Trabajo Final de Máster

Titulo a definir

David Díaz Rodríguez Xosé Manuel Martínez Filgueira Ramón Miñones Crespo

2/11/23

Tabla de contenidos

Agradecimientos					
Re	esum	en		5	
In	trodu	ıcción		6	
1	Сар	ítulo I:	Consideraciones teóricas	7	
	1.1	Carac	terización de las series temporales financieras	7	
		1.1.1	Series de tiempo y sus características	7	
		1.1.2	Características de los precios	9	
	1.2	Redes 1.2.1	neuronales artificiales en la previsión de las series de tiempo Antecedentes del uso de redes neuronales artificiales en la previsión de	12	
			series de tiempo	12	
		1.2.2	Redes neuronales convolucionales	14	
		1.2.3	Long short-term memory	16	
	1.3	•	osición de carteras	18	
		1.3.1	Problema y técnicas	19	
		1.3.2	Programación cuadrática	21	
Αį	oéndi	ces Ca	pítulo 1	25	
2	Сар	ítulo 2	: Procedimiento	34	
	2.1	Datos		34	
		2.1.1	Obtención de Datos	34	
		2.1.2	Indicadores	36	
	2.2	Mode	lado	39	
		2.2.1	Vectores	39	
Αį	oéndi	ces Ca	pítulo 2	42	
Re	eferer	ıces		54	
Αl	ppen	dices		58	
Α	Dat	os		59	
			Obtanción do Datos	50	

	A.0.2	Indicadores	61
В	Modelado		64
	B.0.1	Vectores	64

Agradecimientos

Resumen

Introducción

1 Capítulo I: Consideraciones teóricas

El objetivo de este capítulo es brindar una comprensión teórica exhaustiva sobre aspectos fundamentales relacionados con las series temporales financieras y su caracterización, así como el uso de redes neuronales artificiales y la programación cuadrática en la previsión y composición de carteras. En primer lugar, se analizará en detalle la caracterización de las series temporales financieras, explorando su naturaleza y características clave para comprender su comportamiento y aplicaciones en el ámbito financiero. Además, se examinará el uso de redes neuronales artificiales en la previsión de series de tiempo, incluyendo los antecedentes de su aplicación y centrándose específicamente en las Redes Neuronales Convolucionales y las denominadas Long Short-Term Memory. A continuación, se abordará la composición de carteras mediante programación cuadrática, presentando el problema y las técnicas asociadas, y se explorará en detalle el método dual en la optimización de carteras. A través de este capítulo, se sentarán las bases teóricas necesarias para comprender y aplicar de manera efectiva estas técnicas en capítulos posteriores, permitiendo una comprensión profunda y la capacidad de utilizar estos conceptos de manera práctica en el contexto financiero.

1.1 Caracterización de las series temporales financieras

Este epígrafe se divide en dos sub-epígrafes. En el primero se presentan los conceptos fundamentales relacionados con las series de tiempo, incluyendo sus características, componentes y clasificaciones, y se establece su relación con el análisis de las series cronológicas y la previsión, que es el objetivo de este informe. En el segundo sub-epígrafe se profundiza en las características de los precios de las acciones, comenzando por una descripción general y avanzando hacia aspectos más específicos, así como en la importancia de la estructura en la que se encuentran los datos relacionados con estos.

1.1.1 Series de tiempo y sus características

En este sub-epígrafe se analizan varios textos, a partir de los cuales se puede concluir que, una serie de tiempo o serie cronológica es como el registro de los valores de una o más variables en intervalos regulares de tiempo (por ejemplo, diario, semanal, semestral, anual, etc.). El análisis de las series de tiempo puede tener distintos fines, como describir el comportamiento de las variables o predecir o pronosticar sus valores futuros, lo que es especialmente relevante para las series financieras.

El análisis de las series de tiempo es una herramienta estadística que permite estudiar el comportamiento de una variable a lo largo del tiempo. Sin embargo, no existe un consenso único sobre los componentes que se deben considerar en este tipo de análisis. Algunos autores, como Kocenda y Cerný (2017) y Anderson et al. (2017), proponen que las series de tiempo se pueden descomponer en tres componentes: tendencia, estacionalidad y ruido. Otros autores, como Dodge (2008) y Espallargas y Solís (2012), sugieren que se debe añadir un cuarto componente: el ciclo. Finalmente, hay autores que plantean que las series de tiempo pueden tener hasta cinco componentes estos son los casos de IBM (2021) y Chirinos (2018).

Tendencia: La tendencia es el patrón de cambio a largo plazo que se observa en una serie de datos. Se puede definir como la dirección general y persistente de las variaciones de la serie a lo largo del tiempo. La tendencia puede ser positiva (Figura 1.1), negativa (Figura 1.2) o nula (Figura 1.3), dependiendo de si la serie aumenta, disminuye o se mantiene constante en el largo plazo. La tendencia se puede identificar mediante el análisis gráfico o mediante métodos estadísticos. La tendencia es importante para entender el comportamiento histórico y proyectar el futuro de una serie de datos. Este componente es común en los distintos criterios mencionados.

Estacionalidad: Llamada también variación cíclica regular: Se refiere a la variación correspondiente a los movimientos de la serie que ocurren cada cierto periodo de tiempo, Figura 1.4. Este componente es, al igual que la tendencia, común en los criterios mencionados. Diferenciándose en que aquellos autores que exponen cuatro y cinco componentes llaman estacionalidad a las variaciones periódicas correspondientes a periodos menores o iguales a un año (como son periodicidad diaria, semanal, mensual, o anual), mientras que las variaciones periódicas correspondientes a periodos mayores las contemplan en un componente llamado, variaciones cíclicas. Por lo que para determinar la estacionalidad de una serie de tiempo es necesario analizarlas en un periodo no menor de dos años.

Un componente que no se puede explicar por los otros elementos de la serie de tiempo es la variación irregular o error. Este componente también se conoce como variación aleatoria, ruido o residuo, y se muestra en la Figura 1.4. La variación irregular es común en los tres criterios mencionados anteriormente. Algunos autores distinguen entre la variación irregular, que es ocasional y aleatoria, y la variación atípica, que es causada por eventos aislados que alteran el comportamiento de la serie. La variación atípica se puede clasificar en varios tipos: aditiva, de innovación, de cambio de nivel, transiente, de estacionalidad aditiva y de tendencia local.

Una forma de categorizar las series de tiempo es según el grado de variabilidad que presentan a lo largo del tiempo, según lo expuesto en Villagarcía (2006) se puede distinguir entre series homocedásticas y heterocedásticas. Las series homocedásticas son aquellas que mantienen un rango constante de variación, como se muestra en la Figura 1.3. Por el contrario, las series heterocedásticas son aquellas que cambian el rango de variación, aumentando o disminuyendo su amplitud, como se ilustra en las Figura 1.1 y Figura 1.2.

Las series cronológicas son un tipo de proceso estocástico que se caracteriza por ordenar las variables aleatorias según el tiempo. Esto significa que cada momento tiene asociado un valor

de la variable que depende del azar y que puede cambiar a lo largo del tiempo. Según Ruiz (2011), un proceso estocástico es "una colección o familia de variables aleatorias, ordenadas según un subíndice que en general suele ser el tiempo" (p.01).

Un proceso estocástico es una colección de variables aleatorias que representan la evolución de un fenómeno aleatorio en el tiempo. Según Ruiz (2011), los estados son los posibles valores que puede tomar la variable aleatoria, y pueden ser discretos o continuos, dependiendo de la naturaleza de la variable. Asimismo, el tiempo puede ser discreto o continuo, según los cambios de estado se produzcan en intervalos fijos o variables. Ruiz (2011) clasifica los procesos estocásticos en cuatro tipos, según el espacio de estados y el tiempo, como se muestra en la Tabla 1.1.

Según la definición de serie temporal ofrecida anteriormente, "una serie de tiempo o serie cronológica es como el registro de los valores de una o más variables en intervalos regulares de tiempo", y a lo expuesto con respecto a los procesos estocásticos en Castillo y Varela (2010), Villavicencio (2010) y el propio Ruiz (2011) se coincide con lo afirmado por este último: "una serie temporal es una realización parcial de un proceso estocástico de parámetro tiempo discreto" (p.09). Debido a que, en el análisis de series temporales, aunque el tiempo es continuo se adoptan intervalos discretos (días, semanas, meses, años), los cuales se establecen por convenio por los analistas o por las fuentes que suministran los datos.

Un concepto clave en el análisis de series de tiempo es el de estacionariedad. Una serie de tiempo es estacionaria cuando sus propiedades estadísticas, como la media, la varianza y la covarianza, no cambian con el tiempo. Esto implica que la serie no presenta tendencia, ciclos ni estacionalidad. Como señalan Castillo y Varela (2010), Villavicencio (2010) y Ruiz (2011), la estacionariedad es una condición necesaria para poder predecir el comportamiento futuro de una serie de tiempo usando técnicas estadísticas. En la Figura 1.3 se muestra un ejemplo de una serie de tiempo estacionaria.

Las series de tiempo financieras presentan heterocedasticidad, es decir, varianzas que cambian en el tiempo. Esto implica que no son estacionarias y que su comportamiento depende de factores externos. Para verificar la estacionariedad de una serie de tiempo, se pueden utilizar diferentes métodos, como el correlograma, que muestra las funciones de autocorrelación y autocorrelación parcial de la serie, o las pruebas de raíz unitaria, como la de Dickey Fuller o la de Phillips Perron, que contrastan la hipótesis nula de que la serie tiene una raíz unitaria. Estos métodos se explican con más detalle en Castillo y Varela (2010), Villavicencio (2010) y Ruiz (2011). La Figura 1.5 ilustra un ejemplo de correlograma para una serie de tiempo financiera.

1.1.2 Características de los precios

Invertir en acciones o cualquier otro bien que cotice en el mercado de valores es una tarea compleja y desafiante, que requiere una comprensión profunda de las tendencias y fluctuaciones del mercado. En el centro de esta comprensión se encuentra la capacidad de

analizar e interpretar los datos de precios del mercado de valores, lo que brinda información clave sobre el comportamiento de los participantes del mercado y los factores que impulsan los movimientos del mercado. El propósito de este sub-epígrafe es proporcionar una descripción general completa del entorno de los precios de las acciones y como son representados comunmente los mismos, señalando los aspectos más importantes para la aplicación de las técnicas que se exploraran en los siguientes epígrafes.

Como se explica en la CNMV (s. f.b) las bolsas de valores son mercados organizados donde se negocian acciones y otros valores, como renta fija, warrants, certificados y fondos cotizados. En BME (s. f.) se expone que, en España, existen cuatro bolsas tradicionales (Madrid, Barcelona, Bilbao y Valencia) que forman parte del holding BME (Bolsas y Mercados Españoles), que también integra otros segmentos y sistemas de negociación, compensación y liquidación de valores. Siendo, como se explica en CNMV (s. f.c), el Sistema de Interconexión Bursátil Español (SIBE) la plataforma que permite la contratación continua y electrónica de todos los valores admitidos a cotización en las cuatro bolsas españolas.

Como expone la CNMV (s. f.a) las acciones son valores mobiliarios que representan una parte proporcional del capital social de una sociedad anónima, y sus tenedores son socios propietarios de la misma. Las acciones pueden negociarse en bolsas de valores o en otros mercados secundarios autorizados.

A partir de lo expuesto en Mitchell (2020), Pinset (2021) y C. Team (2023) se puede concluir que, para explicar el precio de las acciones de una empresa, se pueden considerar los siguientes factores:

- La oferta y la demanda de las acciones en el mercado: si hay más compradores que vendedores, el precio subirá y viceversa. Esto depende de las expectativas y la confianza de los inversores en el futuro de la empresa.
- Los cambios en la gestión o la producción de la empresa: si la empresa mejora su eficiencia, su rentabilidad o su innovación, el precio de sus acciones puede aumentar. Por el contrario, si la empresa tiene problemas internos, pierde competitividad o se ve afectada por crisis externas, el precio puede bajar.
- La reputación de la empresa: si la empresa tiene una buena imagen pública, se asocia con éxitos o logros, o recibe buenas valoraciones de los analistas, el precio de sus acciones puede subir. Por el contrario, si la empresa se ve involucrada en escándalos, demandas o controversias, o recibe malas valoraciones de los analistas, el precio puede bajar.

En los textos Pinset (2021), T. I. Team (2022) y C. Team (2023) también señalan la importancia de diferenciar el precio de una empresa o acción de esta del valor intrínseco de esta. Pudiéndose resumir teniendo en cuenta lo señalado en esos textos y lo expuesto con anterioridad que el precio de una empresa o acción es lo que los compradores y vendedores están dispuestos a pagar por ella en un momento determinado, mientras que el valor intrínseco de una empresa o acción depende en gran medida de la metodología utilizada para valorar las empresas y los objetivos del evaluador.

Una vez contextualizado de manera general el entorno en el que se encuentran los precios de las acciones y explicado algunos de los factores que pueden afectar a los mismos se explica a continuación como se encuentran estos generalmente estructurados en las distintas fuentes de las que se pueden obtener. Generalmente los precios de las acciones se encuentran registrados de forma periódica (diariamente, semanalmente, mensualmente, anualmente, etc). registrándose para cada periodo el precio de apertura, el precio más alto, el más bajo, el de cierre, el volumen y el de cierre ajustado, ver Tabla 1.2.

