

The Sabre ES9033 High Performance Audio DAC is a 32-Bit, 2-channel audio DAC that brings professional, digital audio quality to the consumer home entertainment market.

Using ESS' patented HyperStream ® II architecture, the Sabre ES9033 delivers studio quality audio with 122dB DNR (w / DRE) and -108dB THD+N.

With the integrated line drivers, the ES9033 reduces BOM costs by eliminating the need for external amplifier to produce a line level 2Vrms output.

The Sabre ES9033 flexible input architecture accepts up to serial 32-bit serial PCM data to 768kHz sample rate & DSD512.

The Sabre DAC sets a new standard for high-quality audio performance in a cost-effective, compact, easy to use form factor for today's most demanding digital audio applications.

| Feature                                                     | Description                                                                          |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------|
| +122dB DNR (w/ DRE) per channel<br>-108dB THD+N per channel | Unprecedented dynamic range and ultra-low distortion                                 |
| High Sample Rates                                           | Support for up to PCM 768kHz & DSD512                                                |
| 2-channel DAC + Line Driver in 28-QFN                       | Reduced footprint and simplifies board layout                                        |
| Multiple formats available                                  | PCM, TDM, DSD, DoP input data formats.                                               |
| Customizable filter characteristics                         | 8 preset filters                                                                     |
| I2C, SPI, and Hardware interface control                    | Configured by microcontroller or other I2C/SPI source, or pins through Hardware Mode |
| Integrated low noise DAC reference regulators               | Reduced BOM cost, PCB area and improved DNR.                                         |
| Low Pin Count Standardized Packaging                        | 5mm x 5mm, 28 pin QFN                                                                |
| 2Vrms Integrated Line Driver                                | Reduces BOM costs w/o required external op-amp required for line driver levels       |
| Analog PLL (APLL)                                           | Simplifies clocking requirements and reduces PCB size and BOM cost                   |

### **APPLICATIONS**

- Media Streamer Applications
- Gaming Motherboards
- Audio Receivers

- Professional Audio Equipment
- Active Speakers





# **Table of Contents**

| APPLICATIONS                             | 1  |
|------------------------------------------|----|
| Table of Contents                        | 2  |
| List of Figures                          | 4  |
| List of Tables                           | 5  |
| Functional Block Diagram                 | 6  |
| ES9033Q Package                          |    |
| 28 QFN Pinout                            |    |
| 28 QFN Pin Descriptions                  | 3  |
| Configuration Modes                      | 9  |
| Hardware Mode                            | g  |
| Design Information                       | 9  |
| Muting                                   | 10 |
| APLL Modes                               | 10 |
| Hardware Mode Pin Configurations         | 11 |
| Recommended Hardware Mode Setup Sequence | 13 |
| Software Mode                            | 14 |
| I <sup>2</sup> C                         | 14 |
| SPI                                      | 14 |
| Digital Features                         | 15 |
| Digital Signal Path                      | 15 |
| GPIO Configuration                       | 15 |
| Soft Mute                                | 16 |
| Automute                                 | 16 |
| Volume Control                           | 16 |
| THD Compensation                         | 16 |
| Audio Input Formats                      | 17 |
| Time-division multiplexing (TDM)         | 17 |
| 128                                      | 17 |
| DSD                                      | 18 |
| Pre-Programmed Digital Filters           | 18 |
| PCM Filter Frequency Response            | 19 |
| PCM Filter Impulse Response              | 22 |
| Clock Distribution                       | 25 |
| I2S Master Clock Rate Configurations     | 27 |
| I2S Slave Clock Rate Configurations      | 28 |
| TDM Slave Clock Rate Configurations      | 29 |
| TDM Master Clock Rate Configurations     | 30 |
| Audio Interface Timing                   | 31 |



| Analog Features                                                                      | 32  |
|--------------------------------------------------------------------------------------|-----|
| APLL                                                                                 | 32  |
| PLL Registers                                                                        | 32  |
| Absolute Maximum Ratings                                                             | 33  |
| IO Electrical Characteristics                                                        | 33  |
| Recommended Operating Conditions                                                     | 34  |
| Power Consumption                                                                    | 34  |
| Performance                                                                          | 36  |
| Recommended Power-Up Sequence                                                        | 37  |
| Recommended Power-Down Sequence                                                      | 38  |
| Register Overview                                                                    | 39  |
| I <sup>2</sup> C Slave Interface (Device Address 0x90, 0x92, 0x94, 0x96)             | 39  |
| Read/Write Register Addresses                                                        | 39  |
| Read-only Register Addresses                                                         | 39  |
| I <sup>2</sup> C Synchronous Slave Interface (Device Address 0x98, 0x9A, 0x9C, 0x9E) | 39  |
| Write-only Register Addresses.                                                       | 39  |
| Multi-Byte Registers                                                                 | 39  |
| I <sup>2</sup> C Slave/Synchronous Slave Interface Timing                            | 40  |
| SPI Slave Interface                                                                  | 41  |
| SPI commands                                                                         | 41  |
| Register Map                                                                         | 43  |
| Register Listings                                                                    | 46  |
| System Registers                                                                     | 46  |
| GPIO Registers                                                                       | 56  |
| DAC Registers                                                                        | 62  |
| PLL Registers                                                                        | 79  |
| Read Only Registers                                                                  | 86  |
| Reference Schematic                                                                  | 92  |
| Hardware Mode                                                                        | 92  |
| Software Mode                                                                        | 93  |
| 28 QFN Package Dimensions                                                            | 94  |
| 28 QFN Top View Marking                                                              | 95  |
| Reflow Process Considerations                                                        | 96  |
| Temperature Controlled                                                               | 96  |
| Manual                                                                               | 97  |
| RPC-1 Classification reflow profile                                                  | 97  |
| RPC-2 Pb-Free Process – Classification Temperatures (Tc)                             | 98  |
| Ordering Information                                                                 | 99  |
| Revision History                                                                     | 100 |





# **List of Figures**

| Figure 1 - ES9033 Block Diagram                                   | 6  |
|-------------------------------------------------------------------|----|
| Figure 2 - 28 QFN pinout                                          | 7  |
| Figure 3 - Hardware mode pin configurations                       |    |
| Figure 4 - hardware mode startup sequence for modes without PLL   |    |
| Figure 5 - hardware mode startup sequence for modes with PLL      | 13 |
| Figure 6 - Digital signal path block diagram                      | 15 |
| Figure 7 - DSD format                                             | 18 |
| Figure 8 - ES9033 Clock Distribution                              | 25 |
| Figure 9 - Audio interface timing                                 | 31 |
| Figure 10 - Functional Block Diagram of ES9033 APLL               | 32 |
| Figure 11 - Recommended power down sequence                       | 37 |
| Figure 12 - Recommended power down sequence                       | 38 |
| Figure 13 - I2C Slave Control Interface Timing                    | 40 |
| Figure 14 - I2C single byte R/W                                   | 41 |
| Figure 15 - SPI single byte write                                 | 41 |
| Figure 16 - SPI single byte Read                                  | 42 |
| Figure 17 - SPI multi-byte read                                   | 42 |
| Figure 18 - Hardware mode reference schematic                     | 92 |
| Figure 19 - Software mode reference schematic                     | 93 |
| Figure 20 - QFN package dimensions                                |    |
| Figure 21 - 28 QFN top view markings                              | 95 |
| Figure 22 - IR/Convection Reflow Profile (IPC/JEDEC J-STD-020D.1) | 96 |



# **List of Tables**

| Table 1 - 28 QFN pin descriptions                                   | 8  |
|---------------------------------------------------------------------|----|
| Table 2 - Hardware mode pin configurations                          | 12 |
| Table 3 - I2C address configurations                                | 14 |
| Table 4 – Standard GPIO Functions                                   | 15 |
| Table 5 - Automute conditions                                       | 16 |
| Table 6 - Frequency response of PCM filters                         | 21 |
| Table 7 - Impulse response of PCM filters                           | 24 |
| Table 8 - I2S Master Clock Rate Configurations                      | 27 |
| Table 9 - I2S Slave Clock Rate Configurations                       | 28 |
| Table 10 - TDM Slave Clock Rate Configurations                      | 29 |
| Table 11 - TDM Master Clock Rate Configurations                     | 30 |
| Table 13 - Absolute maximum ratings                                 | 33 |
| Table 14 - IO electrical characteristics                            | 33 |
| Table 15 - Recommended operating conditions                         | 34 |
| Table 16 - Power consumption with test conditions 1                 | 34 |
| Table 17 - Power consumption with test conditions 2                 | 35 |
| Table 18 - Power consumption with test conditions 3                 | 35 |
| Table 19 - Performance data                                         | 36 |
| Table 20 - I2C slave/synchronous slave interface timing definitions | 40 |
| Table 21 - Register map                                             | 45 |
| Table 22 - 28 QFN top view markings dimensions                      | 95 |
| Table 23 - 28 QFN top view markings definitions                     | 95 |
| Table 24 - RPC-1 Classification reflow profile                      | 97 |
| Table 25 - Classification Temperatures                              | 98 |
| Table 26 - Ordering information                                     | 99 |



# **Functional Block Diagram**



Figure 1 - ES9033 Block Diagram



# ES9033Q Package

## 28 QFN Pinout



ES9033Q (Top View)

Figure 2 - 28 QFN pinout



# 28 QFN Pin Descriptions

| Pin | Name                     | Pin Type | Reset<br>State | Pin Description                                             |
|-----|--------------------------|----------|----------------|-------------------------------------------------------------|
| 1   | AVDD                     | Power    | Power          | 3.3V or 1.8V I/O supply                                     |
| 2   | CHIP_EN                  | I/O      | HiZ            | Active-high chip enable.                                    |
| 3   | MODE                     | I/O      | HiZ            | Control for SPI/I2C/HW modes                                |
| 4   | VCCA                     | Power    | Power          | Analog Supply                                               |
| 5   | DGND                     | Ground   | Ground         | Digital ground                                              |
| 6   | OUT1                     | AO       | Ground         | Output channel 1                                            |
| 7   | GND_SNS                  | Al       | Ground         | Line driver load ground voltage sense                       |
| 8   | OUT2                     | AO       | Ground         | Output channel 2                                            |
| 9   | AVCC_3V3                 | Power    | Power          | Analog Regulator 3.3V Supply                                |
| 10  | AVCC                     | Power    | Power          | Analog Regulator Output, internally supplied                |
| 11  | AGND                     | Ground   | Ground         | Analog ground                                               |
| 12  | BG_VREF                  | AO       | Ground         | Bandgap Voltage reference                                   |
| 13  | AGND_CP                  | Ground   | Ground         | Analog Ground for charge pump                               |
| 14  | PNEG                     | Power    | Ground         | Integrated charge pump output. Line driver negative supply. |
| 15  | C2                       | -        | -              | Line driver negative flying capacitor                       |
| 16  | C1                       | -        | -              | Line driver positive flying capacitor                       |
| 17  | AVCC_CP                  | Power    | Power          | Analog Supply for charge Pump                               |
| 18  | RT1                      | I        | HiZ            | Reserved. Must be connected to DGND for normal operation.   |
| 19  | SS/ADDR1/HW2             | I/O      | HiZ            | Interface Signal (SPI/I2C/Hardware modes)                   |
| 20  | MISO/ADDR0/MUTE_CTRL     | I/O      | HiZ            | Interface Signal (SPI/I2C/Hardware modes)                   |
| 21  | SCLK/SCL/HW1             | I/O      | HiZ            | Interface Signal (SPI/I2C/Hardware modes)                   |
| 22  | MOSI/SDA/HW0             | I/O      | HiZ            | Interface Signal (SPI/I2C/Hardware modes)                   |
| 23  | DATA2                    | I/O      | HiZ            | Serial DATA2                                                |
| 24  | DATA1                    | I/O      | HiZ            | Serial DATA1                                                |
| 25  | DATA_CLK                 | ı        | HiZ            | Serial data clock                                           |
| 26  | MCLK/GPIO                | I/O      | HiZ            | MCLK input, General I/O                                     |
| 27  | DGND                     | Ground   | Ground         | Digital core ground                                         |
| 28  | DVDD                     | Power    | Power          | Digital core supply, internally supplied                    |
| 29  | Package PAD <sup>1</sup> | -        | -              | Not electrically connected, used for heat dissipation       |

Table 1 - 28 QFN pin descriptions

-

<sup>&</sup>lt;sup>1</sup> Pin 29 is the package pad. See 28 QFN package dimensions for sizing



# **Configuration Modes**

#### **Hardware Mode**

The ES9033 has 16 pre-configured modes that can be set with external pin configuration. These modes configure the DAC for different input serial data rates and set the DAC muting.

These modes are set with pins:

- MODE (Pin 3)
- HW0 (Pin 22)
- HW1 (Pin 21)
- HW2 (Pin 19)
- MUTE\_CTRL (Pin 20)

Each hardware mode pin has 4 states:

- 0 Pin directly connected to GND
- 1 Pin directly connected to AVDD
- Pull 0 Pin pulled to GND through 47kΩ resistor
- Pull 1 Pin pulled to AVDD through 47kΩ resistor

#### **Design Information**

Each hardware mode pin can be configured with either a pull-up or pull-down resistor. Therefore, it is important that the pin is configured to allow for the desired hardware modes. Some guidelines include the following:

- By placing a pull-down resistor on the MODE pin, the device is limited to hardware modes with DRE. Alternatively, if a pull-up resistor is placed on the MODE pin, the device is limited to non-DRE modes.
- By placing a pull-down resistor on the HW2 pin, the device can no longer access modes 8-11 or modes 24-27. Alternatively, if a pull-up
  resistor is places on the HW2 pin, the device can no longer use LJ Master mode with an external MCLK.
- The HW0 and HW1 pins never require a pull up or pull-down resistor.



Figure 3 - Hardware mode pin configurations





### Muting

MUTE\_CTRL (Pin 20) is used to control the muting of the output and enabling of the Automute feature while in Hardware Mode:

- 0 Output Muted
- 1 Output Unmuted
- Pull 0 Output Muted
- Pull 1 Output Unmuted, Automute Enabled.

### **APLL Modes**

To use the hardware APLL modes (modes #9-11, #13-15, #25-27, and #29-31), the following sequence must be followed:

- Start in HW mode 8
- Wait for 1ms after CHIP\_EN is set high
- Switch to desired APLL mode



# Hardware Mode Pin Configurations

| HW   | FS (kHz)                     | BCK (MHz) | MCLK (MHz)             | BCK/Channel      | MODE   | HW2    | HW1 | HW0 |  |
|------|------------------------------|-----------|------------------------|------------------|--------|--------|-----|-----|--|
| Mode |                              | <u>'</u>  | I2S Master Mode, Ext   | MCLK (DRE)       |        |        |     |     |  |
| 0    | MCLK / 128                   | MCLK / 2  | 5 < MCLK < 50          | 32               | Pull 0 | 0      | 0   | 0   |  |
| 1    | MCLK / 256                   | MCLK / 4  | 5 < MCLK < 50          | 32               | Pull 0 | 0      | 0   | 1   |  |
| 2    | MCLK / 512                   | MCLK / 8  | 5 < MCLK < 50          | 32               | Pull 0 | 0      | 1   | 0   |  |
| 3    | MCLK / 1024                  | MCLK / 16 | 5 < MCLK < 50          | 32               | Pull 0 | 0      | 1   | 1   |  |
|      |                              |           | LJ Master, EXT MO      | CLK (DRE)        |        |        |     |     |  |
| 4    | MCLK / 128                   | MCLK / 2  | 5 < MCLK < 50          | 32               | Pull 0 | Pull 0 | 0   | 0   |  |
| 5    | MCLK / 256                   | MCLK / 4  | 5 < MCLK < 50          | 32               | Pull 0 | Pull 0 | 0   | 1   |  |
| 6    | MCLK / 512                   | MCLK / 8  | 5 < MCLK < 50          | 32               | Pull 0 | Pull 0 | 1   | 0   |  |
| 7    | MCLK / 1024                  | MCLK / 16 | 5 < MCLK < 50          | 32               | Pull 0 | Pull 0 | 1   | 1   |  |
|      |                              | 12        | S Slave, EXT MCLK, Au  | to Detect (DRE)  |        |        |     |     |  |
| 8    | Auto (8 < FS < 384)          | 64FS      | 128FS < MCLK < 50      | 32               | Pull 0 | Pull 1 | 0   | 0   |  |
|      |                              |           | I2S Slave, PLL from    | BCK (DRE)        |        |        |     |     |  |
| 9    | 48                           | 3.072     | 49.152 from PLL        | 32               | Pull 0 | Pull 1 | 0   | 1   |  |
| 10   | 96                           | 6.144     | 49.152 from PLL        | 32               | Pull 0 | Pull 1 | 1   | 0   |  |
| 11   | 192                          | 12.288    | 49.152 from PLL        | 32               | Pull 0 | Pull 1 | 1   | 1   |  |
|      |                              | DS        | SD Slave, EXT MCLK, Au | ito Detect (DRE) |        |        |     |     |  |
| 12   | 64FS                         | 64FS      | 5 < MCLK < 50          | 32               | Pull 0 | 1      | 0   | 0   |  |
|      |                              |           | LJ Slave, PLL from     | BCK (DRE)        |        |        |     |     |  |
| 13   | 48                           | 3.072     | 49.152 from PLL        | 32               | Pull 0 | 1      | 0   | 1   |  |
| 14   | 96                           | 6.144     | 49.152 from PLL        | 32               | Pull 0 | 1      | 1   | 0   |  |
| 15   | 192                          | 12.288    | 49.152 from PLL        | 32               | Pull 0 | 1      | 1   | 1   |  |
|      |                              | ı         | 2S Master Mode, Ext N  | MCLK (no DRE)    |        |        |     |     |  |
| 16   | MCLK / 128                   | MCLK / 2  | 5 < MCLK < 50          | 32               | Pull 1 | 0      | 0   | 0   |  |
| 7    | MCLK / 256                   | MCLK / 4  | 5 < MCLK < 50          | 32               | Pull 1 | 0      | 0   | 1   |  |
| 18   | MCLK / 512                   | MCLK / 8  | 5 < MCLK < 50          | 32               | Pull 1 | 0      | 1   | 0   |  |
| 19   | MCLK / 1024                  | MCLK / 16 | 5 < MCLK < 50          | 32               | Pull 1 | 0      | 1   | 1   |  |
|      | LJ Master, EXT MCLK (no DRE) |           |                        |                  |        |        |     |     |  |



| 20 | MCLK / 128                       | MCLK / 2  | 5 < MCLK < 50         | 32             | Pull 1 | Pull 0 | 0 | 0 |
|----|----------------------------------|-----------|-----------------------|----------------|--------|--------|---|---|
| 21 | MCLK / 256                       | MCLK / 4  | 5 < MCLK < 50         | 32             | Pull 1 | Pull 0 | 0 | 1 |
| 22 | MCLK / 512                       | MCLK / 8  | 5 < MCLK < 50         | 32             | Pull 1 | Pull 0 | 1 | 0 |
| 23 | MCLK / 1024                      | MCLK / 16 | 5 < MCLK < 50         | 32             | Pull 1 | Pull 0 | 1 | 1 |
|    |                                  | I2S       | Slave, EXT MCLK, Auto | Detect (no DRE | :)     |        |   |   |
| 24 | Auto (8 < FS <<br>384)           | 64FS      | 128FS < MCLK < 50     | 32             | Pull 1 | Pull 1 | 0 | 0 |
|    | I2S Slave, PLL from BCK (no DRE) |           |                       |                |        |        |   |   |
| 25 | 48                               | 3.072     | 49.152 from PLL       | 32             | Pull 1 | Pull 1 | 0 | 1 |
| 26 | 96                               | 6.144     | 49.152 from PLL       | 32             | Pull 1 | Pull 1 | 1 | 0 |
| 27 | 192                              | 12.288    | 49.152 from PLL       | 32             | Pull 1 | Pull 1 | 1 | 1 |
|    |                                  | DSD       | Slave, EXT MCLK, Auto | Detect (no DR  | E)     |        |   |   |
| 28 | 64FS                             | 64FS      | 5 < MCLK < 50         | 32             | Pull 1 | 1      | 0 | 0 |
|    |                                  |           | IJ Slave, PLL from BC | CK (no DRE)    |        |        |   |   |
| 29 | 48                               | 3.072     | 49.152 from PLL       | 32             | Pull 1 | 1      | 0 | 1 |
| 30 | 96                               | 6.144     | 49.152 from PLL       | 32             | Pull 1 | 1      | 1 | 0 |
| 31 | 192                              | 12.288    | 49.152 from PLL       | 32             | Pull 1 | 1      | 1 | 1 |

Table 2 - Hardware mode pin configurations



### Recommended Hardware Mode Setup Sequence

The hardware mode setup sequence is shown below with all hardware pins being defined after CHIP\_EN is asserted. If using a PLL mode, the device should be set to hardware mode 8 (HW2 pulled high, and HW0-1 set low) before CHIP\_EN is asserted.

Note: It is recommended that MUTE\_CTRL is set low until the HW mode is finalized, then asserted last.

