

Time Value of Money

Course Instructor: Punita Rajpurohit Financial Management University Elective

Fundamental Principle of Finance

Cash flows occur at different points of time Comparison and aggregation of such cash flows Compounding and discounting

Time Value of Money

- +A rupee today is more valuable than a rupee a year hence
- +Why?
- +Preference for current consumption over future consumption
- +Money invested today will grow at a certain rate
- +Inflation purchasing power

Topics to be covered

- +Future value of single amount
- +Future value of annuity
- +Present value of single amount
- +Present value of annuity
- +Effective rates

Timeline

Timeline

+CF at the end of year 1 = CF at the beginning of year 2

Notation

- +PV Present Value
- +FVn Future value n years hence
- +Ct Cash flow (CF) occurring at the end of year t
- +A stream of constant periodic CF over a given time
- +r interest rate or discount rate
- +g expected growth rate in CF
- +n number of periods over which CF occurs

Future Value of Single Amount

+You invest Rs 2000 in a scheme for 3 years. The rate of interest is 10%. The interest is reinvested every year.

Year 1

2000

200

2200

Year 2

2200

220

2420

Year 3

2420

242

2662

Beginning

Interest

Ending

Future Value of Single Amount

+Process of investing money + reinvesting interest earned on it = Compounding

```
+2000(1.1)
```

$$+FVn = PV (1 + r)^n$$

 $+(1 + r)^n$ – future value interest factor / future value factor

Compound Interest and Simple Interest

- +Compound interest reinvestment of interest
- +Simple interest no reinvestment

How to calculate FVIF?

- +Multiply (1+r) n times
- +Use ^ symbol in calculator
- +Use table

Future Value of Uneven Cashflows

$$+FVn = PV (1 + r)^{n-1} + PV (1 + r)^{n-2} + ... + PV (1 + r)^{n-n}$$

Future Value of Annuity

Future Value of Annuity

Timeline for an Annuity (Future Value)

Formula for Future Value of Annuity

$$+FVA_n = A$$
 $\left(\begin{array}{c} (1+r)^n - 1 \\ r \end{array} \right)$

Present Value of a Single Amount

- +Discounting to present time
- +Discounting inverse of compounding
- $+FVn = PV (1 + r)^n$
- +Dividing both sides by $(1 + r)^n$
- $+PV = FVn [1/(1 + r)^n]$
- $+[1/(1 + r)^n]$ present value interest factor

Present Value of Uneven Cashflows

+PVn =
$$C_1/(1+r)^1 + C_2/(1+r)^2 + ... + C_n/(1+r)^n$$

Timeline for an Annuity (Present Value)

+Receive Rs 1000 annually for 4 years (at the end; r = 10%)

Intra-Year Compounding and Discounting

- $+FV_n = PV (1 + r/m)^{m*n}$
- +m = frequency of compounding

Effective Interest Rates

- + Effective interest rate =
- $(1 + stated annual interest rate/m)^m 1$
- +Continuous compounding

Effective interest rate = $e^r - 1$

- +Rs 1000 invested for a year at 12% interest
- +Annual compounding 1120
- +Semi-annual compounding 1123.6
- +[1000*0.12*0.5 =60] [1060*0.12*0.5=63.6] [1000+60+63.6=1123.6]

Compounding Frequency

Compounding Frequency	m
Annual	1
Semi-annual	2
Quarterly	4
Monthly	12
Weekly	52
Daily	365
Continuous	formula