

4-Bit Decade Counter (with Synchronous Clear)

ELECTRICALLY TESTED PER: MIL-M-38510/31511

The 'LS162A is a high-speed 4-bit synchronous counter. It is edgetriggered, synchronously presettable, and cascadable with MSI building blocks for counting, memory addressing, frequency division and other applications. The 'LS162A can count modulo 10 (BCD).

The 'LS162A has a Synchronous Reset (Clear) input that overrides all other control inputs, but is active only during the rising clock edge.

- · Synchronous Counting and Loading
- Two Count Enable Inputs For High-Speed Synchronous Expansion
- · Terminal Count Fully Decoded
- · Typical Count Rate of 35 MHz

LOGIC DIAGRAM

Military 54LS162A

AVAILABLE AS:

1) JAN: JM38510/31511BXA 2) SMD: N/A 3) 883: 54LS162A/BXAJC

X = CASE OUTLINE AS FOLLOWS: PACKAGE: CERDIP: E CERFLAT: F LCC: 2

THE LETTER "M" APPEARS BEFORE THE / ON LCC.

PIN ASSIGNMENTS								
FUNCT.	DIL 620-09	FLATS 650-05	LCC 756A-02	BURN-IN (COND. A)				
CLR	1	1	2	VCC				
CLK	2	2	3	VCC				
Α	3	3	4	VCC				
В	4	4	5	VCC				
С	5	5	7	VCC				
D	6	6	8	VCC				
EnP	7	7	9	VCC				
GND	8	8	10	GND				
Ld	9	9	12	VCC				
E _{nT}	10	10	13	VCC				
QD	11	11	14	VCC				
QC	12	12	15	VCC				
QB	13	13	17	VCC				
QA	14	14	18	VCC				
RC	15	15	19	VCC				
Vcc	16	16	20	VCC				
	BURN-IN CONDITIONS: VCC = 5.0 V MIN/6.0 V MAX							

MODE SELECT TABLE								
CLR	Ld	E _{nT}	E _{nP}	Action on the Rising Clock Edge (よこ)				
L	×	Х	Х	Reset (Clear)				
н	L	Х	х	Load (Dn-Qn)				
H	Н	н	Н	Count (increment)				
Н	Н	L	х	No Change (Hold)				
Н	Н	X	L	No Change (Hold)				

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

MOTOROLA MILITARY FAST/LS/TTL DATA 5-187

	Pin Names	Loading (Note b)			
		HIGH	LOW		
Load	Parallel Enable (Active LOW)	1.0 U.L.	0.5 U.L.		
A-D	Parallel Inputs (Data Inputs)	0.5 U.L.	0.25 U.L.		
E _{nP}	Count Enable Parallel input	0.5 U.L.	0.25 U.L.		
E _{nT}	Count Enable Trickle Input	1.0 U.L.	0.5 U.L.		
CLK	Clock (Active HIGH Going Edge) Input	0.5 U.L.	0.25 U.L.		
CLR	Master Reset (Active LOW) Input	1.0 U.L.	0.25 U.L.		
Q _A -Q _D	Parallel Outputs (Note b)	10 U.L.	5(2.5) U.L.		
RC	Terminal Count (Ripple Carry) Output (Note b)	10 U.L.	5(2.5) U.L.		

NOTES:

- a. One TTL Unit Load (U.L.) = 40 μA HIGH/1.6 mA LOW.
- The Output LOW drive factor is 2.5 U.L. for Military (54)
 Temperature Ranges.

LOGIC EQUATIONS

Count Enable = $E_{nP} \cdot E_{nT} \cdot Ld$ RC for LS162A = $E_{nT} \cdot QA \cdot \overline{Q}B \cdot \overline{Q}C \cdot QD$ Preset = $\overline{L}d \cdot CLK + (rising clock edge)$ Reset = $\overline{CR} \cdot CLK + (rising clock edge)$

NOTE:

The LS162A can be preset to any state, but will not count beyond 9. If preset to state 10, 11, 12, 13, 14, or 15, it will return to its normal sequence within two clock pulses.

FUNCTIONAL DESCRIPTION

The 'LS162A is a 4-bit synchronous counter with a synchronous Parallel Enable (Load) feature. The counter consists of four edge-triggered D flip-flops with the appropriate data routing networks feeding the D inputs. All changes of the Q outputs occur as a result of, and synchronous with, the LOW to HIGH transition of the Clock input (CLK). As long as the set-up time requirements are met, there are no special timing or activity constraints on any of the mode control or data inputs.

Three control inputs – Parallel Enable (Ld), Count Enable Parallel (E_nP) and Count Enable Trickle (E_nT) – select the mode of operation as shown in the table below. The Count Mode is enabled when the $E_nP,\,E_nT,\,$ and \overline{Ld} inputs are HIGH. When the \overline{Ld} is LOW, the counters will synchronously load the data from the parallel inputs into the flip-flops on the LOW to HIGH transition of the clock. Either the E_nP or E_nT can be used to inhibit the count sequence. With the Ld held HIGH, a LOW on either the E_nP or E_nT inputs at least one set-up time prior to the LOW to HIGH clock transition will cause the existing output states to be retained The AND feature of the two Count Enable inputs (E_nP • E_nT) allows synchronous cascading

without external gating and without delay accumulation over any practical number of bits or digits.

