学院	姓名	学号	1	壬课老师	考场教	室		
	密	封	…线以		答	烫······无···	效	
电子科	技大学 20	13-2014	学年第_	<u>2</u> 学期期	<u>末</u> 考证	t <u>A</u> 卷智	答案及评	分细则
课程名称:_	算法分析与证	<u>设计</u> 考试形	: <u>闭卷</u>	_考试日期:	_2014_年_	月日	考试时长	: <u>120</u> 分钟
课程成绩构成	戊: 平时 <u>1</u>	<u>0</u> %,	期中 <u>10</u>	%,实	脸10	%,期	末 <u>70</u>	_%
本试卷试题E	由七新	3分构成, ‡	失 <u>8</u> 页。					
题号	_	$\vec{-}$	三	四	五.	六	七	合计
得分								
	一、判断题(•	, _ , ,	运动力小			
1、算法时间							п / \/	
2、分治算法 3、备忘录方	_,_,,]	手。(X ,)
3、 备芯浆刀4、 贪心算法								
5、当一个图中						的是同一名	、 最小生成	财_ (,/)_
得分	二、选择题(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			W. 97 12 1902	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A. 7	,,,
2、用贪心算	法求解活动的	安排问题时	,将所有活	动按(B)排列的贪	心选择策略	各能够得到金	全局最优解。
A. 冲突	数非减序	B.结束时间]非减序	C. 结束时间	可非增序	D. 活动持续	卖时间非减	序
4、递归经常	与哪种算法计	设计策略同	时出现(A	\).				
A. 分治	算法 B. 云	协态规划	C. 贪心算	法 D. 回	溯法			
5、下列递归	式不能用主力	方法求解的	是 (A)。					
A. $T(n)$	= 2T(n/2) + n	$\log n$ B. T	$\Gamma(n) = 4\mathrm{T}(n/n)$	$2) + n^3 \log n$	C. $T(n) =$	= 3T(n/2) + n	$n^2 \log n$	
D. $T(n) =$	=4T(2n/3)+n	n^4						
得分	三、综合题(共 40 分)						

学院	 学号	任课老师	_考场教室	_座位号

·······密·······封·······线·······以········内·······答·······题·······无·······效······

1、简述动态规划和分治算法的共同点和不同点。(5分)

解:共同点-递归子结构:将待求解问题分解成若干个规模较小的相同类型的子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 (2分)不同点-重叠子问题:适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。 (3分)

2、给定包含{a,c,h,i,o,q,u}字符集的文本文件,每个字符在文件中出现次数如下表,试用 huffman 编码对该文件进行编码,要求画出 huffman 树,给出每个字符的编码,并计算编码后的文件 bit 长度。(8分)

字符	a	c	h	i	0	q	U
次数	33	12	7	43	15	6	24

解: huffman 树和字符编码如下,

3. 如果
$$f_1(n) = O(f(n))$$
, $g_1(n) = O(g(n))$, 证明 $f_1(n) \times g_1(n) = O(f(n) \times g(n))$ 。 (7分)

即 $f_1(n) \times g_1(n) = O(f(n) \times g(n))$ 成立。 (3分)

4、从节点1开始,用 Prim 算法求下图的最小生成树,要求画出最小生成树,并给出最小生成树中边的添加次序和权重之和。(6分)

解:最小生成树如下,

学院
5、用数学归纳法证明递归式 $T(n) = 9T(n/3) + n^2$ 的渐近界为 $T(n) = O(n^2 \log n)$ 。(7分)
证明: 假设当 $k < n$ 时, $T(k) \le ck^2 \log k$, 其中 c 为常数。
$\leq 9c(n/3)^2 \log(n/3) + n^2$ (首次展开 2 分) = $cn^2 (\log n - \log_2 3) + n^2$
$= cn^2 \log n - (c \log_2 3 - 1)n^2$ $\leq cn^2 \log n$ if $c \geq \log_3 2$ 因此,命题得证。
6、给定按升序排列的 n 个不同整数存于数组 $a[1:n]$ 中,请设计 $O(\log n)$ 的算法找到下标 i , $1 \le i \le n$,
使得 $a[i] = i$,如不存在这样的下标,则返回 0 。 $(7 分)$
解:
\Leftrightarrow head = 1, rear = n .
(1) 当 head <= rear 时,令 mid = [(head + rear)/2]; (2分)
(2) 如果 $a[mid] = mid$,返回 mid 值,结束。
如果 $a[mid] < mid$,令 head = $mid + 1$,返回(1)继续执行;

