# Comparison of Random Walk based techniques for estimating network averages

Jithin K. Sreedharan

INRIA, France

Konstantin Avrachenkov INRIA, France Vivek S. Borkar IIT Bombay, India

Arun Kadavankandy INRIA, France

#### Motivation

- Estimation in Online Social Network (OSN)
- Example:

What proportion of a population supports a given political party?

How young a given social network is?





#### Motivation

- Estimation in Online Social Network (OSN)
- Example:

What proportion of a population supports a given political party?

How young a given social network is?



Easy to answer if the graph is fully known beforehand What if the network is not known?

- Can only crawl network
- Few queries





Let 
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$



Undirected graph

Let 
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$



Let 
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

- Undirected graph
- Let  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  Nodes have labels



Let 
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

- Undirected graph
- Nodes have labels
- Large graph



Let 
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

- Undirected graph
- Nodes have labels
- Large graph

Estimate 
$$\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u)$$



Let 
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

- Undirected graph
- Nodes have labels
- Large graph

Estimate 
$$\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u)$$

Graph is unknown



Let 
$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$

- Undirected graph
- Nodes have labels
- Large graph

Estimate 
$$\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u)$$

- Graph is unknown

Graph is unknown
Only local information available

Seed nodes and their neighbor IDs

Query (visit) a neighbor

Visited nodes and their neighbor IDs



























Random walk  $\{X_k\}_{k\geq 0}$  has unique stationary distribution  $\{\pi_i\}_{i=1}^n$  if graph G is connected and non-bipartite

• Goal: Estimate  $\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u)$ 





- Goal: Estimate  $\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u)$
- How: Ergodic theorem





- Goal: Estimate  $\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u)$
- How: Ergodic theoremFor any initial distribution,

$$\frac{1}{n} \sum_{k=0}^{n} f(X_k) \to \sum_{u \in \mathcal{V}} \pi_u f(u) \text{ a.s.}$$





- Goal: Estimate  $\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u)$
- How: Ergodic theoremFor any initial distribution,

$$\frac{1}{n} \sum_{k=0}^{n} f(X_k) \to \sum_{u \in \mathcal{V}} \pi_u f(u) \text{ a.s.}$$

How to make 
$$\pi_u = \frac{1}{|\mathcal{V}|}$$
?





Random walk  $\{X_k\}_{k\geq 0}$  has unique stationary distribution  $\{\pi_i\}_{i=1}^n$  if graph G is connected and non-bipartite

- Goal: Estimate  $\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u)$
- How: Ergodic theoremFor any initial distribution,

$$\frac{1}{n} \sum_{k=0}^{n} f(X_k) \to \sum_{u \in \mathcal{V}} \pi_u f(u) \text{ a.s.}$$

How to make  $\pi_u = \frac{1}{|\mathcal{V}|}$ ? How to compare different random walks?











With re-weighting the function *f*

$$f'(u) = \frac{f(u)}{|\mathcal{V}| \, \pi_u}$$





With re-weighting the function *f*

$$f'(u) = \frac{f(u)}{|\mathcal{V}| \, \pi_u}$$





With re-weighting the function *f*

$$f'(u) = \frac{f(u)}{|\mathcal{V}| \, \pi_u}$$

Estimator: 
$$\frac{1}{\sum_{k=1}^{n} \frac{1}{\deg(X_k)}} \sum_{k=1}^{n} \frac{f(X_k)}{\deg(X_k)}$$





With re-weighting the function f

$$f'(u) = \frac{f(u)}{|\mathcal{V}| \, \pi_u}$$

Estimator: 
$$\frac{1}{\sum_{k=1}^{n} \frac{1}{\deg(X_k)}} \sum_{k=1}^{n} \frac{f(X_k)}{\deg(X_k)}$$

$$\frac{|\mathcal{V}|}{2|\mathcal{E}|}$$





With re-weighting the function *f* 

$$f'(u) = \frac{f(u)}{|\mathcal{V}| \, \pi_u}$$

$$\int \frac{1}{2|\mathcal{E}|} \sum_{u \in \mathcal{V}} f(u)$$

Estimator: 
$$\frac{1}{\sum_{k=1}^{n} \frac{1}{\deg(X_k)}} \sum_{k=1}^{n} \frac{f(X_k)}{\deg(X_k)}$$







