COVID-19 Data Analysis - A Machine Learning Case Study

Team

- 1. Aradhana J. (17308)
- 2. Arnab Datta (17309)
- 3. Ashwin Bala (17310)
- 4. Niveth Saran V J (17337)

Objective

- 1. Predict the number of COVID cases using TimeSeries Dataset
- 2. Use 2 different algorithms for prediction to get more insights.

Contents of this notebook

Under every individual roll number, we have

- 1. Preprocessing and EDA
- 2. Model training and prediction
- 3. Testing and Comparison

After inidvidual analysis, we also provide comparison and conclusion of our analysis.

Importing Required Libraries

```
In [ ]: ## General Libraries
        import numpy as np # linear algebra
        import warnings
        import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
        import os
        import matplotlib.pyplot as plt
        import datetime
        from tqdm import tqdm
        import matplotlib
        import seaborn as sns
        import statsmodels.api as sm
        from math import sqrt
        ## Preprocessing
        from statsmodels.tsa.seasonal import seasonal_decompose
        from sklearn.preprocessing import MinMaxScaler
        from statsmodels.tsa.stattools import adfuller
        from keras.preprocessing.sequence import TimeseriesGenerator
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.model_selection import TimeSeriesSplit
        from sklearn.metrics import mean_squared_error
        from sklearn.metrics import mean_absolute_error
        from sklearn.metrics import r2_score
        ## Keras Models
        from keras.models import Sequential
        from keras.layers import Dense
        from keras.layers import LSTM
        warnings.filterwarnings("ignore")
        plt.style.use('fivethirtyeight')
        matplotlib.rcParams['axes.labelsize'] = 14
        matplotlib.rcParams['xtick.labelsize'] = 12
        matplotlib.rcParams['ytick.labelsize'] = 12
        matplotlib.rcParams['text.color'] = 'k'
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:1
9: FutureWarning: pandas.util.testing is deprecated. Use the functions
in the public API at pandas.testing instead.
 import pandas.util.testing as tm

CB.EN.U4CSE17308

PART-1: Exploratory Data Analysis

```
In [ ]: | files = [
                  'https://raw.githubusercontent.com/Ashwin1999/COVID-19-Data-M
        ining/master/COVID-Time%20Series%20Data/time_series_covid_19_confirme
        d.csv',
                  'https://raw.githubusercontent.com/Ashwin1999/COVID-19-Data-M
        ining/master/COVID-Time%20Series%20Data/time_series_covid_19_confirmed
                  https://raw.githubusercontent.com/Ashwin1999/COVID-19-Data-M
        ining/master/COVID-Time%20Series%20Data/time_series_covid_19_deaths.cs
        ν',
                  'https://raw.githubusercontent.com/Ashwin1999/COVID-19-Data-M
        ining/master/COVID-Time%20Series%20Data/time_series_covid_19_deaths_U
        S.csv',
                  'https://raw.githubusercontent.com/Ashwin1999/COVID-19-Data-M
        ining/master/COVID-Time%20Series%20Data/time_series_covid_19_recovere
        d.csv',
        ]
```

In []: df = pd.read_csv(files[0])
 confirmed = df.melt(['Province/State', 'Country/Region'], df.columns[4
 :], var_name='Dates', value_name='Count')
 confirmed.Dates = pd.to_datetime(confirmed.Dates)
 confirmed.head()

Out[]:

	Province/State	Country/Region	Dates	Count
0	NaN	Afghanistan	2020-01-22	0
1	NaN	Albania	2020-01-22	0
2	NaN	Algeria	2020-01-22	0
3	NaN	Andorra	2020-01-22	0
4	NaN	Angola	2020-01-22	0

```
In [ ]: df = pd.read_csv(files[1])
    confirmed_US = df.melt(['Province_State', 'Country_Region'], df.column
    s[11:], var_name='Dates', value_name='Count')
    confirmed_US.rename(columns={"Province_State": "Province/State", "Coun
    try_Region": "Country/Region"}, inplace=True)
    confirmed_US.Dates = pd.to_datetime(confirmed_US.Dates)
    confirmed_US.head()
```

	Province/State	Country/Region	Dates	Count
0	Alabama	US	2020-01-22	0
1	Alabama	US	2020-01-22	0
2	Alabama	US	2020-01-22	0
3	Alabama	US	2020-01-22	0
4	Alabama	US	2020-01-22	0

```
In [ ]: df = pd.read_csv(files[2])
    deaths = df.melt(['Province/State', 'Country/Region'], df.columns[4:],
    var_name='Dates', value_name='Count')
    deaths.Dates = pd.to_datetime(deaths.Dates)
    deaths.head()
```

	Province/State	Country/Region	Dates	Count
0	NaN	Afghanistan	2020-01-22	0
1	NaN	Albania	2020-01-22	0
2	NaN	Algeria	2020-01-22	0
3	NaN	Andorra	2020-01-22	0
4	NaN	Angola	2020-01-22	0

```
In [ ]: df = pd.read_csv(files[3])
    deaths_US = df.melt(['Province_State', 'Country_Region'], df.columns[1
    2:], var_name='Dates', value_name='Count')
    deaths_US.rename(columns={"Province_State": "Province/State", "Country
    _Region": "Country/Region"}, inplace=True)
    deaths_US.Dates = pd.to_datetime(deaths_US.Dates)
    deaths_US.head()
```

Out[]:

	Province/State	Country/Region	Dates	Count
0	Alabama	US	2020-01-22	0
1	Alabama	US	2020-01-22	0
2	Alabama	US	2020-01-22	0
3	Alabama	US	2020-01-22	0
4	Alabama	US	2020-01-22	0

```
In [ ]: df = pd.read_csv(files[4])
    recovered = df.melt(['Province/State', 'Country/Region'], df.columns[4
    :], var_name='Dates', value_name='Count')
    recovered.Dates = pd.to_datetime(recovered.Dates)
    recovered.head()
```

	Province/State	Country/Region	Dates	Count
0	NaN	Afghanistan	2020-01-22	0
1	NaN	Albania	2020-01-22	0
2	NaN	Algeria	2020-01-22	0
3	NaN	Andorra	2020-01-22	0
4	NaN	Angola	2020-01-22	0

```
In []: df1 = confirmed.groupby('Dates').sum().reset_index()
    df2 = deaths.groupby('Dates').sum().reset_index()
    df3 = recovered.groupby('Dates').sum().reset_index()

    cdr = pd.DataFrame({
        'date': df1.Dates,
        'confirmed': df1.Count,
        'deaths': df2.Count,
        'recovered': df3.Count,
})

    cdr.head()
```

	date	confirmed	deaths	recovered
0	2020-01-22	555	17	28
1	2020-01-23	654	18	30
2	2020-01-24	941	26	36
3	2020-01-25	1434	42	39
4	2020-01-26	2118	56	52

	date	condition	count
0	2020-01-22	confirmed	555
1	2020-01-23	confirmed	654
2	2020-01-24	confirmed	941
3	2020-01-25	confirmed	1434
4	2020-01-26	confirmed	2118

```
In [ ]: countrywise_confirmed = confirmed.groupby(['Country/Region']).sum().re
    set_index()
    countrywise_deaths = deaths.groupby(['Country/Region']).sum().reset_in
    dex()
    countrywise_recovered = recovered.groupby(['Country/Region']).sum().re
    set_index()

countrywise_cdr = pd.DataFrame({
        'country': countrywise_confirmed['Country/Region'],
        'confirmed': countrywise_confirmed.Count,
        'deaths': countrywise_deaths.Count,
        'recovered': countrywise_recovered.Count,
})

countrywise_cdr.head()
```

	country	confirmed	deaths	recovered
0	Afghanistan	3745342	114595	2139148
1	Albania	583139	17360	329905
2	Algeria	3088876	145505	2089806
3	Andorra	145841	7952	111054
4	Angola	125569	5483	45985

World covid19 cases

Number of active cases can be calculated by subtracting the sum of recovered and death cases from the confirmed cases

```
In [ ]: | conf=countrywise_cdr['confirmed'].sum()
        deth=countrywise_cdr['deaths'].sum()
        rec=countrywise_cdr['recovered'].sum()
        active=conf-(rec-deth)
        labels = ['Active','Recovered','Deceased']
        sizes = [active,rec,deth]
        color= ['#66b3ff','green','red']
        explode = []
        for i in labels:
            explode.append(0.05)
        plt.figure(figsize= (10,5))
        plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=9, explode
        =explode,colors = color)
        centre_circle = plt.Circle((0,0),0.70,fc='white')
        fig = plt.gcf()
        fig.gca().add_artist(centre_circle)
        plt.title('World COVID-19 Cases', fontsize = 20)
        plt.axis('equal')
        plt.tight_layout()
```



```
In [ ]: fig3 = plt.figure(constrained_layout=True, figsize=(20,8));
        gs = fig3.add_gridspec(2, 2);
        f3_ax1 = fig3.add_subplot(gs[0, :]);
        f3_ax1.set_title('Confirmed cases of COVID-19',fontsize=25);
        f3_ax1.set_xlabel("Number of people recovered",fontsize=20);
        sns.barplot(temp1["confirmed"], temp1["country"],ax=f3_ax1);
        f3_ax2 = fig3.add_subplot(gs[1, :1]);
        f3_ax2.set_title('Death due to COVID-19',fontsize=25);
        f3_ax2.set_xlabel("Number of people recovered",fontsize=20);
        sns.barplot(temp2["deaths"], temp2["country"],ax=f3_ax2);
        f3_ax2 = fig3.add_subplot(gs[1, 1:]);
        f3_ax2.set_title('COVID-19 Recovery',fontsize=25);
        f3_ax2.set_xlabel("Number of people recovered",fontsize=20);
        sns.barplot(temp3["recovered"], temp3["country"],ax=f3_ax2);
        f3_ax1.set_ylabel("Country", fontsize=20, position=(0,-0.5));
        f3_ax2.set_ylabel(" ",fontsize=0);
        f3_ax2.set_ylabel(" ",fontsize=0);
```



```
In [ ]:
```

Correlation between new cases, deaths and recoveries

```
In [ ]: plt.figure(figsize=(8,8))
    sns.heatmap(countrywise_cdr.corr(), cbar=True)
    plt.title('Heatmap to show relationship between columns')
    plt.show()
```


Correlation map shows that confirmed cases are positively correlated with the death cases, whereas the a similar correlation is present with the confirmed cases and the recovered cases as well

PART-2: Building the ARIMA model for forecasting the timeseries

Loading the data

In []: confirmed.head()

Out[]:

	Province/State	Country/Region	Lat	Long	1/22/20	1/23/20	1/24/20	1/25/20	1/26
0	NaN	Afghanistan	33.93911	67.709953	0	0	0	0	
1	NaN	Albania	41.15330	20.168300	0	0	0	0	
2	NaN	Algeria	28.03390	1.659600	0	0	0	0	
3	NaN	Andorra	42.50630	1.521800	0	0	0	0	
4	NaN	Angola	-11.20270	17.873900	0	0	0	0	

5 rows × 240 columns

In []: deaths.head()

Out[]:

	Province/State	Country/Region	Lat	Long	1/22/20	1/23/20	1/24/20	1/25/20	1/26,
0	NaN	Afghanistan	33.93911	67.709953	0	0	0	0	
1	NaN	Albania	41.15330	20.168300	0	0	0	0	
2	NaN	Algeria	28.03390	1.659600	0	0	0	0	
3	NaN	Andorra	42.50630	1.521800	0	0	0	0	
4	NaN	Angola	-11.20270	17.873900	0	0	0	0	

5 rows × 240 columns

```
In [ ]: recovered.head()
```

	Province/State	Country/Region	Lat	Long	1/22/20	1/23/20	1/24/20	1/25/20	1/26,
0	NaN	Afghanistan	33.93911	67.709953	0	0	0	0	
1	NaN	Albania	41.15330	20.168300	0	0	0	0	
2	NaN	Algeria	28.03390	1.659600	0	0	0	0	
3	NaN	Andorra	42.50630	1.521800	0	0	0	0	
4	NaN	Angola	-11.20270	17.873900	0	0	0	0	

5 rows × 240 columns

In []: confirmed_m.head()

	Country	Dates	Count
0	Afghanistan	2020-01-22	0
1	Albania	2020-01-22	0
2	Algeria	2020-01-22	0
3	Andorra	2020-01-22	0
4	Angola	2020-01-22	0

```
In [ ]: deaths_m.head()
```

	Country	Dates	Count
0	Afghanistan	2020-01-22	0
1	Albania	2020-01-22	0
2	Algeria	2020-01-22	0
3	Andorra	2020-01-22	0
4	Angola	2020-01-22	0

```
In [ ]: recovered_m.head()
```

	Country	Dates	Count
0	Afghanistan	2020-01-22	0
1	Albania	2020-01-22	0
2	Algeria	2020-01-22	0
3	Andorra	2020-01-22	0
4	Angola	2020-01-22	0

```
In [ ]: confirmed_m.groupby('Dates').sum().plot();
   plt.ylabel('Confirmed', fontsize=16);
   plt.xlabel('Dates', fontsize=16);
```



```
In [ ]: deaths_m.groupby('Dates').sum().plot();
    plt.ylabel('Death', fontsize=16);
    plt.xlabel('Dates', fontsize=16);
```



```
In [ ]: recovered_m.groupby('Dates').sum().plot();
    plt.ylabel('Recovered', fontsize=16);
    plt.xlabel('Dates', fontsize=16);
```


ETS Decomposition

```
In [ ]: from statsmodels.tsa.seasonal import seasonal_decompose
```

Confirmed

```
temp = confirmed_m.groupby('Dates').sum()[confirmed_m.groupby('Dates')
In [ ]:
        .sum()['Count']>=0]['Count']
        result1 = seasonal_decompose(temp)
       fig = result1.plot()
In [ ]:
        fig.set_size_inches(15,8)
          2.5 — le7
0.0 —
                   Residual
          25000
         _25000
               Feb
                               Apr
                                      May
                                                      Jul
                      Mar
                                              Jun
                                          Dates
```

The above plot shows that an increasing trend is present, as well as that the data has seasonal components. It can also be inferred that noise exists in the data from the residual component

Deaths

```
In [ ]: temp = deaths_m.groupby('Dates').sum()[deaths_m.groupby('Dates').sum()
['Count']>=0]['Count']
result2 = seasonal_decompose(temp)
```


The above plot shows that an increasing trend is present, as well as that the data has seasonal components. It can also be inferred that noise exists in the data from the residual component

Recovered data

```
temp = recovered_m.groupby('Dates').sum()[recovered_m.groupby('Dates')
In [ ]:
        .sum()['Count']>=0]['Count']
       result3 = seasonal_decompose(temp)
       fig = result3.plot()
In [ ]:
       fig.set_size_inches(15,8)
           Trend
            Residual
          50000
         -50000
               Feb
                                     May
                                                     Jul
                      Mar
                              Apr
                                             Jun
                                                             Aug
                                                                     Sep
              2020
                                         Dates
```

The above plot shows that an increasing trend is present, as well as that the data has seasonal components. It can also be inferred that noise exists in the data from the residual component

Stationary test using ADF

2020-01-25

2020-01-26

42

56

The Augmented Dickey Fuller test is performed to check for the staionarity of the data. In time series predictions, having a stationary dataset is important to have correct forecasts.

