Автоматическая аннотация тем в вероятностном тематическом моделировании

Карпинская Анна Викторовна

417 группа ММП, ВМК МГУ

Введение

- ▶ Вероятностное тематическое моделирование широко используется для анализа текстовых данных
- ▶ Проблема: сложность интерпретации результатов, так как модели часто возвращают только списки ключевых слов
- Цель исследования: создание связных, информативных и кратких текстовых аннотаций тем
- Методика объединяет:
 - Вероятностное тематическое моделирование
 - Методы извлечения ключевых фраз
 - Генеративные языковые модели

Актуальность задачи

- Автоматическая аннотация тем упрощает анализ больших текстовых коллекций
- Использование генеративных моделей позволяет улучшить связность и читаемость текстов, формируя понятные аннотации
- Применение для:
 - Информационного поиска
 - ▶ Автоматического резюмирования
 - Анализа новостей

Постановка задачи

- **Входные данные:** документы $\mathcal{D} = \{D_1, D_2, \dots, D_N\}$, разбитые по темам $\mathcal{T} = \{T_1, T_2, \dots, T_K\}$.
- **Цель:** Для каждой темы T_k сгенерировать связное описание S_k .
- Методы:
 - Извлечение репрезентативных фрагментов
 - Выделение ключевых фраз
 - Генерация текста
- **Критерии**: кратное, связное и содержательное описание S_k

Алгоритм аннотации

1. Извлечение репрезентативных фрагментов:

- ▶ Лемматизация текстов и удаление стоп-слов
- ▶ Оценка релевантности предложений теме
- ▶ Выбор N_{top} предложений с максимальной релевантностью

2. Извлечение ключевых фраз:

- Выделение устойчивых словосочетаний
- ▶ Оценка сходства фраз с центроидным вектором темы
- Отбор наиболее релевантных ключевых фраз

3. Генерация текстов:

- Формирование промпта из ключевых фраз и фрагментов
- Использование Т5 для генерации аннотаций

Метрики оценки качества

ROUGE Используется для измерения точности P, полноты R и F1-метрики на основе пересечения n-грамм между предсказанием и эталоном:

$$P = rac{{\sf Coвпадающие} \ \emph{n}\text{-граммы}}{{\sf Oбщее} \ {\sf количество} \ \emph{n}\text{-грамм} \ {\sf в} \ {\sf предсказании}},$$

$$R = \frac{{\sf Coвпадающие} \ \textit{n-} {\sf граммы}}{{\sf Общее} \ {\sf количество} \ \textit{n-} {\sf грамм} \ {\sf в} \ {\sf эталоне}},$$

$$F_1 = \frac{2PR}{P + R}$$

Метрики оценки качества

BLEU Основан на точности совпадений п-грамм между генерируемым текстом и эталоном:

$$\mathsf{BLEU} = \mathsf{BP} \cdot \mathsf{exp} \left(\sum_{n=1}^{N} w_n \log P_n \right)$$

где BP — штраф за длину, w_n — веса для n-грамм, P_n — доля совпадений n-грамм

Метрики оценки качества

► METEOR Учитывает лемматизацию, синонимы и порядок слов:

$$\mathsf{METEOR} = 10 \cdot \frac{\mathsf{Coвпадения}}{\mathsf{Cpeдняя}}$$
 длина текста

Семантическая близость
Измеряет косинусное сходство между эмбеддингами генерируемого текста и эталона:

$$\mathsf{Sim}(u,v) = \frac{u \cdot v}{\|u\| \|v\|}$$

Данные

Для экспериментов использовался корпус **BBC News**, включающий текстовые данные пяти категорий. Распределение данных по темам представлено в таблице:

Категория	Количество документов	Пример содержания
Business	510	Экономика, финансы, корпоративные новости
Entertainment	386	Кино, музыка, шоу-бизнес
Politics	417	Политические события, выборы
Sport	511	Новости спорта, результаты матчей
Tech	401	Технологические разработки, гаджеты

Таблица: Распределение документов по темам в корпусе BBC News

Анализ результатов

Рис.: Сравнение метрик BLEU, METEOR и Semantic Similarity

- Семантическая близость значительно выше BLEU и METEOR
- Алгоритм улавливает контекст текста, даже если синтаксически структура отличается

Анализ результатов: ROUGE-метрики

Рис.: Сравнение ROUGE-метрик

- ▶ ROUGE-1 выше для категорий politics и tech
- ► ROUGE-2 ниже, что свидетельствует о сложностях передачи длинных последовательностей

Заключение

- Разработан алгоритм аннотации, объединяющий LDA и генеративные модели.
- Использование метрик, таких как ROUGE и семантическая близость, подтвердило высокую релевантность и читаемость генерируемых текстов
- Результаты демонстрируют потенциал метода для автоматического анализа текстовых данных
- Перспективы:
 - Увеличение масштабируемости метода для больших корпусов
 - Улучшение обработки категорий с высокой вариативностью тем

Конец

Спасибо за внимание!