Model Evaluation

XX-161-A-21 – Big Data Analytics
Dr. Jim Scrofani
jwscrofa@nps.edu

Topics at a Glance

- Motivation
- Methods for Performance Evaluation
- Metrics for Performance Evaluation
 - Classifier Models
 - Regression Models
- Methods for Model Comparison
 - ROC
 - Area under the Curve

Motivation

Purpose:

- To estimate performance of a model on previously unseen data (test set)
- To create highquality models

Training and test error rates for learning decision trees of varying sizes

Machine Learning Workflow

A standard machine learning pipeline (source: Practical Machine Learning with Python, Apress/Springer)

Note the iterative dialogue between **model evaluation** and feature engineering

Model Evaluation Methods

- Model evaluation requires the assessment of performance of a learned model on a labeled test set that has not been used at any stage of model selection
- Typically achieved by partitioning dataset of labeled instances D into two disjoint subsets:
 - $D_{\rm train}$ used for model selection and
 - D_{test} used for computing test error rate $\varepsilon_{\mathrm{test}}$

Partitioning Datasets

- Two approaches
 - Holdout Method
 - Cross-Validation

Holdout Method

- Most basic method for partitioning dataset
- Labeled dataset is randomly partitioned into two disjoint set
 - Reserve k% for training and (100-k)% for testing
 - Training set for model construction
 - Test set for model evaluation

Holdout Method

- Variation of holdout method
 - Repeat the holdout method k times
 - -Compute test error rate each time
 - –Obtain a distribution of error rates to understand variance of $\epsilon_{\rm test}$

- Cross-validation
 - Example: k=3, (see illustration on next slide)
 - Randomly partition the labeled dataset into 3 equally-sized partitions
 - \blacksquare 1st run -- train a model using subsets S_2 and S_3 and test the model on S_1
 - \blacksquare 2nd run -- train a model using subsets S_1 and S_3 and test the model on S_2
 - $3^{\rm rd}$ run -- train a model using subsets S_1 and S_2 and test the model on S_3

- Cross-validation
 - Example (cont): k = 3, three-fold cross-validation

- Cross-validation
 - Example (cont): k = 3, three-fold cross-validation
 - \blacksquare Test error rate is computed for each run ($\epsilon_1,\,\epsilon_2,\,\epsilon_3$)
 - Overall test error rate obtained by averaging error rate over all runs

- Prior example can be generalized to k-fold crossvalidation
 - \circ Randomly partition data D into k equal-sized disjoint subsets (folds) of size N
- During the ith run
 - o One partition of D is chosen as $D_{\text{test}}(i)$ for testing
 - \circ While the rest are used as $D_{\text{train}}(i)$ for training
 - o A model m is learned using $D_{\mathrm{train}}(i)$ and applied on $D_{\mathrm{test}}(i)$ to obtain the test error, $\varepsilon_{\mathrm{sum}}(i)$
 - \circ This procedure is repeated k times
 - Total error rate is computed as

$$\varepsilon_{\mathrm{test}} = \frac{\sum_{i=1}^{k} \varepsilon_{\mathrm{sum}}(i)}{N}$$

- Cross-validation (other approaches)
 - Leave-one-out: Special case of k-folds where k = N, where N = # of observations in data
 - Every run uses exactly one data instance for testing and the remainder of the data for training
 - Uses maximum amount of data for training

- Cross-validation (other approaches)
 - Stratified cross-validation: folds are stratified so that class distribution in each fold is approx. same as that of original dataset

Bootstrap Method

- Resample available data with replacements to generate a number of simulated datasets of the same size as the original dataset
 - New training sets can be used to define the "bootstrap" estimates of the error rate

Performance Evaluation Methods

- How to obtain a reliable estimate of performance?
 - Algorithm type
 - Hyperparameters
- Performance of a model may depend on other factors besides the learning alg.
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Tuning Hyperparameters

- Most training
 algorithms contain
 hyperparameters that
 must be chosen
 before the training
 process begins
- It is possible and recommended to search the hyperparameter space for the model that yields the best cross validation score

objective_function(hyperparameters)=score

Learning Curve

- Learning curve shows how a metric changes with varying sample size
- Requires a sampling schedule for creating learning curve:
 - Arithmetic sampling (Langley, et al.)
 - Geometric sampling (Provost, et al.)
- Effect of small sample size:
 - Bias in the estimate
 - Variance of estimate

We want to evaluate the effect of the number of observations in the training set on some metric, accuracy, F1, etc.

