Experiment-1 Buck converter Design document

CONTENTS

S.No	Title	Page No.	
1.	SYSTEM UNDER CONSIDERATION	3	
2.	KEY BUCK CONVERTER WAVEFORMS	3	
3.	VALIDATION OF CCM CONDITION		
4.	INDUCTANCE CALCULATION	4	
5.	CAPACITANCE CHOICE	5	
6.	SELECTION OF MOSFET	5	
7.	SELECTION OF DIODE	7	
8.	DESIGN OF INDUCTOR MAGNETICS	8	
7.	TOTAL LOSS AND EFFICIECNY CALCULATION	10	
	AT RATED LOAD	10	
	REFERENCES	10	

• SYSTEM UNDER CONSIDERATION:

Let us consider a system:

 $100V < V_{in} < 120V V$, $P_{out,rated} = 200 W$, $f_{sw} = 50kHz$, $V_{out} = 48V$.

Under a load variation of 20% i.e. ($160W < P_{out} < 200W$), the converter should always be operated under CCM.

Design the system for the worst-case condition considering the above-mentioned criteria such that the inductor current ripple (p-p) $i.e.\Delta I_{L(p-p)}$ and capacitor voltage ripple (p-p) $i.e.\Delta V_{Cp-p)}$ should not exceed 30% and 2% respectively for full load condition and find out upto what load the converter will operate in CCM. Consider the non-idealities like $R_{ds_{ON}}$, R_L , V_D and ESR of Capacitance etc.

• KEY BUCK CONVERTER WAVEFORMS:

• Validation of CCM condition:

$$\frac{\Delta I_L}{2} \le I_L$$

$$\frac{2L}{RT_s} \ge (1 - D)$$

$$L \ge \frac{(1 - D_{min}) \times R_{max}}{2 \times f_{sw}} = \frac{0.6 \times 14.4}{2 \times 50 \times 1000} = 86.4 \,\mu\text{H}$$

• <u>Inductance (L) calculation</u>: In all operating condition the % current ripple should not exceed 30%.

$$\Delta I_{L} = \frac{V_{out} \cdot (1 - D)}{L f_{sw}}$$

$$\frac{\Delta I_{L}}{I_{L}} = \frac{R \cdot (1 - D)}{L f_{sw}}$$

$$L \ge \frac{R_{max}}{f_{sw}} \times (1 - D_{min}) \times \frac{100}{30}$$

$$= \frac{14.4}{50 \times 1000} \times 0.6 \times \frac{100}{30} = 576 \mu H$$

The chosen value of L = $576\mu H$. So, as per design the converter is always in CCM. The maximum average current through the converter can be given as-

$$\langle i_L \rangle_{T_S} = I_L = \frac{V_{out}}{R}$$

$$I_{L,max} = \frac{V_{out}}{R_{min}} = \frac{48}{11.52} = 4.17A$$

The maximum peak current through the inductor is considered as, $i_{L,peak} = I_{L,max} \times 1.3 = 5.421A$.

• The DCM load condition for the chosen L can be found out as shown below-

$$\frac{2L}{RT_s} \le (1 - D)$$

$$R \ge \frac{2.L. f_{sw}}{(1 - D_{max})} = 110.77\Omega$$

• <u>Capacitance(C) choice</u>: In all operating condition output voltage ripple should be less than 2%.

$$\frac{\Delta V_{out}}{V_{out}} = \frac{1}{8} \times \frac{(1-D)}{Lf_{sw}^{2}} \times \frac{1}{C} \le \frac{2}{100}$$

$$C \ge \frac{1}{8} \times \frac{(1 - D_{min})}{L f_{sw}^2} \times 50$$

Capacitor current will be maximum when ΔI_L is maximum. Rms capacitor current= 0.3A, Peak-Peak ripple current = 1A, Average capacitor voltage= 48V.

- Conductive Polymer Hybrid Aluminum Electrolytic Capacitors (standard product: EEHZA1H100R) has been chosen.
- Rated Voltage =63V.
- Capacitance (C) = $10\mu F$.
- ESR= $120 \text{ m}\Omega$.
- Max. ripple current(rms) =1000mA.
- Data Sheet: http://www.farnell.com/datasheets/2842914.pdf? ga=2.100048157.24982 8137.1600968886-1009838117.1593006503

SELECTION OF MOSFET:

Blocking Voltage= 120V. Average switch current can be expressed as-

$$< i_{sw} >_{T_s} = D.I_L = D.\frac{V_o}{R_{min}}$$

 $< i_{sw} >_{T_s,max} = \frac{0.48 \times 48}{11.52} = 2A$

Maximum switch current= 5.421A (during transients).

