臺北區 109 學年度第二學期 指定科目第一次模擬考試

物理考科

--作答注意事項--

考試範圍:基礎物理(一)、基礎物理(二)B(上)(下)、

選修物理(上)

考試時間:80分鐘

作答方式:

•選擇題用 2B 鉛筆在「答案卡」上作答;更正時, 應以橡皮擦擦拭,切勿使用修正液(帶)。

- 非選擇題用筆尖較粗之黑色墨水的筆在「答案 卷」上作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

祝考試順利

版權所有·翻印必究

第壹部分:選擇題(占80分)

一、單選題(占60分)

說明:第1.題至第20.題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇題答案區」。各題答對者,得3分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

1. 、2. 題為題組

牛頓在 1687 年發表《自然哲學的數學原理》(哈雷的貢獻),可是裡面並沒有給出重力常數 G 是多少?無可否認,萬有引力定律的發現,是 17世紀自然科學最偉大的成果之一。它把地面上物體運動的規律與天體運動的規律統一起來,對以後物理學與天文學之發展具有深遠的影響。它第一次解釋了引力作用的規律,在人類認識自然的歷史上樹立了一座里程碑,由此推導出的許多公式都與它有關。但是重力常數 G 是由英國物理學家 _ (用 _ 通過 _ ② _ 實驗測得,此實驗也被選為「最美麗」的十大物理實驗之一:

- 1. 文中的(甲)、(乙)應為何?
 - (A)(甲): 牛頓, (Z): 扭秤
 - (B)(甲):卡文迪西,(乙):扭秤
 - (C)(甲): 伽利略, (Z): 自由落體
 - (D)(甲):楊氏, (Z):雙狹縫干涉
 - (E)(甲): 哥白尼,(Z): 單擺
- 2. 若測出的重力常數 $G=6.67\times10^{-11}\,\mathrm{N\cdot m^2/kg^2}$,已知 $1\,\mathrm{AU}$ (天文單位) $=1.50\times10^{11}\,\mathrm{m}$,且 地球公轉週期約為 $3.15\times10^7\,\mathrm{s}$,請估算太陽質量約等於多少 kg ?
 - (A) 2.01×10^{36}
 - (B) 2.01×10^{33}
 - $(C) 2.01 \times 10^{30}$
 - $(D) 2.01 \times 10^{27}$
 - (E) 2.01×10^{24}
- 3. 有一汽車行駛在公車旁側車道,當公車從站牌甲由靜止啟動時,其尾端正好與汽車車頭對齊,且汽車也從靜止開始啟動。公車從站牌甲到下一站牌乙之間為一直線路徑,且其運動v-t (速度與時間)圖如圖 1 所示,而汽車在甲、乙站牌間保持加速度 $a = \frac{21}{9}$ m/ s^2 的等加速運動。已知公車長度為 9 m,汽

事長度為 $3 \, \mathrm{m}$,則當t為多少時汽車尾端會超越公車前端?(假設期間內公車與汽車行駛路

(A) 3 s

(B) 6 s

(C) 2 ($\sqrt{3} + 1$) s

徑皆為直線)

(D) 8 s

(E) $(4\sqrt{2} + 5)$ s

4. ~ 6. 題為題組

一遊樂設施摩天輪每隔 30° 有一個車廂,共 12 個車廂,其編號與相對位置 如圖 2 所示。已知摩天輪以角速率 ω 等角速率轉動,且摩天輪半徑為 R,車廂 內座椅保持水平,且乘坐之人與座椅間無相對滑動,若乘坐之人質量固定為 m,人與座椅間之靜摩擦係數為 μ_s ,重力加速度量值為 g,則:

- 4. 如圖 2 之瞬間,乘坐於哪個車廂之座椅施予人的靜摩擦力最大?且靜摩擦力最大為何?
 - (A) 7 號車廂, $m\omega^2 R$
 - (B) 1 號車廂, $\mu_s mg$
 - (C) 10 號車廂, $m\omega^2R$
 - (D) 4 號車廂, $\mu_s mg$
 - (E)每個車廂都一樣大,μ_smg
- 5. 車厢內座椅施予人的作用力最大值 (F_{M}) max 為何?
 - (A) $m\sqrt{g^2+\omega^4R^2}$
 - (B) $mg\sqrt{\mu_s^2+1}$
 - (C) $m (g + \omega^2 R)$
 - (D) $m \ (\mu_s + 1) g + \omega^2 R$
 - (E) $m\sqrt{(g+\omega^2R)^2+{\mu_s}^2g^2}$
- 6. 由 11 號車廂之位置觀察,哪個車廂內之乘客角動量量值最大?且此最大角動量量值為何?
 - (A) 3 號車廂, $4mR^2\omega$
 - (B) 5 號車廂, $4mR^2\omega$
 - (C) 7 號車廂, $3mR^2\omega$
 - (D) 10 號車廂, $\sqrt{3}mR^2\omega$
 - (E)每個車廂都一樣大, $2mR^2\omega$
- 7. <u>冠安與匯明</u>兩人中午時至學校供餐處合力抬桶餐,兩人同時施力 F_1 與 F_2 抬起重量 W 的桶餐,三力平衡之關係圖如圖 3 所示。若固定 F_2 施力方向(即 θ_2 固定),改變 F_1 施力方向使 θ_1 由零度逐漸增大,則在此過程中, F_1 與 F_2 的變化為何?

- (A) F_1 逐漸減少, F_2 逐漸增加
- (B) F_1 逐漸增加, F_2 先減少再增加
- (C) F_1 先增加再減少, F_2 逐漸增加
- (D) F_1 先減少再增加, F_2 先增加再減少
- (E) F_1 先減少再增加, F_2 逐漸增加

8. 、9. 題為題組

如圖 4 所示,<u>玉婷</u>站在高度 h 的崖邊斜拋一石子,已知重力加速 度量值為 g,斜拋初速 v_0 與崖高 h 均為固定,仰角 θ 若可調整,範圍 是 $-90^\circ \sim +90^\circ$,則:

8. 仰角 θ 調整為多少時,石子在空中停留時間最久?且此停留時間 t_{max} 為何?

$$t_{max}$$
 知 :
(A) 45° , $t_{max} = \frac{v_0 + \sqrt{{v_0}^2 + 2gh}}{g}$

(B)
$$30^{\circ}$$
 , $t_{max} = \frac{v_0 + \sqrt{{v_0}^2 + 8gh}}{2g}$

(C)
$$45^{\circ}$$
, $t_{max} = \frac{v_0 + \sqrt{v_0^2 + 4gh}}{\sqrt{2}g}$

(D)
$$90^{\circ}$$
, $t_{max} = \frac{v_0 + \sqrt{{v_0}^2 + 2gh}}{g}$

(E) 90°,
$$t_{max} = \frac{v_0 + \sqrt{{v_0}^2 + 4gh}}{\sqrt{2}g}$$

9. 若最高點高度為 H_{max} ,如果要在初拋點下方(仍在空中時),與初拋點鉛直距離亦為 H_{max} 處有最大水平飛行距離,則 θ 為多少時在此處會有最大水平飛行距離 x_{max} ?且 x_{max} 為何?

