ДИСКРЕТНИ СТРУКТУРИ 1 ТЕОРИЯ 2

- **1.** Максимална верига/антиверига. Нека < A, R > е ч.н.м. и S е негова верига/антиверига. Казваме, че S е максимална верига/антиверига, ако за свяка друга верига/антиверига S' на A е изпълнено: $|S| \ge |S'|$.
- **2.** Верижно/антиверижно разбиване. Нека < A, R > е ч.н.м. Една фамилия A_1, A_2, \ldots, A_n от подмножества на A ще наричаме верижно/антиверижно разбиване, ако е изпълнено:
 - $A_1, A_2, ..., A_n$ е разбиване на A;
 - A_1, A_2, \dots, A_n са вериги/антивериги.
- **3.** Минимално верижно/антиверижно разбиване. Нека A, R > e ч.н.м. Казваме, че фамилията $S = \{A_1, A_2, \ldots, A_n\}$ от подмножества на A е минимално верижно/ антиверижно разбиване на A, ако:
- A_1, A_2, \dots, A_n е верижно/антиверижно разбиване на A;
- За всяко верижно/антиверижно разбиване S' на A имаме $|S| \leq |S'|$.
- **4.** Краен ориентиран мултиграф. Нека $V = \{v_1, v_2, \dots, v_n\}$ е крайно множество, елементите на което са върхове, а $E = \{e_1, e_2, \dots, e_m\}$ е крайно множество, елементите на което са ребра. Функцията $f_G : E \to V \times V$, съпоставяща на всяко ребро наредена двойка от върхове, наричаме краен ориентиран граф.
- **5.** Краен ориентиран граф. Нека $G(V,E,f_G)$ е краен ориентиран мултиграф и функцията f_G е инективна. Тогава $G(V,E,f_G)$ наричаме краен ориентиран граф и бележим само с G(V,E), където $E\subseteq V\times V$.
- **6.** Краен неориентиран граф (<u>граф</u>). Нека G(V,E) е краен ориентиран граф, такъв че релацията $E\subseteq V\times V$ е антирефлексивна и симетрична. Тогава G(V,E) наричаме краен неориентиран граф или просто <u>граф</u>.
- **7.** Краен неориентиран мултиграф. Крайният неориентиран граф G(V,E) може да превърнем в краен неориентиран мултиграф, ако позволим повече от едно неориентирано ребро да свързва два върха от V, както и наличието на примки, т.е. ако вместо множеството $E\subseteq V\times V$ вземем мултимножество от елементите на $V\times V$.
- **8.** Подмултиграф на краен мултиграф. Нека $G(V, E, f_G)$ е краен мултиграф и $V' \subseteq V$. Тогава подмултиграф $G'(V', E', f_G')$ породен от V', се нарича мултиграфът G', за който E' се състои от всички ребра от E, на които краищата им са във $V'.f_G'$ е рестрикцията на f_G върху E'.

