Числовые последовательности и их пределы

Ученики 10-4 класса Оконешников Д.Д. и Паньков М.А. по лекции к.ф.-м.н. Протопоповой Т.В.

от 05 мая 2021 г.

1 Лекция №26

Теорема Больцано-Вейерштрасса

Если $\{x_n\}$ ограничена, то \exists -ет хотя бы одна сходящаяся последовательность.

 \uparrow

- 1. Раз ограничена; то $\exists~M~:~\forall n~|x_n|\leq M,$ т.е. $I_0=[-M;M],$ то $\forall n~x_n\in I_0$ $d_0=2M$
- 2. $\frac{I_0}{2}$ (делим I_0 пополам) Пусть I_1 -та половина, в которой содержится ∞ число членов последовательности x_n (если в обеих, то выбираем любую из них) $I_1=\frac{I_0}{2}$ $d_1=\frac{2M}{2}$
- 3. $\frac{I_1}{2} \Rightarrow$, та часть, в которой содержится ∞ число членов последовательности $\{x_n\}$ (если в обеих, то любую из) в I_2 $b_2=x_{n2}\in I_2$ $n_2>n_1$ $d_1=\frac{2M}{22}$
- 4. и т.д. $I_0\supset I_1\supset I_2\supset\ldots\supset I_k\supset\ldots$ k) $d_k=\frac{2M}{2^k}\longrightarrow_{k\to\infty}0$

по Т. о вложенных промежутках $\exists !\ B:\ B\in I_k\ \forall k$ Покажем, что $\{b_k\}\xrightarrow[k\to\infty]{}B$

$$\forall \varepsilon > 0 \exists \ K : \forall k > K :$$

$$|b_k - B| < \varepsilon$$

$$|b_k - B| < |I_k| = \frac{2M}{2^k} < \frac{2M}{k} < \varepsilon$$

$$2^k > k \ K = [\tfrac{2M}{\varepsilon}] + 1$$

 \downarrow

1.1 Верхний и нижний предел последовательности

1.1.1 Верхний предел

Определение. Число М будем называть верхним пределом последовательности x_n , если

1.
$$\exists x_{nk} : x_{nk} \xrightarrow[k \to \infty]{} M$$

2.
$$\forall x'_{nk} \to M' \ M' \le M$$

↑

Обозначение. $\overline{\lim}_{n\to\infty} x_n = \overline{\lim} x_n = M$

Пример.

1.
$$x_n = (-1)^n \Rightarrow \lim x_n = 1$$

2.
$$x_n = \sin \frac{\pi n}{2} \Rightarrow \lim x_n = 1$$

3.
$$x_n = (n)^{-1} \Rightarrow \overline{\lim} x_n = +\infty$$

 $1; 2; \frac{1}{3}; 4; \frac{1}{5}; 6; \frac{1}{7}; \dots$

Замечание.

- 1. Если x_n не ограничена сверху, то $\overline{\lim} x_n = +\infty$
- 2. Если $\overline{\lim} x_n = a(a \text{конечное число})$

1.1.2 Нижний предел

Определение. Число m будем называть нижним пределом последовательности x_n , если

1.
$$\exists x_{nk} : x_{nk} \xrightarrow[k \to \infty]{} m$$

2.
$$\forall x'_{nk} \to m' \ m' \le m$$

Обозначение. $\lim_{n\to\infty} x_n = \underline{\lim} x_n = M$

Пример.

1.
$$x_n = (-1)^n \Rightarrow \lim x_n = 1; \underline{\lim} x_n = -1$$

2.
$$x_n = \sin \frac{\pi n}{2} \Rightarrow \lim x_n = 1 \underline{\lim} x_n = -1$$

3.
$$x_n = (n)^{-1} \Rightarrow \overline{\lim} x_n = +\infty; \underline{\lim} x_n = 0$$

1; 2; $\frac{1}{3}$; 4; $\frac{1}{5}$; 6; $\frac{1}{7}$; ...

Замечание.

- 1. Если x_n не ограничена снизу, то $\varliminf x_n = -\infty$
- 2. Если $\underline{\lim} x_n = a(\mathbf{a} \mathbf{k}$ онечное число)

Теорема. У всякой $\{x_n\}$ \exists $\overline{\lim}$ и $\underline{\lim}$.

