Matematika I

22. január 2015

Meno a priezvisko: .	• • • • • • • • • • • • • • • • • • • •		Podpis:	• • • •	 	• • •	• • •	• • • •	
Ročník:		Študijný pr	rogram:		 				

- 1. (5b) Bod M má v cylindrickom súradnicovom systéme nasledujúce súradnice: $M = \left[1, \frac{\pi}{6}, -1\right]$.
 - a) (3b) Určte jeho súradnice v pravouhlom súradnicovom systéme.

a)
$$M = \left[-\frac{\sqrt{3}}{2}, \frac{1}{2}, -1 \right]$$

c)
$$M = \left[\frac{\sqrt{3}}{2}, \frac{1}{2}, 1\right]$$

b)
$$M = \left[\frac{\sqrt{3}}{2}, -\frac{1}{2}, -1 \right]$$

d)
$$M = \left[\frac{\sqrt{3}}{2}, \frac{1}{2}, -1\right]$$

b) (2b) Znázornite tento bod v pravouhlom súradnicovom systéme. **Náčrt:**

- **2.** (5b) Riešte:
 - a) (3b) Vyberte rovnicu kužeľosečky, ktorá je znázornená na obrázku.

a)
$$\frac{(x-3)^2}{4} + \frac{(y-4)^2}{9} = 1$$

b)
$$(x-3)^2 + 4(y-4)^2 = 16$$

c)
$$\frac{(y-3)^2}{7} + \frac{(x-4)^2}{6} = 1$$

d)
$$4(x-3)^2 + (y-4)^2 = 16$$

b) (2b) Určte vzájomnú polohu piamky p:x+3=0 a kužeľosečky, ktorá je znázornená na obrázku.

Výsledok:

3. (5b) Vyberte funkciu, ktorej definičný obor je znázornený na nasledujúcom obrázku.

a)
$$f(x,y) = \ln(9 - x^2 - y^2) + \ln(x^2 - y^2)$$

b)
$$f(x,y) = \sqrt{9 - x^2 - y^2} + \ln(x^2 + y^2)$$

c)
$$f(x,y) = \sqrt{9 - x^2 - y^2} + \sqrt{x^2 - y^2}$$

d)
$$f(x,y) = \sqrt{9 - x^2 - y^2} + \ln(x^2 - y^2)$$

4. (6b) Vypočítajte hmotnosť telesa, ktorého objemová hustota je daná vzťahom

$$h(x, y, z) = x + y + z.$$

Pričom teleso pozostáva z množiny bodov: $\langle 0,1\rangle \times \langle 0,2\rangle \times \langle 0,3\rangle.$

Výsledok:

5. (5b) Vypočítajte nasledujúcu limitu

$$\lim_{\substack{x \to 2 \\ y \to -1}} \frac{(x+2y)^2}{x^2 + 2xy}.$$

Výsledok:

6. (6b) Daná je funkcia $f(x,y)=x^2+y^2$ a rovina $\sigma:x+\frac{y}{2}+\frac{z}{3}=1$. Nájdite rovinu τ , ktorá je dotykovou rovinou ku grafu funkcie f(x,y) a je rovnobežná s rovinou σ .

Všeobecná rovnica roviny τ je:

- **7.** (6b) Daná je funkcia $f(x,y,z) = \ln(x^2 + y^2 + z^2)$, bod A = [-1,2,-3] a vektor $\vec{l} = (1,-1,-2)$.
 - a) (3b) Nájdite gradient funkcie f(x, y, z) v bode A.

Výsledok:

b) (3b) Vypočítajte deriváciu funkcie f(x, y, z) v bode A v smere vektora \vec{l} .

Výsledok:

- 8. (8b) Daná je funkcie f(x,y)=1+4x-5y a množina M, ktorá je ohraničená priamkami $y=1-x,\,y=x+1$ a y=3x-3.
 - a) (3b) Načrtnite množinu M.

Náčrt:

b) (5b) Nájdite najväčšiu a najmenšiu hodnotu funkcie f(x,y), na množine M.

Najväčšia hodnota funkcie f(x, y) je:

Najmenšia hodnota funkcie f(x, y) je:

9. (5b) Koľko stacionárnych bodov má funkcia $g(x,y)=x^3+3xy^2-51x-24y$?

Výsledok:

10. (5b) Napíšte súradnice bodu (bodov), v ktorom funkcia $g(x,y)=x^3+3xy^2-51x-24y$ nadobúda minimum.

Výsledok:

11. (5b) Nájdite riešenie diferenciálnej rovnice y'-2y=-4x, ktoré spĺňa začiatočnú podmienku y(2)=1.

Výsledok:

- **12.** (9b) Daná je lineárna diferenciálna rovnica $y'' 5y' + 6y = -12e^x$.
 - a) (3b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.

Výsledok:

b) (3b) Napíšte tvar vhodného partikulárneho riešenia.

Výsledok:

c) (3b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.

Výsledok: