

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
21 May 2004 (21.05.2004)

PCT

(10) International Publication Number
WO 2004/041196 A2

- (51) International Patent Classification⁷: **A61K**
- (21) International Application Number: **PCT/US2003/034787**
- (22) International Filing Date: **3 November 2003 (03.11.2003)**
- (25) Filing Language: **English**
- (26) Publication Language: **English**
- (30) Priority Data:
60/423,380 4 November 2002 (04.11.2002) US
- (71) Applicants (*for all designated States except US*): THE UNITED STATES OF AMERICA, represented by THE SECRETARY OF HEALTH AND HUMAN SERVICES, NIH [US/US]; Office of Technology Transfer, Suite 325, 6011 Executive Boulevard, Rockville, MD 20852 (US). THE UNITED STATES OF AMERICA, as represented by THE SECRETARY OF DEFENSE [US/US]; Armed Forces Institute of Pathology, 6825 16th Street NW, Washington, DC 20306-6000 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (*for US only*): **HARRIS, Curtis, C.** [US/US]; P.O. Box 77, 4720 Waverly Avenue, Garrett Park, MD 20896-0077 (US). **HE, Ping** [US/US]; 7305 Bannockburn Ridge Ct, Bethesda, MD 20817 (US). **VARTICOVSKI, Lyuba** [US/US]; 6506 Cardigan Road, Bethesda, MD 20817 (US). **TRAVIS, William, D.** [US/US]; P.O. BOX 2821, Kensington, MD 20891 (US).
- (74) Agent: **JEFFREY, I., Auerbach; Liniak, Berenato & White, LLC**, 6550 Rock Spring Drive, Suit 240, Bethesda, MD 20817 (US).
- (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

[Continued on next page]

(54) Title: METHODS AND COMPOSITIONS FOR THE DIAGNOSIS OF NEUROENDOCRINE LUNG CANCER

WO 2004/041196 A2

(57) Abstract: This invention relates to methods and compositions for the diagnosis of neuroendocrine lung cancers. In particular, the invention concerns the use of cDNA microarrays to facilitate the differential diagnosis of neuroendocrine tumor types.

MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— *without international search report and to be republished upon receipt of that report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

- (84) **Designated States (regional):** ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,

Title of the Invention:**Methods and Compositions for the Diagnosis
of Neuroendocrine Lung Cancer****Field of the Invention:**

5 This invention relates to methods and compositions for the diagnosis of neuroendocrine lung cancers. In particular, the invention concerns the use of cDNA microarrays to facilitate the differential diagnosis of neuroendocrine tumor types.

Statement of Governmental Interest

10 This invention was funded by NCI Intramural Research Program CCR at the National Institutes of Health. The United States Government has certain rights to this invention.

Background of the Invention:

15 The mammalian neuroendocrine system is a dispersed organ system that consists of cells found in multiple different organs. The cells of the neuroendocrine system function in certain ways like nerve cells and in other ways like cells of the endocrine (hormone-producing) glands. The neuroendocrine cells of the lung are of particular significance; they help control airflow and blood flow in the lungs and may help control growth of other types of lung cells.

20 In some instances, neuroendocrine cells escape from normal cellular control and become malignant, resulting in neuroendocrine tumors. Four clinically distinct types of neuroendocrine tumors have been described: small cell lung cancer (SCLC), large cell neuroendocrine carcinoma (LCNEC), typical carcinoid (TC) tumors and atypical carcinoid (AC) tumors. SCLC is the most serious type of 25 neuroendocrine lung tumor (LCNEC), and is among the most rapidly growing and spreading of all cancers. Large cell neuroendocrine carcinoma, typical carcinoid

and atypical carcinoid tumors are rare forms of cancers. Whereas SCLC accounts for 15-25% of total pulmonary malignancies, large cell neuroendocrine carcinoma, typical carcinoid and atypical carcinoid tumors collectively account for only 3-5% of total pulmonary malignancies. Accurate diagnosis of neuroendocrine carcinoma
5 is important since the different tumor types are associated with markedly different survival rates. Small Cell Lung Cancers are associated with 5 and 10 year survival rates of only 9% and 5%, respectively. Large Cell Neuroendocrine Carcinoma presently exhibit 27% and 9%, 5 and 10 year survival rates. Atypical Carcinoid Tumors are associated with 5 and 10 year survival rates of 56% and 35%,
10 respectively. In contrast, Typical Carcinoid Tumors are found to have 5 and 10 year survival rates of nearly 90%

Neuroendocrine tumors are reviewed by Gould, V.E. *et al.* (2000) "EPITHELIAL TUMORS OF THE LUNG" *Chest Surg Clin N Am* 10:709-28, by DeLellis, R.A. (1997) "PROLIFERATION MARKERS IN NEUROENDOCRINE TUMORS:
15 USEFUL OR USELESS? A CRITICAL REAPPRAISAL" *Verh Dtsch Ges Pathol.* 81:53-61, by Travis, W.D. *et al.* (1991) "NEUROENDOCRINE TUMORS OF THE LUNG WITH PROPOSED CRITERIA FOR LARGE-CELL NEUROENDOCRINE CARCINOMA. AN ULTRASTRUCTURAL, IMMUNOHISTOCHEMICAL, AND FLOW CYTOMETRIC STUDY OF 35 CASES" *Am J Surg Pathol* 15:529-53, by Cerilli, L.A. *et al.* (2001)
20 "NEUROENDOCRINE NEOPLASMS OF THE LUNG" *Am J Clin Pathol* 116:S65-96; by Arrigoni, M.G. *et al.* (1972) "ATYPICAL CARCINOID TUMORS OF THE LUNG," *J Thorac Cardiovasc Surg* 64:413-421; by Warren, W.H. *et al.* (1988) "WELL DIFFERENTIATED AND SMALL CELL NEUROENDOCRINE CARCINOMAS OF THE LUNG: TWO RELATED BUT DISTINCT CLINICOPATHOLOGIC ENTITIES," *Virchows
25 Arch B cell Pathol* 55:299-310; by Kramer, R. (1930) "ADENOMA OF BRONCHUS," *Ann Otol Rhinol Laryngol* 39:689, and by Mark, E.J. *et al.* (1985) "PERIPHERAL SMALL CELL CARCINOMA OF THE LUNG RESEMBLING CARCINOID TUMOR," *Arch Pathol Lab Med* 109:263-269.

Unfortunately, all neuroendocrine tumors have similar morphologic
30 appearances and exhibit similar immunohistochemical staining. Thus, a significant

difficulty presently exists in accurately distinguishing between the different types of neuroendocrine tumors. Such diagnosis is still "decisively" based on light-microscopic evaluations of tissue samples for the number of cells involved in mitosis. Other than clinical stage at presentation, mitotic count is currently the sole

5 independent histologic predictor of prognosis (Junker, K. *et al.* (2000)

"PATHOLOGY OF SMALL-CELL LUNG CANCER," *J Cancer Res Clin Oncol.* 126:361-8; Franklin, WA. (2000) "PATHOLOGY OF LUNG CANCER" *J Thorac Imaging.* 15:3-12; Chyczewski, L. *et al.* (2001) "MORPHOLOGICAL ASPECTS OF CARCINOGENESIS IN THE LUNG" *Lung Cancer.* 34:S17-25; Travis, W.D. *et al.* (1991)

10 "NEUROENDOCRINE TUMORS OF THE LUNG WITH PROPOSED CRITERIA FOR LARGE-CELL NEUROENDOCRINE CARCINOMA. AN ULTRASTRUCTURAL, IMMUNOHISTOCHEMICAL, AND FLOW CYTOMETRIC STUDY OF 35 CASES" *Am J Surg Pathol* 15:529-53; Brambilla, E. *et al.* (2001) "THE NEW WORLD HEALTH ORGANIZATION CLASSIFICATION OF LUNG TUMOURS" *Eur Respir J.* 18:1059-68).

15 Such microscopic evaluations of tissue samples is complex and difficult. Moreover, no "gold-standard" exists for defining neuroendocrine differentiation (Carnaghi, C. *et al.* (2001) "CLINICAL SIGNIFICANCE OF NEUROENDOCRINE PHENOTYPE IN NON-SMALL-CELL LUNG CANCER" *Ann Oncol.* 12:S119-23). The absence of an effective diagnostic standard complicates the management and
20 treatment of neuroendocrine tumors (Obérg, K. (2001) "CHEMOTHERAPY AND BIOTHERAPY IN THE TREATMENT OF NEUROENDOCRINE TUMOURS," *Ann Oncol* 12:S111-4).

Researchers have attempted to apply the principles of molecular biology in order to identify molecular markers that would facilitate the diagnosis of
25 neuroendocrine tumor types (see, for example, Japanese Patent Document JP 58,198,758A2; and United States Patents Nos. 5,766,888; 5,856,097; 5,866,323; 5,965,362; 5,976,790; 5,985,240; 5,998,154; 6,132,724; 6,166,176; 6,180,082; 6,225,049; 6,238,877; 6,251,586; 6,335,167; and 6,358,491). Certain proteins, such as chromogranin A (CgA) and neuron-specific enolase (NSE) have been
30 identified as having specific potential use in the clinical diagnosis of

neuroendocrine tumors (Seregny, E. *et al.* (2000) "LABORATORY TESTS FOR NEUROENDOCRINE TUMOURS" *Q J Nucl Med.* 44:22-41). Non-SCLC neuroendocrine tumors have been reported to overexpress CgA whereas SCLC tumors exhibit elevated NSE levels. *Id.* Lui, W.-O. *et al.* (2001) "HIGH LEVEL AMPLIFICATION OF 1P32-33 AND 2P22-24 IN SMALL CELL LUNG CARCINOMAS" *Intl. J Oncol.* 19:451-457 used comparative genomic hybridization analysis to identify chromosomal abnormalities in SCLC tumor cells. Through such analysis, several genetic regions were found to be amplified (i.e., 1p32, 2p23, 1p32, and 2p32). A loss of heterozygosity (LOH) is observed on 3p, 13q and 17p in nearly all SCLC tumors (Yokota *et al.* (1987) "LOSS OF HETEROZYGOSITY ON CHROMOSOMES 3, 13 AND 17 IN SMALL CELL CARCINOMA AND ON CHROMOSOME 3 IN ADENOCARCINOMA OF THE LUNG" *Proc. Natl. Acad. Sci. (U.S.A.)* 84:9252-9256. Similarly, deletions in 11q have been correlated with the presence of AC and TC tumors (Walch, A.K. *et al.* (1998) "TYPICAL AND ATYPICAL CARCINOID TUMORS OF THE LUNG ARE CHARACTERIZED BY 11Q DELETIONS AS DETECTED BY COMPARATIVE GENOMIC HYBRIDIZATION" *Am J Pathol.* 153:1089-98).

While such efforts have succeeded in identifying quantitative differences in mutations affecting various genes (for example finding that p53 is inactivated in >90% of SCLC tumors, but in only >50% of non-SCLC tumors, or that p16 abnormalities arise in <1% of SCLC tumors but in ~66% of non-SCLC tumors), clear correlations that would support a definitive differential diagnosis of tumor type has not been fully achieved (see, Ignacio, I. *et al.* (2001) "MOLECULAR GENETICS OF SMALL CELL LUNG CARCINOMA" *Semin Oncol.* 28:3-13; Carnaghi, C. *et al.* (2001) "CLINICAL SIGNIFICANCE OF NEUROENDOCRINE PHENOTYPE IN NON-SMALL-CELL LUNG CANCER" *Ann Oncol.* 12:S119-23). In this regard, one recent study found no statistically significant correlation between any individual marker and response to chemotherapy for non-SCLC tumors (Gajra, A. *et al.* (2002) "THE PREDICTIVE VALUE OF NEUROENDOCRINE MARKERS AND P53 FOR RESPONSE TO CHEMOTHERAPY AND SURVIVAL IN PATIENTS WITH ADVANCED NON-SMALL CELL LUNG CANCER" *Lung Cancer.* 36:159-65). Thus, a need remains for a usable

molecular marker approach that could distinguish between the different types of neuroendocrine tumors.

cDNA microarrays have been employed to analyze gene expression patterns in human cancers (DeRisi, J. *et al.* (1996) "USE OF A cDNA

5 MICROARRAY TO ANALYSE GENE EXPRESSION PATTERNS IN HUMAN CANCER"

Nature Genetics 14:457-60). Such efforts have combined DNA amplification technologies (such as T7-based RNA amplification) with cDNA microarrays in order to improve the discriminating power of the analysis (Luo, L. *et al.* (1999)

"GENE EXPRESSION PROFILES OF LASER-CAPTURED ADJACENT NEURONAL

10 SUBTYPES" *Nature Medicine* 5:117-22; Bonner, R.F. *et al.* (1997) "LASER

CAPTURE MICRODISSECTION: MOLECULAR ANALYSIS OF TISSUE" *Science*

278:1481,1483; Schena, M. *et al.* (1995) "QUANTITATIVE MONITORING OF GENE EXPRESSION PATTERNS WITH A COMPLEMENTARY DNA MICROARRAY" *Science* 270:467-70).

15 Despite all such progress, no fully successful method for distinguishing between the neuroendocrine tumor types, and of thus accurately diagnosing neuroendocrine cancers has yet been achieved. The present invention is, in part, directed to such needs.

Summary of the Invention:

20 This invention relates to methods and compositions for the diagnosis of neuroendocrine lung cancers. The present invention permits one to accurately classify pulmonary neuroendocrine tumors based on their genome-wide expression profile without further manipulation. A hierarchical clustering of all genes classifies these tumors according to World Health Organization (WHO)

25 histological type. The selection of genes with significant variance resulted in the identification of 198 transcripts, many of which have potentially important biological and clinical implications. The present invention thus defines and provides groups of genes that identify each tumor type, and permits one to derive a molecular signature that distinguishes each subtype of neuroendocrine tumor.

In detail, the invention provides a method for determining whether a candidate cell is a neuroendocrine tumor cell, wherein the method comprises the steps of:

- (A) determining the profile of expression of a plurality of genes of the candidate cell; and
- 5 (B) comparing such determined profile of expression with the profile of expression of the genes of a small cell lung cancer cell, a large cell neuroendocrine carcinoma cell, a typical carcinoid tumor cell or an atypical carcinoid tumor cell;
- 10 to thereby determine whether the candidate cell is a neuroendocrine tumor cell.

The invention particularly concerns the embodiment of such method wherein the method additionally permits a determination of neuroendocrine tumor cell type. The invention further concerns the embodiments of such methods wherein the method determines whether the candidate cell is a small cell lung cancer (SCLC) neuroendocrine tumor cell, a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell, a typical carcinoid (TC) neuroendocrine tumor cell, or an atypical carcinoid (AC) neuroendocrine tumor cell.

The invention particularly concerns the embodiments of such methods wherein the plurality of genes includes one or more genes selected from the group consisting of C5, CPE, GRIA2, RIMS2, ORC4L, CSF2RB, GGH, NPAT, NR3C1, P311, PRKAA2, PTK6, APRT, ARF4L, ARHGDIA, ARL7, ATP6F, CDC20, CDC34, CLDN11, COMT, CSTF1, DDX28, DHCR7, ERP70, FEN1, GCN1L1, GNB1, GUK1, HDAC7A, ITPA, JUP, KIAA0469, KRT5, PDAP1, PGAM1, PHB, POLA2, POLD2, POLE3, PYCR1, SIP2-28, SIVA, SURF 1, TADA3L, TKI, 25 TYMSTR, and VATI, and especially wherein the plurality of genes includes one or more genes selected from the group consisting of GGH and CPE.

The invention further concerns the embodiments of such methods wherein step (A) of the methods comprise incubating RNA of the candidate cell, or DNA or RNA amplified from such RNA, in the presence of a plurality of genes, or

fragments or RNA transcripts thereof, under conditions sufficient to cause RNA to hybridize to complementary DNA or RNA molecules; and detecting hybridization that occurs.

The invention additionally concerns the embodiments of such methods
5 wherein the plurality of genes, or polynucleotide fragments or RNA transcripts thereof, are distinguishably arrayed in a microarray. The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in neuroendocrine tumor cells relative to normal cells.

10 The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in small cell lung cancer (SCLC) neuroendocrine tumor cells relative to large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cells.

15 The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in small cell lung cancer (SCLC) neuroendocrine tumor cells relative to typical carcinoid (TC) neuroendocrine tumor cells.

20 The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in small cell lung cancer (SCLC) neuroendocrine tumor cells relative to atypical carcinoid (AC) neuroendocrine tumor cells.

25 The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in large cell

neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cells relative to atypical carcinoid (AC) neuroendocrine tumor cells.

The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cells relative to typical carcinoid (TC) neuroendocrine tumor cells.

The invention particularly concerns the embodiments of such methods wherein the arrayed genes, or polynucleotide fragments or RNA transcripts thereof, include one or more genes selected from the group consisting of C5, CPE, GRIA2, RIMS2, ORC4L, CSF2RB, GGH, NPAT, NR3C1, P311, PRKAA2, PTK6, APRT, ARF4L, ARHGDIA, ARL7, ATP6F, CDC20, CDC34, CLDN11, COMT, CSTF1, DDX28, DHCR7, ERP70, FEN1, GCN1L1, GNB1, GUK1, HDAC7A, ITPA, JUP, KIAA0469, KRT5, PDAP1, PGAM1, PHB, POLA2, POLD2, POLE3, PYCR1, SIP2-28, SIVA, SURF 1, TADA3L, TKI, TYMSTR, and VATI,.

The invention especially concerns the embodiments of such methods wherein the arrayed genes, or polynucleotide fragments or RNA transcripts thereof, include one or more genes selected from the group consisting of GGH and CPE, or polynucleotide fragments or RNA transcripts thereof.

The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cells relative to atypical carcinoid (AC) neuroendocrine tumor cells.

The invention particularly concerns the embodiments of such methods wherein the microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in typical carcinoid (TC)

neuroendocrine tumor cells relative to atypical carcinoid (AC) neuroendocrine tumor cells

The invention additionally concerns a microarray of genes, or polynucleotide fragments or RNA transcripts thereof for distinguishing a

- 5 neuroendocrine tumor cell, the microarray comprising a solid support having greater than 10 genes, or polynucleotide fragments or RNA transcripts thereof, distinguishably arrayed in spaced apart regions, wherein the microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) cell, a
- 10 large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell, a typical carcinoid (TC) neuroendocrine tumor cell, or an atypical carcinoid (AC) neuroendocrine tumor cell, relative to a normal cell or a cell belonging to a different neuroendocrine tumor cell type, to permit the microarray to distinguish a pulmonary neuroendocrine tumor cell.

- 15 The invention particularly concerns the embodiment of such microarray wherein the microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a neuroendocrine tumor cell relative to a normal cell to permit the microarray to distinguish between a neuroendocrine tumor cell and a normal cell.

- 20 The invention particularly concerns the embodiments of such microarrays wherein the microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) neuroendocrine tumor cell relative to a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell to permit the
- 25 microarray to distinguish between a small cell lung cancer (SCLC) neuroendocrine tumor cell and a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell.

The invention particularly concerns the embodiments of such microarrays wherein the microarray comprises a sufficient number of genes, or polynucleotide

- 10 -

fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) neuroendocrine tumor cell relative to a typical carcinoid (TC) neuroendocrine tumor cell to permit the microarray to distinguish between a small cell lung cancer (SCLC) neuroendocrine tumor cell and a typical carcinoid

5 (TC) neuroendocrine tumor cell.

The invention particularly concerns the embodiments of such microarrays wherein the microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) neuroendocrine tumor cell relative to an atypical carcinoid

10 (AC) neuroendocrine tumor cell to permit the microarray to distinguish between a small cell lung cancer (SCLC) neuroendocrine tumor cell and an atypical carcinoid (AC) neuroendocrine tumor cell.

The invention particularly concerns the embodiments of such microarrays wherein the microarray comprises a sufficient number of genes, or polynucleotide

15 fragments or RNA transcripts thereof, that are differentially expressed in a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell relative to a typical carcinoid (TC) neuroendocrine tumor cell to permit the microarray to distinguish between a large cell neuroendocrine carcinoma (LCNEC)

neuroendocrine tumor cell and a typical carcinoid (TC) neuroendocrine tumor cell.

20 The invention particularly concerns the embodiments of such microarrays wherein the microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell relative to an atypical carcinoid (AC) neuroendocrine tumor cell to permit the microarray to

25 distinguish between a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell and an atypical carcinoid (AC) neuroendocrine tumor cell.

The invention particularly concerns the embodiments of such microarrays wherein the microarray comprises a sufficient number of genes, or polynucleotide

- 11 -

fragments or RNA transcripts thereof, that are differentially expressed in a typical carcinoid (TC) neuroendocrine tumor cell relative to an atypical carcinoid (AC) neuroendocrine tumor cell to permit the microarray to distinguish between a typical carcinoid (TC) neuroendocrine tumor cell and an atypical carcinoid (AC) 5 neuroendocrine tumor cell.

The invention particularly concerns the embodiments of such microarrays wherein the genes or polynucleotide fragments or RNA transcripts thereof of the microarray include one or more genes selected from the group consisting of C5, CPE, GRIA2, RIMS2, ORC4L, CSF2RB, GGH, NPAT, NR3C1, P311, PRKAA2, 10 PTK6, APRT, ARF4L, ARHGDIA, ARL7, ATP6F, CDC20, CDC34, CLDN11, COMT, CSTF1, DDX28, DHCR7, ERP70, FEN1, GCN1L1, GNB1, GUK1, HDAC7A, ITPA, JUP, KIAA0469, KRT5, PDAP1, PGAM1, PHB, POLA2, POLD2, POLE3, PYCR1, SIP2-28, SIVA, SURF 1, TADA3L, TKI, TYMSTR, and VATI, or a polynucleotide fragment or RNA transcript thereof.

15 The invention further concerns the embodiments of such microarrays wherein the genes or polynucleotide fragments or RNA transcripts thereof of the microarray include one or more genes selected from the group consisting of GGH and CPE, or a polynucleotide fragment or RNA transcript thereof.

Brief Description of the Figures:

20 **Figure 1** shows the hierarchical clustering of genes with statistically significant variance ($p<0.004$) among all tumor samples.

Figure 2 shows the hierarchical clustering of 198 genes, created by enforcing the classification of 17 tumors.

25 **Figures 3A and 3B** show the expression of genes of large cell neuroendocrine tumor cells and typical carcinoid tumor cells.

Figure 4 shows a dendrogram of pulmonary NE tumors based on expression of 198 genes. Seventeen cases of the NE tumors were sorted by one-

- 12 -

way hierarchical clustering based on the expression similarities of 198 genes that were selected from 9,984 genes based on the expression changes in the three subtype tumors with significant statistical difference (F-test, p<0.004). Medium gray, light gray, and black signal indicate that expression of these genes is higher,

5 lower or equal to the median level of expression in all samples, respectively.

White represents missing genes or poor quality data. TC: typical carcinoid; SC: small cell lung cancer; LC: large cell neuroendocrine carcinoma; SC+LC: a tumor sample with 90% SC and 10% LC. The numbers are the case numbers of the tumor samples.

- 10 **Figures 5A, 5B, 5C, 5D, 5E, and 5F** show comparisons of expression changes detected by microarrays and real-time quantitative RT-PCR. RNA isolated from LCM cells was examined in triplicates for expression of three representative genes upregulated in each tumor subtype. The gene expression changes detected by real-time RT-PCR (**Figure 5A-C**) were presented here in comparisons with
15 those derived from cDNA microarray analysis (**Figure 5D-F**). The expression of each gene in the RT-PCR analysis was normalized first by expression of the 18S ribosomal gene in the same cell line and then by the expression of that gene in the BEAS-2B control cells. CPE: carboxypeptidase E; P311: a gene of neuronal marker; CDC20: human homolog gene for *S. cerevisiae* cell division cycle 20
20 gene. TC: typical carcinoid; SC: small cell lung cancer; LC: large cell neuroendocrine carcinoma. The 17 pulmonary NET cases were arranged from left to right in each panel in the same order of 1240, 1672, 11169, 11934, 12454, 12878, 890, 1047, 11061, 12346, 12457, 12893, 13369, 10110, 10249, 10373, and 12700. The primer pairs for RT-PCR are: CPE: (**SEQ ID NO:2**) 5'-
25 TTGTCCGAGACCTTCAAGGTAAC-3' and (**SEQ ID NO:3**) 5'- CCTTTGCGGATGTAACATCGT-3'; P311: (**SEQ ID NO:4**) 5'- TGGGTCAGTCAAGAACCATTC-3' and (**SEQ ID NO:5**) 5'- ACTTCCTTGGAACAGGAAGTCT-3'; and CDC20: (**SEQ ID NO:6**) 5'- CTGAACGGTTTGATGTAGAGGAA-3' and (**SEQ ID NO:7**) 5'-
30 CCCTCTGGCGCATTGT-3'.

