STA452 Lecture Notes

Yuchen Wang

$March\ 8,\ 2021$

Contents

1	Pre	ace	2
	1.1	Preliminary	2
2	Vir	ıal Dice	3
	2.1	The Law of Large Numbers	3
	2.2	Some examples: "virtual dice"	4
		2.2.1 A higher level of virtuality: 'continuous dice' and random 'real' numbers	4
		2.2.2 Equality-in-distribution	5
	2.3	Nature makes them, so can you	5
		2.3.1 Exponential distribution	5
		2.3.2 Consider the generalization	6
	2.4	Expected Value	7
		2.4.1 Expected Value for an Arbitrary Finite Discrete Distribution	8
		2.4.2 Full generality: lebesgue-stieltjes	8
		2.4.3 Examples	8
		2.4.4 Expected Value for Continuous Functions	9
		2.4.5 Expected Value for C^1 functions	9
	2.5	Exponential Distribution	9
	2.6	Gamma Distribution	9
	2.7	Continuity Revisited	9
		2.7.1 Sequential Continuity of Probability	9
		2.7.2 Right Continuity of Cumulative Distribution Function	10
	2.8	Back to the Uniform	11
	2.9	Back to the Uniform II	12
		2.9.1 Percentiles	12
		2.9.2 Medians	14
3	Rec	iction to an Axiomatic System	14
	3.1	The Kolmogorov Axioms	14
		3.1.1 Reducing the Reduction	15
		3.1.2 Recovering the Expectation Operator	16

1 PREFACE 2

1 Preface

In our course, you will not see very much data. Our job is to express the ideas that drive the logic (or the logic that drives the ideas). As a consequence, the most of the examples in elementary book appear as pure theory. But they are not defined, they are consequences of abstract mathematical ideas. For example, conditional density is a consequence of conditional expectation, which is an orthogonal projection in a vector space, a pure euclidean geometric idea.

1.1 Preliminary

Definition 1.1. A sequence of sets $A_n \to A$ iff $I(A_n) \to I(A)$.

Remark 1.1. See Appendix 2 of the original notes.

Proposition 1.1. A limit exists when the limsup is equal to the liminf:

$$lim = \overline{lim} = \underline{lim} \tag{1.1}$$

Proof. For $w \in \Omega$,

$$\sup_{t \in T} I(A_t)(w) = I(\bigcup_{t \in T} A_t)(w)$$
$$= 1 \text{ or } 0$$
$$\inf_{t \in T} I(A_t)(w) = I(\cap_{t \in T} A_t)(w)$$

Therefore,

$$\lim_{n \to \infty} I(A_n) = \overline{\lim}_{n \to \infty} I(A_n)$$

$$= \inf_{n=1}^{\infty} \sup_{k=n}^{\infty} I(A_k)$$

$$= I\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k\right)$$

$$= \lim_{n \to \infty} I(A_n)$$

$$= \sup_{n=1}^{\infty} \inf_{k=n}^{\infty} I(A_k)$$

$$= I\left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k\right)$$

$$= I\left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k\right)$$

Property 1.1. Therefore it is clear that

1.

$$A_n \to A \iff A = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k \tag{1.2}$$

2.

$$A_n \uparrow \Longrightarrow A_n \uparrow \cup_{n=1}^{\infty} A_n \tag{1.3}$$

3.

$$A_n \downarrow \Longrightarrow A_n \downarrow \cap_{n=1}^{\infty} A_n \tag{1.4}$$

2 Virtual Dice

2.1 The Law of Large Numbers

Consider a mechanism/process/system, W, which generates outcomes, w, in a sample space Ω :

$$W: w_1, w_2, \ldots, w_n, \ldots$$

The outcomes are often referred to as *trials* of the *process* W. w_n is called the nth trial, and the finite sequence (w_1, w_2, \ldots, w_n) is the first n trials.

Consider any real-valued function $g: \Omega \to \mathbb{R}$ defined on the sample space Ω . Let X = g(W) denote the extended process that applies the function g to the outcome w from W to produce the outcome x = g(w). This new process has its own sequence of trial outcomes:

$$g(W): g(w_1), g(w_2), \dots, g(w_n), \dots$$

or $X: x_1, x_2, \dots, x_n, \dots$

These transformed outcomes are all real values, with which we can do lots of easy arithmetic, while the abstract sample space Ω may not have this property.

Definition 2.1 (sample mean). For each $n \in \mathbb{N}$, the *sample mean* over the first n trials is the *arithmetic average* of the function values over those n trials:

$$\widehat{E}_n X := \frac{g(w_1) + \ldots + g(w_n)}{n} = \bar{x}_n$$
(2.1)

Definition 2.2 (random variable). A given process W is said to be a random process / random variable iff it satisfies the *empirical law of large numbers*, in that, for any real-valued X = g(W), we have

- 1. stability: the sequence of sample averages $(\widehat{E}_n g(W), n \in \mathbb{N})$ converges;
- 2. invariance: the limit is independent of any particular realization $(w_n, n \in \mathbb{N})$.

