Econ 103: Multiple Linear Regression I

Manu Navjeevan

UCLA

July 30, 2021

Content Outline

The Model:

- Adding more covariates
- · Assumptions needed for inference

The Estimator:

- Relation to Single Linear Regression Estimator
- Asymptotic Dsitribution

Inference:

- Hypothesis Tests and Linear Combinations
- Confidence Inervals

Modeling Choices:

- · Polynomial Equations, transformations, and interactions
- R^2 and goodness of fit

Table of Contents

The Model

The Estimator

Inference

Modeling Choices

So far we have used the model $Y=\beta_0+\beta_1X+\epsilon$ defined by the line of best fit parameters

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 X\right)^2\right].$$

to learn about the relationship between a single random variable X and Y and to use X to predict Y.

So far we have used the model $Y=\beta_0+\beta_1X+\epsilon$ defined by the line of best fit parameters

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 X\right)^2\right].$$

to learn about the relationship between a single random variable X and Y and to use X to predict Y.

Examples:

• Using education to predict income or interpreting the coeffecient $\hat{\beta}_1$ to learn about the relationship between the two.

So far we have used the model $Y=\beta_0+\beta_1X+\epsilon$ defined by the line of best fit parameters

$$\beta_0, \beta_1 = \arg\min_{\tilde{\beta}_0, \tilde{\beta}_1} \mathbb{E}\left[\left(Y - \tilde{\beta}_0 - \tilde{\beta}_1 X\right)^2\right].$$

to learn about the relationship between a single random variable X and Y and to use X to predict Y.

Examples:

- Using education to predict income or interpreting the coeffecient $\hat{\beta}_1$ to learn about the relationship between the two.
- Learning about the relationship between smoking and heart disease.

However, what happens if we have access to multiple explanatory variables X_1, \ldots, X_p ?

Examples:

- Suppose we wanted to impact the joint effect of education <u>and</u> experience on age?
- Learn about the relationship between smoking, genetic risk, and heart disease

As before, we may be interested in the parameters of a "line of best fit" between Y and our explantory variables X_1, \ldots, X_p :

$$\beta_0, \beta_1, \dots, \beta_p = \arg\min_{b_0, \dots, b_p} \mathbb{E}\left[(Y - b_0 - b_1 X_1 - b_2 X_2 - \dots - b_p X_p)^2 \right].$$

As before, we may be interested in the parameters of a "line of best fit" between Y and our explantory variables X_1, \ldots, X_p :

$$\beta_0, \beta_1, \dots, \beta_p = \arg\min_{b_0, \dots, b_p} \mathbb{E}\left[(Y - b_0 - b_1 X_1 - b_2 X_2 - \dots - b_p X_p)^2 \right].$$

Again defining $\epsilon = Y - \beta_0 - \beta_1 X_1 - \dots - \beta_p X_p$ these parameters generate the linear model

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

where, by the first order conditions for β , $\mathbb{E}[\epsilon] = \mathbb{E}[\epsilon X_j] = 0$ for all $j = 0, 1, \dots, p$.

Example 1: Let Y be log wages, EDU be years of college education, and EXP be years of experience. Prior to this we have estimated the equation

$$Y = \beta_0 + \beta_1 EDU + \epsilon. \tag{1}$$

Now, we will consider estimation and inference on the model

$$Y = \beta_0 + \beta_1 EDU + \beta_2 EXP + \epsilon. \tag{2}$$

Example 1: Let Y be log wages, EDU be years of college education, and EXP be years of experience. Prior to this we have estimated the equation

$$Y = \beta_0 + \beta_1 EDU + \epsilon. \tag{1}$$

Now, we will consider estimation and inference on the model

$$Y = \beta_0 + \beta_1 EDU + \beta_2 EXP + \epsilon. \tag{2}$$

Example 1: Let Y be log wages, EDU be years of college education, and EXP be years of experience. Prior to this we have estimated the equation

$$Y = \beta_0 + \beta_1 EDU + \epsilon. \tag{1}$$

Now, we will consider estimation and inference on the model

$$Y = \beta_0 + \beta_1 EDU + \beta_2 EXP + \epsilon. \tag{2}$$

Note that β_0, β_1 in model (1) will differ from β_0, β_1 in model (2).

• In (1) β_0 corresponds to the average log wage for someone with no college education

Example 1: Let Y be log wages, EDU be years of college education, and EXP be years of experience. Prior to this we have estimated the equation

$$Y = \beta_0 + \beta_1 EDU + \epsilon. \tag{1}$$

Now, we will consider estimation and inference on the model

$$Y = \beta_0 + \beta_1 EDU + \beta_2 EXP + \epsilon. \tag{2}$$

- In (1) β_0 corresponds to the average log wage for someone with no college education
- In (2) β_0 will correspond to the average log wage for someone with no college education and no experience

Example 1: Let Y be log wages, EDU be years of college education, and EXP be years of experience. Prior to this we have estimated the equation

$$Y = \beta_0 + \beta_1 EDU + \epsilon. \tag{1}$$

Now, we will consider estimation and inference on the model

$$Y = \beta_0 + \beta_1 EDU + \beta_2 EXP + \epsilon. \tag{2}$$

- In (1) β_0 corresponds to the average log wage for someone with no college education
- In (2) β_0 will correspond to the average log wage for someone with no college education and no experience
- In (1) β_1 corresponds to the expected change in log wage for an additional year of college education

Example 1: Let Y be log wages, EDU be years of college education, and EXP be years of experience. Prior to this we have estimated the equation

$$Y = \beta_0 + \beta_1 EDU + \epsilon. \tag{1}$$

Now, we will consider estimation and inference on the model

$$Y = \beta_0 + \beta_1 EDU + \beta_2 EXP + \epsilon. \tag{2}$$

- In (1) β_0 corresponds to the average log wage for someone with no college education
- In (2) β_0 will correspond to the average log wage for someone with no college education and no experience
- In (1) β_1 corresponds to the expected change in log wage for an additional year of college education
- In (2) β_1 corresponds to the expected change in log wage for an additional year of college education <u>after</u> controlling for years of experience

