Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет систем управления и робототехники

Отчет по лабораторной работе №3 «Переходные процессы в системе. Устойчивость системы»

по дисциплине «Теория автоматического управления»

Выполнил: студенты гр. R3238 Кравченко Д. В.

Преподаватель: Перегудин А.А., ассистент фак. СУиР

1. Цель работы

Исследование переходных процессов в линейных системах второго порядка и ознакомление с аналитическим методом построения областей устойчивости линейных динамических систем.

2. Материалы работы

2.1. Свободная и вынужденная составляющая.

2.1.1. Исследование уравнения $\ddot{y} + a_1 \dot{y} + a_0 y = 0$. Вычисление коэффициентов a_1 , a_2 , $y_{\text{cB}}(t)$ и $\dot{y}_{\text{cB}}(t)$.

Номер экспер.	λ_1	λ_2	y_0	\dot{y}_0
1	-4	-3	1	0
2	-1.6+13j	-1.6-13j	1	0
3	13j	-13j	1	0
4	1.6+13j	1.6-13j	0.05	0
5	4	3	0.05	0
6	-1.2	1.2	0	0.1

Таблица 1. Корни характеристического уравнения и начальные условия.

Пример вычисления для эксперимента 1.

Сначала находим характеристическое уравнение и определяем коэффициенты.

$$(\lambda + 4)(\lambda + 3) = \lambda^2 + 7\lambda + 12, a_1 = 7, a_0 = 12.$$

Затем записываем решение однородного дифференциального уравнения и считаем производную.

$$y_{CB} = c_1 e^{-4t} + c_2 e^{-3t}$$
$$\dot{y}_{CB} = -4c_1 e^{-4t} + -3c_2 e^{-3t}$$

Определяем константы.

$$y(0) = c_1 + c_2 = 1, \dot{y}(0) = -4c_1 - 3c_2, c_1 = -3, c_2 = 4$$

Записываем ответ.

$$y_{\rm CB} = -3e^{-4t} + 4e^{-3t}$$

Номер	Корни		Параметры		Начальные		$y_{_{\mathrm{CB}}}(t)$
экспер.			сист.		условия		
	λ_1	λ_2	$lpha_1$	$lpha_0$	y_0	\dot{y}_0	
1	-4	-3	7	12	1	0	$-3e^{-4t} + 4e^{-3t}$
2	-1.6+13j	-1.6-13j	3.2	166.44	1	0	$1.008 * e^{-1.6t} \sin(13t + 83^{\circ})$
3	13j	-13j	0	169	1	0	cos 13 <i>t</i>
4	1.6+13j	1.6-13j	-3.2	166.44	0.05	0	$-0.05 * e^{1.6t} \sin(13t + 83^{\circ})$
5	4	3	-7	12	0.05	0	$-0.15e^{4t} + 0.2 e^{3t}$
6	-1.2	1.2	0	-1.44	0	0.1	$0.042e^{1.2t} - 0.042e^{-1.2t}$

Таблица 2. Результаты вычислений

Графики $y_{\scriptscriptstyle ext{CB}}(t)$ и $\dot{y}_{\scriptscriptstyle ext{CB}}(t)$ для разных экспериментов.

Эксперимент 1.

Эксперимент 2.

Эксперимент 3.

Эксперимент 4.

Эксперимент 5.

Эксперимент 6.

2.1.2. Фазовые траектории.

Эксперимент 2.

Эксперимент 3

Эксперимент 4

2.1.3. Вынужденное движение.

Ном эксп.	a_0	a_1	b	<i>y</i> (0)	<i>y</i> (0)	g(t)
1					-1	1
2	3	3	3	0	0	0.5 <i>t</i>
3	1				1	sin 2t

Таблица 3. Параметры системы, входное воздействие и начальные условия

Эксперимент 1.

Эксперимент 2

Эксперимент 3

схема моделирования

- 2.2 Область устойчивости.
- 2.2.1 Расчёт T_1 , T_2 и схема моделирования.

λ_1	λ_2	T_1	T_1
-4	-3	5.238	0.191

Таблица 4.

Pасчет T_1 и T_2 .

$$(T_1s+1)(T_2s+1)s + K = T_1T_2s^3 + (T_1+T_2)s^2 + s + k = 0$$

$$(\lambda+4)(\lambda+4)(\lambda+\alpha) = \lambda^3 + (\alpha+7)\lambda^2 + (7\alpha+12)\lambda + 12\alpha$$

$$\begin{cases} T_1T_2 = 1 \\ T_1 + T_2 = \alpha + 7 \\ {1 = 7\alpha + 12 \atop K = 12\alpha} \end{cases} \begin{cases} T_1T_2 = 1 \\ T_1 = \frac{38}{7} - T_2 \\ {\alpha = -\frac{11}{7} \atop K = -\frac{132}{7}} \end{cases} , \begin{cases} T_1 = \frac{19 + 2\sqrt{78}}{7} \\ T_2 = \frac{19 - 2\sqrt{78}}{7} \\ {\alpha = -\frac{11}{7} \atop K = -\frac{132}{7}} \end{cases}$$

Схема моделирования

2.2.2. Аналитическая граница устойчивости в пространстве параметров К и T_1 .

$$s^{3} + \frac{T_{1} + T_{2}}{T_{1}T_{2}}s^{2} + \frac{1}{T_{1}T_{2}}s + \frac{k}{T_{1}T_{2}} = 0$$

По критерию Гурвица система будет устойчива если:

$$\begin{cases} \frac{T_{1}+T_{2}}{T_{1}T_{2}} > 0 \\ \frac{1}{T_{1}T_{2}} > 0 \\ \frac{K}{T_{1}T_{2}} > 0 \end{cases} \begin{cases} T_{1}+T_{2} > 0 \\ T_{1}T_{2} > 0 \\ K > 0 \end{cases} \begin{cases} T_{1} > 0 \\ T_{2} > 0 \\ K > 0 \end{cases} \cdot \begin{cases} \frac{K}{T_{1}+T_{2}} > K \end{cases}$$

2.2.3. Аналитическая граница устойчивости в пространстве параметров К и T_2 .

График устойчивости

3. Выводы: В ходе, выполнения данной лабораторной работы были исследованы различные системы на устойчивость. На практике был подтвержден факт: у (выход) сходится к нулю, если график на фазовой плоскости выглядит как закручивающаяся спираль. А также рассмотрена устойчивость системы третьего порядка от различных параметров.