≡ Item Navigation

Newton's equation for the force between two masses

- (a) Given a Cartesian coordinate system with standard unit vectors \boldsymbol{i} , \boldsymbol{j} , and \boldsymbol{k} , let the mass m_1 be at position $\boldsymbol{r}_1 = x_1 \boldsymbol{i} + y_1 \boldsymbol{j} + z_1 \boldsymbol{k}$ and the mass m_2 be at position $\boldsymbol{r}_2 = x_2 \boldsymbol{i} + y_2 \boldsymbol{j} + z_2 \boldsymbol{k}$. In terms of the standard unit vectors, determine the unit vector that points from m_1 to m_2 .
- (b) Newton's law of universal gravitation states that two point masses attract each other along the line connecting them, with a force proportional to the product of their masses and inversely proportional to the square of the distance between them. The magnitude of the force acting on each mass is therefore

$$F = G \frac{m_1 m_2}{r^2},$$

where m_1 and m_2 are the two masses, r is the distance between them, and G is the gravitational constant. Let the masses m_1 and m_2 be located at the position vectors \mathbf{r}_1 and \mathbf{r}_2 . Write down the vector form for the force acting on m_1 due to its gravitational attraction to m_2 .

Go to next item

