

Allen Wang

huy G:

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No.: CTL1509192763-WF

Compiled by: Jacky Chen (position+printed name+signature) (File administrators)

Tested by: Allen Wang (position+printed name+signature) (Test Engineer)

Tracy Qi Approved by: (position+printed name+signature) (Manager)

Product Name...... 4CH WIFI NVR KITS

Model/Type reference...... SN-NVK-7304D

List Model(s)..... See page 2 Trade Mark..... szsinocam

FCC ID...... 2AF5Z-7304D

Applicant's name..... Shenzhen sinocam Technology Co., Ltd.

Floor 2, Building C1, No.11, North Area, Shangxue Industrial Address of applicant..... Park, Jihua Road, Longgang District, Shenzhen, China.

Test Firm..... Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road, Address of Test Firm.....

Nanshan District, Shenzhen, China 518055

Test specification.....

Standard...... FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz.

TRF Originator..... Shenzhen CTL Testing Technology Co., Ltd.

Master TRF...... Dated 2011-01

Date of Receipt..... Sep. 24, 2015

Date of Test Date...... Sep. 25, 2015 - Oct. 07, 2015

Data of Issue...... Oct. 08, 2015

Result.... Positive

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

TEST REPORT

Test Report No. : CTL1509192763-WF Oct. 08, 2015

Date of issue

Equipment under Test : 4CH WIFI NVR KITS

Model /Type : SN-NVK-7304D

Listed Models : SN-NVK-8003W10, SN-NVK-8003W13, SN-NVK-8004W10, SN-NVK-8004W13, SN-NVK-8005W10, SN-NVK-8005W13, SN-NVK-6004E10, SN-NVK-6004E13,

SN-NVK-6004G10, SN-NVK-6004G13, SN-NVK-6004W10, SN-NVK-6004W13, SN-NVK-6004W10, SN-NVK-6004W13, SN-NVK-6004W10, SN-NVK-6004H13, SN-NVK-6004H10, SN-NVK-6004H13, SN-NVK-5004M10, SN-NVK-5008M10, SN-NVK-5008M13, SN-NVK-8006W10, SN-NVK-8006W13, SN-NVK-8007W10, SN-NVK-8007W13, SN-NVK-8008W10, SN-NVK-8008W13, SN-NVK-8009W10, SN-NVK-8009W13, SN-NVK-8010W10, SN-NVK-8010W13, SN-NVK-8011W10, SN-NVK-8011W13, SN-NVK-8012W10, SN-NVK-8012W13, SN-NVK-8013W10, SN-NVK-8013W13, SN-NVK-8014W10, SN-NVK-8014W13, SN-NVK-8015W13, SN-NVK-8014W10, SN-NVK-8015W13,

SN-NVK-7304D,

SN-IPC-5021SW, SN-IPC-5021BSW, SN-IPC-5021CSW, SN-IPC-5022SW, SN-IPC-5022BSW, SN-IPC-5022CSW, SN-IPC-5032SW, SN-IPC-5032BSW, SN-IPC-5032CSW, SN-IPC-5033BSW, SN-IPC-5033CSW, SN-IPC-5034SW, SN-IPC-5034SW, SN-IPC-5034SW, SN-IPC-5034CSW, SN-IPC-5023SW, SN-IPC-5023BSW, SN-IPC-5023CSW, SN-IPC-5024SW, SN-IPC-5024CSW, SN-IPC-5025SW, SN-IPC-5025BSW, SN-IPC-5025CSW, SN-IPC-5026SW, SN-IPC-5026CSW, SN-IPC-5027SW, SN-IPC-5027BSW, SN-IPC-5027CSW, SN-IPC-5028BSW, SN-IPC-5028CSW, SN-IPC-5029SW, SN-IPC-5029CSW, SN-IPC-5042SW, SN-IPC-5042SW, SN-IPC-5042SW, SN-IPC-5042SW, SN-IPC-5042BSW, SN-IPC-5042SW, SN-IPC-5042BSW, SN-IPC-5042CSW, SN-IPC-5242BSW, SN-IPC-5242CSW, SN-IPC-5030CSW, SN-IPC-5031SW

Applicant : Shenzhen sinocam Technology Co., Ltd.