#### Without PLL (Modes 0-8, 12):



Figure 4 - hardware mode startup sequence for modes without PLL

#### With PLL (Modes 9-11, 13-15):



Figure 5 - hardware mode startup sequence for modes with PLL



## **Software Mode**

To configure the ES9033 registers manually over I<sup>2</sup>C or SPI, connect the following pins:

### I<sup>2</sup>C

- MODE (Pin 3) GND
- Connect per I<sup>2</sup>C standard
  - SDA (Pin 22)
  - SCL (Pin 21)
  - ADDR0 (Pin 20)
  - ADDR1 (Pin 19)

Available I2C Addresses for the ES9033Q:

| I2C Address | ADDR1 | ADDR0 |
|-------------|-------|-------|
| 0x90        | GND   | GND   |
| 0x92        | GND   | AVDD  |
| 0x94        | AVDD  | GND   |
| 0x96        | AVDD  | AVDD  |

Table 3 - I2C address configurations

### SPI

- o Mode (Pin 3) AVDD
- Connect per SPI standard
  - SCLK (Pin 21)
  - SS (Pin 19)
  - MOSI (Pin 22)
  - MISO (Pin 20)



# **Digital Features**

## **Digital Signal Path**



Figure 6 - Digital signal path block diagram

# **GPIO Configuration**

| GPIO_CONFIG | Function            | I/O Direction |
|-------------|---------------------|---------------|
| 0           | 1'b0                | Output        |
| 1           | 1'b0                | Output        |
| 2           | 1'b1                | Output        |
| 3           | 128 FS Block        | Output        |
| 4           | Interrupt Output    | Output        |
| 5           | Mute all channel    | Input         |
| 6           | System mode Control | Input         |
| 7           | Reserved            | Output        |
| 8           | CLK_VALID flag      | Output        |
| 9           | PWM1                | Output        |
| 10          | PWM2                | Output        |
| 11          | PWM3                | Output        |
| 12          | Volume min          | Output        |
| 13          | Automute status     | Output        |
| 14          | Soft Ramp finished  | Output        |
| 15          | 1'b0                | Output        |

Table 4 – Standard GPIO Functions

#### For GPIO\_CONFIG 12, 13, 14:

Register 26[0] (GPIO\_SEL) selects which channel determines the flag status when the corresponding bits in Register 25[7:2] are set to 1'b0. See register listing for more detail.



#### **Soft Mute**

When Mute is asserted the digital signal level will be smoothly ramped to minimum. When Mute is de-asserted the digital signal level will ramp back up to the level set by the volume control register. Asserting Mute will not change the value stored in the volume control register. The volume ramp rate is controlled through registers 48-50.

Mute can be engaged through either the automute feature or by setting the mute bits for any individual channel through register 51: MUTE CTRL & CH INVERT.

#### **Automute**

Automute is disabled by default and is triggered when any one of the following conditions are met:

| Mode | Detection Condition                                                              | Time                                     |
|------|----------------------------------------------------------------------------------|------------------------------------------|
| PCM  | Data is lower than automute_level for longer than the automute_time              | $\frac{2^{18}}{(automute\_time * FS)}$   |
| DSD  | Equal number of 1s and 0s in any 8 consecutive bits of data                      | $\frac{2^{18}}{(automute\_time * DCLK)}$ |
| DoP  | DSD data contains an equal number of 1s and 0s in any 8 consecutive bits of data | $\frac{2^{18}}{(automute\_time * DCLK)}$ |

Table 5 - Automute conditions

The automute feature is enabled for both channels individually through the AUTOMUTE\_EN\_CH2 and AUTOMUTE\_EN\_CH1 bits (register 64-63[12:11]). The thresholds that trigger and disable automute can be configured through registers 65-68.

#### **Volume Control**

This volume control is intended for use during audio playback. Each channel can be digitally attenuated from 0dB to -127.5dB. When a new volume level is set, the attenuation circuit will ramp softly to the new level.

Volume of both channels individually is configured through registers 46-47.

By default, channel volumes are updated as soon as the volume registers are written. However the volume control can be configured to only change once the RUN\_VOLUME bit (register 51[5]) is toggled. This feature can be enabled or disabled through the FORCE\_VOLUME bit (register 51[7]).

Both output channels have an independent volume control. The attenuation for the channels can be independent or synchronized in pairs by setting the DAC\_USE\_MONO\_VOLUME bit (register 51[6]).

# **THD Compensation**

THD Compensation can be used to minimize distortion from external PCB components and layout through the generation of inverse second and third harmonic components matching the target system distortion profile.

The coefficients are stored in Registers 56 – 61.



## **Audio Input Formats**

For configuring TDM and I2S, use Registers 36-40

### Time-division multiplexing (TDM)

The ES9033 supports up to 32 channels TDM modes.

#### **12S**

Data is latched on the positive edge of BCK



Figure 2 - I2S & LJ Output Format



#### DSD<sup>2</sup>

Data is latched on the positive edge of DCLK.



Figure 7 - DSD format

# **Pre-Programmed Digital Filters**

The ES9033 has 8 pre-programmed digital filters. The latency for each filter reduces (scales) with increasing sample rates.

- Minimum Phase
- Linear Phase Apodizing
- Linear Phase Fast Roll-off
- Linear Phase Fast Roll-off Low Ripple
- Linear Phase Slow Roll-off
- Minimum Phase Fast Roll-off
- Minimum Phase Slow Roll-off
- Minimum Phase Slow Roll-off Low Dispersion

-

<sup>&</sup>lt;sup>2</sup> The Automute Feature is not available when using DSD mode



### **PCM Filter Frequency Response**

The following frequency responses were obtained from software simulations of these filters. Simulation sample rate is 44.1kHz.













Table 6 - Frequency response of PCM filters



### PCM Filter Impulse Response

The following impulse responses were obtained from software simulations of these filters. Simulation sample rate is 44.1kHz.













Table 7 - Impulse response of PCM filters



### **Clock Distribution**

The ES9033 includes features for selecting and manipulating the input clock source.



Figure 8 - ES9033 Clock Distribution





The following list shows the various clocks of the ES9033 and the associated registers for configuration.

#### **Analog DAC Clock**

- Reg 0[5] (ENABLE\_ANALOG\_DAC\_CH2)
- Reg 0[4] (ENABLE\_ANALOG\_DAC\_CH1)
- Reg 193[7] (PLL\_BYP)
- Reg 193[1] (SEL\_PLL\_IN)
- Reg 193[0] (EN\_PLL\_CLKIN)

#### **NSMOD Clock**

The NSMOD clock is utilized by the HyperStream<sup>®</sup> II **N**oise **S**haped **MOD**ulators.

- Reg 0[3] (ENABLE\_NSMOD)
- Reg 0[2] (ENABLE\_DAC)
- Reg 193[7] (PLL\_BYP)
- Reg 193[1] (SEL PLL IN)
- Reg 193[0] (EN\_PLL\_CLKIN)

#### **DAC Interpolation Path Clock**

- Reg 2[5:0] (SELECT\_IDAC\_NUM)
- Reg 0[2] (ENABLE\_DAC)
- Reg 193[7] (PLL\_BYP)
- Reg 193[1] (SEL\_PLL\_IN)
- Reg 193[0] (EN\_PLL\_CLKIN)

#### Master BCK and WS

- Reg 37 (MASTER MODE CONFIG)
- Reg 38[6:4] (MASTER\_WS\_SCALE)
- Reg 3[6:0] (SELECT\_MENC\_NUM)
- Reg 0[2] (ENABLE\_DAC)
- Reg 193[7] (PLL\_BYP)
- Reg 193[1] (SEL\_PLL\_IN)
- Reg 193[0] (EN\_PLL\_CLKIN)

#### **DSD Clock**

Reg 1[1] (ENABLE\_DSD\_DECODE)

#### **TDM Clock**

Reg 1[0] (ENABLE\_TDM\_DECODE)

#### **DoP Clock**

- Reg 1[2] (ENABLE\_DOP\_DECODE)
- Reg 1[0] (ENABLE\_TDM\_DECODE)



## **I2S Master Clock Rate Configurations**

WS can be scaled down further than shown via Register 38 [6:4] MASTER\_WS\_SCALE.

| MCLK<br>Frequency | WS<br>[kHz] | BCK<br>[MHz] | Bits | Channels | Register 2<br>[5:0]<br>SELECT_IDA<br>C_NUM |         | Register 3<br>[6:0]<br>SELECT_MENC<br>_NUM |         | Register 40<br>[4:0]<br>TDM_BIT_WIDT<br>H |        |
|-------------------|-------------|--------------|------|----------|--------------------------------------------|---------|--------------------------------------------|---------|-------------------------------------------|--------|
|                   |             |              |      |          | value                                      | divider | value                                      | divider | value                                     | length |
|                   | 44.1        | 2.822        |      | 2        | 5'd3                                       | 4       | 7'd3                                       | 4       | 1'b0                                      | 32     |
|                   | 88.2        | 5.645        | 32   | 2        | 5'd1                                       | 2       | 7'd1                                       | 2       | 1'b0                                      | 32     |
| 22.579            | 176.4       | 11.290       |      | 2        | 5'd0                                       | 1       | 7'd0                                       | 1       | 1'b0                                      | 32     |
| MHz               | 44.1        | 1.411        |      | 2        | 5'd3                                       | 4       | 7'd3                                       | 4       | 1'b1                                      | 16     |
|                   | 88.2        | 2.822        | 16   | 2        | 5'd1                                       | 2       | 7'd1                                       | 2       | 1'b1                                      | 16     |
|                   | 176.4       | 5.645        |      | 2        | 5'd0                                       | 1       | 7'd0                                       | 1       | 1'b1                                      | 16     |
|                   | 48          | 3.072        |      | 2        | 5'd3                                       | 4       | 7'd3                                       | 4       | 1'b0                                      | 32     |
|                   | 96          | 6.144        | 32   | 2        | 5'd1                                       | 2       | 7'd1                                       | 2       | 1'b0                                      | 32     |
| 24.576            | 192         | 12.288       |      | 2        | 5'd0                                       | 1       | 7'd0                                       | 1       | 1'b0                                      | 32     |
| MHz               | 48          | 1.536        | 16   | 2        | 5'd3                                       | 4       | 7'd3                                       | 4       | 1'b1                                      | 16     |
|                   | 96          | 3.072        |      | 2        | 5'd1                                       | 2       | 7'd1                                       | 2       | 1'b1                                      | 16     |
|                   | 192         | 6.144        |      | 2        | 5'd0                                       | 1       | 7'd0                                       | 1       | 1'b1                                      | 16     |
|                   | 44.1        | 2.822        | 32   | 2        | 5'd7                                       | 8       | 7'd7                                       | 8       | 1'b0                                      | 32     |
|                   | 88.2        | 5.645        |      | 2        | 5'd3                                       | 4       | 7'd3                                       | 4       | 1'b0                                      | 32     |
|                   | 176.4       | 11.290       |      | 2        | 5'd1                                       | 2       | 7'd1                                       | 2       | 1'b0                                      | 32     |
| 45.158            | 352.8       | 22.579       |      | 2        | 5'd0                                       | 1       | 7'd0                                       | 1       | 1'b0                                      | 32     |
| MHz               | 44.1        | 1.411        |      | 2        | 5'd7                                       | 8       | 7'd7                                       | 8       | 1'b1                                      | 16     |
|                   | 88.2        | 2.822        | 10   | 2        | 5'd3                                       | 4       | 7'd3                                       | 4       | 1'b1                                      | 16     |
|                   | 176.4       | 5.645        | 16   | 2        | 5'd1                                       | 2       | 7'd1                                       | 2       | 1'b1                                      | 16     |
|                   | 352.8       | 11.290       |      | 2        | 5'd0                                       | 1       | 7'd0                                       | 1       | 1'b1                                      | 16     |
|                   | 48          | 3.072        |      | 2        | 5'd7                                       | 8       | 7'd7                                       | 8       | 1'b0                                      | 32     |
|                   | 96          | 6.144        | 20   | 2        | 5'd3                                       | 4       | 7'd3                                       | 4       | 1'b0                                      | 32     |
|                   | 192         | 12.288       | 32   | 2        | 5'd1                                       | 2       | 7'd1                                       | 2       | 1'b0                                      | 32     |
| 49.152            | 384         | 24.576       |      | 2        | 5'd0                                       | 1       | 7'd0                                       | 1       | 1'b0                                      | 32     |
| MHz               | 48          | 1.536        |      | 2        | 5'd7                                       | 8       | 7'd7                                       | 8       | 1'b1                                      | 16     |
|                   | 96          | 3.072        | 40   | 2        | 5'd3                                       | 4       | 7'd3                                       | 4       | 1'b1                                      | 16     |
|                   | 192         | 6.144        | 16   | 2        | 5'd1                                       | 2       | 7'd1                                       | 2       | 1'b1                                      | 16     |
|                   | 384         | 12.288       |      | 2        | 5'd0                                       | 1       | 7'd0                                       | 1       | 1'b1                                      | 16     |

Table 8 - I2S Master Clock Rate Configurations



## **I2S Slave Clock Rate Configurations**

| MCLK<br>Frequency | WS<br>[kHz] |        | Channels | Register 2<br>[5:0]<br>SELECT_IDA<br>C_NUM |         | Register 0 [6] ENABLE_2X_M ODE |            |
|-------------------|-------------|--------|----------|--------------------------------------------|---------|--------------------------------|------------|
|                   |             |        |          | value                                      | divider | value                          | multiplier |
|                   | 44.1        | 512FS  | 2        | 7'd3                                       | 4       | 1'b0                           | 1x         |
| 22.579            | 88.2        | 256FS  | 2        | 7'd1                                       | 2       | 1'b0                           | 1x         |
| MHz               | 176.4       | 128FS  | 2        | 7'd0                                       | 1       | 1'b0                           | 1x         |
|                   | 352.8       | 64FS   | 2        | 7'd0                                       | 1       | 1'b1                           | 2x         |
|                   | 48          | 512FS  | 2        | 7'd3                                       | 4       | 1'b0                           | 1x         |
| 24.576            | 96          | 256FS  | 2        | 7'd1                                       | 2       | 1'b0                           | 1x         |
| MHz               | 192         | 128FS  | 2        | 7'd0                                       | 1       | 1'b0                           | 1x         |
|                   | 384         | 64FS   | 2        | 7'd0                                       | 1       | 1'b1                           | 2x         |
|                   | 44.1        | 1024FS | 2        | 7'd7                                       | 8       | 1'b0                           | 1x         |
| 45.158            | 88.2        | 512FS  | 2        | 7'd3                                       | 4       | 1'b0                           | 1x         |
| MHz               | 176.4       | 256FS  | 2        | 7'd1                                       | 2       | 1'b0                           | 1x         |
|                   | 352.8       | 128FS  | 2        | 7'd0                                       | 1       | 1'b0                           | 1x         |
|                   | 48          | 1024FS | 2        | 7'd7                                       | 8       | 1'b0                           | 1x         |
| 49.152            | 96          | 512FS  | 2        | 7'd3                                       | 4       | 1'b0                           | 1x         |
| MHz               | 192         | 256FS  | 2        | 7'd1                                       | 2       | 1'b0                           | 1x         |
|                   | 384         | 128FS  | 2        | 7'd0                                       | 1       | 1'b0                           | 1x         |

Table 9 - I2S Slave Clock Rate Configurations



## **TDM Slave Clock Rate Configurations**

All configurations are 32-bit.

| MCLK<br>Frequency | WS<br>[kHz] | BCK<br>[MHz] | TDM<br>Mode | Chan-<br>nels | SELECTURA |         |
|-------------------|-------------|--------------|-------------|---------------|-----------|---------|
|                   |             |              |             |               | value     | divider |
|                   | 44.1        | 5.645        |             | 4             | 5'd3      | 4       |
|                   | 88.2        | 11.290       | TDM<br>128  | 4             | 5'd1      | 2       |
| 00.570            | 176.4       | 22.579       |             | 4             | 5'd0      | 1       |
| 22.579<br>MHz     | 44.1        | 11.290       | TDM         | 8             | 5'd3      | 4       |
|                   | 88.2        | 22.579       | 256         | 8             | 5'd1      | 2       |
|                   | 44.1        | 22.579       | TDM<br>512  | 16            | 5'd3      | 4       |
|                   | 48          | 6.144        |             | 4             | 5'd3      | 4       |
|                   | 96          | 12.288       | TDM         | 4             | 5'd1      | 2       |
|                   | 192         | 24.576       | 128         | 4             | 5'd0      | 1       |
| 24.576<br>MHz     | 48          | 12.288       | TDM         | 8             | 5'd3      | 4       |
|                   | 96          | 24.576       | 256         | 8             | 5'd1      | 2       |
|                   | 48          | 24.576       | TDM<br>512  | 16            | 5'd3      | 4       |
|                   | 44.1        | 5.645        |             | 4             | 5'd7      | 8       |
|                   | 88.2        | 11.290       | TDM         | 4             | 5'd3      | 4       |
|                   | 176.4       | 22.579       | 128         | 4             | 5'd1      | 2       |
| 45.158<br>MHz     | 44.1        | 11.290       | TDM         | 8             | 5'd7      | 8       |
|                   | 88.2        | 22.579       | 256         | 8             | 5'd3      | 4       |
|                   | 44.1        | 22.579       | TDM<br>512  | 16            | 5'd7      | 8       |
|                   | 48          | 6.144        |             | 4             | 5'd7      | 8       |
|                   | 96          | 12.288       | TDM<br>128  | 4             | 5'd3      | 4       |
| 40.450            | 192         | 24.576       | 120         | 4             | 5'd1      | 2       |
| 49.152<br>MHz     | 48          | 12.288       | TDM         | 8             | 5'd7      | 8       |
|                   | 96          | 24.576       | 256         | 8             | 5'd3      | 4       |
|                   | 48          | 24.576       | TDM<br>512  | 16            | 5'd7      | 8       |

Table 10 - TDM Slave Clock Rate Configurations



### **TDM Master Clock Rate Configurations**

When using left justified mode (Register 10) remember to enable Reg 33 – sync positive edge of frame to correct for phase differences.

| MCLK<br>Frequency | WS<br>[kHz] | BCK<br>[MHz] | TDM<br>Mode | Chan-<br>nels | Register 2<br>[5:0]<br>SELECT_IDA<br>C_NUM |         | Register 3<br>[6:0]<br>SELECT_MENC<br>_NUM |         | Register 38<br>[6:4]<br>MASTER_WS_S<br>CALE |         | Register 37<br>[6]<br>MASTER_BCK_<br>DIV1 |         |
|-------------------|-------------|--------------|-------------|---------------|--------------------------------------------|---------|--------------------------------------------|---------|---------------------------------------------|---------|-------------------------------------------|---------|
|                   |             |              |             |               | value                                      | divider | value                                      | divider | value                                       | divider | value                                     | divider |
|                   | 44.1        | 5.645        |             | 4             | 5'd3                                       | 4       | 7'd1                                       | 2       | 3'd1                                        | 2       | 1'b0                                      | 2       |
|                   | 88.2        | 11.290       | TDM<br>128  | 4             | 5'd1                                       | 2       | 7'd0                                       | 1       | 3'd1                                        | 2       | 1'b0                                      | 2       |
| 00.570            | 176.4       | 22.579       |             | 4             | 5'd0                                       | 1       | 7'd0                                       | 1       | 3'd0                                        | 1       | 1'b1                                      | 1       |
| 22.579<br>MHz     | 44.1        | 11.290       | TDM         | 8             | 5'd3                                       | 4       | 7'd0                                       | 1       | 3'd2                                        | 4       | 1'b0                                      | 2       |
|                   | 88.2        | 22.579       | 256         | 8             | 5'd1                                       | 2       | 7'd0                                       | 1       | 3'd1                                        | 2       | 1'b1                                      | 1       |
|                   | 44.1        | 22.579       | TDM<br>512  | 16            | 5'd3                                       | 4       | 7'd0                                       | 1       | 3'd2                                        | 4       | 1'b1                                      | 1       |
|                   | 48          | 6.144        |             | 4             | 5'd3                                       | 4       | 7'd1                                       | 2       | 3'd1                                        | 2       | 1'b0                                      | 2       |
|                   | 96          | 12.288       | TDM         | 4             | 5'd1                                       | 2       | 7'd0                                       | 1       | 3'd1                                        | 2       | 1'b0                                      | 2       |
|                   | 192         | 24.576       | 128         | 4             | 5'd0                                       | 1       | 7'd0                                       | 1       | 3'd0                                        | 1       | 1'b1                                      | 1       |
| 24.576<br>MHz     | 48          | 12.288       | TDM         | 8             | 5'd3                                       | 4       | 7'd0                                       | 1       | 3'd2                                        | 4       | 1'b0                                      | 2       |
| 2                 | 96 24.576   | 256          | 8           | 5'd1          | 2                                          | 7'd0    | 1                                          | 3'd1    | 2                                           | 1'b1    | 1                                         |         |
|                   | 48          | 24.576       | TDM<br>512  | 16            | 5'd3                                       | 4       | 7'd0                                       | 1       | 3'd2                                        | 4       | 1'b1                                      | 1       |
|                   | 44.1        | 5.645        | TDM         | 4             | 5'd7                                       | 8       | 7'd3                                       | 4       | 3'd1                                        | 2       | 1'b0                                      | 2       |
|                   | 88.2        | 11.290       | TDM<br>128  | 4             | 5'd3                                       | 4       | 7'd1                                       | 2       | 3'd1                                        | 2       | 1'b0                                      | 2       |
| 45.450            | 176.4       | 22.579       | 120         | 4             | 5'd1                                       | 2       | 7'd0                                       | 1       | 3'd1                                        | 2       | 1'b0                                      | 2       |
| 45.158<br>MHz     | 44.1        | 11.290       | TDM         | 8             | 5'd7                                       | 8       | 7'd1                                       | 2       | 3'd2                                        | 4       | 1'b0                                      | 2       |
|                   | 88.2        | 22.579       | 256         | 8             | 5'd3                                       | 4       | 7'd0                                       | 1       | 3'd2                                        | 4       | 1'b0                                      | 2       |
|                   | 44.1        | 22.579       | TDM<br>512  | 16            | 5'd7                                       | 8       | 7'd0                                       | 1       | 3'd3                                        | 8       | 1'b0                                      | 2       |
|                   | 48          | 6.144        |             | 4             | 5'd7                                       | 8       | 7'd3                                       | 4       | 3'd1                                        | 2       | 1'b0                                      | 2       |
|                   | 96          | 12.288       | TDM         | 4             | 5'd3                                       | 4       | 7'd1                                       | 2       | 3'd1                                        | 2       | 1'b0                                      | 2       |
|                   | 192         | 24.576       | 128         | 4             | 5'd1                                       | 2       | 7'd0                                       | 1       | 3'd1                                        | 2       | 1'b0                                      | 2       |
| 49.152<br>MHz     | 48          | 12.288       | TDM         | 8             | 5'd7                                       | 8       | 7'd1                                       | 2       | 3'd2                                        | 4       | 1'b0                                      | 2       |
|                   | 96          | 24.576       | 256         | 8             | 5'd3                                       | 4       | 7'd0                                       | 1       | 3'd2                                        | 4       | 1'b0                                      | 2       |
|                   | 48          | 24.576       | TDM<br>512  | 16            | 5'd7                                       | 8       | 7'd0                                       | 1       | 3'd3                                        | 8       | 1'b0                                      | 2       |

Table 11 - TDM Master Clock Rate Configurations



# **Audio Interface Timing**

Audio data on DATA1-2 are sampled at the rising edges of DATA\_CLK and must satisfy the setup and hold time requirements relative to the rising edge of DATA\_CLK.



