Some computational results for generalized pressure Schur complement eigenvalues of the surface Stokes problem

Alexander Zhiliakov*

February 18, 2019

1 Bilinear forms and matrices

We set $n_{\mathbf{A}}$ to be the number of velocity d.o.f. and $n_{\mathbf{S}}$ to be the number of pressure d.o.f. Vector stiffness, divergence, pressure mass, normal stabilization, and full stabilization matrices resulting from Trace FEM discretization of the surface Stokes problem [1] are defined via

$$\langle \mathbf{A}\,\bar{\mathbf{u}},\bar{\mathbf{v}}\rangle = \int_{\Gamma} \left(E_{s}(\mathbf{u}) : E_{s}(\mathbf{v}) + \mathbf{u}\cdot\mathbf{v} + \tau\,u_{N}\,v_{N} \right) \,\mathrm{d}s + \rho_{u} \int_{\Omega_{h}^{\Gamma}} ([\nabla\mathbf{u}]\,\hat{\mathbf{n}}) \cdot ([\nabla\mathbf{v}]\,\hat{\mathbf{n}}) \,\mathrm{d}\mathbf{x}, \quad \mathbf{A} \in \mathbb{R}^{n_{\mathbf{A}}\times n_{\mathbf{A}}},$$

$$\langle \mathbf{B}\,\bar{\mathbf{u}},\bar{\mathbf{q}}\rangle = -\int_{\Gamma} q \,\mathrm{div}_{\Gamma}\,\mathbf{u}\,\mathrm{d}s, \quad \mathbf{B} \in \mathbb{R}^{n_{\mathbf{S}}\times n_{\mathbf{A}}},$$

$$\langle \mathbf{M}_{0}\,\bar{\mathbf{p}},\bar{\mathbf{q}}\rangle = \int_{\Gamma} p \,q \,\mathrm{d}s, \quad \mathbf{M}_{0} \in \mathbb{R}^{n_{\mathbf{S}}\times n_{\mathbf{S}}},$$

$$\langle \mathbf{C}_{n}\,\bar{\mathbf{p}},\bar{\mathbf{q}}\rangle = \rho_{p} \int_{\Omega_{h}^{\Gamma}} \frac{\partial p}{\partial \hat{\mathbf{n}}} \frac{\partial q}{\partial \hat{\mathbf{n}}} \,\mathrm{d}\mathbf{x}, \quad \mathbf{C}_{n} \in \mathbb{R}^{n_{\mathbf{S}}\times n_{\mathbf{S}}},$$

$$\langle \mathbf{C}_{\text{full}}\,\bar{\mathbf{p}},\bar{\mathbf{q}}\rangle = \rho_{p} \int_{\Omega_{h}^{\Gamma}} \nabla p \cdot \nabla q \,\mathrm{d}\mathbf{x}, \quad \mathbf{C}_{\text{full}} \in \mathbb{R}^{n_{\mathbf{S}}\times n_{\mathbf{S}}},$$

$$\langle \mathbf{C}_{\text{full}}\,\bar{\mathbf{p}},\bar{\mathbf{q}}\rangle = \rho_{p} \int_{\Omega_{h}^{\Gamma}} \nabla p \cdot \nabla q \,\mathrm{d}\mathbf{x}, \quad \mathbf{C}_{\text{full}} \in \mathbb{R}^{n_{\mathbf{S}}\times n_{\mathbf{S}}},$$

respectively. Here $\bar{\mathbf{u}}$ denotes a vector of d.o.f. corresponding to a FE interpolant \mathbf{u} (analogously for $\bar{\mathbf{p}}$ and p). Mesh-dependent parameters are set as

$$\tau = h^{-2}, \quad \rho_u = \rho_p = h, \tag{2}$$

and h is the mesh size of Ω_h^{Γ} . Γ is chosen either as the unit sphere or torus, $\Gamma = \Gamma_{\rm sph}$ or $\Gamma = \Gamma_{\rm tor}$ (see Figure 1).