Predictive Capability

- Focus on the predictive capability of a model
 - Rather than on how fast it takes to classify/regress or build models, scalability, etc.
- Confusion matrix most basic approach for representing performance of classifier model on test set
- Regression model performance measured by
 - R² Coefficient of Determination
 - Mean Square Error (MSE) / Root Mean Square Error (RMSE)
 - Mean Absolute Error (MAE)

Classifier Evaluation: Confusion Matrix

- Confusion matrix summarizes the number of instances predicted correctly or incorrectly by a classifier
- Various evaluation measures or metrics are derived from the confusion matrix

		Pred	icted		
		Has Heart Disease	Does Not Have Heart Disease		
ual	Has Heart Disease	True Positives	False Negatives		
Actua	Does Not Have Heart Disease	False Positives	True Negatives		

Confusion Matrix

- Given m classes, an entry, $CM_{i,j}$ in a confusion matrix indicates # of records in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals

Confusion Matrix (CM):

Confusion Matrix

Classifier's prediction

		buy_computer	buy_computer	Total
<u>e</u>		= yes	= no	
value	buy_computer = yes	6954	46	7000
Actual	buy_computer = no	412	2588	3000
AC	Total	7366	2634	10000

Example of a Confusion Matrix

Classifier correctly assigns 'yes' to 6954 consumers and 'no' to 2588 consumers

Classifier Performance Metrics

 Accuracy or recognition rate: percentage of test set records that are correctly classified

$$Accuracy = \frac{TP + TN}{Total}$$

• Error rate:

Error rate =
$$1 - Accuracy$$

= $\frac{FP + FN}{Total}$

Classifier Performance Metrics

- True Positive Rate (TPR)
 - Fraction of positive test instances correctly predicted by a classifier
 - Also called sensitivity or recall
 - A classifier with a high TPR has a high chance of correctly identifying a positive instance of the data

TPR or Sensitivity =
$$\frac{TP}{TP + FN} = \frac{TP}{P}$$

- True Negative Rate (TNR)
 - Fraction of negative test instances correctly predicted by a classifier
 - Also called *specificity*
 - A classifier with a high TPR has a high chance of correctly identifying a positive instance of the data

TNR or Specificity =
$$\frac{TN}{TN + FP} = \frac{TN}{N}$$

Class Imbalance

- Consider a 2-class problem (10,000 patients)
 - Number of patients that do not have COVID = 9990 (Class 0)
 - Number of patients with COVID = 10 (Class 1)
- If we use a model that predicts everything to be Class 0, a dummy classifier, it appears to be extremely accurate
- Accuracy is misleading because Class 1 is rare

Accuracy =
$$\frac{\text{TP + TN}}{\text{Total}} = \frac{0 + 9990}{1000} = 99.9\%$$

		Predi	cted		
		Has COVID	Does Not Have COVID		
Actual	Has COVID	0 TP	10 FN		
	Does Not Have COVID	0 FP	9990 TN		

Class Imbalance

 Precision or Positive Predicted Value (PVV) is useful for highly skewed test sets where the positive predictions, even though small in numbers, are required to be mostly correct

$$Precision = \frac{TP}{TP + FP} \leftarrow \text{\# of Positive Predictions}$$

 A classifier that has high precision is likely to have most of its positive predictions correct

Classifier Performance Metrics

- Precision: exactness what % of records that the classifier labeled as positive are actually positive?
- Sensitivity or Recall: completeness what % of positive records did the classifier label as positive?
 - -Perfect score is 100%
 - Inverse relationship between Precision and Recall
- F-measure (F₁ or F-score): harmonic mean of Precision and Recall
- F_β: weighted measure of precision and recall