Address : Floor 2, Building C1, No.11, North Area, Shangxue Industrial Park,

Jihua Road, Longgang District, Shenzhen, China

Manufacturer : Shenzhen sinocam Technology Co., Ltd.

Address : Floor 2, Building C1, No.11, North Area, Shangxue Industrial Park,

Jihua Road, Longgang District, Shenzhen, China

rest result Pass "	Test result	Pass *
--------------------	-------------	--------

^{*} In the configuration tested, the EUT complied with the standards specified page 5.

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

** Modified History **

Revisions	Description	Issued Data	Report No.	Remark
Version 1.0	Initial Test Report Release	2015-10-08	CTL1509192763-WF	Tracy Qi

	Table of Contents	Page
1. SU	MMARY	5
1.1.	TEST STANDARDS	5
1.2.	Test Description	5
1.3.	TEST FACILITY	6
1.4.	STATEMENT OF THE MEASUREMENT UNCERTAINTY	6
1.5.	Environmental conditions	7
1.6.	GENERAL DESCRIPTION OF EUT	7
2. DE	SCRIPTION OF TEST MODES AND TEST FREQUENCY	7
2.1.	EQUIPMENTS USED DURING THE TEST	8
2.2.	RELATED SUBMITTAL(S) / GRANT (S)	9
2.3.	Modifications	9
3. TES	ST CONDITIONS AND RESULTS	10
3.1.	CONDUCTED EMISSIONS TEST	10
3.2.	Radiated Emissions and Band Edge	
3.3.	MAXIMUM CONDUCTED OUTPUT POWER	
3.4.	Power Spectral Density	22
3.5.	6db Bandwidth	25
3.6.	Out-of-band Emissions	
3.7.	Antenna Requirement	
4. TES	ST SETUP PHOTOS OF THE EUT	36
5. FX	TERNAL AND INTERNAL PHOTOS OF THE FUT	38

Page 4 of 45

1. SUMMARY

1.1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

KDB558074 D01 V03r03: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

1.2. Test Description

FCC PART 15.247		
FCC Part 15.207	AC Power Conducted Emission PASS	
FCC Part 15.247(a)(2)	6dB Bandwidth	PASS
FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS
FCC Part 15.247(b)	Maximum Conducted Output Power	PASS
FCC Part 15.247(e)	Power Spectral Density	PASS
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS
FCC Part 15.247(d)	Band Edge	PASS
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS

Per Pering Technology

1.3. Test Facility

1.3.1 Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

1.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.5. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

1.6. General Description of EUT

Draduat Name	ACLIMIE NVD ZITC	
Product Name:	4CH WIFI NVR KITS	
Model/Type reference:	SN-NVK-7304D	
Power supply:	DC 12V from adapter	
Adapter information:	Model No.:RS-AB1000 Input: AC 100~240V, 50/60Hz 0.45A Max Output:12V===1A	
WIFI		
Supported type:	802.11b/802.11g/802.11n(H20)/802.11n(H40)	
Modulation:	802.11b: DSSS 802.11g/802.11n(H20)/802.11n(H40): OFDM	
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz 802.11n(H40): 2422MHz~2452MHz	
Channel number:	802.11b/802.11g/802.11n(H20): 11 802.11n(H40): 7	
Channel separation:	5MHz	
Antenna type:	External Antenna	
Antenna gain:	2.4dBi	

Note: For more details, refer to the user's manual of the EUT.

2. Description of Test Modes and Test Frequency

The Applicant provides communication tools software to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing.

There are 11 channels provided to the EUT and Channel 01/06/11 were selected for WIFI test.

