

# **Predictive Modeling**

Problem 1- Linear Regression, Problem 2- Logistic Regression and LDA



July 31, 2021 Name-Rahul Jha PGP-DSBA Online

# **Problem 1- Linear Regression**

### Table of Contents

# Contents

| Executive Summary3                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introduction3                                                                                                                                                                                                                                    |
| Data Description3                                                                                                                                                                                                                                |
| Sample of the dataset                                                                                                                                                                                                                            |
| Data Describe4                                                                                                                                                                                                                                   |
| 1.1. Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, Data types, shape, EDA). Perform Univariate and Bivariate Analysis12                                                                     |
| 1.2. Impute null values if present, also check for the values which are equal to zero. Do they have any meaning or do we need to change them or drop them? Do you think scaling is necessary in this case?                                       |
| 1.3. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply linear regression. Performance Metrics: Check the performance of Predictions on Train and Test sets using Rsquare, RMSE |
| 1.4. Inference: Basis on these predictions, what are the business insights and recommendations22                                                                                                                                                 |

# Table & Figures

| Topic Name                          | Fig & Tab Number                |
|-------------------------------------|---------------------------------|
| Data Description                    | Tab-1.a                         |
| Data Describe                       | Fig-1.0                         |
| Sample of the Dataset               | Fig-1.a                         |
| Exploratory data                    | Fig-1.b                         |
| Data-type                           | Fig-1.c                         |
| Data shape & size                   | Fig-1.d                         |
| Univariate Analysis                 | Fig-1.i.1, Fig-1.i.2            |
| Bivariate Analysis                  | Fig-1.j.1, Fig-1.j.2, Fig-1.j.3 |
| Drop column                         | Fig-1.2.a                       |
| Replace missing value               | Fig-1.2.b                       |
| Treat zero all place                | Fig-1.2.c                       |
| Treat outlier                       | Fig-1.2.d                       |
| Convert to Categorical              | Fig-1.2.f                       |
| Scaling data                        | Tab-1.2.a                       |
| Coefficient _Train & test           | Fig-1.3.a                       |
| Rsquare- Train & test               | Tab-1.3.a                       |
| Lm _Train & test                    | Fig-1.3.b                       |
| OLS regression result _train & test | Fig-1.3.c                       |
| RMSE-report_train & test            | Tab-1.3.b                       |
| Linear regression_best fit line     | Fig-1.3.d                       |
| Calculation - Train & Test          | Tab-1.3.c                       |

#### **Executive Summary:-**

You are hired by a company Gem Stones co ltd, which is a cubic zirconia manufacturer. You are provided with the dataset containing the prices and other attributes of almost 27,000 cubic zirconia (which is an inexpensive diamond alternative with many of the same qualities as a diamond). The company is earning different profits on different prize slots. You have to help the company in predicting the price for the stone on the bases of the details given in the dataset so it can distinguish between higher profitable stones and lower profitable stones so as to have better profit share. Also, provide them with the best 5 attributes that are most important.

#### Introduction:-

The purpose of this whole exercise is to explore the dataset. Do the exploratory data analysis. Explore the dataset and analysis of using method Linear Regression and find higher profitable stones and lower profitable stones find other expect rest detail as per data shown in description.

#### Data Description:-

| Variable Name | Description                                                                                                                                                                              |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carat         | Carat weight of the cubic zirconia.                                                                                                                                                      |
| Cut           | Describe the cut quality of the cubic zirconia. Quality is increasing order Fair, Good, Very Good, Premium, Ideal.                                                                       |
| Color         | Colour of the cubic zirconia. With D being the best and J the worst.                                                                                                                     |
| Clarity       | Cubic zirconia Clarity refers to the absence of the Inclusions and Blemishes. (In order from Best to Worst, FL = flawless, I1= level 1 inclusion) IF, VVS1, VVS2, VS1, VS2, SI1, SI2, I1 |
| Depth         | The Height of cubic zirconia, measured from the Culet to the table, divided by its average Girdle Diameter.                                                                              |
| Table         | The Width of the cubic zirconia's Table expressed as a Percentage of its Average Diameter.                                                                                               |
| Price         | The Price of the cubic zirconia.                                                                                                                                                         |
| X             | Length of the cubic zirconia in mm.                                                                                                                                                      |
| Υ             | Width of the cubic zirconia in mm.                                                                                                                                                       |
| Z             | Height of the cubic zirconia in mm.                                                                                                                                                      |

Tab-1.a

### Sample of the Dataset:-

| Unnamed: 0 | carat | cut       | color | clarity | depth | table | X    | у    | Z    | price |
|------------|-------|-----------|-------|---------|-------|-------|------|------|------|-------|
| 1          | 0.30  | Ideal     | Е     | SI1     | 62.1  | 58.0  | 4.27 | 4.29 | 2.66 | 499   |
| 2          | 0.33  | Premium   | G     | IF      | 60.8  | 58.0  | 4.42 | 4.46 | 2.70 | 984   |
| 3          | 0.90  | Very Good | Е     | VVS2    | 62.2  | 60.0  | 6.04 | 6.12 | 3.78 | 6289  |
| 4          | 0.42  | Ideal     | F     | VS1     | 61.6  | 56.0  | 4.82 | 4.80 | 2.96 | 1082  |
| 5          | 0.31  | Ideal     | F     | VVS1    | 60.4  | 59.0  | 4.35 | 4.43 | 2.65 | 779   |

Fig-1.a

**Conclusion | insight**: This is Sample of given data all information is mention as per provide by company Gem Stones co ltd. shown in this Fig-1.a.

#### Data Describe:-

|       | Unnamed: 0   | carat        | depth        | table        | x            | у            | z            | price        |
|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| count | 26967.000000 | 26967.000000 | 26270.000000 | 26967.000000 | 26967.000000 | 26967.000000 | 26967.000000 | 26967.000000 |
| mean  | 13484.000000 | 0.798375     | 61.745147    | 57.456080    | 5.729854     | 5.733569     | 3.538057     | 3939.518115  |
| std   | 7784.846691  | 0.477745     | 1.412860     | 2.232068     | 1.128516     | 1.166058     | 0.720624     | 4024.864666  |
| min   | 1.000000     | 0.200000     | 50.800000    | 49.000000    | 0.000000     | 0.000000     | 0.000000     | 326.000000   |
| 25%   | 6742.500000  | 0.400000     | 61.000000    | 56.000000    | 4.710000     | 4.710000     | 2.900000     | 945.000000   |
| 50%   | 13484.000000 | 0.700000     | 61.800000    | 57.000000    | 5.690000     | 5.710000     | 3.520000     | 2375.000000  |
| 75%   | 20225.500000 | 1.050000     | 62.500000    | 59.000000    | 6.550000     | 6.540000     | 4.040000     | 5360.000000  |
| max   | 26967.000000 | 4.500000     | 73.600000    | 79.000000    | 10.230000    | 58.900000    | 31.800000    | 18818.000000 |

Fig-1.0

**Conclusion | insight**: Data min value of data 0.2 and max value is 18818 and other thing zero is available in data. Required scaling due to data range is show higher.

