Conformal geometry on four manifolds

Midwest Geometry Conference Iowa State University, September 6-8, 2019

Sun-Yung Alice Chang Princeton University

Conformal Geometry

- On (M^n, g) , compact Riemannian manifold A metric \hat{g} is conformal to g, if $\hat{g} = \rho g$ for some $\rho > 0$. Denote $\rho = e^{2w}$, and $g_w = e^{2w}g$. Conformal means "angle preserving".
- Geometric Analysis: Using methods in analysis (e.g. PDE method) to study problems in geometry:
- The sign of the curvature,
- The size of the curvature,
- The sign of some integral of the curvature polynomials.
- Conformal Geometry: Study of conformal invariants, conformal invariant operators.
- In this talk, we restrict our attention to integral conformal invariants on four manifolds, and some geometric applications.

Outline of talk

Outline of talk

- 1. Introduction: Gaussian curvature on compact surfaces, Yamabe problem.
- 2. Conformal invariants on compact closed 4-manifolds, σ_2 and Q curvature, geometric application.
- 3. Conformal invariants on compact 4-manifolds with boundary, $({\it Q},{\it T})$ curvature.
 - 4. Conformally compact Einstein manifolds, renormalized volume.
- 5. Compactness results for conformally compact Einstein manifolds of dimension 3+1.

§1. Gaussian curvature on compact surfaces

• On a compact surface (M^2, g) , K_g the Gaussian curvature of g. Gauss-Bonnet formula:

$$2\pi\chi(M) = \int_M K_g dv_g,$$

where $\chi(M)$ is the Euler characteristic of M.

• Uniformization Theorem:

Classify (orientable) (M^2,g) according to sign of $\int_M K_g dv_g$. Under conformal change of metric $g_w=e^{2w}g$, solve $K_{g_w}\equiv -1,0,1$ according to the sign of $\int_M K_g dv_g$.

When $K_{g_w} \equiv -1$; (M^2, g) is isometric to $(H^2/\Gamma, h_c)$.

When $K_{g_w} \equiv 0$; (M^2, g) is isometric to $(\mathbb{R}^2/\Gamma, |dx|^2)$.

When $K_{g_w} \equiv 1$; (M^2, g) is isometric to (S^2, g_c) .

§1. Gaussian curvature on compact surfaces

• One can solve $K_{g_w} \equiv c$ by

$$-\Delta_g w + K_g = K_{g_w} e^{2w} \text{ on } M.$$

Variational Approach: Moser's functional J_g

$$J_g[w] = \int_M |\nabla_g w|^2 dv_g + 2 \int_M K_g w dv_g - \left(\int_M K_g dv_g \right) \log \frac{\int_M dv_{gw}}{\int_M dv_g}.$$

• Ray-Singer-Polyakov formula: assume $vol(g_w) = vol(g)$,

$$J_{\mathbf{g}}[w] = 12\pi \log \left(\frac{\det (-\Delta)_{\mathbf{g}}}{\det (-\Delta)_{\mathbf{g}_{w}}}\right).$$

Works of Moser-Trudinger, Onofri, Osgood-Phillips-Sarnak, Nirenberg's problem......

Second order operator on (M^n, g) , Yamabe problem

- On (M^n,g) , $n\geqslant 3$, the conformal Laplace operator L_g $L_g=-\Delta_g+c_nR_g$ where $c_n=\frac{n-2}{4(n-1)}$, and R_g denotes the scalar curvature of the metric g.
- Under conformal change of metrics $\hat{g} = u^{\frac{4}{n-2}}g$, u > 0.

$$L_g u = c_n \hat{R} u^{\frac{n+2}{n-2}}.$$

The famous Yamabe problem is to solve above equation for \hat{R} a constant c; settled by Yamabe, Trudinger, Aubin and Schoen, '60-'84.

• The problem is variational.

$$\mathcal{F}_{g}[u] = \int_{M^{n}} R_{\hat{g}} dv_{\hat{g}}.$$

The sign of c agrees with the sign of the second order Yamabe invariant:

$$Y(M,g) := \inf_{\hat{g} \in [g]} \frac{\int_M R_{\hat{g}} dv_{\hat{g}}}{(\operatorname{vol} \hat{g})^{\frac{n-2}{n}}}.$$

• On (M^4, g) a closed, compact 4-manifold,

Gauss-Bonnet-Chern formula:

$$8\pi^2\chi(M) = \int_M \frac{1}{4} |W_g|^2 dv_g + \int_M \frac{1}{6} (R_g^2 - 3|Ric_g|^2) dv_g,$$

where $\chi(M)$ is the Euler characteristic of M, W_g the Weyl curvature, R_g the scalar curvature and Ric_g the Ricci curvature of g.

