- 1. "变" 角. 所谓变角, 就是将角度进行恒等变换, 为解题作铺垫, 常用的变角类型有 $2\alpha = (\alpha + \beta) + (\alpha \beta)$, $2\beta = (\alpha + \beta) + (\alpha \beta)$, $\alpha = (\alpha + \beta) \beta$, $\alpha = (\alpha + 45^{\circ}) 45^{\circ}$, $\alpha = (m+1)\alpha m\alpha$, 等等.
- 2. 已知 $\cos(\alpha + \beta) = \frac{4}{5}$, $\cos(\alpha \beta) = -\frac{4}{5}$, 其中 $\alpha + \beta \in (\frac{7\pi}{4}, 2\pi)$, $\alpha \beta \in (\frac{3\pi}{4}, \pi)$, 求 $\cos 2\alpha$. 解' $\because \frac{7\pi}{4} < \alpha + \beta < 2\pi$, $\frac{3\pi}{4} < \alpha \beta < \pi$, $\therefore \sin(\alpha + \beta) = -\frac{3}{5}$, $\sin(\alpha \beta) = \frac{3}{5}$, 于是 $\cos 2\alpha = \cos[(\alpha + \beta) + (\alpha \beta)] = \cos(\alpha + \beta)\cos(\alpha \beta) \sin(\alpha + \beta)\sin(\alpha \beta)$ _____ = $\frac{4}{5}(-\frac{4}{5}) (-\frac{3}{5}) \times \frac{3}{5} = -\frac{16}{25} + \frac{9}{25} = -\frac{7}{25}$.
- 3. 求证: $\tan(\alpha-\beta)+\tan(\beta-\gamma)+\tan(\gamma-\alpha)=\tan(\alpha-\beta)\tan(\beta-\gamma)\tan(\gamma-\alpha)$. 证明 $\tan(\gamma-\alpha)=-\tan(\alpha-\gamma)=-\tan(\alpha-\beta)+\tan(\beta-\gamma)$. 法分母, 得 $-\tan(\gamma-\alpha)+\tan(\gamma-\alpha)\tan(\alpha-\beta)\tan(\alpha-\beta)$ $\tan(\beta-\gamma)=\tan(\alpha-\beta)+\tan(\alpha-\beta)\tan(\alpha-\beta)\tan(\alpha-\beta)+\tan(\alpha-\beta)\tan(\alpha-\beta)+\tan(\alpha-\beta)\tan(\alpha-\beta)+\tan(\alpha-\beta)\tan(\alpha-\beta)+\tan(\alpha-\beta)\tan(\alpha-\beta)+\tan(\alpha-\beta)\tan(\alpha-\beta)+\tan(\alpha-\beta)\tan(\alpha-\beta)+\tan(\alpha-\beta)\tan(\alpha-\beta)+\tan(\alpha-\beta$
- 4. "拆"角. 所谓拆角, 就是把已知的角一拆为二, 以达到消项的目的. 实际上, 拆角是变角的特例.
- 5. 求 $\frac{2\cos 10^{\circ} \sin 20^{\circ}}{\cos 20^{\circ}}$ 的值. 解原试 $=\frac{2\cos(30^{\circ} 20^{\circ}) \sin 20^{\circ}}{\cos 20^{\circ}} = \frac{2(\cos 30^{\circ}\cos 20^{\circ} + \sin 30^{\circ}\sin 20^{\circ}) \sin 20^{\circ}}{\cos 20^{\circ}} = \frac{2\cos 30^{\circ}\cos 20^{\circ}}{\cos 20^{\circ}} = \sqrt{3}$. 注意上述解法是把 10° "拆" 成 $30^{\circ} 10^{\circ}$ 也可恭解,但过程较冗赘,
- 6. 正、余互变. 如果 $\alpha+\beta=\frac{\pi}{2}$, 那么 $\sin\alpha=\cos\beta$, $\cos\alpha=\sin\beta$, $\tan\beta=\cot\alpha$. 例如,由 $(\frac{\pi}{3}-\varphi)+(\frac{\pi}{6}+\varphi)=\frac{\pi}{2}$, 可得 $\sin(\frac{\pi}{3}-\varphi)=\cos(\frac{\pi}{6}+\varphi)$.
- 7. 已知 $\sin(\frac{\pi}{4} x) = \frac{5}{13}$,且 $0 < x < \frac{\pi}{4}$.求 $\frac{\cos 2x}{\cos(\frac{\pi}{4} + x)}$ 的值. 解由条件,得 $\cos(\frac{\pi}{4} x) = \frac{12}{13}$. ∴ 原式 $= \frac{\sin(\frac{\pi}{2} 2x)}{\cos(\frac{\pi}{4} + x)} = \frac{\sin 2(\frac{\pi}{4} x)}{\cos(\frac{\pi}{4} + x)} = \frac{2\sin(\frac{\pi}{4} x)\cos(\frac{\pi}{4} x)}{\cos(\frac{\pi}{4} + x)} = \frac{2\cos(\frac{\pi}{4} + x)\cos(\frac{\pi}{4} x)}{\cos(\frac{\pi}{4} + x)} = 2\cos(\frac{\pi}{4} x)$ $x) = \frac{24}{12}$.
- 8. 逆用公式. 由 $\tan(\alpha+\beta) = \frac{\tan\alpha + \tan\beta}{1 \tan\alpha \tan\beta}$ 可得 $\tan\alpha + \tan\beta = \tan(\alpha+\beta)(1 \tan\alpha \tan\beta)$, 或 $1 \tan\alpha \tan\beta = \frac{\tan\alpha + \tan\beta}{\tan(\alpha+\beta)}$. 后两个公式是第一个公式的逆用.
- 9. 求 tan 65°+tan 70°+1-tan 65° tan 70° 的值. 解原式 = tan(65°+70°)(1-tan 65° tan 70°)+1-tan 65° tan 70° = (-1)·(1-tan 65° tan 70°)+1-tan 65° tan 70° = 0. 注意此例也可用"他推法"求解. 所谓"他推法",即从某已知等式出发,经过变换后,便可获得欲求之解. 如例 5, ∵ 135° = 65° + 70°,两边取正切,便得 -1 = tan(65° + 70°) = $\frac{\tan 65° + \tan 70°}{1-\tan 65° \tan 70°}$, ∴ tan 65° tan 70° 1 = tan 65° + tan 70°,移项即可得原式 = 0. 请读者思考,如何通过"公式逆用"或"他推法"来证明: tan(A B) + tan(B C) + tan(C A) = tan(A B) tan(B C) tan(C A).
- 10. 合一变形. 形如 $a\sin x + b\sin x$ 的式子颇为常见. 此类式子可作 "合一变形", 即 $a\sin x + b\sin x = \sqrt{a^2 + b^2}(\frac{a}{\sqrt{a^2 + b^2}}\sin x + \frac{b}{\sqrt{a^2 + b^2}}\cos x) = \sqrt{a^2 + b^2}\sin(x + \varphi)$, 其中, $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$, $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$. 由此便可求得 $a\sin x + b\sin x$ 的值域、周期和单调区间等.
- 11. 求函数 $f(x) = \sin x \sqrt{3} \cos x$ 的值域、最小正周期以及为增函数的区间. 解: $f(x) = 2(\sin x \cdot \frac{1}{2} \cos x \cdot \frac{\sqrt{3}}{2}) = 2 \sin(x \frac{\pi}{3})$, ∴ 函数的值域为 [-2, 2], 最小正周期是 2π , 为增函数的区间是 $[2k\pi \frac{\pi}{6}, 2k\pi + \frac{5\pi}{6}](k \in \mathbf{Z})$.

- 12. 求函数 $y = \frac{\sqrt{3}\sin x}{2 + \cos x}$ 的值域. 解由已知, 得 $2y + y\cos x = \sqrt{3}\sin x$, 即 $\sqrt{3}\sin x y\cos x = 2y$, $\therefore \sin x y\cos x = 2y$ $\frac{\sqrt{3}}{\sqrt{3+y^2}} - \cos x \cdot \frac{y}{\sqrt{3+y^2}} = \frac{2y}{\sqrt{3+y^2}}. \quad \mathbf{f} \, \, \mathbf{E} \, \sin(x-\varphi) \, = \, \frac{2y}{\sqrt{3+y^2}} (\mathbf{其中} \, \, \varphi \, \, \, \mathbf{満足} \, \sin\varphi \, = \, \frac{y}{\sqrt{3+y^2}}.$ $\cos\varphi = \frac{\sqrt{3}}{\sqrt{3+y^2}}). \ \because |\sin(x-\varphi)| \leq 1, \ \therefore \frac{2y}{\sqrt{3+y^2}} \leq 1, \ \therefore -1 \leq y \leq 1. \ \textbf{注意对于求} \ y = \frac{a\sin x + b\cos x + c}{a'\sin x + b'\cos x + c'}$ 的值域, 均可采用例 7 的方法, 即去分母, 合一变形, 解不等式三个步骤,
- 13. 升幂和降幂. (1) 升幂. 运用公式 $1 + \cos 2x = 2\cos^2 x$, $1 \cos 2x = 2\sin^2 x$.

14. 化简
$$\frac{1+\cos\theta-\sin\theta}{1-\cos\theta-\sin\theta} + \frac{1-\cos\theta-\sin\theta}{1+\cos\theta-\sin\theta}.$$
 解原式
$$= \frac{2\cos^2\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^2\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} + \frac{2\sin^2\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^2\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} - \frac{\cos\frac{\theta}{2}\cos\frac{\theta}{2}}{\cos^2\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} - \frac{\cos\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{\theta}{2} - \frac{\cos\frac{\theta}{2}\cos\frac{\theta}{2}}{\cos^2\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} - \frac{\cos\frac{\theta}{2}\cos\frac{\theta}{2}}{\cos^2\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} - \frac{\cos\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{\theta}{2} - \frac{\cos\frac{\theta}{2}\cos\frac{\theta}{2}}{\cos\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} - \frac{\cos\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{\theta}{2} - \frac{\cos\frac{\theta}{2}\cos\frac{\theta}{2}}{\cos\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2} - \frac{\cos\frac{\theta}{2}\cos\frac{\theta}{2}} - \frac{\cos\frac{\theta}{2}\cos\frac{\theta}{2} - \frac{\cos\frac{\theta}{2}\cos\frac{\theta}{2}}{\cos\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2} - \frac{\cos\frac{\theta}{2}\cos\frac{\theta}{2}-2\sin\frac{\theta}{2}\cos\frac{\theta}{2} - \frac{\cos\frac{\theta}{2}\cos\frac{\theta}{2}-2\sin\frac{\theta}{2}$$

- (2) 降幕. 逆用公式 $\cos 2\alpha = 2\cos^2\alpha 1$ 和 $\cos 2\alpha = 1 2\sin^2\alpha$, 可得 $\cos^2\alpha = \frac{1 + \cos 2\alpha}{2}$, $\sin^2\alpha = \frac{1 + \cos 2\alpha}{2}$
- 15. 求函数 $y=3\sin^2\alpha-4\sin\alpha\cdot\cos\alpha+\cos^2\alpha$ 的值域和最小正周期. 解 :: $y=3\cdot\frac{1-\cos2\alpha}{2}-2\sin2\alpha+\frac{1+\cos2\alpha}{2}=2-(2\sin2\alpha+\cos2\alpha)=2-\sqrt{5}(2\alpha+\varphi),$ 其中 $\sin\varphi=\frac{1}{\sqrt{5}},$ $\cos\varphi=\frac{2}{\sqrt{5}},$.: 函数的值域是 $[2-\sqrt{5},2+\sqrt{5}]$, 最小正周期是 π . 注意对于形如 $y=a\sin^2\alpha+b\sin\alpha\cos\alpha+c\cos^2\alpha$ 的函数, 宜采用 "先降 幂, 后合一"的方法进行化简, 再研究其性质. 【训练题】(一) 两角和(差)的余弦公式
- 16. 化简 $\sin(x+y)\sin x + \cos(x+y)\cos x$ 的结果是 ()

A.
$$cos(2x + y)$$

B.
$$\cos y$$

C.
$$\sin(2x+y)$$

D.
$$\sin y$$

17. 满足 $\cos \alpha \cos \beta = \frac{\sqrt{3}}{2} + \sin \alpha \sin \beta$ 的一组 α, β 的值是 ()

A.
$$\alpha = \frac{13\pi}{12}, \beta = \frac{3\pi}{4}$$
 B. $\alpha = \frac{\pi}{2}, \beta = \frac{\pi}{3}$

B.
$$\alpha = \frac{\pi}{2}, \beta = \frac{\pi}{2}$$

C.
$$\alpha = \frac{\pi}{2}, \beta = \frac{\pi}{6}$$

D.
$$\alpha = \frac{\pi}{3}, \beta = \frac{\pi}{6}$$

18. 若 $\frac{3\pi}{2}<\alpha<2\pi$,且 $\cot(\frac{3\pi}{2}+\alpha)=\frac{3}{4}$,则 $\cos(\alpha-\frac{3\pi}{2})$ 的值等于 ()

