Hall J., Dahl T.A., Welti R., Goo Y.A.,
     Leithauser B., Keller K., Cruz R., Danson M.J., Hough D.W.,
RA
     Maddocks D.G., Jablonski P.E., Krebs M.P., Angevine C.M., Dale H.,
RA
RA
     Isenbarger T.A., Peck R.F., Pohlschroder M., Spudich J.L., Jung K.-H.,
RA
     Alam M., Freitas T., Hou S., Daniels C.J., Dennis P.P., Omer A.D.,
     Ebhardt H., Lowe T.M., Liang P., Riley M., Hood L., DasSarma S.;
RA
RT
     "Genome sequence of Halobacterium species NRC-1.":
```

```
DR
     EMBL; AE004971; AAG18659.1; -.
KW
     Complete proteome.
SO
     SEQUENCE
                32 AA; 3758 MW; 22D669246C97A817 CRC64;
  Query Match
                          11.8%; Score 4; DB 17; Length 32;
  Best Local Similarity
                          100.0%; Pred. No. 3.5e+03;
  Matches
            4; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           27 KLOD 30
               |||||
Db
           13 KLQD 16
RESULT 25
Q95SD4
ID
     Q95SD4
                 PRELIMINARY;
                                   PRT:
                                           33 AA.
AC
     Q95SD4;
DT
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
DT
     01-OCT-2002 (TrEMBLrel. 22, Last annotation update)
DE
     GM02640p.
GN
     BCDNA:GM02640.
     Drosophila melanogaster (Fruit fly).
OS
OC
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha;
OC
     Ephydroidea; Drosophilidae; Drosophila.
OX
     NCBI TaxID=7227;
RN
     [1]
RP
     SEQUENCE FROM N.A.
     Stapleton M., Brokstein P., Hong L., Agbayani A., Carlson J.,
RA
RA
     Champe M., Chavez C., Dorsett V., Farfan D., Frise E., George R.,
RA
     Gonzalez M., Guarin H., Li P., Liao G., Miranda A., Mungall C.J.,
RA
     Nunoo J., Pacleb J., Paragas V., Park S., Phouanenavong S., Wan K.,
RA
     Yu C., Lewis S.E., Rubin G.M., Celniker S.;
RL
     Submitted (OCT-2001) to the EMBL/GenBank/DDBJ databases.
     EMBL; AY060847; AAL28395.1; -.
DR
DR
     FlyBase; FBgn0047288; BcDNA:GM02640.
     SEQUENCE 33 AA; 3720 MW; 9C3FC1AEC9FBE4A7 CRC64;
SO
  Query Match
                          11.8%; Score 4; DB 5; Length 33;
  Best Local Similarity
                          100.0%; Pred. No. 3.6e+03;
  Matches
             4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0:
Qу
           26 KKLO 29
              \mathbf{H}
Db
           21 KKLQ 24
RESULT 26
O9PKX3
ID
     Q9PKX3
                 PRELIMINARY;
                                   PRT;
                                           33 AA.
AC
     Q9PKX3;
DT
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DE
     Hypothetical protein TC0337.
```

Proc. Natl. Acad. Sci. U.S.A. 97:12176-12181(2000).

RL

```
GN
     TC0337.
OS
     Chlamydia muridarum.
     Bacteria; Chlamydiae; Chlamydiales; Chlamydiaceae; Chlamydia.
OC
OX
     NCBI TaxID=83560;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=MoPn / Nigg;
     MEDLINE=20150255; PubMed=10684935;
RX
     Read T.D., Brunham R.C., Shen C., Gill S.R., Heidelberg J.F.,
RA
     White O., Hickey E.K., Peterson J., Utterback T., Berry K., Bass S.,
RA
RA
     Linher K., Weidman J., Khouri H., Craven B., Bowman C., Dodson R.,
     Gwinn M., Nelson W., DeBoy R., Kolonay J., McClarty G., Salzberg S.L.,
RA
RA
     Eisen J., Fraser C.M.;
     "Genome sequences of Chlamydia trachomatis MoPn and Chlamydia
RT
     pneumoniae AR39.";
RT
RL
     Nucleic Acids Res. 28:1397-1406(2000).
DR
     EMBL; AE002301; AAF39200.1; -.
DR
     TIGR; TC0337; -.
KW
     Hypothetical protein; Complete proteome.
SO
                33 AA; 4075 MW; 1E7C5AD9BA5371EC CRC64;
     SEQUENCE
  Query Match
                          11.8%; Score 4; DB 16; Length 33;
  Best Local Similarity
                          100.0%; Pred. No. 3.6e+03;
            4; Conservative 0; Mismatches 0;
                                                       Indels
                                                                  0; Gaps
                                                                              0;
           24 LRKK 27
Qу
              | | | |
Db
           26 LRKK 29
RESULT 27
09ZG81
ΙD
     Q9ZG81
                 PRELIMINARY;
                                   PRT;
                                           34 AA.
AC
     Q9ZG81;
DT
     01-MAY-1999 (TrEMBLrel. 10, Created)
DT
     01-MAY-1999 (TrEMBLrel. 10, Last sequence update)
DT
     01-MAY-1999 (TrEMBLrel. 10, Last annotation update)
DE
     ATP-dependent permease (Fragment).
OS
     Chlamydia trachomatis.
     Bacteria; Chlamydiae; Chlamydiales; Chlamydiaceae; Chlamydia.
OC
OX
     NCBI TaxID=813;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=L2 434B;
RA
     Wang L., Steenburg S.D., Zheng Y., Larsen S.H.;
RT
     "Gene identification of Chlamydia trachomatis by random DNA
RT
     sequencing.";
     Submitted (AUG-1998) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AF087260; AAD04038.1; -.
FT
     NON TER
                  1
                          1
FT
     NON TER
                  34
                         34
SQ
     SEQUENCE
                34 AA; 4186 MW; 3B38196393258A53 CRC64;
  Query Match
                          11.8%; Score 4; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.7e+03;
           4; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
                                                                             0;
```

```
Qу
            24 LRKK 27
               1111
Db
            25 LRKK 28
RESULT 28
Q8GFK2
ID
     Q8GFK2
                 PRELIMINARY;
                                    PRT;
                                            34 AA.
AC
     O8GFK2;
     01-MAR-2003 (TrEMBLrel. 23, Created)
DT
      01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DE
     ORF37.
OS
     Staphylococcus aureus.
OG
     Plasmid EDINA plasmid.
OC
     Bacteria; Firmicutes; Bacillales; Staphylococcus.
OX
     NCBI TaxID=1280;
RN
     [1]
RP
     SEOUENCE FROM N.A.
RC
     STRAIN=E-1:
RA
     Sugai M., Yamaguchi T., Hayashi T., Nakasone K., Takami H.;
     "Complete nucleotide sequence of Staphylococcus aureus E-1 EDINA
RT
RT
     plasmid.";
RL
     Submitted (JAN-2001) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AP003089; BAC54529.1; -.
     Plasmid.
KW
SO
     SEQUENCE
                34 AA; 4138 MW; 88FBD773858BC6EE CRC64:
  Query Match
                           11.8%; Score 4; DB 2; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.7e+03;
  Matches
             4; Conservative 0; Mismatches
                                                    0; Indels
                                                                   0; Gaps
                                                                               0;
Qу
           26 KKLQ 29
              1111
Db
            6 KKLQ 9
RESULT 29
08C4P4
ID
     Q8C4P4
                 PRELIMINARY;
                                   PRT;
                                            34 AA.
AC
     Q8C4P4;
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
ĎΤ
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DE
     Zinc finger homeodomain 4 (Fragment).
OS
     Mus musculus (Mouse).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
     Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus.
OC
OX
     NCBI TaxID=10090;
RN
     [1]
     SEQUENCE FROM N.A.
RΡ
     STRAIN=C57BL/6J; TISSUE=Head;
RC.
     MEDLINE=22354683; PubMed=12466851;
RX
     The FANTOM Consortium,
RA
     the RIKEN Genome Exploration Research Group Phase I & II Team;
RA
     "Analysis of the mouse transcriptome based on functional annotation of
RT
RT
     60,770 full-length cDNAs.":
```

```
DR
     EMBL; AK081561; BAC38260.1; -.
FT
     NON TER
                   1
SO
     SEOUENCE
                34 AA; 3755 MW; EF41DCAF348467B0 CRC64;
  Query Match
                          11.8%; Score 4; DB 11; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 3.7e+03;
  Matches
             4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           27 KLQD 30
              Db
            2 KLQD 5
RESULT 30
Q90ZJ4
ID
     Q90ZJ4
                 PRELIMINARY;
                                   PRT;
                                           34 AA.
AC
     Q90ZJ4;
DT
     01-DEC-2001 (TrEMBLrel. 19, Created)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last sequence update)
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
     Platelet-derived growth factor A chain long form (Fragment).
DE
GN
     PDGF-A.
OS
     Gallus gallus (Chicken).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
OC
     Gallus.
OX
     NCBI TaxID=9031;
RN
     [1]
     SEQUENCE FROM N.A.
RP
RX
     MEDLINE=21363439; PubMed=11470524;
RA
     Horiuchi H., Inoue T., Furusawa S., Matsuda H.;
RT
     "Characterization and expression of three forms of cDNA encoding
RT
     chicken platelet-derived growth factor-A chain.";
RL
     Gene 272:181-190(2001).
DR
     EMBL; AB031024; BAB62544.1; -.
FT
     NON TER
SQ
     SEQUENCE
                34 AA; 3983 MW; FEF02F8A45B27DA5 CRC64;
  Query Match
                          11.8%; Score 4; DB 13; Length 34;
  Best Local Similarity 100.0%; Pred. No. 3.7e+03;
  Matches
            4; Conservative 0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           25 RKKL 28
              28 RKKL 31
RESULT 31
Q98FK5
ID
     Q98FK5
                 PRELIMINARY;
                                   PRT;
                                          34 AA.
AC
     Q98FK5;
DT
     01-OCT-2001 (TrEMBLrel. 18, Created)
     01-OCT-2001 (TrEMBLrel. 18, Last sequence update)
DT
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
     Hypothetical protein msr3733.
DΕ
GN
    MSR3733.
```

RL

Nature 420:563-573(2002).

```
OS
     Rhizobium loti (Mesorhizobium loti).
OC
     Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
OC
     Phyllobacteriaceae; Mesorhizobium.
OX
     NCBI TaxID=381;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=MAFF303099;
RX
     MEDLINE=21082930; PubMed=11214968;
RA
     Kaneko T., Nakamura Y., Sato S., Asamizu E., Kato T., Sasamoto S.,
RA
     Watanabe A., Idesawa K., Ishikawa A., Kawashima K., Kimura T.,
RA
     Kishida Y., Kiyokawa C., Kohara M., Matsumoto M., Matsuno A.,
     Mochizuki Y., Nakayama S., Nakazaki N., Shimpo S., Sugimoto M.,
RA
     Takeuchi C., Yamada M., Tabata S.;
RA
     "Complete genome structure of the nitrogen-fixing symbiotic bacterium
RT
     Mesorhizobium loti.";
RT
     DNA Res. 7:331-338(2000).
RL
DR
     EMBL; AP003002; BAB50562.1; -.
KW
     Hypothetical protein; Complete proteome.
                34 AA; 3804 MW; D6AAA82ECB590413 CRC64;
SO
     SEOUENCE
  Query Match
                          11.8%; Score 4; DB 16; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 3.7e+03;
  Matches
             4; Conservative
                               0; Mismatches 0; Indels
                                                                  0; Gaps
           27 KLQD 30
Qу
              1111
Db
           28 KLQD 31
RESULT 32
Q8G2Q2
ID
     Q8G2Q2
                 PRELIMINARY;
                                    PRT;
                                            34 AA.
AC
     Q8G2Q2;
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DT
DE
     Hypothetical protein.
     BR0266.
GN
     Brucella suis.
OS
     Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales;
OC
OC
     Brucellaceae; Brucella.
OX
     NCBI_TaxID=29461;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=1330 / Biovar 1;
RX
     MEDLINE=22247741; PubMed=12271122;
     Paulsen I.T., Seshadri R., Nelson K.E., Eisen J.A., Heidelberg J.F.,
RA
RA
     Read T.D., Dodson R.J., Umayam L., Brinkac L.M., Beanan M.J.,
     Daugherty S.C., Deboy R.T., Durkin A.S., Kolonay J.F., Madupu R.,
RA
     Nelson W.C., Ayodeji B., Kraul M., Shetty J., Malek J., Van Aken S.E.,
RA
     Riedmuller S., Tettelin H., Gill S.R., White O., Salzberg S.L.,
RA
     Hoover D.L., Lindler L.E., Halling S.M., Boyle S.M., Fraser C.M.;
RA
     "The Brucella suis genome reveals fundamental similarities between
RT
RT
     animal and plant pathogens and symbionts.";
RL
     Proc. Natl. Acad. Sci. U.S.A. 99:13148-13153(2002).
DR
     EMBL; AE014339; AAN29215.1; -.
DR
     TIGR; BR0266; -.
```

```
Hypothetical protein; Complete proteome.
     SEQUENCE 34 AA; 3781 MW; 76E820326E6CA66E CRC64;
SO
  Query Match
                          11.8%; Score 4; DB 16; Length 34;
  Best Local Similarity
                          100.0%; Pred. No. 3.7e+03;
            4; Conservative 0; Mismatches 0; Indels
  Matches
                                                                 0; Gaps
                                                                             0;
           11 LGKH 14
Qу
              Db
           10 LGKH 13
RESULT 33
Q15421
ID
     Q15421
                 PRELIMINARY;
                                   PRT;
                                           35 AA.
AC
     Q15421;
DT
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
DT
     01-NOV-1998 (TrEMBLrel. 08, Last annotation update)
DE
     Simian sarcoma associated virus (SSAV)-related pol region DNA
DE
     (Fragment).
OS
     Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OX
     NCBI TaxID=9606;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
     MEDLINE=87071681; PubMed=2431542;
RX
RA
     Leib-Mosch C., Brack R., Werner T., Erfle V., Hehlmann R.;
     "Isolation of an SSAV-related endogenous sequence from Human DNA.";
RT
     Virology 155:666-677(1986).
RL
DR
     EMBL; M14911; AAA36592.1; -.
FT
     NON TER
                   1
                         1
FT
     NON TER
                  35
                         35
SO
     SEQUENCE
                35 AA; 3742 MW; 2F70B02EE0BC86DF CRC64;
  Query Match
                          11.8%; Score 4; DB 4; Length 35;
  Best Local Similarity 100.0%; Pred. No. 3.8e+03;
  Matches
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
           28 LQDV 31
Qу
              1111
Db
            6 LODV 9
RESULT 34
Q8V6J8
ID
     Q8V6J8
                 PRELIMINARY;
                                           35 AA.
                                   PRT;
AC
     Q8V6J8;
     01-MAR-2002 (TrEMBLrel. 20, Created)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last sequence update)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
DT
DE
     Hypothetical 4.1 kDa protein.
OS
     Halovirus HF2.
OC
     Viruses; dsDNA viruses, no RNA stage; Caudovirales; Myoviridae.
OX
     NCBI TaxID=33771;
RN
     [1]
```

KW

```
RΡ
     SEQUENCE FROM N.A.
RA
     Tang S.-L., Fisher C., Ngui K., Nuttall S.D., Dyall-Smith M.L.;
     "Sequence and transcription of halovirus HF2.";
RT
RL
     Submitted (JAN-2000) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AF222060; AAL55025.1; -.
KW
     Hypothetical protein.
SQ
     SEQUENCE
               35 AA; 4115 MW; 2652C319622E9CE4 CRC64;
                          11.8%; Score 4; DB 12; Length 35;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 3.8e+03;
            4; Conservative
                               0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0;
Qy
            1 SVSE 4
              | | | | |
Db
           10 SVSE 13
RESULT 35
Q9KQG4
ID
     Q9KQG4
                 PRELIMINARY;
                                   PRT:
                                           35 AA.
AC
     Q9KQG4;
DT
     01-OCT-2000 (TrEMBLrel. 15, Created)
DT
     01-OCT-2000 (TrEMBLrel. 15, Last sequence update)
DT
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DE
     Hypothetical protein VC2034.
GN
     VC2034.
     Vibrio cholerae.
OS
     Bacteria; Proteobacteria; Gammaproteobacteria; Vibrionales;
OC
OC
     Vibrionaceae; Vibrio.
OX
     NCBI TaxID=666;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=El Tor N16961 / Serotype O1;
RX
     MEDLINE=20406833; PubMed=10952301;
     Heidelberg J.F., Eisen J.A., Nelson W.C., Clayton R.A., Gwinn M.L.,
RA
     Dodson R.J., Haft D.H., Hickey E.K., Peterson J.D., Umayam L.A.,
RA
RA
     Gill S.R., Nelson K.E., Read T.D., Tettelin H., Richardson D.,
RA
     Ermolaeva M.D., Vamathevan J., Bass S., Qin H., Dragoi I., Sellers P.,
     McDonald L., Utterback T., Fleischmann R.D., Nierman W.C., White O.,
RΑ
     Salzberg S.L., Smith H.O., Colwell R.R., Mekalanos J.J., Venter J.C.,
RA
RA
     Fraser C.M.;
RT
     "DNA sequence of both chromosomes of the cholera pathogen Vibrio
RT
     cholerae.";
RL
     Nature 406:477-483(2000).
DR
     EMBL; AE004278; AAF95182.1; -.
     TIGR; VC2034; -.
DR
KW
     Hypothetical protein; Complete proteome.
SO
     SEQUENCE 35 AA; 4181 MW; D185B6339A711D54 CRC64;
  Query Match
                          11.8%; Score 4; DB 16; Length 35;
  Best Local Similarity
                         100.0%; Pred. No. 3.8e+03;
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
Qу
           26 KKLQ 29
              Db
           24 KKLO 27
```

```
RESULT 36
Q8F102
ID
     Q8F102
                 PRELIMINARY;
                                    PRT;
                                           35 AA.
AC
     Q8F102;
DT
     01-MAR-2003 (TrEMBLrel. 23, Created)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last sequence update)
DT
     01-MAR-2003 (TrEMBLrel. 23, Last annotation update)
DΕ
     Hypothetical protein.
GN
     LA3339.
OS
     Leptospira interrogans.
OC
     Bacteria; Spirochaetes; Spirochaetales; Leptospiraceae; Leptospira.
OX
     NCBI TaxID=173;
RN
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=56601 / Serogroup Icterohaemorrhagiae / Serovar lai;
RA
RL
     Submitted (MAR-2002) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AE011494; AAN50536.1; -.
KW
     Hypothetical protein; Complete proteome.
                35 AA; 4253 MW; 0DDFEDFFB32E980B CRC64;
SO
     SEQUENCE
  Query Match
                          11.8%; Score 4; DB 16; Length 35;
  Best Local Similarity
                          100.0%; Pred. No. 3.8e+03;
  Matches
            4; Conservative
                                0; Mismatches 0;
                                                       Indels
                                                                  0; Gaps
                                                                              0;
           14 HLNS 17
Qу
              Db
            3 HLNS 6
RESULT 37
Q53920
ID
     Q53920
                 PRELIMINARY;
                                   PRT;
                                           36 AA.
AC
     Q53920;
DT
     01-NOV-1996 (TrEMBLrel. 01, Created)
DT
     01-NOV-1996 (TrEMBLrel. 01, Last sequence update)
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
DT
DE
     OrfA protein (Fragment).
GN
     ORFA.
OS
     Streptomyces chrysomallus.
OC
     Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
OC
     Streptomycineae; Streptomycetaceae; Streptomyces.
OX
     NCBI TaxID=1899;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=94341259; PubMed=8062824;
RA
     Pahl A., Keller U.;
     "Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting
RT
     of two FK506-binding domains with its gene transcriptionally coupled
RT
     to the FKBP-12 gene.";
RT
RL
     EMBO J. 13:3472-3480(1994).
DR
     EMBL; Z34523; CAA84281.1; -.
DR
     InterPro; IPR004347; DUF245.
DR
     Pfam; PF03136; DUF245; 1.
FT
    NON TER
                   1
                          1
     SEQUENCE
                36 AA; 4121 MW; EBD470AAF99A728E CRC64;
SO
```

```
Query Match
                          11.8%; Score 4; DB 2; Length 36;
  Best Local Similarity 100.0%; Pred. No. 3.9e+03;
            4; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                             0;
           19 ERVE 22
Qу
              Db
           27 ERVE 30
RESULT 38
068941
ID
     068941
                 PRELIMINARY;
                                   PRT;
                                           36 AA.
AC
     068941;
     01-AUG-1998 (TrEMBLrel. 07, Created)
DT
DT
     01-AUG-1998 (TrEMBLrel. 07, Last sequence update)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last annotation update)
DE
     Dinitrogenase 3 beta subunit (Fragment).
GN
     ANFK.
OS
     Rhodospirillum rubrum.
     Bacteria; Proteobacteria; Alphaproteobacteria; Rhodospirillales;
OC
OC
     Rhodospirillaceae; Rhodospirillum.
OX
     NCBI TaxID=1085;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
     Loveless T.M., Bishop P.E.;
RA
RT
     "Identification of Genes Unique to Mo-Independent Nitrogenase Systems
RT
     in Diverse Diazotrophs.";
     Submitted (APR-1998) to the EMBL/GenBank/DDBJ databases.
RL
DR
     EMBL; AF058778; AAC14327.1; -.
DR
     InterPro; IPR000510; Oxred nitrognse1.
DR
     Pfam; PF00148; oxidored nitro; 1.
FΤ
     NON TER
                  36
                         36
SO
     SEQUENCE
                36 AA; 3957 MW; D94F46BCFD437D97 CRC64;
  Query Match
                          11.8%; Score 4; DB 2; Length 36;
  Best Local Similarity
                          100.0%; Pred. No. 3.9e+03;
  Matches
           4; Conservative 0; Mismatches
                                                   0; Indels
                                                                 0; Gaps
                                                                             0;
Qу
           24 LRKK 27
              Db
            5 LRKK 8
RESULT 39
8WXW8
ID
     8WXW80
                 PRELIMINARY;
                                   PRT;
                                           36 AA.
AC
     Q8WXW8;
     01-MAR-2002 (TrEMBLrel. 20, Created)
DT
     01-MAR-2002 (TrEMBLrel. 20, Last sequence update)
DT
DT
     01-JUN-2002 (TrEMBLrel. 21, Last annotation update)
     Urea transporter JK glycoprotein (Fragment).
DE
GN
     JK.
OS
    Homo sapiens (Human).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
OX
    NCBI TaxID=9606;
```

