采用数据挖掘技术中 ID3 决策树算法分析学生成绩

中国海洋大学信息科学与工程学院在职研究生 张 媛

1. 引言

当前 职业技术教育随着社会发展和科技进步 其办学软硬件层次正逐步"升级"办学规模和社会影响力也成倍增长。在学校管理工作中 特别是对学生的成绩管理工作中 产温存在的问题是学生成绩数据量过于庞大 但对这些数据的处理还停留在初级的数据备份、查询及简单统计阶段,并没有对大量的成绩数据进行深入地分析 加以捕捉有利于教学管理工作的信息,这是对教学信息资源极大的浪费。数据挖掘技术正是解决这个问题的可行而有效的方法。本文使用 ID3 决策树算法生成决策树分析学生成绩优良与哪些因素有关,并利用事后修剪法对决策树进行修剪,最后由决策树产生分类规则。

2. 数据挖掘的方法和技术

数据挖掘方法是由人工智能、机器学习的方法发展而来。结合传统的统计分析方法、模糊数学方法及科学计算可视化技术,以数据库为研究对象,形成了数据挖掘的方法和技术。可分为以下六大类:归纳学习法、仿生物技术、公式发现、统计分析方法、模糊数学方法、可视化技术。

信息论方法(决策树方法)是归纳学习法中的一类。信息论方法是利用信息论的原理建立决策树。在知识工程领域、决策树是一种简单的知识表示方法,它将事例逐步分类成代表不同的类别。由于分类规则是比较直观,易于理解,该类方法的实用效果好,影响较大。由于该方法最后获得知识表示形式是决策树,故一般称它为决策树方法。这种方法一般用于分类任务中。

决策树是通过一系列规则对数据进行分类的过程。它提供一种在什么条件下会得到什么值的类似规则的方法。决策树是以实例为基础的归纳学习算法。从一组无次序、无规则的元组中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较,并根据不同的属性值从该节点向下分支,叶节点是要学习划分的类。从根节点到叶节点的一条路径就对应着一条分类规则,整个决策树就对应着一组析取表达式规则。

信息论方法中较有特色的方法有:ID3,IBLE 方法。目前已形成了多种决策树算法,如 CLS、ID3、CHAID、C ART、FACT、C4.5、GINI、SEE5、SLIQ、SPRINT等。其中最著名的算法是 Quinlan 提出的 ID3 算法。

3. 决策树的生成

决策树的生成分为学习及测试两个阶段。决策树学习阶段采用自顶向下的递归方式。决策树算法分成两个步骤:一是树的生成,开始时所有数据都在根节点,然后递归地进行数据划分,直至生成叶节点。二是树的修剪,就是去掉一些可能是噪音或者异常的数据。决策树停止分割的条件有:一个节点上的数据都是属于同一个类别,没有属性可以再用于对数据进行分割。

建立一棵决策树可能只要对数据库进行几遍扫描之后就能完成,这也意味着需要的计算资源较少,而且可以很容易地处理包含很多预测变量的情况,因此决策树模型可以建立得很快,并适合应用到大量的数据上。

4. ID3 算法

决策树归纳的基本算法是贪心算法,它以自顶向下递归的方法构造决策树。著名的决策树归纳算法 ID3 算法的基本策略如下:

- 树以代表训练样本的单个节点开始。
- 如果样本都在同一个类中,则这个节点成为树叶节点,并用该类标记。
- 否则 算法使用称为信息增益的基于熵的度量作为启发信息 选择能够最好地将样本分类的属性 ,该属性成为该节点的"测试"或"判定"属性。在这里 我们假设所有的属性都是分类的 ,即取离散值。连续值的属性必须离散化。
 - 对测试属性的每个已知的值创建一个分支 ,并据此划分样本。

- 算法使用类似的方法,递归地形成每个划分上的样本决策树。一旦一个属性出现在一个节点上,就不必在该节点的后代上考虑这个属性
 - 整个递归过程在下列条件之一成立时停止:
 - (1)给定节点的所有样本属于同一类。
- (2)没有剩余属性可以用来进一步划分样本。这时候将该节点作为树叶,并用剩余样本中所出现最多的类型作为叶子节点的类型。
- (3)某一分枝没有样本,在这种情况下,以训练样本集中占多数的类创建一个树叶。

但是 ,ID3 算法也存在着如下不足:

- (1)不能够处理连续值属性 ,ID3 算法最初定义时是假设所有属性值是离散的,但在现实环境中,很多属性值是连续的。
 - (2)计算信息增益时偏向于选择取值较多的属性 这样不太合理。
- (3)对噪声较为敏感,所谓噪声是指训练集中属性值或类别给错的数据。
- (4)在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
- (5)只适合于能够驻留于内存的数据集使用,当训练集大得无法在内存容纳时程序无法运行。

5. 树的剪树

当决策树创建时,由于数据中的噪声和孤立点,许多分枝反映的是训练中的异常。剪枝方法处理这种过分适应数据问题。通常,这种方法使用统计度量,剪去最不可靠分枝,这可带来较快的分类,提高决策树独立于测试数据正确分类的能力。有两种常用的剪枝方法:

先剪枝方法(prepruning) 通过提前停止树的构造而对树剪枝。一旦停止 , 节点成为树叶。该树叶持有子集样本中出现最频繁的类。在构造树时 , 如统计意义下的 X^2 、信息增益等度量 , 可以用于评估分裂的优良性。如果在一个节点划分样本将导致低于预定义阈值的分裂 则给定子集的进一步划分将停止。然而 ,选择一个适当的阈值是困难的。较高的阈值可能导致过分简化的树 ,而较低的阈值可能使得树的简化太少。

后剪枝方法(postpruning) ,它由完全生长的树剪去分枝。通过删除节点的分枝 ,剪掉树节点 ,代价复杂性剪枝算法是后剪枝算法的一个实例。在该算法中 ,最下面的未被剪枝的节点成为树叶 ,并用它先前的分枝中最频繁的类进行标记。对于树中每一个非树叶节点 ,算法计算该节点上的子树被剪枝后可能出现的期望错误率。然后 ,使用每个分枝的错误率 ,结合沿每个分枝观察的权重评估 ,计算不对该节点剪枝的期望错误率。如果剪去该节点 ,导致较高的期望错误率 则保留该子树 ,否则剪去该子树。产生一组逐渐被剪枝的树之后 ,使用一个独立的测试集评估每棵树的准确率 ,就能得到具有最小期望错误率的决策树。

也可以交叉使用先剪枝和后剪枝 形成组合式方法。后剪枝所需的计算比先剪枝多 但通常产生更可靠的树。

6. 从决策树提取分类规则

从决策树提取分类规则时,规则使用 if···then 的形式表示出来 对从根到树叶的每一条路径创建一条规则,沿着路径上的每一个属性——值对 形成规则前件("IF"部分)的一个合取项。叶节点包含类预测 形成规则后件("THEN"部分)。if···then 规则易于理解 特别是当给定的树很大时 ,而且便于规则匹配等操作。

7. 结论

数据挖掘虽然还是一门新兴的数据分析技术,但已经具有了强大的生命力,其研究取得了令人瞩目的成就,已经成功地应用到了许多领域。可以说,有数据积累的地方,就有数据挖掘技术的用武之地,这是因为它直接与经济和决策紧密相连。