

日本国特許庁 28.12.98

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application:

1998年 1月 8日

REC'D 19 FEB 1999
WIPO PCT出願番号
Application Number:

平成10年特許願第002501号

出願人
Applicant(s):

三洋電機株式会社

E KU

PRIORITY DOCUMENT

1999年 2月 5日

特許庁長官
Commissioner,
Patent Office

佐山 建志

出証番号 出証特平11-3002739

【書類名】 特許願
【整理番号】 EA98-0001
【提出日】 平成10年 1月 8日
【あて先】 特許庁長官 殿
【国際特許分類】 H04B 7/26
【発明の名称】 報知装置及びこれを使った無線通信装置
【請求項の数】 8
【発明者】
【住所又は居所】 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内
【氏名】 浜口 俊英
【特許出願人】
【識別番号】 000001889
【氏名又は名称】 三洋電機株式会社
【代理人】
【識別番号】 100100114
【弁理士】
【氏名又は名称】 西岡 伸泰
【電話番号】 06-763-7373
【手数料の表示】
【予納台帳番号】 037811
【納付金額】 21,000円
【提出物件の目録】
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【包括委任状番号】 9402982
【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 報知装置及びこれを使った無線通信装置

【特許請求の範囲】

【請求項 1】 駆動信号の供給を受けて共振すべき振動体と、該振動体に駆動信号を供給する信号作成回路とを具えた報知装置において、信号作成回路は、振動体の共振周波数を含む一定範囲内で周波数が変動する駆動信号を作成して、振動体に供給することを特徴とする報知装置。

【請求項 2】 駆動信号の周波数の変動幅は、振動体の共振周波数を決定する諸元の公差に起因する共振周波数のばらつき幅に対応している請求項 1 に記載の報知装置。

【請求項 3】 振動体の共振周波数は数 100 Hz 以下の低周波数であって、共振周波数での振動体の振動は、体感し得る程度の振幅を有している請求項 1 又は請求項 2 に記載の報知装置。

【請求項 4】 駆動信号は矩形波若しくは正弦波の交番波形を有し、周波数が 1 ~ 数ヘルツで周期的に変動する請求項 1 乃至請求項 3 の何れかに記載の報知装置。

【請求項 5】 駆動信号の周波数は、前記一定範囲を振幅とする三角波、正弦波、若しくは鋸歯状波で変動する請求項 1 乃至請求項 4 の何れかに記載の報知装置。

【請求項 6】 駆動信号の周波数は、前記一定範囲内でステップ的に漸増若しくは漸減する請求項 1 乃至請求項 5 の何れかに記載の報知装置。

【請求項 7】 振動体は、ケーシングと、該ケーシングの内周壁に固定端を有する振動板と、該振動板の自由端に取り付けられた磁石体と、該磁石体に対向配備されたコイルとを具え、コイルに駆動信号が供給される請求項 1 乃至請求項 6 の何れかに記載の報知装置。

【請求項 8】 着信を報知するための報知装置を具え、該報知装置は、駆動信号の供給を受けて共振すべき振動体と、該振動体に駆動信号を供給する信号作成回路とから構成される無線通信装置において、信号作成回路は、振動体の共振周波数を含む一定範囲内で周波数が変動する駆動信号を作成して、振動体に供給

することを特徴とする無線通信装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、携帯電話機、ページャー等の無線通信装置に内蔵されて、着信を報知すべき報知装置に関するものである。

【0002】

【従来の技術】

従来、携帯電話機においては、音響、即ち可聴帯域の周波数を有する振動によって着信を報知する音響発生装置(リンガー)と、体感可能な振動、例えば数100Hz以下の周波数を有する振動によって着信を報知する振動発生装置とが内蔵されており、状況に応じて両者を使い分けることが可能となっている。

しかしながら、携帯電話機の様な小型機器には、音響発生装置と振動発生装置の両者を内蔵するためのスペースの余裕は殆どなく、これら両装置の装備によって機器が大型化する問題があった。

【0003】

そこで出願人は、図9に示す如き携帯電話機を提案している(特願平8-161399号)。該携帯電話機は、アンテナ(1)が突設された扁平な筐体(11)の表面に、受話音声を出力すべき受話部(12)、テンキー等の操作鉗(14)、送話音声を入力すべき送話部(13)等を具えており、筐体(11)内部の適所に、音響及び振動の両方によつて着信を報知することが可能な報知ユニット(2)が取り付けられている。