```
In [ ]: from statsmodels.tsa.stattools import adfuller
In [ ]: | confirmed_to_fit = confirmed_m.groupby('Dates').sum()[confirmed_m.grou
         pby('Dates').sum()['Count']>=0]
         confirmed_to_fit.head()
Out[]:
                    Count
              Dates
         2020-01-22
                     555
         2020-01-23
                     654
         2020-01-24
                     941
         2020-01-25
                    1434
         2020-01-26
                    2118
In [ ]: deaths_to_fit = deaths_m.groupby('Dates').sum()[deaths_m.groupby('Date
         s').sum()['Count']>=0]
         deaths_to_fit.head()
Out[]:
                    Count
              Dates
         2020-01-22
                      17
         2020-01-23
                      18
         2020-01-24
                      26
```

```
In [ ]: recovered_to_fit = recovered_m.groupby('Dates').sum()[recovered_m.grou
        pby('Dates').sum()['Count']>=0]
        recovered_to_fit.head()
Out[]:
                  Count
             Dates
         2020-01-22
                     28
         2020-01-23
                     30
         2020-01-24
                     36
         2020-01-25
                     39
         2020-01-26
                     52
In [ ]: def adf_check(time_series):
             #Pass in a time series, returns ADF report
            result = adfuller(time_series)
            print('Augmented Dickey-Fuller Test:')
            labels = ['ADF Test Statistic','p-value','#Lags Used','Number of 0
        bservations Used']
            for value,label in zip(result,labels):
                 print(label+' : '+str(value) )
             if result[1] <= 0.05:
                 print("strong evidence against the null hypothesis, reject the
        null hypothesis. Data has no unit root and is stationary")
                 print("weak evidence against null hypothesis, time series has
         a unit root, indicating it is non-stationary ")
In [ ]: | adf_check(confirmed_to_fit['Count'])
        Augmented Dickey-Fuller Test:
        ADF Test Statistic : -0.908311651116779
        p-value : 0.7852229497147818
        #Lags Used: 14
        Number of Observations Used: 221
        weak evidence against null hypothesis, time series has a unit root, in
        dicating it is non-stationary
In [ ]: | adf_check(deaths_to_fit['Count'])
        Augmented Dickey-Fuller Test:
        ADF Test Statistic : 0.03563059096806636
        p-value : 0.961381376575122
        #Lags Used : 14
        Number of Observations Used: 221
        weak evidence against null hypothesis, time series has a unit root, in
        dicating it is non-stationary
```

```
In [ ]: adf_check(recovered_to_fit['Count'])
    Augmented Dickey-Fuller Test:
    ADF Test Statistic : -2.060819805435561
    p-value : 0.2605580586225077
    #Lags Used : 8
    Number of Observations Used : 227
    weak evidence against null hypothesis, time series has a unit root, in dicating it is non-stationary
```

According to the adf test,data is stationary,therefore differentation is to be done to make data stationary which will be done in the parameter 'd' of the SARIMAX model

Seasonal Arima

```
In [ ]: from statsmodels.tsa.arima_model import ARIMA
from statsmodels.tsa.statespace.sarimax import SARIMAX
```

```
In [ ]: confirmed_to_fit = confirmed_m.groupby('Dates').sum()[confirmed_m.grou
      pby('Dates').sum()['Count']>=0]
      model = SARIMAX(confirmed_to_fit['Count'],order=(1,1,0), seasonal_orde
      r=(1,1,1,1,12)
      results = model.fit()
      print(results.summary())
                               Statespace Model Results
      ______
      Dep. Variable:
                                       Count
                                             No. Observations:
      236
                    SARIMAX(1, 1, 0)x(1, 1, 1, 12) Log Likelihood
      Model:
      -2537.654
      Date:
                               Tue, 03 Nov 2020
                                             AIC
      5083.308
      Time:
                                     11:41:25
                                             BIC
      5096.937
                                   01-22-2020
                                            HQIC
      Sample:
      5088.810
                                  - 09-13-2020
      Covariance Type:
                                         opg
      ______
                   coef std err z P>|z| [0.025]
      0.9751
                0.9795 0.024 41.473 0.000
                                                   0.933
      ar.L1
      1.026
      ar.S.L12 -0.2433 0.120 -2.032 0.042 -0.478
      -0.009
      ma.S.L12
              -0.8403 0.121 -6.958 0.000 -1.077
      -0.604
      sigma2
               6.321e+08 1.93e-11 3.28e+19
                                           0.000
                                                 6.32e+08
      6.32e+08
      ______
      ==========
      Ljung-Box (Q):
                                 734.23
                                        Jarque-Bera (JB):
      846.82
      Prob(Q):
                                   0.00
                                        Prob(JB):
      0.00
      Heteroskedasticity (H):
                                  21.87
                                        Skew:
      -1.12
      Prob(H) (two-sided):
                                   0.00
                                        Kurtosis:
```

========

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

[2] Covariance matrix is singular or near-singular, with condition number 5.21e+35. Standard errors may be unstable.

```
In [ ]: results.resid.plot();
```


In []: results.resid.plot(kind='kde');

The residual plots seem stationary with 0 mean and uniform variance

In []: confirmed_to_fit['forecast'] = results.predict(start = 196, end= 236)
confirmed_to_fit[['Count','forecast']].plot(figsize=(12,8));

In []: from pandas.tseries.offsets import DateOffset

	Count	forecast
2020-11-07	NaN	NaN
2020-11-08	NaN	NaN
2020-11-09	NaN	NaN
2020-11-10	NaN	NaN
2020-11-11	NaN	NaN

```
In [ ]: future_df['forecast'] = results.predict(start = 196, end = future_df.i
ndex[-1]);
future_df[['Count', 'forecast']].plot(figsize=(12, 8));
```


Accuracy metrics for confirmed cases prediction

MEAN ABSOLUTE PERCENTAGE ERROR

The prediction has an error of .106% indicating that the model is very much accurate with an accuracy of 99.9%

Deaths forecasting

```
In [ ]:
      deaths_to_fit = deaths_m.groupby('Dates').sum()[confirmed_m.groupby('Dates').sum()]
      ates').sum()['Count']>=0]
      model = SARIMAX(deaths_to_fit['Count'],order=(1,1,0), seasonal_order=(
      1,1,1,12))
      results = model.fit()
      print(results.summary())
                                Statespace Model Results
      ______
      No. Observations:
      Dep. Variable:
                                        Count
      236
      Model:
                     SARIMAX(1, 1, 0)x(1, 1, 1, 12)
                                              Log Likelihood
      -1888.637
                                Tue, 03 Nov 2020
      Date:
                                              AIC
      3785.273
      Time:
                                      11:41:28
                                              BIC
      3798.902
      Sample:
                                    01-22-2020
                                              HQIC
      3790.775
                                   - 09-13-2020
      Covariance Type:
                                          opg
      ______
                   coef std err
                                            P>|z|
                                                     [0.025]
                                       Z
      0.9751
                           0.025
                 0.9092
                                  36.889
                                            0.000
                                                    0.861
      ar.L1
      0.958
                           0.071 -3.900
                                            0.000
      ar.S.L12 -0.2785
                                                    -0.419
      -0.139
      ma.S.L12
               -0.7908
                           0.049 -15.979
                                            0.000
                                                     -0.888
      -0.694
      sigma2
               1.273e+06 8.46e+04
                                   15.046
                                            0.000 1.11e+06
      1.44e+06
      ______
      ==========
      Ljung-Box (Q):
                                  332.54
                                         Jarque-Bera (JB):
      84.35
      Prob(Q):
                                    0.00
                                         Prob(JB):
      0.00
      Heteroskedasticity (H):
                                    5.27
                                         Skew:
      Prob(H) (two-sided):
                                    0.00
                                         Kurtosis:
      5.95
```

========

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In []: results.resid.plot();

In []: results.resid.plot(kind='kde');

In []: deaths_to_fit['forecast'] = results.predict(start = 196, end= 236);
 deaths_to_fit[['Count','forecast']].plot(figsize=(12,8));

	Count	torecast
2020-11-07	NaN	NaN
2020-11-08	NaN	NaN
2020-11-09	NaN	NaN
2020-11-10	NaN	NaN
2020-11-11	NaN	NaN

```
In [ ]: future_df['forecast'] = results.predict(start = 196, end = future_df.i
ndex[-1]);
future_df[['Count', 'forecast']].plot(figsize=(12, 8));
```



```
In [ ]: mape = np.mean(np.abs(deaths_to_fit['forecast']-deaths_to_fit['Count'
])/np.abs(deaths_to_fit['Count']))
mape*100
```

Out[]: 0.13808435966875504

The prediction has an error of .13% indicating that the model is very much accurate with an accuracy of 99.86%

Recovered Cases forecasting

```
In [ ]: recovered_to_fit = recovered_m.groupby('Dates').sum()[recovered_m.grou
      pbv('Dates').sum()['Count']>=0]
      model = SARIMAX(recovered_to_fit['Count'],order=(1,1,0), seasonal_orde
      r=(1,1,1,1,12)
      results = model.fit()
      print(results.summary())
                               Statespace Model Results
      ______
      Dep. Variable:
                                       Count
                                             No. Observations:
      236
                    SARIMAX(1, 1, 0)x(1, 1, 1, 12)
                                             Log Likelihood
      Model:
      -2635.202
      Date:
                               Tue, 03 Nov 2020
                                             AIC
      5278.405
      Time:
                                     11:41:30
                                             BIC
      5292.033
                                   01-22-2020
                                             HQIC
      Sample:
      5283,907
                                  - 09-13-2020
      Covariance Type:
                                         opg
      ______
                   coef std err z P>|z| [0.025]
      0.9751
                0.4353 0.063 6.870 0.000
                                                   0.311
      ar.L1
      0.560
      ar.S.L12 -0.3240 0.108 -2.987 0.003 -0.537
      -0.111
      ma.S.L12
              -0.2050
                          0.128
                                  -1.605 0.108 -0.455
      0.045
      sigma2
              1.237e+09 1.31e-10 9.47e+18
                                           0.000 1.24e+09
      1.24e+09
      ______
      ==========
      Ljung-Box (Q):
                                 113.27
                                        Jarque-Bera (JB):
      307.38
      Prob(Q):
                                   0.00
                                        Prob(JB):
      0.00
      Heteroskedasticity (H):
                                  89.51
                                        Skew:
      Prob(H) (two-sided):
                                   0.00
                                        Kurtosis:
      8.65
```

========

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

[2] Covariance matrix is singular or near-singular, with condition number 1.15e+34. Standard errors may be unstable.

In []: results.resid.plot();

In []: recovered_to_fit['forecast'] = results.predict(start = 196, end= 236);
 recovered_to_fit[['Count','forecast']].plot(figsize=(12,8));

In []: from pandas.tseries.offsets import DateOffset

```
In [ ]: future_dates_df = pd.DataFrame(index=future_dates[1:],columns=recovere
    d_to_fit.columns)
    future_df = pd.concat([recovered_to_fit,future_dates_df])
    future_df.tail()
```

	Count	torecast
2020-11-07	NaN	NaN
2020-11-08	NaN	NaN
2020-11-09	NaN	NaN
2020-11-10	NaN	NaN
2020-11-11	NaN	NaN

Out[]: 0.22739627662184567

The prediction has an error of .13% indicating that the model is very much accurate with an accuracy of 99.78%

```
In [ ]:
```

CB.EN.U4CSE17309

```
In [ ]: import numpy as np
    from scipy import stats
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

1. Loading the Data

```
In [ ]: National_data = pd.read_csv(files['National_data'])
    National_data.head()
```

Out[]:

	Date	Daily Confirmed	Total Confirmed	Daily Recovered	Total Recovered	Daily Deceased	Total Deceased
0	30 January	1	1	0	0	0	0
1	31 January	0	1	0	0	0	0
2	01 February	0	1	0	0	0	0
3	02 February	1	2	0	0	0	0
4	03 February	1	3	0	0	0	0

In []: National_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 190 entries, 0 to 189
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Date	190 non-null	object
1	Daily Confirmed	190 non-null	int64
2	Total Confirmed	190 non-null	int64
3	Daily Recovered	190 non-null	int64
4	Total Recovered	190 non-null	int64
5	Daily Deceased	190 non-null	int64
6	Total Deceased	190 non-null	int64

dtypes: int64(6), object(1)
memory usage: 10.5+ KB

1. Data organisation

```
In [ ]: National_data['Date'] = National_data['Date'].apply(lambda x: x+' 202
0')
```

In []: National_data.head(100)

Out[]:

	Date	Daily Confirmed	Total Confirmed	Daily Recovered	Total Recovered	Daily Deceased	Total Deceased
0	30 January 2020	1	1	0	0	0	0
1	31 January 2020	0	1	0	0	0	0
2	01 February 2020	0	1	0	0	0	0
3	02 February 2020	1	2	0	0	0	0
4	03 February 2020	1	3	0	0	0	0
•••							
95	04 May 2020	3656	46434	1082	12845	103	1566
96	05 May 2020	2971	49405	1295	14140	128	1694
97	06 May 2020	3602	53007	1161	15301	91	1785
98	07 May 2020	3344	56351	1475	16776	104	1889
99	08 May 2020	3339	59690	1111	17887	97	1986

100 rows × 7 columns

In []: National_data['Date']=pd.to_datetime(National_data['Date'])
 National_data.head()

	Date	Daily Confirmed	Total Confirmed	Daily Recovered	Total Recovered	Daily Deceased	Total Deceased
0	2020-01- 30	1	1	0	0	0	0
1	2020-01- 31	0	1	0	0	0	0
2	2020-02- 01	0	1	0	0	0	0
3	2020-02- 02	1	2	0	0	0	0
4	2020-02- 03	1	3	0	0	0	0

		Date	Daily Confirmed	Total Confirmed
_	0	2020-01-30	1	1
	1	2020-01-31	0	1
	2	2020-02-01	0	1
	3	2020-02-02	1	2
	4	2020-02-03	1	3

3. Data Visualisation

Out[]: Text(0.5, 0, 'Dates')


```
In [ ]: Confirmed_India.plot(x='Date', y=['Daily Confirmed'], figsize=[10,5])
    plt.title('Confirmation per day graph')
    plt.ylabel('Confirmation per day', fontsize=10);
    plt.xlabel('Dates', fontsize=10)
```


	Date	Daily Recovered	Total Recovered
0	2020-01-30	0	0
1	2020-01-31	0	0
2	2020-02-01	0	0
3	2020-02-02	0	0
4	2020-02-03	0	0


```
In [ ]: Recovered_India.plot(x='Date', y=['Daily Recovered'], figsize=[10,5])
    plt.title('Recovery per day graph')
    plt.ylabel('Recovered per day', fontsize=10);
    plt.xlabel('Dates', fontsize=10)
```

Out[]: Text(0.5, 0, 'Dates')


```
In [ ]: National_data.plot(x='Date', y=['Total Recovered', 'Total Confirmed'],
    figsize=[10,5])
    plt.title('Total Recovery vs Total confirmed cases')
    plt.ylabel('Counts of recovery vs cases', fontsize=10);
    plt.xlabel('Dates', fontsize=10)
```



```
In [ ]: National_data.plot(x='Date', y=['Daily Recovered', 'Daily Confirmed'],
    figsize=[10,5])
    plt.title('Daily Recovery vs Daily confirmed cases')
    plt.ylabel('Counts of recovery vs cases', fontsize=10);
    plt.xlabel('Dates', fontsize=10)
```


