Matemática Discreta l Clase 7 - Conteo (2° parte)

FAMAF / UNC

7 de abril de 2022

X finito de n objetos.

¿De cuántas formas podemos elegir m objetos de X en forma ordenada?

X finito de *n* objetos.

¿De cuántas formas podemos elegir m objetos de X en forma ordenada?

Ejemplo

Elegir en forma ordenada y sin repetición 2 elementos del conjunto $X = \{a, b, c\}$,

X finito de *n* objetos.

¿De cuántas formas podemos elegir m objetos de X en forma ordenada?

Ejemplo

Elegir en forma ordenada y sin repetición 2 elementos del conjunto $X = \{a, b, c\}$, tenemos ab, ac, ba, bc, ca, cb, 6 elecciones.

X finito de *n* objetos.

¿De cuántas formas podemos elegir m objetos de X en forma ordenada?

Ejemplo

Elegir en forma ordenada y sin repetición 2 elementos del conjunto $X = \{a, b, c\}$, tenemos ab, ac, ba, bc, ca, cb, 6 elecciones.

Es decir si el conjunto es $X=\{a_1,a_2,\ldots,a_n\}$, las selecciones deben ser del tipo

$$a_{i_1}a_{i_2}\cdots a_{i_m}$$

donde $a_{i_i} \neq a_{i_k}$ si $i \neq k$.

Por ejemplo, las selecciones de 3 elementos en forma ordenada y sin repetición de $\{1,2,3\}$ son exactamente

Por ejemplo, las selecciones de 3 elementos en forma ordenada y sin repetición de $\{1,2,3\}$ son exactamente

123, 132, 213, 231, 312, 321

(son las ternas donde los tres números son distintos).

Por ejemplo, las selecciones de 3 elementos en forma ordenada y sin repetición de $\{1,2,3\}$ son exactamente

$$123,\ 132,\ 213,\ 231,\ 312,\ 321$$

(son las ternas donde los tres números son distintos).

O sea hay 6 selecciones ordenadas y sin repetición de elementos de $\{1,2,3\}.$

Notemos que:

- 1° elemento \rightarrow 3 posibilidades: 1, 2, 3
- 2° elemento \rightarrow 2 posibilidades: distinto al elegido en 1°
- 3° elemento ightarrow 1 posibilidades: distinto a los elegidos en 1° y 2°

Tenemos entonces $3 \cdot 2 \cdot 1 = 3!$ selecciones posibles.

Pensemos ahora que queremos elegir en forma ordenada y sin repetición 3 elementos entre 5. Entonces para la primera elección tenemos 5 posibilidades, para la segunda 4 posibilidades y para la tercera 3 posibilidades haciendo un total de

$$5 \cdot 4 \cdot 3$$

selecciones posibles.

Pensemos ahora que queremos elegir en forma ordenada y sin repetición 3 elementos entre 5. Entonces para la primera elección tenemos 5 posibilidades, para la segunda 4 posibilidades y para la tercera 3 posibilidades haciendo un total de

$$5 \cdot 4 \cdot 3$$

selecciones posibles.

Proposición

Si n > m entonces existen

$$n \cdot (n-1) \cdot \cdot \cdot (n-m+1)$$
, (m - factores)

selecciones ordenadas y sin repetición de m elementos de un conjunto de n elementos.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas? Solución.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas? Solución.

Razonando,

 1° puesto ightarrow 10 posibilidades

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución.

```
1^{\circ} puesto \rightarrow 10 posibilidades 2^{\circ} puesto \rightarrow 9 posibilidades
```

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución.

```
1^\circ puesto 
ightarrow 10 posibilidades
```

$$2^{\circ}$$
 puesto $ightarrow$ 9 posibilidades

$$3^{\circ}$$
 puesto \rightarrow 8 posibilidades

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

posibilidades

Solución.

Razonando,

4° puesto

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución.

```
puesto
                  10
                       posibilidades
                       posibilidades
   puesto
   puesto
                       posibilidades
                       posibilidades
   puesto
                       posibilidades
   puesto
6° puesto
                       posibilidades
                   5
                       posibilidades
7° puesto
```

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución.

Razonando,

```
puesto
                 10
                      posibilidades
                      posibilidades
   puesto
   puesto
                      posibilidades
   puesto
                      posibilidades
                      posibilidades
  puesto
6° puesto
                      posibilidades
                  5
                      posibilidades
7° puesto
```

La solución es entonces $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4$.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas? Solución (aplicando la proposición de p. 4).

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas? Solución (aplicando la proposición de p. 4).

Cantidad de elementos: $\rightarrow n = 10$

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución (aplicando la proposición de p. 4).

Cantidad de elementos: $\rightarrow n = 10$ Cantidad de elecciones: $\rightarrow m = 7$

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución (aplicando la proposición de p. 4).

