Movie Status Report: Computing Vision

I.- Introduction

A) Overview

We have been tasked with determining which type of movie would be the best investment for a new movie studio. Based on empirical data collected over the past couple of years. We want your initial investment in a movie to be successful so you can hit the ground running in your new and exciting venture. For that to be a success, we have taken a deep dive into the data to determine how long a movie should be, what rating, and how much to spend to insure a hit in the box office.

B) Members

- 1. Blake Medwed
- 2. Rico Gutierrez
- 3. Ahmed Isse
- 4. Alberto Ruiz Martinez

C) Objectives

- 1. Analyze empirical data based on the last few years
- 2. Visualize the analyzed data
- 3. Explain the vizualizations
- 4. Determine the best course of action for the initial investment

II.- Determining Data

A) What production metrics makes a movie successful?

- 1. Runtime How long a movie lasts
- 2. Age Rating The age bracket and potential age restrictions determined by the MPAA
- 3. Movie Budget The amount invested in film production

B) What metrics are affected by production?

- 1. Domestic gross Gross revenue made released within a country
- 2. Foreign gross Gross revenue made by the movie outside of the orig in country
- 3. Worldwide gross Gross revenue made by the movie worldwide
- 4. Box Office The amount of money raised by ticket sales
- 5. Popularity Rating How high would an audience rate a movie

C) Where does the data come from?

- 1. Box Office Mojo Domestic gross, foreign gross, release year
- 2. Rotten Tomatoes MPAA rating, runtime, box office
- 3. The Movie Database Popularity rating, average popularity vote
- 4. The Numbers Production budget, domestic gross, worldwide gross

III.- Cleaning and Modifying Data

A) Importing data into dataframes and respective libraries

B) Removing data that would potentially skew results

- 1. Non applicable data
- 2. Data containing synonymous values like zero

```
In [216]: bom_movies.dropna(inplace=True)
    rt_movies.dropna(inplace=True)
```

C) Change data types

Changing a string into a manageable integer type

D) Merging dataframes

- 1. Increases population for metrics such as gross revenue
- 2. Decreasing columns based on what information is valuable

```
In [218]: 

df = pd.merge(bom_movies, tmdb, on = 'title')
    df = df[['studio', 'domestic_gross', 'foreign_gross', 'year', 'popularity',
        tn.index.name = 'title'
    df = df.merge(tn, on='title', how='left' )
    df.sort_index()
```

Out[218]:

	studio	domestic_gross_x	foreign_gross	year	popularity	vote_average	id	r
title								
'71	RAtt.	1300000.0	355000	2015	10.523	6.8	NaN	
10 Cloverfield Lane	Par.	72100000.0	38100000	2016	17.892	6.9	54.0	
11-11-11	Rocket	32800.0	5700000	2011	5.196	4.3	NaN	
12 Strong	WB	45800000.0	21600000	2018	13.183	5.6	64.0	
12 Years a Slave	FoxS	56700000.0	131100000	2013	16.493	7.9	18.0	
Zero Dark Thirty	Sony	95700000.0	37100000	2012	14.239	6.9	66.0	I
Zookeeper	Sony	80400000.0	89500000	2011	10.764	5.3	71.0	
Zoolander 2	Par.	28800000.0	27900000	2016	12.997	4.7	64.0	I
Zootopia	BV	341300000.0	682500000	2016	27.549	7.7	57.0	
mother!	Par.	17800000.0	26700000	2017	15.227	7.0	59.0	;

D) Further formatting

- 1. Removing Duplicate columns
- 2. Removing Nan values again
- 3.Converting values

1714 rows × 11 columns

```
In [219]:
           ▶ #Removing duplicate columns
              df = df.drop('domestic_gross_y', axis=1)
              df = df.drop('release_date', axis=1)
              #Removing Nan
              df.dropna(inplace=True)
              #Formatting and convertting values
              pd.to_datetime(df.year, format='%Y')
              df['production_budget'] = df['production_budget'].str.replace(',', '')
              df['production_budget'] = df['production_budget'].str.replace('$', '')
              df['production_budget'] = df['production_budget'].astype(int)
              df['worldwide_gross'] = df['worldwide_gross'].str.replace(',', '')
              df['worldwide_gross'] = df['worldwide_gross'].str.replace('$', '')
              df['worldwide_gross'] = df['worldwide_gross'].astype(int)
              df.drop_duplicates(inplace=True)
              df= df.rename(columns={'domestic gross x':'domestic gross'})
              df.head()
```

Out[219]:

	studio	domestic_gross	foreign_gross	year	popularity	vote_average	id	prod
title								
Toy Story 3	BV	415000000.0	652000000	2010	24.445	7.7	47.0	
Inception	WB	292600000.0	535700000	2010	27.920	8.3	38.0	
Shrek Forever After	P/DW	238700000.0	513900000	2010	15.041	6.1	27.0	
The Twilight Saga: Eclipse	Sum.	300500000.0	398000000	2010	20.340	6.0	53.0	
Iron Man 2	Par.	312400000.0	311500000	2010	28.515	6.8	15.0	
1								•

