Arduino Programming Assignment (20 Questions)

Ideal for: Students, hobbyists, or job candidates applying for embedded or IoT-related roles.

Section 1: Basics (Q1–Q5)

1. Blink an LED

Write a program to blink the built-in LED (pin 13) every 1 second.

2. Digital Read

Read a button input connected to pin 2 and turn on the LED if the button is pressed.

3. PWM Control

Use analogwrite() to dim an LED on pin 9 in a loop from 0 to 255 and back.

4. **Debounce a Button**

Implement a simple debounce algorithm for a button that toggles an LED.

5. State Toggle

Every time the button is pressed, toggle the LED state (on/off) using only one button.

Section 2: Sensors & Inputs (Q6–Q10)

6. Analog Read

Read an analog value from a potentiometer and display it on the Serial Monitor.

7. Temperature Sensor

Connect an LM35 sensor and print the temperature in Celsius to the Serial Monitor.

8. Light Sensor Trigger

Turn on an LED when the LDR (photoresistor) value drops below a threshold.

9. **Joystick Control**

Read X and Y axis values of a joystick and print direction (LEFT/RIGHT/UP/DOWN) to Serial Monitor.

10. Distance Measurement

Interface an HC-SR04 ultrasonic sensor and print the distance in cm.

Section 3: Outputs & Actuators (Q11–Q14)

11. Servo Motor Sweep

Use the Servo library to sweep a servo from 0 to 180 degrees and back.

12. **Buzzer Alarm**

Play a warning tone when a button is pressed using a piezo buzzer.

13. Traffic Light Simulation

Create a traffic light sequence using three LEDs (red, yellow, green).

14. Seven Segment Display

Display numbers 0–9 in a loop on a 7-segment display using digital pins.

Section 4: Advanced Concepts (Q15–Q17)

15. Interrupts

Use an external interrupt (pin 2 or 3) to increment a counter each time a button is pressed.

16. EEPROM Read/Write

Save a value to EEPROM on button press and retrieve it on reset.

17. Timer with millis()

Blink an LED without using delay(), using millis() instead for timing.

Section 5: Communication & Integration (Q18–Q20)

18. Serial Communication

Receive a number from Serial Monitor and blink the LED that many times.

19. I2C Communication

Connect and display temperature data on an I2C-based OLED display.

20. Bluetooth Control

Control an LED from a mobile app via HC-05 Bluetooth module commands (e.g., "ON", "OFF").

Instructions for Candidate

• Use the Online Arduino IDE or PlatformIO to write, compile and upload your code.

http://arduinodev.com/software/builder/

https://onecompiler.com/cpp/3ygvuaj5c

Simulations:

https://wokwi.com/arduino

- Include comments in your code to explain logic.
- Submit .ino files (or .zip project folder) along with wiring diagrams (optional).
- Focus on code readability, reusability, and hardware understanding.