

ИИ для прогнозирования тренда стоимости Bitcoin на данных Twitter, 4.1

Python *, Twitter API *, Big Data *, Искусственный интеллект

Криптовалюты уже давно стали средством инвестиции, а криптобиржы заняли прочную позицию относительно рынка ценных бумаг и Forex. Трейдеры и инвесторы хотят знать, что будет завтра, через неделю, через час. Технический анализ - хороший инструмент, но он не может предсказать эмоции и настроения людей. В тоже время социальные сети каждую секунду пополняются новыми статьями, публикациями, сториз и пр. И все это несет в себе и оптимизм, и панику и пр. настроения, влияющие на решения людей. Причем людей, пишущих в своих блогах про криптовалюты, мы будем разделять на просто людей и лидеров мнений. Так вот идея заключается в том. что происходящее на рынках является источников всей этой big data'ы постов и мнений в соц. сетях. НО! Но и наоборот все, что "новостится", обсуждается, поститься, пампится и дампится в соц. сетях влияет на рыночные котировки. Конечно киты о своих разворотах никогда никого не предупредят, на то они и киты. Но не исключено, что они как раз постараются опубликовать что-то, что подготовит почву для разворота. И та нейросеть, которую нужно построить, должна в идеале и такие сигналы интерпретировать корректно. Да и в принципе не так важно, для чего этот подход применять: для акций или криптовалют. Да и на последок, перед тем как заняться этой темой, я немного погуглил и понял, что идея конечно же не новая, и есть те, кто уже пробовал это сделать. С одной стороны это хорошо - значит кто-то еще в это верит, а с другой стороны - это не отвечает на вопрос, решаема ли задача.

В этой статье я расскажу о первой серии экспериментов для проверки гипотезы влияния данных Twitter на тренд стоимости Bitcoin. Цель не угадать ценник, а предсказать рост, убывание или относительную неизменность цены.

Я решил не анализировать все твитты всех пользователей, где упоминается биткойн, и ограничился лидерами мнений в количестве 75 шт. Лидеров мнений я отобрал, сматчив 2 статьи на тему влияния отдельных людей на курс битка. Вот список их учеток в Twitter (крипто энтузиасты должны узнать большинство по никнеймам):

@elonmusk, @CathieDWood, @VitalikButerin, @rogerkver, @brockpierce, @SatoshiLite, @JihanWu, @TuurDemeester, @jimmysong, @mikojava, @aantonop, @peterktodd, @adam3us, @VinnyLingham , @bobbyclee, @ErikVoorhees, @barrysilbert, @TimDraper, @brian_armstrong,@koreanjewcrypto, @MichaelSuppo, @DiaryofaMadeMan, @coinbase, @bitfinex, @krakenfx, @BittrexExchange, @BithumbOfficial, @binance, @Bitstamp, @bitcoin, @NEO Blockchain, @Ripple, @StellarOrg, @monero, @litecoin, @Dashpay, @Cointelegraph, @coindesk, @BitcoinMagazine, @CoinMarketCap,@cz_binance, @justinsuntron, @CointelegraphMT, @AweOlaleye, @davidmarcus, @99BitcoinsHQ, @NickSzabo4, @cdixon, @bgarlinghouse, @ethereumJoseph, @chrislarsensf, @starkness, @ChrisDunnTV, @tyler, @cameron, @CryptoHayes, @woonomic, @CremeDeLaCrypto, @PeterLBrandt, @bytemaster7, @APompliano, @jack, @MatiGreenspan, @theRealKiyosaki, @twobitidiot, @TraceMayer,@IOHK_Charles, @fluffypony, @CharlieShrem,@pwuille,@novogratz, @jchervinsky, @lopp, @IvanOnTech, @pierre_rochar

По временному интервалу я ограничился тремя года (2019, 2020, 2021 гг.) Для реализации я использовал библиотеки Keras, язык Python, среда Jupyter notebook, все делал на своем личном

