

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Álgebra II Examen I

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2025

Asignatura Álgebra II.

Curso Académico 2017-18.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Descripción Parcial I.

Fecha Octubre de 2017.

Ejercicio 1.

- 1. Demostrar que en un grupo de orden par el número de elementos de orden 2 es impar.
- 2. Describe dos grupos de orden 6 que sean isomorfos y otros dos que no lo sean. Razona la respuesta.

Ejercicio 2. Razona cual es la respuesta correcta en cada una de las siguientes cuestiones:

- 1. Dados grupos G y H:
 - a) Si tienen el mismo orden son isomorfos.
 - b) Si son isomorfos tienen el mismo orden.
 - c) Si se pueden generar por el mismo número de elementos son isomorfos.
- 2. Elije la opción correcta:
 - a) En D_4 todos los elementos tienen orden par.
 - b) D_4 y S_4 son grupos isomorfos.
 - c) Salvo isomorfismo, D_4 es el único grupo no abeliano de orden 8.
- 3. Si $f:G\to H$ es un homomorfismo de grupos, entonces:
 - a) O(x) divide a $O(f(x)) \ \forall x \in G$.
 - b) O(f(x)) divide a $O(x) \ \forall x \in G$.
 - c) $O(x) = O(f(x)) \ \forall x \in G$.
- 4. Dadas las permutaciones $\alpha = (236)(657134), \beta = (2473) \in S_{10}$ se tiene que $\beta \alpha \beta^{-1}$:
 - a) Es par.
 - b) Su orden es 12.
 - c) Es un ciclo de longitud 7.
- 5. Si μ_6 denota el grupo de las raíces sextas de la unidad, entonces:
 - a) $\mu_6 \cong C_6$.
 - b) $\mu_6 \cong S_3$.
 - c) $\mu_6 \cong D_6$.
- 6. En S_4 se tiene que:
 - a) $\{(12), (34)\}$ es un conjunto de generadores.
 - b) $\{(1234)\}$ es un conjunto de generadores.
 - c) $\{(12), (23), (34)\}$ es un conjunto de generadores.
- 7. Sea G un grupo y $f: G \to G$ la aplicación dada por $f(x) = x^{-1}$. Entonces:

- a) f es un homomorfismo de grupos.
- b) f es un automorfismo.
- c) Si f es un homomorfismo entonces G es abeliano.
- 8. Para cualquier permutación $\sigma \in S_n$, si $\varepsilon(\sigma)$ denota su signo o paridad, se tiene:
 - a) $\varepsilon(\sigma) = \varepsilon(\sigma^{-1})$.
 - $b) \ \varepsilon(\sigma) = -\varepsilon(\sigma^{-1}).$
 - c) Ninguna de las anteriores.
- 9. Cualquier permutación $\sigma \in S_n$:
 - a) Se descompone de forma única como producto de trasposiciones.
 - b) Es producto de trasposiciones.
 - c) Se descompone de forma única como producto de trasposiciones disjuntas.
- 10. El grupo $GL_2(\mathbb{Z}_2)$ de matrices invertibles 2×2 con entradas en \mathbb{Z}_2 :
 - a) Es un grupo no abeliano de orden 8.
 - b) Es un grupo isomorfo a Z_6 .
 - c) Es un grupo isomorfo a S_3 .

Ejercicio 1.

1. Demostrar que en un grupo de orden par el número de elementos de orden 2 es impar.

En primer lugar, dado un grupo arbitrario G y fijado $k \in \mathbb{N}$, se define el conjunto siguiente:

$$G_k = \{ x \in G \mid O(x) = k \}$$

Sabemos que $G_1 = \{1\}$. Ahora, vamos a ver que el orden de G_k para todo $k \ge 3$ es par. Dado $x \in G$ con O(x) = k, entonces $O(x^{-1}) = k$ y $x^{-1} = x^{k-1}$. Para $k \ge 3$, se tiene además que $x \ne x^{-1}$. Por tanto, para cada $x \in G_k$ con $k \ge 3$, se tiene que $x \ne x^{-1}$ y $x^{-1} \in G_k$, por lo que los elementos de G_k van por pares y, por tanto, $|G_k|$ es par.

Supongamos ahora nuestra hipótesis, G un grupo de orden par (en particular, finito). Por tanto, todo elemento de G tiene orden finito y G se descompone en grupos disjuntos como sigue:

$$G = \bigcup_{k=1}^{\infty} G_k = \{1\} \cup G_2 \cup \left(\bigcup_{k=3}^{\infty} G_k\right)$$

Considerando cardinales, puesto que son disjuntos, se tiene que:

$$|G_2| = |G| - 1 - \sum_{k=3}^{\infty} |G_k|$$

Como |G| es par y $|G_k|$ es par para todo $k \ge 3$, se tiene que $|G_2|$ es impar. Por tanto, el número de elementos de orden 2 en un grupo de orden par es impar.

