CART-KLASSIFIKATOR

PATTERN MATCHING & MACHINE LEARNING

F. Freter, E. Kirchberger, S. Symhoven & J. Wustl

SOMMERSEMESTER 2023

8. MAI 2023

Hochschule München University of Applied Sciences Fakultät für Informatik und Mathematik

INHALT

- 1 Training und Aufbau des Baumes
- 2 Bewertungsmaße für einen Split
- 3 Overfitting und Pruning
- 4 Vor- und Nachteile
- 5 Verbesserungsmöglichkeiten & Ausblick

CART: CLASSIFICATION AND REGRESSION TREES

CART-Algorithmen: sind Binary-Decisson Tree Verfahren, welches für Klassifizierung (kategorisch) und Regression (kontinuierlich) verwendet werden kann.

Classification Trees

Im Folgenden fokussieren wir uns auf die **Classification Trees**.

AUFBAU EINES CLASSIFICATION TREES

- Root Node: Startpunkt, enthält alle Daten und startet die Unterteilung (basierend auf Merkmalen mit Informationsgewinn).
- Decision Node: Teilt Daten weiter auf (basierend auf übrigen Merkmalen).
- Leaf Node: Endpunkte repräsentieren finale Vorhersagen (basierend auf Merkmalen des gegebenen Datenpunkts. Hier sind keine weiteren sinnvollen Teilungen mehr möglich).

Abbildung: Decision Tree [1]

AUFBAU EINES CLASSIFICATION TREES

- Root Node: Startpunkt, enthält alle Daten und startet die Unterteilung (basierend auf Merkmalen mit Informationsgewinn).
- Decision Node: Teilt Daten weiter auf (basierend auf übrigen Merkmalen).
- Leaf Node: Endpunkte repräsentieren finale Vorhersagen (basierend auf Merkmalen des gegebenen Datenpunkts. Hier sind keine weiteren sinnvollen Teilungen mehr möglich).

Abbildung: Decision Tree [1]

Ziel

Optimale Vorhersagen auf Basis von Eingangsmerkmalen.

ALLGEMEINE STRATEGIE

Allgemeine Strategie: Eingangsdaten werden in P disjunkte Regionen R_1, \ldots, R_P aufgeteilt. wobei jede Region R_p eine Entscheidungsklasse Y_p repräsentiert. **Binary Splitting**, Beispiel: $x_i <= a$

Trainings Methode:

- Aufteilung des Ausgangsraums R in R₁ und R₂
- Suche nach der besten Aufteilung für R₁ und R₂
- Wiederhole für alle erzeugten Regionen

Abbildung: Rekursive Teilung [3]

VORGEHEN BEI KLASSIFIKATION

Um ein neues Sample x zu klassifizieren:

- Test der Attribute von x um die zutreffende Region zu finden für die Klassenverteilung $n_{\mathcal{R}} = (n_{c_1, \mathcal{R}}, \dots, n_{c_k, \mathcal{R}})$ für $C = \{c_1, \dots, c_k\}.$
- Die Wahrscheinlichkeit das ein Punkt $X \in \mathcal{R}$ zu einer Gruppe gehört, ist definiert durch

$$p(y=c|\mathcal{R}) = \frac{n_c, \mathcal{R}}{\sum_{c_i \in C} n_{c_i}, \mathcal{R}}.$$

■ Ein neues Sample bekommt die Zuteilung welche am häufigsten in der jeweiligen Region ist.

$$\hat{y} = \underset{c}{\text{arg max}} p(y = c|x) = \underset{c}{\text{arg max}} p(y = c|\mathcal{R}) = \underset{c}{\text{arg max}} n_{c,\mathcal{R}}$$

VORGEHEN BEI KLASSIFIKATION

Abbildung: Training- und Validation Set [2]

- Teile das Datenset in ein Lern- und ein Test-Set eingeteilt.
- Das Lern-Set wird zusätzlich in ein Training- und Validierungs-Set gesplittet.
- Baue Klassifkationsbaum auf Trainingsmenge \mathcal{D}_T und führe Klassifizierung auf Validierungsmenge durch.
- Vergleiche tatsächliche Klassen mit vorhergesagten Klassen und wähle den Baum mit der besten Performance.
- Messe finale Performance auf dem Test-Set.

