Oct 23, 2023	
Slud	sky Equation.
2xi 2Pk Total	John Moome
for	own-price effects (k=i)
8	$\frac{\partial x_i}{\partial p_i} = \frac{\partial h_i}{\partial m} - \frac{\partial x_i}{\partial m} \times_i (p_i m)$
	good is normal $\frac{\partial x\partial}{\partial m} > 0$ $3 \times i < 0$ $3 \cdot p_i$
	good i is infinier $\frac{\partial x_i}{\partial m} \leq 0$
22 <u>8</u> 4 i	& IE are "opposed" > 0 only if good i is strongly inferior.
, ,	

	By slutsky cq: S(p, m) = Dh(p) should also saisfy property of hickerian matrix.
*	Special Case (No income effect)
	$\times i(p_1 m) = \times i(p)$
	Duality identity:
	$h_i(\rho, \bar{u}) = x_i(\rho, e(\rho, \bar{u})) = x_i(\rho)$
	⇒ h; (p, te) = h; (p)
	Say h2 (p, te) = h2(1)
	slutsky eg"
	Thi = Dxc (Income effects go away)
*	$\max x_1 + V(x_2) \text{c.t.} x_1 + p_2 x_2 = m$
	$\frac{max}{x^2} m - p_2 x_2 + v(x_2)$
	$POC: V'(Y_2) = P_2$ $X_2^*(P, m) = (V')^{-1}(P_2)$
	$\frac{\partial x}{\partial n} = 0$

	from BC,
	$x^*(p,m) = m - p_2[(v')^{-1}(p_2)]$
	$\frac{\partial x}{\partial m} = 1$
	Quarilinear prefs. have no income effects.
	Integrability
8	Given functions x(p, m) that satisfy:
	>h4~0
	> symmetric & n.s.d. slutsky matrix
	Can we recover utility ? YES.
	$x_{\bar{i}}(p,m) = -\frac{\partial u}{\partial v} \frac{\partial p_{\bar{i}}}{\partial m}$
	Roy's identify in reverse:
	Proof strategy:
	demand -> expenditure -> utility
	function function
	Flant w 2 :-

Does a sol to this postfal differented egn even
enst?
A necessary to sufficient cond's for a system of
A necessary to sufficient cond h for a system of equation $\partial f = g(x)$ to have a soln is
Jxc Jcc
$\partial g_i(x) = \partial g_i(x)$
$\frac{\partial g_{i}(x)}{\partial x_{i}} = \frac{\partial g_{i}(x)}{\partial x_{i}}$
$\left(\frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial x^2} \right)$
$\left(\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j}\right)$
1
In our problem: $\frac{\partial x_i(p, e(p))}{\partial p_i} = \frac{\partial x_j(p, e(p))}{\partial p_i}$
$\frac{\partial^2 f(p, e(p))}{\partial p} = \frac{\partial^2 f(p, e(p))}{\partial p}$
Pi
$s = \sum_{i,j} 7$
·
S must be symmetric
Symmetry of I is necessary & sufficient for system
to the solution e(a) to be a valid expenditure
fr, it also must be concare.
Concavity means DE(p)=S is negative semi-definite
Botom Line: -
Giova and Man it can comprehen back
we can solve to a Co to Their live earlier
Given some $x(p, m)$, if s is symmetric b n.s.d. we can solve for $e(p, u)$. Then use earlier technique to go from

$$e(p, \overline{a}) \rightarrow v(p, m)$$

$$q_{X} \qquad \begin{array}{c} K_{1}(p, m) = \alpha m \\ P_{1} \end{array} \qquad \begin{array}{c} X_{2}(p, m) = \beta m \\ P_{2} \end{array}$$

$$\frac{\partial e(p)}{\partial p_{1}} = X_{1}(p) \qquad \frac{\partial e(p)}{\partial p_{2}} = X_{2}(p)$$

$$\frac{\partial^{2}e(p)}{\partial p_{1}} = 0 = \frac{\partial^{2}e(p)}{\partial p_{1}}$$

$$\frac{\partial^{2}e(p)}{\partial p_{1}} = 0 = \frac{\partial^{2}e(p)}{\partial p_{1}}$$

$$\frac{\partial e(p)}{\partial p_{1}} = \frac{\alpha}{p_{1}}$$

$$\frac{\partial e(p)}{\partial p_{1}} = \frac{\alpha}{p_{1}}$$

$$\frac{\partial e(p)}{\partial p_{1}} = \frac{\alpha}{p_{1}}$$

$$\frac{\partial e(p)}{\partial p_{2}} = 0 = \frac{\alpha}{p_{1}}$$

$$\frac{\partial e(p)}{\partial p_{1}} = \frac{\alpha}{p_{1}}$$

$$\frac{\partial e(p)}{\partial p_{2}} = \frac{\alpha}{p_{1}}$$

$$\frac{\partial e(p)}{\partial p_{2}} = \frac{\alpha}{p_{1}}$$

$$\frac{\partial e(p)}{\partial p_{2}} = \frac{\alpha}{p_{2}}$$

$$\frac{\partial e(p)}{\partial p_{3}} = \frac{\alpha}{p_{4}}$$

$$\frac{\partial e(p)}{\partial p_{4}} = \frac{\alpha}{p_{4}}$$

$$\frac{\partial e(p)}{\partial p_{5}} = \frac{\alpha}{p_{5}}$$

$$\frac{\partial e(p)}{\partial p_{5}} =$$

Similarly, loge(p) = plog pr + cr(p, u) $log e(p) = \alpha log p_1 + p log p_2 + f(\bar{u})$ $e(p) = e^{f(a)} p_1 p_2$ = ~ p, ~ p e(p, v(p, m)) = mV(p,m) $p_1 \propto p_2^{\beta} = m$