 \uparrow

- 1. x_n не ограничена сверху, то $\overline{\lim} x_n = +\infty$
- 2. x_n не ограничена снизу, то $\underline{\lim} x_n = -\infty$
- 3. x_n ограничена сверху и снизу

дальше как в Т. Больцано-Вейерштрасса, только 3.1) если ищем $\overline{\lim}$, то всегда беру правую половинку, если возникает выбор.

3.2) Для <u>lim</u>, то беру левую половинку

1

Замечание. Очевидно, что $\underline{\lim} x_n \leq \overline{\lim} x_n$

Теорема. $\exists \lim_{n\to\infty} x_n = A \text{ (конечн, } +\infty, -\infty) \Leftrightarrow \overline{\lim} x_n = \underline{\lim} x_n = A$

$$\uparrow$$
 " \Rightarrow "пусть $\lim_{n\to\infty} x_n = A$

1.
$$A = +\infty$$
, T.E. $\lim_{n \to \infty} x_n = +\infty$
 $\Rightarrow \underline{\lim} x_n = +\infty \Rightarrow \overline{\lim} x_n = +\infty$

2.
$$A = -\infty$$
; T.E. $\lim_{n \to \infty} x_n = -\infty \Rightarrow \overline{\lim} x_n = -\infty \Rightarrow \underline{\lim} x_n = -\infty$

3. Если $\lim_{n\to\infty}x_n=A$ (А — конечное число) $\Rightarrow \overline{\lim}x_n=\underline{\lim}x_n=A$ уже доказывали

"⇔"

1.
$$\lim x_n = +\infty$$
 T.e. $\lim n \to \infty x_n = +\infty$

2.
$$\overline{\lim} x_n = -\infty \Rightarrow \lim x_n = -\infty$$

3. А — конечный
$$\overline{\lim} x_n = \underline{\lim} x_n = A$$

Надо $\forall \varepsilon > 0 \; \exists N \; \forall n > N \; A - \varepsilon <_{\text{из } \underline{\lim} x_n = A} \; x_n <_{\text{из } \overline{\lim} x_n = A} \; A + \varepsilon, \text{ т.е. } \lim_{n \to \infty} x_n = A$ \downarrow

1.2 Фундаментальные последовательности. Критерий Коши

$$\lim_{n\to\infty} x_n = a$$

$$\forall \ \varepsilon > 0 \ \exists N : \forall n > N$$

$$|x_n - a| < \varepsilon$$

$$a - \varepsilon < x_n < a + \varepsilon$$

 $(a - \varepsilon; a + \varepsilon)$

Т.е. x_n — такие, что для любого $\varepsilon>0$ я могу их всех(n>N) "закрыть" интервалом длины 2ε

Определение. Последовательность x_n называется фундаментальной(удовлетворяет условию Коши), если $\forall \varepsilon > 0 \ \exists N : \forall n,m > N, \ |x_n - x_m| < \varepsilon$

$$x_m - \varepsilon < x_n < x_m + \varepsilon$$

Теорема. Критерий Коши. Числовая последовательность $\{x_n\}$ сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) : \forall n,m > N : |x_n - x_m| < \varepsilon$

 \uparrow

"⇒"пусть сходится ($\lim_{n\to\infty}x_n=a$ — конечное число) $\forall \varepsilon>0$ $\exists N: \forall n>N: |x_n-a|<\frac{\varepsilon}{2}$ $|x_n-x_m|=|x_n-a+a-x_m|\leq |x_n-a|+|a-x_m|=|x_n-a|+|x_m-a|<_{n>N;m>N}$ $\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$

"<="1) покажем, что $\{x_n\}$ — ограничена $\forall \varepsilon>0$ $\exists N_0: \forall n,m>N_0, \, |x_n-x_m|<\varepsilon$

Пусть
$$\varepsilon=1$$
 $|x_n|-|x_m|\leq |x_n-x_m|<1$ \Downarrow $|x_n|<1+|x_m|$

Фиксированный $m \Rightarrow \forall n > N_0$ рассмотрим $M = \max\{1 + |x_m|; |x_1|; |x_2|; |x_3|; ...; |x_{N_0}|\}$

2) По Т. Больцано-Вейерштрасса из $\{x_n\}$ можно выделить сходящиеся последовательности $\exists x_{nk} : x_{nk} \xrightarrow[k \to \infty]{} a$