Assessing Minnesota's Public Transit

Lucas Major

Background

- Transit Score
 - Measure of a location's accessibility to public transit methods
 - Important for measuring future transit developments
- Current state
 - Sites like Zillow, Redfin have scores for many properties
 - Scores are limited to Minneapolis/Saint Paul
 - Many other cities in Minnesota have access to transit
 - Green line Expansion
 - Bus lines running to Burnsville, Woodbury
- Goal
 - Create a model that scores every parcel within the MET 7 region based on accessibility to transit

Data

- Via API
 - Parcel data for 7-county region
 - Contains location information
 - Transit data for Minnesota
 - Point for every transit stop in Minnesota
 - Dataset of high frequency routes

- Sensitivity Analysis/Results Verification
 - Current Zillow transit scores from parcels in Minneapolis

Methodology

Weighted Linear combination

- Distance to transit stop
- Type of transit stop (Bus/Light Rail)
- Frequency of route
- Sums the calculated scores for each transit stop

$$Score = \sum_{i=1}^{n} (\omega_{L}(x_{i1}) + \omega_{B}(x_{i2}) + \omega_{F}(x_{i3})) * d_{i}$$

$$\omega_L = 0.5 \quad \omega_B = 0.2 \quad \omega_F = 0.3 \quad n = 45$$

Accuracy Assessment/Sensitivity Analysis

- Sample 50 random parcels
- Compare Zillow transit score with calculated score
- Compute R² and MSE
- Tune model parameters for highest accuracy

R ²	RMSE
.75	.21

Methodology

Linear Model

- Trained from existing Zillow data
- Parameters
 - Distance to nearest
 - Number of transit stops within 1 KM
 - Frequency
 - Type(Bus/Light rail)
 - Home Sale value
- Number, Distance, and Frequency were significant

$$Score = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5}$$

R ²	RMSE
0.86	0.09

Methodology

Polynomial Model

- Same parameters
- Num and Distance set to polynomial
- Other parameters kept linear
- Order of 3 gives best results
- o ANOVA table to see if R² is statistically higher

$ \beta_{1}x_{i1} + \beta_{2}x_{i1}^{2} + \beta_{3}x_{i1}^{3} + \beta_{4}x_{i2} + \beta_{4}x_{i2}^{2} + \beta_{5}x_{i2}^{3} + \beta_{6}(x_{i1} * x_{i2}) + \beta_{7}x_{i3} + \beta_{8}x_{i4} + \beta_{9}x_{i5} $
--

R ²	RMSE
0.91	0.08

Conclusion

- Polynomial model
 - Better accuracy
 - Less computationally intensive
- Weighted linear combination
 - Much more detailed parameters
 - Higher potential to give more accurate results
- Future analysis
 - More training data
 - Measure accessibility to each transit stop
 - Sample more parcels in accuracy assessment
 - Reduce computational cost