Q1 (21 points)

Q1(21 points). Given a data set with four potential independent variables. For the following table.

				22			
ith model	R^2	Adj. R^2	C(k)	MS_{res}	SS_{Res}	I.V. in Model]
1	0.9694	0.967	0.7339	1.75298	22.78876	x2	17
2	0.7308	0.7101	92.1947	15.41676	200.41791	x4	7 K=2
3	0.3486	b. 0.2988	238.6936	37.30295	484.93832	x3	1.1
4	0.0085	-0.0678	369.0349	56.77528	738.07869	x1]
5	0.9724	0.9678	1.5826	1.71273	20.55278	x1x2	1 7
6	0.9724	0.9678	1.5851	1.71314	4 20.5577	x2x3	1 L .
7	0.9705	0.9656	2.3164	1.8315	21.97797	x2x4	7 K=3
8	a 0.7378	0.694	91.5351	16.27105	195.25264	x3x4	
9	0.731	0.6862	94.1047	16.68692	200.24308	x1x4	1
10	0.3669	0.2614	233.6663	39.27421	471.29049	x1x3] J
11	0.9736	0.9664	3.1122	d. 1.7854	19.63927	x1x2x3	٦ ا
12	0.9731	0.9658	3.3	1.81854	20.00392	x1x2x4	17 K=4
13	0.9726	0.9652	C. 3.4870	1.85155	20.36709	x2x3x4	1 (' '
14	0.7381	0.6667	93.3883	17.72432	194.96757	x1x3x4	١ .
15	0.9739	0.9635	5	1.94213	19.42134	x1x2x3x4	K=5

- 1. (5 points) Fill the blank a, b, c, d, e in the above table.
- 2. (2 points) Calculate the total variation.
- 3. (5 points) Fill the Analysis of variance table for the last model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \epsilon$.

Source	DF	sum of sqaure	Mean square	F-value
Model				
Error				
Total				

- 4. (2 points) Find the best model based on adjusted R^2 .
- 5. (2 points) Find the best model based on $\hat{\sigma}^2$.
- 6. (5 points) Let $\alpha = 0.05$, implement an F-test: $H_0: \beta 1 = \beta 3 = \beta 4 = 0, H_a:$ At least one of $\beta 1, \beta 3$, and $\beta 4$ are not zero.

1. (5 points) Fill the blank a, b, c, d, e in the above table.

(a)
$$R^2 = 1 - \frac{SS_{RES}}{SS_T}$$
,

1st model: $R^2 = 1 - \frac{SS_{RES}}{SS_T}$
 $0.9694 = 1 - \frac{22.78876}{SS_T}$
 $\frac{2^2.78876}{SS_T} = 1 - 0.9694$
 $SS_T = \frac{2^2.78876}{1 - 0.9694}$
 $SS_T = 744.7307$

For a:
$$R^2 = 1 - \frac{SS_{RES}}{SS_T}$$

= $1 - \frac{195.25264}{744.7307}$

1st model:
$$\overline{R}^2 = (-\frac{A^2(N-1)}{SS_T})$$

 $0.967 = (-\frac{1.75298(N-1)}{744.7307}, A^2 = MS_{PLS} = 1.75298$
 $(N-1) = 744.7307(1-0.967)$

$$N = \frac{744.7307(1-0.967)}{1.75298} + 1$$

For b :
$$\mathbb{R}^2 = 1 - \frac{\int_0^2 (N-1)}{SS_T}$$

$$= 1 - \frac{31.30295(15-1)}{744.7307}$$

$$= 0.2988$$

$$C = \frac{SSReS}{\delta_p^2} - (N-2k)$$

$$= \frac{20.36709}{1.94213} - (15-2(4))$$

(d)
$$MS_{pes} = \frac{SS_{pes}}{N-k}$$

$$= \frac{19.63927}{15-4}$$

$$= \frac{1.7854}{1.5}$$

= 3.4870

(e)
$$SS_{RES} = MS_{RES}(N-k)$$

= 1.71314(15-3)

1st model:
$$R^2 = 1 - \frac{SS_{RES}}{SS_T}$$

$$0.9694 = 1 - \frac{22.78876}{SS_T}$$

$$0.9694 = 1 - \frac{22.78876}{SS_T}$$

$$\frac{22.78876}{SS_T} = 1 - 0.9694$$

$$SS_T = \frac{22.78876}{1 - 0.9694}$$

$$SS_T = \frac{704.7871}{1 - 0.9694}$$

3. (5 points) Fill the Analysis of variance table for the last model $y = \beta_0 + \beta_1(x_1) + \beta_2(x_2) + \beta_3(x_3) + \beta_4(x_4) + \epsilon$.

