

The problem

Performance problems of baggage handling system causes bottlenecks and slows down the process. Bottlenecks of the system therefore should be identified and fixed to ensure an efficient process.

Objective

Automatically identify which parts of a baggage handling system suffer from non-normal operations and under which conditions these non-normal operations arise.

Problems in the Baggage Handling System

Problems in the Baggage Handling System

2 Unavailability in system parts

Problems in the Baggage Handling System

Data Understanding

ID	Timestamp	Location	
1111111	2019/05/21 23:21:01.058	X	
1000000	2019/05/21 23:21:07.945	Y	

- Data is coming from one of the busiest airports in Europe
- 6 months of historical data was provided

Data Understanding

Converting Input Data to Event Logs

Case = Bag

Timestamp =Time when bag pass sensors on system

Activity = Location

ID	Timestamp	Activity
1111111	21-05-19 13:44:54.948	Х
1111111	21-05-19 13:45:42.760	Υ
1111112	21-05-19 13:45:47.277	Υ
1111112	21-05-19 13:49:21.290	Z

Data Understanding

Event Log Segmentation

ID	Timestamp	Activity
1111111	21-05-19 13:44:54.948	Х
1111111	21-05-19 13:45:42.760	Υ
1111112	21-05-19 13:45:47.277	Υ
1111112	21-05-19 13:49:21.290	Z

ID	Timestamp	Activity	Duration(ms)
1111111	21-05-19 13:44:54.948	X:Y	48188
1111112	21-05-19 13:45:47.277	Y:Z	124013

Data Preprocessing For Outlier Detection

Data Preprocessing For Outlier Detection

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Segment A							
Segment B							
Segment C							
Segment D							
i							

>2000 segments

RQ1: Is it possible to have a general purpose technique that can automatically identify performance related deviations within the performance spectrum?

Outlier Detection Methods

Basic Statistical Methods:

- 1. IQR (Box Plot)
- 2. 3 Sigma
- 3. Grubb's Test
- 4. Histograms
- 5. Modified Z-score method
- 6. Z-Score

Proximity Based Methods:

- 1. K-Nearest Neighbor
- 2. K-means
- 3. K-medoids

Other Methods:

- 1. Linear Regression
- 2. Neural Networks
- 3. STL
- 4. Isolation Forests

Modified Z-score method

! Good for detecting univariate outliers

! Median is a robust statistic, meaning it will not be greatly affected by outliers

We can calculate the Modified Z-score * like this:

$$M_i = rac{0.6745(x_i - ilde{x})}{MAD}$$
 $M_i > ext{threshold} \longrightarrow ext{1 (Outlier)} \ M_i < ext{threshold} \longrightarrow ext{0 (Normal Behaving Bag)}$

$$MAD = \text{median}\{|x_i - \tilde{x}|\}$$

^{*}Boris Iglewicz and David Hoaglin (1993), "Volume 16: How to Detect and Handle Outliers", The ASQC Basic References in Quality Control: Statistical Techniques, Edward F. Mykytka, Ph.D., Editor.

Outlier Scoring

Outlier

0

Modified Z-Score

0.630

1.369

542.124

106.712

0.072

786.423

RQ2: Can we find patterns of outlier behavior and which outlier patterns make sense for the system?

Outlier Classification

Outlier Classification

Timestamp	Activity	CaseID	Duration (Minute)	Blockage Duration (Minute)	Outlier Type
2019-05-21 07:41:05.782	Segment A	10000000	1.8036	1,095	1
2019-05-21 07:41:42.772	Segment A	10000001	1.7031	1,095	0
2019-05-21 07:42:05.623	Segment A	10000002	1.7028	1,095	0
2019-05-21 07:42:27.920	Segment A	10000003	0.1034	0	3
2019-05-21 07:42:30.457	Segment A	10000004	1.1077	0	2
2019-05-21 10:47:11.800	Segment B	11000001	2.0427	0	3
2019-05-21 10:47:12.851	Segment B	11000002	2.0426	0	3

All detected outliers in the segment (**Outlier List(O**))

Blockage Attribute Detection

RQ3: Can all states of normal performance behavior for each segment and over multiple segments of the system be identified?

Segment Behavior Classification

Given any day, how bad the segment behaves compared to other days?

Ground truth about the types of outlier behavior in the baggage handling system.

