Edge Coloring

Naina Kumari

IIT DELHI

July 9, 2023

What is edge coloring?

An edge coloring of a graph G is a mapping $f:E(G)\to S$. The elements of S are colors . The edges colored by same color foem a color class . If |S|=k, then f is a k-edge coloring of G.

Line Graph

A line graph L(G) of a simple graph G is obtained by associating a vertex with each edge of the graph and connecting two vertices with an edge iff the corresponding edges of G have a vertex in common

Important Points

- Every edge coloring problem can be converted into a vertex coloring problem.
- ullet Coloring the edges of a graph G is same as coloring the vertices of the line graph L(G)

In general , $\chi(G) \ge \Delta$ where $\Delta = \max$ degree of a vertex in G for any graph G .

Bipartite Graphs

A bipartite graph is a graph in which the vertex set can be partitioned into two sets such that edges only go between sets, not within them.

Figure: Fig 5: Bipartite Graph

Bipartite Graphs

Konig's Theorem

If G is bipartite , then $\chi(G) = \Delta$ where $\Delta = \max$ degree of a vertex in G

Let m = no. of edges in G Base Case: m = 1

It is trivially true

So , let's assume the statement is true for any graph ${\sf G}$ with ${\sf m}$ edges

Claim:
$$\chi(G) = \Delta$$

Proof

Remove an arbitrary edge say (A,B) from G , call this subgraph G^{\prime}

By Induction Hypothesis , G^{\prime} can be colored with Δ colours .

Since max. degree $= \Delta,$ deg(A) $\leq \Delta - 1$ and deg(B) $\leq \Delta - 1$ in G'

It means A and B can also use Δ colors each and so , both A and B each have one unused color , α and β respectively.

Case $1: \alpha = \beta$, then we can use this colour to colour (A,B)

Case 2 : $\alpha \neq \beta$

Clearly , there is a blue edge incident on A (otherwise it would be case 1) , let that edge be incident on some vertex B1.

Subcase 2.1 : There is no red edge incident on $\mathsf{B}1$. It means Red is available at $\mathsf{B}1$.

So, color (A,B1) with red.

Subcase 2.2: There is a red edge incident on B1.

Subcase 2.2.1: There is no blue edge incident on A1.

Subcase 2.2.2: There is a blue edge incident on A1.

So , (A,B) gets coloured without using any extra color . Therefore $\chi(G)=\Delta$

Thus , the proof of Konig's Theorem is complete .

References

- Graph Theory with Applications to Engineering and Computer Science by Narsingha Deo
- GRAPH THEORY WITH APPLICATIONS by J. A. Bondy and U. S. R. Murty

THANK YOU