Resistive Networks

Lecture 2 September 6th, 2018

Jae W. Lee (jaewlee@snu.ac.kr)
Computer Science and Engineering
Seoul National University

Slide credits: Prof. Anant Agarwal at MIT

Review: Lumped Matter Discipline (LMD)

- Constraints we impose on ourselves to simplify our analysis
 - Allows us to create the lumped circuit abstraction

$$\frac{\partial \phi_B}{\partial t} = 0$$
 Outside elements

$$\frac{\partial q}{\partial t} = 0$$
 Inside elements wires resistors I/V sources

Review: Lumped Matter Discipline (LMD)

LMD allows us to create the lumped circuit abstraction

power consumed by element = vi [Watt]

Review: Kirchhoff's Laws

Maxwell's equations simplify to algebraic KVL and KCL under LMD!

KVL:

$$\sum_{j} v_{j} = 0$$

loop

KCL:

$$\sum_{j} i_{j} = 0$$

node

Review: Kirchhoff's Laws

Example

$$i_{ca} + i_{da} + i_{ba} = 0$$
 KCL

Outline

Textbook: Ch. 2.1-2.6

Kirchhoff's Laws: KCL and KVL

- Intuitive Method of Circuit Analysis: Series and Parallel Simplification
- Dependent Sources

KCL (Kirchhoff's Current Law)

The sum of all branch currents flowing into a node is zero
 charge conservation.

$$I_{ca} + I_{ba} + I_{da} = 0$$

KCL: An Illustration

Node 2

Illustration of KCL at node 1: $-i + i_1 + i_2 + i_3 = 0$

Node: $i_1 - i_2 - i_3 = 0$

6: $i_1 - i_2 - i_4 = 0$

KCL: Demonstration

Is =
$$5A$$
, I1 = $2A$, I2 = $-3A$, I3 = $1.5 A$

Find IO and I4

KCL: Example

Write down the KCL equation for G.

KVL (Kirchhoff's Voltage Law)

■ The algebraic sum of the branch voltages around any closed path in a network must be zero

Node sequence B,A,D,B: $v_{BA} + v_{AD} + v_{DB} = 0$

Using node voltages: $v_{BA} = e_B - e_A$, $e_D = 0$

(reference node = D, reference voltage = 0)

KVL: Example

Find V2.

Note: A helpful mnemonic for writing KVL equations is to assign the polarity to a given voltage in accordance with the first sign encountered when traversing the voltage around the loop.

Some Useful Facts

■ The branch currents passing through series-connected elements must be the same.

 The voltages across parallel-connected elements must be the same.

Outline

Textbook: Ch. 2.1-2.6

- Kirchhoff's Laws: KCL and KVL
- Circuit Analysis: Basic Method
- Intuitive Method of Circuit Analysis: Series and Parallel Simplification
- Dependent Sources

- Goal: Find all element v's and i's
 - 1. write element v-i relationships (from lumped circuit abstraction)
 - 2. write KCL for all nodes
 - 3. write KVL for all loops

- Step 1: Element relationships
 - Example: 3 lumped circuit elements

For R,
$$V = IR$$
 $-W$ -
For voltage source, $V = V_0$ V_0
For current source, $I = I_0$

- KVL, KCL example (Step 2 & 3)
 - A demo circuit

- Associated variables discipline
 - Current is taken to be positive going into the positive voltage terminal

Then power consumed = vi is positive by element e

- KVL, KCL example (Step 2 & 3)
 - A demo circuit

Put all steps together!

$$V_0 \dots V_5, l_0 \dots l_5$$

12 unknowns

1. Element relationships (v,i)

$$v_0 = V_0 \leftarrow \text{given} \quad v_3 = i_3 R_3 \qquad \qquad \text{6 equations}$$

$$v_1 = i_1 R_1 \qquad \qquad v_4 = i_4 R_4$$

$$v_2 = i_2 R_2 \qquad \qquad v_5 = i_5 R_5$$

2. KCL at the nodes

a:
$$i_0 + i_1 + i_4 = 0$$

b: $i_2 + i_3 - i_1 = 0$
d: $i_5 - i_3 - i_4 = 0$
e: $-i_0 - i_2 - i_5 = 0$ redundant

3 independent equations

3. KVL for loops

L1:
$$-v_0 + v_1 + v_2 = 0$$
 3 in L2: $v_1 + v_3 - v_4 = 0$ equal L3: $v_3 + v_5 - v_2 = 0$ L4: $-v_0 + v_4 + v_5 = 0$ redundant : $0^{(5)}$

3 independent equations

Outline

Textbook: Ch. 2.1-2.6

- Kirchhoff's Laws: KCL and KVL
- Circuit Analysis: Basic Method
- Intuitive Method of Circuit Analysis: Series and Parallel Simplification
- Dependent Sources

Voltage divider and series resistors

(a) Voltage divider

$$v_1 = \frac{R_1}{R_1 + R_2} v$$

(b) Equivalent resistance

What does "equivalent" mean?

Voltage divider and series resistors

R1 = 10 k
$$\Omega$$
, R2 = 6 k Ω , R3 = 8 k Ω

Find V3.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The current *i* flows through each of the four series elements. Thus, by KVL,

$$1.5 = v_1 + v_2 + v_3$$

N series resistors are equivalent to a single resistor equal to the sum of the individual resistances.

Current divider and parallel resistors

(a) Current divider

$$i_1 = \frac{G_1}{G_1 + G_2} i = \frac{R_2}{R_1 + R_2} i$$

(b) Equivalent resistance

Current divider and parallel resistors

The voltage v appears across each parallel element; by KCL, $i_S = i_1 + i_2 + i_3$

N resistors in parallel are equivalent to a single equivalent resistor with resistance equal to the inverse of the sum of the inverse resistances.

Example 1

Example 2

Find the voltage (v) between nodes A and B.

Element combination rules

Outline

Textbook: Ch. 2.1-2.6

- Kirchhoff's Laws: KCL and KVL
- Circuit Analysis: Basic Method
- Intuitive Method of Circuit Analysis: Series and Parallel Simplification
- Dependent Sources

Dependent Sources

Seen previously... independent sources!

Resistor

$$\begin{array}{ccc}
+ & v & - \\
\hline
i & R
\end{array}$$
 $i =$

Independent \overrightarrow{i} Current source \overrightarrow{i}

$$i = 1$$

2-terminal 1-port devices

Dependent Sources

New type of device: Dependent source

- e.g., Voltage Controlled Current Source (VCCS)
- Current at output port is a function of voltage at the input port

Dependent Sources: Examples

Example 1: Find V

independent current source

$$V = I_0 R$$

Dependent Sources: Examples

Example 2: Find V

voltage controlled current source

Dependent Sources: Examples

Example 2: Find V

voltage controlled current source

e.g.
$$K = 10^{-3} Amp \cdot Volt$$

 $R = 1k\Omega$

$$V = IR = \frac{K}{V}R$$
or $V^2 = KR$
or $V = \sqrt{KR}$
 $= \sqrt{10^{-3} \cdot 10^3}$
 $= 1 \, Volt$

Dependent Sources

- Symbols for (other) dependent sources
 - We will heavily use them to model amplifiers (in Chapter 7)!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a)VCVS

(b) CCVS

(c) VCCS

(d) CCCS

Dependent Sources: Another Example

Find v. How much power does 4 k Ω resistor consume?

Now, the voltage source is changed from 10V to 5V. How much power does $4k\Omega$ resistor consume?