ELECTRICITY PRICES PREDICTION

TEAM MEMBER ANANYA A

Phase 5 Submission Document

Project: ELECTRICITY PRICES PREDICTION

Topic: Documentation and Submission

Introduction:

In a world that thrives on energy as the lifeblood of modern society, the dynamics of electricity pricing have a profound impact on both consumers and producers. The ability to accurately predict electricity prices holds immense significance for various stakeholders, ranging from individual households seeking to manage their energy costs to utility companies striving to optimize resource allocation and policy makers working towards a sustainable energy future.

Electricity price prediction is not merely a matter of financial prudence; it's a critical element in the broader landscape of energy management and sustainability. It empowers us to make informed decisions, reduce energy waste, and align our consumption patterns with fluctuating supply and demand dynamics.

This discussion or project aims to delve into the intricate world of electricity price prediction. We will explore the multifaceted factors that influence pricing, from supply and demand patterns to environmental conditions and regulatory policies. Through the lens of data-driven approaches, machine learning, and statistical modeling, we will uncover the methodologies and tools used to forecast electricity prices with increasing precision.

Throughout our journey, we will address the real-world implications of electricity price prediction. From enabling cost-efficient strategies for businesses to encouraging renewable energy adoption and grid optimization, the ability to foresee price trends stands as a linchpin in the pursuit of an efficient, sustainable, and equitable energy ecosystem.

As we embark on this exploration of electricity price prediction, we invite you to discover the intricate interplay between data, technology, and the future of energy management. Join us as we uncover the valuable insights hidden within the numbers and explore the potential to make more informed, economically sound, and environmentally responsible decisions in an electrified world.

Given Dataset

1	DateTime	Holiday	HolidayFla Day	OfWei We	eekOfY(Day	Mo	onth	Year	PeriodOff F	orecastW	SystemLo: S	MPEA	ORKTemp OR	KWind:	CO2Intens A	ctualWir	SystemLo	SMPEP2
2	***********	None	0	1	44	1	11	2011	0	315.31	3388.77	49.26	6	9.3	600.71	356	3159.6	54.32
3	########	None	0	1	44	1	11	2011	1	321.8	3196.66	49.26	6	11.1	605.42	317	2973.01	54.23
4	***************************************	None	0	1	44	1	11	2011	2	328.57	3060.71	49.1	5	11.1	589.97	311	2834	54.23
5	########	None	0	1	44	1	11	2011	3	335.6	2945.56	48.04	6	9.3	585.94	313	2725.99	53.47
6	***********	None	0	1	44	1	11	2011	4	342.9	2849.34	33.75	6	11.1	571.52	346	2655.64	39.87
7	########	None	0	1	44	1	11	2011	. 5	342.97	2810.01	33.75	5	11.1	562.61	342	2585.99	39.87
8	########	None	0	1	44	1	11	2011	6	343.18	2780.52	33.75	5	7.4	545.81	336	2561.7	39.87
9	***********	None	0	1	44	1	11	2011	7	343.46	2762.67	33.75	5	9.3	539.38	338	2544.33	39.87
10	**********	None	0	1	44	1	11	2011	8	343.88	2766.63	33.75	4	11.1	538.7	347	2549.02	39.87
11	***********	None	0	1	44	1	11	2011	9	344.39	2786.8	33.75	4	7.4	540.39	338	2547.15	39.87
12	**********	None	0	1	44	1	11	2011	10	345.02	2817.59	33.75	4	7.4	532.3	372	2584.58	39.87
13	########	None	0	1	44	1	11	2011	11	342.23	2895.62	47.42	5	5.6	547.57	361	2641.37	39.87
14	************	None	0	1	44	1	11	2011	12	339.22	3039.67	44.31	5	3.7	556.14	383	2842.19	51.45
15	########	None	0	1	44	1	11	2011	13	335.39	3325.1	45.14	5	3.7	590.34	358	3082.97	51.45
16	***************************************	None	0	1	44	1	11	2011	14	330.95	3661.02	46.25	4	9.3	596.22	402	3372.55	52.82
17	**********	None	0	1	44	1	11	2011	15	325.93	4030	52.84	5	3.7	581.52	368	3572.64	53.65
18	***************************************	None	0	1	44	1	11	2011	16	320.91	4306.54	59.44	5	5.6	577.27	361	3852.42	54.21
19	*********	None	0	1	44	1	11	. 2011	17	365.15	4438.05	62.15	6	5.6	568.76	340	4116.03	58.33
20	***************************************	None	0	1	44	1	11	2011	18	410.55	4585.84	61.81	8	7.4	560.79	358	4345.42	58.33
21	*********	None	0	1	44	1	11	2011	19	458.56	4723.93	61.88	9	7.4	542.8	339	4427.29	58.33
22	***************************************	None	0	1	44	1	11	2011	20	513.17	4793.6	61.46	3 3		535.37	324	4460.41	58.33
23	**********	None	0	1	44	1	11	2011	21	573.36	4829.44	61.28	11	13	532.52	335	4493.22	ate58.27

Some list of Tools and Softwares commonly used in this process:

- **1. Programming Language:** Python is the most popular language for machine learning due to its extensive libraries and frameworks. You can use libraries like NumPy, pandas, scikit-learn, and more.
- **2. Integrated Development Environment (IDE):** *IDEs like PyCharm, VSCode, and RStudio provide a user-friendly environment for writing and debugging code*
- **3. Python:** Python is the go-to programming language for data analysis and machine learning. Many libraries and frameworks are available to work with data and build predictive models, including NumPy, Pandas, Scikit-Learn, and TensorFlow.
- **4.Jupyter Notebook:** Jupyter Notebook is an interactive environment widely used for data exploration, analysis, and model development. It allows for easy experimentation and documentation.
- **5. R:** R is another programming language used for statistical analysis and data visualization. It has a strong community of users in the data science field.
- **6. SQL Databases:** Databases like MySQL, PostgreSQL, or SQLite are often used to store historical datas, weather information, demand statistics, generation capacity and other market-related variables in structured tables.
- **7.Web Scraping Tools:** Tools like Beautiful Soup and Scrapy are used to collect data from electricity prices prediction's website or other sources. Web scraping helps to gather relevant data from various sources, aiding in the creation of comparehensive datasets for analysis.
- **8.Data Visualization Tools:** Tools like Matplotlib, Seaborn, and Plotly are used to create visualizations to better understand the data and the relationships between different variables.
- **9.Machine Learning Libraries:** Scikit-Learn, XGBoost, LightGBM, and Keras (for deep learning) are commonly used for building predictive models to estimate electricity prices prediction.

- **10. Feature Engineering Tools:** Feature engineering is crucial in creating relevant predictors. Python libraries like Feature-engine and Featuretools can be helpful.
- **11. Text Analysis Libraries:** Natural language processing (NLP) libraries like NLTK and spaCy are used for sentiment analysis and text-based features extraction from reviews and plot summaries.
- **12. Big Data Tools:** In cases where large datasets are involved, tools like Apache Spark can be used for distributed data processing and machine learning.
- **13. Cloud Computing Platforms:** Services like Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure provide cloud-based resources for handling large-scale data and machine learning tasks.
- **14. Machine Learning Platforms:** AutoML platforms like Google AutoML and H2O.ai provide automated machine learning solutions that can be used for model building and optimization.
- **15. Version Control:** Tools like Git and GitHub/GitLab are essential for tracking changes in code and collaborating with other team members on the project.
- **16. Containerization:** Docker and container orchestration tools like Kubernetes can be used for packaging and deploying machine learning models.
- **17. Data Analysis and Visualization Software:** Tools like Tableau, Power BI, or even Excel can be used for additional data analysis and visualization, especially in the context of reporting and sharing results.
- **18. Statistical Analysis Software:** Software like IBM SPSS or SAS can be used for advanced statistical analysis, especially in more traditional statistical modeling approaches.

1.DESIGN THINKING AND PRESENT IN FORM OF DOCUMENT

1. Empathize: Understanding Stakeholder Needs

 Identify stakeholders (utility companies, consumers, traders, regulators) and understand their unique requirements regarding electricity price prediction. • Conduct interviews, surveys, and workshops to empathize with their pain points, expectations, and desired outcomes.

2. Define: Problem Statement and Objectives

- Consolidate the insights gained from stakeholder interactions to define a clear problem statement.
- Outline specific objectives for the predictive model, considering accuracy, realtime forecasting, adaptability, and user-friendly outputs.

3. Ideate: Exploring Solutions and Methodologies

- Brainstorm various approaches to electricity price prediction, considering machine learning algorithms, statistical models, and data sources.
- Explore different techniques for feature engineering, model selection, and evaluation methods for accurate predictions.

4. Prototype: Model Development and Testing

- Develop prototypes of predictive models using historical electricity pricing data.
- Implement machine learning algorithms (e.g., regression, time series analysis, neural networks) and validate these models with test datasets.

5. Test: Evaluation and Feedback Gathering

- Evaluate the prototypes using various metrics such as Mean Absolute Error, Root Mean Squared Error, or accuracy metrics relevant to electricity price forecasting.
- Gather feedback from stakeholders and adjust the models based on their insights and validation results.

6. Implement: Deployment and Integration

- Implement the finalized predictive model into the operational workflow, ensuring seamless integration with existing systems.
- Develop an interface or API for easy access and utilization by stakeholders.

7. Iterate: Continuous Improvement and Adaptation

- Establish a feedback loop to continuously refine and improve the predictive model based on new data, changing market conditions, and stakeholder feedback.
- Consider the incorporation of advanced techniques and emerging data sources for enhanced accuracy.

Design Into Innovation

Data Collection and Preprocessing:

- ➤ Gather historical data on electricity prices. This data should include timestamp, location and the corresponding electricity prices.
- ➤ To prepare the data for modeling, we performed the following preprocessing steps;
- Handled missing data.
- Removed outliers.
- Converted date and time into suitable formats.
- Normalized prices for consistent scaling.

Exploratory Data Analysis (EDA):

- Visualize and analyze the dataset to gain insights into the relationships between variables.
- Identify correlations and patterns that can inform feature selection and engineering.
- Present various data visualizations to gain insights into the dataset.
- Explore correlations between features and the target variable (electricity prices).
- Discuss any significant findings from the EDA phase that inform feature selection.

Feature Engineering:

- Create new features or transform existing ones to capture valuable information.
- Explain the process of creating new features or transforming existing ones.
- Showcase domain-specific feature engineering, such as proximity scores or composite indicators.
- Emphasize the impact of engineered features on model performance.

Create relevant features that could impact electricity prices, such as weather data(temperature, humidity), economic indicators, holidays or even events like major sports games.

Model Training:

The selected model was trained on a portion of the dataset, and hyperparameters were tuned for optimal performance.

