11. (a) Sketch the curve $r(\theta) = 2\sin 2\theta$. Hint: It should be a rose with some number of petals.

(b) Find the equation of the line tangent to $r(\theta)$ at the point $(\sqrt{3}, \pi/3)$.

SILIP EQUATION: Slope = $\frac{4\cos(2\theta)\sin\theta + 2\cos\theta\sin(2\theta)}{4\cos\theta\cos(2\theta) - 2\sin\theta\sin(2\theta)}$ = $\frac{3}{5}$

(c) Find the points where the tangent line to the curve $r(\theta)$ are horizontal and/or vertical.

Horiz >> numerator [(b)] =0; vert >> denominator [(b)] =0.
DON'T SOLVE! IT'S HARD!

(d) Find the area bounded by the any one petal of the given curve.

(e) Write the integral corresponding to the (arc) length of the portion of the graph of $r(\theta)$ consisting of any two petals.

J (23in26)2+ (4cos 26)2 d6