Logic and Computer Design Fundamentals Chapter 2 – Combinational Logic Circuits

Part I - Gate Circuits and Boolean Equations

Yueming Wang (王跃明)

ymingwang@zju.edu.cn

2018

College of Computer Science, Zhejiang University

Qiushi Academy for Advanced Studies, Zhejiang University

Overview

- > Part 1 Gate Circuits and Boolean Equations
 - Binary Logic and Gates
 - Boolean Algebra
 - Standard Forms
- > Part 2 Circuit Optimization
 - Two-Level Optimization
 - Map Manipulation
 - Practical Optimization (Espresso)
 - Multi-Level Circuit Optimization
- > Part 3 Additional Gates and Circuits
 - Other Gate Types
 - Exclusive-OR Operator and Gates
 - High-Impedance Outputs

Binary Logic and Gates

►Binary Logic

- Binary variables
 - take on one of two values, 1 and 0
 - A, B, y, z, or X₁ for now, RESET, START_IT, or ADD1 later
- Logical operators
 - operate on binary values and binary variables.
 - Basic logical operators are the <u>logic functions</u> AND, OR and NOT.

Logic gates

- implement logic functions.
- Basic circuits

Boolean Algebra

- a useful mathematical system for specifying and transforming logic functions.
- ➤ We study Boolean algebra as a foundation for designing and analyzing digital systems!

Logical Operations

- > The three basic logical operations are:
 - -AND
 - -OR
 - -NOT
- \triangleright AND is denoted by a dot (·), \times , \wedge , or even none.
- \triangleright OR is denoted by a plus (+) or \vee ,.
- ➤ NOT is denoted by an overbar (¯), a single quote mark (') after, or (~) before the variable.

Logical Operations

- > AND: Z = X × Y is read "Z is equal to X AND Y."
 - Z = 1 if and only if X = 1 and Y = 1; otherwise Z = 0;
- OR: Z = X + Y is read "Z is equal to X OR Y." Z = 1 if X = 1 or if Y = 1, or if both X = 1 and Y = 1; Z = 0 if and only is X = 0 and Y = 0;
- NOT: $Z = \overline{X}$ is read "Z is equal to NOT X." If X = 1, Z = 0; but if X = 0, then Z = 1

Operator Definitions

Operations are defined on the values "0" and "1" for each operator:

AND	OR	NOT
$0 \cdot 0 = 0$	0+0=0	$\bar{0} = 1$
$0\cdot 1=0$	0 + 1 = 1	$\overline{1} = 0$
$1 \cdot 0 = 0$	1 + 0 = 1	
$1 \cdot 1 = 1$	1 + 1 = 1	

Note: The statement:

1 + 1 = 2 (read "one plus one equals two")

is not the same as

1 + 1 = 1 (read "1 or 1 equals 1").

Truth Tables

- ➤ <u>Truth table</u> a tabular listing of the values of a function for all possible combinations of values on its arguments
- **Example:** Truth tables for the basic logic operations:

AND		
X	Y	$Z = X \cdot Y$
0	0	0
0	1	0
1	0	0
1	1	1

OR		
X	Y	Z = X+Y
0	0	0
0	1	1
1	0	1
1	1	1

NOT		
X	$Z = \overline{X}$	
0	1	
1	0	

Logic Function Implementation

- **➤ Using Switches**
 - For inputs:
 - logic 1 is switch closed
 - logic 0 is switch open
 - For outputs:
 - logic 1 is <u>light on</u>
 - logic 0 is <u>light off</u>.
 - NOT uses a switch such
 - that:
 - logic 1 is switch open
 - logic 0 is switch closed

Switches in parallel => OR

Switches in series => AND

Normally-closed switch => NOT

Logic Function Implementation (Continued)

Example: Logic Using Switches

Light is on (L = 1) for L(A, B, C, D) = A((BC) + D) = ABC + ADand off (L = 0), otherwise.

