Федеральное государственное автономное образовательное учреждение высшег	O'
образования «Национальный исследовательский университет ИТМО»	

Факультет программной инженерии и компьютерной техники

Расчетно-графическая работа № 2 по дисциплине «Математическая статистика»

Вариант 1

Выполнили: Вавилина Екатерина, Медведева Даниэла

Группа: Р3230

Преподаватель: Лукина Марина Владимировна

Цель работы

Исследовать методы построения доверительных интервалов для параметров распределений Бернулли, равномерного и нормального закона. Сгенерировать выборки различных объемов, рассчитать средние значения и построить как точные, так и асимптотические доверительные интервалы для параметров распределений. Проанализировать, как меняется ширина интервалов при увеличении объема выборки.

1 Выборка с законом распределения Бернулли

n	<u>X</u>	
100	0.1800	
200	0.200	
300	0.1867	
400	0.2200	
500	0.2200	
600	0.2050	
700	0.1771	
800	0.2075	
900	0.1678	
1000	0.1870	

2 Построение асимптотического доверительного интервала для параметра **Ө** Для нашего варианта:

$$\Theta = 0.2$$

$$\alpha = 1 - \varepsilon = 0.8$$

$$\varepsilon = 0.2$$

Найдем квантиль для уровня $1 - \frac{\varepsilon}{2} = 1 - \frac{0.2}{2} = 0.9$. Ближайшее значение квантиля $\tau_{0.9} = 1.29$.

Вычислим границы для каждого интервала:
$$(\Theta, \underline{\Theta}) = (\underline{X} - \tau_{0.9} \cdot \sqrt{\frac{\underline{X}(l - \underline{X})}{n}}, \underline{X} + \tau_{0.9} \cdot \sqrt{\frac{\underline{X}(l - \underline{X})}{n}})$$

Получим таблицу:

n	<u>X</u>	Θ	<u>Θ</u>
100	0.1800	0.1308	0.2292
200	0.200	0.1638	0.2362

300	0.1867	0.1578	0.2155
400	0.2200	0.1935	0.2465
500	0.2200	0.1963	0.2437
600	0.2050	0.1839	0.2261
700	0.1771	0.1586	0.1956
800	0.2075	0.1819	0.2259
900	0.1678	0.1518	0.1837
1000	0.1870	0.1712	0.2028

Построим график интервалов:

3 Выборка с равномерным законом распределения

Для нашего варианта:

$$\Theta = 3$$

$$\alpha = 1 - \varepsilon = 0.85$$

$$\varepsilon = 0.15$$

n	X_n
---	-------

100	2.9629
200	2.9668
300	2.9858
400	2.9959
500	2.9903
600	3.0000
700	2.9970
800	2.9937
900	2.9974
1000	2.9950

4 Построение точного доверительного интервала для параметра Ө

Вычислим границы для каждого интервала: $(X_n, \frac{X_n}{\sqrt[n]{\varepsilon}})$

n	X_n	Θ	<u>0</u>
100	2.9629	2.9629	3.0196
200	2.9668	2.9668	2.9950
300	2.9858	2.9858	3.0047
400	2.9959	2.9959	3.0102
500	2.9903	2.9903	3.0017
600	3.0000	3.0000	3.0095
700	2.9970	2.9970	3.0051
800	2.9937	2.9937	3.0008
900	2.9974	2.9974	3.0037
1000	2.9950	2.9950	3.0007

Построим график интервалов:

5 Построение асимптотического доверительного интервала для параметра \Theta Найдем квантиль для уровня $1-\frac{\varepsilon}{2}=1-\frac{0.15}{2}=0.925$. Ближайшее значение квантиля $au_{0.925}=$ *1.44*.

Вычислим границы для каждого интервала: $(\theta, \underline{\theta}) = (\frac{2\underline{X}}{1 + \frac{\tau_{0.925}}{\sqrt{3n}}}, \frac{2\underline{X}}{1 - \frac{\tau_{0.925}}{\sqrt{3n}}})$

Получим таблицу:

n	<u>X</u>	Θ	<u> </u>
100	1.4560	2.6886	3.1761
200	1.4613	2.7603	3.1050
300	1.4375	2.7434	3.0200
400	1.5172	2.9134	3.1661
500	1.5167	2.9248	3.1506
600	1.5020	2.9055	3.1096
700	1.4354	2.7833	2.9639
800	1.4776	2.8708	3.0446
900	1.4614	2.8440	3.0061
1000	1.4520	2.8297	2.9824

Построим график интервалов:

И объединенный график:

6 Построение доверительных интервалов для математического ожидания и дисперсии нормального закона

$$\alpha = 1 - \varepsilon = 0.90$$

Выборка:

2.47 2.98 2.83 3.86 3.22 2.82 3.41 1.96 2.55 2.30 2.40 2.39 2.81 3.44 2.05 2.33 3.98 2.56 3.14 2.85 3.11 2.93 3.43 2.38 2.42 2.49 3.25 1.19 2.90 3.10 2.60 2.73 2.65 3.52 3.15 3.55 2.14 3.01 3.39 3.38 3.03 1.08 0.72 1.26 1.90 2.37 2.00 3.29 2.78 3.12 2.03 2.90 2.08 1.85 2.36 2.42 3.66 3.33 2.03 3.96 3.50 2.78 3.82 2.34 0.90 3.17 2.89 2.27 3.16 1.06 2.82 3.54 3.19 4.05 3.22 2.94 3.48 3.17 2.84 2.20 1.26 2.78 3.38 2.15 2.25 1.31 2.55 2.13 2.50 2.28 2.84 1.93 0.68 3.64 2.49 2.46 2.79 2.61 1.54 2.49

$$\underline{X} = \frac{1}{n} \sum_{i=1}^{n} x_{i} = 2.6524$$

$$S_{0}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \underline{X})^{2} = 0.5432$$

$$n - 1 = 99$$

$$1 - \frac{\varepsilon}{2} = 1 - \frac{0.1}{2} = 0.95$$

По таблице распределения Стьюдента, значение $\tau_2=1.66$ Границы доверительного интервала для мат. ожидания: $(\Theta,\underline{\Theta})=(\underline{X}-\tau_2\cdot\frac{S_0}{\sqrt{n}},\underline{X}+\tau_2\cdot\frac{S_0}{\sqrt{n}})=(2.5300,2.7748)$

По таблице распределения "хи-квадрат", значение $c_1=77.0463$ и $c_2=123.2252$ Границы доверительного интервала для дисперсии: $(\Theta,\underline{\Theta})=(\frac{\sigma^2}{c_2},\frac{\sigma^2}{c_I})=(\frac{(n-I)\cdot S_0^2}{c_2},\frac{(n-I)\cdot S_0^2}{c_I})=(0.4364,0.6980)$

Выводы

В ходе выполнения работы мы рассчитали доверительные интервалы для распределений Бернулли, равномерного и нормального закона. Увидели, что при увеличении объема выборки интервалы становятся уже, а точность оценок растет.

При больших объемах выборки асимптотические интервалы практически совпадают с точными. Также мы научились использовать квантильные значения из разных распределений для построения интервалов.