

Polygenic Risk Score Computation with PRSice

Emma S. Luckett, PhD
Amsterdam UMC
25.07.2025

Presentation Overview

- 1. Recap
- 2. What is a polygenic risk score and the limitations
- 3. Why compute a polygenic risk score
- 4. Summary of tools
- 5. PRSice workflow, summary statistics, and input data
- 6. PRSice output
- 7. ADNI example

So far, you've learnt:

How to design a genetics experiment

· How to obtain (genetic) data and perform quality control

SNP analysis

How to conduct a GWAS

Recap

BIN1 APOE 40 (base) emmaluckett@mac Downloads % head -10 Kunkle_etal_Stage1_results-2.txt Chromosome Position MarkerName Effect_allele Non_Effect_allele Beta SE Pvalue 1 100000012 rs10875231 T G -0.0026 0.0168 0.8758 100000827 rs6678176 T C 0.0008 0.0156 0.9574 100000843 rs78286437 T C -0.0136 0.0330 0.6792 100000989 chr1:100000989:I A ATC -0.0099 0.0343 0.7731 100001138 rs144406489 A G -0.0061 0.0612 0.9204 100001201 rs76909621 T G 0.0115 0.0244 0.6377 100001585 rs184531135 A G 0.0040 0.2575 0.9877 100001731 rs115282913 A G -0.2757 0.1488 0.06392 1 10000179 chr1:10000179:D A AAAAAAAC 0.0518 0.1076 0.6301 ulle al fall attlete state il 2 in horoste potatoli 🚾 tra la bad di 0 -15 16 17 18 19 20 21 10 12 13 2 11 Kunkle et al., 2019 Chromosome

What is a Polygenic Risk Score (PRS)?

My use PRS?

Why compute PRS?

Estimate genetic risk

Why compute PRS?

 PRS aggregates the effects of thousands of variants (SNPs) into a single number that reflects an individual's risk for a trait or disease

Estimate genetic risk

Identify high-risk individuals

Why compute PRS?

- People with high PRS may have substantially higher risk compared to the population average
- This can help with:
- Early screening
- Preventive interventions
- Personalised medicine

 PRS can help researchers understand how much of a trait is explained by common genetic variation and how different sets of variants contribute to it

www.amypad.eu

c

Estimate genetic risk Identify high-risk individuals Why compute PRS? Understand genetic architecture Control for genetic risk in research

 In studies of e.g. brain imaging, cognition, or biomarkers, PRS can be used as a covariate to control for genetic risk or to explore how genetics influence these traits

www.amypad.eu

10

- PRS can be used to stratify participants into different risk groups, which is especially useful in:
- Clinical trials
- Longitudinal studies
- Prevention research

Stratify cohorts Compare predictive models

Estimate genetic risk

Why compute PRS?

Control for genetic risk in research

Identify high-risk individuals

Understand genetic architecture

- Important considerations:
- Ancestry-matched base and target data
- Include population stratification covariates (genetic PCs)
- Validate in independent datasets
- Use multiple thresholds for SNP inclusion (pT)

AYPAD PRS computation tools

Method	Models LD?	Shrinkage?	Threshold tuning?	Speed	Language	Best use case
LDpred2			💢 (auto)	Moderate	R	Accurate modelling of LD, multiple PRS models
PLINK	×	×		✓ ✓	C++	Fast, large datasets, simple baseline
PRSice	×	×	✓ (auto tested)	✓ ✓	R + C++	Easy, fast PRS screening across thresholds
PRS-CS		✓	×	Moderate	Python	No threshold tuning, good polygenic modelling
SBayesR	✓	✓	×	Slow– Moderate	Python/C++	Advanced modelling, large/complex GWAS

PRS computation tools

Method	Models LD?
LDpred2	
PLINK	×
PRSice	×
PRS-CS	✓
SBayesR	✓

- GWAS tests each SNP individually for association with a trait (e.g., Alzheimer's risk, a beta coefficient and a p-value)
- Assumption: each SNP is tested independently
- But this independence assumption is not true in reality
- So LDpred2 aims to recover true SNP effects using a Bayesian model that adjusts GWAS effect sizes for linkage disequilibrium (LD)
- 1. Start with prior beliefs about SNP effect sizes:
 - 1. Example: Most SNPs have zero effect, a few have small/medium/large effects.
 - 2. In LDpred2: prior = mixture of Gaussians
- 2. Use the observed GWAS summary statistics (betas and p-values) and an an external LD matrix (correlations between SNPs from a reference panel)
- 3. Update the effect size estimates based on:
 - 1. How strong the GWAS signal is
 - 2. How correlated that SNP is with others
 - 3. How likely it is, under the prior, that the SNP has a real effect
- This process "shrinks" noisy effect sizes towards their true value

case

elling of PRS

atasets, eline

PRS

cross

ds

tuning, jenic

ng

delling, GWAS

PRS computation tools

Method	Models LD?	Shrinkage?
LDpred2	✓	✓
PLINK	×	×
PRSice	×	*
PRS-CS	✓	
SBayesR		✓

