Lean 4 Cheatsheet

If a tactic is not recognized, write ${\tt import\ Mathlib.Tactic}$ at the top of your file.

Logical symbol	Appears in goal	Appears in hypothesis
\forall (for all)	intro x	apply h or specialize h x
\rightarrow (implies)	intro h	apply h or specialize h1 h2
$\neg \text{ (not)}$	intro h	apply h or contradiction
\leftrightarrow (if and only if)	constructor	rw [h] or rw [← h] or apply h.1 or apply h.2
\land (and)	constructor	rcases h with <h1, h2=""></h1,>
\exists (there exists)	use x	rcases h with $\langle x, hx \rangle$
∨ (or)	left or right	rcases h with h h
a = b (equality)	rfl or ext	rw [h] or rw [+ h] or subst h (if b is a variable)

Tactic	Effect	
exact expr	prove the current goal exactly by expr.	
apply expr	prove the current goal by applying $expr$ to some arguments.	
$\texttt{refine}\ expr$	like $exact$, but $expr$ can contain sub-expressions ?_ that will be turned into new goals.	
${\tt convert}\ expr$	prove the goal by showing that it is equal to the type of $expr$.	
$\mathtt{have}\ \mathtt{h}\ :\ proposition\ :=\ expr$	add a new hypothesis h of type proposition.	
have h : proposition	also creates <i>proposition</i> as a new goal.	
by_cases h : proposition	create two goals, one where h is the hypothesis that <i>proposition</i> is true and one where h is the hypothesis where it is false.	
exfalso	replace the current goal by False.	
by_contra h	proof by contradiction; adds the negation of the goal as hypothesis h.	
<pre>push_neg or push_neg at h</pre>	push negations into quantifiers and connectives in the goal (or in h).	
symm	swap a symmetric relation.	
trans expr	split a transitive relation into two parts with $expr$ in the middle.	
congr	prove an equality using congruence rules.	
gcongr	prove an inequality using congruence rules.	
rw [expr]	in the goal, replace (all occurrences of) the left-hand side of $expr$ by its right-hand side. $expr$ must be an equality or if and only if statement.	
$rw [\leftarrow expr]$	\dots rewrites using $expr$ from right-to-left.	
rw [expr] at h	rewrite in hypothesis h.	
simp	simplify the goal using all lemmas tagged <code>@[simp]</code> and basic reductions.	
simp at h	simplify in hypothesis h.	
simp [*, expr]	\dots also simplify with all hypotheses and $expr$.	
simp only [expr]	\dots only simplify with $expr$ and basic reductions (not with simp-lemmas).	
simp?	\dots generate a simp only [\dots] tactic that applies the same simplifications.	
simp_rw [expr1, expr2]	like rw, but uses simp only at each step.	
exact?	search for a single lemma that closes the goal using the current hypotheses.	
apply?	gives a list of lemmas that can apply to the current goal.	
rw?	gives a list of lemmas that can be used to rewrite the current goal.	
linarith	prove linear (in)equalities from the hypotheses.	
<pre>ring / noncomm_ring field_simp / abel / group</pre>	prove the goal by using the axioms of a commutative ring $/$ ring $/$ field $/$ abelian group $/$ group.	
aesop	simplify the goal, and use various techniques to prove the goal.	
tauto	prove logical tautologies.	