Listen to the
Sound of
Rare Species!

Data Augmentation for Acoustic Biodiversity Monitoring

AC297r: IACS Capstone Project Fall 2022

Yang Xiang, Li Sun, Meichen Dong Yanqi Luo, Ziye Tao

Motivation — Wide Application of Text-to-Image Generation

Overview

Data & Exploration

Audio Augmentation

Image Augmentation

Experiments

Conclusion

Tropical ecosystems are particularly characterized by the high number of rare and inconspicuous species. Insufficient data samples from them are the main barrier for utilizing advanced data mining techniques to monitor biodiversity.

Therefore, **improving data augmentation methods** in this field is fundamental in order to improve model performance on detecting future rare species and better **protecting biodiversity**.

Research Contributions

Data & Exploration

Audio Augmentation

Image Augmentation

Experiments

Conclusion

Exploration:

Exploratory analysis was carried out on the audio data to better understand the frequency feature and variation of all the rare species across different time and locations.

Audio & Image Augmentation:

Four audio and three image data augmentation methods were compared and evaluated on the model performance.

Data Balancing:

Combination of augmentation methods are done and same-level model performance is achieved with much larger size of data which contributes to future detection of species.

Pipeline Construction

Build user-friendly Code pipeline for future usage

Data & Exploratory Data Analysis

Overview

Data & Exploration

Audio Augmentation

Image Augmentation

Experiments

Conclusion

Train: 200 positive & 500 negative samples for 45 species labelled by experts

Test: 2000 1-min-long audio recording

Frequency Range for Each Species

Histogram of Variance of Each Class

Data Sample Location Distribution

Histogram of Mean Values of Each Class

Audio Data Augmentation

Overview

Data & Exploration

Audio Augmentation

Image Augmentation

Experiments

Conclusion

Noise Injection

aug_data = data +
noise_factor * noise

Inject random noise to audio data.

Time Shifting

np.roll(data, shift)

Randomly shift time to left/right to avoid centralization of feature sounds

Pitch Changing

librosa.effects.pitch_shift(y=data, sr=sample_rate, n\steps=n_step)

Adjust pitch within reasonable range

Speed Changing

librosa.effects.time_str etch(data,speed_factor

Adjust speed within reasonable range

Image Data Augmentation

Overview

Data & Exploration

Audio Augmentation

Image Augmentation

Experiments

Conclusion

Loudness Augmenter

nas.LoudnessAug(zone=(zoneL, zoneR),coverage, factor=(0.75, 1.25))

A random spectrogram zone is assigned to apply loudness adjusting operation.

Frequency Masking

nas.FrequencyMaskingAug(zone=(zoneL, zoneR), coverage, factor=(10,20))

Spectrogram is masked based on frequency by random values.

Time Masking

nas.TimeMaskingAug(zone=(zoneL, zoneR), coverage = coverage)

Spectrogram is masked by random values within certain time period

Experiments & Results

Overview **Data & Exploration** **Audio Augmentation**

Image Augmentation

Experiments

Conclusion

Experiment WorkFlow

Experiments were done!

Evaluation Results

Validation	Recall	mAP	Precision	Test	Recall	mAP	Precision
Baseline	0.807	0.88	0.89	Baseline	0.134	0.27	0.44
Noise injection	0.61	0.86	0.879	Noise injection	0.118	0.235	0.431
Shifting time	0.35	0.67	0.85	Shifting time	0.078	0.158	0.415
Changing pitch	0.79	0.9	0.91	Changing pitch	0.39	0.28	0.30
Changing speed	0.85	0.84	0.63	Changing speed	0.187	0.213	0.292
All audio augmentation	0.767	0.887	0.894	All audio augmentation	0.418	0.312	0.316
Loudness	0.745	0.904	0.930	Loudness	0.175	0.301	0.419
Freq mask	0.492	0.789	0.922	Freq mask	0.186	0.314	0.417
Time mask	0.536	0.840	0.926	Time mask	0.071	0.183	0.33
All audio & spectrogram augmentation	0.885	0.915	0.886	All audio & spectrogram augmentation	0.44	0.28	0.26
All audio & spectrogram augmentation w/ mixup	0.360	0.736	0.840	All audio & spectrogram augmentation w/ mixup	0.06	0.21	0.38

