Information in Sequential Evaluations: the Good and the Bad

D. Carlos Akkar Nuffield College, University of Oxford

updated paper online soon!

ES North American Meetings, Nashville
June 2024

- Many risky opportunities need only *one taker*, but can be offered to *many*.
 - The seller of an asset & fin. derivative can ask many interested buyers
 - Debt seekers have many banks to apply to for credit
 - Entrepreneurs contact many VCs or angel investors for (seed) funding
- Whoever gets an offer must evaluate whether opportunity is good or bad

So: more information \longrightarrow better evaluations \longrightarrow better off evaluators?

- Many risky opportunities need only one taker, but can be offered to many.
 - The seller of an asset & fin. derivative can ask many interested buyers
 - Debt seekers have many banks to apply to for credit
 - Entrepreneurs contact many VCs or angel investors for (seed) funding
- Whoever gets an offer must evaluate whether opportunity is good or bad
 - So: more information \longrightarrow better evaluations \longrightarrow better off evaluators?
- But: evaluators have an adverse selection problem:
 - Am I getting opportunity after everyone rejected it? Does this mean it is bad?
- Answer depends on what other evaluators know & do: info. shapes adverse selection
 Maybe: more information → more adverse selection ^{??}/_→ worse off evaluators?

When does more info. leave evaluators better off? (read: improve selection quality)

Important policy question, e.g. credit scoring.

• Each bank wants better scoring algorithm. Regulators unsure if that's good...

Basel II: allowed Internal Ratings Based systems instead of standardised scoring to

"reward stronger and more accurate risk measurement"

"provide a more risk-sensitive approach to measuring credit risk"

"Regulation Guide: An Introduction", Moody's Analytics

When does more info. leave evaluators better off? (read: improve selection quality)

Important policy question, e.g. credit scoring.

• Each bank wants better scoring algorithm. Regulators unsure if that's good...

Basel III banned it back after the 2008 crisis:

"CVA is a complex risk ... cannot be modelled by banks in a robust and prudent manner. The revised framework removes the use of an internally modelled approach ..."

"High-Level Summary of Basel III Reforms", Bank of Intl. Settlements

When does more info. leave evaluators better off? (read: improve selection quality)

Important policy question, e.g. credit scoring.

• Each bank wants better scoring algorithm. Regulators unsure if that's good...

Banks thought this a mistake for the same reason:

"[Internal assessments] by banks allow for the most accurate measurement of risk ... Relying on regulators' assessments ... will be rough approximations at best ... a major step backwards"

Kenneth Bentsen, CEO of Global Financial Markets Association

Contribution today: characterise when more information \rightarrow better / worse treatment of risk

The Model

- APPLICANT with unknown quality $\theta \in \{L, H\}$ seeks approval from one evaluator.
 - Everyone has prior belief $\rho \in (0,1)$ that applicant is **born** with *High* quality.
- He sequentially visits $n \ge 2$ EVALUATORS, at random order τ .
 - τ is a permutation of $\{1, 2, ..., n\}$, chosen **privately** and **uniformly at random** by applicant.
- EV **approves** \longrightarrow payoff $\mathbbm{1}\{\theta=H\}-c$, $c\in(0,1)$. Game ends, other EV.s get 0 payoff. EV **rejects** \longrightarrow 0 payoff. Applicant keeps applying. If no EV left \rightarrow game ends.

The Model

- APPLICANT with unknown quality $\theta \in \{L, H\}$ seeks approval from one evaluator.
 - Everyone has prior belief $\rho \in (0,1)$ that applicant is **born** with *High* quality.
- He sequentially visits $n \ge 2$ EVALUATORS, at random order τ .
 - τ is private and $\mathbb{P}(\tau(i) = j) = \frac{1}{n}$ for all $i, j \in \{1, 2, ..., n\}$.
- EV **approves** \longrightarrow payoff $\mathbbm{1}\{\theta=H\}-c$, $c\in(0,1)$. Game ends, other EV.s get 0 payoff. EV **rejects** \longrightarrow 0 payoff. Applicant keeps applying. If no EV left \rightarrow game ends.

The Model

• EVs do not know θ or τ . But: receive private IID signals x about quality θ :

$$\mathcal{X} \mid \theta \stackrel{ ext{IID}}{\sim} p_{ heta} \qquad x \in \{s_1, s_2, ..., s_m\} \subset [0, 1] \qquad s_i = rac{p_H(s_i)}{p_H(s_i) + p_L(s_i)} < s_{i+1}$$

- **Equilibrium:** symmetric strategy and interim belief profile (σ^*, ψ^*) for EVs such that:
 - $\psi^* = \mathbb{P}\left(\theta = H \mid \text{applicant visited me}\right)$ consistent with strategy profile σ^*

$$\psi = \frac{\rho \times \sum_{k=0}^{n-1} \mathbb{P}(\text{applicant got } k \text{ rejections } | \theta = H)}{\sum_{k=0}^{n-1} \mathbb{P}(\text{applicant got } k \text{ rejections})}$$

• $\sigma^*: \{s_1,s_2,...,s_m\} o [0,1]$ – **optimal** given ψ^* : approve when $\mathbb{P}\left(\theta = H \mid x,\psi\right) > c$

Main Question and Takeaway

How does more information affect evaluators' equilibrium payoffs?

