# High Dimensional Linear Regression using Lattice Basis Reduction

Ilias Zadik, joint work with David Gamarnik

ORC, MIT

Cornell ORIE Young Researchers Workshop, 2018



# Linear Regression

Let (unknown)  $\beta^* \in \mathbb{R}^p$ .

For measurement matrix  $X \in \mathbb{R}^{n \times p}$ , and noise vector  $W \in \mathbb{R}^n$ , we observe n noisy linear samples of  $\beta^*$ ,  $Y = X\beta^* + W$ .

**Goal:** Given (Y, X), recover  $\beta^*$ .



# Linear Regression

Let (unknown)  $\beta^* \in \mathbb{R}^p$ .

For measurement matrix  $X \in \mathbb{R}^{n \times p}$ , and noise vector  $W \in \mathbb{R}^n$ , we observe n noisy linear samples of  $\beta^*$ ,  $Y = X\beta^* + W$ .

**Goal:** Given (Y, X), recover  $\beta^*$ .



Distributional assumption:

X has iid N(0, 1) entries and W has iid  $N(0, \sigma^2)$  entries.

#### Main Question:

**Question:** "What is the **minimum** n (numbers of samples) we need to *efficiently* recover  $\beta^*$ ?

#### Main Question:

**Question:** "What is the **minimum** n (numbers of samples) we need to *efficiently* recover  $\beta^*$ ?

An immediate answer under full generality: at least p.

#### Main Question:

**Question:** "What is the **minimum** n (numbers of samples) we need to *efficiently* recover  $\beta^*$ ?

An immediate answer under full generality: at least p.

**Reason:** Even if W = 0, we have  $Y = X\beta^*$ , a linear system with p unknowns and n equations!

To solve it, we need at least p equations, i.e.  $n \ge p$ .

## Problem: A High Dimensional Reality

In many *real-life applications* of Linear Regression (e.g. natural language processing, computer vision, image processing etc) we observe **much more** features than samples (i.e.  $n \ll p$ .)

# Problem: A High Dimensional Reality

In many real-life applications of Linear Regression (e.g. natural language processing, computer vision, image processing etc) we observe **much more** features than samples (i.e.  $n \ll p$ .)

**Question:** Are we doomed to not use all the features or can we handle such a situation?

- -Sparsity!  $k \le p$  non zero coordinates.
  - Vast literature.

- -Sparsity!  $k \le p$  non zero coordinates.
  - Vast literature.
  - Requires n of **order** k log  $(\frac{pe}{k})$  for known algorithms to work (e.g. Lasso analysis (Wainwright '09) ) Possibly algorithmic hard below (Gamarnik, Z '17), but possible for small noise!

- -Sparsity!  $k \le p$  non zero coordinates.
  - Vast literature.
  - Requires n of order k log (pe/k) for known algorithms to work (e.g. Lasso analysis (Wainwright '09))
    Possibly algorithmic hard below (Gamarnik, Z '17), but possible for small noise!
- -Ouput of a Generative Model! (Bora et al '17) Similar picture: can achieve some n < p but not always small.

- -Sparsity!  $k \le p$  non zero coordinates.
  - Vast literature.
  - Requires n of order k log (pe/k) for known algorithms to work (e.g. Lasso analysis (Wainwright '09))
    Possibly algorithmic hard below (Gamarnik, Z '17), but possible for small noise!
- -Ouput of a Generative Model! (Bora et al '17) Similar picture: can achieve some n < p but not always small.

Success, but is that n sufficiently small for all applications? Does this structure leads to the best algorithms?

#### Main Motivation

#### Motivation

Generic and natural assumption that allows

- efficient recovery of  $\beta^*$
- for significantly small sample sizes.

#### This talk

New efficient algorithm for recovering  $\beta^*$  from (Y, X) based on LLL algorithm (short vectors on lattices) under a new generic structural assumption (**Q-rationality assumption**).





#### This talk

New efficient algorithm for recovering  $\beta^*$  from (Y, X) based on LLL algorithm (short vectors on lattices) under a new generic structural assumption (Q-rationality assumption).