学院		学号	_任课老师	_考场教室	_座位号
	密	·封·······线········l	以内答		······效······

得 分

四、将下列5个函数按渐近增长率由低至高进行排序,要求写出比较过程。(10分)

$$f_1(n) = n(\log n)^n$$
, $f_2(n) = \log n^{100\log n}$, $f_3(n) = n^2 \log n$, $f_4(n) = 2^{\log n + \log \log n}$, $f_5(n) = \sqrt[10]{n}$

解:
$$f_2(n) = \log n^{100\log n} = 100\log^2 n$$
, $f_4(n) = 2^{\log n + \log\log n} = n\log n$,

(1)
$$f_2(n)$$
 是对数函数的幂, $f_5(n)$ 是幂函数,因此 $f_2(n) = O(f_5(n))$;.....(2分)

(4) 对 $f_1(n)$ 和 $f_3(n)$ 取对数,有

因此,5个函数按渐近增长率由低至高排序为 $f_2(n), f_3(n), f_4(n), f_3(n), f_1(n)$ 。......(2分)

学院	_姓名	学号	_任课老师	_考场教室	_座位号
			1		

得 分

五、用动态规划算法求解如下 5 个矩阵连乘积 $A_1 \times A_2 \times A_3 \times A_4 \times A_5$ 的最优加括号方式,使得所需乘法计算次数最少。要求给出求解过程表格、最优加括号方式和最少乘法次数。(10 分)

A_1	A_2	A ₃	A ₄	A ₅
11×8	8×15	15×12	12×9	9×10

解:设计算矩阵链 A[i:j]所需要的最少数乘次数 m[i,j],此时矩阵链 A[i:j]的最优断开位置为 s[i,j]。

学院	姓名	_ 学号	任课老师	考场教室	座位号	

得 分

六、用 Dijkstra 算法求下图中顶点 1 到顶点 6 的最短路径,要求给出计算过程表格和最优解、最优值。(10 分)

解:

迭代	S	u	Distance from node 1 to node #						
		"	2	3	4	5	6		
初始	{1}	-	2	∞	15	∞	∞		
1	{1,2}	2	2	7	12	∞	8		
2	{1,2,3}	3	2	7	11	14	19		
3	{1,2,3,4}	4	2	7	11	13	19		
4	{1,2,3,4,5}	5	2	7	11	13	17		
5	{1,2,3,4,5,6}	6	2	7	11	13	17		

.....(每列2分)
.....(每列2分)
.....(每列2分)

学院				任课老师			考场教室				
				15				H-2			

得 分

七、(一) 设计一个分治算法找到 n 个元素的序列中的第二大元素,使得最坏情况下比较次数不超过 $n + \log n - 2$; (二) 建立算法所需比较次数的递归式,并用直接展开法求解。(10 分)

解: (一)

- (二) 算法所需比较次数的递归式求解:

$$T(n) = T(n/2) + n/2 + 1$$
 (递归式 2 分)

$$= T(n/2^2) + n/2^2 + 1 + n/2 + 1$$

$$= T(n/2^{2}) + (1 - 1/2^{2})n + 2$$

$$= T(n/2^{3}) + n/2^{3} + 1 + (1 - 1/2^{2})n + 2$$

$$= T(n/2^3) + (1 - 1/2^3)n + 3$$

 $=\cdots$

$$= T(n/2^{k}) + (1 - 1/2^{k})n + k$$

= ...

$$=T(n/2^{\log n-1})+(1-1/2^{\log n-1})n+\log n-1$$
 (展开式的一般形式 2 分)

$$=1+n-2+\log n-1$$

$$= n + \log n - 2$$