Example 2: Let Y be the (log) final sales price of a home, SQFT be the square footage of the house, and DAYS be the number of days the house has been on the market. Before we estimated and interpreted the linear model:

$$Y = \beta_0 + \beta_1 SQFT + \epsilon. \tag{3}$$

Now, we will consider estimation and inference on the model

$$Y = \beta_0 + \beta_1 SQFT + \beta_2 DAYS + \epsilon \tag{4}$$

Example 2: Let Y be the (log) final sales price of a home, SQFT be the square footage of the house, and DAYS be the number of days the house has been on the market. Before we estimated and interpreted the linear model:

$$Y = \beta_0 + \beta_1 SQFT + \epsilon. \tag{3}$$

Now, we will consider estimation and inference on the model

$$Y = \beta_0 + \beta_1 SQFT + \beta_2 DAYS + \epsilon \tag{4}$$

• In (3) β_0 is interpreted as the average log sales price for a home with zero square feet (an empty lot) regardless of how long it's been on the market.

Example 2: Let Y be the (log) final sales price of a home, SQFT be the square footage of the house, and DAYS be the number of days the house has been on the market. Before we estimated and interpreted the linear model:

$$Y = \beta_0 + \beta_1 SQFT + \epsilon. \tag{3}$$

Now, we will consider estimation and inference on the model

$$Y = \beta_0 + \beta_1 SQFT + \beta_2 DAYS + \epsilon \tag{4}$$

- In (3) β_0 is interpreted as the average log sales price for a home with zero square feet (an empty lot) regardless of how long it's been on the market.
- In (4) β_0 is interpreted as the average log sales price for a home with zero square feet that has just entered the market

Example 2: Let Y be the (log) final sales price of a home, SQFT be the square footage of the house, and DAYS be the number of days the house has been on the market. Before we estimated and interpreted the linear model:

$$Y = \beta_0 + \beta_1 SQFT + \epsilon. \tag{3}$$

Now, we will consider estimation and inference on the model

$$Y = \beta_0 + \beta_1 SQFT + \beta_2 DAYS + \epsilon \tag{4}$$

- In (3) β_0 is interpreted as the average log sales price for a home with zero square feet (an empty lot) regardless of how long it's been on the market.
- In (4) β_0 is interpreted as the average log sales price for a home with zero square feet that has just entered the market
- In (4) β_1 is interpreted as the average change in sales price for a one unit increase in square footage, holding the number of days on the market constant

Example 3: Finally, let's return to an example from Week 1. Let Y be a measure of anxiety levels, ENG be the number of energy drinks consumed per day, and CLS be the number of courses being taken. Before we may have estimated the model:

$$Y = \beta_0 + \beta_1 ENG + \epsilon \tag{5}$$

Now, we may consider the model

$$Y = \beta_0 + \beta_1 ENG + \beta_2 CLS + \epsilon \tag{6}$$

Example 3: Finally, let's return to an example from Week 1. Let Y be a measure of anxiety levels, ENG be the number of energy drinks consumed per day, and CLS be the number of courses being taken. Before we may have estimated the model:

$$Y = \beta_0 + \beta_1 ENG + \epsilon \tag{5}$$

Now, we may consider the model

$$Y = \beta_0 + \beta_1 ENG + \beta_2 CLS + \epsilon \tag{6}$$

• In (5) we can interpret β_0 as the average anxiety level for someone who drinks no energy drinks

Example 3: Finally, let's return to an example from Week 1. Let Y be a measure of anxiety levels, ENG be the number of energy drinks consumed per day, and CLS be the number of courses being taken. Before we may have estimated the model:

$$Y = \beta_0 + \beta_1 ENG + \epsilon \tag{5}$$

Now, we may consider the model

$$Y = \beta_0 + \beta_1 ENG + \beta_2 CLS + \epsilon \tag{6}$$

- In (5) we can interpret β_0 as the average anxiety level for someone who drinks no energy drinks
- In (6) we can interpret β_0 as the average anxiety level for someone who drinks no energy drinks and takes no classes

Example 3: Finally, let's return to an example from Week 1. Let Y be a measure of anxiety levels, ENG be the number of energy drinks consumed per day, and CLS be the number of courses being taken. Before we may have estimated the model:

$$Y = \beta_0 + \beta_1 ENG + \epsilon \tag{5}$$

Now, we may consider the model

$$Y = \beta_0 + \beta_1 ENG + \beta_2 CLS + \epsilon \tag{6}$$

• In (5) we can interpret β_1 as the expected change in anxiety levels for someone who drinks one more energy drink per day

Example 3: Finally, let's return to an example from Week 1. Let Y be a measure of anxiety levels, ENG be the number of energy drinks consumed per day, and CLS be the number of courses being taken. Before we may have estimated the model:

$$Y = \beta_0 + \beta_1 ENG + \epsilon \tag{5}$$

Now, we may consider the model

$$Y = \beta_0 + \beta_1 ENG + \beta_2 CLS + \epsilon \tag{6}$$

- In (5) we can interpret β_1 as the expected change in anxiety levels for someone who drinks one more energy drink per day
- In (6) we can interpret β_1 as the expected change in anxiety levels for an additional energy drink holding the number of courses being taken constant.

Example 3: Finally, let's return to an example from Week 1. Let Y be a measure of anxiety levels, ENG be the number of energy drinks consumed per day, and CLS be the number of courses being taken. Before we may have estimated the model:

$$Y = \beta_0 + \beta_1 ENG + \epsilon \tag{5}$$

Now, we may consider the model

$$Y = \beta_0 + \beta_1 ENG + \beta_2 CLS + \epsilon \tag{6}$$

- In (5) we can interpret β₁ as the expected change in anxiety levels for someone who drinks one more energy drink per day
- In (6) we can interpret β_1 as the expected change in anxiety levels for an additional energy drink holding the number of courses being taken constant.