With re-weighting the function *f* 

$$f'(u) = \frac{f(u)}{|\mathcal{V}| \, \pi_u}$$

$$\int \frac{1}{2|\mathcal{E}|} \sum_{u \in \mathcal{V}} f(u)$$

Estimator: 
$$\frac{1}{\sum_{k=1}^{n} \frac{1}{\deg(X_k)}} \sum_{k=1}^{n} \frac{f(X_k)}{\deg(X_k)} \longrightarrow \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u) \text{ a.s.}$$

















$$\Pr(\text{head}) := \min \left\{ 1, \frac{\deg(X_t)}{\deg(j)} \right\}$$







$$\Pr(\text{head}) := \min \left\{ 1, \frac{\deg(X_t)}{\deg(j)} \right\}$$

If head appears: move to *j* 







$$\Pr(\text{head}) := \min \left\{ 1, \frac{\deg(X_t)}{\deg(j)} \right\}$$

If head appears: move to *j* 

If tail appears: stays at  $X_t$ 







$$\Pr(\text{head}) := \min \left\{ 1, \frac{\deg(X_t)}{\deg(j)} \right\}$$

If head appears: move to *j* 

If tail appears: stays at  $X_t$ 

For any initial distribution,

$$\frac{1}{n} \sum_{k=1}^{n} f(X_k) \to \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u) \text{ a.s.}$$



# Reinforcement Learning technique



## Reinforcement Learning technique

 Graph not necessarily connected or has included connected components of interest





# Reinforcement Learning technique

- Graph not necessarily connected or has included connected components of interest
- Few seed nodes







$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$











$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$



Sample









Sample





### Properties of tours:





#### Properties of tours:

Tours are independent

Sample





### Properties of tours:

- Tours are independent
- Fully distributed crawler

### Sample





#### Properties of tours:

- Tours are independent
- Fully distributed crawler implementation

Sample





#### Properties of tours:

- Tours are independent
- Fully distributed crawler implementation
- Larger super node size, shorter the tours

Sample



Stochastic Approximation Algorithm



Daber

# Reinforcement Learning technique (contd.)

etailsi

For each node i in  $\mathcal{V}_0$ 

Seed se

Stochastic Approximation Algorithm



zetails i

For each node i in  $\mathcal{V}_0$ 

Seed s

Function sum inside a tour

Stochastic Approximation Algorithm

$$\begin{array}{c} V_{n+1}(i) = V_n(i) \\ \uparrow \\ +a(n)\mathbb{I}\{z=i\} \left[ \left( \sum_{m=1}^{\xi(n)} f(X_m^n) \right) - \frac{\xi(n)}{|\mathcal{V}_0|} \sum_{j \in \mathcal{V}_0} V_n(j) + V_n(X_{\xi(n)}^n) - V_n(i) \right] \\ \end{array}$$



For each node i in  $\mathcal{V}_0 \leftarrow$ 

Function sum

Stochastic Approximation

Algorithm

$$\begin{array}{c} V_{n+1}(i) = V_n(i) \\ \uparrow \\ +a(n)\mathbb{I}\{z=i\} \left[ \left( \sum_{m=1}^{\xi(n)} f(X_m^n) \right) - \frac{\xi(n)}{|\mathcal{V}_0|} \sum_{j \in \mathcal{V}_0} V_n(j) + V_n(X_{\xi(n)}^n) - V_n(i) \right] \\ \end{array}$$

inside a tour





For each node i in  $\mathcal{V}_0$ 

Seed se

Function sum inside a tour

Stochastic Approximation

Algorithm

$$\begin{array}{c} V_{n+1}(i) = V_n(i) \\ \uparrow \\ +a(n)\mathbb{I}\{z=i\} \end{array} \left[ \left( \sum_{m=1}^{\xi(n)} f(X_m^n) \right) - \frac{\xi(n)}{|\mathcal{V}_0|} \sum_{j \in \mathcal{V}_0} V_n(j) + V_n(X_{\xi(n)}^n) - V_n(i) \right]$$

$$a(n) > 0$$
 are stepsizes satisfying  $\sum_{n} a(n) = \infty$ ,  $\sum_{n} a(n)^{2} < \infty$ .





For each node i in  $V_0$  Seed set

**Function sum** inside a tour

# Stochastic Approximation Algorithm

$$\bigvee_{\substack{\uparrow\\ \text{Cost function}}} V_{n+1}(i) = V_n(i) \\ + a(n) \mathbb{I}\{z=i\} \left[ \left( \sum_{m=1}^{\xi(n)} f(X_m^n) \right) - \frac{\xi(n)}{|\mathcal{V}_0|} \sum_{j \in \mathcal{V}_0} V_n(j) + V_n(X_{\xi(n)}^n) - V_n(i) \right]$$

$$a(n) > 0$$
 are stepsizes satisfying  $\sum_{n} a(n) = \infty$ ,  $\sum_{n} a(n)^{2} < \infty$ .

$$\frac{1}{|\mathcal{V}_0|} \sum_{j \in \mathcal{V}_0} V_n(j) \to \sum_{u \in \mathcal{V}} \pi_u f(u)$$





Mixing time

Not a good criterion here due to burn-in period.



