Mathematical foundations for dynamics

Jonathan Dushoff, McMaster University

http://lalashan.mcmaster.ca/DushoffLab

2016 Summer Course on Mathematical Modeling and Analysis of Infectious Diseases

National Taiwan University

► This lecture will explain

- This lecture will explain
 - exponential growth (and decline)

- This lecture will explain
 - exponential growth (and decline)
 - simple qualitative methods for analyzing ODE-based dynamical systems

- This lecture will explain
 - exponential growth (and decline)
 - simple qualitative methods for analyzing ODE-based dynamical systems
 - ▶ the importance of linear equations

- This lecture will explain
 - exponential growth (and decline)
 - simple qualitative methods for analyzing ODE-based dynamical systems
 - the importance of linear equations
 - some basic ideas about matrices and eigenvalues

- This lecture will explain
 - exponential growth (and decline)
 - simple qualitative methods for analyzing ODE-based dynamical systems
 - the importance of linear equations
 - some basic ideas about matrices and eigenvalues

Outline

► We have some bacteria in a tank

- We have some bacteria in a tank
- ► They have no food, so they are simply dying at a *per capita* rate of 0.02/hr.

- We have some bacteria in a tank
- ► They have no food, so they are simply dying at a per capita rate of 0.02/hr.
- ► If the current density is 100 bacteria/ml, what will be the density after 1 hr?

- We have some bacteria in a tank
- ► They have no food, so they are simply dying at a per capita rate of 0.02/hr.
- If the current density is 100 bacteria/ml, what will be the density after 1 hr?
- What will be the density after 1 wk?

- We have some bacteria in a tank
- ► They have no food, so they are simply dying at a per capita rate of 0.02/hr.
- If the current density is 100 bacteria/ml, what will be the density after 1 hr?
- What will be the density after 1 wk?

$$ightharpoonup \frac{dN}{dt} = rN$$

$$\frac{dN}{dt} = (b-d)N$$

- $ightharpoonup \frac{dN}{dt} = rN$
- ► This is the only differential equation you need to solve!

- $ightharpoonup \frac{dN}{dt} = rN$
- This is the only differential equation you need to solve!
- ► $N(t) = N(0)e^{rt} = N(0) \exp(rt)$

$$\frac{dN}{dt} = (b - d)N$$

$$ightharpoonup \frac{dN}{dt} = rN$$

- This is the only differential equation you need to solve!
- $N(t) = N(0)e^{rt} = N(0) \exp(rt)$
- Bacteria example

$$ightharpoonup \frac{dN}{dt} = rN$$

- This is the only differential equation you need to solve!
- $N(t) = N(0)e^{rt} = N(0) \exp(rt)$
- Bacteria example

Outline

Populations don't grow forever

- Populations don't grow forever
 - ► or decline forever

- Populations don't grow forever
 - or decline forever
- Probably the birth rate will decline if the population is too crowded

- Populations don't grow forever
 - or decline forever
- Probably the birth rate will decline if the population is too crowded
- Let's let the birth rate go down as population goes up:

- Populations don't grow forever
 - or decline forever
- Probably the birth rate will decline if the population is too crowded
- Let's let the birth rate go down as population goes up:

$$b_0 = (b_0 \exp(-N/N_b) - d)N$$

- Populations don't grow forever
 - or decline forever
- Probably the birth rate will decline if the population is too crowded
- Let's let the birth rate go down as population goes up:

$$b_0 \exp(-N/N_b) - d)N$$

We don't want to solve this equation!

- Populations don't grow forever
 - or decline forever
- Probably the birth rate will decline if the population is too crowded
- Let's let the birth rate go down as population goes up:

$$b_0 \exp(-N/N_b) - d)N$$

We don't want to solve this equation!

What can we do instead?

Computer simulations: what will happen with particular parameters?

What can we do instead?

- Computer simulations: what will happen with particular parameters?
- Qualitative analysis: what can we learn in general?

What can we do instead?

- Computer simulations: what will happen with particular parameters?
- Qualitative analysis: what can we learn in general?

► Structure:
$$\frac{dN}{dt} = (b_0 \exp(-N/N_b) - d)N$$

- Structure: $\frac{dN}{dt} = (b_0 \exp(-N/N_b) d)N$
- ► Parameters?

Structure:
$$\frac{dN}{dt} = (b_0 \exp(-N/N_b) - d)N$$

- Parameters?
 - ► *b*₀: *per capita* birth rate [1/time]

- Structure: $\frac{dN}{dt} = (b_0 \exp(-N/N_b) d)N$
- Parameters?
 - ▶ b₀: per capita birth rate [1/time]
 - ► d: per capita death rate [1/time]

- Structure: $\frac{dN}{dt} = (b_0 \exp(-N/N_b) d)N$
- Parameters?
 - ▶ b₀: per capita birth rate [1/time]
 - d: per capita death rate [1/time]
 - ► *N_b*: Scale of population regulation [indiv]

- Structure: $\frac{dN}{dt} = (b_0 \exp(-N/N_b) d)N$
- Parameters?
 - ▶ b₀: per capita birth rate [1/time]
 - d: per capita death rate [1/time]
 - ► N_b: Scale of population regulation [indiv]
- State variables?

