武汉大学计算机学院

2014-2015 学年度第一学期 2013 级弘毅班《信息安全数学基础》期末考试试卷(A)答案

一. 计算题 (每小题 10 分, 共 50 分)。

1.求整数 s 和 t, 使得 sa+tb=(a,b):

(1) a=127, b=833; (2) a=987, b=2668.

解: 因为 833=127*6+71, 127=71*1+56, 71=56+15,

56=15*3+11, 15=11+4, 11=4*3-1;

所以 1=4*3-11=15*3-11*4=15*15-56*4=15*71-56*19=

71*34-127*19=833*34-127*223,

即 s=34,t=-223,(a,b)=1;

(2) 因为 2668=987*2+694, 987=694+293, 694=293*2+108, 293=108*2+77, 108=77+31, 77=31*2+15, 31=15*2+1;

所以 1=31-15*2=31*5-77*2=108*5-77*7=108*19-293*7=

694*19-293*45=694*64-987*45=2668*64-987*173

即 s=-173,t=64,(a,b)=1.(注意, 此题答案不唯一)

2.运用模重复平方法计算 473¹⁷ mod 713。

解: 令 $x = 473^{17}$, 因为 $713 = 23 \times 31$, 所以计算 $x \mod 713$ 等价于求解同余式组

$$\begin{cases} x \equiv 473^{17} \equiv a \pmod{23} \\ x \equiv 473^{17} \equiv b \pmod{31} \end{cases}$$

利用同余的性质,上面同余式组可以简化为

$$\begin{cases} x \equiv 13^{17} \equiv a \pmod{23} \\ x \equiv 8^{17} \equiv b \pmod{31} \end{cases}$$

因为 $(17)_{10} = (10001)_2$

由模重复平方算法 2.1.1 可以依次计算得到

$$m_0 = 1,$$
 $a_0 = 13,$ $b_0 = 13,$

$$m_1 = 0,$$
 $a_1 = 8,$ $b_1 = 13,$

$$m_2 = 0,$$
 $a_2 = 18,$ $b_2 = 13,$

$$m_3 = 0,$$
 $a_3 = 2,$ $b_3 = 13,$

$$m_4 = 1,$$
 $a_4 = 4,$ $b_4 = 6$

所以第一个同余式为 $x \equiv 6 \pmod{23}$

同理计算第二个同余式为 $x \equiv 2 \pmod{31}$

由中国剩余定理可得同余式组

$$\begin{cases} x \equiv 6 \pmod{23} \\ x \equiv 2 \pmod{31} \end{cases}$$

的解为 $x \equiv 31 \cdot 3 \cdot 6 + 23 \cdot 27 \cdot 2 \equiv 374 \pmod{713}$

所以473¹⁷ mod713 = 374。

3.求解同余式 $x^2+x+7≡0 \pmod{27}$ 。

解 因为 (4, 27) =1, 所以由同余式的性质可以得到

 $4x^2+4x+28\equiv 0 \pmod{27}$,即 $4x^2+4x+1\equiv 0 \pmod{27}$,于是

 $(2x+1)^2 \equiv 0 \pmod{27}$,因此 $2x+1 \equiv 0 \pmod{9}$,利用一次同余式的求解方法得 $x \equiv 4 \pmod{9}$,所以原同余式的解为

 $x \equiv 4, 13, 22 \pmod{27}$

4.判断同余式 x^2 ≡ 102(mod 259)是否有解?有解时求出其所有解。

解 因为 $259 = 7 \times 37$ 不是素数,原同余式等价于同余式组 $\begin{cases} x^2 \equiv 102 \equiv 4 \pmod{7} \\ x^2 \equiv 102 \equiv 28 \pmod{37} \end{cases}$

因为 $\left(\frac{4}{7}\right) = \left(\frac{28}{37}\right) = 1$,故同余式有解,解数为 4。因为 $7 \mod 4 = 3$,所以容易计算

第一个同余式的解为 $x = \pm 4$ $= \pm 2 \pmod{7}$,而 $37 \pmod{4} = 1$,所以可以计算出第二个同余式的解为 $x = \pm 18 \pmod{37}$,应用中国剩余定理求得同余式的解为 $x = \pm 19, \pm 93 \pmod{259}$ 。

5.
$$\[\] \[\] \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 1 & 6 \end{pmatrix}, \] \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 2 & 3 & 6 & 1 \end{pmatrix},$$

计算 $\sigma\tau$, $\tau\sigma$, σ^{-1} 。

解:
$$\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 3 & 4 & 6 & 2 \end{pmatrix}$$
;

$$\tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 3 & 6 & 4 & 1 \end{pmatrix};$$

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 2 & 3 & 4 & 6 \end{pmatrix}.$$

满绩小铺: 1433397577, 搜集整理不易, 自用就好, 谢谢!