- 13 -

Figures 6A and 6B show the results of Kaplan-Meier Survival rates of 54 cases of pulmonary NET patients as function of CPE or GGH expression. Figure 6A shows the survival rates of patients with positive and negative CPE stains on pulmonary NET cells. The survival rate (76%) for the patients with the positive 5 CPE are statistically significant ($p=0.023$) higher than that (27%) with the negative stain. Figure 6B shows the inverse correlation of the survival rates to the GGH expression in pulmonary NET cells. The survival rates to positive and negative GGH stains in pulmonary NET cells were 28% and 83%, respectively, with the statistic significance ($p=0.0035$). X indicates censored samples.

10 Description of the Preferred Embodiments:

The invention concerns methods and compositions for the diagnosis of neuroendocrine lung cancers. Lung cancer is a leading cause of cancer-related deaths (Franceschi, S. *et al.* (1999) "THE EPIDEMIOLOGY OF LUNG CANCER," Ann. Oncol. 10 Suppl 5:S3-6). Pulmonary neuroendocrine tumors (NETs) account for 15 20-30% of lung cancer cases and lung cancer is the leading cause of cancer-related death (Parkin, D.M. *et al.* (1999) "GLOBAL CANCER STATISTICS," CA Cancer J Clin 49:33-64, 1). The observed continuous relative increase in the incidence of SCLC (Junker, K. *et al.* (2000) "PATHOLOGY OF SMALL-CELL LUNG CANCER," J. Cancer Res. Clin. Oncol. 126:361-368) reflects cigarette smoking, lack of effective 20 methods for early diagnosis and inadequate predictive markers of aggressive lung cancer types.

Pulmonary NETs include low-grade typical carcinoid (TC), intermediate-grade atypical carcinoid (AC), and high-grade large cell neuroendocrine carcinoma (LCNEC) and small cell lung cancer (SCLC) (Travis, W.D. *et al.* (1998) 25 "REPRODUCIBILITY OF NEUROENDOCRINE LUNG TUMOR CLASSIFICATION," Hum Pathol. 29:272-279). TC, AC and LCNEC collectively comprise only 3%-5% of all pulmonary malignancies, whereas SCLC accounts for 15%-25% (Travis, W.D. *et al.* (1998) "REPRODUCIBILITY OF NEUROENDOCRINE LUNG TUMOR CLASSIFICATION," Hum Pathol. 29:272-279; Travis, W.D. *et al.* (1991) " 30 "NEUROENDOCRINE TUMORS OF THE LUNG WITH PROPOSED CRITERIA FOR LARGE-

CELL NEUROENDOCRINE CARCINOMA. AN ULTRASTRUCTURAL, IMMUNOHISTOCHEMICAL, AND FLOW CYTOMETRIC STUDY OF 35 CASES," Am J Surg Pathol. 15:529-553). The prognostic relevance of pulmonary NETs has changed significantly since the recent recognition of the LCNEC subtype (Travis,
5 W.D. *et al.* (1998) "REPRODUCIBILITY OF NEUROENDOCRINE LUNG TUMOR CLASSIFICATION," Hum Pathol. 29:272-279; Travis, W.D. *et al.* (1991) "NEUROENDOCRINE TUMORS OF THE LUNG WITH PROPOSED CRITERIA FOR LARGE-
CELL NEUROENDOCRINE CARCINOMA. AN ULTRASTRUCTURAL, IMMUNOHISTOCHEMICAL, AND FLOW CYTOMETRIC STUDY OF 35 CASES," Am J
10 Surg Pathol. 15:529-553). The 5- and 10-year survival rates for TC are 87% and 87%, for AC are 56% and 35%, for LCNEC are 27% and 9%, and for SCLC are 9% and 5%, respectively. Pulmonary NETs have a similar morphologic appearance with organoid, trabecular or rosette-like pattern, and the immunohistochemical staining for neuroendocrine markers: chromogranin, synaptophysin, and neural cell
15 adhesion molecule (NCAM, CD56). To distinguish these tumors from non-small cell lung cancers (NSCLC), some cases are analyzed by electron microscopy for the presence of neuroendocrine granules. Prior to the present invention, no specific molecular markers had been identified that could distinguish subtypes of pulmonary NETs and, other than clinical stage at presentation, the tumor mitotic index is the only independent histologic predictor of survival. The current treatment for patients with TC and AC is surgical resection, because these tumors grow slowly and are frequently detected as solitary pulmonary lesions. In contrast, surgical resection is feasible in less than one third of the LCNEC patients, with or without neoadjuvant treatment. Unfortunately, at the time of diagnosis, most
20 SCLC are disseminated and prognosis is poor. Thus, accurate diagnosis of the pulmonary NET subtypes is essential for appropriate treatment and prediction of clinical outcome (Travis, W.D. *et al.* (1998) "SURVIVAL ANALYSIS OF 200 PULMONARY NEUROENDOCRINE TUMORS WITH CLARIFICATION OF CRITERIA FOR ATYPICAL CARCINOID AND ITS SEPARATION FROM TYPICAL CARCINOID," Am J
25 Surg Pathol. 22:934944; Zacharias, J. *et al.* (2003) "LARGE CELL NEUROENDOCRINE CARCINOMA AND LARGE CELL CARCINOMAS WITH
30

- 15 -

NEUROENDOCRINE MORPHOLOGY OF THE LUNG: PROGNOSIS AFTER COMPLETE RESECTION AND SYSTEMATIC NODAL DISSECTION," Ann. Thorac. Surg. 75:348-352).

- Neuroendocrine tumors are a distinct subset of lung cancers that share
- 5 morphologic, ultrastructural, immunohistochemical, and molecular characteristics. As indicated above, the term neuroendocrine tumors encompasses small cell lung cancer (SCLC) tumors, large cell neuroendocrine carcinomas, typical carcinoid (TC) tumors and atypical carcinoid (AC) tumors. All neuroendocrine tumors have similar morphologic appearance with organoid, trabecular or rosettelike pattern;
- 10 immunohistochemical staining for chromogranin (Cga), synaptophysin, neuron-specific enolase (NSE), neural cell adhesion molecule (NCAM), and the presence of neuroendocrine granules, which can be detected by electron microscopy (Fisher, E.R. *et al.* (1978) "COMPARATIVE HISTOPATHOLOGIC, HISTOCHEMICAL, ELECTRON MICROSCOPIC AND TISSUE CULTURE STUDIES OF BRONCHIAL CARCINOID AND
- 15 OAT CELL CARCINOMAS OF THE LUNG," Am J Clin Pathol 69: 165-172).

- The dramatic differences in survival exhibited by the different neuroendocrine malignancies reflect fundamental differences in biological behavior and therapeutic approaches in these tumors (Travis, W.D., *et al.* (1998) "SURVIVAL ANALYSIS OF 200 PULMONARY NEUROENDOCRINE TUMORS: WITH
- 20 CLARIFICATION OF CRITERIA FOR ATYPICAL CARCINOID AND ITS SEPARATION FROM TYPICAL CARCINOID," Am J Surg Pathol 22:934-944). Current treatment for patients with TC involves surgical resection because the tumors are slow growing and frequently detected as solitary pulmonary lesions. In less than one third of patients with LCNEC, surgical resection is possible without neoadjuvant treatment.
- 25 Unfortunately, at the time of diagnosis, most SCLC tumors are disseminated, treatment is not effective and the prognosis is poor. Thus, accurate diagnosis of each type of pulmonary neuroendocrine tumors is essential for successful clinical outcome.

The combined use of light microscopy, immunohistochemistry and electron microscopy has increased the oncologist's ability to differentiate different subtypes of neuroendocrine tumors and has provided clues regarding their pathogenesis. However, little information is available on genetic changes associated with each 5 type of neuroendocrine tumors.

Over the past decade, there have been significant changes in the classification of pulmonary neuroendocrine tumors in order to improve prediction of their biological behavior. The accurate diagnosis of each pulmonary tumor subtype is critical for decisions of therapy. A diagnosis based on light microscopic 10 examination, specifically in differentiation of SCLC from other pulmonary NETs is often challenging. Unfortunately, there are no molecular markers to aid in differentiation of each tumor subtype.

In accordance with the methods of the present invention, the analysis of genome-wide gene expression in neuroendocrine tumors from cDNA microarray 15 data (often referred to as "unsupervised learning") accurately distinguishes each tumor type. The pattern of gene expression has been found to correlate with each subtype assigned by light microscopy according to WHO/LASLSC classification (Histopathological classification of these tumors is based on the 1999 WHO Classification (Travis, W.D. *et al.* (1999) "HISTOLOGIC TYPING OF LUNG AND 20 PLEURAL TUMORS" (Ed 3). Berlin, Germany, Springer).

Microarray technology is widely used to identify changes in gene expression accompanying altered cell physiology during development, cell cycle progression, drug treatment or disease progression. Related phenotypes are usually accompanied by related patterns of cellular transcripts that can be used to 25 characterize these changes. The present invention exploits the recent development of DNA microarray technology (see, for example, DeRisi, J. *et al.* (1996) "USE OF A cDNA MICROARRAY TO ANALYSE GENE EXPRESSION PATTERNS IN HUMAN CANCER" *Nature Genetics* 14:457-60; Luo, L. *et al.* (1999) "GENE EXPRESSION PROFILES OF LASER-CAPTURED ADJACENT NEURONAL SUBTYPES" *Nature*

- 17 -

Medicine 5:117-22; Bonner, R.F. et al. (1997) "LASER CAPTURE MICRODISSECTION: MOLECULAR ANALYSIS OF TISSUE" *Science* 278:1481,1483; Schena, M. et al. (1995) "QUANTITATIVE MONITORING OF GENE EXPRESSION PATTERNS WITH A COMPLEMENTARY DNA MICROARRAY" *Science* 270:467-70) to 5 analyze genome-wide changes that may distinguish these tumors and discover molecular markers. The identification of such markers and their subsequent use in the diagnosis and monitoring of neuroendocrine cancers permits a more effective selection of treatment modalities for individual patients.

The analysis of changes in gene expression in clinical specimens is 10 complicated by the mixture of tumor and normal cells, as well as stromal, vascular, and other cells obtained in biopsy. In addition, the heterogeneity of cell type hinders the study of gene expression profiles in cancer cells. Although the principles of the present invention may be used with tissue biopsies and other tissue samples, most preferably, the analysis will be conducted with single cells. 15 Such single cells can be isolated using any of a variety of methods, however, the use of laser capture microdissection (LCM) is preferred. Laser capture microdissection is a procedure that permits the harvesting of a specific cell population directly from frozen sections. The procedure involves fixing the desired cells to a thermoplastic film following infrared laser pulse to avoid 20 "contamination" by other cell populations (Emmert-Buck, M.R. et al. (1996) "Laser Capture Microdissection," *Science* 274:998-1001; Goldsworthy, S.M. et al. (1999) "EFFECTS OF FIXATION ON RNA EXTRACTION AND AMPLIFICATION FROM LASER CAPTURE MICRODISSECTED TISSUE," *Molecular Carcinogenesis*, 1999, 86- 91; Luo, L. et al. (1999) "GENE EXPRESSION PROFILES OF LASER-CAPTURED 25 ADJACENT NEURONAL SUBTYPES" *Nature Medicine* 5:117-22).

Most preferably, the PixCell™ LCM system (Arcturus, Mountain View, CA) is used for laser capture microdissection (Bonner, R.F., et al. (1997) "LASER CAPTURE MICRODISSECTION: MOLECULAR ANALYSIS OF TISSUE," *Science* 278: 1481,1483). The examples described below illustrate the desirability of isolating

tumor cells from vascular and inflammatory components frequently found in surgical specimens of lung cancer and other vascular tumors.

The present invention thus permits one to distinguish between different neuroendocrine tumor subtypes based on their expression profiles. Preferably, 5 such analysis will involve a comparison of the expression of multiple genes, and is accomplished by assessing the extent or presence of hybridization occurring between RNA transcripts (or cDNA copies thereof) of a candidate cell and genes, or polynucleotide fragments or RNA transcripts thereof of a reference cell that are differentially expressed in some or all neuroendocrine tumor cells. As used herein, 10 a gene is said to be "differentially expressed" in a tumor cell if detection of its expression facilitates the determination that a candidate cell is or is not a tumor cell. As used herein, the term "polynucleotide fragment" refers to a polynucleotide that is either a portion of a gene, cDNA or RNA molecule, or a complement of such molecules, and which possesses a length of at least 10 nucleotide residues, at 15 least 15 nucleotide residues, at least 20 nucleotide residues, at least 25 nucleotide residues, at least 35 nucleotide residues, at least 50 nucleotide residues, at least 75 nucleotide residues, at least at least 100 nucleotide residues, at least 150 nucleotide residues, or at least 200 nucleotide residues.

Clones containing suitable genes, and from which suitable polynucleotide 20 fragments or RNA transcripts can be made, are obtainable from Incyte Genomics (www.incyte.com). The present invention provides a preferred set of 198 genes that are particularly suited for use in such analysis. Clones of these genes are commercially available from Incyte Genomics using the Incyte Clone ID No. information provided in Table 2. Preferably the analysis will be conducted using 25 10%, 20%, 50%, 70%, 80%, 90% or all of these 198 genes, alone or in combination with other genes, or polynucleotide fragments or RNA transcripts thereof. These 198 genes have been found to define three different cluster groups. The analysis may involve a comparison of the expression of genes belonging to the same cluster group, or to two or more different cluster groups.

- 19 -

cDNA microarrays are preferably performed on a solid surface, such as a chip or slide. Preferably, such surfaces will contain multiple human genes, or polynucleotide fragments or RNA transcripts thereof, distinguishably arrayed. As used herein, the term "distinguishably arrayed" is intended to denote that such 5 gene's (or its fragment or transcript)'s location on the surface is distinct or distinguishable from the locations of other gene(s) that may be bound to the support.

Most preferably, the array will contain gene fragments of hundreds or thousands of human genes. A glass slide containing gene fragments of 9,984 10 human genes (provided by the Advanced Technology Center of the National Cancer Institute) is preferably employed. Clones and arrays are also available from Incyte Genomics, Palo Alto, CA, and other sources.

For analyzing such microarrays, nucleic acid, most preferably RNA, is isolated from candidate neuroendocrine cells. Any of a wide variety of 15 amplification procedures may be employed. In a preferred embodiment of the invention, a T7-based RNA amplification procedure is employed, such as that described by Luo, L. *et al.* (1999) ("GENE EXPRESSION PROFILES OF LASER-CAPTURED ADJACENT NEURONAL SUBTYPES" *Nature Medicine* 5:117-22). To facilitate the analysis, the amplified material is preferably labeled, as with a 20 radioactive, fluorescent, chemiluminescent, enzymatic, haptic, or other label, and incubated with the arrayed gene fragments under conditions suitable for nucleic acid hybridization to occur (see, for example, Schena, M. *et al.* (1995) "QUANTITATIVE MONITORING OF GENE EXPRESSION PATTERNS WITH A COMPLEMENTARY DNA MICROARRAY" *Science* 270:467-70).

25 The hybridized array are then analyzed for their pattern of hybridization. Detection of hybridization, e.g., detection of the labeled amplified material hybridized to a region of the array, indicates that the gene present at such region was expressed by the candidate cell being analyzed. Most preferably, such analysis will employ an automated scanning device, such as a GenePix 4000A

- 20 -

Laser Scanner (Axon Instruments, Inc., Foster City, CA) in conjunction with software for conducting such analysis. The BRB ArrayTools (ver 2.0) is preferred for this purpose (<http://linus.nci.nih.gov/BRB-ArrayTools.html>).

Having now generally described the invention, the same will be more

- 5 readily understood through reference to the following examples, which are provided by way of illustration, and are not intended to be limiting of the present invention, unless specified.

Example 1
cDNA Microarray

- 10 In order to identify molecular markers of pulmonary neuroendocrine tumors, the gene expression profile of clinical samples from patients with TC, LCNEC, and SCLC is analyzed by cDNA microarrays, preferably as follows:

Tissue Collection And RNA Quality Assessment. Archived, frozen lung tumor tissues are collected from hospitals over an 11 year period. Tumor tissues 15 are flash-frozen at surgery and stored at -80°C until used. The frozen tumor tissue block is prepared with O.C.T. mount medium and the quality of total RNA of each sample is evaluated by spectrophotometry and gel electrophoresis after phenol/chloroform extraction from one frozen section. Histopathological classification of these tumors is based on the 1999 WHO Classification (Travis, 20 W.D. *et al.* (1999) "HISTOLOGIC TYPING OF LUNG AND PLEURAL TUMORS" (Ed 3). Berlin, Germany, Springer). Two large cell neuroendocrine carcinomas (case 1240 and 1672) are confirmed by demonstrating the neuorendocrine immuno-phenotype with positive NCAM (CD56) staining. Table 1 summarizes clinical findings in the pulmonary NE tumors.

Histology	Table 1 Clinical Features Of 17 Patients With Pulmonary Neuroendocrine Tumors				Smoking
	Sex		Age		
	Male	Female	Range	Mean	
TC (n=11)	7	4	35-68	50	7 (64%)
LCNEC (n=2)	2	0	59-60	60	2 (100%)
SCLC (n=4)	3	1	43-75	65	4 (100%)
TOTAL (n=17)	12	5	35-75	65	13 (100%)

Laser Capture Microdissection Of 17 Neuroendocrine Tumors. Frozen tumor tissue (0.5 x 0.5 x 0.5 cm) are embedded in O.C.T. in a cryomold, and immersed immediately in dry ice-cold 2-methylbutane at -50°C. Sections of frozen tissue (8 mm) are mounted on silane coated glass slides and kept at -80°C until use. The slides are immediately fixed by immersion in 70% ethanol, stained with H&E and air-dried for 10 minutes after xylene treatment.

The PixCell™ LCM system (Arcturus, Mountain View, CA) is used for LCM (Bonner, R.F., *et al.* (1997) "LASER CAPTURE MICRODISSECTION: MOLECULAR ANALYSIS OF TISSUE," Science 278: 1481,1483). Tumor cells are fused to transfer film by thermal adhesion after laser pulse and were then transferred into tubes containing solution D in the Strategene Micro RNA isolation kit that contains guanidinium thiocyanate (GTC) and beta-mercaptoethanol. For each specimen, 15 to 18 frozen sections are used to maximize the quantity of RNA. Total RNA is extracted using a Micro RNA isolation kit (Strategene, La Jolla, CA) according to the manufacturer's instructions. Purified total RNA was resuspended in 11 ml of diethyl pyrocarbonate (DEPC), treated water, and used directly for RNA amplification and subjected to cDNA microarray analysis (Schena, M. *et al.* (1995) "QUANTITATIVE MONITORING OF GENE EXPRESSION PATTERNS WITH A COMPLEMENTARY DNA MICROARRAY," Science 270(5235):467-70; DeRisi, J. *et al.* (1996) "USE OF A cDNA MICRO ARRAY TO ANALYSE GENE EXPRESSION PATTERNS IN HUMAN CANCER," Nature Genetics 14:457-60, Lyer, R.P. *et al.* (1999) "MODIFIED OLIGONUCLEOTIDES--SYNTHESIS, PROPERTIES AND APPLICATIONS," Curr. Opin. Mol. Ther. 1:344-358).

RNA Amplification. The RNA amplification procedure used is preferably as described by Luo, L. *et al.* (1999) ("GENE EXPRESSION PROFILES OF LASER-CAPTURED ADJACENT NEURONAL SUBTYPES," *Nature Med* 5: 117-122). The method relies on attaching a T7 promoter sequence to the oligo(dT) primer. A 5 preferred such sequence for synthesis of the first strand cDNA is SEQ ID NO.:1:

5' TCTAGTCGAC GGCCAGTGAA TTGTAATACG ACTCACTATA
 GGGCGTTTTT TTTTTTTTTT TTTTTT 3'

After second strand cDNA synthesis, amplified RNA is generated using T7 RNA polymerase and the double-stranded cDNA molecules as targets for the linear 10 amplification. The T7 promoter sequence is regenerated in subsequent rounds by priming the first strand cDNA synthesis reaction with random hexamers (Amersham Biosciences, Piscataway, NJ). The quality and quantity of amplified RNA were evaluated spectrophotometrically and by migration in 2.4% agarose gel electrophoresis, respectively.

15 **Cell Culture.** BEAS-2B cell line (Amstad, P. *et al.* (1988) "NEOPLASTIC TRANSFORMATION OF A HUMAN BRONCHIAL EPITHELIAL CELL LINE BY A RECOMBINANT RETROVIRUS ENCODING VIRAL HARVEY RAS," *Mol Carcinog*. 1988 1:151-60) is cultured in a serum-free medium, LHC-9 (Biofluids, Rockville, MD). Total RNA is isolated from cells with Trizol, followed by phenol/chloroform and 20 isopropanol extraction and purification (Stratagene, La Jolla, CA). Two rounds of amplified RNA are generated from the cell line as described above.

25 **Microarrays Hybridization.** cDNA microarrays are performed in duplicate for each sample on glass slides containing 9,984 human genes which were provided by the Advanced Technology Center of the National Cancer Institute. BEAS-2B amplified RNA (8 µg) is labeled with Cy5-dUTP and test samples (4 mg each) are labeled with Cy3-dUTP using Superscript II (Invitrogen, Carlsbad, CA). Briefly, RNA is incubated with Cy3-dUTP (or Cy5-dUTP) (Perkin Elmer Life Sciences, Boston, MA) at 42°C for 1h to synthesize the first strand of cDNA. The reaction is stopped by addition of 5 µl 0.5M EDTA and 10 µl 1N

NaOH followed by incubation at 65°C for 60 min. After neutralization, the samples are purified by centrifugation with a Microcon 30 (Millipore Corp., Bedford, MA) to remove unincorporated nucleotides and salts. The Cy3- and Cy5-labeled samples of each pair are combined and heated at 100°C for 2 min. After centrifugation for 10 minutes, the samples are placed onto the center of a glass microarray slide and hybridized at 65°C for 16h. The slides are washed to a final stringency of 0.2 x SSC at room temperature for 2 min prior to analysis.

Image And Statistic Analysis. Hybridized array slides are scanned with a GenePix 4000A Laser Scanner (Axon Instruments, Inc., Foster City, CA).
10 Analysis is performed using BRB ArrayTools (ver 2.0) developed by Drs. Richard Simon and Amy Peng (<http://linus.nci.nih.gov/BRB-ArrayTools.html>). Hierarchical clustering was performed on 8,987 clones with log-ratios present in at least 4 samples for each gene.

Example 2 cDNA Microarray Results

The results of the microarray analysis are obtained using Laser Capture Microdissection (LCM) as follows:

Laser Capture Microdissection (LCM) Of Clinical Samples. Use of LCM improves the sample preparation of microarray analysis by avoiding contamination with other cell types. (Emmert-Buck, M.R. *et al.* (1996) "Laser Capture Microdissection," *Science* 274:998-1001). This selection is particularly desirable for analysis of tumors from lung, prostate, ovary, and others (Ornstein, D.K. *et al.* (2000) "PROTEOMIC ANALYSIS OF LASER CAPTURE MICRODISSECTED HUMAN PROSTATE CANCER AND IN VITRO PROSTATE CELL LINES," *Electrophoresis* 21(11):2235-2242; Mirura, K. *et al.* (2002) "LASER CAPTURE MICRODISSECTION AND MICROARRAY EXPRESSION ANALYSIS OF LUNG ADENOCARCINOMA REVEALS TOBACCO SMOKING- AND PROGNOSIS RELATED MOLECULAR PROFILES," *Cancer Res.* 62:3244-3250; Ono, K. *et al.* (2000) "IDENTIFICATION BY cDNA MICROARRAY OF GENES INVOLVED IN OVARIAN CARCINOGENESIS," *Cancer Res.*

60:5007-5011). Tumor cells are selected by LCM from frozen sections. High quality RNA is obtained from these dissected materials.

