5118014 Programming Language Theory

Ch 9. First-class Functions

Shin Hong

First-class Functions

- First-class function is a sort of values
 - a function is defined inside an expression
 - there must be a function defining expression
 - first-class function is much more expressive in program abstraction than first-order function
- Hereafter, for f(x), we say that function f is applied to x
 - rather than function *f* is called
 - call f(x) as function application rather than function call

FVAE

- let's extend VAE to FVAE by adding first-class function
 - not extending F1VAE

- syntax
 - add new expressions for function application and function definition
- semantics
 - extend the value domain
 - add new semantics rules for function application and function definition

Function Application

- In F1VAE, a function call is made with a function name identifier
- In FVAE, a function to be applied is given as an expression
 - not as an identifier
 - Ex. Scala

```
def makeAdder(x: Int): Int => Int =
   (y: Int) => x + y
makeAdder(3)(5)
```

Syntax

$$e := \cdots \mid \lambda x.e \mid e e$$

- lambda abstraction for defining anonymous function
 - x is the parameter and e is the body
- function application
 - the first expression denotes the target function, the second the argument

Value

$$V = \mathbb{Z} \cup Id \times E \times Env$$

 $v ::= n \in \mathbb{Z} \mid \langle \lambda x.e, \sigma \rangle$

- A value is not always an integer, but an integer or closure in FVAE
 - a closure is a pair of a lambda abstraction and an environment
 - examples
 - val $f = \lambda x$. 1 + x in f 2
 - val $f = \lambda y . \lambda x . y + x$ in f 1 2

Semantics (1/2)

$$Env = Id \rightarrow V$$
$$\Rightarrow \subseteq Env \times E \times V$$

$$\frac{\sigma \vdash e_1 \Rightarrow n_1 \qquad \sigma \vdash e_2 \Rightarrow n_2}{\sigma \vdash e_1 + e_2 \Rightarrow n_1 + n_2} \quad \text{for } n_1 \in \mathbb{Z} \text{ and } n_2 \in \mathbb{Z}$$

$$\frac{\sigma \vdash e_1 \Rightarrow v_1 \qquad \sigma[x \mapsto v_1] \vdash e_2 \Rightarrow v_2}{\sigma \vdash \text{val } x = e_1 \text{ in } e_2 \Rightarrow v_2}$$

Semantics (2/2)

$$\sigma \vdash \lambda x.e \Rightarrow \langle \lambda x.e, \sigma \rangle$$
 [Fun]

- a lambda abstraction creates a closure capturing the current environment

$$\frac{\sigma \vdash e_1 \Rightarrow \langle \lambda x. e, \sigma' \rangle \qquad \sigma \vdash e_2 \Rightarrow v' \qquad \sigma'[x \mapsto v'] \vdash e \Rightarrow v}{\sigma \vdash e_1 e_2 \Rightarrow v}$$
[App]

Example

$$\emptyset \vdash (\lambda x. \lambda y. x + y) \ 1 \ 2 \Rightarrow 3$$

$$\frac{\sigma \vdash e_1 \Rightarrow \langle \lambda x. e, \sigma' \rangle \qquad \sigma \vdash e_2 \Rightarrow v' \qquad \sigma'[x \mapsto v'] \vdash e \Rightarrow v}{\sigma \vdash e_1 e_2 \Rightarrow v}$$
[App]

- $\emptyset \vdash (\lambda x. \lambda y. x + y)1 \Rightarrow \langle \lambda y. x + y, [x \mapsto 1] \rangle$
 - $\emptyset \vdash \lambda x. \lambda y. x + y \Rightarrow \langle \lambda y. x + y, \emptyset \rangle$
 - $\emptyset \vdash 1 \Rightarrow 1$
 - $[x \mapsto 1] \vdash \lambda x. \lambda y. x + y \Rightarrow < \lambda y. x + y, [x \mapsto 1] >$
- $\emptyset \vdash 2 \Rightarrow 2$
- $[x \mapsto 1, y \mapsto 2] \vdash x + y \Rightarrow 3$