LA FONCTION CUBE E02

EXERCICE N°2 (Le corrigé)

On considère la fonction f définie pour tout réel par $f(x)=x^3-x^2$.

On a tracé la courbe représentative de la fonction f dans le repère ci-contre.

1) Conjecturer graphiquement les solutions l'équation f(x)=0.

La courbe coupe l'axe des abscisses en 0 et 1. On peut donc penser que les solutions de l'équation f(x)=0 sont 0 et 1

Nous allons résoudre l'équation f(x)=0

$$f(x) = 0$$

$$\Leftrightarrow x^3 - x^2 = 0$$

$$\Leftrightarrow x^2(x-1) = 0$$

(un produit de facteurs est nuls si et seulement si, l'un au moins de ses facteurs est nul)

$$\begin{array}{c|cccc}
x & 1 & & +\infty \\
\hline
f(x) & & & \\
0 & & & \\
\end{array}$$

$$\Leftrightarrow (x^2 = 0 \text{ ou } x-1 = 0)$$

\Rightarrow (x = 0 ou x = 1)

(hé mais le carré a disparu! Ah oui : propriété n°6)

Les solutions sont donc 0 et 1.

(On peut aussi écrire : « l'ensemble des solutions est $\{0;1\}$ »)

3) En utilisant le graphique, déterminer le signe de f(x).

La courbe est « en dessous de l'axe des abscisses » jusque 1, puis est au dessus. Il y a aussi deux points de contact avec l'axe des abscisses qui ont pour abscisse respectives 0 et 1.

On en déduit que :

f(x) est strictement négative sur $]-\infty$; $0[\cup]0$; 1[f(x)] est strictement positive sur]1; $+\infty[f(x)]$ vaut zéro sur [0, 1]

4) Démontrer la conjecture graphique de la question 3.

On va dresser un tableau de signes.

$$f(x) = x^2(x-1) = x \times x \times (x-1)$$

- x > 0 quand x > 0 (Bah oui)
- x > 0 quand x > 0 (Encore!)
- $x-1 > 0 \Leftrightarrow x > 1$

x	$-\infty$		0		1		+ ∞
x		_	0	+		+	
x		_	0	+	1	+	
x-1		_		_	0	+	
f(x)		_	0	_	0	+	

La dernière ligne du tableau nous donne le signe de f(x)

Remarque 1 : Vous avez pu constaté que certaines lignes peuvent paraître inutiles. Nous sommes encore en formation donc on applique la méthode à la lettre pour s'en souvenir.

Remarque 2:

On pourra aller plus vite plus tard:

$$x^2 > 0 \Leftrightarrow (x < 0 \text{ ou } x > 0)$$

 $x-1 > 0 \Leftrightarrow x > 1$

x	$-\infty$		0		1		+∞
x^2		+	0	+	T	+	
x-1		_		_	0	+	
f(x)		_	0	_	0	+	

La dernière ligne du tableau nous donne le signe de f(x)

5) Résoudre graphiquement l'équation f(x)=1

La droite d'équation y=1 et la courbe ont un seul point d'intersection dont l'abscisse est entre 1,4 et 1,5

6) En utilisant le graphique, donner le tableau variation de la fonction f sur l'intervalle $[1; +\infty[$

7) Calculer les valeurs exactes de f(1,46) et f(1,47) En utilisant la question 6, justifier que la solution de l'équation f(x)=1 est comprise entre 1,46 et 1,47.

Avec la calculatrice :

$$f(1,46) = 0,980536$$

$$f(1,47) = 1,015623$$

$$f(1,46) < f(x)=1$$

Comme f est strictement croissante d'après la question 6, on en déduit que 1,46 < x (sinon on ne peut pas avoir f(1,46) < f(x) car f conserve les inégalités)

De la même façon : x < 1,47Ainsi 1,46 < x < 1,47 Remarque : Plus tard, vous verrez qu'il manque en fait un argument essentiel qui est la continuité de la fonction (En première approche : on a pas besoin de lever le crayon pour dessiner sa représentation graphique) mais cela n'est pas exigible à notre niveau.

8) En utilisant la calculatrice, déterminer un intervalle d'amplitude 10^{-4} qui contient solution de l'équation f(x)=1.

On sait que $1{,}46 < x < 1{,}47$, on va donc faire une première table des valeurs de f(x) avec un pas 10^{-3}

```
\frac{x}{1.464} \frac{y1}{0.9944} \frac{y1}{1.465} \frac{y1}{0.9979} \frac{y1}{1.465} \frac{y1}{0.9993} \frac{x}{1.4654} \frac{y1}{0.9993} \frac{y1}{1.4656} \frac{y1}{1.9651} \frac{y1}{0.9997} \frac{y1}{1.4655} \frac{y1}{0.9997} \frac
```

Remarque : Vous pouvez faire directement la table avec un pas de 10^{-4} (essayez vous verrez ce qui est le plus pratique)