- **9.** Път в краен ориентиран граф. Нека G(V,E) е краен ориентиран граф. Път в G се нарича всяка крайна редица $v_{i_0},v_{i_1},\ldots,v_{i_n}$ от върхове, такава че $(v_{i_{p-1}},v_{i_p})\in E,\,v_{i_{p-1}}\neq v_{i_{p+1}},\,v_{i_p}\neq v_{i_{p-1}},\,i=\overline{1,n}.\,n$ дължина на пътя; v_{i_0} начало на пътя; v_{i_n} край на пътя.
- **10.** Маршрут в краен мултиграф. Нека $G(V,E,f_G)$ е краен мултиграф. Редицата от редуващи се върхове и ребра на $G: v_{i_0},e_{l_1},v_{i_1},e_{l_2},v_{i_2},\ldots,v_{i_{k-1}},e_{l_k},v_{i_k}$, в която $f_G(e_{l+j})=(v_{i_{j-1}},v_{i_j}),\ j=1,2,...,k$ наричаме маршрут в G от v_{i_0} до v_{i_k} . Числото k наричаме дължина на марпрута. Ако $v_{i_0}=v_{i_k}$, редицата (маршрута) наричаме контур.
- **11.** Матрица на съсдства. На крайния ориентиран мултиграф $G(V, E, f_G)$, матрица на съседства наричаме матрицата $M = |\mid a_{ij} \mid\mid$ с размери $\mid V \mid \times \mid V \mid$, ако за $\forall v_i, v_j \in V$ е в сила: $a_{ij} = |\left\{e \mid e \in E, f_G(e) = (v_i, v_j)\right\}|$.
- **12.** Кореново дърво (<u>индуктивна дефиниция</u>). $D(\{r\}, \emptyset)$ е дърво с корен r и единствено листо r. Нека D(V, E) е дърво с корен r и листа l_1, l_2, \ldots, l_n . Нека $v \in V$ и $u \not\in V$. Тогава $D'(V \cup \{u\}, E \cup \{(v, u)\})$ е дърво с корен r. Ако $v = l_i$ за някое $i = \overline{1,n}$, листата на D' са $l_1, \ldots, l_{i-1}, u, l_{i+1}, \ldots, l_n$. Ако $v \neq l_i$ за всяко $i = \overline{1,n}$, то листата на D' са l_1, \ldots, l_n, u .
- **13.** Дърво чрес граф. *Характеризация на дървета*. Следните твърдения са еквивалентни:
 - G е дърво;
 - Дървото е свързан граф без цикли;
 - Всеки два върха на G са свързани с точно един прост път (прост или нормален път е този, в който не се повтарят нито ребра нито върхове);
 - G е свързан (има точно една компонента на свързаност) и броя на ребрата е с единица по малък от броя на върховете |E| = |V| 1.
 - G е свързан и минимален относно свързаност (т.е. ако махнем някое ребто от G, то той престава да бъде свързан има две компоненти на свързаност)
 - G е ацикличен и е максимален относно ацикличност (т.е. ако добавим каквото и да е ребро в G, то ще се появи цикъл)
- **14.** Височина на кореново дърво. Нека D(V, E) е кореново дърво и $v \in V$. Височината на върха v се нарича дължината на единствения път от корена до v. Височината на дървото D се нарича максимума от височините на всички върхове.

- **15.** Разклоненост на кореново дърво. Нека D(V, E) е кореново дърво и $v \in V$. Разклоненост на върха v наричаме броя на синовете на върха v. Разклоненост на дървото D наричаме максимума от разклоненостите на всички върхове на D.
- **16.** Ойлеров път в граф. Път в свързания граф G, който минава през всяко ребро на G, но <u>точно веднъж,</u> наричаме Ойлеров път.
- **17.** Твърдението за Ойлеров път. В един свързан граф Gима Ойлеров път, който не е Ойлеров цикъл $\Leftrightarrow G$ има точно два върха от нечетна степен.
- **18.** Теорема за Ойлеров граф. Един граф G е Ойлеров, т.е. има Ойлеров път, който е цикъл $\Leftrightarrow G$ е свързан и всеки негов връх е от четна степен.
- **19.** Хамилтонов път в граф. Път в свързания граф G, който минава през всеки връх на G, но <u>точно веднъж</u>, наричаме Хамилтонов път.
- **20.** Хамилтонов граф. Графът G е Хамилтонов, когато G е свързан и в G има Хамилтонов път, който е цикъл, т.е. път в който само началото и края участват повече от един път (два пъти), тъй като съвпадат.
- **21.** Твърдението за Хамилтонови графи. Графът $B_n, n \geq 1$ е Хамилтонов, където $B_n(J_2^n, E_n)$ с върхове n мерните двоични вектори и ребра $E_n = \{(\alpha_i, \alpha_j) \, | \, \rho(\alpha_i, \alpha_j) = 1\}$ е n мерен двоичен куб:

22. Линейна булева функция и полином на Жегалкин. Полином на Жегалкин за n променливи:

$$f(x_1, x_2, \dots, x_n) = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus \dots \oplus a_n x_n \oplus a_{12} x_1 x_2 \oplus a_{13} x_1 x_3 \oplus \dots \oplus a_{n-1,n} x_{n-1} x_n \oplus a_{123} x_1 x_2 x_3 \oplus \dots \oplus a_{n-2,n-1,n} x_{n-2} x_{n-1} x_n \oplus \dots \oplus a_{1,2,\dots,n} x_1 x_2 \dots x_n = a_0 \oplus \bigoplus_{1 \leq i \leq n} a_i x_i \bigoplus_{1 \leq i < j \leq n} a_{ij} x_i x_j \oplus \dots \oplus a_{1,2,\dots,n} x_1 x_2 \dots x_n,$$
 където $a_i \in \{0,1\}$. Всяка

булева функция има единствен полином на Жегалкин. Казваме, че една булева

функция е линейна, ако нейният полином на Жегалкин има линеен вид: $a_0 \oplus a_1 x_1 \oplus \ldots \oplus a_n x_n$.

- **23.** Монотонна булева функция и подходящата наредба за тази дефиниция. Булевата функция $f(x_1, x_2, \dots, x_n)$ наричаме монотонна, ако $\forall \alpha, \beta \in J_2^n, \alpha \leq \beta$ (където с \leq означаваме <u>лексикографска наредба</u>) е в сила $f(\alpha) \leq f(\beta)$.
- **24.** Шеферова булева функция. Булевата функция f наричаме Шеферова, ако $\left[\{f\}\right]=\mathbb{F}_2$, т.е. f сама образува пълно множество от двоични функции. Съгласно теоремата на Пост, това означава че $f\not\in T_0\cup T_1\cup S\cup M\cup L$.
- **25.** Предпълно множество от функции. Казваме, че едно множество от двоични функции е предпълно, ако не е пълно, но добавяйки към него произволна двойчна функция, която не е от това множество, то множеството ще стане пълно, т.е. $F \subset \mathbb{F}_2 : [F] \neq \mathbb{F}_2$ и за всяка $f \notin F \& f \in \mathbb{F}_2 : [F \cup \{f\}] = \mathbb{F}_2$.
- **26.** Принцип на Дирихле. Нека A и B са крайни множества и |A| > |B|. Тогава за всяко изображение $f: A \to B$ (за всяка тотална функция) съществуват елементи $a,b \in A, a \neq b$ и f(a) = f(b).
- **27.** Принцип на чекмеджетата. Нека имаме p на брой предмета и r на брой чекмеджета. Ако r, то както и да поставим всички предмети в чекмеджетата, <u>поне</u> в едно чекмедже ще има * поне * два предмета.
- **28.** Принцип на биекцията. Нека A и B са крайни множества. Съществува биекция $f:A\to B\Leftrightarrow |A|=|B|$.
- **29.** Принцип на събирането (<u>принцип на разбиването</u>). Нека A е крайно множество, а $R=\{S_1,S_2,\ldots,S_n\}$ е разбиване на A. Тогава $|A|=\sum_{i=1}^n |S_i|$.
- **30.** Принцип на разликата. Нека A и B са крайни множества и $A \in B$. Тогава $|B \setminus A| = |B| |A|$.
- **31.** Принцип на умножението (*принцип на декартовото произведение*). Нека A и B са крайни множества. Тогава $A \times B = |A| . |B| .$ Следствие: $A \times B = |A| . |B|$.
- **32.** Принцип на делението. Нека A е крайно множество и $B=A\times C$, където C също е крайно и $C\neq\emptyset$. Тогава |A|=|B|/|C|.
- **33.** Принцип на включването и изключването. Нека A е крайно и $A_1, A_2, \ldots, A_n \subseteq A$.
- за n=3 : $|\overline{A}_1^A \cap \overline{A}_2^A \cap \overline{A}_3^A| =$ = $|A| (|A_1| + |A_2| + |A_3|) + |A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3| |A_1 \cap A_2 \cap A_3|$

