Math 1B03 Term 2/1ZC3

Sample Exam

Na	ame:		
(Last Name) Student Number:		(First Name)	
		Tutorial N	ımber:
qu be en	estions must be answered deducted for wrong answered	on the COMPUTER CARD ers (i.e., there is no penalty he test is complete. Bring	orth 1 mark each (no part marks). All with an HB PENCIL. Marks will not for guessing). You are responsible for any discrepancy to the attention of the
1.	independent? (i) $\{u - v, v - w, w - u\}$ (ii) $\{u, u + v, u + v + w\}$ (iii) $\{u - v, v - w, u + v\}$	$\{\mathbf{v}^{+},\mathbf{w}^{+}\}$	of the following sets are also of them (e) (ii) and (iii) only
2.	The following set of vector (a) Spans \mathbb{R}^4 but is not in (b) Is independent, but do (c) Is independent and span (d) Is not independent, and (e) None of the above.	pes not span \mathbb{R}^4 ans \mathbb{R}^4	(0), (0, -2, 1, -2)
3.	statements.	$c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3$ for some	\mathbb{R}^3 . Consider the following scalars c_1, c_2, c_3 .
	Which of the above states (a) (i) only (b) (ii) only (c) (ii) and (iii) only (d) (i) and (ii) only (e) (i), (ii), and (iii)	nents are always true?	

	- (-				
4.	, ,	$,2)$ and $\mathbf{v}=(1)$	(3, -1). Which	ch of the follow	ing vectors	are in span $\{\mathbf{u}, \mathbf{v}\}$?
	(i) $(1,-1,2)$					
	(ii) $(1, 1, 1)$					
	(iii) $(5, 3, 7)$					
	(a) all of them	(b) (ii) only	(c) (iii) only	(d) (i) and (iii	only (e) ((ii) and (iii) only
5. 3	If $\{\mathbf{v}, \mathbf{w}\}$ is indep	pendent, find c	onditions on th	e scalars k_1 and	$d k_2$ so that	the set
	$\{k_1\mathbf{v}+\mathbf{w},\mathbf{v}+k_2\mathbf{v}\}$			-	-	
	(a) $k_1 + k_2 = 1$	•	-	$= k_0$ (d) $k_1 k_2$	$= 1$ (e) k_1	$k_2 \neq 1$
	() 1 / //2	- (~).01 1 702	/ = (c) ~1 /		= (0) 11	2 / -

(a)
$$(1,-1,2)$$
 (b) $(0,2,-1)$ (c) $(0,2,2)$ (d) $(2,-1,0)$ (e) $(-1,1,3)$

- 7. Let V be a vector space with dimension n. Consider the following statements.
 - (i) Every independent set in V is a basis for V
 - (ii) Every set in V that spans V must be independent
 - (iii) Every set in V with less than n vectors must be independent.

- (a) (ii) and (iii) only (b) (iii) only (c) (ii) only (d) none of them (e) (i) only
- **8.** Find the dimension of the following vector spaces.
 - (i) The set of all 2×2 skew-symmetric matrices
 - (ii) The set of all polynomials $a + bx + cx^2$ where a = b + c.
 - (a) 1 and 2 (b) 2 and 3 (c) 1 and 3 (d) 3 and 3 (e) 4 and 2
- 9. If A is a 4×4 matrix and the columns of A are linearly dependent then,
 - (a) every vector **b** in \mathbb{R}^4 is in the column space of A
 - **(b)** no vector **b** is in the column space of A
 - (c) The column vectors of A form a basis for \mathbb{R}^4
 - (d) None of the above

10. Let
$$\mathbf{u} = (1, -2, 1, 6)$$
 in \mathbb{R}^4 , and let $W = \text{span}\{(1, 1, -1, 0), (1, 1, 0, 0)\}$. Compute $\text{proj}_W \mathbf{u}$. (a) $(-\frac{1}{2}, 0, 1, \frac{1}{2})$ (b) $(-1, -\frac{1}{2}, \frac{1}{2}, 0)$ (c) $(-\frac{1}{2}, -1, 1, 0)$ (d) $(-\frac{1}{2}, -\frac{1}{2}, 1, 0)$ (e) $(\frac{1}{2}, -1, -\frac{1}{2}, 0)$

(d)
$$\left(-\frac{1}{2}, -\frac{1}{2}, 1, 0\right)$$
 (e) $\left(\frac{1}{2}, -1, -\frac{1}{2}, 0\right)$

11. Find a basis of the following subspace of \mathbb{R}^4 .

W = all vectors of the form (a, b, c, d) where a + b - c + d = 0.

