ED – Seminario Grafos

María del Rosario Suárez Fernández Mª del Puerto Paule Ruiz

Grafo vacío

	Pesos					
	0	1	2	3	4	
0						
1						
2						
3						
4						

Insertar A

A		

Insertar B

A	В			
---	---	--	--	--

		P	esos		
	0	1	2	3	4
0	О	0			
1	0	0			
2					
3					
4					

Insertar C

Α	В	C		
---	---	---	--	--

Insertar D

A	В	C	D	
---	---	---	---	--

NumElementos(size) = 4

4

Insertar eje de A a B (2)

Α	В	С	D	

		P	esos		
	0	1	2	3	4
0	0	2	0	0	
1	0	0	0	0	
2	О	0	0	0	
3	0	0	0	0	
4					

• Insertar eje de A a D (2)

Α	В	C	D	
ni 4 i X iini				

	Pesos					
	0	1	2	3	4	
0	0	2	0	2		
1	0	0	0	0		
2	0	0	0	0		
3	0	0	0	0		
4						

• Insertar eje de B a C (3)

A B	C	D	
-----	---	---	--

		P	esos		
	0	1	2	3	4
0	0	2	0	2	
1	0	0	3	0	
2	0	0	0	0	
3	0	0	0	0	
4					

	0	1	2	3	4
0	F	Т	F	Т	
1	F	F	Т	F	
2	F	F	F	F	
3	F	F	F	F	
4					

Insertar eje de C a A (3)

Α	В	С	D	

NumElementos (size) = 4

		P	esos		
	0	1	2	3	4
0	0	2	0	2	
1	0	0	3	0	
2	8	0	0	0	
3	0	O	0	0	
4					

			-jes		
	0	1	2	3	4
0	F	Т	F	Т	
1	F	F	Т	F	
2	Т	F	F	F	
3	F	F	F	F	
4					

Eioc

• Insertar eje de D a B (6)

Α	В	C	D	
---	---	---	---	--

NumElementos (size) = 4

		P	esos		
	0	1	2	3	4
0	0	2	0	2	
1	0	0	3	0	
2	3	0	0	0	
3	0	6	0	0	
4					

			Ejes		
	0	1	2	3	4
0	F	Т	F	Т	
1	F	F	Т	F	
2	Т	F	F	F	
3	F	Т	F	F	
4					

Fine

Borrar el nodo B

 El último elemento pasa a ocupar la posición del elemento a borrar

Borrar el nodo B

A D C

NumElementos = 3

Borrar el nodo B

A D C

NumElementos = 3

Borrar el nodo B

A D C	A	D	C		
-----------	---	---	---	--	--

NumElementos = 3

Borrar el nodo B

A D C

NumElementos = 3

Dijkstra

- Algoritmo de costes mínimos
- Objetivo
 - Determinar el camino de menor coste desde el nodo origen al resto de los nodos del grafo
- Aplicaciones
 - Encaminamiento de paquetes por los routers
 - Enrutamiento de aviones y tráfico aéreo

Encontrar el camino de coste mínimo desde A a todos los nodos

Paso1: Inicialización

$$S = \{A\}$$

Matriz de Pesos

	Α	В	С	D	E
Α	0	10	О	30	100
В	O	О	50	0	О
C	0	О	О	0	10
D	0	О	20	О	60
E	0	О	О	0	О

_	А	В	С	D	E
D		10	∞	30	100
_	Α	В	С	D	Е
Ρ		Α		Α	Α

Origen = A w = B

Dijkstra – Ejercicio1

Paso2: Elegir un nodo w ∈ (nodes – S) tal que D[w] sea mínimo Agregar w al conjunto solución

7	А	В	С	D	Е
U		10	∞	30	100

$$S = \{A, B\}$$

Mínimo → B

nodes= {A, B, C, D, E}

Paso3: Para cada $v \in \{C, D, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = C

$$D[C] \leftarrow min(D[C], D[B]+weights[B,C])$$

 $D[C] \leftarrow min(\infty,10+50)=60$

_	А	В	С	D	Е
D		10	∞	30	100
n	Α	В	С	D	Е
۲		Α		Α	Α

Paso3: Para cada $v \in \{C, D, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = C

$$D[C] \leftarrow min(D[C], D[B]+weights[B,C])$$

 $D[C] \leftarrow min(\infty,10+50)=60$

D	A	В	С	D	Е
U		10	60	30	100
P	Α	В	С	D	Е
۲		Α	В	Α	Α

Paso3: Para cada $v \in \{C, D, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = D