Q 1.1. Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, Data types, shape, EDA). Perform Univariate and Bivariate Analysis.

#### Solution:-

#### A) Exploratory data analysis:-

```
Data columns (total 11 columns):
    Column Non-Null Count
    Unnamed: 0 26967 non-null
              26967 non-null
    carat
2
    cut
               26967 non-null
    color
clarity
3
               26967 non-null
4
               26967 non-null
   depth
5
               26270 non-null
6
   table
               26967 non-null
7
               26967 non-null
8
               26967 non-null
9
                26967 non-null
    Z
10 price
                26967 non-null
dtypes: float64(6), int64(2), obj
memory usage: 2.3+ MB
```

Fig-1.b

**Conclusion** | **insight**: Ten types of information given in data as a column. sr.no, carat, cut, color, clarity, depth, table, x, y, z. data is 2.3+ MB and 0 to 26967 row and 10 columns.

#### B) Data-type:-

```
Unnamed: 0
               int64
              float64
carat
cut
             object
color
             object
clarity
             object
depth
             float64
table
              float64
              float64
Х
У
              float64
              float64
z
                int64
price
dtype: object
```

Fig-1.c

**Conclusion | insight**: Three type of Data integer, Object, and float. Three column are Object and two column are integer and six are float.

#### C) Data shape & size:-



Fig-1.d

Conclusion | insight: Total 26967 ROW and 11 Column.

### D) Types of Object data:-

|   |           | color |   | _ | clarity |     |
|---|-----------|-------|---|---|---------|-----|
| , | Ideal     | 5661  | G |   | 6571    | SI1 |
|   | ideai     | 4917  | E |   | 6099    | VS2 |
|   | Premium   | 4729  | F |   | 4575    | SI2 |
|   | Very Good | 4102  | н |   | 4093    | VS1 |
|   | very coou |       |   |   | 2531    | VS2 |
|   | Good      | 3344  | D |   | 1839    | VS1 |
|   | Enir      | 2771  | ı |   | 894     | IF  |
|   | Fair      | 1443  | J |   | 365     | 11  |

Fig-1.e

**Conclusion | insight**: Three columns the have all types of data shown in fig-1.e.

------ EDA------

### E) Find Duplicated value:-

```
dups=df1.duplicated()
dups.sum()
```

34

Fig-1.f.a

# Sample of duplicate-

|       | carat | cut     | color | clarity | depth | table | x    | У    | z    | price |
|-------|-------|---------|-------|---------|-------|-------|------|------|------|-------|
| 4756  | 0.35  | Premium | J     | VS1     | 62.4  | 58.0  | 5.67 | 5.64 | 3.53 | 949   |
| 6215  | 0.71  | Good    | F     | SI2     | 64.1  | 60.0  | 0.00 | 0.00 | 0.00 | 2130  |
| 8144  | 0.33  | Ideal   | G     | VS1     | 62.1  | 55.0  | 4.46 | 4.43 | 2.76 | 854   |
| 8919  | 1.52  | Good    | E     | 11      | 57.3  | 58.0  | 7.53 | 7.42 | 4.28 | 3105  |
| 9818  | 0.35  | Ideal   | F     | VS2     | 61.4  | 54.0  | 4.58 | 4.54 | 2.80 | 906   |
| 10473 | 0.79  | Ideal   | G     | SI1     | 62.3  | 57.0  | 5.90 | 5.85 | 3.66 | 2898  |
| 10500 | 1.00  | Premium | F     | VVS2    | 60.6  | 54.0  | 6.56 | 6.52 | 3.96 | 8924  |
| 12894 | 1.21  | Premium | D     | SI2     | 62.5  | 57.0  | 6.79 | 6.71 | 4.22 | 6505  |
| 13547 | 0.43  | Ideal   | G     | VS1     | 61.9  | 55.0  | 4.84 | 4.86 | 3.00 | 943   |
| 13783 | 0.79  | Ideal   | G     | SI1     | 62.3  | 57.0  | 5.90 | 5.85 | 3.66 | 2898  |
|       |       |         | _     |         |       |       |      |      |      |       |

Fig-1.f.b

**Conclusion | insight**: Duplicate 34 value is find in this data.

### F) Missing value:-

| carat        | 0   |
|--------------|-----|
| cut          | 0   |
| color        | 0   |
| clarity      | 0   |
| depth 6      | 597 |
| table        | 0   |
| X            | 0   |
| У            | 0   |
| z            | 0   |
| price        | 0   |
| dtype: int64 | 4   |

Fig-1.g

**Conclusion | insight**: In this data seat depth column 697 data is missing find.

### G) Zero value available:-

#### Column - X

|     |    | carat | cut  | color | clarity | depth | table | X   | у   | Z   | price |
|-----|----|-------|------|-------|---------|-------|-------|-----|-----|-----|-------|
| 58  | 21 | 0.71  | Good | F     | SI2     | 64.1  | 60.0  | 0.0 | 0.0 | 0.0 | 2130  |
| 62  | 15 | 0.71  | Good | F     | SI2     | 64.1  | 60.0  | 0.0 | 0.0 | 0.0 | 2130  |
| 175 | 06 | 1.14  | Fair | G     | VS1     | 57.5  | 67.0  | 0.0 | 0.0 | 0.0 | 6381  |

### Column - Y

|       | carat | cut  | color | clarity | depth | table | X   | у   | Z   | price |
|-------|-------|------|-------|---------|-------|-------|-----|-----|-----|-------|
| 5821  | 0.71  | Good | F     | SI2     | 64.1  | 60.0  | 0.0 | 0.0 | 0.0 | 2130  |
| 6215  | 0.71  | Good | F     | SI2     | 64.1  | 60.0  | 0.0 | 0.0 | 0.0 | 2130  |
| 17506 | 1.14  | Fair | G     | VS1     | 57.5  | 67.0  | 0.0 | 0.0 | 0.0 | 6381  |

#### Column – Z

|       | carat | cut     | color | clarity | depth | table | x    | У    | Z   | price |
|-------|-------|---------|-------|---------|-------|-------|------|------|-----|-------|
| 5821  | 0.71  | Good    | F     | SI2     | 64.1  | 60.0  | 0.00 | 0.00 | 0.0 | 2130  |
| 6034  | 2.02  | Premium | Н     | VS2     | 62.7  | 53.0  | 8.02 | 7.95 | 0.0 | 18207 |
| 6215  | 0.71  | Good    | F     | SI2     | 64.1  | 60.0  | 0.00 | 0.00 | 0.0 | 2130  |
| 10827 | 2.20  | Premium | Н     | SI1     | 61.2  | 59.0  | 8.42 | 8.37 | 0.0 | 17265 |
| 12498 | 2.18  | Premium | Н     | SI2     | 59.4  | 61.0  | 8.49 | 8.45 | 0.0 | 12631 |
| 12689 | 1.10  | Premium | G     | SI2     | 63.0  | 59.0  | 6.50 | 6.47 | 0.0 | 3696  |
| 17506 | 1.14  | Fair    | G     | VS1     | 57.5  | 67.0  | 0.00 | 0.00 | 0.0 | 6381  |
| 18194 | 1.01  | Premium | Н     | I1      | 58.1  | 59.0  | 6.66 | 6.60 | 0.0 | 3167  |
| 23758 | 1.12  | Premium | G     | I1      | 60.4  | 59.0  | 6.71 | 6.67 | 0.0 | 2383  |

Fig-1.h

**Conclusion | insight**: Find three column zero available show in fig-1.h. In z column higher zero value.

### H) Univariate Analysis:-



Fig-1.i.1



Fig-1.i.2

**Conclusion | insight**: We are find single | single variable value finding data behaviour show in fig-1.i.1, fig-1.i.2.

