Random Variable and Distribution Functions

Lesson 1: Discrete Random Variable

Random Variable:

For a mathematical definition of the random variable, let us consider the probability space (S, \mathcal{B} , P), where S = sample space, \mathcal{B} = collection of all subsets of the sample space S of events and P = the probability function defined on \mathcal{B}

A random variable is a function $X(\omega)$ with domain S and range \mathbb{R} such that for every real number a, the event $[\omega: X(\omega) \leq a] \in \mathcal{B}$.

Properties:

- (i) If X_1 and X_2 are random variables and c_1 , c_2 are constants, then $c_1X_1 \pm c_2X_2$ are also random variables.
- (ii) If X is a random variable, then |X| and $\frac{1}{X}$ are also random variables
- (iii) If X is a random variable and f is a continuous and increasing function, then f(X) is also a random variable.

Distribution Function/Cumulative Distribution Function:

Let *X* be a random variable. The function *F* defined for all real *x* by

$$F(x) = P(X \le x) - \infty < x < \infty$$

is called the distribution function of the random variable.

Properties:

1. If F(x) is the distribution function of the random variable X and if a < b, then

(i)
$$P(a < X \le b) = F(b) - F(a)$$

(ii)
$$P(a \le X \le b) = P(X = a) + F(b) - F(a)$$

(iii)
$$P(a < X < b) = F(b) - F(a) - P(X = b)$$

(iv)
$$P(a \le X < b) = P(X = a) + F(b) - F(a) - P(X = b)$$

Note: If P(X = a) = P(X = b) = 0, then all four events have the same probability

- 2. $0 \le F(x) \le 1$
- 3. If x < y, then $F(x) \le F(y)$

4.
$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0$$
 and $F(\infty) = \lim_{x \to \infty} F(x) = 1$

Type of Random Variable:

There are two types of random variables

- Discrete
- Continuous

Discrete Random Variable:

A real valued function defined on a discrete sample space is called a discrete random variable.

Probability Mass Function:

If X is a discrete random variable with distinct values $x_1, x_2, x_3, \ldots, x_n, \ldots$ with probabilities $p_1, p_2, p_3, \ldots, p_n, \ldots$ such that $\sum_{i=1}^{\infty} p_i = 1$, then the function p(x) defined as

$$p(x)$$
 = Probability that X assumes the value x

is called the probability mass function of the random variable X. The set of ordered pairs $\{(x_1, p_1), (x_2, p_2), (x_3, p_3), \dots, (x_n, p_n), \dots\}$ is known as the probability distribution of the random variable X.

Note: The numbers p_i , i = 1, 2, ... must satisfy the following conditions

a)
$$p_i \ge 0 \ \forall i$$
 and b) $\sum_{i=1}^{\infty} p_i = 1$

Discrete Distribution Function:

In this case, there are a countable number of points $x_1, x_2, ...$ and numbers $p_i \ge 0, \sum_{i=1}^{\infty} p_i = 1$ such that $F(x) = P(x_i \le x)$.

Problems:

Ex.1. A random variable X has the following probability function:

X = x	0	1	2	3	4	5	6	7
p(x)	0	\boldsymbol{k}	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k^2	$2k^2$	$7k^2 + k$

(i) Find *k*

(ii) Evaluate
$$P(X < 6)$$
, $P(X \ge 6)$, $P(0 < X < 5)$

(iii) If
$$P(X \le a) > \frac{1}{2}$$
, find the minimum value of a

(iv) Write the distribution function of X

Solution: (i) We know that
$$\sum_{x=0}^{7} p(x) = 1 \to 10k^2 + 9k - 1 = 0$$

 $\to k = \frac{1}{10} \text{ or } -1$

But $p(x) \neq$ negative, so $k = \frac{1}{10}$

(ii)
$$P(X < 6) = P(X = 0) + P(X = 1) + \dots + P(X = 5)$$

= $0 + k + 2k + \dots + k^2 = \frac{81}{100}$

$$P(X \ge 6) = 1 - P(X < 6) = \frac{19}{100}$$

$$P(0 < X < 5) = P(X = 1) + \dots + P(X = 4) = \frac{4}{5}$$

(iii) We know that $P(X \le a) > \frac{1}{2}$. Let us substitute different values of a as:

If
$$a = 0 \to P(X \le 0) = 0 < \frac{1}{2}$$

$$a = 1 \to P(X \le 1) = 0 + \frac{1}{10} < \frac{1}{2}$$

$$a = 2 \to P(X \le 2) = 0 + \frac{1}{10} + \frac{2}{10} = \frac{3}{10} < \frac{1}{2}$$

$$a = 3 \to P(X \le 3) = 0 + \frac{1}{10} + \frac{2}{10} + \frac{2}{10} = \frac{5}{10} = \frac{1}{2}$$

$$a = 4 \to P(X \le 4) = 0 + \frac{1}{10} + \frac{2}{10} + \frac{2}{10} + \frac{3}{10} = \frac{8}{10} = \frac{4}{5} > \frac{1}{2}$$

This shows that a = 4.

(iv) The distribution function of X is given by

X	0	1	2	3	4	5	6	7
$F(x) = P(X \le x)$	0	$k = \frac{1}{10}$	$3k = \frac{3}{10}$	$5k = \frac{5}{10}$	$8k = \frac{8}{10}$	$8k + k^2$ $= \frac{81}{100}$	$8k + 3k^2$ $= \frac{83}{100}$	$9k + 10k^2$ $= 1$

Ans.

Ex.2. Two dice are rolled. Let *X* denotes the random variable which counts the sum of the numbers on the upturned faces. Construct a table giving the non-zero values of the probability mass function. Also find the distribution function of *X*.

Solution: If both dice are unbiased and the two rolls are independent, then each sample point of the sample space S has probability $\frac{1}{36}$. Then

$$p(2) = P(X = 2) = P\{(1,1)\} = \frac{1}{36}$$

$$p(3) = P(X = 3) = P\{(1,2), (2,1)\} = \frac{2}{36}$$

$$p(4) = P(X = 4) = P\{(1,3), (3,1), (2,2)\} = \frac{3}{36}$$

$$p(5) = P(X = 5) = P\{(1,4), (4,1), (2,3), (3,2)\} = \frac{4}{36}$$

$$p(6) = P(X = 6) = P\{(1,5), (5,1), (2,4), (4,2), (3,3)\} = \frac{5}{36}$$

$$p(7) = P(X = 7) = P\{(1,6), (6,1), (2,5), (5,2), (3,4), (4,3))\} = \frac{6}{36}$$

$$p(8) = P(X = 8) = P\{(2,6), (6,2), (3,5), (5,3), (4,4)\} = \frac{5}{36}$$

$$p(9) = P(X = 9) = P\{(3,6), (6,3), (4,5), (5,4)\} = \frac{4}{36}$$

$$p(10) = P(X = 10) = P\{(4,6), (6,4), (5,5)\} = \frac{3}{36}$$

$$p(11) = P(X = 11) = P\{(5,6), (6,5)\} = \frac{2}{36}$$

$$p(12) = P(X = 12) = P\{(6,6)\} = \frac{1}{36}$$

Therefore the table for the probability mass function p(x) and the probability distribution function F(x) is given by:

X	2	3	4	5	6	7	8	9	10	11	12
p(x)	1 36	2 36	3/36	4 36	5 36	6 36	5 36	4 36	3/36	2 36	<u>1</u> 36
F(x)	$\frac{1}{36}$	$\frac{3}{36}$	6 36	$\frac{10}{36}$	15 36	21 36	26 36	$\frac{30}{36}$	33 36	35 36	$\frac{36}{36}$

Ans.