Problem 6

Problem

In $\triangle ABC$, $\angle B = 2\angle A$ and AB = 2BC. Show that $AB^2 = AC^2 + BC^2$.

Solution

Since $AB > BC, \angle C > \angle A$. Draw CD to meet AB at D such that $\angle ACD = \angle A$. $\triangle ADC$ is an isosceles triangle and AD = DC. $\angle CDB = \angle ACD + \angle A = 2\angle A = \angle B$

Therefore, $\triangle BCD$ is also an isosceles triangle, and so DC=BC.

$$AB = AD + DB = 2BC$$

$$\Rightarrow AD + DB = 2DC = 2AD$$

$$\Rightarrow AD = DB = DC.$$

This tells us that DC is the median of right triangle ABC with $\angle C = 90^{\circ}$. By the Pythagorean Theorem, we have $AB^2 = AC^2 + BC^2$.