CSCB63 WINTER 2021

WEEK 5 LECTURE 2 - MINIMUM COST SPANNING TREES

Anna Bretscher

February 8, 2021

TODAY

Kruskals Algorithm

Prims Algorithm

Dijkstra's Algorithm

INTRODUCTION: (EDGE-)WEIGHTED GRAPHS

These are computers and costs of direct connections. What is a cheapest way to network them?

▶ Many useful graphs have *numbers* or *weights* assigned to *edges*.

- Many useful graphs have numbers or weights assigned to edges.
- ▶ Think of each edge e having a *price tag* w(e).

- Many useful graphs have *numbers* or *weights* assigned to *edges*.
- ▶ Think of each edge e having a *price tag* w(e).
- ▶ Usually $w(e) \ge 0$. Some cases have w(e) < 0.

- Many useful graphs have *numbers* or *weights* assigned to *edges*.
- ▶ Think of each edge e having a *price tag* w(e).
- ▶ Usually $w(e) \ge 0$. Some cases have w(e) < 0.

- Many useful graphs have numbers or weights assigned to edges.
- ► Think of each edge *e* having a *price tag w(e)*.
- ▶ Usually $w(e) \ge 0$. Some cases have w(e) < 0.

A weighted (edge-weighted) graph consists of:

a set of vertices V

- Many useful graphs have *numbers* or *weights* assigned to *edges*.
- ► Think of each edge *e* having a *price tag w(e)*.
- ▶ Usually $w(e) \ge 0$. Some cases have w(e) < 0.

- a set of vertices V
- a set of edges E

- Many useful graphs have numbers or weights assigned to edges.
- ► Think of each edge *e* having a *price tag w(e)*.
- ▶ Usually $w(e) \ge 0$. Some cases have w(e) < 0.

- a set of vertices V
- a set of edges E
- weights: a map from edges to numbers $w: E \to \mathbb{R}$

- Many useful graphs have numbers or weights assigned to edges.
- ▶ Think of each edge e having a price tag w(e).
- ▶ Usually $w(e) \ge 0$. Some cases have w(e) < 0.

- a set of vertices V
- a set of edges E
- weights: a map from edges to numbers $w: E \to \mathbb{R}$
 - undirected graphs: $\{u, v\} = \{v, u\}$, same weight

- Many useful graphs have numbers or weights assigned to edges.
- ► Think of each edge e having a price tag w(e).
- ▶ Usually $w(e) \ge 0$. Some cases have w(e) < 0.

- a set of vertices V
- a set of edges E
- weights: a map from edges to numbers $w: E \to \mathbb{R}$
 - ▶ undirected graphs: {u, v} = {v, u}, same weight
 - ightharpoonup directed graphs: (u, v) and (v, u) may have different weights

- Many useful graphs have numbers or weights assigned to edges.
- ► Think of each edge e having a price tag w(e).
- ▶ Usually $w(e) \ge 0$. Some cases have w(e) < 0.

- a set of vertices V
- a set of edges E
- weights: a map from edges to numbers $w: E \to \mathbb{R}$
 - undirected graphs: $\{u, v\} = \{v, u\}$, same weight
 - ightharpoonup directed graphs: (u, v) and (v, u) may have different weights
- **Notation**: w(u, v) or w(e) or weight(u, v) etc.

STORING A WEIGHTED GRAPH

Adjacency matrix:

	Α	В	С	D	Ε
Α	0	4	2	∞	∞
В	4	0	1	5	∞
С	2	1	0	∞	∞
D	∞	5	∞	0	∞
Ε	∞	∞	∞	∞	0

Adjacency lists:

	adjacency list
Α	(B,4), (C,2)
В	(A,4), (C,1), (D,5)
C	(A,2), (B,1)
D	(B,5)
E	

Let G = (V, E) be a *connected*, *undirected* graph with *edge weights* w(e) for each edge $e \in E$.