Figure 9 - Audio interface timing

| Parameter                                 | Symbol           | Min   | Max   | Unit |
|-------------------------------------------|------------------|-------|-------|------|
| DATA_CLK pulse width high                 | <b>t</b> DCH     | 9.0   |       | ns   |
| DATA_CLK pulse width low                  | t <sub>DCL</sub> | 9.0   |       | ns   |
| DATA_CLK cycle time                       | tocy             | 20    |       | ns   |
| DATA_CLK duty cycle                       |                  | 45:55 | 55:45 |      |
| DATAx set-up time to DATA_CLK rising edge | t <sub>DS</sub>  | 4.1   |       | ns   |
| DATAx hold time to DATA_CLK rising edge   | t <sub>DH</sub>  | 2.0   |       | ns   |

Table 9 - Audio interface timing definitions



# **Analog Features**

### **APLL**



Figure 10 - Functional Block Diagram of ES9033 APLL

The ES9033 has a built in Analog PLL (APLL) for generating frequencies that are unavailable externally.

For calculation of the PLL frequency output, use the following formula:

$$Fout = \left(\frac{FIN}{NI}\right) * \frac{NFB}{NO}$$

$$NFB = \frac{(2^{25})}{FBDIV}$$

#### Where:

- a. FBDIV is a 24-bit number
- b. Fvco = Fout \* NO, where Fvco must be between 90MHz and 100MHz
- c. NI = input dividing ratio,
  - Accessible from Reg 202-200[9:1], PLL CLK IN DIV
- d. NO = output dividing ratio
  - Accessible from Reg 202-200[13:10], PLL\_CLK\_OUT\_DIV
- e. NFB = feedback dividing ratio,
  - Accessible from Reg 199-197[23:0], PLL\_CLK\_FB\_DIV

#### **PLL Registers**

- NI Register 200-202[9:1] PLL\_CLK\_IN\_DIV
- NO Register 200-202[13:10] PLL\_CLK\_OUT\_DIV
- FBDIV Register 197-199[23:0] PLL\_CLK\_FB\_DIV



# **Absolute Maximum Ratings**

| PARAMETER                            | RATING                       |  |  |  |
|--------------------------------------|------------------------------|--|--|--|
| Positive Supply Voltage              |                              |  |  |  |
| AVCC_3V3                             | +3.7V with respect to Ground |  |  |  |
| AVCC_CP                              | +3.7V with respect to Ground |  |  |  |
| • VCCA                               | +3.7V with respect to Ground |  |  |  |
| AVDD                                 | +3.7V with respect to Ground |  |  |  |
| • DVDD                               | +1.4V with respect to Ground |  |  |  |
| Storage temperature                  | -65°C to +150°C              |  |  |  |
| Operating Junction Temperature       | +125°C                       |  |  |  |
| Voltage range for digital input pins | -0.3V to AVDD(nom)+0.3V      |  |  |  |
| ESD Protection                       |                              |  |  |  |
| Human Body Model (HBM)               | 2kV                          |  |  |  |
| Charge Device Model (CDM)            | 500V                         |  |  |  |

Table 12 - Absolute maximum ratings

**WARNING:** Stresses beyond those listed under here may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied.

WARNING: Electrostatic Discharge (ESD) can damage this device. Proper procedures must be followed to avoid ESD when handling this device.

# **IO Electrical Characteristics**

| PARAMETER                 | SYMBOL | MINIMUM          | MAXIMUM | UNIT | COMMENTS                    |
|---------------------------|--------|------------------|---------|------|-----------------------------|
| High-level input voltage  | VIH    | (AVDD / 2) + 0.4 |         | V    |                             |
| Low-level input voltage   | VIL    |                  | 0.4     | V    |                             |
| High-level output voltage | VOH    | AVDD – 0.2       |         | V    | IOH = ((AVDD / 2) +1.4) mA  |
| Low-level output voltage  | VOL    |                  | 0.2     | V    | IOL = ((AVDD / 2) + 1.7) mA |

Table 13 - IO electrical characteristics



# **Recommended Operating Conditions**

These are the recommended operating conditions for the ES9033:

| PARAMETER             | SYMBOL         | CONDITIONS           |
|-----------------------|----------------|----------------------|
| Operating temperature | T <sub>A</sub> | −20°C to +85°C       |
| DVDD                  |                | Internally Generated |
| AVDD                  |                | 3.3V                 |
| VCCA                  |                | 3.3V                 |
| AVCC                  |                | Internally Generated |
| AVCC_CP               |                | 3.3V                 |
| AVCC_3V3              |                | 3.3V                 |

Table 14 - Recommended operating conditions

# **Power Consumption**

Power numbers are given when the device is in slave mode.

Test Conditions 1 (unless otherwise noted)

T<sub>A</sub> = 25°C, AVCC\_3V3 = AVCC\_CP = VCCA = AVDD = +3.3V, fs = 48kHz, MCLK = 49.152MHz, I2S 2Vrms 1kHz sine full scale

| Parameter              | Min | Тур  | Max | Unit |
|------------------------|-----|------|-----|------|
|                        |     |      |     |      |
| Hardware Mode: 3       |     |      |     |      |
| AVCC_3V3               |     | 11.4 |     | mA   |
| AVCC_CP                |     | 7.2  |     | mA   |
| VCCA                   |     | 0.3  |     | mA   |
| AVDD                   |     | 11.2 |     | mA   |
| Standby (CHIP_EN = 0V) |     |      |     |      |
| AVCC                   |     | <1   |     | uA   |
| AVDD                   |     | <1   |     | uA   |
|                        |     |      |     |      |

Table 15 - Power consumption with test conditions 1



Test Conditions 2 (unless otherwise noted)

 $T_A = 25$ °C, AVCC\_3V3 = AVCC\_CP = VCCA = AVDD = +3.3V, fs = 48kHz, MCLK = 49.152MHz, I2S streaming zeros

| Parameter              | Min | Тур | Max | Unit |
|------------------------|-----|-----|-----|------|
|                        |     | •   |     | •    |
| Hardware Mode: 3       |     |     |     |      |
| AVCC_3V3               |     | <1  |     | uA   |
| AVCC_CP                |     | 0.5 |     | mA   |
| VCCA                   |     | 0.3 |     | mA   |
| AVDD                   |     | 9.8 |     | mA   |
| Standby (CHIP_EN = 0V) |     |     |     |      |
| AVCC                   |     | <1  |     | uA   |
| AVDD                   |     | <1  |     | uA   |
|                        |     |     |     |      |

Table 16 - Power consumption with test conditions 2

Test Conditions 3 (unless otherwise noted)

TA = 25°C, AVCC\_3V3 = AVCC\_CP = VCCA = AVDD = +3.3V, fs = 192kHz, MCLK = 24.576MHz, I2S 2Vrms 1kHz sine full scale

| Parameter              | Min | Тур  | Max | Unit |
|------------------------|-----|------|-----|------|
|                        |     |      |     |      |
| Hardware Mode: 8       |     |      |     |      |
| AVCC_3V3               |     | 10.4 |     | mA   |
| AVCC_CP                |     | 7.0  |     | mA   |
| VCCA                   |     | 0.2  |     | mA   |
| AVDD                   |     | 10.4 |     | mA   |
| Standby (CHIP_EN = 0V) |     |      |     |      |
| AVCC                   |     | <1   |     | uA   |
| AVDD                   |     | <1   |     | uA   |

Table 17 - Power consumption with test conditions 3



### **Performance**

Test Conditions 1 (unless otherwise noted)

 $T_A = 25^{\circ}C$ ,  $AVDD = AVCC\_CP = AVCC\_3V3 = VCCA = +3.3V$ ,  $f_S = 48kHz$ , MCLK = 49.152MHz, 1kHz tone

| Parameter                             |         | Min | Тур   | Max   | Unit |
|---------------------------------------|---------|-----|-------|-------|------|
| Resolution                            |         |     | 32    |       | Bit  |
|                                       |         |     |       |       |      |
| THD+N Ratio @ fs=48kHz, BW=20Hz-20kHz |         |     | -108  | -105  | dB   |
|                                       |         |     |       |       |      |
| DNR A-weighted<br>(w/ DRE)            | -60dBFS | 120 | 122   |       | dB   |
| DNR A-weighted<br>(w/o DRE)           | -60dBFS | 112 | 115   |       | dB   |
|                                       |         |     |       |       |      |
| Interchannel Mismatch                 |         |     | ±0.02 | ±0.05 | dB   |
| Output Amplitude                      | 0dB FS  |     | 2.1   |       | Vrms |

Table 18 - Performance data



# **Recommended Power-Up Sequence**

The recommended power-up sequence is shown in the following diagram.



Figure 11 - Recommended power down sequence

- 1. Supplies:
  - a. AVDD
  - b. AVCC
  - c. AVCC\_3V3, AVCC\_CP
- 2. Enable MCLK
- 3. Set CHIP\_EN high after MCLK is stable
- 4. Configure the clock setup through I2C address 0x98
  - a. Must wait 100ms after CHIP\_EN is set HIGH
- 5. I2C address 0x90 can be written/read after clock setup has been established
- 6. Any reset operation must keep CHIP\_EN low for at least 20ns



# **Recommended Power-Down Sequence**

The recommended power-down sequence is shown in the following diagram.



Figure 12 - Recommended power down sequence

- 1. Set CHIP\_EN to 0V
- 2. Disable MCLK
- 3. Supplies
  - a. AVCC\_3V3, AVCC\_CP
  - b. AVCC
  - c. AVDD



# **Register Overview**

#### I<sup>2</sup>C Slave Interface (Device Address 0x90, 0x92, 0x94, 0x96)

This interface contains Read/Write and Read-only registers. A system clock must be present.

Multi-byte registers must be written from LSB to MSB. Data is latched when MSB is written.

Multi-byte registers must be read from LSB to MSB. Data is latched when LSB is read.

MSB is always stored in the highest register address.

#### Read/Write Register Addresses

Registers 0-88 (0x00 - 0x58) are read/write registers

#### Read-only Register Addresses

Registers 224 - 241 (0xE0 - 0xF1) are read only registers.

#### I<sup>2</sup>C Synchronous Slave Interface (Device Address 0x98, 0x9A, 0x9C, 0x9E)

This interface contains Write-only registers. These registers can be written even when there is no system clock present.

When the device is inactive, all peripherals are automatically disabled and all clocks are stopped. A reset can wake the ES9033.

#### Write-only Register Addresses.

Registers 192 - 203 (0xC0 - 0xCB) are write only registers.

# Multi-Byte Registers

Multi-byte registers must be written from LSB to MSB. Data is latched when MSB is written.

MSB is always stored in the highest register address.



# I<sup>2</sup>C Slave/Synchronous Slave Interface Timing



Figure 13 - I2C Slave Control Interface Timing

| Parameter                                                              | Symbol              | CLK        | Standar    | d-Mode | Fast-      | Mode | Unit    |
|------------------------------------------------------------------------|---------------------|------------|------------|--------|------------|------|---------|
|                                                                        |                     | Constraint | MIN        | MAX    | MIN        | MAX  |         |
| SCL Clock Frequency                                                    | f <sub>SCL</sub>    | < CLK/20   | 0          | 100    | 0          | 400  | kHz     |
| START condition hold time                                              | t <sub>HD;STA</sub> |            | 4.0        | -      | 0.6        | -    | μs      |
| LOW period of SCL                                                      | t <sub>LOW</sub>    | >10/CLK    | 4.7        | -      | 1.3        | -    | μs      |
| HIGH period of SCL (>10/CLK)                                           | tніgн               | >10/CLK    | 4.0        | -      | 0.6        | -    | μS      |
| START condition setup time (repeat)                                    | t <sub>SU;STA</sub> |            | 4.7        | -      | 0.6        | -    | μs      |
| SDA hold time from SCL falling - All except NACK read - NACK read only | t <sub>HD;DAT</sub> |            | 0<br>2/CLK | -      | 0<br>2/CLK | -    | μs<br>s |
| SDA setup time from SCL rising                                         | t <sub>SU;DAT</sub> |            | 250        | -      | 100        | -    | ns      |
| Rise time of SDA and SCL                                               | t <sub>r</sub>      |            | -          | 1000   |            | 300  | ns      |
| Fall time of SDA and SCL                                               | t <sub>f</sub>      |            | -          | 300    |            | 300  | ns      |
| STOP condition setup time                                              | t <sub>SU;STO</sub> |            | 4          | -      | 0.6        | -    | μs      |
| Bus free time between transmissions t <sub>BUF</sub>                   |                     |            | 4.7        | -      | 1.3        | -    | μS      |
| Capacitive load for each bus line C <sub>b</sub>                       |                     |            | -          | 400    | -          | 400  | pF      |

Table 19 - I2C slave/synchronous slave interface timing definitions



# Single Byte R/W



Figure 14 - I2C single byte R/W

#### **SPI Slave Interface**

The SPI slave interface is used when the MODE pin (pin 3) is pulled high.

- The SPI Slave interface can be accessed using the Pins 25-28
  - Pin 22 MOSI
  - Pin 21 SCLK
  - Pin 19 SS
  - Pin 20 MISO

The 4-wire SPI data format is: Command (1 byte) + Address (1 byte) + Data

#### SPI commands

- 0x01: Read
- 0x03: Write
- 0x07: Write-only Register Addresses 192-194 (0xC0 0xC2)

