

Monotonie

In welchen Bereich ist die Steigung des Funktionsgraphen positive?

Monotonie

In welchen Bereich ist die Steigung des Funktionsgraphen positive?

f'(x) > 0 für alle x > 3

Im Intervall x > 3 f ist **streng monoton zunehmend**

Untersuchen Sie die Funktion f mithilfe der ersten Ableitung auf Monotonie

i)
$$f(x) = 3x + 2$$
 ii) $f(x) = -x^2 + 3$ iii) $f(x) = x^4 - 2x^2$

Beispiel:
$$f(x) = 4x + x^2$$

 $f'(x) = 4 + 2x$

$$f'(x) > 0$$
 für $x > -2$ \rightarrow Streng monoton zunehmend im Interval $x > -2$ \rightarrow Streng monoton abnehmend im Interval $x < -2$

Untersuchen Sie die Funktion f mithilfe der ersten Ableitung auf Monotonie

i)
$$f(x) = 3x + 2$$
 ii) $f(x) = -x^2 + 3$ iii) $f(x) = x^4 - 2x^2$

ZP Teil 2

- Taschenrechner + Formelsammlung
- 75 Minuten
- 2 mal 24 Punkte = 48 Punkte
- 1 Aufgabe rein-mathematisch
- 1 Textaufgabe

Für jede Aufgabe ca. 30 Minuten

Aufgabe 3:

Gegeben ist die Funktion f mit der Gleichung

$$f(x) = x^3 - 6 \cdot x^2 + 9 \cdot x$$
, $x \in \mathbb{R}$.

Der Graph von f ist in der *Abbildung 1* dargestellt.

a) (1) Weisen Sie nach, dass gilt:

$$x \cdot (x-3)^2 = x^3 - 6 \cdot x^2 + 9 \cdot x$$
.

(2) Für die Gleichung der Funktion *f* gibt es also die beiden folgenden Darstellungsmöglichkeiten:

D1:
$$f(x) = x^3 - 6 \cdot x^2 + 9 \cdot x$$
, $x \in \mathbb{R}$.

D2:
$$f(x) = x \cdot (x-3)^2$$
, $x \in \mathbb{R}$.

Nennen Sie zu jeder der beiden Darstellungsmöglichkeiten D1 bzw. D2 jeweils einen Vorteil bei der Untersuchung von Eigenschaften der Funktion f.

Abbildung 1

Abbildung 1

$$f(x) = x^3 - 6 \cdot x^2 + 9 \cdot x$$
, $x \in \mathbb{R}$.

b) Untersuchen Sie rechnerisch die Funktion f auf lokale Extremstellen und ermitteln Sie rechnerisch die Art der lokalen Extremstellen und die Koordinaten der lokalen Extrempunkte des Graphen von f.

(8 Punkte)

Abbildung 1

- c) (1) Zeichnen Sie die Sekante s durch die Punkte P(1|4) und Q(3,5|0,875) in die Abbildung 1 ein und ermitteln Sie rechnerisch eine Gleichung von s.
 - (2) Berechnen Sie den Steigungswinkel α von s.

- d) Betrachtet wird jetzt die Ableitungsfunktion f' mit $f'(x) = 3 \cdot x^2 12 \cdot x + 9$.
 - (1) Zeichnen Sie den Graphen von f' in die Abbildung 2 ein.

Abbildung 2

(2) Gegeben ist außerdem die Ableitungsfunktion g' mit g'(x) = f'(x) + 4.

Entscheiden Sie begründet, ob der Graph einer möglichen Ausgangsfunktion g mindestens einen lokalen Extrempunkt besitzt.

Hausaufgaben für 02.06

Seite 98 Aufgaben 3, 4