```
RN
     [1]
RP
     SEQUENCE FROM N.A.
     Olsson M.L., Irshaid N.M., Eicher N.I., Poole J., Hustinx H.;
RA
RT
     "Molecular Basis of the Jk(a-b-) Phenotype in Non-Finnish European
RT
     Pedigrees.";
     Br. J. Haematol. 0:0-0(2001).
RL
     EMBL; AF328890; AAL37474.1; -.
DR
     InterPro; IPR004937; Urea transporter.
DR
DR
     Pfam; PF03253; UT; 1.
FT
     NON TER
SO
     SEOUENCE
                36 AA; 3989 MW; C3A6A964C2F41007 CRC64;
  Query Match
                          11.8%; Score 4; DB 4; Length 36;
  Best Local Similarity
                          100.0%; Pred. No. 3.9e+03;
  Matches
             4; Conservative 0; Mismatches 0; Indels
                                                                  0;
                                                                      Gaps
                                                                              0;
           15 LNSM 18
Qу
              1111
            7 LNSM 10
RESULT 40
Q9SJ63
ID
     Q9SJ63
                 PRELIMINARY;
                                   PRT;
                                            36 AA.
AC
     Q9SJ63;
DT
     01-MAY-2000 (TrEMBLrel. 13, Created)
DT
     01-MAY-2000 (TrEMBLrel. 13, Last sequence update)
     01-DEC-2001 (TrEMBLrel. 19, Last annotation update)
DT
DE
     At2q35870 protein.
GN
     AT2G35870.
OS
     Arabidopsis thaliana (Mouse-ear cress).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Rosidae;
     eurosids II; Brassicales; Brassicaceae; Arabidopsis.
OC
OX
     NCBI TaxID=3702;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=cv. Columbia;
     MEDLINE=20083487; PubMed=10617197;
RX
     Lin X., Kaul S., Rounsley S.D., Shea T.P., Benito M.-I., Town C.D.,
RA
RA
     Fujii C.Y., Mason T.M., Bowman C.L., Barnstead M.E., Feldblyum T.V.,
RA
     Buell C.R., Ketchum K.A., Lee J.J., Ronning C.M., Koo H., Moffat K.S.,
RA
     Cronin L.A., Shen M., VanAken S.E., Umayam L., Tallon L.J., Gill J.E.,
RA
     Adams M.D., Carrera A.J., Creasy T.H., Goodman H.M., Somerville C.R.,
     Copenhaver G.P., Preuss D., Nierman W.C., White O., Eisen J.A.,
RA
     Salzberg S.L., Fraser C.M., Venter J.C.;
RA
RT
     "Sequence and analysis of chromosome 2 of the plant Arabidopsis
RT
     thaliana.";
RL
     Nature 402:761-768(1999).
RN
RP
     SEQUENCE FROM N.A.
RC
     STRAIN=cv. Columbia;
RA
     Lin X.;
RL
     Submitted (MAR-2000) to the EMBL/GenBank/DDBJ databases.
DR
     EMBL; AC007017; AAD21470.1; -.
     SEQUENCE 36 AA; 4358 MW; DC966779BBD6B834 CRC64;
SO
```

Search completed: January 14, 2004, 10:41:46 Job time: 50.4206 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: January 14, 2004, 10:28:19; Search time 5.61371 Seconds

(without alignments)

284.822 Million cell updates/sec

Title:

US-09-843-221A-161

Perfect score:

34

Sequence:

1 SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF 34

Scoring table:

OLIGO

Gapop 60.0 , Gapext 60.0

Searched:

127863 seqs, 47026705 residues

Word size :

ջ

Total number of hits satisfying chosen parameters:

1319

Minimum DB seq length: 28 Maximum DB seq length: 40

Post-processing: Listing first 1000 summaries

Database :

SwissProt 41:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	Query Match	Length	DB	ID	Description
1	5	14.7	33	1	FABI_RHASA	P81175 rhamdia sap
2	$\frac{4}{4}$	11.8	29	1	DMD_RAT	P11530 rattus norv
		11.8	39	1	PSBY_SYNY3	P73676 synechocyst
4	4	11.8	39	1	SR1C_SARPE	P08377 sarcophaga
5	3	8.8	28	1	CH60_MYCSM	P80673 mycobacteri
6	3	8.8	28	1	COXB_SOLTU	P80499 solanum tub
7	3	8.8	28	1	GUN SCHCO	P81190 schizophyll
8	3	8.8	28	1	PA23_TRIST	P82894 trimeresuru
9	3	8.8	28	1	PA2C PSEPO	P20260 pseudechis
10	3	8.8	28	1	VI03_VACCP	Q00334 vaccinia vi
11	3	8.8	28	1	VIP ALLMI	P48142 alligator m
12	3	8.8	28	1	VIP RANRI	P81016 rana ridibu
13	3	8.8	28	1	VIP SHEEP	P04565 ovis aries
14	3	8.8	29	1	GALA_ALLMI	P47215 alligator m
15	3	8.8	29	1	GALA AMICA	P47214 amia calva
16	3	8.8	29	1	GALA CHICK	P30802 gallus gall
17	3	8.8	29	1	GALA_ONCMY	P47213 oncorhynchu

18	3	8.8	29	1	GALA RANRI	P47216	rana ridibu
19	3	8.8	29	1	GALA SHEEP		ovis aries
20	3	8.8	29	1	GLUC CHIBR		chinchilla
21	. 3	8.8	29	1	IPYR DESVH		desulfovibr
22	3	8.8	29	1	NUO1 SOLTU		solanum tub
23	3	8.8	29	1	P2SM LOXIN		loxosceles
24	3	8.8	29	1	PCG4 PACGO		pachycondyl
25	3	8.8	29	1	RS7 METTE		methanosarc
26	3	8.8	29	1	SODC OLEEU		olea europa
27	3	8.8	29	1	TL16 SPIOL		spinacia ol
28	3	8.8	30	1	DMS3 PHYSA		phyllomedus
29	3	8.8	30	1	FTN BACFR		bacteroides
30	3	8.8	30	1	GLUM ANGAN		anguilla an
31	3	8.8	30	1	OTCC AERPU		aeromonas p
32	3	8.8	30	1	PCG2_PACGO		pachycondyl
33	3	8.8	30	1	PCG3 PACGO		pachycondyl
34	3	8.8	30	1	PSAM PORPU		
35	3	8.8	30	1	TX2 THRPR		porphyra pu
36	3	8.8	30	1	UP61 UPEIN		thrixopelma
37	3	8.8	30	1	UP62 UPEIN		uperoleia i
38	3	8.8	30	1	VAA2_EQUAR		uperoleia i
39	3	8.8	30	1	Y523 BORBU		equisetum a
40	3	8.8	31	1	CEC1 PIG		borrelia bu
41	3	8.8	31	1	CXMA CONMR		sus scrofa
42	3	8.8	31	1			conus marmo
43	3	8.8	31	1	DEJP_DROME		drosophila
44	3	8.8	31	1	DIUX_DIPPU		diploptera
45	3	8.8	31		H13_WHEAT		triticum ae
46	3	8.8	31	1	LPL_BUCRP		buchnera ap
47	3	8.8		1	MALK_PHOLU		photorhabdu
48	3		31	1	NAP4_HUMAN		homo sapien
49	3	8.8 8.8	31	1	PETL_LOTJA		lotus japon
50	3	8.8	31	1	PETL_MARPO		marchantia
51	3		31	1	PETL_MESVI		mesostigma
52	3 3	8.8	31	1	PETL_NEPOL		nephroselmi
53	3	8.8	31	1	PSAM_EUGGR		euglena gra
54	3	8.8 8.8	31 31	1 1	SARL_MOUSE		mus musculu
				_	SARL_RABIT		oryctolagus
55 56	3 3	8.8	31	1	SCK5_ANDMA		androctonus
57	3	8.8	31	1	SCKL_LEIQH		leiurus qui
58	3	8.8	31	1	Y822_BORBU		borrelia bu
59	3	8.8	32	1	ADHR_DROYA		drosophila
60	3	8.8	32	1	CAL2_ONCKE		oncorhynchu
61		8.8	32	1	CAL3_ONCKI		oncorhynchu
62	3	8.8	32	1	CAL_ANGJA		anguilla ja
63	3	8.8	32	1	COA2_BPIF1		bacteriopha
	3	8.8	32	1	CY31_DESAC		desulfuromo
64	3	8.8	32	1	FF21_SALEN		salmonella
65	3	8.8	32	1	IAPP_PIG		sus scrofa
66	3	8.8	32	1	ITR3_CUCPE		cucurbita p
67	3	8.8	32	1	ITR4_CUCMA		cucurbita m
68 69	3	8.8	32	1	LEC_DOLAX		dolichos ax
69 70	3	8.8	32	1	MIFH_TRITR		trichuris t
70	3	8.8	32	1	P1SM_LOXIN		loxosceles
71	3	8.8	32	1	PETM_GUITH		guillardia
72	3	8.8	32	1	PHSS_DESBN		desulfovibr
73	3	8.8	32	1	PSAM_MARPO		marchantia
74	3	8.8	32	1	PSBQ_PEA	P19589	pisum sativ

75		3	8.8	32	1	PSBT ODOSI	P49516 odontella s
76		3	8.8	32	1	PSBZ_EUGST	Q8sl89 euglena ste
77		3	8.8	32		_	
					1	PSBZ_EUGVI	Q8sl87 euglena vir
78		3	8.8	32	1	Y160_BPT4	P39247 bacteriopha
79		3	8.8	32	1	YCPG_MASLA	P29735 mastigoclad
80		3	8.8	33	1	GGN1 RANRU	P80395 rana rugosa
81		3	8.8	33	1	GLU2 ORENI	P81027 oreochromis
82		3	8.8	33		_	
					1	RUGB_RANRU	P80955 rana rugosa
83		3	8.8	33	1	T1F_PARTE	Q27172 paramecium
84		3	8.8	33	1	Y50A MYCTU	Q9cb56 mycobacteri
85		3	8.8	33	1	YC12 EUGGR	P31559 euglena gra
86		3	8.8	34	1	DMS1 PHYSA	P24302 phyllomedus
87		3				_	
			8.8	34	1	DMS2_PHYSA	P80278 phyllomedus
88		3	8.8	34	1	GAST_CAPHI	P04564 capra hircu
89		3	8.8	34	1	GUN1 SCLSC	P21833 sclerotinia
90		3	8.8	34	1	TX1 SCOGR	P56855 scodra gris
91		3	8.8	35	1	CECA AEDAL	
92		3				_	P81417 aedes albop
			8.8	35	1	COPA_CANFA	P40765 canis famil
93		3	8.8	35	1	CPI2_PIG	P80736 sus scrofa
94		3	8.8	35	1	GP58 BPSP1	048412 bacteriopha
95		3	8.8	35	1	HCYA CHEDE	P83173 cherax dest
96		3	8.8	35	1	LEC1 CYTSE	
97		3				_	P22970 cytisus ses
			8.8	35	1	LEC3_ULEEU	P23032 ulex europe
98		3	8.8	35	1	NP30_STAAU	P21222 staphylococ
99	,	3	8.8	35	1	PBP ORGPS	P34178 orgyia pseu
100		3	8.8	35	1	PETG CYACA	Q9tlq9 cyanidium c
101		3	8.8	35	1	PSBM SYNY3	
102		3				_	P72701 synechocyst
			8.8	35	1	RL15_SYNP7	P31160 synechococc
103		3	8.8	35	1	SCKK_TITSE	P56219 tityus serr
104		3	8.8	35	1	TX1 GRASP	P56852 grammostola
105		3	8.8	35	1	TX1 THRPR	P83480 thrixopelma
106		3	8.8	35	1	TX2 GRASP	
107		3	8.8				P56853 grammostola
				35	1	VORB_METTM	P80908 methanobact
108		3	8.8	35	1	Y210_HAEIN	P43964 haemophilus
109		3	8.8	35	1	YRKM_BACSU	P54440 bacillus su
110		3	8.8	36	1	ELH THETS	P80594 theromyzon
111		3	8.8	36	1	NPF ARTTR	P41334 artioposthi
112		3	8.8	36	1	OSTS_YEAST	_
113							Q99380 saccharomyc
		3	8.8	36		PETM_SYNY3	P74810 synechocyst
114		3	8.8	36	1	R18A_BOVIN	P82919 bos taurus
115	3	3	8.8	36	1	RET4 CHICK	P30370 gallus gall
116	3	3	8.8	36	1	RL6 HALCU	P05968 halobacteri
117	3	3	8.8	36	1	Y260 BACHD	Q9kg53 bacillus ha
118	3		8.8			_	
				36	1	Y609_ARCFU	O29646 archaeoglob
119	3		8.8	37	1	DIU1_TENMO	P56618 tenebrio mo
120	3		8.8	37	1	IAPP_CRIGR	P19890 cricetulus
121	3	3	8.8	37	1	LCNM LACLA	P83002 lactococcus
122	3	3	8.8	37	1	OGT1 RABIT	P81436 oryctolagus
123	. 3		8.8	37	1	_	- - -
						PIP7_BOVIN	P21671 bos taurus
124	3		8.8	37	1	RL36_PASMU	P57942 pasteurella
125	3		8.8	37	1	SCKI_MESTA	P24663 mesobuthus
126	3		8.8	37	1	Y63_BPT3	P20328 bacteriopha
127	3	3	8.8	38	1	CPRP_CANPG	P81033 cancer pagu
128	3		8.8	38	1	DNP DENAN	P28374 dendroaspis
129	3		8.8	38	1		
						NLT1_VITSX	P80275 vitis sp. (
130	3		8.8	38	1	NLT2_VITSX	P33556 vitis sp. (
131	3	3	8.8	38	1	OBP2_HYSCR	P81648 hystrix cri

132	3	8.8	38	1	PYSA_METBA	P80521	methanosarc
133	3	8.8	38	1	RL36_ECOLI	P21194	escherichia
134	3	8.8	. 38	1	RL36 PSEAE		pseudomonas
135	3	8.8	38	1	RL36 THEMA		thermotoga
136	3	8.8	38	1	RL36 YERPE		yersinia pe
137	3	8.8	38	1	RR12 PINCO		pinus conto
138	3	8.8	38	1	YJ39 ARCFU		archaeoglob
139	3	8.8	39	1	CEC GLOMR		glossina mo
140	3	8.8	39	1	COLI BALPH		balaenopter
141	3	8.8	39	1	COLI RABIT		oryctolagus
142	3	8.8	39	1	COLI SQUAC		squalus aca
143	3	8.8	39	1	COLI STRCA		struthio ca
144	3	8.8	39	1	EXE3 HELHO		heloderma h
145	3	8.8	39	1	FUC3 RAT		rattus norv
146	3	8.8	39	1	GVPC SPICC		spirulina s
147	3	8.8	39	1	H2A BUFBG		bufo bufo g
148	3	8.8	39	1	LCGA LACLA		lactococcus
149	3	8.8	39	1	PA2 AGKBI		agkistrodon
150	3	8.8	39	1	PSBX PORPU		porphyra pu
151	3	8.8	40	1	ALB1 TRASC		trachemys s
152	3	8.8	40	1	HPT RABIT		
153	3	8.8	40	1	HS9A RABIT		oryctolagus
154	3	8.8	40	1	KAD STACA		oryctolagus
155	3	8.8	40	1	PHRK BACSU		staphylococ
156	3	8.8	40	1	PRE BACLI		bacillus su
157	3	8.8	40	1	_		bacillus li
158	3	8.8	40	1	RK33_PEA	P51416	pisum sativ
159	3	8.8	40	1	RRPO_LSV		lily sympto
160	3	8.8			SAUV_PHYSA		phyllomedus
161	3	8.8	40	1	SR1D_SARPE		sarcophaga
162	3	8.8	40	1	UC11_MAIZE		zea mays (m
163	3	8.8	40	1	VIT_MELGA		meleagris g
164	2	5.9	40	1	YDRB_STRPE		streptomyce
165	2		28	1	ACON_CANAL		candida alb
166	2	5.9	28	1	APC1_RABIT		oryctolagus
167	2	5.9	28	1	ARYC_NOCGL		nocardia gl
		5.9	28	1	C1QC_RAT		rattus norv
168	2	5.9	28	1	ETX2_BACCE		bacillus ce
169	2	5.9	28	1	FIBA_CANFA		canis famil
170	2	5.9	28	1	FLA1_TREPH		treponema p
171	2	5.9	28	1	GDO_TRIMO		triticum mo
172	2	5.9	28	1	GRP_ALLMI		alligator m
173	2	5.9	28	1	GTS5_CHICK		gallus gall
174	2	5.9	28	1	GVPC_OSCAG		oscillatori
175	2	5.9	28	1	HORC_HORSP		hordeum spo
176	2	5.9	28	1	ICPP_VIPLE		vipera lebe
177	2	5.9	28	1	IEL1_MOMCH		momordica c
178	2	5.9	28	1	IORB_METTM	P80911	methanobact
179	2,	5.9	28	1	ITR2_MOMCH	P10295	momordica c
180	2	5.9	28	1	ITR3_LUFCY	P35628	luffa cylin
181	2	5.9	28	1	ITRA_MOMCH		momordica c
182	2	5.9	28	1	LECA_IRIHO		iris hollan
183	2	5.9	28	1	LPFS_ECOLI		escherichia
184	2	5.9	28	1	LPL_ECOLI		escherichia
185	2	5.9	28	1	LPL_SALTI		salmonella
186	2	5.9	28	1	LPL_SALTY		salmonella
187	2	5.9	28	1	LPW_SERMA		serratia ma
188	2	5.9	28	1	MAAI_RAT		rattus norv
					- .		

189	2	5.9	28	1	MCDP_MEGPE	P04567	megabombus
190	2	5.9	28	1	NLT2 WHEAT	P39085	triticum ae
191	2	5.9	28	1	NXL1_BOUAN	P34074	boulengerin
192	2	5.9	28	1	OBP1 HYSCR		hystrix cri
193	2	5.9	28	1	OMPA YERPS		yersinia ps
194	2	5.9	28	1	ORND PLAOR		placobdella
195	2	5.9	28	1	OST1 CHICK		gallus gall
196	2	5.9	28	1	PA22 MICNI		micrurus ni
197	2	5.9	28	1	PA23 MICNI		micrurus ni
198	2	5.9	28	1	PETL CYAPA		cyanophora
199	2	5.9	28	1	PHR METTM		methanobact
200	2	5.9	28	1	PHYB ASPFI		aspergillus
201	2	5.9	28	1	PP71 HCMVT		human cytom
202	2	5.9	28	1	PPOX BOVIN		bos taurus
203	2	5.9	28	1	RL5 HALCU		halobacteri
204	2	5.9	28	1	RS19 PHYS1		
205	2	5.9	28	1	SCX2 BUTSI		phytoplasma buthus sind
206	2	5.9	28	1			
207	2	5.9	28	1	SLP1_LEIQH		leiurus qui
208	2	5.9	28		SMS2_ORENI		oreochromis
209	2	5.9		1	TXO2_AGEAP		agelenopsis
210	2		28	1	VG9_SPV4		spiroplasma
210	2	5.9	28	1	VIP_DIDMA		didelphis m
		5.9	28	1	VIP_SCYCA		scyliorhinu
212	2	5.9	28	1	Y073_ARCFU		archaeoglob
213	2	5.9	28	1	Y16P_BPT4		bacteriopha
214	2	5.9	28	1	YA79_ARCFU		archaeoglob
215	2	5.9	29	1	12AH_CLOS4		clostridium
216	2	5.9	29	1	AL21_HORSE	P81216	equus cabal
217	2	5.9	29	1	AMEL_RABIT		oryctolagus
218	2	5.9	29	1	ATP9_PICPJ		pichia pijp
219	2	5.9	29	1	ATPA_BRYMA	P26965	bryopsis ma
220	2	5.9	29	1	BR2D_RANES	P40840	rana escule
221	2	5.9	29	1	BREE_RANES	P40841	rana escule
222	2	5.9	29	1	CERB_CERCA	P36191	ceratitis c
223	2	5.9	29	1	COA1_BPI22	P15413	bacteriopha
224	2	5.9	29	1	COXJ_CANFA		canis famil
225	2	5.9	29	1	COXK SHEEP		ovis aries
226	2	5.9	29	1	CU36 LOCMI		locusta mig
227	2	5.9	29	1	CXD6 CONGL		conus glori
228	2	5.9	29	1	CXOC_CONMA		conus magus
229	2	5.9	29	1	CXOD CONMA		conus magus
230	2	5.9	29	1	CXST CONGE		conus geogr
231	2	5.9	29	1	DMS5 PHYSA		phyllomedus
232	2	5.9	29	1	GLUC ANAPL		anas platyr
233	2	5.9	29	1	GLUC CALMI		callorhynch
234	2	5.9	29	1	GLUC DIDMA		didelphis m
235	2	5.9	29	1	GLUC LAMFL		lampetra fl
236	2	5.9	29	1	GLUC PLAFE		platichthys
237	2	5.9	29	1	GLUC RABIT		
238	2	5.9	29	1	GLUC TORMA		oryctolagus
239	2	5.9	29	1	H2B2 ECHES		torpedo mar
240	2	5.9	29	1	_		echinus esc
241	2	5.9	29 29	1	HOXY_RHOOP		rhodococcus
242	2				HRJ_BOTJA		bothrops ja
242	2	5.9	29	1	HS98_NEUCR		neurospora
243	2	5.9	29	1	ITH3_BOVIN		bos taurus
244	2	5.9	29	1	ITR1_CUCMA		cucurbita m
243	4	5.9	29	1	ITR1_LUFCY	P25849	luffa cylin

246	2	5.9	29	1	ITR1_MOMRE	P17680 momordica r
247	2	5.9	29	1	ITR2_BRYDI	P11968 bryonia dio
248	2	5.9	29	1	ITR3_CYCPE	P83394 cyclanthera
249	2	5.9	29	1	ITR4_CYCPE	P83395 cyclanthera
250	2	5.9	29	1	ITR5_CYCPE	P83396 cyclanthera
251	2	5.9	29	1	KDPF ECOLI	P36937 escherichia
252	2	5.9	29	1	MDH_BURPS	P80536 burkholderi
253	2	5.9	29	1	MULR ECHML	P81798 echis multi
254	2	5.9	29	1	PETN ANASP	Q913p6 anabaena sp
255	2	5.9	29	1	PETN ARATH	P12178 arabidopsis
256	2	5.9	29	1	PETN CHAGL	Q8ma13 chaetosphae
257	2	5.9	29	1	PETN CYAPA	P48258 cyanophora
258	2	5.9	29	1	PETN GUITH	078498 guillardia
259	2	5.9	29	1	PETN MAIZE	Q33302 zea mays (m
260	2	5.9	29	1	PETN MARPO	P12177 marchantia
261	2	5.9	29	1	PETN MESVI	Q9mus4 mesostigma
262	2	5.9	29	1	PETN ODOSI	P49527 odontella s
263	2	5.9	29	1	PETN PINTH	P41611 pinus thunb
264	2	5.9	29	1	PETN PORPU	P51276 porphyra pu
265	2	5.9	29	1	PETN PSINU	Q8wi23 psilotum nu
266	2	5.9	29	1	PETN_SKECO	096807 skeletonema
267	2	5.9	29	1	PETN SYNEL	Q8dkn2 synechococc
268	2	5.9	29	1	PETN SYNY3	P72717 synechocyst
269	2	5.9	29	1	PK4 DICDI	_ _
270	2	5.9	29	1	PRO1 DACGL	P34103 dictyosteli
271	2	5.9	29	1	PSAF SYNP6	P18689 dactylis gl
272	2	5.9	29		PSAK_SPIOL	P31083 synechococc
273	2	5.9	29	1	PSAM GUITH	P14627 spinacia ol
274	2	5.9	29	1	—	078448 guillardia
275	2	5.9	29		PSAX_SYNVU	P23320 synechococc
276	2	5.9	29	1	PSBI_SYNVU	P12240 synechococc
277	2	5.9	29	1	RL15_HALCU	P05971 halobacteri
278	2	5.9	29	1	RL15_STRLI	P49975 streptomyce
279	2	5.9	29	1	RP54_CLOKL	P38944 clostridium
280	2	5.9	29		SCX1_ANDMA	P56215 androctonus
281	2	5.9	29 29	1 1	SDHB_CLOPR	P80213 clostridium
282	2	5.9	29 29		SLP2_LEIQH	P80670 leiurus qui
283	2	5.9	29	1 1	SLP3_LEIQH	P80671 leiurus qui
284					TAT_HV1Z3	P12510 human immun
	2	5.9	29	1	TLP_ACTDE	P81370 actinidia d
285	2	5.9	29	1	VARF_VIOAR	P58451 viola arven
286	2	5.9	29	1	Y15_BPT7	P03792 bacteriopha
287	2	5.9	29	1	Y51_BPT3	P20326 bacteriopha
288	2	5.9	29	1	YCX4_ODOSI	P49830 odontella s
289	2	5.9	29	1	YCXC_ODOSI	P49838 odontella s
290	2	5.9	30	1	2ENR_CLOTY	P11887 clostridium
291	2	5.9	30	1	A1AT_CHIVI	P38026 chinchilla
292	2	5.9	30	1	AATC_RABIT	P12343 oryctolagus
293	2	5.9	30	1	AATM_RABIT	P12345 oryctolagus
294	2	5.9	30	1	ACB1_DIGLA	P81624 digitalis l
295	2	5.9	30	1	AMPT_BACST	P00728 bacillus st
296	2	5.9	30	1	ANF_RANRI	P09196 rana ridibu
297	2	5.9	30	1	CALM_LYTPI	P05935 lytechinus
298	2	5.9	30	1	CBAL_BACST	P13722 bacillus st
299	2	5.9	30	1	CH60_CLOPA	P81339 clostridium
300	2	5.9	30	1	CIRA_CHAPA	P56871 chassalia p
301	2	5.9	30	1	CLPA_PINPS	P81671 pinus pinas
302	2	5.9	30	1	COAE_CORAM	P58101 corynebacte

303	2	5.9	30	1	COXC_SOLTU	P80500 solanum tub
304	2	5.9	30	1	CRG2 SCOWA	P19865 scoliodon w
305	2	5.9	30	1	CX2A_CONBE	P58625 conus betul
306	2	5.9	30	1	CX7A CONTU	
307	2					P58923 conus tulip
		5.9	30	1	CXEX_CONCN	P58928 conus conso
308	2	5.9	30	1	CXK4_CONST	P58921 conus stria
309	2	5.9	30	1	CXOB CONPE	P56713 conus penna
310	2	5.9	30	1	CXVB CONER	P58783 conus ermin
311	2	5.9	30	1	CY35 DESAC	P81079 desulfuromo
312	2	5.9	30	1	CYO1 VIOOD	
313	2					P82230 viola odora
		5.9	30	1	CYO8_VIOOD	P58440 viola odora
314	2	5.9	30	1	DEF2_MACMU	P82317 macaca mula
315	2	5.9	30	1	DIDH_COMTE	P80702 comamonas t
316	2	5.9	30	1	DIU2 HYLLI	P82015 hyles linea
317	2	5.9	30	1	DIU2 MANSE	P24858 manduca sex
318	2	5.9	30	1	END2 ONCKE	
319	2	5.9	30	1		P01205 oncorhynchu
320					FIBR_PANIN	P22775 panulirus i
	2	5.9	30	1	HCY2_HOMAM	P82297 homarus ame
321	2	5.9	30	1	HETA_RADMA	P58691 radianthus
322	2	5.9	30	1	НҮРА НҮВРА	P58445 hybanthus p
323	2	5.9	30	1	IHFB RHILE	P80606 rhizobium 1
324	2	5.9	30	1	ITI1 LAGLE	P26771 lagenaria 1
325	2	5.9	30	1	ITR1 CITLA	
326	2				 -	P11969 citrullus 1
		5.9	30	1	ITR1_MOMCH	P10294 momordica c
327	2	5.9	30	1	ITR2_ECBEL	P12071 ecballium e
328	2	5.9	30	1	ITR2_LUFCY	P25850 luffa cylin
329	2	5.9	30	1	ITR3 CUCMC	P32041 cucumis mel
330	2	5.9	30	1	ITR3 MOMCO	P82410 momordica c
331	2	5.9	30	1	ITR4 CUCSA	
332	2	5.9	30	1	-	P10292 cucumis sat
333					ITR6_CYCPE	P83397 cyclanthera
	2	5.9	30	1	ITR7_CYCPE	P83398 cyclanthera
334	2	5.9	30	1	KAB5_OLDAF	P58456 oldenlandia
335	2	5.9	30	1	LAS1_PIG	P80171 sus scrofa
336	2	5.9	30	1	LEAH PHAVU	P81870 phaseolus v
337	2	5.9	30	1	MDH HELGE	P80037 heliobacter
338	2	5.9	30	1	MMAL DERMI	
339	2	5.9	30	1	NU5M PISOC	P16312 dermatophag
340	2					P24999 pisaster oc
		5.9	30	1	NUO2_SOLTU	P80268 solanum tub
341	2	5.9	30	1	P2CO_ARTSP	P37365 arthrobacte
342	2	5.9	30	1	PCCA_MYXXA	P81185 myxococcus
343	2	5.9	30	1	PCG1 PACGO	P82414 pachycondyl
344	2	5.9	30	1	PCG5 PACGO	P82418 pachycondyl
345	2	5.9	30	1	PETN NEPOL	
346	2	5.9	30	1	PLF4 RABIT	Q9tl01 nephroselmi
347	2					P83470 oryctolagus
		5.9	30	1	PLMS_SQUAC	P82542 squalus aca
348	2	5.9	30	1	PMGY_CANAL	P82612 candida alb
349	2	5.9	30	1	PRT1_CLUPA	P02335 clupea pall
350	2	5.9	30	1	PRT2 ONCMY	P02331 oncorhynchu
351	2	5.9	30	1	PRT3 ONCMY	P02332 oncorhynchu
352	2	5.9	30	1	PRT4 ONCMY	-
353	2	5.9	30	1	_	P02333 oncorhynchu
354	2				PRTB_ONCMY	P12819 oncorhynchu
		5.9	30	1	PSAM_CYACA	Q9tlx5 cyanidium c
355	2	5.9	30	1	PSAM_MESVI	Q9mus2 mesostigma
356	2	5.9	30	1	PSAM_ODOSI	P49487 odontella s
357	2	5.9	30	1	PSAM PINTH	P41601 pinus thunb
358	2	5.9	30	1	PYSD METBA	P80524 methanosarc
359	2	5.9	30	1	RIPS MOMCO	
-	-	٠.,	30	_	WIT D FIORICO	P20655 momordica c

360	2	5.9	30	1	RKGG_LEPKE	P21587 lepidochely
361	2	5.9	30	1	RNP_ODOVI	P19640 odocoileus
362	2	5.9	30	1	SCK2_TITSE	P08816 tityus serr
363	2	5.9	30	1	SCX2_CENLI	P18927 centruroide
364	2	5.9	30	1	SILU_RHIPU	P02885 rhizomucor
365	2	5.9	30	1	TAT_HV1ZH	P12512 human immun
366	2	5.9	30	1	TL1X_SPIOL	P82537 spinacia ol
367	2	5.9	30	1	TL29_SPIOL	P81833 spinacia ol
368	2	5.9	30	1	TX2_HETVE	P58426 heteropoda
369	2	5.9	30	1	UC35_MAIZE	P80641 zea mays (m
370	2	5.9	30	1	UDDP_SULAC	P80143 sulfolobus
371	2	5.9	30	1	URE1_ECOLI	Q03284 escherichia
372	2	5.9	30	1	VAA1_EQUAR	Q04236 equisetum a
373	2	5.9	30	1	VAA1_PSINU	Q04237 psilotum nu
374	2	5.9	30	1	VAA2_PSINU	Q04239 psilotum nu
375	2	5.9	30	1	VATN_BOVIN	P81134 bos taurus
376	2	5.9	30	1	VG03 BPPF1	P25137 bacteriopha
377	2	5.9	30	1	VPU HV1SC	P05948 human immun
378	2	5.9	30	1	VTTA BPT3	P20837 bacteriopha
379	2	5.9	30	1	Y161 TREPA	083196 treponema p
380	2	5.9	30	1	Y357 BORBU	051332 borrelia bu
381	2	5.9	30	1	Y425 BORBU	051386 borrelia bu
382	2	5.9	30	1	Y573 TREPA	083583 treponema p
383	2	5.9	30	1	Y932 TREPA	083902 treponema p
384	2	5.9	30	1	YCCB_ECOLI	P24244 escherichia
385	2	5.9	31	1	A98A DROME	046201 drosophila
386	2	5.9	31	1	BCAM PIG	019098 sus scrofa
387	2	5.9	31	1	CIRB CHAPA	P56879 chassalia p
388	2	5.9	31	1	COG5_BOVIN	P83437 bos taurus
389	2	5.9	31	1	COX4_NEUCR	P06809 neurospora
390	2	5.9	31	1	CTRP_PENMO	P35002 penaeus mon
391	2	5.9	31	1	CU54_LOCMI	P11738 locusta mig
392	2	5.9	31	1	CXD6_CONNI	P56710 conus nigro
393	2	5.9	31	1	CXG6_CONTE	P58922 conus texti
394	2	5.9	31	1	CYLA_PSYLO	P56872 psychotria
395	2	5.9	31	1	DEF2_MESAU	P81466 mesocricetu
396	2	5.9	31	1	EFTU_STRLU	P52390 streptomyce
397	2	5.9	31	1	ENDB_CAMDR	P01203 camelus dro
398	2	5.9	31	1	ER29_BOVIN	P81623 bos taurus
399	2	5.9	31	1	ETFD_PARDE	P55932 paracoccus
400	2	5.9	31	1	FIBB_CANFA	P02677 canis famil
401	2	5.9	31	1	GP37_BPSP1	048393 bacteriopha
402	2	5.9	31	1	GT_SERMA	P22416 serratia ma
403	2	5.9	31	1	HBA_MACEU	P81043 macropus eu
404 405	2 2	5.9	31	1	HCY1_HOMAM	P82296 homarus ame
406	2	5.9	31	1	HCY2_MAISQ	P82303 maia squina
407	2	5.9 5.9	31	1	HEM2_PHAGO	P27687 phascolopsi
408.	2	5.9	31 31	1	LC70_LACPA	P80959 lactobacill
409	2	5.9	31	1 1	LCCB_LEUME	P81052 leuconostoc
410	2	5.9	31		LPRM_ECOLI	P10739 escherichia
411	2	5.9	31	1 1	MDH_STRAR PETL ANASP	P19982 streptomyce
412	2	5.9	31	1	PETL_ANASP PETL ARATH	Q8yvq2 anabaena sp
413	. 2	5.9	31	1	PETL BETVU	P56776 arabidopsis
414	2	5.9	31	1	PETL_BETVU	P46612 beta vulgar
415	2	5.9	31	1	PETL_CHLVU	P56306 chlorella v 078468 guillardia
416	2	5.9	31	1	PETL MAIZE	P19445 zea mays (m
	-			_		LIJIIJ ZEA MAYS (M

417	2	5.9	31	1	PETL_ODOSI	P49524 odontella s
418	2	5.9	31	1	PETL_OENHO	Q9mtk4 oenothera h
419	2	5.9	31	1	PETL_ORYSA	P12180 oryza sativ
420	2	5.9	31	1	PETL_PORPU	P51221 porphyra pu
421	2	5.9	31	1	PETL_PSINU	Q8wi03 psilotum nu
422	2	5.9	31	1	PETL_SPIOL	Q9m3l0 spinacia ol
423	2	5.9	31	1	PETL_WHEAT	P58247 triticum ae
424	2	5.9	31	1	PETM_CYACA	Q9tlr5 cyanidium c
425	2	5.9	31	1	PETN CYACA	Q9tlr6 cyanidium c
426	2	5.9	31	1	PRT2_CLUPA	P02336 clupea pall
427	2	5.9	31	1	PSAK ANAVA	P23317 anabaena va
428	2	5.9	31	1	PSAM CHLVU	P56314 chlorella v
429	2	5.9	31	1	PSAM CYAPA	P48185 cyanophora
430	2	5.9	31	1	PSBK SYNVU	P19054 synechococc
431	2	5.9	- 31	1	PSBM MESVI	Q9muq7 mesostigma
432	2	5.9	31	1	PSBT CHLRE	P37256 chlamydomon
433	2	5.9	31	1	PSBT CHLVU	P56327 chlorella v
434	2	5.9	31	1	PSBT CYAPA	P48109 cyanophora
435	2	5.9	31	1	PSBT EUGGR	P20176 euglena gra
436	2	5.9	31	1	PSBT MESVI	Q9muv6 mesostigma
437	2	5.9	31	1	PSBT PORPU	P51323 porphyra pu
438	2	5.9	31	1	PYSG METBA	P80523 methanosarc
439	2	5.9	31	1	RECX METCL	
440	2	5.9	31	1	RL21 STRTR	P37865 methylomona
441	2	5.9	31	1	SARL HUMAN	P48956 streptococc
442	2	5.9	31	1		000631 homo sapien
443	2	5.9	31	1	SC37_MESMA	P83407 mesobuthus
444	2				SODC_STRHE	P81163 striga herm
		5.9	31	1	TX3_HETVE	P58427 heteropoda
445	2	5.9	31	1	TXA3_PARAC	P09949 parasicyoni
446	2	5.9	31	1	Y191_BORBU	O51209 borrelia bu
447	2	5.9	31	1	Y3KD_BPCHP	P19187 bacteriopha
448	2	5.9	31	1	Y603_ARCFU	O29652 archaeoglob
449	2	5.9	32	1	A2M_PACLE	P20738 pacifastacu
450	2	5.9	32	1	APL3_DIAGR	P81471 diatraea gr
451	2	5.9	32	1	ATPO_PIG	P80021 sus scrofa
452	2	5.9	32	1	ATP7_SPIOL	P80088 spinacia ol
453	2	5.9	32	1	ATPO_SPIOL	P80087 spinacia ol
454	2	5.9	32	1	B4G1_RAT	P80225 r beta-1,4-
455	2	5.9	32	1	CAAP_MICEC	P21162 micromonosp
456	2	5.9	32	1	CALO_BOVIN	P01260 bos taurus
457	2	5.9	32	1	CALO_PIG	P01259 sus scrofa
458	2	5.9	32	1	CAR1_ECHCA	Q9prp9 echis carin
459	2	5.9	32	1	CEC_OIKKI	P83420 oiketicus k
460	2	5.9	32	1	COA1_BPIF1	080295 bacteriopha
461	2	5.9	32	1	COA1_BPIKE	P03676 bacteriopha
462	2	5.9	32	1	COA2 BPFD	P03677 bacteriopha
463	2	5.9	32	1	CRP PLEPL	P12245 pleuronecte
464	2	5.9	32	1	CXG7 CONPE	P56711 conus penna
465	2	5.9	32	1	CYBL RHOGR	P32953 rhodotorula
466	2	5.9	32	1	CYSB FASHE	P80529 fasciola he
467	2	5.9	32	1	DBH SYNY1	P02343 synechocyst
468	2	5.9	32	1	ER29 CHICK	P81628 gallus gall
469	2	5.9	32	1	ER29 TRIVU	P81629 trichosurus
470	2	5.9	32	1	ERH PIG	P80230 sus scrofa
471	2	5.9	32	1	FER PORCR	P18821 porphyridiu
472	2	5.9	32	1	FLA1 METHU	P17603 methanospir
473	2	5.9	32	1	FRIH ANAPL	P80145 anas platyr
	_	٠.,	24	_	T.V.T.II _WALL	tooras anas bracki

	474	2	5.9	32	1	GHR4 RAT	P33581	rattus norv
	475	2	5.9	32	1	GLB4_LAMSP		lamellibrac
	476	2	5.9	32	1	GT82 DICLA		
								dicentrarch
	477	2	5.9	32	1	H2AZ_ONCMY		oncorhynchu
	47 8	2	5.9	32	1	HCYC_CHEDE	P83172	cherax dest
	479	2	5.9	32	1	IAPP_BOVIN	Q28207	bos taurus
	480	2	5.9	32	1	IAPP SAGOE	028934	saguinus oe
	481	2	5.9	32	1	IAPP SHEEP		ovis aries
	482	2	5.9	32	1	ILVB ENTAE		enterobacte
	483	2	5.9	32	1	ITR2_CUCSA		
	484	2	5.9					cucumis sat
				32	1	LPID_ECOLI		escherichia
	485	2	5.9	32	1	LPID_EDWTA	P08140	edwardsiell
	486	2	5.9	32	1	LPIV_ECOLI	P03061	escherichia
	487	2	5.9	32	1	MDH_NITAL	P10887	nitzschia a
	488	2	5.9	32	1	NEUB PIG	P01297	sus scrofa
	489	2	5.9	32	1	OVOS ANAPL		anas platyr
	490	2	5.9	32	1	PA22 AGKHP		agkistrodon
	491	2	5.9	32	1	PA2 RHONO		rhopilema n
	492	2	5.9	32	1	PETL CHLRE		
	493	2		32				chlamydomon
			5.9		1	PETM_PORPU		porphyra pu
	494	2	5.9	32	1	PHNS_DESMU		desulfovibr
	495	2	5.9	32	1	PRI3_ONCMY	P02330	oncorhynchu
	496	2	5.9	32	1	PRT1_ONCKE	P02327	oncorhynchu
	497	2	5.9	32	1	PRT4 SCYCA	P30259	scyliorhinu
	498	2	5.9	32	1	PRT5 ONCMY		oncorhynchu
	499	2	5.9	32	1	PRT6 ONCMY		oncorhynchu
	500	2	5.9	32	1	PRT7 ONCMY		oncorhynchu
	501	2	5.9	32	1	PRT8 ONCMY		oncorhynchu
	502	2	5.9	32	1	PRT9 ONCMY		
	503	2	5.9	32	1			oncorhynchu
						PRTA_ONCMY		oncorhynchu
	504	2	5.9	32	1	PRTE_HALME		halobacteri
	505	2	5.9	32	1	PRT_ORYLA		oryzias lat
	506	2	5.9	32	1	PSBT_CYACA		cyanidium c
	507	2	5.9	32	1	PSBT_GUITH	078512	guillardia
	508	2	5.9	32	1	PSBZ EUGAN		euglena ana
	509	2	5.9	32	1	PSBZ EUGGA		euglena gra
	510	2	5.9	32	1	PSBZ EUGMY		euglena myx
	511	2	5.9	32	1	RIP2 PHYDI		phytolacca
	512	2	5.9	32	1	RK1 RABIT		
	513	2	5.9	32	1	RS19 YEREN		oryctolagus
	514	2	5.9	32		_		yersinia en
	515	2			1	SCK2_CENNO		centruroide
			5.9	32	1	TAT_SIVM2		simian immu
	516	2	5.9	32	1	TRYP_PENMO		penaeus mon
	517	2	5.9	32	1	TX29_PHONI		phoneutria
	518	2	5.9	32	1	TXP7_APTSC	P49271	aptostichus
	519	2	5.9	32	1	UC09 MAIZE	P80615	zea mays (m
	520	2	5.9	32	1	Y169 TREPA		treponema p
	521	2	5.9	32	1	Y433 BORBU		borrelia bu
	522	2	5.9	32	1	YH17 HAEIN		haemophilus
•	523	2	5.9	32	1	YSCA YEREN		_
	524	2	5.9	32	1	YTK3 ILTVT		yersinia en
	525	2	5.9					infectious
	526	2		33	1	ACT_DICVI		dictyocaulu
			5.9	33	1	ALOX_PICPA		pichia past
	527	2	5.9	33	1	ANP3_MYOSC		myoxocephal
	528	2	5.9	33	1	ANP5_MYOAE	P20421	myoxocephal
	529	2	5.9	33	1	ATP7_SOLTU	P80496	solanum tub
	530	2	5.9	33	1	BR2A_RANES	P40837	rana escule
						_		·

531	2	5.9	33	1	BR2B RANES	P40838	rana escule
532	2	5.9	33	1	BR2E RANES		rana escule
533	2	5.9	33	1	BR2 RANBP		rana brevip
534	2	5.9	33	1			_
					CECB_HELVI		heliothis v
535	2	5.9	33	1	CECC_HELVI		heliothis v
536	2	5.9	33	1	COA1_BPFD	P036 7 5	bacteriopha
537	2	5.9	33	1	COA2 BPI22	P15414	bacteriopha
538	2	5.9	33	1	COA2 BPIKE		bacteriopha
539	2	5.9	33	1	COXL ONCMY		oncorhynchu
540	2	5.9	33	1	CU89 HUMAN		homo sapien
541	2	5.9	33	1			
542	2				CXBW_CONRA		conus radia
		5.9	33	1	CXO_CONVE		conus ventr
543	2	5.9	33	1	DBB2_DOLAU		dolabella a
544	2	5.9	33	1	DEF1_MESAU	P81465	mesocricetu
545	2	5.9	33	1	DEF3 MESAU	P81467	mesocricetu
546	2	5.9	33	1	DEF4 MESAU	P81468	mesocricetu
547	2	5.9	33	1	DHE3 PIG		sus scrofa
548	2	5.9	33	1	FER PORAE		porphyridiu
549	2	5.9	33	1	GAST CAVPO		
	2				_		cavia porce
550		5.9	33	1	GAST_CHIBR		chinchilla
551	2	5.9	33	1	GAST_DIDMA		didelphis m
552	2	5.9	33	1	GGN2_RANRU	P80396	rana rugosa
553	2	5.9	33	1	GGN3 RANRU		rana rugosa
554	2	5.9	33	1	HF40 MAIZE		zea mays (m
555	2	5.9	33	1	HOXU RHOOP		rhodococcus
556	2	5.9	33	1	LPPY SALTY		salmonella
557	2	5.9	33	1	_		
558	2				LPRH_ECOLI		escherichia
		5.9	33	1	LYC2_HORSE		equus cabal
559	2	5.9	33	1	MBP1_MAIZE		zea mays (m
560	2	5.9	33	1	MHAA_STRCH	P80435	streptomyce
561	2	5.9	33	1	MYMY_MYTED	P81614	mytilus edu
562	2	5.9	33	1	OTCC PSEPU		pseudomonas
563	2	5.9	33	1	PEN3 ADECU		canine aden
564	2	5.9	33	1	PETM CYAPA		cyanophora
565	2	5.9	33	1	PETM SYNEL		
566	2	5.9	33	1	-		synechococc
					PK1_DICDI		dictyosteli
567	2	5.9	33	1	PK5_DICDI		dictyosteli
568	2	5.9	33	1	PRI1_ONCMY	P02326	oncorhynchu
569	2	5.9	33	1	PRI2_ONCMY	P02328	oncorhynchu
570	2	5.9	33	1	PRTB MUGCE	P08130	mugil cepha
571	2	5.9	33	1	PRTL ECOLI		escherichia
572	2	5.9	33	1	PSAI SPIOL		spinacia ol
573	2	5.9	33	1	PSAK_CUCSA		cucumis sat
574	2	5.9	33	1	PSBT ARATH		
575	2						arabidopsis
		5.9	33	1	PSBT_MAIZE		zea mays (m
576	2	5.9	33	1	RL21_XENLA		xenopus lae
5 7 7	2	5.9	33	1	RL26_XENLA	P49629	xenopus lae
578	2	5.9	33	1	RL28_XENLA	P46780	xenopus lae
579	2	5.9	33	1	RL4 HALCU		halobacteri
580	2	5.9	33	1	RPOC HETCA		heterosigma
581	2	5.9	33	1	RRPO BPBZ1		bacteriopha
582	2	5.9	33	1	RS4 XENLA		-
583	2	5.9	33				xenopus lae
	2			1	RT25_BOVIN		bos taurus
584		5.9	33	1	RUGA_RANRU		rana rugosa
585	2	5.9	33	1	SCX9_BUTOC		buthus occi
586	2	5.9	33	1	THIO_CLOST	P81109	clostridium
587	2	5.9	33	1	TX1_HETVE		heteropoda
							•

588	2	5.9	33	1	TXH1 SELHU	P56676	selenocosmi
589	2	5.9	33	1	TXN3 SELHA		selenocosmi
590	2	5.9	33	1	VT1B RAT		rattus norv
591	2	5.9	33	1	Y474 BORBU		borrelia bu
592	2	5.9	33	1	Y656 TREPA		
593	2	5.9	33	1	Y849 BORBU		2 treponema p
594	2	5.9	33	1			borrelia bu
595	2	5.9	33		YC12_CHLRE) chlamydomon
596				1	YC12_MARPO) marchantia
	2	5.9	33	1	YC12_MESVI		B mesostigma
597	2	5.9	33	1	YC12_NEPOL		nephroselmi
598	2	5.9	33	1	YC12_PINTH		pinus thunb
599	2	5.9	33	1	YL74_ARCFU	028108	archaeoglob
600	. 2	5.9	33	1	YLCH_BP82		bacteriopha
601	2	5.9	33	1	YLCH ECOLI		escherichia
602	2	5.9	34	1	AMP2 CHICK		gallus gall
603	2	5.9	34	1	ASPG PIG		sus scrofa
604	2	5.9	34	1	BR2C RANES		rana escule
605	2	5.9	34	1	COL CHICK		gallus gall
606	2	5.9	34	1	COXA THETH		
607	2	5.9	34	1	COXA_THETH		thermus the
608	2	5.9					thunnus obe
609	2	5.9	34	1	CXGS_CONGE		conus geogr
			34	1	DEF2_RABIT		oryctolagus
610	2	5.9	34	1	DEF7_RABIT		oryctolagus
611	.2	5.9	34	1	ECAB_ECTTU		ectatomma t
612	2	5.9	34	1	EF2_RABIT	P55823	oryctolagus
613	2	5.9	34	1	EGGR_APLCA		aplysia cal
614	2	5.9	34	1	H1S STRPU		strongyloce
615	2	5.9	34	1	HS7S CUCMA		cucurbita m
616	2	5.9	34	1	ITR1 MOMCO		momordica c
617	2	5.9	34	1	ITR2 MOMCO		momordica c
618	2	5.9	34	1	LPTN PROVU		proteus vul
619	2	5.9	34	1	M44E HUMAN		homo sapien
620	2	5.9	34	1	MYTB MYTED		
621	2	5.9	34	1	PETM ANASP		mytilus edu
622	2	5.9	34	1	PRT1 SAROR		anabaena sp
623	2	5.9	34	1	_	P25327	
624	2	5.9	34		PRT1_SCOSC		scomber sco
625	2			1	PRT1_THUTH		thunnus thy
		5.9	34	1	PRT2_SCOSC		scomber sco
626	2	5.9	34	1	PRT2_THUTH		thunnus thy
627	2	5.9	34	1	PRT_DICLA		dicentrarch
628	2	5.9	34	1	PRT_PERFV	P29629	perca flave
629	2	5.9	34	1	PSAI_LOTJA	Q9bbs0	lotus japon
630	2	5.9	34	1	PSAI_OENHO		oenothera h
631	2	5.9	34	1	PSAI_SOYBN		glycine max
632	2	5.9	34	1	PSBM ARATH		arabidopsis
633	2	5.9	34	1	PSBM CHAGL		chaetosphae
634	2	5.9	34	1	PSBM CHLRE	P92277	chlamydomon
635	2	5.9	34	1	PSBM MAIZE		zea mays (m
636	2	5.9	34	1	PSBM MARPO		
637	2	5.9	34	1	PSBM NEPOL		marchantia
638	2	5.9	34	1	-		nephroselmi
639	2	5.9	34		PSBM_OENHO		oenothera h
640	2			1	PSBM_PEA		pisum sativ
641		5.9	34	1	PSBM_PSINU	Q8wi22	psilotum nu
	2	5.9	34	1	PSBM_WHEAT		triticum ae
642	2	5.9	34	1	PSBT_TOBAC		nicotiana t
643	2	5.9	34	1	PSPC_BOVIN		bos taurus
644	2	5.9	34	1	PSPC_CANFA		canis famil

645						
645	2	5.9	34	1	PYSB_METBA	P80522 methanosarc
646	2	5.9	34	1	RNL1_PIG	P15466 sus scrofa
647	2	5.9	34	1	RR2_OCHNE	Q40606 ochrosphaer
648	2	5.9	34	1	SCXM_SCOMA	P80719 scorpio mau
649	2	5.9	34	1	SMS_MYXGL	P19209 myxine glut
650	2	5.9	34	1	THEM_MALSU	P13858 malbranchea
651	2	5.9	34	1	TX33_PHONI	P81789 phoneutria
652	2	5.9	34	1	TXP5_BRASM	P49266 brachypelma
653	2	5.9	34	1	VLYS_BPM1	P08229 bacteriopha
654	2	5.9	34	1	VPU_HV1W2	P08808 human immun
655	2	5.9	34	1	Y05J_BPT4	P39239 bacteriopha
656 657	2	5.9	34	1	Y224_TREPA	O83253 treponema p
657	2	5.9	34	1	Y848_BORBU	O51788 borrelia bu
658	2	5.9	34	1	Y870_HAEIN	P44065 haemophilus
659	2	5.9	34	1	Y967_HAEIN	P44086 haemophilus
660	2	5.9	34	1	YC12_GUITH	078460 guillardia
661	2	5.9	34	1	YC12_ODOSI	P49529 odontella s
662	2	5.9	34	1	YC12_PORPU	P51385 porphyra pu
663	2	5.9	34	1	YC12_SKECO	096797 skeletonema
664	2	5.9	34	1	YMIA_AGRTU	P38437 agrobacteri
665	2 2	5.9	34	1	Z33B_HUMAN	Q06731 homo sapien
666 667	2	5.9	35	1	ADO1_AGRDO	P58608 agriosphodr
		5.9	35	1	C550_BACHA	P80091 bacillus ha
668	2	5.9	35	1	CEC4_BOMMO	P14666 bombyx mori
669 670	2	5.9	35	1	CECA_HELVI	P83413 heliothis v
670	2	5.9	35	1	CECB_ANTPE	P01509 antheraea p
671 672	2 2	5.9	35	1	CHI1_CASSA	P29137 castanea sa
		5.9	35	1	D3HI_RABIT	P32185 oryctolagus
673	2	5.9	35	1	DEFB_MYTED	P81611 mytilus edu
674	2	5.9	35	1	END4_YEREN	P42691 yersinia en
675 676	2 2	5.9	35	1	ERFK_KLEAE	Q08599 klebsiella
677	2	5.9	35	1	EXE2_HELSU	P04204 heloderma s
678	2	5.9	35	1	FAS_CAPHI	P08757 capra hircu
679	2	5.9	35	1	FLAV_NOSSM	P35707 nostoc sp.
680	2	5.9 5.9	35	1	GBGU_MOUSE	Q61017 mus musculu
681	2	5.9	35 35	1	GRDB_CLOPU	P55793 clostridium
682	2	5.9		1	GUR_GYMSY	P25810 gymnema syl
683	2		35 35	1	HMWC_DESGI	P38588 desulfovibr
684	2	5.9 5.9	35 35	1	IAAC_HORVU	P34951 hordeum vul
685	2	5.9	35 35	1	KPPR_PINPS	P81664 pinus pinas
686	2	5.9	35	1 1	LCGB_LACLA	P36962 lactococcus
687	2	5.9	35	1	NEF_HV1H3	P05854 human immun
688	2	5.9	35	1	PBP1_LYMDI	P34176 lymantria d
689	2	5.9	35	1	PBP2_LYMDI PBP_HYACE	P34177 lymantria d
690	2	5.9	35	1		P34175 hyalophora
691	2	5.9	35	1	PHI1_MYTCA	P35422 mytilus cal
692	2	5.9	35	1	PSAI_CYAPA PSBT MARPO	P48116 cyanophora
693	2	5.9	35	1	PSBT_MARPO PSBT_OENHO	P12182 marchantia
694	2	5.9	35	1	PSBT_OENHO PSBT_ORYSA	P37258 oenothera h
695	2	5.9	35	1	PSBT_ORISA PSBT_PINTH	P12183 oryza sativ
696	2	5.9	35	1	PSPC PIG	P41625 pinus thunb
697	2	5.9	35	1	RL32 HALCU	P15785 sus scrofa
698	2	5.9	35	1	SCKB PANIM	P05965 halobacteri
699	2	5.9	35	1	SCKG PANIM	P55928 pandinus im
700	2	5.9	35	1	SCX1 BUTSI	Q10726 pandinus im
701	2	5.9	35	1	SCX1_BUTS1	P15229 buthus sind
			55	-		P15222 buthus eupe

	_					
702	2	5.9	35	1	SCXP_ANDMA	P01498 androctonus
703	2	5.9	35	1	SMS_LAMFL	Q9prr0 lampetra fl
704	2	5.9	35	1	SPRC PIG	P20112 sus scrofa
705	2	5.9	35	1	THPA THADA	P21381 thaumatococ
706	2	5.9	35	1	TMTX MESTA	Q9bn12 mesobuthus
707	2	5.9	35	1	TXAG AGEOP	P31328 agelena opu
708	2	5.9	35	1	_	P83303 selenocosmi
709	2	5.9	35	1	TXKS STOHE	
710	2	5.9	35	1		P29187 stoichactis
711	2	5.9	35		TXN4_SELHA	P83471 selenocosmi
712	2	5.9		1	VL3_PAPVD	P06919 deer papill
713			35	1	VSPA_CERVI	P18692 cerastes vi
	2	5.9	35	1	WSP7_PINPS	P81086 pinus pinas
714	2	5.9	35	1	Y320_BORBU	051299 borrelia bu
715	2	5.9	35	1	Y37_BPT3	P20325 bacteriopha
716	2	5.9	35	1	Y644_ARCFU	O29613 archaeoglob
717	2	5.9	35	1	Y845_BORBU	O51785 borrelia bu
718	2	5.9	35	1	Y847 BORBU	O51787 borrelia bu
719	2	5.9	35	1	YC12 CYACA	Q9tlx0 cyanidium c
720	2	5.9	35	1	YC69 ARCFU	028999 archaeoglob
721	2	5.9	35	1	YQB5 CAEEL	Q09258 caenorhabdi
722	2	5.9	36	1	AMPL PIG	P28839 sus scrofa
723	2	5.9	36	1	ANFV ANGJA	
724	2	5.9	36	1	C3L1 BOVIN	P22642 anguilla ja
725	2	5.9	36	1		P30922 bos taurus
726	2	5.9	36		CBBA_NITVU	P37102 nitrobacter
727				1	CECD_ANTPE	P01511 antheraea p
	2	5.9	36	1	CYC7_GEOME	P81894 geobacter m
728	2	5.9	36	1	DESR_DESGI	P00273 desulfovibr
729	2	5.9	36	1	F4RE_METOG	P80951 methanogeni
730	2	5.9	36	1	GLU1_ORENI	P81026 oreochromis
731	2	5.9	36	1	GLUC_HYDCO	P09682 hydrolagus
732	2	5.9	36	1	H1L5_ENSMI	P27203 ensis minor
733	2	5.9	36	1	HBB PONPY	Q9tt34 pongo pygma
734	2	5.9	36	1	IAA STRAU	P04082 streptomyce
735	2	5.9	36	1	IOB1 ISYOB	P58609 isyndus obs
736	2	5.9	36	1	KAD STRGR	P53398 streptomyce
737	2	5.9	36	1	LHG RHOVI	P04126 rhodopseudo
738	2	5.9	36	1	LYOX PIG	P45845 sus scrofa
739	2	5.9	36	1	MFA1 YEAST	P34165 saccharomyc
740	2	5.9	36	1	MPG2 DACGL	
741	2	5.9	36	1	MYPC RAT	Q41183 dactylis gl
742	2	5.9	36	1		P56741 rattus norv
743	2	5.9	36		NEUH_CARCA	P11975 cardisoma c
744	2	5.9		1	NEUY_GADMO	P80167 gadus morhu
			36	1	NEUY_ONCMY	P29071 oncorhynchu
745	2	5.9	36	1	NEUY_RABIT	P09640 oryctolagus
746	2	5.9	36	1	NEUY_RANRI	P29949 rana ridibu
747	2	5.9	36	1	NIFH_ENTAG	P26249 enterobacte
748	2	5.9	36	1	NLTP_PINPI	P26912 pinus pinea
749	2	5.9	36	1	NUCM_SOLTU	P80264 solanum tub
750	2	5.9	36	1	OST2 CHICK	P80897 gallus gall
751	2	5.9	36	1.	PAHO_ALLMI	P06305 alligator m
752	2	5.9	36	1	PAHO ANSAN	P06304 anser anser
753	2	5.9	36	1	PAHO_CERSI	P37999 ceratotheri
754	2	5.9	36	1	PAHO DIDMA	P18107 didelphis m
755	2	5.9	36	1	PAHO EQUZE	P38000 equus zebra
756	2	5.9	36	1	PAHO_EQUZE	
757	2	5.9	36	1	PAHO LARAR	P41335 erinaceus e
758	2	5.9	36	1	PAHO_LARAR PAHO MACMU	P41337 larus argen
		,	20	_		P33684 macaca mula

55 0	_						
759	2	5.9	36	1	PAHO_RABIT		oryctolagus
760	2	5.9	36	1	PAHO_RANCA	P15427	rana catesb
761	2	5.9	36	1	PAHO_RANTE	P31229	rana tempor
762	2	5.9	36	1	PAHO STRCA	P11967	struthio ca
763	2	5.9	36	1	PAHO TAPPI	P39659	tapirus pin
764	2	5.9	36	1	PGKH CHLFU		chlorella f
765	2	5.9	36	1	PMY PETMA		petromyzon
766	2	5.9	36	1	PSAD PEA		pisum sativ
767	2	5.9	36	1	PSAH PEA		
768	2	5.9	36	1			pisum sativ
769	2	5.9			PSAI_ANGLY		angiopteris
770	2	5.9	36	1	PSAI_BRAOL		brassica ol
			36	1	PSAI_CARCL		carpobrotus
771	2	5.9	36	1	PSAI_CHAGL		chaetosphae
772	2	5.9	36	1	PSAI_CHLVU	P58214	chlorella v
773	2	5.9	36	1	PSAI_CYACA	Q9tm24	cyanidium c
774	2	5.9	36	1	PSAI_GUITH	078462	guillardia
775	2	5.9	36	1	PSAI HORVU		hordeum vul
776	2	5.9	36	1	PSAI MAIZE		zea mays (m
777	2	5.9	36	1	PSAI MARPO		marchantia
778	2	5.9	36	1	PSAI MESVI		mesostigma
779	2	5.9	36	1	PSAI NEPOL		
780	2	5.9	36	1	PSAI ORYSA		nephroselmi
781	2	5.9	36	1	PSAI_ORISA PSAI PICAB		oryza sativ
782	2				_		picea abies
		5.9	36	1	PSAI_PORPU	P51387	porphyra pu
783	2	5.9	36	1	PSAI_PSINU		psilotum nu
784	2	5.9	36	1	PSAI_SKECO	096813	skeletonema
785	2	5.9	36	1	PSAI_TOBAC	P12187	nicotiana t
786	2	5.9	36	1	PSAI_WHEAT	P25410	triticum ae
787	2	5.9	36	1	PSBI ARATH	P09970	arabidopsis
788	2	5.9	36	1	PSBI HORVU		hordeum vul
789	2	5.9	36	1	PSBI MARPO		marchantia
790	2	5.9	36	1	PSBI ORYSA		oryza sativ
791	2	5.9	36	1	PSBI PINTH		pinus thunb
792	2	5.9	36	1	PSBI PSEMZ		pseudotsuga
793	2	5.9	36	1	PSBM CHLVU		
794	2	5.9	36	1			chlorella v
795	2				PSBM_SYNEL		synechococc
796	2	5.9	36	1	PSBY_ODOSI		odontella s
		5.9	36	1	PSBY_PORPU		porphyra pu
797	2	5.9	36	1	PYY_AMICA	P29205	amia calva
798	2	5.9	36	1	PYY_LEPSP	P09473	lepisosteus
799	2	5.9	36	1	PYY_MYOSC	P09641	myoxocephal
800	2	5.9	36	1	PYY_ONCKI	P09474	oncorhynchu
801	2	5.9	36	1	PYY ORENI		oreochromis
802	2	5.9	36	1	PYY PIG		sus scrofa
803	2	5.9	36	1	PYY RAJRH		raja rhina
804	2	5.9	36	1	PYY RANRI		rana ridibu
805	2	5.9	36	1	SCK2 CENLL		centruroide
806	2	5.9	36	1	SCK3 LEIQH		
807	2	5.9	36	1	SCX1 BUTEU		leiurus qui
808	2	5.9	36				buthus eupe
809	2			1	SCXL_LEIQU		leiurus qui
		5.9	36	1	SPYY_PHYBI		phyllomedus
810	2	5.9	36	1	TAEK_ACTEQ		actinia equ
811	2	5.9	36	1	TERN_PSEUS	P82321	pseudacanth
812	2	5.9	36	1	TLN1_CHICK	P54939	gallus gall
813	2	5.9	36	1	TX1B_AGEAP		agelenopsis
814	2	5.9	36	1	TX35_PHONI		phoneutria
815	2	5.9	36	1	TXAM METSE		metridium s
						100	

816	2	5.9	36	1	TXD3 PARLU	P83258	paracoelote
817	2	5.9	36	1	TXJA HADVE		hadronyche
818	2	5.9	36	1	TXJB HADVE		hadronyche
819	2	5.9	36	1	Y16L BPT4		bacteriopha
820	2	5.9	36	1	Y297 ARCFU		archaeoglob
821	2	5.9	36	1	Y4KD BPCHP		bacteriopha
822	2	5.9	36	1	Y609 BORBU		borrelia bu
823	2	5.9	36	1	Y619 ARCFU		
824	2	5.9	36	1	Y699 TREPA		archaeoglob
825	2	5.9	36	1	YC12 CYAPA		treponema p
826	2	5.9	36	1	YG50 HAEIN		cyanophora
827	2	5.9	36	1	YRKG BACSU		haemophilus
828	2	5.9	37	1	24KD PLACH		bacillus su
829	2	5.9	37	1	_		plasmodium
830	2	5.9	37	1	AFP4_MALPA		malva parvi
831	2	5.9	37		ANP3_PSEAM		pseudopleur
832	2	5.9	37	1	ATPO_SOLTU		solanum tub
833	2	5.9		1	B2MG_ORENI		oreochromis
			37	1	CAL1_PIG		sus scrofa
834	2	5.9	37	1	CAL1_SHEEP		ovis aries
835	2	5.9	37	1	CALR_RANRI		rana ridibu
836	2	5.9	37	1	CEC2_MANSE		manduca sex
837	2	5.9	37	1	CEC3_MANSE		manduca sex
838	2	5.9	37	1	CEC4_MANSE		manduca sex
839	2	5.9	37	1	CG2S_LUPAN	P09930	lupinus ang
840	2	5.9	37	1	CHCD_ANTPO		antheraea p
841	2	5.9	37	1	CS40_STAAU		staphylococ
842	2	5.9	37	1	CUP4_SARBU	P14486	sarcophaga
843	2	5.9	37	1	DEFA_MYTED		mytilus edu
844	2	5.9	37	1	ECAA_ECTTU	P49343	ectatomma t
. 845	2	5.9	37	1	ES2A_RANES		rana escule
846	2	5.9	37	1	ES2B_RANES	P40846	rana escule
847	2	5.9	37	1	F13A_BOVIN	P12260	bos taurus
848	2	5.9	37	1	GHR3_RAT	P33580	rattus norv
849	2	5.9	37	1	HCYB_CANPG	P83175	cancer pagu
850	2	5.9	37	1	HOXF_RHOOP		rhodococcus
851	2	5.9	37	1	LPPY_SERMA	P19937	serratia ma
852	2	5.9	37	1	MAUR_PARVE	Q56462	paracoccus
853	2	5.9	37	1	ME20_EUPRA	P26888	euplotes ra
854	2	5.9	37	1	ME22_EUPRA	P58548	euplotes ra
855	2	5.9	37	1	MIBP_PSESP	P04576	pseudomonas
856	2	5.9	37	1	NLT3_VITSX		vitis sp. (
857	2	5.9	37	1	NLT4_VITSX		vitis sp. (
858	2	5.9	37	1	NUFM_SOLTU		solanum tub
859	2	5.9	37	1	OP2A_OXYKI		oxyopes kit
860	2	5.9	37	1	OP2B_OXYKI		oxyopes kit
861	2	5.9	37	1	OP2C_OXYKI		oxyopes kit
862	2	5.9	37	1	OP2D_OXYKI	P83251	oxyopes kit
863	2	5.9	37	1	PETG_ANASP		anabaena sp
864	2	5.9	37	1	PETG_ANAVA		anabaena va
865	2	5.9	37	1	PETG_ARATH		arabidopsis
866	2	5.9	37	1	PETG_CHAGL		chaetosphae
867	2	5.9	37	1	PETG_CHLEU		chlamydomon
868	2	5.9	37	1	PETG_CHLRE		chlamydomon
869	2	5.9	37	1	PETG_CHLVU		chlorella v
870	2	5.9	37	1	PETG_CUSRE		cuscuta ref
871	2	5.9	37	1	PETG_CYAPA		cyanophora
872	2	5.9	37	1	PETG_EUGGR		euglena gra
							J J-v

						,	
873	2	5.9	37	1	PETG GUITH	078505	guillardia
874	2	5.9	37	1	PETG MARPO		marchantia
875	2	5.9	37	1	PETG MESVI		mesostigma
876	2	5.9	37	1	PETG NEPOL		nephroselmi
877	2	5.9	37	1	PETG ODOSI		odontella s
878	2	5.9	37	1	PETG ORYSA		
879	2	5.9	37	1	PETG_DRIDA		oryza sativ
880	2	5.9	37	1			pinus thunb
881	2	5.9	37		PETG_PORPU		porphyra pu
882	2			1	PETG_PSINU		psilotum nu
		5.9	37	1	PETG_SKECO		skeletonema
883	2	5.9	37	1	PETG_SYNEL	Q8dki2	synechococc
884	2	5.9	37	1	PETG_SYNP7		synechococc
885	2	5.9	37	1	PIIL_ACHLY	P81720	achromobact
886	2	5.9	37	1	POLN_WEEV	P13896	western equ
887	2	5.9	37	1	PRF1_RAT		rattus norv
888	2	5.9	37	1	PSAI_ARATH		arabidopsis
889	2	5.9	37	1	PSAJ EUGGR		euglena gra
890	2	5.9	37	1	PSBL ARATH		arabidopsis
891	2	5.9	37	1	PSBL ORYSA		oryza sativ
892	2	5.9	37	1	PSBM PINTH		pinus thunb
893	2	5.9	37	1	PSBY CYACA		cyanidium c
894	2	5.9	37	1	PSBY_GUITH	079422	guillardia
895	2	5.9	37	1	PYY CHICK		
896	2	5.9	37	1	REV SIVM2		gallus gall
897	2	5.9	37	1			simian immu
898	2	5.9	37 37		RK36_ARATH		arabidopsis
899	2	5.9		1	RK36_ASTLO		astasia lon
900	2		37	1	RK36_CHAGL		chaetosphae
		5.9	37	1	RK36_CHLVU		chlorella v
901	2	5.9	37	1	RK36_CYACA		cyanidium c
902	2	5.9	37	1	RK36_CYAPA		cyanophora
903	2	5.9	37	1	RK36_EPIVI	P30069	epifagus vi
904	2	5.9	37	1	RK36_EUGGR	P21532	euglena gra
905	2	5.9	37	1	RK36_LOTJA		lotus japon
906	2	5.9	37	1	RK36_MARPO		marchantia
907	2	5.9	37	1	RK36 NEPOL		nephroselmi
908	2	5.9	37	1	RK36 ODOSI		odontella s
909	2	5.9	37	1	RK36 OENHO		oenothera h
910	2	5.9	37	1	RK36 ORYSA		oryza sativ
911	2	5.9	37	1	RK36 PEA		pisum sativ
912	2	5.9	37	1	RK36 PINTH		pinus thunb
913	2	5.9	37	1	RK36 PORPU		porphyra pu
914	2	5.9	37	1	RK36 PSINU		
915	2	5.9	37	1	RK36 SPIOL		psilotum nu
916	2	5.9	37	1	RL36_ANASP		spinacia ol
917	2	5.9	37	1			anabaena sp
918	2	5.9			RL36_AQUAE		aquifex aeo
919	2		37	1	RL36_BACHD		bacillus ha
920	2	5.9	37	1	RL36_BACST		bacillus st
		5.9	37	1	RL36_BACSU		bacillus su
921	2	5.9	37	1	RL36_BORBU	051452	borrelia bu
922	2	5.9	37	1	RL36_CAMJE		campylobact
923	2	5.9	37	1	RL36_CLOAB		clostridium
924	2	5.9	37	1	RL36_CLOPE	Q8xhu7	clostridium
925	2	5.9	37	1	RL36_DEIRA		deinococcus
926	2	5.9	37	1	RL36_HAEIN		haemophilus
927	2	5.9	37	1	RL36_HELPJ		helicobacte
928	2	5.9	37	1	RL36 HELPY		helicobacte
929	2	5.9	37	1	RL36 LEPIN		leptospira
						×2	FLOOPILG

930	2	5.9	37	1	RL36 LISMO	Q927n0 listeria mo
931	2	5.9	37	1	RL36 MYCGA	Q9rdv9 mycoplasma
932	2	5.9	37	1	RL36 MYCGE	P47420 mycoplasma
933	2	5.9	37	1	RL36 MYCLE	Q9x7a2 mycobacteri
934	2	5.9	37	1	RL36_MYCPN	P52864 mycoplasma
935	2	5.9	37	1	RL36 MYCPU	
936	2	5.9	37			Q98q05 mycoplasma
				1	RL36_MYCSP	P38015 mycoplasma
937	2	5.9	37	1	RL36_MYCTU	P45810 mycobacteri
938	2	5.9	37	1	RL36_NEIMA	Q9jrb2 neisseria m
939	2	5.9	37	1	RL36_STAAM	Q99s42 staphylococ
940	2	5.9	3.7	1	RL36_STRCO	086772 streptomyce
941	2	5.9	37	1	RL36_SYNP6	024707 synechococc
942	2	5.9	37	1	RL36 THETH	P80256 thermus the
943	2	5.9	37	1	RL36 THETN	Q8r7x8 thermoanaer
944	2	5.9	37	1	RL36 TREPA	083239 treponema p
945	2	5.9	37	1	RL36 UREPA	Q9pqn7 ureaplasma
946	2	5.9	37	1	RL36 VIBCH	P78001 vibrio chol
947	2	5.9	37	1	RL7 CLOPA	P05393 clostridium
948	2	5.9	37			
949				1	RS15_HELLU	P52820 helix lucor
	2	5.9	37	1	RUGC_RANRU	P80956 rana rugosa
950	2	5.9	37	1	SCIT_MESTA	P81761 mesobuthus
951	2	5.9	37	1	SCK2_LEIQH	P45628 leiurus qui
952	2	5.9	37	1	SCK3_BUTOC	P59290 buthus occi
953	2	5.9	37	1	SCK3_PARTR	P83112 parabuthus
954	2	5.9	37	1	SCKA TITSE	P46114 tityus serr
955	2	5.9	37	1	SCKC LEIQH	P13487 leiurus qui
956	2	5.9	37	1	SMS PETMA	P21779 petromyzon
957	2	5.9	37	1	TCTP TRYBB	P35758 trypanosoma
958	2	5.9	37	1	THHS HORVU	P33045 hordeum vul
959	2	5.9	37	1	TX21 SELHU	P82959 selenocosmi
960	2	5.9	37	1	TX22_SELHU	
961	2	5.9	37	1	TXD1 PARLU	P82960 selenocosmi
962	2	5.9	37 37			P83256 paracoelote
				1	TXD2_PARLU	P83257 paracoelote
963	2	5.9	37	1	TXD4_PARLU	P83259 paracoelote
964	2	5.9	37	1	TXJC_HADVE	P82228 hadronyche
965	. 2	5.9	37	1	TXKB_BUNGR	P29186 bunodosoma
966	2	5.9	37	1	TXOF_HADVE	P81599 hadronyche
967	2	5.9	37	1	TXP3_APTSC	P49268 aptostichus
968	2	5.9	37	1	VA1 BPBF2	P19347 bacteriopha
969	2	5.9	37	1	VG40 BPML5	Q05250 mycobacteri
970	2	5.9	37	1	VG65 BPPH2	P16515 bacteriopha
971	2	5.9	37	1	VG65 BPPZA	P08384 bacteriopha
972	2	5.9	37	1	VGJ BPPHX	P03651 bacteriopha
973	2	5.9	37	1	VP64 NPVBM	P41722 bombyx mori
974	2	5.9	37	1	VPU HV1Z8	
975	2	5.9	37	1		P08807 human immun
976	2				Y268_ARCFU	029971 archaeoglob
		5.9	37	1	Y63_BPT7	P03799 bacteriopha
977	2	5.9	37	1	Y692_BORBU	O51635 borrelia bu
978	2	5.9	37	1	Y700_BORBU	051643 borrelia bu
979	2	5.9	37	1	Y762_BORBU	O51703 borrelia bu
980	2	5.9	37	1	Y846_BORBU	051786 borrelia bu
981	2	5.9	37	1	YBGT_ECOLI	P56100 escherichia
982	2	5.9	37	1	YC12_CHLVU	P56328 chlorella v
983	2	5.9	37	1	YDA3 SCHPO	Q10345 schizosacch
984	2	5.9	37	1	YIM4 BPPH1	P10428 bacteriopha
985	2	5.9	37	1	YQGE BACCA	P28753 bacillus ca
986	2	5.9	37	1	YRYL CAEEL	Q19177 caenorhabdi
	-		٠,	-		ATATAL CACHOTHADUI

.

987	2	5.9	38	1	A2M HOMAM	P20737	homarus ame
988	2	5.9	38	1	AFP5_MALPA	P83139	malva parvi
989	2	5.9	38	1	BD01_BOVIN	P46159	bos taurus
990	2	5.9	38	1	BD08_BOVIN	P46166	bos taurus
991	2	5.9	38	1	COA3_XANCP	Q07484	xanthomonas
992	2	5.9	38	1	CRS3_NOTGO	P15534	nototodarus
993	2	5.9	38	1	CU47_LACCU	P80323	lactobacill
994	2	5.9	38	1	DCHS_MICSP	P00863	micrococcus
995	2	5.9	38	1	DEF4_LEIQH	P41965	leiurus qui
996	2	5.9	38	1	DEF7_SPIOL	P81573	spinacia ol
997	2	5.9	38	1	DEFI_AESCY	P80154	aeschna cya
998	2	5.9	38	1	DEFI_MYTGA	P80571	mytilus gal
999	2	5.9	38	1	DLP3_ORNAN	P82141	ornithorhyn
1000	2	5.9	38	1	DPOB_BOVIN		bos taurus

ALIGNMENTS

