

1 Port

Reflective-Mode Phase-Variation

Permittivity Sensors Based

On Coupled Resonators

UAB 022 Universitat Autònoma de Barcelona

E-mail: Pau.Casacuberta@uab.cat

¹CIMITEC, Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain ²Departamento Ingeniería Audiovisual y Comunicaciones, Universidad Politécnica de Madrid, 28031 Madrid, Spain

Pau Casacuberta¹, Paris Vélez¹, Jonathan Muñoz-Enano¹, Lijuan Su¹, Marta Gil² and Ferran Martín¹

Planar Microwave Permittivity Sensors

Several types of planar microwave sensors:

Frequency Variation

Complex permittivity

Single frequency Wideband measure 💢 Affected by noise 💢

The permittivity of the Material Under Test (MUT) alters the output signal.

2. Sensor Design and Implementation

Two implementations:

Change of the sensitivity only by modifying the coupling, altering the gap (g), between the capacitive region of the Stepped Impedance Resonators (SIRs).

Substrate: Rogers RO4003C (ε_r = 3.33, h = 1.52 mm, $\tan \delta$ = 0.0023)

1. Sensing Concept

Weaker coupling provides higher sensitivity since f_{-} and f_{+} are closer.

No need to add High/Low impedance sections like in [1], in order to increase the sensitivity.

3. Results

--- Sensor A

→ Sensor B

— Cir. Sim.

--- EM. Sim.

Solid MUT samples ranging from $\varepsilon_{\text{MUT}} = 1$ to 10.2: Air ($\varepsilon_r = 1$), PLA ($\varepsilon_r = 2.8$), RO4003C ($\varepsilon_r = 3.33$), FR4 (ε_r = 4.4), RO3010 (ε_r = 10.2).

Sensitivity optimization (maximum) for Air ($\varepsilon_r = 1$).

4. Highlights

Novel sensing strategy for one-port reflective-mode phase-variation sensors by coupling SIR structures.

Sensitivity enhancement by weakly coupling the resonant elements.

 $FoM_A = S_{max}/A_s = 27419^{\circ}/\lambda^2$

An unprecedented **FoM** regarding sensitivity and sensing area as well as the overall sensor area.

This work has been supported by Spain-MICIIN (projects PID2019-103904RB-I00 and PDC2021-121085-I00) and FPU grant (FPU20/05700) 🧾 [1] J. Muñoz-Enano, P. Vélez, L. Su, M. Gil, P. Casacuberta, and F. Martín, "On the sensitivity of reflectivemode phase variation sensors based on open-ended stepped-impedance transmission lines: theoretical analysis and experimental validation", IEEE Trans. Microw. Theory Techn. vol. 69, no. 1, pp. 308-324, 2021.