- Weyl curvature measures the obstruction to being conformally flat. On (M^n,g) , $n\geqslant 4$. $W_g\equiv 0$ in a neighborhood of a point if an only if $g=e^{2w}|dx|^2$ for some function w. Thus for example, (S^n,g_c) has $W_{g_c}\equiv 0$.
- $g_w = e^{2w}g$, $|W_{g_w}| = e^{-2w}|W_g|$, thus on 4-manifolds $|W_{g_w}|^2 dv_{g_w} = |W_g|^2 dv_g$ a pointwise conformal invariant; thus

$$g \to \int_M |W|_g^2 dv_g$$

is an integral conformal invariant.

Denote

$$\sigma_2(g) = \frac{1}{6}(R_g^2 - 3|Ric_g|^2)$$

and conclude

$$g \to \int_M \sigma_2(g) dv_g$$

is also an integral conformal invariant.

• We now justify the name of σ_2 .

From the perspective of conformal geometry, a natural basis of the full curvature tensor R_m are Weyl tensor W, Schouten tensor A.

$$A_g = Ric_g - \frac{R}{2(n-1)}g.$$

Decomposition of R_m :

$$(R_m)_g = W_g \oplus \frac{1}{n-2} A_g \otimes g.$$

- When k=1, $\sigma_1(A_g)=\sum_i \lambda_i=\mathit{Tr}_g\ A_g=rac{n-2}{2(n-1)}R_g$.
- When k=2, $\sigma_2(A_g)=\sum_{i< j}\lambda_i\lambda_j=\frac{1}{2}(|\mathit{Tr}_g\ A_g|^2-|A_g|^2)$, where λ s are the eigenvalues of the tensor A_g .
- On (M^4, g) ,

$$\sigma_2(g) = \sigma_2(A_g) = \frac{1}{6}(R_g^2 - 3|Ric_g|^2).$$

• When k = n, $\sigma_n(A_g) =$ determinant of A_g , an equation of Monge-Ampère type.

To solve the "generalized Yamabe" problem:

$$\sigma_2(A_{g_w}) = constant.$$
 (1)

To do so, we have

$$A_{g_w} = (n-2)\{-\nabla_g^2 w + dw \otimes dw - \frac{|\nabla_g w|^2}{2}\} + A_g.$$

• To illustrate that (1) is a fully non-linear equation, we have when n=4,

$$\begin{split} \sigma_2(A_{g_w}) \mathrm{e}^{4w} &= \sigma_2(A_g) \ + 2((\Delta_g w)^2 - |\nabla_g^2 w|^2)) \\ &+ \Delta_g w |\nabla_g w|^2 \ + \ (\nabla_g w, \nabla_g |\nabla_g w|^2) \\ &+ \text{lower order terms.} \end{split}$$

• Compared to

$$\sigma_2(\nabla^2 u) = ((\Delta u)^2 - |\nabla^2 u|^2)).$$

§2. Variational functional to study σ_2

- Recall on (M^n, g) when $n \ge 3$, $\hat{g} = u^{\frac{4}{n-2}}g$, $\mathcal{F}_g(u) := \int_{M^n} R_{\hat{g}} dv_{\hat{g}}$ is the variational functional for the Yamabe problem.
- When n=2, \mathcal{F}_g is replaced by the Moser's functional J_g to study the Gaussian curvature equation.
- When n > 2 and $n \neq 4$, denote $\hat{g} = e^{2w}g$, the functional $(\mathcal{F}_2)_g(w) := \int_{M^n} \sigma_2(\hat{g}) dv_{\hat{g}}$ is variational for σ_2 .
- We now describe a variational approach to study σ_2 curvature in dimension 4 and the corresponding Moser's functional.

