De Jongh's Theorem for Intuitionistic Zermelo-Fraenkel Set Theory

Robert Passmann September 25, 2019

ILLC, Universiteit van Amsterdam

Preliminaries

• **Brouwer** proposed *intuitionistic mathematics* on a philosophical basis: mathematics as mental constructions.

- **Brouwer** proposed *intuitionistic mathematics* on a philosophical basis: mathematics as mental constructions.
- His intuitionistic mathematics rejects some classical theorems and proves new ones ("classical" example: all functions are continuous).

- **Brouwer** proposed *intuitionistic mathematics* on a philosophical basis: mathematics as mental constructions.
- His intuitionistic mathematics rejects some classical theorems and proves new ones ("classical" example: all functions are continuous).
- **Heyting** formalised the rules of reasoning behind intuitionistic mathematics as *intuitionistic logic*.

- **Brouwer** proposed *intuitionistic mathematics* on a philosophical basis: mathematics as mental constructions.
- His intuitionistic mathematics rejects some classical theorems and proves new ones ("classical" example: all functions are continuous).
- **Heyting** formalised the rules of reasoning behind intuitionistic mathematics as *intuitionistic logic*.
- · Intuitionistic logic is a subsystem of classical logic.

- **Brouwer** proposed *intuitionistic mathematics* on a philosophical basis: mathematics as mental constructions.
- His intuitionistic mathematics rejects some classical theorems and proves new ones ("classical" example: all functions are continuous).
- **Heyting** formalised the rules of reasoning behind intuitionistic mathematics as *intuitionistic logic*.
- · Intuitionistic logic is a subsystem of classical logic.
- Thus allows to study intuitionistic systems that do not contradict classical mathematics/systems.

Intuitionistic logic

Roughly speaking: Intuitionistic propositional logic IPC can be obtained from classical propositional logic CPC by removing the *law of excluded middle* from the axiomatisation.

Intuitionistic logic

Roughly speaking: Intuitionistic propositional logic IPC can be obtained from classical propositional logic CPC by removing the *law of excluded middle* from the axiomatisation.

There is a continuum of intermediate logics J such that $IPC \subseteq J \subseteq CPC$, and CPC is maximally consistent.

ZF(C)

ZF(C) satisfies classical logic

```
ZF(C) satisfies classical logic

UN

IZF
```

ZF(C) satisfies classical logic

U

IZF impredicative, high proof-theoretic strength

```
ZF(C) satisfies classical logic
 17F
        impredicative, high proof-theoretic strength
 C7F
```

```
    ZF(C) satisfies classical logic
    U\(\frac{1}{2}\)
    IZF impredicative, high proof-theoretic strength
    U\(\frac{1}{2}\)
    CZF predicative, low proof-theoretic strength
```

The Propositional Logic of IZF

Logics of theories

Definition

Let T be a theory in intuitionistic predicate logic, formulated in a language \mathcal{L} . We define the *propositional logic of* T:

$$\mathbf{L}(\mathsf{T}) = \{\varphi \,|\, \mathsf{T} \vdash \varphi^\sigma \text{ for all } \sigma : \mathsf{Prop} \to \mathcal{L}^\mathsf{sent}\}$$

4

Logics of theories: Why is this interesting?

 Not interesting in the classical case due to maximality of CPC e.g., L(ZFC) = CPC

Logics of theories: Why is this interesting?

- Not interesting in the classical case due to maximality of CPC e.g., L(ZFC) = CPC
- However, in the intuitionistic case we can construct a theory based on intuitionistic logic and still obtain a stronger logic

e.g.,
$$L(IZF + AC) = CPC$$

or:
$$IPC \subsetneq L(HA + MP + ECT_0) \subsetneq CPC$$

Logics of theories: Why is this interesting?

- Not interesting in the classical case due to maximality of CPC e.g., L(ZFC) = CPC
- However, in the intuitionistic case we can construct a theory based on intuitionistic logic and still obtain a stronger logic

e.g.,
$$L(IZF + AC) = CPC$$

or: $IPC \subsetneq L(HA + MP + ECT_0) \subsetneq CPC$

• This means: Axioms can imply logical principles e.g., the axiom of choice implies tertium non datur.

Let T(J) be the closure of the theory T under the logic J.

Let T(J) be the closure of the theory T under the logic J.

Theorem (de Jongh, 1970)

The propositional logic of Heyting arithmetic HA is IPC, i.e., L(HA) = IPC.

Let T(J) be the closure of the theory T under the logic J.

Theorem (de Jongh, 1970)

The propositional logic of Heyting arithmetic HA is IPC, i.e., L(HA) = IPC.

