What is claimed is:

10

- 1. A ride plate positioning mechanism for a personal watercraft having a craft body, 1 an engine and a jet propeller driven by said engine, such that said personal watercraft is 2 capable of being propelled by jet water generated by said jet propeller, 3 said ride plate positioning mechanism comprising: 4 a removable ride plate for defining a bottom portion of a stern of said craft body, 5 said ride plate comprising a pair of integrally formed left and right positioning projections 6 projecting upwardly at a front portion of said ride plate, said positioning projections having 7 front faces for contacting said craft body; and 8 a pair of left and right tab stops formed in said craft body of said watercraft, for 9
- 2. The ride plate positioning mechanism of claim 1, wherein the ride plate further comprises an elevated arresting member extending outwardly at the front end thereof, for stabilizing placement on a support piece.

contacting the front faces of said positioning projections.

1	3. The ride plate positioning mechanism of claim 2, wherein the elevated arresting
2	member is narrower than the widest part of said ride plate.
1	4. The ride plate positioning mechanism of claim 4, wherein said craft body
2	comprises a stator and a dependent ridge which extends downwardly adjacent said stator, and
3	wherein said projecting tabs fit nestingly between said tap stops and said dependent ridge.
1	5. The ride plate positioning mechanism of claim 1, wherein said ride plate includes
2	side edge portions which are raised up in relation to adjoining portions of said ride plate.
1	6. The ride plate positioning mechanism of claim 5, wherein said craft body has an
2	opening formed in said bottom portion of said stern with a pair of shallow, spaced apart
3	stepped recesses formed at the sides of said opening to receive said side edge portions of said
4	ride plate.
1	7. The ride plate positioning mechanism of claim 1, wherein said positioning
2	projections have flattened front faces which are substantially vertically oriented.

2	projections are constructed and arranged to have a substantially rectangular horizontal cross-
3	sectional shape.
1	9. The ride plate positioning mechanism of claim 1, wherein said ride plate further
2	comprises at least one raised rib extending transversely across an upper surface thereof
3	behind said positioning projections.
1	10. The ride plate positioning mechanism of claim 9, wherein said ride plate has a
2	plurality of spaced-apart raised ribs on said upper surface thereof.
1	11. A method of aligning a ride plate with a stern of a personal watercraft,
2	comprising the steps of:
3	placing opposed front corners of said ride plate between opposed stepped recesses
4	formed in a bottom surface of a stern of said watercraft,
5	sliding said ride plate forwardly until a pair of integrally formed left and right
6	positioning projections on an upper front portion of said ride plate contact a pair of left and
7	right tab stops formed in said watercraft stern.

8. The ride plate positioning mechanism of claim 1, wherein said positioning

1	12. The method of claim 11, further comprising a step of pivotally moving said ride
2	plate until the side edges thereof fit into said stepped recesses.
1	13. The method of claim 11, further comprising a step of attaching said ride plate to
2	said watercraft body with fasteners.
1	14. The method of claim 11, wherein said watercraft stern comprises a substantially
2	vertical transverse wall face, and wherein said tab stops are formed as part of said
3	substantially vertical transverse wall face.