Lecture 7: Deep RL Continued

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2022

Refresh Your Knowledge LN7

- Experience replay in deep Q-learning (select all):
 - Involves using a bank of prior (s,a,r,s') tuples and doing Q-learning updates on the tuples in the bank
 - 2 Always uses the most recent history of tuples
 - Reduces the data efficiency of DQN
 - Increases the computational cost
 - Not sure

Refresh Your Knowledge 6 Solutions

- Experience replay in deep Q-learning (select all):
 - Involves using a bank of prior (s,a,r,s') tuples and doing Q-learning updates on the tuples in the bank
 - Always uses the most recent history of tuples
 - Reduces the data efficiency of DQN
 - Increases the computational cost
 - Not sure

Class Structure

• Last time: CNNs and Deep Reinforcement learning

• This time: Deep RL

Next time: Policy Search

Deep RL

- Success in Atari has led to huge excitement in using deep neural networks to do value function approximation in RL
- Some immediate improvements (many others!)
 - Double DQN (Deep Reinforcement Learning with Double Q-Learning, Van Hasselt et al, AAAI 2016)
 - Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)
 - Dueling DQN (best paper ICML 2016) (Dueling Network Architectures for Deep Reinforcement Learning, Wang et al, ICML 2016)

Today

- Double DQN (Deep Reinforcement Learning with Double Q-Learning, Van Hasselt et al, AAAI 2016)
- Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)
- Dueling DQN (best paper ICML 2016) (Dueling Network Architectures for Deep Reinforcement Learning, Wang et al, ICML 2016)
- Practical Tips

Double DQN

- Recall maximization bias challenge
 - Max of the estimated state-action values can be a biased estimate of the max
- Double Q-learning

Recall: Double Q-Learning

- 1: Initialize $Q_1(s,a)$ and $Q_2(s,a)$, $\forall s \in S, a \in A \ t=0$, initial state $s_t=s_0$
- 2: **loop**
- 3: Select a_t using ϵ -greedy $\pi(s) = \arg\max_a Q_1(s_t, a) + Q_2(s_t, a)$
- 4: Observe (r_t, s_{t+1})
- 5: **if** (with 0.5 probability) **then**

$$Q_1(s_t, a_t) \leftarrow Q_1(s_t, a_t) + \alpha(r_t + Q_2(s_{t+1}, \arg \max_{a'} Q_1(s_{t+1}, a')) - Q_1(s_t, a_t))$$

7: else

$$Q_2(s_t, a_t) \leftarrow Q_2(s_t, a_t) + \alpha(r_t + Q_1(s_{t+1}, \arg \max_{a'} Q_2(s_{t+1}, a')) - Q_2(s_t, a_t))$$

- 9: **end if**
- 10: t = t + 1
- 11: end loop

Double DQN

- Extend this idea to DQN
- Current Q-network w is used to select actions
- Older Q-network \mathbf{w}^- is used to evaluate actions

$$\Delta \mathbf{w} = \alpha (r + \gamma \widehat{\hat{Q}}(\arg \max_{a'} \widehat{\hat{Q}}(s', a'; \mathbf{w}); \mathbf{w}^{-}) - \widehat{\hat{Q}}(s, a; \mathbf{w}))$$
Action selection: \mathbf{w}

Double DQN

Figure: van Hasselt, Guez, Silver, 2015

Today

- Double DQN (Deep Reinforcement Learning with Double Q-Learning, Van Hasselt et al, AAAI 2016)
- Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)
- Dueling DQN (best paper ICML 2016) (Dueling Network Architectures for Deep Reinforcement Learning, Wang et al, ICML 2016)
- Practical Tips

Check Your Understanding: Mars Rover Model-Free Policy Evaluation

s_1	<i>S</i> ₂	s_3	S_4	s_5	<i>s</i> ₆	<i>S</i> ₇
R(s ₁) = +1 Okay Field Site	$R(s_2) = 0$	$R(s_3) = 0$	$R(s_4)=0$	$R(s_5) = 0$		$R(s_7) = +10$ Fantastic Field Site

- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. Any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]
- TD estimate of all states (init at 0) with $\alpha = 1$ is $[1\ 0\ 0\ 0\ 0\ 0]$
- Choose 2 additional "replay" backups to do. Which should we pick to get a V estimate closest to MC first visit estimate?
 - Doesn't matter, any will yield the same
 - $(s_3, a_1, 0, s_2)$ then $(s_2, a_1, 0, s_1)$
 - $(s_2, a_1, 0, s_1)$ then $(s_2, a_1, 0, s_2)$
 - $(s_2, a_1, 0, s_1)$ then $(s_3, a_1, 0, s_2)$
 - Not sure

Check Your Understanding: Mars Rover Model-Free Policy Evaluation Solution

s_1	<i>s</i> ₂	s_3	S_4	s_5	s ₆	<i>S</i> ₇
R(s ₁) = +1 Okay Field Site	$R(s_2) = 0$	$R(s_3)=0$	$R(s_4) = 0$	$R(s_5)=0$		R(s ₇) = +10 Fantastic Field Site

- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. Any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of V of each state? [1 1 1 0 0 0 0]
- TD estimate of all states (init at 0) with $\alpha = 1$ is $[1\ 0\ 0\ 0\ 0\ 0]$
- Choose 2 additional "replay" backups to do. Which should we pick to get a V estimate closest to MC first visit estimate?
 - Open't matter, any will yield the same
 - $(s_3, a_1, 0, s_2)$ then $(s_2, a_1, 0, s_1)$
 - $(s_2, a_1, 0, s_1)$ then $(s_2, a_1, 0, s_2)$
 - $(s_2, a_1, 0, s_1)$ then $(s_3, a_1, 0, s_2)$
 - Not sure

Impact of Replay?

- In tabular TD-learning, order of replaying updates could help speed learning
- Repeating some updates seems to better propagate info than others
- Systematic ways to prioritize updates?

Potential Impact of Ordering Episodic Replay Updates

Figure: Schaul, Quan, Antonoglou, Silver ICLR 2016

- Schaul, Quan, Antonoglou, Silver ICLR 2016
- Oracle: picks (s, a, r, s') tuple to replay that will minimize global loss
- Exponential improvement in convergence
 - Number of updates needed to converge
- Oracle is not a practical method but illustrates impact of ordering

Prioritized Experience Replay

- Let i be the index of the i-th tuple of experience (s_i, a_i, r_i, s_{i+1})
- Sample tuples for update using priority function
- Priority of a tuple i is proportional to DQN error

$$p_i = \left| r + \gamma \max_{a'} Q(s_{i+1}, a'; \boldsymbol{w}^-) - Q(s_i, a_i; \boldsymbol{w}) \right|$$

- ullet Update p_i every update. p_i for new tuples is set to maximum value
- One method¹: proportional (stochastic prioritization)

$$P(i) = \frac{p_i^{\beta}}{\sum_k p_k^{\beta}}$$

¹See paper for details and an alternative

Check Your Understanding: Prioritized Replay

- Let i be the index of the i-th tuple of experience (s_i, a_i, r_i, s_{i+1})
- Sample tuples for update using priority function
- Priority of a tuple *i* is proportional to DQN error

$$p_i = \left| r + \gamma \max_{a'} Q(s_{i+1}, a'; \mathbf{w}^-) - Q(s_i, a_i; \mathbf{w}) \right|$$

- Update p_i every update.
- One method [See paper for details]: proportional (stochastic prioritization)

$$P(i) = \frac{p_i^{\beta}}{\sum_k p_k^{\beta}}$$

- $\beta = 0$ yields what rule for selecting among existing tuples?
- Selects randomly
- Selects the one with the highest priority
- It depends on the priorities *p* of the tuples
- Not Sure

Check Your Understanding: Prioritized Replay

- Let i be the index of the i-th tuple of experience (s_i, a_i, r_i, s_{i+1})
- Sample tuples for update using priority function
- Priority of a tuple i is proportional to DQN error

$$p_i = \left| r + \gamma \max_{a'} Q(s_{i+1}, a'; \mathbf{w}^-) - Q(s_i, a_i; \mathbf{w}) \right|$$

- Update p_i every update.
- One method¹: proportional (stochastic prioritization)

$$P(i) = \frac{p_i^{\beta}}{\sum_k p_k^{\beta}}$$

- $\beta = 0$ yields what rule for selecting among existing tuples?
- Selects randomly
- Selects the one with the highest priority
- It depends on the priorities of the tuples
- Not Sure

Performance of Prioritized Replay vs Double DQN

Figure: Schaul, Quan, Antonoglou, Silver ICLR 2016

Today

- Double DQN (Deep Reinforcement Learning with Double Q-Learning, Van Hasselt et al, AAAI 2016)
- Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)
- Dueling DQN (best paper ICML 2016) (Dueling Network Architectures for Deep Reinforcement Learning, Wang et al, ICML 2016)
- Practical Tips

Value & Advantage Function

- Intuition: Features needed to accurately represent value may be different than those needed to specify difference in actions
- E.g.
 - Game score may help accurately predict V(s)
 - But not necessarily in indicating relative action values $Q(s,a_1)$ vs $Q(s,a_2)$
- Advantage function (Baird 1993)

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

Dueling DQN

Wang et.al., ICML, 2016

Advantage Function and Training

Advantage function

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

- Consider a network that outputs $V(s; \theta, \beta)$ as well as advantage $A(s, a; \theta, \lambda)$ where θ, β , and λ are parameters
- To construct Q could use $Q(s, a; \theta, \beta, \lambda) = V(s; \theta, \beta) + A(s, a; \theta, \lambda)$
- Do we expect that this architecture will result in learning a good estimate of true *V* or *A*?

Check Your Understanding: Unique?

