

PROGRAMOZÁS 12. előadás

Horváth Győző, Horváth Gyula, Szlávi Péter

Programozási minták

- 1. Összegzés
- 2. Megszámolás
- Maximumkiválasztás
 - a. Minimumkiválasztás
- 4. Feltételes maximumkeresés
- 5. Keresés
- 6. Eldöntés
 - a. Mind eldöntés
- 7. Kiválasztás
- 8. Másolás
- 9. Kiválogatás

Rekurzió

Klasszikus példák rekurzióra

Faktoriális

$$n! = \begin{cases} n * (n-1)! & ha & n > 0 \\ 1 & ha & n = 0 \end{cases}$$

Fibonacci-számok

$$Fib(n) = \begin{cases} 0 & ha \ n = 0 \\ 1 & ha \ n = 1 \\ Fib(n-1) + Fib(n-2) & ha \ n > 1 \end{cases}$$

A rekurzió lényege: önhivatkozás

Rekurzív specifikáció

Faktoriális:

Be: n∈N

Ki: f∈N

Ef: -

Uf: f=n!

$$n! = \begin{cases} n * (n-1)! & ha \ n > 0 \\ 1 & ha \ n = 0 \end{cases}$$

Rekurzív specifikáció

Faktoriális:

```
n! = \begin{cases} n * (n-1)! & ha \ n > 0 \\ 1 & ha \ n = 0 \end{cases}
```

Be: n∈N

Ki: f∈N

Ef: -

Uf: f=fakt(n)

Rekurzív specifikáció és algoritmus

Faktoriális:

 $n! = \begin{cases} n * (n-1)! & ha \ n > 0 \\ 1 & ha \ n = 0 \end{cases}$

Be: n∈N

Ki: f∈N

Ef: -

Uf: f=fakt(n)

Itt egy 2-alternatívájú függvényt kell algoritmizálni, ami egy "2-irányú" elágazással történik.

Rekurzív specifikáció és algoritmus

Fibonacci-számok:

$$Fib(n) = \begin{cases} 0 & ha \ n = 0 \\ 1 & ha \ n = 1 \\ Fib(n-1) + Fib(n-2) & ha \ n > 1 \end{cases}$$

Fib:=0 | Fib:=1 | Fib:=Fib(n-1)+Fib(n-2)

Háromirányú elágazás a megoldás

Rekurzív specifikáció és algoritmus

Fibonacci-számok:

Kétirányú elágazássá alakított megoldás

Intervallumos példák

Feladat:

Egy repülőgéppel Európából Amerikába repültünk. Az út során bizonyos kilométerenként mértük a felszín tengerszint feletti magasságát (≥0). 0 magasságot ott mértünk, ahol tenger van, >0-t pedig ott, ahol szárazföld. Adjuk meg a legszélesebb szigetet!

Mi számít szigetnek?

1. Szélén kontinens

Mi számít szigetnek?

2. Szélén sziget

Programozási mintákkal

Specifikáció:

```
Be: n∈N, mag∈N[1..n]
```

Ki: van∈L, k∈N, v∈N

Fv: szigetkezdet, szigetvég...

Fv: keresvége:N->L x N,

keresvége(i)=KERES(j=i..n, szigetvég(j))

Fv: táv:N->N, táv(i)=keresvége(i).ind - i

Ef: -

Uf: (van,k,)=MAX(i=1..n, táv(i), szigetkezdet(i) és keresvége(i).van) és
van -> v=keresvége(k).ind

- Válogassuk ki azokat a szigetkezdeteket, amelyeknek van vége is! (összevonható)
- Másolással határozzuk meg hozzájuk a szigetvégeket! (összevonható)
- 3. Másolással határozzuk meg a távolságokat! (összevonható)
- 4. Határozzuk meg a legnagyobb távolságot, ha van!

Kis variáció...

Specifikáció:

Be: $n \in \mathbb{N}$, $mag \in \mathbb{N}[1..n]$

Ki: van∈L, k∈N, v∈N

Fv: szigetkezdet, szigetvég...

Fv: kereseleje:N->L x N,

Hátulról keresés!

kereseleje(i)=KERES(j=-i..-1, szigetkezdet(-j))

Ef: -

Hátulról keresés miatt a negált értéket kell visszaadnunk!

