

Εθνικό Μετσοβίο Πολυτέχνειο

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

Εντοπισμός ρευματοκλοπών με μηχανική μάθηση

Δ ιπλωματική Εργασία

του

ΜΗΤΣΕΛΟΥ ΑΘΑΝΑΣΙΟΥ

Επιβλέπων: Χατζηαργυρίου Νικόλαος

Καθηγητής Ε.Μ.Π.

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ $\label{eq:continuous} A \vartheta \acute{\eta} \nu \alpha, \ O \varkappa τ \acute{\omega} \beta \rho \iota o \varsigma \ 2017$

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος Εργαστήριο Συστημάτων Ηλεκτρικής Ενέργειας

Εντοπισμός ρευματοκλοπών με μηχανική μάθηση

Δ ΙΠΛΩΜΑΤΙΚΉ ΕΡΓΑΣΙΑ

του

ΜΗΤΣΕΛΟΣ ΑΘΑΝΑΣΙΟΣ

Επιβλέπων: Χατζηαργυρίου Νικόλαος Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 666 Οκτωβρίου 2017.

(Υπογραφή)
 ΜΗΤΣΕΛΟΥ ΑΘΑΝΑΣΙΟΥ Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π. © 2017 – All rights reserved

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρικής Ισχύος Εργαστήριο Συστημάτων Ηλεκτρικής Ενέργειας

Copyright ©-All rights reserved ΜΗΤΣΕΛΟΥ ΑΘΑΝΑΣΙΟΥ, 2017. Με επιφύλαξη παντός δικαιώματος.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτή την εργασία εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου συμπεριλαμβανόμενων Σχολών, Τομέων και Μονάδων αυτού.

Ευχαριστίες

Θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή κ. Βασίλειο Ασημακόπουλο για την ευκαιρία που μου έδωσε να εκπονήσω τη παρούσα διπλωματική και την υποστήριξή του σε όλη την πορεία της.

Επίσης, θα ήθελα να ευχαριστήσω τους καθηγητές κ. Ιωάννη Ψαρρά και κ. Δημήτριο Ασκούνη για την τιμή που μου έκαναν να συμμετάσχουν στην επιτροπή εξέτασης της διπλωματικής.

Ευχαριστώ ιδιαίτερα τον υποψήφιο διδάκτορα Ευάγγελο Σπηλιώτη για την καθοδήγηση, στήριξη και καθοριστική βοήθεια που μου παρείχε, όπως και τα υπόλοιπα μέλη της Μονάδας Προβλέψεων και Στρατηγικής.

Θερμές ευχαριστίες θα ήθελα να απευθύνω στον Δ ρ Χριστόφορο Αναγνωστόπουλο και την εταιρία Mentat Innovations για την καθοδήγησή τους στα πρώτα βήματα αυτής της εργασίας.

Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου και τους φίλους μου Γιώργο, Γρηγόρη, Κατερίνα και Μαρία.

Περίληψη

Αντιχείμενο της διπλωματιχής εργασίας είναι η ανάπτυξη μεθοδολογίας για τη βελτίωση της αχρίβειας στατιστιχών μεθόδων πρόβλεψης σε χρονοσειρές που έχουν μιχρό ιστοριχό παρατηρήσεων μέσω τεχνιχών συσταδοποίησης εποχιαχών δειχτών από συναφείς χρονοσειρές.

Οι κλασικές μέθοδοι αποσύνθεσης απαιτούν ένα ελάχιστο πλήθος παρατηρήσεων για να μπορέσουν να εξάγουν το μοτίβο της εποχιακότητας μιας χρονοσειράς. Στη πράξη, όμως, συναντάμε συχνά χρονοσειρές που αποτελούνται από μικρό πλήθος τιμών, ενώ συγχρόνως περιγράφουν εποχιακά μεγέθη.

Παράλληλα, τα τελευταία χρόνια υπάρχει αφθονία στα δεδομένα που έχουμε στη διάθεσή μας. Η παρούσα εργασία βασίζεται στην υπόθεση ότι μπορούμε να χρησιμοποιήσουμε τη διαθέσιμη πληροφορία για να εξάγουμε αντιπροσωπευτικούς δείκτες εποχιακότητας που μπορούμε να χρησιμοποιήσουμε για να αναλύσουμε και να προεκτείνουμε χρονοσειρές που χαρακτηρίζονται από μικρό ιστορικό.

Για να το κάνουμε αυτό πρέπει αρχικά να συγκεντρώσουμε ένα πλήθος χρονοσειρών που περιγράφει παρόμοια φυσικά μεγέθη. Έπειτα, χρησιμοποιώντας τεχνικές συσταδοποίησης στους δείκτες εποχιακότητας αυτών που έχουν επαρκή δεδομένα για να εφαρμόσουμε τις κλασικές μεθόδους αποσύνθεσης, δημιουργούμε συστάδες παρόμοιας εποχιακής συμπεριφοράς. Ελέγχουμε, κατόπιν, αν οι μικρές χρονοσειρές μπορούν να υπαχθούν σε αυτές τις συστάδες και αν ναι, τις προβλέπουμε με δεδομένο ότι οι δείκτες εποχιακότητας τους είναι οι ίδιοι με τους μέσους δείκτες των συστάδων.

Για να ελέγξουμε την υπόθεση, εφαρμόσαμε την μεθοδολογία που περιγράφηκε σε ένα σύνολο χρονοσειρών ζήτησης φυσικού αερίου και λάβαμε θετικά αποτελέσματα. Συγκεκριμένα συγκρίναμε τη προτεινόμενη προσέγγιση με τη κλασική, που προεκτείνει τις μικρές χρονοσειρές βάσει των αρχικών τους δεδομένων και παρατηρήσαμε σημαντική βελτίωση της ακρίβειας.

Λέξεις Κλειδιά

Χρονοσειρές, Τεχνικές Προβλέψεων, Εποχιακότητα, Συσταδοποίηση, Μικρό ιστορικό, Φυσικό Αέριο.

Abstract

The purpose of this diploma thesis is to develop a methodology for improving the accuracy of statistical forecasting methods on timeseries with short history through the use of clustering techniques on the seasonal indices of other similar timeseries.

Classical decomposition methods require a minimum number of observations to be able to detect the seasonality pattern of a timeseries. In practice, however, we often encounter timeseries lacking enough data, while at the same time describing seasonal values.

Meanwhile, in recent years, there is an abundance of accessible data. This thesis draws upon the hypothesis that we can utilise the available infomation to extract representative seasonality indices that we can use in order to analyse and extend timeseries that are characterised by short history.

In order to achieve this, we initially have to gather a large number of timeseries describing similar values. Afterwards, we create clusters of similar seasonal behaviour by using clustering techniques on the seasonality indices of series with sufficient data. Then, we check if the shorter timeseries qualify to be a part of these clusters and if so, we predict their future values as they were characterised by the seasonal behaviour of the mean indices of the cluster members.

