Quality and Usability Lab

Gesetze der Schaltalgebra

Kommutativgesetze $a \cdot b = b \cdot a$ $a + b = b + a$	Distributivgesetze $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ $a + (b \cdot c) = (a + b) \cdot (a + c)$	Assoziativgesetze $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ a + (b + c) = (a + b) + c				
Idempotenzgesetze $a \cdot a = a$ $a + a = a$	Komplementgesetze $a \cdot \overline{a} = 0$ $a + \overline{a} = 1$	Negation der Negation $\overline{\overline{a}}=a$				
0-1-Gesetze $a \cdot 1 = a$ $a + 1 = 1$						
$a \cdot 0 = 0$ $a + 0 = a$	I .	sensusregel = $a \cdot b + \overline{b} \cdot c + a \cdot c$				
De Morgansche Regeln $\overline{a+b} = \overline{a} \cdot \overline{b}$ $\overline{a \cdot b} = \overline{a} + \overline{b}$	Absorption $a + (a \cdot b) = a$ $a + (\overline{a} \cdot b) = a + b$ $(a \cdot b) + (a \cdot \overline{b}) = a$	ptionsgesetze $a \cdot (a + b) = a$ $a \cdot (\overline{a} + b) = a \cdot b$ $(a + b) \cdot (a + \overline{b}) = a$				

Vorrangsregeln

- geklammerte Verknüpfungen haben Vorrang vor Negation
- Negation hat Vorrang vor Konjunktion
- Konjunktion hat Vorrang vor allen anderen Operationen
- Negationszeichen über mehrere Variable oder Konstante, gelten diese als geklammert und die Negation gilt für den Klammerausdruck.
- mehreren aufeinanderfolgenden zweistelligen Grundverknüpfungen gleicher Vorrangstufe, werden von links nach rechts abgearbeitet
- Das Konjunktionszeichen kann weggelassen werden, wenn keine Verwechslungen mit anderen Variablen möglich sind.

Aufgabe 1 - Aufstellen von Wahrheitstabellen

Stellen Sie die Wahrheitstabellen für die folgenden booleschen Gleichungen auf.

a) $f(x_2,x_1,x_0)=f(\mathbf{x})=\overline{x_2}\cdot\overline{x_1}\cdot x_0+x_2\cdot\overline{x_1}+x_1\cdot\overline{x_0}$ \rightarrow 1) specificalline.

Lösung	CON	E)		
Einlogen aller Eingangs- humbinalsonen so dars das "Dezimale Aquinaled" (d(x2x2x0)) eysteigend ist. X2:X1:X0=1-)ma X2-X1-(X0)=1-)mu,s 1000 X1-X0=1-)mu,s	δ(x ₂ x ₁ x ₀) 7 2 3 9 5 6 7	10	× ₀ f(x) S O 1 1 0 1 7 O 7 7 7 O	_

Lösung	(KNF)				
X2+X1+X0 = 0 > ~ 6 1 1 0	$\begin{array}{c c} & \delta(x_2x_1x_0) \\ \hline - & \bullet \\ - & \bullet \\ - & \bullet \\ \hline - & \bullet \\ \hline \end{bmatrix}$	0000	1	0701	0
X2+X1 = 0 -) W2,3 0 -1 0/4 = 0 -) W2,3 0/10 0 = 0 -) W0,4	- 4 - 6 - 7	1711	0611	0101	0101

Aufgabe 2 - Äquivalenzbeweis mittels Wahrheitstabelle

Stellen Sie eine **gemeinsame** Wahrheitstabelle für die folgenden booleschen Gleichungen auf und führen Sie einen Äquivalenzvergleich durch. **a)** $f(x_1, x_0) = f(\mathbf{x}) = x_0 \to x_1$ und $g(x_1, x_0) = g(\mathbf{x}) = x_1 + \overline{x_0}$

NF: Xn = 1	X2 0	0	00	x_0 $f(x)$	$g(\mathbf{x})$ $g(\mathbf{x})$
		2 7	1	0101	
NF ×1+ 20 =0) 				•

b) $h(x_2, x_1, x_0) = h(\mathbf{x}) = \overline{x_1} \cdot x_0 + x_2 \cdot x_1$ und $i(x_2, x_1, x_0) = i(\mathbf{x}) = (x_2 + x_0) \cdot (x_2 + \overline{x_1} + \overline{x_0})$