Uf: (van, v, max) = MAX(i=1..n, i - kereseleje(i).ind,

szigetvég(i) és kereseleje(i).van) és

van -> k=v-max+1

3. Másolással határozzuk meg a távolságokat! (összevonható)

4. Határozzuk meg a legnagyobb távolságot, ha van!

1. Válogassuk ki azokat a

(összevonható)

szigetkezdeteket, amelyeknek

van vége is! (összevonható)

Másolással határozzuk meg

hozzájuk a szigetvégeket!

Visszavezetés


```
Keresés (kereseleje)
i ~ j
e..u ~ -i..-1
T(i) ~ szigetkezdet(-j)
```

Algoritmus

kereseleje:=(van,ind)

```
Keresés (kereseleje)
i ~ j
e..u ~ -i..-1
T(i) ~ szigetkezdet(-j)
```

18

Algoritmikus gondolkodással

Ötlet: induljunk az elejétől, ha szigetkezdetet találunk, jegyezzük meg, ha véget, akkor számolhatjuk a sziget hosszát, és az eddigi maximummal összehasonlíthatjuk.

nem van és jóe

i=1..n

t:=i-kereseleje(i).ind | van:=igaz

van és jóe

jóe:=szigetvég(i) és kereseleje(i).van

van:=hamis

nem jóe

Programtranszformáció: közelítés

Mindkét megoldás feltételes maximumkeresés. Írjuk át a naív megoldásunkat struktúrájában ahhoz hasonlóvá!

További közelítés: algoritmikus absztrakció – rekurzív függvény

Ötlet: Próbáljuk a kereseleje függvényt rekurzívan felírni! Ez a függvény minden pontban megmondja az adott ponthoz tartozó szigetkezdetet (ha van).

Specifikáció:

Egyetlen feltételes maximumkeresés

Visszavezetés

Specifikáció:

```
Fv: kereseleje:N->N,
```

kereseleje(i)={i, ha szigetkezdet(i);

0, ha i < 1;

kereseleje(i-1) egyébként}

van:=hamis

Uf: (van, v, max) = MAX(i=1..n, i-kereseleje(i),

szigetvég(i) és kereseleje(i)>0) és

max:=t

v:=i

maxind

maxért

 $van \rightarrow k=v-max+1$

1=1n								
jóe:=szigetvég(i) és kereseleje(i)>0								
nem jóe van és jóe nem van és j								
	t:=i-kereseleje(i)	van:=igaz						
\dashv	t>max	max:=i- kereseleje(i)						
· 、 I	I \	(C) CSCICJC(I)						

Feltételes maximumkeresés

~ max

f(i) ~ i-kereseleje(i)

T(i) ~ szigetvég(i) és

kereseleje(i)>0

v:=i

e..u ~ 1..n

kereseleje(i:Egész):Egészszigetkezdet(i)i<1</td>i>=1 és nem
szigetkezdet(i)kereseleje:=ikereseleje:=0kereseleje:=
kereseleje(i-1)

van

k:=v-max+1

((🖁) ELTE | IK

Rekurzió átírása

kereseleje(i:Egész):Egész						
szigetkezdet(i)	i<1	i>=1 és nem szigetkezdet(i)				
kereseleje:=i	kereseleje:=0	kereseleje:= kereseleje(i-1)				

```
van:=hamis; szk:=0
                           i=1..n
                                                   szk=kereseleje(i-1)
                        szigetkezdet(i)
    szk:=i
                                 szk:=szk
    jóe:=szigetvég(i) és szk>0
      nem jóe
                        van és jóe
                                            nem van és jóe
                  t:=i-szk
                                          van:=igaz
                                          max:=i-szk
                           t>max
                  max:=t
                                          v:=i
                  v:=i
                            van
k:=v-max+1
```

Összehasonlítás

Algoritmikus gondolkodással

van:=hamis i=1..n szigetkezdet(i) szk:=i jóe:=szigetvég(i) nem jóe van és jóe nem van és jóe szv:=i szv:=i t:=szv-szk van:=igaz t>max max:=szv-szk max:=t k:=szk; v:=szv k:=szk; v:=szv

120

Funkcionálisan ugyanaz. Sőt! Kiderült, hogy a bal oldali ROSSZ!

