

DIP-CIB

3Ø Converter + 3Ø Inverter + Brake 15 Amperes/1200 Volts

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters
Α	2.68	68.0
В	1.73	44.0
С	0.58±0.02	14.7±0.5
D	3.1	79.0
E	2.83	72.0
F	0.16±0.01	4.0±0.3
G	2.83±0.01	72.0±0.3
Н	0.08±0.01	2.0±0.3
J	0.2±0.008	5.0±0.2
K	0.87	22.0
L	0.96±0.01	24.3±0.3
М	0.94±0.02	23.9±0.5
N	1.14	29.0
Р	0.098	2.5
Q	0.22±0.02	5.7±0.5
R	0.18	4.5
		•

Dimensions	Inches	Millimeters
S	0.04±0.008	1.0±0.2
T	0-5°	0-5°
U	0 Min.	0 Min.
V	8°	8°
W	0.04	1.1
Χ	0.02 Max.	0.5 Max.
Υ	0.06	1.6
Z	0.023±0.008	0.6±0.2
AA	0.08 Dia.	2.0 Dia.
AB	0.1 Dia.	2.5 Dia.
AC	0.03 Deep	0.8 Deep
AD	0.057	1.45
AE	0.023	0.6
AF	0.04	1.1
AG	0.02±0.008	0.5±0.2

Description:

DIP-CIBs are low profile, thermally efficient, transfer mold modules. Each module consists of a three-phase diode converter section, a three-phase inverter section and a brake circuit. Open emitters allow the designer to sense the current in each phase leg for accurate and low cost current sensing. A thermistor is included in the package for sensing the base-plate temperature. 5th Generation CSTBT chips yield low loss. The module is completely Pb-Free and hence RoHS compliant.

Features:

- ☐ Compact Package
- ☐ Only 5.7mm Thick
- □ One Package for Entire Family
- □ Thermistor
- ☐ Open Emitters

Applications:

- ☐ AC Motor Control
- ☐ Servo Motors
- ☐ Robotics
- ☐ HVAC Inverters

Ordering Information:

CP15TD1-24A is a 1200 Volt, 15 Ampere DIP-CIB module.

CP15TD1-24A DIP-CIB 3Ø Converter + 3Ø Inverter + Brake 15 Amperes/1200 Volts

Absolute Maximum Ratings, T_i = 25 °C unless otherwise specified

Ratings	Symbol	CP15TD1-24A	Units
Junction Temperature	Тј	-20 to 150	°C
Storage Temperature	T _{stg}	-40 to 125	°C
Mounting Torque, M4 Mounting Screws	_	13	in-lb
Module Weight Typical	_	52	Grams
Isolation Voltage (60Hz, Sinusoidal, AC 1 Min., Applied Between Pins and Heatsink)	V _{ISO}	2500	Volts
Inverter Part			
Collector-Emitter Voltage (G-E Short)	VCES	1200	Volts
Gate-Emitter Voltage (C-E Short)	V _{GES}	±20	Volts
Collector Current* (DC, T _C = 100°C)	IC	15	Amperes
Peak Collector Current** (Pulse)	ICM	30	Amperes
Maximum Collector Dissipation (T _C = 25°C)	PC	113	Watts
Emitter Current* (DC, T _C = 64°C)	lE***	15	Amperes
Peak Emitter Current** (Pulse)	I _{EM***}	30	Amperes
Brake Part			
Collector-Emitter Voltage (G-E Short)	VCES	1200	Volts
Gate-Emitter Voltage (C-E Short)	V _{GES}	±20	Volts
Collector Current* (DC, T _C = 100°C)	IC	10	Amperes
Peak Collector Current** (Pulse)	ICM	20	Amperes
Maximum Collector Dissipation (T _C = 25°C, T _j < 150°C)	PC	104	Watts
Repetitive Peak Reverse Voltage (Clamp Diode Part)	V _{RRM}	1200	Volts
Forward Current (Clamp Diode Part, T _j < 150°C)	IFM	10	Amperes
Converter Part			
Repetitive Peak Reverse Voltage	V _{RRM}	1600	Volts
Recommended AC Input Voltage)	Ea	440	Volts
DC Output Current (Three-phase Rectifying Circuit)	IO	15	Amperes
Surge Forward Current (1/2 Cycle at 60 Hz, Peak Value, Non-repetitive)	IFSM	245	Amperes
I ² t for Fusing (Value for 1 Cycle of Surge Current)	l ² t	252	A ² s

^{*}T_C is measured just underneath the power chip.

