Correlation between County Political Preference and Big Box Retailers

By Pouya Mohammadi

Honey, pick up some milk from the Republican store

with a Whole Foods and 32% of counties with POLITICS . INTERACTIVE Are You a J. Crew Democrat or a Pizza Hut Barrel - the widest gap ever. 11:12 AM · Dec 8, 2020 · Twitter Web App Republican? orandan als shop at Trader To Beat Trump, Democrats May Need to Break Out of the 'Whole Foods' Liberal or Conservative? Where you shop **Bubble** Trader Joe's De Walmart Repub

Liberal or Conton

Vou Vote

reveals how you vote

Crate & Barrel, L.L.Bean and Sephora: Where you shop during the Christmas holiday season

Liberal or Conton

Reveals how you vote. reveals a lot about how you vote. JIILICS

Why the Hype?

- Computational politics is increasing in popularity
- Increased polarization leads to closer elections
 - Every advantage counts
- Easy, cheap, and targeted way to infer information about voters
 - Could be a future Waffle House Index for politics

Research Question

Is there a correlation between the presence of certain big box retailers in a county and that county's political preferences?

Previous Literature

- Most research through investigative journalism
 - T-tests or comparisons of percentages
- One more in-depth analysis online by Aaron Lee
 - Looks at 60 different stores, using a random forest
- Academic journals used to determine covariates
- Our contribution: more rigorous, scientific analysis

Our data

- Response Variable: % of Votes for Democrats in 2020
 - Provided by @tonmcg on Github
- Our stores: Trader Joe's, Cinemark, Cabela's, Nordstrom
 - Location data scraped from various online sources
 - Encoded as number of stores per 100k residents in county
- Census data used for other county variables
 - These variables determined from previous literature
- Alaska is removed from our dataset

Model Choice

- Beta Regression
 - Response variable is % of votes for Democrats
- Other options
 - Count based models with offset (NB, Poisson)
 - Modeling % of votes for either party
 - Logistic Regression
 - Response variable is the party winner of the county
 - OLS model

Beta Regression

- Assumptions
 - Response follows a Beta distribution
 - Independence between observations
 - Linearity between predictors and response
- The response variable is an observation-specific mean for a Beta distribution, centered at that observation
 - Use Maximum Likelihood Estimation to optimize this and precision parameter

Model Equation

```
logit(\mu_i) = \beta_0 + \beta_1 * (\#. of. Trader. Joes. per. 100k. residents_i) + \beta_2 * (\#. of. Cabelas. per. 100k. residents_i) + \beta_3 * (\#. of. Cinemark. per. 100k. residents_i) + \beta_4 * (\#. of. Nordstrom. per. 100k. residents_i) + \beta_5 * (Percent. White_i) + \beta_6 * (Percent. Black. Population_i) + \beta_7 * (Percent. Hispanic_i) + \beta_8 * (Percent. Asian_i) + \beta_9 * (Percent. Male_i) + \beta_{11} * (Percent. with. College. Education_i) + \beta_{12} * (Percent. in. Poverty_i) + \beta_{13} * (Percent. Unemployed_i) + \beta_{14} * (Urban. County_i = True)
```

Where μ_i is the observation specific mean for a Beta distribution modeling the percentage of Democratic votes in a county and ϕ_i is estimated using $\phi_i = \log(\phi_i)$

Our Dataset

Independent Variables

- Number of Big Box Retailers per 100k
 Residents *
 - ◆ Trader Joe's
 - ◆ Cabela's
 - ◆ Cinemark
 - ◆ Nordstrom
- ♦ Rural vs. Urban **
- % Male
- % Poverty

Dependent va

- Population % by race
 - ◆ Black
 - ◆ White
 - Asian
 - ♦ Hispanic
- % Unemployment

- **Dependent Variable**
 - Percent Votes for Joe Biden in 2020

- * Variables of interest for which we want to draw inferences.
- ** Binary Variables. The rest of the variables are numeric

