《系統分析與設計》

試題評析	第一題:為需求擷取方法,可由課程內容作答。 第二題:可由結構化分析與設計之流程塑模、資料塑模切入。 第三題:可由物件導向系統分析與設計切入。 第四題:UML繪圖與關係,可由課程內容作答。
考點命中	第一題:《高點系統專案管理講義》第三回,張又中編撰,P.3-5~14。 第二題:《高點系統專案管理講義》第四回,張又中編撰,P.4-7;《高點系統專案管理講義》 第五回,張又中編撰,P.5~14。 第三題:《高點系統專案管理講義》第六回,張又中編撰,P.6-19。 第四題:《高點系統專案管理講義》第六回,張又中編撰,P.6-11~13、15、19。

一、針對系統分析階段,請列舉四種蒐集使用者需求的方法 (Requirement-Gathering Techniques), 並說明這些方法的優缺點。(20分)

【擬答】

方法	文件查閱	訪談	觀察	問卷
說明	研究企業的內部文件, 例如:工作說明書、企 業表單與手冊,為瞭解 企業運作邏輯之初步工 作。	系統分析師與使用部門 的主管或相關作業人員 面對面討論實際作業情 況、所需報表和需求等。	透過實地觀察使用者 行為來擷取其需求。	當潛在使用者太多或 分布太廣時,可考慮以 此方式擷取需求。
優點	系統化地蒐集與分析文 件,有助於建立系統架 構。	最有效且最普遍的資料 蒐集方法。	可驗證所蒐集資料之 正確性及補充不完整 的部分。	可大規模、大範圍蒐集使用者需求。
缺點	文件與實際情況常有出 入,以此方式蒐集之資 訊常有過時之慮。	使用者所提供的資訊亦 不見得可以全然信賴,	使用者的行為可能改 變,或是只能獲得片段 資訊。	問卷問題之語意與邏 輯必須很清楚且有條 理,以免發生偏誤。

二、何謂模式 (model) ?它在系統分析與設計時有何重要性?請針對結構化分析與設計技術 (Structured Analysis and Design Technology),列舉二種模式,並說明其目的及畫法。(20分)

【擬答】

模式可作為系統分析與設計時,系統分析師與使用者、系統設計師、專案經理等團隊成員溝通的依據,特別是資訊傳遞須經過兩層以上時更形重要。

資料流程圖(Data Flow Diagram, DFD)提供一簡易、圖形化的方式,以表達系統之作業處理與資料流間之關係。典型的系統通常需要數層的資料流程圖,最高層稱為第0階,接下來依序為第1階、第2階到第N階,其中第零階表示系統的概觀,而其每個處理可再被分解,以表示系統下之子系統。該模式圖形元件如下:

元件	DeMarco & Yourdon	Gane & Sarson	說明
外部實 體 Entity			環境中與系統互動或交換訊息的人或 物。

104 高點・高上調查局特考 ・ 全套詳解

資料流 Data Flow	→	 資料項目的集合,表示處理所需的輸出 和輸入。
處理 Process		最小單位的活動。
資料儲 存 Data Store		儲存於資料庫的資料。

實體關係模式(Entity Relationship Model, ER Model)由 M. E. Senko (1973)提出,而後由陳品山(Peter Chen, 1976)加以修改,為關聯式資料庫設計的重要工具之一,亦為系統分析與設計於資料塑模的主要工具。其對組織或商業領域的實體(Entities)、關聯(Association)及資料元素(Data Elements)提供概念性邏輯結構的表示,可做為系統分析師與使用者間溝通的工具。該模式圖形定義如下:

元件	說明	圖例
實體、個體 Entity	實體世界中獨立存在或概念上存在的一個完整事物,如員工、學生、訂單、課程等。	
屬性 Attribute	描述實體的特性(Characteristic)、性質(Property),一實體由一至多個屬性所描述。	
鍵 Key	實體中一或多個屬性的集合,可唯一識別此實體。	
關係 Relationship	描述實體間的關連。	$\frac{1}{(0,M)} \underbrace{\frac{M}{(1,1)}}$

三、請比較「系統分析」與「系統設計」的差異,並舉例說明至少四項在系統設計時應處理的工作與作法?(30分)

【擬答】

以物件導向系統分析與設計為例,物件導向分析強調如何從問題領域(Problem Domain)描述建立使用案例模型(Use Case Model)。識別出物件後將其抽象化成類別,以建立領域模型(Domain Model)。最後,指定類別責任以建立概念模型(Conceptual Model)。於此階段,主要是找出系統功能與服務,不用考量實做細節。

物件導向設計則是進一步決定類別屬性、行為以及關係的細部設計,最後建立可實做成程式碼的設計模型(Design Model)。此階段需決定類別屬性與行為的細部設計,並決定類別關係的細部設計。

系統設計活動如下表所示:

系統設計活動	說明
查看系統需求文件	熟悉邏輯設計。
設計使用者介面	設計整體使用者介面如畫面、命令與控制,以及讓使用者能與應用程式互動的功能。
設計輸入程序	決定資料如何輸入系統並設計必要的來源文件。
設計輸入與輸出	設計輸入/輸出的格式、報告畫面與列印報表。

- 四、進行物件導向分析與設計時,經常繪製使用案例圖(Use Case Diagrams)、類別圖(Class Diagrams)、活動圖(Activity Diagrams)、循序圖(Sequence Diagrams)與狀態圖(State Machine Diagrams) •
 - (一)請自選一個資訊系統為例,繪製每一種圖,並說明其目的。(15分)
 - (二)繪製上述五種圖時,那些圖之間會有先後順序或參考關係?請以圖示並詳述這些關係,具先 後順序的以實線箭頭表示,具參考關係的以虛線箭頭表示。(15分)

【擬答】

(一)設有一圖書館管理資訊系統,讀者可借書、還書,若所需的書籍已被外借,還可預約書籍。圖書館員可以讀取 條碼的方式來處理借、還書。系統可記錄讀者的證號、姓名與身份,每本書的 ISBN、書名與流通狀態,以及 圖書館員的工號、姓名與職級。

借書之活動圖如下:

書籍類別產生的物件之狀態圖如下:

資料來源:《系統分析與設計(五版)》, 吳仁和、林信惠

【版權所有,重製必究!】