Harmonický pohyb

Kmitanie – opakujúci sa pohyb Hmotný bod je viazaný na rovnovážnu polohu tak, že neprekročí konečnú vzdialenosť od nej.

Harmonický pohyb

Uhlová frekvencia

$$x = x_m \cos(\omega t + \varphi)$$

X_m – amplitúda výchylky (veľkosť najväčšej možnej výchylky častice od rovnovážnej polohy)

(ω+φt) – fáza pohybu

φ - počiatočná fáza

T – perióda pohybu,

- čas, za ktorý sa častica dostane do počiatočného stavu
- čas, za ktorý sa kmit resp. cyklus

Pohybová rovnica pre kmitavý pohyb

$$v = -\omega x_m \sin(\omega t + \varphi)$$

$$a = -\omega^2 x_m \cos(\omega t + \varphi) = -\omega^2 x$$

Dynamika

$$F = ma = -\omega^2 m x$$

Častica s hmotnosťou *m* vykonáva harmonický pohyb, ak na časticu pôsobí sila úmerná výchylke a orientovaná proti výchylke

Kinematika harmonického pohybu

Amplitúdy, maximálne hodnoty kinematických veličín

Krivka zodpovedajúca závislosti v(t) je posunutá o T/4 periódy doľava vzhľadom na krivku x(t)

Krivka zodpovedajúca závislosti a(t) je posunutá o T/4 periódy doľava vzhľadom na krivku v(t)

Kinematika harmonického pohybu

Amplitúdy, maximálne hodnoty kinematických veličín

vykonáva harmonický pohyb smeruje do rovnovážn je jeho zrýchlenie úmerné výchylke Ak HB ootom oolohy

Zhrnutie

$$x = x_m \cos(\omega t + \varphi)$$

$$|\ddot{x} = -\omega^2 x|$$

pohybovou rovnicou $d^2x/dt^2 = -\omega^2x$ Ak pohyb hmotného bodu je otom HB vykonáva harmonický ohyb s uhlovou frekvenciou ω

Malé kmity

Predpoklad: Výchylky x také malé, že možno zanedbať ich vyššie ako druhé mocniny x.

Rady

Mocninné rady

Mocninné rady

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + \dots$$

$$= f(x_0) + \frac{df}{dx}\Big|_{x = x_0} (x - x_0) + \frac{1}{2!} \frac{d^2 f}{dx^2}\Big|_{x = x_0} (x - x_0)^2 + \frac{1}{3!} \frac{d^3 f}{dx^3}\Big|_{x = x_0} (x - x_0)^3 + \dots$$

$$a_n = \frac{1}{n!} \left[\frac{d^n f(x)}{dx^n} \right]_{x=x_0}$$

Ak pohyb hmotného bodu je opísaný pohybovou rovnicou $d^2x/dt^2 = -\omega^2x$ potom HB vykonáva harmonický pohyb s uhlovou frekvenciou ω

$$\ddot{x} = -\omega^2 x$$

$$x = x_m \cos(\omega t + \varphi_0)$$

Harmonický oscilátor

Newtonova rovnica

$$m\ddot{x} = -kx$$

$$\frac{1}{\ddot{\mathbf{r}} = -\frac{k}{2}}$$

Ak pohyb hmotného bodu je opísaný pohybovou rovnicou $d^2x/dt^2 = -\omega^2x$ potom HB vykonáva harmonický pohyb s uhlovou frekvenciou ω

Matematické kyvadlo

Krivočiara súradnica

 $L\cos\varphi$

$$v = L\dot{\boldsymbol{\varphi}}$$

When θ is small, a simple pendulum's motion can be modeled as simple harmonic motion about the equilibrium position $\theta = 0$.

