

CPE 323 Introduction to Embedded Computer Systems: An Introduction

Dr. Aleksandar Milenkovic

Outline

- Administration
- Technology Trends
- Embedded systems
 - What are they?
 - Where do we find them?
 - Structure and Organization
 - Software Architectures

CPE 323 Administration

Syllabus

- instructor, lab instructors, office hours
- textbook & other references
- grading policy
- important dates
- course outline

Prerequisites

- Digital systems: number representation, combinational (gates), and sequential logic (latches, flip-flops)
- Computer architecture and organization
- C/C++ Programming

Embedded Systems Laboratory

- Located in EB 106
- Lab policies
- Lab assistants

CPE 323 DOs (1-5)

- 1. Work hard, have fun © ... because
 - It's better to have fun than not to have fun ...
 - Many students landed jobs thanks to skill gained in this course
 - Important course for your senior design
 - >80% of senior design projects use microcontrollers
- 2. Manage your time well: lectures, homeworks, labs
- 3. Attend classes
- 3. Make maximum use of class time
 - Skim through lecture notes in advance
 - Take notes
- 4. Ask questions when in doubt
 - It's better to be a fool for 5 minutes of your life by asking a question than to be a fool for the rest of your life by not knowing the answer
- 5. Use instructor's office hours to get extra help
 - I plan to have several non-mandatory recitation session on Friday (time to be determined)

CPE 323 DOs (6-10)

- 6. Make the best from your time in laboratory
 - Learning by doing
 - I hear and I forget, I see and I remember, I do and I understand
- 7. Make the best from your homeworks
 - Learning by doing; Problems similar to exams
 - I hear and I forget, I see and I remember,
 I do and I understand
 - Do not start your homework one hour before the due date
- 8. Collaboration=YES, Cheating=NO
 - Exams tells whether you very practicing the latter
- 9. Learn how to be independent
 - Read textbook, user manuals, reference manuals
 - Important skill to get right information on time
- 10. Make the best of this class
 - Learn how to survive tough course/instructor ©
 - Get real-world problem solving skills
- Become proficient in embedded systems (they are everywhere)

CPE 323 Laboratory DOs

- 1. Read the lab tutorial in advance
 - It has a demo example deconstructed
- 2. Understand assignment(s)
 - Note: Many assignments can be completed outside the lab
- 3. Develop a plan for solving problems
- 4. Give a try to design solution (pen & paper)
- 5. Write the code
- 6. Document your code
- 7. Test your design (try different inputs, corner cases)
- 8. Demonstrate your program executing
- 9. Be proactive: give brief description to demonstrate your solution & good understanding
- 10. Answer questions when asked
 - You will be asked to explain specifics of your solution
 - You will not get FULL credits (if any)
 if you turn in your code without demonstration

CPE323 DON'Ts

- 1. Do not talk during class
 - Respect others (treat others the way you would like to be treated)
- 2. Do not sleep in class
 - Not comfortable, too much noise
 - Classes are not mandatory
- 3. Do not cheat on homeworks
 - Comply with University policies
 - They are perfect tool for exam preparation
 - Give you an important feedback
- 4. Do not cheat in laboratory
 - Comply with University policies
 - Exams include questions related to labs
 - Red flags if discrepancies are uncovered
- 5. Do not be disrespectful to lab instructors
 - They are there to help you, but not to do your work

Outline

- Administration
- Technology Trends
- Embedded systems
 - What are they?
 - Where do we find them?
 - Structure and Organization
 - Software Architectures

Trends

History of Computing

Intel: First 30+ Years

- Intel 4004
 - November 15, 1971
 - 4-bit ALU, 108 KHz, 2,300 transistors, 10-micron technology

- Intel Pentium 4
 - August 27, 2001
 - 32-bit architecture, 1.4 GHz (now 3.08), 42M transistors (now 55+M), 0.18-micron technology (now 0.09)

Technology Directions: SIA Roadmap

Year	1999	2002	2005	2008	2011	2014
Feature size (nm)	180	130	100	70	50	35
Logic trans/cm ²	6.2M	18M	39M	84M	180M	390M
Cost/trans (mc)	1.735	.580	.255	.110	.049	.022
#pads/chip	1867	2553	3492	4776	6532	8935
Clock (MHz)	1250	2100	3500	6000	10000	16900
Chip size (mm ²)	340	430	520	620	750	900
Wiring levels	6-7	7	7-8	8-9	9	10
Power supply (V)	1.8	1.5	1.2	0.9	0.6	0.5
High-perf pow (W)	90	130	160	170	175	183

Transistor Count Growth Rate

Moore's Law

Trends

Clock Frequency Growth Rate

• 30% per year

Performance Trends

Year	Proc.	MIPS
1969	4004	0.06
1970's	808x	0.64

1982 286 1	
------------	--

985	86	5
985	86	5

1989 486	20
----------	----

1996 P II	250
-----------	-----

1999 P III	500
------------	-----

Storage

- Divergence between memory capacity and speed more pronounced
 - Capacity increased by 1000x from 1980-95, speed only 2x
 - Gigabit DRAM by c. 2000, but gap with processor speed much greater
- Larger memories are slower, while processors get faster
 - Need to transfer more data in parallel
 - Need deeper cache hierarchies
 - How to organize caches?