(A)
$$\tan \theta = \frac{3}{4}$$
, $x_{max} = \frac{12(1+\sqrt{2})v_0^2}{25g}$

(B)
$$\tan \theta = \frac{4}{3}$$
, $x_{max} = \frac{12(1+\sqrt{2})v_0^2}{25g}$

(C) 30°,
$$x_{max} = \frac{(\sqrt{3} + \sqrt{6}) v_0^2}{4g}$$

(D)
$$60^{\circ}$$
, $x_{max} = \frac{(\sqrt{3} + \sqrt{6}) v_0^2}{4g}$

(E)
$$45^{\circ}$$
, $x_{max} = \frac{(1+\sqrt{2}) v_0^2}{2g}$

10. ~ 12. 題為題組

如圖 5 所示,在質量為 M 的靜止大臺車上,有一質量為 m 的小臺車以初速 v_0 撞向固定在大臺車上之彈性常數為 k 的彈簧。設所有接觸面均為光滑,且碰撞均為彈性碰撞,彈簧質量不計,則:

10. 在完成第一次碰撞時,整體系統在水平方向所受衝量為何?

(B)
$$\frac{mv_0}{M+m}$$

(C)
$$\frac{Mv_0}{M+m}$$

$$(D) m v_0$$

(E)
$$\frac{2mv_0}{M+m}$$

11. 在第一次碰撞過程中,彈簧最大壓縮量為何?

(A)
$$\frac{v_0}{2}\sqrt{\frac{Mm}{k(M+m)}}$$

(B)
$$v_0 \sqrt{\frac{m}{k}}$$

(C)
$$v_0 \sqrt{\frac{Mm}{2k (M+m)}}$$

(D)
$$v_0 \sqrt{\frac{Mm}{k (M+m)}}$$

(E)
$$\frac{mv_0}{M+m}\sqrt{\frac{m}{k}}$$

12. 完成第一次碰撞所需時間為何?

(A)
$$\frac{\pi}{2}\sqrt{\frac{Mm}{k (M+m)}}$$

(B)
$$\pi \sqrt{\frac{Mm}{k (M+m)}}$$

(C)
$$2\pi\sqrt{\frac{Mm}{k (M+m)}}$$

(D)
$$\pi \sqrt{\frac{m}{k}}$$

(E)
$$2\pi\sqrt{\frac{m}{k}}$$

13. 一絕緣細線長度為 R ,一端固定 ,另一端繫住一帶負電、質量為 m 的 一小球,整體置於一向右的均勻電場中,如圖 6 所示。已知小球所受靜 一電力量值為其所受重力量值的 3/4 倍,當小球由最低點 A 靜止釋放,小 一球所獲得的最大動能為何?(重力加速度量值為 g)

(A)
$$\frac{1}{4} mgR$$

(B)
$$\frac{3}{5}$$
 mgR

(C)
$$\frac{2}{5} mgR$$

(D)
$$\frac{1}{5}$$
 mgR

$$\text{(E) } \frac{9}{20} \, \textit{mgR}$$

14.、15. 題為題組

已知在乾燥空氣中溫度為 15℃ 時,有距離 1000 公尺的甲、乙兩地,周圍被一圈光滑金屬牆所包圍,如圖 7 所示(金屬牆將甲、乙兩地完全包覆在其中,且金屬牆形狀未知,圖中形狀僅為參考,不代表真實形狀),且金屬牆內完全空曠:

- 14. 若<u>志明</u>在甲地朝任一水平方向發出聲波後,在乙地的<u>春嬌</u>皆可在 5 秒後偵 測到回聲。請據此推算出,若反射牆距甲地最大距離為 x、最小距離為 y,則 x-y 為多少 公尺?
 - (A) 1700
 - (B) 500
 - (C) 1000
 - (D) 400 ($\sqrt{3}+1$)
 - (E) 425 $(2\sqrt{3}-1)$
- 15. 承 14. 題,若在甲、乙兩地同時發出波長同為 8 公尺、同振幅、同相位的聲波,且<u>小松</u>沿著此一金屬牆繞一圈,可在若干個地方偵測到極小的聲波訊號,則這些偵測到聲波訊號極小之處,離乙地的最近距離為多少公尺?(設不考慮聲波訊號隨距離增大而衰減,僅需考慮干涉效應)
 - (A) 364
 - (B) 360
 - (C) 356
 - (D) 352
 - (E) 348

16. ~ 18. 題為題組

有一質量 m 的小球,由半圓形碗內初始位置 A 開始下滑,小球與碗初速皆為零,設所有接觸面均為光滑,且已知碗的質量為 M、半徑為 R,初始角度為 θ ,重力加速度量值為 g,如圖 8 所示:

- 16. 當小球滑到碗底部時,小球與碗系統的質心水平位移量值 Δx_{CM} 為何?
 - (A) 0
 - (B) $\frac{mR\cos\theta}{M+m}$
 - (C) $\frac{mR\sin\theta}{M+m}$
 - (D) $\frac{MR\cos\theta}{M+m}$
 - (E) $\frac{MR\sin\theta}{M+m}$

- 17. 在小球運動的過程中,小球受到的最大正向力量值為何?
 - (A) $3mg (1-\cos\theta)$
 - (B) $3mg (1-\sin\theta)$

(C)
$$\frac{Mg}{M+m}$$
 $(M(3-2\cos\theta) + m\cos\theta)$

(D)
$$\frac{mg}{M+m}$$
 (M ($2-\cos\theta$) $+m\cos\theta$)

(E)
$$\frac{mg}{M+m}$$
 (M ($3-2\cos\theta$) $+m$)