Population growth model

- Structure: $\frac{dN}{dt} = (b_0 \exp(-N/N_b) d)N$
- Parameters?
 - ▶ b₀: per capita birth rate [1/time]
 - d: per capita death rate [1/time]
 - ► N_b: Scale of population regulation [indiv]
- State variables?
 - ► N: Population size [indiv]

Population growth model

- Structure: $\frac{dN}{dt} = (b_0 \exp(-N/N_b) d)N$
- Parameters?
 - ▶ b₀: per capita birth rate [1/time]
 - d: per capita death rate [1/time]
 - N_b: Scale of population regulation [indiv]
- State variables?
 - N: Population size [indiv]

Computer simulation

Computer simulation

► Find *equilibria* – points where the population will not change

 Find equilibria – points where the population will not change

```
• Structure: \frac{dN}{dt} = f(N)
```

- ► Find *equilibria* points where the population will not change
 - Structure: $\frac{dN}{dt} = f(N)$
 - Equilibria when f(N) = 0

- ► Find *equilibria* points where the population will not change
 - ► Structure: $\frac{dN}{dt} = f(N)$
 - Equilibria when f(N) = 0
- ► Analyze equilibrium *stability* if we are *near* the equilibrium, we will move toward it or away from it?

- Find equilibria points where the population will not change
 - Structure: $\frac{dN}{dt} = f(N)$
 - Equilibria when f(N) = 0
- Analyze equilibrium stability if we are near the equilibrium, we will move toward it or away from it?
 - ► How does *f*(*N*) *change* near an equilibrium?

- Find equilibria points where the population will not change
 - ► Structure: $\frac{dN}{dt} = f(N)$
 - Equilibria when f(N) = 0
- Analyze equilibrium stability if we are near the equilibrium, we will move toward it or away from it?
 - ► How does *f*(*N*) *change* near an equilibrium?

Zoom to extinction equilibrium

Zoom to extinction equilibrium

Zoom to carrying capacity

Zoom to carrying capacity

Zoom to other point

Zoom to other point

► Near an equilibrium, the system behaves like:

$$ightharpoonup \frac{dx}{dt} = Jx$$

$$J = \frac{\partial f}{\partial x}$$

Near an equilibrium, the system behaves like:

$$ightharpoonup \frac{dx}{dt} = Jx$$

x is the distance from equilibrium

$$J = \frac{\partial f}{\partial x}$$

► The solution is $x(t) = x(0) \exp(Jt)$

Near an equilibrium, the system behaves like:

$$\frac{dx}{dt} = Jx$$

$$J = \frac{\partial f}{\partial x}$$

- ▶ The solution is $x(t) = x(0) \exp(Jt)$
 - ▶ Moves away exponentially if J > 0

Near an equilibrium, the system behaves like:

$$\frac{dx}{dt} = Jx$$

$$J = \frac{\partial f}{\partial x}$$

- ▶ The solution is $x(t) = x(0) \exp(Jt)$
 - Moves away exponentially if J > 0
 - ► Moves in exponentially if *J* < 0

Near an equilibrium, the system behaves like:

$$\frac{dx}{dt} = Jx$$

$$J = \frac{\partial f}{\partial x}$$

- ▶ The solution is $x(t) = x(0) \exp(Jt)$
 - Moves away exponentially if J > 0
 - Moves in exponentially if J < 0</p>

Outline

What about our simple disease model?

$$\begin{array}{rcl} \frac{dS}{dt} & = & \mu N - \beta \frac{SI}{N} - \mu S \\ \frac{dI}{dt} & = & \beta \frac{SI}{N} - \gamma I - \mu R \\ \frac{dR}{dt} & = & \gamma I - \mu R \end{array}$$

Disease model

► Parameters?

Disease model

- Parameters?
 - μ : Death rate [1/time]

- Parameters?
 - μ : Death rate [1/time]
 - β : Transmission rate [1/time]

- Parameters?
 - μ : Death rate [1/time]
 - \triangleright β : Transmission rate [1/time]
 - γ : Recovery rate [1/time]

- Parameters?
 - \blacktriangleright μ : Death rate [1/time]
 - \triangleright β : Transmission rate [1/time]
 - γ : Recovery rate [1/time]
 - ► N: Population size [indiv]

- Parameters?
 - \blacktriangleright μ : Death rate [1/time]
 - \triangleright β : Transmission rate [1/time]
 - γ : Recovery rate [1/time]
 - N: Population size [indiv]
- State variables?