4. ETS Decomposition

```
from statsmodels.tsa.seasonal import seasonal_decompose
In [ ]:
In [ ]:
         Total_confirmed_India = Confirmed_India[['Date', 'Total Confirmed']]
         Daily_confirmed_India = Confirmed_India[['Date', 'Daily Confirmed']]
Total_Recovered_India = Recovered_India[['Date', 'Total Recovered']]
         Daily_Recovered_India = Recovered_India[['Date', 'Daily Recovered']]
In [ ]: C1= Total_confirmed_India.groupby('Date').sum()[Total_confirmed_India.
         groupby('Date').sum()['Total Confirmed']>=0]['Total Confirmed']
         C2= Daily_confirmed_India.groupby('Date').sum()[Daily_confirmed_India.
         groupby('Date').sum()['Daily Confirmed']>=0]['Daily Confirmed']
         R1= Total_Recovered_India.groupby('Date').sum()[Total_Recovered_India.
         groupby('Date').sum()['Total Recovered']>=0]['Total Recovered']
         R2= Daily_Recovered_India.groupby('Date').sum()[Daily_Recovered_India.
         groupby('Date').sum()['Daily Recovered']>=0]['Daily Recovered']
         result1 = seasonal_decompose(C1)
In [ ]:
         result2 = seasonal_decompose(C2)
         result3 = seasonal_decompose(R1)
         result4 = seasonal_decompose(R2)
```


6.Stationary Test

In []: from statsmodels.tsa.stattools import adfuller

```
In [ ]: total_confirmed_to_fit = Total_confirmed_India.groupby('Date').sum()[T
        otal_confirmed_India.groupby('Date').sum()['Total Confirmed']>=0]
        daily_confirmed_to_fit = Daily_confirmed_India.groupby('Date').sum()[D
        aily_confirmed_India.groupby('Date').sum()['Daily Confirmed']>=0]
        total_recovered_to_fit = Total_Recovered_India.groupby('Date').sum()[T
        otal_Recovered_India.groupby('Date').sum()['Total Recovered']>=0]
        daily_recovered_to_fit = Daily_Recovered_India.groupby('Date').sum()[D
        aily_Recovered_India.groupby('Date').sum()['Daily Recovered']>=0]
In [ ]: def adf_check(time_series):
            #Pass in a time series, returns ADF report
            result = adfuller(time_series)
            print('Augmented Dickey-Fuller Test:')
            labels = ['ADF Test Statistic','p-value','#Lags Used','Number of 0
        bservations Used']
            for value,label in zip(result,labels):
                print(label+' : '+str(value) )
            if result[1] <= 0.05:
                print("strong evidence against the null hypothesis, reject the
        null hypothesis. Data has no unit root and is stationary")
            else:
                print("weak evidence against null hypothesis, time series has
         a unit root, indicating it is non-stationary ")
In [ ]: | adf_check(total_confirmed_to_fit['Total Confirmed'])
        Augmented Dickey-Fuller Test:
        ADF Test Statistic : 1.0951132592667092
        p-value: 0.9951746996904941
        #Lags Used: 14
        Number of Observations Used: 175
        weak evidence against null hypothesis, time series has a unit root, in
        dicating it is non-stationary
In [ ]: | adf_check(daily_confirmed_to_fit['Daily Confirmed'])
        Augmented Dickey-Fuller Test:
        ADF Test Statistic : 4.576459292538224
        p-value : 1.0
        #Lags Used: 13
        Number of Observations Used: 176
        weak evidence against null hypothesis, time series has a unit root, in
        dicating it is non-stationary
```

```
In [ ]: | adf_check(total_recovered_to_fit['Total Recovered'])
        Augmented Dickey-Fuller Test:
        ADF Test Statistic : 2.269294561442034
        p-value: 0.9989348430184178
        #Lags Used : 15
        Number of Observations Used : 174
        weak evidence against null hypothesis, time series has a unit root, in
        dicating it is non-stationary
In [ ]: | adf_check(daily_recovered_to_fit['Daily Recovered'])
        Augmented Dickey-Fuller Test:
        ADF Test Statistic : 4.306772156564263
        p-value : 1.0
        #Lags Used : 14
        Number of Observations Used: 175
        weak evidence against null hypothesis, time series has a unit root, in
        dicating it is non-stationary
```

7. Seasonal ARIMA Model

```
In [ ]: from statsmodels.tsa.arima_model import ARIMA
from statsmodels.tsa.statespace.sarimax import SARIMAX
```

7.1 Forecasting total confirmed cases in upcoming days

```
In [ ]: model = SARIMAX(total_confirmed_to_fit['Total Confirmed'],order=(1,1,0
), seasonal_order=(1,1,1,12))
    results = model.fit()
    print(results.summary())
```

C:\Users\arnab\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_mo
del.py:159: ValueWarning: No frequency information was provided, so in
ferred frequency D will be used.

warnings.warn('No frequency information was'

C:\Users\arnab\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_mo
del.py:159: ValueWarning: No frequency information was provided, so in
ferred frequency D will be used.

warnings.warn('No frequency information was'

C:\Users\arnab\anaconda3\lib\site-packages\statsmodels\tsa\statespace \sarimax.py:994: UserWarning: Non-stationary starting seasonal autoreg ressive Using zeros as starting parameters.

warn('Non-stationary starting seasonal autoregressive'

C:\Users\arnab\anaconda3\lib\site-packages\statsmodels\tsa\statespace \sarimax.py:1006: UserWarning: Non-invertible starting seasonal moving average Using zeros as starting parameters.

warn('Non-invertible starting seasonal moving average'

SARIMAX Results

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In []: results.resid.plot()

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x26ba430e6a0>

In []: results.resid.plot(kind='kde')

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x26ba439dd60>


```
In [ ]:
        total_confirmed_to_fit['forecast'] = results.predict(start = 130, end=
        190)
        total_confirmed_to_fit[['Total Confirmed','forecast']].plot(figsize=(1
        2,8));
```



```
from pandas.tseries.offsets import DateOffset
In [ ]:
```

```
In [ ]:
        n = 80
        last_date = total_confirmed_to_fit.index[-1]
        future_dates = [last_date+DateOffset(days=x) for x in range(1, n)]
```

future_dates_df = pd.DataFrame(index=future_dates[1:],columns=total_co In []: nfirmed_to_fit.columns) future_df = pd.concat([total_confirmed_to_fit,future_dates_df]) total_confirmed_to_fit.tail()

Out[]:

	Total Confirmed	forecast
Date		
2020-08-02	1804857	1.807915e+06
2020-08-03	1855345	1.858599e+06
2020-08-04	1906627	1.906085e+06
2020-08-05	1963253	1.958476e+06
2020-08-06	2025423	2.020087e+06

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x26b9d1d24f0>

7.2 Forecasting daily confirmed cases in upcoming days

```
In [ ]: model = SARIMAX(daily_confirmed_to_fit['Daily Confirmed'],order=(1,1,0
), seasonal_order=(1,1,1,12))
    results = model.fit()
    print(results.summary())
```

C:\Users\arnab\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_mo
del.py:159: ValueWarning: No frequency information was provided, so in
ferred frequency D will be used.

warnings.warn('No frequency information was'

C:\Users\arnab\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_mo
del.py:159: ValueWarning: No frequency information was provided, so in
ferred frequency D will be used.

warnings.warn('No frequency information was'

warnings	.warn(NO IT	equency in	Offiliation wa	5		
			SARIMA	X Results		
Dep. Varia			Daily Co	nfirmed	No.	Observation
s: Model: -1513.631	190 SAR:		0)x(1, 1, [1], 12)	Log	g Likelihood
Date: 3035.262			Tue, 03 N	ov 2020	AIC	
Time: 3047.966			1	7:13:19	BIC	
Sample: 3040.414			01 -	30-2020	HQI	CC .
Covariance	Type:		- 08-	06-2020 opg		
=======	========		=======	======	====	========
0.975]	coef		Z	•	•	[0.025
ar.L1	0.2797					0.195
ar.S.L12 -0.067	-0.2566	0.096	-2.659	0.00	8	-0.446
ma.S.L12 -0.517	-0.7215	0.104	-6.925	0.00	0	-0.926
sigma2 1.7e+06	1.516e+06		16.323		0	
=======	===	=======	206.60			(ID) ·
Ljung-Box 168.18	(५).			Jarque-E		(50).
Prob(Q): 0.00			0.00	Prob(JB)	:	
0.69	asticity (H)	:	1800.56	Skew:		
Prob(H) (t 7.57	wo-sided):	0.00	Kurtosis	:		

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In []: results.resid.plot()

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x26b9d460610>

In []: results.resid.plot(kind='kde')

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x26ba5831e20>

In []: from pandas.tseries.offsets import DateOffset

Out[]:

	Daily Confirmed	forecast
2020-10-20	NaN	NaN
2020-10-21	NaN	NaN
2020-10-22	NaN	NaN
2020-10-23	NaN	NaN
2020-10-24	NaN	NaN

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x26b9d0a2370>

7.3 Forecasting total recovery in upcoming days

```
In [ ]: model = SARIMAX(total_recovered_to_fit['Total Recovered'],order=(1,1,0
), seasonal_order=(1,1,1,12))
    results = model.fit()
    print(results.summary())
```

C:\Users\arnab\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_mo
del.py:159: ValueWarning: No frequency information was provided, so in
ferred frequency D will be used.

warnings.warn('No frequency information was'

C:\Users\arnab\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_mo
del.py:159: ValueWarning: No frequency information was provided, so in
ferred frequency D will be used.

warnings.warn('No frequency information was'

C:\Users\arnab\anaconda3\lib\site-packages\statsmodels\tsa\statespace \sarimax.py:994: UserWarning: Non-stationary starting seasonal autoreg ressive Using zeros as starting parameters.

warn('Non-stationary starting seasonal autoregressive'

C:\Users\arnab\anaconda3\lib\site-packages\statsmodels\tsa\statespace \sarimax.py:1006: UserWarning: Non-invertible starting seasonal moving average Using zeros as starting parameters.

warn('Non-invertible starting seasonal moving average'

SARIMAX Results

========	========	:=======		=======	==========	
=========	=============					
Dep. Varia	 ble: 190	.	Total Re	covered	No. Observation	
s: Model:			0)x(1, 1, [1], 12)	Log Likelihood	
-1638.831						
Date:			Tue, 03 N	ov 2020	AIC	
3285.662			4	7.12.21	DIC	
Time: 3298.367			1	7:13:21	BIC	
Sample:			01-	30-2020	HQIC	
3290.815			.	30 2020		
	_		- 08-	06-2020		
Covariance	• •			opg	===========	
========	========				=======================================	
	coef	std err	Z	P> z	[0.025	
0.975]						
ar.L1	0.9299	0.014	64.474	0.000	0.902	
0.958	0.5255	0.014	04.474	0.000	0.302	
ar.S.L12	-0.6523	0.189	-3.447	0.001	-1.023	
-0.281						
ma.S.L12 0.769	0.3600	0.208	1.727	0.084	-0.049	
	6.441e+06	3.64e+05	17.698	0.000	5.73e+06	
7.15e+06						
=========		:======		=======	==========	
Ljung-Box			143.35	Jarque-Be	ra (JB):	
450.48 Prob(Q):			0.00	Prob(JB):		
0.00						
Heterosked 0.58	asticity (H):		90192.62	Skew:		
Prob(H) (tv 10.73			0.00	Kurtosis:		
=======================================						

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In []: results.resid.plot()

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x26ba46e7d90>

In []: results.resid.plot(kind='kde')

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x26ba583cdf0>

Out[]:

	Total Recovered	forecast
2020-10-20	NaN	NaN
2020-10-21	NaN	NaN
2020-10-22	NaN	NaN
2020-10-23	NaN	NaN
2020-10-24	NaN	NaN

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x26b9d05f040>

7.4 Forecasting daily recovery in upcoming days

```
In [ ]: model = SARIMAX(daily_recovered_to_fit['Daily Recovered'],order=(1,1,0
), seasonal_order=(1,1,1,12))
    results = model.fit()
    print(results.summary())
```

C:\Users\arnab\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_mo
del.py:159: ValueWarning: No frequency information was provided, so in
ferred frequency D will be used.

warnings.warn('No frequency information was'

C:\Users\arnab\anaconda3\lib\site-packages\statsmodels\tsa\base\tsa_mo
del.py:159: ValueWarning: No frequency information was provided, so in
ferred frequency D will be used.

warnings.warn('No frequency information was'

warnings	.warn(NO ITE	equency in	Offiliation Wa	iS.	
	========			X Results	
====== Dep. Varia	======= ble:				No. Observation
s: Model: -1605.805	190 SARI		0)x(1, 1, [1], 12)	Log Likelihood
Date: 3219.610			Tue, 03 N	lov 2020	AIC
Time: 3232.314			1	7:13:23 I	BIC
Sample: 3224.762			01-	30-2020 I	HQIC
Covariance	• •			06-2020 opg	
=======					==========
0.975]	coef		Z 		[0.025
ar.L1 -0.462	-0.5362	0.038	-14.239	0.000	-0.610
ar.S.L12 0.408	0.1656	0.124	1.337	0.181	-0.077
ma.S.L12 -0.630	-0.8238	0.099	-8.338	0.000	-1.017
	4.294e+06	1.67e+05	25.672	0.000	3.97e+06
========		=======	=======	=======	==========
Ljung-Box 1463.13	(Q):		103.13	Jarque-Be	ra (JB):
Prob(Q): 0.00			0.00	Prob(JB):	
	asticity (H):		79315.77	Skew:	
Prob(H) (t 16.31	wo-sided):		0.00	Kurtosis:	

========

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

In []: results.resid.plot()

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x26b9d528430>

In []: results.resid.plot(kind='kde')

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x26b9d8b8b50>

Out[]:

	Daily Recovered	forecast
2020-10-20	NaN	NaN
2020-10-21	NaN	NaN
2020-10-22	NaN	NaN
2020-10-23	NaN	NaN
2020-10-24	NaN	NaN

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x26ba59e3d00>

8. Performance Evaluation

```
In [ ]: from sklearn.metrics import mean_squared_error
    from math import sqrt
    from sklearn.metrics import r2_score
```

8.1 Mean Absolute Percentage Error

```
In [ ]: test1 = total_confirmed_to_fit.iloc[130:, :]
        test2 = daily_confirmed_to_fit.iloc[130:, :]
        test3 = total_recovered_to_fit.iloc[130:, :]
        test4 = daily_recovered_to_fit.iloc[130:, :]
        test1.head()
Out[]:
                   Total Confirmed
                                    forecast
              Date
         2020-06-08
                        266021 268561.098616
         2020-06-09
                        276002 274939.976413
         2020-06-10
                        287158 286044.093148
         2020-06-11
                        298293 298300.933165
         2020-06-12
                        309599 309949.449513
        mape1 = np.mean(np.abs(test1['forecast']-test1['Total Confirmed'])/np.
In [ ]:
        abs(test1['Total Confirmed']))
        print('Accuracy of total confirmations forecast: ',100-(mape1*100))
        Accuracy of total confirmations forecast: 99.7786465519674
        mape2 = np.mean(np.abs(test2['forecast']-test2['Daily Confirmed'])/np.
In [ ]:
        abs(test2['Daily Confirmed']))
        print('Accuracy of daily confirmations forecast: ',100-(mape2*100))
        Accuracy of daily confirmations forecast: 93.37483878422542
        mape3 = np.mean(np.abs(test3['forecast']-test3['Total Recovered'])/np.
In [ ]:
        abs(test3['Total Recovered']))
        print('Accuracy of total recovery forecast: ',100-(mape3*100))
        Accuracy of total recovery forecast: 99.27099011849319
In [ ]: | mape4 = np.mean(np.abs(test4['forecast']-test4['Daily Recovered'])/np.
        abs(test4['Daily Recovered']))
        print('Accuracy of daily recovery forecast: ',100-(mape4*100))
```

