C12

filippo 26 April 2018

Contents

onsegna	1
(a) Si estraggano tutte le rilevazioni giornaliere rispetto al mese di aprile	1
(b) Si analizzino i dati per evidenziare se vi sono dati anomali	1
(c) Si adatti una distribuzione parametrica ai dati chiarendo le ipotesi sottostanti	2
(d) Si confronti la distribuzione parametrica stimata con la distribuzione empirica	6
(e) Si considerino ora le medie mensili e si ripeta l'analisi	6
(f) Quale teorema della probabilità entra in gioco ?	6

Consegna

Il file $KNMI_20160831.txt$ contiene le precipitazioni giornaliere rilevate dal 1906 al 2016 nella stazione di De Bilt (Olanda)

(a) Si estraggano tutte le rilevazioni giornaliere rispetto al mese di aprile

```
mese <- substr(de_bilt$yyymmdd,5,6)
sel<-mese == "04"
y <- de_bilt$rainfall[sel]</pre>
```

(b) Si analizzino i dati per evidenziare se vi sono dati anomali.

```
summary(y)
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
                                                       NA's
##
     -1.00
              0.00
                      1.00
                             15.87
                                      18.00 336.00
                                                        180
y[y < 0] <- 0
summary(y)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                                       NA's
##
      0.00
              0.00
                      1.00
                              15.95
                                      18.00 336.00
                                                        180
boxplot(y)
```


Histogram of y

[1] 0.5024242

(c) Si adatti una distribuzione parametrica ai dati chiarendo le ipotesi sottostanti.

Cerco due distribuzioni, una che mi determini la presenza/assenza e una che determini la quantità.

Histogram of x


```
plot(ecdf(x))
quantile(x,prob=0.9,na.rm = TRUE)
```

90% ## 81.3

library(fitdistrplus)

Loading required package: MASS
Loading required package: survival

Modello la quantità di pioggia con una distribuzione esponenziale

```
fitmle <- fitdist(z, distr = "exp")
fitmle

## Fitting of the distribution ' exp ' by maximum likelihood
## Parameters:
## estimate Std. Error
## rate 0.03150773 0.0007730128

plot(fitmle)</pre>
```


Modello la quantità di pioggia con una distribuzione gamma

```
fitmle <- fitdist(z, distr = "gamma")
fitmle

## Fitting of the distribution ' gamma ' by maximum likelihood
## Parameters:
## estimate Std. Error
## shape 0.74885318 0.022272767
## rate 0.02359042 0.000967446

plot(fitmle)</pre>
```


- (d) Si confronti la distribuzione parametrica stimata con la distribuzione empirica.
- (e) Si considerino ora le medie mensili e si ripeta l'analisi
- (f) Quale teorema della probabilità entra in gioco?