To test our hypothesis, we applied the described methodology to a set of natural gas demand timeseries and received positive results. In particular, we compared the proposed approach to the classical one, which forecasts short timeseries based on their original data, and we have measured a significant overall improvement in accuracy.

Keywords

Timeseries, Forecasting Techniques, Seasonality, Clustering, Short history, Natural Gas.

Περιεχόμενα

\mathbf{E}_{i}	υχαρ	ριστίες	1
П	ερίλ	ηψη	3
A	bstra	act	5
П	epie;	χόμενα	8
K	ατάλ	ιογος Σχημάτων	9
K	ατάλ	ιογος Πινάχων	11
1	Eio	σαγωγή	13
	1.1	Κίνητρο και υπόβαθρο διπλωματικής	13
		1.1.1 Ορίζοντας τις ρευματοκλοπές	
		1.1.2 Επέμβαση στο μετρητή	
	1.2	Δομή Διπλωματικής	15
2	Θε	ωρητικό υπόβαθρο	17
	2.1	Έξυπνοι μετρητές	17
	2.2	Μηχανική μάθηση	17
		2.2.1 Επιβλεπόμενη μάθηση	17
		2.2.2 Ημι-επιβλεπόμενη μάθηση	17
		2.2.3 Μη επιβλεπόμενη μάθηση	17
	2.3	Μετρικές μηχανικής μάθησης	17
3	Πε	ριγραφή και οργάνωση δεδομένων	19
	3.1	Περιγραφή δεδομένων	19
		3.1.1 Ανάλυση καταναλώσεων	19
		3.1.2 Μοντελοποίηση εποχιακών δεικτών	19
	3.2	Προεπεξεργασία και καθάρισμα δεδομένων	29
	3.3	Προσομοίωση απάτης	29
		2.2.1 Τύποι απόπης	20

Β Περιεχόμενα

4	Αλ	γόριθμ	ιοι επιβλεπόμενης μάθησης	31
	4.1	Θεωρί	α Λογιστικής Παλινδρόμησης	31
	4.2	-	ή ταξινόμησης με λογιστική παλινδρόμηση	
	4.3			
	4.4	Δοχιμ	 ή ταξινόμησης με Μηχανές Δ ιανυσμάτων Υποστήριξης	31
		•	Δοκιμή χρονοσειρών χωρίς πυρήνα	
		4.4.2	Δοκιμή χαρακτηριστικών με πυρήνα PBΦ	31
	4.5		x	
5	Αλ	γόριθμ	ιοι μη επιβλεπόμενης μάθησης	33
	5.1		α αλγορίθμων συσταδοποίησης	33
	5.2	•	ή αλγορίθμου μη επιβλεπόμενης μάθησης	
	5.3		α αλγορίθμου μείωσης διάστασης	
	5.4	-	α αλγορίθμου εύρεσης ανωμαλιών	
	5.5		ή αλγορίθμου ημι επιβλεπόμενης μάθησης	
	5.6	-	x	
6	A 1)	axoyis	ς και μελλονική κατεύθυνση	35
U	6.1		ιά εμπόδια	
	0.1	6.1.1	ω εμποσία	
		6.1.2	Δυσκολία επιλογής μετρικών	
		6.1.3	Εύρεση αξιόπιστων δυαδικών χαρακτηρισμών	
		6.1.4	Ανατροφοδότηση ελέγχων	
	6.2		εια Καταναλωτών	
	0.2	6.2.1	Ασφάλεια Μετρητών	
		6.2.2	Απειλή ιδιωτικότητας	
7	~			
7	•	ιπ ε ράα	·	37
			ιση αποτελεσμάτων	
	7.2	Συμπε	ρασματικές σημειώσεις	37
В	βλιο	γραφί	α	39
\mathbf{A}'	\mathbf{A} να	αλυτικ	ά Αποτελέσματα	41
Гλ	ωσο	τάριο		45

Κατάλογος Σχημάτων

3.1	Εφαρμογή πολυωνύμου δευτέρου βαθμού	20
3.2	Εβδομαδιαία εποχιακότητα ομάδας 1	22
3.3	Εβδομαδιαία εποχιακότητα ομάδας 2	22
3.4	Εβδομαδιαία εποχιακότητα ομάδας 3	23
3.5	Εβδομαδιαία εποχιακότητα ομάδας 4	23
3.6	Μηνιαία εποχιακότητα	25
3.7	Κατανάλωση χωρίς εποχιακούς δείκτες ανά εβδομάδα	26
3.8	Κατανάλωση χωρίς εποχιακούς δείκτες ανά μήνα	27
3.9	Εκτίμηση ακανόνιστης συνιστώσας με εβδομαδιαία εποχιακότητα	28
3.10	Εκτίμηση ακανόνιστης συνιστώσας με μηνιαία εποχιακότητα	28

Κατάλογος Πινάκων

1.1	Διαφεύγοντα έσοδα Ελληνικών πάροχων	14
3.1	Έλεγχος συσταδοποίησης Σαββάτου	27
A'.1	Δ είχτες Αχρίβειας για όλες τις χρονοσειρές	43

Κεφάλαιο 1

Εισαγωγή

Είναι ευρέως διαδεδομένο πως η καθημερινότητα πολλών ανθρώπων συνδέεται άρρηκτα με τη χρήση ηλεκτρικών συσκευών, αλλά και με την ανάγκη ύπαρξης βιομηχανικών εγκαταστάσεων για την εκπλήρωση των καταναλωτικών τους επιθυμιών. Αυτό δημιουργεί μια αυξανόμενη ζήτηση στον τομέα της παραγωγής, της μεταφοράς και διανομής ηλεκτρικής ενέργεια, που με τη σειρά του οδηγεί στον συνεχή εκσυγχρονισμό των εγκαταστάσεων. Παράλληλα, διανύοντας την εποχή της Ψηφιακής Επανάστασης παρατηρείται η μετάβαση από τις αναλογικές τεχνολογίες στις ψηφιακές, γεγονός που δεν θα μπορούσε να αφήσει ανεπηρέαστο τον τομέα της ηλεκτρικής ενέργειας. Η μετάβαση αυτή στον τομέα που μελετάται σε αυτή τη διπλωματική εργασία σηματοδοτείται από την χρήση έξυπνων μετρητών, οι οποίοι έχουν τη δυνατότητα να παρέχουν σε πραγματικό χρόνο μεγάλο όγκο δεδομένων για τα επίπεδα της κατανάλωσης κάθε πελάτη.

