Aufgabenblatt 5

Philipp Stassen, Class Latta

17. Mai 2018

Aufgabe 1

Sei A ein Hauptidealring, M ein endlich erzeugter A-Modul und

$$A^{r'} \oplus \bigoplus_{i=1}^{m} \bigoplus_{j=1}^{k_i} A/(q_i^{t_{ij}}) \cong M \cong A^r \oplus \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{l_i} A/(p_i^{s_{ij}}) \tag{1}$$

mit $p_1,...,p_m,q_1,..,q_m\in A$ prim und $1\leq s_{i1}\leq ...\leq s_{il_i}$ resp. $1\leq t_{i1}\leq ...\leq$

i) Wir wollen zeigen, dass r = r'

Beweis. Es ist $M_{tor} \cong \bigoplus_{i=1}^m \bigoplus_{j=1}^{k_i} A/(q_i^{t_{ij}})$, denn

$$\prod_{i=1}^{m} q_i^{t_{ik_i}} \in \operatorname{Ann}_A \left(\bigoplus_{i=1}^{m} \bigoplus_{j=1}^{k_i} A/(q_i^{t_{ij}}) \right)$$
 (2)

und A^r ist frei, da A ein Integritätsbereich ist. Also ist $A^{r'} \cong M/M_{tor} \cong A^r$. Nun folgt von Übungsblatt 3 Aufgabe 4, dass r = r'.

ii) Behauptung: Bis auf Permutation der q_i gilt, dass p_i zu q_i assoziiert ist. Insbesondere gilt dann m = n

Beweis.Es ist $M(q_i) \cong \bigoplus_{j=1}^{k_i} A/(q_i^{t_{ij}}).$ Zu jedem i haben wir den Annulator $a=q_i^{t_{ik_i}}\in \operatorname{Ann}_A(M(q_i))$. Für $m\in M(q_i)$ und $\varphi\in \operatorname{Aut}(M)$ muss also gelten, dass $0=\varphi(a\cdot m)=a\cdot \varphi(m)$. Also ist $a\in \operatorname{Ann}(\varphi(M(q_i)))$.

Da q_i prim ist, folgt aus $q_i^{t_{ik_i}}=a=p_i^{t_{il_i}}$ bereits, dass q_i assoziiert zu p_i

ist.

Behauptung: Ist p_i assoziiert zu q_i , dann ist $s_{ij} = t_{ij}$ für alle j.

Beweis. Vermöge Teilaufgabe ii) wissen wir, dass $\varphi(M(q_i)) = M(p_i)$. Es genügt also die Aussage für einen primären Modul zu beweisen.

also die Aussage für einen primären Modul zu beweisen. Sei $\bigoplus_{j=1}^k A/(q^{t_j})\cong M\cong \bigoplus_{j=1}^l A/(p^{s_j})$ mit dem Isomorphismus

$$\varphi: \bigoplus_{j=1}^{k} A/(q^{t_j}) \to \bigoplus_{j=1}^{l} A/(p^{s_j}). \tag{3}$$

Wir wissen, dass

$$(q^{t_k}) = \operatorname{Ann}(M) = (p^{s_l}). \tag{4}$$

Deshalb folgt, dass $t_k = s_l$. Desweiteren induziert φ einen Isomorphismus

$$M/(A/q^{t_k}) \cong \bigoplus_{j=1}^{k-1} A/(q^{t_j}) \cong \bigoplus_{j=1}^{l-1} A/(p^{s_j}) \cong N/(A/p^{s_l}).$$
 (5)

Wir iterieren dieses Verfahren und erhalten die Eindeutigkeit der Exponenten. $\hfill\Box$

iv) Behauptung: Es existieren minimales $d \in \mathbb{N}$ und bis auf Assoziiertheit eindeutige $a_1,...,a_d \in A \setminus \{0\}$

$$M \cong A^r \oplus \bigoplus_{i=1}^d A/(a_i) \tag{6}$$

und $a_1|a_2|...|a_d$.

Beweis. Nach dem chinesischen Restsatz (siehe Wiki oder irgende
in Algebrabuch) ist für teilerfremde $a_1,...,a_n$

$$A/(a_1 \cdot \dots \cdot a_n) \cong \prod_{i=1}^n A/(a_i) \cong \bigoplus_{i=1}^n A/(a_i)$$
 (7)

Wir definieren

$$a_d := \prod_{i=1}^n p_i^{t_{il_i}} \tag{8}$$

$$a_h := \prod_{i=1}^{n} p_i^{t_{i(l_i - (d-h))}} \text{ für } h < d$$
(9)

wobei wir definieren, dass $t_{ij}=1$ falls $j\leq 0$. Dann gilt nach dem chinesischen Restsatz

$$A^r \oplus \bigoplus_{i=1}^n \bigoplus_{j=1}^{l_i} A/(p_i^{s_{ij}}) \cong A^r \oplus \bigoplus_{i=1}^d A/(a_i), \tag{10}$$

wobei $d=\max_{i=1}^n(l_i)$. Dass diese Zerlegung eindeutig ist bis auf Assoziiertheit folgt daraus, dass die p_i eindeutig sind bis auf Assoziiertheit. Es ist nach Konstruktion klar, dass $a_1|a_2|...|a_d|$.