# Single byte Write



Figure 15 - SPI single byte write



# Single byte Read



Figure 16 - SPI single byte Read

# Multi-byte Read



Figure 17 - SPI multi-byte read



# **Register Map**

| Addr<br>(Hex) | Addr<br>(Dec) | Register                         | 7                                                | 6                                    | 5                                 | 4                             | 3                                                 | 2                                | 1                     | 0                     |
|---------------|---------------|----------------------------------|--------------------------------------------------|--------------------------------------|-----------------------------------|-------------------------------|---------------------------------------------------|----------------------------------|-----------------------|-----------------------|
| 0x0           | 0             | SYSTEM CONFIG                    | SOFT_RESET                                       | ENABLE_2X_<br>MODE                   | ENABLE_AN<br>ALOG_DAC_<br>CH2     | ENABLE_AN<br>ALOG_DAC_<br>CH1 | ENABLE_NS<br>MOD                                  | ENABLE_DA<br>C                   | AMP_MODE<br>_REG      | RESERVED              |
| 0x1           | 1             | SYS MODE CONFIG                  |                                                  | RESERVED ENABLE_DO ENABLE_DS ENABLE_ |                                   |                               |                                                   |                                  |                       | ENABLE_TD<br>M_DECODE |
| 0x2           | 2             | DAC CLOCK CONFIG                 | RESERVED                                         |                                      |                                   |                               |                                                   |                                  |                       | <del>-</del>          |
| 0x3           | 3             | MASTER CLOCK CONFIG              | SELECT_ME<br>NC_HALF                             | _                                    |                                   | SI                            | ELECT_MENC_NU                                     | М                                |                       |                       |
| 0x4           | 4             | CP CLOCK DIV                     |                                                  |                                      |                                   | CP_Cl                         | K_DIV                                             |                                  |                       |                       |
| 0x5           | 5             | RESERVED                         |                                                  |                                      |                                   |                               | RVED                                              |                                  |                       |                       |
| 0x6           | 6             | RESERVED                         |                                                  |                                      |                                   | RESE                          |                                                   |                                  |                       |                       |
| 0x7<br>0x8    | 7<br>8        | RESERVED<br>RESERVED             |                                                  |                                      |                                   | RESE<br>RESE                  |                                                   |                                  |                       |                       |
| 0x9           | 9             | INTERRUPT MASK P                 | SOFT_RAMP                                        | SOFT_RAMP                            | DRE FLAG C                        | DRE FLAG C                    | AUTOMUTE                                          | AUTOMUTE                         | VOL MIN C             | VOL MIN C             |
| OAS           |               | INTERNOT FINANCE                 | _CH2_MASK                                        | _CH1_MASK                            | H2_MASKP                          | H1_MASKP                      | _FLAG_CH2_<br>MASKP                               | _FLAG_CH1_<br>MASKP              | H2_MASKP              | H1_MASKP              |
| 0xA           | 10            | INTERRUPT MASK P                 | INPUT_DATA                                       | _TYPE_MASKP                          | TDM_DATA_<br>VALID_FLAG<br>_MASKP | CLK_AVALID<br>_FLAG_MAS<br>KP | RWS_REFER<br>ENCE_COUN<br>TER_FULL_F<br>LAG_MASKP | BCK_WS_FAI<br>LED_FLAG_<br>MASKP | RESERVED              | DOP_VALID_<br>MASKP   |
| 0xB           | 11            | INTERRUPT MASK N                 | SOFT_RAMP<br>_CH2_MASK                           | SOFT_RAMP<br>_CH1_MASK<br>N          | DRE_FLAG_C<br>H2_MASKN            | DRE_FLAG_C<br>H1_MASKN        | AUTOMUTE<br>_FLAG_CH2_<br>MASKN                   | AUTOMUTE<br>_FLAG_CH1_<br>MASKN  | VOL_MIN_C<br>H2_MASKN | VOL_MIN_C<br>H1_MASKN |
| 0xC           | 12            | INTERRUPT MASK N                 | INPUT_DATA                                       | _TYPE_MASKN                          | TDM_DATA_<br>VALID_FLAG<br>_MASKN | CLK_AVALID<br>_FLAG_MAS<br>KN | RWS_REFER ENCE_COUN TER_FULL_F LAG_MASKN          | BCK_WS_FAI<br>LED_FLAG_<br>MASKN | RESERVED              | DOP_VALID_<br>MASKN   |
| 0xD           | 13            | INTERRUPT CLEAR                  | SOFT_RAMP<br>_CH2_CLEAR                          | SOFT_RAMP<br>_CH1_CLEAR              | DRE_FLAG_C<br>H2_CLEAR            | DRE_FLAG_C<br>H1_CLEAR        | AUTOMUTE<br>_FLAG_CH2_<br>CLEAR                   | AUTOMUTE<br>_FLAG_CH1_<br>CLEAR  | VOL_MIN_C<br>H2_CLEAR | VOL_MIN_C<br>H1_CLEAR |
| 0xE           | 14            | INTERRUPT CLEAR                  | INPUT_D#                                         | ATA_CLEAR                            | TDM_DATA_<br>VALID_CLEA<br>R      | CLK_AVALID<br>_FLAG_CLEA<br>R | RWS_REFER<br>ENCE_COUN<br>TER_FULL_F              | BCK_WS_FAI<br>LED_FLAG_C<br>LEAR | RESERVED              | DOP_VALID_<br>CLEAR   |
| 0xF           | 15            | ANALOG CTRL CONFIG               | RESERVED                                         | AMP_PDB_O<br>N_SS                    | AMP_PDB_C<br>LK_INVALID           |                               | RESERVED                                          |                                  | LP_DAC_RE<br>G        | EN_FCB                |
| 0x10          | 16            | LDRV CTRL                        | ENB_OCP_L<br>DRV_CH2                             | ENB_OCP_L<br>DRV_CH1                 | _                                 |                               | RESE                                              | RVED                             | 1                     |                       |
| 0x11          | 17            | RESERVED                         |                                                  |                                      |                                   | RESE                          | RVED                                              |                                  |                       |                       |
| 0x12          | 18            | RESERVED                         |                                                  | T                                    | ı                                 | RESE                          |                                                   |                                  |                       |                       |
| 0x13          | 19            | ANALOG CONTROL<br>OVERRIDE2      | TRIB_DAC_C<br>H2                                 | TRIB_DAC_C<br>H1                     |                                   |                               |                                                   | RVED                             |                       |                       |
| 0x14          | 20            | RESERVED                         |                                                  |                                      |                                   |                               | RVED                                              |                                  |                       |                       |
| 0x15<br>0x16  | 22            | RESERVED<br>RESERVED             |                                                  |                                      |                                   |                               | RVED<br>RVED                                      |                                  |                       |                       |
| 0x17          | 23            | RESERVED                         |                                                  |                                      |                                   | RESE                          |                                                   |                                  |                       |                       |
| 0x18          | 24            | GPIO CONFIG                      | INVERT_GPI<br>O1                                 | GPIO1_WK_<br>EN                      | GPIO1_SDB                         | GPIO1_OE                      |                                                   | GPIO                             | 1_CFG                 |                       |
| 0x19          | 25            | GPIO CONFIG2                     | GPIO_OR_SS<br>_RAMP                              | GPIO_OR_V<br>OL_MIN                  | GPIO_OR_A<br>UTOMUTE              | GPIO_AND_<br>SS_RAMP          | GPIO_AND_<br>VOL_MIN                              | GPIO_AND_<br>AUTOMUTE            | RESERVED              | GPIO1_READ            |
| 0x1A          | 26            | GPIO INPUT ENABLE                |                                                  |                                      | RESE                              | RVED                          |                                                   |                                  | GPIO_AMP_<br>MODE     | GPIO_SEL              |
| 0x1B          | 27            | PWM1 COUNT                       | <del>                                     </del> |                                      |                                   |                               | COUNT                                             |                                  |                       |                       |
| 0x1C<br>0x1D  | 28<br>29      | PWM1 FREQUENCY PWM1 FREQUENCY    | <del> </del>                                     |                                      |                                   |                               | _FREQ<br>L FREQ                                   |                                  |                       |                       |
| 0x1E          | 30            | PWM2 COUNT                       |                                                  |                                      |                                   | PWM2                          |                                                   |                                  |                       |                       |
| 0x1F          | 31            | PWM2 FREQUENCY                   | 1                                                |                                      |                                   |                               | P_FREQ                                            |                                  |                       |                       |
| 0x20          | 32            | PWM2 FREQUENCY                   |                                                  |                                      |                                   | PWM2                          | _FREQ                                             |                                  |                       |                       |
| 0x21          | 33            | PWM3 COUNT                       | PWM3_COUNT                                       |                                      |                                   |                               |                                                   | •                                |                       |                       |
| 0x22          | 34            | PWM3 FREQUENCY                   | PWM3_FREQ                                        |                                      |                                   |                               |                                                   |                                  |                       |                       |
| 0x23          | 35            | PWM3 FREQUENCY                   |                                                  | I non ::====                         |                                   |                               | FREQ                                              | T 651                            | I                     |                       |
| 0x24<br>0x25  | 36            | INPUT CONFIG  MASTER MODE CONFIG | AUTO_FS_D<br>ETECT<br>AUTO_FS_D                  | DSD_NEGED<br>GE<br>MASTER_BC         | DSD_MASTE<br>R_MODE<br>MASTER_WS  | DE STER_MODE                  |                                                   |                                  | MASTER_BC             |                       |
| 0x26          | 38            | TDM CONFIG1                      | ETECT_BLOC<br>K_2XMODE<br>TDM_RESYN              | K_DIV1                               | _IDLE  MASTER_WS_SCAL             | F                             |                                                   | _PULSE_MO<br>                    | _INVERT               | K_INVERT              |
| 0x26          | 39            | TDM CONFIG2                      | C TDM_LJ_MO                                      | TDM_VALID                            | MASTER_WS_SCAL                    | - <b>L</b>                    | TDM VALID                                         | PULSE LEN                        | 140141                |                       |
| 0x27<br>0x28  | 40            | TDM CONFIG2                      | DE                                               | _EDGE                                | T WIDTH                           | T                             |                                                   |                                  | ADI                   |                       |
| UX28          | 40            | I DIVI CUNFIG3                   | PDM_NEG_F<br>IRST                                | I DINI_BI                            | T_WIDTH                           |                               | טו                                                | M_DATA_LATCH_                    | ַנעא                  |                       |



| 0x29         | 41         | RESERVED                     |                                 |                                                |                    | RESE                 | RVED                            |                                  |                       |                                    |
|--------------|------------|------------------------------|---------------------------------|------------------------------------------------|--------------------|----------------------|---------------------------------|----------------------------------|-----------------------|------------------------------------|
| 0x2A         | 42         | TDM SLOT CONFIG              |                                 | TDM_CH2                                        | _SLOT_SEL          |                      |                                 | TDM_CH1                          | _SLOT_SEL             |                                    |
| 0x2B         | 43         | RESERVED                     |                                 |                                                |                    | RESE                 | RVED                            |                                  |                       |                                    |
| 0x2C         | 44         | RESYNC CONFIG                | RESERVED                        | _MUTE                                          |                    |                      |                                 |                                  |                       |                                    |
| 0x2D         | 45         | FS GENERATOR PHASE           | DSD_2DB_D<br>OWN                |                                                |                    |                      | RESERVED                        |                                  |                       |                                    |
| 0x2E         | 46         | VOLUME1                      |                                 |                                                |                    | VOL                  |                                 |                                  |                       |                                    |
| 0x2F         | 47         | VOLUME2                      |                                 |                                                |                    | VOLU                 |                                 |                                  |                       |                                    |
| 0x30         | 48         | DAC VOL UP RATE              |                                 |                                                |                    |                      | _RATE_UP                        |                                  |                       |                                    |
| 0x31         | 49         | DAC VOL DOWN RATE            |                                 |                                                |                    |                      | ATE_DOWN                        |                                  |                       |                                    |
| 0x32         | 50         | DAC VOL DOWN RATE FAST       |                                 | B 4 6 1105 14                                  | 1                  | DAC_VOL_             | RATE_FAST                       | 1                                | 1                     | 1                                  |
| 0x33         | 51         | MUTE CTRL                    | FORCE_VOL<br>UME                | DAC_USE_M<br>ONO_VOLU<br>ME                    | RUN_VOLU<br>ME     | RESERVED             | DAC_INVERT<br>_CH2              | DAC_INVERT<br>_CH1               | DAC_MUTE_<br>CH2      | DAC_MUTE_<br>CH1                   |
| 0x34         | 52         | FILTER CONFIG                | AUTO_CH_D<br>ETECT              | BYPASS_DEE<br>MPH                              | PEAK_FILTER        | SEL_D                | EEMPH                           |                                  | FILTER_SHAPE          |                                    |
| 0x35         | 53         | RESERVED                     |                                 |                                                |                    | RESE                 |                                 |                                  |                       |                                    |
| 0x36         | 54         | RESERVED                     |                                 |                                                |                    | RESE                 |                                 |                                  |                       |                                    |
| 0x37         | 55         | THD COMP C2 CH1              |                                 |                                                |                    | THD_0                |                                 |                                  |                       |                                    |
| 0x38         | 56         | THD COMP C2 CH1              |                                 |                                                |                    | THD_0                |                                 |                                  |                       |                                    |
| 0x39         | 57         | THD COMP C3 CH1              |                                 |                                                |                    |                      | C3_CH1                          |                                  |                       |                                    |
| 0x3A         | 58         | THD COMP C3 CH1              |                                 |                                                |                    | THD_C                |                                 |                                  |                       |                                    |
| 0x3B         | 59         | THD COMP C2 CH2              |                                 |                                                |                    | THD_C                |                                 |                                  |                       |                                    |
| 0x3C         | 60         | THD COMP C2 CH2              |                                 |                                                |                    |                      | C2_CH2                          |                                  |                       |                                    |
| 0x3D         | 61         | THD COMP C3 CH2              |                                 |                                                |                    |                      | C3_CH2                          |                                  |                       |                                    |
| 0x3E         | 62         | THD COMP C3 CH2              |                                 |                                                |                    | THD_0                | C3_CH2                          |                                  |                       |                                    |
| 0x3F         | 63         | AUTOMUTE TIME                |                                 |                                                |                    | AUTOMU               | JTE_TIME                        |                                  |                       |                                    |
| 0x40         | 64         | AUTOMUTE TIME                | AUTOMUTE<br>_RAMP_TO_<br>GROUND | AUTOMUTE<br>_WAIT_ON_<br>DRE                   | RESERVED           | AUTOMUTE<br>_EN_CH2  | AUTOMUTE<br>_EN_CH1             |                                  | AUTOMUTE_TIMI         |                                    |
| 0x41         | 65         | AUTOMUTE LEVEL               |                                 |                                                |                    | AUTOMU               | TE_LEVEL                        |                                  |                       |                                    |
| 0x42         | 66         | AUTOMUTE LEVEL               |                                 |                                                |                    | AUTOMU               | TE_LEVEL                        |                                  |                       |                                    |
| 0x43         | 67         | AUTOMUTE OFF LEVEL           |                                 |                                                |                    | AUTOMUTE             | _OFF_LEVEL                      |                                  |                       |                                    |
| 0x44         | 68         | AUTOMUTE OFF LEVEL           |                                 |                                                |                    | AUTOMUTE             | _OFF_LEVEL                      |                                  |                       |                                    |
| 0x45         | 69         | SOFT RAMP CONFIG             | GAIN_18DB_<br>CH2               | GAIN_18DB_ GAIN_18DB_ SOFT_RAMP SOFT_RAMP TIME |                    |                      |                                 |                                  |                       |                                    |
| 0x46         | 70         | RESERVED                     | RESERVED                        |                                                |                    |                      |                                 |                                  |                       |                                    |
| 0x47         | 71         | RESERVED                     |                                 |                                                |                    | RESE                 | RVED                            |                                  |                       |                                    |
| 0x48         | 72         | RESERVED                     |                                 |                                                |                    | RESE                 | RVED                            |                                  |                       |                                    |
| 0x49         | 73         | DRE FORCE                    | DRE_FORCE<br>_CH2               | KESEKVED                                       |                    |                      |                                 |                                  |                       |                                    |
| 0x4A         | 74         | DRE GAIN CH1                 |                                 | DRE_GAIN1                                      |                    |                      |                                 |                                  |                       |                                    |
| 0x4B         | 75         | DRE GAIN CH1                 |                                 |                                                |                    | _                    | GAIN1                           |                                  |                       |                                    |
| 0x4C         | 76         | DRE GAIN CH2                 |                                 |                                                |                    |                      | GAIN2                           |                                  |                       |                                    |
| 0x4D         | 77         | DRE GAIN CH2                 |                                 |                                                |                    |                      | GAIN2                           |                                  |                       |                                    |
| 0x4E         | 78         | DRE ON THRESHOLD             |                                 |                                                |                    |                      | _THRESH                         |                                  |                       |                                    |
| 0x4F         | 79         | DRE ON THRESHOLD             |                                 |                                                |                    | DRE_ON               | _THRESH                         |                                  |                       |                                    |
| 0x50         | 80         | DRE OFF THRESHOLD            |                                 |                                                |                    | DRE_OFF              | _THRESH                         |                                  |                       |                                    |
| 0x51         | 81         | DRE OFF THRESHOLD            | DDE FORCE                       |                                                | I                  | DRE_OFF              | _THRESH                         |                                  |                       |                                    |
| 0x52         | 82         | DRE DECAY RATE               | DRE_FORCE<br>_LEVEL             | RESERVED                                       | MIN_PEAK           | DC 0                 |                                 | DRE_DECAY_RAT                    | E                     |                                    |
| 0x53<br>0x54 | 83<br>84   | DC OFFSET CH1                |                                 |                                                |                    |                      | FFSET1                          |                                  |                       |                                    |
|              |            | DC OFFSET CH1                |                                 |                                                |                    |                      | FFSET1                          |                                  |                       |                                    |
| 0x55         | 85         | DC OFFSET CH2                |                                 |                                                |                    |                      | FFSET2                          |                                  |                       |                                    |
| 0x56         | 86         | DC OFFSET CH2                |                                 |                                                |                    |                      | FFSET2                          |                                  |                       |                                    |
| 0x57         | 87         | DC RAMP RATE                 |                                 |                                                |                    |                      | MP_RATE                         |                                  |                       |                                    |
| 0x58         | 88         | MASTER TRIM                  | 10.00===                        | DII 005= -                                     | ı                  | MASTE                | R_TRIM                          | ı                                | CDIO1 5==             | I but ourse                        |
| 0xC0         | 192        | RESET & PLL REGISTER1        | AO_SOFT_R<br>ESET               | PLL_SOFT_R<br>ESET<br>DVDD_SHUN                |                    | LL_VCO_CMP_ISE       | ĒΤ                              | RESERVED                         | GPIO1_SDB_<br>AO      | PLL_CLKHV_<br>PHASE<br>EN_PLL_CLKI |
| 0xC1         | 193        | PLL REGISTER2                | PLL_BYP                         | ТВ                                             | SEL_1V_DRE<br>G    | PL                   | L_HVREG_VREF_S                  | AUTO_LOCK                        | SEL_PLL_IN  VREF_HOLD | N VREF_HOLD                        |
| 0xC2         | 194        | PLL REGISTER3                |                                 |                                                | S_GAIN             | B                    | RESERVED                        | _EN PLL_VCO_FLI                  | _REG PLL_VCO_PD       | _ENABLE                            |
| 0xC3<br>0xC4 | 195<br>196 | PLL REGISTER4  PLL REGISTER5 |                                 | PLL_CP_BIAS_SEL<br>L_VCO_BAND_CT               |                    |                      | DELAY_SEL<br><br>.L_VCO_KVCO_CT | MIT_PD                           | В                     | PLL_CP_PDB<br>B_AMP_CTRL           |
| 0xC5         | 197        | PLL REGISTER6                | PLL_CLK_FB_DIV                  |                                                |                    |                      |                                 | <del>_</del>                     |                       |                                    |
| 0xC6         | 198        | PLL REGISTER6                |                                 | PLL_CLK_FB_DIV  PLL_CLK_FB_DIV                 |                    |                      |                                 |                                  |                       |                                    |
| 0xC7         | 199        | PLL REGISTER6                |                                 |                                                |                    |                      | _FB_DIV                         |                                  |                       |                                    |
| 0xC8         | 200        | PLL REGISTER7                |                                 |                                                |                    | PLL_FB_[             | DIV_LOAD                        |                                  |                       |                                    |
| 0xC8         | 200        | PLL REGISTER7  PLL REGISTER7 | PLL_CLK_OU <sup>-</sup>         | Γ_DIV_PHASE                                    | <u> </u>           | PLL_FB_[             | OIV_LOAD<br>OUT_DIV             |                                  | PLL_CLK               | C_IN_DIV                           |
| 0xCA         | 202        | PLL REGISTER7                | PLL_REG_PD<br>B_HV              | PLL_REG_PD<br>B_1V2                            | PLL_REG_BY<br>P_HV | PLL_REG_BY<br>P_1V2  | PLL_LOW_B<br>W                  | PLL_CLK_OU<br>T_DIV_PHAS<br>E_EN |                       | T_DIV_PHASE                        |
| 0xCB         | 203        | PLL REGISTER8                | PLL_VCO_F                       | LIMIT_CTRL                                     | PLL_DIG_RS<br>TB   | PLL_VCO_DI<br>ODE_EN |                                 |                                  | RVED                  |                                    |
| 0xE0         | 224        | SYS READ                     |                                 | RESERVED                                       |                    | MC                   | DES                             | ADDR1                            | ADDR0                 | RESERVED                           |
| 0xE1         | 225        | CHIP ID READ                 | CHIP_ID                         |                                                |                    |                      |                                 |                                  |                       |                                    |



| 0xE2 | 226 | RESERVED           |                      |                                    |                                  | RESE                             | RVED                               |                               |                                |                         |
|------|-----|--------------------|----------------------|------------------------------------|----------------------------------|----------------------------------|------------------------------------|-------------------------------|--------------------------------|-------------------------|
| 0xE3 | 227 | RESERVED           |                      | RESERVED                           |                                  |                                  |                                    |                               |                                |                         |
| 0xE4 | 228 | RESERVED           |                      |                                    |                                  | RESE                             | RVED                               |                               |                                |                         |
| 0xE5 | 229 | INTERRUPT STATE    | SS_FULL_RAI          | MP_INTSTATE                        | DRE_SELECT 2_INTSTATE            | DRE_SELECT<br>1_INTSTATE         | AUTOMUT                            | E_INTSTATE                    | VOL_MIN                        | _INTSTATE               |
| 0xE6 | 230 | INTERRUPT STATE    |                      | INPUT_SELECT_OVERRIDE_IN<br>TSTATE |                                  | CLK_AVALID<br>_INT_INTSTA<br>_TE | RWS_REF_C<br>NT_FULL_IN<br>TSTATE  | BCK_WS_FAI<br>L_INTSTATE      | PLL_LOCKED<br>_R_INTSTAT<br>E  | DOP_VALID_<br>INTSTATE  |
| 0xE7 | 231 | INTERRUPT SOURCE   | SS_FULL_RAM          | SS_FULL_RAMP_INTSOURCE             |                                  |                                  |                                    | VOL_MIN_                      | INTSOURCE                      |                         |
| 0xE8 | 232 | INTERRUPT SOURCE   |                      | _OVERRIDE_IN<br>URCE               | TDM_DATA_<br>VALID_INTS<br>OURCE | CLK_AVALID<br>_INT_INTSO<br>URCE | RWS_REF_C<br>NT_FULL_IN<br>TSOURCE | BCK_WS_FAI<br>L_INTSOURC<br>E | PLL_LOCKED<br>_R_INTSOUR<br>CE | DOP_VALID_<br>INTSOURCE |
| 0xE9 | 233 | RWS REF CNT STATUS |                      |                                    |                                  | RWS_R                            | REF_CNT                            |                               |                                |                         |
| 0xEA | 234 | RWS REF CNT STATUS |                      |                                    |                                  | RWS_R                            | REF_CNT                            |                               |                                |                         |
| 0xEB | 235 | RWS REF CNT STATUS |                      |                                    |                                  | RWS_R                            | REF_CNT                            |                               |                                |                         |
| 0xEC | 236 | RWS REF CNT STATUS |                      |                                    | RESERVED                         |                                  |                                    |                               | RWS_REF_CNT                    |                         |
| 0xED | 237 | RESERVED           |                      |                                    |                                  | RESE                             | RVED                               |                               |                                |                         |
| 0xEE | 238 | RESERVED           |                      |                                    |                                  | RESE                             | RVED                               |                               |                                |                         |
| 0xEF | 239 | AUTO TUNING READ   | RATIO_VALI<br>D      | IDAC_DIV_H<br>ALF_REG              |                                  |                                  | IDAC_[                             | DIV_REG                       |                                |                         |
| 0xF0 | 240 | GPIO READ          |                      |                                    |                                  |                                  |                                    | GPIO1_I_RE<br>AD              |                                |                         |
| 0xF1 | 241 | DAC STATUS READ    | SS_RAMP_D<br>OWN_CH2 | SS_RAMP_D<br>OWN_CH1               | SS_RAMP_U<br>P_CH2               | SS_RAMP_U<br>P_CH1               | AUTOMUTE<br>_CH2                   | AUTOMUTE<br>_CH1              | VOL_MIN_C<br>H2                | VOL_MIN_C<br>H1         |
| 0xF2 | 242 | DRE STATUS READ    | TDM_DATA_<br>VALID   | DOP_VALID                          | RESE                             | RVED                             | DRE_DETECT<br>_CH2                 | DRE_DETECT<br>_CH1            | DRE_SELECT<br>_CH2             | DRE_SELECT<br>_CH1      |