Segment Behavior Classification

Obtaining Outlier Score Distribution

Daily distributions of outlier scores for segment A & Fridays:

Segment Behavior Classification

Calculating Distance Between Histograms of Outlier Score

For each segment & weekday:

	Day 1	Day 2	Day 3		Day 26
Day 1	0	0.78	1.52		1.96
Day 2		0	0.53		0.72
Day 3			0		0.085
:				0	
Day 26					0

Wasserstein metric is used to calculate the distance between two histograms

Segment Behavior Classification

- 1. Which sets of days are similar for the system?
- 2. Which types of outlier behaviors the system shows regarding the clusters of similar outlier behaviors?

Agglomerative Clustering is used to group similar days together

Segment Behavior Classification

Defining Optimal Number of Clusters

Segment Behavior Classification

Defining the Behavior of Clusters

Cluster standardized rank =
$$\frac{Cluster\ rank}{number\ of\ clusters}$$

Cluster	Distribution	Average Outlier Score	Minimum Outlier Score	Maximum Outlier Score	Bag Count	Day Count	Cluster Rank	Cluster Standardized Rank	
0	[1.7, 0.3, ,0.16]	2.25	0	119.43	39498	14	1	0.2	$\frac{1}{5}$ Best- Behaving Cluster
1	[1.94, 1.69, ,0.52]	2.47	0	892.28	6040	2	2	0.4	$\frac{2}{5}$
2	[0.64, 0.45, ,1.99]	28.26	0	10863.28	13092	4	4	0.8	$\frac{4}{5}$
3	[41.09, 97.36, ,23.04]	55.83	0	92796.62	8407	2	5	1 -	$\frac{5}{5}$ Worst Behaving Cluster
4	[1.09, 1.51, ,0.14]	4.48	0	2087.33	4393	2	3	0.6	$\frac{3}{5}$

Defining the Behavior of Clusters

3 Clusters	4 Clusters	5 Clusters	10 Clusters
1/3 2/3 3/3	1/4 2/4 3/4 4/4	1/5 2/5 3/5 4/5 5/5	 1/10 10/10

Assigning Appropriate Cluster to Daily Outlier Behavior

- **1.** For the new (day, segment) pair, find the cluster that is most similar regarding its modified Z-score distribution.
- **2.** The normalized rank of this most similar cluster is the severity of the outlier behavior on that day.

Implementation of the Outlier Classifier In the PSM

Visual Dashboard for Problematic Segments

Visual Dashboard for Problematic Segments

Identifying Abnormal Behavior and Providing Similar Outliers in Segments

1. Which bags show an abnormal behavior in the segments of the system?

Outliers	Non-Outliers
1.32%	98.68%

Outliers	Non-Outliers
12.792	958.149

Given new data, we find all outliers in each segment of the baggage handling system.

Identifying Abnormal Behavior and Providing Similar Outliers in Segments

2. Which outlier pattern does each bag belong to?

Blocking Bag	Stuck Bags	Isolated Bags	Fast Bags
18.05%	40.67%	38.95%	2.33%

Blocking Bag	Stuck Bags	Isolated Bags	Fast Bags
2.309	5.202	4.982	299

Given new data, bags are assigned with an outlier pattern in each segment of the baggage handling system

