Artificial Intelligence

14. Markov Models

Shashi Prabh

School of Engineering and Applied Science
Ahmedabad University

Uncertainty and Time

- Often, we want to reason about a sequence of observations where the state of the underlying system is changing
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
 - Global climate

Need to introduce time into our models

Markov Models (aka Markov chain/process)

Value of X at a given time is called the state (usually discrete, finite)

- Discrete-time model: view the problem as snapshots in time, called time slices
 - Each time slice contains a set of random variables, some observable and some not
 - We will assume the same subset of variables are observable in every time slice
- Transition model: $P(X_t \mid X_{t-1})$ how the state evolves over time
- Stationarity assumption: transition probabilities are the same at all times

Markov Models (aka Markov chain/process)

 Markov assumption: "future is independent of the past given the present"

$$(X_0) \rightarrow (X_1) \rightarrow (X_2) \rightarrow (X_3) - - \rightarrow (X_1)$$

$$P(X_0) \qquad P(X_t \mid X_{0:t-1}) = P(X_t \mid X_{t-1})$$

- X_{t+1} is independent of X₀,..., X_{t-1} given X_t
- This is a first-order Markov model (a kth-order model allows dependencies on k earlier steps)
- Higher order Markov chains can be transformed to the first order chain
- Joint distribution $P(X_0,...,X_T) = P(X_0) \prod_t P(X_t \mid X_{t-1})$

Are Markov models a special case of Bayes nets?

- Yes and no!
- Yes:
 - Directed acyclic graph, joint = product of conditionals
- No:
 - Infinitely many variables (unless we truncate)
 - Repetition of transition model not part of standard Bayes net syntax
- They are "growable" Bayes nets

Example: Random walk in one dimension

- State: location on the unbounded integer line
- Initial probability: starts at 0
- Transition model: $P(X_t = k | X_{t-1} = k\pm 1) = 0.5$
- Applications: particle motion in crystals, stock prices, gambling, genetics, etc.
- Questions:
 - How far does it get as a function of t?
 - Expected distance is O(√t)
 - Does it get back to 0 or can it go off for ever and not come back?
 - In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733

Example: n-gram models

- State: word at position t in text (can also build letter n-grams)
- Transition model (probabilities come from empirical frequencies):
 - Unigram (zero-order): P(Word_t = i)
 - "logical are as are confusion a may right tries agent goal the was . . ."
 - Bigram (first-order): P(Word_t = i | Word_{t-1}= j)
 - "systems are very similar computational approach would be represented . . ."
 - Trigram (second-order): P(Word_t = i | Word_{t-1}= j, Word_{t-2}= k)
 - "planning and scheduling are integrated the success of naive bayes model is . . ."
- Applications: text classification, spam detection, author identification, language classification, speech recognition

We call ourselves *Homo sapiens*—man the wise—because our **intelligence** is so important to us. For thousands of years, we have tried to understand *how we think*; that is, how a mere handful of matter can perceive, understand, predict, and manipulate a world far larger and more complicated than itself.

Example: Web browsing

- State: URL visited at step t
- Transition model:
 - With probability p, choose an outgoing link at random
 - With probability (1-p), choose an arbitrary new page
- Question: What is the stationary distribution over pages?
 - I.e., if the process runs forever, what fraction of time does it spend in any given page?
- Application: Google page rank

Example: Weather

States {rain, sun}

Initial distribution P(X₀)

P(X ₀)	
sun	rain
0.5	0.5

• Transition model $P(X_t | X_{t-1})$

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

More ways of representing the same CPT

Weather prediction

• Time 0: <0.5, 0.5>

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

What is the weather like at time 1?

$$P(X_1) = \sum_{X_0} P(X_1, X_0 = X_0)$$

$$= \sum_{X_0} P(X_0 = X_0) P(X_1 | X_0 = X_0)$$

$$= 0.5 < 0.9, 0.1 > + 0.5 < 0.3, 0.7 > = < 0.6, 0.4 >$$

Weather prediction, contd.

• Time 1: <0.6, 0.4>

X _{t-1}	$P(X_t X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

What is the weather like at time 2?

$$P(X_2) = \sum_{X_1} P(X_2, X_1 = X_1)$$

$$= \sum_{X_1} P(X_1 = X_1) P(X_2 | X_1 = X_1)$$

$$= 0.6 < 0.9, 0.1 > + 0.4 < 0.3, 0.7 > = < 0.66, 0.34 >$$

Weather prediction, contd.

