From Temporal Logic Specifications to ω -Automata

Rayna Dimitrova University of Leicester

Midlands Graduate School 2019

Acknowledgement: Many slides courtesy of Bernd Finkbeiner.

Synthesis from LTL specifications

ω -Automata

 ω -automata recognize sets of infinite sequences

automata-theoretic foundation of the verification of reactive systems

system behavior \sim infinite sequence of observations set of \sim language of an behaviors ω -automaton verification \sim "system \subseteq specification ?" realizability \sim \exists system:"system \subseteq specification ?"

Nondeterministic finite-word automata (NFA)

A NFA $\mathcal{A} = (\Sigma, Q, Q_0, \delta, Q_0, F)$ consists of the following:

- \triangleright Σ : alphabet
- Q: finite set of states
- $ightharpoonup Q_0 \subseteq Q$: initial states
- $\delta: Q \times \Sigma \to 2^Q$: transition function
- $ightharpoonup F \subseteq Q$: final states

Acceptance by NFA

- ▶ A run of an NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ on an **input sequence** $\sigma_0 \sigma_1 \dots \sigma_n \in \Sigma^*$ is a finite sequence of states $q_0 q_1 \dots q_n$, such that the following conditions are satisfied:
 - $ightharpoonup q_0 \in Q_0$ and
 - $q_{i+1} \in \delta(q_i, \sigma_i)q_i \text{ for all } 0 \le i < n.$
- ▶ The run $q_0 q_1 q_2 \dots q_n$ is accepting iff $q_n \in F$.
- ► An input sequence is **accepted** by A iff there exists an accepting run.

The **language** of A:

$$\mathcal{L}(\mathcal{A}) = \left\{ w \in \Sigma^* \mid w \text{ is accepted by } \mathcal{A} \right\}$$

Two NFAs A and A' are **equivalent** iff $\mathcal{L}(A) = \mathcal{L}(A')$.

ω -Automata

An ω -automaton $\mathcal{A} = (\Sigma, Q, Q_0, \delta, \varphi)$ consists of

- $ightharpoonup \Sigma$: alphabet
- Q: finite set of states
- ▶ $Q_0 \subseteq Q$: initial states
- $m{\delta}$: transition function we will use **deterministic**, **nondeterministic**, **and universal** branching modes
- φ: acceptance condition
 we will use Büchi and parity acceptance conditions

Acceptance conditions: Büchi

A **Büchi condition** is a set of accepting states $F \subseteq Q$.

An infinite sequence $q_0q_1q_2\ldots\in Q^\omega$ is Büchi-accepted iff for infinitely many $i,\,q_i\in F$.

Nondeterministic Büchi automata (NBA)

An **NBA** $\mathcal{A} = (\Sigma, Q, Q_0, \delta, F)$ consists of the following:

- \triangleright Σ : alphabet
- ► *Q*: states
- ▶ $Q_0 \subseteq Q$: initial states
- $lackbox{} \delta: Q \times \Sigma \rightarrow 2^Q$: transition function
- ▶ $F \subseteq Q$: accepting states

NBA acceptance

- ▶ A run of a NBA $\mathcal{A} = (\Sigma, Q, Q_0, \delta, F)$ on an **infinite** input sequence $\sigma_0 \sigma_1 \dots \Sigma^{\omega}$ is an **infinite** sequence of states $q_0 q_1 \dots$ such that the following conditions are satisfied:
 - $ightharpoonup q_0 \in Q_0$ and
- ▶ The run $q_0 q_1 q_2 ...$ is accepting if $q_i \in F$ for infinitely many i.
- An input sequence is accepted by A iff there exists an accepting run.

The **language** of A:

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} \mid \sigma \text{ is accepted by } \mathcal{A} \right\}$$

Two NBAs \mathcal{A} und \mathcal{A}' are **equivalent** iff $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{A}')$.

NBA vs. NFA

► finite equivalence ⇒ Büchi equivalence

ightharpoonup Büchi equivalence ightharpoonup finite equivalence

A simplified example

A simple response property

$$\mathbf{G}\left(r
ightarrow \mathbf{F}\,g
ight)$$

$$\Sigma = \{\emptyset, \{r\}, \{g\}, \{r,g\}\}$$

LTL and NBA

Theorem [Vardi, Wolper'83]

Given an LTL formula φ , one can construct an NBA \mathcal{A}_{φ} such that

$$\mathcal{L}_{\omega}(\mathcal{A}) = \{ \sigma \in \Sigma^{\omega} \mid \sigma \models \varphi \}.$$

Furthermore, the size of A_{φ} is at most exponential in the length of φ .

Remark: The converse is not true.

Example: $L = (\emptyset \emptyset)^* \{p\}^{\omega}$.

There is no LTL formula φ with $L = \{ \sigma \in \Sigma^{\omega} \mid \sigma \models \varphi) \}.$

However, there is a NBA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = L$.

Strategies

Atomic propositions partitioned into input and output variables

$$AP = AP_I \uplus AP_O$$
.

Input alphabet $\Sigma_I = 2^{AP_I}$, output alphabet $\Sigma_O = 2^{AP_O}$.

Strategy for the system: function from sequences of inputs to outputs

$$f: \Sigma_I^* \to \Sigma_O$$
.

Finite-state strategies: implemented by some finite state machine.

Given a sequence of inputs $i_0, i_1, i_2 \ldots$, a strategy f produces a trace

$$(i_0 \cup f(\varepsilon)), (i_1 \cup f(i_0)), (i_2 \cup f(i_0i_1)), \ldots \in \Sigma^{\omega}$$

$$\begin{aligned}
Outcome(f) &= \\ \{(i_0 \cup f(\varepsilon)), (i_1 \cup f(i_0)), (i_2 \cup f(i_0 i_1)), \dots \mid i_0, i_1, i_2 \dots \in \Sigma_I^{\omega}\}
\end{aligned}$$

Example: Arbiter strategy

- lacktriangleright receives **requests** r_1, r_2 from two clients and
- ightharpoonup produces **grants** g_1 and g_2 for the two clients.

