<u>Complexity Theory and Algorithms</u> <u>Asymptotic Analysis</u>

DISCLAIMER

Disclaimer

The presentation is an amalgamation of information obtained from books and different internet resources and is intended for educational purposes only and does not replace independent professional judgement, statements of fact and opinions.

Major Resource(s)

https://www.cse.unr.edu/~bebis/CS477/

Analysis of Algorithms

- An algorithm is a finite set of precise instructions for performing a computation or for solving a problem.
- What is the goal of analysis of algorithms?
 - To compare algorithms mainly in terms of running time but also in terms of other factors (e.g., memory requirements, programmer's effort etc.)
- What do we mean by running time analysis?
 - Determine how running time increases as the size of the problem increases.

Input Size

- Input size (number of elements in the input)
 - size of an array
 - polynomial degree
 - # of elements in a matrix
 - # of bits in the binary representation of the input
 - vertices and edges in a graph

Types of Analysis

Worst case

- Provides an upper bound on running time
- An absolute guarantee that the algorithm would not run longer, no matter what the inputs are

Best case

- Provides a lower bound on running time
- Input is the one for which the algorithm runs the fastest

$Lower\ Bound \le Running\ Time \le Upper\ Bound$

Average case

- Provides a prediction about the running time
- Assumes that the input is random

How do we compare algorithms?

- We need to define a number of <u>objective</u> measures.
 - (1) Compare execution times?
 Not good: times are specific to a particular computer!!
 - (2) Count the number of statements executed? **Not good**: number of statements vary with the programming language as well as the style of the individual programmer.

Ideal Solution

- Express running time as a function of the input size n (i.e., f(n)).
- Compare different functions corresponding to running times.
- Such an analysis is independent of machine time, programming style, etc.

Example

- Associate a "cost" with each statement.
- Find the "total cost" by finding the total number of times each statement is executed.

Algorithm 1 Algorithm 2 Cost arr[0] = 0; c_1 for (i=0; i< N; i++) c_2 arr[1] = 0; c_1 arr[i] = 0; c_1 arr[2] = 0; c_1 arr[N-1] = 0; c_1 $c_1+c_1+...+c_1=c_1 \times N$ $(N+1) \times c_2+N \times c_1=c_2+C_1 \times N+c_2$

Another Example

Asymptotic Analysis

- To compare two algorithms with running times f(n) and g(n), we need a rough measure that characterizes how fast each function grows.
- Hint: use rate of growth
- Compare functions in the limit, that is, asymptotically!

(i.e., for large values of *n*)

Rate of Growth

 Consider the example of buying elephants and goldfish:

Cost: cost_of_elephants + cost_of_goldfish
Cost ~ cost_of_elephants (approximation)

 The low order terms in a function are relatively insignificant for large n

$$n^4 + 100n^2 + 10n + 50 \sim n^4$$

i.e., we say that $n^4 + 100n^2 + 10n + 50$ and n^4 have the same rate of growth

Asymptotic Notation

- O notation: asymptotic "less than":
 - f(n)=O(g(n)) implies: f(n) "≤" g(n)
- Ω notation: asymptotic "greater than":
 - f(n)= Ω (g(n)) implies: f(n) "≥" g(n)
- • notation: asymptotic "equality":
 - $f(n) = \Theta(g(n))$ implies: f(n) "=" g(n)

Big-O Notation

- We say $f_A(n)=30n+8$ is order n, or O (n) It is, at most, roughly proportional to n.
- $f_B(n)=n^2+1$ is order n^2 , or $O(n^2)$. It is, at most, roughly proportional to n^2 .
- In general, any $O(n^2)$ function is faster-growing than any O(n) function.

Visualizing Orders of Growth

 On a graph, as you go to the right, a faster growing function eventually becomes larger...

More Examples ...

- $n^4 + 100n^2 + 10n + 50$ is $O(n^4)$
- $10n^3 + 2n^2$ is $O(n^3)$
- n^3 n^2 is $O(n^3)$
- constants
 - -10 is O(1)
 - -1273 is O(1)

Back to Our Example

Algorithm 1

$arr[0] = 0; c_1$

$$arr[1] = 0;$$
 c_1 $arr[2] = 0;$ c_1

$$arr[N-1] = 0; c_1$$

$$C_1 + C_1 + ... + C_1 = C_1 \times N$$

Algorithm 2

for(i=0; ic_2
arr[i] = 0;
$$c_1$$

$$(N+1) \times C_2 + N \times C_1 =$$

 $(C_2 + C_1) \times N + C_2$

Cost

Both algorithms are of the same order: O(N)

Example (cont'd)

```
Algorithm 3 Cost

sum = 0; c_1

for(i=0; i<N; i++) c_2

for(j=0; j<N; j++) c_2

sum += arr[i][j]; c_3

c_1 + c_2 \times (N+1) + c_2 \times N \times (N+1) + c_3 \times N^2 = O(N^2)
```

Asymptotic notations

• *O-notation*

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic upper bound* for f(n).