Operation Frequency WIFI:

operanen i requesto, in			
Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

Note: The line display in grey were the channel selected for testing

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9kHz~1GHz&	11n(20MHz)/OFDM	6.5Mbps	1/6/11
Radiated Emission 1GHz~10th Harmonic	11n(40MHz)/OFDM	13.5 Mbps	3/6/9
	11b/DSSS	1 Mbps	1/11
Band Edge	11g/OFDM	6 Mbps	1/11
	11n(20MHz)/OFDM	6.5Mbps	1/11
	11n(40MHz)/OFDM	13.5 Mbps	3//9

2.1. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2015/06/02	2016/06/01
EMI Test Receiver	R&S	ESCI	103710	2015/06/02	2016/06/01
Spectrum Analyzer	Agilent	E4407B	MY41440676	2015/05/21	2016/05/20
Power Meter	Anritsu	ML2487B	110553	2015/06/02	2016/06/01
Power Sensor	Anritsu	MA2411B	100345	2015/05/21	2016/05/20
Controller	EM Electronics	Controller EM 1000	N/A	2015/05/21	2016/05/20
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2015/05/19	2016/05/18
Active Loop Antenna	SCHWARZBEC K	FMZB1519	1519-037	2015/05/19	2016/05/18
LISN	R&S	ENV216	3560.6550.12	2015/06/02	2016/06/01
LISN	R&S	ESH2-Z5	860014/010	2015/06/02	2016/06/01
Amplifier	Agilent	8349B	3008A02306	2015/05/19	2016/05/18
Amplifier	Agilent	8447D	2944A10176	2015/05/19	2016/05/18
Transient Limiter	SCHWARZCECK	VTSD 9561F	9666	2015/06/02	2016/06/01
Temperature/Humidity Meter	Gangxing	CTH-608	02	2015/05/20	2016/05/19

The calibration interval was one year

2.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AF5Z-7304D filing to comply with Section 15.249 of the FCC Part 15, Subpart C Rules.

2.3. Modifications

No modifications were implemented to meet testing criteria.

3. TEST CONDITIONS AND RESULTS

3.1. Conducted Emissions Test

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguenou rongo (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10:2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10:2013
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10:2013.
- 4. The adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST RESULTS

Test result for Network Video Recorder power port:

MEASUREMENT RESULT: "CTL151007705_fin"

•	/2015 2:10 requency MHz	OPM Level dBμV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.469501	48.40	10.2	57	8.1	QP	N	GND
	1.018501	44.40	10.3	56	11.6	QP	N	GND
	2.265001	43.00	10.4	56	13.0	QP	N	GND
	2.296501	43.10	10.4	56	12.9	QP	N	GND
	2.359501	43.20	10.4	56	12.8	QP	N	GND
	2.859001	43.30	10.4	56	12.7	QP	N	GND

MEASUREMENT RESULT: "CTL151007705_fin2"

10	/7/2015 2:1 Frequency MHz	0PM Level dBμV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.514501 1.554001 2.724001 16.170001 16.228501 17.695501	38.00 36.50 36.60 41.90 45.20 41.80	10.2 10.3 10.4 10.7 10.7	46 46 46 50 50	8.0 9.5 9.4 8.1 4.8 8.2	AV AV AV AV AV	N N N N N	GND GND GND GND GND GND

Test result for Camera power port:

MEASUREMENT RESULT: "CTL151008227_fin"