Logic Gates

- ➤ In the earliest computers, switches were opened and closed by magnetic fields produced by energizing coils in *relays*. The switches in turn opened and closed the current paths.
- Later, vacuum tubes that open and close current paths electronically replaced relays.
- Today, *transistors* are used as electronic switches that open and close current paths.
- ➤ Optional: Chapter 6 Part 1: The Design Space

Logic Gate Symbols and Behavior

> Logic gates have special symbols:

(a) Graphic symbols

Gate Delay

- ➤ In actual physical gates, if one or more input changes causes the output to change, the output change does not occur instantaneously.
- The delay between an input change(s) and the resulting output change is the *gate delay* denoted by t_G :

NOT AND (NAND)

True and False

$oxedsymbol{A}$	В	L
F	F	T
T	F	T
F	T	T
T	T	F

1 and 0

A	В	L
0	0	1
1	0	1
0	1	1
1	1	0

$$C$$
 D
 $L=\overline{CD}$

NOT OR (NOR)

True and False

A	В	L
F	F	T
T	F	F
F	T	F
T	T	F

1 and 0

A	В	L
0	0	1
1	0	0
0	1	0
1	1	0

$$\begin{array}{c} C \\ D \end{array}$$

AND-OR-INVERT (AOI)

W	X	Y	Z	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Exclusive-OR (XOR)

True and False

A	В	L
F	F	F
T	F	T
F	T	Т
T	T	F

$$\stackrel{A}{=} = - L = A \oplus B$$

1 and 0

A	В	L
0	0	0
1	0	1
0	1	1
1	1	0

$$\begin{array}{c}
A \\
B
\end{array}$$

$$\begin{array}{c}
L = A \oplus B
\end{array}$$

Eight Identities of XOR

$$X \oplus 0 = X$$

$$X \oplus 1 = X$$

$$X \oplus X = 0$$

$$X \oplus X = 1$$

$$X \oplus \overline{Y} = \overline{X \oplus Y}$$

$$\overline{X} \oplus Y = \overline{X \oplus Y}$$

$$X \oplus Y = Y \oplus X$$

$$(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z) = X \oplus Y \oplus Z$$

$$X \oplus Y = X\overline{Y} + \overline{X}Y$$

Exclusive-NOR (XNOR)

True and False

A	В	L
F	F	T
T	F	F
F	T	F
T	T	T

$$A \longrightarrow L = A \oplus B$$

$$_{\mathbf{B}}^{\mathbf{A}} = \mathbf{O} - \mathbf{L} = \mathbf{A} \mathbf{O} \mathbf{B}$$

1 and 0

A	В	L
0	0	1
1	0	0
0	1	0
1	1	1

$$\begin{array}{c} A \\ B \end{array} \longrightarrow \begin{array}{c} L = A \oplus B \end{array}$$

Multiple-input gates

OR:
$$\begin{array}{c} A \\ B \\ C \end{array}$$

Boolean Algebra

- ➤ deals with binary variables and logic operations (AND, OR, NOT etc.).
- A Boolean expression is an algebraic expression formed by (Example: $(A + C) \cdot B + 0$)
 - binary variables
 - Constants 1 or 0
 - Logic operation symbols
- A Boolean function is a Boolean equation consisting of Example: $F = (A + C) \cdot B + 0$ or $F(A, B, C) = (A + C) \cdot B + 0$
 - a binary variables
 - − a "="

Boolean Function/Equation

Truth Table

XYZ	$F = X + \overline{Y} \times Z$
000	0
001	1
010	0
011	0
100	1
101	1
110	1
111	1

Equation

$$F = X + \overline{Y} Z$$

Logic Diagram

- > The output of Boolean functions can be single or multiple.
- ➤ Boolean equations, truth tables and logic diagrams describe the same function!
- > Truth tables are unique; expressions and logic diagrams are not. This gives flexibility in implementing functions.

