LiDAR 센서 데이터 기반 3D 공간 구축

소속 정보컴퓨터공학부

분과 C

팀명 카트라이다

참여학생 홍주혁, 남예진, 우현우

지도교수 김원석

연구 목표

LiDAR 센서를 활용한 3차원 가상 공간 생성 시스템 구축

- Raspberry Pi를 기반으로 한 데이터 수집 카트 제작
- 카트 움직임이 반영된 포인트 클라우드를 SLAM으로 처리하여 3차원 지도 생성
- Python을 이용하여 3차원 지도의 포인트 클라우드를 Rectangles로 변환
- Unity를 이용하여 Rectangle을 Cube로 변환하고 렌더링
- 공간과 장애물을 구분하여 장애물 렌더링 여부를 인터페이스를 통하여 On Off

시스템 구성도

연구 과정

데이터 수집

LiDAR로 수집한 포인트 클라우드와 9축 센서, 키보드 조작 값을 SLAM에서 처리하여 3차원 지도 생성

Rectangle 추출 (a) 포인트 클라우드 전처리 (b) 포인트 그룹화

Rectangle 추출 과정

가상 공간 구현

Unity에서 Rectangle들을 이용해 공간과 장애물을 구분, Cube로 변환하여 3차원으로 구현

연구 결과

(장애물을 코너에 배치)

(c) Rectangle 변환

(장애물을 벽에 배치)

(d) Rectangle 합병

3번 케이스 (장애물을 중앙에 배치)

◀ 실제 공간과 가상 공간을 표현한 평면도 (반투명 검정색 – 실제 공간 / 그 외 – 가상 공간)

	1번 케이스	2번 케이스	3번 케이스
공간 길이	10.13	1.20	12.43
장애물 길이	7.77	36.02	24.35
장애물 중심 좌표	11.11	8.59	19.51
총 오차 평균	9.49	16.10	18.67

오차 백분율 평균(%)

결과 분석 ■ 이동 거리가 늘어남에 따라 데이터 수집 중 왜곡이 크게 발생하여 총 오차 평균도 증가하는 모양을 보임

개선 방향 ■ 자체 센서가 부착된 LiDAR 센서 사용, CNN 등의 오차 극복을 위한 새로운 해결책 도입