更多资料到菜鸟导航网站查看:www.cainiaodaohang.com菜鸟导航,国内领先的电路设计导航网站!

2019年全国大学生电子设计竞赛试题

参赛注意事项

- (1) 8月7日8:00 竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题;高职高专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。
- (2) 参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。
- (3) 参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的有效证件(如学生证)随时备查。
- (4) 每队严格限制 3人,开赛后不得中途更换队员。
- (5) 竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设计制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。
- (6) 8月10日20:00竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。

线路负载及故障检测装置(C题)

【本科组】

一、任务

设计并制作线路负载及故障检测装置,示意图如图1所示。

检测装置只通过两个连接端子与两根导线连接。导线上 A、B 两点距离各自连接端子约 5cm,远端 30cm 范围内为连接负载和故障区域。

负载由电阻 (额定功率 0.25W)、电容 (耐压 16V) 和电感 (额定电流 50mA) 3 个元件中任意 2~3 个元件串联或者并联组成。其中电阻值范围: $200\Omega~2k\Omega$,电容值范围:200nF~2μF,电感值范围:100μH~1mH。

检测装置由 5V 单电源供电,能实时检测和显示负载网络结构,负载开路、短路故障报警,以及短路故障点位置测量。响应时间不大于 5s。

图 1 线路负载及故障检测装置示意图

二、要求

1. 基本要求

- (1) 具有负载开路和短路故障分别指示的报警功能。
- (2) 测试现场给出电阻、电容和电感 3 个元件,分别测量每个元件值并稳定显示,相对误差的绝对值不大于 5%。每个元件测量时间不大于 5s。
- (3) 可检测由给定电阻、电容和电感 3 个元件中,任意 2~3 个元件串联或者并联组成负载的网络结构。

2. 发挥部分

两根导线上的短路故障点与各自的 A 点或 B 点距离相等。

- (1) 测量短路故障点与 A 点(或 B 点)的距离并稳定显示,误差的绝对 值不大于 1.0cm。
- (2) 由信号发生器产生扫频信号 1 (信号参数见说明 (3),信号发生器的"地"与电源"地"相连),其输出端串接 1pF 电容后,接入导线上A点处(见图 1 所示),用于模拟环境噪声。测量短路故障点与 A点(或 B点)的距离并稳定显示,误差的绝对值不大于 1.0cm。
- (3) 在发挥部分(2)的基础上,由另一台信号发生器产生扫频信号 2(信号参数见说明(3)),其输出端串接 1pF 电容后,接入导线上 B 点处(见图 1 所示)。测量短路故障点与 A 点(或 B 点)的距离并稳定显示,误差的绝对值不大于 1.0cm。
- (4) 其他。

三、说明

- (1) 测试现场提供元件,并用高精度仪器测量元件值(测量频率 1kHz)。 每个元件的两端接有线夹,用于负载网络搭建和与导线的连接。
- (2) 导线采用网线(直径 0.51mm~0.58mm)内的铜芯,导线和短路线由参赛者自带。
- (3) 扫频信号 1 参数:方波,峰峰值 5V,均值 0,线性方式,初始频率 100Hz,终止频率 1kHz,扫描时间 100ms,重复扫描。 扫频信号 2 参数:方波,峰峰值 5V,均值 0,线性方式,初始频率 1MHz,终止频率 10MHz,扫描时间 10ms,重复扫描。
- (4) 在负载和故障检测环节,要求无需人工干预,装置能实时自动检测负载变化、故障报警和短路故障点定位。短路故障点位置显示稳定。
- (5) 发挥部分测试中,允许短路线与导线通过焊接相连。
- (6) 参赛作品中不得使用测距传感器。

四、评分标准

	项目	主要内容	满分
设计报告	系统方案	比较与选择 方案描述	4
	理论分析与计算	元件测量 负载网络结构判断 短路故障点定位 抗干扰方法 误差分析	6
	电路与程序设计	电路设计 程序设计	4
	测试方案与测试结果	测试方案 测试结果完整性 测试结果分析	4
	设计报告结构及规范性	摘要 正文结构 图表规范性	2
	合计		20
基本要求	完成第(1)项		8
	完成第(2)项		21
	完成第(3)项 合计		50 50
发挥部分	完成第(1)项		14
	完成第(2)项		14
	完成第(3)项		16
	其他		6
	合计		50
总分			120