Cell Cycle

PREPARED BY: BESIR ZENELI

By the end of this lesson you will be able to:

Explain the stages of the cell cycle and how the cell cycle is regulated.

THE EUKARYOTIC CELL CYCLE

- Cells reproduce by duplicating their contents and then splitting into two daughter cells.
- Nuclear and cytoplasmic division (M phase)
- Between each M phase is an interphase.
- During interphase there are made preparations for cell division, in a carefully ordered and controlled sequence, with checkpoints.

CHECKPOINTS

- Checkpoints are mechanisms that control the process of cell division so it can happen in a proper way.
- The purpose of the checkpoints is:
- to prevent uncontrolled division that would lead to tumors (cancer)
- to detect and repair damage to DNA (for example, damage caused by UV light)
- The major checkpoints in the cell cycle are :
- 1. G1/S checkpoint
- 2. G2/M checkpoint
- 3. M checkpoint

CHECKPOINTS

CHECKPOINTS

- Progression through checkpoints is regulated by these cellular mechanisms:
- 1. Cyclins
- Cyclin dependent Kynases (CDK)
- 3. Tumor suppressors (gene p53)

Phase of cell cycle and checkpoints	Events within the cell
M phase A checkpoint chemical triggers condensation of chromatin. Halfway through the cycle, the metaphase checkpoint ensures that the cell is ready to complete mitosis.	 Cell growth stops. Nuclear division (mitosis) consisting of stages: prophase, metaphase, anaphase and telophase (see topic 2.6.2 for more on mitosis). Cytokinesis (cytoplasmic division).
 G₀ (gap 0) phase A resting phase triggered during early G₁ at the restriction point (see below), by a checkpoint chemical. Some cells, e.g. epithelial cells lining the gut, do not have this phase. 	 In this phase, cells may undergo apoptosis (programmed cell death), differentiation or senescence. Some types of cells (e.g. neurones) remain in this phase for a very long time or indefinitely.
 G₁ (gap 1) phase – also called the growth phase A G₁ checkpoint control mechanism ensures that the cell is ready to enter the S phase and begin DNA synthesis. 	 Cells grow and increase in size. Transcription of genes to make RNA occurs. Organelles duplicate. Biosynthesis, e.g. protein synthesis, including making the enzymes needed for DNA replication in the S phase. The p53 (tumour suppressor) gene helps control this phase.
 S (synthesis) phase of interphase Because the chromosomes are unwound and the DNA is diffuse, every molecule of DNA is replicated. There is a specific sequence to the replication of genes: housekeeping genes – those which are active in all types of cells, are duplicated first. Genes that are normally inactive in specific types of cells are replicated last. 	 Once the cell has entered this phase, it is committed to completing the cell cycle. DNA replicates. When all chromosomes have been duplicated, each one consists of a pair of identical sister chromatids. This phase is rapid, and because the exposed DNA base pairs are more susceptible to mutagenic agents, this reduces the chances of spontaneous mutations happening.
 G₂ (gap 2) phase of interphase Special chemicals ensure that the cell is ready for mitosis by stimulating proteins that will be involved in making chromosomes condense and in formation of the spindle. 	Cells grow.

Interactive learning

https://www.youtube.com/watch?v=e6N9 RhD10Q

https://www.biointeractive.org/classroom-resources/eukaryotic-cell-cycle-and-cancer