Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ИУК «Информатика и управление»</u>

КАФЕДРА <u>ИУК4 «Программное обеспечение ЭВМ, информационные мехнологии»</u>

ЛАБОРАТОРНАЯ РАБОТА №4

«Метод сеток для решения уравнения параболического типа»

ДИСЦИПЛИНА: «Моделирование»

Выполнил: студент гр. ИУК4-62Б	(Подпись)	_ (<u>Карельский М.К.</u>)
Проверил:	(Подпись)	_ (Никитенко У.В.)
Дата сдачи (защиты):		
Результаты сдачи (защиты):		
- Балльна	ая оценка:	
Опенка		

Цель: сформировать практические навыки анализа возможностей построения и выделения наиболее важных свойств объектов моделей для моделирования и использования специализированных программных пакетов и библиотек стандартных вычислений визуализации ДЛЯ И результатов численного или приближенно-аналитического решения ДУЧП2 параболического типа на основе сравнения результатов.

Задачи: решить уравнение, указанное в варианте методом аппроксимации дифференциального оператора, выбрать среду для проведения расчетов и вычислительного эксперимента. Написать программу, реализующую решение задачи. Оценить результаты расчетов. Визуализировать результаты.

Задание:

Найти решение задачи

$$\frac{\partial u}{\partial t} = Lu + f(x, t), 0 < t \le 0.1$$

$$u(x, 0) = \varphi(x), 0 \le x \le 1$$

$$\left(\alpha_1(t)u - \alpha_2(t)\frac{\partial u}{\partial x}\right)\Big|_{x=0} = \alpha(t), 0 \le t \le 0.1$$

$$\left.\left(\beta_1(t)u + \beta_2(t)\frac{\partial u}{\partial x}\right)\right|_{x=1} = \beta(t), 0 \le t \le 0.1$$

используя различные разностные схемы

- явную схему порядка $O(h^2 + \tau)$ с аппроксимацией производных в граничных условиях с порядком $O(h^2)$;
- схему с весами порядка при $\sigma = 0$, $\sigma = 1$, $\sigma = 1/2$ с аппроксимацией производных в граничных условиях с порядком O(h).

По решению задачи должен быть представлен отчет, содержащий

- 1) Алгоритм решения задачи.
- 2) Тестирование алгоритма на решениях, для которых разностная схема точно аппроксимирует дифференциальную задачу.
- 3) Тестирование алгоритма, например, на решениях $u(x,t) = x^3 + t^3$, $u(x,t) = x^3 t^3$, $\sin(2t+1)\cos(2x)$, $\sin(2t+1) + \cos(2x)$, на которых разностная схема неточно аппроксимирует дифференциальную задачу.
- 4) Таблицы решения на «крупной» сетке независимо от шагов по t и x, с которыми строится решение (N = 5, 10, 20)
- 5) Таблицы, характеризующие точность решения и внутреннюю сходимость

Вариант 9

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - \sin x \, u + f(x, t)$$
$$u(x, 0) = \varphi(x), 0 \le x \le 1$$

$$u(0,t) - \frac{\partial u}{\partial x}\Big|_{x=0} = \alpha(t), u(1,t) + \frac{\partial u}{\partial x}\Big|_{x=1} = \beta(t), 0 \le t \le 0.1$$

Решение:

Явная разностная схема $O(h^2 + au)$

Аппроксимируем данное уравнение в узле (x_i, t_k) :

$$\frac{u_i^k - u_i^{k-1}}{\tau} = L_h u_i^{k-1} + f_i^{k-1}$$

 $L_h u_i^k$ имеет вид:

$$L_h u_i^k = a(x_i, t_k) \frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{h^2} + b(x_i, t_k) \frac{u_{i+1}^k - u_{i-1}^k}{2h} + c(x_i, t_k) u_i^k$$

В случае данного уравнения:

$$a(x_i, t_k) = 1$$

$$b(x_i, t_k) = 0$$

$$c(x_i, t_k) = -\sin x_i$$

После подстановки получаем:

$$\frac{u_i^k - u_i^{k-1}}{\tau} = \frac{u_{i+1}^{k-1} - 2u_i^{k-1} + u_{i-1}^{k-1}}{h^2} - u_i^{k-1} \sin x_i + f_i^{k-1}$$

