

Middleboxes ou Appliances

Slides by Jennifer Rexford. Used with permission.

Internet Ideal: Modelo de Rede Simples

- Identificadores globais únicos
 - Cada nó tem um endereço IP único e fixo
 - ... alcançavel por todos e de todo lugar
- Encaminhamento simples de pacote
 - Nós de rede simplesmente encaminham pacotes
 - ... ao invés de modificá-los ou filtrá-los

Realidade da Internet

- Mobilidade de hosts
 - Host muda de endereço conforme ele move
- Esgotamento de endereços IP
 - Múltiplos hosts usando o mesmo endereço
- Problemas de segurança
 - Detectar e bloquear tráfego indesejável

- Serviços replicados
 - Balanceamento de carga em replicas de servidor
- Problemas de desempenho
 - Alocação de LB, caching de conteúdo, ...
- Implantação incremental
 - Novas tecnologias implantadas em estágios

Middleboxes

- Middleboxes são intermediárias
 - Colocada entre hosts que se comunicam
 - Geralmente sem o conhecimentos das partes
- Vários usos
 - Tradutores de endereço
 - Firewalls
 - Traffic shapers
 - Detecção de intrusão
 - Proxy transparente
 - Aceleradores de aplicação

"Uma aberração!"

- Viola modelo de camadas
 - Difícil de modelar
- Responsável por bugs sutis

"Uma necessidade prática!"

- Resolve problemas reais
- Necessidades não vão desaparecer

Firewalls

Firewalls

- Firewall filtra pacote-por-pacote, baseado em:
 - Endereços IP de origem e destino e números de porta
 - TCP SYN e ACK bits; Tipo de mensagem ICMP
 - Inspeção profunda em pacotes (DPI Deep Packet Inspection)
 olha para o conteúdo do pacote

Exemplos de Filtragem de Pacote

- Bloquear todos os pacotes com campo IP protocol = 17 ou portas de origem ou destino = 23.
 - Todos os fluxos UDP de entrada e saída bloqueados
 - Todas as conexões Telnet bloqueadas
- Bloquear pacotes de entrada com SYN mas sem ACK
 - Previne que clientes externos estabeleçam conexões TCP com hosts internos
 - Mas permite que clientes internos se conectem com hosts de fora
- Bloquear todos os pacotes com porta TCP ou UDP do Quake

Configuração de Firewall

- Firewall aplica um conjunto de regras em cada pacote
 - Para decidir se permite (allow) ou nega (deny) o pacote
- Cada regra é um teste no pacote
 - Comparando campos dos cabeçalhos IP e TCP/UDP
 - ... e decidindo se permite ou nega
- A ordem é importante
 - A primeira regra satisfeita determina a decisão

Exemplo de Configuração Firewall

- Alice gerencia uma rede 222.22.0.0/16
- Quer permitir que a escola de Bob acesse alguns hosts
 - Bob está na rede 111.11.0.0/16
 - Hosts especiais de Alice estão em 222.22.22.0/24
- Alice não confia em Trudy, que está na rede de Bob
 - Trudy está em 111.11.11.0/24
- Alice n\u00e3o quer nenhum outro tipo de tr\u00e3fego Internet

Firewall Configuration Rules

- #1: Nega as máquina de Trudy
 - Deny (src = 111.11.11.0/24, dst = 222.22.0.0/16)
- #2: Permite acesso da rede de Bob aos hosts especiais
 - Permit (src=111.11.0.0/16, dst = 222.22.22.0/24)
- #3: Bloqueia o resta do mundo
 - Deny (src = 0.0.0.0/0, dst = 0.0.0.0/0) ou
 - Deny (src=*, dst=*)

Stateful Firewall

- Stateless firewall (sem estado):
 - Trata pacote independentemente
- Stateful firewall (com estado)
 - Mantém informações sobre conexões
 - E.g., cliente iniciando conexão com um servidor
 - ... permite que o servidor envie tráfego de retorno

Uma Variação: Gerenciamento de Tráfego

- Permit vs. deny é uma decisão binária
 - Classifica o tráfego baseado em regras
 - ... e lida com cada classe de forma diferente
- Traffic shaping (rate limiting Limitação de tráfego)
 - Limita quantidade de largura de banda de certo tráfego
- Filas separadas
 - Usa regras para agrupar pacotes relacionados
 - E então escalona os grupos de acordo com pesos específicos (weighted fair scheduling)

Usuários Podem Burlar um Firewall

- Exemplo: filtrar acesso de uma subrede a um servidor
 - Regra de Firewall baseada nos endereços da subrede
 - ... e endereço IP e número da porta do servidor
 - Problema: usuários podem acessar a partir de outra máquina
- Exemplo: filtrar P2P com base em #s de porta
 - Regra de Firewall baseada em números de portas TCP/UDP
 - E.g., permitir apenas porta 80 (e.g., tráfego Web)
 - Problema: software usando porta não tradicional
 - E.g., cliente P2P usando porta 80