Question: How may we expect the signs/magnitutes of the parameters to change when going from model (5) to model (6)?

The Model: Questions

Questions?

Table of Contents

The Model

The Estimator

Inference

Modeling Choices

Estimation: Introduction

Before, in single linear regression when we were interested in the population line of best fit parameters

$$\beta_0, \beta_1 = \arg\min_{b_0, b_1} \mathbb{E}\left[(Y - b_0 - b_1 X)^2 \right],$$

we estimated them by finding the line of best fit through our sample $\{Y_i,X_i\}_{i=1}^n$:

$$\hat{\beta}_0, \hat{\beta}_1 = \arg\min_{b_0, b_1} \frac{1}{n} \sum_{i=1}^n (Y_i - b_0 - b_1 X_i)^2.$$

Before, in single linear regression when we were interested in the population line of best fit parameters

$$\beta_0, \beta_1 = \arg\min_{b_0, b_1} \mathbb{E}\left[(Y - b_0 - b_1 X)^2 \right],$$

we estimated them by finding the line of best fit through our sample $\{Y_i, X_i\}_{i=1}^n$:

$$\hat{\beta}_0, \hat{\beta}_1 = \arg\min_{b_0, b_1} \frac{1}{n} \sum_{i=1}^n (Y_i - b_0 - b_1 X_i)^2.$$

 \to Have to estimate these parameters using the sample because we don't know the population distribution of $(Y\!,X)$

Estimation: Introduction

Now, we are interested in the population line of best fit parameters:

$$\beta_0, \beta_1, \dots, \beta_p = \arg\min_{b_0, b_1, \dots, b_p} \mathbb{E}\left[(Y - b_0 - b_1 X_1 - \dots - b_p X_p)^2 \right].$$

Question: How should we estimate these using our sample $\{Y_i, X_{1,i}, \dots, X_{p,i}\}_{i=1}^n$?

Estimation: Introduction

Now, we are interested in the population line of best fit parameters:

$$\beta_0, \beta_1, \dots, \beta_p = \arg \min_{b_0, b_1, \dots, b_p} \mathbb{E} \left[(Y - b_0 - b_1 X_1 - \dots - b_p X_p)^2 \right].$$

Question: How should we estimate these using our sample $\{Y_i, X_{1,i}, \dots, X_{p,i}\}_{i=1}^n$?

Estimate β_0, \ldots, β_p by finding the line of best fit through our sample:

$$\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p = \arg\min_{b_0, b_1, \dots, b_p} \frac{1}{n} \sum_{i=1}^n (Y_i - b_0 - b_1 X_{1,i} - \dots - b_p X_{p,i})^2.$$

Taking first order conditions for $\hat{\beta}_0, \dots, \hat{\beta}_p$ above gives us

$$\frac{\partial}{\partial b_0} : \frac{1}{n} \sum_{i=1}^n \overbrace{(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \dots - \hat{\beta}_p X_{p,i})}^{\hat{\epsilon}_i} = 0$$

$$\frac{\partial}{\partial b_1} : \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \dots - \hat{\beta}_p X_{p,i}) X_{1,i} = 0$$

$$\vdots$$

$$\frac{\partial}{\partial b_p} : \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \dots - \hat{\beta}_p X_{p,i}) X_{p,i} = 0$$

Taking first order conditions for $\hat{\beta}_0, \dots, \hat{\beta}_p$ above gives us

$$\frac{\partial}{\partial b_0} : \frac{1}{n} \sum_{i=1}^n \overbrace{(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \dots - \hat{\beta}_p X_{p,i})}^{\hat{\epsilon}_i} = 0$$

$$\frac{\partial}{\partial b_1} : \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \dots - \hat{\beta}_p X_{p,i}) X_{1,i} = 0$$

$$\vdots$$

$$\frac{\partial}{\partial b_p} : \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \dots - \hat{\beta}_p X_{p,i}) X_{p,i} = 0$$

This gives us p+1 linear equations to solve for our p+1 parameters. Computers can solve these very quickly, but the explicit formulas for $\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_p$ become very cumbersome if we don't use linear algebra notation.

Estimation: Aside

Quickly, it is useful to note the following implication from the first order conditions for $\hat{\beta}_0, \ldots, \hat{\beta}_p$. Define $\hat{\epsilon}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \cdots - \hat{\beta}_p X_{p,i}$. Then

$$\frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_i = 0$$

$$\frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_i X_{1,i} = 0$$

$$\frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_i X_{2,i} = 0$$

$$\vdots$$

$$\frac{1}{n} \sum_{i=1}^{n} \hat{\epsilon}_i X_{p,i} = 0$$

Estimation: Asymptotic Distribution

Just as in single linear regression, however, the solutions for $\hat{\beta}_0, \dots, \hat{\beta}_p$ depend on the data. That is $\hat{\beta}_0, \dots, \hat{\beta}_p$ are functions of our sample $\{Y_i, X_{1,i}, \dots, X_{p,i}\}_{i=1}^n$.

Estimation: Asymptotic Distribution

Just as in single linear regression, however, the solutions for $\hat{\beta}_0, \ldots, \hat{\beta}_p$ depend on the data. That is $\hat{\beta}_0, \ldots, \hat{\beta}_p$ are functions of our sample $\{Y_i, X_{1,i}, \ldots, X_{p,i}\}_{i=1}^n$.

• If we collected a different sample $\{Y_i, X_{1,i}, \dots, X_{2,i}\}_{i=1}^n$, we would get different values for our estimators $\hat{\beta}_0, \dots, \hat{\beta}_p$.

Just as in single linear regression, however, the solutions for $\hat{\beta}_0, \ldots, \hat{\beta}_p$ depend on the data. That is $\hat{\beta}_0, \ldots, \hat{\beta}_p$ are functions of our sample $\{Y_i, X_{1,i}, \ldots, X_{p,i}\}_{i=1}^n$.

