Colle L2PR-1 A1

1 Question de cours

- a) Enoncer la formule de Taylor-Young en x_0 pour une fonction f suffisamment dérivable (les hypothèses de dérivabilité sur f sont à rappeler de manière précise).
- b) Donner les développements limités en 0 à l'ordre 4 des fonctions $\exp(x)$ et $\ln(1+x)$.

2 Exercice

- a) Soit A, une matrice carrée d'ordre 2 à coefficients dans \mathbb{K}^+ .
 - i) Montrer qu'il existe deux réels λ et μ tels que :

$$A^2 + \lambda A + \mu I_2 = O_2.$$

Essayer de trouver une interprétation à la valeur de ces réels.

- ii) Supposons que $det(A) \neq 0$, calculer A^{-1} en fonction de A.
- iii) Soit $(a,b) \in \mathbb{R}^2$ et $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ Trouver toutes les matrices B qui commutent avec A.
- b) Soit $B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.
 - i) Calculer det(B), tr(B) et B^n .
 - ii) La relation précédente s'écrit pour M une matrice de taille 3×3 :

$$M^{3} - tr(M)M^{2} + Z(M)M - det(M)I_{3} = O_{3}.$$

où $Z(M) = -\frac{1}{2}(tr(M^2) - tr(M)^2)$. Vérifier cette relation pour B.

Colle L2PR-1 A2

1 Question de cours

- a) Donner la définition de groupe et sous-groupe.
- b) Soient E et F deux \mathbb{K} -espaces vectoriels et f une application linéaire de E dans F. Définir Ker(f), Im(f) et rg(f).

2 Exercice

- a) Calculer les DLs suivants au point demandé :
 - i) $DL_5(\ln(1+x)\sin(x),0)$
 - ii) $DL_4(\frac{1+x}{2+x},0)$
- b) Pour $x \in \mathbb{R}$ on pose $f(x) = xe^{x^2}$.
 - i) Montre que f est une bijection de \mathbb{R} dans \mathbb{R} et de classe C^{∞} .
 - ii) Déterminer le développement limité à l'ordre 5 de f^{-1} en 0. Ind : Ne pas chercher à expliciter f^{-1} .

Colle L2PR-1 B1

1 Question de cours

- a) Donner la définition de : "f admet un DL_n en x_0 " en explicitant les hypothèses.
- b) Donner les développements limités en 0 à l'ordre 4 des fonctions ch(x) et cos(x).

2 Exercice

Soit E un espace vectoriel sur \mathbb{K} . Soit f un endomorphisme de E. Définir le terme "endomorphisme" puis montrer de manière détaillée que les équivalences suivantes sont vraies.

a)
$$Ker(f^2) = Ker(f) \Leftrightarrow Ker(f) \cap Im(f) = \{0\}$$

b)
$$Im(f^2) = Im(f) \Leftrightarrow Ker(f) + Im(f) = E$$

c) On suppose maintenant que E est de dimension fini tel que dim(E) = n. Démontrer :

$$Ker(f^2) = Ker(f) \Leftrightarrow Im(f^2) = Im(f) \Leftrightarrow Ker(f) \bigoplus Im(f) = E$$

Colle L2PR-1 B2

1 Question de cours

- a) Donner la définition d'anneau unitaire.
- b) Donner la définition de deux matrices semblables.

2 Exercice

- a) Trouver x et y tels que v=(-2,x,y,3) appartiennent au sous espace vectoriel de \mathbb{R}^4 engendré par $e_1=(1,-1,1,2)$ et $e_2=-1,2,3,1$.
- b) Soit f, l'endomorphisme de \mathbb{R}^2 tel que f(x,y) = (x+y, x-y).
 - i) Déterminer la matrice de f relativement à la base canonique de \mathbb{R}^2 . On la note M.
 - ii) Calculer M^2 .
 - iii) Conclure sur l'endomorphisme fof.
- c) Soit (e_1, e_2, e_3) la base canonique de \mathbb{R}^2 et :

$$v_1 = e_1 - e_2$$

$$v_2 = 3e_1 - 2e_2$$

$$v_3 = e_3 - e_2$$

- i) Montrer que (v_1, v_2, v_3) forme une base de \mathbb{R}^2 .
- ii) On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base can onique est :

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 0 & -2 \end{pmatrix}$$

Quelle est la matrice de f dans la base (v_1, v_2, v_3) ?