### I) Bivariate Analysis:-

#### In single pair of all data



Fig-1.j.1

#### Outlier check in all data:-



Fig-1.j.2

#### Correlation of all data:-



Fig-1.j.2

**Conclusion | insight**: In all data, we are comparing and showing. What behaving the data pair plot showing all data and boxplot for outliner check and correlation check each column for every column.

Q1.2 Impute null values if present, also check for the values which are equal to zero. Do they have any meaning or do we need to change them or drop them? Do you think scaling is necessary in this case?

#### Solution:-

### A) Drop column- (Unnamed: 0)

|   | carat | cut       | color | clarity | depth | table | x    | У    | z    | price |
|---|-------|-----------|-------|---------|-------|-------|------|------|------|-------|
| 0 | 0.30  | Ideal     | Е     | SI1     | 62.1  | 58.0  | 4.27 | 4.29 | 2.66 | 499   |
| 1 | 0.33  | Premium   | G     | IF      | 60.8  | 58.0  | 4.42 | 4.46 | 2.70 | 984   |
| 2 | 0.90  | Very Good | Е     | VVS2    | 62.2  | 60.0  | 6.04 | 6.12 | 3.78 | 6289  |
| 3 | 0.42  | Ideal     | F     | VS1     | 61.6  | 56.0  | 4.82 | 4.80 | 2.96 | 1082  |
| 4 | 0.31  | Ideal     | F     | VVS1    | 60.4  | 59.0  | 4.35 | 4.43 | 2.65 | 779   |

Fig-1.2.a

### B) Replace missing value:-

| carat   | 0 |
|---------|---|
| cut     | 0 |
| color   | 0 |
| clarity | 0 |
| depth   | 0 |
| table   | 0 |
| X       | 0 |
| У       | 0 |
| z       | 0 |
| price   | 0 |

Fig-1.2.b

### C) Treat zero all place:-

carat cut color clarity depth table x y z price

carat cut color clarity depth table x y z price

carat cut color clarity depth table x y z price

Fig-1.2.c

### D) Treating outliers:-





Fig-1.2.d

# E) Replace all duplicate value:-

df1.duplicated().sum()

0

Fig-1.2.e

# F) Convert to Categorical:-

|   | carat | depth | table | x    | у    | z    | price  | cut_Good | cut_ldeal | cut_Premium | <br>color_H | color_l | color_J | clarity_IF | clarity_SI1 | clarity_\$I2 | clarity_VS |
|---|-------|-------|-------|------|------|------|--------|----------|-----------|-------------|-------------|---------|---------|------------|-------------|--------------|------------|
| 0 | 0.30  | 62.1  | 58.0  | 4.27 | 4.29 | 2.66 | 499.0  | 0        | 1         | 0           | <br>0       | 0       | 0       | 0          | 1           | 0            | (          |
| 1 | 0.33  | 60.8  | 58.0  | 4.42 | 4.46 | 2.70 | 984.0  | 0        | 0         | 1           | <br>0       | 0       | 0       | 1          | 0           | 0            | (          |
| 2 | 0.90  | 62.2  | 60.0  | 6.04 | 6.12 | 3.78 | 6289.0 | 0        | 0         | 0           | <br>0       | 0       | 0       | 0          | 0           | 0            | (          |
| 3 | 0.42  | 61.6  | 56.0  | 4.82 | 4.80 | 2.96 | 1082.0 | 0        | 1         | 0           | <br>0       | 0       | 0       | 0          | 0           | 0            |            |
| 4 | 0.31  | 60.4  | 59.0  | 4.35 | 4.43 | 2.65 | 779.0  | 0        | 1         | 0           | <br>0       | 0       | 0       | 0          | 0           | 0            | (          |

