tandard 01:	: Dot and	Cros	ss Pr	odu	ict																							
	. 1																											
eview of \	<u>vectors</u>																											
asic Conc						1.0					10																	
ectors are					_			_																	1			
een before					_																	_						
person p			· .	.					1	ner	of	5	New	tons	s. N	otic	e t	hat	the	e po	oint	of	im	Pac	.t o	loes	no	+
latter, only	y the r	nagr	nitud	e	and	the	dire	ctio	n.																			
			0		,																							
onsider H	nis ske	etch	of	vec	ctors	on	a 2	- D (COOT	din	ate	Pla	ane.															
									-					•														
			Whi										_			_												<u> </u>
			thes										l .											the	at 1	move	es_	
							and																					
			The	arı	row	abo	ve t	he	y h	elps	di	ffer	tent	iate	be	twe	en	a p	sint	and	da	vect	tor,	sam	ne f	or t	he	
			angle	ed	bra	cket	ts.																					
otice that	we pul	lled o	y vec	tor	, v ,	from	n a	dir	ecte	d 1	ine	se	gme	nt	AB	fro	m t	he	Poir	+ 1	x) = (x	וצוו) to	the	e po	tnic		
= (X2, Y2) 1	by using	g the	e eq	uał	ion	マミ	(X ₂ -)	۲, ۲	2 - Y,	>. T	his	argi	ame	nt c	an	be	ext	enc	led	to	3-D) sī	ace	US	ing	the		
rected line	segme	ent	AB.	froi	m F	\= (x,	ئبيلار	e.) to	o B	= (x.	. 1/2	,2,)	and	d the	e e	qua:	tion	▽ :	۷X	₂ -X.,	Y2-	y,, 2	2-2	١>.	Also	o no	te	
at the ve	ector fr	rom T	point	A	to	poin!	+ B	is	diff	eren	t fr	om	its	rev	ieys	e v	<i>lect</i>	or e	join	3 f	rom	Poi	nt '	Bt	o p	oint	A.	
t is custo	omary	to d	raw	ve	ctor.	s or	igina	tino	at	the	ori	gin	, th	ese	1ec	tors	s an	re o	ftev) C0	lled	Po	siti	on v	ect	TOYS		
cample. Le	et A= (2	,-4,0) a	nd	B=	(1,-	3,-5). G	ive !	the	Nec	tor	for	the	div	ect	ed	line	sec	zme	nts	ĀB	011	nd	BA			
vector de	scribed	by A	IB								(P)	vec	tor	des	crik	bed	рл	BA										
ν̄₁= <1-2,-	-3-(-7),-	5-0>										√2=	< 2	- 15 -	-7-(-3).	0-	(-5)	>									
= <-1, 4	4,-57											=	۷)	-4	,5>													
agnitude																												
e mention	ed that	av	ecto	Y	cons	ist d	of t	wo.	part	5: 0	x Mo	agni	tud	e av	nd o	a div	recti	ion.	Sor	neti	me:	s w	e u	on'	t to	kn	ow	jus
e magnitu																												_
e position																												
ne magnit	ude, or	lenat	h. of	: Ho	ne ve	ctor	17=	4X	X2.	X->	is	aive	en k	7	いさい	= 10	x)2	+ (x2)2 + (Xz)z								
is equation																						(x.)2	+ (x.) ² ‡.	.+ (X-1 _S		
																	,,,					333						
ample. De	termine	Hno.	mar	anil	hide	of a	each	t	the	Fall	01-2	ina	VIO C	tore														
															,				141	÷_	<1,	0.0	5					
12-63-6							(清)					1=1) ² + (
	The second second second				1 (15		(45.)				IIW	_	0 + O	(0)							+0+		(0)°					
11= 1(3)2+(-5)2					4 5 T	_5														= 11	+0+	0						
$= \sqrt{9 + 25 + 10}$. 4												1	1	1	- T								
11= 1(3)2+(-5)2					: 1							= 0																
= 1134	000				1							= 0																
=	000																											
$= \sqrt{(3)^2 + (-5)^2}$ $= \sqrt{9 + 25 + 16}$ $= \sqrt{134}$	000	just	war			dire	ction	the	e ve	ctor	Po			١														

Special Vectors
The zero vector <0,0,0,0, often denoted 0, is the vector with no magnitude and direction.