,	100000		a contract of a decorate	and ordered		
rk-1	Model	4	SSR = 725,3094	MSR = 181.3273	93.3650	
n=15 n-k k=5 n-1	Error	10	SSRES = 19.42134	MSRES = 1.94213		
K=5 [N-1	Total	14	SST = 744.7307			
$SS_R = SS_T - SS_{RES}$ = $744.7307 - 19.42134$ = 725.3094	,	W	$S_R = \frac{SS_R}{PF_{model}}$ $= \frac{725.3094}{4}$ $= 181.3273$	C	model)	$= \frac{SS_R/(k-1)}{SS_{RES}/(n-k)}$ $= \frac{725.3094/(5-1)}{19.42134/(15-5)}$ $= 93.3650$

Source DF sum of square

4. (2 points) Find the best model based on adjusted \mathbb{R}^2 .

According to the 1st table provided, the adjusted R^2 of models 5 and 6 are both approximately equal to 0.9678. However, since the adjusted R^2 is a function of sigma_hat, a smaller sigma_hat leads to a larger adjusted R^2. The value of MS_res (sigma_hat_square) of model 5 is slightly smaller than the value in model 6 (1.71273 < 1.71314 indicating sqrt(1.71273) < sqrt(1.71314)). Hence, model 5 is the best based on the value of adjusted R^2 and the sigma hat.

This can be proved by recalculating the adjusted R^2 for both models and then leaving more decimal places to compare which one is larger than the other.

$$\begin{array}{lll}
\text{model } 5 \\
\overline{R}^2 = \left[-\frac{\hat{f}^2(N-1)}{SC_T} & \overline{R}^2 = \left[-\frac{\hat{f}^2(N-1)}{SC_T} \right] \\
= \left[-\frac{1.71213(15-1)}{744.7307} & = 1 - \frac{1.71314(15-1)}{744.7307} \\
= 0.9671795
\end{array}$$

Since, 0.967814 > 0.967795, model 5 is the best.

5. (2 points) Find the best model based on $\hat{\sigma}^2$.

Model 5 has the smallest MS_res (sigma_hat_square) meaning that it has the smallest sigma_hat. This suggests that model 5 is likely to be the best model. Since the value of adjusted R^2 of model 5 is also the largest, so we can conclude that model 5 is for sure the best model.

6. (5 points) Let $\alpha = 0.05$, implement an F-test: $H_0: \beta 1 = \beta 3 = \beta 4 = 0, H_a:$ At least one of $\beta 1, \beta 3$, and $\beta 4$ are not zero.

Given the Complete model:
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \epsilon$$
.
Reduced - model: $y = \beta_0 + \beta_2 x_2 + \epsilon$
The # of kept IV is $g = 1$, so $p - g = 4 - 1 = 3$, $N = 15$, $N - k = 15 - 5 = 10$
 $SS_{RES}(C) = 19.42134$

SSRes(R) = 22.78876 given by 1st model from table 1

T.S.
$$F(x_1, x_3, x_4 | x_2) = \frac{SS_{dnop}/(p-g)}{SS_{RUS}(c)/(n-k)}$$

$$= \frac{[SS_{RUS}(c)/(n-k)]/(p-g)}{SS_{RUS}(c)/(n-k)}$$

$$=\frac{(22.78876-19.42134)/3}{19.42134/10}$$

= 0.57%

$$F_{\chi}(P-g, N-k) = F_{0.05}(3, 0) = 3.71 > F(x_1, x_3, x_4 | x_2) = 0.5780$$

Since T.S. < R.P , we do not reject +0 ; Hence , we conclude that there is evidence to drop +0, +0, +2, and +4 from the model.

Q2 (14 points)

Q2(14 points) For the following data.

	\boldsymbol{x}	y
П	2.29	-16.55
2	2.79	-19.62
3	2.42	-17.25
+	1.74	-12.80
5	1.35	-8.00
6	2.87	-19.75
j	1.03	-6.83
	1.79	-12.02
1	1.68	-11.91
	2.74	-19.93
1	0.09	-1.33
2	1.70	-20.00
3	4.00	-28.00
4	4.30	-15.00

Apply SAS to work on the following, code and output and explanation all requested.

- 1. (2 points) plot the scatter plot y vs x, and specify suspect outliers and/or influential points on the plot.
- 2. (2 points) detect any outliers with respect to x using the leverage value.
- 3. (2 points) detect any outliers with respect to y using the R student. Use the criterion $t_{0.025}^{(n-k-1)}$.
- 4. (1 points) Is there any points, x_i , which would substantially change the point prediction \hat{y}_i if it is removed from the data set? Use the larger criterion 2.
- 5. (3 points) detect any influential points using Cook's distance measure.
- 6. (1 points) Is there any points which would substantially change the β_1 if it is removed from the data set? Use the larger criterion 2.
- 7. (3 points) Is there any points which would significantly damage or enhance the precision of the least square estimates?

1. (2 points) plot the scatter plot y vs x, and specify suspect outliers and/or influential points on the plot.

