▼ Исходные дан

Подогрев охл. от КС [К]:

Допустимая температура Л (К):

```
Коэф. запаса:
                   safety = 1.3
                                                                      turbine = "ТНД"
Горючее:
             Fuel = "Керосин"
Высота движения (м): H_{11} = 0
                                                                 32.30
Массовый расход перед Т (кг/с):
                                                                                                                1
                                                                                                               35.43
                                                                              if turbine = "ТВД"
Массовый расход утечек Т (кг/с):
                                                             106.96.10
                                                                                                                0.04
                                         G<sub>cooling</sub>
Массовый расход на охл Т (кг/с):
                                                                                                                 0.81
                                                                             if turbine = "ТНД"
                      N_T = 10^6 \cdot 14.893 if turbine = "TBД" = 15.181 \cdot 10^6
Мощность Т (Вт):
                                     15.181 if turbine = "ТНД"
                                        P_{\Gamma}^* = 10^3 \cdot | 2731.8 \text{ if turbine} = "ТВД" = 927.5 \cdot 10^3
Полное давление перед Т (Па):
                                                      927.5 if turbine = "ТНД"
                                        T^*_{\Gamma} = \begin{vmatrix} 1773 & \text{if turbine} = "ТВД" = 1368.9 \\ 1368.9 & \text{if turbine} = "ТНД" \end{vmatrix}
Полная температура перед Т (К):
                               \alpha_{\rm ox} = 2.267 if turbine = "ТВД" = 2.493
Коэф. избытка воздуха в Т:
                                          2.493 if turbine = "ТНД"
                                                                 P^*_{cooling} = 10^3 \cdot | 2845.6 \text{ if turbine} = "ТВД" = 319.4 \cdot 10^3
Полное давление отбора охлаждающего воздуха (К):
                                                                                      319.4 if turbine = "ТНД"
                                                                                  806.9 if turbine = "ТВД" = 418.2
Полная температура отбора охлаждающего воздуха (К):
                                                                  T*cooling =
                                                                                  418.2 if turbine = "ТНД"
                                                         \sigma_{\text{cooling}} = 0.97
Коэф. сохранения полного давления охлаждения:
```

 $\Delta T_{\text{охл.подогрев}} = 40$

 $T_{\Pi, \text{ДО}\Pi} = 1373$

Газовая постоянная (Дж/кг/К): $R_{\Gamma a3}(\alpha_{ox}, Fuel) = 288.5$

Абс. скорость перед Т (м/с):

Абс. скорость после Т (м/с):

[1, c.15]

$$80 \le c_T \le 400 = 1$$

Лопаточный КПДТ: $\eta_{\Pi} = 88\%$

$$\eta_{\pi} = 88\%$$

$88\% \le \eta_{\rm JI} \le 95\% = 1$

Угол входа в Т: $\alpha_{\Gamma} = 90$. $^{\circ}$

$$\alpha_{\Gamma} = 90.^{\circ}$$

Окр. скорость Л последней ступени на ср. диаметре Т (м/с):

$$\begin{pmatrix} c_{\Gamma} \\ c_{T} \end{pmatrix} = \begin{pmatrix} 100 \\ 180 \end{pmatrix}$$
 if turbine = "ТВД" $= \begin{pmatrix} 1 \\ 1 \\ 1 \\ 260 \end{pmatrix}$ $= \begin{pmatrix} 180 \\ 260 \end{pmatrix}$ if turbine = "ТНД"

$$u_{\rm T} = \begin{vmatrix} 520 & \text{if turbine} = "ТВД" = 260.0 \\ 260 & \text{if turbine} = "ТНД" \end{vmatrix}$$

$$z = ORIGIN...N_r$$

 $P^*_{\text{cooling}} = P^*_{\text{cooling}} \cdot \sigma_{\text{cooling}} = 309.8 \cdot 10^3$ Полное давление отбора охлаждающего воздуха (К):

 $T^*_{\text{cooling}} = T^*_{\text{cooling}} + \Delta T_{\text{охл.подогрев}} = 458.2$ Полная температура отбора охлаждающего воздуха (К):

 $G_{\Gamma} = G_{\Gamma} - G_{leak} = 35.4$ Массовый расход перед Т (кг/с):

 $G_{T} = G_{\Gamma} + G_{cooling} = 36.2$ Массовый расход после Т (кг/с):

Удельная работа T (Дж/кг): $L^*_T = \frac{N_T}{\text{mean} \left(G_\Gamma, G_T\right)} = 424.1 \cdot 10^3$ $L^*_T \leq 550 \cdot 10^3 = 1$ Располагаемый теплоперепад в T (Дж/кг): $H_T = \frac{L^*_T + 0.5c_T^{-2}}{\eta_{_{I\!I}}} = 520.3 \cdot 10^3$

$$\begin{vmatrix} \text{iteration} \\ k_{\Gamma} \\ P_{\Gamma} \\ T_{\Gamma} \end{vmatrix} = \begin{vmatrix} \text{iteration} = 0 \\ k_{\Gamma} = k_{\text{AJ}} \left(\text{Cp}_{\text{Fa3}} \left(\text{P*}_{\Gamma}, \text{T*}_{\Gamma}, \alpha_{\text{OX}}, \text{Fuel} \right), \text{R}_{\text{Fa3}} \left(\alpha_{\text{OX}}, \text{Fuel} \right) \right) \\ \text{while } 1 > 0 \\ \begin{vmatrix} \text{iteration} = \text{iteration} + 1 \\ \text{Cp}_{\Gamma} = \frac{k_{\Gamma}}{k_{\Gamma} - 1} \cdot \text{R}_{\text{Fa3}} \left(\alpha_{\text{OX}}, \text{Fuel} \right) \end{vmatrix}$$

$$T_{\Gamma} = T^{*}_{\Gamma} - \frac{c_{\Gamma}^{2}}{2 \cdot \text{Cp}_{\Gamma}}$$

$$k'_{\Gamma} = k_{\text{AJ}} \left(\text{Cp}_{\text{Fa3}} \left(\text{P}_{\Gamma}, \text{T}_{\Gamma}, \alpha_{\text{OX}}, \text{Fuel} \right), \text{R}_{\text{Fa3}} \left(\alpha_{\text{OX}}, \text{Fuel} \right) \right)$$

$$if \left| \text{eps} \left(\text{"rel"}, k_{\Gamma}, k'_{\Gamma} \right) \right| \leq \text{epsilon}$$

$$\left| k_{\Gamma} = k'_{\Gamma} \right|_{\text{break}}$$

$$k_{\Gamma} = k'_{\Gamma}$$

$$\left(\text{iteration} k_{\Gamma} \cdot \text{P}_{\Gamma} \cdot \text{T}_{\Gamma} \right)^{T}$$

Количество итераций: iteration = 1

Показатель адиабаты перед Т: ${\bf k}_{\Gamma} = 1.298$

Статическое давление перед Т (Па): $P_{\Gamma} = 890 \cdot 10^{3}$

Статическая температура перед T(K): $T_{\Gamma} = 1356$

Теплоем кость перед Т (Дж/кг/К): $Cp_{\Gamma} = Cp_{\Gamma a3}(P_{\Gamma}, T_{\Gamma}, \alpha_{oX}, Fuel) = 1256$

Количество итераций: iteration = 2

Показатель адиабаты после Т: $k_T = 1.320$

Статическое давление после Т (Па): $P_{T} = 191.5 \cdot 10^{3}$ $P_{T} \geq P_{aTM}(H_{U}) = 1$

Статическая температура после Т (K): $T_T = 994.7$

Теплоем кость после Т (Дж/кг/К): $Cp_T = Cp_{\Gamma a3}(P_T, T_T, \alpha_{OX}, Fuel) = 1190.6$

Ср. показатель адиабаты Т:
$$k = mean(k_T, k_T) = 1.309$$

Ср. теплоемкость Т (Дж/кг/К): Ср
$$= \frac{k}{k-1} \cdot R_{\Gamma a3} (\alpha_{ox}, \text{Fuel}) = 1222.3$$

Степень понижения давления:
$$\pi_T = \frac{P^*_{\ \Gamma}}{P_{_T}} = 4.84$$

Удельный объём перед Т (м
3
/кг):
$$\begin{pmatrix} v_\Gamma \\ v_T \end{pmatrix} = R_{\Gamma a 3} \Big(\alpha_{\rm ox} \, , {\rm Fuel} \Big) \cdot \begin{pmatrix} \frac{T_\Gamma}{P_\Gamma} \\ \frac{T_\Gamma}{P_\Gamma} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 & 0.440 \\ 2 & 1.499 \end{pmatrix}$$

Площадь кольцевого сечения перед
$$T(M^2)$$
:
$$\begin{pmatrix} F_{\Gamma} \\ F_{T} \end{pmatrix} = \begin{pmatrix} \frac{G_{\Gamma} \cdot v_{\Gamma}}{c_{\Gamma}} \\ \frac{G_{\Gamma} \cdot v_{T}}{c_{T}} \end{pmatrix} = \begin{pmatrix} \frac{1}{1} & 86421 \\ \frac{1}{2} & 208684 \end{pmatrix} \cdot 10^{-6}$$

$$y_0 = 0.55$$

Коэф. использования скорости:

$$\mu_c = \text{mean}(0.7, 1) = 0.9$$

 $0.7 \le \mu_c \le 1 = 1$

▼ Определение количества ступеней Т

$$\begin{pmatrix} Z_{recomend} \\ \alpha_{BO3B} \end{pmatrix} = \begin{vmatrix} c_{cp} = mean \left(c_{r}, c_{T} \right) \\ \alpha_{BO3B} = 0.025 \\ \text{while } 1 > 0 \end{vmatrix}$$

$$\begin{vmatrix} Z_{recomend} \\ Z_{recomend} \\ Z_{recomend} \end{vmatrix} = \begin{vmatrix} c_{cp} = mean \left(c_{r}, c_{T} \right) \\ \alpha_{BO3B} = 0.025 \\ \frac{2 \cdot H_{T} \cdot \frac{\left(1 + \alpha_{BO3B} \right)}{\left(\mu_{c} \cdot c_{cp} \right)^{2} - 1}}{\frac{u_{r}^{2}}{\left(\mu_{c} \cdot c_{cp} \right)^{2} \cdot y_{0}^{2}} - 1} \end{vmatrix}$$

$$\begin{vmatrix} b_{reak} & \text{if } \left| c_{ps} \right| \\ c_{ps} \left| \text{"rel"}, \alpha_{BO3B}, \frac{Z - 1}{2 \cdot Z} \cdot \left(\pi_{T} \frac{k - 1}{k} - 1 \right) \cdot \left(1 - \eta_{\Pi} \right) \right| < c_{psilon}$$

$$\begin{vmatrix} \alpha_{BO3B} = \frac{Z - 1}{2 \cdot Z} \cdot \left(\pi_{T} \frac{k - 1}{k} - 1 \right) \cdot \left(1 - \eta_{\Pi} \right) \right|$$

$$\begin{vmatrix} if \alpha_{BO3B} = 0 \\ \left| C_{\alpha_{BO3B}} \right| = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{vmatrix} D_{break} \\ C_{\alpha_{BO3B}} \end{vmatrix}$$

Рекомендуемое количество ступеней: $Z_{recomend} = 5$

Количество ступеней: $Z = \begin{bmatrix} 1 & \text{if turbine} = \text{"ТВД"} = 4 \\ 4 & \text{if turbine} = \text{"ТНД"} \end{bmatrix}$

Дискретизация ступеней: i = 1..Z

Дискретизация сечений: $ii = 1...2 \cdot Z + 1$

Плотность материала
$$J(\kappa r/m^3)$$
:
$$\rho_blade_i = 7938 \quad \text{if material_blade}_i = "BKHA-1B"$$

$$8390 \quad \text{if material_blade}_i = "BKM7"$$

$$8760 \quad \text{if material_blade}_i = "KC-36"$$
NaN otherwise

Предел длительной прочности Л РК (Па): $\sigma_{blade_long_i} = 10^6 \cdot 205 \text{ if material_blade}_{i} = "BKHA-1B"$ $120 \text{ if material_blade}_{i} = "BKM7"$ $120 \text{ if material_blade}_{i} = "KC-36"$ NaN otherwise

Коэф. формы: $k_n = 6.8$

Модуль Юнга I рода материала Л (Па): $E_{blade} = 210 \cdot 10^{9}$

Коэф. Пуассона материала Π (): μ steel = 0.3

▼ Частота вращения Т

Мах частота вращения ротора на входе (об/мин):

$$\sqrt{\frac{\sigma_{\text{blade_long}Z}}{\text{safety} \cdot \text{k}_{\text{n}} \cdot \text{F}_{\Gamma}}} = 12533$$

Мах частота вращения ротора на выходе (об/мин):

$$n_{\text{max}} = \sqrt{\frac{\sigma_{\text{blade_long}Z}}{\text{safety} \cdot k_{\text{n}} \cdot F_{\text{T}}}} = 8065$$

Рекомендукмая ном. частота вращения (об/мин):

$$n = n_{\text{max}} \cdot 0.95 = 7662$$

$$_{\text{W}} = \begin{bmatrix} 15000 & \text{if turbine} = \text{"ТВД"} = 5300 \\ 5300 & \text{if turbine} = \text{"ТНД"} \end{bmatrix}$$

Ном. частога вращения (рад/с):

$$\omega = \frac{2 \cdot \pi \cdot n}{60} = 555.0$$

Ср. диаметр перед Т (м):

Ср. диаметр после Т (м):

):
$$\begin{pmatrix} D_{T.cp} \\ D_{T.cp} \end{pmatrix} = \frac{2}{\omega} \cdot \begin{pmatrix} u_{T} \\ u_{T} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 & 936.9 \\ 2 & 936.9 \end{bmatrix} \cdot 10^{-3}$$

Длина Л первой ступени Т (м):

Длина Л последней ступени Т (м):

	$\begin{pmatrix} F_{\Gamma} \end{pmatrix}$				
$\begin{pmatrix} 1_{\Gamma} \end{pmatrix}$ 1	$D_{\Gamma,cp}$			1	3
$\begin{vmatrix} 1 \end{vmatrix} = \frac{-}{\pi}$	E	=	1	29.36	·10
$\left(T\right) $	T		2	70.90	
	$\left(D_{\mathrm{T.cp}} \right)$				

Диаметр периферии после Т (м):

Диаметр корня после
$$T(M)$$
:

$$\begin{pmatrix} D_{T.cp} \\ D_{T.Kop} \end{pmatrix} = \begin{pmatrix} D_{T.cp} + l_{T} \\ D_{T.cp} - l_{T} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 & 1007.8 \\ 2 & 866.0 \end{pmatrix} \cdot 10^{-3}$$

 $\frac{l_{\Gamma}}{D_{\Gamma,cp}} = \frac{1}{31}$

$$\frac{l_{\rm T}}{D_{\rm T.cp}} = \frac{1}{13}$$

$$N_{cT_i} = \frac{N_T}{Z}$$

Вид проточной части:

("const", "кор", "cp", "пер", "доля от предыдушего диаметра периферии")

▼ Определение проточной части О⁻

Линейное распределение кольцевых площадей по сечениям:

$$\begin{array}{l} F_{\text{w}} = & \text{for } i \in 1..2Z + 1 \\ \\ F_{i} = \frac{F_{T} - F_{\Gamma}}{\text{st}(Z,3) - 1} \cdot i + \left(F_{\Gamma} - \frac{F_{T} - F_{\Gamma}}{\text{st}(Z,3) - 1}\right) \\ \\ \text{for } i \in 1..Z \\ \\ \text{for } a \in 2..3 \\ \\ F_{\text{st}(i,a)} = F_{\text{st}(i,a-1)} \quad \text{if } 3\Pi\Pi \Psi_{i,a-1} = \text{"const"} \\ F \end{array}$$

$F^{T} =$		1	2	3	4	5	6	7	8	9	1.10^{-6}
	1	86421	101704	116987	132270	147553	162836	178118	193401	208684	

$$\begin{split} D = & & \text{ for } i \in 2Z + 1 \\ & \text{ for } r \in 1..N_r \\ D_{i,r} = & & D_{T,cop} \quad \text{ if } r = 1 \\ D_{D,cep} \quad \text{ if } r = av(N_r) \\ D_{D,mep} \quad \text{ if } r = N_r \\ \end{split}$$

$$for & i \in Z..1$$

$$for & a \in 2..1$$

$$for & a \in 2..1$$

$$for & a \in 2..1$$

$$D_{st(i,a),r} = & \text{ if } 3\Pi\Pi U_{i,a} = \text{"const"} \\ D_{st(i,a+1),av(N_r)} - \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = 1 \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"kop"} \\ D_{st(i,a+1),1} + \sqrt{\left(D_{st(i,a+1),1}\right)^2 + \frac{4 \cdot F_{st(i,a)}}{\pi}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} - \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = 1 \\ D_{st(i,a+1),av(N_r)} - \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = 1 \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = N_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = n_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"cp"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = n_r \\ \text{if } 3\Pi\Pi U_{i,a} = \text{"const"} \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = n_r \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),av(N_r)}} \quad \text{if } r = n_r \\ D_{st(i,a+1),av(N_r)} + \frac{F_{st(i,a)}}{\pi \cdot D_{st(i,a+1),a$$

$$D^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 620.7 & 620.7 & 651.1 & 698.2 & 750.4 & 802.7 & 843.9 & 866.0 & 866.0 \\ 2 & 662.2 & 669.0 & 704.0 & 754.0 & 808.5 & 862.8 & 906.5 & 932.1 & 936.9 \\ 3 & 703.7 & 717.4 & 756.9 & 809.9 & 866.6 & 922.9 & 969.0 & 998.1 & 1007.8 \end{bmatrix} \cdot 10^{-1}$$

$$R = \frac{D}{2}$$

$$\overline{d} = \begin{cases} \text{for } i \in 1..Z \\ \text{for } a \in 1..3 \end{cases}$$

$$\overline{d}_{st(i,a)} = \frac{D_{st(i,a),1}}{D_{st(i,a),N_r}}$$

$$\overline{d}$$

$\overline{d}^T =$		1	2	3	4	5	6	7	8	9
	1	0.8819	0.8651	0.8602	0.8621	0.8659	0.8698	0.8709	0.8677	0.8593

$$\begin{array}{|c|c|c|} h &=& for & i \in 1..2Z + 1 \\ & & h_i &=& \frac{F_i}{\pi \cdot D_i, av(N_r)} \\ & & h \end{array}$$

$$\begin{split} & \left[\frac{D}{\text{st}(i,a+1),N_r} \frac{D}{\text{in } 1-D} \right] \\ & \text{if } \left(3\Pi\Pi \Psi_{i,a} \neq \text{"const"} \right) \wedge \left(3\Pi\Pi \Psi_{i,a} \neq \text{"kop"} \right) \wedge \left(3\Pi\Pi \Psi_{i,a} \neq \text{"cp"} \right) \wedge \left(3\Pi\Pi \Psi_{i,a} \neq \text{"nep"} \right) \\ & \sqrt{\left(\frac{D}{\text{st}(i,a+1),N_r} \frac{D}{\text{st}(i,a+1),N_r} \right)^2 - \frac{4 \cdot F_{\text{st}(i,a)}}{\pi}} \text{ if } r = 1 \\ & \frac{1}{2} \cdot \left[\sqrt{\left(\frac{D}{\text{st}(i,a+1),N_r} \frac{D}{\text{st}(i,a+1),N_r} \right)^2 - \frac{4 \cdot F_{\text{st}(i,a)}}{\pi}} + \frac{D}{\text{st}(i,a+1),N_r} \text{ if } r = \text{av}(N_r) \\ & \frac{D}{\text{st}(i,a+1),N_r}}{\text{str2num}(3\Pi\Pi \Psi_{i,a})} \text{ if } r = N_r \\ & \text{NaN otherwise} \end{split}$$