```
RESULT 1
FABI RHASA
ID
     FABI RHASA
                     STANDARD:
                                    PRT;
                                            33 AA.
AC
     P81175;
     15-JUL-1998 (Rel. 36, Created)
DT
DT
     15-JUL-1998 (Rel. 36, Last sequence update)
DT
     15-JUL-1998 (Rel. 36, Last annotation update)
     Fatty acid-binding protein, intestinal (I-FABP) (FABPI) (Fragments).
DΕ
OS
     Rhamdia sapo.
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Ostariophysi; Siluriformes;
OC
OC
     Pimelodidae; Rhamdia.
OX
     NCBI_TaxID=55673;
RN
     [1]
RΡ
     SEQUENCE.
RC
     TISSUE=Intestine;
RX
     MEDLINE=98036128; PubMed=9370361;
     Di Pietro S.M., Dell'Angelica E.C., Veerkamp J.H., Sterin-Speziale N.,
RA
RA
     Santome J.A.;
RT
     "Amino acid sequence, binding properties and evolutionary
RT
     relationships of the basic liver fatty-acid-binding protein from the
RT
     catfish Rhamdia sapo.";
     Eur. J. Biochem. 249:510-517(1997).
RL
CC
     -!- FUNCTION: FABP ARE THOUGHT TO PLAY A ROLE IN THE INTRACELLULAR
CC
         TRANSPORT OF LONG-CHAIN FATTY ACIDS AND THEIR ACYL-COA ESTERS.
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- TISSUE SPECIFICITY: INTESTINE.
CC
     -!- SIMILARITY: BELONGS TO THE FABP/P2/CRBP/CRABP FAMILY OF
CC
         TRANSPORTERS.
DR
     InterPro; IPR000463; Fatty acid BP.
     PROSITE; PS00214; FABP; PARTIAL.
DR
KW
     Transport; Lipid-binding.
FT
     NON TER
                   1
                          1
FT
     NON_CONS
                  12
                         13
FT
     NON_CONS
                  20
                         21
FT
     NON CONS
                  28
                         29
FT
     NON TER
                  33
                         33
SQ
     SEQUENCE
                33 AA;
                        3660 MW;
                                   5BA16CC2880B7819 CRC64;
```

