ZAVRŠNI ISPIT IZ ELEKTRONIKE 1

25.1.2010.

PRVA SKUPINA ZADATAKA

Napomena-svaki dio zadatka nosi 1 bod

- 1. Za sklop prikazan na slici vrijedi tvrdnja:
 - a) Ima pozitivno naponsko pojačanje manje od jedan i mali izlazni otpor,*
 - b) Ima pozitivno naponsko pojačanje manje od jedan i veliki izlazni otpor,
 - c) Ima negativno naponsko pojačanje veće od jedan i mali izlazni otpor,
 - d) Ima negativno naponsko pojačanje veće od jedan i veliki izlazni otpor,
 - e) Ima negativno naponsko pojačanje manje od jedan i mali izlazni otpor.
- **2.** Što se događa s amplitudom napona u_{iz} ako se iznos otpornika R_T smanji, a amplituda napona u_{ul} ostane nepromijenjena? Kakva je statička radna točka tranzistora?
 - a) U_{izm} se smanjuje, radna točka tranzistora nije stabilizirana,
 - b) U_{izm} se povećava, radna točka tranzistora je stabilizirana,
 - c) U_{izm} se smanjuje, radna točka tranzistora je stabilizirana,*
 - d) U_{izm} se povećava, radna točka tranzistora nije stabilizirana,
 - e) U_{izm} se ne mijenja, radna točka tranzistora je stabilizirana.

- 3. Zajednički i diferencijski napon diferencijskog pojačala sa slike su $u_z = -8\sin\omega t$ mV i $u_d = +4\sin\omega t$ mV. Koliki su naponi u_{g1} i u_{g2} ?
 - a) $u_{g1} = -10\sin \omega t \text{ mV i } u_{g2} = -6\sin \omega t \text{ mV} *$
 - b) $u_{g1} = 0 \sin \omega t \text{ mV i } u_{g2} = +8 \sin \omega t \text{ mV}$
 - c) $u_{g1} = -12\sin\omega t \text{ mV i } u_{g2} = -4\sin\omega t \text{ mV}$
 - d) $u_{g1} = +6\sin\omega t \text{ mV i } u_{g2} = +10\sin\omega t \text{ mV}$
 - e) $u_{g1} = +4\sin\omega t \text{ mV i } u_{g2} = +12\sin\omega t \text{ mV}$

4. U simetričnom diferencijskom pojačalu sa slike definirana su pojačanja za asimetrične izlaze $A_{Vz1} = u_{iz1}/u_z$, $A_{Vz2} = u_{iz2}/u_z$, $A_{Vd1} = u_{iz1}/u_d$ i $A_{Vd2} = u_{iz2}/u_d$ i za simetrični izlaz $A_{Vz} = (u_{iz2} - u_{iz1})/u_z$ i $A_{Vd} = (u_{iz2} - u_{iz1})/u_d$. Uz $|A_{Vz1}| = |A_{Vz2}| = 0,2$ i $|A_{Vd1}| = |A_{Vd2}| = 40$ iznosi pojačanja A_{Vz} i A_{Vd} su:

a)
$$|A_{V_z}| = 0.4 \text{ i } |A_{V_d}| = 40$$
,

b)
$$|A_{Vz}| = 0.2 \text{ i } |A_{Vd}| = 80,$$

c)
$$|A_{Vz}| = 0$$
 i $|A_{Vd}| = 80 *$,

d)
$$|A_{Vz}| = 0.2 \text{ i } |A_{Vd}| = 40$$

e)
$$|A_{Vz}| = 0.4 \text{ i } |A_{Vd}| = 80.$$

5. Koji uvjet mora zadovoljavati otpor R_C da bi osigurao rad tranzistora u zasićenju. Zadano je $U_{CC}=5$ V, $U_{CEzas}=0.2$ V, $U_{BEzas}=0.8$ V, R_B može imati vrijednosti od 8 k Ω do 12 k Ω , β može imati vrijednosti od 70 do 160, $u_{UL}=0$ V u stanju logičke 0, a $u_{UL}=U_{CC}$ u stanju logičke 1.

a)
$$R_C < 196 \Omega$$

b)
$$R_C > 57 \Omega$$

c)
$$R_C > 196 \Omega^*$$

d)
$$R_C < 57 \Omega$$

e)
$$R_C > 130 \Omega$$

6. Faktor stabilizacije stabilizatora sa slike je $S_u=0.01$, napon proboja Zener diode je 8V, a njezin dinamički otpor $0.4~\Omega$. Na ulaz stabilizatora doveden ulazni napon $U_{UL}=12\mathrm{V}~$. Koliko će biti promjena izlaznog napona ako se zbog promjene otpora trošila izlazna struja promijeni za $10~\mathrm{mA}?$

7. Odrediti izlazni napon za sklop na slici ako je početni napon na kondenzatoru 0 V. Ulazni napon prikazan je na slici. $R = 1 \text{ k}\Omega$, $C = 1 \text{ }\mu\text{F}$. Operacijsko pojačalo je idealno i spojeno je na napajanje -5 V i 5 V.