- 18. 若 θ 很小時,則由A處滑至另一端最高點B處所需時間為何?
 - (A) $2\pi\sqrt{\frac{R}{g}}$
 - (B) $\frac{\pi}{2}\sqrt{\frac{R}{g}}$
 - (C) $\pi \sqrt{\frac{R}{g}}$
 - (D) $\pi \sqrt{\frac{g}{R}}$
 - (E) $2\pi\sqrt{\frac{g}{R}}$
- 19. 根據維基百科資料,視星等是人們從地球上觀察星

體亮度的度量,而把從距離星體 10 個秒差距(約32.6 光年)之地方看到的目視亮度度量,稱為該星體的絕對星等。而星等的度量為每增加5星等,則亮度(或發光強度)會變為10⁻²倍。例如視星等+5

表 1

星體	視星等	絕對星等
恆星甲	2	-7
恆星乙	-5	3

的恆星亮度,是視星等 0 之恆星亮度的 10^{-2} 倍;而絕對星等 +12 的恆星發光強度,是絕對星等 +2 之恆星發光強度的 10^{-4} 倍,以此類推。且恆星的觀測亮度正比於發光強度,且與觀察者距離平方成反比。恆星甲、乙的資料如表 1 所示,請根據哈伯定律推算出恆星甲、

乙遠離地球速度比值 $\frac{\nu_{\mathbb{P}}}{\nu_{\mathbb{Z}}}$ 為何?(已知 $\log 2 \div 0.3010$, $\log 3 \div 0.4771$)

- (A) 4.0×10^3
- (B) 2.5×10^4
- (C) 4.0×10^4
- (D) 4.0×10^5
- (E) 2.5×10^3

20. 小昭發現圖 9 為定量的理想氣體,由狀態 a 經過狀態 b 到達狀態 c 的 P-t (氣體壓力與攝氏溫度)圖。已知在 a 點的體積為 $0.12~\text{m}^3$,小昭認為:

- (甲) a 點溫度應為 47℃。
- ② b、c 兩點體積相同。
- 两) a、b 兩點體積相同。
- ① c 點體積為 0.15 m³。
- (成) 氣體分子數約為 1.8 mol。
- 甲至成有哪些選項是正確的?〔理想氣體常數 $R=8.32 \,\mathrm{J/(mol\cdot K)}$ 〕
- (A)僅有(甲)(戊)
- (B)僅有(甲)(丁)(戊)
- (C)僅有(Z)(丁)(戊)
- (D)僅有(甲)(Z)(丙)(丁)
- (E)僅有(甲)(丙)(丁)(戊)

二、多選題(占20分)

- 說明:第21.題至第24.題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫 記在答案卡之「選擇題答案區」。各題之選項獨立判定,所有選項均答對者,得5分; 答錯1個選項者,得3分;答錯2個選項者,得1分;答錯多於2個選項或所有選項 均未作答者,該題以零分計算。
- 21. 兩帶電共軸之金屬圓環,帶電量均為Q,半徑均為R,環心相距L,設 $L\gg R$,所以環上電荷均勻分布不受彼此電場之影響,如圖10所示。庫侖常數為k,則下列敘述哪些正確?

- (A)在兩環心連線之 $\overline{O_1O_2}$ 範圍內,電位對 O 點對稱
- (B)在兩環心連線之 $\overline{\mathrm{O_1O_2}}$ 範圍內,電場對 O 點對稱
- (C)兩環心連線中,距 O_1 點 $\frac{L}{4}$ 、距 O_2 點 $\frac{3L}{4}$ 的 P 點電位值

$$V_{\rm P} = 2kQ \left(\frac{1}{\sqrt{R^2 + (\frac{L}{4})^2}} + \frac{1}{\sqrt{R^2 + (\frac{3L}{4})^2}} \right)$$

- (D) O 點電場、電位均為零
- (E)若已知當電場為零且為穩定平衡狀態時,電位為極小值,則兩環心連線之 $\overline{O_1O_2}$ 範圍內的

電位極小値
$$V_{min} = 2kQ$$
 〔 $\frac{1}{\sqrt{R^2 + (\frac{L}{2})^2}}$ 〕

22. 林大帥不小心將紅、紫兩種同調混色光同時射入雙狹縫 實驗裝置中,裝置如圖 11 所示。為了清楚判斷兩種色光 的干涉條紋,他決定尋找光屏上兩種色光的亮帶中線與 暗紋重疊之處做紀錄(即紅光亮帶中線與紫光暗紋重疊 之處,或紫光亮帶中線與紅光暗紋重疊之處)。已知他 使用的紅光波長為640 nm,紫光波長為400 nm,雙狹縫 至光屏的距離為 100 cm, 雙狹縫間距為 $1.00 \times 10^{-3} \text{ cm}$, 即下列哪些光屏上的位置符合他所需?

- (A) v = 8.00 cm
- (B) y = 16.0 cm
- (C) v = 24.0 cm
- (D) v = 48.0 cm
- (E) v = 96.0 cm
- 23. 將分子數 N_1 、單一分子質量 m_1 、方均根速率 v_1 的 He 氣體,與分子數 N_2 、單一分子質量 m_2 、方均根速率 v_2 的 Ne 氣體,同時置入同一容器中混合並達平衡,過程中散失熱量 ΔH , 混合後 $He \cdot Ne$ 氣體分子的方均根速率分別為 $u_1 \cdot u_2 \circ 已知波茲曼常數為 <math>k_B \cdot$ 則下列敘述 哪些正確?

(A)混合後 He 氣體分子的方均根速率
$$u_1 = \sqrt{\frac{N_1 m_1 v_1^2 + N_2 m_2 v_2^2 - 2\Delta H}{(N_1 + N_2) m_1}}$$

(B)混合後 Ne 氣體分子的方均根速率 $u_2 = \sqrt{\frac{N_1 m_1 v_1^2 + N_2 m_2 v_2^2 - 2\Delta H}{(N_1 + N_2) m_2 v_2^2 - 2\Delta H}}$

- (B)混合後 Ne 氣體分子的方均根速率 $u_2 = \sqrt{\frac{N_1 m_1 v_1^2 + N_2 m_2 v_2^2 2\Delta H}{(N+N)}}$
- (C)若 $v_2 > v_1$,則必定 $u_2 > u_1$

$$(D)\frac{v_1}{v_2} = \frac{u_1}{u_2}$$

- (E)若容器體積為 V,則混合後的氣壓 $P = \frac{N_1 m_1 v_1^2 + N_2 m_2 v_2^2 2\Delta H}{3V}$
- 24. 如圖 12 所示,一對平行金屬板 AB 相距 d,外接一電池電 壓 V=4.0 V,在 A 板有一帶電量 $+q=2.0\times10^{-2} \text{ C}$ 、質量 $m=1.0\times10^{-2}$ kg 的小球,以初速度 $\nu_0=10$ m/s 鉛直向上拋 出,重力加速度 $g=10 \text{ m}/\text{s}^2$,最後抵達 B 板同一高度處。 x-v 坐標如圖所示,則下列敘述哪些正確?

