EXAMPLE OF CHOLESKY DECOMPOSITION FERRIS STATE UNIVERSITY SURVEYING ENGINEERING

If A is a matrix defined as $A = \begin{bmatrix} 4 & 2 & -2 \\ 2 & 10 & 2 \\ -2 & 2 & 5 \end{bmatrix}$ then the LU factorization can be shown as:

$$LU = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & \frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 & -2 \\ 0 & 9 & 3 \\ 0 & 0 & 3 \end{bmatrix}$$

Factoring out the diagonal elements results in:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & \frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & 1 \end{bmatrix} = LDL^{T}$$

Performing the Cholesky decomposition yields:

$$L^* = LD^{\frac{1}{2}} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & \frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \sqrt{3} \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ -1 & 1 & \sqrt{3} \end{bmatrix}$$

Then, verifying the results, $L^*L^{*T} = A$:

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ -1 & 1 & \sqrt{3} \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & \sqrt{3} \end{bmatrix} = \begin{bmatrix} 4 & 2 & -2 \\ 2 & 10 & 2 \\ -2 & 2 & 5 \end{bmatrix} = A$$