8. Odrediti izlazni napon u sklopu na slici, ako je $u_{UL1} = 2$ V i $u_{UL2} = 1,6$ V. Naponi napajanja operacijskog pojačala su -5 V i 5 V.

a)
$$u_{IZ} = -5 \text{ V}$$

b)
$$u_{IZ} = -2 \text{ V}*$$

c)
$$u_{IZ} = 2 \text{ V}$$

d)
$$u_{IZ} = 2,4 \text{ V}$$

e)
$$u_{IZ} = -2.4 \text{ V}$$

9. Koliko iznosi izlazni napon za sklop komparatora na slici ako je ulazni napon -3V? Zadano je $U_D \! = \! 0.7V$.

a)
$$-2.8V$$

$$c) +2.8V$$

$$d) +1,4V$$

$$e) +0.7V$$

10. Ako se napon poveća sa -3V na +2V koliko će iznositi izlazni napon nakon promjene (slika iz 9. zadatka)?

a)
$$-2.8V$$

$$d) +1,4V$$

$$e) +0.7V$$

DRUGA SKUPINA ZADATAKA

Napomena-svaki dio zadatka nosi 1 bod

- 1. Koncentracije primjesa na n i p strani diode iznose $N_D=10^{17}$ cm⁻³ i $N_A=10^{15}$ cm⁻³. Parametri manjinskih nosilaca su $\mu_n=850$ cm²/Vs, $\mu_p=300$ cm²/Vs, $\tau_n=1,2$ μ s, $\tau_p=0,8$ μ s. Površina pn spoja iznosi S=2 mm². Vrijedi $L_p>>w_n=1$ μ m i $L_n<< w_p=1$ mm. Pretpostaviti m=1 i da se pokretljivosti ne mijenjaju s temperaturom.
- **1.1.** Izračunati struju zasićenja na *T*=300 K.
- **1.2.** Struju kroz diodu kad se na nju priključi napon U=0.5 V uz $I_S=1.5$ pA i T=300 K.
- **1.3.** Dinamički otpor diode uz priključen napon U=75 mV uz $I_S=150 \text{ pA}$ i T=300 K.
- **1.1.** (a) $I_S = 1,7 \cdot 10^{-13} \text{ A}$
- **1.2.** (a) I = 1.5 mA
- **1.3.** (a) $r_d = 9.5 \text{ M}\Omega^*$

- (b) $I_S = 6.7 \cdot 10^{-13} \text{ A}$
- (b) I = 0.84 mA
- (b) $r_d = 172 \text{ M}\Omega$

- (c) $I_S = 2.9 \cdot 10^{-13} \text{ A}$
- (c) $I = 0.37 \text{ mA}^*$
- (c) $r_d = 500 \text{ G}\Omega$

- (d) $I_S = 3.4 \cdot 10^{-12} \text{ A}*$
- (d) I = 0.01 mA
- (d) $r_d = 29 \text{ M}\Omega$

- (e) $I_S = 2.5 \cdot 10^{-12} \text{ A}$
- (e) I = 3.7 mA
- (e) $r_d = 100 \text{ G}\Omega$
- **2.** Prijenosna karakteristika nekog MOSFET-a prikazana je na slici. Pokretljivost nosilaca u kanalu je $350 \text{ cm}^2/\text{Vs}$, a omjer širine i duljine kanala je $10. \lambda = 0.$
- **2.1.** Odrediti tip MOSFET-a.
- **2.2.** Izračunati struju u točki A ako je debljina silicij-dioksida 60 nm.
- **2.3.** Izračunati strminu u točki B ako je debljina silicij-dioksida 80 nm.

- **2.1.** a) obogaćeni NMOS *
- 2.2.
- a) $I_{DA} = 0.8 \text{ mA}$
- b) osiromašeni NMOSc) obogaćeni PMOS
- b) $I_{DA} = 0.2 \text{ mA}$
- c) $I_{DA} = 0.1 \text{ mA}$
- $C) I_{DA} = 0,1 \text{ IIIA}$
- d) osiromašeni PMOSe) neutralni NMOS
- d) $I_{DA} = 0.450 \text{ mA}$
- e) $I_{DA} = 0.225 \text{ mA} *$