A.
$$\frac{\sqrt{2}}{10}$$

B.
$$-\frac{\sqrt{2}}{10}$$

C.
$$\frac{7\sqrt{2}}{10}$$

D.
$$-\frac{7\sqrt{2}}{10}$$

19. 若三角形的两内角 α, β 满足 $\cos \alpha \cos \beta > \sin \alpha \sin \beta$, 则这个三角形的形状 ()

A. 是锐角三角形

20. 若关于 x 的方程 $x^2 + x \cos \alpha \cos \beta + \cos \gamma = 0$ 的两根 x_1, x_2 满足 $x_1 + x_2 = \frac{x_1 x_2}{2}$, 则以 α, β, γ 为内角的三 角形的形状()

A. 是等腰三角形, 不可能 B. 是直角三角形, 不可能 C. 是等腰直角三角形

D. 是等腰三角形, 也可能 是直角三角形

- 是直角三角形 是等腰三角形
- 21. (1) 若 $\tan x = \frac{4}{3}(\pi < x < 2\pi)$,则 $\cos(2x \frac{\pi}{3}) \cdot \cos(\frac{\pi}{3} x) \sin(2x \frac{\pi}{3}) \cdot \sin(\frac{\pi}{3} x) =$ _____. (2) 若锐

且 $90^{\circ} < \alpha - \beta < 180^{\circ}, \ 270^{\circ} < \alpha + \beta < 360^{\circ}, \ 则 \cos 2\alpha = ______, \ \cos 2\beta = ______.$ (4) 若 $\cos x + \cos y = \frac{1}{2}, \sin x - \sin y = \frac{1}{3}, \text{ M } \cos(x+y) = \underline{\hspace{1cm}}.$

22. 若 $\sin \alpha \sin \beta = 1$, 则 $\cos(\alpha + \beta)$ 的值是 ()						
	A1	B. 0	C. 1	D. ±1		
23.	若 α, β 为锐角, 则 ()					
	A. $\cos(\alpha + \beta) > \cos \alpha +$	B. $\cos(\alpha + \beta) > \sin \alpha +$	C. $\cos(\alpha + \beta) < \cos \alpha +$	D. $\cos(\alpha + \beta) < \sin \alpha +$		
	$\cos eta$	$\sin \beta$	$\cos eta$	$\sin \beta$		
24.	若 $\sin \alpha + \sin \beta = \frac{\sqrt{2}}{2}$, 则 co	$\cos \alpha + \cos \beta$ 的取值范围是 ()				
	A. $[0, \frac{\sqrt{2}}{2}]$	B. $\left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right]$	C. [2, 2]	D. $\left[-\frac{\sqrt{14}}{2}, \frac{\sqrt{14}}{2}\right]$.		
25.	若三角形的两内角 α, β 满足	$\tan \alpha \tan \beta > 1$,则这个三角	市形的形状是 ()			
	A. 等腰直角三角形	B. 不等腰的直角三角形	C. 锐角三角形	D. 钝角三角形		
26.	若三角形的两内角 α, β 满足	$\xi \sin \alpha = \frac{3}{5}, \cos \beta = \frac{5}{13},$ 则此	\mathbf{z} 三角形的另 $-$ 内角 γ 的余弦	在第于()		
	A. $\frac{16}{65}$ 或 $\frac{56}{65}$	B. $\frac{56}{65}$	C. $\frac{16}{65}$	D. $-\frac{16}{65}$ 或 $-\frac{56}{65}$		
27.	27. (1) 已知锐角 α, β 满足 $\cos \alpha = \frac{4}{5}, \tan(\alpha - \beta) = -\frac{1}{3}, $ 求 $\cos \beta$. (2) 已知 $\cos(\frac{\pi}{4} - \alpha) = \frac{3}{5}, \sin(\frac{3\pi}{4} + \beta) = \frac{5}{13},$ 其中 $\frac{\pi}{4} < \alpha < \frac{3\pi}{4}, \ 0 < \beta < \frac{\pi}{4}, $ 求 $\sin(\alpha + \beta)$ 的值. (3) 已知 α, β 为锐角, 满足 $\cos \alpha = \frac{1}{7}, \sin(\alpha + \beta) = \frac{5\sqrt{3}}{14},$ 求 $\cos \beta$ 的值.					
28.	28. 已知 $8\cos(2\alpha + \beta) + 5\cos\beta = 0$, 求 $\tan(\alpha + \beta) \cdot \tan\alpha$ 的值.					
29.	29. 解不等式: $\sin 4x + \cos 4x \cdot \cot 2x > 1$.					
30.	30. 已知锐角 α, β, γ 满足 $\sin \alpha + \sin \gamma = \sin \beta, \cos \alpha - \cos \gamma = \cos \beta, $ 求 $\alpha - \beta$ 的值. (二) 两角和 (差) 的正弦公式					
31.	1. 若 α, β 为锐角, 且满足 $\cos \alpha = \frac{4}{5}, \cos(\alpha + \beta) = \frac{3}{5}$, 则 $\sin \beta$ 的值是 ()					
	A. $\frac{17}{25}$	9	C. $\frac{7}{25}$	D. $\frac{1}{5}$		
32.	32. 函数 $y = \sin(x + \frac{\pi}{3}) - \sqrt{3}\cos(x + \frac{\pi}{3})$ ()					
	A. 是奇函数, 但不是偶函	B. 是偶函数, 但不是奇函	C. 既不是奇函数, 也不是	D. 奇偶性无法确定		
	数	数	偶函数			
33.	33. 下列函数中, 与 $y = \sin x + \cos x$ 的振幅、最小正周期都相同的函数是 ()					
	A. $y = \sin x$	$B. y = \cos x$	$C. y = \sqrt{2}\sin x$	$D. y = \sin x \cos x$		
34.	34. 函数 $y = \sin x + \sqrt{3}\cos x (0 \le x \le \frac{\pi}{2})$ 的值域是 ()					
	A. $[1, \frac{3}{2}]$	B. [1, 2]	C. $[\frac{3}{2}, 2]$	D. [0, 2]		
35.	(1) 化简 $\sin(x+27^{\circ})\cos(18^{\circ})$	$-x) + \cos(x+27^\circ)\sin(18^\circ - x)$	= (2) 函数 y =	$3\sin 2x + 3\sqrt{3}\cos 2x + 1$		
	的最小正周期是	最大值是,最小作	值是			

36.	若 α 是一个三角形的最小内	角, 则函数 $y = \sin \alpha - \cos \alpha$	的值域为 ()	
	A. $[-\sqrt{2}, \sqrt{2}]$	B. $(-1, \frac{\sqrt{3}-1}{2})$	C. $(-1, \frac{\sqrt{3}-1}{2}]$	D. $[-1, \frac{\sqrt{3}-1}{2}]$
37.	若函数 $f(x) = \sin 2x + a \cos 2x$	$2x$ 的图象关于直线 $x = -\frac{\pi}{8}$	对称, 则实数 a 的值等于 ()	
	$\Delta \sqrt{2}$	$R = \sqrt{2}$	C 1	D -1

- 38. (1) 若以 $\sin(45^{\circ} \alpha) = -\frac{2}{3}, \frac{\pi}{4} < \alpha < \frac{\pi}{2},$ 则 $\sin \alpha =$ ______. (2) 计算: $\frac{\sin 7^{\circ} + \sin 8^{\circ} \cos 15^{\circ}}{\cos 7^{\circ} \sin 8^{\circ} \sin 15^{\circ}} =$ _____. (3) 计算: $\csc 10^{\circ} \sqrt{3} \sec 10^{\circ} =$ _____.
- 39. (1) 函数 $y = \log_{0.2}(\sin x + \cos x)$ 为增函数的区间是_____. (2) 不等式 $\sin x < \cos x$ 的解是_____.

 40. 求下列函数的值域: $(1)y = \frac{\sqrt{5}\sin x + 1}{\cos x + 2}$. $(2)y = \frac{\tan \theta + 2}{\sec \theta 1}$.
- 41. 在 $\triangle ABC$ 中, 已知 $2\cos B\cos C = 1 \cos A$, 且 $2\sin B\cos C = 1 + \sin(B-C)$, 判断此三角形的形状.
- 42. (1) 已知关于 x 的方程 $x^2+px+q=0$ 的两根是 $\tan\alpha$, $\tan\beta$, 求 $\frac{\sin(\alpha+\beta)}{\cos(\alpha-\beta)}$ 的值. (2) 已知 $\sin(\alpha+\beta)=\frac{1}{2}$, $\sin(\alpha-\beta)=\frac{1}{3}$, 求 $\tan\alpha\cot\beta$ 的值. (3) 已知 $\tan(\alpha+\beta)=-2$, $\tan(\alpha-\beta)=\frac{1}{2}$, 求 $\frac{\sin2\alpha}{\sin2\beta}$ 的值.
- 43. 已知 $\tan \alpha = 1$, $3\sin \beta = \sin(2\alpha + \beta)$, 求 $\tan(\alpha + \beta)$ 的值. 29 已知 $\frac{\tan(\alpha \gamma)}{\tan \alpha} + \frac{\sin^2 \beta}{\sin^2 \alpha} = 1$, 求证: $\tan^2 \beta = \tan \alpha \tan \gamma$.
- 44. (1) 求函数 $y=\frac{\sin x\cos x}{1+\sin x+\cos x}$ 的最大值, (2) 求函数 $y=\sin x+\cos x+\sin x\cos x$ 的值域. (3) $a\in\mathbf{R}$, 求 $y=(\sin x+a)(\cos x+a)$ 的最小值. 注意对于含 $\sin x\pm\cos x$, $\sin x\cos x$ 的三角函数式, 可令 $t=\sin x\pm\cos x$, 则 $\sin x\cos x=\pm\frac{t^2-1}{2}$, $t\in[-\sqrt{2},\sqrt{2}]$. (三) 两角和 (差) 的正切公式
- 45. 若 $\tan(\alpha + \beta) = \frac{2}{5}$, $\tan(\beta \frac{\pi}{4}) = \frac{1}{4}$, 则 $\tan(\alpha + \frac{\pi}{4})$ 等于 ()
 A. $\frac{13}{18}$ B. $\frac{13}{22}$ C. $\frac{3}{22}$ D. $\frac{1}{6}$
- 46. 若 $\frac{1-\tan A}{1+\tan A}=4+\sqrt{5}$, 则 $\cot(\frac{\pi}{4}+A)$ 的值等于 ()
 A. $-4-\sqrt{5}$ B. $4+\sqrt{5}$ C. $-\frac{1}{4+\sqrt{5}}$ D. $\frac{1}{4+\sqrt{5}}$
- 47. 已知 $\alpha + \beta = \frac{3\pi}{4}$, 则 $(1 \tan \alpha)(1 \tan \beta)$ 的值等于 ()

A. 2

- 48. (1) 计算 $\frac{1+\cot 15^{\circ}}{1-\tan 75^{\circ}}=$ ______. (2) 若 $\alpha+\beta=\frac{\pi}{4}$, 则 $\frac{1-\tan\beta}{1+\tan\beta}=$ _____. (3) 若 $\tan x=\frac{1}{2}$, $\tan(x-y)=-\frac{2}{5}$, 则 $\tan(2x-y)=$ _____. (4) 在 $\triangle ABC$ 中, $\tan A$, $\tan B$ 是方程 $3x^2+8x-1=0$ 的 两个根,则 $\tan C=$ _____. (5) 若 $\tan(\alpha+\frac{\pi}{4})=-\frac{9}{40}$,则 $\tan\alpha=$ ______, $\tan(\alpha-\frac{\pi}{4})=$ _____.
- 49. 若 $\alpha, \beta \in (\frac{\pi}{2}, \pi)$, 且 $\tan \alpha < \cot \beta$, 则() $\text{A. } \alpha < \beta \qquad \qquad \text{B. } \beta > \alpha \qquad \qquad \text{C. } \pi < \alpha + \beta < \frac{3\pi}{2} \qquad \qquad \text{D. } \alpha + \beta > \frac{3\pi}{2}$

