Datasets y visualización

Importar con readtable y readmatrix

```
%Readmatrix
area_mm=readmatrix("../../Clase Github/Utils4SP/Datasets/areaMM.txt","Delimiter"," ")

area_mm = 1×181
    340.4277    324.3750    308.9114    293.6813    277.8073    261.0772    245.9019    232.8705 ...

%readtable
PSD_bands=readtable("../../Clase Github/Utils4SP/Datasets/2021.10.04_IntensidadBobinas.xlsx")
```

 $PSD_bands = 630 \times 13 table$

	Dist_cm_	PSD_B1	PSD_B2	PSD_B3	PSD_B4	PSD_B5	PSD_B6	PSD_B7
1	0.5000	0.5480	0.0129	0.0052	0.0046	0.0205	1.1388	0.0107
2	0.5000	0.5042	0.0017	0.0022	0.0024	0.0057	0.5872	0.0015
3	0.5000	0.4539	0.0061	0.0016	0.0049	0.0121	0.5663	0.0060
4	0.5000	0.3205	0.0055	0.0052	0.0017	0.0082	0.6285	0.0053
5	0.5000	0.3859	0.0032	0.0026	0.0024	0.0066	0.5744	0.0035
6	0.5000	0.8591	0.0051	0.0020	0.0019	0.0073	0.6579	0.0061
7	0.5000	0.5021	0.0044	0.0020	0.0018	0.0075	0.5880	0.0027
8	0.5000	0.3402	0.0063	0.0067	0.0062	0.0097	0.5597	0.0118
9	0.5000	0.3661	0.0046	0.0020	0.0049	0.0085	0.5586	0.0043
10	0.5000	0.5464	0.0037	0.0016	0.0024	0.0075	0.5924	0.0011
11	0.5000	0.8342	0.0094	0.0025	0.0071	0.0063	0.9233	0.0042
12	0.5000	0.3870	0.0050	0.0017	0.0033	0.0124	1.1173	0.0029
13	0.5000	0.4425	0.0021	0.0005	0.0013	0.0038	0.6084	0.0020
14	0.5000	0.4923	0.0034	0.0009	0.0022	0.0069	0.5943	0.0012

Function custom de Import File

```
%Pasa sonda Cassini
Cassini=importfile_cassini("G:\Clase Github\Utils4SP\Datasets\05358_mrdcd_sdfgmc_krtp_1s.asc")
```

Importar audio

```
[y,fs]=audioread("G:\Clase Github\Utils4SP\Datasets\Owl.wav");
%Escuchar
sound(y,fs)
```

Datastore

```
%Le indicamos que una carpeta es un datastore
ds=datastore("../../Clase Github/Utils4SP/Datasets/AtmosferaLogger/");
ds.VariableNames=["Fecha" "Hora" "Pres_kpa" "Temp_C" "Hum_perc"];
ds.TextscanFormats=["%s" "%s" "%f" "%f" "%f"];
%Leer todas las entradas
atmosfera=readall(ds);
```

Reordenando

```
%Solo si importa fecha y hora en dos columnas
atmosfera.DateTime=string(atmosfera.Fecha)+" "+string(atmosfera.Hora);
%Pasar de texto a fecha-hora
atmosfera.DateTime=datetime(atmosfera.DateTime, "Format", "yyyyyMMdd HH:mm:ss");
%Parche por si la tabla ya se importó
%atmosfera.Properties.VariableNames=["Fecha" "Hora" "Pres_kpa" "Temp_C" "Hum_perc" "Bat_V"];
```

Limpieza

Tomaremos los datos entre el 18-May y el 26 de mayo a las 6am

```
%Puntos inicial y final en el tiempo
T1=datetime(2021,5,18,6,0,0)

T1 = datetime
    18-May-2021 06:00:00

T2=datetime(2021,5,26,6,0,0)

T2 = datetime
    26-May-2021 06:00:00

%Creando criterios de selección de datos
index= atmosfera.DateTime>T1 &...
    atmosfera.DateTime<T2;
atmosfera_part=atmosfera(index,:);</pre>
```

Limpieza de NaN's

```
sum(ismissing(atmosfera_part))
ans = 1×6
0 0 0 11 61 0

summary(atmosfera_part)

Variables:
    Fecha: 137522×1 cell array of character vectors
    Hora: 137522×1 cell array of character vectors
    Pres_kpa: 137522×1 double
```