• If we collected a different sample $\{Y_i, X_{1,i}, \dots, X_{2,i}\}_{i=1}^n$, we would get different values for our estimators $\hat{\beta}_0, \dots, \hat{\beta}_p$.

For hypothesis testing we would still like to know the (approximate) distribution of our estimates $\hat{\beta}_0,\ldots,\hat{\beta}_p$. This will be useful later on as we'd like to calculate objects such as

$$\Pr(|\hat{\beta}_1| > 5|\beta_1 = -2).$$

In order for the estimates $\hat{\beta}_0, \ldots, \hat{\beta}_p$ to have a stable asymptotic distribution and to converge to the true parameters β_0, \ldots, β_p , we need to make some (light) assumptions about the underlying distribution of (Y, X_1, \ldots, X_p) from which our sample is drawn.

Assumptions needed for valid inference:

- Random Sampling: The data $\{Y_i, X_{1,i}, \ldots, X_{p,i}\}$ is independently and identically sampled from the population distribution (Y, X_1, \ldots, X_p)
 - Needed to make sure that we are making inferences on the correct population

Assumptions needed for valid inference:

- Random Sampling: The data $\{Y_i, X_{1,i}, \ldots, X_{p,i}\}$ is independently and identically sampled from the population distribution (Y, X_1, \ldots, X_p)
 - Question: When would this be violated?

Assumptions needed for valid inference:

- Random Sampling: The data $\{Y_i,X_{1,i},\ldots,X_{p,i}\}$ is independently and identically sampled from the population distribution (Y,X_1,\ldots,X_p)
- Rank Condition: The right hand side variables X_1, \ldots, X_p are not linearly dependent, i.e we cannot write

$$a_1 X_1 + a_2 X_2 + \dots + a_p X_p = 0$$

for some constants a_1, \ldots, a_p with at least one $a_k \neq 0$.

Assumptions needed for valid inference:

- Random Sampling: The data $\{Y_i, X_{1,i}, \ldots, X_{p,i}\}$ is independently and identically sampled from the population distribution (Y, X_1, \ldots, X_p)
- Rank Condition: The right hand side variables X_1, \ldots, X_p are not linearly dependent, i.e we cannot write

$$a_1 X_1 + a_2 X_2 + \dots + a_p X_p = 0$$

for some constants a_1, \ldots, a_p with at least one $a_k \neq 0$.

 If this is violated then we can write one random variable as a linear combination of the other ones.

Assumptions needed for valid inference:

- Random Sampling: The data $\{Y_i, X_{1,i}, \ldots, X_{p,i}\}$ is independently and identically sampled from the population distribution (Y, X_1, \ldots, X_p)
- Rank Condition: The right hand side variables X_1, \ldots, X_p are not linearly dependent, i.e we cannot write

$$a_1 X_1 + a_2 X_2 + \dots + a_p X_p = 0$$

for some constants a_1, \ldots, a_p with at least one $a_k \neq 0$.

 \circ To see why this is problematic, suppose that we could write $X_1=2X_2$. Then these two linear models are equivalent

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon \iff Y = \beta_0 + (2\beta_1 + \beta_2) X_2 + \epsilon.$$

The "line of best fit" solution is then not unique. We can achieve the same fit by setting the coeffecient on X_1 to be $beta_1$ and the coeffecient on X_2 to be β_2 or by setting the coeffecient on X_1 to be zero and the coeffecient on X_2 to be $2\beta_1 + \beta_2$.

Assumptions needed for valid inference:

- Random Sampling: The data $\{Y_i,X_{1,i},\ldots,X_{p,i}\}$ is independently and identically sampled from the population distribution (Y,X_1,\ldots,X_p)
- Rank Condition: The right hand side variables X_1, \ldots, X_p are not linearly dependent, i.e we cannot write

$$a_1 X_1 + a_2 X_2 + \dots + a_p X_p = 0$$

for some constants a_1, \ldots, a_p with at least one $a_k \neq 0$.

• Homoskedasticity: $\operatorname{Var}(\epsilon|X_1=x_1,X_2=x_2,\ldots,X_p=x_p)=\sigma_\epsilon^2$ for all possible (x_1,\ldots,x_p) .

Assumptions needed for valid inference:

- Random Sampling: The data $\{Y_i, X_{1,i}, \ldots, X_{p,i}\}$ is independently and identically sampled from the population distribution (Y, X_1, \ldots, X_p)
- Rank Condition: The right hand side variables X_1, \ldots, X_p are not linearly dependent, i.e we cannot write

$$a_1 X_1 + a_2 X_2 + \dots + a_p X_p = 0$$

for some constants a_1, \ldots, a_p with at least one $a_k \neq 0$.

- Homoskedasticity: $Var(\epsilon|X_1=x_1,X_2=x_2,\ldots,X_p=x_p)=\sigma_{\epsilon}^2$ for all possible (x_1,\ldots,x_p) .
 - Like before we can and should relax this. It is not very important to our results but it makes some closed form equations simpler later one.

Assumptions needed for valid inference:

- Random Sampling: The data $\{Y_i,X_{1,i},\ldots,X_{p,i}\}$ is independently and identically sampled from the population distribution (Y,X_1,\ldots,X_p)
- Rank Condition: The right hand side variables X_1, \ldots, X_p are not linearly dependent, i.e we cannot write

$$a_1 X_1 + a_2 X_2 + \dots + a_p X_p = 0$$

for some constants a_1, \ldots, a_p with at least one $a_k \neq 0$.

• Homoskedasticity: $\mathrm{Var}(\epsilon|X_1=x_1,X_2=x_2,\ldots,X_p=x_p)=\sigma^2_\epsilon$ for all possible (x_1,\ldots,x_p) .

And that's it! Really only need Random Sampling and Rank Condition.

Under the assumptions Random Sampling and Rank Condition we get the following result for any $\hat{\beta}_k$, $k=0,1,\ldots,p$.

