

Um Modelo Multiagente em *Bitstring* em *CUDA* para Simular a Propagação de Hipotéticas Doenças Baseadas em Modelagem Compartimental Tipo *SEIRS*

Wesley Luciano Kaizer

WESLEY LUCIANO KAIZER

UM MODELO MULTIAGENTE EM *BITSTRING* EM *CUDA* PARA SIMULAR A PROPAGAÇÃO DE HIPOTÉTICAS DOENÇAS BASEADAS EM MODELAGEM COMPARTIMENTAL TIPO *SEIRS*

Monografia apresentada como requisito parcial para obtenção do grau de Bacharel em Ciência da Computação, do Centro de Ciências Exatas e Tecnológicas da Universidade Estadual do Oeste do Paraná - Campus de Cascavel

Orientador: Prof. Dr. Rogério Luís Rizzi

WESLEY LUCIANO KAIZER

UM MODELO MULTIAGENTE EM *BITSTRING* EM *CUDA* PARA SIMULAR A PROPAGAÇÃO DE HIPOTÉTICAS DOENÇAS BASEADAS EM MODELAGEM COMPARTIMENTAL TIPO *SEIRS*

Ciência da Computação, pela Universidade Es	arcial para obtenção do Título de Bacharel em stadual do Oeste do Paraná, Campus de Cascavel, formada pelos professores:
	Prof. Dr. Rogério Luís Rizzi (Orientador) Colegiado de Matemática, UNIOESTE
	Profa. Dra. Claudia Brandelero Rizzi Colegiado de Ciência da Computação, UNIOESTE

Prof. Dr. Guilherme Galante Colegiado de Ciência da Computação, UNIOESTE

DEDICATÓRIA

AGRADECIMENTOS

Lista de Figuras

Lista de Tabelas

Lista de Abreviaturas e Siglas

SEIRS Modelo Compartimental Suscetível, Exposto, Infectado, Recuperado e Suscetível

API Application Programming Interface
CUDA Compute Unified Device Architecture

CPU Central Processing Unit GPU Graphics Processing Unit

GPU General Purpose Graphics Processing Unit

Lista de Símbolos

- α Taxa de infecção
- β Período de exposição
- δ Período de infectância
- γ Período de recuperação

Sumário

Li	sta de	e Figuras	vi
Li	sta de	e Tabelas	vii
Li	ista de Abreviaturas e Siglas		viii
Li	sta de	e Símbolos	ix
Su	ımári	0	X
Re	esumo		xii
1	Intr	odução	1
	1.1	Objetivos	2
	1.2	Motivação e Justificativas	2
	1.3	Organização do Trabalho	3
2	Fun	damentos	4
	2.1	Introdução a Epidemiologia Computacional e Textos Correlatos	4
	2.2	Tipos de Modelos, Classificação, entre outros	4
	2.3	Agentes e Multiagentes	4
	2.4	Modelagem em Operadores e Bitstring (Compartimental, Operadores, Bitstring)	4
	2.5	Refinamento do Modelo	4
3	Met	odologias Computacionais	5
	3.1	Introdução	5
	3.2	SIMULA	5
	3.3	Estruturas de Dados, Linguagens, etc	5
	3.4	CUDA e OpenMP	5
4	Solu	ıções	6
	4 1	Introdução	6

	4.2	Normal com CUDA e OpenMP	6
	4.3	Bitstring com CUDA e OpenMP	6
	4.4	Discussões Qualitativas, Quantitativas, Eficiência, Acurácia	6
5 Resultados e Discussões		7	
	5.1	Introdução	7
	5.2	Cases: Discutir Simulações na 445, 445 + Vizinhas e etc	7
Gl	ossár	io	8

Resumo

A aplicação de modelos computacionais baseados em modelagem compartimental na epidemiologia é amplamente estudada, como pode-se observar na extensa literatura disponível. A simulação de dinâmicas epidemiológicas é de particular interesse no estudo, prevenção e controle de doenças. Com base nestas premissas, este trabalho busca abordar o problema de simulação de hipotéticas doenças baseadas em modelo compartimental tipo SEIRS fazendo uso de técnicas de sistemas multiagentes, modelagem de indivíduos sob a especificação de palavras binárias, como em técnicas de *bitstring*, uso de dados georreferenciados para a especificação e composição de um *lattice* apropriado à simulação e a paralelização do sistema de simulação utilizando GPGPU na plataforma *CUDA*. Como resultado prático pretende-se apresentar uma aplicação totalmente funcional, capaz de simular eventos epidemiológicos computacionais em uma região da cidade de Cascavel. A avaliação do modelo proposto será executada através da realização de experimentos numérico-computacionais, buscando compará-los com aqueles obtidos da literatura e investigando ainda aspectos computacionais e performáticos da implementação realizada.

Palavras-chave: Epidemiologia, Sistemas multiagentes, Modelos compartimentais, modelagem *bitstring*, plataforma computacional paralela *CUDA*

Introdução

Epidemiologia pode ser definida como o estudo da frequência, da distribuição e dos estados ou eventos relacionados com a distribuição de doenças transmissíveis e não transmissíveis em populações específicas, e a aplicação dos resultados desses estudos na prevenção e controle dos problemas de saúde. Modelos computacionais baseados em indivíduos vêm sendo empregados na epidemiologia para estudar a propagação e transmissão de doenças, que são processos centrais na dinâmica de doenças infecto-contagiosas. O emprego destes modelos permite a modelagem de fenômenos de natureza probabilística e da heterogeneidade das relações entre os indivíduos e o meio, conferindo mais realidade ao modelo estudado. Modelos compartimentais podem ser utilizados para a definição de modelos mais complexos, tendo como base a subdivisão da população em categorias, onde os indíviduos fluem entre as categorias de acordo com determinadas taxas e cenários, eventualmente podendo respeitar as características particulares de um doença de interesse.

