Survival Analysis: Time To Event Modelling

Sudipta Das

Assistant Professor,
Department of Computer Science,
Ramakrishna Mission Vivekananda Educational & Research Institute

Outline I

Parametric Estimation

- Regression Models for Survival Data
 - Accelerated failure-time (AFT) model
 - Weibull Model
 - Log-Normal Model
 - Log-Logistic Model

Parametric Estimation I

- Parametric estimation of Type I censored data
- Data: $(t_1, \delta_1), \ldots, (t_n, \delta_n)$.
- Assumption: Samples are i.i.d.
- Likelihood:

$$L(\underline{\theta}) = \prod_{i=1}^{n} f(t_i | \underline{\theta})^{\delta_i} S(t_i | \underline{\theta})^{1-\delta_i}$$

Parametric Estimation II

- Example: Find the *m.l.e.* if the failure distribution is $Exp(\lambda)$.
- Likelihood

$$L(\lambda) = \prod_{i=1}^{n} \left[\lambda e^{-\lambda t_{i}} \right]^{\delta_{i}} \left[e^{-\lambda t_{i}} \right]^{1-\delta_{i}}$$

$$= \lambda^{\sum_{i=1}^{n} \delta_{i}} e^{-\lambda \sum_{i=1}^{n} t_{i}}$$

$$= \lambda^{k} e^{-\lambda \sum_{i=1}^{n} t_{i}},$$

where *k* is number of failed items.

Log likelihood

$$I(\lambda) = k \log \lambda - \lambda \sum_{i=1}^{n} t_i$$

M.L.E.

$$\hat{\lambda} = \frac{k}{\sum_{i=1}^{n} t_i}$$

Parametric Estimation III

- Parametric estimation of Type II censored data
- Data: $t_{(1)}, \ldots, t_{(r)}$.
- Assumption: Samples are i.i.d.
- Likelihood:

$$L(\underline{\theta}) = \frac{n!}{(n-r)!} \left[\prod_{i=1}^{r} f(t_{(i)}|\underline{\theta}) \right] \left[S(t_{(r)}|\underline{\theta}) \right]^{n-r}$$

Parametric Estimation IV

- Example: Find the m.l.e. if the failure distribution is Exp(λ).
- Likelihood

$$L(\lambda) \propto \left[\prod_{i=1}^{r} \lambda e^{-\lambda t_{(i)}} \right] \left[e^{-\lambda t_{(r)}} \right]^{n-r}$$

$$= \lambda^{r} e^{-\lambda \sum_{i=1}^{r} t_{(i)}} e^{-\lambda (n-r)t_{(r)}}$$

$$= \lambda^{r} e^{-\lambda \left[\sum_{i=1}^{r} t_{(i)} + (n-r)t_{(r)} \right]}$$

Log likelihood

$$I(\lambda) = r \log \lambda - \lambda \left[\sum_{i=1}^{r} t_{(i)} + (n-r)t_{(r)} \right]$$

M.L.E.

$$\hat{\lambda} = \frac{r}{\sum_{i=1}^{r} t_{(i)} + (n-r)t_{(r)}}$$

Parametric Estimation V

• Example:- German banks credit (part) data

Dura-	Amo-	Installment		No. of	No. of people		
tion	unt	Rate in %	Age	Credits	Maintenance		Туре
6	1169	4	67	2	1	:	Good
48	5951	2	22	1	_	:	Bad
12	2096	2	49	1_	2	5	Good
42	7882	2	45	1	2	:	Good
24	4870	3	53	2	2	•	Bad
:	:	:	:	:	:	:	:
45	1845	4	23	1	1	:	Bad
45	4576	3	27	1	1	:	Good

Parametric Estimation VI

Recall the likelihood function for right censored data

$$L(\underline{\theta}) = \prod_{i=1}^{n} \left[f^{\delta_i}(T_i | \underline{\theta}) S^{1-\delta_i}(T_i | \underline{\theta}) \right]$$

- Maximum Likelihood Estimator of $\underline{\theta}$ is $\hat{\underline{\theta}}$
- Numerical solver
 - Good initial choice should be needed
 - Hint from non-parametric estimator function

