VE401 Probabilistic Methods in Eng. RC 5

CHEN Xiwen

UM-SJTU Joint Institute

April 7, 2020

Table of contents

Hypothesis Tests

Fisher's Null Hypothesis Test Neyman-Pearson Decision Theory

Test for Statistics

Fisher's Null Hypothesis Test

Neyman-Pearson Decision Theory

Test for Statistics

Fisher's Null Hypothesis Test

Overview.

- 1. Set up a *null hypothesis* H_0 that compares a population parameter θ to a given null value θ_0 .
 - \vdash $H_0: \theta = \theta_0$,
 - \vdash $H_0: \theta \leq \theta_0$,
 - $H_0: \theta \geq \theta_0.$
- Try to reject the null hypothesis by finding an upper bound (significance or P-value) of probability of obtaining the data or more extreme data (based on the null hypothesis), given that the null hypothesis is true.

$$P[D|H_0] \leq P - \text{valur}.$$

- 3. We either
 - ightharpoonup fail to reject H_0 or
 - reject H_0 at the [p-value] level of significance.

One-tailed Test

Null hypothesis.

$$H_0: \theta \leq \theta_0$$
 or $H_0: \theta \geq \theta_0$.

Test for mean. Suppose the sample mean \overline{X} follows a normal distribution with mean μ .

Two-tailed Test

Null hypothesis.

$$H_0: \theta = \theta_0.$$

Test for mean. Suppose the sample mean \overline{X} follows a normal distribution with mean μ .

Fisher's Null Hypothesis Test

Example.

Fisher's Null Hypothesis Test

Neyman-Pearson Decision Theory

Test for Statistics

Neyman-Pearson Decision Theory

Overview.

- 1. Set up a *null hypothesis* H_0 and an *alternative hypothesis* H_1 .
- 2. Determine a desirable α and β , where
 - $ightharpoonup \alpha := P[\text{accept } H_1|H_0 \text{ true}], \text{ and}$
- 3. Use α and β to determine the appropriate sample size n. \triangle
- 4. Use α and n to determine the critical region. \triangle
- 5. Obtain sample statistics, and reject H_0 at significance level α and accept H_1 if the test statistic falls into critical region. Otherwise, accept H_0 .

Special case. Suppose the sample mean \overline{X} follows a normal distribution with unknown mean μ and known variance σ^2 , and we have hypothesis

$$H_0: \mu = \mu_0, \qquad H_1: |\mu - \mu_0| \ge \delta_0.$$

Relation between α , β δ , σ and n. With true mean $\mu=\mu_0+\delta$, the test statistic $Z=\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\sim N(\delta\sqrt{n}/\sigma,1)$.

$$\begin{split} P[\text{fail to reject } H_0 | \mu = \mu_0 + \delta] &= \frac{1}{\sqrt{2\pi}} \int_{-z_{\alpha/2}}^{z_{\alpha/2}} e^{-(t - \delta\sqrt{n}/\sigma)^2/2} \mathrm{d}t \\ &= \frac{1}{\sqrt{2\pi}} \int_{-z_{\alpha/2} - \delta\sqrt{n}/\sigma}^{z_{\alpha/2} - \delta\sqrt{n}/\sigma} e^{-t^2/2} \mathrm{d}t \\ &\approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z_{\alpha/2} - \delta\sqrt{n}/\sigma} e^{-t^2/2} \mathrm{d}t \stackrel{!}{=} \beta, \end{split}$$

giving $-z_{\beta}=z_{\alpha/2}-\delta\sqrt{n}/\sigma$.

Special case. Suppose the sample mean \overline{X} follows a normal distribution with unknown mean μ and known variance σ^2 , and we have hypothesis

$$H_0: \mu = \mu_0, \qquad H_1: |\mu - \mu_0| \ge \delta_0.$$

Choosing the sample size n.

$$n pprox rac{(z_{lpha/2} + z_{eta})^2 \sigma^2}{\delta^2},$$

where $z_{\alpha/2}$ and z_{β} satisfies that

$$\Phi(z_{\alpha/2}) = 1 - \alpha/2, \qquad \Phi(z_{\beta}) = 1 - \beta,$$

given cumulative distribution function Φ of standard normal distribution.

Special case.

More general case: OC curve.

1. Calculate

$$d:=\frac{|\mu-\mu_0|}{\sigma}.$$

2. Look up in OC curve for sample size n.

More general case: OC curve.

(a) OC curves for different values of n for the two-sided normal test for a level of significance $\alpha = 0.05$.

More general case: OC curve.

(c) OC curves for different values of n for the one-sided normal test for a level of significance $\alpha = 0.05$.

Choosing the Critical Region

Determine the critical region using α and n. The **critical region** is chosen so that if H_0 is true, then the probability of test statistic's value falling into the critical region is no more than α .

Critical region for mean. Suppose the sample mean \overline{X} follows a normal distribution with unknown mean μ and known variance σ^2 , with $H_0: \mu = \mu_0$. Then the test statistic

$$Z = rac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim \mathsf{N}(0,1),$$

and thus the critical region is obtained from

$$\frac{|\overline{X} - \mu_0|}{\sigma/\sqrt{n}} > z_{\alpha/2}.$$

We reject H_0 at significance level α and accept H_1 if \overline{X} falls in this critical region.

Neyman-Pearson Decision Theory

Example.

Fisher's Null Hypothesis Test Neyman-Pearson Decision Theory

Test for Statistics

Fisher's Null Hypothesis Test Neyman-Pearson Decision Theory

Test for Statistics

Fisher's Null Hypothesis Test Neyman-Pearson Decision Theory

Test for Statistics

Tests for Mean, Median and Variance Inferences on Proportions

Comparing Two Means and Two Variances

Thanks for your attention!