- (A)小球最大高度為 5.0 m
- (B)水平方向作等加速運動,加速度為 $1.0 \text{ m} / \text{ s}^2$
- (C) d = 4.0 m
- (D)小球在 AB 間的飛行時間為 1.0 s
- (E)以出發點為原點,則小球的軌跡方程式為 $y=10x-5x^2$

第貳部分:非選擇題(占20分)

說明:本部分共有兩大題,答案必須寫在「答案卷」上,並於題號欄標明大題號(一、二) 與子題號(1.、2.、……),若因字跡潦草、未標示題號、標錯題號等原因,致評卷 人員無法清楚辨識,其後果由考生自行承擔。作答時不必抄題,但必須寫出計算過程 或理由,否則將酌予扣分。作答使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。 每一子題配分標於題末。

- 一、<u>小語</u>想要探究「在作用力固定下,物體運動之加速度與物體質量的關係」,以下是<u>小語</u>所 設計的實驗步驟:
 - ① 取一打點計時器固定於滑車軌道(含定滑輪)一端,將紙帶穿過打點計時器後繫於滑車。
 - ② 用手拉住滑車,調整軌道傾斜角度,啟動打點計時器,放手使滑車滑下,透過紙帶確 認滑車沿軌道作等速直線運動,如圖 13 所示。
 - ③ 取一細線跨過定滑輪,細線兩端分別連接滑車與槽碼掛鉤,並使細線與軌道面平行。
 - ④ 用手拉住滑車,在槽碼掛鉤放上1個槽碼,啟動打點計時器,放手使滑車下滑,透過紙帶計算滑車下滑過程之加速度量值,如圖14所示。
 - ⑤ 不改變槽碼掛鉤上的槽碼個數,依次增加滑車上的槽碼個數,重複步驟④。

- 1. 假設空氣阻力可忽略不計,請你簡單說明步驟②之目的為何?(2分)
- 2. 若槽碼掛鉤與其上槽碼總質量為 m_1 ,滑車與其上槽碼總質量為 m_2 ,滑車加速度量值 為 a,細線張力量值為 T,重力加速度量值為 g,請你依據牛頓第二運動定律分別列出 m_1 與 m_2 的運動方程式,並求出 a。(3 分)
- 3. 已知實驗時,槽碼掛鉤與其上槽碼總質量為 m_1 克,表 2 是小語某三次實驗所測得的數據表,請你依據該表求出 m_1 與x之值。(3分)

滑車與其上槽碼總質量 200		300	х	
<i>m</i> ₂ (克)	200	300		
滑車加速度平均值	500	400	250	
a (公分/秒 ²)	300			

表 2

4. 小語由實驗數據得到 a 與 $\frac{1}{m_1+m_2}$ 關係為一條通過原點的斜直線,如圖 15 所示,請你根據此圖計算出 g 值。(2 分)

- 二、光線從空氣中(折射率為 1)以入射角 θ 射入一邊長為 L、折射率為 $\sqrt{2}$ 之正方形 ABCD 透明介質,入射點為 E,如圖 16 所示,其中 E、F、G、 H 分別為 \overline{AB} 、 \overline{BC} 、 \overline{CD} 、 \overline{DA} 之中點:
 - 1. 若 θ =45°, 則第一次折射時之折射角 r 為何?(2 分)
 - 2. 若 θ 可調整為 $0^{\circ} \le \theta \le 90^{\circ}$ 之範圍,則光線最後從透明介質射出之可能區間為何?(4 分)
 - 3. 若 θ 可調整為 $0^{\circ} \le \theta \le 90^{\circ}$ 之範圍,則光線在透明介質中(不包含邊上)所經過之最短時間為何?(答案請以 L 及真空中之光速 c 表示)(2 分)
 - 4. 若 θ 很小(5° 以內)時,光線從透明介質中射出後之偏向位移 D 為何?並說明當 θ 愈大時,其偏向位移 D 愈大或愈小?(可能用到的近似公式: $\sin\theta \doteqdot \tan\theta \Leftrightarrow \theta$, $\cos\theta \Leftrightarrow 1$;答案請以 L 及 θ 表示)(2 分)

物理考科詳解

題號	1.	2.	3.	4.	5.	6.	7.	8.	9.
答案	(B)	(C)	(D)	(A)	(C)	(B)	(E)	(D)	(E)
題號	10.	11.	12.	13.	14.	15.	16.	17.	18.
答案	(A)	(D)	(B)	(A)	(C)	(D)	(A)	(E)	(C)
題號	19.	20.	21.	22.	23.	24.			
答案	(E)	(E)	(A)(B)(E)	(B)(D)	(A)(B)(E)	(A)(C)			

第壹部分:選擇題

一、單撰題

1. (B)

出處:基礎物理(二)B下 萬有引力 目標:累積知識並加以記憶的能力

內容:重力常數測定的科普閱讀解析:(甲):卡文迪西,(乙):扭秤。

2. (C)

出處:基礎物理(二)B下 萬有引力

目標: 直接運用基本觀念、方法與原理的能力

內容:萬有引力定律的應用與計算

3. (D)

出處:基礎物理(二)B上 運動學——直線運動

目標:分析過程,找出相關數量之間關係的能力

內容:等加速運動與相對運動

解析:(1)汽車尾端會超越公車前端,必須滿足

 $\Delta x_{\mathbb{A}} - \Delta x_{\mathbb{A}} = 12 \text{ (m)}$

先計算 t=2 s 時與 t=4 s 時:

公車位移:

$$\Delta x_{2:(t=2)} = \frac{1}{2} \times 2 \times 12 = 12 \text{ (m)}$$

$$\Delta x_{\triangle (t=4)} = \frac{1}{2} \times (2+4) \times 12 = 36 \text{ (m)}$$