читают сейчас С 13 апреля GitHub начал блокировать аккаунты российских компаний и разработчиков © 33K ■ 148 +148 Сейчас плохо, но все может быть еще © 9.1K ■ 16 +16 СМИ: Google объяснила причину удаления приложений «Сбера» из магазина Google Play © 89K 96 +96 Почему все врут, правда о кривде © 10K = 59 +59 Ноутбуки vs санкции: что реально есть в наличии из интересных лэптопов? € 10K ■ 39 +39 Как совместить карьеру, работу, профессию и призвание

РАБОТА

Турбо

Реклама

Python разработчик 159 вакансий

Data Scientist 97 вакансий

Django разработчик 76 вакансий

Все вакансии

Парсинг Twitter. API Binance.

И так, данные Twitter. Первый челлендж был в том чтобы получить именно их. Twitter отказал 2 или 3 раза в ответ на мои запросы подключиться к их официальным АРІ. При чем немного погуглив, я понял, что это нормальная практика, и я не один такой. К тому же при работе с официальными API Twitter'а есть неприятные ограничения, поэтому я не сильно расстроился. Пришлось "взять в зубы" Selenium, XPath и спарсить Twitter самостоятельно. Я делал это первый раз, но разобрался довольно быстро. Плюс очень боялся, что в процессе меня забанят и придется покупать ір и пр. Мне так говорили люди, которые уже не раз что-то парсили, и трудно было им не верить. Но вопреки всем страхам данные за 3 года (2019, 2020, 2021 гг.) я выкачал без банов примерно за 8 часов. На выходе получил 43 842 твиттов, 12 Мб. По крупному хочу отметить только одну проблему. Когда Twitter перестал открываться в России, пришлось воспользоваться VPN. Благо на то время для обучения у меня уже был скачан основной 3-х годичный датасет, и мне нужно было допарсить январь и февраль 2022 г. Я пробовал два разных VPN, и у меня постоянно крашился DOM, и парсинг останавливался. Один мой товарищ, специализирующийся на парсинге, посоветовал мне включить headless режим (это когда парсинг происходит со скрытым браузером и мы не видим глазами имитацию действий). Headless mode cразу помог. Кстати с товарищем мы познакомились, когда я искал исполнителя для скрапинга(парсинга) на Яндекс услугах. В итоге когда мы начали обсуждать детали, пришло осознание, что YouTube и мои навыки программирования будут достаточны для того, чтобы я справился со всем сам. И еще, оказалось, что не так много людей, профессионально занимающихся парсингом, парсили хотя бы раз Twitter. На графиках ниже динамика твиттов по авторам за три года:

Далее нужно было найти исторические данные изменения цены ВТС, причем с гранулярностью 1ч. Единственное, где я смог это достать - оказались API известной крипто-биржи Binance (https://github.com/binance/binance-public-data/). Очень понятно и очень быстро. Спасибо Binance.

Конкатенация и сопоставление данных Twitter и Binance

И так, гранулярность, с которой я решил начать эксперименты = 1ч. А значит твитты также были распределены по часам. Итого за три года получилось: 26246 записей. Как вы догадались данные твиттов также нелинейно растянулись по временной шкале 3-х лет. И так как в одном часе могло быть пусто, а в другом наоборот написал блогер, да еще не один, да еще не одному посту, то твитты внутри часа нужно было как-то конкатенировать. И конкатенировать их внутри часа я решил по следующему правилу: автор1::: твитт_автора1 автор2::: твитт_автора2 автор3::: твитт_автора3 и т.д. Идея с ":::" заключается в том, что нейронка рано или поздно должна начать выделять на основе своих эмпирических вычислений авторов от своих твиттов. Также во избежание шума те авторы, чье количество твиттов с упоминанием BTC было < 20 за 2019-21 гг. были обезличены, т.е. их никнеймы заменены на OTHER less20. Туда чуть было не угодил Илон Макс, т.к. оказалось, что его твиттов с упоминанием ВТС было не сильно выше порога, всего 37. Он чудом сохранил индивидуальность:) Но это всего лишь гипотезы, как и вся идея, описанная в этой статье. И правило ":::" и "<20" можно и нужно менять. И еще одна важная деталь про датасет. Я сопоставил твитты Т против котировок Т+1. Т.е. предполагается, что нейронка по окончании часа Т будет предсказывать тренд на конец часа Т+1. Опять же момент для калибровки, плюс вообще никто не говорит, что час - это единственная атомарная величина. Можно пробовать с днями и другими гранулами времени.

