1

EE23BTECH11217 - Prajwal M*

Exercise 9.1

The given figure shows a series LCR circuit connected to a sinusoidal 230 V source.

L = 5.0 H, C = 80
$$\mu$$
F, R = 40 Ω.

- 1) Determine the source frequency which drives the circuit in resonance.
- 2) Obtain the impedance of the circuit at the resonating frequency.
- 3) Determine the rms potential drops across the three elements of the circuit. Show that the potential drop across the LC combination is zero at the resonating frequency.

Fig. 3. s-domain circuit diagram

$$V(t) \stackrel{\mathcal{Z}}{\longleftrightarrow} V(s)$$
 (1)

$$230\sqrt{2}cos(2\pi ft) \stackrel{\mathcal{Z}}{\longleftrightarrow} V(s) \tag{2}$$

$$V(s) = \frac{230\sqrt{2}s}{s^2 + (2\pi f)^2}$$
 (3)

using KVL,

$$V(s) - I(s)R - \frac{I(s)}{sC} - I(s)sL = 0$$
 (4)

$$Z = \frac{V(s)}{I(s)} = \frac{sCR + s^2LC + 1}{sC}$$
 (5)

replacing $s = j2\pi f$ in (5),

Paramater	Description	Value
V(t)	Voltage power supply	$230\sqrt{2}cos(2\pi ft)$ V
V(s)	Laplace transform of $V(t)$?
L	Inductance	5.0 H
С	Capacitance	80 μF
R	Resistance	40 Ω
f	Frequency of voltage source	?
Z	Impedance of circuit	?
$V_{R}\left(t\right)$	Potential drop across Resistor	?
$V_{R}\left(s\right)$	Laplace transform of $V_R(s)$?
$V_{C}\left(t\right)$	Potential drop across Capacitor	?
$V_{C}\left(s\right)$	Laplace transform of $V_C(s)$?
$V_{L}\left(t ight)$	Potential drop across Inductor	?
$V_L(s)$	Laplace transform of $V_L(s)$?

TABLE 3
PARAMETER DESCRIPTION

$$Z = R + j \left(1 - (2\pi f)^2 LC \right)$$
 (6)

$$min(|Z|) = R$$
 at $f = \frac{1}{2\pi\sqrt{LC}}$ (7)

$$f_{res} = \frac{1}{\sqrt{LC}} = 7.958Hz \tag{8}$$

$$Z_{res} = R = 40\Omega \tag{9}$$

substituting (8) and (9) in (3), (5),

$$I(s) = \left(\frac{1}{40}\right) \frac{230\sqrt{2}s}{s^2 + 50^2} \tag{10}$$

$$I(s) \stackrel{\mathcal{L}^{-\infty}}{\longleftrightarrow} I(t)$$
 (11)

$$I(t) = (8.132)\cos(50t)$$
 (12)

Fig. 3. Impedance vs frequency

R:

$$V_R(s) = RI(s) \tag{13}$$

$$V_R(s) \stackrel{\mathcal{L}^{-\infty}}{\longleftrightarrow} V_R(t)$$
 (14)

$$V_R(t) = RI(t) \tag{15}$$

$$= 325.28 \cos (50t)$$
 {using (12)} (16)

(17)

C:

$$V_C(s) = \frac{I(s)}{sC}$$

$$= \frac{10^4}{32} \frac{230\sqrt{2}}{s^2 + 50^2}$$
 {using (10)}
(19)

$$V_C(s) \stackrel{\mathcal{L}^{-\infty}}{\longleftrightarrow} V_C(t)$$
 (20)

$$V_C(t) = 2032.93 \sin(50t)$$
 (21)

L:

$$V_L(s) = sLI(s)$$

$$= \frac{1}{8} \frac{230 \sqrt{2}s^2}{s^2 + 50^2}$$
 {using (10)}
(23)

$$V_L(s) \stackrel{\mathcal{L}^{-\infty}}{\longleftrightarrow} V_L(t)$$
 (24)

$$V_L(t) = 40.658 \left(\delta(t) - 50\sin(50t)\right)$$
 (25)

for
$$t > 0$$
, (26)

$$= -2032.93 \sin(50t) \tag{27}$$

from (21) and (27), voltage across LC combination is $V_C + V_L = 0V$

Paramater	Description	Value	
f_{res}	resonant source frequency	7.958Hz	
Z_{res}	resonant impedance	40Ω	
V_R	rms value of $V_R(t)$	230V	
V_C	rms value of $V_C(t)$	1437.5V	
V_L	rms value of $V_L(t)$	14375V	
TABLE 0			

SOLUTION VALUES