Manual feature extraction

No chapter in book

Recollect: Inference

Feature extraction methods

- Several steps for Feature extraction
- Operationally, Feature extraction = Dimensionality reduction (infinite dimensions)
- Example: $\frac{\text{(infinite dimensions)}}{\text{signal waveform}} \rightarrow 10\text{-dimensional } \boldsymbol{x}$
- Two ways of doing Feature extraction ...
- 1. Using <u>Automatic</u> dimensionality reduction methods
 - —Useful if no domain knowledge
 - —Need lots of Training data to overcome lack of domain knowledge
 - —Features from Deep learning networks popular nowadays

Feature extraction methods

- 2. Using Manual methods
 - —Highly domain-specific: Images versus Text versus Audio
 - —Better features if we don't have lots of Training data
- Discuss mainly Feature selection and Feature Representation
- Feature extraction use: For <u>Classification/Regression</u>
- Feature extraction use: For <u>visualization</u> if $dim(z) \le 3$

Manual feature extraction

- Discuss Manual feature extraction today
 - Domain-specific methods using expert knowledge
 - —e.g., Weather prediction: Rainfall? Humidity matters, not Wind speed
- Manual methods for following applications:
 - 1. Text processing
 - 2. Image/Video processing
 - 3. Audio processing
 - 4. Time series

Course project in these applications <u>must use</u> at least one Manual feature extraction method

- sklearn.feature_extraction package of Python
- Caution: Lecture mainly to provide a <u>flavor</u> of such methods.

Read research papers for latest ideas

Feature extraction: Text applications

Text applications

- Examples:
 - 1. Predict next word in a sentence
 - 2. Classify document as belonging to a particular topic
 - 3. Mark email as spam or not-spam
 - 4. Classify sentence as 'positive sentiment' or 'negative sentiment'
 - 5. ...

- nltk (Natural Language Toolkit) package of Python
 - Matlab also has a module, but not free to CMU

Preprocessing

Carnegie Mellon University (CMU) is a private research university based in Pittsburgh, Pennsylvania. Founded in 1900 by Andrew Carnegie as the Carnegie Technical Schools, the university became the ...

Wikipedia

- Pre-processing for Text: (Not all steps always needed)
 - 1. Split into sentences
 - 2. Convert to lower case, Remove punctuation

e.g., Use "STOP

- 4. Tokenize: Sentence \rightarrow distinct words

nltk.tokenize.sent_tokenize

Reduces 5. Stemming (Remove suffix): 'running' → 'runn'

root word

6. Lemmatize (Sophisticated alternative to stemming): 'ran' \rightarrow 'run'

nltk.stem.wordnet.WordNetLemmatizer

Carnegie Mellon University (CMU) is a private research university based in Pittsburgh, Pennsylvania. Founded in 1900 by Andrew Carnegie as the Carnegie Technical Schools, the university became the ...

Wikipedia

- Feature selection and representation for Text:
- 1. Bag-of-Words: (We used this in Spam SMS example)
 - Choose dictionary (l most common words in Training documents)
 - Feature vector $\mathbf{x} = \text{Is dictionary word is in document?}$
 - Feature vector \mathbf{x} = Number of occurrences of dictionary word in document

$$x = \begin{bmatrix} 1 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \leftarrow \begin{array}{l} \text{merged is present} \\ \vdots \\ \text{tourism is absent} \end{array} \qquad x = \begin{bmatrix} 3 \\ \vdots \\ 0 \\ 13 \end{bmatrix} \leftarrow \begin{array}{l} \text{merged occurs 3 times} \\ \vdots \\ \text{tourism is absent} \end{array}$$

pre-processing feature selection feature representation normalization

• Feature selection and representation for Text:

selection

pre-processing

- 1. Bag-of-Words: Adjust for document length and word rarity
 - Term frequency f(t,x) = Fraction of times word t appears in document x
 - Document frequency N(t) = Fraction of documents containing word t
 - Term frequency—Inverse document frequency: Rare words emphasized tf-idf = $\log(1 + f(t, x)) \log \frac{1}{N(t)}$

$$x = \begin{bmatrix} 3/378 \\ \vdots \\ 0 \\ 13/378 \end{bmatrix} \xrightarrow{\text{merged occurs 3 times in a 378 word document}} x = \begin{bmatrix} 3.14 \\ \vdots \\ 0 \\ 1.426 \end{bmatrix} \xrightarrow{\text{merged has this tf-idf occurs 3 times in a 378 word document}} x = \begin{bmatrix} 3.14 \\ \vdots \\ 0 \\ 1.426 \end{bmatrix}$$

representation

Carnegie Mellon University (CMU) is a private research university based in Pittsburgh, Pennsylvania. Founded in 1900 by Andrew Carnegie as the Carnegie Technical Schools, the university became the ...