Найдем начальные условия:

$$u_i^0 = \varphi(x_i)$$

$$\frac{u_i^k - u_i^{k-1}}{\tau} = L_h u_i^{k-1} + f_i^{k-1}$$

$$u_i^k = u_i^{k-1} + \tau (L_h u_i^{k-1} + f_i^{k-1})$$

Найдем граничные условия:

$$\alpha_1(t_k)u_0^k - \alpha_2(t_k) \frac{-3u_0^k + 4u_1^k - u_2^k}{2h} = \alpha(t_k)$$
$$\beta_1(t_k)u_n^k + \beta_2(t_k) \frac{3u_n^k - 4u_{n-1}^k + u_{n-2}^k}{2h} = \beta(t_k)$$

Найдем нужные функции из условия:

$$\alpha_{1}(t)u(0,t) - \alpha_{2}(t)\frac{\partial u}{\partial x}(0,t) = \alpha(t)$$

$$\beta_{1}(t)u(1,t) + \beta_{2}(t)\frac{\partial u}{\partial x}(1,t) = \beta(t)$$

$$\alpha_{1}(t_{k}) = 1$$

$$\alpha_{2}(t_{k}) = 1$$

$$\beta_{1}(t_{k}) = 1$$

$$\beta_{2}(t_{k}) = 1$$

После подстановки и выражения получаем:

$$u_0^k - \frac{-3u_0^k + 4u_1^k - u_2^k}{2h} = \alpha(t_k)$$

$$u_0^k = \frac{2h\alpha(t_k) - 4u_1^k + u_2^k}{2h + 3}$$

$$u_n^k + \frac{3u_n^k - 4u_{n-1}^k + u_{n-2}^k}{2h} = \beta(t_k)$$

$$u_n^k = \frac{2h\beta(t_k) + 4u_{n-1}^k - u_{n-2}^k}{2h + 3}$$

Проведем тестирование на $u = x^2 + t$

$$1 = 2 - (x^2 + t)\sin x + f(x, t)$$

$$f(x, t) = (x^2 + t)\sin x - 1$$

$$\alpha(t) = u(0, t) - \frac{\partial u}{\partial x}\Big|_{x=0} = t$$

$$\beta(t) = u(1, t) + \frac{\partial u}{\partial x}\Big|_{x=1} = 1 + t + 2 = t + 3$$

$$\varphi(x) = u(x, 0) = x^2$$

Рис. 1. График функции

+			+
h	tau		U_{2h}-U_{h}}
0.25	0.001	0.0	0.0
0.125	0.001	0.0	0.0
0.0625	0.001	0.0	0.0

Рис. 2. Точность решения

Проведем тестирование на $u = x^3 + t^3$

$$3t^{2} = 6x - (x^{3} + t^{3})\sin x + f(x, t)$$
$$f(x, t) = 3t^{2} - 6x + (x^{3} + t^{3})\sin x$$

$$\alpha(t) = u(0,t) - \frac{\partial u}{\partial x}\Big|_{x=0} = t^3$$

$$\beta(t) = u(1,t) + \frac{\partial u}{\partial x}\Big|_{x=1} = 1 + t^3 + 3 = t^3 + 4$$

$$\varphi(x) = u(x,0) = x^3$$

Рис. 3. График функции

0.5 0.125 0.125 0.125 0.1259 0.1272 0.1286 0.13 0.1314 0.1328 0.1341 0.1	x\t	+ 0.0	 0.01	+ 0.02	0.03	0.04	0.05	 0.06	0.07	0.08	 0.09	0.1
	0.25	0.0156	0.0156	0.0185	0.0199	0.0208	0.0216	0.0222	0.0229	0.0235	0.0242	0.0249
1.0 1.0 1.0179 1.0211 1.0237 1.0259 1.0278 1.0297 1.0315 1.0331 1.0348 1.0	0.75	0.4219	0.4219	0.4247	0.4272	0.4294	0.4315	0.4334	0.4353	0.4371	0.4389	0.1355