Let G = (V, E) be a connected, undirected graph with edge weights w(e) for each edge $e \in E$.

A spanning tree is a tree A such that every vertex $v \in V$ is an endpoint of at least one edge in A.

Q. Which algorithms have we seen to construct a spanning tree?

A.

Let G = (V, E) be a *connected*, *undirected* graph with *edge weights* w(e) for each edge $e \in E$.

A spanning tree is a tree A such that every vertex $v \in V$ is an endpoint of at least one edge in A.

Q. Which algorithms have we seen to construct a spanning tree?

A.

Let G = (V, E) be a *connected, undirected* graph with *edge weights* w(e) for each edge $e \in E$.

A spanning tree is a tree A such that every vertex $v \in V$ is an endpoint of at least one edge in A.

Q. Which algorithms have we seen to construct a spanning tree?

A.

A minimum cost spanning tree (**MST**) is a spanning tree A such that the sum of the weights is minimum for all possible spanning trees B.

$$w(A) = \sum_{e \in A} w(e) \le w(B)$$

EXAMPLE

Usually just for undirected, connected graphs.

Q. How might we find a *minimum spanning tree*?

A.

SAMPLE GRAPH

Kruskal's algorithm finds an MST by

Kruskal's algorithm finds an MST by

Kruskal's algorithm finds an MST by

- \blacktriangleright
- \triangleright

Kruskal's algorithm finds an MST by

- \blacktriangleright
- \blacktriangleright
- \blacktriangleright

Kruskal's algorithm finds an MST by

- \blacktriangleright

Kruskal's algorithm finds an MST by

- _

Kruskal's algorithm finds an MST by

- •
- •
- \rightarrow

Kruskal's algorithm finds an *MST* by repeatedly adding the *least weight edge* that does *not induce* a *cycle*.

Proof by Contradiction.

▶

Kruskal's algorithm finds an *MST* by repeatedly adding the *least weight edge* that does *not induce* a *cycle*.

Proof by Contradiction.

ightharpoons

 \triangleright

Kruskal's algorithm finds an *MST* by repeatedly adding the *least weight edge* that does *not induce* a *cycle*.

Case 1.
$$w(e') = w_i$$
.

Kruskal's algorithm finds an *MST* by repeatedly adding the *least weight edge* that does *not induce* a *cycle*.

Proof by Contradiction.

 \blacktriangleright

Case 1.
$$w(e') = w_i$$
.

Case 2.
$$w(e') > w_i$$
.

KRUSKAL'S ALGORITHM

Q. How should we store the edges sorted by non-decreasing weight?

A.

KRUSKAL'S ALGORITHM

Q. How should we store the *edges* sorted by *non-decreasing weight*?

Α.

Q. How can we add edges and make sure that no cycle is induced.

A.

KRUSKAL'S ALGORITHM

Q. How should we store the *edges* sorted by *non-decreasing weight*?

A.

Q. How can we add edges and make sure that no cycle is induced.

Α.

```
Kruskal (E, V)
 S := new container() for chosen edges
 PQ := min priority queue of edges and weights
 for each vertex v:
     v.cluster := {v}
 while not PQ.is_empty():
     \{u,v\} = PO.extract min():
     if u.cluster ≠ v.cluster:
         S.add(\{u,v\})
         union(u.cluster, v.cluster)
 return S
```

STORING CLUSTERS: EASY WAY - LINKED LISTS

Idea.

► each *cluster* is a *linked list*

STORING CLUSTERS: EASY WAY - LINKED LISTS

Idea.

