

Competitive Programming

From Problem 2 Solution in O(1)

Combinatorial Game Theory Sprague – Grundy Theorem

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

Recall Nim game properties

- Impartial game
 - Same set of moves at any time allowed for both players
- 2 players play sequentially
- Each pile is independent sub-game
- Perfect information
- Finite game, No draws, No randomization
- Winner = last move
 - Loser = can't make a move
- Such game => Sprague—Grundy theorem

Recall Northcotts game

Game Details

- Board with red and blue opponents
- Each column has 1 red and 1 blue ball
- For a column, move only your color
 toward the other color (any # of steps)
- BUT can't jump over opponent
- Loser = Last to can't make a move

Solution

- Any equivalence to Nim game?
- Convert each column to a pile size (# of cells between 2 colors). Then do xor for the pile sizes!

Recall Northcotts game

- Equivalent game to Nim
 - Move is done to one specific column (= to 1 pile)
 - So our action is kind of N (for columns) **sub-games**
 - Moving toward your opponent minimize distance (= to remove stones from pile) => Finite steps (or poker trick)
 - All impartial game properties hold
- The core point
 - We managed to convert every sub-game to a single value
 - These values represents Nim-heaps.
 - Game logic was easy to find the sub-game=> value map
- What if the game is much more complex?

Knights on chessboard game

- Given N x N chessboard with K knights on it
 - Knight Move is to 4 positions only
 - Player turn: Pick a knight and move it
 - Allowed: Multiple knights in 1 position
 - Loser: Player who can't make a move to knight
- Equivalent game to Nim
 - K Nim piles but restricted stones to move
 - Knight move always makes sum of coordinates is decreased (= remove stones)
 - But, how to compute Nim Heap size!
 - Sprague–Grundy theorem

Sprague-Grundy theorem

Theorem

- Every impartial game is equivalent to a nim heap of a certain size (called Grundy number or Nimber)
- So given such a game => convert to a unique number
- Why important?
 - Convert any sub-game state to its grundy number
 - Composite Game = N independent sub-games
 - These numbers are equivalent to piles in Game of Nim
 - Just solve Normal Nim (e.g. xor piles sizes)
- Mex (Minimum excludant)
 - A simple function used to compute grundy numbers

Composite Game

- Think in Nim
 - Say having N piles...player selects 1 pile to make move
 - Actually every pile is independent sub-game
 - Composite Game = N <u>independent</u> sub-games
- Northcotts game / Knights game
 - Every column/knight is sub-game
- Why important?
 - Solving a sub-game is easier than solve a complex one
 - E.g. find grundy of each knight, then xor values

Mex (Minimum excludant)

Mex of a set of numbers is the smallest x >= 0 is NOT in the set

$$egin{aligned} &\max(\emptyset) = 0 \ &\max(\{1,2,3\}) = 0 \ &\max(\{0,2,4,6,\ldots\}) = 1 \ &\max(\{0,1,4,7,12\}) = 2 \ &\max(\{0,1,2,3,\ldots\}) = \omega \ &\max(\{0,1,2,3,\ldots,\omega\}) = \omega + 1 \end{aligned}$$

Src: http://www.geeksforgeeks.org/combinatorial-game-theory-set-3-grundy-numbersnimbers-and-mex

Mex (Minimum excludant)

```
int calcMex(unordered_set<int> hashtable) {
  int val = 0;

while (hashtable.find(val) != hashtable.end())
  val++;
  return val;
}
```

Grundy number

- Given a game that generates sub-games for every possible move
- The nimber of state G is equal to
 - 0 for Losing terminal position, and
 - mex {nimber(move1), nimber(move2).., nimber(moveN)}
 - Prove
- Note it is a recursive definition
 - For every possible move
 - Compute the grundy number for such move
 - Then get the mex(moves nimbers list)
 - Typically wrote as dp

Grundy number for Nim variant

- Game: 1 pile of stones, Moves: Player takes 1, 2, 3
- \blacksquare Grundy(0) = 0 => losing base case
- Grundy(1) = $mex(Grundy(0)) = mex(\{0\}) = 1$
- Grundy(2) = mex(Grundy(1), Grundy(0))= $mex(\{1, 0\}) = 2$
 - From 2: take 1 stone (move to 1), take 2 stones(move to 0)
- Grundy(3) = $mex({2, 1, 0}) = 3$
- Grundy(4) = $mex({3, 2, 1}) = 0$
- Grundy(5) = $mex({0, 3, 2}) = 1$
 - **5** moves to sub-states $\{4, 3, 2\}$. Recall Grundy(4) = 0

