CIS 121—Data Structures and Algorithms with Java - Fall 2015

Lab Problem Solutions

Problem 1

Order the following functions such that if f precedes g, then f(n) is O(g(n)).

$$\sqrt{n}$$
, n , $n^{1.5}$, n^2 , $n \lg n$, $n \lg \lg n$, $n \lg n^2$, $2^{n/2}$, 2^n , $\lg(n!)$, $n^2 \lg n$, n^3 , 2^{2^n}

Solution.

$$\sqrt{n}$$
, n , $n \lg \lg n$, $n \lg n$, $\lg(n!)$, $n \lg n^2$, $n^{1.5}$, n^2 , $n^2 \lg n$, n^3 , $2^{n/2}$, 2^n , 2^{2^n}

Problem 2

Provide a runtime analysis of the following loop. That is, find both Big-Oh and Big- Ω :

```
for(int i = 0; i < n; i++)
for (int j = i; j <= n; j++)
    for (int k = i; k <= j; k++)
    sum++;</pre>
```

Solution.

Observe that for fixed values of i, j, the innermost loop runs $\max\{1, j-i+1\} \le n$ times. For instance, when i=j=0, the innermost loop evaluates once. When i=0, j=n, the innermost loop evaluates n+1 times. The middle loop runs a total number of $O((n-i)^2)$ times. Therefore, the entire block of code runs in $O(n^3)$.

To find a lower bound on the running time, we consider smaller subsets of values for i, j and lower-bound the running time for the algorithm on these subsets. (A lower bound there would also be a lower bound for the original code's runtime!) Consider the values of i such that $0 \le i \le n/4$ and values of j such that $3n/4 \le j \le n$. For each of the $n^2/16$ possible combinations of these values of i and j, the innermost loop runs at least n/2 times. Therefore, the running time is at least

$$(n^2/16)(n/2) = \Omega(n^3)$$

Alternate Solution for Big-Oh.

One could solve this using exact sums, but we will leverage some Big-Oh notation. We know that the innermost loop runs in at most (j - i + 1) time for fixed i, j (see other solution). Therefore the body of the middle loop runs at most c(j - i + 1) times. Therefore, we can express the runtime of the code shown as

$$\sum_{i=0}^{n} \sum_{j=i}^{n} c(j-i+1) = O(n^{3})$$

Problem 3

In this problem, you are **not** allowed to use the theorems about Big-Oh stated in the lecture notes. Your proof should follow exclusively from the definition of Big-Oh.

Prove or disprove the following statement:

$$f(n) + g(n)$$
 is $\Theta(\max\{f(n), g(n)\})$, where $f, g : R \to R^+$.

1

Solution.

We show both Big-Oh and Big- Ω separately.

Let
$$c = 2, n_0 = 1$$
. $f(n) + g(n) \le 2 \max\{f(n), g(n)\}, \forall n \ge 1$. Therefore, $f(n) + g(n) = O(\max\{f(n), g(n)\})$.

Let
$$c = 1, n_0 = 0$$
. $f(n) + g(n) \ge \max\{f(n), g(n)\}, \forall n \ge 0$. Therefore, $f(n) + g(n) = \Omega(\max\{f(n), g(n)\})$.

Therefore, as we have shown Big-Oh and Big- Ω , we have shown Big- Θ .

Problem 4

Prove or disprove the following statement:

$$2^n$$
 is $O(n!)$.

Solution.

We want to show that $2^n \le c(n!) \ \forall n \ge n_0$, for a positive real-valued c and integer n_0 .

Proof. Using Stirling's formula, we approximate n! as $(\frac{n}{e})^n \sqrt{2\pi n}$ for large n. Let $n_0 = 10, c = 1$. For all $n \ge 10$, it is true that $(\frac{n}{e}) > 2$. Therefore, 2^n is O(n!).

Solution with Induction.

Proof. We perform induction on n.

Induction Hypothesis. We define our proposition p(k) such that $p(k): 2^k \le c \cdot k!$ for c > 0 and some positive integer k. Let $c = 1, n_0 = 4$.

Base Case. If $k = 4, 2^4 \le 4!$.

Inductive Step. We want to show that p(k+1) holds.

$$2^{k+1} \le (k+1)!$$
$$2 \cdot 2^k \le (k+1) \cdot k!$$

We observe that since k > 4, by invoking the I.H. the right side must always exceed the left. Therefore, p(k) holds for all $k \ge 4$ and $2^n = O(n!)$ with $c = 1, n_0 = 4$.

Problem 5

Provide a runtime analysis of the following loop:

Solution.

For a fixed i, the inner loop runs $\log(\sqrt{i})$ times – as the iterand grows exponentially $(2^{\sqrt{i}})$. The outer loop runs $\lg\lg(n)$ times – as the iterand grows hyper-exponentially (2^{2^n}) . Therefore, the total runtime is $O(\sum_{i=1}^{\lg\lg n}\lg(\sqrt{2^{2^i}}))$. This is $O(\sum_{i=1}^{\lg\lg n}2^i)$, which is $O(\lg n)$.

Problem 6

Prove or disprove the following statement:

$$\lg(n!)$$
 is $\Theta(n \lg n)$.

Solution.

By Stirling's formula, for sufficiently large n we can approximate n! as $(\frac{n}{e})^n \sqrt{2\pi n}$.

$$\lg\left[\left(\frac{n}{e}\right)^n\sqrt{2\pi n}\right] = n\lg n - n + \left(\frac{1}{2}\right)\lg(2\pi n)$$

, which is clearly $O(n \lg n)$.

Detailed Solution

We first show $\lg(n!)$ is $O(n \lg n)$. Picking c = 1 and $n_0 = 1$, we have

$$\lg(n!) = \sum_{i=1}^{n} \lg i \le n \lg n$$

This is clearly true for all $n > n_0$. Therefore, we are done.

We then show that $\lg(n!)$ is $\Omega(n \lg n)$. Our strategy is to find an easier to work with lower-bound for $\lg n!$ that is larger than some $cn \lg n$.

$$\begin{split} \lg n! &= \lg 1 + \lg 2 + \dots + \lg n \\ &\geq \lg \frac{n}{2} + \lg (\frac{n}{2} + 1) + \dots + \lg n \\ &\geq \frac{n}{2} \cdot \lg \frac{n}{2} \end{split} \qquad \text{delete the first half of the terms}$$

Choosing $c = \frac{1}{4}$ and N = 4, it is clear that $\frac{n}{2} \lg \frac{n}{2} \ge \frac{n}{4} \lg n$ with some algebraic manipulation:

$$\frac{n}{2} \lg \frac{n}{2} \ge \frac{n}{4} \lg n$$
$$\frac{n}{2} \lg n - \frac{n}{2} \ge \frac{n}{4} \lg n$$
$$n \lg n \ge 2n$$
$$\lg n \ge 2$$

Therefore, $\lg(n!)$ is $\Omega(n \lg n)$.