Contents

Preface	xv
Chapter 1 Signals, Filters, and Tools	1
1.1 Sinusoidal Signals	1
1.1.1 The Pendulum Analogy	1
Describing Amplitude in the x-y Plane	3
In-Phase and Quadrature Signals	4
1.1.2 The Complex (z-) Plane	6
1.2 Comb Filters	8
1.2.1 The Digital Comb Filter	11
1.2.2 The Digital Differentiator	14
1.2.3 An Intuitive Discussion of the z-Plane	15
1.2.4 Comb Filters with Multiple Delay Elements	17
1.2.5 The Digital Integrator	19
The Delaying Integrator	20
An Important Note	21
1.3 Representing Signals	21
1.3.1 Exponential Fourier Series	22
1.3.2 Fourier Transform	23
Dirac Delta Function (Unit Impulse Response)	23

viii	Con	tents

Chapter 2 Sampling and Aliasing	27
2.1 Sampling	28
2.1.1 Impulse Sampling	28
A Note Concerning the AAF and the RCF	30
Time Domain Description of Reconstruction	31
An Important Note	33
2.1.2 Decimation	33
2.1.3 The Sample-and-Hold (S/H)	35
S/H Spectral Response	35
The Reconstruction Filter (RCF)	39
Circuit Concerns for Implementing the S/H	39
An Example	40
2.1.4 The Track-and-Hold (T/H)	41
2.1.5 Interpolation	43
Zero Padding	44
Hold Register	46
Linear Interpolation	49
2.1.6 K-Path Sampling	50
Switched-Capacitor Circuits	51
Non-Overlapping Clock Generation	53
2.2 Circuits	54
2.2.1 Implementing the S/H	54
Finite Op-Amp Gain-Bandwidth Product	55
Autozeroing	57
Correlated Double Sampling (CDS)	59
Selecting Capacitor Sizes	61
2.2.2 The S/H with Gain	61
Implementing Subtraction in the S/H	63
A Single-Ended to Differential Output S/H	65
2.2.3 The Discrete Analog Integrator (DAI)	66
A Note Concerning Block Diagrams	68
Fully-Differential DAI	69
DAI Noise Performance	70
Chapter 3 Analog Filters	73
3.1 Integrator Building Blocks	73
3.1.1 Lowpass Filters	73
3.1.2 Active-RC Integrators	75

Contents ix

Effects of Finite Op-Amp Gain Bandwidth Product, f _{un}	78
Active-RC SNR	82
3.1.3 MOSFET-C Integrators	83
Why Use an Active Circuit (an Op-Amp)?	85
3.1.4 g _m -C (Transconductor-C) Integrators	86
Common-Mode Feedback Considerations	88
A High-Frequency Transconductor	89
3.1.5 Discrete-Time Integrators	90
An Important Note	94
Exact Frequency Response of an Ideal Discrete-Time Filter	94
3.2 Filtering Topologies	. 95
3.2.1 The Bilinear Transfer Function	95
Active-RC Implementation	97
Transconductor-C Implementation	97
Switched-Capacitor Implementation	98
3.2.2 The Biquadratic Transfer Function	99
Active-RC Implementation	101
Switched-Capacitor Implementation	106
High Q	107
Q Peaking and Instability	112
Transconductor-C Implementation	114
Chapter 4 Digital Filters	119
4.1 SPICE Models for DACs and ADCs	119
4.1.1 The Ideal DAC	119
SPICE Modeling the Ideal DAC	120
4.1.2 The Ideal ADC	121
4.1.3 Number Representation	123
Increasing Word Size (Extending the Sign-Bit)	124
Adding Numbers and Overflow	125
Subtracting Numbers in Two's Complement Format	126
4.2 Sinc-Shaped Digital Filters	126
4.2.1 The Counter	126
Aliasing	127
The Accumulate-and-Dump	129
4.2.2 Lowpass Sinc Filters	129
Averaging without Decimation: A Review	132