Approximately, for large n:

$$\frac{\hat{\beta}_k - \beta_k}{\hat{\sigma}_{\beta_k} / \sqrt{n}} \sim N(0, 1) \iff \hat{\beta}_k \sim N\left(\beta_k, \underbrace{\sigma_{\beta_k}^2 / n}_{= \operatorname{Var}(\hat{\beta}_k)}\right).$$

Under the assumptions Random Sampling and Rank Condition we get the following result for any $\hat{\beta}_k$, $k=0,1,\ldots,p$.

Approximately, for large n:

$$\frac{\hat{\beta}_k - \beta_k}{\hat{\sigma}_{\beta_k} / \sqrt{n}} \sim N(0, 1) \iff \hat{\beta}_k \sim N\left(\beta_k, \underbrace{\sigma_{\beta_k}^2 / n}_{= \operatorname{Var}(\hat{\beta}_k)}\right).$$

• The assumption Homoskedasticity simply changes the form of $\sigma_{\beta_k}^2$ and thus it's estimator $\hat{\sigma}_{\beta_k}^2$.

Under the assumptions Random Sampling and Rank Condition we get the following result for any $\hat{\beta}_k$, $k=0,1,\ldots,p$.

Approximately, for large n:

$$\frac{\hat{\beta}_k - \beta_k}{\hat{\sigma}_{\beta_k} / \sqrt{n}} \sim N(0, 1) \iff \hat{\beta}_k \sim N\left(\beta_k, \underbrace{\sigma_{\beta_k}^2 / n}_{= \operatorname{Var}(\hat{\beta}_k)}\right).$$

- The assumption Homoskedasticity simply changes the form of $\sigma_{\beta_k}^2$ and thus it's estimator $\hat{\sigma}_{\beta_k}^2$.
- Unlike in single linear regression we will not go over a general form for $\hat{\sigma}_{\beta_k}$
 - Typically, all that you need to know is that $\hat{\sigma}_{\beta_k}$ (or the standard error, $\hat{\sigma}_{\beta_k}/\sqrt{n}$ or the variance $\hat{\sigma}_{\beta_k}^2/n$) will either be given to us directly or found in R output.

Under the assumptions Random Sampling and Rank Condition we get the following result for any $\hat{\beta}_k$, $k=0,1,\ldots,p$.

Approximately, for large n:

$$\frac{\hat{\beta}_k - \beta_k}{\hat{\sigma}_{\beta_k} / \sqrt{n}} \sim N(0, 1) \iff \hat{\beta}_k \sim N\left(\beta_k, \underbrace{\sigma_{\beta_k}^2 / n}_{= \operatorname{Var}(\hat{\beta}_k)}\right).$$

- The assumption Homoskedasticity simply changes the form of $\sigma_{\beta_k}^2$ and thus it's estimator $\hat{\sigma}_{\beta_k}^2$.
- Unlike in single linear regression we will not go over a general form for $\hat{\sigma}_{\beta_k}$
 - Typically, all that you need to know is that $\hat{\sigma}_{\beta_k}$ (or the standard error, $\hat{\sigma}_{\beta_k}/\sqrt{n}$ or the variance $\hat{\sigma}_{\beta_k}^2/n$) will either be given to us directly or found in R output.
- In addition, we will be able to estimate the asymptotic covariance between any two estimates $\hat{\beta}_i$, $\hat{\beta}_k$ for $j, k = 0, 1, \dots, p$.

To consolidate notation, the variances and covariances are often presented as a Variance-Covariance matrix. For example, when p=2 the variance covariance matrix looks like

$$\operatorname{Cov}(\hat{\beta}) = \begin{pmatrix} \operatorname{Var}(\hat{\beta}_0) & \operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) & \operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_2) \\ \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_0) & \operatorname{Var}(\hat{\beta}_1) & \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_2) \\ \operatorname{Cov}(\hat{\beta}_2, \hat{\beta}_0) & \operatorname{Cov}(\hat{\beta}_2, \hat{\beta}_1) & \operatorname{Var}(\hat{\beta}_2) \end{pmatrix}.$$

To consolidate notation, the variances and covariances are often presented as a Variance-Covariance matrix. For example, when p=2 the variance covariance matrix looks like

$$\operatorname{Cov}(\hat{\beta}) = \begin{pmatrix} \operatorname{Var}(\hat{\beta}_0) & \operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) & \operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_2) \\ \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_0) & \operatorname{Var}(\hat{\beta}_1) & \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_2) \\ \operatorname{Cov}(\hat{\beta}_2, \hat{\beta}_0) & \operatorname{Cov}(\hat{\beta}_2, \hat{\beta}_1) & \operatorname{Var}(\hat{\beta}_2) \end{pmatrix}.$$

• Note that Cov(X,Y) = Cov(Y,X) so this is a symmetric matrix

To consolidate notation, the variances and covariances are often presented as a Variance-Covariance matrix. For example, when p=2 the variance covariance matrix looks like

$$\operatorname{Cov}(\hat{\beta}) = \begin{pmatrix} \operatorname{Var}(\hat{\beta}_0) & \operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) & \operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_2) \\ \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_0) & \operatorname{Var}(\hat{\beta}_1) & \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_2) \\ \operatorname{Cov}(\hat{\beta}_2, \hat{\beta}_0) & \operatorname{Cov}(\hat{\beta}_2, \hat{\beta}_1) & \operatorname{Var}(\hat{\beta}_2) \end{pmatrix}.$$

- Note that Cov(X,Y) = Cov(Y,X) so this is a symmetric matrix
- Also note that Var(X) = Cov(X, X) which is why we sometimes just call this the Covariance matrix.

