# Machine Learning Lecture 2

# Participation and Assignment

Pilot News Updates
Pop quizzes (NAME)
Assignment 1 will be on linear regression (today's class)

# Categories Within Supervised ML

Classification machine learning systems: Systems where we seek a yes-or-no prediction, such as "Is this tumer cancerous?", "Does this cookie meet our quality standards?"

a. Binary or Multiclass classifier: Output y in {-1, 1} or y in {1,..k}

Regression machine learning systems: Systems where the value being predicted falls somewhere on a continuous spectrum. These systems help us with questions of "How much?" or "How many?".

#### **Example**

Independent variable? Target variable?





# Example

Independent variable? Target variable?





# Some Terms in Supervised Learning

**Training Data** 

Data used to "learn" the relationship between the independent and target variables "gold standard", contains labels.

# Some Terms in Supervised Learning

**Test Data** 

Estimate the accuracy using the unseen data (validate using some performance metric P)

# **Hypothesis Function**



# Regression



# Regression

How do we choose the "right function"? How do we measure the "rightness"?

How do we trade off between the degree of fit and the complexity of solution?

# Linear Regression:drawing

#### Notation:

m: Number of Training Samples

x: input variables

y: output variables



#### Linear Regression:drawing

m: Number of Training Samples

x: input variables

y: output variables

Training data points: (x,y) "ith" data point: (x<sup>(i)</sup>,y<sup>(i)</sup>)



#### Linear Regression: single variable

Consider the single independent variable case:

$$y = h\theta(x) s. t.$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$



Noise is present -- problem of real data What are the unknowns here?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Noise is present -- problem of real data What are the unknowns here?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$



What is the goal here? Choose:  $\Theta_0$  &  $\Theta_1$ s.t.  $h \ominus (x)$  is close to y for the given training data How do we write this up??

What are we trying to minimize?
What are the knowns? What are the unknowns?



Find the values of  $\Theta_0 \& \Theta_1$  to minimize this expression:

Cost Function: 
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

# **Cost Function/ Squared Error**

Find the values of  $\Theta_0 \& \Theta_1$  to minimize this expression:

Cost Function: 
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

# **Cost Function: Understanding J(⊖)**





# Cost Function: $J(\Theta_0, \Theta_1)$ ?



# **Optimization**

We have created a cost function that we want to minimize over the training data samples We want to experiment with different values of  $\Theta_0 \& \Theta_1$  so that the cost function  $J(\Theta_0,\Theta_1)$ keeps reducing so we can end up in the minimum (hopefully)

# **Gradient Descent (drawing)**

Start with initial values. Keep changing theta values till we reach the minima.

 $\alpha$  is called the Learning Rate (some books also use  $\eta$ ),  $\in$  [0,1]

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

α is called the Learning Rate, ∈ [0,1]

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

What is the global minimum?
What happens to the 2nd term once we reach

there?

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost Function: 
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

#### Effect of $\alpha$

- Too small
- Too large

Repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

Some Pointers On Implementation:

Using temp variables (2<sup>nd</sup> parameter is a function of  $\Theta_0$  and  $\Theta_1$ )

Updating the parameters at the end simultaneously, after computing the partial derivatives for each parameter

Values of  $\alpha$ : varying from 0 to 1

#### **Multivariate Gradient Descent**

Hypothesis:  $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$ 

Parameters:  $\theta_0, \theta_1, \dots, \theta_n$ 

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Note: Both x and theta are now (n+1) dimensional

For m training samples, then we get:

```
Repeat until convergence { \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \quad \text{(for every } j\text{)}.
```

Batch vs Online

Batch: considers all the training samples in the data (or batches at a time)

Online: considers each training sample one at a time

Q: Is our method online or batch?

#### **Feature Scaling**

Are there any challenges here that could affect our optimization function (cost function)?

| Feature 1 | Feature 2 | Target |
|-----------|-----------|--------|
| 0         | 4100      | 255    |
| 1         | 6544      | 422    |
| 2         | 7711      | 122    |
| 1         | 100       | 661    |

# **Feature Scaling**

Replace feature x with (x - mean) / (max - min)

| Feature 1 | Feature 2 | Target |
|-----------|-----------|--------|
| 0         | 4100      | 255    |
| 1         | 6544      | 422    |
| 2         | 7711      | 122    |
| 1         | 100       | 661    |

# How to verify that the Algorithm is working as it should?

What should the cost function look like over time? (What is time here??)

# **Stopping Criteria**

This is an iterative algorithm How do we know when to stop?

choose a small threshold  $\varepsilon$ : if the change in cost function is below  $\varepsilon$ , stop the iterations

Hard code the number of iterations

A combination of both (look at the graph first)

# **Polynomial Features**

Suppose I have this function:

 $h_{\theta}(x) = \Theta_0 + \Theta_1 x + \Theta_2 x^2$ Does this change the algorithm we have learned so far?