A VARIANCE CHAOS

[Silvia Forcina Barrero, Sophia Gläser, Stefano Nicoli]

OVERVIEW "DOWNSIDE VARIANCE RISK PREMIUM"

GOAL

investigate the short-term relationship between risk and return

evaluate the effectiveness of these measures as **equity market** returns predictors

FINDINGS

- downside VRP is the main **driver** of the VRP
- **positive relation**: Downside VRP & equity premium
- **robust** to inclusion of common pricing factors
- SRP: significant prediction power for excess returns, beyond reach of VRP
- theoretical framework

CONSTRUCTION OF MEASURES

GOAL

construct non-parametric measures of

Upside VRP

Downside VRP

SRP

HOW?

separate positive and negative excess log returns [k=0]

VRP_U = IV_U - RV_U

 $VRP_D = IV_D - RV_D$

SRP = VRP_U - VRP_D

RV (P-expectation):

intraday squared returns + overnight returns + scaling + RW

IV (Q-expectation):

option prices + model-free approach + NA conditions + Fengler Algorithm

DATA

→ WHARTON DATABASE

Excess Returns

- **<u>Rf</u>**: 3-month Treasury Bill rate
- Aggregate Market Portfolio: S&P 500 composite index

CRSP

<u>RV</u>

HF SPY consolidated quotes

TAO

Cleaning:

- delete zero entries
- delete duplicate entries
- average bid & ask
- create 5-min bins [median]
- NAN: interpolation

IV

- SPX EU call and put options
- Zero Coupon Yield Curve
- S&P 500 dividend yield

OptionMetrics

Cleaning:

- average bid & ask
 - delete ITM options
- ☐ delete options < \$ 3/8
 - delete options > 1 year & <7 days
- delete options not traded for more than 3 days
- NAN: interpolation

SUMMARY STATISTICS

 Table 1: summary statistics

	VRP	VRP^U	VRP^{D}	$ RV^U $	RV^D	$ IV^U$	IV^D	excess return
mean	0.067227	-0.034161	0.101388	0.147523	0.168599	0.112790	0.268409	0.460595
std	0.250356	0.135721	0.165122	0.246959	0.321733	0.155481	0.347752	4.809556
\min	-3.344685	-1.812280	-1.532405	0.008506	0.004881	0.006662	0.043216	-35.874178
max	1.911116	0.397544	1.513572	2.346593	3.166236	1.732368	3.522595	20.273505

METHODOLOGY

Predictive Regressions

Examine the explanatory power of

Upside VRP

Downside VRP

VRP

SRP

$$r_{t\to t+k}^e = \beta_0 + \beta_1 x_t(h) + \epsilon_{t\to t+k}$$

$$r_{t \to t+k}^e = \beta_0 + \beta_1 x_t^U(h) + \beta_2 x_t^D(h) + \epsilon_{t \to t+k}$$

h=1,2,3,6,9,12 k=1,2,3,6,9,12

Robust standard errors

OOS Analysis Evaluate the forecast ability of

Upside VRP

Downside VRP

VRP

h=1,2,3,6,12

→ Expanding Window Regressions & generate one-step ahead predictions

k=1-day ahead

→ Accuracy Measure: **RMSE**

RESULTS: Predictive Regressions

	REFERENCE PAPER	OUR RESULTS
VRP	best prediction horizon for k=3R2 decreases as h>6	same
VRP_D	highest predictive power: k=3, 6still significant with h=12	same
VRP_U	low predictive powernot significant when h>3	more predictive power than VRP_D
SRP	high predictive power	low predictive power
IV/RV	excess returns driven by IV	same

RESULTS: OOS

RESULTS

- best: VRP_U
- low RMSE for all h → good predictive ability
- performance decreases with h
- peak h=2

OUTLOOK

- k-step ahead forecasts
- evaluate best forecast horizon
- robustness of standard errors

CONCLUSIONS

Extended Time Period [2007-2017]

P-Expectation of the RV using historical intraday returns

Q-Expectation using EU Call and Put option data observed in the market

Analysis of **predictability** of excess returns using

Upside VRP

Downside VRP

VRP

SRP

- → **Upside VRP**: main driver of future excess returns
- → **Risk-neutral** expectations contribute stronger to the predictability than realized measures

OOS: Evaluation of one-step ahead prediction accuracy through expanding window regressions

- → **Low RMSE** values across all construction horizons [peak: h=2]
- → Best Results for **Upside VRP**

DISCUSSION OF REFERENCE

PROS

- comprehensive and innovative investigation of the predictability of excess returns;
- **Medium term** predictor;
- support empirical results with theoretical framework;
- robustness tests.

CONS

- **option data treatment** not described in detail;
- models not described in detail;
- **overlapping** data.

FURTHER WORK

- replicate models using non overlapping data;
- investigate impact of the threshold k;
- **ML** approach:
 - kernels and penalization;
 - o unsupervised learning.

THANK YOU FOR YOUR ATTENTION