Model Evaluation and Selection:

- ➤ The model's performance was evaluated using the test dataset. Key metrics included:
 - Mean Squared Error (MSE)
 - R-squared (R2)
- We opted for a machine learning approach to predict electricity prices. The selected model was known for its ability to handle time series data effectively.

PYTHON PROGRAM:

#Let's load the relevant libraries

import numpy as np
import pandas as pd
from sklearn.model_selection import
train_test_split,GridSearchCV,RandomizedSearchCV
from sklearn.metrics import mean_squared_error,r2_score
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from sklearn.preprocessing import scale
from sklearn.preprocessing import StandardScaler
from sklearn import model_selection

from sklearn.linear_model import
Ridge,Lasso,RidgeCV,LassoCV,ElasticNet,ElasticNetCV,LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn import neighbors
from sklearn.svm import SVR
import warnings
warnings.filterwarnings("ignore")

Data Loading And Preprocessing

1. Data Collection:

- Acquiring Data: Collect historical electricity price data from various sources, such as energy market platforms, government agencies (like EIA), or commercial data providers.
- Additional Data Sources: Gather supplementary data like weather patterns, demand trends, generation capacities, fuel prices, economic indicators, or regulatory changes that might impact electricity prices.

2. Data Cleaning:

- Handling Missing Values: Address missing data by imputation or removal, ensuring data completeness.
- **Removing Outliers:** *Identify and handle outliers that might negatively impact the accuracy of predictive models.*
- Data Formatting: Standardize data formats and units to ensure consistency across different sources.

3. Feature Engineering:

- **Temporal Features:** Extract time-related features such as day of the week, month, season, or holidays, which might influence pricing.
- Lag Features: Create lag features to capture historical prices or trends, aiding in time series analysis.
- **Aggregated Features:** Generate aggregated statistics (mean, median, standard deviation) for different time windows.

4. Data Transformation:

- **Normalization or Scaling:** *Normalize numerical features to a similar scale to prevent dominance of certain variables.*
- Categorical Data Encoding: Convert categorical variables into a numerical format suitable for modeling (e.g., one-hot encoding).

5. Splitting Data:

- **Training and Test Sets:** Divide the data into training and testing sets for model validation and performance assessment.
- Time-Based Split: Consider time-based splitting to maintain the temporal order in data for time series analysis.

6. Data Validation:

- **Cross-Validation:** *Implement cross-validation techniques to validate model performance across different subsets of the dataset.*
- Validation Metrics: Use appropriate metrics (e.g., Mean Absolute Error, Root Mean Squared Error) to assess model accuracy.

7. Data Preprocessing for Machine Learning Models:

- Model-Specific Preprocessing: Prepare data according to the requirements of chosen machine learning algorithms (e.g., reshaping for LSTM models in neural networks).
- Handling Imbalanced Data: Address class imbalance if present, ensuring the model's ability to predict both high and low price variations.

Program:

Data Loading:

In[1]:

```
df=pd.read_csv("C:\Users\MY PC\Downloads\electricity.csv")
df.head()
```

Out[1]:

	DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	PeriodOfDa
0	01/11/2011 00:00	None	0	1	44	1	11	2011	0
1	01/11/2011 00:30	None	0	1	44	1	11	2011	1
2	01/11/2011 01:00	None	0	1	44	1	11	2011	2
3	01/11/2011 01:30	None	0	1	44	1	11	2011	3
4	01/11/2011 02:00	None	0	1	44	1	11	2011	4
4									+

In[2]:

df.tail()

Out[2]:

38010 31/12/2013 New Year's Eve 1 1 1 1 31 12 2013 38011 31/12/2013 New Year's Eve 1 1 1 1 31 12 2013 38011 31/12/2013 New Year's Eve 1 1 1 1 31 12 2013 38012 31/12/2013 New Year's Eve 1 1 1 1 31 12 2013		DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	Period
38010 31/12/2013 Year's 1 1 1 1 31 12 2013 38011 31/12/2013 New Year's 1 1 1 1 1 31 12 2013 38012 31/12/2013 New Year's Eve 1 1 1 1 1 31 12 2013	38009		Year's	1	1	1	31	12	2013	43
38011 31/12/2013 Year's 1 1 1 1 31 12 2013 38012 31/12/2013 New Year's Eve 1 1 1 1 31 12 2013	38010		Year's	1	1	1	31	12	2013	44
38012 31/12/2013 Year's 1 1 1 1 31 12 2013	38011		Year's	1	1	1	31	12	2013	45
New New	38012		Year's	1	1	1	31	12	2013	46
38013 31/12/2013 Year's 1 1 1 1 31 12 2013	38013	31/12/2013 23:30	Year's	1	1	1	31	12	2013	47

EDA:

In[3]:

df.shape

Out[3]:

(38014, 18)

In[4]:

#columns df.columns

Out[4]:

'CO2Intensity', 'ActualWindProduction', 'SystemLoadEP2', 'SMPEP2'], dtype='object')

In[5]:

datatypes df.dtypes

Out[5]:

DateTime object
Holiday object
HolidayFlag int64
DayOfWeek int64
WeekOfYear int64

Day int64
Month int64
Year int64

PeriodOfDay int64

ForecastWindProduction object

SystemLoadEA object SMPEA object

ORKTemperature object
ORKWindspeed object
CO2Intensity object

ActualWindProduction object SystemLoadEP2 object SMPEP2 object

dtype: object

In[6]:

#structural information
df.info()

Out[6]:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 38014 entries, 0 to 38013

Data columns (total 18 columns):

Column Non-Null Count Dtype

--- ----

0 DateTime 38014 non-null object
1 Holiday 38014 non-null object
2 HolidayFlag 38014 non-null int64
3 DayOfWeek 38014 non-null int64
4 WeekOfYear 38014 non-null int64
5 Day 38014 non-null int64
6 Month 38014 non-null int64

6 Month 38014 non-null int64 7 Year 38014 non-null int64

8 PeriodOfDay 38014 non-null int64

9 ForecastWindProduction 38014 non-null object

10 SystemLoadEA 38014 non-null object

11 SMPEA 38014 non-null object

12 ORKTemperature 38014 non-null object

13 ORKWindspeed 38014 non-null object

14 CO2Intensity 38014 non-null object

15 ActualWindProduction 38014 non-null object

16 SystemLoadEP2 38014 non-null object

17 SMPEP2 38014 non-null object

dtypes: int64(7), object(11) memory usage: 5.2+ MB

In[7]:

dataset summary
df.describe().T

Out[7]:

	count	mean	std	min	25%	50%	75%	max
HolidayFlag	38014.0	0.040406	0.196912	0.0	0.0	0.0	0.00	1.0
DayOfWeek	38014.0	2.997317	1.999959	0.0	1.0	3.0	5.00	6.0
WeekOfYear	38014.0	28.124586	15.587575	1.0	15.0	29.0	43.00	52.0
Day	38014.0	15.739412	8.804247	1.0	8.0	16.0	23.00	31.0
Month	38014.0	6.904246	3.573696	1.0	4.0	7.0	10.00	12.0
Year	38014.0	2012.383859	0.624956	2011.0	2012.0	2012.0	2013.00	2013.0
PeriodOfDay	38014.0	23.501105	13.853108	0.0	12.0	24.0	35.75	47.0
4								+

In[8]:

df.describe([0.1,0.25,0.5,0.65,0.75,0.9,0.95]).T

Out[8]:

	count	mean	std	min	10%	25%	50%	65%
HolidayFlag	38014.0	0.040406	0.196912	0.0	0.0	0.0	0.0	0.0
DayOfWeek	38014.0	2.997317	1.999959	0.0	0.0	1.0	3.0	4.0
WeekOfYear	38014.0	28.124586	15.587575	1.0	6.0	15.0	29.0	37.0
Day	38014.0	15.739412	8.804247	1.0	4.0	8.0	16.0	20.0
Month	38014.0	6.904246	3.573696	1.0	2.0	4.0	7.0	9.0
Year	38014.0	2012.383859	0.624956	2011.0	2012.0	2012.0	2012.0	2013.0
PeriodOfDay	38014.0	23.501105	13.853108	0.0	4.0	12.0	24.0	31.0
4								-

In[9]:

unique value counts
df.nunique()

Out[9]:

DateTime 38014 Holiday 15

```
HolidayFlag
                                2
DayOfWeek
                                7
WeekOfYear
                               52
                               31
Day
Month
                               12
                                3
Year
PeriodOfDay
                              48
ForecastWindProduction
                           29312
SystemLoadEA
                           36166
SMPEA
                            8661
ORKTemperature
                               32
ORKWindspeed
                               53
CO2Intensity
                           25115
ActualWindProduction
                            2940
                           36171
SystemLoadEP2
SMPEP2
                            9277
dtype: int64
```

In[10]:

```
col=["Holiday","HolidayFlag","DayOfWeek","WeekOfYear","Day","Mo
nth",
   "Year","PeriodOfDay","ORKTemperature"]

for i in col:
   print(df[i].value_counts())
   print("*"*30)
```

Out[10]:

None	36478
Christmas Eve	144
Christmas	144
St Stephen's Day	144
New Year's Eve	144
New Year's Day	96
St Patrick's Day	96
Good Friday	96
Holy Saturday	96
Easter	96
Easter Monday	96
May Day	96
June Bank Holiday	96
August Bank Holiday	96

```
October Bank Holiday
Name: Holiday, dtype: int64
*********
    36478
1
     1536
Name: HolidayFlag, dtype: int64
**********
1
    5472
2
    5424
3
    5424
4
    5424
5
    5424
0
    5424
    5422
6
Name: DayOfWeek, dtype: int64
**********
45
     1008
46
     1008
47
     1008
48
     1008
49
     1008
50
     1008
51
     1008
52
     1008
44
      960
1
      768
25
      672
26
      672
33
      672
27
      672
28
      672
29
      672
30
      672
31
      672
32
      672
37
      672
34
      672
35
      672
36
      672
23
      672
38
      672
39
      672
40
      672
41
      672
42
      672
24
      672
18
      672
22
      672
10
      672
2
      672
3
      672
4
      672
5
      672
6
      672
7
      672
```

```
9
      672
11
      672
21
      672
13
      672
      672
14
15
      672
16
      672
17
      672
19
      672
20
      672
43
      672
12
      670
Name: WeekOfYear, dtype: int64
**********
1
     1248
15
     1248
28
     1248
27
     1248
26
     1248
24
     1248
23
     1248
22
     1248
21
     1248
     1248
20
19
     1248
18
     1248
17
     1248
2
     1248
16
     1248
14
     1248
13
     1248
12
     1248
11
     1248
10
     1248
9
     1248
8
     1248
7
     1248
6
     1248
5
     1248
4
     1248
3
     1248
25
     1246
29
     1200
30
     1152
31
      720
Name: Day, dtype: int64
**********
12
     4464
11
     4320
     2976
1
5
     2976
7
     2976
8
     2976
10
     2976
     2974
3
4
     2880
```

```
6
     2880
9
     2880
2
     2736
Name: Month, dtype: int64
**********
2012
      17566
2013
      17520
       2928
2011
Name: Year, dtype: int64
**********
0
     792
1
     792
26
     792
27
     792
28
     792
29
     792
30
     792
31
     792
32
     792
33
     792
34
     792
```

```
3
     791
2
     791
Name: PeriodOfDay, dtype: int64
**********
9.00
       3525
      3230
10.00
8.00
       3225
11.00
      3017
7.00
      2894
12.00 2712
6.00 2617
5.00 2027
13.00 2009
15.00 1883
14.00
      1855
      1580
1451
1399
4.00
16.00
3.00
17.00
      1001
2.00
       953
        592
18.00
       531
1.00
19.00
       330
        295
      213
195
0.00
20.00
       135
21.00
       103
-1.00
       75
22.00
23.00
         64
24.00
        43
     43
30
14
-2.00
-3.00
25.00
-4.00
          2
-0.00
          1
Name: ORKTemperature, dtype: int64
```

In[11]:

we have accessed the class counts for each category

In [12]:

#Let's convert string values to floats;

In [13]:

#pd.to_numeric?