Mixing time

Not a good criterion here due to burn-in period.





Mixing time

Not a good criterion here due to burn-in period.



Reinforcement Learning technique does not require burn-in period



Mixing time

Not a good criterion here due to burn-in period.

Efficiency of the estimator:

How many samples are needed to achieve certain accuracy



# Asymptotic Variance



## Asymptotic Variance

#### Asymptotic variance of the estimator

$$\sigma^2 \stackrel{\Delta}{=} \lim_{n \to \infty} n \operatorname{Var} \left( \mu^{(n)}(\mathcal{G}) \right)$$



## Asymptotic Variance

Asymptotic variance of the estimator

$$\sigma^2 \stackrel{\Delta}{=} \lim_{n \to \infty} n \operatorname{Var} \left( \mu^{(n)}(\mathcal{G}) \right)$$

Also from Central Limit Theorem equivalent

$$\sqrt{n}\left(\hat{\mu}^{(n)}(\mathcal{G}) - \mu(\mathcal{G})\right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma^2)$$



# Asymptotic Variance (contd.)



For Metropolis-Hastings Sampling,

$$\begin{split} \sqrt{n} \left( \hat{\mu}_{\mathrm{MH}}^{(n)}(\mathcal{G}) - \mu(\mathcal{G}) \right) &\xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma_{\mathrm{MH}}^2) \\ \text{where } \sigma_{\mathrm{MH}}^2 &= \frac{2}{n} \mathbf{f}^T \mathbf{Z} \mathbf{f} - \frac{1}{n} \mathbf{f}^T \mathbf{f} - \left( \frac{1}{n} \mathbf{f}^T \mathbf{1} \right)^2 \\ &\xrightarrow{\text{Fundamental matrix of Markov chain}} \end{split}$$



For Metropolis-Hastings Sampling,

$$\sqrt{n} \left( \hat{\mu}_{\text{MH}}^{(n)}(\mathcal{G}) - \mu(\mathcal{G}) \right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma_{\text{MH}}^2)$$
where  $\sigma_{\text{MH}}^2 = \frac{2}{n} \mathbf{f}^T \mathbf{Z} \mathbf{f} - \frac{1}{n} \mathbf{f}^T \mathbf{f} - \left( \frac{1}{n} \mathbf{f}^T \mathbf{1} \right)^2$ 

For Respondent Driven Sampling,

$$\sqrt{n}(\hat{\mu}_{\mathrm{RDS}}^{(n)}(\mathcal{G}) - \mu(\mathcal{G})) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma_{\mathrm{RDS}}^2)$$
,  $\sigma_{\mathrm{RDS}}^2 = \mathrm{function}(\deg, \mathbf{Z}, \mathbf{f})$ 

— Fundamental matrix of Markov chain



## Asymptotic Variance (contd.)

For Metropolis-Hastings Sampling,

$$\sqrt{n} \left( \hat{\mu}_{\text{MH}}^{(n)}(\mathcal{G}) - \mu(\mathcal{G}) \right) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma_{\text{MH}}^2)$$
where  $\sigma_{\text{MH}}^2 = \frac{2}{n} \mathbf{f}^T \mathbf{Z} \mathbf{f} - \frac{1}{n} \mathbf{f}^T \mathbf{f} - \left( \frac{1}{n} \mathbf{f}^T \mathbf{1} \right)^2$ 

For Respondent Driven Sampling,

$$\sqrt{n}(\hat{\mu}_{\mathrm{RDS}}^{(n)}(\mathcal{G}) - \mu(\mathcal{G})) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \sigma_{\mathrm{RDS}}^2)$$
,  $\sigma_{\mathrm{RDS}}^2 = \mathrm{function}(\deg, \mathbf{Z}, \mathbf{f})$ 

Fundamental matrix of Markov chain

For Reinforcement Learning based sampling,

$$\mathbb{E}\left[|\hat{\mu}_{\mathrm{RL}}^{(n)}(\mathcal{G}) - \mu(\mathcal{G})|^2\right] = \mathcal{O}\left(\frac{1}{n}\right)$$





Normalized Root Mean Square Error (NRMSE) vs Budget B



Normalized Root Mean Square Error (NRMSE) vs Budget B

NRMSE := 
$$\frac{\sqrt{\text{MSE}}}{\mu(\mathcal{G})}$$
 where MSE =  $\mathbb{E}[(\hat{\mu}^{(n)}(\mathcal{G}) - \mu(\mathcal{G}))^2]$ 



#### Normalized Root Mean Square Error (NRMSE) vs Budget B

NRMSE := 
$$\frac{\sqrt{\text{MSE}}}{\mu(\mathcal{G})}$$
 where MSE =  $\mathbb{E}[(\hat{\mu}^{(n)}(\mathcal{G}) - \mu(\mathcal{G}))^2]$ 

Why MSE?