Theorem (de Jongh, Verbrugge, Visser, 2010)

If J is an intermediate logic that is complete with respect to finite frames, then $L(\mathsf{HA}(J)) = J$.

Let T(J) be the closure of the theory T under the logic J.

Theorem (de Jongh, 1970)

The propositional logic of Heyting arithmetic HA is IPC, i.e., L(HA) = IPC.

Theorem (de Jongh, Verbrugge, Visser, 2010)

If J is an intermediate logic that is complete with respect to finite frames, then $L(\mathsf{HA}(J)) = J$.

Theorem (Ardeshir, Mojtahedi, 2014)

The propositional logic of basic arithmetic BA is the basic propositional calculus **BPC**.

Let T(J) be the closure of the theory T under the logic J.

Theorem (de Jongh, 1970)

The propositional logic of Heyting arithmetic HA is IPC, i.e., L(HA) = IPC.

Theorem (de Jongh, Verbrugge, Visser, 2010)

If J is an intermediate logic that is complete with respect to finite frames, then $L(\mathsf{HA}(J)) = J$.

Theorem (Ardeshir, Mojtahedi, 2014)

The propositional logic of basic arithmetic BA is the basic propositional calculus **BPC**.

Theorem (P., 2018)

If J is a Kripke-complete intermediate logic, then L(BCZF(J)) = J.

In this talk:

Theorem (P.)

If J is an intermediate logic complete with respect to a class of finite trees, then L(IZF(J)) = J.

In this talk:

Theorem (P.)

If J is an intermediate logic complete with respect to a class of finite trees, then L(IZF(J)) = J.

Examples of logics satisfying this condition are IPC, LC, BD_n , and T_n .

7

In this talk:

Theorem (P.)

If J is an intermediate logic complete with respect to a class of finite trees, then L(IZF(J)) = J.

Examples of logics satisfying this condition are IPC, LC, BD_n , and T_n .

Corollary

The propositional logic of IZF is **IPC**.

In this talk:

Theorem (P.)

If J is an intermediate logic complete with respect to a class of finite trees, then L(IZF(J)) = J.

Examples of logics satisfying this condition are IPC, LC, BD_n , and T_n .

Corollary

The propositional logic of IZF is **IPC**.

Corollary

The propositional logic of CZF is **IPC**.

We'll focus on the special case for IPC:

$$\mathsf{IPC} \vdash \varphi \text{ if and only if } \mathsf{IZF} \vdash \varphi^\sigma \text{ for all } \sigma$$

We'll focus on the special case for IPC:

$$\mathsf{IPC} \vdash \varphi \mathsf{ if and only if IZF} \vdash \varphi^\sigma \mathsf{ for all } \sigma$$

• One direction is easy: If IPC $\vdash \varphi$, then IZF $\vdash \varphi^{\sigma}$ for all substitutions $\sigma : \mathsf{Prop} \to \mathcal{L}^{\mathsf{sent}}_{\varepsilon}$.

We'll focus on the special case for IPC:

 $\mathsf{IPC} \vdash \varphi \mathsf{ if and only if IZF} \vdash \varphi^\sigma \mathsf{ for all } \sigma$

- One direction is easy: If IPC $\vdash \varphi$, then IZF $\vdash \varphi^{\sigma}$ for all substitutions $\sigma : \mathsf{Prop} \to \mathcal{L}^{\mathsf{sent}}_{\varepsilon}$.
- We prove the other direction by contraposition: If IPC $\not\vdash \varphi$, then there is a finite tree (K, \leq) and a valuation V such that $(K, \leq, V) \not\vdash \varphi$.

We'll focus on the special case for IPC:

IPC $\vdash \varphi$ if and only if IZF $\vdash \varphi^{\sigma}$ for all σ

- One direction is easy: If IPC $\vdash \varphi$, then IZF $\vdash \varphi^{\sigma}$ for all substitutions $\sigma : \mathsf{Prop} \to \mathcal{L}^{\mathsf{sent}}_{\in}$.
- We prove the other direction by contraposition: If $IPC \not\vdash \varphi$, then there is a finite tree (K, \leq) and a valuation V such that $(K, \leq, V) \not\vdash \varphi$. If we can construct a Kripke model (K, \leq, \mathcal{D}) for IZF and find sentences φ_p such that $V(p) = \llbracket \varphi_p \rrbracket$ for all $p \in Prop$,

8

We'll focus on the special case for IPC:

IPC $\vdash \varphi$ if and only if IZF $\vdash \varphi^{\sigma}$ for all σ

- One direction is easy: If IPC $\vdash \varphi$, then IZF $\vdash \varphi^{\sigma}$ for all substitutions $\sigma : \mathsf{Prop} \to \mathcal{L}^{\mathsf{sent}}_{\in}$.
- We prove the other direction by contraposition: If $IPC \not\vdash \varphi$, then there is a finite tree (K, \leq) and a valuation V such that $(K, \leq, V) \not\vdash \varphi$. If we can construct a Kripke model (K, \leq, \mathcal{D}) for IZF and find sentences φ_p such that $V(p) = \llbracket \varphi_p \rrbracket$ for all $p \in Prop$, then we can finish the proof with an easy induction and show that $(K, \leq, \mathcal{D}) \not\vdash \varphi^{\sigma}$ (where $\sigma : p \mapsto \varphi_p$), i.e., IZF $\not\vdash \varphi^{\sigma}$.