- $\begin{array}{l} \bullet \quad \text{ sa } n = 4 \ : \ |\overline{A}_1^A \cap \overline{A}_2^A \cap \overline{A}_3^A \cap \overline{A}_4^A| = |A| \left(|A_1| + |A_2| + |A_3| + |A_4|\right) + \\ + |A_1 \cap A_2| + |A_1 \cap A_3| + |A_1 \cap A_3| + |A_2 \cap A_3| + |A_2 \cap A_3| + |A_3 \cap A_4| \\ \left(|A_1 \cap A_2 \cap A_3| + |A_1 \cap A_2 \cap A_4| + |A_1 + A_3 + A_4| + |A_2 \cap A_3 \cap A_4|\right) + |A_1 \cap A_2 \cap A_3 \cap A_4| \\ \end{array}$
- **34.** Теорема за броя на маршрутите между два върха чрез матрица на съседство. Нека $G(V,E,f_G)$ е краен ориентиран мултиграф и нека $M=|\,|\,a_{ij}\,|\,|\,$ е матрицата му на съседства. Нека $M^k=|\,|\,a_{ij}^{(k)}\,|\,|\,$ е k та степен на M при целочисленото умножение на матрици. Тогава $a_{ij}^{(k)}$ е броят на маршрутите с дължина от v_i до v_j в крайния ориентиран мултиграф G.
- **35.** Твърдението кога един граф им покриващо дърво. Всеки свързан граф G(V,E) притежава покриващо дърво G'(V,E'), където $E'\subseteq E$.
- **36.** Критерият за затвореност на едно множество от двойчни (булеви) функции. Нека $F \subseteq \mathbb{F}_q(q=2)$ е такова, че:
 - $f(x) = x \in F$;
 - $\forall f, g_1, g_2, \dots, g_n \in F \Rightarrow h = f(g_1, g_2, \dots, g_n) \in F$.

Тогава F е затворено.

- **37.** Критерият (<u>теоремата</u>) за пълнота на Пост за множество от булеви функции. Нека $F \in \mathbb{F}_2$. Тогава F е пълно т.с.т.к. (\Leftrightarrow) $F \nsubseteq T_0, F \nsubseteq T_1, F \nsubseteq L, F \nsubseteq S, F \nsubseteq M (F \nsubseteq T_0 \cup T_1 \cup L \cup S \cup M)$.
- **38.** Критерий за шеферовост на една булева функция. Ако $f \in \mathbb{F}_2, f \notin T_0, f \notin T_1, f \notin S$, то f е шеферова.
- **39.** Пълно множество от двоични функции. Казваме, че едно множество от двоични функции е пълно, ако затварянето мъ съвпада с всички двоични функции: $[F] = \mathbb{F}_2$. $\mathbb{F}_2 = \{f \mid f \text{ е двойчна функция}\}$
- **40.** Суперпозиция. Нека $f(x_1,x_2,\ldots,x_n)\in \mathbb{F}_q^n$ и $g_i(y_1,y_2,\ldots,y_m)\in \mathbb{F}_q^m$, $i=\overline{1,n}$. Функцията $h(y_1,y_2,\ldots,y_m)=f(g_1(y_1,\ldots,y_m),g_2(y_1,\ldots,y_m),\ldots,g_n(y_1,\ldots,y_m))$ наричаме суперпозиция на g_1,g_2,\ldots,g_n в f.
- **41.** Предпълни множества и твърдението за тях. Множествата T_0, T_1, S, M, L и само те са предпълни в \mathbb{F}^2 .
- **42.** Теорема на Бул. Множеството $\{x \lor y, xy, \overline{x}\}$ е пълно.

43. Теорема на Р. Дилуорт. Нека R е частична наредба в крайното множество A, C е минимално верижно разбиване на A, а S е максимална антиверига на R. Тогава |S| = |C|.

github.com/andy489