Рис. 4. Аппроксимация при h = 0.25, t = 0.01

x	 \ t	0.0	0.01	0.02	0.03	 0.04	0.05	 0.06	0.07	0.08	0.09	0.1
+	+ 0.0	0.0	 0.0024	 0.0005	 0.0028	 -0.0008	0.0047	-0.0041	0.01	 -0.0129	0.0243	- -0.0366
0.	.125	0.002	0.002	0.0035	0.0019	0.0045	0.0006	0.0068	-0.0029	0.0131	-0.0127	0.0297
6	0.25	0.0156	0.0156	0.0156	0.0166	0.0153	0.0178	0.014	0.0207	0.0103	0.028	-0.0004
0.	.375	0.0527	0.0527	0.0527	0.0527	0.0534	0.0524	0.0549	0.0513	0.0582	0.0474	0.0664
(0.5	0.125	0.125	0.125	0.125	0.125	0.1259	0.1251	0.1276	0.1241	0.1313	0.1203
0.	.625	0.2441	0.2441	0.2441	0.2442	0.2448	0.2448	0.246	0.2452	0.2479	0.2446	0.2518
(0.75	0.4219	0.4219	0.4219	0.4229	0.4231	0.424	0.4241	0.4253	0.4248	0.4273	0.4247
0.	.875	0.6699	0.6699	0.6715	0.6722	0.6731	0.6736	0.6744	0.6748	0.6756	0.6758	0.6771
1	1.0	1.0	1.0024	1.0043	1.005	1.0059	1.0063	1.0072	1.0074	1.0085	1.0081	1.0104
+			+	+	+							+

Рис. 5. Аппроксимация при h = 0.125, t = 0.01

+	tau	 U_{exact}-U_{h}	++ U_{2h}-U_{h}}
0.25	0.001	0.0363328	0.0
0.125	0.001	0.0086168	0.027716
0.0625	0.001	0.0021096	0.0065072

Рис. 6. Точность решения

Схема с весами

Найдем начальные условия:

$$u_i^0 = \phi(x)$$

Найдем граничные условия:

$$\alpha_{1}(t_{k})u_{0}^{k} - \alpha_{2}(t_{k})\frac{u_{1}^{k} - u_{0}^{k}}{h} = \alpha(t_{k})$$

$$\beta_{1}(t_{k})u_{n}^{k} + \beta_{2}(t_{k})\frac{u_{n}^{k} - u_{n-1}^{k}}{h} = \beta(t_{k})$$

$$u_{0}^{k} - \frac{u_{1}^{k} - u_{0}^{k}}{h} = \alpha(t_{k})$$

$$u_{n}^{k} + \frac{u_{n}^{k} - u_{n-1}^{k}}{h} = \beta(t_{k})$$

$$(h+1)u_{0}^{k} - u_{1}^{k} = h\alpha(t_{k})$$

$$-u_{n-1}^{k} + (h+1)u_{n}^{k} = h\beta(t_{k})$$

Найдем коэффициенты системы, решив которую можно получить решения на последующих слоях:

$$\sigma L_h u_i^k - \frac{1}{\tau} u_i^k = G_i^k$$

$$\sigma \left(\frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{h^2} - u_i^k \sin x_i \right) - \frac{1}{\tau} u_i^k = G_i^k$$

$$\frac{\sigma}{h^2} u_{i-1}^k - \left(\frac{2\sigma}{h^2} + \sin x_i + \frac{1}{\tau} \right) u_i^k + \frac{\sigma}{h^2} u_{i+1}^k = G_i^k$$

Имея:

$$G_i^k = -\frac{1}{\tau}u_i^{k-1} - (1 - \sigma)L_h u_i^{k-1} - f(x_i, t_k)$$

Составим систему:

Проведем тестирование на $u = x^5 + t^3$

$$3t^{2} = 20x^{3} - (x^{5} + t^{3})\sin x + f(x, t)$$

$$f(x, t) = 3t^{2} - 20x^{3} + (x^{5} + t^{3})\sin x$$

$$\alpha(t) = u(0, t) - \frac{\partial u}{\partial x}\Big|_{x=0} = t^{3}$$

$$\beta(t) = u(1, t) + \frac{\partial u}{\partial x}\Big|_{x=1} = 1 + t^{3} + 5 = t^{3} + 6$$

$$\varphi(x) = u(x, 0) = x^{5}$$

Найдем результат для $\sigma = 0$:

1	x \ t	0.0	+ 0.01	+ 0.02	0.03	0.04	0.05	 0.06	0.07	0.08	0.09	++ 0.1
1	0.0	0.0	 0.0	+ 0.0	0.0	0.0	0.0	 0.0	 0.0	 0.001	 0.001	++ 0.001
	0.25	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.017
	0.5	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.126	0.126	0.126
	0.75	0.422	0.422	0.422	0.422	0.423	0.423	0.424	0.425	0.427	0.428	0.43
	1.0	1.0	1.0	1.172	1.172	1.173	1.173	1.174	1.175	1.177	1.178	1.18
Н		 	t	t	 	 	 	t	·	 	·	++

Рис. 7. Аппроксимация при h = 0.25, t = 0.01

+	·	 	·	·	·	·	+	·	·	+	++
x \ t	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
+	 	+	 	·	+	++					
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.001	0.001	0.001
0.1	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
0.2	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.009	0.009	0.009
0.3	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.028	0.028	0.028
0.4	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.065	0.065	0.065
0.5	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.126	0.126	0.126
0.6	0.216	0.216	0.216	0.216	0.216	0.216	0.216	0.216	0.217	0.217	0.217
0.7	0.343	0.343	0.343	0.343	0.343	0.343	0.343	0.343	0.344	0.344	0.344
0.8	0.512	0.512	0.512	0.512	0.512	0.512	0.512	0.512	0.513	0.513	0.513
0.9	0.729	0.729	0.729	0.729	0.73	0.73	0.731	0.732	0.733	0.735	0.736
1.0	1.0	1.0	1.029	1.029	1.03	1.03	1.031	1.032	1.033	1.035	1.036
+		+	·	·		·	+	·	·	+	++

Рис. 8. Аппроксимация при h = 0.1, t = 0.01

+-			 	 			 	 		 	+	++
1	x \ t	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
ï	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.001	0.001	0.001
П	0.05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.001	0.001	0.001
	0.1	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
Т	0.15	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004
	0.2	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.009	0.009	0.009
Т	0.25	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.017
	0.3	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.028	0.028	0.028
	0.35	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.044	0.044
	0.4	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.065	0.065	0.065
	0.45	0.091	0.091	0.091	0.091	0.091	0.091	0.091	0.091	0.092	0.092	0.092
	0.5	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.126	0.126	0.126
	0.55	0.166	0.166	0.166	0.166	0.166	0.166	0.167	0.167	0.167	0.167	0.167
	0.6	0.216	0.216	0.216	0.216	0.216	0.216	0.216	0.216	0.217	0.217	0.217
Т	0.65	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.276
Т	0.7	0.343	0.343	0.343	0.343	0.343	0.343	0.343	0.343	0.344	0.344	0.344
	0.75	0.422	0.422	0.422	0.422	0.422	0.422	0.422	0.422	0.422	0.423	0.423
Т	0.8	0.512	0.512	0.512	0.512	0.512	0.512	0.512	0.512	0.513	0.513	0.513
	0.85	0.614	0.614	0.614	0.614	0.614	0.614	0.614	0.614	0.615	0.615	0.615
	0.9	0.729	0.729	0.729	0.729	0.729	0.729	0.729	0.729	0.73	0.73	0.731
	0.95	0.857	0.857	0.857	0.858	0.858	0.859	0.859	0.86	0.861	0.862	0.864
	1.0	1.0	1.0	1.007	1.008	1.008	1.009	1.009	1.01	1.011	1.012	1.014
+-		+	 	 	·	·	 	 	·	·	+	++

Рис. 9. Аппроксимация при h = 0.05, t = 0.01

+	tau	 U_{exact}-U_{h}	+ U_{2h}-U_{h}}
0.2	0.001	0.0	0.12133
0.1	0.001	0.08401	0.03732
0.05	0.001	0.02297	0.01435