Wikipedia

- Feature selection and representation for Text:
- 2. Bi-grams: Bag-of-Words, but using Dictionary of Bi-grams
 - —Bi-gram = Two consecutive words

private research university became

- Advantage: Bi-gram better captures <u>context</u>
- Disadvantage: Dictionary very large. Over-fitting possible
- 3. N-grams: Triplet of consecutive words, etc.
 - Generally, 3-grams is maximum used. Else severe over-fitting

Carnegie Mellon University (CMU) is a private research university based in Pittsburgh, Pennsylvania. Founded in 1900 by ...

• Feature selection and representation for Text:

Wikipedia

4. Embeddings: Using a pre-trained model, convert a word,

into a 'vector embedding' \boldsymbol{x}

Embeddings often satisfy intuitive relationships

Automatic Feature extraction, not Manual!

Carnegie Mellon University (CMU) is a private research university based in Pittsburgh, Pennsylvania. Founded in 1900 by ...

Wikipedia

- Feature selection and representation for Text:
- 4. Embeddings: Using a <u>pre-trained model</u>, convert a word, into a 'vector embedding' *x* sentence or even a document

Carnegie Mellon University (CMU) is a private ...

Example: Universal Sentence Encoder embedding

	Question1	Question2	DuplicateIndicator
4126	Why should I still vote for Hillary Clinton?	Why shouldn't I vote for Hillary Clinton?	0
4350	What are some of the strangest addictions ever?	What are some of the strangest addictions?	1
4493	What is metamorphic rock?	How are metamorphic rocks classified?	0
4745	What is the fastest land mammal?	What are the South American Land Mammal Ages?	0
5001	How can you tell if you are a narcissist?	How can I identify a narcissist?	1

- Quora question pairs*
- Attribute Information:
 - —Pairs of questions
 - —Duplicate indicator: Question pair IS NOT versus IS duplicate
- Inference task: Classify question pair as being duplicate or not
- Popular classifiers usable if each Question $i \rightarrow$ feature vector x_i

https://www.kaggle.com/c/quora-question-pairs

Example: Universal Sentence Encoder embedding

	Question1	Question2	DuplicateIndicator	Embedding1	Embedding2
4126	Why should I still vote for Hillary Clinton?	Why shouldn't I vote for Hillary Clinton?	0	[-0.0013395054, -0.099904045, 0.06714142, -0.0 [-0.010914813, -0.0	39277783, 0.06034255, -0.037
4350 Wh	nat are some of the strangest addictions ever?	What are some of the strangest addictions?	1	[-0.019629745, 0.0375768, -0.028663237, 0.0502 [-0.019145647, 0.03	38091455, -0.025344428, 0.05
4493	What is metamorphic rock?	How are metamorphic rocks classified?	0	[-0.062192235, 0.0700693, 0.026325881, 0.06246 [-0.041530643, 0.00)3250799, 0.027312022, 0.065
4745	What is the fastest land mammal? WI	nat are the South American Land Mammal Ages?	0	[-0.047259703, 0.025728384, -0.0036811058, 0.0 [-0.046342198, -0.0	01937709, 0.030181423, -0.06
5001	How can you tell if you are a narcissist?	How can I identify a narcissist?	1	[-0.08539912, 0.04583511, 0.11148303, -0.00119 [-0.074138455, 0.03	32638546 0.08159932, -0.032

- Feature vector x using Universal Sentence Encoder embedding
- Measure similarity of Questions i, j as inner product $\mathbf{x}_i^T \mathbf{x}_j$
- \blacksquare Embedding \boldsymbol{x} gives reasonable question similarity measure
- $\Rightarrow x$ legitimate feature vector tensorflow package

tensorflow package
tensorflow_hub package
universalsentenceencoder_model

Feature extraction: Image and Video applications

Image and Video applications

Examples:

- 1. Optical character recognition (OCR) in scanned text
- 2. Face recognition in image
- 3. Tracking target in a video
- 4. ...