9:45AM						
y Level	Transd	Limit	Margin	Detector	Line	PΕ
z dBµV	dB	dBuV	dB			
·						
1 47.30	10.2	56	8.7	QP	L1	GND
1 40.80	10.2	56	15.2	QP	L1	GND
1 42.90	10.3	56	13.1	QP	L1	GND
1 43.50	10.3	56	12.5	QP	L1	GND
1 42.70	10.3	56	13.3	QP	L1	GND
1 42.90	10.3	56	13.1	QP	L1	GND
	Y Level dBμV 47.30 40.80 42.90 43.50 42.70	Y Level Transd dBμV dB 1 47.30 10.2 1 40.80 10.2 1 42.90 10.3 1 43.50 10.3 1 42.70 10.3	Y Level Transd Limit dBμV dB dBμV 1 47.30 10.2 56 1 40.80 10.2 56 1 42.90 10.3 56 1 43.50 10.3 56 1 42.70 10.3 56	V Level dBμV Transd dB dBμV Limit dBμV Margin dB 1 47.30 10.2 56 8.7 1 40.80 10.2 56 15.2 1 42.90 10.3 56 13.1 1 43.50 10.3 56 12.5 1 42.70 10.3 56 13.3	V Level dBμV Transd dB dBμV Limit dB dBμV Margin dB Detector dB 1 47.30 10.2 56 8.7 QP 1 40.80 10.2 56 15.2 QP 1 42.90 10.3 56 13.1 QP 1 43.50 10.3 56 12.5 QP 1 42.70 10.3 56 13.3 QP	V Level dBμV Transd dBμV Limit dB dBμV Margin dB Detector Line dBμV 1 47.30 10.2 56 8.7 QP L1 1 40.80 10.2 56 15.2 QP L1 1 42.90 10.3 56 13.1 QP L1 1 43.50 10.3 56 12.5 QP L1 1 42.70 10.3 56 13.3 QP L1

MEASUREMENT RESULT: "CTL151008227_fin2"

10/8/2015 9 Frequency MHz	Level	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.388501 0.465001 1.018501 1.495501 2.260501 2.683501	37.20 39.10 36.30 35.40 35.40 34.40	10.2 10.2 10.3 10.3 10.4 10.4	48 47 46 46 46	10.9 7.5 9.7 10.6 10.6 11.6	AV AV AV AV AV	L1 L1 L1 L1 L1 L1	GND GND GND GND GND GND

MEASUREMENT RESULT: "CTL151008226_fin"

10,	/8/2015	9:42AM						
	Frequency	y Level	Transd	Limit	Margin	Detector	Line	PΕ
	MH	z dBµV	dB	dΒμV	dB			
	0.46950	1 47.90	10.2	57	8.6	QP	N	GND
	0.51000	1 47.50	10.2	56	8.5	QP	N	GND
	0.98250	1 42.90	10.3	56	13.1	QP	N	GND
	1.464001	1 43.10	10.3	56	12.9	QP	N	GND
	1.486501	1 44.00	10.3	56	12.0	QP	N	GND
	2.179503	1 41.00	10.4	56	15.0	QP	N	GND
	2.26500	1 42.60	10.4	56	13.4	QP	N	GND

MEASUREMENT RESULT: "CTL151008226_fin2"

8/2015 9:42 Frequency MHz	AM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.465001	33.90	10.2	47	12.7	AV	N	GND
0.505501	32.80	10.2	46	13.2	AV	N	GND
1.486501	29.80	10.3	46	16.2	AV	N	GND
1.504501	29.70	10.3	46	16.3	AV	N	GND
16.228501	38.60	10.7	50	11.4	AV	N	GND
17.695501	38.90	10.8	50	11.1	AV	N	GND
18.244501	39.10	10.9	50	10.9	AV	N	GND

3.2. Radiated Emissions and Band Edge

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

	Rau	ialed emission iimils	
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	-113	54.0	500

Radiated emission limits

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

- 1. The EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

TEST RESULTS

Remark:

- 1. We tested three channels (lowest/middle/highest) of each mode and recorded worst case at 802.11b low channel for measurement below 1GHz.
- 2. We tested three channels (lowest/middle/highest) of each mode and recorded worst case at 802.11b mode above 1GHz.

