March 1, 2015

TA: Cristian Hernandez cahernandez3@wisc.edu

Exercise 4.7

$$\hat{V}_{\hat{\beta}}^{W} = (X'X)^{-1} \left(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}' \hat{e}_{i}^{2} \right) (X'X)^{-1}
\bar{V}_{\hat{\beta}} = (X'X)^{-1} \left(\sum_{i=1}^{n} (1 - h_{ii})^{-1} \mathbf{x}_{i} \mathbf{x}_{i}' \hat{e}_{i}^{2} \right) (X'X)^{-1}
\tilde{V}_{\hat{\beta}} = (X'X)^{-1} \left(\sum_{i=1}^{n} (1 - h_{ii})^{-2} \mathbf{x}_{i} \mathbf{x}_{i}' \hat{e}_{i}^{2} \right) (X'X)^{-1}$$

Since $(1 - h_{ii})^{-2} > (1 - h_{ii})^{-1} > 1$,

$$\tilde{V}_{\hat{\beta}} - \bar{V}_{\hat{\beta}} = (X'X)^{-1} \left(\sum_{i=1}^{n} ((1 - h_{ii})^{-2} - (1 - h_{ii})^{-1}) \mathbf{x}_{i} \mathbf{x}_{i}' \hat{e}_{i}^{2} \right) (X'X)^{-1}
= (X'X)^{-1} (X'CX) (X'X)^{-1}
= G'G$$

where $C = \operatorname{diag}(a_1, \dots, a_n), a_i = ((1 - h_{ii})^{-2} - (1 - h_{ii})^{-1})\hat{e}^2$, and $G = C^{1/2}X(X'X)^{-1}$. Note that $C^{1/2} = \operatorname{diag}(a_1^{1/2}, \dots, a_n^{1/2})$ is well defined since $a_i > 0$. Since G has full column rank $k, \tilde{V}_{\hat{\beta}} - \bar{V}_{\hat{\beta}}$ is positive definite. Similarly, we can show $\bar{V}_{\hat{\beta}} - \hat{V}_{\hat{\beta}}^W$ is positive definite.

Exercise 4.8

$$\mathbb{E}(\tilde{V}_{\hat{\beta}}|X) = (X'X)^{-1} \left(\sum_{i=1}^{n} (1 - h_{ii})^{-2} \mathbf{x}_{i} \mathbf{x}_{i}' \mathbb{E}(\hat{e}_{i}^{2}|X) \right) (X'X)^{-1}
= (X'X)^{-1} \left(\sum_{i=1}^{n} (1 - h_{ii})^{-1} \mathbf{x}_{i} \mathbf{x}_{i}' \sigma^{2} \right) (X'X)^{-1}
= (X'X)^{-1} \left(\sum_{i=1}^{n} x_{i} x_{i}' \sigma^{2} + \sum_{i=1}^{n} ((1 - h_{ii})^{-1} - 1) \mathbf{x}_{i} \mathbf{x}_{i}' \sigma^{2} \right) (X'X)^{-1} \right)
= (X'X)^{-1} \sigma^{2} + (X'X)^{-1} \left(\sum_{i=1}^{n} \frac{h_{ii}}{1 - h_{ii}} \mathbf{x}_{i} \mathbf{x}_{i}' \sigma^{2} \right) (X'X)^{-1}
= (X'X)^{-1} \sigma^{2} + \sigma^{2} (X'X)^{-1} X' DX (X'X)^{-1} \right)$$

where $D = \operatorname{diag}(\frac{h_{11}}{1-h_{11}}, \cdots, \frac{h_{nn}}{1-h_{nn}})$. Since $\frac{h_{ii}}{1-h_{ii}} \geq 0$, the second term in the last equality is positive semi-definite. Thus we have (4.33). Similarly, for (4.34);

$$\mathbb{E}(\overline{V}_{\hat{\beta}}|X) = (X'X)^{-1} \left(\sum_{i=1}^{n} (1 - h_{ii})^{-1} \mathbf{x}_{i} \mathbf{x}_{i}' \mathbb{E}(\hat{e}_{i}^{2}|X) \right) (X'X)^{-1}
= (X'X)^{-1} \left(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}' \sigma^{2} \right) (X'X)^{-1}
= (X'X)^{-1} \sigma^{2}$$