Lösung							
hcx) x x x 6	×2 ×1 7 1	$\frac{\delta(x_2x_1x_0)}{\mathbf{\zeta}}$				h(x)	i(x) 7 0
1(x) ×2+ ×0	$\begin{array}{cccc} X_3 + \overline{X_3} + \overline{X_0} \\ 0 & 7 & 7 \end{array}$	2 2 4 5 6	0	7	7	0 0 1 1 7	7 1 1
		4	•			1	,
Äquivalenzbeweis (Beg		liga 7	, O _r	0	<i>C</i> 9	ferl	2
fir die fic h(x) und l(x) Sied daher	unterschied(, u.ch ägri	che Ev	ge	bn	€دد.	, 5:	۷

Aufgabe 3 - Vereinfachung von boolschen Funktionen mittels algebraischer Umformung

Vereinfachen Sie mit Hilfe der obigen Gesetze der Schaltalgebra die folgenden Funktionen soweit wie möglich (nur Literale, UND- und ODER-Gatter zulässig). Geben Sie in jedem Schritt die verwendete(n) Äquivalenzregel(n) an.

a)
$$f(x_1, x_0) = (\overline{x_0} + 0) \cdot x_1 \cdot 1$$

Lösung
$$f(x_1, x_0) = (\overline{x_0} + 0) \cdot x_1 \cdot 1$$

$$= \overline{X_0} \cdot X_1 \cdot 1 \qquad (0-7 - Gerel 2)$$

$$= \overline{X_0} \cdot X_2 \cdot 1 \qquad (0-1 - Gerel 2)$$

b)
$$g(x_1, x_0) = x_1 \cdot x_1 + x_0 + x_0$$

Lösung
$$g(x_1, x_0) = x_1 \cdot x_1 + x_0 + x_0$$

$$= x_1 + x_0 + x_0 \qquad (ldsupoteu =)$$

$$= x_1 + x_0 \qquad (ldsupoteu =)$$

$$\mathbf{c)}\ \ h(x_1,x_0)=\overline{\overline{\overline{x_1}}}\cdot\overline{\overline{\overline{x_0}}}$$

Lösung
$$h(x_1, x_0) = \overline{\overline{x_1}} \cdot \overline{\overline{x_0}} = \overline{\overline{x_1}} = \overline{\overline{x_1}} \cdot \overline{\overline{x_0}} = \overline{\overline{x_1}} \cdot \overline{\overline{x_0}} = \overline{\overline{x_1}} = \overline{\overline{x_1}} \cdot \overline{\overline{x_0}} = \overline{\overline{x_1}} = \overline{\overline{x_1}} \cdot \overline{\overline{x_0}} = \overline{\overline{x_1}} = \overline{\overline{x_1$$

$$\textbf{d)} \ i(x_2,x_1,x_0) = \overline{\overline{x_0} \cdot x_1 + x_2 + x_1}$$

Lösung
$$i(x_2, x_1, x_0) = \overline{x_0} \cdot x_1 + x_2 + x_1$$

$$= (x_0 \cdot x_1) + x_1 + x_2$$

$$= x_1 + x_2$$

$$= x_1 \cdot x_2$$
(Absorption 4 Various)
$$= x_1 \cdot x_2$$
(Absorption 4 Various)

e)
$$j(x_1, x_0) = x_1 + (x_1 \cdot (x_1 + x_0)) \cdot x_0$$

Lösung $j(x_1,x_0) = x_1 + (x_1 \cdot (x_1 + x_0)) \cdot x_0$ $= x_1 + (x_1 \cdot (x_1 + x_0)) \cdot x_0$

$$\textbf{f)} \ \ k(x_2,x_1,x_0) = \overline{\overline{x_0} \cdot \overline{x_1 + x_2 + x_1}}$$

Lösung
$$k(x_{2},x_{1},x_{0}) = \overline{x_{0} \cdot x_{1} + x_{2} + x_{1}}$$

$$= \overline{x_{0} \cdot x_{1} + x_{2}} \qquad (|deligation | |deligation | | |deligation | |$$

Aufgabe 4 - Herleitung einiger Absorptionsgesetze

Überführen Sie mit Hilfe der obigen Gesetze der Schaltalgebra die nachfolgenden Ausdrücke ineinander. Geben Sie in jedem Schritt die verwendete(n) Äquivalenzregel(n) an.

