Lecture 2

niceguy

September 11, 2023

1

Definition 1.1 (Closed Set). A set $B \subseteq X$ is closed iff $X - B \subseteq X$ is open.

Example 1.1 (Sets that are both closed and open). For any nonempty metric space X, the empty set and X itself are 2 unique sets that are both closed and open.

Remark. If d is a distance function of X, it is also a distance function for any $Y \subseteq X$.

Theorem 1.1 (Intersection of Open Sets is Open). Let A and B be open sets in X. Then $A \cap B$ is always open.

Proof. Let A and B be open. Then their intersection is either empty or not. The empty set is open. If not, then $x \in A \cap B$. This implies $x \in A$, so there exists an open ball $\mathcal{U}(x;\varepsilon_1) \subseteq A$. Similarly, there exists an open ball ε_2 in B. Pick ε to be the smaller one, then it can be shown that $\mathcal{U}(x;\varepsilon)$ is a subset of both A and B. Since this holds for arbitrary $x \in A \cap B$, the intersection is open. By induction, this holds for any finite intersection of open sets. \square

Proposition 1.1. If $A \subseteq X$ and $Y \subseteq X$ are both open, then $A \cap Y$ is open in Y under the same distance function.

Proof. Follows from the theorem.

Recall we define d_1 as sum of |x - y|, d_2 to be Euclidean, and d_3 to be the supremum of |x - y|.

Theorem 1.2. Any set open in d_i is open in d_1, d_2, d_3 .

Proof. If a set A is open in d_1 , then any point $a \in A$ is associated with an open ball $\mathcal{U}(a, \varepsilon_a) \subseteq A$. Then setting $\varepsilon = \frac{\varepsilon_a}{n}$ shows it is open for d_3 .

Definition 1.2 (Limit Point). Let $A \subseteq X$. Then $x_0 \in X$ is a limit point of A if $\forall \varepsilon > 0$, $\mathcal{U}(x_0; \varepsilon) - \{x_0\}$ contains a point a point in A.

Proposition 1.2. A set is closed iff it contains all of its limit points.

Proof. If A is closed, then let $x \in X - A$. Since X - A is open, there is an ε where $\mathcal{U}(x_0; \varepsilon) \in X - A$, which means it doesn't intersect with A. Hence no limit points are outside A; A contains all of its limit points.

If A contains all of its limit points, then for any $x \in X - A$, then there exists a ε such that $\mathcal{U}(x;\varepsilon) \in X - A$, or else x is a limit point outside of A. Then X - A is open, and A is closed.

Definition 1.3. Define $\mathcal{L}(A)$ to be the set of limit points of A.

Definition 1.4. Define the closure of A to be

$$\overline{A} = A \cup \mathcal{L}(A)$$

Proposition 1.3. A closure is always closed.

Proof. Proof by contradiction. Let x be a limit point outside of \overline{A} . Then for some $\varepsilon > 0$, the epsilon-ball only intersects with $\mathcal{L}(A)$ and not A, or else it is in $\mathcal{L}(A)$. Since this $\mathcal{U}(x;\varepsilon)$ is open and contains $a \in \mathcal{L}(A)$, there is a smaller epsilon-ball centred at A that is in $\mathcal{U}(x;\varepsilon)$. Since a is a limit point, we know any epsilon-ball surrounding it contains $a' \neq a$ that is in A. Then $\mathcal{U}(x;\varepsilon)$ contains $a' \in A$ for all x and ε pairs. Now $x \in \mathcal{L}(A)$, which is a contradiction. Hence \overline{A} contains all of its limit points, and it is closed. \square

Remark. We have proven that the intersection of 2 open sets are open. By induction, this holds for finitely many open sets. Now that union of any open sets denoted by A_i is obviously open, since any point a in the union is in A_i for some i. Using the fact that A_i is open, $\exists \varepsilon$ such that $U(a, \varepsilon) \subseteq A_i \subseteq \bigcup_i A_i$. Hence the union is open.

Taking the complement, the union of finitely many closed sets is closed, and the intersection of any closed sets is also closed.

Note: it is trivial to prove

$$\left(\bigcup_{i} A_{i}\right)' = \bigcap_{i} A'_{i}$$

and

$$\left(\bigcap_{i} A_{i}\right)' = \bigcup_{i} A'_{i}$$

Remark. A closure of A is also the smallest closed superset of A.

Proof. Note that a limit point of A is a limit point of any superset of A. Hence any closed set containing A must contain $\mathcal{L}(A)$.