Microarray Analysis Of Gene Expression Profiles Of Pulmonary Neuroendocrine Tumors. The invention tested the hypothesis that gene

5 expression profiling using cDNA microarray analysis can effectively identify subtypes of pulmonary neuroendocrine tumors classified by light microscopy according to WHO recommendations. Hierarchical clustering of 8,987 human genes, often referred to as unsupervised learning, separated samples into clusters based on overall similarity in gene expression without prior knowledge of sample
10 identity. The hierarchical clustering of genes with statistically significant variance ($p<0.004$) among all tumor samples is displayed in **Figure 1**. After decoding the specimens, it was immediately apparent that clustering based on genome-wide expression divides the tumors into their assigned WHO classification with 100% accuracy. Tumor samples from TC, LCNEC and SCLC clusters with their
15 respective subtype indicating similarities of gene expression shared by these tumors. The length of the branches indicates the relatedness of neuroendocrine tumors. Three distinct groups of tumors can be identified by this display. The sample, which contains features of LCNEC and SCLC clusters between LCNEC and SCLC with a shorter distance to SCLC. Thus, the data support the molecular
20 classification that predicted morphological classification of human pulmonary neuroendocrine tumors. The data indicates that WHO proposed morphological classification of pulmonary neuroendocrine tumors correspond to a significant similarity of their molecular profiles.

The Class Comparison Tool is used to select genes differentially expressed
25 among each tumor type at an assigned statistical significance level. The F-test, which measures levels of variance in gene expression among each sample, is used to compare the defined classes of tumors using BRB ArrayTool. This analysis results in the identification of a set of 198 genes that have statistically significant variance ($p<0.004$, **Table 2**). Having selected these 198 genes, another
30 hierarchical clustering can be created by enforcing the classification of 17 tumors

(Figure 2). The results show that the tumors cluster together in 3 groups in complete agreement with the pre-assigned morphological classification. Samples from LCNEC cluster closer to TC than to SCLC and the tumor that contained features of small and large neuroendocrine cells clustered with SCLC which

5 confirms the molecular relatedness identified by genome-wide expression in clinical behavior of these tumors. The results show that most of the 198 selected genes could be assigned to major functional groups that have been previously implicated in cancer development (Table 3). In particular, decreased expression of genes that oppose cell survival pathway, such as BCL2 antagonist-killer, BAK1,

10 and caspase 4, are common in all 3 types of neuroendocrine tumors, whereas TC and LCNEC have an additional >2.5-fold decrease in expression of BAS and TNF receptor-interacting kinase, RIPK1. These features indicate that these tumors lack opposing effects on BCL2, as contrasted to overexpression of BCL2, which leads to survival advantage in certain types of lymphomas (Cleary, M.L. *et al.* (1986)

15 "CLONING AND STRUCTURAL ANALYSIS OF CDNAs FOR BCL-2 AND A HYBRID BCL-2/IMMUNOGLOBULIN TRANSCRIPT RESULTING FROM THE T(14;18) TRANSLOCATION," Cell. 47(1):19-28) (Figure 3).

Table 2				
Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor Cells				
Unique ID No.	Description	Gene Symbol (Map)	Incyte Clone ID No.	UG Cluster
Cluster #1				
166807	glutamate receptor, ionotropic, AMPA 2 Neuronal Marker, TM Receptor	GRIA2 [4q32-q33]	IncytePD:1505977	Hs.89582
159877	carboxypeptidase E Secreted Lys Neuronal M	CPE [4q32.3]	IncytePD:2153373	Hs.75360
161598	origin recognition complex, subunit 4 (yeast homolog)-like	ORC4L [2q22-q23]	IncytePD:2728840	Hs.55055
167158	complement component 5 Infl. Resp. VP. Extracellular	C5 [9q32-q34]	IncytePD:1712663	Hs.1281
Cluster #2				
167153	gamma-glutamyl hydrolase (conjugase, fattypolygammaglutamyl hydrolase) Protease, Lys	GGH [8q12.1]	IncytePD:1997967	Hs.78619
160605	P311 protein Invasion marker, Adhesion Plaques	P311 [5q21.3]	IncytePD:1555545	Hs.142827
169429	nuclear receptor subfamily 3, group C, member 1 Glucocort. Rec/TF	NR3C1 [5q31]	IncytePD:629077	Hs.75772

- 26 -

Table 2 Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor Cells				
Unique ID No.	Description	Gene Symbol (Map)	Incyte Clone ID No.	UG Cluster
165192	synaptosomal-associated protein 25 kDa, IP3 5-Phosphatase	SYNJ2 [6q25-26]	IncytePD:3954785	Hs.61289
165784	adducin 3 (gamma) Cytoskeletal protein	ADD3 [10q24.2-q24.3]	IncytePD:1481225	Hs.324470
163031	KIAA0751 gene product	KIAA0751 [8q23.1]	IncytePD:2369544	Hs.153610
166328	proteasome (prosome, macropain) 26S subunit, ATPase, 6 Proteasome	PSMC6 [12q15]	IncytePD:1488021	Hs.79357
168061	formyltetrahydrofolate dehydrogenase NADPH Sx, Folic Acid One-carbon meth	FTHFD [3q21.3]	IncytePD:2104145	Hs.9520
168141	diacylglycerol kinase, gamma (90kD)	DGKG [3q27-q28]	IncytePD:2568547	Hs.89462
165076	PI-3-kinase-related kinase SMG-1 RNA Surveillance	SMG1 [16p12.3]	IncytePD:4253663	Hs.110613
167103	TAF2 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 150 kD TATA Box TF	TAF2 [8q24.12]	IncytePD:998069	Hs.122752
169391	eukaryotic translation initiation factor 2, subunit 1 (alpha, 35kD) polysome	EIF2S1 [14q23.3]	IncytePD:1224219	Hs.151777
166789	zinc finger protein 202 Transcriptional Repressor	ZNF202 [11q23.3]	IncytePD:1997937	Hs.9443
167316	solute carrier family 24 (sodium/potassium/calcium exchanger), member 1 Sodium/potassium/calcium exchanger	SLC24A1 [15q22]	IncytePD:2200079	Hs.173092
168700	formyl peptide receptor-like 1 Integrin Membr/Migration/Expressed in Lung	FPRL1 [19q13.3-q13.4]	IncytePD:523635	Hs.99855
165576	interleukin 6 signal transducer (gp130, oncostatin M receptor)	IL6ST [5q11]	IncytePD:2172334	Hs.82065
168276	integrin, beta-like 1 (with EGF-like repeat domains)	ITGBL1 [13q33]	IncytePD:1258790	Hs.82582
169180	interleukin 8 receptor, beta	IL8RB [2q35]	IncytePD:561992	Hs.846
160957	protein kinase, AMP-activated, alpha 2 catalytic subunit	PRKAA2 [1p31]	IncytePD:2507648	Hs.2329
160617	colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)	CSF2RB [22q13.1]	IncytePD:1561352	Hs.285401
160429	PTK6 protein tyrosine kinase 6 Non-Receptor, Sensitizes to EGF	PTK6 [20q13.3]	IncytePD:3255437	Hs.51133
160237	nuclear protein, ataxia-telangiectasia locus Osteogenesis Imperfecta	NPAT [11q22-q23]	IncytePD:2308525	Hs.89385
167125	tumor necrosis factor receptor superfamily, member 6	TNFRSF6 [10q24.1]	IncytePD:2205246	Hs.82359
164652	platelet-derived growth factor receptor, beta polypeptide	PDGFRB [5q31-q32]	IncytePD:1821971	Hs.76144
161117	ATP-binding cassette, sub-family G (WHITE), member 2 Multidrug Resistance	ABCG2 [4q22]	IncytePD:1501080	Hs.194720
161896	collagen, type XV, alpha 1	COL15A1 [9q21-q22]	IncytePD:4287342	Hs.83164

Table 2
Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor Cells

Unique ID No.	Description	Gene Symbol (Map)	Incyte Clone ID No.	UG Cluster
159813	protein tyrosine phosphatase, non-receptor type 12 PEST Dom; p-c-Abl, Ctx. Cell shape/motility	PTPN12 [7q11.23]	IncytePD:1382374	Hs.62
164573	cyclin D binding Myb-like transcription factor 1 Not reported to be Expressed in Lung	DMTF1 [7q21]	IncytePD:1637517	Hs.5671
169384	solute carrier family 22 (organic cation transporter), member 1-like antisense Organic-Cation Transporter-Like 2-Antisense	SLC22A1LS [11p15.5]	IncytePD:3842669	Hs.300076
165393	ESTs, Weakly similar to 2109260A B cell growth factor [H.sapiens]		IncytePD:3202075	Hs.351699
168169	3-oxoacid CoA transferase mitochondrial matrix coenzyme A from succinyl-CoA to acetoacetate	OXCT [5p13]	IncytePD:1685342	Hs.177584
165617	prolactin receptor	PRLR [5p14-p13]	IncytePD:3427560	Hs.1906
169432	interleukin 13 receptor, alpha 2	IL13RA2 [Xq13.1-q28]	IncytePD:3360476	Hs.25954
166812	myelin protein zero-like 1 extracellular membrane face	MPZL1 [1q23.2]	IncytePD:2057323	Hs.287832
168428	runt-related transcription factor 3	RUNX3 [1p36]	IncytePD:885297	Hs.170019
167180	S100 calcium-binding protein A4 (calcium protein, calvasculin, metastasin, murine placental homolog) cell cycle progression, Associated with mets	S100A4 [1q21]	IncytePD:1222317	Hs.81256
161533	cleavage stimulation factor, 3' pre-RNA, subunit 2, 64kD RNA processing/modification	CSTF2 [Xq21.33]	IncytePD:4016254	Hs.693
165588	small nuclear RNA activating complex, polypeptide 4, 190kD	SNAPC4 [9q34.3]	IncytePD:2224902	Hs.113265
164799	epithelial membrane protein 3 cell-cell interactions, Promotes Apoptosis	EMP3 [19q13.3]	IncytePD:780992	Hs.9999
161709	hypothetical protein FLJ11560	FLJ11560 [9p12]	IncytePD:1990361	Hs.301696
164868	guanylate binding protein 2, interferon-inducible GTP-ase	GBP2 [1pter-p13.2]	IncytePD:1610993	Hs.171862
160233	dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 3 Cell growth, P-histones, Transcription	DYRK3 [1q32]	IncytePD:614679	Hs.38018
165400	hypothetical brain protein my040 Overexp Lung neuroendocrine tumors	MY040 [7q35-q36]	IncytePD:2048144	Hs.124854
165957	pancreatic lipase-related protein 2 Hydrolyse	PNLIPRP2 [10q26.12]	IncytePD:885032	Hs.143113
160054	GTP-binding protein homologous to <i>Saccharomyces cerevisiae</i> SEC4 Sec vesicles SC	SEC4L [17q25.3]	IncytePD:1824556	Hs.302498
162475	cancer/testis antigen 2 melanomas, non-small-cell lung carcinomas, bladder, Prostate, H/N	CTAG2 [Xq28]	IncytePD:849425	Hs.87225

- 28 -

Table 2 Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor Cells				
Unique ID No.	Description	Gene Symbol (Map)	Incyte Clone ID No.	UG Cluster
169182	testis-specific ankyrin motif containing protein	LOC56311 [7q31]	IncytePD:2013272	Hs.73073
162912	nectin 3 PVRL1; may be a membrane glycoprotein	DKFZP566B084 [3q13]	IncytePD:2680168	Hs.21201
163475	hypothetical protein 7q22.1 102-113	FLJ20485 [7q22.1]	IncytePD:2299818	Hs.98806
164927	heterogeneous nuclear ribonucleoprotein A0 RNA processing/modification	HNRPA0 [5q31]	IncytePD:637639	Hs.77492
160630	homeo box D9 RNA processing/modification	HOXD9 [2q31-q37]	IncytePD:2956581	Hs.236646
160367	v-Jun avian sarcoma virus 17 oncogene homolog Associated with transl in Tumors	JUN [1p32-p31]	IncytePD:1969563	Hs.78465
163762	ESTs	[17]	IncytePD:1743234	Hs.120854
162247	very large G protein-coupled receptor 1 transports Ca2+ during excitation-contraction	VLGR1 [5q13]	IncytePD:942207	Hs.153692
167219	pumillo (Drosophila) homolog 1	PUM1 [1p35.2]	IncytePD:3333130	Hs.153834
Cluster #3				
165171	keratin 18	KRT18 [12q13]	IncytePD:1435374	Hs.65114
165052	CDC20 (cell division cycle 20, S. cerevisiae, homolog) Cell cycle, microtubule-dependent processes	CDC20 [9q13-q21]	IncytePD:2469592	Hs.82906
167948	pim-1 oncogene S.T kinase Hematop Cells	PIM1 [6p21.2]	IncytePD:2679117	Hs.81170
161954	ATPase, H+ transporting, lysosomal (vacuolar proton pump) 21kD Vacuolar H Transporter	ATP6F [1p32.3]	IncytePD:5017148	Hs.7476
162391	polymerase (DNA directed), epsilon 3 (p17 subunit) DNA Replication	POLE3 [9q33]	IncytePD:961082	Hs.108112
166635	keratin 5 (epidermolysis bullosa simplex, Dowling-Meara/Kobner/Weber-Cockayne types)	KRT5 [12q12-q13]	IncytePD:3432534	Hs.195850
160035	flap structure-specific endonuclease 1 DNA Repair/UV rad protection	FEN1 [11q12]	IncytePD:2050085	Hs.4756
161774	calcium and Integrin binding protein (DNA-dependent protein kinase interacting protein)	SIP2-28 [15q25.3-q26]	IncytePD:4626895	Hs.10803
162207	membrane protein of cholinergic synaptic vesicles vesicular transport	VATI [17q21]	IncytePD:2060308	Hs.157236
161163	guanylate kinase 1 Sx GTP/GMP	GUK1 [1q32-q41]	IncytePD:2506427	Hs.3764
161223	CD27-binding (Siva) protein tumor necrosis receptor (TNFR) superfamily	SIVA [22]	IncytePD:2356635	Hs.112058
161211	capping protein (actin filament), gelsolin-like	CAPG [2cen-q24]	IncytePD:2508570	Hs.82422
161948	claudin 11 (oligodendrocyte transmembrane protein)	CLDN11 [3q26.2-q26.3]	IncytePD:4144001	Hs.31595
161391	interleukin 17F	IL17F [6p12]	IncytePD:1610083	Hs.272295

- 29 -

Table 2
Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor Cells

Unique ID No.	Description	Gene Symbol (Map)	Incyte Clone ID No.	UG Cluster
162571	phosphofructokinase, liver	PFKL [21q22.3]	IncytePD:885601	Hs.155455
164504	cathepsin C Lys Prot Degr	CTSC [11q14.1-q14.3]	IncytePD:1822716	Hs.10029
160565	aminoacylase 1 L-aa Sx salvage path	ACY1 [3p21.1]	IncytePD:1812955	Hs.334707
169551	glycogen synthase kinase 3 beta target of Akt, Ilk1, Reg jun, myb, etc.	GSK3B [3q13.3]	IncytePD:2057908	Hs.78802
166914	methyltransferase-like 1 S-adenosylmethionine-binding mo	METTL1 [12q13]	IncytePD:1603584	Hs.42957
167738	cytochrome P450, subfamily XXVIIIB (25-hydroxyvitamin D-1- alpha-hydroxylase), polypeptide 1 drug metabolism and synthesis of cholesterol, steroids	CYP27B1 [12q13.1-q13.3]	IncytePD:1749727	Hs.199270
160938	GrpE-like protein cochaperone cooperates with mitochondrial hsp70 i	HMGE [4p16]	IncytePD:2074154	Hs.151803
162734	wingless-type MMTV integration site family, member 7A Regulates Steroid responses	WNT7A [3p25]	IncytePD:2622566	Hs.72290
165813	caspase 4, apoptosis-related cysteine protease	CASP4 [11q22.2-q22.3]	IncytePD:2304121	Hs.74122
159898	pituitary tumor-transforming 1	PTTG1 [5q35.1]	IncytePD:1748705	Hs.252587
161244	ADP-ribosylation factor 4-like GTP-binding proteins. ARF4L is c	ARF4L [17q12-q21]	IncytePD:2852403	Hs.183153
160715	cell division cycle 34	CDC34 [19p13.3]	IncytePD:1857493	Hs.76932
163787	pyrroline-5-carboxylate reductase 1 Proline Sx	PYCR1 [17q24]	IncytePD:1702266	Hs.79217
160127	phosphoglycerate mutase 1 (brain)	PGAM1 [10q25.3]	IncytePD:3032691	Hs.181013
160323	5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase Purine BioSx	ATIC [2q35]	IncytePD:2056149	Hs.90280
164850	interleukin-1 receptor-associated kinase 1	IRAK1 [Xq28]	IncytePD:1872067	Hs.182018
165583	7-dehydrocholesterol reductase	DHCR7 [11q13.2-q13.5]	IncytePD:3518380	Hs.11806
165039	thymidine kinase 1, soluble two forms have been identified in animal cells	TK1 [17q23.2-q25.3]	IncytePD:2055926	Hs.105097
167964	cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)	CDKN2A [9p21]	IncytePD:2740235	Hs.1174
167223	guanine nucleotide binding protein (G protein), beta polypeptide 1 Ras GTPase, Contains 7 wd repeats	GNB1 [1p36.21-36.33]	IncytePD:3562795	Hs.215595
167931	cleavage stimulation factor, 3' pre- RNA, subunit 1, 50kD RNA, transducin-like repeats	CSTF1 [20q13.2]	IncytePD:1635008	Hs.172865
163690	hexabrachion (tenascin C, cytolactin)	HXB [9q33]	IncytePD:1453450	Hs.289114
161955	contactin 2 (axonal)	CNTN2 [1q32.1]	IncytePD:4014715	Hs.2998

- 30 -

Table 2 Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor Cells				
Unique ID No.	Description	Gene Symbol (Map)	Incyte Clone ID No.	UG Cluster
160275	structure specific recognition protein 1	SSRP1 [11q12]	IncytePD:2055773	Hs.79162
168110	TAF12 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 20 kD	TAF12 [1p35.1]	IncytePD:1297269	Hs.82037
160102	protein disulfide isomerase related protein (calcium-binding protein, intestinal-related) Sevretion; ER	ERP70 [10]	IncytePD:1824957	Hs.93659
167116	nucleoside phosphorylase adenosine deaminase (ADA) serves a key role in purine catabolism; Def=SCID	NP [14q13.1]	IncytePD:2453436	Hs.75514
160802	prohibitin Tumor suppressor, Blocks DNA Sx; Breast CA	PHB [17q21]	IncytePD:1625169	Hs.75323
161643	ADP-ribosylation factor-like 7 GTP-binding protein	ARL7 [2q37.2]	IncytePD:3115514	Hs.111554
162343	LIM domain kinase 2 Rho-induced reorganization of the actin cytoskeleton	LIMK2 [22q12.2]	IncytePD:958513	Hs.278027
162727	protein tyrosine kinase 9-like (A6-related protein)	PTK9L [3p21.1]	IncytePD:3999291	Hs.6780
160262	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 28 probable atp-binding rna helicase	DDX28 [16q22.1]	IncytePD:2663948	Hs.155049
165790	surfeit 1 Mit. Resp Enz	SURF1 [9q33-q34]	IncytePD:1921567	Hs.3196
168638	histone deacetylase 7A	HDAC7A [12q13.1]	IncytePD:1968721	Hs.275438
168079	epithelial membrane protein 1 cell-cell interactions. Promotes Apoptosis	EMP1 [12p12.3]	IncytePD:1624024	Hs.79368
160999	Rho-specific guanine nucleotide exchange factor p114 cell growth and motility; Dbl, PH dom	P114-RHO-GEF [19p13.3]	IncytePD:1734113	Hs.6150
161790	KIAA0469 gene product	KIAA0469 [1p36.23]	IncytePD:2674277	Hs.7764
169691	ubiquitin carrier protein E2 enzyme activity	E2-EPF [17p12-p11]	IncytePD:2057823	Hs.174070
163682	diphtheria toxin resistance protein required for diphthamide biosynthesis (<i>Saccharomyces</i>)-like 2	DPH2L2 [1p34]	IncytePD:1810821	Hs.324830
168266	proteasome (prosome, macropain) activator subunit 3 (PA28 gamma; Ki)	PSME3 [17q12-q21]	IncytePD:1308112	Hs.152978
161374	polymerase (DNA-directed), alpha (70kD) RNA Processing	POLA2 [11q13.1]	IncytePD:3179113	Hs.81942
164646	galactose-4-epimerase, UDP-Rate-lim for Sx glycoproteins and glycolipids	GALE [1p36-p35]	IncytePD:1807294	Hs.76057
162150	apolipoprotein L	APOL1 [22q13.1]	IncytePD:2056987	Hs.114309
164206	type I transmembrane protein Fn14 similar to murine Fgfrp2	FN14 [16p13.3]	IncytePD:1402615	Hs.10086
162623	BCL2-antagonist/killer 1	BAK1 [6p21.3]	IncytePD:2055687	Hs.93213
162244	Rho GDP dissociation inhibitor (GDI) alpha	ARHGDI A [17q25.3]	IncytePD:2055640	Hs.159161

Table 2 Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor Cells				
Unique ID No.	Description	Gene Symbol (Map)	Incyte Clone ID No.	UG Cluster
164586	inosine triphosphatase (nucleoside triphosphate pyrophosphatase) Ins Phos phosphatase	ITPA [20p]	IncytePD:1931265	Hs.6817
165483	PDGFA associated protein 1 Enhances PDGFA	PDAP1 [7q22.1]	IncytePD:3032825	Hs.278426
166195	adenine phosphoribosyltransferase Sx AMP purine/pyrimidine Met	APRT [16q24]	IncytePD:2751387	Hs.28914
166960	Apg12 (autophagy 12, S. cerevisiae)-like	APG12L [5q21-q22]	IncytePD:2058537	Hs.264482
167505	thiosulfate sulfurtransferase (rhodanese) Mitoch detox cyanide	TST [22q13.1]	IncytePD:1988239	Hs.351863
168642	suppression of tumorigenicity 14 (colon carcinoma, matriptase, epithlin) Protease ECM	ST14 [11q24-q25]	IncytePD:478960	Hs.56937
167170	GS2 gene	DXS1283E [Xp22.3]	IncytePD:1567995	Hs.264
161754	actin, gamma 2, smooth muscle, enteric	ACTG2 [2p13.1]	IncytePD:3381870	Hs.78045
166010	receptor (TNFRSF)-interacting serine-threonine kinase 1	RIPK1 [6p25.3]	IncytePD:2180031	Hs.296327
161794	secretory carrier membrane protein 2 Vesic Traff, Secretpry path	SCAMP2 [15q23-q25]	IncytePD:3123858	Hs.238030
167591	catechol-O-methyltransferase Sx dopamine, epinephrine, and norepinephrine	COMT [22q11.21]	IncytePD:605019	Hs.240013
162587	polymerase (RNA) II (DNA directed) polypeptide D RNA Processing	POLR2D [2q21]	IncytePD:696002	Hs.194638
169071	capping protein (actin filament) muscle Z-line, beta	CAPZB [1p36.1]	IncytePD:1853163	Hs.333417
160467	polymerase (DNA directed), delta 2, regulatory subunit (50kD) RNA Processing	POLD2 [7p13]	IncytePD:2056172	Hs.74598
162178	C2f protein	C2F [12p13]	IncytePD:5096975	Hs.12045
167706	GDP-mannose pyrophosphorylase B N-linked oligosaccharides	GMPPB [3p21.31]	IncytePD:1486983	Hs.28077
160803	phenylalanine-tRNA synthetase-like Reg. in tumors and cell cycle	FARS1 [19p13.2]	IncytePD:1808260	Hs.23111
169254	polymerase (DNA directed), mu RNA Processing	POLM [7p13]	IncytePD:771715	Hs.46964
167351	myosin-binding protein H	MYBPH [1q32.1]	IncytePD:3010959	Hs.927
163276	ESTs, Weakly similar to I37356 epithelial microtubule-associated protein, 115K [H.sapiens]	[7]	IncytePD:2383065	Hs.25892
167135	excision repair cross-complementing rodent repair deficiency, complementation group 1 (includes overlapping antisense sequence)	ERCC1 [19q13.2-q13.3]	IncytePD:2054529	Hs.59544
160478	G5b protein	G5B [6p21.3]	IncytePD:1942845	Hs.73527
162631	transcriptional adaptor 3 (ADA3, yeast homolog)-like (PCAF histone acetylase complex) PCAF histone acetilase complex	TADA3L [3p25.2]	IncytePD:3990209	Hs.158196

