CHEM 1315 Spring 2011 Exam 2 version 1	Name:
	Roll Number
Please read the following before proceeding	
1. Materials: Turn off cell phones and wireless PDA devices floor. You will only need a pencil. Molecular models	
2. Show your Buzz Card when you turn in your complete	ed exam.
3. You must work alone.	
4. This is a closed book exam. Give or take no assistan Georgia Tech Honor Code.	ce from other students. Recall the
"I have always worked better alone." Claude Monet	
"I pledge my honor that I have not violated the Honor Co	ode during this examination."
Signed	

Note: pKa and periodic tables are provided on the last page.

- 1. (40 points, 4 points each) Circle the correct answer. There is only one correct answer.
- a. Which statement about curved arrows is **not** correct?
 - A) Arrows are drawn away from negative charges and/or toward positive charges.
 - B) Several curved arrows might have to be used to describe one reaction.
 - C) Curved arrows always start at the nucleus of an atom.
 - D) The arrow is drawn in the direction of the electron flow.
 - E) Curved arrows are drawn to indicate the movements of electrons.
- b. What product is formed from the reaction of methanol and propene, CH₃-CH=CH₂, in the presence of a trace amount of sulfuric acid?
 - A) CH₃-CH₂-CH₂-CH₂-OH
 - B) $(CH_3)_2CH(OCH_3)$
 - C) $HO-C(CH_3)_3$
 - D) CH₃-CH₂-CH₂-O-CH₃
 - E) CH₃-CH₂-O-CH₂-CH₃
- c. How could you synthesize 1-butene from ethyne (acetylene)?
 - A) deprotonate ethyne with appropriate base, react with ethyl bromide, react with hydrogen + Pt or Pd catalyst
 - B) add propene to methyl bromide
 - C) add ethane to ethyne
 - D) deprotonate ethyne with appropriate base, react with ethyl bromide
 - E) deprotonate ethyne with appropriate base, react with ethyl bromide, react with hydrogen and Lindlar's catalyst
- d. Which sequence of reagents would you use to synthesize 2-butanol from propyne? *Lindlar's catalyst is Pd/CaCO*₃ *and quinoline*
 - A) 1. NaNH₂ 2. CH₃Br 3. H₂/Lindlar's catalyst 4. H⁺/H₂O
 - B) 1. NaOH 2. CH₃Br 3. H₂/Lindlar's catalyst 4. H⁺/H₂O
 - C) 1. NaNH₂ 2. CH₃Br 3. H₂ 4. H⁺/H₂O
 - D) 1. NaNH₂ 2. CH₃CH₂Br 3. H₂/Lindlar's catalyst 4. H⁺/H₂O
 - E) 1. NaNH₂ 2. CH₃Br 3. H₂/Lindlar's catalyst 4. H₂O

e. How many different products could be obtained in the reaction of the following carbocation intermediate with a bromide ion? *Ignore stereoisomers*.

- A) 1
- B) 2
- C) 3
- D) 4
- E) 5
- f. What carbon is protonated in the first step of the reaction of 3-methyl-2,4-heptadiene with one equiv of HBr?
 - A) C-1
 - B) C-2
 - C) C-3
 - D) C-4
 - E) C-5
- g. Which of the following compounds reacts most rapidly with Cl₂/FeCl₃?
 - A) C₆H₅-COOH
 - B) C₆H₅-CN
 - C) C₆H₅-OCH₃
 - D) C_6H_5 -NO₂
 - E) C_6H_5 - CF_3
- h. Which of the following is **not** a true statement?
 - A) A nitrile (cyano) substituent is a meta director.
 - B) A nitro substituent is a meta director.
 - C) A chloro substituent is an ortho-para director.
 - D) A protonated amino substituent is an ortho-para director.
 - E) A methyl substituent is an ortho-para director.
- i. Which of the following compounds does **not** have at least one chirality center?
 - A) 3,4-dibromoheptane
 - B) 2,3-dibromoheptane
 - C) 2-bromoheptane
 - D) 4-bromoheptane
 - E) 3-bromoheptane

- j. Select the substituent with the highest priority in the R/S system.
 - A) –CH₂CH₂OH
 - B) -CH₂OCH₃
 - C) -CH₂CH=O
 - D) -CH=O
 - E) -CH=CH₂
- 2. (40 points, 4 points each) SHORT ANSWER. Draw the structure, or write the word or phrase that best completes each statement or answers the question.
 - a. Name the following compound

b. Draw any mono-alkene with the molecular formula C_5H_8

c. Draw the major product from the following reaction

d. What two substances need to react to complete the following reaction?

e. Which compound has the greater electron density on its oxygen atom? Circle A or B and provide a brief explanation or drawing.

A has the greater electron density on its oxygen because the lone pair on the nitrogen can be delocalized onto the oxygen. With B, the ring draws electron density towards the ring which takes some e-density from oxygen.

f. Give the major product of the following reaction (one equivalent of reagent is used).

g. Draw any carbon based anti-aromatic species with less than six carbon atoms.

h. Draw any one of the key <u>intermediates</u> when benzene reacts with HNO₃ / H₂SO₄.

$$NO_2$$
 NO_2
 NO_2

i. Give the major product of the following electrophilic aromatic bromination reaction.

$$OCH_3$$
 Br_2
 $FeBr_3$
 OCH_3

j. Name the following compound

3. (5 points) Which of the following pairs is more stable? Circle A or B and explain your choice briefly.

