5.7. Фотодиоды

5.7.1. Устройство и принцип действия

Известно, что по разные стороны от перехода полупроводника p-типа к полупроводнику n-типа образуется обедненный слой с недостатком свободных носителей, и состояние равновесия поддерживается электрическим полем; благодаря наличию поля между двумя типами (p и n) полупроводникового материала устанавливается потенциальный барьер V_b (рис. 5.16).

В отсутствие приложенного внешнего напряжения ток через переход равен нулю; в действительности результирующий ток представляет собой сумму двух равных по величине и противоположных по направлению токов:

— тока основных носителей (возникающего в результате ионизации легирующей примеси — дырок в полупроводнике p-типа и электронов в полупроводнике n-типа) — носителей, у которых энергия теплового возбуждения достаточно велика, чтобы они могли преодолеть потенциальный барьер;

Рис. 5.16. *Р*—*п*-переход и его потенциальный барьер.

— тока неосновных носителей (возникающего в результате образования пар за счет теплового возбуждения электронов в полупроводнике *p*-типа и дырок в полупроводнике *n*-типа) — носителей, которые под действием электрического поля движутся через обедненный слой.

При приложении к диоду внешнего напряжения изменяется высота потенциального барьера, что приводит к изменению тока основных носителей и ширины обедненной зоны.

Напряжение v_d , приложенное к переходу, определяет величину протекающего тока:

$$I = I_0 \exp\left\{\frac{qv_d}{kT}\right\} - I_0.$$

При приложении обратного напряжения достаточно большой величины ($v_d \ll -\frac{kT}{q} = -26$ мВ при 300 K) высота потенциального барьера становится настолько значительной, что ток основных носителей оказывается пренебрежимо малым, и обратный ток диода определяется током неосновных носителей I_0 :

$$I_r = I_0$$
.

Когда фотодиод подвергается воздействию излучения с длиной волны $\lambda \leqslant \lambda_s$ (λ_s — пороговая длина волны), образуются пары электрон — дырка. Чтобы эти носители могли внести вклад в протекающий ток, нужно, чтобы они не рекомбинировали; для этого они должны быть быстро разделены под воздействием поля. Это возможно только в обедненном слое (слое пространственного заряда), и перемещение указанных зарядов в том же направлении, в котором перемещаются и неосновные носители, приводит к увеличению обратного тока I_r (рис. 5.17).

Падающее излучение должно достигать обедненного слоя, проходя через освещенный полупроводниковый слой без заметного ослабления. Уменьшение потока Φ при прохождении толщины x описывается формулой $\Phi(x) = \Phi_0 \exp{(-\alpha x)}$, где коэффициент α имеет порядок 10^5 см⁻¹, что соответствует ослаблению до 63% при прохождении толщины порядка 10^3 Å.

Рис. 5.17. Возникновение электронно-дырочных пар в обедненном слое p—n-перехода вследствие фотоэффекта.

Рис. 5.18. Структура *р—і—п*-фотодиода.

Таким образом, необходимо, чтобы пластина освещаемого полупроводника была очень тонкой и чтобы через нее проходила большая часть падающей энергии, а обедненный слой был толстым для максимального поглощения излучения.

Эти замечания особенно существенны в случае p-i-n-фотодиодов, в которых материал с малой собственной проводимостью (i-слой) заключен между полупроводниковыми слоями p- и n-типа (рис. 5.18).

Распространение обедненного слоя (слоя пространственного заряда) внутрь материала пропорционально удельному сопротивлению материала; особенно широк этот слой, следовательно, на границах p-i и i-n. Обратное напряжение в несколько вольт достаточно, чтобы обедненная область распространилась на весь полупроводниковый i-слой.

В качестве материалов фотодиодов используются:

а) кремний и германий — для применения в видимой и ближней инфракрасной областях;

б) GaAs, InAs, InSb, HgCdTe — для применения в инфракрасной области.

5.7.2. Режимы работы

Фотодиодный режим. Принципиальная схема фотодиода характеризуется наличием источника э.д. с. E_s , напряжение которого приложено к фотодиоду в обратном направлении, и резистора R_m , на клеммах которого получается выходной сигнал (рис. 5.19, a).