Table 2
Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor Cells

Unique ID No.	Description	Gene Symbol (Map)	Incyte Clone ID No.	UG Cluster
163921	glucosamine-6-phosphate isomerase Hydrolase	GNPI [5q21]	IncytePD:1653911	Hs.278500
160098	mitochondrial ribosomal protein L49	MRPL49 [11q13]	IncytePD:1755793	Hs.75859
161058	multiple endocrine neoplasia I	MEN1 [11q13]	IncytePD:1693847	Hs.24297
160038	BCL2-antagonist of cell death	BAD [11q13.1]	IncytePD:3967780	Hs.76366
162220	FK506-binding protein 1A (12kD) Interacts with TGF beta	FKBP1A [20p13]	IncytePD:4059193	Hs.349972
161026	Xq28, 2000bp sequence contg. ORF 3' eDNA Repair exonuclease activity	HSXQ28ORF [Xq28]	IncytePD:1669254	Hs.6487
167607	heat shock protein 75 HSP90 fam, Binds to TNFR	TRAP1 [16p13.3]	IncytePD:1960722	Hs.182366
167713	likely ortholog of maternal embryonic leucine zipper kinase regulation of fatty acid synthesis	KIAA0175 [9p11.2]	IncytePD:3805046	Hs.184339
165648	dual specificity phosphatase 4 negatively regulate MAPK. Anti-oncogene	DUSP4 [8p12-p11]	IncytePD:740878	Hs.2359
161574	frequently rearranged in advanced T-cell lymphomas 2 prevent gsk-3-dependent phosphorylation	FRAT2 [10q23-q24.1]	IncytePD:3871545	Hs.140720
161650	KIAA0415 gene product	KIAA0415 [7p22.2]	IncytePD:2798872	Hs.229950
168386	nucleolar and coiled-body phosphoprotein 1	NOLC1 [10]	IncytePD:1431819	Hs.75337
159906	H2A histone family, member X	H2AFX [11q23.2-q23.3]	IncytePD:1704168	Hs.147097
167906	RAE1 (RNA export 1, S.pombe) homolog RNA export from the N	RAE1 [20q13.31]	IncytePD:2914719	Hs.196209
160486	deltex (Drosophila) homolog 2 collagen type iii	DTX2 [7q11.23]	IncytePD:1691161	Hs.89135
160678	v-maf musculoaponeurotic fibrosarcoma (avian) oncogene family, protein G transcriptional regulator	MAFG [17q25]	IncytePD:2956906	Hs.252229
159889	fusion, derived from t(12;16) malignant liposarcoma DNA Sx atp-independent annealing of complementary single-stranded dnas	FUS [16p11.2]	IncytePD:3038508	Hs.99969
187553	ligase I, DNA, ATP-dependent DNA excision repair process	LIG1 [19q13.2-q13.3]	IncytePD:1841920	Hs.1770
163824	uracil-DNA glycosylase DNA Base-excision repair	UNG [12q23-q24.1]	IncytePD:1405652	Hs.78853
161012	GCN1 (general control of amino-acid synthesis 1, yeast)-like 1	GCN1L1 [12q24.2]	IncytePD:1699149	Hs.75354
162006	regenerating islet-derived 1 beta (pancreatic stone protein, pancreatic thread protein) brain and pancreas regeneration	REG1B [2p12]	IncytePD:2374294	Hs.4158
161454	serine protease inhibitor, Kunitz type 1 Secreted S/Protease; proteolytic activation of HGF	SPINT1 [15q13.3]	IncytePD:2722572	Hs.233950

Table 2
Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor Cells

Unique ID No.	Description	Gene Symbol (Map)	Incyte Clone ID No.	UG Cluster
162510	calcium/calmodulin-dependent protein kinase kinase 2, beta S/T Protein kinase	CAMKK2 [12]	IncytePD:557451	Hs.108708
163306	Bloom syndrome DNA Repair	BLM [15q26.1]	IncytePD:2923082	Hs.36820
160242	RNA, U transporter 1	RNUT1	IncytePD:1562658	Hs.21577
164106	glutamate rich WD repeat protein GRWD RNA stability	GRWD [19q13.33]	IncytePD:1561867	Hs.218842
165799	MAD (mothers against decapentaplegic, Drosophila) homolog 3 TF, activated by tgf-beta	MADH3 [15q21-q22]	IncytePD:1858365	Hs.211578
166574	small nuclear RNA activating complex, polypeptide 2, 45kD RNA Processing	SNAPC2 [19p13.3-p13.2]	IncytePD:1445203	Hs.78403
160441	lymphotoxin beta receptor (TNFR superfamily, member 3) TNF family of receptors	LTBR [12p13]	IncytePD:899102	Hs.1116
168453	transforming, acidic coiled-coil containing protein 3 Upregulated in Tumors	TACC3 [4p16.3]	IncytePD:2056642	Hs.104019
164244	proteasome (prosome, macropain) 26S subunit, ATPase, 4	PSMC4 [19q13.11-q13.13]	IncytePD:2806778	Hs.211594
169564	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 2 TF	SMARCD2 [17q23-q24]	IncytePD:1890919	Hs.250581
161178	basigin (OK blood group) Induces MMTP; p-regulated in gliomas	BSG [19p13.3]	IncytePD:2182907	Hs.74631
165614	junction plakoglobin	JUP [17q21]	IncytePD:820580	Hs.2340
168987	HMT1 (hnRNP methyltransferase, S. cerevisiae)-like 2 Protein methylation	HRMT1L2 [19q13.3]	IncytePD:2888814	Hs.20521
167987	ectonucleoside triphosphate diphosphohydrolase 1 ATP hydrolysis, P1t aggregation	ENTPD1 [10q24]	IncytePD:1672749	Hs.205353
163726	complement component 3	C3 [19p13.3-p13.2]	IncytePD:1513989	Hs.284394
164642	tyrosyl-tRNA synthetase	YARS [1p34.3]	IncytePD:1559756	Hs.239307
160303	Ets2 repressor factor	ERF [19q13]	IncytePD:2057547	Hs.333069
161635	G protein-coupled receptor	TYMSTR [3p21]	IncytePD:2610374	Hs.34526
159859	nuclear autoantigen wd REPEAT PROTEIN	GS2NA [14q13-q21]	IncytePD:1339241	Hs.183105
161051	MAP/microtubule affinity-regulating kinase 3 S/T Protein kinase	MARK3 [14q32.3]	IncytePD:2395018	Hs.172766
161835	peroxisome biogenesis factor 10	PEX10 [1p36.11-1p36.33]	IncytePD:3115936	Hs.247220
165571	annexin A3 calcium-dependent phospholipid-binding	ANXA3 [4q13-q22]	IncytePD:1920650	Hs.1378
164286	nuclear factor of kappa light polypeptide gene enhancer in B-cells Inhibitor, epsilon	NFKBIE [6p21.1]	IncytePD:2748942	Hs.91640

Table 2 Genes Having Statistically Significant Variance in Expression in Neuroendocrine Tumor Cells				
Unique ID No.	Description	Gene Symbol (Map)	Incyte Clone ID No.	UG Cluster
165786	hyaluronoglucosaminidase 2 Degrades glycosaminoglycans of the extracellular matrix	HYAL2 [3p21.3]	IncytePD:1240748	Hs.76873
161620	H4 histone family, member E	H4FE [6p22-p21.3]	IncytePD:3728255	Hs.278483
168302	Tax interaction protein 1 1 pdz/dhr domain	TIP-1 [17p13]	IncytePD:1997792	Hs.12956
160887	pescadillo (zebrafish) homolog 1, containing BRCT domain embryonal dev	PES1 [22q12.1]	IncytePD:2758740	Hs.13501
162419	RAE1 (RNA export 1, S.pombe) homolog	RAE1 [20q13.31]	IncytePD:588157	Hs.196209
169625	replication factor C (activator 1) 4 (37kD) DNA Sx/Repair	RFC4 [3q27]	IncytePD:1773638	Hs.35120
163425	transcription elongation factor A (SII), 2	TCEA2 [20]	IncytePD:818568	Hs.80598
166359	tubulin, beta polypeptide Testis-specific	TUBB [6p21.3]	IncytePD:3334367	Hs.336780
161947	translocase of inner mitochondrial membrane 17 homolog B (yeast) Integral Mitoch. Expr. In Neuroendocr Lung CA	TIM17B [Xp11.23]	IncytePD:1727491	Hs.19105
162236	KIAA0670 protein/acinus	KIAA0670 [14q11.1]	IncytePD:1968610	Hs.227133
168426	glioma pathogenesis-related protein	RTVP1 [12q15]	IncytePD:477045	Hs.64639

Characteristics Of The Gene Expression Patterns In Pulmonary

Neuroendocrine Tumors. The present invention permits investigation of whether expression of genes significantly altered in neuroendocrine tumors correlates with clinical behavior of these tumors. The results show that most of 198 selected genes

- 5 could be assigned to major functional groups that have been previously implicated in cancer development (Table 3). In particular, decreased expression of genes that oppose cell survival pathway, such as BCL2 antagonist-killer, BAK1, and caspase 4, are common in all 3 types of neuroendocrine tumors, whereas TC and LCNEC have an additional >2.5-fold decrease in expression of BAD and TNF receptor-
- 10 interacting kinase, RIPK1. These features indicate that these tumors lack opposing effects on BCL2, as contrasted to overexpression of BCL2, which leads to survival advantage in certain types of lymphomas (Cleary, M.L. *et al.* (1986) "CLONING AND STRUCTURAL ANALYSIS OF CDNAS FOR BCL-2 AND A HYBRID BCL-2/IMMUNOGLOBULIN TRANSCRIPT RESULTING FROM THE T(14;18)
- 15 TRANSLOCATION," *Cell.* 47(1):19-28).

Genes involved in regulation of cell-cell and extracellular matrix interactions, claudin 11 (CLDN11), contractin-2, (CNTN2), keratin 5 and 18 (KRT 5 and 18), calcium and integrin binding protein (SIP2-28), and junction plakoglobin (JUP) are also suppressed in TC and LCNEC tumors, and, to a lesser degree, in SCLC. The dominant group of genes is involved in transcriptional regulation and DNA synthesis and repair. Decrease in expression of Bloom (BLM) is shared by TC and LCNEC, whereas DNA excision repair (ERCC1) and DNA ligase-1 (LIG) are suppressed in all tumor types. Other groups of genes manifesting decreased expression in all tumors are genes involved in cell cycle control (CDC34, p16/CDK inhibitor 2A), suppressor of MAPK pathway (dual specificity phosphatase, DUSP4), antioncogenes, such as epithin (ST14), and prohibitin, (PHB). Decreased expression of genes involved in microtubular assembly, beta tubulin polypeptide B (TUBB) in conjunction with overexpression of ATP-binding cassette protein (ABCG2) and gamma glutamyl hydrolase (GGH), could confer well-known resistance of these tumors to chemotherapy, specifically to taxol-related drugs. Decreased expression of genes associated with the ubiquitin pathway, such as proteasome subunit 26S (PSMC4), and proteasome activator subunit 3 (PSME3), correlates with potential resistance to newly developed proteasome inhibitors. The decrease in expression of these genes can affect NFkB activity, drug resistance and other functions in these tumors.

Only a fraction of genes identified herein is significantly over-expressed. Expression of a neuroendocrine peptide processing enzyme, carboxypeptidase E (CPE), inotropic glutamate receptor (GRIA2) and a complement component 5 are increased 4-6-fold in TC. In addition, TC has a modest increase in expression of the IL8 receptor B, IL8RB (1.61-fold), and that of the interleukin 6 signal transducer chain common to several interleukin receptors, gp130 (Oncostatin M, IL6ST), which is elevated at a mean of 1.34-fold in the 11 samples from TC. In contrast, LCNEC, have over 20 genes whose expression is above 1.9-fold or higher (Figures 3A and 3B). These gene products are increased specifically in LCNEC and included colony stimulating factor receptor (CSF2R), IL 13 receptor (IL13RA2), IL-8 receptor beta (IL8RB) as well as the IL 6 signal transducer,

gp130 (Oncostatin M, IL6ST) and gamma-glutamyl hydrolase (GGH), which has been associated with drug resistance. In addition, LCNEC have a six-fold over-expression of a neuronal marker, P311, recently identified as a marker of aggressive gliomas. P311 may have a role in defining a metastatic/invasive potential in LCNEC. In contrast to LCNEC, analysis of SCLC shows only modest increase in 25 genes, none of which exceeded 1.5-fold increase. The lack of detection of over-expressed genes in SCLC reported herein could reflect a qualitative change in oncogenic mutations, such as p21^{ras}, p53 and others which are found in SCLC (Wistuba, I.I. et al. (2001) "MOLECULAR GENETICS OF SMALL CELL LUNG CARCINOMA," Semin. Oncol. 28: 3-13) or due to limited number of samples used.

Table 3				
Unique ID No. of Gene		Expression of Genes in Large Cell (LC), Small Cell (SC) and Typical Carcinoma (TC) Cells		
Gene Family	(LOH)	LC	SC	TC
Apoptosis				
167125	Yes	3.23	0.88	1.36
162623	Yes	0.23	0.51	0.13
160038	Yes	0.47	1.04	0.32
165813		0.59	0.75	0.28
168079		0.46	0.93	0.25
164799	Yes	1.2	0.73	0.64
160441		0.37	0.49	0.18
161223		0.2	0.71	0.11
166010		0.45	0.99	0.28
167607		0.4	0.81	0.23
166960		0.17	0.37	0.09
Cell-Cell And ECM Interactions				
168700	Yes	1.91	0.82	1.69
168276		1.61	0.63	1.21
162912		0.82	0.7	1.27
1611896		2.12	0.75	1.04
159813		1.99	0.83	1.22
166812		0.93	0.78	0.78
165171		0.3	0.16	0.05
166635		0.18	0.63	0.11
161774	Yes	0.2	0.57	0.11
161211		0.27	0.64	0.12
161948		0.19	0.56	0.09
162734		0.73	1.01	0.32
163690		0.42	0.82	0.23
161955		0.17	0.38	0.09
164206		0.26	0.53	0.11
168842		0.55	0.96	0.3
160486		0.37	0.72	0.19

Table 3

Unique ID No. of Gene		Expression of Genes in Large Cell (LC), Small Cell (SC) and Typical Carcinoma (TC) Cells		
Gene Family	(LOH)	LC	SC	TC
161178	Yes	0.52	1.05	0.36
165614	Yes	0.32	0.82	0.2
167987	Yes	0.58	1.03	0.32
165786		0.56	0.94	0.35
164504				
DNA Synthesis and Repair				
163306		0.57	0.98	0.35
167135	Yes	0.34	0.63	0.2
160035		0.21	0.72	0.11
160262		0.19	0.58	0.12
161026		0.54	0.78	0.28
159889		0.33	0.79	0.22
167553	Yes	0.34	0.67	0.23
163824		0.39	0.79	0.24
169625		0.98	0.88	0.44
Cell Cycle				
167964		0.15	0.33	0.08
160715	Yes	0.33	0.94	0.17
167180		1.54	1.37	1.17
165052		0.18	0.6	0.08
162391		0.17	0.6	0.11
162631		0.43	1.06	0.38
168638		0.21	0.58	0.14
Anti-Oncogenes				
161058	Yes	0.72	1.25	0.39
165648		0.31	0.6	0.19
169551		0.47	0.8	0.26
160802		0.16	0.44	0.09
161574	Yes	0.6	1.05	0.4
Oncogenes				
160429		2.54	0.71	0.94
167948	Yes	0.61	1.16	0.28
159898	Yes	0.28	0.42	0.09
165799	Yes	0.53	0.67	0.27
Cytoskeleton/Migration				
160999	Yes	0.42	0.91	0.24
161754		0.53	1.11	0.35
169071	Yes	0.3	0.72	0.21
167351		0.39	0.69	0.26
162343		0.33	0.67	0.17
162727	Yes	0.2	0.45	0.11
165784	Yes	1.46	0.69	1.96
160605		5.94	0.84	1.06
Proteosome				
166328		1.14	0.72	2.12
169691	Yes	0.15	0.34	0.09
168266	Yes	0.2	0.45	0.1
164244	Yes	0.43	0.67	0.22
Drug Resistance				
161117		2.52	0.75	1.12
167738		0.32	0.64	0.18
167505		0.39	0.77	0.21
166359	Yes	0.46	0.64	0.28

Table 3

Unique ID No. of Gene		Expression of Genes in Large Cell (LC), Small Cell (SC) and Typical Carcinoma (TC) Cells		
Gene Family	(LOH)	LC	SC	TC
167153		6.27	1	1.31
168061		1.32	0.64	1.23
Growth Factors/Receptors And Signal Transduction Enzymes				
165576		1.93	0.66	1.34
169180		1.88	0.86	1.61
160617		3.57	0.86	0.93
164652		2.63	0.97	1.18
165617		2.9	0.73	1.32
169432		2.04	0.65	1.04
161391		0.43	0.83	0.25
164850		0.2	0.45	0.09
165483		0.33	0.98	0.23
162006		0.29	0.71	0.2
161454		0.58	0.99	0.39
168453		0.35	0.59	0.18
162220		0.34	0.76	0.25
160233		2.07	0.97	1.13
Neuronal Markers				
166807				
159877		1.39	0.93	5.89
162207	Yes	0.17	0.58	0.13
161948		0.19	0.56	0.09
159898	Yes	0.28	0.42	0.09
160127	Yes	0.14	0.44	0.1
161955		0.17	0.38	0.09
167591		0.18	0.46	0.14
162006		0.29	0.71	0.2
160887		0.89	1.4	0.56
162247				
165400		1.7	0.76	0.82
RNA Synthesis, Processing and Transcription Factors				
161598		0.82	0.96	2.59
169429		4.52	0.8	1.18
165076		0.96	0.81	1.53
167103		1.7	0.72	1.34
169391	Yes	0.98	0.66	1.15
166789	Yes	1.76	0.75	1.07
168428	Yes			
165588		1.11	0.8	0.57
164927		0.51	1.65	1.4
160630	Yes	0.53	1.15	1.35
160367		0.58	1.26	0.92
167931		0.38	0.99	0.35
161533		1.59	0.67	0.48
168110	Yes	0.35	0.8	0.21
161374	Yes	0.34	0.89	0.19
162587		0.28	0.63	0.17
160467	Yes	0.17	0.44	0.12
160803	Yes	0.3	0.71	0.18
169254	Yes	0.29	0.6	0.16
160678		0.48	0.94	0.29

Table 3			
Unique ID No. of Gene		Expression of Genes in Large Cell (LC), Small Cell (SC) and Typical Carcinoma (TC) Cells	
Gene Family	(LOH)	LC	SC
160242		0.59	0.83
164106	Yes	0.48	0.61
166574	Yes	0.47	0.89
169564		0.25	0.48
164642		0.69	0.92
162419		0.59	1.03
163425		0.95	0.86
160303	Yes	0.62	1.45
184573	Yes	2.23	0.82
			1.37

Molecular Signature Of The Subtypes Of Pulmonary Neuroendocrine Tumors. The expression profile of genes significantly altered in neuroendocrine tumors was examined to determine whether such information could be used to differentiate among each subtype of pulmonary neuroendocrine tumors. To 5 establish a signature list for each tumor type, the relative expression ratio between TC, LCNEC and SCLC is employed. Table 4 shows the extent of expression of such a signature list, and provides the ratio of expression. In Table 4, TC/SC denotes genes exhibiting higher levels of expression in TC cells than in SC cells; SC/TC denotes genes exhibiting higher levels of expression in SC cells than in TC cells. Data for TC/LC, LC/TC, SC/LC, and LC/SC are similarly provided. This 10 form of statistical analysis is independent of the reference value and, therefore, can be used for future studies. Using a ratio of 1.9 or higher, it is found that TC had 15 genes whose expression distinguished these tumors from SCLC, and 12 from LCNEC. In contrast, 134 genes are higher in SCLC than in TC and 97 higher than 15 in LCNEC (Table 4). The difference between expression of genes in LCNEC from SCLC is encompassed within 34 genes. Thus, cDNA microarray analysis derived expression profile obtained using a cell line as a reference can be used to develop a molecular signature algorithm which may be useful for differential diagnosis of these tumors.