Definition 2.3 (expected value). For each real-valued X = g(W), we obtain a *expected value* in the above limit:

$$EX := \lim_{n \to \infty} \widehat{E}_n g(W) = \lim_{n \to \infty} \widehat{x}_n \tag{2.2}$$

Definition 2.4 (indicator function). The indicator function of a subset A of a set X is a function $I_A: X \to \{0,1\}$ defined as

$$I_A(x) := \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases} \tag{2.3}$$

Definition 2.5 (probability). Now probability itself is a special case of an expected value: for any indicator function $g = I_A$ with $A \subset \Omega$ we will get the usual sequence of averages, but now to be referred to as empirical relative frequencies. These averages give the proportion of times that A occurs in the first n trials.

$$\widehat{P}_n(W \in A) := \widehat{E}_n I_A(W) = \frac{I_A(w_1) + \ldots + I_A(w_n)}{n} \, \forall n \in \mathbb{N}$$
(2.4)

As $n \to \infty$, the above equation gives the long-run frequency, or probability:

$$P_W(A) = P(W \in A) := \lim_{n \to \infty} \widehat{E}_n I_A(W) = \lim_{n \to \infty} \widehat{P}_n(W \in A)$$
 (2.5)

Notation 2.1. Given a random variable W and a probability distribution P_W , we can use the following notation:

$$W \sim P_W$$
 on Ω

to be read as "W is distributed as P_W on Ω " or "W is distributed as P_W ".

2.2 Some examples: "virtual dice"

Definition 2.6. For any specific $n \in \mathbb{N}$, the random variable X is said to have a *(finite discrete) uniform distribution* on the sample space $\Omega = \{1, \ldots, n\}$ (denoted $X \sim unif\{1, \ldots, n\}$) iff

$$P(X = k) = \frac{1}{n}, \quad , k = 1, \dots, n$$
 (2.6)

Example 2.1. A ten-sided die: $Y \sim unif\{0, ..., 9\}$ Let Y be a 2-stage procedure: Divide the ten digits $\Omega = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 0\}$ into two batches

$$A = \{1, 2, 3, 4, 5\}$$
 & $B = \{6, 7, 8, 9, 0\}$ (2.7)

and then toss a standard six-sided die twice. On the first toss, if the die shows 1, 2 or 3 then we go to A, if the die shows 4, 5 or 6 then we go to B. Thus each batch is selected half the time. On the second toss, ignoring the digit 6, and if the die shows k we take the kth digit in the batch and report the result. It should be clear then we will arrive at each of the ten digits with identical frequency $\frac{1}{10}$.

2.2.1 A higher level of virtuality: 'continuous dice' and random 'real' numbers

Let U denote the hypothetical possibility of generating an infinite decimal expansion of a number between 0 and 1, by performing the physical algorithm outlined in Example (2.1) an infinite number of times. So an outcome u for U entails an infinite number of repetitions Y_i , i = 1, 2, ... of the finite procedure Y:

$$U = \sum_{i=1}^{\infty} \frac{Y_i}{10^i} = 0.Y_1 Y_2 Y_3 \dots$$
 (2.8)

Example 2.2. If we generate U explicitly to four places $.y_1y_2y_3y_4$, then there are 10,000 equally likely possibilities, and our 'actual' U is known to be somewhere between $.y_1y_2y_3y_4$ and 0.0001 higher. In other words, the outcome is in one particular of 10,000 equally likely subintervals of [0,1]:

$$P(.y_1y_2y_3y_4 \le U \le .y_1y_2y_3y_4 + 0.0001) = 1/10,000 \quad \forall y_1, y_2, y_3, y_4 \in \Omega$$
 (2.9)

Thus we can deduce that

$$P(0 \le U \le .a_1 a_2 a_3 a_4) = a_1 a_2 a_3 a_4 / 10,000 = .a_1 a_2 a_3 a_4 \forall a_1, a_2, a_3, a_4 \in \Omega$$
(2.10)

More generally, if u is an n-place finite decimal in the interval [0,1] for any $n \in \mathbb{Z}$, then $P(U \le u) = u$, and for any pair of n-place finite decimals $a, b \in [0,1]$ with $a \le b$, we will have the uniformity condition

$$P(a \le U \le b) = b - a \tag{2.11}$$

Corollary 2.1. The probability of U obtaining any specific value u is zero.

$$P(U = u) = P(u \le U \le u) = u - u = 0 \tag{2.12}$$

Definition 2.7 (uniform distribution). The random variable U is said to have a *(continuous) uniform distribution* on the unit interval [0,1] (denoted $U \sim unif[0,1]$) iff

$$P(U < u) = u \quad \forall 0 < u < 1 \tag{2.13}$$

Remark 2.1. This is a mathematical statement, which is different from physical existence as in Definition (2.6).