We'll focus on the special case for IPC:

 $\mathsf{IPC} \vdash \varphi \mathsf{ if and only if IZF} \vdash \varphi^\sigma \mathsf{ for all } \sigma$

- One direction is easy: If IPC $\vdash \varphi$, then IZF $\vdash \varphi^{\sigma}$ for all substitutions $\sigma : \mathsf{Prop} \to \mathcal{L}^{\mathsf{sent}}_{\in}$.
- We prove the other direction by contraposition: If $IPC \not\vdash \varphi$, then there is a finite tree (K, \leq) and a valuation V such that $(K, \leq, V) \not\vdash \varphi$. If we can construct a Kripke model (K, \leq, \mathcal{D}) for IZF and find sentences φ_p such that $V(p) = \llbracket \varphi_p \rrbracket$ for all $p \in Prop$, then we can finish the proof with an easy induction and show that $(K, \leq, \mathcal{D}) \not\vdash \varphi^{\sigma}$ (where $\sigma : p \mapsto \varphi_p$), i.e., IZF $\not\vdash \varphi^{\sigma}$.

Left: Construct a model (K, \leq, \mathcal{D}) of IZF with the desired properties!

Finding the right models

Left: Construct a model (K, \leq, \mathcal{D}) of IZF with the desired properties!

Left: Construct a model (K, \leq, \mathcal{D}) of IZF with the desired properties!

What are our options?

Left: Construct a model (K, \leq, \mathcal{D}) of IZF with the desired properties!

What are our options?

Iemhoff's models for a subtheory of CZF?

Left: Construct a model (K, \leq, \mathcal{D}) of IZF with the desired properties!

What are our options?

· Iemhoff's models for a subtheory of CZF? No: set theory too weak!

9

Left: Construct a model (K, \leq, \mathcal{D}) of IZF with the desired properties!

What are our options?

- · Iemhoff's models for a subtheory of CZF? No: set theory too weak!
- Lubarsky's models for IZF/CZF?

Left: Construct a model (K, \leq, \mathcal{D}) of IZF with the desired properties!

What are our options?

- · Iemhoff's models for a subtheory of CZF? No: set theory too weak!
- · Lubarsky's models for IZF/CZF? No: logic too strong!

Left: Construct a model (K, \leq, \mathcal{D}) of IZF with the desired properties!

What are our options?

- · Iemhoff's models for a subtheory of CZF? No: set theory too weak!
- Lubarsky's models for IZF/CZF? No: logic too strong!

We need a new construction: blended models!

Left: Construct a model (K, \leq, \mathcal{D}) of IZF with the desired properties!

What are our options?

- · Iemhoff's models for a subtheory of CZF? No: set theory too weak!
- Lubarsky's models for IZF/CZF? No: logic too strong!

We need a new construction: blended models!

But we don't have much time... so here's an example.

We will construct a Kripke model (K, \leq, \mathcal{D}) such that $(K, \leq, \mathcal{D}) \not\Vdash CH \lor \neg CH$:

We will construct a Kripke model (K, \leq, \mathcal{D}) such that $(K, \leq, \mathcal{D}) \not\models \mathsf{CH} \vee \neg \mathsf{CH}$: Let M be any countable transitive model of $\mathsf{ZFC} + \mathsf{CH}$, and take G to be generic over M such that $M[G] \models \mathsf{ZFC} + \neg \mathsf{CH}$.

We will construct a Kripke model (K, \leq, \mathcal{D}) such that $(K, \leq, \mathcal{D}) \not\models \mathsf{CH} \vee \neg \mathsf{CH}$: Let M be any countable transitive model of $\mathsf{ZFC} + \mathsf{CH}$, and take G to be generic over M such that $M[G] \models \mathsf{ZFC} + \neg \mathsf{CH}$. Then we associate the model M with node e_0 , and M[G] with e_1 , i.e., $M_{e_0} = M$ and $M_{e_1} = M[G]$.

