填	课程名		<u> </u>	年度第	1	字期	课程类	カリ	
填		称:	1	微积分 I			必修[√		修
							考成力。 开卷[•	歩
	授课教	师:					试卷类		
	考试时	间:					[A]		<u></u>
考生			学院_			₩			圧(
填写	姓名		学号_				内招[] 外招	召[
题	号			三	<u></u> 四		五	É	ま ら
得	分								
评说	द्रा ।								
		(共10小	题,每小题:	2分,共20	0分)				
一、身	单选题 页知: <i>本</i>					分. 			
一、	单选题 页知: <i>本</i>	本题答案 ₄	必须写在如下			分.	7		

(A) $\frac{(x+1)^{2023}}{(x+2)^{2024}}$ ($x \rightarrow$	A) $\frac{(x+1)^{2023}}{(x+2)^{2024}}$ $(x \to \infty)$;		$\sin \frac{1}{x} (x \to 0);$!
(C) $x \ln(1 + \frac{1}{x})$ (.	$x \to \infty$);	(D)	$\frac{\cos x}{x^2} (x \to 0).$		
4. 设函数 <i>f</i> (<i>x</i>)	$= \begin{cases} x^2 - 1, x \ge \\ \frac{\sin x}{x}, x < \end{cases}$	$0 \\ 0 \qquad \iiint_{x \to 0} f(x) = 0$		······(D) O)不存在.	
(A) 1;	(B) 0;	(C)	∞; (I	D) 不存在.	
5. 若数列极限	$\lim_{n\to\infty}y_n>M,M$	力给定的常数	,则下列说法正确	的是·····(B)	. 41 7
(A) 对于任意正					AT:
(B) 存在正整数	N, 当 $n > N$ 医	$ \dagger 有 y_n > M; $:
(C) 对于任意正	整数 n ,不能确	定 y_n 与 M 的	大小关系;		
(D) 存在正整数	$N, \stackrel{\text{def}}{=} n < N \Vdash$	才有 $y_n < M$.			
6. 当 $x \to 0$ 时,	$f(x) = \sin[(x + x)]$	$(x+1)^2 - 2\ln(x+1)$	$1)-e^x]$ 的极限是 \cdots	····· (B)	į
(A) 1;	(B) 0;	(C)	不存在; (I	O) $\frac{\pi}{2}$.	:
7. 函数 $f(x)$ =	$\begin{cases} x, & x < 1 \\ x - 1, & x \ge 1 \end{cases}$	在 $x=1$ 处····		O) $\frac{\pi}{2}$ (D)	
(A) 连续;	(B) 有可云	去间断点; (C)	有无穷间断点; (I	D) 有跳跃间断点.	
8.	$\sqrt[4]{1+2x}-1$	i x 相比是····		····· (A)	
(A) 同阶无穷小					7
(C) 高阶无穷小	;	(D)	低阶无穷小.		
9. 可导函数 f ((x)在区间 (a,b)]上满足 $f(a)$ =	f(b),若存在一点 c	\in (a , b)使得 f (c)=	
				····· (B)	
(A) —↑;	(B) 两个;	(C)	三个; (I	D) 无法确定.	
10. 设 $y = x \ln x$	x , $\mathbb{N} y^{(2)} = \cdots$			····· (A)	į
(A) $\frac{1}{x}$;	(B) $-\frac{1}{x^2}$;	(C)	$-\frac{1}{x}$; (I	O) $\frac{1}{x^2}$.	ĺ
					:
二、填空题(共	共8小题,每小	题3分,共24	分)		
答题须知: 本是	西答案必须写 在	如下表格中,	否则不给分.		
小题	1	2	3	4	災
答案					1
百米					:

小题	1	2	3	4
答案				
小题	5	6	7	8
答案				

1. $\lim_{x\to 0} \left(\frac{\sin 2x}{x}\right)^2 = 4$.

- **2.** 曲线 $y = \frac{2023x^2+1}{2024x^3+1}$ 的水平渐近线为 y = 0.
- **3.** 曲线 $y = x^2 + 1$ 在点 (1,2) 处的切线方程为 y = 2x
- **4.** 函数 $f(x) = \sqrt{\ln x 1}$ 的定义域使用区间表示为__[e, ∞)__.
- **5.** 函数 $f(x) = |x|^3 + x^2 + 2024$, 则 f'(0) = 0
- **6.** 函数 $y = x \cos x$ 的微分 $dy = (\cos x x \sin x) dx$.
- **7.** 生产 x 单位商品的成本函数为 $C(x) = 20x + \frac{100}{x}$, 当 x = 10 时,x 增加一个单位,成本相应近似增加___19___个单位.

8. 满足不等式 $\sqrt{(x-1)^2} \le 2023$ 的所有 x 属于区间 [-2022,2024]

三、判断题,对与错分别使用"√"和"×"标记(共4小题,每小题2分,共8分)

答题须知:本题答案必须写在如下表格中,否则不给分.