General Technology Trends

- Microprocessor performance increases 50%-100% per year
- Transistor count doubles every 3 years
- DRAM size quadruples every 3 years
- Huge investment per generation is carried by huge commodity market

Trends & Challenges

- Processor/memory discrepancy
 - Memory hierarchy
 - On-chip/off-chip memory
- Microprocessor execution
 - Fetch > Decode > Execute
- System on a chip Microcontroller
 - Cost, smaller PCB, reliability, power.
 - Applications
- Evolution
 - Microprocessor
 - Microprocessor-on-a-chip
 - System-on-a-chip
 - Distributed-system-on-a-chip

More on Challenges

- Scalability
 - billions of small devices
 - performance
- Availability
 - hardware changes
 - system upgrade
 - failures
 - code enhancements
- Fault tolerance

Outline

- Administration
- Technology Trends
- Embedded systems
 - What are they?
 - Where do we find them?
 - Structure and Organization
 - Software Architectures

What are Embedded Computer Systems

- An embedded system is a special-purpose computer system designed to perform one or a few dedicated functions
- Main Characteristics
 - Usually embedded as a part of a complete device that serves a more general purpose (e.g., in car or in MP3 player)
 - Usually heavily optimized for the specific tasks, reducing cost of the product or reducing the size or increasing the reliability and performance
 - Often with real-time computing constraints that must be met, for reasons such as safety (e.g., anti-block systems) and usability (e.g., video consoles)
 - Range from low-end 4-bit microcontrollers to high-performance multiple processor cores on a single chip
 - Software written for embedded systems is often called firmware, and is usually stored in read-only memory or Flash memory chips rather than a disk drive

Early History of Embedded Systems

- **Apollo Guidance Computer**
 - One of the first publicly recognized embedded systems
 - Developed by Charles Stark Draper at the MIT Instrumentation Laboratory
- Autonetics D-17 (1961)
 - Guidance computer for the Minuteman missile
- Intel 4004 (1971), first microprocessor
 - Used in calculators
- Automobiles used microprocessor-based engine controllers (1970's)
 - Control fuel/air mixture, engine timing, etc.
 - Multiple modes of operation: warm-up, cruise, hill climbing, etc.
 - Provides lower emissions, better fuel efficiency

Modern Embedded Systems

- Modern Microcontrollers: (mid 1980s)
 - Microprocessors that include I/O devices and on-chip memory on a chip
- Digital Signal Processors (DSP):
 - Microprocessors optimized for digital signal processing
- Typical embedded processor word sizes: 8-bit, 16bit, 32-bit

Embedded Systems Applications

- Telecommunication equipment: telephone switches, voice and data network bridges and routers
- Consumer electronics: MP3 players, DVD players, digital cameras, GPS receivers, game consoles, ...
- Home appliances: microwave ovens, dishwashers, washers, ...
- Transportation systems: aviation electronics (avionics), vehicle electronics (to increase efficiency and safety, reduce pollution, ...)
- Medical electronics: health monitors, medical imaging (PET, SPECT, CT, MRI)

Future Applications

- Deeply embedded into the environment Wireless Sensor Networks
- Applications
 - Health Monitoring
 - Smart Transportation Systems
 - Smart Roads
 - Habitat Monitoring
 - Military
- Wireless Sensor Networks @ UAHuntsville
 - TinyHMS and SVEDECs

Ubiquitous Health Monitoring

SVEDECs

Traffic Monitoring Using TMotes Vehicle Detection (speed, size)

X-axis readings, Pass Near, 2 sensors separated by 110"

Embedded Systems Organization

4 major components: CPU, Memory, System Bus, and I/O Peripherals

CPUs

- Unlike the personal and server computer markets the embedded processors are fairly diverse featuring
 - Von Neumann as well as Harvard architectures
 - RISC as well as non-RISC and VLIW;
 - Word lengths from 4-bit to 64-bits and beyond (mainly in DSP processors) although the most typical remain 8/16-bit.
 - A large number of different variants and shapes, many of which are also manufactured by several different companies
 - Common architectures are: 65816, 65C02, 68HC08, 68HC11, 68k, 8051, ARM, AVR, AVR32, Blackfin, C167, Coldfire, COP8, eZ8, eZ80, FR-V, H8, HT48, M16C, M32C, MIPS, MSP430, PIC, PowerPC, R8C, SHARC, ST6, SuperH, TLCS-47, TLCS-870, TLCS-900, Tricore, V850, x86, XE8000, Z80, etc.
- Typically embedded CPUs are integrated together with memories and I/O peripherals on a single chip to reduce the cost and size and increase reliability

I/O Peripherals

- Embedded Systems talk with the outside world via peripherals, such as:
 - Serial Communication Interfaces (SCI): RS-232, RS-422, RS-485 etc
 - Synchronous Serial Communication Interface: I2C, JTAG, SPI, SSC and ESSI
 - Universal Serial Bus (USB)
 - Networks: Ethernet, Controller Area Network, LonWorks, etc.
 - Timers: PLL(s), Capture/Compare and Time Processing Units
 - Discrete IO: aka General Purpose Input/Output (GPIO)
 - Analog to Digital/Digital to Analog (ADC/DAC)

A Microcontroller-Based System: An Example

Data Flow

Von Neumann Architecture

- Processing Elements
 - sequential execution
- Read/Write Memory
 - linear array of fixed size cells
 - Data and instruction store
- I/O unit
- Address/Data/Control bus

Von Neumann Architecture

Von Neumann vs. Harvard

Von Neumann Architecture

Harvard Architecture