BEWERTUNGSMASSE: GINI-INDEX, INFORMATIONSGE-WINN & MISSCLASSIFICATION ERROR

■ Gini-Index

- ► Maß der Unreinheit einer Gruppe
- \blacktriangleright $i_G(t) = 1 \sum_{i=1}^k \pi_i^2$, wobei π_i die Wkt. der Klasse i ist.
- ► **Ziel**: Minimierung des gewichteten Gini-Indexes.

■ Informationsgewinn: Entropy

- ► Reduktion der Entropie durch den Split
- ► $IG = H(parent) \sum_{i=1}^{m} \frac{n_i}{n} H(child_i)$, wobei H die Entropie ist.
- ► **Ziel**: Maximierung des Informationsgewinns.

■ Missclassification Error

- Der Misclassification Error (ME) ist ein Maß für die Fehlklassifizierung.
- $ightharpoonup i_E(t) = 1 \max_c p(y = c|t)$
- ► ME kann als Bewertungsmaß für die Baumkonstruktion verwendet werden.

GINI-INDEX

Misst, wie oft eine zufällig ausgewählte Instanz falsch klassifiziert würde, wenn sie gemäß der Klassenverteilung zufällig klassifiziert wird.

- Die Gini-Unreinheit ist ein Wert zwischen o (vollständig rein, alle Elemente gehören zur gleichen Klasse) und 1 (maximal unrein, gleichmäßige Verteilung der Klassen).
- Die Gini-Unreinheit für einen Knoten t mit K Klassen kann wie folgt berechnet werden:

$$i_G(t) = \sum_{c_i \in C} \underbrace{\pi_{c_i}}_{ \mbox{Wahrscheinlichkeit, ein Element auszuwählen}} \cdot \underbrace{(1 - \pi_{c_i})}_{ \mbox{Wahrscheinlichkeit, dass es falsch klassifiziert wird}}$$

8 | 1

DER BESTE SPLIT

Problem: Wie finde ich den besten Split?

Direkte Optimierung ist schwer umsetzbar, da die iterative Überprüfung aller Bäume bei komplexeren Daten schnell explodiert.

Mögliche Lösung:

Greedy Heuristic: Bei jedem Schritt wird die aktuell optimale Entscheidung getroffen

GREEDY HEURISTIC

Hierbei wird eine Node aufgeteilt, wenn sie den Misclassification Error (ME) i_E an Node t verbessert.

$$i_E(t) = 1 - \max_c p(y = c|t)$$

Die Verbesserung bei Durchführung eines Splitts s von t zu t_R und t_L für $i(t) = i_E(t)$ ist wie folgt definiert:

$$\Delta i(s,t) = i(t) - p_L \cdot i(t_L) - p_R \cdot i(t_R)$$

PROBLEME MIT MISCLASSIFICATION ERROR

Problem 1: Kein Splitt durchgeführt bei $i_E(t) = \frac{40}{200}$, obwohl verbesserte Klassifikation möglich, durch Kombination von Tests.

$$x_1 \le 5 : p_L \cdot i_E(t_L) - p_R \cdot i_E(t_R) = \frac{40}{200}$$

 $x_2 \le 3 : p_L \cdot i_E(t_L) - p_R \cdot i_E(t_R) = \frac{40}{200}$

Problem 2: Schlechte Sensitivität zur Veränderung der Klassenwahrscheinlichkeiten. Verteilung vor Split: (400, 400)

Split
$$a: \{(100, 300), (300, 100)\} \rightarrow i_E(t, a) = 0.25$$

Split $b: \{(200, 400), (200, 0)\} \rightarrow i_E(t, b) = 0.25$

Lösung: Ein Kriterium welches als Maß für die Reinheit der Klassenverteilung an Node *t* verwendet werden kann.

