Eine Woche, ein Beispiel 7.2. compactifications of N

We assume the Zorn's lemma, so that BIN exists.

https://en.wikipedia.org/wiki/Stone%E2%80%93%C4%8Cech_compactification

Jan van Mill has described β N as a "three headed monster"—the three heads being a smiling and friendly head (the behaviour under the assumption of the continuum hypothesis), the ugly head of independence which constantly tries to confuse you (determining what behaviour is possible in different models of set theory), and the third head is the smallest of all (what you can prove about it in ZFC).

https://ericmoorhouse.org/handouts/

	 	 	
X	Spec Z	{ h } U [0]	βIN
NCX	[m]	11 [18]	?
open/closed	× / ×	√ /x	1/?
open/closed restricted topo	cofinite	discrete	discrete
cpt/seq cpt	V /V	1/1	√/×
cpt/seq cpt Hausdorff	×	\bigvee	✓
second countable	✓	√	X
connectness	(path) connected	totally disconnected	totally disconnected
π,(X,*)	FId}	,	,
Hn (x ; Z)			
Hn (X; Z)			
$\pi_n(X,*)$			

You can check these information from this database: https://topology.pi-base.org/

Wait to do: read

 $https://en.wikipedia.org/wiki/Stone\%E2\%80\%93\%C4\%8Cech_compactification try to understand$

- What is ultrafilter
- Why do we have
$$l^{\infty}(IN) \cong C(\beta IN)$$

$$(L^{\infty}(IN))' \cong \beta \text{ Borel measures on } \beta IN \beta$$
- How is the monoid structure on βIN defined.

 $https://math.stackexchange.com/questions/3807214/why-is-the-stone-space-of-a-boolean-algebra-compact\\ https://math.stackexchange.com/questions/1517076/compactness-of-the-stone-%c4%8cech-compactification-by-ultrafilters\\ https://math.stackexchange.com/questions/2158155/can-you-get-a-non-principal-ultrafilter-on-n-using-choice-but-avoiding-zorns\\ https://math.stackexchange.com/questions/1568548/where-has-this-common-generalization-of-nets-and-filters-been-written-down$

 $https://pointatinfinityblog.wordpress.com/2016/05/09/\\ https://www.math.toronto.edu/~drorbn/classes/9293/131/ultra.pdf$