D

for
$$i \in 1...2 \cdot Z + 1$$

for $r \in 1...N_r$

$$u_{i,r} = \frac{\pi \cdot D_{i,r} \cdot n}{60}$$

$$u$$

		1	2	3	4	5	6	7	8	9
$u^T =$	1	172.2	172.2	180.7	193.8	208.2	222.8	234.2	240.3	240.3
	2	183.8	185.7	195.4	209.3	224.4	239.4	251.6	258.7	260.0
	3	195.3	199.1	210.0	224.7	240.5	256.1	268.9	277.0	279.7

 $\overline{d}_1 = 0.8819$ $\overline{d}_1 \le 0.9 = 1$

$\overline{d}^T =$		1	2	3	4	5	6	7	8	9
	1	0.8819	0.8651	0.8602	0.8621	0.8659	0.8698	0.8709	0.8677	0.8593

$h^{T} =$		1	2	3	4	5	6	7	8	9	10^{-3}
	1	41.54	48.39	52.90	55.84	58.09	60.07	62.55	66.05	70.90	

Осевая ширина Л СА и РК [1, с.183]:

$$\begin{pmatrix} B_{CA} \\ B_{PK} \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \begin{pmatrix} B_{CA}_i \\ B_{PK_i} \end{pmatrix} = \begin{pmatrix} \frac{D_{st(i,2),av(N_r)} - 0.25 \cdot h_{st(i,2)}}{16.4} \\ \frac{D_{st(i,3),av(N_r)}}{22} \end{cases}$$

$$\begin{pmatrix} B_{CA} \\ B_{PK} \end{pmatrix}$$

Радиальный зазор (м):

Осевой зазор (м):

(Лучше выбирать большее значение)

$$\begin{pmatrix} \Delta_r \\ \Delta_a \end{pmatrix} = \begin{vmatrix} \text{for } i \in 1...Z \\ \text{for } a \in 1...3 \\ \begin{vmatrix} \Delta_{r_{st(i,a)}} = 0.001 \cdot D_{st(i,a),N_r} \\ \Delta_{a_i} = 0.25 \cdot B_{CA_i} \\ \begin{pmatrix} \Delta_r \\ \Delta_a \end{pmatrix}$$

$$\Delta_{\Gamma}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.704 & 0.717 & 0.757 & 0.810 & 0.867 & 0.923 & 0.969 & 0.998 & 1.008 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	
$\operatorname{stack}\left(\gamma_{\prod UKop}^{T}, \gamma_{\prod U}^{T}, \gamma_{\prod Unep}^{T}\right) =$	1	0.00	25.44	27.56	35.37	26.86	26.56	11.18	0.00	. '
$stack(\gamma_{\Pi H Kop}, \gamma_{\Pi H}, \gamma_{\Pi H \Pi ep}) =$	2	9.70	6.22	2.86	2.27	1.72	2.68	3.42	6.50	
	3	9.70	31.66	30.41	37.64	28.58	29.25	14.59	6.50	

$\gamma_{\prod} q^{T} \leq 20.^{\circ} = 0$	1	1	2	3	4	5 1	6 1	7	8
$\gamma_{\Pi \Psi}^{T} \leq 25.^{\circ} = 0$		1	2	3	4	5	6	7	8

$\gamma_{\prod q_{KOp}}^{T} > -12 \cdot \circ = 0$		1	2	3	4	5	6	7	8
		1	1	1	1	1	1	1	1
$\gamma_{\text{TIIIvon}}^{\text{T}} > -15^{\circ} =$		1	2	3	4	5	6	7	8
ПЧкор > 13 =	1	1	1	1	1	1	1	1	1

$$\begin{pmatrix} x_{\Pi H} \\ y_{\Pi H nep} \\ y_{\Pi H cp} \\ y_{\Pi H cp} \\ y_{\Pi nep} \end{pmatrix} = \begin{vmatrix} c = 1 \\ x_{\Pi H_c} = 0 \\ y_{\Pi H nep_c} = D_{st(c,1),N_r} \\ y_{\Pi nep_c} = D_{st(c,1),av(N_r)} \\ y_{\Pi H cp_c} = D_{st(c,1),1} \\ for \ i \in 1 .. Z \\ \begin{vmatrix} c = c + 1 \\ x_{\Pi H_c} = x_{\Pi H_{c-1}} + 0.5 \cdot \Delta_{a_i} + B_{CA_i} + 0.5 \cdot \Delta_{a_i} \\ y_{\Pi H cp_c} \\ y_{\Pi H cp_c} \\ y_{\Pi H cp_c} \end{vmatrix} = \begin{pmatrix} D_{st(i,2),N_r} \\ D_{st(i,2),1} \\ D_{st(i,2),1} \end{pmatrix} \\ y_{\Pi nep_c} = y_{\Pi H nep_c} - \Delta_{r_i} \\ c = c + 1 \\ x_{\Pi H_c} = x_{\Pi H_{c-1}} + 0.5 \cdot \Delta_{a_i} + B_{PK_i} + 0.5 \cdot \Delta_{a_i} \\ \begin{pmatrix} y_{\Pi H nep_c} \\ y_{\Pi H cp_c} \\ y_{\Pi H nep_c} - \Delta_{r_i} \\ \begin{pmatrix} x_{\Pi H_c} \\ x_{\Pi H_c} \\ y_{\Pi H nep_c} \\ y_$$

Length =
$$\sum_{i=1}^{Z} B_{CA_i} + \sum_{i=1}^{Z} \Delta_{a_i} + \sum_{i=1}^{Z} B_{PK_i} = 393.4 \cdot 10^{-3}$$

$$x = \min(x_{\Pi Y}), \min(x_{\Pi Y}) + \frac{\max(x_{\Pi Y}) - \min(x_{\Pi Y})}{N_{dis}} ... \max(x_{\Pi Y})$$

 $\begin{aligned} y_{\Pi \Pi nep}(l) &= linterp\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi \Pi nep}, l\Big) & y_{\Pi \Pi cp}(l) &= linterp\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi \Pi cp}, l\Big) & y_{\Pi \Pi kop}(l) &= linterp\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi \Pi kop}, l\Big) \\ y_{\Pi nep}(l) &= interp\Big(cspline\Big(x_{\Pi \Pi}, 0.5 \cdot y_{\Pi nep}\Big), x_{\Pi \Pi}, 0.5 \cdot y_{\Pi nep}, l\Big) \end{aligned}$

Относ. толщины ЛРК и СА:

$$\overline{c}_{stator.}(r) = \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 15 \\ 15 \\ 15 \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 15 \\ 15 \\ 15 \end{bmatrix}, K_r \end{bmatrix} \text{ if } T_{JI.ДоII} < T^*_{\Gamma}$$

$$\begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 7 \\ 9 \\ 11 \end{bmatrix}, \begin{bmatrix} 7 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 7 \\ 9 \\ 11 \end{bmatrix}, \begin{bmatrix} 7 \\ 9 \\ 11 \end{bmatrix}, K_r \end{bmatrix} \text{ otherwise}$$

$$\overline{c}_{rotor.}(r) = \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 17 \\ 13 \\ 11 \end{bmatrix}, \begin{bmatrix} 17 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 17 \\ 13 \\ 11 \end{bmatrix}, r \end{bmatrix} \text{ if } T_{JI.JOII} < T^*_{\Gamma}$$

$$\begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 14 \\ 9 \\ 7 \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 14 \\ 9 \\ 7 \end{bmatrix}, \begin{bmatrix} 14 \\ 9 \\ 7 \end{bmatrix}, r \end{bmatrix} \text{ otherwise}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix} = \begin{bmatrix}
for & i \in 1...Z \\
for & r \in 1...N_r
\end{bmatrix}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor} \\
\overline{c}_{rotor} \\
\overline{c}_{rotor}
\end{bmatrix} = \begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor} \\
\overline{c}_{rotor}
\end{bmatrix}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix}$$

$$\overline{c}_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 7.00 & 7.00 & 7.00 & 7.00 \\ 2 & 9.00 & 9.00 & 9.00 & 9.00 \\ 3 & 11.00 & 11.00 & 11.00 & 11.00 \end{bmatrix} .\%$$

$$\overline{c}_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 14.00 & 14.00 & 14.00 & 14.00 \\ 2 & 9.00 & 9.00 & 9.00 & 9.00 \\ 3 & 7.00 & 7.00 & 7.00 & 7.00 \end{bmatrix} .\%$$

		1	2	3	4	
$\frac{1}{r}$ _inlet _{rotor} =	1	4.900	4.900	4.900	4.900	.%
rotor	2	3.150	3.150	3.150	3.150	, 0
	3	2.450	2.450	2.450	2.450	

$$\frac{T}{r_outlet_{rotor}}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2.100 & 2.100 & 2.100 & 2.100 \\ 2 & 1.350 & 1.350 & 1.350 & 1.350 \\ 3 & 1.050 & 1.050 & 1.050 & 1.050 \end{vmatrix} .\%$$

▲ Относ. толщины и радиусы профилей

$$R_{L.cp} = \begin{pmatrix} 0.16 & \text{if turbine} = "TBД" & 0.15 & 0.18 & 0.185 & 0.5 & 0.5 \\ 0.13 & \text{otherwise} \end{pmatrix}^{T}$$

▼ Поступенчатый расчет ОТ

iteration	iteration
iteration _{CA}	R _L
H* _{cT}	H _{cT}
H _{stator}	H _{rotor}
$^{\mathrm{c}}$ _{ад}	w _{ад}
P*	P
T*	T _v
$_{ ho^*}^{G}$	v ρ
Ω o.x.	α_{ox}
α	β
$\varepsilon_{ m stator}$	$\epsilon_{ m rotor}$
θ_{CA}	$\theta_{ m PK}$
g _{охл} СА	g _{охл} РК
a* _c	a* _W
т _{ад}	w Т _{ад}
ад Р* _W	ад Т* _W
a _{3B} u	a _{3B} u
e.	c
c _a	$c_{\mathbf{u}}$
W	w
w _a	$w_{\mathbf{u}}$
$\lambda_{ m c}$	M_{c}
$\lambda_{_{ m W}}$	M_{W}
$v_{ m stator}$	$v_{ m rotor}$

chord _{stator}	chord _{rotor}	
¯t _{oпт} CA	t оптРК	$\begin{array}{ c c } & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$
t _{stator}	t _{rotor}	
Z _{stator}	Z _{rotor}	$k_{st(i,1),r} = k_{\Gamma}$ $p* \dots p*$
$\overline{v}_{\mathrm{stator}}$	$\overline{v}_{ m rotor}$	$P^*_{st(i,1),r} = P^*_{\Gamma}$
ξ_{TpCA}	ξ _{τp} PK	$P^*_{W_{St(i,1),r}} = 0$
ξκρСΑ	ξкрРК	$P_{st(i,1),r} = P_{\Gamma}$
ξ _{ReCA}	^ξ RePK	$T^*_{st(i,1),r} = T^*_{\Gamma}$
$\xi_{\lambda CA}$	ξ _{λPK}	$T^*_{W_{St(i,1),r}} = 0$
$\xi_{\Pi pCA}$	ξпрРК	$T_{st(i,1),r} = T_{\Gamma}$
$\xi_{ m BTCA}$	ξ_{BTPK}	$R_{\text{ra3}}(\alpha_{\text{oX}_{\text{st}(i,1)}}, \text{Fuel}) \cdot T_{\text{st}(i,1)}, r$
$\xi_{\mathrm{TДCA}}$	ξ _{тд} РК	$V_{st(i,1),r} = \frac{V_{st(i,1),r}}{P_{st(i,1),r}}$
ξ _{cm} CA	ξсмРК	$G_{st(i,1)} = G_{\Gamma}$
$\xi_{\Delta r}$	$\xi_{ m BMX}$	$c_{st(i,1),r} = c_{\Gamma}$
ξ _{Tp.B}	ξ _{Tp.B}	$\alpha_{st(i,1),r} = \alpha_{r}$
L _{ct}	Lu _{CT}	$\begin{bmatrix} c_{u_{st(i,1),r}} \\ -c_{st(i,1),r} \end{bmatrix} = c_{st(i,1),r} \begin{pmatrix} cos(\alpha_{st(i,1),r}) \\ -c_{st(i,1),r} \end{pmatrix}$
η _{мощь}	η _{ποπ}	$ \begin{pmatrix} c_{\mathbf{u}_{st(i,1),r}} \\ c_{\mathbf{a}_{st(i,1),r}} \end{pmatrix} = c_{st(i,1),r} \begin{pmatrix} \cos(\alpha_{st(i,1),r}) \\ \sin(\alpha_{st(i,1),r}) \end{pmatrix} $
$\eta^*_{ m cT}$	$\eta^*_{ m cT}$	$\mathbf{w}_{\mathbf{st}(i,1),\mathbf{r}} = 0$
η_{u1}	η_{u2}	$\left(\sqrt{k_{st(i,1),r} \cdot R_{\Gamma a3} \left(\alpha_{oX_{st(i,1)}}, Fuel \right) \cdot T_{st(i,1),r}} \right)$
ξCA	ξ _{PK}	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Lu _{нагрузка}	Lu _{нагрузка}	
		$\left(\sqrt{1+k_{st(i,1),r}}\right)^{1a3}\left(\sqrt{N_{st(i,1)}}\right)^{w_{st(i,1),r}}$
		$\left \left(\begin{array}{c} \lambda_{c} \\ st(i,1),r \end{array} \right) - \left(\begin{array}{c} \frac{c_{st(i,1),r}}{a^{*}_{c}} \end{array} \right) \right $
		$ \begin{pmatrix} a_{3B_{st(i,1),r}} = 0 \\ \begin{pmatrix} a_{3B_{st(i,1),r}} \\ a^*c_{st(i,1),r} \\ a^*w_{st(i,1),r} \end{pmatrix} = \begin{pmatrix} \sqrt{k_{st(i,1),r} \cdot R_{\Gamma a 3} (\alpha_{ox_{st(i,1)}}, Fuel) \cdot T_{st(i,1),r}} \\ \sqrt{\frac{2 \cdot k_{st(i,1),r}}{1 + k_{st(i,1),r}} \cdot R_{\Gamma a 3} (\alpha_{ox_{st(i,1)}}, Fuel) \cdot T^*st(i,1),r} \\ \sqrt{\frac{2 \cdot k_{st(i,1),r}}{1 + k_{st(i,1),r}} \cdot R_{\Gamma a 3} (\alpha_{ox_{st(i,1)}}, Fuel) \cdot T^*w_{st(i,1),r}} \\ \begin{pmatrix} \lambda_{c_{st(i,1),r}} \\ \lambda_{w_{st(i,1),r}} \end{pmatrix} = \begin{pmatrix} \frac{c_{st(i,1),r}}{a^*c_{st(i,1),r}} \\ 0 \end{pmatrix} \\ \begin{pmatrix} M_{c_{st(i,1),r}} \\ M_{w_{st(i,1),r}} \end{pmatrix} = \frac{1}{a_{3B_{st(i,1),r}} \cdot \binom{c_{st(i,1),r}}{w_{st(i,1),r}}} \\ \text{iteration}_{ar} = 0 \end{pmatrix} $
		$M_{c_{ct(i-1)},r}$
		$\begin{bmatrix} \begin{bmatrix} M_{\mathbf{W}} \end{bmatrix} \end{bmatrix} = \frac{1}{a_{3\mathbf{B}}} \cdot \begin{bmatrix} -\operatorname{st}(1,1),1 \\ W_{\text{st}(1,1)},r \end{bmatrix}$
		while 1 > 0
		iteration _{or} = iteration _{or} + 1
		while $1 > 0$ $ \text{iteration}_{\text{CT}_{\underline{i}}} = \text{iteration}_{\text{CT}_{\underline{i}}} + 1$

$$\begin{aligned} & \operatorname{trace} \left(\operatorname{concat} \left(^{*} \quad \operatorname{iteration.er} - ^{*}, \operatorname{num2str} \left(\operatorname{iteration}_{\operatorname{CT}_{i}} - 1 \right) \right) \\ & \left(\frac{1}{\operatorname{Gst}(i,1)^{*} \cdot 0.9} \right) \quad \operatorname{if} \left(\operatorname{iteration}_{\operatorname{CT}_{i}} - 1 \right) \\ & \left(\frac{1}{\operatorname{mean} \left(\operatorname{Gst}(i,2), \operatorname{Gst}(i,3) \right) \cdot \eta_{\operatorname{Month}_{i}}} \right) \quad \operatorname{otherwise} \end{aligned}$$

$$R_{L_{i,r}} = R_{L.cp_{i}}$$

$$c_{at_{i}} = R_{L.cp_{i}}$$

$$c_{at_{i}} = R_{L.cp_{i}}$$

$$H_{stator_{i}} = H_{\operatorname{CT}_{i}} \cdot \left(1 - R_{L_{i,r}} \right)$$

$$c_{at_{i}} = H_{\operatorname{CT}_{i}} \cdot \left(1 - R_{L_{i,r}} \right)$$

$$c_{at_{i}} = H_{\operatorname{CT}_{i}} \cdot \left(1 - R_{L_{i,r}} \right)$$

$$c_{at_{i}} = H_{\operatorname{CT}_{i}} \cdot \left(1 - R_{L_{i,r}} \right)$$

$$v_{stator_{i}} = 1$$

$$v_{stator_{i}} = 0$$

$$v_{hilc} = 1 > 0$$

$$v_{stator_{i}} \cdot \left(1 - R_{c} \cdot A_{i} \right) \cdot r_{cooling} \cdot T_{JL,non} \right)$$

$$g_{ox_{J}CA_{i}} = \theta_{TJy} \delta_{HHa} \left(T^{*}_{st(i,1)}, r, T^{*}_{cooling}, T_{JL,non} \right)$$

$$g_{ox_{J}CA_{i}} = \frac{0.035 \cdot \theta_{CA_{i}}}{1 - \theta_{CA_{i}}} \quad if \frac{0.035 \cdot \theta_{CA_{i}}}{1 - \theta_{CA_{i}}} \geq 0$$

$$g_{ox_{J}CA_{i}} = \frac{0.035 \cdot \theta_{CA_{i}}}{0 \quad otherwise}$$

$$G_{st(i,2)} = G_{st(i,1)} \cdot \left(1 + g_{ox_{J}CA_{i}} \right)$$

$$v_{ox_{St(i,2)}} = \sigma_{ox_{St(i,1)}} + g_{ox_{J}CA_{i}}$$

$$v_{ox_{CA_{i}}} = \sigma_{ox_{St(i,1)}} + g_{ox_{J}CA_{i}}$$

$$v_{ox_{CA_{i}}} = \sigma_{ox_{St(i,1)}} \cdot r_{ox_{St(i,2)}} \cdot r_{ox_{St(i,2)}}$$