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F_1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

$$F_{\beta} = \frac{(1+\beta^2) \text{Precision} \times \text{Recall}}{\beta^2 \text{Precision} + \text{Recall}}$$

Classifier Evaluation Metrics: Example

Actual Class\Predicted Class	Intrusion = yes	Intrusion = no	Total	Recognition (%)
Intrusion = yes	90 TP	210 _{FN}	300	30.0 (sensitivity)
Intrusion = no	140 _{FP}	9560 _{TN}	9700	98.56 (specificity)
Total	230	9770	10000	96.50 (accuracy)

Precision =
$$\frac{\text{TP}}{\text{TP} + \text{FP}} = \frac{90}{230} = 39.13\%$$

Recall =
$$\frac{\text{TP}}{\text{TP} + \text{FN}} = \frac{90}{300} = 30.00\%$$

$$Sensitivity = \frac{TP}{TP + FN} = \frac{TP}{P}$$

$$Specificity = \frac{TN}{TN + FP} = \frac{TN}{N}$$

$$Accuracy = \frac{TP + TN}{Total}$$

Evaluating Regression Models

- Regression model performance
 - $-R^2$ -- Coefficient of Determination
 - Mean Square Error (MSE) / Root Mean Square Error (RMSE)
 - Mean Absolute Error (MAE)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{y}_i - y_i|$$

Methods for Model Comparison

Model Comparison

- Receiver Operating Characteristics (ROC)
 Curve: developed from signal detection theory to analyze signals in the presence of noise
 - Characterizes trade-off between detections (TPR) & false alarms (FPR)
- Plots TPR (on the y-axis) against FPR (on the x-axis)
- The area under the ROC curve (AUC) is a measure of the accuracy of the model

ROC Curve

- (TPR, FPR):
 - (0,0): declare everything to be negative class
 - (1,1): declare everything to be positive class
 - (1,0): ideal classifier
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

ROC Curve

1-dimensional data set containing 2 classes (positive and negative)

Using ROC for Model Comparison

- Neither model consistently outperforms the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the Curve (AUC-ROC)
 - Ideal: Area = 1
 - Random guess:Area = 0.5

How to Construct a ROC Curve

Instance	Score Threshold (s)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Compute threshold s
 for each test instance
- Sort the instances according to score in decreasing order
- Apply threshold at each unique value of s
- Count the number of TP, FP, TN, FN at each threshold

How to Construct a ROC Curve

TP 5 4 4 3 3 3 3 2 2 1 0 FP 5 5 4 4 3 2 1 1 0 0 0 TN 0 0 1 1 2 3 4 4 5 5 5			Class	+	-	+	-	-	-	+	-	+	+	
TP		Threshold >=		0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
TP TN 0 0 1 1 2 3 4 4 5 5 5			TP	5	4	4	3	3	3	3	2	2	1	0
			FP	5	5	4	4	3	2	1	1	0	0	0
	TP		TN	0	0	1	1	2	3	4	4	5	5	5
$ ext{TPR} = \overline{ ext{TP} + ext{FN}}$ FN 0 1 1 2 2 2 2 3 3 4 5	$TPR = \frac{T}{TP + FN}$	Ī \	FN	0	1	1	2	2	2	2	3	3	4	5
	11 11	· 🗡	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
TN FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0	TN	→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

For s=0.25, a test observation is classified as positive if its score is greater than or equal to 0.25, TP = 5, FP = 5, TN = 0, FN = 0

TN + FP

Then consider s=0.43, a test observation..., TP = 4, FP = 5, TN = 1, FN = 0

And so on,...

ROC Curve:

<u>Recap</u>

- Motivation
- Methods for Performance Evaluation
- Metrics for Performance Evaluation
 - Classifier Models
 - Regression Models
- Methods for Model Comparison
 - ROC
 - Area under the Curve