- OpenCV (opency-python) package of Python
- Patented algorithms (like SIFT and SURF) in opency-

```
contrib-python package
```

—(Free for non-commercial use)

Preprocessing

- Pre-processing for Images: (Not all steps always needed)
- 1. Crop and re-sample to single size (e.g., 1000×800 pixels)
- 2. Down-sample to <u>smaller</u> size (for less computations)
- 3. Noise filtering (Gaussian blur)
- 4. Correct lighting (histogram normalization)
- 5. Color to Gray-scale (needed by some feature extractors)

Preprocessing

k = 3 clusters

- Pre-processing for Images:
- 5. Segment image into <u>patches</u>. Approaches ...
 - Quantize intensity values
 - Plot Histogram of colors \rightarrow Each peak gives one patch
 - Cluster pixels into k clusters (k —means or Gaussian clustering)
 - Detect edges \rightarrow Join to get boundaries \rightarrow Get patches

Feature selection

- Feature selection for Images :
- 1. Histogram of Gradients (HOG):

(Intensity gradients in each image patch

 Z_1

X

- Quantize angles $0 360^{\circ}$ into 8 bins
- Image patch: At each pixel $z = (z_1, z_2)$, find gradient $G(z_1, z_2)$ of intensity I
- Bin gradient G by angle. Increase bin's weight by $|G(z_1, z_2)|$
- Normalize $u \rightarrow u$ is called HOG vector of that image patch
- \Rightarrow Image features selected = List of HOG vectors

8-dim
$$u =$$
 bin weights vector

pre-processing feature selection representation

 $G(z_1, z_2) = \frac{\partial I}{\partial z} = \begin{bmatrix} \frac{\partial I}{\partial z_1} \\ \frac{\partial I}{\partial z_2} \end{bmatrix}$

normalization

Feature selection

- 2. List of Keypoints: Keypoint = Corner in image

 - Scale-Invariant Feature Transform (SIFT): Patented popular corner detector.
 - Uses Harris corner detection + Several image transforms (e.g., scaling)
 - Detect corners invariant to scale, intensity variation, and rotation of image
 - Speeded Up Robust Features (SURF): Also patented
 - Similar to SIFT, but fast calculations

Feature selection

- Feature selection for Images (continued):
- 3. HOGs but only for Keypoints: The most popular method
 - <u>Detect corners</u> (Harris or SIFT or SURF)
 - Only consider image patch around <u>corner</u> points
 - For each such patch, calculate HOG vector u_i
 - $-\Rightarrow$ Image features selected = List of corner points and their HOGs (u_i)

Example

Feature representation

- <u>Feature representation for Images</u>: Depends on application
- 1. Bag-of-<u>Visual</u>-Words: Bag of Words using HOGs Dictionary

 [3] ← cluster head
 - E.g., Useful for image classification
 - Each Training image \rightarrow List of HOGs u_i
 - Cluster the HOGs → Each Cluster-head = "Visual word"
 - Image: Assign each HOG in it to its cluster-head ("Visual word")
 - $\Rightarrow Image = HOGs = Bag of Visual Words = x feature vector shape)$

 $x = \begin{bmatrix} \vdots \\ 0 \\ 13 \end{bmatrix}$ (3 times in image) $\frac{1}{3}$ (absent in image)

Feature extraction: Audio applications

Audio applications

- Examples:
 - 1. Recognizing musical compositions
 - 2. Voice recognition
 - 3. De-noising microphone signal
 - 4. ...

- librosa package in Python
 - —Other audio packages for Python too

Preprocessing

- Pre-processing for Audio: Not all steps always needed
- 1. Resample signal to one sampling rate, say, 22 kHz.
- 2. Normalize signal to ± 1
- 3. Convert from stereo to mono (average the two channels)
- 4. Remove irrelevant intervals (e.g., pauses or noise)
- 5. ...