$$v_{hilc} = 1 > 0$$

$$v_{hilc} = 1 - 0$$

$$v_{$$

$$\begin{aligned} & P_{sd(i,2),r} = P^{s}_{sd(i,1),r} \left(\frac{T_{aX_{sd(i,2),r}}}{T^{s}_{sd(i,1),r}} \right) \\ & T_{a(i,2),r} = T^{s}_{sd(i,1),r} \left(\frac{T_{aX_{sd(i,2),r}}}{k_{CA_{i}}} \right) \frac{H_{stator_{i}} \left(\overline{V}_{stator_{i}} \right)^{2}}{k_{CA_{i}}} \\ & T_{a(i,2),r} = T^{s}_{sd(i,2),r} \left(\frac{T_{aX_{sd(i,2),r}}}{k_{CA_{i}}} \right) R_{ras,cp} \left(u_{cx_{sd(i,2)},r} T_{sud} \right) \\ & Cp_{2} = Cp_{ras} \left(P_{sd(i,2),r}, T_{sd(i,2),r} \right) \\ & k' - k_{in} \left(Cp_{2}, R_{ras} \left(\alpha_{ox_{sd(i,2)},r} \right) \right) \\ & k' - k_{in} \left(Cp_{2}, R_{ras} \left(\alpha_{ox_{sd(i,2)},r} \right) \right) \\ & i' \left[p_{0} \left(r_{c}^{10}, k_{sd(i,2),r} \right) \right] \\ & k_{sd(i,2),r} = k' \\ & b_{tota} \\ & k_{sd(i,2),r} = r \\ & P_{sd_{i},2),r} \left(\frac{T^{s}_{aX_{sd(i,2),r}}}{T_{sd(i,2),r}} \right) \frac{k_{sd(i,2),r}}{k_{sd(i,2),r}} \\ & P^{s}_{aX_{sd(i,2),r}} \\ & P^{s}_{aX_{sd(i,2),r}} \left[\frac{T^{s}_{aX_{sd(i,2),r}}}{T_{sd(i,2),r}} \right] P^{s}_{aX_{sd(i,2),r}} \frac{k_{sd(i,2),r}}{k_{sd(i,2),r}} \\ & P^{s}_{cx_{sd(i,2),r}} \\ & P^{s}_{cx_{sd(i,2),r}} \right] & = \begin{bmatrix} T^{c}_{cx_{sd(i,2),r}} \\ T^{s}_{aX_{sd(i,2),r}} \\ P^{s}_{cx_{sd(i,2),r}} \\ P^{s}_{sd(i,2),r} \\ & P^{s}_{cx_{sd(i,2),r}} \\ \end{pmatrix} & = \begin{bmatrix} T^{c}_{cx_{sd(i,2),r}} \\ P^{s}_{cx_{sd(i,2),r}} \\ P^{s}_{cx_{sd(i,2),r}} \\ P^{s}_{cx_{sd(i,2),r}} \\ P^{s}_{cx_{sd(i,2),r}} \\ & P^{s}_{sd(i,2),r} \\ P^{s}_{cx_{sd(i,2),r}} \\ & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} \\ R_{sd(i,2),r} & P^{s}_{sd(i,2),r} \\ R_{sd(i,2),r} & P^{s}_{sd(i,2),r} \\ R_{sd(i,2),r} & P^{s}_{sd(i,2),r} \\ P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} & P^{s}_{sd(i,2),r} \\ P^{s}_{sd(i,2),r} & P^{s}_{sd(i,2),r} \\ P^{s}_{sd(i,2),r} & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} & P^{s}_{sd(i,2),r} \\ & P^{s}_{sd(i,2),r} \\$$

$$\begin{pmatrix} c_{u_{3}(i,2),\tau} \\ c_{u_{3}(i,2),\tau} \\ c_{u_{3}(i,2),\tau} \\ c_{u_{3}(i,2),\tau} \\ - c_{sl(i,2),\tau} \\ c_{u_{3}(i,2),\tau} \\ - c_{sl(i,2),\tau} \\ c_{u_{3}(i,2),\tau} \\ - c_{sl(i,2),\tau} \\ c_{u_{3}(i,2),\tau} \\ - c_{u$$

$$\begin{vmatrix} \operatorname{cril} \left(\frac{\operatorname{common}_{\operatorname{cont}}(\operatorname{cont}(\operatorname{cont}_{\operatorname{cont}}(\operatorname{cont}(\operatorname{cont}_{\operatorname{cont}}(\operatorname{cont}_{\operatorname{cont}}(\operatorname{cont}(\operatorname{cont}_{\operatorname{cont}}(\operatorname{cont}(\operatorname{cont}_{\operatorname{cont}}(\operatorname{cont}(\operatorname{co$$

$$\begin{split} & \theta p_{K_i} = \theta_{\text{FMy}} \text{Gutha} \Big(T^* w_{\text{st}(i,2),r}, T^* \text{cooling}, T_{\text{J,Jon}} \Big) \\ & g_{\text{OX,P}} K_i = \begin{cases} 0.035 \cdot \theta_{\text{P}K_i} \\ 1 - \theta_{\text{P}K_i} \end{cases} & \text{if} \quad \frac{0.035 \cdot \theta_{\text{P}K_i}}{1 - \theta_{\text{P}K_i}} \geq 0 \\ & g_{\text{St}(i,3)} = G_{\text{St}(i,2)} \cdot \Big(1 + g_{\text{OX,P}} K_i \Big) \\ & G_{\text{OX}} \\ & g_{\text{St}(i,3)} = G_{\text{OX}} \\ & g_{\text{St}(i,2)} + g_{\text{OX,P}} K_i \Big) \\ & G_{\text{OX}} \\ & g_{\text{St}(i,3),r} = k_{\text{st}(i,2),r} \\ & k_{\text{St}(i,3),r} = k_{\text{st}(i,2),r} \\ & k_{\text{P}K_i} = mean \Big(k_{\text{st}(i,2),r}, k_{\text{st}(i,3),r} \Big) \\ & T_{aJ_{\text{St}(i,3),r}} = T_{\text{st}(i,2),r} - \frac{K_{\text{P}K_i}}{k_{\text{P}K_i} - 1} \cdot R_{\text{Fa3,cp}} \Big(\alpha_{\text{OX}_{\text{st}(i,2)}}, \alpha_{\text{OX}_{\text{st}(i,3)}}, r_{\text{Fuel}} \Big) \\ & F_{\text{St}(i,3),r} = T_{\text{st}(i,2),r} - \frac{\left(w_{\text{st}(i,3),r} \right)^2 - \left(w_{\text{st}(i,3),r} \right)^2 - \left(u_{\text{st}(i,3),r} \right)^2 + \left(u_{\text{st}(i,2),r} \right)^2}{2 \cdot \frac{k_{\text{P}K_i}}{k_{\text{P}K_i} - 1}} \\ & C_{\text{P3}} = C_{\text{P}_{\text{Fa3}}} \Big(P_{\text{St}(i,3),r}, T_{\text{St}(i,3),r}, \alpha_{\text{OX}_{\text{st}(i,3)}}, Fuel \Big) \\ & k' = k_{an} \Big(C_{\text{P3}}, R_{\text{Fa3}} \Big(\alpha_{\text{OX}_{\text{st}(i,3)}}, Fuel \Big) \\ & k' = k_{\text{st}(i,3),r} = k' \\ & k_{\text{st}(i,3),r} = k' \\ & k_{\text{st}(i,3),r} = \frac{R_{\text{Fa3}} \Big(\alpha_{\text{OX}_{\text{st}(i,3)}}, Fuel \Big) \cdot T_{\text{st}(i,3),r}}{R_{\text{st}(i,3),r}} \\ & \rho_{\text{st}(i,3),r} = asin \Big(\frac{G_{\text{st}(i,3),r}, F_{\text{st}(i,3),r}}{w_{\text{st}(i,3),r}, F_{\text{st}(i,3),r}} \Big) - u_{\text{st}(i,3),r} \Big) \\ & c_u \\ & c_u \\ & e_{\text{st}(i,3),r} = e_{\text{st}(i,3),r} - e_{\text{St}(i,3),r}, e_{\text{OX}} \Big(g_{\text{st}(i,3),r} \Big) - u_{\text{st}(i,3),r} \Big) \\ & c_u \\ & e_{\text{st}(i,3),r} = e_{\text{st}(i,3),r} - e_{\text{St}(i,3),r} - e_{\text{St}(i,3),r} \Big) \\ & e_{\text{St}(i,3),r} - e_{\text{St}(i,3),r} \Big) \\ & e_{\text{St}(i,3),r} - e_{\text{St}(i,3),r} - e_{\text{St}(i,3),r} \Big) \\ & e_{\text{St}(i,3),r} - e_{\text{St}(i,3),r} - e_{\text{St}(i,3),r} \Big) \\ & e_{\text{St}(i,3),r} - e_{\text{St}(i,3),r} - e_{\text{St}(i,3),r} \Big) \\ &$$

$$\begin{cases} (-s(i,3),r) &= \sqrt{\left(c_{0,s(i,3),r}\right)^{2} - \left(c_{0,s(i,3),r}\right)^{2} - \left(c_{0,s(i,3),r}\right)^{2}} \\ w_{0,s(i,3),r} &= \sqrt{\left(w_{0,s(i,3),r}\right)^{2} - \left(c_{0,s(i,3),r}\right)^{2}} \\ w_{0,s(i,3),r} &= \frac{1}{r_{0,s(i,3),r}} \left(c_{0,s(i,3),r}\right)^{2} - \left(c_{0,s(i,3),r}\right)^{2}} \\ w_{0,s(i,3),r} &= \frac{1}{r_{0,s(i,3),r}} \left(c_{0,s(i,3),r}\right)^{2} - \left(c_{0,s(i,3),r}\right)^{2}} \\ v_{0,s(i,3),r} &= \frac{1}{r_{0,s(i,3),r}} \left(c_{0,s(i,3),r}\right)^{2} - \left(c_{0,s(i,3),r}\right)^{2}} \\ v_{0,s(i,3),r} &= v_{0,s(i,3),r}\right)^{2} \\ v_{0,s(i,3),r} &= v_{0,s(i,3),r}\left(\frac{1}{r_{0,s(i,3),r}}\right)^{2} - \left(c_{0,s(i,3),r}\right)^{2} - \left(c_{0,s(i,3),r}\right)^{2} \\ v_{0,s(i,3),r} &= v_{0,s(i,3),r}\right)^{2} \\ v_{0,s(i,3),r} &= v_{0,s(i,3),r}\left(\frac{1}{r_{0,s(i,3),r}}\right)^{2} - \left(c_{0,s(i,3),r}\right)^{2} - \left(c_{0,s(i,3),r}\right)^{2} \\ v_{0,s(i,3),r} &= v_{0,s(i,3),r}\right)^{2} \\ v_{0,s(i,3),r} &= v_{0,s(i,3),r}\left(\frac{1}{r_{0,s(i,3),r}}\right)^{2} - \left(c_{0,s(i,3),r}\right)^{2} - \left(c_{0,s(i,3),r}\right)^{$$

$$\begin{vmatrix} \lambda_{m}_{S(1,3),\tau} \\ \lambda_{m}^{*}_{S(1,3),\tau} \\ - \frac{1}{\alpha^{*}_{m}} \frac{c_{S(1,3),\tau}}{a^{*}_{m}} \begin{vmatrix} c_{S(1,3),\tau} \\ w_{G(1,3),\tau} \\ w_{G(1,3),\tau} \end{vmatrix} = \frac{1}{\alpha_{m}(1,3),\tau} \begin{pmatrix} c_{S(1,3),\tau} \\ w_{G(1,3),\tau} \\ w_{G(1,3),\tau} \\ w_{G(1,3),\tau} \\ - \frac{1}{\alpha^{*}_{m}} \frac{1}{\alpha_{m}} \frac{1}{\alpha$$

$$\begin{vmatrix} | \overline{v}_{rotot_{i}} | = \sqrt{1 - \xi_{cal} v_{K_{i}}^{-} - \xi_{Ta} p_{K_{i}}^{-} - \xi_{BT} v_{K_{i}}^{-} - \xi_{BT} p_{K_{i}}^{-} - \xi_{BT} p_{$$

$$\left[H^*_{cT_{\hat{i}}} = Cp_{\Gamma a3.cp} \left(P_{st(i,1),r}, P_{st(i,3),r}, T_{st(i,1),r}, T_{st(i,3),r}, \alpha_{oX_{st(i,1)}}, \alpha_{oX_{st(i,3)}}, Fuel \right) \cdot T^*_{st(i,1),r} \cdot \left[1 - \left(\pi^*_{cT_{\hat{i}}} \right)^{\frac{1}{k_{cp}}} \right] \right]$$

$$\left[\eta^*_{cT_{\hat{i}}} = \frac{L_{cT_{\hat{i}}}}{H^*_{cT_{\hat{i}}}} \right]$$

for $i \in 1...Z$

for $j \in 1...3$

$$\begin{vmatrix} \rho^*_{st(i,j),r} = \frac{P^*_{st(i,j),r}}{R_{\Gamma a3} \left(\alpha_{oX_{st(i,j)}}, Fuel\right) \cdot T^*_{st(i,j),r}} \\ \rho_{st(i,j),r} = \left(v_{st(i,j),r}\right)^{-1} \\ \left(\varepsilon_{stator_{i,av}\left(N_r\right)}\right) = \begin{pmatrix} \alpha_{st(i,2),av\left(N_r\right)} - \alpha_{st(i,1),av\left(N_r\right)} \\ \beta_{st(i,3),av\left(N_r\right)} - \beta_{st(i,2),av\left(N_r\right)} \end{pmatrix}$$

▼ Параметры турбины

$$\operatorname{stack} \left(\eta_{u1}^{}, \eta_{u2}^{} \right) = \begin{array}{|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\\hline 1 & 76.58 & 79.42 & 80.00 & 76.17 \\\hline 2 & 76.26 & 79.19 & 79.84 & 75.97 \\\hline \end{array} .\%$$

Теплоперепад по параметрам торможения (Дж/кг):
$$\begin{pmatrix} H^*_T \\ H_T \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^Z & H^*_{CT_i} \\ Z \\ \sum_{i=1}^Z & H_{CT_i} \end{pmatrix} = \frac{1}{1} \frac{475.6}{2 \cdot 565.8} \cdot 10^3$$

Мощность T (Вт):
$$\sum_{i=1}^{Z} N_{cT_{i}} = 15.18 \cdot 10^{6}$$
 eps "rel", N_{T} , $\sum_{i=1}^{Z} N_{cT_{i}} = 0.000 \cdot \%$

Удельная поступенчатая рабога Т [Дж/кг]:
$$L_T = \sum_{i=1}^{Z} \frac{N_{cT_i}}{\text{mean}\big(G_{st(i,2)},G_{st(i,3)}\big)} = 428.9 \cdot 10^3$$

$$\text{ Лопаточный КПДТ:} \qquad \eta_{\text{Тлоп}} = \frac{\displaystyle \sum_{i=1}^{Z} \frac{N_{\text{CT}_i}}{\text{mean} \big(G_{\text{st}(i,2)}, G_{\text{st}(i,3)} \big)} + \frac{ \left(c_{\text{st}(Z,3)}, \text{av} \big(N_r \big) \right)^2}{2} }{H_{\text{T}}} = 80.55 \cdot \%$$

$$k_{T.cp} = k_{aJ} \left(Cp_{\Gamma a3.cp} \left(P_{st(1,1),av(N_r)}, P_{st(Z,3),av(N_r)}, T_{st(1,1),av(N_r)}, T_{st(Z,3),av(N_r)}, \alpha_{ox_{st(1,1)}}, \alpha_{ox_{st(Z,3)}}, Fuel \right), R_{\Gamma a3.cp} \left(\alpha_{ox_{st(1,1)}}, \alpha_{ox_{st(Z,3)}}, Fuel \right) \right) = 1.308$$

Адиабатный КПДТ:
$$\eta^*_T = \frac{L_T}{H^*_T} = 90.18 \cdot \%$$

Политропический КПД Т:
$$\eta^*_{T,\Pi} = \eta^*_{n} ($$
"расширение", $\eta^*_{T}, \pi^*_{T}, k_{T,cp}) = 88.59 \cdot \%$

$$\text{Мощностной КПДТ:} \qquad \eta_{\text{Тмощь}} = \frac{\displaystyle\sum_{i=1}^{Z} \frac{N_{\text{CT}_i}}{\text{mean}\big(G_{\text{st}(i,2)},G_{\text{st}(i,3)}\big)}}{H_{\text{T}}} = 75.80 \cdot \%$$

$Lu_{range} = \begin{bmatrix} T \\ T \end{bmatrix}$		1	2	3	4
- нагрузка –	1	3.0	2.3	1.8	1.6

$H_{or}^{T} =$		1	2	3	4	1.10^3
CT	1	144.2	138.9	138.0	144.8	

$$\operatorname{stack}\left(\mathbf{H}_{\operatorname{stator}}^{\mathbf{T}}, \mathbf{H}_{\operatorname{rotor}}^{\mathbf{T}}\right) = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ & 1 & 125.4 & 118.1 & 113.1 & 118.0 \\ & 2 & 18.8 & 20.9 & 24.9 & 26.9 \end{bmatrix} \cdot 10^{\frac{3}{2}}$$

submatrix
$$\left(R_L^T, av(N_r), av(N_r), 1, Z\right) = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0.1 & 0.2 & 0.2 & 0.2 \end{bmatrix}$$

$G^{T} =$		1	2	3	4	5	6	7	8
	1	35.394	35.394	35.394	35.394	35.394	35.394	35.394	

$$\alpha_{\text{OX}}^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2.493 & 2.493 & 2.493 & 2.493 & 2.493 & 2.493 & 2.493 & 2.493 & 2.493 \\ \end{bmatrix}$$

$$\operatorname{stack} \left(\boldsymbol{\theta}_{CA}^{T}, \boldsymbol{\theta}_{PK}^{T} \right) = \begin{array}{|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & -0.005 & -0.112 & -0.246 & -0.420 \\ \hline 2 & -0.066 & -0.192 & -0.354 & -0.568 \\ \hline \end{array}$$

$$G_{\text{OX},CA_i} = g_{\text{OX},CA_i} \cdot G_{\text{st}(i,1)}$$

$$G_{\text{OX},PK_i} = g_{\text{OX},PK_i} \cdot G_{\text{st}(i,2)}$$

$$G_{cooling} = 0.8$$

$$\sum_{i=1}^{Z} G_{\text{oxnCA}_i} + \sum_{i=1}^{Z} G_{\text{oxnCA}_i} \leq G_{\text{cooling}} = 1$$

$$\operatorname{stack}\left(\operatorname{iteration}_{CA}^{T}, \operatorname{iteration}_{PK}^{T}\right) = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\\hline & 1 & 2 & 2 & 2 & 2 \\\hline & 2 & 2 & 2 & 2 & 2 \\\hline \end{array}$$

