Let's Build a (really, really, really) Simple Neural Network

Hana Lee Zagaku 6 February 2018 What is a neural network?

What is a neural network?

What is a model?

What is a model?

- A model is a mathematical function that takes input variables and tries to predict the value of an output variable
- · Simplest example:

$$y = a_0 + a_1 X_1$$

Output can be a vector: $Y = [y_1, y_2, y_3, ..., y_n]$

Inputs can also be vectors: $X_1 = [x_1, x_2, x_3, ..., x_n]$

Polynomial rather than linear: $a_{11}x_1 + a_{12}x_1^2 + a_{13}x_1^3 + ... + a_{1n}x_1^n$

Interactions between inputs: $a_{10}x_1 + a_{11}x_1x_2 + a_{01}x_2$

Cost function

- Used to evaluate how well a model fits the data
- Many possible methods:
 - root mean squared error (RMSE),
 - log-loss
 - area under receiver operating characteristic (ROC) curve
 - ...and many more
- Mental shortcut: reality prediction

Training a model

- Requires training set data with output (i.e. "reality") associated with given inputs
- Find the set of weights for the model that minimizes value of the cost function
- An optimization algorithm (just like minimax)

Minimizing the cost function

- Model: $y = a_0 + a_1 x_1$
- Cost function: $J = \sqrt{((y_{actual} y_{predicted})^2)}$

Stochastic gradient descent

- Initial weights are randomly selected
- Learning rate determines size of "steps"

Cross-validation

- Put aside portion of training set that is not used to train the model
- After training, apply model to this test set data and calculate cost function to evaluate model's performance
- In practice, more complicated methods of splitting up training and test data

Neural network

 Each hidden and output
neuron is calculated through a function:

$$y = \begin{cases} 0 & \text{if } a_0 + a_1 x_1 + \dots + a_n x_n \le 0 \\ 1 & \text{if } a_0 + a_1 x_1 + \dots + a_n x_n > 0 \end{cases}$$

Need to fit all a_i

$$(3 + 1) \cdot (4 + 1) \cdot 2 = 40$$

 In practice, the above can be more complicated than just linear

Deep learning

Why neural networks?

- Only recently have computers become powerful enough to fit complex neural networks
- Optimization often requires parallel computations, hence GPUs
- Proven particularly powerful for unstructured data (images, audio, video) and nonlinear behavior

Let's build a neural network!

The data

- MNIST database of handwritten digits
- Each image is grayscale scan with 28x28 pixels
- Each row has 784 inputs representing value at each pixel
- Classic data set from machine learning research

1	2	5	ବ	7	6	3	S	\mathcal{O}	8
4	5	8	6	J	3	2	9	7	2
3	M	3			0		2	3	0
1	1	4	0	2	1	しり	\wp		
8	0	ಳ	0	4	0	4		ഗ	9
8		4	2	2	7	1	6	0	9
1	7	0	3	9	1	Ņ	\odot	7	7
2	6			6	4	2	2	2	9
4	4	4		Q	6	,	J	8	3
-(5	0	3	4	6	8	2	5	1

The model

- Using scikit-learn's MLPClassifier
- Default settings: 1 hidden layer of 100 neurons
- In practice, MLPClassifier can't handle large-scale data, but will work for a relatively small data set

Resources for learning more

- Andrew Ng's Coursera courses
 - Machine Learning: https://www.coursera.org/learn/machine-learning
 - Deep Learning: https://www.coursera.org/specializations/deep-learning
- Neural Networks: A Systematic Introduction, Raul Rojas: https://page.mi.fu-berlin.de/rojas/neural/
- TensorFlow: https://www.tensorflow.org/
- Keras: https://keras.io/
- Kaggle: https://www.kaggle.com/