Problem 3

Due on November 16th

Consider the RANDOMIZED HYPOTHESIS ELIMINATION algorithm defined for a finite hypothesis set H as follows:

Algorithm 1 RANDOMIZED HYPOTHESIS ELIMINATION

Initialization: Let $V_1 = H$. For all t = 1, 2, ..., n, repeat

- Choose an $h_t \in V_t$ uniformly at random.
- Observe \mathbf{x}_t .
- Predict $\widehat{y}_t = h_t(\mathbf{x}_t)$.
- Update $V_{t+1} = \{ h \in V_t : h(\mathbf{x}_t) = y_t \}.$

The following theorem establishes a performance guarantee for this algorithm:

Theorem 3. Under the realizability assumption, the total expected loss of Randomized Hypothesis Elimination over n rounds satisfies

$$\mathbb{E}\left[\sum_{t=1}^{n} \ell(\mathbf{x}_{t}, y_{t}, \widehat{y}_{t})\right] \leq 1 + \ln|H|.$$

Your homework is to answer the following questions about RANDOMIZED HYPOTHESIS ELIMINATION and the other algorithms we discussed in class:

- Question 1: When is the bound of Theorem 3 better than the bound of Theorem 2 presented in the lecture? (What is the size of the smallest hypothesis class for which the former is better than the latter?)
- Question 2: What is the computational complexity of RANDOMIZED HYPOTH-ESIS ELIMINATION? (Hints: How expensive is it to generate a random hypothesis and test if it is in the version space? How many random hypotheses do we need to generate until we find a consistent one?)
- Question 3: Construct a hypothesis class and a sequence of examples for which Hypothesis Elimination (the non-randomized one) makes exactly |H|-1 mistakes. (Hint: a possible good idea is choosing the \mathbf{x}_t 's from the natural numbers $1,2,\ldots,|H|$ and consider the hypothesis class H consisting of functions of the form $h_k(x) = \mathbb{I}\{x \leq k\}$ (i.e., $h_k(x) = 1$ if $x \leq k$ and $h_k(x) = 0$ otherwise) for all $k = 1, 2, \ldots, |H|$.)

Question 4: Construct a hypothesis class and a sequence of examples for which Halving makes exactly $\log_2 |H|$ mistakes. (Hint: The same hypothesis class as above and the same pool of \mathbf{x}_t 's may work here too.)

Question 5*: Prove Theorem 3! (See hints in the slides and below.)

Hints for Question 5

It is enough to consider a sequence $(\mathbf{x}_t, y_t)_{t=1}^n$ such that in every round t, there is exactly one hypothesis $g_t \in H$ making a mistake. (For the curious reader, this follows from the argument used for proving Corollary 4.5 in Cesa-Bianchi and Lugosi, 2006.) At any round t, what is the maximal probability of the algorithm choosing the hypothesis t? Hint: choosing a hypothesis h_t uniformly at random from a set V means that each hypothesis is V is chosen with equal probability $\frac{1}{|V|}$.

References

Cesa-Bianchi, N. and Lugosi, G. (2006). *Prediction, Learning, and Games*. Cambridge University Press, New York, NY, USA.