$ \begin{aligned} & \text{submatrix} \left(\mathbf{a_{3B}}^T, \text{av} \left(\mathbf{N_f} \right), \text{av} \left(\mathbf{N_f} \right), 1, 2Z + 1 \right) = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 712.6 & 691.4 & 688.5 & 669.8 & 666.1 & 646.3 & 641.3 & 619.4 & 613.7 \end{vmatrix} \\ & \text{submatrix} \left(\mathbf{a^*}_{\mathbf{c}}^T, \text{av} \left(\mathbf{N_f} \right), \text{av} \left(\mathbf{N_f} \right), 1, 2Z + 1 \right) = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 667.9 & 668.6 & 646.6 & 647.3 & 624.3 & 625.0 & 600.9 & 601.8 & 576.2 \end{vmatrix} \\ & \text{submatrix} \left(\mathbf{a^*}_{\mathbf{w}}^T, \text{av} \left(\mathbf{N_f} \right), \text{av} \left(\mathbf{N_f} \right), 1, 2Z + 1 \right) = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 655.4 & 655.8 & 632.9 & 633.7 & 609.3 & 610.1 & 584.6 & 584.9 \end{vmatrix} \\ & \text{submatrix} \left(\mathbf{c^T}, \text{av} \left(\mathbf{N_f} \right), \text{av} \left(\mathbf{N_f} \right), 1, 2Z + 1 \right) = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1 & 80.0 & 491.2 & 220.3 & 475.1 & 197.6 & 466.2 & 200.0 & 476.7 & 231.9 \end{vmatrix} \\ & \text{submatrix} \left(\mathbf{c_u}^T, \text{av} \left(\mathbf{N_f} \right), \text{av} \left(\mathbf{N_f} \right), 1, 2Z + 1 \right) = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1 & 80.0 & 491.2 & 220.3 & 475.1 & 197.6 & 466.2 & 200.0 & 476.7 & 231.9 \end{vmatrix} \\ & \text{submatrix} \left(\mathbf{c_u}^T, \text{av} \left(\mathbf{N_f} \right), \text{av} \left(\mathbf{N_f} \right), 1, 2Z + 1 \right) = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1 & 80.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{vmatrix} \\ & \text{submatrix} \left(\mathbf{w_u}^T, \text{av} \left(\mathbf{N_f} \right), \text{av} \left(\mathbf{N_f} \right), 1, 2Z + 1 \right) = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1 & 80.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{vmatrix} \\ & \text{submatrix} \left(\mathbf{w_u}^T, \text{av} \left(\mathbf{N_f} \right), \text{av} \left(\mathbf{N_f} \right), 1, 2Z + 1 \right) = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 328.4 & 373.6 & 295.2 & 357.3 & 270.8 & 350.4 & 280.7 & 355.8 \end{vmatrix} \\ & \text{submatrix} \left(\mathbf{w_u}^T, \text{av} \left(\mathbf{N_f} \right), \text{av} \left(\mathbf{N_f} \right), 1, 2Z + 1 \right) = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 266.7 & 330.7 & 226.5 & 309.6 & 180.9 & 290.3 & 157.7 & 270.0 \end{vmatrix} \\ & \text{submatrix} \left(\mathbf{w_a}^T, \text{av} \left(\mathbf{N_f} \right), \text{av} \left(\mathbf{N_f} \right), 1, 2Z + 1 \right) = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{vmatrix} \\ & \text{submatrix} \left(\mathbf{v_a}^T, av$											
$submatrix \left(a^*_{c}^{T}, av(N_{f}), av(N_{f}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 667.9 & 668.6 & 646.6 & 647.3 & 624.3 & 625.0 & 600.9 & 601.8 & 576.2 \end{bmatrix}$ $submatrix \left(a^*_{w}^{T}, av(N_{f}), av(N_{f}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 655.4 & 655.8 & 632.9 & 633.7 & 609.3 & 610.1 & 584.6 & 584.9 \end{bmatrix}$ $submatrix \left(c^{T}, av(N_{f}), av(N_{f}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 491.2 & 220.3 & 475.1 & 197.6 & 466.2 & 200.0 & 476.7 & 231.9 \end{bmatrix}$ $submatrix \left(c_{u}^{T}, av(N_{f}), av(N_{f}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 491.2 & 220.3 & 475.1 & 197.6 & 466.2 & 200.0 & 476.7 & 231.9 \end{bmatrix}$ $submatrix \left(c_{u}^{T}, av(N_{f}), av(N_{f}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1 & 0.0 & 452.3 & 135.3 & 435.8 & 85.3 & 420.3 & 38.7 & 416.3 & 10.0 \end{bmatrix}$ $submatrix \left(w^{T}, av(N_{f}), av(N_{f}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{f}), av(N_{f}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1 & 0.0 & 328.4 & 373.6 & 295.2 & 357.3 & 270.8 & 350.4 & 280.7 & 355.8 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{f}), av(N_{f}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 328.4 & 373.6 & 295.2 & 357.3 & 270.8 & 350.4 & 280.7 & 355.8 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{f}), av(N_{f}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 266.7 & 330.7 & 226.5 & 309.6 & 180.9 & 290.3 & 157.7 & 270.0 \end{bmatrix}$ $submatrix \left(c_{a,1}^{T}, av(N_{f}), av(N_{f}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix \left(c_{a,1}^{T}, av(N_{f}), av(N_{f}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$	submatrix $\begin{pmatrix} a_{n} & T \\ a_{n} & Av(N_{n}) & Av(N_{n}) & 1.2Z + 1 \end{pmatrix}$	=	1			4	5	6	7	8	9
$ \begin{aligned} & \text{submatrix} \Big(a^*_{W}{}^T, av \Big(N_f \big), av \Big(N_f \big), 1, 2Z + 1 \Big) = \underbrace{ \begin{array}{c cccccccccccccccccccccccccccccccccc$	$(3B \rightarrow (1) \rightarrow (1) \rightarrow)$	1	712.6	691.4	688.5	669.8	666.1	646.3	641.3	619.4	613.7
$ \begin{aligned} & \text{submatrix} \Big(a^*_{W}{}^T, av \Big(N_f \big), av \Big(N_f \big), 1, 2Z + 1 \Big) = \underbrace{ \begin{array}{c cccccccccccccccccccccccccccccccccc$											
$\begin{aligned} & \text{submatrix} \Big(a^*_{W}{}^T, av \Big(N_f \big), av \Big(N_f \big), 1, 2Z+1 \Big) = \underbrace{ \begin{array}{c cccccccccccccccccccccccccccccccccc$	submatrix $\left(a^*, \frac{1}{2}, av(N_n), av(N_n), 1, 2Z + 1\right)$	=	1	2		4	5	6	7	8	9
$submatrix\left(c^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 491.2 & 220.3 & 475.1 & 197.6 & 466.2 & 200.0 & 476.7 & 231.9 \end{bmatrix}$ $submatrix\left(c_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 452.3 & 135.3 & 435.8 & 85.3 & 420.3 & 38.7 & 416.3 & 10.0 \end{bmatrix}$ $submatrix\left(c_{a}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(w^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 328.4 & 373.6 & 295.2 & 357.3 & 270.8 & 350.4 & 280.7 & 355.8 \end{bmatrix}$ $submatrix\left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 266.7 & 330.7 & 226.5 & 309.6 & 180.9 & 290.3 & 157.7 & 270.0 \end{bmatrix}$ $submatrix\left(w_{a}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$		1	667.9	668.6	646.6	647.3	624.3	625.0	600.9	601.8	576.2
$submatrix\left(c^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 491.2 & 220.3 & 475.1 & 197.6 & 466.2 & 200.0 & 476.7 & 231.9 \end{bmatrix}$ $submatrix\left(c_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 452.3 & 135.3 & 435.8 & 85.3 & 420.3 & 38.7 & 416.3 & 10.0 \end{bmatrix}$ $submatrix\left(c_{a}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(w^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 328.4 & 373.6 & 295.2 & 357.3 & 270.8 & 350.4 & 280.7 & 355.8 \end{bmatrix}$ $submatrix\left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 266.7 & 330.7 & 226.5 & 309.6 & 180.9 & 290.3 & 157.7 & 270.0 \end{bmatrix}$ $submatrix\left(w_{a}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$		_									
$submatrix\left(c^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 491.2 & 220.3 & 475.1 & 197.6 & 466.2 & 200.0 & 476.7 & 231.9 \end{bmatrix}$ $submatrix\left(c_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 452.3 & 135.3 & 435.8 & 85.3 & 420.3 & 38.7 & 416.3 & 10.0 \end{bmatrix}$ $submatrix\left(c_{a}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(w^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 328.4 & 373.6 & 295.2 & 357.3 & 270.8 & 350.4 & 280.7 & 355.8 \end{bmatrix}$ $submatrix\left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 266.7 & 330.7 & 226.5 & 309.6 & 180.9 & 290.3 & 157.7 & 270.0 \end{bmatrix}$ $submatrix\left(w_{a}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix\left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$	submatrix $\left(a^*, \frac{T}{N}, av(N_n), av(N_n), 1, 2Z + 1\right)$) = [3	4	5		7	8	9
$submatrix \left(c_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 452.3 & 135.3 & 435.8 & 85.3 & 420.3 & 38.7 & 416.3 & 10.0 \end{bmatrix}$ $submatrix \left(c_{a}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 10.0 & 328.4 & 373.6 & 295.2 & 357.3 & 270.8 & 350.4 & 280.7 & 355.8 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 266.7 & 330.7 & 226.5 & 309.6 & 180.9 & 290.3 & 157.7 & 270.0 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 266.7 & 330.7 & 226.5 & 309.6 & 180.9 & 290.3 & 157.7 & 270.0 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix \left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix \left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$	(w ' (f)' (f)' '	/ [1 0.0	655.4	655.8	632.9	633.7	609.3	610.1	L 584.6	584.9
$submatrix \left(c_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 452.3 & 135.3 & 435.8 & 85.3 & 420.3 & 38.7 & 416.3 & 10.0 \end{bmatrix}$ $submatrix \left(c_{a}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 10.0 & 328.4 & 373.6 & 295.2 & 357.3 & 270.8 & 350.4 & 280.7 & 355.8 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 266.7 & 330.7 & 226.5 & 309.6 & 180.9 & 290.3 & 157.7 & 270.0 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 266.7 & 330.7 & 226.5 & 309.6 & 180.9 & 290.3 & 157.7 & 270.0 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix \left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix \left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$											
$submatrix \left(c_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 452.3 & 135.3 & 435.8 & 85.3 & 420.3 & 38.7 & 416.3 & 10.0 \end{bmatrix}$ $submatrix \left(c_{a}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 10.0 & 328.4 & 373.6 & 295.2 & 357.3 & 270.8 & 350.4 & 280.7 & 355.8 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 266.7 & 330.7 & 226.5 & 309.6 & 180.9 & 290.3 & 157.7 & 270.0 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 266.7 & 330.7 & 226.5 & 309.6 & 180.9 & 290.3 & 157.7 & 270.0 \end{bmatrix}$ $submatrix \left(w_{u}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix \left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$ $submatrix \left(c_{a,T}^{T}, av(N_{r}), av(N_{r}), 1, 2Z + 1\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \end{bmatrix}$	submatrix $\begin{pmatrix} c^T \cdot av(N_n) \cdot av(N_n) \cdot 1 \cdot 2Z + 1 \end{pmatrix} =$: 🔲	1	2	3	4	5	6	7	8	9
$ \begin{aligned} & \text{submatrix} \left(c_a^T, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 2Z + 1 \right) = \underbrace{ \begin{array}{c cccccccccccccccccccccccccccccccccc$	(', ', ', ', ', ', ', ', ', ', ', ', ',	1	180.0	491.2	220.3	475.1	197.6	466.2	200.0	476.7	231.9
$ \begin{aligned} & \text{submatrix} \left(c_a^T, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 2Z + 1 \right) = \underbrace{ \begin{array}{c cccccccccccccccccccccccccccccccccc$											
$ \begin{aligned} & \text{submatrix} \left(c_a^T, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 2Z + 1 \right) = \underbrace{ \begin{array}{c cccccccccccccccccccccccccccccccccc$	submatrix $\begin{pmatrix} c & T & av(N) & av(N) & 1 & 2Z + 1 \end{pmatrix}$	_	1	2	3	4	5	6	7	8	9
$\begin{aligned} & \text{submatrix}\Big(\mathbf{w}^T, \mathbf{av}\big(N_r\big), \mathbf{av}\big(N_r\big), 1, 2Z+1\Big) = \boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$	(u , u (1 · r), u · (1 · r), 1 · , 22 · 1)	1	0.0	452.3	135.3	435.8	85.3	420.3	38.7	416.3	10.0
$\begin{aligned} & \text{submatrix}\Big(\mathbf{w}^T, \mathbf{av}\big(N_r\big), \mathbf{av}\big(N_r\big), 1, 2Z+1\Big) = \boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$											
$\begin{aligned} & \text{submatrix}\Big(\mathbf{w}^T, \mathbf{av}\big(N_r\big), \mathbf{av}\big(N_r\big), 1, 2Z+1\Big) = \boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$	submatrix $\begin{pmatrix} c & T & av(N) & av(N) & 1 & 2Z + 1 \end{pmatrix}$	_	1	2	3	4	5	6	7	8	9
$\begin{aligned} & \text{submatrix}\Big(\mathbf{w}^T, \mathbf{av}\big(N_r\big), \mathbf{av}\big(N_r\big), 1, 2Z+1\Big) = \boxed{\begin{array}{c cccccccccccccccccccccccccccccccccc$	submatrix (°a , uv(1'r), uv(1'r), 1', 22 + 1)	1	180.0	191.6	173.8	189.2		201.6	196.2	232.3	231.7
$ \begin{aligned} & \text{submatrix} \left(\mathbf{w}_{\mathbf{u}}^{T}, \mathbf{av} \left(\mathbf{N}_{\mathbf{r}} \right), \mathbf{av} \left(\mathbf{N}_{\mathbf{r}} \right), 1, 2Z + 1 \right) = \underbrace{ \begin{array}{c cccccccccccccccccccccccccccccccccc$			•								
$ \begin{aligned} & \text{submatrix} \left(\mathbf{w}_{\mathbf{u}}^{T}, \mathbf{av} \left(\mathbf{N}_{\mathbf{r}} \right), \mathbf{av} \left(\mathbf{N}_{\mathbf{r}} \right), 1, 2Z + 1 \right) = \underbrace{ \begin{array}{c cccccccccccccccccccccccccccccccccc$	submatrix $\begin{pmatrix} \mathbf{v}^T & \mathbf{a}\mathbf{v}(\mathbf{N}) & \mathbf{a}\mathbf{v}(\mathbf{N}) & 1 & 2\mathbf{Z} + 1 \end{pmatrix}$:	_	1	2	3	4	5	6	7	8	9
$ \begin{aligned} & \text{submatrix} \bigg(w_a^{\ T}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 2Z + 1 \bigg) = \underbrace{ \begin{array}{c cccccccccccccccccccccccccccccccccc$	submatrix (v , uv (1\r), uv (1\r), 1,22 + 1)	1		328.4	373.6	295.2	357.3	270.8	350.4	280.7	355.8
$ \begin{aligned} & \text{submatrix} \bigg(w_a^{\ T}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 2Z + 1 \bigg) = \underbrace{ \begin{array}{c cccccccccccccccccccccccccccccccccc$									<u> </u>		
$ \begin{aligned} & \text{submatrix} \bigg(w_a^{\ T}, \text{av} \big(N_r \big), \text{av} \big(N_r \big), 1, 2Z + 1 \bigg) = \underbrace{ \begin{array}{c cccccccccccccccccccccccccccccccccc$	submatrix $\begin{pmatrix} w & T \\ av(N) & av(N) & 1 & 2Z + 1 \end{pmatrix}$	_ [1	2	3	4	5	6	7	8	9
$submatrix \left(c_{a\mu}^{T}, av(N_r), av(N_r), 1, 2Z \right) = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	submatrix ("u", "u"("r), "u"("r), "1,222 + ")	1	0.0	266.7	330.7	226.5	309.6	180.9	290.3	157.7	270.0
$submatrix \left(c_{a\mathcal{I}}^{T}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 2Z \right) = \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$submatrix \left(c_{a\mu}^{T}, av(N_r), av(N_r), 1, 2Z \right) = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	submatrix $\begin{pmatrix} w & T \\ av(N) & av(N) & 1 & 2Z + 1 \end{pmatrix}$	_	1	2	3	4	5	6	7	8	9
	("a , "("r), " ("r), ", 22 + 1)	1	0.0	191.6	173.8	189.2	178.3	201.6	196.2	232.3	231.7
	submatrix $\begin{pmatrix} c & T \\ c & av(N) & av(N) & 1 & 27 \end{pmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$		1 2	2	3	4	5	6	7	8	
	(°ад , « ('r), « ('r), 1, 22) —	1	537.0 50	00.9 5	27.1 4	85.9 5	25.3 4	75.7 5	38.1 4	185.8	
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		•		•	•	•	•	•	•	<u> </u>	
submatrix $ w - av(N) av(N) 1 2Z + 1 = $	submatrix $\left(\mathbf{w}_{\mathbf{a}\mathbf{J}}^{\mathbf{T}}, \mathbf{a}\mathbf{v}(\mathbf{N}_{\mathbf{r}}), \mathbf{a}\mathbf{v}(\mathbf{N}_{\mathbf{r}}), 1, 2\mathbf{Z} + 1\right)$) = [1	2	3	4	5	6	7	8	9
табинити (мад , и (1 т) , и (1 т) , 1 , 22 т) — 1 0.0 0.0 386.2 0.0 368.1 0.0 359.4 0.0 365.1	мад , ч (1 г), ч (1 г), 1,22 г г	/ [1 0.0	0.0	386.2	2 0.0	368.1	0.0	359.4	1 0.0	365.1
		_									

		1	2	3	4	5	6	7	8	9
$u^T =$	1	172.2	172.2	180.7	193.8	208.2	222.8	234.2	240.3	240.3
	2	183.8	185.7	195.4	209.3	224.4	239.4	251.6	258.7	260.0
	3	195.3	199.1	210.0	224.7	240.5	256.1	268.9	277.0	279.7

 $submatrix \left(\lambda_{c}, 1, 2Z + 1, av \left(N_{r} \right), av \left(N_{r} \right) \right)^{T} = \boxed{ \begin{array}{c|cccc} 1 & 2 & 3 \\ \hline 1 & 0.2695 & 0.7348 & 0.3407 \end{array} }$ 0.7340 0.3165 0.7458 0.3328 0.5638 0.4445 0.5742 $\operatorname{submatrix}\left(M_{c}, 1, 2Z + 1, \operatorname{av}\left(N_{r}\right), \operatorname{av}\left(N_{r}\right)\right)^{T} = \begin{array}{|c|c|c|c|c|}\hline 1 & 2 \\\hline 1 & 0.2526 & 0.7105 \\\hline \end{array}$ 3 0.3200 0.7093 0.2967 0.3118 0.7213 $submatrix\left(M_{W},1,2Z+1,av\left(N_{r}\right),av\left(N_{r}\right)\right)^{T} = \boxed{ \begin{array}{c|c} 1 & 2 \\ \hline 1 & 0.0000 & 0.4749 \end{array}}$ 3 0.5426 7 0.4407 0.5364 0.4191 0.5463

T T		1	2	3	4	
$\operatorname{stack}(v_{\operatorname{stator}}^{1}, v_{\operatorname{rotor}}^{1}) =$	1	43.06	63.00	58.89	53.57	۰۰ ا
	2	68.73				

$$t_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 40.6 & 27.9 & 35.9 & 43.3 \\ 2 & 43.6 & 30.1 & 38.6 & 46.6 \\ 3 & 46.5 & 32.4 & 41.3 & 49.8 \end{bmatrix} t_{rotor}^{T} = \begin{bmatrix} & 1 & 2 \\ 1 & 19.8 & 23.5 \\ 2 & 21.4 & 25.3 \\ 3 & 22.9 & 27.1 \end{bmatrix}$$

28.4 30.5 32.7 $\cdot 10^{-3}$

30.6

33.0

35.4

$$\operatorname{stack} \left(Z_{\text{stator}}^{\text{T}}, Z_{\text{rotor}}^{\text{T}} \right) = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ & 1 & 48 & 76 & 68 & 62 \\ & 2 & 101 & 97 & 91 & 89 \end{bmatrix}$$

$$stack \left(\overline{t}_{O\Pi TCA}^{T}, \overline{t}_{O\Pi TPK}^{T} \right) = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\\hline 1 & 0.762 & 0.603 & 0.645 & 0.686 \\\hline 2 & 0.643 & 0.661 & 0.695 & 0.722 \\\hline \end{array}$$

(- $T - T)$		1	2	3	4
$\operatorname{stack}(v_{\operatorname{stator}}, v_{\operatorname{rotor}}) =$	1	0.9807	0.9777	0.9800	0.9813
	2	0.9646	0.9683	0.9733	0.9727

$$\operatorname{stack}\left(\xi_{KPCA}^{T},\xi_{KPPK}^{T}\right) = \begin{array}{|c|c|c|c|c|c|c|c|}\hline 1 & 2 & 3 & 4 \\\hline 1 & 1.243 & 1.519 & 1.302 & 1.101 \\\hline 2 & 0.933 & 0.846 & 0.705 \\\hline \end{array} .\%$$

L	_	0.555	0.010	0.705	(т т\
				st	ack(ξ _{πρ} ($(A^{1}, \xi_{\Pi pPK})$
$T \cdot T$		1	2	3	4	Ĺ
$\operatorname{stack}\left(\xi_{\operatorname{ReCA}}^{1}, \xi_{\operatorname{RePK}}^{1}\right) =$	1	-0.014	0.078	0.097	0.126	.%
	2	0.246				

