- Let $v, w \in M_{n \times 1}(F)$ be non-zero column vectors.
- Let $A = vw^t \in M_{n \times n}(F)$.
- ³ Claim. rank A = 1.
- 4 Proof. Take any $x \in M_{n \times 1}(F)$.
- 5 Consider Ax.

$$Ax = (vw^t)x\tag{1}$$

$$=v(w^tx)$$
 | Associativity of Matrix Multiplication (2)

- Note that $w^t x \in M_{1\times 1}$, since $w^t \in M_{1\times n}$, $x \in M_{n\times 1}$.
- Thus $v(w^t x)$ corresponds to the product of the vector v and the scalar which is the only entry in $w^t x$. Therefore, $\exists (|w^t x| \in F) : v(w^t x) = |w^t x| v$.
- Since w is non-zero, then w^t is also non-zero. Thus, $]w^tx[$ is also non-zero for some non-zero x.
- Since x is arbitrary and v is non-zero, then Im A is spanned by the vector v.
- Hence, rank A = 1, as required.