VERSUCH 206

Die Wärmepumpe

Lars Kolk Julia Sobolewski lars.kolk@tu-dortmund.de julia.sobolewski@tu-dortmund.de

Durchführung: 19.12.2017 Abgabe: 09.01.2018

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	The	orie	3						
	1.1	Güteziffer	3						
	1.2	Massendurchsatz	4						
	1.3	Kompressorleistung	4						
	1.4	Aufbau und Funktionsweise der Wärmepumpe	5						
2	Auft	oau und Durchführung	6						
3	Auswertung								
	3.1	Temperaturverläufe	7						
	3.2	Güteziffer	10						
	3.3	Massendurchsatz	11						
	3.4	Mechanische Kompressorleistung	12						
4	Disk	cussion	13						
Li	teratu	ır	13						

1 Theorie

Ziel: Die Untersuchung des Transports von Wärmeenergie entgegen des Wärmeflusses.

1.1 Güteziffer

Nach dem zweiten Hauptsatz der Thermodynamik fließt Energie ohne äußeren Einfluss immer vom wärmeren ins kältere Reservoir, obwohl laut Energiesatz auch der umgekehrte Prozess möglich wäre. Fügt man dem System jedoch vom außen Energie zu, so kann Energie vom kälteren ins wärmere Reservoir fließen und es gilt

$$Q_1 = Q_2 + A, (1)$$

wobei Q_1 die zugeführte Energie zum wärmeren Reservoir und Q_2 die entnommene Energie aus dem kälteren Reservoir ist. A ist dabei die Arbeit, die für den Wärmetransport verrichtet werden muss. Das Verhältnis von Q_1 und A wird dabei als Güteziffer ν bezeichnet.

$$\nu = \frac{Q_1}{A} \stackrel{(3)}{\Rightarrow} \nu_{\text{ideal}} = \frac{T_1}{T_1 - T_2} \tag{2}$$

Aus dem zweiten Hauptsatz der Thermodynamik lässt sich ebenfalls der Zusammenhang

$$\frac{Q_1}{T_1} - \frac{Q_2}{T_2} = 0 (3)$$

herleiten. Dabei wurde die Annahme gemacht, dass sich die Temperatur in beiden Reservoiren während der Wärmeübertragung nicht ändert und der Prozess reversibel ist. Die Summe der reduzierten Wärmemengen $\int \frac{dQ}{R}$ verschwindet. Für nicht-reversible Prozesse gilt dagegen:

$$\frac{Q_1}{T_1} - \frac{Q_2}{T_2} > 0. (4)$$

Aus diesem Zusammenhang folgt, dass die Wärmepumpe besser arbeitet, wenn die Temperaturdifferenz zwischen den Reservoiren gering ist. Da (3) zur Berechnung der Güteziffer genutzt wurde, muss auch für diese für den realen Fall umgeschrieben werden:

$$\nu_{\text{real}} < \frac{T_1}{T_1 - T_2} \tag{5}$$

Für eine genauere Bestimmung der Güteziffer muss zunächst der Differenzenquotient $\frac{dT_1}{dt}$ über ein Zeitintervall dt betrachtet werden. Für die Wärmemenge $\frac{dQ_1}{dt}$ ergibt sich:

$$\frac{\mathrm{d}Q_1}{\mathrm{d}t} = (m_1 c_\omega + m_k c_k) \frac{\mathrm{d}T_1}{\mathrm{d}t}.$$
 (6)

Dabei ist m_1c_{ω} die Wärmekapazität des Wassers in Reservoir 1 und m_kc_k die Wärmekapazität der Kupferschlange und des Eimers. Für die reale Güteziffer ergibt sich also:

$$\nu_{\rm real} = \frac{1}{N} \frac{\mathrm{d}Q1}{\mathrm{d}t},\tag{7}$$

Wobei N die momentane Leistung des Kompressors ist.

1.2 Massendurchsatz

Die dem Reservoir 2 entnommende Wärmemenge pro Zeiteinheit lässt sich aus

$$\frac{\mathrm{d}Q_2}{\mathrm{d}t} = (m_2 c_\omega + m_k c_k) \frac{\mathrm{d}T_2}{\mathrm{d}t} \tag{8}$$

bestimmen. Da die Wärmeübertragung hier durch Verdampfung geschieht, lässt sich der Massendurchsatz durch

$$\frac{dQ_2}{dt} = L\frac{\mathrm{d}m}{\mathrm{d}t} \tag{9}$$

bestimmen, wenn die Verdampfungswärme L bekannt ist.