【0004】

報知ユニット(2)は、第1駆動信号により可聴帯周波数で駆動されて音波を発生する第1振動体と、第2駆動信号により数100Hz以下の低周波数で駆動されて振動を発生する第2振動体と、第1駆動信号及び第2駆動信号を発生する信号発生回路とから構成されている。第1及び第2振動体は共通のケーシングに内蔵され、第1振動体は、ケーシングに、第1振動板を介してコイルを取り付けて構成される一方、第2振動体は、ケーシングに、第2振動板を介して磁石体を取り付けて構成され、該磁石体には、第1振動体のコイルを収容する磁気ギャップ

が形成されている。

【0005】

具体的には、図2に示す如く円筒状のケーシング(21)に、主に音波を発生すべき第1振動体(4)と、主に振動を発生すべき第2振動体(3)とを内蔵したものであって、ケーシング(21)は、円筒状本体(22)の前面開口部に、放音口(25)を有するリング状の前カバー部材(24)を取り付けると共に、本体(22)の背面開口部には、リング状の後カバー部材(23)を取り付けて、全体がコンパクトに構成されている。

【0006】

第1振動体(4)は、ケーシング本体(22)と前カバー部材(24)の間に周辺部が挟持された円形の第1振動板(41)と、第1振動板(41)の背面に固定されたコイル(42)とから構成される。該第1振動体(4)は、数100Hzを越える可聴帯の共振周波数を有している。

一方、第2振動体(3)は、ケーシング本体(22)と後カバー部材(23)の間に外周部が挟持されたリング状の第2振動板(34)と、第2振動板(34)の内周部に固定された外ヨーク(32)と、軸方向(上下方向)に着磁され外ヨーク(32)の前面に固定された永久磁石(31)と、永久磁石(31)の前面に固定された内ヨーク(33)とから構成され、外ヨーク(32)と内ヨーク(33)の対向面間に形成されたリング状の磁気ギャップ部に、前記第1振動体(4)のコイル(42)が上下動可能に収容されている。該第2振動体(3)は、数100Hzよりも低い共振周波数を有している。

【0007】

図11は、第1振動体(4)の振動特性Csと、第2振動体(3)の振動特性Cvを表わしており、各振動体(4)(3)の共振周波数Fs、Fvで振幅にピークが発生している。

従って、音用駆動信号及び振動用駆動信号として、前記共振周波数Fs、Fvを報知ユニット(2)のコイル(42)へ供給することによって、大きな報知効果を得ることが出来る。

【0008】

即ち、音による報知を行なう場合は、図10(a)に示す様に共振周波数Fsに一

致する周波数(例えば2 kHz程度)の音用駆動信号Dsを前記コイル(42)に供給し、振動による報知を行なう場合は、図10(b)に示す様に共振周波数Fvに一致する周波数(例えば100 Hz程度)の振動用駆動信号Dv'を前記コイル(42)に供給する。

音用駆動信号Dsが報知ユニット(2)のコイル(42)へ供給されたときは、磁気ギャップ部を半径方向に貫通する磁力線と、コイル(42)を流れる周方向の電流との関係で、フレミングの左手の法則によって、コイル(42)には軸方向の駆動力が発生する。ここで、駆動力は共振点の周波数で作用するから、第1振動体(4)が共振して、音波を発生する。これに対し、第2振動体(3)は共振点がずれているため、殆ど振動しない。この音波の発生によって、聴覚的に着信を報知する。

【0009】

一方、振動用駆動信号Dv'が報知ユニット(2)のコイル(42)へ供給されたときは、同様にコイル(42)には軸方向の駆動力が発生するが、第1振動体(3)の共振点は該駆動力の周波数からずれているため、第1振動体(3)は殆ど振動せず、該駆動力の周波数に共振点を有する第2振動体(3)が、該駆動力の反力を受けて共振し、振動を発生する。この振動の発生によって、体感的に着信を報知する。

【0010】

【発明が解決しようとする課題】

ところで、上記報知ユニット(2)においては、振動板(41)(34)、ヨーク(32)(33)、及び永久磁石(31)の形状寸法、材質等、振動体(4)(3)の共振周波数を決定する諸元の公差に起因して、各振動体(4)(3)の共振周波数にはらつきが生じることは避けることが出来ない。

例えば、第2振動体(3)を構成している第2振動板(34)の厚さが $120 \mu m \pm 8 \mu m$ の公差を有しており、板厚tが $120 \mu m$ のときの共振周波数Fvが 100 Hz である場合、共振周波数Fvは板厚tの1.5乗に比例するので、共振周波数のはらつきは、 $100 \text{ Hz} \pm 10 \text{ Hz}$ となる。

