A simple quadratic kernel for Token Jumping Joint work with: Moritz Mühlenthaler and Daniel W. Cranston

Benjamin Peyrille

Université Grenoble Alpes, G-SCOP

January 6th 2025

Let: G = (V, E) be a simple graph, I, J be two independent sets of V of identical sizes. We represent vertices of I as tokens \circ and vertices of J with targets \odot .

We want to **move** I to J iteratively, preserving the independent set property.

Let: G = (V, E) be a simple graph, I, J be two independent sets of V of identical sizes. We represent vertices of I as tokens \circ and vertices of J with targets \odot .

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Let: G = (V, E) be a simple graph, I, J be two independent sets of V of identical sizes. We represent vertices of I as tokens \circ and vertices of J with targets \odot .

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Let: G = (V, E) be a simple graph, I, J be two independent sets of V of identical sizes. We represent vertices of I as tokens \circ and vertices of J with targets \odot .

We want to **move** I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Let: G = (V, E) be a simple graph, I, J be two independent sets of V of identical sizes. We represent vertices of I as tokens \circ and vertices of J with targets \odot .

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Let: G = (V, E) be a simple graph, I, J be two independent sets of V of identical sizes. We represent vertices of I as tokens \circ and vertices of J with targets \odot .

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Let: G = (V, E) be a simple graph, I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \odot .

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Let: G = (V, E) be a simple graph, I, J be two independent sets of V of identical sizes. We represent vertices of I as tokens \circ and vertices of J with targets \odot .

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Let: G = (V, E) be a simple graph, I, J be two independent sets of V of identical sizes. We represent vertices of I as tokens \circ and vertices of J with targets \odot .

We want to **move** I to J iteratively, preserving the independent set property.

ISR Reachability - Token Jumping

Input: A simple graph G = (V, E), two independent sets I and J of G of same size.

Output: YES if we can iteratively reach J from I using the Token Jumping rule, No otherwise.

Let: G = (V, E) be a simple graph, I, J be two independent sets of V of identical sizes. We represent vertices of I as tokens \circ and vertices of J with targets \odot .

We want to **move** I to J iteratively, preserving the independent set property.

Token Jumping

Input: A simple graph G = (V, E), two independent sets I and J of G of same size.

Output: YES if we can iteratively reach J from I using the Token Jumping rule, No otherwise.

Hardness

Hardness result (van der Zanden, 2015)

 ${\operatorname{TOKEN}}\ {\operatorname{JUMPING}}$ is PSPACE-complete even for subcubic graphs of bounded bandwidth.

Hardness

Hardness result (van der Zanden, 2015)

TOKEN JUMPING is PSPACE-complete even for subcubic graphs of bounded bandwidth.

A problem is **fixed-parameter tractable** (FPT) for some input **parameter** k if there exists an algorithm that solves it in time $O(f(k) \cdot poly(n))$ where f is an arbitrary computable function and n is the size of the instance.

Hardness

Hardness result (van der Zanden, 2015)

 ${\it Token Jumping}$ is PSPACE-complete even for subcubic graphs of bounded bandwidth.

A problem is **fixed-parameter tractable** (FPT) for some input **parameter** k if there exists an algorithm that solves it in time $O(f(k) \cdot poly(n))$ where f is an arbitrary computable function and n is the size of the instance.

Parameterized hardness result (Mouawad, 2017)

Token Jumping is W[1]-hard (not FPT) when only parameterized by the number of tokens k.

Positive results: known kernels

Kernelization \implies FPT (bruteforce on f(k) vertices) If the function f is polynomial, we say the problem admits a **polynomial kernel**.

Positive results: known kernels

Kernelization \implies FPT (bruteforce on f(k) vertices) If the function f is polynomial, we say the problem admits a **polynomial kernel**.

- ▶ FPT on planar graphs and $K_{3,t}$ -free graphs (Ito et al., 2014).
- ▶ Polynomial kernel for $K_{t,t}$ -free graphs (Bousquet et al, 2017).
- ▶ Polynomial kernel on graphs of bounded degeneracy (Lokshtanov et al. 2018).

Surfaces

Let G be a simple graph and let g be its **genus**, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g.

Surfaces

Let G be a simple graph and let g be its **genus**, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g.

 $K_{3,3}$ is not planar $(g \neq 0)$

The problem

Surfaces

Let G be a simple graph and let g be its **genus**, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g.

 $K_{3,3}$ is not planar $(g \neq 0)$

 $K_{3,3}$ embedded on the torus (g = 1)

In a nutshell, the genus g of a graph G is the minimum number of handles required to draw G on a mug.

Surfaces

Let G be a simple graph and let g be its **genus**, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g.