Рис. 10. Точность решения

Найдем результат для $\sigma = 0.5$:

1	x \ t	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
	0.0 0.25 0.5	0.016	0.0 0.016 0.125	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.017
	0.75 1.0		0.422	:	0.422	0.42 3	0.42 3	0.424	0.425	0.427	0.428	0.43

Рис. 11. Аппроксимация при h = 0.25, t = 0.01

	 	 	 			 			+	+	+
x \ t	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
						 		·	+	+	+
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.001	0.001	0.001
0.1	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
0.2	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.009	0.009	0.009
0.3	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.028	0.028	0.028
0.4	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.065	0.065	0.065
0.5	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.126	0.126	0.126
0.6	0.216	0.216	0.216	0.216	0.216	0.216	0.216	0.216	0.217	0.217	0.217
0. 7	0.343	0.343	0.343	0.343	0.343	0.343	0.343	0.343	0.344	0.344	0.344
0.8	0.512	0.512	0.512	0.512	0.512	0.512	0.512	0.512	0.513	0.513	0.513
0.9	0.729	0.729	0.729	0.729	0.7 3	0.73	0.731	0.732	0.733	0.735	0.736
1.0	1.0	1.0	1.029	1.029	1.03	1.03	1.031	1.032	1.033	1.035	1.036
	<u> </u>	 	<u> </u>	·	·	 		 			+

Рис. 12. Аппроксимация при h = 0.1, t = 0.01

+	x \ t	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	 0.08	0.09	0.1
Ī	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.001	0.001	0.001
H	0.05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.001	0.001	0.001
Ιİ	0.1	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
Ιİ	0.15	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004
П	0.2	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.009	0.009	0.009
П	0.25	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.017
H	0.3	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.028	0.028	0.028
П	0.35	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.044	0.044
	0.4	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.065	0.065	0.065
	0.45	0.091	0.091	0.091	0.091	0.091	0.091	0.091	0.091	0.092	0.092	0.092
	0.5	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.126	0.126	0.126
	0.55	0.166	0.166	0.166	0.166	0.166	0.166	0.167	0.167	0.167	0.167	0.167
	0.6	0.216	0.216	0.216	0.216	0.216	0.216	0.216	0.216	0.217	0.217	0.217
	0.65	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.276
	0.7	0.343	0.343	0.343	0.343	0.343	0.343	0.343	0.343	0.344	0.344	0.344
	0.75	0.422	0.422	0.422	0.422	0.422	0.422	0.422	0.422	0.422	0.423	0.423
	0.8	0.512	0.512	0.512	0.512	0.512	0.512	0.512	0.512	0.513	0.513	0.513
Ī	0.85	0.614	0.614	0.614	0.614	0.614	0.614	0.614	0.614	0.615	0.615	0.615
Ī	0.9	0.729	0.729	0.729	0.729	0.729	0.729	0.729	0.73	0.73	0.73	0.731
Ĺ	0.95	0.857	0.857	0.857	0.858	0.858	0.859	0.859	0.86	0.861	0.862	0.864
Ì	1.0	1.0	1.0	1.007	1.008	1.008	1.009	1.009	1.01	1.011	1.012	1.014
+-		+		+	+	+	+	+	+	+	+	++

Рис. 13. Аппроксимация при h = 0.05, t = 0.01

+	+		+
h	tau	U_{exact}-U_{h}	U_{2h}-U_{h}}
0.2	0.001	0.0	0.12133
0.1	0.001	0.08401	0.03732
0.05	0.001	0.02297	0.01435

Рис. 14. Точность решения

Найдем результат для $\sigma=1$:

x \ t	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
0.0 0.25 0.5		0.0 0.016 0.125	0.016	0.016	0.016		0.016		0.001 0.016	0.016	!
0.75	0.422 1.0	0.422	0.422 1.172	0.422	0.423	0.423	0.424	0.425	0.427	0.428	0.43