5 rows × 24 columns

Fig-1.2.f

# G) Scaling data:-

| carat             | depth                 | n table     | Σ         | K                                     | V                      | z price   | e \   |
|-------------------|-----------------------|-------------|-----------|---------------------------------------|------------------------|-----------|-------|
|                   |                       | 0.286877    |           |                                       |                        |           |       |
| 933027            |                       |             |           |                                       |                        |           |       |
|                   | -1.002 <del>580</del> | -0.779916   | 0.261752  | -1.163332                             | $-1.13\overline{7619}$ | -1.204204 | -0.   |
| 793173            | 0 00155               | 0 00000     | 1 10000   | 0 00000                               | 0 0 10 1 1 1           | 0 04000   | 0     |
| 736566            | 0.231554              | 0.368938    | 1.188932  | 0.276264                              | 0.348118               | 0.349009  | 0.    |
| 736566<br>3       | -0 807717             | -0.123428 - | -0 665428 | -0 807876                             |                        | -0 830282 | -0    |
| 764914            | J. UU / / I /         | 0.120420    | 0.000420  | 0.007070                              | 0.000011               | 0.000202  | ٠.    |
|                   | -1.045883             | -1.108160   | 0.725342  | -1.225536                             | -1.164469              | -1.276112 | -0.   |
| 852286            |                       |             |           |                                       |                        |           |       |
|                   |                       | • • •       |           |                                       |                        |           |       |
| 26062             | 0 606035              | 0.450999    | 0 261752  | 0 702700                              | 0 706107               | 0.794839  | 0     |
| 26962<br>482523   | 0.686235              | 0.450999    | 0.201/32  | 0./82/88                              | 0./0612/               | 0./94839  | U .   |
|                   | -1.002580             | 0.122755 -  | -1.129018 | -1.145559                             | -1.173420              | -1.146677 | -0.   |
| 755687            |                       |             |           |                                       | 0 120                  |           |       |
|                   | -0.612854             | -0.041367   | 0.261752  | -0.541284                             | -0.520053              | -0.528269 | -0.   |
| 599397            |                       |             |           |                                       |                        |           |       |
| 26965 -<br>880257 | -1.132489             | 0.040694 -  | -0.665428 | -1.367719                             | -1.370324              | -1.348020 | -0.   |
| 26966             | 0.989355              | 0.204816    | 0.261752  | 1.040493                              | 1.028335               | 1.053707  | 0.    |
| 412740            |                       |             |           |                                       |                        |           |       |
|                   |                       |             |           |                                       | <b>1</b>               |           |       |
| 105 7             | cut_Good              | cut_Ideal   | cut_Prer  | nıum                                  | color_H                | color_I   | CO    |
| lor_J<br>0        | -0.31531              | 1 221702    | -0.585    | 5999                                  | -0 423380              | -0.338147 | -0.2  |
| 37609             | 0.01001               | 1.221193    | 0.30      |                                       | 0.423300               | 0.00014/  | U • Z |
| 1                 | -0.31531              | -0.818469   | 1.706     | 6488                                  | -0.423380              | -0.338147 | -0.2  |
| 37609             |                       |             |           |                                       |                        |           |       |
| 2                 | -0.31531              | -0.818469   | -0.585    | 5999                                  | -0.423380              | -0.338147 | -0.2  |
| 37609             | -0.31531              | 1.221793    | -0.585    | 5000                                  |                        | -0.338147 | _0 2  |
| 37609             | -0.31331              | 1.221/93    | -0.583    | J J J J J J J J J J J J J J J J J J J | -0.423380              | -0.33614/ | -∪.∠  |
| 4                 | -0.31531              | 1.221793    | -0.585    | 5999                                  | -0.423380              | -0.338147 | -0.2  |
| 37609             |                       |             |           |                                       |                        |           |       |
|                   | • • •                 | •••         |           |                                       | • • •                  |           |       |
| 2000              | 0 21 5 21             | 0 010460    | 1 70      | C 4 O O                               | 0 40000                | 0 220145  | 0 0   |
| 26962<br>37609    | -0.31531              | -0.818469   | 1.706     | 0488                                  | -0.423380              | -0.338147 | -0.2  |
| 26963             | -0.31531              | 1.221793    | -0.585    | 5999                                  | 2 361947               | -0.338147 | -0.2  |
| 37609             | 0.01001               | 1.221199    | 0.00      |                                       | 2.001011               | 0.0011    | V • 2 |
| 26964             | -0.31531              | -0.818469   | 1.706     | 6488                                  | -0.423380              | -0.338147 | -0.2  |
| 37609             |                       |             |           |                                       |                        |           |       |
| 26965             | -0.31531              | -0.818469   | -0.585    | 5999                                  | -0.423380              | -0.338147 | -0.2  |
| 37609             | 0 01501               | 0 010460    | 1 70      | C 4 O O                               | 0 400000               | 0 220145  | 1 0   |
| 26966<br>08598    | -0.31531              | -0.818469   | 1./06     | 0488                                  | -0.423380              | -0.338147 | 4.2   |
| 00030             |                       |             |           |                                       |                        |           |       |
|                   | clarity 1             | IF clarity  | SI1 clai  | rity SI2                              | clarity VS             | 1 clarity | VS2   |
| \                 | -1                    |             | _         | <u> </u>                              | - 1 = - 2              | 1         |       |
| 0                 | -0.18499              |             |           | 0.451641                              | -0.42295               |           |       |
| 1                 | 5.40565               |             |           | 0.451641                              | -0.42295               |           |       |
| 2                 | -0.18499              | 91 -0.56    | 7758 –(   | 0.451641                              | -0.42295               | 3 -0.54   | 0733  |

| 3      | -0.184991     | -0.567758    | -0.451641 | 2.364332  | -0.540733 |
|--------|---------------|--------------|-----------|-----------|-----------|
| 4      | -0.184991     | -0.567758    | -0.451641 | -0.422953 | -0.540733 |
|        |               |              |           |           |           |
| 26962  | -0.184991     | 1.761313     | -0.451641 | -0.422953 | -0.540733 |
| 26963  | 5.405654      | -0.567758    | -0.451641 | -0.422953 | -0.540733 |
| 26964  | -0.184991     | -0.567758    | -0.451641 | -0.422953 | 1.849340  |
| 26965  | -0.184991     | -0.567758    | -0.451641 | -0.422953 | -0.540733 |
| 26966  | -0.184991     | 1.761313     | -0.451641 | -0.422953 | -0.540733 |
|        |               |              |           |           |           |
|        | clarity_VVS1  | clarity_VVS2 |           |           |           |
| 0      | -0.270743     | -0.321957    |           |           |           |
| 1      | -0.270743     | -0.321957    |           |           |           |
| 2      | -0.270743     | 3.106009     |           |           |           |
| 3      | -0.270743     | -0.321957    |           |           |           |
| 4      | 3.693534      | -0.321957    |           |           |           |
|        |               |              |           |           |           |
| 26962  | -0.270743     | -0.321957    |           |           |           |
| 26963  | -0.270743     | -0.321957    |           |           |           |
| 26964  | -0.270743     | -0.321957    |           |           |           |
| 26965  | -0.270743     | 3.106009     |           |           |           |
| 26966  | -0.270743     | -0.321957    |           |           |           |
|        |               |              |           |           |           |
| [26927 | rows x 24 col | umns]        |           |           |           |

Table-1.2.a

**Conclusion | insight**: all data modifications using zero value treat, outlier treat, missing value treat, duplicate value treat, drop some value after that our data is ready for perform and finding LR. After looking data scaling is necessary for clustering for k-Mean and Hierarchical clustering also, as per describe data max/Min value Spending 1/18818, and are magnitude all data are not similar, so scaling is required. So we can go for scaling to avoid any performance issue due to the unscaled dataset.

Q1.3 Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply linear regression. Performance Metrics: Check the performance of Predictions on Train and Test sets using Rsquare, RMSE.

