NORMAL SUBGROUPS

DEFINITION: A subgroup N of a group G is **normal** if $gNg^{-1} = N$ for all $g \in G$, where $gNg^{-1} = \{gng^{-1} \mid n \in N\}$. We write $N \subseteq G$ to indicate that N is a normal subgroup of G.

LEMMA: Let N be a subgroup of a group G. The following are equivalent:

- (a) N is a normal subgroup of G.
- (b) For all $g \in G$, $gNg^{-1} \subseteq N$.
- (c) For all $g \in G$, the *left coset* gN is equal to the *right coset* Ng.
- (d) For all $g \in G$, $gN \subseteq Ng$.
- (e) For all $g \in G$, $Ng \subseteq gN$.
- (1) Examples of normal subgroups: Use the definition and/or the Lemma to show the following:
 - (a) If G is an abelian group and $H \leq G$, then $H \leq G$.
 - **(b)** The center Z(G) of a group G is a normal subgroup of G.
 - (c) The² group $K = \{e, (12)(34), (13)(24), (14)(23)\} \le S_4$ is normal.

¹Recall that we have already shown that $Z(G) \leq G$.

²Hint: Recall from HW 1 that $\tau(i \ j)\tau^{-1} = (\tau(i) \ \tau(j))$.