50. 函数 $y = \frac{\cos 2x + \sin 2x}{\cos 2x - \sin 2x}$ 的最小正周期是 ()						
A. 2π	B. $\frac{3\pi}{2}$	С. π	D. $\frac{\pi}{2}$			
51. 若 $-\frac{\pi}{2} < \alpha$	$<rac{\pi}{2},-rac{\pi}{2}$	an β 是方程 $x^2 + 3\sqrt{3}x + 4 = 0$	0 的两个根, 则 $\alpha + \beta$ 等于 ()			
A. $\frac{\pi}{3}$	B. $-\frac{2\pi}{3}$	C. $\frac{\pi}{3}$ 或 $\frac{4\pi}{3}$	D. $\frac{\pi}{3}$ 或 $-\frac{2\pi}{3}$			
52. (1) 若 tan θ	和 $\tan(\frac{\pi}{4} - \theta)$ 是方程 $x^2 + px + q$	q=0 的两个根, 则 p,q 满足关	系式 (2) 若 tan α	$=\frac{1}{7},$		
$\tan \beta = \frac{1}{3}, 0$	$0 则 lpha+2eta=$	·				
	$\tan 66^{\circ} + \tan 69^{\circ} - \tan 66^{\circ} \tan 69^{\circ}$					
	$k = k\pi + \frac{\pi}{4}(k \in \mathbf{Z}), \ \mathbf{M} \ (1 + \tan \alpha)$) 计算 $(1 + \tan 1^\circ)(1 + \tan 2^\circ)$)(1+		
$\tan 3^{\circ})\cdots (1$	$+\tan 43^{\circ})(1 + \tan 44^{\circ}) = $					
	$\tan 20^{\circ} \tan 30^{\circ} + \tan 30^{\circ} \tan 40^{\circ}$					
	$\tan(C-A) = \tan(A-B)\tan(B-C)\tan(C-A)$. (3) 求证: $\tan A + \tan B + \tan C = \tan A \tan B \tan C$, 其					
	$ + A + B + C = k\pi(k \in \mathbf{Z}). $					
55 . 已知锐角 α ,	β 满足 $\tan \alpha = \sqrt{3}(m+1)$, $\tan \alpha$	$a(-\beta) = \sqrt{3}(\tan \alpha \tan \beta + m),$	求 $\alpha + \beta$ 的值.			
	56. (1) 求 $\frac{\tan 20^\circ + \tan 40^\circ + \tan 120^\circ}{\tan 20^\circ \tan 40^\circ}$ 的值. (2) 已知 $\tan \theta = \frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha} (\alpha, \theta)$ 都是锐角), 求 $\frac{\sin \alpha - \cos \alpha}{\sin \theta}$ 的					
值. (3) 已知	值. (3) 已知 $\tan(\frac{\pi}{4} + \alpha) = -\frac{1}{2}$, 求 $\frac{2\cos\alpha(\sin\alpha - \cos\alpha)}{1 + \tan\alpha}$ 的值.					
57. 已知 $\tan \alpha$,	57. 已知 $\tan \alpha$, $\tan \beta$ 是关于 x 的方程 $mx^2 - 2x\sqrt{7m-3} + 2m = 0$ 的两个实根, 求 $\tan(\alpha + \beta)$ 的取值范围. (四)					
二倍角的正弦公式						
58. 若 $\sin \alpha + \cos \alpha = -\sqrt{2}$, 则 $\tan \alpha + \cot \alpha$ 等于 ()						
A2	В1	C. 1	D. 2			
59. 若三角形的-	一个内角 α 满足 $\sin \alpha + \cos \alpha =$	$=rac{3}{4},$ 则这个二角形的形状是 ()				
A. 锐角三角	角形 B. 钝角三角形	C. 不等腰的直角	角三角形 D. 等腰直角三角	形		
						

60. 函数 $f(x) = \sqrt{\cos^2 x - \cos^4 x}$ 的最小正周期为 ()

A. $\frac{\pi}{2}$

C. $\frac{3\pi}{2}$

D. 2π

61. 若 $\alpha \in [\frac{5\pi}{2}, \frac{7}{2}\pi]$, 则 $\sqrt{1+\sin\alpha}+\sqrt{1-\sin\alpha}$ 的值为 ()

A. $2\cos\frac{\alpha}{2}$

B. $-2\cos\frac{\alpha}{2}$

C. $2\sin\frac{\alpha}{2}$ D. $-2\sin\frac{\alpha}{2}$

62. 函数 $y = \log_{0.5}(\sin x \cos x)$ 为增函数的区间是 ()

A. $(k\pi - \frac{\pi}{4}, k\pi + \frac{\pi}{4})(k \in B. (k\pi, k\pi + \frac{\pi}{4})(k \in \mathbf{Z})$ C. $(k\pi + \frac{\pi}{4}, k\pi + \frac{\pi}{2})(k \in D. [k\pi + \frac{\pi}{4}, k\pi + \frac{3\pi}{4})(k \in \mathbf{Z})$

63.	$\cos\frac{\pi}{5}\cos\frac{2\pi}{5}$ 的值等于 ()				
	A. 4	B. $\frac{1}{4}$	C. 2	D. $\frac{1}{2}$	
64.	(1) 若 $\cos^2(\frac{x}{2}) = \sin x$, 则 ta				
	$\cos^2 75^\circ + \cos 15^\circ \cos 75^\circ = _$	0 1		2 2	
	的最小正周期是	$(4) 若 \sin x - \cos x = \frac{1}{2}, $ 则	$\sin^3 x - \cos^3 x = \underline{\hspace{1cm}}$	·	
65.	(1) 在 $\triangle ABC$ 中, $\angle C = 9$		此三角形的两个锐角分別等	于 (2) 若	
	$\sin 2\alpha = \frac{4}{5}, \ \mathbf{M} \ \tan^2 \alpha + \cot^2$	α =			
66.	若 $\sin x \cos y = \frac{1}{2}$, 则 $\cos x \sin x \cos y = \frac{1}{2}$	n y 的取值范围是 ()			
	A. $[-\frac{1}{2}, \frac{1}{2}]$	B. $\left[-\frac{3}{2}, \frac{1}{2}\right]$	C. $\left[-\frac{1}{2}, \frac{3}{2}\right]$	D. [-1,1]	
67.	求值: (1)sin 18° sin 54°. (2)co	$ \cos \frac{\pi}{17} \cos \frac{2\pi}{17} \cos \frac{4\pi}{17} \cos \frac{8\pi}{17}. $			
68.	求值: $(1)\cos^4(\frac{\pi}{8}) + \cos^4(\frac{3\pi}{8})$	$(1) + \cos^4(\frac{5\pi}{8}) + \cos^4(\frac{7\pi}{8}).$ (2)	$\sin^4(\frac{\pi}{16}) + \sin^4(\frac{3\pi}{16}) + \sin^4(\frac{\pi}{16})$	$(\frac{5\pi}{16}) + \sin^4(\frac{7\pi}{16}).$	
69.	求值: $(1)\csc 10^{\circ} - \sqrt{3}\sec 10^{\circ}$	°. $(2)\cos 40^{\circ}(1+\sqrt{3}\cot 80^{\circ})$). $(3)\tan 70^{\circ}\cos 10^{\circ}(\sqrt{3}\tan 70^{\circ})$	$20^{\circ} - 1$). $(4)\sec 50^{\circ} +$	
	cot 80°. (五) 二倍角的余弦公	大 式			
70.	若 $x = \frac{\pi}{12}$,则 $\cos^4 x - \sin^4 x$	。 的值为 ()			
	A. 0	B. $\frac{1}{2}$	C. $\frac{\sqrt{2}}{2}$	D. $\frac{\sqrt{3}}{2}$	
71.	1. 函数 $y = \sin^2 x$ 是 (),				
	Α. 最小正周期为 2π 的偶	Β. 最小正周期为 2π 的奇	C. 最小正周期为 π 的偶	D. 最小正周期为 π 的奇	
	函数	函数	函数	函数	
72.	若 $\sin\frac{\alpha}{2} = \frac{3}{5}$, $\cos\frac{\alpha}{2} = -\frac{4}{5}$, J	则角 α 所在的象限是 ()			
	A. 第一象限	B. 第二象限	C. 第三象限	D. 第四象限	
73.	函数 $y = 2\sin x \cos sx - (\cos sx - \cos sx - $	$s^2 x - \sin^2 x$) 的最大值与最小	心值之积等于 ()		
	A. 2	В2	C. 1	D1	
74.	函数 $y = 1 - \cos^2 x + \cos^4 x$	的最小正周期是()			
	A. 2π	Β. π	C. $\frac{\pi}{2}$	D. $\frac{\pi}{4}$	
75.	化简 $\sqrt{1-\cos 4-\sin^2 2}$ 的纪	吉果是 ()			
	A. cos 2	$B \cos 2$	C. $\sqrt{3}\cos 2$	D. $-\sqrt{3}\cos 2$	
76.	$(1) 若 \sin \theta : \sin \frac{\theta}{2} = 8 : 5, $	$\int \cos \theta = \underline{\qquad}. (2) \ \text{H}_2^2$	$\sin \frac{\pi}{8} \cos \frac{\pi}{8} \cot \frac{\pi}{8} = \underline{\qquad}$	(3) 若 $8\cos(\frac{\pi}{8} +$	
	$\alpha)\cos(\frac{\pi}{4} - \alpha) = 1, $				

是______. (5) 若 $\tan x = \sqrt{2}$, 则 $\frac{2\cos^2\frac{x}{2} - \sin x - 1}{\sin x + \cos x} =$ ______. (6) 函数 $y = 2\sin x(\sin x + \cos x)$

为减函数的区间是____

77. 若 $270^{\circ} < \alpha < 360^{\circ}$,则化简 $\sqrt{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{1}{2} + \frac{1}{2}\cos2\alpha}}$ 的结果是 ()

A.
$$\sin \frac{\alpha}{2}$$

B.
$$-\sin\frac{\alpha}{2}$$

C.
$$\cos \frac{\alpha}{2}$$

D.
$$-\cos\frac{\alpha}{2}$$

78. 若 $\pi < x < \frac{3\pi}{2}$,则 $\sqrt{\tan x + \sin x} + \sqrt{\tan x - \sin x}$ 可以化成 ()

A.
$$2\sqrt{\tan x}\sin(\frac{x}{2}-\frac{\pi}{4})$$

B.
$$2\sqrt{\tan x}\sin(\frac{x}{2}+\frac{\pi}{4})$$

$$C. -2\sqrt{\tan x}\sin(\frac{x}{2} - \frac{\pi}{4})$$

A.
$$2\sqrt{\tan x}\sin(\frac{x}{2}-\frac{\pi}{4})$$
 B. $2\sqrt{\tan x}\sin(\frac{x}{2}+\frac{\pi}{4})$ C. $-2\sqrt{\tan x}\sin(\frac{x}{2}-\frac{\pi}{4})$ D. $-2\sqrt{\tan x}\sin(\frac{x}{2}+\frac{\pi}{4})$

79. (1) 已知 $\sin \alpha + \sin \beta = \frac{1}{2}$, $\cos \alpha + \cos \beta = \frac{1}{3}$, 求 $\cos^2(\frac{\alpha - \beta}{2})$ 的值. (2) 求 $y = \sin^6 x + \cos^6 x$ 的最小正周期.

(3) 已知
$$\tan \alpha \tan \beta = \frac{1}{\sqrt{3}}$$
,求 $(2 - \cos 2\alpha)(2 - \cos 2\beta)$ 的值.

80. (1) 化简: $\frac{2\cos^2\alpha - 1}{2\tan(\frac{\pi}{4} - \alpha)\sin^2(\frac{\pi}{4} + \alpha)}.(2)$ 化简: $\frac{1 + \cos\theta - \sin\theta}{1 - \cos\theta - \sin\theta} + \frac{1 - \cos\theta - \sin\theta}{1 + \cos\theta - \sin\theta}.$ (3) 已知 $\cos(\frac{\pi}{4} + x) = \cos(\frac{\pi}{4} + x)$ $\frac{4}{5}(\frac{19\pi}{12} < x < \frac{7\pi}{4})$,求 $\frac{\sin 2x - 2\sin^2 x}{1 - \tan x}$ 的值.