^{**}Pulse width and repetition rate should be such that the device junction temperature (T_j) does not exceed T_{j(max.)} rating.
***I_E, V_{EC}, t_{rr}, and Q_{rr} represent characteristics of the anti-paralleled emitter-to-collector free-wheel diode (FWDi).

CP15TD1-24A DIP-CIB 3Ø Converter + 3Ø Inverter + Brake 15 Amperes/1200 Volts

Electrical Characteristics, T_i = 25 °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Inverter Part						
Collector-Cutoff Current	ICES	V _{CE} = V _{CES} , V _{GE} = 0V	_	_	1.0	mA
Gate-Emitter Threshold Voltage	V _{GE(th)}	I _C = 1.5mA, V _{CE} = 10V	6.5	7.5	8.5	Volts
Gate-Emitter Cutoff Current	IGES	V _{GE} = 20V, V _{CE} = 0V	_	_	1.0	μA
Collector-Emitter	V _{CE(sat)}	I _C = 15A, V _{GE} = 15V, T _j = 25°C	_	1.8	2.5	Volts
Saturation Voltage*	, ,	I _C = 15A, V _{GE} = 15V, T _j = 125°C	_	2.0	_	Volts
Input Capacitance	C _{ies}	<u> </u>	_	_	3.24	nF
Output Capacitance	C _{oes}	$V_{CE} = 10V, V_{GE} = 0V, f = 1MHz$	_	_	0.3	nF
Reverse Transfer Capacitance	C _{res}	_	_	_	0.06	nF
Total Gate Charge	Q _G	V _{CC} = 600V, I _C = 15A, V _{GE} = 15V	_	86	_	nC
Turn-on Delay Time	t _{d(on)}		_	_	100	ns
Turn-on Rise Time	t _r	V _{CC} = 600V, I _C = 15A,	_	_	75	ns
Turn-off Delay Time	t _{d(off)}	$V_{GE} = \pm 15V, R_{G} = 22\Omega,$	_	_	300	ns
Turn-off Fall Time	tf	T _j = 25°C,	_	_	400	ns
Reverse Recovery Time**	t _{rr}	Inductive Load	_	200	_	ns
Reverse Recovery Charge**	Q _{rr}	_	_	0.35	_	μC
Emitter-Collector Voltage**	V _{EC}	I _E = 15A, V _{GE} = 0V	_	2.8	3.5	Volts
External Gate Resistance	Rg	_	22	_	220	Ω
Brake Part						
Collector-Cutoff Current	ICES	VCE = VCES, VGE = 0V	_	_	1.0	mA
Gate-Emitter Threshold Voltage	V _{GE(th)}	I _C = 1.0mA, V _{CE} = 10V	6.5	7.5	8.5	Volts
Gate-Emitter Cutoff Current	IGES	V _{GE} = 20V, V _{CE} = 0V	_	_	1.0	μΑ
Collector-Emitter	VCE(sat)	I _C = 10A, V _{GE} = 15V, T _j = 25°C	_	1.8	2.5	Volts
Saturation Voltage*	, ,	I _C = 10A, V _{GE} = 15V, T _i = 125°C	_	2.0	_	Volts
Input Capacitance	C _{ies}	·	_	_	2.04	nF
Output Capacitance	Coes	V _{CE} = 10V, V _{GE} = 0V, f = 1MHz	_	_	0.16	nF
Reverse Transfer Capacitance	C _{res}	-	_	_	0.04	nF
Total Gate Charge	Q _G	V _{CC} = 600V, I _C = 10A, V _{GE} = 15V	_	57	_	nC
Turn-on Delay Time	t _{d(on)}		_	_	100	ns
Turn-on Rise Time	t _r	$V_{CC} = 600V, I_{C} = 10A,$	_	_	75	ns
Turn-off Delay Time	^t d(off)	$V_{GE} = \pm 15V, R_{G} = 33\Omega,$	_	_	300	ns
Turn-off Fall Time	t _f	T _j = 25°C,	_	_	400	ns
Reverse Recovery Time	t _{rr}	Inductive Load	_	200	_	ns
Reverse Recovery Charge	Q _{rr}	- -	_	0.3	_	μC
Forward Voltage Drop	VFM	IF = 10A, Clamp Diode Part	_	2.8	3.5	Volts
External Gate Resistance	Rg	_	33	_	330	Ω