Exercise 4.9

Note that $(\sum_{i=1}^{n} (y_i - \mu))^3 = \sum_{i=1}^{n} (y_i - \mu)^3 + \sum_{i \neq j} (y_i - \mu)^2 (y_j - \mu) + \sum_{i \neq j \neq k} (y_i - \mu) (y_j - \mu) (y_k - \mu)$. Because of independent observations, $\mathbb{E}(y_i - \mu)^2 (y_j - \mu) = \mathbb{E}(y_i - \mu)^2 \mathbb{E}(y_j - \mu) = 0$, $\mathbb{E}(y_i - \mu)(y_j - \mu)(y_k - \mu) = 0$

$$\mathbb{E}(\bar{y} - \mu)^{3} = \mathbb{E}(\frac{1}{n} \sum_{i=1}^{n} (y_{i} - \mu))^{3}$$

$$= \frac{1}{n^{3}} \mathbb{E}(\sum_{i=1}^{n} (y_{i} - \mu))^{3}$$

$$= \frac{1}{n^{3}} \sum_{i=1}^{n} \mathbb{E}(y_{i} - \mu)^{3} + \sum_{i \neq j} \mathbb{E}(y_{i} - \mu)^{2}(y_{j} - \mu) + \sum_{i \neq j \neq k} \mathbb{E}(y_{i} - \mu)(y_{j} - \mu)(y_{k} - \mu))$$

$$= \frac{\mu_{3}}{n^{2}}$$

Exercise 4.10

Note that $\mathbb{E}(x_i^3 e_i^3 | X) = x_i^3 \mathbb{E}(e_i^3 | x_i) = x_i^3 \mu_{3i}$, $\mathbb{E}((x_i e_i)^2 (x_j e_j) | X) = \mathbb{E}(x_i^2 e_i^2 | X) \mathbb{E}(x_j e_j | X) = 0$, and $\mathbb{E}((x_i e_i)(x_j e_j)(x_k e_k) | X) = 0$ for different i, j, k.

$$\mathbb{E}\left((\hat{\beta} - \beta)^{3}|X\right) = \mathbb{E}\left(\left(\frac{\sum_{i=1}^{n} x_{i}^{2}e_{i}}{\sum_{i=1}^{n} x_{i}^{2}}\right)^{3}|X\right) \\
= \frac{1}{(\sum_{i=1}^{n} x_{i}^{2})^{3}} \mathbb{E}\left(\left(\sum_{i=1}^{n} x_{i}e_{i}\right)^{3}|X\right) \\
= \frac{1}{(\sum_{i=1}^{n} x_{i}^{2})^{3}} \mathbb{E}\left(\sum_{i=1}^{n} (x_{i}e_{i})^{3} + \sum_{i\neq j} (x_{i}e_{i})^{2}(x_{j}e_{j}) \sum_{i\neq j\neq k} (x_{i}e_{i})(x_{j}e_{j})(x_{k}e_{k})|X\right) \\
= \frac{1}{(\sum_{i=1}^{n} x_{i}^{2})^{3}} \left(\sum_{i=1}^{n} \mathbb{E}((x_{i}e_{i})^{3}|X) + \sum_{i\neq j} \mathbb{E}((x_{i}e_{i})^{2}(x_{j}e_{j})|X) \sum_{i\neq j\neq k} \mathbb{E}((x_{i}e_{i})(x_{j}e_{j})(x_{k}e_{k})|X)\right) \\
= \frac{\sum_{i=1}^{n} x_{i}^{3}\mu_{3i}}{(\sum_{i=1}^{n} x_{i}^{2})^{3}}$$

(Consider the special case where $x_i = 1$, $\hat{\beta} = \bar{y}$, $\mathbb{E}y_i = \beta$, $\mu_{3i} = \mathbb{E}(y_i - \beta)^3$, then result reduces to exercise 4.9)

Exercise 4.11

We calculate standard errors using five different covariance matrix estimators

$$(\text{Homoskedastic}) : \hat{V}_{\hat{\beta}}^{0} = (X'X)^{-1}s^{2} = \frac{1}{n-k}(X'X)^{-1}\sum_{i=1}^{n}\hat{e}_{i}^{2}$$

$$(\text{White}) : \hat{V}_{\hat{\beta}}^{W} = (X'X)^{-1}\left(\sum_{i=1}^{n}\mathbf{x}_{i}\mathbf{x}_{i}'\hat{e}_{i}^{2}\right)(X'X)^{-1}$$

$$(\text{Scaled White}) : \hat{V}_{\hat{\beta}} = \frac{n}{n-k}(X'X)^{-1}\left(\sum_{i=1}^{n}\mathbf{x}_{i}\mathbf{x}_{i}'\hat{e}_{i}^{2}\right)(X'X)^{-1}$$

$$(\text{Andrews}) : \tilde{V}_{\hat{\beta}} = (X'X)^{-1}\left(\sum_{i=1}^{n}(1-h_{ii})^{-2}\mathbf{x}_{i}\mathbf{x}_{i}'\hat{e}_{i}^{2}\right)(X'X)^{-1}$$

$$(\text{Horn-Horn-Duncan}) : \bar{V}_{\hat{\beta}} = (X'X)^{-1}\left(\sum_{i=1}^{n}(1-h_{ii})^{-1}\mathbf{x}_{i}\mathbf{x}_{i}'\hat{e}_{i}^{2}\right)(X'X)^{-1}$$