Guarantees: works for any n (even n = 1) given sufficiently small noise!

#### The Assumption

Every entry of  $\beta^*$  is a **rational number** with denominator Q.

#### The Assumption

Every entry of  $\beta^*$  is a **rational number** with denominator Q.

Is it natural?

#### The Assumption

Every entry of  $\beta^*$  is a **rational number** with denominator Q.

Is it natural? Yes!

#### The Assumption

Every entry of  $\beta^*$  is a **rational number** with denominator Q.

Is it *natural*? Yes!

(1) Image processing: Each **pixel** has finite many colors (values).

#### The Assumption

Every entry of  $\beta^*$  is a **rational number** with denominator Q.

Is it *natural*? Yes!

- (1) Image processing: Each **pixel** has finite many colors (values).
- (2) GPS [BH '98]: **physics laws** imply for half the coordinates  $\beta_i \in \mathbb{Z}$ .



#### The Assumption

Every entry of  $\beta^*$  is a **rational number** in [0, 1] with denominator Q.

Is it *natural*? Yes!

- (1) Image processing: Each **pixel** has finite many colors (values).
- (2) GPS [BH '98]: **physics laws** imply for half the coordinates  $\beta_i \in \mathbb{Z}$ .



#### The New Model

**Setup:** Let  $\beta^*$  be a **Q-rational** vector. For

- $X \in \mathbb{R}^{n \times p}$  consisting of entries i.i.d N(0,1) random variables
- $W \in \mathbb{R}^n$  consisting of entries i.i.d.  $N(0, \sigma^2)$  random variables

we get n noisy linear samples of  $\beta^*$ ,  $Y \in \mathbb{R}^n$ , given by,

$$Y := X\beta^* + W.$$

#### The New Model

**Setup:** Let  $\beta^*$  be a **Q-rational** vector. For

- $X \in \mathbb{R}^{n \times p}$  consisting of entries i.i.d N(0,1) random variables
- $W \in \mathbb{R}^n$  consisting of entries i.i.d.  $N(0,\sigma^2)$  random variables

we get n noisy linear samples of  $\beta^*$ ,  $Y \in \mathbb{R}^n$ , given by,

$$\mathsf{Y} := \mathsf{X}\beta^* + \mathsf{W}.$$

**Goal:** Given (Y, X), recover efficiently  $\beta^*$  with n as small as possible. The recovery should happen with probability tending to 1 as p tend to infinity (w.h.p.).

## Brute-force with one sample

Any hope for n = 1? Recall  $y_1 = \langle X_1, \beta^* \rangle + w_1$ .

## Brute-force with one sample

Any hope for n = 1? Recall  $y_1 = \langle X_1, \beta^* \rangle + w_1$ .

Yes, if  $\sigma = 0!$ 

## Brute-force with one sample

Any hope for n = 1? Recall  $y_1 = \langle X_1, \beta^* \rangle + w_1$ .

Yes, if  $\sigma = 0!$ 

#### Brute Force Algorithm

Check all Q-rational  $\beta$  for

$$y_1 = \langle X_1, \beta \rangle$$
.

Termination Time 
$$\underbrace{(Q+1)(Q+1)\dots(Q+1)}_{p \text{ terms}} = (Q+1)^p$$
-not efficient!

# Brute-force with one sample (proof)

#### Lemma (Brute-force works!)

Suppose  $\beta^*$  Q-rational and  $\sigma^2 = 0$ .

There is no Q-rational  $\beta \neq \beta^*$  with  $y_1 = \langle X_1, \beta \rangle$ , almost surely.

# Brute-force with one sample (proof)

#### Lemma (Brute-force works!)

Suppose  $\beta^*$  Q-rational and  $\sigma^2 = 0$ .

There is no Q-rational  $\beta \neq \beta^*$  with  $y_1 = \langle X_1, \beta \rangle$ , almost surely.