Перевод текстов твиттов в цифры, а цифры в ОНЕ

Дальше пошла подготовка данных к обучению. Нейросети не принимают на вход слова и символы. А значит сконкатенированные твитты нужно было преобразовать в индексы. Я воспользовался керасовским Tokenizer'ом и создал словарь, задав при этом максимальный индекс=15000. Вначале я пробовал 10000, затем 15000. Разницы в финальных результатах после обучения нейронки выявлено не было. При этом Tokenizer обнаружил 47 742 уникальных значения. Далее в целях нормализации я преобразовал индексы в OneHotEncoding (OHE). Таким

ооразом в качестве ⊼ я получил пиптру матрицу ∠о∠чо⊼ го∪∪ со значениями ∪ и т. А в качестве т

получилась матрица 26246X3. Почему 3 ? Потому что 3 значения было решено использовать для изменения тренда:

- 0: больше -10\$ и меньше +10\$
- 1: меньше -10\$
- 2: больше +10\$

Я решил не учитывать изменения меньшие 10\$, потому что мне понравилось распределение:

```
количество 0 равно: (5452,)
количество 1 равно: (10612,)
количество 2 равно: (10182,)
```

Ну и чтобы еще лучше это нормализовать, к Y был также применен OneHotEncoding. Еще раз для начинающих нейронщиков, которые читают эту статью: X - это то, что подадим на вход нейросети, а Y - то, что хотим получить на выходе. X, Y были разделены на тренировочную выборку Xtrain, Ytrain (24 806 строк) и проверочную Xtest, Ytest (1440 строк).

TimeseriesGenerator

Ну и последняя трансформация с данными перед тем, как врубить обучение. Т.к. мы имеем дело с временными рядами, то при помощи TimeseriesGenerator устанавливаем величину шага для анализа = 48 ч. Чтобы было понятней приведу фрагмент кода:

Как видно из кода батч = 12, т.е. веса при обучении модели будут меняться после 12-ти прохождений через нейронку. Резюме: когда начинается час X, то для предсказания тренда цены биткойна к концу часа X нейросеть будет анализировать твитты, написанные по тематике биткойна лидерами мнений в диапазоне с X-48 часа до X часа.

Нейросети и их обучение

Ну и наконец долгожданное обучение. Я пробовал три разных архитектуры:

- один полносвязный слой;
- полносвязные + сверточные слои;
- UNET сеть;

Обучение 50-ти эпох для каждой занимает в среднем по 3-3,5 часа.

Полносвязная сеть

Слои: Dense, Flatten

Число параметров: 1 014 503

Архитектура:

```
modelD = Sequential()
```

```
modelD.add(Dense(100,input_shape = (xLen,maxWordsCount), activation="relu" ))
modelD.add(Flatten())
modelD.add(Dense(dataTTRcategor.shape[1], activation="sigmoid"))

#Compile
modelD.compile(loss="binary_crossentropy", optimizer=Adam(learning_rate=le-4), metr
```

Результаты (синим - тренировочная выборка, желтым - проверочная):

Сверточная сеть

Слои: Dense, FlattenDense, Flatten, RepeatVector, Conv1D, MaxPooling1D, Dropout

Число параметров: 1 100 523

Архитектура:

```
drop = 0.4
input = Input(shape=(xLen, maxWordsCount))
x = Dense(100, activation='relu')(input)
x = Flatten()(x)
x = RepeatVector(4)(x)
x = ConvID(20, 1, padding='same', activation='relu')(x)
x = MaxPoolingID(pool_size=2)(x)
x = Flatten()(x)
x = Dense(100, activation='relu')(x)
x = Dropout(drop)(x)
x = Dense(dataTTRcategor.shape[1], activation='sigmoid')(x)
modelUPD = Model(input, x)
```

