Heun's Method

Heun's method is an improvement of Euler's method for solving Ordinary Differential Equations. It is a "predictor-corrector" method.

The problem with Euler's method is that it uses the slope $\frac{dy}{dx}$)_i = $g(x_i, y_i)$ at the start of the step to calculate the y_{i+1} value projection at the end of the step h:

$$y_{i+1} = y_i + g(x_i, y_i) * h$$

For a derivative that increases with x and y the derivative at the start is less than the derivative anywhere else in the step interval and so gives a value for the end projection y_{i+1} that is too low. For a derivative that decreases with x and y the derivative at the start is greater than the derivative anywhere else in the step interval and so gives a value for the end projection y_{i+1} that is too high. Here is the picture for the derivative that increases with x and y:

A better result would be obtained with a derivative that represents the average slope over the step interval – that's what is used in Heun's method.

Heun Step 1 - predictor

Heun's method follows Euler's method to begin with, but recognises that the predicted value y_{i+1} is incorrect and calls it y'_{i+1} – the *predictor*. However it is an *estimate* of y at the end of the step:

$$y'_{i+1} = y_i + g(x_i, y_i) * h$$

Heun Step 2 - corrector

Now use the predictor from step 1 to calculate the derivative at the step end:

$$g'(x_{i+1}, y'_{i+1})$$

Then calculate the average of $g(x_i, y_i)$ and $g'(x_{i+1}, y'_{i+1})$ and use that to recalculate the final better y_{i+1} at the end of the step:

$$y_{i+1} = y_i + \frac{1}{2}(g(x_i, y_i) + g'(x_{i+1}, y'_{i+1}))*h$$

Example: Heun's Method for dy/dx = x + y

This is the example in the book so we will be able to see how much better it is. Solve the differential equation g = dy/dx = x + y, from (0,1.0) to x = 0.5 in steps of $\Delta x = 0.1$

```
start
x_0 = 0.0, y_0 = 1.0.
step 1 to x_1 = 0.1
g(x_0,y_0) = x_0 + y_0 = 0 + 1 = 1.0;
y'_1 = 1.0 + 1.0*0.1 = 1.1;
g' = 0.1 + 1.1 = 1.2;
y_1 = 1.0 + (1.0+1.2)/2 * 0.1 = 1.11
step 2 to x = 0.2
g(x_1,y_1) = x_1 + y_1 = 0.1 + 1.11 = 1.21;
y'_2 = 1.11 + 1.21*0.1 = 1.11 + 0.121 = 1.231;
g' = 0.2 + 1.231 = 1.431;
y_2 = 1.11 + (1.21 + 1.431)/2 * 0.1 = 1.11 + 1.3205 = 1.24205
step 3 to x = 0.3
g(x_2,y_2) = x_2 + y_2 = 0.2 + 1.24205 = 1.44205;
y'2 = 1.24205 + 1.44205*0.1 = 1.24205 + 0.144205 = 1.386255;
g' = 0.3 + 1.386255 = 1.686255;
y_3 = 1.24205 + (1.44205 + 1.686255)/2 * 0.1 = 1.24205 + 0.15641525 = 1.39846525
```

Here is a comparison of the three results from the book example: dy/dx = x + y

Х	Euler	Euler %error	Heun	Heun %error	Euler/Heun error	Exact
0.0	1.0	0	1.0	0	-	1.0
0.1	1.1	0.92%	1.11	0.027%	34	1.1103
0.2	1.22	1.83%	1.24205	0.06%	30.5	1.2428
0.3	1.362	2.69%	1.39846525	0.088%	30.56	1.3997
0.4	1.5282	You do this one	1.5836			
0.5	1.7210	You do this one	1.7974			

Heun is consistently 30 times more accurate than Euler.