

Report No.: ATA161212011F Page: 1 of 76

FCC Test Report (Bluetooth)

FCC ID : 2AI6DX98PRO

Applicant : SHENZHEN AMEDIATECH TECHNOLOGY CO., LTD

3F, Tower A, Building A, Minsheng Industrial Park, Longhua Road,

Longhua New Area, Shenzhen, China.

Sample Description

Product Name : Smart TV BOX

Model No. : X98PRO

Serial No. : X98

Trademark : N/A

Receipt Date : 2016-12-05

Test Date : 2016-12-06 to 2016-12-12

Issue Date : 2016-12-13

Test Standard(s) : FCC CFR Title 47 Part 15 Subpart C Section 15.247

Conclusions : PASSED*

*In the configuration tested, the EUT complied with the standards specified above.

Test/Witness Engineer

Approved & Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Report No.: ATA161212011F Page: 2 of 76

Contents

CON	NTENTS	3	2			
1.	GEN	GENERAL INFORMATION				
	1.1.	Client Information	∠			
	1.2.	General Description of EUT (Equipment Under Test)	∠			
	1.3.	Block Diagram Showing The Configuration of System Tested	5			
	1.4.	Description of Support Units	<i>.</i>			
	1.5.	External I/O Cable	<i>6</i>			
	1.6.	Description of Test Mode	<i>6</i>			
	1.7.	Test Instruments List	7			
	1.8.	Laboratory Location				
2.	TES	T SUMMARY	9			
3.	ANT	ENNA REQUIREMENT	10			
	3.1.	Standard Requirement	10			
	3.2.	Antenna Connected Construction	10			
4.	CON	DUCTED EMISSION TEST	11			
	4.1.	Test Standard and Limit	11			
	4.2.	Test Setup	11			
	4.3.	Test Procedure	11			
	4.4.	Test Data	12			
5 .	CONDUCTED PEAK OUTPUT POWER TEST					
	5.1.	Test Standard and Limit	15			
	5.2.	Test Setup				
	5.3.	Test Procedure	15			
	5.4.	Test Data	15			
6.	20DE	B OCCUPY BANDWIDTH TEST	22			
	6.1.	Test Standard and Limit	22			
	6.2.	Test Setup	22			
	6.3.	Test Procedure	22			
	6.4.	Test Data	22			
7.	CAR	RIER FREQUENCY SEPARATION TEST	29			
	7.1.	Test Standard and Limit	29			
	7.2.	Test Setup	29			
	7.3.	Test Procedure	29			
	7.4.	Test Data	29			
8.	NUM	IBER OF HOPPING CHANNEL	34			
	8.1.	Test Standard and Limit	34			
	8.2.	Test Setup				

Re	port No.	: ATA161212011F	Page: 3 of 76
	8.3.	Test Procedure	34
	8.4.	Test Data	34
9.	DWE	LL TIME TEST	37
	9.1.	Test Standard and Limit	37
	9.2.	Test Setup	37
	9.3.	Test Procedure	37
	9.4.	Test Data	37
10.	PSEL	JDORANDOM FREQUENCY HOPPING SEQUENCE	45
	10.1.	Standard Requirement	45
	10.2.	EUT Pseudorandom Frequency Hopping Sequence	45
11.	BANI	DEDGE REQUIREMENT (CONDUCTED EMISSION METHOD).	46
	11.1.	Test Standard and Limit	46
	11.2.	Test Setup	46
	11.3.	Test Procedure	46
	11.4.	Test Data	46
12.	BANI	D EDGE REQUIREMENT (RADIATED EMISSION METHOD)	50
	12.1.	Test Standard and Limit	50
	12.2.	Test Setup	50
		Test Procedure	
	12.4.	Test Data	51
13.	SPUF	RIOUS EMISSION (RADIATED EMISSION METHOD)	64
	14.1.	Test Standard and Limit	64
	14.2.	Test Setup	
	14.3.		
	14.4.	Test Data	65
14.	SPUF	RIOUS EMISSION (CONDUCTED METHOD)	71
	14.1T	71	
		est Setup	
		est Procedure	
	1/I/T	act Data	71