- 40 -

Table 4
Molecular Signature of Neuroendocrine Tumors

Unique ID No. of Gene	Observed Expression		Ratio	Observed Expression
TC / SC				
	TC	SC	TC/SC	Normal Cells
159877	5.89	0.93	6.33	
167158	6.52	1.16	5.62	
166807	4.46	0.81	5.51	
163031	3.15	1.02	3.09	1.06
166328	2.12	0.72	2.94	
165784	1.96	0.69	2.84	
161598	2.59	0.96	2.70	
165393	1.98	0.96	2.10	
168700	1.69	0.82	2.08	
165192	1.56	0.76	2.05	
165576	1.34	0.66	2.03	
168061	1.23	0.64	1.92	
168276	1.21	0.63	1.92	
165076	1.53	0.81	1.89	
169180	1.61	0.86	1.87	
SC / TC				
	SC	TC	SC/TC	Normal Cells
165052	0.60	0.08	7.50	0.50
161163	0.53	0.08	6.63	0.40
160035	0.72	0.11	6.55	0.50
161223	0.71	0.11	6.45	0.40
161948	0.56	0.09	6.22	0.22
166635	0.63	0.11	5.73	0.40
165583	0.28	0.05	5.60	0.20
160715	0.94	0.17	5.53	0.67
162391	0.60	0.11	5.45	0.35
161244	0.38	0.07	5.43	0.20
161211	0.64	0.12	5.33	0.35
161774	0.57	0.11	5.18	0.40
166195	0.56	0.11	5.08	0.30
184850	0.45	0.09	5.00	0.38
160802	0.44	0.09	4.89	
161643	1.16	0.24	4.83	0.80
160262	0.58	0.12	4.83	
164206	0.53	0.11	4.82	0.40
164586	0.48	0.10	4.80	0.35
165039	0.19	0.04	4.75	0.10
161374	0.89	0.19	4.68	0.55
159898	0.42	0.09	4.67	0.26
160102	1.07	0.23	4.65	
164646	0.69	0.15	4.60	0.42
163787	0.81	0.18	4.50	0.50
168266	0.45	0.10	4.50	
161780	0.45	0.10	4.50	
162207	0.58	0.13	4.46	0.55
160127	0.44	0.10	4.40	0.40
160323	0.43	0.10	4.30	0.30
165483	0.98	0.23	4.26	0.73
161955	0.38	0.09	4.22	
167948	1.16	0.28	4.14	1.86
168638	0.58	0.14	4.14	
167964	0.33	0.08	4.13	0.23

- 41 -

Table 4
Molecular Signature of Neuroendocrine Tumors

Unique ID No. of Gene	Observed Expression		Ratio	Observed Expression
166960	0.37	0.09	4.11	0.25
161954	0.78	0.19	4.11	0.20
165614	0.82	0.20	4.10	0.50
162727	0.45	0.11	4.09	0.25
167116	0.32	0.08	4.00	
160803	0.71	0.18	3.94	0.50
162343	0.67	0.17	3.94	0.62
163682	0.59	0.15	3.93	
162623	0.51	0.13	3.92	0.35
166914	0.61	0.16	3.81	
168110	0.80	0.21	3.81	
160999	0.91	0.24	3.79	0.60
160486	0.72	0.19	3.79	0.50
160275	0.53	0.14	3.79	
169691	0.34	0.09	3.78	
165790	0.45	0.12	3.75	0.30
169254	0.60	0.16	3.75	
168079	0.93	0.25	3.72	0.56
162587	0.63	0.17	3.71	0.55
162244	0.74	0.20	3.70	0.70
167505	0.77	0.21	3.67	
160467	0.44	0.12	3.67	0.30
161012	0.73	0.20	3.65	0.55
159889	0.79	0.22	3.59	0.55
163690	0.82	0.23	3.57	0.50
166574	0.89	0.25	3.56	0.62
167738	0.64	0.18	3.56	0.51
167706	0.64	0.18	3.56	
162006	0.71	0.20	3.55	0.31
166010	0.99	0.28	3.54	0.55
167607	0.81	0.23	3.52	0.82
159906	0.62	0.18	3.44	0.30
162150	1.10	0.32	3.44	0.60
169071	0.72	0.21	3.43	
162178	0.24	0.07	3.43	0.20
164842	0.92	0.27	3.41	0.40
167170	0.88	0.26	3.38	0.52
168386	0.81	0.24	3.38	
167223	0.87	0.26	3.35	0.65
161391	0.83	0.25	3.32	0.70
167906	0.63	0.19	3.32	
160565	0.56	0.17	3.29	0.56
163824	0.79	0.24	3.29	
167591	0.46	0.14	3.29	
168453	0.59	0.18	3.28	
161794	0.95	0.29	3.28	0.74
163726	1.21	0.37	3.27	0.90
160038	1.04	0.32	3.25	0.63
160678	0.94	0.29	3.24	
167987	1.03	0.32	3.22	
164504	0.77	0.24	3.21	0.80
161058	1.25	0.39	3.21	
168642	0.96	0.30	3.20	
169564	0.48	0.15	3.20	
165171	0.16	0.05	3.20	
161754	1.11	0.35	3.17	0.60
165648	0.60	0.19	3.16	0.48
162734	1.01	0.32	3.16	0.65
160303	1.45	0.46	3.15	1.30
167135	0.63	0.20	3.15	

Table 4
Molecular Signature of Neuroendocrine Tumors

Unique ID No. of Gene	Observed Expression		Ratio	Observed Expression
160098	0.91	0.29	3.14	0.50
169551	0.80	0.26	3.08	
164244	0.67	0.22	3.05	
162220	0.76	0.25	3.04	0.60
164286	0.94	0.31	3.03	
161835	1.06	0.35	3.03	0.80
167713	0.77	0.26	2.96	
163276	0.47	0.16	2.94	
161178	1.05	0.36	2.92	0.60
167553	0.67	0.23	2.91	
163921	0.52	0.18	2.89	0.55
167931	0.99	0.35	2.83	
160938	0.82	0.29	2.83	0.50
163306	0.98	0.35	2.80	0.50
161650	1.23	0.44	2.80	
162631	1.06	0.38	2.79	
161026	0.78	0.28	2.79	
162571	1.11	0.40	2.78	0.80
160478	1.07	0.39	2.74	
160441	0.49	0.18	2.72	0.42
165786	0.95	0.35	2.71	0.60
165571	0.84	0.31	2.71	0.80
161620	0.84	0.31	2.71	0.80
165813	0.75	0.28	2.68	0.70
160242	0.83	0.31	2.68	
168302	0.88	0.33	2.67	
167351	0.69	0.26	2.65	0.40
168987	0.79	0.30	2.63	
161574	1.05	0.40	2.63	
162510	0.91	0.35	2.60	0.72
164106	0.61	0.24	2.54	0.50
161454	0.99	0.39	2.54	0.60
160887	1.40	0.56	2.50	1.24
165799	0.67	0.27	2.48	0.55
162419	1.03	0.44	2.34	0.80
166359	0.64	0.28	2.29	
169625	0.88	0.44	2.00	
168426	1.09	0.55	1.98	
163425	0.86	0.44	1.95	0.80
TC / LC				
	TC	LC	TC/LC	Normal Cells
167158	6.52	0.87	7.49	
159877	5.89	1.39	4.24	
166807	4.46	1.11	4.02	
161598	2.59	0.82	3.18	
164927	1.40	0.51	2.75	
163031	3.15	1.22	2.58	
160630	1.35	0.53	2.55	
162247	1.40	0.67	2.09	
167219	1.16	0.57	2.04	
163475	1.17	0.60	1.95	
163762	1.04	0.54	1.93	
166328	2.12	1.14	1.86	
LC / TC				
	LC	TC	LC/TC	Normal Cells
165400	1.70	0.82	2.07	
164850	0.20	0.09	2.22	
164868	2.39	1.16	2.06	

- 43 -

Table 4
Molecular Signature of Neuroendocrine Tumors

Unique ID No. of Gene	Observed Expression		Ratio	Observed Expression
161533	1.59	0.48	3.31	
160957	3.20	1.16	2.76	
169429	4.52	1.18	3.83	
169432	2.04	1.04	1.96	
165583	0.10	0.05	2.00	0.20
165617	2.90	1.32	2.20	
168987	0.60	0.30	2.00	
161709	1.89	0.79	2.39	
169625	0.98	0.44	2.23	
165799	0.53	0.27	1.96	0.55
161896	2.12	1.04	2.04	
165813	0.59	0.28	2.11	0.70
162571	1.32	0.40	3.30	0.80
161948	0.19	0.09	2.11	0.22
167116	0.18	0.08	2.25	
167125	3.23	1.36	2.38	
167153	6.27	1.31	4.79	
162734	0.73	0.32	2.28	0.60
163425	0.95	0.44	2.16	0.80
164106	0.48	0.24	2.00	0.50
160237	3.50	1.38	2.54	
164206	0.26	0.11	2.36	
164244	0.43	0.22	1.95	
168266	0.20	0.10	2.00	
160429	2.54	0.94	2.70	0.94
159898	0.28	0.09	3.11	0.25
160441	0.37	0.18	2.06	0.42
167713	0.64	0.26	2.46	
165052	0.18	0.08	2.25	0.50
159906	0.42	0.18	2.33	0.30
161117	2.52	1.12	2.25	1.12
161163	0.18	0.08	2.25	0.35
160565	0.45	0.17	2.65	0.50
164504	0.51	0.24	2.13	0.80
165171	0.30	0.05	6.00	
161211	0.27	0.12	2.25	0.35
160605	5.94	1.06	5.60	0.78
160617	3.57	0.93	3.84	0.90
167906	0.40	0.19	2.11	0.80
167948	0.61	0.28	2.18	
164642	0.69	0.27	2.56	0.45
164646	0.39	0.15	2.60	0.42
164652	2.63	1.18	2.23	
SC / LC				
	SC	LC	SC/LC	Normal Cells
161244	0.38	0.10	3.80	0.20
161223	0.71	0.20	3.55	0.40
162391	0.60	0.17	3.53	0.35
166635	0.63	0.18	3.50	0.40
160035	0.72	0.21	3.43	0.50
162207	0.58	0.17	3.41	0.55
165052	0.60	0.18	3.33	0.50
161954	0.78	0.24	3.25	0.20
164927	1.65	0.51	3.24	
160127	0.44	0.14	3.14	0.47
160262	0.58	0.19	3.05	
161643	1.16	0.39	2.97	0.80
165483	0.98	0.33	2.97	0.73
166195	0.56	0.19	2.95	0.30

Table 4
Molecular Signature of Neuroendocrine Tumors

Unique ID No. of Gene	Observed Expression		Ratio	Observed Expression
161948	0.56	0.19	2.95	0.22
161163	0.53	0.18	2.94	0.35
167223	0.87	0.30	2.90	0.65
161774	0.57	0.20	2.85	0.45
160715	0.94	0.33	2.85	0.67
164586	0.48	0.17	2.82	0.35
161790	0.45	0.16	2.81	
165583	0.28	0.10	2.80	0.20
168638	0.58	0.21	2.76	0.58
160802	0.44	0.16	2.75	
160102	1.07	0.39	2.74	
165039	0.19	0.07	2.71	0.10
163762	1.44	0.54	2.67	
161374	0.89	0.34	2.62	0.55
163787	0.81	0.31	2.61	0.50
161012	0.73	0.28	2.61	0.55
167831	0.99	0.38	2.61	
160467	0.44	0.17	2.59	0.30
165614	0.82	0.32	2.56	0.50
167591	0.46	0.18	2.56	
165790	0.45	0.18	2.50	0.30
162244	0.74	0.30	2.47	0.70
162631	1.06	0.43	2.47	
161635	1.06	0.43	2.47	0.80
162006	0.71	0.29	2.45	0.31
162247	1.62	0.67	2.42	
169071	0.72	0.30	2.40	
159889	0.79	0.33	2.39	0.55
160323	0.43	0.18	2.39	0.30
161211	0.64	0.27	2.37	0.35
160803	0.71	0.30	2.37	0.55
160303	1.45	0.62	2.34	1.00
161794	0.95	0.41	2.32	0.70
168110	0.80	0.35	2.29	
167706	0.64	0.28	2.29	
169691	0.34	0.15	2.27	
168386	0.81	0.36	2.25	
162587	0.63	0.28	2.25	
168266	0.45	0.20	2.25	
164850	0.45	0.20	2.25	0.38
162727	0.45	0.20	2.25	0.25
162220	0.76	0.34	2.24	0.60
161955	0.38	0.17	2.24	
162623	0.51	0.23	2.22	0.36
160038	1.04	0.47	2.21	
167984	0.33	0.15	2.20	
166010	0.99	0.45	2.20	0.55
167170	0.88	0.40	2.20	0.52
167219	1.25	0.57	2.19	
163682	0.59	0.27	2.19	
162178	0.24	0.11	2.18	0.20
166960	0.37	0.17	2.18	0.25
160367	1.26	0.58	2.17	
160630	1.15	0.53	2.17	
160999	0.91	0.42	2.17	0.60
160275	0.53	0.25	2.12	
161754	1.11	0.53	2.09	0.60
163921	0.52	0.25	2.08	0.55
169254	0.60	0.29	2.07	0.28
164206	0.53	0.26	2.04	0.40

- 45 -

Table 4
Molecular Signature of Neuroendocrine Tumors

Unique ID No. of Gene	Observed Expression		Ratio	Observed Expression
166914	0.61	0.30	2.03	
162343	0.67	0.33	2.03	0.62
163824	0.79	0.39	2.03	0.65
167607	0.81	0.40	2.03	
160098	0.91	0.45	2.02	0.50
168079	0.93	0.46	2.02	0.56
161178	1.05	0.52	2.02	0.60
160938	0.82	0.41	2.00	0.50
167738	0.64	0.32	2.00	0.51
167505	0.77	0.39	1.97	
159859	1.44	0.73	1.97	0.90
167553	0.87	0.34	1.97	
162150	1.10	0.56	1.96	
160678	0.94	0.48	1.96	
163690	0.82	0.42	1.95	0.50
160486	0.72	0.37	1.95	0.50
160478	1.07	0.55	1.95	
165648	0.60	0.31	1.94	
161391	0.83	0.43	1.93	0.70
169564	0.48	0.25	1.92	
167948	1.16	0.61	1.90	
166574	0.89	0.47	1.89	
167135	0.63	0.34	1.85	
LC / SC				
	LC	SC	LC/SC	Normal Cells
165393	2.66	0.96	2.77	
168700	1.91	0.82	2.33	
169384	2.28	0.77	2.96	
165400	1.70	0.76	2.24	
161533	1.59	0.67	2.37	1.00
160957	3.20	0.77	4.16	
169429	4.52	0.80	5.65	
169432	2.04	0.65	3.14	
165576	1.93	0.66	2.92	
165617	2.90	0.73	3.97	
161709	1.89	0.95	1.99	
165784	1.46	0.69	2.12	
162475	2.00	1.06	1.89	
161896	2.12	0.75	2.83	
167103	1.70	0.72	2.36	
167125	3.23	0.88	3.67	
167153	6.27	1.00	6.27	
167316	1.94	0.88	2.20	
166789	1.76	0.75	2.35	
168061	1.32	0.64	2.06	
160233	2.07	0.97	2.13	
160237	3.50	0.92	3.80	
168141	2.51	0.95	2.64	
168169	2.78	1.17	2.38	
168276	1.61	0.63	2.56	
159813	1.99	0.83	2.40	
160429	2.54	0.71	3.58	0.90
161117	2.52	0.75	3.36	
165171	0.30	0.16	1.88	
164573	2.23	0.82	2.72	
160605	5.94	0.84	7.07	0.78
160617	3.57	0.86	4.15	0.90
169180	1.88	0.86	2.19	
164652	2.63	0.97	2.71	

Correlation Between Gene Expression Profiles And Genomic

Imbalance. To compare the results obtained from cDNA array expression in accordance with the present invention with previously available information on genomic imbalances in neuroendocrine tumors, a search of the literature for

- 5 published data on comparative genomic hybridization (CGH) and loss of heterozygosity (LOH) in neuroendocrine tumors was conducted. It was found that, among 198 genes identified by the Class Comparison (F-test) analysis, over ninety percent of genes with significant changes in LCNEC, and over 80% of genes from SCLC and TC, had previously been reported to have chromosomal imbalances by
10 gain or loss (CGH) or to be associated with LOH (**Table 5**). Loss of chromosomal material by LOH closely correlated with genes whose expression significantly decreased in our analysis. Deletions of several genes, such as cyclin-dependent kinase inhibitor (CDKN2A, 9p21) and multiple endocrine neoplasia 1 (MEN1, 11q13) have been studied extensively in pulmonary neuroendocrine tumors
15 (Oliveira, A.M. *et al.* (2001) "FAMILIAL PULMONARY CARCINOID TUMORS," Cancer 91:2104-2109; Debelenko, L.V. *et al.* (2000) "MEN1 gene mutation analysis of high-grade neuroendocrine lung carcinoma," Genes Chromosomes Cancer. 28:58-65). However, several genes whose expression has been found to be decreased herein were previously reported to have a gain of chromosomal material
20 by CGH. These include BAK, excision repair cross-complement (ERCC1), DNA ligase (LIG1), tubulin beta (TUBB) and others (**Table 2**).

Of interest, none of the genes which encode for growth factor/receptors identified herein have been reported by LOH. However, loss of genetic material by CGH in these genes has been reported. The potential loss of repressor activity
25 in the promoter regions of these genes may result in their over-expression as detected herein. In sum, the expression profiling of significantly altered genes derived from microarray data reported herein closely correlates with chromosomal imbalances reported by LOH but not by CGH.

Example 3
Analysis of Gene Expression Profiles

Analysis of clusters of differentially expressed mRNAs from 9,984 human transcripts assigned to each subtype of neuroendocrine tumors identified multiple genes (198 genes with a probability of 0.004) exhibiting differential expression. This highly selected group of genes contained valuable information which correlated with biological behavior of these tumors. The identified genes are involved in regulation of apoptosis, cell-cell and cell-matrix interactions, cell cycle, DNA synthesis and repair, drug resistance, RNA synthesis and processing, receptors and growth factors. Previous studies using microarray analysis of lymphomas (Dodson, J.M. *et al.* (2002) "QUANTITATIVE ASSESSMENT OF FILTER-BASED cDNA MICROARRAYS: GENE EXPRESSION PROFILES OF HUMAN T-LYMPHOMA CELL LINES," *Bioinformatics* 18:953-960; Ramaswamy, S. *et al.* (2001) MULTICLASS CANCER DIAGNOSIS USING TUMOR GENE EXPRESSION SIGNATURES," *Proc Natl Acad Sci U S A.* 98(26):15149-15154), gastrointestinal (Hippo, Y. *et al.* (2002) "GLOBAL GENE EXPRESSION ANALYSIS OF GASTRIC CANCER BY OLIGONUCLEOTIDE MICROARRAYS," *Cancer Res.* 62(1):233-240; Selaru, F.M. *et al.* (2002) "ARTIFICIAL NEURAL NETWORKS DISTINGUISH AMONG SUBTYPES OF NEOPLASTIC COLORECTAL LESIONS," *Gastroenterology* 122:606-613), ovarian (Ramaswamy, S. *et al.* (2001) MULTICLASS CANCER DIAGNOSIS USING TUMOR GENE EXPRESSION SIGNATURES," *Proc Natl Acad Sci U S A.* 98(26):15149-15154), and other types of human tumors found that over-expression of specific genes is a prominent feature that facilitated the molecular classification of these tumors. In contrast, a significant decrease in expression in the majority of the selected genes was found. One of the major survival pathways is regulated by protection of the mitochondrial membrane by BCL2 which is frequently over-expressed in tumor cells (Cleary, M.L. *et al.* (1986) "CLONING AND STRUCTURAL ANALYSIS OF cDNAs FOR BCL-2 AND A HYBRID BCL-2/IMMUNOGLOBULIN TRANSCRIPT RESULTING FROM THE T(14;18) TRANSLOCATION," *Cell.* 47(1):19-28). Decreased expression of BCL2 antagonists, BAD and BAK1 was observed in samples from TC and LCNEC. This feature may provide survival advantage

without the need for over-expression of BCL2 as occurs in certain types of lymphomas. BAD and BAK1 are located on chromosomes 11q13 and 6p21, respectively, which are in the regions of loss of heterozygosity (LOH) in neuroendocrine tumors (Hofmann, W.K. (2002) "RELATION BETWEEN RESISTANCE OF PHILADELPHIA-CHROMOSOME-POSITIVE ACUTE LYMPHOBLASTIC LEUKAEMIA TO THE TYROSINE KINASE INHIBITOR ST1571 AND GENE-EXPRESSION PROFILES: A GENE-EXPRESSION STUDY," *Lancet* 359:481-486). Expression of BAK was further suppressed in TC and LCNEC below the level expected for LOH which suggests an additional regulatory mechanism. Interestingly, gain of chromosomal material in 6p21 was reported in LCNEC by CGH (Michelland, S. *et al.* (1999) "COMPARISON OF CHROMOSOMAL IMBALANCES IN NEUROENDOCRINE AND NON-SMALL-CELL LUNG CARCINOMAS," *Cancer Genet Cytogenet* 114:22-30). Suppression of other apoptosis-promoting genes, such as caspase 4 (CASP4), may also provide survival advantage and has not been previously reported in

15 Neuroendocrine tumors. Loss of expression of many genes which regulate cell-cell and cell-matrix interactions as well as DNA and RNA synthesis and repair were apparent in all tumor types (Table 2). Table 2 shows representative deregulated genes classified by function. Genes selected by F-test with probability of <0.004 were genes assigned to functional categories and compared with the published

20 comparative genomic hybridization (CGH) results (Michelland, S. *et al.* (1999) "COMPARISON OF CHROMOSOMAL IMBALANCES IN NEUROENDOCRINE AND NON-SMALL-CELL LUNG CARCINOMAS," *Cancer Genet Cytogenet* 114:22-30; Lui, W.-O. *et al.* (2001) "HIGH LEVEL AMPLIFICATION OF 1P32-33 AND 2P22-24 IN SMALL CELL LUNG CARCINOMAS" *Intl. J Oncol.* 19:451-457; Ullmann, R., *et al.* (2001)

25 "CHROMOSOMAL ABERRATIONS IN A SERIES OF LARGE-CELL NEUROENDOCRINE CARCINOMAS: UNEXPECTED DIVERGENCE FROM SMALL-CELL CARCINOMA OF THE LUNG," *Hum Pathol.* 32:1059-63; Walch, A.K. *et al.* (1998) "TYPICAL AND ATYPICAL CARCINOID TUMORS OF THE LUNG ARE CHARACTERIZED BY 11Q DELETIONS AS DETECTED BY COMPARATIVE GENOMIC HYBRIDIZATION" *Am J Pathol.* 153:1089-98).

In the table, SC denotes small cell; LC denotes large cell neuroendocrine carcinoma; and TC denotes typical carcinoid.

Most studies performed to-date compare tumor samples with cDNA from normal tissues of an individual patient, pooled normal tissues or pooled cell lines as reference. To illustrate the invention, RNA from a single human cell line derived from normal bronchial epithelium, BEAS-2B (Amstad, P. *et al.* (1988) "NEOPLASTIC TRANSFORMATION OF A HUMAN BRONCHIAL EPITHELIAL CELL LINE BY A RECOMBINANT RETROVIRUS ENCODING VIRAL HARVEY RAS," *Mol Carcinog.* 1988 1:151-60), was used as a reference RNA. This cell line has minimal chromosomal rearrangements in early passages and neuroendocrine tumor features (Lee, B.H *et al.* (1998) "IN VITRO CHROMOSOME ABERRATION ASSAY USING HUMAN BRONCHIAL EPITHELIAL CELLS," *J. Toxicol Environ. Health A.* 55:325-9). Thus, the data indicate that accurate classification of neuroendocrine tumors can be achieved by comparing gene expression profiles of tumors to a single cell line derived from the same cell type. This method is applicable to analysis of tumor-derived gene expression profiles from other organs, such as brain, where availability of normal tissue is limited.

In addition to suppression of the apoptotic pathway, only LCNEC tumors had increased expression (2-6- fold) of several receptors and growth factors. Increased expression of PDGFRB in conjunction with suppression of PDGFA-associated protein, which can down regulate the activity of PDGFA, could result in additional proliferative signal and contribute to the aggressive behavior of this tumor. In addition, high expression of an adhesion plaque-associated protein, P311, which has been recently identified as a glioblastoma invasion gene (Mariani, L. *et al.* (2001) "IDENTIFICATION AND VALIDATION OF P311 AS A GLIOBLASTOMA INVASION GENE USING LASER CAPTURE MICRODISSECTION," *Cancer Res* 61:4190-4196) was detected.

The lack of a similar pattern of gene expression in SCLC may result from the small number of samples examined or may result from different transforming

- 50 -

mechanisms since oncogenic mutations (p21^{ras}, p53 and others) but not over-expressions are associated with SCLC (Wistuba, I.I. *et al.* (2001) "MOLECULAR GENETICS OF SMALL CELL LUNG CARCINOMA," Semin Oncol 28: 3-13).

Functional analysis of genes whose expression significantly altered in pulmonary

- 5 neuroendocrine tumors provides insight into the underlying biological mechanism, leading to survival and slow progression of TC whereas LCNEC and SCLC have an aggressive behavior.

Many studies have identified genes whose expression is significantly suppressed in neuroendocrine tumors. High incidence of LOH at 3p, 5q, 11q, and

- 10 17p (Ohnuki, Y. *et al.* (1996) "CHROMOSOMAL CHANGES AND PROGRESSIVE TUMORIGENESIS OF HUMAN BRONCHIAL EPITHELIAL CELL LINES," Cancer Genet. Cytogenet. 92:99-110), except for chromosome 13q, correlates with significant decrease in expression of genes assigned to these locations, including MENI (11q13). The data adds to previously reported studies and confirms that expression
15 profiling of lung neuroendocrine tumors provides accurate tumor classification. The molecular signature of relative abundance of gene expression derived by comparing mean gene expression of each 3 tumor subtypes is independent of the reference RNA and is of particular interest because of its clinical relevance. These results indicate that gene expression profiling of pulmonary neuroendocrine tumors
20 provides a diagnostic tool for tumor classification, particularly when histopathology interpretation is ambiguous.