2. Describe dos grupos de orden 6 que sean isomorfos y otros dos que no lo sean. Razona la respuesta.

En un ejercicio, vimos que todo grupo de orden 6 o es cíclico o es isomorfo a D_3 . Consideramos por tanto los grupos siguientes:

$$C_6 \ncong D_3 \cong S_3$$

Sabemos que C_6 es conmutativo y S_3 no, por lo que $C_6 \ncong S_3$ y por tanto $D_3 \cong S_3$.

Ejercicio 2. Razona cual es la respuesta correcta en cada una de las siguientes cuestiones:

- 1. Dados grupos G y H:
 - a) Si tienen el mismo orden son isomorfos. No es correcta, pues $D_3 \ncong C_6$ y ambos tienen orden 6.

- b) Si son isomorfos tienen el mismo orden. Correcta, pues si todo isomorfismo en particular es una biyección. Por tanto, si $G \cong H$ entonces |G| = |H|.
- c) Si se pueden generar por el mismo número de elementos son isomorfos. No es correcta, pues $D_3 \ncong D_4$ y ambos se generan por dos elementos.

Por tanto, la opción correcta es la b).

- 2. Elije la opción correcta:
 - a) En D_4 todos los elementos tienen orden par. Sabemos que O(1) = 1, luego es incorrecta.
 - b) D_4 y S_4 son grupos isomorfos. Falso, pues $|D_4| = 8 \neq 24 = |S_4|$.
 - c) Salvo isomorfismo, D_4 es el único grupo no abeliano de orden 8. Consideramos el grupo de los cuaternios Q_2 . Tenemos que:

$$ij = k \neq -k = ji$$

Por tanto, Q_2 no es abeliano, y $|Q_2| = 8$. Veamos que no es isomorfo a D_4 . Los órdenes de los elementos de Q_2 son:

$$O(1) = 1$$
, $O(-1) = 2$, $O(\pm i) = O(\pm j) = O(\pm k) = 4$

Los órdenes de los elementos de D_4 son:

$$O(1) = 1$$
, $O(r) = O(r^3) = 4$
 $O(r^2) = O(s) = O(sr) = O(sr^2) = O(sr^3) = 2$

Por tanto, $Q_2 \ncong D_4$ y ambos son no abelianos y de orden 8. Por tanto, es incorrecta.

Por tanto, no hay ninguna opción correcta.

- 3. Si $f: G \to H$ es un homomorfismo de grupos, entonces:
 - a) O(x) divide a $O(f(x)) \ \forall x \in G$.
 - b) O(f(x)) divide a $O(x) \ \forall x \in G$.
 - c) $O(x) = O(f(x)) \ \forall x \in G$.
- 4. Dadas las permutaciones $\alpha = (2\,3\,6)(6\,5\,7\,1\,3\,4), \ \beta = (2\,4\,7\,3) \in S_{10}$ se tiene que $\beta\alpha\beta^{-1}$:
 - a) Es par.
 - b) Su orden es 12.
 - c) Es un ciclo de longitud 7.
- 5. Si μ_6 denota el grupo de las raíces sextas de la unidad, entonces:

- a) $\mu_6 \cong C_6$.
- b) $\mu_6 \cong S_3$.
- c) $\mu_6 \cong D_6$.
- 6. En S_4 se tiene que:
 - a) $\{(12), (34)\}$ es un conjunto de generadores.
 - b) $\{(1\,2\,3\,4)\}$ es un conjunto de generadores.
 - c) $\{(12), (23), (34)\}$ es un conjunto de generadores.
- 7. Sea G un grupo y $f:G\to G$ la aplicación dada por $f(x)=x^{-1}.$ Entonces:
 - a) f es un homomorfismo de grupos.
 - b) f es un automorfismo.
 - c) Si f es un homomorfismo entonces G es abeliano.
- 8. Para cualquier permutación $\sigma \in S_n$, si $\varepsilon(\sigma)$ denota su signo o paridad, se tiene:
 - a) $\varepsilon(\sigma) = \varepsilon(\sigma^{-1})$.
 - b) $\varepsilon(\sigma) = -\varepsilon(\sigma^{-1}).$
 - c) Ninguna de las anteriores.
- 9. Cualquier permutación $\sigma \in S_n$:
 - a) Se descompone de forma única como producto de trasposiciones.
 - b) Es producto de trasposiciones.
 - c) Se descompone de forma única como producto de trasposiciones disjuntas.
- 10. El grupo $GL_2(\mathbb{Z}_2)$ de matrices invertibles 2×2 con entradas en \mathbb{Z}_2 :
 - a) Es un grupo no abeliano de orden 8.
 - b) Es un grupo isomorfo a Z_6 .
 - c) Es un grupo isomorfo a S_3 .