Chapter I Major sequence repositories

- Description of molecular biology databases (USA)
 /databanks (in UK):
 - Heterogeneity in their aims, shapes and usage
- · Databases architecture:
 - Discrepancy between these databases/databanks and the state of the art in data management
- Databases integration

Why build a database?

- Need to store genome and protein sequences and other related data from biological and computational analysis
- Sequence annotation and comparison allow the identification of family and functional relationships among proteins
- Searching databases is often the first step in the study of a new molecule: needs for
 - a query system (a catalogue, indexed files, SQL)
 - an information system (Entrez)

What is a database?

- A structured collection of data held in computer storage (includes a software to make it accessible in a variety of ways)
 - Structured
 - Searchable (index)
 - Updated periodically
 - Cross-referenced (hyperlinks)
- Database management: the organization and manipulation of data
 - Database management systems (DBMS)
- Text mining is limited by the lack of coherence between databases and semantics problem
 - e.g. gene ontology

Database system

ENA database:

Flat-file Sequence formats

- · Many molecular Databases consist of text (or GIF) files:
 - Sequences edited with a word processing program
- · Database entry are structured explicitly
 - They differ not only in their syntax but also semantically
 - The sequence in a GenBank entry is between ORIGIN and //
 - The sequence in a EMBL entry is between SQ and //
- · or implicitly: FASTA format required by analysis tools

>sp|P01215|GLHA_HUMAN Glycoprotein hormones alpha chain OS=Homo sapiens GN=CGA PE=1 SV=1 MDYYRKYAAIFLVTLSVFLHVLHSAPDVQDCPECTLQENPFFSQP GAPILQCMGCCFSRAYPTPLRSKKTMLVQKNVTSESTCCVAKSYN RVTVMGGFKVENHTACHCSTCYYHKS

Relational Database management systems (DBMS)

- Databases are composed of a set of tables linked by a shared information referred as the key
- Easily searchable

protab1			
Protein-code	Protein-name	Length	Species-origin
P1001	Hemoglobin	145	Bovine
P1002	Hemoglobin	136	Ovine
P1003	Eye Lens Protein	234	Human
••••			

protab2	
Protein-code	Protein-sequence
P1001	MDRTTHGFDLKLLSPRTVNQWLMLALFFGHS
P1002	MDKTSHGFEIKLLTPKKLQQWLMIAIYFGHT
P1003	SRTHEEEGKLMQWPPRPLYIALFTEPPYP

SELECT protein-code, protein-name

FROM protab1

WHERE species-origin='Bovine'

Entry: P1001 Hemoglobin

Sequence retrieval using SQL

protab1			
Protein-code	Protein-name	Length	Species-origin
P1001	Hemoglobin	145	Bovine
P1002	Hemoglobin	136	Ovine
P1003	Eye Lens Protein	234	Human

protab2	
Protein-code	Protein-sequence
P1001	MDRTTHGFDLKLLSPRTVNQWLMLALFFGHS
P1002	MDKTSHGFEIKLLTPKKLQQWLMIAIYFGHT
P1003	SRTHEEEGKLMQWPPRPLYIALFTEPPYP

```
SELECT protabl.protein-code, protabl.protein-name, protabl.protein-sequence
```

FROM protab1, protab2

WHERE protab1.protein-code = protab2.protein-code

AND protab2.protein-code = 'P1002'

P1002 Hemoglobin MDKTSHGFEIKLLTPKK

Arguments against Relational Database management systems for molecular biology DB

- ✓ Database management systems are dispensable?
 - Data are not subject to modification
 - Cost of porting a flat-file database into a relational database
- ✓ Molecular biology data are often very complex
- ✓ Most molecular biologists are not familiar with database query language such as Structured Query language (SQL)

Conflicts arisen by integrating data from distinct origins:

- Descriptive (model used for items)
- Heterogenity according to the system used for DB management
- Semantics: importance of the vocabulary used

Databases use different terms \Rightarrow a nomenclature defining the relationships between terms has been created by a consortium of scientists (EBI) = ontology

Specific vocabulary for:

- Biological function (cell/molecular)
- Biological or cell process
- Cell component (localisation, complexes)

