Assignment 1 Due 2nd Friday

1.2 Give an FA that accepts only binary strings of length 3.

- 1.5 For the preceding two FA's, describe in English the strings each accepts.
 - A) Accepts binary strings that start with 0
 - B) Accepts binary strings that end with 1
- 1.9 Give an FA for each of the following languages:
 - a) All binary strings with at least three 1's
 - b) All binary strings with an odd number of 1's
 - c) All binary strings without 111 as a substring
 - d) All binary strings where every odd position is a 1

1.14 Give an FA whose language is the set of strings a's, b's , and c's that contain abc as a substring.

2.3 Give RE's for:

- a) All binary strings with exactly two 1's
- b) All binary strings with a double symbol (contains 00 or 11) somewhere
- c) All binary strings that contain both 00 and 11 as substrings
- d) All binary strings without a double symbol anywhere
- A) (0)* 1 (0)* 1 (0)*
- B) $(0 + 1)^*$ (11 + 00) $(0 + 1)^*$
- C) $(0 + 1)^* (00 + 11) (0 + 1)^* (00 + 11) (0 + 1)^*$
- D) (010)* + (101)*
- 2.5 Give an RE for the language of all binary strings of length at least 2 that begin and end with the same symbol.

$$(1 (0 + 1)^* 1) + (0 (0 + 1)^* 0)$$

2.9 Give an RE for the language of Exercise 1.14

$$(a + b + c)^*$$
 abc $(a + b + c)^*$

2.15 Show that the language of RE (0*1*)* is all binary strings.

The first statement is 0^* which means any amount of 0's, including none. The same remains true for the statement 1^* , this implies that the string can start with any number of 0's and also any number of 1's. That then makes the overall statement of $(0^*1^*)^*$ generate all binary strings as any combination of 1's and 0's can be created since the asterisk allows for the empty set to be included.