- Synonymous with selection quality: eqm. payoffs \uparrow when false positives & negatives \downarrow .
- Main difficulty: More information affects extent of adverse selection; this unintended
 effect might curb payoffs selection quality.
- Main result: Characterise effect of arbitrary Blackwell improvements of EVs signals.
- Main takeaway: Effect depends on the kind of improvement. Roughly:
 - improving favourable evaluations: good!
 - improving unfavourable evaluations: eventually bad

affect different applicants

+

have different payoff effects

Main Question and Takeaway

How does more information affect evaluators' equilibrium payoffs?

- Synonymous with selection quality: eqm. payoffs ↑ when false positives & negatives ↓.
- Main difficulty: More information affects extent of adverse selection; this unintended
 effect might curb payoffs selection quality.
- Main result: Characterise effect of arbitrary Blackwell improvements of EVs signals.
- Main takeaway: Effect depends on the kind of improvement. Roughly:
 - improving favourable evaluations: good!
 - improving unfavourable evaluations: eventually bad

affect different applicants

+

have different payoff effects

- Giving EVs information about **order** au
- EV makes take-it-or-leave-it price offer to applicant
- EVs compete on application costs

ask me after talk!

Circularity between σ and ψ means properties of equilibria are not automatic.

Proposition

The set of equilibrium strategies is non-empty and compact, and pointwise totally ordered. Furthermore:

- **1** all equilibrium strategies are monotone; $\sigma^*(s_i) > 0$ implies $\sigma^*(s_{i+1}) = 1$. [when $p_H \neq p_L$]
- 2 all equilibria exhibit adverse selection : $\psi^* \leq \rho$.
- Compact and totally ordered \rightarrow we can talk about:
 - the highest (most embracive) equilibrium,
 - the *lowest* (most selective) equilibrium.

- What do selective and embracive equilibria mean for payoffs?
- (the sum of) Evaluators' equilibrium payoffs:

$$\Pi(\sigma) := \rho \times (1 - c) \times \mathbb{P} \text{ (one EV approves } | \theta = H, \sigma) +$$

$$-(1 - \rho) \times c \times \mathbb{P} \text{ (all EVs reject } | \theta = L, \sigma)$$

Different virtues: selective → filter Low quality approvals
 embracive → secure High quality approvals

- What do selective and embracive equilibria mean for payoffs?
- (the sum of) Evaluators' equilibrium payoffs:

$$\Pi(\sigma) :=
ho imes (1-c) imes \mathbb{P} ext{ (one EV approves } \mid heta = H, \sigma) + \\ -(1-
ho) imes c imes \mathbb{P} ext{ (all EVs reject } \mid heta = L, \sigma)$$

- Different virtues: **selective** \rightarrow filter *Low* quality approvals **embracive** \rightarrow secure *High* quality approvals
- Nonetheless, trade-off is always resolved in favour of selective equilibria:

Proposition

Let σ^* be an eqm. strategy and σ^{**} be a *more embracive* eqm. strategy; $\sigma^{**} > \sigma^*$.

Then:
$$\Pi(\sigma^{**}) \leq \Pi(\sigma^*)$$

- What do selective and embracive equilibria mean for payoffs?
- (the sum of) Evaluators' equilibrium payoffs:

$$\Pi(\sigma) := \rho \times (1-c) \times \mathbb{P} ext{ (one EV approves } | \theta = H, \sigma) +$$

$$-(1-\rho) \times c \times \mathbb{P} ext{ (all EVs reject } | \theta = L, \sigma)$$

- Different virtues: **selective** \rightarrow filter *Low* quality approvals **embracive** \rightarrow secure *High* quality approvals
- Nonetheless, trade-off is always resolved in favour of selective equilibria:

Proposition

Let σ^* be an eqm. strategy and σ^{**} be a *more embracive* eqm. monotone strategy; $\sigma^{**} > \sigma^*$.

Then:
$$\Pi(\sigma^{**}) \leq \Pi(\sigma^*)$$

Proposition

Let σ^* be an eqm. strategy and σ^{**} be a more embracive eqm. monotone strategy; $\sigma^{**} > \sigma^*$.

