Steps for Hypothesis Testing – Binomial Test

- 1. Define your symbols. Say explicitly what p, n, and x represent
- 2. State the claim being tested in symbols. For Binomial Tests, this will have one of the forms in the table from number 4.
- 3. State the opposite of the claim. Opposites are listed in the table in number 4.
- 4. Determine H_0 and H_1 . Each of these is either the claim or its opposite. H_0 contains equality. H_1 does not.

$$\begin{array}{c|c} H_0 & H_1 \\ \hline p \le a & p > a \\ p = a & p \ne a \\ p \ge a & p < a \end{array}$$

- 5. Note whether H_0 or H_1 is the same as the claim.
- 6. Select a significance level α . If α is not given, use $\alpha = 0.05$.
- 7. Use technology to find the P-value. P is the probability of seeing data as extreme as the observations if H_0 is true. This is a measure of consistency between H_0 and the observations.
- 8. Decide if you should reject H_0 .
 - (a) If $P < \alpha$, then the observations are not consistent with H_0 . REJECT H_0 (support H_1).
 - (b) If $P > \alpha$, the observations are consistent with H_0 . FAIL TO REJECT H_0 (do not support H_1).
- 9. Restate your conclusion in non-technical terms that refer directly to the claim being tested. Determine if your claim is the same as (or overlaps) H_0 or H_1 . If your claim is H_0 , your conclusion will be one of these
 - There is enough sample evidence to reject the claim.
 - There is NOT enough sample evidence to reject the claim.

If your claim is H_1 , then your conclusion will be one of these

- There is enough sample evidence to support the claim.
- There is NOT enough sample evidence to support the claim.