In summary, light microscopy-based classification of pulmonary neuroendocrine tumors is often difficult. To search for molecular markers of neuroendocrine tumors, cDNA microarrays of 9,984 human transcripts were used

- 25 to identify classification-associated genes at a global genomic scale. Laser-capture microdissection was used to harvest tumor cells from frozen sections. The gene expression profiles in primary pulmonary neuroendocrine tumors from 17 surgical specimens (11 Typical Carcinoids, (TC), 3 Small Cell lung cancers (SCLC), 2 Large Cell Neuroendocrine tumors (LNEC), and one sample which had features of
30 SCLC and LNEC) were compared. The BRB ArrayTool (National Cancer

- 51 -

Institute, NIH; <http://linus.nci.nih.gov/BRB-ArrayTools.html>) was employed to analyze gene expression patterns. An unsupervised, hierarchical clustering algorithm used to analyze these 17 tumors based only on similarities in gene expression resulted in a precise classification of each tumor type. The Class

- 5 Comparison Tool used to compare each tumor type identified 198 statistically significant genes ($p<0.004$) that accurately discriminated between 3 pre-defined tumor types. Analysis of these genes revealed that deletions were more frequent than were amplifications in pulmonary neuroendocrine tumors. Using comparative analysis of gene expression variance, a molecular signature for each tumor type
- 10 was identified. The signature genes included decreased expression of pro-apoptotic genes, cell-cell and cell matrix interacting components, cell cycle control and DNA repair, and anti-oncogenes. In particular, decreased expression of the BCL2 antagonist, BAK1, was found in all tumor types, whereas BAD was decreased in LCNEC and TC tumors. Over-expression of several growth factors
- 15 and receptors (CSF2RB, PDGFRB, IL13RA2, and IL6ST (gpI30)) was detected only in LCNEC tumors, and increased expression of IL-8R β was shared by TC tumor cells. High expression of a neuronal marker, P311, previously reported to promote invasive phenotype in brain tumors, was detected in LCNEC, and a peptide processing enzyme, Carboxypeptidase E (CPE), was found in TC. The
- 20 analysis indicates that functional genomic comparison of expression profiles can accurately classify pulmonary neuroendocrine tumors and will therefore facilitate the development of new therapies for patients having these malignancies.

Table 5 lists genes that are differentially expressed in different neuroendocrine tumors.

Table 5		
Genes Differentially Expressed In Small Cell Lung Cancer (SCLC) Neuroendocrine Tumor Cells Relative To Large Cell Neuroendocrine Carcinoma (LCNEC) Neuroendocrine Tumor Cells		
IncytePD:523635	IncytePD:1734113	IncytePD:2074154
IncytePD:561992	IncytePD:1743234	IncytePD:2104145
IncytePD:605019	IncytePD:1749727	IncytePD:2172334
IncytePD:614679	IncytePD:1755793	IncytePD:2180031
IncytePD:629077	IncytePD:1808260	IncytePD:2182907
IncytePD:637639	IncytePD:1810821	IncytePD:2200079

- 52 -

Table 5

IncytePD:696002	IncytePD:1821971	IncytePD:2205246
IncytePD:740878	IncytePD:1824957	IncytePD:2308525
IncytePD:771715	IncytePD:1841920	IncytePD:2356635
IncytePD:820580	IncytePD:1853163	IncytePD:2374294
IncytePD:849425	IncytePD:1857493	IncytePD:2469592
IncytePD:942207	IncytePD:1872067	IncytePD:2506427
IncytePD:958513	IncytePD:1890919	IncytePD:2507648
IncytePD:961082	IncytePD:1921567	IncytePD:2508570
IncytePD:998069	IncytePD:1931265	IncytePD:2568547
IncytePD:1258790	IncytePD:1942845	IncytePD:2610374
IncytePD:1297269	IncytePD:1960722	IncytePD:2663948
IncytePD:1308112	IncytePD:1968721	IncytePD:2674277
IncytePD:1339241	IncytePD:1988239	IncytePD:3038508
IncytePD:1382374	IncytePD:1990361	IncytePD:3115514
IncytePD:1402615	IncytePD:1997937	IncytePD:3123858
IncytePD:1405652	IncytePD:1997967	IncytePD:3179113
IncytePD:1431819	IncytePD:2048144	IncytePD:3202075
IncytePD:1435374	IncytePD:2050085	IncytePD:3255437
IncytePD:1445203	IncytePD:2054529	IncytePD:3333130
IncytePD:1453450	IncytePD:2055640	IncytePD:3360476
IncytePD:1481225	IncytePD:2055687	IncytePD:3381870
IncytePD:1486983	IncytePD:2055773	IncytePD:3427560
IncytePD:1501080	IncytePD:2055926	IncytePD:3432534
IncytePD:1555545	IncytePD:2056149	IncytePD:3518380
IncytePD:1561352	IncytePD:2056172	IncytePD:3562795
IncytePD:1567995	IncytePD:2056987	IncytePD:3842669
IncytePD:1603584	IncytePD:2057547	IncytePD:3967780
IncytePD:1610083	IncytePD:2057823	IncytePD:3990209
IncytePD:1624024	IncytePD:2058537	IncytePD:3999291
IncytePD:1625169	IncytePD:2060308	IncytePD:4014715
IncytePD:1635008	IncytePD:2679117	IncytePD:4016254
IncytePD:1637517	IncytePD:2740235	IncytePD:4059193
IncytePD:1653911	IncytePD:2751387	IncytePD:4144001
IncytePD:1685342	IncytePD:2852403	IncytePD:4287342
IncytePD:1691161	IncytePD:2956581	IncytePD:4626895
IncytePD:1699149	IncytePD:2956906	IncytePD:5017148
IncytePD:1702266	IncytePD:3032691	IncytePD:5096975
IncytePD:1969563	IncytePD:3032825	

**Genes Differentially Expressed In Small Cell Lung Cancer (SCLC)
Neuroendocrine Tumor Cells Relative To Typical Carcinoid (TC)
Neuroendocrine Tumor Cells**

IncytePD:477045	IncytePD:1748705	IncytePD:2453436
IncytePD:478960	IncytePD:1749727	IncytePD:2469592
IncytePD:523635	IncytePD:1755793	IncytePD:2506427
IncytePD:557451	IncytePD:1773638	IncytePD:2508570
IncytePD:561992	IncytePD:1807294	IncytePD:2610374
IncytePD:588157	IncytePD:1808260	IncytePD:2622566
IncytePD:605019	IncytePD:1810821	IncytePD:2663948
IncytePD:696002	IncytePD:1812955	IncytePD:2674277
IncytePD:740878	IncytePD:1822716	IncytePD:2679117
IncytePD:771715	IncytePD:1824957	IncytePD:2722572
IncytePD:818568	IncytePD:1841920	IncytePD:2728840
IncytePD:820580	IncytePD:1853163	IncytePD:2740235
IncytePD:885601	IncytePD:1857493	IncytePD:2748942

Table 5

IncytePD:899102	IncytePD:1858365	IncytePD:2751387
IncytePD:958513	IncytePD:1872067	IncytePD:2758740
IncytePD:961082	IncytePD:1890919	IncytePD:2798872
IncytePD:1240748	IncytePD:1920650	IncytePD:2806778
IncytePD:1258790	IncytePD:1921567	IncytePD:2852403
IncytePD:1297269	IncytePD:1931265	IncytePD:2888814
IncytePD:1308112	IncytePD:1942845	IncytePD:2914719
IncytePD:1402615	IncytePD:1960722	IncytePD:2923082
IncytePD:1405652	IncytePD:1968721	IncytePD:2956906
IncytePD:1431819	IncytePD:1988239	IncytePD:3010959
IncytePD:1435374	IncytePD:1997792	IncytePD:3032691
IncytePD:1445203	IncytePD:2050085	IncytePD:3032825
IncytePD:1453450	IncytePD:2054529	IncytePD:3038508
IncytePD:1481225	IncytePD:2055640	IncytePD:3115514
IncytePD:1486983	IncytePD:2055687	IncytePD:3123858
IncytePD:1488021	IncytePD:2055773	IncytePD:3179113
IncytePD:1505977	IncytePD:2055926	IncytePD:3202075
IncytePD:1513989	IncytePD:2056149	IncytePD:3334367
IncytePD:1559756	IncytePD:2056172	IncytePD:3381870
IncytePD:1561867	IncytePD:2056642	IncytePD:3432534
IncytePD:1562658	IncytePD:2056987	IncytePD:3518380
IncytePD:1567995	IncytePD:2057547	IncytePD:3562795
IncytePD:1603584	IncytePD:2057823	IncytePD:3728255
IncytePD:1610083	IncytePD:2057908	IncytePD:3805046
IncytePD:1624024	IncytePD:2058537	IncytePD:3871545
IncytePD:1625169	IncytePD:2060308	IncytePD:3954785
IncytePD:1635008	IncytePD:2074154	IncytePD:3967780
IncytePD:1653911	IncytePD:2104145	IncytePD:3990209
IncytePD:1669254	IncytePD:2153373	IncytePD:3999291
IncytePD:1672749	IncytePD:2172334	IncytePD:4014715
IncytePD:1691161	IncytePD:2180031	IncytePD:4059193
IncytePD:1693847	IncytePD:2182907	IncytePD:4144001
IncytePD:1699149	IncytePD:2304121	IncytePD:4253663
IncytePD:1702266	IncytePD:2356635	IncytePD:4626895
IncytePD:1704168	IncytePD:2369544	IncytePD:5017148
IncytePD:1712663	IncytePD:2374294	IncytePD:5096975
IncytePD:1734113	IncytePD:2383065	

Genes Differentially Expressed In Large Cell Neuroendocrine Carcinoma (LCNEC) Neuroendocrine Tumor Cells Relative To Typical Carcinoid (TC) Neuroendocrine Tumor Cells

IncytePD:629077	IncytePD:1748705	IncytePD:2507648
IncytePD:637639	IncytePD:1773638	IncytePD:2508570
IncytePD:818568	IncytePD:1807294	IncytePD:2622566
IncytePD:885601	IncytePD:1812955	IncytePD:2679117
IncytePD:899102	IncytePD:1821971	IncytePD:2728840
IncytePD:942207	IncytePD:1822716	IncytePD:2806778
IncytePD:1308112	IncytePD:1858365	IncytePD:2888814
IncytePD:1402615	IncytePD:1872067	IncytePD:2914719
IncytePD:1435374	IncytePD:1990361	IncytePD:2956581
IncytePD:1488021	IncytePD:1997967	IncytePD:3255437
IncytePD:1501080	IncytePD:2048144	IncytePD:3333130
IncytePD:1505977	IncytePD:2153373	IncytePD:3360476
IncytePD:1555545	IncytePD:2205246	IncytePD:3427560
IncytePD:1559756	IncytePD:2299818	IncytePD:3518380

Table 5

IncytePD:1561352	IncytePD:2304121	IncytePD:3805046
IncytePD:1561867	IncytePD:2308525	IncytePD:4016254
IncytePD:1610993	IncytePD:2369544	IncytePD:4144001
IncytePD:1704168	IncytePD:2453436	IncytePD:4287342
IncytePD:1712663	IncytePD:2469592	
IncytePD:1743234	IncytePD:2506427	

The methods employed in the present invention can be similarly employed to facilitate the diagnosis of other tumor types, for example, adenocarcinomas, which are distinct from neuroendocrine tumors and exhibit significant differences in gene expression (Garber, M. E. *et al.* (2001) "DIVERSITY OF GENE EXPRESSION

- 5 IN ADENOCARCINOMA OF THE LUNG" *Proc. Natl. Acad. Sci. (U.S.A.)* 98:13784–13789; Bhattacharjee, A. *et al.* (2001) "CLASSIFICATION OF HUMAN LUNG CARCINOMAS BY mRNA EXPRESSION PROFILING REVEALS DISTINCT ADENOCARCINOMA SUBCLASSES" *Proc. Natl. Acad. Sci. (U.S.A.)* 98:13790–13795). cDNA microarrays that can be used to identify profiles of genes expressed
- 10 in adenocarcinomas are disclosed by Miura, K. *et al.* (2002) ("LASER CAPTURE MICRODISSECTION AND MICROARRAY EXPRESSION ANALYSIS OF LUNG ADENOCARCINOMA REVEALS TOBACCO SMOKING- AND PROGNOSIS-RELATED MOLECULAR PROFILES," *Canc. Res.* 62:3244-3250).

Example 4**Analysis of Gene Expression Profiles**

- As indicated above, DNA microarray technology (Schena, M. *et al.* (1995) "QUANTITATIVE MONITORING OF GENE EXPRESSION PATTERNS WITH A COMPLEMENTARY DNA MICROARRAY," *Science* 270:467 –470; DeRisi, J. *et al.* (1996) "USE OF A cDNA MICROARRAY TO ANALYSE GENE EXPRESSION PATTERNS
- 20 IN HUMAN CANCER," *Nat Genet* 14:457-460) provides a powerful tool to analyze genome-wide changes in gene expression. Applications of this technology to human lung cancers facilitate the identification of gene expression profiles and biomarkers associated with adenocarcinoma (Miura, K. *et al.* (2002) "Laser capture microdissection and microarray expression analysis of lung adenocarcinoma reveals tobacco smoking- and prognosis-related molecular
- 25 profiles," *Cancer Res* 62:3244-3250; Sugita, M. *et al.* , (2002) "COMBINED USE OF

OLIGONUCLEOTIDE AND TISSUE MICROARRAYS IDENTIFIES CANCER/TESTIS ANTIGENS AS BIOMARKERS IN LUNG CARCINOMA," Cancer Res 62:3971-3979; Bhattacharjee, A. *et al.* (2001) "CLASSIFICATION OF HUMAN LUNG CARCINOMAS BY mRNA EXPRESSION PROFILING REVEALS DISTINCT ADENOCARCINOMA

- 5 SUBCLASSES," Proc Natl Acad Sci USA 2001; 98:13790-13795) and NSCLC (Heighway, J. *et al.* (2002) "EXPRESSION PROFILING OF PRIMARY NON-SMALL CELL LUNG CANCER FOR TARGET IDENTIFICATION," Oncogene 2002; 21:7749-7763; Kikuchi, T. *et al.* (2003) "EXPRESSION PROFILES OF NON-SMALL CELL LUNG CANCERS ON CDNA MICROARRAYS: IDENTIFICATION OF GENES FOR PREDICTION 10 OF LYMPH-NODE METASTASIS AND SENSITIVITY TO ANTI-CANCER DRUGS," Oncogene 22:2192-2205). These studies lead to the identification of molecular markers with a potential for better diagnosis, more accurate prediction of prognosis, and selection of effective treatment modalities.

To identify expression profiles and biomarkers for pulmonary NET, laser capture microdissection (LCM) (Emmert-Buck, M.R. *et al.* (1996) "LASER CAPTURE MICRODISSECTION" Science 1996; 274:9981001; Bonner, R.F. *et al.* (1997) "LASER CAPTURE MICRODISSECTION: MOLECULAR ANALYSIS OF TISSUE," Science 278:1481,1483) and cDNA microarrays (Schena, M. *et al.* (1995) "QUANTITATIVE MONITORING OF GENE EXPRESSION PATTERNS WITH A 15 COMPLEMENTARY DNA MICROARRAY," Science 270:467 –470; DeRisi, J. *et al.* (1996) "USE OF A cDNA MICROARRAY TO ANALYSE GENE EXPRESSION PATTERNS IN HUMAN CANCER," Nat Genet 14:457-460) on 17 cases of primary pulmonary NET including TC (n=11), LCNEC (n=2), SCLC (n=3) and one case of LCNEC combined with SCLC are conducted. The resultant clustering of expression 20 profiles corresponding to the subtype pulmonary NET are verified by real-time RT-PCR analysis and matched completely with the histological classification. Of 48 classifier genes identified, two are subjected to protein expression analysis by in situ immunohistochemistry (IHC) on 55 pulmonary NET cases, which result in the identification of carboxypeptidase E (CPE) and γ -glutamyl hydrolase (GGH) as 25 diagnostic biomarkers to differentiate low- and intermediate-grades TC and AC from high-grade LCNEC and SCLC. Kaplan-Meier survival analysis reveals that 30

the protein expressions of these two biomarkers can serve as prognosis indicators for pulmonary NET patients.

MATERIALS AND METHODS

Tissue samples. Fresh frozen tissues of 17 primary pulmonary NET were 5 collected from hospitals over an 11-year period. Tissues were flash-frozen after surgery and stored at -80°C until used. Histopathological classification of these tumors was based on the 1999 WHO/LASLSC classification of "Histological Typing of Lung and Pleural Tumors" (see, Travis, W.D. *et al.* (1998) "REPRODUCIBILITY OF NEUROENDOCRINE LUNG TUMOR CLASSIFICATION," *Hum Pathol.* 29:272-279). The tissues were used for microarray and IHC. A total of 68 10 cases (29 TCs, five ACs, nine LCNECs, and 25 SCLCs) were used for IHC and 55 cases generated informative data. Fifty-four of 55 cases have clinical survival data and are used for Kaplan-Meier survival analysis.

Laser capture microdissection. Frozen tissue (0.5 x 0.5 x 0.5 cm) is 15 embedded in OCT in a cryomold, and immersed immediately in dry ice-cold 2-methylbutane at -50°C. Tissue sections (8 µm) are mounted on Silane-coated slides and kept at -80°C until use. The slides are fixed by immersion in 70% ethanol, stained with H&E and air-dried for 10 min after xylene treatment.

The PixCell™ LCM system was used for LCM (Emmert-Buck, M.R. *et al.* 20 (1996) "LASER CAPTURE MICRODISSECTION" *Science* 1996; 274:9981001; Bonner, R.F. *et al.* (1997) "LASER CAPTURE MICRODISSECTION: MOLECULAR ANALYSIS OF TISSUE," *Science* 278:1481,1483). Tumor cells are fused to transfer film by thermal adhesion after laser pulse and transferred into tubes for RNA extraction. Total RNA is extracted using Micro RNA isolation kit (Stratagene, La Jolla, CA) 25 according to the manufacturer's instructions. RNA quality is evaluated by spectrophotometry and gel electrophoresis. Purified RNA is dissolved into 11 µl of DEPC-treated water and used for amplification. The amplified RNA is subjected to cDNA microarray analysis (Schena, M. *et al.* (1995) "QUANTITATIVE MONITORING OF GENE EXPRESSION PATTERNS WITH A COMPLEMENTARY DNA

MICROARRAY," Science 270:467 –470; DeRisi, J. *et al.* (1996) "USE OF A cDNA MICROARRAY TO ANALYSE GENE EXPRESSION PATTERNS IN HUMAN CANCER," Nat Genet 14:457-460).

Tissue Culture. A cell line derived from normal bronchial epithelium,

- 5 BEAS-2B, is cultured in a serum-free medium, LHC-9, and harvested at passage
30. Total RNA is isolated from cultured cells using Micro RNA isolation kit
(Stratagene) according to the manufacturer's instructions.

RNA amplification. RNA amplification was performed as described by Luo, L. *et al.* (1999) ("GENE EXPRESSION PROFILES OF LASER-CAPTURED

- 10 ADJACENT NEURONAL SUBTYPES," Nat Med 1999; 5:117-122). Briefly, oligo (dT)
primers with T7 promoter sequence (**SEQ ID NO:1**) is used to synthesize the first
strand of cDNA. After the second strand of cDNA synthesis, RNA is amplified by
using T7 RNA polymerase on the cDNA templates. Two rounds of amplification
starting with 1 µg of total RNA generate 40-60 µg of amplified RNA, which is
15 used for microarray analysis.

Microarray, Hybridization, and Analysis. cDNA microarrays with 9,984
human genes per slide are provided by the Advanced Technology Center (National
Cancer Institute, Bethesda, MD). Six of 17 samples are hybridized with two slides
to work out microarray labeling and hybridization procedures for consensus

- 20 expression data (>95% Pearson Coefficient Correlation between two slides
hybridized with the same samples). The remaining samples are conducted under
the same labeling and hybridization conditions. RNA (8 µg), amplified from the
BEAS-2B cell line (passage 30), is labeled with Cy5-dUTP as a reference.
Amplified RNA (4 µg each) from tumors is labeled with Cy3-dUTP by using
25 Superscript II (Invitrogen, Carlsbad, CA). Briefly, RNA is incubated with Cy3-
dUTP (or Cy5-dUTP) (Perkin Elmer Life Sciences, Boston, MA) at 42°C for 1 h to
synthesize the first strand cDNA. The reaction is stopped by the addition of 5 µl
0.5M EDTA and the RNA is degraded by the addition of 10 µl 1N NaOH and then
incubation at 65°C for 60 min. After neutralizing, the samples are purified by

Microcon 30 (Millipore Corp., Bedford, MA). Each pair of labeled samples is hybridized to DNA on slides at 65°C for 16 h. After washing, the slides are scanned with a GenePix 4000A scanner (Axon Instruments, Inc., Foster City, CA). Hierarchical clustering and gene selection are performed by using BRB-

- 5 ArrayTools V 3.0 (National Cancer Institute, Bethesda MD,
<http://linus.nci.nih.gov/brb>).

Real-time PCR. Total RNA is purified from LCM cells, using the Stratagene Absolutely RNATM microprep kit. Samples are treated by DNase I to eliminate DNA contamination. Primers are designed, using Primer Express

- 10 Software V 1.5 (Applied Biosystems Inc., Foster City, CA) based on sequences from GenBank and purchased from Biosource International (Camarillo, CA). Final probe concentration was 200 nM for each gene. Endogenous 18s RNA (Applied Biosystems) is used as an internal reference. Reverse transcription is completed with the RT-EZ RNA kit (Applied Biosystems) according to the
15 manufacturer's instructions. Samples are run in triplicate and monitored on the ABI PRISM 7700.

Immunohistochemistry. Immunohistochemistry is performed by the avidin-biotin peroxidase complex (ABC) method (Vectastain Elite ABC kit, Vector, CA). Briefly, slides are deparaffinized, and rehydrated through xylene and

- 20 alcohol in Coplin jars. Endogenous peroxidase is blocked with 3% H₂O₂ in phosphate-buffered saline (PBS) for 20 min. All washes are in PBS at room temperature if not mentioned. After two washes, Heat Induced Epitope Retrieval (HIER) is performed in a citrate buffer (pH: 6.0) in a Biocare Medical chamber (Walnut Creek, CA). Slides are rinsed, enclosed with a PAP pen, placed in the
25 humid chamber, and incubated first with Protein Block (normal GOAT serum diluted in PBS containing 1% BSA, 0.09% sodium azide, 0.1% Tween-20 [BioGenex, CA]), and then with primary antibody: GGH (rabbit polyclonal, Dr. Thomas J. Ryan, Wadsworth Center, NY State Dept. of Health, Albany, NY, 1:1000 diluted by Universal blocking reagent [BioGenex]) and CPE (rabbit
30 polyclonal, Dr. Lloyd Fricker, Albert Einstein College of Medicine, NY, 1:500

- 59 -

dilution) for 1 h. After three washes, slides are incubated for 30 min with biotinylated goat anti rabbit IgG (Vector, 1:250 dilution). After three washes, the slides are incubated for 45 min with the ABC reagent (Vector). Slides are washed twice, placed in Tris-HCl buffer (pH 7.5) for 5 min, developed with liquid DAB (DAKO, CA) for 3 min, washed with H₂O twice, and finally counterstained lightly with Mayer's hematoxyline for 5 sec, dehydrated, cleared, and mounted with resinous mounting medium. Signal intensity and distribution are based on the publication (Gillett, C. *et al.* (1994) "AMPLIFICATION AND OVEREXPRESSION OF CYCLIN D 1 IN BREAST CANCER DETECTED BY IMMUNOHISTOCHEMICAL STAINING," Cancer Res 54: 1812-1817; Beasley, M.B. *et al.* (2003) "The P16/CYCLIN D1/RB PATHWAY IN NEUROENDOCRINE TUMORS OF THE LUNG," Hum Pathol. 34:136-142) and scored blindly by three pathologists as follows: distribution score (DS) is graded as 0, absent; 1, <10%; 2 10% to 50%; 3, 51% to 90%; or 4, >90%. Intensity score (IS) is graded as IS0, no signal; IS1, weak; IS2, medium; or IS3, strong. The combined total score is determined as total score (TS) = distribution (DS) + intensity (IS) (TS0, sum 0; TS1, sum 1 to 3; TS2, sum 4 to 5; TS3, sum 6 to 7). TS0 and TS1 are considered negative, whereas TS2 and TS3 are considered positive, respectively.

Statistics. Binomial distributions are used to compute p-values between positive and negative immunohistochemical stains of anti-CPE or anti-GGH antibodies to tissue sections. Kaplan-Meier survival is calculated in the statistic software SPSS 9.0 for Windows. A p-value less than 0.05 or 0.01 is used as significant or very significant statistical indicator, respectively.