Discussion & Conclusion

Overview

Data & Exploration

Audio Augmentation

Image Augmentation

Experiments

Conclusion

Compared with baseline model:

❖ Random combination of audio augmentations achieves best overall performance mAP increases 15.5%

Extra spectrogram augmentation doesn't significantly further improve

Time-related augmentation methods might be used with caution

Pipeline Construction Based on Experiments

Overview

Data & Exploration

Audio Augmentation

Image Augmentation

Experiments

Conclusion

Pipeline on Github

Link - https://github.com/YangXiang-Sunny/RFCx data augmentation

Full Procedure

Pipeline Construction Based on Experiments

Overview

Data & Exploration

Audio Augmentation

Image Augmentation

Experiments

Conclusion

Options

- --help / -h
- --input / -i: audio / spec
- --input_path: input data path
- --output_spec_path: output spectrogram data path
- --train_val_split / -s: None / 0.8 / ...
- --aug / -a: noise_injection / shift_time / change_pitch / change_speed / time_mask /

freq_mask / loud

- --loss / -I: binary_crossentropy / masked_loss
- --model_path: model path
- --skip_train: evaluation only, skip training process
- --test_path: test data path
- --output_test_path: path of splitted test data
- --slice_test_path: sliced test data path

Sample usages

Command line options

Usage

- Audio input
 - python main.py --input audio --input_path ~/data/rfcx-harvard-ds/puerto-rico/train/
- --output_spec_path ~/data/spec_data/ --train_val_split 0.8 --loss binary_crossentropy
- --model_path ~/code/model/model_test/ --test_path
- ~/data/rfcx-harvard-ds/puerto-rico/test/audio/ --output_test_path ~/data/test_data_preprocessed/
- --test_label_path ~/data/rfcx-harvard-ds/puerto-rico/test/test-labels.csv
 - Spectrogram input with frequency mask augmentation, skip training
 python main.py --input spec --input_path ~/data/spec_data_freq_mask/ --model_path
- ~/code/model/model_freq_mask/ --skip_train --test_path
- ~/data/rfcx-harvard-ds/puerto-rico/test/audio/ --output_test_path ~/data/test_data_preprocessed/
- --test_label_path ~/data/rfcx-harvard-ds/puerto-rico/test/test-labels.csv

Reference

Ma.E(2019, June.4) Data Augmentation Audio Medium. https://medium.com/@makcedward/data-augmentation-for-audio-76912b01fdf6.

LeBien, J., Zhong, M., Campos-Cerqueira, M., Velev, J. P., Dodhia, R., Ferres, J. L., & Aide, T. M. (2020). A pipeline for identification of bird and frog species in tropical soundscape recordings using a convolutional neural network. Ecological Informatics, 59, 101113.

Thi-Ly Vu, Zhiping Zeng, Haihua Xu, and Eng-Siong Chng. Audio codec simulation based data augmentation for telephony speech recognition. 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 2019.

Shengyun Wei, Shun Zou, Feifan Liao, and weimin lang. A comparison on data augmentation methods based on deep learning for audio classification. Journal of Physics: Conference Series, 1453(1):012085, jan 2020.

Lonce Wyse. Audio spectrogram representations for processing with convolutional neural networks. 06, 2017.6

Loris Nanni. Set of texture descriptors for music genre classification. 2014.

Daniel Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin Cubuk, and Quoc Le. Specaugment: A simple data augmentation method for automatic speech recognition. pages 2613–2617,09 2019.

Ilyas Potamitis. Automatic classification of a taxon-rich community recorded in the wild.PLoS ONE,9(5), 2014.

Branko Hilje and T. Mitchell Aide. Calling activity of the common tink frog (diasporus diastema) (eleutherodactylidae) in secondary forests of the caribbean of costa rica. Tropical Conservation Science 5((1):25–37, 2012.

Thomas Lidy and Andreas Rauber. Evaluation of feature extractors and psycho-acoustic transformations for music genre classification. International Society for Music Information Retrieval Conference 2005

Thank You!

Listen to the
Sound of
Rare Species!

AC297r: IACS Capstone Project Fall 2022

Yang Xiang, Li Sun, Meichen Dong Yanqi Luo, Ziye Tao