x Contents

Cascading Sinc Filters	132
Finite and Infinite Impulse Response Filters	133
4.2.3 Bandpass and Highpass Sinc Filters	134
Canceling Zeroes to Create Highpass and Bandpass Filters	134
Frequency Sampling Filters	138
4.2.4 Interpolation using Sinc Filters	139
Additional Control	142
Cascade of Integrators and Combs	142
4.2.5 Decimation using Sinc Filters	143
4.3 Filtering Topologies	145
4.3.1 FIR Filters	145
4.3.2 Stability and Overflow	146
Overflow	147
4.3.3 The Bilinear Transfer Function	148
The Canonic Form (or Standard Form) of a Digital Filter	151
General Canonic Form of a Recursive Filter	154
4.3.4 The Biquadratic Transfer Function	155
Comparing Biquads to Sinc-Shaped Filters	157
A Comment Concerning Multiplications	158
Chapter 5 Data Converter SNR	163
5.1 Quantization Noise	163
5.1.1 Viewing the Quantization Noise Spectrum Using Simulations	164
Bennett's Criteria	165
An Important Note	166
RMS Quantization Noise Voltage	166
Treating Quantization Noise as a Random Variable	168
5.1.2 Quantization Noise Voltage Spectral Density	169
Calculating Quantization Noise from a SPICE Spectrum	171
Power Spectral Density	172
5.2 Signal-to-Noise Ratio (SNR)	173
Effective Number of Bits	173
Coherent Sampling	175
Signal-to-Noise Plus Distortion Ratio	176
Spurious Free Dynamic Range	177

Contents xi

Dynamic Range	177
Specifying SNR and SNDR	178
5.2.1 Clock Jitter	178
Using Oversampling to Reduce Sampling Clock Jitter Stability Requirements	181
A Practical Note	182
5.2.2 A Tool: The Spectral Density	182
The Spectral Density of Deterministic Signals: An Overview	183
The Spectral Density of Random Signals: An Overview	185
Specifying Phase Noise from Measured Data	189
5.3 Improving SNR using Averaging	190
An Important Note	191
5.3.1 Using Averaging to Improve SNR	192
Ideal Signal-to-Noise Ratio	194
5.3.2 Linearity Requirements	194
5.3.3 Adding a Noise Dither	195
5.3.4 Jitter	198
5.3.5 Anti-Aliasing Filter	198
5.4 Using Feedback to Improve SNR	199
Chapter 6 Data Converter Design Basics	203
The One-Bit ADC and DAC	
The One-Bit ADC and DAC	204
6.1 Passive Noise-Shaping	
6.1 Passive Noise-Shaping	205
6.1 Passive Noise-Shaping	205 208
6.1 Passive Noise-Shaping6.1.1 Signal-to-Noise Ratio6.1.2 Decimating and Filtering the Modulator's Output	205 208 209
6.1 Passive Noise-Shaping6.1.1 Signal-to-Noise Ratio6.1.2 Decimating and Filtering the Modulator's OutputSNR Calculation using a Sinc Filter	205 208 209 211
 6.1 Passive Noise-Shaping 6.1.1 Signal-to-Noise Ratio 6.1.2 Decimating and Filtering the Modulator's Output SNR Calculation using a Sinc Filter 6.1.3 Offset, Matching, and Linearity 	205 208 209 211 212
 6.1 Passive Noise-Shaping 6.1.1 Signal-to-Noise Ratio 6.1.2 Decimating and Filtering the Modulator's Output SNR Calculation using a Sinc Filter 6.1.3 Offset, Matching, and Linearity Resistor Mismatch 	205 208 209 211 212 213
 6.1 Passive Noise-Shaping 6.1.1 Signal-to-Noise Ratio 6.1.2 Decimating and Filtering the Modulator's Output SNR Calculation using a Sinc Filter 6.1.3 Offset, Matching, and Linearity Resistor Mismatch The Feedback DAC 	205 208 209 211 212 213 213
 6.1 Passive Noise-Shaping 6.1.1 Signal-to-Noise Ratio 6.1.2 Decimating and Filtering the Modulator's Output SNR Calculation using a Sinc Filter 6.1.3 Offset, Matching, and Linearity Resistor Mismatch The Feedback DAC DAC Offset 	205 208 209 211 212 213 213 214
 6.1 Passive Noise-Shaping 6.1.1 Signal-to-Noise Ratio 6.1.2 Decimating and Filtering the Modulator's Output SNR Calculation using a Sinc Filter 6.1.3 Offset, Matching, and Linearity Resistor Mismatch The Feedback DAC DAC Offset Linearity of the First-Order Modulator 	205 208 209 211 212 213 213 214 214 214
 6.1 Passive Noise-Shaping 6.1.1 Signal-to-Noise Ratio 6.1.2 Decimating and Filtering the Modulator's Output SNR Calculation using a Sinc Filter 6.1.3 Offset, Matching, and Linearity Resistor Mismatch The Feedback DAC DAC Offset Linearity of the First-Order Modulator Dead Zones 	205 208 209 211 212 213 213 214 214 214
 6.1 Passive Noise-Shaping 6.1.1 Signal-to-Noise Ratio 6.1.2 Decimating and Filtering the Modulator's Output SNR Calculation using a Sinc Filter 6.1.3 Offset, Matching, and Linearity Resistor Mismatch The Feedback DAC DAC Offset Linearity of the First-Order Modulator Dead Zones 6.2 Improving SNR and Linearity 	205 208 209 211 212 213 214 214 215
 6.1 Passive Noise-Shaping 6.1.1 Signal-to-Noise Ratio 6.1.2 Decimating and Filtering the Modulator's Output SNR Calculation using a Sinc Filter 6.1.3 Offset, Matching, and Linearity Resistor Mismatch The Feedback DAC DAC Offset Linearity of the First-Order Modulator Dead Zones 6.2 Improving SNR and Linearity 6.2.1 Second-Order Passive Noise-Shaping 	205 208 209 211 212 213 214 214 215 215

