$$y' + y = 2 \times e^{-x}$$
 (E)

1.
$$g(x) = \alpha x^2 e^{-x}$$
 est solution de (E) si $g' + g = 2xe^{-x}$ $(*)$

$$g(x) = uv$$
 avec $u = ax^2$ $v = e^{-x}$
 $u' = Lax$ $v' = -e^{-x}$

$$g'(x) = u'v + uv' = 2a \times e^{-x} + a \times^{2}(-e^{-x}) =$$

$$= 2a \times e^{-x} - a \times^{2}e^{-x}$$

(*)
$$2\alpha x e^{-x} - \alpha x^{2} e^{-x} + \alpha x^{2} e^{-x} = 2x e^{-x}$$

$$2\alpha x e^{-x} = 2x e^{-x}$$

$$2\omega x e^{-x} = 1$$

2. Les solutions de (Ea) sont:

3. Les solutions de (E) sont:

1. f(x) est solution de (E) denc: $f(x) = Ke^{-x} + x^{2}e^{-x}$ $f(-1) = le \Rightarrow Ke^{-(-1)} + (-1)^{2}e^{-(-1)} = le$ Ke + e = le $\ell(k+1) = ld$ K + 1 = l K = 1

Danc $f(x) = e^{-x} + x^2 e^{-x} = e^{-x} (1 + x^2)$