- 二. 证明题 (每小题 10 分, 共 20 分)
- 1. 设 $m \ge 3$,证明:模m的最小正简化剩余系的各数之和等于 $m \varphi(m)/2$ 。

证明:设 $a_1,a_2,\cdots a_s$ 是所有小于m/2且和m互素的正整数,则有

$$m/2 < m-a_i < m, \perp (m-a_i, m) = 1, i = 1, 2, \dots, s$$

并且对于任意一个正整数a,如果它满足

 $m/2 < a < m, \perp (a, m) = 1,$

则有 0 < m-a < m/2,且 (m-a,m)=1, 因此一定存在一个正整数 $a_i,1 \le i \le s$, 使得 $m-a=a_i$,即 $a=m-a_i$, 所以

$$a_1, a_2, \dots a_s, m-a_s, m-a_{s-1}, \dots, m-a_1$$

构成模m的最小正简化剩余系,所以得 $\varphi(m) = 2s$,且

$$a_1 + a_2 + \cdots + a_s + m - a_s + \cdots + m - a_1 = ms = m\varphi(m)/2$$

2. 应用勒让德符号证明形如 8k+3 的素数有无穷多个。

证明: 反证法。如果形如8k+3的素数只有有限多个。设这些素数为 $p_1, p_2, \cdots p_k$,考虑整数

$$N = (p_1 p_2 \cdots p_k)^2 + 2$$

因为N 形如8k+3, $N>p_i,1\leq i\leq k$,所以N 为合数,设p 为其任意一个素因数,则p 为奇数,且 $(p,p_i)=1,i=1,2,\cdots k$ 。

$$\left(\frac{-2}{p}\right) = \left(\frac{-2+N}{p}\right) = \left(\frac{(p_1p_2\cdots p_k)^2}{p}\right) = 1 = (-1)^{\frac{p\cdot p-1}{8} + \frac{p-1}{2}},$$

即 p 是形如 8k+1 或 8k+3 的素数,则 N 一定存在形如 8k+3 的素因数 q (否则 N 是形如 8k+1 的素因数,矛盾),所以存在整数 $1 \le j \le k$,使得 $q=p_j$,这与 $(q,p_i)=1,i=1,2,\cdots k$ 矛盾。

- 三. 简述题 (每小题 10 分, 共 30 分)
- 1. 简述求模 47 的最小原根的方法以及由此求解如下高次剩余 x⁵≡29(mod 47)的 步骤。

答: 因为 φ (47)=46=2×23, 所以只需验证 g^2 , g^{23} 模 47 是否为 1 即可,逐个计算可得:

$$2^2 \mod 47 = 4,2^{23} \mod 47 = 1$$
.

$$3^2 \mod 47 = 9,3^{23} \mod 47 = 1$$

$$5^2 \mod 47 = 25,5^{23} \mod 47 = 46$$

故 5 是模 47 的原根。

分别计算5ⁿ mod 47 为 5, 25, 31, 15, 23, 21, 11, 8, 40, 12, 13, 18, 43, 27, 41, 17, 38, 2, 10, 3, 15, 28, 46, 42, 22, 16, 33, 24, 26, 36, 39, 7, 35, 34, 29, 4, 20, 6, 30, 9, 45, 37, 44, 32, 19, 1。

$$\Rightarrow x \equiv 5^y \pmod{47}$$
 因为 $29 \equiv 5^{35} \equiv 5^{5y} \pmod{47}$,于是 $5y \equiv 35 \pmod{46}$, $y \equiv 7 \pmod{46}$,所以 $x \equiv 11 \pmod{47}$ 。

2. 给出集合{0,1,2,3,4,5,6,7}上的加法和乘法运算表,使得该系统构成有限域。

答: $GF(8)=\{0,1,2,3,4,5,6,7\}$,先找一个 GF(2)[x]的一个 3 次不可约多项式 x^3+x+1 ,加法表为

				. 0		_	- 4	_
+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	0	3	2	5	4	7	6
2	2	3	0	1	6	7	4	5
3	3	2	1	0	7	6	5	4
4	4	5	6	7	0	1	2	3
5	5	4	7	6	1	0	3	2
6	6	7	4	5	2	3	0	1
7	7	6	5	4	3	2	1	0

乘法表为

*	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0

满绩小铺: 1433397577, 搜集整理不易, 自用就好, 谢谢!

1	0	1	2	3	4	5	6	7
2	0	2	4	6	3	1	7	5
3	0	3	6	5	7	4	1	2
4	0	4	3	7	6	2	5	1
5	0	5	1	4	2	7	3	6
6	0	6	7	1	5	3	2	4
7	0	7	5	2	1	6	4	3

3. 简述群的定义。

答: 设<G,*>是代数系统,*为G上的二元运算,如果*运算是可结合的,则称<G,*>为半群。如果<G,*>为半群,并且二元运算*存在单位元e \in G,则称<G,*>为4群,并且二元运算*存在单位元e \in G,中的任何元素 x 都有逆元 x^{-1} \in G,则称<G,*>为群,可简记为G。