#### Solution:-

Linear regression: - Split data in two part Train & Test

#### A) Coefficient\_train & test:-

```
The coefficient for carat is 1.2305882966567543
The coefficient for carat is 1.2305882966567543
                                                            The coefficient for depth is 0.0014459929690719868
The coefficient for depth is 0.0014459929690719868
                                                            The coefficient for table is -0.013639708231939687
The coefficient for table is -0.013639708231939687
                                                            The coefficient for x is -0.3214591521321091
The coefficient for x is -0.3214591521321091
                                                            The coefficient for y is 0.25973210078172104
The coefficient for y is 0.25973210078172104
                                                            The coefficient for z is -0.10533359381691018
The coefficient for z is -0.10533359381691018
                                                            The coefficient for cut_Good is 0.035198594220606574
The coefficient for cut_Good is 0.035198594220606574
                                                            The coefficient for cut_Ideal is 0.09291368906273828
The coefficient for cut Ideal is 0.09291368906273828
                                                            The coefficient for cut_Premium is 0.0793527046587005
The coefficient for cut Premium is 0.0793527046587005
                                                            The coefficient for cut_Very Good is 0.06686385068878037
The coefficient for cut Very Good is 0.06686385068878037
                                                            The coefficient for color_E is -0.02149958578438857
The coefficient for color_E is -0.02149958578438857
                                                            The coefficient for color_F is -0.027147045405626277
The coefficient for color_F is -0.027147045405626277
                                                            The coefficient for color_G is -0.04849184754312909
The coefficient for color_G is -0.04849184754312909
                                                            The coefficient for color H is -0.08684095874110685
The coefficient for color_H is -0.08684095874110685
                                                            The coefficient for color_I is -0.11509875802594903
The coefficient for color_I is -0.11509875802594903
                                                            The coefficient for color J is -0.12134930401467273
The coefficient for color_J is -0.12134930401467273
                                                            The coefficient for clarity_IF is 0.21010186299964867
The coefficient for clarity_IF is 0.21010186299964867
                                                            The coefficient for clarity_SI1 is 0.32111616194547404
The coefficient for clarity_SI1 is 0.32111616194547404
                                                            The coefficient for clarity_SI2 is 0.18955567488824587
The coefficient for clarity_SI2 is 0.18955567488824587
                                                            The coefficient for clarity_VS1 is 0.35037491255023284
The coefficient for clarity_VS1 is 0.35037491255023284
                                                            The coefficient for clarity_VS2 is 0.37605773633312284
The coefficient for clarity_VS2 is 0.37605773633312284
                                                            The coefficient for clarity_VVS1 is 0.2776576039101753
The coefficient for clarity_VVS1 is 0.2776576039101753
                                                            The coefficient for clarity_VVS2 is 0.3184150588953828
The coefficient for clarity_VVS2 is 0.3184150588953828
```

| Train Test |
|------------|
|------------|

Fig-1.3a

#### B) Rsquare- Train & test:-

| Train data coeff | Test data coeff |
|------------------|-----------------|
| 0.9413           | 0.9396          |

**Tab-1.3.a** 

### C) Lm \_Train & test:-

| Intercept | -0.001117 | Intercept | 0.002733  |  |  |  |
|-----------|-----------|-----------|-----------|--|--|--|
| carat     | 1.217190  | carat     | 1.204284  |  |  |  |
| depth     | -0.032596 | depth     | -0.023205 |  |  |  |
| table     | -0.046558 | table     | -0.052043 |  |  |  |
| ×         | -0.726089 | X         | -0.735029 |  |  |  |
| У         | 0.631411  |           |           |  |  |  |
| Z         | -0.180943 | У         | 0.755901  |  |  |  |
| dtype: fl | oat64     | Z         | -0.282029 |  |  |  |
|           | Train     | Test      |           |  |  |  |

**Fig-1.3.b** 

### D) OLS regression result:-

|                                                                                   |                  |                                                                         |                           |                                                                                                     |                 |                                                                          |                                                                                                 | ======= |                          |                      | =====                |                                               |                 |                                                                  |
|-----------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------|--------------------------|----------------------|----------------------|-----------------------------------------------|-----------------|------------------------------------------------------------------|
| Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: |                  | pric<br>Ol<br>Least Square<br>un, 01 Aug 202<br>11:26:2<br>1884<br>1884 | e<br>.S<br>.s<br>.1<br>.4 | R-squared:<br>Adj. R-squared:<br>F-statistic:<br>Prob (F-statist<br>Log-Likelihood:<br>AIC:<br>BIC: | ic):            | 0.885<br>0.885<br>2.417e+04<br>0.00<br>-6271.3<br>1.256e+04<br>1.261e+04 | Dep. Variab<br>Model:<br>Method:<br>Date:<br>Time:<br>No. Observar<br>Df Residual:<br>Df Model: | tions:  | Least Squ<br>Sun, 01 Aug | OLS<br>Jares<br>2021 | Adj.<br>F-st<br>Prob |                                               | :               | 0.883<br>0.882<br>1.010e+04<br>0.00<br>-2899.2<br>5812.<br>5861. |
| Covariance Type                                                                   | :                | nonrobus                                                                | -                         |                                                                                                     |                 |                                                                          | Covariance                                                                                      | Type:   | nonro                    |                      |                      |                                               |                 |                                                                  |
|                                                                                   | coef             | std err                                                                 |                           | t P> t                                                                                              | [0.025          | 0.975]                                                                   |                                                                                                 | coe     |                          |                      | t                    | P> t                                          | [0.025          | 0.975]                                                           |
|                                                                                   | 0.0011<br>1.2172 | 0.002<br>0.014                                                          |                           | 454 0.650<br>919 0.000                                                                              | -0.006<br>1.190 | 0.004<br>1.245                                                           | Intercept                                                                                       | 0.002   |                          |                      | .709<br>.814         | 0.479<br>0.000                                | -0.005<br>1.162 | 0.010<br>1.247                                                   |
| depth -                                                                           | 0.0326           | 0.005                                                                   | -6.                       | 793 0.000                                                                                           | -0.042          | -0.023                                                                   | depth                                                                                           | -0.02   |                          |                      | .992                 | 0.003                                         | -0.038          | -0.008                                                           |
|                                                                                   | 0.0466           | 0.003                                                                   | -17.                      |                                                                                                     | -0.052          | -0.041                                                                   | table                                                                                           | -0.052  | 0.004                    | -12                  | . 658                | 0.000                                         | -0.060          | -0.044                                                           |
|                                                                                   | 0.7261           | 0.052                                                                   | -14.                      |                                                                                                     | -0.828          | -0.625                                                                   | x                                                                                               | -0.73   | 0.070                    | -10                  | . 457                | 0.000                                         | -0.873          | -0.597                                                           |
| ,                                                                                 | 0.6314           | 0.050                                                                   | 12.                       |                                                                                                     | 0.534           | 0.729                                                                    | У                                                                                               | 0.75    | 9 0.073                  | 10                   | . 369                | 0.000                                         | 0.613           | 0.899                                                            |
| -                                                                                 | 0.1809           | 0.035                                                                   | -5.                       |                                                                                                     | -0.250          | -0.112                                                                   | z                                                                                               | -0.282  | 0.056                    | -5                   | .010                 | 0.000                                         | -0.392          | -0.172                                                           |
| Omnibus:<br>Prob(Omnibus):<br>Skew:<br>Kurtosis:                                  |                  | 5412.99<br>0.00<br>1.20<br>8.72                                         | 8 0 3 2                   | Durbin-Watson:<br>Jarque-Bera (JB<br>Prob(JB):<br>Cond. No.                                         | ,               | 2.000<br>30719.357<br>0.00<br>54.4                                       | Omnibus: Prob(Omnibus Skew: Kurtosis:                                                           |         | 1974<br>(                | 1.842                | Durb<br>Jarq<br>Prob | in-Watson:<br>ue-Bera (JB):<br>(JB):<br>. No. |                 | 2.001<br>10719.229<br>0.00<br>48.4                               |
|                                                                                   |                  | T                                                                       | ra                        | in                                                                                                  |                 |                                                                          |                                                                                                 |         | Т                        | est                  |                      |                                               |                 |                                                                  |

Fig-1.3.c

To ideally bring down the values to lower levels we can drop one of the variable that is highly correlated. Dropping variables would bring down the multi collinearity level down.