【0011】

図12は、寸法公差等によって、実線の振動特性aが破線の振動特性b、cにずれた状態を表わしており、ずれのない振動特性aにおける共振周波数によって

、それが生じた振動特性 b の振動体を駆動したとすると、共振は発生せず、振動体の振幅は、共振点におけるピーク値 W_p から値 W' に大幅に低下することになる。

この様に、共振周波数のばらつきを無視して一定周波数の駆動信号によって報知ユニットを駆動した場合、振動体の振幅にもばらつきが生じて、十分な報知効果が得られない問題があった。

【0012】

そこで本発明は、共振周波数のばらつきに拘わらず、十分な報知効果が得られる報知装置及びこれを使った無線通信装置を提供することを目的とする。

【0013】

【課題を解決する為の手段】

本発明に係る報知装置は、駆動信号の供給を受けて共振すべき振動体と、該振動体に駆動信号を供給する信号作成回路とを具えており、信号作成回路は、振動体の共振周波数を含む一定範囲内で周波数が変動する駆動信号を作成して、振動体に供給することを特徴とする。

【0014】

上記本発明の報知装置によれば、振動体の寸法公差等によって共振周波数にばらつきがあったとしても、駆動信号の周波数が一定範囲内で繰り返し変動するので、その変動過程において真の共振周波数に一致した時点で共振が発生し、大きな振幅が得られることになる。その後、駆動信号の周波数が真の共振周波数からはずれたときは、共振は発生せず、振幅は小さくなるが、再び共振周波数に一致することによって、振幅は増大することになる。

この様に、駆動信号の周波数の変動に伴って、振動体の振幅は、共振時の振幅をピークとして増減を繰り返す。

【0015】

具体的構成において、駆動信号の周波数の変動幅は、振動体の共振周波数を決定する諸元の公差に起因する共振周波数のばらつき幅に対応している。

ここで、諸元の公差に起因する共振周波数のばらつき幅は実験的、経験的或いは理論的に求めることが出来、該ばらつき幅に対応させることによって、駆動信

号の周波数の変動幅を合理的に決定することが出来る。

【0016】

例えば、振動体の共振周波数は可聴帯周波数よりも低く、具体的には数100Hz以下の低周波数であって、共振周波数での振動体の振動は、体感し得る程度の振幅を有している。これによって、体感的な報知効果を得ることが出来る。

駆動信号は、パルス状或いは正弦波状の交番波形を有しており、その周波数は1～数ヘルツで周期的に変動する。これによって、体感的に効果の高い周期で共振が発生する。

【0017】

又、駆動信号の周波数は、三角波、正弦波、若しくは鋸歯状波で変動する。特に、駆動信号の周波数を鋸歯状波で変動させた場合、該鋸歯状波の周期に一致する一定の周期で共振が発生することとなり、不快感のない報知が可能である。

尚、駆動信号の周波数の変動は連続的なものに限らず、ステップ的に漸増若しくは漸減するものであってもよい。

【0018】

本発明に係る無線通信装置は、着信を報知するために、上記本発明に係る報知装置を具えたものである。

該無線通信装置によれば、報知装置の共振周波数にばらつきがあったとしても、十分な報知効果が得られるので、着信を確実に伝えることが出来る。

【0019】

【発明の効果】

本発明に係る報知装置及びこれを具えた無線通信装置によれば、共振周波数のばらつきに拘わらず、周期的に或いは非周期的に共振が発生して、振動体の振幅は、共振時の振幅をピークとして増減を繰り返すので、聴覚的或いは体感的に大きな報知効果が得られる。

【0020】

【発明の実施の形態】

以下、本発明を図9に示す携帯電話機に実施した形態につき、図面に沿って具体的に説明する。

本発明に係る携帯電話機は、図9に示す如く、アンテナ(1)が突設された扁平な筐体(11)の表面に、スピーカを内蔵した受話部(12)、テンキー等の操作鈎(14)、マイクロホンを内蔵した送話部(13)等を具えており、筐体(11)内部の適所には、音響或いは振動によって着信を報知するための報知ユニット(2)が取り付けられている。