Accuracy of daily recovery forecast: 87.10281048121178

8.2 Root Mean squared error

```
In [ ]: realVals1 = test1['Total Confirmed']
        predictedVals1 = test1['forecast']
        mse1 = mean_squared_error(realVals1, predictedVals1)
        rmse1 = sqrt(mse1)
        print('Root mean square error of total confirmed cases forecast: ',rms
        e1)
        Root mean square error of total confirmed cases forecast: 2125.131735
        9060663
In [ ]: realVals2 = test2['Daily Confirmed']
        predictedVals2 = test2['forecast']
        mse2 = mean_squared_error(realVals2, predictedVals2)
        rmse2 = sqrt(mse2)
        print('Root mean square error of daily confirmed cases forecast: ' ,rm
        se2)
        Root mean square error of daily confirmed cases forecast: 2022.747820
        7589352
In [ ]: realVals3 = test3['Total Recovered']
        predictedVals3 = test3['forecast']
        mse3 = mean_squared_error(realVals3, predictedVals3)
        rmse3 = sqrt(mse3)
        print('Root mean square error of total recovery forecast: ',rmse3)
        Root mean square error of total recovery forecast: 4053.037978541228
In [ ]: realVals4 = test4['Daily Recovered']
        predictedVals4 = test4['forecast']
        mse4 = mean_squared_error(realVals4, predictedVals4)
        rmse4 = sqrt(mse4)
        print('Root mean square error of daily recovery forecast: ', rmse4)
        Root mean square error of daily recovery forecast: 3305.3554918793507
```

8.3 R2 score

```
In [ ]: r2_score_1= r2_score(realVals1, predictedVals1)
    print('R2 score of total confirmed cases forecast: ', r2_score_1)

    R2 score of total confirmed cases forecast: 0.9999827456330113

In [ ]: r2_score_2= r2_score(realVals2, predictedVals2)
    print('R2 score of daily confirmed cases forecast: ', r2_score_2)

    R2 score of daily confirmed cases forecast: 0.9833497185909372

In [ ]: r2_score_3= r2_score(realVals3, predictedVals3)
    print('R2 score of total recovery forecast: ', r2_score_3)

    R2 score of total recovery forecast: 0.9998682037756753
```

```
In [ ]: r2_score_4= r2_score(realVals4, predictedVals4)
        print('R2 score of daily recovery forecast: ', r2_score_4)
```

R2 score of daily recovery forecast: 0.9304260281962908

CB.EN.U4CSE17310

PART-1: Exploratory Data Analysis

1. Getting the data

```
In [ ]: # storing the file paths of our datasets
        dfs = [
            'https://raw.githubusercontent.com/Ashwin1999/COVID-19-Data-Minin
        g/master/COVID-Time%20Series%20Data/COVID-Time%20Series%20Data%20-%20R
        efined/confirmed.csv',
            'https://raw.githubusercontent.com/Ashwin1999/COVID-19-Data-Minin
        g/master/COVID-Time%20Series%20Data/COVID-Time%20Series%20Data%20-%20R
        efined/deaths.csv',
            'https://raw.githubusercontent.com/Ashwin1999/COVID-19-Data-Minin
        g/master/COVID-Time%20Series%20Data/COVID-Time%20Series%20Data%20-%20R
        efined/recovered.csv',
        confirmed = pd.read_csv(dfs[0])
In [ ]:
        deaths = pd.read_csv(dfs[1])
```

```
recovered = pd.read_csv(dfs[2])
```

```
In [ ]: confirmed.head(3)
```

Out[]:

	State	Country	Latitude	Longitude	1/22/20	1/23/20	1/24/20	1/25/20	1/26/20	1/27/20
0	NaN	Afghanistan	33.93911	67.709953	0	0	0	0	0	0
1	NaN	Albania	41.15330	20.168300	0	0	0	0	0	0
2	NaN	Algeria	28.03390	1.659600	0	0	0	0	0	0

3 rows × 240 columns

```
deaths.head(3)
In [ ]:
Out[]:
                 State Country
                                 Latitude
                                          Longitude 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20
           0 Alabama
                                                          0
                                                                  0
                                                                          0
                                                                                   0
                                                                                           0
                           US 32.539527 -86.644082
             Alabama
                           US
                               30.727750
                                         -87.722071
                                                          0
                                                                  0
                                                                           0
                                                                                   0
           2 Alabama
                           US 31.868263 -85.387129
                                                          0
                                                                  0
                                                                           0
                                                                                   0
                                                                                           0
          3 rows × 240 columns
          recovered.head(3)
In [ ]:
Out[]:
              State
                       Country
                                Latitude
                                         Longitude 1/22/20 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20
                    Afghanistan
                               33.93911
                                         67.709953
                                                         0
                                                                 0
                                                                         0
                                                                                  0
                                                                                          0
                                                                                                  0
              NaN
```

20.168300

1.659600

0

0

0

0

0

0

0

0

0

0

0

3 rows × 240 columns

1

2

NaN

NaN

2. Reshaping the data into a manageable format

Albania

41.15330

Algeria 28.03390

```
In [ ]: confirmed = confirmed.melt(['State', 'Country'], confirmed.columns[4
:], var_name='Dates', value_name='Confirmed')
confirmed.Dates = pd.to_datetime(confirmed.Dates)

deaths = deaths.melt(['State', 'Country'], deaths.columns[4:], var_nam
e='Dates', value_name='Deaths')
deaths.Dates = pd.to_datetime(deaths.Dates)

recovered = recovered.melt(['State', 'Country'], recovered.columns[4
:], var_name='Dates', value_name='Recovered')
recovered.Dates = pd.to_datetime(recovered.Dates)
```

In []: confirmed.head()

Out[]:

	State	Country	Dates	Confirmed
0	NaN	Afghanistan	2020-01-22	0
1	NaN	Albania	2020-01-22	0
2	NaN	Algeria	2020-01-22	0
3	NaN	Andorra	2020-01-22	0
4	NaN	Angola	2020-01-22	0

```
In [ ]: confirmed_dates = confirmed.groupby('Dates').sum().reset_index()
         deaths_dates = deaths.groupby('Dates').sum().reset_index()
         recovered_dates = recovered.groupby('Dates').sum().reset_index()
In [ ]: | confirmed_dates.head()
Out[]:
                Dates Confirmed
         0 2020-01-22
                          556
         1 2020-01-23
                          655
         2 2020-01-24
                          943
         3 2020-01-25
                         1436
         4 2020-01-26
                         2123
In [ ]: | combined=pd.DataFrame({
             'Date': confirmed_dates.Dates,
             'Confirmed': confirmed_dates.Confirmed,
             'Deaths': deaths_dates.Deaths,
             'Recovered': recovered_dates.Recovered
         })
         combined = combined.melt('Date', combined.columns[1:], var_name='Condi
         tion', value_name='Count')
         combined.head()
Out[]:
                 Date Condition Count
         0 2020-01-22 Confirmed
                                556
         1 2020-01-23 Confirmed
                                655
         2 2020-01-24 Confirmed
                                943
         3 2020-01-25 Confirmed
                               1436
```

3. Graphing the number of confirmed cases, deaths and recoveries

2123

4 2020-01-26 Confirmed

```
In [ ]: sns.set_style("dark")
    plt.figure(figsize=(20,8));
    growth = sns.lineplot(combined["Date"], combined["Count"], hue=combine
    d["Condition"]);
    growth.set_title("Global growth of COVID-19",fontsize=30);
    growth.set_xlabel("Date",fontsize=20);
    growth.set_ylabel("Count",fontsize=20);
    plt.xticks(rotation=30);
    plt.legend(fontsize='x-large');
```


a. Number of confirmed cases of COVID-19 on a daily, weekly and monthly basis

b. Number of COVID-19 related deaths on a daily, weekly and monthly basis

```
In []: plt.figure(figsize=(20,8));
    mort = deaths.groupby('Dates').sum()
    mort.Deaths.resample('d').mean().plot(label='daily');
    mort.Deaths.resample('w').mean().plot(label='weekly');
    mort.Deaths.resample('m').mean().plot(label='monthly');

    plt.title('Number of deaths on a daily, weekly and montly basis', font size=20);
    plt.ylabel('Deaths',fontsize=15);
    plt.xlabel('Dates',fontsize=15)

    plt.legend();
```


c. Number of recovery from COVID-19 on a daily, weekly and monthly basis

```
In []: plt.figure(figsize=(20,8));
    rec = recovered.groupby('Dates').sum()
    rec.Recovered.resample('d').mean().plot(label='daily');
    rec.Recovered.resample('w').mean().plot(label='weekly');
    rec.Recovered.resample('m').mean().plot(label='monthly');

    plt.title('Number of recovery on a daily, weekly and montly basis',fon tsize=20);
    plt.ylabel('Recovered', fontsize=15);
    plt.xlabel('Dates',fontsize=15)

    plt.legend();
```


4. Pie Chart Visualizations for COVID-19

a. Confirmed COVID-19 cases

b. COVID-19 related deaths

```
In [ ]: deaths_country = deaths.groupby('Country').sum().reset_index()
    deaths_country.sort_values(by='Deaths', ascending=False, inplace=True)
    deaths_country_top10 = deaths_country.iloc[:10,:]
    others = pd.DataFrame({'Country': ['Others'], 'Deaths':[sum(deaths_country.iloc[10:,:].Deaths)]})
    deaths_country_top10 = pd.concat([deaths_country_top10,others]).reset_index().drop('index', axis=1)

plt.axis("equal")
    plt.pie(deaths_country_top10.Deaths, labels=deaths_country_top10.Country, radius=3, autopct='%0.0f%%', shadow=True, startangle=45,explode=[
    0.2,0,0,0,0,0,0,0,0,0,0])
    plt.show()
```


c. Recovery from COVID-19

```
In []: recovered_country = recovered.groupby('Country').sum().reset_index()
    recovered_country.sort_values(by='Recovered', ascending=False, inplace
    =True)
    recovered_country_top10 = recovered_country.iloc[:10,:]
    others = pd.DataFrame({'Country': ['Others'], 'Recovered':[sum(recovered_country.iloc[10:,:].Recovered]]})
    recovered_country_top10 = pd.concat([recovered_country_top10,others]).
    reset_index().drop('index', axis=1)

plt.axis("equal")
    plt.pie(recovered_country_top10.Recovered, labels=recovered_country_to
    p10.Country, radius=3, autopct='%0.0f%%', shadow=True, startangle=45,e
    xplode=[0.2,0,0,0,0,0,0,0,0,0])
    plt.show()
```


5. Mortality rate and recovery rate visualized

```
In [ ]: confirmed_country = confirmed.groupby('Country').sum().reset_index()
    deaths_country = deaths.groupby('Country').sum().reset_index()
    recovered_country = recovered.groupby('Country').sum().reset_index()

combined_countries = confirmed_country.merge(deaths_country, on=['Country']).merge(recovered_country, on=['Country'])
    combined_countries.head()
```

Out[]:

	Country	Confirmed	Deaths	Recovered
0	Afghanistan	3745342	114595	2139148
1	Albania	583139	17360	329905
2	Algeria	3088876	145505	2089806
3	Andorra	145841	7952	111054
4	Angola	125569	5483	45985

World Covid19 cases

Number of active cases can be calculated by subtracting the sum of recovered and death cases from the confirmed cases

```
In [ ]: | conf=combined_countries['Confirmed'].sum()
        deth=combined_countries['Deaths'].sum()
        rec=combined_countries['Recovered'].sum()
        active=conf-(rec-deth)
        labels = ['Active','Recovered','Deceased']
        sizes = [active,rec,deth]
        color= ['#66b3ff','green','red']
        explode = []
        for i in labels:
            explode.append(0.05)
        plt.figure(figsize= (15,10))
        plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=9, explode
        =explode,colors = color)
        centre_circle = plt.Circle((0,0),0.70,fc='white')
        fig = plt.gcf()
        fig.gca().add_artist(centre_circle)
        plt.title('World COVID-19 Cases',fontsize = 20)
        plt.axis('equal')
        plt.tight_layout()
```


The dataset we have contains the columns confirmed cases, deaths and recovery. We can make use of these fields and get two other fields, **Mortality rate** and **Recovery rate**, which are equally important in our analysis

```
In [ ]: combined_countries['Mortality_rate'] = combined_countries['Deaths']/co
    mbined_countries['Confirmed']
    combined_countries['Recovery_rate'] = combined_countries['Recovered']/
    combined_countries['Confirmed']
    combined_countries.head()
```

Out[]:

	Country	Confirmed	Deaths	Recovered	Mortality_rate	Recovery_rate
0	Afghanistan	3745342	114595	2139148	0.030597	0.571149
1	Albania	583139	17360	329905	0.029770	0.565740
2	Algeria	3088876	145505	2089806	0.047106	0.676559
3	Andorra	145841	7952	111054	0.054525	0.761473
4	Angola	125569	5483	45985	0.043665	0.366213

```
In [ ]: x, y = 10, 20
        top20_mortality = combined_countries.sort_values(by='Mortality_rate',
        ascending=False).reset_index().loc[:x,['Country','Mortality_rate']]
        top20_recovery = combined_countries.sort_values(by='Recovery_rate', as
        cending=False).reset_index().loc[:y,['Country','Recovery_rate']]
        otherMortality = sum(combined_countries.sort_values(by='Mortality_rat
        e', ascending=False).loc[x:,['Country','Mortality_rate']]['Mortality_r
        ate'])
        otherRecovery = sum(combined_countries.sort_values(by='Recovery_rate',
        ascending=False).loc[y:,['Country','Recovery_rate']]['Recovery_rate'])
        otherMortality = pd.DataFrame({
            'Country':['Others'],
            'Mortality_rate':[otherMortality]
        })
        otherRecovery = pd.DataFrame({
            'Country':['Others'],
            'Recovery_rate':[otherRecovery]
        })
        top20_mortality = pd.concat([top20_mortality,otherMortality])
        top20_recovery = pd.concat([top20_recovery,otherRecovery])
```

a. Top 10 countries with high COVID-19 mortality rate

```
In [ ]: plt.axis("equal")
    plt.pie(top20_mortality.Mortality_rate, labels=top20_mortality.Country
    , radius=3, autopct='%0.1f%%', shadow=True, startangle=45)
    plt.show()
```


b. Top 20 countries with high COVID-19 recovery rate

```
In [ ]: plt.axis("equal")
   plt.pie(top20_recovery.Recovery_rate, labels=top20_recovery.Country, r
   adius=3, autopct='%0.1f%%', shadow=True, startangle=45)
   plt.show()
```


PART-2: Building the Deep learning model to forecast the number of confirmed COVID-19 cases

With the situation at hand, we are in need of a ML/DL model which is capable of forecasting the expected number of confirmed cases in the near future.

