Топология

Никита Латушкин

7 января 2022 г.

Понятие МП. Изометрия. Подпространство в МП. Примеры

Метрикой на множетсве X называют функцию $\rho(x,y)$, то есть отображение $\rho: X \times X \to R$, которое обладает следующими свойствами:

- 1) $\rho(x,y) \ge 0, \rho(x,y) = 0 \iff x = y$
- 2) $\rho(x,y) = \rho(y,x)$
- 3) $\rho(x,y) \le \rho(x,z) + \rho(y,z) \ \forall x,y,z \in X$

 (X,ρ) - метрическое пространство (МП)

Примеры:

1) Евклидова метрика в \mathbb{R}^n

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

2) Дискретная метрика на прямой R:

$$\delta(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$$

3) B
$$R^n$$

$$\mu(x, y) = \max_{1 \le i \le n} |x_i - y_i|$$

4) Метрика равномерной сходимости на C[0;1] (множество всех непрерывных на [0;1] функций):

$$\mu(f,g) = \max_{x \in [0,1]} |f(x) - g(x)|$$

5) Метрика интегральной сходимости на С[0;1]

$$\sigma_k(f,g) = \sqrt[k]{\int\limits_0^1 |f(x) - g(x)|^k dx}$$

Но мы будем рассматривать только при k=1, то есть

$$\sigma_1(f,g) = \int_0^1 |f(x) - g(x)| dx$$

Пусть даны МП $(X, \rho), x \in X$.

1) Открытым шаром с центром в точке х и радиуса ϵ называется множество

$$B(x,\epsilon) = \{ y \in X | \rho(x,y) < \epsilon \}$$

2) Замкнутым шаром с центром в точке х и радиуса ϵ называется множество

$$D(x,\epsilon) = \{ y \in X | \rho(x,y) \le \epsilon \}$$

3) **Сферой** с центром в точке х и радиуса ϵ называется множество $S(x,\epsilon)=\{y\in X|\rho(x,y)=\epsilon\}$

Пусть X и Y – МП с метриками ρ_1 и ρ_2 соответственно. **Изометрией** между X и Y называется биекция $f: X \to Y$ такая, что $\forall x, y, \in X$ имеет место равенство: $\rho_1(x,y) = \rho_2(f(x),f(y))$. Если изометрия между МП существует, то они называются **изометричными**.

Примеры

1) R^k изометрично вкладывается в R^n при $k \leq n$

Пусть $x=(x_1,\ldots,x_k)\in R^k$ Поставим точке х в соответствие точку $x'=(x_1,\ldots,x_k,0,\ldots,0)$ (добавили в координаты (n-k) нулей)

2) (X, δ) изометрично вкладывается в R^n при $|X| \leq n+1$

Точкам пространства X ставим в соответствие вершины правильного n-мерного симплекса со стороной 1

Пусть даны $(X, \rho), A \subset X$. Рассмотрев метрику ρ только на точках множества A, получим метрику на A, которая называется **индуцированной** и обозначается $\rho|_A$. Таким образом получаем МП $(A, \rho|_A)$, которое является **подпространством** МП (X, ρ)

2 Топология МП. Свойства открытых и замкнутых множеств в МП. Примеры

Семейство всех открытых множеств au называется **топологией** МП.

Пусть даны МП $(X, \rho), U \subset X$. Множество U называется **открытым**, если с каждой своей точкой оно содержит какую-то её окрестность.

Обозначение: $U \subset X$

Свойства открытых множеств

- 1) $\emptyset \in \tau$, $X \in \tau$
- 2) Объединение любого числа открытых множеств открыто
- 3) Пересечение любого **конечного** числа открытых множеств открыто

Пусть даны МП $(X, \rho), B \subset X$. Множество В называется **замкнутым**, если его дополнение $X \setminus B$ открыто.

 ${\bf O}$ бозначение: $U \subset X$

 ϕ — семейство всех замкнутых множеств

Свойства замкнутых множеств

- 1) $\emptyset \in \phi, X \in \phi$
- 2) Пересечение любого числа замкнутых множеств замкнуто
- 3) Объединение любого **конечного** числа замкнутых множеств замкнуто

Пример

В МП (X, ρ) открытый шар — открытое множество, замкнутый шар — замкнутое множество.

