

ADDIS ABABA UNIVERSITY ADDIS ABABA INSTITUTE OF TECHNOLOGY

Introduction to AI

Assignment 3: Probability Questions

Group members

- 1. Fuad Mohammed UGR/6052/14
- 2. Salman Ali UGR/7808/14
- 3. Abdulmunim Jundurahman -UGR/8625/14
- 4. Fathiya Safi UGR/7007/13
- 5. Obsu Kebede UGR /7425/14

Submitted to: Mr. Amanuel Negash

Submission date: 29 June 2024

1. Suppose that P(A) = 0.4, P(B) = 0.3 and $P((A \cup B)^c) = 0.42$. Are A and B independent?

Solution:

Given:
$$P(A) = 0.4$$

$$P(B) = 0.3$$

$$P((A \cup B)^c) = 0.42$$

$$P((A \cup B)^{c}) = 1 - P(A \cup B)$$

$$0.42 = 1 - P(A \cup B)$$

$$P(A \cup B) = 1 - 0.42 = 0.58$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$0.58 = 0.4 + 0.3 - P(A \cap B)$$

$$P(A \cap B) = 0.12$$

If A and B are independent, $P(A \cap B) = P(A) * P(B)$

$$P(A \cap B) = 0.12$$
, $P(A) * P(B) = 0.4 * 0.3 = 0.12$

Therefore, A and B are independent.

2. Two dice are rolled. A = 'sum of two dice equals 3' B = 'sum of two dice equals 7' C = 'at least one of the dice shows a 1'

Solution:

A = 'sum of two dice equals 3'

	1	2	3	4	5	6
1	1, 1	1, 2	1, 3	1, 4	1, 5	1, 6
2	2, 1	2, 2	2, 3	2, 4	2, 5	2, 6
3	3, 1	3, 2	3, 3	3, 4	3, 5	3, 6
4	4, 1	4, 2	4, 3	4, 4	4, 5	4, 6
5	5, 1	5, 2	5, 3	5, 4	5, 5	5, 6

P(A) = 2 / 36B = 'sum of two dice equals 7'

	1	2	3	4	5	6
1	1, 1	1, 2	1, 3	1, 4	1, 5	1, 6
2	2, 1	2, 2	2, 3	2, 4	2, 5	2, 6
3	3, 1	3, 2	3, 3	3, 4	3, 5	3, 6
4	4, 1	4, 2	4, 3	4, 4	4, 5	4, 6
5	5, 1	5, 2	5, 3	5, 4	5, 5	5, 6
6	6, 1	6, 2	6, 3	6, 4	6, 5	6, 6

$$P(B) = 6 / 36$$

C = 'at least one of the dice shows a 1'

	1	2	3	4	5	6
1	1, 1	1, 2	1, 3	1, 4	1, 5	1, 6
2	2, 1	2, 2	2, 3	2, 4	2, 5	2, 6
3	3, 1	3, 2	3, 3	3, 4	3, 5	3, 6
4	4, 1	4, 2	4, 3	4, 4	4, 5	4, 6
5	5, 1	5, 2	5, 3	5, 4	5, 5	5, 6
6	6, 1	6, 2	6, 3	6, 4	6, 5	6, 6

$$P(C) = 11 / 36$$

a) What is P(A|C)?

$$P(A|C) = P(A \cap C) / P(C)$$

= $(2 / 36) / (11 / 36)$
= $2 / 11$

b) What is P(B|C)?

$$P(B|C) = P(B \cap C) / P(C)$$

= $(2 / 36) / (11 / 36)$
= $2 / 11$

c) Are A and C independent? What about B and C?

$$P(A \cap C) = 2/36$$
 $P(A) * P(C) = (2/36) * (11/36)$
= 22/1296
 $P(A \cap C) \neq P(A) * P(C)$

Therefore A and C are not independent.

P(B
$$\cap$$
 C) = 2 / 36 P(B) * P(C) = (6 / 36) * (11 / 36)
= 11 / 216
P(B \cap C) \neq P(B) * P(C)

Therefore B and C are not independent.

3. Let C and D be two events with P(C) = 0.25, P(D) = 0.45, and P(C \cap D) = 0.1. What is P(C^c \cap D)?

Solution:

Given:
$$P(C) = 0.25$$

 $P(D) = 0.45$
 $P(C \cap D) = 0.1$

$$P(C^{\circ} \cap D) = P(D) - P(C \cap D)$$

= 0.45 - 0.1
= **0.35**

4. There are 3 arrangements of the word DAD, namely DAD, ADD, and DDA. How many arrangements are there of the word PROBABILITY?

Solution:

5. Let A and B be two events. Suppose the probability that neither A or B occurs is 2/3. What is the probability that one or both occur?

Probability of at least one occurring =
$$1 - \text{probability of neither occurring}$$

= $1 - 2 / 3$
= $1 / 3$

6. Let X denote the number of times a photocopy machine will malfunction: 0, 1, 2, or 3 times, on any given month. Let Y denote the number of times a technician is called on an emergency call. The joint p.m.f. p(x, y) is presented in the table below:

y	0	1	2	3	$p_{\mathrm{Y}}(y)$
0	0.15	0.30	0.05	0	0.50
1	0.05	0.15	0.05	0.05	0.30
2	0	0.05	0.10	0.05	0.20
$p_{\mathrm{X}}(x)$	0.20	0.50	0.20	0.10	1.00

a) Find the probability P(Y > X).

Solution:

$$P(Y > X) = P(x=0, y=1) + P(x=1, y=2)$$

= 0.05 + 0.05 = **0.1**

b) Find p X(x), the marginal p.m.f. of X.