Table 20 - Register map



# **Register Listings**

# **System Registers**

# Register 0: SYSTEM CONFIG

| Bits    | [7]  | [6]  | [5]  | [4]  | [3]  | [2]  | [1]  | [0]  |
|---------|------|------|------|------|------|------|------|------|
| Default | 1'b0 | 1'b0 | 1'b1 | 1'b1 | 1'b1 | 1'b1 | 1'b0 | 1'b0 |

| Bits | Mnemonic              | Description                                                                                        |
|------|-----------------------|----------------------------------------------------------------------------------------------------|
| [7]  | SOFT_RESET            | Performs soft reset to digital core except for the PLL Registers                                   |
| 6]   | ENABLE_2X_MODE        | Enables 2x mode for 768k sample rate.  • 1'b0: 2x mode disabled (default)  • 1'b1: 2x mode enabled |
| [5]  | ENABLE_ANALOG_DAC_CH2 | Enables ch2 analog DAC.  1'b0: Disabled  1'b1: Enabled (default)                                   |
| [4]  | ENABLE_ANALOG_DAC_CH1 | Enables ch1 analog DAC.  1'b0: Disabled  1'b1: Enabled (default)                                   |
| [3]  | ENABLE_NSMOD          | Enables nsmod clock.  1'b0: Clock disabled  1'b1: Clock enabled (default)                          |
| [2]  | ENABLE_DAC            | Enables DAC interpolation path clock.  1'b0: Clock disabled  1'b1: Clock enabled (default)         |
| [1]  | AMP_MODE_REG          | Sets system mode.  • 1'b0: Power Down (default)  • 1'b1: HIFI                                      |
| [0]  | RESERVED              | NA                                                                                                 |



#### Register 1: SYS MODE CONFIG

| Bits    | [7:3]    | [2]  | [1]  | [0]  |
|---------|----------|------|------|------|
| Default | 5'b00001 | 1'b0 | 1'b0 | 1'b1 |

| Bits  | Mnemonic          | Description                                                                                    |
|-------|-------------------|------------------------------------------------------------------------------------------------|
| [7:3] | RESERVED          | NA                                                                                             |
| [2]   | ENABLE_DOP_DECODE | <ul><li>Enables DoP decoding.</li><li>1'b0: Disabled (default)</li><li>1'b1: Enabled</li></ul> |
| [1]   | ENABLE_DSD_DECODE | Enables DSD decoding.  1'b0: Disabled (default)  1'b1: Enabled                                 |
| [0]   | ENABLE_TDM_DECODE | Enables TDM decoding.  1'b0: Disabled 1'b1: Enabled (default)                                  |

# Register 2: DAC CLOCK CONFIG

| Bits    | [7]  | [6]  | [5:0] |
|---------|------|------|-------|
| Default | 1'b0 | 1'b0 | 6'd7  |

| Bits  | Mnemonic         | Description                                                                                                                                                                                                             |
|-------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]   | RESERVED         | NA                                                                                                                                                                                                                      |
| [6]   | SELECT_IDAC_HALF | Specifies whether to half CLK_IDAC divider.  1'b0: Divide by SELECT_IDAC_NUM + 1 (default)  1'b1: Divide by half of SELECT_IDAC_NUM + 1  Note: Can only produce half of an odd number divide                            |
| [5:0] | SELECT_IDAC_NUM  | CLK_IDAC divider. Whole number divide value + 1 for CLK_IDAC (SYS_CLK/divide_value).  • 6'd0: Whole number divide value + 1 = 1  • 6'd1: Whole number divide value + 1 = 2  • 6'd63: Whole number divide value + 1 = 64 |





#### Register 3: MASTER CLOCK CONFIG

| Bits    | [7]  | [6:0] |
|---------|------|-------|
| Default | 1'b0 | 7'd7  |

| Bits  | Mnemonic         | Description                                                                                                                                                       |
|-------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]   | SELECT_MENC_HALF | Master Encoder (MENC)                                                                                                                                             |
|       |                  | <ul><li>1'b0: Divide by SELECT_MENC_NUM + 1 (default)</li><li>1'b1: Divide by half of SELECT_MENC_NUM + 1</li></ul>                                               |
|       |                  | Note: Can only produce half of an odd number divide                                                                                                               |
| [6:0] | SELECT_MENC_NUM  | Master mode clock divider. Whole number divide value + 1 for CLK_Master (SYS_CLK/divide_value).                                                                   |
|       |                  | <ul> <li>7'd0: Whole number divide value + 1 = 1</li> <li>7'd1: Whole number divide value + 1 = 2</li> <li>7'd127: Whole number divide value + 1 = 128</li> </ul> |

### Register 4: CP CLOCK DIV

| Bits    | [7:0] |
|---------|-------|
| Default | 8'd31 |

| Bits  | Mnemonic   | Description                                                                         |
|-------|------------|-------------------------------------------------------------------------------------|
| [7:0] | CP_CLK_DIV | Specifies the clk divider for the CP clock source. Valid from 8'd0 to 8'd255.       |
|       |            | 8'dX: CP clock is SYS_CLK/((X+1)*2)                                                 |
|       |            | <ul> <li>8'd0: Minimum</li> <li>8'd31: Defaults</li> <li>8'd255: Maximum</li> </ul> |

### Register 8-5: RESERVED



# Register 10- 9: INTERRUPT MASK P

| Bits    | [15:14] | [13] | [12] | [11] | [10] | [9]  | [8]  | [7]  | [6]  | [5]  | [4]  | [3]  | [2]  | [1]  | [0]  |
|---------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Default | 2'b00   | 1'b0 |

| Bits    | Mnemonic                              | Description                                                                                                                                                                                      |
|---------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [15:14] | INPUT_DATA_TYPE_MASKP                 | Masks negative to positive interrupt toggling.     1'b0: Ignore interrupt if toggled from negative to positive     1'b1: Service interrupt if toggled from negative to positive                  |
| [13]    | TDM_DATA_VALID_FLAG_MASKP             | Masks negative to positive interrupt toggling.     1'b0: Ignore interrupt if toggled from negative to positive     1'b1: Service interrupt if toggled from negative to positive                  |
| [12]    | CLK_AVALID_FLAG_MASKP                 | Masks negative to positive interrupt toggling.     1'b0: Ignore interrupt if toggled from negative to positive     1'b1: Service interrupt if toggled from negative to positive                  |
| [11]    | RWS_REFERENCE_COUNTER_FULL_FLAG_MASKP | Masks negative to positive interrupt toggling.              1'b0: Ignore interrupt if toggled from negative to positive             1'b1: Service interrupt if toggled from negative to positive |
| [10]    | BCK_WS_FAILED_FLAG_MASKP              | Masks negative to positive interrupt toggling.     1'b0: Ignore interrupt if toggled from negative to positive     1'b1: Service interrupt if toggled from negative to positive                  |
| [9]     | RESERVED                              | NA                                                                                                                                                                                               |
| [8]     | DOP_VALID_MASKP                       | Masks negative to positive interrupt toggling.              1'b0: Ignore interrupt if toggled from negative to positive             1'b1: Service interrupt if toggled from negative to positive |
| [7]     | SOFT_RAMP_CH2_MASKP                   | Masks negative to positive interrupt toggling.              1'b0: Ignore interrupt if toggled from negative to positive             1'b1: Service interrupt if toggled from negative to positive |



| [6] | SOFT_RAMP_CH1_MASKP  DRE_FLAG_CH2_MASKP | Masks negative to positive interrupt toggling.     1'b0: Ignore interrupt if toggled from negative to positive     1'b1: Service interrupt if toggled from negative to positive  Masks negative to positive interrupt toggling. |
|-----|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                         | <ul> <li>1'b0: Ignore interrupt if toggled from negative to positive</li> <li>1'b1: Service interrupt if toggled from negative to positive</li> </ul>                                                                           |
| [4] | DRE_FLAG_CH1_MASKP                      | Masks negative to positive interrupt toggling.     1'b0: Ignore interrupt if toggled from negative to positive     1'b1: Service interrupt if toggled from negative to positive                                                 |
| [3] | AUTOMUTE_FLAG_CH2_MASKP                 | Masks negative to positive interrupt toggling.                                                                                                                                                                                  |
| [2] | AUTOMUTE_FLAG_CH1_MASKP                 | Masks negative to positive interrupt toggling.     1'b0: Ignore interrupt if toggled from negative to positive     1'b1: Service interrupt if toggled from negative to positive                                                 |
| [1] | VOL_MIN_CH2_MASKP                       | Masks negative to positive interrupt toggling.     1'b0: Ignore interrupt if toggled from negative to positive     1'b1: Service interrupt if toggled from negative to positive                                                 |
| [0] | VOL_MIN_CH1_MASKP                       | Masks negative to positive interrupt toggling.     1'b0: Ignore interrupt if toggled from negative to positive     1'b1: Service interrupt if toggled from negative to positive                                                 |



# Register 12-11: INTERRUPT MASK N

| Bits    | [15:14] | [13] | [12] | [11] | [10] | [9]  | [8]  | [7]  | [6]  | [5]  | [4]  | [3]  | [2]  | [1]  | [0]  |
|---------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Default | 2'b00   | 1'b0 |

| Bits    | Mnemonic                              | Description                                                                                                                                                                     |
|---------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [15:14] | INPUT_DATA_TYPE_MASKN                 | Masks positive to negative interrupt toggling.     1'b0: Ignore interrupt if toggled from positive to negative     1'b1: Service interrupt if toggled from positive to negative |
| [13]    | TDM_DATA_VALID_FLAG_MASKN             | Masks positive to negative interrupt toggling.     1'b0: Ignore interrupt if toggled from positive to negative     1'b1: Service interrupt if toggled from positive to negative |
| [12]    | CLK_AVALID_FLAG_MASKN                 | Masks positive to negative interrupt toggling.     1'b0: Ignore interrupt if toggled from positive to negative     1'b1: Service interrupt if toggled from positive to negative |
| [11]    | RWS_REFERENCE_COUNTER_FULL_FLAG_MASKN | Masks positive to negative interrupt toggling.     1'b0: Ignore interrupt if toggled from positive to negative     1'b1: Service interrupt if toggled from positive to negative |
| [10]    | BCK_WS_FAILED_FLAG_MASKN              | Masks positive to negative interrupt toggling.     1'b0: Ignore interrupt if toggled from positive to negative     1'b1: Service interrupt if toggled from positive to negative |
| [9]     | RESERVED                              | NA                                                                                                                                                                              |
| [8]     | DOP_VALID_MASKN                       | Masks positive to negative interrupt toggling.     1'b0: Ignore interrupt if toggled from positive to negative     1'b1: Service interrupt if toggled from positive to negative |
| [7]     | SOFT_RAMP_CH2_MASKN                   | Masks positive to negative interrupt toggling.     1'b0: Ignore interrupt if toggled from positive to negative     1'b1: Service interrupt if toggled from positive to negative |





| [6] | SOFT_RAMP_CH1_MASKN     | Masks positive to negative interrupt toggling.                                                                                                        |
|-----|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                         | <ul> <li>1'b0: Ignore interrupt if toggled from positive to negative</li> <li>1'b1: Service interrupt if toggled from positive to negative</li> </ul> |
| [5] | DRE_FLAG_CH2_MASKN      | Masks positive to negative interrupt toggling.                                                                                                        |
|     |                         | <ul> <li>1'b0: Ignore interrupt if toggled from positive to negative</li> <li>1'b1: Service interrupt if toggled from positive to negative</li> </ul> |
| [4] | DRE_FLAG_CH1_MASKN      | Masks positive to negative interrupt toggling.                                                                                                        |
|     |                         | <ul> <li>1'b0: Ignore interrupt if toggled from positive to negative</li> <li>1'b1: Service interrupt if toggled from positive to negative</li> </ul> |
| [3] | AUTOMUTE_FLAG_CH2_MASKN | Masks positive to negative interrupt toggling.                                                                                                        |
|     |                         | <ul> <li>1'b0: Ignore interrupt if toggled from positive to negative</li> <li>1'b1: Service interrupt if toggled from positive to negative</li> </ul> |
| [2] | AUTOMUTE_FLAG_CH1_MASKN | Masks positive to negative interrupt toggling.                                                                                                        |
|     |                         | <ul> <li>1'b0: Ignore interrupt if toggled from positive to negative</li> <li>1'b1: Service interrupt if toggled from positive to negative</li> </ul> |
| [1] | VOL_MIN_CH2_MASKN       | Masks positive to negative interrupt toggling.                                                                                                        |
|     |                         | <ul> <li>1'b0: Ignore interrupt if toggled from positive to negative</li> <li>1'b1: Service interrupt if toggled from positive to negative</li> </ul> |
| [0] | VOL_MIN_CH1_MASKN       | Masks positive to negative interrupt toggling.                                                                                                        |
|     |                         | <ul> <li>1'b0: Ignore interrupt if toggled from positive to negative</li> <li>1'b1: Service interrupt if toggled from positive to negative</li> </ul> |



### Register 14-13: INTERRUPT CLEAR

| Bits    | [15:14] | [13] | [12] | [11] | [10] | [9]  | [8]  | [7]  | [6]  | [5]  | [4]  | [3]  | [2]  | [1]  | [0]  |
|---------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Default | 2'b00   | 1'b0 |

| Bits    | Mnemonic                              | Description                         |  |  |  |  |  |
|---------|---------------------------------------|-------------------------------------|--|--|--|--|--|
| [15:14] | INPUT_DATA_CLEAR                      | Write a 1'b1 to clear the interrupt |  |  |  |  |  |
| [13]    | TDM_DATA_VALID_CLEAR                  | Write a 1'b1 to clear the interrupt |  |  |  |  |  |
| [12]    | CLK_AVALID_FLAG_CLEAR                 | Write a 1'b1 to clear the interrupt |  |  |  |  |  |
| [11]    | RWS_REFERENCE_COUNTER_FULL_FLAG_CLEAR | Write a 1'b1 to clear the interrupt |  |  |  |  |  |
| [10]    | BCK_WS_FAILED_FLAG_CLEAR              | Write a 1'b1 to clear the interrupt |  |  |  |  |  |
| [9]     | RESERVED                              | NA                                  |  |  |  |  |  |
| [8]     | DOP_VALID_CLEAR                       | Write a 1'b1 to clear the interrupt |  |  |  |  |  |
| [7]     | SOFT_RAMP_CH2_CLEAR                   | Write a 1'b1 to clear the interrupt |  |  |  |  |  |
| [6]     | SOFT_RAMP_CH1_CLEAR                   | Write a 1'b1 to clear the interrupt |  |  |  |  |  |
| [5]     | DRE_FLAG_CH2_CLEAR                    | Write a 1'b1 to clear the interrupt |  |  |  |  |  |
| [4]     | DRE_FLAG_CH1_CLEAR                    | Write a 1'b1 to clear the interrupt |  |  |  |  |  |
| [3]     | AUTOMUTE_FLAG_CH2_CLEAR               | Write a 1'b1 to clear the interrupt |  |  |  |  |  |
| [2]     | AUTOMUTE_FLAG_CH1_CLEAR               | Write a 1'b1 to clear the interrupt |  |  |  |  |  |
| [1]     | VOL_MIN_CH2_CLEAR                     | Write a 1'b1 to clear the interrupt |  |  |  |  |  |
| [0]     | VOL_MIN_CH1_CLEAR                     | Write a 1'b1 to clear the interrupt |  |  |  |  |  |





#### Register 15: ANALOG CTRL CONFIG

| Bits    | [7]  | [6]  | [5]  | [4:2]  | [1]  | [0]  |
|---------|------|------|------|--------|------|------|
| Default | 1'd0 | 1'b1 | 1'b1 | 3'b000 | 1'b0 | 1'b0 |

| Bits  | Mnemonic            | Description                                                                                                                                                                                        |
|-------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]   | RESERVED            | NA                                                                                                                                                                                                 |
| [6]   | AMP_PDB_ON_SS       | DAC amp power control for soft ramp on normal mute.                                                                                                                                                |
|       |                     | <ul> <li>1'b0: When soft ramped to ground during normal mute, keeps DAC AMP on</li> <li>1'b1: When soft ramped to ground during normal mute allow DAC AMP to shut down for power saving</li> </ul> |
|       |                     | (default)                                                                                                                                                                                          |
|       |                     | "normal mute" includes: automute, mute by register, mute by GPIO                                                                                                                                   |
| [5]   | AMP_PDB_CLK_INVALID | DAC amp power control for soft ramp on abnormal mute.                                                                                                                                              |
|       |                     | 1'b0: When soft ramped to ground during abnormal mute, keeps DAC AMP on                                                                                                                            |
|       |                     | 1'b1: When soft ramped to ground during abnormal<br>mute allow DAC AMP to shut down for power saving<br>(default)                                                                                  |
|       |                     | "abnormal mute" includes: PLL unlock, BCK_WS ratio failed                                                                                                                                          |
| [4:2] | RESERVED            | NA                                                                                                                                                                                                 |
| [1]   | LP_DAC_REG          | Set the low power mode for DAC regulator (Left)                                                                                                                                                    |
|       |                     | 1'b0: Normal Mode                                                                                                                                                                                  |
|       |                     | 1'b1: Low power mode enabled                                                                                                                                                                       |
| [0]   | EN_FCB              | Enable the fast charge for VREF_L AND VREF_R                                                                                                                                                       |
|       |                     | <ul><li>1'b0: Enabled (default)</li><li>1'b1: Disable fast charge</li></ul>                                                                                                                        |
|       |                     | - 151. Dioable last charge                                                                                                                                                                         |

# Register 16: LDRV CTRL

| Bits    | [7]  | [6]  | [5:0]     |
|---------|------|------|-----------|
| Default | 1'b0 | 1'b0 | 6'ь000011 |

| Bits  | Mnemonic         | Description                                                     |
|-------|------------------|-----------------------------------------------------------------|
| [7]   | ENB_OCP_LDRV_CH2 | Line driver over current protection  1'b0: Enable 1'b1: Disable |
| [6]   | ENB_OCP_LDRV_CH1 | Line driver over current protection  1'b0: Enable 1'b1: Disable |
| [5:0] | RESERVED         | NA                                                              |



#### Register 17: RESERVED

# Register 19-18: ANALOG CONTROL OVERRIDE2

| Bits    | [15] | [14] | [13:0]           |
|---------|------|------|------------------|
| Default | 1'b1 | 1'b1 | 14'b000000000000 |

| Bits   | Mnemonic     | Description                                                       |
|--------|--------------|-------------------------------------------------------------------|
| [15]   | TRIB_DAC_CH2 | Set DAC output tri-state  1'b0: tri-state  1'b1: Normal operation |
| [14]   | TRIB_DAC_CH1 | Set DAC output tri-state  1'b0: tri-state  1'b1: Normal operation |
| [13:0] | RESERVED     | NA                                                                |

Register 23-20: RESERVED



# **GPIO Registers**

# Register 24: GPIO CONFIG

| Bits    | [7]  | [6]  | [5]  | [4]  | [3:0] |
|---------|------|------|------|------|-------|
| Default | 1'b0 | 1'b0 | 1'b0 | 1'b0 | 4'd0  |

| Bits  | Mnemonic     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]   | INVERT_GPI01 | Invert GPIO1  • 1'b1: Inverts GPIO1 output.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| [6]   | GPIO1_WK_EN  | Enables GPIO1 weak keeper.  1'b0: GPIO1 weak keeper disabled (default)  1'b1: GPIO1 weak keeper enabled  Note: Weak keeper is a holder that can be optionally set, it maintains the previous state driver, with the GPIOx_WK_EN bit.                                                                                                                                                                                                                                          |
| [5]   | GPIO1_SDB    | Enables GPIO1 input.  1'b0: Disables GPIO1 input (default)  1'b1: Enables GPIO1 input                                                                                                                                                                                                                                                                                                                                                                                         |
| [4]   | GPIO1_OE     | Enables GPIO1 output.  1'b0: Tristate GPIO1 (default)  1'b1: GPIO1 Output Enable                                                                                                                                                                                                                                                                                                                                                                                              |
| [3:0] | GPIO1_CFG    | Configures GPIO1  4'd0: output 0 - output  4'd1: output 0 - output  4'd2: output 1 - output  4'd3: CLK_DATA - output  4'd4: interrupt - output  4'd5: mute all channel - input  4'd6: system mode control - input  4'd7: Reserved  4'd8: clk_avalid - output  4'd9: output PWM1 - output  4'd10: output PWM2 - output  4'd11: output PWM3 - output  4'd12: volume minimum - output  4'd13: automute status - output  4'd14: soft ramp done - output  4'd15: output 0 - output |