For 9 KHz-30MHz

Frequency (MHz)	Corrected Reading (dBuV/m)@3m	FCC Limit (dBuV/m) @3m	Margin (dB)	Detector	Result
0.38	47.65	96.01	48.36	QP	PASS
1.54	56.58	63.85	7.27	QP	PASS
15.25	54.15	69.54	15.39	QP	PASS
20.73	53.18	69.54	16.36	QP	PASS

For 30MHz-1GHz

Horizontal SWEEP TABLE: "test (30M-1G)" Short Description: Fi Field Strength Start Stop Detector Meas. ΙF Transducer Bandw. Frequency Frequency Time 300.0 ms 120 kHz 30.0 MHz 1.0 GHz MaxPeak JB1 Level [dBµV/m] 80 70 60 50 30 20 10 0 30M 40M 50M 60M 70M 100M 200M 300M 400M 500M 600M 800M Frequency [Hz] x x x MES CTL151008500_red MEASUREMENT RESULT: "CTL151008500 red" 10/8/2015 9:27AM Frequency Limit Margin Level Transd Det. Height Azimuth Polarization dBµV/m MHz dB dBµV/m dB cm deg 61.040000 29.20 8.1 40.0 10.8 0.0 0.00 HORIZONTAL 148.340000 31.80 13.8 43.5 11.7 0.0 0.00 HORIZONTAL 280.260000 37.50 15.2 46.0 8.5 ___ 0.00 HORIZONTAL 0.0 551.860000 41.30 21.0 46.0 4.7 ___ 0.0 0.00 HORIZONTAL 557.680000 41.10 21.1 46.0 4.9 0.0 0.00 HORIZONTAL 769.140000 35.40 24.4 46.0 10.6 0.0 0.00 HORIZONTAL

Vertical

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi Field Strength Start Meas. Stop IF Detector Transducer Frequency Time Frequency Bandw. 30.0 MHz 1.0 GHz 300.0 ms 120 kHz MaxPeak

MEASUREMENT RESULT: "CTL151008501 red"

10/8/2015 9:2 Frequency MHz	Frequency Level Transd Limit Margin Det. Height Azimuth Polarization						
31.940000	34.40	19.2	40.0	5.6	 0.0	0.00	VERTICAL
167.740000	39.00	13.4	43.5	4.5	 0.0	0.00	VERTICAL
392.780000	37.70	17.8	46.0	8.3	 0.0	0.00	VERTICAL
518.880000	42.90	20.3	46.0	3.1	 0.0	0.00	VERTICAL
559.620000	38.30	21.1	46.0	7.7	 0.0	0.00	VERTICAL
957.320000	36.10	26.6	46.0	9.9	 0.0	0.00	VERTICAL

For 1GHz to 25GHz

802.11b Mode (above 1GHz)

Page 18 of 45

	Frequency	(MHz):		241	2		Polarity:		HORIZO	NTAL
No.	Frequency (MHz)	Emissi Leve (dBuV/	l	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2402.00	102.39	PK			68.99	28.78	4.61	0.00	33.40
1	2402.00	94.10	ΑV	-	-	60.70	28.78	4.61	0.00	33.40
2	2390.00	40.25	PK	74	33.75	6.93	28.72	4.60	0.00	33.32
2	2390.00		ΑV	54	-			-		
3	2400.00	45.26	PK	74	28.74	11.87	28.78	4.61	0.00	33.39
3	2400.00	1	ΑV	54	-	1				
4	4824.00	60.15	PK	74	13.85	55.60	33.52	6.92	35.89	4.55
4	4824.00	48.26	ΑV	54	5.74	43.71	33.52	6.92	35.89	4.55
5	5150.50	50.21	PK	74	23.79	42.94	34.44	7.12	34.28	7.27
5	5150.50		ΑV	54	V.S		41			
6	7236.00	49.33	PK	74	24.67	38.06	37.10	9.19	35.02	11.27
6	7236.00		ΑV	54	-					