Boolean Operator Precedence

- The order of evaluation in a Boolean expression is:
 - 1. Parentheses
 - 2. NOT
 - 3. AND
 - 4. OR
- Consequence: Parentheses appear around OR expressions
- \triangleright Example: $F = A(B + C)(\overline{C} + D)$

Boolean Algebra

An algebraic structure defined on a set of at least two elements, together with three binary operators (denoted +, · and) that satisfies the following basic identities:

$$1. \quad X + 0 = X$$

3.
$$X + 1 = 1$$

$$5. \quad X + X = X$$

7.
$$X + \overline{X} = 1$$

9.
$$\overline{X} = X$$

$$2. \quad X \cdot 1 = X$$

4.
$$X \cdot 0 = 0$$

6.
$$X \cdot X = X$$

8.
$$X \cdot \overline{X} = 0$$

10.
$$X + Y = Y + X$$

12.
$$(X + Y) + Z = X + (Y + Z)$$

$$14. \quad X(Y + Z) = XY + XZ$$

16.
$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$

11.
$$XY = YX$$

13.
$$(XY)$$
 $Z = X(Y Z)$

15.
$$X + YZ = (X + Y) (X + Z)$$

17.
$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Property of Duality of Boolean algebra

➤ The <u>dual</u> of an algebraic expression is obtained by interchanging + and · , and replacing 0s by 1s and 1 by 0.

```
Example: F = (A + C) \cdot B + 0
dual F = (A \cdot C + B) \cdot 1 = A \cdot C + B
Example: G = X \cdot Y + (\overline{W + Z})
dual G = ((X+Y) \cdot (\overline{W \cdot Z})) = ((X+Y) \cdot (W + Z))
```

- > Note the order of evaluation, add () if necessary
- > If F is the dual of G, then G is also the dual of F
- ➤ If F=G, then their duals are also equal.

Property of Duality of Boolean algebra

- > Unless it happens to be self-dual, the dual of an expression does not equal the expression itself.
- > Self-dual

Example:
$$\mathbf{H} = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C}$$

dual $\mathbf{H} = (\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C})(\mathbf{B} + \mathbf{C})$
 $= (\mathbf{A} + \mathbf{BC})(\mathbf{B} + \mathbf{C}) = \mathbf{AB} + \mathbf{AC} + \mathbf{BC}.$

So H is self-dual!

Complementing Functions

- ➤ Use DeMorgan's Theorem to complement a function:
 - 1. Interchange AND and OR operators
 - 2. Complement each constant value and literal
- Example: Complement $F = \overline{X} \overline{Y} \overline{Z} + X \overline{Y} \overline{Z}$ $\overline{F} = (x + \overline{y} + z)(\overline{x} + y + z)$
- Example: Complement $G = (\overline{a} + bc)\overline{d} + e$ $\overline{G} = ((a(\overline{b} + \overline{c})) + d)\overline{e} = (a(\overline{b} + \overline{c}) + d)\overline{e}$
- ➤ Difference between it and Dual?
 - Without complementing variable in dual

Other Useful Theorems

>
$$x \times y + \overline{x} \times y = y$$
 $(x + y)(\overline{x} + y) = y$ Minimization
> $x + x \cdot y = x$ $x \cdot (x + y) = x$ Absorption
> $x + \overline{x} \times y = x + y$ $x \times (\overline{x} + y) = x \times y$ Simplification
> $x \times y + \overline{x} \times z + y \times z = x \times y + \overline{x} \times z$ Consensus
 $(x + y) \times (\overline{x} + z) \times (y + z) = (x + y) \times (\overline{x} + z)$

 $\overline{\mathbf{x}} \times \overline{\mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$

DeMorgan's Laws

 $\Rightarrow \overline{\mathbf{x} + \mathbf{v}} = \overline{\mathbf{x}} \times \overline{\mathbf{v}}$

Proof of Absorption Theorem

$$\triangleright$$
 A + A · B = A(Absorption Theorem)Proof StepsJustification (identity or theorem)A + A · BX = X · 1= A · (1 + B)X = X · 1= A · (1 + B)X · Y + X · Z = X · (Y + Z)(Distributive Law)= A · 11 + X = 1= AX · 1 = X