2.842

5.483

3.119

3.626

4.819

. (. T . T)		1	2	3	4	
$\operatorname{stack}\left(\xi_{\lambda CA}^{T}, \xi_{\lambda PK}^{T}\right) =$	1	0.217	0.219	0.201	0.134	-%
	2	0.371	0.382	0.362	0.297	

$$stack\bigg(\xi_{TДCA}^{},\xi_{TДPK}^{}\bigg) = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 0.000 & 0.000 & 0.000 & 0.000 \\ \hline 2 & 0.000 & 0.000 & 0.000 & 0.000 \\ \hline \end{array} \cdot \%$$

$$stack\bigg(\xi_{cMCA}^{T},\xi_{cMPK}^{T}\bigg) = \begin{array}{|c|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\\hline 1 & 0.000 & 0.000 & 0.000 & 0.000 \\\hline 2 & 0.000 & 0.000 & 0.000 & 0.000 \\\hline \end{array} \cdot \%$$

$$stack\bigg(\xi_{CA}^{T},\xi_{PK}^{T}\bigg) = \begin{array}{|c|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 3.326 & 3.743 & 3.250 & 3.026 \\ \hline 2 & 3.621 & 3.062 & 2.476 & 2.493 \\ \hline \end{array}. .97$$

▼ Выбор закона профилирования Л по высоте

$$\mathbf{m} = \begin{pmatrix} \overline{v}_{stator_1} \cdot \cos(\alpha_{st(1,2),av(N_r)})^2 & \text{if } Z = 1 \\ -0.5 & \text{otherwise} \end{pmatrix}$$

$$0$$

$$0.25$$

$$1$$

$$1$$

$$\begin{pmatrix} \text{"}\alpha.2 = \text{const"} \\ \text{"}\Gamma = \text{const"} \\ \text{"}m = \text{const"} \\ \text{"}R = \text{const"} \end{pmatrix} = \begin{pmatrix} \cos\left(\alpha_{\text{st(i,2),av(N_r)}}\right)^2 \cdot \overline{\upsilon}_{\text{stator_i}} \\ 1 \cdot \overline{\upsilon}_{\text{stator_i}} \\ 0.2 \\ -1 \cdot \overline{\upsilon}_{\text{stator_i}} \end{pmatrix}$$

$\mathbf{m}^{\mathrm{T}} =$		1	1 2		4	5	6	
	1	-0.5000	-0.2500	0.0000	0.2500	1.0000	1.0000	

▲ Выбор закона профилирования Л по высоте

$$\begin{vmatrix} \mathbf{n}_{i} & -\mathbf{n}_{stator_{i}^{*}} \mathbf{cus}(\mathbf{n}_{st(i,a),av}(N_{r})) \\ \mathbf{c}_{a_{st(i,a),av}(N_{r})} \cdot \mathbf{1} + \frac{\mathbf{1}}{\mathbf{1} - \frac{\mathbf{1}}{\mathbf{R}_{st(i,a),av}(N_{r})^{2}}} \\ \mathbf{tan} \left(\mathbf{n}_{st(i,a),av}(N_{r}) \right)^{2} \cdots \\ + \left[\mathbf{1} - \left(\overline{\mathbf{n}}_{rotor_{i}} \right)^{2} \right] \cdot \left[\mathbf{1} - \left(\mathbf{n}_{st(i,a),av}(N_{r}) \right)^{2} \cdot \mathbf{1} - \left(\mathbf{n}_{st(i,a),av}(N_{r}) \right)^{2} \right] \\ + \left[\mathbf{1} - \left(\overline{\mathbf{n}}_{rotor_{i}} \right)^{2} \right] \cdot \left[\mathbf{1} - \left(\mathbf{n}_{st(i,a),av}(N_{r}) \right)^{2} \cdot \mathbf{1} - \left(\mathbf{n}_{st(i,a),av}(N_{r}) \right)^{2} \right] \cdot \left[\mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \right] \\ + \left[\mathbf{1} - \left(\overline{\mathbf{n}}_{rotor_{i}} \right)^{2} \right] \cdot \left[\mathbf{1} - \frac{\mathbf{n}_{st(i,a),r}}{\left(\mathbf{n}_{st(i,a),av}(N_{r}) \right)^{2}} \right] \cdot \left[\mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \right] \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \right] \\ + -2 \cdot \mathbf{n}_{st(i,a-1),av}(N_{r}) \cdot \left(\mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \right) \cdot \left[\mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \right] \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \right] \\ + \left(\mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \right) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \right) \cdot \mathbf{n}_{st(i,a),av}(N_{r}) \cdot \mathbf{n}_$$

for $i \in 1...2 \cdot Z + 1$

for $r \in 1..N_r$

$$\begin{pmatrix}
c_{u_{i,r}} \\
c_{a_{i,r}}
\end{pmatrix} = c_{i,av(N_r)} \cdot \begin{pmatrix}
\cos(\alpha_{i,av(N_r)}) \\
\sin(\alpha_{i,av(N_r)})
\end{pmatrix} \text{ if } (i = 1)$$

$$P^*_{i,r} = P^*_{i,av(N_r)}$$

$$T^*_{i,r} = T^*_{i,av(N_r)}$$

$$\rho^*_{i,r} = \frac{P^*_{i,r}}{R_{ras}(\alpha_{ox_i}, Fuel) \cdot T^*_{i,r}}$$

$$\begin{aligned} & k_{i,\,r} = k_{a_{I}} \Big(C p_{BO3IJYX} \Big(P^*_{i,\,r}, T^*_{i,\,r} \Big), R_{ra3} \Big(\alpha_{OX_{i}}, Fuel \Big) \Big) \\ & a^*_{C_{i,\,r}} = \sqrt{\frac{2 \cdot k_{i,\,r}}{k_{i,\,r} + 1}} \cdot R_{ra3} \Big(\alpha_{OX_{i}}, Fuel \Big) \cdot T^*_{i,\,r} \\ & \alpha_{i,\,r} = triangle \Big(c_{a_{i,\,r}}, c_{u_{i,\,r}} \Big) \\ & c_{i,\,r} = \frac{c_{a_{i,\,r}}}{\sin(\alpha_{i,\,r})} \\ & \lambda_{C_{i,\,r}} = \frac{c_{i,\,r}}{a^*_{C_{i,\,r}}} \\ & \Big(T^*_{i,\,r} \Big) = \begin{pmatrix} T^*_{i,\,r} \cdot \Gamma \mathcal{H} \Phi \Big(T^*_{i}, \lambda_{c_{i,\,r}}, k_{i,\,r} \Big) \\ & P^*_{i,\,r} \cdot \Gamma \mathcal{H} \Phi \Big(T^*_{i}, \lambda_{c_{i,\,r}}, k_{i,\,r} \Big) \\ & p^*_{i,\,r} \cdot \Gamma \mathcal{H} \Phi \Big(T^*_{i}, \lambda_{c_{i,\,r}}, k_{i,\,r} \Big) \Big) \\ & a_{3B_{i,\,r}} = \sqrt{k_{i,\,r} \cdot R_{ra3}} \Big(\alpha_{OX_{i}}, Fuel \Big) \cdot T_{i,\,r} \\ & M_{C_{i,\,r}} = \frac{c_{i,\,r}}{a_{3B_{i,\,r}}} \\ & \beta_{i,\,r} = triangle \Big(c_{a_{i,\,r}}, u_{i,\,r} - c_{u_{i,\,r}} \Big) \\ & w_{i,\,r} = \frac{c_{a_{i,\,r}}}{\sin(\beta_{i,\,r})} \\ & W_{i,\,r} = \frac{c_{i,\,r}}{\sin(\beta_{i,\,r})} \\ & T^*_{w_{i,\,r}} = T^*_{i,\,r} - \frac{\left(c_{i,\,r}\right)^2 - \left(w_{i,\,r}\right)^2}{2 \cdot \frac{k_{i,\,r}}{k_{i,\,r} - 1} \cdot R_{ra3}} \Big(\alpha_{OX_{i}}, Fuel \Big) \cdot T^*_{w_{i,\,r}} \\ & \lambda_{w_{i,\,r}} = \frac{w_{i,\,r}}{k_{i,\,r} + 1} \cdot R_{ra3} \Big(\alpha_{OX_{i}}, Fuel \Big) \cdot T^*_{w_{i,\,r}} \\ & \lambda_{w_{i,\,r}} = \frac{w_{i,\,r}}{a^*_{w_{i,\,r}}} \\ & for \ i \in 1 ... Z \\ & for \ r \in 1 ... N_r \end{aligned}$$

 $\left(\Delta c_a\right) \left(c_a\right) - c_a$

$$\begin{bmatrix} \begin{bmatrix} \mathbf{c}^{*}\mathbf{st}(i,1),\mathbf{r} \\ \Delta \mathbf{c}_{\mathbf{a}_{\mathbf{st}}(i,2),\mathbf{r}} \end{bmatrix} = \begin{bmatrix} \mathbf{c}^{*}\mathbf{st}(i,2),\mathbf{r} & \mathbf{c}\mathbf{st}(i,1),\mathbf{r} \\ \mathbf{c}_{\mathbf{a}_{\mathbf{st}}(i,2),\mathbf{r}} - \mathbf{c}_{\mathbf{a}_{\mathbf{st}}(i,2),\mathbf{r}} \end{bmatrix} \\ \mathbf{R}_{\mathbf{L}_{\mathbf{i},\mathbf{r}}} = 1 - \frac{\mathbf{c}_{\mathbf{u}_{\mathbf{st}}(i,2),\mathbf{r}} - \mathbf{c}_{\mathbf{u}_{\mathbf{st}}(i,3),\mathbf{r}}}{\mathbf{u}_{\mathbf{st}(i,2),\mathbf{r}} + \mathbf{u}_{\mathbf{st}(i,3),\mathbf{r}}} \\ \boldsymbol{\varepsilon}_{\mathbf{stator}_{\mathbf{i},\mathbf{r}}} = \begin{bmatrix} \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} - \mathbf{c}_{\mathbf{st}}(i,1),\mathbf{r} & \text{if } \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} \geq \frac{\pi}{2} \\ \mathbf{c}_{\mathbf{st}(i,1),\mathbf{r}} - \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} & \text{otherwise} \end{bmatrix} \\ \boldsymbol{\varepsilon}_{\mathbf{rotor}_{\mathbf{i},\mathbf{r}}} = \begin{bmatrix} \mathbf{c}_{\mathbf{st}(i,3),\mathbf{r}} - \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} & \text{if } \mathbf{c}_{\mathbf{st}(i,3),\mathbf{r}} \geq \frac{\pi}{2} \\ \mathbf{c}_{\mathbf{st}(i,1),\mathbf{r}} - \mathbf{c}_{\mathbf{st}(i,2),\mathbf{r}} & \text{otherwise} \end{bmatrix} \\ \begin{bmatrix} \mathbf{P}^{*} & \mathbf{T}^{*} & \mathbf{T} & \mathbf{\rho}^{*} & \mathbf{k} & \mathbf{a}^{*}_{\mathbf{c}} & \mathbf{a}_{3\mathbf{B}} & \mathbf{c} & \mathbf{c}_{\mathbf{u}} & \mathbf{c}_{\mathbf{a}} & \mathbf{\Delta} \mathbf{c}_{\mathbf{a}} & \mathbf{c} & \mathbf{c}_{\mathbf{u}} \\ \mathbf{p} & \mathbf{T}^{*}_{\mathbf{w}} & \mathbf{T} & \mathbf{\rho} & \mathbf{R}_{\mathbf{L}} & \mathbf{a}^{*}_{\mathbf{w}} & \mathbf{a}_{3\mathbf{B}} & \mathbf{w} & \mathbf{w}_{\mathbf{u}} & \mathbf{w}_{\mathbf{u}} & \mathbf{w}_{\mathbf{d}} & \mathbf{c}_{\mathbf{u}} & \mathbf{c}_{\mathbf{u}} & \mathbf{c}_{\mathbf{u}} \end{bmatrix}^{\mathsf{T}} \\ \mathbf{c}_{\mathbf{u},\mathbf{v}} & \mathbf{c}_{\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{u},\mathbf{v},\mathbf{v}} & \mathbf{c}_{\mathbf{v},\mathbf{v},\mathbf{v}} \end{bmatrix}$$

▲ Расчет Л по высоте

▼ Результаты расчета Л по высоте

		1	2	3	4	5	6	7	8	9	
$P^{*T} =$	1	927.5	915.4	676.8	666.5	483.6	476.7	338.0	332.9	229.2	$\cdot 10^3$
	2	927.5	915.4	676.8	666.5	483.6	476.7	338.0	332.9	229.2	10
	3	927.5	915.4	676.8	666.5	483.6	476.7	338.0	332.9	229.2	

		1	2	3	4	5	6	7	8	9
$T^{*T} =$	1	1368.9	1369.9	1281.1	1282.0	1192.3	1193.3	1102.4	1103.7	1011.4
-	2	1368.9	1369.9	1281.1	1282.0	1192.3	1193.3	1102.4	1103.7	1011.4
	3	1368.9	1369.9	1281.1	1282.0	1192.3	1193.3	1102.4	1103.7	1011.4

		1	2	3	4	5	6	7	8	9
T* =	1	1381.3	1313.8	1273.2	1222.8	1197.0	1130.2	1120.2	1036.5	1033.9
1 W -	2	1383.0	1313.1	1278.7	1222.6	1203.2	1130.7	1126.9	1038.0	1041.0
	3	1384.8	1312.5	1284.4	1222.5	1209.7	1131.4	1133.9	1039.7	1048.3

		1	2	3	4	5	6	7	8	9
$o^{*T} =$	1	2.349	2.316	1.831	1.802	1.406	1.385	1.063	1.046	0.785
٢	2	2.349	2.316	1.831	1.802	1.406	1.385	1.063	1.046	0.785
	3	2.349	2.316	1.831	1.802	1.406	1.385	1.063	1.046	0.785

		1	2	3	4	5	6	7	8	9
$k^{T} =$	1	1.317	1.317	1.321	1.321	1.326	1.326	1.331	1.331	1.338
IX.	2	1.317	1.317	1.321	1.321	1.326	1.326	1.331	1.331	1.338
	3	1.317	1.317	1.321	1.321	1.326	1.326	1.331	1.331	1.338

		1	2	3	4	
$R_{\tau}^{T} =$	1	0.0536	0.0511	0.0925	0.1037	
TL	2	0.0913	0.1091	0.1574	0.1829	
	3	0.1251	0.1592	0.2136	0.2505	

		1	2	3	4	5	6	7	8	9	
$\mathbf{P}^{\mathrm{T}} =$	1	890.0	632.0	636.1	460.2	459.1	325.8	317.9	215.9	208.8	$\cdot 10^3$
-	2	890.0	661.2	638.3	481.8	459.5	340.2	318.0	226.6	208.8	10
	3	890.0	687.3	639.6	501.1	459.7	353.1	318.0	235.9	208.8	

		1	2	3	4	5	6	7	8	9
$T^{T} =$	1	1355.4	1252.9	1262.0	1171.6	1177.2	1086.7	1085.7	990.9	987.9
_	2	1355.4	1266.6	1263.0	1184.8	1177.5	1098.4	1085.7	1002.9	987.9
	3	1355.4	1278.5	1263.6	1196.1	1177.6	1108.5	1085.8	1013.1	987.9

		1	2	3	4	5	6	7	8	9
$o^{T} =$	1	2.276	1.749	1.747	1.362	1.352	1.039	1.015	0.755	0.733
P	2	2.276	1.810	1.752	1.410	1.353	1.074	1.015	0.783	0.733
	3	2.276	1.864	1.755	1.452	1.353	1.104	1.015	0.807	0.733

		1	2	3	4
$R_{I}^{T} \ge 0.05 =$	1	1	1	1	1
T.L = 0.00	2	1	1	1	1
	3	1	1	1	1

$$\mathbf{a^*c}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 670.1 & 670.3 & 648.6 & 648.9 & 626.2 & 626.5 & 602.7 & 603.0 & 577.9 \\ 2 & 670.1 & 670.3 & 648.6 & 648.9 & 626.2 & 626.5 & 602.7 & 603.0 & 577.9 \\ 3 & 670.1 & 670.3 & 648.6 & 648.9 & 626.2 & 626.5 & 602.7 & 603.0 & 577.9 \end{bmatrix}$$

		1	2	3	4	5	6	7	8	9
$\mathbf{c}^{\mathrm{T}} =$	1	180.0	529.2	213.2	511.7	188.4	500.2	196.8	511.3	231.7
·	2	180.0	497.3	207.1	480.3	186.6	472.1	196.6	483.5	231.7
	3	180.0	467.8	203.6	451.4	185.8	446.3	196.6	458.4	231.7

$$\mathbf{c_a}^{\mathrm{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 180.0 & 231.1 & 158.9 & 225.9 & 171.6 & 230.1 & 194.6 & 253.2 & 231.4 \\ 2 & 180.0 & 191.6 & 173.8 & 189.2 & 178.3 & 201.6 & 196.2 & 232.3 & 231.7 \\ 3 & 180.0 & 145.5 & 184.3 & 148.0 & 182.4 & 171.9 & 196.6 & 212.2 & 231.5 \end{bmatrix}$$

		1	2	3	4	5	6	7	8	9
$a_{W}^{T} = $	1	673.1	656.4	646.6	633.7	627.5	609.7	607.5	584.4	584.3
w	2	673.5	656.3	648.0	633.6	629.1	609.8	609.3	584.8	586.2
	3	674.0	656.1	649.5	633.6	630.8	610.0	611.2	585.3	588.3

		1	2	3	4	5	6	7	8	9
$\mathbf{a}_{}^{\mathrm{T}} =$	1	717.7	690.0	693.6	668.3	671.0	644.7	645.8	616.9	617.5
$a_{3B} =$	2	717.7	693.8	693.9	672.0	671.1	648.2	645.8	620.6	617.5
	3	717.7	697.0	694.0	675.2	671.2	651.1	645.8	623.8	617.5

		1	2	3	4	5	6	7	8	9
$\mathbf{w}^{\mathrm{T}} =$	1	249.1	381.8	163.5	348.6	215.6	319.3	282.5	325.1	324.1
	2	257.2	333.7	192.5	299.5	245.8	275.2	308.8	285.1	348.1
	3	265.6	285.4	221.8	250.2	274.5	232.0	334.0	248.5	371.5

		1	2	3	4	5	6	7	8
$\mathbf{w}_{\mathbf{u}}^{T} =$	1	172.2	-303.9	38.6	-265.4	130.5	-221.3	204.8	-203.8
·· u	2	183.8	-273.2	82.7	-232.2	169.2	-187.4	238.4	-165.3
	3	195.3	-245.5	123.4	-201.7	205.2	-155.7	269.9	

		1	2	3	4	5	6	7	8	9
$\mathbf{w_a}^T =$	1	180.0	231.1	158.9	225.9	171.6	230.1	194.6	253.2	231.4
·· a	2	180.0	191.6	173.8	189.2	178.3	201.6	196.2	232.3	231.7
	3	180.0	145.5	184.3	148.0	182.4	171.9	196.6	212.2	231.5

		1	2	3	4	5	6	7	8	9	
$\alpha^{T} =$	1	90.00	25.89	48.19	26.20	65.64	27.39	81.41	29.69	86.70	.0
<u> </u>	2	90.00	22.66	57.06	23.20	72.81	25.28	86.17	28.72	89.95	
	3	90.00	18.12	64.82	19.13	79.04	22.65	90.30	27.58	92.70	

		1	2	3	4	5	6	7	8	9
$80^{\circ} \leq \alpha^{T} =$	1	1	0	0	0	0	0	1	0	1
00 = 00	2	1	0	0	0	0	0	1	0	1
	3	1	0	0	0	0	0	1	0	1