Report No.: ATA161212011F Page: 4 of 76

1. General Information

1.1. Client Information

Applicant	:	SHENZHEN AMEDIATECH TECHNOLOGY CO., LTD
Address	:	3F, Tower A, Building A, Minsheng Industrial Park, Longhua Road, Longhua
		New Area, Shenzhen, China.
Manufacturer	:	SHENZHEN AMEDIATECH TECHNOLOGY CO., LTD
Address	:	3F, Tower A, Building A, Minsheng Industrial Park, Longhua Road, Longhua
		New Area, Shenzhen, China.

1.2. General Description of EUT (Equipment Under Test)

Product Name		Smart TV BOX		
Models No.		X98PRO, X98		
Difference		Only differ on apperarance and name		
		Operation Frequency:	2402MHz~2480MHz	
		Transfer Rate:	1/2/3 Mbits/s	
Deadwat		Number of Channel:	79 Channels	
Product Description		Modulation Type:	GFSK, π/4-DQPSK, 8-DPSK	
		Modulation Technology:	FHSS	
		Antenna Type:	Integral PCB Antenna	
		Antenna Gain:	2 dBi	
Power Supply	:	: DC 5V powered by power adapter		

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
2402	27	2429	54	2456
2403	28	2430	55	2457
2404	29	2431	56	2458
2405	30	2432	57	2459
2406	31	2433	58	2460
2407	32	2434	59	2461
2408	33	2435	60	2462
	(MHz) 2402 2403 2404 2405 2406 2407	(MHz) 2402 27 2403 28 2404 29 2405 30 2406 31 2407 32	(MHz) (MHz) 2402 27 2429 2403 28 2430 2404 29 2431 2405 30 2432 2406 31 2433 2407 32 2434	(MHz) (MHz) 2402 27 2429 54 2403 28 2430 55 2404 29 2431 56 2405 30 2432 57 2406 31 2433 58 2407 32 2434 59

ort No.: ATA	A161212011F				Page: 5 of 76
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

1.3. Block Diagram Showing The Configuration of System Tested

Report No.: ATA161212011F Page: 6 of 76

1.4. Description of Support Units

Name	Model	Serial Number	Manufacturer
Printer	HP1020	CNCJ410726	HP
LCD Monitor	G205HV	10306738385	ACER
PC	ASPIREM1830	PTSF90C00305005CAC3000	ACER
Keyboard	SK-9625	KBUSB1580500037E0100	ACER
Mouse	MS.11200.014	M-UAY-ACR2	ACER

1.5. External I/O Cable

Cable Description	Length(m)	From/ Port	То
Shielding Detachable USB Cable	1.5	Host PC	Mouse
Shielding Detachable K/B Cable	1.5	Host PC	Keyboard
Shielding Detachable serial Cable	1.5	Host PC	Printer
Shielding Detachable VGA Cable	1.5	Host PC	LCD Monitor
Unshielding Detachable USB Cable	0.8	EUT	Host PC
Unshielding Audio Cable	0.6	EUT	Host PC

1.6. Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Test Mode	Description
Charging & Working mode	Keep the EUT in Charging& working mode
Transmitting mode	Keep the EUT in Transmitting mode with worst case data rate
Remark	GFSK(1Mbps) is the worst case mode

Remark: The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Report No.: ATA161212011F Page: 7 of 76