3 **Понятие ТП**. Примеры. Метризуемые ТП

Пусть X — некоторое множество, семейство $\tau \subset 2^X$ — называется топологией на X, а элементы τ — открытыми множествами $U \subset X$,если:

- 1) $\emptyset \in \tau$, $X \in \tau$
- 2) Объединение любого числа открытых множеств открыто
- 3) Пересечение любого конечного числа открытых множеств открыто

 (X,τ) - топологическое пространство (ТП) Пусть даны ТП $(X,\tau), x\in X.$ Окрестностью точки х называется $\forall U\subset X, x\in U$

На любом множестве X можно задать следующие топологии:

- 1) $\tau^0 = \{ \oslash, X \}$ антидискретная топология. В ней открытыми являются только пустое множество и всё пространство X
- 2) $\tau^* = 2^X$ дискретная топология. В ней открытым является любое подмножество X
- 3) $\tau_F = \{ \oslash, X, X \backslash A | |A| < \infty \}$ топология Зарисского. В ней открытыми являются пустое множество, всё пространство X, и любое множество, полученное выбрасыванием из X конечного числа элементов
- 4) $\tau_C = \{ \oslash, X, X \setminus A | |A| \le \omega \}$. В ней открытыми являются пустое множество, всё пространство X, и любое множество, полученное выбрасыванием из X счётного числа элементов.
- $\mathrm{T}\Pi\left(X,\tau\right)$ называется **метризуемым**, если τ можно задать некоторой метрикой ρ

В таком случае пишут $\tau = \tau_{\rho}$

Примеры

- 1) \forall МП метризуемое ТП
- 2) ТП с дискретной топологией метризуемо дискретной метрикой

4 ФСО. Задание топологии через ФСО. Примеры

Пусть дано ТП X, каждой точке $x \in X$ поставим в соответствие непустое семейство окрестностей этой точки $\nu_x = \{V_t^x | t \in T_x\}, T_x$ – семейство индексов, которыми занумерованы окрестности (не обязательно целые)

 V_t^x – элементарная (базовая) окрестность точки х

 $\nu = \{V_t^x | x \in X, t \in T_x\}$ – окрестностная база, или фундаментальная система окрестностей (ФСО)

Аксиомы ФСО

- 1) $\forall x \in X$ семейство непусто, $\forall V_t^x \in \nu_x : x \in V_t^x$
- 2) $\forall V_t^x, V_{t'}^x \exists V_{t''}^x : V_{t''}^x \subset (V_t^x \cap V_{t'}^x)$ для двух любых элементарных окрестностей найдётся третья, которая лежит в их пересечении.
- 3) $y \in V_t^x \iff \exists V_{t'}^y \subset V_t^x$ если точка у лежит в элементарной окрестности точки х, то найдется элементарная окрестность точки у, которая целиком лежит в элементарной окрестности точки х

Если все аксиомы выполняются, то ΦCO определена однозначно

Задание топологии через ФСО

Если в пространстве задана ФСО для некоторой топологии τ , то топология определена однозначно и описывается как совокупность всех множеств $U \in X$ таких, что $\forall x \in U$ найдётся элементарная окрестность $V_t^x \subset \nu_x$, для которой выполняется условие $V_t^x \subset U$. Значит для задания топологии достаточно указать некоторую ФСО ν .

5 Сравнение топологий. Роль ФСО. Примеры

Пусть τ_1 и τ_2 — некоторые топологии на пространстве X. Если $\tau_1 \supset \tau_2$, то говорят, что τ_1 сильнее τ_2 , или τ_2 слабее τ_1 и пишут $\tau_1 \geq \tau_2$. Если же $\tau_1 \supset \tau_2$, причём $\tau_1 \neq \tau_2$, то говорят, что τ_1 существенно сильнее τ_2 , или τ_2 существенно слабее τ_1 и пишут $\tau_1 > \tau_2$. Но может оказаться так, что $\tau_1 \not\supset \tau_2$ и $\tau_2 \not\supset \tau_1$. Тогда говорят, что τ_1 и τ_2 несравнимы.

Признак сравнения топологий с помощью ФСО

Пусть топологии τ_1 и τ_2 на множестве X порождены некоторыми ФСО $\nu_1 = \{V_{\alpha}^x | x \in X, \alpha \in A_x\}$ и $\nu_2 = \{V_{\beta}^x | x \in X, \beta \in B_x\}, A_x, B_x$ – семейства инлексов.