Big-O Visualization

O(g(n)) is the set of functions with smaller or same order of growth as g(n)

Examples

- $2n^2 = O(n^3)$: $2n^2 \le cn^3 \Rightarrow 2 \le cn \Rightarrow c = 1$ and $n_0 = 2$
- $n^2 = O(n^2)$: $n^2 \le cn^2 \Rightarrow c \ge 1 \Rightarrow c = 1$ and $n_0 = 1$
- $1000n^2+1000n = O(n^2)$:

 $1000n^2 + 1000n \le 1000n^2 + n^2 = 1001n^2 \Rightarrow c = 1001$ and $n_0 = 1000$

- $n = O(n^2)$: $n \le cn^2 \Rightarrow cn \ge 1 \Rightarrow c = 1$ and $n_0 = 1$

More Examples

- Show that 30*n*+8 is O(*n*).
 - Show $\exists c, n_0$: 30*n*+8 ≤ *cn*, $\forall n$ >n₀.
 - Let c=31, $n_0=8$. Assume $n>n_0=8$. Then cn=31n=30n+n>30n+8, so 30n+8 < cn.

Big-O example, graphically

- Note 30n+8 isn't less than n anywhere (n>0).
- It isn't even less than 31n everywhere.
- But it is less than
 31n everywhere to the right of n=8.

No Uniqueness

- There is no unique set of values for n₀ and c in proving the asymptotic bounds
- Prove that $100n + 5 = O(n^2)$

$$-100n + 5 \le 100n + n = 101n \le 101n^2$$

for all n ≥ 5

 $n_0 = 5$ and c = 101 is a solution

-
$$100n + 5 \le 100n + 5n = 105n \le 105n^2$$
 for all $n \ge 1$

 $n_0 = 1$ and c = 105 is also a solution

Must find **SOME** constants c and n₀ that satisfy the asymptotic notation relation

Asymptotic notations (cont.)

• Ω - notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

 $\Omega(g(n))$ is the set of functions with larger or same order of growth as g(n)

g(n) is an *asymptotic lower bound* for f(n).

Examples

```
-5n^2 = \Omega(n)
      \exists c, n_0 \text{ such that: } 0 \le cn \le 5n^2 \Rightarrow cn \le 5n^2 \Rightarrow c = 1 \text{ and } n_0 = 1
- 100n + 5 ≠ \Omega(n<sup>2</sup>)
     \exists c, n_0 such that: 0 \le cn^2 \le 100n + 5
     100n + 5 \le 100n + 5n \ (\forall n \ge 1) = 105n
     cn^2 \le 105n \Rightarrow n(cn - 105) \le 0
      Since n is positive \Rightarrow cn - 105 \le 0 \Rightarrow n \le 105/c
      \Rightarrow contradiction: n cannot be smaller than a constant
- n = \Omega(2n), n^3 = \Omega(n^2), n = \Omega(logn)
```

Asymptotic notations (cont.)

• ⊕-notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $\Theta(g(n))$ is the set of functions with the same order of growth as g(n)

g(n) is an asymptotically tight bound for f(n).

Examples

- $n^2/2 n/2 = \Theta(n^2)$
 - $\frac{1}{2} n^2 \frac{1}{2} n \le \frac{1}{2} n^2 \ \forall n \ge 0 \implies c_2 = \frac{1}{2}$
 - $\frac{1}{2}$ $n^2 \frac{1}{2}$ $n \ge \frac{1}{2}$ $n^2 \frac{1}{2}$ $n * \frac{1}{2}$ $n (\forall n \ge 2) = \frac{1}{4}$ n^2 $\Rightarrow c_1 = \frac{1}{4}$

- n ≠ $\Theta(n^2)$: $c_1 n^2 \le n \le c_2 n^2$
 - \Rightarrow only holds for: n \leq 1/C₁

Examples

- $6n^3$ ≠ $\Theta(n^2)$: $c_1 n^2 \le 6n^3 \le c_2 n^2$
 - \Rightarrow only holds for: $n \le c_2 / 6$

- n ≠ $\Theta(\log n)$: $c_1 \log n \le n \le c_2 \log n$
 - \Rightarrow c₂ \ge n/logn, \forall n \ge n₀ impossible

Relations Between Different Sets

Subset relations between order-of-growth sets.