- GWAS effect sizes are often inflated, due to:
- 1. Sampling noise (especially in small samples)
- 2. Linkage disequilibrium (LD)
- 3. Winner's curse (top SNPs look stronger than they are)
- Shrinkage estimates a more conservative value
- True effects are retained (e.g., SNP1 stays positive) and false positives are shrunk toward zero (e.g., SNP2 is penalised)
- PRS-CS uses Bayesian continuous shrinkage that assumes most SNPs have no or small effect and updates the effect sizes using the GWAS data and the LD structure:
- 1. Keep true effect sizes (even if small)
- 2. Shrink noisy or false signals toward zero
- 3. Do all this without altering p-value thresholds
- Continuous shrinkage process adaptively shrinks the effect sizes based on how strong the GWAS signal is for a particular SNP, and the LD of that SNP with others

PRS computation tools

Method	Models LD?	Shrinkage?	Threshold tuning?
LDpred2		✓	💢 (auto)
PLINK	×	×	✓
PRSice	×	×	(auto tested)
PRS-CS	✓	✓	×
SBayesR	✓	✓	×

- p-value thresholding implemented in PRSice is the process of selecting SNPs based on their GWAS pvalues:
- 1. Setting up a range of p-value thresholds (e.g., 5e-8 to 1.0)
- Keeping all SNPs within the different GWAS p ≤ threshold
- 1. Clumping SNPs in LD (to keep independent SNPs) and calculates a PRS for each individual
- 1. Testing how well different sets of SNPs predict the phenotype using a regression
- Recording R² and p-value and plotting R² vs. pthreshold to find the optimal threshold for SNP inclusion
- 1. Choosing the best-performing threshold (e.g., p < 0.01, p < 0.05, p < 0.5, etc.)

MYPAD PRS computation tools

Method	Models LD?	Shrinkage?	Threshold tuning?	Speed	Language	Best use case			
LDpred2		<u>~</u>	💢 (auto)	Moderate	R	Accurate modelling of LD, multiple PRS models			
PLINK	×	×		✓ ✓	C++	Fast, large datasets, simple baseline			
PRSice	×	×	☑ (auto tested)	~ ~	R + C++	Easy, fast PRS screening across thresholds			
PRS-CS		✓	×	Moderate	Python	No threshold tuning, good polygenic modelling			
SBayesF		✓	×	Slow- Moderate	Python/C++	Advanced modelling, large/complex GWAS			

Input data for PRS calculations with PRSice

GWAS summary statistics = base file The file with GWAS summary statistics

Genotype data = target data
The prefix of the files that contain the genotype data in binary plink format

Optional:
Covariates file
File containing
genetic principal
components or
other covariates
such as age, as
necessary

Optional: External dataset for clumping
Within each block of correlated SNPs, the SNP with the lowest p-value in the discovery set is selected

Phenotype file
FID – Family ID (usually same as IID if not using family data)
IID – Individual ID
Phenotype – Your target trait or disease status (binary or continuous)

Optional:

How to obtain GWAS summary statistics: GWAS catalogue example

How to obtain GWAS summary statistics: GWAS catalogue example

Index of /pub/databases/gwas/summary_statistics/GCST007001-GCST008000/GCST007511

Name **Last modified** Size Description Kunkle etal 2019 IGAP summary statistics README 0.docx 2019-08-14 00:02 16K

*.fam

Parent Directory

Kunkle etal Stage1 results.txt

FID	IID	PID	MID	Sex	Р
1	1	0	0	2	1
2	2	0	0	1	0
3	3	0	0	1	1

*.bed

Contains binary version of the SNP info of the *.ped file. (not in a format readable for humans)

2019-08-14 00:02 543M

Chr	SNP	GD	BPP	Allele 1	Allele 2
1	rs1	0	870000	С	т
1	rs2	0	880000	Α	G
1	rs3	0	890000	A	С

