Decentralizing Privacy: Using Blockchain to Protect Personal Data

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7163223

Kevin Kredit and Vineet James

Agenda

- Blockchain basics
- Paper walkthrough
 - Introduction
 - The Privacy Problem
 - Proposed Solution
 - The Network Protocol
 - Discussion of Future Extensions
 - Conclusion
- Updates
- Problems

Blockchain basics

Blockchain basics

- Important properties
 - Open -- public, distributed transaction history
 - Secure -- incorruptible history
 - Safety in numbers -- inviolable rules, infeasible to hack
- Infographics
 - https://blockchainhub.net/blog/infographics/what-is-a-blockchain/
 - https://followmyvote.com/infographics/blockchain-technology-breakdown-infographic/
 - (Bitcoin) https://visual.ly/community/infographic/technology/bitcoin-infographic

Paper walkthrough

Part 1: Introduction

Why do Companies and organizations collect our data?

- personalize services
- optimize the corporate decision making process
- predict future trends
- and more...

Data is a valuable asset and sharing data has it's benefits however, there is a growing public concern about user privacy.

In the current model, Users have no or little control over the data that's collected by centralized Third-parties and how that data is used.

Part 1: Introduction

Related Work

- OpenPDS (Open personal data store) Returns only answers instead of raw data
- OAuth Organizations acting as a centralized trusted authority themselves and providing access control.
- Data Anonymization methods
 - k-anonymity Ensures each record is indistinguishable from other records in the set.
 - o **I-diversity** Ensures sensitive data is represented by a diverse enough set of possible values
 - t-closeness looks at the distribution of sensitive data
- Differential Policy adds noise to the computational process prior to sharing the data
- FHE (fully homomorphic encryption) allow running computations and queries over encrypted data

Part 1: Introduction

Proposal

- A decentralized personal data management system that ensures users own and control their data.
- A protocol which turns blockchain into an automated access-control manager that does not require trust in a third party.

Contribution

- Combining blockchain and off-blockchain storage to construct a personal data management platform focused on privacy.
- Illustrate future improvements to the technology, how blockchains could become a vital resource in trusted-computing.

Part 2: The Privacy Problem

Project goals:

Focus specifically on mobile platforms and address Privacy issues like.

- O Data ownership User owns and controls their data
- Data transparency and auditability User has control over what data is being collected
- Fine-grained access control User has control over how it's being used

Part 3: Proposed Solution

- Idea | Fleshing Out | Full Implementation Details | Prototype | Product
- Main Entities
 - Users
 - Services
 - Nodes (Blockchain & DHT)
- Blockchain Transactions
 - \circ $\mathsf{T}_{\mathsf{access}}$
 - \circ $\mathsf{T}_{\mathsf{data}}$

Part 3: Proposed Solution

How this platform would work

- the user installs the application and signs up for the first time
- a new shared (user, service) identity is created
- Associated permissions are sent to the blockchain in a T_{access}
- Data collected is encrypted using a shared encryption key
- Encrypted data is sent to the blockchain in a T_{data}
- Data is stored off-chain in a DHT (distributed hash table)
- Blockchain only has the pointer key(256 SHA) on the ledger
- ullet Both the service and user can now query data using $T_{\rm data}$
- Blockchain verifies the digital signature (User/Service).
- Blockchain also verifies access permissions for Service.
- User can change permissions granted to a service any time

- Idea | Fleshing Out | Full Implementation Details | Prototype | Product
- Building blocks
 - Identities
 - Policies
 - Protocols
- Analysis

- Building blocks
 - Identities
 - Policies
 - Protocols

- Building blocks
 - Identities
 - Policies
 - Protocols

New policy: service Green is allowed to access user Blue's location and contacts.

- Building blocks
 - Identities
 - Policies
 - Protocols

Protocol 3 Access Control Protocol

```
1: procedure HANDLEACCESSTX(pk_{sig}^k, m)
2: s \leftarrow 0
3: pk_{sig}^{u,s}, pk_{sig}^{s,u}, POLICY_{u,s} = Parse(m)
4: if pk_{sig}^k = pk_{sig}^{u,s} then
5: L[\mathcal{H}(pk_{sig}^k)] = m
6: s \leftarrow 1
7: end if
8: return s
9: end procedure
```

"If message is really from the user, then save the new policy on the blockchain; else, fail."