汽車位移

$$\Delta x_{\text{H}(t=2)} = \frac{1}{2} \times \frac{21}{8} \times 2^2 = \frac{21}{4} \text{ (m)}$$

$$\Delta x_{\approx (t=4)} = \frac{1}{2} \times \frac{21}{8} \times 4^2 = 21 \text{ (m)}$$

由此可知 t=4 s 時汽車尚落後公車 15 m,故可推知滿足題目條件時必落在 t=4 s ~ 12 s 之間。

(2) 設 t s 時汽車尾端會切齊公車前端(t>4), 則 $\Delta x_{\mathbb{A}} - \Delta x_{\mathbb{A}} = 12$ (m)

$$\Rightarrow \frac{1}{2} \times \frac{21}{8} \times t^2 - \{36 + \frac{1}{2} \left(\frac{3}{2} (12 - t) + 12 \right) \times (t - 4) \} = 12$$

$$\Rightarrow 11t^2 - 96t + 64 = 0 \Rightarrow t = 8 \text{ (s)}$$

I

4. (A)

出處:基礎物理(二) B 上 牛頓運動定律的應用

目標:分析過程,找出相關數量之間關係的能力

內容:假想力與靜摩擦力觀念的應用

解析:由車廂內觀之,靜摩擦力 f_s 與重力、正向力、 離心力之水平分量和抵消,但重力、正向力 無水平分量,故 $f_s = (F_{\text{Mul}})_x$ 。最大值在1號

及 7 號車廂,且最大值為 $m\omega^2 R$ 。

5. (C)

出處:基礎物理(二)B上 牛頓運動定律的應用

目標:綜合運用基本觀念、方法與原理的能力

內容:假想力與靜力平衡的應用

解析:由車廂內觀之,座椅施予人作用力F^壓與重力

及離心力之向量和抵消,故

 $F_{\mathbb{E}\mathbb{Q}} = |\overrightarrow{mg} + \overrightarrow{F}_{\mathbb{R}\mathbb{Q}}|$

最大值在10號車廂,且最大值

$$(F_{\text{Edd}})_{max} = m (g + \omega^2 R)$$

6. (B

出處:基礎物理(二)B下 動量與動量守恆律

目標:理解基本觀念、方法與原理的能力

內容:角動量的計算

解析:(1) 由 11 號車廂之位置觀察,切向相對速度 最大值出現在 5 號車廂,且量值為 2v。

> (2) 由 11 號車廂之位置觀察,切向相對速度 方向與連線距離之夾角為 θ , $\sin\theta$ 最大值 出現在 5 號車廂,且

 $(\sin\theta)_{max} = \sin 90^{\circ} = 1$

(3) 綜合(1)、(2)之分析,由 11 號車廂之位置 觀察,角動量量值的最大值 L_{max} 出現在 5 號車廂,日.

 $L_{max} = 2R \times m \times 2\nu \times \sin 90^{\circ}$ $= 2Rm \times 2 (R\omega)$ $= 4mR^{2}\omega$

7. (E)

出處:基礎物理(二)B上 靜力學

目標:直接運用基本觀念、方法與原理的能力

內容:靜力平衡

解析:三力平衡時,三力向量可 形成頭尾相連之封閉三角 形。如右圖所示,由圖形 可知 F_2 逐漸增加,而 F_1 先減少再增加。

8. (D)

出處:基礎物理(二) B 上 運動學——平面運動

目標:分析過程,找出相關數量之間關係的能力

內容:斜向拋射

解析:
$$-h = (v_0 \sin \theta) t - \frac{1}{2} g t^2$$

$$\Rightarrow t = \frac{v_0 \sin \theta + \sqrt{v_0^2 \sin^2 \theta + 2gh}}{g}$$

 \therefore 當 $\sin\theta$ 愈大,則 t愈大

故可推論當 θ =90°時, $t=t_{max}=\frac{{v_0}+\sqrt{{v_0}^2+2gh}}{g}$

9. (E)

出處:基礎物理(二) B 上 運動學——平面運動

目標:分析過程,找出相關數量之間關係的能力

內容:斜向拋射

解析:(1) $0 = v_0^2 \sin^2 \theta - 2gH_{max}$

$$\Rightarrow H_{max} = \frac{{v_0}^2 \sin^2 \theta}{2g}$$

(2) 軌跡方程式:

$$y = (\tan \theta) x - \frac{gx^2}{2v_0^2 \cos^2 \theta}$$

$$\Rightarrow -\frac{v_0^2 \sin^2 \theta}{2g} = (\tan \theta) x - \frac{gx^2}{2v_0^2 \cos^2 \theta}$$

$$\Rightarrow x = \frac{(1 + \sqrt{2}) v_0^2 \sin \theta \cos \theta}{g}$$

$$= \frac{(1 + \sqrt{2}) v_0^2 \sin 2\theta}{2g}$$

可知當
$$\theta$$
=45° 時, $x=x_{max}=\frac{(1+\sqrt{2})v_0^2}{2g}$

10. (A)

出處:基礎物理(二)B下 碰撞

目標:理解基本觀念、方法與原理的能力

內容:彈性碰撞及衝量的概念

解析:由於整個系統在水平方向不受任何外力,故水平方向在任何時刻皆滿足動量守恆,故J=0

11. (D)

出處:基礎物理(二)B下 位能與力學能守恆律

目標:分析過程,找出相關數量之間關係的能力

內容:彈性碰撞及過程中能量轉換的計算

解析: 當彈籌壓縮量達到最大時,

$$v_m = v_M = v_{CM} =$$
質心速度,則

$$\frac{1}{2}kx_{max}^{2} = \frac{1}{2} \left(\frac{Mm}{M+m}\right) \left(v_{0}-0\right)^{2}$$

$$\Rightarrow x_{max} = v_{0} \sqrt{\frac{Mm}{k \left(M+m\right)}}$$

12. (B

出處:基礎物理(二)B下 碰撞

目標:理解基本觀念、方法與原理的能力

內容:彈性碰撞完成時間的計算

解析:
$$t = \frac{T}{2} = \pi \sqrt{\frac{Mm}{k (M+m)}}$$

13. (A)

出處:選修物理(上) 靜電學

目標:直接運用基本觀念、方法與原理的能力

內容:電場中的力平衡觀念,求最大動能

解析:

如上圖,因為小球帶負電,達平衡時

$$\tan\theta = \frac{\frac{3}{4}mg}{mg} = \frac{3}{4}$$

最大動能=重力位能變化量+靜電力位能變 化量

$$\therefore K_{max} = -mg \times \frac{1}{5}R + \frac{3}{4}mg \times \frac{3}{5}R$$
$$= \frac{1}{4}mgR$$

