ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СПбГУТ)

Кафедра информационных управляющих систем

ОТЧЁТ

по лабораторной работе №2 по дисциплине «Структура и алгоритмы обработки данных в информационных системах и сетях»

Выполнил: студент группи	ы <u>ИСТ-813,</u> / <u>Кравец А.Ю./</u>
« <u>06</u> » ноября 2020 г	/А.Ю. Кравец/
Принял: ст. преподаватель	ь Антонов В.В.
«07» ноября 2020 г.	/В.В. Антонов/

Задание: описать алгоритмы пузырьковой сортировки (Bubble sort), сортировки выбором (Selection sort), сортировки вставками (Insertion sort), быстрой сортировки (Quick sort), реализовать их программно, провести сравнение быстродействия алгоритмов.

10 писание работы алгоритмов

1.1 Пузырьковая сортировка (Bubble sort)

Алгоритм пузырьковой сортировки:

- 1. Попарное сравнение элементов несортированной части массива: при неверном порядке элементов в паре происходит обмен местами;
- 2. Несортированная часть массива уменьшается на один элемент. Выполняется пункт 1.

1.2 Сортировка выбором (Selection sort)

Сортировка может производится как по выбору максимального значения, так и по выбору минимального значения.

Алгоритм сортировки выбором:

- 1. Проход по несортированной части массива в поиске минимального (максимального) значения;
- 2. Найденный минимальный (максимальный) элемент меняется местами с первым (последним, если по максимальному значению) элементом несортированной части массива;
- 3. Несортированная часть массива уменьшается на один элемент. Выполняется пункт 1.

1.3 Сортировка вставками (Insertion sort)

Алгоритм сортировки вставками:

- 1. Выбирается элемент несортированной части массива;
- 2. Избранный элемент размещается в нужную позицию в сортированной части массива;
 - а. Если шаги 1 и 2 выполняются впервые, избранный элемент становится первым в сортированной части массива.

3. Несортированная часть массива уменьшается на один элемент. Выполняется пункт 1.

1.4 Быстрая сортировка (Quick sort)

Алгоритм быстрой сортировки:

- 1. Выбирается опорный элемент;
- 2. Массив делится на два подмассива: в одном все элементы меньше или равны опорному элементу (или строго меньше опорного элемента), а во втором все элементы больше опорного элемента (или больше или равны опорному элементу). Причем опорный элемент становится границей между двумя подмассивами;
 - 3. Пункт 1 выполняется для каждого подмассива.

2Сравнение алгоритмов

Для сравнения замерялось время сортировки массивов со случайными значениями элементов. Полученные значения для алгоритмов пузырьковой сортировки, сортировки выбором и сортировки вставками представлены в таблице 1. Полученные значения для алгоритма быстрой сортировки представлены в таблице 2.

Таблица 1 – Время выполнения алгоритмов пузырьковой сортировки, сортировки выбором, сортировки вставками

Размер	Время выполнения, с			
массива	Bubble Sort	Selection Sort	Insertion Sort	
10000	0,869	0,531	0,109	
16000	1,266	0,797	0,14	
22000	2,047	0,829	0,234	
28000	4,516	0,921	0,39	
34000	6,688	1,844	0,641	
40000	9,344	2,844	0,719	
46000	12,345	3,438	0,922	
52000	15,938	4,301	0,937	
58000	19,798	5,36	1,625	
64000	24,223	6,532	1,954	
70000	28,923	7,797	2,344	

Таблица 2 – Время выполнения алгоритма быстрой сортировки

Размер	Время	Размер	Время
массива	выполнения, с	массива	выполнения, с
1000000	0,172	11000000	5,328
2000000	0,437	12000000	5,891
3000000	0,922	13000000	6,266
4000000	1,282	14000000	6,954
5000000	2,282	15000000	7,375
6000000	2,812	16000000	7,813
7000000	3,234	17000000	8,516
8000000	3,766	18000000	8,844
9000000	4,376	19000000	9,333
10000000	4,797	20000000	10,017

Для сравнения были составлены графики по таблицам №1 и №2.

Рисунок 1 — Время выполнения алгоритмов пузырьковой сортировки, сортировки выбором, сортировки вставками

Рисунок 2 – Время выполнения алгоритма быстрой сортировки

Вывод:

В данной работе были рассмотрены следующие алгоритмы сортировки: пузырьковая сортировка, сортировка выбором, сортировка вставками, быстрая сортировка.

Данные алгоритмы были реализованы программно. Были получены данные о времени выполнения каждого алгоритма при различных размерах исходного массива.

Исходя из собранных данных (рисунки 1 и 2) ранжирование алгоритмов сортировки в порядке убывания быстродействия имеет вид:

- 1. Быстрая сортировка (Quick sort);
- 2. Сортировка вставками (Insertion Sort);
- 3. Сортировка выбором (Selection Sort);
- 4. Пузырьковая сортировка (Bubble Sort).