81. 求下列函数的最大值及其相成的 x 值: $(1)f(x) = 4\cos 2x + 12\sin x - 5\cos^2 x$. $(2)f(x) = \sin 2x + \sin x + \cos x$.

$$(3)f(x) = \frac{\sin x \cos x}{1 + \sin x + \cos x}$$

82. 求函数 $y=\sin^2x+2\sin x\cos x+3\cos^2x-2$ 的取值范、最小正周期以及为增函数的区间. (六) 万能公式

83. 化简
$$\frac{\cot \frac{\alpha}{2} - \tan \frac{\alpha}{2}}{\cot \frac{\alpha}{2} + \tan \frac{\alpha}{2}}$$
 的结果是 ()

A. $\sin \alpha$

C. $\tan \alpha$

D. $\cot \alpha$

84. 函数 $y = \lg \frac{\tan x}{1 + \tan x}$ 为增函数的区间是 ()

A.
$$(k\pi, k\pi + \frac{\pi}{4}], k \in \mathbb{Z}$$

B.
$$(k\pi, 2k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$$

C.
$$(2k\pi, 2k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$$

A. $(k\pi, k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$ B. $(k\pi, 2k\pi + \frac{\pi}{4}], k \in \mathbf{Z}$ C. $(2k\pi, 2k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$ D. $(2k\pi, k\pi + \frac{\pi}{2}], k \in \mathbf{Z}$

85. <math><math>f(tan x) = sin 2x, <math><math>f(-1) <math><math><math>6 <math>6 <math>6 <math>7 <math>7 <math>7 <math>85. 7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 7 <math>7 7 <math>7 7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 7 <math>7 7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 <math>7 7 <math>7 7 <math>7 <math>7 7 <math>7 <math>7 <math>7 <math>7 7 <math>7 7 <math>7 7 <math>7 7 <math>7 7 7 7 <math>7 7 7 7 <math>7 7

A.
$$-\sin 2$$

C.
$$\frac{1}{2}$$

D. 1

86. 若 $\tan \frac{A}{2} = \frac{m}{n}$, 则 $m \cos A - n \sin A$ 等于 ()

C. m

D. -m

87. 若锐角 θ 满足 $\sin \frac{\theta}{2} = \sqrt{\frac{x-1}{2x}}$, 则 $\tan \theta$ 等于 ()

B. $\frac{x+1}{\sqrt{x-1}}$

C. $\frac{\sqrt{x^2-1}}{}$

D. $\sqrt{x^2 - 1}$

88. (1) 化简 $\frac{\tan(45^{\circ} - \alpha)}{1 - \tan^{2}(45^{\circ} - \alpha)} \cdot \frac{\sin \alpha \cos \alpha}{\cos^{2} \alpha - \sin^{2} \alpha} =$ _______. (2) 若 $\tan \frac{\alpha}{2} = \frac{2}{5}$, 则 $\frac{2 \sin \alpha + 3 \cos \alpha}{3 \cos \alpha - 4 \sin \alpha} =$ ______. (3) 若 $\frac{2 \sin \theta + \cos \theta}{\sin \theta - 3 \cos \theta} = -5$, 则 $3 \cos 2\theta + 4 \sin 2\theta =$ ______.

(3) 若
$$\frac{2\sin\theta + \cos\theta}{\sin\theta - 3\cos\theta} = -5$$
, 则 $3\cos 2\theta + 4\sin 2\theta =$ _____.

- 89. (1) 已知 $\sin \alpha = \frac{3}{5}$, $\alpha \in (\frac{\pi}{2}, \pi)$, $\tan(\pi \beta) = \frac{1}{2}$, 求 $\tan(\alpha 2\beta)$ 的值. (2) 已知 $\tan 2\theta = -2\sqrt{2}$, $\frac{\pi}{4} < \theta < \frac{\pi}{2}$, 求 $\frac{2\cos^2(\frac{\theta}{2})-\sin\theta-1}{\sqrt{2}\sin(\frac{\pi}{4}+\theta)}$ 的值.
- 90. 已知 $a \sin x + b \cos x = 0$, $A \sin 2x + B \cos 2x = C$, (a, b) 是不同时为零的实数), 求证: $2abA + (b^2 a^2)B + B \cos 2x = C$ $(a^2 + b^2)C = 0$. (七) 半角公式
- 91. 下列函数中, 最小正周期为 π 的是 ()

$$A. y = \frac{\sin x}{1 - \cos x}$$

B.
$$y = \tan \frac{x}{2} - \frac{1}{\sin x}$$
 C. $y = \cos^2(2x)$

C.
$$y = \cos^2(2x)$$

$$D. y = \tan x - \cot x$$

92. 若 $\cos \alpha = -\frac{3}{5}$, 且 $\pi < \alpha < \frac{3\pi}{2}$, 则 $\cos \frac{\alpha}{2}$ 的值等于 ()

A.
$$\frac{\sqrt{5}}{5}$$

B.
$$-\frac{\sqrt{5}}{5}$$

C.
$$\frac{2\sqrt{5}}{5}$$

D.
$$-\frac{2\sqrt{5}}{5}$$

93. 若 $2\pi < \theta < 4\pi$, $\sin \theta = -\frac{3}{5}$, $\cos \theta < 0$, 则 $\tan \frac{\theta}{2}$ 的值等于 ()

В. 3

C.
$$-\frac{1}{3}$$

D.
$$\frac{1}{3}$$

94. 若 $\alpha + \beta = \frac{\pi}{2}$, 则 ()

A.
$$\cos \frac{\alpha}{2} = -\sqrt{\frac{1+\sin \beta}{2}}$$

A.
$$\cos \frac{\alpha}{2} = -\sqrt{\frac{1+\sin\beta}{2}}$$
 B. $\sin \frac{\alpha}{2} = -\sqrt{\frac{1-\sin\beta}{2}}$ C. $\tan \frac{\alpha}{2} = \pm\sqrt{\frac{1-\sin\beta}{1+\sin\beta}}$ D. $\tan \frac{\alpha}{2} = \pm\sqrt{\frac{1+\sin\beta}{1-\sin\beta}}$

C.
$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \sin \beta}{1 + \sin \beta}}$$

D.
$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \sin \beta}{1 - \sin \beta}}$$

95. 当 $3\pi < \alpha < 4\pi$ 时. 化简 $\sqrt{\frac{1+\cos\alpha}{2}} - \sqrt{\frac{1-\cos\alpha}{2}}$ 得 ()

A.
$$-\sqrt{2}\sin(\frac{\alpha}{2} + \frac{\pi}{4})$$
 B. $\sqrt{2}\sin(\frac{\alpha}{2} + \frac{\pi}{4})$ C. $-\sqrt{2}\sin(\frac{\alpha}{2} - \frac{\pi}{4})$ D. $\sqrt{2}\sin(\frac{\alpha}{2} - \frac{\pi}{4})$

B.
$$\sqrt{2}\sin(\frac{\alpha}{2}+\frac{\pi}{4})$$

C.
$$-\sqrt{2}\sin(\frac{\alpha}{2}-\frac{\pi}{4})$$

D.
$$\sqrt{2}\sin(\frac{\alpha}{2} - \frac{\pi}{4})$$

96. 若 $\sin 2\alpha = a$, $\cos 2\alpha = b$, 则 $\tan(\alpha + \frac{\pi}{4})$ 的值是 ()

A.
$$\frac{a}{1+b}$$

$$B. \frac{1+a}{b}$$

C.
$$\frac{1+a-b}{1-a+b}$$

D.
$$\frac{a-b+1}{a+b+1}$$

- 97. (1) 若 $\sin x = \frac{2}{3}$, 且 $\frac{\pi}{2} < x < \pi$, 则 $\sin \frac{x}{2} =$ ______. (2) 若 α 是第三象限角,且 $\sin(\alpha + \beta)\cos\beta \sin\beta \cdot \cos(\alpha + \beta) = -\frac{5}{13}$,则 $\tan \frac{\alpha}{2} =$ ______. (3) 若 $3\sin\alpha = 4\cos\alpha$,且 $\sin\alpha < 0$,则 $\tan \frac{\alpha}{2} =$ _____. (4) 若 $\tan 35^\circ = m$,则 $\frac{\cos 20^\circ}{1 \sin 20^\circ} =$ _____. (5) 当 $k \in \mathbf{Z}$ 时, $(\tan \frac{5\pi}{12})^k \cdot (\tan \frac{\pi}{12})^{k+2} =$ _____.
- 98. 与 $\lg(\cos x 1)^2$ 相等的式子是 ()

A.
$$4 \lg |\cos \frac{x}{2}| + 2 \lg 2$$
 B. $2 \lg (\cos x - 1)$ C. $[\lg (\cos x - 1)]^2$

B.
$$2\lg(\cos x - 1)$$

C.
$$[\lg(\cos x - 1)]^2$$

D.
$$4 \lg |\sin \frac{x}{2}| + 2 \lg 2$$

- 99. (1) 已知 $\frac{1-\cos 2\theta}{1+\cos 2\theta}=7-4\sqrt{3}$, 且 $(\frac{1}{2})^{\sin 2\theta}>1$, 求 $\tan \theta$ 的值. (2) 已知 $\sin(\alpha+\frac{3\pi}{4})=\frac{5}{13}$, $\cos(\frac{\pi}{4}-\beta)=\frac{3}{5}$ 且 $-\frac{\pi}{4} < \alpha < \frac{\pi}{4}, \frac{\pi}{4} < \beta < \frac{3\pi}{4},$ 求 $\sin \frac{\alpha - \beta}{2}$ 的值. (3) 已知 $\sin \alpha - \cos \alpha = \frac{1}{2}$, 且 $\pi < \alpha < 2\pi$, 求 $\tan \frac{\alpha}{2}$ 的
 - 值. (4) 已知 $\cos\alpha = -\frac{3}{5}$, 且 α 为第二象限角,求 $\frac{\tan\frac{\pi+\alpha}{4}}{1-\cot^2\frac{\pi-\alpha}{2}}$ 的值. 二、积化和差与和差化积公式【典型

题型和解题技巧】

- 100. 拆项法. 对形如 $\sin \alpha + \sin(\alpha + \beta) + \sin(\alpha + 2\beta) + \cdots + \sin(\alpha + n\beta)$ 及 $\cos \alpha + \cos(\alpha + \beta) + \cos(\alpha + 2\beta) + \cdots + \cos(\alpha + n\beta)$ 的式子,可乘以 $\frac{\sin \frac{\beta}{2}}{\sin \frac{\beta}{2}}$,再逐项积化和差,依次将各项一拆为二,以达到消项的目的.
- 101. 承证: $\cos x + \cos 2x + \dots + \cos nx = \frac{\cos \frac{n+1}{2} x \sin \frac{n}{2} x}{\sin \frac{x}{2}}$. 证明 左边 $= \frac{1}{\sin \frac{x}{2}} (\sin \frac{x}{2} \cos x + \sin \frac{x}{2} \cos 2x + \sin \frac{x}{2} \cos 3x + \dots + \sin \frac{x}{2} \cos nx) = \frac{1}{2 \sin \frac{x}{2}} [(\sin \frac{3x}{2} \sin \frac{x}{2}) + (\sin \frac{5x}{2} \sin \frac{3x}{2}) + (\sin \frac{7x}{2} \sin \frac{5x}{2}) + \dots + (\sin \frac{2n+1}{2} x \sin \frac{2n-1}{2} x)] = \frac{1}{2 \sin \frac{x}{2}} (\sin \frac{2n+1}{2} x \sin \frac{x}{2}) = \frac{\cos \frac{n+1}{2} x \sin \frac{n}{2} x}{\sin \frac{x}{2}} =$ 右边,原式得证.
- 102. 三角形中的恒等变形. 在 $\triangle ABC$ 中,以下变形应相当熟练: $\sin(A+B) = \sin C$, $\cos(A+B) = -\cos C$, $\tan(A+B) = -\tan C$; $\sin\frac{A+B}{2} = \cos\frac{C}{2}$, $\cos\frac{A+B}{2} = \sin\frac{C}{2}$, $\tan\frac{A+B}{2} = \cot\frac{C}{2}$, 进一步还有: $\sin(A+B) = \sin C = 2\sin\frac{C}{2}\cos\frac{C}{2} = 2\cos\frac{A+B}{2}\cos\frac{C}{2} = 2\sin\frac{C}{2}\sin\frac{A+B}{2}$, $\cos(A+B) = 2\cos^2\frac{A+B}{2} 1 = 2\sin^2\frac{C}{2} 1 = 1 2\sin^2\frac{A+B}{2} = 1 2\cos^2\frac{C}{2}$.
- 104. 题型 $a\sin\alpha + b\sin\beta = m$, $a\cos\alpha + b\cos\beta = n$. 此类题型或类似的题型十分多见, 常可利用两式四则运算. 并结合和差化积来求解.
- 105. 已知 $\cos \alpha + \cos \beta = a$, $\sin \alpha + \sin \beta = b(ab \neq 0)$, 求 $\cos(\alpha \beta)$, $\cos(\alpha + \beta)$ 的值. 解两式平方相加,可得 $2 + 2\cos(\alpha \beta) = a^2 + b^2$, $\cos(\alpha \beta) = \frac{a^2 + b^2 2}{2}$. 再将两式和差化积,得 $2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha \beta}{2} = a$, $2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha \beta}{2} = b$. 显然 $\cos\frac{\alpha \beta}{2} \neq 0$, 于是两式相除,得 $\tan\frac{\alpha + \beta}{2} = \frac{b}{a}$. 再由万能公式,得 $\cos(\alpha + \beta) = \frac{1 \tan^2(\frac{\alpha + \beta}{2})}{1 + \tan^2(\frac{\alpha + \beta}{2})} = \frac{1 \frac{b^2}{a^2}}{1 + \frac{b^2}{a^2}} = \frac{a^2 b^2}{a^2 + b^2}$.
- 106. 已知 $a\cos\alpha+b\sin\alpha=c,\ a\cos\beta+b\sin\beta=c,\$ 其中 $\alpha\pm\beta\neq k\pi,\ k\in\mathbf{Z},\$ 求证: $\frac{a}{\cos\frac{\alpha+\beta}{2}}=\frac{b}{\sin\frac{\alpha+\beta}{2}}=\frac{b}{\sin\frac{\alpha+\beta}{2}}=\frac{c}{\sin\frac{\alpha+\beta}{2}}=\frac{c}{\cos\frac{\alpha-\beta}{2}}$. 证明将已知的两式相减,得 $a(\cos\alpha-\cos\beta)+b(\sin\alpha-\sin\beta)=0$. 利用和差化积,得 $-2a\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}+2$ $2b\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}=0$. 由条件知 $\sin\frac{\alpha-\beta}{2}\neq0$, $a\sin\frac{\alpha+\beta}{2}=b\cos\frac{\alpha+\beta}{2}$, 即 $\frac{a}{\cos\frac{\alpha+\beta}{2}}=\frac{b}{\sin\frac{\alpha+\beta}{2}}$. 再利用等比性质,得 $\frac{a\cos\alpha}{\cos\frac{\alpha+\beta}{2}\cos\alpha}=\frac{b\sin\alpha}{\sin\frac{\alpha+\beta}{2}\sin\alpha}=\frac{a\cos\alpha+b\sin\alpha}{\cos\frac{\alpha+\beta}{2}\cos\alpha+\sin\frac{\alpha+\beta}{2}\sin\alpha}=\frac{c}{\cos\frac{\alpha-\beta}{2}}$, $\frac{a}{\cos\frac{\alpha+\beta}{2}}=\frac{b}{\sin\frac{\alpha+\beta}{2}}=\frac{c}{\cos\frac{\alpha-\beta}{2}}$