> Compute the dual on both sides, the equation is equal either

$$\mathbf{A} \cdot (\mathbf{A} + \mathbf{B}) = \mathbf{A}$$

Proof of Minimization Theorem

> Compute the dual on both sides, the equation is equal either

$$(A+B)\cdot (A+\overline{B}) = A$$

Proof of Simplification Theorem

> Compute the dual on both sides, the equation is equal either

$$A(\overline{A}+B) = AB$$

Proof of Consensus Theorem

```
> AB + AC + BC = AB + AC (Consensus Theorem)
Proof Steps Justification (identity or theorem)
  AB + \overline{AC} + BC
= AB + AC + 1 \cdot BC
                                           ? \quad 1 \cdot X = X
= AB + AC + (A + A) \cdot BC
                                          Y + X' = 1
= AB + A'C + ABC + A'BC
                                  X(Y + Z) = XY + XZ (Distributive Law)
 = AB + ABC + A'C + A'BC X + Y = Y + X (Commutative Law)
 = AB \cdot 1 + ABC + A'C \cdot 1 + A'C \cdot B
                             X \cdot 1 = X, X \cdot Y = Y \cdot X (Commutative Law)
 = AB (1 + C) + A'C (1 + B) X(Y + Z) = XY + XZ (Distributive Law)
 = AB \cdot 1 + A'C \cdot 1 = AB + A'C \times X \cdot 1 = X
```

Proof of the 15th basic identity

➤ Using the absorption theorem

$$X + XY = X$$

- > X + YZ = (X+Y)(X+Z)
 - From the right side

$$(X+Y)(X+Z) = X+XY+XZ+YZ$$
$$= X + XZ + YZ$$
$$= X + YZ$$

Proof of DeMorgan's Laws

$$\overline{x + y} = \overline{x} \times \overline{y}$$

$$\overline{x \times y} = \overline{x} + \overline{y}$$

To show this we need to show that A + B = 1 and $A \cdot B = 0$ with A = x + y and $B = x' \cdot y'$. This proves that $x' \cdot y' = (x + y)'$.

```
Part 1: Show x + y + x' \cdot y' = 1.

x + y + x' \cdot y'

= (x + y + x') (x + y + y')   X + YZ = (X + Y)(X + Z) (Distributive Law)

= (x + x' + y) (x + y + y')   X + Y = Y + X (Commutative Law)

= (1 + y)(x + 1)   X + X' = 1

= 1 \cdot 1   1 + X = 1

= 1 \cdot X = 1
```

Proof of DeMorgan's Laws

$$\overline{x + y} = \overline{x} \times \overline{y}$$

$$\overline{x \times y} = \overline{x} + \overline{y}$$

To show this we need to show that A + A' = 1 and $A \cdot A' = 0$ with A = x + y and $A' = x' \cdot y'$. This proves that $x' \cdot y' = (x + y)'$.

```
Part 2: Show (x + y) \cdot x' \cdot y' = 0.

(x + y) \cdot x' \cdot y'

= (x \cdot x' \cdot y' + y \cdot x' \cdot y')   X (Y + Z) = XY + XZ (Distributive Law)

= (x \cdot x' \cdot y' + y \cdot y' \cdot x')   XY = YX (Commutative Law)

= (0 \cdot y' + 0 \cdot x')   X \cdot X' = 0

= (0 + 0)   0 \cdot X = 0

= 0   X + 0 = X (With X = 0) The second one
```

Based on the above two parts, x'y' = (x + y)'

The second one is proved by duality.

Example: Boolean Algebraic Proofs

```
\rightarrow (X + Y)Z + XY = Y(X + Z)
Proof Steps Justification (identity or theorem)
   (X + Y)Z + XY
= X' Y' 7 + X Y'
                       (A + B)' = A' \cdot B' (DeMorgan's Law)
                       A \cdot B = B \cdot A (Commutative Law)
= Y' X' 7 + Y' X
= Y' (X' Z + X)
                       A(B + C) = AB + AC (Distributive Law)
= Y'(X' + X)(Z + X) A + BC = (A + B)(A + C) (Distributive Law)
= Y' \cdot 1 \cdot (Z + X)
                 A + A' = 1
= Y'(X + Z)
                      1 \cdot A = A, A + B = B + A (Commutative Law)
```