^{*}Pulse width and repetition rate should be such as to cause negligible temperature rise. ** $^{**}T_C$ is measured just underneath the power chip.

CP15TD1-24A DIP-CIB 3Ø Converter + 3Ø Inverter + Brake 15 Amperes/1200 Volts

Electrical Characteristics, $T_j = 25$ °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Converter Part						
Repetitive Reverse Current	IRRM	V _R = V _{RRM} , T _j = 125°C	_	_	1.0	mA
Forward Voltage Drop	V _{FM}	IF = 15A	_	1.1	1.4	Volts

Thermal and Mechanical Characteristics, $T_j = 25$ °C unless otherwise specified

	· 1				
Symbol	Test Conditions	Min.	Тур.	Max.	Units
R _{th(c-f)}	Case-to-Fin, Thermal Grease Applied	_	0.047	_	°C/W
R _{th(j-c)} Q	IGBT Part, Per 1/6 Module	_	_	1.1	°C/W
R _{th(j-c)} D	FWDi Part, Per 1/6 Module	_	_	1.7	°C/W
R _{th(j-c)} Q	IGBT Part	_	_	1.4	°C/W
R _{th(j-c)} D	FWDi Part	_	_	2.0	°C/W
R _{th(j-c)}	Per 1/6 Module	_	_	1.3	°C/W
R _{th}	T _C = 25°C	9.5	10.0	10.5	kΩ
B _{(25/100})	Resistance at 25°C, 100°C	_	3450	_	K
	Rth(c-f) Rth(j-c)Q Rth(j-c)D Rth(j-c)D Rth(j-c)D	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol Test Conditions Min. Typ. Max. $R_{th(c-f)}$ Case-to-Fin, Thermal Grease Applied — 0.047 — $R_{th(j-c)}Q$ IGBT Part, Per 1/6 Module — — 1.1 $R_{th(j-c)}D$ FWDi Part, Per 1/6 Module — — 1.7 $R_{th(j-c)}Q$ IGBT Part — — 1.4 $R_{th(j-c)}D$ FWDi Part — — 2.0 $R_{th(j-c)}D$ Per 1/6 Module — — 1.3 R_{th} $T_C = 25^{\circ}C$ 9.5 10.0 10.5

^{*}Thermistor resistance R χ at arbitrary temperature $T\chi(K)$ can be calculated with the B constant formula

$$R_X = R_{25} \cdot exp[B_{(25/100)} \cdot (\frac{1}{TX} - \frac{1}{T25})]$$

where R_{25} is the resistance at $T_C = 25^{\circ}C$, $T_{25} = 298K$.

CP15TD1-24A DIP-CIB 3Ø Converter + 3Ø Inverter + Brake 15 Amperes/1200 Volts

Rev. 04/06 5

CP15TD1-24A DIP-CIB 3Ø Converter + 3Ø In

3Ø Converter + 3Ø Inverter + Brake

15 Amperes/1200 Volts

COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (BRAKE PART - TYPICAL)

6

