Obsah

- Třídy složitosti
- Insertion sort
- Selection sort
- Bubble sort
- Quick sort
- Garbage collector vs přístup v C vs ostatní jazyky
- Pointer zopakování
- Pointery referenční předávání
- Pointery hodnotové předávání
- Dynamické pole "nafukovací pole"
- Amortizovaná složitost

$$F(n) = \begin{cases} 0, & \text{pro } n = 0 \\ 1, & \text{pro } n = 1 \\ F(n-1) + F(n-2), & \text{pro } n \ge 2 \end{cases}$$

$$\mathsf{F}(n) = \begin{cases} 0, & \mathsf{pro} \ \mathsf{n} = 0 \\ 1, & \mathsf{pro} \ \mathsf{n} = 1 \\ \mathsf{F}(n-1) + \mathsf{F}(n-2), & \mathsf{pro} \ \mathsf{n} \ge 2 \end{cases}$$

0	0
1	1
2	1
3	2
4	3
5	5
6	8
7	13
8	21
9	34

$$\mathsf{F}(n) = \begin{cases} 0, & \mathsf{pro} \ \mathsf{n} = 0 \\ 1, & \mathsf{pro} \ \mathsf{n} = 1 \\ \mathsf{F}(n-1) + \mathsf{F}(n-2), & \mathsf{pro} \ \mathsf{n} \ge 2 \end{cases}$$

0	0	
1	1	
2	1	
3	2	
4	3 5	
5	5	
6	8	
7	13	
7 8 9	21	
9	34	

10	55
11	89
12	144
13	233
14	377
15	610
16	987
17	1597
18	2584
19	4181

$$\mathsf{F}(n) = \begin{cases} 0, & \mathsf{pro} \ \mathsf{n} = 0 \\ 1, & \mathsf{pro} \ \mathsf{n} = 1 \\ \mathsf{F}(n-1) + \mathsf{F}(n-2), & \mathsf{pro} \ \mathsf{n} \geq 2 \end{cases}$$

0	0	
1	1	
2	1	
3	2	
4	3	
5	5	
6	8	
7	13	
8	21	
9	34	

10	55		
11	89		
12	144		
13	233		
14	377		
15	610		
16	987		
17	1597		
18	2584		
19	4181		

1	1 (11 –	≥ 2), pro $11 \geq 2$
	20	6765
	30	832040
	40	102334155
	50	12586269025
	60	1548008755920
	70	190392490709135
	80	23416728348467685
	90	2880067194370816120
	100	354224848179261915075
	110	43566776258854844738105

Rekurzivní řešení (naivní)

Rekurzivní řešení (naivní)

 $\mathcal{O}(2^n)$

Rekurzivní řešení (naivní)

 $\mathcal{O}(2^n)$

Iterativní řešení

Rekurzivní řešení (naivní)

 $\mathcal{O}(2^n)$

Iterativní řešení

 $\mathcal{O}(n)$

Rekurzivní řešení (naivní)

 $\mathcal{O}(2^n)$

Iterativní řešení

 $\mathcal{O}(n)$

Explicitní vyjádření

Rekurzivní řešení (naivní)

 $\mathcal{O}(2^n)$

Iterativní řešení

 $\mathcal{O}(n)$

Explicitní vyjádření

 $\mathcal{O}(1)$

Asymptotická složitost

Asymptotická složitost je způsob **klasifikace počítačových algoritmů**. Určuje operační náročnost algoritmu tak, že zjišťuje, jakým způsobem se bude chování algoritmu měnit **v závislosti na změně velikosti** (počtu) **vstupních dat**. [Wikipedia]

Asymptotická složitost

	п	$n \log_2 n$	n^2	n^3	1.5^{n}	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

[http://modelingsocialdata.org/lectures/2017/02/03/lecture-3-computational-complexity.html]

Příklad výpočetní náročnosti [Wikipedia]

Probírané asymptotické notace

 $\mathcal{O}, \Omega, \Theta$

6 / 27

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$n \stackrel{?}{\in} \mathcal{O}(n^2)$$

7 / 27

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$n \stackrel{?}{\in} \mathcal{O}(n^2)$$

Ano, například $c = 1, n_0 = 1$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$n \stackrel{?}{\in} \mathcal{O}(n^2)$$

Ano, například $c = 1, n_0 = 1$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のQで

7 / 27

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$n \stackrel{?}{\in} \mathcal{O}(0.5n)$$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$n \stackrel{?}{\in} \mathcal{O}(0.5n)$$

Ano, například c = 3, $n_0 = 1$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$n \stackrel{?}{\in} \mathcal{O}(0.5n)$$

