Step-1

(a) If $P = P^T P$, we have to prove that P is a projection matrix.

For this we need to prove that $P^2 = P$, $P^T = P$

$$P^{T} = (P^{T}P)^{T}$$
$$= P^{T}(P^{T})^{T}$$
$$= P^{T}P$$
$$= P$$

Step-2

And

$$P = P^{T} P$$

$$= PP, \text{ since } P^{T} = P$$

$$= P^{2}$$

Therefore $P^2 = P$, $P^T = P$

Hence P is a projection matrix.

Step-3

(b) We have to find that what subspace the matrix P = 0 project onto.

The matrix P projects onto the subspace $Z = \{0\}$

 $\hat{A}\,\hat{A}\,\hat{A}\,\hat{A}$