### Register 25: GPIO CONFIG2

| Bits    | [7]  | [6]  | [5]  | [4]  | [3]  | [2]  | [1]  | [0]  |
|---------|------|------|------|------|------|------|------|------|
| Default | 1'b0 | 1'b0 | 1'b0 | 1'b0 | 1'b0 | 1'b1 | 1'b0 | 1'b0 |

| Bits | Mnemonic          | Description                                                                                                                                                                                                                                                |
|------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]  | GPIO_OR_SS_RAMP   | When GPIOx_CFG=14 (output soft ramp done flag):  1'b0: The soft ramp done flag is determined by GPIO_AND_SS_RAMP and GPIO_SEL (default)  1'b1: The soft ramp done flag is the "OR" of both channel soft ramp done flags                                    |
| [6]  | GPIO_OR_VOL_MIN   | When GPIOx_CFG=12 (output vol_min flag):  1'b0: The vol_min flag is determined by GPIO_AND_VOL_MIN and GPIO_SEL (default)  1'b1: The vol_min flag is the "OR" of both channel vol_min flags                                                                |
| [5]  | GPIO_OR_AUTOMUTE  | When GPIOx_CFG=13 (output automute status):  1'b0: The automute status is determined by GPIO_AND_AUTOMUTE and GPIO_SEL (default)  1'b1: The automute status is the "OR" of both channel automute status                                                    |
| [4]  | GPIO_AND_SS_RAMP  | When GPIOx_CFG=14 (output soft ramp done flag) and GPIO_OR_SS_RAMP is not set:  • 1'b0: The soft ramp done flag is from a single channel selected by GPIO_SEL (default)  • 1'b1: The soft ramp done flag is the "AND" of both channel soft ramp done flags |
| [3]  | GPIO_AND_VOL_MIN  | When GPIOx_CFG=12 (output vol_min flag) and GPIO_OR_VOL_MIN is not set:  • 1'b0: The vol_min flag is from a single channel selected by GPIO_SEL (default)  • 1'b1: The vol_min flag is the "AND" of both channel vol_min flags                             |
| [2]  | GPIO_AND_AUTOMUTE | When GPIOx_CFG=13 (output automute status) and GPIO_OR_AUTOMUTE is not set:  • 1'b0: The automute status is from a single channel selected by GPIO_SEL  • 1'b1: The automute status is the "AND" of both channel automute status (default)                 |
| [1]  | RESERVED          | NA                                                                                                                                                                                                                                                         |
| [0]  | GPIO1_READ        | <ul> <li>1'b0: GPIO1 Readback disabled (default)</li> <li>1'b1: Allow readback of GPIO1_I</li> </ul>                                                                                                                                                       |



#### Register 26: GPIO INPUT ENABLE

| Bits    | [7:3] | [1]  | [0]  |
|---------|-------|------|------|
| Default | 5'd0  | 1'b0 | 1'b0 |

| Bits  | Mnemonic      | Description                                                                                                                                                                                                                              |
|-------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7:3] | RESERVED      | NA                                                                                                                                                                                                                                       |
| [1]   | GPIO_AMP_MODE | When any GPIO_CFG is set to 6 (input system mode control):  1'b0: Power down when GPIO input is 1 (default)  1'b1: HIFI when GPIO input is 1 (when GPIO input is 0, system mode is determined by register AMP_MODE (register 0, bit[1])) |
| [0]   | GPIO_SEL      | When GPIOx_CFG is set to 12, 13 or 14, and the corresponding GPIO_AND and GPIO_OR are not set:  • 1'd0: Outputs status/flag from ch1  • 1'd1: Outputs status/flag from ch2                                                               |

# Register 27: PWM1 COUNT

| Bits    | [7:0] |
|---------|-------|
| Default | 8'd0  |

| Bits  | Mnemonic   | Description                                                                                                                            |
|-------|------------|----------------------------------------------------------------------------------------------------------------------------------------|
| [7:0] | PWM1_COUNT | 8-bit value to set the number of SYS_CLK periods the PWM signal is high for.  Valid from 8'd0 to 8'd255  8'd0: minimum 8'd255: maximum |



#### Register 29-28: PWM1 FREQUENCY

| Bits    | [15:0] |
|---------|--------|
| Default | 16'd0  |

| Mnemonic  | Description                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------|
| PWM1_FREQ | 16-bit value to set the frequency of the PWM signal in terms of SYS_CLK divisions.            |
|           | Valid from 16'h0000 to 16'hFFFF                                                               |
|           | $frequency (Hz) = \frac{SYS\_CLK}{PWM1\_FREQ}$                                                |
|           | $Duty Cycle (\%) = \left(1 - \frac{PWM1\_FREQ - PWM1\_COUNT}{PWM1\_FREQ}\right)$ $\times 100$ |
|           |                                                                                               |



### Register 30: PWM2 COUNT

| Bits    | [7:0] |
|---------|-------|
| Default | 8'd0  |

| Bits  | Mnemonic   | Description                                                                                                                                 |
|-------|------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| [7:0] | PWM2_COUNT | 8-bit value to set the number of SYS_CLK periods the PWM signal is high for.  Valid from 8'd0 to 8'd255  • 8'd0: minimum  • 8'd255: maximum |

### Register 32-31: PWM2 FREQUENCY

| Bits    | [15:0] |
|---------|--------|
| Default | 16'd0  |

| Bits   | Mnemonic  | Description                                                                        |
|--------|-----------|------------------------------------------------------------------------------------|
| [15:0] | PWM2_FREQ | 16-bit value to set the frequency of the PWM signal in terms of SYS_CLK divisions. |
|        |           | Valid from 16'h0000 to 16'hFFFF                                                    |
|        |           | $frequency (Hz) = \frac{SYS\_CLK}{PWM3\_FREQ}$                                     |
|        |           | $Duty \ Cycle \ (\%) = \Big(1$                                                     |
|        |           | PWM3_FREQ - PWM3_COUNT                                                             |
|        |           | PWM3_FREQ                                                                          |
|        |           | × 100                                                                              |

# Register 33: PWM3 COUNT

| Bits    | [7:0] |
|---------|-------|
| Default | 8'd0  |

| Bits  | Mnemonic   | Description                                                                                                                                 |
|-------|------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| [7:0] | PWM3_COUNT | 8-bit value to set the number of SYS_CLK periods the PWM signal is high for.  Valid from 8'd0 to 8'd255  • 8'd0: minimum  • 8'd255: maximum |



### Register 35-34: PWM3 FREQUENCY

| Bits    | [15:0] |
|---------|--------|
| Default | 16'd0  |

| Bits   | Mnemonic  | Description                                                                         |
|--------|-----------|-------------------------------------------------------------------------------------|
| [15:0] | PWM3_FREQ | 16-bit value to set the frequency of the PWM signal in terms of SYS_CLK divisions.  |
|        |           | Valid from 16'h0000 to 16'hFFFF                                                     |
|        |           | $frequency (Hz) = \frac{SYS_{CLK}}{PWM3\_FREQ}$                                     |
|        |           | $Duty \ Cycle \ (\%) = \begin{pmatrix} 1 \\ PWM3\_FREQ - PWM3\_COUNT \end{pmatrix}$ |
|        |           | PWM3_FREQ ) × 100                                                                   |



# **DAC Registers**

# Register 36: INPUT CONFIG

| Bits    | [7]  | [6]  | [5]  | [4]  | [3:2] | [1:0] |
|---------|------|------|------|------|-------|-------|
| Default | 1'b1 | 1'b0 | 1'b0 | 1'b0 | 2'd0  | 2'd0  |

| Bits  | Mnemonic           | Description                                                                                                                                                                             |
|-------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]   | AUTO_FS_DETECT     | Enables automatic tuning of CLK_DAC/CLK_IDAC ratio according to detected FS.                                                                                                            |
|       |                    | <ul> <li>1'b0: Auto tune Disabled</li> <li>1'b1: Auto tune CLK_DAC/CLK_IDAC ratio according to detected FS (default)</li> </ul>                                                         |
| [6]   | DSD_NEGEDGE        | Changes DSD latching edge polarity.                                                                                                                                                     |
|       |                    | <ul> <li>1'b0: Latch DSD data at positive edge of DSD_CLK (default)</li> <li>1'b1: Latch DSD data at negative edge of DSD_CLK</li> </ul>                                                |
| [5]   | DSD_MASTER_MODE    | DSD master mode config.                                                                                                                                                                 |
|       |                    | <ul> <li>1'b0: DSD slave mode (default)</li> <li>1'b1: DSD master mode. DSD_CLK outputs from<br/>DATA_CLK</li> </ul>                                                                    |
| [4]   | ENABLE_MASTER_MODE | TDM master mode config.                                                                                                                                                                 |
|       |                    | <ul> <li>1'b0: TDM slave mode (default)</li> <li>1'b1: TDM master mode enabled. Master BCK and<br/>WS output from DATA_CLK and DATA1</li> </ul>                                         |
| [3:2] | INPUT_SEL          | Selects input data when AUTO_INPUT_SELECT is set to 2'd0.                                                                                                                               |
|       |                    | <ul> <li>2'd0: TDM (default)</li> <li>2'd1: DSD</li> <li>2'd2: DoP</li> <li>2'd3: Reserved</li> </ul>                                                                                   |
| [1:0] | AUTO_INPUT_SELECT  | Auto input data selection config.                                                                                                                                                       |
|       |                    | <ul> <li>2'd0: Disables auto input select. Input data type is set by INPUT_SEL (default)</li> <li>2'd1: Auto select between DSD and TDM inputs.</li> <li>2'd2-2'd3: Reserved</li> </ul> |



# Register 37: MASTER MODE CONFIG

| Bits    | [7]  | [6]  | [5]  | [4:3] | [2]  | [1]  | [0]  |
|---------|------|------|------|-------|------|------|------|
| Default | 1'b0 | 1'b0 | 1'b0 | 2'd0  | 1'b0 | 1'b0 | 1'b1 |

| Bits  | Mnemonic                    | Description                                                                                                                                                                    |
|-------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]   | AUTO_FS_DETECT_BLOCK_2XMODE | Automatic 2x mode enable.  1'b0: Set 2x mode when the detected CLK_DAC/CLK_IDAC ratio is 64 (default)  1'b1: Do not set 2x mode when the detected CLK_DAC/CLK_IDAC ratio is 64 |
| [6]   | MASTER_BCK_DIV1             | When enabled, master BCK is 128fs clock. Otherwise, BCK is less than or equal to 64fs.  1'b0: BCK is not 128fs clock (default)  1'b1: BCK is 128fs clock                       |
| [5]   | MASTER_WS_IDLE              | Sets the value of master WS when WS is idle.  • 1'b0: WS is 0 when idle (default)  • 1'b1: WS is 1 when idle                                                                   |
| [4:3] | MASTER_FRAME_LENGTH         | Selects the bit length in each TDM channel in master mode.  • 2'd0: 32 bit (default)  • 2'd2: 16 bit  • others: Reserved                                                       |
| [2]   | MASTER_WS_PULSE_MODE        | When enabled, master WS is a pulse signal instead of a 50% duty cycle signal. The pulse width is 1 BCK cycle.  1'b0: 50% duty cycle WS signal (default)  1'b1: Pulse WS signal |
| [1]   | MASTER_WS_INVERT            | Inverts master WS.  • 1'b0: Non-inverted (default)  • 1'b1: Inverted                                                                                                           |
| [0]   | MASTER_BCK_INVERT           | Inverts master BCK or DSD_CLK.  • 1'b0: Non-inverted  • 1'b1: Inverted (default)                                                                                               |





#### Register 38: TDM CONFIG1

| Bits    | [7]  | [6:4] | [3:0] |
|---------|------|-------|-------|
| Default | 1'b0 | 3'd0  | 4'd1  |

| Bits  | Mnemonic        | Description                                                                                                                                                                                                                                                                     |
|-------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]   | TDM_RESYNC      | Force TDM decoder to resync.  1'b0: Let decoder sync (default)  1'b1: Force decoder not sync                                                                                                                                                                                    |
| [6:4] | MASTER_WS_SCALE | In TDM master mode, tunes master BCK/WS ratio by scaling master WS. It allows more TDM slots in a fixed frame.  • 3'd0: No scale (default)  • 3'd1: Scale down WS by 2  • 3'd2: Scale down WS by 4  • 3'd3: Scale down WS by 8  • 3'd4: Scale down WS by 16  • others: Reserved |
| [3:0] | TDM_CH_NUM      | Total TDM slot number per frame = TDM_CH_NUM + 1.  4'd0: Minimum  4'd1: Default  4'd15: Maximum                                                                                                                                                                                 |

#### Register 39: TDM CONFIG2

| Bits    | [7]  | [6]  | [5:0] |
|---------|------|------|-------|
| Default | 1'b0 | 1'b0 | 6'd1  |

| Bits  | Mnemonic            | Description                                                            |
|-------|---------------------|------------------------------------------------------------------------|
| [7]   | TDM_LJ_MODE         | TDM LJ mode.  • 1'b0: Standard I2S (default)  • 1'b1: LJ mode          |
| [6]   | TDM_VALID_EDGE      | TDM WS valid edge.  1'b0: negative edge (default)  1'b1: positive edge |
| [5:0] | TDM_VALID_PULSE_LEN | Data valid pulse length adjustment.  • 6'd1: Default                   |



#### Register 40: TDM CONFIG3

| Bits    | [7]  | [6:5] | [4:0] |
|---------|------|-------|-------|
| Default | 1'd0 | 2'd0  | 5'd0  |

| Bits  | Mnemonic           | Description                                                                                                                                                                                                        |
|-------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]   | PDM_NEG_FIRST      | PDM data edge polarity control.  2'b0: PDM data ch1/2 are on positive/negative edges of PDM clock (default)  2'b1: PDM data ch1/2 are on negative/positive edges of PDM clock                                      |
| [6:5] | TDM_BIT_WIDTH      | Bit width of each TDM slot.  2'b00: 32-bit (default) 2'b01: 24-bit 2'b10: 16-bit 2'b11: Reserved                                                                                                                   |
| [4:0] | TDM_DATA_LATCH_ADJ | Sets the position of the start bit within each TDM slot Can be moved +ve or -ve relative to MSB.  • 5'd00: Default  • 5'd16: Start bit shifted 16 bits towards LSB  • 5'd31: Start bit shifted 16 bits towards MSB |

### Register 41: RESERVED

# Register 42: TDM SLOT CONFIG

| Bits    | [7:4] | [3:0] |
|---------|-------|-------|
| Default | 4'd1  | 4'd0  |

| Bits  | Mnemonic         | Description                                                                                                                     |
|-------|------------------|---------------------------------------------------------------------------------------------------------------------------------|
| [7:4] | TDM_CH2_SLOT_SEL | CH2 data slot selection. CH2 receives data from Mth slot. M = TDM_CH2_SLOT_SEL + 1.  4'd00: Minimum (M=1) 4'd15: Maximum (M=16) |
| [3:0] | TDM_CH1_SLOT_SEL | CH1 data slot selection. CH1 receives data from Mth slot. M = TDM_CH1_SLOT_SEL + 1.  4'd00: Minimum (M=1) 4'd15: Maximum (M=16) |

#### Register 43: RESERVED



#### Register 44: RESYNC CONFIG

| Bits    | [7]  | [6]  | [5:0]     |
|---------|------|------|-----------|
| Default | 1'b0 | 1'b1 | 6'b000000 |

| Bits  | Mnemonic       | Description                                                                                                              |  |
|-------|----------------|--------------------------------------------------------------------------------------------------------------------------|--|
| [7]   | RESERVED       | NA                                                                                                                       |  |
| [6]   | CP_PDB_ON_MUTE | Charge pump state control when mute  1'b0: Keep charge pump on when mute  1'b1: Turn off charge pump when mute (default) |  |
| [5:0] | RESERVED       | NA                                                                                                                       |  |

# Register 45: FS GENERATOR PHASE

| Bits    | [7]  | [6:0] |
|---------|------|-------|
| Default | 1'b1 | 7'd64 |

| Bits  | Mnemonic     | Description                                                                               |
|-------|--------------|-------------------------------------------------------------------------------------------|
| [7]   | DSD_2DB_DOWN | Scales down DSD data by 2dB to match PCM data.  • 1'b1: Scale (default)  • 1'b0: No scale |
| [6:0] | RESERVED     | NA                                                                                        |

### Register 46: VOLUME1

| Bits    | [7:0] |
|---------|-------|
| Default | 8'd0  |

| Bits  | Mnemonic | Description                                          |
|-------|----------|------------------------------------------------------|
| [7:0] | VOLUME1  | DAC ch1 volume0dB to -127.5dB 0.5dB steps.           |
|       |          | <ul><li>8'd0: 0dB</li><li>8'd255: -127.5dB</li></ul> |

### Register 47: VOLUME2

| Bits    | [7:0] |
|---------|-------|
| Default | 8'd0  |

| Bits  | Mnemonic | Description                               |
|-------|----------|-------------------------------------------|
| [7:0] | VOLUME2  | DAC ch2volume0dB to -127.5dB 0.5dB steps. |
|       |          | • 8'd0: 0dB                               |
|       |          | • 8'd255: -127.5dB                        |



### Register 48: DAC VOL UP RATE

| Bits    | [7:0]  |
|---------|--------|
| Default | 8'd150 |

| Bits  | Mnemonic        | Description                                                                                  |
|-------|-----------------|----------------------------------------------------------------------------------------------|
| [7:0] | DAC_VOL_RATE_UP | Value by which the old VOLUME value is incremented to reach the new VOLUME value             |
|       |                 | Valid from 8'd0 (instant) to 8'd255 (fastest), where 8'd0 instantly changes the VOLUME value |
|       |                 | Calculation of time ramp rate(in seconds):                                                   |
|       |                 | 8'd0: Instant change                                                                         |
|       |                 | 8'd150: Default     8'd255: Fastest change                                                   |

### Register 49: DAC VOL DOWN RATE

| Bits    | [7:0]  |
|---------|--------|
| Default | 8'd150 |

| Bits  | Mnemonic          | Description                                                                                   |
|-------|-------------------|-----------------------------------------------------------------------------------------------|
| [7:0] | DAC_VOL_RATE_DOWN | Value by which the old VOLUME value is incremented to reach the new VOLUME value              |
|       |                   | Valid from 8'd0 (instant) to 8'd255 (fastest), where 8'd0 instantly changes the VOLUME value  |
|       |                   | Calculation of time ramp rate(in seconds):                                                    |
|       |                   | <ul><li>8'd0: Instant change</li><li>8'd150: Default</li><li>8'd255: Fastest change</li></ul> |





### Register 50: DAC VOL DOWN RATE FAST

| Bits    | [7:0] |
|---------|-------|
| Default | 8'd0  |

| Bits  | Mnemonic          | Description                                                                                   |
|-------|-------------------|-----------------------------------------------------------------------------------------------|
| [7:0] | DAC_VOL_RATE_FAST | Value by which the old VOLUME value is incremented to reach the new VOLUME value              |
|       |                   | Valid from 8'd0 (instant) to 8'd255 (fastest), where 8'd0 instantly changes the VOLUME value  |
|       |                   | Only used during abnormal mute (PLL unlock or BCK_WS ratio failed)                            |
|       |                   | Calculation of time ramp rate(in seconds):                                                    |
|       |                   | <ul><li>8'd0: Instant change</li><li>8'd150: Default</li><li>8'd255: Fastest change</li></ul> |



### Register 51: MUTE CTRL

| Bits    | [7]  | [6]  | [5]  | [4]  | [3]  | [2]  | [1]  | [0]  |
|---------|------|------|------|------|------|------|------|------|
| Default | 1'b0 |

| Bits | Mnemonic            | Description                                                                                                                                     |
|------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]  | FORCE_VOLUME        | Volume update control.  1'b0: Updates volume when toggling RUN_VOLUME (default)  1'b0: Updates volume when toggling RUN_VOLUME (default)        |
| [6]  | DAC_USE_MONO_VOLUME | Defines how volume is controlled between channels.  • 1'b0: Separated volume control (default)  • 1'b1: Ch2 volume is set by Ch1 volume setting |
| [5]  | RUN_VOLUME          | Toggle RUN_VOLUME to update volumes set by VOLUME1-VOLUME8  1'b0: Disabled (default) 1'b1: Enabled                                              |
| [4]  | RESERVED            | NA                                                                                                                                              |
| [3]  | DAC_INVERT_CH2      | Invert the output on Ch2 at the input to the NSMOD  1'b0: Disabled (default)  1'b1: Enabled                                                     |
| [2]  | DAC_INVERT_CH1      | Invert the output on Ch1 at the input to the NSMOD  1'b0: Disabled (default)  1'b1: Enabled                                                     |
| [1]  | DAC_MUTE_CH2        | DAC channel 2 mute control.  1'b0: Normal operation (default)  1'b1: Mute ch2                                                                   |
| [0]  | DAC_MUTE_CH1        | DAC channel 1 mute control.  1'b0: Normal operation (default)  1'b1: Mute ch1                                                                   |





#### Register 52: FILTER CONFIG

| Bits    | [7]  | [6]  | [5]  | [4:3] | [2:0] |
|---------|------|------|------|-------|-------|
| Default | 1'b0 | 1'b1 | 1'b0 | 2'b01 | 3'd0  |

| Bits  | Mnemonic       | Description                                                                                                                                                                                                                                                                                                                                          |
|-------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]   | AUTO_CH_DETECT | Auto detect BCK/FRAME ratio to determine the number of TDM channels.  • 1'b0: Disabled (default)  • 1'b1: Enabled                                                                                                                                                                                                                                    |
| [6]   | BYPASS_DEEMPH  | De-emphasis filter control for ch1/2 only.  1'b0: Enabled 1'b1: Disables de-emphasis filters (default)                                                                                                                                                                                                                                               |
| [5]   | PEAK_FILTER    | DRE peak filter control.  1'b0: Disabled (default)  1'b1: Enabled                                                                                                                                                                                                                                                                                    |
| [4:3] | SEL_DEEMPH     | Configures the de-emphasis filters for various sample rate.  • 2'b00: FS=32kHz  • 2'b01: FS=44.1kHz (default)  • 2'b10: FS=48kHz  • 2'b11: Reserved                                                                                                                                                                                                  |
| [2:0] | FILTER_SHAPE   | Selects the 8x interpolation FIR filter shape.  3'd0: Minimum phase (default)  3'd1: Linear phase apodizing  3'd2: Linear phase fast roll-off  3'd3: Linear phase fast roll-off low ripple  3'd4: Linear phase slow roll-off  3'd5: Minimum phase fast roll-off  3'd6: Minimum phase slow roll-off  3'd7: Minimum phase slow roll-off low dispersion |