Common orders of magnitude

Common orders of magnitude

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n)=n^2$	$f(n)=n^3$	$f(n) = 2^n$
10	0.003 μs*	0.01 µs	0.033 μs	0.1 µs	1 μs	Lμs
20	0.004 μs	0.02 µs	0.086 µs	$0.4~\mu s$	8 μs	l ms [†]
30	0.005 μs	0.03 µs	0.147 μs	0.9 µs	27 μs	l s
40	0.005 μs	0.04 µs	0.213 µs	1.6 µs	64 μs	18.3 min
50	0.005 μs	0.05 µs	0.282 μs	2.5 µs	.25 μs	13 days
10^{2}	0.007 μs	$0.10 \ \mu s$	0.664 µs	10 μs	1 ms	4×10^{15} years
10^{3}	0.010 μs	1.00 µs	9.966 µs	1 ms	1 s	
10 ⁴	0.013 µs	.0 μs	130 µs	100 ms	16.7 min	
10 ⁵	0.017 μs	0.10 ms	1.67 ms	10 s	11.6 days	
106	0.020 μs	1 ms	19.93 ms	16.7 min	31.7 years	
10^{7}	0.023 µs	0.01 s	0.23 s	1.16 days	31,709 years	
10 ⁸	0.027 µs	0.10 s	2.66 s	115.7 days	3.17 × 10' years	
109	0.030 µs	1 s	29.90 s	31.7 years		

^{*}I $\mu s = 10^{-6}$ second.

 $^{^{\}dagger}1 \text{ ms} = 10^{-3} \text{ second.}$

Logarithms and properties

In algorithm analysis we often use the notation "log n" without specifying the base

Binary logarithm
$$\lg n = \log_2 n$$
 $\log x^y = y \log x$

Natural logarithm $\ln n = \log_e n$ $\log xy = \log x + \log y$
 $\lg^k n = (\lg n)^k$ $\log \frac{x}{y} = \log x - \log y$
 $\lg \lg n = \lg(\lg n)$ $a^{\log_b x} = x^{\log_b a}$
 $\log_b x = \frac{\log_a x}{\log_a b}$

More Examples

 For each of the following pairs of functions, either f(n) is O(g(n)), f(n) is Ω(g(n)), or f(n) = Θ(g(n)). Determine which relationship is correct.

-
$$f(n) = \log n^2$$
; $g(n) = \log n + 5$ $f(n) = \Theta(g(n))$
- $f(n) = n$; $g(n) = \log n^2$ $f(n) = \Omega(g(n))$
- $f(n) = \log \log n$; $g(n) = \log n$ $f(n) = O(g(n))$
- $f(n) = n$; $g(n) = \log^2 n$ $f(n) = \Omega(g(n))$
- $f(n) = n \log n + n$; $g(n) = \log n$ $f(n) = \Omega(g(n))$
- $f(n) = 10$; $g(n) = \log 10$ $f(n) = \Theta(g(n))$
- $f(n) = 2^n$; $g(n) = 10n^2$ $f(n) = \Omega(g(n))$
- $f(n) = 2^n$; $g(n) = 3^n$ $f(n) = O(g(n))$

Properties

• Theorem:

$$f(n) = \Theta(g(n)) \Leftrightarrow f = O(g(n))$$
 and $f = \Omega(g(n))$

- Transitivity:
 - $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
 - Same for O and Ω
- Reflexivity:
 - $f(n) = \Theta(f(n))$
 - Same for O and Ω
- Symmetry:
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

Asymptotic Notations in Equations

- On the right-hand side
 - $\Theta(n^2)$ stands for some anonymous function in $\Theta(n^2)$ 2n² + 3n + 1 = 2n² + $\Theta(n)$ means:

There exists a function $f(n) \in \Theta(n)$ such that $2n^2 + 3n + 1 = 2n^2 + f(n)$

On the left-hand side

$$2n^2 + \Theta(n) = \Theta(n^2)$$

No matter how the anonymous function is chosen on the left-hand side, there is a way to choose the anonymous function on the right-hand side to make the equation valid.

Common Summations

• Arithmetic series:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

· Geometric series:

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} (x \neq 1)$$

- Special case: $|\chi| < 1$:

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

· Harmonic series:

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n$$

Other important formulas:

$$\sum_{k=1}^{n} \lg k \approx n \lg n$$

$$\sum_{k=1}^{n} k^{p} = 1^{p} + 2^{p} + \dots + n^{p} \approx \frac{1}{p+1} n^{p+1}$$

Mathematical Induction

 A powerful, rigorous technique for proving that a statement S(n) is true for every natural number n, no matter how large.

Proof:

- Basis step: prove that the statement is true for n = 1
- Inductive step: assume that S(n) is true and prove that S(n+1) is true for all $n \ge 1$
- Find case n "within" case n+1

Example

- Prove that: $2n + 1 \le 2^n$ for all $n \ge 3$
- Basis step:
 - n = 3: $2 * 3 + 1 \le 2^3 \Leftrightarrow 7 \le 8$ TRUE
- Inductive step:
 - Assume inequality is true for n, and prove it for (n+1):

$$2n + 1 \le 2^n$$
 must prove: $2(n + 1) + 1 \le 2^{n+1}$
 $2(n + 1) + 1 = (2n + 1) + 2 \le 2^n + 2 \le$
 $\le 2^n + 2^n = 2^{n+1}$, since $2 \le 2^n$ for $n \ge 1$