Результаты (синим - тренировочная выборка, желтым - проверочная):

UNET сеть

Слои: Dense, FlattenDense, Flatten, RepeatVector, Conv1D,MaxPooling1D, Dropout, BatchNormalization

Число параметров: 1 933 155

Архитектура:

```
img_input = Input(input_shape)

# Enox 1

x = Conv1D(32 * k , 3, padding='same')(img_input)

x = BatchNormalization()(x)

x = Activation('relu')(x)

x = Conv1D(32 * k, 3, padding='same')(x)

x = BatchNormalization()(x)

block_l_out = Activation('relu')(x)
```

```
# Блок 2
x = MaxPooling1D()(block_1_out)
x = Conv1D(64 * k, 3, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv1D(64 * k , 3, padding='same')(x)
x = BatchNormalization()(x)
block_2_out = Activation('relu')(x)
# Блок 3
x = MaxPooling1D()(block_2_out)
x = Conv1D(128 * k, 3, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv1D(128 * k , 3, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv1D(128 * k , 3, padding='same')(x)
x = BatchNormalization()(x)
block_3_out = Activation('relu')(x)
# Блок 4
x = MaxPooling1D()(block_3_out)
x = Conv1D(256 * k, 3, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv1D(256 * k , 3, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv1D(256 * k , 3, padding='same')(x)
x = BatchNormalization()(x)
block_4_out = Activation('relu')(x)
x = block_4_out
# UP 2
x = Conv1DTranspose(128 * k, kernel_size=3, strides=2, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = concatenate([x, block_3_out])
x = Conv1D(128 * k , 3, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv1D(128 * k , 3, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv1DTranspose(64 * k, kernel_size=3, strides=2, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = concatenate([x, block_2_out])
x = ConvlD(64 * k , 3, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv1D(64 * k , 3, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = ConvlDTranspose(32 * k, kernel_size=3, strides=2, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = concatenate([x, block_1_out])
x = Conv1D(32 * k , 3, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv1D(32 * k , 3, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
```


Результаты (синим - тренировочная выборка, желтым - проверочная):

Ну вот пока так. Удовлетворяющего результата пока нет. Признаться честно я возлагал очень не малые надежды на UNET. Эта архитектура считается в кругах опытных нейронщиков, как best practice. Но, как видите, результаты она дала еще более дикие, чем обычная полносвязка, которая тоже в свою очередь пока дает эффект, равносильный бросанию монетки. Нейронками я увлекаюсь не так давно, поэтому в планах попробовать применить: Q-learning, Сети с вниманием, Генетические алгоритмы и др. Не обещаю, что вторая часть выйдет скоро, но триггером для ее написания должна стать положительная динамика в результатах.

Больше всего хотелось бы получить советы и мнения от нейронщиков и датасаентистов, решавших что-то близкое и не очень, опытных и не совсем. Но также буду благодарен любой обратной связи в комментариях!

Если есть идеи по сотрудничеству и/или, как допилить эту идею)) - велкам в личку! Доведя нейронку до ума, можно будет подумать на тему SaaS продукта. Пару слов о себе: я продакт/ проджект в банкинге с ИТ бэкграндом > 17 лет. Программирование, нейронки, хакатоны - это все мои хобби.

Всем спасибо, что дочитали до конца!

Teru: deep learning, machinelearning, python, parsing data, neural networks, twitter, bitcoin, cryptocurrency, trading, prediction

Хабы: Python, Twitter API, Big Data, Искусственный интеллект

Ваш аккаунт	Раздель		Информация		Услуги			
Войти	Публикац	ии	Устройство сайта		Реклама			
Регистрация	Новости		Для авторов		Тарифы			
	Хабы		Для компаний		Контент			
	Компании		Документы		Семинары			
	Авторы		Соглашение		Мегапроекты			
	Песочниц	a	Конфиденциальность					
© 2006–2022, Habr	Вернуться на старую в	ерсию Техническая под	ддержка О сайте	Настройка	языка f	w 🖪	+	