### E) RMSE-report\_train & test:-

| Train  | Test   |
|--------|--------|
| 0.2411 | 0.2483 |

**Tab-1.3.b** 

### F) LR- linear regression\_best fit line:-



Fig-1.3.d

### G) Calculation - Train & Test:-

The final Linear Regression equation is\n\nprice =  $b0 + b1 * carat + b2 * depth + b3 * table + b4 * x + b5 * y + b6 * z \n\nprice.$ 

| Train | (-0.0) * Intercept + (1.22) * carat + (-0.03) * depth + (-0.05) * table + (-0.73) * x + (0.63) * y + (-0.18) * z + |
|-------|--------------------------------------------------------------------------------------------------------------------|
| Test  | (0.0) * Intercept + (1.2) * carat + (-0.02) * depth + (-0.05) * table + (-0.74) * x + (0.76) * y + (-0.28) * z +   |

Tab-1.3.c

**Conclusion | insight**: As per question finding all parameter split data in two form train and test and find Coefficient, Rsquare-Train & test, Lm \_Train & test, OLS regression result \_train & test RMSE-report\_train & test, Linear regression\_best fit line and Calculation - Train & Test. After that we absorbed the resolute train and test data is quit-similar. All parameter is required to **final Linear Regression** not only train data 95%, rest test data also.

# Q 1.4 Inference: Basis on these predictions, what are the business insights and recommendations.

#### Conclusion | insight:-

We had a business to problem to predict the price of stone and provide insights for the company on the best profits on different prise slot .from EDA analysis we could understand the cut, ideal cut had number of profits to the company. The colours H, I, J have bought profits for the company. In clarity if we could see there were no flawless stones and they were no profits coming from I1, I2, I3 stones. The ideal, premium and very good types of cut were bringing profits where as fair and good are not bringing profits.

The predictions were able to capture 95% variations in the price and it is explained by the predictors in the training set.

Using stats model if we could run the model again we can have P values and coefficients which will give us better understanding of the relationship, so that values more 0.05 we can drop those variables and re run the model again for better results .

```
The coefficient for carat is 1.2305882966567543
The coefficient for depth is 0.0014459929690719868
The coefficient for table is -0.013639708231939687
The coefficient for x is -0.3214591521321091
The coefficient for y is 0.25973210078172104
The coefficient for z is -0.10533359381691018
The coefficient for cut_Good is 0.035198594220606574
The coefficient for cut Ideal is 0.09291368906273828
The coefficient for cut_Premium is 0.0793527046587005
The coefficient for cut_Very Good is 0.06686385068878037
The coefficient for color_E is -0.02149958578438857
The coefficient for color_F is -0.027147045405626277
The coefficient for color_G is -0.04849184754312909
The coefficient for color_H is -0.08684095874110685
The coefficient for color_I is -0.11509875802594903
The coefficient for color_J is -0.12134930401467273
The coefficient for clarity_IF is 0.21010186299964867
The coefficient for clarity_SI1 is 0.32111616194547404
The coefficient for clarity_SI2 is 0.18955567488824587
The coefficient for clarity_VS1 is 0.35037491255023284
The coefficient for clarity_VS2 is 0.37605773633312284
The coefficient for clarity VVS1 is 0.2776576039101753
The coefficient for clarity_VVS2 is 0.3184150588953828
```

The result of equation for best profits are shown below mention.

| Train | (-0.0) * Intercept + (1.22) * carat + (-0.03) * depth + ( -0.05) * table + (-0.73) * x + (0.63) * y + (-0.18) * z +          |
|-------|------------------------------------------------------------------------------------------------------------------------------|
| Test  | (0.0) * Intercept + $(1.2)$ * carat + $(-0.02)$ * depth + $(-0.05)$ * table + $(-0.74)$ * x + $(0.76)$ * y + $(-0.28)$ * z + |

#### Recommendations

- 1. The ideal, premium, very good cut types are the one which are bringing profits so That we could use marketing for these to bring in more profits.
- 2. The clarity of the diamond is the next important attributes the more the clear is the Stone the profits are more.
- 3. Best of result is mention intercept (1.22) and carat is (-0.03), depth (-0.05), table (-0.73) coefficients was best result in this data.
- 4. Carat is (-0.03) than clarity is IF depth 62.1 price 1130 best product best profit in this segment.

# **Problem 2- Logistic Regression and LDA**

### **Table of Contents**

### Contents

| Executive Summary25                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Introduction25                                                                                                                                                                                                                                                    |
| Data Description25                                                                                                                                                                                                                                                |
| Sample of the dataset25                                                                                                                                                                                                                                           |
| Data Describe26                                                                                                                                                                                                                                                   |
| Q 2.1 Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis. Do exploratory data analysis                                                        |
| Q 2.2 Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis)33                                                     |
| 2.3 Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized |
| Q 2.4 Inference: Basis on these predictions, what are the insights and recommendations40                                                                                                                                                                          |

# Table & Figures

| Topic Name                                              | Fig & Tab Number                           |
|---------------------------------------------------------|--------------------------------------------|
| Data Description                                        | Tab-2.a                                    |
| Sample of the Dataset                                   | Fig-2.a                                    |
| Data Describe                                           | Fig-2.B                                    |
|                                                         |                                            |
| Exploratory data analysis                               | Fig-2.1.b                                  |
| Data shape & size                                       | Fig-2.1.c                                  |
| Duplicated value                                        | Fig-2.1.d                                  |
| Missing value                                           | Fig-2.1.e                                  |
| Univariate Analysis                                     | Fig-2.1.f, Fig-2.1.g                       |
| Bivariate Analysis                                      | Fig-2.1.h, Fig-2.1.i, Fig-2.1.j, Fig-2.1.k |
| categorical to dummy variable                           | Fig-2.2.a                                  |
| LR-Logistic Regression predict Train & Test             | Fig-2.2.b                                  |
| LDA (linear discriminant analysis) predict Train & Test | Fig-2.2.c                                  |
| LR-Logistic Regression- Train & Test (30:70)            | Fig-2.3.1.a                                |
| Classification report Train & Test for LR               | Fig-2.3.1.b                                |
| Confusion matrix Train & Test for LR                    | Fig-2.3.1.c                                |
| AUC & ROC curve Train & Test for LR                     | Fig-2.3.1.d                                |
| LDA-Logistic Regression- Train & Test (30:70)           | Fig-2.3.2.a                                |
| Classification report Train & Test for LDA              | Fig-2.3.2.b                                |
| Confusion matrix Train & Test for LDA                   | Fig-2.3.2.c                                |
| AUC & ROC curve Train & Test for LDA                    | Fig-2.3.2.d                                |
| Final Model - Compare LR & LDA                          | Fig-2.3.3.a                                |
| Compare- Train LR & LDA                                 | Fig-2.3.3.b                                |
| Compare- Test LR & LDA                                  | Fig-2.3.3.c                                |

#### **Executive Summary:-**

You are hired by a tour and travel agency which deals in selling holiday packages. You are provided details of 872 employees of a company. Among these employees, some opted for the package and some didn't. You have to help the company in predicting whether an employee will opt for the package or not on the basis of the information given in the data set. Also, find out the important factors on the basis of which the company will focus on particular employees to sell their packages.