OVERFITTING UND PRUNING

OVERFITTING IN DECISION TREES

Daten werden rekursiv aufgeteilt und lassen den DT dadurch wachsen. Wann sollte man das Wachstum stoppen um overfitting zu vermeiden?

Mögliche Stop- (oder Pruning-) Kriterien:

- Verteilung im Ast ist rein, d.h. i(t) = o
- Maximale Tiefe erreicht
- Anzahl der Proben in jedem Ast unterhalb eines bestimmten Schwellenwerts t_n
- Nutzen der Aufteilung ist unterhalb eines bestimmten Schwellenwerts $\Delta i(s,t) < t\Delta$
- Genauigkeit auf dem Validierungsset
- **Ziel**: Erstellung eines Modells, das gut auf neue, ungesehene Daten verallgemeinert und somit Overfitting vermeidet.

PRUNING METHODS

Alternativ kann der Baum zunächst vollständig wachsen und anschließend beschnitten werden (**Post-Pruning**).

Verschiede Pruning-Methoden:

- Reduced Error Pruning
- Minimum Description Length Pruning
- Cost-Complexity Pruning

COST-COMPLEXITY PRUNING

- **Ziel**: Verhindern von Overfitting durch Entfernen von Zweigen, die wenig zur Vorhersageleistung beitragen
- **Kostenkomplexitätspruning**: Gleichgewicht zwischen Baumgröße und Trainingsfehler
- **■** Kostenkomplexitätskriterium:

$$C_{\alpha}(T) = C(T) + \alpha |T|$$
, mit

- ightharpoonup C(T) ist der Misclassification Error des Baumes T.
- ightharpoonup |T| ist die Anzahl der terminalen Knoten des Baumes T.
- lacktriangle α ist ein Komplexitätsparameter, der die Präferenz zwischen Baumgröße und Trainingsfehler steuert.
- Durch Variieren von α kann eine Sequenz optimaler Bäume ermittelt werden.
- Kreuzvalidierung kann verwendet werden, um den optimalen Wert von α zu bestimmen.

VOR- UND NACHTEILE

Vorteile:

- leicht zu trainieren
- leicht zu interpretieren
- einfach zu visualisieren
- können mit verschiedenen Prädiktoren umgehen → keine Dummies erforderlich

Nachteile:

- nicht die besten Lerner
- reagieren empfindlich auf sich ändernde Trainingsdaten
- werden von den oben genannten Splits dominiert → erster Split beeinflusst stark die Form des gesamten Baums

VERBESSERUNGSMÖGLICHKEITEN

AUSBLICK

- **Stacking**: Ensemble-Lern-Technik. Mehrere CART-Modelle kombiniert werden. Ausgaben der einzelnen Modelle werden als Eingabe für ein Meta-Modell verwendet.
- Bayesian Model Averaging: Modellselektion. Mehrere Modelle auf der Grundlage von Bayes'schen Wahrscheinlichkeiten kombiniert werden.
- Bagging: Ensemble-Lern-Technik. Mehrere CART-Modelle werden auf unterschiedlichen Stichproben der Daten trainiert.
- Random Forests: Ensemble-Lern-Modell. Besteht aus vielen unkorrelierten Entscheidungsbäumen, die auf zufälligen Untergruppen der Daten trainiert werden.
- **Boosting**: Ensemble-Lern-Technik. Sequentielle Anordnung von schwachen CART-Modellen, wobei jeder Baum versucht, die Fehler des vorherigen Baums zu korrigieren.

REFERENCES I

- PROF. DR. STEPHAN GÜNNEMANN.

 MACHINE LEARNING. LECTURE 2: DECISION TREES, 2021.
- TREVOR HASTIE, ROBERT TIBSHIRANI, AND JEROME FRIEDMAN.
 THE ELEMENTS OF STATISTICAL LEARNING, 2009.

FRAGEN, KRITIK ODER ANREGUNGEN?