CSDS 440: Machine Learning

Soumya Ray (he/him, sray@case.edu)
Olin 516

Office hours T, Th 11:15-11:45 or by appointment

Recap

 Convolution is a looperation. The kooperation can be I from d __. A tensor is a m
 d
 m
 lt is used to preserve l_____ across layers. A pooling layer a _____ i ____ from adjacent layers. Deep NNs suffer from the v_____g___ problem. • The ReLU activation is defined as h(x)=F(A,B). In a r network, the learned representation at each layer is a pe_____ of the previous. One way to control overfitting in ANNs is to use w d . This adds a c p to the loss function.

Today

- Artificial Neural Networks (Ch 4, Mitchell)
- Probabilistic Machine Learning

How to scale an ANN?

Suppose we create an ANN with LOTS of layers.

- 1. Why might we want to do that?
- 2. What will these layers do?
- 3. How can learning scale?
- 4. How to deal with vanishing gradients?
- 5. How to deal with overfitting?

Controlling Overfitting

One strategy: add a "weight decay" term

This will prevent weights from growing too large

Controlling Overfitting

If the weights are not too large (and assuming the input is suitably scaled, see later), the sigmoid operates in the "nearly-linear" region. This makes the decision surface of the ANN less nonlinear and reduces the complexity of the concepts it can learn.

Controlling Overfitting

Dropout Regularization

- Each backprop step, randomly sample a set of hidden units to leave out of the update
- Why?
 - Forces different feature detectors to do useful work in the final classifier
 - Classifier produced is more robust
 - Approximates training an *ensemble* of networks (later)

Implementation: Input Standardization

- Since ANNs use linear functions, if inputs are badly scaled, can lead to problems at runtime
 - Average human weight=6e+10 μg, height=1.7e-18
 light years
- To avoid this, often standardize the input to zero mean, unit variance

$$x_i \leftarrow \frac{x_i - \mu_i}{\sigma_i}$$

Batch Normalization

- This kind of standardization can also be done at the node level
- Suppose for a node z, the values of z for each example i are z_i
- Replace z_i with:

$$\hat{z}_i = \beta + \gamma \frac{z_i - \mu}{\sqrt{\varepsilon + \sigma^2}}$$

Empirically improves performance

Implementation: Nominal Features

- If data is described by nominal features, we will need to re-encode it
- 1 of *N*
 - N input units for each nominal attribute with N values, only 1 is active for each example
- Logarithmic
 - $-\log(N)$ input units for each nominal attribute with N values
 - Each input is represented as a binary code

Implementation: Initialization

- When initializing, generally set weights to small random values
- But some random choices work better than others
- One choice is "Xavier initialization": choose weights from a normal distribution with mean 0 and variance $\frac{2}{n_i + n_0}$

Other architectures

- People have also investigated networks with loops, called "recurrent neural networks"
 - This gives ANNs a "memory" (can "remember" previous inputs)
 - Different architectures proposed (Jordan networks, Elman networks, Hopfield networks, LSTMs etc)

Probabilistic Learning (Ch 6, Mitchell)

- So far, focused on classifiers: functions mapping examples to classes
- Now, look at algorithms that explicitly estimate probabilities of class membership
 - $-p(\mathbf{x},y)$
 - $-p(y|\mathbf{x})$
 - $-p(\mathbf{x}|y)$ ("Class conditional distribution")

Why?

 Bayesian Decision Theory: optimal thing to do is to choose hypothesis to minimize expected

Fisk

Expected Risk

$$\hat{h} = \arg\min_{h} \int_{D} R(h \mid \mathbf{x}, y) p(\mathbf{x}) d\mathbf{x}$$
 $R(h \mid \mathbf{x}, y) = \sum_{\hat{y}_{j}} L(h(\mathbf{x}) = \hat{y}_{j}) p(h(\mathbf{x}) = \hat{y}_{j})$

In order to minimize risk, we

need good probability estimates.

Why?

- Naturally produce "confidence estimates"
- Naturally incorporate "prior knowledge"
- Can also give us tools to analyze some of our algorithms
- Can generate data
 - Basis for modern generative ML algorithms

Probabilistic Classification

- Learning Task: Given data, learn probabilistic model to predict probability of class membership (Estimation)
 - Parameters?
 - "Structure"? (CSDS 491)

- Prediction Task: Find most probable class of a new example
 - Probabilistic Inference (classification)

Two Approaches to Probabilistic Classification

• Generative approaches model the joint distribution $p(\mathbf{x}, y)$

• Discriminative approaches model the conditional distribution $p(y|\mathbf{x})$

Generative Approaches

- Note: $p(\mathbf{x}, y) = p(\mathbf{x} | y)p(y)$
- "Sample a class, then sample an instance from it"---can "generate" the observed data
- Nicely handles missing values, unlabeled examples etc
 - If modeling assumptions met, work very well
- But do "more work" than necessary

Discriminative Approaches

- In classification, only interested in $p(y|\mathbf{x})$ anyway
- Discriminative approaches directly model this
- Robust to modeling errors
- No way to recover/ "generate" the data
 - Does not easily handle missing data
- Usually tend to be more accurate than generative counterparts, but some evidence that convergence is slower