Main result (Cranston, Mühlenthaler, P., 2024+)

TOKEN JUMPING parameterized by the genus g of the input graph and the number of tokens k admits a kernel of size $O((g+k)^2)$. Furthermore, this kernel does not require knowledge of the genus.

Surfaces

Let G be a simple graph and let g be its **genus**, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g.

Main result (Cranston, Mühlenthaler, P., 2024+)

The problem

TOKEN JUMPING parameterized by the genus g of the input graph and the number of tokens k admits a kernel of size $O((g+k)^2)$. Furthermore, this kernel does not require knowledge of the genus.

Positive kernelization results applied on graphs on surfaces:

Classes of graphs	Kernel size	For genus g
$K_{3,t}$ -free (Ito et al, 14)	Ramsey((2t+1)k,t+3)	Ramsey((8g+7)k, 4g+6)
$K_{t,t}$ -free (Bousquet et al, 17)	$O(f(t) \cdot k^{t \cdot 3^t})$	$O(h(g) \cdot k^{(4g+3)\cdot 3^{4g+3}})$
d-degenerate (Lokshtanov et al, 18)	$(2d+1)(2d+1)!(2k-1)^{2d+1}$	$(2H(g)-1)(2H(g)-1)!(2k-1)^{2H(g)-1}$
all graphs (This presentation!)	$O((g+k)^2)$	-

First step: Partition

- ► *T*: vertices containing the independent sets
- $ightharpoonup \mathcal{C}_{1-}$: vertices neighboring at most one element of T
- $ightharpoonup C_2$: vertices neighboring exactly two elements of T
- $ightharpoonup \mathcal{C}_{3+}$: vertices neighboring at least three elements of T

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

$$|\mathcal{C}_{1-}| < H(g) \cdot k.$$

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

$$|\mathcal{C}_{1-}| < H(g) \cdot k$$
.

$$k = 4$$

Planar:
$$H(G) = 4$$

 $|\mathcal{C}_{1-}| = 4 \cdot 4 = 16$

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

$$|\mathcal{C}_{1-}| < H(g) \cdot k$$
.

k = 4

Planar:
$$H(G) = 4$$

Benjamin Peyrille

 $|\mathcal{C}_{1-}| = 4 \cdot 4 = 16$

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

$$|\mathcal{C}_{1-}| < H(g) \cdot k$$
.

k = 4

Planar:
$$H(G) = 4$$

 $|\mathcal{C}_{1-}| = 4 \cdot 4 = 16$

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

$$|\mathcal{C}_{1-}| < H(g) \cdot k$$
.

$$k = 4$$

Planar:
$$H(G) = 4$$

$$|\mathcal{C}_{1-}|=4\cdot 4=16$$

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

$$|\mathcal{C}_{1-}| < H(g) \cdot k$$
.

$$k = 4$$

Planar:
$$H(G) = 4$$

 $|\mathcal{C}_{1-}| = 4 \cdot 4 = 16$

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

$$|\mathcal{C}_{1-}| < H(g) \cdot k$$
.

$$k = 4$$

Planar:
$$H(G) = 4$$

Benjamin Peyrille

 $|\mathcal{C}_{1-}| = 4 \cdot 4 = 16$

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

$$|\mathcal{C}_{1-}| < H(g) \cdot k$$
.

$$k = 4$$

Planar:
$$H(G) = 4$$

 $|\mathcal{C}_{1-}|=4\cdot 4=16$

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

$$|\mathcal{C}_{1-}| < H(g) \cdot k$$
.

Theorem (Bouchet, 1978)

A graph of genus g cannot have any $K_{3,4g+3}$ as a subgraph.

Using an auxillary graph, we can use Euler's formula to get

$$|\mathcal{C}_{3+}| \le 16g^2 + 16gk + 8k.$$

Let $C_{\{u,v\}}$ be the **projection class** of $\{u,v\}$, that is $\{w:w\in V-T \text{ s.t } N_T(w)=\{u,v\}\}.$ Let $\{u,v\}$ such that $C_{\{u,v\}}\neq\emptyset.$

Let $C_{\{u,v\}}$ be the **projection class** of $\{u,v\}$, that is $\{w:w\in V-T \text{ s.t } N_T(w)=\{u,v\}\}$. Let $\{u,v\}$ such that $C_{\{u,v\}}\neq\emptyset$. There can be an arbitrary number of vertices in $C_{\{u,v\}}$:

Let $C_{\{u,v\}}$ be the **projection class** of $\{u,v\}$, that is $\{w:w\in V-T \text{ s.t } N_T(w)=\{u,v\}\}$. Let $\{u,v\}$ such that $C_{\{u,v\}}\neq\emptyset$. There can be an arbitrary number of vertices in $C_{\{u,v\}}$:

Let $C_{\{u,v\}}$ be the **projection class** of $\{u,v\}$, that is $\{w:w\in V-T \text{ s.t } N_T(w)=\{u,v\}\}$. Let $\{u,v\}$ such that $C_{\{u,v\}}\neq\emptyset$. There can be an arbitrary number of vertices in $C_{\{u,v\}}$:

Let $C_{\{u,v\}}$ be the **projection class** of $\{u,v\}$, that is

$$\{w : w \in V - T \text{ s.t } N_T(w) = \{u, v\}\}.$$

Let $\{u, v\}$ such that $C_{\{u, v\}} \neq \emptyset$.