- 107. 降幂与化积. 在本章内, 有不少问题的求解要通过先降幂再化积来完成.
- 108. 已知 $\alpha + \beta = \frac{2\pi}{3}$, 求 $\sin^2 \alpha + \sin^2 \beta$ 的取值范围.

 $1+\frac{1}{2}\cos(\alpha-\beta),$ 又 $=-1\leq\cos(\alpha-\beta)\leq 1,$ $\sin^2\alpha+\sin^2\beta$ 的取值范围是 $[\frac{1}{2},\frac{3}{2}].$ 【训练题】(一) 积化和差

109. 函数 $y = \sin(3x + \frac{\pi}{12})\sin(3x - \frac{5\pi}{12})$ 的最小正周期是 ()

C. 3π

D. 6π

110. 若 $\cos^2 \alpha - \cos^2 \beta = m$, 则 $\sin(\alpha + \beta)\sin(\alpha - \beta)$ 等于 ()

A. 4m

B. -4m

C. m

D. -m

111. $\cos(\frac{\pi}{5} + 1)\cos(\frac{\pi}{5} - 1)$ 等于 ()

A. $\cos^2(\frac{\pi}{5}) + \sin^2 1$ B. $\sin^2(\frac{\pi}{5}) - \cos^2 1$

C. $\cos^2(\frac{\pi}{5}) - \sin^2 1$ D. $\sin^2(\frac{\pi}{5}) + \cos^2 1$

112. 函数 $f(x) = \sin(x + \frac{5\pi}{12})\cos(x - \frac{\pi}{12})$ 是 ()

A. 最小正周期为 π 的奇 B. 最小正周期为 π 的偶

C. 最小正周期为 2π 的函 D. 最小正周期为 π 的函

113. 函数 $f(x) = 2\sin\frac{x}{2}\sin(\alpha - \frac{x}{2})$ 的最大值等于 ()

A. $2\sin^2(\frac{\alpha}{2})$

B. $-2\sin^2(\frac{\alpha}{2})$

C. $2\cos^2(\frac{\alpha}{2})$

数,没有奇偶性

D. $-2\cos^2(\frac{\alpha}{2})$

数,没有奇偶性

- 114. (1) 函数 $y = \sin(\frac{3\pi}{4} x)\sin(\frac{3\pi}{4} + x)$ 的值域是______. (2) 函数 $f(x) = \sin x \cos(x + A)$ 的最小正周期 是______,最大值是______.
- 115. 求值或化简: $(1)\cos^2\alpha \cos(\alpha + 60^\circ)\cos(\alpha 60^\circ) =$ ______. $(2)\cos(\alpha + \beta)\cos(\alpha \beta) + \sin^2\beta =$ _____. (3) 若 $\sin(\alpha + \beta) = \frac{2}{3}$, $\sin(\alpha \beta) = \frac{1}{5}$, 则 $\tan\alpha\cot\beta =$ _____. (4) 若 $\sin(\theta + \frac{\pi}{6})\sin(\theta \frac{\pi}{6}) = \frac{11}{20}$, 则
- 116. 计算下列各式: $(1)\sin 63^{\circ} \cos 63^{\circ} + 2\sqrt{2}\sin 66^{\circ}\cos 84^{\circ} = _____.$ $(2)\frac{1}{2\sin 10^{\circ}} 2\sin 70^{\circ} = ____.$ $(3)\frac{1-4\sin 10^{\circ}+8\sin^{3} 10^{\circ}}{2\cos 80^{\circ}} = \underline{\qquad} (4)\sin 80^{\circ}\cos 20^{\circ}+\sin 45^{\circ}\cos 145^{\circ}+\sin 55^{\circ}\cos 245^{\circ} = \underline{\qquad} .$
- 117. (1) 求证: $\tan \frac{3\alpha 2 \tan \frac{\alpha}{2} = \frac{2}{\sin \alpha}}{\cos \alpha + \cos 2\alpha}$. (2) 已知 $\tan \frac{\alpha + \beta}{2} = \frac{\sqrt{2}}{2}$, 求 $\cos 2\alpha \cdot \cos 2\beta \cos^2(\alpha \beta)$ 的值.
- 118. 已知 A, B, C 是 $\triangle ABC$ 的三内角, 若 $B = 60^{\circ}$, 求 $\cos A \cos C$ 的取值范围.
- 119. 计算下列各式: $.(1)\cos 20^{\circ} + \cos 60^{\circ} + \cos 100^{\circ} + \cos 140^{\circ}.(2)\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$
- 120. *(1) 求证: ① $\sin \alpha \sin(60^{\circ} + \alpha) \sin(60^{\circ} \alpha) = \frac{1}{4} \sin 3\alpha$; ② $\cos \alpha \cos(60^{\circ} + \alpha) \cos(60^{\circ} \alpha) = \frac{1}{4} \cos 3\alpha$; ③ $\tan\alpha\tan(60^\circ+\alpha)\tan(60^\circ-\alpha)=\tan3\alpha. \ (2) \ \textbf{求值或化简}.. \ \textcircled{1} \sin5^\circ\sin55^\circ\sin55^\circ\sin65^\circ; \ \textcircled{2} \sin10^\circ\sin30^\circ\sin50^\circ\sin70^\circ;$

③ $\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ};$ *④ $\sin x \sin(\frac{1}{3}\pi + x) \sin(\frac{2}{3}\pi + x);$ *⑤ $\tan 5^{\circ} \tan 55^{\circ} \tan 65^{\circ} \tan 75^{\circ}.$ *98. 已知 $f(x) = \cos^2(x+\theta) - 2\cos\theta\cos x\cos(x+\theta) + \cos^2\theta.$ (1) 求此函数的最小正周期. (2) 若 $\frac{1}{4} \le f(x) \le \frac{3}{4},$ $0 \le x \le 2\pi, \;$ 求 取值范围. *99. 已知 $\cos(\alpha+\beta)\sin(\alpha-\beta) + \frac{1}{2}\sin\alpha\cos\alpha = 0, \;$ 且 $3\sin^2\alpha + 2\sin^2\beta = 1,$ $\alpha, \beta \in (0, \frac{\pi}{2}), \;$ 求 $\sin(\alpha+\beta)$ 的值. (二) 和差化积公式

121. 下列各式中, 不正确的是 ()

A.
$$\sin \alpha + \sin \beta = B$$
. $\sin \alpha - \sin \beta = C$. $\cos \alpha + \cos \beta = D$. $\cos \alpha - \cos \beta = 2\sin \frac{\beta + \alpha}{2}\cos \frac{\beta - \alpha}{2}$ $2\cos \frac{\beta + \alpha}{2}\sin \frac{\beta - \alpha}{2}$ $2\cos \frac{\beta + \alpha}{2}\cos \frac{\beta - \alpha}{2}$ $2\sin \frac{\beta + \alpha}{2}\sin \frac{\beta - \alpha}{2}$

122. 函数 $y = \cos^2(x - \frac{\pi}{12}) + \sin^2(x + \frac{\pi}{12}) - 1$ 是 ()

 A. 最小正周期为 2π 的奇
 B. 最小正周期为 2π 的偶
 C. 最小正周期为 π 的奇
 D. 最小正周期为 π 的偶

 函数
 函数
 函数

123. 将 $\cos^2 x - \sin^2 y$ 化为积的形式, 结果是 ()

A.
$$-\sin(x+y)\sin(x-y)$$
 B. $\cos(x+y)\cos(x-y)$ C. $\sin(x+y)\cos(x-y)$ D. $-\cos(x+y)\sin(x-y)$

124. 设 $x + y = \frac{2\pi}{3}$, 则 $\cos x - \cos y$ 的最大值是 ()

A.
$$-\sqrt{3}$$
 B. $2\sqrt{3}$ C. $\sqrt{3}$

125. 函数 $f(x) = \frac{\cos 3x - \cos x}{\cos x}$ 的值域是 ()

A.
$$[-4, +\infty)$$
 B. $[-4, 0)$ C. $(-4, 0]$ D. $(-4, 4]$

126. 求值或化简: $(1)\sin 10^{\circ} + \sin 50^{\circ} - \sin 70^{\circ} =$ ______. $(2)\cos 20^{\circ} - \cos 80^{\circ} - \sin 50^{\circ} =$ ______. $(3)\sin 15^{\circ} - \sin 75^{\circ} + 2\sin 15^{\circ} \sin 75^{\circ} =$ ______. $(4)\sin 80^{\circ} - \sin 20^{\circ} + 2\sin 10^{\circ} \cos 50^{\circ} =$ ______. $(5)\cos \frac{5\pi}{13} + \cos \frac{3\pi}{13} + 2\cos \frac{9\pi}{13}\cos \frac{\pi}{13} =$ ______. $(6)\cos^2(\alpha+\beta) + \cos^2(\alpha-\beta) - \cos 2\alpha\cos 2\beta =$ ______. $(7)\cos \alpha + \cos(\frac{2}{3}\pi + \alpha) + \cos(\frac{2}{3}\pi - \alpha) =$ _____. $(8)\sin^2 40^{\circ} + \sin^2 80^{\circ} + \frac{1}{2}\cos 220^{\circ} =$ _____. $(9)\cos 20^{\circ} + \sin 60^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} =$ _____. $(10)\sin 63^{\circ} - \sin 27^{\circ} + 2\sqrt{2}\cos 84^{\circ} \sin 66^{\circ} =$ _____.

127. 计算下列各式:
$$(1)\frac{\sin 20^{\circ} - \cos 50^{\circ}}{\cos 80^{\circ}} =$$
______. $(2)\frac{\sin 10^{\circ} + \sin 50^{\circ}}{\sin 35^{\circ} \sin 55^{\circ}} =$ _____. $(3)\csc 18^{\circ} - \csc 54^{\circ} =$ _____.

