Hack ZIKA

Sep 29 - Oct 7

Cone Nosed Assassins - Alternative solution

Saputro, L

Main Goal

- Control the spread of Zika by spraying.
- With consideration of weather, wind, rain gauge, mosquitos counts, and health reports.

Problems

- Not tightly related one another
- Timeframe constraint
- Inconsistent header names and no relation
- Inconsistent writing style.
- Too many null values

Solutions

Mapping

- Observations
- Reports
- Treatments

Solutions

- Introducing:
 - ZONES (based on coordinates retrieved from the Mosquitos Observations)
 - Values (rain gauge, landing rates, mosquitos counts)
 - Priority Levels
 - P1 Critical
 - P2 High
 - P3 Medium
 - P4 Low

Pipeline

Pipeline

- Retrieve the zones based on the mosquitos observations.
 - Count the zones, to set Priority. The higher the counts, the higher the priority.
- Train and test on the zone dataset.
- Test on the Human Health Report coordinates > Predict the Zone > Set Priority.
- Use the new test data (coordinates of x and y in Rain Gauge and Landing Rate, from AdultSurveilanceLocations) to predict the zone.
 - Rain Gauge value (inches)
 - Landing rate (counts)
 - These two will be counted, to set the Priority.
- Results:
 - Zone and Priority (Last Output)
 - "ZONES number: XX turns into P1 CRITICAL status because there is a CONFIRMED case of XX virus"

Disadvantages

- Disregard the division of Zone A and B.
- Unsuitable predictions with the real area (polygons)
- Deviations in predictions.
- Dismiss some the Null values, which may contain important value.
- Disregard the timeframe.
- Priority threshold.

Suggestions

- Maintain a decent form for the officers to put all the data correctly.
- Relate those data with main key.
- Consistency and description for header.

Conclusions

- Integration is a must.
- More time is required.

Thank you

Q & A