Отчет по заданию №2 «Исследование численного решения задачи Дирихле для уравнения Пуассона в прямоугольной области» по курсу «Суперкомпьютерное моделирование и технологии».

Асирян Александр, 624 группа. Вариант 2_23.

Математическая постановка задачи

В прямоугольной области $\Pi = [A_1, A_2] \times [B_1, B_2]$ требуется найти дважды гладкую функцию u = u(x, y), удовлетворяющую дифференциальному уравнению:

$$-\Delta u = F(x, y), A_1 < x < A_2, B_1 < y < B_2$$
 (1)

и дополнительному условию:

$$u(x,y) = \varphi(x,y) \quad (2)$$

во всех граничных точках (x, y) прямоугольника. Оператор Лапласа Δ определен равенством:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Вариант 2 23:

- $\Pi = [0, 2] \times [0, 2]$
- $F(x,y) = 2(x^2 + y^2)(1 2x^2y^2) exp(1 x^2y^2)$

Численный метод решения задачи

В расчетной области П определяется прямоугольная сетка

$$\overline{\omega}_h = \{(x_i, y_i), i = 0, 1, 2, \dots, N_1, j = 0, 1, 2, \dots, N_2\},\$$

где $A_1=x_0< x_1< x_2< \ldots < x_{N_1}=A_2$ – разбиение отрезка $[A_1,A_2]$ оси (ox), $B_1=y_0< y_1< y_2< \ldots < y_{N_2}=B_2$ – разбиение отрезка $[B_1,B_2]$ оси (oy).

Через ω_h обозначим множество внутренних, а через γ_h — множество граничных узлов сетки $\overline{\omega}_h$. Пусть $h_i^{(1)}=x_{i+1}-x_i, i=0,1,2,...,N_1-1,$ $h_j^{(2)}=y_{j+1}-y_j, j=0,1,2,...,N_2-1$ — переменный шаг сетки по оси абсцисс и ординат соответственно. Средние шаги сетки определяются равенствами:

$$h_i^{(1)} = \frac{h_i^{(1)} + h_{i-1}^{(1)}}{2}, h_j^{(2)} = \frac{h_j^{(2)} + h_{j-1}^{(2)}}{2}.$$

Рассмотрим линейное пространство H функций, заданных на сетке $\overline{\omega}_h$. Будем считать, что в пространстве H задано скалярное произведение и евклидова норма

$$(u,v) = \sum_{i=1}^{N_1 - 1} \sum_{j=1}^{N_2 - 1} h_i^{(1)} h_j^{(2)} u_{ij} v_{ij}, ||u|| = \sqrt{(u,u)}, \quad (3)$$

где $u_{ij} = u(x_i, y_i)$, $v_{ij} = v(x_i, y_i)$ – любые функции из пространства H.

Для аппроксимации уравнения Пуасона (1) воспользуемся пятиточечным разностным оператором Лапласа, который во внутренних узлах сетки определяется равенством:

$$-\Delta_h p_{ij} = \frac{1}{\hbar_i^{(1)}} \left(\frac{p_{ij} - p_{i-1,j}}{h_{i-1}^{(1)}} - \frac{p_{i+1,j} - p_{ij}}{h_i^{(1)}} \right) + \frac{1}{\hbar_i^{(2)}} \left(\frac{p_{ij} - p_{i,j-1}}{h_{i-1}^{(2)}} - \frac{p_{i,j+1} - p_{ij}}{h_i^{(2)}} \right).$$

Здесь предполагается, что функция $p = p(x_i, y_j)$ определена во всех узлах сетки $\overline{\omega}_h$.

Приближенным решением задачи (1), (2) называется функция $p = p(x_i, y_j)$, удовлетворяющая уравнениям

$$-\Delta_h p_{ij} = F(x_i, y_j), (x_i, y_j) \in \omega_h, \quad (4)$$
$$p_{ij} = \varphi(x_i, y_j), (x_i, y_j) \in \gamma_h.$$

Эти соотношения представляют собой систему линейных алгебраических уравнений с числом уравнений равным числу неизвестных и определяют единственным образом неизвестные значения p_{ij} . Совокупность уравнений (4) называется разностной схемой для задачи (1), (2).

