PCT

INTELLECTUAL PROPERTY ORGANIZATION International Bureau

202KU05.us

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) BC

(51) International Patent Classification 6:

B01D 53/86, 53/94

(11) International Publication Number: (43) International Publication Date:

WO 99/49954

7 October 1999 (07.10.99)

(21) International Application Number:

PCT/NL99/00190

A1

(22) International Filing Date:

30 March 1999 (30.03.99)

(30) Priority Data:

1008746

30 March 1998 (30.03.98)

NL.

(71) Applicant (for all designated States except US): STICHT-ING ENERGIEONDERZOEK CENTRUM NEDERLAND [NL/NL]; Westerduinweg 3, NL-1755 Le Petten (NL).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): RAK, Zbigniew, Stanislaw [NL/NL]; Vijzelstraat 13, NL-1825 KT Alkmaar (NL). VERHAAK, Michael, Johannes, Franciscus, Maria [NL/NL]; Westerweg 41, NL-1815 DB Alkmaar (NL). BOS, Ariejan [NL/NL]; Zwarte Dolfijn 31, NL-1704 VR Heerhugowaard (NL). CENTI, Gabriele [IT/IT]; Via Verso Lido, 7, I-98165 Ganzirri (IT).
- (74) Agents: DE BRUIJN, Leendert, C. et al.; Nederlandsch Octrooibureau, Scheveningseweg 82, P.O. Box 29720, NL-2502 LS The Hague (NL).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK. MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA. ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: METHOD FOR THE CONVERSION OF DINITROGEN OXIDE

(57) Abstract

The invention relates to a method for the catalytic reduction of dinitrogen oxide (N2O) in the presence of zeolite with the addition of a reducing agent, characterised in that the reducing agent used is a saturated hydrocarbon such as methane (CH₄), propane (C₃H₈), LPG (C₃H₈/C₄H₁₀) or a combination of these reducing agents. It has been found that temperatures of 400 °C or lower can be achieved for complete N2O conversion even with very low concentrations of the reducing agent and in the presence of water vapour.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD.	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

10

20

25

30

Method for the conversion of dinitrogen oxide

The invention relates to a method for the catalytic reduction of dinitrogen oxide (N_2O) in the presence of a zeolite as catalyst.

Dinitrogen oxide (N₂O) is a byproduct in the formation of adipic acid for the production of nylon and in the formation of nitric acid, occurs in the exhaust gases of motor vehicles which have internal combustion engines and is formed in off-gases at high temperature. Because dinitrogen oxide makes a 270 times greater contribution to the greenhouse effect than does carbon dioxide, a reduction in the emissions thereof is urgent from an environmental standpoint and a great deal of research is being carried out in this field.

From Catalysis Letters 44 (1997); J.C. Balzer AG Science Publishers, pages 271-274, it is known to reduce dinitrogen oxide by passing it with propene over a Fe-MFI or Cu-MFI catalyst. With this method the propene concentration is 1000 ppm and the dinitrogen oxide concentration 500 ppm and for the Fe-MFI catalyst a conversion of approximately 75 % is obtained at a temperature of approximately 400 °C and in the presence of water vapour.

From the 11th International Congress on Catalysis-40th anniversary Studies in Surface Science and Catalysis vol. 101 (1996); Elsevier Science B.V., pages 641-650, it is known to decompose N₂O in the presence of a ZSM-5 catalyst such as Cu-, Fe- and Co-substituted ZSM-5 zeolites.

US-A 5 171 553 discloses the decomposition of N_2O to give nitrogen and oxygen by the use of a zeolite of the BETA, MOR, MFI, MEL or FER type which has been at least partially substituted by a metal compound of copper, cobalt, rhodium, iridium, ruthenium or palladium.

US-A 4 571 329 and JP-A 08057262 disclose reduction of N_2O by ammonia using a zeolite substituted by iron. Furthermore, JP-A 09000884 discloses reduction of N_2O with an alcohol and/or a hydrocarbon using a zeolite substituted by iron.

US-A 5 149 512 discloses a method for the catalytic reduction of NOx (i.e. NO and NO₂) using methane as reducing agent and in the presence of oxygen and a metal-substituted zeolite having a silicon/aluminium ratio greater than 2.5.