A partir de lo expuesto en Barone (2022), Chen (2022), Downey (2022), Hayes (2021) y Ganti (2020) se puede entender que:

- El precio de apertura es el primer precio al que se negocia un activo financiero en una sesión bursátil. Este precio puede ser diferente al precio de cierre de la sesión anterior, ya que puede haber cambios en la oferta y la demanda durante el periodo en que el mercado está cerrado. El precio de apertura suele indicar el tono o la tendencia del mercado para ese día.
- El precio más alto es el mayor precio al que se negocia un activo financiero en una sesión bursátil. Este precio refleja el máximo nivel de interés de los compradores por ese activo en ese día. El precio más alto puede ser un indicador de la fortaleza o la debilidad de un activo, así como de su volatilidad.
- El precio más bajo es el menor precio al que se negocia un activo financiero en una sesión bursátil. Este precio refleja el mínimo nivel de interés de los vendedores por ese activo en ese día. El precio más bajo puede ser un indicador de la presión o la resistencia de un activo, así como de su volatilidad.
- El precio de cierre es el último precio al que se negocia un activo financiero en una sesión bursátil. Este precio es el que se utiliza para calcular el valor de mercado de ese activo al final del día. El precio de cierre suele ser el más importante para los inversores, ya que resume el resultado de las operaciones del día y muestra la dirección del mercado.
- El volumen es la cantidad de unidades de un activo financiero que se negocian en una sesión bursátil. El volumen muestra el nivel de actividad o de liquidez de un mercado o de un activo. El volumen suele acompañar a los movimientos de los precios, ya que indica el grado de consenso o de divergencia entre los participantes del mercado.
- El precio de cierre ajustado es el precio de cierre de un activo financiero que se modifica para tener en cuenta eventos como dividendos, splits, fusiones o adquisiciones que afectan al valor del activo. El precio de cierre ajustado permite comparar el rendimiento histórico de un activo con mayor precisión y consistencia.

A partir de lo expuesto en Hayes (2021) y Ganti (2020) se entiende que la diferencia entre el precio de cierre y el precio de cierre ajustado es de gran importancia, ya que el primero puede dar una imagen distorsionada del rendimiento de una acción a lo largo del tiempo, mientras que el segundo refleja el valor real de la acción después de ajustar los factores que lo alteran.

Por ejemplo, la junta directiva de una empresa puede decidir dividir las acciones de la empresa 3 por 1. Por lo tanto, las acciones en circulación de la empresa aumentan en un múltiplo de tres, mientras que el precio de sus acciones se divide por tres. Supongamos que una acción cerró a \$300 el día anterior a su división de acciones. En este caso, el precio de cierre se ajusta a \$100 (\$300 divididos por 3) por acción para mantener un estándar de comparación consistente. De manera similar, todos los demás precios de cierre anteriores para esa empresa se dividirían por tres para obtener los precios de cierre ajustados. Ganti (2020)

Debido a ello el precio de cierre ajustado es mejor para la aplicación de técnicas de análisis de series de tiempo, ya que permite comparar el comportamiento de una acción a lo largo del tiempo sin las distorsiones causadas por los eventos corporativos. Siendo la serie de tiempo más comunmente utilizada en los estudios de los análisis de los precios de mercado la conformado por las rentabilidades calculadas a partir del precio de cierre ajustado.

1.2 Redes neuronales artificiales en la previsión de las series de tiempo

Este epígrafe esta dividido en tres sub-epígrafes. En el primero se abordan los antecedentes del uso de redes neuronales artificiales para el trabajo con series de tiempo, más concretamente en la previsión. En el segundo y tercer sub-epígrafes se exponen el funcionamiento de dos de las estructuras de capas de RNA usadas en el presente trabajo, siendo estas las CNN y las LSTM.

1.2.1 Antecedentes del uso de redes neuronales artificiales en la previsión de series de tiempo

En este sub-epígrafe se abordan las redes neuronales artificiales (en lo adelante RNA) desde lo general a lo particular explicándose desde el entorno a las características básicas de las mismas. Además, se exponen los antecedentes del uso de estas en la solución de problemas de previsión de series de tiempo.

En Chollet y Allaire (2018) se plantea que el entorno de las RNA está conformado por la inteligencia artificial (en lo adelante IA), machine learning o aprendizaje automatizado (en lo adelante ML) y deep learning o aprendizaje profundo (en lo adelante DL), Figura 1.6. Por lo que es de vital importancia conocer los aspectos de estos campos que se encuentran íntimamente relacionados con las RNA y que se exponen brevemente a continuación.

"Hacer que una máquina se comporte de tal manera que si un humano lo hiciera se le llamaría inteligente" (McCarthy et al. (2006), p.11) es la primera definición que se le dio al problema de IA. Con el objetivo de dar solución a este problema surgieron las primeras IA, las llamadas IA simbólicas.

Como se explica en Haykin (1998), Banda (2014) y Chollet y Allaire (2018), estas primeras IA, involucraban reglas codificadas creadas por los programadores. Con el objetivo de lograr que estas reglas fueran aprendidas automáticamente por las máquinas al observar los datos surgió una nueva etapa dentro del desarrollo de las IA, la denominada ML. En esta nueva etapa se da pie al surgimiento de una nueva forma de programación, diferenciándose de la clásica, en que, en esta, los programadores introducen los datos y las respuestas esperadas a los mismos, y las computadoras son capaces de generar las reglas, Figura 1.7.

Por lo que se entiende que los modelos de ML tratan de encontrar representaciones apropiadas para sus datos de entrada: transformaciones de los datos que hacen que sea más susceptible a la tarea en cuestión. En DL, que es un sub-campo específico de ML, estas representaciones de datos son modeladas a través de arquitecturas compuestas de capas sucesivas, las que son llamadas RNA Chollet y Allaire (2018).

Tras el estudio de lo expuesto en Haykin (1998), Larrañaga (2007), Banda (2014) y Chollet y Allaire (2018) sobre las RNA se puede afirmar que están inspiradas en el funcionamiento del cerebro humano, dichos textos confirman y concuerdan en que en una RNA se pueden diferenciar tres tipos de capas: de entrada, de salida y ocultas. Una capa de entrada está compuesta por neuronas que reciben los vectores de entradas. Una capa de salida se compone de neuronas que, durante el entrenamiento reciben los vectores de salidas y que luego generan la respuesta. Una capa oculta se encuentra conectada al entorno a través de las capas de entrada y salida, este tipo de capa oculta procesa la entrada recibida para obtener la salida correspondiente, Figura 1.8.

Una de las aplicaciones de las RNA es la previsión de series temporales, cuyo objetivo es predecir los valores futuros de las variables en función de sus observaciones pasadas. Como se expuso con anterioridad las series de tiempo financieras a menudo son no lineales, ruidosas, caóticas y no estacionarias, lo que las hace difíciles de modelar y pronosticar. Las RNA tienen la ventaja de poder capturar relaciones no lineales complejas y adaptarse a condiciones cambiantes sin requerir suposiciones previas sobre la distribución o estructura de datos.

La historia de las RNA en la previsión de series temporales financieras se remonta a finales de la década de 1980 y principios de la de 1990, cuando los investigadores comenzaron a explorar el potencial de las RNA como una alternativa a los métodos estadísticos tradicionales, como el modelo autorregresivo integrado de media móviles, más conocido como ARIMA (por sus siglas en inglés Autoregressive Integrated Moving Average) y los modelos autorregresivos generalizados con heterocedasticidad condicional, más conocido como GARCH (por sus siglas en inglés Generalized Autoregressive Conditional Heteroskedasticity). Se demostró que las RNA tienen varias ventajas sobre estos métodos, como la capacidad de capturar relaciones no lineales y dinámicas, manejar datos ruidosos e incompletos y adaptarse a las condiciones cambiantes del mercado (B. Eddy Patuwo & Michael Y. Hu (1998)).

Sin embargo, las RNA también enfrentan algunas limitaciones y desafíos en el pronóstico de series temporales financieras, como la dificultad de elegir una arquitectura de red adecuada, un algoritmo de entrenamiento, una función de activación y variables de entrada; el riesgo de

sobreajuste y problemas de generalización; la falta de interpretabilidad y transparencia; y el alto costo computacional y tiempo (Tealab (2018)).

Para superar estas limitaciones y desafíos, los investigadores han propuesto varias mejoras y extensiones de RNA para el pronóstico de series temporales financieras en las últimas décadas. Algunos de los principales desarrollos incluyen:

- El uso de modelos híbridos que combinan RNA con otras técnicas, como lógica difusa, algoritmos genéticos, análisis de ondículas, máquinas de vectores de soporte y aprendizaje profundo para mejorar el rendimiento y la solidez de las RNA (Wong y Guo (2010)).
- El uso de redes neuronales recurrentes (en lo adelante RNR) o bidireccional, que son un tipo especial de RNA que pueden procesar datos secuenciales y capturar dependencias temporales. Se ha demostrado que las RNR superan a las redes neuronales unidireccionales en series temporales complejas y no lineales (Guresen, Kayakutlu, y Daim (2011)).
- El uso de modelos de RNA más complejas mediante la combinación de distintas capas, como son las redes neuronales convolucionales (en lo adelante, CNN), las long short-term memory (en lo adelante, LSTM), las gated recurrent units (en lo adelante, GRU) se han aplicado a la previsión de series temporales financieras con resultados prometedores (Sezer, Gudelek, y Ozbayoglu (2020)).

La historia de las RNA en el pronóstico de series temporales financieras muestra que las mismas han ido evolucionando y mejorando con el tiempo para hacer frente a la complejidad y la incertidumbre de los mercados financieros. Sin embargo, todavía persisten algunos de los desafíos y limitaciones señalados con anterioridad como como el sobreajuste, la generalización, la interpretabilidad, la robustez y el costo computacional.

1.2.2 Redes neuronales convolucionales

El modelo de RNA que se usó en este trabajo está compuesto por varias capas siendo las más importantes la capa Conv1D, un tipo especifico de CNN, y la capa LSTM, ambas mencionadas en el sub-epígrafe anterior cuando se listaron las estructuras de ANN que más se utilicen en la actualidad. Este sub-epígrafe se centra en la Capa Conv1D, por lo que a se exploran los conceptos fundamentales para comprender el funcionamiento de esta, explicándose la convolución, las redes neuronales convolucionales y Conv1D y su uso para el análisis de series temporales. Se brinda una descripción general de la convolución y cómo se puede aplicar a los datos de series temporales. Luego, se analizan las CNN y su arquitectura, que les permite aprender características automáticamente a partir de datos de series temporales. Finalmente, se explica Conv1D, un tipo específico de capa de red neuronal convolucional que es particularmente eficaz para procesar datos de series temporales.

Como se expone en Siddiqui (2023) la convolución es una operación matemática que se usa comúnmente en el procesamiento de señales y el análisis de imágenes. Implica tomar dos

funciones y producir una tercera función que representa cómo una de las funciones originales modifica a la otra. En el contexto de los datos de series temporales, la convolución se puede utilizar para extraer características de los datos aplicando un filtro a la serie temporal.

Además de extraer características de los datos de series temporales, la convolución también se puede utilizar para otras tareas, como la reducción de ruido, la detección de anomalías y la predicción. Por ejemplo, se puede entrenar una CNN para predecir valores futuros de una serie temporal aprendiendo los patrones subyacentes en los datos. En general, la convolución es una herramienta poderosa para analizar datos de series temporales y sus aplicaciones son numerosas Siddiqui (2023).

Las CNN fueron por primera vez introducidas en Lecun et al. (1998) son un tipo de modelo de aprendizaje profundo que se usa comúnmente para el análisis de imágenes. Sin embargo, como se ha mencionado con anterioridad también se pueden utilizar para el análisis de series temporales, ya que son muy adecuados para aprender características a partir de datos que tienen una estructura espacial o temporal.

La arquitectura de una CNN consta de una o más capas convolucionales, que aplican filtros a los datos de entrada para extraer características. Cada filtro es un conjunto de pesos que se aprenden durante el proceso de entrenamiento. Al deslizar el filtro sobre los datos de entrada, la capa convolucional calcula un producto escalar en cada posición, produciendo un nuevo mapa de características Lecun et al. (1998).

En un contexto de series de tiempo, una CNN puede aprender a extraer automáticamente características de los datos en diferentes escalas e intervalos de tiempo, lo que la convierte en una herramienta poderosa para el análisis de series de tiempo. Una ventaja clave de usar una CNN para el análisis de series de tiempo es que reduce la necesidad de ingeniería de características manual. En lugar de diseñar filtros a mano, CNN aprende a extraer automáticamente características de los datos, haciéndolo más flexible y adaptable a diferentes tipos de datos de series temporales.

En general, la arquitectura de una CNN le permite aprender características automáticamente a partir de datos de series temporales, lo que la convierte en una herramienta poderosa para el análisis de series temporales, siendo las Conv1D una de las estructuras de CNN más usadas para esta tarea.

Como se explica en Jing (2020) Conv1D es un tipo específico de capa de CNN que está diseñado para procesar datos unidimensionales, como datos de series temporales. Mientras que las CNN tradicionales están diseñadas para procesar datos bidimensionales, Conv1D está optimizado específicamente para datos unidimensionales, lo que lo hace más eficiente y eficaz para el análisis de series temporales.

La arquitectura de una capa Conv1D es similar a la de una CNN tradicional, pero con algunas diferencias clave. En lugar de usar filtros bidimensionales, Conv1D usa filtros unidimensionales, que se aplican a la serie temporal de entrada para extraer características. Las características que se extraen de la serie dependerán de las distintas configuraciones usadas para la configuración

del filtro y la cantidad de filtros utilizados, siendo la fórmula para calcular la cantidad de característica que extrae cada filtro la siguiente Ecuación 1.1 (Jing (2020)):

$$L_{out} = \frac{L_{in} + 2 * padding - dilation * (kerenel_size - 1) - 1}{stride} + 1$$
 (1.1)

Donde:

Lout: es la longitud de la salida del proceso de filtrado o la cantidad de características.

Lin: la longitud del vector de entrada, correspondiendo en el análisis de series de tiempo a la cantidad de observaciones que contienen las muestras de la serie de tiempo que se pasan al filtro.

kernel_size: es el tamaño del filtro, lo que define cuantas observaciones del vector de entradas se pasan al filtro cada vez. Figura 1.9 representa como el tamaño del filtro puede afectar la longitud del vector de salida.

stride: representa la cantidad de pasos u observaciones en las que se mueve la selección de observaciones que se pasa al filtro. Figura 1.10 representa como el parámetro stride puede afectar la longitud del vector de salida.

dilation: es la distancia de las observaciones que pasan al filtro. Figura 1.11 representa como el parámetro dilation puede afectar la longitud del vector de salida.

padding: representa la cantidad de zeros que se añade a cada extremo del vector. Figura 1.12 representa como el parámetro padding puede afectar la longitud del vector de salida.

En general, Conv1D es una herramienta poderosa para procesar datos de series temporales y sus ventajas incluyen la eficiencia computacional y la capacidad de capturar dependencias temporales en los datos. Sus casos de uso son numerosos y abarcan diferentes campos, lo que lo convierte en una herramienta valiosa para el análisis de series temporales.

