

COE-C2004 - Materials Science and Engineering

Prof. Junhe Lian Wenqi Liu (Primary teaching Assistant) Rongfei Juan (Teaching Assistant)

Lecture flow

- Atomic structure [L01]
- Crystal structure [L02]
- Microstructure (phases) [L08]

□ Elasticity [L03]

- Plasticity [L03 & L04]
- Hardness [L03]
- Failure [L05 & 06]
- Physical properties [L11]

Properties

Process

Diffusion [L07]

Phase Diagram [L07]

Phase Transformation [L08]

Processes [L09]

Performance

- Elasticity and plasticity[L03 & L04]
- Failure [L05 & 06]

Learning Objectives

After studying this chapter you should be able to do the following:

- Name the types of ceramics and describe their basic applications.
- Sketch/describe unit cells for sodium chloride, cesium chloride, zinc blende, diamond cubic crystal structures. Do likewise for the atomic structures of graphite and a silica glass.
- Given the chemical formula for a ceramic compound and the ionic radii of its component ions, predict the crystal structure.
- Name and describe different ionic point defects that are found in ceramic compounds.
- On the basis of slip considerations, explain why crystalline ceramic materials are normally brittle.

Ceramics – Applications

Ceramic and its types

A **ceramic** is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing a nonmetallic mineral, such as clay, at a high temperature.

Ceramic Materials

Adapted from Fig. 13.1 and discussion in Sections 13.2-10, Callister & Rethwisch 10e.

Ceramics Application: Die Blanks

- Die blanks:
 - -- Need wear resistant properties!
- Die surface:
 - 4 µm polycrystalline diamond particles that are sintered onto a cemented tungsten carbide substrate.
 - polycrystalline diamond gives uniform hardness in all directions to reduce wear.

Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.

Ceramics Application: Cutting Tools

Tools:

- -- for grinding glass, tungsten, carbide, ceramics
- -- for cutting Si wafers
- -- for oil drilling

Materials:

- -- manufactured single crystal or polycrystalline diamonds in a metal or resin matrix.
- polycrystalline diamonds resharpen by microfracturing along cleavage planes.

oil drill bits

blades
Single crystal

diamonds

polycrystalline diamonds in a resin matrix.

Photos courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.

Ceramics – Structure

Atomic Bonding in Ceramics

- Bonding:
 - -- Can be ionic and/or covalent in character.
 - -- % ionic character increases with difference in electronegativity of atoms.
- Degree of ionic character may be large or small:

Ceramic Crystal Structures

Oxide structures

- oxygen anions larger than metal cations
- close packed oxygen in a lattice (usually FCC)
- cations fit into interstitial sites among oxygen ions

Factors that Determine Crystal Structure

- 1. Relative sizes of ions Formation of stable structures:
 - --maximize the # of oppositely charged ion neighbors.

Adapted from Fig. 12.1, Callister & Rethwisch 10e.

- Maintenance of Charge Neutrality :
 - --Net charge in ceramic should be zero.
 - --Reflected in chemical formula:

m, p values to achieve charge neutrality

Coordination Number and Ionic Radii

Coordination Number increases with

^rcation

ranion

To form a stable structure, how many anions can surround around a cation?

	<u>-</u>	oor umb	
	linear	2	< 0.155
ır (triangula	3	0.155 - 0.225
al	tetrahedr	4	0.225 - 0.414
al C	octahedra	6	0.414 - 0.732
	cubic	8 12.2,	0.732 - 1.0 Adapted from Table

Callister & Rethwisch 10e.

Computation of Minimum Cation-Anion Radius Ratio

Determine minimum $r_{\text{cation}}/r_{\text{anion}}$ for an octahedral site (C.N. = 6)

$$\frac{r_{\text{cation}}}{r_{\text{anion}}} = \sqrt{2} - 1 = 0.414$$

Predicting the Crystal Structure of FeO

On the basis of ionic radii, what crystal structure would you predict for FeO?

Cation	Ionic radius (nm)
Al 3+	0.053
Fe ²⁺	0.077
Fe ³⁺	0.069
Ca ²⁺	0.100
Anion	
02-	0.140
CI-	0.181
F-	0.133

Answer:

$$\frac{r_{\text{cation}}}{r_{\text{anion}}} = \frac{0.077}{0.140}$$
$$= 0.550$$

based on this ratio, -- coord # = 6 because 0.414 < 0.550 < 0.732

-- crystal structure is NaCl

Data from Table 12.3, Callister & Rethwisch 10e.

Rock Salt Structure

Same concepts can be applied to ionic solids in general.

Example: NaCl (rock salt) structure

$$o$$
 Na⁺ $r_{Na} = 0.102 \text{ nm}$

$$r_{CI} = 0.181 \text{ nm}$$

$$r_{\rm Na}/r_{\rm Cl} = 0.564$$

: cations (Na⁺) prefer octahedral sites

Adapted from Fig. 12.2, Callister & Rethwisch 10e.

MgO and FeO

MgO and FeO also have the NaCl structure

O²⁻
$$r_{\rm O} = 0.140 \text{ nm}$$

•
$$Mg^{2+} r_{Mg} = 0.072 \text{ nm}$$

$$r_{\rm Mg}/r_{\rm O} = 0.514$$

... cations prefer octahedral sites

Adapted from Fig. 12.2, Callister & Rethwisch 10e.