Then:
$$\Pi(\sigma^{**}) \leq \Pi(\sigma^*)$$

Proof Sketch:

- Take eqm. strategy σ^* , and consider marginally more embracive σ^{ε} : $||\sigma^{\varepsilon} \sigma^*|| = \varepsilon$
- Fix the signals all EVs would see if app. visited them all: $\{x_1, x_2, ..., x_n\}$.
- Only app. whose outcome changes: rejected by all under σ^* , approved by some under σ^{ε} .
- If ε is small, he was a.s. rejected by all under σ^* , approved by one under σ^{ε} .
- Bad news: approving is suboptimal for this last EV
- Last step: payoffs are **single crossing** in embraciveness; where $\sigma'' > \sigma' > \sigma$:

$$\Pi(\sigma') \leq \Pi(\sigma) \implies \Pi(\sigma'') \leq \Pi(\sigma')$$

Information and Equilibrium Payoffs

How does more information change payoffs in these equilibria?

$$\Pi(\sigma) := \rho \times (1-c) \times \mathbb{P} \text{ (one EV approves } | \theta = H, \sigma) +$$

$$-(1-\rho) \times c \times \mathbb{P} \text{ (all EVs reject } | \theta = L, \sigma)$$

- With *one* evaluator, **Blackwell more informative** signal $\stackrel{()}{\Longrightarrow}$ \uparrow payoffs for all c, ρ
- Reason: affords higher true positives [approve $\mid \theta = H$] & negatives [reject $\mid \theta = L$]

Information and Equilibrium Payoffs

• What could go wrong with many EVs? Rewrite EV i's payoff $\pi_i \left(= \frac{\Pi}{n} \right)$:

```
\pi_i(\sigma) = \mathbb{P} 	ext{ (applicant visits } i) 
 \times \left[ \psi \times (1-c) \times \mathbb{P} 	ext{ ($i$ approves } | \theta = H) - (1-\psi) \times c \times \mathbb{P} 	ext{ ($i$ approves } | \theta = L) \right]
```

- The blue terms are shaped by adverse selection: depend on others' strategies
- ullet Other EVs do not internalise the adverse selection they imposes onto EV i
- Maximising individual selection quality eq maximising **overall** selection quality

- Start from binary signals: main intuition and building block to full characterisation
- $x \in S = \{\vec{s_L}, \vec{s_H}\}$ more informative when $s_L \downarrow$: stronger evidence for *Low* quality and $s_H \uparrow$: stronger evidence for *High* quality

Theorem

Let EVs have a binary signal, $x \in S = \{s_L, s_H\}$. EVs equilibrium payoffs in the most selective (embracive) equilibria are weakly:

- increasing with stronger evidence for $\theta = H \ (\uparrow s_H)$,
- increasing with stronger evidence for $\theta = L \; (\downarrow s_L)$ when s_L is above a threshold,
- decreasing with stronger evidence for $\theta = L \ (\downarrow s_L)$ when s_L is below that threshold

- Start from binary signals: main intuition and building block to full characterisation
- $x \in S = \{s_L, s_H\}$ more informative when $s_L \downarrow$: stronger evidence for *Low* quality and $s_H \uparrow$: stronger evidence for *High* quality

- Start from binary signals: main intuition and building block to full characterisation
- $x \in S = \{s_L, s_H\}$ more informative when $s_L \downarrow$: stronger evidence for *Low* quality and $s_H \uparrow$: stronger evidence for High quality

Theorem

Let EVs have a binary signal, $x \in S = \{s_L, s_H\}$. EVs equilibrium payoffs in the most selective (embracive) equilibria are weakly:

- increasing with stronger evidence for $\theta = H \ (\uparrow s_H)$,
- increasing with stronger evidence for $\theta = L (\downarrow s_L)$ when s_L is above a threshold,
- decreasing with stronger evidence for $\theta = L (\downarrow s_L)$ when s_L is below that **threshold**

Sketch Proof:

• Consider decreasing s_L marginally. Which applicant gets affected?

Sketch Proof:

- Consider decreasing s_L marginally. Which applicant gets affected?
- How to implement this Blackwell improvement? Construct an auxiliary signal $\hat{\mathcal{X}}$.

Sketch Proof:

- Consider decreasing s_L marginally. Which applicant gets affected?
- How to implement this Blackwell improvement? Construct an auxiliary signal $\hat{\mathcal{X}}$.

- Fix strat.s: high signal → approve & low signal → reject
- Fix signal pairs (x, \hat{x}) EVs would observe for applicant.
- We created marginal admits: rejected by all in old signal structure, approved by some in new.
- Prob. marginal admit has $\theta = H$ depends on how many $\hat{s_H}$ signals EVs saw.

Sketch Proof:

- Consider decreasing s_L marginally. Which applicant gets affected?
- How to implement this Blackwell improvement? Construct an auxiliary signal $\hat{\mathcal{X}}$.