Ανοίγεται, λοιπόν ένας νέος ορίζοντας εποπτείας και αναλυτικής μελέτης των χρονοσειρών που παράγονται από κάθε καταναλωτή. Η ταυτόχρονη και συνεχής αύξηση των ρευματοκλοπών στις περισσότερες περιοχές του κόσμου καθιστά επιτακτική ανάγκη την εύρεση μεθόδων εντοπισμού τους . Σύμφωνα με τα επίσημα στοιχεία του Διαχειριστή Δικτύου (ΔΕΔΔΗΕ), το 2016 εντοπίσηκαν 10.616 κρούσματα ρευματοκλοπών, μέγεθος που είναι ψηλότερο όλων των εποχών, έναντι 400 το 2006 [9]. Άμεσο επακόλουθο της επίλυσης αυτού προβλήματος είναι η ομαλή λειτουργία των παροχέων ενέργειας και η βελτίωση της ποιότητας των υπηρεσιών που παρέχουν οι ίδιες. Στη συνέχεια θα αναπτυχθεί το βαθύτερο αίτιο της παρούσας διατριβής και μια επισκόπηση του περιεχομένου της [2].

1.1 Κίνητρο και υπόβαθρο διπλωματικής

Το πρόβλημα της παράνομης αφαίρεσης ηλεκτρικής ενέργειας ενδιαφέρει τους διαχειριστές δικτύων. Οι χρήστες συχνά παραβιάζουν τους νόμους προσπαθώντας να αλλοιώσουν τα συστήματα μέτρησης. Σε κάποιες χώρες μόνο κάποιο κομμάτι της παραγωγής χρεώνεται, παραδείγματος χάριν στην Ινδία το 55% της παραγωγής ηλεκτρικής ενέργειας χρεώνεται (και μόνο ένα μέρος της πληρωμής καταλήγει στον πάροχο). Παρόλα αυτά, η παράνομη χρήση ενέργειας λαμβάνει χώρα και σε Ευρωπαϊκές χώρες. Μια από τις κινητήριες δυνάμεις για

το λανσάρισμα των αυτοματοποιημένων υποδομών ανάγνωσης μετρητών (Automated Meter Reading) για τον ιταλικό πάροχο ενέργειας (ENEL) ήταν η προσπάθεια ελαχιστοποίησης των μη τεχνικών απωλειών στο δίκτυα διανομής τους. Η μείωση των ρευματοκλοπών βοήθησε στην αιτιολόγηση μεγάλων επενδύσεων σε AMR και επί του παρόντος η Ιταλία πρωταγωνιστεί στην διείσδυση AMR [7],[8].

Μερικοί μπορεί να υποστηρίζουν ότι οι εταιρίες παραγωγής και διανομής, οι οποίες έχουν σημαντικό έργο παρέχουν κακή εξυπηρέτηση, υπερχρεώνουν, κερδίζουν ανεξαρτήτως αρκετά χρήματα και ως εκ τούτου, ένα ποσοστό κλοπής δεν θα καταστρέψει την εταιρία ή θα επηρεάσει δραστικά τις λειτουργίες και την κερδοφορία της. Άλλοι παρατηρώντας την ίδια κατάσταση θα υποστήριζαν ότι η κλοπή είναι έγκλημα και δεν θα έπρεπε να επιτρέπεται. Η Διεθνής Εταιρία Προστασίας Εσόδων των Πάροχων (International Utilities Revenue Protection Association) έχει καθιερωθεί για να προάγει τον εντοπισμό και την πρόληψη της κλοπής ρεύματος κυρίως για την οικονομική ασφάλεια των εταιριών παροχής ενέργειας.

Οι συνέπειες της κλοπής είναι εξαιρετικά σημαντικές και μπορούν να επηρεάσουν άμεσα τη βιωσιμότητα των υπηρεσιών που παρέχονται. Οι συνδιασμένες απώλειες (συμπεριλαμβάνοντας και τους απλήρωτους λογαριασμούς) σε μερικά συστήματα έχουν σοβαρές επιπτώσεις που έχουν ως αποτέλεσμα οι εγκαταστάσεις να λειτουργούν σε καθεστώς μεγάλων απωλειών και αναγκάζονται να αυξάνουν συνεχώς τα ηλεκτρικά φορτία. Απομονωμένες σε μια κουλτούρα αναποτελεσματικότητας και διαφθοράς, οι εταιρίες έχουν μεγάλη δυσκολία να παρέχουν αξιόπιστες υπηρεσίες. Ακόμη και σε αποτελεσματικά συστήματα ισχύος, όπως η Tenaga της Μαλαισίας, η κλοπή ρεύματος ανέρχεται στα \$132 εκατομμύρια ετησίως [1]. Αντίστοιχα στην Ελλάδα η συνολική εγχεόμενη ενέργεια στο Δίκτυα Διανομής ανήλθε το 2016 σε 47.655.372 ΜWh, το σύνολο των ρευματοκλοπών εκτιμάται σε 1.525.292 MWh. Στην πραγματικότητα όμως το μέγεθος των ρευματοκλοπών είναι αρκετά μεγαλύτερο, επιβαρύνει δε κατά κύριο λόγο τη Δημόσια Επιχείρηση Ηλεκτρισμού (ΔΕΗ). Ωστόσο παίρνοντας ως δεδομένη την ποσότητα, που αναγνωρίζει η Ρυθμιστική Αρχή Ενέργειας (ΡΑΕ), τα έσοδα που διαφεύγουν κάθε χρόνο λόγω των ρευματοκλοπών με βάση τις μοναδιαίες τιμές του 2016 έχουν ως εξής [11]:

Εταιρίες	εκατ. €
$\Delta \mathrm{EH}$	120-125
Υπηρεσίες Κοινής Ωφέλειας (ΥΚΩ)	21
ETMEAP	32
${ m A}\Delta{ m MHE}~4$	7,3
$\Delta \mathrm{E} \Delta \Delta \mathrm{HE} \ 5$	26,5
Σύνολο	206,8 έως 211,8

Πίναχας 1.1: Διαφεύγοντα έσοδα Ελληνικών πάροχων

1.1.1 Ορίζοντας τις ρευματοκλοπές

Υπάρχουν τέσσερα επικρατούντα είδη κλοπής σε όλα τα συστήματα ενέργειας. Η έκταση της κλοπής εξαρτάται από πλήθος παραγόντων από πολιτιστικές μέχρι τον τρόπο που διαχει-

ρίζεται η ενέργεια.

1.1.2 Επέμβαση στο μετρητή

Επέμβαση στο μετρητή ορίζεται όταν ο καταναλωτής σκοπίμως προσπαθεί να εξαπατήσει τον πάροχο. Μια συνήθης πρακτική είναι να παραβιάζει το μετρητή ώστε να καταγράφει χαμηλότερα ποσά ενέργειας από τα πραγματικά. Αυτό εν γένει είναι μια επικίνδυνη διαδικασία για ένα ερασιτέχνη, και σε πολλές περιπτώσεις έχουν καταγραφεί ηλεκτροπληξίες.

Απευθείας Σύνδεση

Η κλοπή ενέργειας επιτευχθεί τραβώντας μια γραμμή από την από το δίκτυο διανομής μέχρι το επιθυμητό σημείο παρακάμπτοντας το μετρητή. Ένας καθιερωμένος τρόπος κλοπή ενέργειας στην Ελλάδα είναι η απευθείας σύνδεση με αγκίστρωση στους αγωγούς του εναέριου δικτύου, απουσία μετρητικής διάταξης ή παροχής ή νομίμως υφιστάμενου κτίσματος [10].

