Allen Y. Yang <yang@eecs.berkeley.edu>

April 18, 2008, NIST

Face Recognition: "Where amazing happens"

Face Recognition: "Where amazing happens"

Figure: Steve Nash, Kevin Garnett, Jason Kidd.

Sparse Representation

Sparsity

A signal is sparse if most of its coefficients are (approximately) zero.

Sparse Representation

Sparsity

A signal is sparse if most of its coefficients are (approximately) zero.

Sparsity in frequency domain

Figure: 2-D DCT transform.

Sparsity in spatial domain

000

• Sparsity in human visual cortex [Olshausen & Field 1997, Serre & Poggio 2006]

• Sparsity in human visual cortex [Olshausen & Field 1997, Serre & Poggio 2006]

- Feed-forward: No iterative feedback loop.
- **@ Redundancy**: Average 80-200 neurons for each feature representation.
- Recognition: Information exchange between stages is not about individual neurons, but rather how many neurons as a group fire together.

Problem Formulation

Notation

Introduction

- Training: For K classes, collect training samples $\{\mathbf{v}_{1,1},\cdots,\mathbf{v}_{1,n_1}\},\cdots,\{\mathbf{v}_{K,1},\cdots,\mathbf{v}_{K,n_K}\}\in\mathbb{R}^D$.
- Test: Present a new $\mathbf{y} \in \mathbb{R}^D$, solve for label $(\mathbf{y}) \in [1, 2, \cdots, K]$.

Problem Formulation

- Notation
 - Training: For K classes, collect training samples $\{\mathbf{v}_{1,1},\cdots,\mathbf{v}_{1,n_1}\},\cdots,\{\mathbf{v}_{K,1},\cdots,\mathbf{v}_{K,n_K}\}\in\mathbb{R}^D$.
- Test: Present a new $\mathbf{y} \in \mathbb{R}^D$, solve for label $(\mathbf{y}) \in [1, 2, \cdots, K]$. 2 Data representation in (long) vector form via stacking

Figure: Assume 3-channel 640 \times 480 image, $D = 3 \cdot 640 \cdot 480$.

Problem Formulation

- Notation
 - Training: For K classes, collect training samples $\{\mathbf{v}_{1,1},\cdots,\mathbf{v}_{1,n_1}\},\cdots,\{\mathbf{v}_{K,1},\cdots,\mathbf{v}_{K,n_K}\}\in\mathbb{R}^D$. • Test: Present a new $\mathbf{y} \in \mathbb{R}^D$, solve for label $(\mathbf{y}) \in [1, 2, \cdots, K]$.
- 2 Data representation in (long) vector form via stacking

Figure: Assume 3-channel 640 \times 480 image, $D = 3 \cdot 640 \cdot 480$.

Mixture subspace model for face recognition [Belhumeur et al. 1997, Basri & Jocobs 2003]

Classification of Mixture Subspace Model

$oldsymbol{0}$ Assume $oldsymbol{y}$ belongs to Class i

$$\begin{array}{rcl} \textbf{y} & = & \alpha_{i,1}\textbf{v}_{i,1} + \alpha_{i,2}\textbf{v}_{i,2} + \cdots + \alpha_{i,n_1}\textbf{v}_{i,n_i}, \\ & = & A_i\alpha_i, \end{array}$$
 where $A_i = [\textbf{v}_{i,1}, \textbf{v}_{i,2}, \cdots, \textbf{v}_{i,n_i}].$

Classification of Mixture Subspace Model

 $oldsymbol{0}$ Assume $oldsymbol{y}$ belongs to Class i

$$\begin{array}{rcl} \mathbf{y} &=& \alpha_{i,1}\mathbf{v}_{i,1} + \alpha_{i,2}\mathbf{v}_{i,2} + \cdots + \alpha_{i,n_1}\mathbf{v}_{i,n_i},\\ &=& A_i\alpha_i, \end{array}$$
 where $A_i = [\mathbf{v}_{i,1}, \mathbf{v}_{i,2}, \cdots, \mathbf{v}_{i,n_i}].$

② Nevertheless, Class *i* is the **unknown** variable we need to solve:

$$\text{Sparse representation} \quad \mathbf{y} = [A_1, A_2, \cdots, A_K] \begin{bmatrix} \frac{\alpha_1}{\alpha_2} \\ \vdots \\ \frac{\alpha_K}{\alpha_K} \end{bmatrix} = A\mathbf{x} \in \mathbb{R}^{3 \cdot 640 \cdot 480}.$$

