2024 考研 408

数据结构

复习笔记

【考查目标】

- 1. 掌握数据结构的基本概念、基本原理和基本方法。
- 2. 掌握数据的逻辑结构、存储结构及基本操作的实现, 能够对算法进行基本的时间复杂度与空间复杂度的分析。
- 3. 能够运用数据结构基本原理和方法进行问题的分析与求解,具备采用 C 或 C++ 语言设计与实现算法的能力。

目录

1	线性	表 3
	1.1	线性表的基本概念
	1.2	线性表的实现
	1.3	线性表的应用
2		队列和数组
	2.1	栈和队列的基本概念 4
	2.2	栈和队列的顺序存储结构
	2.3	栈和队列的链式存储结构
	2.4	多维数组的存储
	2.5	特殊矩阵的压缩存储 5
	2.6	栈、队列和数组的应用 5
•	kıl 1-	: → ¼ bH
3		i二叉树 树的基本概念
	3.1	树的基本概念 ϵ
	3.2	二叉树 6
	3.3	树、森林
	3.4	树与二叉树的应用
4	图	
	4.1	图的基本概念 9
	4.2	图的存储及基本操作 9
	4.3	图的遍历
	4.4	图的基本应用
	7.7	国的基本应用
5	查找	
	5.1	查找的基本概念 11
	5.2	顺序查找法
	5.3	分块查找法
	5.4	折半查找法
	5.5	树型查找
	5.6	B 树及其基本操作、B+ 树的基本概念
	5.7	散列 (Hash 表)
	5.8	字符串模式匹配
	5.9	查找算法的分析及应用 12
6	排序	13
	6.1	排序的基本概念 13
	6.2	直接插入排序 13
	6.3	折半插入排序 13
	6.4	起泡排序 (bubble sort)
	6.5	简单选择排序 13
	6.6	希尔排序 (shell sort)
	6.7	快速排序

数据结构

	6.8	堆排序	15
	6.9	二路归并排序 (merge sort)	15
	6.10	基数排序	15
	6.11	外部排序	15
	6.12	排序算法的分析和应用	15
7	往年	代码题	16
	7.1	2009-42	16
	7.2	2010-42	16
	7.3	2011-42	16
	7.4	2012-42	17
	7.5	2013-41	17
	7.6	2014-41	18
	7.7	2015-41	18
	7.8	2016-43	19
	7.9	2017-41	19
		2018-41	
	7.11	2019-41	21
	7 12	2020 41	21

1 线性表

1.1 线性表的基本概念

1.2 线性表的实现

1. 顺序存储 2. 链式存储

```
typedef struct Node { int data; struct Node *next; } Node;

void listHeadInsert(Node *1, int val) { /* 头插法 */

  Node *p = (Node *) malloc(sizeof(Node)); p->data = val;
  p->next = 1->next;
  l->next = p;
}

void listTailInsert(Node *1, int val) { /* 尾插法 */

  Node *p = (Node *) malloc(sizeof(Node)); p->data = val; p->next = NULL;
  Node *tail = 1;
  while (tail->next != NULL) tail = tail->next;
  tail->next = p;
}
```

1.3 线性表的应用

- 1. 逆置
- 2. 双指针

•••

2 栈、队列和数组

- 2.1 栈和队列的基本概念
- 2.2 栈和队列的顺序存储结构
 - 1. 顺序栈:

```
typedef struct { int data[M], top; } Stack;
Stack *stackInit() {
    Stack *s = (Stack *) malloc(sizeof(Stack)); s->top = -1;
    return s;
}
int stackPush(Stack *s, int val) {
    if (s->top == M - 1) return 0;
    s->data[++s->top] = val;
    return 1;
}
int stackPop(Stack *s, int *val) {
    if (s->top == -1) return 0;
    *val = s->data[s->top--];
    return 1;
}
```

2. 循环队列:

```
typedef struct { int data[M], front, rear; } Queue;
Queue *queueInit() {
   Queue *q = (Queue*) malloc(sizeof(Queue)); q->front = q->rear = 0;
   return q;
}
int queueEnqueue(Queue *q, int val) {
   if (q->front == (q->rear + 1) % M) return 0;
   q->data[q->rear] = val; q->rear = (q->rear + 1) % M;
   return 1;
}
int queueDequeue(Queue *q, int *val) {
   if (q->front == q->rear) return 0;
   *val = q->data[q->front]; q->front = (q->front + 1) % M;
   return 1;
}
```