There can be an arbitrary number of vertices in $C_{\{u,v\}}$:

C_2 : not clear yet

Let $C_{\{u,v\}}$ be the **projection class** of $\{u,v\}$, that is

$$\{w : w \in V - T \text{ s.t } N_T(w) = \{u, v\}\}.$$

Let $\{u, v\}$ such that $C_{\{u, v\}} \neq \emptyset$.

There can be an arbitrary number of vertices in $C_{\{u,v\}}$:

Our goal: show $C_2 = O((g + k)^2)$.

\mathcal{C}_2 : not clear yet

Let $C_{\{u,v\}}$ be the **projection class** of $\{u,v\}$, that is

$$\{w: w \in V - T \text{ s.t } N_T(w) = \{u, v\}\}.$$

Let $\{u, v\}$ such that $C_{\{u, v\}} \neq \emptyset$.

There can be an arbitrary number of vertices in $C_{\{u,v\}}$:

Our goal: show $C_2 = O((g + k)^2)$.

By Euler's formula, the number of non-empty projection classes is at most 6k + 6g.

We will show that if any $C_{\{u,v\}}$ is bigger than 8g+4k, the problem is solved.

Planar zones

Theorem (Malnič and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u, v-paths on any graph of genus g is $\max(1, 4g)$.

Planar zones

Theorem (Malnič and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u, v-paths on any graph of genus g is max(1, 4g).

Hence, paths between u and v in $C_{\{u,v\}}$ divide the surface in at most 4g planar zones.

Four zones for $C_{\{u,v\}}$ on a torus.

Anatomy of the zone

Each zone has two **outer** vertices and some **inner** vertices.

Inner vertices form induced linear forests in $C_{\{u,v\}}$ whose independent sets are large and easy to find.

- ▶ Vertices outside a zone cannot be adjacent to inner vertices of $C_{\{u,v\}}$.
- ▶ Vertices inside a zone can only be adjacent to $\underline{\text{two}}$ vertices of $C_{\{u,v\}}$.

$$C_{\{u,v\}}$$
 is large $(8g + 4k)$ $\implies \geq 4k$ inner vertices $\implies \geq 4k$ size linear forest $\implies 2k$ size independent set $T_{\{u,v\}}$ in $C_{\{u,v\}}$

Recall each token of I is adjacent to at most two inner vertices of $C_{\{u,v\}}$. We can move all tokens from I to $T_{\{u,v\}}$ if I is not frozen. We then do the same for J.

$$C_{\{u,v\}}$$
 is large $(8g+4k)$ $\implies \geq 4k$ inner vertices $\implies \geq 4k$ size linear forest $\implies 2k$ size independent set $T_{\{u,v\}}$ in $C_{\{u,v\}}$

Recall each token of I is adjacent to at most two inner vertices of $C_{\{u,v\}}$. We can move all tokens from I to $T_{\{u,v\}}$ if I is not frozen. We then do the same for J.

$$C_{\{u,v\}}$$
 is large $(8g+4k)$ $\implies \geq 4k$ inner vertices $\implies \geq 4k$ size linear forest $\implies 2k$ size independent set $T_{\{u,v\}}$ in $C_{\{u,v\}}$

Recall each token of I is adjacent to at most two inner vertices of $C_{\{u,v\}}$. We can move all tokens from I to $T_{\{u,v\}}$ if I is not frozen. We then do the same for J.

$$C_{\{u,v\}}$$
 is large $(8g + 4k)$ $\implies \geq 4k$ inner vertices $\implies \geq 4k$ size linear forest $\implies 2k$ size independent set $T_{\{u,v\}}$ in $C_{\{u,v\}}$

Recall each token of I is adjacent to at most two inner vertices of $C_{\{u,v\}}$. We can move all tokens from I to $T_{\{u,v\}}$ if I is not frozen. We then do the same for J.

$$C_{\{u,v\}}$$
 is large $(8g + 4k)$ $\implies \geq 4k$ inner vertices $\implies \geq 4k$ size linear forest $\implies 2k$ size independent set $T_{\{u,v\}}$ in $C_{\{u,v\}}$

Recall each token of I is adjacent to at most two inner vertices of $C_{\{u,v\}}$. We can move all tokens from I to $T_{\{u,v\}}$ if I is not frozen. We then do the same for J.

