Кафедра статистического моделирования Дипломная работа студентки 522-й группы Казаковой Виктории Николаевны

Оптимальные планы для коррелированных наблюдений

Научный руководитель: к.ф.-м.н., доцент А.Н. Пепелышев Рецензент: д.ф.-м.н., профессор В.Б. Мелас

Основные понятия

Пусть результаты эксперимента $y_1,\ldots,y_n\in\mathbf{R}$ описываются уравнением

$$y_j = \eta(x_j, \beta) + \varepsilon(x_j), \ j = 1, \dots, n,$$

где β — вектор оцениваемых параметров,

$$E\varepsilon(x_j) = 0, \quad E\varepsilon(x_j)\varepsilon(x_i) = \rho(x_i, x_j).$$

- Точным планом эксперимента называется $\xi = (x_1, \dots, x_n)$.
- \blacksquare Информационной матрицей плана эксперимента ξ называется матрица

$$M(\xi) = F^T G^{-1} F,$$

где
$$F = \left(f(x_1) \vdots \ldots \vdots f(x_n)\right), G = \left(\rho(x_i, x_j)\right)_{i,j=1}^n, f(x) = \frac{\partial \eta(x, \beta)}{\partial \beta}.$$

- lacksquare Оценка МНК имеет ковариационную матрицу $M^{-1}(\xi)$.
- План ξ^* называется Д-оптимальным, если $\det M(\xi) \leq \det M(\xi^*)$.

Полиномиальная модель с одинаковыми корреляциями

$$\eta(x,\beta) = \beta^T f(x), \quad f(x) = (1, x, \dots, x^p)^T, \quad x \in [c, d]$$

Теорема. Пусть для полиномиальной модели при коррелированных наблюдениях в форме $(E\varepsilon_i\varepsilon_j)_{i,j} = \sigma^2 G_n$, где $\sigma^2 - \partial u$ сперсия ошибок, корреляционная матрица имеет вид

$$G_n = \left(egin{array}{cccc} 1 & r & \dots & r \ r & 1 & \dots & r \ dots & dots & \ddots & r \ r & \dots & r & 1 \end{array}
ight) \in \mathbf{R}^{n imes n}$$

$$u \frac{-1}{n-1} < r < 1.$$

Тогда точный Д-оптимальный план не зависит от r и совпадает c точным Д-оптимальным планом ξ_n^* для некоррелированных наблюдений.

Планы ξ_n^* получены в (Gaffke, Krafft, 1982).

Экспоненциальная модель

$$\eta(x, a, b) = ae^{-bx}, \quad b > 0, \ x \in [0, \infty).$$

Корреляционная матрица ошибок измерений имеет вид

$$\mathbf{G} = \left(e^{-\lambda|x_i - x_j|}\right)_{i,j}, \quad \lambda > 0.$$

 $lacksymbol{f \Box}$ Матрицу ${f G^{-1}}$ можно представить в виде ${f G^{-1}}={f V^TV},$ где

$$\mathbf{V} = \left(egin{array}{ccccc} 1 & 0 & 0 & \dots & 0 \\ b_2 & a_2 & 0 & \dots & 0 \\ 0 & b_3 & a_3 & \dots & 0 \\ dots & dots & \ddots & \ddots & dots \\ 0 & 0 & \dots & b_n & a_n \end{array}
ight),$$

$$a_i = \frac{1}{\sqrt{1 - e^{-2\lambda(x_i - x_{i-1})}}}, \quad b_i = \frac{e^{-\lambda(x_i - x_{i-1})}}{\sqrt{1 - e^{-2\lambda(x_i - x_{i-1})}}}.$$

Локально Д-оптимальные планы

$$\det \mathbf{M} = a^2 \sum_{1 \le i < j \le n} \left[a_i a_j e^{-b(x_i + x_j)} (1 - e^{(\lambda - b)(x_{i-1} - x_i)}) (x_{j-1} e^{(\lambda - b)(x_{i-1} - x_i)} - x_j) - (1 - e^{(\lambda - b)(x_{j-1} - x_j)}) (x_{i-1} e^{(\lambda - b)(x_{i-1} - x_i)} - x_i) \right]^2.$$

- **Теорема.** Локально Д-оптимальный план $\xi^* = \arg\max_{\xi} \det \mathbf{M}(\xi, a, b, \lambda)$
 - 1) не зависит от параметра а,
 - 2) содержит точку 0 в своем носителе,
 - 3) удовлетворяет условию

$$x_i^*(\gamma b, \gamma \lambda) = \frac{1}{\gamma} x_i^*(b, \lambda),$$

 $r\partial e \ \gamma > 0, \ x_i^*(b,\lambda) \ - \ moчки локально \ Д-оптимального плана.$

Следствие. Достаточно изучить оптимальные планы при b=1.

Минимально возможное число точек в плане для экспоненциальной модели равно n=2.

$$\det \mathbf{M}(x_2) = \frac{x_2^2 e^{-2bx_2}}{1 - e^{-2\lambda x_2}}$$

Локально Д-оптимальный двух-точечный план имеет вид

$$\{0, x^*(b, \lambda)\},\$$

где

$$x^*(b,\lambda) = \frac{-t^*}{2\lambda},$$

 t^* есть решение уравнения

$$\frac{1}{1-e^{-t}} = \frac{b}{\lambda} + \frac{2}{t}.$$

- $x_2^*(b,\lambda) \to 1/b$ при $\lambda \to \infty$.
- $x_2^*(b,\lambda) \to 1/(2b)$ при $\lambda \to 0$.

