Strongly Incremental Constituency Parsing with Graph Neural Networks

Kaiyu Yang and Jia Deng

Constituency Parsing

NP NP Arthur is Arthur is King of the Britons PP King of the **Britons**

stack Arthur is King of the Britons

stack Arthur is King of the Britons

• SHIFT: Move the next word into the stack

stack

is King of the Britons

• SHIFT: Move the next word into the stack

shift, unary_reduce(NP)

is King of the Britons

• SHIFT: Move the next word into the stack

shift, unary_reduce(NP)

• SHIFT: Move the next word into the stack

shift, unary_reduce(NP), shift

• SHIFT: Move the next word into the stack

shift, unary_reduce(NP), shift, shift

of the Britons

• SHIFT: Move the next word into the stack

shift, unary_reduce(NP), shift, shift, unary_reduce(NP)

•

of the Britons

• SHIFT: Move the next word into the stack

shift, unary_reduce(NP), shift, shift, unary_reduce(NP)

of the Britons

• SHIFT: Move the next word into the stack

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift

• SHIFT: Move the next word into the stack

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift,

- SHIFT: Move the next word into the stack
- REDUCE: Combine the top two elements in the stack

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift

- SHIFT: Move the next word into the stack
- REDUCE: Combine the top two elements in the stack

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP)

- SHIFT: Move the next word into the stack
- REDUCE: Combine the top two elements in the stack

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP)

- SHIFT: Move the next word into the stack
- REDUCE: Combine the top two elements in the stack

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(PP)

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(PP)

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(NP)

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(NP)

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(NP), binary_reduce(VP)

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(NP), binary_reduce(VP)

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(NP), binary_reduce(S)

shift, unary_reduce(NP), shift, shift, unary_reduce(NP), shift, shift, shift, binary_reduce(NP), binary_reduce(NP), binary_reduce(S)

- Shift-reduce parsers differ from human parsing
- Human parsing appears to be strongly incremental

[Marslen-Wilson, 1973]

[Sturt and Lombardo, 2005]

[Stabler, 2015]

- Human parsing appears to be *strongly incremental*:
 - One word per step: no more, no less

is King of the Britons

- Human parsing appears to be *strongly incremental*:
 - One word per step: no more, no less

- Human parsing appears to be *strongly incremental*:
 - One word per step: no more, no less

King of the Britons

- Human parsing appears to be *strongly incremental*:
 - One word per step: no more, no less

- Human parsing appears to be *strongly incremental*:
 - One word per step: no more, no less

of the Britons

- Human parsing appears to be *strongly incremental*:
 - One word per step: no more, no less

of the Britons

- Human parsing appears to be *strongly incremental*:
 - One word per step: no more, no less
 - A single connected partial parse tree

Attach-Juxtapose Transition System

• We propose a strongly incremental transition system named attach-juxtapose

Attach-Juxtapose Transition System

- We propose a strongly incremental transition system named attach-juxtapose
- The state is a partial tree and the next word
- Actions determine where and how to integrate the next word

Where to Add the New Word?

• The new word is to the right of existing words, so it must appear on the rightmost chain

Where to Add the New Word?

• The new word is to the right of existing words, so it must appear on the rightmost chain

How to Add the New Word?

Action Generation with Graph Neural Networks

• Encoder: BERT/XLNet + additional self-attention layers

Action Generation with Graph Neural Networks

- Encoder: BERT/XLNet + additional self-attention layers
- Decoder: Generate attach-juxtapose actions by applying GNNs on the partial tree

Action Generation with Graph Neural Networks

- Encoder: BERT/XLNet + additional self-attention layers
- Decoder: Generate attach-juxtapose actions by applying GNNs on the partial tree

Experimental Results

• Competitive with state of the art on Penn Treebank

Model	EM	F1	LP	LR	#Params
Liu and Zhang [22]	-	91.8	-	-	-
Liu and Zhang [22] (BERT) †	57.05	95.71	-	-	-
Kitaev and Klein [21]	47.31	93.55	93.90	93.20	26M
Kitaev and Klein [21] (ELMo)	53.06	95.13	95.40	94.85	107M
Kitaev et al. [20] (BERT)	-	95.59	95.46	95.73	342M
Zhou and Zhao [49] (GloVe) *	47.72	93.78	93.92	93.64	51M
Zhou and Zhao [49] (BERT) *	55.84	95.84	95.98	95.70	349M
Zhou and Zhao [49] (XLNet) *	<u>58.73</u>	96.33	96.46	<u>96.21</u>	374M
Mrini et al. [27] (XLNet) *	58.65	96.38	<u>96.53</u>	96.24	459M
Ours (BERT)	57.29 ± 0.57	95.79 ± 0.05	96.04 ± 0.05	95.55 ± 0.06	377M
Ours (XLNet)	59.17 \pm 0.33	96.34 ± 0.03	96.55 ± 0.02	96.13 ± 0.04	391M

Experimental Results

- Competitive with state of the art on Penn Treebank
- Improves upon state of the art on Chinese Treebank

Model	EM	F1	LP	LR
Kitaev et al. [20]	-	91.75	91.96	91.55
Kitaev et al. [20] (BERT) †	44.42	92.14	-	-
Zhou and Zhao [49] *	-	92.18	92.33	92.03
Mrini et al. [27] (BERT) *	-	<u>92.64</u>	<u>93.45</u>	91.85
Liu and Zhang [22]	-	86.1	-	-
Liu and Zhang [22] (BERT) †	<u>44.94</u>	91.81	-	-
Ours (BERT)	49.72 ± 0.83	93.59 ± 0.26	93.80 ± 0.26	93.40 ± 0.28

Strongly Incremental Constituency Parsing with Graph Neural Networks

Kaiyu Yang and Jia Deng

https://github.com/princeton-vl/attach-juxtapose-parser

