Отчёт прохождения внешнего курса

Безопасность в сети

Тарутина Кристина

Содержание

1	Цель работы	5
2	Выполнение контрольных заданий	6
3	Выводы	16
Сп	писок литературы	17

Список иллюстраций

2.1	Задание 1.		•	•	•	•	•	•	•	•					•	•	•	•		•	•	•	6
2.2	Задание 2.																						7
2.3	Задание 3.																						7
2.4	Задание 4.																						8
2.5	Задание 5.																						8
2.6	Задание 6.																						9
2.7	Задание 7.																						9
2.8	Задание 8.																						9
2.9	Задание 9.																						10
2.10	Задание 10																						10
2.11	Задание 11																						11
2.12	Задание 12																						11
2.13	Задание 13																						11
2.14	Задание 14																						12
2.15	Задание 15																						12
2.16	Задание 16																						13
2.17	Задание 17																						13
2.18	Задание 18																						14
2.19	Задание 19																						14
2.20	Задание 20																						14
2.21	Задание 21																						15
2.22	Залание 22		_				_									_							15

Список таблиц

1 Цель работы

Провести контроль усвоения теоритического материала раздела "Безопасность в сети"

2 Выполнение контрольных заданий

Протокол HTTP(S) является примером протокола прикладного уровня, по которому передаются веб-страницы. Об этом как раз говорилось в лекции. (рис. 2.1).

Рис. 2.1: Задание 1

На транспортном уровне существуют два основных протокола: ТСР и UDP. ТСР, в честь которого названа модель, обеспечивает надежную передачу пакетов данных. В отличие от него, UDP не гарантирует надежную доставку. Протокол ТСР используется для передачи таких данных, как электронная почта или веб-страницы, где важна целостность информации.(рис. 2.2).

Рис. 2.2: Задание 2

IP-адреса представляют из себя числа от 0 до 255, разделённый точкой, так что выбираете те варианты, где числа находятся в данном диапазоне(рис. 2.3).

Рис. 2.3: Задание 3

В лекции говорилось, что: "основная задача этого DNS-сервера - это сопоставить название, то есть доменное имя, с корректным IP-адресом, с тем, где лежит этот сервер, этот сайт" (рис. 2.4).

Рис. 2.4: Задание 4

Всё начинается с прикладного уровня, предоставляющего доступ для пользовательских программ к службам интернета, после чего переходит на транспортный. Там происходит адресация и передача данных. Потом мы переходим на сетевой уровень, где вычисляем возможность доставки данных и они передаются между физичскими сетями. И уже потом идёт канальный уровень(рис. 2.5).

Рис. 2.5: Задание 5

Он предполагает передачу данных между клиентом и сервером в открытом виде, а вот HTTPS в зашифрованном. ДОполнительная буква s как бы даже намекает нам на это(рис. 2.6).

Рис. 2.6: Задание 6

Из двух фактов. СНачала происходит процесс "рукопожатия", а уже потом пердачи данных.(рис. 2.7).

Рис. 2.7: Задание 7

ВЕрсия протокола определяется не только клиентом, она также определяется сервером, как бы с двух сторон одновременно(рис. 2.8).

Рис. 2.8: Задание 8

Шифрования данных. Оно происходит позже, а вот все подготовительные эта-

пы, выбор алгоритмов, формирование секретного ключа как раз происходят в фазе рукопожатия(рис. 2.9).

Рис. 2.9: Задание 9

Куки хранят индентификатор пользователя и id сессии, но они никога, ни в коем случае не будут хранить пароля пользователя. Это не только нецелесообразно, но и попросту опасно(рис. 2.10).

Рис. 2.10: Задание 10

Для улучшения надежности соединения, для всего остального они используются. ДАже наша персонализирующая реклама, удивляющая многих не сведущих в этой теме пользователей, существует благодаря куки(рис. 2.11).

Рис. 2.11: Задание 11

Куки генерируются сервером, они не могут быть созданы клиентом(рис. 2.12).

Рис. 2.12: Задание 12

Да, на время пользования веб-сайтом. Если, допустим, закрыть вкладку, то содержимое корзины в каком-нибудь онлайн магазине, использующим сессионные куки, пропадёт(рис. 2.13).

Рис. 2.13: Задание 13

Промежуточных узлов три. Два узла не гарантируют анонимизации, а 4 уже

избыточно и не добавляет никакой эффективности(рис. 2.14).

Рис. 2.14: Задание 14

Известен отправителю и выходному узлу. Ни охранный, ни промежуточный его не знают.(рис. 2.15).

Рис. 2.15: Задание 15

С охранным, выходным и промежуточным узлом. Причём с промежуточным и выходным узлом он генерирует ключ с помощью охранного узла(рис. 2.16).

Рис. 2.16: Задание 16

Конечно нет. С этим могут справиться и другие браузеры.(рис. 2.17).

Рис. 2.17: Задание 17

В общем, WiFi – это технология беспроводной локальной сети, которая базируется на стандарте IEEE 802.11. IEEE представляет собой организацию, которая устанавливает стандарты для работы сети Интернет. Она определяет принципы функционирования беспроводного интернета, начиная с номера стандарта 802.11, и все последующие модификации этого стандарта носят аналогичное обозначение, за которым следуют дополнительные буквы.(рис. 2.18).

Рис. 2.18: Задание 18

На канальном уровне. В том числе канальный уровень обеспечивает помехоустойчивость(рис. 2.19).

Рис. 2.19: Задание 19

Это WEP. А вот остальные методы вполне безопасны(рис. 2.20).

Рис. 2.20: Задание 20

Передаются в зашифрованном виде только после аутентификации устройств. Это обеспечивает защиту данных, иначе бы их могли украсть(рис. 2.21).

Рис. 2.21: Задание 21

НУ здесь можно догадаться даже не изучая курс, только по самим названиям. Хотя конечно об этом говорилось и в лекции.(рис. 2.22).

Рис. 2.22: Задание 22

3 Выводы

Мы успешно прошли контроль усвоения теоритического материала раздела "Безопасность в сети"

Список литературы