- Локально Д-оптимальный план имеет вид $\xi^* = \{0, x_2^*, x_3^*\}$.
- Существуют такие значения параметра λ , при которых функция $\det \mathbf{M}(x_2, x_3, \lambda)$ имеет два локальных максимума по (x_2, x_3) . Пусть λ^* есть то значение параметра λ , при котором происходит смена доминирования одного локального максимума над другим.
- Точки локально Д-оптимального трех-точечного плана имеют скачок с

$$x_2^* = 0.57029, \quad x_3^* = 3.23859$$

на

$$x_2^* = 0.34007, \quad x_3^* = 0.88700,$$

при переходе λ через значение $\lambda^* = 0.22367$.

Функциональный подход (Мелас, 1981)

Введем систему уравнений

$$g(x_2, x_3, \lambda) = 0,$$

где

$$g(x_2, x_3, \lambda) = \begin{pmatrix} \frac{\partial}{\partial x_2} \det M(x_2, x_3, \lambda) \\ \frac{\partial}{\partial x_3} \det M(x_2, x_3, \lambda) \end{pmatrix}.$$

lacksquare Точки оптимального плана как функции от λ удовлетворяют

$$g(x_2(\lambda), x_3(\lambda), \lambda) \equiv 0$$

$$x(\lambda) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \sum_{k=0}^{\infty} x_{(k)} (\lambda - \lambda_0)^k$$

 Рекуррентные формулы для вычисления коэффициентов разложения в ряд Тейлора (Мелас, Пепелышев, 1999)

$$x_{(s)} = -J_0^{-1} \left(g \left(\sum_{k=0}^{s-1} x_{(k)} (\lambda - \lambda_0)^k, \lambda \right) \right)_{(s)}, \ s = 1, 2, 3, \dots, \ J_0 = \frac{\partial}{\partial x} g(x_{(0)}, \lambda_0)$$

- $x_2(\lambda) = 0.5395 + 0.1096\lambda + 0.1156\lambda^2 + \dots$ $x_3(\lambda) = 3.3560 0.6662\lambda + 1.8098\lambda^2 + \dots$
- $x_2(\lambda) = 0.5087 + 0.2687(\lambda 1) 0.0541(\lambda 1)^2 + \dots$ $x_3(\lambda) = 1.3056 0.4326(\lambda 1) + 0.4930(\lambda 1)^2 + \dots$
- $x_2(\lambda) = 0.6911 0.3836(\nu 1/2) + 1.1401(\nu 1/2)^2 + \dots$ $x_3(\lambda) = 1.5177 0.0556(\nu 1/2) 1.4224(\nu 1/2)^2 + \dots, \ \nu = 1/\lambda$

 $\lambda^* = 0.3348, \, \lambda^{**} = 14.3777$

λ	$\lambda^* - 0$	$\lambda^* + 0$	$\lambda^{**} - 0$	$\lambda^{**} + 0$
$x_2(\lambda)$	0.3462	0.2491	0.6966	0.2030
$x_3(\lambda)$	0.8919	0.5841	1.0074	0.9250
$x_4(\lambda)$	3.3611	1.1180	1.3133	1.2490

Максиминно-эффективные планы

• Определение. План будем называть максиминно эффективным Д-оптимальным планом, если он максимизирует величину

$$\min_{\beta \in \Omega} \left[\frac{\det M(\xi, \beta)}{\det M(\xi_{loc}^*(\beta), \beta)} \right]^{1/2},$$

 $r\partial e \; \xi_{loc}^*(\beta) \; -$ локально Д-оптимальный план.

- **Теорема.** Maксиминный Д-оптимальный план
 - 1) не зависит от параметра а,
 - 2) содержит точку 0 в своем носителе,
 - 3) удовлетворяет условию

$$x_i^*(\gamma\Omega) = \frac{1}{\gamma} x_i^*(\Omega),$$

 $i\partial e \ \gamma > 0, \ x_i^*(\Omega) \ - \ moчки \ максиминного Д-оптимального \ плана.$

Изучим зависимость максиминного плана $\xi^*(z)$ от параметра z для

$$\Omega = \Omega(z) = \{ \beta : (1-z)c_i \le \beta_i \le (1+z)c_i, i = 1, \dots, m \}.$$

Функциональный подход для максиминно-эффективных планов

$$\Omega(z) = \{(b, \lambda) \ : \ (1 - z) \le b \le (1 + z), \ (1 - z) \le \lambda \le (1 + z)\}$$

- $x_2(z) = 0.5395 0.1887z^2 0.0263z^4 + \dots$ $x_3(z) = 3.3560 + 1.8505z^2 + 5.7658z^4 + \dots$
- $x_2(z) = 0.5789 + 0.6649(z 1/2) 0.9839(z 1/2)^2 + \dots$ $x_3(z) = 2.3109 + 3.5827(z 1/2) + 2.3505(z 1/2)^2 + \dots$

Заключение

- \blacksquare Для полиномиальной модели с одинаковыми корреляциями доказана независимость от значения корреляции r
- Для экспоненциальной модели
 - изучены двух-, трех- и четырех-точечные локальные Д-оптимальные планы,
 - на основе функционального подхода построены разложения трехичетырех-точечных локальных Д-оптимальных планов и максиминно-эффективных планов, с помощью этих разложений можно вычислять планы для любых значений параметров,
 - планы в равноотстоящих точках имеют умеренную эффективность и могут быть использованы на начальных стадиях эксперимента, на последующих стадиях следует использовать максиминно-эффективные планы.