In [14]:

```
linkcode
# convert
df["ForecastWindProduction"]=pd.to numeric(df["ForecastWindProduction"], errors=
'coerce')
df["SystemLoadEA"] = pd.to numeric(df["SystemLoadEA"], errors= 'coerce')
df["SMPEA"] = pd.to numeric(df["SMPEA"], errors= 'coerce')
df["ORKTemperature"] = pd.to numeric(df["ORKTemperature"], errors= 'coerce')
df["ORKWindspeed"] = pd.to numeric(df["ORKWindspeed"], errors= 'coerce')
df["CO2Intensity"] = pd.to numeric(df["CO2Intensity"], errors= 'coerce')
df["ActualWindProduction"] = pd.to_numeric(df["ActualWindProduction"], errors=
'coerce')
df["SystemLoadEP2"] = pd.to_numeric(df["SystemLoadEP2"], errors= 'coerce')
df["SMPEP2"] = pd.to numeric(df["SMPEP2"], errors= 'coerce')
In[15]:
df.info()
Out[15]:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 38014 entries, 0 to 38013
Data columns (total 18 columns):
     Column
                              Non-Null Count Dtype
     -----
 0
     DateTime
                              38014 non-null object
 1
     Holiday
                              38014 non-null object
 2
     HolidayFlag
                              38014 non-null int64
 3
     DayOfWeek
                              38014 non-null
                                              int64
 4
     WeekOfYear
                              38014 non-null int64
 5
     Day
                              38014 non-null int64
 6
     Month
                              38014 non-null int64
 7
     Year
                              38014 non-null int64
 8
     PeriodOfDay
                              38014 non-null int64
 9
     ForecastWindProduction 38009 non-null float64
 10 SystemLoadEA
                              38012 non-null float64
 11 SMPEA
                              38012 non-null
                                              float64
 12 ORKTemperature
                              37719 non-null float64
 13 ORKWindspeed
                              37715 non-null float64
 14 CO2Intensity
                              38007 non-null float64
```

15 ActualWindProduction 38009 non-null float64 16 SystemLoadEP2 38012 non-null float64 17 SMPEP2 38012 non-null float64

dtypes: float64(9), int64(7), object(2)

memory usage: 5.2+ MB

In[16]:

df.describe ([0.05, 0.1, 0.25, 0.35, 0.5, 0.65, 0.75, 0.9, 0.95, 0.98]). T

Out[16]:

	cou nt	mean	std	mi n	5%	10 %	25%	35%	50 %	65 %	75%	90 %	95%	98%	ma x
HolidayFla g	380 14. 0	0.040 406	0.19 6912	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.0
DayOfWee k	380 14. 0	2.997 317	1.99 9959	0.0	0.00	0.00	1.00	2.00	3.00	4.00	5.00 00	6.00	6.00	6.00	6.0
WeekOfYe ar	380 14. 0	28.12 4586	15.5 8757 5	1.0	3.00	6.00	15.0 000	20.0	29.0 00	37.0 00	43.0 000	49.0 00	51.0 000	52.0 000	52. 00
Day	380 14. 0	15.73 9412	8.80 4247	1.0	2.00	4.00	8.00 00	11.0 000	16.0 00	20.0	23.0 000	28.0 00	29.0 000	30.0 000	31. 00
Month	380 14. 0	6.904 246	3.57 3696	1.0	1.00	2.00	4.00	5.00	7.00	9.00	10.0 000	12.0 00	12.0 000	12.0 000	12. 00
Year	380 14. 0	2012. 3838 59	0.62 4956	201 1.0 0	201 1.00 00	201 2.00 0	201 2.00 00	201 2.00 00	201 2.00 0	201 3.00 0	201 3.00 00	201 3.00 0	201 3.00 00	201 3.00 00	201 3.0 0

	cou nt	mean	std	mi n	5%	10 %	25%	35%	50 %	65 %	75%	90 %	95%	98%	ma x
PeriodOfD ay	380 14. 0	23.50 1105	13.8 5310 8	0.0	2.00	4.00	12.0 000	16.0 000	24.0 00	31.0 00	35.7 500	43.0	45.0 000	47.0 000	47. 00
ForecastWi ndProducti on	380 09. 0	544.2 6145 1	414. 3646 29	0.6	52.3 220	80.3 76	189. 670 0	279. 300 0	441. 980	649. 992	839. 460 0	120 6.11 0	135 2.44 00	144 1.45 80	168 0.0 0
SystemLoa dEA	380 12. 0	4020. 0850 19	860. 4768 66	218 3.9 4	262 6.24 95	281 2.03 3	328 1.20 75	364 6.83 35	410 3.60 0	446 7.16 0	463 8.53 25	509 3.91 2	536 7.07 60	571 3.10 28	649 2.9 1
SMPEA	380 12. 0	62.72 0388	32.2 5233 4	0.0	33.8 200	38.3 60	45.5 300	49.1 900	55.2 30	63.6 10	70.3 200	90.6 27	110. 229 0	154. 837 8	587 .58
ORKTemp erature	377 19. 0	9.626 369	4.43 9934	- 4.0 0	3.00	4.00	6.00	8.00 00	9.00	11.0 00	13.0 000	16.0 00	17.0 000	19.0 000	25. 00
ORKWind speed	377 15. 0	19.21 1770	9.57 1311	0.0	5.60 00	7.40 0	13.0 000	14.8 000	18.5 00	22.2 00	24.1 000	31.5 00	37.0 000	42.6 000	75. 90
CO2Intensi ty	380 07. 0	479.3 7304 0	85.3 5470 6	0.0	336. 093 0	367. 216	421. 105 0	446. 880 0	480. 310	512. 620	537. 520 0	587. 870	619. 191 0	656. 045 2	842 .88
ActualWin dProductio n	380 09. 0	520.7 6281 9	378. 2829 75	1.0	43.0 000	77.0 00	199. 000 0	287. 800 0	445. 000	637. 000	793. 000 0	109 8.00 0	124 3.00 00	134 9.00 00	176 9.0 0
SystemLoa dEP2	380 12. 0	3785. 9738 41	843. 2694 55	180 9.9 6	244 9.54 10	259 9.07 0	305 8.27 75	340 3.70 40	386 5.74 5	423 9.70 9	442 7.59 00	483 0.29 4	508 7.54 30	539 7.77 58	630 9.7 5

	cou nt	mean	std	mi n	5%	10 %	25%	35%	50 %	65 %	75%	90 %	95%	98%	ma x
SMPEP2	380 12. 0	64.1 3682 3	35.4 1503 6	- 47. 74	33.1 900	37. 922									

In[17]:

df.sort_values("ForecastWindProduction",ascending=False).head(1
0)

Out[17]:

	DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	Period
24326	21/03/2013 20:00	None	0	3	12	21	3	2013	40
24327	21/03/2013 20:30	None	0	3	12	21	3	2013	41
24325	21/03/2013 19:30	None	0	3	12	21	3	2013	39
24328	21/03/2013 21:00	None	0	3	12	21	3	2013	42
24324	21/03/2013 19:00	None	0	3	12	21	3	2013	38
37342	18/12/2013 00:00	None	0	2	51	18	12	2013	0
25476	14/04/2013 19:00	None	0	6	15	14	4	2013	38
24329	21/03/2013 21:30	None	0	3	12	21	3	2013	43
24323	21/03/2013 18:30	None	0	3	12	21	3	2013	37
24330	21/03/2013 22:00	None	0	3	12	21	3	2013	44
4									+

In[18]:

df.sort_values("ForecastWindProduction").head(10)

Out[18]:

	DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	Period
29729	12/07/2013 09:30	None	0	4	28	12	7	2013	19
29728	12/07/2013 09:00	None	0	4	28	12	7	2013	18
29727	12/07/2013 08:30	None	0	4	28	12	7	2013	17
29730	12/07/2013 10:00	None	0	4	28	12	7	2013	20
29726	12/07/2013 08:00	None	0	4	28	12	7	2013	16
29731	12/07/2013 10:30	None	0	4	28	12	7	2013	21
29725	12/07/2013 07:30	None	0	4	28	12	7	2013	15
29732	12/07/2013 11:00	None	0	4	28	12	7	2013	22
27150	19/05/2013 16:00	None	0	6	20	19	5	2013	32
27149	19/05/2013 15:30	None	0	6	20	19	5	2013	31
4									-

In[19]:

df.sort_values("ORKWindspeed",ascending=False).head(10)
highest

Out[19]:

	DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	Per
37770	26/12/2013 22:00	St Stephen's Day	1	3	52	26	12	2013	44
37767	26/12/2013 20:30	St Stephen's Day	1	3	52	26	12	2013	41
25619	17/04/2013 18:30	None	0	2	16	17	4	2013	37
37768	26/12/2013 21:00	St Stephen's Day	1	3	52	26	12	2013	42
25617	17/04/2013 17:30	None	0	2	16	17	4	2013	35
37775	27/12/2013 00:30	None	0	4	52	27	12	2013	1
25621	17/04/2013 19:30	None	0	2	16	17	4	2013	39
37779	27/12/2013 02:30	None	0	4	52	27	12	2013	5
37778	27/12/2013 02:00	None	0	4	52	27	12	2013	4
37771	26/12/2013 22:30	St Stephen's Day	1	3	52	26	12	2013	45
4									-

In[20]:

df.sort_values("ORKWindspeed").head(10) # lowest

Out[20]:

	DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	Period
35131	01/11/2013 22:30	None	0	4	44	1	11	2013	45
18299	16/11/2012 06:30	None	0	4	46	16	11	2012	13
9320	13/05/2012 05:00	None	0	6	19	13	5	2012	10
145	04/11/2011 00:30	None	0	4	44	4	11	2011	1
35477	09/11/2013 03:30	None	0	5	45	9	11	2013	7
18258	15/11/2012 10:00	None	0	3	46	15	11	2012	20
21265	17/01/2013 01:30	None	0	3	3	17	1	2013	3
17559	31/10/2012 20:30	None	0	2	44	31	10	2012	41
19981	21/12/2012 07:30	None	0	4	51	21	12	2012	15
18294	16/11/2012 04:00	None	0	4	46	16	11	2012	8
4									-

In[21]:

df.sort_values("SMPEA",ascending=False).head(10) # highest

Out[21]:

	DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	Period
1474	01/12/2011 17:00	None	0	3	48	1	12	2011	34
6951	24/03/2012 19:30	None	0	5	12	24	3	2012	39
1667	05/12/2011 17:30	None	0	0	49	5	12	2011	35
37857	28/12/2013 17:30	None	0	5	52	28	12	2013	35
37907	29/12/2013 18:30	None	0	6	52	29	12	2013	37
37569	22/12/2013 17:30	None	0	6	51	22	12	2013	35
37137	13/12/2013 17:30	None	0	4	50	13	12	2013	35
17698	03/11/2012 18:00	None	0	5	44	3	11	2012	36
23892	12/03/2013 19:00	None	0	1	11	12	3	2013	38
16963	19/10/2012 10:30	None	0	4	42	19	10	2012	21

In[22]:

df.sort_values("SMPEA").head(10) # lowest

Out[22]:

	DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	Period(
2218	17/12/2011 05:00	None	0	5	50	17	12	2011	10
2025	13/12/2011 04:30	None	0	1	50	13	12	2011	9
1398	30/11/2011 03:00	None	0	2	48	30	11	2011	6
442	10/11/2011 05:00	None	0	3	45	10	11	2011	10
441	10/11/2011 04:30	None	0	3	45	10	11	2011	9
2217	17/12/2011 04:30	None	0	5	50	17	12	2011	9
3130	05/01/2012 05:00	None	0	3	1	5	1	2012	10
2023	13/12/2011 03:30	None	0	1	50	13	12	2011	7
3845	20/01/2012 02:30	None	0	4	3	20	1	2012	5
3850	20/01/2012 05:00	None	0	4	3	20	1	2012	10
4									-

In[23]:

```
df.groupby("Holiday")[["Month","Year"]].describe().T
```

Out[23]:

	Holiday	August Bank Holiday	Christmas	Christmas Eve	Easter	Easter Monday	Good
Month	count	96.000000	144.000000	144.000000	96.000000	96.000000	96.0
	mean	8.000000	12.000000	12.000000	3.500000	4.000000	3.50
	std	0.000000	0.000000	0.000000	0.502625	0.000000	0.50
	min	8.000000	12.000000	12.000000	3.000000	4.000000	3.00
	25%	8.000000	12.000000	12.000000	3.000000	4.000000	3.00
	50%	8.000000	12.000000	12.000000	3.500000	4.000000	3.50
	75%	8.000000	12.000000	12.000000	4.000000	4.000000	4.00
	max	8.000000	12.000000	12.000000	4.000000	4.000000	4.00
Year	count	96.000000	144.000000	144.000000	96.000000	96.000000	96.0
	mean	2012.500000	2012.000000	2012.000000	2012.500000	2012.500000	201
	std	0.502625	0.819346	0.819346	0.502625	0.502625	0.50
	min	2012.000000	2011.000000	2011.000000	2012.000000	2012.000000	2012
	25%	2012.000000	2011.000000	2011.000000	2012.000000	2012.000000	2012
	50%	2012.500000	2012.000000	2012.000000	2012.500000	2012.500000	201
	75%	2013.000000	2013.000000	2013.000000	2013.000000	2013.000000	2013
	max	2013.000000	2013.000000	2013.000000	2013.000000	2013.000000	2013

In[24]:

df[df.SMPEP2==-47.74]

Out[24]:

	DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	Period(
3131	05/01/2012 05:30	None	0	3	1	5	1	2012	11
4									-

In[25]:

df[df.SMPEP2<0]</pre>

Out[25]:

	DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	Period
3131	05/01/2012 05:30	None	0	3	1	5	1	2012	11
19872	19/12/2012 01:00	None	0	2	51	19	12	2012	2
19877	19/12/2012 03:30	None	0	2	51	19	12	2012	7
4									-

In[26]:

df[df.SMPEP2==1000]

Out[26]:

	DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	Period
23193	26/02/2013 05:30	None	0	1	9	26	2	2013	11
4									•

In[27]:

df[df.ORKTemperature<0]</pre>

Out[27]:

	DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	Period
4463	01/02/2012 23:30	None	0	2	5	1	2	2012	47
4464	02/02/2012 00:00	None	0	3	5	2	2	2012	0
4467	02/02/2012 01:30	None	0	3	5	2	2	2012	3
21502	22/01/2013 00:00	None	0	1	4	22	1	2013	0
21503	22/01/2013 00:30	None	0	1	4	22	1	2013	1
•••			***	***	***				
36154	23/11/2013 06:00	None	0	5	47	23	11	2013	12
36155	23/11/2013 06:30	None	0	5	47	23	11	2013	13
36156	23/11/2013 07:00	None	0	5	47	23	11	2013	14
36157	23/11/2013 07:30	None	0	5	47	23	11	2013	15
36159	23/11/2013 08:30	None	0	5	47	23	11	2013	17
4									-

In[28]:

df[df.ORKTemperature==25]

Out[28]:

	DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	Period
29498	07/07/2013 14:00	None	0	6	27	7	7	2013	28
29594	09/07/2013 14:00	None	0	1	28	9	7	2013	28
29637	10/07/2013 11:30	None	0	2	28	10	7	2013	23
29638	10/07/2013 12:00	None	0	2	28	10	7	2013	24
29784	13/07/2013 13:00	None	0	5	28	13	7	2013	26
29785	13/07/2013 13:30	None	0	5	28	13	7	2013	27
29786	13/07/2013 14:00	None	0	5	28	13	7	2013	28
29787	13/07/2013 14:30	None	0	5	28	13	7	2013	29
29788	13/07/2013 15:00	None	0	5	28	13	7	2013	30
29789	13/07/2013 15:30	None	0	5	28	13	7	2013	31
29790	13/07/2013 16:00	None	0	5	28	13	7	2013	32

Data Preprocessing:

In[1]:

missing value query df.isna().sum()

Out[1]:

DateTime	0
Holiday	0
HolidayFlag	0
DayOfWeek	0
WeekOfYear	0
Day	0
Month	0

Year PeriodOfDay ForecastWindProduction SystemLoadEA SMPEA ORKTemperature ORKWindspeed CO2Intensity ActualWindProduction SystemLoadEP2 SMPEP2 dtype: int64
In[2]:
<pre>cat_list=[] num_list=[]</pre>
for i in df.columns: unique_val=len(df[i].unique())
<pre>if unique_val<40: cat_list.append(i) else: num_list.append(i)</pre>
In [3]:
cat_list.append("WeekOfYear")
In [4]:
cat_list
Out[4]:
['Holiday', 'HolidayFlag',

```
'DayOfWeek',
'Day',
'Month',
'Year',
'ORKTemperature',
'WeekOfYear']
In [5]:
num_list
Out[5]:
['DateTime',
'WeekOfYear',
'PeriodOfDay',
'ForecastWindProduction',
'SystemLoadEA',
'SMPEA',
'ORKWindspeed',
'CO2Intensity',
'ActualWindProduction',
'SystemLoadEP2',
'SMPEP2']
In[6]:
num_list.remove("DateTime")
num_list
Out[6]:
['WeekOfYear',
'PeriodOfDay',
'ForecastWindProduction',
'SystemLoadEA',
'SMPEA',
'ORKWindspeed',
'CO2Intensity',
```

```
'ActualWindProduction',
'SystemLoadEP2',
'SMPEP2']

In [7]:

num_list.append("ORKTemperature")

In [8]:

k=1
plt.figure(figsize=(12,12))
plt.suptitle("distribution of numerical values")

for i in df.loc[:,num_list]:
   plt.subplot(6,2,k)
   sns.distplot(df[i])
   plt.title(i)
   k+=1
   plt.tight_layout()
```


Visualization of missing values:

In [1]:

import missingno as msno

In [2]:

```
linkcode
msno.matrix(df);
```


In[3]:
msno.heatmap(df);

In[4]:

missing values based on distribution states# eksik değer gide rme

In[5]:

```
df["ForecastWindProduction"].fillna(df.ForecastWindProduction.m
ean(),inplace=True)
df["SystemLoadEA"].fillna(df.SystemLoadEA.mean(),inplace=True)
df["SMPEA"].fillna(df.SMPEA.mean(),inplace=True)
df["CO2Intensity"].fillna(df.CO2Intensity.median(),inplace=True)
)
df["ActualWindProduction"].fillna(value=250,inplace=True)
df["SystemLoadEP2"].fillna(df.SystemLoadEP2.median(),inplace=True)
df["SMPEP2"].fillna(df.SMPEP2.median(),inplace=True)
In [23]:
df["ORKTemperature"].fillna(value=10,inplace=True)
df["ORKWindspeed"].fillna(value=20,inplace=True)
```

In[6]:

df.isna().sum()

Out[6]:

DateTime	0
Holiday	0
HolidayFlag	0
DayOfWeek	0
WeekOfYear	0
Day	0
Month	0
Year	0
PeriodOfDay	0
ForecastWindProduction	0
SystemLoadEA	0
SMPEA	0
ORKTemperature	0
ORKWindspeed	0
CO2Intensity	0
ActualWindProduction	0
SystemLoadEP2	0

SMPEP2 0

dtype: int64
In [25]:
linkcode

we have removed the missing values

Outlier Problem:

In[1]:

linkcode df.describe([0.05,0.1,0.25,0.35,0.5,0.65,0.75,0.9,0.95,0.98]).T

Out[1]:

	count	mean	std	min	5%	10%
HolidayFlag	38014.0	0.040406	0.196912	0.00	0.0000	0.000
DayOfWeek	38014.0	2.997317	1.999959	0.00	0.0000	0.000
WeekOfYear	38014.0	28.124586	15.587575	1.00	3.0000	6.000
Day	38014.0	15.739412	8.804247	1.00	2.0000	4.000
Month	38014.0	6.904246	3.573696	1.00	1.0000	2.000
Year	38014.0	2012.383859	0.624956	2011.00	2011.0000	2012.000
PeriodOfDay	38014.0	23.501105	13.853108	0.00	2.0000	4.000
ForecastWindProduction	38014.0	544.261451	414.337377	0.68	52.3420	80.395
SystemLoadEA	38014.0	4020.085019	860.454229	2183.94	2626.2585	2812.039
SMPEA	38014.0	62.720388	32.251486	0.00	33.8200	38.360
ORKTemperature	38014.0	9.629268	4.422794	-4.00	3.0000	4.000
ORKWindspeed	38014.0	19.217970	9.533848	0.00	5.6000	7.400
CO2Intensity	38014.0	479.373213	85.346848	0.00	336.0965	367.229
ActualWindProduction	38014.0	520.727206	378.270841	1.00	43.0000	77.000
SystemLoadEP2	38014.0	3785.978038	843.247470	1809.96	2449.5430	2599.070
SMPEP2	38014.0	64.136371	35.414160	-47.74	33.1900	37.926
4)

