HEDA Package

- 1.HEDA_Tidy
- 2.ReversalCount
- 3.clean_position
- 4. clean_Spt
- 5. clean_conectD
- 6.HPK_metrics
- 7.HPK_plot

Inputs processed in loop. Apply function doesn't work well, still slow in this case.

Input 1.csv

location_ id	datetime	parameter_value
text	2020-12-02 1:00:00	(number)

- One sample of the data frame of input data.
- 3 columns.
- location id stores the gauge id information, 1 gauge 1 ID
- datetime is time format. Year-month-day Hour:00:00
- Parameter_value is discharge. Float format

2.ReversalCount

Input 1_sm.csv

Input 2_sm.csv

Input n_sm.csv

3.clean_position

4. clean_Spt

5. clean_conectD

Input 1_ct.csv

Input 2_ct.csv

location_i d	datetime	parameter_val ue	
text	2020-12-02 1:00:00	(number)	

It has similar structure as input but with more columns

7.HPK_plot

Visualization of reversal count. A sample plot

6.HPK_metrics

Input 1_metric.csv

Input 2_metric.csv

Input 1_ct.csv

Input 2_ct.csv

Input n_metric.csv

Input n_ct.csv

location_i d	metric1	metric2	
text			

For each file, output file has 16 columns and one row.