Corollary 2.2. If $X \sim unif[a,b]$ and $U \sim unif[0,1]$, then

$$x = a + (b - a) \cdot u \tag{2.14}$$

Example 2.3. Let V = 1 - U, then

$$P(V \le u) = P(1 - U \le u) = P(U \ge 1 - u) \tag{2.15}$$

$$= 1 - P(U \le 1 - u) \tag{2.16}$$

$$= 1 - (1 - u) = u = P(U \le u) \tag{2.17}$$

As random variables, U and V behave exactly the same way. They have the same *stochastic behavior*. Accordingly, they are said to be *equal-in-distribution*: $V \stackrel{d}{=} U$.

2.2.2 Equality-in-distribution

Definition 2.8 (equality-in-distribution). Two random variables W_1, W_2 on the same sample space Ω are said to be *identically distributed / stochastically identical* (denoted $W_1 \stackrel{d}{=} W_2$) iff

$$Eg(W_1) = Eg(W_2) \quad \forall g : \Omega \to \mathbb{R}$$
 (2.18)

iff

$$P(W_1 \in A) = P(W_2 \in A) \quad \forall A \subset \Omega \tag{2.19}$$

Proposition 2.1 (invariance 1). For any function $\phi: \Omega \to \chi$

$$W_1 \stackrel{d}{=} W_2 \implies \phi(W_1) \stackrel{d}{=} \phi(W_2) \tag{2.20}$$

Proof.

$$Eh(\phi(W_1)) = Eh(\phi(W_2)) \quad \forall h : \chi \to \mathbb{R}$$

Proposition 2.2 (invariance 2).

$$W_1 \stackrel{d}{=} W_2 \iff g(W_1) \stackrel{d}{=} g(W_2) \quad \forall g : \Omega \to \mathbb{R}$$
 (2.21)

2.3 Nature makes them, so can you

2.3.1 Exponential distribution

Let $Z = -\ln U$ with $U \sim unif[0,1]$. Then it is straightforward to compute that, for any non-negative $0 \le s \le t \le \infty$:

$$P(s \le Z \le t) = e^{-s} - e^{-t} \tag{2.22}$$

Proof.

$$s \le Z \le t \iff s \le -\ln U \le t$$

$$\iff -t \le \ln U \le -s$$

$$\iff e^{-t} \le U \le e^{-s}$$

Therefore

$$P(s \le Z \le t) = P(e^{-t} \le U \le e^{-s})$$

= $e^{-s} - e^{-t}$

Definition 2.9 (standard exponential distribution). The random variable Z is said to have a *standard exponential distribution* on $[0, \infty)$ (denoted $Z \sim \exp(1)$) iff

$$P(Z \le z) = 1 - e^{-z} \quad \forall z \ge 0$$
 (2.23)

Definition 2.10 (scaled exponential distribution). The random variable X is said to have a scaled exponential distribution, with scale parameter $\theta > 0$ on $[0, \infty)$ (denoted $X \sim \exp(\theta)$) iff

$$X \stackrel{d}{=} \theta Z$$
, where $Z \sim \exp(1)$ (2.24)

2.3.2 Consider the generalization

Consider any strictly monotone and C^1 function, g on the interval [0,1], and let $X \stackrel{d}{=} g(U)$, where $U \sim unif[0,1]$. Then

$$P(s < X \le t) = \begin{cases} g^{-1}(t) - g^{-1}(s), & g \uparrow \uparrow \\ g^{-1}(s) - g^{-1}(t), & g \downarrow \downarrow \end{cases}$$
 (2.25)

Corollary 2.3. Suppose $F : \mathbb{R} \to [0,1] \ x \mapsto P(X \le x)$. Then F is certainly non-decreasing, and for any $s \le t$,

$$P(s < X \le t) = F(t) - F(s) \tag{2.26}$$

Definition 2.11 (distribution function). For any real-valued random variable, X, the distribution function of X is given by

$$F(x) \stackrel{or}{=} F_X(x) := P(X \le x) \quad \forall x \in \mathbb{R}$$
 (2.27)

Remark 2.2. Let f(x) = F'(x), then we immediately have

$$P(s < X \le t) = F(t) - F(s) = \int_{s}^{t} f(x)dx \quad \forall s, t$$
 (2.28)

At each $x \in g[0,1]$,

$$\lim_{s \uparrow x, t \downarrow x} \frac{P(s < X \le t)}{t - s} = \lim_{s \uparrow x, t \downarrow x} \frac{F(t) - F(s)}{t - s} = f(x)$$
(2.29)

Remark 2.3. f(x) can be interpreted as "amount of probability per unit length at the point x".

Definition 2.12 (probability density function). A real-valued random variable X is said to be *absolutely continuous* (wrt length measure) iff

$$\exists f : \mathbb{R} \to [0, \infty), P(s < X \le t) = \int_{s}^{t} f(x) \, dx \quad \forall s \le t$$
 (2.30)

in which case, the function f (not necessarily unique) is referred to as the *probability density function* of X.