- **BSC12DN20NS3G** is chosen as a MOSFET switch.
- Blocking voltage = 200 V.
- Max. drain current @ 100^0 C = 8A.
- $R_{ds,on}$ (at $100^{\circ}C$ and $I_d = 6A$, for $V_{gs} = 10V$) = 188 m Ω .
- $C_{gd1} = 5 pF, C_{gd2} = 55 pF.$
- Gate driver voltage $(V_{dr})=10\text{V}$ and gate resistance $(R_g)=10\Omega$.
- Current rise time $(t_{ri}) = 4ns$.
- Current fall time $(t_{fi}) = 3ns$.
- @150 $^{\circ}$ C, V_{gs1} =4V and I_{d1} = 3.75A, V_{gs2} =5V and I_{d2} = 15A

$$V_{th} = \frac{V_{gs1}\sqrt{I_{d2}} - V_{gs2}\sqrt{I_{d1}}}{\sqrt{I_{d2}} - \sqrt{I_{d1}}} = 3V$$
$$k = \frac{I_{d1}}{(V_{as1} - V_{th})^2} = 3.75$$

$$V_{gs,miller} = V_{th} + \sqrt{\frac{I_{load}}{k}} = 4.05V$$
 $V_{adj} = (100 - 150) \times (-0.007) = +0.35V$
 $V_{plateau} = V_{gs,miller} + V_{adj} = 4.4V$

• Average voltage fall time (t_{fv}) can be expresses as-

$$t_{fv} = \left(V_d - I_d R_{ds,on}\right) \times \frac{R_g}{\left(V_{dr} - V_{plateau}\right)} \times \frac{\left(C_{gd1} + C_{gd2}\right)}{2} = 6.4ns$$

• Average voltage rise time (t_{rv}) can be expresses as-

$$t_{rv} = \left(V_d - I_d R_{ds,on}\right) \times \frac{R_g}{V_{plateau}} \times \frac{\left(C_{gd1} + C_{gd2}\right)}{2} = 8.12ns$$

• Average Switching loss can be expressed as-

$$P_{sw} = \frac{f_{sw}}{2} \times V_{block} I_{load} \times \left[\left(t_{ri} + t_{fv} \right) + \left(t_{fi} + t_{rv} \right) \right] = 0.27W$$

- Conduction loss in switch, $P_{conduction} = I_{load}^2 R_{ds,on} = 3.269W$
- Total loss in switch, $P_{loss,sw} = 3.269 + 0.27 = 3.54W$

Data sheet: https://www.infineon.com/dgdl/Infineon-BSC12DN20NS3-DS-v02_02-en.pdf? delata sheet: https://www.infineon.com/dgdl/Infineon-BSC12DN20NS3-DS-v02_02-en.pdf? delata sheet: https://www.infineon.com/dgdl/Infineon-BSC12DN20NS3-DS-v02_02-en.pdf? delata sheet: https://www.infineon.com/dgdl/Infineon-BSC12DN20NS3-DS-v02_02-en.pdf

Heat Sink designing:

- Transient thermal impedance junction to case (@ 50 kHz and D=0.48) = 1.3K/W.
- Junction temp. rise w.r.t case = $P_{loss} \times Z_{thc} = 4.6K = 4.6C$
- Let ambient temp. be 40° C and allowable junction temp. 100° C.
- Max. heat sink thermal impedance (Z_a) = $\frac{T_c T_a}{P_{loss,sw}} = \frac{95.4 40}{3.4} = 15.64^{\circ} C/W$.
- Selected heat sink thermal impedance(case to impedance): 3.2°C/W (1.625" wide × 12" flatback heatsink)
- Case temp. rise w.r.t ambient with selected heatsink= $P_{loss} \times Z_a = 11.328^{\circ}C$
- Junction Temp.= $40 + 11.328 + 4.6 = 55.91^{\circ}C$. Hence junction temp. is well within operating temp. of selected MOSFET.

SELECTION OF DIODE:

Blocking Voltage= 120V, Average maximum diode current can be expressed as-

$$< i_D >_{T_S} = (1 - D).I_L = \frac{(1 - D_{min}).V_{out}}{R_{min}}$$

$$\langle i_D \rangle_{T_s,max} = \frac{0.6 \times 48}{11.52} = 2.5A$$

Maximum diode current= 5.421A (during transients).