128. 若 x + y = 1, 则 $\sin x + \sin y$ 与 1 的大小关系是 ()

A.
$$\sin x + \sin y > 1$$
 B. $\sin x + \sin y = 1$ C. $\sin x + \sin y < 1$ D. 随 x, y 的取值而定

129. 若 $\sqrt{3}(\sin\alpha + \sin\beta) = \cos\beta - \cos\alpha, \, \alpha, \beta \in (0,\pi), \, \text{则 } \alpha - \beta$ 等于 ()

A.
$$-\frac{2\pi}{3}$$
 B. $-\frac{\pi}{3}$ C. $\frac{\pi}{3}$

130. 若 x > 0, y > 0, $0 < x + y < 2\pi$, 则 $f(x) = \sin(x + y) - \sin x - \sin y$ 的值()

- 131. 函数 $y = \sin(2x \frac{\pi}{6}) \cos 2x$ 的图象, 可由函数 $y = \sqrt{3} \sin 2x$ 的图象 ()

 A. 向右平移 $\frac{\pi}{3}$ 个单位长 B. 向左平移 $\frac{\pi}{3}$ 个单位长 C. 向右平移 $\frac{\pi}{6}$ 个单位长 度得到 度得到
- 132. 在"① $\cos 40^{\circ} + \sqrt{3} \sin 40^{\circ} = 2 \cos 20^{\circ}$,② $1 + 2 \cos 20^{\circ} = 4 \cos 20^{\circ} \cos 40^{\circ}$,③ $\frac{\sin 40^{\circ}}{1 + \cos 40^{\circ}} = \cot 70^{\circ}$,④ $\frac{1 \tan 40^{\circ}}{1 + \tan 40^{\circ}} = \tan 20^{\circ}$ " 这四个式子中,成立的个数是()

A. 1 B. 2 C. 3 D. 4 *112. 已知 $\cos 36^{\circ} \cos 72^{\circ} = \frac{1}{4}$, 求下列各式的值: $(1)\cos 36^{\circ} - \cos 72^{\circ}$. $(2)\cos^2(\frac{\pi}{5}) + \sin^2(\frac{\pi}{10})$. $(3)\cos 12^{\circ} - \cos 24^{\circ} - \cos 48^{\circ} + \cos 84^{\circ}$.

- 133. 求下列各式的值: $(1)\cos^2 73^\circ + \sin^2 43^\circ + \cos 73^\circ \sin 43^\circ$. $(2)\cos^2 10^\circ + \cos^2 110^\circ + \cos^2 130^\circ$. $(3)\sin 10^\circ \sin 50^\circ \sin 50^\circ \sin 70^\circ \sin 70^\circ \sin 10^\circ$. $(4)\tan 9^\circ \tan 27^\circ \tan 63^\circ + \tan 81^\circ$.
- 134. (1) 已知 $\cos \alpha \cos \beta = \frac{1}{2}$, $\sin \alpha \sin \beta = -\frac{1}{3}$, 求 $\sin(\alpha + \beta)$, $\cos(\alpha \beta)$ 的值. (2) 已知 $\cos \alpha + \cos \beta = \frac{\sqrt{2}}{4}$, $\tan(\alpha + \beta) = -\frac{4}{3}$, 求 $\sin \alpha + \sin \beta$ 的值. *(3) 已知 $a\cos x + b\sin x + c = 0 (a \neq 0)$ 在区间 $(\frac{\pi}{2}, \pi)$ 内有两个相 异的实根 α, β , 求 $\sin(\alpha + \beta)$ 的值. *(4) 已知 $\sin \alpha + \sin \beta = \frac{3}{5}$, $\cos \alpha + \cos \beta = \frac{4}{5}$, 求 $\cos \alpha \cdot \cos \beta$ 的值.
- 135. 根据下列条件判断 $\triangle ABC$ 的形状: $(1)\sin A + \sin B = \cos A + \cos B$. $(2)\sin^2 A + \sin^2 B + \sin^2 C < 2$. *(3) $\tan B = \frac{\cos(B-C)}{\sin A \sin(B-C)}$. *(4) $\sin A = \frac{\sin B + \sin C}{\cos B + \cos C}$. *116. 将 $\sin x + \sin y + \sin z \sin(x + y + z)$ 化为积的形式. *ll7. 若 $\frac{\sin(A+30^\circ) \sin(B+30^\circ)}{\cos A \cos B} = m \cot \frac{A+B}{2} + n$, 求 m,n 的值. *118. 已知 $\sin A + \sin B \sin C = 0$, $\cos A + \cos B \cos C = 0$, 求证: $\sin^2 A + \sin^2 B + \sin^2 C$ 为定值. *119.(1) 已知 $0 < x < \pi$, 求函数 $f(x) = -\frac{1}{2} + \frac{\sin \frac{5x}{2}}{2 \sin \frac{x}{2}}$ 的最小值. (2) 已知三角形内角 θ 满足 $\frac{\sin \frac{5\theta}{2}}{2 \sin \frac{\theta}{2}} \frac{1}{2} = a \cos \theta + a$, 求实数 a 的取值范围.
- 136. (1) 已知 $0 < \alpha < \pi$, $0 < \beta < \pi$, 且 $\cos \alpha + \cos \beta \cos(\alpha + \beta) = \frac{3}{2}$, 求证: $\alpha = \beta = \frac{\pi}{3}$. *(2) 已知 A, B 是两个锐角,且满足 $a \sin A + b \cos B \sin B = 0$, $a \sin B + b \cos A \sin A = 0$, 又 $\tan \frac{A+B}{2} = a+1$, 求证: $a^2 + b = 1$. 三、解斜三角形【典型题型和解题技巧】
- 137. 三角形形状的确定. 按边分: 可分为等边三角形、等腰三角形和不等边三角形. 按角分: 可分为锐角三角形、 直角三角形和钝角三角形.
- 138. 根据条件确定三角形的形状: (1) 已知 $\frac{a^3+b^3-c^3}{a+b-c}=c^2$, 且 $\sin A \sin B=\frac{3}{4}$. (2) $\cos A + \cos B > \sin A + \sin B$. (3) $a\cos B + b\cos C + c\cos A = b\cos A + c\cos B + a\cos C$. 解 (1) 由 $\frac{a^3+b^3-c^3}{a+b-c}=c^2$, 得 $a^2+b^2=c^2(a+b)$, 即 $(a+b)(a^2-ab+b^2-c^2)=0$. $a+b\neq 0$, $c^2=a^2+b^2-ab$, 结合余弦定理可得 $2\cos C=1$. $\cos C=\frac{1}{2}$, 故 $C=60^\circ$,再由 $\sin A \sin B=\frac{3}{4}$,得 $-\frac{1}{2}[\cos(A+B)-\cos(A-B)]=\frac{3}{4}$. $A+B=120^\circ$, $\frac{1}{2}\cos(A-B)=\frac{1}{2}$, A=B. $\triangle ABC$ 为等边三角形. (2) $(\cos A+\cos B)-(\sin A+\sin B)=2\cos\frac{A+B}{2}\cos\frac{A-B}{2}-2\sin\frac{A+B}{2}\cos\frac{A-B}{2}=2\cos\frac{A-B}{2}(\cos\frac{A+B}{2}-\sin\frac{A+B}{2})=2\sqrt{2}\cos\frac{A-B}{2}\sin(\frac{\pi}{4}-\frac{A+B}{2})$,由条件

 $\cos A + \cos B > \sin A + \sin B$ 及 $\cos \frac{A-B}{2} > 0$,得 $\sin \frac{\pi-2(A+B)}{4} > 0$, $2k\pi < \frac{\pi-2(A+B)}{4} < 2k\pi + \pi$,即 $2k\pi < \frac{C-(A+B)}{4} < 2k\pi + \pi$.又 A,B,C 是三角形的内角,取 k=0, $0 < C-(A+B) < 4\pi$,即 C > A+B.结合 $A+B=\pi-C$,有 $C > \frac{\pi}{2}$, $\triangle ABC$ 是钝角三角形(C 为钝角).(3)利用 正弦定理,有 $a=2R\sin A$, $b=2R\sin B$, $c=2R\sin C(R$ 为 $\triangle ABC$ 的外接圆半径),由已知条件可得($\sin A\cos B-\cos A\sin B$)+ $(\sin B\cos C-\cos B\sin C)$ + $(\sin C\cos A-\cos C\sin A)=0$.即 $\sin (A-B)$ + $\sin (B-C)$ + $\sin (C-A)=0$,前两项和差化积.便得 $2\sin \frac{A-C}{2}\cos \frac{A-2B+C}{2}-2\sin \frac{A-C}{2}\cos \frac{A-C}{2}=0$,即 $\sin \frac{A-C}{2}(\cos \frac{A-2B+C}{2}-\cos \frac{A-C}{2})=0$.再和差化积,得 $\sin \frac{A-C}{2}\sin \frac{B-C}{2}\sin \frac{C-A}{2}=0$,于是 A=B 或 B=C 或 C=A.是等腰三角形.

- 139. 三角形中的恒等式证明. 对于 $\triangle ABC$ 中的恒等式证明, 除了要能熟练运用正弦定理、余弦定理、三角恒等变换公式等外, 还要能熟练掌握下列变换: $\sin(A+B) = \sin C$, $\cos(A+B) = -\cos C$, $\tan(A+B) = -\tan C$; $\sin\frac{A+B}{2} = \cos\frac{C}{2}, \ \cos\frac{A+B}{2} = \sin\frac{C}{2}, \ \tan\frac{A+B}{2} = \cot\frac{C}{2}; \ \sin(A+B) = \sin C = 2\sin\frac{C}{2}\cos\frac{C}{2} = 2\cos\frac{A+B}{2}\cos\frac{C}{2} = 2\sin\frac{C}{2}\sin\frac{A+B}{2}.$
- 141. 三角形中的有关计算. 一般情况下,解斜三角形可按下列步骤进行: (1) 若是实际的应用题,则应将所讨论的问题归结到某一个三角形中. (2) 在三角形中表明已知量与所要求的量,分析已知量与所求量之间的关系. (3) 利用三角形的有关知识进行计算.
- 142. 在 $\triangle ABC$ 中. 已知 A>B>C, 且 A=2C, b=4, a+c=8, 求 a,c 的长. 解由正弦定理 $\frac{a}{\sin A}=\frac{c}{\sin C}$ 及 A=2C, 得 $\cos C=\frac{a}{2c}$. 由条件 a+c=8=2b, 利用余弦定理得 $\cos C=\frac{a^2+b^2-c^2}{2ab}=\frac{a^2+(\frac{a+c}{2})^2-c^2}{a(a+c)}=\frac{5a^2+2ac-3c^2}{4a(a+c)}=\frac{(5a-3c)(a+c)}{4a(a+c)}=\frac{5a-3c}{4a}$. 于是 $\frac{a}{2c}=\frac{5a-3c}{4a}$,整理得 (2a-3c)(a-c)=0. $a\neq c$, 2a=3c. a+c=8, $a=\frac{24}{5}$, $c=\frac{16}{5}$.
- 143. 如图 1, 海岛 O 上有一座海拔 1000 米的山, 山顶上设有一个观察站 A, 上午 11 时测得一轮船在岛北偏东 60° 的 C 处, 俯角为 30° ; 11 时 10 分又测得该船在岛的北偏西 60° 的 B 处, 俯角为 60° . (1) 该船的速度为每小时

多少千米? (2) 若此船以不变航速继续前进, 则它何时到达岛的正西方向? 此时所在点 E 离开海岛多少千米? (图 1) 解 (1) 在 Rt $\triangle ABC$ 与 Rt $\triangle AOC$ 中, 求得 $OB = OA \tan 30^\circ = \frac{\sqrt{3}}{3}$ (千米), $OC = OA \tan 60^\circ = \sqrt{3}$ (千米). 由余弦定理,得 $\begin{cases} BC = \sqrt{OB^2 + OC^2 - 2 \cdot OB \cdot OC \cos \angle BOC} \\ = \sqrt{\frac{3}{9} + 3 - 2(-\frac{1}{2})} = \sqrt{\frac{13}{3}}, \end{cases}$ 于是船速 $v = \frac{BC}{\frac{1}{6}} = 2\sqrt{39}$ (千 **/时). (2) 在 $\triangle OBC$ 中, 由余弦定理, 得 $\cos \angle OBC = \frac{BC^2 + OB^2 - OC^2}{2 \cdot BC \cdot OB} = \frac{\frac{13}{3} + \frac{3}{9} - 3}{2\sqrt{\frac{13}{3} \cdot \frac{\sqrt{3}}{3}}} = \frac{5}{\sqrt{13}}$ 26. 于是 $\sin \angle EBO = \sin \angle OBC = \sqrt{1 - (\frac{5\sqrt{13}}{26})^2} = \frac{3\sqrt{39}}{26}, \begin{cases} \sin \angle BEO = \sin[180^\circ - (\angle EBO + 30^\circ)] = \sin(\angle EBO + 30^\circ) \\ = \frac{3\sqrt{39}}{26} \times \frac{\sqrt{3}}{2} - \frac{5\sqrt{13}}{26} \times \frac{1}{2} = \frac{\sqrt{13}}{13}. \end{cases}$ 在 $\triangle BEO$ 中,由正弦定理,得 $OE = \frac{OB \cdot \sin \angle EBO}{\sin \angle BEO} = \frac{3}{2}$ (千米), $BE = \frac{OB \sin \angle BOE}{\sin \angle BEO} = \frac{\sqrt{39}}{6}$ (千米).于 是从 B 到 E 所需时间 $t = \frac{BE}{v} = \frac{1}{12}$ (时)= 5 分. 再经过 5 分到达海岛的正西方方向,此时 E 点离海岛 1.5 千米. 【训练题】 144. 在 $\triangle ABC$ 中, 若 $A = 60^{\circ}$, AC = 16, 且此三角形的面积为 $220\sqrt{3}$, 则 BC 边的长是 () A. $\sqrt{2400}$ B. 25 C. 51 D. 49 145. 在 $\triangle ABC$ 中, 若 a+b=10, c=6, $C=30^{\circ}$, 则此三角形的面积等于() B. $8(2-\sqrt{3})$ A. $8(2+\sqrt{3})$ 146. 若 $\triangle ABC$ 的三边 a,b,c 满足 $\frac{1}{a+b} + \frac{1}{b+c} = \frac{3}{a+b+c}$, 则 B 等于 () A. 30° D. 120° 147. 在 $\triangle ABC$ 中, 若 $A=60^{\circ}$, 且最大边长和最小边长恰好是方程 $x^2-7x+11=0$ 的两根, 则第三边的边长为 () A. 2 B. 3 C. 4 D. 5 148. 若三角形的三条边氏分别是 4, 5, 6, 则这个三角形的形状 () C. 是钝角三角形 A. 是锐角三角形 B. 是自: 角二角形 D. 不能确定 149. 若三角形的角 A 满足 $\sin A = \frac{\sqrt{3}}{2}$, 则 A 等于 () A. 60° C. 60° 或 120° D. 30° 或 150° B. 120° 150. 若三角形的三内角之比为 1:2:3, 则它们所对边的边长之比为 () C. $11:\sqrt{3}:2$ A. 1:2:3 B. 3:4:5D. 5:6:7

