

0236 - Poster location: W01

GeoLS: Geodesic Label Smoothing for Image Segmentation

"Adding image context in the label smoothing process"

Sukesh Adiga V *, Jose Dolz and Hervé Lombaert ShapETS Lab, ETS Montréal

MIDL 2023

Revisiting Image Segmentation

Abdominal organs ¹

Brain tumour ²

- Cross-entropy (CE) objective function
 - One-Hot (OH) representation

¹ FLARE'21: Ma et al., MedIA 2022

²BraTS19: Bakas et al., Scientific data 2017, Arxiv 2018

Spatial Ambiguity

One-hot label

> OH label ignores spatial relationships as well as class relationships

Soft labeling methods

Label Smoothing (LS)

> These methods ignore the spatial relationship

¹ Szegedy et al., CVPR 2016

² Galdran et al., TVST 2021

Spatial-aware Soft labeling approaches

Spatially Varying Label smoothing (SVLS) ³

➤ All these methods rely on a target mask

¹ Dilating labels: Kats et al., ISBI 2019

² SoftSeg: Gros et al., MedIA 2021

³ SVLS: Islam et al., IPMI 2021

Motivation

• Soft labeling approaches neglect image intensities

• Research Question:

Can we integrate image-context information in the label smoothing process?

• <u>How</u>:

We leverage the generalized geodesic distance transform to obtain image-aware distributions

Generalized Geodesic Distance Transform (GGDT) 1

Euclidean Distance

Generalized Geodesic Distance

¹ Criminisi et al., ECCV 2008 Sukesh Adiga V, ETS Montreal

Generalized Geodesic Distance Transform (GGDT) 1

Generalized geodesic distance of each pixel v to seed set S

$$D_c(v; \mathcal{S}, x_i) = \min_{v' \in \mathcal{S}} d(v, v'),$$

where
$$d(v,v')=\min_{p\in P_{v,v'}}\int\sqrt{||p'(s)||^2+\gamma^2(\nabla x_i\cdot u(s))^2}ds,$$
 Set of all paths balance b/w Geodesic and Euclidean distance

How to generate Geodesic Maps?

Image

Label

Seed points (Skeleton)

GGDT D_c

Geodesic Map $g_c = e^{-D_c}$

Geodesic Maps

GeoLS: Geodesic Label Smoothing

ullet Normalize the geodesic maps: $ilde{g}_c = rac{g_c}{\sum_c g_c},$

Proposed geodesic label smoothing:

Image-aware $y_c^{GeoLS} = (1-\alpha)y_c + \alpha \tilde{g}_c$ g_c g_c

Comparison of Soft labels

Results

Segmentation performance

CE LS¹ FL² SVLS³

Dice ↑ SD ↑ HD ↓

Our method consistently improves segmentation performance

¹ LS: Szegedy et al., CVPR 2016

86

² FL : Lin et al., 2017

³ SVLS: Islam et al., IPMI 2021

Qualitative Results

➤ GeoLS minimizes misclassification errors in challenging regions

Conclusion

- <u>Proposal</u>: Geodesic label smoothing for image segmentation
 - o integrates **image-aware** distribution
 - captures inter-class relationships
- Results: Our method
 - consistently yields superior performance
 - improves segmentation in challenging regions

Take-home message:

Geodesic-based labeling adds image-context to the label smoothing methods

Extra slides

Choice of seed set S

Datasets	BraTS		FLARE	
choice of S	DSC (%) ↑	HD (mm) \downarrow	DSC (%) ↑	HD (mm) ↓
random-3	$\textbf{82.98} \pm \textbf{0.68}$	$\textbf{8.10}\pm\textbf{0.09}$	87.83 ± 1.02	4.79 ± 0.16
random-5	82.51 ± 0.80	9.00 ± 0.70	89.46 ± 1.00	4.20 ± 0.97
random-7	82.36 ± 0.48	8.89 ± 0.81	89.23 ± 0.21	4.41 ± 0.49
skeleton	82.27 ± 0.77	8.78 ± 1.28	$\textbf{90.16} \pm \textbf{0.44}$	$\textbf{3.12}\pm\textbf{0.21}$
erosion	81.93 ± 0.93	9.17 ± 0.68	89.56 ± 0.08	3.63 ± 0.27

> skeleton-based seed strategy is consistent across both datasets

Sensitivity of smoothing factor α

