Cover page for answers.pdf CSE512 Fall 2018 - Machine Learning - Homework 1

Your Name: Sriram Reddy Kalluri

Solar ID: 111878857

NetID email address: skalluri@cs.stonybrook.edu & sriram.kalluri@stonybrook.edu

Names of people whom you discussed the homework with:

After discussing with protessor, I have taken the. 1 • 1) discrete uniform random variables for integers in X1 and -X2 has the following distribution. range [1, w]. So.

Validating the summation property i.e $\sum_{n=1}^{\infty} P_{x}(x) = 1$, for. above $R.V'_{\Delta}$, $\frac{1}{N}$, $\frac{N}{1}$ = $\frac{N}{N}$ = 1.

Coming to the distribution of x i.e. max (x11x2)-x1. Both the RV's have same probability for all values [1, N]. So, generating the random variable x distribution for all values of x1 and x2 in range [1,N].

	•	2	3	ч	1	N'
X2.	•					
1	0	o	0	0		0
2		0	0	0	,	0
3	2	(0	0	'	0
Ч	3	2	•	0		0
'					•	0
•					• • •	
N	1-4	p-2	N-3	N-	4	O,

So, checking all the possible values of x and counting, the number of times x occurred in the distribution, the number of times x occurred in the distribution, I have generated the probability distribution for x value 1 probability

checking whether "it is valid pdf or not, again using the summation property of probabilities, $\sum_{k=0}^{\infty} P_{k}(x) = \sum_{k=0}^{\infty} P_{k$

$$= \frac{n^{2}+n}{2n^{2}} + \frac{n(n-1)+}{n^{2}} - \frac{(n-1)n}{2n^{2}}$$

$$= \frac{n^{2}+n^{2}-2n^{2}-n^{2}+n^{2}}{2n^{2}}$$

$$\frac{2a^2}{2a^2} = 1$$

It's a volid. PDF.

$$E[X] = \sum_{k=0}^{\infty} x P_{x}(X),$$

$$= 0 \cdot \left(\frac{M^{2}+M}{2M^{2}}\right), + \sum_{k=1}^{N-1} \frac{k(N-k)}{N^{2}}$$

$$= \frac{1}{N^{2}} \cdot \sum_{k=1}^{N} \left(N \cdot k - k^{2}\right)$$

$$= \frac{1}{N^{2}} \left(N \cdot k - k^{2}\right)$$

$$= \frac{1}{N^{2}} \left(N \cdot k - k^{2}\right)$$

$$= \frac{1}{N} \left[\frac{3N^2 - 3N - (2N^2 - 3N + 1)}{6} \right]$$

$$E(x^{2}) = \sum_{k=1}^{\infty} x^{2} P(x),$$

$$= O\left(\frac{N^{2}+2N}{2N^{2}}\right), + \sum_{k=1}^{\infty} \frac{k^{2}(N-k)}{N^{2}}$$

$$= \frac{1}{N^{2}} \sum_{k=1}^{2} k^{2} (N-k),$$

$$= \frac{1}{N^{2}} \left[N \left(\frac{N-1}{N} \right) N \left(\frac{2N-1}{N} \right) - \left(\frac{(N-1)N}{N} \right)^{2} \right]$$

$$= \frac{1}{N^{2}} \left[N \left(\frac{N-1}{N} \right) N \left(\frac{2N-1}{N} \right) - \left(\frac{(N-1)N}{N} \right)^{2} \right]$$

$$= \frac{1}{N^{2}} \left[\frac{2N-1}{N} - \frac{N-1}{N} \right]$$

$$= \frac{1}{N^{2}} \left[\frac{1}{N^{2}} - \frac{N^{2}-1}{N^{2}} \right]$$

$$= \frac{1}{N^{2}} \left[\frac{N^{2}-1}{N^{2}} - \frac{N^{2}-1}{N^{2}} \right]$$

1.3). Obvaniance of:
$$x_1 x_1$$

$$= E[(x - E(x)) (x_1 - E(x))],$$

$$= E[xx_1] - E(x) E[x_1].$$

To calculate the expectation of E[XXI], I'm generating, the distribution of XX_1 by checking the possible values for X_1 , based on X_1 and X_2 as X_1 is a function of X_1 and X_2 .

