2. izpit iz Moderne fizike 1

12. junij 2019

čas reševanja 90 minut

1. Atom vodika ob času t=0 je v stanju $\psi(0)=\mathcal{N}\left(\psi_{1,0,0}+\psi_{2,1,0}+i\psi_{2,1,1}\right)$, kjer je \mathcal{N} normalizacijska konstanta. Zapiši časovni razvoj valovne funkcije $\psi(t)$ in določi povprečno vrednost energije, operatorja kvadrata vrtilne količine ter projekcije vrtilne količine na z os atoma vodika v stanju $\psi(t)$.

- 2. Raketa, ki leti mimo Zemlje proti Alpha Centauri (d=4 svetlobna leta) s hitrostjo v=0.6 c, prestreže signal, ki ga z Zemlje pošiljajo z valovno dolžino 10 m in pod kotom $\alpha=10^\circ$ proti oddaljenemu planetu P. Kolikšno frekvenco izmerijo na ladji? Na planetu P signal odbijejo proti AC, kamor prispe pod pravim kotom. Koliko časa preteče med prejetjem signala in prihodom rakete do AC; kdo pride prej? Kolikšna je sedaj izmerjena frekvenca na ladji in na AC?
- 3. Elektron je v kocki z robom a=0,1 nm. Potencial znotraj kocke je V=0, zunaj kocke pa $V=\infty$. Določi in skiciraj prvih pet energijskih nivojev in označi degeneracijo. Z računom pokaži, v katera izmed možnih stanj lahko z izsevanjem fotona pri dipolnem prehodu preide elektron, ki ga pripravimo v stanju $n_x=3$, $n_y=2$, $n_z=1$ ter določi frekvenco fotona. Določi, kateri izmed možnih prehodov se zgodi z največjo verjetnostjo in določi njegov razpadni čas.

4. V končni potencialni jami pripravimo vezano stanje z energijo $E = (\hbar k)^2/(2m) = \hbar^2 \pi^2/(8ma^2)$, kjer je m masa delca in a je širina jame. Določi globino V ter verjetnost, da delec najdemo izven jame. Namig: upoštevaj simetrijo problema, oz. valovne funkcije, kot je nakazano na skici.