Introduction to PCA

UNSUPERVISED LEARNING IN R

Hank Roark
Senior Data Scientist at Boeing

Two methods of clustering

- Two methods of clustering finding groups of homogeneous items
- Next up, dimensionality reduction
 - Find structure in features
 - Aid in visualization

Dimensionality reduction

- A popular method is principal component analysis (PCA)
- Three goals when finding lower dimensional representation of features:
 - Find linear combination of variables to create principal components
 - Maintain most variance in the data
 - Principal components are uncorrelated (i.e., orthogonal to each other)

PCA intuition

PCA intuition

PCA intuition

Projected values on principal component is called component scores or factor scores

Visualization of high dimensional data

Visualization

PCA in R

```
Importance of components:

PC1 PC2 PC3 PC4

Standard deviation 2.0563 0.49262 0.2797 0.15439

Proportion of Variance 0.9246 0.05307 0.0171 0.00521

Cumulative Proportion 0.9246 0.97769 0.9948 1.00000
```

Let's practice!

UNSUPERVISED LEARNING IN R

Visualizing and interpreting PCA results

UNSUPERVISED LEARNING IN R

Hank Roark
Senior Data Scientist at Boeing

Biplot

Scree plot

When number of PCs and number of original features are the same, the cumulative proportion of variance explained is 1

Biplots in R

Biplot

Scree plots in R

Scree plot

Let's practice!

UNSUPERVISED LEARNING IN R

Practical issues with PCA

UNSUPERVISED LEARNING IN R

Hank Roark
Senior Data Scientist at Boeing

Practical issues with PCA

- Scaling the data
- Missing values:
 - Drop observations with missing values
 - Impute / estimate missing values
- Categorical data:
 - Do not use categorical data features
 - Encode categorical features as numbers

mtcars dataset

```
data(mtcars)
head(mtcars)
```

```
mpg cyl disp hp drat
                                        wt qsec vs
Mazda RX4
                        160 110 3.90 2.620 16.46
                21.0
                21.0
                      6 160 110 3.90 2.875 17.02
Mazda RX4 Wag
Datsun 710
                22.8
                             93 3.85 2.320 18.61 1
                      4 108
Hornet 4 Drive 21.4
                      6 258 110 3.08 3.215 19.44 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02
Valiant
                18.1
                      6 225 105 2.76 3.460 20.22 1
```

Scaling

```
# Means and standard deviations vary a lot
round(colMeans(mtcars), 2)
```

```
mpg cyl disp hp drat wt qsec vs
20.09 6.19 230.72 146.69 3.60 3.22 17.85 0.44
```

```
round(apply(mtcars, 2, sd), 2)
```

```
mpg cyl disp hp drat wt qsec vs
6.03 1.79 123.94 68.56 0.53 0.98 1.79 0.50
```

Importance of scaling data

Scaling and PCA in R

```
prcomp(x, center = TRUE, scale = FALSE)
```


Let's practice!

UNSUPERVISED LEARNING IN R

Additional uses of PCA and wrap-up

UNSUPERVISED LEARNING IN R

Hank Roark
Senior Data Scientist at Boeing

Dimensionality reduction

Data visualization

Interpreting PCA results

Importance of data scaling

Up next

```
# URL to cancer dataset hosted on DataCamp servers
url <- "https://assets.datacamp.com/production/course_1903/datasets/WisconsinCancer.csv"

# Download the data: wisc.df
wisc.df <- read.csv(url)
wisc.data[1:6, 1:5]</pre>
```

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean
842302	17.99	10.38	122.80	1001.0	0.11840
842517	20.57	17.77	132.90	1326.0	0.08474
84300903	19.69	21.25	130.00	1203.0	0.10960
84348301	11.42	20.38	77.58	386.1	0.14250
84358402	20.29	14.34	135.10	1297.0	0.10030
843786	12.45	15.70	82.57	477.1	0.12780

Let's practice!

UNSUPERVISED LEARNING IN R