- Let \mathcal{F} be Fourier transform
- Feature selection and representation: Call audio signal as u(t)
- 1. Spectrum: Measures frequency content of audio signal
 - Calculate $U(f) = |\mathcal{F}[u(t)]|^2$
 - Sample U(f) at discrete frequencies \rightarrow Finite dimensional feature x

- 2. Spectrogram: Better for non-stationary signals like music
 - Break u(t) into 25 millisec windowed segments $u_k(t) = u(t) w(t kT)$
 - —(Consecutive Hamming/Hanning windows usually overlap)
 - Calculate Spectrum of $u_k(t)$ (Short Term Fourier Transform STFT)

$$U_k(f) = |\mathcal{F}[u_k(t)]|^2$$

- Sample the frequency $f \rightarrow$ Finite dimensional feature x_k
- More useful for <u>visualization</u> of audio

3. Cepstrum C: As earlier, audio $u(t) \rightarrow \text{windowed } u_k(t)$

— Sample $C_k(t)$ waveform \rightarrow Finite dimensional feature x

- Cepstrum found useful in music, speech processing. Intuition?
- Separates Vocal tract transfer function from Harmonic excitation

Speech model
$$s(t)$$

Harmonic excitation $s(t)$
 $s(t)$

Vocal tract $u(t) = h(t) * s(t)$

$$\mathcal{F}^{-1}\ln|\mathcal{F}[u(t)]| = \ln|\mathcal{F}[h(t) * s(t)]| = \ln|\mathcal{F}[h(t)]\mathcal{F}[s(t)]|$$

$$= \mathcal{F}^{-1}\ln|\mathcal{F}[h(t)]| + \mathcal{F}^{-1}\ln|\mathcal{F}[s(t)]|$$

$$h(t) \text{ separated from } s(t)$$

Mel Frequency Cepstral Coefficients (MFCC): Cepstrum modified

$$U(f) = \mathcal{F}[u_k(t)] \qquad \xrightarrow{\text{cepstrum}} \quad C_k(t) = |\mathcal{F}^{-1}[\ln|U(\tilde{f})|]|^2$$

- Ear is more sensitive to <u>low</u> frequencies. So, warp $f \to \tilde{f}$ — Motivation:
- $f \to \tilde{f}$ practically: Integrate $|U(f)|^2$ with Triangular windows
- \mathcal{F}^{-1} practically: Use Inverse Discrete Cosine Transform (IDCT)
- \rightarrow Resulting $C_k(t)$ called MFCC

Example: MFCC

- Two audio files Beethoven piece and Mozart piece Example:
 - —Binary classification: Classify short segment $u_k(t)$ as Beethoven or Mozart
 - Time domain signal and Spectrograms not very informative of class here
 - —So, each segment $u_k(t) \rightarrow \text{Compute 20 -dim MFCC } x_k \text{ feature}$
 - Visualize all x_k by LDA-projecting into 1-dim space (z_n)

Time domain \boldsymbol{x}_k **MFCC** Smal large (Red) (Blue) Beethoven 0.2 0.1

Feature extraction: Time series applications

Time series application: Classification of series

- Classification of a stationary time series: Class of entire time series?
 - Example: Smartphone accelerometer time series \rightarrow <u>walking</u> or <u>sleeping</u> person?
- Feature selection in time series: Calculate various metrics
 - —Mean, variance, skew, kurtosis of series samples
 - Autocorrelation function at various lags
 - —Centroid of FFT (measures periodicity)
 - —Lempel-Ziv complexity

 - —See tsfresh package

• Automatic feature extraction x using LSTM deep network

 $\begin{array}{c} \text{(time series)} \\ \rightarrow \\ \text{pre-processing} \end{array} \begin{array}{c} \text{feature} \\ \text{selection} \end{array} \begin{array}{c} \text{feature} \\ \text{representation} \end{array} \begin{array}{c} \text{normalization} \\ \end{array}$

Example: Driving on different pavements

- Driving on different pavements dataset*
 - Accelerometer time series of car driving on Cobblestone, Flexible, Dirt
 - —Goal: Classify time series to these 3 classes
- tsfresh: Each series \rightarrow 5-dimensional x
 - Autocorrelation at lag = 1
 - Centroid of FFT
 - Kurtosis
 - Variance
 - —LZ complexity

- Visualization: Project x into \mathbb{R}^2 using LDA
- Good class separation $\Rightarrow x$ useful for classification

http://www.timeseriesclassification.com/description.php?Dataset=AsphaltPavementType