Ακανόνιστες χρεώσεις

Οι ακανόνιστες χρεώσεις μπορούν να συμβούν από πολλές πηγές. Κάποιο οργανισμοί παροχής ενέργειας μπορεί να μην είναι αρκετά αποτελεσματικοί στη μέτρηση της ενέργειας που έχει καταναλωθεί και ακούσια μπορεί να δώσουν υψηλότερη ή χαμηλότερη μέτρηση από την ακριβή. Αυτές οι ακανόνιστες χρεώσεις μπορεί να ισοζυγιστούν με την πάροδο του χρόνου. Παρόλα αυτά, είναι πολύ εύκολο σε μερικά συστήματα να κανονιστούν πολύ χαμηλότεροι λογαριασμοί από τους ρεαλιστικούς. Εργαζόμενοι μπορεί να δωροδοκηθούν για να καταγράψουν το μετρητή με μικρότερο νούμερο από αυτό που ενδεικνύεται. Ο καταναλωτής πληρώνει μικρότερο λογαριασμό και ο εργαζόμενος που καταγράφει τις μετρήσεις αποκτά ανεπίσημο μισθό. Οικιακοί ή επιχειρηματικοί καταναλωτές μπορεί να έχουν φύγει από την πόλη την εγκατάσταση λόγω χρεωκοπίας.

Απλήρωτοι λογαριασμοί

Κάποια άτομα και κάποιοι οργανισμοί δεν πληρώνουν αυτά που οφείλουν για ηλεκτρική ενέργεια.

1.2 Δομή Διπλωματικής

Κεφάλαιο 2

Θεωρητικό υπόβαθρο

2.1 Έξυπνοι μετρητές

Η ηλεκτρική ενέργεια είναι ζωτικής σημασίας για την καθημερινότητά μας αλλά και ο ακρογωνιαίος λίθος της βιομηχανίας. Για αυτό το λόγο έννοια των μελλοντικών δικτύων (έξυπνα δίκτυα) στοχεύει στην αύξηση της αξιοπιστίας, της ποιότητας και της ασφάλειας της μελλοντικής παροχής ενέργειας. Για να συμβεί αυτό, απαιτούνται περαιτέρω πληροφορίες για την λειτουργία και την κατάσταση των δικτύων διανομής. Μια από τις σημαντικότερες προκλήσεις στα μελλοντικά δίκτυα διανομής είναι η αυξανόμενη διείσδυση κατανεμημένης παραγωγής (Distributed Generation) που συνδέεται στα κτίρια των καταναλωτών και η μετάβαση από την έννοια της παραδοσιαχής παραγωγής ενέργειας με χυρίαρχους μεγάλους σταθμούς παραγωγής ενέργειας και ροές ενέργειας μονής κατεύθυνσης σε πιο περίπλοκες τροφοδοσίες ισχύος. Οι πληροφορίες λειτουργίας θα είναι καίριας σημασίας για τη λειτουργικότητα των μελλοντικών διατύων διανομής και για τους διαγειριστές του δικτύου (Distribution Network Operators). Μια από της πηγές πληροφορίας θα είναι η υποδομή έξυπνων μετρητών. Εκτός των άλλων, οι έξυπνοι μετρητές πρέπει να διευρύνουν τους γνωστιχούς ορίζοντες των χαταναλωτών για την ηλεκτρική ενέργεια. Η έννοια αυτή θα παράξει ακόμη περισσότερη πληροφορία στου διαχειριστές διχτύου. Αυτό παρέχει τη δυνατότητα στο διαχειριστή του διχτύου να αναλύσει ροές ενέργειας και να εντοπίσει πιθανή κλοπή ρεύματος [3].

- 2.2 Μηχανική μάθηση
- 2.2.1 Επιβλεπόμενη μάθηση
- 2.2.2 Ημι-επιβλεπόμενη μάθηση
- 2.2.3 Μη επιβλεπόμενη μάθηση
- 2.3 Μετρικές μηχανικής μάθησης

Κεφάλαιο 3

Περιγραφή και οργάνωση δεδομένων

3.1 Περιγραφή δεδομένων

3.1.1 Ανάλυση καταναλώσεων

3.1.2 Μοντελοποίηση εποχιακών δεικτών

Για βαθύτερη κατανόηση των χρονοσειρών γίνεται εκτίμηση της εποχιακής και μη εποχιακής καταναλωτικής τάσης με τη χρήση παραμετρικών μοντέλων. Με αυτό τον τρόπο θα καταστεί δυνατή η παρατήρηση της επαναληψιμότητας και των μορφών των καταναλώσεων. Για να γίνει αυτό χρησιμοποιείται αρχικά ο αλγόριθμος Κ-Μεανς για την ομαδοποίηση των καταναλωτών σε τέσσερις συστάδες βάση του ετήσιου μέσου όρου καθενός. Στη συνέχεια δημιουργείται ένα προφίλ κατανάλωσης για κάθε συστάδα βρίσκοντας το μέσο ημερήσιο όρο κατανάλωσης. Χρειάστηκαν 2000 καταναλωτές για αυτή την ανάλυση με περισσότερους 1800 να ομαδοποιούνται σε δύο ομάδες υποδεικνύοντας προφίλ οικιακών καταναλωτών.

Ανάλυση Παλινδρόμησης

Σκοπός, λοιπόν αυτού του μέρους είναι να γίνει στατιστική μελέτη του πολυωνυμικού μοντέλου στα δεδομένα μας και να δούμε αν οι χρονοσειρές κάθε συστάδας μπορούν να περιγραφούν με πολυώνυμο δευτέρου βαθμού. [6]

$$T_t = \beta_0 + \beta_1 t + \beta_2 t^2$$

Όπως φαίνεται στο Σχήμα 3.1 οι συστάδες μπορούν να χαρακτηριστούν από μια παραβολική καμπύλη με θετικό συντελεστή μεγιστοβάθμιου όρου.

- Η συστάδα 1 αποτελείται από 792 καταναλωτές και έχει η παραβολική καμπύλη τάσης λαμβάνει ελάχιστη τιμή την 189η μέρα του έτους.
- Η συστάδα 2 αποτελείται από 81 καταναλωτές και έχει η παραβολική καμπύλη τάσης λαμβάνει ελάχιστη τιμή την 206η μέρα του έτους.

Σχήμα 3.1: Εφαρμογή πολυωνύμου δευτέρου βαθμού

- Η συστάδα 3 αποτελείται από 81 καταναλωτές και έχει η παραβολική καμπύλη τάσης λαμβάνει ελάχιστη τιμή την 201η μέρα του έτους.
- Η συστάδα 4 αποτελείται από 81 καταναλωτές και έχει η παραβολική καμπύλη τάσης λαμβάνει ελάχιστη τιμή την 194η μέρα του έτους.