Ano, například c = 3, $n_0 = 1$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$n^2+1\stackrel{?}{\in}\mathcal{O}(n^2)$$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$n^2+1\stackrel{?}{\in}\mathcal{O}(n^2)$$

Ano, například c = 2, $n_0 = 1$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$n^2+1\stackrel{?}{\in}\mathcal{O}(n^2)$$

Ano, například c = 2, $n_0 = 1$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$2^{n+5}\stackrel{?}{\in}\mathcal{O}(2^n)$$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$2^{n+5} \stackrel{?}{\in} \mathcal{O}(2^n)$$

Ano, například $c=2^6, n_0=10$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$2^{n+5}\stackrel{?}{\in} \mathcal{O}(2^n)$$

Ano, například $c=2^6, n_0=10$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$1.5n + 2.2n^2 + 0.001n^3 \stackrel{?}{\in} \mathcal{O}(n^3)$$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$1.5n + 2.2n^2 + 0.001n^3 \stackrel{?}{\in} \mathcal{O}(n^3)$$

Ano, například $c = 1, n_0 = 3$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$1.5n + 2.2n^2 + 0.001n^3 \stackrel{?}{\in} \mathcal{O}(n^3)$$

Ano, například $c = 1, n_0 = 3$

11 / 27

• V polynomech najdi nejrychleji rostoucí člen

- V polynomech najdi nejrychleji rostoucí člen
- Ostatní členy ignoruj

- V polynomech najdi nejrychleji rostoucí člen
- Ostatní členy ignoruj
- Ignoruj multiplikativní konstanty u nejrychleji rostoucího členu

- V polynomech najdi nejrychleji rostoucí člen
- Ostatní členy ignoruj
- Ignoruj multiplikativní konstanty u nejrychleji rostoucího členu
- Porovnej výsledky

Asymptotická horní mez $/\mathcal{O}$ neformální poučka

- V polynomech najdi nejrychleji rostoucí člen
- Ostatní členy ignoruj
- Ignoruj multiplikativní konstanty u nejrychleji rostoucího členu
- Porovnej výsledky

$$1.5n + 2.2n^2 + 0.001n^3 \stackrel{?}{\in} \mathcal{O}(n^3)$$

Asymptotická horní mez / $\mathcal O$ neformální poučka

- V polynomech najdi nejrychleji rostoucí člen
- Ostatní členy ignoruj
- Ignoruj multiplikativní konstanty u nejrychleji rostoucího členu
- Porovnej výsledky

$$1.5n + 2.2n^2 + 0.001n^3 \stackrel{?}{\in} \mathcal{O}(n^3)$$

٧

$$1.5n + 2.2n^2 + 0.001n^3$$

je nejryhleji rostoucím členem $0.001n^3$ Bez multiplikativní konstanty je to pouze n^3 Tudíž n^3 je asymptotickou horní mezí $1.5n+2.2n^2+0.001n^3$

Asymptotická spodní mez / Ω

Téměř opak ${\mathcal O}$

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$f(n) \in \Omega(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : c \cdot f(n) \leq g(n)$$

$$f(n) \in \Omega(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : c \cdot f(n) \leq g(n)$$

$$f(n) \in \Omega(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : c \cdot f(n) \leq g(n)$$

$$n^2 \stackrel{?}{\in} \Omega(n)$$

$$f(n) \in \Omega(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : c \cdot f(n) \leq g(n)$$

$$n^2 \stackrel{?}{\in} \Omega(n)$$

Ano, například $c = 1, n_0 = 1$

$$f(n) \in \Omega(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : c \cdot f(n) \leq g(n)$$

$$n^3 \stackrel{?}{\in} \Omega(1.5n + 2.2n^2 + 0.001n^3)$$

$$f(n) \in \Omega(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : c \cdot f(n) \leq g(n)$$

$$n^3 \stackrel{?}{\in} \Omega(1.5n + 2.2n^2 + 0.001n^3)$$

Ano, například $c = 1, n_0 = 3$

$$f(n) \in \Omega(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : c \cdot f(n) \leq g(n)$$

$$n^3 \stackrel{?}{\in} \Omega(1.5n + 2.2n^2 + 0.001n^3)$$

Ano, například $c = 1, n_0 = 3$

Asymptotická těsná mez / Θ

Předchozí dvě dohromady, tedy musí platit ${\mathcal O}$ a zároveň i Ω

$$f(n) \in \mathcal{O}(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : f(n) \leq c \cdot g(n)$$

$$f(n) \in \Omega(g(n)) \iff (\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \geq n_0) : c \cdot f(n) \leq g(n)$$

$$f(n) \in \Theta(g(n)) \iff (1)$$

$$(\exists c_1, c_2 \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \ge n_0):$$
 (2)