We will construct a Kripke model (K, \leq, \mathcal{D}) such that $(K, \leq, \mathcal{D}) \not\models \mathsf{CH} \vee \neg \mathsf{CH}$: Let M be any countable transitive model of $\mathsf{ZFC} + \mathsf{CH}$, and take G to be generic over M such that $M[G] \models \mathsf{ZFC} + \neg \mathsf{CH}$. Then we associate the model M with node e_0 , and M[G] with e_1 , i.e., $M_{e_0} = M$ and $M_{e_1} = M[G]$.

We will construct a Kripke model (K, \leq, \mathcal{D}) such that $(K, \leq, \mathcal{D}) \not\models \mathsf{CH} \vee \neg \mathsf{CH}$: Let M be any countable transitive model of $\mathsf{ZFC} + \mathsf{CH}$, and take G to be generic over M such that $M[G] \models \mathsf{ZFC} + \neg \mathsf{CH}$. Then we associate the model M with node e_0 , and M[G] with e_1 , i.e., $M_{e_0} = M$ and $M_{e_1} = M[G]$.

What's the domain at v?

By induction on $\alpha \in \operatorname{Ord}^M$, define $\mathcal{D}^{\alpha}_{\nu}$ to consist of the functions $x: \{v, e_0, e_1\} \to \operatorname{ran}(x)$ such that the following properties hold:

By induction on $\alpha \in \operatorname{Ord}^M$, define $\mathcal{D}^{\alpha}_{\nu}$ to consist of the functions $x: \{v, e_0, e_1\} \to \operatorname{ran}(x)$ such that the following properties hold:

1. we have $x(e_i) \in \mathcal{D}_{e_i}^{\alpha}$ for i = 1, 2,

By induction on $\alpha \in \operatorname{Ord}^{M}$, define \mathcal{D}^{α}_{v} to consist of the functions $x : \{v, e_{0}, e_{1}\} \to \operatorname{ran}(x)$ such that the following properties hold:

- 1. we have $x(e_i) \in \mathcal{D}_{e_i}^{\alpha}$ for i = 1, 2,
- 2. we have $x(v) \subseteq \bigcup_{\beta < \alpha} \mathcal{D}_w^{\beta}$, and

By induction on $\alpha \in \operatorname{Ord}^M$, define \mathcal{D}^{α}_{v} to consist of the functions $x: \{v, e_0, e_1\} \to \operatorname{ran}(x)$ such that the following properties hold:

- 1. we have $x(e_i) \in \mathcal{D}_{e_i}^{\alpha}$ for i = 1, 2,
- 2. we have $x(v) \subseteq \bigcup_{\beta < \alpha} \mathcal{D}_{w}^{\beta}$, and
- 3. we have $\{y(e_i) \mid y \in x(v)\} \subseteq x(e_i)$ for i = 1, 2.

By induction on $\alpha \in \operatorname{Ord}^M$, define \mathcal{D}^{α}_{v} to consist of the functions $x: \{v, e_0, e_1\} \to \operatorname{ran}(x)$ such that the following properties hold:

- 1. we have $x(e_i) \in \mathcal{D}_{e_i}^{\alpha}$ for i = 1, 2,
- 2. we have $x(v) \subseteq \bigcup_{\beta < \alpha} \mathcal{D}_{w}^{\beta}$, and
- 3. we have $\{y(e_i) \mid y \in x(v)\} \subseteq x(e_i)$ for i = 1, 2.

By induction on $\alpha \in \operatorname{Ord}^M$, define $\mathcal{D}^{\alpha}_{\nu}$ to consist of the functions $x: \{v, e_0, e_1\} \to \operatorname{ran}(x)$ such that the following properties hold:

- 1. we have $x(e_i) \in \mathcal{D}_{e_i}^{\alpha}$ for i = 1, 2,
- 2. we have $x(v) \subseteq \bigcup_{\beta < \alpha} \mathcal{D}_w^{\beta}$, and
- 3. we have $\{y(e_i) | y \in x(v)\} \subseteq x(e_i)$ for i = 1, 2.

Finally, we define the domain \mathcal{D}_{v} at the node v to be the set

$$\mathcal{D}_{\mathsf{V}} = \bigcup_{\alpha \in \mathrm{Ord}^{\mathsf{M}}} \mathcal{D}_{\mathsf{V}}^{\alpha}.$$

• We have shown that the propositional logics of IZF and CZF are IPC.

- We have shown that the propositional logics of IZF and CZF are **IPC**.
- In fact, a bit more: Every set theory weaker than IZF has the de Jongh property with respect to every intermediate logic characterised by a class of finite trees.

- We have shown that the propositional logics of IZF and CZF are IPC.
- In fact, a bit more: Every set theory weaker than IZF has the de Jongh property with respect to every intermediate logic characterised by a class of finite trees.