【0021】

報知ユニット(2)は、図2に示す如く共通のケーシング(21)に、主に音波を発生すべき第1振動体(4)と、主に振動を発生すべき第2振動体(3)とを内蔵したものである。ケーシング(21)は、円筒状本体(22)の前面開口部に、放音口(25)を有するリング状の前カバー部材(24)を取り付けると共に、本体(22)の背面開口部には、リング状の後カバー部材(23)を取り付けて構成される。

【0022】

第1振動体(4)は、ケーシング本体(22)と前カバー部材(24)の間に周辺部が挟持された円形の第1振動板(41)と、第1振動板(41)の背面に固定されたコイル(42)とから構成される。該第1振動体(4)は、数100Hzを越える可聴帯の共振周波数を有している。

一方、第2振動体(3)は、ケーシング本体(22)と後カバー部材(23)の間に外周部が挟持されたリング状の第2振動板(34)と、第2振動板(34)の内周部に固定された外ヨーク(32)と、軸方向(上下方向)に着磁され外ヨーク(32)の前面に固定された永久磁石(31)と、永久磁石(31)の前面に固定された内ヨーク(33)とから構成され、外ヨーク(32)と内ヨーク(33)の対向面間に形成されたリング状の磁気ギヤップ部に、前記第1振動体(4)のコイル(42)が上下動可能に収容されている。該第2振動体(3)は、事実上聞こえない程度の周波数帯域、例えば50Hz～300Hzの共振周波数を有している。

尚、第1及び第2振動板(41)(34)は、金属、ゴム、樹脂などの周知の弾性資材によって形成することが出来る。又、第2振動板(34)には、大きな変位量を得るべく、必要に応じて切込み等が形成される。

【0023】

図1は、上記報知ユニット(2)を具えた携帯電話機の主要部の回路構成を表わ

している。該携帯電話機は、操作鉗(14)の操作によって、音響による着信の報知又は振動による着信の報知の何れかによる呼出し方法を選択することが可能であって、該選択操作に応じて、呼出設定回路(55)が制御回路(54)に対して呼出し方法の設定を行なう。

報知ユニット(2)には、スイッチ(59)を介して音用信号作成回路(57)と振動用信号作成回路(5)が接続され、スイッチ(59)の切換え動作は制御回路(54)によって制御されている。

【0024】

基地局から送られてくる電波は、アンテナ(1)によって一定周期で常時受信されており、受信された信号は、無線回路(51)にて周波数変換及び復調が施された後、信号処理回路(52)へ供給されて、デジタル音声信号及び制御信号が抽出される。信号処理回路(52)の動作は制御回路(54)によって制御されている。

信号処理回路(52)から得られる制御信号は着信検出回路(53)へ供給されて、自局に対する呼出しの有無が検出される。一方、信号処理回路(52)から得られる音声信号は図示省略する音声信号処理回路を経てスピーカから放音されることになる。

【0025】

音用信号作成回路(57)は、音響による報知を行なうべく可聴帶周波数の音用駆動信号Dsを発生するものである。一方、振動用信号作成回路(5)は、体感可能な振動による報知を行なうべく、数100Hz以下の低周波数の振動用駆動信号Dvを発生するものであって、変調信号発生回路(56)と振動用信号処理回路(58)から構成されている。変調信号発生回路(56)及び振動用信号処理回路(58)の具体的構成については後述する。

【0026】

制御回路(54)は、着信検出回路(53)によって自局に対する呼出しが検出された場合、操作鉗(14)による呼出設定に応じてスイッチ(59)を切り換える。

音のみによって着信を報知する場合は、スイッチ(59)を音用信号作成回路(57)側に切り換えて、音用駆動信号のみを報知ユニット(2)へ供給する。一方、振動のみによって着信を報知する場合は、スイッチ(59)を振動用信号作成回路(5)側

へ切り換えて、振動用駆動信号のみを報知ユニット(2)へ供給する。

【0027】

音用信号作成回路(57)が作成する音用駆動信号Dsは図10(a)に示す様に、可聴帯である2kHzの周波数を有するパルス信号を16Hzの周期で断続させて形成され、該パルスの断続によって“プルルル…”という聞こえやすい報知音を生成するものであって、2kHzの周波数は、図11に示す振動特性Csにおける共振周波数Fvに一致している。

一方、振動用信号作成回路(5)が作成する振動用駆動信号Dvは、図4に示す如く、人体が振動として感じやすい100Hz程度の周波数を中心として、周波数が例えば100Hz±10Hzの範囲で周期的に変動するものであり、中心周波数100Hzは、図11に示す振動特性Cvにおける共振周波数Fvに一致している。