a)
$$(a \cdot b) + (a \cdot \overline{b}) = a$$

Lösung
$$(a \cdot b) + (a \cdot \overline{b}) = \alpha \cdot (b + \overline{b}) \qquad (D:shib liv)$$

$$= \alpha \cdot 1 \qquad (Nowplewerk)$$

$$= a \qquad (O-7-Gerek)$$

b)
$$a + (\overline{a} \cdot b) = a + b$$

Lösung

$$a + (\overline{a} \cdot b) = (a + \overline{a}) \cdot (a + \overline{b})$$
 $= 7 \quad \text{a.f.}$
 $= a + b$

(bumplement)

 $= a + b$

c)
$$a \cdot (a + b) = a$$

Lösung
$$a \cdot (a + b) = (a + 0)(a + b) \qquad ()$$

$$= (a + b \cdot b)(a + b) \qquad ()$$

$$= (a + b)(a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

$$= (a + b)(a + b) \qquad ()$$

Aufgabe 5 - De Morgansche Regel

Vereinfachen Sie mit Hilfe der De Morganschen Regel die folgenden Funktionen soweit wie möglich (nur Literale, UND- und ODER-Gatter zulässig).

a)
$$f(x_2, x_1, x_0) = \overline{x_0} \cdot x_1 + x_2 + x_1$$

Lösung
$$f(x_{2}, x_{1}, x_{0}) = \overline{x_{0}} \cdot x_{1} + x_{2} + x_{1}$$

$$= (\chi_{0} + \overline{x_{1}}) \cdot \overline{x_{2}} \cdot \overline{x_{1}}$$

$$= \chi_{0} \cdot \overline{x_{2}} \cdot \overline{x_{1}} + \overline{x_{1}} \cdot \overline{x_{2}}$$

$$= \chi_{0} \cdot \overline{x_{2}} \cdot \overline{x_{1}} + \overline{x_{1}} \cdot \overline{x_{2}}$$

$$= \chi_{1} \cdot (\chi_{0} \cdot \overline{x_{2}} + \overline{x_{2}})$$

$$= \overline{x_{1}} \cdot (\overline{x_{2}} \cdot (\chi_{0} + 7))$$

$$= \overline{x_{1}} \cdot (\overline{x_{2}} \cdot 7)$$

$$= \overline{x_{1}} \cdot \overline{x_{2}}$$

b)
$$f(x_2, x_1, x_0) = \overline{x_0} \cdot \overline{x_1 + x_2 + x_1}$$

Lösung
$$f(x_2, x_1, x_0) = \overline{x_0} \cdot \overline{x_1 + x_2 + x_1}$$

$$= \underbrace{\times \circ}_{\bullet} \underbrace{(\times 1 \cdot \times 1 \cdot \times 1)}_{\bullet}$$

$$= \underbrace{\times \circ}_{\bullet} \cdot \underbrace{\times 1 \cdot \times 1 \cdot \times 1}_{\bullet}$$

$$= \underbrace{\times \circ}_{\bullet} \cdot \underbrace{\times 1 \cdot \times 1 \cdot \times 1}_{\bullet}$$

c)
$$f(x) = \overline{x_0 \cdot x_1 + x_2 + x_1}$$

Lösung
$$f(x) = \overline{x_0} \cdot \overline{x_1 + x_2 + x_1}$$

$$= x_0 + (x_1 + x_2 + x_1)$$

$$= x_0 + (x_1 + x_2)$$

$$= x_0 + x_1 + x_2$$

Aufgabe 6 - Äquivalenzbeweis durch algebraische Umformung

Überprüfen Sie mittels algebraischer Umformung, ob die folgenden Funktionspaare zueinander äquivalent sind. Falls die Funktionen nicht äquivalent sind, geben Sie ein Gegenbeispiel an.

a)
$$f(x_1, x_0) = f(\mathbf{x}) = x_1 + (x_0 + x_1)$$
 und $g(x_1, x_0) = g(\mathbf{x}) = (x_1 + x_0) \cdot x_1$

$$\textbf{b)} \ \ h(x_2,x_1,x_0) = h(\textbf{x}) = (x_2 + \overline{x_1}) \cdot (x_1 + x_0) \quad \ \ \text{und} \quad \ \ i(x_2,x_1,x_0) = i(\textbf{x}) = \overline{x_1} \cdot x_0 + x_2 \cdot x_1$$