We also define matrices

$$\mathbf{C}_0 \coloneqq \mathbf{0},$$

$$\mathbf{M}_n \coloneqq \mathbf{M}_0 + \mathbf{C}_n,$$

$$\mathbf{M}_{\text{full}} \coloneqq \mathbf{M}_0 + \mathbf{C}_{\text{full}}.$$
(3)

^{*}Department of Mathematics, University of Houston, Houston, Texas 77204 (alex@math.uh.edu).

We are interested in (generalized) extreme eigenvalues of the pressure Schur complement matrices

$$\mathbf{S}_{0} \coloneqq \mathbf{B} \, \mathbf{A}^{-1} \, \mathbf{B}^{T},$$

$$\mathbf{S}_{n} \coloneqq \mathbf{S}_{0} + \mathbf{C}_{n},$$

$$\mathbf{S}_{\text{full}} \coloneqq \mathbf{S}_{0} + \mathbf{C}_{\text{full}},$$

$$(4)$$

i.e. in solving

$$\mathbf{S}_{\star} \mathbf{x} = \lambda \, \mathbf{M}_{\star} \mathbf{x},\tag{5}$$

where " \star " stands for "0," "n," or "full." We denote by $0 = \lambda_1 < \lambda_2 \le \cdots \le \lambda_{n_S} = O(1)$ the spectrum of (5).

2 Solution description

Computing \mathbf{A}^{-1} in (4) becomes troublesome already for $h = 5.21 \times 10^{-2}$ ($n_{\mathbf{A}} = 32736$ for $\mathbf{u} \in \mathbf{P}_1$ FE space): although \mathbf{A} is sparse, \mathbf{A}^{-1} is dense and consumes 8.5+ GB in double-precision arithmetic. A quick research showed that Mathematica has no built-in matrix-free eigenvalue routines. Intel MKL's FEAST algorithm for computing (generalized) eigenvalues in an interval is suitable for matrix-free implementations; however, it requires some expensive operations to be implemented (e.g. matrix-matrix multiplications $\mathbf{S}_{\star}\mathbf{X} \leftarrow \mathbf{Y}$, $\mathbf{M}_{\star}\mathbf{X} \rightarrow \mathbf{Y}$ and approximating the action of inverses in the form $(\sigma \mathbf{M}_{\star} - \mathbf{S}_{\star})^{-1}\mathbf{x} \rightarrow \mathbf{y}$).

Taking this into account, instead of (5) we consider a perturbed problem

$$\underbrace{\begin{bmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{B} & -\mathbf{C}_{\star} \end{bmatrix}}_{\mathcal{A}_{\star}:=} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \mu \underbrace{\begin{bmatrix} \epsilon \mathbf{A} \\ \mathbf{M}_{\star} \end{bmatrix}}_{\mathcal{M}_{\epsilon}:=} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \tag{6}$$

with $0 < \epsilon \ll 1$. For \mathcal{A}_0 and \mathcal{M}_0^{ϵ} we have

$$\mu = -\lambda + o(1) \quad \text{or} \quad \epsilon^{-1} + \lambda + o(1), \qquad \epsilon \to 0.$$
 (7)

This makes it easy to pick only "correct" eigenvalues. To make sure that results are consistent we solved (6) for $\epsilon = 10^{-5}$ and $\epsilon = 10^{-6}$.

¹The majority of generalized eigenvalue solvers require left-hand-side matrix to be Hermitian and right-hand-side matrix to be Hermitian **positive definite**; that's why we need to introduce $\epsilon > 0$.