```
Query Match
                       14.7%; Score 5; DB 1; Length 33;
  Best Local Similarity 100.0%; Pred. No. 43;
         5; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                       0;
Qу
          1 SVSEI 5
             Db
          13 SVSEI 17
RESULT 2
DMD RAT
ID
    DMD RAT
              STANDARD; PRT; 29 AA.
AC
    P11530;
DT
    01-OCT-1989 (Rel. 12, Created)
DT
    01-OCT-1989 (Rel. 12, Last sequence update)
DT
    28-FEB-2003 (Rel. 41, Last annotation update)
DE
    Dystrophin (Fragment).
GN
    DMD.
OS
    Rattus norvegicus (Rat).
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
    Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Rattus.
OX
    NCBI TaxID=10116;
RN
    [1]
RP
    SEQUENCE FROM N.A.
RX
    MEDLINE=88122671; PubMed=3340214;
    Nudel U., Robzyk K., Yaffe D.;
RA
RT
    "Expression of the putative Duchenne muscular dystrophy gene in
RT
    differentiated myogenic cell cultures and in the brain.";
RL
    Nature 331:635-638(1988).
CC
    -!- FUNCTION: May play a role in anchoring the cytoskeleton to the
CC
        plasma membrane.
CC
    -!- SUBUNIT: Interacts with the syntrophins SNTA1, SNTB1, SNTB2, SNTG1
CC
       and SNTG2 (By similarity).
CC
    _____
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
    modified and this statement is not removed. Usage by and for commercial
CC
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
    or send an email to license@isb-sib.ch).
CC
    ______
CC
DR
    EMBL; X07000; CAA30057.1; -.
DR
    PIR; S01614; S01614.
DR
    InterPro; IPR001589; Actbind_actnin.
    InterPro; IPR001202; WW Rsp5 WWP.
DR
    PROSITE; PS00019; ACTININ 1; PARTIAL.
DR
DR
    PROSITE; PS00020; ACTININ 2; PARTIAL.
    PROSITE; PS01159; WW DOMAIN 1; PARTIAL.
DR
DR
    PROSITE; PS50020; WW DOMAIN 2; PARTIAL.
    Structural protein; Actin-binding; Calcium-binding; Cytoskeleton;
KW
KW
    Repeat.
FT
    NON TER
                1
                      1
    NON TER
FT
               29
                      29
    SEQUENCE 29 AA; 3289 MW; 8ECFB28A1A7ACAF0 CRC64;
SQ
```

