Probability Quiz

STAT II (Spring 2025)

Disclaimer: This quiz is UNGRADED and is designed to assess how well you recall the last semester materials. You have 45 minutes to complete as many questions as you can. If you have any questions about the content of the quiz, please seek clarification from the instructor. For multiple choice questions, select only one correct answer. For open-ended questions, write your response in the box provided below each question.

Section 1: Multiple Choice

Circle the correct answer.

Question 1. The expectation $\mathbb{E}[X]$ of a random variable X is:

- a. The value of X that occurs most frequently.
- b. A weighted average of possible values of X, weighted by their probabilities.
- c. The variance of X.
- d. The square root of the variance of X.

Question 2. Which of the following is **NOT** true about conditional expectation $\mathbb{E}[X \mid Y]$?

- a. It is a random variable itself.
- b. $\mathbb{E}[X \mid Y]$ can sometimes equal $\mathbb{E}[X]$.
- c. $\mathbb{E}[X \mid Y]$ is always greater than $\mathbb{E}[X]$.
- d. It provides the expected value of X given the value of Y.

Question 3. The variance $\mathbb{V}(X)$ of a random variable is:

a.
$$\mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
.

b.
$$(\mathbb{E}[X])^2 - \mathbb{E}[X^2]$$
.

c. $\mathbb{E}[X]\mathbb{E}[X]$.

Question 7. Define the Law of Iterated Expectation and provide a brief example of its application.

Question 8. testing.	Explain the	Central Limit	Theorem (CI	T) and why it	is fundamental	for hypothesis
Question 9.	What is a <i>p</i> -va	alue, and how o	do you interpre	et it in the cont	ext of a hypothes	is test?

Question 10. Consider the simple mean estimator for a population mean. Define the estimator \bar{X} as the average of a sample of observations X_1, X_2, \ldots, X_n , where each X_i is an independent and identically distributed (i.i.d.) random variable with the population mean μ . Show that \bar{X} is an unbiased estimator of μ .

participation in anti-government	es the relationship between individue protest. Let Y represent protest ture (1 for access, 0 for no access). The j	nout (1 for protest, 0 for stay home),
$\overline{Y \setminus X}$	Access $(X=1)$	No Access $(X=0)$
Protest $(Y=1)$	0.4	0.2
Stay home $(Y=0)$	0.1	0.3
2. Are protest participation	(X) and internet access (Y) independ	dent? Justify mathematically.

Question 12. You are studying the relationship between voter turnout (Y), campaign intensity in the district (Z), and political engagement (X) across citizens eligible to vote. The following frequency table summarizes the data you collected:

Political Engagement (X)	Campaign Intensity (Z)	Voter Turnout (Y)	Frequency
Low	Low	Yes	10
Low	Low	No	20
Low	High	Yes	15
Low	High	No	5
High	Low	Yes	25
High	Low	No	10
High	High	Yes	20
High	High	No	10

1. Calculate the joint probabilities $\Pr(Y, Z \mid X)$	X) for $X = Low$.