4. (5 points)) **Mechanistic understanding:** <u>Draw curved arrows</u> to show the flow of electrons responsible for the conversion of ethyl bromide to ethylene and two other products

_____/ 18

5. (10 points)) **Multistep synthesis:** <u>Select one of the following two transformations</u>. Provide a sequence of reactions to perform the transformation, showing the reagents and structures of all intermediates products. The synthesis must use the given starting material. You may use any other substrate materials and/or reagents.

1A 1																7A 17	8A 18
1]															1	2
H Hydrogen	۰,											24	44	EA		H Hydrogen	He Helium
1.008	2A 2											3A 13	4A 14	5A 15	6A 16	1.008	4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Flourine	Neon
6.941	9.012											10.81	12.011	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P	S	CI	Ar
Sodium	Hagnestum	3B	46	5B	6B	7B		98		1B	28	Aluminum	Silicon	Phosphorous	Sulfur	Chlorine	Argon
22.99	24.31	3	4	5	6	7	+	8	→	-11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
_ K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium 52.00	Manganese	ron	Cobat	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selentum	Bromine	Krypton
39.10	40.08	44.96	47.87	50.94		54.94	55.85	58.93	58.69	63.55	65.41	69.72	72.64	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln 	Sn Tn	Sb	Te	l l	Xe
Rubidium 85.47	Strontium 87.62	98.91	Zirconium 91.22	Nioblum 92.91	Molybdenum 95.94	Technetium (98)	Ruthenium 101.1	Rhodium 102.9	Palladium 106,4	107.9	112.4	114.8	118.7	Antimony 121.8	Tellurium 127.8	126.9	Xenon 131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
			Hf	Ta	V4 W	75 Re	76 Os		78 Pt			TI		83 Bi			
Cs Cestum	Ba Barium	*La Lanthanum	Hafnium	Tantalum	VV Tungsten	Rhenium	Osmium	ir Iridium	Platinum	Au	Hg Mercury	Thallium	Pb Lead	Bismuth	Po Polonium	At Antimony	Rn Radon
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	150.2	102.2	155.1	157.0	200.0	204,4	207.2	200.0	(200)	(210)	(222)
Fr	Ra	†Ac	Rf	Db	Sg	Bh	108	109	110	111					I		ΙI
Francium	Radium	Actinium	Rutherfordium	Dubrium	Seaborgium	Bohrium	Hs	Mt	Ds	Rg					l		
(223)	226.0	227.0	(261)	(262)	(266)	(264)	(277)	(268)	(271)	(272)					l		1 1

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Certum	Praseodynium	Readynium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Europium	Thallium	Ytterbium	Lutetium
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	152.5	164.9	167.36	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Heptunium	Plutonium	Americium	Curtum	Berkellum	Californium	Einsleinlum	Fermium	Mondelevium	Hobelium	Lawrencium
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Acid	Approximate pK _a	Conjugate Base
HSbF ₆	<-12	SbF ₆ -
HI	-10	I-
H ₂ SO ₄	-9	HSO ₄ -
HBr	-9	Br ⁻
HCI	-7	CI-
C ₆ H ₅ SQ₃H	-6.5	C ₆ H ₅ SO ₃ ⁻
(CH ₃) ₂ OH ₊	-3.8	(CH ₃) ₂ O
$(CH_3)_2C = OH$	-2.9	$(CH_3)_2C=O$
CH₃ŌH₂	-2.5	CH ₃ OH
H ₃ O ⁺	-1.74	H ₂ O
HNO ₃	-1.4	NO ₃ -
CF ₃ CO ₂ H	0.18	CF ₃ CO ₂ -
HF	3.2	F-
CH₃CO₂H	4.75	CH ₃ CO ₂ ⁻
H ₂ CO ₃	6.35	HCO ₃ -
CH₃COCH₂COCH₃	9.0	CH ₃ COCHCOCH ₃
NH ₄ ⁺	9.2	NH ₃
C ₆ H ₅ OH	9.9	C_6H_5O-
HCO ₃ ⁻	10.2	CO ₃ 2-
CH ₃ NH ₃ ⁺	10.6	CH ₃ NH ₂
H₂O	15.7	OH-
CH ₃ CH ₂ OH	16	CH ₃ CH ₂ O⁻
(CH ₃) ₃ COH	18	(CH ₃) ₃ CO ⁻
CH₃COCH₃	19.2	-CH₂COCH₃
HC≡CH	25	HC≡C-
H ₂	35	H-
NH ₃	38	NH ₂ ⁻
CH ₂ =CH ₂	44	CH ₂ =CH ⁻
CH ₃ CH ₃	50	CH ₃ CH ₂ ⁻

Write your class roll number on (1) the top of the first page and (2) below.

***** If you need to verify your class roll number, you can do this at the front of the room when you turn in your exam paper. *****

Roll Number _	
	Page 2 (16)
	Page 3 (20)
	Page 4 (20)
	Page 5 (16)
	Page 6 (18)
	Page 7 (10)
	<i>U</i> ,———
	Total 100