- (a) $\{(1,0,0,-1), (0,1,0,-1), (0,0,1,1)\}$
- **(b)** $\{(1,0,0,-1),(0,1,0,-1)\}$
- (c) $\{(1,0,0,-1),(0,1,0,-1),(0,0,1,-1),(0,1,-1,0)\}$
- (d) $\{(1,0,0,-1),(0,1,0,-1),(0,1,-1,0)\}$
- (e) $\{(1,0,-1,0),(0,1,0,-1),(0,0,1,-1)\}$
- 12. Find the dimension of the subspace of \mathbb{R}^3 spanned by the following set of vectors.

$$\{(1,5,6),(2,6,8),(3,7,-1),(4,8,12)\}$$

- (a) 1 (b) 2 (c) 3 (d) 4 (e) 0
- 13. Decode the message AOJX given that it is a Hill cipher with enciphering matrix

$$\begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix}$$

- (a) MATE (b) HILL (c) HELP (d) GOOD (e) MATH
- **14.** Consider the following statements.
 - (i) Suppose that $W = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ and that $A\mathbf{u}_i = \mathbf{b}$ for each i. If the vector \mathbf{u} is in W then $A\mathbf{u} = \mathbf{b}$.
 - (ii) Let W be the set of all vectors \mathbf{x} in \mathbb{R}^n that are solutions to the equation $A\mathbf{x} = 0$. W is a subspace of \mathbb{R}^n .

- (a) (i) only (b) (ii) only (c) (i) and (ii) (d) neither
- **15.** Find a basis for the null space of A. $A = \begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 1 & -2 & 3 \\ -1 & 0 & -3 & 2 \end{bmatrix}$
 - (a) $\{(1,0,-1),(2,1,0)\}$
- **(b)** $\{(0,2,-3,1),(1,2,-3,0)\}$
- (c) $\{(1,2,-1,4),(0,1,-2,3)\}$
- (d) $\{(-1,2,0,3),(2,1,0,-3)\}$
- (e) $\{(2, -3, 0, 1), (-3, 2, 1, 0)\}$
- **16.** Let A be a matrix with 4 rows and 7 columns. Then the column space of A
 - (a) is a subspace of \mathbb{R}^4
 - (b) has dimension 4
 - (c) is equal to the column space of A^T
 - (d) none of the above

For Questions 17-19, determine which of the following answers is correct for the given subset W of \mathbb{R}^3 .

- (a) W is a subspace
- **(b)** W is closed under addition, but not closed under scalar multiplication
- (c) W is closed under scalar multiplication, but not closed under addition
- (d) W is not closed under scalar multiplication, and not closed under addition
- 17. W = all vectors of the form (a, 3b, c) where a = c + 1.
 - (a) (b) (c) (d)
- **18.** $W = \text{all vectors of the form } (2a, -b^2, -c)$
 - (a) (b) (c) (d)
- **19.** Let **b** be a nonzero vector in \mathbb{R}^4 and let A be a 4×4 matrix.

Let $W = \text{all vectors } \mathbf{x} \text{ in } \mathbb{R}^4$ that are solutions to the equation $A\mathbf{x} = \mathbf{b}$.

- (a) (b) (c) (d)
- **20.** Suppose that W is a subspace of a vector space V. Consider the following statements.
 - (i) If **u** is in W and $a\mathbf{u} b\mathbf{v}$ is in W (where $b \neq 0$) then **v** is in W.
 - (ii) If **u** is in W and **v** is in W then $a\mathbf{u} b\mathbf{v}$ is in W.