2. (2 points) detect any outliers with respect to x using the leverage value.

The REG Procedure Model: MODEL1 Dependent Variable: y

						Output Sta	tistics						
Obs	Dependent Variable	Predicted Value	Std Error Mean Predict	Residual	Std Error Residual	Student Residual	Cook's D	ti RStudent	Hat Diag	Cov Ratio	DFFITS	DFBE	TAS
1	-16.55	-15.3653	1.1431	-1.1847	4.106	-0.289	0.003	-0.2772	0.0719	1.2646	-0.0772	-0.0280	-0.0065
2	-19.62	-17.7761	1.2991	-1.8439	4.059	-0.454	0.011	-0.4387	0.0929	1.2673	-0.1404	0.0065	-0.0675
3	-17.25	-15.9921	1.1627	-1.2579	4.100	-0.307	0.004	-0.2949	0.0744	1.2657	-0.0836	-0.0210	-0.0168
4	-12.80	-12.7133	1.2383	-0.0867	4.078	-0.021	0.000	-0.0203	0.0844	1.2997	-0.0062	-0.0047	0.0024
5	-8.00	-10.8329	1.4506	2.8329	4.007	0.707	0.033	0.6914	0.1158	1.2362	0.2503	0.2256	-0.1550
6	-19.75	-18.1618	1.3419	-1.5882	4.045	-0.393	0.008	-0.3783	0.0991	1.2873	-0.1255	0.0127	-0.0663
7	-6.83	-9.2900	1.6813	2.4600	3.916	0.628	0.036	0.6115	0.1556	1.3183	0.2625	0.2517	-0.1931
8	-12.02	-12.9544	1.2185	0.9344	4.084	0.229	0.002	0.2195	0.0817	1.2847	0.0655	0.0478	-0.0233
9	-11.91	-12.4240	1.2645	0.5140	4.070	0.126	0.001	0.1210	0.0880	1.3015	0.0376	0.0296	-0.0163
10	-19.93	-17.5350	1.2745	-2.3950	4.067	-0.589	0.017	-0.5722	0.0894	1.2325	-0.1793	0.0018	-0.0805
11	-1.33	-4.7576	2.5048	3.4276	3.448	0.994	0.261	0.9935	0.3454	1.5310	0.7217	0.7216	-0.6427
12	-20.00	-12.5205	1.2555	-7.4795	4.073	-1.836	0.160	-2.0737	0.0868	0.6736	-0.6392	-0.4965	0.2689
13	-28.00	-23.6103	2.2191	-4.3897	3.639	-1.206	0.271	-1.2322	0.2711	1.2607	-0.7515	0.4096	-0.6449
14	-15.00	-25.0568	2.4967	10.0568	3.454	2.912	2.215	5.1453	0.3432	0.1561	3.7192	-2.2261	3.3096

(everage hii :
$$2(\frac{k}{n}) = 2(\frac{2}{14})$$
; $k = 2(1 \text{ likep. Variable})$
= 0.2857 < 0.3454(11th) and 0.3432(14th)

Henre, 11th and 14th are leverge points (authors with respect to x)

3. (2 points) detect any outliers with respect to y using the R student. Use the criterion
$$t_{0.025}^{(n-k-1)}$$
.

$$N-K-1 = 14-2-1 = 11$$

$$t_{0,025}(n-k-1) = t_{0,025}(11) = 2.201$$

 $\hat{z} = 14$, $|t_{14}| = 5.1453 > t_{0,025}(n-k-1) = 14th$ is authen w.r.T. y

4. (1 points) Is there any points, x_i , which would substantially change the point prediction \hat{y}_i if it is removed from the data set? Use the larger criterion 2.

$$i=14$$
, $|DFFITS_{14}|=3.7192>2$ => remove 14th obs. would substantially charge the prediction of y_{14}

5. (3 points) detect any influential points using Cook's distance measure.

COOK'S distance D:

$$F_{0.5}(K, N-K) = F_{0.5}(2,14) = 0.7348 \% |$$

when $i = 14$, $D_{14} = 2.215 > F_{0.5}(N, N-K) => 14th is influential$

6. (1 points) Is there any points which would substantially change the β_1 if it is removed from the data set? Use the larger criterion 2.

OF BETAS:

$$2'=14$$
, $|DFBETAS_{1,14}|=3.396>2 =) hemove (4th obs-
could substantially charge the estimate of β_1 ($\hat{\beta}_1$)$

7. (3 points) Is there any points which would significantly damage or enhance the precision of the least square estimates?

$$1+\frac{3k}{N}=1+\frac{6}{14}=1.4286$$

$$1-\frac{3k}{N}=1-\frac{6}{14}=0.5714$$

$$2=11>1+\frac{3k}{N}=) \text{ enhance precision with it}$$

$$2=14<1-\frac{3k}{N}=) \text{ change precision with it}$$