Question

Is it the case that L(IZF(J)) = J for all intermediate logics J?

De Jongh's Theorem for Intuitionistic Zermelo-Fraenkel Set Theory (preprint available on my website)

Thank you! - Questions?

Robert Passmann
ILLC, Universiteit van Amsterdam
http://robertpassmann.github.io/

Let (K, \leq) be a finite tree, E_K be its set of end-nodes, and an assignment $e \mapsto M_e$ of end-nodes to models of set theory such that $\operatorname{Ord}^{M_{e_0}} = \operatorname{Ord}^{M_{e_1}}$.

Let (K, \leq) be a finite tree, E_K be its set of end-nodes, and an assignment $e \mapsto M_e$ of end-nodes to models of set theory such that $\operatorname{Ord}^{M_{e_0}} = \operatorname{Ord}^{M_{e_1}}$.

Step 1. Domains for end-nodes

Let (K, \leq) be a finite tree, E_K be its set of end-nodes, and an assignment $e \mapsto M_e$ of end-nodes to models of set theory such that $\operatorname{Ord}^{M_{e_0}} = \operatorname{Ord}^{M_{e_1}}$.

Step 1. Domains for end-nodes

Given an end-node $e \in E_K$ of (K, \leq) , and the associated model M_e , we define a function $f_e : M_e \to V$ as follows by \in -recursion:

$$f_e(x) = (e, f_e[x]).$$

Let (K, \leq) be a finite tree, E_K be its set of end-nodes, and an assignment $e \mapsto M_e$ of end-nodes to models of set theory such that $\operatorname{Ord}^{M_{e_0}} = \operatorname{Ord}^{M_{e_1}}$.

Step 1. Domains for end-nodes

Given an end-node $e \in E_K$ of (K, \leq) , and the associated model M_e , we define a function $f_e : M_e \to V$ as follows by \in -recursion:

$$f_e(x) = (e, f_e[x]).$$

Then let $\mathcal{D}_e = f_e[M_e]$. Hence, each \mathcal{D}_e is a set of functions $K^{\geq e} \to V$ (where $K^{\geq e} = \{e\}$).

Let (K, \leq) be a finite tree, E_K be its set of end-nodes, and an assignment $e \mapsto M_e$ of end-nodes to models of set theory such that $\operatorname{Ord}^{M_{e_0}} = \operatorname{Ord}^{M_{e_1}}$.

Step 1. Domains for end-nodes

Given an end-node $e \in E_K$ of (K, \leq) , and the associated model M_e , we define a function $f_e : M_e \to V$ as follows by \in -recursion:

$$f_e(x) = (e, f_e[x]).$$

Then let $\mathcal{D}_e = f_e[M_e]$. Hence, each \mathcal{D}_e is a set of functions $K^{\geq e} \to V$ (where $K^{\geq e} = \{e\}$). Moreover, for $\alpha \in \operatorname{Ord}^M$, let $\mathcal{D}_e^{\alpha} = f_e[(V_{\alpha})^{M_e}]$.

Let (K, \leq) be a finite tree, E_K be its set of end-nodes, and an assignment $e \mapsto M_e$ of end-nodes to models of set theory such that $\operatorname{Ord}^{M_{e_0}} = \operatorname{Ord}^{M_{e_1}}$.

Step 1. Domains for end-nodes

Given an end-node $e \in E_K$ of (K, \leq) , and the associated model M_e , we define a function $f_e : M_e \to V$ as follows by \in -recursion:

$$f_e(x) = (e, f_e[x]).$$

Then let $\mathcal{D}_e = f_e[M_e]$. Hence, each \mathcal{D}_e is a set of functions $K^{\geq e} \to V$ (where $K^{\geq e} = \{e\}$). Moreover, for $\alpha \in \operatorname{Ord}^M$, let $\mathcal{D}_e^{\alpha} = f_e[(V_{\alpha})^{M_e}]$. Then $\mathcal{D}_e^0 = \emptyset$ and it holds that

$$\bigcup_{\alpha \in \mathrm{Ord}^{\mathsf{M}}} \mathcal{D}_{e}^{\alpha} = \mathcal{D}_{e}.$$

Step 2. Domains for all nodes

Step 2. Domains for all nodes

Step 2. Domains for all nodes

By induction on $\alpha \in \operatorname{Ord}^{M_e}$ simultaneously for all $v \in K \setminus E_K$. Let \mathcal{D}_v^{α} consist of the functions $x : K^{\geq v} \to V$ such that the following properties hold:

1. for all end-nodes $e \ge v$, we have $x \upharpoonright \{e\} \in \mathcal{D}_e^{\alpha}$,