Remark 2.4. For any abs. cont. X,

$$P(X=x) = \int_{x}^{x} f(x) dx = 0 \quad \forall x$$
 (2.31)

so there is no discrete contribution to the distribution at any $x \in \mathbb{R}$. Thus,

$$P(s \le X \le t) = P(s < X < t) = P(s < X \le t) = P(s \le X < t)$$

Proposition 2.3. $F : [a, b] \to [0, 1] \text{ is } C^1, \text{ iff}$

$$F(x) = \int_a^x f(s) ds$$
 with $f = F' > 0$ cont. on $[a, b]$

Proposition 2.4. If $g = F^{-1}$ and $g \in C^1$, then $F(X) \stackrel{d}{=} U$

Proof.

$$P(F(X) \le u) = P(X \le g(u))$$

$$= P(X \le g(u))$$

$$= F(g(u))$$

$$= u$$

$$= P(U \le u)$$

Definition 2.13 (quantile). For any $0 \le p \le 1$, the value $x_p = g(p) = F^{-1}(p)$ is called the $100 \times p$ th quantile (or percentile) of X. The function g is called the quantile function.

$$P(X \le x_p) = p \tag{2.32}$$

2.4 Expected Value

Property 2.1 (finite additivity of probability). If two sets A and B are mutually disjoint, then

$$I(A+B) = I(A) + I(B)$$
 (2.33)

Therefore

$$P(A+B) = EI(A+B)(W) = E(I(A)(W) + I(B)(W))$$
(2.34)

$$= EI(A)(W) + EI(B)(W)$$

$$(2.35)$$

$$= P(A) + P(B) \tag{2.36}$$

We can prove by induction that

$$P\left(\sum_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i})$$
(2.37)

Property 2.2 (E is normed on constant random variables). E is normed on g(W) = c where $c \in \mathbb{R}$

$$Ec = c \quad \forall c \in \mathbb{R}$$
 (2.38)

Property 2.3. The indicator function of the whole sample space Ω is 1

$$I_{\Omega}(W) = 1 \implies P(\Omega) = E1 = 1$$
 (2.39)

Property 2.4 (non-negativity of probability).

$$0 \le I(A) \le 1 \implies 0 \le P(A) = EI(A) \le 1 \tag{2.40}$$

2.4.1 Expected Value for an Arbitrary Finite Discrete Distribution

Definition 2.14 (finite scheme). For any finite discrete distribution, we can write a *finite scheme*

$$W \sim \begin{pmatrix} w_1 & \dots & w_N \\ p_1 & \dots & p_N \end{pmatrix} \tag{2.41}$$

to symbolize the probability mass function

$$P(W = w_i) = p_i, i \in \{1, 2, \dots, N\}$$

where $\sum_{i=1}^{N} p_i = 1$.

Corollary 2.4. For any real-valued function $g(W), W \in \Omega$, the expected value is

$$Eg(W) = \sum_{i=1}^{N} g(w_i) P(W = w_i) = \sum_{i=1}^{N} g(w_i) p_i$$
(2.42)

Proof. q(W) can be explicitly represented as a finite linear combination of simple indicator functions

$$g(W) = \sum_{i=1}^{N} g(w_i)I(W = w_i)$$

So that applying E to both sides gives us the result.

2.4.2 Full generality: lebesgue-stieltjes

Suppose we are given a distribution function $F(x) = P(X \le x), x \in \mathbb{R}$, for a real-valued random variable X = g(W), with $W \sim P$ on sample space Ω . Then consider some discrete approximation to X, for example,

$$X_n = \sum_{i=-n}^n \frac{i-1}{\sqrt{n}} I\left(\frac{i-1}{\sqrt{n}} < X < \frac{i}{\sqrt{n}}\right)$$

$$\tag{2.43}$$

For this particular approximation,

$$|X - X_n| \le \frac{1}{\sqrt{n}} + |X|I(|X| > \sqrt{n})$$

Thus $X_n \to X$ as $n \to \infty$. Then any continuous real-valued function $h(X_n) \to h(X)$ as $n \to \infty$. If h(X) is bounded, then

$$Eh(X) = \lim_{n \to \infty} \sum_{i=-n}^{n} h(\frac{i-1}{\sqrt{n}}) \left(F(\frac{i}{\sqrt{n}}) - F(\frac{i-1}{\sqrt{n}}) \right)$$

$$(2.44)$$

which is called the *lebesque-stieltjes integral* of the function h(x). It may be denoted

$$Eh(X) := \int_{-\infty}^{\infty} h(x) dF(x)$$
 (2.45)

2.4.3 Examples

Definition 2.15 (bernoulli trial). The random variable Z is said to be a bernoulli trial (denoted $Z \sim bern(p), 0 \le p \le 1$) iff

$$Z \sim \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}$$

2.4.4 Expected Value for Continuous Functions

2.4.5 Expected Value for C^1 functions

Consider the special case where function g is strictly monotone and C^1 .