Приближенное решение системы уравнений (4) может быть получено итерационным методом скорейшего спуска. В этом методе начальное приближение

$$p_{ij}^{(0)} = \varphi(x_i, y_j), (x_i, y_j) \in \gamma_h,$$

во внутренних узлах сетки $p_{ij}^{(0)}$ – любые числа. Метод является одношаговым. Итерация $p^{(k+1)}$ вычисляется по итерации $p^{(k)}$ согласно равенствам:

$$p_{ij}^{(k+1)} = p_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)},$$

где невязка

$$r_{ij}^{(k)} = -\Delta_h p_{ij} - F(x_i, y_j), (x_i, y_j) \in \omega_h, \quad (5)$$

$$r_{ij}^{(k)} = 0, (x_i, y_j) \in \gamma_h.$$

Итерационный параметр

$$\tau_{k+1} = \frac{(r^{(k)}, r^{(k)})}{(-\Delta_h r^{(k)}, r^{(k)})}.$$

Известно, что с увеличением номера итерации k последовательность сеточных функций $p^{(k)}$ сходится к точному решению p задачи (4) по норме пространства H, то есть

$$\|p-p^{(k)}\|_{H} \to 0, k \to +\infty.$$

Существенно большей скоростью сходимости обладает метод сопряженных градиентов. Начальное приближение $p^{(0)}$ и первая итерация $p^{(1)}$ вычисляются так же, как и в методе скорейшего спуска. Последующие итерации осуществляются по формулам:

$$p_{ij}^{(k+1)} = p_{ij}^{(k)} - \tau_{k+1} g_{ij}^{(k)}, k = 1, 2, ...$$

Здесь

$$\tau_{k+1} = \frac{(r^{(k)}, g^{(k)})}{(-\Delta_h g^{(k)}, g^{(k)})},$$

вектор

$$\begin{split} g_{ij}^{(k)} &= r_{ij}^{(k)} - \ \alpha_k g_{ij}^{(k-1)}, k = 1, 2, \dots, \\ g_{ij}^{(0)} &= r_{ij}^{(0)}, \end{split}$$

коэффициент

$$\alpha_{k+1} = \frac{(-\Delta_h r^{(k)}, g^{(k-1)})}{(-\Delta_h g^{(k-1)}, g^{(k-1)})}.$$

Вектор невязки $r^{(k)}$ вычисляется согласно равенствам (5). Итерационный процесс останавливается, как только

$$||p^{(n)} - p^{(n-1)}|| < \varepsilon$$
, (6)

где ε — заранее выбранное положительное число. В последнем неравенстве, согласно варианту, используется евклидова сеточная норма.

Для аппроксимации дифференциальной задачи используется равномерная прямоугольная сетка:

$$x_{i} = A_{2} \frac{i}{N_{1}} + A_{1} \left(1 - \frac{i}{N_{1}} \right), i = 0, 1, 2, \dots, N_{1}, \quad (8)$$

$$y_{j} = B_{2} \frac{j}{N_{2}} + B_{1} \left(1 - \frac{j}{N_{2}} \right), j = 0, 1, 2, \dots, N_{2}.$$

Приближенное решение разностной схемы (4) следует вычислять методом сопряженных градиентов. Для остановки итерационного процесса предлагается использовать условие (6), положив $\varepsilon=10^{-4}$.

Постановка задачи

Для функций F(x,y), $\varphi(x,y)$:

• подобрать точное решение задачи Дирихле,

- методом сопряженных градиентов построить приближенное решение на сетке с числом узлов $N_1=N_2=1000$, определить погрешность решения $\psi = ||u(x_i, y_i) - p_{ij}||$,
- методом сопряженных градиентов построить приближенное решение на сетке с числом узлов $N_1 = N_2 = 2000$ и вновь определить погрешность решения.

Расчеты необходимо проводить на многопроцессорных вычислительных комплексах IBM Blue Gene/Р и «Ломоносов», используя различное количество вычислительных узлов, указанное в требованиях к отчету. Для каждого расчета определить его продолжительность и ускорение по сравнению с аналогичным расчетом на одном вычислительном узле. При распараллеливании программы необходимо использовать двумерное разбиение области на подобласти прямоугольной формы, в каждой из которых отношение θ количества узлов по ширине и длине должно удовлетворять неравенствам $0.5 \le \theta \le 2$.

Проделанная работа по созданию гибридной реализации MPI/OpenMP

Процессоры разбиваются на сетку
$$X \times Y$$
, где
$$X = \begin{cases} \sqrt{n}, \text{ если } \log_2 n - \text{четное} \\ \sqrt{\frac{n}{2}}, & \text{иначе} \end{cases}, Y = \begin{cases} X, \text{ если } \log_2 n - \text{четное} \\ 2 \times X, & \text{иначе} \end{cases}.$$

То есть если количество процессоров n является квадратом, то сетка квадратная, иначе она делится на две части по горизонтали, каждая из которых разбивается на квадратную. Далее, с помощью функции MPI_Cart_create создается виртуальная топология процессоров. Координаты процессора в топологии и вычисляются помощью функций номера соседних процессоров MPI_Cart_coords и MPI_Cart_shift соответственно. Например, для n=8топология будет иметь следующий вид:

0 (0, 0) 1 (0, 1) 2 (0, 2) 3 (0, 3) 4(1,0) 5(1,1) 6(1,2) 7(1,3)

Точки распределяются на процессоры, и каждый процессор обрабатывает только свои точки. Так как количество точек по координате сетки может не делиться нацело на количество процессоров по соответствующей координате в топологии, то лишние точки распределяются на последний процессор по этой координате. Таким образом, все процессоры, кроме нижней и правой границы, будут иметь одинаковое количество обрабатываемых точек.