1.3 Kompressorleistung

Für die Arbeit A_m , die benötigt wird, um ein Gas eines Volumens V_a auf ein Volumen V_b zu verkleinern, gilt algemein:

$$A_m = \int_{V_b}^{V_a} \rho \mathrm{d}V \tag{10}$$

Mithilfe der poissonschen Gleichung

$$\rho_a V_a^{\kappa} = \rho_b V_b^{\kappa} = \rho V^{\kappa} \tag{11}$$

und

$$N_{\text{mech}} = \frac{dA_m}{dt} \tag{12}$$

erhält man für die gemittelte Leistung:

$$N_{\text{mech}} = \frac{1}{\kappa - 1} \cdot \left(p_b \cdot \sqrt[\kappa]{\frac{p_a}{p_b}} - p_a \right) \cdot \frac{1}{\rho} \cdot \frac{\mathrm{d}m}{\mathrm{d}t}. \tag{13}$$

 ρ ist hier die Dichte des Transportsmediums im gasförmigen Zustand.

1.4 Aufbau und Funktionsweise der Wärmepumpe

Das Transportmedium in der Wärmepumpe ist hier ein reales Gas, das, ähnlich wie Wasserdampf, in der Lage ist, beim Verdampfen Energie aufzunehmen und bei Kondensation abzugeben. Diese Energie wird als Phasenwandlungsenergie bezeichnet.

Abbildung 1: Aufbau der Wärmepumpe [2, S. 3]

Die Apparatur ist so gebaut, dass das Transportmedium unter der Temperatur T_1 und dem Druck p_b flüssig ist, während es unter der Temperatur T_2 dem Druck p_a gasförmig ist. Wird das Drosselventil D geöffnet, verdampft das Transportmedium nach dessen Durchquerung und entzieht dem Reservoir 2 die Verdampfungswärme L pro Gramm Substanz. Somit ist Reservoir 2 das wärmespendende Reservoir. Daraufhin wird das Transportmedium im Kompressor K adiabatisch komprimiert. Dies hat zur Folge, dass die Temperatur des Transportmediums steigt und dieses sich unter dem Druck p_b wieder verflüssigt.

Weitere relevante Bauteile sind der Reiniger R und die Steuerung S. Diese sind nicht zwingend erforderlich, da die Pumpe theoretisch auch ohne diese funktioniert. Sie werden jedoch genutzt, um den Ablauf zu optimieren. Der Reiniger R sorgt dafür, dass Blasen, und somit Gasreste, entfernt werden. Die Steuerung S stellt dagegen sicher, dass keine Flüssigkeit in den Kompressor gelangt.

2 Aufbau und Durchführung

Abbildung 2: Experimenteller Aufbau [2, S. 4]

Zunächst wird der Versuch entsprechend der Abbildung aufgebaut. Die Reservoire 1 und 2 werden daraufhin mit einer genau abgemessenen Wassermenge befüllt die gegebenen Daten zur Wärmekapazität notiert. Daraufhin wird die Apperatur eingeschaltet. Die angezeigten Werte für $T_1,\,T_2,\,p_a,\,p_b$ und N werden im Minutentakt abgelesen und notiert. Dies wird so lange gemacht, bis das Wasser in Reservoir 1 50 °C erreicht oder das Wasser

im anderen Reservoir zufriert. Zu den angezeigten Drücken p_a und p_b muss bei der Auswertung noch der Umgebungsdruck berücksichtigt werden.

3 Auswertung

3.1 Temperaturverläufe

Die aufgenommenen Messwerte befinden sich in Tabelle 1. Es wird direkt jeweils ein Bar auf die abgelesenen Messwerte p_a und p_b addiert.