- Parameters?
 - μ : Death rate [1/time]
 - \triangleright β : Transmission rate [1/time]
 - γ: Recovery rate [1/time]
 - N: Population size [indiv]
- State variables?
 - \triangleright S, I, R but we are going to ignore R

- Parameters?
 - \blacktriangleright μ : Death rate [1/time]
 - \triangleright β : Transmission rate [1/time]
 - γ: Recovery rate [1/time]
 - N: Population size [indiv]
- State variables?
 - \triangleright S, I, R but we are going to ignore R

- Parameters?
 - \blacktriangleright μ : Death rate [1/time]
 - \triangleright β : Transmission rate [1/time]
 - γ : Recovery rate [1/time]
 - N: Population size [indiv]
- State variables?
 - S, I, R − but we are going to ignore R
 - * It does not affect S or I under our assumptions

- Parameters?
 - \blacktriangleright μ : Death rate [1/time]
 - \triangleright β : Transmission rate [1/time]
 - γ: Recovery rate [1/time]
 - N: Population size [indiv]
- State variables?
 - S, I, R − but we are going to ignore R
 - * It does not affect S or I under our assumptions
 - •

- Parameters?
 - μ : Death rate [1/time]
 - \triangleright β : Transmission rate [1/time]
 - γ: Recovery rate [1/time]
 - N: Population size [indiv]
- State variables?
 - ▶ S, I, R but we are going to ignore R
 - ▶ * It does not affect S or I under our assumptions
 - ▶ * It is redundant (we know it if we know N, S and I.

- Parameters?
 - μ : Death rate [1/time]
 - \triangleright β : Transmission rate [1/time]
 - γ: Recovery rate [1/time]
 - N: Population size [indiv]
- State variables?
 - ▶ S, I, R but we are going to ignore R
 - ▶ * It does not affect S or I under our assumptions
 - ▶ * It is redundant (we know it if we know N, S and I.

►
$$I = 0$$
, $S = N$

- ▶ I = 0, S = N
 - ► The disease-free equilibrium (DFE)

- ▶ I = 0, S = N
 - ► The disease-free equilibrium (DFE)
- ▶ $S = \gamma/\beta$, I =(something)

- ▶ I = 0, S = N
 - ► The disease-free equilibrium (DFE)
- $S = \gamma/\beta$, I =(something)
 - ► The endemic equilibrium (EE)

- ▶ *I* = 0, *S* = *N*
 - ► The disease-free equilibrium (DFE)
- $S = \gamma/\beta$, I =(something)
 - ► The endemic equilibrium (EE)

•

$$\frac{dS}{dt} = f(S, I)$$

$$\frac{dI}{dt} = g(S, I)$$

$$\frac{dS}{dt} = f(S, I)$$

$$\frac{dI}{dt} = g(S, I)$$

► We still have linear equations near the equilibrium

$$\frac{dS}{dt} = f(S, I)$$

$$\frac{dI}{dt} = g(S, I)$$

- ▶ We still have linear equations near the equilibrium
- ► This is the only kind of equation we can solve

Þ

$$\frac{dS}{dt} = f(S, I)$$

$$\frac{dI}{dt} = g(S, I)$$

- ▶ We still have linear equations near the equilibrium
- This is the only kind of equation we can solve
- Behaviour is determined by

Þ

$$\frac{dS}{dt} = f(S, I)$$

$$\frac{dI}{dt} = g(S, I)$$

- ▶ We still have linear equations near the equilibrium
- This is the only kind of equation we can solve
- Behaviour is determined by

•

$$J = \left(\begin{array}{cc} \frac{\partial f}{\partial S} & \frac{\partial f}{\partial I} \\ \frac{\partial g}{\partial S} & \frac{\partial g}{\partial I} \end{array}\right)$$

<u>dS</u>

$$\frac{dS}{dt} = f(S, I)$$

$$\frac{dI}{dt} = g(S, I)$$

- We still have linear equations near the equilibrium
- This is the only kind of equation we can solve
- Behaviour is determined by

$$J = \left(egin{array}{cc} rac{\partial f}{\partial \mathcal{S}} & rac{\partial f}{\partial I} \ rac{\partial g}{\partial \mathcal{S}} & rac{\partial g}{\partial I} \end{array}
ight)$$

Outline

► Imagine we have a population of rabbits

- Imagine we have a population of rabbits
 - ► Baby rabbits become adults after one month

- Imagine we have a population of rabbits
 - Baby rabbits become adults after one month
 - Each pair of adult rabbits produces one pair of baby rabbits each month

- Imagine we have a population of rabbits
 - Baby rabbits become adults after one month
 - Each pair of adult rabbits produces one pair of baby rabbits each month
 - Rabbits never die

- Imagine we have a population of rabbits
 - Baby rabbits become adults after one month
 - Each pair of adult rabbits produces one pair of baby rabbits each month
 - Rabbits never die
- ► What happens to this population?