 $au_1 \geq au_2 \iff \forall x \in X, W^x_\beta \in \nu_2 \; \exists V^x_\alpha \in \nu_1 : V^x_\alpha \subset W^x_\beta,$ то есть для любой точки х из X и её окрестности W^x_β из $\Phi \text{CO} \; \nu_2$ найдётся такая окрестность V^x_α из $\Phi \text{CO} \; \nu_1,$ что V^x_α целиком лежит в W^x_β .

Пример

Ha $R^2: \overset{\infty}{\tau} > \tau^2$

 $\forall x \in R^2, \epsilon > 0$ бабочка радиуса ϵ лежит в открытом шаре такого же радиуса, но братное неверно, то есть открытый шар радиуса ϵ не будет лежать ни в какой бабочке с центром в этой же точке.

6 Понятие базы топологии, 1 аксиомы счётности и сепарабельности и их взаимосвязь. Примеры

Пусть дано ТП (X, τ)

Семейство $\beta\subset X$ открытых в X множеств называется **базой топологии**, если $\forall U\subset X$ найдётся подсемейство $\gamma\subset\beta$ такое, что $U=\cup\beta$, то есть любое открытое множество U представимо в виде объединения некоторых элементов β .

Любая ФСО автоматически база

Локальной базой в точке х пространства X (локальной базой точки х) называется семейство $\beta(x)$ окрестностей точки х такое, что $\forall U \in \tau(x) \; \exists V \in \beta(x) : x \in V, V \subset U.$

Пусть дано ТП (X, τ) . Говорят, что X **удовлетворяет первой аксиоме счётности**, если $\forall x \in X$ существует конечная или счётная локальная база в точке x.

Пусть даны ТП $(X,\tau),A\subset X$ А всюду плотно в X тогда и только тогда, когда $\forall U\in \tau(x):U\cap A\neq \oslash$

 $T\Pi (X, \tau)$ называется **сепарабельным**, если оно содержит конечное или счётное множество, всюду плотное в X.

Теорема

Пусть дано ТП (X, τ) . Если X имеет счётную базу, то оно сепарабельно.

Операция замыкания и её свойства. Примеры

Пусть даны ТП $(X, \tau), A \subset X, x \in X$.

Точка х называется близкой или точкой прикосновения, если $\forall U \in \tau(x) : U \cap A \neq \emptyset$

Множество всех точек, близких для А, называется замыканием множества A (обозначение \overline{A})

Свойства операции замыкания

1)
$$\overline{A} \subset X$$

$$2) A \subset F \subset X \Longrightarrow \overline{A} \subset F$$

2)
$$A \subset F \subset X \Longrightarrow \overline{A} \subset F$$

3) $A \subset X \iff \overline{A} = A$

Примеры

1) B
$$R$$
 $A = (0; 1) \Longrightarrow \overline{A}^R = [0; 1]$

$$\frac{2)}{\overline{A}} \stackrel{\text{B}}{=} R A = Q$$

Внутренность и граница множества. Связь 8 с операцией замыкания. Примеры

Пусть даны ТП $(X, \tau), A \subset X, x \in X$.

Точка х называется **внутренней**, если $\exists U \in \tau(x) : U \subset A$

Множество всех точек, внутренних для А, называется его внутренностью. (обозначение intA)

Свойства операции внутренности

1)
$$intA \subset X$$

$$2) \ X \supset U \subset A \Longrightarrow U \subset intA$$

1)
$$intA \subset X$$

2) $X \supset U \subset A \Longrightarrow U \subset intA$
3) $A \subset X \iff intA = A$

4) Вычислительная формула

$$intA = X \setminus (\overline{X \setminus A})$$

Пусть даны ТП $(X,\tau), A\subset X, x\in X.$ Точка х называется **граничной**, если $\forall U\in \tau(x)$

$$\begin{cases} U \cap A \neq \emptyset \\ U \cap (X \backslash A) \neq \emptyset \end{cases}$$

Множество всех граничных точек называется его **границей**. (**обозначение** ∂A)

Свойства границы

- 1) $\partial A \subset X$
- $2) \ \partial A = \overline{A} \cap \overline{X \backslash A}$
- 3) $\overline{A} = (intA) \cup \partial A$, $intA \cup \partial A = \emptyset$

Примеры

1) B
$$R$$
 $A = [0; 1]$
 $int_R A = (a; b)$
 $\partial_R A = \{a; b\}$

2) B
$$R$$
 $A = Q$ $int A = \oslash$ $\partial A = R$

9 Понятие подпространства в ТП. Индуцированная топология и её свойства. Примеры. "Теория относительности"