#### **Proof Sketch:**

For any  $\beta \neq \beta^*$ ,

$$\mathbb{P}\left(\mathsf{y}_{1}=\left\langle\mathsf{X}_{1},\beta\right\rangle\right)=\mathbb{P}\left(\left\langle\mathsf{X}_{1},\beta^{*}\right\rangle=\left\langle\mathsf{X}_{1},\beta\right\rangle\right)=\mathbb{P}\left(\left\langle\mathsf{X}_{1},\beta^{*}-\beta\right\rangle=0\right)=0,$$

since 
$$\langle \mathbf{X}_1, \beta^* - \beta \rangle \sim \mathbf{N} \left( \mathbf{0}, \|\beta^* - \beta\|_2^2 \right)$$
.

Union bound over Q-rational  $\beta$  completes the proof.

## Theorem (informal, (Gamarnik, Z. NIPS '18))

Suppose you have  $n \ll p$  samples and  $0 \le \sigma \le \exp\left(-\frac{p(p+\log Q)}{2n}\right)$ . Then there exists a **polynomial-in**-n, p, logQ time algorithm which has input (Y, X) and ouputs  $\beta^*$  w.h.p. as  $p \to +\infty$ .

## Theorem (informal, (Gamarnik, Z. NIPS '18))

Suppose you have  $n \ll p$  samples and  $0 \le \sigma \le \exp\left(-\frac{p(p+\log Q)}{2n}\right)$ . Then there exists a **polynomial-in**-n, p, logQ time algorithm which has input (Y,X) and ouputs  $\beta^*$  w.h.p. as  $p \to +\infty$ .

- (1) An efficient algorithm which works for any sample size  $n \ll p$ .
- (2) For n = 1, It works in time poly in p, log Q, an exponential decrease from brute-force  $(Q + 1)^p$ .

## Theorem (informal, (Gamarnik, Z. NIPS '18))

Suppose you have  $n \ll p$  samples and  $0 \le \sigma \le \exp\left(-\frac{p(p+\log Q)}{2n}\right)$ . Then there exists a **polynomial-in**-n, p, logQ time algorithm which has input (Y,X) and ouputs  $\beta^*$  w.h.p. as  $p \to +\infty$ .

Call  $\sigma_0 = \exp\left(-\frac{p(p+\log Q)}{2n}\right)$ . Is this the optimal amount of noise?

## Theorem (informal, (Gamarnik, Z. NIPS '18))

Suppose you have  $n \ll p$  samples and  $0 \le \sigma \le \exp\left(-\frac{p(p+\log Q)}{2n}\right)$ . Then there exists a **polynomial-in**-n, p, logQ time algorithm which has input (Y,X) and ouputs  $\beta^*$  w.h.p. as  $p \to +\infty$ .

Call  $\sigma_0 = \exp\left(-\frac{p(p+\log Q)}{2n}\right)$ . Is this the optimal amount of noise?

#### Theorem (informal, (Gamarnik, Z. NIPS '18))

Let  $Q>2^p$ . Suppose you have  $n\ll p$  samples and,  $\sigma>\sigma_0$ . Then its impossible to w.h.p. recover correctly  $\beta^*$  with any algorithm with only access to (Y,X).

## Theorem (informal, (Gamarnik, Z. NIPS '18))

Suppose you have  $n \ll p$  samples and  $0 \le \sigma \le \exp\left(-\frac{p(p+\log Q)}{2n}\right)$ . Then there exists a **polynomial-in**-n, p, logQ time algorithm which has input (Y,X) and ouputs  $\beta^*$  w.h.p. as  $p \to +\infty$ .

# Theorem (informal, (Gamarnik, Z. NIPS '18))

Let  $Q>2^p$ . Suppose you have  $n\ll p$  samples and,  $\sigma>\sigma_0$ . Then its impossible to w.h.p. recover correctly  $\beta^*$  with any algorithm with only access to (Y,X).

- (1) The algorithm has optimal (exponentially small) noise tolerance in the 'high' Q regime!
- (2)  $Q = 2^p$  means p bits per coordinate of  $\beta^*$ , reasonable regime.

## The Algorithm: Connecting HDLR with Lattices





#### Key Influence:

The algorithm LLL and the use by [Lagarias, Odlyzko '83] and [Frieze '84] for solving subset-sum problems.

