Messfehler

Richter, Werner: Grundlagen der elektrischen Messtechnik

"Ein Messergebnis ohne Angabe der Unsicherheit (Fehler) ist so unsicher, dass man darauf verzichten sollte."

Messfehler

Jede Messung ist fehlerbehaftet. Die Messwerte x_i weichen vom wahren Wert x der betreffenden Größe ab.

Fehlerursachen: Messgeräte und Messmittel

- Messgeräte können nicht zu 100 % genau messen
- Messmittel besitzen Fertigungstoleranzen (Glühlampen, Widerstände, Wägestücke, Kondensatoren, Spulen, etc.)

Experimentator

- Ablesefehler
- Verzögerung bei Zeitmessungen mit Stoppuhr (Reaktionszeit)
- ungenaue Handhabung von Messgeräten
- Verwendung unzweckmäßiger Messgeräte (z. B. zu große Skaleneinteilung)
- falsche Bezugspunkte werden gewählt

Experimentieranordnung

- <u>Kalorimetrische Messungen:</u> unzureichende Isolierung
- <u>Spannungs- und Stromstärkemessungen:</u> stromrichtige Schaltung anstatt einer spannungsrichtigen (und umgekehrt); Widerstände von Zuleitungen werden vernachlässigt
- Messungen bei Bewegungsabläufen: Vernachlässigung von Reibung

Umgebung

- Temperatur- und Druckschwankungen
- Netzspannungsschwankungen
- Erschütterungen

Grobe Fehler:

Fehler, welche durch fehlerhaften Versuchs-aufbau, Unachtsamkeit, nicht geeignete Messgeräte, fehlerhafte Messgeräte entstehen. Im Allgemeinen sind sie immer vermeidbar.

Systematische Fehler:

Werden von Messgeräten oder Experimentator verursacht. Man unterscheidet in bekannte und unbekannte systematische Fehler.

bekannte syst. Fehler:	sind vorherse	orzeichen bekannt hbar und damit durch der Justage korrigierbar
unbekannte syst. Fehler:	(z. B. Abweic Kalibriernorm	als) hersehbar und somit

geg.:
$$GK = 2.0 = 2.0\%$$
 ges.: u in V $MB = 0...50 \text{ V}$

geg.:
$$GK = 2.0 = 2.0\%$$
 ges.: $u in V$ $MB = 0...50V$ $u = GK \cdot MB$

geg.:
$$GK = 2.0 = 2.0\%$$
 ges.: u in V
 $MB = 0...50 \text{ V}$
Lsg.: $u = GK \cdot MB$
 $u = 2.0\% \cdot 50 \text{ V} =$

geg.:
$$GK = 2.0 = 2.0\%$$
 ges.: u in V
 $MB = 0...50$ V
Lsg.: $u = GK \cdot MB$
 $u = 2.0\% \cdot 50V = 1V$

Zufällige Fehler

- werden durch Experimentator und durch Umwelteinflüsse verursacht
- sie sind vom Betrag und Vorzeichen unbekannt
- Messwerte streuen um einen bestimmten Wert
- wird durch Mittelwertbildung minimiert

Größtfehler

Die Summe aller Fehler ergeben den Größtfehler.

Messergebnis = Messwert ± Größtfehler

Größtfehler

Die Summe aller Fehler ergeben den Größtfehler.

Messergebnis = Messwert ± Größtfehler

Bsp.: Anhörungsbogen: zu schnelles Fahren.

Sie überschritten die zulässige Höchstgeschwindigkeit außerhalb geschlossener Ortschaften um 24 km/h.

 $M = (99 \pm 5) \text{ km/h}$

Die festgestellte Geschwindigkeit beträgt abzüglich Toleranz 94 km/h.

2. Ein Spannungsmesser besitzt eine Genauigkeitsklasse GK = 2,5. Im Messbereich MB = 0...15 V wurde eine Spannung von 4,0 V gemessen. Die Skaleneinteilung SE beträgt 0,5 V. Geben Sie das vollständige Messergebnis und den relativen Fehler an. geg.: GK = 2.5 = 2.5%MB = 0...15V

U = 4.0 V

SE = 0.5 V

<u>ges.:</u> vollständiges Messergebnis geg.: GK = 2.5 = 2.5% ges.: vollständiges MB = 0...15V Messergebnis U = 4.0V SE = 0.5V

Lsg.: $u = GK \cdot MB$ $u = 2.5\% \cdot 15 \text{ V} = 0.375 \text{ V}$

geg.:
$$GK = 2.5 = 2.5\%$$
 ges.: vollständiges MB = 0...15 V Messergebnis U = 4.0 V SE = 0.5 V Lsg.: $u = GK \cdot MB$ $u = 2.5\% \cdot 15 \text{ V} = 0.375 \text{ V}$