Possibilities of XXI based on XI and X2; is given below

X2.	•	2	3	4	5	6	N '
X2.	0	0	0	0	0		0
2		0	0	0	0		
3	2	2	0	0	0		
з Ч	3	14	3	0	Ò		_
5	4,	6	6		0		
é	5	. 8	9.				
`.							
٠						` ` `	
N	-	-	2/2/2		+	· · · (N-I)	0
•	N-1	· 20	r3) 3(n	3)1.			
		l	l				-

The expectation of XX, can be written as

Here you can observe a pattern for different vertical columns.

E(XXI) = Summing all the columns. seperately and adding them.

$$= \frac{1}{N^2} \cdot \left[\frac{(N-1)N}{2} + \frac{2 \cdot (N-2)(N-1)}{2} + \frac{3 \cdot (N-2)(N-2)}{2} \right]$$

$$+ \cdots + (N-2)\frac{3\cdot 2}{2} + (N-1)\cdot \frac{2\times 1}{2}$$

$$= \frac{1}{2N^{2}} \quad \begin{cases} N-1 \\ 2 \\ 121 \end{cases} \quad (N-1) \left(N-1+1\right)$$

$$2N^{2} \qquad 921$$

$$2N^{2} \qquad 10-1 \qquad 1((w-i)^{2} + w-i) = \frac{1}{2N^{2}} \sum_{i=1}^{N-1} \left(i \left(N^{2} + i^{2} - 2i N + i + N \right) \right)$$

$$2N^{2} \qquad 10-1 \qquad 10$$

$$= \frac{1}{2N^{2}} \sum_{i=1}^{N-1} i \left[\left(N^{2} + N^{2} \right) - \left(2N+1 \right)^{\frac{1}{2}} + i^{2} \right]$$

$$= \frac{1}{2N^{2}} \left((N^{2} + N) (N^{-1}) N \right) - (2N+1) (N^{-1}) N (2N+1)$$

$$= \frac{1}{2N^{2}} \left((N^{2} + N) (N^{-1}) N (2N+1) N (2N+1) + (2N+1) N (2N$$

$$= \frac{(N-1)N}{2N^2} \left[\frac{N^2+N}{2} - \left(\frac{4N^2-1}{6} \right) + \frac{N^2-N}{4} \right]$$

$$= \frac{(N-1)N}{2N^2} \left[\frac{6N^2+6N-(8N^2-2)+3N^2-3N}{12} \right]$$

$$= \frac{(N-1)N}{2N^2} \left[\frac{N^2 + 3N + 2}{12} \right]$$

Covariance of x, x1

$$Eon(x^{1}x^{1}) = E(x^{1}) - E(x^{1}) = E(x^{1}) - \frac{1}{(n+1)(n+2)} - \frac{1}{(n-1)} = \frac{1}{(n+1)} = \frac{1}{(n+1)(n+2)} = \frac{1}{(n-1)} = \frac{1}{(n+1)(n+2)} = \frac{1}{(n-1)} = \frac{1}$$

$$= (N-1)(N+1) \left[\frac{N+2}{2} - N+1 \right].$$

$$= \frac{(N-1)(N+1)}{12N!} \left[\frac{N+2-2N!-2!}{2} \right].$$

$$_{2}$$
 - (N_{-1}) (N_{+1}) $24.$

2 Question 2 – Programming

After having discussion with professor, I had used only integers for discrete random uniform distribution. I have implemented the program in python using numpy.

Please find the results below:

Please find the values below:

Mean	16.761206618894974
Variance	555.9771692565092

Covariance	-417.74842329795024		
Entrophy	4.125863891073738		