Supervised Learning: The Setup

Lecture 2

Machine Learning Fall 2015

Last lecture

- We saw
 - What is learning?
 - Learning as generalization
 - The badges game

This lecture

More badges

Formalizing supervised learning

The badges game

Name	Label
Claire Cardie	_
Peter Bartlett	+
Eric Baum	_
Haym Hirsh	+
Shai Ben-David	_
Michael I. Jordan	+

Name	Label
Claire Cardie	-
Peter Bartlett	+
Eric Baum	_
Haym Hirsh	+
Shai Ben-David	_
Michael I. Jordan	+

What is the label for "Peyton Manning"?

What about "Eli Manning"?

Name	Label
Claire Cardie	_
Peter Bartlett	+
Eric Baum	_
Haym Hirsh	+
Shai Ben-David	_
Michael I. Jordan	+

How were the labels generated?

Name	Label
Claire Cardie	_
Peter Bartlett	+
Eric Baum	_
Haym Hirsh	+
Shai Ben-David	_
Michael I. Jordan	+

How were the labels generated?

If second letter of first name is a vowel, then + else -

Questions

- 1. Are you sure you got the correct function?
- 2. How did you arrive at it?
- 3. Learning issues:
 - Is this prediction or just modeling data?
 - How did you know that you should look at the letters?
 - What are vowels? Background knowledge?
 - What "learning algorithm" did you use?

What is supervised learning?

Instances and labels

X: Instance Space

The set of examples that need to be classified

Target function y = f(x)

Eg: The set of all possible names, sentences, images, emails, etc

Y: Label Space

The set of all possible labels

Eg: {Spam, Not-Spam}, {+,-}, etc.

Instances and labels

Eg: The set of all possible names, sentences, images, emails, etc

Eg: {Spam, Not-Spam}, {+,-}, etc.

Supervised learning

X: Instance Space

The set of examples

Learning algorithm only sees examples of the function f in action

Y: Label Space

The set of all possible labels

Supervised learning: Training

Supervised learning: Evaluation

Apply the model to many test examples and compare to the target's prediction

Can you use test examples during training?

Supervised learning: General setting

- Given: Training examples of the form $\langle x, f(x) \rangle$
 - The function f is an unknown function
- Typically the input x is represented in a feature space
 - Example: $x \in \{0,1\}^{\mathsf{n}}$ or $x \in \Re^{\mathsf{n}}$
 - A deterministic mapping from objects in your problem (emails) to features
- For a training example x, the value of f(x) is called its *label*
- Goal: Find a good approximation for f
- The label determines the kind of problem we have
 - − Binary classification: $f(\mathbf{x}) \in \{-1,1\}$
 - Multiclass classification: $f(\mathbf{x}) \in \{1, 2, 3, \dots, K\}$
 - **–** Regression: $f(\mathbf{x})$ ∈ \Re

Nature of applications

- There is no human expert
 - Eg: Identify DNA binding sites
- Humans can perform a task, but can't describe how they do it
 - Eg: Object detection in images
- The desired function is hard to obtain in closed form
 - Eg: Stock market

Binary classification

- Spam filtering
 - Is an email spam or not?
- Recommendation systems
 - Given user's movie preferences, will she like a new movie?
- Malware detection
 - Is an Android app malicious?
- Time series prediction
 - Will the future value of a stock increase or decrease with respect to its current value?

On using supervised learning

We should be able to decide:

- 1. What is our instance space?
 What are the inputs to the problem? What are the features?
- 2. What is our label space? What is the learning task?
- 3. What is our hypothesis space?
 What functions should the learning algorithm search over?
- 4. What is our learning algorithm?

 How do we learn from the labeled data?
- 5. What is our loss function or evaluation metric? What is success?

1. The Instance Space X

Eg: The set of all possible names, sentences, images, emails, etc

Eg: {Spam, Not-Spam}, {+,-}, etc.

1. The Instance Space X

Eg: The set of all possible names, sentences, images, emails, etc

Designing an appropriate instance space is crucial

Instances $x \in X$ are defined by features/attributes

- Examples: Boolean features
 - Does the email contain the word "free"?
- Examples: Real valued features
 - What is the height of the person?
 - What was the stock price yesterday?

Eg: {Spam, Not-Spam}, {+,-}, etc.

1. The Instance Space X

Let's brainstorm some features for the badges game

Instances as feature vectors

An input to the problem (Eg: emails, names, images)

Feature function

A feature vector

Feature functions a.k.a feature extractors

- Deterministic (for the most part)
- Convert the examples a collection of attributes
 - Very often easy to think of them as vectors
- Important part of the design of a learning based solution

Instances as feature vectors

- Features functions operate on inputs and produce a Boolean or a real number
 - Given a collection of feature functions, there is a deterministic mapping from instances to collections of Booleans or real numbers
- The instance space X is a N-dimensional vector space (e.g \Re^N or $\{0,1\}^N$)
 - Each dimension is one feature
- Each $x \in X$ is a feature vector
 - Each $\mathbf{x} = [x_1, x_2, \dots, x_N]$ is a point in the vector space

Feature functions produce feature vectors

When designing feature functions, think of them as templates

Feature extractor: "The second letter of the name"

```
• Naoki
```

$$\rightarrow$$
 [1 0 0 0 ...]