Parametric Estimation VII

- Lifetime: $X \sim Gamma(\beta, \lambda)$
 - Probability density function: $f_X(t, \beta, \lambda) = \frac{\lambda(\lambda t)^{\beta-1}}{\Gamma(\beta)} e^{-\lambda t}$
 - Survival function: $S(t) = 1 \frac{1}{\Gamma(\beta)} \gamma(\beta, \lambda t)$

•
$$\gamma(\beta, \lambda t) = \int_0^{\lambda t} u^{\beta - 1} e^{-u} du$$

• Estimated parameter set: $\hat{\underline{\theta}} = [\hat{\beta}, \hat{\lambda}]'$, where

$$\hat{eta} = \hat{a} = 3.4945 \text{ and } \hat{\lambda} = \frac{1}{\hat{s}} = 0.0896$$

$$\hat{\mathcal{S}}(t) = 1 - \frac{1}{\Gamma(\hat{\beta})} \gamma(\hat{\beta}, \hat{\lambda}t).$$

Parametric Estimation VIII

- Lifetime: $X \sim Weibull(\beta, \lambda)$
 - Probability density function: $f_X(t, \beta, \lambda) = \beta \lambda (\lambda t)^{\beta-1} e^{-(\lambda t)^{\beta}}$
 - Survival Function: $S(t) = e^{-(\lambda t)^{\beta}}$
- Estimated parameter set: $\hat{\underline{\theta}} = [\hat{\beta}, \hat{\lambda}]'$, where

$$\hat{\beta} = \hat{a} = 2.2836$$
 and $\frac{1}{\hat{\lambda}} = \hat{s} = 42.4011$

$$\hat{\mathcal{S}}(t) = e^{-(\hat{\lambda}t)^{\hat{\beta}}}.$$

Parametric Estimation IX

- Lifetime: $X \sim LN(\mu, \sigma)$
 - Probability density function: $f_X(t,\mu,\sigma) = \frac{1}{t\sigma} \left[\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{\ln t \mu}{\sigma} \right)^2} \right]$,
 - Survival Function: $S(t) = 1 \Phi\left(\frac{\ln t \mu}{\sigma}\right) = \Phi\left(\frac{-\ln t + \mu}{\sigma}\right)$,
 - where $\Phi(t)=\int_{-\infty}^t\phi(z)dz=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^te^{-\frac{1}{2}z^2}dz.$
- Estimated parameter set: $\hat{\underline{\theta}} = [\hat{\mu}, \hat{\sigma}]'$, where

$$\hat{\mu}=$$
 3.5605 and $\hat{\sigma}=$ 0.6456

$$\hat{S}(t) = 1 - \Phi\left(\frac{\ln t - \hat{\mu}}{\hat{\sigma}}\right) = \Phi\left(\frac{-\ln t + \hat{\mu}}{\hat{\sigma}}\right).$$

- meanlog means mean of log X
- sdlog means standard deviation of log X

Parametric Estimation X

- Lifetime: $X \sim LL(\beta, \lambda)$
 - Probability density function: $f_X(t, \beta, \lambda) = \frac{\beta \lambda (\lambda t)^{\beta 1}}{[1 + (\lambda t)^{\beta}]^2}$
 - Survival Function: $S(t) = \frac{1}{1 + (\lambda t)^{\beta}}$
- Estimated parameter set: $\hat{\underline{\theta}} = [\hat{\beta}, \hat{\lambda}]'$, where

$$\hat{eta} = \hat{a} = 2.7672$$
 and $\frac{1}{\hat{\lambda}} = \hat{s} = 35.1290$

$$\hat{\mathcal{S}}(t) = \frac{1}{1 + (\hat{\lambda}t)^{\hat{\beta}}}$$

Parametric Estimation XI

Estimated survival functions

 $\hat{S}(t,\hat{ heta})$

FIGURE 4

Parametric Regression: Introduction I

- Previously, we have stressed the importance of modeling the survival function, hazard function, or some other parameter associated with the failure-time distribution.
- Often a matter of greater interest is to ascertain the relationship between the failure time X and one or more of the explanatory variables.
- In most studies there are explanatory variables or covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest.
- This leads to a consideration of regression models.

