PHYSICS DATA SHEET

Useful Constants

Acceleration due to gravity	$a_g = 9.81 \frac{\text{m}}{\text{s}^2}$
Gravitational constant	$G = 6.67 \times 10^{-11} \frac{\text{N} \times \text{m}^2}{\text{kg}^2}$
Mass of the Earth	$M_E = 5.98 \times 10^{24} \text{ kg}$
Radius of the Earth	$R_E = 6.37 \times 10^6 \text{ m}$
Speed of Light in Vacuum	$c = 3.00 \times 10^8 \text{m/s}$

Trigonometry and Geometry

$$\sin \theta = \frac{opposite}{hypotenuse}$$

$$\cos \theta = \frac{adjacent}{hypotenuse}$$

$$\tan \theta = \frac{opposite}{adjacent}$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$c^2 = a^2 + b^2 - 2ab \cos C$$

$$c^2 = a^2 + b^2$$

Slope

$$m = \frac{\Delta y}{\Delta x}$$

Area

Rectangle = lwTriangle = $\frac{1}{2}ab$ Circle = πr^2 Sphere = $4\pi r^2$

Circumference

Circle = $2\pi r$

Prefixes Used With SI Units

Exponential

	Symbol	
atto	a	10 ⁻¹⁸
femto	f	10 ⁻¹⁵
pico	p	10 ⁻¹²
nano	n	10 ⁻⁹
micro	μ	10 ⁻⁶
milli	m	10 ⁻³
centi	c	10 ⁻²
deci	d	10 ⁻¹
	da	
hecto	h	10^2
kilo	k	10^3
mega	M	10 ⁶
giga	G	10^9
tera	Т	10 ¹²

EQUATIONS

Kinematics

$$v = \frac{\Delta d}{\Delta t}$$

$$\vec{a} = \frac{\vec{v}_f - \vec{v}_i}{\Delta t}$$

$$\Delta \vec{d} = \vec{v}_i \Delta t + \frac{1}{2} \vec{a} \Delta t^2$$

$$\Delta \vec{d} = \frac{\vec{v}_i + \vec{v}_f}{2} \, \Delta t$$

$$\vec{v}_f^2 = \vec{v}_i^2 + 2\vec{a}\,\Delta\,\vec{d}$$

$$\Delta \vec{d} = \vec{v}_f \Delta t - \frac{1}{2} \vec{a} \Delta t^2$$

Dynamics

$$\vec{a} = \frac{\vec{F}_{net}}{m}$$

$$F_f = \mu F_N$$

$$\vec{F}_s = -k\vec{x}$$

$$F_g = G \frac{m_1 m_2}{r^2}$$

$$a_g = G \frac{m_1}{r^2}$$

$$\vec{F}_g = m\vec{g}$$

Circular Motion

$$F_c = \frac{m v^2}{r}$$

$$F_c = \frac{4 \pi^2 m r}{T^2}$$

$$v = \frac{2\pi r}{T}$$

$$a_c = \frac{v^2}{r}$$

$$a_c = \frac{4\pi^2 r}{T^2}$$

Waves

$$T = \frac{1}{f}$$

$$v = f \lambda$$

$$L = \frac{(2n-1)\lambda}{4}$$

$$f_o = f_s \left(\frac{v}{v \mp v_s} \right)$$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2}$$

$$L = \frac{n\lambda}{2}$$

$$f_o = f_s \left(\frac{v \pm v_o}{v} \right)$$

$$T=2\pi\sqrt{\frac{m}{k}}$$

Energy

$$W = F\Delta d \cos \theta$$

$$W = \Delta E$$

$$P = \frac{W}{t}$$

$$E_k = \frac{1}{2}mv^2$$

$$E_p = \frac{1}{2}kx^2$$

$$E_n = mgh$$