Contrastive Learning for Enhanced Feature Extraction in Hyperspectral Imagery

By Andras Bodrogai In affiliation with the University of Glasgow

Aims of the project

- Hyperspectral image processing so far relies on older tools
- Modern methods are available in computer vision for traditional image space

Hyperspectral image data

Unique signature

Up to hundreds of number of channels

Deep neural networks

Deep neural networks

Deep neural networks

Vision Transformers

Methodology – Masked Auto-Encoder

Methodology – DINOv2

Methodology – Spatial-Spectral ViT

Methodology – Feature Fusion

Methodology - decoders

- Linear
- Convolutional
- Transformer segmenter

Experiments

- Masked Auto-Encoder ViT-B:
 - Linear
 - Convolutional
 - Transformer
- DINOv2 ViT-B:
 - Linear
 - Convolutional
 - Transformer

- DINOv2 Spatial-Spectral ViT-B:
 - Linear
 - Convolutional
 - Transformer
- DeepLabv3+
- Proof of concept

Results

val/mIoU

val/mAcc

Results – Spatial-Spectral attention maps

Results – Linear Outputs

Ground truth 10 -20 -DINOv2 30 -50 -20 30

MAE

Spatial-Spectral P

Conclusion

- Model performed under expectations
- We still see some benefits emerging from using contrastive learning