From Applied Catalysis B: Environmental, 2 (1993); Elsevier Science Publishers B.V., Amsterdam, pages 239-256, it is known to reduce NOx by passing it over a Co-, Mnor Ni-ZSM-5 catalyst in the presence of methane.

10

15

20

25

30

Catalysis Today 22 (1994), Elsevier, pages 147-169 gives a review of catalysts and reducing agents for reducing the emission of nitrogen oxides (NO and NO₂), including metal-substituted ZSM-5 type zeolites and other zeolites in combination with methane, propane, propene and the like.

One aim of the present invention is to provide a method for the reduction of dinitrogen oxide at relatively low temperatures, with the conversion efficiency having a relatively low sensitivity to the presence of water (H₂O), oxygen (O₂), carbon monoxide (CO) and sulphur dioxide (concentrations below 200 ppm SO₂).

A further aim of the present invention is to provide a catalyst which has a high chemical and thermal stability in the presence of the said gas components.

To this end the invention is characterised in that a saturated hydrocarbon, preferably methane (CH₄), propane (C₃H₈) or LPG (mixture of C₃H₈ and C₄H₁₀), or a combination thereof, is used as reducing agent.

It has been found, surprisingly, that by using a saturated hydrocarbon, such as methane, propane or LPG, as reducing agent the reduction in the presence of a zeolite catalyst can be carried out at temperatures below 400 °C and the sensitivity of the conversion is only slightly adversely affected by the presence of water. Furthermore, methane and propane are inexpensive raw materials, certainly compared with propene as described in Catalysis Letters 44 (1997), and the costs of the conversion consequently remain restricted. In particular, it has been found that an iron-substituted zeolite in the presence of methane and propane gives better conversion than other metal-substituted zeolites. Preferably, an Fe-ZSM-5 type zeolite is used as catalyst without the addition of expensive noble metals. Efficient conversion takes place at an SiO₂:Al₂O₃ ratio of less than 100, preferably of less than 65, and most preferentially of less than 40. A further advantage compared with the prior art is that the preparation of the Fe-ZSM-5 catalysts is technically simple. The iron-substituted zeolites display high stability as a function of time in the presence of gas components such as H₂O, O₂, CO, NH₃ and SO₂.

The invention will be explained in more detail with the aid of the following examples together with the appended figures.

In the figures:

Figure 1 shows the conversion activity of a catalyst D for N₂O without reducing agent in the absence and the presence of 2 % water,

Figure 2 shows the conversion activity of a catalyst D in the presence of 1500, 1000,

500 or 230 ppm C_3H_8 in addition to 6 % oxygen and 2 % water,

Figure 3 shows the stability of the N_2O conversion with catalyst D in the presence of 6 % O_2 , 2 % H_2O and 1500 ppm C_3H_8 at 340 °C.

Figure 4 shows the effect of water on the stability of catalyst D in the presence of $6 \% O_2$ and 125 ppm CH_4 at 360 °C.

In the following tests Fe-ZSM-5 catalysts have been prepared from Mohr's salts by means of ion exchange. The conversion of N₂O to N₂ and O₂ and the influence of 2 % water on the conversion has then been determined in III below. The effect of the reducing agent and the effect of the concentration thereof have also been determined in, respectively, IV and V. The stability of the catalyst and the effect of the SiO₂:Al₂O₃ ratio have been given in VI and VII below. The effect of ammonia on the catalytic reduction with and without methane has been determined in VIII.

I. Preparation of Fe-ZSM-5 catalysts

15

10

The catalysts according to the present invention were produced by adding ZSM-5 powder (dried for 24 hours at 125 °C) to a solution of $(NH_4)_2Fe(SO_4)_2.6H_2O$ (Mohr's salt). The ion exchange conditions are indicated in Table 1.