Εύχολα, λοιπόν, βγάνει το συμπέρασμα πως οι οιχιαχοί καταναλωτές έχουν την τάση να έχουν πιο ομοιόμορφα κατανεμημένα την παραβολική καμπύλη, ενώ οι επιχειρήσεις έχουν μεγαλύτερο βαθμό τυχαιότητας και λιγότερο συμμετρική καμπύλη ως προς το ελάχιστο σημείο της.

Εκτίμηση εποχιακών δεικτών

Αρχικά για την εκτίμηση των εποχιακών δεικτών απαιτείται η αφαίρεση του πολυώνυμου δευτέρου βαθμού από τις χρονοσειρές των ομάδων.[5] Δεδομένης της μικρής διάρκειας των καταναλώσεων (1 έτος) καθίσταται αδύνατη η εξαγωγή εποχιακών δεικτών ανά μήνα έτους ή ανά εποχή έτους. Για αυτό το λόγο οι εποχιακοί δείκτες μεταφέρθηκαν ανά ημέρα της εβδομάδας ή ανά ημέρα του μήνα. Για την πρώτη περίπτωση οι δείκτες αναφέρονται στις ημέρες κάθε εβδομάδας, ενώ για την δεύτερη αναφέρονται στις ημέρες κάθε μήνα δημιουργώντας 7

ή 30 δείκτες αντίστοιχα. Για την εβδομαδιαία εποχιακότητα έχω τις παρακάτω καμπύλες για κάθε ομάδα.

Εκτίμηση με διαστήματα ημέρας ανά εβδομάδα

Από την εβδομαδιαία εποχιακότητα λοιπόν εύκολα κάποιος αντιλαμβάνεται πως ανάλογα με τον τύπο των καταναλωτών οι μέρες που έχουμε μέγιστη και ελάχιστη κατανάλωση διαφέρουν ριζικά. Η πρώτη μέρα του έτους για το έτος που μελετάμε είναι Πέμπτη. Ειδικότερα:

- Για τους καταναλωτές συστάδας 1 (οικιακοί καταναλωτές) έχουμε ελάχιστες καταναλώσεις τις Πέμπτες.
- Για τους καταναλωτές συστάδας 2 (επιχειρήσεις) έχουμε ελάχιστες καταναλώσεις τα Σάββατα.
- Για τους καταναλωτές συστάδας 3 (οικιακοί καταναλωτές) έχουμε ελάχιστες καταναλώσεις τις Τρίτες.
- Για τους καταναλωτές συστάδας 4 (επιχειρήσεις) έχουμε ελάχιστες καταναλώσεις τα Σάββατα.

Σχήμα 3.2: Εβδομαδιαία εποχιακότητα ομάδας 1

Σχήμα 3.3: Εβδομαδιαία εποχιακότητα ομάδας 2

Σχήμα 3.4: Εβδομαδιαία εποχιακότητα ομάδας 3

Σχήμα 3.5: Εβδομαδιαία εποχιακότητα ομάδας 4

Εκτίμηση σε διαστήματα ημέρας ανά μήνα

Το διάστημα ενός μήνα αφήνει μεγαλύτερα περιθώριο εποπτείας της χρονοσειράς, ενώ ταυτόχρονα δημιουργεί αποτελέσματα με μεγαλύτερη συνοχή. Από την άλλη πλευρά οι 12 μήνες του έτους δεν μπορούν να εξάγουν πολύ ασφαλή δεδομένα αν συγκριθούν με τις 52 εβδομάδες.

Από την μηνιαία εποχιακότητα γίνεται εύκολα αντιληπτό πως ανάλογα με τον τύπο των καταναλωτών οι μέρες που έχουμε μέγιστη και ελάχιστη κατανάλωση διαφέρουν ριζικά. Ειδικότερα:

- Για τους καταναλωτές συστάδας 1 (επιχειρήσεις) έχουμε ελάχιστες καταναλώσεις στις 30 του μηνός.
- Για τους καταναλωτές συστάδας 2 (οικιακοί καταναλωτές) έχουμε ελάχιστες καταναλώσεις στις 15 του μηνός.
- Για τους καταναλωτές συστάδας 3 (οικιακοί καταναλωτές) έχουμε ελάχιστες καταναλώσεις στις 15 του μηνός.
- Για τους καταναλωτές συστάδας 4 (επιχειρήσεις) έχουμε ελάχιστες καταναλώσεις στις 3 του μηνός.

Αφαίρεση εποχιακών δεικτών

Σε αυτό το σημείο είναι σημαντικό να παρατηρηθεί η κατανάλωση χωρίς τους εποχιακούς δείκτες. Με αυτό τον τρόπο καθίσταται ευκολότερη η θεώρηση της μορφής των κυματομορφών και η σύγκρισή τους με τις αρχικές καταναλώσεις του πρώτου μέρους. Αφαιρώντας τα εποχιακά χαρακτηριστικά οι καμπύλες πλησιάζουν περισσότερο στην παραβολική συνάρτηση. Έτσι η καταναλωτική τους τάση χωρίς τους εποχιακούς δείκτες γίνεται πιο έντονη και ευδιάκριτη.

Σχήμα 3.6: Μηνιαία εποχιακότητα

Εκτίμηση ακανόνιστης συνιστώσας

Τέλος έχει ενδιαφέρουν να δούμε το βαθμό της τυχαιότητας που έχουμε στις καταναλώσεις των συστάδων που δημιουργήθηκαν. Αυτό επιτυγχάνεται αφαιρώντας την εποχιαχή χρονοσειρά και την καταναλωτική τάση της αρχικής χρονοσειράς. Με αυτό τον τρόπο γίνεται σαφές ότι παρόλο την εποχιακότητα και την τάση οι χρονοσειρές έχουν αισθητό τυχαίο παράγοντα. Η αφαίρεση δημιουργεί αλλαγές στο επίπεδο της χεονοσειράς, σταθεροποιώντας έτσι το μέσο όρο της. Γίνεται αντιληπτό πως έχουν μη προβλέψιμα πρότυπα τουλάχιστον με δεδομένα διάρκειας ενός έτους. Τέτοιου τύπου δεδομένα λέγενται στατικές χρονοσειρές.[;]

Σχήμα 3.7: Κατανάλωση χωρίς εποχιαχούς δείχτες ανά εβδομάδα

Εξερεύνηση ημερών με χαμηλές καταναλώσεις

Για να αντληθούν περαιτέρω χαρακτηριστικά των χρονοσειρών χρειάστηκε η υλοποίηση αλγορίθμου με διπλή συσταδοποίηση. Σύμφωνα με τον αλγόριθμο πρώτα συσταδοποιούνται οι καταναλωτές με βάση την ημερήσια κατανάλωση, εν συνεχεία για κάθε συστάδα δημιουργείται νέα ομαδοποίηση με βάση την ομοιότητα κάθε ημερήσιας κατανάλωσης. Με αυτό τον τρόπο μπορεί να παρατηρηθεί ποιες μέρες όμοιων καταναλωτών έχουν παρόμοιες καταναλώσεις. Καθίσταται έτσι εφικτό, να φιλτράρουμε από τα δεδομένα μας μέρες με χαμηλή κατανάλωση που γνωρίζουμε πως θα δυσκόλευαν το πρόβλημα της ταξινόμησης σε αληθή και αλλοιωμένα δεδομένα.