14. (C)

出處:選修物理(上) 聲波

目標:直接運用基本觀念、方法與原理的能力

內容:聲波在空氣中的聲速,聲波的反射

解析:(1) 由題目甲地發出訊號經反射後總是到達乙地,且偵測到反射聲波皆在5秒後,可知反射牆至甲、乙兩地距離和為定值,進一步可推知反射牆面形狀為橢圓,且甲、乙兩地為此橢圓的雙焦點,若a為半長軸, c為焦距,則

$$2a=5x(331+0.6x15)=1700(公尺)$$

 $2c=d$ _{甲Z}=1000(公尺)

(2) 由橢圓性質可知

$$x=a+c$$
, $y=a-c$
 $\Rightarrow x-y=2c=1000$ (公尺)

15. (D)

出處:選修物理(上) 波動

目標:分析過程,找出相關數量之間關係的能力

內容:聲波的干涉

解析:(1)
$$n_{max} = \left[\frac{d}{\lambda} + \frac{1}{2}\right]$$

$$= \left[\frac{1000}{8} + \frac{1}{2}\right]$$

$$= 125$$

其中[] 為高斯符號

(2) 設所求為 dz,且此時離甲地距離為 dm,則

$$d_{\text{\tiny H}} - d_{\text{\tiny Z}} = (n - \frac{1}{2}) \times 8$$
, $\exists d_{\text{\tiny H}} + d_{\text{\tiny Z}} = 1700$

$$\Rightarrow 2dz = 1700 - 8 \times (n - \frac{1}{2})$$

可知當 n=125 時

$$d_Z = (d_Z)_{min} = 352$$
(公尺)

16. (A)

出處:基礎物理(二)B下 動量與動量守恆律

目標:理解基本觀念、方法與原理的能力

內容:質心運動的概念

解析:整個系統在水平方向不受外力,故系統的質心

水平位移量值 $\Delta x_{CM} = 0$

17. (E)

出處:基礎物理(二)B下 位能與力學能守恆律

目標:分析過程,找出相關數量之間關係的能力

內容:鉛直圓周運動,雙體水平動量守恆與雙體力

學能守恆整合計算

解析:(1)

如上圖,設過程中小球所受正向力為N, 則碗所受球的反作用力亦為N,過程中 ϕ 為小球與碗心連線及鉛直線夾角,且 $0 \le \phi \le \theta$,故 $N \sin \phi = Ma_M$,其中 a_M 為碗 的加速度

$$\Rightarrow a_M = \frac{N\sin\phi}{M}$$

(2)

如上圖,在碗中觀察球的受力,則必須考慮假想力 ma_M ,則

$$N - mg\cos\phi + ma_M\sin\phi = F_c = \frac{mv^2}{R}$$

將
$$a_M = \frac{N\sin\phi}{M}$$
代入可得

$$N = \frac{Mm (gR\cos\phi + v^2)}{(M + m\sin^2\phi) R}$$

故可推知當 ϕ 愈小且 ν 愈大時,正向力 N 愈大,所以當小球滑到最低點 $\phi=0$ 時

$$N=N_{max}=\frac{m (gR+v^2)}{R}\cdots\cdots$$

(3) 由於在過程中整個系統在水平方向不受外力,故當小球滑到最低點時須滿足雙體力學能守恆及水平動量守恆

$$\frac{M}{M+m} \times mgR (1-\cos\theta) = \frac{1}{2} mv^2$$

$$\Rightarrow v^2 = \frac{2MgR (1 - \cos \theta)}{M + m} \quad \dots \dots \dots \textcircled{2}$$

將②式代入①式可得

$$\begin{split} N_{max} &= mg + \frac{2Mmg \ (1 - \cos \theta)}{M + m} \\ &= \frac{mg}{M + m} \ \left[M \ (3 - 2 \cos \theta) \ + m \ \right] \end{split}$$

18. (C)

出處:基礎物理(二) B上 牛頓運動定律的應用

目標:直接運用基本觀念、方法與原理的能力

內容:單擺或簡諧運動的計算

解析:在碗中觀察球的運動,此與單擺運動相當,且 假想力為水平方向不影響等效重力場,若 θ

很小時

$$t_{\rm AB} = \frac{T}{2} = \pi \sqrt{\frac{R}{g}}$$

19. (E)

出處:基礎物理(一) 宇宙學簡介

目標:綜合運用基本觀念、方法與原理的能力

內容:視星等與絕對星等的閱讀推理,哈伯定律的

計算

解析:(1) 根據哈伯定律: $\frac{v_{\mathbb{H}}}{v_{\mathbb{Z}}} = \frac{d_{\mathbb{H}}}{d_{\mathbb{Z}}}$

(2) 再根據星等的度量,則可知

$$\frac{v_{\text{m}}^{2}}{v_{\text{Z}}^{2}} = \frac{d_{\text{m}}^{2}}{d_{\text{Z}}^{2}} = 10^{\frac{2}{5}} (2 - (-7) - (-5 - 3))$$

$$= 10^{0.8} \times 10^{6} \div 6.25 \times 10^{6}$$

$$\Rightarrow \frac{v_{\text{pp}}}{v_{\text{pp}}} \doteqdot 2.5 \times 10^3$$

20. (E)

出處:選修物理(上) 熱學

目標:理解基本觀念、方法與原理的能力

內容:定容的查爾斯一給呂薩克定律

解析:(甲) 由 a → b 的過程中,是定容狀態

..壓力P \propto 絕對溫度T

$$\Rightarrow \frac{P_{\rm a}}{P_{\rm b}} = \frac{T_{\rm a}}{T_{\rm b}}$$

$$\Rightarrow \frac{0.4}{0.5} = \frac{T_{\rm a}}{400}$$

$$\Rightarrow T_a = 320 \text{ (K)} = 47 \text{ (°C)}$$

故闸)正確。

(T) 定壓,
$$\frac{V_{\rm b}}{T_{\rm b}} = \frac{V_{\rm c}}{T_{\rm c}} = \frac{V_{\rm a}}{T_{\rm b}}$$

$$\Rightarrow \frac{0.12}{400} = \frac{V_{\rm c}}{500}$$

$$\Rightarrow V_c = 0.15 \text{ (m}^3)$$

故(丁)正確。

(成) 由狀態 b: PV = nRT

 $\Rightarrow 0.5 \times 10^5 \times 0.12 = n \times 8.32 \times 400$

 $\Rightarrow n = 1.8 \pmod{3}$

故似正確。

二、多選題

21. (A)(B)(E)