1.7. Test Instruments List

	Test Equipment	Manufacturer	Model No.	Cal. Date	Cal. Due date	
1	Bilog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	May 22, 2016	May 21, 2017	
2	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	May 27, 2016	May 26, 2017	
3	Coaxial Cable	N/A	N/A	Mar. 28, 2016	Mar. 27, 2017	
4	Coaxial Cable	N/A	N/A	Mar. 29, 2016	Mar. 29, 2017	
5	Coaxial cable	N/A	N/A	Mar. 29, 2016	Mar. 29, 2017	
6	Coaxial Cable	N/A	N/A	Mar. 29, 2016	Mar. 29, 2017	
7	Coaxial Cable	N/A	N/A	Mar. 29, 2016	Mar. 29, 2017	
8	Amplifier (10kHz-1.3GHz)	HP	8447D	Mar. 29, 2016	Mar. 29, 2017	
9	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	Jun. 06, 2016	Mar. 29, 2017	
10	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	Mar. 29, 2016	Mar. 29, 2017	
11	Horn Antenna	ETS-LINDGREN	3160	Mar. 27, 2016	Mar. 27, 2017	
12	Positioning Controller	UC	UC3000	N/A	N/A	
13	Spectrum analyzer 9kHz-30GHz	Rohde & Schwarz	FSP	May 26, 2016	May 27, 2017	
14	EMI Test Receiver	Rohde & Schwarz	ESPI	Mar. 29, 2016	Mar. 30, 2017	
15	Loop antenna	Laplace instrument	RF300	May 22,, 2016	May 23, 2017	
16	Universal radio communication tester	Rhode & Schwarz	CMU200	May 26, 2016	May 27, 2017	
17	Signal Analyzer	Rohde & Schwarz	FSIQ3	May 26, 2016	May 27, 2017	
18	L.I.S.N.#1	Rohde & Schwarz	NSLK8126	May 26, 2016	May 27, 2017	
19	L.I.S.N.#2	Rohde & Schwarz	ENV216	May 26, 2016	May 27, 2017	
20	Power Meter	Anritsu	ML2495A	May 26, 2016	May 27, 2017	
21	Power sensor	Anritsu	ML2491A	May 26, 2016	May 27, 2017	
				-	•	

1.8. Laboratory Location

Shenzhen TOBY technology Co., Ltd

Address: 1 A/F., Bldg.6, Yusheng Industrial Zone The National Road No.107 Xixiang Section 467,

Xixiang, Bao'an, Shenzhen, Guangdong, 518057, China

Report No.: ATA161212011F Page: 8 of 76

At the time of testing, the Laboratory is accredited. It is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562 7.

Tel:0086-755-26509301 Fax: 0086-755-26509195

Report No.: ATA161212011F Page: 9 of 76

2. Test Summary

Standard Section	Test Item	Judgment	
15.203/15.247(c)	Antenna Requirement	PASSED	
15.207	Conducted Emission	PASSED	
15.247(b)(1)	Conducted Peak Output Power	PASSED	
15.247(a)(1)	20dB Occupied Bandwidth	PASSED	
15.247(a)(1)	Carrier Frequencies Separation	PASSED	
15.247(a)(1)	Hopping Channel Number	PASSED	
15.247(a)(1)	Dwell Time	PASSED	
15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pseudorandom Frequency Hopping Sequence	PASSED	
15.205/15.209	Spurious Emission	PASSED	
15.247(d)	Band Edge	PASSED	
Remark: "N/A" is an abbreviation for Not Applicable.			

Report No.: ATA161212011F Page: 10 of 76

3. Antenna Requirement

3.1. Standard Requirement

3.1.1 Test standard

FCC Part15 Section 15.203 /247(c)

3.1.2 Requirement

1) 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

2) 15.247(c) (1)(i) requirement:

Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

3.2. Antenna Connected Construction

The bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 2 dBi. It complies with the standard requirement.

Report No.: ATA161212011F Page: 11 of 76

4. Conducted Emission Test

4.1. Test Standard and Limit

4.1.1 Test Standard

FCC Part15 Section 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Eroguenev	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

4.2. Test Setup

4.3. Test Procedure

- 1) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\,\Omega$ / 50μ H + $5\,\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 2) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane.