Here, I've trained a deep learning model which uses LSTM for forcasting into the future.

The model will learn different trends in the provided timeseries data and will help us forecast the supposed number of cases.

1. Loading the data

The goal here is to build a deep learning model which uses LSTM to forecast the number of active cases in the world.

```
In []: # dfs[0] has the link to the confirmed.csv dataset, which is the datas
    et I'm going to train this model on
    confirmed = pd.read_csv(dfs[0])

# I've use the pandas melt to reshape the dataframe into a format that
    is easy to work with.
    confirmed = confirmed.melt(['State', 'Country'], confirmed.columns[4
    :], var_name='Dates', value_name='Confirmed')

"""

Also, I convert the date column from string object to datetime object
    since we have the need to perform timeseries
    forecasting.

"""

confirmed.Dates = pd.to_datetime(confirmed.Dates)
    confirmed.head()
```

Out[]:

	State	Country	Dates	Confirmed
0	NaN	Afghanistan	2020-01-22	0
1	NaN	Albania	2020-01-22	0
2	NaN	Algeria	2020-01-22	0
3	NaN	Andorra	2020-01-22	0
4	NaN	Angola	2020-01-22	0

```
In [ ]:
```

"""

I've then use the pandas groupby to group the confirmed cases by the d ate

Note: Since we are using the global data, when we use groupby we essentially sum all the confirmed cases for a given day ie if we have 100 cases in place-1 and 200 cases in place-2 on a given day, when we use groupby date the total number of cases for that date is taken ie 200+100=300.

n n n

days = confirmed.groupby('Dates').sum()
days.Confirmed.resample('d').sum().plot();

In []: days.head()

Out[]:

Confirmed

Dates	
2020-01-22	556
2020-01-23	655
2020-01-24	943
2020-01-25	1436
2020-01-26	2123

2. Preparing the data for the LSTM model

```
In [ ]: x1, y1 = generator[0]
x2, y2 = generator[1]
```

```
In [ ]: | # given data of last BS days it will predict the expected number of ca
        ses for the (BS+1)th day
        example 1: [[[0.0000000e+00]
          [3.54362670e-06]
          [1.38523589e-05]
          [3.14989040e-05]
          [5.60895256e-05]
          [8.50470407e-05]
          [1.79937489e-04]
          [2.00984484e-04]
          [2.75006908e-04]
          [3.35642298e-04]
          [4.11275462e-04]
          [5.81262161e-04]
          [6.92331592e-04]
          [8.35902164e-04]
          [9.69951477e-04]
          [1.08302538e-03]
          [1.21163398e-03]
          [1.30949534e-03]
          [1.41795180e-03]
          [1.51133889e-03]]]
        [[0.00158447]]
        example 2: [[[3.54362670e-06]
          [1.38523589e-05]
          [3.14989040e-05]
          [5.60895256e-05]
          [8.50470407e-05]
          [1.79937489e-04]
          [2.00984484e-04]
          [2.75006908e-04]
          [3.35642298e-04]
          [4.11275462e-04]
          [5.81262161e-04]
          [6.92331592e-04]
          [8.35902164e-04]
          [9.69951477e-04]
          [1.08302538e-03]
          [1.21163398e-03]
          [1.30949534e-03]
          [1.41795180e-03]
          [1.51133889e-03]
          [1.58446646e-03]]]
        [[0.00159943]]
In [ ]: valGenerator = TimeseriesGenerator(scaled_test, scaled_test, length=BS
        , batch_size=1)
```

3. Building and compiling the model					

```
In [ ]: # part 1: Building the model
      from tensorflow.keras.models import Sequential
       from tensorflow.keras.layers import Dense, LSTM
      n_features = 1
      model = None
      model = Sequential()
       # a. Input layer: An LSTM layer with 128 cells and rectified linear un
       it as activation.
      model.add(LSTM(256, activation='relu', input_shape=(BS, n_features)))
       # the input shape is 20x1
       # b. Final layer: A dense layer with just one neuron.
      model.add(Dense(1))
       # -----
       _____
       # part 2: compiling the model
      from tensorflow.keras.optimizers import Adam
      model.compile(optimizer=Adam(), loss='mse')
      print(model.summary())
       # -----
       -----
       # part 3: training the model
      EPOCHS = 25
       # With early stopping
      from tensorflow.keras.callbacks import EarlyStopping
      earlyStop = EarlyStopping(monitor='val_loss', patience=4)
      H = model.fit_generator(generator, epochs=EPOCHS, validation_data=valG
       enerator, callbacks=[earlyStop])
```

Model: "sequential_6"

Layer (type)	Output Sha 	ape 	Param #
lstm_6 (LSTM)	(None, 256	5)	264192
dense_6 (Dense)	(None, 1)		257
Total params: 264,449 Trainable params: 264,449 Non-trainable params: 0			
None Epoch 1/25 191/191 [===================================		=] - 10s 51ms/s	tep - loss: 0.007
191/191 [===================================	=======	=] - 10s 50ms/s	tep - loss: 0.002
191/191 [===================================	=======	=] - 9s 48ms/st	ep - loss: 0.0051
191/191 [===================================	=======	=] - 9s 48ms/st	ep - loss: 3.4809
191/191 [===================================	=======	=] - 9s 48ms/st	ep - loss: 3.1669
191/191 [===================================	=======	=] - 9s 48ms/st	ep - loss: 2.9924
191/191 [===================================	=======	=] - 9s 49ms/st	ep - loss: 4.6277
191/191 [===================================		=] - 10s 51ms/s	tep - loss: 2.460
<pre>losses = pd.DataFrame(H.his losses.plot();</pre>	tory)		

In []:

From the above diagram we can clearly see that the training and validation **loss** is **significantly low** (lower the loss, the better).

Now let us try evaluating our trained model for forecasting the number of active cases for the next 25 days.

4. Evaluating the model

To predict the values for the last 25 days we have to get the confirmed cases for the previous 20 days, which is actually present in the train set.

We bassically grab the data of the last 20 days of the train set inorder to predict/forecast the result for the first day in the test set.

Then we append this result to a list and use our predicted value along with the last 19 values in the train set to forecast the result for the second day.

By this way we can forecast for all the other days in the test set.

Since we're using the previous predicted value inorder to predict the next value, there will be some noise in the forecasted value. For forecasting the values for few days will not give us a bad result but if we had to forecast for the next 3 or 4 months, the result will be too noisy.

```
In [ ]: # last 20 rows from scaled_train
         first_eval_batch = scaled_train[-BS:]
         print(first_eval_batch)
         [[0.79313202]
         [0.80421033]
         [0.81411545]
          [0.82297194]
          [0.83429314]
          [0.8458919]
          [0.85823514]
          [0.87037238]
          [0.88167992]
          [0.89138677]
          [0.90130262]
          [0.91209941]
          [0.92402855]
         [0.93610895]
          [0.9493043]
          [0.95990888]
          [0.96902201]
          [0.97776321]
          [0.98854696]
          [1.
                     ]]
```

```
In [ ]: | # array to store the forcasted results
        test_predictions = []
        current_batch = first_eval_batch.reshape((1, BS, n_features))
        count=1
        for i in range(len(test)):
            current_pred = model.predict(current_batch)[0]
            test_predictions.append(current_pred)
              print(f'Result {count}:')
              print(f'current batch:\n{current_batch},\n prediction: {current_
        pred}')
            current_batch = np.append(current_batch[:,1:,:],[[current_pred]],a
        xis=1)
            count += 1
              print('\n\n')
In [ ]:
        true_predictions = scaler.inverse_transform(test_predictions)
        print(true_predictions)
        [[28305699.62691879]
         [28607258.00246334]
         [28908496.6589222 ]
         [29209045.92110252]
         [29508779.23353291]
         [29807303.60817051]
         [30104465.84628677]
         [30400059.46263885]
         [30694037.83152676]
         [30986537.499643331
         [31277708.33530998]
         [31567427.11346245]
         [31855617.23473644]
         [32141932.33678913]
         [32426475.66224194]
         [32709170.61173058]
         [32990253.64416218]
         [33269847.98460102]
         [33547857.05123997]
         [33824227.55756474]
         [34098902.8866539]
         [34371703.19652176]
         [34642705.08653259]
         [34911951.85197926]
         [35179486.7881546 ]]
```

```
In [ ]: test['Predictions'] = true_predictions.astype(int)
test
```

C:\Users\Python\anaconda3\lib\site-packages\ipykernel_launcher.py:1: S
ettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy """Entry point for launching an IPython kernel.

Out[]:

	Commined	Fredictions
Dates		
2020-08-20	28249176	28305699
2020-08-21	28568520	28607258
2020-08-22	28878633	28908496
2020-08-23	29119151	29209045
2020-08-24	29383390	29508779
2020-08-25	29663595	29807303
2020-08-26	29995565	30104465
2020-08-27	30320729	30400059
2020-08-28	30648389	30694037
2020-08-29	30957550	30986537
2020-08-30	31219140	31277708
2020-08-31	31515354	31567427
2020-09-01	31823482	31855617
2020-09-02	32144920	32141932
2020-09-03	32454872	32426475
2020-09-04	32818489	32709170
2020-09-05	33126517	32990253
2020-09-06	33380210	33269847
2020-09-07	33638382	33547857
2020-09-08	33897751	33824227
2020-09-09	34222892	34098902
2020-09-10	34557534	34371703
2020-09-11	34924974	34642705
2020-09-12	35244068	34911951
2020-09-13	35422326	35179486

Confirmed Predictions

```
In [ ]: test.plot(figsize=(20,8));
   plt.title('Real vs Predicted results', fontsize=26)
   plt.xlabel('Dates', fontsize=18)
   plt.ylabel('Number of confirmed cases', fontsize=18)
   plt.legend(loc=2, prop={'size': 26})
```

Out[]: <matplotlib.legend.Legend at 0x237500aac88>


```
In [ ]: from sklearn.metrics import r2_score, mean_squared_error
    mse = mean_squared_error(test.Confirmed, test.Predictions)
# length = len(test)
    rmse = np.sqrt(mse)

    r2s = r2_score(test.Confirmed, test.Predictions)

    print(f'RMSE = {rmse}; r2 score = {r2s}')

RMSE = 131797.31945756712; r2 score = 0.9963465838706869
```

At the first glance we might think the model's rmse is bad, but when we look the **coefficient of determination** (ie r2) we see that it has an **99.6% good fit**. The results are pretty good.

<u>**Note**</u>: We use the r^2 value along with the RMSE because it has a fixed range from 0 to 1.

A value of 0 indicates that the response variable cannot be explained by the predictor variable at all. A value of 1 indicates that the response variable can be perfectly explained without error by the predictor variable.

Basically if it is closer to 1, our model is good.

5. Forecasting the number of confirmed cases for the next N days

```
In [ ]: from pandas.tseries.offsets import DateOffset
        ndays=60
        last_date = days.index[-1]
        future_dates = [last_date+DateOffset(days=x) for x in range(1, ndays+1
         )]
In [ ]: days_copy = days.copy()
        days_copy.tail()
Out[]:
                   Confirmed
             Dates
         2020-09-09 34222892
         2020-09-10 34557534
         2020-09-11 34924974
         2020-09-12 35244068
         2020-09-13 35422326
In [ ]: # get the scaled data for the last BS days in our dataset
        last_index = len(days)
        last_n_days = scaler.transform(days_copy.iloc[-BS:last_index,:])
        last_n_days
Out[ ]: array([[1.06176502],
                [1.07364762],
                [1.08528661],
                [1.09701494],
                [1.10808112],
                [1.11744452],
                [1.12804727],
                [1.13907647],
                [1.15058209],
                [1.16167657],
                [1.17469196],
                [1.18571757],
                [1.19479831],
                [1.20403938],
                [1.21332328],
                [1.22496145],
                [1.2369397],
                [1.25009192],
                [1.26151364],
                [1.26789424]])
```

```
In [ ]: # array to store the forcasted results for the next ndays
        test_predictions_ndays = []
        current_batch = last_n_days.reshape((1, BS, n_features))
        count=1
        for i in range(ndays):
             current_pred = model.predict(current_batch)[0]
             test_predictions_ndays.append(current_pred)
             current_batch = np.append(current_batch[:,1:,:],[[current_pred]],a
        xis=1)
             count += 1
In [ ]: true_predictions_ndays = scaler.inverse_transform(test_predictions_nda
        ys).astype(int)
         future_dates_df = pd.DataFrame(index=future_dates[:],columns=days.colu
        mns, data=true_predictions_ndays)
         future_df = pd.concat([days_copy,future_dates_df])
In [ ]: future_df.head()
Out[]:
                   Confirmed
         2020-01-22
                        556
         2020-01-23
                        655
         2020-01-24
                       943
         2020-01-25
                       1436
         2020-01-26
                       2123
        future_df.tail()
In [ ]:
Out[]:
                   Confirmed
         2020-11-08 47493597
         2020-11-09
                   47665822
         2020-11-10 47836692
         2020-11-11 48006216
         2020-11-12 48174409
```

```
In [ ]: future_df.plot(figsize=(20,8));
    plt.axvline("2020-09-14", color="red", linestyle="--");

plt.title(f'Predicted results for the next {ndays} days(starting from Sep 14, 2020)', fontsize=26);
    plt.xlabel('Dates', fontsize=18);
    plt.ylabel('Number of confirmed cases', fontsize=18);
    plt.legend(loc=2, prop={'size': 0});
```


From the above graph, we can tell that the values are most probably fairly accurate. Since we dont have the actual values we can never be too sure but it more or less looks like a good forecast.

We then save our models architecture and weights.

