Divide-and-Conquer: Master Theorem

Neil Rhodes

Department of Computer Science and Engineering University of California, San Diego

Algorithmic Design and Techniques Algorithms and Data Structures

Outline

1 What is the Master Theorem

2 Proof of Master Theorem

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

 $T(n) = O(\log n)$

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n)$$

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n)$$

$$\downarrow$$

$$T(n) = O(n^2)$$

$$T(n) = 3T\left(\frac{n}{2}\right) + O(n)$$

 $T(n) = 3T\left(\frac{n}{2}\right) + O(n)$

 $T(n) = O(n^{\log_2 3})$

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

$$T(n) = O(n \log n)$$

If
$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$

If
$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$
 (for constants $a > 0, b > 1, d \ge 0$), then:

If
$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$
 (for constants $a > 0, b > 1, d \ge 0$), then:

If
$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$
 (for constants $a > 0, b > 1, d \ge 0$), then:

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \end{cases}$$

If
$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$
 (for constants $a > 0, b > 1, d \ge 0$), then:

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \end{cases}$$

If
$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$
 (for constants $a > 0, b > 1, d \ge 0$), then:

$$T(n) = egin{cases} O(n^d) & ext{if } d > \log_b a \ O(n^d \log n) & ext{if } d = \log_b a \ O(n^{\log_b a}) & ext{if } d < \log_b a \end{cases}$$

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n)$$

$$T(n) = \frac{4}{7} \left(\frac{n}{2}\right) + O(n)$$
$$a = \frac{4}{3}$$

b=2

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n)$$

$$a = 4$$

b=2

d = 1

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n^{1})$$

$$a = 4$$

$$T(n) = 4T\binom{n}{-} + O(n)$$

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n)$$

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n)$$

a=4

b=2

d=1

Since $d < \log_b a$, $T(n) = O(n^{\log_b a}) = O(n^2)$

$$T(n) = 3T\left(\frac{n}{2}\right) + O(n)$$

$$T(n) = \frac{3}{3}T\left(\frac{n}{2}\right) + O(n)$$

$$a = \frac{3}{3}$$

b=2

$$T(n) = 3T\left(\frac{n}{2}\right) + O(n)$$

$$a = 3$$

$$T(n) = 3T\left(\frac{n}{2}\right) + O(n^1)$$

a=3

b=2

d=1

$$T(n) = 3T\left(\frac{n}{2}\right) + O(n)$$

$$a = 3$$

$$b = 3$$

 $T(n) = O(n^{\log_b a}) = O(n^{\log_2 3})$

$$b=2$$
 $d=1$

$$d=1$$
 Since $d < \log_b a$,

$$T(n)=2$$

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

$$T(n) = \frac{2}{3}T\left(\frac{n}{2}\right) + O(n)$$

$$a = \frac{2}{3}$$

b=2

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

$$a = 2$$

a=2

b=2

d = 1

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n^{1})$$

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n)$$

 $T(n) = O(n^d \log n) = O(n \log n)$

$$b=2$$
 $d=1$

$$d=1$$
 Since $d=\log_b a$,

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

$$T(n) = \frac{1}{2}T\left(\frac{n}{2}\right) + O(1)$$

a=1

a=1

b=2

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

$$-(n) - (n)$$

b=2

d = 0

$$T(n) = T\left(\frac{n}{2}\right) + O(n^{0})$$

$$a = 1$$

$$T(n) = T\left(rac{n}{2}
ight) + O(1)$$
 $a = 1$

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$
 $a = 1$

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$
 $a = 1$
 $b = 2$

d=0

 $O(n^0 \log n) = O(\log n)$

Since $d = \log_b a$, $T(n) = O(n^d \log n) =$

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n^2)$$

a=2

$$T(n) = \frac{2}{2}T\left(\frac{n}{2}\right) + O(n^2)$$

a=2

b=2

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n^2)$$

a=2

b=2

d=2

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n^2)$$

$$T(n) = 27$$

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n^2)$$

d=2

Since $d > \log_b a$, $T(n) = O(n^d) = O(n^2)$

$$a=2$$

$$a=2$$
 $b=2$

Outline

1 What is the Master Theorem

2 Proof of Master Theorem

Master Theorem

Theorem

If
$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$
 (for constants $a > 0, b > 1, d \ge 0$), then:

$$T(n) = egin{cases} O(n^d) & ext{if } d > \log_b a \ O(n^d \log n) & ext{if } d = \log_b a \ O(n^{\log_b a}) & ext{if } d < \log_b a \end{cases}$$

$$T(n) = aT(\left\lceil rac{n}{b}
ight
ceil) + O(n^d)$$

$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$

$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$

level

$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$

level

$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$

level

$$\begin{array}{c|cccc}
0 & & & & & & \\
1 & & & & & & & \\
\hline
1 & & & & & & & \\
\hline
1 & & & & & & & \\
\hline
1 & & & & & & \\
\hline
1 & & & & & & \\
\hline
1 & & & & & & \\
\hline
1 & & & & & & \\
\hline
1 & & & & & & \\
\hline
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\
1 & & & \\$$

$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$

$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$

$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$

$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$

level #

0 | n | 1

1 |
$$n/b$$
 | \cdots | n/b | a
 \vdots | \vdots

$T(n) = aT(\left\lceil \frac{n}{b} \right\rceil) + O(n^d)$

$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$

$$T(n) = aT(\left\lceil \frac{n}{b} \right\rceil) + O(n^d)$$

 $T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$

$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$

level

work

$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$

level

work

$$a + ar + ar^{2} + ar^{3} + \cdots + ar^{n-1}$$

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1}$$

$$= a\frac{1 - r^{n}}{1 - r}$$

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1}$$

$$= a\frac{1 - r^{n}}{1 - r}$$

$$= \begin{cases}
\end{cases}$$

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1}$$

$$= a\frac{1 - r^{n}}{1 - r}$$

$$= \begin{cases} O(a) & \text{if } r < 1 \end{cases}$$

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1}$$

$$= a\frac{1 - r^{n}}{1 - r}$$

$$= \begin{cases} O(a) & \text{if } r < 1\\ O(ar^{n-1}) & \text{if } r > 1 \end{cases}$$

Case $1:\frac{a}{b^d} < 1 \ (d > log_b a)$

$$\sum^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$

Case $1: \frac{a}{b^d} < 1 \ (d > log_b a)$

$$\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$
$$= O(n^d)$$

Case $2: \frac{a}{b^d} = 1$ $(d = log_b a)$

$$\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$

Case $2: \frac{a}{bd} = 1$ $(d = log_b a)$

$$\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$

$$= \sum_{i=0}^{\log_b n} O(n^d)$$

Case $2: \frac{a}{b^d} = 1$ $(d = log_b a)$

$$\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$

$$= \sum_{i=0}^{\log_b n} O(n^d)$$

$$= (1 + \log_b n) O(n^d)$$

Case $2: \frac{a}{b^d} = 1$ $(d = log_b a)$

$$\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$

$$= \sum_{i=0}^{\log_b n} O(n^d)$$

$$= (1 + \log_b n) O(n^d)$$

$$= O(n^d \log n)$$

$$\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$

$$\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$

$$= O\left(O(n^d) \left(\frac{a}{b^d}\right)^{\log_b n}\right)$$

$$\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$

$$= O\left(O(n^d) \left(\frac{a}{b^d}\right)^{\log_b n}\right)$$

$$= O\left(O(n^d) \frac{a^{\log_b n}}{b^{d \log_b n}}\right)$$

$$\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$

$$= O\left(O(n^d) \left(\frac{a}{b^d}\right)^{\log_b n}\right)$$

$$= O\left(O(n^d) \frac{a^{\log_b n}}{b^{d \log_b n}}\right)$$

$$= O\left(O(n^d) \frac{n^{\log_b n}}{n^d}\right)$$

$$\sum_{i=0}^{\log_b n} O(n^d) \left(\frac{a}{b^d}\right)^i$$

$$= O\left(O(n^d) \left(\frac{a}{b^d}\right)^{\log_b n}\right)$$

$$= O\left(O(n^d) \frac{a^{\log_b n}}{b^{d \log_b n}}\right)$$

$$= O\left(O(n^d) \frac{n^{\log_b n}}{n^d}\right)$$

$$= O(n^{\log_b a})$$

Summary

Master theorem is a shortcut:

Summary

Master theorem is a shortcut:

Theorem

If
$$T(n) = aT(\lceil \frac{n}{b} \rceil) + O(n^d)$$
 (for constants $a > 0, b > 1, d \ge 0$), then:

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$