Ablesefehler =
$$1/2$$
 Skalenteil = 0.25 V
Größtfehler = u + Ablesefehler
= 0.375 V + 0.25 V = 0.625 V

geg.:
$$GK = 2.5 = 2.5\%$$
 ges.: vollständiges MB = 0...15 V Messergebnis U = 4.0 V SE = 0.5 V
Lsg.: $u = GK \cdot MB$ $u = 2.5\% \cdot 15 \text{ V} = 0.375 \text{ V}$ Ablesefehler = 1/2 Skalenteil = 0.25 V Größtfehler = u + Ablesefehler = 0.375 V + 0.25 V = 0.625 V

 $U = (4,0 \pm 0,7)V$

geg.:
$$GK = 2.5 = 2.5\%$$
 ges.: vollständiges MB = 0...15 V Messergebnis U = 4.0 V SE = 0.5 V

Lsg.: $u = GK \cdot MB$ $u = 2.5\% \cdot 15 \text{ V} = 0.375 \text{ V}$

Ablesefehler = 1/2 Skalenteil = 0.25 V Größtfehler = $u + \text{Ablesefehler}$ = 0.375 V + 0.25 V = 0.625 V $U = (4.0 \pm 0.7) \text{ V}$

relativer Fehler =
$$\frac{0.7 \text{ V}}{4 \text{ V}} = 0.175 = \underline{17.5 \%}$$

Digitalmultimeter "Digit"

MB: 5 mA

1 digit sind 0,001 mA

12 digit sind 0,012 mA

Digitalmultimeter "Digit"

MB: 2 A

1 digit sind 0,001 A

12 digit sind 0,012 A

3. Mit einem Digitalmultimeter wurde eine Stromstärke von 0,121 mA gemessen. Im zugehörigen Datenblatt wird eine Fehlergrenze FG von 2% vom Messwert + 5 digit angegeben. Bestimmen Sie das vollständige Messergebnis und den relativen Fehler.

geg.: FG = 2,0% v. Mw. ges.: vollständiges + 5 digits Messergebnis I = 0,121 mA

Lsg.:
$$u = FG \cdot I + 5 \text{ digit}$$

Lsg.:
$$u = FG \cdot I + 5 \text{ digit}$$

 $u = 2.0 \% \cdot 0.121 \text{ mA} + 0.005 \text{ mA}$
 $= 0.00742 \text{ mA}$

$$u = FG \cdot I + 5 \text{ digit}$$

 $u = 2.0 \% \cdot 0.121 \text{ mA} + 0.005 \text{ mA}$
 $= 0.00742 \text{ mA}$

Ablesefehler = 1 digit = 0,001 mA
Größtfehler =
$$u$$
 + Ablesefehler = 0,00742 mA + 0,001 mA = 0,00842 mA

Lsg.:

$$u = FG \cdot I + 5 \text{ digit}$$

 $u = 2.0 \% \cdot 0.121 \text{ mA} + 0.005 \text{ mA}$
 $= 0.00742 \text{ mA}$

Ablesefehler = 1 digit = 0,001 mA Größtfehler = u + Ablesefehler = 0,00742 mA + 0,001 mA = 0,00842 mA

$$U = (0.121 \pm 0.009) \text{mA}$$

Lsg.:

$$u = FG \cdot I + 5 \text{ digit}$$

 $u = 2.0 \% \cdot 0.121 \text{ mA} + 0.005 \text{ mA}$
 $= 0.00742 \text{ mA}$

Ablesefehler = 1 digit = 0,001 mA
Größtfehler =
$$u$$
 + Ablesefehler = 0,00742 mA + 0,001 mA = 0,00842 mA

$$U = (0.121 \pm 0.009) \text{mA}$$

relativer Fehler =
$$\frac{0,009 \text{ mA}}{0,121 \text{ mA}} = 0,0744 = \underline{7,5\%}$$

Welcher Messfehler (Unsicherheit) ist zulässig?

Welcher Messfehler (Unsicherheit) ist zulässig?

Aristoteles (384 – 322 v. Chr.)

"Darin zeigt sich der Unterrichtete, dass er für jedes Gebiet nur soviel Genauigkeit fordert, wie die Natur des Gegenstandes zulässt."

Wie genau kann ich mit dem System messen?

Wie genau kann ich mit dem System messen?

Ohne Kenntnis des Messobjektes, der Umgebungsbedingungen, der Historie des Messgerätes und den Inbetriebnahme- und Justagebedingungen lässt sich die Frage nicht seriös beantworten!

Antworten werden bereits in der Planungsphase benötigt!

Berücksichtigung von Messfehlern bei Diagrammen

Berücksichtigung von Messfehlern bei Diagrammen

Berücksichtigung von Messfehlern bei Diagrammen

Fehlerbalken: Wenn bei einer Messung von zwei Größen der Fehler der Größe A vernachlässigbar ist, wird der Fehler der anderen Größe B durch einen Fehlerbalken kenntlich gemacht.

Berücksichtigung von Messfehlern bei Diagrammen

Fehlerkästchen: Wenn beide Messgrößen nicht vernachlässigbare Fehler aufweisen, werden die Fehler durch ein Fehlerkästchen kenntlich gemacht.

FAZIT

Alles ist dem Zweifel unterzuordnen.

Gilt insbesondere für Messergebnisse!

