Multiplicity and Koszul Homology

Lemma 0.1. Let M be a finitely generated R-module and let I be an ideal of R. Then

$$\sqrt{\operatorname{Ann}(M/IM)} = \sqrt{\langle I, \operatorname{Ann} M \rangle}.$$

Proof. To prove the equality on radicals, it suffices to show that a prime \mathfrak{p} of R contains $\mathrm{Ann}(M/IM)$ if and only if it contains $\langle I, \mathrm{Ann} M \rangle$. Recall that for any finitely generated R-module N, we have $\mathrm{V}(\mathrm{Ann} N) = \mathrm{Supp} N$, or equivalently, $\mathfrak{p} \supseteq \mathrm{Ann} N$ if and only if $N_{\mathfrak{p}} \ne 0$. Thus since M is finitely generated (and hence M/IM is finitely generated too), we have

$$\mathfrak{p} \supseteq \operatorname{Ann}(M/IM) \iff M_{\mathfrak{p}}/I_{\mathfrak{p}}M_{\mathfrak{p}} \neq 0$$

$$\iff M_{\mathfrak{p}} \neq 0 \text{ and } I_{\mathfrak{p}} \subseteq \mathfrak{p}_{\mathfrak{p}}$$

$$\iff \mathfrak{p} \supseteq \operatorname{Ann} M \text{ and } I \subseteq \mathfrak{p}$$

$$\iff \mathfrak{p} \supseteq \langle \operatorname{Ann} M, I \rangle$$

Let $A = (A, \mathfrak{m}, \mathbb{k})$ be a noetherian local ring, let $x = x_1, \ldots, x_r$ be a sequence contained in \mathfrak{m} , and let M be a finitely generated A-module such that $\ell(M/xM) < \infty$ (equivalently, we have $\mathfrak{m} = \sqrt{\operatorname{Ann}(M/xM)}$). We set K = K(x, M) to be koszul complex with respect to x and M and we denote its homology by H(x, M). Recall that the A-module $H_i(x, M)$ is finitely generated and annihilated by $\langle x, \operatorname{Ann} M \rangle$, hence they have finite length (indeed, we have $\mathfrak{m} = \sqrt{\operatorname{Ann}(M/xM)} = \sqrt{\langle x, \operatorname{Ann} M \rangle}$). We may therefore define the **Euler-Poincare characteristic**

$$\chi(x, M) = \sum_{i=0}^{r} (-1)^{i} \ell(H_{i}(x, M)).$$

On the other hand, we the Hilbert-Samuel polynomial $P_x(M)$ has degree $\leq r$, and we have

$$P_{\mathbf{x}}(M,n) = \mathbf{e}_{\mathbf{x}}(M,r)\frac{n^{r}}{r!} + Q(n)$$

with deg Q < r and where $e_x(M, r) = \Delta^r P_x(M)$ is the Hilbert-Samuel multiplicity.

Theorem o.2. We have $\chi(x, M) = e_x(M, r)$.

Proof. We prove this in several steps:

Step 1: To ease notation in what follows, we set $Q = \langle x \rangle$. We first equip A with the standard Q-filtration $A = (Q^n)$ and view it as a filtered ring. Similarly, we equip M with the Q-filtration $M = (Q^n M)$ and view it as a filtered A-module. We now equip K with a Q-filtration as follows: for each $n \in \mathbb{N}$, let K^n be the R-subcomplex of K whose component in homological degree i

$$K_i^n = \begin{cases} Q^{n-i} K_i, & \text{if } 0 \le i < n \\ K_i & \text{else} \end{cases}$$

Thus for example, we have

$$K^{0} = M + \sum Me_{i} + \sum Me_{i,j} + \cdots$$

$$K^{1} = QM + \sum Me_{i} + \sum Me_{i,j} + \cdots$$

$$K^{2} = Q^{2}M + \sum QMe_{i} + \sum Me_{i,j} + \cdots$$

$$\vdots$$

Notice that

$$K^{0}/K^{1} = M/QM$$

 $K^{1}/K^{2} = QM/Q^{2}M + \sum (M/QM)e_{i}$
 $K^{2}/K^{3} = Q^{2}M/Q^{3}M + \sum (QM/Q^{2}M)e_{i} + \sum (M/QM)e_{i,j}$
:

In particular, we clearly have

$$gr(K) = \bigoplus_{n=0}^{\infty} K^n / K^{n+1}$$

$$= gr(M) + \sum_{i=0}^{\infty} gr(M)e_i + \sum_{i=0}^{\infty} gr(M)e_{i,j}$$

$$= K(x, gr(M)).$$

Finally, we have

$$\chi(\mathbf{x}, M) = \sum_{i=0}^{r} (-1)^{i} \ell(\mathbf{H}_{i}(\mathbf{x}, M))$$

$$= \sum_{i=0}^{r} (-1)^{i} \ell(\mathbf{H}_{i}(K/K^{n}))$$

$$= \sum_{i=0}^{r} (-1)^{i} \ell(K_{i}/K_{i}^{n})$$

$$= \sum_{i=0}^{r} (-1)^{i} \ell\left(\bigoplus_{\binom{r}{i}} M/\mathbf{x}^{n-i}M\right)$$

$$= \sum_{i=0}^{r} (-1)^{i} \binom{r}{i} \ell(M/\mathbf{x}^{n-i}M)$$

$$= \mathbf{e}_{\mathbf{x}}(M, r).$$

o.1 Extra

Let $(R, \mathfrak{m}, \mathbb{k})$ be a local noetherian ring of dimension n, let M be a nonzero finitely generated R-module of dimension d, and let $r = r_1, \ldots, r_d$ be a system of parameters for M. By definition, this means r is a sequence contained in \mathfrak{m} such that M/rM has finite length, or equivalently, such that

$$\mathfrak{m} = \sqrt{\operatorname{Ann}(M/rM)} = \sqrt{I+J} = \sqrt{Q}$$

where I set $I = \langle r \rangle$, J = Ann M, and Q = I + J (so Q is m-primary). There's a beautiful formula (I think due to Serre) which expresses the Hilbert multiplicity of M with respect to Q as an alternating sum of lengths of koszul homology modules. To explain this, first let me recall how the Hilbert multiplicity of M with respect to Q is defined: let (M_i) be any Q-stable filtration of M (for example, we can pick $M_i = I^i M = Q^i M$). Then the Hilbert-Samuel function with respect (M_i) is the function $f_{Q_i(M_i)} = f \colon \mathbb{N} \to \mathbb{N}$ defined by

$$f(i) = \operatorname{length}_{R}(M/M_{i}) = \operatorname{length}_{R/O}(M/M_{i}).$$

Note that each M/M_i is an R/Q-module since (M_i) is a Q-filtration, and since Q is \mathfrak{m} -primary, the lengths above are all finite. For i sufficiently large, we have f(i) = P(i) where $P = P_{Q,M}$ is a polynomial whose lead coefficient is e/d!. Here, $e = e_{Q,M}$ is called the **Hilbert multiplicity** of M with respect to Q. It depends on the choice of Q (which itself depends on the choice of P assuming P is fixed), however it doesn't depend on the choice of stable P-filtration P

The Euler-Poincare characteristic with respect to *r* and *M* is the alternating sum:

$$\chi(\mathbf{r}, M) = \sum_{i \geq 0} (-1)^i \text{length}(H_i(\mathbf{r}, M)),$$

where H(r, M) is the homology of the Koszul complex $\mathcal{K}(r, M) = \mathcal{K}(r) \otimes_R M$. Note that

1. H(r, M) is a graded R/Q-module. In particular we have

$$H_0(r, M) = M/rM \text{ and } H_i(r, M) = 0$$

for all $i \neq 0, 1, ..., d$.

2. If r is an R-sequence, then we have

$$H(r, M) = Tor_R(R/I, M)$$

since K(r) is an R-free resolution of R/I in this case. If in addition we have M=R/J and I and J are prime ideals of R, then

$$\chi(\mathbf{r}, M) = \chi(R/I, R/J) = \sum_{i \ge 0} (-1)^i \operatorname{Tor}_i(R/I, R/J)$$

is called the **intersection multiplicity** of R/I and R/J. If $\dim(R/I) + \dim(R/J) = \dim R$, then it is an open conjecture that $\chi(R/I, R/J) > 0$.

3. If $H_1(r, M) = 0$, then r is an M-sequence, and this implies $H_i(r, M) = 0$ for all i > 0.