To consolidate notation, the variances and covariances are often presented as a Variance-Covariance matrix. For example, when p=2 the variance covariance matrix looks like

$$\operatorname{Cov}(\hat{\beta}) = \begin{pmatrix} \operatorname{Var}(\hat{\beta}_0) & \operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) & \operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_2) \\ \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_0) & \operatorname{Var}(\hat{\beta}_1) & \operatorname{Cov}(\hat{\beta}_1, \hat{\beta}_2) \\ \operatorname{Cov}(\hat{\beta}_2, \hat{\beta}_0) & \operatorname{Cov}(\hat{\beta}_2, \hat{\beta}_1) & \operatorname{Var}(\hat{\beta}_2) \end{pmatrix}.$$

- Note that Cov(X,Y) = Cov(Y,X) so this is a symmetric matrix
- Also note that Var(X) = Cov(X, X) which is why we sometimes just call this the Covariance matrix.
- In general the Variance-Covariance matrix will be a $(p+1) \times (p+1)$ matrix (one dimension for each of the slope coefficients and the intercept).

Question: What influences the asymptotic variance?

In order to get some intuition for this, we will go over a particular example when p=2. That is when we want to estimate the model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon.$$

Question: What influences the asymptotic variance?

In order to get some intuition for this, we will go over a particular example when p=2. That is when we want to estimate the model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon.$$

In this case, we will be able to get some simple closed form expressions for $\sigma_{\beta_1}^2$ and $\sigma_{\beta_2}^2$.

Question: What influences the asymptotic variance?

In order to get some intuition for this, we will go over a particular example when p=2. That is when we want to estimate the model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon.$$

In this case, we will be able to get some simple closed form expressions for $\sigma_{\beta_1}^2$ and $\sigma_{\beta_2}^2$.

• Will provide some insight into what drives the asymptotic variance

Before doing so, let's review the correlation coeffecient. Recall that for two random variables X_1 and X_2 the correlation coeffecient ρ_{12} is defined

$$\rho_{12} = \frac{\operatorname{Cov}(X_1, X_2)}{\sqrt{\operatorname{Var}(X_1)}\sqrt{\operatorname{Var}(X_2)}}.$$

Before doing so, let's review the correlation coeffecient. Recall that for two random variables X_1 and X_2 the correlation coeffecient ρ_{12} is defined

$$\rho_{12} = \frac{\operatorname{Cov}(X_1, X_2)}{\sqrt{\operatorname{Var}(X_1)}\sqrt{\operatorname{Var}(X_2)}}.$$

The correlation coeffecient is a measure of the linear dependence between X_1 and X_2

• If $\rho_{12}=1$ then X_1 and X_2 are perfectly linearly dependent, that is $X_1=cX_2$ for some constant $c\neq 0$

Before doing so, let's review the correlation coeffecient. Recall that for two random variables X_1 and X_2 the correlation coeffecient ρ_{12} is defined

$$\rho_{12} = \frac{\operatorname{Cov}(X_1, X_2)}{\sqrt{\operatorname{Var}(X_1)}\sqrt{\operatorname{Var}(X_2)}}.$$

The correlation coeffecient is a measure of the linear dependence between X_1 and X_2

- If $\rho_{12}=1$ then X_1 and X_2 are perfectly linearly dependent, that is $X_1=cX_2$ for some constant $c\neq 0$
- If $\rho_{12}=0$ then X_1 and X_2 are have no linear dependence, that is $\mathrm{Cov}(X_1,X_2)=0.$

With this in mind, the asymptotic variance (under homoskedasticity) $\hat{\sigma}_{\beta_1}^2$ for β_1 in the linear model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon,$$

is given

$$\sigma_{\beta_1}^2 = \frac{\sigma_{\epsilon}^2}{(1 - \rho_{12}^2)\sigma_{X_1}^2} \iff \sqrt{n}(\hat{\beta}_1 - \beta_1) \sim N(0, \sigma_{\beta_1}^2),$$

where ρ_{12} is the correlation coeffecient between X_1 and X_2 .

Notice:

With this in mind, the asymptotic variance (under homoskedasticity) $\hat{\sigma}_{\beta_1}^2$ for β_1 in the linear model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon,$$

is given

$$\sigma_{\beta_1}^2 = \frac{\sigma_{\epsilon}^2}{(1 - \rho_{12}^2)\sigma_{X_1}^2} \iff \sqrt{n}(\hat{\beta}_1 - \beta_1) \sim N(0, \sigma_{\beta_1}^2),$$

where ρ_{12} is the correlation coeffecient between X_1 and X_2 .

Notice:

• As before $Var(\hat{\beta}_1) = \sigma_{\beta_1}^2/n$ is decreasing with n, $\hat{\beta}_1 \to \beta_1$ as $n \to \infty$.

With this in mind, the asymptotic variance (under homoskedasticity) $\hat{\sigma}_{\beta_1}^2$ for β_1 in the linear model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon,$$

is given

$$\sigma_{\beta_1}^2 = \frac{\sigma_{\epsilon}^2}{(1 - \rho_{12}^2)\sigma_{X_1}^2} \iff \sqrt{n}(\hat{\beta}_1 - \beta_1) \sim N(0, \sigma_{\beta_1}^2),$$

where ρ_{12} is the correlation coeffecient between X_1 and X_2 .

Notice:

- As before $Var(\hat{\beta}_1) = \sigma_{\beta_1}^2/n$ is decreasing with n, $\hat{\beta}_1 \to \beta_1$ as $n \to \infty$.
- As before $\sigma_{\beta_1}^2$ is decreasing with σ_{ϵ^2} and increasing with $\sigma_{X_1}^2$
 - o σ_{ϵ}^2 : If points are closer to the line it is easier to make out the line
 - o $\,\sigma_{X_1}^2$: If points are more spread out, it is easier to make out the line

With this in mind, the asymptotic variance (under homoskedasticity) $\hat{\sigma}_{\beta_1}^2$ for β_1 in the linear model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon,$$

is given

$$\sigma_{\beta_1}^2 = \frac{\sigma_{\epsilon}^2}{(1 - \rho_{12}^2)\sigma_{X_1}^2} \iff \sqrt{n}(\hat{\beta}_1 - \beta_1) \sim N(0, \sigma_{\beta_1}^2),$$

where ρ_{12} is the correlation coeffecient between X_1 and X_2 .