Cantidad de elementos: $\rightarrow n = 10$ Cantidad de elecciones: $\rightarrow m = 7$

Por lo tanto, n - m + 1 = 10 - 7 + 1 = 4.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución (aplicando la proposición de p. 4).

Cantidad de elementos: $\rightarrow n = 10$ Cantidad de elecciones: $\rightarrow m = 7$

Por lo tanto, n - m + 1 = 10 - 7 + 1 = 4.

La solución es entonces: $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4$.

Si hay 10 personas ¿De cuántas formas puedo hacer una fila de 7 personas?

Solución (aplicando la proposición de p. 4).

Cantidad de elementos: $\rightarrow n = 10$ Cantidad de elecciones: $\rightarrow m = 7$

Por lo tanto, n - m + 1 = 10 - 7 + 1 = 4.

La solución es entonces: $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4$.

Observar que

$$10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} = \frac{10!}{3!}$$
$$= \frac{10!}{(10 - 7)!}.$$

¿Cómo elegir 4 elementos entre n?

¿Cómo elegir 4 elementos entre *n*?

Solución.

¿Cómo elegir 4 elementos entre n?

Solución.

Razonando,

 1° puesto ightarrow n-1 posibilidades

¿Cómo elegir 4 elementos entre n?

Solución.

Razonando,

 1° puesto \rightarrow n-1 posibilidades 2° puesto \rightarrow n-2 posibilidades

¿Cómo elegir 4 elementos entre n?

Solución.

Razonando,

 3° puesto \rightarrow n-3 posibilidades

¿Cómo elegir 4 elementos entre n?

Solución.

```
1^{\circ} puesto \rightarrow n-1 posibilidades
```

$$2^{\circ}$$
 puesto \rightarrow n-2 posibilidades

$$3^{\circ}$$
 puesto $ightarrow$ n-3 posibilidades

$$4^{\circ}$$
 puesto \rightarrow n-4 posibilidades

¿Cómo elegir 4 elementos entre n?

Solución.

Razonando,

$$1^{\circ}$$
 puesto \rightarrow n-1 posibilidades

$$2^{\circ}$$
 puesto $ightarrow$ n-2 posibilidades

$$3^{\circ}$$
 puesto $ightarrow$ n-3 posibilidades

$$4^{\circ}$$
 puesto \rightarrow n-4 posibilidades

La solución es entonces

$$(n-1)(n-2)(n-3)(n-4) = \frac{(n-1)(n-2)(n-3)(n-4)(n-5)!}{(n-5)!}$$
$$= \frac{n!}{(n-5)!}$$

En general

$$n\cdot (n-1)\cdots (n-m+1)=rac{n\cdot (n-1)\cdots (n-m+1)\cdot (n-m)\cdots 2\cdot 1}{(n-m)\cdots 2\cdot 1}$$

Clase 7 - Conteo 2

En general

$$n\cdot (n-1)\cdots (n-m+1)=rac{n\cdot (n-1)\cdots (n-m+1)\cdot (n-m)\cdots 2\cdot 1}{(n-m)\cdots 2\cdot 1}.$$

Es decir

$$n\cdot (n-1)\cdots (n-m+1)=\frac{n!}{(n-m)!}.$$

En general

$$n\cdot (n-1)\cdots (n-m+1)=rac{n\cdot (n-1)\cdots (n-m+1)\cdot (n-m)\cdots 2\cdot 1}{(n-m)\cdots 2\cdot 1}.$$

Es decir

$$n\cdot (n-1)\cdots (n-m+1)=\frac{n!}{(n-m)!}.$$

Por lo tanto podemos reescribir la proposición en forma mas compacta:

8 / 15

Clase 7 - Conteo 2 08/04/2022

Proposición

Si $n \ge m$ entonces existen

$$\frac{n!}{(n-m)!}$$

selecciones ordenadas y sin repetición de m elementos de un conjunto de n elementos.

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas pueden sentarse 3 personas?

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas pueden sentarse 3 personas?

Solución

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas pueden sentarse 3 personas?

Solución

Se trata de ver cuantas selecciones ordenadas y sin repetición hay de 3 asientos entre 9.

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas pueden sentarse 3 personas?

Solución

Se trata de ver cuantas selecciones ordenadas y sin repetición hay de 3 asientos entre 9.

Primero hagámoslo usando el principio de multiplicación:

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas pueden sentarse 3 personas?

Solución

Se trata de ver cuantas selecciones ordenadas y sin repetición hay de 3 asientos entre 9.

Primero hagámoslo usando el principio de multiplicación:

∘ 1° persona: 9 lugares posibles. Total: 9

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas pueden sentarse 3 personas?

Solución

Se trata de ver cuantas selecciones ordenadas y sin repetición hay de 3 asientos entre 9.

Primero hagámoslo usando el principio de multiplicación:

- 1° persona: 9 lugares posibles. Total: 9
- \circ 2° persona: 8 lugares posibles. Total: 9 imes 8

Si en un colectivo hay 9 asientos vacíos.

