Image Classification on an FPGA

Arsal Zaman, Horace Lee, Kimon Grigorakis, Moin Bukhari

can a neural network learn to recognize doodling?

Help teach it by adding your drawings to the <u>world's largest doodling</u> <u>data set</u>, shared publicly to help with machine learning research.

Let's Draw

Classes used (with example images)						
airplane	apple	bathtub	bicycle	bird	brain	car
cat	cell phone	dolphin	flower	peas	penguin	shoe
skyscraper	speedboat	television	violin	watermelon	wristwatch	

Convolutional Neural Network

High Level Description

Process

Kiddo

Playing with Google Quick draw dataset with Keras. Dataset can be found here Kiddo is a convolution neural network model designed to identify hand drwan images. The speciality of these images is that these are drawn with a very small intervall of time. The images in a single class are not drawn by all different person in small time, so they are least possible to have any sort of similarities. 10 images from the 10 datasets we used are shown below:

Decreased parameter count and MACs -> runs faster, uses less resources

Accuracy ~93% -> ~89%

Reduced number of kernels, reduced number of neurons in fully connected layers

Added 1x1 convolution (i.e. pointwise convolution) and maxpooling

	Original arch	itecture		
Layer	Output dimensions (H, W, C)	MACs	Parameter count	
Input	28, 28, 1	-	-	
3x3 conv with padding	28, 28, 6	42,336	60	
3x3 conv	26, 26, 32	1,168,128	1760	
2x2 maxpool	13, 13, 32	-	-	
dropout	13, 13, 32	-	-	
3x3 conv with padding	13, 13, 64	3,115,008	18496	
3x3 conv	11, 11, 64	4,460,544	36928	
2x2 maxpool	5, 5, 64	-	-	
dropout	5, 5, 64	-	-	
flatten	1600	-	-	
fully connected	512	819,200	819712	
dropout	512	-	-	
fully connected (softmax activation)	20	10,240	10260	
Total		9,615,456	887,216	

Our current architecture					
Layer	Output dimensions (H, W, C)	MACs	Parameter count		
Input	28, 28, 1	-	-		
3x3 conv with padding	28, 28, 6	42,336	60		
3x3 conv	26, 26, 24	876,096	1320		
1x1 conv (pointwise conv)	26, 26, 12	194,688	300		
2x2 maxpool	13, 13, 12	-	-		
dropout	13, 13, 12	-	-		
3x3 conv	13, 13, 28	511,056	3052		
2x2 maxpool	6, 6, 28	-	-		
1x1 conv (pointwise conv)	6, 6, 24	24,192	696		
2x2 maxpool	3, 3, 24	-	-		
dropout	3, 3, 24	-	-		
flatten	216	-	-		
fully connected	100	21,600	21700		
dropout	100	-	-		
fully connected	20	2,000	2020		
Total		1,673,968	29,148		

Quantization / custom precision

```
#include "hls half.h"
                                 const quant t conv2D 1 kernels[6][3][3][1] = {{{{ 0.22381108 },
                                    {-0.29261965},
                                    {-0.2661797 }},
typedef half quant t;
                                   {{-0.087646745},
                                    { 1.2625207 },
                                    { 0.7322538 }},
                                   {{-0.29847005},
                                    {-0.9013102 },
                                    {-0.39091668 }}},
                                  {{{ 0.028393432},
                                    { 0.029059542},
                                    {-0.04945678 }},
                                   {{-0.24063097},
                                    {-0.40525627},
                                    { 0.13201526 }},
   ~2x decrease in
                                   {{-0.7233055},
   FF and LUT
                                    { 0.45510665 },
   utilization
                                    { 0.88700783 }}},
```

Pipelining

```
// conv2D 3
   H = 26; W = 26; C = 24; N_k = 12; D_k = 1;
   H output = 26; W output = 26;
   quant t conv2D 3[26][26][12];
   for (uint8 t n k = 0; n k < N k; n k++) {
       for (uint8 t h output = 0; h output < H output; h output++) {</pre>
           for (uint8 t w output = 0; w output < W output; w output++) {
#pragma HLS PIPELINE
                quant t acc = 0;
               for (uint8 t i = 0; i < D k; i++) {
                    for (uint8 t j = 0; j < D k; j++) {
                        for (uint8 t c = 0; c < C; c++) {
                            acc += conv2D_2[h_output + i][w_output + j][c] * conv2D_3_kernels[n_k][i][j]
                acc += conv2D 3 biases[n k];
               if (acc < 0) conv2D 3[h output][w output][n k] = 0;</pre>
                else conv2D 3[h output][w output][n_k] = acc;
```

Working performance

CNN overall latency (not including other overheads):

13.98 ms (71fps)

Summary

Clock Target Estimated Uncertainty ap_clk 10.00 7.360 5.00

□ Latency (clock cycles)

Summary

Latency		Inte			
min	max	min	max	Туре	
1899381	1899381	1899381	1899381	none	

- Detail
 - Instance
 - **∄** Loop

Utilization Estimates

Summary

_ Summary				
Name	BRAM_18K	DSP48E	FF	LUT
DSP	-	3	-	-
Expression	-	0	0	9073
FIFO	-	-	-	-
Instance	2	10	1799	1387
Memory	92	-	1520	448
Multiplexer	-	-	-	5679
Register	0	-	16102	3840
Total	94	13	19421	20427
Available	280	220	106400	53200
Utilization (%)	33	5	18	38

INFO INFO INFO Fini

/usr

INFO INFO INFO INFO INFO

INFO INFO INFO

INFO

Limitations

- Requires online sketchpad rather than real-world image
- Fixed input image size
- Specific to PYNQ-Z1 board