Notice:

- As before $Var(\hat{\beta}_1) = \sigma_{\beta_1}^2/n$ is decreasing with n, $\hat{\beta}_1 \to \beta_1$ as $n \to \infty$.
- As before $\sigma_{eta_1}^2$ is decreasing with σ_{ϵ^2} and increasing with $\sigma_{X_1}^2$
- However, now we see that the variance $\sigma_{\beta_1}^2$ is increasing also as $\rho_{12} \uparrow 1$.
 - Intuition: If X_1 and X_2 are highly correlated, it is difficult to parse out the relationship of X_1 on Y holding X_2 constant.

To estimate $\sigma_{\beta_1}^2$ we can estimate each of it's components.

$$\hat{\sigma}_{\beta_1}^2 = \frac{\hat{\sigma}_{\epsilon}^2}{(1 - \hat{\rho}_{12}^2)\hat{\sigma}_{X_1}^2}.$$

To estimate $\sigma_{\beta_1}^2$ we can estimate each of it's components.

$$\hat{\sigma}_{\beta_1}^2 = \frac{\hat{\sigma}_{\epsilon}^2}{(1 - \hat{\rho}_{12}^2)\hat{\sigma}_{X_1}^2}.$$

• For $\hat{\sigma}^2_{\epsilon}$ generate the estimated residuals $\hat{\epsilon}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \hat{\beta}_2 X_{2,i}$ and calculate the sample variance of the estimated residuals:

$$\hat{\sigma}_{\epsilon}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\epsilon}_i^2.$$

• Recall that by the first order conditions for $\hat{\beta}_0$, $\frac{1}{n}\sum_{i=1}^n \hat{\epsilon}_i = 0$ so that $\bar{\hat{\epsilon}} = 0$

To estimate $\sigma_{\beta_1}^2$ we can estimate each of it's components.

$$\hat{\sigma}_{\beta_1}^2 = \frac{\hat{\sigma}_{\epsilon}^2}{(1 - \hat{\rho}_{12}^2)\hat{\sigma}_{X_1}^2}.$$

• For $\hat{\sigma}^2_{\epsilon}$ generate the estimated residuals $\hat{\epsilon}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_{1,i} - \hat{\beta}_2 X_{2,i}$ and calculate the sample variance of the estimated residuals:

$$\hat{\sigma}_{\epsilon}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\epsilon}_i^2.$$

- o Recall that by the first order conditions for $\hat{\beta}_0$, $\frac{1}{n}\sum_{i=1}^n\hat{\epsilon}_i=0$ so that $\bar{\hat{\epsilon}}=0$
- For $\hat{\sigma}_{X_1}^2$ calculate the sample variance of X_1

$$\hat{\sigma}_{X_1}^2 = \frac{1}{n} \sum_{i=1}^n (X_{1,i} - \bar{X}_1)^2.$$

To estimate $\sigma_{\beta_1}^2$ we can estimate each of it's components.

$$\hat{\sigma}_{\beta_1}^2 = \frac{\hat{\sigma}_{\epsilon}^2}{(1 - \hat{\rho}_{12}^2)\hat{\sigma}_{X_1}^2}.$$

• To estimate $\hat{\rho}_{12}^2$ recall that

$$\rho_{12} = \frac{\operatorname{Cov}(X_1, X_2)}{\sigma_{X_1} \sigma_{X_2}} \implies \hat{\rho}_{12} = \frac{\widehat{\operatorname{Cov}}(X_1, X_2)}{\hat{\sigma}_{X_1} \hat{\sigma}_{X_2}}.$$

To estimate $\sigma_{\beta_1}^2$ we can estimate each of it's components.

$$\hat{\sigma}_{\beta_1}^2 = \frac{\hat{\sigma}_{\epsilon}^2}{(1 - \hat{\rho}_{12}^2)\hat{\sigma}_{X_1}^2}.$$

• To estimate $\hat{\rho}_{12}^2$ recall that

$$\rho_{12} = \frac{\mathrm{Cov}(X_1, X_2)}{\sigma_{X_1}\sigma_{X_2}} \implies \hat{\rho}_{12} = \frac{\widehat{\mathrm{Cov}}(X_1, X_2)}{\hat{\sigma}_{X_1}\hat{\sigma}_{X_2}}.$$

 \circ We have already covered how to estiamte $\hat{\sigma}_{X_1}^2.$ Estimating $\hat{\sigma}_{X_2}^2$ follows the same formula

$$\hat{\sigma}_{X_2}^2 = \frac{1}{n} \sum_{i=1}^n (X_{2,i} - \bar{X}_2)^2.$$

Then, take square roots $\hat{\sigma}_{X_1}=\sqrt{\hat{\sigma}_{X_1}^2}$ and $\hat{\sigma}_{X_2}=\sqrt{\hat{\sigma}_{X_2}^2}.$

To estimate $\sigma_{\beta_1}^2$ we can estimate each of it's components.

$$\hat{\sigma}_{\beta_1}^2 = \frac{\hat{\sigma}_{\epsilon}^2}{(1 - \hat{\rho}_{12}^2)\hat{\sigma}_{X_1}^2}.$$

• To estimate $\hat{\rho}_{12}^2$ recall that

$$\rho_{12} = \frac{\operatorname{Cov}(X_1, X_2)}{\sigma_{X_1} \sigma_{X_2}} \implies \hat{\rho}_{12} = \frac{\widehat{\operatorname{Cov}}(X_1, X_2)}{\hat{\sigma}_{X_1} \hat{\sigma}_{X_2}}.$$

 \circ We have already covered how to estiamte $\hat{\sigma}_{X_1}^2.$ Estimating $\hat{\sigma}_{X_2}^2$ follows the same formula

$$\hat{\sigma}_{X_2}^2 = \frac{1}{n} \sum_{i=1}^n (X_{2,i} - \bar{X}_2)^2.$$

Then, take square roots $\hat{\sigma}_{X_1}=\sqrt{\hat{\sigma}_{X_1}^2}$ and $\hat{\sigma}_{X_2}=\sqrt{\hat{\sigma}_{X_2}^2}.$

o To estimate the covariance note $\mathrm{Cov}(X_1,X_2)=\mathbb{E}[(X_1-\mu_{X_1})(X_2-\mu_{X_2})]$ so

$$\widehat{\text{Cov}}(X_1, X_2) = \frac{1}{n} \sum_{i=1}^{n} (X_{1,i} - \bar{X}_1)(X_{2,i} - \bar{X}_2).$$

Let's see an example of this. Suppose we are interested in the joint effect of smoking heavily and drinking heavily on liver failure.