#### Introduction:-

The purpose of this whole exercise is to explore the dataset. Do the exploratory data analysis. Explore the dataset and analysis of using method Logistic Regression and LDA. Find out the important factors on the basis of which the company will focus on particular employees to sell their packages. 872 employees of a company LDA and LR finding ROC and AUC train and test spit for this problem.

#### Data Description:-

| Variable Name     | Description                                         |
|-------------------|-----------------------------------------------------|
| Holiday_Package   | Opted for Holiday Package yes/no?                   |
| Salary            | Employee salary                                     |
| age               | Age in years                                        |
| edu               | Years of formal education                           |
| no_young_children | The number of young children (younger than 7 years) |
| no_older_children | Number of older children                            |
| foreign           | foreigner Yes/No                                    |

Tab-2.a

### Sample of the Dataset:-

|   | Unnamed: 0 | Holliday_Package | Salary | age | educ | no_young_children | no_older_children | foreign |
|---|------------|------------------|--------|-----|------|-------------------|-------------------|---------|
| 0 | 1          | no               | 48412  | 30  | 8    | 1                 | 1                 | no      |
| 1 | 2          | yes              | 37207  | 45  | 8    | 0                 | 1                 | no      |
| 2 | 3          | no               | 58022  | 46  | 9    | 0                 | 0                 | no      |
| 3 | 4          | no               | 66503  | 31  | 11   | 2                 | 0                 | no      |
| 4 | 5          | no               | 66734  | 44  | 12   | 0                 | 2                 | no      |

Fig-2.a

**Conclusion | insight**: This is Sample of given data all information is mention as per provide by travel agency which deals in selling holiday packages.

#### Data Describe:-

|       | Salary        | age        | educ       | no_young_children | no_older_children |
|-------|---------------|------------|------------|-------------------|-------------------|
| count | 872.000000    | 872.000000 | 872.000000 | 872.000000        | 872.000000        |
| mean  | 47729.172018  | 39.955275  | 9.307339   | 0.311927          | 0.982798          |
| std   | 23418.668531  | 10.551675  | 3.036259   | 0.612870          | 1.086786          |
| min   | 1322.000000   | 20.000000  | 1.000000   | 0.000000          | 0.000000          |
| 25%   | 35324.000000  | 32.000000  | 8.000000   | 0.000000          | 0.000000          |
| 50%   | 41903.500000  | 39.000000  | 9.000000   | 0.000000          | 1.000000          |
| 75%   | 53469.500000  | 48.000000  | 12.000000  | 0.000000          | 2.000000          |
| max   | 236961.000000 | 62.000000  | 21.000000  | 3.000000          | 6.000000          |

Fig-2.b

**Conclusion | insight**: Data min value of data 0 and max value is 62 and other thing zero is available in data.

Q 2.1 Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis. Do exploratory data analysis.

#### Solution:-

#### A) Exploratory data analysis:-

```
Data columns (total 8 columns):
#
    Column
                       Non-Null Count Dtype
0
    Unnamed: 0
                       872 non-null
                                        int64
    Holliday_Package 872 non-null Salary 872 non-null
                                        object
 2
                                        int64
3
    age
                       872 non-null
                                        int64
 4
    educ
                       872 non-null
                                        int64
5
    no_young_children 872 non-null
                                        int64
    no_older_children 872 non-null
                                        int64
                        872 non-null
                                        object
    foreign
dtypes: int64(6), object(2)
memory usage: 54.6+ KB
```

Fig-2.1.b

**Conclusion | insight**: Ten types of information given in data as a column. sr.no, Holiday\_package, salary, age, educ, no\_young\_childern, no\_older\_children, foreign, data is 54.6 kb + and 0 to 872 row and 8 columns. Two type of Data integer, Object. Two column are Object and six column are integer.

### C) Data shape & size:-



Fig-2.1.c

**Conclusion | insight**: Total 872 ROW and 7 Column.

### E) Find Duplicated value:-

```
: df2.duplicated().sum()
```

: 0

Fig-2.1.d

**Conclusion | insight**: No any Duplicate value is find in this data.

### F) Missing value:-

```
Holliday_Package 0
Salary 0
age 0
educ 0
no_young_children 0
no_older_children 0
foreign 0
dtype: int64
```

Fig-2.1.e

**Conclusion | insight**: In this data seat depth no any missing value find.

### H) Univariate Analysis:-



Fig-2.1.f



Fig-2.1.g

**Conclusion | insight**: We are find single | single variable value finding data behaviour show in fig-2.f, fig-2.g foreign | holliday\_package or normal.

### I) Bivariate Analysis:-

#### In single pair of all data



Fig-2.1.h

#### Outlier check in all data:-



Fig-2.1.i

**Conclusion | insight**: Required outlier treating fig-2.i show almost outliner hair difference so we are treating all data outliers.

### After Treating outliers check all data:-



Fig-2.1.j

#### Correlation of all data:-



Fig-2.k

**Conclusion | insight**: In all data, we are comparing and showing. What behaving the data. Pair plot showing all data and boxplot for outlier check and treated outlier and correlation check each column for every column for best result.

Q 2.2 Do not scale the data. Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis).

#### Solution:-

### Converting categorical to dummy variable in data

|   | Salary   | age  | educ | no_young_children | no_older_children | Holliday_Package_yes | foreign_yes |
|---|----------|------|------|-------------------|-------------------|----------------------|-------------|
| 0 | 48412.00 | 30.0 | 8.0  | 0.0               | 1.0               | 0                    | 0           |
| 1 | 37207.00 | 45.0 | 8.0  | 0.0               | 1.0               | 1                    | 0           |
| 2 | 58022.00 | 46.0 | 9.0  | 0.0               | 0.0               | 0                    | 0           |
| 3 | 66503.00 | 31.0 | 11.0 | 0.0               | 0.0               | 0                    | 0           |
| 4 | 66734.00 | 44.0 | 12.0 | 0.0               | 2.0               | 0                    | 0           |
| 5 | 61590.00 | 42.0 | 12.0 | 0.0               | 1.0               | 1                    | 0           |
| 6 | 80687.75 | 51.0 | 8.0  | 0.0               | 0.0               | 0                    | 0           |
| 7 | 35987.00 | 32.0 | 8.0  | 0.0               | 2.0               | 1                    | 0           |
| 8 | 41140.00 | 39.0 | 12.0 | 0.0               | 0.0               | 0                    | 0           |
| 9 | 35826.00 | 43.0 | 11.0 | 0.0               | 2.0               | 0                    | 0           |