The standard basis vector is a unit vector that moves in the direction of an axis: = <1,0,0>, j= <0,1,0>, k= <0,0,1>.
In 2-D space there are only two standard basis vectors, i=<1,0> and i=<0,1>. In n-dimensions, there are n.
Vector Arithmetic
Addition and Subtraction
Given the vectors $\vec{a} = \langle a_1, a_2, a_3 \rangle$ and $\vec{b} = \langle b_1, b_2, b_3 \rangle$, addition is defined coordinate wise by the formula:
Note that subtraction is just addition of the negative second vector thus $\vec{a} - \vec{b} = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$.
$\vec{a}+\vec{b}=\langle a_1+b_1, a_2+b_2, a_3+b_3\rangle$
<1,2>+ <4,1> = <1+4,2+1>
=<5,3>
Scalar Multiplication (Scalar just means a number or one component)
Criven a vector \$= <a.,a.,a.> and any number c, the scalar multiplication is c\$= <ca.,ca.,ca.,ca.></ca.,ca.,ca.,ca.></a.,a.,a.>
Notice that scalar multiplication will stretch (if c>1) or shrink (if c<1) the original vector but not change the direction.
Standard Basis Vector
We can now see that every vector can be rewritten as multiples and additions of the standard basis vectors, i.e.
$\vec{a} = \langle a_1, a_2, a_3 \rangle = \langle a_1, 0, 0 \rangle + \langle 0, a_2, 0 \rangle + \langle 0, 0, a_3 \rangle = a_1 \langle 1, 0, 0 \rangle + a_2 \langle 0, 1, 0 \rangle + a_3 \langle 0, 0, 1 \rangle = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$
Dot Product (Scalar Product)
Just like numbers, we want to be able to multiply vectors. We have 2 multiplications for vectors that are important.
The first type of multiplication is the <u>dot product</u> , denoted a · b, and can be found 2 ways:
(1) jā lāl is the magnitude of vector ā
$ \vec{b} $ is the magnitude of vector \vec{b} $ \vec{a} = \vec{a} \cdot \vec{b} \cdot \cos\theta$
O is the angle between a and b
(2) ax à ax, bx are the x component of à and b respectively
ay, by are the y component of \vec{a} and \vec{b} respectively $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y$
8 64
By Carrier Control of the Carrier Control of
example. Let à= <-1,1,2> and b= <0,1,1>. Use the formulas to find 0, the angle between a and b.
It is important to note $ \vec{a} \vec{b} \cos \theta = \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$.
Thus, $\sqrt{(-1)^2 + (2)^2 \sqrt{100^2 + (1)^2 + (1)^2}} \cdot \cos \theta = \vec{a} \cdot \vec{b} = (-1)(0) + (1)(1) + (2)(1)$
JuJz · cosθ = ᾱ· b̄ = 0 + 1+2
112 · cosθ = Δ· δ = 3
$2\sqrt{3} \cdot \cos\theta = \hat{a} \cdot \hat{b} = 3$
COS = 3 2 131 · 131
$\cos\theta = \frac{3\sqrt{3}}{7\cdot 3}$ $\cos\theta = \frac{\sqrt{3}}{2}$
$\cos \theta = \frac{\sqrt{3}}{2}$ $\theta = \cos^{-1}(\frac{\sqrt{3}}{2})$
$\cos \theta = \frac{\sqrt{3}}{2}$ $\theta = \cos^{-1}(\frac{\sqrt{2}}{2})$ $\theta = \frac{1}{2}$

	Cro	ss T	Prod	uct	(ve	cto	r Pro	oduc	(+,																											
										giv	es u	s a	Nec	tor.	The	CYC	oss '	DYOC	luct	, d	enot	ed	ā×ī	b , a	ives	a n	ew .	vect	or t	that	is T	GY9c	endi	culo	Y:	
		۲ ج					·																	. 3								'				
		Ox						the.	maa	mi tu	de	of !	the.	CYOS	S DV	odu	ict is	s the	e av	rea (of 1	the.	para	llelo	ava	m w	ith	side	s ā	and	d b					
					ه.					4													the		_											