IV.- Analyzing Data

A 1.1) Analyzing MPAA Age Rating: Graphing

```
In [220]: #Calculating how much average box office each rating made
  ratings_df = rt_movies.groupby(by='rating').mean().sort_values(by=['box_off
  ratings_df.drop(['id'], inplace=True, axis = 1)
  ratings_df.reset_index(inplace=True)
  ratings_df.head()
```

Out[220]:

```
        rating
        box_office

        0
        PG-13
        6.872359e+07

        1
        PG
        5.289280e+07

        2
        R
        2.394827e+07

        3
        G
        7.402788e+06

        4
        NC17
        1.260219e+06
```


A 1.2) Analyzing Movie Runtime: Conclusions

1. The biggest standout for recommending earnings are PG-13 and PG movies

A 1.3) Analyzing Movie Runtime: T-test Graphing

- 1. We are comparing a sample mean with a population mean, 1 sample t-t est
- 2. We are trying to determing if the sample is making more than the population, 1 tail t-test
- 3. We are trying to look for a 95% significance level, alpha = .05
- 4. The null hypothesis would be that a PG-13 movie does not significan tly increase revenue

```
In [222]:  population_df = rt_movies[["rating", "box_office"]]
  population_df.reset_index(inplace=True)
  population_df = population_df.drop("index", axis=1)
  population_df.head()
```

Out[222]:

	rating	box_office
0	R	600000
1	PG-13	41032915
2	R	224114
3	R	1039869
4	PG-13	20518224

```
In [223]: ▶ population_df['rating'].value_counts()
```

```
Out[223]: R 105
PG-13 77
PG 38
NR 9
G 5
NC17 1
```

Name: rating, dtype: int64

```
In [224]:
           ▶ | sample_df = population_df[population_df['rating'] == "PG-13"]
              sample df.reset index(inplace=True)
              sample_df = sample_df.drop("index", axis=1)
              sample df.head()
   Out[224]:
                 rating box_office
               0 PG-13
                        41032915
               1 PG-13
                        20518224
               2 PG-13
                        35565975
               3 PG-13
                        42929971
               4 PG-13
                        37431431
In [225]:  sample_df['rating'].value_counts()
   Out[225]: PG-13
                       77
              Name: rating, dtype: int64
          degrees = len(sample df)-1
In [226]:
              t_crit = stats.t.ppf(1 - 0.025, degrees)
              t_crit
   Out[226]: 1.9916726093523487
In [227]:  population_mean = population_df["box_office"].mean()
              results = stats.ttest 1samp(
                          = list(sample_df["box_office"]),
                  popmean = population_mean
              )
              t = results.statistic
              results
   Out[227]: Ttest_1sampResult(statistic=3.120504262968141, pvalue=0.002552049772706054
              3)
```

A 1.4) Analyzing Movie Runtime: T-test Conclusions

- 1. The observed t-statistic > the critical t value
- 2. Null Hypothesis is rejected
- 3. The increase in box office sales is statistically significant with a 97.5% confidence

```
In [228]:
           # Set up figure and axes
              fig, ax = plt.subplots(figsize=(8,5))
              x = np.linspace(-5, 5, 200)
              y = stats.t.pdf(x, degrees, 0, 1)
              # Plot the PDF as a line graph
              # (x and y were created in previous plotting code)
              ax.plot(x, y, color='blue', label="t-distribution PDF")
              # Graphing Critical t-value
              ax.axvline(t_crit,color='red',linestyle='--',lw=4,label='critical t-value')
              # Filling Rejection Region
              ax.fill_betweenx(y,x,t_crit,where=x > t_crit,color="gray",label="rejection
              #Graphing observed t-stat
              ax.axvline(t, color='green', linestyle='--', lw=5,label='observed t-statist
              #Graphing Legend
              ax.legend();
```


B 1.1) Analyzing Movie Budget: Cleaning

- 1. We want to analyze movies that have a high earning of at least 400, 000,000 dollars
- 2. We need to analyze the studio, the production budget, and the world wide gross.
- 3. A stacked bar chart will depict the budget a studio allocates and h ow much revenue they recieve
- 3. Some studios have are in the dataset multiple times but under a different name

```
In [229]:
             M df.head()
    Out[229]:
                           studio domestic_gross foreign_gross year popularity vote_average
                                                                                                 id prod
                      title
                      Toy
                              \mathsf{BV}
                                      415000000.0
                                                      652000000 2010
                                                                          24.445
                                                                                           7.7 47.0
                   Story 3
                 Inception
                              WB
                                      292600000.0
                                                      535700000 2010
                                                                          27.920
                                                                                           8.3 38.0
                    Shrek
                   Forever
                            P/DW
                                      238700000.0
                                                      513900000 2010
                                                                          15.041
                                                                                           6.1 27.0
                     After
                      The
                   Twilight
                                      300500000.0
                                                      398000000 2010
                                                                                           6.0 53.0
                            Sum.
                                                                          20.340
                    Saga:
                   Eclipse
                  Iron Man
                             Par.
                                      312400000.0
                                                      311500000 2010
                                                                          28.515
                                                                                           6.8 15.0
In [230]:
                movie_budget_df = df[df['worldwide_gross'] > 400000000]
                movie_budget_df = movie_budget_df[['production_budget', 'worldwide_gross',
                movie budget df.reset index(inplace=True)
                movie_budget_df
    Out[230]:
                       studio
                              production_budget worldwide_gross
                  0
                          BV
                                   6.831200e+09
                                                    3.176650e+10
                  1
                         WB
                                   3.271000e+09
                                                    1.324274e+10
                  2
                         Fox
                                   2.937000e+09
                                                    1.378231e+10
                  3
                         Uni.
                                   1.974000e+09
                                                    1.440055e+10
                  4
                        Sony
                                   1.440000e+09
                                                    6.862027e+09
```

