§ 2 二维离散随机变量

第三章 联合分布

- §1 引言:联合累积分布函数
- §2 (二维) 离散随机变量
- §3 (二维) 连续随机变量
- §4 独立随机变量
- §5 条件分布
- §6 联合分亦随机变量函数
- §7 极道和顺序统计量

二维离散型随机变量

设 $\mathbf{r.v}(X,Y)$ 的所有可能的取值为

$$(x_i, y_j)$$
 $(i, j = 1, 2, \cdots)$

取值的概率为

$$P\{X = x_i, Y = y_j\} = p(x_i, y_j) \square p_{ij} \quad (i, j = 1, 2, \cdots)$$

称上式为二维离散型 $\mathbf{r.v}(X,Y)$ 的频率函数,或称为 r.v.X,Y的联合频率函数 (joint frequency function).

频率函数的基本性质

设 $\mathbf{r.v}(X,Y)$ 的频率函数为

$$P\{X = x_i, Y = y_j\} = p_{ij}$$
 $(i, j = 1, 2, \cdots)$

则

$$p_{ij} \geq 0 (i,j=1,2,\cdots)$$

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p_{ij} = 1$$

 $p_{ij} \ge 0$ $(i, j = 1, 2, \cdots)$ 离散型r.v频率函数的本质特征

频率函数的表格表示法

X	x_1	$x_2 \cdots x_i \cdots$	•
y_1	p_{11}	p_{21} ··· p_{i1} ···	
y_2	p_{12}	$p_{22} \cdots p_{i2} \cdots$	
\mathbf{y}_{j}	p_{1j}	p_{2j} ··· p_{ij} ···	

§ 2 二维离散随机变量

划 袋中装有2只白球及3只黑球,现进行无放回的 摸球,定义随机变量如下:

$$X =$$

$$\begin{cases} \mathbf{1}, \ \hat{\mathbf{y}} - \hat{\mathbf{y}} \oplus \mathbf{1}, \ \hat{\mathbf{y}} = \begin{cases} \mathbf{1}, \ \hat{\mathbf{y}} - \hat{\mathbf{y}} \oplus \mathbf{1}, \ \hat{\mathbf{y}} = \mathbf{1}, \ \hat{\mathbf{y}$$

解

$$P\{X = 0, Y = 0\} = P\{Y = 0 \mid X = 0\} \cdot P\{X = 0\} = (2/4) \cdot (3/5)$$

 $P\{X = 0, Y = 1\} = P\{Y = 1 \mid X = 0\} \cdot P\{X = 0\} = (2/4) \cdot (3/5)$
 $P\{X = 1, Y = 0\} = P\{Y = 0 \mid X = 1\} \cdot P\{X = 1\} = (3/4) \cdot (2/5)$
 $P\{X = 1, Y = 1\} = P\{Y = 1 \mid X = 1\} \cdot P\{X = 1\} = (1/4) \cdot (2/5)$

有一个射击游戏,参加游戏的人先掷一次骰子,若出现点数为X,则射击 X次.设某人击中目标概率为p=0.9,记击中目标的次数为Y.求(X,Y)的频率函数.

解 X的取值为 $1,2,\dots,6,Y$ 的取值为 $0,1,2,\dots,X$.

当
$$X = i$$
时, $Y \sim b(i, p)$ $(i = 1, 2, 3, 4, 5, 6)$

由乘法公式求得

$$P{X = i, Y = j} = P{Y = j | X = i} \cdot P{X = i}$$

$$= \begin{cases} \frac{1}{6} C_i^j p^j (1-p)^{i-j}, 0 \le j \le i, i = 1, 2, \dots, 6 \\ 0, & \text{ #È} \end{cases}$$

代入p = 0.9, 求得(X,Y)的频率函数为

YX	1	2	3	4	5	6
0	0.017	0.0017	0.00017	0.000017	0.0000017	0.0000017
1	0.15	0.03	0.0045	0.0006	0.000075	0.000009
2	0	0.14	0.0405	0.0081	0.00135	0.000203
3	0	0	0.1215	0.0486	0.01215	0.002430
4	0	0	0	0.1094	0.05468	0.016403
5	0	0	0	0	0.09842	0.059049
6	0	0	0	0	0	0.088573

如果不掷骰子,直接射击一次,则 $P\{Y=0\}=0.1,\ P\{Y=1\}=0.9$

为什么概率不一样?