Пусть даны ТП $(X, \tau), A \subset X$ $\tau|_A = \{U \cap A | U \in \tau\}$ – является топологией на А (индуцированной) ТП $(A, \tau|_A)$ – топологическое подпространство (ТПП) в ТП X

Теорема

Пусть даны ТП $(X, \tau), A \subset X$, ФСО $\nu = \{V_t^x | x \in X, t \in T_x\}, \beta$ – база, тогда:

1)
$$\phi|_A = \{F \cap A | F \subset X\}$$
 — семейство всех замкнутых множеств в А

2)
$$\nu|_A = \{V_t^a | a \in A, t \in T_a\} - \Phi CO B A$$

3)
$$\beta|_A \ V \cap A|V \in \beta$$
 – база в А

Следствие

- 1) X с первой аксиомой счётности \Longrightarrow A с первой аксиомой счётности
- 2) X со счётной базой \Longrightarrow A со счётной базой
- 3) X метризуемо и сепарабельно \Longrightarrow A сепарабельно

Теория относительности

Пусть даны ТП $(X, \tau), B \subset A \subset X$

1)
$$B \subset X \Longrightarrow B \subset A$$

1')
$$B \subset X \Longrightarrow B \subset A$$

1)
$$B \subset X \longrightarrow B \subset X$$

1') $B \subset X \Longrightarrow B \subset A$
2) $B \subset A \subset X \Longrightarrow B \subset X$
2') $B \subset A \subset X \Longrightarrow B \subset X$
3) $U \subset X, F \subset X \Longrightarrow$

$$2') \ B \subset A \subset X \Longrightarrow B \subset X$$

3)
$$U \subset X, F \subset X \Longrightarrow$$

$$\begin{cases} (U \backslash F) \subset X \\ (F \backslash U) \subset X \end{cases}$$

Примеры

1)
$$(X, \tau) = R, A = Z$$

 $\tau^1|_Z = \tau^*$

2)
$$(R^2, \overset{\infty}{\tau}), A = L$$
 – прямая $\overset{\infty}{\tau}|_L = \tau^1$, $L \not\perp OX$ $\overset{\infty}{\tau}|_L = \tau^*$, $L \perp OX$

10 Непрерывное отображение и его свойства. Примеры

Пусть даны ТП (X, τ) и (Y, τ') и $f: X \to Y$.

f непрерывно в точке $x \iff \forall V \in \tau'(f(x)) \exists U \in \tau(x) : f(U) \subset V$

Теорема (критерии непрерывности)

Для $f: X \to Y$ эквивалентны условия

- 1) f^{-1} непрерывно
- 2) $f^{-1}(V) \underset{op}{\subset} X \ \forall V \underset{op}{\subset} Y$ 3) $f^{-1}(B) \underset{cl}{\subset} X \ \forall B \underset{cl}{\subset} Y$

Свойства неперывных отображений

Пусть даны ТП $(X, \tau), (Y, \tau'), (Z, \tau'')$

- 1) f,g непрерывны $\Longrightarrow q \circ f$
- 2) f непрерывно $\Longrightarrow f|_A:A\to Y$ непрерывно

11 Понятие гомеоморфизма. Примеры

Пусть даны ТП $(X, \tau), (Y, \tau')$ и $f: X \to Y$.

- f гомеоморфизм, если
- 1) f биекция
- (2) f и f^{-1} непрерывны

При этом X и Y гомеоморфны (обозначение $X \approx Y$)

12 Аксиомы отделимости и их иерархия. Критерии регулярности и нормальности. Примеры

Пусть дано ТП (X,τ) . ТП (X,τ) называется T_1 - пространством, если в нём любое одноточечное множество открыто, т.е.

$$\forall x \in X \ \{x\} \subset X$$

 $T\Pi$ называется T_2 - пространством, или **хаусдорфовым**, если для любых двух точек х и у, $x \neq y$ найдутся дизъюнктные окрестности, т.е.

$$\forall x,y,\in X, x\neq y \ \exists U\in\tau(x), V\in\tau(y): U\cap V=\varnothing$$

 $\Pi\Pi$ называется T_3 - пространством, или **регулярным**, если

$$\begin{cases} X - T_1 \\ \forall F \subset X, x \in (X \backslash F), \exists U \in \tau(F), V \in \tau(x) : U \cap V = \emptyset \end{cases}$$

то есть если для любого замкнутого множества и точки из его дополнения найдутся дизъюнктные окрестности