RESULTS

25 **Microarray analysis and expression classification of pulmonary NET.** Homogeneous cancer cells are collected from pulmonary NET tissue sections by LCM avoiding contamination with other cells to conduct microarray analysis of gene expression. LCM is performed on 15-18 frozen sections per sample to maximize the number of homogeneous cells from each of 17 available fresh frozen

- 60 -

pulmonary NET (11 TC, two LCNEC, three SCLC, and one combined SCLC and LCNEC). High quality total RNA (>1 µg/sample) is purified from the dissected cells and subjected to two rounds of RNA amplification by T7 RNA polymerase (Luo, L. *et al.* (1999) "GENE EXPRESSION PROFILES OF LASER-CAPTURED

- 5 ADJACENT NEURONAL SUBTYPES" *Nature Medicine* 5:117-2216) for microarray analysis. cDNA microarrays of 9,984 genes are hybridized by Cy3-labeled cDNA from 4 µg tumor RNA and Cy5-labeled reference cDNA from 8 µg RNA of the normal bronchial epithelial cell line BEAS-2B(Reddel, R.R. *et al.* (1988) "TRANSFORMATION OF HUMAN BRONCHIAL EPITHELIAL CELLS BY INFECTION
- 10 WITH SV40 OR ADENOVIRUS-12 SV40 HYBRID VIRUS, OR TRANSFECTION VIA STRONTIUM PHOSPHATE COPRECIPITATION WITH A PLASMID CONTAINING SV 40 EARLY REGION GENES," *Cancer Res* 48:1904-1909) for all 17 samples. Hierarchical clustering analysis on expression levels of 9,984 genes without prior knowledge of sample identity reveals the sample clusters matching histological
- 15 classification. An F-test is then conducted by use of the BRB array tool to measure variance in gene expression in each sample among three defined subtypes. Based on arbitrary criteria of 2-fold changes and p-value <0.004, 198 genes are identified (Table 6) that also clustered the 17 tumors into groups in agreement with the morphological classification (Figure 4).

Table 6
Cluster Genes, Using Average Linkage and Euclidean Distance, and Cutting Tree at Three Clusters

No.	Unique ID	Gene Symbol	Map	Clone Incyte PD No.	UG Cluster
Cluster #1					
1	166807	GRIA2	4q32-q33	1505977	Hs.89582
2	159877	CPE	4q32.3	2153373	Hs.75360
3	161598	ORC4L	2q22-q23	2728840	Hs.55055
4	167158	C5	9q32-q34	1712663	Hs.1281
Cluster #2					
5	167153	GGH	8q12.1	1997967	Hs.78619
6	160605	P311	5q21.3	1555545	Hs.142827
7	169429	NR3C1	5q31	629077	Hs.75772
8	165192	SYNJ2	6q25-26	3954785	Hs.61289
9	165784	ADD3	10q24.2-q24.3	1481225	Hs.324470
10	163031	KIM0751	8q23.1	2369544	Hs.153610
11	166328	PSMC6	12q15	1488021	Hs.79357

- 61 -

Table 6
Cluster Genes, Using Average Linkage and Euclidean Distance, and Cutting Tree at Three Clusters

No.	Unique ID	Gene Symbol	Map	Clone Incyte PD No.	UG Cluster
12	168061	FTHFD	3q21.3	2104145	Hs.9520
13	168141	DGKG	3q27 -q28	2568547	Hs.89462
14	165076	SMG1	16p12.3	4253663	Hs.110613
15	167103	TAF2	8q24.12	998069	Hs.122752
16	169391	EIF2S1	14q23.3	1224219	Hs.151777
17	166789	ZNF202	11q23.3	1997937	Hs.9443
18	167316	SLC24A1	15q22	2200079	Hs.173092
19	168700	FPRL 1	19q13.3-q13.4	523635	Hs.99855
20	165576	IL6ST	5q11	2172334	Hs.82065
21	168276	ITGBL 1	13q33	1258790	Hs.82582
22	169180	IL8RB	2q35	561992	Hs.846
23	160957	PRKM2	1p31	2507648	Hs.2329
24	160617	CSF2RB	22q13.1	1561352	Hs.285401
25	160429	PTK6	20q 13.3	3255437	Hs.51133
26	160237	NPAT	11 q22-q23	2308525	Hs.89385
27	167125	TNFRSF6	10q24.1	2205246	Hs.82359
28	164652	PDGFRB	5q31-q32	1821971	Hs.76144
29	161117	ABCG2	4q22	1501080	Hs.194720
30	161896	COL 15A1	9q21-q22	4287342	Hs.83164
31	159813	PTPN12	7q11.23	1382374	Hs.62
32	164573	DMTF1	7q21	1637517	Hs.5671
33	169384	SLC22A1LS	11p15.5	3842669	Hs.300076
34	165393			3202075	Hs.351699
35	168169	OXCT	5p13	1685342	Hs.177584
36	165617	PRLR	5p14-p13	3427560	Hs.1906
37	169432	IL 13RA2	Xq13.1-q28	3360476	Hs.25954
38	166812	MPZL 1	1q23.2	2057323	Hs.287832
39	168428	RU NX3	1p36	885297	Hs.170019
40	167180	S100A4	1q21	1222317	Hs.81256
41	161533	CSTF2	Xq21.33	4016254	Hs.693
42	165588	SNAPC4	9q34.3	2224902	Hs.113265
43	164799	EMP3	19q13.3	780992	Hs.9999
44	161709	FLJ11560	9p12	1990361	Hs.301696
45	164868	GBP2	1 pter-p13.2	1610993	Hs.171862
46	160233	DYRK3	1q32	614679	Hs.38018
47	165400	MY040	7 q35-q36	2048144	Hs.124854
48	165957	PNLIPRP2	10q26.12	885032	Hs.143113
49	160054	SEC4L	17q25.3	1824556	Hs.302498
50	162475	CTAG2	Xq28	849425	Hs.87225
51	169182	LOC56311	7q31	2013272	Hs.73073
52	162912	DKFZP566B084	3q13	2680168	Hs.21201
53	163475	FLJ20485	7q22.1	2299818	Hs.98806
54	164927	HNRPAO	5q31	637639	Hs. 77492
55	160630	HOXD9	2q31-q37	2956581	Hs.236646

- 62 -

Table 6
Cluster Genes, Using Average Linkage and Euclidean Distance, and Cutting Tree at Three Clusters

No.	Unique ID	Gene Symbol	Map	Clone Incyte PD No.	UG Cluster
56	160367	JUN	1 p32-p31	1969563	Hs.78465
57	163762		17	1743234	Hs.120854
58	162247	VLGR1	5q13	942207	Hs.153692
59	167219	PUM1	1p35.2	3333130	Hs.153834
Cluster #3					
60	165171	KRT18	12q13	1435374	Hs.65114
61	165052	CDC20	9q13-q21	2469592	Hs.82906
62	167948	PIM1	6p21.2	2679117	Hs.81170
63	161954	ATP6F	1p32.3	5017148	Hs.7476
64	162391	POLE3	9q33	961082	Hs.108112
65	166635	KRT5	12q12-q13	3432534	Hs.195850
66	160035	FEN1	11q12	2050085	Hs.4756
67	161774	SIP2-28	15q25.3-q26	4626895	Hs.10803
68	162207	VATI	17q21	2060308	Hs.157236
69	161163	GUK1	1 q32-q41	2506427	Hs.3764
70	161223	SIVA	22	2356635	Hs.112058
71	161211	CAPG	2cen-q24	2508570	Hs.82422
72	161948	CLDN11	3q26.2-q26.3	4144001	Hs.31595
73	161391	IL17F	6p12	1610083	Hs.272295
74	162571	PFKL	21q22.3	.885601	Hs.155455
75	164504	CTSC	11q14.1-q14.3	1822716	Hs.10029
76	160565	ACY1	3p21 .1	1812955	Hs.334707
77	169551	GSK3B	3q13.3	2057908	Hs.78802
78	166914	METTL 1	12q13	1603584	Hs.42957
79	167738	CYP27B 1	12q13.1-q13.3	1749727	Hs.199270
80	160938	HMGE	4p16	2074154	Hs.151903
81	162734	WNT7 A	3p25	2622566	Hs.72290
82	165813	CASP4	11 q22.2-q22.3	2304121	Hs.74122
83	159898	PTTG1	5q35.1	1748705	Hs.252587
84	161244	ARF4L	17q12-q21	2852403	Hs.183153
85	160715	CDC34	19p13.3	1857493	Hs.76932
86	163787	PYCR1	17q24	1702266	Hs.79217
87	160127	PGAM1	10q25.3	3032691	Hs.181013
88	160323	ATIC	2q35	2056149	Hs.90280
89	164850	IRAK1	Xq28	1872067	Hs.182018
90	165583	DHCR7	11q13.2-q13.5	3518380	Hs.11806
91	165039	TK1	17q23.2-q25.3	2055926	Hs.105097
92	167964	CDKN2A	9p21	2740235	Hs.1174
93	167223	GNB1	1p36.21-36.33	3562795	Hs.215595
94	167931	CSTF1	20q13.2	1635008	Hs.172865
95	163690	HXB	9q33	1453450	Hs.289114
96	161955	CNTN2	1 q32.1	4014715	Hs.2998
97	160275	SSRP1	11q12	2055773	Hs.79162
98	168110	TAF12	1 p35.1	1297269	Hs.82037

Table 6
Cluster Genes, Using Average Linkage and Euclidean Distance, and Cutting Tree at Three Clusters

No.	Unique ID	Gene Symbol	Map	Clone Incyte PD No.	UG Cluster
99	160102	ERP70		10	Hs.93659
100	167116	NP	14q13.1	2453436	Hs.75514
101	160802	PHB	17q21	1625169	Hs.75323
102	161643	ARL7	2q37.2	3115514	Hs.111554
103	162343	LIMK2	22q 12.2	958513	Hs.278027
104	162727	PTK9L	3p21 .1	3999291	Hs.6780
105	160262	DDX28	16q22.1	2663948	Hs.155049
106	165790	SURF1	9q33-q34	1921567	Hs.3196
107	168638	HDAC7A	12q13.1	1968721	Hs.275438
108	168079	EMP1	12p12.3	1624024	Hs.79368
109	160999	P114-RHO-GEF	19p13.3	1734113	Hs.6150
110	161790	KIM0469	1 p36.23	2674277	Hs.7764
111	169691	E2-EPF	17p12-p11	2057823	Hs.174070
112	163682	DPH2L2	1p34	1810821	Hs.324830
113	168266	PSME3	17q12-q21	1308112	Hs.152978
114	161374	POLA2	11q13.1	3179113	Hs.81942
115	164646	GALE	1 p36-p35	1807294	Hs.76057
116	162150	APOL 1	22q13.1	2056987	Hs.114309
117	164206	FN14	16p13.3	1402615	Hs.10086
118	162623	BAK1	6p21.3	2055687	Hs.93213
119	162244	ARHGDI	17q25.3	2055640	Hs.159161
120	164586	ITPA	20p	1931265	Hs.6817
121	165483	PDAP1	7q22.1	3032825	Hs.278426
122	166195	APRT	16q24	2751387	Hs.28914
123	166960	APG12L	5q21-q22	2058537	Hs.264482
124	167505	TST	22q13.1	1988239	Hs.351863
125	168642	ST14	11 q24-q25	478960	Hs.56937
126	167170	DXS1283E	Xp22.3	1567995	Hs.264
127	161754	ACTG2	2p13.1	3381870	Hs.78045
128	166010	RIPK1	6p25.3	2180031	Hs.296327
129	161794	SCAMP2	15q23-q25	3123858	Hs.238030
130	167591	COMT	22q11.21	605019	Hs.240013
131	162587	POLR2D	2q21	696002	Hs.194638
132	169071	CAPZB	1 p36.1	1853163	Hs.333417
133	160467	POLD2	7p13	2056172	Hs.74598
134	162178	C2F	12p13	5096975	Hs.12045
135	167706	GMPPB	3p21.31	1486983	Hs.28077
136	160803	FARSL	19p13.2	1808260	Hs.23111
137	169254	POLM	7p13	771715	Hs.46964
138	167351	MYBPH	1 q32.1	3010959	Hs.927
139	163276			7	2383065
140	167135	ERCC1	19q13.2-q13.3	2054529	Hs.59544
141	160478	G5B	6p21.3	1942845	Hs.73527
142	162631	T ADA3L	3p25.2	3990209	Hs.158196

- 64 -

Table 6
Cluster Genes, Using Average Linkage and Euclidean Distance, and Cutting Tree at Three Clusters

No.	Unique ID	Gene Symbol	Map	Clone Incyte PD No.	UG Cluster
143	163921	GNPI	5q21	1653911	Hs.278500
144	160098	MRPL49	11q13	1755793	Hs.75859
145	161058	MEN1	11q13	1693847	Hs.24297
146	160038	BAD	11q13.1	3967780	Hs.76366
147	162220	FKBP1A	20p13	4059193	Hs.349972
148	161026	HSXQ280RF	Xq28	1669254	Hs.6487
149	167607	TRAP1	16p13.3	1960722	Hs.182366
150	167713	KIM0175	9p11.2	3805046	Hs.184339
151	165648	DUSP4	8p12-p11	740878	Hs.2359
152	161574	FRAT2	1Oq23-q24. 1	3871545	Hs.140720
153	161650	KIM0415	7p22.2	2798872	Hs.229950
154	168386	NOLC1	10	1431819	Hs.75337
155	159906	H2AFX	11 q23.2-q23.3	1704168	Hs.147097
156	167906	RAE1	20q13.31	2914719	Hs.196209
157	160486	DTX2	7q11.23	1691161	Hs.89135
158	160678	MAFG	17q25	2956906	Hs.252229
159	159889	FUS	16p11.2	3038508	Hs.99969
160	167553	LIG1	19q13.2-q13.3	1841920	Hs.1770
161	163824	UNG	12q23-q24.1	1405652	Hs.78853
162	161012	GCN1 L 1	12q24.2	1699149	Hs.75354
163	162006	REG1B	2p12	2374294	Hs.4158
164	161454	SPINT1	15q13.3	2722572	Hs.233950
165	162510	CAMKK2	12	557451	Hs.108708
166	163306	BLM	15q26.1	2923082	Hs.36820
167	160242	RN UT1		1562658	Hs.21577
168	164106	GRWD	19q13.33	1561867	Hs.218842
169	165799	MADH3	15q21-q22	1858365	Hs.211578
170	166574	SNAPC2	19p13.3-p13.2	1445203	Hs.78403
171	160441	LTBR	12p13	899102	Hs.1116
172	168453	TACC3	4p16.3 19q13.11-	2056642	Hs.104019
173	164244	PSMC4	q13.13	2806778	Hs.211594
174	169564	SMARCD2	17q23-q24	1890919	Hs.250581
175	161178	BSG	19p13.3	2182907	Hs.74631
176	165614	JUP	17q21	820580	Hs.2340
177	168987	HRMT1L2	19q13.3	2888814	Hs.20521
178	167987	ENTPD1	10q24	1672749	Hs.205353
179	163726	C3	19p13.3-p13.2	1513989	Hs.284394
180	164642	YARS	1p34.3	1559756	Hs.239307
181	160303	ERF	19q13	2057547	Hs.333069
182	161635	TYMSTR	3p21	2610374	Hs.34526
183	159859	GS2NA	14q13-q21	1339241	Hs.183105
184	161051	MARK3	14q32.3 1p36.11-	2395018	Hs.172766
185	161835	PEX10	1p36.33	3115936	Hs.247220

- 65 -

Table 6
Cluster Genes, Using Average Linkage and Euclidean Distance, and Cutting Tree at Three Clusters

No.	Unique ID	Gene Symbol	Map	Clone Incyte PD No.	UG Cluster
186	165571	ANXA3	4q 13-q22	1920650	Hs.1378
187	164286	NFKBIE	6p21.1	2748942	Hs.91640
188	165786	HY AL2	3p21.3	1240748	Hs.76873
189	161620	H4FE	6p22-p21.3	3728255	Hs.278483
190	168302	TIP-1	17p13	1997792	Hs.12956
191	160887	PES1	22q12.1	2758740	Hs.13501
192	162419	RAE1	20q13.31	588157	Hs.196209
193	169625	RFC4	3q27	1773638	Hs.35120
194	163425	TCEA2		818568	Hs.80598
195	166359	TUBB	6p21.3	3334367	Hs.336780
196	161947	TIM17B	Xp11.23	1727491	Hs.19105
197	162236	KIM0670	14q11.1	1968610	Hs.227133
198	168426	RTVP1	12q15	477045	Hs.64639

Classifier genes for pulmonary NET grades. To identify the classifier genes for each tumor subtype independent of the reference cell line, BEAS-2B, two-by-two comparisons are conducted on relative expression ratios in the 198 genes between three tumor subtypes. Of 198 genes, 178 show at least a 2.5-fold or

- 5 higher differential expression between at least one pair of the comparisons including TC/LCNEC, TC/SCLC, LCNEC/TC, LCNEC/SCLC, SCLC/TC, and SCLC/LCNEC. Using the criteria that the expression of a gene in any one subtype is higher than those in the other two, 48 genes are identified including five in TC, seven in LCNEC and 36 in SCLC. Each group of the classifier genes can
- 10 distinguish one tumor subtype from the other two. **Table 7** lists the expression ratios of 48 classifier genes along with major function, chromosome location, known cytogenetic alteration and UniGene Cluster number.

Table 7
Expression Ratios of 48 Classifier Genes between TC, LCNEC (LC) and SCLC (SC)

No.	Gene symbol	Expression Ratio		Function	Map	Cyto-genetic Alteration	UG cluster
		TC/SC	TC/LC				
1	C5	5.6	7.5	Immune	9q32-q34		Hs.1281
2	CPE	6.3	4.2	Biosynthesis	4q32.3	Yes	Hs.75360
3	GRIA2	5.5	4.0	Receptor	4q32-q33	Yes	Hs.89582
4	RIMS2	3.1	2.6	Synaptic exocytosis	8q23.1		Hs.153610
5	ORC4L	2.7	3.2	DNA replication	2q22-q23	Yes	Hs.55055

- 66 -

Table 7
Expression Ratios of 48 Classifier Genes between TC, LCNEC (LC) and SCLC (SC)

No.	Gene symbol	Expression Ratio		Function	Map	Cyto-genetic Alteration	UG cluster
		LC/TC	LC/SC				
1	CSF2RB	3.8	4.2	Receptor	22q13.1	Yes	Hs.285401
2	GGH	4.8	6.3	Drug resistance	8q12.1	Yes	Hs.78619
3	NPAT	2.5	3.8	Cell cycle	11q22-q23		Hs.89385
4	NR3C1	3.8	5.7	Transcription factor	5q31	Yes	Hs.75772
5	P311	5.6	7.1	Transformation	5q22.2	Yes	Hs.413760
6	PRKAA2	2.8	4.2	Metabolism	1p31		Hs.2329
7	PTK6	2.7	3.6	Oncogene	20q13.3	Yes	Hs.51133
		SC/TC	SC/LC				
1	APRT	5.1	2.9	Metabolism	16q24		Hs.28914
2	ARF4L	5.4	3.8	Protein secretion	17q12-q21		Hs.183153
3	ARHGDI	3.7	2.5	RAS gene family	17q25.3		Hs.159161
4	ARL7	4.8	3.0	Endocytosis	2q37.2		Hs.111554
5	ATP6F	4.1	3.3	Proton transport	1p32.3		Hs.7476
6	CDC20	7.5	3.3	Cell Cycle, G 1	1p34.1	Yes	Hs.82906
7	CDC34	5.5	2.8	Cell Cycle, G2	19p13.3	Yes	Hs.423615
8	CLDN11	6.2	2.9	Tight junction	3q26.2-q26.3	Yes	Hs.31595
9	COMT	3.3	2.6	Neurotransmission	22q11.21	Yes	Hs.240013
10	CSTF1	2.8	2.6	Polyadenylation	20q13.2		Hs.172865
11	DDX28	4.8	3.1	RNA helicase	16q22.1	Yes	Hs.155049
12	DHCR7	5.6	2.8	Metabolism	11q12-q13		Hs.11806
13	ERP70	4.7	2.7	Metabolism	7q35		Hs.93659
14	FEN 1	6.5	3.4	Endonuclease	11q12	Yes	Hs.4756
15	GCN1L1	3.7	2.6	Translation	12q24.2		Hs.75354
16	GNB1	3.3	2.9	Signal transduction	1p36.33		Hs.215595
17	GUK1	6.6	2.9	Signal transduction	1q32-q41		Hs.3764
18	HDAC7A	4.1	2.8	Cell cycle, chromatin	12q13.1		Hs.275438
19	ITPA	4.8	2.8	Metabolism	20p		Hs.6817
20	JUP	4.1	2.6	Cell adhesion	17q21	Yes	Hs.2340
21	KIAA0469	4.5	2.8		1p36.23		Hs.7764
22	KRT5	5.7	3.5	Intermediate filaments	12q12-q13	Yes	Hs.433845
23	PDAP1	4.3	3.0	Growth factor	7q22.1	Yes	Hs.278426
24	PGAM1	4.4	3.1	Metabolism	10q25.3	Yes	Hs.181013
25	PHB	4.9	2.8	Antiproliferation	17q21	Yes	Hs.75323
26	POLA2	4.7	2.6	RNA synthesis	11q13.1	Yes	Hs.81942
27	POLD2	3.7	2.6	DNA replication	7p13	Yes	Hs.74598
28	POLE3	5.5	3.5	Histone-fold	9q33	Yes	Hs.108112
29	PYCR1	4.5	2.6	Metabolism	17q24		Hs.79217
30	SIP2-28	5.2	2.9	Receptor	15q25.3-q26	Yes	Hs.10803
31	SIVA	6.5	3.6	Apoptosis	14q32.33		Hs.112058
32	SURF 1	3.8	2.5	Neurologic disorder	9q33-q34		Hs.423854
33	TADA3L	2.8	2.5	P53 cofactor	3p25.2	Yes	Hs.158196
34	TKI	4.8	2.7	Metabolism	17q25.2-q25.3		Hs.105097

Table 7 Expression Ratios of 48 Classifier Genes between TC, LCNEC (LC) and SCLC (SC)						
No.	Gene symbol	Expression Ratio		Function	Map	Cyto-genetic Alteration
35	TYMSTR	3.0	2.5	Signal transduction	3p21	
36	VATI	4.5	3.4	Neurotransmission	17q21	Yes Hs.157236

Validation of gene expression changes by real-time quantitative RT-PCR. To validate the gene expression profile and the classifier genes, real-time RT-PCR analysis are performed on three classifier genes in the 17 pulmonary NET using RNA extracted from tumor cells collected by LCM. One gene from each tumor subtype is picked based on highly differential expression for the confirmation. The expression of CPE, P311 and CDC20 detected by real-time quantitative RT-PCR in each of 17 pulmonary NET is first normalized as a ratio to the control gene 18S RNA in that tumor and then compared with the expression in the reference BEAS-2B cell line. The results show that the expression changes of these genes were highly consistent between those detected by the two methods (Figures 5A-5F).

Correlation of CPE and GGH protein expression to pulmonary NET grades. To initiate the identification of protein markers for analysis of archived pulmonary NET tissue sections, anti-CPE and anti-GGH antibodies are used to detect CPE and GGH expression on 68 available pulmonary NET samples including 17 used in the microarray analysis, and generated informative data on 55 cases. The images stained by anti-CPE antibody on the normal lung tissue sections, TC, LCNEC and SCLC were studied. No signal is detected in bronchial epithelial cells or pneumocytes of normal lung. Some strong staining appears in scattered neuroendocrine cells of terminal bronchiolar epithelia and in some macrophages. The TC sample displays a positive stain with strong and uniform signals on the cell membrane. The LCNEC section have a very weak and scattered anti-CPE stain, and the SCLC are completely negative. Only occasional tumor cells exhibit a weak intracytoplasmic stain. The images obtained by staining with anti-GGH antibody were also studied. Normal lung showed negative staining. TC cells also exhibited negative staining. The tumor cells have no detectable signals

and mild staining can be seen only in scattered stromal cells. LCNEC cells stained positively. All tumor cells show intracytoplasmic stain, with most staining seen in the cytoplasm with a coarse granular staining pattern. SCLC cells show intracytoplasmic stain with course granular pattern.