Grundy number for Nim variant

```
int grundy[100]; // initialize to -1
int calcGrundy(int n) {
  if (n == 0)
    return 0;
  int &ret = grundy[n];
  if (ret != -1)
    return ret;
  unordered set<int> sub nimbers;
  for (int i = 1; i \le 3; i++) if (n >= i)
      sub nimbers.insert(calcGrundy(n - i));
  return ret = calcMex(sub nimbers);
```

N	0	1	2	3	4	5	6	7	8	9	10
Grundy	0	1	2	3	0	1	2	3	0	1	2

One can observe that **answer** is: **grundy(n) = n%4**

Grundy number for simple game

- Given number N.
 - Move is to divide by 2, 3 or 6 (and take floor)
 - Winner: Last to be able to divide (loser have N=0)

```
int calcGrundy(int n) {
   if (n == 0)
      return 0;

int &ret = grundy[n];
   if (ret != -1)
      return ret;

unordered_set<int> sub_nimbers;
   int moves[3] = { 2, 3, 6 };

for (int i = 0; i < 3; i++)
      sub_nimbers.insert(calcGrundyl(n / moves[i]));

return ret = calcMex(sub_nimbers);
}</pre>
```

Grundy Graph of 1 game

Grundy of several games

- Given N independent game
 - So every game has its own graph of sub-grundies
- Compute their grundies SG(game_i)
 - Generate moves. Recursively compute SG(sub-game)
 - Mex all sub-games
- Grundy of N games = xor their grundies
 - grundy(games sum) = $SG(game_0) \land SG(game_1) \dots$
 - Same handling as nim: grundy(games sum) != 0 => win

Example: Knights on chessboard

- We can now write calcGrundy(x, y)
 - We have 4 possible positions as child move
- Given input some k pairs of (x, y)
 - Then just xor grundies of all knights positions

0	0	1	1	0	0	1	1
0	0	2	1	0	0	1	1
1	2	2	2	3	2	2	2
1	1	2	1	4	3	2	3
0	0	3	4	0	0	1	1
0	0	2	3	0	0	2	1
1	1	2	2	1	2	2	2
1	1	2	3	1	1	2	0

Src: https://www.topcoder.com/community/data-science/data-science-tutorials/algorithm-games.

Example: Knights on chessboard

```
int grundy2[120][120];
bool valid(int v) {
  return v >= 0 &  v < 8;
int calcGrundyChess(int r, int c) {
 int &ret = grundy2[r][c];
  if (ret != -1)
    return ret;
  unordered set<int> sub nimbers;
  const int DIR = 4:
  int dr[DIR] = \{ 1, -1, -2, -2 \};
  int dc[DIR] = \{ -2, -2, 1, -1 \};
  for (int d = 0; d < 4; ++d) {
    if (valid(r + dr[d]) && valid(c + dc[d]))
      sub nimbers.insert(calcGrundyChess(r + dr[d], c + dc[d]));
  return ret = calcMex(sub nimbers);
```

Example: Knights on chessboard

```
void chessMain() {
  clr(grundy2, -1);
  for (int i = 0; i < 8; ++i) {
    for (int j = 0; j < 8; ++j) {
      cout << calcGrundyChess(i, j) << " ";</pre>
    cout << "\n";
  int nimXor = 0, knights;
  cin>>knights;
  for (int d = \theta; d < knights; ++d) {
    int x, y;
    cin>>x>>y;
    nimXor ^= calcGrundyChess(x, y);
  if(nimXor != 0) cout<<"First win";</pre>
                  cout<<"Second win";
 else
```

Example: Sticks

- Example: Sticks (CEOI 2000)
 - Given N (\leq =10), and N values: Si \leq = 10
 - Given N rows (\leq =10), each row has numbers from 1 to $S_{row} \leq$ = 10 (e.g. list of list)
 - $\blacksquare \quad \text{E.g. N} = 3, \, \text{S} = \{4, 8, 6\}$
 - So we have following:
 - 1234
 - **1** 2 3 4 5 6 7 8
 - **123456**

Example: Sticks

- Example: Sticks (CEOI 2000)
 - In move: player pick 1 row, and remove up to 3 consecutive numbers
 - For example, if there is a row with 10 values
 - \blacksquare player1 removes [4, 5, 6] => remains [1, 2, 3, 7, 8, 9, 10]
 - Payer2 can remove [1, 2, 3] but NOT [3, 7, 8]
 - Loser: Can't make a move
 - Who win? Simulate the game against computer?