【0028】

図3(a)は、振動用駆動信号Dvの周波数Fを三角波で変動させた例を表わしており、周波数Fは、中心周波数Fm=100Hzとして±ΔF=±10Hzの変動幅を有し、その変動周波数(1/Tm)は1～数Hzに設定されている。

ここで、周波数の変動幅±ΔFは、第2振動体(3)の共振周波数を決定する諸元の公差に起因する共振周波数のばらつき幅に応じて決定される。

【0029】

この場合、仮に第2振動体(3)の共振周波数にずれがなかったとすると、周波数Fが中心周波数Fmに一致したときに共振が発生して、同図(b)に実線で示す様に、共振点での振幅Wpをピークとして変動する振幅曲線Waが得られる。

又、第2振動体(3)の共振周波数に、振動板等の寸法公差によるずれが生じ、例えば同図(a)のP点に真の共振点が存在したとしても、駆動信号の周波数FがこのP点を通過する時点で共振が発生し、同図(b)に破線で示す様に、共振点での振幅Wpをピークとして変動する振幅曲線Wbが得られることになる。

【0030】

この様に、振動用駆動信号Dvの周波数をFm±ΔFの範囲で変動させることによって、共振周波数のばらつきに拘わらず、常に、共振点での振幅Wpをピーク

として変動する振幅を得ることが出来、十分な報知効果を得ることが出来る。又、この振幅の変動が体感的な報知効果をより増大させるのである。

【0031】

これに対し、一定周波数 F_m で第2振動体(3)を駆動する場合において、第2振動体(3)の共振周波数にずれが生じると共振は発生せず、第2振動体(3)の振幅は、図3(b)に2点鎖線で示す様に、共振点におけるピーク値 W_p から大幅に低下した小さな値 W' となる。従って、十分な報知効果は得られない。

【0032】

振動用駆動信号 D_v の周波数は、三角波で変動させる方式のみならず、正弦波や鋸歯状波で変動させる方式も採用可能である。

例えば図5(a)で示す様に鋸歯状波で変動させた場合において、仮に第2振動体(3)の共振周波数にずれがないとしたときには、同図(b)に実線で示す様に共振点での振幅 W_p をピークとして変動する振幅曲線 W_a が得られ、第2振動体(3)の共振周波数にずれがあったとしても、同図(b)に破線で示す様に共振点での振幅 W_p をピークとして変動する振幅曲線 W_b が得されることになる。

特にこの場合、第2振動体(3)の共振は一定周期で発生するため、不快感のない報知が実現される。

【0033】

又、振動用駆動信号 D_v の周波数は、図6に示す様に微小な周波数幅でステップ的に漸増若しくは漸減させる方式の採用可能である。この場合にも同様の効果が得られる。

【0034】

本実施例では、図1に示す如く振動用信号作成回路(5)を変調信号発生回路(56)及び音用信号作成回路(57)から構成している。ここで、変調信号発生回路(56)は、振動用駆動信号の周波数に変調を施すための変調信号 S_m を発生するものであって、変調信号は、図3(a)や図5(a)に示す振動用駆動信号の周波数の変動波形と同一波形に作成される。この様な変調信号の作成には、従来より周知の信号発生回路を採用することが出来る。

【0035】

一方、振動用信号処理回路(58)は例えば図7に示す如く構成することが出来る。該振動用信号処理回路(58)は、容量素子C及び抵抗素子R1、R2からなる充電部(6)の出力端に、第1コンパレータ(61)及び第2コンパレータ(62)を介して、RS-フリップフロップ回路(63)を接続すると共に、該RS-フリップフロップ回路(63)の出力端には、放電制御用トランジスタ(64)及びT-フリップフロップ回路(65)を接続したものである。第1コンパレータ(61)の反転入力端子には前述の変調信号Smが入力され、第2コンパレータ(62)の非反転入力端子には参照電圧信号Vrefが入力される。

【0036】

図8は、上記振動用信号処理回路(58)の動作を表わしたものである。

即ち、充電部(6)が電力の供給を受けて充電されることによって、該充電部(6)から出力される電圧信号Voは徐々に増大し、該信号の大きさが変調信号Smのレベルに達すると、第1コンパレータ(61)からRS-フリップフロップ回路(63)へセット信号が供給されて、RS-フリップフロップ回路(63)の出力SoがONとなる。この結果、トランジスタ(64)がONとなり、充電部(6)の放電が開始されることになる。

