7.46

(a) 用矩估计
$$EX = \frac{3}{2}\theta \Rightarrow \tilde{\theta} = \frac{2}{3}\frac{1}{3}\sum_{i=1}^{3}X_i = \frac{2}{9}\sum_{i=1}^{3}X_i$$

(b)

$$L(\theta|\mathbf{x}) = (\frac{1}{\theta})^{(3)} \prod_{i=1}^{3} I(\theta \le x_i \le 2\theta)$$
$$= (\frac{1}{\theta})^3 I(X_{(1)} \ge \theta) I(X_{(3)} \le 2\theta)$$

容易判断, 当 $\hat{\theta} = \frac{1}{2}X_{(3)}$ 时, $L(\theta|\mathbf{x})$ 取得最大值。

而 $X_{(3)}$ 的 pdf 为:

$$\begin{split} f_{X_{(3)}}(x) &= \frac{3!}{2!} \frac{1}{\theta} (\frac{x-\theta}{\theta})^2 I(\theta \le x \le 2\theta) \\ E\hat{\theta} &= \frac{1}{2} E X_{(3)} = \frac{3}{2} \int_{\theta}^{2\theta} \frac{x(x-\theta)^2}{\theta^3} \mathrm{d}x = \frac{7}{8} \theta \\ \text{故取 } k &= \frac{8}{7} \;, \; \hat{\pi} \; E(k\hat{\theta}) = \theta \end{split}$$

(c)
$$f(\mathbf{x}) = L(\theta|\mathbf{x}) = (\frac{1}{\theta})^3 I(x_{(1)} \ge \theta) I(x_{(3)} \le 2\theta)$$
 由因子分解可以知道: $T(X) = (X_{(1)}, X_{(3)})$ 为一个充分统计量

用 Rao-Blackwell 定理, 可得到一个比 $\tilde{\theta}=\frac{2}{9}\sum_{i=1}^3 X_i$ 更好的估计量 即 $\phi_{\tilde{\theta}}=E(\tilde{\theta}|T)$,方差更小

而对 MLE 的估计量 $\hat{\theta}$, $\phi_{\hat{\theta}} = E(\hat{\theta}|T) = \hat{\theta}$, 不能用 Rao-Blackwell 定理使其变得更好。

(d)
$$\tilde{\theta} = \frac{2}{9} \sum_{i=1}^{3} X_i = \frac{58}{75} = 0.7733$$

 $\hat{\theta} = \frac{1}{2} X_{(3)} = \frac{1}{2} 1.33 = 0.665$

7.47 设圆的半径为 r。

n 次样本为
$$X_i = r + Z_i$$
, $Z_i \stackrel{iid}{\sim} n(0,\sigma)$

对于 r, 容易证明一个完全充分统计量为 $T(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$

$$\overrightarrow{\text{m}} \ T \sim n(r, \frac{\sigma^2}{n})$$

故
$$E(T-r)^2 = E(T-r)(T-r) = \frac{\sigma^2}{n} \Rightarrow E(T^2 - \frac{\sigma^2}{n}) = r^2$$

因此 $A = \pi (T^2 - \frac{\sigma^2}{n}) = \pi ((\frac{1}{n} \sum_{i=1}^n X_i)^2 - \frac{\sigma^2}{n})$ 为一个 πr^2 的无偏估计,而 T 是

完全充分统计量,故统计量 A 是面积 πr^2 的最佳无偏估计

7.49

(a)
$$Y = X_{(1)}, \ f_X(x) = \frac{1}{\lambda} e^{-x/\lambda}, \ F_X(x) = 1 - e^{-x/\lambda}$$
 易知 Y 的 pdf 为: $f_Y(y) = \frac{n}{\lambda} e^{-\frac{nx}{\lambda}}$ 即 $Y \sim exp(\frac{\lambda}{n})$ 故 $E(nY) = nEY = \lambda, nY$ 为一个 λ 的无偏估计量

(b) 因为 X 属于指数分布族,可知 $T(X) = \frac{1}{n} \sum_{i=1}^{n} X_i$ 是 λ 的一个完全充分统计量,且 $ET = \lambda$,因此 T 为 λ 的最佳无偏估计。下面通过计算再验证下

$$Var(nY) = n^{2}Var(Y) = \lambda^{2}$$

$$VarT = \frac{1}{n} \sum_{i=1}^{n} Var(X_{i}) = \frac{\lambda^{2}}{n} < Var(nY)$$