4.907887e+09

4.341653e+09

4.076665e+09

2.958353e+09

4.499483e+08

7.061028e+08

4.263512e+08

1.394000e+09

9.500000e+08

8.950000e+08

4.950000e+08

1.000000e+08

6.800000e+07

2.000000e+07

5

6

7

8

9

10

11

Par.

P/DW

LGF

Wein.

Sum. LG/S

WB (NL)

```
In [231]: #Combigning duplicate entries under LG and WB
movie_budget_df['studio'] = movie_budget_df['studio'].replace('^WB.*', 'WB'
movie_budget_df['studio'] = movie_budget_df['studio'].replace('^LG.*', 'LG'
movie_budget_df
```

Out[231]:

	studio	production_budget	worldwide_gross
0	BV	6.831200e+09	3.176650e+10
1	WB	3.271000e+09	1.324274e+10
2	Fox	2.937000e+09	1.378231e+10
3	Uni.	1.974000e+09	1.440055e+10
4	Sony	1.440000e+09	6.862027e+09
5	Par.	1.394000e+09	4.907887e+09
6	P/DW	9.500000e+08	4.341653e+09
7	WB	8.950000e+08	4.076665e+09
8	LG	4.950000e+08	2.958353e+09
9	Wein.	1.000000e+08	4.499483e+08
10	Sum.	6.800000e+07	7.061028e+08
11	LG	2.000000e+07	4.263512e+08

Out[232]:

production_budget worldwide_gross

studio		
BV	6.831200e+09	3.176650e+10
WB	4.166000e+09	1.731940e+10
Fox	2.937000e+09	1.378231e+10
Uni.	1.974000e+09	1.440055e+10
Sony	1.440000e+09	6.862027e+09
Par.	1.394000e+09	4.907887e+09
P/DW	9.500000e+08	4.341653e+09
LG	5.150000e+08	3.384705e+09
Wein.	1.000000e+08	4.499483e+08
Sum.	6.800000e+07	7.061028e+08

```
In [233]:  #Our X-Values will be the studios
x = list(movie_budget_df.index)

#We need 2 bars to make a stacked bar chart. The revenue will on average be
#Because of this, we will graph the expense on top of the revenue
revenue_y = movie_budget_df.groupby(by = 'studio').mean().sort_values(by=['expense_y = movie_budget_df.groupby(by=['expense_y = movie_bu
```

In [234]: plt.bar(x, expense_y, color='r')
 plt.bar(x, revenue_y, bottom=expense_y, color='b')
 plt.show()

B 1.2) Analyzing Movie Budget: Conclusions

- 1. We are comparing the budgets vs the expenses
- 2. Studios with more potential expenses, would be expected to have mor e return on revenue
- 3. A further step would be to determine the marginal returns for every dollar invested to determine an optimal budget

C 1.1) Analyzing Movie Runtime: Graphing

<ipython-input-235-20a045845f64>:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

runtime_df['runtime'] = rt_movies['runtime'].str[:-8].astype(int)
<ipython-input-235-20a045845f64>:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

runtime_df['Long'] = np.where(runtime_df['runtime']> 107, 'Y', 'N')

In [236]:

#Determining what makes a movie long runtime df

Out[236]:

	runtime	box_office	Long
1	108	600000	Υ
6	82	41032915	N
7	123	224114	Υ
15	108	1039869	Υ
18	127	20518224	Υ
1530	126	72700000	Υ
1537	123	1320005	Υ
1541	119	25335935	Υ
1542	129	1416189	Υ
1545	98	59371	N

C 1.2) Analyzing Movie Runtime: Conclusions

- 1. The average length of a movie was determined to be 107 minutes
- 2. Anything above 107 would be considered long, anything below would be short
- 3. The average earnings is used to avoid total earnings in case there are an abundance of long or short movies
- 4. The average earnings made by a long movie is SUBSTANTIALLY HIGHER t han that made with a short movie

V.- Further Steps

A) Age Rating

- 1. We would recommend a targeted age rating of PG-13 or equivalent for other countries.
- 2. Avoid ratings that would restrict a potential viewerbase

B) Runtime

- 1. A longer movie on average would also increase potential revenue
- 2. The industry standard is 90 minutes, this is further evidence that
- a longer runtime is better

C) Funding

- 1. Movies with higher production budgets will also return greater reve
- 2. It is important to to secure funding from investors