The Terminal Count (RC) output is HIGH when the Counter Enable Trickle (E_{nT}) input is HIGH while the counter is in its maximum count state (HLLH for BCD counters, HHHH for Binary counters). Note that RC is fully decoded and will, therefore, be HIGH only for one count state.

The 'LS162A counts' modulo 10 following a binary coded decimal (BCD) sequence. They generate an RC output when the E_{nT} input is HIGH while the counter is in the state 9 (HLLH). From this state they increment to state 0 (LLLL). If loaded with a code in excess of 9 they return to their legitimate sequence within two counts, as explained in the state diagram. States 10 through 15 do not generate an RC output.

The active LOW Synchronous Reset (\overline{CR}) input of the 'LS162A acts as an edge-triggered control input, overriding E_{nT} . E_{np} and \overline{Ld} , and resetting the four counter flip-flops on the LOW to HIGH transition of the clock. This simplifies the design from race-free logic controlled reset circuits, e.g., to reset the counter synchronously after reaching a predetermined value.

MOTOROLA MILITARY FAST/LS/TTL DATA 5-188

tSETUP = 25 ns, tHOLD = 0 ns.

VOLTAGE WAVEFORM 2

NOTE:

The data pulse generator has the following characteristics: Vgen = 3.0 V, $t_r \le$ 15 ns, $t_f \le$ 6.0 ns, t_{DATA} = 30 ns, t_{SETUP} = 20 ns, t_{HOLD} = 10 ns.

MOTOROLA MILITARY FAST/LS/TTL DATA 5-189

VOLTAGE WAVEFORM 3

TEST CIRCUIT

REFERENCE NOTES ON PAGE 5-192

MOTOROLA MILITARY FAST/LS/TTL DATA 5-190

54LS162A

Symbol	Parameter	Limits						Unit	Test Condition (Unless Otherwise Specified)
	Static Parameters:	+ 25°C		+ 125°C		– 55°C			
		Subgroup 1		Subgroup 2		Subgroup 3			
У ОН	Logical "1" Output Voltage	Min 2.5	Max	Min 2.5	Max	Min 2.5	Max	V	V _{CC} = 4.5 V, I _{OH} = -0.4 mA, CR = 4.5 V, E _{nP} = open, CLK = (See Note 7), V _{IH} = 2.0 V, E _n T = 2.0 V, Ld = GND.
√OL	Logical "0" Output Voltage		0.4		0.4		0.4	٧	V_{CC} = 4.5 V, I_{OL} = 4.0 mA, V_{IL} = 0.7 V, I_{Cd} = GND, CLK = (See Note 7), CR = 4.5 V, E_{nP} = open, E_{nT} = 0.7 V.
V _{IC}	Input Clamping Voltage		-1.5	-				٧	V _{CC} = 4.5 V, I _{IN} = -18 mA, other inputs are open.
iH	Logical "1" Input Current		20		20		20	μА	V _{CC} = 5.5 V, V _{IH} = 2.7 V, (other inputs are open).
1H	Logical "1" Input Current		40		40		40	μА	V _{CC} = 5.5 V, V _{IH} = 2.7 V (other inputs are open), (CLK, Ld & E _{nT}) are open.
инн	Logical "1" Input Current		100		100		100	μА	V _{CC} = 5.5 V, V _{IHH} = 5.5 V (other inputs are open).
Інн	Logical "1" Input Current		200		200		200	μА	V_{CC} = 5.5 V, V_{IHH} = 5.5 V (other inputs are open), (CLK, Ld & $E_{nP/T}$) = GND or 5.5 V.
l _{IL1}	Logical "0" Input Current	-300	-760	-300	-760	-300	-760	μА	V_{CC} = 5.5 V, V_{IN} = 0.4 V (other inputs are open), (Ld & E _{nP}) = 4.5 V.
llL2	Logical "0" Input Current	0	-100	0	-100	0	-100	μА	V _{CC} = 5.5 V, V _{IN} = 0.4 V (other inputs are open), Ld = GND.
lıLЗ	Logical "0" Input Current	-160	-400	-160	-400	-160	-400	μА	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$ (other inputs are open), Ld = 0.4 V.
l _{1L4}	Logical "0" Input Current	-150	-380	-150	-380	-150	-380	μА	$\begin{split} &V_{CC}=5.5 \text{ V, } V_{IN}=0.4 \text{ V,} \\ &\text{Ld \& E}_{nT}=4.5 \text{ V,} \\ &\text{other inputs are open. } E_{nP}=0.4 \text{ V.} \end{split}$
I _{IL5}	Logical "0" Input Current	-150	-450	-150	-450	-150	-450	μА	V _{CC} = 5.5 V, CLR = 0.4 V (all other inputs are open).
los	Output Short Circuit Current	-15	-100	-15	-100	-15	-100	mA	$\begin{split} &V_{CC}=5.5 \text{ V, V}_{IN}=4.5 \text{ V}\\ &(\text{other inputs are open), Ld}=\text{GND,}\\ &V_{OUT}=\text{GND, CLK}=(\text{See Note 7}),\\ &\text{CR}=4.5 \text{ V, E}_{nT/P}=\text{open.} \end{split}$
Іссн	Power Supply Current Off		31		31		31	mA	V_{CC} = 5.5 V, V_{IN} = 5.5 V (all inputs), Ld = 5.5 V or GND.
ICCL	Power Supply Current Off		32		32		32	mA	V _{CC} = 5.5 V, V _{IN} = GND (all inputs), CLK = GND or 5.5 V.
V _{IH}	Logical "1" Input Voltage	2.0		2.0		2.0		V	V _{CC} = 4.5 V.
VIL	Logical "0" Input Voltage		0.7		0.7		0.7	٧	V _{CC} = 4.5 V.
	Functional Tests	Subg	roup 7	Subgr	oup 8A	Subgr	oup 8B		per Truth Table with $V_{CC} = 5.0 \text{ V}$, $V_{INL} = 0.4 \text{ V}$, and $V_{INH} = 2.5 \text{ V}$.