# The Algorithm: Connecting HDLR with Lattices





#### Key Influence:

The algorithm LLL and the use by [Lagarias, Odlyzko '83] and [Frieze '84] for solving subset-sum problems.

Plan

# The Algorithm: Connecting HDLR with Lattices





#### Key Influence:

The algorithm LLL and the use by [Lagarias, Odlyzko '83] and [Frieze '84] for solving subset-sum problems.

#### Plan

(1) Describe LLL algorithm and general procedure

### The Algorithm: Connecting HDLR with Lattices





### Key Influence:

The algorithm LLL and the use by [Lagarias, Odlyzko '83] and [Frieze '84] for solving subset-sum problems.

#### Plan

- (1) Describe LLL algorithm and general procedure
- (2) Details for using LLL to find  $\beta^*$  in some restrictive case

### The Algorithm: Connecting HDLR with Lattices





### Key Influence:

The algorithm LLL and the use by [Lagarias, Odlyzko '83] and [Frieze '84] for solving subset-sum problems.

#### Plan

- (1) Describe LLL algorithm and general procedure
- (2) Details for using LLL to find  $\beta^*$  in some restrictive case
- (3) Hint for the general case

### Lattices

Let  $b_1,\dots,b_m\in\mathbb{Z}^p$  linearly independent vectors.

#### **Definition**

The lattice  $\mathcal{L}$  spanned by  $b_1, \ldots, b_m$  is the set of all integer combinations of the m vectors.



## The LLL algorithm

"The Shortest vector problem"  $\text{min}_{x \in \mathcal{L} \setminus \{0\}} \, \|x\|_2$ 



shortest (nonzero) vector

### The LLL algorithm

"The Shortest vector problem"  $\min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2$ 



#### Comments:

- Generally NP-hard but,
- A famous algorithm proposed by Lenstra-Lenstra-Lovasz (LLL) efficiently approximates it; find  $\hat{x} \in \mathcal{L} \setminus \{0\}$  with

$$\|\hat{x}\|_2 \leq 2^{\frac{p}{2}} \underset{x \in \mathcal{L} \setminus \{0\}}{\text{min}} \, \|x\|_2.$$

Time poly in p,  $\max\{\|b_i\|_{\infty}\}$ 

### The LLL algorithm

"The Shortest vector problem"  $\min_{x \in \mathcal{L} \setminus \{0\}} \|x\|_2$ 



#### Comments:

- Generally NP-hard but,
- A famous algorithm proposed by Lenstra-Lenstra-Lovasz (LLL) efficiently approximates it; find  $\hat{x} \in \mathcal{L} \setminus \{0\}$  with

$$\|\hat{x}\|_2 \leq 2^{\frac{p}{2}} \underset{x \in \mathcal{L} \setminus \{0\}}{\text{min}} \, \|x\|_2.$$

Time poly in p,  $\max\{\|\mathbf{b}_i\|_{\infty}\}$ 

Seems terrible but it is not!!



Main Steps:

### Main Steps:

• Create a lattice  $\mathcal{L} = \mathcal{L}(Y, X)$  such that

"approximately" shortest vectors of  $\mathcal{L} \leftrightarrow$  "approximately"  $\beta^*$ 

#### Main Steps:

• Create a lattice  $\mathcal{L} = \mathcal{L}(Y, X)$  such that

"approximately" shortest vectors of  $\mathcal{L} \leftrightarrow$  "approximately"  $\beta^*$ 

• Use LLL and recover an "approximation" of  $\beta^*$ .

#### Main Steps:

• Create a lattice  $\mathcal{L} = \mathcal{L}(Y, X)$  such that

"approximately" shortest vectors of  $\mathcal{L} \leftrightarrow$  "approximately"  $\beta^*$ 

- Use LLL and recover an "approximation" of  $\beta^*$ .
- Recover  $\beta^*$  from approximation using the structure of  $\beta^*$ .

