Rank-265 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 + X_0 X_1^2 = 0$$

(1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) The point rank of the equation over GF(4) is 10931

General information

Number of lines	7
Number of points	29
Number of singular points	0
Number of Eckardt points	3
Number of double points	0
Number of single points	26
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{7}
Type of lines on points	$3^3, 1^{26}$

Singular Points

The surface has 0 singular points:

The 7 Lines

The lines and their Pluecker coordinates are:

$$\begin{split} \ell_0 &= \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right]_{337} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right]_{337} = \mathbf{Pl}(0,0,0,1,0,1)_{129} \\ \ell_1 &= \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega^2 \end{array} \right]_{339} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{array} \right]_{339} = \mathbf{Pl}(0,0,0,3,0,1)_{143} \end{split}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega \end{bmatrix}_{338} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}_{338} = \mathbf{Pl}(0,0,0,2,0,1)_{136}$$

$$\ell_{3} = \begin{bmatrix} 1 & \omega^{2} & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{80} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{80} = \mathbf{Pl}(0,0,1,1,2,1)_{258}$$

$$\ell_{4} = \begin{bmatrix} 1 & \omega & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{59} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{59} = \mathbf{Pl}(0,0,1,1,3,1)_{318}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & \omega^{2} & \omega \\ 0 & 1 & 1 & 1 \end{bmatrix}_{236} = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{236} = \mathbf{Pl}(3,2,2,3,2,1)_{290}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & \omega & \omega^{2} \\ 0 & 1 & 1 & 1 \end{bmatrix}_{299} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{299} = \mathbf{Pl}(2,3,3,2,3,1)_{352}$$

Rank of lines: (337, 339, 338, 80, 59, 236, 299)

Rank of points on Klein quadric: (129, 143, 136, 258, 318, 290, 352)

Eckardt Points

The surface has 3 Eckardt points:

 $0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0),$

 $1: P_{38} = \mathbf{P}(0, 0, 1, 1) = \mathbf{P}(0, 0, 1, 1),$

 $2: P_{42} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1).$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 26 single points:

The single points on the surface are:

```
\begin{array}{l} 0: \ P_6 = (2,1,0,0) \ \text{lies on line} \ \ell_3 \\ 1: \ P_7 = (3,1,0,0) \ \text{lies on line} \ \ell_4 \\ 2: \ P_{16} = (1,2,1,0) \ \text{lies on line} \ \ell_5 \\ 3: \ P_{20} = (1,3,1,0) \ \text{lies on line} \ \ell_6 \\ 4: \ P_{31} = (1,2,0,1) \ \text{lies on line} \ \ell_6 \\ 5: \ P_{35} = (1,3,0,1) \ \text{lies on line} \ \ell_5 \\ 6: \ P_{43} = (2,1,1,1) \ \text{lies on line} \ \ell_3 \\ 7: \ P_{44} = (3,1,1,1) \ \text{lies on line} \ \ell_4 \\ 8: \ P_{45} = (0,2,1,1) \ \text{lies on line} \ \ell_0 \\ 9: \ P_{46} = (1,2,1,1) \ \text{lies on line} \ \ell_4 \\ 10: \ P_{48} = (3,2,1,1) \ \text{lies on line} \ \ell_3 \\ 11: \ P_{49} = (0,3,1,1) \ \text{lies on line} \ \ell_0 \\ 12: \ P_{50} = (1,3,1,1) \ \text{lies on line} \ \ell_3 \\ 13: \ P_{51} = (2,3,1,1) \ \text{lies on line} \ \ell_4 \end{array}
```

$$\begin{array}{l} 14: \ P_{53} = (0,0,2,1) \ \text{lies on line} \ \ell_1 \\ 15: \ P_{56} = (3,0,2,1) \ \text{lies on line} \ \ell_5 \\ 16: \ P_{57} = (0,1,2,1) \ \text{lies on line} \ \ell_1 \\ 17: \ P_{61} = (0,2,2,1) \ \text{lies on line} \ \ell_1 \\ 18: \ P_{65} = (0,3,2,1) \ \text{lies on line} \ \ell_1 \\ 19: \ P_{68} = (3,3,2,1) \ \text{lies on line} \ \ell_0 \\ 20: \ P_{69} = (0,0,3,1) \ \text{lies on line} \ \ell_0 \\ 21: \ P_{71} = (2,0,3,1) \ \text{lies on line} \ \ell_0 \\ 22: \ P_{73} = (0,1,3,1) \ \text{lies on line} \ \ell_0 \\ 23: \ P_{77} = (0,2,3,1) \ \text{lies on line} \ \ell_0 \\ 24: \ P_{79} = (2,2,3,1) \ \text{lies on line} \ \ell_0 \\ 25: \ P_{81} = (0,3,3,1) \ \text{lies on line} \ \ell_0 \\ \end{array}$$

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are:

Line Intersection Graph

 $\begin{array}{c} 0123456 \\ \hline 001111111 \\ 1010000 \\ 21100000 \\ 31000100 \\ 41001000 \\ 51000001 \\ 61000010 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

ſ	Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
ſ	in point	P_1	P_1	P_{38}	P_{38}	P_{42}	P_{42}

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_1	P_1

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_1	P_1

Line 3 intersects

Line	ℓ_0	ℓ_4
in point	P_{38}	P_{38}

Line 4 intersects

Line	ℓ_0	ℓ_3
in point	P_{38}	P_{38}

 ${\bf Line~5~intersects}$

Line	ℓ_0	ℓ_6
in point	P_{42}	P_{42}

Line 6 intersects

Line	ℓ_0	ℓ_5
in point	P_{42}	P_{42}

The surface has 29 points:

The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$8: P_{42} = (0, 1, 1, 1)$	$16: P_{51} = (2, 3, 1, 1)$
$1: P_6 = (2, 1, 0, 0)$	$9: P_{43} = (2, 1, 1, 1)$	17: $P_{53} = (0, 0, 2, 1)$
$2: P_7 = (3, 1, 0, 0)$	$10: P_{44} = (3, 1, 1, 1)$	$18: P_{56} = (3, 0, 2, 1)$
$3: P_{16} = (1, 2, 1, 0)$	11: $P_{45} = (0, 2, 1, 1)$	19: $P_{57} = (0, 1, 2, 1)$
$4: P_{20} = (1, 3, 1, 0)$	$12: P_{46} = (1, 2, 1, 1)$	$20: P_{61} = (0, 2, 2, 1)$
$5: P_{31} = (1, 2, 0, 1)$	13: $P_{48} = (3, 2, 1, 1)$	$21: P_{65} = (0, 3, 2, 1)$
$6: P_{35} = (1, 3, 0, 1)$	$14: P_{49} = (0,3,1,1)$	$22: P_{68} = (3, 3, 2, 1)$
$7: P_{38} = (0,0,1,1)$	15: $P_{50} = (1, 3, 1, 1)$	23: $P_{69} = (0, 0, 3, 1)$

 $28: P_{81} = (0, 3, 3, 1)$

 $24: P_{71} = (2, 0, 3, 1)$ $25: P_{73} = (0, 1, 3, 1)$ 26: $P_{77} = (0, 2, 3, 1)$ 27: $P_{79} = (2, 2, 3, 1)$