Rekurzív függvénnyel

Újra: algoritmikus gondolkodással

Újra: visszavezetés

Specifikáció:

```
Fv: kereseleje:N->L x N,
```

kereseleje(i)={(igaz, i), ha szigetkezdet(i);

(hamis,0), ha i < 1;

van:=hamis

kereseleje(i-1) egyébként}

Uf: (van, v, max) = MAX(i=1...n, i-kereseleje(i).2,

van -> k=v-max+1

szigetvég(i) és kereseleje(i).1) és

Feltételes maximumkeresés

~ max

f(i) ~ i-kereseleje(i).2

kereseleje(i).1

T(i) ~ szigetvég(i) és

e..u ~ 1..n

maxind

maxért

	jóe:=szigetvég(i) és kereseleje(i).1						
	\ nem jóe	van és jóe	nem van és jóe				
_	<u> </u>	t:=i-kereseleje(i).2	van:=igaz				
_	-	t>max /	max:=i-				

i=1..n

kereseleje(i:Egész):(Logikai,Egész)						
szigetkezdet(i)	i<1	i>=1 és nem szigetkezdet(i)				
kereseleje:= (igaz,i)		kereseleje:= kereseleje(i-1)				

max:=t v:=i

v:=i

ELTELIK

k:=v-max+1

van

kereseleje(i).2

Újra: rekurzió átírása

```
kereseleje(i:Egész):(Logikai,Egész)szigetkezdet(i)i<1</td>i>=1 és nem<br/>szigetkezdet(i)kereseleje:=<br/>(igaz,i)kereseleje:=<br/>(hamis,0)kereseleje(i-1)
```

```
van:=hamis; vanszk:=hamis; szk:=0;
                          i=1..n
                                         (vanszk,szk)=kereseleje(i-1)
                       szigetkezdet(i)
    vanszk:=igaz; szk:=i
                               vanszk:=vanszk; szk:=szk
   jóe:=szigetvég(i) és vanszk
                                          nem van és jóe
      nem jóe
                       van és jóe
                 t:=i-szk
                                         van:=igaz
                                         max:=i-szk
                          t>max
                 max:=t
                                         v:=i
                 v:=i
                           van
k:=v-max+1
```


Újra: rekurzió átírása

```
kereseleje(i:Egész):(Logikai,Egész)szigetkezdet(i)i<1</td>i>=1 és nem<br/>szigetkezdet(i)kereseleje:=<br/>(igaz,i)kereseleje:=<br/>(hamis,0)kereseleje:=<br/>kereseleje(i-1)
```

```
van:=hamis; vanszk:=hamis; szk:=0;
                          i=1..n
                                         (vanszk,szk)=kereseleje(i-1)
                       szigetkezdet(i)
   vanszk:=igaz; szk:=i
                               vanszk:=vanszk; szk:=szk
   jóe:=szigetvég(i) és vanszk
      nem jóe
                       van és jóe
                                          nem van és jóe
                 t:=i-szk
                                         van:=igaz
                                         max:=i-szk
                          t>max
                 max:=t
                                         v:=i
                 v:=i
                           van
k:=v-max+1
```

Újra: összehasonlítás

Algoritmikus gondolkodással

Rekurzív függvénnyel

/an	an:=hamis; vanszk:=hamis							
	i=1n							
	szigetkezdet(i)							
	szk:=i; vansz	k:=igaz			_			
	jóe:=szigetv	ég(i) és vans	zk					
	nem jóe van és jóe nem van és jó							
	· —		szv:=i					
			van:=igaz					
			max:=szv-szk					
		max:=t -			k:=szk; v:=szv			
		k:=szk; v:=sz						

van:=hamis; vanszk:=hamis; szk:=0;							
i=1n							
	szigetk	ezdet(i)					
vanszk:=i	gaz; szk:=i	vanszk:=	vanszk; szk:=szk				
jóe:=szig	etvég(i) és vans	szk					
nem jóe	nem jóe van és jóe nem van és jó						
_	t:=i-szk	van:=igaz					
	t>max	(max:=i-szk				
	max:=t	_	v:=i				
	v:=i						
van /							
k • = v - may + 1			_				

Funkcionálisan ugyanaz!

Másképp: algoritmikus gondolkodással

Ötlet: ha szárazföld fölött vagyunk, akkor növeljünk egy változót, és ennek a maximuma kell!

Másképp: rekurzív függvény

Ötlet: vezessünk be egy függvényt, amely minden pontban megmondja, hogy mekkora a távolság a szigetkezdet óta (tengernél 0). Hol veszi fel ez a legnagyobb értékét?