- (a) (i) only
- **(b)** (i) only
- (c) (i) and (ii)
- (d) neither of them
- **21.** Let $W = \text{span}\{(1,1,1,1), (3,1,3,1), (6,2,4,0)\}$. Find an orthonormal basis of W using the Gram-Schmidt process.

 - (a) $\{(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2})\}$ (b) $\{(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (0, -\frac{1}{2}, 1, -\frac{1}{2}), (\frac{1}{\sqrt{6}}, 0, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}})\}$

 - (c) $\{(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0), (\frac{1}{\sqrt{2}}, 0, 0, -\frac{1}{\sqrt{2}})\}$ (d) $\{(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0, 0), (0, 0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})\}$
 - (e) $\{(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}), (-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}, 0), (0, \frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}})\}$

22. Consider the following set of orthogonal vectors,

$$\mathbf{v}_1 = (1, -1, 2, -1), \ \mathbf{v}_2 = (-2, 2, 3, 2), \ \mathbf{v}_3 = (1, 2, 0, -1), \ \mathbf{v}_4 = (1, 0, 0, 1).$$

Let $\mathbf{u} = (3, 1, -2, 4)$. Find c such that $\mathbf{u} = a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3 + d\mathbf{v}_4$

- (a) $\frac{5}{6}$ (b) $\frac{1}{6}$ (c) $\frac{1}{3}$ (d) $\frac{1}{2}$ (e) $\frac{2}{3}$
- 23. If A and B are both $n \times n$ invertible matrices, which of the following matrices is the inverse of $(A^{-1}B)^{T}$?

- (a) $(B^{-1}A)^T$ (b) $(AB^{-1})^T$ (c) $B^T(A^T)^{-1}$ (d) $(A^T)^{-1}B^T$ (e) $(B^TA^T)^{-1}$
- **24.** Consider the following statements.
 - (i) If **u** and **v** are orthogonal in \mathbb{R}^3 then $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u} \mathbf{v}\|$
 - (ii) $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \frac{1}{4} \|\mathbf{u} + \mathbf{v}\|^2 + \frac{1}{4} \|\mathbf{u} \mathbf{v}\|^2$ for all \mathbf{u}, \mathbf{v} in \mathbb{R}^3 .

Which of the above statements is always true?

- (a) neither (b) (i) only (c) (ii) only (d) (i) and (ii)
- **25.** Recall that B is *similar* to A if there is an invertible matrix P such that $B = P^{-1}AP$. Suppose that B is similar to A. Consider the following statements.
 - (i) A and B have the same determinant
 - (ii) B^{-1} is similar to A^{-1}

Which of the above statements are always true?

- (a) (i) only
- **(b)** (ii) only
- (c) (i) and (ii)
- (d) neither of them
- **26.** A matrix P is called **orthogonal** if $PP^T = I$. Consider the following statements.
 - (i) If P is an orthogonal matrix then 2P is also orthogonal.
 - (ii) If P is an orthogonal matrix then det $P = \pm 1$

- (a) (i) ony (b) (ii) only (c) (i) and (ii) (d) neither
- 27. Let $A = \begin{bmatrix} 0 & 0 & a \\ 0 & b & 0 \\ a & 0 & 0 \end{bmatrix}$. Find the characteristic polynomial $p(\lambda)$ of A.

 (a) $(\lambda + b)(\lambda + a)^2$ (b) $(\lambda b)(\lambda + a)^2$ (d) $(\lambda b)(\lambda a)(\lambda + a)$ (e) $(\lambda + b)(\lambda a)(\lambda + a)$
- (c) $(\lambda b)(\lambda a)^2$

- **28.** Consider the following statements.
 - (i) $\{(1,-1,2,3), (2,1,-1,1), (1,8,-13,-12)\}$ is an independent set.
 - (ii) $\{(1,2,-1), (-1,1,2), (-5,-1,8)\}$ spans \mathbb{R}^3 .

