Artificial Intelligence <u>Course Instructor</u> Ms. Mahzaib Younas				
Time allowed = 30 min	Quiz 5	Total Marks = 30		
	BCS Section E			
Roll No	Name	Signature		
estion No 01: For each question sta Which rule is equal to the resolution				

1.	Which rule is equal to the resolution rule of	2.	What is meant by factoring?
	first-order clauses?		
a)	Propositional resolution rule	a)	Removal of redundant variable
b)	Inference rule	b)	Removal of redundant literal
c)	Resolution rule	c)	Addition of redundant literal
d)	None of the mentioned	d)	Addition of redundant variable
3.	What will happen if two literals are identical?	4.	The statement comprising the limitations of
			FOL is/are
a)	Remains the same	a)	Expressiveness
b)	Added as three	b)	Formalizing Natural Languages
c)	Reduced to one	c)	Many-sorted Logic
d)	None of the mentioned	d)	All of the mentioned
5.	Which are more suitable normal form to be	6.	Translate the following statement into FOL. "For
	used with definite clause?		every a, if a is a philosopher, then a is a scholar"
a)	Positive literal	a)	∀ a philosopher(a) scholar(a)
b)	Negative literal	b)	∃ a philosopher(a) scholar(a)
	Generalized modus ponens	c)	All of the mentioned
	<u>•</u>	d)	None of the mentioned
(d)	Neutral literal		

Question No 02: Translate the following English sentences into first-order logic formulas: [6]
a) Every student takes at least one course.
$\forall x (Student(x) \Rightarrow \exists y (Course(y) \land Takes(x,y)))$
b) Every student who takes Analysis also takes Geometry.
$\forall x \text{ (Student(x)} \land \text{Takes(x,Analysis)} \Rightarrow \text{Takes(x,Geometry))}$

c) No student failed Chemistry but at least one student failed History

 $(\neg \exists s(Student(s) \land Failed(s, Chemistry))) \land (\exists x(Student(x) \land Failed(x, History)))$

Question No 03: Apply the unification

[6 Marks]

- a- $\{Q(a, g(x,a), f(y)); Q((a), g(f(b),a), x)\}$
 - ${Q(a, g(x,a), f(y)); Q((a), g(f(b),a), x)}, subst(x/f(b)$
 - ${Q(a, g(f(b),a), f(y)); Q((a), g(f(b),a), f(b))}, subs(y/b)$
 - $\{Q(a,g(f(b),\!a),f(b));\,Q((a),g(f(b),\!a),f(b))\}$

Successfully unified.

- b- $\{p(b, X, f(g(Z))); and p(Z,f(Y), f(y))\}$
 - $\{p(b, X, f(g(b))); and p(b,f(Y), f(y))\} sub(Z/b)$
 - $\{p(b, f(Y), f(g(b))); and p(b,f(Y), f(y))\} sub(X,f(y))$
 - ${p (b, f(g(b)), f(g(b)); and p(b, f(g(b)), f(g(b)))} sub(Y/g(b))$

Unified successfully.

Question No 03: Consider the following axioms:

[12 Marks]

- 1. All hounds howl at night.
- 2. Anyone who has any cats then anyone will not have any mice. (Hint: after then statement used with the negation of Quantifiers)
- 3. Light sleepers do not have anything which howls at night.
- 4. John has either a cat or a hound.
- 5. (Conclusion) If John is a light sleeper, then John does not have any mice.

The conclusion can be proved using Resolution as shown below. The first step is to write each axiom as a well-formed formula in first-order predicate calculus. The clauses written for the above axioms are shown below, using LS(x) for `light sleeper'.