xii	Contents
-----	----------

Effects of the Added Amplifier on Linearity	224
6.2.4 Improving Linearity Using an Active Circuit	225
Second-Order Noise-Shaping	227
Signal-to-Noise Ratio	229
Discussion	230
Chapter 7 Noise-Shaping Data Converters	233
7.1 First-Order Noise Shaping	233
A Digital First-Order NS Demodulator	235
7.1.1 Modulation Noise in First-Order NS Modulators	236
7.1.2 RMS Quantization Noise in a First-Order Modulator	237
7.1.3 Decimating and Filtering the Output of a NS Modulator	239
7.1.4 Pattern Noise from DC Inputs (Limit Cycle Oscillations)	241
7.1.5 Integrator and Forward Modulator Gain	243
7.1.6 Comparator Gain, Offset, Noise, and Hysteresis	246
7.1.7 Op-Amp Gain (Integrator Leakage)	247
7.1.8 Op-Amp Settling Time	248
7.1.9 Op-Amp Offset	250
7.1.10 Op-Amp Input-Referred Noise	250
7.1.11 Practical Implementation of the First-Order NS Modulator	251
7.2 Second-Order Noise-Shaping	253
7.2.1 Second-Order Modulator Topology	253
7.2.2 Integrator Gain	257
Implementing Feedback Gains in the DAI	260
Using Two Delaying Integrators to Implement the Second-Order Modulator	263
7.2.3 Selecting Modulator (Integrator) Gains	264
7.3 Noise-Shaping Topologies	264
7.3.1 Higher-Order Modulators	265
M th -Order Modulator Topology	265
7.3.2 Filtering the Output of an M th -Order NS Modulator	266
7.3.3 Implementing Higher-Order, Single-Stage Modulators	267
7.3.4 Multi-Bit Modulators	269
Simulating a Multibit NS Modulator Using SPICE	269
7.3.5 Error Feedback	271

Contents xiii

Implementation Concerns	274
7.3.6 Cascaded Modulators	275
Second-Order (1-1) Modulators	275
Third-Order (1-1-1) Modulators	277
Third-Order (2-1) Modulators	277
Implementing the Additional Summing Input	279
Chapter 8 Bandpass Data Converters	285
8.1 Continuous-Time Bandpass Noise-Shaping	287
8.1.1 Passive-Component Bandpass Modulators	287
An Important Note	289
8.1.2 Active-Component Bandpass Modulators	289
Signal-to-Noise Ratio	290
8.1.3 Modulators for Conversion at Radio Frequencies	291
8.2 Switched-Capacitor Bandpass Noise-Shaping	292
8.2.1 Switched-Capacitor Resonators	292
8.2.2 Second-Order Modulators	294
8.2.3 Fourth-Order Modulators	296
A Common Error	297
A Comment about 1/f Noise	297
8.2.4 Digital I/Q Extraction to Baseband	297
Chapter 9 A High-Speed Data Converter	301
9.1 The Topology	301
9.1.1 Clock Signals	301
Path Settling Time	302
9.1.2 Implementation	303
9.1.3 Filtering	306
Examples	307
Direction	312
9.1.4 Discussion	312
9.1.5 Understanding the Clock Signals	315
9.2 Practical Implemenation	316
9.2.1 Generating the Clock Signals	316
9.2.2 The Components	318
The Switched-Capacitors	318
The Amplifier	318
The Clocked Comparator	319
9.2.3 The ADC	320

9.3 Conclusion	
XIV	Contents 322