Coordinate Transformation Matrix

Let $F=\{f^1, f^{2,f^3,...}f^n\}$ and $M=\{m^1, m^{2,m^3,...}m^n\}$ be coordinate frames of R^n with F being an orthonormal frame. Then for each point p in R^n ,

$$[p]^F = A [p]^M$$

where A is an nxn matrix defined by $A_{kj} = f^k . m^j$ for $1 \le k, j \le n$

Homogeneous Transformation matrix

If a physical point in three-dimensional space is expressed in terms of its homogeneous coordinates and we want to change from one coordinate frame to another, we use a 4x4 homogeneous transformation matrix.

In general T is

$$T = \begin{bmatrix} R & p \\ \hline \eta^T & \sigma \end{bmatrix}$$

The 3x3 matrix R is a rotation matrix

P is a 3x1 translation vector

 η is a perspective vector, set to zero

Inverse Homogeneous Transformation

If T be a homogeneous transformation matrix with rotation R and translation p between two orthonormal coordinate frames and if $\eta=0,\sigma=1$, then the inverse transformation is:

$$T^{-1} = \begin{bmatrix} R^T & -R^T p \\ 0 & 0 & 0 \end{bmatrix}$$

Joint Parameters

The relative position and orientation of two successive links can be specified by two joint parameters joint angle and joint distance

Joint k connects link k-1 to link k. The parameters associated with joint k are defined w.r.t z^{k-1} , which is aligned with the axis of joint k.

The joint angle, θ_k , is the rotation about z^{k-1} needed to make axis x^{k-1} parallel with axis x^k .

Joint distance d_k , is the translation along z^{k-1} needed to make axis x^{k-1} intersect with axis x^k .

Thus joint angle is a rotation about axis of joint k, while joint distance is a translation along joint axis

Link Parameters

The relative position and orientation of the axes of two successive joints can be specified by two link *parameters*, *link length* and *link twist angle*

Link length, a_k is the translation along x^k needed to make axis z^{k+1} intersect z^k

Twist angle, α_k , is the rotation about x^k needed to make axis z^{k-1} parallel with axis z^k

Kinematic Parameters.....

Arm Parameter	Symbol	Revolute Joint (R)	Prismatic Joint (P)
Joint Angle	9(Variable	Fixed
Joint Distance	d (Fixed	Variable
Link Length	a ı	Fixed	Fixed
Link Twist angle	α (Fixed	Fixed

For an n-axis robot manipulator, the 4n kinematic parameters constitute the minimal set needed to specify the kinematic configuration of the robot.

7

Assignment of Coordinate frames: Denavit-Hartenberg Representation

DH Algorithm

- Number the joints from 1 to n starting with the base and ending with the tool yaw, pitch and roll in that order.
- Assign a right-handed orthonormal coordinate frame L₀ to the robot base, making sure that Z⁰ aligns with the axis of joint 1. set k=1
- 3. Align Z^k with the axis of joint k+1
- Locate origin of L_k at the intersection of the Z^k and Z^{k-1}. If they do not intersect, use the intersection of Z^k with a common normal between Z^k and Z^{k-1}.
- Select X^k to be orthogonal to both Z^k and Z^{k-1}. If Z^k and Z^{k-1} are parallel, point X^k away from Z^{k-1}.

DH

- •8. Set the origin of L_n at the tool tip. Align Z^n with the approach vector, y^n with the sliding vector, and x^n with the normal vector of the tool. Set k=1
- •9. Locate point b_k at the intersection of x^k and z^{k-1} axes. If they do not intersect, use the intersection of x^k with a common normal between x^k and z^{k-1} .
- •10 Compute θ_k as the angle of rotation from x^{k-1} to x^k measured about z^{k-1}
- 11 Compute d_k as the distance from the origin of frame to point b_k measured along Z^{k-1}.
- •12 Compute a_k as the distance from point b_k to the origin of frame L measured along x^k .
- •13 Compute α_k as the angle of rotation from Z^{k-1} to Z^k measured about x^k
- 4 set k=k+1. If k≤n, go to step 9; else stop

DH Matrix

Link Coordinate Transformation
$$T_{k-1}^{k} = \begin{bmatrix} C\theta_k & -C\alpha_k S\theta_k & S\alpha_k S\theta_k & \underline{a}_k C\theta_k \\ S\theta_k & C\alpha_k C\theta_k & -S\alpha_k C\theta_k & a_k S\theta_k \\ 0 & S\alpha_k & C\alpha_k & \underline{d}_k \\ 0 & 0 & 1 \end{bmatrix}$$

$$T_{k}^{k-1} = \begin{bmatrix} C\theta_{k} & S\theta_{k} & 0 & -a_{k} \\ -C\alpha_{k}S\theta_{k} & C\alpha_{k}C\theta_{k} & S\alpha_{k} & -d_{k}S\alpha_{k} \\ S\alpha_{k}S\theta_{k} & -S\alpha_{k}C\theta_{k} & C\alpha_{k} & -d_{k}C\alpha_{k} \end{bmatrix}$$

<u>Solvability</u>

$$\begin{bmatrix} n_x & s_x & a_x \\ n_y & s_y & a_y \\ n_z & s_z & a_z \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} C_1C_{234}C_5 + S_1S_5 & -C_1C_{234}S_5 + S_1C_5 & -C_1S_{234} \\ S_1C_{234}C_5 - C_1S_5 & -S_1C_{234}S_5 - C_1C_5 & -S_1S_{234} \\ -S_{234}C_5 & S_{234}S_5 & -C_{234} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} C_1(177.8C_2 + 177.8C_2 - 129.5S_{234}) \\ S_1(177.8C_2 + 177.8C_2 - 129.5S_{234})$$