Generating missing values for simulation purposes: A multivariate amputation approach

Rianne Schouten

- 1. University Utrecht, Department of Methodology and Statistics
 - 2. DPA Professionals, Data Science Excellence Program

July 7, 2017

Amputation

Amputation is the generation of missing values in complete data

Overview:

- ► Why?
- ► What?
- ► How?

require(mice)

?ampute

Evaluation of missing data methodologies:

- 1. Simulate complete data set
- 2. Generate missing values
- 3. Deal with missing data with new method
- 4. Compare statistical inferences

But also:

- Planned missing data survey designs
- Investigate measurement errors
- See effect missing data on your analyses

- Proportion
- Amputed variables

- Proportion
- Amputed variables
- Mechanism

MCAR: Mis not related to X or Y at all

MAR: Mis related to X but not to Y

MNAR: Mis related to Y


```
# Customers Phone Company
head(customer_data)
```

```
## Income Minutes Age
## 1 NA 1.9237723 0.4174930
## 2 -0.6322071 -0.2409715 0.2492411
## 3 -0.9443980 -1.2539681 -0.5233141
## 4 NA 3.1223591 1.2705289
## 5 -0.4703926 0.5594291 -0.9440021
## 6 -0.3342031 -0.7998914 -0.1937294
```


MCAR : Pr(Income = missing) = 0.5MAR : Pr(Income = missing) = AgeMNAR : Pr(Income = missing) = Income

- Proportion
- ► Amputed variables
- Mechanism
- Influencing variables
- Severity
- Missingness distribution

Amputation: How?

1. *Y*₁

	Y_1	Y_2	 Y_l ,	X_1	X_2	 X_m
1						
2	?					
:						
•						
	?					
	?					
n						
n						

Amputation: How?

1. *Y*₁

2. Y_2

Amputation: How?

- 1. *Y*₁
- 2. *Y*₂
- 3. ...
- 4. Y₁

Amputation with ampute

Multivariate Amputation:

Amputation with ampute

```
ampute(data, prop = 0.5, patterns = NULL, freq =
NULL, mech = "MAR", weights = NULL, cont = TRUE, type
= NULL, odds = NULL, bycases = TRUE, run = TRUE)
amp <- ampute(data)
class(amp)
## [1] "mads"</pre>
```

Amputation with ampute

head(amp\$amp)

```
## Income Minutes Age
## 1 0.8250012 1.9237723 NA
## 2 -0.6322071 -0.2409715 0.2492411
## 3 -0.9443980 -1.2539681 -0.5233141
## 4 NA 3.1223591 1.2705289
## 5 -0.4703926 0.5594291 -0.9440021
## 6 -0.3342031 NA -0.1937294
```

Documentation

require(mice)

?ampute

Vignette:

https://github.com/RianneSchouten/Amputation_with_Ampute

Contact:

Rianne Schouten, r.m.schouten@uu.nl, rianne.schouten@dpa.nl

Additional slides

A missing data pattern is a specific combination of variables with missing values and variables without missing values.

0: incomplete variable

1: complete variable

Additional slides

Additional slides

Table 1: Generation of MAR missingness on 2 variables with standard and shifted stepwise univariate amputation (SUA) and multivariate amputation (MA)

		$\% \mathrm{mis}$		complete case analysis			multiple imputation			
cor	condition	int	obt	bias	ciw	cov		bias	ciw	cov
	standard SUA	50	29	-0.146	0.144	0.028	-	0.002	0.156	0.940
0.5	shifted SUA	50	50	-0.233	0.172	0.000	-1	0.007	0.204	0.917
	MA with ampute	50	50	-0.207	0.172	0.002	-	0.005	0.193	0.936