5/28/2010 Quiz #3

Name:	lay

Show all work clearly and in order. Please box your answers. 10 minutes.

- 1. Write the following statements efficiently using quantifiers and standard notation.
 - (a) For every integer m, 2^{m+1} is positive.

 $\forall m \in \mathbb{Z}$, $2^{m+1} \supset O$ (b) There exists an intger n such that n is not a natural number.

 $\exists n \in \mathbb{Z}$ such that $n \notin \mathbb{N}$ (c) The product of any two real numbers is a real number.

 $\forall x, y \in \mathbb{R}$, $xy \in \mathbb{R}$ (d) For every positive real number x, there is a real number y such that xy = 1.

 $\forall x \in \mathbb{R}^+$, $\exists y \in \mathbb{R}$ such that xy = 12. Which statements from question 1 are true?

All of them: (a), (b), (c) and (d)

- 3. Negate the the following statements.
 - (a) $\exists n \in \mathbb{Z}^-$ such that 5n+2>1.

(a) $\exists n \in \mathbb{Z}$ such that $\exists n \neq 2$. $\forall n \in \mathbb{Z}^-$, $\exists n + 2 \leq 1$ (b) $\forall x \in \mathbb{R}^+$, if $x^2 > 4$ then x > 2. \longleftarrow this is equivalent to: $\forall x \in \mathbb{R}^+$, $x^2 \leq 4$ or x > 2 $\exists x \in \mathbb{R}^+$, $x^2 > 4$ and $x \leq 2$ (c) $\forall n \in \mathbb{Z}$. $p + q \in \mathbb{Z}$. (d) $\forall n \in \mathbb{Z}$. $p + q \in \mathbb{Z}$.

 $\exists P, Q \in \mathbb{Z} \text{ such that } P + Q \notin \mathbb{Z}.$ (d) $\forall n \in \mathbb{R}, \exists x \in \mathbb{R} \text{ such that } e^{x^y} \in \mathbb{Z}.$

IneR such that ∀xeR, ex € Z

4. \spadesuit Let A be a set. Let $f:A\subseteq\mathbb{R}\to\mathbb{R}$. Negate the following statement.

 $\forall x \in A, \forall \epsilon > 0, \exists \delta > 0 \text{ such that } \forall y \in A, \text{ if } |x - y| < \delta \text{ then } |f(x) - f(y)| < \epsilon.$

3xEA, JEDO, VBDO, JYEA such that IX-YI < 8 and If(x)-f(y)]>8