FNCE611 Problem Set 2

Jessica Blum, Jordan Farrer, Marc Lanthemann 2017-02-13

Contents

1	Corporate Bonds	1
	1.1 Yield to Maturity	1
	1.2 Spread	
2	Valuing Stocks	2
3	Growing Perpetuity	2
4	NPV and Payback Rule 4.1 NPV	
	4.2 Payback Period	3
5	IRR	3
6	Capital Budgeting	3

1 Corporate Bonds

1.1 Yield to Maturity

If the coupon rate is 7.25%, then every 6 months Whole Foods will pay $1000 \times \frac{0.0725}{2} = 36.25$. Thus we can calculate the yield to maturity in Dec 2015 as

$$PV = \frac{coupon}{(1 + \frac{y}{2})^1} + \frac{coupon}{(1 + \frac{y}{2})^2} + \dots + \frac{FV + coupon}{(1 + \frac{y}{2})^{20}}$$
(1)

$$998.79 = \frac{36.25}{(1+\frac{y}{2})^1} + \frac{36.25}{(1+\frac{y}{2})^2} + \dots + \frac{1000+36.25}{(1+\frac{y}{2})^{20}}$$
 (2)

where

```
ytm <- function(price, coupon, term, freq, prin = 100) {
    npv <- function(yld, term, cpn, freq, prin) {
        i <- 1:(term * freq)
            payment <- (coupon / freq) * prin
            disc <- (1 + yld / freq)
            sum(payment / disc^(i)) + prin /(disc^(term * freq))
        }
        uniroot(function(yld) npv(yld, term, cpn, freq, prin) - price,
interval=c(0,100), tol=0.000001)$root
}

y = ytm(price = 998.79, coupon = 0.0725, term = 10, freq = 2, prin = 1000)</pre>
```

1.2 Spread

$$Spread = ytm_{Coupon} - ytm_{treasury\,security}$$

$$Spread = 7.27\% - 4.17\% = 3.1\%$$

2 Valuing Stocks

Our solution was created in a spreadsheet and produced below:

```
waw <- gs_title("FNCE611") %>% gs_read(ws = "2.2")
waw %>% pander(missing = "")
```

t	growth rate	eps	payout rate	div	r	pv
1		\$1.90	10%	\$0.19	13%	\$0.168
2	15%	\$2.19	10%	\$0.22	13%	\$0.171
3	15%	\$2.51	20%	\$0.50	13%	\$0.348
4	15%	\$2.89	20%	\$0.58	13%	\$0.354
5	15%	\$3.32	20%	\$0.66	13%	\$0.361
6	8%	\$3.59	50%	\$1.79	13%	\$0.862
6	8%	\$3.88	50%	\$1.94	13%	\$18.618
NPV						\$20.882

The current value of a share of WAW stock is \$20.882.

3 Growing Perpetuity

From the perpetuity formula, we know the value of the contract will be the first payment divided by r - g. So.

$$Value = \frac{First\,Payment}{r-g} = \frac{0.002 \times \$350m}{r-g}$$

We also know that

$$r = dividend\,yield + growth\,rate$$

so

$$r - g = dividend yield = 0.04$$

Finally,

$$Value = \frac{0.002 \times \$350m}{0.04} = \$17.5m$$

4 NPV and Payback Rule

4.1 NPV

Project 1: $NPV = -1000 + \frac{1000}{1.10} = -90.91$

Project 2: $NPV = -2000 + \frac{1000}{1.10} + \frac{1000}{1.10^2} + \frac{4000}{1.10^3} + \frac{1000}{1.10^4} + \frac{1000}{1.10^5} = 4044.73$

Project 3: $NPV = -3000 + \frac{1000}{1.10} + \frac{1000}{1.10^2} + \frac{1000}{1.10^4} + \frac{1000}{1.10^5} = 39.47$

We see that Project 2 and Project 3 have positive NPV.

4.2 Payback Period

Project	Payback Period
1	1 year
2	2 years
3	4 years

With a cutoff period of three years, the firm would accept projects 1 and 2.

5 IRR

Two disadvantages of the IRR Rule include

- 1. If the NPV rule is not a smoothly declining function of discount rate, the IRR rule can give an answer that is different than the NPV rule (i.e. multiple rates of return)
- 2. When comparing mutually exclusive projects, one project can have a higher IRR than another, but a lower NPV and a manager would want to pick the project with the higher NPV

6 Capital Budgeting

Our solution was created in a spreadsheet and produced below, assuming PPC has a tax rate of 35% and discount rate of 15%:

```
cap_budget1 <- gs_title("FNCE611") %>% gs_read(ws = "2.6.1")

cap_budget1 %>%
  pander(missing = "", justify = c('left', 'right', 'right', 'right', 'right'))
```

Time	0	1	2	3
	100			
Investment	100			
Working capital	5	5	5	0
Asset sales				10
Sales		40	50	60
Costs		-10	0	0
Depreciation		-30	-30	-30
Pre-tax Profit		0	20	40
Taxes		0	7	14

Table 4: Net Cash Flows

Time	0	1	2	3
Investment	-\$100			
Working capital	-\$5			\$5
Sales		\$40	\$50	\$60
Taxes		\$0	-\$7	-\$14
Operating Cash Flow		\$40	\$43	\$46
Asset sales				\$10
Net Cash Flows	-\$105	\$40	\$43	\$61
PV	-\$105.00	\$34.78	\$32.51	\$40.11
NPV				\$2.41

The NPV of the project is \$2.41m.