Winning strategy

Given an LTL specification φ over $AP_I \uplus AP_O$, a strategy f for the system satisfies φ iff we have $\sigma \models \varphi$ for all $\sigma \in Outcome(f)$.

Example

$$\varphi = (\mathsf{G} \lnot (g_1 \land g_2)) \land (\mathsf{G} \ ((r_1 \to \mathsf{F} \, g_1) \land (r_2 \to \mathsf{F} \, g_2)))$$

LTL Realizability

Given φ , does there exist a strategy f that satisfies φ ?

Approach: Construct a game between environment (providing input), and system (choosing output). Check if system has a winning strategy.

Attempt: Let $\mathcal{A}_{\varphi} = (\Sigma, Q, Q_0, \delta, F)$ be an NBA for φ

- ▶ System chooses output value $o \in \Sigma_O$
- ▶ Environment chooses output value $i \in \Sigma_O$
- ► Round: system and environment set their variables
- ightharpoonup Play: infinite word in Σ^{ω}
- lacktriangle System wins if infinite play accepted by ${\cal A}_{arphi}$

Problem: In a nondeterministic automaton, an accepted word can also have rejecting runs. Mismatch between nondeterminism and strategic choice: the system can lose just because the wrong run was chosen.

Why are nondeterministc automata not suitable?

Nondeterministic automata have perfect foresight.

Strategies have no foresight.

Example:
$$(FG(i \land Xo)) \lor (GF(\neg i \land X \neg o))$$

- System has winning strategy (copy input to output).
- The system cannot choose between the two disjuncts.

Deterministic Büchi automata (DBA)

A NBA \mathcal{A} is a **DBA** iff

$$|Q_0| \leq 1 \quad \text{ and } \quad |\delta(q,\sigma)| \leq 1 \quad \text{ for all } q \in Q \text{ and } \sigma \in \Sigma$$

A DBA \mathcal{A} is **complete** iff

$$|Q_0|=1$$
 and $|\delta(q,\sigma)|=1$ for all $q\in Q$ and $\sigma\in \Sigma$

Complete DBAs have a **unique** run for every input word.

NBAs are strictly more expressive than **DBAs**

There is no DBA A with

$$\mathcal{L}_{\omega}(\mathcal{A}) = \{ \sigma \in \{a, b\}^{\omega} \mid \text{ there are only finitely many } as \text{ in } \sigma \}$$

- Assume, by way of contradiction, that \mathcal{A} is a DBA with this language.
- Since $b^{\omega} \in \mathcal{L}_{\omega}(\mathcal{A})$, there is a run $\pi_0 = q_{0.0}q_{0.1}q_{0.2}, \ldots$ where $q_{0,n_0} \in F$ for some $n_0 \geq 0$.
- Analogously, $b^{n_0}ab^{\omega}\in\mathcal{L}_{\omega}(\mathcal{A})$ and there is a run $\pi_1=q_{0,0}q_{0,1}q_{0,2}\dots q_{0,n_0}q_{1,0}q_{1,1}q_{1,2}\dots$ with $q_{1,n_1}\in F$ for some $n_1\geq 0$,
- Repeat.
- Thus there is a sequence $b^{n_0}ab^{n_1}ab^{n_2}a\dots$ which is accepted by \mathcal{A} , but is not contained in the language.
- Contradiction.

Acceptance conditions: Parity

A parity condition is a coloring function $c:Q\to\mathbb{N}.$

An infinite sequence $q_0q_1q_2\ldots\in Q^\omega$ is max-parity-accepted iff the highest color k that appears infinitely often is **even**.

DBA:

Acceptance conditions: Parity

A parity condition is a coloring function $c: Q \to \mathbb{N}$.

An infinite sequence $q_0q_1q_2\ldots\in Q^\omega$ is max-parity-accepted iff the highest color k that appears infinitely often is **even**.

DPA:

Deterministic parity automata (DPA)

Theorem [McNaughton 1966]

For each NBA there is an equivalent deterministic ω -automaton.

Theorem [Piterman'07]

For every NBA $\mathcal N$ with n states there exists a DPA $\mathcal D$ with $2n^n n!$ states and 2n colors such that $\mathcal L_\omega(\mathcal D)=\mathcal L_\omega(\mathcal N)$.

The exponential blow-up is unavoidable.

Synthesis from LTL specifications

Exercise

Consider a coffee machine with

- ightharpoonup input atomic propositions button and water,
- output atomic proposition coffee.
- 1. A possible specification for the system is given by the LTL formula

$$(\mathsf{GF}(\mathit{water}) \to \mathsf{G}(\mathit{button} \to (\mathsf{F}\mathit{coffee}))) \land \mathsf{G}(\neg \mathit{water} \to \neg \mathit{coffee})$$

- 1.1 Give an Büchi automaton for that specification.
- 1.2 Is your automaton deterministic?
- 1.3 Does there exist a deterministic Büchi automaton for that specification? Explain why or give one if it exists.
- Consider now a modified specification, where we take into account that the coffee machine can only react to input in the next step.

$$(\mathsf{GF}(\mathit{water}) \to \mathsf{G}(\mathit{button} \to \mathsf{X}(\mathsf{F}\mathit{coffee}))) \land \mathsf{G}(\neg \mathit{water} \to \neg \mathsf{X}\mathit{coffee})$$

2.1 Try to give an Büchi automaton for that specification. Try the tool at https://spot.lrde.epita.fr/app