出處:選修物理(上) 靜電學

目標:直接運用基本觀念、方法與原理的能力

內容:均勻帶電金屬環電位的計算

解析:(A) 由於電荷分布對 O 點對稱,故電位對 O 點 對稱。

(B) 原理同(A),電場對 O 點對稱。

(C)
$$V_{P} = kQ \left(\frac{1}{\sqrt{R^{2} + (\frac{L}{4})^{2}}} + \frac{1}{\sqrt{R^{2} + (\frac{3L}{4})^{2}}} \right)$$

$$= 4kQ \left(\frac{1}{\sqrt{16R^{2} + L^{2}}} + \frac{1}{\sqrt{16R^{2} + 9L^{2}}} \right)$$

(D) (1) 因為對稱性,兩帶電圓環電場在 O 點 抵消,故電場為零。

(2) 電位
$$V_0 = \frac{2kQ}{\sqrt{R^2 + (\frac{L}{2})^2}}$$
$$= \frac{4kQ}{\sqrt{4R^2 + L^2}} \neq 0$$

(E) 由題目之敘述推理可知, O 點電位為極小 值,故

$$V_{min} = 2kQ \left(\frac{1}{\sqrt{R^2 + (\frac{L}{2})^2}} \right) = \frac{4kQ}{\sqrt{4R^2 + L^2}}$$

22. (B)(D)

出處:選修物理(上) 物理光學

目標:理解基本觀念、方法與原理的能力

內容:雙狹縫干涉的計算

解析:(1) 條件 1:
$$400n_1 = 640 (n_2 - \frac{1}{2})$$

$$\Rightarrow n_1 = 4 \cdot 12 \cdot 20 \cdot \cdots$$

$$\Rightarrow n_1 = 4 (2n-1) , 其中 n 為任意自然數$$

(2) 條件
$$2:400 (n_1 - \frac{1}{2}) = 640n_2$$

$$\Rightarrow 5 (2n_1 - 1) = 16n_2$$
由於等號左邊為奇數,而等號右邊為偶數,故無解。

(3) 綜合條件 1、2 可知

$$y = \frac{4(2n-1)\times100\times4.00\times10^{-5}}{1.00\times10^{-3}}$$
$$= 16(2n-1) \text{ (cm)}$$
其中 n 為任意自然數

23. (A)(B)(E)

出處:選修物理(上) 熱學

目標:直接運用基本觀念、方法與原理的能力

內容:氣體動力論的計算

解析:(A) (1)
$$\frac{1}{2}$$
 $(N_1m_1v_1^2 + N_2m_2v_2^2) - \Delta H$
= $\frac{1}{2}$ $(N_1m_1u_1^2 + N_2m_2u_2^2)$ ······①

(3) 將②式代入①式可得

$$u_1 = \sqrt{\frac{N_1 m_1 v_1^2 + N_2 m_2 v_2^2 - 2\Delta H}{(N_1 + N_2) m_1}} \dots 3$$

(B) 將③式代入②式可得

$$u_2 = \sqrt{\frac{N_1 m_1 v_1^2 + N_2 m_2 v_2^2 - 2\Delta H}{(N_1 + N_2) m_2}}$$

(C) 因為 $m_2 > m_1$,由②式可知不管 v_1 與 v_2 大小關係如何,必定 $u_1 > u_2$

(D)
$$\frac{v_1}{v_2} = \sqrt{\frac{m_2 T_1}{m_1 T_2}}$$
 , T_1 、 T_2 為混合前的溫度,
由②式知 $\frac{u_1}{u_2} = \sqrt{\frac{m_2}{m_1}}$,由於不知 T_1 、 T_2 ,
故(D)錯誤。

(E)
$$\frac{1}{2} (N_1 m_1 v_1^2 + N_2 m_2 v_2^2) - \Delta H = \frac{3}{2} PV$$

$$\Rightarrow P = \frac{N_1 m_1 v_1^2 + N_2 m_2 v_2^2 - 2\Delta H}{3V}$$

24. (A)(C)

出處:選修物理(上) 靜電學

目標:綜合運用基本觀念、方法與原理的能力

內容:帶電粒子在均勻電場中的運動

解析:平行金屬板內的電場強度
$$E = \frac{V}{d} = \frac{4}{d}$$

加速度
$$a = \frac{qE}{m} = \frac{0.02 \times 4}{0.01 \times d} = \frac{8}{d}$$

(A)(D) 由 y 軸,鉛直方向作鉛直上拋

最大高度
$$H = \frac{{v_0}^2}{2g} = \frac{10^2}{2 \times 10} = 5 \text{ (m)}$$

總飛行時間
$$T=2t=2\times\frac{v_0}{g}=2$$
 (s)

(C)
$$d = \frac{1}{2} aT^2 \Rightarrow d = \frac{1}{2} \times \frac{8}{d} \times 2^2 \Rightarrow d = 4 \text{ (m)}$$

(B) 加速度
$$a = \frac{8}{4} = 2 \, (m/s^2)$$

(E) 設飛行時間為t(非總飛行時間,t代表飛行中某一時刻)

水平方向:
$$x = \frac{1}{2} \times a \times t^2 \Rightarrow x = \frac{1}{2} \times 2 \times t^2$$

鉛直方向: $y = 10t - \frac{1}{2} \times 10 \times t^2$
消去 t 得到 $y = 10 \sqrt{x} - 5x^2$

第貳部分:非選擇題

一、1. 見解析

2.
$$m_1g - T = m_1a$$
, $T = m_2a$, $a = (\frac{m_1}{m_1 + m_2})$ g

3. $m_1 = 200$,x = 600 4. 10 公尺 / 秒²

出處:基礎物理(二)B上 牛頓運動定律

目標:理解基本觀念、方法與原理的能力;分析過程,找出相關數量之間關係的能力

內容:力的合成與分解,牛頓第一運動定律,牛頓 第二運動定律

解析: 1. 滑車沿軌道作等速直線運動,表示滑車沿 軌道方向合力為零,故滑車之重力沿斜面 方向分力等於滑車與軌道間的摩擦力。 2.