Figure 1: First three mesh levels for $\Gamma_{\rm sph}$ (top) and $\Gamma_{\rm tor}$ (bottom)

Table 1: $\mathbf{P}_1 - P_1$ for Γ_{sph}

h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
			λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
8.33×10^{-1}	153	51	1.32×10^{-2}	1.42	7.48×10^{-1}	1.13	9.58×10^{-1}	1.06
4.17×10^{-1}	570	190	5.12×10^{-3}	1.04	5.77×10^{-1}	1.	8.54×10^{-1}	1.
2.08×10^{-1}	1992	664	4.4×10^{-3}	7.93×10^{-1}	3.87×10^{-1}	1.	6.71×10^{-1}	1.
1.04×10^{-1}	8292	2764	2.01×10^{-3}	7.75×10^{-1}	2.19×10^{-1}	1.	5.82×10^{-1}	1.
5.21×10^{-2}	32736	10912	6.04×10^{-5}	9.81×10^{-1}	1.17×10^{-1}	1.	5.37×10^{-1}	1.
2.6×10^{-2}	131592	43864	3.53×10^{-5}	8.67×10^{-1}	5.72×10^{-2}	1.	5.16×10^{-1}	1.
1.3×10^{-2}	525864	175288	2.16×10^{-6}	7.34×10^{-1}	2.84×10^{-2}	1.	5.04×10^{-1}	1.

Table 2: $\mathbf{P}_1 - P_1$ for Γ_{tor}

h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
			λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
2.08×10^{-1}	972	324	5.04×10^{-2}	4.93	2.84×10^{-1}	1.35	3.64×10^{-1}	1.19
1.04×10^{-1}	4740	1580	2.99×10^{-3}	3.83	1.58×10^{-1}	1.02	3.35×10^{-1}	1.01
5.21×10^{-2}	19704	6568	1.11×10^{-3}	5.45	7.73×10^{-2}	1.01	3.25×10^{-1}	1.
2.6×10^{-2}	80808	26936	1.2×10^{-4}	5.42	3.07×10^{-2}	1.01	3.21×10^{-1}	1.
1.3×10^{-2}	327036	109012	1.77×10^{-5}	5.23	1.18×10^{-2}	1.01	3.16×10^{-1}	1.

Table 3: $\mathbf{P}_2 - P_1$ for Γ_{sph}

h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
			λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
8.33×10^{-1}	789	51	3.22×10^{-1}	1.73	8.27×10^{-1}	1.17	9.68×10^{-1}	1.07
4.17×10^{-1}	3240	190	9.17×10^{-2}	1.08	6.45×10^{-1}	1.	8.56×10^{-1}	1.
2.08×10^{-1}	11718	664	1.78×10^{-1}	8.31×10^{-1}	5.49×10^{-1}	1.	6.75×10^{-1}	1.
1.04×10^{-1}	48762	2764	1.04×10^{-1}	8.13×10^{-1}	5.14×10^{-1}	1.	5.82×10^{-1}	1.
5.21×10^{-2}	193014	10912	2.99×10^{-3}	9.89×10^{-1}	5.02×10^{-1}	1.	5.34×10^{-1}	1.
2.6×10^{-2}	775998	43864	1.17×10^{-3}	7.9×10^{-1}	4.96×10^{-1}	1.	5.17×10^{-1}	1.

Table 4: $\mathbf{P}_2 - P_1$ for Γ_{tor}

h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
			λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
2.08×10^{-1}	5184	324	9.92×10^{-2}	3.89	1.33×10^{-1}	1.37	1.75×10^{-1}	1.19
1.04×10^{-1}	27906	1580	1.46×10^{-2}	4.35	2.84×10^{-1}	1.04	2.99×10^{-1}	1.02
5.21×10^{-2}	116568	6568	6.08×10^{-3}	4.85	3.19×10^{-1}	1.01	3.24×10^{-1}	1.01
2.6×10^{-2}	477660	26936	1.36×10^{-3}	4.92	3.14×10^{-1}	1.01	3.16×10^{-1}	1.

References

[1] M. Olshanskii, A. Quaini, A. Reusken, and V. Yushutin. A finite element method for the surface stokes problem. SIAM Journal on Scientific Computing, 40(4):A2492–A2518, 2018.