OpenBikeSensor Bauanleitung

Bauteile:

HC-SR04P Sensor

Hinweis: Die Sensoren messen per Ultraschall den Abstand zum überholenden Fahrzeug und auch den Abstand zu parkenden Fahrzeugen. Ihr benötigt zwei Stück pro OBS.

https://www.aliexpress.com/item/33039149738.html

5-pin XS9 Aviation Connector

Hinweis: Die Push-Pull Rundsteckverbindung ist die Verbindung zwischen dem OBS und dem Kabel zum Push Button am Lenker.

https://www.aliexpress.com/item/32512693653.html

12mm Push Button

Hinweis: Dieser Button ist die Drucktaste am Lenker mit dem jeder echte Überholvorgang eines Fahrzeugs bestätigt werden soll.

https://www.aliexpress.com/item/4000295670163.html

0.96 inch OLED Display

Hinweis: Das Display am Lenker zeigt euch den Überholabstand in Zentimeter an. Das Display in dieser Form ist nicht wasserfest. Bei Regen bitte Folie über das Display kleben!

https://www.aliexpress.com/item/32896971385.html

18650-LiFePo Battery

Hinweis: Der Akku für den OBS. Nach letzten Messungen hält der Akku gut einen Tag.

https://www.akkuteile.de/lifepo-akkus/18650/a123-apr
18650m-a1-1100mah-3-2v-3-3v-lifepo4-akku/a-1006861/

TP5000 LiFePo-Charger

Hinweis: Lademodul mit Micro USB Anschluss.

https://www.ebay.de/itm/122164745507

https://www.aliexpress.com/item/4000310107151.html

USB-C Lademodul

https://www.ebay.de/itm/173893903484

LiFePo Protection Board

https://www.ebay.de/i/202033076322?ul noapp=true

GPS-Modul

GYGPS6MV2 GPS Module Mini Antenna

https://www.ebay.de/itm/GPS-NEO-6M-7M-8M-GY-GPS6MV2-Module-Aircraft-Flight-Controller-For-Arduino/272373338855

ESP32

https://www.az-delivery.de/collections/bestseller/products/esp32-developmentboard

Inhaltsverzeichnis

Materialliste

Kabel: jetzige Version, alles 0,25mm2

Bauteil Ultraschallsensoren	ESP32 4 x 12cm	Masse und VCC 2 x 12cm	Sonstige direkte Verbindung zwischen Sensoren 2x 3,5cm
SD	$4 \times 10 \text{cm}$	$2 \times 10 \text{cm}$	direkte Verbindung Masse 1x 2,5cm
GPS	2x 9,5cm	2x 9,5cm	,
ESP-VCC und GND			2x8cm
Buchse	$3 \times 13 cm$	2x 13cm	
Schalter Batterie- Schutzmodul			2x6cm 2x2,5cm
Schutzmodul- Schalter / Masse			2x 9cm
Lademodul USB-C zu LiFePo-Lader			2x3cm
Stecker-Display			65cm, 5pol, 5mm2

Baugruppen

Ultraschallsensoren

 GPS

SD-Karte

Lademodule

Batterie mit Schutzschaltung und Schalter

Stecker

Display

Endmontage

1. Verlöten der SD-Karte

Die SD-Karte wird fast wie in diesem Beispiel angeschlossen:

Bezeichnung	Farbe	ESP32 Pin
MISO	Lila	19
GND	Schwarz	
CLK	Rot	18
VCC	Blau	
GND	Schwarz	
MOSI	Rosa	23
CS	Grau	5

2. GPS-Modul

Farbe	ESP32 Pin
Gelb	
Grün	17
Braun	16
Weiß	
	Gelb Grün Braun

3. Ultraschallsensoren

Sensor am Deckel	Farbe	ESP32 Pin
VCC	Rot - kurze Brücke zu anderem Sensor	
Trig	Grün	15
Echo	Orange	4
GND	Schwarz - kurze Brücke zu anderem Sensor	

Sensor im Gehäuse	Farbe	ESP32 Pin
VCC	Rot	
Trig	Grün	25
Echo	Orange	26
GND	Schwarz	

4. Stecker zum Display

Bezeichnung	Stecker Pin	ESP32 Pin
VCC	1	
SCL	2	22
Druckknopf	3	2
GND	4	
SDA	5	21

Druckknopf und Display teilen sich VCC. Der Pin am ESP32, an dem der Schalter hängt wird auch mit $10\mathrm{kOhm\text{-}Widerstand}$ mit GND verbunden.

Die Kappe des Steckers ist raus zu schrauben. Die Außenisolierung des Kabels sollte nur sehr knapp entfernt werden um die Zugentlastung nachträglich fest schrauben zu können. (Zange zum Gegenhalten nur zur Verdeutlichung, besser verwendet man den eingesteckten Stecker als Gegenhalt.)