C. 1

D. π

151. 在 $\triangle ABC$ 中, $a(\sin B - \sin C) + b(\sin C - \sin A) + c(\sin A - \sin B)$ 的值是 ()

B. 0

A. $\frac{1}{2}$

152.	若方程 $x^2 \sin A + 2x \sin B + \sin C = 0$ 有重根, 则 $\triangle ABC$ 的三边 a,b,c 满足关系式 ()				
	A. $b = ac$	B. $a = b = c$	C. $c = ab$	$D. b^2 = ac$	
153.	. 在 $\triangle ABC$ 中, 若 $a=1,b=\sqrt{3},A=30^\circ,$ 则 B 的值是 ()				
	A. 60°	B. 60. 或 120°	C. 120°	D. 30° 或 150°	
154.	在 $\triangle ABC$ 中, 若 $B=45^\circ,c=2\sqrt{2},b=\frac{4\sqrt{3}}{3},$ 则 A 的值是 ()				
	A. 15°	B. 75°	C. 105°	D. 15° 或 75°	
155.	在 $\triangle ABC$ 中, 若 $B=45^{\circ}$,	$b = 10, c = 5\sqrt{6}, \text{则} a \ $ 等于(()		
	A. $5(\sqrt{3}+1)$	B. $5(\sqrt{3}-1)$	C. $10(\sqrt{3}+1)$ 或 $10(\sqrt{3}-1)$	D. $5(\sqrt{3}+1)$ 或 $5(\sqrt{3}-1)$	
156.	在 △ABC 中, 若三内角满瓦	$\sin^2 A = \sin^2 B + \sin B \sin$	$C + \sin^2 C$,则 A 等于 ()		
	A. 30°	B. 60°	C. 120°	D. 150°	
157.	在 $\triangle ABC$ 中, 若 $b=2\sqrt{2},a=2,$ 且三角形有解, 则 A 的取值范围是 ()				
	A. $0^{\circ} < A < 30^{\circ}$	B. $0^{\circ} < A \le 45^{\circ}$	C. $0^{\circ} < A < 90^{\circ}$	D. $30^{\circ} < A < 60^{\circ}$	
158.	在 $\triangle ABC$ 中, 若 $a\cos A = b\cos B$, 则 $\triangle ABC$ 的形状 ()				
	A. 只可能是等边三角形	B. 只可能是等腰三角形	C. 只可能是直角三角形	D. 既可能是等腰三角形 也可能是直角三角形	
159.	. 在 Rt $\triangle ABC$ 中, 已知 $C=90^\circ,\ a=2,\ c=\sqrt{29},$ 那么 $\tan B$ 的值等于 ()				
	A. $\frac{2}{5}$	B. $\frac{2\sqrt{29}}{29}$	C. $\frac{5\sqrt{29}}{29}$	D. $\frac{5}{2}$	
160.	. 在 $\triangle ABC$ 巾, 若 $C=90^\circ$, $S_{\triangle ABC}=8\sqrt{3},b=4,$ 则 B 等于 ()				
	A. 15°	B. 30°	C. 45°	D. 60°	
161.	在 $\triangle ABC$ 中, 若 $C=90^{\circ}$, 则 $a^3\cos A+b^3\cos B$ 等于 ()				
	A. c^3	B. abc	C. $(a+b)c^2$	D. $(a + b)c^3$	
162.			$C. (a+b)c^2$ BC 于点 D , 则 AD 的长为	,	
162.	在 Rt $\triangle ABC$ 中, 若 $B=60$,	,	
	在 Rt $\triangle ABC$ 中, 若 $B=60$	°, $C = 45^{\circ}$, $BC = 8$, $AD \perp$ B. $4(\sqrt{3} + 1)$	BC 于点 D , 则 AD 的长为 $C. \ 4(3-\sqrt{3})$	()	
	在 Rt $\triangle ABC$ 中, 若 $B=60$ A. $4(\sqrt{3}-1)$	°, $C = 45^{\circ}$, $BC = 8$, $AD \perp$ B. $4(\sqrt{3} + 1)$	BC 于点 D , 则 AD 的长为 $ \text{C. } 4(3-\sqrt{3}) $ 信范围是 ()	()	
163.	在 Rt $\triangle ABC$ 中, 若 $B=60$ A. $4(\sqrt{3}-1)$ 若 Rt $\triangle ABC$ 的斜边 $AB=$ A. $(1,\sqrt{2}]$ 若 AD 是 Rt $\triangle ABC$ 斜边 $B=$	$^{\circ}$, $C = 45^{\circ}$, $BC = 8$, $AD \perp$ B. $4(\sqrt{3} + 1)$ 2, 则其内切圆的半径 r 的取 B. $[1, \sqrt{2}]$	BC 于点 D , 则 AD 的长为 $C.\ 4(3-\sqrt{3})$ 信范围是 $()$ $C.\ (0,\sqrt{2}-1]$ 立的是 $()$	() D. $4(3+\sqrt{3})$	

165.	在 $\triangle ABC$ 中, 若 $\sin A = \sin A$	nB, 则下列结论中止确的是	()		
	A. $A = B$	B. $A = 180^{\circ} - B$	C. $A = B$ 或 $A = 180^{\circ}$ —	D. $A + B = 90^{\circ}$	
			B		
166.	在 $\triangle ABC$ 中, 若 $\sin A$: \sin	$B:\sin C=3:5:7$,则此三	角形的最大内角的度数等于(
	A. 75°	B. 120°	C. 135°	D. 150°	
167.	在 $\triangle ABC$ 中, 若 $A=60^{\circ}$,	$B=1,S_{\triangle ABC}=\sqrt{3},$ 则 $\frac{1}{\sin x}$	$\frac{a+b+c}{A+\sin B+\sin C}$ 等于 ()		
	A. $\frac{8\sqrt{3}}{3}$	B. $\frac{2\sqrt{39}}{3}$	C. $\frac{26\sqrt{3}}{3}$	D. $2\sqrt{7}$	
168.	若 $\triangle ABC$ 的三边 a,b,c 满	足 $(a+b-c)(c-a)=0$, 则	此三角形的形状是 ()		
	A. 不等腰的锐角三角形	B. 直角三角形	C. 不等腰的钝角三角形	D. 等腰三角形	
169.	在 $\triangle ABC$ 中, 若 $\sin A \cdot \cos A$	$B < 0$,则 $\triangle ABC$ 的形状 ()			
	A. 是锐角三角形	B. 是直角三角形	C. 是钝角三角形	D. 不能确定	
170.	在 $\triangle ABC$ 中, 若 $\sin A = 2$	$\cos B \cdot \sin C$,则此三角形的刑	沙状 ()		
	A. 是等腰三角形, 但不一	B. 是等边三角形	C. 是不等腰的直角三角	D. 是边长互不相等的三	
	定是等边三角形		形	角形	
171.	一角槽的横断面如图所示,	四边形 ADEB 是矩形, 且 o	$\alpha = 50^{\circ}, \ \beta = 70^{\circ}, \ AC = 900^{\circ}$	mm, BC = 150mm, 则	
	DE 的长等于				
	A. 210mm	B. 200mm.C	C. 198mm	D. 171mm	
	(第 148 题)				
172.	$\triangle ABC$ 的 BC 边上有一点	D , 满足 $\angle CAD = \angle DAB =$	$=60^{\circ}$,且 $AC=3$, $AB=6$,见	リ <i>AD</i> 的长为 ()	
	A. 2	B. 2.5	C. 3	D. 3.5	
173.	设 a, a+1, a+2 是钝角三	角形的三边, 则 a 的取值范围	月是 ()		
	A. $0 < a < 3$	B. $1 < a < 3$	C. $3 < a < 4$	D. $4 < a < 6$	
174.	在 △ABC 中, 根据条件求	三角形的内角: (1) 若 a =	$\sqrt{3} + 1, \ b = 2, \ c = \sqrt{6}, \ \c{1}$		
	若 $a:b:c=\sqrt{2}:(1+\sqrt{3}):2,$ 则 $A=$ (3) 若三角形中三边长的比为 $3:4:\sqrt{37},$ 则				
	这个三角形的最大内角等于 (4) 若 $(a+b+c)(b+c-a)=3bc$, 则 $A=$ (5) 若				
	$2\lg(a^2+b^2-c^2)=\lg 2+2\lg a+2\lg b,$ 则 $C=$ (6) 若三角形面积 $S=\frac{1}{4\sqrt{3}}(b^2+c^2-a^2),$ 则				
	$A = \underline{\hspace{1cm}}$.			·	
175.		三角形的边长: (1) 若 $a=6$,			
	为 30° , 它的一邻边边长为 4 , 对边长为 $\frac{5}{2}$, 则另一邻边边长为				
	条邻边长是 $\sqrt{3}+1$, 对边长是 2, 则其另一条邻边长等于 (4) 若 $\frac{b-1}{c+2}=\frac{2}{3},\ a=\sqrt{21},\ A=60^\circ,$				

