Advanced Calculus II

Ji, Yong-hyeon

November 13, 2024

We cover the following topics in this note.

- Convergence of Sequences
- Inequality Rule for Reals
- Limit Theorem (Algebraic Property of Limit of Sequence)

Sequence

Definition. Let $A \subseteq \mathbb{N}$ and $X \subseteq \mathbb{R}$. A **sequence** is a function

$$a:A\to X$$

with domain A and range in X.

Remark. A function *a* is a real sequence if

$$a : \mathbb{N} \longrightarrow \mathbb{R}$$
 $n \longmapsto a(n) =: a_n$

for $n = 1, 2, \dots$. We write

$$\{a_n\}_{n=1}^{\infty}$$
, $\{a_n\}_{n\in\mathbb{N}}$, $\{a_n\}$, $(a_n)_{n\in\mathbb{N}}$, or $\langle a_n\rangle_{n\in\mathbb{N}}$.

Convergence of Sequence

Definition. A real sequence $\{a_n\}_{n=1}^{\infty} (\subseteq \mathbb{R})$ is said to **converge** to $L \in \mathbb{R}$ if and only if

$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N} \text{ such that } \left[n \geq N_{\varepsilon} \implies |a_n - L| < \varepsilon \right].$$

Remark. A real number $L \in \mathbb{R}$ is called **the limit**. When a sequence $\{a_n\}_{n=1}^{\infty}$ has the limit L, we will use the notation

$$\lim_{n\to\infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty.$$

That is,

$$\lim_{n\to\infty}a_n=L\iff\forall\varepsilon>0:\exists N\in\mathbb{N}:\left[n\geq N\implies|a_n-L|<\varepsilon\right].$$

Note. If a sequence has a limit, we say that the sequence is **convergent**; if it has no limit, we say that the sequence is **divergent**.

Example. Consider the sequence defined by $a_n = 1/n$ for each $n \in \mathbb{N}$. Prove that

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{1}{n}=0.$$

Proof. Let $\varepsilon > 0$. By the Archimedean property, we obtain

$$\exists N_{\epsilon} \in \mathbb{N} \quad \text{s.t.} \quad 1 < \epsilon \cdot N_{\epsilon}, \text{ i.e., } \frac{1}{N_{\epsilon}} < \epsilon.$$

Assume that $n \ge N_{\epsilon}$ then

$$|a_n - 0| = \left| \frac{1}{n} \right| = \frac{1}{n} \le \frac{1}{N_{\epsilon}} < \varepsilon.$$

Hence
$$\lim_{n\to\infty} \frac{1}{n} = 0$$
.

Example. Consider the sequence defined by $b_n = 1 - (-1)^n$ for all $n \in \mathbb{N}$. Prove that b_n does not converge.

Proof. Suppose that $\{b_n\}_{n=1}^{\infty}$ converges to $\beta \in \mathbb{R}$. Let $\varepsilon \in (0,2)$. Then if $n \geq N_{\varepsilon}$,

$$|b_n - \beta| = |b_n - b_{n+1} + b_{n+1} - \beta|$$

$$\leq |b_n - b_{n+1}| + |b_{n+1} - \beta|$$

$$= 2 + |b_{n+1} - \beta|$$

Absolute Value in Reals

Definition. Let $x \in \mathbb{R}$. A **absolute value** |x| of x is defined by

$$|x| := \begin{cases} x & : x \ge 0 \\ -x & : x < 0 \end{cases}$$

Proposition. *Let* x, $y \in \mathbb{R}$.

(1)
$$|x| = |-x| = \sqrt{x^2}$$

$$(2) |xy| = |x||y|$$

(3) For each r > 0,

$$|x| < r \iff -r < x < r$$

(4)

$$\delta < |x| \iff \delta < x \text{ or } x < -\delta$$

$$(5) -|x| \le x \le |x|$$

(6) (Triangle Inequality)

$$\left| x + y \right| \le |x| + \left| y \right|$$

Proof. (a)

Boundedness of Sequence

Definition. Let $\{a_n\}_{n=1}^{\infty} (\subseteq \mathbb{R})$ is a sequence. $\{a_n\}$ is said to be **bounded** if

 $\exists M \in \mathbb{R} \text{ such that } \forall n \in \mathbb{N}, |a_n| \leq M.$

Proposition. A convergent sequence is bounded.