Step 2. Domains for all nodes

- 1. for all end-nodes $e \ge v$, we have $x \upharpoonright \{e\} \in \mathcal{D}_e^{\alpha}$,
- 2. for all non-end-nodes $w \ge v$, we have $x(w) \subseteq \bigcup_{\beta < \alpha} \mathcal{D}_w^{\beta}$, and

Step 2. Domains for all nodes

- 1. for all end-nodes $e \ge v$, we have $x \upharpoonright \{e\} \in \mathcal{D}_e^{\alpha}$,
- 2. for all non-end-nodes $w \ge v$, we have $x(w) \subseteq \bigcup_{\beta < \alpha} \mathcal{D}_w^{\beta}$, and
- 3. for all nodes $u \ge w \ge v$ we have that $\{y \upharpoonright K^{\ge u} \mid y \in x(w)\} \subseteq x(u)$.

Step 2. Domains for all nodes

- 1. for all end-nodes $e \ge v$, we have $x \upharpoonright \{e\} \in \mathcal{D}_e^{\alpha}$,
- 2. for all non-end-nodes $w \ge v$, we have $x(w) \subseteq \bigcup_{\beta < \alpha} \mathcal{D}_w^{\beta}$, and
- 3. for all nodes $u \ge w \ge v$ we have that $\{y \upharpoonright K^{\ge u} \mid y \in x(w)\} \subseteq x(u)$.

Step 2. Domains for all nodes

By induction on $\alpha \in \operatorname{Ord}^{M_e}$ simultaneously for all $v \in K \setminus E_K$. Let \mathcal{D}_v^{α} consist of the functions $x : K^{\geq v} \to V$ such that the following properties hold:

- 1. for all end-nodes $e \ge v$, we have $x \upharpoonright \{e\} \in \mathcal{D}_e^{\alpha}$,
- 2. for all non-end-nodes $w \ge v$, we have $x(w) \subseteq \bigcup_{\beta < \alpha} \mathcal{D}_w^{\beta}$, and
- 3. for all nodes $u \ge w \ge v$ we have that $\{y \upharpoonright K^{\ge u} \mid y \in x(w)\} \subseteq x(u)$.

Finally, we define the domain \mathcal{D}_{v} at the node v to be the set

$$\mathcal{D}_{\mathsf{V}} = \bigcup_{lpha \in \mathrm{Ord}^{\mathsf{M}}} \mathcal{D}_{\mathsf{V}}^{lpha}.$$

Step 2. Domains for all nodes

By induction on $\alpha \in \operatorname{Ord}^{M_e}$ simultaneously for all $v \in K \setminus E_K$. Let \mathcal{D}_v^{α} consist of the functions $x : K^{\geq v} \to V$ such that the following properties hold:

- 1. for all end-nodes $e \ge v$, we have $x \upharpoonright \{e\} \in \mathcal{D}_e^{\alpha}$,
- 2. for all non-end-nodes $w \ge v$, we have $x(w) \subseteq \bigcup_{\beta < \alpha} \mathcal{D}_w^{\beta}$, and
- 3. for all nodes $u \ge w \ge v$ we have that $\{y \upharpoonright K^{\ge u} \mid y \in x(w)\} \subseteq x(u)$.

Finally, we define the domain \mathcal{D}_{v} at the node v to be the set

$$\mathcal{D}_{\mathsf{V}} = \bigcup_{\alpha \in \mathrm{Ord}^{\mathsf{M}}} \mathcal{D}_{\mathsf{V}}^{\alpha}.$$

Transition between domains is by restriction $x \mapsto x \upharpoonright K^{\geq w}$.

Step 3. Defining the semantics

Step 3. Defining the semantics

Inductively define the forcing relation of the Kripke model:

- 1. $(K, \leq, \mathcal{D}), v \Vdash x \in y$ if and only if $x \in y(v)$,
- 2. (K, \leq, \mathcal{D}) , $v \Vdash a = b$ if and only if a = b,
- 3. $(K, \leq, \mathcal{D}), v \Vdash \varphi \land \psi$ if and only if $(K, \leq, \mathcal{D}), v \Vdash \varphi$ and $(K, \leq, \mathcal{D}), v \Vdash \psi$,
- 4. $(K, \leq, \mathcal{D}), v \Vdash \varphi \lor \psi$ if and only if $(K, \leq, \mathcal{D}), v \Vdash \varphi$ or $(K, \leq, \mathcal{D}), v \Vdash \psi$,
- 5. $(K, \leq, \mathcal{D}), v \Vdash \varphi \to \psi$ if and only if for all $w \geq v$, $(K, \leq, \mathcal{D}), w \Vdash \varphi$ implies $(K, \leq, \mathcal{D}), w \Vdash \psi$,
- 6. $(K, \leq, \mathcal{D}), v \Vdash \bot$ holds never.
- 7. $(K, \leq, \mathcal{D}), v \Vdash \exists x \varphi(x, \overline{y})$ if and only if there is some $a \in D_v$ with $(K, \leq, \mathcal{D}), v \Vdash \varphi(a, \overline{y})$,
- 8. $(K, \leq, \mathcal{D}), v \Vdash \forall x \varphi(x, \bar{y})$ if and only if for all $w \geq v$ and $a \in D_w$ we have $(K, \leq, \mathcal{D}), w \Vdash \varphi(a, \bar{y})$.