 $T\Pi$ называется T_4 - пространством, или **нормальным**, если

$$\begin{cases} X - T_1 \\ \forall F \subset X, B \subset X, F \cap B = \emptyset, \exists U \in \tau(F), V \in \tau(B) : U \cap V = \emptyset \end{cases}$$

то есть если для любых двух замкнутых непересекающихся множеств найдутся дизъюнктные окрестности

Иерархия отделимости

Пусть дано ТП (X, τ)

- 1) Если X метризуемо, то X T_4
- 2) Если X T_4 , то X T_3
- 3) Если X T_3 , то X T_2
- 4) Если X T_2 , то X T_1

Критерий регулярности

ТП (X,τ) регулярно тогда и только тогда, когда $X-T_1$, в котором $\forall x\in X$ и $U\in \tau(x)$ найдётся окрестность $V\in \tau(x)$ такая, что $\overline{V}\subset U$

Критерий нормальности

 $T\Pi$ (X,τ) нормально тогда и только тогда, когда $X-T_1$, в котором $\forall F\subset X$ и $U\in \tau(F)$ найдётся окрестность $V\in \tau(F)$ такая, что $\overline{V}\subset U$

Примеры

13 Произведение ТП. Проектирование. Непрерывность отображения в произведение. Примеры

Пусть даны ТП $(X_i, \tau_i), i = \overline{1, n}$

Рассмотрим декартово произведение $X = X_1 \times X_2 \times \cdots \times X_n = \prod_{i=1}^n X_i$ $x = (x_1, x_2, \dots, x_n)$, где $x_i \in X_i$

На X определена топология произведения τ^{Π} задаётся элементарными окрестностями.

Для $x=(x_1,x_2,\ldots,x_n)$ элементарная окрестность – любое множество вида $U=U_1\times U_2\times\cdots\times U_n$, где $U_i\in\tau(x_i)$

Пусть дано ТП $X=\prod_{i=1}^n X_i$ $p_j:X\to X_j$ – **j-ое проектирование** $A\subset X, p_j(A)$ – проекция множества A **Теорема 1**

Отображения p_j непрерывны

Координатные отображения

Пусть даны ТП (X,τ) , (Y_i,τ_i') , $i=\overline{1,n}$ и отображение

$$X \to \prod_{i=1}^n : x \to y = (y_1, y_2, \dots, y_n), y_i \in Y_i$$

$$\begin{cases} y_1 = f_1(x) \\ \dots \\ y_n = f_n(x) \end{cases}$$

Определены координатные отображения

$$f_i: X \to Y_i: x \to y_i = f_i(x)$$

$$f = (f_1, f_2, \dots, f_n)$$

Теорема 2

f – непрерывно \iff все координатные отображения f_i непрерывны

14 Понятие компактности. Примеры. Свойства компактности. Критерий компактности метризуемого $T\Pi$

Пусть даны ТП $(X, \tau), A \subset X$,

 $\alpha \subset \tau$ — семейство называется **покрытием** A, если $\cup \alpha \supset A$, подсемейство $\alpha' \subset \alpha$ — называется **подпокрытием** для A, если $\cup \alpha' \supset A$

А называется **компактным**, если из любого покрытия α можно выбрать конечное подпокрытие α'

В частности, может быть, что A = X

Свойства компактности

Пусть даны ТП $(X,\tau), (Y,\tau'), A \subset X, f: X \to Y$

- 1) Если X компактно и A замкнуто, то A компактно
- 2) Если $X-T_2$ (хаусдорфово) и A компактно, то A замкнуто
- 3) Если A компактно и f непрерывно, то f(A) компактно

К критерию компактности метризуемого ТП

Пусть дано ТП (X, τ) , $(x_n)_{n=1}^{\infty}$ – последовательность точек из X. Тогда говорят, что **последовательность точек сходится к точке** x $(x_n \to x)$, если для любой окрестности U точки x найдётся порядковый номер n, что все члены последовательности, начиная с n-ого, лежат в U, то есть

$$x_n \to x \iff \forall U \in \tau(x) \; \exists n : \{x_k | k \ge n\} \subset U$$
 Если τ задана некоторой метрикой ρ , то $x_n \to x \iff \rho(x, x_n) \to 0$

Критерий компактности метризуемого ТП

Пусть дано (X,τ) – метризуемое ТП. X – компактно \iff из любой последовательности $x_n\subset X$ можно выбрать сходящуюся подпоследовательность

15 Непрерывные отображения компактного ТП. Случай гомеоморфизма

16 Понятие полного МП. Вполне ограниченные множества в МП. Критерий компактности МП

Пусть даны МП $(X, \rho), (x_n)_{n=1}^{\infty} \subset X$ — последовательность. Последовательность $(x_n)_{n=1}^{\infty}$ называется фундаментальной или последовательностью Коши, если $\forall \epsilon > 0 \ \exists n : \rho(x_k, x_m) < \epsilon \ \forall k, m \geq n$

Теорема 1

Пусть даны МП $(X, \rho), (x_n)_{n=1}^{\infty} \subset X$. Если $(x_n)_{n=1}^{\infty}$ сходится, то она фундаментальна.