In[2]:

num_list

Out[2]:

```
['WeekOfYear',
 'PeriodOfDay',
 'ForecastWindProduction',
 'SystemLoadEA',
 'SMPEA',
 'ORKWindspeed',
 'CO2Intensity',
 'ActualWindProduction',
 'SystemLoadEP2',
 'SMPEP2',
 'ORKTemperature']
In[3]:
out list=["ForecastWindProduction","SystemLoadEA","SMPEA",
           "ORKWindspeed", "SMPEP2"]
In[4]:
for i in df.loc[:,out list]:
    Q1 = df[i].quantile(0.02)
    Q3 = df[i].quantile(0.98)
    IQR = Q3-Q1
    up = Q3 + 1.5*IQR
    low = Q1 - 1.5*IQR
    if df[(df[i] > up) | (df[i] < low)].any(axis=None):</pre>
        print(i,"yes")
    else:
         print(i, "no")
Out[4]:
ForecastWindProduction no
SystemLoadEA no
SMPEA yes
ORKWindspeed no
SMPEP2 yes
```

```
In[5]:
#accessing outliers
def outliers_df(df):
    q1,q3=np.percentile(df,[0.02,0.98])
    1qr=q3-q1
    low, high=q1-1.5*(1qr), q3+1.5*(1qr)
    outliers_train=[i for i in df if i<low or i>high]
    return outliers train
In[6]:
len(outliers_df(df.SMPEA))
Out[6]:
9923
In[7]:
len(outliers_df(df.SMPEP2))
Out[7]:
12036
In[8]:
df_remove_out=df.copy()
In[9]:
# remove outliers;
for i in df_remove_out.loc[:,out_list]:
 Q1 = df_remove_out[i].quantile(0.02)
```

```
Q3 = df remove out[i].quantile(0.98)
  IQR = Q3 - Q1
  up lim=Q3+1.5 *IQR
  low_lim=Q1-1.5 *IQR
  df remove out.loc[df remove out[i]>up lim,i]=up lim
  df_remove_out.loc[df_remove_out[i]<low_lim,i]=low_lim
In[10]:
for i in df_remove_out.loc[:,out_list]:
  Q1 = df_remove_out[i].quantile(0.02)
 Q3 = df_remove_out[i].quantile(0.98)
  IQR = Q3-Q1
  up = Q3 + 1.5*IQR
  low = Q1 - 1.5*IQR
 if df[(df_remove_out[i] > up) | (df_remove_out[i] < low)].any(axis=None):
    print(i,"yes")
  else:
    print(i, "no")
Out[10]:
ForecastWindProduction no
SystemLoadEA no
SMPEA no
ORKWindspeed no
SMPEP2 no
In[11]:
df.describe([0.05,0.1,0.25,0.35,0.5,0.65,0.75,0.9,0.95,0.98]).T
Out[11]:
```

	count	mean	std	min	5%	10%
HolidayFlag	38014.0	0.040406	0.196912	0.00	0.0000	0.000
DayOfWeek	38014.0	2.997317	1.999959	0.00	0.0000	0.000
WeekOfYear	38014.0	28.124586	15.587575	1.00	3.0000	6.000
Day	38014.0	15.739412	8.804247	1.00	2.0000	4.000
Month	38014.0	6.904246	3.573696	1.00	1.0000	2.000
Year	38014.0	2012.383859	0.624956	2011.00	2011.0000	2012.000
PeriodOfDay	38014.0	23.501105	13.853108	0.00	2.0000	4.000
ForecastWindProduction	38014.0	544.261451	414.337377	0.68	52.3420	80.395
SystemLoadEA	38014.0	4020.085019	860.454229	2183.94	2626.2585	2812.039
SMPEA	38014.0	62.720388	32.251486	0.00	33.8200	38.360
ORKTemperature	38014.0	9.629268	4.422794	-4.00	3.0000	4.000
ORKWindspeed	38014.0	19.217970	9.533848	0.00	5.6000	7.400
CO2Intensity	38014.0	479.373213	85.346848	0.00	336.0965	367.229
ActualWindProduction	38014.0	520.727206	378.270841	1.00	43.0000	77.000
SystemLoadEP2	38014.0	3785.978038	843.247470	1809.96	2449.5430	2599.070
SMPEP2	38014.0	64.136371	35.414160	-47.74	33.1900	37.926
4						+

In[12]:

df_remove_out.describe([0.05,0.1,0.25,0.35,0.5,0.65,0.75,0.9,0.
95,0.98]).T

Out[12]:

	count	mean	std	min	5%	10%
HolidayFlag	38014.0	0.040406	0.196912	0.00	0.0000	0.000
DayOfWeek	38014.0	2.997317	1.999959	0.00	0.0000	0.000
WeekOfYear	38014.0	28.124586	15.587575	1.00	3.0000	6.000
Day	38014.0	15.739412	8.804247	1.00	2.0000	4.000
Month	38014.0	6.904246	3.573696	1.00	1.0000	2.000
Year	38014.0	2012.383859	0.624956	2011.00	2011.0000	2012.000
PeriodOfDay	38014.0	23.501105	13.853108	0.00	2.0000	4.000
ForecastWindProduction	38014.0	544.261451	414.337377	0.68	52.3420	80.395
SystemLoadEA	38014.0	4020.085019	860.454229	2183.94	2626.2585	2812.039
SMPEA	38014.0	62.621453	31.179620	0.00	33.8200	38.360
ORKTemperature	38014.0	9.629268	4.422794	-4.00	3.0000	4.000
ORKWindspeed	38014.0	19.217970	9.533848	0.00	5.6000	7.400
CO2Intensity	38014.0	479.373213	85.346848	0.00	336.0965	367.229
ActualWindProduction	38014.0	520.727206	378.270841	1.00	43.0000	77.000
SystemLoadEP2	38014.0	3785.978038	843.247470	1809.96	2449.5430	2599.070
SMPEP2	38014.0	63.958532	33.351453	-47.74	33.1900	37.926
4						•

In[13]:

df[df.SMPEP2<0]=0

In[14]:

linkcode
df_remove_out[df_remove_out.SMPEP2<0]=0</pre>

Time Series Analysis:

In[1]:

```
from datetime import datetime
df["DateTime"] = pd.to_datetime(df.DateTime)
```

In [2]:

```
linkcode
df['year'] = df['DateTime'].dt.year
df['month'] = df['DateTime'].dt.month
df["day"]=df["DateTime"].dt.day
```

In[3]:

```
custgroup=df.groupby('DateTime').mean()
plt.figure(figsize=(12,5))
custgroup['SMPEP2'].plot(x=df.DateTime)
plt.title("SMPEP2 status")
plt.show()
```


In[4]:

```
custgroup=df.groupby('month').mean()
fig,ax=plt.subplots(figsize=(12,5))
ax.xaxis.set(ticks=range(0,13))
custgroup['SMPEP2'].plot(x=df.DateTime)
plt.title("SMPEP2 status by month")
plt.show()
```


In[5]:

```
custgroup=df.groupby('day').mean()
plt.figure(figsize=(12,5))
custgroup['SMPEP2'].plot(x=df.DateTime)
plt.title("change in SMPEP2 by days")
plt.show()
```


In[6]:

```
df_remove_out["DateTime"] =
pd.to_datetime(df_remove_out.DateTime)
```

In[7]:

```
df_remove_out['year'] = df_remove_out['DateTime'].dt.year
df_remove_out['month'] = df_remove_out['DateTime'].dt.month
df_remove_out["day"]=df_remove_out["DateTime"].dt.day
```

In[8]:

linkcode
df_remove_out

	DateTime	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	PeriodOf
0	2011- 01-11 00:00:00	None	0	1	44	1	11	2011	0
1	2011- 01-11 00:30:00	None	0	1	44	1	11	2011	1
2	2011- 01-11 01:00:00	None	0	1	44	1	11	2011	2
3	2011- 01-11 01:30:00	None	0	1	44	1	11	2011	3
4	2011- 01-11 02:00:00	None	0	1	44	1	11	2011	4
38009	2013- 12-31 21:30:00	New Year's Eve	1	1	1	31	12	2013	43

38010	2013- 12-31 22:00:00	New Year's Eve	1	1	1	31	12	2013	44
38011	2013- 12-31 22:30:00	New Year's Eve	1	1	1	31	12	2013	45
38012	2013- 12-31 23:00:00	New Year's Eve	1	1	1	31	12	2013	46
38013	2013- 12-31 23:30:00	New Year's Eve	1	1	1	31	12	2013	47
4									+

Data Visualize:

In[1]:

```
for i in cat_list:
    plt.figure(figsize=(13,13))
    sns.countplot(x=i,data=df.loc[:,cat_list])
    plt.title(i)
```


In[2]:

sns.pairplot(df.loc[:,num_list]);

In[3]:

df.hist(figsize=(9,9));

In[4]:

cat_list

Out[4]:

['Holiday',
'HolidayFlag',
'DayOfWeek',
'Day',

```
'Month',
'Year',
'ORKTemperature',
'WeekOfYear']
In[5]:
num list
Out[5]:
['WeekOfYear',
'PeriodOfDay',
'ForecastWindProduction',
'SystemLoadEA',
'SMPEA',
'ORKWindspeed',
'CO2Intensity',
'ActualWindProduction',
'SystemLoadEP2',
'SMPEP2',
'ORKTemperature']
In[6]:
linkcode
plt.figure(figsize=(15,15))
plt.subplot(3,2,1)
sns.barplot(x ='Year',y ='SystemLoadEA',data = df)
plt.subplot(3,2,2)
sns.barplot(x="DayOfWeek",y="SMPEP2",data=df)
plt.subplot(3,2,3)
sns.boxplot(x="Month",y="SMPEP2",data=df)
plt.subplot(3,2,4)
sns.boxplot(x="Day",y="ORKWindspeed",data=df)
plt.subplot(3,2,5)
sns.violinplot(x="Holiday",y="SystemLoadEA",data=df)
plt.subplot(3,2,6)
sns.barplot(x="Holiday",y="ORKWindspeed",data=df)
plt.show()
```


In[7]:

df.drop("DateTime",axis=1,inplace=True)