D[D]
$$\leftarrow$$
 min (D[D], D[B]+weights[B,D])
D[D] \leftarrow min(30,10+ ∞)=30

D	Α	В	С	D	E
D		10	60	30	100
	Α	В	С	D	Е
۲		Α	В	А	Α

No mejora

Paso3: Para cada $v \in \{C, D, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = E

D[E]
$$\leftarrow$$
 min (D[E], D[B]+weights[B,E])
D[E] \leftarrow min(100,10+ ∞)=100

D	Α	В	С	D	E
D		10	60	30	100
	Α	В	С	D	Е
۲		Α	В	Α	Α

No mejora

Origen = A w = D

Dijkstra – Ejercicio1

Paso2: Elegir un vértice w ∈ (nodes – S) tal que D[w] sea mínimo Agregar w al conjunto solución

_	Α	В	С	D	E
U		10	60	30	100

$$S = \{A, B, D\}$$

Mínimo → D

 $nodes = \{A, B, C, D, E\}$

Paso3: Para cada $v \in \{C, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = C

 $D[C] \leftarrow min(D[C], D[D]+weights[D,C])$ $D[C] \leftarrow min(60,30+20)=50$

_	Α	В	С	D	Е
D	Α	В	С	D	Е
Ρ		Λ	R	Λ	Δ

Paso3: Para cada $v \in \{C, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = C

 $D[C] \leftarrow min (D[C], D[D]+weights[D,C])$ $D[C] \leftarrow min(60,30+20)=50$

D	Α	В	С	D	Е
U		10	50	30	100
	Α	В	С	D	Е
۲		Α	D	Α	Α

Paso3: Para cada $v \in \{C, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = E

D[E]
$$\leftarrow$$
 min (D[E], D[D]+weights[D,E])
D[E] \leftarrow min(100,30+60)=90

D	Α	В	С	D	E
D	Α	В	С	D	Е
Ρ		Α	D	Α	Α

Paso3: Para cada $v \in \{C, E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = E

D[E]
$$\leftarrow$$
 min (D[E], D[D]+weights[D,E])
D[E] \leftarrow min(100,30+60)=90

D	Α	В	С	D	E
_					
n	Α	В	С	D	Е
Ρ		Α	D	Α	D

Origen = A w = C

Dijkstra – Ejercicio1

Paso2: Elegir un vértice $w \in (nodes - S)$ tal que D[w] sea mínimo

Agregar w al conjunto solución

_	А	В	С	D	Е
U		10	50	30	90
		AAAAAAAAAAAAAAA			

$$S = \{A, B, D, C\}$$

Mínimo → C

nodes = {A, B, C, D, E}

Origen = A w = C v = E S = {A, B, D, C}

Paso3: Para cada $v \in \{E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = E

D[E]
$$\leftarrow$$
 min (D[E], D[C]+weights[C,E])
D[E] \leftarrow min(90,50+10)=60

D	Α	В	С	D	E
	Α	В	С	D	Е
Ρ		Α	D	Α	D

Origen = A w = C v = E S = {A, B, D, C}

Paso3: Para cada $v \in \{E\}$ hacer $D[v] \leftarrow min(D[v], D[w] + C[w, v])$

Para v = E

D[E]
$$\leftarrow$$
 min (D[E], D[C]+weights[C,E])
D[E] \leftarrow min(90,50+10)=60

D	А	В	С	D	E
n	Α	В	С	D	Е
Ρ		Α	D	Α	С

Origen = A w = E

Dijkstra – Ejercicio1

Paso2: Elegir un vértice $w \in (nodes - S)$ tal que D[w] sea mínimo

Agregar w al conjunto solución

D	Α	В	С	D	Е
		10	50	30	60

$$S = \{A, B, D, C, E\}$$

Mínimo → E

nodes = { A, B, C, D, E}

Final del proceso

D	Α	В	С	D	Е
		10	50	30	60

Р	Α	В	С	D	E
		Α	D	Α	С

Aplicar **Dijkstra** desde el nodo C y obtener los posibles caminos desde el nodo C al resto de los nodos

Aplicar **Dijkstra** desde el nodo B y obtener los posibles caminos desde el nodo B al resto de los nodos