

UNIVERSITY OF GHANA

(All rights reserved)

BACHELOR OF SCIENCE IN COMPUTER ENGINEERING FIRST SEMESTER EXAMINATIONS: 2017/2018 SCHOOL OF ENGINEERING SCIENCES CPEN 303 COMPUTER ARCHITECTURE (3 Credits)

TIME ALLOWED: TWO AND HALF (21/2) HOURS

INSTRUCTION:

Answer ALL questions.

Question 1

Consider two different machines, with two different instruction sets, both of which have a clock rate of 200 MHz. The following measurements are recorded on the two machines running a given set of benchmark programs:

Instruction Type	Instruction Count (millions)	Cycles per Instruction
Machine A		
Arithmetic and logic	10	2
Load and store	6	4
Branch	4	5
Others	6	4
Machine B		
Arithmetic and logic	8	1
Load and store	4	2
Branch	2	4
Others	4	3

- (a) Calculate the following for each instruction and comment on the result.
 - (i) Calculate the effective Cycles Per Instruction (CPI) [5]

[5 marks]

(ii) Millions of Instruction Per Second (MIPS)

[5 marks]

(iii) Execution time (CPU).

[5 marks]

- (b) Consider a 32-bit microprocessor whose bus cycle has the same duration as that of a 16-bit microprocessor. Assume that, on average, 20% of the operands and instructions are 32 bits long, 40% are 16 bits long, and 40% are only 8 bits long. Calculate the improvement achieved when fetching instructions and operands with the 32-bit microprocessor. [5 marks]
- (c) A set-associative cache consists of 64 lines, or slots, divided into four-line sets. Main memory contains 4K blocks of 128 words each. Show the format of main memory addresses. [5 marks]

University of Ghana http://ugspace.ug.edu.gh

Question 2

- (a) Write a program in assembly language for MIPS processor that uses the numbers below to create an array and computes the following.
 - (i) Sum all integers in the array.
- [4 marks]
- (ii) Maximum value in the array.
- [5 marks]
- (iii) Sum all negative integers in the array.
- [5 marks]
- (iv) Average value in the array?
- [5 marks]

Hint: The following instructions may be used.

add	d	iv	.mflo	slt, slti
addi	d	ivu	·mult,	sltu, sltiu
addiu	j		multu	sra
addu	i ib	· ·	nor '	srl
and	, lb	ou	or	sub
andi	It	1	ori	subu
beg	ll ll	าน	sb	sw
bgez	lu	ii	sh	xor
bltz,	lv	N	sli	xori
bne	n	nfhi	a	

(b) For a direct-mapped cache, a main memory address is viewed as consisting of three fields. List and define the three fields. [6, marks]

Question 3

- (a) Using 8-bits, evaluate the following in two's compliment:
 - (i) 11000011 11101000

[3 marks]

(ii) -6 - 13

[3 marks]

- (b) Using computer algorithm, multiply 11 by 13, where each number is represented using 4 bits. [10 marks]
- (c) The following numbers use the IEEE 32-bit floating-point format. What is the decimal value equivalent?

[3 marks]

[3 marks]

[3 marks]

University of Ghana http://ugspace.ug.edu.gh

Question 4

(a) Write a program to compute the expression below for zero-, one-, two-, three-address machines and compare the result.

$$X = (A - B \times C)/(D - E \times F)$$

The instructions available for use are as follows:

0 Address	1 Address	2 Address	3 Address
PUSH M	LOAD M	$MOVE (X \leftarrow Y)$	$MOVE(X \leftarrow Y)$
POP M	STORE M	$ADD(X \leftarrow X + Y)$	$ADD(X \leftarrow Y + Z)$
ADD	ADD M	$SUB(X \leftarrow X - Y)$	$SUB (X \leftarrow Y - Z)$
SUB	SUB M	$MUL(X \leftarrow X \times Y)$	$MUL(X \leftarrow Y \times Z)$
MUL	MULM	$DIV(X \leftarrow X/Y)$	DIV $(X \leftarrow Y/Z)$
DIV	DIV M		

[10 marks]

(b) Briefly explain the following:

(i) Computer Organization [2 marks]

(ii) Von Neumann Architecture [2 marks]

(iii) Interrupt [2 marks]

(iv) Hamming Error-Correcting Code [2 marks]

(v) Complex Instruction Set Architecture (CISC) [2 marks]

(c) List and briefly define the major types of OS scheduling. [5 marks]