ЛАБОРАТОРНАЯ РАБОТА №6.

«ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ»

Цель лабораторной работы: решить задачу Коши для обыкновенных дифференциальных уравнений численными методами.

№ варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

1. Порядок выполнения работы

- 2. В программе численные методы решения обыкновенных дифференциальных уравнений (ОДУ) должен быть реализован в виде отдельного класса /метода/функции;
- 3. Пользователь выбирает ОДУ вида y' = f(x, y) (не менее трех уравнений), из тех, которые предлагает программа;
- 4. Предусмотреть ввод исходных данных с клавиатуры: начальные условия $y_0 = y(x_0)$, интервал дифференцирования $[x_0, x_n]$, шаг h, точность ε ;
- 5. Для исследования использовать одношаговые методы и многошаговые методы (см. табл.1);
- 6. Составить таблицу приближенных значений интеграла дифференциального уравнения, удовлетворяющего начальным условиям, для всех методов, реализуемых в программе;
- 7. Для оценки точности одношаговых методов использовать правило Рунге: $R = \frac{y^h - y^{h/2}}{2^{p} - 1} \le \varepsilon;$
- 8. Для оценки точности многошаговых методов использовать точное решение задачи: $\varepsilon = \max_{0 \le i \le n} |y_{i_{\text{ТОЧН}}} y_i|$;
- 9. Построить графики точного решения и полученного приближенного решения (разными цветами);
- 10. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных.
- 11. Проанализировать результаты работы программы.

2. Требования и содержание отчета

Отчет должен содержать следующие разделы:

- Титульный лист,
- Цель работы,
- Описание алгоритма решения задачи,
- Рабочие формулы используемых методов,

- Листинг программы (по крайней мере, коды используемых методов),
- Скриншоты результатов выполнения программы при различных исходных данных (не менее трех),
- Графики точного решения и полученного приближенного решения,
- Выводы.

3. Варианты задания

Одношаговые методы:

- 1. Метод Эйлера,
- 2. Усовершенствованный метод Эйлера,
- 3. Метод Рунге-Кутта 4- го порядка.

Многошаговые методы:

- 4. Адамса,
- 5. Милна.

Таблица 1. Варианты задания для программной реализации задачи

		<u>ii</u>	<u> </u>
No	Метод	$N_{\underline{0}}$	Метод
варианта	метод	варианта	МЕТОД
1	1, 3, 4	21	1, 3, 4
2	2, 3, 5	22	1, 2, 5
3	1, 3, 5	23	2, 3, 4
4	1, 2, 4	24	1, 3, 4
5	2, 3, 4	25	1, 3, 5
6	1, 3, 5	26	2, 2, 4
7	1, 2, 4	27	1, 3, 4
8	2, 3, 4	28	1, 3, 5
9	1, 2, 5	29	2, 3, 5
10	1, 3, 5	30	1, 2, 4
11	2, 3, 4	31	1, 3, 4
12	1, 3, 4	32	1, 2, 5
13	1, 2, 5	33	2, 3, 4
14	2, 3, 5	34	1, 3, 4
15	1, 3, 4	35	1, 3, 5
16	1, 3, 5	36	2, 3, 4
17	1, 2, 4	37	1, 3, 5
18	1, 3, 4	38	1, 2, 4
19	1, 3, 4	39	2, 3, 4
20	2, 3, 5	40	2, 3, 5

4. Контрольные вопросы

- 1. Сформулируйте задачу Коши для дифференциального уравнения 1 порядка.
- 2. Что является решением для дифференциального уравнения 1 порядка?
 - 3. В чем заключается суть метода конечных разностей?
 - 4. Что такое разностная аппроксимация?
 - 5. Геометрический смысл задачи Коши?
 - 6. Что такое интегральная кривая?
- 7. Какое из условий теоремы существования и единственности решения задачи Коши для ОДУ является условием существования и какое условием единственности?
- 8. Что должно быть задано для решения ОДУ приближенными методами?
 - 9. Какой порядок точности имеет метод Эйлера? Рунге-Кутта?
- 10. Перечислите основные одношаговые методы для численного решения ОДУ?
- 11. Перечислите основные многошаговые методы для численного решения ОДУ?
 - 12. В чем заключается суть методов прогноза и коррекции?
- 13. Когда в методах прогноза и коррекции можно переходить на следующий этап вычислений?
 - 14. Что такое правило Рунге и как оно используется в данной задаче?
 - 15. Чтобы «запустить» метод Адамса, что необходимо вычислить?