

Foundational Results

F. Parisi Presicce

UnitelmaSapienza.it

Formal Aspects

- Safety Question
- HRU Model
- Take-Grant Protection Model
- Expressive power
- Typed Access Matrix Model

What Is "Secure"?

- "leaking" is giving a generic right r to a subject who did not initially possess it
- If a system S, beginning in initial state s_0 , cannot leak right r, it is *safe* with respect to the right r.
- · Leaking a right is not inherently bad
 - Legitimate transfer of rights by owner

Safety Question

• Is there an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?

Formally

Given

- initial state $X_0 = (S_0, O_0, A_0)$ (subjects, objects, matrix)
- Set C of commands

Can we use the commands in C to reach $(X_0 | -^* X_n)$ a state X_n where $\exists s \in S$ and $\exists o \in O$ such that $A_n[s,o]$ includes a right r not in $A_0[s,o]$?

- If so, the system is not safe, but
 - is a "safe" system a secure system?
 - are the commands correctly implemented?

Trust

- Safety does not distinguish a leak of a right from an authorized transfer of rights
- Subjects authorized to receive transfer of rights deemed "trusted"
 - Eliminate trusted subjects from matrix

Trivial cases of safety

- r = read, own $\in a[s,o]$, command $can \cdot grant \cdot read \cdot if \cdot own$
- No command includes the enter primitive command

How about the general case?

Mono-Operational Commands

Answer: yes

Sketch of proof:

Consider minimal sequence of commands c_1 , ..., c_k to leak the right.

- Can omit delete, destroy
- Can merge all creates into one (since new subjects are all equal)

Worst case: insert every right into every entry; with s subjects and o objects initially, and n rights, upper bound is $k \le n(s+1)(o+1)$

General Case

Answer: no

Sketch of proof:

Reduce halting problem to safety problem Turing Machine review:

- Infinite tape in one direction
- States K, symbols M; distinguished blank b
- Transition function $\delta(k, m) = (k', m', L)$ means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
- Halting state is q_f ; TM halts when it enters this state

Mapping

Current state is *k*

		s_1	s_2	<i>s</i> ₃	s_4	
•	s_1	A	own			
	s_2		В	own		
	<i>s</i> ₃			C k	own	
	s_4				D end	

Mapping

After $\delta(k, C) = (k_1, X, R)$ where k is the current state and k_1 the next state

>		s_1	s_2	s_3	s_4	
	s_1	A	own			
	s_2		В	own		
	s_3			X	own	
	s_4				$D k_1$ end	

Command Mapping

 $\delta(k, C) = (k_1, X, R)$ at intermediate becomes

```
command c_{k,C}(s_3,s_4)
if own in A[s_3, s_4] and k in A[s_3, s_3]
      and C in A[s_3, s_3]
then
 delete k from A[s_3, s_3];
 delete C from A[s_3, s_3];
 enter X into A[s_3, s_3];
 enter k_1 into A[s_4, s_4];
end
```

Mapping

1	2	3	4	5		
$_{\rm A}$	В	\mathbf{X}	Y	$\left \begin{array}{c}b\end{array}\right $		
	В	1	•			
			ŀ	nead		

After $\delta(k_1, D) = (k_2, Y, R)$ where k_1 is the current state and k_2 the next state

>		s_1	s_2	s_3	s_4	S ₅
	s_1	A	own			
	s_2		В	own		
	s_3			X	own	
	s_4				Y	own
	S ₅					$b k_2$ end

Command Mapping


```
\delta(k_1, D) = (k_2, Y, R) at end becomes
command crightmost<sub>k,C</sub>(s_4, s_5)
if end in A[s_4,s_4] and k_1 in A[s_4,s_4]
       and D in A[S_4, S_4]
then
 delete end from A[s_A, s_A];
 create subject s_5;
 enter own into A[s_4, s_5];
 enter end into A[s_5, s_5];
 delete k_1 from A[s_4, s_4];
 delete D from A[s_4, s_4];
 enter Y into A[S_4, S_4];
 enter k_2 into A[s_5, s_5];
end
```

Rest of proof

- Protection system exactly simulates a TM
 - Exactly 1 end right in ACM
 - 1 right in entries corresponds to state
 - Thus, at most 1 applicable command
- If TM enters state q_f , then right has leaked
- If safety question decidable, then represent TM as above and determine if q_f leaks
 - Implies halting problem decidable
- Conclusion: safety question undecidable

Other Results

- Set of unsafe systems is recursively enumerable
- Delete create primitive; then safety question is complete in P-SPACE
- Delete destroy, delete primitives (this system is called monotonic): safety question is undecidable
- Safety question for mono-conditional, monotonic protection systems is decidable
- Safety question for mono-conditional protection systems with create, enter, delete (and no destroy) is decidable.

