## Section 3.5: Derivatives of Trigonometric Functions

One of the most important types of motion in physics is simple harmonic motion, which is associated with such systems as an object with a mass oscillating on a spring. Being able to calculate the derivatives of the sine and cosine functions will enable us to find the velocity and acceleration of simple harmonic motion.

#### Derivatives of the Sine and Cosine Functions

#### The Derivatives of $\sin x$ and $\cos x$

The derivative of the sine function is the cosine and the derivative of the cosine function is the negative sine.

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

The figure below shows the relationship between the graph of  $f(x) = \sin x$  and its derivative  $f'(x) = \cos x$ . Notice that at the points where  $f(x) = \sin x$  has a horizontal tangent, its derivative  $f'(x) = \cos x$  takes on the value zero. We also see that where  $f(x) = \sin x$  is increasing,  $f'(x) = \cos x > 0$  and where  $f(x) = \sin x$  is decreasing,  $f'(x) = \cos x < 0$ .



Similar observations can be made with the graph of  $f(x) = \cos x$  and its derivative  $f'(x) = -\sin x$ .

**Media:** Watch this <u>video</u> example on trigonometric derivatives with a product rule.

**Media:** Watch this video example on trigonometric derivatives with a quotient rule.

### **Examples**

1) Find the derivative of each of the following.

$$a. \quad f(x) = 5x^3 \sin x$$

$$f'(x) = 5x^{3}(\cos x) + \sin x(15x^{2})$$

$$f'(x) = 5x^{3}(\cos x) + 15x^{2}\sin x$$

b. 
$$g(x) = \frac{\cos x}{4x^2}$$

b) 
$$g'(x) = \frac{4x^2(-\sin x) - \cos x}{(4x^2)^2}$$

$$g'(x) = -\frac{4x^2 \sin x - 8x \cos x}{16x^4}$$

$$g'(x) = -x\sin x - a\cos x$$
 $4x^3$ 

2) A particle moves along a coordinate axis in such a way that its position at time t is given by  $s(t) = 2 \sin t - t$  for  $0 \le t \le 2\pi$ . At what times is the particle at rest?

at rest means 
$$s'(t) = v(t) = 0$$
  
 $s'(t) = a cost - 1$   
 $a cost - 1 = 0$   
 $a cost = \frac{1}{3}$   
 $a cost = \frac{1}{3}$ 

The particle is at rest when  $t = \frac{\pi}{3}$ and  $t = \frac{5\pi}{3}$ 

# **Derivatives of Other Trigonometric Functions**

Since the remaining four trigonometric functions may be expressed as quotients involving since, cosine, or both, the quotient rule can be used to find formulas for their derivatives.

**Derivatives of**  $\tan x$ ,  $\cot x$ ,  $\sec x$ , and  $\csc x$ 

The derivatives of the remaining trigonometric functions are as follows:

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

Media: Watch this video example on finding derivatives of other trigonometric functions.

### **Examples**

1) Find the derivative of  $f(x) = \csc x + x \tan x$ .

$$f'(x) = -\csc x \cot x + \left[x(\sec^2 x) + \tan x(1)\right]$$

$$f'(x) = -\csc x \cot x + x \sec^2 x + \tan x$$

2) Find the equation of a line tangent to the graph of  $f(x) = \cot x$  at  $x = \frac{\pi}{4}$ .

when 
$$X = \frac{\pi}{4}$$
,  $f(\frac{\pi}{4}) = \cot(\frac{\pi}{4}) = 1 \implies (\frac{\pi}{4}, 1)$   
 $f'(x) = -\csc^2 x \leftarrow slope$   
 $-\csc^2(\frac{\pi}{4}) = -2 \leftarrow slope$   
 $y-y_1 = m(x-x_1)$   $m = -2$  point:  $(\frac{\pi}{4}, 1)$   
 $y-1 = -2(x-\frac{\pi}{4})$  be  $y = -2x+1+\frac{\pi}{2}$ 

### **Higher-Order Derivatives**

The higher-order derivatives of  $\sin x$  and  $\cos x$  follow a repeating pattern. By following the pattern, we can find any higher-order derivative of  $\sin x$  and  $\cos x$ .

Media: Watch this video example on motion of a particle.

### **Examples**

1) Find the first four derivatives of  $y = \sin x$ .

$$\frac{dy}{dx} = \cos x$$

$$\frac{d^{3}y}{dx^{3}} = -\cos x$$

$$\frac{d^{2}y}{dx^{2}} = -\sin x$$

$$\frac{d^{4}y}{dx^{4}} = \sin x$$

$$\frac{dy}{dx} = -\sin x$$

$$\frac{d^{3}y}{dx^{4}} = \sin x$$

$$\frac{d^{3}y}{dx^{3}} = \sin x$$

$$\frac{d^{3}y}{dx^{3}} = \sin x$$

$$\frac{d^{3}y}{dx^{3}} = \sin x$$

$$\frac{d^{3}y}{dx^{3}} = \cos x$$

3) A particle moves along a coordinate axis in such a way that its position at time t is given by  $s(t)=2\sin t$ . Find  $v\left(\frac{5\pi}{6}\right)$  and  $a\left(\frac{5\pi}{6}\right)$ . Compare these values and decide whether the block is speeding up or slowing down.

$$s'(t) = v(t) = a \cos t$$

$$v(\overline{s}) = a \cos (\overline{s}) = a \cdot 1/3 = -1/3$$

$$s''(t) = v'(t) = a(t) = -a \sin t$$

$$a(\overline{s}) = -a \sin (\overline{s}) = -a(\frac{1}{3}) = -1$$

$$Since \ v(\overline{s}) < 0 \ and \ a(\overline{s}) < 0,$$
the object is speeding up