Decision Trees

Sourav Sen Gupta

CDS 2015 | PGDBA | 6 Oct 2015

Will you eat/wait?

Deciding factors may be

```
If there are patrons (people inside) — Yes/No
If you are hungry already — Yes / No
Alternative options in the vicinity — Yes / No
The estimated time for waiting — In minutes
If you already have a reservation — Yes/No
If it is a Friday/Saturday night — Yes/No
If there is a Bar area to wait — Yes/No
The range of price at the place — High/Medium/Low
If it is raining at the time — Yes/No
The genre of cuisine — French, Italian, Thai, Burger
```


Ref. — "Artificial Intelligence : A Modern Approach" — Stuart J. Russell and Peter Norvig

Training Data

Example	Attributes											
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait	
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	Yes	
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No	
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes	
X_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Yes	
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No	
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes	
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No	
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes	
X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No	
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No	
X_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	No	
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes	

Training Data

Example	Attributes											
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait	
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	Yes	
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	No	
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes	
X_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Yes	
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No	
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	Yes	
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	No	
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	Yes	
X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No	
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No	
X_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	No	
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	Yes	

\$\$\$

No

No

Thai

30-60

Yes Yes Yes

No

Full

Classification

Classification Tree

Split Condition

The goal is to maximize the information gain.

Information Gain = Reduction in Entropy

Information Gain

Information Gain = Parent Entropy — E(Child Entropy)

$$I = H(\mathcal{S}) - \sum_{i \in \{L,R\}} \frac{|\mathcal{S}^i|}{|\mathcal{S}|} H(\mathcal{S}^i)$$

One notion of entropy is that of Shannon Entropy

$$H(S) = -\sum_{c \in C} p(c) \log(p(c))$$

Example Split

Example	Attributes											
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait	
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	Yes	
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No	
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes	
X_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Yes	
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No	
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes	
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No	
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes	
X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No	
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No	
X_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	No	
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes	

Ref. — "Artificial Intelligence : A Modern Approach" — Stuart J. Russell and Peter Norvig

Compare Gain

Parent Entropy

$$H = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$$

E(Child Entropy)

$$E(H) = \frac{1}{6} \times 1 + \frac{1}{6} \times 1 + \frac{1}{3} \times 1 + \frac{1}{3} \times 1 = 1$$

Gain = 0

Parent Entropy

$$H = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$$

E(Child Entropy)

$$E(H) = \frac{1}{6} \times 0 + \frac{1}{3} \times 0 + \frac{1}{2} \times 0.918 = 0.459$$

Gain = 0.541

Choosing Split

Split Types

Axis-aligned Hyperplane

General oriented Hyperplane

Quadratic/Conic in 2D

Example		Goal									
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	Yes
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
X_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Yes
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No
X_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	No
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