Τα αποτελέσματα του αλγορίθμου έδειξαν πως μόνο τα Σάββατα μιας συστάδας εμφανίζουν έντονη ομοιότητα οικιακών καταναλώσεων. Οι Κυριακές κατά κύριο λόγο συσταδοποιούνται με την υπόλοιπη εβδομάδα δημιουργώντας την εβδομαδιαία τάση, γεγονός που δείχνει πως για τους περισσότερους καταναλωτές η Κυριακή είναι εργάσιμη ημέρα. Παράλληλα, παρατηρείται πως ανά περιόδους οι καταναλώσεις δημιουργούν νέες συστάδες αφήνοντας μόνο τα Σάββατα να σπάνε την συνεχόμενη συσταδοποίηση. Στον Πίνακα 3.1 φαίνεται πως ακόμη και στα Σάββατα δεν έχουμε απολύτως γεμάτες συστάδες.

Σχήμα 3.8: Κατανάλωση χωρίς εποχιαχούς δείκτες ανά μήνα

Συστάδες Καταναλωτών				
Συστάδες Σαββάτου	Συστάδα 1	Συστάδα 2	Συστάδα 3	Συστάδα 4
Συστάδα 1	0	24	30	19
Συστάδα 2	9	11	0	15
Συστάδα 3	0	9	0	0
Συστάδα 4	42	0	0	0
Συστάδα 5	0	2	0	0
Συστάδα 6	0	4	0	7
Συστάδα 7	0	1	21	10

Πίνακας 3.1: Έλεγχος συσταδοποίησης Σαββάτου

Παρατηρήσεις

Τα εμφανή χαρακτηριστικά εποχιακότητας και η εφαρμογή πολυωνύμου δευτέρου βαθμού στις χρονοσειρές θέτει καλό υποψήφιο τα μοντέλα πρόβλεψης χρονοσειρών. Με ένα τέτοιο σύστημα θα δημιουργείται μια πρόβλεψη κατανάλωσης από έμπιστους καταναλωτές για κάποιο χρονικό διάστημα. Εν συνεχεία θα αλλοιώνονται τα χαρακτηριστικά κάποιου μέρους των

Σχήμα 3.9: Εκτίμηση ακανόνιστης συνιστώσας με εβδομαδιαία εποχιακότητα

Σχήμα 3.10: Εκτίμηση ακανόνιστης συνιστώσας με μηνιαία εποχιακότητα

καταναλωτών και θα ελέγχεται αν ο αλγόριθμος μπορεί να διαχωρίσει τις αλλοιωμένες τιμές από αυτές που προέβλεψε.

- 3.2 Προεπεξεργασία και καθάρισμα δεδομένων
- 3.3 Προσομοίωση απάτης
- 3.3.1 Τύποι απάτης

Αλγόριθμοι επιβλεπόμενης μάθησης

- 4.1 Θεωρία Λογιστικής Παλινδρόμησης
- 4.2 Δοκιμή ταξινόμησης με λογιστική παλινδρόμηση
- 4.3 Θεωρία Μηχανών Διανυσμάτων Υποστήριξης
- 4.4 Δ οκιμή ταξινόμησης με Μηχανές Δ ιανυσμάτων Υ- ποστήριξης
- 4.4.1 Δοκιμή χρονοσειρών χωρίς πυρήνα
- 4.4.2 Δοκιμή χαρακτηριστικών με πυρήνα PBΦ
- 4.5 Σχόλια

Αλγόριθμοι μη επιβλεπόμενης μάθησης

- 5.1 Θεωρία αλγορίθμων συσταδοποίησης
- 5.2 Δοκιμή αλγορίθμου μη επιβλεπόμενης μάθησης
- 5.3 Θεωρία αλγορίθμου μείωσης διάστασης
- 5.4 Θεωρία αλγορίθμου εύρεσης ανωμαλιών
- 5.5 Δοκιμή αλγορίθμου ημι επιβλεπόμενης μάθησης
- 5.6 Σχόλια

Δυσκολίες και μελλονική κατεύθυνση

- 6.1 Τεχνικά εμπόδια
- 6.1.1 Δυσκολία γενίκευσης σε άλλες καταναλωτικές συνήθειες
- 6.1.2 Δυσκολία επιλογής μετρικών
- 6.1.3 Εύρεση αξιόπιστων δυαδικών χαρακτηρισμών
- 6.1.4 Ανατροφοδότηση ελέγχων
- 6.2 Ασφάλεια Καταναλωτών
- 6.2.1 Ασφάλεια Μετρητών
- 6.2.2 Απειλή ιδιωτικότητας

Συμπεράσματα

- 7.1 Σύγκριση αποτελεσμάτων
- 7.2 Συμπερασματικές σημειώσεις

Βιβλιογραφία

- [1] Malay Mail. Tenaga out to short-circuit electricity thefts. 1999. January 1.
- [2] Thomas B. Smith. *Electricity theft: a comparative analysis* Energy Policy Volume 32. Issue 18. 2004. pp. 2067-2076
- [3] P. Kadurek, J. Blom, J. F. G. Cobben and W.L.Kling. *Theft detection and smart metering practices and expectations in the Netherlands* Innovative Smart Grid Technologies Conference Europe. 2010 IEEE PES. 2010. pp. 1
- [4] Mathworks. Parametric Trend Estimation. 2017. https://www.mathworks.com/help/econ/parametric-trend-estimation.html. (accessed 4 August 2017).
- [5] George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, Greta M. Ljung. Time Series Analysis: Forecasting and Control. New Jersey: Wiley, 2016. pp. 310-324.
- [6] Rob J. Hyndman and George Athanasopoulos. Forecasting: principles and practice. 2012. https://www.otexts.org/fpp. (accessed 4 August, 2017).
- [7] S. De, R. Anand, A. Naveen and S. Moinuddin. *E-metering solution for checking energy thefts and streamlining revenue collection in India*. Transmission and Distribution Conference and Exposition. 2003 IEEE PES 2003. pp. 654-658 vol.2.
- [8] ERGEG. Smart Metering with a Focus on Electricity Regulation. E07-RMF-04-03. 2007.
- [9] Θοδωρής Παναγούλης. «Εγχειρίδιο» από τη PAE για την αντιμετώπιση των όλο και περισσότερων ρευματοκλοπών. https://energypress.gr/news/egheiridio-apo-ti-rae-gia-tin-antimetopisi-ton-olo-kai-perissoteron-reymatoklopon. accessed 6 August 2017. 2017.
- [10] Ρυθμιστική Αρχή Ενέργειας. Εγχειρίδιο Ρευματοκλοπών σε εφαρμογή της παραγράφου 23 του άρθρου 95 του Κώδικα Διαχείρισης Δικτύου Διαχείρισης Διανομής Ηλεκτρικής Ενέργειας. Athens, 30 May 2017. Εφημερίδα της κυβερνήσεως της Ελληνικής Δημοκρατίας. pp. 1871 vol.2.
- [11] Δημόσια Επιχείρηση Ηλεκτρισμού. Το Κόστος των Ρευματοκλοπών. Athens, 5 May 2016. Δελτίο τύπου 552017.

