watIAM: sh2yap student ID: 21111395

	if DDH is hard -> the CDH problem must also be hard.								
	proof by contrapositive								
	suppose the CDH publish is not hard, and algorithm A that successfully solves CDH problem.								
	means we are able to compute gab quien ga								
	and gh								
	then since we know what gab is, we can distinguish between gab and gi for sime handom c								
									Ef we have
	Algorithm B (ga, gb, ggien) $g^{ab} = Algorithm A (ga, gb)$								
	gab = Algorithm A (ga, gb)								
	$if(g^{ab} = = g_{given})$ then is g^{ab}								
	then is gab								
	else								
	ggiren is gc								
	and Algorithm B solves ODH problem								
	⇒ ODH not hand								
	(# proven by contraposition)								

(486	Show:						
	CDH problem is hard -> blog must also be hard-						
	Proof by contrapositive						
	Compace of glaziation A street solver to DI OG						
	Suppose 3 algorithm A that solver the DLOG						
	problem, that is, given ga, we can compute						
	Then we can form an algorithm B s.t.						
	Algorithm B(ga, gb):						
	n n n n n (a a)						
	a = Algorithm A (ga)						
	b = Algritum A(gb)						
	ab = a * b						
	return gab // Note that, we know what g is.						
	⇒ he can so he CDH problem ⇒ CDH is not hard						
	(# proven by contraposition)						

() COM	ipute a	square mo	dulo x			
	x2 m	ad P = X				
where	e V Ez	I, pis	the gran	prime		
		a square mod				
×	ga is a	square mod	ulo			
Cubai (auly for	مام				
			064)	to cot		
\$6 .	× 0 9	O(a) == TRUE	O(d)==			
	x y	ga is square	9 15 no	square		
	×g	gb is square	8 12 no	ot square		
. ·	0ª × 64		7	2.		
5)	9 139	have, ruen	0	g" for	some i. 2i=0	1
(g.)ts	necessaring.	signare s	and fakin	some i, 2i=0	= q'
s imila	ady if	96 15 squ	are then			
()		necessarily	jquar.			
50.0	he can s	ummavise as	:		_	
J	<i>a</i> 9	b Oal	· / = 9	guare		
	7	9 7	× =	non-square		
	X	9° 9° 1 2 ? 2 /	? = di	onit		
	V	X /		KNOW.		
	1	/ /				
					one of gab	