1.2.3 Long short-term memory

En el presente subepigrafe se explica por qué las LSTM son una de las estructuras más usadas de RNA en la previsión de series de tiempo, partiendo de una breve explicación de las RNR y porque estas son de utilidad en la solución de problemas de previsión de series de tiempo, profundizando en el porque las LSTM se diferencian del resto de las RNN, y el funcionamiento de cada una de las capas que componen la estructura de una capa LSTM.

En Olah (2015) se explica que una RNN puede considerarse como copias múltiples de la misma red, Figura 1.13, expone que este aspecto revela que las RNR están intimamente relacionadas con secuencias y listas, lo que hace que este tipo de RNA sea el que se use naturalmente para el trabajo con series de tiempo.

Las RNR convencionales presentan un problema en lo relacionado con la capacidad de retener la información, como se explica en Olah (2015), las RNN estándar se desempeñan con gran capacidad solo si, la información relevante para la situación actual es reciente, es decir donde la brecha entre la información relevante y el lugar en que se necesita es pequeña, Figura 1.14; expone además que a medida que crece la brecha, las RNN estándar son incapaces de acceder a la información relevante, Figura 1.15.

Como se ha mencionado con anterioridad las LSTM son un tipo de RNR que puede aprender dependencias a largo plazo en datos secuenciales. Estas fueron propuestas en Hochreiter (1997) y ha sido ampliamente utilizado para diversas tareas como el modelado del lenguaje, el reconocimiento de voz, la traducción automática, la descripción de imágenes y la previsión de series de tiempo.

La idea principal de LSTM es introducir una celda de memoria que pueda almacenar y actualizar información durante largos pasos de tiempo. La celda de memoria está controlada por tres puertas: una puerta de entrada, una puerta de olvido y una puerta de salida. Estas puertas son redes neuronales que aprenden a regular el flujo de información dentro y fuera de la célula Figura 1.16.

La puerta de entrada decide qué cantidad de la nueva entrada agregar al estado de la celda. La puerta de olvido decide qué parte del estado de celda anterior mantener o borrar. La puerta de salida decide qué parte del estado de celda actual se va a enviar a la siguiente capa. Olah (2015) basado en lo expuesto en Hochreiter (1997), describe la operativa de las puertas en cuatro pasos:

1. Decidir qué información se olvida del estado de la celda a través de la puerta, forget gate layer f_t . Esta puerta ve a h_{t-1} , estado oculto del período de tiempo anterior, y x_t , entrada del instante de tiempo actual, y genera un número entre 0 (deshacerse) y 1 (mantener) para cada número en el estado de la celda C_{t-1} , Figura 1.17, Ecuación 1.2.

$$f_t = \sigma(W_f[h_{t-1}, x_t] + b_f) \tag{1.2}$$

2. Decidir qué nueva información se almacena en el estado de la celda. Para esto primero la puerta llamada input gate layer decide qué valores actualizar y luego, una capa tanh (tangente hiperbólica) crea un vector de nuevos valores candidatos (\tilde{C}_t) que podrían agregarse al estado, Figura 1.18, Ecuación 1.3 y Ecuación 1.4.

$$i_t = \sigma(W_i[h_{t-1}, x_t] + b_i) \tag{1.3}$$

$$\tilde{C}_t = tanh(W_c[h_{t-1}, x_t] + b_c) \tag{1.4}$$

3. Se actualiza el estado de la celda anterior, C_{t-1} en el nuevo estado de la celda C_t . Se multiplica el estado anterior por f_t , olvidando lo necesario, luego se agrega $i_t * \tilde{C}_t$. Estos son los nuevos valores candidatos, escalados según cuánto se necesita actualizar cada valor de estado, Figura 1.19, ecuación 1.09.

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t \tag{1.5}$$

4. Se genera una salida basándose en el estado de celda. Ejecutándose primero una capa sigmoidea que decide qué partes del estado de la celda es la salida; luego el estado de la celda pasa a través de una función tanh (escalando los valores entre −1 y 1) y se multiplican por la salida de la puerta, output gate, Figura 1.20, Ecuación 1.6 y Ecuación 1.7.

$$o_t = \sigma(W_o[h_{t-1}, x_t] + b_o) \tag{1.6}$$

$$h_t = o_t * tanh(C_t) \tag{1.7}$$

Las LSTM pueden aprender a capturar dependencias a largo plazo ajustando los valores de la puerta a través de la propagación inversa. Por ejemplo, si una determinada entrada es relevante para una salida posterior, la puerta de entrada aprenderá a dejarla entrar, y la puerta olvidada aprenderá a conservarla en el estado de celda hasta que sea necesaria. Por el contrario, si una entrada es irrelevante u obsoleta, la puerta de entrada aprenderá a ignorarla, y la puerta olvidada aprenderá a borrarla del estado de la celda.

1.3 Composición de carteras

En este epígrafe, se expone el problema de encontrar la mejor composición de cartera posible y explicar de manera general la teoría detrás de los objetivos para solucionarlo. Además, se enumerarán las técnicas más utilizadas, diferenciando entre enfoques clásicos y enfoques inteligentes. Posteriormente, se explicará qué es la programación cuadrática y se mencionarán algunas técnicas dentro de esta disciplina de optimización matemática. Se mostrará cómo el problema de optimización de carteras se puede describir como un problema de programación cuadrática. Además, se proporcionará una breve explicación del Dual Active Set Method, una técnica ampliamente utilizada en esta disciplina y que será utilizada en los capítulos siguientes.

1.3.1 Problema y técnicas

En este sub-epígrafe se presenta el problema de hallar la mejor composición de cartera posible, explicandose de manera general la teoría detras de los objetivos que se deben seguir para darle solución al mismo. Además, se listan las técnicas más utilizadas para darle solución a este problema, diferenciandolas entre enfoques clásicos y enfoques inteligentes.

Como se explica en Gunjan (2023) la optimización de cartera es el proceso de seleccionar la mejor combinación de activos para mantener en una cartera en función de objetivos predefinidos. Los objetivos pueden ser la maximización del rendimiento o la minimización del riesgo, o ambos. La optimización de la cartera implica encontrar las ponderaciones óptimas para cada activo de la cartera de manera que la cartera general cumpla con los objetivos deseados. Esto puede ser un problema desafiante debido a la gran cantidad de activos para elegir y las complejas relaciones entre ellos.

La optimización de la cartera es un proceso importante para los inversores, ya que les ayuda a minimizar el riesgo y maximizar el rendimiento de sus inversiones. Al seleccionar cuidadosamente los activos que mantendrán en su cartera, los inversores pueden lograr el nivel deseado de riesgo y rendimiento mientras diversifican sus inversiones para reducir el riesgo general. La optimización de la cartera es un mecanismo crucial que se utiliza para reducir el riesgo de la inversión.

Existen diversas técnicas que se pueden utilizar para resolver el problema de optimización de cartera. En Gunjan (2023) estas técnicas se encuentran clasificadas en en dos categorías: enfoques clásicos y enfoques inteligentes. A continuación, se explica de manera general algunas de las técnicas pertenecientes a cada enfoque.

Enfoques clásicos:

- Media-varianza: Esta técnica, propuesta en Markowitz y Markowitz (1967), se basa en la idea de minimizar la varianza para una determinada rentabilidad esperada o maximizar la rentabilidad esperada para una determinada varianza. Es una técnica de programación cuadrática paramétrica (en lo adelante, PQP) que se puede utilizar para resolver problemas de optimización cuadrática que surgen en la optimización de carteras (Aijun Zhang & Chun-hung Li & Agus Sudjianto (2008)). El enfoque de la varianza media supone que los inversores tienen aversión al riesgo y prefieren carteras con una varianza más baja. La técnica consiste en construir una frontera de cartera que representa el conjunto de carteras que ofrecen el rendimiento esperado más alto para un nivel de riesgo dado. A continuación, se selecciona la cartera óptima de esta frontera en función de las preferencias de riesgo del inversor.
- Varianza con asimetría: esta técnica amplía el enfoque de media-varianza teniendo en cuenta la asimetría de la distribución. Fue propuesta en Samuelson (1970) y se puede utilizar cuando la función de distribución no es de naturaleza cuadrática. La asimetría mide la asimetría de una distribución y puede proporcionar información adicional sobre

los riesgos y rendimientos potenciales de una cartera. Al incorporar la asimetría en el proceso de optimización de la cartera, los inversores pueden comprender mejor los posibles riesgos a la baja y tomar decisiones más informadas.

- Valor en riesgo (VaR): este enfoque estadístico mide la pérdida potencial de valor de una cartera durante un período definido para un intervalo de confianza dado. Fue introducido en la primera edición de Jorion (2007) en 1997 y requiere la determinación de tres parámetros: período de tiempo, nivel de confianza y unidad de valor en riesgo. El VaR proporciona una medida de la pérdida potencial máxima que podría ocurrir con una probabilidad dada en un horizonte de tiempo específico. Las instituciones financieras lo utilizan comúnmente para administrar su exposición al riesgo y cumplir con los requisitos reglamentarios.
- Valor en riesgo condicional (CVaR): este enfoque amplía el VaR teniendo en cuenta la pérdida esperada que excede el VaR. Fue introducido en Rockafellar y Uryasev (2002) y puede manejar pérdidas extremas mediante el uso de pesos dinámicos derivados de datos históricos. CVaR proporciona una medida de la pérdida esperada que podría ocurrir más allá del umbral de VaR. También se conoce como Expected Shortfall (ES) o Tail Value-at-Risk (TVaR) y se considera una medida de riesgo más coherente que el VaR.
- Desviación media-absoluta (MAD): esta técnica se puede emplear para problemas de selección de carteras de gran escala y muy diversificados. Fue introducido en Konno y Yamazaki (1991) y penaliza tanto las desviaciones positivas como las negativas. MAD proporciona una medida de la desviación absoluta promedio de los rendimientos de la cartera de su valor medio. Se considera más sólida que las medidas basadas en la varianza, ya que es menos sensible a los valores atípicos.
- Minimax: Esta técnica utiliza la rentabilidad mínima como medida de riesgo. Fue introducido en Cai et al. (2004) y tiene ciertas ventajas cuando los rendimientos no se distribuyen normalmente. Minimax proporciona una medida del peor de los casos para una cartera al minimizar la pérdida potencial máxima que podría ocurrir. Puede ser útil para los inversores que están particularmente preocupados por los riesgos a la baja.

Enfoques inteligentes:

• Redes bayesianas: estos modelos gráficos probabilísticos se pueden utilizar para modelar el riesgo y la rentabilidad. Fueron presentados en Shenoy y Shenoy (2000) y se pueden utilizar para visualizar la relación entre diferentes variables en un modelo. Las redes bayesianas proporcionan una forma de representar dependencias complejas entre variables utilizando gráficos acíclicos dirigidos (DAG). Se pueden usar para modelar relaciones inciertas entre variables y para hacer predicciones probabilísticas sobre eventos futuros. En el contexto de la gestión de carteras, las redes bayesianas se pueden utilizar para modelar las relaciones entre diferentes activos y hacer predicciones sobre sus rendimientos futuros en función de datos históricos y otra información relevante.

- Regresión de vectores de soporte (SVR): esta técnica de aprendizaje automático se puede utilizar para determinar la cantidad a comprar y vender. Fue introducido por Drucker et al. (1996) y tiene ciertas ventajas sobre las técnicas basadas en estadísticas, como su capacidad para aprender de datos históricos. SVR implica construir un hiperplano que separa puntos de datos con diferentes etiquetas mientras maximiza el margen entre ellos. Puede usarse para tareas de regresión donde el objetivo es predecir valores continuos en lugar de etiquetas discretas. En el contexto de la gestión de carteras, SVR se puede utilizar para predecir precios de activos futuros en función de datos históricos y otra información relevante.
- Redes neuronales artificiales: como se explico con anterioridad estos modelos computacionales se pueden utilizar para resolver problemas computacionales y de aprendizaje complejos. En el contexto de la gestión de carteras, las redes neuronales se pueden utilizar para predecir futuros precios o rendimientos de activos en función de datos históricos y otra información relevante, que es para lo que se usan en el presente trabajo.
- Aprendizaje por refuerzo: este tipo de aprendizaje automático involucra a un agente o modelo que interactúa con su entorno para aprender de sus acciones. Fue presentado en Sutton y Barto (2018) y funciona para maximizar la recompensa al agente. El aprendizaje por refuerzo implica aprender a través de interacciones de prueba y error con un entorno. El agente realiza acciones en función de su estado actual y recibe recompensas o sanciones en función de los resultados de esas acciones. Con el tiempo, el agente aprende a realizar acciones que maximicen su recompensa acumulada. En el contexto de la gestión de carteras, el aprendizaje por refuerzo se puede utilizar para desarrollar estrategias comerciales que maximicen los rendimientos mientras se gestiona el riesgo.

1.3.2 Programación cuadrática

En este sub-epígrafe se explica que es la programación cuadrática. Cuáles son algunas de las técnicas que existen dentro de esta disciplina de la optimización matemática. Se expone además como el problema de optimización de carteras se puede describir como un problema de programación cuadratica y se expondra de manera breve como funciona una de las técnicas más usadas en esta disciplina, concretamente la denominada Dual Active Set Method, la cuál es usada en los capítulos posteriores.

La programación cuadrática se puede elegir entre las técnicas enumeradas en el subepígrafe anterior por varias razones. En primer lugar, es una técnica bien establecida que se ha utilizado ampliamente en la optimización de carteras. Puede manejar problemas de optimización complejos con múltiples restricciones y puede proporcionar una forma eficiente y efectiva de resolver el problema de optimización de cartera. Esto lo convierte en una herramienta útil para los inversores que buscan minimizar el riesgo mientras logran el nivel de rendimiento deseado. Finalmente, la programación cuadrática tiene una sólida base teórica y ha sido ampliamente estudiada en la literatura. Esto la convierte en una técnica confiable y bien entendida que se puede utilizar con confianza en la optimización de la cartera.