Рис. 15. Аппроксимация при h = 0.25, t = 0.01

x \ t	0.0	 0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	 0.09	+ 0.1
0.0 0.1 0.2 0.3	0.0 0.001 0.008 0.027	0.0 0.001 0.008 0.027	0.0 0.001 0.008 0.027	0.0 0.001 0.008 0.027	0.0 0.001 0.008 0.027	0.0 0.001 0.008 0.027	0.0 0.001 0.008 0.027	0.0 0.001 0.008 0.027	0.001 0.002 0.009 0.028	0.001 0.002 0.009 0.028	 0.001 0.002 0.009 0.028
0.4 0.5 0.6 0.7	0.064 0.125 0.216 0.343	0.064 0.125 0.216 0.343	0.064 0.125 0.216 0.343	0.064 0.125 0.216 0.343	0.064 0.125 0.216 0.343	0.064 0.125 0.216 0.343	0.064 0.125 0.216 0.343	0.064 0.125 0.216 0.343	0.065 0.126 0.217 0.344	0.065 0.126 0.217 0.344	0.065 0.126 0.217 0.344
0.8 0.9 1.0	0.512 0.729 1.0	0.512 0.729 1.0 	0.512 0.729 1.029	0.512 0.729 1.029	0.512 0.73 1.03	0.512 0.73 1.03	0.512 0.731 1.031	0.512 0.732 1.032	0.513 0.733 1.033	0.513 0.735 1.035 	0.513 0.736 1.036 +

Рис. 16. Аппроксимация при h = 0.1, t = 0.01

+	x \ t	 0.0	0.01	0.02	0.03	 0.04	 0.05	 0.06	0.07	 0.08	 0.09	0.1
+	0.0	 0.0	 0.0	 0.0	 0.0	0.0	 0.0	 0.0	0.0	 0.001	 0.001	+ 0.001
l	0.05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.001	0.001	0.001
l	0.1	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002
l	0.15	0.003	0.003	0.003	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004
l	0.2	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.009	0.009	0.009
l	0.25	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.017
l	0.3	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.028	0.028	0.028
l	0.35	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.044	0.044
l	0.4	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.065	0.065	0.065
l	0.45	0.091	0.091	0.091	0.091	0.091	0.091	0.091	0.091	0.092	0.092	0.092
l	0.5	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.126	0.126	0.126
H	0.55	0.166	0.166	0.166	0.166	0.166	0.166	0.167	0.167	0.167	0.167	0.167
l	0.6	0.216	0.216	0.216	0.216	0.216	0.216	0.216	0.216	0.217	0.217	0.217
l	0.65	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.275	0.276
П	0.7	0.343	0.343	0.343	0.343	0.343	0.343	0.343	0.343	0.344	0.344	0.344
l	0.75	0.422	0.422	0.422	0.422	0.422	0.422	0.422	0.422	0.422	0.423	0.423
П	0.8	0.512	0.512	0.512	0.512	0.512	0.512	0.512	0.512	0.513	0.513	0.513
Ì	0.85	0.614	0.614	0.614	0.614	0.614	0.614	0.614	0.614	0.615	0.615	0.615
Ì	0.9	0.729	0.729	0.729	0.729	0.729	0.729	0.729	0.7 3	0.73	0.73	0.731
ĺ	0.95	0.857	0.857	0.858	0.858	0.858	0.859	0.859	0.86	0.861	0.862	0.864
	1.0	1.0	1.0	1.008	1.008	1.008	1.009	1.009	1.01	1.011	1.012	1.014
+		+	H	 	H	+	+	+	+	+	+	++

Рис. 17. Аппроксимация при h = 0.05, t = 0.01

+	tau	U_{exact}-U_{h}	+ U_{2h}-U_{h}}
0.2	0.001	0.0	0.12133
0.1	0.001	0.08401	0.03732
0.05	0.001	0.02297	0.01435

Рис. 18. Точность решения

Вывод: в ходе выполнения лабораторной работы были получены практические навыки анализа возможностей построения и выделения наиболее важных свойств объектов моделей для моделирования и использования специализированных программных пакетов и библиотек для стандартных вычислений и визуализации результатов численного или приближенно-аналитического решения ДУЧП2 параболического типа на основе сравнения результатов.