Parametric Regression: Introduction II

- Consider a failure time X > 0, and a vector $Z^T = (Z_1, \dots, Z_p)$ of explanatory variables associated with the failure time X.
- Covariate vector, Z^T may include
 - quantitative variables
 - such as blood pressure, temperature, age, and weight,
 - qualitative variables
 - such as gender, race, treatment, and disease status and/or
 - time-dependent variables, in which case $Z^T(x) = [Z_1(x), \dots, Z_p(x)]$
 - Typical time-dependent variables include whether some intermediate event has or has not occurred by time x,
 - the amount of time which has passed since the same intermediate event,
 - serial measurements of covariates taken since a treatment commenced.

Parametric Regression: Introduction III

- Two approaches to the modeling of covariate effects on survival have become popular in the statistical literature
 - Accelerated failure-time (AFT) model
 - Cox's proportional hazard (PH) model

Accelerated failure-time (AFT) model I

- This approach is analogous to the classical linear regression approach.
- In this approach, the natural logarithm of the survival time Y = ln(X) is modeled.
 - This is the natural transformation made in linear models to convert positive variables to observations on the entire real line.

Accelerated failure-time (AFT) model II

Accelerated failure time (AFT) regression model

$$\underbrace{\frac{\log \text{ of failure time for given covariate profile}}{\log X | \mathbf{Z}}}_{\log \Delta | \mathbf{Z}} + \underbrace{\frac{\log \mathbf{Z}}{\log \mathbf{Z}}}_{\mathbf{Z}} \times \underbrace{\frac{\text{error}}{\mathbf{Z}}}_{\mathbf{Z}} \times \underbrace{\frac{\log \mathbf{Z}}{\mathbf{Z}}}_{\mathbf{Z}} \times \underbrace{\frac{\log \mathbf{Z}}{\mathbf{Z}}}_{\mathbf{Z}}$$

i.e.

$$\log X | \mathbf{Z} = \gamma_0 + \gamma^T \mathbf{Z} + \sigma W$$

$$\Rightarrow Y | \mathbf{Z} = \mu + \sigma W$$

- Coefficient of regression $[\gamma_0, \gamma^T]^T$
- Location parameter $[\gamma_0 + \gamma^T \mathbf{Z}]$
- Scale parameter σ
- This is also called log-linear model

Accelerated failure-time (AFT) model III

- Common choices of error distribution W
 - Standard normal distribution for W yields
 - a Log-normal regression model,
 - Standard extreme value distribution for W yields
 - a Weibull regression model,
 - Logistic distribution for W yields
 - a Log-logistic regression model.

Accelerated failure-time (AFT) model IV

- Why is this model called the accelerated failure-time model?
 - Let $S_0(x)$ denote the survival function of $X = e^Y$ when Z = 0, i.e.,
 - $S_0(x)$ is the survival function of $e^{\gamma_0 + \sigma W}$.
- Now, the survival function for any covariate Z

$$S(x|Z) = Pr[X > x|Z]$$

$$= Pr[Y > \ln x|Z]$$

$$= Pr[\gamma_0 + \sigma W > \ln x - \gamma^T Z|Z]$$

$$= Pr[e^{\gamma_0 + \sigma W} > xe^{-\gamma^T Z}|Z]$$

$$= S_o[xe^{-\gamma^T Z}].$$

Accelerated failure-time (AFT) model V

- Notice that the effect of the explanatory variables in the original time scale is to change the time scale by a factor $\exp(-\gamma^T Z)$.
- Depending on the sign of $\gamma^T Z$, the time is either
 - Accelerated by a constant factor ($\gamma^T Z < 0$) or
 - Survival function decays at faster rate
 - log X, equivalently X tends to be low
 - Degraded by a constant factor $(\gamma^T Z > 0)$
 - Survival function decays at slower rate
 - log X, equivalently X tends to be high

Accelerated failure-time (AFT) model VI

• Let $h_0(x)$ be the baseline hazard at Z = 0, thus

$$h_o(x) = -\frac{d}{dx} \ln[S_0(x)]$$

• Let h(x) be the arbitrary hazard thus

$$h(x) = -\frac{d}{dx} \ln[S(x)]$$

$$= -\frac{d}{dx} \ln\left[S_0\left(xe^{-\gamma^T Z}\right)\right]$$

$$= -\frac{d}{dxe^{-\gamma^T Z}} \ln\left[S_0\left(xe^{-\gamma^T Z}\right)\right] \times \frac{d}{dx} \left[xe^{-\gamma^T Z}\right]$$

$$= h_0\left(xe^{-\gamma^T Z}\right) e^{-\gamma^T Z}$$

 Notice the above relation as the hazard rate of an individual with a covariate value Z for this class of models is related to a baseline hazard rate h₀.