Chromosome Position MarkerName Effect allele Non Effect allele Beta SE Pvalue 1 100000012 rs10875231 T G -0.0026 0.0168 0.8758 1 100000827 rs6678176 T C 0.0008 0.0156 0.9574 1 100000843 rs78286437 T C -0.0136 0.0330 0.6792 1 100000989 chr1:100000989:I A ATC -0.0099 0.0343 0.7731 1 100001138 rs144406489 A G -0.0061 0.0612 0.9204 1 100001201 rs76909621 T G 0.0115 0.0244 0.6377 1 100001585 rs184531135 A G 0.0040 0.2575 0.9877 1 100001731 rs115282913 A G -0.2757 0.1488 0.06392 1 10000179 chr1:10000179:D A AAAAAAAC 0.0518 0.1076 0.6301 1 100002106 rs17120619 C G 0.4699 0.2869 0.1015 1 100002154 chr1:100002154:D T TGTTA 0.0114 0.0244 0.6405 1 100002155 chr1:100002155:D G GTTAGT 0.0114 0.0244 0.6406 1 100002490 rs78642210 T C 0.0149 0.0331 0.6523 1 100002713 rs77140576 T C 0.0061 0.0237 0.7982 1 100002714 rs113470118 A G -0.0150 0.0331 0.651 1 100002882 rs7545818 T G -0.0015 0.0156 0.9241 1 100002991 rs75635821 A G 0.0060 0.0237 0.7992 1 100003204 rs78948828 T G -0.0150 0.0331 0.6507 1 100003419 rs114427610 T C -0.0128 0.0487 0.7924 1 10000400 rs1237370 A T -0.0094 0.0210 0.6545 1 100004203 chr1:100004203:I G GT -0.0253 0.0542 0.6412 1 100004204 chr1:100004204:I T TTTTTG -0.0091 0.0198 0.6443 1 100004210 chr1:100004210:I T TTTTTG -0.0128 0.0194 0.5089 1 100004463 chr1:100004463:D T TA -0.0017 0.0168 0.9195 1 100004465 chr1:100004465:D A AT 0.0042 0.0178 0.8126 1 100004726 rs6682190 A G -0.0111 0.0208 0.5918 1 100004916 chr1:100004916:D G GATT -0.0190 0.0198 0.3389 1 100005230 rs6697069 A T -0.0103 0.0235 0.6597 1 100005477 rs12069019 A G -0.0111 0.0208 0.5923 1 100005950 rs150684236 A G -0.0852 0.0945 0.3673 1 100006117 rs6686057 A G 0.0193 0.0147 0.1911 1 100006734 rs55725529 T C -0.0090 0.0215 0.6748 1 100007258 rs76698872 T C 0.0026 0.0452 0.9538 1 100007454 rs12082355 T C -0.0109 0.0208 0.6006 1 100007741 rs12067343 A G 0.0109 0.0208 0.6012 1 100007961 rs35363137 A G -0.0969 0.0758 0.2015 1 100008607 rs11166268 A C -0.0016 0.0156 0.9208 1 100008708 chr1:100008708:D T TG 0.0238 0.0224 0.2866 1 100008737 rs188491891 C G -0.0377 0.1199 0.753 1 100008943 rs149181078 T G 0.0224 0.0614 0.7156 1 100008987 rs11166269 A C 0.0012 0.0156 0.9364 1 100008993 rs12039860 C G 0.0944 0.2601 0.7167 1 100009669 rs6698430 T C -0.0012 0.0156 0.9393 1 100010065 rs112013596 T C -0.0155 0.0330 0.6397 1 100010434 rs12130109 A G 0.0054 0.0237 0.8194 1 1000107E2 chal.1000107E2.D T TAACCCAC 0 4202 0

Installing PRSice-2

wget https://github.com/choishingwan/PRSice/releases/download/2.2.11/PRSice_linux.nightly.zip
unzip PRSice_linux.nightly.zip

Rscript PRSice.R --dir .

Virtual machine

- cd to home directory in terminal
- Navigate to PRSice directory to note the locations of the base and target datasets
- Use the following code to run PRS computation, ensure that you copy the correct locations of the files

Running PRSice-2: Example Command

Rscript /home/as2-streaming-user/PRSice/PRSice.R --dir . \

- --prsice /home/as2-streaming-user/PRSice/PRSice_linux \
- --base /home/as2-streaming-user/PRSice/TOY_BASE_GWAS.assoc \
- --target /home/as2-streaming-user/PRSice/TOY_TARGET_DATA \
- --thread 1 \
- --stat OR \
- --binary-target T