Table 1

		I	on exchange condition	s
	Catalyst			Parameters
	Α	10 g		1x8 h
5		NH₄ZSM5-27	0.01M Fe	in N ₂ atm
				at 80 °C
	В	10 g	1 litre	2x8 h
		NH₄ZSM5-27	0.01M Fe	in N ₂ atm
10				at 80 °C
	С	10 g	1 litre	1x8 h
		NH₄ZSM5-27	0.01M Fe	at 80 °C
15				
	D	10 g	1 litre	2x8 h
		NH₄ZSM5-27	0.01M Fe	at 80 °C
20	E	10 g	1 litre	1x8 h
	-	NH₄ZSM5-55	0.01M Fe	at 80 °C

Following the ion exchange step, the suspensions were filtered through a Buchner funnel containing a strip of filter paper. If a second ion exchange step was carried out, the filter cake was left to stand overnight on the filter paper. In other cases the filter cake was introduced into 1 litre demineralised water and stirred for half an hour and then filtered off. The pulverulent catalysts were dried at 80 °C for 16 hours and then calcined at 550 °C for 5 hours.

. 45.25.E.

10

20

25

30

II. Test equipment

The conversion of dinitrogen oxide (N2O) was studied in an automated micro-flow set-up, operating under atmospheric pressure. The following gases are available to the setup: He (optionally with H₂O). NH₃, H₂, O₂, N₂, CO, CO₂ and CH₄. The gases O₂, N₂, CO₂ and CH₄ were determined with the aid of a Varian gas chromatograph model 3300, equipped with a methaniser, a TCD detector and a FID detector. N2O and CO were determined using a Bomem FT infrared analyser model MB 100. The precursor was contained in a reactor made of pyrex glass having an internal diameter of 10 mm. The catalyst bed was covered with glass wool and a layer of glass beads. The height of the catalyst bed was 10 mm, whilst the gas flow was approximately 150 ml/min. The space velocity (SV) in this case was 11 500 h⁻¹. The requisite amount of precursor (0.5 - 0.71 mm fraction) was approximately 500 mg. The temperature was measured immediately below the catalyst bed with the aid of a Cr/Al thermocouple. During the tests 10 % and 1 % C₃H₈, 4 % CH₄ and/or 0.5 % NH₃ in helium as carrier gas were mixed with 0.2 % N₂O in helium and 10 % O2 in helium. Prior to the conversion reaction of N2O, the catalyst samples were flushed with helium for 15 minutes at 20 °C. In a mixture of 10 % O2 in helium, the temperature was raised to 500 °C, the catalyst being kept at this temperature for two hours to remove adsorbed elements. The sample was cooled in helium to the initial temperature of the test and was exposed at this temperature for two hours to the reactants feed in order to prevent adsorption effects.

The general test conditions for the N₂O reduction tests are given in Table 2.

Quantitative determinations of the N₂O, C₃H₈, CH₄ and NH₃ concentrations were carried out by means of infrared analysis. When CO was present in the tested gas, the N₂O signals were corrected since the entire N₂O absorption band (2143-2222 cm⁻¹) is coincident with the CO absorption band (1970-2222 cm⁻¹). The contribution of CO to the N₂O band was calculated by extrapolation of the measured free portion of the CO band (that is to say 1970-2143 cm⁻¹). The extrapolation was based on previous measurements on pure CO. The deduction of the CO contribution from the values measured in the 2143-2222 cm⁻¹ band gives the corrected N₂O signal. The quantity of CO formed was less than 0.01 % for all determinations.

The conversion values for N₂O, C₃H₈, CH₄ and NH₃ are based on the infrared signals at 200 °C, that is to say the infrared signal of N₂O, C₃H₈, CH₄ and NH₃ in the feed, since

there is still no conversion at this temperature. Signals somewhat below zero were measured after complete conversion of N_2O , C_3H_8 , CH_4 or NH_3 had been achieved, and this was probably caused by small fluctuations in the background values and/or in the CO correction values. These small negative signal values resulted in conversion values of above 100 % (up to a maximum of 105 %). Therefore, the temperature at which there was no further increase in the conversion value was taken as $T_{(100\%)}$, that is to say the temperature of complete conversion. The $T_{(50\%)}$ is the temperature at which 50 % of the ingoing N_2O is converted under the conditions as specified in Table 2.