```
Query Match
                        11.8%; Score 4; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 4.5e+02;
          4; Conservative 0; Mismatches 0; Indels
                                                            0; Gaps
          27 KLQD 30
Qу
             1111
Db
          12 KLQD 15
RESULT 3
PSBY SYNY3
ID
     PSBY SYNY3
                   STANDARD;
                                 PRT;
                                        39 AA.
AC
     P73676;
DT
     15-DEC-1998 (Rel. 37, Created)
     15-DEC-1998 (Rel. 37, Last sequence update)
DT
DT
     16-OCT-2001 (Rel. 40, Last annotation update)
DΕ
     Photosystem II protein Y.
GN
     PSBY OR SML0007.
OS
     Synechocystis sp. (strain PCC 6803).
OC
     Bacteria; Cyanobacteria; Chroococcales; Synechocystis.
OX
     NCBI TaxID=1148;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RX
     MEDLINE=97061201; PubMed=8905231;
RA
     Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y.,
RA
     Miyajima N., Hirosawa M., Sugiura M., Sasamoto S., Kimura T.,
RA
     Hosouchi T., Matsuno A., Muraki A., Nakazaki N., Naruo K., Okumura S.,
     Shimpo S., Takeuchi C., Wada T., Watanabe A., Yamada M., Yasuda M.,
RA
RA
     Tabata S.:
RT
     "Sequence analysis of the genome of the unicellular cyanobacterium
RT
     Synechocystis sp. strain PCC6803. II. Sequence determination of the
     entire genome and assignment of potential protein-coding regions.";
RT
RL
    DNA Res. 3:109-136(1996).
CC
     -!- FUNCTION: MANGANESE-BINDING POLYPEPTIDE WITH L-ARGININE
CC
        METABOLIZING ENZYME ACTIVITY. COMPONENT OF THE CORE OF PHOTOSYSTEM
CC
        II (BY SIMILARITY).
     -!- SUBCELLULAR LOCATION: CELLULAR THYLAKOID MEMBRANE.
CC
     -!- SIMILARITY: BELONGS TO THE PSBY FAMILY.
CC
CC
     ______
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
    the European Bioinformatics Institute. There are no restrictions on its
CC
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
     DR
    EMBL; D90908; BAA17722.1; -.
    PIR; S77164; S77164.
DR
KW
    Photosystem II; Transmembrane; Thylakoid; Complete proteome.
FT
    TRANSMEM
              5 25
                                POTENTIAL.
SQ
    SEQUENCE
              39 AA; 4202 MW; 3EA176ABAA79F6DF CRC64;
 Query Match
                        11.8%; Score 4; DB 1; Length 39;
 Best Local Similarity 100.0%; Pred. No. 5.9e+02;
 Matches 4; Conservative 0; Mismatches 0; Indels 0; Gaps
```

```
QУ
           28 LODV 31
              Db
           31 LQDV 34
RESULT 4
SR1C SARPE
ID
     SR1C SARPE
                    STANDARD;
                                   PRT:
                                            39 AA.
AC
     P08377:
DT
     01-AUG-1988 (Rel. 08, Created)
DT
     01-AUG-1988 (Rel. 08, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Sarcotoxin IC.
OS
     Sarcophaga peregrina (Flesh fly) (Boettcherisca peregrina).
OC
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
     Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Oestroidea:
OC'
     Sarcophagidae; Sarcophaga.
OX
     NCBI TaxID=7386;
RN
     [1]
RP
     SEQUENCE.
RX
     MEDLINE=85207747; PubMed=3888997;
     Okada M., Natori S.;
RA
RT
     "Primary structure of sarcotoxin I, an antibacterial protein induced
     in the hemolymph of Sarcophaga peregrina (flesh fly) larvae.";
RT
RL
     J. Biol. Chem. 260:7174-7177(1985).
CC
     -!- FUNCTION: SARCOTOXINS, WHICH ARE POTENT BACTERICIDAL PROTEINS,
CC
         ARE PRODUCED IN RESPONSE TO INJURY. THEY ARE CYTOTOXIC TO BOTH
CC
         GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- SIMILARITY: BELONGS TO THE CECROPIN FAMILY.
CC
DR
     PIR; C22625; CKFHCS.
DR
     InterPro; IPR000875; Cecropin.
DR
     InterPro; IPR003253; Sarctxn_cecrpn.
DR
     Pfam; PF00272; cecropin; 1.
DR
     ProDom; PD001670; Sarctxn cecrpn; 1.
DR
     PROSITE; PS00268; CECROPIN; 1.
KW
     Insect immunity; Antibiotic; Hemolymph; Amidation; Multigene family.
FT
     MOD RES
                  39
                         39
                                  AMIDATION.
     SEOUENCE
SQ
                39 AA; 4227 MW; 11E79F4F405E855A CRC64;
  Query Match
                          11.8%; Score 4; DB 1; Length 39;
  Best Local Similarity
                          100.0%; Pred. No. 5.9e+02;
  Matches
            4; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                              0;
Qу
           23 WLRK 26
              ] | | |
Db
            2 WLRK 5
RESULT 5
CH60 MYCSM
ID
     CH60 MYCSM
                    STANDARD;
                                   PRT;
                                           28 AA.
AC
     P80673;
DT
     01-OCT-1996 (Rel. 34, Created)
     01-OCT-1996 (Rel. 34, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     60 kDa chaperonin (Protein Cpn60) (groEL protein) (Fragment).
DE
```

```
GROL OR GROEL OR MOPA.
 GN
OS
      Mycobacterium smeqmatis.
      Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
OC
      Corynebacterineae; Mycobacteriaceae; Mycobacterium.
OC
OX
      NCBI TaxID=1772;
RN
      [1]
RΡ
      SEOUENCE.
RC
      STRAIN=ATCC 607 / mc(2)6 / NRRL B-692;
RX
     MEDLINE=97387814; PubMed=9243799;
RA
      Lundrigan M.D., Arceneaux J.E.L., Zhu W., Byers B.R.;
      "Enhanced hydrogen peroxide sensitivity and altered stress protein
RT
      expression in iron-starved Mycobacterium smegmatis.";
RT
RL
     BioMetals 10:215-225(1997).
      -!- FUNCTION: Prevents misfolding and promotes the refolding and
CC
CC
         proper assembly of unfolded polypeptides generated under stress
CC
          conditions.
CC
      -!- SUBUNIT: Oligomer of 14 subunits composed of two stacked rings of
CC
         7 subunits (By similarity).
CC
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- SIMILARITY: Belongs to the chaperonin (HSP60) family.
DR
     HAMAP; MF 00600; -; 1.
DR
     InterPro; IPR001844; Chaprnin Cpn60.
DR
     PROSITE; PS00296; CHAPERONINS CPN60; PARTIAL.
KW
     Chaperone; ATP-binding.
FT
     NON TER
                  28
                          28
SQ
     SEQUENCE
                28 AA; 3047 MW; 2F40F27B94EF8720 CRC64;
  Query Match
                            8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity 100.0%; Pred. No. 5e+03;
             3; Conservative 0; Mismatches
                                                 0; Indels
                                                                  0; Gaps
QУ
           15 LNS 17
              111
Db
           18 LNS 20
RESULT 6
COXB SOLTU
     COXB SOLTU
ID
                    STANDARD;
                                    PRT;
                                            28 AA.
AC
     P80499;
     01-FEB-1996 (Rel. 33, Created)
DT
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
     15-JUL-1999 (Rel. 38, Last annotation update)
DT
DE
     Cytochrome c oxidase polypeptide Vb (EC 1.9.3.1) (Fragment).
OS
     Solanum tuberosum (Potato).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
     Asteridae; lamiids; Solanales; Solanaceae; Solanum.
OX
     NCBI TaxID=4113;
RN
     [1]
RP
     SEQUENCE.
     TISSUE=Tuber;
RC
RX
     MEDLINE=97077345; PubMed=8919912;
RA
     Jansch L., Kruft V., Schmitz U.K., Braun H.P.;
RT
     "New insights into the composition, molecular mass and stoichiometry
RT
     of the protein complexes of plant mitochondria.";
RL
     Plant J. 9:357-368(1996).
```