<u>Cellular process</u>:

- Cell networks
 - metabolic pathways
 - regulatory networks
 - signal transduction
- Cell division
- Cell structure

Major Molecular biology databanks

- Primary Sequence Databases
 - Collection and storage of sequences in computer files: ENA (EMBL/GenBank), SwissProt
 - Data integration for reducing redundancy: RefSeq
 - Information retrieval and analysis tools
 - · convenient user interface (lack of common scheme)
- Secondary Databases
 - Reorganization of raw data to enable new predictions (domain family): InterPro
 - Species-specific genome databases: SGD, Ensembl
- Web-base interface systems

Form-based query and browsing interfaces: Entrez

Nucleic Acid Sequence databanks

- ENA (EMBL) European Bioinformatics Institute (EBI), U.K.
- GENBANK: Los Alamos National Laboratory 1979 \rightarrow National Center for Biotechnology Information (NCBI), U.S.A.

DDBJ (National Institute of Genetics, Japan) (1984)

-INSDC

1982: 680×10^3 base pairs 606 sequences

2000: 10×10^9 base pairs 9×10^6 sequences

2008: 85×10^9 base pairs 83×10^6 sequences

2015: 1.3×10^{12} base pairs 608.5×10^6 sequences

Since 1998 it has been doubling every 22 months

02-11

Database entry

Entries contain :

The locus (mnemonic identification code) and accession number (unique identifier for a sequence record)

- The sequence
- Additional information referred to as annotation/ref
 - Date of creation and modification (DT)
 - Source organism (OS)
 - Description (DE): Biological function

EBI format

- Literature references (RX)
- Key cross-reference words (KW)
- Links to other databases (DR)
- Features about the sequence (coding sequence, regulatory regions, ...) (FT)
- The information is organised into fields (and subfields), each with a keyword (as search indexes) 02-12

Identifier

Listeria ivanovii sod gene

```
Accession
                          756 bp
                                                             30-JUN-1993
           L. ivanovii sod gene for superoxide dismutase.
DEFINITION
           X64011 S78972
                                                                                         number (AC)
ACCESSION
VERSION
           X64011.1 GI:44010
KEYWORDS
           sod gene; superoxide dismutase.
           Listeria ivanovii.
SOURCE
ORGANISM
           Bacteria; Firmicutes; Bacillus/Clostridium group;
           Bacillus/Staphylococcus group; Listeria.
           1 (bases 1 to 756)
REFERENCE
           Haas, A. and Goebel, W.
  AUTHORS
  TITLE
           Cloning of a superoxide dismutase gene from Listeria ivanovii by
            functional complementation in Escherichia coli and characterization
           of the gene product
           Mol. Gen. Genet. 231 (2), 313-322 (1992)
  JOURNAL
REFER ENCE
           2 (bases 1 to 756)
  AUT HORS
           Kreft,J.
  TITLE
           Direct Submission
  JOURNAL
           Submitted (21-APR-1992) J. Kreft, Institut f. Mikrobiologie,
                                                                                    Features
           Universitaet Wuerzburg, Biozentrum Am Hubland, 8700 Wuerzburg, FRG
                                                                                    (FT)
FEATURES
                    Location/Qualifiers
                    1..756
                     /organism="Listeria ivanovii"
                     /strain="ATCC 19119"
                     /db xref="taxon:1638"
                     95..100
                     /gene="sod"
                     95..746
                     /gene="sod"
                    109..717
                     /gene="sod"
                     /EC_number="1.15.1.1"
                     /codon_start=1
                     /transi_table=
                     /product="superoxide dismutase"
                     /protein_id="CAA45406.1"
                     /db_xref="GI:44011"
                                                                                                                Protein
                     /db xref="SWISS-PROT:P28763"
                     /translation="MTYELPKLPYTYDALEPNFDKETMEIHYTKHHNIYVTKLNEAVS
                                                                                                                sequence
                     GHAELASKPGEELVANLDSVPEEIRGAVRNHGGGHANHTLFWSSLSPNGGGAPTGNLK
                     AAIESEFGTFDEFKEKFNAAAAARFGSGWAWLVVNNGKLEIVSTANQDSPLSEGKTPV
                     LGLDVWEHAYYLKFQNRRPEYIDTFWNVINWDERNKRFDAAK"
                     723..746
                     /gene="sod"
BASE COUNT
                247 a 136 c
                                           222 t
                                 151 q
ORIGIN
       1 cgttatttaa ggtgttacat agttctatgg aaatagggtc tatacctttc gccttacaat
```

