第五章 有限体积法

李丹

武汉大学水利水电学院

2021年4月24日

目录

1 稳态传导方程的有限体积法

一维稳态传导问题

某一运动要素 ϕ 的一维稳态传导问题:

$$\frac{\mathrm{d}}{\mathrm{d}x}(\Gamma\frac{\mathrm{d}\phi}{\mathrm{d}x}) + S = 0$$

其中, Γ 为传导系数, S 为源项。在边界点上 ϕ 的值给定。

网格生成

- 将计算区域划分为互不重叠的离散控制体
- 在 A 和 B 之间均匀的布置一系列的节点
- 每个控制体的边界位于相邻节点的中线处
- 在计算域边界处设置控制体是比较常见的做法

网格符号系统

- P 为网格系统中的任意节点, 其西侧和东侧节点分别为 W 和 E
- lacktriangle 节点 P 所在控制体西边的边界面为 w,东边的边界面为 e
- **②** $W \ni P$ 的距离为 δx_{WP} , $P \ni E$ 的距离为 δx_{PE}
- **②** w 到 P 的距离为 δx_{wP} , P 到 e 的距离为 δx_{Pe}
- lacksquare w 到 e 的距离为 δx_{we}

基本思想 在控制体上对控制方程积分来得到控制体节点 P 上的离散 方程

物理意义 流出东边交界面的 ϕ 的扩散通量减去流入西边交界面的 ϕ 的扩散通量等于 ϕ 的减少量

$$\int_{\Delta V} \frac{\mathrm{d}}{\mathrm{d}x} \left(\Gamma \frac{\mathrm{d}\phi}{\mathrm{d}x} \right) \mathrm{d}V + \int_{\Delta V} S \mathrm{d}V = \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_e - \left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x} \right)_w + \overline{S}\Delta V = 0$$

A 为控制体边界面面积, ΔV 为控制体体积, \overline{S} 为控制体上 S 的平均值

$$\Gamma_{w} = \frac{\Gamma_{W} + \Gamma_{P}}{2}$$

$$\Gamma_{e} = \frac{\Gamma_{P} + \Gamma_{E}}{2}$$

$$\left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x}\right)_{e} = \Gamma_{e} A_{e} \left(\frac{\phi_{E} - \phi_{P}}{\delta x_{PE}}\right)$$

$$\left(\Gamma A \frac{\mathrm{d}\phi}{\mathrm{d}x}\right)_{w} = \Gamma_{w} A_{w} \left(\frac{\phi_{P} - \phi_{W}}{\delta x_{WP}}\right)$$

为了推导出可用的离散方程、式(6)中控制体交界面上的 Γ 和梯度 $d\phi/dx$ 必须要先求得。

$$\overline{S}\Delta V = S_u + S_P \phi_P \tag{1}$$

$$\Gamma_e A_e \left(\frac{\phi_E - \phi_P}{\delta x_{PE}} \right) - \Gamma_w A_w \left(\frac{\phi_P - \phi_W}{\delta x_{WP}} \right) + (S_u + S_P \phi_P) = 0$$
 (2)

$$\left(\frac{\Gamma}{\delta x_{PE}}A_e + \frac{\Gamma}{\delta x_{WP}}A_w - S_p\right)\phi_P = \left(\frac{\Gamma_w}{\delta x_{WP}}A_w\right)\phi_W + \left(\frac{\Gamma_e}{\delta x_{PE}}A_e\right)\phi_E + S_u$$
(3)

$$a_P \phi_P = a_W \phi_W + a_E \phi_E + S_u \tag{4}$$

其中

a_W	a_E	a_P
$\frac{\Gamma_w}{\delta x_{WP}} A_w$	$\frac{\Gamma_e}{\delta x_{PE}} A_e$	$a_W + a_E - S_P$

式(4)必须在所有控制体的节点上都列出才能求解。对于毗邻计算域边 界的控制体,式(4)必须经过适当修正以包含边界条件。最后形成的线性 代数方程组可以通过上一章的求解方法来进行求解得到 ϕ 的分布。