Constructing blended models: IZF

Theorem (P.)

If K is finite, then the model (K, \leq, \mathcal{D}) satisfies IZF. For arbitrary K, the model (K, \leq, \mathcal{D}) satisfies IZF — Collection.

Constructing blended models: IZF

Theorem (P.)

If K is finite, then the model (K, \leq, \mathcal{D}) satisfies IZF. For arbitrary K, the model (K, \leq, \mathcal{D}) satisfies IZF — Collection.

Proof.

Check all axioms. Collection is the only axiom scheme that needs (?) finiteness.

To show: If **IPC** $\not\vdash \varphi$, then there is σ such that IZF $\not\vdash \varphi^{\sigma}$.

To show: If **IPC** $\not\vdash \varphi$, then there is σ such that IZF $\not\vdash \varphi^{\sigma}$.

For this special case, consider finite splitting trees. Let $\{e_1, \ldots, e_n\}$ be the set of end-nodes. Let M be a countable transitive model of set theory, and take generic G_i for $1 \le i \le n$ such that $M[G_i] \models 2^{\aleph_0} = \aleph_i$. Let (K, \le, \mathcal{D}) be the blended model obtained from $\{M[G_i] | 1 \le i \le n\}$.

To show: If **IPC** $\not\vdash \varphi$, then there is σ such that IZF $\not\vdash \varphi^{\sigma}$.

For this special case, consider finite splitting trees. Let $\{e_1, \ldots, e_n\}$ be the set of end-nodes. Let M be a countable transitive model of set theory, and take generic G_i for $1 \le i \le n$ such that $M[G_i] \models 2^{\aleph_0} = \aleph_i$. Let (K, \le, \mathcal{D}) be the blended model obtained from $\{M[G_i] | 1 \le i \le n\}$.

Let $v \in K$, and take

$$\rho_{\mathsf{V}} = \bigwedge_{e_i \not\geq \mathsf{V}} \neg (2^{\aleph_0} = \aleph_i).$$

Then $\llbracket \rho_v \rrbracket = K^{\geq v}$. Given any valuation V, let $\psi_p = \bigvee_{v \in V(p)} \rho_v$. Define the substitution σ by $p \mapsto \psi_p$.

To show: If **IPC** $\not\vdash \varphi$, then there is σ such that IZF $\not\vdash \varphi^{\sigma}$.

For this special case, consider finite splitting trees. Let $\{e_1, \ldots, e_n\}$ be the set of end-nodes. Let M be a countable transitive model of set theory, and take generic G_i for $1 \le i \le n$ such that $M[G_i] \models 2^{\aleph_0} = \aleph_i$. Let (K, \le, \mathcal{D}) be the blended model obtained from $\{M[G_i] | 1 \le i \le n\}$.

Let $v \in K$, and take

$$\rho_{\mathsf{V}} = \bigwedge_{e_i \not\geq \mathsf{V}} \neg (2^{\aleph_0} = \aleph_i).$$

Then $\llbracket \rho_v \rrbracket = K^{\geq v}$. Given any valuation V, let $\psi_p = \bigvee_{v \in V(p)} \rho_v$. Define the substitution σ by $p \mapsto \psi_p$.

An easy induction shows that $K, \leq, V, v \Vdash \chi$ if and only if $(K, \leq, \mathcal{D}), v \Vdash \chi^{\sigma}$.

To show: If **IPC** $\not\vdash \varphi$, then there is σ such that IZF $\not\vdash \varphi^{\sigma}$.

For this special case, consider finite splitting trees. Let $\{e_1, \ldots, e_n\}$ be the set of end-nodes. Let M be a countable transitive model of set theory, and take generic G_i for $1 \le i \le n$ such that $M[G_i] \models 2^{\aleph_0} = \aleph_i$. Let (K, \le, \mathcal{D}) be the blended model obtained from $\{M[G_i] | 1 \le i \le n\}$.

Let $v \in K$, and take

$$\rho_{\mathsf{V}} = \bigwedge_{e_i \not\geq \mathsf{V}} \neg (2^{\aleph_0} = \aleph_i).$$

Then $\llbracket \rho_v \rrbracket = \mathcal{K}^{\geq v}$. Given any valuation V, let $\psi_p = \bigvee_{v \in V(p)} \rho_v$. Define the substitution σ by $p \mapsto \psi_p$.