[1, c.78]

Угол поворота потока:

$$\varepsilon_{\text{stator}}^{\text{T}} = \begin{vmatrix}
1 & 2 & 3 & 4 \\
1 & 64.11 & 21.99 & 38.24 & 51.72 \\
2 & 67.34 & 33.86 & 47.53 & 57.46 \\
3 & 71.88 & 45.69 & 56.39 & 62.72
\end{vmatrix}$$

$$\varepsilon_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 66.40 & 86.85 & 90.35 & 83.28 \\ 2 & 80.41 & 94.34 & 93.47 & 83.71 \\ 3 & 93.16 & 102.10 & 96.11 & 82.82 \end{bmatrix}$$

		1	2	3	4	5	6	7	8	9
$M_{\cdot}^{T} =$	1	0.251	0.767	0.307	0.766	0.281	0.776	0.305	0.829	0.375
···c	2	0.251	0.717	0.299	0.715	0.278	0.728	0.304	0.779	0.375
	3	0.251	0.671	0.293	0.669	0.277	0.685	0.304	0.735	0.375

		1	2	3	4	5	6	7	8	9
$\lambda_{-}^{T} =$	1	0.370	0.582	0.253	0.550	0.344	0.524	0.465	0.556	0.555
W -	2	0.382	0.509	0.297	0.473	0.391	0.451	0.507	0.488	0.594
	3	0.394	0.435	0.341	0.395	0.435	0.380	0.546	0.425	0.631

		1	2	3	4	5	6	7	8	9
$M_{W}^{T} =$	1	0.347	0.553	0.236	0.522	0.321	0.495	0.437	0.527	0.525
W	2	0.358	0.481	0.277	0.446	0.366	0.425	0.478	0.459	0.564
	3	0.370	0.409	0.320	0.371	0.409	0.356	0.517	0.398	0.602

▼ Построение треугольников скоростей в 3х сечениях

$$\begin{split} \Delta_c(v,i,j,r) &= \left| \begin{array}{l} \tan(\alpha_{st(i,j),r}) \cdot v & \text{if } \left(\tan(\alpha_{st(i,j),r}) \geq 0 \right) \wedge \left(- \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r} \right) \right| \leq v \leq 0 \right) \\ & \tan(\alpha_{st(i,j),r}) \cdot v & \text{if } \left(\tan(\alpha_{st(i,j),r}) < 0 \right) \wedge \left(0 \leq v \leq \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r} \right) \right| \right) \\ \Delta_w(v,i,j,r) &= \left| -\tan(\beta_{st(i,j),r}) \cdot v & \text{if } \left(-\tan(\beta_{st(i,j),r}) \geq 0 \right) \wedge \left(- \left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r} \right) \right| \leq v \leq 0 \right) \wedge \left(j \neq 1 \right) \\ & -\tan(\beta_{st(i,j),r}) \cdot v & \text{if } \left(-\tan(\beta_{st(i,j),r}) < 0 \right) \wedge \left(0 \leq v \leq \left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r} \right) \right| \right) \wedge \left(j \neq 1 \right) \\ \Delta_u(v,i,j,r) &= \left| -c_{a_{st(i,j),r}} & \text{if } \left(-c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r} \right) \leq v \leq w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r} \right) \right) \wedge \left(j \neq 1 \right) \\ & \text{NaN otherwise} \end{split}$$

$$v_{lim} = ceil \left(\frac{max(c, w, u)}{10^2} \right) \cdot 10^2 = 600.0$$

$$v = -max(c, w, u), -max(c, w, u) + \frac{max(c, w, u)}{3000} ... max(c, w, u)$$

 $r = av(N_r)$

▲ Построение треугольников скоростей в 3х сечениях

▼ Расчет хорд Л по парусности

$$\begin{pmatrix} \text{chord}_{\text{stator}} \\ \text{chord}_{\text{prior}} \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \\ \text{sail} = \frac{R_{\text{st}(i,2),N_f} - R_{\text{st}(i,2),1}}{R_{\text{st}(i,2),\text{av}[N_f]} - R_{\text{st}(i,2),1}} \\ \text{for } r \in 1..N_f \end{cases} \\ \text{for } i \in 1..Z \\ \text{for } r \in 1..N_f \end{cases}$$

$$\begin{pmatrix} \text{chord}_{\text{stator}} \\ \text{isal} \\ \text{bCAkop} = \frac{\text{chord}_{\text{stator}} \\ \text{sail} \\ \text{storor} - 1 + \text{sail}}}{\text{sail} \\ \text{storor} - 1 + \text{sail}}} \\ \text{bPKacp} = \begin{pmatrix} \text{chord}_{\text{stator}} \\ \text{sur} \\ \text{storor} - 1 + \text{sail}} \\ \text{chord}_{\text{stator}} - 2 + \text{sail} - 2 + \text{sail}} \\ \text{chord}_{\text{stator}} - 2 + \text{sail} - 2 + \text{sail}} \\ \text{chord}_{\text{stator}} - 2 + \text{sail} - 2 + \text{sail}} \\ \text{chord}_{\text{stator}} - 2 + \text{sail} - 2 + \text{sail}} \\ \text{chord}_{\text{stator}} - 2 + \text{sail} - 2 + \text{sail}} \\ \text{chord}_{\text{stator}} - 2 + \text{sail} - 2 + \text{sail}} \\ \text{chord}_{\text{stator}} - 2 + \text{sail} - 2 + \text{sail}} \\ \text{chord}_{\text{stator}} - 2 + \text{sail} - 2 + \text{sail}} \\ \text{chord}_{\text{stator}} - 2 + \text{sail} - 2 + \text{sail}} \\ \text{chord}_{\text{stator}} - 2 + \text{sail} - 2 + \text{sail}} - 2 + \text{sail} - 2 + \text{sail} - 2 + \text{sail}} \\ \text{chord}_{\text{stator}} - 2 + \text{sail}$$

Длины хорд РК и СА (м):

▼ Расчет параметров решетки

$$\begin{bmatrix} \frac{1}{\text{stator}} & \frac{1}{\text{rotor}} \\ r_{-} \text{inlet}_{\text{stator}} & r_{-} \text{inlet}_{\text{rotor}} \\ r_{-} \text{outlet}_{\text{stator}} & r_{-} \text{outlet}_{\text{rotor}} \\ v_{\text{stator}} & v_{\text{rotor}} \end{bmatrix} = \begin{bmatrix} \text{for } i \in 1...Z \\ \text{for } r \in 1...N_r \end{bmatrix}$$

$$\begin{bmatrix} v_{\text{stator}_{i,r}} \\ v_{\text{rotor}_{i,r}} \end{bmatrix} = \pi \begin{bmatrix} \frac{m \text{can}\left(D_{\text{st}(i,1),r},D_{\text{st}(i,2),r}\right)}{Z_{\text{stator}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \end{bmatrix}$$

$$\begin{bmatrix} v_{\text{stator}_{i,r}} \\ v_{\text{rotor}_{i,r}} \end{bmatrix} = \pi \begin{bmatrix} \frac{m \text{can}\left(D_{\text{st}(i,1),r},D_{\text{st}(i,2),r}\right)}{Z_{\text{rotor}_{i,r}}} \\ \frac{1}{Z_{\text{rotor}_{i,r}}} \end{bmatrix} = \begin{bmatrix} r_{-} \text{inlet}_{\text{stator}_{i,r}}, r_{-} \text{chord}_{\text{stator}_{i,r}}, r_{-} \text{chord}_{\text{rotor}_{i,r}}, r_{-} \text{chord}_$$

$$\begin{pmatrix} v_{\text{установки}}(\alpha_{\text{st(i,1),r}},\alpha_{\text{st(i,2),r}}) \\ v_{\text{установки}}(\beta_{\text{st(i,2),r}},\beta_{\text{st(i,3),r}}) \end{pmatrix}$$

 $\frac{\pi}{2}$ добавляется в виду поворота рисунка на 90 град

Относительные радиусы профилей ():

$$\frac{1}{r_inlet_{stator}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 2.800 & 2.800 & 2.800 & 2.800 \\ 2 & 3.600 & 3.600 & 3.600 & 3.600 \\ 3 & 4.400 & 4.400 & 4.400 & 4.400 \end{bmatrix} .$$

$$\frac{1}{\text{r_outlet}} \frac{1}{\text{stator}} = \begin{array}{|c|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 1.400 & 1.400 & 1.400 & 1.400 \\ \hline 2 & 1.800 & 1.800 & 1.800 & 1.800 \\ \hline 3 & 2.200 & 2.200 & 2.200 & 2.200 \\ \hline \end{array} .\%$$

$$\frac{T}{r_outlet_{rotor}}^T = \begin{vmatrix} & 1 & 2 & 3 & 4 \\ 1 & 2.100 & 2.100 & 2.100 & 2.100 \\ 2 & 1.350 & 1.350 & 1.350 & 1.350 \\ 3 & 1.050 & 1.050 & 1.050 & 1.050 \end{vmatrix} .\%$$

Относительная толщина профиля ():

$$\overline{c}_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 7.00 & 7.00 & 7.00 & 7.00 \\ 2 & 9.00 & 9.00 & 9.00 & 9.00 \\ 3 & 11.00 & 11.00 & 11.00 & 11.00 \end{bmatrix} .0$$

Относительный шаг решетки ():

$$\left(\frac{t_{stator}}{chord_{stator}} \right)^T = \begin{array}{|c|c|c|c|c|c|}\hline 1 & 2 & 3 & 4 \\\hline 1 & 0.6923 & 0.5507 & 0.5942 & 0.6244 \\\hline 2 & 0.7425 & 0.5950 & 0.6394 & 0.6714 \\\hline 3 & 0.7927 & 0.6394 & 0.6846 & 0.7183 \\\hline \end{array}$$

Относительная густота решетки ():

$$\left(\frac{\text{chord}_{\text{stator}}}{t_{\text{stator}}} \right)^{\text{T}} = \begin{array}{|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 1.444 & 1.816 & 1.683 & 1.602 \\ \hline 2 & 1.347 & 1.681 & 1.564 & 1.490 \\ \hline 3 & 1.262 & 1.564 & 1.461 & 1.392 \\ \hline \end{array}$$

$$\left(\frac{\text{chord}_{\text{rotor}}}{t_{\text{rotor}}}\right)^{\text{T}} = \begin{array}{|c|c|c|c|c|}\hline & 1 & 2 & 3 & 4 \\ \hline 1 & 1.788 & 1.695 & 1.610 & 1.635 \\ \hline 2 & 1.514 & 1.439 & 1.375 & 1.393 \\ \hline 3 & 1.202 & 1.122 & 1.102 & 1.177 \\ \hline \end{array}$$

Длина хорды профиля [м]:

		1	2	3	4				1	2	3	4	
$chord_{stator}^{T} =$	1	58.7	50.6	60.4	69.4	$\cdot 10^{-3}$	$chord_{rotor}^{T} =$	1	35.4	39.8	45.8	50.0	$\cdot 10^{-3}$
stator	2	58.7	50.6	60.4	69.4		rotor	2	32.3	36.4	42.0	45.9	10
	3	58.7	50.6	60.4	69.4			3	27.6	30.5	36.0	41.7	

Радиусы профилей:

		1	2	3	4				1	2	3	4	
$r_{inlet_{stator}}^{T} =$	1	1.64	1.42	1.69	1.94	$\cdot 10^{-3}$ r_inlet _{roto}	$^{\mathrm{T}}=$	1	1.73	1.95	2.24	2.45	$\cdot 10^{-3}$
stator	2	2.11	1.82	2.17	2.50	roto	r	2	1.02	1.15	1.32	1.45	10
	3	2.58	2.23	2.66	3.05			3	0.68	0.75	0.88	1.02	
							_		•				
		1	2	3	4				1	2	3	4	
r_outlet _{stator} =	1	0.82	0.71	0.85	0.97	$\cdot 10^{-3}$ r_outlet _{rot}	T =	1	0.74	0.83	0.96	1.05	$1 \cdot 10^{-3}$
- stator	2	1.06	0.91	1.09	1.25	rot	or	2	0.44	0.49	0.57	0.62	
	3	1.29	1.11	1.33	1.53			3	0.29	0.32	0.38	0.44	

Толщина профиля [м]:

		1	2	3	4			1	2	3	4	
\mathbf{c} \mathbf{T}	1	4.11	3.55	4.23	4.86	$\cdot 10^{-3}$ c_{rotor}	_ 1	4.95	5.57	6.41	7.00	$\cdot 10^{-3}$
c _{stator} –	2	5.28	4.56	5.43	6.24	rotor	2	2.91	3.28	3.78	4.14	10
	3	6.45	5.57	6.64	7.63		3	1.93	2.13	2.52	2.92	

Шаг решетки [м]:

		1	2	3	4				1	2	3	4	
$t \cdot T =$	1	40.6	27.9	35.9	43.3	$\cdot 10^{-3}$	t , $T =$	1	19.8	23.5	28.4	30.6	$\cdot 10^{-3}$
'stator –	2	43.6	30.1	38.6	46.6	10	rotor –	2	21.4	25.3	30.5	33.0	
	3	46.5	32.4	41.3	49.8			3	22.9	27.1	32.7	35.4	

	1	2	3	4			1	2	3	4	
T = 1	64.11	21.99	38.24	51.72	\cdot° ε_{\cdots}	1	66.40	86.85	90.35	83.28	.0
tator 2	67.34	33.86	47.53	57.46	rotor	2	80.41	94.34	93.47	83.71	
3	71.88	45.69	56.39	62.72		3	93.16	102.10	96.11	82.82	
ta	$ator$ = $\frac{1}{2}$	$ \text{ator}^{T} = \begin{vmatrix} 1 & 64.11 \\ 2 & 67.34 \end{vmatrix} $	$ \begin{array}{c} T \\ ator \end{array} = \begin{array}{c cccc} 1 & 64.11 & 21.99 \\ \hline 2 & 67.34 & 33.86 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} T \\ \text{ator} \end{array} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} T \\ \text{ator} \end{array} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} T \\ \text{ator} \end{array} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} T \\ \text{ator} \end{array} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} T \\ \text{ator} \end{array} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} T \\ \text{ator} \end{array} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} T \\ \text{ator} \end{array} = \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Угол установки профиля:
$$v_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 134.1 & 124.4 & 130.0 & 136.4 \\ 2 & 129.9 & 123.9 & 129.5 & 136.6 \\ 3 & 123.2 & 120.8 & 127.7 & 136.2 \end{bmatrix} \cdot \circ \qquad v_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ 2 & 136.4 & 132.6 & 133.0 & 137.5 \\ 3 & 130.3 & 128.8 & 131.3 & 137.0 \end{bmatrix} \cdot v_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ 2 & 136.4 & 132.6 & 133.0 & 137.5 \\ 3 & 130.3 & 128.8 & 131.3 & 137.0 \end{bmatrix} \cdot v_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ 2 & 136.4 & 132.6 & 133.0 & 137.5 \\ 3 & 130.3 & 128.8 & 131.3 & 137.0 \end{bmatrix} \cdot v_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ 2 & 136.4 & 132.6 & 133.0 & 137.5 \\ 3 & 130.3 & 128.8 & 131.3 & 137.0 \end{bmatrix} \cdot v_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ 2 & 136.4 & 132.6 & 133.0 & 137.5 \\ 3 & 130.3 & 128.8 & 131.3 & 137.0 \end{bmatrix} \cdot v_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ 2 & 136.4 & 132.6 & 133.0 & 137.5 \\ 3 & 130.3 & 128.8 & 131.3 & 137.0 \end{bmatrix} \cdot v_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ 2 & 136.4 & 132.6 & 133.0 & 137.5 \\ 3 & 130.3 & 128.8 & 131.3 & 137.0 \end{bmatrix} \cdot v_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ 2 & 136.4 & 132.6 & 133.0 & 137.5 \\ 3 & 130.3 & 128.8 & 131.3 & 137.0 \end{bmatrix} \cdot v_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ 2 & 136.4 & 132.6 & 133.0 & 137.5 \\ 3 & 130.3 & 128.8 & 131.3 & 137.0 \end{bmatrix} \cdot v_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ & 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ & 2 & 136.4 & 132.6 & 133.0 & 137.5 \\ & 3 & 130.3 & 128.8 & 131.3 & 137.0 \end{bmatrix} \cdot v_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ & 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ & 2 & 136.4 & 132.6 & 133.0 & 137.5 \\ & 3 & 130.3 & 128.8 & 131.3 & 137.0 \end{bmatrix} \cdot v_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ & 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ & 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ & 1 & 142.1 & 135.9 & 134.8 & 138.2 \\ & 1 & 142.1 & 135.$$

			1	2	3	4				1	2	3	4	
Угол изгиба профиля:	$\pi - \varepsilon_{atatan} = $	1	115.9	158.0	141.8	128.3	.0	$\pi - \varepsilon_{-} = 0$	1	113.6	93.1	89.7	96.7	.0
1 1	" Stator =	2	112.7	146.1	132.5	122.5		rotor –	2	99.6	85.7	86.5	96.3	
		3	108.1	134.3	123.6	117.3			3	86.8	77.9	83.9	97.2	

▼ Подключение симметричного профиля

$$\begin{pmatrix} X_{U} & Y_{U} \\ X_{L} & Y_{L} \end{pmatrix} = NACA(0, 0, 100\%, 1)$$

Относ. координаты профиля РК и СА:

$$\begin{split} \text{AIRFOIL}_0\Big(x, \text{line}, \overline{f}, \overline{x}_f, \overline{c}\,\Big) &= & \text{if } 0 \leq x \leq 1 \\ & & \text{linterp}\big(X_U, Y_U, x\big) \text{ if line} = \text{"+"} \\ & \frac{\text{linterp}\big(X_U, Y_U, x\big) + \text{linterp}\big(X_L, Y_L, x\big)}{2} \text{ if line} = \text{"0"} \\ & & x = 0, 0.005..1 \\ & \text{linterp}\big(X_L, Y_L, x\big) \text{ if line} = \text{"-"} \\ & \text{NaN otherwise} \end{split}$$

Симметричный профиль

0.5

0.4

0.3

0.2

0.1

0.0

0.0

0.1

0.0

0.1

0.0

0.1

0.1

0.2

0.3

0.4

0.5

0.0

0.0

0.1

0.1

0.1

0.1

0.2

0.3

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1

$$\begin{split} \text{AIRFOIL}(x,\text{line},\overline{c}^-,\theta) &= \begin{vmatrix} \text{linterp}\big(X_U,y/b_{cp.\Pi}\big(X_U,\theta\big) + Y_U\cdot\overline{c}^-,x\big) & \text{if line} = "+" \\ \frac{\text{linterp}\big(X_U,y/b_{cp.\Pi}\big(X_U,\theta\big) + Y_U\cdot\overline{c}^-,x\big) + \text{linterp}\big(X_L,y/b_{cp.\Pi}\big(X_L,\theta\big) + Y_L\cdot\overline{c}^-,x\big)}{2} & \text{if line} = "0" \\ \frac{\text{linterp}\big(X_L,y/b_{cp.\Pi}\big(X_L,\theta\big) + Y_L\cdot\overline{c}^-,x\big) + \text{linterp}\big(X_L,y/b_{cp.\Pi}\big(X_L,\theta\big) + Y_L\cdot\overline{c}^-,x\big)}{2} & \text{if line} = "-" \\ \text{NaN otherwise} & \end{aligned}$$