Question: What is the length

$$\rightarrow$$
 [0 1 0 0 ...]

of this feature vector?

• Manning
$$\rightarrow$$
 [1 0 0 0 ...]

26 (One dimension per letter)

• Scrooge
$$\rightarrow$$
 [0 0 1 0 ...]

– Feature extractor: "The length of the name"

- Naoki
- \rightarrow 5

Abe

 \rightarrow 3

Good features are essential

- Good features decide how well a task can be learned
 - Eg: A bad feature function the badges game
 - "Is there a day of the week that begins with the last letter of the first name?"
- Much effort goes into designing features
 - Or maybe learning them
- Will touch upon general principles for designing good features
 - But feature definition largely domain specific
 - Comes with experience

On using supervised learning

- ✓ What is our instance space?
 What are the inputs to the problem? What are the features?
- 2. What is our label space? What is the learning task?
- 3. What is our hypothesis space?
 What functions should the learning algorithm search over?
- 4. What is our learning algorithm?

 How do we learn from the labeled data?
- 5. What is our loss function or evaluation metric? What is success?

Eg: The set of all possible names, sentences, images, emails, etc

Eg: {Spam, Not-Spam}, {+,-}, etc.

Eg: The set of all possible names, sentences, images, emails, etc

Eg: {Spam, Not-Spam}, {+,-}, etc.

Classification: The outputs are categorical

- Binary classification: Two possible labels
 - We will see a lot of this
- Multiclass classification: K possible labels
 - We may see a bit of this
- Structured classification: Graph valued outputs
 - A different class

Classification is the primary focus of this class

- The output space can be numerical
 - Regression:
 - Y is the set (or a subset) of real numbers
 - Ranking
 - Labels are ordinal
 - That is, there is an ordering over the labels
 - Eg: A Yelp 5-star review is only slightly different from a 4-star review, but very different from a 1-star review

On using supervised learning

- ✓ What is our instance space?
 What are the inputs to the problem? What are the features?
- ✓ What is our label space?
 What is the learning task?
- 3. What is our hypothesis space?
 What functions should the learning algorithm search over?
- 4. What is our learning algorithm?

 How do we learn from the labeled data?
- 5. What is our loss function or evaluation metric? What is success?

3. The Hypothesis Space

Eg: The set of all possible names, sentences, images, emails, etc

Eg: {Spam, Not-Spam}, {+,-}, etc.

3. The Hypothesis Space

The hypothesis space is the set of functions we consider for this search

The fundamental problem: Machine learning is ill-posed!

x_1	x_2	x_3	x_4	y
0	0	1	0	0
0	1	0	0	0
0	0	1	1	1
1	0	0	1	1
0	1	1	0	0
1	1	0	0	0
0	1	0	1	0

Is learning possible at all?

- There are 2¹⁶ = 65536 possible
 Boolean functions over 4 inputs
 - Why? There are 16 possible outputs. Each way to fill these 16 slots is a different function, giving 2¹⁶ functions.
- We have seen only 7 outputs
- How could we possibly know the rest without seeing every label?
 - Think of an adversary filling in the labels every time you make a guess at the function

x_1	x_2	x_3	x_4	$\mid y \mid$
0	0	0	0	?
0	0	0	1	?
0	0	1	0	0 ←
0	0	1	1	$1 \leftarrow$
0	1	0	0	0 ←
0	1	0	1	0 ←
0	1	1	0	0 ←
0	1	1	1	?
1	0	0	0	?
1	0	0	1	$1 \leftarrow$
1	0	1	0	?
1	0	1	1	?
1	1	0	0	0 ←
1	1	0	1	?
1	1	1	0	? ?
1	1	1	1	?

Is learning possible at all?

- There are 2¹⁶ = 65536 possible Boolean functions over 4 inputs
 - Why? There are 16 possible outputs. Each way to fill these 16 slots is a different function, giving 2¹⁶ functions.

	x_1	x_2	x_3	x_4	y
	0	0	0	0	?
	0	0	0	1	?
h	0	0	1	0	0 ←
	0	0	1	1	1 ←
	0	1	0	0	0 ←
				1	0 ←

How could we possibly learn anything?

- We have seen only 7 outputs
- How could we possibly know the rest without seeing every label?
 - Think of an adversary filling in the labels every time you make a guess at the function

any	ythi	ng?	0	0 ←
0	1	1	1	?
1	0	0	0	?
1	0	0	1	1 ←
1	0	1	0	?
1	0	1	1	?
1	1	0	0	0 ←
1	1	0	1	?
1	1	1	0	?
1	1	1	1	?