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \tag{3}$$

Asymptotická těsná mez / Θ příklad

$$f(n) \in \Theta(g(n)) \iff$$
 (4)

$$(\exists c_1, c_2 \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \ge n_0):$$
 (5)

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \tag{6}$$

$$\ln(n/2) \stackrel{?}{\in} \Theta(\ln(n))$$

Asymptotická těsná mez / Θ příklad

$$f(n) \in \Theta(g(n)) \iff$$
 (4)

$$(\exists c_1, c_2 \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \ge n_0):$$
 (5)

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \tag{6}$$

$$\ln(n/2) \stackrel{?}{\in} \Theta(\ln(n))$$

Ano, například $c_1 = 1/2, c_2 = 1, n_0 = 4$

Asymptotická těsná mez $/ \Theta$ příklad

$$f(n) \in \Theta(g(n)) \iff$$
 (4)

$$(\exists c_1, c_2 \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}^+)(\forall n \ge n_0):$$
 (5)

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \tag{6}$$

$$\ln(n/2) \stackrel{?}{\in} \Theta(\ln(n))$$

Ano, například $c_1 = 1/2, c_2 = 1, n_0 = 4$

4 D > 4 B > 4 B > 4 B > 9 Q @

Time complexity vs. Space complexity

Time complexity is the computational complexity that describes the amount of **computer time** it takes to run an algorithm. Wikipedia

Space complexity of an algorithm or a computer program is the amount of **memory space** required to solve an instance of the computational problem.

Wikipedia

Insertion sort

- Náročnost
 - Nejhorší $O(n^2)$ comparisons and swaps
 - ▶ Nejlepší O(n) comparisons, O(1) swaps
- Jednoduchá implementace
- Efektivní na malé nebo předseřazené pole
- Online
- https://upload.wikimedia.org/wikipedia/commons/0/0f/Insertionsort-example-300px.gif

Selection sort

- Náročnost
 - ▶ Nejhorší $O(n^2)$ comparisons, O(n) swaps
 - ▶ Nejlepší $O(n^2)$ comparisons, O(1) swaps
- Jednoduchá implementace
- Nestabilní řazení
- Seřazené pole se bude zpracovávat stejně dlouho jako neseřazené
- https://upload.wikimedia.org/wikipedia/commons/9/94/Selection-Sort-Animation.gif

Bubble sort

- Náročnost
 - ▶ Nejhorší $O(n^2)$ comparisons and swaps
 - ▶ Nejlepší O(n) comparisons, O(1) swaps
- Jednoduchá implementace
- Používá se prakticky jen pro vyukové účely
- Zpracování probíhá "probubláváním" prvku s nejvyšší hodnotou na konec pole
- https://upload.wikimedia.org/wikipedia/commons/c/c8/Bubble-sortexample-300px.gif

Quick sort

- Náročnost
 - Nejhorší O(n²)
 - Nejlepší O(n log(n))
- Složitejší implementace
- Nejrychlejší ze zmíněných pro velké pole
- Volba pivotu ovliňuje výkonost řazení
- https://upload.wikimedia.org/wikipedia/commons/9/9c/Quicksortexample.gif

Quick sort - volba pivotu

- První prvek
 - Velmi nevýhodné na částečně seřazených množinách
- Náhodný prvek
 - Nejčastěji používaná metoda
 - Nejhorší scénář je pořád $O(n^2)$
- Medián tří (případně více) prvků
 - Vyberou se náhodně z množiny a jako pivot se zvolí jejich medián

Garbage collector

- Automatická správa paměti
- Uvolňuje programem již nepoužívanou část paměti
- Součástí téměř všech moderních jazyků

Dynamické pole

Ačkoliv je složitost přidání jednoho prvku v nejhorším případě O, v
posloupnosti operací se chová, jako kdyby byla konstantní. Budeme
proto říkat, že je amortizovaně konstantní.

25 / 27

Amortizovaná složitost

- Průměrná složitost algoritmu
- Neposkytuje jistotu jelikož musí být splněny předpoklady sekvence
 - ▶ (v konkrétním bodě amortizovaná složitost neplatí, v úseku již ano)

Amortizace

"Amortize" is a fancy verb used in finance that refers to paying off the cost of something gradually. With dynamic arrays, every expensive append where we have to grow the array "buys" us many cheap appends in the future. Conceptually, we can spread the cost of the expensive append over all those cheap appends.

Amortizovaná složitost vs. Asymptotická složitost

Asymptotická složitost

ullet Složitost ${\mathcal O}$ je určena na základě nejhorší možné instance běhu algoritmu

Amortizovaná složitost

- Amortizovaná časová složitost označuje časovou složitost algoritmu v sekvenci nejhorších možných vstupních dat
- Nevyužívá pravděpodobnosti (⇒ na sekvenci dat je zaručena)