PRSice output Files

1.	.log		Open	A		Open ▼	PRSice.best ~/Documents/Toy_data_tes	Save	■ :	Save		×
			Pheno	Set	Threshold	FID IID In Regre	ession PRS			NP		
	Log file with all		-	Base	0.00025005	CAS 1 CAS 1 Yes				2903	2	
			-	Base	0.00030005	CAS 2 CAS 2 Yes	-0.00631017938			2503	3	
	information		-	Base	0.00040005	CAS 3 CAS 3 Yes	-0.00227495325			8035	5	
	rogarding the		-	Base	0.00045005	CAS 4 CAS 4 Yes	-0.00204360007			707	6	
	regarding the		-	Base	0.00065005	CAS_5 CAS_5 Yes	-0.000830676955			462	8	
	computation		*	Base	0.00070005	CAS_6 CAS_6 Yes				.967	9	
	computation		-	Base	0.00080005	CAS_7 CAS_7 Yes				422	13	
2.	nrsico		2	Base	0.00085005	CAS_8 CAS_8 Yes				384	15	
~ •	.prsice		-	Base	0.00095005	CAS_9 CAS_9 Yes				258	16	
			7.	Base	0.00100005	CAS_10 CAS_10 Ye				505	19	
	 Information about 	Open ▼ 🕰					es -0.00295900819					Save ■
	the number of SNPs	Open •				CAS_12 CAS_12 Ye	es -0.00492676332					Save _
	the number of sives	Phenotype S	Set	Threshold	PRS.R2 F	uCAS_13 CAS_13 Ye	es -0.00123612679			rror P	Νι	IM SNP
	in each score		0.4463	0.0520082	0.0520082		es -0.000157124016			759		_
	III Cacii Score					CAS_15 CAS_15 Ye						
	computed		-	Base	0.00130005	CAS_16 CAS_16 Ye				343	31	
				Base	0.00135005	CAS_17 CAS_17 Ye					25	
3.	.summary		-	Base	0.00140005		es -0.00594528294			892	35	
J .	.summary		-	Base	0.00145005		es -0.00165433321			186	40	
	 Provides information 		-	Base	0.00155005		es -0.000721075202			649	45	
	O Provides information		-	Base	0.00160005		es 0.000807489695			587	50	
	about the best-fit		-	Base	0.00165005	CAS_22 CAS_22 Ye				956	55	
	about the best in		-	Base	0.00170005	CAS_23 CAS_23 Ye				734	57	
	PRS		-	Base	0.00175005 0.00180005		es -0.000420890405 es -0.00577997899			761	61	
				Base Base	0.00185005		es -0.000737649007			67		
4.	.best		5	Base	0.00190005		es -0.00274141371			07		
•••	ibest		-	Base	0.00195005		es -0.00835445713			72		
	 Contains PRS for each 		_	Base	0.00205005		es -0.00875970825			612	79	
	Contains FNS for Each		ef <u>u</u>	Base	0.00203003	CAS 30 CAS 30 Ye				779	80	
	individual at the best-		_	Base	0.00215005		es -0.00540774612			82	00	
					0.0021000			n 1 Col 1	18.1			NC
	fit PRS name					Plain Text ▼	Tab Width: 8 ▼ L	.n 1, Col 1	▼ IN	S 1, Col 1	▼	NS

PRSice output files

- The first plot is PRSice_BARPLOT_<date>.png
- X-axis = p-value threshold for SNP inclusion (pT)
- Y-axis = predictive value, Nagelkerke's R²
- Each bar shows the model p-value
- Using SNPs with a p-value up to 0.4463
 achieves the highest predictive value in
 the target sample with a p-value of 4.7e

PRSice output files

- The second plot is PRSice_HIGH-RES_PLOT_<date>.png
- X-axis = p-value threshold for SNP inclusion (pT)
- Y-axis = PRS p-values
- The p-value of the predictive effect is in black together with an aggregated trend line in green
- Of note: PRS analysis typically shows that models with lenient p-value thresholds often predict better than models with more stringent thresholds, suggesting that many statistically insignificant SNPs still have predictive value in polygenic traits

Example: PRS in Alzheimer's Disease, ADNI

```
Rscript /home/as2-streaming-user/PRSice/PRSice.R --dir . \
--prsice /home/as2-streaming-user/PRSice/PRSice linux \
--base /home/as2-streaming-user/data/GCST90027158 buildGRCh38.tsv \
--target /home/as2-streaming-user/data/ADNI_QC_FINAL \
--thread 1 \
--snp variant id \
--chr chromosome \
--bp base pair location \
--A1 effect allele \
--A2 other_allele \
--stat beta \
--pvalue p_value \
--bar-levels 5e-8,1e-5,0.1 \
--binary-target T \
--fastscore T \
--out ADNI PRS
```


YPAD Analysis with global CL burden

See word document