Network Address Translation

Históra de NATs

- Esgotamento do espaço de enderaçamento IP
 - Claro no início da década de 80 que 2³² endereços não seriam suficientes
 - Trabalho começou em um protocolo successor de IPv4
- Ao mesmo tempo...
 - Compartilhamento de endereços entre vários dispositivos
 - ... sem necessidade de mudanças nos hosts existentes
- Pensado como um remédio de curto prazo
 - Agora: NAT é amplamente utilizado, muito mais do que IPv6

Network Address Translation

NAT com Tradução de Portas

- Dois hosts se comunicando com o mesmo destino
 - O destino precisa diferenciar os dois
- Mapeia pacotes na saída
 - Muda endereço e porta de origem
- Mantém uma tabela de tradução
 - Mapeia (src addr, port #) para (NAT addr, new port #)
- Mapeia pacotes na entrada
 - Mapeia o endereço/porta de destino para o host local

Exemplo de NAT

Mantendo a Tabela de Mapeamento

- Crie uma entrada ao ver um pacote na saída
 - Pacote com um par (source addr, source port) novo
- Eventualmente, precisa apagar entradas para liberar espaço
 - Quando? Se nenhum pacote chegar antes de um timeout
 - (Corre o risco de interromper uma conexão temporariamente ociosa)
- Exemplo de "soft state"
 - I.e., remover estado se não atualizado durante um interval de tempo

Onde NAT é Implementado?

- Roteador doméstico (e.g., Linksys box)
 - Integra roteador, servidor DHCP, NAT, etc.
 - Usa um único endereço IP do provedor de serviços
- Rede de câmpus ou corporativa
 - NAT na conexão com a Internet
 - Compartilha uma coleção de endereços IP públicos
 - Evita a complexidade de renumerar hosts/roteadores quando troca de provedor

Objeções Práticas Contra NAT

- Número de porta foi projetado para identificar sockets
 - Mas, NAT usa para identificar hosts
 - Torna difícil rodar um servidor atrás de um NAT

• Configuação explicita no NAT para novas conexões

Objeções Fundamentais Contra NAT

- Roteadores não devem olhar em #s de porta
 - Camada de rede deveria se preocupar apenas com cabeçalho
 IP
 - ... e não olhar em números de porta
- NAT viola o princípio fim-a-fim (end-to-end argument)
 - Nós de rede não deveriam modificar pacotes
- IPv6 é uma solução mais limpa
 - Melhor migrar do que continuar com uma gambiarra

Balanceadores de Carga Load Balancers

Servidores Replicados

Um site, vários servidores
 – www.youtube.com

Balanceador de Carga

- Divide a carga entre as réplicas
 - No nível de conexão

Virtual IP address 12.1.11.3

Dedicated IP addresses

10.0.0.1

10.0.0.2

10.0.0.3

Aplica políticas de balanceamento

Acelaradores WAN Wide-Area Accelerators

No Ponto de Conexão com a Internet

- Melhora desempenho fim-a-fim
 - Via compressão, buferização, caching, ...
- Implantação incremental
 - Não precisa mudra os hosts ou o resto da Internet

Exemplo: Melhoria da Vazão do TCP

- Appliance com muita memória local
- Envia ACK rapidamente para o transmissor
- Modifica a receiver window com um valor grande
- Ou, até mesmo roda uma versão nova e melhorada de TCP

Exemplo: Compressão

- Compacta os pacotes
- Envia os pacotes compactados
- Descompacta no outro lado
- Pode até fazer compressão entre pacotes

Exemplo: Caching

- Armazena cópias de pacotes em cache
- Procura por sequências de byte que casam com dados passados
- Envia apenas um ponteiro para dados passados
- E o outro lado reconstrói os dados originais

Exemplo: Criptografia

- Dois sites compartilham chaves para criptografar os dados
- Appliance transmissor criptografa os dados
- Appliance receptor descriptografa os dados
- Protege os sites de bisbilhoteiros na Internet

Tunelamento Tunneling

Tunelamento IP

- Túnel IP é um enlace virtual ponto-a-ponto
 - Ilusão de um enlace direto entre dois nós

- Encapsulamento de pacotes dentro de um datagrama IP
 - Nó B envia um pacote para o nó E
 - ... contendo um outro pacote no payload

6Bone: Implantação de IPv6 usando IPv4

VPN: Virtual Private Network

- Túnel da máquina do usuário até o servidor VPN
 - Um "link" via Internet até a rede local
- Encapsula pacotes do/para o usuário
 - Pacote de 12.1.1.73 para 12.1.1.100
 - Dentro de um pacote de 1.2.3.4 para 12.1.1.1

Conclusões

- Middleboxes/Appliances resolvem problemas importantes
 - Configurações com menos endereços IP públicos
 - Bloqueio de tráfego indesejável
 - Uso mais eficiente/justo de recursos de rede
 - Melhora de desempenho fim-a-fim
- Middleboxes/Appliances introduzem novos problemas
 - Endereços IP não são mais únicos globalmente
 - Não pode assumir que a rede simplesmente entrega pacotes