Para a implementação de modelos baseados em indivíduos em uma linguagem computacional pode ser interessante utilizar abordagens mais eficientes para codificação do sistema e ainda definir-se um *lattice* apropriado para a execução de futuros experimentos computacionais. Dependendo da dimensão do *lattice*, da quantidade de indivíduos e da complexidade das dinâmicas modeladas, é desejável otimizar o tempo de execução dos experimentos realizados, utilizando os recursos computacionais de processamento e armazenamento disponíveis da forma mais eficiente possível, buscando extrair máximo desempenho da máquina.

1.1 Objetivos

O objetivo principal deste trabalho é propor, desenvolver e implementar um modelo epidemiológico computacional multiagente, com formulação em *bitstring*, para simular computacionalmente a propagação de hipotéticas doenças que possam ser modeladas por modelos compartimentais tipo *SEIRS*, utilizando como *lattice* uma região da cidade de Cascavel. A solução computacional do modelo proposto contemplará uma implementação utilizando *Compute Unified Device Architecture* (*CUDA*) para extrair máxima eficiência computacional através de paralelismo de dados. Para alcançar este objetivo é necessária a conclusão de objetivos mais específicos que contemplam:

- 1. Revisão bibliográfica nas temáticas pertinentes ao trabalho, incluindo temas como epidemiologia computacional, modelagem compartimental, sistemas multiagentes, formulação *bitstring*, estruturas de dados e plataforma computacional paralela *CUDA*.
- 2. Desenvolvimento e implementação de um modelo multiagente em *bitstring*, baseado em formulação compartimental, tendo como *lattice* uma quadra da cidade de Cascavel.
- 3. Paralelização em nível de dados do sistema multiagente de simulação em *bitstring* utilizando a plataforma computacional paralela *CUDA*.
- 4. O emprego e o aperfeiçoamento de uma ferramenta computacional para viabilizar e otimizar as fases de pré-processamento, processamento e pós-processamento da simulação, como as etapas de configuração e visualização dos resultados obtidos, sob o *lattice* escolhido.
- Realização de experimentos numérico-computacionais visando verificar a acurácia da solução implementada bem como sua eficiência computacional e demais aspectos computacionais.

1.2 Motivação e Justificativas

Em conformidade com os objetivos estabelecidos, este trabalho justifica-se pelos seguintes motivos:

- O estudo e aplicação de modelos compartimentais em epidemiologia computacional é interessante pois estes mostram-se poderosos e flexíveis à modelagem de hipotéticas doenças, bem como são amplamente utilizados, como pode-se ver na literatura técnica disponível.
- O uso de agentes computacionais em simulações permite a modelagem mais realística dos fenômenos epidemiológicos de interesse por tratar os indivíduos independentemente uns dos outros e facilitar a posterior paralelização do modelo.
- A técnica de modelos de agentes em bitstring é relativamente nova e relevante, pois possibilita a modelagem de agentes computacionais de forma sucinta e eficiente, evitando desperdícios de memória, simplificando o processo de captura e configuração de atributos dos indivíduos e facilitando a implementação na plataforma CUDA por reduzir a quantidade de dados nas transferências entre CPU e GPU e ainda diminuir a complexidade das estruturas de dados utilizadas.
- O uso da plataforma CUDA é atrativo por possibilitar a paralelização massiva do sistema implementado, esperando-se ganhos de desempenho desejáveis nos experimentos computacionais que serão realizados.

1.3 Organização do Trabalho

Este trabalho está organizado da seguinte forma: no Capítulo 2 é apresentada e discutida a fundamentação teórica utilizada para a realização deste trabalho, envolvendo temáticas como a epidemiologia computacional, modelagem compartimental, sistemas multiagentes e modelagem *bitstring*. No Capítulo 3 são apresentados os métodos utilizados para a modelagem, implementação e teste do sistema multiagente, como estruturas de dados, linguagens, APIs e demais softwares de apoio. No Capítulo 4 são discutidas as implementações realizadas, fazendo-se comparações entre elas e discutindo demais pontos pertinentes. Por fim o Capítulo 5 discute resultados obtidos através da execução de testes utilizando as implementações realizadas.

Fundamentos

- 2.1 Introdução a Epidemiologia Computacional e Textos Correlatos
- 2.2 Tipos de Modelos, Classificação, entre outros
- 2.3 Agentes e Multiagentes
- 2.4 Modelagem em Operadores e Bitstring (Compartimental, Operadores, Bitstring)
- 2.5 Refinamento do Modelo

Metodologias Computacionais

- 3.1 Introdução
- 3.2 SIMULA
- 3.3 Estruturas de Dados, Linguagens, etc.
- 3.4 CUDA e OpenMP

Soluções

- 4.1 Introdução
- 4.2 Normal com CUDA e OpenMP
- 4.3 Bitstring com CUDA e OpenMP
- 4.4 Discussões Qualitativas, Quantitativas, Eficiência, Acurácia

Resultados e Discussões

- 5.1 Introdução
- 5.2 Cases: Discutir Simulações na 445, 445 + Vizinhas e etc.

Glossário