Nom:			Groupe:
	LIFL	C – Interro nº4	
Lire les questions.	Répondre dans le cadre.	Écrire au stylo (pas de crayon).	Tout document interdit
 Symboles de Symboles de Modéliser en logique 	prédicats : {Mange : 2, Po e du premier ordre la propo	$\mathtt{uin}:0, \mathtt{thon}:0, \mathtt{laitue_de_me}$ is $\mathtt{sson}:1, \mathtt{Algue}:1\}.$	
1. Si une argue o	est mangee par un poisson	aiors ii existe un poisson qui est in	ange par tout poisson.
Question 2. Soit E t	ın ensemble défini inductiv	-	
	$\left\{\begin{array}{cc} \rightarrow \\ e \rightarrow \end{array}\right.$	$Z(n,e)$ pour tout $n \in \mathbb{N}$ $W(e_1,e_2)$	
	$\left(\begin{array}{cc} e_1, e_2 \end{array}\right)$	$W(e_1,e_2)$	
1. Décrire comm	nent prouver par induction	qu'une propriété P est vérifiée par	tout élément de E .
2. Que peut-on	dire de E si on n'a pas la p		
	idère les signatures suivant	tes:	
	termes : $\{a:0,b:0\}$ prédicats : $\{A:1,B:1,C\}$	T: 1, D: 1	
		l'aide de la déduction naturelle :	
	$\{(\forall z, C(z)), (\forall x, C(x)$	$\Rightarrow A(x) \Rightarrow D(x), A(a) \} \vdash \exists y, D$	$\mathcal{O}(y)$

$$\frac{\Gamma \vdash F}{\Gamma, G \vdash F} \text{ (aff)}$$

$$\frac{\Gamma, F \vdash G}{\Gamma \vdash F \Rightarrow G} \ (\Rightarrow_i) \qquad \qquad \frac{\Gamma \vdash F \Rightarrow G \quad \Gamma \vdash F}{\Gamma \vdash G} \ (\Rightarrow_e)$$

$$\frac{\Gamma \vdash F \quad \Gamma \vdash G}{\Gamma \vdash F \land G} \ (\land_i) \qquad \qquad \frac{\Gamma \vdash F \land G}{\Gamma \vdash F} \ (\land_e^g) \quad \frac{\Gamma \vdash F \land G}{\Gamma \vdash G} \ (\land_e^d)$$

$$\frac{\Gamma \vdash F}{\Gamma \vdash F \lor G} \ (\vee_i^g) \quad \frac{\Gamma \vdash G}{\Gamma \vdash F \lor G} \ (\vee_i^d)$$

$$\frac{\Gamma \vdash F \lor G \quad \Gamma, F \vdash H \quad \Gamma, G \vdash H}{\Gamma \vdash H} \ (\lor_e)$$

$$\frac{\Gamma, F \vdash \bot}{\Gamma \vdash \neg F} \; (\neg_i) \qquad \qquad \frac{\Gamma \vdash \neg F \quad \Gamma \vdash F}{\Gamma \vdash \bot} \; (\neg_e) \qquad \qquad \frac{\Gamma, \neg F \vdash \bot}{\Gamma \vdash F} \; (\bot_c)$$

$$\frac{\Gamma \vdash F \text{ où } x \text{ non libre dans } \Gamma}{\Gamma \vdash \forall x, F} \ (\forall_i)$$

$$\frac{\Gamma \vdash \forall x, F}{\Gamma \vdash F[x \to t]} \ (\forall_e)$$

$$\frac{\Gamma \vdash F[x \to t]}{\Gamma \vdash \exists x, F} \ (\exists_i) \qquad \qquad \frac{\Gamma \vdash \exists x, F \quad \Gamma \cup \{F\} \vdash G \quad x \text{ libre } ni \text{ dans } \Gamma \text{ } ni \text{ dans } G}{\Gamma \vdash G} \ (\exists_e)$$