Expression Simplification

- Target: the smallest number of <u>literals</u> and the smallest number of terms (complemented and uncomplemented variables):
- > AND-OR forms

$$AB + \overline{A}CD + \overline{A}BD + \overline{A}C\overline{D} + ABCD$$

$$= AB + ABCD + \overline{A}CD + \overline{A}C\overline{D} + \overline{A}BD$$

$$= AB + AB(CD) + \overline{A}C(D + \overline{D}) + \overline{A}BD$$

$$= AB + \overline{A}C + \overline{A}BD = B(A + \overline{A}D) + \overline{A}C$$

= B (A + D) +
$$\overline{A}$$
 C 5 literals

Expression Simplification

>OR-AND forms

$$F = (\overline{A} + \overline{B})(\overline{A} + \overline{C} + D)(A + C)(B + \overline{C})$$

> Dual

$$F' = \overline{A}\overline{B} + \overline{A}\overline{C}D + AC + B\overline{C}$$

$$= (\overline{A}\overline{B} + B\overline{C} + \overline{A}\overline{C}D) + AC$$

$$= \overline{A}\overline{B} + B\overline{C} + AC$$

 \triangleright Dual of F' => F

$$F = F'' = (\overline{A} + \overline{B})(B + \overline{C})(A + C)$$

Example: Simplify Expression

$$L = AB + A\overline{C} + \overline{B}C + \overline{C}B + \overline{B}D + \overline{D}B + ADE(F + G)$$

$$L = A\overline{B}C + \overline{B}C + \overline{C}B + \overline{B}D + \overline{D}B + ADE(F + G) \quad \text{DeMorgan Laws}$$

$$= A + \overline{B}C + \overline{C}B + \overline{B}D + \overline{D}B + ADE(F + G) \quad A + \overline{A}B = A + B$$

$$= A + \overline{B}C + \overline{C}B + \overline{B}D + \overline{D}B \qquad A + AB = A$$

$$= A + \overline{B}C(D + \overline{D}) + \overline{C}B + \overline{B}D + \overline{D}B(C + \overline{C}) \quad A + \overline{A} = 1$$

$$= A + \overline{B}CD + \overline{B}CD + \overline{C}B + \overline{B}D + \overline{D}BC \quad \text{Distributive Laws}$$

$$= A + \overline{B}C\overline{D} + \overline{C}B + \overline{B}D + \overline{D}BC \qquad A + AB = A$$

$$= A + C\overline{D}(\overline{B} + B) + \overline{C}B + \overline{B}D$$

A + A = 1

Chapter 2 - Part 1 38

= A + CD + CB + BD

Sum of Products, Products of Sum

> Sum of products

$$F = \overline{Y} + \overline{X}Y\overline{Z} + XY$$

> Product of sums

$$F = X(\overline{Y} + Z)(X + Y + \overline{Z})$$

Overview - Canonical Forms

- > What are Canonical Forms?
- > Minterms and Maxterms
- ➤ Index Representation of Minterms and Maxterms
- > Sum-of-Minterm (SOM) Representations
- > Product-of-Maxterm (POM) Representations
- > Representation of Complements of Functions
- > Conversions between Representations

Canonical Forms

- ➤ It is useful to specify Boolean functions in a form that:
 - Allows comparison for equality.
 - Has a correspondence to the truth tables
- > Canonical Forms in common usage:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)
 - Any function can be expressed to the canonical form

Minterms

- ➤ <u>Minterms</u> are AND terms with every variable present in either true or complemented form.
- \triangleright Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n minterms for n variables.