AFT: Weibull Model I

AFT Weibull model

$$\log X|Z = Y|Z$$

$$= \gamma_0 + \gamma^T Z + \sigma W$$

where $W \sim EV(0,1)$.

• Thus, $Y \sim EV(\gamma_0 + \gamma^T Z, \sigma)$

AFT: Weibull Model II

Therefore,

$$X|Z = e^{\gamma_0 + \gamma^T Z + \sigma W}$$

= $e^{\mu + \sigma W}$

- X|Z follows Weibull distribution with
 - shape parameter: $\beta = \frac{1}{\sigma}$ and
 - scale parameter: $\lambda = e^{-\mu} = \frac{1}{e^{\gamma_0 + \gamma^T \mathbf{z}}}$
- The survival function

$$S(x|Z) = \exp\left[-(\lambda x)^{\beta}\right]$$
$$= \exp\left[-\left(\frac{x}{e^{\gamma_0 + \gamma^T \mathbf{Z}}}\right)^{1/\sigma}\right]$$

AFT: Weibull Model III

- Example: Bank credit data
- Construct the likelihood function for right-censored data

$$L = \prod_{j=1}^{n} \left[\frac{1}{\sigma} f_{W} \left(\frac{y_{j} - \mu}{\sigma} \right) \right]^{\delta_{j}} \left[S_{W} \left(\frac{y_{j} - \mu}{\sigma} \right) \right]^{1 - \delta_{j}},$$

where

- $f_W(w) = e^{w-e^w}$ and $S_W(w) = e^{-e^w}$
- Find the maximum likelihood estimates of μ , (i.e., $[\gamma_0, \gamma^T]$) and σ , along with their standard errors.
- Thus, the estimates of β and λ are obtained.
- Then, one can estimate the survival function S(x) along with its standard error.

AFT: Weibull Model IV

Results

- Using 5 covariates; (Age, Amount, InstallmentRatePercentage, NumberExistingCredits and NumberPeopleMaintenance)
 - $\hat{\gamma}_0 = 3.08$
 - $\hat{\gamma} = [2.80 \times 10^{-3}, 8.36 \times 10^{-5}, 4.56 \times 10^{-2}, -1.22 \times 10^{-2}, 1.88 \times 10^{-3}]^T$
 - $\hat{\sigma} = 0.357$
- Using 2 covariates; (Amount and InstallmentRatePercentage)
 - $\hat{\gamma}_0 = 3.14$
 - $\hat{\gamma} = [8.45 \times 10^{-5}, 5.13 \times 10^{-2}]^T$
 - $\hat{\sigma} = 0.356$

AFT model: Log-Normal Model I

AFT Log-Normal Model

$$\log X|Z = Y|Z
= \gamma_0 + \gamma^T Z + \sigma W$$

 $W \sim N(0,1)$ [i.e., Standard normal]

• Thus, $Y \sim N(\gamma_0 + \gamma^T Z, \sigma)$

AFT model: Log-Normal Model II

Therefore,

$$X|Z = e^{\gamma_0 + \gamma^T Z + \sigma W}$$

= $e^{\mu + \sigma W}$

- X|Z follows Log-Normal distribution with
 - location parameter (mean of log X): $\mu = \gamma_0 + \gamma^T \mathbf{Z}$
 - scale parameter (sd of log X): σ
 - Mean (of X) is $e^{(\mu + \frac{\sigma}{2})}$ and
 - Variance (of X) is $[e^{\sigma} 1] e^{(2\mu + \sigma)}$.
- $S(x|Z) = 1 \Phi\left[\frac{\log x \gamma_0 \gamma^T \mathbf{Z}}{\sigma}\right]$