- (1) 槽碼掛鉤與其上槽碼受力如上圖所示, 由牛頓第二運動定律可得:
 - $m_1g-T=m_1a\cdots\cdots$
- (2) 滑車與其上槽碼受力如上圖所示,由 牛頓第二運動定律可得:
 - $T+m_2g\sin\theta-f=m_2a$ ·····②
 - $m_2g\sin\theta=f\cdots\cdots$
 - 由②、③兩式可得 $T=m_2a$ ··········④
- (3) 由①、④兩式可得

$$a = (\frac{m_1}{m_1 + m_2}) g \cdots \cdots \odot$$

3. 由⑤式可知 $(m_1+m_2)a=m_1g$,因為小語 進行實驗時, m_1 之值固定,故 $(m_1+m_2)a$ 必為定值。

$$(m_1+200) \times 500 = (m_1+300) \times 400$$

= $(m_1+x) \times 250$

可得 $m_1 = 200$, x = 600

4. 由⑤式可知 a 與 $\frac{1}{m_1+m_2}$ 成正比,兩者關係 圖為一通過原點的斜直線,其斜率為 m_1g 。

由題圖可判斷斜率為 2,即 $m_1g=2$ 可得重力加速度量值

$$g = \frac{2}{m_0} = \frac{2}{0.2} = 10 \; (\triangle \mathbb{R} / \mathbb{P}^2)$$

二、1. 30° 2. 必由 $\overline{\text{DG}}$ 區間 3. $\frac{L}{c}$

4.
$$D
ightharpoonup L\theta (1 - \frac{1}{\sqrt{2}})$$
,愈大

出處:選修物理(上) 幾何光學

目標:綜合運用基本觀念、方法與原理的能力

內容:折射定律的計算

解析:1. 根據司乃耳定律

 $1 \times \sin \theta = \sqrt{2} \times \sin r$,代人 $\theta = 45^{\circ}$,可知折射 角 $r = 30^{\circ}$

2. 第一次折射時,折射角為r,根據司乃耳 定律

$$\Rightarrow 0 \le \sin r \le \frac{1}{\sqrt{2}}$$

以下分別就 $0 \le \sin r \le \frac{1}{\sqrt{5}}$ 、

$$\frac{1}{\sqrt{5}}$$
 $<$ $\sin r$ $<$ $\frac{1}{\sqrt{2}}$ 及 $\sin r$ $=$ $\frac{1}{\sqrt{2}}$ 三種情況來 討論。

(1) 若發生全反射,則必須滿足判別式 $\sqrt{2}\sin r > 1$,即 $r > 45^\circ$ 當 $0 \le \sin r \le \frac{1}{\sqrt{5}}$ 時,不會發生全反射, 故光線會從 $\overline{\mathrm{DG}}$ 折射出去(折射角仍為 θ),如下圖所示。

(2) 當 $\frac{1}{\sqrt{5}} < \sin r < \frac{1}{\sqrt{2}}$ 時,光線將會先折射至 \overline{HD} 範圍,此時第二次入射角 $90^{\circ} - r > 45^{\circ}$,滿足全反射條件,故光線會全反射至 \overline{DG} 範圍,此時第三次入射角 $0^{\circ} < r < 45^{\circ}$,故光線會從 \overline{DG} 折射出去(折射角仍為 θ),如下圖所示。

(3) 當 $\sin r = \frac{1}{\sqrt{2}}$ 時,折射角為 90° ,故光 線最後由 D 點射出,如下圖所示。

綜合以上討論可知,光線最後必由 $\overline{\mathrm{DG}}$ 區間折射出去。

3. 從第 2. 小題討論可知,光在透明介質內 行經之最短路徑為 $\sin r = \frac{1}{\sqrt{2}}$ 時,故

$$t_{min} = \frac{\sqrt{2}L}{2v} = \frac{L}{c}$$

4. (1)

如上圖所示

$$D = \frac{L \sin(\theta - r)}{\cos r}$$

$$= L (\sin \theta - \cos \theta \tan r)$$

(2) 根據司乃耳定律

$$1 \times \sin \theta = \sqrt{2} \times \sin r \Rightarrow \sin r = \frac{\sin \theta}{\sqrt{2}}$$
 當 θ 很小時, $\sin r \Rightarrow \tan r \Rightarrow \frac{\theta}{\sqrt{2}}$,故
$$D \Rightarrow L\theta \left(1 - \frac{1}{\sqrt{2}}\right) , \theta$$
愈大時,其偏 向位移 D 也愈大。

※非選擇題評分標準

- 一、1. 寫出重力沿斜面分力或摩擦力得1分,寫出重力沿斜面分力抵消摩擦力得1分。
 - 2. 寫出 $m_1g-T=m_1a$ 得 1 分,寫出 $T=m_2a$ 得 1 分,算出 $a=(\frac{m_1}{m_1+m_2})$ g 得 1 分。
 - 3. 寫出 (m_1+m_2) a 為定值得 1 分,算出 $m_1=200$ 得 1 分,算出 x=600 得 1 分。
 - 4. 寫出斜率為 m_1g 得 1 分,算出 g=10 公尺 / 秒² 得 1 分。
- 二、1. 寫出司乃耳定律 $1 \times \sin \theta = \sqrt{2} \times \sin r$ 得 1 分,算出折射角為 30° 得 1 分。
 - 2. 算出第一次折射角範圍 $0 \le \sin r \le \frac{1}{\sqrt{2}}$ 得 1 分,

算出 $0 \le \sin r \le \frac{1}{\sqrt{5}}$ 時,不會發生全反射,光線會從 \overline{DG} 折射出去得 1 分,

算出 $\frac{1}{\sqrt{5}} < \sin r < \frac{1}{\sqrt{2}}$ 時,光線會先折射至 $\overline{\text{HD}}$ 範圍再全反射,最後從 $\overline{\text{DG}}$ 折射出去得 1 分,

算出 $\sin r = \frac{1}{\sqrt{2}}$ 時,光線最後由 D 點射出得 1 分。

3. 判斷出 $\sin r = \frac{1}{\sqrt{2}}$ 時,光在透明介質內行經之路徑最短得 1 分,

算出光線在透明介質中(不包含邊上)所經過之最短時間為 $\frac{L}{c}$ 得 1 分。

4. 算出當 θ 很小時之偏向位移 D 的近似值為 $L\theta$ $(1-\frac{1}{\sqrt{2}})$ 得 1 分,

說明當 θ 愈大時,偏向位移D會愈大得1分。