$$\frac{3}{2}$$
 $\frac{1}{2}$ $\frac{1$

故而在类似于气液相变的分为
由 競斯丰等面积公式,可得
作设相变点 压诺为
$$P'$$
, \mathbb{Q}

$$=\int_{V_1'} \left[a(v-u)^3 - b(v-u) + c+\rho_0 - \rho'\right] dv$$

$$=\left(\frac{a}{4}(v-u)^4 - \frac{b}{2}(v-u)^2 + \left(c+\rho_0 - \rho'\right) v\right) \Big|_{V_1'}$$

$$=0$$
其中 v_1' 与 v_2 *着P满足 $\rho'-\rho_0=a(v-u)^3-b(v-u)+c$
解得 $\int_{C} \rho'=c+\rho_0$
私记和代定例,有物体所占以行为为
 $\chi=\overline{OB}$
 \overline{CB}