2.3 栈和队列的链式存储结构

2.4 多维数组的存储

二维数组行下标与列下标的范围分别为 $[0,h_1]$ 与 $[0,h_2]$, 每个数组元素所占的存储单元为 L,

行优先: $LOC(a_{i,j}) = LOC(a_{0,0}) + [i \times (h_2 + 1) + j] \times L$. 列优先: $LOC(a_{i,j}) = LOC(a_{0,0}) + [j \times (h_1 + 1) + i] \times L$.

2.5 特殊矩阵的压缩存储

1. 对称矩阵:

$$k = \begin{cases} \frac{i(i-1)}{2} + j - 1, i \geqslant j & (下三角区和主对角元素) \\ \frac{j(j-1)}{2} + i - 1, i < j & (上三角区元素) \end{cases}$$

2. 上三角矩阵:

$$k = \begin{cases} \frac{(i-1)(2n-i+2)}{2} + j - i, & i \leqslant j \quad \text{(上三角区和主对角元素)} \\ \frac{n(n+1)}{2}, & i > j \quad \text{(下三角区元素)} \end{cases}$$

3. 下三角矩阵:

$$k = \begin{cases} \frac{i(i-1)}{2} + j - 1, & i \geqslant j \quad (下三角区和主对角元素) \\ \frac{n(n+1)}{2}, & i < j \quad (上三角区元素) \end{cases}$$

4. 三对角矩阵:

$$k = 2i + j - 3$$

5. 稀疏矩阵的三元组既可以采用数组存储,也可以采用十字链表法存储。

2.6 栈、队列和数组的应用

栈在递归中的应用:

通常需要借助栈将递归程序转化为非递归程序,但不是必须的。计算斐波那契数列仅需一个迭代过程。

3 树与二叉树

3.1 树的基本概念

- 3.2 二叉树
 - 1. 二叉树的定义及其主要特征
 - 2. 二叉树的顺序存储结构和链式存储结构

```
typedef struct BNode { int data; struct BNode *left, *right; } BNode;
```

- 3. 二叉树的遍历
- (1) 先序遍历(迭代):

```
void preOrder(BNode *t) {
  int M = 32, top = -1; BNode *stack[M], *p = t;
  while (p || top != -1) {
    if (p) {
      visit(p); stack[++top] = p;
      p = p->left;
    } else {
      p = stack[top--];
      p = p->right;
    }
}//end while
}
```

(2) 中序遍历 (迭代):

```
void inOrder(BNode *t) {
  int M = 32, top = -1; BNode *stack[M], *p = t;
  while (p || top != -1) {
    if (p) {
      stack[++top] = p;
      p = p->left;
    } else {
      p = stack[top--]; visit(p);
      p = p->right;
    }
}//end while
}
```

(3) 后序遍历(迭代):

```
void postOrder(BNode *t) {
  int M = 32, top = -1; BNode *stack[M], *p = t, *r = NULL;
  while (p || top != -1) {
    if (p) {
      stack[++top] = p;
      p = p->left;
    } else {
      p = stack[top];
      if (p->right && p->right != r) p = p->right;
      else {
         p = stack[top--]; visit(p);
         r = p; p = NULL;
      }
    }
}//end while
}
```

(4) 层次遍历:

```
void levelOrder(BNode *t) {
  int M = 32, front = 0, rear = 0; BNode *queue[M], *p = t;
  queue[rear] = p; rear = (rear + 1) % M;
  while (front != rear) {
    p = queue[front]; front = (front + 1) % M; visit(p);
    if (p->left != NULL) {
        queue[rear] = p->left; rear = (rear + 1) % M;
    }
    if (p->right != NULL) {
        queue[rear] = p->right; rear = (rear + 1) % M;
    }
}//end while
}
```