The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal

Page: 12 of 76

Report No.: ATA161212011F

ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

The Test Receiver setup: RBW=9kHz, VBW=30kHz, Sweep time= auto

4.4. Test Data

Please to see the following pages

Report No.: ATA161212011F Page: 13 of 76

Conducted Emission Test Data

EUT: Smart TV BOX M/N: X98PRO

Operating Condition: Charging & Working mode

Test Site: Shielded room

Operator: Jason

Test Specification: AC120V/60Hz

Polarization: Line

Note Tem:25℃ Hum:50%

Item	Freq	Read Level	LISN Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MHZ	dBuV	dB	dB	dВ	dBuV	dBuV	dBuV	
1	0.166	45.59	0.03	-9.52	0.10	55.24	65.16	-9.92	QP
2	0.166	37.11	0.03	-9.52	0.10	46.76	55.16	-8.40	Average
3	0.213	41.80	0.03	-9.52	0.10	51.45	63.10	-11.65	QP
4	0.213	33.23	0.03	-9.52	0.10	42.88	53.10	-10.22	Average
5	0.535	37.87	0.03	-9.58	0.10	47.58	56.00	-8.42	QP
6	0.535	31.01	0.08	-9.58	0.10	40.72	46.00	-5,28	Average
7	0.871	34.32	0.04	-9.62	0.10	44.08	56.00	-11.92	Peak
8	2.622	32.33	0.06	-9.76	0.11	42.26	56.00	-13.74	Peak
9	17.383	33.67	0.28	-9.82	0.30	44.07	60.00	-15.93	Peak

Remark: Level - Read Level + LISN Factor - Preamp Factor + Cable Loss

Report No.: ATA161212011F Page: 14 of 76

Conducted Emission Test Data

EUT: Smart TV BOX M/N: X98PRO

Operating Condition: Charging & Working mode

Test Site: Shielded room

Operator: Jason

Test Specification: AC 120V/60Hz

Polarization: Neutral

Note Tem:25℃ Hum:50%

Item	Freq	Read Level	LISN Factor	Preamp Factor	Cable Loss	Level	Limit	Margin	Remark
	MH2	dBuV	đВ	dВ	d5	dBuV	dBuV	d.BuV	
1	0,159	45.41	0.03	-9.52	0.10	55.06	65.52	-10.46	QP
2	0.159	36.25	0.03	-9.52	0.10	45.90	55.52	-9.62	Average
3	0.214	41.55	0.03	-9.52	0.10	51.20	63.05	-11.85	QF
4	0.214	34.63	0.03	-9.52	0.10	44.28	53.05	-8.77	Average
5	0.538	38.62	0.03	-9.58	0.10	48.33	56.00	-7.67	QF
6	0.538	27.54	0.03	-9.58	0.10	37.25	46.00	-8.75	Average
7	0.871	33.34	0.04	-9.62	0.10	43.10	56.00	-12.90	Feak
8	2.594	32,23	0.06	-9.76	0.11	42.16	56.00	-13.84	Peak
9	17,475	26,96	0.28	-9.82	0.30	37.36	60.00	-22.64	Peak

Remark: Level - Read Level + LISN Factor - Preamp Factor + Cable Loss

Report No.: ATA161212011F Page: 15 of 76

5. Conducted Peak Output Power Test

5.1. Test Standard and Limit

5.1.1 Test Standard

FCC Part15 C Section 15.247 (b)(3)

5.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item	Limit	Frequency Range (MHz)		
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm)	2400~2483.5		

5.2. Test Setup

5.3. Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz)

(3) The EUT was set to continuously transmitting in the max power during the test.

5.4. Test Data

Report No.: ATA161212011F Page: 16 of 76

	O	GFSK mode		
Channel Number	Channel Frequency (MHz)	Test Result (dBm)	Limit (30dBm)	Judgment
CH 00	2402	2.412	21	PASSED
CH 39	2441	3.605	21	PASSED
CH 78	2480	3.065	21	PASSED
	π/4-	-DQPSK mode		
Channel Number	Channel Frequency (MHz)	Test Result (dBm)	Limit (30dBm)	Judgment
CH 00	2402	1.647	21	PASSED
CH 39	2441	2.779	21	PASSED
CH 78	2480	3.420	21	PASSED
	81	DPSK mode		
Channel Number	Channel Frequency (MHz)	Test Result (dBm)	Limit (30dBm)	Judgment
CH 00	2402	1.613	21	PASSED
CH 39	2441	2.785	21	PASSED
CH 78	2480	2.468	21	PASSED

.