Proposition 2.5. If $X = g(U), g : [0,1] \to [a,b]$ is strictly monotone and C^1 , then for any continuous function $h : \mathbb{R} \to \mathbb{R}$,

$$Eh(X) = \int_{a}^{b} h(x)f(x) dx \qquad (2.46)$$

where

$$F = \begin{cases} g^{-1} & , g \uparrow \uparrow \\ 1 - g^{-1} & , g \downarrow \downarrow \end{cases} \quad \text{and} \quad f(x) = F'(x)$$

Proof. For any $0 \le t < 1$, when $g \uparrow \uparrow$ and C^1 , we have

$$\int_0^t h(g(u)) du = ???$$

complete it

2.5 Exponential Distribution

notes

2.6 Gamma Distribution

notes

2.7 Continuity Revisited

2.7.1 Sequential Continuity of Probability

Definition 2.16 (σ -additivity). P is said to be σ -additive / countably additive iff for any mutually disjoint sequence of events A_n ($n \in \mathbb{N}$)

$$P(\sum_{1}^{\infty} A_n) = \sum_{1}^{\infty} P(A_n) \tag{2.47}$$

Remark 2.5. Equation (2.47) is equivalent to the following pair of equations:

finite-additivity:
$$P(\sum_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_n)$$
 (2.48)

continuity:
$$A_n \to A \implies P(A_n) \to P(A)$$
 (2.49)

Proposition 2.6. If $A_n \uparrow A$ or $A_n \downarrow A$, then

$$P(A_n) \to P(A)$$

Proof. if If $A_n \uparrow A$ then we have that

$$A = \bigcup_{n=1}^{\infty} A_n = \sum_{n=1}^{\infty} (A_n - A_{n-1})$$

where, for convenience, we have $A_0 = \emptyset$. Then

$$P(A) = \sum_{n=1}^{\infty} (P(A_n) - P(A_{n-1}))x$$
$$= \lim_{n \to \infty} \sum_{i=1}^{\infty} (P(A_i) - P(A_{i-1}))$$
$$= \lim_{n \to \infty} P(A_n)$$

On the other hand, $A_n \downarrow A$ is equivalent to $A_n^c \uparrow A^c$.

Corollary 2.5 (sequential continuity).

$$A_n \to A \implies P(A_n) \to P(A)$$
 (2.50)

Proof. Suppose $A_n \to A$, then

$$\bigcup_{n=1}^{\infty} \cap_{k \ge n} A_k = A = \bigcap_{n=1}^{\infty} \cup_{k \ge n} A_k
\cap_{k \ge n} A_k \le A_n, A \le \cup_{k \ge n} A_k
P(\cap_{k \ge n} A_k) \le P(A_n), P(A) \le P(\cup_{k \ge n} A_k)
|P(A_n) - P(A)| \le P(\cup_{k \ge n} A_k) - P(\cap_{k \ge n} A_k)
\rightarrow P(A) - P(A)
= 0$$

Therefore,

$$|P(A_n) - P(A)| \to 0$$

 $P(A_n) \to P(A)$

2.7.2 Right Continuity of Cumulative Distribution Function

For any $x_n \downarrow x$, simply let $A_n = (-\infty, x_n]$ and $A = (-\infty, x]$. Then $A_n \downarrow A$, so

$$F(x_n) = P(X \in A_n) \downarrow P(X \in A) = F(x)$$

Denoting the right-limit of F at x by $F(x+) := \lim_{y \downarrow x} F(y)$, and the left-limit $F(x-) := \lim_{y \uparrow x} F(y)$, we get the property of right-continuity for CDF

$$F(x+) = F(x) \quad \forall x \in \mathbb{R} \tag{2.51}$$

Remark 2.6. Any distribution function F(x) can actually be discontinuous at no more than a countable number of points, which corresponds to all the jumps on the discrete part of the distribution.

Definition 2.17 (probability mass function). For any real-valued random variable X, the *probability* mass function of X is given by

$$p(x) = p_X(x) = P(X = x) \quad \forall x \in \mathbb{R}$$

Proposition 2.7. Probability mass function

$$p(x) = F(x) - F(x-) \quad \forall x \in \mathbb{R}$$
 (2.52)

Proof. For any $x_n \uparrow x$, simply let $A_n = (-\infty, x_n]$ and $A = (-\infty, x)$. Then $A_n \uparrow A$, so

$$F(x-) := \lim_{n \to \infty} P(X \in A_n) = P(X \in A) = P(X < x)$$

Therefore

$$p(x) = P(X \le x) - P(X < x) = F(x) - F(x-)$$

Remark 2.7. The points of continuity C_F of any distribution function correspond perfectly to the points where pmf is zero.

$$C_F = \{x \in \mathbb{R} | F(x-) = F(x+) \}$$

= \{x \in \mathbb{R} | F(x-) = F(x) \}
= \{x \in \mathbb{R} | p(x) = 0 \} = p^{-1}(0)

The complementary region being the discrete part of the distribution

$$D_F = \{x \in \mathbb{R} | p(x) > 0\} = p^{-1}(0)^c$$

Proposition 2.8. D_F is at most countable.

$$\#D_F \leq \#\mathbb{N}$$

Proof. Note that

$$\{x \in \mathbb{R} | p(x) > 0\} = \bigcup_{n=1}^{\infty} \{x \in \mathbb{R} | p(x) > 1/n\}$$

It is clear that for every $n \in \mathbb{N}$, $\{x \in \mathbb{R} | p(x) > 1/n\}$ has less than n point in it. Otherwise

$$\exists A_n = \{a_1, \dots, a_n\} \subset \{x \in \mathbb{R} | p(x) > 1/n\} \text{ with } P(A_n) > 1$$

which is a contradiction.