▼ Результат расчета абсолютных геометрических характеристик сечений Л

		1	2	3	4	
$1_upper_{stator}^{T} =$	1	63.47	51.71	62.74	73.48	10^{-3}
stator	2	64.41	52.70	64.03	74.79	
	3	65.61	53.99	65.52	76.17	

$$1_lower_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 60.67 & 50.86 & 60.98 & 70.78 \\ 2 & 60.72 & 51.07 & 61.31 & 71.03 \\ 3 & 60.91 & 51.38 & 61.69 & 71.35 \end{bmatrix} \cdot 10^{-3}$$

$$area_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 164.78 & 122.77 & 174.49 & 230.41 \\ 2 & 211.86 & 157.85 & 224.34 & 296.25 \\ 3 & 258.93 & 192.93 & 274.19 & 362.08 \end{vmatrix} \cdot 10^{-6}$$

$$Sy_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 4071.3 & 2618.3 & 4436.4 & 6732.1 \\ 2 & 5234.5 & 3366.4 & 5703.9 & 8655.5 \\ 3 & 6397.7 & 4114.5 & 6971.5 & 10579.0 \end{bmatrix} \cdot 10^{-9}$$

$$x0_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 24.7 & 21.3 & 25.4 & 29.2 \\ 2 & 24.7 & 21.3 & 25.4 & 29.2 \\ 3 & 24.7 & 21.3 & 25.4 & 29.2 \end{bmatrix} \cdot 10^{-3}$$

$$y0_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 6.4 & 1.8 & 3.9 & 6.1 \\ 2 & 6.8 & 2.9 & 4.8 & 6.8 \\ 3 & 7.3 & 3.9 & 5.8 & 7.4 \end{bmatrix} \cdot 10^{-3}$$

$$l_upper_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 39.66 & 46.66 & 54.18 & 58.15 \\ 2 & 36.48 & 42.49 & 48.89 & 52.24 \\ 3 & 31.76 & 35.92 & 41.76 & 46.84 \end{bmatrix} \cdot 10^{-3}$$

$$1_lower_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 36.43 & 41.97 & 48.58 & 52.49 \\ 2 & 34.08 & 39.38 & 45.33 & 48.71 \\ 3 & 29.93 & 33.74 & 39.30 & 44.33 \end{bmatrix} \cdot 10^{-3}$$

$$Sx_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 483.2 & 926.0 & 1479.2 & 1752.8 \\ 2 & 293.2 & 504.1 & 764.8 & 881.1 \\ 3 & 167.6 & 252.5 & 386.5 & 505.1 \end{bmatrix} \cdot 10^{-9}$$

$$Sy_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ & 1 & 1784.1 & 2532.5 & 3864.1 & 5030.0 \\ & 2 & 875.6 & 1251.6 & 1919.7 & 2513.8 \\ & 3 & 422.4 & 570.0 & 938.6 & 1458.9 \end{bmatrix} \cdot 10^{-9}$$

$$x0_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 14.9 & 16.7 & 19.3 & 21.0 \\ 2 & 13.6 & 15.3 & 17.7 & 19.3 \\ 3 & 11.6 & 12.8 & 15.2 & 17.5 \end{bmatrix} \cdot 10^{-3}$$

$$Jx_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 7676 & 549 & 3039 & 9634 \\ 2 & 11083 & 1608 & 6143 & 15621 \\ 3 & 15756 & 3556 & 10770 & 23247 \end{bmatrix} \cdot 10^{-12}$$

$$Jy_{\text{stator}}^{\text{T}} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 131811 & 73173 & 147804 & 257737 \\ 2 & 169471 & 94079 & 190034 & 331377 \\ 3 & 207131 & 114986 & 232263 & 405016 \end{vmatrix} \cdot 10^{-12}$$

$$Jxy_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 27857 & 5131 & 18182 & 43361 \\ 2 & 37769 & 10217 & 29269 & 62292 \\ 3 & 49570 & 16997 & 42799 & 83602 \end{bmatrix} \cdot 10^{-12}$$

$$Jx0_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 837 & 133 & 448 & 1172 \\ 2 & 1301 & 323 & 916 & 2030 \\ 3 & 1960 & 644 & 1617 & 3204 \end{vmatrix} \cdot 10^{-12}$$

$$Jxy0_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 1628 & 309 & 1086 & 2565 \\ 2 & 2200 & 612 & 1737 & 3666 \\ \hline 3 & 2871 & 1010 & 2522 & 4894 \end{vmatrix} \cdot 10^{-12}$$

		1	2	3	4	
$Jx_{rotor}^{T} =$	1	2310	6463	12383	14730	$\cdot 10^{-12}$
rotor	2	1494	3444	5964	6663	10
	3	850	1571	2649	3398	

$$Jy_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 34823 & 55552 & 97582 & 138694 \\ 2 & 15620 & 25151 & 44488 & 63733 \\ 3 & 6426 & 9583 & 18633 & 33548 \end{bmatrix} \cdot 10^{-12}$$

$$Jxy_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 7643 & 16433 & 30208 & 39111 \\ 2 & 4234 & 8188 & 14327 & 18078 \\ 3 & 2061 & 3427 & 6201 & 9401 \end{bmatrix} \cdot 10^{-12}$$

$$Jx0_{rotor}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 361 & 794 & 1471 & 1878 \\ 2 & 158 & 330 & 575 & 687 \\ \hline 3 & 78 & 136 & 238 & 329 \end{vmatrix} \cdot 10^{-12}$$

$$Jy0_{rotor}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 8248 & 13158 & 23112 & 32850 \\ 2 & 3700 & 5957 & 10537 & 15095 \\ 3 & 1522 & 2270 & 4413 & 7946 \end{vmatrix} \cdot 10^{-12}$$

$$Jxy0_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 446 & 931 & 1701 & 2229 \\ 2 & 242 & 458 & 802 & 1029 \\ 3 & 115 & 188 & 345 & 536 \end{bmatrix} \cdot 10^{-12}$$

$$\alpha_{\text{major}_{\text{rotor}}}^{\text{T}} = \begin{vmatrix} & 1 & 2 & 3 & 4 \\ 1 & 3.22 & 4.28 & 4.47 & 4.09 \\ 2 & 3.90 & 4.62 & 4.57 & 4.07 \\ 3 & 4.54 & 5.01 & 4.70 & 4.01 \end{vmatrix}.$$

$$Ju_{stator}^{T} = \begin{bmatrix} \hline & 1 & 2 & 3 & 4 \\ 1 & 750 & 127 & 414 & 1063 \\ 2 & 1176 & 306 & 848 & 1855 \\ 3 & 1785 & 605 & 1499 & 2946 \end{bmatrix} \cdot 10^{-12}$$

$$Jv_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 31306.3 & 17336.5 & 35041.3 & 61154.6 \\ 2 & 40263.3 & 22299.6 & 45077.7 & 78661.7 \\ 3 & 49233.3 & 27272.6 & 55130.2 & 96185.3 \end{bmatrix} \cdot 10^{-12}$$

$$Jp_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 32056 & 17464 & 35455 & 62217 \\ 2 & 41440 & 22605 & 45925 & 80516 \\ 3 & 51018 & 27878 & 56629 & 99132 \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 927.3 & 594.5 & 1008.3 & 1531.7 \\ 2 & 1196.3 & 767.4 & 1301.6 & 1976.7 \\ 3 & 1468.5 & 942.6 & 1598.5 & 2426.8 \end{bmatrix} \cdot 10^{-9}$$

		1	2	3	4	
$Ju_{rotor}^{T} =$	1	336	725	1338	1718	$\cdot 10^{-12}$
rotor	2	141	293	511	614	10
	3	68	120	209	291	

$$Juv_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & -0 & 0 \\ 3 & 0 & -0 & 0 & 0 \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 412.5 & 585.9 & 893.9 & 1163.7 \\ 2 & 200.3 & 286.2 & 439.0 & 575.0 \\ 3 & 96.3 & 129.8 & 213.9 & 332.6 \end{bmatrix} \cdot 10^{-9}$$

$$stiffness_{rotor}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 676.2 & 1078.8 & 1895.0 & 2693.4 \\ 2 & 125.4 & 201.9 & 357.0 & 511.5 \\ 3 & 31.2 & 46.5 & 90.5 & 162.9 \end{vmatrix} \cdot 10^{-12}$$

		1	2	3	4	
$CPx_{stator}^{T} =$	1	20.536	17.726	21.132	24.284	$\cdot 10^{-3}$
Stator	2	20.536	17.726	21.132	24.284	10
	3	20.536	17.726	21.132	24.284	

$CPy_{stator}^{T} =$		1	2	3	4	$\cdot 10^{-3}$
	1	0.0000	0.0000	0.0000	0.0000	
	2	0.0000	0.0000	0.0000	0.0000	
	3	0.0000	0.0000	0.0000	0.0000	

$CPx_{rotor}^{T} =$		1	2	3	4	
	1	12.380	13.914	16.018	17.490	1.10^{-3}
	2	11.315	12.746	14.699	16.082	10
	3	9.649	10.663	12.592	14.586	

$CPy_{rotor}^{T} =$		1	2	3	4	
	1	0.0000	0.0000	0.0000	0.0000	$\cdot 10^{-3}$
	2	0.0000	0.0000	0.0000	0.0000	10
	3	0.0000	0.0000	0.0000	0.0000	

Результат расчета абсолютных геометрических характеристик сечений Л

Рассматриваемая ступень: j = j = Z

$$j = Z$$
 = 4
 $j = Z$ = 4
 $j = \begin{bmatrix} \text{"Такой ступени не существует!"} & \text{if } (j < 1) \lor (j > Z) \end{bmatrix}$

▼ Построение профилей Л РК и НА

NaN otherwise

$$\begin{aligned} \text{AXLEO(type}, \mathbf{x}, \mathbf{i}, \mathbf{r}) &= \frac{y0_{rotor_{\mathbf{i}, \mathbf{r}}}}{\text{chord}_{rotor_{\mathbf{i}, \mathbf{r}}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{\mathbf{i}, \mathbf{r}}}\right) \cdot \left(\mathbf{x} - \frac{\mathbf{x}0_{rotor_{\mathbf{i}, \mathbf{r}}}}{\text{chord}_{rotor_{\mathbf{i}, \mathbf{r}}}}\right) &\text{if type} = \text{"rotor"} \\ \frac{y0_{stator_{\mathbf{i}, \mathbf{r}}}}{\text{chord}_{stator_{\mathbf{i}, \mathbf{r}}}} + \tan\left(\alpha_{-}\text{major}_{stator_{\mathbf{i}, \mathbf{r}}}\right) \cdot \left(\mathbf{x} - \frac{\mathbf{x}0_{stator_{\mathbf{i}, \mathbf{r}}}}{\text{chord}_{stator_{\mathbf{i}, \mathbf{r}}}}\right) &\text{if type} = \text{"stator"} \\ \text{NaN otherwise} \end{aligned}$$

$$\text{AXLE90(type}, \mathbf{x}, \mathbf{i}, \mathbf{r}) &= \frac{y0_{rotor_{\mathbf{i}, \mathbf{r}}}}{\text{chord}_{rotor_{\mathbf{i}, \mathbf{r}}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{\mathbf{i}, \mathbf{r}}} + \frac{\pi}{2}\right) \cdot \left(\mathbf{x} - \frac{\mathbf{x}0_{rotor_{\mathbf{i}, \mathbf{r}}}}{\text{chord}_{rotor_{\mathbf{i}, \mathbf{r}}}}\right) &\text{if (type} = \text{"rotor"}) \land \left|\alpha_{-}\text{major}_{rotor_{\mathbf{i}, \mathbf{r}}}\right| \geq 1 \cdot \circ \\ \frac{y0_{stator_{\mathbf{i}, \mathbf{r}}}}{\text{chord}_{rotor_{\mathbf{r}}}} + \tan\left(\alpha_{-}\text{major}_{stator_{\mathbf{i}, \mathbf{r}}} + \frac{\pi}{2}\right) \cdot \left(\mathbf{x} - \frac{\mathbf{x}0_{rotor_{\mathbf{i}, \mathbf{r}}}}{\text{chord}_{rotor_{\mathbf{i}, \mathbf{r}}}}\right) &\text{if (type} = \text{"stator"}) \land \left|\alpha_{-}\text{major}_{stator_{\mathbf{i}, \mathbf{r}}}\right| \geq 1 \cdot \circ \\ \frac{y0_{stator_{\mathbf{i}, \mathbf{r}}}}{\text{chord}_{rotor_{\mathbf{r}}}} + \tan\left(\alpha_{-}\text{major}_{stator_{\mathbf{i}, \mathbf{r}}} + \frac{\pi}{2}\right) \cdot \left(\mathbf{x} - \frac{\mathbf{x}0_{rotor_{\mathbf{i}, \mathbf{r}}}}{\mathbf{x} - \frac{\mathbf{x}0_{rotor_{\mathbf{i}, \mathbf{r}}}}}{\mathbf{x} - \frac{\mathbf{x}0_{rotor_{\mathbf{i}, \mathbf{r}}}}}{\mathbf{x} - \frac{\mathbf{x}0_{rotor_{\mathbf{i}, \mathbf{r}}}}{\mathbf{x} - \frac{\mathbf{x}0_$$

$$b_{lim} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 70.0 \cdot 10^{-3}$$

$r = av(N_r)$

■ Построение профилей Л РК и НА

Рассматриваемая ступень:
$$j = Z$$
 = $j = Z$ = $j = Z$ | $j = Z$ | "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ | $j = Z$ | j

$$b_{\text{lime}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{\text{rotor}_{j,N_r}}, \text{chord}_{\text{stator}_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 70.0 \cdot 10^{-3}$$

▼ Построение плоских решеток профилей Л на треугольниках скоростей

 $r = av(N_r)$

▲ Построение плоских решеток профилей Л на треугольниках скоростей

$$j =$$
 $j = Z$ $= 4$ $j =$ "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Поперечная часть ступени

$$\mathbf{r} = \min(\mathbf{D}), \min(\mathbf{D}) + \frac{\max(\mathbf{D}) - \min(\mathbf{D})}{N_{dis}} ... \max(\mathbf{D})$$

$$\mathbf{i}_{rotor} = 1 ... Z_{rotor_{j}}$$

$$\mathbf{i}_{stator} = 1 ... Z_{stator_{j}}$$

$$\varphi = 0, \frac{2 \cdot \pi}{360} ... 2 \cdot \pi$$

$$\Pi_{HA}(r,j) = \begin{bmatrix} \frac{2 \cdot \pi}{Z_{stator_{j}}} & \text{if } D_{st(j,2),1} < r < D_{st(j,2),N_{r}} \\ NaN & \text{otherwise} \end{bmatrix}$$


```
\nu 0_{\rm M3\Gamma.stator}
                                                                                                                                                                                                                                                                                                                                                                         \nu 0_{\rm M3\Gamma,rotor}
                                                            \nu 0_{
m yr.n.stator}
                                                                                                                                                                                                                                                                                                                                                                         ν0<sub>угл.rotor</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        for i \in 1...Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              for r \in av(N_r)

u^0угл.stator_bondage 
u^0угл.rotor_bondage
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         for mode \in 1...6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \nu 0_{\text{M3}\Gamma.\text{stator}_{\hat{1},\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M}\tilde{0}} \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{1},\,1)}\,, h_{\text{st}(\hat{1},\,2)} \Big)\,, \\ E\_\text{blade}\,, \rho\_\text{blade}_{\hat{1}}\,, \text{area}_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat{1},\,r}} \Big) \Big( m_{\text{st}(\hat{1},\,1)}\,, h_{\text{st}(\hat{1},\,2)} \Big) \Big) \Big( m_{\text{st}(\hat{1},\,2)} \Big) \Big( m_{\text{s
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \nu 0_{\text{M3}\Gamma.\text{rotor}_{\hat{i}\,,\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M}} \left( \text{mode}\,, \text{mean} \left( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \left( \text{mode}\,, \text{mean} \left( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \left( \text{mode}\,, \text{mean} \left( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \left( \text{mode}\,, \text{mean} \left( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \left( \text{mode}\,, \text{mean} \left( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \left( \text{mode}\,, \text{mean} \left( h_{\text{st}(\hat{i}\,,\,2)}\,, h_{\text{st}(\hat{i}\,,\,3)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}\,, \\ \text{Mode}\,, \text{Mode}\,, \text{Mode}\,, \text{Mode}\,, \\ \text{Mode}\,, \text{Mode}\,, \\ \text{Mode}\,, \text{Mode}\,, \text{Mode}\,, \\ \text{Mode}\,, \text{Mode}\,, \text{Mode}\,, \\ \text{Mode}\,, \text{Mode}\,, \\ \text{Mode}\,, \text{Mode}\,, \\ \text{Mode}\,, \\ \text{Mode}\,, \text{Mode}\,, \\ \text{Mod}\,, \\ \text{Mode}\,, \\ \text{Mode}\,, \\ \text{Mode}\,, \\ \text{Mode}\,, \\ \text{Mode}\,, \\
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               \nu 0_{\text{yrn.stator}_{i,\,\text{mode}}} = \nu 0_{\text{yrn}} \left( \text{mode}\,, 0\,, \text{mean} \left( h_{\text{st}(i,\,1)}\,, h_{\text{st}(i,\,2)} \right), \text{Jung}(2\,, \mu\_\text{steel}\,, E\_\text{blade})\,, \rho\_\text{blade}_i\,, \text{stiffness}_{\text{stator}_{i,\,r}}\,, \text{Jp}_{\text{stator}_{i,\,r}} \right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \nu 0_{y_{\Gamma JI}.rotor_{\hat{1}},\,mode} = \nu 0_{y_{\Gamma JI}} \left(mode,0,mean\left(h_{st(\hat{1},2)},h_{st(\hat{1},3)}\right),Jung(2,\mu\_steel,E\_blade),\rho\_blade_{\hat{1}},stiffness_{rotor_{\hat{1},r}},Jp_{rotor_{\hat{1},r}}\right) \right)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \nu 0_{\text{YFJI.stator\_bondage}_{i, \, mode}} = \nu 0_{\text{YFJI}} \left( \text{mode} , 1, \text{mean} \left( h_{\text{st}(i, 1)}, h_{\text{st}(i, 2)} \right), \text{Jung}(2, \mu\_\text{steel}, E\_\text{blade}), \rho\_\text{blade}_i, \text{stiffness}_{\text{stator}_{i, r}}, \text{Jp}_{\text{stator}_{i, r}}, \text{Jp}_{\text{stator}_{i,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \nu 0_{\text{YFJI.rotor\_bondage}_{\hat{1}, \, mode}} = \nu 0_{\text{YFJ}} \left( \text{mode} \,, 1 \,, \text{mean} \left( h_{st(\hat{1}, 2)} \,, h_{st(\hat{1}, 3)} \right) \,, \\ \text{Jung}(2 \,, \mu\_\text{steel} \,, E\_\text{blade}) \,, \rho\_\text{blade}_{\hat{1}} \,, \\ \text{stiffness}_{rotor_{\hat{1}, \, r}} \,, \\ \text{Jp}_{rotor_{\hat{1}, \, r}} \,, \\ \text{Jp}_{rotor
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \nu 0_{\text{изг.rotor}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \nu 0_{\rm M3\Gamma.stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             \nu 0_{y_{\Gamma JI}.stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ν0<sub>угл.rotor</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \nu_0^0угл.stator bondage \nu_0^0угл.rotor bondage
```

Частота собственных изгибных колебаний (Гц) [9, с.240]:

$$\operatorname{stack} \left(\nu 0_{\text{M3}\Gamma.\text{stator}}, \nu 0_{\text{M3}\Gamma.\text{rotor}}\right)^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3263 & 1318 & 1559 & 1694 & 1618 & 1636 & 1616 & 1298 \\ 2 & 20449 & 8261 & 9769 & 10618 & 10139 & 10252 & 10130 & 8134 \\ 3 & 57262 & 23133 & 27357 & 29734 & 28391 & 28708 & 28368 & 22777 \\ 4 & 112296 & 45365 & 53649 & 58311 & 55677 & 56299 & 55632 & 44667 \\ 5 & 185556 & 74961 & 88649 & 96353 & 92001 & 93028 & 91925 & 73807 \\ 6 & 277118 & 111950 & 132392 & 143897 & 137398 & 138932 & 137285 & 110226 \\ \end{bmatrix}$$

