Test di Calcolo Numerico

Ingegneria Informatica 21/02/2012

C	OGNOME			NOME		
MATRICOLA						
RISPOSTE						
1)						
2)						
3)						
4)						
5)						

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 21/02/2012

1) Si vuole calcolare la funzione

$$f(x,y) = x y$$

nel punto $P_0 = (\pi, e)$.

Si indichi un insieme di indeterminazione a cui appartiene P_0 .

Supponendo di commettere un errore assoluto algoritmico $|\delta_a| \leq 10^{-2}$ e di introdurre i dati con errori assoluti $|\delta_x| \leq 10^{-2}$ e $|\delta_y| \leq 10^{-2}$, quale sarà il massimo errore assoluto $|\delta_f|$?

- 2) Dire se le seguenti affermazioni sono vere:
 - a) $A \in \mathbb{C}^{n \times n}$ è convergente $\Longrightarrow A^2$ è convergente;
 - b) $A \in \mathbb{C}^{n \times n}$, A^2 è convergente $\Longrightarrow A$ è convergente;
 - c) le matrici di rotazione G_{rt} sono convergenti.
- 3) Calcolare i punti fissi della funzione

$$\phi(x) = x(x+2) .$$

4) L'equazione

$$(x - \sqrt{2})^2 (x - \pi)(x - e)^3 = 0$$

ha soluzioni $\alpha_1 = \sqrt{2}$, $\alpha_2 = \pi$ e $\alpha_3 = e$.

Se si applica il metodo di Newton per approssimare tali soluzioni, quali ordini di convergenza si hanno?

5) Per il calcolo dell'integrale

$$\int_{-1}^{1} \sin^2(x) dx$$

si applica la formula dei trapezi. In quanti sottointervalli (della stessa ampiezza) si deve dividere l'intervallo di integrazione in modo da ottenere una approssimazione che differisca dal valore esatto meno di 10^{-2} ?

SOLUZIONE

1) Il punto P_0 appartiene, per esempio, all'insieme di indeterminazione $D = [3, 4] \times [2, 3]$.

Risultando
$$A_x = \sup_{(x,y)\in D} \left| \frac{\partial f}{\partial x} \right| = 3$$
 e $A_y = \sup_{(x,y)\in D} \left| \frac{\partial f}{\partial y} \right| = 4$, si ha

$$|\delta_f| \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y| = 10^{-2} + 3 \times 10^{-2} + 4 \times 10^{-2} = 0.8 \times 10^{-1}$$
.

2) Una matrice è convergente se e solo se lo è il suo quadrato per cui le affermazioni a) e b) sono vere.

Le matrici di rotazione hanno determinante uguale a 1 per cui non sono convergenti e quindi l'affermazione c) risulta falsa.

3) I punti fissi sono le soluzioni dell'equazione x = x(x+2) e quindi sono i valori

$$\alpha_1 = 0 , \qquad \alpha_2 = -1 .$$

4) Gli ordini di convergenza del metodo di Newton sono i seguenti:

$$\begin{cases} \alpha_1 \Longrightarrow p = 1 \\ \alpha_2 \Longrightarrow p = 2 \\ \alpha_3 \Longrightarrow p = 1 \end{cases}$$

5) Da $f(x) = \sin^2(x)$ segue $f''(x) = 2\cos(2x)$. L'errore della formula dei trapezi risulta quindi $|E_1^{(G)}| \leq \frac{(b-a)^3 M_2}{12 \, m^2}$ dove $M_2 \geq \sup_{x \in [-1,1]} |f''(x)| = 2$ e m è il numero di sottointervalli in cui si divide l'intervallo di integrazione.

Tenendo conto degli errori che si introducono nel calcolo della formula, si impone, per esempio, $|E_1^{(G)}| \leq \frac{10^{-2}}{2}$ da cui si ricava $m \geq 17$.