Когда к фотодиоду приложено напряжение смещения $v_d < 0$, обратный ток, протекающий через фотодиод, равен

$$I_r = -I_0 \exp\left(\frac{-qv_d}{kT}\right) + I_0 + I_p,$$

где I_p — фототок, возникающий в обедненном слое под действием потока, прошедшего расстояние X в области p:

Рис. 5.19. Фотодиодный режим (данные Hewlett — Packard, фотодиоды типа 5082-4200).

a — принципнальная схема; δ — семейство вольт-амперных характеристик при различных значениях падающего потока и нагрузочная прямая Δ .

$$I_{p} = \frac{qn(1-R)\lambda}{hc} \Phi_{0} \exp(-\alpha X)$$

(расшифровка обозначений в этой формуле была дана ранее). При достаточно большом обратном напряжении v_d экспоненциальный член становится пренебрежимо малым, и

$$I_r = I_0 + I_p$$
.

Из соответствующей эквивалентной электрической схемы следует

$$E_s = v_R - v_d$$
, где $v_R = R_m I_r$,

и на семейство кривых (I_r , v_d) фотодиода можно нанести прямолинейную характеристику нагрузки Δ (рис. 5.19, δ):

$$I_r = E_s/R_m + v_d/R_m.$$

Рис. 5.20. Эквивалентная электрическая схема фотодиода.

Рабочая точка Q фотодиода определяется пересечением характеристики нагрузки и соответствующей данному падающему потоку характеристики фотодиода. Описываемый фотодиодный режим работы — линейный. Действительно, величина v_R , как и I_r , пропорциональна потоку.

Для исследования особенностей поведения фотодиода егоможно представить эквивалентной электрической схемой (рис.

5.20). Эта схема содержит:

— источник тока $I_r = I_0 + I_p$;

- резистор с сопротивлением r_d , включенный в параллельс источником тока и соответствующий динамическому сопротивлению перехода (в фотодиодном режиме фотодиод смещен в обратном направлении, так что r_d очень большая величина, порядка 10^{10} Ом);
- резистор с сопротивлением r_s , включенный последовательно с нагрузкой и соответствующий сопротивлению полупроводниковых слоев между выводами фотодиода и обедненным слоем (r_s величина порядка десятков ом, т. е. r_s обычно пренебрежимо мало по сравнению с сопротивлением нагрузки R_m);
- емкость C_d , параллельную r_d , которая определяет электрические характеристики перехода в переходном режиме или на высоких частотах. Эта емкость величиной порядка десяти пикофарад в отсутствие приложенного напряжения, при приложении к фотодиоду обратного напряжения (фотодиодный режим), заметно уменьшается, так как под действием обратного напряжения расширяется обедненный слой (рис. 5.21).

Фотогальванический режим. Фотодиод не имеет какого-либо внешнего источника питания, он работает как преобразователь энергии и эквивалентен генератору, характеризующемуся либо напряжением холостого хода, либо током короткого замыкания.

 \dot{H} апряжение холостого хода V_{c0} . Увеличение тока I_p неосновных носителей под действием падающего потока вызывает перенос заряда, что понижает потенциальный барьер на Δv_b -

Рис. 5.21. Зависимость емкости фотодиода от приложенного обратного напряжения (данные Hewlett — Packard, фотодиоды типа 5082-4200).

Это понижение приводит к увеличению тока неосновных носителей и поддерживает равенство основных и неосновных носителей таким образом, что I_r =0, т. е.

$$-I_0 \exp\left(\frac{g\Delta v_b}{kT}\right) + I_0 + I_p = 0,$$

откуда следует

$$\Delta v_b = \frac{kT}{q} \lg \left(1 + I_p / I_0 \right),$$

где

$$I_{p} = \frac{q\eta (1 - R) \lambda}{hc} \Phi_{0} \exp(\alpha X).$$

Понижение потенциального барьера на Δv_b можно измерить на выводах фотодиода в разомкнутой цепи (на холостом ходу):

$$V_{c_0} = \frac{kT}{q} \lg (1 + I_p/I_0)$$
.

При очень малой облученности

$$I_p \ll I_0$$
 и $V_{c_0} = rac{kT}{q} rac{I_p}{I_0}$.

Напряжение V_{c0} в этом случае мало (kT/q = 26 мВ при T = 300 K) и представляет собой линейную функцию принимаемого фотодиодом потока.