- Building blocks
 - Identities
 - Policies
 - Protocols

- Building blocks
 - Identities
 - Policies
 - Protocols

```
Protocol 4 Storing or Loading Data
  1: procedure HANDLEDATATX(pk_{sig}^{k}, m)
          c, x_p, rw = Parse(m)
          if CheckPolicy(pk_{siq}^k, x_p) = True then
      \begin{array}{c} pk_{sig}^{u,s}, pk_{sig}^{s,u}, POLICY_{u,s} \\ Parse(L[\mathcal{H}(pk_{sig}^{u,s})]) \end{array}
                                                                                   +
                a_{x_p} = \mathcal{H}(pk_{sig}^{u,s} \parallel x_p)
if rw = 0 then
                                             ⊳ rw=0 for write, 1 for read
                    h_c = \mathcal{H}(c)
                    L[a_{x_p}] \leftarrow L[a_{x_p}] \cup h_c
                    (DHT) ds[h_c] \leftarrow c
                    return h_c
 10:
                else if c \in L[a_{x_n}] then
                    (DHT) return ds[h_c]
                end if
          end if
14:
          return Ø
16: end procedure
```

"If transaction is allowed by the policy: if writing, calculate hash of new data, store hash on blockchain, add data to DHT; if reading, fetch data from DHT."

- Analysis
 - Assumptions:
 - Tamper free blockchain, sufficiently large network of nodes
 - Private keys are securely managed
 - Original goals:
 - Data ownership
 - impersonation is impossible, and policies inviolable
 - data is encrypted on the DHT
 - Data transparency and auditability
 - policies define precisely what is collected
 - Fine-grained access control
 - policies can be arbitrarily fine and changed at any time

Part 5: Discussion of Future Extensions

- From storage to processing: solving the data usage problem
 - Data transparency and auditability
 - × you can't control how your data will be controlled after it's accessed
 - Solution: do processing on blockchain
 - PDS: provide answers to questions, not raw data
 - FHE: perform operations directly on encrypted data
- Trust in blockchains: equitably assigning trust and reducing energy consumption
 - Proof-of-Work vs Proof-of-Behavior or Proof-of-Stake
 - https://blockgeeks.com/guides/proof-of-work-vs-proof-of-stake/

Part 6: Conclusion

- Claim success
- Briefly mention coding laws directly into the blockchain

Updates and problems

Updates

- Several wallet services have been hacked; private key management is still an issue
 - https://khannasecurity.com/blog/can-my-blockchain-wallet-be-hacked/
- Bitcoin's value has crashed; cannot assume and should not rely on a stable cryptocurrency
 - https://www.fool.com/investing/2018/02/06/the-cryptocurrency-crash-is-here-and-this-is-whats.aspx
- There have been tons of "blockchain" startups maybe one is doing something like this
 - https://www.nhbr.com/2018/12/21/when-blockchain-meets-data-privacy-and-security/
 - https://medium.com/inside-r3/blockchain-approaches-to-data-privacy-in-healthcare-e6e7f114094c
 - https://www.cmswire.com/information-management/why-enterprises-are-looking-to-blockchain-for-better
 -data-privacy/

Problems

- Power consumption (they address it some, but not enough)
 - Blockchains are extremely power hungry
 - We need orders of magnitude more efficiency
 - https://arstechnica.com/tech-policy/2017/12/bitcoins-insane-energy-consumption-explained/
- Incentivization
 - Without a relatively stable underlying cryptocurrency, what's the miners' motivation?
 - Does a blockchain require constant processing to remain secure? I.e, if you take over a network, can you change *past* events as well as future events? -> Yes, but requires more resources.
- Control over your data
 - You still can't say how your data is used; this only gives you control over who can see your data

Questions?

- TIP: For those studying sensor privacy, the references in this paper could be of use to you
- RESOURCES:
 Blockchain visual demo https://www.youtube.com/watch?v="160oMzblY8">https://anders.com/blockchain/coinbase.html)