61 gtaatttett tteacataaa taataaacaa teegaggagg aatttttaat gaettaegaa 121 ttaccaaaat taeettatae ttatgatget ttggageega attttgataa agaaacaatg

^{02 - 13}

· Some definitions:

- Locus: Unique string of 10 letters and numbers. Not maintained amongst databases
- Accession: A unique identifier to that record, citable entity; does not change when record is updated)
- Version: new system where the accession and version play the same function as the accession and gi number
- Nucleotide or protein gi: GenInfo identifier (gi); a unique integer which will change every time the sequence changes
- PID: protein identifier: g, e or d prefix to gi number. Can have one or two on one CDS

Type of files

- From one-gene investigators
 - A well annotated genomic DNA segment or cDNA
 - A mitochondrial DNA or virus
- From population/phylogenetic analysis
 - rRNA amplicon from environmental sampling
- From genome Centers
 - Gene expression (Expressed Sequence tags or ESTs)
- Genome sequencing projects
 - WGS eg., AAAA01072744 (project version contig number)

- Expressed Sequence tags: Short (300-500 bp) single reads from mRNA (cDNA); they represent a snapshot of what is expressed in a given tissue and developmental stage
- Sequenced tagged Site (STS): unique sequence that identifies the combination of primer pairs used in a PCR assay that generate a mapping reagent which maps to a single position within the genome
- GSS: Genome Survey sequences are similar in nature to the ESTs, except that its sequences are genomic rather than mRNA
- HTG: High Throughput Genome Sequences are unfinished genome sequencing effort records. (see Genbank HTC division for unfinished cDNA sequencing
- WGS: contigs from ongoing Whole Shotgun sequencing projects

Protein Sequence databanks (PSD)

Historical view

- 1965: Atlas of protein sequences, Margaret Dayhoff (National Biomedical Research Foundation, Washington DC)
 - 50 entries
 - paper copy until 1987, then digital version
- 1984 : creation of PIR-NBRF
 - Collaboration with MIPS and JIPID (PIR-IPSD)
- 1986: creation of SwissProt
 - Collaboration with SIB and EBI
- 2003 : Creation of UniProt 5.4 x 10⁵ entries in 2014

- Experimentally determined (sequence and 3Dstructure) and translated Amino acid sequences
- SwissProt (Swiss Institute of Bioinformatics and EBI) : minimal redundancy, well-annotated and cross-referencing
- PIR (Protein Identification Resource)-International PSD
 - National Biomedical Research Foundation, (NBRF) U.S.A.
 - Martinsried Institute for protein Sequences (MIPS), Munich
 - Japan International Protein Information Database (JIPID),
 Tsukuba
- GENPEPT (NCBI)
- TREMBL (EBI/SIB)

Automated translation of CDS in Genbank and EMBL databases

```
ID
    GLHA HUMAN
                    STANDARD;
                                   PRT;
                                          116 AA.
AC
    P01215;
DT
    21-JUL-1986, integrated into UniProtKB/Swiss-Prot.
DT
    21-JUL-1986, sequence version 1.
DT
    05-SEP-2006, entry version 74.
    Glycoprotein hormones alpha chain precursor
(Anterior pituitary
     glycoprotein hormones common subunit alpha)
(Follitropin alpha chain)
     (Follicle-stimulating hormone alpha chain) (FSH-
alpha) (Lutropin alpha
     chain) (Luteinizing hormone alpha chain) (LSH-
alpha) (Thyrotropin
     alpha chain) (Thyroid-stimulating hormone alpha
chain) (TSH-alpha)
     (Choriogonadotropin alpha chain) (Chorionic
qonadotrophin alpha
DE
    subunit) (CG-alpha).
    Name=CGA;
GN
    Homo sapiens (Human).
OS
    Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
Euteleostomi;
    Mammalia; Eutheria; Euarchontoglires; Primates;
Haplorrhini;
    Catarrhini; Hominidae; Homo.
OC
    NCBI TaxID=9606;
RN
    [1]
RΡ
    NUCLEOTIDE SEQUENCE.
    MEDLINE=80011660; PubMed=481597;
    Fiddes J.C., Goodman H.M.;
     "Isolation, cloning and sequence analysis of the
cDNA for the alpha-
RT
     subunit of human chorionic gonadotropin.";
RL
    Nature 281:351-356(1979).
RN
    [2]
RP
    NUCLEOTIDE SEQUENCE.
    MEDLINE=94254248; PubMed=8196184;
RX
    Mivoshi I., Kasai N., Havashizaki Y.;
RA
     "Structure and regulation of human thyroid-
stimulating hormone (TSH)
```