При больших значениях облученности

$$I_{p} \gg I_{0}$$
 и $V_{c_{0}} = \frac{kT}{q} \lg (I_{p}/I_{0}).$

Напряжение V_{c0} в этом случае существенно выше (от 0,1 до 0,6 В), но оно является логарифмической функцией воспринимаемого потока (рис. 5.22).

Эквивалентная схема фотодиода, приведенная выше, справедлива и здесь, однако емкость C_d в фотогальваническом режиме существенно (в $5\div 10$ раз) выше, чем в фотодиодном режиме.

Напряжение V_{c0} обычно измеряют в схеме, в которой сопротивление нагрузки R_m намного больше сопротивления r_d .

Рис. 5.22. Зависимость напряжения холостого хода от падающего потока (фотоднод типа FPT 102 в фотогальваническом режиме, данные Fairchild).

Прямая нагрузка на графике характеристик фотодиода, относящемся к фотогальваническому режиму (рис. 5.23), описывается уравнением

$$R_m I_r = v_d$$
,

а рабочая точка Q есть пересечение нагрузочной характеристики Δ и характеристики фотодиода для данного падающего потока; эта точка тем ближе к оси v_d , чем больше сопротивление R_m .

Tок короткого замыкания I_{cc} . Если к выводам фотодио-

Рис. 5.24. Зависимость тока короткого замыкания от падающего потока (фотодиод типа FPT 102 в фотогальваническом режиме, данные Fairchild).

да присоединить нагрузку R_m , малую по сравнению с r_d , то протекающий через R_m ток практически равен I_p — току короткого замыкания; этот ток пропорционален падающему потоку (рис. 5.24).

Рабочая точка Q определяется так же, как и в предыдущем случае; она оказывается тем ближе к оси I_r , чем меньше R_m .

Важной особенностью этого режима работы является отсутствие темнового тока; действительно, без внешнего источника питания в темноте через диод ток не протекает, при этом снижается дробовой шум и можно измерять очень слабые потоки¹⁾.

Описанные выше характеристики работы фотодиода на двух различных режимах сведены в табл. 5.2.

Таблица 5.2. Характеристики фотодиода

Излучение	Фотодиодный режим (источник питания обеспечивает обратное смещение)	фотогальванический режим (источник питания отсутствует)
Малый поток	$I_r = I_0 + I_p$	$V_{\rm co} = \frac{kT}{q} \frac{I_p}{I_0}, \ I_{cc} = I_p$
Большой по- ток	$I_r = I_p$	$V_{co} = \frac{kT}{q} \lg \frac{I_p}{I_0}, I_{cc} = I_p$
	Емкость C_d мала	Емкость Са значительна

Рис. 5.25. Зависимость темнового тока от температуры (данные Hewlett — Packard, фотодиоды типа 5082-4200).

5.7.3. Темновой ток

В фотодиодном режиме при комнатной температуре темновой ток I_0 имеет порядок наноампер. Фототок I_p такого порядка соответствует очень слабому падающему потоку (от 10^{-8} до 10^{-10} Вт в зависимости от типа фотодиода). Однако темновой ток I_0 быстро возрастает при росте температуры (рис. 5.25). Из приведенной выше формулы для напряжения V_{c0} в фотогальваническом режиме видно, что значение V_{c0} также весьма чувствительно к температуре (температурный коэффициент $(1/V_{c0}) \cdot (dV_{c0}/dT)$ порядка -0.8%/°C).

5.7.4. Чувствительность

В случае излучения определенного спектрального состава фототок I_p с очень высокой точностью пропорционален падающему потоку; линейность подтверждена в очень широком диапазоне изменения потока, охватывающем $5\div 6$ порядков. Связь спектральной чувствительности с фототоком выражается формулой, которая уже приводилась в разд. 5.7.2:

$$S\left(\lambda\right)=rac{\Delta I_{p}}{\Delta\Phi}=rac{q\eta\left(1-R
ight)\exp\left(-lpha X
ight)}{\hbar c}\lambda$$
 для $\lambda\leqslant\lambda_{s}.$

Характер зависимости $S(\lambda)$ определяется влиянием λ на квантовый выход η , коэффициент отражения R и показатель поглощения α . Для каждого типа фотодиода разработчик паспортизует спектральную чувствительность, приводя, с одной стороны, кривую относительной спектральной чувствительности

Рис. 5.26. Спектральная чувствительность фотодиода. a — характеристика спектральной чувствительности (данные Hewlett — Packard, фотодиоды типа 5082-4200, $S(\lambda_p)$ =0,5 мкА/мкВт); δ — влияние температуры (данные Texas Instruments).

