- Decide whether Rolle's Theorem can be applied to $f(x) = x^3 2x^2$ on the interval [0, 2]. If Rolle's Theorem can 1) be applied, find all values of c in the interval such that f'(c) = 0. If Rolle's Theorem cannot be applied, state why.
 - Rolle's cannot be applied: f(x) is not differentiable on (0, 2)a)
 - Rolle's cannot be applied: $f(0) \neq f(2)$ b)
 - Rolle's cannot be applied; f(x) is not continuous on [0, 2]c)
 - Rolle's can be applied; $c = 0, \frac{4}{3}$ d)
 - None of these e)
- Find all of the open intervals on which f(x) is increasing or decreasing: $f(x) = \frac{1}{x^2}$ 2)
 - increasing ($-\infty$, 0); decreasing (0, ∞) a)
 - decreasing ($-\infty$, 0); increasing (0, ∞) b)
 - strictly increasing c)
 - strictly decreasing d)
 - None of these e)
- Determine whether the Mean Value Theorem applies to $f(x) = 3x x^2$ on the interval [2, 3]. If the "MVT" does 3) apply, find all values of c in [2, 3] such that $f'(c) = \frac{f(b) - f(a)}{b - a}$. If it does not apply, state why.
 - MVT applies; $c = \frac{2}{3}$ a)
 - MVT applies; $c = \frac{5}{2}$ b)
 - MVT does not apply; f(2) = f(3)c)
 - d) MVT does not apply; f(x) is not differentiable on [2, 3]
 - e) None of these
- Identify the open intervals where the function $f(x) = x\sqrt{20-x^2}$ is increasing or decreasing. 4)
 - a) Decreasing: $\left(-\infty, \sqrt{10}\right)$; Increasing: $\left(\sqrt{10}, \infty\right)$
 - b) Increasing: $\left(-\sqrt{10},\sqrt{10}\right)$; Decreasing: $\left(-\sqrt{20},-\sqrt{10}\right)\cup\left(\sqrt{10},\sqrt{20}\right)$
 - c) Increasing: $\left(-\infty, \sqrt{20}\right)$; Decreasing: $\left(\sqrt{20}, \infty\right)$
 - d) Increasing: $\left(-\sqrt{20},-\sqrt{10}\right)\cup\left(\sqrt{10},\sqrt{20}\right)$; Decreasing: $\left(-\sqrt{10},\sqrt{10}\right)$
 - e) None of the above

- Find the ordered pairs of all extrema on the interval $[0, 2\pi]$ for $y = x + \sin x$. 5)
 - a) $(-1, -1 + \frac{3\pi}{2})$
 - b) (-1, 0)
 - c) (π, π)
 - d) $(\frac{3\pi}{2}, 0)$
 - e) None of these
- Decide whether Rolle's Theorem can be applied to $f(x) = x^{2/3}$ on the interval [-1, 1]. If Rolle's Theorem can be 6) applied, find all values of c in the interval such that f'(c) = 0. If Rolle's Theorem cannot be applied, state why.
 - Rolle's cannot be applied: f(x) is not differentiable on (-1, 1). a)
 - Rolle's cannot be applied: $f(-1) \neq f(1)$ b)
 - Rolle's cannot be applied; f(x) is not continuous on [-1, 1]. c)
 - Rolle's can be applied; c = 0 d)
 - None of these e)
- 7) If the graph of a polynomial function has three intercepts, then it must have at least two points at which the tangent line is horizontal.
- 8) TRUE or FALSE: _____ The Mean Value Theorem can be applied to $f(x) = \frac{1}{x^2}$ on the interval [-1, 1]
- Find the extrema of $f(x) = 3x^4 4x^3$ on the interval [-1, 2] 9)
 - Maximum at x = 0, minimum at x = 1
 - Maximum at x = 1, minimum at x = 0b)
 - c) Maximum at x = 2, minimum at x = 1
 - d) Maximum at x = -1, minimum at x = 2
 - e) None of these

- Find the values of x that give relative extrema for the function $f(x) = 3x^5 5x^3$. 10)
 - relative maximum: x = 0; relative minimum x = $\sqrt{\frac{5}{3}}$ a)
 - b) relative maximum: $x = \pm 1$; relative minimum x = 0
 - c) relative maximum: x = 0; relative minimum $x = \pm 1$
 - relative maximum: x = -1; relative minimum x = 1d)
 - e) None of these