Anticipation de la consommation d'énergie et des émissions de CO₂

Cécile Guillot, Ingénieure Machine Learning

01

INTRODUCTION

02

ANALYSES DESCRIPTIVES

03
MACHINE LEARNING

MACHINE LEARNING ET MODELISATION 04

CONCLUSION

d'exploration

Contexte de l'étude

Objectif: Être une ville neutre en émissions de gaz à effets de serre pour 2050

Données: Deux jeux de données sur les bâtiments non-résidentiels (2015 & 2016)

 Prédire la consommation d'énergie Prédire les émissions de CO2

 Intérêt de l'utilisation du score ENERGY STAR

Contexte de l'étude (2)

- Utilisation des données liées aux informations inscrites sur le permis de construire :
 - Usage de la propriété
 - Date de construction (ou de gros travaux)
 - Nombre de bâtiments et d'étages
 - Superficie de la propriété (bâtiments, parking et autres)
 - Localisation (quartier, adresse et géolocalisation)

- Pistes d'explorations :
 - Prédire la consommation d'énergie à l'aide des informations disponibles
 - Prédire les émissions de CO2 avec les informations des permis de construire
 - Avec prise en compte du ENERGY STAR Score
 - Sans prise en compte du ENERGY
 STAR Score

Déroulement de l'étude

Nettoyage des données

Analyses exploratoires

Modélisation avec algorithme de régression

- Réorganisation des données
- Retrait des valeurs aberrantes

- Analyses univariées, multivariées
- Permet de dégager des insights

- Essais de plusieurs modèles
- Choix et optimisation d'un modèle

02

ANALYSES EXPLORATOIRES

Analyses statistiques descriptives univariées et bivariées

Traitement et nettoyage des données

- Rassemblement des données de 2015 et 2016 :
 - Harmonisation des chaînes de caractères dans les données de 2015
 - Suppression des colonnes avec plus de 95% de valeurs manquantes
- Harmonisation des chaînes de caractères (présence de retour chariot, etc.)

- Retrait des valeurs aberrantes
 - Retrait des bâtiments avec des consommations négatives
 - Cas du Bullit Center (https://bullittcenter.org/)
 - Retrait de l'université de Washington
 - Retrait du campus Boeing

Feature Engineering

- Simplification de variables
 - Rassemblement de catégories de bâtiments
 - Office, Warehouse, K-12 School, Supermarket

- Création de nouvelles variables :
 - HasParking (Yes/No)
 - Clusters (0 => 4)
 - Age (Année Année de construction)
 - Température (Degree Day)
 - Equivalent des DJU en France
 - Une valeur : Chaud

Données géographiques

- Grande concentration de bâtiments non-résidentiels dans le centre-ville (Downtown)
- Bâtiments les plus polluants : Eloignées des autres

Données géographiques (2)

- Découpage en 5 clusters : Centre, Nord-Est, Nord-Ouest, Sud-Est, Sud-Ouest
- Détermination du nombre de clusters avec méthode du coude

Analyses univariées

• Répartition des bâtiments

• Répartition en fonction des clusters

Analyses univariées (2)

 Distribution de la variable « Site Energy Use »

 Boîte à moustache de la variable « Site Energy Use »

Analyses univariées (3)

 Distribution de la variable « Total GHG Emissions »

 Boîte à moustache de la variable « Total GHG Emissions »

Analyses bivariées

- Les hôpitaux sont les bâtiments les plus polluants...
- ...Suivi par les laboratoires

Analyses bivariées (2)

• Consommation d'énergie

• Emissions de CO₂

Var.	Coef. de corrélation
Emissions de CO2	0.88
PropertyGFATotal	0.66
SecondLargestPropertyUseGFA	0.54
NumberofFloors	0.34
ThirdLargestPropertyUseGFA	0.24

Var.	Coef. de corrélation
Conso. d'énergie	0.88
PropertyGFATotal	0.50
SecondLargestPropertyUseGFA	0.40
NumberofFloors	0.20
NumberofBuildings	0.19

