

a[n]

Consider the following version of Horner's method which computes a polynomial with coefficients $a_1, a_2, ..., a_n$ and variable k. You may want to write out the polynomial it computes.

```
acc = k
for i = 1 to n
    acc += a[ i ]
    acc *= k
return acc
```

What is the degree (ie, k's exponent) of the highest-degree term?

What is the coefficient of the highest-degree term?

What is the degree (ie, k's exponent) of the lowest-degree term?

What is the coefficient of the lowest-degree term?

acc =
$$k + a[1]$$

acc = $(k + a[1])k = k^2 + a[1]k$

acc = $(k^2 + a[1]k) + a[2]$

acc = $(k^2 + a[1]k + a[2])k$

= $k^3 + a[1]k^2 + a[2]k$

acc = $(k^3 + a[1]k^2 + a[2]k) + a[3]$

acc = $(k^3 + a[1]k^2 + a[2]k + a[3])k$

= $k^4 + a[1]k^3 + a[2]k + a[3]k$

a) Degree of highest degree term: k

b) Coefficient of highest degree : k

c) Degree of lowest degree term: k

D) Coefficient of lowest degree : k

Consider the following collection of hash functions $Z_5 \rightarrow Z_4$.

Each column h1 - h6 represents a function's outputs for the inputs listed on the

What pair of inputs maximizes the probability of collision? Write your answer as a pair of integers separated by a comma without any spaces (for example "6,8").

1,3

For what ϵ is this collection of hash functions ϵ -almost-universal? Write your answer as a pair of integers separated by a slash without any spaces (for example "6/8") 3/6

$$(0,1) = {}^{1}_{6}$$

$$(0,2) = \frac{1}{6}$$

$$(0,3) = 1/6$$

$$(0,2) = \frac{1}{6}$$
 $(1,2) = 0$
 $(0,3) = \frac{1}{6}$ $(1,3) = \frac{3}{6}$ $(2,3) = 0$
 $(0,4) = \frac{1}{6}$ $(1,4) = \frac{2}{6}$ $(2,4) = \frac{1}{6}$ $(3,4) = \frac{1}{6}$

$$(1, 4) = \frac{2}{6}$$