Solution: Restrict the search space

A *hypothesis space* is the set of possible functions we consider

- We were looking at the space of all Boolean functions
- Instead choose a hypothesis space that is smaller than the space of all functions
 - Only simple conjunctions (with four variables, there are only 16 conjunctions without negations)
 - Simple disjunctions
 - m-of-n rules: Fix a set of n variables. At least m of them must be true
 - Linear functions

•

Hypothesis space 1

Simple conjunctions

There are only 16 simple **conjunctive rules** of the form $g(\mathbf{x})=x_i \wedge x_i \wedge x_k$

x_1	x_2	x_3	x_4	у
0	0	1	0	0
0	1	0	0	0
0	0	1	1	1
1	0	0	1	1
0	1	1	0	0
1	1	0	0	0
0	1	0	1	0

Is there a *consistent* hypothesis in this space?

Example

Hypothesis space 1

Simple conjunctions

There are only 16 simple **conjunctive rules** of the form $g(\mathbf{x})=x_i \wedge x_j \wedge x_k$

Rule Counterexample

False	1001 1
X 1	1100 0
X 2	0100 0
X 3	0110 0
X 4	0101 1
X 1 Λ X 2	1100 0
X 1 Λ X 3	0011 1
X 1 Λ X 4	0011 1

x_1	x_2	x_3	x_4	у
0	0	1	0	0
0	1	0	0	0
0	0	1	1	1
1	0	0	1	1
0	1	1	0	0
1	1	0	0	0
0	1	0	1	0

Hypothesis space 1

Simple conjunctions

There are only 16 simple **conjunctive rules** of the form $g(\mathbf{x})=\mathbf{x}_i \wedge \mathbf{x}_i \wedge \mathbf{x}_k$

Rule	Counterexample	Rule	Counterexample
False	1001 1	X 2 Λ X 3	0011 1
X 1	1100 0	X 2 Λ X 4	0011 1
X 2	0100 0	X 3 Λ X 4	1001 1
X 3	0110 0	X 1 Λ X 2 Λ X 3	0011 1
X 4	0101 1	X 1 Λ X 2 Λ X 4	0011 1
X 1 Λ X 2	1100 0	X 1 Λ X 3 Λ X 4	0011 1
X 1 Λ X 3	0011 1	X 2 Λ X 3 Λ X 4	0011 1
X 1 Λ X 4	0011 1	X 1 Λ X 2 Λ X 3 Λ 2	X4 0011 1

y

0

0

0

0

 χ_4

0

 x_2

0

0

0

 x_1

0

 x_3

0

0

Hypothesis space 1

Simple conjunctions

There are only 16 simple **conjunctive rules** of the form $g(\mathbf{x})=\mathbf{x}_i \wedge \mathbf{x}_i \wedge \mathbf{x}_k$

Rule	Counterexample	Rule	Counterexample
False	1001 1	X 2 Λ X 3	0011 1
X1			0011 1
X 2	No simple conjunction ex	1001 1	
X 3	Our hypothesis space is too small		0011 1
X 4	OTOT T	X 1 Λ X 2 Λ X 4	0011 1
X 1 Λ X 2	1100 0	X 1 Λ X 3 Λ X 4	0011 1
X 1 Λ X 3	0011 1	X 2 Λ X 3 Λ X 4	0011 1
X 1 Λ X 4	0011 1	X 1 Λ X 2 Λ X 3 Λ X	K4 0011 1

y

 χ_4

 x_2

 x_1

 x_3

Solution: Restrict the search space

- A *hypothesis space* is the set of possible functions we consider
 - We were looking at the space of all Boolean functions
 - Instead choose a hypothesis space that is smaller than the space of all functions
 - Only simple conjunctions (with four variables, there are only 16 conjunctions without negations)
 - m-of-n rules: Pick a set of n variables. At least m of them must be true
 - Linear functions
- How do we pick a hypothesis space?
 - Using some prior knowledge (or by guessing)
- What if the hypothesis space is so small that nothing in it agrees with the data?
 - We need a hypothesis space that is flexible enough

Example

Hypothesis space 2

m-of-n rules

Pick a subset with n variables. Y = 1 if at least m of them are 1

Example: at least 2 of $\{x_1, x_3, x_4\}$ should be 1

Is there a consistent hypothesis in this space?

Try to check if there is one

First, how many m-of-n rules are there for four variables?

x_1	x_2	x_3	x_4	y
0	0	1	0	0
0	1	0	0	0
0	0	1	1	1
1	0	0	1	1
0	1	1	0	0
1	1	0	0	0
0	1	0	1	0

Views of learning

- Learning is the removal of *remaining* uncertainty
 - If we knew that the unknown function is a simple conjunction, we could use the training data to figure out which one it is

- Requires guessing a good, small hypothesis class
 - And we could be wrong
 - We could find a consistent hypothesis and still be incorrect with a new example!

On using supervised learning

- ✓ What is our instance space?
 What are the inputs to the problem? What are the features?
- ✓ What is our label space?
 What is the learning task?
- ✓ What is our hypothesis space?
 What functions should the learning algorithm search over?
- 4. What is our learning algorithm?

 How do we learn from the labeled data?
- 5. What is our loss function or evaluation metric? What is success?