• Time 2: <0.66, 0.34>

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

What is the weather like at time 3?

$$P(X_3) = \sum_{X_2} P(X_3, X_2 = X_2)$$

$$= \sum_{X_2} P(X_2 = X_2) P(X_3 | X_2 = X_2)$$

$$= 0.66 < 0.9, 0.1 > + 0.34 < 0.3, 0.7 > = < 0.696, 0.304 > 0.00$$

Homework

P(X ₀)	
sun	rain
0	1

The influence of initial distribution gets less and less over time.
 The distribution much later becomes independent of the initial distribution

Forward algorithm (simple form)

- What is the state at time t?
 - $P(X_t) = \sum_{X_{t-1}} P(X_{t}, X_{t-1} = X_{t-1})$ • $= \sum_{X_{t-1}} P(X_{t-1} = X_{t-1}) P(X_t | X_{t-1} = X_{t-1})$
- Iterate this update starting at t=0
 - This is called a recursive update: $P_t = g(P_{t-1}) = g(g(g(g(...P_0))))$

Transition model

And the same thing in linear algebra

What is the weather like at time 2?

•
$$P(X_2) = 0.6 < 0.9, 0.1 > + 0.4 < 0.3, 0.7 > = < 0.66, 0.34 >$$

In matrix-vector form:

•
$$P(X_2) = \binom{0.9 \ 0.3}{0.1 \ 0.7} \binom{0.6}{0.4} = \binom{0.66}{0.34}$$

X _{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

i.e., multiply by T^T, transpose of transition matrix

Stationary Distributions

- The limiting distribution is called the stationary distribution P_{∞} of the chain
- It satisfies $P_{\infty} = P_{\infty+1} = T^T P_{\infty}$
- Solving for P_{∞} in the example:

$$\binom{0.9 \ 0.3}{0.1 \ 0.7}$$
 $\binom{p}{1-p} = \binom{p}{1-p}$
 $0.9p + 0.3(1-p) = p$
 $p = 0.75$

Stationary distribution is <0.75,0.25> regardless of the starting distribution

Hidden Markov Models

Hidden Markov Models

- Usually the true state is not observed directly
 - An agent maintains a belief state
- Hidden Markov models (HMMs)
 - Underlying Markov chain over belief states X
 - You observe evidence E at each time step
 - X_t is a single discrete variable; E_t may be continuous and may consist of several variables

Example: Weather HMM

The Secretary and

• An HMM is defined by:

• Initial distribution: P(X₀)

• Transition model: $P(X_t | X_{t-1})$

• Sensor model: $P(E_t | X_t)$

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Weather _{t-1}	Weather _t	Weather _{t+1} ->
Umbrella _{t-1}	Umbrella _t	Umbrella _{t+1}

W _t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

HMM as probability model

- Joint distribution for Markov model: $P(X_{0:t}) = P(X_0) \prod_{i=1:t} P(X_i \mid X_{i-1})$
- Joint distribution for hidden Markov model:

$$P(X_{0:t}, E_{1:t}) = P(X_0) \prod_{i=1:t} P(X_i | X_{i-1}) P(E_i | X_i)$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

Useful notation:

$$X_{a:b} = X_a, X_{a+1}, ..., X_b$$

Real HMM Examples

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)

Inference tasks

- Filtering: P(X_t|e_{1:t})
 - belief state—input to the decision process of a rational agent
- Prediction: $P(X_{t+k}|e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P(X_k|e_{1:t})$ for $0 \le k < t$
 - better estimate of past states, essential for learning
- Most likely explanation: arg max_{x1:t} P(x_{1:t} | e_{1:t})
 - speech recognition, decoding with a noisy channel

Inference tasks

Filtering: $P(X_t|e_{1:t})$

Prediction: $P(X_{t+k}|e_{1:t})$

Smoothing: $P(X_k|e_{1:t})$, k<t

Explanation: $P(X_{1:t}|e_{1:t})$

Filtering / Monitoring

- Filtering, or monitoring, or state estimation, is the task of maintaining the distribution $f_{1:t} = P(X_t|e_{1:t})$ over time
- We start with f_0 in an initial setting, usually uniform
- Filtering is a fundamental task in engineering and science
- The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was invented in 1960 and used for trajectory estimation in the Apollo program
 - Core ideas used by Gauss for planetary observations
 - 788,000 papers on Google Scholar

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake

Transition model: action may fail with small prob.

t=1

Lighter grey: was *possible* to get the reading, but *less likely* (required 1 mistake)

t=2

Prob

t=3

Prob

Prob

0 1

Prob

0

- Aim: devise a recursive filtering algorithm of the form
 - $P(X_{t+1}|e_{1:t+1}) = g(e_{t+1}, P(X_t|e_{1:t}))$
- $P(X_{t+1}|e_{1:t+1}) =$