§2. Link between σ_2 to Paneitz operator and Q-curvature

• Recall on (M^n, g) , $n \ge 3$, the second order conformal Laplacian operator $L = -\Delta + \frac{n-2}{4(n-1)}R$, we have,

$$L_{\hat{g}}(\varphi) = u^{-\frac{n+2}{n-2}} L_g(u\,\varphi) \text{ for all } \varphi \in C^\infty(M^n), \text{ where } \hat{g} = u^{\frac{4}{n-2}} g.$$

• Paneitz operator in 1983 on (M^n, g) , $n \ge 5$.

$$P_4^n = (-\Delta)^2 + \delta (a_n R g + b_n \text{Ric}) d + \frac{n-4}{2} Q_4^n.$$

$$(P_4^n)_{\hat{g}}(\varphi) \ = \ u^{-\frac{n+4}{n-4}}(P_4^n)_g(u\,\varphi) \ \text{for all} \ \ \varphi \in C^\infty(M^n), \ \text{where} \ \hat{g} \ = \ u^{\frac{4}{n-4}}g.$$

• Notice that $P_4^n(1) = \frac{n-4}{2}Q_4^n$, so we can read Q_4^n from P_4^n when $n \neq 4$.

§2. Branson's Q-curvature

• Branson pointed out that $P := P_4^4$ and $Q := Q_4^4$ are well defined. (which we named as Branson's Q-curvature.)

$$P_{g}\varphi = (-\Delta)^{2}\varphi + \delta\left(\frac{2}{3}Rg - 2\operatorname{Ric}\right)d\varphi,$$
$$2Q_{g} = -\frac{1}{6}\Delta R_{g} + \frac{1}{6}(R_{g}^{2} - 3|Ric_{g}|^{2}).$$

$$P_g w + 2Q_g = 2Q_{g_w}e^{4w}$$
 on M^4 , where $g_w = e^{2w}g$.

Compared to

$$-\Delta_g w + K_g = K_{g_w} e^{2w}$$
 on M^2 .

• For examples:

On
$$(R^4, |dx|^2)$$
, $P = \Delta^2$,
On (S^4, g_c) , $P = \Delta^2 - 2\Delta$,

On (M^4, g) , g Einstein, $P = (-\Delta) \circ (L)$.

§2. Link between σ_2 to Q-curvature

Thus we have

$$2Q_g = -\frac{1}{6}\Delta R_g + \sigma_2(A_g). {(2)}$$

Following Moser, the functional to study constant Q_{g_w} curvature:

$$H[w] = \langle Pw, w \rangle + 4 \int Qwdv - \left(\int Qdv \right) \log \frac{\int e^{4w}dv}{\int dv}.$$

Consider the functional III with Euler equation $\Delta R = constant$,

$$III[w] = \frac{1}{3} \left(\int R_{g_w}^2 dv_{g_w} - \int R^2 dv \right),$$

$$\mathcal{F}[w] = II[w] - \frac{1}{12}III[w].$$

Proposition (Chang - Yang '02, Brendle-Viaclovsky '04)

 ${\mathcal F}$ is the Lagrangian functional for σ_2 curvature.

§2. Link between σ_2 and Q curvature

• Strategy to solve $\sigma_2(A_{g_w}) \equiv 1$. Solve for critical point of

$$\mathcal{F}_{\delta} := II - (\frac{1}{12} - \delta)III$$

starting at $\delta = \frac{1}{12}$, then let $\delta \to 0$.

Remark: PDE analogue of solving $1 = \delta(\Delta^2 u) + \sigma_2(\nabla^2 u)$, let $\delta \to 0$.

• On M^4 , denote

$$A := \{g | Y(M,g) > 0, \int_{M} \sigma_{2}(A_{g}) dv_{g} > 0\}.$$

• Theorem (Chang-Gursky-Yang '01-'03) $g \in \mathcal{A}$ if and only if there is some $g_w \in [g]$ with $R_{g_w} > 0$ and $\sigma_2(A_{g_w}) > 0$, i.e. $g_w \in \Gamma_2^+$.

§2. A uniqueness result

- We then apply elliptic PDE method to show if $g \in \mathcal{A}$, then there exists some $g_w \in [g]$ with $\sigma_2(A_{g_w}) = 1$ and $R_{g_w} > 0$.
- An uniqueness result. Theorem (Gursky-Steets '16) If $g \in \mathcal{A}$ and (M^4, g) is not conformal to (S^4, g_c) , then $g_w \in [g]$ with $g_w \in \Gamma_2^+$ with $\sigma_2(A_{g_w}) = 1$ is unique.

The result was established by constructing some norm for metrics in Γ_2^+ , with respect to which the functional $\mathcal F$ is convex.