Specifikáció:

100

Másképp: visszavezetés

Specifikáció:

```
Fv: hossz:N->N, hossz(i)=\{0, ha i<1;
```

0, ha mag[i]=0;

táv(i-1)+1 egyébként}

maxind

maxért

T(i)

e..u ~ 1..n

f(i) ~ hossz(i)

Uf: (van, v, max) = MAX(i=1...n, hossz(i), mag[i]>0) és van -> k=v-max+1

van

Feltételes maximumkeresés

max

 $\sim mag[i]>0$

hossz(i:Egész):Egész

Másképp: rekurzió átírása

i<1	mag[i]=0	i>=1 és mag[i]>0
hossz:=0	hossz:=0	hossz:=hossz(i-1)+1

hossz(i:Egész):Egész

Másképp: rekurzió átírása hossz:=0

i<1 mag[i]=0 i>=1 és mag[i]>0 hossz:=0 hossz:=hossz(i-1)+1

van:=hamis; h:=0					
	i=1n				
	mag[[i]=0			
h:=0		h:=h+1			
jóe:=mag[i]) 0				
nem jóe	n jóe 📉 van és jóe 🥄 n			9	
_	h>ma	X /	van:=igaz		
	max:=h	_	max:=h		
	v:=i	v:=i			
van					
k:=v-max+1			_		

Újra: összehasonlítás

Algoritmikus gondolkodással

Rekurzív függvénnyel

Ez ugyanaz!!!

Rekurzív megoldás

Mindenhol, ahol "közben" megjegyzünk, gyűjtögetünk, és az előzővel ki tudjuk fejezni rekurzívan, ld. pl. az általánosított összegzést

Halmazok (dinamikus) tömbben

Halmazok

- Minden elem egyszer szerepel benne
- Ábrázolás
 - (Dinamikus) tömbben
 - Logikai vektorban

									10
h	i	i	h	h	h	i	h	h	h

HalmazE

1	2	3
3	7	2

HalmazE: Minden elem egyszer szerepel-e?

Másképp: Minden elemre igaz, hogy előtte nem szerepel önmaga?

```
Be: n∈N, h∈Z[1..n]
Ki: halmaze∈L
Fv: nincs:N->L, nincs(i)=MIND(j=1..i-1, h[i]≠h[j])
Ef: -
Uf: halmaze=MIND(i=2..n, nincs(i))
```

ElemeE

_ 1	2	3
3	7	2

ElemeE: Egy adott érték benne van-e a tömbben?

```
Be: n∈N, h∈Z[1..n], e∈Z
Ki: elemee∈L
Ef: -
Uf: elemee=VAN(i=1..n, h[i]=e)
```

HalmazÉpít

1	2	3
3	7	2

HalmazÉpít: Egy "sima" tömböt halmazzá alakít.

Másképp: Válogassuk az egyszer szereplő elemeket (akik előtt nincs önmaguk).

```
Be: n∈N, t∈Z[1..n]
Ki: db∈N, h∈Z[1..db]
Fv: nincs:N->L, nincs(i)=MIND(j=1..i-1, t[i]≠t[j])
Ef: -
Uf: (db,h)=KIVÁLOGAT(i=1..n, nincs(i), t[i])
```

Metszet

1	2	3
3	7	2

1	2	3	4	5
1	4	5	2	7

Metszet: Vegyük két halmaz azon elemeit, amelyek az egyikben <mark>és</mark> a másikban is benne vannak!

Metszet

1	2	3
3	7	2

1	2	3	4	5
1	4	5	2	7

Metszet: Vegyük két halmaz azon elemeit, amelyek az egyikben <mark>és</mark> a másikban is benne vannak!

Másképp: Válogassuk ki az egyik tömbből azokat az elemeket, amelyek a másikban is benne vannak!

```
Be: n \in \mathbb{N}, x \in \mathbb{Z}[1..n], m \in \mathbb{N}, y \in \mathbb{Z}[1..m]

Ki: db \in \mathbb{N}, metszet \in \mathbb{Z}[1..db]

Fv: benne: \mathbb{N} - > \mathbb{L}, benne(i) = VAN(j = 1..m, x[i] = y[j])

Ef: HalmazE(x) és HalmazE(y)

Uf: (db, metszet) = KIVÁLOGAT(i = 1..n, benne(i), x[i])
```

1	2	3
3	7	2

1	2	3	4	5
1	4	5	2	7

Unió: Vegyük két halmaz azon elemeit, amelyek vagy az egyikben, <mark>vagy</mark> a másikban vannak!