Variables	Coefficient	Homoske-	White	Scaled	Andrews	Horn-Horn-
	Estimates	dastic		White		Duncan
Education	0.1443	0.0116	0.0117	0.0118	0.0121	0.0119
Experience	0.0426	0.0122	0.0124	0.0125	0.0128	0.0126
Experience squared/100	-0.0951	0.0349	0.0338	0.0341	0.0354	0.0346
constant	0.5309	0.1898	0.2001	0.2016	0.2054	0.2027
R^2	0.3893					
observations	267					

Table 1: OLS Estimates of Linear Equation for log(wage) using the sub-sample of single Asian males with less than 45 years of experience (n = 267).

Exercise 4.12

Variables	Coefficient	Standard	
	Estimates	Errors	
Education	0.0883	0.0029	
Experience	0.0279	0.0028	
Experience squared/100	-0.0365	0.0055	
Regional dummy			
Northeast	0.0616	0.0361	
South	-0.0675	0.0297	
West	0.0201	0.0283	
Marital Status dummy			
Married	0.1780	0.0250	
Widowed	0.2430	0.1866	
Divorced	0.0787	0.0450	
Separated	0.0169	0.0528	
constant	1.1918	0.0501	
R^2	0.2492		
observations	4230		

Table 2: OLS Estimates of Linear Equation for log(wage) using the sub-sample of white male Hispanics (n = 4230). Standard errors are heteroskedastic-robust (Horn-Horn-Duncan formula.)

Exercise 5.1

- 1. $\{a_n\} = \{1, 1/2, 1/3, \dots\}$. $\liminf a_n = \limsup a_n = \lim a_n = 0$
- 2. $\{a_n\} = \{1, 0, -1, 0, 1, 0, -1, 0, \dots\}$. $\liminf a_n = -1$, $\limsup a_n = 1$, $\lim a_n$ does not exists.
- 3. $\{a_n\} = \{1, 0, -1/3, 0, 1/5, 0, -1/7, 0, \dots\}$. $\limsup a_n = \limsup a_n = \lim a_n = 0$

Exercise 5.2

1.
$$\mathbb{E}\bar{y}^* = \mathbb{E}(\frac{1}{n}\sum_{i=1}^n w_i y_i) = \frac{1}{n}\sum_{i=1}^n (w_i \mathbb{E}y_i) = (\frac{1}{n}\sum_{i=1}^n w_i)\mu = \mu$$

2.

$$\operatorname{var}(\bar{y}^*) = \operatorname{var}\left(\frac{1}{n}\sum_{i=1}^n w_i y_i\right) = \frac{1}{n^2}\operatorname{var}\left(\sum_{i=1}^n w_i y_i\right)$$
$$= \frac{1}{n^2}\left(\sum_{i=1}^n w_i^2 \operatorname{var}(y_i) + \sum_{i=1}^n \sum_{j \neq i} w_i w_j \operatorname{cov}(y_i, y_j)\right)$$
$$= \left(\frac{1}{n^2}\sum_{i=1}^n w_i^2\right) \operatorname{var}(y_i)$$

3. By Chebyshev's Inequality, for any $\delta > 0$

$$Pr(|\bar{y}^* - \mu| > \delta) \le \frac{\operatorname{var}(\bar{y}^*)}{\delta^2}$$

Thus, a sufficient condition for $\bar{y}^* \stackrel{p}{\longrightarrow} \mu$ is $\operatorname{var}(\bar{y}^*) \longrightarrow 0$ as $n \to \infty$. By the calculations above, if (and only if) $(\frac{1}{n^2} \sum_{i=1}^n w_i^2) \longrightarrow 0$, then $\operatorname{var}(\bar{y}^*) \longrightarrow 0$ assuming that the second moment is finite. (or $\operatorname{var}(y_i) < \infty$)

4.