			1		20																ľ		right				J P P C	3.10	O III							
			200	1104								.5 0		/ IUSAII	71011				1110			G()	19.11	O. V.	9,00											
					٥			2.		—		\ <u></u>	a b	-0.1			0 h	>-	7~[<u>+</u>	ے	12	- +	4	0-		a +	- (1-	Lt	a+	7					
								CA K	D =	u , b 3	- U.	3027	430	-0.	03,0	105_	տ ը Եւ		aet	a .	9-	92	= t	h-	X h	7	ρ. >	h-	1 6	×	5					
	۸.			2000	1-0																b2			l UZ	03			03		I D ₁	Uz					
							APP'		`	7			ror II	nula	•						02	روم														_
	_11 6	d X K	=	IIaII	·][b	llsir	nΘ	tor) = 0	≤ TT												_										,			
	Λ.,,		1					—															= [(az t	03 - 0	ls bz)	(ail	03 -	43 b)+,	K (a	ıbz-	azD	")	_
					-		cow																													
	āx	b =	I \		XX	IX/	P						-				2 b, 1																nina			
					X	$\mathbf{I} \mathbf{X}$	az		= ((2263	-a:	362	1 +	laz	b,-0	a,b	3) 🕽	+ (a,b	-az	أراط	k			sq	uare	br	ack	ets	der	note	O T	matr	rix		
_			6	62	103	P	bz																													_
							,1,2:									хБ.						4		-								-				
	ά×	b =	î.	3-	K	>	1,	2	1-	-1	2	jt	-1	i	K				āx	b :	亡	N 🤳 .	K													
			-1	1	2		1	`_		0			0								-1		2		_											
			0	1	١																0		X	٥												
						=	(1-1-	- 2.1)	こ -	(-1	.1 -	·0).	1 +	(-1.1	-1.0) <u>ř</u>																				
							(1-7					'	1							= (1	202	t +	(2)	(o) 국	+ (-	-1)(1 <u>'</u>	ì.	(1)	(a) v	- (2)(v)	t -	(-1)	いさ		
							-1																ık -	_												
							۷-۱																0+1)													
								7.7															17													
	PY	AME	ماد	Heir	10 1	he	inf	VC100	ation		k	(10.01	ak	أريم			5.4	adu					ill g				11.5	11= 14	0.1	nd	3.5					
							WILC	J4 44 1C	AIIOI					ا الا			יץ י	bau	61,	7 1910	U 11	WAY	9	(VEV)	11 01	11-3	2 11 4	ט ייוי	, a	1101	u·		•			
			<u> </u>			<u> </u>										_	1,																			
)(6)		S <i>O</i>									· (b)		n (3																				
	_		CO:											. 137)	Z																					
		() =	27								III	× VII	= 9,	3'																						_
_	_			•																																
	<u>Co</u>	wba	onei	nt s	Pro	ojec	ction																													
_																							d lo				1								_	
		7															\sim						this				_									
	7		3		à				firs	t co	mpi	ute	the	con	NPC	ner	nt o	FБ	alor	ng ä	i, i.	e.h	ow 1	mucl	n of	る	sho	uld	Ъ	tal	le i	ip a	nd			
		1	30	>					the	n w	n s	nulti	ply	this	Ь	+	ne o	livec	tion	1 (oy u	nit	NEC	tor	of	à.	This	giv	es i	us H	ne '	2 po	rts			
			0) 2						of	O 16	cto	Υ, (a di	stor	ce	and	la	dive	ctic	M.																
		\c)	part.																																	
									co	mp,	Б	<u> 6</u> 	<u>る</u>	= 10 P/-	a, + 0;	+ a	b3·a	<u> </u>				pro	ं है	= CO1	mp.	Б.	11211		<u>à 11</u>	11611						
																						•			. 0											
	ex	amp	de. L	et ī	D = <	0,1,	1> 0	and	ā=	<u>۲</u> -۱,	1,2>	. Ca	MP	ute	the	SC	alar	CO	MPO	nen	t of	16	alon	qā	and	the	vec	tor	pro	ject	ure	of t	alc	ma	à.	
			Ď =	1 7	-										١.		com			<u> </u>			1	,					1					J		
				40,1,1	. 4-		>								-0	•	3/16	. 4	<u>.ا ا،</u>	2>																
				0 - (-1)	+1.1+	1.2											3/5																			
				3/1		+ 26'											3/6		,	'																
			5	110													2-1	1	, 1,	6/																
		1	1			1		1	1	1	1	1	1				1 7	1 . 7		1	1	1	1							1		1	, 1			