Proof. We can prove the above identity assuming that x^* and y^* are of the form e_I^* and e_J^* using Proposition 34.18 and leave the details as an exercise for the reader.

Thus, $\exists: E \times \bigwedge^{q+1} E^* \longrightarrow \bigwedge^q E^*$ is almost an anti-derivation, except that the sign $(-1)^s$ is applied to the wrong factor.

We have a similar identity for the other version of the left hook

$$\lrcorner: E^* \times \bigwedge^{q+1} E \longrightarrow \bigwedge^q E,$$

namely

$$u^* \mathrel{\lrcorner} (x \land y) = (-1)^s (u^* \mathrel{\lrcorner} x) \land y + x \land (u^* \mathrel{\lrcorner} y)$$

for every $u^* \in E^*$, $x \in \bigwedge^{q+1-s} E$, and $y \in \bigwedge^s E$.

An application of this formula when q=3 and s=2 yields an interesting equation. In this case, $u^* \in E^*$ and $x, y \in \bigwedge^2 E$, so we get

$$u^* \, \lrcorner \, (x \wedge y) = (u^* \, \lrcorner \, x) \wedge y + x \wedge (u^* \, \lrcorner \, y).$$

In particular, for x = y, since $x \in \bigwedge^2 E$ and $u^* \, \lrcorner \, x \in E$, Proposition 34.12 implies that $(u^* \, \lrcorner \, x) \wedge x = x \wedge (u^* \, \lrcorner \, x)$, and we obtain

$$u^* (x \wedge x) = 2((u^* x) \wedge x).$$
 (†)

As a consequence, $(u^* \, \lrcorner \, x) \wedge x = 0$ iff $u^* \, \lrcorner \, (x \wedge x) = 0$. We will use this identity together with Proposition 34.25 to prove that a 2-vector $x \in \bigwedge^2 E$ is decomposable iff $x \wedge x = 0$.

It is also possible to define a right interior product or right hook \bot , using multiplication on the left rather than multiplication on the right. Then we use the maps

$$\mathsf{L}: \bigwedge^{p+q} E^* \times \bigwedge^p E \longrightarrow \bigwedge^q E^*$$

to make the following definition.

Definition 34.10. Let $u \in \bigwedge^p E$ and $z^* \in \bigwedge^{p+q} E^*$. We define $z^* \, \sqcup \, u \in \bigwedge^q E^*$ to be the q-vector uniquely defined as

$$\langle z^* \, | \, u, v \rangle = \langle z^*, u \wedge v \rangle, \quad \text{for all } v \in \bigwedge^q E.$$

This time we can prove that

$$z^* \, \llcorner \, (u \land v) = (z^* \, \llcorner \, u) \, \llcorner \, v,$$

so the family of operators $\bigsqcup_{p,q}$ defines a right action

$$L: \bigwedge E^* \times \bigwedge E \longrightarrow \bigwedge E^*$$