Colle L2PR-1 C1

1 Question de cours

- a) Donner la définition de deux sous-espaces F et G en somme directe.
- b) Démontrer que cette définition équivaut à $F \cap G = \{0\}$

2 Exercice

- a) Calculer les DLs suivants au point demandé :
 - i) $DL_5(\cos(x)\cosh(x),0)$
 - ii) $DL_9 (\sin^6(x), 0)$
- b) Le but de cet exercice est de mettre en avant plusieurs manières de (re)trouver le DL de la fonction tangente en 0.
 - i) En utilisant que $tan'(x) = 1 + tan^2(x)$ (deux manières)
 - ii) En utilisant la définition de la fonction tangente.
 - iii) En utilisant tan(arctan(x)) = x et $arctan'(x) = \frac{1}{1+x^2}$

Colle L2PR-1 C2

1 Question de cours

- a) Donner la définition de fonctions équivalentes.
- b) Donner les développements limités en 0 à l'ordre 4 des fonctions $(1+x)^{\alpha}$ et $\ln(1-x)$.

2 Exercice

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice A dans la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ est donné par :

$$A = \begin{pmatrix} 9 & -6 & 10 \\ -5 & 2 & -5 \\ -12 & 6 & -13 \end{pmatrix}$$

Soit $e'_1 = 2e_1 - e_2 - 2e_3$, $e'_2 = e_1 - e_3$ et $e'_3 = -2e_1 + e_2 + 3e_3$.

- 1. Montrer que $\mathcal{B}'=(e_1',e_2',e_3')$ est une base de \mathbb{R}^3 .
- 2. Calculer la matrice $B = Mat_{\mathcal{B}'}f$.
- 3. Écrire la matrice de passage P de \mathcal{B} vers \mathcal{B}' , puis écrire la formule qui relie A, B et P.
- 4. Quelle est la valeur du déterminant de A?
- 5. Calculer B^4 puis A^4 .
- 6. Soit X = (1, 2, 3). Quelle est la matrice de X dans la base \mathcal{B} ? Dans la base \mathcal{B}' (de deux manières différentes)?

AUTRES EXERCICES

Exercice 1

Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice A dans la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ est donné par :

$$A = \begin{pmatrix} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{pmatrix}$$

Soit $e'_1 = 2e_1 + 3e_2 + e_3$, $e'_2 = 3e_1 + 4e_2 + e_3$ et $e'_3 = e_1 + 2e_2 + 2e_3$.

- 1. Montrer que $\mathcal{B}' = (e'_1, e'_2, e'_3)$ est une base de \mathbb{R}^3 .
- 2. Calculer la matrice $B = Mat_{\mathcal{B}'}f$.
- 3. Écrire la matrice de passage P de \mathcal{B} vers \mathcal{B}' , puis écrire la formule qui relie $A,\ B$ et P.
- 4. Quelle est la valeur du déterminant de A?
- 5. Calculer B^4 puis A^4 .
- 6. Soit X = (1, 2, 3). Quelle est la matrice de X dans la base \mathcal{B} ? Dans la base \mathcal{B}' (de deux manières différentes)?

Exercice 2

Quelques DLs à calculer

- a) En 0 à l'ordre 3 de $\frac{1}{1+x}$
- b) En 0 à l'ordre 2n de $\frac{1}{1+x^2}$
- c) En 0 à l'ordre 6 de $\frac{1}{\sqrt{1-x^2}}$
- d) En 0 à l'ordre 6 de $\arcsin(x)$

Exercice 3

- a) Soit E un espace vectoriel sur R, f et g deux endomorphismes de E. Montrer que $f \circ g = 0$ ssi $Im(G) \subset Ker(F)$.
- b) Soit f un endomorphisme non nul de \mathbb{R}^3 vérifiant $f^2 = 0$.
 - i) En utilisant la question précédente, calculer le noyeau et l'image de f.
 - ii) Montrer qu'il existe une base de \mathbb{R}^3 dans laquelle l'endomorphisme f a pour matrice

$$F = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$