- Imagine we have a population of rabbits
 - Baby rabbits become adults after one month
 - Each pair of adult rabbits produces one pair of baby rabbits each month
 - Rabbits never die
- What happens to this population?

► We describe this as equations for Adult and Baby rabbits:

- ▶ We describe this as equations for Adult and Baby rabbits:
 - A' = A + B

- We describe this as equations for Adult and Baby rabbits:
 - A' = A + B
 - \triangleright B' = A

- We describe this as equations for Adult and Baby rabbits:
 - A' = A + B
 - \triangleright B' = A
- ► In matrix terms, we write:

We describe this as equations for Adult and Baby rabbits:

$$A' = A + B$$

$$\triangleright$$
 $B' = A$

In matrix terms, we write:

•

$$\left(\begin{array}{c}A'\\B'\end{array}\right)=\left(\begin{array}{cc}1&1\\0&1\end{array}\right)\left(\begin{array}{c}A'\\B'\end{array}\right)$$

We describe this as equations for Adult and Baby rabbits:

$$A' = A + B$$

$$\triangleright$$
 $B' = A$

In matrix terms, we write:

$$\left(\begin{array}{c}A'\\B'\end{array}\right)=\left(\begin{array}{cc}1&1\\0&1\end{array}\right)\left(\begin{array}{c}A'\\B'\end{array}\right)$$

Eigenvectors and eigenvalues

 We describe matrix dynamics using eigenvectors and eigenvalues

Eigenvectors and eigenvalues

- We describe matrix dynamics using eigenvectors and eigenvalues
 - An eigenvector is a vector which keeps its shape when multiplied by the matrix (it is just multiplied by a regular number)

Eigenvectors and eigenvalues

- We describe matrix dynamics using eigenvectors and eigenvalues
 - An eigenvector is a vector which keeps its shape when multiplied by the matrix (it is just multiplied by a regular number)
 - ► An eigenvalue is the number we multiply by

Eigenvectors and eigenvalues

- We describe matrix dynamics using eigenvectors and eigenvalues
 - An eigenvector is a vector which keeps its shape when multiplied by the matrix (it is just multiplied by a regular number)
 - An eigenvalue is the number we multiply by

Dominant values

 Usually, matrix dynamics have a single dominant eigenvalue (and eigenvector)

Dominant values

- Usually, matrix dynamics have a single dominant eigenvalue (and eigenvector)
 - This is just the one that is most important for the dynamics we are studying

Dominant values

- Usually, matrix dynamics have a single dominant eigenvalue (and eigenvector)
 - This is just the one that is most important for the dynamics we are studying

Disease example

▶ Dominant eigenvalue is (usually) $\beta - \gamma$

- ▶ Dominant eigenvalue is (usually) $\beta \gamma$
 - Describes how fast the epidemic grows exponentially

- ▶ Dominant eigenvalue is (usually) $\beta \gamma$
 - Describes how fast the epidemic grows exponentially
 - Eigenvector describes relationship between increase in I and decrease in S

- ▶ Dominant eigenvalue is (usually) $\beta \gamma$
 - Describes how fast the epidemic grows exponentially
 - Eigenvector describes relationship between increase in I and decrease in S
- Other eigenvalue describes how fast susceptibles recover to equilibrium when there is no disease

- ▶ Dominant eigenvalue is (usually) $\beta \gamma$
 - Describes how fast the epidemic grows exponentially
 - Eigenvector describes relationship between increase in I and decrease in S
- Other eigenvalue describes how fast susceptibles recover to equilibrium when there is no disease

► There is a pair of *complex* eigenvalues

- ► There is a pair of *complex* eigenvalues
 - ▶ a + bi, where $i = \sqrt{-1}$

- ► There is a pair of *complex* eigenvalues
 - ightharpoonup a + bi, where $i = \sqrt{-1}$
- ► In complex eigenvalues:

- ► There is a pair of *complex* eigenvalues
 - a + bi, where $i = \sqrt{-1}$
- In complex eigenvalues:
 - ► real part (a) describes exponential growth (or decline)

- ▶ There is a pair of *complex* eigenvalues
 - ightharpoonup a + bi, where $i = \sqrt{-1}$
- In complex eigenvalues:
 - ► real part (a) describes exponential growth (or decline)
 - ► imaginary part (b) describes rate of oscillation

- ► There is a pair of *complex* eigenvalues
 - a + bi, where $i = \sqrt{-1}$
- In complex eigenvalues:
 - real part (a) describes exponential growth (or decline)
 - ▶ imaginary part (b) describes rate of oscillation