The group G is isomorphic to the group labelled by [60, 7] in the Small Groups library. Ordinary character table of $G \cong C15$: C4:

Trivial source character table of $G \cong C15$: C4 at p = 3: Normalisers N_i

p-subgroups of G up to conjugacy in G			P_1					P_2		
Representatives $n_j \in N_i$	1a	4a	2a	5a	4b	1a	4a	2a	5a	4
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	-1	3	3	-1	0	0	0	0	(
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	1	3	3	1	0	0	0	0	(
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	E(4)	-3	3	-E(4)	0	0	0	0	(
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	3	-E(4)	-3	3	E(4)	0	0	0	0	(
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	12	0	0	-3	0	0	0	0	0	(
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	-E(4)	-1	1	E(4)	1	-E(4)	-1	1	E(
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	E(4)	-1	1	-E(4)	1	E(4)	-1	1	-E
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	1	-1	1	1	-1	1	-1	1	1	_
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	4	0	0	-1	0	4	0	0	-1	(

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1,11,4)(2,16,7)(3,19,9)(5,22,12)(6,25,14)(8,28,17)(10,31,20)(13,34,23)(15,37,26)(18,40,29)(21,43,32)(24,46,35)(27,48,38)(30,51,41)(33,53,44)(36,55,47)(39,56,49)(42,58,52)(45,59,54)(50,60,57)]) \cong C3$

 $N_1 = Group([(1,2,3,6)(4,16,9,25)(5,30,45,27)(7,19,14,11)(8,33,50,13)(15,42)(16,25)(17,57)(18,39)(20,47)(21,24)(22,59)(23,44)(26,52)(27,30)(28,60)(29,49)(31,55)(32,35)(34,53)(37,58)(37,58)($

 $\begin{vmatrix} \chi_8 \\ \chi_8 \end{vmatrix} = 4 - 2 - 1 & E(15)^7 + E(15)^{11} + E(15)^{13} + E(15)^{14} & E(15) + E(15)^2 + E(15)^4 + E(15)^8 & 0 & 0 & 0 \\ \chi_9 \end{vmatrix} = 4 - 2 - 1 & E(15) + E(15)^2 + E(15)^4 + E(15)^8 & E(15)^7 + E(15)^{11} + E(15)^{13} + E(15)^{14} & 0 & 0 & 0 \\ \end{vmatrix}$

 $\begin{array}{cccccc}
0 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
2 & -1 & 0 & 0
\end{array}$