- each cluster is a linked list
- v.cluster is pointer to v's own linked list

- each cluster is a linked list
- v.cluster is pointer to v's own linked list
- $u.cluster \neq v.cluster$ is pointer equality, $\Theta(1)$ time

- each cluster is a linked list
- v.cluster is pointer to v's own linked list
- ▶ $u.cluster \neq v.cluster$ is pointer equality, $\Theta(1)$ time
- merging two clusters is merging two linked lists, BUT:
 - → a lot of vertices need their cluster pointers updated

- each cluster is a linked list
- v.cluster is pointer to v's own linked list
- ▶ $u.cluster \neq v.cluster$ is pointer equality, $\Theta(1)$ time
- merging two clusters is merging two linked lists, BUT:
 - → a lot of vertices need their cluster pointers updated

Idea.

- each cluster is a linked list
- v.cluster is pointer to v's own linked list
- ▶ $u.cluster \neq v.cluster$ is pointer equality, $\Theta(1)$ time
- merging two clusters is merging two linked lists, BUT:
- → a lot of *vertices* need their *cluster pointers* updated Luckily, if you move the *smaller list* to the *larger one*, then:

Þ

- each cluster is a linked list.
- v.cluster is pointer to v's own linked list
- ▶ $u.cluster \neq v.cluster$ is pointer equality, $\Theta(1)$ time
- merging two clusters is merging two linked lists, BUT:
- → a lot of *vertices* need their *cluster pointers* updated
- Luckily, if you move the *smaller list* to the *larger one*, then:

 - If cluster size doubles, at most how many cluster updates can we do?

Idea.

- each cluster is a linked list.
- v.cluster is pointer to v's own linked list
- ▶ $u.cluster \neq v.cluster$ is pointer equality, $\Theta(1)$ time
- merging two clusters is merging two linked lists, BUT:
- → a lot of *vertices* need their *cluster pointers* updated

Luckily, if you move the *smaller list* to the *larger one*, then:

- \triangleright
- If cluster size doubles, at most how many cluster updates can we do?

Idea.

- each cluster is a linked list.
- v.cluster is pointer to v's own linked list
- ▶ $u.cluster \neq v.cluster$ is pointer equality, $\Theta(1)$ time
- merging two clusters is merging two linked lists, BUT:
- → a lot of *vertices* need their *cluster pointers* updated

Luckily, if you move the *smaller list* to the *larger one*, then:

- \triangleright
- If cluster size doubles, at most how many cluster updates can we do?

Idea.

- each cluster is a linked list.
- v.cluster is pointer to v's own linked list
- ▶ $u.cluster \neq v.cluster$ is pointer equality, $\Theta(1)$ time
- merging two clusters is merging two linked lists, BUT:
 - → a lot of vertices need their cluster pointers updated

Luckily, if you move the smaller list to the larger one, then:

•

If cluster size doubles, at most how many cluster updates can we do?

•

We will see a faster way later in this course.

Complexity

Complexity

Building PQ and removing edges:

Complexity

- Building PQ and removing edges:
- v.cluster updates:

Complexity

- Building PQ and removing edges:
- v.cluster updates:
- ▶ the rest is $\Theta(1)$ per vertex or edge

Complexity

- Building PQ and removing edges:
- v.cluster updates:
- the rest is ⊖(1) per vertex or edge

Total $O(n \lg n + m \lg m)$ time worst case.

Q. What do we know about $\lg m$ and $\lg n$?

A.

Complexity

- Building PQ and removing edges:
- v.cluster updates:
- the rest is ⊖(1) per vertex or edge

Total $O(n \lg n + m \lg m)$ time worst case.

Q. What do we know about $\lg m$ and $\lg n$?

A.

Therefore,

Complexity

- Building PQ and removing edges:
- v.cluster updates:
- the rest is ⊖(1) per vertex or edge

Total $O(n \lg n + m \lg m)$ time worst case.

Q. What do we know about $\lg m$ and $\lg n$?

A.

Therefore,

Faster if faster cluster implementation.

Prim's algorithm finds an *MST* by something similar to *breadth-first search*, but with a twist:

Prim's algorithm finds an *MST* by something similar to *breadth-first search*, but with a twist:

The *queue* is changed to a *min priority queue*.

