REVIEW for MIDTERM EXAM

Chapters

- Ch. 1. Introductory Database Concepts (Chapter 01.pdf)
- Ch. 2. Database Planning and Database Architecture (Chapter02.pdf)
- Ch. 3. The Entity-Relationship Model (Chapter 03.pdf)
- Ch. 4. The Relational Model (Chapter 04.pdf)

Ch. 1. Introductory Database Concepts (Chapter 01.pdf)

- 1.1 Uses of Databases
 - Basic Definitions: Database, data, mini-world, DBMS,
 database systems
 - Big data
- 1.2 A Sample Database
- 1.3 The Integrated Database Environment
 - Database, DBMS, Users, Applications
- 1.4 Roles in the Integrated Database Environment
 - End users, application programmers, Database
 administrators

Ch. 1. Introductory Database Concepts (Chapter 01.pdf)

- 1.5 Advantages of the Integrated Database Approach
 - Sharing of data throughout the enterprise
 - Control of redundancy
 - Data consistency
 - Improved data standards
 - Better data security, perhaps using encryption
 - Improved data integrity
 - Balancing of conflicting requirements
 - Faster development of new applications
 - Better data accessibility
 - Economy of scale
 - More control of concurrency
 - Better backup and recovery procedures

Ch. 1. Introductory Database Concepts

- 1.6 Historical Developments in Information Systems
 - Punched cards, punched paper tape, magnetic tape
 - Batch processing
 - Magnetic disks
 - Early database models:
 - ☐ Hierarchical model
 - □ Network model
 - ☐ Relational model
 - □ ER-diagrams
 - □ Object-oriented model
 - □ UML
 - ☐ Object-relational model
 - Data warehouses
 - Big data
 - □ Big data technologies
 - □ Hadoop
 - □ NoSQL
 - □ NewSQL

- 2.1. Data as a Resource
 - Motivation
- □ 2.2. Characteristics of Data
 - Data and information
 - Levels of discussing data
 - □ Real world: Enterprise, mini-world
 - □ Conceptual model
 - □ Logical model of database-intension
 - □ Data occurences-extension
 - Data Sublanguages
 - □ Data definition language (DDL)
 - □ Data manipulation language (DML)

2.3. Stages in Database Design

- Analyze user environment
- Develop conceptual data model
- Choose a DBMS
- Develop logical model, by mapping conceptual model to DBMS
- Develop physical model
- Evaluate physical model
- Perform tuning, if indicated
- Implement physical model

□ 2.4 Design Tools

- Data dictionary
- Project management software
- Diagramming tools
 - □ E-R, UML diagrams
- CASE (Computer-Aided Software Engineering) tools

2.5 Database Administration

- Planning and Design
 - Preliminary planning
 - ☐ Identifying user requirements
 - Developing and maintaining the data dictionary
 - □ Designing the conceptual model- may use E-R or UML diagram
 - ☐ Choosing a DBMS
 - □ Developing the logical model-writes schema
 - Developing the physical model
 - □ Developing the Database
 - □ Database Management

- □ 2.6 The Three-Level Database Architecture
 - External Views
 - Logical and Conceptual Models
 - Internal Model
 - Data Independence
- 2.7 Overview of Data Models
 - Entity-Relationship Model
 - Relational and Other Record-Based Models
 - Object-Oriented Model
 - Object-Relational Model
 - Large-Scale Data Models
 - □ Star Schema
 - □ Data Cube
 - □ SeniOstructured Data Model
 - □ Key-Value Pairs

Ch.3. The Entity-Relationship Model (Chapter 03.pdf)

- □ 3.1 Purpose of the E-R Model
- □ 3.2 Entities
- □ 3.3 Attributes
 - Domains
 - NULL Values
 - Multivalued Attributes
 - Composite Attributes
 - Derived Attributes
- □ 3.4 Keys
 - Super Keys
 - Candidate Keys
 - Primary Keys

Ch.3. The Entity-Relationship Model (Chapter 03.pdf)

3.5 Relationships

- Degree of Relationships
- Attributes of Relationships
- Cardinality of a Binary Relationship
- Showing Cardinalities on an E-R Diagram
- Participation Constraints
 - □ Total Participation
 - □ Partial Participation
 - □ Using (min,max) Notation for Cardinality and Participation
- □ 3.6 Roles
- 3.7 Existence Dependency and Weak Entities
- □ 3.8 Sample E-R Diagrams
- 3.9 Rationale for Extending the E-R Model

Ch.3. The Entity-Relationship Model (Chapter 03.pdf)

- □ 3.10 Generalization and Specialization
 - Specialization
 - Generalization
 - Generalization Constraints—Disjointness, Completeness, Definition Method
 - Multiple Hierarchies and Inheritance
- □ 3.11 Union
- □ 3.12 Sample EE-R Diagrams

Ch.4. The Relational Model (Chapter 04.pdf)

- 4.1 Advantages of the Relational Model
- 4.2 Relational Data Structures
 - Tables
 - Mathematical Relations
 - Database Relations and Tables
 - Properties of Relations
 - Degree and Cardinality
 - Relation Keys
- 4.3 Integrity Constraints: domain, key, foreign key, general constraints
- 4.4 Representing Relational Database Schemas

Ch.4. The Relational Model (Chapter 04.pdf)

- 4.5 Relational Data Manipulation Languages
 - Categories of DMLs
 - Relational Algebra
 - □ SELECT
 - □ PROJECT
 - □ JOIN
 - □ Products and Joins
 - ☐ Theta Join, Equijoin, Natural Join
 - ☐ The Semijoin and Outer Joins
 - □ Complex Queries
 - □ Set Operations
 - □ Union, Intersection, Minus
- 4.6 Views
- 4.7 Mapping an E-R Model to a Relational Schema
- 4.8 Mapping an EE-R Model to a Relational Schema
 - Mapping EE-R Set Hierarchies to Relational Tables
 - Mapping Unions

Question Types

- Comprehensive exam
 - At least one question from each chapter
- Multiple choice questions
- True / False questions
- Matching