2014 TAIWAN

International Olympiad in Informatics 2014

13-20th July 2014 Taipei, Taiwan Day-1 tasks

wall

Language: fr-TUN

Wall

Jian-Jia construit un mur en superposant des briques de même taille. Ce mur est constitué de n colonnes de briques numerotées de 0 à n-1 de la gauche vers la droite. Les colonnes peuvent avoir des hauteurs différentes. La hauteur d'une colonne est le nombre de briques qui la constituent.

Jian-Jia construit le mur comme suit : initialement, les colonnes ne contiennent aucune brique. Ensuite, Jian-Jia applique k phases d'ajout ou retrait de briques. La construction finale du mur aura lieu quand toutes les k phases sont realisées. Dans chaque phase, Jian-Jia a un intervalle donné de colonnes et une hauteur h, et il exécute le procédé suivant :

- Pour la phase ajout, Jian-Jia ajoute des briques aux colonnes de l'intervalle donné qui ont moins de h briques, ainsi elles auront à la fin exactement h briques. Il ne touche pas les colonnes ayant h briques ou plus.
- lacktriangle Pour la phase retrait, Jian-Jia retire des briques des colonnes de l'intervalle donné qui ont plus que $m{h}$ briques, ainsi elles auront à la fin exactement $m{h}$ briques. Il ne touche pas les colonnes ayant $m{h}$ briques ou moins.

Votre tâche est de déterminer la forme finale du mur.

Exemple

On suppose qu'il y a 10 colonnes de briques et 6 phases de construction du mur. Tous les intervalles dans la table suivante sont inclusifs. La forme du mur, après chaque phase, est montrée ci-après.

phase	type	intervalle	hauteur
0	ajouter	colonnes 1 à 8	4
1	retirer	colonnes 4 à 9	1
2	retirer	colonnes 3 à 6	5
3	ajouter	colonnes 0 à 5	3
4	ajouter	colonne 2	5
5	retirer	colonnes 6 à 7	0

Comme toutes les colonnes sont initialement vides, après la phase 0, chacune des colonnes de 1 à 8 aura 4 briques. Les colonnes 0 et 9 restent vides. Lors de la phase 1, les briques sont retirées de la colonne 4 à la colonne 8 jusqu'à ce que chacune ait exactement 1 brique et la colonne 9 reste vide. Les colonnes 0 à 3, qui ne sont pas dans l'intervalle donné restent inchangées. La phase 2 n'opère aucun changement vu que les colonnes 3 à 6 n'ont pas plus que 5 briques. Après la phase 3, le nombre de briques dans les colonnes 0, 4 et 5 atteint 3. Il y a 5 briques dans la colonne 2 après la phase 4. Lors de la phase 5, toutes les briques des colonnes 6 et 7 sont retirées.

Tâche

Étant donné la description des k phases, calculer le nombre de briques dans chaque colonne après la réalisation de toutes les phases. Vous devez implémenter la fonction buildWall:

- buildWall(n, k, op, left, right, height, finalHeight)
 - n: le nombre de colonnes du mur.
 - k: le nombre de phases.
 - op: tableau de taille k; op[i] est le type de la phase i: 1 pour une phase d'ajout et 2 pour une phase de retrait, pour $0 \le i \le k-1$.
 - left et right : tableaux de taille k; l'intervalle des colonnes de la phase i commence par la colonne left[i] et se termine par la colonne right[i] (incluant les deux extrémités de l'intervalle left[i] et right[i]), pour $0 \le i \le k-1$. Vous aurez toujours left[i] \le right[i].
 - height: tableau de taille k; height[i] est la hauteur relative à la phase i, pour $0 \le i \le k-1$.
 - lacktriangledown finalHeight: tableau de taille n; vous devez retourner les résultats en plaçant le nombre final de briques de la colonne i dans finalHeight[i], pour $0 \le i \le n-1$.

Sous-Tâches

Pour l'ensemble des sous-tâches les paramètres de la hauteur (height) de toutes les phases seront des entiers positifs ou nuls, inférieurs ou égaux à 100.000.

sous- tâche	points	n	$oldsymbol{k}$	note
1	8	$1 \le n \le 10.000$	$1 \leq k \leq 5.000$	Aucune limite additionnelle
2	24	$1 \leq n \leq 100.000$	$1 \le k \le 500.000$	Toutes les phases d'ajout sont avant les phases de retrait
3	29	$1 \leq n \leq 100.000$	$1 \le k \le 500.000$	Aucune limite additionnelle
4	39	$1 \leq n \leq 2.000.000$	$1 \le k \le 500.000$	Aucune limite additionnelle

Détails d'implémentation

Vous devez soumettre un seul fichier nommé wall.c, wall.cpp ou wall.pas. Ce fichier implémente la fonction décrite précédemment en utilisant une des signatures suivantes. Vous devez inclure (#include) l'entête wall.h pour les programmes en C/C++

Programme C/C++

```
void buildWall(int n, int k, int op[], int left[], int right[],
int height[], int finalHeight[]);
```

Program Pascal

```
procedure buildWall(n, k : longint; op, left, right, height :
array of longint; var finalHeight : array of longint);
```

Évaluateur

L'évaluateur lit l'entrée en suivant ce format :

- ligne 1: n, k.
- ligne 2 + i ($0 \le i \le k 1$): op[i], left[i], right[i], height[i].