angle in Degrees	$_{\text{sin}} \varphi \approx \varphi$	Sine of Angle	Percent Difference
O°	0.000 0	0.0000	0.0%
1°	0.017 5	$0.017\ 5$	0.0%
2°	0.034 9	0.0349	0.0%
3°	$0.052\ 4$	0.052 3	0.0%
5°	0.087 3	$0.087\ 2$	0.1%
10°	0.174 5	$0.173\ 6$	0.5%
15°	0.261 8	$0.258 \ 8$	1.2%
20°	0.349 1	0.3420	2.1%
30°	0.523 6	$0.500 \ 0$	4.7%
		\	1
1		arphi	

mg

Angle in Degrees	$\sin \varphi \approx \varphi$	Sine of Angle	Percent Difference
0°	0.0000	0.000 0	0.0%
1°	0.017 5	0.017 5	0.0%
	0.034 9	0.034 9	0.0%
2° 3°	0.052 4	0.052 3	0.0%
5°	0.087 3	0.032 3	0.1%
10°	0.174 5	0.173 6	0.5%
15°	0.261 8	0.258 8	1.2%
20°	0.349 1	0.342 0	2.1%
30°	0.523 6	0.500 0	4.7%
	VRATNÁ SILA mg sin φ	φ φ F_l $L\varphi$	$mg\cos\varphi$

Ak pohyb hmotného bodu je opísaný pohybovou rovnicou $d^2x/dt^2 = -\omega^2x$ potom HB vykonáva harmonický pohyb s uhlovou frekvenciou ω

Energia

$$\Delta E_k + \Delta E_p = \int \vec{F}_{NK} \bullet d\vec{l}$$

Mechanická energia harmonického pohybu

Potenciálna energia harmonického pohybu – všeobecná charakteristika

$$F = ma = -\omega^2 m x$$

$$E_p = \frac{1}{2}\alpha x^2$$

$$E_p = -\int_0^x \vec{F} \cdot d\vec{l} = -\int_0^x -m \,\omega^2 x dx = \frac{1}{2} \alpha x^2$$

Každý systém v blízkom okolí svojej rovnovážnej polohy vykonáva harmonické kmity.

V bode x₀ /rovnovážna poloha / je extrém – minimum a referenčný bod pre potenciálnu energiu:

$$\left| \frac{dE_p}{dx} \right|_{x=x_0} = 0 \left| \frac{d^2 E_p}{dx^2} \right|_{x=x_0} = \alpha \left| \frac{E_p(x_0) = 0}{x - x_0 = \Delta x} \right|$$

$$E_p(x_0) = 0$$

$$f(x) = f(x_o) + \frac{df}{dx}\Big|_{x=x_0} (x - x_0) + \frac{1}{2!} \frac{d^2 f}{dx^2}\Big|_{x=x_0} (x - x_0)^2 + \frac{1}{3!} \frac{d^3 f}{dx^3}\Big|_{x=x_0} (x - x_0)^3 + \dots$$

$$E_{p}(x) = E_{p}(x_{0}) + \frac{dE_{p}}{dq}\Big|_{x=x_{0}} (x-x_{0}) + \frac{1}{2} \frac{d^{2}E_{p}}{dx^{2}}\Big|_{x=x_{0}} (x-x_{0})^{2} + \dots$$

Hodnota potenciálnej energie v referenčnom bode je nulová

Derivácia funkcie v extréme je nulová

 χ

Vzdialenosť bodu od rovnovážnei polohy

$$E_p(x) = \frac{1}{2}\alpha(x - x_0)^2 = \frac{1}{2}\alpha(\tilde{x})^2$$

V bode x₀ /rovnovážna poloha / je extrém – minimum a referenčný bod pre potenciálnu energiu:

$$\left| \frac{dE_p}{dx} \right|_{x=x_0} = 0 \left| \frac{d^2 E_p}{dx^2} \right|_{x=x_0} = \alpha \left| \frac{E_p(x_0) = 0}{x - x_0 = \Delta x} \right|$$

$$E_p(x_0) = 0$$

$$x - x = \Delta x$$

$$f(x) = f(x_o) + \frac{df}{dx} \Big|_{x=x_0}^{x} (x - x_0) + \frac{1}{2!} \frac{d^2 f}{dx^2} \Big|_{x=x_0} (x - x_0)^2 + \frac{1}{3!} \frac{d^3 f}{dx^3} \Big|_{x=x_0} (x - x_0)^3 + \dots$$

$$E_{p}(x) = E_{p}(x_{0}) + \frac{dE_{p}}{dq}\Big|_{x=x_{0}} (x-x_{0}) + \frac{1}{2} \frac{d^{2}E_{p}}{dx^{2}}\Big|_{x=x_{0}} (x-x_{0})^{2} + \dots$$