Report No.: ATA161212011F Page: 17 of 76 **Modulation mode GFSK** mode gilent Spectrum Analyzer - Swept SA Avg Type: Log-Pwi Avg|Hold:>100/100 Marker 1 2.402130000000 GHz State Mkr1 2.402 130 GHz 2.412 dBm Ref 20.00 dBm Trace (+ State) 2402MHz Data (Export) Trace 1 Screen Image Center 2.402000 GHz #Res BW 1.0 MHz Span 5.000 MHz Sweep 1.000 ms (1001 pts) #VBW 1.0 MHz igilent Spectrum Analyzer - Swept SA Peak Search Avg Type: Log-Pwi Avg|Hold:>100/100 **Next Peak**

Report No.: ATA161212011F Page: 18 of 76

Report No.: ATA161212011F Page: 19 of 76 igilent Spectrum Analyzer - Swept SA Marker 1 2.440845000000 GHz
PN0: Fast
IFGain:Low #Atten: 30 dB Peak Search Avg Type: Log-Pwi Avg|Hold:>100/100 Next Peak Mkr1 2.440 845 GHz 2.779 dBm Ref 20.00 dBm **Next Pk Right** Next Pk Left 2441MHz Marker Delta Mkr→CF Mkr→RefLvl Center 2.441000 GHz #Res BW 1.0 MHz Span 5.000 MHz Sweep 1.000 ms (1001 pts) #VBW 1.0 MHz 1 of 2 Marker 1 2.479845000000 GHz
PN0: Fast | FGain:Low #Atten: 30 dB Peak Search Avg Type: Log-Pwr Avg|Hold:>100/100 Mkr1 2.479 845 GHz 3.420 dBm **Next Peak** Ref 20.00 dBm **Next Pk Right** Next Pk Left 2480MHz Marker Delta Mkr→CF Mkr→RefLvl Center 2.480000 GHz #Res BW 1.0 MHz Span 5.000 MHz Sweep 1.000 ms (1001 pts) More **#VBW 1.0 MHz** 1 of 2

Report No.: ATA161212011F Page: 20 of 76

Report No.: ATA161212011F Page: 22 of 76

6. 20dB Occupy Bandwidth Test

6.1. Test Standard and Limit

6.1.1 Test Standard

FCC Part15 C Section 15.247 (a)(1)

6.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item	Limit	Frequency Range (MHz)		
Bandwidth	20dB bandwidth	2400~2483.5		

6.2. Test Setup

6.3. Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Bandwidth: RBW=30 kHz, VBW=100 kHz, detector= Peak

6.4. Test Data

Channel Number	Channel	20dB Bandwidth (MHz)			
Number	Frequency	GFSK	π/4-DQPSK	8DPSK	
CH 00	2402(MHz)	0.7039	1.118	1.126	
CH 39	2441(MHz)	0.6750	1.109	1.161	
CH 78	2480(MHz)	0.7309	1.094	1.161	
Remark: Test	Remark: Test plot as follows				

Report No.: ATA161212011F Page: 23 of 76

Modulation mode GFSK mode

Report No.: ATA161212011F Page: 25 of 76

Report No.: ATA161212011F Page: 27 of 76

Report No.: ATA161212011F Page: 29 of 76

7. Carrier Frequency Separation Test

7.1. Test Standard and Limit

7.1.1 Test Standard

FCC Part15 C Section 15.247 (a)(1)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item	Limit	Frequency Range (MHz)		
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth (Which is greater)	2400~2483.5		

7.2. Test Setup

7.3. Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:
 RBW=100 kHz, VBW=300 kHz, detector= Peak, Sweep Time =auto.
- (3) The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Test.

