Series and Sequences
Definition:
Infinite Series = Sn = ao + a, + · · · an
Geometric Series?
$-\sum_{0}^{\infty} r^{n} = \frac{1}{1-r} \text{if } r < 1$
Telescoping Series:
$\sum_{0}^{\infty} \alpha_{n} = S_{0} + (S_{1} - S_{0}) + (S_{2} - S_{1}) + \cdots + (S_{M} - S_{N-1}) + \cdots$
Elementary Convergence Tests
Theorem: The n-th Term Test for Divergence
Σa_n converges $\Rightarrow \lim_{n \to \infty} a_n = 0$
the contrast is talse $Ex)$ $\frac{L}{n \to \infty} \frac{1}{n} = 0$, but $\sum \frac{1}{n}$ diverges
- The contrapasitive of the above is "n-th term divergence test"
$\Rightarrow \lim_{n\to\infty} a_n \neq 0 \Rightarrow \sum a_n$ diverges
Theorem: Tail-Convergence Theorem
$\sum_{N_0}^{\infty} a_n$ converges for some N_0 \Rightarrow $\sum_{0}^{\infty} a_n$ converges \Rightarrow $\sum_{N}^{\infty} a_n$ converges for all N
the partial series starting with the N-th term is often called a tail of the original series
The contrapositive of the Tail-convergence Theorem is the same statement about divergence; if one tail diverges, then the series diverges
and all its tails diverges,
Theorem: Linearity Theorem
- Let p and q be real numbers, then Σa_n and Σb_n converge $\Rightarrow \Sigma p a_n + p b_n$ converges, and
$\sum p a_n + q b_n = p \sum a_n + q \sum b_n$
- If convergent series are added, subtracted, or multiplied by a constant factor, the resulting series converge
and to the corresponding sums:
$\sum a_n \pm b_n = \sum a_n \pm \sum b_n$, $\sum c \cdot a_n = c \sum a_n$
By contrast, if two convergent series are multiplied or divided term-by-term, the resulting series will not
necessarily converge, and even if it does, it will certainly not converge to the product or quotient of the
two sums

	Theorem: Comparison Theorem for Positive Series
	- Assume that $0 \le a_n \le a'_n$ for all n , then
	$\sum a_n'$ converges \Rightarrow $\sum a_n$ converges, and $\sum a_n \leq \sum a_n'$
	$\sum a_n$ diverges \Rightarrow $\sum a'_n$ diverges
	The comparison test applies only to series whose ferms are positive
7.3	The Convergence of Series with Negative Terms
	Definition:
	- Σa_n is absolutely convergent if $\Sigma a_n $ converges
	- Σ an is conditionally convergent if Σ an converges, but Σ [an] diverges
	A conditionally convergent series converges only because the negative terms partly cancel the positive ones, and so
	keep the total sum down, An absolutely convergent series is one whose terms are so small in size that even
	if you make them all positive, the resulting series converges,
	Theorem: Absolute Convergence Theorem
	$\sum a_n $ converges $\Rightarrow \sum a_n$ converges
7.4	Convergence Tests: Ratio and n-th Root Tests.
	Theorem: The ratio test
	- Suppose $a_n \neq 0$ for $n \Rightarrow 1$, and $\frac{L}{n \Rightarrow \infty} \left \frac{a_{n+1}}{a_n} \right = L$, then $L < 1 \Rightarrow \sum a_n$ converges absolutely
	$L > 1 \Rightarrow \Sigma a_n$ diverges
	Theorem: The n-th root test
	- Suppose $\lim_{n\to\infty} a_n ^{\frac{1}{n}} = L$, then $L < l \Rightarrow \sum a_n$ converges absolutely
	$L > 1 \Rightarrow \sum a_n$ diverges
	$\mathcal{L} = 1$ or no limit \Rightarrow test fails, no conclusion
7.5	The Integral and Asymptotic Comparison Tests
	Theorem: The Integral Test
	- Suppose $f(x) \ge 0$ and decreasing, for $x \ge $ Some positive integer N. Then $\sum f(n)$ converges if the
	area under $f(x)$ and over $[N,\infty)$ is finite, and diverges if the area is infinite
	If $p > 1$, then $\lim_{r \to \infty} r^{1-p} = 0$, so the area is finite; this proves the convergence statement.
	For the divergence statement, it's conceptually simplest to compare the series when $p < 1$ with the known-to-be-divergent harmonic series $(p = 1)$. However, to get practice with the integral test, let's continue with that.
	If $p=1$, the integral evaluates to $\lim_{r\to\infty}\ln r$, so the area is infinite, and the series diverges. If $0 \le p < 1$, $\lim_{r\to\infty} r^{1-p} = \infty$, so the area is again infinite, and the series
	diverges. If $p < 0$, the function is no longer decreasing, but the series is divergent since its individual terms tend to ∞ .

	Theorem: Asymptotic Comparison Test
	- If $ a_n \sim b_n $, then $\sum a_n $ converges $\iff \sum b_n $ converges
7.6	Series with Alternating Signs: Cauchy's Test
	Theorem: Cauchy's Test for Alternating Series
	- If $\{a_n\}$ is positive and strictly decreasing, and $\sum_{n \neq \infty} a_n = 0$, then $\sum_{n \neq \infty} (-1)^n a_n$ converges
	VI Sura Kore
7.1	Rearranging the Terms of a Series
	- If the terms of an absolutely convergent series are rearranged, the new series is still absolutely convergent,
	and has the same sum as the old one.
	- If the series is conditionally convergent, by rearranging its terms one can get a new series which will converge to any prescribed
	real number, or if one wishes, diverge to ∞ or $-\infty$.