Since a countable union of countable sets is still countable, we have D_F is at most countable.

2.8 Back to the Uniform

Definition 2.18 (p-adic series). For any $p \in \mathbb{N}$ with $p \geq 2$, any real number $U \in [0,1)$ can be written as a base p expansion in the form

$$U = \sum_{i=1}^{\infty} Z_i p^{-1}$$

where $Z_i \in \{0, 1, 2, \dots, p-1\}.$

Notation 2.2. Let \dot{p}^{∞} denote the collection of all the infinite p-sequences which do not end in p-1 repeated forever.

Lemma 2.1 (p-adic coding of the unit interval). $u = \sum_{i=1}^{\infty} z_i p^{-i}$ defines a correspondence $\Phi : \dot{p}^{\infty} \mapsto [0,1)$.

Lemma 2.2 (p-adic partitioning). If $u = \sum_{i=1}^{\infty} z_i p^{-i}$ with $\mathbf{z} \in \dot{p}^{\infty}$ then

$$z_1 = b_1, \dots, z_n = b_n \iff \sum_{i=1}^n z_i p^{-i} \le u < \sum_{i=1}^n z_i p^{-i} + p^{-n}$$

Theorem 2.1 (digital coding of the uniform). For $U = \sum_{i=1}^{\infty} z_i p^{-i}$ with $p \ge 2$ and $\mathbf{Z} \in p^{\infty}$,

$$U \sim unif[0,1] \iff Z_i \stackrel{i.i.d.}{\sim} unif\{0,\ldots,p-1\}$$

Proof. Omitted here because it is very long and nuanced.

Remark 2.8. It is regarded as the Fundamental Theorem of Applied Probability.

2.9 Back to the Uniform II

2.9.1 Percentiles

For any given $X \sim F$ and any 0

Definition 2.19 (percentile/quantile). A p-th percentile/quantile of X is any value, $\theta = \theta_p$, such that $F(\theta -) \leq p \leq F(\theta)$

Remark 2.9. Not necessarily unique, could be a closed interval on the real line.

Definition 2.20 (lower and upper quantile functions). We define the *lower quantile function* of the distribution function, F, to be the real-valued function $g:(0,1)\to\mathbb{R}$ with

$$g(u) = \inf F^{-1}[u, 1] \tag{2.53}$$

and the upper quantile function to be $h:(0,1)\to\mathbb{R}$ with

$$h(u) = \sup F^{-1}[0, u] \tag{2.54}$$

Remark 2.10. Both of these functions are non-decreasing. But even when F(x) is strictly increasing, either of g(u) or h(u) may actually be constant over various intervals.

Proposition 2.9. For every 0 < u < 1 and $x \in \mathbb{R}$ we have both

$$u \le F(g(u))$$
 and $g(F(x)) \le x$ (2.55)

Proof. (1) By the definition of infimum, we may choose $x_n \downarrow g(u)$ with $F(x_n) \geq u \, \forall n$. Since F is right-continuous, then $F(x_n) \downarrow F(g(u))$. So $\lim F(x_n) = F(g(u)) \geq u$. (2)

$$x \in F^{-1}(F(x)) \subset F^{-1}[F(x), 1]$$

Since $g(F(x)) = \inf F^{-1}[F(x), 1]$, then $g(F(x)) \le x$.

Proposition 2.10. For every 0 < u < 1 and $x \in \mathbb{R}$ we have both

$$u \le F(h(u))$$
 and $x \le h(F(x))$ (2.56)

Proof. (1) (2)

$$x \in F^{-1}(F(x)) \subset F^{-1}[0, F(x)]$$

Since $h(F(x)) = \sup F^{-1}[0, F(x)]$, then $x \le h(F(x))$.

Corollary 2.6.

$$q(u) < x \iff u < F(x) \tag{2.57}$$

Proof.

$$g(u) \leq x \ \stackrel{F}{\Longrightarrow} \ u \leq F(g(u)) \leq F(x) \ \stackrel{g}{\Longrightarrow} \ g(u) \leq gF(x) \leq x$$

Corollary 2.7.

$$F(g(p)-) \le p \le F(g(p)) \tag{2.58}$$

Proof. From $g(u) \le x \iff u \le F(x)$, we can conclude $x < g(u) \iff F(x) < u$. Then $F(x) , so <math>F(g(p)-) \le p$.

Remark 2.11. Indeed, the set of all pth percentiles is the simple compact interval [g(p), h(p)].

Corollary 2.8. $F(x-) \leq pF(x) \iff g(p) \leq x \leq h(p)$

prove

???

Corollary 2.9.

$$FgF = F$$
 and $gFg = g$

Proof. Since $u \leq Fg(u)$, then $F(x) \leq F(g(F(x)))$.

Since $g(F(x)) \le x$ and F is non-decreasing, then $F(g(F(x))) \le F(x)$

Therefore, $F(x) \leq F(g(F(x))) \leq F(x) \implies FgF = F$.

