Toward Congruence and Similarity

 $Short\text{-}answer\ problems\ about\ transformations.$

Question 1 What is your name? Free Response:
Question 2 What is required to specify a translation?
Free Response: Hint: A vector. Or (equivalently) a magnitude and a direction.
Question 3 What is required to specify a rotation? Free Response: Hint: A center and an angle (assuming an agreement about the direction of rotation).
Question 4 What is required to specify a reflection? Free Response: Hint: A line.
Sometimes a sequence of transformations can be described as a single translation, rotation, or reflection.

Question 5 What kind of transformation is a translation followed by a trans-

Free Response: Hint: Usually a translation. If the vectors are opposites of each other, the result is the identity transformation (which can be thought of as a

Author(s): Bart Snapp and Brad Findell

translation by a vector of magnitude 0).

lation? Explain. Be sure to consider any special cases.

Question 6 What kind of transformation is a rotation followed by a rotation? Explain. Be sure to consider any special cases.

Free Response: Hint: Usually a rotation. If the angles sum to a multiple of 360° , then the result is a translation. If the centers of rotation are also the same, the result is the identity transformation (which can be thought of as a rotation of 0°).

Question 7 What kind of transformation is a reflection followed by another reflection? Explain. Be sure to consider any special cases.

Free Response: Hint: You are doing this for homework.

Question 8 Will the letter F look like an F after a reflection? What about after a sequence of two reflections? What about after a sequence of 73 or 124 reflections? Explain your reasoning.

Free Response: Hint: Ignoring which side is up, after a reflection (or more generally an odd number of reflections), the F will look like a "backwards F". After an even number of reflections, the F will look like a typical F.

Question 9 How will your answer to the previous problem change if you use a capital D? Explain.

Free Response: Hint: Ignoring which side is up, the D will always look like a D. Because of its line symmetry, a reflection doesn't appear to reverse its "orientation."

Question 10 Given a figure and its image after a translation, how do find the direction and distance of the translation? How many points and images do you need?

Free Response: Hint: Draw a vector from any point to its image. The vector provides both the direction and the distance. Any point and its image will do.

Question 11 Given a figure and its image after a reflection, how do you find the line of reflection? How many points and images do you need?

Free Response: Hint: Draw a segment from a point to its image. The perpendicular bisector of that segment is the line of reflection. Any point and its image will do.

Question 12 Given a figure and its image after a rotation, how do you find the center and the angle of the rotation? How many points and images do you need?

Free Response: Hint: Draw a segment from a point P to its image P'. The center of rotation is somewhere on the perpendicular bisector of that segment. Draw a segment from a second point Q to its image Q'. The center of rotation is also somewhere on the perpendicular bisector of that segment. As long as the segments $\overline{PP'}$ and $\overline{QQ'}$ are not parallel, the two perpendicular bisectors will intersect at a point C, which is the unique center of the rotation.

To find the angle of rotation, measure $\angle PCP'$ or $\angle QCQ'$.