## Aufgabe 1 (30 Punkte)

Gegeben seien folgende zwei endliche Automaten  $A_1$  und  $A_2$ .



(a) Geben Sie reguläre Ausdrücke zu den Sprachen  $L(A_1)$  und  $L(A_2)$  an.

(b) Konstruieren Sie den Automaten  $A_1 \cdot A_2$  für die Sprache  $L(A_1) \cdot L(A_2)$ . Sie dürfen die Konstruktion direkt in obige Darstellungen einzeichnen.

## Fortsetzung Aufgabe 1)



(c) Konstruieren Sie den  $A_2$  zugeordneten deterministischen Automaten.

(d) Konstruieren Sie einen Automaten für die Sprache  $\overline{L(A_1)}$ .

# Aufgabe 2 (15 Punkte)

L sei die Sprache, die alle Wörter w über dem Alphabet  $\{a,b\}$  enthält, welche mindestens 2 b's und mindestens ein a enthalten, d.h.  $L = \{w \in \{a,b\}^* \mid |w|_a \ge 1 \text{ und } |w|_b \ge 2\}.$ 

Geben sie einen endlichen Automaten an, welcher L akzeptiert.

## Aufgabe 3 (10 Punkte)

Gegeben sei der Kellerautomat KA mit folgendem Zustandsgraphen:



### Bemerkungen:

- $k_0$ =\$ (unterstes Symbol des Kellerbandes beim Start des Automaten)
- Falls Sie die Akzeptanz über leerem Keller gewohnt sind, können Sie ignorieren, dass S<sub>5</sub> ein Endezustand ist.

Welche Sprache L akzeptiert KA? Geben Sie L in Mengenschreibweise an!

## Aufgabe 4 (15 Punkte)

Sei  $L = \{wcb^n \in \{a,b,c\}^+ \mid w \in \{a,b\}^+, /w/=n, n \ge 1 \}$  gegeben.

(a) Beweisen Sie, dass L nicht regulär ist.

(b) Geben Sie eine kontextfreie Grammatik G mit L(G) = L an.

## Aufgabe 5 (10 Punkte)

Gegeben sei eine Grammatik  $G = (\{S\}, \{a, b, (, ), +, *\}, S, P)$  mit  $P = \{S \rightarrow a \mid b \mid (S + S) \mid (S * S)\}$ 

- a) Von welchem Typ ist die Grammatik? Geben Sie das größte i an, sodass G vom Typ i ist. Begründen Sie Ihre Aussage!
- b) Transformieren Sie die Grammatik G in die zugehörige Normalform  $G_{NF}$ . Geben Sie  $G_{NF}$  in Tupelschreibweise an.

## Aufgabe 6 (20 Punkte)

Entwickeln Sie eine deterministische Turingmaschine, die eine binäre Bandinschrift um ein sogenanntes Paritätsbit ergänzt: Ist die Anzahl der I-Bits des gegebenen Wortes  $w \in \{0,1\}^+$  gerade, so erhält das Paritätsbit den Wert I, sonst 0.

Die gesuchte Turingmaschine schreibt das Paritätsbits unmittelbar rechts von der Eingabe auf das Band, bewegt den Schreiblesekopf (^) wieder auf das erste Zeichen der Eingabe und hält dann.

### Beispiele:

| Eingabe             | Ausgabe              |
|---------------------|----------------------|
| ###01101101###<br>^ | ###011011010###<br>^ |
| ###100111###        | ###1001111###<br>^   |

### (Fortsetzung Aufgabe 6)

- (a) Geben Sie die Konfigurationsfolge des Automaten für die Eingabe "110" an. Geben Sie dazu die Konfigurationen als Tupel an **oder** notieren Sie diese in einer Tabelle mit drei Spalten, die für **jeden** Verarbeitungsschritt angibt:
  - i. den aktuellen Zustand des Automaten
  - ii. den Bandinhalt links vom Schreib-Lese-Kopf
  - iii. den Bandinhalt rechts vom Schreib-Lese-Kopf, einschließlich des Zeichens unter diesem