Substitution and Elimination Reactions

Nucleophilic Substitution Reactions - S_N 2 *Reaction:*

$$\begin{array}{c} \bigcirc\\ \text{Nu} : \end{array} \begin{array}{c} \bigcirc\\ \text{BC} \end{array} \begin{array}{c} \bigcirc\\ \text{DC} \end{array} \begin{array}{$$

Reaction is:

Stereospecific (Walden Inversion of configuration)

Concerted - all bonds form and break at same time

Bimolecular - rate depends on concentration of both nucleophile and substrate

Substrate:

Best if primary (one substituent on C bearing leaving group)

works if secondary, fails if tertiary

Nucleophile:

Best if more reactive (i.e. more anionic or more basic)

Course Code: SC202
Presented by

Course Instructor: **Dr Bhar Saha**Dept. of Science & Mathematics
IIITG, Guwahati

Nucleophilic Substitution Reactions – S_N1 Reaction:

Reaction is:

Non-stereospecific (attack by nucleophile occurs from both sides)

Non-concerted - has carbocation intermediate

Unimolecular - rate depends on concentration of only the substrate

Substrate:

Best if tertiary or conjugated (benzylic or allylic) carbocation can be formed as leaving group departs

never primary

Nucleophile: Best if more reactive (more anionic or more basic)

Course Code: SC202
Presented by

Course Instructor: **Dr Bhar Saha** Dept. of Science & Mathematics IIITG, Guwahati

Elimination Reactions - E2 Reaction:

Reaction is:

Stereospecific (Anti-periplanar geometry preferred, Syn-periplanar geometry possible)

Concerted - all bonds form and break at same time

Bimolecular - rate depends on concentration of both base and substrate

Favoured by strong bases

Elimination Reaction – E1 Reaction:

Reaction is:

Non-stereospecific-follows Zaitsev (Saytseff) Rule

Non-concerted - has carbocation intermediate - favoured for tertiary leaving groups

Unimolecular - rate depends on concentration of only the substrate

Does not occur with primary alkyl halides (leaving groups)

Course Code: SC202
Presented by

Course Instructor: **Dr Bhar Saha** Dept. of Science & Mathematics IIITG, Guwahati

rresented by
Course Instructor: Dr Bhar Saha
Dept. of Science & Mathematics
IIITG, Guwahati

Using the Cahn-Ingold-Prelog sequence rule assign R or S, or E or Z, stereochemical descriptors to the following molecule.

Course Code: SC202
Presented by

Course Instructor: **Dr Bhar Saha** Dept. of Science & Mathematics

IIITG, Guwahati

- 1. Two isomeric forms of a saturated hydrocarbon
- (a) have the same structure.
- (b) have different compositions of elements.
- (c) have the same molecular formula.
- (d) have a different content of the isotopes of hydrogen.
- (e) react vigorously with one another.
- 2. Which of the following hydrocarbons does not have isomers?
- (a) C_7H_{16}
- (b) C_6H_{14}
- (c) C_5H_{10}
- (d) C_4H_8
- (e) C_3H_8
- 3. The name of the alkane isomer of cis-3-hexene is:
- (a) 2-methylpentane
- (b) 3-methylpentane
- (c) n-hexane
- (d) 2,3-dimethylbutane
- (e) cyclohexane

Course Code: SC202 Presented by

Course Instructor: Dr Bhar Saha Dept. of Science & Mathematics

IIITG, Guwahati

4. How many aromatic isomers of dibromobenzene exist? (a) 2 (b) 3 (c) 4 (d) 6 (e) 8	
5. Which one of the following compounds is an isomer of $CH_3CH_2CH_2CH_2OH$? (a) $CH_3CH_2CH_2OH$ (b) $CH_3CH(OH)CH_3$ (c) $CH_3CH_2CH_2CHO$ (Note: This is one way to write an aldehyde.) (d) $CH_3CH_2CH_2CH_3$ (e) none of the above	
6. Which of the following compounds is a functional group isomer of C_2H_5OH , ethanol (a) ethanal, CH_3CHO (b) acetic acid, CH_3COOH (c) diethyl ether, $(C_2H_5)_2O$ (d) dimethyl ether, $(CH_3)_2O$ (e) propanol, C_3H_7OH	Course Code: SC202 Presented by Course Instructor: Dr Bhar Saha Dept. of Science & Mathematics IIITG, Guwahati

7. For which	of the con	ipounds below	are cis-trans	isomers	possible?
	Of vive con	rpomino ocroco		150111615	possioie.

(a) only 2

(b) both 1 and 2 $CH_3CH=CH_2 \\ CH_3CH=CHCH_2 \\ CH_3$ $CH_3CH=CHCH_3 \\ CH_3$

(c) ooin 2 una 3

(d) all three (1) (2)

(e) only 3

- 8. Which of the following does NOT exhibit geometric isomerism?
- (a) 4-octene
- (b) 2-pentene
- (c) 3-hexene
- (d) 2-hexene
- (e) 1-hexene
- 9. Which of the following compounds displays optical isomerism?
- (a) $CH_2(OH)$ - $CH_2(OH)$
- (b) CH₃-CHCl-COOH
- (c) CH_2 =CHCl
- (d) CHCl=CHCl
- (e) CH_3 -O- C_2H_5

Course Code: SC202
Presented by

Course Instructor: **Dr Bhar Saha** Dept. of Science & Mathematics IIITG, Guwahati

10. How many isomeric alkanes of the molecular formula C_5H_{12} are there?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
11. How many alcohols are structural isomers with the formula: $C_5H_{11}OH$?
j
(a) 5
5 11
(a) 5
(a) 5 (b) 6

Course Code: SC202

Presented by
Course Instructor: Dr Bhar Saha
Dept. of Science & Mathematics
IIITG, Guwahati