10 Table 2. General test conditions

	Weight of the catalyst sample	500 mg
	Particle size	0.50-0.71 mm
	Gas flow rate	150 ml/min
15	Spatial velocity of the gas per hour	
	(GHSV)	approximately 11 500 h ⁻¹
	Feed	500 ppm N_2O , 6 % O_2 , 2 % H_2O ,
		250 ppm - 1 % C ₃ H ₈ or
		125 ppm - 3 % CH ₄ and/or
20		160 ppm - 500 ppm NH ₃ with helium as
_	-	the balance.
	Total pressure	atmospheric
	Bed temperature	200 °C \rightarrow 500 °C \rightarrow 200 °C
		(in 20 °C steps every 15 min)

III. Conversion of N₂O without reducing agent

The test results of N_2O conversion with and without 2 % water over Fe-ZSM-5 catalysts A to D are given in Table 3.

30 It can be seen that the production of the catalysts in an N₂ atmosphere (A and B) instead of in air (C and D) has no influence on the N₂O conversion. An increase in the number of ion exchange steps from 1 to 2 results in a 10 to 20 °C shift towards lower

temperatures in the N_2O conversion plots. The temperature for complete conversion, $T_{(100\%)}$, was approximately 475 °C (without water).

Figure 1 shows the conversion plots for the catalyst D in the absence of reducing agent with and without 2 % water. The presence of 2 % water shifts the $T_{(100\%)}$ to temperatures well above 500 °C. The hysteresis pattern, the non-coincidence of the upward and downward plots, is a characteristic property of the catalyst which is observed if no water is added.

Table 3

10	Catalyst	N ₂ O T _(50%) (°C)	H ₂ O conc. (%)
	A	440	0
	В	430	0
	В	485	2
	С	440	0
15	D	425	0
	D	465	2

IV. Conversion of N₂O with propane, methane and carbon monoxide

Figure 2 shows the effect of the reducing agent C₃H₈ that was added in concentrations of 1500, 1000, 500 and 230 ppm to the N₂O using catalyst D. The increase in the conversion activity is striking: 1500 ppm C₃H₈ lowers the T_(100%) for N₂O in the presence of water from well above 500 °C to about 380 °C.

Tests have shown that the addition of CH_4 increased the conversion to virtually the same extent as C_3H_8 , $T_{(100\%)}$ being 400 °C with 3900 ppm CO_4 .

Tests have also shown that the widely tested Cu- and Co-substituted ZSM-5 catalysts, which perform well in the decomposition of N_2O , perform poorly in the conversion of N_2O with propane or methane. The test results for N_2O conversion with 2 % water, 6 % O_2 and 1500 ppm C_3H_8 over Fe-ZSM-5 catalyst D, Cu-ZSM-5 and Co-ZSM-5 are shown in Table

4SDOCID: <WO___9949954A1_I_>

30

4.

Table 4

Catalyst	N ₂ O T _(50%) (°C)	C ₃ H ₈ T _(100%) (°C)
D	325	420
Cu-ZSM-5	425	360
Co-ZSM-5	430	480

The presence of carbon monoxide had a beneficial effect on the N_2O conversion over catalyst D. The $T_{(100\%)}$ reaction temperature was lowered from > 500 °C to 460 and 480 °C with a CO concentration of, respectively, 980 and 500 ppm (including 6 % O_2 and 2 % H_2O).

V. Effect of the concentration of the reducing agents propane and methane

Various concentrations of C₃H₈ and CH₄ were tested in the conversion of N₂O with catalyst D, the results of which tests are given in Table 5. The table shows that the addition of more hydrocarbon relative to N₂O (i.e. with an increasing hydrocarbon/N₂O ratio) the temperature at which 50 % N₂O conversion takes place is reduced. Further increase in the propane concentration from 1500 to 10 000 ppm (1 % V/V) gave a further limited improvement in the conversion activity.

20

5

Table 5

	Hydrocarbon conc. (ppm)	N ₂ O T _(50%) (°C)	Hydrocarbon T _(100%) (°C)
,	C ₃ H ₈ : 1500	325	380
	1000	330	360
25	500	340	360
	230	350	320
	CH ₄ : 3900	360	500 T _(26%)
	1900	360	500 T _(34%)
	900	365	500 T _(45%)
30	250	380	500 T _(75%)
	125	415	440

10

VI. Stability of the conversion

Catalyst D was tested for stability of the N_2O conversion in the presence of 1500 ppm C_3H_8 for 40 hours at 340 °C. The test results are shown in Figure 3. It can be seen from this figure that no significant decrease in the N_2O conversion takes place.