Tabelle 1: Temperaturverläufe

t/s	T_1 / °C	T_2 / °C	p_a / bar	p_b / bar	N/W
0	20,1	19,6	4,8	4,5	0
60	20,5	19,5	4,1	6,0	115
120	21,5	19,1	4,2	6,0	120
180	22,6	18,0	4,4	6,1	120
240	23,7	17,1	$4,\!4$	7,0	125
300	24,9	16,1	4,4	7,0	125
360	26,1	15,2	4,3	7,0	120
420	27,3	14,4	4,2	7,0	120
480	$28,\!5$	13,7	4,1	7,5	120
540	29,5	13,0	4,0	7,5	120
600	30,7	12,3	3,9	8,0	120
660	31,7	11,6	$3,\!8$	8,0	120
720	32,7	10,9	$3,\!8$	8,0	120
780	33,7	10,2	3,7	$8,\!5$	120
840	34,6	9,5	3,6	8,8	120
900	35,6	8,8	3,6	9,0	120
960	36,4	8,2	3,6	9,0	120
1020	37,3	7,6	$3,\!5$	9,0	120
1080	38,2	7,0	3,4	9,5	120
1140	39,0	$6,\!5$	3,4	9,5	120
1200	39,7	6,0	3,4	10,0	120
1260	40,5	$5,\!5$	3,4	10,0	120
1320	41,3	5,0	3,3	10,0	125
1380	42,0	4,6	3,3	10,0	125
1440	42,7	4,2	3,2	10,5	125
1500	43,3	$3,\!8$	3,2	10,5	125
1560	44,0	$3,\!5$	3,2	11,0	125
1620	44,7	3,1	3,2	11,0	125
1680	45,3	2,8	3,2	11,0	125
1740	45,9	2,5	3,2	11,0	115
1800	46,5	2,2	3,2	$11,\!5$	115
1860	47,1	1,9	3,2	11,5	115
1920	47,7	1,7	3,2	11,5	115
1980	48,2	1,4	3,1	12,0	115
2040	48,8	1,2	3,1	12,0	115
2100	49,3	1,0	3,1	12,0	115
2160	49,8	0,9	3,1	12,0	115

Aus diesen Messwerten folgt Abbildung 3:

Abbildung 3: T-t-Diagramm

Mithilfe der Messwerte wird eine Regression $T(t)=at^2+bt+c$ durchgeführt, die für T_1 die Werte

$$a = (-3,0728 \pm 0,0897) \cdot 10^{-6} \frac{\text{K}}{\text{s}^2}$$

$$b = (0,0207 \pm 0,0002) \frac{\text{K}}{\text{s}}$$

$$c = (292,4180 \pm 0,0936) \text{ K}$$

und für ${\cal T}_2$ die Werte

$$a = (3,0223 \pm 0,0851) \cdot 10^{-6} \frac{\mathrm{K}}{\mathrm{s}^2}$$

$$b = (-0,0156 \pm 0,0002) \frac{\mathrm{K}}{\mathrm{s}}$$

$$c = (293,6103 \pm 0,0888) \,\mathrm{K}$$

liefert.

3.2 Güteziffer

Zunächst werden mithilfe von

$$\frac{\mathrm{d}T(t)}{\mathrm{d}t} = 2ax + b$$

die Differenzenquotienten ${}^{\mathrm{d}T_1}/{}_{\mathrm{d}t}$ und ${}^{\mathrm{d}T_2}/{}_{\mathrm{d}t}$ für vier verschiedene Zeiten bestimmt. Die Ergebnisse befinden sich in Tabelle 2.

Tabelle 2: Bestimmung der Differenzenquotienten

t / s	T_1 / K	$\frac{\mathrm{d}T_1}{\mathrm{d}t} / \frac{\mathrm{K}}{\mathrm{s}}$	T_2 / K	$\frac{\mathrm{d}T_2}{\mathrm{d}t}$ / $\frac{\mathrm{K}}{\mathrm{s}}$
180	$295,\!75$	$0,0196 \pm 0,0002$	291,15	-0.0145 ± 0.0002
600	$303,\!85$	$0,0170 \pm 0,0002$	$285,\!45$	-0.0120 ± 0.0002
1020	$310,\!45$	$0,0144 \pm 0,0003$	280,75	$-0,0094 \pm 0,0003$
1560	$317,\!15$	$0,0111 \pm 0,0003$	$276,\!65$	$-0,0062 \pm 0,0003$

Die Fehler ergeben sich aus der Gauß'schen Fehlerfortpflanzung

$$\delta = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial y}{\partial x_i} \Delta x_i\right)^2}.$$
 (14)

Angewandt auf die Differenzenquotienten ergibt sich die Fehlerfortpflanzung

$$\delta = \sqrt{(2t \cdot \Delta a)^2 + (1 \cdot \Delta b)^2}.$$
 (15)

Mithilfe von Gleichung (7) und der in Tabelle 2 berechneten Differenzenquotienten lässt sich nun die Güteziffer ν für die vier augewählten Zeiten bestimmen. Der Fehler ergibt sich aus der Gauß'schen Fehlerfortpflanzung

$$\delta = \sqrt{\left(\frac{c_W m_W + m_K c_K}{N} \cdot \Delta \frac{\mathrm{d}T_1}{\mathrm{d}t}\right)^2}.$$
 (16)

Die Wärmekapazität des Reservoirs beträgt 750 J/K. Die Wärmekapazität des Wassers ergibt sich mit der Wassermasse $m_W=4\,\mathrm{kg}$ und der spezifischen Wärmekapazität $c_W=4,182\,\mathrm{kJ}\,\mathrm{K/kg}$ zu

$$c_W \cdot m_W = 16728 \, \frac{\mathrm{J}}{\mathrm{K}}.$$

Die Ergebnisse befinden sich in Tabelle 3.