Similarly, Since $u \leq F(g(u))$ and g is non-decreasing, then $g(u) \leq g(F(g(u)))$.

Since $g(F(x)) \le x$, then $g(F(g(u))) \le g(u)$.

Therefore, $g(u) \leq g(F(g(u))) \leq g(u) \implies gFg = g$.

Corollary 2.10. g(u) is left-continuous.

$$u_n \uparrow u \implies g(u_n) \uparrow g(u) \tag{2.59}$$

Proof. $u_n \uparrow u \implies g(u_n) \uparrow c \leq g(u)$ for some upper limit c.

But $g(u_n) \leq c \quad \forall n$. Then $u_n \leq Fg(u_n) \leq F(c) \quad \forall n$

Then $u \leq F(c)$, then $g(u) \leq g(F(c)) \leq c$. Therefore $c \leq g(u) \leq c \implies g(u) = c$, then $g(u_n) \uparrow g(u)$.

Corollary 2.11. F is continuous iff $u = Fg(u) \quad \forall u$.

Proof. (\Rightarrow) Obvious, since $F(g(u)) = F(g(u)) \le u \le F(g(u)) \implies u = Fg(u)$

 (\Leftarrow) If u = Fg(u) for every 0 < u < 1, then we only need to show that F is left-continuous.

 $x_n \uparrow x \implies F(x_n) \uparrow p = Fg(p) \le F(x)$ for some p.

So if g(p) = x, we are done.

If g(p) < x, then $g(p) < x_n$ for n sufficient large.

So $p = Fg(p) \le F(x_n) \le p$ for n sufficient large, so $F(x_n) = p$ and _____

Proposition 2.11 (the quantile transform).

$$U \sim unif[0,1] \implies g(U) \stackrel{d}{=} X$$
 (2.60)

Proof. We know from Corollary (2.6) that $g(U) \leq x \iff U \leq F(x)$. Therefore,

$$P(g(U) \le x) = P(U \le F(x))$$

= $F(x)$ (by the property of uniform distribution)
= $P(X \le x)$

Corollary 2.12.

$$gF(X) \stackrel{d}{=} X \tag{2.61}$$

Proof. $gF(X) \stackrel{d}{=} gFg(U) \stackrel{d}{=} g(U) \stackrel{d}{=} X$.

Corollary 2.13.

$$P(F(X) \le F(x)) = P(X \le x) \quad \forall x \in \mathbb{R}$$
 (2.62)

Proof. Let $x \in \mathbb{R}$

$$F(X) \le F(x) \implies gF(X) \le \underbrace{g(F(x))}_{X} \le x \implies F(X) \le F(x)$$

Therefore, $F(X) \leq F(x)$ iff $X \leq x$

Then $P(F(X) \le F(x)) = P(X \le x)$.

prove

Proposition 2.12 (probability integral transform). F is continuous iff $F(X) \stackrel{d}{=} U$

Proof. (\Rightarrow): Assume F is continuous. From Proposition (2.11), we know $g(U) \stackrel{d}{=} X$, so $F(X) \stackrel{d}{=} Fg(U)$. But since F is continuous, Fg(U) = U. Therefore, $F(X) \stackrel{d}{=} U$. (\Leftarrow): Assume $F(X) \stackrel{d}{=} U$. X = x implies F(X) = F(x). This means F(X) = F(x) may have a higher probability than X = x. Therefore,

$$P(X = x) \le P(F(X) = F(x)) = P(U = F(x)) = 0$$

Hence P(X = x) = 0 for all $x \in \mathbb{R}$ so F is continuous.

Proposition 2.13. Both g and F are continuous iff $g = h = F^{-1}$ on (0,1).

Proof. (\Rightarrow): Assume g and F are continuous.

Then from Corollary 2.11, u = Fg(u). Also we can easily conclude that g is onto.

Property 2.5. Given any $f: \mathbb{R} \to (0, \infty) \in C$ s.t. $\int_{-\infty}^{\infty} f(x) dx = 1$, the function defined by $F(x) = \int_{-\infty}^{x} f(s) ds, x \in \mathbb{R} := \mathbb{R} \cup \{\pm \infty\} = [-\infty, \infty]$ determines a homeomorphism $F: \mathbb{R} \stackrel{\cong}{\to} [0, 1]$ with quantile function $g = h = F^{-1}$.

2.9.2 Medians

Definition 2.21. A median for a random variable X is any $\theta = \theta_{1/2}$ s.t. $F(\theta -) \leq \frac{1}{2} \leq F(\theta)$ (denoted $\theta = median(X)$).

Remark 2.12. A median is simply a 50th percentile.