(5) 二叉树深度:

```
int depth(BNode *t) {
  int M = 32, front = 0, rear = 0, depth = 0;
  BNode *queue[M], *p = t, *last = t, *nlast = NULL;
  queue[rear] = p; rear = (rear + 1) % M;
  while (front != rear) {
    p = queue[front]; front = (front + 1) % M;
    if (p->left != NULL) {
      queue[rear] = p->left; rear = (rear + 1) % M;
     nlast = p->left;
    }
    if (p->right != NULL) {
      queue[rear] = p->right; rear = (rear + 1) % M;
     nlast = p->right;
    if (p == last) { last = nlast; depth++; }
  }//end while
  return depth;
}
```

4. 线索二叉树的基本概念和构造

3.3 树、森林

- 1. 树的存储结构
- 2. 森林与二叉树的转换
- 3. 树和森林的遍历

树的遍历是指用某种方式访问树中的每个结点,且仅访问一次。

- 1) 先根遍历: 先访问根结点, 再依次遍历根结点的每棵子树。与这棵树相应二叉树的先序序列相同。
- 2) 后根遍历: 先依次遍历根结点的每棵子树, 再访问根结点。与这棵树相应二叉树的中序序列相同。

3.4 树与二叉树的应用

- 1. 哈夫曼 (Huffman) 树和哈夫曼编码
- 2. 并查集及其应用

4 图

4.1 图的基本概念

4.2 图的存储及基本操作

1. 邻接矩阵 2. 邻接表

```
typedef struct ArcNode {
  int adjvec;
  struct ArcNode *next;
} ArcNode;
typedef struct VNode {
  int data;
  ArcNode *first;
} VNode;
typedef struct Graph {
  int n, e;
  VNode adjlist[M];
} Graph;
```

3. 邻接多重表、十字链表

邻接多重表是无向图的一种链式存储结构,十字链表是有向图的一种链式存储结构。

4.3 图的遍历

1. 深度优先搜索

```
void _dfs(Graph *g, int v) {
    visit(v);    visited[v] = 1;
    for (int w = firstNbr(g, v); w >= 0; w = nextNbr(g, v, w)) {
        if (!visited[w]) _dfs(g, w);
    }
}
void dfs(Graph *g) {
    for (int i = 0; i < g->n; i++) { if (!visited[i]) _dfs(g, i); }
}
```

2. 广度优先搜索

```
void _bfs(Graph *g, int v) {
  visit(v); visited[v] = 1;
  int queue[M], front = 0, rear = 0;
  queue[rear] = v; rear = (rear + 1) % M;
  while (front != rear) {
    v = queue[front]; front = (front + 1) % M;
    for (int w = firstNbr(g, v); w \ge 0; w = nextNbr(g, v, w)) {
      if (!visited[w]) {
        visit(w); visited[w] = 1;
        queue[rear] = w; rear = (rear + 1) % M;
      }
    }//end for
  }//end while
void bfs(Graph *g) {
  for (int i = 0; i < g->n; i++) { if (!visited[i]) _bfs(g, i); }
}
```

4.4 图的基本应用

1. 最小(代价)生成树

当带权连通图的任意一个环中所包含的边的权值均不相同时,其 MST 是唯一的。

2. 最短路径 3. 拓扑排序 4. 关键路径

```
1. 事件 v_k 的最早发生时间 ve(k): ve(源点) = 0, ve(k) = \text{Max}\{ve(j) + \text{Weight}(v_j, v_k)\}
2. 事件 v_k 的最迟发生时间 vl(k): vl(汇点) = ve(汇点), vl(k) = \text{Min}\{vl(j) - \text{Weight}(v_k, v_j)\}
3. 活动 a_i 的最早开始时间 e(i): 该活动弧的起点所表示的事件的最早发生时间。
若边 < v_k, v_j > 表示活动 a_i,则有 e(i) = ve(k)。
4. 活动 a_i 的最迟开始时间 l(i): 该活动弧的终点所表示事件的最迟发生时间与该活动所需时间之差。
若边 < v_k, v_j > 表示活动 a_i,则有 l(i) = vl(j) - \text{Weight}(v_k, v_j)。
5. l(i) = e(i) 的活动 a_i 是关键活动。
```