1	2	3
3	7	2

1	2	3	4	5
1	4	5	2	7

Másképp: Vegyük az egyik tömböt, majd válogassuk ki a másikból azokat az elemeket, amelyek az egyikből hiányoznak, és fűzzük a végére!

```
Be: n∈N, x∈Z[1..n], m∈N, y∈Z[1..m]
Ki: db∈N, unió∈Z[1..db]
Sa: deltadb∈N, delta∈Z[1..deltadb]
Fv: benne:N->L, benne(i)=VAN(j=1..n, y[i]=x[j])
Ef: HalmazE(x) és HalmazE(y)
Uf: (deltadb,delta)=KIVÁLOGAT(i=1..m, nem benne(i), y[i]) és db=n+deltadb és
∀i∈[1..n]:(unió[i]=x[i]) és
∀i∈[1..deltadb]:(unió[n+i]=delta[i])
```

1	2	3
3	7	2

1	2	3	4	5
1	4	5	2	7

Másképp: Vegyük az egyik tömböt, majd válogassuk ki a másikból azokat az elemeket, amelyek az egyikből hiányoznak, és fűzzük a végére!

```
Be: n∈N, x∈Z[1..n], m∈N, y∈Z[1..m]
Ki: db∈N, unió∈Z[1..db]
Sa: deltadb∈N, delta∈Z[1..deltadb]
Fv: benne:N->L, benne(i)=VAN(j=1..n, y[i]=x[j])
Fv: f:N->Z, f(i)={x[i], ha 1<=i<=n; delta[i-n] egyébként}
Ef: -
Uf: (deltadb,delta)=KIVÁLOGAT(i=1..m, nem benne(i), y[i]) és db=n+deltadb és unió=MÁSOL(i=1..db, f(i))</pre>
```

Halmazba

Halmazba: Egy elem betevése a halmazba.

Másképp: Ha nincs a tömbben, tegyük a tömb végére.

Halmazba

1	2	3		
3	7	2		

Halmazba: Egy elem betevése a halmazba.

Másképp: Ha nincs a tömbben, tegyük a tömb végére.

Állapottér specifikáció:

Halmazból

Halmazba: Egy elem kivétele a halmazból.

Másképp: Ha benne van a tömbben, a tömb utolsó elemét tegyük a helyére.

Halmazok logikai vektor

Halmazok

- Minden elem egyszer szerepel benne
- Ábrázolás
 - (Dinamikus) tömbben
 - Logikai vektorban

ElemeE

1	2	3
3	7	2

_ 1	2	3	4	5	6	7	8	9	10
h	i	i	h	h	h	i	h	h	h

ElemeE: Egy adott érték benne van-e a tömbben?

Specifikáció:

Be: $n \in \mathbb{N}$, $h \in L[1..n]$, $e \in [1..n]$

Ki: elemee∈L

Ef: -

Uf: elemee=h[e]

HalmazÉpít

1	2	3	4	5	6	7	8	9	10
h	i		h	h	h	i	h	h	h

HalmazÉpít: Egy "sima" tömböt halmazzá alakít.

Másképp: Azok az elemek igazak, amelyek szerepelnek a tömbben.

```
Be: tdb∈N, t∈E[1..tdb], n∈N, E=[1..n]
Ki: h∈L[1..n]
Fv: benne:N->L, benne(i)=VAN(j=1..tdb, t[j]=i)
Ef: -
Uf: h=MÁSOL(i=1..n, benne(i))
```

Metszet

Metszet: Vegyük két halmaz azon elemeit, amelyek az egyikben és a másikban is benne vannak!

```
Be: n∈N, x∈L[1..n], y∈L[1..n]
Ki: metszet∈L[1..n]
Ef: -
Uf: metszet=MÁSOL(i=1..n, x[i] és y[i])
```

```
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10

    h
    h
    i
    h
    i
    h
    i
    h
    i
    h

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10

    h
    i
    i
    h
    h
    i
    h
    h
    h
```

Unió: Vegyük két halmaz azon elemeit, amelyek az egyikben <mark>vagy</mark> a másikban is benne vannak!

```
Be: n∈N, x∈L[1..n], y∈L[1..n]
Ki: unió∈L[1..n]
Ef: -
Uf: unió=MÁSOL(i=1..n, x[i] vagy y[i])
```

									10
h	h		h	h	h		h	.—	h
1	2	3	4	5	6	7	8	9	10
h	i	i	h	h	h	-	h	h	h

Halmazba

1	2	3	4	5	6	7	8	9	10
h	i		h	h	h	i	h	h	h

Halmazba: Az adott elemet állítsuk <mark>igazra</mark>, a többi változatlan!

Halmazból

1	2	3	4	5	6	7	8	9	10
h	i	i	h	h	h	i	h	h	h

Halmazba: Az adott elemet állítsuk <mark>hamisra</mark>, a többi változatlan!