So each Mg²⁺ (or Fe²⁺) has 6 neighbor oxygen atoms

AX Crystal Structures

AX-Type Crystal Structures include NaCl, CsCl, and zinc blende

Cesium Chloride structure:

$$\frac{r_{Cs^+}}{r_{Cl^-}} = \frac{0.170}{0.181} = 0.939$$

∴ Since 0.732 < 0.939 < 1.0, cubic sites preferred

So each Cs⁺ has 8 neighbor Cl⁻

AX₂ Crystal Structures

Fluorite structure

Fig. 12.5, Callister & Rethwisch 10e.

- Calcium Fluorite (CaF₂)
- Cations in cubic sites
- UO₂, ThO₂, ZrO₂, CeO₂
- Antifluorite structure –
 positions of cations and
 anions reversed

ABX₃ Crystal Structures

Perovskite structure

Ex: complex oxide BaTiO₃

Fig. 12.6, Callister & Rethwisch 10e.

Silicate Ceramics

Most common elements on earth are Si & O

- SiO₂ (silica) polymorphic forms are quartz, crystobalite, & tridymite
- The strong Si-O bonds lead to a high melting temperature (1710°C) for this material

Glass Structure

Basic Unit:

Glass is noncrystalline (amorphous)

- Fused silica is SiO₂ to which no impurities have been added
- Other common glasses contain impurity ions such as Na⁺, Ca²⁺, Al³⁺, and B³⁺

 Quartz is crystalline SiO2:

Polymorphic Forms of Carbon

Diamond

- tetrahedral bonding of carbon
 - hardest material known
 - very high thermal conductivity
- large single crystals gem stones
- small crystals used to grind/cut other materials
- diamond thin films
 - hard surface coatings used for cutting tools, medical devices, etc.

Fig. 12.16, Callister & Rethwisch 10e.

Polymorphic Forms of Carbon (cont)

Graphite

 layered structure – parallel hexagonal arrays of carbon atoms

- weak van der Waal's forces between layers
- planes slide easily over one another -- good lubricant

Ceramics – Defects

Point Defects in Ceramics (i)

- Vacancies
 - -- vacancies exist in ceramics for both cations and anions
- Interstitials
 - -- interstitials exist for cations
 - -- interstitials are not normally observed for anions because anions are large relative to the interstitial sites

Fig. 12.18, Callister & Rethwisch 10e. (From W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, John Wiley & Sons, 1964. Reproduced with permission of Janet M. Moffatt.)

Point Defects in Ceramics (ii)

- Frenkel Defect
 - -- a cation vacancy-cation interstitial pair.
- Shottky Defect
 - -- a paired set of cation and anion vacancies.

Fig. 12.19, Callister & Rethwisch 10e. (From W.G. Moffatt, G.W. Pearsall, and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, John Wiley & Sons, 1964. Reproduced with permission of Janet M. Moffatt.)

Equilibrium concentration of defects

 $\mu e^{-Q_D/kT}$

Imperfections in Ceramics

 Electroneutrality (charge balance) must be maintained when impurities are present

• Ex: NaCl Na + • Cl-

Substitutional cation impurity

Substitutional anion impurity

Ceramic Phase Diagrams

MgO-Al₂O₃ diagram:

Fig. 12.23, Callister & Rethwisch 10e.
[Adapted from B. Hallstedt, "Thermodynamic Assessment of the System MgO–Al₂O₃," *J. Am. Ceram. Soc.*, 75[6], 1992, p.1502. Reprinted by permission of the American Ceramic Society.]

Ceramics – Properties

Mechanical Properties

Ceramic materials are more brittle than metals.

Why is this so?

- Consider mechanism of deformation
 - In crystalline, by dislocation motion
 - In highly ionic solids, dislocation motion is difficult
 - few slip systems
 - resistance to motion of ions of like charge (e.g., anions)
 past one another

Glass Properties

• Specific volume $(1/\rho)$ vs Temperature (T):

Adapted from Fig. 13.13, Callister & Rethwisch 10e.

- Crystalline materials:
 - -- crystallize at melting temp, T_m
 - -- have abrupt change in spec. vol. at T_m

Glasses:

- -- do not crystallize
- -- change in slope in spec. vol. curve at glass transition temperature, T_g
- -- transparent no grain boundaries to scatter light

Summary

- Ceramics and their types.
- Interatomic bonding in ceramics is ionic and/or covalent.
- Ceramic crystal structures are based on:
 - maintaining charge neutrality
 - cation-anion radii ratios.
- Imperfections include:
 - Atomic point: vacancy, interstitial (cation), Frenkel,
 Schottky
 - Impurities: substitutional, interstitial
 - Maintenance of charge neutrality
- The ceramic materials are having high strength and more brittle than metals.

Announcements

Next Monday (Dec 6) is a national holiday. The last lecture will take place via a recorded lecture.

Reading: Textbook Ch. 11, 12 and further reading (Ch. 13, 14, 15, 16)

Assignment: Open; DL: 18:00 Sunday

Q&A time: Tuesday 16:30 (merged w/ Exercise)

Exercise: Thursday 10:15 - 12:00

Questions?