CS & IT

ENGINEERING

Combinational circuit

Lecture No. 8

By- CHANDAN SIR

TOPICS TO BE COVERED 01 HW Discussion

02 PRACTICE

04 DISCUSSION

MCQ

Consider the two cascaded 2 to 1 multiplexers as shown in the figure.

The minimal sum of products form of the output X is

[GATE-2016-CS: M]

$$\bar{P}\bar{Q} + PQR$$

$$\bar{P}Q+QR$$

$$\bullet$$
 PQ+ $\bar{P}\bar{Q}$ R

$$\bar{Q}\bar{R}$$
 +PQR

MCQ

Consider the 4-to-1 multiplexer with two select lines S₁ and S₀ given below.

The minimal sum-of-products form of the Boolean expression for the output F of the multiplexer is

GATE-2014-CS:2M

$$\overline{P}Q + \overline{P}Q\overline{R} + PQ\overline{R} + P\overline{Q}R$$

$$\overline{P}QR + \overline{P}Q\overline{R} + Q\overline{R} + P\overline{Q}R$$

A full adder is implemented with two half adders and one OR gate. OR gate is used to derive the final carry function of full adder. In each half adder, $T_{sum} = 25$ ns and $T_{carry} = 20$ ns and $T_{OR} = 25$ ns. The minimum time required to derive both the sum and carry function of a full adder after applying the inputs is ____ ns

A logic function 'f' is implemented by the circuit shown in the figure below. The circuit consists of one 2×4 decoder, two 2×1 multiplexers and a two input or gate connected in cascade. Then the function f is equal to.

 $B \rightarrow A \oplus B \oplus C$

C B ⊙ C

D A ⊙ B

$$f = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{Zm}(0,3,4,7)$$

Q.4

The combinational circuit given below implements which of the following

The combinational logic circuit shown in the given figure has an output Q which is

10

A+B+C

$$f(A_1B_1,C_1D) = \sum m(0,1,4,5,6,9,10,11,12)$$

Questions Practice

Pw

BCD to Decimal

A	B	C	D	Dg	Po	Da	Pe	05	Da	D ₃	Dz	D1	ه ۵
0	0	0	0	6	0	0	0	Ó	Q	6	O	0	1
0	0	0	1	0	O	0	0	0	0	0	O	1	O
0	0	1	0	0	6	O	0	0	O	D	1	0	0
0	0	J	J	0	O	0	0	O	0	1	0	9	O
0	1	0	0	0	D	6	6	0	1	O	O	0	0
0	1	0]	0	0	0	0	1	O	0	0	O	0
0	1	1	Q	0	0	0	1	0	0	0	0	0	0
0	1	1	.1	0	0	1	0	O	0	0	0	0	0
	Ò	0	0	0	1	0	0	0	0	0	O	O	Q
	0	0	1	1	0	0	0	0	0	0	0	0	0

 $P_{1}(AB_{1}(D)) = \Sigma m(0) + \Sigma d(10,11,12,13,14,15)$ $P_{1}(AB_{1}(D)) = \Sigma m(1) + \Sigma d(10,11,12,13,19,15)$

$$\Re = \overline{A} \overline{S} \overline{C} \overline{D}$$

PB	00	0 1	11	Lo
00				
0 1		1		
ŢŢ	X	X	X	X
to			×	X

ol

4B	100	01	11	0
00	D.	131	D3	Dz
01	Dg	D5	D)+	De
11	X	X	×	X
10	Do	Pg	X	X

Thank you

Soldiers!

