Задание 3:Выбор модели, линейная регрессия.

1. Скачать данные о пробеге автомобиля (в милях) на единицу расхода горючего

http://lib.stat.cmu.edu/DASL/Datafiles/carmpgdat.html

- (a) Подогнать простую линейную регрессию к данным, чтобы предсказать значение переменной MPG (miles per gallon) от значений переменной HP (horsepower). Проанализовать полученные результаты, снабдив их графиком, на котором изображена выборка и оцененная регрессионная зависимость
- (b) Повторить эксперимент из предыдущего пункта, но при этом использовать $\log (MPG)$ в качестве отклика регрессии. Сравнить качество подгонки полученной зависимости с качеством подгонки зависимости из предыдущего пункта (по сумме квадратов остатков подгонки исходных значений MPG).
- (c) Подогнать к данным множественную линейную регрессию, чтобы предсказать значение переменной MPG от всех остальных переменных. Проанализовать полученные результаты.
- (d) Использовать коэффициент C_p (см. слайды 22-28 лекции "Линейная и логистическая регрессии") для того, чтобы выбрать наилучшее подмножество регрессоров. Использовать и прямой и обратный варианты пошагового выбора. Проанализовать полученные результаты.
- 2. Допустим, что в регрессионной модели $y = \sum_{j=1}^k \beta_j x_j + \varepsilon$ шум $\varepsilon \sim N(0, \sigma^2)$ и дисперсия σ^2 известна. Показать, что модель с наибольшим значением AIC является моделью с наименьшим значением статистики Mallow C_v .
- 3. Пусть X_1, \ldots, X_n i.i.d. наблюдения. Рассмотрим две модели M_0 и M_1 .

$$M_0: X_1, \dots, X_n \sim N(0, 1),$$

$$M_1: X_1, \dots, X_n \sim N(\theta, 1), \ \theta \in \mathbb{R}.$$

По сути, критерии типа AIC (см. слайды 22-26 лекции "Линейная и логистическая регрессии") позволяют рассмотреть проблему выбора между двумя гипотезами $H_0: \theta=0$ и $H_1: \theta\neq 0$ с точки зрения выбора наилучшей модели. Пусть $l_n(\theta)$ – логарифм функции правдоподобия. Значение AIC для модели M_0 составляет $AIC_0=l_n(0)$, а значение AIC для модели M_1 составляет $AIC_1=l_n\left(\hat{\theta}\right)-1$. Допустим, что выбирается модель с наибольшим значением AIC. Пусть J_n обозначает номер выбранной модели

$$J_n = \begin{cases} 0, & \text{если } AIC_0 > AIC_1; \\ 1, & \text{если } AIC_1 > AIC_0. \end{cases}$$

(a) Допустим, что модель M_0 – верная. Необходимо найти

$$\lim_{n\to\infty} P\left(J_n=0\right).$$

Также найдите $\lim_{n\to\infty} \mathrm{P}\left(J_n=0\right)$ при $\theta\neq 0$.

(b) Пусть $\phi_{\theta}(x)$ обозначает плотность нормального распределения, среднее значение которого равно θ , а дисперсия равна 1. Определим

$$\hat{f}_n(x) = \begin{cases} \phi_0(x), & \text{если } J_n = 0; \\ \phi_{\hat{\theta}}(x), & \text{если } J_n = 1. \end{cases}$$

Если $\theta=0,$ то показать, что $D\left(\phi_0,\hat{f}_n\right)\to 0$ по вероятности при $n\to\infty,$ где

$$D(f,g) = \int f(x) \log \left(\frac{f(x)}{g(x)}\right) dx$$

является расстоянием Кульбака. Показать также, что $D\left(\phi_{\theta},\hat{f}_{n}\right) \to 0$ по вероятности при $n \to \infty$, если $\theta \neq 0$. Таким образом, AIC состоятельно "оценивает" настоящую плотность распределения несмотря на то, что $\lim_{n \to \infty} \mathrm{P}\left(J_{n} = 0\right) \neq 1$ при $\theta = 0$.