Prim's algorithm finds an *MST* by something similar to *breadth-first search*, but with a twist:

The *queue* is changed to a *min priority queue*.

The algorithm *grows a tree T* one edge at a time.

Prim's algorithm finds an *MST* by something similar to *breadth-first search*, but with a twist:

The queue is changed to a min priority queue.

The algorithm *grows a tree T* one edge at a time.

Priority of vertex v =

Let's step through the example again...

vertex	а	b	С	d	е	f	g	h	i
priority	0	∞							
priority pred									

vertex	b	h	С	d	е	f	g	i
vertex priority pred	4	8	∞	∞	∞	∞	∞	
pred	а	а						

vertex	h	С	d	е	f	g	i
vertex priority pred	8	8	∞	∞	∞	∞	∞
pred	а	b					

vertex	g	i	С	d	е	f
priority	1	7	8	∞	∞	∞
pred	h	h	b			

vertex	f	i	С	d	е
priority	2	6	8	∞	∞
pred	g	g	b		

vertex	С	i	е	d
priority	4	6	10	14
pred	f	g	f	f

PRIM'S ALGORITHM

```
Prim(V, E)
S := new container() for edges
PQ := new min-heap()
start := pick a vertex
PQ.insert(start, 0)
 for each vertex v ≠ start:
    # initialize pq
    PQ.insert(v, \infty)
 while not PQ.is_empty():
    # add least edge to grow the tree
     u := PQ.extract_min()
     S.add({u.pred, u})
 for each z in u's adjacency list:
    # update priorities based on u now in S
    if z in PQ && weight (u,z) < priority of z:
         PQ.decrease_priority(z, weight(u,z))
         z.pred := u
return S
```

Q. How many times does a *vertex* enter/leave the *min-heap*?

Q. How many times does a *vertex* enter/leave the *min-heap*?

A.

Q. How many times does a *vertex* enter/leave the *min-heap*?

A.

Q. How many times can a *vertex's priority* decrease?

Q. How many times does a *vertex* enter/leave the *min-heap*?

A.

Q. How many times can a *vertex's priority* decrease?

A.

- **Q.** How many times does a *vertex* enter/leave the *min-heap*?
- Α.
- Q. How many times can a *vertex's priority* decrease?
- A.
 - ▶ Everything else, can be done in $\Theta(1)$ per *vertex* or per *edge*

- **Q.** How many times does a *vertex* enter/leave the *min-heap*?
- Α.
- Q. How many times can a *vertex's priority* decrease?
- Α.
- ightharpoonup Everything else, can be done in $\Theta(1)$ per *vertex* or per *edge*
- ► Total $O((n+m)\lg n)$ time worst case.

To begin with we will first prove a useful property:

Cut Property: Let S be a nontrivial subset of V in G (i.e. $S \neq \emptyset$ and $S \neq V$). If (u,v) is the *lowest-cost edge* crossing (S,V-S), then (u,v) is in *every MST* of G.

Proof.

Suppose there exists an MST T that does not contain (u, v).

To begin with we will first prove a useful property:

Cut Property: Let S be a nontrivial subset of V in G (i.e. $S \neq \emptyset$ and $S \neq V$). If (u,v) is the *lowest-cost edge* crossing (S,V-S), then (u,v) is in *every MST* of G.

Proof.

- Suppose there exists an MST T that does not contain (u, v).
- Consider the sets S and V − S.

To begin with we will first prove a useful property:

Cut Property: Let *S* be a nontrivial subset of *V* in *G* (i.e. $S \neq \emptyset$ and $S \neq V$). If (u, v) is the *lowest-cost edge* crossing (S, V - S), then (u, v) is in *every MST* of *G*.

Proof.

- Suppose there exists an MST T that does not contain (u, v).
- Consider the sets S and V − S.
- •

To begin with we will first prove a useful property:

Cut Property: Let S be a nontrivial subset of V in G (i.e. $S \neq \emptyset$ and $S \neq V$). If (u,v) is the *lowest-cost edge* crossing (S,V-S), then (u,v) is in *every MST* of G.

