PHYS 425 - W813

Statistical Mechanics

Intrepretation of Entropy

ideas: (a) specify state of a system as completely as possible (position, momentum, energy, spin, ... of each particle in system.

Call each possible state of sys. a quantum state or microstate.

(b) Image an ensemble ot systems that are identically prepared (same no. of particles, energy, \vec{E} , \vec{B} ,...)

Large no. of quantum states consistent w/ these conditions. (> called the microcannonical ensoble)

(c) If there are W possible quantum states that satisfy constraints on every, volume, N, ... then assume that all quantum states equally likely.

Prob. of being in any particular quantum state is I w

Eg. N=4 spins w/ 2 spin up En 2 spin down Ej

$$\frac{N!}{n_{r}!(N-n_{r})!} = \frac{4!}{2!2!} = \frac{4.3.21}{2.1\cdot21} = 6$$

W=6 different microstates W/N=4and $E=2E_T+2E_J$.

Assume each state equally likely $P = \frac{1}{W} = \frac{1}{6}$

Boltzmann's Hypothesis: Entropy of a system is related to the prob. of being in a quantum state $S = \mathcal{D}(W)$

Next argument follows that of Einstein (1905)

Miracle Year i Photoelectric effect
Browniam Motion
Special Relativity
E = mc²

Consider two indep. systems A & B as well as the composite system AB

For two indep. systems the total combined entropy is $S_{AB} = \emptyset(W_A) + \emptyset(W_B) = S_B$

For A ? B indep., the total no. of quantum states of sys. AB is:

WAB = WA WB

SAB = Ø(WAB) = Ø(WAWB) E

states of B

only solin is
$$\varnothing(W) = k_g \ln(W)$$

check
$$\varnothing(W_AW_B) = k_B \ln(W_AW_B)$$

 $\varnothing(W_A) = k_B \ln W_A$
 $\varnothing(W_B) = k_B \ln W_B$

Entropy defined to be

Does this result make sense! Try a simple example.

only one possible quantum state consistent w/ E=4Er & N=4

S= kg |n1 = 0 For a perfectly ordered | State S=01

$$N=4$$
 $E=2E_{1}+2E_{2}$
already saw that
 $W=6$
 $S=k_{B}\ln 6$

Lots of available quantum states => high entropy

		-	