表 1: 图算法的时间复杂度总结

图算法	时间复杂度			
日开仏	邻接矩阵	邻接表		
深度优先搜索	$O(V^2)$	O(V+E)		
广度优先搜索	$O(V^2)$	O(V+E)		
拓扑排序	$O(V^2)$	O(V+E)		
Prim	$O(V^2)$	$O(V^2)$		
Dijkstra	$O(V^2)$	$O(V^2)$		

5 查找

5.1 查找的基本概念

5.2 顺序查找法

表 2: 顺序查找的平均查找长度

		查找成功	查找失败
顺序查找	无序表	n+1	n+1
	有序表	2	$\frac{n}{2} + \frac{n}{n+1}$

5.3 分块查找法

将长度为 n 的查找表均匀分成 b 块,每块有 s 个记录,在等概率情况下,若在块内和索引表中均采用顺序查找,平均查找长度为: $ASL=L_1+L_S=\frac{s^2+2s+n}{2s}$.

5.4 折半查找法

折半查找选取中间结点时, 可以向上或向下取整。

5.5 树型查找

1. 二叉树搜索树

删除并插入叶结点,得到的二叉树与原来的相同;删除并插入中间结点,得到的二叉树与原来的必不相同。

- 2. 平衡二叉树
- 1. 以 n_h 表示深度为 h 的平衡树中含有的最少结点树,则 $n_0 = 0, n_1 = 1, n_2 = 2, n_h = n_{h-1} + n_{h-2} + 1$.
- 2. 删除并插入叶结点或中间结点,得到的平衡树与原来的可能相同。
 - 3. 红黑树

5.6 B 树及其基本操作、B+ 树的基本概念

m 阶 B 树:

- 1) 每个结点至多 m 棵子树, 至多含 m-1 个关键字。
- 2) 若根结点不是叶节点,则至少有2棵子树。
- 3) 除根结点外所有非叶结点至少有 [m/2] 棵子树,至少含有 [m/2]-1 个关键字。
- 4) 若含 n 个关键字,高度为 h,则 $\log_m(n+1) \le h \le \log_{\lceil m/2 \rceil}((n+1)/2) + 1$.

5.7 散列 (Hash 表)

散列表的平均查找长度:

长度为 n 的散列表,散列函数为 H(key) = key%m, (设m < n),采用线性探查法解决冲突。

查找成功的平均查找长度:按插入的关键字序列计算即可。

查找失败的平均查找长度:查找失败时的地址可能有m个,若填入的关键字序列最高位地址为t(t>m-1),

则地址为0的关键字比较次数为1+(t+1)(线性探查)次,以此类推。

5.8 字符串模式匹配

5.9 查找算法的分析及应用

6 排序

6.1 排序的基本概念

6.2 直接插入排序

```
void insertSort(int *a, int n) {
  int j;
  for (int i = 1; i < n; i++) {
    if (a[i] < a[i - 1]) {
      int tmp = a[i];
      for (j = i - 1; a[j] > tmp && j >= 0; j--) a[j + 1] = a[j];
      a[j + 1] = tmp;
    }
}//end for
}
```

6.3 折半插入排序

6.4 起泡排序 (bubble sort)

```
void bubbleSort(int *a, int n) {
  for (int i = 0; i < n - 1; i++) {
    for (int j = n - 1; j > i; j--) {
        /* swap a[j-1] and a[j] */
        if (a[j - 1] > a[j]) { int tmp = a[j-1]; a[j-1] = a[j]; a[j] = tmp; }
    }
}//end for
}
```

6.5 简单选择排序

```
void selectSort(int *a, int n) {
  for (int i = 0; i < n - 1; i++) {
    int min = i; /* select min */
    for (int j = i + 1; j < n; j++) { if (a[j] < a[min]) min = j; }
    /* swap a[i] and a[min] */
    if (min != i) { int tmp = a[i]; a[i] = a[min]; a[min] = tmp; }
}//end for
}</pre>
```

6.6 希尔排序 (shell sort)

```
void shellSort(int *a, int n) {
  int j;
  for (int dk = n / 2; dk >= 1; dk /= 2) {
    for (int i = dk; i < n; i++) {
      if (a[i] < a[i - dk]) {
        int tmp = a[i];
        for (j = i-dk; j >= 0 && tmp < a[j]; j -= dk) a[j+dk] = a[j];
      a[j + dk] = tmp;
    }
  }//end for
}//end for
}</pre>
```

