Characterizing the plasmidome of *Enterococcus faecium*

Anita Schürch, Sergio Arredondo Alonso, Jukka Corander, Rob Willems

Background

Plasmids are important vehicles for rapid evolution and adaptation in *Enterococcus faecium*. To date, less than 100 different plasmids from this species have been described, and this collection is highly biased toward plasmids carrying antibiotic resistance determinants such as vancomycin resistance genes.

Objectives

Capturing the diversity of plasmids in a set of 1644 *E.faecium* isolates by nanopore long read sequencing of a pre-selected subset of 50 *E. faecium* from different sources

Figure 1 Distribution of sources of 1644 E. faecium isolates

Figure 3. Assembly graphs of 10 fully sequenced isolates. Graphs were visualized with bandage. C = Chomosome. P = Plasmid

☐ Predicted pan-plasmidome

- √ 20,386 orthologous groups in 1644 strains (median 234 genes) with coverage difference from chromosome
- ✓ Most OG occur only once (Figure 2B)
- √ 311 OG are present in 15 % or more of the strains, ie. vanA (Table 1)

OG	Freq	ВВН
soj_1	1119	PrgP (plasmid)
wecD	906	streptothricin N-acetyltransferase
aadK	894	aminoglycosid nucleotidyltransferase
vanH	717	Vancomycin resistance gene cluster
vanX	716	
walR	712	
vanA	698	

Table 1. Selection of 7 of 20 most prevalent OG with frequency and best blast hit (BBH)

Methods

- ☐ Plasmid reconstruction
 - ✓ Illumina sequencing of 1644 isolates (Fig 1), followed by plasmid reconstruction with PlasmidSPAdes
 - ✓ Annotation of potential plasmids with Prokka
 - ✓ Pan-plasmidome reconstruction with Roary
 - ✓ Dimensionality reduction with t-sne
 - ✓ K-means clustering into 50 clusters
 - ✓ Selection of strain closest to each centroid (Eucledian distance, Figure 2A)
- ☐ Completion of plasmid sequences of selected strains
 - ✓ Multiplexing and sequencing with nanopore
 - ✓ Hybrid assembly with Unicycler

Figure 2. A. t-distributed stochastic neighbor embedding (tSNE) of presence/absence data of orthologous groups (OG) of potential plasmid origin. Green: 50 isolates selected for nanopore sequencing. Pink: 10 completed isolates. B. Distribution of 20,386 potential plasmid OG among 1644 isolates

Results

- ☐ Completed plasmids (based on long read sequencing of 10 of the 50 isolates)
- ✓ 20 plasmids from 10 genomes (range 0-5 plasmids per isolate, Figure 3)
- ✓ 2 isolates without plasmids (both isolates from pigs)
- ✓ Almost identical plasmid found in three isolates (Figure 4A)
- ✓ No entire assembled plasmid was correctly predicted by PlasmidSPAdes
- ✓ A median of 21% of the confirmed plasmid sequences were predicted by PlasmidSPAdes from short reads (Fig 4B)

Figure 4. A. Presence/absence matrix of sequenced plasmid OG of 8 completed isolates. B. Comparison between predicted and confirmed plasmid sequence

Conclusions

- ✓ The pan-plasmidome predicted from Illumina-sequenced isolates can serve as prior to selection of a set of strains with diverse plasmid content for further long read sequencing
- ✓ Preliminary results from completely assembled plasmids indicate that a median of 21 % of the plasmid sequences were predicted by PlasmidSPAdes from short reads
- ✓ Two isolates were missing plasmids, several isolates shared (part of) one plasmid