Existen diversas tecnicas de programación cuadrática, entre las más utilizadas se ecuentran:

- Interior Point: Este es un método de programación lineal o no lineal que logra la optimización al pasar por el centro del sólido definido por el problema en lugar de alrededor de su superficie. Un algoritmo de programación lineal de tiempo polinómico utilizando un método de punto interior fue encontrado por Karmarkar (1984).
- Active Set: Este es un algoritmo utilizado para identificar las restricciones activas en un conjunto de restricciones de desigualdad. Las restricciones activas se expresan entonces como restricciones de igualdad, transformando así un problema restringido por la desigualdad en un subproblema más simple restringido por la igualdad. El método de conjunto activo fue introducido por primera vez en un artículo de Beale (1959) y desarrollado por Fletcher (1971) y Bunch y Kaufman (1977).
- Dual Active Set: El método, como se expone en Goldfarb y Idnani (1982) y Goldfarb y Idnani (1983), es un algoritmo dual eficiente y numéricamente estable para la programación cuadrática definida positiva que aprovecha el hecho de que el mínimo sin restricciones de la función objetivo se puede usar como punto de partida.
- Augmented Lagrangian: Fue introducido independientemente en Magnus R. Hestenes (1969) y Powell (1969). Se utiliza para resolver problemas de optimización restringidos agregando un término de penalización a la función objetivo que penaliza cualquier violación de las restricciones. El término de penalización suele ser un múltiplo de una medida de infracción de restricción, como la suma de infracciones de restricción al cuadrado.
- Conjugate Gradient: Este es un método iterativo para resolver sistemas de ecuaciones lineales con una matriz definida positiva simétrica. También se puede utilizar para resolver problemas de optimización sin restricciones al encontrar el mínimo de una función cuadrática. El método genera una secuencia de direcciones de búsqueda que se conjugan con respecto a la matriz que define el sistema de ecuaciones o función cuadrática. El método de gradiente conjugado fue introducido originalmente en un artículo de Magnus R. Hestenes y Stiefel (1952).
- Gradient Projection: El método de proyección de gradiente fue introducido en J. B. Rosen (1960) y J. Rosen (1961). Este es un método iterativo para resolver problemas de optimización restringidos proyectando el gradiente en la región factible en cada iteración. El gradiente proyectado se utiliza entonces como dirección de búsqueda, y se realiza una búsqueda de línea a lo largo de esta dirección para encontrar una nueva iteración que satisfaga las restricciones y reduzca la función objetivo.

De las técnicas señaladas con anterioridad se seleccionó el algoritmo Dual Active Set Method (en lo adelante, DASM) que como se mencionó con anterioridad fue introducido en Goldfarb y Idnani (1982) y Goldfarb y Idnani (1983), es un algoritmo de optimización para resolver problemas de programación cuadrática. El algoritmo predice el conjunto activo de restricciones que se satisfacen con igualdad en la solución del problema. Calcula una secuencia de soluciones óptimas de problemas QP que involucran algunas de las restricciones del problema original, denominada secuencia de puntos factibles duales.

A continuación, se presenta un ejemplo general de cómo podría funcionar el algoritmo DASM usando valores hipotéticos para un problema de optimización de cartera con 2 activos, el ejemplo fue construido a partir de lo expuesto en Goswami, Mondal, y Paruya (2012) y Walker (2014):

Bajo la suposición de que se trata de encontrar la mejor composición de una cartera en la que, por simplicidad, tenemos 2 activos, Se plantearia el problema cuadrático de la siguiente manera Ecuación 1.8:

$$\begin{aligned} \min & \ Q(\vec{w}) = \vec{w}^T C \vec{w} \\ sujeto & a: \\ w_1 + w_2 &= 1 \\ 0 &\leq w_i \leq 1 \\ w_1 \mathbb{E} + w_2 \mathbb{E} \geq 0.005 \end{aligned} \tag{1.8}$$

Suponiendo que los cuales tienen unos rendimientos mensuales medios $r=\begin{bmatrix}0.02 & 0.03\end{bmatrix}$ y matriz de covarianza $C=\begin{bmatrix}0.001 & 0.0008\\0.0008 & 0.002\end{bmatrix}$. Se pueden construir los vectores y matrices necesarios para el algoritmo DASM de la siguiente manera:

- El vector de rentabilidad media mensual sería $r = \begin{bmatrix} 0.02 & 0.03 \end{bmatrix}$.
- La matriz de covarianza C se usaría como la matriz D en DASM.
- La restricción $w_1 + w_2 = 1$ se puede escribir en forma de matriz como $\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = 1$. Esta sería la primera fila de la matriz A en DASM.
- El requisito de rentabilidad mínima $w_1\mathbb{E} + w_2\mathbb{E} \geq 0.005$ puede escribirse en forma de matriz como $\begin{bmatrix} 0.02 & 0.03 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \geq 0.005$. Esta sería otra fila de la matriz A en DASM.
- Las restricciones $0 \le w_i \le 1$ se pueden escribir en forma de matriz como $\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \ge 0$ y $\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \ge 0$ para límites inferiores y $\begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \ge -1$ y $\begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \ge -1$ para límites superiores.

• La matriz
$$A$$
 luciría así: $A = \begin{bmatrix} 1 & 1 \\ 0.02 & 0.03 \\ 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}$

El vector b correspondiente sería $\begin{bmatrix} 1 & 0.005 & 0 & 0 & -1 & -1 \end{bmatrix}$. Luego podemos usar el algoritmo DASM para resolver este problema de programación cuadrática y determinar la asignación óptima de activos en nuestra cartera.

Paso 0: Encuentre el mínimo sin restricciones resolviendo el problema de programación cuadrática sin restricciones. Establecer el número de elementos del conjunto activo A (conjunto vacío) a cero.

Paso 1: Elija una restricción violada, si la hay. En este caso, supongamos que se viola la restricción $w_1+w_2=1$.

Paso 2: Calcule las direcciones del paso primario y dual y la longitud del paso $t = min(t_1, t_2)$. Supongamos que $t = t_2$.

Paso 3: Da un paso y actualiza el conjunto activo A y la solución (S) par (x, A). Como $t=t_2$, agregamos la p-ésima restricción (en este caso $w_1+w_2=1$) a \bar{N} y actualizamos H y N^* en Ecuación 1.9.

$$N^* = (\bar{N}^T Q^{-1} \bar{N}) \bar{N}^T Q^{-1}$$

$$H = Q^{-1} (I - \bar{N} N^*)$$
(1.9)

Donde N^* es la pseudo-inversa o la inversa generalizada Moore-Penrose de \bar{N} , la matriz de los vectores normales de las restricciones en el conjunto activo A. H es el operador hessiano inverso reducido de Q.

Se repetin estos pasos de manera iterativa hasta que se satisfagan todas las restricciones y se haya determinado la asignación óptima de activos.

Apéndices Capítulo 1

Tabla 1.1: Clasificaciones de procesos estocásticos

Variable dependiente	Subíndice Discreto	Subíndice Continuo
Discreta	Proceso de estado discreto	Proceso de estado discreto y
	y tiempo discreto	tiempo continuo
Continua	Proceso de estado	Proceso de estado continuo y
	continuo y tiempo discreto	tiempo continuo

Tomada de: Ruiz (2011).

Tabla 1.2: Estructura de datos de precios

Date	Open	High	Low	Close	Volume	Adjusted
2001-05-24	3.600	3.620	3.510	3.608	216270100	-0.1317839
2001-05-25	3.600	3.676	3.580	3.602	50448300	-0.1315648
2001-05-28	3.560	3.604	3.544	3.580	26118945	-0.1307612
2001-05-29	3.562	3.626	3.562	3.614	26910070	-0.1320031
2001-05-30	3.606	3.648	3.602	3.620	48229995	-0.1322222
2001-05-31	3.620	3.676	3.610	3.670	24806710	-0.1340484

Elaboración propia: Mediante el uso de RStudio con la base de datos histórico de "INDITEX", obtenida de https://finance.yahoo.com/, en el periodo comprendido entre el 24-05-2001 al 31-05-2001.

Elaboración propia: Mediante el uso de RStudio con la base de datos histórico del IBEX, obtenida de https://finance.yahoo.com/, en el periodo comprendido entre el 01-1995 al 01-1997.

Elaboración propia: Mediante el uso de RStudio con la base de datos histórico del IBEX, obtenida de https://finance.yahoo.com/, en el periodo comprendido entre el 01-2000 al 01-2003.

Figura 1.1: Tendencia alcista y heterocedástica

Figura 1.2: Tendencia bajista y heterocedástica

Figura 1.3: Sin tendencia, homocedástica y estacionaria

Figura 1.4: Descomposición: estacionalidad y error

Elaboración propia: Mediante el uso de RStudio con la base de datos histórico del IBEX obtenida de https://finance.yahoo.com/, en el periodo comprendido entre el 01-2000 al 01-2003, usando las rentabilidades calculadas a partir del precio de cierre.

Elaboración propia: Mediante el uso de RStudio con la base de datos histórico del IBEX obtenida de https://finance.yahoo.com/, descomponiendo la serie de tiempo conformada por las observaciones que abarcan el periodo del 01-2000 al 01-2023.

Figura 1.5: Correlograma

Elaboración propia: Mediante el uso de RStudio.

Tomada de: Deep learning with R de Chollet y Allaire (2018).

Tomada de: Deep learning with R de Chollet y Allaire (2018).

Tomada de: Tema 14: redes neuronales de Larrañaga (2007).

Elaboración propia: Elaborada a partir de Jing (2020). Muestra como el tamaño del vector de salida cambia según el tamaño de filtro que se usa.

Figura 1.6: Relación entre IA-ML-DL

Figura 1.7: Programación clásica y machine learning

Figura 1.8: Estructura básica de una red neuronal artificial

Figura 1.9: Como kernel_size afecta el vector de salida

Figura 1.10: Como stride afecta el vector de salida

Elaboración propia: Elaborada a partir de Jing (2020). Muestra como el parámetro stride afecta el tamaño del vector de salida.

Figura 1.11: Como dilation afecta el vector de salida

Elaboración propia: Elaborada a partir de Jing (2020). Muestra como el parámetro dilation afecta el tamaño del vector de salida.

Figura 1.12: Como padding afecta el vector de salida

Elaboración propia: Elaborada a partir de Jing (2020). Muestra como el parámetro padding afecta el tamaño del vector de salida.

Figura 1.13: Despliegue del bucle de una red neuronal recurrente estándar

Tomada de: Understanding LSTM networks, Olah (2015).

Figura 1.14: Información relevante cercana

Figura 1.15: Información relevante lejana

Figura 1.16: Diferencia entre los módulos de repetición

Figura 1.17: LSTM funcionalidad: Representación del paso $1\,$

Figura 1.18: LSTM funcionalidad: Representación del paso 2

Figura 1.19: LSTM funcionalidad: Representación del paso 3 $\,$

Figura 1.20: LSTM funcionalidad: Representación del paso $4\,$

2 Capítulo 2: Procedimiento

Objetivo del capitulo

2.1 Datos

Este epígrafe se encuentra dividido en dos sub-epígrafes en los cuales se describe el proceso de obtención de los datos necesarios para la realización de el resto del procedimiento. En el primero se detallan los pasos llevados a cabo para obtener los datos de las empresas y seleccionar aquellas con las que se trabajó en el resto del procedimiento. En el segundo sub-epígrafe se presenta una breve explicación de los indicadores computados que se utilizarán como variables de entrada, en conjunto con los valores históricos de rentabilidad de las empresas seleccionadas en el primer sub-epígrafe.

2.1.1 Obtención de Datos

En el presente sub-epígrafe se exponen los pasos ejecutados para la obtención y selección de los datos, para los procesos explicados en los siguientes sub-epígrafes. Una explicación más detallada, en lo respecto a el código utilizado para la realización del procedimiento expuesto en el presente sub-epígrafe se encuentra en Sección A.O.1.

Con el objetivo de ejemplificar como las redes neuronales artificiales y la programación cuadratica pueden ser usadas en una estrategia de gestión de cartera, se decidio en el presente trabajo utilizar datos de la bolsa del mercado español. Por lo que se decidio trabajar con la información correspondiente a las empresas que se encuentran en la lista de empresas cotizadas que se expone en «Empresas cotizadas» (s. f.) y puede ver en Tabla 2.1.

En la Tabla 2.1 se recogen los datos de 120 empresas. Siendo los datos recogidos el nombre, ticker, sector y subsector, mercado, indice de cada una de las empresas y si fueron selecciondas o no para realizar el resto del procedimiento después de la realización de los pasos expuestos en el presente sub-epígrafe.

Con el objetivo de obtener los datos de las empresas y analizarlas para selccionar aquellas con las que se trabajó en el resto del procedimietno se usó como fuente (s. f.a). A continuación, se expone el proceso llevado a cabo para la obtención y selección de los datos.

Se decidió descargar los datos mensuales de cada una de las empresas recogidas en Tabla 2.1. Obteniendose todos los datos comprendidos entre el 31 de enero del 2000 al 28 de febrero del 2023 de cada una de las entidades.

Con el objetivo de simplificar el proceso expuesto en el resto del procedimiento se decidió seleccionar solo aquellas empresas que contaban con el mayor número de observaciones, quedando con 44 empresas de las 120 que se recogen en la Tabla 2.1, cada una de las empresas seleccionadas cuenta con 278 observaciones.

Una vez realizada una primera selección se paso evaluar la calidad de los datos correspondietes a las empresas seleccionadas. Realizandose para dicha evalución un análisis exploratorio visual de los precios ajustado ya que, como se explicó en el capitulo anterior estos son los ideales para usar en cualquier metodología de análisiss históricos.

Durante el mencionado análisiss exploratorio visual, se detectó que existian irregularidades en los precios ajustados de algunas de las mismas. Las irregularidades detectadas consitían en el incorrecto registro de los precios ajustados, así como errores en el cálculo de estos. Estos errores se detectaron facilmente al observar las gráficas de los valores de el precio de cierre ajustado, de las empresas seccionadas, tendencia constante en periodos largos de tiempo, como se observa en Figura 2.1, lo que indica un registro erroneo de las variaciones de los precios; así como cambios bruscos de hasta más de un 100% en los mismos en un solo período de tiempo, lo que puede indicar un mal cálculo en el precio ajustado, como se ve en Figura 2.2, en este último caso se verificó con otras fuentes como (s. f.b), para comprobar que de echo estaban mal computados los precios.