6.7 快速排序

```
int partition(int *a, int lo, int hi) {
  int pivot = a[lo];
  while (lo < hi) {
    while (lo < hi && a[hi] >= pivot) hi--;
   a[lo] = a[hi];
    while (lo < hi && a[lo] <= pivot) lo++;</pre>
    a[hi] = a[lo];
  }
  a[lo] = pivot;
  return lo;
void _quick_sort(int *a, int lo, int hi) {
  if (lo < hi) {</pre>
    int pivot = partition(a, lo, hi);
    _quick_sort(a, lo, pivot - 1);
    _quick_sort(a, pivot + 1, hi);
  }
}
void quick_sort(int *a, int n) { _quick_sort(a, 0, n - 1); }
```

6.8 堆排序

6.9 二路归并排序 (merge sort)

```
void merge(int a[], int lo, int mi, int hi) {
  int ls = mi - lo, rs = hi - mi, l[ls], r[rs];
  for (int i = 0; i < ls; i++) l[i] = a[i + lo]; /* copy [lo, mi) */
  for (int i = 0; i < rs; i++) r[i] = a[i + mi]; /* copy [mi, hi) */
  int i = lo, j = mi, k = lo;
  while (i < mi && j < hi) {
    if (l[i - lo] < r[j - mi]) a[k++] = l[i++ - lo];
    else a[k++] = r[j++ - mi];
  }
  while (i < mi) a[k++] = l[i++ - lo];
  while (j < hi) a[k++] = r[j++ - mi];
}
void _mergeSort(int a[], int lo, int hi) {
  if (hi - lo > 1) {
    int mi = (lo + hi) / 2;
    _mergeSort(a, lo, mi);
    _mergeSort(a, mi, hi);
   merge(a, lo, mi, hi);
 }
void mergeSort(int a[], int n) { _mergeSort(a, 0, n); }
```

6.10 基数排序

6.11 外部排序

6.12 排序算法的分析和应用

选取排序方法需要考虑的因素:数据规模,元素本身信息量的大小,数据初始状态,算法的稳定性,存储结构

 算法种类	时间复杂度			空间复杂度	是否稳定
开码作大	最好情况	平均情况	最坏情况	工间发示反	足口怎足
直接插入排序	O(n)	$O(n^2)$	$O(n^2)$	O(1)	是
冒泡排序	O(n)	$O(n^2)$	$O(n^2)$	O(1)	是
简单选择排序	$O(n^2)$	$O(n^2)$	$O(n^2)$	O(1)	否
希尔排序				O(1)	否
快速排序	$O(n\log_2 n)$	$O(n\log_2 n)$	$O(n^2)$	$O(\log_2 n)$	否
堆排序	$O(n\log_2 n)$	$O(n\log_2 n)$	$O(n\log_2 n)$	O(1)	否
2 路归并排序	$O(n\log_2 n)$	$O(n\log_2 n)$	$O(n\log_2 n)$	O(n)	是
基数排序	O(d(n+r))	O(d(n+r))	O(d(n+r))	O(r)	是

表 3: 各种排序算法的性质总结

7 往年代码题

7.1 2009-42

查找带有表头结点的单链表中倒数第 k 个位置上的结点 (k 为正整数)。若查找成功,算法输出该结点的 data 域的值,并返回 1;否则,只返回 0。

```
typedef struct Node { int data; struct Node *link; } Node;
int findLastK(Node *list, int k) {
  Node *p = list->link, *q = list->link; int count = 0;
  while (q != NULL) {
    if (count < k) count++;
    else p = p->link;
    q = q->link;
}
if (count < k) return 0;
else { printf("%d", p->data); return 1; }
}
```

7.2 2010-42

将长为 n 的数组循环左移 p 个位置。

```
void reverse(int a[], int lo, int hi) {
   while (lo < hi) {
     int tmp = a[lo]; a[lo] = a[hi]; a[hi] = tmp; /* swap a[lo] and a[hi] */
     lo++; hi--;
   }
}
void shiftLeftP(int a[], int n, int p) {
   reverse(a, 0, p - 1);
   reverse(a, p, n - 1);
   reverse(a, 0, n - 1);
}</pre>
```

7.3 2011-42

求两个等长升序序列 a 和 b 的中位数。

```
int findMid(int a[], int b[], int n) {
  int i = 0, j = 0, k = 0;
  while (i < n && j < n) {
     k++;
     if (a[i] == b[j]) return a[i];
     if (a[i] < b[j]) { i++; if (k == n) return a[i - 1]; }
     else { j++; if (k == n) return b[j - 1]; }
}</pre>
```

7.4 2012-42

求两个带有头节点的字符类型的单链表的相同后缀位置。

```
typedef struct Node { char data; struct Node *next; } Node;
int listLen(Node *list) {
  int count = 0; Node *p = list->next;
  while (p != NULL) { count++; p = p->next; }
  return count;
}
Node *findSuffix(Node *str1, Node *str2) {
  int m = listLen(str1), n = listLen(str2), ahead = abs(m - n);
  Node *p = str1->next, *q = str2->next;
  if (m > n) { for (int i = 0; i < ahead; i++) p = p->next; }
  else { for (int i = 0; i < ahead; i++) q = q->next; }
  while (p != NULL && q != NULL) {
    if (p->data == q->data) return p;
    p = p->next; q = q->next;
}
  return NULL;
}
```

7.5 2013-41

查找数组中的主元素。

```
int findMainElem(int a[], int n) {
  int b[n], max = 0; for (int i = 0; i < n; i++) b[i] = 0;
  for (int i = 0; i < n; i++) {
    b[a[i]]++;
    if (b[max] < b[a[i]]) max = a[i];
  }
  if (b[max] <= n / 2) max = -1;
  return max;
}</pre>
```

7.6 2014-41

二叉树的带权路径长度。

```
typedef struct Node { int weight; struct Node *left, *right; } Node;
int wpl(Node *root) {
  int M = 32, front = 0, rear = 0, wpl = 0, depth = 0;
  Node *queue[M], *p = root, *l = root, *nl = NULL;
  queue[rear] = p; rear = (rear + 1) % M;
  while (front != rear) {
    p = queue[front]; front = (front + 1) % M;
    if (p->left == NULL && p->right == NULL) wpl += depth * p->weight;
    if (p->left != NULL) {
      queue[rear] = p->left; rear = (rear + 1) % M;
     nl = p->left;
    }
    if (p->right != NULL) {
      queue[rear] = p->right; rear = (rear + 1) % M;
     nl = p->right;
    }
    if (p == 1) { l = nl; depth++; }
  }
  return wpl;
}
```

7.7 2015-41

删除带头节点的单链表中第二次出现的绝对值相同的节点。

```
typedef struct Node { int data; struct Node *link; } Node;
void duplicate(Node *head, int n) {
  int count[n]; for (int i = 0; i < n; i++) count[i] = 0;
  Node *p = head->link, *r = head, *q;
  while (p != NULL) {
   if (count[abs(p->data)] == 0) {
      count[abs(p->data)] = 1;
      r = p; p = p->link;
   } else {
      q = p; p = q->link; r->link = p;
      free(q);
   }
}//end-while
}
```

7.8 2016-43

将长为n的数组划分为最小的|n/2|个元素和最大的的[n/2]个元素。

```
int partition(int a[], int n) {
  int lo = 0, hi = n - 1, llo = lo, lhi = hi, k = n/2 - 1, pivot = a[lo];
  while (1) {
    while (lo < hi) {
      while (lo < hi && pivot <= a[hi]) hi--;</pre>
      if (lo != hi) a[lo] = a[hi];
      while (lo < hi && pivot >= a[lo]) lo++;
      if (lo != hi) a[hi] = a[lo];
    }
    a[lo] = pivot;
    if (lo == k) break;
    if (lo < k) { llo = ++lo; hi = lhi; }</pre>
    else { lhi = --hi; lo = llo; }
  int s1 = 0, s2 = 0;
  for (int i = 0; i < lo + 1; i++) s1 += a[i];
  for (int i = lo + 1; i < n; i++) s2 += a[i];
  return s2 - s1;
}
```

