

Mapping

Feras Dayoub

Learning objectives

- Mapping using an extended Kalman filter.

Lecture 9 Recap - Localization

Ground truth (unknown)

Odometry

EKF localization

Lecture 9 Recap

Prediction step:

$$\bar{\mu}_t = f(\mu_{t-1}, \mathbf{u}_t)$$

$$\bar{\Sigma}_t = \mathbf{J}_{x_t} \mathbf{\Sigma}_{t-1} \mathbf{J}_{x_t}^T + \mathbf{J}_{u_t} \mathbf{R} \mathbf{J}_{u_t}^T$$

Update step:

For each landmark \mathbf{z}_{+}^{i} do:

$$\bar{\mu}_t = \bar{\mu}_t + \mathbf{K}_t^i (\mathbf{z}_t^i - h(\bar{\mu}_t, i)) \Big|_{6}^{6}$$

 $ar{oldsymbol{\Sigma}}_t = (\mathbf{I} - \mathbf{K}_t^i \mathbf{G}_t^i) ar{oldsymbol{\Sigma}}_t$

<u>end</u>

$$\mu_t = \bar{\mu}_t$$

$$oldsymbol{\Sigma}_t = ar{ar{\Sigma}}_t$$

Mapping

Assumptions

- The robot knows its pose with absolute certainty.
- The robot is equipped with noisy range and bearing sensor.
- We have a way to associate the measurements with the already mapped landmarks when they appear in the view again.
- The state and the noise are Normally distributed.

The task

Estimate the position of the landmarks in the map.

The state vector is the map

 The state vector is much larger than what we saw in the localization case.

Is this matrix symmetric?

The covariance matrix

$$\mathbf{\Sigma}_t = \begin{bmatrix} \Sigma_{l_{11}} & \Sigma_{l_{12}} & \dots & \Sigma_{l_{1n}} \\ \vdots & \vdots & \vdots & \vdots \\ \Sigma_{l_{m1}} & \Sigma_{l_{m2}} & \dots & \Sigma_{l_{mn}} \end{bmatrix}$$

The covariance matrix is much bigger and can be written in blocks. Each block tell us the correlation between two landmarks.

Let's start from the EKF set of equations

Prediction step:

$$\bar{\mu}_t = f(\mu_{t-1}, \mathbf{u}_t)$$

$$\bar{\Sigma}_t = \mathbf{J}_{x_t} \mathbf{\Sigma}_{t-1} \mathbf{J}_{x_t}^T + \mathbf{J}_{u_t} \mathbf{R} \mathbf{J}_{u_t}^T$$

For each landmark do:

$$\mu_t = \bar{\mu}_t + \mathbf{K}_t(\mathbf{z}_t - h(\bar{\mu}_t))$$

$$\mathbf{\Sigma}_t = (\mathbf{I} - \mathbf{K}_t \mathbf{G}_t) \bar{\mathbf{\Sigma}}_t$$

Given that the state vector only contain the positions of the landmarks, what is **f** and what are the the Jacobians matrices?

The prediction step

The landmarks are static and do not change between time steps.

$$\bar{\mu_t} = \mu_{t-1}$$

$$\bar{\mathbf{\Sigma}}_t = \mathbf{\Sigma}_{t-1}$$

Prediction step:

$$\bar{\mu_t} = \mu_{t-1}$$

$$\bar{\mathbf{\Sigma}}_t = \mathbf{\Sigma}_{t-1}$$

Update step:

For each landmark do:

$$\mu_t = \bar{\mu}_t + \mathbf{K}_t(\mathbf{z}_t - h(\bar{\mu}_t))$$

$$\mathbf{\Sigma}_t = (\mathbf{I} - \mathbf{K}_t \mathbf{G}_t) \bar{\mathbf{\Sigma}}_t$$

In the context of mapping, what is the function **h**?