Register 54-53: RESERVED

# Register 56-55: THD COMP C2 CH1

| Bits    | [15:0]  |
|---------|---------|
| Default | 16'd360 |

| Bits | Mnemonic | Description                                                                        |  |
|------|----------|------------------------------------------------------------------------------------|--|
|      |          | A 16-bit signed coefficient for correcting for the CH1 second harmonic distortion. |  |
|      |          | $output = x + c2 * x^2 + c3 * x^3$                                                 |  |



# Register 58-57: THD COMP C3 CH1

| Bits    | [15:0]  |
|---------|---------|
| Default | 16'd141 |

| Bits   | Mnemonic   | Description                                                                       |
|--------|------------|-----------------------------------------------------------------------------------|
| [15:0] | THD_C3_CH1 | A 16-bit signed coefficient for correcting for the CH1 third harmonic distortion. |
|        |            | $output = x + c2 * x^2 + c3 * x^3$                                                |

# Register 60-59: THD COMP C2 CH2

| Bits    | [15:0]  |
|---------|---------|
| Default | 16'd360 |

| Bits   | Mnemonic   | Description                                                                                                           |
|--------|------------|-----------------------------------------------------------------------------------------------------------------------|
| [15:0] | THD_C2_CH2 | A 16-bit signed coefficient for correcting for the CH2 second harmonic distortion. $output = x + c2 * x^2 + c3 * x^3$ |

# Register 62-61: THD COMP C3 CH2

| Bi | ts     | [15:0]  |
|----|--------|---------|
| De | efault | 16'd141 |

| Bits   | Mnemonic   | Description                                                                       |
|--------|------------|-----------------------------------------------------------------------------------|
| [15:0] | THD_C3_CH2 | A 16-bit signed coefficient for correcting for the CH2 third harmonic distortion. |
|        |            | $output = x + c2 * x^2 + c3 * x^3$                                                |





#### Register 64-63: AUTOMUTE TIME

| Bits    | [15] | [14] | [13] | [12] | [11] | [10:0] |
|---------|------|------|------|------|------|--------|
| Default | 1'b1 | 1'b1 | 1'b0 | 1'b1 | 1'b1 | 11'd15 |

| Bits   | Mnemonic                | Description                                                                                                                                                                                                                                                            |
|--------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [15]   | AUTOMUTE_RAMP_TO_GROUND | When ramped to minimum volume during normal mute, allow soft ramp to ground for power saving.  1'b0: Disabled 1'b1: Enabled (default)  Note: Normal mute includes automute, mute by register and                                                                       |
| [14]   | AUTOMUTE_WAIT_ON_DRE    | mute by GPIO.  Automute flag control.  • 1'b0: Automute is flagged when automute condition is met  • 1'b1: Automute is flagged when automute condition is met and DRE is engaged (default)                                                                             |
| [13]   | RESERVED                | NA                                                                                                                                                                                                                                                                     |
| [12]   | AUTOMUTE_EN_CH2         | Channel 2 automute.  • 1'b0: Disables ch2 automute  • 1'b1: Enables ch2 automute (default)  Note: Automute is available for PCM only                                                                                                                                   |
| [11]   | AUTOMUTE_EN_CH1         | Channel 1 automute.  • 1'b0: Disables ch1 automute  • 1'b1: Enables ch1 automute (default)  Note: Automute is available for PCM only                                                                                                                                   |
| [10:0] | AUTOMUTE_TIME           | Configures the amount of time in seconds the audio must remain below AUTOMUTE_LEVEL before an automute condition is flagged.  Valid from 0 (disabled) to 11'h7FF (fastest), where 11'h001 is the slowest $Time\ in\ Seconds\ =\ 128fs\ *\frac{2^{18}}{AUTOMUTE\_TIME}$ |



## Register 66-65: AUTOMUTE LEVEL

| Bits    | [15:0] |
|---------|--------|
| Default | 16'd8  |

| Bits   | Mnemonic       | Description                                                                                               |
|--------|----------------|-----------------------------------------------------------------------------------------------------------|
| [15:0] | AUTOMUTE_LEVEL | Configures the threshold which the audio must be below before an automute condition is flagged.           |
|        |                | <ul><li>16'h0000: Reserved</li><li>16'h0001: Minimum (-132dB)</li><li>16'hFFFF: Maximum (-42dB)</li></ul> |
|        |                | Note: this register works in tandem with AUTOMUTE_TIME to create the automute condition                   |

# Register 68-67: AUTOMUTE OFF LEVEL

| Bits    | [15:0] |
|---------|--------|
| Default | 16'd10 |

| Bits   | Mnemonic           | Description                                                                                                                                                                 |
|--------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [15:0] | AUTOMUTE_OFF_LEVEL | Configures the threshold which the audio must be above before the automute condition is cleared (cleared immediately).  • Valid from: 16'hFFFF (-42dB) to 16'h0001 (-132dB) |
|        |                    | Shift right 1 bit corresponds to -6dB                                                                                                                                       |





#### Register 69: SOFT RAMP CONFIG

| Bits    | [7]  | [6]  | [5]  | [4:0] |
|---------|------|------|------|-------|
| Default | 1'b0 | 1'b0 | 1'b0 | 5'd2  |

| Bits  | Mnemonic       | Description                                                                                                                                                         |
|-------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]   | GAIN_18DB_CH2  | Applies +18dB digital gain on channel 2.  1'b0: Disabled (default)  1'b1: Enabled                                                                                   |
| [6]   | GAIN_18DB_CH1  | Applies +18dB digital gain on channel 1.  1'b0: Disabled (default)  1'b1: Enabled                                                                                   |
| [5]   | SOFT_RAMP_TYPE | Sets whether the soft start ramp is linear or quadratic  1'b0: Uses a quadratic function for the soft start ramp (default)  1'b1: Uses the standard soft start ramp |
| [4:0] | SOFT_RAMP_TIME | Sets the amount of time that it takes to perform a soft start ramp.  Valid from 0 to 20 (inclusive).  5'd00: Minimum 5'd02: Default Maximum                         |

Register 72-70: RESERVED



## Register 73: DRE FORCE

| Bits    | [7]  | [6]  | [5:0]     |
|---------|------|------|-----------|
| Default | 1'b1 | 1'b1 | 6'b000011 |

| Bits  | Mnemonic      | Description                                                                                                                                                                                                                                                    |
|-------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]   | DRE_FORCE_CH2 | Force CH2 into DRE mode even if zero cross has not occurred.  • 1'b0: DRE engages when signal is below DRE threshold and a signal zero cross is detected(default).  • 1'b1: DRE engages when signal is below DRE threshold and a signal zero cross is ignored. |
| [6]   | DRE_FORCE_CH1 | Force CH1 into DRE mode even if zero cross has not occurred.  • 1'b0: DRE engages when signal is below DRE threshold and a signal zero cross is detected(default).  • 1'b1: DRE engages when signal is below DRE threshold and a signal zero cross is ignored. |
| [5:0] | RESERVED      | NA                                                                                                                                                                                                                                                             |

# Register 75-74: DRE GAIN CH1

| Bits    | [15:0]   |
|---------|----------|
| Default | 16'h1A34 |

| Bits   | Mnemonic  | Description                                                                                                                                             |
|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| [15:0] | DRE_GAIN1 | Sets the DRE gain for CH1. Shift right 1 bit corresponds to -6dB.  • 16'h07FF (0dB): Minimum  • 16'h1A34 (16.33dB): Default  • 16'h7FFF (30dB): Maximum |





#### Register 77-76: DRE GAIN CH2

| Bits    | [15:0]   |
|---------|----------|
| Default | 16'h1A34 |

| Bits   | Mnemonic  | Description                                                                                                                                             |
|--------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| [15:0] | DRE_GAIN2 | Sets the DRE gain for CH2. Shift right 1 bit corresponds to -6dB.  • 16'h07FF (0dB): Minimum  • 16'h1A34 (16.33dB): Default  • 16'h7FFF (30dB): Maximum |

# Register 79-78: DRE ON THRESHOLD

| Bits    | [15:0]   |
|---------|----------|
| Default | 16'h0CF1 |

| Bits   | Mnemonic      | Description                                                                                                        |
|--------|---------------|--------------------------------------------------------------------------------------------------------------------|
| [15:0] | DRE_ON_THRESH | DRE on threshold. Shift right 1 bit corresponds to -6dB.  • 16'h0CF1 (-48dB): Default  • 16'hFFFF (-24dB): Maximum |

#### Register 81-80: DRE OFF THRESHOLD

| Bits    | [15:0]   |
|---------|----------|
| Default | 16'h8184 |

| Bits   | Mnemonic       | Description                                                                                                         |
|--------|----------------|---------------------------------------------------------------------------------------------------------------------|
| [15:0] | DRE_OFF_THRESH | DRE off threshold. Shift right 1 bit corresponds to -6dB.  • 16'h8184 (-28dB): Default  • 16'hFFFF (-24dB): Maximum |



## Register 82: DRE DECAY RATE

| Bits    | [7]  | [6]  | [5]  | [4:0] |
|---------|------|------|------|-------|
| Default | 1'b1 | 1'b0 | 1'b1 | 5'd15 |

| Bits  | Mnemonic        | Description                                                                                                                                                                    |
|-------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7]   | DRE_FORCE_LEVEL | Force CH1 + CH2 into DRE mode even if zero cross has not occurred.  • 1'b0: Disabled • 1'b1: CH1 + CH2 forced into DRE mode                                                    |
| [6]   | RESERVED        | NA                                                                                                                                                                             |
| [5]   | MIN_PEAK        | DRE peak detector starting point control.  1'b0: DRE peak detector starts from max  1'b1: DRE peak detector starts from min (default)                                          |
| [4:0] | DRE_DECAY_RATE  | Sets the speed at which the stored value of the DRE peak detector will decay when the input signal is below the stored value.  • 5'd31 = slowest decay  • 5'd0 = instant decay |

## Register 84-83: DC OFFSET CH1

| Bits    | [15:0] |
|---------|--------|
| Default | 16'd0  |

| Bits   | Mnemonic   | Description                                          |
|--------|------------|------------------------------------------------------|
| [15:0] | DC_OFFSET1 | DC offset for ch1                                    |
|        |            | $V_{offset} = \frac{DC\_OFFSET1}{2^{24} - 1} * Vref$ |

# Register 86-85: DC OFFSET CH2

| Bits    | [15:0] |
|---------|--------|
| Default | 16'd0  |

| Bits   | Mnemonic   | Description                                          |
|--------|------------|------------------------------------------------------|
| [15:0] | DC_OFFSET2 | DC offset for ch2                                    |
|        |            | $V_{offset} = \frac{DC\_OFFSET2}{2^{24} - 1} * Vref$ |





## Register 87: DC RAMP RATE

| Bits    | [7:0] |
|---------|-------|
| Default | 8'd0  |

| Bits  | Mnemonic     | Description                                                                                                                                             |
|-------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7:0] | DC_RAMP_RATE | Value by which the old DC value is incremented/decremented per sample to reach the new DC value.  8'd0: Instant (default) 8'd1: Slowest 8d'255: Fastest |

# Register 88: MASTER TRIM

| Bits    | [7:0] |
|---------|-------|
| Default | 8'd0  |

| Bits  | Mnemonic    | Description                                                                                                                                       |
|-------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| [7:0] | MASTER_TRIM | Master trim volume. unsigned, range 0dB(8'hFF) to -42dB(8'h01), 0 is bypass.  8'h00: Bypass (default) 8'h01 (-42dB): Minimum 8'hFF (0dB): Maximum |



# **PLL Registers**

Note: some registers have an implied value that is recommended for normal and optimized operation.

## Register 192: RESET & PLL REGISTER1

| Bits    | [7]  | [6]  | [5:3] | [2]  | [1]  | [0]  |
|---------|------|------|-------|------|------|------|
| Default | 1'b0 | 1'b0 | 3'd0  | 1'b0 | 1'b0 | 1'b1 |

| Bits  | Mnemonic        | Description                                                                                                                                                    |  |
|-------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [7]   | AO_SOFT_RESET   | Performs soft reset to Slave Registers.  1'b0: Disabled (default)  1'b1: Enabled                                                                               |  |
| [6]   | PLL_SOFT_RESET  | Performs soft reset to Synchronous Slave Registers.  • 1'b0: Disabled (default)  • 1'b1: Enabled                                                               |  |
| [5:3] | PLL_VCO_I       | Set Current in PLL VCO  • Must set to 3'b110, for normal operation                                                                                             |  |
| [2]   | RESERVED        | NA                                                                                                                                                             |  |
| [1]   | GPIO1_SDB_SYNC  | Configures GPIO1 SDB (Shutdown_b). When SYS_CLK is provided through GPIO1, set this bit to '1' to allow SYS_CLK input.  1'b0: Disabled (default) 1'b1: Enabled |  |
| [0]   | PLL_CLKHV_PHASE | Digital/analog DAC clock phase control.  1'b0: Digital/analog DAC clocks have inverted phase 1'b1: Digital/analog DAC clocks have the same phase (default)     |  |





#### Register 193: PLL REGISTER2

| Bits    | [7]  | [6]  | [5]  | [4:2] | [1]  | [0]  |
|---------|------|------|------|-------|------|------|
| Default | 1'b0 | 1'b0 | 1'b0 | 2'd0  | 1'd0 | 1'b0 |

| Bits  | Mnemonic           | Description                                                                                                   |
|-------|--------------------|---------------------------------------------------------------------------------------------------------------|
| [7]   | PLL_BYP            | PLL bypass mode.  1'b0: Disabled (default) 1'b1: Enabled                                                      |
| [6]   | DVDD_SHUNTB        | Enables digital regulator output shunt to ground (10k). Active low.  1'b0: Enabled (default) 1'b1: Disabled   |
| [5]   | SEL_1V_DREG        | Sets digital regulator output voltage to 1V  1'b0: Disabled (default)  1'b1: Enabled                          |
| [4:2] | PLL_HVREG_VREF_SEL | PLL HVREG reference voltage selection  • 3'b001: 1.6V (optimum setting, normal operation)  • others: Reserved |
| [1]   | SEL_PLL_IN         | Selects PLL input clock sources.  1'd0: MCLK (default) 1'd1: BCK                                              |
| [0]   | EN_PLL_CLKIN       | Controls PLL input clocks.  1'b0: Disables PLL input clocks (default) 1'b1: Enables PLL input clocks          |



#### Register 194: PLL REGISTER3

| Bits    | [7:4] | [3]  | [2]  | [1]  | [0]  |
|---------|-------|------|------|------|------|
| Default | 4'd0  | 1'b0 | 1'b0 | 1'b0 | 1'b0 |

| Bits  | Mnemonic     | Description                                                                                                                             |  |
|-------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| [7:3] | RESERVED     | NA                                                                                                                                      |  |
| [2]   | AUTO_LOCK_EN | Allows PLL to relock when PLL lock is lost and there are 256 valid PLL input clock cycles.  • 1'b0: Disabled (default)  • 1'b1: Enabled |  |
| [1:0] | RESERVED     | NA                                                                                                                                      |  |





#### Register 195: PLL REGISTER4

| Bits    | [7:5] | [4:3] | [2]  | [1]  | [0]  |
|---------|-------|-------|------|------|------|
| Default | 3'd0  | 2'd0  | 1'b0 | 1'b0 | 1'b0 |

| Bits  | Mnemonic        | Description                                                             |
|-------|-----------------|-------------------------------------------------------------------------|
| [7:5] | PLL_CP_BIAS_SEL | Sets the PLL Charge Pump BIAS current value:                            |
|       |                 | 3b'011:4u (optimum setting, for normal operation)                       |
| [4:3] | PLL_ID_SEL      | Sets the PLL Internal Delay:                                            |
|       |                 | <ul> <li>2b'11:1.5nS (optimum setting, for normal operation)</li> </ul> |
|       |                 | Note: Fixed to 1.5nS, no other possible cases                           |
| [2]   | PLL_VCO_FMAX    | Disables the PLL VCO's FMAX-limiting                                    |
|       |                 | 1'b0 (default): Limit is set                                            |
|       |                 | 1'b1: No limit (for normal operation)                                   |
| [1]   | PLL_VCO_PDB     | Enables/disables the PLL voltage-controlled oscillator (VCO).           |
|       |                 | 1'b0: Disabled (default)                                                |
|       |                 | 1'b1: Enabled                                                           |
| [0]   | PLL_CP_PDB      | Enables/disables the PLL charge pump.                                   |
|       |                 | 1'b0: Disabled (default)                                                |
|       |                 | 1'b1: Enabled                                                           |

# Register 196: PLL REGISTER5

| Bit | S     | [7:5] | [4:2] | [1:0] |
|-----|-------|-------|-------|-------|
| De  | fault | 3'd0  | 3'd0  | 2'd0  |

| Bits  | Mnemonic            | Description                                  |
|-------|---------------------|----------------------------------------------|
| [7:5] | PLL_VCO_BAND_CTRL   | Selects the frequency band of the VCO.       |
|       |                     | 3'b011 (for optimum operation)               |
| [4:2] | RESERVED            | NA                                           |
| [1:0] | PLL_VCO_IB_AMP_CTRL | Selects the V to I Amplifier's bias current: |
|       |                     | 2'b10 (for optimum operation)                |



## Register 199-197: PLL REGISTER6

| Bits    | [23:0] |
|---------|--------|
| Default | 24'd0  |

| Bits   | Mnemonic       | Description                                                         |
|--------|----------------|---------------------------------------------------------------------|
| [23:0] | PLL_CLK_FB_DIV | Sets the PLL clock feedback divider.                                |
|        |                | <ul><li>20'd0: Reserved</li><li>20'dn: Divide by (2^25)/n</li></ul> |





#### Register 202-200: PLL REGISTER7

| Bits    | [23] | [22] | [21] | [20] | [19] | [18] | [17:14] | [13:10] | [9:1] | [0]  |
|---------|------|------|------|------|------|------|---------|---------|-------|------|
| Default | 1'b0 | 1'b0 | 1'b0 | 1'b0 | 1'b0 | 1'b0 | 4'd0    | 4'd0    | 9'd0  | 1'b0 |

| Bits    | Mnemonic                 | Description                                                                                                                            |
|---------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| [23]    | PLL_REG_PDB_HV           | Power Down the regulators.  1'b0: Disable the PLL HV-regulator (default)  1'b1: Enable the PLL HV-regulator                            |
| [22]    | PLL_REG_PDB_1V2          | Power Down the regulators.  • 1'b0: Disable the PLL 1V2-regulator (default)  • 1'b1: Enable the PLL 1V2-regulator                      |
| [21:20] | RESERVED                 | NA                                                                                                                                     |
| [19]    | PLL_LOW_BW               | PLL low bandwidth mode.  • 1'b0: (default)  • 1'b1: Normal operation, optimum setting                                                  |
| [18]    | PLL_CLK_OUT_DIV_PHASE_EN | <ul> <li>1'b0: Disabled (default)</li> <li>1'b1: Tune the PLL clock output divider phase according to PLL_CLK_OUT_DIV_PHASE</li> </ul> |
| [17:14] | PLL_CLK_OUT_DIV_PHASE    | Sets the PLL clock output divider phase                                                                                                |
| [13:10] | PLL_CLK_OUT_DIV          | Sets the Output Division (No) of the PLL.  • 9'd0: Reserved  • 9'd1: Divide by 1 (default)  • 9'd2: Divide by 2  • 9'dn: Divide by n   |
| [9:1]   | PLL_CLK_IN_DIV           | Sets the PLL clock input divider.  • 9'd0: Reserved  • 9'd1: Divide by 1 (default)  • 9'd2: Divide by 2  • 9'dn: Divide by n           |
| [0]     | PLL_FB_DIV_LOAD          | Writes 1 then write 0 to load CLK_FB_DIV.                                                                                              |



## Register 203: PLL REGISTER8

| Bits    | [7:6] | [5]  | [4]  | [3:0]   |
|---------|-------|------|------|---------|
| Default | 2'd0  | 1'b0 | 1'b0 | 4'b0000 |

| Bits  | Mnemonic     | Description                                                                                       |
|-------|--------------|---------------------------------------------------------------------------------------------------|
| [7:6] | RESERVED     | NA                                                                                                |
| [5]   | PLL_DIG_RSTB | Resets the Digital core of the PLL.  1'b0 (default): PLL digital is off  1b1: PLL digital is on   |
| [4]   | PLL_VCO_D_EN | PLL requirement for normal operation  1'b0 (default): PLL not used 1'b1: For normal PLL operation |
| [3:0] | RESERVED     | NA                                                                                                |