- Fix strat.s: high signal \rightarrow approve & low signal \rightarrow reject
- Fix signal pairs (x, \hat{x}) EVs would observe for applicant.
- We created marginal admits: rejected by all in old signal structure, approved by some in new.
- Prob. marginal admit has $\theta = H$ depends on how many $\hat{s_H}$ signals EVs saw. Answer: only one!
- For marginal decrease in s_L , $\mathbb{P}(\hat{x} = \hat{s_H}) \propto \varepsilon \to 0$.
- **Multiple** $\hat{x} = \hat{s_H}$ has negligible probability.

Sketch Proof:

- Consider decreasing s_L marginally. Which applicant gets affected?
- How to implement this Blackwell improvement? Construct an auxiliary signal $\hat{\mathcal{X}}$.

• Whether the **marginal admit** is profitable:

$$\underbrace{\frac{\rho}{1-\rho}}_{\text{prior}} \times \underbrace{\left(\frac{s_L}{1-s_L}\right)^{n-1}}_{n-1 \text{ low signals}} \times \underbrace{\frac{s_H}{1-s_H}}_{\text{the only high signal}} \lesssim \underbrace{\frac{c}{1-c}}_{\text{approval cos}}$$

Sketch Proof:

- Now consider increasing s_H marginally. Which applicant gets affected?
- How to implement this Blackwell improvement? Construct an auxiliary signal \hat{x} .

- This time marginal rejects: approved by some before, rejected by all now.
- All EVs must have seen low signals.
- Marginal reject is always good to push out:

$$\underbrace{\frac{\rho}{1-\rho}}_{\text{prior}} \times \underbrace{\left(\frac{s_L}{1-s_L}\right)^n}_{n \text{ low signals}} < \underbrace{\frac{c}{1-c}}_{\text{approval co}}$$

[actual pf: "strong low signals" is the only relevant case]

• Generalise the construction of the auxiliary signal $\hat{\mathcal{X}}$.

Take two signal str.s, $\mathcal{X} \mid \theta \stackrel{\textit{IID}}{\sim} p_{\theta}$ and $\mathcal{X}' \mid \theta \stackrel{\textit{IID}}{\sim} p'_{\theta}$. Joint supp $S \cup S' = \{s_1, s_2, ..., s_M\}$.

 \mathcal{X}' differs from \mathcal{X} by a local MPS at s_i if:

- p_{θ} places no mass at s_{i-1} or s_{i+1} .
- p'_{θ} places no mass at s_i .
- p_{θ} and p'_{θ} place equal mass to all points except $\{s_{i-1}, s_i, s_{i+1}\}.$
- p and p' have equal normalised means:

$$\sum_{j=1}^{M} s_{j} \times \left(\frac{p_{L}(s_{j}) + p_{H}(s_{j})}{2} \right) = \sum_{j=1}^{M} s_{j} \times \left(\frac{p'_{L}(s_{j}) + p'_{H}(s_{j})}{2} \right)$$

Local mean preserving spreads characterise Blackwell improvements

$$\mathcal{X} + [ext{finitely many local MPS}] = \mathcal{X}' \iff \mathcal{X}' \text{ is Blackwell more informative than } \mathcal{X}$$

- Only slight refinement of Rothschild and Stiglitz, 1970.
- I will characterise the effect of a local MPS. Local allows to control equilibrium evolution.

Theorem

Let \mathcal{X}' differ from \mathcal{X} by a local MPS at s_i , and σ and σ' be the most embracive (selective) equilibria under \mathcal{X}' and \mathcal{X}' . EVs' expected payoffs are:

Theorem

Let \mathcal{X}' differ from \mathcal{X} by a local MPS at s_i , and σ and σ' be the most embracive (selective) equilibria under \mathcal{X}' and \mathcal{X}' . EVs' expected payoffs are:

1 weakly higher under (σ', \mathcal{X}') if $x = s_i$ leads to approvals under σ ; $\sigma(s_i) = 1$,

Theorem

Let \mathcal{X}' differ from \mathcal{X} by a local MPS at s_i , and σ and σ' be the most embracive (selective) equilibria under \mathcal{X}' and \mathcal{X}' . EVs' expected payoffs are:

- **1** weakly higher under (σ', \mathcal{X}') if $x = s_i$ leads to approvals under σ ; $\sigma(s_i) = 1$,
- 2 weakly lower under \mathcal{X}' , if:
 - **1** $x = s_i$ leads to rejections under σ ; $\sigma(s_i) = 0$, and
 - 2 adverse selection condition for signal s_{i+1}

 \longrightarrow in the paper

- Unpleasant: Theorem requires knowing equilibrium structure.
 - All eqa. can be located in $\leq 2(m+2)$ steps

Stronger sufficient condition that relies only on the local MPS performed

in paper!

Thank You!

and please check back soon for (substantially) updated paper! especially if you are hiring! :)

Related Literature