DMML, 7 Man 2019

Boosting a weak classifier

Start with a weak classifier ho over T= 2W1,-,WN3

makes unstales on T, accuracy > 1/2

Assign weight 1/N to each input

Add up weight of mistakes — boost weight of

worm inputs by a factor lased on this

Build a classifier he wish new weights

Repeat

ho, h., -- , hm Sequence of weate classifiers Evvor rate eo,e,.., em Weighted sum of classifiers, using error rates If dansfus vote as ±1 + dnhm(s)) h(x) = sign(d,ho(n) + d,h,(n) + -Weight of -1
the classifier

Related setting

- A collection of weale dassifier ("experts")

- Combine opport adrice

Topic danifier for articles

Expert i - cheeles for some mords
and gives a topic,
else says "no guess"

"sleeping expert"

No sleeping - every expert classifies every mont. Experts: kr. kz, Find a subset of EM experts and assign weights di to his subset Chosen set: K1, K2, -, KM
Weight: \alpha_1, \alpha_2, -, \alpha_M e need dichind $h(n) = sign \left(\sum_{l=1}^{M} \alpha_{l} k_{l}(n) \right)$

weights for inputs

W; = W(0)

Input (Xj, Yj) Weight for experts, Ri expat ki Initially W= 1 Iteratively add ky, kz, --, km to our team of experts we have chosen Inductively assume

Ky. - km with weights Ky. - , &m Input weights Wim) Iterahon m+1

Run each ki on tramy data and get weighted sum of errors

 $E_{i} = \sum_{j=1}^{\infty} W_{j}^{(m)}$ $W_{j}^{(m)}$

 $e_{min} = \frac{E_i}{W}$ $e_{min} = \frac{1}{2} ln \left(\frac{1 - e_{min}}{e_{min}} \right)$ Sum of all weight

Update weights

Sleeping Engerts No weight on inputs Each expert ki acts on a subset Ti eT Assign weight di=1 to each lei Input nj -> Kj subset of experts allowe on xj - Weighted sum

 $W_{xj} = \sum_{ki \in K_1} \alpha_i$ experts who offer opinon Given $ki \in Kj$, either ki(nj) = yj n $m_i^{2j} = 0 \qquad ki(nj) \neq yj$

How will this perform if the classification is slewed?

Minority case is "Yes" - most dassifuis will have high accuracy overall? Tune weight update to focus on minority case.

Neural networks

Perceptron

W·x ≥ b

Instead

 $W \cdot x + b \ge 0$ $f \quad f \le 0$ Weight bias

Network of perceptrons

$$X_{1}, X_{2} = 0, 1$$

NAND gate

X ,	X2	y	
0	D	3	7
Ø)	ı	-> 1
	0	ı	
		-1	J->0

Functional completeness

OR + NOT can express any Loolean funchon wer (x1, x2) AND+NOT

LUAN

Perception for NAND -> neturles of perceptions are functionally complete