The presence of 200 ppm SO_2 gave rise to a moderate change in the N_2O conversion. No direct deactivation of the catalyst was observed on the addition of 160 ppm SO_2 .

Catalyst D was also tested in the N₂O conversion in the presence of 125 ppm CH₄ for 65 hours at 360 °C. During this stability test there was alternating addition of 2 % water for periods of 5 hours. The test results which are shown in Figure 4 show that reversible deactivation by water takes place in the period tested.

VII. Effect of the SiO₂:Al₂O₃ ratio

Table 6 shows the results of the experiments in which 500 ppm N₂O was reduced in the presence of 1500 ppm C₃H₈, 2 % H₂O and 6 % O₂ with catalyst C and E, that is to say containing a ZSM-5 zeolite having an SiO₂:Al₂O₃ ratio of, respectively, 27 and 55, both monosubstituted by Mohr's salt.

Table 6

Catalyst	N ₂ O T _(50%) (°C)	C ₃ H ₈ T _(100%) (°C)
С	325	420
E	345	500 T _(96%)

It can be seen that the lower SiO₂:Al₂O₃ ratio of 27 resulted in an approximately 20 °C lower conversion temperature than that for the catalyst with an SiO₂:Al₂O₃ ratio of 55.

VIII. Conversion of N₂O with ammonia

Table 7 shows the results of the conversion of N₂O with 500 and 160 ppm NH₃ over catalyst D in the presence of 2 % H₂O and 6 % O₂. It can be seen from Table 6 that ammonia is completely converted over the entire temperature range. The addition of

125 ppm CH₄ to 160 ppm NH₃ results in an additional lowering of the conversion temperature by 45 °C compared with reduction with NH₃ alone.

Table 7

5	NH ₃ (ppm)	N ₂ O T _(50%) (°C)	NH ₃ T _(100%) (°C)	•
	500	395	100	•
	160	435	100	
	160 (+125 ppm CH ₄)	390	<200 (CH ₄ : 500)	
	160 (+500 ppm C ₃ H ₈)	340	340 (C_3H_8 : 340)	

10

A stability test on catalyst D for 60 hours at 360 °C using 160 ppm NH $_3$ as reducing agent shows a degree of conversion of N_2O rising from 17 to 20 %. This means that ammonia also does not have an adverse effect on the stability of the catalyst.

Claims

- 1. Method for the catalytic reduction of dinitrogen oxide (N_2O) in the presence of a zeolite as catalyst with the addition of a reducing agent, characterised in that the reducing agent used is a saturated hydrocarbon (C_nH_{2n+2}) .
 - 2. Method according to Claim 1 characterised in that the hydrocarbon reducing agent used is methane (CH_4) , propane (C_3H_8) or LPG (C_3H_8/C_4H_{10}) or a combination thereof.
- Method according to Claim 1 or 2, characterised in that the concentration of the added hydrocarbon reducing agent is between 100 and 10 000 ppm for 500 ppm N₂O, in other words a molar hydrocarbon/N₂O ratio of 0.2 to 20 is used.
- 4. Method according to one of the preceding claims, characterised in that the catalyst comprises a transition metal-substituted zeolite, preferably a zeolite substituted by iron (Fe).
 - 5. Method according to Claim 5, characterised in that the zeolite is ZSM-5.
- 6. Method according to one of the preceding claims, characterised in that the SiO₂:Al₂O₃
 20 ratio of the zeolite is less than 100, preferably less than 65 and more preferentially less than/equal to 40.
 - 7. Method according to Claim 5 or 6, characterised in that the zeolite is at least partially substituted by $(NH_4)_2Fe(SO_4)_2.6H_2O$.
 - 8. Method according to one of the preceding claims, characterised in that the reduction takes place at a temperature of below 450 °C, preferably of below 400 °C and more preferentially of below 350 °C.