小题	1	2	3	4
答案				

- **1.** 已知函数 f(x) 在 $x = x_0$ 处不连续,则函数 f(x) 在 $x = x_0$ 处必不可导....(\checkmark)
- **3.** 设可微函数 f(x) 在点 $x = x_0$ 处微分为零,则 x_0 必为极值点....(×)
- 4. 无穷大量与无穷小量的乘积依然是无穷小量.....(x)

四、计算题(共6题,每题8分,共48分,要求写出计算过程.)

1. 求函数 $y = \frac{x}{2}\sqrt{x^2-4} + \frac{\ln x}{x} + e^{2x} - (\cos x)^2$ 的导数. 解.

$$y' = \left(\frac{x}{2}\sqrt{x^2 - 4}\right)' + \left(\frac{\ln x}{x}\right)' + (e^{2x})' - \left[(\cos x)^2\right]'$$

$$= \left[\left(\frac{x}{2}\right)'\sqrt{x^2 - 4} + \frac{x}{2}(\sqrt{x^2 - 4})'\right] + \frac{x(\ln x)' - (x)'\ln x}{x^2}$$

$$+ e^{2x}(2x)' - 2\cos x(\cos x)'$$

$$= \left[\frac{1}{2}\sqrt{x^2 - 4} + \frac{x(x^2 - 4)'}{4\sqrt{x^2 - 4}}\right] + \frac{x\frac{1}{x} - \ln x}{x^2} + 2e^{2x} + 2\cos x \sin x$$

$$= \frac{\sqrt{x^2 - 4}}{2} + \frac{x^2}{2\sqrt{x^2 - 4}} + \frac{1 - \ln x}{x^2} + 2e^{2x} + 2\sin 2x$$

$$= \frac{x^2 - 2}{\sqrt{x^2 - 4}} + \frac{1 - \ln x}{x^2} + 2e^{2x} + 2\sin 2x$$

.....8分

(注:每项正确得2分)

涨

2. 计算下列极限 (每小题 4分):

$$(1)\lim_{x\to\infty}\left(\frac{x}{x+1}\right)^{\frac{x+1}{2}};$$

 $(2) \lim_{x \to 2\pi} \frac{\ln \cos x}{(2\pi - x)^2}.$

解. (1)

原式 =
$$\lim_{x \to \infty} \left(\frac{x+1-1}{x+1} \right)^{\frac{x+1}{2}} = \lim_{x \to \infty} \left[\left(1 + \frac{1}{-(x+1)} \right)^{-(x+1)} \right]^{-\frac{1}{2}}$$
2分
$$= \left[\lim_{x \to \infty} \left(1 + \frac{1}{-(x+1)} \right)^{-(x+1)} \right]^{-\frac{1}{2}} = e^{-\frac{1}{2}}$$

(2)

原式 =
$$\lim_{x \to 2\pi} \frac{\sin x}{2(2\pi - x)\cos x} = \lim_{x \to 2\pi} \frac{1}{2\cos x} \cdot \lim_{x \to 2\pi} \frac{\sin x}{2\pi - x}$$

$$= \frac{1}{2} \cdot \lim_{x \to 2\pi} \frac{\cos x}{-1} = \frac{1}{2} \cdot (-1) = -\frac{1}{2}$$

3. 求下列幂指函数及参数方程所确定的函数的导数 dy/(每小题 4 分):

(1)
$$y = x^{\sqrt{x}}$$
; (2)
$$\begin{cases} x = 1 - t e^{t} \\ y = \arcsin t \end{cases}$$

解. (1) 对函数两端取自然对数,得到

$$\ln y = \ln \left(x^{\sqrt{x}} \right) = \sqrt{x} \ln x$$

.....1分

上式两端同时对x求导,得到

$$\frac{1}{y}y' = \left[(\sqrt{x})' \ln x + \sqrt{x} (\ln x)' \right] = \left(\frac{\ln x}{2\sqrt{x}} + \frac{1}{\sqrt{x}} \right) = \frac{\ln x + 2}{2\sqrt{x}}$$

.....3分

整理得到

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y' = y \left(\frac{\ln x + 2}{2\sqrt{x}} \right) = x^{\sqrt{x}} \left(\frac{\ln x + 2}{2\sqrt{x}} \right)$$

·····4分

(2)
$$\frac{dx}{dt} = (1 - te^t)' = -[(t)'e^t + t(e^t)'] = -e^t(1 + t), \quad \frac{dy}{dt} = \frac{1}{\sqrt{1 - t^2}} \quad \cdots \quad 2$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) / \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = -\frac{1}{e^t(1+t)\sqrt{1-t^2}}$$

······4分

4. 讨论函数 $f(x) = \begin{cases} \frac{x^2}{\frac{2023}{\sqrt{1+2023x}-1}}, & x < 0 \\ 0, & x = 0 \text{ 在点 } x = 0 \text{ 处点可导性、连续性.} \\ \frac{(e^x-1)\sin x}{x}, & x > 0 \end{cases}$

