Applying cuts with new "split Chi2" variables

Casey Pancoast

22 April 2020

Overview

New Variables

- Propagated downstream from Kalman Filter to TTTrack (along with hitpattern)
 - Origin: lan's earlier presentation https://indico.cern.ch/event/866759/contributions/3655375/
- \circ χ^2_{rb} : chi2 fit in the phi plane
- χ²₁₇: chi2 fit in the r-z plane

Plots I did (Sample: 1000x TTbar PU200 D49 unless otherwise noted)

- Chi2 distributions
 - Muons vs. electrons, barrel vs. central vs. endcap
 - Fake proportion (using trk_fake and trk_genuine) histograms
- ROC Curves (plot different cuts through efficiency vs. rake rate space)
 - Fake track: *trk_genuine* == 0
- Efficiency, loose fake, and "strict" fake binned by pT and eta for varying chi2 cuts
 - $\chi^2_{r\phi}$ cut == 23, χ^2_{rz} cut == 7
 - Cuts were chosen so that samples had the same integrated efficiency

For anyone in need of a visual

Chi2rz measures fit in the r-z plane...

...and chi2rphi measures fit in the r-phi plane.

Muons vs. Electrons before...

Joint chi2/DOF for Muons and Electrons.

Muons vs. Electrons after!

Chi2rphi/DOF for Muons and Electrons.

Chi2rz/DOF for Muons and Electrons.

NB: Chi2rz cuts treat muons and electrons in the same way! Electrons and Muons from a TTbar sample can be found in the backup.

Chi2 split vs eta, 2D

Chi2rphi vs eta

Chi2rz vs eta.

NB: Chi2rphi is higher at high eta, chi2rz is higher at low eta. Here, there are **10,000 TTbar PU200 D49** events. (And these plots were created by Jack, not me.)

Chi2 split vs pT, 2D

Chi2rphi vs eta

Chi2rz vs eta.

NB: There are far fewer (proportionally) high chi2rz tracks than there are chi2rphi tracks. Here, there are **10,000 TTbar PU200 D49** events. (And these plots were created by Jack, not me.)

Fake Proportion

NB: Both split chi2 variables are similar for primary and pileup interactions.

NB: It's not just that electrons look similar to muons for chi2rz — fake tracks still have long tails

This is with 400 TTbar PU200 D49 events rather than 1000.

ROC Curves

Integrated eff/fake rates, pT > 2 GeV

chi2rphi

chi2rz

ROC Curves

Integrated eff/fake rates, pT > 8 GeV

chi2rphi

chi2rz

wrt eta

Efficiency

All pT

pT > 8 GeV

Efficiency, loose fake, and "strict" fake binned by pT and eta for varying chi2 cuts

- $\propto \chi^2_{r\phi}$ cut == 23, χ^2_{rz} cut == 7
- Cuts were chosen so that samples had the same integrated efficiency

wrt eta

Fake rate (strict)

All pT pT > 8 GeV

Q: "5-layer gap" eliminated by chi2rphi cuts, but not chi2rz cuts. What's up with that? These are using limited statistics – I need to check what's going on with the eta asymmetry.

Conclusions

- Chi2rz is better than Chi2rphi for identifying real electrons
 - No Chi2 cut used in the trigger at all for electrons due to efficiency hit
 - Now, with Chi2rz, this isn't as big of a problem
 - Tracks with high chi2rphi still account for a large portion of fake tracks
- Eta dependence in how cuts affect efficiency
 - Chi2rphi hurts efficiency more in the endcap region
 - Chi2rz hurts it more in the barrel
- Chi2rphi and chi2rz (and hitpattern) are now all in TTTrack
- The future:
 - Incorporating this into BDT/neural net studies
 - See Claire's presentation last week

Backup

Muons vs. Electrons before...

Joint chi2/DOF for Muons and Electrons.

Muons vs. Electrons after!

Chi2rphi/DOF for Muons and Electrons.

Chi2rz/DOF for Muons and Electrons.

Chi2 dist by eta region

Joint chi2/DOF for different eta regions

Chi2 dists for eta

Chi2rphi/DOF for different eta regions.

Chi2rz/DOF for different eta regions.

Here, "basic" means **1000 TTbar** tracks cut with 2 < pT < 100, nstub/track ≥ 4.

Barrel: 0 < |eta| < 0.9 **Mixed:** 0.9 < |eta| < 1.6 **Endcap:** 1.6 < |eta| < 2.4

trk_genuine

Fake Proportion

Due to negligence on my part, the genuine and fake tracks are switched.

Efficiency

Barrel (0 - 0.9 eta)

Mixed (0.9 - 1.6)

Endcap (1.6 - 2.4)

wrt pT

Fake rate (strict)

Barrel (0 - 0.9 eta)

Mixed (0.9 - 1.6)

Endcap (1.6 - 2.4)

Fake rate (loose)

All pT pT > 8

Fake rate (loose)

Barrel (0 - 0.9 eta)

Mixed (0.9 - 1.6)

Endcap (1.6 - 2.4)