- 176. 在 $\triangle ABC$ 中,根据条件求三角形的内角: (1) 若 $b=2c\sin B$,则 C=______. (2) 若 $a=4,\ b=6,$ $\sin B=\frac{3}{4}$,则 A=_____. (3) 若 $a=2\sqrt{2},\ b=2\sqrt{3},\ A=45^{\circ}$.则 C=_____.
- 178. 在 $\triangle ABC$ 中,根据条件直接写出结论: (1) 若 $\sqrt{(\sin B \frac{\sqrt{2}}{2})^2} + (\sqrt{3} \tan C)^2 = 0$,则 $A = \underline{\hspace{1cm}}$. (2) 若 AC = 5, $B = 60^\circ$, $AD \perp BC$ 于点 D,且 AD = 3,则 $BC = \underline{\hspace{1cm}}$, $AB = \underline{\hspace{1cm}}$. (3) 若 $C = 90^\circ$, $CD \perp AB$ 于点 D,BD = 6,CD = 2,则 $\sin A = \underline{\hspace{1cm}}$.
- 179. 在 $\triangle ABC$ 中,根据条件计算: (1) 若 2B = A + C,且边 AC = 2,则外接圆半径 R =______. (2) 若面积 $S = \frac{1}{4}$,外接圆半径 R = 1,则 abc =_____. (3) 若 $\frac{a}{\sin A} = 2$,则 $\frac{a+b+c}{\sin A+\sin B+\sin C} =$ _____. (4) 若 (b+c): (c+a): (a+b) = 4:5:6,则 $\sin A: \sin B: \sin C =$ ______. (5) 若 $A = 105^\circ$, $B = 30^\circ$, $BC = \frac{\sqrt{6}}{2}$,则的 B 分线的长为_____. (6) 若 BC 边上的中线 $m = \sqrt{\frac{8-3\sqrt{3}}{2}}$,且 $a = \sqrt{3}+1$, $b = \sqrt{6}$,则 B =_____.
- 180. 根据条件判断 $\triangle ABC$ 的形状: (1) 若 $\sin A: \sin B: \sin C=2:3:4$, 则这个三角形是_____ 三角形. (2) 若关于 x 的方程 $x^2 + \cos B \cdot x \frac{a}{c} = 0$ 的两根之和等于两根之积, 则这个三角形是三角形. (3) 若 $b\sin B = c\sin C$, 则这个三角形是_____ 三角形. (4) 若 $a\cos A = b\cos B$, 则这个三角形是_____ 三角形是____ 三角形. (5) 若 $\sin A = 2\sin B\cos C$, 且 $\frac{a+b-c}{b+c-a} = \frac{3b}{c}$, 则这个三角形是_____ 三角形. (6) 若 $B = 30^\circ$, c = 150, $b = 50\sqrt{3}$, 则这个三角形是_____ 三角形. (7) 若 $b = a\sin C$, $c = a\sin(90^\circ B)$, $B < 90^\circ$, 则这个三角形是_____ 三角形. (8) 若 $a = \sqrt{3} 1$, $b = \frac{\sqrt{6}}{2}$, $C = \frac{\pi}{4}$, 则这个三角形是_____ 三角形.
- 181. (1) 在 $\triangle ABC$ 中,已知 a=8,b=7,c=5,求 B 及三角形的面积 S. (2) 在 $\triangle ABC$ 中,已知 a=12, $b=4\sqrt{3}$, $A=120^{\circ}$,求 C 及三角形的面积. (3) 在 $\triangle ABC$ 中,已知 a=7,b=3,c=5,求最大角与 $\sin C$ 的 值. (4) 在 $\triangle ABC$ 中,已知 $b=\sqrt{2}$, c=1, $B=45^{\circ}$,求 a,C 的值. (5) 在 $\triangle ABC$ 中,已知 $A=45^{\circ}$, $B=60^{\circ}$, a=10,求 b,c 的值. (6) 在 $\triangle ABC$ 中,已知 a=10, b=6, $C=120^{\circ}$,求 $\sin A$ 的值. (7) 在 $\triangle ABC$ 中,已 知一个内角是 60° ,其对边为 7,且而积为 $10\sqrt{3}$,求其他两边的长. (8) 已知钝角三角形的三边长是三个连续偶数,求三边长.
- 182. 根据条件判断 $\triangle ABC$ 的形状: $(1)A = 60^{\circ}$, a = 1, b + c = 2. $(2)(b c)\cos^2 A = b\cos^2 B c\cos^2 C$. $(3)\tan\frac{A B2 = \frac{a}{-}b}{a + b}$.
- 183. 在 $\triangle ABC$ 中,求证: $(1)a(\sin B \sin C) + b(\sin C \sin A) + c(\sin A \sin B) = 0$. $(2)\sin^2 A + \sin^2 B + \cos^2 C + 2\sin A\sin B\cos(A+B) = 1$. $(3)a^2(\cos^2 B \cos^2 C) + b^2(\cos^2 C \cos^2 A) + c^2(\cos^2 A \cos^2 B) = 0$.

$$(4)(a^2 - b^2 - c^2)\tan A + (a^2 - b^2 + c^2)\tan B = 0. (5)\frac{a - c\cos B}{b - c\cos A} = \frac{\sin B}{\sin A}.$$

- 184. 在 $\triangle ABC$ 中: (1) 已知 (a+b+c)(a+b-c)=3ab, 求 C. (2) 已知 ab=60, ab=60, 面积 S=15, 求三内角. (3) 已知三边长分别为 k^2+k+1 , k^2-1 , 2k+1, 求最大内角. (4) 已知 (b+c):(c+a):(a+b)=4:5:6 求最大内角. (5) 已知面积 $S=\sqrt{3}$, $a=2\sqrt{3}$, b=2, 求 A,B,c. (6) 已知 $A=120^\circ$, AB+BC=21, AC+BC=20, 求 BC 的长.
- 185. 在 $\triangle ABC$ 中: (1) 已知 $A>90^\circ$, $\sin B=\frac{5\sqrt{3}}{14}$, $2^{5a-7b}=1$, 求 a:b:c. (2) 已知两边之和为 4, 其夹角为 60°, 分別求周氏的最小值和面积的最大值.
- 186. 在 $\triangle ABC$ 中: (1) 已知 $C=90^\circ$, 求证: $\sin 2A \cdot \cot A = \frac{2b^2}{c^2}$. (2) 已知 A:B=1:2, 求证: $\frac{a}{b} = \frac{a+b}{a+b+c}$. (3) 已知 C=2B, 求证: $c^2-b^2=ab$. (4) 已知 $A=100^\circ$, AB=AC, 角 B 的平分线交 AC 于点 D, 求证: AD+DB=BC. (5) 已知 2b=a+c, 求证: ① $\tan \frac{A}{2} \cdot \tan \frac{C}{2} = \frac{1}{3}$; ② $\cos A+\cos C-\cos A \cdot \cos C + \frac{1}{3} \sin A \cdot \sin C$ 为定值. (6) 已知 $\sin A+\sin C=2\sin B$, 且最大角与最小角之差为 90° , 求证: 三边之比为 $(\sqrt{7}-1):\sqrt{7}:(\sqrt{7}+1)$. (7) 已知 $C=90^\circ$, CD 是斜边 AB 上的高,且 $\triangle CBD$ 的面积是 $\triangle ACD$, $\triangle ABC$ 面积的比例中项,求证: $\sin B=\frac{\sqrt{5}-1}{2}$.
- 187. 在 $\triangle ABC$ 中: (1) 已知 B 的 2 倍等于其他两角的和,最长边长与最短边长的和是 8cm,最长边长与最短边长的积是 15cm2,求面积及 B 所对边的长. (2) 已知 B 为锐角,b=7cm,外接圆半径 $R=\frac{7\sqrt{3}}{3}$ cm,面积 $S=10\sqrt{3}$ cm2,求其他两边的长. (3) 已知 $A=120^\circ$, $\sin B:\sin C=3:2$,且面积 $S=6\sqrt{3}$,求 a 的值. (4) 已知 $\sin A:\sin B:\sin C=4:5:6$,且最大边为 10,求外接圆半径 R 和内切圆半径 r.
- 188. 如图, 在圆内接四边形 *ABCD* 中, 已知边 *AB* = 3, *AD* = 5, 对角线 *BD* = 7, ∠*BDC* = 45°, 求: (1)sin∠*BAD* 的值. (2) 边 *BC* 的长. ______(第 166 题)______(第 165 题)
- 189. 如图, AB 是半圆 O 的直径, 延长 AB 到 C, 使 BC = AB, D 是半圆上一点, 连接 CD, 且 $\tan \angle CDB = \frac{1}{3}$, 求 $\cos \angle DAB$ 的值.
- 190. 已知 R,r 分別是直角三角形的外接圆半径与内切圆半径, 求 $\frac{r}{R}$ 的最大值, 并说明此时三角形的形状.
- 191. 如图, 为了测定河的宽度, 在一岸边选定两点 A, B, 望对岸标记物 C, 测得 $\angle CAB = 30^{\circ}$, $\angle CBA = 75^{\circ}$, $AB = 120 \, \text{\pms}$, 求河的宽度. (第 168 题)
- 192. 如图, 在塔底 B 测得山顶 C 的仰角为 60° , 在山顶 C 测得塔顶 A 的俯角为 45° , 已知塔高 AB=20 米, 求山高 DC. (第 169 题)
- 193. 如图, 半圆 O 的直径 MN 的长为 2, A 为直径延长线上一点, 且 OA = 2, B 为半圆上任意一点, 以 AB 为 边作等边 $\triangle ABC(A,B,C$ 顺时针排列), $\angle AOB$ 等于多少时, 四边形 OACB 的面积最大? 最大面积是多少? (第 170 题)
- 194. 利用二角代换求下列函数的值域: $(1)y = x + \sqrt{1-x^2} + 3$. $(2)y = \sqrt{x-4} + \sqrt{15-3x}$. $(3)y = 2\sqrt{x+3} + \sqrt{2-x}$. $(4)S = x^2 + xy + y^2 (1 \le x^2 + y^2 \le 2)$. $(5)y = \sqrt{1+x} \sqrt{x}$. 注意常用的三角代换有如下几种: 若

- $0 \leq x \leq 1, \ \textbf{可令} \ x = \sin^2 \alpha \ \textbf{或令} \ x = \cos^2 \alpha (0 \leq \alpha \leq \frac{\pi}{2}), \ \textbf{或令} \ x = \tan \alpha (0 \leq \alpha \leq \frac{\pi}{4}); \ \textbf{若} \ -1 \leq x \leq 1, \ \textbf{可令}$ $x = \sin \alpha (-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2}), \ \textbf{或令} \ x = \cos \alpha (0 \leq \alpha \leq \pi), \ \textbf{或令} \ x = \tan \alpha (-\frac{\pi}{4} \leq \alpha \leq \frac{\pi}{4}); \ \textbf{若} \ x^2 + y^2 = R^2, \ \textbf{可令}$ $\Rightarrow x = R \cos \alpha, \ y = R \sin \alpha (0 \leq \alpha \leq 2\pi); \ \textbf{描} \ x \in \mathbf{R}, \ \textbf{可令} \ x = \tan \alpha (-\frac{\pi}{2} < \alpha < \frac{\pi}{2}); \ \textbf{描} \ x^2 y^2 = 1, \ \textbf{可令}$ $x = \sec \alpha, \ y = \tan \alpha (0 \leq \alpha < \frac{\pi}{2})$
- 195. (1.) 求函数 $f(x) = \sqrt{x-1} + \sqrt{2-x}$ 的最大值、最小值. (2) 已知 a,b>0, 求函数 $f(x) = a\sqrt{1-x^2} + bx$ 的最大值、最小值. (3) 已知 $0 \le y < x < \frac{\pi}{2}$, 且满足 $\tan x = 3\tan y$, 求 x-y 的最大值.
- 196. $(1)0 < \alpha < \beta < \frac{\pi}{2}$, 且 $\sin \alpha$, $\sin \beta$ 是方程 $x^2 (\sqrt{2}\cos 40^\circ)x + \cos^2 40^\circ \frac{1}{2} = 0$ 的两根, 求 $\cos(2\alpha \beta)$ 的 值. (2) 在 $\triangle ABC$ 中, $\tan A$, $\tan B$ 是关于 x 的二次方程 $x^2 + mx + m + 1 = 0$ 的两个实根, 求实数 m 的取 值范围.
- 197. 如图, 已知 P 为 $\triangle ABC$ 内一点, 且满足 $\angle PAB = \angle PBC = \angle PCA = \theta$, 求证: $\cot \theta = \cot A + \cot B + \cot C$. (第 174 题)
- 198. 若不等式 $\frac{(x^2+1)\cos\theta x(\cos\theta 5) + 3}{x^2 x + 1} > \sin\theta 1$ 对任意实数 x 恒成立, 求 θ 的取值范围.
- 199. 已知函数 $f(x) = a + b \cos x + c \sin x$ 的图象过两点 $(0, 1), (\frac{\pi}{2}, 1),$ 且当 $x \in [0, \frac{\pi}{2}]$ 时, $|f(x)| \le 2$, 求实数 a 的取值范围.
- 201. (1) 若 $x \neq k\pi(k \in \mathbf{N})$,求证: ① $\frac{1}{\sin 2x} = \cot x \cot 2x$; ② $\frac{1}{\sin 2x} + \frac{1}{\sin 2^2x} + \cdots + \frac{1}{\sin 2^nx} = \cot x \cot 2^nx$. (2) 求证: $\tan x \tan 2x + \tan 2x \tan 3x + \cdots + \tan(n-1)x \tan nx = \frac{\tan nx}{\tan x} - n(n \in \mathbf{N})$. (3) 求证: $(2\cos \theta - 1)(2\cos 2^2\theta - 1)\cdots(2\cos 2^{n-1}\theta - 1) = \frac{2\cos 2^n\theta + 1}{2\cos \theta + 1}$
- 202. 求 $\cos \frac{\pi}{17} \cos \frac{2\pi}{17} \cos \frac{3\pi}{17} \cos \frac{4\pi}{17} \cos \frac{5\pi}{17} \cos \frac{6\pi}{17} \cos \frac{7\pi}{17} \cos \frac{8\pi}{17}$ 的值.
- 203. 实数 x, y, z 满足 $\sin x = a \sin(y z)$, $\sin y = b \sin(z x)$, $\sin z = c \sin(x y)(a, b, c \neq 1)$, 且 $\sin(x y)$, $\sin(y z)$, $\sin(z x)$ 都不为 0, 求 a, b, c 应满足的关系式.