

Universidad de Sonora División de Ciencias Exactas y Naturales Licenciatura en Física Física Computacional

Manejo de datos con Python

Dr. Carlos Lizárraga Celaya Esteban Delgado Curiel

08 de Febrero del 2017

Breve resumen

En esta práctica se utilizará la información brindada por los sondeos atmosféricos de la ciudad correspondiente, en este caso Guadalajara, Jalisco, con el fin de organizar e interpretar el significado de la variación que estos presentan, filtrando los resultado obtenidos sobre CAPE y la cantidad de Agua precipitable.

Introducción

En esta práctica se lleva a cabo la elaboración de gráficas y diagramas de caja para las variables CAPE y Agua precipitable utilizando Jupyter Notebook, el cual es una aplicación en línea que permite crear y compartir documentos que contienen códigos, ecuaciones, visualizaciones y textos. También permite llevar a cabo la organización y limpieza de datos, simulaciones numéricas, modelos estadísticos, entre otras cosas más.

1. Datos

	CAPE	Agua precipitable
count	61.000000	61.000000
mean	182.848197	18.972459
std	285.033644	6.421182
mln	0.000000	2.930000
25%	0.000000	14.320000
50%	0% 97.540000 19.210000	
75%	226.460000	22.910000
max	1617.410000	34.400000

1.1.

	Fecha	CAPE	Agua precipitable
0	22 Oct 2016	45.45	24.91
1	23 Oct 2016	0.00	2.93
2	24 Oct 2016	34.41	22.41
3	25 Oct 2016	385.23	25.36
4	26 Oct 2016	154.03	21.49
5	27 Oct 2016	179.79	18.80
6	28 Oct 2016	24.16	20.04
7	29 Oct 2016	16.07	15.57
8	30 Oct 2016	0.00	5.34
9	31 Oct 2016	0.00	12.05
10	01 Nov 2016	264.28	18.97
11	02 Nov 2016	608.13	19.62
12	03 Nov 2016	226.46	22.31
13	04 Nov 2016	167.01	22.24
14	05 Nov 2016	108.61	21.56
15	07 Nov 2016	1617.41	26.79
16	08 Nov 2016	350.43	22.69
17	09 Nov 2016	570.22	22.97
18	10 Nov 2016	421.36	22.13
19	11 Nov 2016	162.96	25.43
20	12 Nov 2016	121.35	29.23

2. CAPE

CAPE es un indicador de inestabilidad atmosférica que se considera muy valioso en cuanto a predecir condiciones del clima. Y el Agua precipitable es el contenido de humedad en la atmósfera; se mide como el espesor vertical que ocuparía si toda el agua cayera.

Figura 1: Gráficas CAPE

Figura 2: Gráficas CAPE

2.1. Agua precipitable

El agua precipitable es la cantidad de agua, expresada como altura o masa, que se obtendría si todo el vapor de agua contenido en una columna específica de la atmósfera, de sección transversal horizontal unitaria, se condensase y precipitase.

Figura 3: Gráficas Agua precipitable

3. Procedimiento para la obtención de datos

Para elaborar la limpieza y organización de datos se utilizó el editor de textos Emacs, el cual es muy práctico y útil más que nada.

Para filtrar los datos obtenidos de los sondeos atmosféricos que utilizaron los siguientes comando de Emacs:

```
cat sondeos.txt | egrep -i "Observations|CAPE|precipitable" |
sed -e '/00Z/,+2d' > 12Zanual.txt

cat sondeos.txt | egrep -i "Observations|CAPE|precipitable" |
sed -e '/12Z/,+2d' > 00Zanual.txt
```

Después se utilizaron comandos en Emacs como "query replace" para extraer solo datos útiles de los filtrados anteriormente para después agregarlos a nuevos archivos.

Tomando los archivos creados en Emacs, en Python se crearon las gráficas mostradas a lo largo de este reporte utilizando los siguientes comandos:

```
import pandas as pd
import numpy as np
import matplotlib as plt
df = pd.read_csv("/home/estebandelgado/Física Computacional/Actividad3
/00Zanual.csv")
df.head(21)
df.describe()
df.apply(lambda x: sum(x.isnull()),axis=0)
df_clean = df.dropna()
df_clean.describe()
df.columns
matplotlib inline
df_clean['CAPE'].hist(bins=21)
df.CAPE.dtypes
df.boxplot(column='CAPE', return_type="axes")
df.boxplot(column='Agua precipitable',return_type="axes")
Esto para la obtención de datos en 00Z
```

Referencias

[1] http://weather.uwyo.edu/upperair/sounding.html, Radiosondeos