Proof. Let $\lim_{n\to\infty} a_n = L$. For $\varepsilon = 1$, $\exists N \in \mathbb{N}$ such that $n \ge N \implies |a_n - L| < 1$. Then we see that

$$|a_n| = |a_n - L + L| \le |a_n - L| + |L| < 1 + |L|$$
.

Let $M := \max \{|a_1|, |a_2|, \dots, |a_{N-1}|, 1 + |L|\}$. Then

$$|a_n| \leq M$$

for all $n \in \mathbb{N}$. That is, $\{a_n\}$ is bounded.

Note. We have established that if the limit of a sequence a_n exists as n approaches infinity, then there exists a real number M such that $|a_n| \le M$ for all n. However, the converse is not necessarily true. To illustrate, consider the sequence $\{a_n\} = 1 - (-1)^n$. This sequence is bounded, yet it does not converge, serving as a counterexample.

Furthermore, we note the following important theorems:

1. Monotone Convergence Theorem:

- (i) If a sequence $\{a_n\}$ is bounded above and monotone increasing, then it converges.
- (ii) If a sequence $\{a_n\}$ is bounded below and monotone decreasing, then it converges.
- 2. **Bolzano-Weierstrass Theorem**: If there exists a real number M such that $|a_n| < M$ for all n, then there exists a convergent subsequence $\{a_{n_k}\}$ of $\{a_n\}$.

We confirmed that

$$\exists \lim_{n \to \infty} a_n \implies \exists M \in \mathbb{R} : |a_n| \le M.$$

However,

$$\exists \lim_{n \to \infty} a_n \iff \exists M \in \mathbb{R} : |a_n| \le M$$

because there is a counterexample: $\{a_n\} = 1 - (-1)^n$ is bounded sequence but not convergent. Note that

- 1. (Monotone Convergent Theorem)
 - (i) if $\{a_n\}$ is bounded above and monotone increasing, then is convergent.
 - (ii) if $\{a_n\}$ is bounded below and monotone decreasing, then is convergent.
- 2. (Bolzano-Weierstrass Theorem) $\exists M \in \mathbb{R} : |a_n| < M \implies \exists \lim_{k \to \infty} \{a_{n_k}\}.$

Limit Theorem (Algebraic Property of Limit of Sequence)

Theorem. Let $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$, and $\alpha \in \mathbb{R}$. Then

- (1) $\lim_{n\to\infty} \alpha a_n = \alpha \lim_{n\to\infty} a_n = \alpha A$.
- (2) $\lim_{n \to \infty} a_n \pm b_n = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n = A \pm B.$
- (3) $\lim_{n\to\infty} a_n b_n = \lim_{n\to\infty} a_n \lim_{n\to\infty} b_n = AB.$
- (4) $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n} = \frac{A}{B}. (Here, B \neq 0 \text{ and } b_n \neq 0)$
- (5) $\lim_{n \to \infty} |a_n| = \left| \lim_{n \to \infty} a_n \right| = |A|.$
- (6) $\lim_{n\to\infty} (a_n)^p = A^p$. (Here, $p \in \mathbb{N}$).
- (7) $[\exists K : n \geq K \implies a_n \leq b_n] \implies A \leq B.$

Proof. To be continue...

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 6. 해석학 개론 (c) 수열의 수렴성." YouTube Video, 26:29. Published September 20, 2019. URL: https://www.youtube.com/watch?v=jwLfzJyIxmU.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 7. 해석학 개론 (d) 극한 정리" YouTube Video, 26:46. Published September 26, 2019. URL: https://www.youtube.com/watch?v=1TRD34QbIaw.