CB.EN.U4CSE17337

India Covid Data

Date	datetime64[ns]
casesdaily	int64
cases	int64
recoverydaily	int64
recovery	int64
deathdaily	int64
death	int64
ald and all the ad-	

dtype: object

Out[]:

	Date	casesdaily	cases	recoverydaily	recovery	deathdaily	death
185	2020-08-02	52672	1804857	40355	1187261	760	38180
186	2020-08-03	50488	1855345	43070	1230331	806	38986
187	2020-08-04	51282	1906627	51220	1281551	849	39835
188	2020-08-05	56626	1963253	45583	1327134	919	40754
189	2020-08-06	62170	2025423	50141	1377275	899	41653

In []: complete = pd.read_csv('https://raw.githubusercontent.com/Ashwin1999/C OVID-19-Data-Mining/Arnab/COVID-DataTimeSeries(India)/complete.csv') complete['Date']= pd.to_datetime(complete['Date']) complete.rename(columns={'Name of State / UT':'State'},inplace=True) complete['Death'] = complete['Death'].str.extract('(\d+)', expand=False) complete['Death'] = complete['Death'].astype(int) print(complete.dtypes) complete.head()

Date	datetime64[ns]
State	object
Latitude	float64
Longitude	float64
Total Confirmed cases	float64
Death	int64
Cured/Discharged/Migrated	float64
New cases	int64
New deaths	int64
New recovered	int64
dtype: object	

Out[]:

	Date	State	Latitude	Longitude	Total Confirmed cases	Death	Cured/Discharged/Migrated	New cases	New deaths
0	2020- 01-30	Kerala	10.8505	76.2711	1.0	0	0.0	0	0
1	2020- 01-31	Kerala	10.8505	76.2711	1.0	0	0.0	0	0
2	2020- 02-01	Kerala	10.8505	76.2711	2.0	0	0.0	1	0
3	2020- 02-02	Kerala	10.8505	76.2711	3.0	0	0.0	1	0
4	2020- 02-03	Kerala	10.8505	76.2711	3.0	0	0.0	0	0

```
In []: plt.figure(figsize=(20,15))
    statewisedata=complete.groupby('State').sum()
    statewisedata.reset_index(inplace=True)
    statewisedata.sort_values(by='Total Confirmed cases',inplace=True,asce
    nding=False)
    sns.barplot(y='Total Confirmed cases',x='State',data=statewisedata.ilo
    c[:10])
    # # statewisedata.plot.bar(rot=0,figsize=(20,10))
# # statewisedata.plot.bar(rot=0,figsize=(20,10))
# plt.xticks(rotation=70)
# statewisedata.head()
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f95abdcef28>


```
In [ ]: plt.figure(figsize=(20,15))
    statewisedata=complete.groupby('State').sum()
    statewisedata.reset_index(inplace=True)
    statewisedata.sort_values(by='Death',inplace=True,ascending=False)
    sns.barplot(y='Death',x='State',data=statewisedata.iloc[:10])
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f95abd18c88>


```
In [ ]: fig,ax=plt.subplots(3,2,figsize=(20,10))
    fig.tight_layout()
    ax[0,0].plot(indiadaily['Date'],indiadaily['cases'])
    ax[0,1].plot(indiadaily['Date'],indiadaily['casesdaily'])
    ax[1,0].plot(indiadaily['Date'],indiadaily['recovery'])
    ax[1,1].plot(indiadaily['Date'],indiadaily['recoverydaily'])
    ax[2,0].plot(indiadaily['Date'],indiadaily['death'])
    ax[2,1].plot(indiadaily['Date'],indiadaily['Total Recovered'])
# plt.plot(indiadaily['Date'],indiadaily['Total Deceased'])
```

Out[]: [<matplotlib.lines.Line2D at 0x7f95abeb0668>]


```
In []: indiatesting=pd.read_csv('https://raw.githubusercontent.com/Ashwin199
9/COVID-19-Data-Mining/Arnab/COVID-DataTimeSeries(India)/tests_day_wis
e.csv')
indiatesting=indiatesting[['Tested As Of','Total Samples Tested']]
indiatesting['Tested As Of']=indiatesting['Tested As Of'].str.replace(
'/','-')
indiatesting.rename(columns={'Tested As Of':'Date','Total Samples Test
ed':'tests'},inplace=True)
indiatesting.dropna(how='any',axis=0,inplace=True)
indiatesting['Date']= indiatesting['Date'].astype(str).apply(lambda x:
datetime.datetime.strptime(x,'%d-%m-%Y'))
indiatesting['Date']= pd.to_datetime(indiatesting['Date'])
indiatesting.head()
```

Out[]:

	Date	lesis
0	2020-03-13	6500.0
1	2020-03-18	13125.0
2	2020-03-19	13316.0
3	2020-03-19	14175.0
4	2020-03-20	14376.0

Data

toete

```
In [ ]: indiacovidfinal = indiadaily.merge(indiatesting,how='inner',on='Date')
    indiacovidfinal = indiacovidfinal[['Date','casesdaily', 'recoverydail
    y', 'recovery', 'deathdaily','death', 'tests', 'cases']]
    indiacovidfinal.tail()
```

Out[]:

	Date	casesdaily	recoverydaily	recovery	deathdaily	death	tests	cases
141	2020-08-01	55117	51368	1146906	854	37420	19821831.0	1752185
142	2020-08-02	52672	40355	1187261	760	38180	20202858.0	1804857
143	2020-08-03	50488	43070	1230331	806	38986	20864750.0	1855345
144	2020-08-04	51282	51220	1281551	849	39835	21484402.0	1906627
145	2020-08-05	56626	45583	1327134	919	40754	22149351.0	1963253

```
In [ ]: indiacovidfinal.columns
```

```
In [ ]: sns.lineplot(x='Date',y='tests',data=indiacovidfinal)
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f95b61f1e80>


```
In [ ]: indiacovidfinal=indiacovidfinal.groupby('Date').sum()
    indiacovidfinal.sort_index(inplace= True)
    indiacovidfinal.head()
```

Out[]:

	casesdaily	recoverydaily	recovery	deathdaily	death	tests	cases
Date							
2020-03-13	10	6	10	0	1	6500.0	91
2020-03-18	25	0	15	0	3	13125.0	171
2020-03-19	54	10	40	2	8	27491.0	396
2020-03-20	116	6	46	0	8	29780.0	512
2020-03-21	156	0	46	0	8	32612.0	668

```
In [ ]: toplot=indiacovidfinal['cases']
    result = seasonal_decompose(toplot, model='additive',freq=52)
    fig, (ax1,ax2,ax3) = plt.subplots(3,1, figsize=(12,6))
    result.trend.plot(ax=ax1)
    result.resid.plot(ax=ax2)
    result.seasonal.plot(ax=ax3)
    plt.show()
```



```
In [ ]: toplot=indiacovidfinal['recovery']
    result = seasonal_decompose(toplot, model='additive',freq=52)
    fig, (ax1,ax2,ax3) = plt.subplots(3,1, figsize=(12,6))
    result.trend.plot(ax=ax1)
    result.resid.plot(ax=ax2)
    result.seasonal.plot(ax=ax3)
    ax1.set_ylabel("Trend")
    ax2.set_ylabel("Residual")
    ax3.set_ylabel("Seasonal")
    plt.show()
```



```
In [ ]: toplot=indiacovidfinal['death']
    result = seasonal_decompose(toplot, model='additive',freq=52)
    fig, (ax1,ax2,ax3) = plt.subplots(3,1, figsize=(12,6))
    result.trend.plot(ax=ax1)
    result.resid.plot(ax=ax2)
    result.seasonal.plot(ax=ax3)
    ax1.set_ylabel("Trend")
    ax2.set_ylabel("Residual")
    ax3.set_ylabel("Seasonal")
    plt.show()
```


Stationarity Testing

```
In [ ]: result = adfuller(indiacovidfinal['cases'])
            print('ADF Statistic: %f' % result[0])
            print('p-value: %f' % result[1])
             for key, value in result[4].items():
                     print('\t%s: %.3f' % (key, value))
            ADF Statistic: 3.495026
            p-value: 1.000000
                     1%: -3.483
                     5%: -2.885
                     10%: -2.579
    In [ ]: | result = adfuller(indiacovidfinal['death'])
            print('ADF Statistic: %f' % result[0])
            print('p-value: %f' % result[1])
             for key, value in result[4].items():
                     print('\t%s: %.3f' % (key, value))
            ADF Statistic: 18.247325
            p-value: 1.000000
                     1%: -3.479
                     5%: -2.883
                     10%: -2.578
LSTM
    In [ ]: | scaler = MinMaxScaler(feature_range=(0, 1))
            dataset = scaler.fit_transform(indiacovidfinal)
    In [ ]: | # split into train and test sets
             train_size = int(len(dataset) * 0.80)
             test_size = len(dataset) - train_size
             train, test = dataset[0:train_size,:], dataset[train_size:len(dataset
             ),:]
            print(len(train), len(test))
            print(train.shape)
```

```
In [ ]: trainX, trainY = train[:,0:6],train[:,6]
testX, testY = test[:,0:6],test[:,6]
```

print(test.shape)

110 28 (110, 7) (28, 7)

```
In [ ]: # trainY = np.insert(trainY, 0, 0)
    # define generator
    n_input = 1
    generator = TimeseriesGenerator(trainX, trainY, length=n_input, batch_size=1)
    generator_test = TimeseriesGenerator(testX, testY, length=n_input, bat ch_size=1)
```

```
In [ ]: n_features = 6
# trainX = trainX.reshape((trainX.shape[0], trainX.shape[1], 1))
```

```
In [ ]: num_epochs=200
    lstm_model = Sequential()
    lstm_model.add(LSTM(58, activation='relu', input_shape=(n_input, n_features)))
    lstm_model.add(Dense(1))
    lstm_model.compile(optimizer='adam', loss='mse', metrics='mse')
    lstm_model.summary()
```

Model: "sequential_1"

Layer (type)	Output Shape	Param #
lstm_1 (LSTM)	(None, 58)	15080
dense_1 (Dense)	(None, 1)	59

Total params: 15,139 Trainable params: 15,139 Non-trainable params: 0

```
Epoch 1/200
- mse: 0.0089 - val_loss: 0.1347 - val_mse: 0.1347
Epoch 2/200
- mse: 0.0012 - val_loss: 0.0262 - val_mse: 0.0262
Epoch 3/200
-04 - mse: 1.2763e-04 - val_loss: 0.0073 - val_mse: 0.0073
Epoch 4/200
109/109 [============ ] - Os 3ms/step - loss: 7.9202e
-05 - mse: 7.9202e-05 - val_loss: 0.0078 - val_mse: 0.0078
Epoch 5/200
-05 - mse: 6.5295e-05 - val_loss: 0.0062 - val_mse: 0.0062
Epoch 6/200
109/109 [============= ] - Os 2ms/step - loss: 3.7721e
-05 - mse: 3.7721e-05 - val_loss: 0.0041 - val_mse: 0.0041
Epoch 7/200
-05 - mse: 2.5681e-05 - val_loss: 0.0036 - val_mse: 0.0036
Epoch 8/200
-05 - mse: 2.2859e-05 - val_loss: 0.0033 - val_mse: 0.0033
Epoch 9/200
109/109 [============= ] - Os 3ms/step - loss: 1.7094e
-05 - mse: 1.7094e-05 - val_loss: 0.0030 - val_mse: 0.0030
Epoch 10/200
109/109 [============ ] - Os 3ms/step - loss: 1.5003e
-05 - mse: 1.5003e-05 - val loss: 0.0031 - val mse: 0.0031
Epoch 11/200
109/109 [============== ] - Os 3ms/step - loss: 1.7959e
-05 - mse: 1.7959e-05 - val_loss: 0.0042 - val_mse: 0.0042
Epoch 12/200
109/109 [============= ] - Os 2ms/step - loss: 1.4118e
-05 - mse: 1.4118e-05 - val_loss: 0.0019 - val_mse: 0.0019
Epoch 13/200
109/109 [============= ] - Os 3ms/step - loss: 1.5426e
-05 - mse: 1.5426e-05 - val_loss: 0.0025 - val_mse: 0.0025
Epoch 14/200
109/109 [============= ] - Os 2ms/step - loss: 1.3942e
-05 - mse: 1.3942e-05 - val loss: 0.0030 - val mse: 0.0030
Epoch 15/200
109/109 [============== ] - Os 3ms/step - loss: 1.5358e
-05 - mse: 1.5358e-05 - val_loss: 0.0025 - val_mse: 0.0025
Epoch 16/200
-05 - mse: 1.4720e-05 - val_loss: 0.0027 - val_mse: 0.0027
Epoch 17/200
109/109 [============== ] - Os 3ms/step - loss: 1.5688e
-05 - mse: 1.5688e-05 - val_loss: 0.0030 - val_mse: 0.0030
Epoch 18/200
-05 - mse: 1.5999e-05 - val_loss: 0.0034 - val_mse: 0.0034
Epoch 19/200
109/109 [============= ] - Os 2ms/step - loss: 1.1944e
-05 - mse: 1.1944e-05 - val_loss: 0.0030 - val_mse: 0.0030
```

```
Epoch 20/200
-05 - mse: 1.2649e-05 - val_loss: 0.0018 - val_mse: 0.0018
Epoch 21/200
109/109 [============= ] - Os 3ms/step - loss: 1.9627e
-05 - mse: 1.9627e-05 - val_loss: 0.0028 - val_mse: 0.0028
Epoch 22/200
109/109 [============= ] - Os 3ms/step - loss: 1.0693e
-05 - mse: 1.0693e-05 - val_loss: 0.0022 - val_mse: 0.0022
Epoch 23/200
-05 - mse: 1.4887e-05 - val_loss: 0.0033 - val_mse: 0.0033
Epoch 24/200
-05 - mse: 1.3550e-05 - val_loss: 0.0029 - val_mse: 0.0029
Epoch 25/200
109/109 [============= ] - Os 3ms/step - loss: 1.3508e
-05 - mse: 1.3508e-05 - val_loss: 0.0033 - val_mse: 0.0033
Epoch 26/200
-05 - mse: 1.2451e-05 - val_loss: 0.0025 - val_mse: 0.0025
Epoch 27/200
109/109 [============ ] - Os 3ms/step - loss: 1.1521e
-05 - mse: 1.1521e-05 - val_loss: 0.0020 - val_mse: 0.0020
Epoch 28/200
109/109 [============= ] - Os 2ms/step - loss: 1.4624e
-05 - mse: 1.4624e-05 - val_loss: 0.0014 - val_mse: 0.0014
Epoch 29/200
109/109 [============= ] - Os 2ms/step - loss: 1.3006e
-05 - mse: 1.3006e-05 - val loss: 0.0027 - val mse: 0.0027
Epoch 30/200
109/109 [============= ] - Os 2ms/step - loss: 2.8967e
-05 - mse: 2.8967e-05 - val_loss: 0.0022 - val_mse: 0.0022
Epoch 31/200
109/109 [============= ] - Os 3ms/step - loss: 2.2176e
-05 - mse: 2.2176e-05 - val_loss: 0.0026 - val_mse: 0.0026
Epoch 32/200
109/109 [============== ] - Os 3ms/step - loss: 2.7752e
-05 - mse: 2.7752e-05 - val_loss: 0.0059 - val_mse: 0.0059
Epoch 33/200
109/109 [============= ] - Os 2ms/step - loss: 2.3192e
-05 - mse: 2.3192e-05 - val loss: 0.0025 - val mse: 0.0025
Epoch 34/200
109/109 [============== ] - Os 2ms/step - loss: 1.1733e
-05 - mse: 1.1733e-05 - val_loss: 0.0023 - val_mse: 0.0023
Epoch 35/200
-06 - mse: 9.6113e-06 - val_loss: 0.0023 - val_mse: 0.0023
Epoch 36/200
109/109 [============== ] - Os 2ms/step - loss: 1.2512e
-05 - mse: 1.2512e-05 - val_loss: 0.0024 - val_mse: 0.0024
Epoch 37/200
109/109 [============== ] - Os 2ms/step - loss: 1.6163e
-05 - mse: 1.6163e-05 - val_loss: 0.0026 - val_mse: 0.0026
Epoch 38/200
109/109 [============= ] - Os 2ms/step - loss: 1.2634e
-05 - mse: 1.2634e-05 - val_loss: 0.0021 - val_mse: 0.0021
```