7.4. Test Data

Report No.: ATA161212011F Page: 30 of 76

GFSK mode				
Channel Number	Channel Frequency (MHz)	Test Result (MHz)	Limit (MHz)	Judgment
CH 39	2441	1.000	0.45	PASSED
π/4-DQPSK mode				
Channel Number	Channel Frequency (MHz)	Test Result (MHz)	Limit (MHz)	Judgment
CH 39	2441	1.000	0.74	PASSED
	8	BDPSK mode		
Channel Number	Channel Frequency (MHz)	Test Result (MHz)	Limit (MHz)	Judgment
CH 39	2441	1.000	0.77	PASSED
Remark: Test plot a	s follows			

According to section 6.4

Test Mode	20dB bandwidth (MHz) (worse case)	Limit (MHz) (Carrier Frequency Separation)
GFSK	0.675	0.45
π/4-DQPSK	1.109	0.74
8DPSK	1.161	0.77

Report No.: ATA161212011F Page: 31 of 76

Report No.: ATA161212011F Page: 32 of 76

Report No.: ATA161212011F Page: 33 of 76

Report No.: ATA161212011F Page: 34 of 76

8. Number of Hopping Channel

8.1. Test Standard and Limit

8.1.1 Test Standard

FCC Part15 C Section 15.247 (a)(1)

8.1.2 Test Limit

FCC Part 15 Subpart C (15.247)				
Test Item Limit Frequency Range (MHz)				
Number of Hopping Channel	>15 channels	2400~2483.5		

8.2. Test Setup

8.3. Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 kHz, VBW=300 kHz, Detector=Peak, Sweep time= Auto.
- (3) The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Test.

8.4. Test Data

Mode	Quantity of Hopping Channel	Limit	Judgment
GFSK, π/4-DQPSK, 8DPSK	79	>15	PASSED

Report No.: ATA161212011F Page: 35 of 76 **Modulation mode GFSK** mode Agicnis just control of the first of the fi Trig: Free Run Atten: 10 dB Select Marker Ref 0.00 dBm Norma Delta **Fixed** Off Properties! Stop 2.48350 GHz Sweep 8.000 ms (1001 pts) More Start 2.40000 GHz #Res BW 100 kHz **#VBW** 300 kHz **Modulation mode** π/4-DQPSK gilent Spectrum Analyzer - Swept SA Marker 1 Δ -78.3508333333 MHz
PN0: Fast Free Run
IFGain:Low
#Atten: 30 dB Avg Type: Log-Pw Avg|Hold:>100/100 Select Marker -78.35 MHz -1.866 dB Ref 10.00 dBm Norma Delta Fixed Off Properties) Start 2.40000 GHz #Res BW 100 kHz Stop 2.48350 GHz Sweep 8.000 ms (601 pts) More **#VBW** 300 kHz

8DPSK

Modulation mode

Report No.: ATA161212011F Page: 36 of 76

Report No.: ATA161212011F Page: 37 of 76

9. Dwell Time Test

9.1. Test Standard and Limit

9.1.1 Test Standard

FCC Part15 C Section 15.247 (a)(1)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Section	Test Item	Limit		
15.247(a)(1)	Dwell time	0.4 sec		

9.2. Test Setup

9.3. Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.
- (9) The EUT was set to the Hopping Mode for Dwell Time Test

9.4. Test Data

Report No.: ATA161212011F Page: 38 of 76

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Mode	Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limit (s)	Conclusion
GFSK	DH1	2441	0.365	0.117	< 0.4	PASS
	DH3	2441	1.62	0.259	<0.4	PASS
	DH5	2441	2.875	0.307	<0.4	PASS
π/4 DQPSK	DH1	2441	0.3733	0.119	<0.4	PASS
	DH3	2441	1.63	0.261	<0.4	PASS
	DH5	2441	2.883	0.308	< 0.4	PASS
8- DQPSK	DH1	2441	0.3733	0.119	<0.4	PASS
	DH3	2441	1.62	0.259	<0.4	PASS
	DH5	2441	2.867	0.306	<0.4	PASS

Note: 1 A period time = 0.4 (s) * 79 = 31.6(s)

2 DH1 time slot = Pulse Duration * (1600/(2*79)) * A period time

DH3 time slot = Pulse Duration * (1600/(4*79)) * A period time

DH5 time slot = Pulse Duration * (1600/(6*79)) * A period time

Report No.: ATA161212011F Page: 39 of 76