MOTOROLA MILITARY FAST/LS/TTL DATA 5-191

54LS162A

Symbol	Parameter	Limits						Unit	Test Condition (Unless Otherwise Specified)
	Switching	+ 25°C Subgroup 9		+ 125°C Subgroup 10		– 55°C Subgroup 11			
	Parameters:								
		Min	Max	Min	Max	Min	Max	ļ	
^t PHL4 ^t PHL4	Propagation Delay /Data-Output CLK to Carry Out	3.0	40 35	3.0	56 51	3.0	56 51	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$ $V_{CC} = 5.0 \text{ V}, C_L = 15 \text{ pF}.$
^t PLH4 ^t PLH4	Propagation Delay /Data-Output CLK to Carry Out	3.0 —	40 35	3.0	56 51	3.0 —	56 51	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$ $V_{CC} = 5.0 \text{ V}, C_L = 15 \text{ pF}.$
tPHL5 tPHL5	Propagation Delay /Data-Output CLK to Q _n	3.0	32 27	3.0	45 40	3.0	45 40	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$ $V_{CC} = 5.0 \text{ V}, C_L = 15 \text{ pF}.$
^t PLH5 ^t PLH5	Propagation Delay /Data-Output CLK to Q _n	3.0	29 24	3.0	41 36	3.0 —	41 36	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$ $V_{CC} = 5.0 \text{ V}, C_L = 15 \text{ pF}.$
^t PHL6 ^t PHL6	Propagation Delay /Data-Output CLK to Qn	3.0	32 27	3.0	48 43	3.0	48 43	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$ $V_{CC} = 5.0 \text{ V}, C_L = 15 \text{ pF}.$
^t PLH6 ^t PLH6	Propagation Delay /Data-Output CLK to Q _n	3.0	29 24	3.0	42 37	3.0	42 37	ns	$V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF, } R_L = 2.0 \text{ k}\Omega.$ $V_{CC} = 5.0 \text{ V, } C_L = 15 \text{ pF.}$
[†] PHL7 [†] PHL7	Propagation Delay /Data-Output E _{nT} to Carry Out	3.0	19 14	3.0	28 23	3.0	28 23	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$ $V_{CC} = 5.0 \text{ V}, C_L = 15 \text{ pF}.$
tPLH7 tPLH7	Propagation Delay /Data-Output E _{nT} to Carry Out	3.0	19 14	3.0	28 23	3.0	28 23	ns	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, R_L = 2.0 \text{ k}\Omega.$ $V_{CC} = 5.0 \text{ V}, C_L = 15 \text{ pF}.$
^t PHL8 ^t PHL8	Propagation Delay /Data-Output CLR to Qn	3.0	33 28	3.0	46 41	3.0 —	46 41	ns	V_{CC} = 5.0 V, C_L = 50 pF, R_L = 2.0 k Ω . V_{CC} = 5.0 V, C_L = 15 pF.
fMAX fMAX	Maximum Clock Frequency	22 25		22		22		MHz	V_{CC} = 5.0 V, C_L = 50 pF, R_L = 2.0 k Ω . V_{CC} = 5.0 V, C_L = 15 pF.

NOTES:

- 1. Voltage measurements are made with respect to ground terminal.
- 2. The pulse generator has the following characteristics:
- $V_{GEN}=3.0$ V, $t_r=15$ ns, $t_f=6.0$ ns, $t_p=0.5~\mu s,$ PRR ≤ 1.0 MHz, and $Z_{OUT}\approx 50~\Omega$ 3. All diodes are 1N3064 or equivalent.
- 4. C_L = 50 pF \pm 10%, including scope probe and jig capacitance.
- 5. f_{MAX} : $t_f = t_f \le 6.0 \text{ ns.}$
- 6. The limits specified for C_L = 15 pF are guaranteed but not tested.
- 7. Apply one pulse prior to measurement as follows:

2.5 V min/5.0 V max	or	2.5 V min/5.0 V max 0.0 V
---------------------	----	------------------------------