Алгоритмы и вычислительные методы оптимизации

Лекция 12

2.2.4 Метод потенциалов (нахождение оптимального решения транспортной задачи, продолжение)

Пример 2 Найти оптимальное решение транспортной задачи

Поставщики	Потребители				Запасы
	B_1	B_2	B_3	B_4	
A_I	1	2	4	3	30
A_2	5	3	2	6	27
A_3	3	7	5	6	30
Потребности	34	37	25	23	

Суммарные запасы: 30+27+30=87, суммарные потребности: 34+37+25+23=119. Модель — открытая. Необходимо ввести фиктивного поставщика A_4 с запасами 119-87=32 и нулевыми тарифами перевозок.

Решение примера 2 – в файле lecture12.pdf.

2.2.5. Усложненные постановки транспортной задачи

На перевозки грузов часто накладываются дополнительные ограничения. В таких случаях после предварительных манипуляций с распределительной таблицей задача решается обычным способом.

Рассмотрим дополнительные ограничения в транспортной задаче и способы решения таких задач.

1. Блокада перевозок.

Поставки от поставщика A_k к потребителю B_s должны быть исключены (из-за отсутствия необходимых условий хранения, чрезмерной перегрузки коммуникаций и т.д.). Это ограничение требует, чтобы в матрице перевозок, содержащей оптимальный план, клетка $A_k B_s$ оставалась свободной.

Этого можно достичь, завысив тариф c_{ks} (блокируем перевозки, поменяв тариф c_{ks} на M).

2. Ограничения на пропускную способность.

Некоторые транспортные маршруты, по которым необходимо доставить грузы, имеют ограничения по пропускной способности.

Например, от поставщика A_k к потребителю B_s необходимо перевести:

- не более d единиц груза;
- не менее d единиц груза;
- ровно *d* единиц груза.

Если от поставщика A_k к потребителю B_s необходимо перевести не более d единиц груза, в распределительной таблице столбец B_s разбивают на два столбца: B_s' и B_s'' . Для потребителя B_s' потребность равна d, а для потребителя B_s'' потребность равна b_s -d. Тарифы перевозок в обоих столбцах одинаковы и совпадают с тарифами потребителя B_s , за исключением тарифа перевозки от поставщика A_k к потребителю B_s'' . Этот тариф искусственно завышается (считается равным M) для блокирования перевозок от A_k к B_s'' . Далее задача решается обычным способом. После нахождения оптимального плана столбцы B_s' и B_s'' соединяются в один.

Если от поставщика A_k к потребителю B_s необходимо перевести не менее d единиц груза, запасы A_k и потребности B_s уменьшают на d и решают задачу обычным способом.

Если от поставщика A_k к потребителю B_s необходимо перевести ровно d единиц груза, в клетку $A_k B_s$ заносят поставку d и блокируют ее (ставят завышенный тариф M). Далее клетку $A_k B_s$ считают свободной с тарифом M. Задача решается обычным способом.

Пример 3 Найти оптимальное решение транспортной задачи при дополнительных ограничениях: нет возможности перевозить груз от поставщика A_1 к потребителям B_2 и B_4 , а от поставщика A_2 к потребителю B_3 должно быть перевезено 100 единиц груза.

П	Потребители					7
Поставщики	B_1	B_2	B_3	B_4	B_5	Запасы
A_I	7	1	8	2	-	140
A_2	4	3	1	5	6	360
A_3	5	2	3	2	8	180
Потребности	90	120	230	180	60	

Суммарные запасы: 140+360+180=680. Суммарные потребности: 90+120+230+180+60=680. Модель — закрытая.

Решение примера 3 – в файле lecture 12.pdf.

Пример 4 Найти оптимальное решение транспортной задачи при дополнительных ограничениях: от A_1 к B_1 должно быть перевезено не менее 50 единиц груза; от A_3 к B_5 должно быть перевезено не менее 60 единиц груза; от A_2 к B_4 должно быть перевезено не более 40 единиц груза.

П	Потребители					2
Поставщики	B_1	B_2	B_{β}	B_4	B_5	Запасы
A_{I}	5	3	2	4	8	160
A_2	7	6	5	3	1	90
A_3	8	9	4	5	2	140
Потребности	90	60	80	70	90	

Суммарные запасы: 160+90+140=390. Суммарные потребности: 90+60+80+70+90=390. Модель — закрытая.

Решение примера 4 – в файле lecture 12.pdf.