Student Name: Nikita Semeniuk

Student ID: 2722726

Assignment 1: Asymptotic complexity

Rank the following terms in ascending order of asymptotic complexity and explain your solution:

$$n!$$
 n^2 $n \log_2 n$ n^3 2^n n^n \sqrt{n} $2^{\log_2 n}$ $\log_2 n$ $n\sqrt{n}$ n

For establishing the correct order it helped to set my baseline at n as a linear case and go from there (better performing < n < worse performing). From here on out:

- n! starting with n! factorials tend to blow up fast in value. Even small values of n clearly show this trend: !3 = 6, !6 = 720, !8 = 40320. So definitely on the right side.
- n^2 quadratic, not so bad when the values of n are not too big. So while worse than linear n, still not nearly as bad as n!.
- n*log2(n) this is linear n multiplied by a small factor, so slightly above linear time n.
- n^3 just above n^2 since it has higher power.
- 2^n exponential growth, grows really fast but not as bad as factorial. For comparison: When n = 5: $2^5 = 32$, 5! = 120.
- n^n very bad case. Starts growing faster than a factorial even at low values of n. When n=2: $2^2=4$, 2!=2. With larger values, behaves even worse: n=5 ($5^5=3125$ vs 5!=120).
- sqrt(n) slightly less than n.
- $2^{(\log 2(n))}$ according to the logarithm property this is just a regular n in disguise.
- log2(n) the slowest growth so far, slightly slower than sqrt(n).
- n*sqrt(n) faster growth than n*log2(n), but still lower than quadratic and exponential factors.
- n linear time.

This leads to the following order:

Testing with ${\bf n}$ = 12 further confirms these observations:

Function	Result
log2(n)	~3.58
sqrt(n)	~3.46
2^(log2(n))	12
n	12
n*log2(n)	~43.02
n*sqrt(n)	~41.57
n^2	144
n^3	1,728
2^n	4,096
n!	479,001,600
n^n	8,916,100,44 8,256