	Frequency((MHz):		241	2		Polarity:		VERTIO	CAL
No.	Frequency (MHz)	Emissi Leve (dBuV/	S	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2402.00	104.10	PK	-10	TIE C	70.70	28.78	4.61	0.00	33.40
1	2402.00	94.98	ΑV		I P	61.58	28.78	4.61	0.00	33.40
2	2390.00	41.40	PK	74	32.6	8.08	28.72	4.60	0.00	33.32
2	2390.00		ΑV	54	100	Rbs	B	7		
3	2400.00	45.88	PK	74	28.12	12.49	28.78	4.61	0.00	33.39
3	2400.00		ΑV	54	1)			200		
4	4824.00	60.15	PK	74	13.85	55.60	33.52	6.92	35.89	4.55
4	4824.00	48.26	ΑV	54	5.74	43.71	33.52	6.92	35.89	4.55
5	5535.20	50.66	PK	74	23.34	42.99	34.76	7.33	34.42	7.67
5	5535.20		ΑV	54						
6	7236.00	50.02	PK	74	23.98	38.75	37.10	9.19	35.02	11.27
6	7236.00		ΑV	54						

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 7. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.

	Frequency	(MHz):		243	37	ı	Polarity:		HORIZO	NTAL
No.	Frequency (MHz)	Emissi Leve (dBuV/	l	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2437.00	102.11	PK			68.61	28.85	4.65	0.00	33.50
1	2437.00	93.85	ΑV	-	1	60.35	28.85	4.65	0.00	33.50
2	3589.90	47.21	PK	74	26.79	44.35	32.01	5.93	35.08	2.86
2	3589.90		ΑV	54						
3	4874.00	57.54	PK	74	16.46	51.20	33.59	6.95	34.20	6.34
3	4874.00	49.25	ΑV	54	4.75	42.91	33.59	6.95	34.20	6.34
4	5335.75	48.75	PK	74	25.25	40.89	34.68	7.22	34.04	7.86
4	5335.75		ΑV	54						
5	7311.00	50.10	PK	74	23.9	38.44	37.44	9.22	35.00	11.66
5	7311.00	-	ΑV	54	-	1				

Page 19 of 45

	Frequency	(MHz):		243	37		Polarity:		VERTI	CAL			
No.	Frequency (MHz)	Emissi Leve (dBuV/	1.	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)			
1	2437.00	103.12	PK	AVA	7-1	69.62	28.85	4.65	0.00	33.50			
1	2437.00	93.89	ΑV	FVE		60.39	28.85	4.65	0.00	33.50			
2	3688.50	48.22	PΚ	74	25.78	44.62	32.57	6.05	35.01	3.60			
2	3688.50	C	ΑV	54				/-	7				
3	4874.00	57.41	PK	74	16.59	51.07	33.59	6.95	34.20	6.34			
3	4874.00	49.85	ΑV	54	4.15	43.51	33.59	6.95	34.20	6.34			
4	5277.50	45.10	PK	74	28.9	37.37	34.62	7.19	34.07	7.73			
4	5277.50		ΑV	54	100	6		.00					
5	7311.00	50.45	PK	74	23.55	38.79	37.44	9.22	35.00	11.66			
5	7311.00		ΑV	54	7-		100						

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 7. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.

	Frequency(MHz):			2462		Polarity:			HORIZONTAL	
No.	Frequency (MHz)	Emissi Leve (dBuV/	1	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2480.00	102.41	PK			68.79	28.92	4.70	0.00	33.62
1	2480.00	92.87	ΑV	1	-	59.25	28.92	4.70	0.00	33.62
2	2483.50	46.54	PK	74	27.46	12.91	28.93	4.70	0.00	33.63
2	2483.50		ΑV	54						
3	2500.00	38.54	PK	74	35.46	4.86	28.96	4.72	0.00	33.68
3	2500.00		ΑV	54	1	1		I		
4	4924.00	59.58	PK	74	14.42	54.80	33.71	6.98	35.91	4.78
4	4924.00	46.45	ΑV	54	7.55	41.67	33.71	6.98	35.91	4.78
5	5375.80	50.26	PK	74	23.74	42.66	34.72	7.25	34.37	7.60
5	5375.80		ΑV	54	-					
6	7386.00	48.20	PK	74	25.8	36.32	37.61	9.25	34.98	11.88
6	7386.00		ΑV	54	1605	7.	Ų			