Fig 4

INTERNATIONAL SEARCH REPORT

A. CLASSII	FICATION OF SUBJECT MATTER		
IPC 6	FICATION OF SUBJECT MATTER B01D53/86 B01D53/94		ļ
}			
According to	International Patent Classification (IPC) or to both national classificat	tion and IPC	
	SEARCHED		
	cumentation searched (classification system followed by classification	n symbols:	
IPC 6	B01D		
Documentat	tion searched other than minimum documentation to the extent that su	ch documents are included in the fields se	arched
Electronic d	ata base consulted during the international search (name of data base	e and, where practical, search terms used	,
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
 			
Х	US 5 524 432 A (JAMES G. HANSEL)		1-6,8
	11 June 1996		ŕ
	see column 9, line 54 - column 13	, line 3	
) X	US 5 149 512 A (YUEJIN LI ET AL.)		1-6,8
	22 September 1992		
	cited in the application	34 - 54	
	see column 4, line 21 - column 8,	11ne 54	
	V.		
}			
			·
	·		
Eur	ther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
	The documents are noted in the	<u></u>	
° Special ca	ategories of cited documents :	"T" later document published after the inte	
	ent defining the general state of the art which is not	or priority date and not in conflict with cited to understand the principle or th	the application but
consid	dered to be of particular relevance	invention	
filing	date	"X" document of particular relevance; the cannot be considered novel or canno	t be considered to
"L" docume	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	involve an inventive step when the do "Y" document of particular relevance; the	
citatio	on or other special reason (as specified)	cannot be considered to involve an in	ventive step when the
	nent referring to an oral disclosure, use, exhibition or means	document is combined with one or moments, such combination being obvious	
"P" docum	nent published prior to the international filling date but than the priority date claimed	in the art. "%" document member of the same patent	family
<u> </u>			
Date of the	actual completion of the international search	Date of mailing of the international se	arch report
,	17 June 1999	25/06/1999	
	(/ Udile 1999	23, 33, 1333	
Name and	mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	÷	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Bogaerts, M	
1	· · · · · · · · · · · · · · · · · · ·	i e e e e e e e e e e e e e e e e e e e	

INTERNATIONAL SEARCH REPORT

Information patent family members

PCT/N /00190

Patent document		Publication date		atent family member(s)	Publication date
cited in search report		<u> </u>			<u> </u>
US 5524432	Α	11-06-1996	US	5451385 A	19-09-1995
			US	5260043 A	09-11-1993
			US	5149512 A	22-09-1992
			AU	2215592 A	17-02-1994
			CA	2077202 A	14-02-1994
			CN	1081931 A	16-02-1994
			EP	0582743 A	16-02-1994
			FI	923932 A	14-02-1994
			JP	6086915 A	29-03-1994
			JP	7049095 B	31-05-1995
			KR	9600013 B	03-01-1996
			MX	9205218 A	28-02-1994
			NZ	244172 A	26-10-1995
			ZA	9206819 A	08-03-1994
			AU	645432 B	13-01-1994
			AU	2058692 A	04-02-1993
			CA	2074687 A	02-02-1993
			CN	1070352 A	31-03-1993
				0525701 A	03-02-1993
			EP		
			FI	923477 A	02-02-1993
			JP	5192582 A	03-08-1993
			JP	7098133 B	25-10-1995
			KR	9508627 B	03-08-1995
			MX	9204495 A	01-02-1993
			NZ	243726 A	26-10-1994
•			PT	100750 A	30-09-1993
•			ZA	9205779 A	31-01-1994
US 5149512	 A	22-09-1992	AU	645432 B	13-01-1994
00 51 13512	, ,		AU	2058692 A	04-02-1993
			CA	2074687 A	02-02-1993
			CN	1070352 A	31-03-1993
			EP	0525701 A	03-02-1993
			FΙ	923477 A	02-02-1993
			JР	5192582 A	03-08-1993
			ĴΡ	7098133 B	25-10-1995
-			KR	9508627 B	03-08-1995
			MX	9204495 A	01-02-1993
			NZ	243726 A	26-10-1994
			PT	100750 A	30-09-1993
			US	5524432 A	11-06-1996
			US	5260043 A	09-11-1993
			US	5451385 A	19-09-1995
			ZA	9205779 A	31-01-1994
			L٨	JEUJIIJ M	71 UI 1334

THIS PAGE BLANK (USPTO)