NAIL062 V&P LOGIKA: 1. CVIČENÍ

Výukové cíle: Po absolvování cvičení student

- rozumí pojmům syntaxe výrokové logiky (jazyk, prvovýrok, výrok, strom výroku, podvýrok, teorie), umí je formálně definovat a uvést příklady
- rozumí pojmům model, důsledek teorie, umí je formálně definovat a uvést příklady
- umí formalizovat daný systém (slovní/výpočetní úlohu, apod.) ve výrokové logice
- umí najít modely dané teorie
- umí rozhodnout, zda je daný výrok důsledkem dané teorie
- má zkušenost s použitím (s pomocí instruktora) tablo metody a rezoluční metody k důkazu vlastností daného systému (např. k řešení slovní úlohy)

Příklady na cvičení

Příklad 1. Ztratili jsme se v labyrintu a před námi jsou troje dveře: červené, zelené a modré. Víme, že za právě jedněmi dveřmi je cesta ven, za ostatními je drak. Na dveřích jsou nápisy:

- Červené dveře: "Cesta ven je za těmito dveřmi."
- Modré dveře: "Cesta ven není za těmito dveřmi."
- Zelené dveře: "Cesta ven není za modrými dveřmi."

Víme, že alespoň jeden z nápisů je pravdivý a alespoň jeden je lživý. Kudy vede cesta ven?

- (a) Zvolte vhodný jazyk (množinu prvovýroků) P.
- (b) Formalizujte všechny znalosti jako teorii T v jazyce \mathbb{P} . (Pozor: Axiomy nejsou nápisy na dveřích, ty nemusí být pravdivé.)
- (c) Najděte všechny modely teorie T.
- (d) Formalizujte tvrzení "Cesta ven je za červenými/modrými/zelenými dveřmi" jako výroky $\varphi_1, \varphi_2, \varphi_3$ nad \mathbb{P} . Je některý z těchto výroků důsledkem T?
- (e) Vyzkoušejte si použití tablo metody: Zkonstruujte tablo z teorie T s položkou $F\varphi_i$ v kořeni, budou všechny větve sporné? (Pokuste se vymyslet správné kroky konstrukce tabla, inspirujte se příkladem z přednášky.)
- (f) Vyzkoušejte si použití rezoluční metody: Převeďte axiomy teorie T, a také výrok $\neg \varphi_i$, do konjunktivní normální formy (CNF). Pokuste se sestrojit rezoluční zamítnutí, zakreslete ho ve formě rezolučního stromu. (Pozor: Nezapomeňte znegovat dokazovaný výrok φ_i .)

Příklad 2. Uvažme *vrcholová pokrytí* následujícího grafu:

Chceme pro dané k > 0 zjistit, zda má tento graf nejvýše k-prvkové vrcholové pokrytí.

- (a) Zvolte vhodný jazyk (množinu prvovýroků) P.
- (b) Formalizujte ve výrokové logice problém, zda graf na obrázku má nejvýše k-prvkové vr-cholové pokrytí, pro pevně zvolené k. Označme výslednou teorii jako T_k .
- (c) Ukažte, že T_2 nemá žádné modely, tj. graf nemá 2-prvkové vrcholové pokrytí.
- (d) Uměli byste k tomu využít tablo metodu?
- (e) Uměli byste k tomu využít rezoluční metodu?
- (f) Najděte všechna 3-prvková vrcholová pokrytí.

Další příklady k procvičení

Příklad 3. Uvažme následující tvrzení:

- (i) Ten, kdo je dobrý běžec a má dobrou kondici, uběhne maraton.
- (ii) Ten, kdo nemá štěstí a nemá dobrou kondici, neuběhne maraton.
- (iii) Ten, kdo uběhne maraton, je dobrý běžec.
- (iv) Budu-li mít štěstí, uběhnu maraton.
- (v) Mám dobrou kondici.

Podobně jako v Příkladu 1 popište situaci pomocí výrokové logiky:

- (a) Formalizujte tato tvrzení jako teorii T nad vhodnou množinou prvovýroků.
- (b) Najděte všechny modely teorie T.
- (c) Pokuste se využít k hledání modelů také tablo metodu.
- (d) Napište několik různých důsledků teorie T.
- (e) Najděte CNF teorii ekvivalentní teorii T.

Příklad 4. Mějme tři bratry, každý z nich buď vždy říká pravdu anebo vždy lže.

- (i) Nejstarší říká: "Oba mí bratři jsou lháři."
- (ii) Prostřední říká: "Nejmladší je lhář."
- (iii) Nejmladší říká: "Nejstarší je lhář."

Pomocí výrokové logiky ukažte, že nejmladší bratr je pravdomluvný.

Příklad 5. Mějme pevně dané Sudoku. Popište, jak vytvořit teorii (ve výrokové logice), jejíž modely jednoznačně odpovídají validním řešením.

Příklad 6. Formalizujte následující tvrzení ve výrokové logice:

- Borůvky podél cesty jsou zralé, ale králíčci v oblasti nebyli pozorováni.
- Králíčci v oblasti nebyli pozorováni a procházení po cestě je bezpečné, ale borůvky podél cesty jsou zralé.
- Pokud jsou borůvky podél cesty zralé, pak je procházení po cestě bezpečné pouze tehdy, pokud králíčci nebyli v oblasti pozorováni.
- Procházet se podél cesty není bezpečné, ale v oblasti nebyli pozorováni králíčci a borůvky podél cesty jsou zralé.
- Aby bylo procházení po cestě bezpečné, je nezbytné, ale nedostačující, aby borůvky podél cesty nebyly zralé a králíčci nebyli v oblasti pozorováni.
- Procházení po cestě není bezpečné, kdykoli jsou borůvky podél cesty jsou zralé a v oblasti byli pozorováni králíčci.

Příklad 7. Formalizujte následující vlastnosti matematických objektů ve výrokové logice:

- (a) Pro pevně daný (konečný) graf G, že je regulární stupně 3.
- (b) Pro pevně daný (konečný) graf G, že má perfektní párování.
- (c) Pro pevně danou částečně uspořádanou množinu, že je totálně (lineárně) uspořádaná.
- (d) Pro pevně danou částečně uspořádanou množinu, že má nejmenší prvek.

Příklad 8. Nakreslete strom výroku pro následující výroky:

- $(1) (p \rightarrow q) \leftrightarrow \neg (p \land \neg q)$
- $(2) (p \leftrightarrow q) \leftrightarrow ((p \lor q) \to (p \land q))$

Příklad 9. Najděte množinu modelů následujících výroků:

- (1) $(p \to q) \leftrightarrow \neg (p \land \neg q)$
- $(2) (p \leftrightarrow q) \leftrightarrow ((p \lor q) \to (p \land q))$

K zamyšlení

Příklad 10. Připomeňte si definici stromu výroku.

- (a) Dokažte podrobně, že každý výrok má jednoznačně určený strom.
- (b) Platilo by to, i kdybychom v definici výroku nahradili symboly pro levou a pravou závorku '(', ')' symbolem '|'?
- (c) Co by se stalo, pokud bychom závorky vůbec nepsali?

Příklad 11. Připomeňte si definici výroku. Jaké jsou možné délky výroků, tj. pro jaká $n \in \mathbb{N}$ existuje výrok délky právě n? (Uvažujte konečný jazyk, každý prvovýrok je jen jeden symbol. Výrok obsahuje všechny závorky dané definicí, konvence o vynechávání závorek se týká jen toho, jak výrok zapisujeme my.)