Kernelization

Problem solved

$$C_{\{u,v\}}$$
 is large $(8g+4k)$ $\implies \geq 4k$ inner vertices $\implies \geq 4k$ size linear forest $\implies 2k$ size independent set $T_{\{u,v\}}$ in $C_{\{u,v\}}$

Recall each token of I is adjacent to at most two inner vertices of $C_{\{u,v\}}$. We can move all tokens from I to $T_{\{u,v\}}$ if I is not frozen. We then do the same for J.

So we can assume all $C_{\{u,v\}}$ are of size at most 8g + 4k.

Problem solved... or is it?

Kernelization

$$C_{\{u,v\}}$$
 is large $(8g + 4k)$ $\implies \geq 4k$ inner vertices $\implies \geq 4k$ size linear forest $\implies 2k$ size independent set $T_{\{u,v\}}$ in $C_{\{u,v\}}$

Recall each token of I is adjacent to at most two inner vertices of $C_{\{u,v\}}$. We can move all tokens from I to $T_{\{u,v\}}$ if I is not frozen. We then do the same for J.

So we can assume all $C_{\{u,v\}}$ are of size at most 8g + 4k.

Problem: knowing the genus of the graph or a crossing-free drawing, is hard.

We will find that large linear forest without any information on the genus.

 $_{1}\ Z:=\mathit{C}_{\{u,v\}}$

- 1 $Z := C_{\{u,v\}}$ 2 for $v \in V - (C_{\{u,v\}} \cup Y)$ do 3 | if v has at least 3 neighbors in $C_{\{u,v\}}$ then $Z \leftarrow Z - N(v)$
- 4 for $w \in Z$ do
- 5 | if w has degree at least 3 in G[Z] then $Z \leftarrow Z w$

- $1 Z := C_{\{u,v\}}$
- 2 for $v \in V (C_{\{u,v\}} \cup Y)$ do
- 3 | **if** v has at least 3 neighbors in $C_{\{u,v\}}$ **then** $Z \leftarrow Z N(v)$
- 4 for $w \in Z$ do
- 5 | if w has degree at least 3 in G[Z] then $Z \leftarrow Z w$

- $1 \ Z := C_{\{u,v\}}$
- 2 for $v \in V (C_{\{u,v\}} \cup Y)$ do
- 3 | **if** v has at least 3 neighbors in $C_{\{u,v\}}$ **then** $Z \leftarrow Z N(v)$
- 4 for $w \in Z$ do
- 5 | if w has degree at least 3 in G[Z] then $Z \leftarrow Z w$
- **6** Remove arbitrarily one vertex from each cycle in G[Z]
- 7 return Z

$$1 \ Z := C_{\{u,v\}}$$

- 2 for $v \in V (C_{\{u,v\}} \cup Y)$ do
- 3 if v has at least 3 neighbors in $C_{\{u,v\}}$ then $Z \leftarrow Z N(v)$
- 4 for $w \in Z$ do
- if w has degree at least 3 in G[Z] then $Z \leftarrow Z w$
- 6 Remove arbitrarily one vertex from each cycle in G[Z]
- 7 return Z

This procedure outputs a linear forest of size at least equal to the number of inner vertices, without any information on the genus.

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

Open question:

- ► Can there be a kernel of size $O(g^2 + gk + k)$ for planar graphs and for graphs in general?
- ▶ What other problems can be parameterized in such a way?

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

Open question:

- ► Can there be a kernel of size $O(g^2 + gk + k)$ for planar graphs and for graphs in general?
- ▶ What other problems can be parameterized in such a way?

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

Open question:

- ► Can there be a kernel of size $O(g^2 + gk + k)$ for planar graphs and for graphs in general?
- ▶ What other problems can be parameterized in such a way?

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

Open question:

- ► Can there be a kernel of size $O(g^2 + gk + k)$ for planar graphs and for graphs in general?
- ▶ What other problems can be parameterized in such a way?

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

Open question:

- ► Can there be a kernel of size $O(g^2 + gk + k)$ for planar graphs and for graphs in general?
- ▶ What other problems can be parameterized in such a way?

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

Open question:

- ► Can there be a kernel of size $O(g^2 + gk + k)$ for planar graphs and for graphs in general?
- ▶ What other problems can be parameterized in such a way?

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

Open question:

- ► Can there be a kernel of size $O(g^2 + gk + k)$ for planar graphs and for graphs in general?
- ▶ What other problems can be parameterized in such a way?

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

Open question:

- ► Can there be a kernel of size $O(g^2 + gk + k)$ for planar graphs and for graphs in general?
- ▶ What other problems can be parameterized in such a way?

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

Open question:

- ► Can there be a kernel of size $O(g^2 + gk + k)$ for planar graphs and for graphs in general?
- ▶ What other problems can be parameterized in such a way?