Tabelle 3: Bestimmung der Güteziffer aus den Messwerten für ${\cal T}_1$

t/s	$ u_{T_1}$	$\nu_{ m theo}$	Abweichung
180	$2,86 \pm 0,05$	64,29	$95{,}56\%$
600	$2,\!48\ \pm0,\!05$	$16,\!51$	$84{,}98\%$
1020	$2,\!10\ \pm0,\!05$	$10,\!45$	$79{,}87\%$
1560	$1,56 \pm 0,05$	7,83	$80,\!13\%$

3.3 Massendurchsatz

Zur Berechung des Massendurchsatzes ${}^{\rm d}m/{}_{\rm d}t$ wird zunächst die Verdampfungswärme L mithilfe einer Dampfdruckkurve (s. Abbildung 4) bestimmt. Der Umgebungsdruck p_0 beträgt 1 bar.

Abbildung 4: Dampfdruckkurve zur Bestimmung der Verdampfungswärme

Eine lineare Regression $f(x) = -d \cdot x + e$ liefert die Werte

$$d = (2433,62 \pm 85,30) \text{ K}$$

$$e = 10,05 \pm 0,28.$$

Aus Gleichung (18) (s. [1, S. 5]) und der Gauß'schen Fehlerfortpflanzung (17)

$$\delta = \sqrt{(dR \cdot \Delta d)^2} \tag{17}$$

$$\ln\left(\frac{p}{p_0}\right) = -\frac{L}{R} \cdot \frac{1}{T} \tag{18}$$

ergibt sich mit der allgemeinen Gaskonstanten R die Verdampfungswärme

$$L = (20233,10 \pm 709,19) \frac{J}{\text{mol}}.$$

Der Massendurchsatz errechnet sich aus Gleichung (9). Die Ergebnisse mit ihren Fehlern nach Gleichung (19) befinden sich in Tabelle 4.

$$\delta = \sqrt{\left(\frac{m_w c_w + m_k c_k}{L^2} \frac{dT_2}{dt} \cdot \Delta L\right)^2 + \left(\frac{m_w c_w + m_k c_k}{L} \cdot \Delta \frac{dT_2}{dt}\right)^2}$$
(19)

Tabelle 4: Massendurchsatz

t/s	$\frac{\mathrm{d}m}{\mathrm{d}t} / \frac{\mathrm{mol}}{\mathrm{s}}$	$\frac{\mathrm{d}m}{\mathrm{d}t} / \frac{\mathrm{g}}{\mathrm{s}}$
180	$0,0125 \pm 0,0005$	$1,4426 \pm 0,0541$
600	$0,0104 \pm 0,0004$	$1,1904 \pm 0,0469$
1020	$0,0082 \pm 0,0004$	$0,9382 \pm 0,0417$
1560	$0,0053 \pm 0,0003$	$0,6139 \pm 0,0389$

3.4 Mechanische Kompressorleistung

Mithilfe der idealen Gasgleichung (20)

$$pV = nRT \iff nR = \frac{pV}{T} = \text{const.}$$
 (20)

ergibt sich mit $\rho_0=5514\,\mathrm{g/m^3},\ p_0=1\,\mathrm{bar},\ \kappa=1,14$ und $T_0=0\,\mathrm{^\circ C}$ die Dichte des Transportmediums im gasförmigen Zustand

$$\rho = \frac{\rho_0 \cdot T_0 \cdot p_a}{T_2 \cdot p_0}.\tag{21}$$

Eingesetzt in Gleichung (13) erhält man

$$N_{\rm mech} = \frac{1}{\kappa - 1} \cdot \left(p_b \cdot \sqrt[\kappa]{\frac{p_a}{p_b}} - p_a \right) \cdot \frac{T_2 \cdot p_0}{\rho_0 \cdot T_0 \cdot p_a} \cdot \frac{\mathrm{d}m}{\mathrm{d}t} \tag{22}$$

für die mechanische Kompressorleistung. Die Ergebnisse mit ihren Fehlern nach Gleichung (23) befinden sich in Tabelle 5

$$\delta = \sqrt{\left(\frac{1}{\kappa - 1} \cdot \left(p_b \cdot \sqrt[\kappa]{\frac{p_a}{p_b}} - p_a\right) \cdot \frac{T_2 \cdot p_0}{\rho_0 \cdot T_0 \cdot p_a} \cdot \Delta \frac{\mathrm{d}m}{\mathrm{d}t}\right)^2} \tag{23}$$