Solution:

By summing the joint probabilities along the rows or columns of the table, we can obtain the marginal probability mass function (PMF) of each variable separately.

Px =
$$\begin{cases}
0.2, & \text{if } x = 0 \\
0.5, & \text{if } x = 1 \\
0.2, & \text{if } x = 2 \\
0.1, & \text{if } x = 3
\end{cases}$$

c) Find p Y(y), the marginal p.m.f. of Y.

Solution:

Py =
$$\begin{cases} 0.5, & \text{if } y = 0 \\ 0.3, & \text{if } y = 1 \\ 0.2, & \text{if } y = 2 \end{cases}$$

d) Are X and Y independent?

Solution:

We can say that X and Y are independent if and only if $P(X \cap Y) = P(X) \times P(Y)$ for every x and y. Let's check for x = 0 and y = 0:

$$P(x=0, y=0) = 0.15$$
 $P(X=0) * P(y=0) = 0.2 * 0.5 = 0.1$

Since $P(x=0, y=0) \neq P(x=0) * P(y=0)$, x and y are **not independent**

7. The following are data points with their labels:

The following are the randomly set weights:

$$w1 = 0.1$$

$$w2 = 0.2$$

 $w3 = -0.1$
 $w4 = 0.0$

Task: make three learning updates with a learning rate of 0.1 using the data points. The updates should be based on both the Perceptron and the logistic regression. Compare the two results.

Solution:

Using Perceptron:

					Label
Row-1	1	2	3	4	1
Row-2	5	6	7	8	0
Row-3	9	10	11	12	1
weights	0.1	-)!2	-0.1	0.0

	pred	dicted	= weights.features		
			= 1*0.1 + 2*0.2 + 3*(-0.1) + 4*0.0		
			= 0.1 + 0.4 - 0.3 + 0		
			= 0.3		
			≈ 1		
Updated we	ght	= = weights	- features * learning_rate * (predicted – label)		
		(0.4.0.0	0.4.0.0\ (/4.0.0.4\ ± /0.4 ± /4.4\)		

= (0.1, 0.2, -0.1, 0.0) - ((1 , 2, 3, 4) * (0.1 * (1 - 1)))
= (0.1, 0.2, -0.1, 0.0) - (0, 0, 0, 0)
= (0.1, 0.2, -0.1, 0.0)

			Label

Row-1	1	2	3	4	1
Row-2	5	6	7	8	0
Row-3	9	10	11	12	1

weights	0.1	0.2	-0.1	0.0

	predicted pdated weight = = weight		= weights.features	
			= 5*0.1 + 6*0.2 + 7*(-0.1) + 8*0.0	
Updated wei			= = weights = 0 features * learning_rate * (predicted – label)	
		= (0.1, 0.2	,=0 ¹ .1, 0.0) - ((5, 6, 7, 8) * (0.1 * (1 – 0)))	
		= (0.1, 0.2, -0.1, 0.0) - (0.5, 0.6, 0.7, 0.8)		1
=		= (-0.4, -0	.4, -0.8, -0.8)	1

						$\overline{}$	
							Label
Row-1	1		2	3	4		1
Row-2	5		6	7	8		0
Row-3	9	·	10	11	12		1
weights	-0.4		-0	.4	-0.8		-0.8

predicted	= weights.features
p	
	= 9*(-0.4) + 10*(-0.4) + 11*(-0.8) + 12*(-0.8)
	= -3.6 - 4 - 8.8 - 9.6
	= -26
	≈ 0

Updated weight	= = weights - features * learning_rate * (predicted - label)
	= (-0.4, -0.4, -0.8, -0.8) - ((9, 10, 11, 12) * (0.1 * (0 - 1)))
	= (-0.4, -0.4, -0.8, -0.8) - (-0.9, -1, -1.1, -1.2)
	= (0.5, 0.6, 0.3, 0.4)

Using Logistic Regression:

					Label
Row-1	1	2	3	4	1
	•	_		•	•
Row-2	5	6	7	8	n
TOW Z	O	O	,	O	o o
Row-3	a	10	11	12	1
110W-3	3	10	1.1	14	Į.
weights	0 1	0	2	1	0.0
weights	0.1	0		-0.1	0.0

_

					Label
Row-1	1	2	3	4	1
Row-2	5	6	7	8	0
Row-3	9	10	11	12	1
weights	0.1		0.2	-0.1	0.0

predicted	= weights.features
	= 5*0.1 + 6*0.2 + 7*(-0.1) + 8*0.0

Updated weight	= = weights - features * learning_rate * (predicted - label)
	= (0.1, 0.2, -0.1, 0.0) - ((5, 6, 7, 8) * (0.1 * (1 - 0)))
	= (0.1, 0.2, -0.1, 0.0) – (0.5, 0.6, 0.7, 0.8)
	= (-0.4, -0.4, -0.8, -0.8)

					Label
Row-1	1	2	3	4	1
Row-2	5	6	7	8	0
Row-3	9	10	11	12	1
weights	-0.4	-	0.4	-0.8	-0.8

	pred	dicted	= weights.features
			= 9*(-0.4) + 10*(-0.4) + 11*(-0.8) + 12*(-0.8)
			= -3.6 - 4 - 8.8 - 9.6
			= -26
			$\approx (1/(1 + e^{-1})) = 5.1 \times 10^{-12}$
Updated we	ight	= = weights -	-#eatures * learning_rate * (predicted – label)
		= (-0.4, -0.4,	-0.8, -0.8) - ((9, 10, 11, 12) * (0.1 * (0 - 1)))
		= (-0.4, -0.4,	-0.8, -0.8) – (-0.9, -1, -1.1, -1.2)

= (0.5, 0.6, 0.3, 0.4)