5 **Table 8** summarizes the results of anti-CPE and anti-GGH stains on the 55 pulmonary NET samples. The statistical analysis is conducted, based on the binomial distributions of positives and negatives. Of 21 cases of TC, 16 (76%) were positive to anti-CPE stain and five (24%) are negative. The difference is statistically significant (p-value <0.05). The anti-GGH stains on 21 cases of TC 10 revealed seven positive (33%) and 14 (67%) negative, but there is no statistical significance (pvalue>0.05). Four of five (80%) AC cases are positive to the anti-CPE stain and all of the five (100%) cases are negative to the anti-GGH, but this apparent difference is not statistically significant (p-value >0.05) in light of the small sample size (n=5). Although the negative stains of anti-CPE are dominant 15 events for LCNEC (seven negative versus one positive, 88%) the difference has no statistical significance (p-value >0.05), probably due to the small sample size. All eight cases of LCNEC are positive to anti-GGH stains (p-value <0.01). Of 21 cases of SCLC, only four (19%) are positive to anti-CPE stain (p-value <0.01). In contrast, 16 (76%) are positive to anti-GGH stain (p-value <0.05). Therefore, 20 positive CPE stain is associated with low- and intermediate-grade TC and AC while positive GGH stain is associated with high-grade LCNEC and SCLC.

Pulmonary NE Tumor	Anti-CPE IHC			Anti-GGH IHC		
	Positive	Negative	p-value	Positive	Negative	p-value
TC	16	5	0.017	7	14	0.189
AC	4	1	0.625	0	5	0.063
LCNEC	1	7	0.070	8	0	0.008
SCLC	4	17	0.007	16	5	0.017
Total	23	32		31	24	

CPE and GGH protein expressions predict survival rates of the pulmonary NET patients. After the correlation of CPE and GGH expressions to pulmonary NET grades, a Kaplan-Meier survival analysis is conducted on 54 cases

of the pulmonary NET patients with clinical survival data as the function of CPE or GGH stains. The 9-year survival probability for the patients with a positive CPE is 76%, significantly (p-value <0.05) higher than that with a negative CPE, 27% (**Figure 6A**). In contrast, the 9-year survival probabilities for the patients with 5 positive and negative GGH staining are 28% and 83%, respectively (**Figure 6B**). The difference is statistically very significant (p-value <0.01). Thus, positive CPE and negative GGH are the good prognostic indicators for pulmonary NET patients.

In the above-described study, the expression of 9,984 genes in pulmonary NET are examined and the expression profile, 49 classifier genes and two 10 biomarkers are identified. Homogenous cancer cells are collected by LCM from 11 cases of TC, three cases of SCLC, two cases of LCNEC and one case of combined SCLC and LCNEC. High quality RNA is extracted from the homogeneous cancer cells and subjected to T7 polymerase-based RNA amplification. cDNA microarray and unsupervised expression cluster analyses of 15 9,984 genes or 198 significantly (p<0.004) differentially expressed genes classified 17 cases of pulmonary NET into three groups that matched their histological classifications completely. In addition, 48 classifier genes are identified by 2-by-2 expression comparisons of 198 genes between three subtype tumors. The 20 expression changes of representative genes are confirmed by real-time quantitative RT-PCR. Finally, based on expression profile and by IHC, it is found that positive CPE and negative GGH are more frequent events in low-grade TC and intermediate-grade AC than in high-grade LCNEC and SCLC and are good prognostic indicators for the pulmonary NET patients.

Expression clustering was developed to analyze gene expression data from 25 DNA microarrays(Eisen, M.B. *et al.* (1998) "CLUSTER ANALYSIS AND DISPLAY OF GENOME-WIDE EXPRESSION PATTERNS," Proc Natl Acad Sci USA 95:14863-14868). The analysis is based on statistical algorithms to arrange genes and tumors according to similarities in gene expression. The dendrogram is the most common output to reveal a subclass of genes and cells. In the above study, the expression 30 pattern of 9,984 genes or selected 198 genes accurately distinguishes each subtype

of 17 pulmonary NET classified by histologic characteristics. It is considered that precise LCM of the cancer cells and non-biased RNA amplification contributes to the accurate expression classification.

Luo et al.(1999) (GENE EXPRESSION PROFILES OF LASER-CAPTURED

- 5 ADJACENT NEURONAL SUBTYPES," Nat Med 5:117-122) reported T7 polymerase-based RNA amplification (Van Gelder, R.N. *et al.* (1990) ("AMPLIFIED RNA
SYNTHESIZED FROM LIMITED QUANTITIES OF HETEROGENEOUS cDNA," Proc Natl Acad Sci USA 87:1663-1667) to amplify RNA isolated from LCM cells for DNA microarray study. In that case, total RNA was extracted from 1,000 neuron cells
10 dissected by LCM and subjected to three rounds of amplification before microarray analysis, of which, the correlation of signal intensities between the same samples varied from 93% to 97% (Luo, L. *et al.* (1999) "GENE EXPRESSION PROFILES OF LASER-CAPTURED ADJACENT NEURONAL SUBTYPES," Nat Med 1999; 5:117-122).
In the above-described study, total RNA is extracted from >10,000 cancer cells
15 dissected by LCM from at least 15 sections and subjected to only two rounds of amplification. These modifications contribute to accurate clusters.

- A reference sample is used as a control to normalize gene expression in test samples in cDNA microarrays. To obtain enough common RNA as a reference for all test samples is frequently difficult, particularly for a large number of primary
20 tumors. To date, pooled normal samples or samples pooled from a portion of each test sample have been used as a reference. In this and other studies (Miura, K. *et al.* (2002) "LASER CAPTURE MICRODISSECTION AND MICROARRAY EXPRESSION ANALYSIS OF LUNG ADENOCARCINOMA REVEALS TOBACCO SMOKING- AND PROGNOSIS-RELATED MOLECULAR PROFILES," Cancer Res 2002; 62:3244-3250),
25 the RNA employed is isolated from the immortalized bronchial epithelial cell line, BEAS-2B (Reddel, R.R. *et al.* (1998) "TRANSFORMATION OF HUMAN BRONCHIAL EPITHELIAL CELLS BY INFECTION WITH SV40 OR ADENOVIRUS-12 SV40 HYBRID VIRUS, OR TRANSFECTION VIA STRONTIUM PHOSPHATE COPRECIPITATION WITH A PLASMID CONTAINING SV40 EARLY REGION GENES," Cancer Res 48:1904-1909),
30 as the reference for all test samples. Because the results demonstrated accurate

classification, RNA from the cell line can be used as the reference for primary tumors. Thus, this method may be applicable to microarray analysis of gene expression of any cells where a reference sample is not easily obtained.

Using the Class Comparison analysis (or Gene Selection) of the BRB array tool, 198 genes are selected out of 9,984 genes (1.98%) for expression classification of 17 pulmonary NET. The clusters based on the 198 genes coincide well with those based on 9,984 genes. Two-by-two comparisons of 198 gene expression between the three subtypes of pulmonary NET result in the identification of 48 classifier genes of which the expression changes are able to distinguish the subtypes. The classifier genes are involved in complex regulations of apoptosis, cell-cell and cellmatrix interactions, cell cycle, DNA synthesis and repair, drug resistance, RNA synthesis and processing, and cell survival. The classifier genes provide candidates for understanding and studying pulmonary NET biology and the identification of more biomarkers.

The present invention thus provides the first report that correlates CPE and GGH expression patterns to pulmonary NET grades and prognosis. The IHC reveal patterns of CPE and GGH expression in pulmonary NET cells. Specifically, the frequency of positive staining by anti-CPE in TC (76%) is 4-fold higher than that in SCLC (19%). Although the trends of high and low frequencies of positive CPE seem apparent in AC and LCNEC, respectively, the statistical significance was not reached, perhaps due to the small sample sizes. In contrast, both LCNEC and SCLC cells displayed highly significant frequencies of positive anti-GGH stain than TC and AC cells. Significantly, the survival analysis correlates positive CPE and negative GGH on pulmonary NET cells to very good prognosis.

CPE is involved in the removal of C-terminal basic amino acids in brain and various neuroendocrine tissues. There are two types of CPE, a 50 kDa membrane-bound enzyme and a smaller soluble enzyme (Manser, E. *et al.* (1990) "HUMAN CARBOXYPEPTIDASE E. ISOLATION AND CHARACTERIZATION OF THE CDNA, SEQUENCE CONSERVATION, EXPRESSION AND PROCESSING IN VITRO.

Biochem J 267:517-525). The former is an amphipathic and secreted enzyme (Manser, E. *et al.* (1991) "PROCESSING AND SECRETION OF HUMAN CARBOXYPEPTIDASE E BY C6 GLIOMA CELLS," Biochem J 280 (Pt 3):695-701). Human CPE is located on chromosome 4p33 and no mutations are reported in lung

5 cancers. The mutations at Ser202 of mouse CPE affected its expression, enzyme activity and intracellular localization (Varlamov, O. *et al.* (1996) "INDUCED AND SPONTANEOUS MUTATIONS AT SER202 OF CARBOXYPEPTIDASE E. EFFECT ON ENZYME EXPRESSION, ACTIVITY, AND INTRACELLULAR ROUTING," J Biol Chem 271:13981-13986. A mouse with Cpe/Cpe mutation results in reduced CPE

10 enzyme activity and obesity (Naggert, J.K. *et al.* (1995) "HYPERPROINSULINAEMIA IN OBESE FAT/FAT MICE ASSOCIATED WITH A CARBOXYPEPTIDASE E MUTATION WHICH REDUCES ENZYME ACTIVITY," Nat Genet 10:135-142), and as yet tumors have not been reported. The present invention shows that CPE expression is not detected in normal bronchial epithelial cells or pneumocytes; however, it is

15 elevated in the tumor cells, suggesting that secreted CPE may be a surrogate serum marker for non-invasive diagnosis and early detection of pulmonary carcinoid tumors.

The *ggh* gene may be regulated at both transcriptional and posttranscriptional levels. In LCNEC cells, *ggh* mRNA is increased according to

20 the microarrays, which is consistent with the increase in GGH protein based on IHC, indicating transcriptional activation. Although anti-GGH antibody detected the upregulation in three of four SCLC cases, mRNA elevation is not detected by the microarrays, suggesting an alternative posttranscriptional mechanism. The study of mechanism(s) of *ggh* transcription and translation is of importance, not

25 only because it has diagnostic and prognostic value, but also because the GGH protein (as lysosomal enzyme that catalyzes the hydrolysis of folylpoly- γ -glutamates and antifolylpoly- γ -glutamates by the removal of γ -linked polyglutamates and glutamate (Wang, Y. *et al.* (1993) "THE PROPERTIES OF THE SECRETED GAMMA-GLUTAMYL HYDROLASES FROM H35 HEPATOMA

30 CELLS," Biochim Biophys Acta 1164:227-235)) are known to be implicated in methotrexate resistance in sarcoma (Waltham, M.C. *et al.* (1997) "GAMMA-

- GLUTAMYL HYDROLASE FROM HUMAN SARCOMA HT -1080 CELLS:
CHARACTERIZATION AND INHIBITION BY GLUTAMINE ANTAGONISTS," Mol
Pharmacol 51:825-832; Li, W.W. (1993) "INCREASED ACTIVITY OF GAMMA-
GLUTAMYL HYDROLASE IN HUMAN SARCOMA CELLINES: A NOVEL MECHANISM
5 OF INTRINSIC RESISTANCE TO METHOTREXATE (MTX)," Adv Exp Med Biol
338:635-638) and leukemia (Longo, G.S. *et al.* (1997) "GAMMA GLUTAMYL
HYDROLASE AND FOLYL-POLYGLUTAMATE SYNTHETASE ACTIVITIES PREDICT
POLYGLUTAMYLATION OF METHOTREXATE IN ACUTE LEUKEMIAS," Oncol Res
9:259-263; Rots, M.G. *et al.* (1999) "ROLE OF FOLYL-POLYGLUTAMATE
10 SYNTHETASE AND FOLYL-POLYGLUTAMATE HYDROLASE IN METHOTREXATE
ACCUMULATION AND POLYGLUTAMYLATION IN CHILDHOOD LEUKEMIA," Blood
93:1677-1683).

In sum, pulmonary neuroendocrine tumors are found to vary dramatically
in their malignant behavior and classification based on histological examination is
15 often challenging. In searching for molecular markers for these tumors, a cDNA
microarray expression analysis is conducted. The analysis involved 9,984 genes in
tumor cells isolated by laser-capture microdissection from primary tumors of
typical carcinoids (TC), small cell lung cancers (SCLC), large cell neuroendocrine
carcinomas (LCNEC), and a combined small cell and large cell neuroendocrine
20 carcinoma. An unsupervised, hierarchical clustering algorithm resulted in a
precise classification of each tumor subtype, according to the newly proposed,
modified histological classification. Selection of genes with significant variance
resulted in the identification of 198 statistically significant genes ($p < 0.004$) that
accurately discriminated between three predefined tumor subtypes. Of 198 genes,
25 48 classifier genes are identified. Changes in expression of three representative,
differentially expressed genes were internally validated by real-time RT-PCR. In
addition, expression of two classifier gene products, carboxypeptidase E (CPE) and
 γ -glutamyl hydrolase (GGH), are validated by immunohistochemistry. Kaplan-
Meier survival analysis reveals that CPE immunostaining is a statistically
30 significant predictor of good prognosis, whereas GGH expression correlated with
poor prognosis. Thus, this molecular profiling accurately classifies pulmonary

neuroendocrine tumors and permits the identification of 48 classifier genes and two novel prognostic markers.

All publications and patents mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or
5 patent application was specifically and individually indicated to be incorporated by reference.

While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or
10 adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth.

What Is Claimed Is:

- Claim 1. A method for determining whether a candidate cell is a neuro-endocrine tumor cell, wherein said method comprises the steps of:
- (A) determining the profile of expression of a plurality of genes of said candidate cell; and
- (B) comparing such determined profile of expression with the profile of expression of said genes of a small cell lung cancer cell, a large cell neuroendocrine carcinoma cell, a typical carcinoid tumor cell or an atypical carcinoid tumor cell;
- 10 to thereby determine whether said candidate cell is a neuroendocrine tumor cell.
- Claim 2. The method of claim 1, wherein said method additionally permits a determination of neuroendocrine tumor cell type.
- 15 Claim 3. The method of claim 2, wherein said method determines whether said candidate cell is a small cell lung cancer (SCLC) neuroendocrine tumor cell.
- 20 Claim 4. The method of claim 1, wherein said plurality of genes includes one or more genes selected from the group consisting of C5, CPE, GRIA2, RIMS2, ORC4L, CSF2RB, GGH, NPAT, NR3C1, P311, PRKAA2, PTK6, APRT, ARF4L, ARHGDIA, ARL7, ATP6F, CDC20, CDC34, CLDN11, COMT, CSTF1, DDX28, DHCR7, ERP70, FEN1, GCN1L1, GNB1, GUK1, HDAC7A, ITPA, JUP, KIAA0469, KRT5, PDAP1, PGAM1, PHB, POLA2, POLD2, POLE3, PYCR1, SIP2-28, SIVA, SURF 1, TADA3L, TKI, TYMSTR, and VATI.
- 25 Claim 5. The method of claim 4, wherein said plurality of genes includes one or more genes selected from the group consisting of GGH and CPE.

Claim 6. The method of claim 2, wherein said method determines whether said candidate cell is a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell.

Claim 7. The method of claim 2, wherein said method determines whether said candidate cell is a typical carcinoid (TC) neuroendocrine tumor cell.

Claim 8. The method of claim 2, wherein said method determines whether said candidate cell is an atypical carcinoid (AC) neuroendocrine tumor cell.

Claim 9. The method of claim 2, wherein said step (A) comprises incubating RNA of said candidate cell, or DNA or RNA amplified from such RNA, in the presence of a plurality of genes, or fragments or RNA transcripts thereof, under conditions sufficient to cause RNA to hybridize to complementary DNA or RNA molecules; and detecting hybridization that occurs.

Claim 10. The method of claim 9, wherein said plurality of genes, or polynucleotide fragments or RNA transcripts thereof, are distinguishably arrayed in a microarray.

Claim 11. The method of claim 10, wherein said microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in neuroendocrine tumor cells relative to normal cells.

Claim 12. The method of claim 10, wherein said microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in small cell lung cancer (SCLC) neuroendocrine tumor cells relative to large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cells.

Claim 13. The method of claim 12, wherein said arrayed genes, or polynucleotide fragments or RNA transcripts thereof, include one or more genes

selected from the group consisting of C5, CPE, GRIA2, RIMS2, ORC4L, CSF2RB, GGH, NPAT, NR3C1, P311, PRKAA2, PTK6, APRT, ARF4L, ARHGDIA, ARL7, ATP6F, CDC20, CDC34, CLDN11, COMT, CSTF1, DDX28, DHCR7, ERP70, FEN1, GCN1L1, 5 GNB1, GUK1, HDAC7A, ITPA, JUP, KIAA0469, KRT5, PDAP1, PGAM1, PHB, POLA2, POLD2, POLE3, PYCR1, SIP2-28, SIVA, SURF 1, TADA3L, TKI, TYMSTR, and VATI, or a polynucleotide fragment or RNA transcript thereof.

Claim 14. The method of claim 13, wherein said arrayed genes, or polynucleotide 10 fragments or RNA transcripts thereof, includes one or more genes selected from the group consisting of GGH and CPE, or a polynucleotide fragment or RNA transcript thereof.

Claim 15. The method of claim 10, wherein said microarray comprises arrayed 15 genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in small cell lung cancer (SCLC) neuroendocrine tumor cells relative to typical carcinoid (TC) neuroendocrine tumor cells.

Claim 16. The method of claim 10, wherein said microarray comprises arrayed 20 genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in small cell lung cancer (SCLC) neuroendocrine tumor cells relative to atypical carcinoid (AC) neuroendocrine tumor cells.

Claim 17. The method of claim 10, wherein said microarray comprises arrayed 25 genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cells relative to typical carcinoid (TC) neuroendocrine tumor cells.

Claim 18. The method of claim 10, wherein said microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cells relative to atypical carcinoid (AC) neuroendocrine tumor cells.

5

Claim 19. The method of claim 10, wherein said microarray comprises arrayed genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in typical carcinoid (TC) neuroendocrine tumor cells relative to atypical carcinoid (AC) neuroendocrine tumor cells.

10 Claim 20. A microarray of genes, or polynucleotide fragments or RNA transcripts thereof for distinguishing a neuroendocrine tumor cell, said microarray comprising a solid support having greater than 10 genes, or polynucleotide fragments or RNA transcripts thereof, distinguishably arrayed in spaced apart regions, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) cell, a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell, a typical carcinoid (TC) neuroendocrine tumor cell, or an atypical carcinoid (AC) neuroendocrine tumor cell, relative to a normal cell or a cell belonging to a different neuroendocrine tumor cell type, to permit said microarray to distinguish a neuroendocrine tumor cell.

15

20

Claim 21. The microarray of claim 20, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a neuroendocrine tumor cell relative to a normal cell to permit said microarray to distinguish between a neuroendocrine tumor cell and a normal cell.

25

Claim 22. The microarray of claim 20, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA

transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) neuroendocrine tumor cell relative to a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell to permit said microarray to distinguish between a small cell lung cancer (SCLC) neuroendocrine tumor cell and a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell.

5 Claim 23. The microarray of claim 20, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) neuroendocrine tumor cell relative to a typical carcinoid (TC) neuroendocrine tumor cell to permit said microarray to distinguish between a small cell lung cancer (SCLC) neuroendocrine tumor cell and a typical carcinoid (TC) neuroendocrine tumor cell.

10 Claim 24. The microarray of claim 20, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a small cell lung cancer (SCLC) neuroendocrine tumor cell relative to an atypical carcinoid (AC) neuroendocrine tumor cell to permit said microarray to distinguish between a small cell lung cancer (SCLC) neuroendocrine tumor cell and an atypical carcinoid (AC) neuroendocrine tumor cell.

15 Claim 25. The microarray of claim 20, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell relative to a typical carcinoid (TC) neuroendocrine tumor cell to permit said microarray to distinguish between a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell and a typical carcinoid (TC) neuroendocrine tumor cell.

Claim 26. The microarray of claim 20, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell relative to an atypical carcinoid (AC) neuroendocrine tumor cell to permit said microarray to distinguish between a large cell neuroendocrine carcinoma (LCNEC) neuroendocrine tumor cell and an atypical carcinoid (AC) neuroendocrine tumor cell.

5
Claim 27. The microarray of claim 20, wherein said microarray comprises a sufficient number of genes, or polynucleotide fragments or RNA transcripts thereof, that are differentially expressed in a typical carcinoid (TC) neuroendocrine tumor cell relative to an atypical carcinoid (AC) neuroendocrine tumor cell to permit said microarray to distinguish between a typical carcinoid (TC) neuroendocrine tumor cell 10 and an atypical carcinoid (AC) neuroendocrine tumor cell.

15
Claim 28. The microarray of claim 20, wherein said genes or polynucleotide fragments or RNA transcripts thereof of said microarray include one or more genes selected from the group consisting of C5, CPE, GRIA2, RIMS2, ORC4L, CSF2RB, GGH, NPAT, NR3C1, P311, PRKAA2, PTK6, APRT, ARF4L, ARHGDIA, ARL7, ATP6F, CDC20, CDC34, CLDN11, COMT, CSTF1, DDX28, DHCR7, ERP70, FEN1, GCN1L1, GNB1, GUK1, HDAC7A, ITPA, JUP, KIAA0469, KRT5, PDAP1, PGAM1, PHB, POLA2, POLD2, POLE3, PYCR1, SIP2-28, SIVA, SURF 1, TADA3L, TKI, TYMSTR, and VAT1, or a polynucleotide fragment or RNA transcript thereof.

20

25
Claim 29. The method of claim 28, wherein said genes or polynucleotide fragments or RNA transcripts thereof of said microarray include one or more genes selected from the group consisting of GGH and CPE, or a polynucleotide fragment or RNA transcript thereof.

30

Figure 1

Figure 2

3/7

Figure 3A**Figure 3B**

4/7

Figure 4

5/7

Figure 5A**Figure 5B****Figure 5C**

Figure 5D

Figure 5E

CDC20 from Microarray

Figure 5F

7/7

Figure 6A

Figure 6B

JC14 Rec'd PCT/PTO 02 MAY 2005

SEQUENCE LISTING

5 <110> National Institutes of Health
Armed Forces Institute of Pathology
Harris, Curtis
He, Ping
Vartcovski, Lyuba
Travis, William

10 <120> Methods and Compositions for the Diagnosis of
Neuroendocrine Lung Cancer

<130> 03514.108

15 <150> US 60/423,380
<151> 2002-11-04

<160> 7

20 <170> PatentIn version 3.2

<210> 1
<211> 66
<212> DNA
25 <213> Bacteriophage T7

<400> 1
tctagtcgac ggccagtgaa ttgttaatacg actcactata gggcgaaaa tttttttttt 60

30 tttttt 66

<210> 2
<211> 23
<212> DNA
35 <213> Homo sapiens

<400> 2
ttgtccgaga cttcaaggtaac 23

40 <210> 3
<211> 21
<212> DNA
45 <213> Homo sapiens

<400> 3
ccttgccgaa tgtaaacatcg t 21

50 <210> 4
<211> 22
<212> DNA
55 <213> Homo sapiens

<400> 4
tgggtcagtc aagaaccatt tc 22

5 <210> 5
<211> 23
<212> DNA
<213> Homo sapiens

10 <400> 5
acttcctttg ggacaggaag tct 23

15 <210> 6
<211> 24
<212> DNA
<213> Homo sapiens

20 <400> 6
ctgaacggtt ttgatgtaga ggaa 24

25 <210> 7
<211> 18
<212> DNA
<213> Homo sapiens

30 <400> 7
ccctctggcg cattttgt 18