- Schottky diode DSTF10200C has been chosen for the above mentioned buck converter.
- Peak inverse voltage 200V
- Average forward current per leg (@ 90° C) = 5A
- Forward voltage drop (@125 $^{\circ}$ C and 3A) = 0.6V.
- Reverse leakage current (@ 125° C and 120V blocking voltage) = 0.1 mA.
- Conduction loss in diode = $2.5 \times 0.6 = 1.5$ W.
- Reverse leakage loss in the diode = $200 \times 0.1 \times 10^{-3} \times 0.6 = 0.012$ W
- Total loss in diode, $P_{loss,D} = 1.5 + 0.012 = 1.512W$
- Data Sheet:

https://m.littelfuse.com/~/media/electronics/datasheets/power_semiconductors/littelfuse power_semiconductor_schottky_diode_dstf10200c_datasheet.pdf.pdf

Heat Sink Design:

- Thermal impedance Junction to case per diode = $7^{\circ}C/W$
- Junction temp. rise w.r.t case = $P_{loss,D} \times Z_{thc} = 10.58^{\circ}C$
- Let ambient temp. be 40° C and allowable junction temp. 100° C. Max. heat sink thermal impedance $(Z_a) = \frac{T_c T_a}{P_{loss,sw}} = \frac{95.58 40}{3.4} = 32.68^{\circ}$ C/W.
- Selected heat sink thermal impedance(case to impedance): 3. $2^{0}C/W$ (1.625" wide × 12" flatback heatsink)
- Case temp. rise w.r.t ambient with selected heatsink= $P_{loss} \times Z_a = 4.838^{\circ}C$
- Junction Temp. = $40 + 4.838 + 10.58 = 55.4^{\circ}C$. Hence junction temp. is well within operating temp. of selected Diode.

DESIGN OF INDUCTOR MAGNETICS:

Inductance(L)	576 μΗ
I_p	5.421A
$I_{ m rms}$	4.17A
$B_{\rm m}$	0.2 wb/m^2
J(initial)	$3A/mm^2$
K _w (initial)	0.3

Fig.: E - core

Fig.: Inductor Winding on EE core

Area Product,

$$A_c A_w = \frac{L. I_p. I_{rms}}{K_w. B_m. J}$$

$$= \frac{576 \times 10^{-6} \times 5.421 \times 4.17}{0.3 \times 0.2 \times 3} \times 10^6$$

$$= 72337.8 \ mm^4$$

Selected Core:

 $E \ 56/24/19$, $A_c = 364.81 \ mm^2$, $A_w = 271.7 \ mm^2$, $C = 19.1 \ mm$ $F = 19.1 \ mm$

• Number of turns(N) can be found as-

$$N = \frac{L. I_p}{B_m. A_c} = \frac{576 \times 10^{-6} \times 5.421}{0.2 \times 364.81 \times 10^{-6}} \approx 43$$

- Calculated wire size, $a_w = \frac{l_{rms}}{J} = 1.39 \text{ } mm^2$
- From wire table, the chosen wire is SWG 17.
- Updated wire size, $a_w^* = 1.589 \, mm^2$.
- Updated current density, $J^* = \frac{l_{rms}}{a_{w^*}} = 2.624A/mm^2$.
- Updated winding factor, $K_w^* = \frac{N \times a_w^*}{A_w} \approx 0.251$
- Air gap length, $l_g = \frac{N^2 \cdot A_c \cdot \mu_o}{L} = 1.47 \ mm \ll \sqrt{A_c}$
- Average length of each turn of coil = $2 \times (C + F) = 76.4 \, mm$
- Average length of inductor coil = $N \times 76.4 = 3285.2 \, mm = 3.28 m$
- Coil resistance of inductor $=\frac{10.85}{1000} \times 3.28 = 35.64 m\Omega$.
- Updated area product: $A_c A_w = 98858.57 mm^4$

• TOTAL LOSS AND EFFICIECNY CALCULATION AT RATED LOAD:

Total Power Loss = 0.0108W + 3.54W + 1.512W + 0.619W = 5.68W

Full load efficiency of Buck converter = $\frac{Output\ Power}{Output\ Power+Losses} * 100\% = \frac{200}{205.68} * 100 = 97.2\%$

REFERENCES

- 1. Dr. Dušan Graovac, Marco Pürschel, and Andreas Kiep, "MOSFET Power Losses Calculation Using the Data-Sheet Parameters", Application Note, V 1.1, July 2006, by infenion
- 2. "Calculation of reverse losses in a power diode, AN4021" Application Note by ST Microelectronics.
- 3. V. Ramanarayanan, "Course Material on Switched Mode Power Conversion", Department of Electrical Engineering Indian Institute of Science Bangalore 560012, second edition 2006.