解. 分别考虑函数 f(x) 在 x=0 处点左导数、右导数. 左导数

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x}{\sqrt[2023]{1 + 2023x} - 1}.$$

.....14

又因为 $(1+2023x)^{\frac{1}{2023}}-1\sim \frac{1}{2023}\cdot 2023x(x\to 0)$,

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{x}{\sqrt[2023]{1 + 2023x} - 1} = \lim_{x \to 0^{-}} \frac{x}{x} = 1.$$

……3分

右导数

涨

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{(e^{x} - 1)\sin x}{x^{2}}.$$

……4分

因为 $e^x - 1 \sim x(x \rightarrow 0)$,

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{(e^{x} - 1)\sin x}{x^{2}} = \lim_{x \to 0^{+}} \frac{x\sin x}{x^{2}} = \lim_{x \to 0^{+}} \frac{\sin x}{x} = 1.$$

----6分

5. 设函数 $y = f(x) = \frac{1}{3}x^3 - 3x^2 + 8x$, 求 (1) 函数 y = f(x) 的所有驻点 (2 分);(2) 函数 y = f(x) 的单调增减区间及极值 (3 分);(3) 曲线 y = f(x) 的拐点 (3 分).

解.

(1)
$$f'(x) = x^2 - 6x + 8 = (x - 2)(x - 4)$$
, $\Leftrightarrow f'(x) = 0$, 解得驻点 $x = 2, 4$2分

(2) 令 f'(x) = (x-2)(x-4) > 0,解得 $x \in (-\infty,2) \bigcup (4,\infty)$,令 f'(x) = (x-2)(x-4) < 0,解得 $x \in (2,4)$. 函数 y = f(x) 的单调递增区间为 $(-\infty,2) \bigcup (4,\infty)$,单调递减区间为 (2,4).

因为函数 f(x) 在 $(-\infty,2)$ 上单调递增, 在 (2,4) 上单调递减, 故在 x=2 处取得极大值 $f(2)=\frac{20}{3}$,又因为函数 f(x) 在 $(4,+\infty)$ 上单调递增, 故在 x=4 处取得极小值 $f(4)=\frac{16}{3}$ 3 分

(3) 函数 f(x) 的二阶导数 f''(x) = 2x - 6, 令 f''(x) = 2x - 6 = 0, 解得 x = 3. ……1分 当 x > 3 时 f''(x) > 0, 此时曲线 y = f(x) 在区间 $(3, +\infty)$ 上凹; 当 x < 3 时 f''(x) < 0, 此时曲线 y = f(x) 在 $(-\infty, 3)$ 上下凹, 因此曲线 y = f(x) 的拐点为 (3, f(3)) = (3, 6). ……3分

.11**™**

五、应用题(共1题,共8分)

已知某厂生产 Q 件商品成本为 $C(Q) = 25000 - 200Q + <math>\frac{1}{40}Q^2(Q > 0$, 单位: 元), 商品售价为 500 元. 问:(1) 生产多少件商品时, 边际成本为 0 (2分); (2) 若要使得平均成本最小, 应生产多少件商品 (4分); (3) 假设所生产的商品均能销售出去, 若要保证利润随着产量增加而增长的趋势, 产量应该控制在什么范围 (2分).

解.

(1) 边际成本函数 $C'(Q) = -200 + \frac{1}{20}Q$, 令 $C'(Q) = -200 + \frac{1}{20}Q$, 解得 Q = 4000, 即生产 4000 件商品时, 边际成本为 0.

……2分

袱

(2) 平均成本函数为

$$\bar{C}(Q) = \frac{C(Q)}{Q} = \frac{25000}{Q} - 200 + \frac{Q}{40}(Q > 0).$$

取导数得到

$$\bar{C}'(Q) = -\frac{25000}{Q^2} + \frac{1}{40},$$

 $\diamondsuit \bar{C}'(Q) = -\frac{25000}{Q^2} + \frac{1}{40} = 0$, 解得 Q = 1000.

……2分

又因为 $\bar{C}''(Q) = \frac{50000}{Q^3}$, $C''(1000) = 5 \times 10^{-5} > 0$, 故 Q=1000 为唯一极小值点, 且无极大值点, 因此当 Q = 1000 时, 平均成本最小.

……4分

(3) 设利润函数为 L(Q), 则

$$L(Q) = 500Q - C(Q) = 500Q - (25000 - 200Q + \frac{1}{40}Q^{2})$$
$$= 700Q - 25000 - \frac{1}{40}Q^{2}(Q > 0).$$

取导数得到 $L'(Q) = 700 - \frac{1}{20}Q$, 令 $L'(Q) = 700 - \frac{1}{20}Q > 0$, 解得 0 < Q < 14000, 产量 应该小于 14000 件.

……2分