1 задача: Города

2 модуль, 2 семестр

ФИВТ МФТИ. 2019

Описание by Илья Белов

1. Текст задачи

Требуется отыскать самый выгодный маршрут между городами. Требуемое время работы O((N+M)logN), где N-количество городов, M-известных дорог между ними.

Оптимизируйте ввод

Формат входных данных

Первая строка содержит число N – количество городов.

Вторая строка содержит число М - количество дорог.

Каждая следующая строка содержит описание дороги (откуда, куда, время в пути).

Последняя строка содержит маршрут (откуда и куда нужно доехать).

Формат выходных данных

Вывести длину самого выгодного маршрута

Пример:

in	out
6	9
9	
0 3 1	
0 4 2	
127	
1 3 2	
1 4 3	
153	
253	
3 4 4	
3 5 6	
0 2	

Иллюстрация примера:

2. Описание алгоритма

Алгоритм решает задачу SSSP - он находит кратчайшие пути из одной вершины во все. В алгоритме поддерживается множество вершин U, для которых уже вычислены длины кратчайших путей до них из s. На каждой итерации основного цикла выбирается вершина $u \not \in U$ которой на текущий момент соответствует минимальная оценка кратчайшего пути. Вершина u добавляется в множество U и производится релаксация всех исходящих из неё рёбер.

3. Доказательство корректности¹

Докажем по индукции, что в момент посещения любой вершины u, $d(u) = \rho(s, u)$

На первом шаге выбирается s , для неё выполнено: $d(u) = \rho(s, s) = 0$

Пусть для первых шагов алгоритм сработал верно и на n+1 шагу выбрана вершина u . Докажем, что в этот момент $d(u)=\rho(s,u)$. Для начала отметим, что для любой вершины v , всегда выполняется $d(v)\geq \rho(s,v)$ (алгоритм не может найти путь короче, чем кратчайший из всех существующих). Пусть P — кратчайший путь из s в u , v — первая непосещённая вершина на P , z — предшествующая ей (следовательно, посещённая). Поскольку путь P кратчайший, его часть, ведущая из s через z в v , тоже кратчайшая, следовательно $\rho(s,v)=\rho(s,z)+w(z,v)$. По предположению индукции, в момент посещения вершины z выполнялось $d(z)=\rho(s,z)$, следовательно, вершина v тогда получила метку не больше чем $d(z)+w(z,v)=\rho(s,z)+w(z,v)=\rho(s,v)$, следовательно, $d(v)=\rho(s,v)$. С другой стороны, поскольку сейчас мы выбрали вершину u , её метка минимальна среди непосещённых, то есть $d(u)\leq d(v)=\rho(s,v)\leq \rho(s,u)$, где второе неравенство верно из-за ранее упомянутого определения вершины V в качестве первой непосещённой вершины на P , то есть вес пути до промежуточной вершины не превосходит веса пути до конечной вершины вследствие неотрицательности весовой функции. Комбинируя это с $d(u)\geq \rho(s,u)$, имеем $d(u)=\rho(s,u)$, что и требовалось доказать.

Поскольку алгоритм заканчивает работу, когда все вершины посещены, в этот момент $d(u) = \rho(s, u)$ для всех u

4. Время работы и дополнительная память

$$T = O((V + E)logV)$$
$$M = O(V)$$

5. Доказательство времени работы

Каждая вершина релаксируется не более E раз. После извлечения вершины из очереди она уже никогда не будет положена в неё обратно \Rightarrow произойдёт V извлечений из очереди. Итого произойдёт V+E обращений к очереди, одно обращение занимает O(logV) времени (при использовании двоичной кучи), значит T=O((V+E)logV)

¹ Копипаста с Викиконспектов