Example: Sticks

- Normal grundy, but efficiency concern
 - Inefficient: int grundy(vector<int> v)
- Let status be mask of 10 bits
 - E.g. 1110001111 represents [1, 2, 3, 7, 8, 9, 10]
 - For each mask, try all possible sub-masks of 1, 2, 3 consecutive bits on.
 - E.g. sub-mask 0000000110 represents [8, 9], 2 bits on
 - If submask exist, then it is valid move
 - do normal grundy
 - See <u>iterative code</u> here (first part only, 2nd simulate)
 - As small limits in stick => we used DP (no game break)

Take-and-break game

- Recall divide n by 2, 3, 6 game
 - If N = 36, then we have 3 sub-states $\{36/2, 36/3, 36/6\}$
 - So any single move creates one sub-game only
 - $SG(g) = mex\{SC(g1), SC(g2), SC(g3)\}$
- What if a single move create more than independent sub-games?
 - Say move 1 creates g1a, g1b, move2 creates g2 and move 3 creates g3a, g3b, g3c
 - $SG(g) = mex{SG(g1a)^SG(g1b), SG(g2), SG(g3a)^SG(g3b)^SG(g3c)}$
 - Apply the SG xor theorem on the independent sub-games

Example: take-and-break game

- Given 2D chocolate bar, move can do
 - Remove last row or last column (and enjoy eating it)
 - Split it vertically or horizontally to 2 pieces
 - Any 1x1 pieces will be eaten
 - Loser: Last one with nothing to do

- Let Grundy(r, c) => grundy
 - Rule $1 \Rightarrow grundy(r-1, c) \Rightarrow remove last row$
 - Rule $1 \Rightarrow grundy(r, c-1) \Rightarrow remove last row$
 - Rule 2 can do rows-1 and cols-1 moves. But each moves generates 2 independent sub-games
 - E.g. for col split at k: grundy(r, k) ^ grund(r, c-k)

Grundy and losing/winning pos

- Assume a game state generates grundies
 - **2**, 3, 7
 - It means we have 3 possible moves, each are winning
 - Then I am losing one
 - = mex(2, 3, 7) = 0: So mex in this case works well
 - What if it generates: 0, 1, 2, 3, 7
 - It means 1 sub-game is losing and 4 are winning
 - mex(0, 1, 2, 3, 7) = 4 > 0: again works well
- Why xoring the final grundies works well?
 What proves that this number is a heap size!

Grundy Mex and Heap size

Notes

- Grundy size = a normal 1 pile nim heap size
 - E.g. if n = 5
 - Possible moves generates: 0, 1, 2, 3, 4
 - What if we allowed to add stones? Useless (poker)
- Assume a state S generates grundies: {0, 1, 2, 3, 4, 7, 9}
- Mex of $\{0, 1, 2, 3, 4, 7, 9\} = 5 \Rightarrow$ why a nim size!
- if 5 is a nim size => means we can generate substates 0-4
- So finding first smallest number p, means [0, p-1] covered
- What about possible values > p? Useless (poker)
 - I hope this is a correct intuition.

Misère Grundy Number

- There is NO Sprague-Grundy Theorem for misère games
 - Grundy(terminal position) = 1 (NOT 0)
 - Some later winning state: $Grundy(\{1\}) = mex(1) = 0$
 - So our overall values are 0 and 1
 - We can't represent nim in such limited values!
- So if a game is misère, don't think grundy
 - But still might be a nim game
 - Later in compound games, it might work

Your turn: Northcotts game

- Game Details
 - One restriction on original game
 - Assume a move can be 1 or 2 steps only?
 - rows \leq 20, columns \leq 10^5

Your turn: Too many stones Game

Game

- **Example:** Given k piles (< 50), each pile up to 2^{90} stones
 - In 1 move, user can take 2^m (for whatever m)
 - Loser: Can't make a move: Who is winner?
- Hints:
 - Can you solve it if limits are much smaller?
 - Code it for small limits and see if there is pattern

Your turn: Min # moves

- Doubloon Game problem:
 - Given 1 pile of size S coins (10^9)
 - Move: pick number that is k^m (1 <= K <= 100)
 - Loser: Nothing to do
 - If first player will win, what is **the smallest number** of coins he may take?
 - Hints
 - Try to find the pattern for the # moves

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