(c) 用给出的样本计算可得 $nY = 12 \times 50.1 = 601.2$, T = 124.825

7.50

(a)
$$:: E\bar{X} = \theta, \ EcS = \theta :: E(a\bar{X} + (1-a)cS) = \theta$$

(b) 之前已经证明过,对正态分布 \bar{X}, S^2 相互独立,因此 \bar{X}, S 相互独立。

$$Var(aar{X}+(1-a)cS)=a^2Var(ar{X})+(1-a)^2Var(cS)$$
 而 $Var(ar{X})=rac{\theta^2}{n}$ $Var(cS)=E(cS)^2-(EcS)^2=c^2ES^2-\theta^2=(c^2-1)\theta^2$ 对 a 求导 $2aVar(ar{X})-2(1-a)Var(cS)=0\Rightarrow a=rac{n(c^2-1)}{1+n(c^2-1)}$ 由于是个二次函数,且二次项系数为正,故该极值为极小值。

(c) 书中的例题已经证明了对正态分布 $n(\mu, \sigma^2)$, \bar{X} , S^2 是参数 μ , σ^2 的充分统计量,另 $\mu = \theta$, $\sigma^= a \theta^2$,即 \bar{X} , S^2 是 θ 的充分统计量。 另一方面 $E(\bar{X} - cS) = 0 \ \forall \theta$ 成立,但 $P(\bar{X} - cS = 0) \neq 1$,故 \bar{X} , S^2 不是 θ 的完全统计量。

7.51

(a)

$$E(\theta - T)^{2} = E(a_{1}(\theta - \bar{X}) + a_{2}(\theta - cS) + \theta(1 - a_{1} - a_{2}))^{2}$$

$$= a_{1}^{2}E(\bar{X} - \theta)^{+}a_{2}^{2}E(cS - \theta)^{2} + \theta^{2}(1 - a_{1} - a_{2})^{2}$$

$$= a_{1}^{2}Var(\bar{X}) + a_{2}^{2}Var(cS)^{2} + \theta^{2}(1 - a_{1} - a_{2})^{2}$$

$$= a_{1}^{2}\frac{\theta^{2}}{n} + a_{2}^{2}(c^{2} - 1)\theta^{2} + \theta^{2}(1 - a_{1} - a_{2})^{2}$$

由柯西不等式:

$$1 = \left[\sqrt{n} \frac{a_1}{\sqrt{n}} + \frac{1}{\sqrt{c^2 - 1}} \sqrt{c^2 - 1} a_2 + (1 - a_1 - a_2)\right]^2$$

$$\leq (n + \frac{1}{c^2 - 1} + 1)(\frac{a_1^2}{n} + (c^2 - 1)a_2 + (1 - a_1 - a_2)^2)$$
等号当且仅当 $\frac{a_1}{\sqrt{n}}/\sqrt{n} = \sqrt{n^2 - 1} a_2/\frac{1}{\sqrt{c^2 - 1}} = 1 - a_1 - a_2$ 时成立
此时 $a_1 = \frac{n(c^2 - 1)}{1 + (n + 1(c^2 - 1))}$

$$a_2 = \frac{1}{1 + (n+1)(c^2 - 1)}$$

$$T^* = \frac{n(c^2 - 1)}{1 + (n+1)(c^2 - 1)} \bar{X} + \frac{1}{1 + (n+1)(c^2 - 1)} cS$$

(b) 由前面的不等式
$$MSE(T^*) = \frac{\theta^2}{n + \frac{1}{c^2 - 1} + 1}$$

(c)
$$:: \theta > 0$$

∴
$$T^* < 0$$
 $\bowtie (T^{*+} - \theta)^2 < (T^* - \theta)^2$

$$T^* > 0 \ \text{Ft}(T^{*+} - \theta)^2 = (T^* - \theta)^2$$

因此 $MSET^{*+} < MSET^*$

(d) θ 既不是位置参也不是刻度参数。因为找不到这样一个函数 f(x) 使得 X 的 pdf $f(x|\theta) = \frac{1}{\sqrt{2\pi\theta}} \exp(-\frac{(x-\theta)^2}{2\theta^2})$ 等于 $f(x-\theta)$ 或 $\frac{1}{\theta} f(\frac{x}{\theta})$