#### Assume

- n = 1,  $\sigma = 0$ ,  $\beta^*$  binary:  $y = \langle X_1, \beta^* \rangle$ .
- $X_1 \in \mathbb{Z}^p$  with iid **uniform in**  $[2^N]$  **entries** for large N (say  $N = p^2$ ).

#### Assume

- n = 1,  $\sigma$  = 0,  $\beta$ \* binary: y =  $\langle X_1, \beta^* \rangle$ .
- $X_1 \in \mathbb{Z}^p$  with iid **uniform in**  $[2^N]$  **entries** for large N (say  $N = p^2$ ).
- (1) For M sufficiently large enough set  $\mathcal{L}_M(y_1, X_1)$  produced by the columns of

$$\mathsf{A}_\mathsf{M} := \left[ \begin{array}{cc} \mathsf{M}\mathsf{X}_1 & -\mathsf{M}\mathsf{y}_1 \\ \mathsf{I}_{\mathsf{p}\times\mathsf{p}} & 0 \end{array} \right]$$

#### Assume

- n = 1,  $\sigma$  = 0,  $\beta$ \* binary: y =  $\langle X_1, \beta^* \rangle$ .
- $X_1 \in \mathbb{Z}^p$  with iid **uniform in**  $[2^N]$  **entries** for large N (say  $N = p^2$ ).
- (1) For M sufficiently large enough set  $\mathcal{L}_M(y_1, X_1)$  produced by the columns of

$$A_M := \left[ \begin{array}{cc} MX_1 & -My_1 \\ I_{p \times p} & 0 \end{array} \right]$$

**Lemma:** Each  $z \in \mathcal{L}_M$ ,  $||z||_2 < M$  is a multiple of  $\begin{vmatrix} 0 \\ \beta^* \end{vmatrix}$ , w.h.p.

#### Assume

- n = 1,  $\sigma$  = 0,  $\beta$ \* binary: y =  $\langle X_1, \beta^* \rangle$ .
- $X_1 \in \mathbb{Z}^p$  with iid **uniform in**  $[2^N]$  **entries** for large N (say  $N = p^2$ ).
- (1) For M sufficiently large enough set  $\mathcal{L}_M(y_1, X_1)$  produced by the columns of

$$\mathsf{A}_\mathsf{M} := \left[ \begin{array}{cc} \mathsf{M} \mathsf{X}_1 & -\mathsf{M} \mathsf{y}_1 \\ \mathsf{I}_{\mathsf{p} \times \mathsf{p}} & \mathsf{0} \end{array} \right]$$

**Lemma:** Each  $z \in \mathcal{L}_M$ ,  $\|z\|_2 < M$  is a multiple of  $\begin{bmatrix} 0 \\ \beta^* \end{bmatrix}$  ,w.h.p.

#### Intuition:

$$\mathbf{z} = \mathsf{A}_\mathsf{M} \left[ \begin{array}{c} \beta \\ \lambda \end{array} \right] = \left[ \begin{array}{c} \mathsf{M} \langle \mathsf{X}_1, \beta \rangle - \mathsf{M} \lambda \mathsf{y}_1 \\ \beta \end{array} \right] = \left[ \begin{array}{c} \mathsf{M} \langle \mathsf{X}_1, \beta - \lambda \beta^* \rangle \\ \beta \end{array} \right],$$

 $\mathbb{P}(\text{Lemma is false}) \leq \mathbb{P}(\exists \beta \neq \lambda \beta^* : \|\beta\|_2 < M, \langle X_1, \beta - \lambda \beta^* \rangle = 0) \to 0.$ 

(2) Choose M appropriately so that LLL gives a multiple of  $\beta^*$ .

- (2) Choose M appropriately so that LLL gives a multiple of  $\beta^*$ .
  - Choose  $M = 2^{\frac{p^2}{2}} \sqrt{p} + 1$ .
  - $\blacktriangleright \ \, \text{We know A}_{M} \left[ \begin{array}{c} \dot{\beta^{*}} \\ 1 \end{array} \right] = \left[ \begin{array}{c} 0 \\ \beta^{*} \end{array} \right] \in \mathcal{L}.$
  - LLL gives  $\hat{x}$  with norm at most  $2^{\frac{p^2}{2}} \| \begin{bmatrix} 0 \\ \beta^* \end{bmatrix} \|_2 \le 2^{\frac{p^2}{2}} \sqrt{p} < M$ .
  - Using the lemma we are done!