# **Read Only Registers**

# Register 224: SYS READ

| Bits    | [7:5] | [4:3] | [2] | [1] | [0] |
|---------|-------|-------|-----|-----|-----|
| Default | -     | -     | -   | -   | -   |

| Bits  | Mnemonic | Description                                                                                             |
|-------|----------|---------------------------------------------------------------------------------------------------------|
| [7:5] | RESERVED | NA                                                                                                      |
| [4:3] | MODES    | Device mode readback. Based off MODE Pin (Pin 3)  1'd1: I2C  1'd2: HW_SERIAL  1'd3: Reserved  1'd4: SPI |
| [2]   | ADDR1    | I2C address select bit2.                                                                                |
| [1]   | ADDR0    | I2C address select bit1.                                                                                |
| [0]   | RESERVED | NA                                                                                                      |

# Register 225: CHIP ID READ

| Bits    | [7:0] |
|---------|-------|
| Default | -     |

| Bits  | Mnemonic | Description |
|-------|----------|-------------|
| [7:0] | CHIP_ID  | CHIP ID.    |

Register 228-227: RESERVED



## Register 230-229: INTERRUPT STATE

| Bits    | [15:14] | [13] | [12] | [11] | [10] | [9] | [8] | [7:6] | [5] | [4] | [3:2] | [1:0] |
|---------|---------|------|------|------|------|-----|-----|-------|-----|-----|-------|-------|
| Default | -       | -    | -    | -    | -    | -   | -   | -     | -   | -   | -     | -     |

| Bits    | Mnemonic                       | Description                                                                                                             |
|---------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| [15:14] | INPUT_SELECT_OVERRIDE_INTSTATE | Input select override interrupt state  • 2'b00: TDM select  • 2'b01: DSD select  • 2'b10: DoP select  • 2'b11: RESERVED |
| [13]    | TDM_DATA_VALID_INTSTATE        | TDM data valid interrupt state.  1'b0: Inactive  1'b1: Active                                                           |
| [12]    | CLK_AVALID_INT_INTSTATE        | Clock A valid interrupt state.  1'b0: Inactive  1'b1: Active                                                            |
| [11]    | RWS_REF_CNT_FULL_INTSTATE      | Receiver WS reference counter full interrupt state.  1'b0: Inactive 1'b1: Active                                        |
| [10]    | BCK_WS_FAIL_INTSTATE           | BCK WS fail interrupt state.  1'b0: Inactive  1'b1: Active                                                              |
| [9]     | PLL_LOCKED_R_INTSTATE          | PLL locked interrupt status.  1'b0: Inactive  1'b1: Active                                                              |
| [8]     | DOP_VALID_INTSTATE             | DOP valid interrupt state.  1'b0: Inactive  1'b1: Active                                                                |
| [7:6]   | SS_FULL_RAMP_INTSTATE          | SS full ramp interrupt state  1'b0: Inactive  1'b1: Active                                                              |
| [5]     | DRE_SELECT2_INTSTATE           | DRE select 2 interrupt state  1'b0: Inactive  1'b1: Active                                                              |
| [4]     | DRE_SELECT1_INTSTATE           | DRE select 1 interrupt state  1'b0: Inactive  1'b1: Active                                                              |
| [3:2]   | AUTOMUTE_INTSTATE              | Automute interrupt state  1'b0: Inactive  1'b1: Active                                                                  |



| [1:0] | VOL_MIN_INTSTATE | Minimum volume interrupt state                        |
|-------|------------------|-------------------------------------------------------|
|       |                  | <ul><li>1'b0: Inactive</li><li>1'b1: Active</li></ul> |

# Register 232-231: INTERRUPT SOURCE

| Bits    | [15:14] | [13] | [12] | [11] | [10] | [9] | [8] | [7:6] | [5] | [4] | [3:2] | [1:0] |
|---------|---------|------|------|------|------|-----|-----|-------|-----|-----|-------|-------|
| Default | -       | -    | -    | -    | -    | -   | -   | -     | -   | -   | -     | -     |

| Bits    | Mnemonic                        | Description                            |  |  |  |
|---------|---------------------------------|----------------------------------------|--|--|--|
| [15:14] | INPUT_SELECT_OVERRIDE_INTSOURCE | Input select override interrupt source |  |  |  |
| [13]    | TDM_DATA_VALID_INTSOURCE        | Valid TDM data interrupt source        |  |  |  |
| [12]    | CLK_AVALID_INT_INTSOURCE        | Valid clock interrupt source           |  |  |  |
| [11]    | RWS_REF_CNT_FULL_INTSOURCE      | RWS_REF_CNT interrupt source           |  |  |  |
| [10]    | BCK_WS_FAIL_INTSOURCE           | BCK WS fail interrupt source           |  |  |  |
| [9]     | PLL_LOCKED_R_INTSOURCE          | Locked PLL interrupt source            |  |  |  |
| [8]     | DOP_VALID_INTSOURCE             | Valid DoP interrupt source             |  |  |  |
| [7:6]   | SS_FULL_RAMP_INTSOURCE          | SS full ramp interrupt source          |  |  |  |
| [5]     | DRE_SELECT2_INTSOURCE           | DRE select 2 interrupt source          |  |  |  |
| [4]     | DRE_SELECT1_INTSOURCE           | DRE select 1 interrupt source          |  |  |  |
| [3:2]   | AUTOMUTE_INTSOURCE              | Automute interrupt source              |  |  |  |
| [1:0]   | VOL_MIN_INTSOURCE               | Minimum volume interrupt source        |  |  |  |

#### Register 236-233: RWS REF CNT STATUS

| Bits    | [31:27] | [26:0] |
|---------|---------|--------|
| Default | -       | -      |

| Bits    | Mnemonic    | Description                                                     |  |  |  |
|---------|-------------|-----------------------------------------------------------------|--|--|--|
| [31:27] | RESERVED    | NA                                                              |  |  |  |
| [26:0]  | RWS_REF_CNT | Receiver WS reference counter readback.  • 27h'0000000: Minimum |  |  |  |
|         |             | 27h'7FFFFFF: Maximum                                            |  |  |  |

Register 238-237: RESERVED



## Register 239: AUTO TUNING READ

| Bits    | [7] | [6] | [5:0] |
|---------|-----|-----|-------|
| Default | -   | -   | -     |

| Bits  | Mnemonic          | Description                                                                              |
|-------|-------------------|------------------------------------------------------------------------------------------|
| [7]   | RATIO_VALID       | A 1 indicates the CLK_DAC/CLK_IDAC ratio is valid (N or N.5)  1'b0: Invalid  1'b1: Valid |
| [6]   | IDAC_DIV_HALF_REG | Result of auto FS tuning divider for IDAC_HALF flag                                      |
| [5:0] | IDAC_DIV_REG      | Result of auto FS tuning divider for CLK_DAC/CLK_IDAC ratio                              |

## Register 240: GPIO READ

| Bits    | [7:1] | [0] |
|---------|-------|-----|
| Default | -     | -   |

| Bits  | Mnemonic     | Description                                    |  |  |  |  |
|-------|--------------|------------------------------------------------|--|--|--|--|
| [7:1] | RESERVED     | NA                                             |  |  |  |  |
| [0]   | GPIO1_I_READ | GPIO1 input readback.                          |  |  |  |  |
|       |              | <ul><li>1'b0: Low</li><li>1'b1: High</li></ul> |  |  |  |  |





#### Register 241: DAC STATUS READ

| Bits    | [7] | [6] | [5] | [4] | [3] | [2] | [1] | [0] |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|
| Default | -   | -   | 1   | -   | -   | -   | -   | -   |

| Bits | Mnemonic         | Description                                                                                                                           |
|------|------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| [7]  | SS_RAMP_DOWN_CH2 | Channel 2 soft ramped down flag readback.  1'b0: Soft ramp down not detected on channel 2  1'b1: Soft ramp down detected on channel 2 |
| [6]  | SS_RAMP_DOWN_CH1 | Channel 1 soft ramped down flag readback.  1'b0: Soft ramp down not detected on channel 1  1'b1: Soft ramp down detected on channel 1 |
| [5]  | SS_RAMP_UP_CH2   | Channel 2 soft ramped up flag readback.  1'b0: Soft ramp up not detected on channel 2  1'b1: Soft ramp up detected on channel 2       |
| [4]  | SS_RAMP_UP_CH1   | Channel 1 soft ramped up flag readback.  1'b0: Soft ramp up not detected on channel 1  1'b1: Soft ramp up detected on channel 1       |
| [3]  | AUTOMUTE_CH2     | Channel 2 automute status readback.  • 1'b0: Automute not detected on channel 2  • 1'b1: Automute detected on channel 2               |
| [2]  | AUTOMUTE_CH1     | Channel 1 automute status readback.  1'b0: Automute not detected on channel 1  1'b1: Automute detected on channel 1                   |
| [1]  | VOL_MIN_CH2      | Channel 2 minimum volume flag readback.  1'b0: Minimum volume not detected on channel 2  1'b1: Minimum volume detected on channel 2   |
| [0]  | VOL_MIN_CH1      | Channel 1 minimum volume flag readback.  1'b0: Minimum volume not detected on channel 1  1'b1: Maximum volume detected on channel 1   |



## Register 242: DRE STATUS READ

| Bits    | [7] | [6] | [5:4] | [3] | [2] | [1] | [0] |
|---------|-----|-----|-------|-----|-----|-----|-----|
| Default | -   | -   | -     | -   | -   | -   | -   |

| Bits  | Mnemonic       | Description                                                                                              |  |
|-------|----------------|----------------------------------------------------------------------------------------------------------|--|
| [7]   | TDM_DATA_VALID | TDM data valid flag  • 1b'0: TDM data Not valid  • 1b'1: TDM data Valid                                  |  |
| [6]   | DOP_VALID      | DoP valid flag  • 1b'0: Not valid  • 1b'1: Valid                                                         |  |
| [5:4] | RESERVED       | NA                                                                                                       |  |
| [3]   | DRE_DETECT_CH2 | Cannel 2 DRE detection status.  • 1b'0: DRE not detected on channel 2  • 1b'1: DRE detected on channel 2 |  |
| [2]   | DRE_DETECT_CH1 | DRE is detected ch1  • 1b'0: DRE not detected on channel 1  • 1b'1: DRE detected on channel 1            |  |
| [1]   | DRE_SELECT_CH2 | Channel 2 DRE engage status.  • 1b'0: DRE not engaged on channel 2  • 1b'1: DRE engaged on channel 2     |  |
| [0]   | DRE_SELECT_CH1 | Channel 1 DRE engage status.  • 1b'0: DRE not engaged on channel 1  • 1b'1: DRE engaged on channel 1     |  |



## **Reference Schematic**

#### **Hardware Mode**



Figure 18 - Hardware mode reference schematic



#### **Software Mode**



Figure 19 - Software mode reference schematic



# **28 QFN Package Dimensions**





SIDE VIEW



BOTTOM VIEW

| COMMON DIMENSIONS(MM) |                   |      |      |  |
|-----------------------|-------------------|------|------|--|
| PKG.                  | W: VERY VERY THIN |      |      |  |
| REF.                  | MIN.              | NOM. | MAX  |  |
| Α                     | 0.70              | 0.75 | 0.80 |  |
| A1                    | 0.00              | _    | 0.05 |  |
| A3                    | 0.2 REF.          |      |      |  |
| D                     | 4.95              | 5.00 | 5.05 |  |
| Ε                     | 4.95              | 5.00 | 5.05 |  |
| b                     | 0.18              | 0.23 | 0.30 |  |
| L                     | 0.45              | 0.55 | 0.65 |  |
| D2                    | 3.00              | 3.15 | 3.25 |  |
| E2                    | 3.00              | 3.15 | 3.25 |  |
| е                     | 0.5 BSC           |      |      |  |

Figure 20 - QFN package dimensions



# 28 QFN Top View Marking



Figure 21 - 28 QFN top view markings

|               | Dimension in mm |     |     |     |     |     |     |
|---------------|-----------------|-----|-----|-----|-----|-----|-----|
| Package Type  | Α               | В   | С   | D   | Е   | F   | G   |
| QFN 5mm x 5mm | 4.0             | 1.6 | 0.2 | 0.4 | 0.2 | 0.1 | 0.3 |
|               |                 |     |     |     |     |     |     |

Table 21 - 28 QFN top view markings dimensions

| Т | Tracking           |  |
|---|--------------------|--|
| W | Work week          |  |
| Υ | Last digit of year |  |
| L | Lot number         |  |
| R | Silicon Revision   |  |

Table 22 - 28 QFN top view markings definitions

Marking is subject to change. This drawing is not to scale



#### **Reflow Process Considerations**

#### **Temperature Controlled**

For lead-free soldering, the characterization and optimization of the reflow process is the most important factor to consider.

The lead-free alloy solder has a melting point of 217°C. This alloy requires a minimum reflow temperature of 235°C to ensure good wetting. The maximum reflow temperature is in the 245°C to 260°C range, depending on the package size (RPC-2 Pb-Free Process – Classification Temperatures (Tc)). This narrows the process window for lead-free soldering to 10°C to 20°C.

The increase in peak reflow temperature in combination with the narrow process window makes the development of an optimal reflow profile a critical factor for ensuring a successful lead-free assembly process. The major factors contributing to the development of an optimal thermal profile are the size and weight of the assembly, the density of the components, the mix of large and small components, and the paste chemistry being used.

Reflow profiling needs to be performed by attaching calibrated thermocouples well adhered to the device as well as other critical locations on the board to ensure that all components are heated to temperatures above the minimum reflow temperatures and that smaller components do not exceed the maximum temperature limits (Table RPC-2).

To ensure that all packages can be successfully and reliably assembled, the reflow profiles studied and recommended by ESS are based on the JEDEC/IPC standard J-STD-020 revision D.1.



Figure 22 - IR/Convection Reflow Profile (IPC/JEDEC J-STD-020D.1)



Reflow is allowed 3 times. Caution must be taken to ensure time between re-flow runs does not exceed the allowed time by the moisture sensitivity label. If the time elapsed between the re-flows exceeds the moisture sensitivity time bake the board according to the moisture sensitivity label instructions.

#### Manual

Allowed up to 2 times with maximum temperature of 350°C no longer than 3 seconds.

#### **RPC-1 Classification reflow profile**

| Profile Feature                                                                                                | Pb-Free Assembly                                                                                                                                    |  |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Preheat/Soak                                                                                                   |                                                                                                                                                     |  |  |
| Temperature Min (Tsmin)                                                                                        | 150°C                                                                                                                                               |  |  |
| Temperature Max (Tsmax)                                                                                        | 200°C                                                                                                                                               |  |  |
| Time (ts) from (Tsmin to Tsmax)                                                                                | 60-120 seconds                                                                                                                                      |  |  |
| Ramp-up rate (TL to Tp)                                                                                        | 3°C / second maximum                                                                                                                                |  |  |
| Liquidous temperature (TL)                                                                                     | 217°C                                                                                                                                               |  |  |
| Time (tL) maintained above TL                                                                                  | 60-150 seconds                                                                                                                                      |  |  |
| Peak package body temperature (Tp)                                                                             | For users Tp must not exceed the classification temp in Table RPC-2.  For suppliers Tp must equal or exceed the Classification temp in Table RPC-2. |  |  |
| Time (tp)* within 5°C of the specified classification temperature (Tc), see Error! Reference source not found. | 30* seconds                                                                                                                                         |  |  |
| Ramp-down rate (Tp to TL)                                                                                      | 6°C / second maximum                                                                                                                                |  |  |
| Time 25°C to peak temperature                                                                                  | 8 minutes maximum                                                                                                                                   |  |  |
| * Tolerance for peak profile temperature (Tp) is defined as a supplier minimum and a user maximum.             |                                                                                                                                                     |  |  |

Table 23 - RPC-1 Classification reflow profile

All temperatures refer to the center of the package, measured on the package body surface that is facing up during assembly reflow (e.g., live-bug). If parts are reflowed in other than the normal live-bug assembly reflow orientation (i.e., dead-bug), Tp shall be within ±2°C of the live-bug Tp and still meet the Tc requirements, otherwise, the profile shall be adjusted to achieve the latter. To accurately measure actual peak package body temperatures, refer to JEP140 for recommended thermocouple use.

Reflow profiles in this document are for classification/preconditioning and are not meant to specify board assembly profiles. Actual board assembly profiles should be developed based on specific process needs and board designs and should not exceed the parameters in Table RPC-1.

For example, if Tc is 260°C and time tp is 30 seconds, this means the following for the supplier and the user.

For a supplier: The peak temperature must be at least 260°C. The time above 255°C must be at least 30 seconds.

For a user: The peak temperature must not exceed 260°C. The time above 255°C must not exceed 30 seconds.

All components in the test load shall meet the classification profile requirements.





# RPC-2 Pb-Free Process – Classification Temperatures (Tc)

| Package Thickness | Volume mm3, <350 | Volume mm3, 350 to 2000 | Volume mm3, >2000 |
|-------------------|------------------|-------------------------|-------------------|
| <1.6 mm           | 260°C            | 260°C                   | 260°C             |
| 1.6 mm – 2.5 mm   | 260°C            | 250°C                   | 245°C             |
| >2.5 mm           | 250°C            | 245°C                   | 245°C             |

Table 24 - Classification Temperatures

At the discretion of the device manufacturer, but not the board assembler/user, the maximum peak package body temperature (Tp) can exceed the values specified in Table RPC-2. The use of a higher Tp does not change the classification temperature (Tc).

Package volume excludes external terminals (e.g., balls, bumps, lands, leads) and/or nonintegral heat sinks.

The maximum component temperature reached during reflow depends on package thickness and volume. The use of convection reflow processes reduces the thermal gradients between packages. However, thermal gradients due to differences in thermal mass of SMD packages may still exist.



# **Ordering Information**

| Part Number | Description                                                                                                             | Package          |
|-------------|-------------------------------------------------------------------------------------------------------------------------|------------------|
| ES9033Q     | SABRE 32-bit 2 Channel DAC with built in line driver & digital filters                                                  | 5mm x 5mm 28 QFN |
| ES9033QT    | SABRE 32-bit 2 Channel DAC with built in line driver & digital filters Extended temperature range -40 to 125deg Celsius | 5mm x 5mm 28 QFN |

Table 25 - Ordering information



# **Revision History**

#### Current Version 0.3

| Rev.  | Date            | Notes                                                                                                                                                                                                                                                                                                                                                |  |  |
|-------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0.1   | April 5, 2021   | Initial Release                                                                                                                                                                                                                                                                                                                                      |  |  |
| 0.2   | April 7, 2021   | <ul> <li>Added digital filter frequency and impulse response diagrams</li> <li>Corrected block diagram</li> <li>Added register list and register map</li> </ul>                                                                                                                                                                                      |  |  |
| 0.2.1 | April 13, 2021  | <ul> <li>Made some register names more descriptive</li> <li>Changed references to "Serial Configuration Mode" simplified to "Software Mode"</li> <li>Clarified "0" and "1" in Software Mode section to "GND" and "AVDD" respectively.</li> </ul>                                                                                                     |  |  |
| 0.2.2 | June 15, 2021   | <ul> <li>Updated formatting in most registers and improved descriptiveness.</li> <li>Added weak keeper definition to register 24.</li> <li>Added register information and TDM to Audio Input Format.</li> <li>Added hardware APLL mode startup sequence.</li> <li>Added hardware modes 16-31</li> <li>Added coloring to register listings</li> </ul> |  |  |
| 0.2.3 | July 22, 2021   | <ul> <li>Added HW design information to configuration modes</li> <li>Added SPI timing diagram</li> <li>Added I2C timing diagram</li> <li>Added w/o DRE performance numbers</li> <li>Added ESD protection ratings</li> <li>Minor formatting updates</li> </ul>                                                                                        |  |  |
| 0.3   | October 1, 2021 | <ul> <li>Unreserved registers 196[7:5][1:0], 203[5:4], 195[7:2], 192[5:3], 193[6] &amp; [4:2], and 200-202[0].</li> <li>Updated Register 194, 202-200 descriptions</li> <li>Added clock configuration tables for I2S and TDM modes</li> <li>Corrected DRE ON/OFF_THRESHOLD descriptions for Registers 78-81</li> </ul>                               |  |  |

© 2021 ESS Technology, Inc.

ESS IC's are not intended, authorized, or warranted for use as components in military applications, medical devices or life support systems. ESS assumes no liability and disclaims any expressed, implied or statutory warranty for use of ESS IC's in such unsuitable applications.

No part of this publication may be reproduced, stored in a retrieval system, transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of ESS Technology, Inc. ESS Technology, Inc. makes no representations or warranties regarding the content of this document. All specifications are subject to change without prior notice. ESS Technology, Inc. assumes no responsibility for any errors contained herein. U.S. patents pending.