03 MODELISATION

Recherche d'un algorithme de régression

Méthodologie

- Pré-traitement des données :
 - Création de deux jeux de données stratifiés sur le type de bâtiments (30% de bureaux)
 - Séparation des variables catégorielles et numériques
 - Variables catégorielles : *Imputer* → Mode *OneHotEncoding*
 - Variables numériques : *Imputer* → Médiane *StandardScaler*
 - Création d'un pipeline de pré-traitement
- Tests de plusieurs modèles de machine learning :
 - Linéaire (Régression linéaire, Lasso, Ridge, SVM), non-linéaire (Ridge Kernel) et ensembliste (Random Forest, XGBoost, Adaboost, etc.)
- Recherche des hyperparamètres les plus optimisés :
 - Grille de recherche + Validation croisée
- Evaluation du modèle :
 - MAE (Mean Absolute Error), MSE (Mean Squared Error), RMSE (Root Mean Squared Error), RMPSE (% de RMSE), MAPE (Mean Absolute Percentage Error) & R² (Coefficient de détermination)
- Enregistrement dans un pipeline :
 - Pré-traitement + modèle avec hyperparamètres

Prédiction de la consommation d'énergie

Test de plusieurs modèles

- Test de plusieurs modèles
- Aucun paramètre fixé (sauf random_state)
- Utilisation de MAE, MSE, RMSE et R² pour choisir un modèle

	Dummy	Linear	B: 1			0)/88	Ridge	A 1- B		0-1-10-1	Random	VOD
	Regressor	Regression	Ridge	Lasso	Decision Tree	SVM	Kernel	AdaBoost	Bagging	GradientBoosting	Forest	XGBoost
MAE	0.895	4.189360e+07	0.543	0.903	0.244	0.401	0.545	0.519	0.281	0.396	0.267	0.325
MSE	1.306	7.734025e+17	0.495	1.270	0.208	0.305	0.496	0.454	0.177	0.295	0.158	0.202
RMSE	1.143	8.794331e+08	0.703	1.127	0.456	0.553	0.704	0.673	0.420	0.543	0.398	0.449
R ²	-0.028	-6.090599e+17	0.610	-0.001	0.836	0.759	0.609	0.643	0.861	0.768	0.876	0.841

- Problème de régression non linéaire
- Choix d'un modèle ensembliste
- RandomForest

Hyperparamètres du modèle

- Random Forest:
 - Méthode ensembliste
 - « Wisdom of crowd »
 - Entraînement de plusieurs arbres de décision
 - Calcul de la prédiction moyenne de chaque arbre

- Hyperparamètres
 - Nombre d'arbres (n_estimators)
 - Nombre de variables (max_features)
 - Profondeur des arbres (max_depth)
 - Nombre de valeurs minimales pour un nœud (min_samples_split)
 - Nombre de valeurs minimales pour une feuille (min_samples_leaf)
 - Méthode de bootstraping (bootstrap)

Algorithme final : RandomForest

RandomForestRegressor

Feature Importances

Features	Score
Supermarket/Store	0.72
Vocational School	0.06
No (HasParking)	0.022
ThirdLargestPropertyUseGFA	0.022
Office	0.021

Evaluation du modèle

Analyse des résidus

Evaluation des performances

MAE: 0.29

• MSE: 0.18 (log²)

• **RMSE**: 0.42 (log)

• **RMPSE**: 0.10%

MAPE: 0.02%

 $R^2: 0.86$

Prédiction des émissions de CO2 :

- 1) Sans score Energy Star
- 2) Avec score Energy Star

Test de plusieurs modèles

- Test de plusieurs modèles
- Aucun paramètre fixé (sauf random_state)
- Utilisation de MAE, MSE, RMSE et R² pour choisir un modèle

					1							
	Dummy Regressor	Linear Regression	Ridge	Lasso	Decision Tree	SVM	Ridge Kernel	AdaBoost	Bagging	GradientBoosting	Random Forest	XGBoost
MAE	1.219	1.538226e+08	0.894	1.221	0.426	0.711	0.894	0.920	0.487	0.722	0.474	0.554
MSE	2.223	6.256071e+18	1.258	2.228	0.669	0.909	1.261	1.226	0.496	0.853	0.452	0.563
RMSE	1.491	2.501214e+09	1.122	1.493	0.818	0.953	1.123	1.107	0.704	0.923	0.673	0.751
R²	-0.007	2.834794e+18	0.430	-0.010	0.697	0.588	0.429	0.444	0.775	0.614	0.795	0.745

- Problème de régression non linéaire
- Choix d'un modèle ensembliste
- RandomForest

Algorithme final : Sans score Energy Star

• Hyperparamètres de l'algorithme:

Hyperparamètres	Valeurs
Bootstrap	True
max_depth	80
max_features	auto
min_samples_leaf	2
min_samples_split	3
n_estimators	650

Feature Importances

Features	Score
Strip Mall	0.52
Swimming Pool	0.15
ThirdLargestPropertyUseGFA	0.06
No (HasParking)	0.036
Worship Facility	0.035