So?

- Safety decidable for some models
 - Are they practical?
- Safety only works if total set of rights is known in advance
 - Policy must specify all rights someone could get, not just what they have
- Can the safety of a particular system, with specific rules, be established?

Take-Grant Protection Model

- A specific (not generic) system
 - System represented as a directed graph
 - Set of graph rewriting rules for state transitions
- Safety is decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system

unitelmasapienza.it

System

- O objects (files, ...)
- subjects (users, processes, ...)
- ⊗ don't care (either a subject or an object)
- $G \mid_{-x} G'$ apply a rewriting rule x (witness) to G to get G'
- G |-* G' apply a sequence of rewriting rules to G to get G'
- $R = \{t, g, r, w, ...\}$ set of rights

Rules

More rules

These four rules are called the de jure rules

Example: Shared Buffer

- Initially s has grant rights for processes p and q.
- s sets up a shared buffer for p,q with the following steps
 - s creates new object b
 - s grants ({r,w} to b) to p
 - s grants ({r,w} to b) to q

Symmetry

- 1. \mathbf{x} creates (tg to new) \mathbf{v}
- 2. \mathbf{z} takes (g to \mathbf{v}) from \mathbf{x}
- 3. z grants (α to y) to v
- 4. \mathbf{x} takes (α to \mathbf{y}) from \mathbf{v}

Similar result for grant

Islands

tg-path: path of distinct vertices connected by edges labeled t or g

Call them "tg-connected"

island: maximal tg-connected subject-only subgraph

Any right one vertex has can be shared with any other vertex

can·share

Definition:

 $can \cdot share(r, \mathbf{x}, \mathbf{y}, G_0)$ if and only if there is a sequence of protection graphs G_0 , ..., G_n such that $G_0 \mid -^* G_n$ using only de jure rules and in G_n there is an edge from \mathbf{x} to \mathbf{y} labeled r.

- If x and y are subjects in an island, then $can \cdot share(r, \mathbf{x}, \mathbf{y}, G_0)$
 - Proof by induction using the properties of tg-connected subjects
- General result: can·share(r, x, y, G₀) is decidable using an algorithm of complexity O(|V| + |E|) where V and E are the vertices and edges in the graph
 - Proof omitted (Exercise)

Key Question

- Characterize class of models for which safety is decidable
 - Existence: Take-Grant Protection Model is a member of such a class
 - Universality: in general, the question undecidable, so for some models it is not decidable
- What is the dividing line?

Typed Access Matrix Model

Like ACM, but with set of types T

- All subjects, objects have types
- Set of types for subjects TS

Protection state is (S, O, τ, A)

- τ : $O \to T$ specifies type of each object
- If **X** subject, $\tau(\mathbf{X})$ in TS
- If **X** object, $\tau(\mathbf{X})$ in T TS

Same rules as ACM except for create

Create Rules

Subject creation

- create subject s of type ts
- s must not exist as subject or object when operation executed
- *ts* ∈ *TS*

Object creation

- create object o of type to
- o must not exist as object when operation executed
- $to \in T TS$

Definitions

MTAM (Monotonic TAM) Model: TAM model without **delete**, **destroy**

 $\alpha(x_1:t_1,...,x_n:t_n)$ create command

- t_i child type in α if any of create subject x_i of type t_i or create object x_i of type t_i occur in body of α
- t_i parent type otherwise

Creation graph: nodes for types, and arc from parent type to child type

Cyclic Creates


```
command havoc(s_1 : u, s_2 : u, o_1 : v, o_2 : v, o_3 : w, o_4 : w)
 create subject s_1 of type u;
 create object o_1 of type v;
 create object o_3 of type w;
 enter r into a[s_2, s_1];
 enter r into a[s_2, o_2];
 enter r into a[s_2, o_4];
end
What kind of types are u, v and w?
```

Theorems

- Safety decidable for systems with acyclic MTAM schemes
- Safety for acyclic ternary MTAM decidable in time polynomial in the size of the initial ACM
 - "ternary" means commands have no more than 3 parameters
 - Equivalent in expressive power to MTAM

unitelmasapienza.it

Key Points

- Safety problem is undecidable
 - Important to discuss the limits of the formalism
- Limiting the scope of systems can make the problem decidable
- Types are critical to the analysis of the safety problem