ПРИЛОЖЕНИЯ

Листинг: LW4_1.py

```
import numpy as np
import matplotlib.pyplot as plt
from prettytable import PrettyTable
def f(x, t):
    return 3*t**2 - 6*x + (x**3 + t**3)*np.sin(x)
    \#return (x**2 + t)*np.sin(x) - 1
def lu(u: np.array, x: np.linspace, t: np.linspace, i, k, h):
     return (u[i + 1, k] - 2*u[i, k] + u[i - 1, k]) / pow(h, 2) - u[i, k]
k]*np.sin(x[i])
def solve(h, tau):
    x \min = 0
    x max = 1
    xs = np.arange(x min, x max + h, h)
    n x = len(xs)
    t min = 0
    t max = 0.1
    ts = np.arange(t min, t max + tau, tau)
    n t = len(ts)
    \#phi = lambda x, t: x^*2
    phi = lambda x, t: pow(x, 3)
    #alpha = lambda t: t
    alpha = lambda t: pow(t, 3)
    \#beta = lambda t: t + 3
    beta = lambda t: 4 + pow(t, 3)
    U = np.zeros((n_x, n_t))
    U[:, 0] = [phi(x, t min) for x in xs]
    for k in range(1, n t):
        for i in range (1, n \times - 1):
            U[i, k] = U[i, k - 1] + tau * (lu(U, xs, ts, i, k - 1, h) +
                                            f(xs[i], ts[k-1]))
        U[0, k] = (2*h*alpha(ts[k]) - 4*U[1, k] + U[2, k]) / (2*h + 3)
        U[-1, k] = (2*h*beta(ts[k]) + 4*U[-2, k] - U[-3, k]) / (2*h + 3)
    return [xs, ts, U]
def makeTableFromResult(xs, ts, U):
    table = PrettyTable()
    ts = ts.round(4)
    xs = xs.round(4)
```

```
U = U.round(4)
    table.add column("x \ t", xs)
    for k in range(len(ts)):
        table.add column(f"{ts[k]}", U[:, k])
    return table
h = 0.125
tau = 0.01
[xs, ts, U] = solve(h, tau)
print("Результат:")
print(makeTableFromResult(xs, ts, U))
fig = plt.figure()
ax = plt.axes(projection='3d')
X, Y = np.meshgrid(ts, xs)
ax.plot surface(X, Y, U, rstride=1, cstride=1,
    cmap='viridis', edgecolor='none')
ax.set xlabel('$t$')
ax.set ylabel('$x$')
ax.set zlabel('$u$')
plt.show()
def makeTableFromStep(hs, taus, exact diff, diff):
    table = PrettyTable()
    table.add column("h", hs)
    table.add column("tau", taus)
    table.add column("||U {exact}-U {h}||", diff)
    table.add column("||U {2h}-U {h}}||", exact diff)
    return table
hs = []
taus = []
exact diff = []
last diff = []
[ , , last u] = solve(h, tau)
last_u = last_u[0::2]
for i in range(3):
    [xs, ts, U] = solve(h, tau)
    u = lambda t, x: x**3 + t**3
    \#u = lambda t, x: x**2 + t
    U exact = np.array([[u(t, x) for t in ts] for x in xs])
    hs.append(h)
    taus.append(tau)
    exact diff.append(np.amax(np.abs(U - U exact)))
    last diff.append(np.amax(np.abs(last u - U[0::2])))
```

```
h /= 2
   last u = U
hs = np.array(hs).round(7)
taus = np.array(taus).round(7)
exact diff = np.array(exact diff).round(7)
last diff = np.array(last diff).round(7)
print(makeTableFromStep(hs, taus, last diff, exact diff))
     LW4\_2.py
import numpy as np
import matplotlib.pyplot as plt
from mpl toolkits import mplot3d
import scipy.linalg as la
from prettytable import PrettyTable
def f(x, t):
    return 3*t**2 - 20*x**3 + (x**5 + t**3)*np.sin(x)
def lu(u: np.array, x: np.linspace, t: np.linspace,
       i, k, h):