Παράρτημα Α΄

Αναλυτικά Αποτελέσματα

Ακολουθούν τα αναλυτικά αποτελέσματα ακρίβειας των μεθόδων με τη προτεινόμενη μέθοδο στις αριστερές στήλες και την κλασική στις δεξιές:

	DES	HES	LRL	Naive	SES	Θ	DES	HES	LRL	Naive	SES	Θ
1	1.46	1.66	1.45	1.39	1.39	1.53	1.99	2.25	3.15	1.8	1.84	2.05
2	0.9	0.99	0.99	1.0	0.84	0.82	1.04	1.06	1.06	1.0	1.0	1.03
3	0.97	0.93	0.93	0.85	1.11	1.07	1.04	1.37	2.25	1.37	1.37	1.37
4	0.86	0.83	0.94	0.85	0.85	0.84	0.87	1.06	3.64	1.01	1.01	1.04
5	0.7	0.67	0.67	0.86	0.75	0.75	1.19	1.19	1.24	1.13	1.19	1.19
6	0.77	0.76	1.38	0.73	0.78	0.77	0.99	1.04	5.62	1.04	1.04	1.04
7	0.66	0.77	0.77	0.67	0.35	0.44	1.1	1.08	1.08	0.78	1.16	1.12
8	0.67	0.65	0.54	0.69	0.67	0.66	0.6	0.76	1.01	0.87	0.87	0.82
9	0.5	0.47	0.46	0.5	0.5	0.48	0.46	0.51	0.72	0.51	0.51	0.51
10	0.33	0.35	0.35	0.82	0.71	0.3	1.32	1.43	1.31	1.44	1.44	1.44
11	10.52	4.28	4.28	1.0	18.86	14.15	1.0	3.7	30.34	1.0	11.37	6.76
12	1.04	0.9	0.87	1.29	1.29	1.09	0.98	0.75	1.54	1.05	1.05	0.8
13	2.98	2.6	2.6	1.21	3.79	3.75	0.97	0.97	3.22	1.23	1.23	0.97
14	3.4	4.72	4.29	5.02	5.02	4.87	0.74	5.79	15.39	6.63	6.63	6.21
15	0.81	0.74	0.7	0.87	0.82	0.78	0.56	0.57	0.57	0.83	0.55	0.55
16	0.89	0.89	0.74	0.91	0.88	0.89	0.85	1.36	1.77	1.39	1.41	1.39
17	1.0	1.0	0.65	0.99	0.99	1.0	1.0	1.0	3.18	1.0	1.0	1.0
18	0.76	0.69	0.69	0.83	0.91	0.92	1.29	1.3	2.07	1.17	1.29	1.29
19	0.5	0.5	0.55	0.5	0.5	0.5	0.83	0.94	1.27	0.43	0.43	0.43
20	0.6	0.59	0.59	0.6	0.61	0.6	0.56	0.39	0.75	0.33	0.33	0.36
21	1.51	1.49	1.22	1.51	1.51	1.5	1.67	1.77	2.46	1.79	1.79	1.78
22	0.41	0.4	0.4	0.43	0.43	0.42	0.5	0.44	0.91	0.43	0.43	0.43
23	0.46	0.5	0.64	0.46	0.46	0.47	0.25	0.33	2.33	0.26	0.26	0.29
24	0.85	0.86	0.89	0.83	0.83	0.85	0.9	0.9	0.9	0.89	0.89	0.9
25	0.5	0.51	0.56	0.53	0.53	0.52	1.35	1.71	3.77	1.72	1.72	1.71
26	0.62	0.61	0.64	0.62	0.62	0.62	0.75	0.46	1.36	0.48	0.48	0.47