二维离散型随机变量的边际频率函数

设(X,Y)的频率函数为

$$P{X = x_i, Y = y_j} = p_{ij} \quad (i, j = 1, 2, \cdots)$$

则 r.v X的频率函数是

$$P\{X = x_{i}\} = P(\{X = x_{i}\} \cap \Omega) \triangleq p_{i}. \quad (i = 1, 2, \cdots)$$

$$= P(\{X = x_{i}\} \cap \{Y = y_{j}\}))$$

$$= P(\bigcup_{j=1}^{\infty} (\{X = x_{i}\} \cap \{Y = y_{j}\}))$$

$$= P(\bigcup_{j=1}^{\infty} \{X = x_{i}, Y = y_{j}\})$$

$$= \sum_{j=1}^{\infty} P\{X = x_{i}, Y = y_{j}\}$$

$$= \sum_{j=1}^{\infty} p_{ij}$$

二维离散型随机变量的边际频率函数

设(X,Y)的频率函数为

$$P{X = x_i, Y = y_j} = p_{ij} \quad (i, j = 1, 2, \cdots)$$

则 r.v X的频率函数是

$$P\{X=x_i\}=\sum_{j=1}^{\infty}p_{ij} \triangleq p_i. \qquad (i=1,2,\cdots)$$

同理 Y 的频率函数是

$$P{Y = y_j} = \sum_{i=1}^{\infty} p_{ij} \triangleq p_{.j}$$
 $(j = 1, 2, \cdots)$

定义 称数列 $\{p_{i.}\}$ 为(X,Y)关于X的边际频率函数 称数列 $\{p_{.j}\}$ 为(X,Y)关于Y的边际频率函数

(marginal frequency function).

①它是一维r. v的频率函数

②它可通过二维r. v的频率函数计算得到

§ 2 二维离散随机变量

沙 设 $\mathbf{r.v} X$ 从 $\mathbf{1,2,3,4}$ 中等可能取值, 又设 $\mathbf{r.v} Y$ 从 $\mathbf{1} \sim X$ 中等可能取值. 求 \mathbf{x} , \mathbf{y} 的联合频率函数及边际频率函数.

解 X 取值为1,2,3,4,而当 X = i (i = 1,2,3,4) 时,Y 的取值为1~i.由乘法公式有

 $P\{X=i,Y=j\}=P\{Y=j \mid X=i\}\cdot P\{X=i\}=\frac{1}{i}\cdot \frac{1}{4}\ (1\leq j\leq i)$ 故 X 的联合频率函数为

Y	1	2	3	4	$p_{\cdot,j} = \sum_{i=1}^4 p_{ij}$
1	1/4	1/8	1/12	1/16	25 / 48
2	0	1/8	1/12	1/16	13 / 48
3	0	0	1/12	1/16	7 / 48
4	0	0	0	1/16	3/48/
$p_{i\bullet} = \sum_{j=1}^4 p_{ij}$	1/4	<u>1</u> 4	<u>1</u> 4	$\frac{1}{4}$	

故边际频率函数为

X	1	2	3	4
$\overline{p_{i\cdot}}$	1/4	1/4	1/4	1/4

Y	1	2	3	4
$\overline{p_{\cdot j}}$	25 / 48	13 / 48	7 / 48	3 / 48

n维离散型随机变量的边际频率函数

设 $X_1,...,X_n$ 的联合频率函数为

$$P{X_1 = x_1,...,X_n = x_n} = p(x_1,...,x_n)$$

则 $\mathbf{r.v} X_1$ 的边际频率函数是

$$p_{X_1}(x_1) = \sum_{x_2...x_n} p(x_1, x_2, ..., x_n)$$

 $\mathbf{r.v} X_1$ 和 X_2 的二维边际频率函数是

$$p_{X_1X_2}(x_1,x_2) = \sum_{x_3...x_n} p(x_1,x_2,...,x_n)$$

刻 多项(multinomial)分布: 二项 分布 的 推 广 假设进行 n 次独立试验,每次试验有 r 种可能的结果,各自出现的概率分别为 $p_1,p_2,...,p_r$.

 $令N_i$ 是n次试验出现第i 种试验结果的所有次数,其中 $i=1,\ldots,r$.