That is let $Y \in \{0,1\}$ denote liver failure, $X_1 \in \{0,1\}$ denote being a heavy smoker, and $X_2 \in \{0,1\}$ denote being a heavy drinker and suppose we want to estimate the model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2.$$

After collecting a sample of size n=64 we estimate $\hat{\sigma}^2_\epsilon=0.25$, $\hat{\sigma}^2_{X_1}=0.1$, and $\hat{\rho}_{12}=0.5$, where

$$\hat{\rho}_{12} = \frac{\widehat{\mathrm{Cov}}(X_1, X_2)}{\hat{\sigma}_{X_1} \hat{\sigma}_{X_2}}.$$

Question: What is the standard error of $\hat{\beta}_1$?

After collecting a sample of size n=64 we estimate $\hat{\sigma}^2_{\epsilon}=0.25$, $\hat{\sigma}^2_{X_1}=0.1$, and $\hat{\rho}_{12}=0.5$, where

$$\hat{\rho}_{12} = \frac{\widehat{\mathrm{Cov}}(X_1, X_2)}{\hat{\sigma}_{X_1} \hat{\sigma}_{X_2}}.$$

Question: What is the standard error of $\hat{\beta}_1$?

Answer: Recall that the standard error is given $\hat{\sigma}_{\beta_1}/\sqrt{n}.$ Using the above we get that

$$\hat{\sigma}_{\beta_1}^2 = \frac{\hat{\sigma}_{\epsilon}^2}{(1 - \hat{\rho}_{12})\hat{\sigma}_{X_1}^2} = \frac{0.25}{(1 - 0.25)0.1} = \frac{10}{3}.$$

The standard error is then $\hat{\sigma}_{\beta_1}/\sqrt{n} = \sqrt{10/3}/\sqrt{64} \approx 0.228$

Now suppose that after collecting a sample of size n=100 we estimate $\hat{\sigma}^2_{\epsilon}=0.25$, $\hat{\sigma}^2_{X_1}=0.1$. This time however, we estimate $\hat{\rho}_{12}=0.75$, where

$$\hat{\rho}_{12} = \frac{\widehat{\mathrm{Cov}}(X_1, X_2)}{\hat{\sigma}_{X_1} \hat{\sigma}_{X_2}}.$$

Question: In this case, what is the standard error of $\hat{\beta}_1$?

Now suppose that after collecting a sample of size n=100 we estimate $\hat{\sigma}^2_{\epsilon}=0.25$, $\hat{\sigma}^2_{X_1}=0.1$. This time however, we estimate $\hat{\rho}_{12}=0.75$, where

$$\hat{\rho}_{12} = \frac{\widehat{\mathrm{Cov}}(X_1, X_2)}{\hat{\sigma}_{X_1} \hat{\sigma}_{X_2}}.$$

Question: In this case, what is the standard error of $\hat{\beta}_1$?

Answer: Using the formula above

$$\hat{\sigma}_{\beta_1}^2 = \frac{\hat{\sigma}_{\epsilon}^2}{(1 - \hat{\rho}_{12})^2 \hat{\sigma}_{X_1}^2} = \frac{0.25}{(1 - 0.5625)0.1} = \approx 5.714.$$

The standard error is then $\hat{\sigma}_{\beta_1}/\sqrt{n} \approx \sqrt{5.714}/\sqrt{100} = 0.239$.

Now suppose that after collecting a sample of size n=100 we estimate $\hat{\sigma}^2_{\epsilon}=0.25$, $\hat{\sigma}^2_{X_1}=0.1$. This time however, we estimate $\hat{\rho}_{12}=0.75$, where

$$\hat{\rho}_{12} = \frac{\widehat{\mathrm{Cov}}(X_1, X_2)}{\hat{\sigma}_{X_1} \hat{\sigma}_{X_2}}.$$

Question: In this case, what is the standard error of $\hat{\beta}_1$?

Answer: Using the formula above

$$\hat{\sigma}_{\beta_1}^2 = \frac{\hat{\sigma}_{\epsilon}^2}{(1 - \hat{\rho}_{12})^2 \hat{\sigma}_{X_1}^2} = \frac{0.25}{(1 - 0.5625)0.1} = \approx 5.714.$$

The standard error is then $\hat{\sigma}_{\beta_1}/\sqrt{n} \approx \sqrt{5.714}/\sqrt{100} = 0.239$.

Notice that the standard error is $\underline{\text{larger}}$ now than it was when n=64, despite the fact that our sample size has grown by about 50%!

Table of Contents

The Model

The Estimator

Inference

Modeling Choice

Inference: Introduction

Testing single hypothesis about the coeffecients of our regression or linear combinations of coeffecients follows the same procedure.

If we recall, this procedure consists of constructing a test statistic of the form

$$t^* = \frac{\mathsf{Estimator} - \mathsf{Null Hypothesis Value}}{\mathsf{Standard Error of Estimator}},$$

and then either computing a p-value or comparing the test statistic directly to a quantile of the standard normal distribution.

Table of Contents

The Model

The Estimator

Inference

Modeling Choices