Dado el tiempo con el que se contaba para realizar el estudio expuesto en el procedimiento y la extensa cantidad de tiempo que requeriría la investigación a realizar para sustituir lo valores erroneos en las series se decidió eliminar estas irregularidades eliminando aquellas series en las que las variaciones de los precios sin registrar sea en más de 10 observaciones, así como también se decidió trabajar con los valores posteriores a enero del 2005, que ya no presentaban inconsistencia en el calculo del precio ajustado.

Quedando tras los ajustes realizados 36 empresas, como se ve en la columna seleccionadas de la Tabla 2.1, cada una con 219 observaciones.

Una vez selecciondas las empresas con las que se trabajó se computaron las rentabilidades de estas a partir de los precios ajustados. Además de las rentabilidades correspondientes a las empresas seleccionadas se usaron las rentabilidades del precio de cierre ajustado del IBEX 35, además se computaron otras variables que sirven como indicadores del comportamiento de las rentabilidades, y la relación de estas con las del indice, en este caso las del IBEX 35. Entre estas variables se ecuentran las volatilidades de las empresas y el indice, la correlación entre los valores de las series y el IBEX, y la beta de las empresas en relación con el IBEX.

2.1.2 Indicadores

En el presente sub-epígrafe se expone una breve explicación de las variables computadas para usar como variables de entradas en conjunto con los valores históricos de las rentabilidades de las empresas. Una explicación más detallada, en lo respecto a el código utilizado para la realización del procedimiento expuesto en el presente sub-epígrafe se encuentra en Sección A.0.2.

2.1.2.1 Volatilidad

A partir de lo expuesto en Hargrave (2023) y Hayes (2023) la desviación estándar y la volatilidad son dos conceptos relacionados que miden cuánto fluctúa el precio de una acción u otro activo a lo largo del tiempo. La desviación estándar es un término estadístico que cuantifica la dispersión de un conjunto de puntos de datos alrededor de su valor medio. La volatilidad es un término financiero que describe el grado de variación en los rendimientos de un activo durante un período de tiempo determinado.

La desviación estándar y la volatilidad son importantes en el análisis del mercado de valores porque indican el riesgo y la incertidumbre asociados con la inversión en un activo en particular. Una desviación estándar o volatilidad alta significa que el precio del activo puede cambiar significativamente en cualquier dirección, lo que implica un mayor potencial de ganancias o pérdidas. Una desviación estándar o volatilidad baja significa que el precio del activo es relativamente estable y predecible, lo que implica un menor potencial de ganancias o pérdidas Hayes (2023).

Para calcular la volatilidad de una acción o indice se calcula la desviación estandar de las rentabilidades. Siendo por tanto los calculos necesarios los que se muestran a continuación:

$$R_{i} = \frac{P_{i} - P_{i-1}}{P_{i-1}}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (R_{i} - \bar{R})^{2}}{N}}$$
 (2.1)

donde:

- R_i es la rentabilidad de la acción en el periodo i
- P_i y P_{i-1} son los precios de una acción en periodos de tiempo i e i-1, respectivamente.
- σ es la desviación estandar N es el número de observaciones
- \bar{R} es la rentabilidad media de la acción.

La desviación estándar y la volatilidad son herramientas útiles para que los inversores y analistas evalúen el equilibrio riesgo-recompensa de diferentes activos y carteras. También pueden ayudar a comparar el rendimiento de diferentes activos y carteras a lo largo del tiempo y en diferentes condiciones de mercado.

2.1.2.2 Correlación

Como se explica en Edwards (2022) la correlación es una medida estadística que determina cómo dos variables se mueven entre sí. En el análisis del mercado de valores, la correlación puede ayudar a comprender el comportamiento de diferentes acciones o indicadores del mercado a lo largo del tiempo. Tomando como ejemplo los datos que se usan en este trabajo, si los precios de una de las empresas seleccionadas tienden a subir y bajar junto con el IBEX 35, estos precios tienen una correlación positiva. Si al contrario los precios de la empresa tienden a subir cuando el indicador del IBEX 35 baja, tienen una correlación negativa. Un coeficiente de correlación de cero significa que no existe una relación lineal entre las variables, siendo en este caso los valores del IBEX 35 y los precios de una de las empresas determinadas.

Como se expone en Ross (2022) la correlación entre dos variables se calcula usando la siguiente equación:

$$\rho_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
 (2.2)

donde:

- ρ_{xy} es el coeficiente de correlación
- \bullet n es el número de observaciones
- x_i y y_i son los valores de las dos variables para la i observación
- \bar{x} y \bar{y} son las medias de las dos variables.

Como se explica también en Edwards (2022), el coeficiente de correlación se encuentra en un rango de -1 a 1, donde -1 indica una correlación negativa perfecta, 1 indica una correlación positiva perfecta, y 0 indica que no existe correlación alguna. Pudiéndose entender que, mientras más cercano se encuentre el coeficiente de correlación tanto a -1 como a 1, más fuerte es la relación lineal entre las variables analizadas.

Como ya se explicó con anterioridad el coeficiente de correlación, en el presente trabajo, se puede utilizar para analizar que tan parecido se mueven las rentabilidades de una empresa en comparación con las del IBEX 35. La correlación también se puede utilizar para diversificar una cartera eligiendo acciones que tengan una correlación baja o negativa entre sí, como se explica en Boyte-White (2022). Esto puede ayudar a reducir el riesgo general de la cartera, ya

que las pérdidas de una acción pueden compensarse con las ganancias de otra. Sin embargo, la correlación no es constante y puede cambiar con el tiempo debido a varios factores, como las condiciones del mercado, los eventos económicos o las noticias de la empresa. Por lo tanto, es importante monitorear la correlación de acciones regularmente y ajustar la cartera en consecuencia Boyte-White (2022).

La correlación es una herramienta valiosa en el análisis del mercado de valores, pero no implica causalidad. Tener una correlación alta o baja entre dos variables no implica que una variable cause cambios en la otra. La correlación simplemente mide la fuerza y dirección de la relación lineal entre dos variables, sin considerar otros factores que puedan influir en ellas.

Como se expone también en Edwards (2022) la correlación guarda una intima relación con la volatilidad del mercado y de las acciones, pudiéndose ver que, durante períodos de mayor volatilidad, como la crisis financiera de 2008, las acciones pueden tener una tendencia a estar más correlacionadas, incluso si se encuentran en diferentes sectores. Los mercados internacionales también pueden volverse altamente correlacionados durante tiempos de inestabilidad. Los inversores pueden querer incluir activos en sus carteras que tengan una baja correlación de mercado con los mercados de valores para ayudar a administrar su riesgo.

2.1.2.3 Beta

Como se explica en Kenton (2022) Beta es una medida de cuán sensibles son los rendimientos de una acción a los cambios en los rendimientos del mercado. Se calcula como la pendiente de la línea de regresión que se ajusta a los rendimientos históricos de la acción y del mercado. Una beta de 1 significa que la acción se mueve en sincronía con el mercado, una beta superior a 1 significa que la acción es más volátil que el mercado y una beta inferior a 1 significa que la acción es menos volátil que el mercado.

Beta es importante en el análisis del mercado de valores porque, como se explica en Kenton (2022), ayuda a los inversores a evaluar el riesgo y el rendimiento de una cartera. Al conocer la versión beta de cada acción en una cartera, los inversores pueden estimar cuánto fluctuará la cartera con los movimientos del mercado y ajustar su asignación de activos en consecuencia. Por ejemplo, si un inversor quiere reducir el riesgo de su cartera, puede elegir acciones con valores beta bajos o negativos que tienden a moverse en dirección opuesta al mercado.

Como se explica en Monaghan (2019) Beta está relacionado con la correlación, pero no son lo mismo. Como se explicó con antrioridad la correlación es una medida de cuán linealmente relacionadas están dos variables, Beta, por otro lado, es una medida de cuán fuertemente relacionadas están dos variables, lo que indica cuánto cambia una variable cuando otra variable cambia en una unidad. Beta se puede calcular a partir de la correlación usando la siguiente fórmula:

$$\beta = \frac{\rho_{xy}\sigma_x}{\sigma_y} \tag{2.3}$$

donde:

- ρ_{xy} es el coeficiente de correlación entre x y y
- σ_x es la volatilidad de x
- σ_y es la volatilidad de y.

2.2 Modelado

El presente epígrade se encuentra dividido en tres sub-epígrafes, los que en su conjunto explican el procedimiento llevado a cabo para la creación de los distintos modelos probados. En el primero de los sub-epígrafes se explica cómo se le da forma a los vectores de entrada y salida con los que se entrena y prueba el modelo a partir de los datos resultantes del epígrafe anterior. En el segundo sub-epígrafe se exponen las distintas estructuras de modelos de RNA, conformadas a partir de distintas combinaciones de capas CNN y LSTM, que se probaron, además de profundizarse un poco más en aspectos para tener en cuenta en la construcción de modelos de RNA. Por último, en el tercer sub-epígrafe se expone la metodología de entrenamiento utilizada y el procedimiento realizado para el entrenamiento de los distintos modelos.

2.2.1 Vectores

En el presente sub-epígrafe se expone el procedimiento llevado a cabo para la creación de los vectores de entrada y salida a partir de los datos resultantes del procedimiento expuesto en el epígrafe anterior. Una explicación más detallada, en lo respecto a el código utilizado para la realización del procedimiento expuesto en el presente sub-epígrafe se encuentra en Sección A.0.1.

La estructura del conjunto de vectores de entradas y salidas es de vital importancia en el modelado de técnicas de ML teniendo un impacto importante en su eficacia. El conjunto debe de vectores debe crearse de manera representativa del problema a resolver, por lo que los pasos descritos a continuación explican en detalle los aspectos del problema a dar respuesta en el presente trabajo y como dar forma al conjunto de vectores de entradas y salidas para ello.

Como se ha mencionado con anterioridad el objetivo del presente trabajo es exponer un procedimiento para la utilización de modelos de RNA y programación cuadrática en una estrategia de inversión. El modelado atiende a la necesidad de obtener unas predicciones lo más acertada posible para posteriormente, basandose en las predicciones y en los datos históricos, hallar la composición de cartera idonea. Por lo que el problema a representar con los conjuntos de vectores de entradas y salidas es como explicar el comportamiendo de la rentabilidad de una empresa en un instante de tiempo i+1 con los valores de varias variables en el instante de tiempo i.

Para la representación de este problema se crearon vectores tridimensionales, siguiendo lo expuesto en Chollet y Allaire (2018). Las dimensiones de estos vectores se explican de la siguiente manera:

- La primera dimensión esta comprendida por el número de muestras obtenidas al seccionar las observaciones de las distintas series en en vectores bidimensionales bidimensionales consecutivos.
- La segunda dimensión esta comprendida por el número de observaciones, de las distintas series, recogido en cada vector bidimensional.
- La tercera dimensión es el número de series en cada vector bidimensional.

Por lo que para la correcta obtención de estas muestras se deben definir primero que series serán utilizadas para los vectores de entrada y salida. Las series utilizadas en los vectores de entrada fueron definidas en el epígrafe anterior, siendo estas: las rentabilidades históricas de la empresa y el IBEX, las volatilidades históricas de la empresa y el IBEX, la correlación histórica de la empresa y el IBEX, y el Beta histórico de la empresa y el IBEX. La serie utilizada para los vectores de salida es las rentabilidades históricas de la empresa.

Posteriormente se definió el horizonte temporal que se desea preveer, este es un aspecto clave en la creación de los conjuntos de entradas y de salidas. El número de observaciones definido como horizonte temporal determina las observaciones los vectores de salida, en el presente trabajo se deterinó como horizonte temporal una observación ya que se desea predecir la rentabilidad del próximo mes de las distintas empresas seleccionadas.

Y el último aspecto a definir es cuantas observaciones debe observar el modelo para inferir la salida deseada. Esto define la cantidad de observaciones que se tomaran de cada serie de tiempo para conformar los vectores de entrada. Para determinar este aspecto se debe realizar un proceso iterativo probando distintas cantidades y evaluar los resultados obtenidos por los modelos que se entrenen con dichos. Para simplificar el proceso, en el presente trabajo se determinó probar distintos tamaños de entrada siendo estos 1, 2 y 3 observaciones. Probandose así de cierta manera como el tamaño de las entradas afecta la predicción obtenida.

Por lo que si sabemos que cada una de las series utilizadas para los vectores de entrada contien unas 217 observaciones se puede calcular el número de muestras que se obtuvo de cada serie siguiendo la siguiente ecuación:

$$m = n - (i - 1 + o) (2.4)$$

donde:

- m el número de muestras
- n la cantidad de observaciones de las series

 $\bullet\,\,i$ y o el número de observaciones en los vecotres de entrada y salida respectivamente.

En la Tabla 2.2 se expone la cantidad de muestras obtenidas por serie para los distintos tamaños de vectores de entrada planteados, así como el número de muestras totales teniendo en cuenta las 36 seleccionadas. En la Figura 2.3 se expone como lucen los vectores de entrada y salida, en el caso deque el vector de entrada cuenta con 3 observaciones.

