0.1 幺半群 群

定义 0.1 ((幺) 半群)

设 S 是非空集合. 在 S 中定义了二元运算称为乘法, 满足结合律, 即

 $(ab)c = a(bc), \quad \forall a, b, c \in S,$

则称 S 为半群.

如果在半群 M 中存在元素 1, 使得

$$1a = a1 = a, \quad \forall a \in M, \tag{1}$$

则称 M 为幺半群,1 称为幺元素或幺元.

如果一个幺半群 M(或半群 S) 的乘法还满足交换律, 即

 $ab = ba, \quad \forall a, b \in M (\not \Delta S),$

则称 $M(\mathfrak{s}, S)$ 为**交换幺半**群 (或**交换半**群), 也简单地称 $M(\mathfrak{s}, S)$ 为**可换的**.

对于交换幺半群,有时把二元运算记为加法,此时幺元素记为0,改称零元素或零.

例题 0.1

- 1. N 对乘法是幺半群, 对加法是半群而不是幺半群. 非负整数集对加法与乘法均为幺半群.
- 2. 令 M(X) 为非空集 X 的所有变换 (即 X 到 X 的映射) 的集合, 则对于变换的乘法, M(X) 是一个幺半群, id_X 是一个幺元素. 当 $|X| \ge 2$ 时, M(X) 不是可换的.
- 3. 设 P(X) 为非空集合 X 的所有子集的集合. 空集 \varnothing 也是 X 的一个子集, 则 P(X) 对集合的并的运算是一个幺半群, \varnothing 为幺元素. 同样, P(X) 对集合的交的运算是一个幺半群, X 为幺元素, 这两种幺半群都是可换的.

命题 0.1

幺半群中的幺元素是唯一的.

证明 如果 1 - 51 都是幺半群 M 的幺元素,则由条件 (1)可知 1 = 1.

定义 0.2 (群)

在非空集合 G 中定义了二元运算, 称为乘法. 若满足下列条件:

- (1) 结合律成立, 即 $(ab)c = a(bc)(\forall a, b, c \in G)$;
- (2) 存在**左幺元**, 即 $\exists e \in G$, 使 $ea = a(\forall a \in G)$;
- (3) 对 $\forall a \in G$ 有左逆元, 即有 $b \in G$, 使 ba = e,

则称 G 是一个群. 若 G 的乘法还满足交换律, 则称 G 为交换群或 Abel 群.

定义 0.3 (全变换群/置换群)

设 X 是非空集合. 以 S_X 表示 X 的所有可逆变换 (即 X 到 X 的一一对应) 的集合,则 S_X 对变换的乘法构成一个群, id_X 为左幺元, f^{-1} 为 f 的左逆元. S_X 称 X 的**全变换群**.

如果集合 X 所含元素的个数 $|X|=n<+\infty$. 此时 S_X 记为 S_n , 称为 n 个文字的**对称群**或 n 个文字的**置换群**, 其元素称为**置换**.

注 假定集合 $X = \{1, 2, \dots, n\}$, 记 S_n 为 X 的对称群, 设 $\sigma \in S_n$, 则 $\sigma(1), \sigma(2), \dots, \sigma(n)$ 是 $1, 2, \dots, n$ 的一个排列. 常用下面记法:

$$\sigma = \begin{pmatrix} 1 & 2 & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

更一般地, 若 i_1, i_2, \cdots, i_n 是 $1, 2, \cdots, n$ 的一个排列, 则可记

$$\sigma = \begin{pmatrix} i_1 & i_2 & \cdots & i_n \\ \sigma(i_1) & \sigma(i_2) & \cdots & \sigma(i_n) \end{pmatrix}$$

易知 S_n 中有 n! 个元素, S_n 中一个元素可以有 n! 种表示法.

例如, $\sigma \in S_3$, 满足 $\sigma(1) = 2$, $\sigma(2) = 3$, $\sigma(3) = 1$, 则可记

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \cdots$$

定义 0.4

定理 0.1

0

证明