χ	Υ	Z	Product Term	Symbol	m _o	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m_2	0	0	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m_3	0	0	0	1	0	0	0	0
1	0	0	$X\overline{Y}\overline{Z}$	m_4	0	0	0	0	1	0	0	0
1	0	1	$X\overline{Y}Z$	m_5	0	0	0	0	0	1	0	0
1	1	0	$XY\overline{Z}$	m_6	0	0	0	0	0	0	1	0
1	1	1	XYZ	m_7	0	0	0	0	0	0	0	1

Minterms

- > Complemented or uncomplemented? A literal is
 - complemented if the corresponding bit is 0
 - Uncomplemented if the corresponding bit 1
- ➤ The <u>index</u>: the decimal equivalent of the binary combination corresponding to the Minterm

χ	Υ	Z	Product Term	Symbol	m _o	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m ₂	0	0	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m_3	0	0	0	1	0	0	0	0
1	0	0	$X\overline{Y}\overline{Z}$	m_4	0	0	0	0	1	0	0	0
1	0	1	$X\overline{Y}Z$	m ₅	0	0	0	0	0	1	0	0
1	1	0	$XY\overline{Z}$	m_6	0	0	0	0	0	0	1	0
1	1	1	XYZ	m_7	0	0	0	0	0	0	0	1

Maxterms

- > <u>Maxterms</u> are OR terms with every variable in true or complemented form.
- \triangleright Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n maxterms for n variables.

χ	Υ	Z	Sum Term	Symbol	M_{o}	M_1	M_2	Мз	M_4	M_5	M_6	M ₇
0	0	0	X+Y+Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X+Y+\overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	$\overline{X} + Y + Z$	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M_7	1	1	1	1	1	1	1	0
er				•								

Maxterms

- > Complemented or uncomplemented? A literal is
 - complemented if the corresponding bit is 1
 - Uncomplemented if the corresponding bit is 0
- ➤ The <u>index</u>: the decimal equivalent of the binary combination corresponding to the Minterm

Χ	Υ	Z	Sum Term	Symbol	M_{o}	M_1	M_2	M_3	M_4	M_5	M_6	M_7
0	0	0	X+Y+Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X+Y+\overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	$\overline{X} + Y + Z$	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M_7	1	1	1	1	1	1	1	0

Minterm and Maxterm Relationship

- > Review: DeMorgan's Theorem $\overline{x \cdot y} = \overline{x} + \overline{y}$ and $\overline{x + y} = \overline{x} \times \overline{y}$
- > Two-variable example: $M_2 = \overline{x} + y$ and $m_2 = x \cdot \overline{y}$

Thus M2 is the complement of m2 and vice-versa.

- > Since DeMorgan's Theorem holds for *n* variables, the above holds for terms of *n* variables
- > giving:

 $M_i = \overline{M}_i$ and $M_i = \overline{M}_i$

Thus M_i is the complement of m_i.

Index	Minterm	Maxterm
0	<u>x</u> <u>y</u>	x + y
1	$\overline{\mathbf{x}} \mathbf{y}$	$x + \overline{y}$
2	х ӯ	$\overline{\mathbf{x}} + \mathbf{y}$
3	ху	$\overline{\mathbf{x}} + \overline{\mathbf{y}}$

Observations

- > In the function tables:
 - Each minterm has one and only one 1 present in the 2^n terms (a minimum of 1s). All other entries are 0.
 - Each <u>max</u>term has one and only one 0 present in the 2^n terms All other entries are 1 (a <u>max</u>imum of 1s).
- ➤ We can implement any function by "ORing" the minterms corresponding to "1" entries in the function table. These are called the minterms of the function.
- ➤ We can implement any function by "ANDing" the maxterms corresponding to "0" entries in the function table. These are called the maxterms of the function.
- > This gives us two <u>canonical forms</u>:
 - Sum of Minterms (SOM)
 - Product of Maxterms (POM)

for stating any Boolean function.

Sum of Minterms (SOM)

 \triangleright Example: Find $F_1 = m_1 + m_4 + m_7$

$$>$$
 F1 = \overline{x} \overline{y} z + x \overline{y} \overline{z} + x y z

хух	index	_	+	m4	+	m7	= F1
000	0	0	+	0	+	0	= 0
001	1	1	+	0	+	0	= 1
010	2	0	+	0	+	0	= 0
011	3	0	+	0	+	0	= 0
100	4	0	+	1	+	0	= 1
101	5	0	+	0	+	0	= 0
110	6	0	+	0	+	0	= 0
111	7	0	+	0	+	1	= 1

Product of Maxterms (POM)

Example: Implement F1 in maxterms:

Canonical Sum of Minterms

- > Any Boolean function can be expressed as a <u>Sum of Minterms</u>.
 - For the function table, the <u>minterms</u> used are the terms corresponding to the 1's
 - For expressions, <u>expand</u> all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term $(\mathbf{v} + \overline{\mathbf{v}})$.
- Example: Implement $f = x + \overline{x} \overline{y}$ as a sum of minterms.

