

L16 – Industrial Control Networks 50.012 Networks

Jit Biswas

Cohort 1: TT7&8 (1.409-10)

Cohort 2: TT24&25 (2.503-4)

Introduction

Todays lecture:

- Networks off the mainstream: industrial control system networks
- Historical context of such systems
- Link Layer redundancy and Loop prevention (STP)
- Recent trends: Ethernet, encapsulation, generalization

Industrial Control Networks

Industrial Control Networks

- Specialized networks to control
 - Industrial plant automation
 - Manufacturing, processing
 - Infrastructure systems
 - > Transportation, water distribution, power distribution
- In general, cyber-physical systems
 - Combining cyber (i.e. networking) and physical (process)

Purpose of Industrial Control Networks

- Simplified, network consists of
 - Sensors
 - **Actuators**
 - Controllers
- Task of network:
 - Collection of distributed sensor signals
 - Distribution of sensor data among controllers

Slide 5

Delivery of control commands

Challenges in Industrial Control Networks

- Used for continuous real-time control:
 - Real-time requirements (e.g., max delay)
 - Low tolerance to loss or errors
 - Predictable amount of traffic, static topology
- In addition:
 - Heterogeneous systems, growing over time
 - Multiple vendors, each speaking their own dialects
 - Constant availability requirements

Why Control Networks?

- Control systems started with mechanical controls
 - E.g. governors to regulate engine speed
 - Control actions taken manually by engineers
- Simple control automation introduced with electrical controllers
 - Naming depends on domain, but often called Programmable Logic Controllers (PLC)
- PLCs are connected to local sensors/actuators
 - Connections either analog (e.g. current based), RS-232, RS-485, proprietary bus systems
- Local view can make control inefficient, supervision hard, changes require local presence
 - How to mitigate this problem?

Simple Example of Process Control

A Household Electric Heater

Programmable Logic Controllers SINGAPOR

- PLCs control a wide array of applications from simple lighting functions to environmental systems to chemical processing plants. These systems perform many functions, providing a variety of analog and digital input and output interfaces:
 - signal processing;
 - data conversion; and
 - various communication protocols.
- All of the PLC's components and functions are centered around the controller, which is programmed for a specific task. Components of PLCs:
 - analog and digital I/Os
 - distributed control (e.g., a fieldbus)
 - Interface to sensors and actuators
 - CPU & power
- Ruggedized Processor
 - Ease of programming
 - Reliability
 - Field operation
 - Non-stop (decades)

Simplified PLC Block Diagram

Supervisory Control and Data Acquisition (SCADA)

- On top of the basic control, SCADA systems can operate
- The SCADA system will supervise running systems and control actions by the PLCs
 - Visualizations to allow interpretation by human operators
 - SCADA can also take over control from local unit
 - SCADA will also connect to other business units to provide process data
 - Historian servers will store measured process data
- Problems:
 - How to connect remote sensors or actuators to SCADA?
 - How to connect multiple PLCs together to exchange data?

SCADA visualization example

Source: SWaT Testbed

Legacy SCADA networking

Source: Stouffer, Falco, Scarfone, "Guide to Industrial Control Systems (ICS) Security", NIST SP 800-82, 2011 50.012 Networks/Fall term/2018 Slide 13

Comments on legacy networking

- Industrial components can have a long lifespan (30+ years)
 - This leads to range of technological generations in one system
- Large diversity in Layer communication standards on all layers
 - Analog (e.g. current based), RS-232, proprietary bus systems
 - Up-links via modems (phone lines), satellite, own lines
- Integration of new components into old comm. structure hard
- Heterogeneity is hard to manage, understand, expand
 - Proprietary solutions are often also more expensive. . .
- Likely solution to this problem:
 - Convert everything to run over Ethernet
 - Integrate all communication into few local networks
 - Use tunneling of legacy protocols over TCP/IP
 - But this standardization also increases security exposure

Example smart grid scenario for DNP3 Elingapore university of fechnology and design

Typical RTU and IED

RTU: Remote Terminal Unit

IED: Intelligent Electronic Device

Future Networking Architecture

Source: Cisco, architecture for industrial control system security

DMZ

- In computer security, a DMZ or demilitarized zone (sometimes referred to as a perimeter network) is a physical or logical subnetwork that contains and exposes an organization's external-facing services to an untrusted network, usually a larger network such as the Internet.
- The purpose of a DMZ is to add an additional layer of security to an organization's local area network (LAN); an external network node can access only what is exposed in the DMZ, while the rest of the organization's network is firewalled. The DMZ functions as a small, isolated network positioned between the Internet and the private network.

Source: Wikipedia

SwaT Testbed Physical Process

SWaT: Secure Water Treatment Test Bed

- Secure Water Treatment (SWaT) is a testbed at SUTD
- Realistic industrial process with control automation
- Operational since March 2015, used by iTrust security

SWaT Testbed

Redundancy for Ethernet

- So far, we have mostly discussed star topologies for Ethernet
 - Minimizes the number of links required
- What happens if one of those links fails?
 - The connection will be lost
- How to introduce redundancy?
 - Just adding another switch will create loops

Link Layer Loops

Normal star topology setup

Link failure disconnects network

Could we just add a redundant switch?