The result is **surprising** in contrast with the famous example of Schoen'87 that on $(S^1 \times S^n, g_{prod})$, where $n \ge 2$, the metric with constant scalar curvature (and the same volume) is not unique.

§2. Diffeomorphism theorem

- Theorem (Chang-Gursky-Yang '03)
- Suppose (M,g) is a closed 4-manifold with $g \in A$.
- (a). If $\int_M ||W||_g^2 dv_g < \int_M \sigma_2(A_g) dv_g$ then M is diffeomorphic to either S^4 or \mathbb{RP}^4 .
- (b). If $\int_M ||W||_g^2 dv_g = \int_M \sigma_2(A_g) dv_g$ and M is not diffeomorphic to S^4 or \mathbb{RP}^4 , then (M,g) is conformally equivalent to (\mathbb{CP}^2,g_{FS}) .

Here $||W||^2 := \frac{1}{4}|W|^2$.

- Part (a) of the theorem above is an L^2 version of an earlier result of Margerin '98; applying Ricci flow method pioneered by Hamilton '86.
- In part (b), the assumption $g \in \mathcal{A}$ excludes out the case when $(M,g)=(S^1\times S^3,g_{prod})$, where $||W||_g=\sigma_2(A_g)\equiv 0$.

§2. Diffeomorphism Theorem

• For a metric $g \in \mathcal{A}$, we define the conformally invariant constant $\beta = \beta([g])$:

$$\int ||W||_g^2 dv_g = \beta \int_M \sigma_2(A_g) dv_g.$$

- Previous Theorem says when $0 < \beta < 1$, (M^4, g) is diffeomorphic to the standard S^4 or \mathbb{RP}^4 .
- Lemma : Given $g \in \mathcal{A}$, if $1 < \beta < 2$, then Either M^4 is homemorphic to S^4 or \mathbb{RP}^4 (when $b_2^+ = b_2^- = 0$) or M^4 is homeomorphic to \mathbb{CP}^2 (when $b_2^+ = 1, b_2^- = 0$). We remark that $\beta = 2$ for the product metric on $S^2 \times S^2$.
- Proof relies on the Signature formula:

$$12\pi^2 \tau = \int_{\mathcal{M}^4} (||W^+||^2 - ||W^-||^2) dv,$$

where $\tau = b_2^+ - b_2^-$,

§2. Perturbation Result on \mathbb{CP}^2

• Theorem (Chang-Gursky-S. Zhang '18) There exists $\epsilon > 0$ such that if (M,g) is a four manifold with $b_2^+ > 0$ and with a metric of positive Yamabe type satisfying with $1 < \beta < 1 + \epsilon$, then (M,g) is diffeomorphic to (\mathbb{CP}^2, g_{FS}) .

Remark: Proof again uses method of Ricci flow.

- What is the class of 4-manifolds which allows a metric in the class \mathcal{A} ? By the work of Donaldson '83, Freedman '82, the homeomorphism type of the class of simply-connected 4-manifolds (M^4,g) with $R_g>0$ consists of S^4 together with $k\mathbb{CP}^2\#I\overline{\mathbb{CP}^2}$ and $k(S^2\times S^2)$.
- $g \in \mathcal{A}$ implies 4 + 5l > k. There are many examples in this class beyond S^4 , \mathbb{CP}^2 and $S^2 \times S^2$ constructed by different authors.
- It would be an ambitious program to find out the entire class of 4-manifolds with metrics in \mathcal{A} , and to classify their diffeomorphism types by the (relative) size of the integral conformal invariants discussed here.

§3. (Q, T) curvature on 4-manifold with boundary

• We recall compact surface with boundary (X^2, M^1, g) where the metric g is defined on $X^2 \cup M^1$; the Gauss-Bonnet formula

$$2\pi\chi(X) = \int_X K \ dv + \oint_M k \ d\sigma,$$

where k is the geodesic curvature on M.

• Under conformal change of metric g_w on X, we have

$$\frac{\partial}{\partial n}w + k = k_{g_w}e^w$$
 on M.

• Chang-Qing, '85-'87

Replace $(-\Delta, \frac{\partial}{\partial n})$ on (X^2, M^1, g) by (P_4, P_3) on (X^4, M^3, g) . Replace (K, k) on (X^2, M^1, g) by (Q, T) on (X^4, M^3, g) . Where $(P_4 := P, Q)$ are as before.