```
CC
     -!- CATALYTIC ACTIVITY: 4 ferrocytochrome c + O(2) = 4 ferricytochrome
CC
         c + 2 H(2) O.
     -!- SUBCELLULAR LOCATION: Mitochondrial inner membrane.
CC
     -!- SIMILARITY: BELONGS TO THE CYTOCHROME C OXIDASE VB FAMILY.
CC
DR
     InterPro; IPR002124; COX5B.
DR
     PROSITE; PS00848; COX5B; PARTIAL.
KW
     Oxidoreductase; Inner membrane; Mitochondrion.
FT
                   28
                          28
SO
     SEQUENCE
                28 AA; 3101 MW; 1EAFA79E2682849C CRC64;
  Query Match
                            8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity
                           100.0%; Pred. No. 5e+03;
             3; Conservative 0; Mismatches
                                                   0; Indels
                                                                                0;
                                                                   0; Gaps
            2 VSE 4
Qу
               Db
            2 VSE 4
RESULT 7
GUN SCHCO
ID
     GUN SCHCO
                     STANDARD;
                                    PRT;
                                            28 AA.
AC
     P81190;
     15-JUL-1998 (Rel. 36, Created)
DT
     15-JUL-1998 (Rel. 36, Last sequence update)
28-FEB-2003 (Rel. 41, Last annotation update)
DT
DT
     Endoglucanase (EC 3.2.1.4) (Endo-1,4-beta-glucanase) (Cellulase)
DE
     (Fragment).
DE
     Schizophyllum commune (Bracket fungus).
OS
     Eukaryota; Fungi; Basidiomycota; Hymenomycetes; Homobasidiomycetes;
OC
OC
     Agaricales; Schizophyllaceae; Schizophyllum.
OX
     NCBI_TaxID=5334;
RN
     [1]
RP
     SEQUENCE.
RX
     MEDLINE=97459758; PubMed=9315718;
RA
     Clarke A.J., Drummelsmith J., Yaguchi M.;
     "Identification of the catalytic nucleophile in the cellulase from
RT
RT
     Schizophyllum commune and assignment of the enzyme to Family 5,
RT
     subtype 5 of the glycosidases.";
     FEBS Lett. 414:359-361(1997).
RL
     -!- CATALYTIC ACTIVITY: Endohydrolysis of 1,4-beta-D-glucosidic
CC
CC
         linkages in cellulose, lichenin and cereal beta-D-glucans.
CC
     -!- SUBCELLULAR LOCATION: Attached to the membrane by a lipid anchor
CC
         (Probable).
CC
     -!- SIMILARITY: BELONGS TO CELLULASE FAMILY A (FAMILY 5 OF GLYCOSYL
CC
         HYDROLASES).
     InterPro; IPR001547; Glyco_hydro 5.
DR
     PROSITE; PS00659; GLYCOSYL HYDROL F5; PARTIAL.
DR
     Cellulose degradation; Hydrolase; Glycosidase; Zymogen; Membrane;
KW
KW
     Lipoprotein.
     ACT SITE
FT
                  20
                         20
                                  NUCLEOPHILE.
FT
     NON TER
                  28
                         28
SO
     SEQUENCE
                28 AA; 2937 MW; B3F1C0C99C9950BE CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 5e+03;
  Matches
             3; Conservative 0; Mismatches 0; Indels
                                                                               0;
```

```
Qу
            22 EWL 24
               Db
            7 EWL 9
RESULT 8
PA23 TRIST
ID
     PA23 TRIST
                    STANDARD;
                                    PRT;
                                            28 AA.
AC
     P82894;
DT
     16-OCT-2001 (Rel. 40, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
     Phospholipase A2, basic 3 (EC 3.1.1.4) (PA2-III) (PLA2-III)
DE
     (Phosphatidylcholine 2-acylhydrolase) (Fragment).
DE
OS
     Trimeresurus stejnegeri (Chinese green tree viper).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Lepidosauria; Squamata; Scleroglossa; Serpentes; Colubroidea;
     Viperidae; Crotalinae; Trimeresurus.
OC
OX
     NCBI TaxID=39682;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Venom;
RA
     Li S.Y., Wang W.Y., Xiong Y.L.;
RT
     "Isolation, sequence and characterization of five variants of
RT
     phospholipase A2 from venom of snake Trimeresurus stejnegeri.";
RL
     Submitted (DEC-2000) to the SWISS-PROT data bank.
     -!- FUNCTION: PA2 catalyzes the calcium-dependent hydrolysis of the 2-
CC
CC
         acyl groups in 3-sn-phosphoglycerides. Hemolytic and neurotoxic
CC
         activities are not detected.
     -!- CATALYTIC ACTIVITY: Phosphatidylcholine + H(2)0 = 1-
CC
CC
         acylglycerophosphocholine + a fatty acid anion.
CC
     -!- COFACTOR: Binds 1 calcium ion per subunit (By similarity).
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE PHOSPHOLIPASE A2 FAMILY. GROUP II
CC
         SUBFAMILY.
DR
     HSSP; P82287; 10LL.
DR
     InterPro; IPR001211; PhospholipaseA2.
DR
     Pfam; PF00068; phoslip; 1.
     ProDom; PD000303; PhospholipaseA2; 1.
DR
     PROSITE; PS00119; PA2_ASP; PARTIAL.
DR
DR
     PROSITE; PS00118; PA2_HIS; PARTIAL.
KW
     Hydrolase; Lipid degradation; Calcium; Multigene family.
FT
     NON TER
                  28
SO
     SEQUENCE
                28 AA; 3023 MW; 042104521CA1F103 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 5e+03;
  Matches
            3; Conservative
                               0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           11 LGK 13
              Db
            5 LGK 7
```

RESULT 9 PA2C PSEPO

```
ID
     PA2C PSEPO
                     STANDARD;
                                    PRT;
                                            28 AA.
AC
     P20260;
     01-FEB-1991 (Rel. 17, Created)
ĎΤ
     01-FEB-1991 (Rel. 17, Last sequence update)
DT
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Phospholipase A2 (EC 3.1.1.4) (Pseudexin C chain) (Phosphatidylcholine
DE
     2-acylhydrolase) (Fragment).
OS
     Pseudechis porphyriacus (Red-bellied black snake).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Lepidosauria; Squamata; Scleroglossa; Serpentes; Colubroidea;
     Elapidae; Acanthophiinae; Pseudechis.
OC
OX
     NCBI TaxID=8671;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Venom;
RX
     MEDLINE=89388835; PubMed=2675391;
RA
     Schmidt J.J., Middlebrook J.L.;
     "Purification, sequencing and characterization of pseudexin
RT
     phospholipases A2 from Pseudechis porphyriacus (Australian
RT
RT
     red-bellied black snake).";
RL
     Toxicon 27:805-818(1989).
CC
     -!- FUNCTION: PA2 catalyzes the calcium-dependent hydrolysis of the 2-
CC
         acyl groups in 3-sn-phosphoglycerides.
CC
     -!- CATALYTIC ACTIVITY: Phosphatidylcholine + H(2)0 = 1-
CC
         acylglycerophosphocholine + a fatty acid anion.
CC
     -!- COFACTOR: Binds 1 calcium ion per subunit (By similarity).
     -!- SUBCELLULAR LOCATION: Secreted.
CC
CC
     -!- SIMILARITY: BELONGS TO THE PHOSPHOLIPASE A2 FAMILY. GROUP I
CC
         SUBFAMILY.
DR
     PIR; C32416; C32416.
DR
     HSSP; P00592; 2PHI.
DR
     InterPro; IPR001211; PhospholipaseA2.
DR
     Pfam; PF00068; phoslip; 1.
DR
     ProDom; PD000303; PhospholipaseA2; 1.
DR
     PROSITE; PS00119; PA2 ASP; PARTIAL.
     PROSITE; PS00118; PA2 HIS; PARTIAL.
DR
     Hydrolase; Lipid degradation; Calcium; Multigene family.
KW
FT
     NON TER
                  28
                         28
     SEQUENCE
SO
                28 AA; 3210 MW; 5089A7E85CAAE0D5 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 5e+03;
  Matches
            3; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                               0;
            5 IOL 7
Qу
              Db
            3 IOL 5
RESULT 10
VI03 VACCP
ΙD
     VI03 VACCP
                    STANDARD;
                                    PRT;
                                            28 AA.
AC
     Q00334;
DT
     01-APR-1993 (Rel. 25, Created)
DT
     01-APR-1993 (Rel. 25, Last sequence update)
DT
     01-FEB-1994 (Rel. 28, Last annotation update)
DE
     Protein I3 (Fragment).
```

```
GN
     I3L.
OS
     Vaccinia virus (strain L-IVP).
     Viruses; dsDNA viruses, no RNA stage; Poxviridae; Chordopoxvirinae;
OC
OC
     Orthopoxvirus.
OX
     NCBI TaxID=31531;
RN
     [1]
RP
    SEQUENCE FROM N.A.
     MEDLINE=91066899; PubMed=2250685;
RX
     Ryazankina O.I., Shchelkunov S.N., Muravlev A.I., Netesova N.A.,
RA
RA
     Mikryukov N.N., Gutorov V.V., Nikulin A.E., Kulichkov V.A.,
RA
     Malygin E.G.;
RT
     "Molecular-biological study of vaccinia virus genome. II.
     Localization and nucleotide sequence of vaccinia virus genes coding
RT
RT
     for proteins 36K and 12K.";
     Mol. Biol. (Mosk) 24:968-976(1990).
RL
     -!- MISCELLANEOUS: THIS PROTEIN IS SYNTHESIZED IN THE EARLY AS WELL AS
CC
CC
         THE LATE PHASE OF INFECTION.
CC
CC
     This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
     between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
     the European Bioinformatics Institute. There are no restrictions on its
CC
     use by non-profit institutions as long as its content is in no way
     modified and this statement is not removed. Usage by and for commercial
CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
CC
     or send an email to license@isb-sib.ch).
CC
     DR
     EMBL; X61165; CAA43473.1; -.
DR
     InterPro; IPR006754; Pox I3.
     Pfam; PF04661; Pox I3; 1.
DR
KW
     Early protein; Late protein.
FT
     NON TER
               1
                       1
SO
     SEQUENCE
               28 AA; 3238 MW; CE10813AC544F010 CRC64;
  Query Match
                         8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity 100.0%; Pred. No. 5e+03;
  Matches
           3; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          10 NLG 12
             111
           5 NLG 7
Db
RESULT 11
VIP ALLMI
    VIP ALLMI
                   STANDARD;
                                 PRT;
                                         28 AA.
AC
    P48142; P01285;
DT
    21-JUL-1986 (Rel. 01, Created)
DT
    21-JUL-1986 (Rel. 01, Last sequence update)
DT
    01-OCT-1996 (Rel. 34, Last annotation update)
    Vasoactive intestinal peptide (VIP).
DE
GN
    VIP.
OS
    Alligator mississippiensis (American alligator).
OC
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi:
OC
    Archosauria; Crocodylidae; Alligatorinae; Alligator.
OX
    NCBI TaxID=8496;
RN
    [1]
RP
    SEQUENCE.
```

```
RC
     TISSUE=Stomach:
RX
     MEDLINE=93324451; PubMed=8101369;
RA
     Wang Y., Conlon J.M.;
RT
     "Neuroendocrine peptides (NPY, GRP, VIP, somatostatin) from the brain
RT
     and stomach of the alligator.";
RL
     Peptides 14:573-579(1993).
CC
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
CC
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
CC
         AND GALL BLADDER.
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
DR
     InterPro; IPR000532; Glucagon.
     Pfam; PF00123; hormone2; 1.
DR
DR
     PRINTS; PR00275; GLUCAGON.
DR
     SMART; SM00070; GLUCA; 1.
     PROSITE; PS00260; GLUCAGON; 1.
DR
KW
     Glucagon family; Amidation; Hormone.
FT
     MOD RES
                  28
                         28
                                  AMIDATION.
SO
     SEOUENCE
                28 AA; 3320 MW; 17B42D7573FF6F37 CRC64;
                           8.8%; Score 3; DB 1; Length 28;
  Query Match
  Best Local Similarity
                          100.0%; Pred. No. 5e+03;
  Matches
           3; Conservative 0; Mismatches
                                                  0; Indels
                                                                  0; Gaps
                                                                              0:
Qу
           15 LNS 17
              | | |
Db
           23 LNS 25
RESULT 12
VIP RANRI
ID
     VIP RANRI
                    STANDARD;
                                   PRT;
                                            28 AA.
AC
     P81016;
DT
     01-NOV-1997 (Rel. 35, Created)
     01-NOV-1997 (Rel. 35, Last sequence update)
DT
     01-NOV-1997 (Rel. 35, Last annotation update)
DT
     Vasoactive intestinal peptide (VIP).
DΕ
     Rana ridibunda (Laughing frog) (Marsh frog).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Ranoidea; Ranidae; Rana.
OC
OX
     NCBI TaxID=8406;
RN
     [1]
RP
     SEQUENCE.
RX
     MEDLINE=95309202; PubMed=7540547;
     Chartrel N., Wang Y., Fournier A., Vaudry H., Conlon J.M.;
RA
RT
     "Frog vasoactive intestinal polypeptide and galanin: primary
RT
     structures and effects on pituitary adenylate cyclase.";
RL
     Endocrinology 136:3079-3086(1995).
CC
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
CC
         AND GALL BLADDER.
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
     PROSITE; PS00260; GLUCAGON; 1.
DR
```

```
KW
     Glucagon family; Amidation; Hormone.
 FT
     MOD RES
                   28
                         28
                                   AMIDATION.
      SEOUENCE
 SQ
                 28 AA; 3320 MW; 17B42D7573FF6F37 CRC64;
   Query Match
                            8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity
                           100.0%; Pred. No. 5e+03;
  Matches
             3; Conservative 0; Mismatches
                                                   0; Indels
                                                                   0; Gaps
                                                                               0;
ОУ
            15 LNS 17
               111
            23 LNS 25
Db
RESULT 13
VIP SHEEP
ID
     VIP SHEEP
                     STANDARD;
                                    PRT;
                                            28 AA.
     P04565;
AC
DT
     13-AUG-1987 (Rel. 05, Created)
     13-AUG-1987 (Rel. 05, Last sequence update)
DT
DT
     01-OCT-1996 (Rel. 34, Last annotation update)
DE
     Vasoactive intestinal peptide (VIP).
GN
     VIP.
OS
     Ovis aries (Sheep),
OS
     Capra hircus (Goat), and
     Canis familiaris (Dog).
OS
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
OC
     Bovidae; Caprinae; Ovis.
OX
     NCBI TaxID=9940, 9925, 9615:
RN
     [1]
RΡ
     SEQUENCE.
RC
     SPECIES=Sheep; TISSUE=Brain;
RX
     MEDLINE=91045331; PubMed=2235680;
RA
     Gafvelin G.;
RT
     "Isolation and primary structure of VIP from sheep brain.";
RL
     Peptides 11:703-706(1990).
RN
RΡ
     SEQUENCE.
RC
     SPECIES=Sheep; TISSUE=Small intestine;
     MEDLINE=91239834; PubMed=2034821;
RX
     Bounjoua Y., Vandermeers A., Robberecht P., Vandermeers-Piret M.C.,
RA
RA
     Christophe J.;
     "Purification and amino acid sequence of vasoactive intestinal
RT
RT
     peptide, peptide histidine isoleucinamide and secretin from the ovine
RT
     small intestine.";
RL
     Regul. Pept. 32:169-179(1991).
RN
     [3]
RΡ
     SEQUENCE.
RC
     SPECIES=C.hircus, and C.familiaris;
     MEDLINE=86313167; PubMed=3748846;
RX
     Eng J., Du B.-H., Raufman J.-P., Yalow R.S.;
RA
     "Purification and amino acid sequences of dog, goat and guinea pig
RT
RT
     VIPs.";
RL
     Peptides 7 Suppl. 1:17-20(1986).
CC
     -!- FUNCTION: VIP CAUSES VASODILATION, LOWERS ARTERIAL BLOOD
CC
         PRESSURE, STIMULATES MYOCARDIAL CONTRACTILITY, INCREASES
CC
         GLYCOGENOLYSIS AND RELAXES THE SMOOTH MUSCLE OF TRACHEA, STOMACH
```

```
CC
         AND GALL BLADDER.
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
DR
     PIR; A60304; A60304.
DR
     PIR; B60072; VRSH.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
DR
     SMART; SM00070; GLUCA; 1.
DR
     PROSITE; PS00260; GLUCAGON; 1.
KW
     Glucagon family; Amidation; Hormone.
FT
     MOD RES
                  28
                         28
                                  AMIDATION.
     SEQUENCE
SO
                28 AA; 3327 MW; EF313FB573FF6F3F CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 28;
  Best Local Similarity
                          100.0%; Pred. No. 5e+03;
  Matches
            3; Conservative 0; Mismatches 0; Indels 0; Gaps
           15 LNS 17
Qу
              III
Db
           23 LNS 25
RESULT 14
GALA ALLMI
     GALA ALLMI
ID
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P47215;
DT
     01-FEB-1996 (Rel. 33, Created)
DT
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Galanin.
OS
     Alligator mississippiensis (American alligator).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Archosauria; Crocodylidae; Alligatorinae; Alligator.
OX
     NCBI TaxID=8496;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Stomach;
     MEDLINE=95023390; PubMed=7524049;
RX
RA
     Wang Y., Conlon J.M.;
     "Purification and primary structure of galanin from the alligator
RT
RT
     stomach.";
RL
     Peptides 15:603-606(1994).
CC
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
     InterPro; IPR001600; Galanin.
DR
DR
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
     PROSITE; PS00861; GALANIN; 1.
DR
KW
     Hormone; Neuropeptide; Amidation.
FT
     MOD RES
                  29
                        29
                                  AMIDATION.
SQ
     SEQUENCE
                29 AA; 3216 MW; E02F019B2D3E0529 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
```

```
Best Local Similarity 100.0%; Pred. No. 5.2e+03;
   Matches
              3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                               0;
            15 LNS 17
 Qу
               111
 Db
             4 LNS 6
 RESULT 15
GALA AMICA
 ID
      GALA AMICA
                     STANDARD;
                                    PRT;
                                            29 AA.
AC
      P47214;
DT
      01-FEB-1996 (Rel. 33, Created)
DT
      01-FEB-1996 (Rel. 33, Last sequence update)
DT
      28-FEB-2003 (Rel. 41, Last annotation update)
DΕ
     Galanin.
OS
     Amia calva (Bowfin).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
ÓC
     Actinopterygii; Neopterygii; Amiiformes; Amiidae; Amia.
OC
OX
     NCBI TaxID=7924;
RN
      [1]
RP
     SEQUENCE.
RC
     TISSUE=Stomach;
RX
     MEDLINE=95083480; PubMed=7527531;
RA
     Wang Y., Conlon J.M.;
RT
     "Purification and characterization of galanin from the
     phylogenetically ancient fish, the bowfin (Amia calva) and dogfish
RT
RT
     (Scyliorhinus canicula).";
RL
     Peptides 15:981-986(1994).
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
DR
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
     ProDom; PD005962; Galanin; 1.
DR
DR
     PROSITE; PS00861; GALANIN; 1.
KW
     Hormone; Neuropeptide; Amidation.
FT
     MOD RES
                  29
                         29
                                  AMIDATION.
SO
     SEQUENCE
                29 AA; 3114 MW;
                                 7518719B2D271627 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity
                         100.0%; Pred. No. 5.2e+03;
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
Qу
           15 LNS 17
              ||\cdot||
Dh
            4 LNS 6
RESULT 16
GALA_CHICK
ID
     GALA CHICK
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P30802;
DT
     01-JUL-1993 (Rel. 26, Created)
```

```
DT
     01-JUL-1993 (Rel. 26, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Galanin.
GN
     GAL OR GALN
OS
     Gallus gallus (Chicken).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Archosauria; Aves; Neognathae; Galliformes; Phasianidae; Phasianinae;
OC
     Gallus.
OX
     NCBI TaxID=9031;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Intestine:
     MEDLINE=91348254; PubMed=1715289;
RX
     Norberg A., Sillard R., Carlquist M., Joernvall H., Mutt V.;
RA
     "Chemical detection of natural peptides by specific structures.
RT
RT
     Isolation of chicken galanin by monitoring for its N-terminal
     dipeptide, and determination of the amino acid sequence.";
RT
RL
     FEBS Lett. 288:151-153(1991).
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
DR
     PIR; S17147; S17147.
     InterPro; IPR001600; Galanin.
DR
DR
     Pfam; PF01296; Galanin; 1.
DR
     PRINTS; PR00273; GALANIN.
DR
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
     Hormone; Neuropeptide; Amidation.
KW
FT
     MOD RES
                  29
                         29
                                  AMIDATION.
SO
     SEQUENCE
                29 AA; 3212 MW; EB66919B2D271629 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 5.2e+03;
  Matches
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
           15 LNS 17
QУ
              Db
            4 LNS 6
RESULT 17
GALA ONCMY
ID
     GALA ONCMY
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P47213;
DT
     01-FEB-1996 (Rel. 33, Created)
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Galanin.
     Oncorhynchus mykiss (Rainbow trout) (Salmo gairdneri).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Actinopterygii; Neopterygii; Teleostei; Euteleostei;
OC
     Protacanthopterygii; Salmoniformes; Salmonidae; Oncorhynchus.
OX
     NCBI TaxID=8022;
RN
     [1]
```

```
RP
     SEOUENCE.
RC
     TISSUE=Stomach;
     MEDLINE=95164756; PubMed=7532194;
RX
RA
     Anglade I., Wang Y., Jensen J., Tramu G., Kah O., Conlon J.M.;
RT
     "Characterization of trout galanin and its distribution in trout
     brain and pituitary.";
RT
RL
     J. Comp. Neurol. 350:63-74(1994).
CC
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
.CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
DR
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
KW
     Hormone; Neuropeptide; Amidation.
FT
     MOD RES
                  29
                         29
                                  AMIDATION.
                29 AA; 3044 MW; 73C37190403FA349 CRC64;
SO
     SEOUENCE
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 5.2e+03;
             3; Conservative
                                0; Mismatches
                                                                  0; Gaps
                                                  0; Indels
                                                                              0;
           15 LNS 17
Qу
              Db
            4 LNS 6
RESULT 18
GALA RANRI
ID
     GALA RANRI
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     P47216;
DT
     01-FEB-1996 (Rel. 33, Created)
     01-FEB-1996 (Rel. 33, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Galanin.
     Rana ridibunda (Laughing frog) (Marsh frog).
OS
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Ranoidea; Ranidae; Rana.
OX
     NCBI_TaxID=8406;
RN
     [1]
RP
     SEQUENCE.
RX
     MEDLINE=95309202; PubMed=7540547;
     Chartrel N., Wang Y., Fournier A., Vaudry H., Conlon J.M.;
RA
     "Frog vasoactive intestinal polypeptide and galanin: primary
RT
RT
     structures and effects on pituitary adenylate cyclase.";
RL
     Endocrinology 136:3079-3086(1995).
CC
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
DR
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
```