Например, для n=8, $N_1=N_2=N=8$ топология будет иметь следующий вид

(81 точка):

4×2	4×2	4×2	4×3
5 × 2	5×2	5×2	5×3

После распределения каждый процессор вычисляет значения переменных из метода для своих точек. Итерации циклов в расчетах распределяются на потоки с помощью директивы OpenMP parallel for. Вложенные циклы не распараллеливаются, потому что версия OpenMP не поддерживает директиву collapse. Для подсчета частичного скалярного произведения используется директива reduction для суммы.

Для вычисления оператора Лапласа требуются данные с точек соседних процессоров. Для этого реализуется обмен между процессорами с помощью команд *MPI_Isend* и *MPI_Irecv* (так как все пересылки являются парными, то можно использовать асинхронные версии). Рассылаются только граничные точки:

Последовательность обменов следующая:

- 1. получить точки у соседа снизу
- 2. получить точки у соседа справа
- 3. отправить точки соседу сверху
- 4. отправить точки соседу слева
- 5. отправить точки соседу снизу
- 6. отправить точки соседу справа
- 7. получить точки у соседа сверху
- 8. получить точки у соседа слева

Для топологии, указанной выше, получаются следующая последовательность шагов, если рассматривать синхронные обмены:

0 (0:0)	1 (0:1)	2 (0:2)	3 (0:3)	4 (1:0)	5 (1:1)	6 (1:2)	7 (1:3)
•	•		RD7		•		SU3
•	•	•	•	•	•	RR7	SL6
•	•	RD6	•	•		SU2	•
•	•	RR3	SL2	•	RR6	SL5	•
	RD5		SD7	•	SU1		RU3
•	RR2	SL1	RL2	RR5	SL4	SR7	RL6
RD4	•	SD6		SU0		RU2	
RR1	SL0	SR3			SR6	RL5	
	SD5	RL1		•	RU1		
	SR2			SR5	RL4		
SD4	RLO			RU0			
SR1							

XYN – send/receive, направление, номер процессора.

RD7 – получить точки снизу от процессора 7.

Чтобы посчитать итерационный параметр τ^{k+1} , коэффициент α и проверить условие остановки итерационного процесса необходимо вычислить полное скалярное произведение. Для этого, с помощью функции $MPI_Allreduce$, локальные частичные скалярные произведение суммируются и отправляются по всем процессорам.

Результаты расчетов Погрешность

1000 x 1000: 0.011485 2000 x 2000: 0.011669

Погрешность $\boldsymbol{\psi} = \boldsymbol{u}(x_i, y_j) - \boldsymbol{p}_{ij}$

Время и ускорение

Время рассчитывалось как усредненное значение трех запусков. Ускорение $S = \frac{T_1}{T_p}$.

Blue Gene/P MPI:

строка компиляции: mpixlcxx -O3 task2.cpp -o task2

строка компилиции. mpixicxx -05 task2.epp -0 task2			
Число процессоров N_p	Число точек сетки N^3	Время решения Т	Ускорение <i>S</i>
1	1000 x 1000	446.785	1.000000
128	1000 x 1000	4.400	101.547951
256	1000 x 1000	2.554	174.959449
512	1000 x 1000	1.483	301.209406
1	2000 x 2000	3991.830	1.000000
128	2000 x 2000	30.072	132.742372
256	2000 x 2000	15.265	261.497294
512	2000 x 2000	9.712	411.013497

MPI/OpenMP: строка компиляции: mpixlcxx_r -O3 -qsmp=omp task2.cpp -o task2_omp

Число процессоров N_p	Число точек сетки N^3	Время решения Т	Ускорение <i>S</i>
1	1000 x 1000	152.835	2,923316
128	1000 x 1000	2.309	193,4858
256	1000 x 1000	1.685	265,1884
512	1000 x 1000	1.370	326,0479
1	2000 x 2000	1359.220	2,936854
128	2000 x 2000	12.330	323,7621
256	2000 x 2000	7.126	560,14
512	2000 x 2000	4.907	813,5447

Lomonosov

строка компиляции: mpicxx -O3 task2.cpp -o task2

Число процессоров N_p	Число точек сетки N^3	Время решения Т	Ускорение <i>S</i>
1	1000 x 1000	40.801	1.000000
8	1000 x 1000	11.539	3.536073
16	1000 x 1000	4.093	9.967780
32	1000 x 1000	1.518	26.881058
128	1000 x 1000	1.102	37.039683
1	2000 x 2000	318.373	1.000000
8	2000 x 2000	108.983	2.921315
16	2000 x 2000	56.529	5.632065
32	2000 x 2000	23.965	13.285135
128	2000 x 2000	3.818	83.391712