§3. (Q, T) curvature on 4-manifold with boundary

• Construct (P_3, T) , where P_3 bidegree (0,3) with

$$(P_3)_g w + T_g = T_{g_w} e^{3w} \text{ on } M^3$$
 .

• $(B^4, S^3, |dx|^2)$,

$$P_4 = (-\Delta)^2, \ P_3 = -\left(\frac{1}{2} \frac{\partial}{\partial n} \Delta + \tilde{\Delta} \frac{\partial}{\partial n} + \tilde{\Delta}\right), \ T = 2,$$

where $\tilde{\Delta}$ the intrinsic boundary Laplacian.

Gauss-Bonnet-Chern formula:

$$8\pi^2\chi(X^4,M^3) = \int_{X^4} (||W||^2 + 2Q) \ dv + \oint_{M^3} (\mathcal{L} + 2T) \ d\sigma.$$

Where $\mathcal{L}d\sigma$ is a pointwise conformal invariant.

§3. (Q, T) curvature on 4-manifold with boundary

•

$$\int_X Q dv + \oint_M T d\sigma$$

is an integral conformal invariant.

• In general, the formula for T is lengthy; but when (X^4, g) is with **totally geodesic boundary**, that is, its second fundamental form vanishes, we have

$$T = \frac{1}{12} \frac{\partial}{\partial n} R.$$

Recall

$$2Q_g = -\frac{1}{6}\Delta R_g + \sigma_2(A_g).$$

• Thus in this case, we have

$$2(\int_X Qdv + \oint_M Td\sigma) = \int_X \sigma_2 dv.$$

We now will present some geometric content of this formula.

§4. Conformally compact Einstein manifolds

Given a compact manifold (M^n,h) , when is it the boundary of a conformally compact Einstein manifold (X^{n+1},g^+) with $r^2g^+|_M=h$? This problem of finding "conformal filling in" is motivated by:

- The AdS/CFT correspondence in quantum gravity (proposed by Maldacena around 1998)
- Geometric considerations to study the structure of non-compact asymptotically hyperbolic manifolds.

§4. Conformally compact Einstein manifolds, Definition

• On a manifold X with boundary M, we call r a defining function on X, if r > 0 on X, r = 0 on M and $dr \neq 0$ on M.

 (X^{n+1},g^+) is conformally compact if (\bar{X}^{n+1},r^2g^+) is compact. Denote $h=r^2g^+|_{M}$, we call $(M^n,[h])$ the conformal infinity of (X^{n+1},g^+) .

If $Ric[g^+] = -ng^+$, we call (X^{n+1}, M^n, g^+) a conformally compact (Poincaré) Einstein (CCE) manifold.

• We remark on a CCE manifold, special r (called geodesic defining function) can be chosen so that r^2g^+ is with totally geodesic boundary.

§4. Examples of CCE manifold

• Example 1.

On $(\mathbb{R}^{n+1}_+, \mathbb{R}^n, g_{\mathbb{H}})$, where $g_{\mathbb{H}} = \frac{dx^2 + dy^2}{y^2}$, $x \in \mathbb{R}^n$, y > 0. Choose r = y, then $(\mathbb{R}^{n+1}_+, dx^2 + dy^2)$ is not compact, but conformal to $g_{\mathbb{H}}$, with conformal infinity $(\mathbb{R}^n, [dx^2])$.

• Example 2.

On $(B^{n+1}, S^n, g_{\mathbb{H}})$, where $(B^{n+1}, g_{\mathbb{H}} = (\frac{2}{1-|y|^2})^2|dy|^2)$. Choose

$$r = 2 \frac{1 - |y|}{1 + |y|},$$

$$g_{\mathbb{H}} = g^{+} = r^{-2} \left(dr^{2} + \left(1 - \frac{r^{2}}{4} \right)^{2} g_{c} \right).$$

with $(S^n, [g_c])$ as conformal infinity.

Example 3. AdS-Schwarzchild space

§4. Existence and Uniqueness results on CCE manifolds

Some existence and non-existence results.