```
Epoch 39/200
-06 - mse: 9.9263e-06 - val_loss: 0.0017 - val_mse: 0.0017
Epoch 40/200
-05 - mse: 1.1249e-05 - val_loss: 0.0021 - val_mse: 0.0021
Epoch 41/200
109/109 [============= ] - Os 2ms/step - loss: 2.2480e
-05 - mse: 2.2480e-05 - val_loss: 0.0023 - val_mse: 0.0023
Epoch 42/200
-05 - mse: 1.8776e-05 - val_loss: 0.0017 - val_mse: 0.0017
Epoch 43/200
-06 - mse: 9.8605e-06 - val_loss: 0.0018 - val_mse: 0.0018
Epoch 44/200
109/109 [============= ] - Os 2ms/step - loss: 8.2857e
-06 - mse: 8.2857e-06 - val_loss: 0.0027 - val_mse: 0.0027
Epoch 45/200
-05 - mse: 1.2072e-05 - val_loss: 0.0021 - val_mse: 0.0021
Epoch 46/200
109/109 [============= ] - Os 2ms/step - loss: 1.4138e
-05 - mse: 1.4138e-05 - val_loss: 9.4150e-04 - val_mse: 9.4150e-04
Epoch 47/200
109/109 [============== ] - Os 2ms/step - loss: 1.3232e
-05 - mse: 1.3232e-05 - val_loss: 0.0019 - val_mse: 0.0019
Epoch 48/200
109/109 [============= ] - Os 2ms/step - loss: 1.2061e
-05 - mse: 1.2061e-05 - val loss: 0.0022 - val mse: 0.0022
Epoch 49/200
109/109 [============= ] - Os 2ms/step - loss: 1.7485e
-05 - mse: 1.7485e-05 - val_loss: 0.0011 - val_mse: 0.0011
Epoch 50/200
109/109 [============= ] - Os 2ms/step - loss: 1.4452e
-05 - mse: 1.4452e-05 - val_loss: 0.0016 - val_mse: 0.0016
Epoch 51/200
109/109 [============== ] - Os 2ms/step - loss: 8.2511e
-06 - mse: 8.2511e-06 - val_loss: 0.0016 - val_mse: 0.0016
Epoch 52/200
109/109 [============= ] - Os 2ms/step - loss: 1.2473e
-05 - mse: 1.2473e-05 - val loss: 0.0011 - val mse: 0.0011
Epoch 53/200
-06 - mse: 6.0013e-06 - val loss: 0.0019 - val mse: 0.0019
Epoch 54/200
-05 - mse: 1.0097e-05 - val_loss: 0.0028 - val_mse: 0.0028
Epoch 55/200
109/109 [============== ] - Os 2ms/step - loss: 1.2259e
-05 - mse: 1.2259e-05 - val_loss: 0.0010 - val_mse: 0.0010
Epoch 56/200
109/109 [============= ] - Os 2ms/step - loss: 6.5523e
-06 - mse: 6.5523e-06 - val_loss: 0.0011 - val_mse: 0.0011
Epoch 57/200
109/109 [============= ] - Os 2ms/step - loss: 6.2658e
-06 - mse: 6.2658e-06 - val_loss: 8.1490e-04 - val_mse: 8.1490e-04
```

```
Epoch 58/200
-05 - mse: 1.8836e-05 - val_loss: 7.0468e-04 - val_mse: 7.0468e-04
Epoch 59/200
-05 - mse: 3.1245e-05 - val_loss: 0.0026 - val_mse: 0.0026
Epoch 60/200
109/109 [============= ] - Os 2ms/step - loss: 1.9147e
-05 - mse: 1.9147e-05 - val_loss: 1.7422e-04 - val_mse: 1.7422e-04
Epoch 61/200
109/109 [============= ] - Os 2ms/step - loss: 1.5888e
-05 - mse: 1.5888e-05 - val_loss: 0.0022 - val_mse: 0.0022
Epoch 62/200
-05 - mse: 1.5801e-05 - val_loss: 0.0013 - val_mse: 0.0013
Epoch 63/200
109/109 [============= ] - Os 2ms/step - loss: 6.4083e
-06 - mse: 6.4083e-06 - val_loss: 5.2192e-04 - val_mse: 5.2192e-04
Epoch 64/200
-05 - mse: 1.3878e-05 - val_loss: 0.0012 - val_mse: 0.0012
Epoch 65/200
109/109 [============= ] - Os 2ms/step - loss: 5.6791e
-06 - mse: 5.6791e-06 - val_loss: 0.0012 - val_mse: 0.0012
Epoch 66/200
109/109 [============== ] - Os 2ms/step - loss: 7.8095e
-06 - mse: 7.8095e-06 - val_loss: 0.0010 - val_mse: 0.0010
Epoch 67/200
109/109 [============= ] - Os 2ms/step - loss: 5.5915e
-06 - mse: 5.5915e-06 - val loss: 0.0021 - val mse: 0.0021
Epoch 68/200
109/109 [============= ] - Os 2ms/step - loss: 5.1312e
-06 - mse: 5.1312e-06 - val_loss: 0.0014 - val_mse: 0.0014
Epoch 69/200
109/109 [============= ] - Os 2ms/step - loss: 1.3389e
-05 - mse: 1.3389e-05 - val_loss: 1.5407e-04 - val_mse: 1.5407e-04
Epoch 70/200
109/109 [============== ] - Os 2ms/step - loss: 2.8109e
-05 - mse: 2.8109e-05 - val_loss: 0.0016 - val_mse: 0.0016
Epoch 71/200
109/109 [============== ] - Os 2ms/step - loss: 7.6130e
-06 - mse: 7.6130e-06 - val loss: 0.0010 - val mse: 0.0010
Epoch 72/200
-05 - mse: 1.2991e-05 - val loss: 0.0014 - val mse: 0.0014
Epoch 73/200
-05 - mse: 2.6311e-05 - val_loss: 9.0710e-04 - val_mse: 9.0710e-04
Epoch 74/200
109/109 [============== ] - Os 2ms/step - loss: 7.4828e
-06 - mse: 7.4828e-06 - val_loss: 8.3245e-04 - val_mse: 8.3245e-04
Epoch 75/200
109/109 [============= ] - Os 2ms/step - loss: 1.0093e
-05 - mse: 1.0093e-05 - val_loss: 7.6227e-04 - val_mse: 7.6227e-04
Epoch 76/200
109/109 [============= ] - Os 2ms/step - loss: 5.0660e
-06 - mse: 5.0660e-06 - val_loss: 1.9095e-04 - val_mse: 1.9095e-04
```

```
Epoch 77/200
109/109 [============= ] - Os 2ms/step - loss: 2.8608e
-05 - mse: 2.8608e-05 - val_loss: 0.0012 - val_mse: 0.0012
Epoch 78/200
109/109 [============= ] - Os 2ms/step - loss: 9.6321e
-06 - mse: 9.6321e-06 - val_loss: 8.8806e-04 - val_mse: 8.8806e-04
Epoch 79/200
109/109 [============== ] - Os 2ms/step - loss: 6.1196e
-06 - mse: 6.1196e-06 - val_loss: 5.1513e-04 - val_mse: 5.1513e-04
Epoch 80/200
109/109 [============== ] - Os 2ms/step - loss: 3.8470e
-06 - mse: 3.8470e-06 - val_loss: 7.0257e-04 - val_mse: 7.0257e-04
Epoch 81/200
-06 - mse: 4.8076e-06 - val_loss: 0.0010 - val_mse: 0.0010
Epoch 82/200
-06 - mse: 5.1488e-06 - val_loss: 9.7043e-04 - val_mse: 9.7043e-04
Epoch 83/200
-06 - mse: 3.5571e-06 - val_loss: 0.0012 - val_mse: 0.0012
Epoch 84/200
109/109 [============= ] - Os 2ms/step - loss: 3.5369e
-06 - mse: 3.5369e-06 - val_loss: 0.0013 - val_mse: 0.0013
Epoch 85/200
-06 - mse: 4.8388e-06 - val_loss: 0.0010 - val_mse: 0.0010
Epoch 86/200
109/109 [============= ] - Os 2ms/step - loss: 4.8716e
-06 - mse: 4.8716e-06 - val loss: 0.0011 - val mse: 0.0011
Epoch 87/200
109/109 [============= ] - Os 2ms/step - loss: 9.1991e
-06 - mse: 9.1991e-06 - val_loss: 9.6578e-04 - val_mse: 9.6578e-04
Epoch 88/200
109/109 [============= ] - Os 2ms/step - loss: 6.7693e
-06 - mse: 6.7693e-06 - val_loss: 7.6881e-04 - val_mse: 7.6881e-04
Epoch 89/200
109/109 [============== ] - Os 2ms/step - loss: 7.0961e
-06 - mse: 7.0961e-06 - val_loss: 3.0893e-04 - val_mse: 3.0893e-04
Epoch 90/200
109/109 [============== ] - Os 2ms/step - loss: 1.0928e
-05 - mse: 1.0928e-05 - val_loss: 2.5107e-04 - val_mse: 2.5107e-04
Epoch 91/200
109/109 [============== ] - Os 2ms/step - loss: 1.0418e
-05 - mse: 1.0418e-05 - val_loss: 6.0148e-04 - val_mse: 6.0148e-04
Epoch 92/200
109/109 [============= ] - Os 2ms/step - loss: 6.1147e
-06 - mse: 6.1147e-06 - val_loss: 7.4256e-04 - val_mse: 7.4256e-04
Epoch 93/200
109/109 [=============== ] - Os 2ms/step - loss: 3.5072e
-06 - mse: 3.5072e-06 - val_loss: 9.7091e-04 - val_mse: 9.7091e-04
Epoch 94/200
109/109 [============= ] - Os 2ms/step - loss: 1.4731e
-05 - mse: 1.4731e-05 - val_loss: 0.0014 - val_mse: 0.0014
Epoch 95/200
109/109 [============= ] - Os 2ms/step - loss: 3.1506e
-05 - mse: 3.1506e-05 - val_loss: 8.2097e-04 - val_mse: 8.2097e-04
```

```
Epoch 96/200
-05 - mse: 5.3294e-05 - val_loss: 1.8721e-04 - val_mse: 1.8721e-04
Epoch 97/200
-05 - mse: 1.6470e-05 - val_loss: 5.1566e-04 - val_mse: 5.1566e-04
Epoch 98/200
109/109 [============= ] - Os 2ms/step - loss: 3.4449e
-06 - mse: 3.4449e-06 - val_loss: 2.7398e-04 - val_mse: 2.7398e-04
Epoch 99/200
109/109 [============= ] - Os 2ms/step - loss: 2.9835e
-06 - mse: 2.9835e-06 - val_loss: 3.0047e-04 - val_mse: 3.0047e-04
Epoch 100/200
-06 - mse: 3.8958e-06 - val_loss: 2.4105e-04 - val_mse: 2.4105e-04
Epoch 101/200
-06 - mse: 2.5389e-06 - val_loss: 5.2184e-04 - val_mse: 5.2184e-04
Epoch 102/200
-06 - mse: 2.3335e-06 - val_loss: 5.0156e-04 - val_mse: 5.0156e-04
Epoch 103/200
109/109 [============= ] - Os 2ms/step - loss: 4.0986e
-06 - mse: 4.0986e-06 - val_loss: 6.1869e-04 - val_mse: 6.1869e-04
Epoch 104/200
109/109 [============== ] - Os 2ms/step - loss: 6.2334e
-06 - mse: 6.2334e-06 - val_loss: 3.8304e-04 - val_mse: 3.8304e-04
Epoch 105/200
109/109 [============= ] - Os 2ms/step - loss: 3.5254e
-06 - mse: 3.5254e-06 - val loss: 5.4136e-04 - val mse: 5.4136e-04
Epoch 106/200
109/109 [============== ] - Os 2ms/step - loss: 4.7994e
-06 - mse: 4.7994e-06 - val_loss: 1.9356e-04 - val_mse: 1.9356e-04
Epoch 107/200
109/109 [============= ] - Os 2ms/step - loss: 3.7571e
-06 - mse: 3.7571e-06 - val_loss: 3.2822e-04 - val_mse: 3.2822e-04
Epoch 108/200
-05 - mse: 1.1835e-05 - val loss: 4.0793e-04 - val mse: 4.0793e-04
Epoch 109/200
-06 - mse: 3.9553e-06 - val_loss: 3.2156e-04 - val_mse: 3.2156e-04
Epoch 110/200
-06 - mse: 5.6027e-06 - val loss: 0.0010 - val mse: 0.0010
Epoch 111/200
-05 - mse: 2.8004e-05 - val_loss: 2.7399e-04 - val_mse: 2.7399e-04
Epoch 112/200
109/109 [============== ] - Os 2ms/step - loss: 4.0113e
-06 - mse: 4.0113e-06 - val_loss: 2.6728e-04 - val_mse: 2.6728e-04
Epoch 113/200
109/109 [============== ] - Os 2ms/step - loss: 7.6745e
-06 - mse: 7.6745e-06 - val_loss: 9.0413e-04 - val_mse: 9.0413e-04
Epoch 114/200
109/109 [============= ] - Os 2ms/step - loss: 5.5002e
-06 - mse: 5.5002e-06 - val_loss: 1.7059e-04 - val_mse: 1.7059e-04
```

```
Epoch 115/200
-05 - mse: 1.0087e-05 - val_loss: 0.0010 - val_mse: 0.0010
Epoch 116/200
-05 - mse: 1.2698e-05 - val_loss: 6.8716e-04 - val_mse: 6.8716e-04
Epoch 117/200
109/109 [============= ] - Os 2ms/step - loss: 2.0024e
-05 - mse: 2.0024e-05 - val_loss: 6.2126e-04 - val_mse: 6.2126e-04
Epoch 118/200
109/109 [============= ] - Os 2ms/step - loss: 1.1646e
-05 - mse: 1.1646e-05 - val_loss: 4.2350e-04 - val_mse: 4.2350e-04
Epoch 119/200
-06 - mse: 7.8003e-06 - val_loss: 1.9411e-04 - val_mse: 1.9411e-04
Epoch 120/200
-06 - mse: 3.1733e-06 - val_loss: 6.3571e-04 - val_mse: 6.3571e-04
Epoch 121/200
-06 - mse: 9.0198e-06 - val_loss: 1.5693e-04 - val_mse: 1.5693e-04
Epoch 122/200
109/109 [============== ] - Os 2ms/step - loss: 3.1233e
-06 - mse: 3.1233e-06 - val_loss: 2.9518e-04 - val_mse: 2.9518e-04
Epoch 123/200
109/109 [============== ] - Os 3ms/step - loss: 4.6903e
-06 - mse: 4.6903e-06 - val_loss: 3.5395e-04 - val_mse: 3.5395e-04
Epoch 124/200
109/109 [============= ] - Os 2ms/step - loss: 4.4899e
-06 - mse: 4.4899e-06 - val_loss: 2.2433e-04 - val_mse: 2.2433e-04
Epoch 125/200
109/109 [============== ] - Os 2ms/step - loss: 4.6194e
-06 - mse: 4.6194e-06 - val_loss: 1.8864e-04 - val_mse: 1.8864e-04
Epoch 126/200
109/109 [============= ] - Os 2ms/step - loss: 3.5004e
-06 - mse: 3.5004e-06 - val_loss: 2.4682e-04 - val_mse: 2.4682e-04
Epoch 127/200
-06 - mse: 6.2115e-06 - val_loss: 3.6860e-04 - val_mse: 3.6860e-04
Epoch 128/200
-06 - mse: 5.8319e-06 - val loss: 6.9464e-04 - val mse: 6.9464e-04
Epoch 129/200
109/109 [============== ] - Os 2ms/step - loss: 3.2368e
-06 - mse: 3.2368e-06 - val_loss: 2.4182e-04 - val_mse: 2.4182e-04
Epoch 130/200
-06 - mse: 5.2216e-06 - val_loss: 2.9794e-04 - val_mse: 2.9794e-04
Epoch 131/200
-06 - mse: 5.6852e-06 - val_loss: 3.5451e-04 - val_mse: 3.5451e-04
Epoch 132/200
109/109 [============= ] - Os 2ms/step - loss: 7.4864e
-06 - mse: 7.4864e-06 - val_loss: 4.6384e-04 - val_mse: 4.6384e-04
Epoch 133/200
109/109 [============= ] - Os 2ms/step - loss: 2.8816e
-05 - mse: 2.8816e-05 - val_loss: 0.0022 - val_mse: 0.0022
```