First expand terms: $f = x(y + \overline{y}) + \overline{x} \overline{y}$

Then distribute terms: $f = xy + x\overline{y} + \overline{x}\overline{y}$

Express as sum of minterms: $f = m_3 + m_2 + m_0 = \Sigma_m(0, 2, 3)$

Canonical Product of Maxterms

- > Any Boolean Function can be expressed as a <u>Product of Maxterms (POM)</u>.
 - For the function table, the maxterms used are the terms corresponding to the 0's.
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law, "ORing" terms missing variable v with a term equal to \mathbf{V}_{\times} v and then applying the distributive law again.
- **Example:** Convert to product of maxterms:

$$f(x,y,z) = x + \overline{x} \overline{y}$$

Apply the distributive law:

$$x + \overline{x} \overline{y} = (x + \overline{x})(x + \overline{y}) = 1 \times (x + \overline{y}) = x + \overline{y}$$

Add missing variable z:

$$x + \overline{y} + z \times \overline{z} = (x + \overline{y} + z)(x + \overline{y} + \overline{z})$$

Express as POM:
$$f = M_2 \cdot M_3 = \Pi_M(2, 3)$$

Function Complements

- The complement of a function expressed as a sum of minterms is constructed by selecting the minterms missing in the sum-of-minterms canonical forms.
- > Alternatively, the complement of a function expressed by a Sum of Minterms form is simply the Product of Maxterms with the same indices.
- $F(x,y,z) = \Sigma_m(1,3,5,7)$ $F(x,y,z) = \Sigma_m(0,2,4,6)$ $F(x,y,z) = \Pi_M(1,3,5,7)$

Standard Forms

- > Standard Sum-of-Products (SOP) form: equations are written as an OR of AND terms
- > Standard Product-of-Sums (POS) form: equations are written as an AND of OR terms
- **Examples:**
 - SOP: A B C + \overline{A} \overline{B} C + B
 - POS: $(A + B) \cdot (A + \overline{B} + \overline{C}) \cdot C$
- > These "mixed" forms are neither SOP nor POS
 - (A B + C) (A + C)
 - ABC+AC(A+B)

Standard Sum-of-Products (SOP)

- >A sum of minterms form for *n* variables can be written down directly from a truth table.
 - Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input AND gates,
 and
 - The second level is a single OR gate (with fewer than 2^n inputs).
- This form often can be simplified so that the corresponding circuit is simpler.

Standard Sum-of-Products (SOP)

- > A Simplification Example:
- $F(A,B,C) = \Sigma m(1,4,5,6,7)$
- > Writing the minterm expression:

$$F = \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + AB \overline{C} + AB \overline{C}$$

> Simplifying:

```
\mathbf{F} = A' B' C + A (B' C' + B C' + B' C + B C)
= A' B' C + A (B' + B) (C' + C)
= A' B' C + A \cdot 1 \cdot 1
= A' B' C + A
= B'C + A
```

> Simplified F contains 3 literals compared with 15 in minterm F

SOP and POS Observations

- > The previous examples show that:
 - Canonical Forms (Sum-of-minterms, Product-of-Maxterms), or other standard forms (SOP, POS) differ in complexity
 - Boolean algebra can be used to manipulate equations into simpler forms.
 - Simpler equations lead to simpler two-level implementations
- **>** Questions:
 - How can we attain a "simplest" expression?
 - Is there only one minimum cost circuit?
 - The next part will deal with these issues.

Home Assignment

```
2-1; 2-2a; 2-3a, c; 2-6b, d; 2-10a, c; 2-11a, b, d; 2-12b; 2-13a, c;
```