- (a) (i) only (b) (ii) only (c) (i) and (ii) (d) neither
- **29.** Consider the triangle with vertices P, Q, and R. Which of the following is a right-angled triangle?
 - (a) P(1,1,0), Q(1,0,1), R(1,-1,2)
- **(b)** P(1,1,0), Q(1,0,1), R(1,2,2)
- (c) P(1,1,0), Q(1,0,1), R(1,0,2)
- (d) P(1,1,0), Q(1,0,1), R(1,1,3)
- (e) P(1,1,0), Q(1,0,1), R(1,3,2)
- **30.** Find the shortest distance from the point P(0, 1, -1) to the line
 - (x, y, z) = (1, 1, 0) + t(1, -1, -2).
- (a) $\frac{1}{6}\sqrt{66}$ (b) $\frac{1}{6}\sqrt{65}$ (c) $\frac{4}{3}$ (d) $\frac{1}{6}\sqrt{62}$ (e) $\frac{1}{6}\sqrt{61}$
- **31.** Find the equation of the plane containing the point P(3, 0, -1) and the line (x, y, z) = (2, 1, 3) + t(3, -1, -2).

 - (a) 2x 6y + 2z = 4 (b) x + 5y z = 4 (c) x + 6y z = 4
 - (d) 3x 17y + 5z = 4 (e) 16y 4z = 4
- **32.** Consider the following matrix (where only the first row is given): $A = \begin{bmatrix} 3 & -2 \\ * & * \end{bmatrix}$.
 - If $\begin{bmatrix} 1+i\\2 \end{bmatrix}$ is an eigenvector of A, what is the corresponding eigenvalue?
 - (a) $2 2i^{-}$ (b) 2 i (c) 1 + 2i (d) 1 i (e) 3 + i

- 33. Consider the line through P(1,2,3) that is parallel to $\mathbf{v}=(1,0,1)$. Which of the following
 - planes does the line lie in? (a) x + 2y + 2z + 1 = 0 (b) 3x + 2y - 3z + 2 = 0 (c) -2y - z + 1 = 0
 - (d) 3x y + z + 2 = 0 (e) 2x + 2y + z 3 = 0
- **34.** If A and B are $n \times n$ symmetric matrices, which of the following matrices are always symmetric?
 - (i) $A B^T$
 - (ii) $A^TB B^TA$
 - (a) (i) only (b) (ii) only (c) (i) and (ii) (d) neither

35. Consider the following matrices.

$$A = \begin{bmatrix} 2 & -4 \\ 1 & -2 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$$

B can be obtained from A by the following sequence of row operations on A:

- 1. Switch row 1 and row 2
- 2. Replace row 2 by (row $2 2 \times \text{row } 1$)

Using the above sequence of row operations (in the above order), find an invertible matrix U such that UA = B.

(a)
$$\begin{bmatrix} 1 & -1 \\ 1 & -2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 1 \\ 2 & -4 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & 3 \\ 2 & -4 \end{bmatrix}$ (e) $\begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$

36. Compute the determinant of the following matrix.

$$\begin{bmatrix} 0 & 1 & -1 & 0 \\ 3 & 0 & 0 & 2 \\ 0 & 1 & 2 & 1 \\ 5 & 0 & 0 & 7 \end{bmatrix}$$

