UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Licenciatura en Ciencia de Datos

Introducción al Aprendizaje Profundo

Redes densas poco profundas

Profesores:

Berenice & Ricardo Montalvo Lezama

Marzo 2021

Contenido basado en el curso de AP del Dr. Gibran Fuentes Pineda del PCIC

Regresión y clasificación

Regresión: $y \in \mathbb{R}$

¿Cuál será la temperatura mañana?

Clasificación: $y \in \{1, ..., k\}$

¿Cómo será el día de mañana?

Aprendizaje supervisado

Regresión lineal simple: hipótesis

• Hipótesis:

$$\hat{y} = f_{\theta}(x) = xw + b$$
 $\theta = \{w, b\}$

Entradas

Regresión lineal simple: pérdida

• Hipótesis:

$$\hat{y} = f_{\theta}(x) = xw + b$$
 $\theta = \{w, b\}$

• Función de error: error cuadrático medio

$$J_{\theta} = \frac{1}{2m} \sum_{i=1}^{n} (y - \hat{y})^2$$

Descenso por gradiente

Repetir hasta converger:

$$\theta_{t+1} = \theta_t - \alpha \nabla J_{\theta_t}$$

Descenso por gradiente para regresión lineal

Repetir hasta converger:

$$w := w - \alpha \frac{\partial}{\partial w} J_{\theta}$$
$$b := b - \alpha \frac{\partial}{\partial b} J_{\theta}$$

Cálculo de la derivadas:

$$\frac{\partial}{\partial w}J_{\theta}=\frac{1}{m}\sum_{i=1}^{n}(\hat{y}^{(i)}-y^{(i)})\cdot x_{j}^{(i)}$$

$$\frac{\partial}{\partial b}J_{\theta}=\frac{1}{m}\sum_{i=1}^{n}(\hat{y}^{(i)}-y^{(i)})$$

Hiperparámetro: tasa de aprendizaje

• Tasa de aprendizaje muy grande.

Hiperparámetro: tasa de aprendizaje

• Tasa de aprendizaje muy pequeña.

Hiperparámetro: tasa de aprendizaje

• Tasa de aprendizaje adecuada.

Sensibilidad a tasa de aprendizaje α

ullet Inicializando w_1 con un valor menor al que minimiza la función de pérdida

Regresión logística: hipótesis

• Hipótesis:

$$P(y|x_i, \theta) = \hat{y} = \sigma(xw + b) = \frac{1}{1 + e^{-(xw+b)}}$$

Entrada

Regresión logística: pérdida

• Hipótesis:

$$P(y|x_i,\theta) = \hat{y} = \sigma(xw + b) = \frac{1}{1 + e^{-(xw+b)}}$$

• Función de error: entropía cruzada binaria.

$$J_{ heta} = -rac{1}{m} \sum_{i=1}^{m} (y \log(\hat{y}) + (1-y) \log(1-\hat{y}))$$

Entrada

Pérdida: entropía cruzada binaria

$$J_{\theta} = (y)(-\log(\hat{y})) + (1-y)(-\log(1-\hat{y}))$$

Etiqueta <i>y</i>	Predicción \hat{y}	Entropía binaria	Pérdida
0	0.9	2.303	alta
0	0.1	0.105	baja
1	0.9	0.105	baja
1	0.1	2.303	alta

Descenso por gradiente para regresión logística

Repetir hasta converger:

$$w := w - \alpha \frac{\partial}{\partial w} J_{\theta}$$
$$b := b - \alpha \frac{\partial}{\partial b} J_{\theta}$$

Cálculo de la derivadas:

$$\frac{\partial}{\partial w} J_{\theta} = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)}) \cdot x_{j}^{(i)}$$
$$\frac{\partial}{\partial b} J_{\theta} = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)})$$

Regresión logística: métrica

Entrada

• Modelo:

$$P(y|x_i, \theta) = \hat{y} = \sigma(xw + b) = \frac{1}{1 + e^{-(xw+b)}}$$

• Función de error: entropía cruzada binaria.

$$J_{ heta} = -rac{1}{m} \sum_{i=1}^{m} (y \log(\hat{y}) + (1-y) log(1-\hat{y}))$$

• Optimización de la función de error:

$$w := w - \alpha \frac{\partial}{\partial w} J_{\theta}$$

$$b := b - \alpha \frac{\partial}{\partial b} J_{\theta}$$

• Métrica: exactitud.

$$Ex = \frac{\# \text{ predicciones correctas}}{\# \text{ total de predicciones}}$$

Partición de datos

Clasificación multietiqueta

• Función de pérdida: entropía cruzada binaria de cada categoría

$$J_{ heta}(y_k, \hat{y}_k) = -\sum_{i=1}^N \left[y_k^{(i)} \log \hat{y}_k^{(i)} + (1 - y_k^{(i)}) \log (1 - \hat{y}_k^{(i)})
ight]$$

Clasificación multiclase

 Neuronas de la capa de salida tienen una función de activación softmax compartida, dada por

$$extit{softmax}(\mathsf{z})_i = rac{\mathsf{e}^{\mathsf{z}_i}}{\sum_{j=1}^K \mathsf{e}^{\mathsf{z}_j}}, i = 1, \dots, K$$