 $S(\lambda)/S(\lambda_p)$, где λ_p — длина волны, соответствующая максимуму спектральной чувствительности (рис. 5.26,a), и указывая, с другой стороны, абсолютную величину $S(\lambda_p)$. Эта последняя величина обычно лежит в диапазоне от 0,1 до 1 A/Bт, но, учитывая порядок величин, ее чаще выражают в мкА/мкВт. Идентичность выражений для фототока I_p в фотодиодном и фотогальваническом режимах $(I_{c0} = I_p)$ указывает с очевидностью, что и спектральная чувствительность в этих двух режимах одинакова.

Под влиянием температуры происходят небольшие изменения спектральной чувствительности — с ростом температуры λ_p несколько сдвигается в сторону более длинных волн (рис. 5.26, δ). Температурный коэффициент фототока $(1/I_p) \cdot (dI_p/dT)$ имеет порядок 0,1%/°C.

5.7.5. Время запаздывания

Фототок появляется очень быстро после начала освещения—время запаздывания t_{dm} составляет $\sim 10^{-12}$ с. Однако скорость нарастания измеряемого тока, определяемая временем установления t_m (или скорость спада при выключении освещения, определяемая соответствующим временем спада t_c), зависит от эквивалентной электрической схемы фотодиода и от связанной с ним измерительной схемы. Обычно временные характеристики определяются резистором R_m и включенной параллельно с ним емкостью C_p , связанной с паразитными емкостями, например, емкостью кабелей (рис. 5.27, a).

Рис. 5.27. Эквивалентная электрическая схема включения фотодиода. a — полная схема; b — упрощенная схема.

. Для оценки порядка величин и упрощения формул можно пренебречь сопротивлением r_s , которое обычно не превышает нескольких десятков ом (рис. 5.27, δ). При этих условиях постоянная времени схемы выражается формулой

$$\tau = (C_d + C_p) \frac{r_d R_m}{r_d + R_m} ,$$

т. е. для R_m ≪ r_d ≃ 1011 Ом

$$\tau = (B_d + C_p) R_m.$$

Таким образом, величина τ и связанные с нею времена нарастания и спада (t_m и t_c) зависят от режима работы фотодиода, определяющего величину C_d , и от сопротивления нагрузки R_m .

Для фотодиода типа 4203, используемого в схеме с $C_p=2$ пФ и $R_m=50$ Ом, разработчик (Hewlett — Packard) указывает в фотодиодном режиме $t_m=t_c=2,2\tau<1$ нс и в фотогальваническом режиме $t_m=t_c=2,2\tau=300$ нс.

В фотодиодном режиме уменьшение емкости C_d в результате приложения обратного напряжения вызывает значительное уменьшение постоянной времени, и, следовательно, этот режим работы особенно подходит, когда поток излучения поступает в виде очень коротких импульсов (например, лазерных).

5.7.6. Частотная характеристика

Фотодиод и связанная с ним схема образуют систему первого порядка, к которой непосредственно применимы результаты, полученные в разд. 2.4.3 и 2.5.2. Амплитуда V_1 напряжения на нагрузке R_m выражается формулой

$$V_1 = S\Phi_1 R_m \frac{1}{\sqrt{1 + (f/f_c)^2}}$$
,

где S — чувствительность фотодиода к падающему потоку с амплитудой Φ_1 и частотой модуляции f.

Граничная частота схемы f_c обратно пропорциональна τ , t_m и t_c :

$$f_c = \frac{2}{2\pi\tau} = \frac{1}{2\pi (C_d + C_p) R_m} = \frac{0.35}{t_m}.$$

Таким образом, граничная частота, как и время запаздывания, зависит от режима работы (в фотодиодном режиме граничная частота возрастает благодаря малой величине C_d) и от сопротивления нагрузки R_m (чем меньше R_m , тем больше f_c , рис. 5.28).