Apéndices Capítulo 2

Tabla 2.1: Lista de empresas cotizadas

NOMBRE	TICK ERS TOR-SUBSECTOR	MERCA DO DICE	Seleccionadas
ACCIONA,S.A.	ANA.Met.Basicos, Industria y Construcción - Construcción	Mercado IBEX 35®, Continuo IGBM	X
ACERINOX, S.A.	ACX. Mct. Basicos, Industria y Construcción - Mineral, Metales y Transformación	Mercado IBEX 35®, Continuo IGBM, IBEX TOP Dividendo®	X
ACS,ACTIVIDAD DE CONST.Y SERVICIOS S.A	ESCS.MGat.Basicos, Industria y Construcción - Construcción	Mercado IBEX 35®, Continuo IGBM, IBEX TOP Dividendo®	
ADOLFO DOMINGUEZ, S.A.	ADZ.MGnes de Consumo - Textil, Vestido y Calzado	Mercado IGBM Continuo	X
AEDAS HOMES, S.A.	AEDASSAMICios Inmobiliarios - Inmobiliarias y Otros	Mercado IGBM Continuo	
AENA, S.M.E., S.A.	AENASAMGcios de Consumo - Transporte y Distribución	Mercado IBEX 35®, Continuo IGBM	
AIRBUS SE	AIR.Mat.Basicos, Industria y Construcción - Aerospacial	Mercado IGBM Continuo	
AIRTIFICIAL INTELLIGENCE STRUCTURES S.A.	AI.MCMat.Basicos, Industria y Construcción - Ingeniería y Otros	Mercado IGBM Continuo	
ALANTRA PARTNERS, S.A.	ALNTSMfcicios Financieros - Cartera y Holding	Mercado IGBM Continuo	
ALMIRALL, S.A.	ALM. Riénes de Consumo - Productos farmaceúticos y Biotecnología	Mercado IGBM Continuo	

NOMBRE	TICK ERS TOR-SUBSECTOR	MERCAD Ø DICE	Seleccionadas
AMADEUS IT	AMS. Mc nología y	Mercado IBEX 35®,	
GROUP, S.A.	Telecomunicaciones - Electrónica y Software	Continuo IGBM	
AMPER, S.A.	AMP. We Cnología y	Mercado IGBM	X
	Telecomunicaciones - Electrónica y Software	Continuo	
AMREST	EAT.Mevicios de Consumo - Ocio,	Mercado IGBM	
HOLDINGS, S.E.	Turismo y Hostelería	Continuo	
APERAM,	APAMMACBasicos, Industria y	Mercado NA	
SOCIETE ANONYME	Construcción - Mineral, Metales y Transformación	Continuo	
APPLUS	APPSMACBasicos, Industria y	Mercado IGBM	
SERVICES, S.A.	Construcción - Ingeniería y Otros	Continuo	
ARCELORMITTA	AIMTS.M6t.Basicos, Industria y	Mercado IBEX 35®,	
S.A.	Construcción - Mineral, Metales y Transformación	Continuo IGBM	
ÁRIMA REAL	ARM. S &Cvicios	Mercado IGBM	
ESTATE SOCIMI, S.A.	Inmobiliarios - SOCIMI	Continuo	
ATRESMEDIA	A3M. Skevicios de Consumo - Medios	Mercado IGBM	
CORP. DE MEDIOS DE COM. S.A.	de Comunicación y Publicidad	Continuo	
ATRYS	ATRYBié6es de Consumo - Productos	Mercado IGBM	
HEALTH, S.A.	farmaceúticos y Biotecnología	Continuo	
AUDAX RENOVABLES,	ADX. MCróleo y Energía - Energías Renovables	Mercado IGBM Continuo	
S.A.			
AZKOYEN S.A.	AZK.Mat.Basicos, Industria y Construcción - Fabric. y Montaje Bienes de Equipo	Mercado IGBM Continuo	X
BANCO	BBVASMCicios Financieros - Bancos y	Mercado IBEX 35®,	X
BILBAO VIZCAYA ARGENTARIA, S.A.	Cajas de Ahorro	Continuo IGBM	
BANCO DE SABADELL, S.A.	SAB. Mervicios Financieros - Bancos y Cajas de Ahorro	Mercado IBEX 35®, Continuo IGBM	X

NOMBRE	TICK ERS TOR-SUBSECTOR	MERCAD N DICE	Seleccionadas
BANCO SANTANDER, S.A.	SAN. Mevicios Financieros - Bancos y Cajas de Ahorro	Mercado IBEX 35®, Continuo IGBM	X
BANKINTER,S.A.	. BKT. Necvicios Financieros - Bancos y Cajas de Ahorro	Mercado IBEX 35®, Continuo IGBM, IBEX TOP Dividendo®	X
BERKELEY ENERGIA LIMITED	BKY. M6 t.Basicos, Industria y Construcción - Mineral, Metales y Transformación	Mercado IGBM Continuo	
BODEGAS RIOJANAS, S.A.	RIO.Mentes de Consumo - Alimentación y Bebidas	Mercado IGBM Continuo	X
BORGES AGRICULTURAL & INDUST. NUTS, S.A.	BAIN Baches de Consumo - Alimentación y Bebidas	Mercado NA Continuo	
CAIXABANK,	CABKSANGicios Financieros - Bancos y	Mercado IBEX 35®,	
S.A.	Canalas de Ahorro	Continuo IGBM	
CAJA DE AHORROS DEL MEDITERRANEO	CAM. Secvicios Financieros - Bancos y Cajas de Ahorro	Mercado NA Continuo	
CASH, S.A.	CASHSMCicios de Consumo - Otros Servicios	Mercado IGBM, IBEX Continuo TOP Dividendo®	
CELLNEX	CLNXIMGología y	Mercado IBEX 35®,	
TELECOM, S.A.	Telecomunicaciones - Telecomunicaciones y Otros	Continuo IGBM	
CIA. DE DIST.	LOG. Skevicios de	Mercado IBEX 35®,	
INTEG. LOGISTA HOLDINGS	Consumo - Transporte y Distribución	Continuo IGBM, IBEX TOP Dividendo®	
CIA.	CEV. Note vicios	Mercado NA	
ESPAÑOLA VIVIENDAS EN ALQUILER,S.A	Inmobiliarios - Inmobiliarias y Otros	Continuo	
• ,	, CLEOMACBasicos, Industria y	Mercado NA	
EDIFICACION DE O.PUBLICAS	Construcción - Construcción	Continuo	

NOMBRE	TICK ERS TOR-SUBSECTOR	MERCA DO DICE	Seleccionadas
CIE AUTOMOTIVE, S.A.	CIE.Mat.Basicos, Industria y Construcción - Mineral, Metales y Transformación	Mercado IGBM Continuo	
CLINICA	CBAVSMGicios de Consumo - Otros	Mercado IGBM	
BAVIERA, S.A.	Servicios	Continuo	
COCA-COLA	CCEPBWeGes de	Mercado IGBM	
EUROPACIFIC	Consumo - Alimentación y	Continuo	
PARTNERS	Bebidas		
PLC			
CONSTRUCC.	CAF.Mat.Basicos, Industria y	Mercado IGBM	X
Y AUX. DE	Construcción - Fabric. y	Continuo	
FERROCARRILE	S, Montaje Bienes de Equipo		
S.A.		M 1 IDDV are	
CORP.	ANE.Mccróleo y Energía - Energías	Mercado IBEX 35®,	
ACCIONA	Renovables	Continuo IGBM	
ENERGÍAS			
RENOVABLES,			
S.A.	ALD MG-:-: E: Gt	M l- ICDM	v
CORPORACION FINANCIERA	ALB. Medvicios Financieros - Cartera	Mercado IGBM Continuo	X
	y Holding	Continuo	
ALBA, S.A. DEOLEO, S.A.	OLE. W Gnes de	Mercado IGBM	
DEOLEO, S.A.	Consumo - Alimentación y	Continuo	
	Bebidas	Continuo	
DESA	DESAMaCBasicos, Industria y	Mercado NA	
	Construcción - Mineral, Metales	Continuo	
	y Transformación		
DIA-	DIA.MServicios de	Mercado IGBM	
DISTRIBUIDORA	Consumo - Comercio	Continuo	
INT. DE			
ALIMENT. S.A.	ACTIVIC D	1. TOD16	
DURO	MDF.Mat.Basicos, Industria y	Mercado IGBM	
FELGUERA,	Construcción - Ingeniería y	Continuo	
S.A.	Otros	M 1 IODM IDDX	37
EBRO FOODS,	EBROEMGes de	Mercado IGBM, IBEX	X
S.A.	Consumo - Alimentación y	Continuo TOP	
EDDEAMC	Bebidas	Dividendo® Marcado ICPM	
EDREAMS	EDR. Skevicios de Consumo - Ocio,	Mercado IGBM	
ODIGEO, S.A.	Turismo y Hostelería	Continuo	

NOMBRE	TICKERSTOR-SUBSECTOR	MERCA DIO DICE	Seleccionadas
ELECNOR S. A.	ENO. M 6t.Basicos, Industria y Construcción - Fabric. y Montaje Bienes de Equipo	Mercado IGBM, IBEX Continuo TOP Dividendo®	
ENAGAS, S.A.	ENG. MCróleo y Energía - Electricidad y Gas	Mercado IBEX 35®, Continuo IGBM, IBEX TOP Dividendo®	
ENCE ENERGIA Y CELULOSA, S.A.	ENC. Mienes de Consumo - Papel y Artes Gráficas	Mercado IGBM Continuo	
ENDESA, SOCIEDAD ANONIMA	ELE.Metróleo y Energía - Electricidad y Gas	Mercado IBEX 35®, Continuo IGBM, IBEX TOP Dividendo®	X
ERCROS S.A.	ECR. M at.Basicos, Industria y Construcción - Industria Química	Mercado IGBM Continuo	X
FAES FARMA, S.A.	FAE.NRiènes de Consumo - Productos farmaceúticos y Biotecnología	Mercado IGBM, IBEX Continuo TOP Dividendo®	X
FERROVIAL, S.A. FLUIDRA, S.A.	FER.Mat.Basicos, Industria y Construcción - Construcción FDR.Mat.Basicos, Industria y Construcción - Ingeniería y Otros	Mercado IBEX 35®, Continuo IGBM Mercado IBEX 35®, Continuo IGBM	X
FOMENTO DE CONSTR. Y CONTRATAS S.A.	FCC.Mat.Basicos, Industria y Construcción - Construcción	Mercado IGBM, IBEX Continuo TOP Dividendo®	X
GENERAL DE ALQUILER DE MAQUINARIA, S.A.	GAM.Mat.Basicos, Industria y Construcción - Ingeniería y Otros	Mercado IGBM Continuo	
GESTAMP AUTOMOCION, S.A.	GEST M4C Basicos, Industria y Construcción - Fabric. y Montaje Bienes de Equipo	Mercado IGBM Continuo	
GLOBAL DOMINION ACCESS, S.A.	DOM. Mchología y Telecomunicaciones - Telecomunicaciones y Otros	Mercado IGBM Continuo	

NOMBRE	TICK ERS TOR-SUBSECTOR	MERCA DØ DICE	Seleccionadas
GRENERGY RENOVABLES, S.A.	GRE. Mc róleo y Energía - Energías Renovables	Mercado IGBM Continuo	
GRIFOLS, S.A.	GRF. Mienes de Consumo - Productos farmaceúticos y Biotecnología	Mercado IBEX 35®, Continuo IGBM	
GRUPO CATALANA OCCIDENTE, S.A.	GCO. Subcivicios Financieros - Seguros	Mercado IGBM Continuo	X
GRUPO	ENER PM tőleo y Energía - Energías	Mercado IGBM	
ECOENER, S.A.	Renovables	Continuo	
GRUPO EMPRESARIAL SAN JOSE, S.A.	GSJ.M. at.Basicos, Industria y Construcción - Construcción	Mercado IGBM Continuo	
GRUPO	EZE.M@cnología y	Mercado NA	
EZENTIS, S.A.	Telecomunicaciones - Telecomunicaciones y Otros	Continuo	
IBERDROLA, S.A.	IBE.Metróleo y Energía - Electricidad y Gas	Mercado IBEX 35®, Continuo IGBM, IBEX TOP Dividendo®	X
IBERPAPEL	IBG.MRienes de Consumo - Papel y	Mercado IGBM	X
GESTION, S.A.	Artes Gráficas	Continuo	
INDRA SISTEMAS, S.A., SERIE A	IDR.M©cnología y Telecomunicaciones - Electrónica y Software	Mercado IBEX 35®, Continuo IGBM	
INDUSTRIA DE	ITX.Meienes de Consumo - Textil,	Mercado IBEX 35®,	
DISEÑO TEXTIL, SA "INDITEX"	Vestido y Calzado	Continuo IGBM	
INMOBILIARIA	COL. MC vicios	Mercado IBEX 35®,	
COLONIAL SOCIMI, S.A.	Inmobiliarios - SOCIMI	Continuo IGBM	
INMOBILIARIA	ISUR. \$4 6vicios	Mercado IGBM	
DEL SUR, S.A.	Inmobiliarios - Inmobiliarias y Otros	Continuo	
INNOVATIVE	ISE.M©rvicios de	Mercado NA	
SOLUTIONS ECOSYSTEM, S.A.	Consumo - Comercio	Continuo	

NOMBRE	TICKERSTOR-SUBSECTOR	MERCA DØ DICE	Seleccionadas
INTERNATIONAL	LIAG.M \$ @rvicios de	Mercado IBEX 35®,	
CONSOLIDAT.	Consumo - Transporte y	Continuo IGBM	
AIRLINES	Distribución		
GROUP			
LABORATORIO	RJF.MRienes de Consumo - Productos	Mercado IGBM	
REIG JOFRE,	farmaceúticos y Biotecnología	Continuo	
S.A.			
	ROVIBIOS de Consumo - Productos	Mercado IBEX 35®,	
FARMACEUTICO ROVI, S.A.	S farmaceúticos y Biotecnología	Continuo IGBM	
LAR ESPAÑA	LRE. MC vicios	Mercado IGBM, IBEX	
REAL ESTATE,	Inmobiliarios - SOCIMI	Continuo TOP	
SOCIMI, S.A.	TID MCC	Dividendo®	
LIBERTAS 7,	LIB.MSGrvicios	Mercado NA	
S.A.	Inmobiliarios - Inmobiliarias y Otros	Continuo	
LINEA	LDA. Medvicios Financieros - Seguros	Mercado IGBM	
DIRECTA		Continuo	
ASEGURADORA,			
S.A.			
LINGOTES	LGT.Mat.Basicos, Industria y	Mercado NA	X
ESPECIALES,	Construcción - Mineral, Metales	Continuo	
S.A.	y Transformación	M 1 IDEV 250	
MAPFRE, S.A.	MAP. McVicios Financieros - Seguros	Mercado IBEX 35®,	
		Continuo IGBM, IBEX TOP	
		Dividendo®	
MEDIASET	TL5.MServicios de Consumo - Medios	Mercado IGBM	
ESPAÑA	de Comunicación y Publicidad	Continuo	
COMUNICACION		Continuo	
S.A.	,		
MELIA	MEL. McVicios de Consumo - Ocio,	Mercado IBEX 35®,	X
HOTELS	Turismo y Hostelería	Continuo IGBM	
INTERNATIONAL			
S.A.	,		
MERLIN	MRL. SHE vicios	Mercado IBEX 35®,	
PROPERTIES,	Inmobiliarios - SOCIMI	Continuo IGBM, IBEX	
SOCIMI, S.A.		TOP	
·		$\operatorname{Dividendo}^{\mathbb{R}}$	