- **(a)** 0 **(b)** 5 **(c)** -33 **(d)** -17 **(e)** 8
- **37.** Let A be a 2×2 matrix, with det A = 2. Evaluate $det(2 \operatorname{adj}(A))$.
 - **(a)** 2 **(b)** 4 **(c)** 8 **(d)** 16 **(e)** 32
- **38.** A square matrix P is called **idempotent** if $P^2 = P$. Let A and B be $n \times n$ idempotent matrices. Which of the following matrices are always idempotent?
 - (i) A B
 - (ii) AB
 - (a) (i) only (b) (ii) only (c) (i) and (ii) (d) neither
- **39.** Suppose that a matrix A has eigenvectors $\mathbf{x}_1=(1,2,1), \mathbf{x}_2=(1,0,-1),$ and $\mathbf{x}_3=(1,-2,1),$ with corresonding eigenvalues $\lambda_1=1,\lambda_2=\frac{1}{2},$ and $\lambda_3=0,$ respectively. Let $\mathbf{v}=\frac{1}{4}\mathbf{x}_1-\frac{1}{4}\mathbf{x}_2+\frac{9}{50}\mathbf{x}_3.$ Find the constant b so that $A^5\mathbf{v}=a\mathbf{x}_1+b\mathbf{x}_2+c\mathbf{x}_3.$
 - (a) $-\frac{1}{1024}$ (b) $-\frac{1}{32}$ (c) $\frac{1}{32}$ (d) $-\frac{1}{128}$ (e) $\frac{1}{1024}$

- **40.** Let z be a complex number. Which of the following statements is correct?
 - (a) $\overline{z} + z$, $(\overline{z} z)i$, $\overline{z}z$ are all real numbers
 - **(b)** $\overline{z} + z$, $(\overline{z} z)i$, $\overline{z}z$ all have modulus 1
 - (c) $\overline{z} + z$ and $\overline{z}z$ are real numbers, but $(\overline{z} z)i$ is not a real number.
 - (d) If z is a complex number and |z| = 1, then z = 1 or z = -1.
 - (e) none of the above
- **41.** Find all complex numbers z so that $z^3 = -8i$.

(a)
$$\sqrt{3} + i, -\sqrt{3} + i, -2i$$
 (b) $\sqrt{2} - i, -\sqrt{2} - i, 2i$ (c) $\sqrt{3} - i, -\sqrt{3} + i, -2i$ (d) $\sqrt{2} + i, -\sqrt{2} + i, 2i$ (e) $\sqrt{3} - i, -\sqrt{3} - i, 2i$

- **42.** Find a matrix P which diagonalizes

$$A = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}.$$

(a)
$$\begin{bmatrix} -\frac{1}{2} & 1 \\ 1 & \frac{1}{2} \end{bmatrix}$$
 (b) $\begin{bmatrix} 3 & 1 \\ 1 & -3 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (e) $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$

- **43.** Let A be an $n \times n$ matrix. Suppose that there exists an invertible matrix P such that $P^{-1}AP = D$, where D is a diagonal matrix. Consider the following statements.
 - (i) $A^2 = P^2 D^2 (P^{-1})^2$
 - (ii) $A^2 = P^{-1}D^2P$

- (a) (i) only (b) (ii) only (c) (i) and (ii) (d) neither
- 44. Solve the following initial value problem,

$$y_1' = 5y_1 - 2y_2$$

 $y_2' = 12y_1 - 5y_2$, $y_1(0) = 1, y_2(0) = 4$

(a)
$$y_1 = -e^{-x} + 2e^x$$
 (b) $y_1 = -e^x + 2e^{-x}$ (c) $y_1 = -2e^x + 6e^{-x}$ $y_2 = -2e^{-x} + 6e^x$ $y_2 = -2e^x + 6e^{-x}$ $y_2 = -2e^x + 6e^{-x}$ (e) $y_1 = 2e^x - e^{-x}$ $y_2 = -e^x + 2e^{-x}$ $y_2 = -2e^x + 6e^{-x}$

(d)
$$y_1 = -2e^x + 6e^{-x}$$
 (e) $y_1 = 2e^x - e^{-x}$
 $y_2 = -e^x + 2e^{-x}$ $y_2 = -2e^x + 6e^{-x}$

Answers

- 1. b 2. d 3. e 4. e 5. e 6. b 7. d 8. a 9. d 10. d
- 11. a 12. c 13. e 14. b 15. e 16. a 17. d 18. b 19. d 20. c
- 21. a 22. b 23. a 24. b 25. c 26. b 27. d 28. d 29. e 30. a
- **31.** b **32.** c **33.** b **34.** a **35.** b **36.** c **37.** c **38.** d **39.** d **40.** a
- **41.** e **42.** c **43.** d **44.** b