Определение 1

 $\mathrm{M}\Pi\left(X, \rho\right)$ и метрика ρ называются **полными**, если любая фундаментальная последовательность сходится.

Теорема 2

Пусть даны МП $(X, \rho), A \subset X$, тогда

- 1) Если X полное и A замкнутое, то A полное
- 2) Если A полное, то A замкнутое

Определение 2

Пусть дано МП $(X, \rho), A \subset X$. Множество A называется вполне ограниченным, если $\forall \epsilon_0 > 0$ A можно покрыть конечным числом шаров вида $B(x, \epsilon_0)$

Теорема 3 Пусть дано МП $(X, \rho), A \subset X$. Если A вполне ограниченное, то оно ограниченное.

Теорема 4

Пусть $A \subset \mathbb{R}^n$. А – вполне ограниченное \iff А– ограниченное.

Критерий компактности МП

17 Понятие связности. Примеры. Основные свойства связности

Пусть даны ТП $(X, \tau), A \subset X$. Говорят, что A **несвязно**, если A представимо в виде $A = U \cup V$, где $U \neq \emptyset, V \neq \emptyset, U \subset A, V \subset A, U \cap V = \emptyset$, то есть в виде объединения двух непустых открытых дизъюнктных множеств.

А связно, если А не несвязно.

Теорема

Любой отрезок [a;b] связен.

Свойства связных множеств

Пусть даны ТП $(X, \tau), (Y, \tau'), A \subset X, f : X \to Y$ – непрерывное отображение, тогда:

- 1) A связно $\Longrightarrow f(A)$ связно
- 2) A связно $\Longrightarrow \overline{A}$ связно
- 3) Если $A_t \subset X, t \in T$ (T семейство индексов), A_t связно $\forall t \in T,$ $\cap_{t \in T} A_t \neq \emptyset \Longrightarrow \cup_{t \in T} A_t$ связно
 - 4) Если $A_i \subset X, i = \overline{1,n}, A_i$ связно $\forall i = \overline{1,n},$
- $A_i \cap A_{i+1} \neq \emptyset \ \forall i=\overline{1,n-1} \ ($ то есть $\{A_1,\dots,A_n\}$ связная цепочка $)\Longrightarrow \cup_{i=1}^n A_i$ связно

Примеры

18 Линейная связность и её свойства. Примеры

Пусть дано ТП (X, τ) . **Кривой** в X называется множество $\gamma \subset X$ такое, что существует непрерывное отображение $f: [a; b] \to X$, для которого $f([a; b]) = \gamma$. В таком случае f называют **параметризацией кривой** γ .

Говорят, что точки $x,y\in X$ соединены кривой γ , если эти точки лежат в этом множестве.

Множество $A \subset X$ линейно связно, если $\forall x, y \in X \; \exists$ кривая $\gamma \subset A$, которая соединяет x и y.

В частности, может быть, что A = X.

Свойства

Пусть даны ТП $(X,\tau), A\subset X, (Y,\tau'), f:X\to Y$ – непрерывное отображение, тогда:

- 1) Если А линейно связно, то А связно
- 2) Если А линейно связно, то и образ А линейно связен

Примеры

19 Связная компонента в ТП и её свойства. Примеры

Пусть даны ТП $(X, \tau), A \subset X, A \neq \emptyset$

Тогда A – **связная компонента** в X, или **компонента связности**, если

- 1) А связно
- 2) $A \subset B \subset X, A \neq B \iff B$ несвязно

Если А – связная компонента в X и $A \ni x$, то обозначают A = C(x) или C_x

Свойства

Пусть даны ТП (X, τ) , $A \subset X$, $A \neq \emptyset$, тогда:

- 1) A связная компонента в $X \Longrightarrow A \subset X$
- 2) Если A и B связные компоненты в X, $A \cap B \neq \emptyset$, то A = B

Примеры