NOMBRE	TICK ERS TOR-SUBSECTOR	MERCA DO DICE	Seleccionadas
METROVACESA,	MVC. S& Cvicios	Mercado IGBM	
S.A.	Inmobiliarios - Inmobiliarias y Otros	Continuo	
MIQUEL Y COSTAS & MIQUEL, S.A.	MCM Bi Gies de Consumo - Papel y Artes Gráficas	Mercado IGBM, IBEX Continuo TOP Dividendo®	X
MONTEBALITO, S.A.	MTB. SACvicios Inmobiliarios - Inmobiliarias y Otros	Mercado NA Continuo	
NATURGY ENERGY GROUP, S.A.	NTG YP.Mf. eleo y Energía - Electricidad y Gas	Mercado IBEX 35®, Continuo IGBM, IBEX TOP Dividendo®	X
NATURHOUSE HEALTH, S.A.	NTH. Mienes de Consumo - Alimentación y Bebidas	Mercado IGBM Continuo	
NEINOR	HOM S elvaticios	Mercado IGBM	
HOMES, S.A.	Inmobiliarios - Inmobiliarias y Otros	Continuo	
NH HOTEL GROUP, S.A.	NHH. Mcvicios de Consumo - Ocio, Turismo y Hostelería	Mercado IGBM Continuo	X
NICOLAS CORREA S.A.	NEA.Mct.Basicos, Industria y Construcción - Fabric. y Montaje Bienes de Equipo	Mercado IGBM, IBEX Continuo TOP Dividendo®	X
NUEVA EXPRESION TEXTIL, S.A.	NXT. Ménes de Consumo - Textil, Vestido y Calzado	Mercado IGBM Continuo	
NYESA VALORES CORPORACION, S.A.	NYE. Mecvicios Inmobiliarios - Inmobiliarias y Otros	Mercado IGBM Continuo	
OBRASCON HUARTE LAIN, S.A.	OHLAMCBasicos, Industria y Construcción - Construcción	Mercado IGBM Continuo	X
OPDENERGY HOLDING, S.A.	OPDEPMtőleo y Energía - Energías Renovables	Mercado IGBM Continuo	
ORYZON GENOMICS, S.A.	ORY. Mienes de Consumo - Productos farmaceúticos y Biotecnología	Mercado IGBM Continuo	

NOMBRE	TICK ERS TOR-SUBSECTOR	MERCAD ® DICE	Seleccionadas
PESCANOVA,	PVA.MR@nes de	Mercado IGBM	
S.A.	Consumo - Alimentación y Bebidas	Continuo	
PHARMA MAR,	PHM. Riches de Consumo - Productos	Mercado IGBM	
S.A.	farmaceúticos y Biotecnología	Continuo	
PRIM, S.A.	PRM. Miches de Consumo - Productos farmaceúticos y Biotecnología	Mercado IGBM Continuo	
PROMOTORA	PRS.Mervicios de Consumo - Medios	Mercado IGBM	
DE	de Comunicación y Publicidad	Continuo	
INFORMACIONE	· ·		
PROSEGUR,	PSG.Mervicios de Consumo - Otros	Mercado IGBM, IBEX	X
CIA. DE	Servicios	Continuo TOP	
SEGURIDAD, S.A.		Dividendo®	
REALIA	RLIA SAGvicios	Mercado IGBM	
BUSINESS, S.A.	Inmobiliarios - Inmobiliarias y Otros	Continuo	
RED	RED. McCróleo y	Mercado IBEX 35®,	X
ELECTRICA	Energía - Electricidad y Gas	Continuo IGBM, IBEX	
CORPORACION,	J.	TOP	
S.A.		$\operatorname{Dividendo}^{\mathbb{R}}$	
RENTA 4	R4.MServicios Financieros - Servicios	Mercado IGBM	
BANCO, S.A.	de Inversión	Continuo	
RENTA	REN. Secvicios	Mercado IGBM	
CORPORACION	Inmobiliarios - Inmobiliarias y	Continuo	
REAL ESTATE,	Otros		
S.A.			
REPSOL, S.A.	REP.Metróleo y Energía - Petróleo	Mercado IBEX 35®,	X
		Continuo IGBM, IBEX	
		TOP	
		Dividendo®	
SACYR, S.A.	SCYRMaCBasicos, Industria y	Mercado IBEX 35®,	X
	Construcción - Construcción	Continuo IGBM, IBEX	
		TOP	
		Dividendo®	
SOLARIA	SLR.MPetróleo y Energía - Energías	Mercado IBEX 35®,	
ENERGIA Y	Renovables	Continuo IGBM	
MEDIO			
AMBIENTE,			
S.A.			

NOMBRE	TICK ERS TOR-SUBSECTOR	MERCAD Ø DICE	Seleccionada
SOLTEC	SOL.MPetróleo y Energía - Energías	Mercado IGBM	
POWER	Renovables	Continuo	
HOLDINGS,			
S.A.			
SQUIRREL	SQRLSMCicios de Consumo - Medios	Mercado NA	
MEDIA, S.A	de Comunicación y Publicidad	Continuo	
TALGO, S.A.	TLGOMCBasicos, Industria y	Mercado IGBM	
	Construcción - Fabric. y	Continuo	
	Montaje Bienes de Equipo		
TECNICAS	TRE.MAt.Basicos, Industria y	Mercado IGBM	
REUNIDAS,	Construcción - Ingeniería y	Continuo	
S.A.	Otros		
TELEFONICA,	TEF.Mccnología y	Mercado IBEX 35®,	X
S.A.	Telecomunicaciones -	Continuo IGBM, IBEX	
	Telecomunicaciones y Otros	TOP	
		${ m Dividendo}{ m ext{@}}$	
TUBACEX, S.A.	TUB.Mat.Basicos, Industria y	Mercado IGBM	X
	Construcción - Mineral, Metales	Continuo	
	y Transformación		
TUBOS	TRG.M6t.Basicos, Industria y	Mercado IGBM	
REUNIDOS,S.A.	Construcción - Mineral, Metales	Continuo	
	y Transformación		
UNICAJA	UNI.MServicios Financieros - Bancos y	Mercado IBEX 35®,	
BANCO, S.A.	Cajas de Ahorro	$\operatorname{Continuo}\operatorname{IGBM}$	
URBAS GRUPO	UBS.Mervicios	Mercado IGBM	
FINANCIERO,	Inmobiliarios - Inmobiliarias y	Continuo	
S.A.	Otros		
VIDRALA S.A.	VID.Meienes de Consumo - Otros	Mercado IGBM	X
	Bienes de Consumo	Continuo	
VISCOFAN,	VIS.Medenes de	Mercado IGBM, IBEX	X
S.A.	Consumo - Alimentación y	Continuo TOP	
	Bebidas	Dividendo®	
VOCENTO, S.A.	VOC. Secvicios de Consumo - Medios	Mercado IGBM	
,	de Comunicación y Publicidad	Continuo	

Obtenido de: La información expuesta en el sitio oficial de Bolsas y Mercados españoles, «Empresas cotizadas» (s. f.).

Tabla 2.2: Cantidades de muestras utilizadas para entrenar los modelos

Entradas	Muestras.por.empresa	Muestras.totales
1	216	7776
2	215	7740
3	214	7704

Obtenido de: La información expuesta en el sitio oficial de Bolsas y Mercados españoles, «Empresas cotizadas» (s. f.).

Figura 2.1: Tendencia constante en los precios de cierre ajustado de la empresa "Nueva Expresión Textil S.A"

Elaboración propia: A partir de los datos obtenidos de (s. f.a) correspondientes a la empresa "Nueva Expreción Textil S.A" en el periodo del 31 de enero del 2000 al 28 de febrero del 2023.

Figura 2.2: Cambio brusco de precios que reflejan calculo erróneo de los precios de cierre ajustado, "BANKINTER,S.A."

Elaboración propia: A partir de los datos obtenidos de (s. f.a) correspondientes a la empresa "Nueva Expreción Textil S.A" en el periodo del 31 de enero del 2000 al 28 de febrero del 2023.

Figura 2.3: Visualización de vectores de entrada y salida

Elaboración propia: Elaborada a partir de imagen en Chollet y Allaire (2018). Muestra como lucen los vectores tridimensionales de entradas y salidas correspondientes a los datos de una empresa, en el caso de que se usen tres observaciones para crear el vector de entrada.

References

- s. f.a. Yahoo Finance. https://finance.yahoo.com/.
- ——. s. f.b. Investing. https://www.investing.com/.
- Aijun Zhang & Chun-hung Li & Agus Sudjianto, Zhi-li Wu &. 2008. «Trace solution paths for SVMs via parametric quadratic programming». Researchgate. 2008. https://www.researchgate.net/publication/228577955_Trace_solution_paths_for_SVMs_via_parametric_quadratic_programming.
- Anderson, D. R., D. J. Sweeney, T. A. Williams, D. J. Camm, y J. J Cochran. 2017. Statistics for business & economics. Boston: Cengage Learning.
- B. Eddy Patuwo & Michael Y. Hu, Guoqiang Zhang &. 1998. «Forecasting with artificial neural networks:: The state of the art». *International Journal of Forecasting* 14 (1): 35-62. https://doi.org/https://doi.org/10.1016/S0169-2070(97)00044-7.
- Banda, Hugo. 2014. *Inteligencia Artificial: Principios y Aplicaciones*. Quito, Ecuador: Escuela Politécnica Nacional.
- Barone, A. 2022. «Opening Price: Definition, Example, Trading Strategies». 2022. https://www.investopedia.com/terms/o/openingprice.asp.
- Beale, EML. 1959. «On quadratic proramming». Naval Research Logistics Quarterly 6 (3): 227-43.
- BME. s. f. «¿Qué es BME?» Accedido 24 de abril de 2023. https://www.bolsasymercados.es/esp/Sobre-BME/Que-es.
- Boyte-White, C. 2022. «How Does Correlation Affect the Stock Market?» 2022. https://www.investopedia.com/ask/answers/021716/how-does-correlation-affect-stock-market.asp.
- Bunch, James R, y Linda Kaufman. 1977. «Some stable methods for calculating inertia and solving symmetric linear systems». *Mathematics of computation* 31 (137): 163-79.
- Cai, Xiaoqiang, Kok Lay Teo, XQ Yang, y Xun Yu Zhou. 2004. «Minimax portfolio optimization: empirical numerical study». Journal of the Operational Research Society 55 (1): 65-72.
- Castillo, R. A., y R. Varela. 2010. ECONOMETRÍA PRÁCTICA: Fundamentos de Series de Tiempo. México: Universidad Autónoma de Baja California.
- Chen, J. 2022. «Today's High». 2022. https://www.investopedia.com/terms/t/todayshigh.asp.
- Chirinos, S. 2018. «Series cronológicas». https://www.slideshare.net/SuedimarChirinos/series-cronologicas-119058959. 2018.
- Chollet, F., y J. J. Allaire. 2018. *Deep Learning with R.* Manning Publications. https://books.google.es/books?id=xnIRtAEACAAJ.
- CNMV. s. f.a. «Glosario Financiero: Acción». Accedido 24 de abril de 2023. https://cnmv.es/

- Portal/Inversor/Glosario.aspx?id=0&letra=A&idlng=1.
- ——. s. f.b. «Glosario Financiero: Bolsa de valores». Accedido 24 de abril de 2023. https://cnmv.es/Portal/Inversor/Glosario.aspx?id=0&letra=B&idlng=1.
- s. f.c. «Glosario Financiero: Servicio de Interconexión Bursátil Español, SIBE». Accedido 24 de abril de 2023. https://cnmv.es/Portal/Inversor/Glosario.aspx?id= 0&letra=S&idlng=1.
- Dodge, Y. 2008. «Time Series». En *The Concise Encyclopedia of Statistics*, 536-39. New York, NY: Springer New York. https://doi.org/10.1007/978-0-387-32833-1_401.
- Downey, L. 2022. «Today's Low». 2022. https://www.investopedia.com/terms/t/todayslow.asp.
- Drucker, Harris, Christopher Burges, Linda Kaufman, Alex Smola, y Vladimir Vapnik. 1996. «Linear support vector regression machines». Advances in neural information processing systems 9 (9): 155-61.
- Edwards, J. 2022. «Why Market Correlation Matters?» 2022. https://www.investopedia.com/articles/financial-advisors/022516/4-reasons-why-market-correlation-matters.asp.
- «Empresas cotizadas». s. f. BME Exchange. Accedido 21 de mayo de 2023. https://www.bolsasymercados.es/bme-exchange/es/Mercados-y-Cotizaciones/Acciones/Mercado-Continuo/Empresas-Cotizadas.
- Espallargas, S. D., y M. V. Solís. 2012. Econometría y series temporales: aplicaciones. La Habana: Editorial Félix Varela.
- Fletcher, Roger. 1971. «A general quadratic programming algorithm». *IMA Journal of Applied Mathematics* 7 (1): 76-91.
- Ganti, A. 2020. «Adjusted Closing Price». 2020. https://www.investopedia.com/terms/a/adjusted_closing_price.asp.
- Goldfarb, Donald, y Ashok U. Idnani. 1982. «Dual and primal-dual methods for solving strictly convex quadratic programs». En *Numerical Analysis*, editado por J. P. Hennart, 226-39. Berlin, Heidelberg: Springer Berlin Heidelberg.
- ——. 1983. «A numerically stable dual method for solving strictly convex quadratic programs». *Mathematical Programming* 27: 1-33.
- Goswami, Nababithi, Supriyo K. Mondal, y Swapan Paruya. 2012. «A Comparative Study of Dual Active-Set and Primal-Dual Interior-Point Method». *IFAC Proceedings Volumes* 45 (15): 620-25. https://doi.org/https://doi.org/10.3182/20120710-4-SG-2026.00029.
- Gunjan, Siddhartha, Abhishek & Bhattacharyya. 2023. «A brief review of portfolio optimization techniques». Artificial Intelligence Review 56 (5): 3847-86. https://doi.org/10.1007/s10462-022-10273-7.
- Guresen, Erkam, Gulgun Kayakutlu, y Tugrul U. Daim. 2011. «Using artificial neural network models in stock market index prediction». Expert Systems with Applications 38 (8): 10389-97. https://doi.org/https://doi.org/10.1016/j.eswa.2011.02.068.
- Hargrave, M. 2023. «Standard Deviation Formula and Uses vs. Variance». 2023. https://www.investopedia.com/terms/s/standarddeviation.asp.
- Hayes, A. 2021. «What Is Closing Price? Definition, How It's Used, and Example». 2021. https://www.investopedia.com/terms/c/closingprice.asp.
- ——. 2023. «Volatility: Meaning In Finance and How it Works with Stocks». 2023. https:

- //www.investopedia.com/terms/v/volatility.asp.
- Haykin, Simon. 1998. Neural networks: a comprehensive foundation. Prentice Hall PTR.
- Hestenes, Magnus R. 1969. «Multiplier and gradient methods». Journal of optimization theory and applications 4 (5): 303-20.
- Hestenes, Magnus R., y Eduard Stiefel. 1952. «Methods of conjugate gradients for solving linear systems». Journal of research of the National Bureau of Standards 49: 409-35.
- Hochreiter, Jürgen, Sepp & Schmidhuber. 1997. «Long Short-Term Memory». Neural Computation 9 (8): 1735-80. https://doi.org/10.1162/neco.1997.9.8.1735.
- IBM. 2021. «Characteristics of time series». https://www.ibm.com/docs/en/spss-modeler/saas?topic=data-characteristics-time-series. 2021.
- Jing, Hong. 2020. «How Convolutional Layers Work in Deep Learning Neural Networks?» Jingles, Github Blog. 2020. https://jinglescode.github.io/2020/11/01/how-convolutional-layers-work-deep-learning-neural-networks/.
- Jorion, Philippe. 2007. Value at risk: the new benchmark for managing financial risk. The McGraw-Hill Companies, Inc.
- Karmarkar, Narendra. 1984. «A new polynomial-time algorithm for linear programming». En Proceedings of the sixteenth annual ACM symposium on Theory of computing, 302-11.
- Kenton, W. 2022. «Beta: Definition, Calculation, and Explanation for Investors». 2022. https://www.investopedia.com/terms/b/beta.asp.
- Kocenda, E., y A. Cerný. 2017. Elements of Time Series Econometrics: An Applied Approach. Prague: Karolinum Press.
- Konno, Hiroshi, y Hiroaki Yamazaki. 1991. «Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market». *Management science* 37 (5): 519-31.
- Larrañaga, Iñaki & Moujahid, Pedro & Inza. 2007. «Tema 14. Redes Neuronales». Departamento de Ciencias de la Computaci´on e Inteligencia Artificial, Universidad del Pa´ıs Vasco–Euskal Herriko Unibertsitatea. 2007. http://www.sc.ehu.es/ccwbayes/docencia/mmcc/docs/t14-neuronales.pdf.
- Lecun, Y., L. Bottou, Y. Bengio, y P. Haffner. 1998. «Gradient-based learning applied to document recognition». *Proceedings of the IEEE* 86 (11): 2278-2324. https://doi.org/10.1109/5.726791.
- Markowitz, Harry M, y Harry M Markowitz. 1967. Portfolio selection: efficient diversification of investments. J. Wiley.
- McCarthy, John, Marvin L. Minsky, Nathaniel Rochester, y Claude E. Shannon. 2006. «A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955». AI Magazine 27 (4): 12. https://doi.org/10.1609/aimag.v27i4.1904.
- Mitchell, C. 2020. «Market Price: Definition, Meaning, How To Determine, and Example». 2020. https://www.investopedia.com/terms/m/market-price.asp.
- Monaghan, B. 2019. «Correlation vs. Beta: What is The Difference and Why Does It Matter?» 2019. https://www.mackenzieinvestments.com/content/dam/final/corporate/mackenzie/docs/investment-teams/multi-asset-team/en/Correlation%20vs.%20Beta_%20What%20is%20The%20Difference%20and%20Why%20Does%20It%20Matter_%20_%20Mackenzie%20Investments.pdf.
- Olah, Christopher. 2015. «Understanding LSTM networks». Colah's blog. 2015. https://colah.

- github.io/posts/2015-08-Understanding-LSTMs/.
- Pinset, W. 2021. «Understanding Stock Prices and Values». 2021. https://www.investopedia.com/articles/stocks/08/stock-prices-fool.asp.
- Powell, Michael JD. 1969. «A method for nonlinear constraints in minimization problems». *Optimization*, 283-98.
- Rockafellar, R Tyrrell, y Stanislav Uryasev. 2002. «Conditional value-at-risk for general loss distributions». *Journal of banking & finance* 26 (7): 1443-71.
- Rosen, JB. 1961. «The gradient projection method for nonlinear programming. Part II. Nonlinear constraints». Journal of the Society for Industrial and Applied Mathematics 9 (4): 514-32.
- Rosen, Jo Bo. 1960. «The gradient projection method for nonlinear programming. Part I. Linear constraints». Journal of the society for industrial and applied mathematics 8 (1): 181-217.
- Ross, S. 2022. «How Do I Calculate Correlation Between Market Indicators and Specific Stocks?» 2022. https://www.investopedia.com/ask/answers/032315/how-do-i-calculate-correlation-between-market-indicators-and-specific-stocks.asp.
- Ruiz, M. C. 2011. «Tema 5: Procesos Estocásticos». http://www.dmae.upct.es/~mcruiz/ Telem06/Teoria/apuntes_procesos.pdf; Departamento de Matemática y Estadística. Universidad Politécnica de Cartagena. 2011.
- Ryan, Jeffrey A., y Joshua M. Ulrich. 2023. quantmod: Quantitative Financial Modelling Framework. https://CRAN.R-project.org/package=quantmod.
- Samuelson, Paul A. 1970. «The fundamental approximation theorem of portfolio analysis in terms of means, variances and higher moments». The Review of Economic Studies 37 (4): 537-42.
- Sezer, Omer Berat, Mehmet Ugur Gudelek, y Ahmet Murat Ozbayoglu. 2020. «Financial time series forecasting with deep learning: A systematic literature review: 2005–2019». Applied Soft Computing 90: 106181. https://doi.org/https://doi.org/10.1016/j.asoc.2020.106181.
- Shenoy, Catherine, y Prakash P Shenoy. 2000. «Bayesian network models of portfolio risk and return». En. The MIT Press.
- Siddiqui, J. Rafid. 2023. «Why Convolve? Understanding Convolution and Feature Extraction in Deep Networks». Medium, Towards Data Science. 2023. https://towardsdatascience.com/why-convolve-understanding-convolution-and-feature-extraction-in-deep-networks-ee45d1fdd17c.
- Sutton, Richard S, y Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.
- Tealab, Ahmed. 2018. «Time series forecasting using artificial neural networks methodologies: A systematic review». Future Computing and Informatics Journal 3 (2): 334-40. https://doi.org/https://doi.org/10.1016/j.fcij.2018.10.003.
- Team, CFI. 2023. «What is Stock Price?» 2023. https://corporatefinanceinstitute.com/resources/capital-markets/stock-price/.
- Team, The Investopedia. 2022. «Intrinsic Value Defined and How It's Determined in Investing and Business». 2022. https://www.investopedia.com/terms/i/intrinsicvalue.asp.
- Villagarcía, T. 2006. «Series Temporales». https://halweb.uc3m.es/fjnm/estind/doc_grupo1/

- archivos/Apuntes%20 de%20 series.pdf.~2006.
- Villavicencio, J. 2010. «Introducción a las series de tiempo». http://www.estadisticas.gobierno. pr/iepr/LinkClick.aspx; Instituto de estadística de Puerto Rico. 2010.
- Walker, Ryan. 2014. «Solving Quadratic Progams with R's quadprog package». rwalk. 2014. https://rwalk.xyz/solving-quadratic-progams-with-rs-quadprog-package/.
- Wong, W. K., y Z. X. Guo. 2010. «A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm». *International Journal of Production Economics* 128 (2): 614-24. https://ideas.repec.org/a/eee/proeco/v128y2010i2p614-624.html.

A Datos

A continuación, se presenta el código utilizado durante el proceso descrito en los distintos sub-epígrafes del epígrafe Datos del capítulo 2.

A.0.1 Obtención de Datos

Lo primero que se realizó fue cargar la tabla de las empresas.

```
library(readxl)
empresas <- read_excel("data/000_empresas.xlsx")</pre>
```

Luego se extrageron los ticks de las empresas.

```
library(dplyr)
ticks <- empresas |>
  select(TICKERS) |>
  pull()
```

Una vez almacenados los ticks de las empresas en la variable ticks se procedio a descargar los datos correspondientes a dichas empresas desde Yahoo Finance usando el paquete quantmod de Ryan y Ulrich (2023).

```
library(quantmod)
nombres_colum <- c("Date","Open","High","Low","Close","Volume","Adjusted")
qmddata <- list()
for (i in 1:length(ticks)) {
   tick <- ticks[i]
   value <- getSymbols(
        tick,
        from = "2000-01-02",
        to = "2023-03-01",
        auto.assign = F,
        periodicity = "monthly") |>
        as.data.frame()
   dates <- row.names(value)</pre>
```

```
row.names(value) <- NULL
value <- cbind(dates,value)
names(value) <- nombres_colum
qmddata[[tick]] <- value
}</pre>
```

Con el objetivo de simplicar el proceso se decidió trabajar con aquellas empresas que tenían el máximo número de observaciones para lo que se usó el siguiente código

```
max_obs <- max(sapply(qmddata,dim)[1,])
select_emps <- qmddata |>
  lapply(function(x, maxobs = max_obs){
    if(dim(x)[1] == maxobs){
    emp <- x
    }else{}
}) |>
Filter(f=(function(x){ !is.null(x)}))
```

Con el objetivo de determinar si los datos que habían sido importados contaban con valores faltantes se ejecutó el siguiente código:

```
navalues <- select_emps |>
   sapply(function(x){
   na <- length(which(is.na(x)))
  })
emp_con_nan <- which(navalues > 0)
```

Con el objetivo de realizar un análisis exploratorio de los datos, se decidió realizar una evaluación visual de los datos históricos del precio ajustado para lo que se ejecutó:

Tras el análisis visual ejecutado con el fragmento de código anterior se persivió la existencia de precios constantes, así como calculos erroneos en el precio ajustado correspondiente a los primeros años de algunas series. Con el objetivo de solucionar el primero de los problemas mencionados se decidio eliminar aquellas que no presentaran variaciones en los precios en más de 10 observaciones. Para lo que primero se computaron las rentabilidades ejecutando el siguiente código.

```
returns_emps <- select_emps[-emp_con_nan] |>
  lapply(function(x){
  returns <- x |>
     select(Date, Adjusted) |>
    mutate(Return_Ad = Delt(Adjusted)[,1]) |>
    na.omit() |>
    select(Date, Return_Ad)
})
```

Una vez computadas las rentabilidades se eliminaron aquellas series que presentaban en más de 10 observaciones rentabilidad 0, para lo que se ejecutó el siguiente código.

```
zerovalues <- returns_emps |>
   sapply(function(x){
    zeros <- length(which(x[,2]==0))
   })
returns_emps2 <- returns_emps[zerovalues<10]</pre>
```

Una vez eliminadas aquellas series sin variaciones en los precios se procedió a seleccionar, en las series restantes, solo aquellas observaciones posteriores a enero del 2005 con la meta de eliminar aquellas observaciones en las que el calculo del precio ajustado se realizó de manera errónea.

```
returns_emps3 <- returns_emps2 |>
  lapply(function(x){
  emps <- x |>
    filter(Date >= "2005-01-31")
})
```

A.0.2 Indicadores

A continuación, se expone el código utilizado durante el proceso expuesto en el sub-epígrafe indicadores del capítulo 2.

Primero se descargaron los datos del IBEX, se computaron las rentabilidades del precio ajustado del mismo y se seleccionaron los valores posteriores a enero del 2005.

```
#Importando IBEX
IBEXsel <- getSymbols(
   "^IBEX",
   from = "1990-01-01",</pre>
```

```
to = "2023-03-01",
  auto.assign = F,
  periodicity = "monthly") |>
  as.data.frame()
dates <- row.names(IBEXsel)
row.names(IBEXsel) <- NULL
IBEXsel <- cbind(dates,IBEXsel)
names(IBEXsel) <- nombres_colum
# Calculando rentabilidad y seleccionando observaciones posteriores a
# enero del 2005.
IBEXsel <- IBEXsel |>
  mutate(Return_I = Delt(Adjusted)[,1]) |>
  na.omit() |>
  filter(Date >= "2005-01-31") |>
  select(Date, Return_I)
```

Luego se agregaron los valores de las rentabilidades del IBEX a las tablas de las rentabilidades de las acciones de las empresas seleccionadas, y se computaron y agregaron las variables listadas a continuación a cada una de las tablas:

- Volatilidad de la empresa
- Volatilidad del índice
- Correlación entre las rentabilidades de la empresa y el indice
- La Beta entre la empresa y el indice

```
returns_indc <- returns_emps3 |>
            lapply(function(x, ind = IBEXsel){
                        emp <- x |>
                                   left_join(ind) |>
                                   mutate(
                                               VE = sqrt(cumsum((Return_Ad - cummean(Return_Ad))^2)/1:length(Return_Ad)),
                                               VI = sqrt(cumsum((Return_I - cummean(Return_I))^2)/1:length(Return_I)),
                                               Cor = cumsum((Return_Ad-cummean(Return_Ad))*(Return_I-cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I)))/(sqrt(cummean(Return_I))/(sqrt(cummean(Return_I))/(sqrt(cummean(Return_I))/(sqrt(cummean(Return_I))/(sqrt(cummean(Return_I))/(sqrt(cummean(Return_I))/(sqrt(cummean(Return_I))/(sqrt(cummean(Return_I))/(sqrt(cummean(Return_I))/(sqrt(cummean(Return_I))/(
                                    )|>
                                   na.omit() |>
                                   mutate(
                                               Beta = (Cor*VE)/VI
                                    )
            })
 save(
            qmddata,
             select_emps,
```

```
max_obs,
emp_con_nan,
returns_emps,
returns_emps2,
returns_emps3,
IBEXsel,
returns_indc,
file = "data/data.Rdata")
```

B Modelado

A continuación, se presenta el código utilizado durante el proceso descrito en los distintos sub-epígrafes del epígrafe Modelado del Capítulo 2.

B.0.1 Vectores

A continuación se expone el código utilizado durante el proceso expuesto en el sub-epígrafe vectores del epígrafe modelado del Capítulo 2.