In[8]:

linkcode df.head(2)

Out[8]:

	Holiday	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	PeriodOfDay	ForecastWi
0	None	0	1	44	1	11	2011	0	315.31
1	None	0	1	44	1	11	2011	1	321.80
4								•	

Encoding:

In[1]:

```
dms=pd.get_dummies(df["Holiday"])
dms
```

Out[1]:

	0	August Bank Holiday	Christmas	Christmas Eve	Easter	Easter Monday	Good Friday	Holy Saturday	June Bank Holiday	May Day	1 1
0	0	0	0	0	0	0	0	0	0	0	(
1	0	0	0	0	0	0	0	0	0	0	(
2	0	0	0	0	0	0	0	0	0	0	(
3	0	0	0	0	0	0	0	0	0	0	(
4	0	0	0	0	0	0	0	0	0	0	(

38009	0	0	0	0	0	0	0	0	0	0	(
38010	0	0	0	0	0	0	0	0	0	0	(
38011	0	0	0	0	0	0	0	0	0	0	(
38012	0	0	0	0	0	0	0	0	0	0	(
38013	0	0	0	0	0	0	0	0	0	0	(
4								F			

In[2]:

```
df.drop("Holiday",axis=1,inplace=True)
df=pd.concat([df,dms],axis=1)
```

df.head()

Out[2]:

	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	PeriodOfDay	ForecastWindProduct
0	0	1	44	1	11	2011	0	315.31
1	0	1	44	1	11	2011	1	321.80
2	0	1	44	1	11	2011	2	328.57
3	0	1	44	1	11	2011	3	335.60
4	0	1	44	1	11	2011	4	342.90
4								+

In[3]:

```
dms2=pd.get_dummies(df_remove_out["Holiday"])
df_remove_out.drop("Holiday",axis=1,inplace=True)
df_remove_out=pd.concat([df_remove_out,dms2],axis=1)
df_remove_out.head()
```

Out[3]:

	DateTime	HolidayFlag	DayOfWeek	WeekOfYear	Day	Month	Year	PeriodOfDay	Forecast ¹
0	2011- 01-11 00:00:00	0	1	44	1	11	2011	0	315.31
1	2011- 01-11 00:30:00	0	1	44	1	11	2011	1	321.80
2	2011- 01-11 01:00:00	0	1	44	1	11	2011	2	328.57
3	2011- 01-11 01:30:00	0	1	44	1	11	2011	3	335.60
4	2011- 01-11 02:00:00	0	1	44	1	11	2011	4	342.90
4									+

In[4]:

df_remove_out.drop("DateTime",axis=1,inplace=True)

Feature Engineering

Feature engineering is a critical step in building accurate electricity price prediction models. Effective feature engineering can help capture relevant patterns and relationships in the data. Here are some feature engineering techniques and considerations for electricity price prediction:

1. Time-Based Features:

- Time of Day: Create features to represent the time of day, such as hour of the day or minute of the hour. Electricity prices often exhibit daily and hourly patterns.
- ♣ Day of the Week: Include features for the day of the week to capture weekly seasonality.
- Month and Season: Incorporate features for the month and season to capture monthly and seasonal patterns.

Holidays: Add binary features to indicate holidays or special events that may affect electricity prices.

2. Lagged Features:

- Lagged Prices: Include lagged electricity prices as features. Lagged values can capture autocorrelation and previous price trends.
- -Lagged Demand: Consider lagged electricity demand as a feature, as demand patterns can influence prices.

3. Rolling Statistics:

♣ Rolling Mean and Rolling Standard Deviation: Calculate rolling statistics over a certain window (e.g., 7 days) to capture short-term trends and volatility.

4. Weather Data:

Incorporate weather data, such as temperature, humidity, or wind speed, as these factors can impact electricity consumption and prices.

5. Demand Data:

Include features related to electricity demand, such as historical demand levels and peak demand periods.

6. Market Data:

Consider variables related to the energy market, such as fuel prices, electricity generation capacity, or the state of the grid.

7. Feature Scaling:

Normalize or scale features as needed to ensure that they have the same magnitude. This is important for models like linear regression or neural networks.

8. Categorical Variables:

If you have categorical variables (e.g., region or market type), use one-hot encoding or other categorical encoding techniques to convert them into numerical features.

9. Special Events:

Include features that indicate special events or anomalies, such as power outages or significant market changes.

10. Price Differencing:

Calculate differences between consecutive price values to create features that capture price changes.

11. Calendar Events:

Incorporate calendar-related features, such as the number of days until the next holiday or the number of days remaining in the billing cycle.

12. Feature Selection:

Use feature selection techniques to identify the most relevant features for your model. Eliminate redundant or unimportant features to reduce model complexity.

13. Domain-Specific Features:

Consult with domain experts in the energy industry to identify domainspecific features that might influence electricity prices.

14. Time Series Decomposition:

Decompose the time series data into trend, seasonality, and residual components using methods like seasonal decomposition of time series (STL) and use these components as features.

15. External Data Sources:

♣ Consider incorporating external data sources, such as economic indicators, news sentiment, or energy market reports, to enhance the model's predictive power.

Model Training

Training a model for electricity price prediction involves several key steps. Here's a high-level overview of the process:

- **1. Data Collection:** Gather historical data on electricity prices. This data may include information such as time of day, season, weather conditions, demand, and more. High-quality and comprehensive data are crucial for accurate predictions.
- **2. Data Preprocessing:** Clean and preprocess the data. This includes handling missing values, outliers, and encoding categorical variables. Time series data may also require specific preprocessing steps like resampling, differencing, or decomposing.
- **3. Feature Engineering**: Create relevant features that can help the model capture patterns and trends in the data. Feature engineering can include lag features, moving averages, and seasonality indicators.
- **4. Splitting the Data:** Divide your dataset into training, validation, and test sets. The training set is used to train the model, the validation set helps with hyperparameter tuning, and the test set is reserved for final model evaluation.
- **5. Model Selection:** Choose an appropriate machine learning or statistical model for electricity price prediction. Common choices include regression models (e.g., linear regression, random forest, or gradient boosting), time series models (e.g., ARIMA, SARIMA, or Prophet), or deep learning models (e.g., recurrent neural networks or LSTM).
- **6. Model Training:** Train the selected model using the training dataset. Ensure that the model optimizes a relevant loss function, such as mean squared error (MSE) for regression tasks. Adjust hyperparameters as needed to improve model performance.

- **7. Hyperparameter Tuning:** Use techniques like grid search or random search to fine-tune hyperparameters. This process helps you find the best configuration for your model.
- **8. Model Validation:** Evaluate the model's performance on the validation dataset using appropriate evaluation metrics. Adjust the model and repeat training if necessary.
- **9. Model Testing:** Once you're satisfied with the model's performance on the validation set, test it on the reserved test set to assess how well it generalizes to new, unseen data.
- **10. Model Deployment:** If the model meets your performance requirements, deploy it to make real-time predictions on new electricity price data. Ensure that the deployment environment is scalable and reliable.
- **11. Monitoring and Maintenance**: Continuously monitor the model's performance in a production environment and update it as needed. Electricity prices can be influenced by various factors that may change over time, so model maintenance is crucial.
- **12. Interpretability and Visualization:** *Provide clear explanations of the model's predictions, and use visualization techniques to communicate insights to stakeholders.*

Model Evaluation

- **1. Mean Absolute Error (MAE):** Calculate the absolute differences between predicted and actual prices, and then take the mean. It measures the average magnitude of errors.
- **2. Mean Squared Error (MSE):** Square the differences between predicted and actual prices, and then take the mean. MSE gives more weight to larger errors.
- **3. Root Mean Squared Error (RMSE):** *Take the square root of the MSE. It's in the same unit as the target variable and provides a clearer interpretation.*

- **4. R-squared** (R^2): This measures the proportion of variance in the target variable that's predictable from the features. A higher R-squared indicates a better fit.
- **5. Mean Absolute Percentage Error (MAPE):** Calculate the percentage difference between predicted and actual prices, and then take the mean. It's useful when you want to understand the error as a percentage of the actual values.
- **6. Time Series-Specific Metrics:** If your electricity price data is time-series data, you may want to use metrics like Mean Absolute Scaled Error (MASE), Seasonal decomposition of time series (STL), or Autocorrelation to assess model performance.
- **7. Cross-Validation:** *Split your dataset into training and testing subsets, using techniques like k-fold cross-validation, time series cross-validation, or walkforward validation. This helps you assess how well your model generalizes to new data.*
- **8. Visual Inspection:** *Plot the predicted prices against the actual prices to visually assess how well the model captures trends and patterns.*
- **9. Residual Analysis:** Examine the residuals (the differences between actual and predicted prices) for any patterns or autocorrelation. This can help identify model deficiencies.
- **10. Domain Expertise:** Consulting with domain experts in the energy industry can provide valuable insights into whether your model's predictions make practical sense.

PROGRAM

Correlation Analysis:

In[1]:

plt.figure(figsize=(12,12))

sns.heatmap(df.corr(),annot=True,linewidths=0.7,fmt=".2f",cmap="coolwarm")
plt.show()

Out[1]:

In[2]:

```
cor=df.corr()["SMPEP2"].sort_values(ascending=False)
pd.DataFrame({"column":cor.index,"Correlation with
a":cor.values})
```

Out[2]:

	column	Correlation with a
0	SMPEP2	1.000000
1	SMPEA	0.617234
2	SystemLoadEP2	0.516938
3	SystemLoadEA	0.490945
4	PeriodOfDay	0.323052
5	year	0.047701
6	Year	0.017688
7	Easter	0.014242
8	St Patrick's Day	0.012972
9	Good Friday	0.011269
10	None	0.006365
11	May Day	0.004863
12	June Bank Holiday	0.004235
13	Holy Saturday	0.003777
14	October Bank Holiday	0.003084
15	Easter Monday	-0.001341
16	month	-0.001578

17	August Bank Holiday	-0.003159
18	HolidayFlag	-0.005645
19	ORKTemperature	-0.008571
20	New Year's Day	-0.009114
21	Christmas Eve	-0.009609
22	Christmas	-0.011435
23	New Year's Eve	-0.011679
24	Day	-0.013459
25	Month	-0.015255
26	0	-0.016091
27	WeekOfYear	-0.016170
28	St Stephen's Day	-0.018729
29	day	-0.019355
30	CO2Intensity	-0.033225
31	ORKWindspeed	-0.034614
32	DayOfWeek	-0.069597
33	ForecastWindProduction	-0.079611
34	ActualWindProduction	-0.082813

Modeling:

In[3]:

```
X=df.drop("SMPEP2",axis=1) y=df["SMPEP2"]
```

In[4]:

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.
3,random_state=0)
```

In[5]:

! pip install catboost

Out[5]:

Requirement already satisfied: catboost in /opt/conda/lib/python3.7/site-packages (1

.1)

Requirement already satisfied: scipy in /opt/conda/lib/python3.7/site-packages (from catboost) (1.7.3)

Requirement already satisfied: graphviz in /opt/conda/lib/python3.7/site-packages (from catboost) (0.8.4)

Requirement already satisfied: matplotlib in /opt/conda/lib/python3.7/site-packages (from catboost) (3.5.3)

Requirement already satisfied: numpy>=1.16.0 in /opt/conda/lib/python3.7/site-packag es (from catboost) (1.21.6)

Requirement already satisfied: six in /opt/conda/lib/python3.7/site-packages (from c atboost) (1.15.0)

Requirement already satisfied: pandas>=0.24.0 in /opt/conda/lib/python3.7/site-packa ges (from catboost) (1.3.5)

Requirement already satisfied: plotly in /opt/conda/lib/python3.7/site-packages (fro m catboost) (5.10.0)

Requirement already satisfied: python-dateutil>=2.7.3 in /opt/conda/lib/python3.7/si te-packages (from pandas>=0.24.0->catboost) (2.8.2)

Requirement already satisfied: pytz>=2017.3 in /opt/conda/lib/python3.7/site-package s (from pandas>=0.24.0->catboost) (2022.1)

Requirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.7/site-packag es (from matplotlib->catboost) (9.1.1)

Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.7/site-pack ages (from matplotlib->catboost) (21.3)

Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.7/site-package s (from matplotlib->catboost) (0.11.0)

Requirement already satisfied: fonttools>=4.22.0 in /opt/conda/lib/python3.7/site-packages (from matplotlib->catboost) (4.33.3)

Requirement already satisfied: pyparsing>=2.2.1 in /opt/conda/lib/python3.7/site-pac kages (from matplotlib->catboost) (3.0.9)

Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.7/site-pa ckages (from matplotlib->catboost) (1.4.3)

Requirement already satisfied: tenacity>=6.2.0 in /opt/conda/lib/python3.7/site-pack ages (from plotly->catboost) (8.0.1)

Requirement already satisfied: typing-extensions in /opt/conda/lib/python3.7/site-pa ckages (from kiwisolver>=1.0.1->matplotlib->catboost) (4.4.0)

In[6]:

! pip install lightgbm

Out[6]:

Requirement already satisfied: lightgbm in /opt/conda/lib/python3.7/site-packages (3.3.2)

Requirement already satisfied: numpy in /opt/conda/lib/python3.7/site-packages (from lightgbm) (1.21.6)

Requirement already satisfied: scipy in /opt/conda/lib/python3.7/site-packages (from lightgbm) (1.7.3)

Requirement already satisfied: scikit-learn!=0.22.0 in /opt/conda/lib/python3.7/site -packages (from lightgbm) (1.0.2)

```
Requirement already satisfied: wheel in /opt/conda/lib/python3.7/site-packages (from lightgbm) (0.37.1)
```

Requirement already satisfied: joblib>=0.11 in /opt/conda/lib/python3.7/site-package s (from scikit-learn!=0.22.0->lightgbm) (1.0.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.7/site -packages (from scikit-learn!=0.22.0->lightgbm) (3.1.0)

In[7]:

!pip install xgboost

Out[7]:

```
Requirement already satisfied: xgboost in /opt/conda/lib/python3.7/site-packages (1. 6.2)
```

Requirement already satisfied: scipy in /opt/conda/lib/python3.7/site-packages (from xgboost) (1.7.3)

Requirement already satisfied: numpy in /opt/conda/lib/python3.7/site-packages (from xgboost) (1.21.6)

In[8]:

```
from xgboost import XGBRegressor from
catboost import CatBoostRegressor from
lightgbm import LGBMRegressor
```

In[9]:

```
ridge=Ridge().fit(X_train,y_train)
lasso=Lasso().fit(X_train,y_train)
enet=ElasticNet().fit(X_train,y_train)
knn=KNeighborsRegressor().fit(X_train,y_train)
ada=AdaBoostRegressor().fit(X_train,y_train)
```

In[10]:

```
svm=SVR().fit(X_train,y_train)
mlpc=MLPRegressor().fit(X_train,y_train)
```

```
dtc=DecisionTreeRegressor().fit(X_train,y_train)
rf=RandomForestRegressor().fit(X_train,y_train)
xgb=XGBRegressor().fit(X_train,y_train)
gbm=GradientBoostingRegressor().fit(X_train,y_train)
lgb=LGBMRegressor().fit(X_train,y_train)
catbost=CatBoostRegressor().fit(X_train,y_train)
```

Out[10]:

```
learn: 27.6408000
                                total: 138ms
14:
                                                 remaining: 9.07s
        learn: 27.4359313
                                total: 143ms
15:
                                                 remaining: 8.8s
                                                 remaining: 8.55s
16:
        learn: 27.2173157
                                total: 148ms
        learn: 27.0422970
17:
                                total: 153ms
                                                remaining: 8.36s
                                                remaining: 8.16s
        learn: 26.8771233
                                total: 158ms
18:
19:
        learn: 26.6893652
                                total: 164ms
                                                remaining: 8.03s
20:
        learn: 26.5538529
                                total: 169ms
                                                remaining: 7.86s
        learn: 26.4492316
                                total: 174ms
21:
                                                 remaining: 7.71s
22:
        learn: 26.3094102
                                total: 178ms
                                                remaining: 7.58s
23:
        learn: 26.1955562
                                total: 184ms
                                                remaining: 7.47s
24:
        learn: 26.0928013
                                total: 189ms
                                                remaining: 7.39s
        learn: 25.9962431
25:
                                total: 195ms
                                                remaining: 7.3s
        learn: 25.9124311
                                total: 200ms
26:
                                                 remaining: 7.19s
27:
        learn: 25.8302408
                                total: 204ms
                                                remaining: 7.09s
28:
        learn: 25.7387686
                                total: 209ms
                                                remaining: 7s
29:
        learn: 25.6728034
                                total: 214ms
                                                remaining: 6.92s
        learn: 25.5926581
                                total: 219ms
                                                remaining: 6.84s
30:
```

```
learn: 25.4940606
31:
                                total: 224ms
                                                 remaining: 6.77s
32:
        learn: 25.4182581
                                 total: 229ms
                                                 remaining: 6.7s
        learn: 25.3652752
                                 total: 233ms
                                                 remaining: 6.63s
33:
        learn: 25.3223579
                                total: 238ms
34:
                                                 remaining: 6.56s
        learn: 25.2489125
                                 total: 243ms
                                                 remaining: 6.5s
35:
36:
        learn: 25.2076996
                                 total: 247ms
                                                 remaining: 6.43s
37:
        learn: 25.1667858
                                 total: 252ms
                                                 remaining: 6.38s
        learn: 25.1180288
                                 total: 257ms
38:
                                                 remaining: 6.34s
39:
        learn: 25.0752794
                                 total: 262ms
                                                 remaining: 6.3s
40:
        learn: 25.0339522
                                 total: 267ms
                                                 remaining: 6.25s
        learn: 24.9977064
                                 total: 272ms
                                                 remaining: 6.2s
41:
        learn: 24.9697517
                                 total: 276ms
42:
                                                 remaining: 6.15s
        learn: 24.9190191
                                 total: 281ms
43:
                                                 remaining: 6.11s
44:
        learn: 24.8957832
                                 total: 285ms
                                                 remaining: 6.06s
45:
        learn: 24.8597053
                                 total: 290ms
                                                 remaining: 6.01s
        learn: 24.8392094
                                 total: 294ms
                                                 remaining: 5.97s
46:
        learn: 24.8102239
                                 total: 299ms
47:
                                                 remaining: 5.92s
48:
        learn: 24.7789045
                                total: 303ms
                                                remaining: 5.89s
        learn: 24.7500880
                                total: 308ms
49:
                                                remaining: 5.85s
50:
        learn: 24.7178926
                                total: 313ms
                                                remaining: 5.82s
        learn: 24.6968006
                                total: 317ms
51:
                                                remaining: 5.78s
        learn: 24.6800087
                                total: 321ms
52:
                                                remaining: 5.74s
        learn: 24.6507233
                                total: 326ms
                                                remaining: 5.71s
53:
54:
        learn: 24.6186034
                                total: 331ms
                                                remaining: 5.68s
        learn: 24.5907057
                                total: 335ms
55:
                                                remaining: 5.65s
56:
        learn: 24.5572812
                                total: 340ms
                                                remaining: 5.63s
57:
        learn: 24.5264215
                                total: 345ms
                                                remaining: 5.6s
58:
        learn: 24.4987088
                                total: 350ms
                                                remaining: 5.58s
59:
        learn: 24,4794572
                                total: 355ms
                                                remaining: 5.56s
        learn: 24.4427210
                                total: 359ms
                                                remaining: 5.53s
60:
                                total: 364ms
61:
        learn: 24.4156283
                                                remaining: 5.51s
62:
        learn: 24.3917659
                                total: 369ms
                                                remaining: 5.49s
        learn: 24.3642679
63:
                                total: 374ms
                                                remaining: 5.47s
        learn: 24.3450265
                                total: 379ms
                                                remaining: 5.45s
64:
```

```
learn: 24.3204788
                                                 remaining: 5.42s
65:
                                total: 383ms
        learn: 24.2830890
                                total: 389ms
66:
                                                 remaining: 5.41s
67:
        learn: 24.2650713
                                total: 393ms
                                                 remaining: 5.39s
       learn: 24.2399899
                                total: 397ms
68:
                                                 remaining: 5.36s
        learn: 24.2164965
                                total: 402ms
                                                 remaining: 5.34s
69:
70:
        learn: 24.1964369
                                total: 407ms
                                                 remaining: 5.32s
                                total: 412ms
71:
        learn: 24.1807660
                                                 remaining: 5.31s
       learn: 24.1689245
                                total: 417ms
72:
                                                 remaining: 5.29s
       learn: 24.1436655
                                total: 421ms
                                                 remaining: 5.27s
73:
74:
        learn: 24.1253300
                                total: 426ms
                                                 remaining: 5.25s
                                total: 430ms
        learn: 24.0935058
                                                 remaining: 5.23s
75:
        learn: 24.0763530
                                total: 435ms
76:
                                                 remaining: 5.21s
77:
        learn: 24.0532679
                                total: 439ms
                                                 remaining: 5.19s
78:
        learn: 24.0366265
                                total: 443ms
                                                 remaining: 5.17s
79:
        learn: 24.0167814
                                total: 448ms
                                                 remaining: 5.15s
        learn: 23.9978824
                                total: 453ms
                                                 remaining: 5.14s
80:
81:
        learn: 23.9867891
                                total: 457ms
                                                 remaining: 5.12s
        learn: 23.9763622
82:
                                 total: 462ms
                                                 remaining: 5.1s
        learn: 23.9460132
                                 total: 467ms
                                                 remaining: 5.09s
83:
84:
        learn: 23.9186528
                                 total: 471ms
                                                 remaining: 5.07s
        learn: 23.9048177
                                 total: 476ms
85:
                                                 remaining: 5.06s
86:
        learn: 23.8918401
                                 total: 481ms
                                                 remaining: 5.05s
87:
        learn: 23.8653562
                                 total: 486ms
                                                 remaining: 5.04s
        learn: 23.8508496
                                 total: 491ms
                                                 remaining: 5.02s
88:
        learn: 23.8371390
                                 total: 495ms
                                                 remaining: 5.01s
89:
        learn: 23.8302205
                                 total: 500ms
90:
                                                 remaining: 4.99s
91:
        learn: 23.8033151
                                 total: 504ms
                                                 remaining: 4.98s
92:
        learn: 23.7824900
                                 total: 509ms
                                                 remaining: 4.96s
        learn: 23.7735478
                                 total: 514ms
93:
                                                 remaining: 4.96s
        learn: 23.7586709
                                 total: 519ms
94:
                                                 remaining: 4.94s
95:
        learn: 23.7389694
                                 total: 523ms
                                                 remaining: 4.93s
        learn: 23.7269390
                                 total: 528ms
96:
                                                 remaining: 4.91s
        learn: 23.7126293
                                 total: 532ms
97:
                                                 remaining: 4.9s
```