Values:

Min 77.55 Median 78.06 Max 78.46

Temp_C: 137522×1 double

Values:

Min 13.38 Median 21.01 Max 100 NumMissing 11

Hum_perc: 137522×1 double

Values:

Min 15.27 Median 50.16 Max 99.97 NumMissing 61

DateTime: 137522×1 datetime

Values:

Min 20210518 06:00:03 Median 20210522 05:59:48 Max 20210526 05:59:55

%Remover filas con NaNs
atmosfera_noNaNs=rmmissing(atmosfera_part);
summary(atmosfera_noNaNs)

Variables:

Fecha: 137450×1 cell array of character vectors

Hora: 137450×1 cell array of character vectors

Pres_kpa: 137450×1 double

Values:

Min 77.55 Median 78.06 Max 78.46

Temp_C: 137450×1 double

Values:

Min 13.38 Median 21.01 Max 46.86

Hum_perc: 137450×1 double

Values:

Min 15.27

Median 50.155 Max 99.97

DateTime: 137450×1 datetime

Values:

Min 20210518 06:00:03 Median 20210522 05:57:17 Max 20210526 05:59:55

Ploteo exploratorio

figure
stackedplot(atmosfera_part,"XVariable","DateTime")

figure
stackedplot(atmosfera_noNaNs,"XVariable","DateTime")

figure
boxplot(atmosfera_part{:,["Pres_kpa" "Temp_C" "Hum_perc"]})

Histograma

figure
histogram(atmosfera_part.Hum_perc)

figure
histogram(atmosfera_part.Hum_perc,"BinWidth",1)

figure
histogram(atmosfera_part.Hum_perc,"BinWidth",10)

Dispersión

```
scatter(atmosfera_part.Pres_kpa,atmosfera_part.Temp_C)
xlabel("Presión [kPa]")
ylabel("Temperatura [ºC]")
```



```
scatter(atmosfera_part.Hum_perc,atmosfera_part.Temp_C)
xlabel("Humedad [%]")
ylabel("Temperatura [ºC]")
```


Plot Matrix

```
figure
plotmatrix(atmosfera_part{:,["Pres_kpa" "Temp_C" "Hum_perc"]})
```


Tiledlayout

```
tiledlayout(3,1)
nexttile
plot(atmosfera_part.DateTime,atmosfera_part.Pres_kpa)
ylabel("Presión [kPa] \sigma")
%xlabel("Fecha")
title("Parametros atmosféricos en su casa")
set(gca,"xtick",[])
nexttile
plot(atmosfera_part.DateTime,atmosfera_part.Temp_C)
ylabel("Temperatura [ºC] \sigma")
%xlabel("Fecha")
set(gca,"xtick",[])
nexttile
plot(atmosfera_part.DateTime,atmosfera_part.Hum_perc)
ylabel("Humedad [%] \sigma")
xlabel("Fecha")
```


Agrupación y orden

```
%Dar categorías a temperatura
%Fronteras de las categorías
edges=[-30 15 20 55];
%Categorías
categorias=["Frío" "Templado" "Caliente"];
%Clasifico las temperaturas con un categórico
temp_cats=discretize(atmosfera_noNaNs.Temp_C,edges,"categorical",categorias);
%Agrego la categorización a la tabla
atmosfera_noNaNs.temp_cats=temp_cats;
%Ordenamiento
temp_descend=sort(atmosfera_noNaNs.Temp_C, "descend");
temp_ascend=sort(atmosfera_noNaNs.Temp_C, "ascend");
figure
plot([temp_ascend temp_descend])
ylabel("Temperatura ºC")
xlabel("Número de muestra")
legend("Ascendente", "Descendente")
title("Ordenamiento de temperatura atmosférica")
```


G scatter

```
figure
gscatter(atmosfera_noNaNs.Pres_kpa,atmosfera_noNaNs.Temp_C,atmosfera_noNaNs.temp_cats)
xlabel("Presión [kPa]")
ylabel("Temperatura ºC")
```


figure
gscatter(atmosfera_noNaNs.Pres_kpa,atmosfera_noNaNs.Hum_perc,atmosfera_noNaNs.temp_cats)
xlabel("Presión [kPa]")
ylabel("Humedad [%]")

Pareto chart

%Hasta la siguiente clase
%figure
%pareto(atmosfera_noNANs.Hum_perc)