@ - SI-

SPECIAL TOPIC

OF LIGHT.

DOPPLER EFFECT: The frequency
of a wave changes (Sound waves)
if either the Source on the receiver
is in motion. (Christian Doppler)

For light, we have to comider:

V. Relativistic effects and time dilation.

21. Relative motion only between universally somce and receiver because C is , fixed.

Some in approaching receiver Point of Second emission

Crest 1

Crest 1

Point of first

emission

Cat

-52-

It is the time between two
Successive emissions as seen from
The static frame S. If $v \neq 0$, λ is reduced => The waves are squeezed up.
The waves propagate with a
The womes propagate with a speed c (atways) -> Sinstein's portulate.
Observed frequency in frame s,
$2065 = \frac{c}{\lambda} = \frac{c}{(c-v)\Delta t}$
=) 2065 = 1 (1-B) at where B = 1/c.
In frame s', the time measured
between two successive emissions is st'.
This is the proper time. [Two events]
between two successive emissions is st. This is the proper time. Two events occurred at the same the same position
20bs = (1-13) rst' [The front part of s'.]

-83 - (time between successive crests) It is also the time period, of the emission from the source. $\therefore \Delta t' = \frac{1}{2i_s} \quad \text{and} \quad \gamma = \frac{1}{\sqrt{1-\beta^2}}.$ => 2^{3} 2^{3} = $\frac{1}{(1-3)^{3}}$ $\frac{1}{(1-3)^{3}}$ $\frac{1}{(1-3)^{3}}$ $\frac{1}{(1-3)^{3}}$ Frequency increases $\frac{1+B}{1-B} \approx \frac{1-B^{2}}{1-B} = \frac{1+B}{1-B} = \frac{1+$ for somce receding from receiver, $V \rightarrow -V$ and $B \rightarrow -B$. · Dobs = \\ \frac{1-B}{1+B} \mathcal{V}_s \quad \text{trequency} \\ \frac{\text{decreases}}{1+B} Application: Hubble's law (2 xpanding Universe) $\frac{2J_{S}}{2J_{Obs}} = \frac{1+J_{S}}{1-J_{S}} = \frac{(1+J_{S})(1-J_{S})^{-1}}{J_{S}} = \frac{1+J_{S}}{J_{S}} = \frac{1+$