Fig-2.2.a



### LR-Logistic Regression predict Train & Test (30:70)

```
model1 = LogisticRegression(solver='newton-cg', max_iter=10000, penalty='none', verbose=True, n_jobs=2)
model1.fit(X_train, y_train)
y_predict_test = model1.predict(X_test)
y_predict_train= model1.predict(X_train)
```

|        | 0        | 1        |  |   | 0        | 1        |
|--------|----------|----------|--|---|----------|----------|
| 0      | 0.696807 | 0.303193 |  | 0 | 0.696807 | 0.303193 |
| 1      | 0.332213 | 0.667787 |  | 1 | 0.332213 | 0.667787 |
| 2      | 0.620128 | 0.379872 |  | 2 | 0.620128 | 0.379872 |
| 3      | 0.686886 | 0.313114 |  | 3 | 0.686886 | 0.313114 |
| 4      | 0.354964 | 0.645036 |  | 4 | 0.354964 | 0.645036 |
| X_test |          |          |  |   | X_trai   | in       |

Fig-2.2.b



#### LDA (linear discriminant analysis) predict Train & Test

```
#Build LDA Model
model2 = LinearDiscriminantAnalysis()
model2.fit(X_train,y_train)
```

LinearDiscriminantAnalysis()

| 0          | <u> </u>   |
|------------|------------|
| <b>o</b> o | <b>o</b> o |
| 1 1        | <b>1</b> 1 |
| <b>2</b> 0 | <b>2</b> 0 |
| <b>3</b> 0 | <b>3</b> 0 |
| <b>4</b> 0 | 4 1        |
| X_test     | X_train    |

Tab-2.2.0

**Conclusion | insight**: The method gives, bilinear solver which is suitable for small datasets. Tolerance and penalty has been found using grid search method predicting the training & testing data.

Q 2.3 Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC\_AUC score for each model Final Model: Compare Both the models and write inference which model is best/optimized.

Solution:-

### A).1 LR-Logistic Regression- Train & Test (30:70)

| X_Test Data             |       | X_Train Data            |       |
|-------------------------|-------|-------------------------|-------|
| Accuracy_test           | 0.629 | Accuracy train          | 0.640 |
| Logistic_test_precision | 0.62  | Logistic_test_precision | 0.67  |
| Logistic_test_recall    | 0.44  | Logistic_test_recall    | 0.44  |
| Logistic_test_f1        | 0.52  | Logistic_test_f1        | 0.54  |

Tab-2.3.1a

### B) Classification report Train & Test for LR



Fig-2.3.1.a

# C) Confusion matrix Train & Test for LR



35

# D) AUC & ROC curve Train & Test for LR



Fig - 2.3.1.c

Conclusion | insight: LR:-Confusion matrix fig-2.3.1.b, coefficient of LR data AUC & ROC Train and Test data all are quiet similar also shown in fig-2.3.1.c .the are best observation in all test and train data.

### A).2 LDA-(Linear discriminant analysis)-Train & Test

| X_Train Data            |       | X_Test Data             |       |
|-------------------------|-------|-------------------------|-------|
| Accuracy_test           | 0.642 | Accuracy train          | 0.629 |
| Logistic_test_precision | 0.68  | Logistic_test_precision | 0.62  |
| Logistic_test_recall    | 0.43  | Logistic_test_recall    | 0.44  |
| Logistic_test_f1        | 0.53  | Logistic_test_f1        | 0.52  |

Tab - 2.3.2.a

# B) Classification report Train & Test for LDA

|              | precision | recall  | f1-score | support |              | precision | recall | f1-score | support |
|--------------|-----------|---------|----------|---------|--------------|-----------|--------|----------|---------|
| 0            | 0.63      | 0.81    | 0.71     | 326     | 0            | 0.63      | 0.83   | 0.71     | 326     |
| 1            | 0.67      | 0.44    | 0.54     | 284     | 1            | 0.68      | 0.43   | 0.53     | 284     |
| accuracy     |           |         | 0.64     | 610     | accuracy     |           |        | 0.64     | 610     |
| macro avg    | 0.65      | 0.63    | 0.62     | 610     | macro avg    | 0.65      | 0.63   | 0.62     | 610     |
| weighted avg | 0.65      | 0.64    | 0.63     | 610     | weighted avg | 0.65      | 0.64   | 0.63     | 610     |
|              |           |         |          |         |              |           |        |          |         |
|              |           | X_Trair | 1        |         |              |           | X_Test |          |         |

Fig-2.3.2.b

# C) Confusion matrix Train & Test for LDA



Fig-2.3.2.c

# D) AUC & ROC curve Train & Test for LDA



**Conclusion | insight**: LDA Confusion matrix fig-2.3.2.b, coefficient of LR data AUC & ROC Train and Test data all are quiet similar also shown in fig-2.3.2.c .the are best observation in all test and train data .

# A).3 Final Model - Compare LR & LDA

|           | LR Train | LR Test | LDA Train | LDA Test |
|-----------|----------|---------|-----------|----------|
| Accuracy  | 0.641    | 0.630   | 0.643     | 0.630    |
| AUC       | 0.667    | 0.661   | 0.667     | 0.662    |
| Recall    | 0.440    | 0.440   | 0.430     | 0.440    |
| Precision | 0.670    | 0.620   | 0.680     | 0.620    |
| F1 Score  | 0.540    | 0.520   | 0.530     | 0.520    |

Fig-2.3.3.a

# B) Compare- Train LR & LDA



Fig-2.3.3.b

# C) Compare- Test LR & LDA



Fig-2.3.3.c

**Conclusion | insight**: - Comparing both these models, we find both results are same, but LDA works better when there is category target variable.

# Q 2.4 Inference: Basis on these predictions, what are the insights and recommendations.

#### Solution:-

#### Conclusion | insight: -

We had a business problem where we need predict whether an employee would opt for a holiday package or not, for this problem we had done predictions both logistic regression and linear discriminant analysis. Since both are results are The EDA analysis clearly indicates certain criteria where we could find people aged above 50 are not interested much in holiday packages. So this is one of the we find aged people not opting for holiday packages People ranging from the age 30 to 50 generally opt for holiday packages. Employee age over 50 to 60 have seems to be not taking the holiday package,

Whereas in the age 30 to 50 and salary less than 50000 people have opted more for holiday package. The important factors deciding the predictions are salary, age and educ.

|           | LR Train | LR Test | LDA Train | LDA Test |
|-----------|----------|---------|-----------|----------|
| Accuracy  | 0.641    | 0.630   | 0.643     | 0.630    |
| AUC       | 0.667    | 0.661   | 0.667     | 0.662    |
| Recall    | 0.440    | 0.440   | 0.430     | 0.440    |
| Precision | 0.670    | 0.620   | 0.680     | 0.620    |
| F1 Score  | 0.540    | 0.520   | 0.530     | 0.520    |

#### Recommendations

- 1. To improve holiday packages over the age above 50 we can provide religious destination places.
- 2. For people earning more than 150000 we can provide vacation holiday packages.
- 3. for employee having more than number of older children we can provide packages in holiday vacation places.
- 4. Most of under holiday packages person age 20 to above and out of country plan and without holiday packages person also.

---- END ---