5.7.7. Шум и обнаружительная способность

Различными источниками тока шума в фотодиоде являются: а) дробовой шум

$$\overline{I^2_{bs}} = 2q \left(I_0 + I_{pm}\right) B,$$

где q — заряд электрона, I_0 — темновой ток, I_{pm} — фототок, вызванный потоком излучения, B — полоса пропускания;

б) тепловой шум (шум Джонсона)

$$\overline{I^2_{bR}} = 4kTB/r_d,$$

где k — постоянная Больцмана, T — абсолютная температура фотодиода и r_d — динамическое сопротивление p—n-перехода;

в) генерационно-рекомбинационные шумы и шумы типа 1/f, существенные только на низких частотах (намного меньших, чем обычно применяемые частоты модуляции).

Рис. 5.28. Зависимость граничной частоты от сопротивления нагрузки (данные Hewlett — Packard, фотодиод типа 5082-4207).

Указанным источникам шума соответствует общий ток собственного шума I_{bd} , который определяет обнаружительную способность фотодиода D^* .

По порядку величины обнаружительная способность при нормальных условиях применения фотодиода в зависимости от его типа лежит между 10^{10} и 10^{13} Вт $^{-1}$ ·см· Γ ц 16 . Обнаружительная способность является функцией длины волны и имеет максимальное значение на длине волны, соответствующей максимуму спектральной характеристики λ_p . D^* возрастает с понижением температуры фотодиода.

Сравнение величин общего тока собственного шума I_{bd} , определяющего обнаружительную способность, и тока дробового шума I_{bs} , рассчитанного исходя из темнового тока I_0 , показывает, что этот последний и является главной причиной шума фотодиода. Так, например, для кремниевого фотодиода типа

Использование фотодиода в фотогальваническом режиме $(I_0=0)$ позволяет устранить доминирующий источник шума, связанный с темновым током; считается, что этот режим наиболее подходит для обнаружения оптических сигналов низкого уровня.

Влияние сопротивления нагрузки R_m . Нагрузка R_m включена последовательно с сопротивлением r_s фотодиода; в совокупности эти сопротивления обусловливают шум, спектральная плотность которого равна

$$\overline{i^2_{bR}} = \overline{I^2_{bR}}/B = 4kT/(R_m + r_s)$$

и, следовательно, в часто встречающемся случае, когда $R_m \gg r_s$,

$$\overline{i^2_{bB}} = 4kT/R_m$$
.

5.7.8. Схема, связанная с фотодиодом

Режим работы фотодиода выбирают в зависимости от требуемых характеристик и задачи проводимых исследований.

Фотодиодный режим. Его отличительными особенностями являются линейность, малое время запаздывания и широкая полоса пропускания. Примерами измерительных сил для определения обратного тока I_r могут служить:

а) Основная схема (рис. 5.30, a),

$$v_0 = R_m (1 + R_2/R_1) I_r$$

 $P_{\rm HC}$. 5.30. Схемы измерений в фотодиодном режиме. a — основная схема; δ — схема с высоким быстродействием.

Увеличение сопротивления R_m в этой схеме позволяет уменьшить шум, но ценой ухудшения быстродействия. Большой входной импеданс усилителя позволяет избежать уменьшения эффективной нагрузки фотодиода.

б) Схема с высоким быстродействием (рис. 5.30, б),

$$v_0 = (R_1 + R_2) I_r$$
.

Сопротивление нагрузки фотодиода в этой схеме мало и равно сопротивлению (R_1+R_2) , деленному на коэффициент усиления разомкнутого контура усилителя на рабочей частоте. Дополнительная емкость C_2 компенсирует действие паразитной емкости C_p при условии $R_1C_{p1}=R_2C_2$. Используемые усилители должны иметь очень малый входной ток и пониженный температурный дрейф.

фотогальванический режим. Отличительными особенностями этого режима являются линейная или логарифмическая реакции

 $P_{\rm HC}$. 5.31. Схемы измерений в фотогальваническом режиме. a — схема, обеспечивающая линейную реакцию; δ — схема, обеспечивающая логарифмическую реакцию.

в зависимости от нагрузки, минимальный фоновый шум, сравнительно большое время запаздывания и уменьшенная полоса пропускания, а также существенная температурная зависимость характеристики при логарифмической реакции. Для реализации этого режима используются

а) схема с линейным выходом — измерение тока короткого замыкания I_{cc} (рис. 5.31, a),

$$v_0 = R_m I_{cc};$$

б) схема с логарифмическим выходом — измерение напряжения холостого хода V_{c0} (рис. 5.31, б),

$$v_0 = \{1 + R_2/R_1\} V_{c0}$$