¿De cuántas formas pueden sentarse 3 personas?

Solución

Se trata de ver cuantas selecciones ordenadas y sin repetición hay de 3 asientos entre 9.

Primero hagámoslo usando el principio de multiplicación:

- 1° persona: 9 lugares posibles. Total: 9
- \circ 2° persona: 8 lugares posibles. Total: 9 \times 8
- \circ 3° persona: 7 lugares posibles. Total: $9 \times 8 \times 7$.

Este número es

 $9 \cdot 8 \cdot 7$, 3 - factores.

Este número es

$$9 \cdot 8 \cdot 7$$
, 3 - factores.

Podríamos haberlo hecho directamente por la proposición de la p. 9: elegir 3 elementos entre 9 son

$$\frac{9!}{(9-3)!} = \frac{9!}{6!}$$

$$= \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$$

$$= 9 \cdot 8 \cdot 7$$

posibilidades.

Clase 7 - Conteo 2

08/04/2022

Hay

$$\frac{n!}{0!} = n!$$

selecciones ordenadas y sin repetición de n elementos en un conjunto con n elementos.

Hay

$$\frac{n!}{0!} = n!$$

selecciones ordenadas y sin repetición de n elementos en un conjunto con n elementos.

Las selecciones ordenadas y sin repetición de n elementos en un conjunto con n elementos se denominan permutaciones de grado n.

Hay

$$\frac{n!}{0!} = n!$$

selecciones ordenadas y sin repetición de n elementos en un conjunto con n elementos.

Las selecciones ordenadas y sin repetición de n elementos en un conjunto con n elementos se denominan permutaciones de grado n.

Hay, pues, n! permutaciones de grado n.

Clase 7 - Conteo 2

Respondamos la siguiente pregunta:

¿De cuantas formas puedo ordenar \emph{n} objetos?

Respondamos la siguiente pregunta:

¿De cuantas formas puedo ordenar n objetos?

Observemos que, ordenar n objetos es equivalente a seleccionar ordenadamente y sin repetición los n objetos (de un conjunto con n objetos).

Por lo tanto, la respuesta es n!.

Respondamos la siguiente pregunta:

¿De cuantas formas puedo ordenar n objetos?

Observemos que, ordenar n objetos es equivalente a seleccionar ordenadamente y sin repetición los n objetos (de un conjunto con n objetos).

Por lo tanto, la respuesta es n!.

Ejemplo.

Dado el conjunto $\mathbb{I}_4=\{1,2,3,4\}$ ¿cuántas permutaciones de los elementos de \mathbb{I}_4 hay?

Respondamos la siguiente pregunta:

¿De cuantas formas puedo ordenar n objetos?

Observemos que, ordenar n objetos es equivalente a seleccionar ordenadamente y sin repetición los n objetos (de un conjunto con n objetos).

Por lo tanto, la respuesta es n!.

Ejemplo.

Dado el conjunto $\mathbb{I}_4=\{1,2,3,4\}$ ¿cuántas permutaciones de los elementos de \mathbb{I}_4 hay?

Solución.

Respondamos la siguiente pregunta:

¿De cuantas formas puedo ordenar n objetos?

Observemos que, ordenar n objetos es equivalente a seleccionar ordenadamente y sin repetición los n objetos (de un conjunto con n objetos).

Por lo tanto, la respuesta es n!.

Ejemplo.

Dado el conjunto $\mathbb{I}_4=\{1,2,3,4\}$ ¿cuántas permutaciones de los elementos de \mathbb{I}_4 hay?

Solución.4!.

¿Cuántas permutaciones pueden formarse con las letras de silvia?

¿Cuántas permutaciones pueden formarse con las letras de silvia?

Solución

¿Cuántas permutaciones pueden formarse con las letras de silvia?

Solución

Afirmamos que se pueden formar 0! palabras usando las letras de *silvia*. Si escribo en lugar de *silvia*,

Es decir si cambio la segunda i por i', todas las letras son distintas, luego hay 6! permutaciones, pero cada par de permutaciones del tipo

coinciden, por lo tanto tengo que dividir por 2 el número total de permutaciones: 6!/2! = 360.

Tomemos la palabra

ramanathan

el número total de permutaciones es

 $\frac{10!}{4!2!}.$

Tomemos la palabra

ramanathan

el número total de permutaciones es

 $\frac{10!}{4!2!}$

En efecto, escribiendo el nombre anterior así

 r_1 a_1 m_1 a_2 n_1 a_3 t_1 h_1 a_4 n_2

el número total de permutaciones es 10! Pero permutando las a_i y las n_i sin mover las otras letras obtenemos la misma permutación de ramanathan.

Como hay 4! permutaciones de las letras a_1 , a_2 , a_3 , a_4 , y 2! de n_1 , n_2 el número buscado es

 $\frac{10!}{4!2!}$