Final de Lógica 2005

- 1. V o F, justifique.
 - (a) Dado un tipo τ, φ, ψ fórmulas, A estructura de tipo τ y a ∈ A^N, se tiene que
 V^A(((∀x₁φ → ψ) → ∃x₁(φ → ψ)), a) = 1
 - (b) Si hay un A tal que $A \models \varphi \ y \ A \models \neg \psi$ entonces en el algebra de Lindenbaum $\mathcal{A}_{(\mathfrak{I},\tau)}$ se tiene que $[\varphi] \not \leq [\psi]$.
 - (c) La siguiente es una prueba de $(\emptyset, (\emptyset, \{f^1\}, \emptyset, a)) \vdash (\forall x \exists y \ (f(y) \equiv x) \rightarrow \forall x \exists y (f(f(y)) \equiv x)$

1. $\forall x \exists y \ (f(y) \equiv x)$	HIP
2. $\exists y \ (f(y) \equiv c)$	PART 1
3. $(f(e) \equiv c)$	ELEC 2
4. $\exists y \ (f(y) \equiv e)$	PART 1
5. $(f(d) \equiv e)$	ELEC~4
6. $(f(f(d)) \equiv c)$	REEM 3 5
7. $\forall x (f(f(d)) \equiv x)$	GEN 6
8. $(f(f(d)) \equiv x_{\cdot})$	PART 7
9. $\exists y (f(f(y)) \equiv x_0)$	EXIST 8
10. $\forall x \exists y (f(f(y)) \equiv x)$	GEN 9
11. $(\forall x \exists y \ (f(y) \equiv x) \rightarrow \forall x \exists y (f(f(y)) \equiv x)$	CONC
$(c, d, e, x_0 \text{ son nombres de ctes})$	of their

- (d) Sea Σ un conjunto de identidades de tipo τ . Entonces $\Sigma \models p \approx q$ implica hay $\Sigma_0 \subseteq \Sigma$, finito, tal que $\Sigma_0 \models p \approx q$.
- 2. Sea $C_n = (\{0, ..., n\}, max, min) \text{ con } n \ge 1.$
 - (a) Pruebe que para cada θ congruencia de C_n hay un homomorfismo $F: C_n \to C_n$ tal que $ker(F) = \theta$.
 - (b) Muestre que

 $|\{F:F:\mathbf{C}_n \to \mathbf{C}_n \text{ es un homorfismo}\}| > |\{\theta:\theta \text{ es una congruencia de } \mathbf{C}_n\}|$.

3. Dar una prueba que atestigüe que $Arit \vdash \forall x \forall y \forall z \ ((x \not\equiv 0 \land y \not\equiv 0 \land x.y \leq z) \rightarrow (x \leq z \land y \leq z))$