Proposition 2.14. Assuming $E|X| < \infty$ (the mean of X exists):

$$\theta = median(X) \iff E|X - \theta| = \inf_{t \in \mathbb{R}} E|X - t|$$
 (2.63)

Remark 2.13. A median of a r.v. X is the closest constant to X in L_1 metric, a specific way of measuring the distance between two random objects:

$$d_1(x,y) = E|x-y|$$

Proposition 2.15. Assuming $E|X| < \infty$ (the mean of X exists):

$$\mu = EX \iff \sqrt{E(X-\mu)^2} = \inf_{t \in \mathbb{R}} \sqrt{E(X-t)^2}$$
 (2.64)

Remark 2.14. A mean of a r.v. X is the closest constant to X in L_2 metric:

$$d_2(x,y) = \sqrt{E(x-y)^2}$$

3 Reduction to an Axiomatic System

3.1 The Kolmogorov Axioms

Definition 3.1 (probability space). A probability space (distribution) is a triple of objects (Ω, L, E)

- 1. Ω : any set, called the *sample space*
- 2. L: any vector space of real-valued functions on Ω that contains the constants, and is closed under taking absolute values $(X \in L \implies |X| \in L)$, the elements of which are referred to as random variables

3. $E: L \to \mathbb{R}$, any functional that is

• normed: Ec = c

• non-negative: $X \ge 0 \implies EX \ge 0$

• linear: $E \sum_{1}^{n} a_i X_i = \sum_{1}^{n} a_i E X_i$

• continuous: $0 \le X_n \uparrow X \implies 0 \le EX_n \uparrow EX$

referred to as an expectation operator, while its value EX at any $X \in L$ is called the expected value of that X.

Property 3.1 (continuity). A useful variant of E's continuous property is stated as:

If $Z_n \ge 0, n = 1, 2, ...$, then

$$E\sum_{i=1}^{\infty} Z_n = \sum_{i=1}^{\infty} EZ_n \tag{3.1}$$

3.1.1 Reducing the Reduction

As understood, probability is a very special case of expected values. Thus we can reduce the definition of a probability space as follows

Definition 3.2 (probability space). A probability space (distribution) is a triple of objects (Ω, \mathcal{F}, P)

- 1. Ω : any set, called the sample space
- 2. \mathcal{F} : any σ -algebra of subsets of Ω , which is a non-empty collection closed under countable unions and complements. The elements of \mathcal{F} are referred to as *events*
- 3. $E: \mathcal{F} \to \mathbb{R}$, any functional that is

• normed: Ec = c

• non-negative: $X \ge 0 \implies EX \ge 0$

• σ -additive: $P(\sum_{1}^{\infty} A_i) = \sum_{1}^{\infty} P(A_i)$

referred to as probability measure, while its value P(A) at any $A \in \mathcal{F}$, is called the probability of that A.

Remark 3.1. σ -algebra is identical to σ -field.

Proposition 3.1 (nullity).

$$P(\emptyset) = 0$$

Proof. First we show that $\Omega \in \mathcal{F}$.

If $F \neq \emptyset$, then $\exists A \in \mathcal{F}$ s.t. $A^c \in \mathcal{F}$.

So let $A_1 = A, A_n = A^c \ \forall n \geq 2$.

Then

$$\bigcup_{1}^{\infty} A_{n} = A \cup A^{c} \cup A^{c} \cup \dots
= A \cup A^{c}
= \Omega \in \mathcal{F}$$

Define the sequence of mutually disjoint events

$$A_1 = \Omega$$
 & $A_n = \emptyset$, $n > 2$

Then we have $\Omega = \sum_{n=1}^{\infty} A_n$ and thus

$$1 = 1 + \lim_{n \to \infty} nP(\emptyset)$$

which forces the result.

Proposition 3.2 (finite-additivity).

$$P(A+B) = P(A) + P(B)$$

Corollary 3.1 (complementarity).

$$P(A^c) = 1 - P(A)$$

Corollary 3.2 (negative additivity).

$$P(A - B) = P(A) - P(A \cap B)$$

Proof. Since $A = AB + AB^c = AB + (A - B)$, then P(A) = P(AB) + P(A - B), hence the result.

Corollary 3.3 (monotonicity).

$$A \subset B \implies P(A) \leq P(B)$$

Proof. Since $B = (B - A) \cup A$, then $P(B) - P(A) = P(B - A) \ge 0$, hence the result.

Proposition 3.3. Assuming normed, non-negative and σ -additive. If $A_n \uparrow A$ or $A_n \downarrow A$, then

$$P(A_n) \to P(A)$$

3.1.2 Recovering the Expectation Operator

The space of bernoulli trials (indicator functions) is

$$\mathcal{J} = \{I_A | A \in \mathcal{F}\}$$

On this collection, we have to define the expectation operator to be $E: \mathcal{J} \to \mathbb{R}$

$$E(I_A) = P(A) \quad \forall A \in \mathcal{F}$$

Starting from \mathcal{J} , we can create a vector space that contains finite linear combinations of indicator functions. They are all the finite discrete random variables

$$S = \left\{ S | S = \sum_{i=1}^{m} a_i I(A_i), a_i \in \mathbb{R}, A_i \in \mathcal{F}, i = 1, \dots, m, m \in \mathbb{N} \right\}$$

In this case, E is required to be linear, so we define it as $E: \mathcal{S} \to \mathbb{R}$

$$E(S) = \sum_{i=1}^{m} a_i P(A_i) \quad \forall S = \sum_{i=1}^{m} a_i I(A_i)$$