#### **Numerical Studies**

Normalized Root Mean Square Error (NRMSE) vs Budget B

NRMSE := 
$$\frac{\sqrt{\text{MSE}}}{\mu(\mathcal{G})}$$
 where MSE =  $\mathbb{E}[(\hat{\mu}^{(n)}(\mathcal{G}) - \mu(\mathcal{G}))^2]$ 

Why MSE? 
$$\mathbb{P}\left[|\hat{\mu}^{(n)}(\mathcal{G}) - \mu(\mathcal{G})| \geq \varepsilon\right] \leq \frac{\text{MSE}}{\varepsilon^2}$$



#### **Numerical Studies**

Normalized Root Mean Square Error (NRMSE) vs Budget B

NRMSE := 
$$\frac{\sqrt{\text{MSE}}}{\mu(\mathcal{G})}$$
 where MSE =  $\mathbb{E}[(\hat{\mu}^{(n)}(\mathcal{G}) - \mu(\mathcal{G}))^2]$ 

Why MSE? 
$$\mathbb{P}\left[|\hat{\mu}^{(n)}(\mathcal{G}) - \mu(\mathcal{G})| \geq \varepsilon\right] \leq \frac{\text{MSE}}{\varepsilon^2}$$

Budget B: number of allowed samples





Number of nodes: 77, number of edges: 254.



Number of nodes: 77, number of edges: 254.



$$\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} \mathbb{I}\{\deg(\mathbf{u}) > 10\}$$



Number of nodes: 77, number of edges: 254.



$$\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} \mathbb{I}\{\deg(u) > 10\}$$



$$\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{\mathbf{u} \in \mathcal{V}} \mathbb{I}\{\deg(\mathbf{u}) < 4\}$$







$$\mu(\mathcal{G}) = \text{Average degree}$$







$$\mu(\mathcal{G}) = \text{Average degree}$$

$$\mu(\mathcal{G})$$
 = Average clustering coefficient









$$\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} \mathbb{I}\{\deg(u) > 10\}$$





$$\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} \mathbb{I}\{\deg(u) > 10\}$$



$$\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} \mathbb{I}\{\deg(u) < 4\}$$





$$\mu(\mathcal{G}) = \text{Average degree}$$





Number of nodes  $\sim 65$ K number of edges  $\sim 1.25$ M



Number of nodes  $\sim 65$ K number of edges  $\sim 1.25$ M





Number of nodes  $\sim 65$ K number of edges  $\sim 1.25$ M



$$\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} \mathbb{I}\{\deg(u) > 50\}$$



$$\mu(\mathcal{G}) = \text{Average clustering coefficient}$$





Stability of sample paths:



Stability of sample paths: single path example



## Stability of sample paths: single path example



Varying super-node size



## Stability of sample paths: single path example





Varying super-node size

Varying step size





■ Rand Walk based estimators of  $\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u)$ 



- Rand Walk based estimators of  $\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u)$
- Numerical and theoretical study of Mean Square Error & Asymptotic Variance of
  - ✓ Metropolis-Hastings sampling
  - √ Respondent Driven sampling (RDS)
  - ✓ New Reinforcement Learning based sampling (RL)



- Rand Walk based estimators of  $\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u)$
- Numerical and theoretical study of Mean Square Error & Asymptotic Variance of
  - ✓ Metropolis-Hastings sampling
  - ✓ Respondent Driven sampling (RDS)
  - ✓ New Reinforcement Learning based sampling (RL)
- Reinforcement Learning technique:
  - ✓ Tackles disconnected graph
  - ✓ A cross between deterministic iteration and MCMC
  - ✓ Can control the stability of the algorithm with step sizes



- Rand Walk based estimators of  $\mu(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} f(u)$
- Numerical and theoretical study of Mean Square Error & Asymptotic Variance of
  - ✓ Metropolis-Hastings sampling
  - ✓ Respondent Driven sampling (RDS)
  - ✓ New Reinforcement Learning based sampling (RL)
- Reinforcement Learning technique:
  - √ Tackles disconnected graph
  - ✓ A cross between deterministic iteration and MCMC
  - ✓ Can control the stability of the algorithm with step sizes
- RDS works better. RL technique comparable, yet more stable and no burn-in!



Thank you! http://bit.do/Jithin