Proof.

- Suppose there exists an MST T that does not contain (u, v).
- Consider the sets S and V − S.
- ightharpoons
- •

PRIM'S CORRECTNESS PROOF

To begin with we will first prove a useful property:

Cut Property: Let S be a nontrivial subset of V in G (i.e. $S \neq \emptyset$ and $S \neq V$). If (u,v) is the *lowest-cost edge* crossing (S,V-S), then (u,v) is in *every MST* of G.

Proof.

- Suppose there exists an MST T that does not contain (u, v).
- Consider the sets S and V − S.
- \triangleright
- \blacktriangleright

PRIM'S CORRECTNESS PROOF

To begin with we will first prove a useful property:

Cut Property: Let *S* be a nontrivial subset of *V* in *G* (i.e. $S \neq \emptyset$ and $S \neq V$). If (u, v) is the *lowest-cost edge* crossing (S, V - S), then (u, v) is in *every MST* of *G*.

Proof.

- Suppose there exists an MST T that does not contain (u, v).
- Consider the sets S and V − S.
- ightharpoons
- \blacktriangleright
- ► Therefore, *T* is not an *MST*.

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How would the argument go?

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How would the argument go?

Α.

► Consider *optimal* MST *O* and *Prim's Algorithm* tree *T*.

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How would the argument go?

- ► Consider *optimal* MST *O* and *Prim's Algorithm* tree *T*.
- Order edges of T according to order they are selected.

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How would the argument go?

- ► Consider *optimal* MST *O* and *Prim's Algorithm* tree *T*.
- Order edges of T according to order they are selected.
- Consider the *first edge* e = (u, v) in the ordering that is in T but not in O.

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How would the argument go?

- ► Consider *optimal* MST *O* and *Prim's Algorithm* tree *T*.
- Order edges of T according to order they are selected.
- Consider the *first edge* e = (u, v) in the ordering that is in T but not in O.

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How would the argument go?

- Consider optimal MST O and Prim's Algorithm tree T.
- Order edges of T according to order they are selected.
- Consider the *first edge* e = (u, v) in the ordering that is in T but not in O.
- ightharpoons

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How would the argument go?

- ► Consider *optimal* MST *O* and *Prim's Algorithm* tree *T*.
- Order edges of T according to order they are selected.
- Consider the *first edge* e = (u, v) in the ordering that is in T but not in O.
- \triangleright
- \triangleright

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How would the argument go?

A.

- ► Consider *optimal* MST *O* and *Prim's Algorithm* tree *T*.
- Order edges of T according to order they are selected.
- Consider the *first edge* e = (u, v) in the ordering that is in T but not in O.
- \triangleright

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How would the argument go?

- ► Consider *optimal* MST *O* and *Prim's Algorithm* tree *T*.
- Order edges of T according to order they are selected.
- Consider the *first edge* e = (u, v) in the ordering that is in T but not in O.
- \triangleright
- \blacktriangleright
- \triangleright

The correctness of *Prim's* Algorithm follows...from the **Cut Property**.

Q. How would the argument go?

- Consider optimal MST O and Prim's Algorithm tree T.
- Order edges of T according to order they are selected.
- Consider the *first edge* e = (u, v) in the ordering that is in T but not in O.

- \triangleright

- \blacktriangleright

Let *R* be our *greedy rule* for selecting edges.

- ▶ Let *R* be our *greedy rule* for selecting edges.
- Consider our edge set sorted according to R.

- Let *R* be our *greedy rule* for selecting edges.
- Consider our edge set sorted according to R.
- ▶ Let *O* be an *optimal solution* that differs from our algorithm solution *T*.

- ▶ Let *R* be our *greedy rule* for selecting edges.
- Consider our edge set sorted according to R.
- ▶ Let *O* be an *optimal solution* that differs from our algorithm solution *T*.
- Consider our first edge {u, v} in the edge set ordering that differs between O and T.