Nom:	Groupe:			
LIFLC – Interro nº4				
Lire les questions. Répondre dans le cadre. Écrire au stylo (pas de crayon). To Question 1. On considère les signatures suivantes: — Symboles de termes: {papillon:0, mante:0, frelon:0, mirabelle:0 — Symboles de prédicats: {Mange:2, insecte:1, fruit:1}. Modéliser en logique du premier ordre la proposition suivante: 1. S'il y a un insecte qui mange un insecte alors tout insecte est mangé par un insfruit (pas forcément le même pour tous).	0},			
Question 2. Soit E un ensemble défini inductivement par				
$\begin{cases} & \to & V(n) \text{ pour tout } n \in \mathbb{N} \\ e_1, e_2 & \to & R(e_1, e_2) \\ e_1, e_2 & \to & S(e_1, e_2) \end{cases}$ 1. Décrire comment prouver par induction qu'une propriété P est vérifiée par tou 2. Que peut-on dire de E si on n'a pas la première règle?	ut élément de $E.$			
2. Que peut on une de 2 oron n'a pas m premiere regie .				
Question 3. On considère les signatures suivantes : — Symboles de termes : $\{e_1:0,e_2:0\}$ — Symboles de prédicats : $\{H:1,I:1,J:1,K:1\}$ Montrer que le séquent suivant est prouvable à l'aide de la déduction naturelle :				
$\{(\forall z, J(z)), (\forall x, J(x) \Rightarrow I(x) \Rightarrow H(x)), I(e_1)\} \vdash \exists y, H(y)$	l			

$$\frac{\Gamma \vdash F}{\Gamma, G \vdash F} \text{ (aff)}$$

$$\frac{\Gamma, F \vdash G}{\Gamma \vdash F \Rightarrow G} \ (\Rightarrow_i) \qquad \qquad \frac{\Gamma \vdash F \Rightarrow G \quad \Gamma \vdash F}{\Gamma \vdash G} \ (\Rightarrow_e)$$

$$\frac{\Gamma \vdash F \quad \Gamma \vdash G}{\Gamma \vdash F \land G} \ (\land_i) \qquad \qquad \frac{\Gamma \vdash F \land G}{\Gamma \vdash F} \ (\land_e^g) \quad \frac{\Gamma \vdash F \land G}{\Gamma \vdash G} \ (\land_e^d)$$

$$\frac{\Gamma \vdash F}{\Gamma \vdash F \lor G} \ (\vee_i^g) \quad \frac{\Gamma \vdash G}{\Gamma \vdash F \lor G} \ (\vee_i^d)$$

$$\frac{\Gamma \vdash F \lor G \quad \Gamma, F \vdash H \quad \Gamma, G \vdash H}{\Gamma \vdash H} \ (\lor_e)$$

$$\frac{\Gamma, F \vdash \bot}{\Gamma \vdash \neg F} \; (\neg_i) \qquad \qquad \frac{\Gamma \vdash \neg F \quad \Gamma \vdash F}{\Gamma \vdash \bot} \; (\neg_e) \qquad \qquad \frac{\Gamma, \neg F \vdash \bot}{\Gamma \vdash F} \; (\bot_c)$$

$$\frac{\Gamma \vdash F \text{ où } x \text{ non libre dans } \Gamma}{\Gamma \vdash \forall x, F} \ (\forall_i)$$

$$\frac{\Gamma \vdash \forall x, F}{\Gamma \vdash F[x \to t]} \ (\forall_e)$$

$$\frac{\Gamma \vdash F[x \to t]}{\Gamma \vdash \exists x, F} \ (\exists_i) \qquad \qquad \frac{\Gamma \vdash \exists x, F \quad \Gamma \cup \{F\} \vdash G \quad x \text{ libre } ni \text{ dans } \Gamma \text{ } ni \text{ dans } G}{\Gamma \vdash G} \ (\exists_e)$$