```
Epoch 134/200
109/109 [============= ] - Os 2ms/step - loss: 1.6827e
-05 - mse: 1.6827e-05 - val_loss: 3.2375e-04 - val_mse: 3.2375e-04
Epoch 135/200
-05 - mse: 1.4538e-05 - val_loss: 8.8248e-04 - val_mse: 8.8248e-04
Epoch 136/200
109/109 [============= ] - Os 2ms/step - loss: 2.5458e
-05 - mse: 2.5458e-05 - val_loss: 4.2723e-04 - val_mse: 4.2723e-04
Epoch 137/200
109/109 [============== ] - Os 2ms/step - loss: 9.7684e
-06 - mse: 9.7684e-06 - val_loss: 2.6187e-04 - val_mse: 2.6187e-04
Epoch 138/200
-06 - mse: 3.6488e-06 - val_loss: 3.3050e-04 - val_mse: 3.3050e-04
Epoch 139/200
-06 - mse: 6.3473e-06 - val_loss: 1.5126e-04 - val_mse: 1.5126e-04
Epoch 140/200
-06 - mse: 5.2499e-06 - val_loss: 2.6273e-04 - val_mse: 2.6273e-04
Epoch 141/200
109/109 [============= ] - Os 2ms/step - loss: 2.0086e
-06 - mse: 2.0086e-06 - val_loss: 2.6759e-04 - val_mse: 2.6759e-04
Epoch 142/200
109/109 [============== ] - Os 2ms/step - loss: 3.6819e
-06 - mse: 3.6819e-06 - val_loss: 3.4964e-04 - val_mse: 3.4964e-04
Epoch 143/200
109/109 [============= ] - Os 2ms/step - loss: 2.6921e
-06 - mse: 2.6921e-06 - val loss: 1.8904e-04 - val mse: 1.8904e-04
Epoch 144/200
109/109 [============== ] - Os 3ms/step - loss: 2.1287e
-06 - mse: 2.1287e-06 - val_loss: 3.3149e-04 - val_mse: 3.3149e-04
Epoch 145/200
109/109 [============= ] - Os 2ms/step - loss: 2.6727e
-06 - mse: 2.6727e-06 - val_loss: 2.7568e-04 - val_mse: 2.7568e-04
Epoch 146/200
-06 - mse: 6.6378e-06 - val_loss: 3.0880e-04 - val_mse: 3.0880e-04
Epoch 147/200
-06 - mse: 3.3581e-06 - val_loss: 3.5063e-04 - val_mse: 3.5063e-04
Epoch 148/200
-06 - mse: 5.5349e-06 - val_loss: 1.6389e-04 - val_mse: 1.6389e-04
Epoch 149/200
-06 - mse: 8.6606e-06 - val_loss: 3.3932e-04 - val_mse: 3.3932e-04
Epoch 150/200
109/109 [============== ] - Os 2ms/step - loss: 5.1212e
-06 - mse: 5.1212e-06 - val_loss: 4.8957e-04 - val_mse: 4.8957e-04
Epoch 151/200
109/109 [============= ] - Os 2ms/step - loss: 1.4053e
-05 - mse: 1.4053e-05 - val_loss: 3.1438e-04 - val_mse: 3.1438e-04
Epoch 152/200
109/109 [============= ] - Os 2ms/step - loss: 1.3455e
-05 - mse: 1.3455e-05 - val_loss: 3.8371e-04 - val_mse: 3.8371e-04
```

```
Epoch 153/200
109/109 [============= ] - Os 2ms/step - loss: 2.6274e
-05 - mse: 2.6274e-05 - val_loss: 2.3795e-04 - val_mse: 2.3795e-04
Epoch 154/200
-05 - mse: 1.7023e-05 - val_loss: 4.1250e-04 - val_mse: 4.1250e-04
Epoch 155/200
109/109 [============= ] - Os 2ms/step - loss: 1.2621e
-05 - mse: 1.2621e-05 - val_loss: 3.2641e-04 - val_mse: 3.2641e-04
Epoch 156/200
109/109 [============= ] - Os 2ms/step - loss: 4.1493e
-06 - mse: 4.1493e-06 - val_loss: 5.6692e-04 - val_mse: 5.6692e-04
Epoch 157/200
-06 - mse: 9.3892e-06 - val_loss: 3.2599e-04 - val_mse: 3.2599e-04
Epoch 158/200
-06 - mse: 5.3626e-06 - val_loss: 2.3381e-04 - val_mse: 2.3381e-04
Epoch 159/200
-06 - mse: 3.3623e-06 - val_loss: 9.3593e-04 - val_mse: 9.3593e-04
Epoch 160/200
109/109 [============= ] - Os 2ms/step - loss: 3.2040e
-06 - mse: 3.2040e-06 - val_loss: 1.8854e-04 - val_mse: 1.8854e-04
Epoch 161/200
109/109 [============== ] - Os 2ms/step - loss: 2.1529e
-06 - mse: 2.1529e-06 - val_loss: 1.9125e-04 - val_mse: 1.9125e-04
Epoch 162/200
109/109 [============== ] - Os 3ms/step - loss: 4.3155e
-06 - mse: 4.3155e-06 - val_loss: 2.7621e-04 - val_mse: 2.7621e-04
Epoch 163/200
109/109 [============== ] - Os 2ms/step - loss: 5.5784e
-06 - mse: 5.5784e-06 - val_loss: 7.0597e-04 - val_mse: 7.0597e-04
Epoch 164/200
109/109 [============= ] - Os 2ms/step - loss: 1.1744e
-05 - mse: 1.1744e-05 - val_loss: 1.9495e-04 - val_mse: 1.9495e-04
Epoch 165/200
-06 - mse: 2.5018e-06 - val loss: 2.0243e-04 - val mse: 2.0243e-04
Epoch 166/200
109/109 [============== ] - Os 3ms/step - loss: 4.1678e
-06 - mse: 4.1678e-06 - val loss: 1.8627e-04 - val mse: 1.8627e-04
Epoch 167/200
109/109 [============== ] - Os 2ms/step - loss: 5.5117e
-06 - mse: 5.5117e-06 - val_loss: 1.8953e-04 - val_mse: 1.8953e-04
Epoch 168/200
-06 - mse: 6.3888e-06 - val_loss: 3.2767e-04 - val_mse: 3.2767e-04
Epoch 169/200
-05 - mse: 4.1994e-05 - val_loss: 4.5342e-04 - val_mse: 4.5342e-04
Epoch 170/200
109/109 [============== ] - Os 2ms/step - loss: 3.7309e
-06 - mse: 3.7309e-06 - val_loss: 2.1066e-04 - val_mse: 2.1066e-04
Epoch 171/200
109/109 [============= ] - Os 2ms/step - loss: 2.6218e
-06 - mse: 2.6218e-06 - val_loss: 2.0160e-04 - val_mse: 2.0160e-04
```

```
Epoch 172/200
-06 - mse: 3.8854e-06 - val_loss: 2.0873e-04 - val_mse: 2.0873e-04
Epoch 173/200
-06 - mse: 2.4817e-06 - val_loss: 2.6891e-04 - val_mse: 2.6891e-04
Epoch 174/200
109/109 [============= ] - Os 2ms/step - loss: 2.3302e
-06 - mse: 2.3302e-06 - val_loss: 2.4592e-04 - val_mse: 2.4592e-04
Epoch 175/200
109/109 [============= ] - Os 2ms/step - loss: 3.7059e
-06 - mse: 3.7059e-06 - val_loss: 2.1528e-04 - val_mse: 2.1528e-04
Epoch 176/200
109/109 [============= ] - Os 2ms/step - loss: 2.5111e
-06 - mse: 2.5111e-06 - val_loss: 2.9326e-04 - val_mse: 2.9326e-04
Epoch 177/200
-06 - mse: 2.3314e-06 - val_loss: 2.0545e-04 - val_mse: 2.0545e-04
Epoch 178/200
-06 - mse: 6.0043e-06 - val_loss: 2.1533e-04 - val_mse: 2.1533e-04
Epoch 179/200
109/109 [============= ] - Os 2ms/step - loss: 1.1343e
-05 - mse: 1.1343e-05 - val_loss: 2.0959e-04 - val_mse: 2.0959e-04
Epoch 180/200
-06 - mse: 2.2695e-06 - val_loss: 2.0161e-04 - val_mse: 2.0161e-04
Epoch 181/200
109/109 [============== ] - Os 2ms/step - loss: 3.9263e
-06 - mse: 3.9263e-06 - val_loss: 3.2057e-04 - val_mse: 3.2057e-04
Epoch 182/200
-06 - mse: 8.0237e-06 - val_loss: 1.9099e-04 - val_mse: 1.9099e-04
Epoch 183/200
109/109 [============= ] - Os 2ms/step - loss: 5.9347e
-06 - mse: 5.9347e-06 - val_loss: 2.0587e-04 - val_mse: 2.0587e-04
Epoch 184/200
-06 - mse: 4.8091e-06 - val loss: 2.3308e-04 - val mse: 2.3308e-04
Epoch 185/200
-06 - mse: 7.4019e-06 - val loss: 2.0219e-04 - val mse: 2.0219e-04
Epoch 186/200
-06 - mse: 4.8786e-06 - val_loss: 2.2445e-04 - val_mse: 2.2445e-04
Epoch 187/200
-06 - mse: 4.4574e-06 - val_loss: 2.3659e-04 - val_mse: 2.3659e-04
Epoch 188/200
109/109 [============== ] - Os 2ms/step - loss: 2.0921e
-06 - mse: 2.0921e-06 - val_loss: 2.0501e-04 - val_mse: 2.0501e-04
Epoch 189/200
109/109 [============= ] - Os 2ms/step - loss: 1.8341e
-06 - mse: 1.8341e-06 - val_loss: 2.2829e-04 - val_mse: 2.2829e-04
Epoch 190/200
109/109 [============= ] - Os 3ms/step - loss: 3.7932e
-06 - mse: 3.7932e-06 - val_loss: 2.2098e-04 - val_mse: 2.2098e-04
```

```
Epoch 191/200
       -06 - mse: 6.2323e-06 - val_loss: 2.2904e-04 - val_mse: 2.2904e-04
       Epoch 192/200
       109/109 [============= ] - Os 2ms/step - loss: 1.2508e
       -05 - mse: 1.2508e-05 - val_loss: 2.8811e-04 - val_mse: 2.8811e-04
       Epoch 193/200
       109/109 [============= ] - Os 2ms/step - loss: 9.1237e
       -06 - mse: 9.1237e-06 - val_loss: 2.3423e-04 - val_mse: 2.3423e-04
       Epoch 194/200
       -06 - mse: 7.6162e-06 - val_loss: 3.4074e-04 - val_mse: 3.4074e-04
       Epoch 195/200
       -06 - mse: 6.1994e-06 - val_loss: 2.3569e-04 - val_mse: 2.3569e-04
       Epoch 196/200
       -06 - mse: 6.8630e-06 - val_loss: 2.8789e-04 - val_mse: 2.8789e-04
       Epoch 197/200
       109/109 [============= ] - Os 2ms/step - loss: 2.1549e
       -05 - mse: 2.1549e-05 - val_loss: 2.3220e-04 - val_mse: 2.3220e-04
       Epoch 198/200
       109/109 [============= ] - Os 2ms/step - loss: 7.6966e
       -06 - mse: 7.6966e-06 - val_loss: 2.5211e-04 - val_mse: 2.5211e-04
       Epoch 199/200
       109/109 [============== ] - Os 2ms/step - loss: 2.6226e
       -06 - mse: 2.6226e-06 - val_loss: 2.7398e-04 - val_mse: 2.7398e-04
       Epoch 200/200
       109/109 [============= ] - Os 2ms/step - loss: 5.6496e
       -06 - mse: 5.6496e-06 - val_loss: 2.4774e-04 - val_mse: 2.4774e-04
Out[ ]: <tensorflow.python.keras.callbacks.History at 0x7f95abe0b780>
In [ ]: |plt.figure(figsize=(12,4))
       plt.xlabel("Epochs")
       plt.ylabel("Loss")
       plt.xticks(np.arange(0,100,4))
       plt.plot(lstm_model.history.history['loss'], label='train')
       plt.plot(lstm_model.history.history['val_loss'], label='test')
Out[ ]: [<matplotlib.lines.Line2D at 0x7f95aa2e9c50>]
        0.14
        0.12
        0.10
        0.08
       0.06
        0.04
        0.02
        0.00
             0 4 812162024283236404448525660646872768084889296
                                    Epochs
```

In []: output=lstm_model.predict(generator_test)

```
In [ ]: toInverseScaleOuput = np.hstack((testX[0:len(testX)-1],output))
    inverseScaledOutput=scaler.inverse_transform(toInverseScaleOuput)
    inverseScaledActual=scaler.inverse_transform(test[0:len(test)-1])
```

```
inverseScaledActual[:,-1:],inverseScaledOutput[:,-1:]
Out[ ]: (array([[ 794847.],
                 [ 822609.],
                 [ 850366.],
                 [ 879472.],
                 [ 907650.],
                 [ 937567.],
                 [ 970174.],
                 [1005642.],
                 [1040462.],
                 [1077873.],
                 [1118108.],
                 [1154914.],
                 [1194084.],
                 [1239685.],
                 [1288128.],
                 [1337016.],
                 [1387088.],
                 [1436020.],
                 [1482504.],
                 [1532135.],
                 [1584614.],
                 [1639582.],
                 [1697068.],
                 [1752185.],
                 [1804857.],
                 [1855345.],
                 [1906627.]]), array([[ 822537.22576827],
                 [ 852813.55184072],
                 [ 877512.83547282],
                 [ 895246.53509289],
                 [ 917995.26095909],
                 [ 956807.96125621],
                 [ 988848.44247174],
                 [1031220.81269276],
                 [1045470.14062357],
                 [1089684.42150736],
                 [1126857.17656982],
                 [1153691.89941418],
                 [1204592.80395043],
                 [1289319.99235642],
                 [1325150.48471558],
                 [1369432.16541779],
                 [1429528.11358476],
                 [1462068.5352937],
                 [1510766.19125175],
                 [1577625.75800264],
                 [1627167.78390813],
                 [1706907.50276458],
                 [1767512.69400406],
                 [1868519.62987077],
                 [1886455.58745289],
                 [1958853.17261732],
                 [2060850.97942567]]))
```

RMSE: 54680.27538494734

```
In [ ]: mae = mean_absolute_error(inverseScaledActual[:,-1:],inverseScaledOutp
    ut[:,-1:])
    print('MAE :' ,mae)
```

MAE : 41083.69849842788

```
In [ ]: plt.plot(inverseScaledOutput[:,-1:],'r')
    plt.plot(inverseScaledActual[:,-1:],'g')
    plt.show()
```



```
In [ ]: r2score=r2_score(inverseScaledActual[:,-1:],inverseScaledOutput[:,-1
:])
    print('R2 Score: ',r2score )
```

R2 Score: 0.9741836751204442