

ECE380 Digital Logic

Optimized Implementation of Logic Functions: Karnaugh Maps and Minimum Sum-of-Product Forms

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-1

Karnaugh map

- The key to finding a minimum cost SOP or POS form is applying the combining property (14a for SOP or 14b for POS)
- The Karnaugh map (K-map) provides a systematic (and graphical) way of performing this operation
- Minterms can be combined by 14a when they differ in only one variable

$$-f(x,y,z) = xyz+xyz' = xy(z+z') = xy(1) = xy$$

The K-map illustrates this combination graphically

Electrical & Computer Engineering

Karnaugh map

- The K-map is an alternative to a truth table for representing an expression
 - K-map consists of cells that correspond to rows of the truth table
 - Each cell corresponds to a minterm
- · A two variable truth table and the corresponding K-

<i>X</i> ₁	<i>X</i> ₂	f
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-3

Karnaugh map

Values for the first variable are listed across the top X_1 0 1

 m_2

 m_3

Values for the second variable

are listed down the left side

1

0

 m_0

 m_1

Electrical & Computer Engineering

Karnaugh map groupings

- Minterms in adjacent squares on the map can be combined since they differ in only one variable
- Indicated by looping the corresponding '1's on the map (the '1's must be adjacent)
- Looping two '1's together corresponds to eliminating a term and a variable from the output expression =>

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-5

K-map groupings example

Χ	У	f
0	0	0
0	1	1
1	0	1
1	1	1

 Note that the bottom two cells differ in only one variable (x) and the right two cells differ in only one variable (y)

Electrical & Computer Engineering

K-map groupings example

- Draw the K-map and give the minimized logic expression for the following truth table.
- Show the groupings made in the K-map

Χ	у	f
0	0	1
0	1	1
1	0	1
1	1	0

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-7

Three variable K-map

- A three-variable K-map is constructing by laying 2 two-variable maps side by side
- K-map are always laid out such that adjacent squares only differ by one variable (i.e. by 1 bit in the binary expression of the minterm values)

У	Z	Minterm
0	0	$m_0 = x'y'z'$
0	1	$m_1 = x'y'z$
1	0	$m_2 = x'yz'$
1	1	$m_3 = x'yz$
0	0	$m_4 = xy'z'$
0	1	$m_5 = xy'z$
1	0	m ₆ =xyz'
1	1	m ₇ =xyz
	0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

End cells are 'adjacent'

Electrical & Computer Engineering

Example three-variable K-maps

$$f(x,y,z) = \sum m(0,1,2,4)$$

$$= x'y' + x'z' + y'z'$$

$$1$$

$$1$$

$$2$$

$$0$$

$$1$$

$$1$$

$$0$$

$$1$$

$$1$$

$$0$$

$$0$$

$$0$$

$$f(x,y,z) = \sum m(0,1,2,3,4) = x' + y'z'$$
A grouping of four eliminates 2 variables

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-9

Guidelines for combining terms

- Can combine only adjacent '1's
- Can group only in powers of 2 (1,2,4,8, etc.)
- Try to form as large a grouping as possible
- Do not generate more groups than are necessary to "cover" all the '1's

Electrical & Computer Engineering

Example groupings

$$\begin{array}{c|ccccc}
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}$$

$$f = yz' + x$$

01

$$f=z'+y'$$

f = y + x'z'

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-11

10

1

K-map groupings example

- Draw the K-map and give the minimized logic expression for the following.
 - $f(a,b,c) = \Sigma m(1,2,3,4,5,6)$
- Show the groupings made in the K-map

Electrical & Computer Engineering

Four variable K-map

• A four-variable K-map is constructing by laying 2 three-variable maps together to create four rows - f(a,b,c,d)

cd al	6 00	01	11	10
00	m_0	m_4	m ₁₂	m ₈
01	m ₁	m_5	m ₁₃	m ₉
11	m ₃	m ₇	m ₁₅	m ₁₁
10	m ₂	m ₆	m ₁₄	m ₁₀

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-13

Four variable K-map

Adjacencies wrap around in the K-map

Electrical & Computer Engineering

Example four-variable K-maps

$$f(a,b,c,d) = \sum m(2,3,9-11,13)$$

$$= ac'd+b'c$$

$$f(a,b,c,d) = \sum m(3-7,9,11,12-15)$$

$$= b+cd+ad$$

$$cd$$

$$00 0 0 1 11 10$$

$$01 0 0 1 11$$

$$10 0 0 1 11 10$$

$$00 0 0 1 11 10$$

$$00 0 1 1 1 10$$

$$01 0 1 1 1 1$$

$$11 1 1 1 1 1$$

$$10 0 1 1 1 0$$

Electrical & Computer Engineering

Example groupings

$$f(a,b,c,d) = b' + d'$$

$$f(a,b,c,d) = b'd + bd'$$

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 7-16

Example groupings

$$f(a,b,c,d)=b'd'+bd$$

ab cd	00	01	11	10
00	1	1	1	0
01	1	0	0	1
11	1	0	0	1
10	1	1	1	0

$$f(a,b,c,d) = b'd + bd' + a'b'$$

Electrical & Computer Engineering