27	0.44	0.43	0.43	0.74	0.63	0.53	1.0	1.04	3.08	0.95	1.04	1.04
28	0.62	0.45	0.45 0.87	0.63	0.63	0.67	0.93	1.04	2.81	0.93 0.78	0.78	0.78
29	0.02 0.76	0.71	0.87 0.71	0.03 0.71	0.03 0.71	0.07 0.71	1.0	1.0	1.88	1.1	1.1	1.1
30	0.70	0.71 0.57	0.71	0.71	0.71	0.71	1.0	0.89	1.51	0.89	0.89	0.89
31	0.53	0.69	0.69	0.69	0.8	0.78	1.04	1.02	1.31	1.0	1.0	1.01
32	1.0	0.69	0.69	0.09	0.59	0.73	1.04	0.75	3.21	0.97	0.97	0.86
33	0.48	0.09 0.45	0.09 0.45	0.98 0.42	0.55	0.53	0.94	0.75	1.65	0.78	0.78	0.76
34	0.40	0.43	4.34	0.42 0.52	0.53	0.81	1.0	0.73	11.11	0.76	0.73	0.70
35	1.0	1.0	1.15	1.0	1.0	1.0	1.0	0.97	5.45	1.0	1.0	0.99
36	0.72	0.97	0.97	0.81	1.1	0.81	1.16	1.0	1.0	0.73	4.55	3.16
37	0.72	0.76	0.76	0.58	0.56	0.64	1.05	1.11	2.96	1.12	1.12	1.11
38	0.73	0.85	1.02	0.92	0.92	0.89	1.00	0.81	2.72	0.95	0.95	0.87
39	0.52	0.54	0.54	0.61	0.63	0.63	0.74	0.83	1.38	0.58	0.33	0.78
40	0.6	0.54	0.54	0.6	0.66	0.63	0.89	0.79	0.79	0.37	1.16	0.98
41	0.43	0.39	0.39	0.42	0.42	0.41	0.38	0.41	0.62	0.41	0.41	0.41
42	0.40	0.6	1.05	0.42	0.42	0.61	0.96	0.46	5.8	0.41	0.55	0.51
43	0.62	0.76	4.62	0.64	0.64	0.82	1.09	1.15	6.07	1.18	1.18	1.17
44	0.89	0.88	0.88	0.85	0.94	0.91	0.49	0.57	2.28	0.49	0.51	0.54
45	0.54	0.61	1.06	0.96	0.52	0.57	1.0	0.51	5.27	0.96	0.96	0.72
46	0.84	0.96	0.96	0.4	0.68	0.78	1.0	3.08	3.08	0.85	1.04	1.04
47	0.51	0.47	0.47	0.55	0.54	0.53	0.37	0.37	0.82	0.37	0.37	0.37
48	0.32	0.24	0.24	1.08	0.77	0.59	1.69	1.97	3.39	1.77	1.77	1.84
49	0.38	0.41	0.41	0.29	0.3	0.33	1.0	0.99	1.66	0.85	0.99	1.0
50	1.18	1.03	1.03	2.08	2.59	1.58	6.59	5.62	5.62	3.29	11.4	9.2
51	0.9	0.81	1.16	0.9	0.9	0.86	0.94	0.75	4.36	0.94	0.94	0.84
52	0.52	0.57	0.57	0.93	0.51	0.45	1.0	0.62	3.73	0.91	0.91	0.69
53	0.49	0.4	0.7	0.5	0.5	0.45	1.21	1.26	1.78	1.26	1.26	1.26
54	0.51	0.84	0.84	0.55	0.53	0.41	1.32	1.16	1.16	0.86	0.98	1.92
55	1.0	1.0	1.0	1.0	0.59	0.95	0.96	1.01	1.01	1.0	2.07	1.53
56	0.68	0.82	0.82	0.71	0.82	0.72	1.11	1.11	2.3	1.0	1.11	1.11
57	1.02	1.0	1.0	0.9	0.9	1.01	1.0	1.01	2.02	1.11	1.11	1.04
58	0.62	0.64	0.64	0.61	0.58	0.61	0.76	0.83	2.97	0.8	0.8	0.8
59	0.69	0.77	0.77	0.66	0.91	0.89	1.35	1.36	3.68	1.37	1.37	1.36
60	0.78	0.8	0.8	0.83	0.83	0.8	0.37	0.38	0.35	0.48	0.35	0.36
61	1.0	0.99	0.6	0.99	0.99	0.99	1.0	0.99	3.54	1.0	1.0	0.99
62	0.68	0.66	0.51	0.71	0.68	0.67	1.0	0.54	2.37	0.67	0.67	0.6
63	1.0	0.89	1.0	0.88	0.88	0.55	0.94	0.84	1.56	1.09	1.09	0.94
64	0.92	1.0	1.0	0.41	0.5	0.38	0.87	0.89	0.89	0.58	3.02	2.93
65	0.91	0.78	0.51	0.74	0.74	0.76	1.0	1.0	3.51	0.8	0.8	0.7
66	0.74	0.7	0.7	0.61	1.1	0.88	1.2	0.99	0.99	0.52	0.52	0.58
67	0.73	0.72	0.72	0.73	0.73	0.73	0.9	0.99	0.66	0.26	0.26	0.23

68	0.39	0.45	0.45	0.46	0.26	0.24	0.59	0.79	0.9	0.58	0.58	0.66
69	1.0	0.8	1.1	0.92	0.92	0.86	1.0	1.08	5.7	1.1	1.1	1.09
70	0.55	0.56	0.56	0.5	0.55	0.55	0.95	1.0	2.28	1.18	1.18	1.15
71	0.61	0.62	0.62	0.61	0.61	0.61	0.85	0.22	0.97	0.27	0.27	0.24
72	0.62	0.86	0.86	0.46	0.55	0.46	0.95	0.97	2.2	0.8	0.8	0.8
73	0.82	0.68	0.68	0.48	1.01	0.95	1.0	1.08	2.08	0.83	0.93	0.96
74	0.46	0.38	0.38	0.83	1.22	0.86	0.97	0.97	3.62	0.81	0.81	0.95
75	1.69	1.92	1.92	0.98	1.1	1.34	1.29	2.71	7.19	1.48	1.48	2.1
76	1.97	1.49	0.98	2.13	2.46	1.98	1.67	1.5	1.34	2.69	3.38	2.03
77	0.44	0.45	0.48	0.36	0.36	0.41	0.77	0.82	2.38	0.84	0.84	0.83
78	0.55	0.58	0.58	0.45	0.41	0.48	0.97	0.53	2.53	0.61	0.61	0.54
79	0.62	0.69	0.69	0.49	0.49	0.52	0.64	0.82	2.76	0.69	0.69	0.71
80	0.43	0.44	0.56	0.41	0.43	0.44	0.97	0.79	1.88	0.79	0.79	0.79
81	0.86	1.0	1.0	0.71	0.71	0.99	1.01	1.0	1.2	0.92	0.92	1.04
82	0.58	0.59	0.59	0.52	0.54	0.55	0.54	0.93	2.21	0.6	0.6	0.59
83	0.49	0.51	0.51	0.5	0.5	0.49	0.54	0.47	1.39	0.54	0.54	0.5
84	1.0	0.55	1.73	0.89	0.89	0.72	1.0	1.07	8.42	1.12	1.12	1.08
85	0.57	0.61	0.61	0.89	0.37	0.41	1.83	2.05	3.58	1.83	1.83	1.94
86	0.54	0.6	0.6	0.41	0.45	0.5	0.72	1.24	3.21	0.65	0.78	0.93
87	0.68	0.81	0.81	0.53	0.53	0.48	0.33	0.34	1.15	0.35	0.35	0.35
88	0.45	0.45	0.45	0.46	0.5	0.47	1.66	1.87	1.87	0.38	0.39	0.46
89	0.64	0.81	1.61	0.54	0.54	0.67	1.04	1.0	6.91	0.78	0.78	0.87
90	4.04	4.54	4.54	2.69	2.23	3.11	4.41	7.15	13.5	3.79	3.79	5.47
91	0.87	0.93	0.93	0.49	0.49	0.59	0.56	0.94	1.64	0.39	0.39	0.38
92	0.42	0.49	0.49	0.43	0.43	0.4	0.88	0.94	2.5	0.54	0.54	0.56
93	0.44	0.48	0.48	0.81	0.19	0.25	1.0	1.0	2.59	0.75	0.75	0.46
94	1.81	2.06	2.06	0.7	0.86	1.37	1.0	1.0	7.33	1.42	1.42	1.44
95	0.97	0.98	0.85	0.96	0.96	0.97	1.0	0.76	0.74	0.96	0.96	0.86

Πίναχας Α΄.1: Δείκτες Ακρίβειας για όλες τις χρονοσειρές

Γλωσσάριο

Ελληνικός όρος

στιβαρότητα κινητοί μέσοι όροι επαναδειγματοληψία δειγματοληψία προς τα πάνω δειγματοληψία προς τα κάτω βάση σύγκρισης εκθετική εξομάλυνση γραμμές Θ μηχανική μάθηση ανάλυση συστάδων συστάδα συσταδοποίηση υπερπροσαρμογή περιηγητής

Αγγλικός όρος

robustness
moving averages
resampling
upsampling
downsampling
benchmark
exponential smoothing
theta lines
machine learning
cluster analysis
cluster
clustering
overfitting
browser