```
DR
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
     Hormone; Neuropeptide; Amidation.
KW
FT
     MOD RES
                  29
                         29
                                  AMIDATION.
     SEQUENCE
SQ
                29 AA; 3162 MW; F718719B2D3FB529 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 5.2e+03;
  Matches
             3; Conservative 0; Mismatches
                                                 0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           15 LNS 17
              Db
            4 LNS 6
RESULT 19
GALA SHEEP
ID
     GALA SHEEP
                    STANDARD;
                                   PRT:
                                           29 AA.
AC
     P31234;
DT
     01-JUL-1993 (Rel. 26, Created)
DT
     01-JUL-1993 (Rel. 26, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Galanin.
GN
     GAL OR GALN OR GLNN.
OS
     Ovis aries (Sheep).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovoidea;
OC
OC
     Bovidae; Caprinae; Ovis.
OX
     NCBI TaxID=9940;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Brain;
RX
     MEDLINE=92158824; PubMed=1724081;
     Sillard R., Langel U., Joernvall H.;
RA
     "Isolation and characterization of galanin from sheep brain.";
RT
RL
     Peptides 12:855-859(1991).
CC
     -!- FUNCTION: CONTRACTS SMOOTH MUSCLE OF THE GASTROINTESTINAL AND
CC
         GENITOURINARY TRACT, REGULATES GROWTH HORMONE RELEASE, MODULATES
CC
         INSULIN RELEASE, AND MAY BE INVOLVED IN THE CONTROL OF ADRENAL
CC
         SECRETION.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- SIMILARITY: BELONGS TO THE GALANIN FAMILY.
CC
DR
     InterPro; IPR001600; Galanin.
DR
     Pfam; PF01296; Galanin; 1.
DR
     PRINTS; PR00273; GALANIN.
     ProDom; PD005962; Galanin; 1.
DR
     PROSITE; PS00861; GALANIN; 1.
DR
KW
     Hormone; Neuropeptide; Amidation.
FT
     MOD RES
                  29
                         29
                                  AMIDATION.
SQ
     SEQUENCE
                29 AA; 3185 MW; F718719B2D3FB089 CRC64;
 Query Match
                           8.8%; Score 3; DB 1; Length 29;
 Best Local Similarity 100.0%; Pred. No. 5.2e+03;
 Matches
          3; Conservative 0; Mismatches 0; Indels
                                                                0; Gaps
```

```
Db
```

```
RESULT 20
GLUC CHIBR
     GLUC CHIBR
ID
                     STANDARD;
                                    PRT;
                                            29 AA.
AC
     P31297;
     01-JUL-1993 (Rel. 26, Created)
DT
DT
     01-JUL-1993 (Rel. 26, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Glucagon.
GN
     GCG.
OS
     Chinchilla brevicaudata (Chinchilla).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
OC
     Mammalia; Eutheria; Rodentia; Hystricognathi; Chinchillidae;
OC
     Chinchilla.
OX
     NCBI TaxID=10152;
RN
     [1]
RP
     SEOUENCE.
RX
     MEDLINE=91045327; PubMed=2235678;
RA
     Eng J., Kleinman W.A., Chu L.S.;
RT
     "Purification of peptide hormones from chinchilla pancreas by
RT
     chemical assay.";
     Peptides 11:683-685(1990).
RL
CC
     -!- FUNCTION: PROMOTES HYDROLYSIS OF GLYCOGEN AND LIPIDS, AND RAISES
CC
         THE BLOOD SUGAR LEVEL.
CC
     -!- INDUCTION: PRODUCED IN THE A CELLS OF THE ISLETS OF LANGERHANS
CC
         IN RESPONSE TO A DROP IN BLOOD SUGAR CONCENTRATION.
CC
     -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
DR
     PIR; A60413; GCCB.
DR
     HSSP; P01275; 1BH0.
DR
     InterPro; IPR000532; Glucagon.
DR
     Pfam; PF00123; hormone2; 1.
DR
     PRINTS; PR00275; GLUCAGON.
DR
     SMART; SM00070; GLUCA; 1.
DR
     PROSITE; PS00260; GLUCAGON: 1.
KW
     Glucagon family; Hormone.
SQ
     SEOUENCE
                29 AA; 3478 MW; 19ECF4DABB752B27 CRC64;
  Query Match
                            8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 5.2e+03;
             3; Conservative
                                0; Mismatches
                                                    0; Indels
                                                                      Gaps
                                                                               0;
Qу
           13 KHL 15
              Db
           12 KHL 14
RESULT 21
IPYR DESVH
ID
     IPYR DESVH
                    STANDARD;
                                    PRT;
                                            29 AA.
AC
     P19371;
DT
     01-NOV-1990 (Rel. 16, Created)
DT
     01-NOV-1990 (Rel. 16, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-
DE
     hydrolase) (PPase) (Fragment).
```

```
OS
     Desulfovibrio vulgaris (strain Hildenborough).
OC
     Bacteria; Proteobacteria; Deltaproteobacteria; Desulfovibrionales;
OC
     Desulfovibrionaceae; Desulfovibrio.
OX
     NCBI TaxID=882;
RN
     [1]
RP
     SEQUENCE.
RX
     MEDLINE=90365722; PubMed=2168174;
RA
     Liu M.-Y., le Gall J.;
     "Purification and characterization of two proteins with inorganic
RT
RT
     pyrophosphatase activity from Desulfovibrio vulgaris: rubrerythrin
RT
     and a new, highly active, enzyme.";
RL
     Biochem. Biophys. Res. Commun. 171:313-318(1990).
CC
     -!- FUNCTION: INORGANIC PYROPHOSPHATASE IS AN ESSENTIAL ENZYME FOR THE
CC
         ACTIVATION OF SULFATE BY SULFATE REDUCING BACTERIA. THIS IS A HIGH
CC
         ACTIVITY PYROPHOSPHATASE.
CC
     -!- CATALYTIC ACTIVITY: Diphosphate + H(2)0 = 2 phosphate.
CC
     -!- SUBCELLULAR LOCATION: Periplasmic (Potential).
DR
     PIR; A35687; A35687.
DR
     HAMAP; MF 00209; -; 1.
     InterPro; IPR001596; Pyrophosphatase.
DR
     PROSITE; PS00387; PPASE; PARTIAL.
DR
KW
     Hydrolase; Periplasmic.
FT
     NON TER
                  29
                         29
SO
     SEQUENCE
                29 AA; 3201 MW; 3FC5792360F2227B CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 5.2e+03;
             3; Conservative 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                               0;
            3 SEI 5
QУ
              | | |
           15 SEI 17
Db
RESULT 22
NUO1 SOLTU
     NUO1 SOLTU
ID
                    STANDARD;
                                   PRT;
                                            29 AA.
AC
     P80267;
DT
     01-FEB-1994 (Rel. 28, Created)
     01-FEB-1994 (Rel. 28, Last sequence update)
DT
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
     NADH-ubiquinone oxidoreductase 14 kDa subunit (EC 1.6.5.3)
DE
     (EC 1.6.99.3) (Complex I-14KD) (CI-14KD) (Fragment).
DE
OS
     Solanum tuberosum (Potato).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC.
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
     Asteridae; lamiids; Solanales; Solanaceae; Solanum.
OX
     NCBI TaxID=4113;
RN
     [1]
RΡ
     SEOUENCE.
RC
     STRAIN=cv. Bintje; TISSUE=Tuber;
RX
     MEDLINE=94124587; PubMed=8294484;
RA
     Herz U., Schroeder W., Liddell A., Leaver C.J., Brennicke A.,
     Grohmann L.;
RA
RT
     "Purification of the NADH:ubiquinone oxidoreductase (complex I) of
RT
     the respiratory chain from the inner mitochondrial membrane of
RT
     Solanum tuberosum.";
```

```
RL
     J. Biol. Chem. 269:2263-2269(1994).
CC
      -!- FUNCTION: TRANSFER OF ELECTRONS FROM NADH TO THE RESPIRATORY
CC
          CHAIN. THE IMMEDIATE ELECTRON ACCEPTOR FOR THE ENZYME IS BELIEVED
CC
          TO BE UBIQUINONE.
     -!- CATALYTIC ACTIVITY: NADH + ubiquinone = NAD(+) + ubiquinol.
CC
CC
     -!- CATALYTIC ACTIVITY: NADH + acceptor = NAD(+) + reduced acceptor.
CC
     -!- SUBUNIT: COMPLEX I IS COMPOSED OF ABOUT 30 DIFFERENT SUBUNITS.
CC
     -!- SUBCELLULAR LOCATION: MATRIX SIDE OF THE MITOCHONDRIAL INNER
CC
         MEMBRANE.
DR
     PIR; I49732; I49732.
KW
     Oxidoreductase; NAD; Ubiquinone; Mitochondrion.
FT
                  29
     NON TER
                          29
SQ
     SEQUENCE
                29 AA; 3269 MW; E2B4DFB558D423D4 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 5.2e+03;
  Matches
             3; Conservative 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           25 RKK 27
               | | |
Db
            2 RKK 4
RESULT 23
P2SM LOXIN
     P2SM LOXIN
ID
                    STANDARD;
                                    PRT;
                                            29 AA.
AC
     P83046;
     28-FEB-2003 (Rel. 41, Created)
DT
DT
     28-FEB-2003 (Rel. 41, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
     Sphingomyelinase P2 (EC 3.1.4.12) (Fragment).
DE
OS
     Loxosceles intermedia (Spider).
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Araneae;
OC
     Araneomorphae; Haplogynae; Sicariidae; Loxosceles.
OC
OX
     NCBI TaxID=58218;
RN
     [1]
RP
     SEQUENCE, FUNCTION, CATALYTIC ACTIVITY, COFACTOR, SUBCELLULAR
RΡ
     LOCATION, AND TISSUE SPECIFICITY.
RC
     TISSUE=Venom;
RX
     MEDLINE=99009277; PubMed=9790962;
     Tambourgi D.V., Magnoli F.C., van den Berg C.W., Morgan B.P.,
RA
RA
     de Araujo P.S., Alves E.W., Da Silva W.D.;
RT
     "Sphingomyelinases in the venom of the spider Loxosceles intermedia
     are responsible for both dermonecrosis and complement-dependent
RТ
RT
     hemolysis.";
     Biochem. Biophys. Res. Commun. 251:366-373(1998).
RL
CC
     -!- FUNCTION: Has sphingomyelinase activity. Induces complement-
CC
         dependent hemolysis and dermonecrosis.
     -!- CATALYTIC ACTIVITY: Sphingomyelin + H(2)0 = N-acylsphingosine +
CC
CC
         choline phosphate.
CC
     -!- COFACTOR: Calcium ion.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
CC
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
    Hydrolase; Toxin; Calcium; Hemolysis.
KW
FT
    NON TER
                  29
                         29
SQ
     SEQUENCE
                29 AA; 3281 MW; 4488EDD619BD2398 CRC64;
```

```
Best Local Similarity
                           100.0%; Pred. No. 5.2e+03;
             3; Conservative 0; Mismatches 0; Indels
  Matches
                                                                0; Gaps
                                                                              0;
 Qу
            10 NLG 12
               Db
            25 NLG 27
RESULT 24
 PCG4 PACGO
 ID
      PCG4 PACGO
                     STANDARD;
                                    PRT;
                                            29 AA.
AC
      P82417;
DT
      16-OCT-2001 (Rel. 40, Created)
DT
      16-OCT-2001 (Rel. 40, Last sequence update)
DT
      15-SEP-2003 (Rel. 42, Last annotation update)
DE
      Ponericin G4.
OS
     Pachycondyla goeldii (Ponerine ant).
     Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
OC
     Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
     Ponerinae; Pachycondyla.
OX
     NCBI TaxID=118888;
RN
      [1]
RP
     SEQUENCE, AND FUNCTION.
RC
     TISSUE=Venom;
RX
     MEDLINE=21264562; PubMed=11279030;
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RA
RТ
     "Ponericins, new antibacterial and insecticidal peptides from the
RT
     venom of the ant Pachycondyla goeldii.";
     J. Biol. Chem. 276:17823-17829(2001).
RL
     -!- FUNCTION: HAS ACTIVITY AGAINST SOME GRAM-POSITIVE BACTERIA
CC
CC
         AND S.CEREVISIAE. HAS A NON-HEMOLYTIC ACTIVITY.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- MASS SPECTROMETRY: MW=3163.87; METHOD=MALDI.
KW
     Antibiotic; Insect immunity; Fungicide.
SQ
     SEQUENCE 29 AA; 3165 MW; 7037D0B855072AF8 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 5.2e+03;
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           22 EWL 24
              | | | |
Dh
           11 EWL 13
RESULT 25
RS7 METTE
ID
     RS7 METTE
                    STANDARD;
                                   PRT;
                                           29 AA.
AC
     093639;
     30-MAY-2000 (Rel. 39, Created)
DT
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
     28-FEB-2003 (Rel. 41, Last annotation update)
DT
DE
     30S ribosomal protein S7P (Fragment).
GN
     RPS7P OR S7.
OS
     Methanosarcina thermophila.
```

8.8%; Score 3; DB 1; Length 29;

Query Match

```
Archaea; Euryarchaeota; Euryarchaeota orders incertae sedis;
OC
OC
    Methanosarcinales; Methanosarcinaceae; Methanosarcina.
OX
    NCBI TaxID=2210;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=DSM 1825 / TM-1;
RX
    MEDLINE=99059471; PubMed=9845338;
RA
    Thomas T., Cavicchioli R.;
RT
     "Archaeal cold-adapted proteins: structural and evolutionary analysis
RT
     of the elongation factor 2 proteins from psychrophilic, mesophilic and
     thermophilic methanogens.";
RT
RL
    FEBS Lett. 439:281-287(1998).
CC
     -!- FUNCTION: One of the primary rRNA binding proteins, it binds
CC
        directly to 16S rRNA where it nucleates assembly of the head
CC
        domain of the 30S subunit. Is located at the subunit interface
CC
        close to the decoding center (By similarity).
     -!- SUBUNIT: Part of the 30S ribosomal subunit.
CC
     -!- SIMILARITY: BELONGS TO THE S7P FAMILY OF RIBOSOMAL PROTEINS.
CC
     CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
     ------
CC
DR
    EMBL; AF026165; AAC79199.1; -.
DR
    PIR; T44245; T44245.
DR
    HAMAP; MF 00480; -; 1.
DR
    InterPro; IPR000235; Ribosomal S7.
DR
    PROSITE; PS00052; RIBOSOMAL S7; PARTIAL.
KW
    Ribosomal protein; RNA-binding; rRNA-binding.
FT
    NON TER
                1
                       1
    SEQUENCE 29 AA; 3217 MW; 1602B8A2E6C50C2B CRC64;
SO
  Ouery Match
                        8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity 100.0%; Pred. No. 5.2e+03;
 Matches
          3; Conservative 0; Mismatches 0; Indels 0; Gaps
Qу
          19 ERV 21
             \|\cdot\|
Db
          22 ERV 24
RESULT 26
SODC OLEEU
    SODC OLEEU
ID
                 STANDARD; PRT; 29 AA.
AC
    P80740;
DT
    01-NOV-1997 (Rel. 35, Created)
DТ
    01-NOV-1997 (Rel. 35, Last sequence update)
    15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
    Superoxide dismutase [Cu-Zn] (EC 1.15.1.1) (Allergen Ole e 5) (Ole e
DE
    V) (Fragment).
OS
    Olea europaea (Common olive).
OC
    Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
    Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
```

```
OC
     Asteridae; lamiids; Lamiales; Oleaceae; Olea.
OX
     NCBI TaxID=4146;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Pollen;
RX
     MEDLINE=98160390; PubMed=9500754;
RA
     Boluda L., Alonso C., Fernandez-Caldas E.;
RT
     "Purification, characterization, and partial sequencing of two new
RT
     allergens of Olea europaea.";
RL
     J. Allergy Clin. Immunol. 101:210-216(1998).
     -!- FUNCTION: Destroys radicals which are normally produced within the
CC
CC
         cells and which are toxic to biological systems (By similarity).
CC
     -!- CATALYTIC ACTIVITY: 2 superoxide + 2 H(+) = O(2) + H(2)O(2).
CC
     -!- COFACTOR: Binds 1 copper ion and 1 zinc ion per subunit (By
CC
         similarity).
     -!- SIMILARITY: BELONGS TO THE CU-ZN SUPEROXIDE DISMUTASE FAMILY.
CC
     InterPro; IPR001424; SOD CU_ZN.
DR
DR
     Pfam; PF00080; sodcu; 1.
DR
     PROSITE; PS00087; SOD CU ZN 1; PARTIAL.
     PROSITE; PS00332; SOD CU ZN_2; PARTIAL.
DR
     Antioxidant; Oxidoreductase; Metal-binding; Copper; Zinc; Allergen.
KW
FT
     NON TER
                  29
                          29
SQ
     SEQUENCE
                29 AA; 2973 MW; 836C7A193EDAD71E CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 5.2e+03;
  Matches
             3; Conservative 0; Mismatches
                                                    0; Indels
                                                                  0; Gaps
                                                                              0;
ΟV
           15 LNS 17
Db
            7 LNS 9
RESULT 27
TL16 SPIOL
ΙD
     TL16 SPIOL
                    STANDARD:
                                   PRT;
                                           29 AA.
     P81834;
AC
     30-MAY-2000 (Rel. 39, Created)
DΤ
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
     16-OCT-2001 (Rel. 40, Last annotation update)
DT
     Thylakoid lumenal 16.5 kDa protein (P16.5) (Fragment).
DE
OS
     Spinacia oleracea (Spinach).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
OC
     Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots;
OC
     Caryophyllidae; Caryophyllales; Chenopodiaceae; Spinacia.
OX
     NCBI TaxID=3562;
RN
     [1]
RP
     SEQUENCE.
RC
     TISSUE=Leaf:
     MEDLINE=98175931; PubMed=9506969;
RX
     Kieselbach T., Hagman A., Andersson B., Schroeder W.P.;
RA
     "The thylakoid lumen of chloroplasts. Isolation and
RT
     characterization.";
RT
RL
     J. Biol. Chem. 273:6710-6716(1998).
CC
     -!- SUBCELLULAR LOCATION: Chloroplast; within the thylakoid lumen.
KW
     Chloroplast; Thylakoid.
FT
     NON TER
                  29
```

```
Query Match
                           8.8%; Score 3; DB 1; Length 29;
  Best Local Similarity
                          100.0%; Pred. No. 5.2e+03;
             3; Conservative 0; Mismatches 0; Indels
  Matches
                                                                  0: Gaps
                                                                              0;
           25 RKK 27
Qу
              Db
           19 RKK 21
RESULT 28
DMS3 PHYSA
     DMS3 PHYSA
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P80279;
DT
     01-FEB-1994 (Rel. 28, Created)
DT
     01-FEB-1994 (Rel. 28, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DE
     Dermaseptin 3 (DS III).
OS
     Phyllomedusa sauvagei (Sauvage's leaf frog).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Hylidae;
OC
     Phyllomedusinae; Phyllomedusa.
OX
     NCBI TaxID=8395;
RN
     [1]
RΡ
     SEQUENCE.
RC
     TISSUE=Skin secretion;
RX
     MEDLINE=94139686; PubMed=8306981;
RA
     Mor A., Nicolas P.:
     "Isolation and structure of novel defensive peptides from frog skin.";
RT
     Eur. J. Biochem. 219:145-154(1994).
RL
CC
     -!- FUNCTION: POSSESSES A POTENT ANTIMICROBIAL ACTIVITY AGAINST
CC
         BACTERIA FUNGI AND PROTOZOA. PROBABLY ACTS BY DISTURBING MEMBRANE
CC
         FUNCTIONS WITH ITS AMPHIPATIC STRUCTURE.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Skin.
     -!- SIMILARITY: Belongs to the frog skin active peptide (FSAP) family.
CC
CC
         Dermaseptin subfamily.
KW
     Amphibian defense peptide; Antibiotic; Fungicide; Multigene family.
SO
     SEQUENCE 30 AA; 3024 MW; FD5F190C3DCBB0D7 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.4e+03;
  Matches
             3; Conservative 0; Mismatches
                                                                 0; Gaps
                                                   0; Indels
                                                                              0;
Qу
           26 KKL 28
              | | |
Db
           23 KKL 25
RESULT 29
FTN BACFR
ΙD
     FTN BACFR
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P28733;
DT
     01-DEC-1992 (Rel. 24, Created)
DT
     01-DEC-1992 (Rel. 24, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
```

29 AA; 3464 MW; 58B785764E2623E3 CRC64;

SO

SEOUENCE

```
Ferritin like protein (Fragment).
 DE
      Bacteroides fragilis.
 OS
      Bacteria; Bacteroidetes; Bacteroides (class); Bacteroidales;
 OC
 OC
      Bacteroidaceae; Bacteroides.
      NCBI TaxID=817;
 OX
 RN
      [1]
 RΡ
      SEQUENCE.
 RC
      STRAIN=20656-2-1;
RX
     MEDLINE=92406001; PubMed=1526453;
     Rocha E.R., Andrews S.C., Keen J.N., Brock J.H.;
RA
      "Isolation of a ferritin from Bacteroides fragilis.";
RT
RL
      FEMS Microbiol. Lett. 74:207-212(1992).
CC
      -!- FUNCTION: MAY ALLEVIATE IRON TOXICITY IN THE PRESENCE OF
CC
CC
      -!- COFACTOR: BINDS ABOUT THREE IRON ATOMS PER MOLECULE.
CC
      -!- SUBUNIT: FORMS OLIGOMERS OF ABOUT 400 kDa (THE MONOMER IS ABOUT
CC
         17 kDa).
CC
     -!- SIMILARITY: BELONGS TO THE FERRITIN FAMILY. PROKARYOTIC SUBFAMILY.
     -!- SIMILARITY: Contains 1 ferritin-like diiron domain.
CC
DR
     InterPro; IPR001519; Ferritin.
DR
     Pfam; PF00210; ferritin; 1.
DR
     PROSITE; PS50905; FERRITIN LIKE; 1.
KW
     Iron storage; Iron; Metal-binding.
FT
     DOMAIN
                   1
                        >30
                                   FERRITIN-LIKE DIIRON.
FT
     METAL
                   17
                          17
                                   IRON (BY SIMILARITY).
     NON TER
FT
                  30
                          30
SO
     SEQUENCE
                30 AA; 3529 MW; C70505B5696EFC4F CRC64;
  Query Match
                            8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.4e+03;
  Matches
             3; Conservative
                               0; Mismatches
                                                    0; Indels
                                                                   0; Gaps
                                                                               0;
Qу
           27 KLQ 29
              Db
            5 KLO 7
RESULT 30
GLUM ANGAN
ID
     GLUM ANGAN
                    STANDARD;
                                    PRT;
                                            30 AA.
AC
     P41521;
DT
     01-NOV-1995 (Rel. 32, Created)
     01-NOV-1995 (Rel. 32, Last sequence update)
DT
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DE
     Glucagon-like peptide (GLP).
OS
     Anguilla anguilla (European freshwater eel), and
OS
     Anguilla rostrata (American eel).
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Actinopterygii; Neopterygii; Teleostei; Anguilliformes; Anguillidae;
OC
OC
     Anquilla.
     NCBI TaxID=7936, 7938;
OX
RN
     [1]
RΡ
     SEQUENCE.
     SPECIES=A.anguilla, and A.rostrata;
RC
RC
     TISSUE=Pancreas;
RX
     MEDLINE=91340068; PubMed=1874385;
     Conlon J.M., Andrews P.C., Thim L., Moon T.W.;
RA
```