- "Ambient Metric" of Fefferman-Graham '85. On any compact manifold (M^n,h) , h analytic, there is CCE metric on some $M^n\times (0,\epsilon)$ of M. Gursky-Székelyhidi '17, extend to smooth h .
- Graham-Lee: Any h in a small smooth neighborhood of g_c on S^n .
- Gursky-Han '17 and Gursky-Han-Stolz '18 construct many examples of boundary conformal classes that have no Poincaré-Einstein extensions. For example, S^{4k-1} for $k \ge 2$ admits infinitely many conformal classes (with positive Yamabe invariant) which cannot be extended to Poincaré-Einstein metrics in B^{4k} .

§4. CCE existence and uniqueness

Some uniqueness and non-uniqueness results.

- Qing '03, and many others later have established (B^{n+1}, g_H) as the unique CCE manifold with (S^n, g_c) as its conformal infinity.
- Chang-Ge-Qing '18 have extended the uniqueness of CCE extensions constructed by Graham-Lee '91 for metrics $\{h\}$ on S^3 in a neighbor of g_c . I will soon present the proof.
- Hawking-Page '83 non-uniqueness result for Ads-Schwarzchild space with conformal infinity $(S^1 \times S^2, [g_{prod}])$.

- "Renormalized volume" in the CCE setting, introduced by Maldacena in 1998. (Witten '98, Henningson-Skenderis '98 and Graham '00).
- On CCE manifolds (X^{n+1}, M^n, g^+) with geodesic defining function r, For n even,

$$Vol_{g^{+}}(\{r > \epsilon\}) = c_{0}\epsilon^{-n} + c_{2}\epsilon^{-n+2} + \cdots + c_{n-2}\epsilon^{-2} + L\log\frac{1}{\epsilon} + V + o(1).$$

V is called the renormalized volume, *L* is independent of $h \in [h]$ where $h = r^2 g^+|_{M}$,

• Theorem (Graham-Zworski, Fefferman-Graham '02) For *n* even,

$$L=c_n\oint\limits_{M^n}Q_h\ dv_h.$$

• On (X^{n+1}, M^n, g^+) , for *n* odd,

$$Vol_{g^{+}}(\{r > \epsilon\}) = c_{0}\epsilon^{-n} + c_{2}\epsilon^{-n+2} + \cdots + c_{n-1}\epsilon^{-1} + V + o(1).$$

V is called the renormalized volume. V is independent of $g \in [g]$, and hence a conformal invariant.

• Theorem (M. Anderson '01, Chang-Qing-Yang '06) On (X^4, M^3, g^+) conformal compact Einstein manifold, we have

$$V = \frac{1}{6} \int_{X^4} \sigma_2(A_g) dv_g$$

for any compactified metric g with totally geodesic boundary.

Proof of Theorem

Lemma 1 (Fefferman-Graham '03)

On (X^4, M^3, g^+) CCE, (M, h) conformal infinity.

$$-\Delta_{g^+}w = 3 \text{ on } X^4, \tag{3}$$

then w has the asymptotic behavior $w = log \ r + A + Br^3$ near M, where A, B are functions even in r, $A|_M = 0$, and $V = \int_M B|_M$.

• Lemma 2 (Chang-Qing-Yang '06) Consider the metric $g^* = g_w = e^{2w}g^+$, with w as in (3), then g^* is totally geodesic on boundary with

(a)
$$Q_{g^*} \equiv 0$$
, and (b) $B|_{M} = \frac{1}{36} \frac{\partial}{\partial n} R_{g^*} = \frac{1}{6} T_{g^*}$.

• To see (a), recall we have g^+ is Einstein with $Ric_{g^+} = -3g^+$,

$$P_{g^{+}} = (-\Delta_{g^{+}}) \circ (-\Delta_{g^{+}} - 2); \text{ while } 2Q_{g^{+}} = 6.$$

Thus

$$P_{g^+}w + 2Q_{g^+} = 0 = 2e^{2w}Q_{g^*}.$$

Recall the statement of the theorem.

Theorem On (X^4, M^3, g^+) CCE manifold, we have

$$V = \frac{1}{6} \int_{X^4} \sigma_2(A_g) dv_g$$

for any compactified metric g with totally geodesic boundary.