Advantage function

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

- For a given Q function, is there a unique A advantage function and V?
 - Yes
 - No
 - Not sure

Check Your Understanding: Unique?

Advantage function

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

- For a given Q function, is there a unique A advantage function and V?
 - Yes
 - O No
 - Not sure

Uniqueness

- Consider a network that outputs $V(s; \theta, \beta)$ as well as advantage $A(s, a; \theta, \lambda)$ where θ, β , and λ are parameters
- To construct Q could use $Q(s, a; \theta, \beta, \lambda) = V(s; \theta, \beta) + A(s, a; \theta, \lambda)$
- Option 1: Force Q(s, a) = V(s) for the best action suggested by the advantage:

$$\hat{Q}(s, a; \mathbf{w}) = \hat{V}(s; \mathbf{w}) + \left(\hat{A}(s, a; \mathbf{w}) - \max_{a' \in A} \hat{A}(s, a'; \mathbf{w})\right)$$

ullet This helps force the V network to approximate V

Uniqueness

- Consider a network that outputs $V(s; \theta, \beta)$ as well as advantage $A(s, a; \theta, \lambda)$ where θ, β , and λ are parameters
- To construct Q could use $Q(s, a; \theta, \beta, \lambda) = V(s; \theta, \beta) + A(s, a; \theta, \lambda)$
- Option 1: Force Q(s, a) = V(s) for the best action suggested by the advantage:

$$\hat{Q}(s, a; \mathbf{w}) = \hat{V}(s; \mathbf{w}) + \left(\hat{A}(s, a; \mathbf{w}) - \max_{a' \in A} \hat{A}(s, a'; \mathbf{w})\right)$$

- This helps force the V network to approximate V
- Option 2: Use mean as baseline (more stable)

$$\hat{Q}(s, a; \boldsymbol{w}) = \hat{V}(s; \boldsymbol{w}) + \left(\hat{A}(s, a; \boldsymbol{w}) - \frac{1}{|\mathcal{A}|} \sum_{a' \in \mathcal{A}} \hat{A}(s, a'; \boldsymbol{w})\right)$$

 More stable often because averaging over all advantages instead of the advantage of the current max action.

Dueling DQN V.S. Double DQN with Prioritized Replay

Today

- Double DQN (Deep Reinforcement Learning with Double Q-Learning, Van Hasselt et al, AAAI 2016)
- Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)
- Dueling DQN (best paper ICML 2016) (Dueling Network Architectures for Deep Reinforcement Learning, Wang et al, ICML 2016)
- Practical Tips

Practical Tips for DQN on Atari (from J. Schulman)

- DQN is more reliable on some Atari tasks than others. Pong is a reliable task: if it doesn't achieve good scores, something is wrong
- Large replay buffers improve robustness of DQN, and memory efficiency is key
 - Use uint8 images, don't duplicate data
- Be patient. DQN converges slowly—for ATARI it's often necessary to wait for 10-40M frames (couple of hours to a day of training on GPU) to see results significantly better than random policy
- In our Stanford class: Debug implementation on small test environment

Practical Tips for DQN on Atari (from J. Schulman) cont.

Try Huber loss on Bellman error

$$L(x) = \begin{cases} \frac{x^2}{2} & \text{if } |x| \le \delta \\ \delta |x| - \frac{\delta^2}{2} & \text{otherwise} \end{cases}$$

Practical Tips for DQN on Atari (from J. Schulman) cont.

• Try Huber loss on Bellman error

$$L(x) = \begin{cases} \frac{x^2}{2} & \text{if } |x| \le \delta \\ \delta |x| - \frac{\delta^2}{2} & \text{otherwise} \end{cases}$$

- Consider trying Double DQN—significant improvement from small code change
- To test out your data pre-processing, try your own skills at navigating the environment based on processed frames
- Always run at least two different seeds when experimenting
- Learning rate scheduling is beneficial. Try high learning rates in initial exploration period
- Try non-standard exploration schedules

Recap: Deep Model-free RL, 3 of the Early Big Ideas

- Double DQN: (Deep Reinforcement Learning with Double Q-Learning, Van Hasselt et al, AAAI 2016)
- Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)
- Dueling DQN (best paper ICML 2016) (Dueling Network Architectures for Deep Reinforcement Learning, Wang et al, ICML 2016)

Deep Reinforcement Learning 2018

• Hessel, Matteo, et al. "Rainbow: Combining Improvements in Deep Reinforcement Learning."

Very active area of research!
 Emma Brunskill (CS234 Reinforcement Learn Lecture

Summary of Model Free Value Function Approximation with DNN & What You Should Know

- DNN are very expressive function approximators
- Can use DNNs to represent the Q function and do MC or TD style methods
- You should be able to implement DQN (assignment 2)
- You should be able to list a few extensions that help performance beyond DQN

Class Structure

• Last time: CNNs and Deep Reinforcement learning

• This time: Deep RL

Next time: Policy Search