Frequency(MHz):				2462		Polarity:			VERTICAL	
No.	Frequency (MHz)	Emissi Leve (dBuV/	l	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre-amplifier (dB)	Correction Factor (dB/m)
1	2480.00	102.99	PK	1	- A-	69.37	28.92	4.70	0.00	33.62
1	2480.00	94.10	ΑV	-		60.48	28.92	4.70	0.00	33.62
2	2483.50	47.41	PK	74	26.59	13.78	28.93	4.70	0.00	33.63
2	2483.50		ΑV	54	77	NIII/2		/ \	J	
3	2500.00	40.14	PK	74	33.86	6.46	28.96	4.72	0.00	33.68
3	2500.00		ΑV	54		-		20		
4	4924.00	59.23	PK	74	14.77	54.45	33.71	6.98	35.91	4.78
4	4924.00	50.11	ΑV	54	3.89	45.33	33.71	6.98	35.91	4.78
5	5245.75	52.10	PK	74	21.9	44.67	34.59	7.17	34.32	7.43
5	5245.75	1	ΑV	54	ì	ָם ויק				
6	7386.00	48.26	PK	74	25.74	36.38	37.61	9.25	34.98	11.88
6	7386.00		ΑV	54						

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.
- 6. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.
- 7. For fundamental frequency, RBW 3MHz VBW 3MHz Peak detector is for PK Value; RMS detector is for AV value.

3.3. Maximum Conducted Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

+A WIFI X

Туре	Channel	Output power (dBm)	Limit (dBm)	Result	
	01	15.23			
802.11b	06	14.62	30.00	Pass	
	(2) 11	14.26	70		
	5 01 14	11.65		Pass	
802.11g	<u> </u>	11.52	30.00		
	711	11.42	7 0		
	01	12.26			
802.11n(HT20)	06	11.98	30.00	Pass	
	11)	11.96	03		
	03	10.85	0.		
802.11n(HT40)	06	10.66	30.00	Pass	
No. 4 The second	09	10.87	3		

Note: 1.The test results including the cable lose.

3.4. Power Spectral Density

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- 3. Set the VBW ≥ 3× RBW.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

WIF

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
802.11b	01 06 11	-12.90 -11.15 -10.96	8.00	Pass
802.11g	01 06 11	-16.23 -15.81 -15.34	8.00	Pass
802.11n(HT20)	01 06 11	-16.07 -15.57 -15.20	8.00	Pass
802.11n(HT40)	03 06 09	-18.86 -17.76 -18.24	8.00	Pass

Test plot as follows:

802.11b

3.5. 6dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Page 25 of 45

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

WIFI

Туре	Channel	6dB Bandwidth (MHz)	99% OBW (MHz)	Limit (KHz)	Result
	01	10.098	15.079		
802.11b	06	10.091	15.055	≥500	Pass
	11	10.069	15.051		
	01	16.622	16.520		Pass
802.11g	06	16.614	16.519	≥500	
	110	16.632	16.534		
	01	17.914	17.754		
802.11n(HT20)	06	17.863	17.719	≥500	Pass
	11	17.879	17.741		
	03	36.578	To 36.115		
802.11n(HT40)	06	36.577	36.113	≥500	Pass
	09	35.579	36.110		

Test plot as follows:

3.6. Out-of-band Emissions

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Chi Testing Technolo

Test plot as follows:

3.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result:

The EUT used a external antenna, the maximum gain of WIFI antenna was 2.4dBi.

Wifi Antenna

4. Test Setup Photos of the EUT

5. External and Internal Photos of the EUT

External Photos of EUT

External Photos for Network Video Recorder

Internal Photos of EUT

