Itabilitatea sistemelor dinamice

Teorema 2 are o versiume corespunzatoare pontru sistemele în timp discret=> Pentru un sistem cu un polinom caracteristie

△(¥)= ,an £"+ an-1 £"+...+ a12+ a0=0

conditia mecesară și suficientă de stabilitate este ca toate rădăcimile să sie plasate în înteriorul discului unitate al planului I, |Zv| < 1, V=1...m

Listemul va ji:

• stabil, dacă 12v/41, v=1...m - rădăcimile ecuatiei catacteristice • instabil, dacă cel puțin o rădăcimă a ecuatiei caracteristice

este 12v1>1

· pentru valorile 121=1, în sistem se înstalează regimuri particulare care denota enstabilitate, astfel pentru:

- =+1, iesirea este liniar crescatoale;

- Zv=-1, i exirea este escilanta

Exemplul 5 (pag6) a yi b

& Victorial de stabilitate Jury

Ecuatia caracteristica a sistemului

D(Z)= , am Z"+ am-1 Z"+...+ a/Z+ a0/0 -cu am/0 este utilizata pentru construirea matricei pentru testul de stabilitate al lui Jury (denumità si matricea Jury). Elementele situate pe liniile pare sunt elementele de pe linia precedenta în ordine împersă. Elementele situate pe liniile impare sunt:

Linie	¥°	是人	¥ ²	Zm-&	是 ^{m-2}	2 ^{m-1}	Zm
1	ao	aj	az	am-k	an-2	am-1	a_m
2	am	an-1	an-2.	ag	a_2	a	90
3	50	64	be	bm-k	bm-2	bm-1	annual of the same
4	bm-4	bm-2	bm-3	1	61	50	annich transport
5	Co	CI	Ca	Cm-b	Cm-2	_	_
6	Cm-2	Cm-3	Cm-4	C&	·Co		
							-
2m-5	Po	PI	P2	P3	_	SALESSA SALES	
2m-4	P3	P2.	Pn	Po	-	_	_
2m-	3 20	21	22	_			

Sistemul liniar cu polino mul caracteristic este stabil dacă si numai dacă sunt îndeplinite cele m+1 condiții (cu anro):

Exemplul 3 (pag5)

(m+1)

Apricatia 1: Ecuatia caracteristica a unu sistem in temp discret este data de Q3=1

△(え)= 23+2,122+1,44 又+932= a323+a2×2+a12+a0=> az=2,1 a1=1,44 , cu m= 3 si A3=1>0

90=032

Sunt testate primele 3 concliti de stabilitate:

$$\Delta(-1) = -1+2, 1-1/4+0, 32 = -0,0220 (m=3 impat)$$

$$b_0 = \begin{vmatrix} a_0 & a_3 \\ a_3 & a_0 \end{vmatrix} = a_0^2 - a_3^2 = (0,32)^2 - 1 = -0,8976$$

$$b_1 = \begin{vmatrix} a_0 & a_2 \\ a_3 & a_1 \end{vmatrix} = a_0 a_1 - a_2 a_3 = 0,32 \cdot 1,44 - 2,1 = -1,6392$$

$$b_2 = \begin{vmatrix} a_0 & a_1 \\ a_3 & a_2 \end{vmatrix} = a_0 a_2 - a_1 a_3 = 932 \cdot 2,1 - 1,44 = -0,768$$

Linie	¥°	21	之	73
1	(00)	(0.1)	2,1 (92)	(93)
9	1	2,1 (a2)	1,44 (a1)	0,32
2	-0,8976	-1,6392	-0,768	
3	(50)	(51)	(62)	
1 4	(ba)	(61)	(60)	

Vatorità faptului cà cele 4, conditii sunt îndeplimite =>

sistemul este stabil Aplicatia 2 (Tema de casa 6): La se determine valoarea lui k pentru care sistemul cu f d.t. în buclă deschisă Ho(\(\pm\))=\(\lambda\)(\(\pm\)2\(\pm\)+0,2 este stabil.