Prediction step:

$$ar{\mu_t} = \mu_{t-1}$$
 $ar{\Sigma}_t = \Sigma_{t-1}$ Update step:

$$\mu_t = \bar{\mu}_t + \mathbf{K}_t(\mathbf{z}_t - h(\bar{\mu}_t))$$

$$\mathbf{\Sigma}_t = (\mathbf{I} - \mathbf{K}_t \mathbf{G}_t) \bar{\mathbf{\Sigma}}_t$$

Prediction step:

$$\bar{\mu_t} = \mu_{t-1}$$

 $ar{oldsymbol{\Sigma}}_t = oldsymbol{\Sigma}_{t-1}$

Update step:

For each observed landmark do:

$$\mu_t = \bar{\mu}_t + \mathbf{K}_t^i(\mathbf{z}_t^i - h(\bar{\mu}_t, i, \mathbf{x}_t^r))$$

$$oldsymbol{\Sigma}_t = (\mathbf{I} - \mathbf{K}_t^i \mathbf{G}_t^i) ar{oldsymbol{\Sigma}}_t^i$$

) $\mathbf{z}_t^i = \begin{bmatrix} r^i \\ \beta^i \end{bmatrix}$

We also assume known correspondences

The same measurement model we used for localization

Prediction step:

$$\bar{\mu_t} = \mu_{t-1}$$

$$\Sigma_t = \Sigma_{t-1}$$

Update step:

For each observed landmark do:

$$\mu_t = \bar{\mu}_t + \mathbf{K}_t^i (\mathbf{z}_t^i - h(\bar{\mu}_t, i, \mathbf{x}_t^r))$$

$$\Sigma_t = (\mathbf{I} - \mathbf{K}_t^i \mathbf{G}_t^i) \bar{\Sigma}_t$$

Given that we mapped **n** landmarks at time step **t**, what are the dimensions of these matrices?

The Jacobian matrix of the measurement function

$$\mathbf{G}_{t}^{i} = \frac{\partial h(\mu_{t}, i, \mathbf{x}_{t}^{r})}{\partial \mu_{t}}$$

$$= \begin{bmatrix} 0 & \dots & \frac{x_{l_{i}} - x_{r}}{r} & \frac{y_{l_{i}} - y_{r}}{r} & \dots & 0 \\ 0 & \dots & -\frac{y_{l_{i}} - y_{r}}{r^{2}} & \frac{x_{l_{i}} - x_{r}}{r^{2}} & \dots & 0 \end{bmatrix}$$

Prediction step:

$$\bar{\mu_t} = \mu_{t-1}$$

$$ar{oldsymbol{\Sigma}}_t = oldsymbol{\Sigma}_{t-1}$$

Update step:

For each observed landmark do:

$$\mu_t = \bar{\mu}_t + \mathbf{K}_t^i(\mathbf{z}_t^i - h(\bar{\mu}_t, i, \mathbf{x}_t^r))$$

$$oldsymbol{\Sigma}_t = (\mathbf{I} - \mathbf{K}_t^i \mathbf{G}_t^i) ar{oldsymbol{\Sigma}}_t$$

What if we observe a landmark for the first time (i.e it is not in our state vector yet).

Landmark initialization

Simply expand the state vector with the coordinates of the new

landmark in the map. -

$$\bar{\mu_t}^* = \begin{bmatrix} \bar{\mu_t} \\ l_{new} \end{bmatrix} = \begin{bmatrix} \bar{\mu_t} \\ x_{l_{new}} \\ y_{l_{new}} \end{bmatrix}$$

Given that the robot observes range and bearing to a landmark in its own frame of reference, how can we find the coordinates of the new landmark in the map frame?

The landmark initialization function

$$egin{align*} oldsymbol{z} = egin{bmatrix} r \ oldsymbol{eta} \end{bmatrix}$$
 Range and bearing to a never seen before

$$l_{new} = \begin{bmatrix} x_r + r \times cos(\theta_r + \beta) \\ y_r + r \times sin(\theta_r + \beta) \end{bmatrix}$$

landmark.

What about the covariance matrix?

What is this matrix?

The Jacobian of the landmark initialisation function

$$\mathbf{L}_z = \frac{\partial q(\mathbf{z}, \bar{\mu}_t)}{\partial \mathbf{z}}$$

At time step t=1 in the case where we have observed all the landmarks for the first time

Putting it all together

- Make a new Measurement (range and bearing to a landmark).
- 2. if we have not seen the landmark before:
 - Do landmark initialization based on the robot current pose.

else

- Predict the landmark position based on the robot current pose.
- 3. Update the state vector and the covariance.
- 4. Move.
- 5. Go to 1.

The ellipses are our 3-sigma bounds confidence of the position of the landmarks.

The red stars are the true (unknown) position of the landmarks and the black stars are our estimate.

Next lecture

Simultaneous Localization And **Mapping**