Typical SwissProt entry (α subunit of human chorionic gonadotropin

RZPD-ProtExp; RZPDo834A0815; -.

DR

//

```
GO; GO:0005625; C:soluble fraction; TAS.
DR
DR
     GO; GO:0005179; F:hormone activity; TAS.
     GO; GO:0007267; P:cell-cell signaling; TAS.
DR
     GO; GO:0007165; P:signal transduction; TAS.
     InterPro; IPR002400; GF cysknot.
     InterPro; IPR000476; Glyco hormone.
     PANTHER; PTHR11509; Glyco hormone; 1.
     Pfam; PF00236; Hormone 6; 1.
     PRINTS; PR00438; GFCYSKNOT.
     PRINTS; PR00274; GLYCOHORMONE.
DR
DR
     ProDom; PD002047; Glyco hormone; 1.
DR
     SMART; SM00067; GHA; 1.
     PROSITE; PS00779; GLYCO HORMONE ALPHA 1; 1.
DR
     3D-structure; Direct protein sequencing; Glycoprotein;
ΚW
Hormone;
                  Feature's table
     Signal
     SIGNAL
                    1
                          24
FT
     CHAIN
                   25
                         116
                                    Glycoprotein hormones alpha
chain.
FT
                                    /FTId=PRO 0000011640.
FT
     CARBOHYD
                   76
                          76
                                    N-linked (GlcNAc...).
FT
                                    /FTId=CAR 000036.
FT
     CARBOHYD
                  102
                         102
                                    N-linked (GlcNAc...).
FT
                                    /FTId=CAR 000037.
FT
                          55
     DISULFID
                   31
     DISULFID
                   34
                          84
FT
     DISULFID
                   52
                         106
FT
     DISULFID
                   56
                         108
FT
                   83
                         111
     DISULFID
FТ
                   29
                          29
                                    Q \rightarrow E \text{ (in Ref. 9)}.
     CONFLICT
FT
     CONFLICT
                  108
                         109
                                    CS \rightarrow SC (in Ref. 6 and 7).
                   30
                          30
FT
     STRAND
                 116 AA; 130/5 MW; F0623CD8CC90CFCD CRC64;
     SEOUENCE
```

MDYYRKYAAI FLVTLSVFLH VLHSAPDVQD CPECTLQENP FFSQPGAPIL QCMGCCFSRA

YPTPLRSKKT MLVQKNVTSE STCCVAKSYN RVTVMGGFKV ENHTACHCST

02 - 19

· Composite sequence databases

- UniProt (Universal Protein resource)
 - # UniProt Knowledgebase (UniProtKB): Swiss-Prot +PIR +TrEMBL
 - # UniMES: metagenomic and environmental sequences
 - # UniProt Non-redundant Reference (UniRef): closely related sequences are combined into a single record (100, 90, 50%)
 - # Uniprot Archive (UniParc): comprehensive and non redundant repository (UPI: same protein from UniProt, RefSeq, PDB, ...)
- **RefSeq** (NCBI): provides separate and linked records for the genomic DNA, mRNA, and the protein arising from the transcript:NM_000646.1

Protein structure databases

- The Protein Data Bank (PDB)
 - Research Collaboratory for Structural Bioinformatics (RCSB)
 - 46151 entries (82% from X-ray crystallography, 7% from NMR)
 - Entry ID: 1EUV (annotation, coordinates and connectivities)