- Let *R* be our *greedy rule* for selecting edges.
- Consider our edge set sorted according to R.
- ▶ Let *O* be an *optimal solution* that differs from our algorithm solution *T*.
- Consider our first edge {u, v} in the edge set ordering that differs between O and T.
- ▶ Show that by definition of R, $\{u, v\} \in T$.

- Let *R* be our *greedy rule* for selecting edges.
- Consider our edge set sorted according to R.
- ▶ Let *O* be an *optimal solution* that differs from our algorithm solution *T*.
- Consider our first edge {u, v} in the edge set ordering that differs between O and T.
- ▶ Show that by definition of R, $\{u, v\} \in T$.
- Consider the set of selected vertices $S \subset V(T)$ when $\{u, v\}$ is chosen. By construction, $u \in S$ and $v \in V S$.

- Let R be our greedy rule for selecting edges.
- Consider our edge set sorted according to R.
- ▶ Let *O* be an *optimal solution* that differs from our algorithm solution *T*.
- Consider our first edge {u, v} in the edge set ordering that differs between O and T.
- ▶ Show that by definition of R, $\{u, v\} \in T$.
- Consider the set of selected vertices $S \subset V(T)$ when $\{u, v\}$ is chosen. By construction, $u \in S$ and $v \in V S$.
- ▶ Consider the *path* p from u to v in O and the edge $e \in p$ that crosses from S to V S.

- Let *R* be our *greedy rule* for selecting edges.
- Consider our edge set sorted according to R.
- ▶ Let *O* be an *optimal solution* that differs from our algorithm solution *T*.
- Consider our first edge {u, v} in the edge set ordering that differs between O and T.
- ▶ Show that by definition of R, $\{u, v\} \in T$.
- Consider the set of selected vertices $S \subset V(T)$ when $\{u, v\}$ is chosen. By construction, $u \in S$ and $v \in V S$.
- Consider the path p from u to v in O and the edge e ∈ p that crosses from S to V – S.
- ► Show that swapping *e* and {*u*, *v*} in *O* maintains the *MST properties* of *O* either *improves* or *maintains* the optimality of *O*.

- Let *R* be our *greedy rule* for selecting edges.
- Consider our edge set sorted according to R.
- ▶ Let *O* be an *optimal solution* that differs from our algorithm solution *T*.
- Consider our first edge {u, v} in the edge set ordering that differs between O and T.
- ▶ Show that by definition of R, $\{u, v\} \in T$.
- Consider the set of selected vertices $S \subset V(T)$ when $\{u, v\}$ is chosen. By construction, $u \in S$ and $v \in V S$.
- Consider the path p from u to v in O and the edge e ∈ p that crosses from S to V – S.
- ► Show that swapping *e* and {*u*, *v*} in *O* maintains the *MST properties* of *O* either *improves* or *maintains* the optimality of *O*.
- You may find it helpful to know that many greedy algorithm proofs (for other types of problems) follow a similar template.

- Let *R* be our *greedy rule* for selecting edges.
- Consider our edge set sorted according to R.
- ▶ Let *O* be an *optimal solution* that differs from our algorithm solution *T*.
- Consider our first edge {u, v} in the edge set ordering that differs between O and T.
- ▶ Show that by definition of R, $\{u, v\} \in T$.
- Consider the set of selected vertices $S \subset V(T)$ when $\{u, v\}$ is chosen. By construction, $u \in S$ and $v \in V S$.
- Consider the path p from u to v in O and the edge e ∈ p that crosses from S to V S.
- Show that swapping e and $\{u, v\}$ in O maintains the MST properties of O either improves or maintains the optimality of O.
- You may find it helpful to know that many greedy algorithm proofs (for other types of problems) follow a similar template.
- ★ L02's notes have a different but similar template another perspective.