National Computing Education Accreditation Council

NCEAC

NCEAC.FORM.0

COURSE OUTLINE

INSTITUTION University of Management & Technology, Lahore

BS Computer Science

PROGRAM (S) TO BE EVALUATED

Course Description

Course Description	
Course Code	CS-3043
Course Title	Theory of Automata
Credit Hours	3
Prerequisites by Course(s) and Topics	
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Assignments 10 % Quiz's 10 % Class Activities 5% Mid Term 35 % Final Term 40 %
Course Moderator	Adeel Ashraf
URL (if any)	
Current Catalog Description	
Textbook (or Laboratory Manual for Laboratory Courses)	Introduction to Computer Theory 2nd Edition by Danial I. A. Cohen

National Computing Education Accreditation Council

NCEAC

NCEAC.FORM.0

Reference Material	Theory of Computation by Michael Sisper 2nd Edition
Course Goals	The goal of the course is to familiarize the students with the concept of formal languages, different classes of formal languages such as regular languages, contextfree languages, context-sensitive languages, and recursive and recursively enumerable languages. Students will also get knowledge about the grammar and machines used for describing various types of languages. These include regular expressions, finite state automata, context-free grammars, push-down automata, and Turing machines. The properties of different types of languages will also be discussed.

Course Learning Outcomes (CLOs):

	CLOs	Description	Domain & BT Level *
		Describe the role of abstract computational models to define	Cognitive,
	CLO 1	which computational problems are solvable and which are not.	Two(C2)
		Illustrate the concepts of Language, Grammar, and Automata	
	CLO 2	for Regular Languages, as well as their applications in computing systems.	Cognitive, Two(C3)
		Illustrate the concepts of Language, Grammar, and Automata for Context-Free Language, as well as their applications in	Cognitive,
	CLO 3	computing systems.	Three(C3)
	CLO 4	Understand the Turing machines and their applications in computing systems.	Cognitive, Two(C2)
* BT= Bloom's T	axonomy. C	C=Cognitive domain, P=Psychomotor domain, A= Affective doma	in

National Computing Education Accreditation Council

NCEAC

NCEAC.FORM.0

Mapping of CLOs to Program Learning Outcomes (PLOs):

CLOs/PLOs	CLO 1	CLO 2	CLO 3	CLO 4
PLO 1: Academic Education	✓			
PLO 2: Knowledge for Solving Computing Problems PLO 3: Problem Analysis		√	√	√
PLO 4: Design and Development of Solutions				
PLO 5: Modern Tool Usage				
PLO 6: Individual and Teamwork				
PLO 7: Communication				
PLO 8: Computing Professionalism and Society				
PLO 9: Ethics				
PLO 10: Life-Long Learning				

National Computing Education Accreditation Council

NCEAC

NCEAC.FORM.0

Topics Covere the Course, w Number of		Week	Topics	Assessments	CLOs
Lectures on Each Topic		1	Introduction to Automata Theory Finite Automata		
		2	Deterministic Finite Automata (DFA).		CLO1
		3	Non-Deterministic Finite Automata (NDFA)	Quiz#1	CLO1
		4	Minimization of DFA Regular Expressions		
				<u> </u>	
		5	Operations on Regular expressions Finite Automata and Regular Expressions.	Assignment -1	CLO2
		6	TG and GTG Equivalence of Deterministic and Nondeterministic Finite Automata		CLO2
		7	Kleene's Theorem	Quiz-2	

National Computing Education Accreditation Council

NCEAC

NCEAC.FORM.0

		3 hours per wee	k		
Programming Assignments I in the Course	Done	1 programming a			
Laboratory Projects/Expe ents Done in t Course	he				
		15	Complexity issues and analysis P and NP problems		CLO4
		14	Turing machines and decidability	,	
		13	Deterministic and NonDeterministic (PDA); Formal definition of NPDA. Transition functions of NPDA; NPDA Execution; Accepting Strings with NPDA; Equivalence of PDAs and CFG.		CLO4
		12	Ambiguity in Grammars and Languages. Standard Forms; Chomsky Normal Forms;	Quiz-3	CLO3
		11	Context-Free Grammars; Regula Grammars; Parse Trees	Assignment -2	
		10	Mealy Moore Machines. Conversion from Mealy to Moore and vice versa.	е	CLO3
		9	Revision and Midterm	Mid Term	CLO1, CLO2,
		8	Pumping Lemma for Regular Languages. Closure Properties of Regular Languages		

National Computing Education Accreditation Council

NCEAC

NCEAC.FORM.0

Class Time Spent		
on (in credit hours)		
Oral and Written		
Communications		

Lecture Plan

CLOs	Quiz#1	Quiz #1	Quiz #2 Assignment #1	Quiz #3 Assignment #1	Midterm Exam	Final Term
1	✓				✓	✓
2		✓			✓	✓
3			✓			✓
4				~		✓

Instructor Signature	

Instructor Name: Rana Marwat Hussain