 $N_1, N_2, ..., N_r$ 的联合频率函数是

$$p(n_1,...,n_r) = {n \choose n_1 \cdots n_r} p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$

 N_i 的边际频率函数的计算 【两种理解】:

- ② N_i 可解释为n次试验中成功的次数,故 $N_i \sim \mathbf{b}(n,p_i)$.

$$p_{N_i}(n_i) = \binom{n}{n_i} p_i^{n_i} (1-p_i)^{n-n_i}$$

例 箱子里装有4只白球和2只黑球,在其中随机地取两次,每次取一只。考虑两种试验: (1)有放回抽样,(2)不放回抽样。 我们定义随机变量 X,Y 如下,写出X和Y的联合分布律和边缘分布律。

$$X =$$
 $\begin{cases} 0, \text{ 若第一次取出的是黑球,} \\ 1, \text{ 若第一次取出的是白球.} \end{cases}$

$$Y =$$
 $\begin{cases} 0,$ 若第二次取出的是黑球, $1,$ 若第二次取出的是白球.

(1) 有放回抽样

X	0	1	$p_{i\bullet}$
0	<u>1</u> 9	<u>2</u> 9	$\frac{1}{3}$
1	$\frac{2}{9}$	$\frac{4}{9}$	$\frac{2}{3}$
$p_{ullet j}$	$\frac{1}{3}$	$\frac{2}{3}$	1

(2) 不放回抽样

X	0	1	$p_{i\bullet}$
0	1 15	4 15	$\frac{1}{3}$
1	$\frac{4}{15}$	<u>6</u> 15	$\frac{2}{3}$
$p_{ullet j}$	$\frac{1}{3}$	$\frac{2}{3}$	1

例5: 袋中有1个红球, 2个黑球, 3个白球, 现有放回地取两次, 每次取一球, 以X,Y,Z分别表示两次取球所得的红、黑、白球个数。求: (1)P(X=1|Z=0) (2) P(X=1,Z=0)(3)(X,Y)分布.

例5: 袋中有1个红球, 2个黑球, 3个白球, 现有效回地取两次, 每次取一球, 以X,Y,Z分别表示两次取球所得的红、黑、白球个数。求: (1)P(X=1|Z=0)(2) P(X=1,Z=0)(3)(X,Y)分布.

解: (1)
$$P(X=1|Z=0) = \frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$$
 红黑黑红

例5: 袋中有1个红球, 2个黑球, 3个白球, 现有放回地取两次, 每次取一球, 以X,Y,Z分别表示两次取球所得的红、黑、白球个数。求: (1)P(X=1|Z=0)(2) P(X=1,Z=0)(3)(X,Y)分布.

解: (1)
$$P(X=1|Z=0) = \frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$$
 红黑黑红

(2)
$$P(X=1, Z=0) = \frac{1}{6} \times \frac{2}{6} + \frac{2}{6} \times \frac{1}{6} = \frac{1}{9}$$

 $\text{ x. x. } \text{ x. x. }$

注意两者的区别!

例5: 袋中有1个红球,2个黑球,3个白球,现有放回地取两次,每次取一球,以X,Y,Z分别表示两次取球所得的红、黑、白球个数。求:(1)P(X=1|Z=0)(2)P(X=1,Z=0)(3)(X,Y)分布.

解: (3) X, Y的取值范围均为0,1,2.

例5: 袋中有1个红球, 2个黑球, 3个白球, 现有放回地取两次, 每次取一球, 以X,Y,Z分别表示两次取球所得的红、黑、白球个数。求: (1)P(X=1|Z=0)(2) P(X=1,Z=0)(3)(X,Y)分布.

解: (3) X, Y的取值范围均为0,1,2.

$$P(X=0,Y=0)=\frac{3}{6}\times\frac{3}{6}=\frac{1}{4}$$
 2球均为白球 $P(X=0,Y=1)=\frac{2}{6}\times\frac{3}{6}\times2=\frac{1}{3}$ 黑白或白黑 $P(X=1,Y=2)=0$ 总数超2只,不可能! $P(X=2,Y=0)=\frac{1}{6}\times\frac{1}{6}=\frac{1}{36}$ 2球均为红球 其余类似得到!

课后作业 P76: 3, 补充题

- 1、把一枚均匀硬币抛掷三次,设 X 为三次抛掷中正面出现的次数,而 Y 为正面出现次数与反面出现次数之差的绝对值,求 (X,Y) 的频率函数.
- 2、设 X 的分布为 P(X = -1)= P(X=0)=P(X=1)=1/3. 令 Y=X², 求(X,Y)的联合频率函数及边缘频率函数。
- 3、设随机变量 Y 服从参数为 1 的指数分布,随机变量

$$X_k = \begin{cases} 0, & \text{ $\Xi Y \le k$,} \\ 1, & \text{ $\Xi Y > k$,} \end{cases} \quad k = 1, 2$$

求二维随机变量(X1,X2)的联合频率函数及边缘频率函数。