Results

	Estimates	$\operatorname{Exp}(\operatorname{Estimates})$	Standard Errors	P-Values
Intercept	-0.953	0.385	0.264	<0.001***
Trader Joe's per 100k	1.285	3.614	0.223	< 0.001***
Cabela's per 100k	0.002	1.002	0.059	0.979
Cinemarks per 100k	-0.090	0.914	0.079	0.253
Nordstroms per 100k	0.772	2.165	0.329	0.019*
% White	-1.453	0.234	0.129	< 0.001***
% Black	1.013	2.753	0.126	< 0.001***
% Hispanic	-0.522	0.593	0.136	< 0.001***
% Asian	4.253	70.341	0.418	< 0.001***
% Male	-1.426	0.240	0.406	< 0.001***
% Educated	0.028	1.028	0.001	< 0.001***
% Poverty	-0.001	0.999	0.002	0.567
% Unemployed	0.110	1.117	0.007	< 0.001***
Urban	0.132	1.141	0.020	< 0.001***

Discussion

- There is promise that these markers could be more efficient and effective tools in politics
- Strengths:
 - Big advancement in under-studied area of research
 - Accessible to all and does not rely on paid data
- Weaknesses:
 - Assumes 2 party system
 - Data collection process is cumbersome for adding stores

Sources

- http://clipart-library.com/clipart/gTeoreELc.htm
- https://pngimg.com/uploads/donald-trump/donald-trump-PNG54.png
- https://www.politico.com/interactives/uploads/image-service/2021/2/2/a3feafb2e8.png

Assumption Checks

Assumption Checks

Influential Points/Outlier Checks

Model with Non-Constant Phi

```
Phi coefficients (precision model with log link):
                       Estimate Std. Error z value Pr(>|z|)
(Intercept)
                       5.740051
                                 0.775532 7.401 1.35e-13 ***
                                0.671902 0.027 0.978554
trader_joes_100k
                      0.018062
cabelas_100k
                      -0.111478
                                0.171890 -0.649 0.516632
                                0.219957 2.578 0.009941 **
cinemarks_100k
                      0.567020
nordstroms 100k
                      0.572770
                                1.030838 0.556 0.578460
                                0.389809 3.393 0.000690 ***
perc_white
                      1.322797
perc_black
                      1.644291
                                 0.386354 4.256 2.08e-05 ***
perc_hispanic
                      -0.748993
                                0.412262 -1.817 0.069250 .
perc_asian
                      2.804502
                                1.170219 2.397 0.016550 *
perc male
                     -2.692661
                                1.180939 -2.280 0.022602 *
percent_educated
                      -0.047305
                                 0.003206 - 14.754 < 2e - 16 ***
                                 0.007100 -2.875 0.004040 **
percent_poverty
                      -0.020413
Unemployment_rate_2019
                      0.074787
                                 0.021477 3.482 0.000497 ***
Metro_2013
                       0.398169
                                 0.059363 6.707 1.98e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Model with Only Store Counties

```
Coefficients (mean model with logit link):
                       Estimate Std. Error z value Pr(>|z|)
(Intercept)
                      -1.496100 1.546428 -0.967 0.333316
                                 0.237901 3.488 0.000486 ***
trader_joes_100k
                      0.829847
cabelas 100k
                      -0.164059
                                 0.068719 -2.387 0.016968 *
cinemarks 100k
                      -0.504093
                                 0.112123 -4.496 6.93e-06 ***
nordstroms 100k
                      0.538056
                                 0.318971 1.687 0.091632 .
perc_white
                      1.026308
                                 1.009459 1.017 0.309301
perc_black
                      2.585381
                                 0.993342 2.603 0.009249 **
perc_hispanic
                      2.120932
                                 0.988343 2.146 0.031877 *
perc_asian
                      4.754683
                                 1.254945 3.789 0.000151 ***
perc_male
                      -4.806984
                                 2.191560 -2.193 0.028278 *
percent_educated
                      0.030973
                                 0.003682 8.412 < 2e-16 ***
percent_poverty
                      0.022772
                                 0.007042 3.234 0.001221 **
Unemployment_rate_2019
                      0.054965
                                 0.021105 2.604 0.009204 **
Metro 2013
                      -0.072051
                                 0.101359 -0.711 0.477179
```