AFT model: Log-Normal Model III

- Example: Bank credit data
- Construct the likelihood function for right-censored data

$$L = \prod_{j=1}^{n} \left[\frac{1}{\sigma} f_{W} \left(\frac{y_{j} - \mu}{\sigma} \right) \right]^{\delta_{j}} \left[S_{W} \left(\frac{y_{j} - \mu}{\sigma} \right) \right]^{1 - \delta_{j}},$$

where

- $f_W(w) = \phi(w)$ and $S_W(w) = \Phi(-w)$
- Find the maximum likelihood estimates of μ , (i.e., $[\gamma_0, \gamma^T]$) and σ , along with their standard errors.
- Then, one can estimate the survival function S(x) along with its standard error.

AFT model: Log-Normal Model IV

Results

- Using 5 covariates; (Age, Amount, InstallmentRatePercentage, NumberExistingCredits and NumberPeopleMaintenance)
 - $\hat{\gamma}_0 = 2.90$
 - $\hat{\gamma} = [1.66 \times 10^{-3}, 7.59 \times 10^{-5}, 6.38 \times 10^{-2}, 5.80 \times 10^{-2}, -2.75 \times 10^{-2}]^T$
 - $\hat{\sigma} = 0.552$
- Using 2 covariates; (Amount and InstallmentRatePercentage)
 - $\hat{\gamma}_0 = 3.00$
 - $\hat{\gamma} = [7.71 \times 10^{-5}, 6.58 \times 10^{-2}]^T$
 - $\hat{\sigma} = 0.551$

AFT model: Log-Logistic Model I

AFT Log-Logistic Model

$$\log X|Z = Y|Z$$

$$= \gamma_0 + \gamma^T Z + \sigma W,$$

W follows a standard logistic distribution.

• Thus $Y \sim logistic(\mu = \gamma_0 + \gamma^T Z, \sigma)$

AFT model: Log-Logistic Model II

Therefore,

$$X|Z = e^{\gamma_0 + \gamma^T Z + \sigma W}$$

= $e^{\mu + \sigma W}$

- X|Z follows Log-Logistic distribution with
 - shape parameter: $\beta = \sigma^{-1}$ and
 - scale parameter: $\lambda = e^{-\mu}$
- The survival function

$$S(x|Z) = \frac{1}{1 + (\lambda x)^{\beta}}$$
$$= \frac{1}{1 + e^{-\frac{\gamma_0 + \gamma^T Z}{\sigma}} x^{\frac{1}{\sigma}}}$$

AFT model: Log-Logistic Model III

- Example: Bank credit data
- Construct the likelihood function for right-censored data

$$L = \prod_{j=1}^{n} \left[\frac{1}{\sigma} f_{W} \left(\frac{y_{j} - \mu}{\sigma} \right) \right]^{\delta_{j}} \left[S_{W} \left(\frac{y_{j} - \mu}{\sigma} \right) \right]^{1 - \delta_{j}},$$

where

•
$$f_W(w) = \frac{e^w}{(1+e^w)^2}$$
 and $S_W(w) = \frac{1}{1+e^w}$

- Find the maximum likelihood estimates of μ , (i.e., $[\gamma_0, \gamma^T]$) and σ , along with their standard errors.
- Then, one can estimate the survival function S(x) along with its standard error.

AFT model: Log-Logistic Model IV

Results

- Using 5 covariates; (Age, Amount, InstallmentRatePercentage, NumberExistingCredits and NumberPeopleMaintenance)
 - $\hat{\gamma}_0 = 2.88$
 - $\hat{\gamma} = [2.75 \times 10^{-3}, 8.34 \times 10^{-5}, 6.23 \times 10^{-2}, 1.99 \times 10^{-2}, -3.38 \times 10^{-2}]^T$
 - $\hat{\sigma} = 0.295$
- Using 2 covariates; (Amount and InstallmentRatePercentage)
 - $\hat{\gamma}_0 = 2.95$
 - $\hat{\gamma} = [8.47 \times 10^{-5}, 6.62 \times 10^{-2}]^T$
 - $\hat{\sigma} = 0.294$