2-3 로봇 기구학

강의 요약

01

절대 좌표계 (Global)

전체 환경을 기준으로 고정된 좌표계 02

상대 좌표계 (Local)

특정 객체를 기준으로 고정된 좌표계 03

로봇의 좌표계

Base frame

Joint frame

Sensor frame

04

회전변환과 평행이동

$$T = egin{bmatrix} R & t \ 0 & 1 \end{bmatrix}$$

- R: 3x3 회전 행렬
- *t*: 3x1 위치 벡터

$$\mathbf{q} = egin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix}^T$$

$$oxed{\mathbf{p}} = egin{bmatrix} x & y & z & lpha & eta & \gamma \end{bmatrix}^T$$

Geometric Method (기하학적 방법)

Geometric Method (기하학적 방법)

● 링크와 조인트의 위치를 직접 계산

● 계산이 간단하고 시각적 직관이 강함

Geometric Method (기하학적 방법)

- 계산이 간단하고 시각적 직관이 강함
- 복잡한 구조에서는 활용이 어려움

Denavit-Hartenberg Method (DH 파라미터)

- 각 링크와 조인트 사이의 관계를 4개의 파라미터로 정리
- 각 링크 간 변환을 4x4 행렬로 표현

Denavit-Hartenberg Method (DH 파라미터)

- 각 링크와 조인트 사이의 관계를 4개의 파라미터로 정리
- 각 링크 간 변환을 4x4 행렬로 표현
- 표준화된 알고리즘
- 프레임 설정이 까다로움

$$\mathbf{q} = egin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix}^T$$

$$oxed{\mathbf{p}} = egin{bmatrix} x & y & z & lpha & eta & \gamma \end{bmatrix}^T$$

Analytical Method (해석적 방법)

Analytical Method (해석적 방법)

- 시각적 직관이 강함
- 복잡한 구조에서는 활용이 어려움

Numerical Method (수치적 방법)

- 반복적으로 수치적 근사 (approximate)
- 사전 개념) 자코비안 (Jacobian)

Numerical Method (수치적 방법)

- 반복적으로 수치적 근사 (approximate)
- 사전 개념) 자코비안 (Jacobian)

● 자코비안 (Jacobian)

$$\mathbf{q} = egin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix}^T$$

"변화량"

$$oxed{\mathbf{p}} = egin{bmatrix} x & y & z & lpha & eta & \gamma \end{bmatrix}^T$$

Numerical Method (수치적 방법)

- 반복적으로 수치적 근사 (approximate)
- 사전 개념) 자코비안 (Jacobian)

$$\mathbf{q} = egin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix}^T$$

$$J(\mathbf{q}) = rac{\partial \mathbf{p}}{\partial \mathbf{q}}$$

"변화량"

$$\mathbf{p} = egin{bmatrix} x & y & z & lpha & eta & \gamma \end{bmatrix}^T$$

Numerical Method (수치적 방법)

- 반복적으로 수치적 근사 (approximate)
- 사전 개념) 자코비안 (Jacobian)

$$\mathbf{p} = egin{bmatrix} x \ y \end{bmatrix} = egin{bmatrix} l_1 \cos q_1 + l_2 \cos(q_1 + q_2) \ l_1 \sin q_1 + l_2 \sin(q_1 + q_2) \end{bmatrix} egin{bmatrix} \mathbf{p} = egin{bmatrix} x & y & z & lpha & eta & \gamma \end{bmatrix}^T$$

$$\mathbf{q} = egin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix}^T$$

$$J(\mathbf{q}) = rac{\partial \mathbf{p}}{\partial \mathbf{q}}$$

$$\mathbf{p} = egin{bmatrix} x & y & z & lpha & eta & \gamma \end{bmatrix}^T$$

Numerical Method (수치적 방법)

● 반복적으로 수치적 근사 (approximate)

- 1. 초기 추정값 설정: \mathbf{q}_0
- 2. 현재 위치 계산: $\mathbf{p}_{\mathrm{current}} = \mathbf{f}(\mathbf{q}_0)$
- 3. 오차 벡터 계산: $\Delta \mathbf{p} = \mathbf{p}_{ ext{desired}} \mathbf{p}_{ ext{current}}$
- 4. 자코비안을 통해 보정값 계산: $\Delta \mathbf{q} = J^\dagger(\mathbf{q}) \cdot \Delta \mathbf{p}$
- 5. 관절값 업데이트: $\mathbf{q}_{k+1} = \mathbf{q}_k + \Delta \mathbf{q}$
- 6. 오차가 작아질 때까지 반복

Forward & Inverse Kinematics 활용

01 02 03 04
Task Description Perception Planning Control

물체를 잡기 카메라로 물체 인식 IK: 로봇팔 조인트 값 계산 해당 조인트 값까지 모터를 구동

강의 요약

01

Forward Kinematics

기하학적 기법 DH 파라미터 기법 02

Inverse Kinematics

해석적 기법 수치적 기법 03

Jacobian

"변화량"

$$J(\mathbf{q}) = rac{\partial \mathbf{p}}{\partial \mathbf{q}}$$

04

Pick & Place

IK 를 활용하여 pick & place 문제의 goal state로 정의