In normal operations, that can lead to link layer loops

Spanning Tree Protocol (STP)

- Protocols such as STP can be used to detect and prevent link layer loops
- All switches communicate with each other via STP
- One switch is a root switch, used as reference to build spanning
- tree
- STP ensures that all switches stay connected to the root switch
 - all unnecessary connections are temporally disabled

All switches determine Root Ports (RP)

Spanning Tree Protocol (STP)

- Protocols such as STP can be used to detect and prevent link layer loops
- All switches communicate with each other via STP
- One switch is a root switch, used as reference to build spanning
- tree
- STP ensures that all switches stay connected to the root switch
 - all unnecessary connections are temporally disabled

Corresponding ports are Designated Ports (DP)

Spanning Tree Protocol (STP)

- Protocols such as STP can be used to detect and prevent link layer loops
- All switches communicate with each other via STP
- One switch is a root switch, used as reference to build spanning
- tree
- STP ensures that all switches stay connected to the root switch
 - all unnecessary connections are temporally disabled

All non-RP/DP ports to other switches are closed temporarily

segments.

switch.

segment e.

blocked port.

Activity 13: Shortest Spanning Tree algorithm

In the figure five switches (aka bridges) are shown, labelled 1 through 5. The ports on each switch are labelled a, b, c and d as shown.

- Taking switch 1 to be the Root (R), use the STP algorithm build a spanning tree for this network.
 Assume that the links 2c-3a and 4c-5a are disabled while the remaining links belong to the spanning tree.
 Assign labels to each port as either RP, DP or BP based on whether the port is a Root Port, Designated Port or Blocked Port.
- Assume that the link 2b-4d fails, thereby isolating switch 4. Reassign labels using the STP so that every port on every switch can be reached.

Submit on eDimension

Protocols for Control Networks

Protocols for Control Networks

- A large number of industrial protocols exist:
 - Modbus
 - DNP3
 - DeviceNet, ControlNet, CompoNet (AB/Rockwell)
 - ProfiBus
- These usually specify several layers (from PHY to application)
- The devices talking these standards are old and will not be replaced in near future
- How to integrate all of them?

Modbus

- Modbus is a very simple and common automation protocol
- Implements a basic remote memory access (read/write) between master and slaves
- Approximately Link-layer and above protocol
- Often implemented on a 2 wire bus (RS-485)
 - RS-485 defines the Physical layer
- Modbus supports two modes: ASCII based, or RTU mode

Modbus header (RTU mode)

Transport over TCP / IP

- To unify the physical layer, industrial protocols are encapsulated in TCP/IP
- So-called gateway-devices will talk the proprietary protocol to the legacy device, and put the data content into a TCP stream to the identified target gateway.
- Examples for this: ModBus/TCP

Source: simplymodbus.ca

Example Modbus/TCP setup

Example: Smart Grid Standards over IP

Source: Frances Cleveland, fcleve@xanthus-consulting.com

Common Industrial Protocol (CIP)

- Standardization efforts on the application layer resulted in CIP
- CIP run on top of custom transport
 - CIP over CAN: DeviceNet
 - CIP over ControlNet (coaxial)
 - CIP over CompoNet (2-wire bus)
 - CIP over TCP/IP: EthernetIP

Common Industrial Protocol (CIP) INGAPORE UNIVERSITY OF ECHNOLOGY AND DESIGN

- CIP contains a suite of messages and services for the collection of manufacturing automation applications – control, safety, synchronization, motion, configuration and information.
- It allows users to integrate manufacturing applications with enterpriselevel Ethernet networks and the Internet.
- Supported by hundreds of vendors around the world
- Media-independent. CIP provides a unified communication architecture throughout the manufacturing enterprise.
- It is used in EtherNet/IP, DeviceNet, CompoNet and ControlNet.
- ODVA is the organization that supports network technologies built on the Common Industrial Protocol (CIP). These also currently include application extensions to CIP: CIP Safety, CIP Motion and CIP Sync

P Motion™ Profiles	Motor Control Profiles	Transducer Profiles	I/O Profiles	Other Profiles	Semiconductor Profiles	CIP Safety™ Profiles	
Object Library (Communications, Applications, Time Synchronization)						Safety Object Library	
Data Management Services Explicit and I/O Messages						Safety Services and Messages	
Origina Services for I Integra	Modbus*	Connection Manage					
				ControlNet		DeviceNet	
TCP/U		CompoNet			112/12/12		
TCP/U		CompoNet Network and Transpo	ort Netv	ControlNet work and Transpor	112/12/12	viceNet and Transport	
2000 2000	rotocol		ort Netv		t Network		
Internet Pr	rotocol net /CD	Network and Transpo		vork and Transpor	t Network CSA	and Transport	

Conclusion

- In industrial control and automation
 - A large set of legacy communication standards and protocols exist
 - There is a trend towards unifying everything on top of TCP/IP
- Resulting protocols are for example:
 - Modbus/TCP
 - Ethernet/IP (really: CIP over TCP/IP)
- Integration allows shared commercial off-the-shelf infrastructure
 - But also increases exposure to remote attacks