```
98:
         learn: 23.6890770
                                total: 537ms
                                                 remaining: 4.88s
 99:
         learn: 23.6685269
                                 total: 541ms
                                                 remaining: 4.87s
         learn: 23.6485375
                                total: 546ms
                                                 remaining: 4.86s
 100:
 101:
         learn: 23.6257557
                                total: 551ms
                                                 remaining: 4.85s
         learn: 23.6065188
                                 total: 556ms
 102:
                                                 remaining: 4.84s
 103:
         learn: 23.5901493
                                total: 561ms
                                                 remaining: 4.83s
         learn: 23.5784682
                                total: 565ms
 104:
                                                 remaining: 4.82s
         learn: 23.5614537
                                total: 570ms
 105:
                                                 remaining: 4.81s
         learn: 23.5429277
                                total: 574ms
 106:
                                                 remaining: 4.79s
 107:
         learn: 23.5283062
                                 total: 579ms
                                                 remaining: 4.78s
         learn: 23.5054101
                                total: 584ms
 108:
                                                 remaining: 4.77s
 109:
         learn: 23.4962552
                                total: 590ms
                                                 remaining: 4.78s
         learn: 23.4881442
                                total: 595ms
                                                 remaining: 4.77s
 110:
 111:
         learn: 23.4706061
                                 total: 600ms
                                                 remaining: 4.76s
 112:
         learn: 23.4534164
                                total: 605ms
                                                 remaining: 4.75s
         learn: 23.4365195
                                total: 609ms
                                                 remaining: 4.73s
 113:
 114:
         learn: 23.4195741
                                total: 614ms
                                                 remaining: 4.72s
In[11]:
models=[ridge,lasso,dtc,rf,xgb,gbm,lgb,catbost,enet,knn,ada,mlp
c,svm]
In[12]: def ML(y, models):
accuary=models.score(X train,y train)
return accuary
In[13]: for i in
models:
```

Out[13]:

Ridge() Algorithm succed rate : 0.43121105926644243

print(i, "Algorithm succed rate : ",ML("SMPEP2",i))

```
Lasso() Algorithm succed rate : 0.42883198265818245
DecisionTreeRegressor() Algorithm succed rate : 1.0
RandomForestRegressor() Algorithm succed rate: 0.9424727172628374
XGBRegressor(base_score=0.5, booster='gbtree', callbacks=None,
colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,
early_stopping_rounds=None, enable_categorical=False,
eval_metric=None, gamma=0, gpu_id=-1, grow_policy='depthwise',
importance type=None, interaction constraints='',
learning_rate=0.300000012, max_bin=256, max_cat_to_onehot=4,
max_delta_step=0, max_depth=6, max_leaves=0, min_child_weight=1,
missing=nan, monotone_constraints='()', n_estimators=100, n_jobs=0,
num_parallel_tree=1, predictor='auto', random_state=0, reg_alpha=0,
reg_lambda=1, ...) Algorithm succed rate : 0.8732530340524252
GradientBoostingRegressor() Algorithm succed rate: 0.5739399134995518
LGBMRegressor() Algorithm succed rate : 0.6953551703738294
<catboost.core.CatBoostRegressor object at 0x7f29e8bcc0d0> Algorithm succed rate : 0
.7878389350009978
ElasticNet() Algorithm succed rate : 0.4290970871174
KNeighborsRegressor() Algorithm succed rate : 0.5964451293083145
AdaBoostRegressor() Algorithm succed rate : 0.26365965295085403
MLPRegressor() Algorithm succed rate: 0.15355550237922466
SVR() Algorithm succed rate : 0.23458514968207922
```

In[14]:

```
cor=df.corr()["SMPEP2"].sort_values(ascending=False)
pd.DataFrame({"column":cor.index,"Correlation with
a":cor.values})
```

Out[14]:

	column	Correlation with a
0	SMPEP2	1.000000
1	SMPEA	0.617234
2	SystemLoadEP2	0.516938
3	SystemLoadEA	0.490945
4	PeriodOfDay	0.323052
5	year	0.047701
6	Year	0.017688
7	Easter	0.014242
8	St Patrick's Day	0.012972
9	Good Friday	0.011269
10	None	0.006365
11	May Day	0.004863
12	June Bank Holiday	0.004235
13	Holy Saturday	0.003777
14	October Bank Holiday	0.003084
15	Easter Monday	-0.001341
16	month	-0.001578
17	August Bank Holiday	-0.003159
18	HolidayFlag	-0.005645
19	ORKTemperature	-0.008571
20	New Year's Day	-0.009114
21	Christmas Eve	-0.009609
22	Christmas	-0.011435
23	New Year's Eve	-0.011679
24	Day	-0.013459
25	Month	-0.015255
26	0	-0.016091
27	WeekOfYear	-0.016170
28	St Stephen's Day	-0.018729
29	day	-0.019355
	00-92048	

CO2Intensity

31 ORKWindspeed

30

-0.033225

-0.034614

```
In[15]:
X2=df[["SMPEA","SystemLoadEP2","SystemLoadEA","PeriodOfDay",
"year", "ActualWindProduction"]] y2=df["SMPEP2"]
In[16]:
X_train2,X_test2,y_train2,y_test2=train_test_split(X2,y2,test_s
ize=0.3,random state=0)
In[17]:
rf2=RandomForestRegressor().fit(X train2,y train2)
In[18]:
rf2.score(X train2,y train2)
Out[18]:
0.9345853165856398
In[19]:
X3=df_remove_out.drop("SMPEP2",axis=1)
y3=df remove out["SMPEP2"]
In[20]:
X train3,X test3,y train3,y test3=train test split(X3,y3,test s
ize=0.3,random_state=0)
In[21]:
rf3=RandomForestRegressor().fit(X_train3,y_train3)
```

```
In[22]:
```

```
rf3.score(X_train,y_train)
```

Out[22]:

0.8965242074080007

In[23]:

dtc3=DecisionTreeRegressor().fit(X_train3,y_train3)

In[24]:

rf3.score(X_train3,y_train3)

Out[24]:

0.9525199962605772

Random Forest:

In[1]:

!pip install hyperopt

from hyperopt import tpe,STATUS_OK,Trials,fmin,hp from hyperopt.pyll.base import scope

Out[1]:

Requirement already satisfied: hyperopt in /opt/conda/lib/python3.7/site-packages (0 .2.7)

Requirement already satisfied: scipy in /opt/conda/lib/python3.7/site-packages (from hyperopt) (1.7.3)

Requirement already satisfied: tqdm in /opt/conda/lib/python3.7/site-packages (from hyperopt) (4.64.0)

Requirement already satisfied: py4j in /opt/conda/lib/python3.7/site-packages (from hyperopt) (0.10.9.7)

Requirement already satisfied: numpy in /opt/conda/lib/python3.7/site-packages (from hyperopt) (1.21.6)

```
Requirement already satisfied: six in /opt/conda/lib/python3.7/site-packages (from h
yperopt) (1.15.0)
Requirement already satisfied: cloudpickle in /opt/conda/lib/python3.7/site-packages
 (from hyperopt) (2.1.0)
Requirement already satisfied: networkx>=2.2 in /opt/conda/lib/python3.7/site-packag
es (from hyperopt) (2.5)
Requirement already satisfied: future in /opt/conda/lib/python3.7/site-packages (fro
m hyperopt) (0.18.2)
Requirement already satisfied: decorator>=4.3.0 in /opt/conda/lib/python3.7/site-pac
kages (from networkx>=2.2->hyperopt) (5.1.1)
In[2]:
space={
  "max_depth":hp.randint("max_depth",2,15),
  "min samples split":hp.randint("min samples split",2,20),
  "min samples leaf":hp.randint("min samples leaf",1,20),
  "n_estimators":hp.randint("n_estimators",50,1000)
}
In[3]: def hyperparameter tuning(params):
clf=RandomForestRegressor(**params).fit(X_train,y_train)
acc=rf.score(X train,y train) return acc
In[4]:
trials=Trials()
best=fmin(fn=hyperparameter_tuning,
     space=space,
     algo=tpe.suggest,max evals=100,trials=trials
print("best:{}".format(best))
In[5]: best
```

Out[5]:

```
{'max_depth': 12,
  'min_samples_leaf': 2,
  'min_samples_split': 8,
  'n_estimators': 303}
```

Conclusion

In conclusion, the prediction of electricity prices is a complex yet critical endeavor, influencing various stakeholders within the energy market. By leveraging advanced methodologies and data-driven approaches, accurate price forecasting can yield numerous benefits, including cost reduction, resource optimization, market stability, and improved decision-making.

Machine learning, supported by robust data collection, preprocessing, and model development, stands at the forefront of enhancing predictive accuracy. Incorporating design thinking principles promotes user-centric solutions and adaptive models that evolve with dynamic market conditions.

The continual pursuit of innovation in this field involves integrating advanced technologies, exploring unconventional data sources, and fostering collaborative partnerships to ensure a more comprehensive and adaptable predictive framework.

Efficient data loading, thorough preprocessing, and model validation contribute significantly to the creation of reliable predictive models. These models, when continuously refined and iterated upon, cater to the evolving nature of the electricity market, empowering stakeholders to make informed decisions and optimize resource allocation.

As the energy landscape continues to evolve, refining predictive models for electricity prices remains an ongoing pursuit, encouraging ethical, transparent, and responsible innovation to meet the ever-changing needs of a dynamic energy market.