Tabelle 5: mechanische Kompressorleistung

t/s	$N_{ m mech}$ / W	Wirkungsgrad
180	$8,\!16 \pm\!0,\!31$	6,8 %
600	$4,88 \pm 0,59$	$12,\!4~\%$
1020	$5,\!37 \pm\!0,\!68$	$12,\!8~\%$
1560	$3,\!20\ \pm0,\!84$	$10,\!6~\%$

4 Diskussion

Wie in Kapitel 3.2 zu sehen ist, ist die Abweichung zwischen der idealen und der realen Güteziffer sehr groß. Gründe dafür können sein:

- Der Kompressor kann nicht, wie im idealen Fall angenommen, vollständig adiabatisch komprimieren.
- Die Reservoire sind Plastikeimer und bieten somit keine gute Isolierung.
- Desweiteren ist die Isolierung der Rohre auch nicht ideal.
- Der Prozess ist nicht reversibel, obwohl dies im idealen Fall ebenfalls angenommen wird
- Es entstehen Energieverluste durch Reibung.
- Die Skala der Manometer (besonders bei $p_b)$ ist grob unterteilt und somit schwierig abzulesen.

Der geringe Wirkungsgrad steht in direkter Verbindung mit der Güteziffer und lässt sich ebenfalls durch die oben genannten Gründe erklären.

Literatur

- [1] TU Dortmund. V203 Verdampfungswärme und Dampfdruck-Kurve. 2017. URL: http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V203.pdf.
- [2] TU Dortmund. V206 Die Wärmepumpe. 2017. URL: http://129.217.224.2/ HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V206.pdf.

V2	206 - 1	Die Wä	mepum	pe	w	si mersusi.	tät Reserve	ir: 750	3		
74/		0/1	20,5	24,5	22,6	23,7	24,9		27,3		
72	49	6	1315	X31A	18,0	17,1	16,1	15,2	141	4 13,7	
5 po 1	bes 3,	8 3	SIA	3,2	3,4	3,4	3,4	3, 0	3,	2 3,1	a\ -
1 pb	3,	5 6	5	5	5,1	6	6	6	6	6,3	
N/L) 0		15	120	120	125	125	120	120	120	lanae
Tu	29,5	30,7	31,7	32,7	33,7	34,6	35,6	36,4	37,3	38,2	
τ ₂	13,00	12,3	11,6	10,9	10,2	9,5	8,8	8,2	7,6	7	
Pa	3	2,9	2,8	2,8	2.7	2,6	2,6	2,6	2,5	2,4	
Po	615	7 1	18.7	7.	7,5,	7,8	8	8	8.	8,5	
N	120	120	120	120	120	120	120	120	120	120	
	£		4	4	7.	-	2	3		0	
Ta	39	39,7	40,5	44,3	42	42,7	43,3	44	44,7	45,3	
Tz	6,5	6	5,5	5,0	4,6	4,2	318	3,5	3,1	2,8	
Pa	2,4	2,4	2,4	2,3	2,3	2,2	2,2	2,2	2,2	2,2	
Pb	8,5	9- 1	9	9	9	3,5	9,5	10.	10	10	
N	120	120	120	125	125	125	125	125	125	125	
Tq	45,9	46,5	47,1	47,7	48,2	48,8	49,3	49.8	8,8-1	7,48	
T ₂	2,5	2,2		47	4,4	1013	43/S	0,9	EA I	MOV V	
Pa	2,2	2,2	1,3	2,2	2,1	2,1	312	2,1	,6 1A =	2000	10 M
	10		212	1015	11	11	2,1	11			Wło
Ps	115	NOLS	10,5	115		115	115				
N	113	115	1 1 1	143	115			MS !	3	200/10	130
<i>y</i> .		this will be		35,6- F	S 30 - 1 34	7.5,8- 31	8.8- 3.8	8,6 - 58	8.6	I w\ &	
		, 3	30 3	1/3	3/5	12 18	3	8		1453 X	
	1			28-13	e.5" 5	35,4 - 1,725	18- 13/	8 - 3	2,4-	T will	
						72.	PA	P.1	2419	× /m	
					0,4- 28	12 - 41	20- 01	e,x- e1	8,3-	8 8	