Hodnota potenciálnej energie v referenčnom bode je nulová

Derivácia funkcie v extréme je nulová Vzdialenosť bodu od rovnovážnei polohy

$$E_p(x) = \frac{1}{2}\alpha(x - x_0)^2 = \frac{1}{2}\alpha(\tilde{x})^2$$

Figure 15.11 (a) If the atoms in a molecule do not move too far from their equilibrium positions, a graph of potential energy versus separation distance between atoms is similar to the graph of potential energy versus position for a simple harmonic oscillator (dashed black curve). (b) The forces between atoms in a solid can be modeled by imagining springs between neighboring atoms.

Pohybová rovnica:

Tlmené kmity

$$\ddot{x} + \frac{\gamma}{m} \dot{x} + \omega_0^2 x = 0$$

Koeficient odporu prostredia

$$x = x_0 e^{-\beta t} \cos[\omega t + \varphi]$$

$$\left[\beta^{2} - \omega^{2} + \omega_{0}^{2} - \frac{\beta \gamma}{m}\right] x_{0} e^{-\beta t} \cos \omega t + \left[2\omega \beta - \frac{\omega \gamma}{m}\right] x_{0} e^{-\beta t} \sin \omega t = 0$$

$$\int x_0 e^{-\beta t} \cos \omega t +$$

$$2\omega\beta - \frac{\omega\gamma}{m}$$

$$\int x_0 e^{-\beta t} \sin \omega t = 0$$

$$2\omega\beta - \frac{\omega\gamma}{m} = 0 \qquad \Rightarrow \quad \beta = \frac{\gamma}{2m}$$

$$\Rightarrow \beta = \frac{\gamma}{2m}$$

$$\beta^2 - \omega^2 + \omega_0^2 - \frac{\beta \gamma}{m} = 0 \qquad \Rightarrow \quad \omega = \sqrt{\omega_0^2 - \frac{\gamma^2}{4m^2}}$$

$$x = x_0 e^{-\frac{\gamma}{2m}t} \cos\left[\sqrt{\omega_0^2 - \frac{\gamma^2}{4m^2}} t + \varphi\right]$$

$$\omega = \sqrt{\omega_0^2 - \frac{\gamma^2}{4m^2}}$$

$$\beta^2 - \omega^2 + \omega_0^2 - \frac{\beta \gamma}{m} = 0 \qquad \Rightarrow \quad \omega = \sqrt{\omega_0^2 - \frac{\gamma^2}{4m^2}}$$

Tlmený oscilátor

$$\left| \ddot{x} + \frac{\gamma}{m} \dot{x} + \omega_0^2 x = 0 \right|$$

postupne zaniká a jeho mechanická energia sa postupne celá premení na vnútornú energiu

A- periodický pohyb
$$x = x_0 e^{-\frac{\gamma}{2m}t} \cos\left[\sqrt{\omega_0^2 - \frac{\gamma^2}{4m}} t + \varphi\right]$$

Periodický pohyb tlmeného oscilátora

Perióda je väčšia ako perióda netlmeného harmonického pohybu , ktorý by sa zrealizoval inak za rovnakých podmienok

$$x = Ae^{-bt}\cos(\omega t + \varphi)$$

Lokálne maximá a minimá sa periodicky opakujú s frekvenciou ω a periódou T:

$$\omega = \sqrt{\omega_0^2 - \frac{\gamma^2}{4m^2}}$$

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\omega_0^2 - b^2}}$$

$$\delta = \log \frac{A^{\bullet}(t)}{A^{\bullet}(t+T)} = \frac{Ae^{-bt}}{Ae^{-b(t+T)}} = bT$$

Porovnanie kmitov od stupňa tlmenia

- 1 netlmené kmity
- 2,3 tlmené kmity, periodické
- 4 kritické kmity, aperiodické
- 5 nadkritické kmity, aperiodické

Meracie zariadenia – snaha dosiahnut rovnovážnu polohu čo najskôr