Biot-Savar and Ampere

April 28, 2020 11:24 AM

& Webuck 7

Assignment 7: Problem 2

Assignment 7: Problem 3

 $a_z A/m$

 $a_y +$

Assignment 7: Problem 6

 $a_x +$

	·
(1 point)	
	<mark>onductor</mark> of <mark>radius 0.0013</mark> meters is centred on the <mark>z-axis. The current density in </mark> the
	ed as $J(\rho) = \frac{1}{2}$ a Find H_{1} at the point 0.0005 and H_{2} at the point 0.0024. All
coordinate units a	ed as $J(ho)={6500\over ho}a_z$. Find H_1 at the point 0,0005 and H_2 at the point 0,0024, All e in meters.
coordinate units at ANSWER: $\mathbf{H}_1 = \begin{bmatrix} \mathbf{H}_1 & \mathbf{H}_2 & \mathbf{H}_3 \\ \mathbf{H}_4 & \mathbf{H}_4 \end{bmatrix}$	

