Theorem. For every $t \geq 3$, there exists a graph G_t so that $\chi(G_t) = t$ and $\omega(G_t) = 2$.

Proof. By induction on n, the number of people.

Basis: For t = 3, consider the cycle C_5 :

Which can also be drawn as:

As we see, $\chi(G_3) = 3$ and $\omega(G_3) = 2$.

Induction hypothesis: Assume

Induction: Assume that for $t \geq 3$, we have determined the graph G_t . Suppose that G_t has n_t vertices. Lebel the vertices $x_1, x_2, x_3, \ldots, x_{n_t}$.

To construct G_{t+1} we begin by copying the vertices, from G_t (no edges) into an independent set and calling it $I = \{y_1, y_2, y_3, \dots, y_{n_t}\}$.

We then add a copy H_t of G_t with y_i adjacent to x_j if and only if x_i is adjacent to x_j . In other words

Finally we attach a new vertex z adjacent to all vertices in I

Now to determine $\omega(G_{t+1})$ let's look at the cases that there might be a triangle (C_3) present in G_{t+1} :

Case I The traingle comprises of z and 2 nodes from I:

This case is **not possible** since the nodes in I are not adjacent to each other.

Case II The traingle comprises of 3 nodes from I:

This case is **not possible** since the nodes in I are not adjacent to each other.

Case III The traingle comprises of 3 nodes from H_t :

This case is **not possible** since there is no triangle in H_t ($\omega(H_t) = \omega(G_t) = 2$, from the premise).

Case IV The traingle comprises of z, a node from I and another, from H_t : This case is **not possible** since z is is not adjacent to any node in H_t .

Case V The traingle comprises of z, a 2 nodes from H_t : This case is **not possible** since z is is not adjacent to any node in H_t .

Case VI The traingle comprises of one node from H_t and 2 nodes from I: This case is **not possible** since the nodes in I are not adjacent to each other.

Case VII The traingle comprises of one node from I and 2 nodes from H_t : This case is **not possible** since every node in I is adjacent To exactly 2 nodes in H_t that are not adjacent.

Therefore, $\omega(G_{t+1}) = 2$