- (2) Choose M appropriately so that LLL gives a multiple of  $\beta^*$ .
  - Choose  $M = 2^{\frac{p^2}{2}} \sqrt{p} + 1$ .
  - $\blacktriangleright \ \, \text{We know A}_{M} \left[ \begin{array}{c} \dot{\beta^{*}} \\ 1 \end{array} \right] = \left[ \begin{array}{c} 0 \\ \beta^{*} \end{array} \right] \in \mathcal{L}.$
  - LLL gives  $\hat{x}$  with norm at most  $2^{\frac{p^2}{2}} \| \begin{bmatrix} 0 \\ \beta^* \end{bmatrix} \|_2 \le 2^{\frac{p^2}{2}} \sqrt{p} < M$ .
  - Using the lemma we are done!
- (3) Rescale to get  $\beta^*$ .

## Comments and (hints for) general Algorithm

• Reminiscent of the big M-method in LP, but for lattices!

### Comments and (hints for) general Algorithm

- Reminiscent of the big M-method in LP, but for lattices!
- Generalizes (after quite some work)
  - From noiseless to noisy measurements.
  - ► From iid uniform in [2<sup>N</sup>] to iid Gaussian ("truncate and multiply")
  - From n = 1 to multiple n
  - From binary to Q-rational  $\beta$ .

## Experimental Results (small p)

(Julia Code by Andrew Zheng and Patricio Foncea (MIT ORC))



## Experimental Results (small p)

(Julia Code by Andrew Zheng and Patricio Foncea (MIT ORC))



- Show that algorithm works even for small p!
- Runtime at most 8 minutes (even for p = 50)

(1) We focus on a **new rationality assumption** to perform high dimensional inference for linear regression.

- (1) We focus on a **new rationality assumption** to perform high dimensional inference for linear regression.
- (2) Established that  $\beta^*$  is **efficiently recoverable** even when n=1 and noise is small. Also optimal noise tolerance for large Q.

- (1) We focus on a **new rationality assumption** to perform high dimensional inference for linear regression.
- (2) Established that  $\beta^*$  is **efficiently recoverable** even when n = 1 and noise is small. Also optimal noise tolerance for large Q.
- (3) The algorithm is built on an innovative **algorithmic connection** with Lattice theory and Linear Regression.

- (1) We focus on a **new rationality assumption** to perform high dimensional inference for linear regression.
- (2) Established that  $\beta^*$  is **efficiently recoverable** even when n = 1 and noise is small. Also optimal noise tolerance for large Q.
- (3) The algorithm is built on an innovative **algorithmic connection** with Lattice theory and Linear Regression.
- (4) Synthetic experiments suggest the algorithm works for small p.

(1) Test the algorithms in real datasets! Does it perform well?

- (1) Test the algorithms in *real datasets*! Does it perform well?
- (2) Try the LLL-idea to similar noiseless problems like *Phase Retrieval*! (observe  $y_i = |\langle X_i, \beta^* \rangle|$ ) ongoing work.

- (1) Test the algorithms in real datasets! Does it perform well?
- (2) Try the LLL-idea to similar noiseless problems like *Phase Retrieval*! (observe  $y_i = |\langle X_i, \beta^* \rangle|$ ) ongoing work.
- (3) Increase the noise level need something more than just rationality for this.
  - Idea: use rationality and sparsity as an assumption?

- (1) Test the algorithms in real datasets! Does it perform well?
- (2) Try the LLL-idea to similar noiseless problems like *Phase Retrieval*! (observe  $y_i = |\langle X_i, \beta^* \rangle|$ ) ongoing work.
- (3) Increase the noise level need something more than just rationality for this.

Idea: use rationality and sparsity as an assumption?

# Thank you!!