

Introduction to ROS and Gazebo

Mr.KRITTINUNT CHOBTRONG krittinunt@gmail.com

History of Mobile Robot

Shakey the robot (1966-1972)

Stanford Research Institute Problem Solver (STRIPS)

Operating Environment

- Indoors
- Engineered

Sensors

- Wheel encoders
- Bump detector
- Sonar range finder
- Camera

The SmartTer Platform (2004-2007)

SICK and 3D SICK laser scanners
Omnidirectional and Monocular camera
Motion Estimation / Localization

- GPS system
- Optical Gyro
- Odometry
 Internal car state sensors
- Vehicle state flags (engine, door, etc.)
- Engine data, gas pedal value
 Camera for life video streaming
- Transmission range up to 2 km

PR2 (2010), WILLOW

Operating Environment

- Indoors and outdoors
- Onroad only

Sensors

- Wheel encoders
- Bumper
- IR sensors
- Laser range finder
- 3D nodding laser range finder
- Inertial measurement unit
- Pan-tilt stereo camera with
- texture projector (active)
- Pressure sensor and accelerometer inside hands

Mobile robot components

Basic of Mobile Robot Components

Hardware

- Base platform
- Energy Source
- Actuator
- Sensors
- Processor

Software

- Operating System
- Localization
- Mapping
- Motion Planning
- Visualization

Classification of Sensors

Tactile sensors

- Detection of physical contact
- Contact switches, bumpers optical barriers, Noncontact proximity sensors

Wheel/motor sensors

- Wheel/motor speed and position
- Optical encoders, Magnetic encoders

Heading sensors

- Orientation of the robot in relation to a fixed reference frame
- Compass, Gyroscopes, Inclinometers, Accelerometer

Ground-based positioning

- Localization in a fixed reference frame
- GPS, Active optical or RF beacons Active ultrasonic beacons Reflective beacons

Active ranging

- Reflectivity, time-of-flight, and geo-metric triangulation
- Reflectivity sensors, Ultrasonic sensor, Laser rangefinder

Motion/speed sensors

- Speed relative to fixed or moving object
- Doppler radar, Doppler sound

Vision-based sensors

- Visual ranging, whole-image analysis, segmentation, object recognition
- CCD/CMOS camera Visual ranging packages Object tracking packages

Ubuntu (Open-source Operating System)

- Free to Use
- Better Community Support
- Secure
- Can revive older computers
- Perfect For Programmers
- Software Updates
- Customization

Operating system family

Robot Operating System (ROS)

ROS Key feature

Main client libraries

- Python
- C++
- Lisp

MATLABVIML XML & Delphi WebDNA Active Server Page Visual Basic XML & Delphi WebDNA Mathematica Scala: Ada Swift Prolog FXPYTON Pascal PHP GOHTML & GOHTML

Experimental client library

- Java
- Lua

https://www.theconstruct.ai

The Construct is an e-learning platform for ROS and Robotics

Create new account

= Rrittinu	nt@hotmail.com	
3 krittinu	nt_hotmail	
<u> </u>		
- di		
Accept <u>r</u>	privacy policy, terms and conditions	
Accept p		

Back to login

ROS Nodes / roscore

roscore is the first thing you should run when using ROS.

\$roscore

ROS Nodes / rosnode

rosnode display information about the ROS nodes that are currently running

\$rosnode list

ROS Nodes / rosrun

rosrun allows you to use the package name to directly run a node within a package

\$rosrun turtlesim turtlesim_node

ROS Node / Topics

Publishing the keystrokes on a topic

\$rosrun turtlesim turtle_teleop_key

ROS Node / Topics

ROS Graph

\$rosrun rqt_graph rqt_graph

ROS Node / Topics / Echo

Show data published

\$rostopic echo /turtle1/cmd_vel

ROS Node / Topics / Echo

Show position data

\$rostopic echo /turtle1/pose

ROS Node / Topics / List

Show published and subscribed topics

\$rostopic list

ROS Node / Topics / Check type

Check type of I/O data parameters

\$rostopic type /turtle1/cmd_vel

\$rosmsg show geometry_msgs/Twist

ROS Node / Topics / Pub

Published data

\$rostopic pub -1 /turtle1/cmd_vel geometry_msgs/Twist -- '[2.0, 0.0, 0.0]' '[0.0, 0.0, 1.8]'