Aim: devise a recursive filtering algorithm of the form

•
$$P(X_{t+1}|e_{1:t+1}) = f(e_{t+1}, P(X_t|e_{1:t}))$$

•
$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}|e_{1:t}, e_{t+1})$$

Aim: devise a recursive filtering algorithm of the form

•
$$P(X_{t+1}|e_{1:t+1}) = f(e_{t+1}, P(X_t|e_{1:t}))$$

•
$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}|e_{1:t}, e_{t+1})$$

= $\alpha P(e_{t+1}|X_{t+1}, e_{1:t}) P(X_{t+1}|e_{1:t})$

Apply Bayes' rule

Aim: devise a recursive filtering algorithm of the form

•
$$P(X_{t+1}|e_{1:t+1}) = f(e_{t+1}, P(X_t|e_{1:t}))$$

•
$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}|e_{1:t}, e_{t+1})$$

= $\alpha P(e_{t+1}|X_{t+1}, e_{1:t}) P(X_{t+1}|e_{1:t})$ Apply sensor Markov conditional independence
= $\alpha P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})$

- Aim: devise a recursive filtering algorithm of the form
 - $P(X_{t+1}|e_{1:t+1}) = f(e_{t+1}, P(X_t|e_{1:t}))$

•
$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}|e_{1:t}, e_{t+1})$$

= $\alpha P(e_{t+1}|X_{t+1}, e_{1:t}) P(X_{t+1}|e_{1:t})$ Condition on X_t
= $\alpha P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})$
= $\alpha P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_t|e_{1:t}) P(X_{t+1}|X_t, e_{1:t})$

- Aim: devise a recursive filtering algorithm of the form
 - $P(X_{t+1}|e_{1:t+1}) = f(e_{t+1}, P(X_t|e_{1:t}))$

•
$$P(X_{t+1}|e_{1:t+1}) = \alpha P(e_{t+1}|X_{t+1}) \sum_{X_t} P(x_t|e_{1:t}) P(X_{t+1}|x_t)$$

Normalize Update Predict

- $f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$
- Cost per time step: $O(|X|^2)$ where |X| is the number of states
- Time and space costs are constant, independent of t
- $O(|X|^2)$ is infeasible for models with many state variables
- We get to invent really cool approximate filtering algorithms

And the same thing in linear algebra

- Transition matrix T, observation matrix O_t
 - Observation matrix has state likelihoods for E₊ along diagonal

• E.g., for
$$U_1$$
 = true, O_1 = $\begin{pmatrix} 0.2 & 0 \\ 0 & 0.9 \end{pmatrix}$

Filtering algorithm becomes

•
$$f_{1:t+1} = \alpha \ O_{t+1} T^T \ f_{1:t}$$

\mathbf{X}_{t-1}	$P(X_{t} X_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Example: Weather HMM

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W_{t}	$P(U_t W_t)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Most Likely Explanation

Inference tasks

- Filtering: $P(X_t|e_{1:t})$
 - belief state—input to the decision process of a rational agent
- Prediction: $P(X_{t+k}|e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P(X_k|e_{1:t})$ for $0 \le k < t$
 - better estimate of past states, essential for learning
- Most likely explanation: arg max_{x1-t} P(x_{1:t} | e_{1:t})
 - speech recognition, decoding with a noisy channel

Most likely explanation = most probable path

• State trellis: graph of states and transitions over time

- Each arc has weight $P(x_t \mid x_{t-1}) P(e_t \mid x_t)$
 - Arcs to initial states have weight $P(x_0)$)
- The product of weights on a path is proportional to that state sequence's probability
- Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

Forward / Viterbi algorithms

Forward Algorithm (sum)

For each state at time t, keep track of the total probability of all paths to it

$$f_{1:t+1} = FORWARD(f_{1:t}, e_{t+1})$$

= $\alpha P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) f_{1:t}$

Viterbi Algorithm (max)

For each state at time t, keep track of the maximum probability of any path to it

$$m_{1:t+1} = VITERBI(m_{1:t}, e_{t+1})$$

= $P(e_{t+1}|X_{t+1}) \max_{X_t} P(X_{t+1}|X_t) m_{1:t}$

Viterbi algorithm contd.

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Time complexity? O(|X|² T)

Space complexity?
O(|X| T)

Number of paths? $O(|X|^T)$

Viterbi in negative log space

argmax of	product of	probabilities
-----------	------------	---------------

- = argmin of sum of negative log probabilities
- = minimum-cost path

Viterbi is essentially breadth-first graph search What about A*?

W_{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Next time

• Chapter 16. Utility theory