     return (u[i + 1, k] - 2 * u[i, k] + u[i - 1, k]) / pow(h, 2) - u[i, k]
k]*np.sin(x[i])
def solve(h, tau, sigma):
    x \min = 0
   x max = 1
    xs = np.arange(x min, x max + h, h)
   n x = len(xs)
    t min = 0
    t max = 0.1
    ts = np.arange(t min, t max + tau, tau)
   n t = len(ts)
   phi = lambda x, t: pow(x, 5)
   alpha = lambda t: pow(t, 3)
   beta = lambda t: pow(t, 3) + 6
   U = np.zeros((n x, n t))
    G = np.zeros((n x, n t))
    U[:, 0] = [phi(x, t min) for x in xs]
   A = np.zeros((n x - 1))
    B = np.zeros((n x))
    C = np.zeros((n x - 1))
   G[0, 0] = h*alpha(ts[0])
   G[-1, 0] = h*beta(ts[0])
    for k in range(0, n t - 1):
```

```
for i in range(1, n \times - 1):
            G[i, k+1] = (-1 * U[i, k]) / tau \setminus
                - (1 - sigma) * lu(U, xs, ts, i, k, h) 
                - f(xs[i], ts[k])
            A[i - 1] = sigma / h**2
            B[i] = 2*sigma / h**2 + np.sin(xs[i]) + 1 / tau
            C[i] = sigma / h**2
        B[0] = -(h + 1)
        C[0] = -1
        A[-1] = -1
        B[-1] = -(h + 1)
        G[0, k+1] = h*alpha(ts[k+1])
        G[-1, k+1] = h*beta(ts[k+1])
        matrix = np.array([[0, *C], B, [*A, 0]])
        U[:, k+1] = la.solve banded((1,1), matrix, G[:, k+1])
    return [xs, ts, U]
def makeTableFromResult(xs, ts, U):
    table = PrettyTable()
    ts = ts.round(4)
    xs = xs.round(4)
    U = U.round(5)
    table.add column("x \ t", xs)
    for k in range(len(ts)):
        table.add column(f"{ts[k]}", U[:, k])
    return table
h = 0.25
tau = 0.01
sigma = 0.5
[xs, ts, U] = solve(h, tau, sigma)
fig = plt.figure()
ax = plt.axes(projection='3d')
X, Y = np.meshgrid(ts, xs)
ax.plot surface(X, Y, U, rstride=1, cstride=1,
    cmap='magma', edgecolor='none')
ax.set xlabel('$t$')
ax.set ylabel('$x$')
ax.set zlabel('$u$')
plt.show()
def makeTableFromStep(hs, taus, diff, exact diff):
    table = PrettyTable()
    table.add column("h", hs)
    table.add column("tau", taus)
```

```
table.add column("||U {exact}-U {h}||", diff)
    table.add column("||U {2h}-U {h}}||", exact diff)
    return table
def makeTableFromResult(xs, ts, U):
    table = PrettyTable()
    ts = ts.round(3)
    xs = xs.round(3)
    U = U.round(3)
    table.add column("x \ t", xs)
    for k in range(len(ts)):
        table.add column(f"{ts[k]}", U[:, k])
    return table
[xs, ts, U] = solve(h, tau, sigma)
print("Результат:")
print(makeTableFromResult(xs, ts, U))
hs = []
taus = []
exact diff = []
last diff = []
[ , , last u] = solve(h, tau, sigma)
last u = last u[0::2]
for i in range(3):
    [xs, ts, U] = solve(h, tau, sigma)
    u = lambda t, x: x**5 + t**3
    U exact = np.array([[u(t, x) for t in ts] for x in xs])
    hs.append(h)
    taus.append(tau)
    exact diff.append(np.amax(np.abs(U - U exact)))
    last_diff.append(np.amax(np.abs(last_u - U[0::2])))
    h /= 2
    last u = U
hs = np.array(hs).round(5)
taus = np.array(taus).round(5)
exact_diff = np.array(exact_diff).round(5)
last diff = np.array(last diff).round(5)
print(makeTableFromStep(hs, taus, exact diff, last diff))
```