その後、充電部(6)から出力される電圧信号Voが参照電圧信号Vrefのレベルまで低下すると、第2コンパレータ(62)がONとなり、第2コンパレータ(62)からRS-フリップフロップ回路(63)へリセット信号が供給されて、RS-フリップフロップ回路(63)の出力がOFFとなる。この結果、トランジスタ(64)がOFFとなって、充電部(6)の充電が再開されることになる。

【0037】

この様にして充電部(6)が充放電を繰り返し(図8(a))、RS-フリップフロップ回路(63)の出力SoがON/OFFを繰り返す過程で(図8(b))、該出力Soの立上りに同期して、T-フリップフロップ回路(65)の出力がONからOFF、OFFからONへ切り換えられる。

この結果、T-フリップフロップ回路(65)からは、同図(c)に示す如く、電圧信号Voが変調信号Soのレベルに達する毎にON/OFFする駆動信号Dvが得られる。ここで、変調信号Soが例えば三角波で変動することにより、駆動信号

Dvの周期Toも三角波で変動することになるので、図4に示す如き変調駆動信号Dvが得られるのである。

【0038】

尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば本発明は、図2に示す如き音発生装置と振動発生装置の機能を併せ持つ報知ユニット(2)に限らず、音発生装置と振動発生装置を別体に具えた報知装置に実施することも可能である。

又、報知ユニット(2)の振動体としては、上述の如く磁力を利用したものに限らず、共振を利用したものであれば周知の種々の構成を採用することが出来、例えば圧電素子を利用したものも採用可能である。

更に又、振動用信号作成回路(5)をマイクロコンピュータによって構成し、図4に示す如き変調駆動信号Dvをソフトウェア処理によって作成することも可能である。

【図面の簡単な説明】

【図1】

本発明に係る携帯電話機の回路構成を表わすブロック図である。

【図2】

報知ユニットの拡大断面図である。

【図3】

駆動信号の周波数と振動体の振幅の関係を表わす波形図である。

【図4】

駆動信号の波形図である。

【図5】

他の実施例における駆動信号の周波数と振動体の振幅の関係を表わす波形図である。

【図6】

更に他の実施例における駆動信号の周波数の変動を表わす波形図である。

【図7】

振動用信号処理回路の構成例を表わすブロック図である。

【図8】

該振動用信号処理回路の動作を表わす波形図である。

【図9】

本発明を実施すべき携帯電話機の外観を表わす斜視図である。

【図10】

従来の携帯電話機における音用駆動信号と振動用駆動信号を表わす波形図である。

【図11】

振動体の振動特性を表わすグラフである。

【図12】

共振周波数のずれによる振幅の低下を説明する図である。

【符号の説明】

- (2) 報知ユニット
- (4) 第1振動体
- (3) 第2振動体
- (57) 音用信号作成回路
- (5) 振動用信号作成回路
- (56) 変調信号発生回路
- (58) 振動用信号処理回路
- (6) 充電部
- (63) RS-フリップフロップ回路
- (65) T-フリップフロップ回路

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

特平10-002501

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図1.1】

【図1.2】

【書類名】 要約書

【要約】

【課題】 駆動信号の供給を受けて共振すべき振動体を内蔵した報知ユニット2と、報知ユニット2に駆動信号を供給する信号作成回路5とを具えた報知装置において、振動体の共振周波数のばらつきに拘わらず、十分な報知効果が得られる報知装置を提供する。

【解決手段】 信号作成回路5は、報知ユニット2の振動体の共振周波数を含む一定範囲内で周波数が変動する駆動信号Dvを作成して、報知ユニット2に供給する。ここで、駆動信号の周波数の変動幅は、振動体の共振周波数を決定する諸元の公差に起因する共振周波数のばらつき幅に対応して設定されている。

【選択図】 図1

【書類名】 職権訂正データ
【訂正書類】 特許願

<認定情報・付加情報>

【特許出願人】

【識別番号】 000001889

【住所又は居所】 大阪府守口市京阪本通2丁目5番5号

【氏名又は名称】 三洋電機株式会社

【代理人】

【識別番号】 100100114

【住所又は居所】 大阪市中央区高津1丁目9-10 マルコーアインテ
リジエンスビル406号室 西岡特許事務所

【氏名又は名称】 西岡 伸泰

特平10-002501

出願人履歴情報

識別番号 [000001889]

1. 変更年月日 1993年10月20日

[変更理由] 住所変更

住 所 大阪府守口市京阪本通2丁目5番5号

氏 名 三洋電機株式会社