Identifying Segments that Experience More Performance Problems

1. Which parts of the system suffer from the most significant abnormal behavior on the given day?

≜														_
						0.67 🔻 1	1.0 2019-05-31	v	Filter					
segment_name	cluster	cluster_mean	min_score	max_score	avg_duration_bags be	ngs_in_blockage	total_blockage_ti a	vg_blockage_ti	isolated_bag_co	fast_bag_count	number_of_outli	total_bag	avg_outlier_score	importance v
Segment A		1 1.042,5	8 0,0	6 31.441,87	1,24 6		19,95	3,66	2	7	15	30	3.780,99	22.060,90
Segment B		1 5.331,9	4	0 10.703,1	2,45 6		55,86	4,41	1	0	7	11	1.811,82	10.870,91
Segment C		1 89.9	7	0 435.5	0.05 6	7	203.82	0.07	0	0	67	191	143,43	9.609,78
Segment D	0.	67 46,2	2	0 939,18	1,19 8)	375,18	3,21	23	0	103	365	91,63	7.330,28
Segment E	0,	67 66,2	3	0 4.955,38	0,04 2	14	434,7	0,07	47	0	261	2431	33,95	7.264,27
Segment F	0,	67 42,1	5	0 1.205,21	1,28 6	3	320,64	3,56	23	0	91	313	95,34	6.483,21
Segment G		1 45,4	2	0 1.917,92	0,83 5	\$	186,42	2,56	33	0	87	360	86,63	4.677,96
Segment H		1 58,0	6	0 1.405,4	1,34 3	3	181,21	4,07	10	0	43	164	126,18	4.164,04
Segment I		1 28,0	8	0 944,59	0,08 7)	96,34	0,26	82	0	152	716	52,42	3.669,54
Segment J		1 118,4	6	0 170,27	0,05 50)	25,03	0,07	117	0	167	367	67	3.350,15
Segment K		1 69,3	6	0 1.349,81	1,21 2	7	166,26	3,99	5	0	32	141	108,12	2.919,15
Segment L		1 46,9	2	0 20.346,24	0,14 1	7	45,17	2,42	6	0	23	903	129,21	2.196,53
Segment M	0,	67 10,2	1	0 6.225,86	0,09 2	5	6,59	0,11	188	0	213	477	73,39	1.834,67
Segment N		1 13,6	5	0 1.266,72	1,28 3	3	362,1	13,59	1	0	37	416	50,26	1.809,38
Segment O),8 17,9	5 0,3	2 1.716,29	2,32 4		28,03	2,99	0	0	4	9	361,12	1.444,47
Segment P	. 0,	75 20,6	9	0 1.120,59	0,06 3	7	55,86	0,17	80	0	117	752	38,04	1.407,34
Segment Q	0,	67 13,7	9	0 237,87	0,06 30)	89,8	0,1	15	0	45	157	46,45	1.393,51
Segment R	0,	75 72,8	9	0 1.084,53	1,93 6		22,33	3	0	0	6	14	222,78	1.336,66
Segment S		1 80,7	1 0,0	4 2.246,28	1,4 3		9,86	2,14	0	0	3	13	417,62	1.252,86
Segment T	0,	67 95,9	2	0 1.437,06	1,72 2	3	118,55	2,59	1	0	27	476	47,24	1.228,35
Segment U		1 17,8	1	0 9.713,03	0,11 5	1	136,99	2,18	5	0	59	6696	22,25	1.201,71
Segment V	. 0,	67 16,0	6	0 682,47	0,09 40)	75,56	0,37	86	0	126	800	27,54	1.101,68
Segment W	. 0,	67 17,3	6	0 1.577,92	1,25 1	18	515,25	2,88	1	0	119	5358	7,94	937,15
Segment X		1 16,	3	0 3.934,26	0,06 30)	29,81	0,15	80	0	110	759	29,69	890,59
Segment Y		1 70,9	5	0 15.229,54	0,14 2	3	60,36	1,85	114	0	140	4059	31,32	814,41
Segment Z		1 31,3	1 0,0	1 613,25	0,15 2	4	56,26	0,59	86	0	110	836	32,93	790,21

Importance = average outlier score X number of outliers

Identifying Segments that Experience More Performance Problems

2. For a given day, what is the total amount of time bags spent in blockages and which attributes does each blockage have?

Blockage window enables users to see the importance of each blockage in the segment.

Categorizing Abnormalities in Segments Based on Occurrence

1. Which parts of the system regularly suffer from serious blockages?

Segment	Average Blockage Time	Number of Days Blockage Observed	Blockage Importance
Segment A	3.23	22	73.7
Segment B	3.62	19	68.76
Segment C	2.95	23	67.78
Segment D	2.80	24	67.24

Blockage Importance= Average Blockage Time X Number of days

RQ4: Which context factors cause outlier behavior in the system and what is the effect of outliers on performance of the system?

Identifying the Properties that are Leading to the Abnormality

1. Are there any cause-effect relationship between segments / sequence of segments in the sense of abnormal behavior?

Identifying the Properties that are Leading to the Abnormality

2. Can we find temporary malfunctions in the system that cause abnormal behavior?

CONCLUSION

Contributions

- **1.** Detecting outlier bags in specific locations of the system
- **2.** Classifiying the outlier types
- **3.** Blockage properties
- **4.** Classifying segment behavior
- **5.** Identifying a baseline behavior for each segment
- **6.** Finding problematic segments of the system

Future Work