An easy induction shows that $K, \leq, V, v \Vdash \chi$ if and only if $(K, \leq, \mathcal{D}), v \Vdash \chi^{\sigma}$. So, given a propositional formula φ such that IPC $\not\vdash \varphi$,

To show: If **IPC** $\not\vdash \varphi$, then there is σ such that IZF $\not\vdash \varphi^{\sigma}$.

For this special case, consider finite splitting trees. Let $\{e_1, \ldots, e_n\}$ be the set of end-nodes. Let M be a countable transitive model of set theory, and take generic G_i for $1 \le i \le n$ such that $M[G_i] \models 2^{\aleph_0} = \aleph_i$. Let (K, \le, \mathcal{D}) be the blended model obtained from $\{M[G_i] | 1 \le i \le n\}$.

Let $v \in K$, and take

$$\rho_{\mathsf{V}} = \bigwedge_{e_i \not\geq \mathsf{V}} \neg (2^{\aleph_0} = \aleph_i).$$

Then $\llbracket \rho_v \rrbracket = \mathcal{K}^{\geq v}$. Given any valuation V, let $\psi_p = \bigvee_{v \in V(p)} \rho_v$. Define the substitution σ by $p \mapsto \psi_p$.

An easy induction shows that $K, \leq, V, v \Vdash \chi$ if and only if $(K, \leq, \mathcal{D}), v \Vdash \chi^{\sigma}$. So, given a propositional formula φ such that **IPC** $\not\vdash \varphi$, there is a finite splitting tree such that $K, \leq, V \not\Vdash \varphi$,

To show: If **IPC** $\not\vdash \varphi$, then there is σ such that IZF $\not\vdash \varphi^{\sigma}$.

For this special case, consider finite splitting trees. Let $\{e_1, \ldots, e_n\}$ be the set of end-nodes. Let M be a countable transitive model of set theory, and take generic G_i for $1 \le i \le n$ such that $M[G_i] \models 2^{\aleph_0} = \aleph_i$. Let (K, \le, \mathcal{D}) be the blended model obtained from $\{M[G_i] | 1 \le i \le n\}$.

Let $v \in K$, and take

$$\rho_{\mathsf{V}} = \bigwedge_{e_i \not\geq \mathsf{V}} \neg (2^{\aleph_0} = \aleph_i).$$

Then $\llbracket \rho_v \rrbracket = \mathcal{K}^{\geq v}$. Given any valuation V, let $\psi_p = \bigvee_{v \in V(p)} \rho_v$. Define the substitution σ by $p \mapsto \psi_p$.

An easy induction shows that $K, \leq, V, v \Vdash \chi$ if and only if $(K, \leq, \mathcal{D}), v \Vdash \chi^{\sigma}$. So, given a propositional formula φ such that **IPC** $\not\vdash \varphi$, there is a finite splitting tree such that $K, \leq, V \not\Vdash \varphi$, and, $(K, \leq, \mathcal{D}) \not\vdash \varphi^{\sigma}$.

To show: If **IPC** $\not\vdash \varphi$, then there is σ such that IZF $\not\vdash \varphi^{\sigma}$.

For this special case, consider finite splitting trees. Let $\{e_1, \ldots, e_n\}$ be the set of end-nodes. Let M be a countable transitive model of set theory, and take generic G_i for $1 \le i \le n$ such that $M[G_i] \models 2^{\aleph_0} = \aleph_i$. Let (K, \le, \mathcal{D}) be the blended model obtained from $\{M[G_i] | 1 \le i \le n\}$.

Let $v \in K$, and take

$$\rho_{\mathsf{V}} = \bigwedge_{e_i \not\geq \mathsf{V}} \neg (2^{\aleph_0} = \aleph_i).$$

Then $\llbracket \rho_v \rrbracket = \mathcal{K}^{\geq v}$. Given any valuation V, let $\psi_p = \bigvee_{v \in V(p)} \rho_v$. Define the substitution σ by $p \mapsto \psi_p$.

An easy induction shows that $K, \leq, V, v \Vdash \chi$ if and only if $(K, \leq, \mathcal{D}), v \Vdash \chi^{\sigma}$. So, given a propositional formula φ such that $\mathsf{IPC} \not\vdash \varphi$, there is a finite splitting tree such that $K, \leq, V \not\Vdash \varphi$, and, $(K, \leq, \mathcal{D}) \not\Vdash \varphi^{\sigma}$. Hence, $\mathsf{IZF} \not\vdash \varphi^{\sigma}$. \square