Comparaison des prédictions des suites logicielles de ILC (iLCSoft) et de FCC (key4HEP) sur un signal $e^+e^- \longrightarrow ZH$

Alexia HOCINE

Juillet 2022

Remerciements

Gérald Grenier Imad Laktineh employés IP2I IP2I CNRS Stéphanie B. Geek Touch

Préambule

Table des matières

1	Intr	roduction
	1.1	Objectifs physiques
		1.1.1 Collisions
	1.2	SDHCAL (Semi-Digital Hadronic CALorimeter)
	1.3	
		FCC
	1.5	Présentation & Objectif du Stage
2	ilcs	soft
	2.1	Projet nnhAnalysis
		Programme analysis
3	FCC	
	3.1	Projet FCC
	3.2	Développement Numérique
	3.3	Travail de Stage
	3 4	Comparaison avec iLCSoft.

Chapitre 1

Introduction

- 1.1 Objectifs physiques
- 1.1.1 Collisions

Au cours, de ce stage, je me concentrerais sur les collisions de type nnh pour neutrino-neutrino-higgs

1.2 SDHCAL (Semi-Digital Hadronic CALorimeter)

tests en Septembre

- 1.3 iLCSoft
- 1.4 FCC
- 1.5 Présentation & Objectif du Stage

Chapitre 2

ilcsoft

2.1 Projet nnhAnalysis

2.2 Programme processor

Données

Initialement, on m'a mis à disposition des fichiers SLCIO rangés par processus dans 66 dossiers (Figure 2.1).

FIGURE 2.1 – Les noms des dossiers qui correspondent aux numéros de processus

Numéro des processus???

Méthodes

On cherche à convertir ces fichiers SLCIO en arbre ROOT par processus.

Résultats

Chaque dossier de fichier de donnée SLCIO produira un fichier ROOT en sortie, c'est-à-dire que l'on obtiendra un arbre ROOT par processus.

Interprétation

2.3 Programme analysis

Données

On récupère les fichiers ROOT du programme processor précédent. hadd qui va créer le fichier DATA.root

$M\acute{e}thodes$

BDT Entrainement

L'analyse

Résultats

Vérification des résultats Comparaison entre les différents séries d'analyse, basée sur les même fichiers ROOT, mais un autre entraînement de BDT.

Interprétation

Chapitre 3

FCC

3.1 Projet FCC

annaux de 100 km photo projet

3.2 Développement Numérique

Gaudi EDM4hep

- 3.3 Travail de Stage
- 3.4 Comparaison avec iLCSoft

Table des figures

2.1	Les noms des dossiers qui correspondent aux numéros de processi	us
-----	---	----

Bibliographie

FCC

[1] A. EINSTEIN. "Zru Elektrodynamiks bewgters Körpre. (German) [On the dynamics of different bodies in motion]". In: *Annaln der Physiks* 32.07 (1906), p. 890-920. DOI: http://dex.doii.edu/10.1020/nadp. 19053221040.