# Application of Erasure Codes

**Extra Lecture Notes** 

# Mitigate Hardware Failure

#### Replication

- Store multiple copies across multiple machines and data centers
- Simple to implement (unless consistency is an issue)
- Significant large storage overhead (2 times and more the size of the entire data)

#### Erasure coding

- Store "codes data" to recover lost blocks in case of a failure.
  - For, example parity codes ( we heard this before)
- Less overhead
- Combined with more reliable hardware, it can be a prime choice to balance cost, fault tolerance, and availabilty









A B A⊕B



B

A⊕B



#### Reed-Solomon

- Given a specific setup:
  - N: the number of data blocks for a given file
  - K : the number coding blocks
  - M = N+K total blocks
- Characteristics:
  - Recover any 1 block from any N other blocks
  - Can withstand up to K concurrent failures
  - Applicable for any values of N and K
- Notation: RS(N,K)
  - (6,3): 6 data blocks, 3 coding blocks
- Technique:
  - Galois Field arithmetic. GF(2<sup>W</sup>)

A B C D 1 2