Evaluation du modèle : Sans score Energy Star

Analyse des résidus

Evaluation des performances

MAE: 0.52

• **MSE**: 0.51(log²)

• **RMSE**: 0.72 (log)

• **RMPSE** : 2.6%

MAPE: 0.25%

 $R^2: 0.77$

Test de plusieurs modèles

- Test de plusieurs modèles
- Aucun paramètre fixé (sauf random_state)
- Utilisation de MAE, MSE, RMSE et R² pour choisir un modèle

	Dummy Regressor	Linear Regression	Ridge	Lasso	Decision Tree	SVM	Ridge Kernel	AdaBoost	Bagging	GradientBoosting	Random Forest	XGBoost
MAE	1.219	8.030599e+08	0.880	1.221	0.468	0.684	0.881	0.941	0.498	0.702	0.489	0.544
MSE	2.223	1.705130e+20	1.204	2.228	0.714	0.841	1.207	1.243	0.497	0.789	0.461	0.539
RMSE	1.491	1.305806e+10	1.097	1.493	0.845	0.917	1.099	1.115	0.705	0.888	0.679	0.734
R²	-0.007	-7.726400e+19	0.455	-0.010	0.676	0.619	0.453	0.437	0.775	0.642	0.791	0.756

- Problème de régression non linéaire
- Choix d'un modèle ensembliste
- RandomForest

Algorithme final : Avec score Energy Star

• Hyperparamètres de l'algorithme:

Hyperparamètres	Valeurs
Bootstrap	True
max_depth	80
max_features	Auto
min_samples_leaf	2
min_samples_split	2
n_estimators	650

Feature Importances

Features	Score
Residence Hall	0.49
Social/Meeting Hall	0.14
Worship Facility	0.07
ThirdLargestPropertyUseGFA	0.06
Supermarket/Store	0.03

Evaluation du modèle : Avec score Energy Star

Analyse des résidus

Evaluation des performances

MAE: 0.52

• MSE: 0.50 (log²)

• **RMSE**: 0.70 (log)

• **RMPSE**: 2.6%

• **MAPE**: 0.21%

 $R^2:0.7$

04 CONCLUSION

Choix du modèle à déployer

Concernant la consommation d'énergie :

- Informations suffisantes pour la mise en place d'une prédiction
- Modèle avec de bonnes performances (80% de variance expliquée, 0.1% d'erreur dans les prédictions)

<u>Concernant les émissions de CO2 :</u>

- Ajout du score Energy Star : Amélioration de certaines performances
- Beaucoup de valeurs manquantes → Imputation de la médiane
- Peu d'intérêt d'utiliser le score Energy Star
- Performances moins bonnes que pour la consommation d'énergie
- Manque d'informations pour construire ce modèle?

Conclusion

- Possibilité de prédire la consommation d'énergie de manière fiable
- Possibilité de prédire les émissions de CO2 mais légèrement moins fiable
 - Score Energy Star : inutile à la prédiction
- Est-ce suffisant pour arriver à un objectif d'une ville neutre en carbone pour 2050?
- Hôpitaux et laboratoires : Bâtiments les plus « polluants »
 - o Rénover ces bâtiments sur le modèle des bâtiments à énergie positive
- Downtown (centre-ville): Beaucoup de bureaux
 - Imposer des normes pour réduire la consommation d'énergie (exemple du Bullit Center)
- Mise à jour du modèle en intégrant les bâtiments à basse consommation

Bonus : Prédiction des émissions de CO2 via un réseau de neurones

- Modèle séquentiel avec deux couches cachées
- Fonction d'activation : « relu »

Evaluation des performances

• **MAE**: 0.66

• MSE: 0.91 (log²)

• **RMSE**: 0.95 (log)

• **RMPSE**: 1.16%

• **MAPE**: 0.28%

 $R^2: 0.58$

Source: http://datahacker.rs/neural-networks-representation/

Références

- Différence entre source et site (https://www.energystar.gov/buildings/benchmark/understand_metrics/source_site_difference
 e)
- Définition du score ENERGY STAR (https://www.energystar.gov/buildings/benchmark/analyze_benchmarking_results)
- Définition des types de bâtiments (https://portfoliomanager.energystar.gov/pm/glossary)
- Site de la ville de Seattle (https://data.seattle.gov/dataset/2015-Building-Energy-Benchmarking/h7rm-fz6m)
- Fuite de données (https://machinelearningmastery.com/data-leakage-machine-learning/)

Merci pour votre attention!