Data Science II (P8106)

Department of Biostatistics

Mailman School of Public Health

Columbia University

Spring 2024

Bias-Variance trade-off

- ightharpoonup Fit a model $\widehat{f}(x)$ to some training data
- Let (x_0, y_0) be a test observation drawn from the population

For a given
$$x_0$$
, expected test MSE
$$E(y_0 - \widehat{f}(x_0))^2 = \operatorname{Var}(\widehat{f}(x_0)) + [\operatorname{Bias}(\widehat{f}(x_0))]^2 + \operatorname{Var}(\epsilon)$$

$$(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ac$$

Bias-Variance trade-off

- lackbox Variance refers to the amount by which \widehat{f} would change if we estimated it using a different training data set
- ▶ **Bias** refers to the error that is introduced by approximating a real-life problem by a much simpler model

Bias-Variance trade-off

As the flexibility of \widehat{f} increases, its variance increases, and its bias decreases

Choosing the flexibility based on average test error amounts to a bias-variance trade-off

Trade-off between flexibility and interpretability

[ISL] Figure 2.7

Some trade-offs

- Flexibility versus interpretability
 - Linear models are easy to interpret
 - High order polynomials?
- Good fit versus over-fit or under-fit
 - How do we know when the fit is just right?
- Parsimony versus black-box
 - We often prefer a simpler model involving fewer variables
 - When the goal is prediction, which do you prefer?

There is no free lunch in statistics!

Modeling process

Fit models on training sets and

assess their performances on validation sets