7.9 2017-41

二叉树转中缀表达式,通过括号反映操作数的计算次序。

```
typedef struct node { char data[10]; struct node *left, *right; } BTree;
/* 非满分代码, 但是容易想到 */
void toExp(BTree *root) {
  if (root == NULL) return;
  int flag = 0; char ch = root->data[0];
  if (ch == '+' || ch == '-' || ch == '*' || ch == '/') flag = 1;
  if (flag == 1) printf("(");
 toExp(root->left);
 printf("%s", root->data);
 toExp(root->right);
  if (flag == 1) printf(")");
}
/* 标准答案 */
void _toExp(BTree *root, int depth) {
  if (root == NULL) return;
  if (root->left == NULL && root->right == NULL) {
    printf("%s", root->data);
    return;
 }
 if (depth > 1) printf("(");
  _toExp(root->left, depth + 1);
 printf("%s", root->data);
  _toExp(root->right, depth + 1);
  if (depth > 1) printf(")");
}
void toExp(BTree *root) {
  _toExp(root, 1);
}
```

7.10 2018-41

给定一个含 $n(\geqslant 1)$ 个整数的数组,请设计一个在时间上尽可能高效的算法,找出数组中未出现的最小正整数。例如,数组 $\{-5,3,2,3\}$ 中未出现的最小正整数是 1;数组 $\{1,2,3\}$ 中未出现的最小正整数是 4。

```
int findMin(int a[], int n) {
    int m = a[0]; /* 妈的题目也没说明最大数是 n 啊, 不还得找最大数吗 */
    /* select max value in a[n] */
    for (int i = 0; i < n; i++) { if (a[i] > 0 && m < a[i]) m = a[i]; }
    int b[m + 1];
    for (int i = 0; i < m + 1; i++) b[i] = 0;
    /* mark existed value */
    for (int i = 0; i < n; i++) { if (a[i] > 0) b[a[i]] = 1; }
    int min = m + 1;
    /* find min value */
    for (int i = 1; i < m + 1; i++) { if (b[i] == 0) { min = i; break; } }
    return min;
}
```

7.11 2019-41

设线性表 $L = (a_1, a_2, a_3, \dots, a_{n-2}, a_{n-1}, a_n)$ 采用带头结点的单链表保存,请设计一个空间复杂度为 O(1) 且时间上尽可能高效的算法,重新排列 L 中的各结点,得到线性表 $L^{'} = (a_1, a_n, a_2, a_{n-1}, a_3, a_n - 2, \dots)$.

```
void changeList(Node *1) {
  Node *p = 1, *q = p, *r;
  while (q->next != NULL) { /* 找到中间结点 */
    p = p->next; q = q->next;
    if (q->next != NULL) q = q->next;
  q = p->next; p->next = NULL;
  while (q != NULL) { /* 后半段原地逆置 */
   r = q; q = q->next;
    r->next = p->next; p->next = r;
  q = p->next; p->next = NULL; p = 1->next; /* 从中间断开 */
  while (q != NULL) { /* 将后半段隔一个结点插入前半段 */
    r = q; q = q->next;
    r\rightarrow next = p\rightarrow next; p\rightarrow next = r;
    p = r - next;
 }
}
```

7.12 2020-41

定义三元组 (a,b,c)(其中 a,b,c 均为正数) 的距离 D=|a-b|+|b-c|+|c-d|。给定 3 个非空整数集合 S1、S2 和 S3,按升序分别存储在 3 个数组中。设计一个尽可能高效的算法,计算并输出所有可能的三元组 (a,b,c)($a\in S1,b\in S2,c\in S3$) 中的最小距离。例如 $S1=\{-1,0,9\},S2=\{-25,-10,10,11\},S3=\{2,9,17,30,41\}$,则最小距离为 2,相应的三元组为 (9,10,9)。

```
int findMinDist(int s1[], int n1, int s2[], int n2, int s3[], int n3) {
  int i = 0, j = 0, k = 0, min = 0x7ffffffff, d, a, b, c;
  while (i < n1 && j < n2 && k < n3) {
    a = s1[i]; b = s2[j]; c = s3[k];
    d = abs(a - b) + abs(b - c) + abs(c - a);
    if (d < min) { min = d; }
    if (a < b) { a < c ? i++ : k++; }
    else { b < c ? j++ : k++; }
}
return min;
}</pre>
```