KonukhinaOV 29112024-141212

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.319	-150.8	13.645	94.1	0.038	67.5	0.366	-57.1
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
3.0	0.360	164.1	4.404	63.3	0.096	60.8	0.171	-96.0
5.5	0.389	138.8	2.403	38.7	0.168	45.7	0.123	-128.0
8.0	0.472	114.8	1.652	15.2	0.231	28.4	0.089	138.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 1), который может обеспечить согласование со стороны плеча 2 на частоте 5.5 $\Gamma\Gamma$ ц.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\rm H}=4.5~\Gamma\Gamma$ ц и $f_{\rm B}=8~\Gamma\Gamma$ ц, используя рисунок 2.

Рисунок 2 – Частотная характеристика усиления

- 1) 0.5 дБ
- 2) 1.2 дБ
- 3) 0.6 дБ
- 4) 1 дБ

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -3.9$ дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 7.4 дБм.

Какая мощность рассеивается внутри цепи коррекции?

- 1) 2.2 mB_T
- 2) 3 mBT
- 3) 3.3 mB_T
- 4) 0.8 mB_T

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.5	0.482	-133.8	18.353	97.3	0.030	50.5	0.411	-64.2

Требуется выбрать согласованный аттенюатор с минимальным затуханием, подключения которого будет docmamouno, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 1.7 дБ, подключённый к плечу 2;
- 2) аттенюатор с затуханием 2.3 дБ, подключённый к плечу 2;
- 3) аттенюатор с затуханием 2.9 дБ, подключённый к плечу 2;
- 4) аттенюатор с затуханием 1.5 дБ, подключённый к плечу 2.

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 3) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 3 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 4 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Рисунок 4 — Различные реализаци и Γ -образной цепи согласования

 $\mathbf{\mathcal{A}}$ ано значение коэффициента отражения от входа реактивной цепи коррекции

$$s_{11} = -0.48 + 0.13i.$$

Найти модуль (в д \overline{B}) коэффициента передачи s_{21} .

- 1) -1.8 дБ
- 2) -0.8 дБ
- 3) -2.5 дБ
- 4) -1.2 дБ