I)
$$(I)$$
 $x + 2y - z = 3$

$$(1)$$
 $2x + 3y - 3z = -1$

Gang (III) m/ 2 oy legg til (II):

$$x + 2y - 7 = 3$$

 $7y + 37 = 1$
 $-x + 2y + 37 = 1$

$$\begin{array}{c}
- \times + 2y + 3t = 1 \\
(I) \text{ og legg til (III):} \\
\times + 2y - 7 = 3 \\
7y + 3 = 1 \\
4y + 27 = 4
\end{array}$$
(II) \(\frac{3}{4} = \frac{7}{4} = \frac{1}{7}\)

$$-4(\underline{\mathbb{T}}) + (\underline{\mathbb{T}}): \times + 2y - z = 3$$

$$y + \frac{3}{7}z = \frac{1}{7}$$

$$z = 12$$

$$x + 2(-5) - 12 = 3$$

 $x = 25$

2) c)
$$\begin{bmatrix} 1 & 1 & -2 & 3 & 1 & 1 & -2 & 3 \\ 2 & 1 & 3 & 0 & 1 & 1 & -2 & 3 \\ -1 & 0 & -5 & 2 & 1 & 1 & -2 & 3 \\ 0 & 1 & -3 & 5 & 0 & 1 & -3 & 5 \\ 0 & 1 & -3 & 5 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & -2 & 3 & 0 & 1 & -3 & 5 \\ 0 & 1 & -3 & 5 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & -2 & 3 & 0 & 1 & -3 & 5 \\ 0 & 1 & -3 & 5 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & -2 & 3 & 0 & 1 & -3 & 5 \\ 0 & 1 & -3 & 5 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & -2 & 3 & 0 & 1 & -3 & 5 \\ 0 & 1 & -3 & 5 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & -2 & 3 & 0 & 1 & -2 & 3 \\ 0 & 1 & -3 & 5 & 0 & 0 & -1 & -3 & 5 \\ 0 & 0 & 0 & 1 & -3 & 5 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & -2 & 3 & 0 & 1 & -2 & 3 \\ 0 & 1 & -3 & 5 & 0 & 0 & -1 & -3 & 5 \\ 0 & 0 & 0 & 1 & -3 & 5 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & -2 & 3 & 0 & 1 & -2 & 3 \\ 0 & 1 & -3 & 5 & 0 & 0 & -1 & -3 & 5 \\ 0 & 0 & 0 & 1 & -3 & 5 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & -2 & 3 & 0 & 0 & -1 & -3 & 5 \\ 0 & 1 & -3 & 5 & 0 & 0 & -1 & -3 & 5 \\ 0 & 0 & 0 & 1 & -3 & 5 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & -2 & 3 & 0 & 0 & -1 & -3 & 5 \\ 0 & 1 & -3 & 5 & 0 & 0 & -1 & -3 & 5 \\ 0 & 0 & 0 & 1 & -3 & 5 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & -2 & 3 & 0 & 0 & -1 & -3 & 5 \\ 0 & 1 & -3 & 5 & 0 & 0 & -1 & -3 & 5 \\ 0 & 0 & 0 & 1 & -3 & 5 & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 1 & -2 & 3 & 0 & 0 & -1 & -3 & 5 \\ 0 & 1 & -3 & 5 & 0 & 0 & -1 & -3 & 5 \\ 0 & 0 & 0 & 1 & -3 & 5 & 0 \\ 0 & 0 & 0 & 1 & -3 & 5 & 0 \\ 0 & 0 & 0 & 1 & -3 & 5 & 0 \\ 0 & 0 & 0 & 1 & -3 & 5 & 0 \\ 0 & 0 & 0 & 1 & -3 & 5 & 0 \\ 0 & 0 & 0 & 1 & -3 & 5 & 0 \\ 0 & 0 & 0 & 1 & -3 & 5 & 0 \\ 0 & 0 & 0 & 0 & 1 & -3 & 5 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0$$

4.4:
$$A\vec{x} = \vec{b}$$

H) $\begin{bmatrix} 0 & 1 & 2 & 0 & 0 \\ 1 & 0 & -1 & 1 & 1 \\ 6 & 0 & -6 & 7 & h \\ 2 & 1 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & -1 & 1 & 1 \\ 6 & 0 & -6 & 7 & h \\ 2 & 1 & 0 & 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & -1 & 1 & 1 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & h - 6 \\ 0 & 1 & 2 & -2 & -2 \end{bmatrix}$
 $\begin{bmatrix} 1 & 0 & -1 & 1 & 1 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & h - 6 \\ 0 & 0 & 0 & 2 & h - 14 \end{bmatrix}$

A pa trappelorm $\begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Hris $h \neq 1$ (dw. $2h - 14 \neq 0$); Sisk ligning size $0 = \frac{hac sem}{shhe w}$; $\frac{1}{1} N GEN L p S N I N G S$

Hris $h = \frac{1}{7}$: oo mange looninger (soyle 3 er ikke private soyle), sa x_3 er en five ahabed).

 $x_4 = h - 6 = \frac{1}{7} - 6 = \frac{1}{7}$
 $x_2 = 0 - 2x_3 = -2x_3$
 $x_1 = 1 - x_4 + x_3 = 1 - 1 + x_3 = x_3$ by x_3 fiv.

Dan: $\begin{cases} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$

5)
$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & a^2 - a & 3 \\ -1 & 1 & -3 & a \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & a^2 - a - 2 & 1 \\ 0 & 0 & -a^2 + a & a \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & a^2 - a - 2 & 1 \\ 0 & 0 & -a & (a - 1) & a \end{bmatrix}$$

3 tilpeller: $a \notin \{0,1\}$: $(\sim \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & a^2 - a - 2 & 1 \\ 0 & 0 & 1 & -\frac{1}{a - 1} \end{bmatrix}$
 $a = 0$: $(\sim \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

this $a \notin \{0,1\}$: Entydig lowing (alle sopler, utenom siske ev pivot).

 $a = 1$: $(\sim \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
 $\frac{1}{4}$ this $a = 0$: ∞ mange lowing (Soyle 3 ev ikke pivot = D x₃ fn)

 $\frac{1}{4}$ this $a = 1$: Sisk ligning; $0 = 1 \Rightarrow 1$ NGEN (Lysning EE).