```
RT
      "The primary structure of glucagon-like peptide but not insulin has
     been conserved between the American eel, Anguilla rostrata and the
RT
      European eel, Anguilla anguilla.";
RT
RL
     Gen. Comp. Endocrinol. 82:23-32(1991).
CC
      -!- SIMILARITY: BELONGS TO THE GLUCAGON FAMILY.
DR
      PIR; B61125; B61125.
DR
     PIR; C61125; C61125.
DR
     HSSP; P01275; 1BH0.
DR
     InterPro; IPR000532; Glucagon.
     Pfam; PF00123; hormone2; 1.
DR
     SMART; SM00070; GLUCA; 1.
DR
DR
     PROSITE; PS00260; GLUCAGON; 1.
KW
     Glucagon family; Amidation.
FT
     MOD RES
                  30
                          30
                                   AMIDATION.
     SEQUENCE
SQ
                30 AA; 3376 MW; 592DA5EABD6E49D0 CRC64;
  Query Match
                            8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.4e+03;
             3; Conservative 0; Mismatches 0; Indels
                                                                  0; Gaps
QУ
           28 LQD 30
              Dh
           14 LQD 16
RESULT 31
OTCC AERPU
     OTCC AERPU
ID
                    STANDARD;
                                   PRT;
                                            30 AA.
AC
     P11726:
     01-OCT-1989 (Rel. 12, Created)
DT
DT
     01-OCT-1989 (Rel. 12, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Ornithine carbamoyltransferase, catabolic (EC 2.1.3.3) (OTCase)
DE
     (Fragment).
OS
     Aeromonas punctata (Aeromonas caviae).
OC
     Bacteria; Proteobacteria; Gammaproteobacteria; Aeromonadales;
OC
     Aeromonadaceae; Aeromonas.
OX
     NCBI TaxID=648;
RN
     [1]
RΡ
     SEQUENCE.
RC
     STRAIN=NCIB 9232;
     MEDLINE=85104799; PubMed=3968036;
RX
     Falmagne P., Portetelle D., Stalon V.;
RA
     "Immunological and structural relatedness of catabolic ornithine
RT
RT
     carbamoyltransferases and the anabolic enzymes of enterobacteria.";
RL
     J. Bacteriol. 161:714-719(1985).
CC
     -!- CATALYTIC ACTIVITY: Carbamoyl phosphate + L-ornithine = phosphate
CC
         + L-citrulline.
CC
     -!- PATHWAY: Arginine degradation via arginine deiminase; second step.
     -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC
     -!- SIMILARITY: BELONGS TO THE ATCASES/OTCASES FAMILY.
CC
     InterPro; IPR006130; Asp/Orn COtranf.
DR
     InterPro; IPR006132; OTCace_P.
DR
DR
     Pfam; PF02729; OTCace N; 1.
DR
     PROSITE; PS00097; CARBAMOYLTRANSFERASE; PARTIAL.
KW
     Transferase; Arginine metabolism.
FT
     NON TER
                  30
                         30
```

```
30 AA; 3654 MW; 673CB989FE72F9C1 CRC64;
   Query Match
                            8.8%; Score 3; DB 1; Length 30;
   Best Local Similarity
                           100.0%; Pred. No. 5.4e+03;
   Matches
              3; Conservative 0; Mismatches
                                                    0; Indels
                                                                 0; Gaps
                                                                               0;
 Qу
             4 EIQ 6
               Db
            19 EIQ 21
RESULT 32
 PCG2 PACGO
      PCG2 PACGO
                     STANDARD;
                                    PRT;
                                            30 AA.
AC
      P82415;
      16-OCT-2001 (Rel. 40, Created)
DT
DT
      16-OCT-2001 (Rel. 40, Last sequence update)
      15-SEP-2003 (Rel. 42, Last annotation update)
DT
DE
      Ponericin G2.
OS
      Pachycondyla goeldii (Ponerine ant).
      Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
OC
     Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC.
     Ponerinae; Pachycondyla.
OX
     NCBI TaxID=118888;
RN
      [1]
RP
     SEQUENCE, AND FUNCTION.
RC
     TISSUE=Venom;
RX
     MEDLINE=21264562; PubMed=11279030;
RA
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RA
     "Ponericins, new antibacterial and insecticidal peptides from the
RT
     venom of the ant Pachycondyla goeldii.";
RT
     J. Biol. Chem. 276:17823-17829(2001).
RL
CC
     -!- FUNCTION: BROAD SPECTRUM OF ACTIVITY AGAINST BOTH GRAM-POSITIVE
CC
         AND GRAM-NEGATIVE BACTERIA AND S.CEREVISIAE. HAS INSECTICIDAL
CC
         AND NON-HEMOLYTIC ACTIVITIES.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- MASS SPECTROMETRY: MW=3306.56; METHOD=MALDI.
KW
     Antibiotic; Insect immunity; Fungicide.
     SEQUENCE 30 AA; 3308 MW; A12CD4D0BAF40B5D CRC64;
SO
  Query Match
                           8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity
                          100.0%; Pred. No. 5.4e+03;
  Matches
             3; Conservative 0; Mismatches
                                                   0; Indels
                                                                  0; Gaps
                                                                              0;
Qу
           22 EWL 24
              | | |
Db
           11 EWL 13
RESULT 33
PCG3 PACGO
ID
     PCG3 PACGO
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P82416;
DT
     16-OCT-2001 (Rel. 40, Created)
DT
     16-OCT-2001 (Rel. 40, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
```

SO

SEQUENCE

```
DE
      Ponericin G3.
 OS
      Pachycondyla goeldii (Ponerine ant).
      Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota;
OC
OC
     Neoptera; Endopterygota; Hymenoptera; Apocrita; Aculeata; Formicidae;
OC
     Ponerinae; Pachycondyla.
     NCBI TaxID=118888;
OX
RN
      [1]
RP
     SEQUENCE, AND FUNCTION.
RC
     TISSUE=Venom;
RX
     MEDLINE=21264562; PubMed=11279030;
RA
     Orivel J., Redeker V., Le Caer J.-P., Krier F., Revol-Junelles A.-M.,
RA
     Longeon A., Chafotte A., Dejean A., Rossier J.;
RT
     "Ponericins, new antibacterial and insecticidal peptides from the
RT
     venom of the ant Pachycondyla goeldii.";
RL
     J. Biol. Chem. 276:17823-17829(2001).
CC
     -!- FUNCTION: BROAD SPECTRUM OF ACTIVITY AGAINST BOTH GRAM-POSITIVE
CC
         AND GRAM-NEGATIVE BACTERIA AND S.CEREVISIAE. HAS INSECTICIDAL
CC
         AND NON-HEMOLYTIC ACTIVITIES.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- MASS SPECTROMETRY: MW=3381.36; METHOD=MALDI.
     Antibiotic; Insect immunity; Fungicide.
KW
SO
     SEQUENCE 30 AA; 3383 MW; BC0463D0AF140B53 CRC64;
  Query Match
                          8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity
                          100.0%; Pred. No. 5.4e+03;
  Matches
            3; Conservative 0; Mismatches 0; Indels
                                                                            0;
           22 EWL 24
Qу
              111
Db
           11 EWL 13
RESULT 34
PSAM PORPU
     PSAM PORPU
                    STANDARD;
                                  PRT;
                                          30 AA.
AC
     P51395;
DT
     01-OCT-1996 (Rel. 34, Created)
     01-OCT-1996 (Rel. 34, Last sequence update)
DT
DT
     01-OCT-1996 (Rel. 34, Last annotation update)
     Photosystem I reaction centre subunit XII (PSI-M).
DE
GN
     PSAM.
OS
     Porphyra purpurea.
OG
     Chloroplast.
     Eukaryota; Rhodophyta; Bangiophyceae; Bangiales; Bangiaceae; Porphyra.
OC
OX
     NCBI TaxID=2787;
RN
     [1]
RΡ
     SEQUENCE FROM N.A.
RC
     STRAIN=Avonport;
     Reith M.E., Munholland J.;
RA
RT
     "Complete nucleotide sequence of the Porphyra purpurea chloroplast
RT
     genome.";
RL
     Plant Mol. Biol. Rep. 13:333-335(1995).
CC
     -!- SIMILARITY: BELONGS TO THE PSAM FAMILY.
     ______
CC
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
    the European Bioinformatics Institute. There are no restrictions on its
CC
```

```
use by non-profit institutions as long as its content is in no way
     modified and this statement is not removed. Usage by and for commercial
 CC
     entities requires a license agreement (See http://www.isb-sib.ch/announce/
 CC
 CC
     or send an email to license@isb-sib.ch).
 CC
 DR
     EMBL; U38804; AAC08281.1; -.
 DR
     PIR; S73316; S73316.
 ΚW
     Photosystem I; Photosynthesis; Chloroplast.
 SO
     SEQUENCE 30 AA; 3338 MW; 8D1930479D8A5527 CRC64;
  Query Match
                           8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.4e+03;
            3; Conservative 0; Mismatches 0; Indels 0; Gaps
                                                                            0;
Qу
           11 LGK 13
              111
Db
           24 LGK 26
RESULT 35
TX2 THRPR
ID
     TX2 THRPR
                    STANDARD;
                                 PRT;
                                         30 AA.
AC
     P83476;
DT
     28-FEB-2003 (Rel. 41, Created)
DT
     28-FEB-2003 (Rel. 41, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Toxin ProTx-II.
OS
     Thrixopelma pruriens (Green velvet).
     Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Araneae;
OC
OC
     Mygalomorphae; Theraphosidae; Thrixopelma.
OX
     NCBI TaxID=213387;
RN
RP
     SEQUENCE, FUNCTION, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, MASS
RΡ
     SPECTROMETRY, AND DISULFIDE BONDS.
RC
     TISSUE=Venom;
RX
     MEDLINE=22363233; PubMed=12475222;
     Middleton R.E., Warren V.A., Kraus R.L., Hwang J.C., Liu C.J., Dai G.,
RA
     Brochu R.M., Kohler M.G., Gao Y.-D., Garsky V.M., Bogusky M.J.,
RA
RA
     Mehl J.T., Cohen C.J., Smith M.M.;
     "Two tarantula peptides inhibit activation of multiple sodium
RT
RT
     channels.";
     Biochemistry 41:14734-14747(2002).
RL
     -!- FUNCTION: Inhibits voltage-gated calcium and sodium channels.
CC
CC
         Shifts the voltage-dependence of channel activation to more
CC
         positive potentials.
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the venom gland.
     -!- MASS SPECTROMETRY: MW=3827; METHOD=Electrospray.
CC
     -!- MASS SPECTROMETRY: MW=3827; METHOD=MALDI.
CC
     -!- SIMILARITY: BELONGS TO THE SPIDER POTASSIUM CHANNEL INHIBITORY
CC
CC
         TOXIN FAMILY.
    Toxin; Neurotoxin; Ionic channel inhibitor; Calcium channel inhibitor;
KW
KW
     Sodium channel inhibitor.
FT
    DISULFID
              2
                        16
FT
    DISULFID
                 9
                        21
FT
     DISULFID
                15
                        25
SQ
     SEQUENCE
               30 AA; 3833 MW; 5B8CF4C6338C1B9B CRC64;
```

CC

```
Query Match
                           8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity
                          100.0%; Pred. No. 5.4e+03;
             3; Conservative 0; Mismatches
                                                                 0; Gaps
                                                  0; Indels
                                                                              0;
           26 KKL 28
Qу
              | | |
Db
           27 KKL 29
RESULT 36
UP61 UPEIN
     UP61 UPEIN
ID
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     P82037;
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DE
     Uperin 6.1.
OS
     Uperoleia inundata (Floodplain toadlet).
OC
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
     Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Myobatrachidae;
OC
     Myobatrachinae; Uperoleia.
OX
     NCBI TaxID=104953;
RN
     [1]
RP
     SEQUENCE, AND MASS SPECTROMETRY.
RC
     TISSUE=Skin secretion;
RA
     Bradford A.M., Raftery M.J., Bowie J.H., Tyler M.J., Wallace J.C.,
RA
     Adams G.W., Severini C.;
RT
     "Novel uperin peptides from the dorsal glands of the australian
RT
     floodplain toadlet Uperoleia inundata.";
     Aust. J. Chem. 49:475-484(1996).
RL
CC
     -!- FUNCTION: UNKNOWN.
     -!- SUBCELLULAR LOCATION: Secreted.
CC
CC
     -!- TISSUE SPECIFICITY: Expressed by the skin dorsal glands.
CC
     -!- MASS SPECTROMETRY: MW=3233.85; METHOD=MALDI.
KW
     Amphibian defense peptide.
SQ
     SEQUENCE 30 AA; 3233 MW; 4EE15B9EB110F68E CRC64;
 Ouery Match
                           8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.4e+03;
 Matches
             3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
Qу
           26 KKL 28
              Db
           24 KKL 26
RESULT 37
UP62 UPEIN
ID
    UP62 UPEIN
                    STANDARD;
                                   PRT;
                                           30 AA.
     P82038;
AC
DT
     30-MAY-2000 (Rel. 39, Created)
DT
     30-MAY-2000 (Rel. 39, Last sequence update)
DT
     15-SEP-2003 (Rel. 42, Last annotation update)
DE
     Uperin 6.2.
     Uperoleia inundata (Floodplain toadlet).
OS
     Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
```

```
Amphibia; Batrachia; Anura; Neobatrachia; Bufonoidea; Myobatrachidae;
OC
OC
     Myobatrachinae; Uperoleia.
OX
     NCBI TaxID=104953;
RN
     [1]
     SEQUENCE, AND MASS SPECTROMETRY.
RP
RC
     TISSUE=Skin secretion;
     Bradford A.M., Raftery M.J., Bowie J.H., Tyler M.J., Wallace J.C.,
RA
RΑ
     Adams G.W., Severini C.;
RT
     "Novel uperin peptides from the dorsal glands of the australian
RT
     floodplain toadlet Uperoleia inundata.";
RL
     Aust. J. Chem. 49:475-484(1996).
     -!- FUNCTION: UNKNOWN.
CC
CC
     -!- SUBCELLULAR LOCATION: Secreted.
CC
     -!- TISSUE SPECIFICITY: Expressed by the skin dorsal glands.
     -!- MASS SPECTROMETRY: MW=3261.85; METHOD=MALDI.
CC
KW
     Amphibian defense peptide.
     SEQUENCE 30 AA; 3261 MW; 4EE15B9EB10841DE CRC64;
SO
  Ouerv Match
                           8.8%; Score 3; DB 1; Length 30;
  Best Local Similarity 100.0%; Pred. No. 5.4e+03;
  Matches
             3; Conservative 0; Mismatches 0; Indels
                                                                 0; Gaps
                                                                              0;
           26 KKL 28
Qу
              Db
           24 KKL 26
RESULT 38
VAA2 EQUAR
ID
     VAA2 EQUAR
                    STANDARD;
                                   PRT;
                                           30 AA.
AC
     Q04238;
DT
     01-OCT-1996 (Rel. 34, Created)
DT
     01-OCT-1996 (Rel. 34, Last sequence update)
DT
     28-FEB-2003 (Rel. 41, Last annotation update)
DE
     Vacuolar ATP synthase catalytic subunit A, isoform 2 (EC 3.6.3.14)
DE
     (Fragment).
OS
     Equisetum arvense (Field horsetail) (Common horsetail).
OC
     Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
     Equisetophyta; Sphenopsida; Equisetales; Equisetaceae; Equisetum.
OC
OX
     NCBI TaxID=3258;
RN
     [1]
RP
     SEQUENCE FROM N.A.
RX
     MEDLINE=93138084; PubMed=8422915;
RA
     Starke T., Gogarten J.P.;
RT
     "A conserved intron in the V-ATPase A subunit genes of plants and
RT
     algae.";
     FEBS Lett. 315:252-258(1993).
RL
CC
     -!- FUNCTION: CATALYTIC SUBUNIT OF THE PERIPHERAL V1 COMPLEX OF
CC
         VACUOLAR ATPASE. V-ATPASE VACUOLAR ATPASE IS RESPONSIBLE FOR
CC
         ACIDIFYING A VARIETY OF INTRACELLULAR COMPARTMENTS IN EUKARYOTIC
CC
         CELLS.
     -!- CATALYTIC ACTIVITY: ATP + H(2)O + H(+)(In) = ADP + phosphate +
CC
CC
         H(+) (Out).
CC
     -!- SUBUNIT: V-ATPASE IS AN HETEROMULTIMERIC ENZYME COMPOSED OF A
CC
         PERIPHERAL CATALYTIC V1 COMPLEX (MAIN COMPONENTS: SUBUNITS A, B,
         C, D, E, AND F) ATTACHED TO AN INTEGRAL MEMBRANE VO PROTON PORE
CC
CC
         COMPLEX (MAIN COMPONENT: THE PROTEOLIPID PROTEIN).
```

```
-!- MISCELLANEOUS: TWO SEPARATE GENES ENCODE THE CATALYTIC 70 kDa
CC
        V-ATPASE SUBUNIT IN PSILOTUM AND EQUISETUM.
CC
    -!- SIMILARITY: Belongs to the ATPase alpha/beta chains family.
CC
    ______
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
CC
    or send an email to license@isb-sib.ch).
    _____
CC
    EMBL; X56984; CAA40302.1; -.
DR
    PIR; S21815; S21815.
DR
    InterPro; IPR000194; ATPase a/bcentre.
    PROSITE; PS00152; ATPASE ALPHA BETA; PARTIAL.
DR
    ATP synthesis; Hydrogen ion transport; Hydrolase; ATP-binding;
KW
KW
    Multigene family.
FT
    NON TER
                 1
                        1
                30
                       30
FT
    NON TER
    SEQUENCE 30 AA; 3372 MW; 51CCA4A3DA9E5D84 CRC64;
SQ
                         8.8%; Score 3; DB 1; Length 30;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 5.4e+03;
  Matches 3; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
          18 MER 20
Qу
             111
          23 MER 25
Db
RESULT 39
Y523 BORBU
    Y523 BORBU
                  STANDARD;
                                PRT;
                                       30 AA.
ID
AC
    051473;
DT
     15-DEC-1998 (Rel. 37, Created)
     15-DEC-1998 (Rel. 37, Last sequence update)
DT
     16-OCT-2001 (Rel. 40, Last annotation update)
DT
     Hypothetical protein BB0523.
DΕ
     BB0523.
GN
     Borrelia burgdorferi (Lyme disease spirochete).
OS
     Bacteria; Spirochaetes; Spirochaetales; Spirochaetaceae; Borrelia.
OC
     NCBI TaxID=139;
OX
RN
     [1]
RР
     SEQUENCE FROM N.A.
RC
     STRAIN=ATCC 35210 / B31;
     MEDLINE=98065943; PubMed=9403685;
RX
     Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R.A.,
RA
     Lathigra R., White O., Ketchum K.A., Dodson R., Hickey E.K., Gwinn M.,
RA
     Dougherty B., Tomb J.-F., Fleischmann R.D., Richardson D.,
RA
     Peterson J., Kerlavage A.R., Quackenbush J., Salzberg S., Hanson M.,
RA
     van Vugt R., Palmer N., Adams M.D., Gocayne J.D., Weidman J.,
RA
     Utterback T., Watthey L., McDonald L., Artiach P., Bowman C.,
RA
     Garland S., Fujii C., Cotton M.D., Horst K., Roberts K., Hatch B.,
RA
     Smith H.O., Venter J.C.;
RA
     "Genomic sequence of a Lyme disease spirochaete, Borrelia
RT
RT
     burgdorferi.";
```

```
RL
    Nature 390:580-586(1997).
    ______
CC
    This SWISS-PROT entry is copyright. It is produced through a collaboration
CC
    between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC
    the European Bioinformatics Institute. There are no restrictions on its
CC
    use by non-profit institutions as long as its content is in no way
CC
    modified and this statement is not removed. Usage by and for commercial
CC
    entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC
    or send an email to license@isb-sib.ch).
CC
    ______
CC
DR
    EMBL; AE001154; AAC66894.1; -.
DR
    PIR; B70165; B70165.
DR
    TIGR; BB0523; -.
KW
    Hypothetical protein; Complete proteome.
SO
    SEQUENCE 30 AA; 3431 MW; DE437B15D2A48AA8 CRC64;
                        8.8%; Score 3; DB 1; Length 30;
 Query Match
 Best Local Similarity 100.0%; Pred. No. 5.4e+03;
                                                         0; Gaps
         3; Conservative 0; Mismatches 0; Indels
 Matches
                                                                       0;
         19 ERV 21
Qу
            Db
         26 ERV 28
RESULT 40
CEC1 PIG
                  STANDARD; PRT; 31 AA.
ID
    CEC1 PIG
AC
    P14661;
DT
    01-APR-1990 (Rel. 14, Created)
    01-APR-1990 (Rel. 14, Last sequence update)
DT
    28-FEB-2003 (Rel. 41, Last annotation update)
DT
    Cecropin P1.
DE
    Sus scrofa (Pig).
OS
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC
    Mammalia; Eutheria; Cetartiodactyla; Suina; Suidae; Sus.
0C
OX
    NCBI TaxID=9823;
RN
    [1]
RP
    SEQUENCE.
    MEDLINE=90083227; PubMed=2512577;
RX
    Lee J.-Y., Boman A., Chuanxin S., Andersson M., Joernvall H., Mutt V.,
RA
RA
    Boman H.G.;
     "Antibacterial peptides from pig intestine: isolation of a mammalian
RT
RT
     cecropin.";
     Proc. Natl. Acad. Sci. U.S.A. 86:9159-9162(1989).
RL
RN
RР
    STRUCTURE BY NMR.
    MEDLINE=93011123; PubMed=1396696;
RX
RA
     Sipos D., Andersson M., Ehrenberg A.;
RT
     "The structure of the mammalian antibacterial peptide cecropin P1 in
     solution, determined by proton-NMR.";
RT
     Eur. J. Biochem. 209:163-169(1992).
RL
CC
     -!- FUNCTION: CECROPINS HAVE LYTIC AND ANTIBACTERIAL ACTIVITY AGAINST
        SEVERAL GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA. ACTS BY A
CC
        NONPORE MECHANISM.
CC
CC
     -!- SUBCELLULAR LOCATION: Secreted.
     -!- SIMILARITY: BELONGS TO THE CECROPIN FAMILY.
CC
```

```
PIR; A36221; A36221.
DR
DR InterPro; IPR000875; Cecropin.
DR Pfam; PF00272; cecropin; 1.
   PROSITE; PS00268; CECROPIN; 1.
DR
    Antibiotic.
KW
    SEQUENCE 31 AA; 3339 MW; CB2B374A8B153850 CRC64;
SQ
  Query Match 8.8%; Score 3; DB 1; Length 31; Best Local Similarity 100.0%; Pred. No. 5.5e+03;
  Matches 3; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
           26 KKL 28
Qу
              111
            8 KKL 10
Db
```

Search completed: January 14, 2004, 10:35:30 Job time: 15.6137 secs