To prove the theorem we apply Lemmas 1 and 2 and get

$$6V = \oint_{M} B|_{M} d\sigma_{g^{*}} = \frac{1}{6} \oint_{M} \frac{\partial}{\partial n} R_{g^{*}}$$
$$= 2(\int_{X} Q_{g^{*}} + \oint_{M} T_{g^{*}}) = \int_{X^{4}} \sigma_{2}(A_{g^{*}}) dv_{g^{*}}.$$

- An open question: Does the entire class of metrics (S^3, h) with positive scalar curvature allow CCE filling in B^4 ?
- The class is path-connected by a result of F. Marques '12.
 The index argument for non-existence of Gursky-Han,
 Gursky-Han-Stolz does not apply.
- We propose to study the "compactness" problem, which hopefully will lead to degree theory argument for the positive answer to the question above. More precisely, we ask the question:

Given a sequence of $(S^3, [h_i])$ metrics with positive Yamabe constants, which are conformal infinity of CCE (B^4, g_i^+) ; when would

 $\{[h_i]\}$ forms a compact family on S^3

 $\Longrightarrow \{[g_i]\}$ forms a compact family on B^4 ?

where g_i is some compactification of $\{g_i^+\}$ with $g_i|_M = h_i$.

• Report on works of Chang-Yuxin Ge '16 and Chang-Ge-Jie Qing '17.

The difficulty lies in the existence of an "non-local" term.

To see this on (X^4, M^3, g^+) CCE with (M^3, h) conformal infinity, recall the asymptotic behavior

$$g := r^2 g^+ = h + g^{(2)} r^2 + g^{(3)} r^3 + g^{(4)} r^4 + \cdots,$$

where $g^{(2)}=-\frac{1}{2}A_h$ determined by h (a local terms), $Tr_hg^{(3)}=0$, while

$$g_{\alpha,\beta}^{(3)} = -\frac{1}{3} \frac{\partial}{\partial n} (Ric_g)_{\alpha,\beta}$$

is a non-local term not determined by h.

We remark that h together with $g^{(3)}$ determines the asymptotic behavior of g.

- For convenience, we choose $h = h^Y \in [h]$, the Yamabe metric on M. But what is a good choice of g? A first attempt is to choose $g := g^Y$, a Yamabe metric among compactified metrics of $[g^+]$, the difficulty of this choice is one does not know how to control the behavior of $g^Y|_M$ in terms of h^Y .
- Instead on (X^4,M^3,g^+) with conformal infinity (M^3,h) , we choose the "Fefferman-Graham" compactification $g=g^*=e^{2w}g^+$ where

$$-\Delta_{g^+}w = 3$$
 on X , with $g^*|_M = h$

• We recall that $Q_{g^*}\equiv 0$, hence

$$\int_{X} \sigma_{2}(A_{g*}) dv_{g*} = 2 \oint_{M} T_{g*} d\sigma_{h} = \frac{1}{3} \oint_{M} \frac{\partial}{\partial n} R_{g*} d\sigma_{h}.$$

A model case. On $(B^4, S^3, g_{\mathbb{H}})$,

$$g^* = e^{(1-|x|^2)}|dx|^2$$
 on B^4 .
 $Q_{g^*} \equiv 0$, $T_{g^*} \equiv 2$ on S^3 .

 $(g^*)^{(3)}\equiv 0.$

and

$$\int_{B^4} \sigma_2(A_{g*}) dv_{g*} = 8 \pi^2.$$

§5. A perturbation compactness result

- Theorem 1. Let $\{(B^4, S^3, g_i^+)\}$ be sequence of CCE manifolds with conformal infinity $(S^3, [h_i])$, assume
 - **1** The boundary Yamabe metrics $\{h_i\}$ form a compact family in C^{k+3} norm with $k \ge 2$: with

$$Y(M,[h_i]) \geqslant c_1 > 0;$$

2 There exists some small positive constant $\varepsilon > 0$ such that for all i

$$\int_{B^4} \sigma_2(A_{g_i^*}) dv_{g_i^*} \geqslant 8\pi^2 - \varepsilon.$$

Then the family of the g_i^* is compact in $C^{k+2,\alpha}$ norm for any $\alpha \in (0,1)$ up to a diffeomorphism fixing the boundary.

Main step in the proof is to show the curvature of $\{g_i^*\}$ is bounded, which is achieved via some "blow-up" analysis. It is easier to see the argument via some equivalent conditions of (2).

§5. A perturbation compactness result

• On (B^4, S^3) , recall Gauss-Bonnet formula

2

(3)

$$8\pi^2\chi(B^4,S^3)=8\pi^2=\int_{B^4}(||W||_g^2+\sigma_2(A_g))dv_g.$$

It turns out in Theorem 1, the following statements are equivalent:

$$\int_X \sigma(A_{g*}) dv_{g*} \geqslant 8\pi^2 - \varepsilon.$$

$$\int_X ||W||_{g^+}^2 dv_{g^+} \leqslant \varepsilon.$$

$$Y(S^3, [g_c]) \geqslant Y(S^3, [h]) > Y(S^3, [g_c]) - \varepsilon_1.$$

$$T(g^*) \geqslant 2 - \varepsilon_2$$
, when $vol(h) = vol(g_c)$.

$$|(g^*)^{(3)}| \leqslant \varepsilon_3.$$

§5. A Perturbation compactness theorem

- Corollary There exists some $\varepsilon > 0$ such that on (B^4, S^3, h) , if $||h g_c||_{C^{\infty}} < \varepsilon$, the CCE filling (B^4, S^3, g^+) of h is unique.
- Sketch proof of the perturbation result.

The major step is to show the curvature of g_i^* remains bounded. Assume not, we will do the "blow up" analysis. That is, we re-scale the metrics $\bar{g}_i = K_i^2 g_i$, $\bar{h}_i = \bar{g}_i |_{S^3}$, where

$$K_i^2 = \max\{\sup_{B^4} |Rm_{g_i}|\} = |Rm_{g_i}|(p_i).$$

We mark the accumulation point of p_i as $0 \in B^4$, for simplicity, we assume $0 \in S^3$. Note that we have $(*) |Rm_{\bar{g}_i}|(0) = 1$.

§5. Proof of the perturbation compactness result

• Step 1: We have $\bar{g}_i = e^{2\bar{w}_i} g_l^+, \quad \bar{h}_i = K_i^2 h_i,$ $(S^3, \bar{h}_i) \longrightarrow (\mathbb{R}^3, dx^2)$

$$(B^4, \bar{g}_i) \longrightarrow (X_{\infty}, g_{\infty})$$
 in Gromov-Hausdroff sense.

• Step 2:

$$\begin{split} &\bar{w}_i \longrightarrow \bar{w}_\infty, \text{ uniformly on compact}, \\ &g_\infty = e^{2\bar{w}_\infty} g_\infty^+, \text{ with } Ric_{g_\infty}^+ = -3g_\infty^+ \text{ and } ||W_{g_\infty^+}^+|| \equiv 0. \end{split}$$

Step 3: We then claim up to an isometry

$$(X_{\infty}, g_{\infty}^+) = (\mathbb{R}_+^4, g_H := \frac{|dx|^2 + |dy|^2}{y^2}),$$

and apply a Liouville type PDE argument to conclude $\bar{w}_{\infty} = \log y$.

Thus
$$g_{\infty} = |dx|^2 + |dy|^2$$
,

which contradicts our marking condition (*) $|Rm_{g_{\infty}}|(0) = 1$

• Theorem 2

Let $\{(B^4,S^3,g_i{}^+)\}$ be sequence of CCE on B^4 with boundary S^3 . Assume

1 The boundary Yamabe metrics h_i form a compact family in C^{k+3} norm with $k \ge 2$; with

$$Y(M,[h_i]) \geqslant c_1 > 0;$$

 $\liminf_{r\to 0}\inf_{i}\inf_{x\in S^3}\oint_{B(x,r)}T_{g_i^*}\geqslant 0.$

Then the family of metrics g_i^* is compact in $C^{k+2,\alpha}$ norm for any $\alpha \in (0,1)$ up to a diffeomorphism fixing the boundary, provided $k \ge 2$.

• It remains to see if in both theorem 1 and 2 above condition (2) can be replaced by the renormalized volume term $\int_{B^4} \sigma_2(A_{g_i^*}) dv_{g_i^*}$ being positive.

§5. Open questions and some future directions

- In this talk, we have only addressed the case of 4-manifolds with Y(M,g)>0 and $\int_M \sigma_2(g) dv_g>0$, i.e $[g]\in \Gamma_2^+$. It remain to study manifolds with metrics $g\in \Gamma_2^-$?, i.e. Y(M,g)<0, while $\sigma_2(g)>0$.
- On (M^n,g) , $n \ge 5$ extensive works have been done to study $\sigma_k(A_g)$, mainly restricted to locally conformal flat manifolds. It remains to locate suitable conformal invariants with geometric connections to study.

THANK YOU FOR YOUR ATTENTION!