$$\frac{1}{n^2} \sum_{i=1}^n w_i^2 \le \left(\frac{1}{n} \sum_{i=1}^n w_i\right) \frac{1}{n} \max_{1 \le i \le n} w_i = n^{-1} \max_{1 \le i \le n} w_i$$

Thus sufficient condition for the condition in part 3 is $n^{-1} \max_{1 \le i \le n} w_i = o(1)$ or $\max_{1 \le i \le n} w_i = o(n)$

Exercise 5.3

By Chebyshev's inequality, for any $\delta>0$, $Pr(|Z|>\delta)\leq \frac{1}{\delta^2}$. Thus $\delta=\sqrt{20}=4.472$ makes $Pr(|Z|>\delta)\leq \frac{1}{\delta^2}=0.05$ for any random variable Z with $\mathbb{E}Z=0$, $\mathbb{E}Z^2=1$. For standard normal random variable $Z\sim N(0,1)$, $\delta=z_{0.025}=1.96$ makes $Pr(|Z|>\delta)=0.05$. Chebyshev's inequality holds for any random variable, however it is in some sense not a tight bound. As we could see, for normal random variable, Pr(|Z|>4.472)< Pr(|Z|>1.96)=0.05.

Exercise 5.4

Assume y_i are i.i.d observations. The moment estimator of third moment $\mathbb{E} y_i^3$ is sample moments $\hat{\mu}_3 = \frac{1}{n} \sum_{i=1}^n y_i^3$. By CLT, if $\mathbb{E} y_i^6 < \infty \sqrt{n}(\hat{\mu}_3 - \mu_3) \stackrel{d}{\longrightarrow} N(0, v^2)$ where $v^2 = \mathbb{E} (y_i^3 - \mathbb{E} y_i^3)^2 = \mathbb{E} y_i^6 - (\mathbb{E} y_i^3)^2$

Exercise 5.5

Let's solve a more general case and then apply the result to the function $g(z)=z^2$. Take a continuous function g. Continuity of this function implies that $\forall \epsilon > 0$, $\exists \delta > 0$ such that $|z_n - c| < \delta$ implies that $|g(z_n) - g(c)| < \epsilon$. Therefore, $|g(z_n) - g(c)| > \epsilon$ implies that $|z_n - c| > \delta$. This means that the event $A = |g(z_n) - g(c)| > \epsilon$ is a subset of the event $B = |z_n - c| > \delta$ —every time that A occurs B also occurs, but not the other way around—, and hence

$$Pr(|g(z_n) - g(c)| > \epsilon) \le Pr(|z_n - c| > \delta)$$

Since $z_n \xrightarrow{p} c$, for any $\delta > 0$ it holds that

$$\lim_{n \to \infty} Pr\left(|z_n - c| > \delta\right) = 0$$

, which implies that for any $\epsilon > 0$

$$\lim_{n \to \infty} Pr\left(|g(z_n) - g(c)| > \epsilon\right) = 0$$

Therefore, $g(z_n) \xrightarrow{p} g(c)$. Now we apply this proof to $g(z_n) = z_n^2$ and it holds that $z_n^2 \xrightarrow{p} c^2$.

Exercise 5.6

- 1. By the Delta method $\sqrt{n}(\hat{\beta}-\beta) = \sqrt{n}(\hat{\mu}^2-\mu^2) \xrightarrow{d} 2\mu N(0,v^2) = N(0,4\mu^2v^2)$
- 2. If $\mu = 0$, then $\sqrt{n}(\hat{\beta} \beta) \xrightarrow{d} 0$, i.e., $\sqrt{n}(\hat{\beta} \beta)$ converges in distribution to a constant since the derivative of the function $\beta(\mu) = \mu^2$ is zero.
- 3. If $\mu = 0$, then we know that $\sqrt{n}\hat{\mu} \xrightarrow{d} N(0, v^2)$. Therefore, by the CMT $\frac{(\sqrt{n}\hat{\mu})^2}{v^2} \xrightarrow{d} \chi^2(1)$.
- 4. From the Delta Method we can decompose the asymptotic distribution of $\sqrt{n}(\hat{\beta} \beta)$ as the derivative of $\beta(\mu)$ —a deterministic component—, and $\sqrt{n}(\hat{\mu} \mu) \stackrel{d}{\longrightarrow} Z \sim N(0, v^2)$ —a stochastic component. The problem arises at $\mu = 0$ because the deterministic component happens to be zero at that point, so the random variable $\sqrt{n}(\hat{\beta} \beta)$ converges in distribution to zero. The solution in part 3 takes care of this issue at $\mu = 0$ and allows to make inference.