Molecular Modelling Database (MMDB) and PDBSum Different view of the PDB data with additional features

- The Structural Classification of proteins (SCOP)
 - Proteins of known structure are classified according to their evolutionary and structural relationships
 - Hierarchical classification into families, superfamilies, folds and classes
- The Class, Architecture, Topology, Homology database (CATH)

Secondary databases

Collection of conserved amino-acid patterns which are derived from primary sequence databases by different methods

Motif/pattern

Short sequence (up to 10 residues) that is often found within the active site of proteins that have a similar biochemical activity.

D-K-T-G-T-[LIVM]-[TI] phosphorylation site of P-type ATPase

Note: ≠ from structural motif: bZIP, HLH

Domain /profile

Combination of several secondary structural elements (50-100 residues) or conserved aligned residues

Family/HMM

Domains and protein families

Domain

A segment of a polypeptide chain that can fold independently of the rest of the polypeptide (structural)

An extended sequence pattern (up to 100 residues) showing context independency

H₂N =

 $H_2N =$

PROSITE

- A database of protein active sites
- Motives are expressed as regular expressions or profiles
- A great tool for predicting the existence of active sites in an unknown protein

Example of a PROSITE entry

Documentation accession entry

>PDOC00139 PS00154 ATPASE_E1_E2 E1-E2 ATPases phosphorylation site [pattern].

378 - 384 DKTGTLT

Documentation

E1-E2 ATPases (also known as P-type) are cation transport ATPases which form an aspartyl phosphate intermediate in the course of ATP hydrolysis. ATPases which belong to this family are listed below [1,2,3].

- Fungal and plant plasma membrane (H+) ATPases [reviewed in 4].
- Vertebrate (Na+, K+) ATPases (sodium pump) [reviewed in 5,6].
- Gastric (K+, H+) ATPases (proton pump).
- Calcium (Ca++) ATPases (calcium pump) from the sarcoplasmic reticulum (SR), the endoplasmic reticulum (ER) and the plasma membrane.

Descri	ntion of	pattern(s) and/	or pro	file(s)
	the second	Degree of and	o , ance	OF BYO	

Consensus pattern	D-K-T-G-T-[LIVM]-[TI] [D is phosphorylated]
Commence language to believe to this place data at 11 and a contract	ATT

quences known to belong to this class detected by the pattern ALL.

PRINTS and BLOCKS

Several local alignments (fingerprints) expressed as frequency (PRINTS) or weight (BLOCKS) scoring matrices

PFAM (Protein Family) (Sanger Institute)

- A database of protein families defined as domains (contiguous segments of protein sequences)
- 12273 multiple alignments including gaps (2011)
- Based on Hidden Markov Models (HMMs)

Pfam entry for the UBX domain (Sanger)