Частота собственных угловых колебаний (Гц) [9, с.243] без и с бандажом:

		1	2	3	4	5	6	7	8
	1	3125	2608	2392	2193	2761	2440	2268	2039
$\operatorname{stack}(\nu 0_{\operatorname{yrn.stator}}, \nu 0_{\operatorname{yrn.rotor}})^{\mathrm{T}} =$	2	9376	7823	7177	6578	8284	7319	6803	6118
	3	15626	13038	11962	10963	13806	12199	11339	10197
	4	21877	18253	16747	15348	19329	17078	15875	14275
	5	28128	23468	21532	19733	24851	21958	20410	18354
	6	34378	28683	26317	24118	30374	26838	24946	22433

		1	2	3	4	5	6	7	8
$stack (\nu 0_{yгл.stator_bondage}, \nu 0_{yгл.rotor_bondage})^T = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	1	6251	5215	4785	4385	5523	4880	4536	4079
	2	12501	10430	9570	8770	11045	9759	9071	8157
	3	18752	15645	14355	13155	16568	14639	13607	12236
	4	25002	20860	19140	17540	22090	19518	18143	16315
	5	31253	26076	23924	21925	27613	24398	22678	20394
	6	37503	31291	28709	26310	33135	29277	27214	24472

Pасчетный узел: type = "turbine"

Объем бандажной полки (м 3): $V_{\overline{0}\Pi} =$

Радиус положения ЦМ бандажной полки (м):

▶ Расчет Л на прочность

$$\begin{aligned} \text{neutral_line(type,x,i,r)} &= \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \tan\left(\left(\alpha_{major_{rotor_{i,r}}} + \phi_{neutral_{rotor}}(i,R_{st(i,2),r})\right)\right) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) & \text{if type} = \text{"rotor"} \\ \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan\left(\left(\alpha_{major_{stator_{i,r}}} + \phi_{neutral_{stator}}(i,R_{st(i,2),r})\right)\right) \cdot \left(x - \frac{x0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if type} = \text{"stator"} \\ \frac{y0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{-1}{\left(x - \frac{x0_{rotor_{i,r}}}{\text{chord}_{stator_{i,r}}}\right)} & \text{if type} = \text{"rotor"} \end{aligned}$$

$$\begin{aligned} & \text{epure(type}, \textbf{x}, \textbf{i}, \textbf{r}) = \boxed{\frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha_{major_{rotor_{i,r}}} + \phi_{neutral_{rotor}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(\textbf{x} - \frac{\textbf{x}0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) & \text{if type} = "rotor" \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \frac{-1}{\text{tan}\left(\alpha_{major_{stator_{i,r}}} + \phi_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}\right)} \cdot \left(\textbf{x} - \frac{\textbf{x}0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if type} = "stator" \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \phi_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}\right)} \cdot \left(\textbf{x} - \frac{\textbf{x}0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if type} = "stator" \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \phi_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}\right)} \cdot \left(\textbf{x} - \frac{\textbf{x}0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \text{if type} = "stator" \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \phi_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}\right)} \cdot \left(\textbf{x} - \frac{\textbf{x}0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) & \textbf{if type} = "stator" \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}} + \phi_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}\right)} \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \phi_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}} \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}} + \phi_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}} \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}} + \phi_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}} \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{i,r}}} + \phi_{neutral_{stator}}\left(\textbf{i}, \textbf{R}_{st(i,2),r}\right) - \frac{\pi}{4}}} \\ \boxed{\frac{y0_{stator_{i,r}}}{\text{chord}_{i,r}}} + \phi_{neutral_{stator}}\left(\textbf{i}, \textbf{k}, \textbf{k$$

		1	2	3	4	
$u_u_{rotor}^T =$	1	-1.160	-1.024	-0.986	-1.003	$\cdot 10^{-3}$
-rotor	2	0.261	0.336	0.342	-0.616	10
	3	0.241	0.281	0.268	0.223	

$$u_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 28.375 & 28.028 & 27.933 & 28.008 \\ 2 & 25.969 & 25.738 & 25.725 & 25.849 \\ 3 & 23.420 & 23.278 & 23.334 & 23.497 \end{bmatrix} \cdot 10^{-3}$$

$$u_l_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ & 1 & -9.648 & -27.201 & -27.296 & -26.659 \\ & 2 & 2.702 & -20.244 & -22.418 & -24.751 \\ & 3 & 34.492 & 34.701 & 10.465 & -19.527 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	
$\mathbf{v} \cdot \mathbf{u} = \mathbf{T}$	1	4.927	5.365	5.441	5.299	$\cdot 10^{-3}$
v_u _{rotor} =	2	3.698	3.973	3.956	3.765	
	3	3.189	3.344	3.240	3.002	

$$v_{-l_{rotor}}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & -7.980 & -10.413 & -10.906 & -10.223 \\ 2 & -8.576 & -10.135 & -10.108 & -9.138 \\ 3 & -8.916 & -9.837 & -9.322 & -8.081 \end{bmatrix} \cdot 10^{-3}$$

$$v_{u_{stator}}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 29.582 & 4.200 & 5.221 & 6.027 \\ 2 & 38.137 & 20.800 & 13.898 & 8.774 \\ 3 & 7.817 & 9.146 & 23.918 & 15.820 \end{vmatrix} \cdot 10^{-3}$$

$$v_{-l_{stator}}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & -39.707 & -6.703 & -9.605 & -12.000 \\ 2 & -30.181 & -20.609 & -18.668 & -15.935 \\ 3 & -22.276 & -20.913 & -39.336 & -22.312 \end{vmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} \sigma_{-Protor} & \sigma_{-n}rotor \\ \sigma_{-Dstator} & \sigma_{-n}rotor \\ \sigma_{-Dstator}$$

$$\begin{pmatrix} \sigma_{-} p_{rotor.} & \sigma_{-} p_{stator.} \\ \sigma_{-} p_{rotor.} & \sigma_{-} p_{stator.} \end{pmatrix} = \begin{bmatrix} \text{for } i \in 1...Z \\ \sigma_{-} p_{rotor.}(i,z) & = & \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,1), \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,1), \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{-} p_{stator}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,1), \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,1), \text{st}(i,1), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(\sigma_{-} p_{rotor}, i, i, 1, N_r \Big)^T \Big)$$

$$\sigma_{protor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & -49.58 & -38.69 & -24.96 & -15.94 \\ 2 & -31.38 & -25.94 & -16.28 & -8.77 \\ 3 & -4.79 & -6.12 & -2.55 & -0.07 \end{bmatrix} \cdot 10^{6}$$

		1	2	3	4	
$\sigma p_{rotor} \leq 70.10^6 =$	1	1	1	1	1	
$\sigma_{protor} \leq 70.10^{\circ} =$	2	1	1	1	1	
	3	1	1	1	1	

$$\sigma_{-n_{rotor}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 86.83 & 79.81 & 53.31 & 33.39 \\ 2 & 76.42 & 69.01 & 43.71 & 22.64 \\ 3 & 13.77 & 18.44 & 7.63 & 0.20 \end{bmatrix} \cdot 10^{6}$$

		1	2	3	4	
$\sigma_{\text{nrotor}}^{\text{T}} \le 70 \cdot 10^6 =$	1	0	0	1	1	
-rotor - / v 10	2	0	1	1	1	
	3	1	1	1	1	

		1	2	3	4	
σ p_{-+} =	1	0.00	1.03	0.58	0.05	.10
$\sigma_{p_{stator}}^{T} =$	2	1.78	12.03	7.28	2.32	
	3	-10.85	-20.23	-8.47	8.70	

		1	2	3	4	
$\sigma p_{\text{ototor}} \stackrel{T}{\leq} 70.10^6 =$	1	1	1	1	1	
$\sigma_{\text{pstator}} \leq 70.10^{\circ} =$	2	1	1	1	1	
	3	1	1	1	1	

$$\sigma_{-} n_{stator}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0.00 & -1.58 & -1.01 & -0.10 \\ 2 & -0.09 & -9.17 & -6.42 & -3.38 \\ 3 & 31.68 & 42.27 & 8.54 & -7.36 \end{bmatrix} \cdot 10^{6}$$

		1	2	3	4
$\sigma n_{\text{ototor}} \leq 70.10^6 =$	1	1	1	1	1
$\sigma_{\text{nstator}} \leq /0.10 =$	2	1	1	1	1
	3	1	1	1	1

$$\begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix} = \begin{cases} \text{for } i \in 1 ... Z \\ \text{for } r \in 1 ... N_r \end{cases}$$

$$\begin{pmatrix} \sigma_{rotor}_{i,r} = \sqrt{\left(\sigma_{-} z_{rotor}(i, R_{st(i,2),r}) + \max\left(\sigma_{-} p_{rotor}_{i,r}, \sigma_{-} n_{rotor}_{i,r}\right)\right)^2 + \tau_{rotor}(i, R_{st(i,2),r})^2}$$

$$\begin{pmatrix} \sigma_{stator}_{i,r} = \sqrt{\left(0 + \max\left(\sigma_{-} p_{stator}_{i,r}, \sigma_{-} n_{stator}_{i,r}\right)\right)^2 + \tau_{stator}(i, R_{st(i,2),r})^2} \\ \begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix}$$

$$\begin{pmatrix} \sigma_{rotor.} \\ \sigma_{stator.} \end{pmatrix} = \begin{cases} \text{for } i \in 1..Z \\ \\ \sigma_{rotor.}(i,z) = \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{stator}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big$$

$$\sigma_{\text{rotor}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 113.20 & 114.67 & 95.63 & 80.56 \\ 2 & 97.50 & 97.27 & 77.14 & 56.67 \\ 3 & 22.50 & 32.20 & 20.77 & 3.32 \end{bmatrix} \cdot 10^6$$

$$\sigma_{\text{stator}}^{\text{T}} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0.00 & 1.09 & 0.70 & 0.16 \\ 2 & 2.67 & 12.08 & 7.36 & 2.47 \\ 3 & 31.86 & 42.31 & 8.71 & 8.81 \end{vmatrix} \cdot 10^{6}$$

$$\begin{vmatrix} safety_{rotor} \\ safety_{stator} \end{vmatrix} = \begin{vmatrix} for \ i \in 1...Z \\ for \ r \in 1...N_r \end{vmatrix}$$

$$\begin{vmatrix} safety_{rotor}_{i,r} \\ safety_{rotor}_{i,r} \end{vmatrix} = \begin{vmatrix} \frac{\sigma_blade_long_i}{\sigma_{rotor}_{i,r}} & \text{if } \sigma_{rotor}_{i,r} \neq 0 \\ \infty & \text{otherwise} \end{vmatrix}$$

$$safety_{stator}_{i,r} = \begin{vmatrix} \frac{\sigma_blade_long_i}{\sigma_{stator}_{i,r}} & \text{if } \sigma_{stator}_{i,r} \neq 0 \\ \infty & \text{otherwise} \end{vmatrix}$$

$$\begin{vmatrix} safety_{rotor} \\ safety_{stator} \end{vmatrix}$$

$$contact contact conta$$

$$safety_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 \\ 1 & 1.06 & 1.05 & 1.25 & 1.49 \\ 2 & 1.23 & 1.23 & 1.56 & 2.12 \\ 3 & 5.33 & 3.73 & 5.78 & 36.17 \end{bmatrix}$$

		1	2	3	4
$safety_{rotor}^{T} \ge safety =$	1	0	0	0	1
rotor – surety	2	0	0	1	1
	3	1	1	1	1

		1	2			1	2	3	4
$safety_{stator} =$	1	000000000000000000000000000000000000000		T safety _{stator} \geq safety =	1	1	1	1	1
stator	2	44.88		stator = salety =	2	1	1	1	1
	3	3.77			3	1	1	1	1

$$b_{\text{line}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 70.0 \cdot 10^{-3}$$

Расстояния от оси ЛМ до рассматриваемой ступени (м):

$$Rj = submatrix (R, 2 \cdot j - 1, 2 \cdot j + 1, 1, N_r) = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 422.0 & 453.2 & 484.5 \\ 2 & 433.0 & 466.0 & 499.1 \\ 3 & 433.0 & 468.5 & 503.9 \end{vmatrix} \cdot 10^{-3}$$

Дискретизация по высоте Л:

$$z = min(Rj), min(Rj) + \frac{max(Rj) - min(Rj)}{100}...max(Rj)$$

$$z_{rotor} = \begin{vmatrix} mean \left(Rj_{1,1}, Rj_{2,1}\right), mean \left(Rj_{1,1}, Rj_{2,1}\right) + \frac{mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) - mean \left(Rj_{1,1}, Rj_{2,1}\right)}{100} ... mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) \text{ if type = "compressor"} \\ mean \left(Rj_{2,1}, Rj_{3,1}\right), mean \left(Rj_{2,1}, Rj_{3,1}\right) + \frac{mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) - mean \left(Rj_{2,1}, Rj_{3,1}\right)}{100} ... mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) \text{ if type = "turbine"} \\ 100 \end{aligned}$$

$$z_{stator} = \begin{bmatrix} mean \left(Rj_{2,1}, Rj_{3,1}\right), mean \left(Rj_{2,1}, Rj_{3,1}\right) + \frac{mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) - mean \left(Rj_{2,1}, Rj_{3,1}\right)}{100} ... mean \left(Rj_{2,N_r}, Rj_{3,N_r}\right) & \text{if type} = "compressor" \\ mean \left(Rj_{1,1}, Rj_{2,1}\right), mean \left(Rj_{1,1}, Rj_{2,1}\right) + \frac{mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) - mean \left(Rj_{1,1}, Rj_{2,1}\right)}{100} ... mean \left(Rj_{1,N_r}, Rj_{2,N_r}\right) & \text{if type} = "turbine" \\ \end{bmatrix}$$

$$\begin{pmatrix} blade \\ r \end{pmatrix} = \begin{pmatrix} "stator" \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -0.62 & 3.77 \\ 2 & 25.85 & -9.14 \\ 3 & 22.59 & 8.77 \\ 4 & -24.75 & -15.93 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{-}p_{rotor_{j},r} & \sigma_{-}p_{stator_{j},r} \\ \sigma_{-}n_{rotor_{j},r} & \sigma_{-}n_{stator_{j},r} \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -8.8 & 2.3 \\ 2 & 22.6 & -3.4 \end{bmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2.5 \\ 2 \\ 56.7 \end{bmatrix} \cdot 10^{5}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 48.515 \\ 2 \\ 2.117 \end{bmatrix}$$

$$\begin{pmatrix} v_{-}p \\ v_{-} \end{pmatrix} = \begin{pmatrix} v_{-}u_{rotor_{j},r} \\ v_{-}l_{rotor_{j},r} \end{pmatrix} \text{ if blade = "rotor"} = \begin{pmatrix} x_{0} \\ 1 & 8.774 \\ 2 & -15.935 \end{pmatrix} \cdot 10^{-3} \quad \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{0} \\ y_{0} \end{pmatrix} = \begin{pmatrix} x_{0} \\ y_{0} \\ y_{$$

$$\begin{pmatrix} \text{blade} \\ \text{stator} \end{pmatrix} = \begin{pmatrix} \text{"stator"} \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 0.22 & 3.00 \\ 2 & 23.50 & -8.08 \\ 3 & 37.61 & 15.82 \\ 4 & -19.53 & -22.31 \end{bmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{-}p_{rotor_{j}, r} & \sigma_{-}p_{stator_{j}, r} \\ \sigma_{-}n_{rotor_{j}, r} & \sigma_{-}n_{stator_{j}, r} \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -0.1 & 8.7 \\ 2 & 0.2 & -7.4 \end{bmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 8.8 \\ 2 \\ 3.3 \end{bmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 36.173 \end{bmatrix}$$

$$\begin{pmatrix} v_{u} \\ v_{r} \\ v$$

$$\begin{pmatrix} \text{blade} \\ \text{r} \\ \text{r} \end{pmatrix} = \begin{pmatrix} \text{"rotor"} \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1.00 & 5.30 \\ 2 & 28.01 & -10.22 \\ 3 & 15.69 & 6.03 \\ 4 & -26.66 & -12.00 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{-}p_{rotor_{j},r} & \sigma_{-}p_{stator_{j},r} \\ \sigma_{-}n_{rotor_{j},r} & \sigma_{-}n_{stator_{j},r} \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -15.9 & 0.1 \\ 2 & 33.4 & -0.1 \end{bmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0.2 \\ 2 \\ 80.6 \end{bmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{vmatrix} 1 \\ 1 \\ 751.571 \\ 2 \\ 1.490 \end{vmatrix}$$

$$\begin{pmatrix} v_{u} \\ v_{r} \\ v$$

$$\begin{pmatrix} \text{blade} \\ \text{max} \end{pmatrix} = \begin{pmatrix} \text{"rotor"} \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -0.62 & 3.77 \\ 2 & 25.85 & -9.14 \\ 3 & 22.59 & 8.77 \\ 4 & -24.75 & -15.93 \end{bmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -8.8 & 2.3 \\ 2 & 22.6 & -3.4 \end{bmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2.5 \\ 2 \\ 56.7 \end{bmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{vmatrix} 1 \\ 1 \\ 2 \\ 2.117 \end{vmatrix}$$

▼ Выбор материала Д

Запас по температуре (K): $\Delta T_{\text{safety}} = 0$

Выбранный материал Д: material_disk_i = "ВЖ175" if turbine = "ТВД" "ЭП742" if turbine = "ТНД"

Плотность материала Д (кг/м^3):

$\begin{array}{lll} \rho_{disk_i} = & 8266 & if \; material_{disk_i} = "B\%175" \\ 8320 & if \; material_{disk_i} = "ЭП742" \\ 8393 & if \; material_{disk_i} = "ЖС-6К" \\ 7900 & if \; material_{disk_i} = "BT41" \\ 4500 & if \; material_{disk_i} = "BT25" \\ 4570 & if \; material_{disk_i} = "BT23" \\ 4510 & if \; material_{disk_i} = "BT9" \\ 4430 & if \; material_{disk_i} = "BT6" \\ NaN & otherwise \\ \end{array}$

Предел длительной прочности Д (Па):

$$\sigma_{disk_long_i} = 10^6$$
. 620 if material_disk_i = "BЖ175" 680 if material_disk_i = "ЭП742" 125 if material_disk_i = "ЖС-6К" 123 if material_disk_i = "BT41" 150 if material_disk_i = "BT25" 230 if material_disk_i = "BT23" 200 if material_disk_i = "BT9" 210 if material_disk_i = "BT6" NaN otherwise

material_disk
$$^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & "ЭП742" & "ЭП742" & "ЭП742" & "ЭП742" \end{bmatrix}$$

$$\sigma_{\text{disk_long}}^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 680 & 680 & 680 & 680 \end{bmatrix} \cdot 10^{6}$$

Рассматриваемая ступень:
$$j_w = \begin{cases} j = Z \\ j = \end{cases}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$

▼ Профилирование равнопрочного Д без центрального отв.

$$h(i,z) = \begin{pmatrix} chord_{rotor_{i},ORIGIN} \cdot sin \Big(\upsilon_{rotor_{i},ORIGIN} \Big) \Big) \cdot e^{\frac{\rho_{-}disk_{i} \cdot \omega^{2}}{2}} \cdot \frac{1}{\sigma_{-}z_{rotor}(i,R_{st(i,2),ORIGIN})} \cdot \Big[\big(R_{st(i,2),ORIGIN}\big)^{2} - z^{2} \Big] \\ \text{if } z \leq R_{st(i,2),ORIGIN} \\ \text{NaN otherwise} \end{pmatrix}$$

$$z = 0, \frac{R_{st(j,2),ORIGIN}}{N_{dis}} .. R_{st(j,2),ORIGIN}$$

