

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN R-521 — ROBÓTICA MÓVIL

Trabajo Práctico

Transformaciones

Entrega 1.

Se deberá entregar un informe realizado en Lyx^1 o L^4T_FX con los ejercicios resueltos y explicando la solución según lo vea necesario para su comprensión. Para realizar gráficos se recomienda la utilización de la herramienta inkscape². Para el código se debe proveer el link de un repositorio git junto con un archivo README.md con las instrucciones de ejecución.

2. **Ejercicios**

Esta práctica es para ponerse a punto con transformaciones.

Ejercicio 1. Para el sistema de coordenadas canónico de un robot móvil (x: hacia adelante, y: hacia la izquierda, z: hacia arriba) dibujar y resolver matemáticamente el sistema de coordenadas resultante luego de aplicar las rotaciones dadas.

 $R_x(-90^\circ)R_y(90^\circ)$ $R_z(180^\circ)R_x(-90^\circ)R_y(90^\circ)$ $R_{u}(90^{\circ})$

Ejercicio 2. Dada los siguientes ángulos de Euler $(\alpha = \frac{4\pi}{7}, \beta = \frac{\pi}{2}, \gamma = -\frac{\pi}{3})$, con órden xyz (primero rotación en x, luego en y y finalmente en z) utilizando Rotación Intrínseca. Se pide:

- a) Calcular la matríz de Rotación resultante $R = R_x(\alpha)R_y(\beta)R_z(\gamma)$.
- b) Utilizando la matríz de rotación calculada R, extraer matemáticamente los Ángulos de Euler. Explicar.

Ejercicio 3. Dado el siguiente escenario,

- un robot A que encuentra en la posición (2,3) con orientación 45° en coordenadas del mundo
- un robot B que se encuentra en la posición (1,1) con orientación −45° en el sistema de coordenadas del robot A.
- un punto ${}^{\mathrm{W}}\mathbf{p}1=(1,5)$ en coordenadas del mundo.
- \bullet un punto ${}^{\rm A}{\bf p}2=(1,2)$ en coordenadas del robot A.

Resuelva:

1https://www.lyx.org/

²https://inkscape.org/

- a) Dibuje los robots y las poses y todos los sistemas de coordenadas presentes
- b) ¿Cuáles son los coordenadas del punto p1 en el sistema de coordenadas del robot A?
- c) ¿Cuáles son los coordenadas del punto p2 en el sistema de coordenadas del robot B?
- d) ¿Cuál es la pose (posición y orientación) del robot B en coordenadas del Mundo?

Ejercicio 4. Data la pose del robot (Body) en el mundo: ${}^{W}\boldsymbol{\xi}_{B_0}$. Si se tiene el camino (conjunto de poses ${}^{C_0}\boldsymbol{\xi}_{C_i}$ con $i=1\ldots n$) realizado por la cámara C (montada sobre el robot) en el marco de coordenadas de la cámara inicial C_0 . Sabiendo la transformación ${}^{B}\boldsymbol{\xi}_{C}$,

- ¿Qué procedimiento hay que realizar para obtener el camino realizado por la cámara en el sistema de coordenadas del mundo?.
- ¿Qué procedimiento hay que realizar para obtener el camino realizado por el robot (Body) en el sistema de coordenadas del mundo?
- Realizar un gráfico ilustrativo donde se visualicen los sistemas de coordenadas, las transformaciones y los caminos realizados por el robot y la cámara.

Ejercicio 5. Para este ejercicio utilizaremos el dataset EuRoc³.

Descargue el archivo ground-truth (trayectoria real realizada por el robot) localizado http://robotics.ethz.ch/~asl-datasets/ijrr_euroc_mav_dataset/machine_hall/MH_01_easy/MH_01_easy.zip.

Nota: Para la descarga se recomienda utilizar el programa aria2c con los parámetros: aria2c -s N -x N <URL>, con N la cantidad de cores en su computadora.

- a) El ground-truth se encuentra en coordenadas de la IMU (Body). Se pide crear un script en python que dada la trayectoría ground-truth (timestamp, x, y, z, qw, qx, qy, qz) (primeras 8 columnas del archivo MH_01/state_groundtruth_estimate0.csv) genere el ground-truth pero que este esté dado en el sistema de coordenadas de la cámara inicial. Para esto deberá utilizar las transformaciones provistas en el dataset.
- b) Modifique el script para que el timestamp del nuevo *ground-truth* este en segundos con precisión de nanosegundos. Agregar las primeras 5 filas del ground-truth resultante y las del original del dataset al informe.
- c) Modifique el script para que genere una imagen con ambos ground-truth (el camino de la IMU y el camino de la cámara). Aplique las transformaciones necesaria para que ambos caminos esten en el sisma de coordenadas del ground-truth original. Agregar la imagen al informe.

Nota: Para graficar en Python se recomienda utilizar la librería matplotlib⁴. Para trabajar con transformaciones en Python se recomienda utilizar la librería: transforms3d⁵

³https://projects.asl.ethz.ch/datasets/kmavvisualinertialdatasets

⁴https://matplotlib.org/

⁵https://github.com/matthew-brett/transforms3d