A) Schematic representation

B) Multiple sequence alignment of UBX containing proteins

<u>077047/367-444</u>	ADAV <mark>GAIAVVFKLPSGTRLERRFN.QTDSVLDVYHYL</mark> FCHPDSPDE
Q06682/414-494	NK <mark>PG</mark> ITTR <mark>IQIRTGDG</mark> SRLVRRFNALEDTVRTIYEVIKTEMD <mark>G</mark> FADSR
O14048/348-426	SPGPNVTRIQIRMPNGARFIRRFS.LTDPVSKVYAYVKGVAEGADKQP
035987/290-369	NEAEPTTNIQIRLADGGRLVQKFN.HSHRISDIRLFIVDARPAMAATS
081456/229-308	DETV <mark>PTTSIQLRLADGTRL</mark> VAKFN.HHHT <mark>V</mark> ND <mark>IRGFI</mark> DSSR <mark>PG</mark> ASLN
023394/342-423	DPAAPTTSIQLRLADGTRLVSRFN.NHHTVRDVRGFIDASRPGGSKE
SHP1 YEAST/343-422	EPKQGDTSIQIRYANGKREVLHON.STDTVKFLYEHVTSNANTDPSRN
023283/641-723	CDRSVVCSLCVRFPDGRRKQRKFL.KSEPIQLLWSFCYSHIDESEKKA
023283/298-380	CDRSVVCSICVRFPDGRRKQRKFL.KSEPIQLLWSFCYSHMEESEKKE
074498/323-425	SEDE. <mark>PARLSIRFPDG</mark> SRAVR <mark>RF</mark> K.KDDT <mark>VESVYNYV</mark> DYMLFEKEE <mark>P</mark> EEF <mark>G</mark> RATSSS
Q12229/355-452	SSDKDA <mark>SKVAIRLENG</mark> QRLVR <mark>KF</mark> D.ASLPTEEIYAFVELQLHDMLNSENDTL <mark>P</mark> VYQ <mark>P</mark> ANY
YMB3 YEAST/426-570	ETT <mark>G</mark> KQ <mark>ATLQFRTSSGKRFVK<mark>KFP</mark>.SMTTLYQIYQSIGCHIYLAVYSSD<mark>P</mark>AEWSNALQDKIRQLSAD</mark>
<u>YB9R YEAST/211-292</u>	KLHSSKCVLQIRMTDGKTLKHEFN.SSETLNDVRKWVDVNRTDGDCP
<u>YJE8 YEAST/185-266</u>	FLAQNYCTLQLKLPNGYTISNTFP.PQTKLHKVRMWLDYNCYDDGTP
<u>Q9ZW74/311-392</u>	SKKASD <mark>VHLNIRLPDG</mark> SSLQE <mark>KF</mark> S.VTSILRM <mark>V</mark> KDYVNSNQTI <mark>G</mark> L <mark>G</mark> A
<u> Y33K HUMAN/209-294</u>	KREYDQ <mark>CRIQVRLPDG</mark> TSLTQTFR.AREQLAA <mark>V</mark> RLYVELHR <mark>G</mark> EEL <mark>GGG</mark> QDP
<u>YOJ8 CAEEL/277-358</u>	AVPSDRCRLQVRLPDGSTFVEEFP.SNDVLNSLVEIIRQKPSIAGTT
<u>Q92575/335-416</u>	RERSTVARIQFRLPDGSSFTNQFP.SDAPLEEARQFAAQTVGNTYGN
082483/384-465	EK <mark>GP</mark> DVTQVLVRFPNGERKGRMFK.SETKIQTLYDYVDSLGLLDTE

Interpro (Integrative Protein) database

- Composite database composed of Pfam + Prints + ProDom + Smart + PROSITE (relational DBMS)
- Version 33 contains 21749 entries and 14633 families

Genome Resources

- The Genomics, proteomics and Bioinformatics Knowledge Base: http://www.123genomics.com
- The Ensembl project: www.ensembl.org/index.html
- SGD: Saccharomyces genome database Stanford (USA)
 - genetics and chromosomal maps
 - phenotypes
 - micro-array transcription analysis, two-hybrid protein-protein interaction
 - evolutionary relationships with related yeast species
- FlyBase: a database for Drosophila genetics and molecular biology
- The Plant Genome Information Resource (PlantGDB)
- Online Mendelian Inheritance in Man (OMIM)
 Johns Hopkins University, School of Medicine, Baltimore, USA

Ensembl databases

Genome assembly
Gene annotation
Comparative
genomics
Regulation
Variation

Data retrieval systems

Aims: Find new and relevant information Constraints:

- · Not too much, but everything on the topic
- Easy to use
- Fast response
- · Linked to analysis tools
- · Databanks' own browser
 - SIB provides EXPASY (Expert Protein Analysis System) for UNIPROT
- Entrez
 - Integration system provided by the NCBI (http://www.ncbi.nlm.nih.gov)
- SRS (Sequence Retrieval System)
 - Developped within EMBnet (EBI), service stopped in 2013

Entrez

- Owner interface
- Boolean operators (AND, OR, NOT)
- Field names within brackets homo sapiens [organism]
- History
- Limits
- Pre-computed similarity searches (neighbors) are available for most database records producing a list of related sequences, structure neighbors, as well as related articles.

The Entrez database and analysis tools

<u>Medical Subject Headings</u>: comprehensive controlled vocabulary for the purpose of indexing journal articles and books in the life sciences