Part 1: Make the FOL statements for each above Statement;

[4 Marks]

- 1. $\forall x (HOUND(x) \rightarrow HOWL(x))$
- 2. $\forall x \ \forall y \ (HAVE (x,y) \land CAT (y) \rightarrow \neg \exists z \ (HAVE(x,z) \land MOUSE (z)))$
- 3. $\forall x (LS(x) \rightarrow \neg \exists y (HAVE (x,y) \land HOWL(y)))$
- 4. $\exists x (HAVE (John,x) \land (CAT(x) \lor HOUND(x)))$
- $5. LS(John) \rightarrow \neg \exists z (HAVE(John,z) \land MOUSE(z))$

Part 2: Drop the universal and existential quantifiers of each statement.

[2 Marks]

1.
$$\forall x (HOUND(x) \rightarrow HOWL(x))$$

$$\neg HOUND(x) VHOWL(x)$$

2.
$$\forall x \ \forall y \ (HAVE (x,y) \land CAT (y) \rightarrow \neg \exists z \ (HAVE (x,z) \land MOUSE (z)))$$

$$\forall x \ \forall y \ (HAVE (x,y) \land CAT (y) \rightarrow \forall z \neg (HAVE (x,z) \land MOUSE (z)))$$

$$\forall x \ \forall y \ \forall z \ (\neg (HAVE (x,y) \land CAT (y)) \ \lor \neg (HAVE (x,z) \land MOUSE (z)))$$

$$\neg HAVE(x,y) \lor \neg CAT(y) \lor \neg HAVE(x,z) \lor \neg MOUSE(z)$$

3.
$$\forall x (LS(x) \rightarrow \neg \exists y (HAVE(x,y) \land HOWL(y)))$$

$$\forall x (LS(x) \rightarrow \forall y \neg (HAVE(x,y) \land HOWL(y)))$$

$$\forall x \ \forall y \ (LS(x) \rightarrow \neg \ HAVE(x,y) \ \lor \neg \ HOWL(y))$$

$$\forall x \ \forall y \ (\neg LS(x) \ V \neg HAVE(x,y) \ V \neg HOWL(y))$$

$$\neg LS(x) \lor \neg HAVE(x,y) \lor \neg HOWL(y)$$

4. $\exists x (HAVE (John,x) \land (CAT(x) \lor HOUND(x)))$

 $HAVE(John,a) \land (CAT(a) \lor HOUND(a))$

5.
$$\neg [LS(John) \rightarrow \neg \exists z (HAVE(John,z) \land MOUSE(z))]$$
 (negated conclusion)

$$\neg [\neg LS (John) \lor \neg \exists z (HAVE (John, z) \land MOUSE(z))]$$

 $LS(John) \land \exists z (HAVE(John, z) \land MOUSE(z)))$

LS(John) A HAVE(John,b) A MOUSE(b)

Part 3: Apply the resolution theorem and draw the conclusion.

[6 Marks]

Set of CNF Clauses

- 1. $\neg HOUND(x) \lor HOWL(x)$
- 2. $\neg HAVE(x,y) \lor \neg CAT(y) \lor \neg HAVE(x,z) \lor \neg MOUSE(z)$
- $3. \neg LS(x) \lor \neg HAVE(x,y) \lor \neg HOWL(y)$
- 4.
- 1. HAVE(John,a)
- 2. CAT(a) VHOUND(a)
- 5.
- 1. LS(John)
 - 2. HAVE(John,b)
 - 3. MOUSE(b)

Resolution:

[1.,4.(b):] 6. *CAT(a) VHOWL(a)*

[2,5.(c):] 7. $\neg HAVE(x,y) \lor \neg CAT(y) \lor \neg HAVE(x,b)$

[7,5.(b):] 8. $\neg HAVE(John,y) \lor \neg CAT(y)$

[6,8:] 9. ¬ *HAVE*(*John*,*a*) *VHOWL*(*a*)

[4.(a),9:] 10. *HOWL(a)*

[3,10:] 11. $\neg LS(x) \lor \neg HAVE(x,a)$

[4.(a),11:] 12. ¬ LS(John)

[5.(a),12:] 13. □