Greedy Algorithms 14/02/2022: Solve Optimization problems DP: - At each step you have a - figure out what is the best Choice by Solving Sub problems. - Greedy algorithms! you make a locally offinal choices. in the hope that it leads to a global optimal solution. Interval Scheduling: you have a resource - a lecture room, a supercomputer, et. People who wants to use the resource. They make a request by saying I want to resure it from time s to f. Assumption: The resource can be used by at most one person at a time. Two requests an compatible if the requested intervals do not overlap.

Goal: is to find a maximum-sized set of compatible requests.

Formally, a set of n requests

labeled say 1, --; n.

Each request i has a start time s(i)

and a finish time f(i)

Compatible requests; two requests i and j are compatible if $f(i) \leq s(i)$ or $f(i) \leq s(i)$

Gool: to find a maximum sized set of compatible requests.

Solutions: \$2,3,43, \$5,6,7,83 {1,67,83, \$1,3,43 Maximum fixed-set.

DP-algo!- either the request L is in the optimal set or not. Carel: Suppose I is in a optimal set Before := $\begin{cases} i \mid 2 \leq i \leq n \quad s + \cdot \\ f(i) \leq S(i) \end{cases}$ After != $\begin{cases} i \mid 2 \le i \le n \quad 8+1 \\ S(i) \ge 1(1) \end{cases}$ 313 U Optimal-before U Optimal Solution != Optimal - after. Case 2: 1 is not in any optimal solution securities solve it on {2,-187} runtime: O(n3). Greedy algorithm: - Choice to pick the first request i, remove all request that are not compatible with i

from the set of all request.

Challenge: how to choose the first
request i ?
Choice !: Bick a request with earliest start time.
Starts early time
Ries doesn't work.
Choice 2:- pick a request that $f(i)$ - $s(i)$ as small as possible.
time.
Choice 3: pick a request that has
minimal no of Conflicts.
for every request count the no. of request
that overlaps with it.
and then pick the one with smallest

1 1 1 1 3 1 1 11 1 1 5 1 6 1 if you choose 5 then maximal no is 3. but the optimal is $4 = \{1, 2, 3, 11\}$ Choice 4: pick a request with earliest finish time. il more free time to sure other requests' define R := set of all requests that are neither accepted nor rejected A:= Set of all accepted requests. Instialise R to be the set of all request and A to be the empty set. While R is not empty. - pick a request with earliest finish time - add this request to A - remove incompatible requests from R End while. output A.

Observation: A is a set of compatible request.
request.
Analysis of the Algorithm
First way: "Greedy Stays ahead"
Sorting your requests based on finish time $f(i) < f(2) < \cdots < f(n)$
the Algorithm adds request I to A.
Our algorithm finishes the first request
Our algorithm finishes the first request before the output from any often algorithm.
$A = \{i_1,, i_k\}$
$opt = {j_1, \dots, j_m}$
Goal: to prove that $k=m$.
Claim !- for any l < k, f(ie) < f(je)
Proof - Based on induction on I.
Base case $l=1$: $f(i_1) \leq f(j_1)$

by the choice.
Induction Step: arbitrary l. $f(i_1) \leq f(j_1), f(i_2) \leq f(j_2), \dots, f(i_{\ell 1}) \leq f(j_{\ell 1}).$
(je-1) ie 1 Can His happen!
Consider the I-th time
No. because, $f(i_{\ell-1}) \leq f(j_{\ell-1}) \leq S(j_{\ell})$
Thearem: A is a maximum sized-set.
Proof! - Suppose not: This implies there exist an optimal set sin- 7 im?
S.+. m > K.
Applying previous claim with l=k
$f(i_k) \leq f(j_k) \leq \delta(j_{k+1})$
The above inequality implies R is
not empty which is a contradiction
Runtime & Implementation: - Sort according
Runtime & Implementation: - Sort according to start time and then scan according to start time : O(nlogn).

$f(1) \leq f(2) \leq$
$A = A \cup \{1\}$ $S \cup S $
Second way "Exchange argument".
- Greedy Output
- Optimal solution
-> massage your optimal solution into
the gready output without losing
on Optimality
Leung !- I an optimal Solution that
contains the request with earliest
finish time.
Proof!- Pick an Optimal Solution B
that doesn't contain the request
with earliest finish time.
$B = \{ j_1, -j_m \}$
let i, be the request with farliest
finish time.
$f(ii) \leq f(ii)$
BISil U Sil . This has the
same fize.