- 2.3.
- a) $g_{mB} = 0.9 \text{ mA/V}$
- b) $g_{mB} = 0.525 \text{ mA/V}$
- c) $g_{mB} = 0.325 \text{ mA/V}$
- d) $g_{mB} = 0.3 \text{ mA/V} *$
- e) $g_{mB} = 0.4 \text{ mA/V}$
- 3. Za pojačalo u spoju zajedničkog kolektora sa slike zadano je R_1 =56k Ω , R_2 =56k Ω , R_E =1,8k Ω , R_P =50k Ω , R_G =10k Ω . Parametri tranzistora su β = h_{fe} =100. Zanemariti porast struje kolektora s naponom u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature U_T =25mV
- **3.1.** Odrediti maksimalni hod signala u_{iz} .
- **3.2.** Odrediti dinamički parametar r_{be} .
- **3.3.** Odrediti ulazni otpor R_{ul} ako se promijene vrijednosti otpornika R_1 i R_2 tako da dinamički parametar r_{be} iznosi 1,5 k Ω .
- **3.4.** Uz r_{be} zadan kao u 3.3. dijelu zadatka izračunati naponsko pojačanje A_{Vg} . $(R_1=R_2=270\text{k}\Omega)$
- **3.5.** Odrediti izlazni otpor pojačala ako se promjene R_1 = R_2 = 270 k Ω uslijed čega se onda mijenja r_{be} =1,5 k Ω .

3.1.	3.2.	3.3.	3.4.	3.5.
a) 6,74V	a) r_{be} =0,12 k Ω	a) R_{ul} =101 k Ω	a) $A_{Vg}=0.88*$	a) 1,8 k Ω
b) 4,6V	b) r_{be} =0,21 k Ω	b) R_{ul} = 183,3 kΩ	b) A_{Vg} =0,69	b) 1000Ω
c) 7,73V	c) r_{be} =26 k Ω	c) R_{ul} =153 k Ω	c) A_{Vg} =-0,49	c) 100 Ω*
d) 2,7	d) r_{be} = 1 k Ω *	d) R_{ul} =33 k Ω	d) A_{Vg} =0,59	d) 180 kΩ
e) 4, 34 V*	e) r_{be} =0,02 k Ω	e) R_{ul} =176 k Ω *	e) A_{Vg} =-0,99	e) $50 \text{ k}\Omega$

- **4.** Parametri Zenerove diode su $U_Z = 10 \text{ V}$, $I_{Zmin} = 1 \text{ mA}$ i $r_z = 10 \Omega$. Faktor strujnog pojačanja tranzistora je $\beta \approx h_{fe} = 100$ i $U_{BE} = 0.7$ V i naponski ekvivalent temperature $U_T = 25$ mV. Ulazni napon kreće se u granicama od 18 V do 22 V, otpor trošila ima minimalni iznos od 100 Ω, a minimalna vrijednost otpora R_I je 500 Ω.
- **4.1.** Odrediti izlazni napon U_{IZ} .
- **4.2.** Odrediti maksimalnu disipaciju snage Zenerove diode.
- **4.3.** Odrediti maksimalnu vrijednost otpora R_1 .
- **4.4.** Koju vrijednost otpornika R_1 je potrebno odabrati da se dobije naponski faktor stabilizacije $S_u = 0,0099$?
- **4.5.** Odrediti izlazni otpor stabilizatora R_{IZ} , ako su vrijednosti otpornika $R_1 = 500 \Omega$ i $R_T = 1 \text{ k}\Omega$.

4.1. 4.2. 4.3. 4.4. 4.5. (a)
$$U_{IZ} = 10.7 \text{ V}$$
 (a) $P_{Zmax} = 0.16 \text{ W}$ (b) $U_{IZ} = 10 \text{ V}$ (b) $P_{Zmax} = 0.24 \text{ W}$ (c) $P_{Zmax} = 0.24 \text{ W}$ (d) $P_{Zmax} = 0.24 \text{ W}$ (e) $P_{Zmax} = 0.32 \text{ W}$ (for $P_{Zmax} = 0.32 \text{ W}$ (fo

- **5.** Za sklop na slici zadano je R_1 =1 k Ω , R_2 =10 k Ω , R_3 =5 k Ω , R_4 =2k Ω , R_5 =10 k Ω , R_6 =10 k Ω , U_{ul} =3 V. Operacijska pojačala su idealna, a napon napajanja pojačala je simetričan i iznosi ±15 V. Odrediti:
- **5.1.** Iznos struje kroz otpornik R_3 ,
- **5.2.** Iznos struje kroz otpornik R_5 ,
- **5.3.** Iznos napona U_1 ,
- **5.4.** Naponsko pojačanje $A_v = u_{iz}/u_{ul}$
- **5.5.** Vrijednost ulaznog otpora R_{ul} .