Classification of Mixture Subspace Model

 $oldsymbol{0}$ Assume $oldsymbol{y}$ belongs to Class i

$$\mathbf{y} = \alpha_{i,1}\mathbf{v}_{i,1} + \alpha_{i,2}\mathbf{v}_{i,2} + \cdots + \alpha_{i,n_1}\mathbf{v}_{i,n_i},$$

= $A_i\alpha_i$,

where
$$A_i = [\mathbf{v}_{i,1}, \mathbf{v}_{i,2}, \cdots, \mathbf{v}_{i,n_i}].$$

4 Nevertheless, Class i is the **unknown** variable we need to solve:

$$\text{Sparse representation} \quad \mathbf{y} = [A_1, A_2, \cdots, A_K] \begin{bmatrix} \begin{smallmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_K \end{bmatrix} = A\mathbf{x} \in \mathbb{R}^{3 \cdot 640 \cdot 480}.$$

 $\mathbf{0} \ \mathbf{x}_0 = \begin{bmatrix} 0 & \cdots & 0 & \alpha_i^T & 0 & \cdots & 0 \end{bmatrix}^T \in \mathbb{R}^n.$

Sparse representation encodes membership!

Dimensionality Redunction

① Construct linear projection $R \in \mathbb{R}^{d \times D}$, d is the **feature dimension**.

$$\tilde{\mathbf{y}} \doteq R\mathbf{y} = RA\mathbf{x}_0 = \tilde{A}\mathbf{x}_0 \in \mathbb{R}^d.$$

 $\tilde{A} \in \mathbb{R}^{d \times n}$, but \mathbf{x}_0 is unchanged.

Dimensionality Redunction

① Construct linear projection $R \in \mathbb{R}^{d \times D}$, d is the **feature dimension**.

$$\tilde{\mathbf{y}} \doteq R\mathbf{y} = RA\mathbf{x}_0 = \tilde{A}\mathbf{x}_0 \in \mathbb{R}^d.$$

 $\tilde{A} \in \mathbb{R}^{d \times n}$, but \mathbf{x}_0 is unchanged.

- 4 Holistic features
 - Eigenfaces [Turk 1991]
 - Fisherfaces [Belhumeur 1997]
 - Laplacianfaces [He 2005]
- Partial features

- Unconventional features
 - Downsampled faces
 - Random projections

ℓ^1 -Minimization

• Ideal solution: ℓ^0 -Minimization

$$(P_0)\quad \mathbf{x}^*=\arg\min_{\mathbf{x}}\|\mathbf{x}\|_0 \text{ s.t. } \tilde{\mathbf{y}}=\tilde{A}\mathbf{x}.$$

 $\|\cdot\|_0$ simply counts the number of nonzero terms. However, generally ℓ^0 -minimization is *NP-hard*.

Experiments

ℓ^1 -Minimization

1 Ideal solution: ℓ^0 -Minimization

$$(P_0)$$
 $\mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_0 \text{ s.t. } \tilde{\mathbf{y}} = \tilde{A}\mathbf{x}.$

 $\|\cdot\|_0$ simply counts the number of nonzero terms. However, generally ℓ^0 -minimization is *NP-hard*.

@ Compressed sensing: Under mild condition, ℓ^0 -minimization is equivalent to

$$(P_1) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ s.t. } \tilde{\mathbf{y}} = \tilde{A}\mathbf{x},$$

where
$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \cdots + |x_n|$$
.

ℓ^1 -Minimization

■ Ideal solution: ℓ⁰-Minimization

$$(P_0)$$
 $\mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_0 \text{ s.t. } \tilde{\mathbf{y}} = \tilde{A}\mathbf{x}.$

 $\|\cdot\|_0$ simply counts the number of nonzero terms. However, generally ℓ^0 -minimization is NP-hard.

Compressed sensing: Under mild condition, ℓ^0 -minimization is equivalent to

$$(P_1) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ s.t. } \mathbf{\tilde{y}} = \tilde{A}\mathbf{x},$$

where $\|\mathbf{x}\|_1 = |x_1| + |x_2| + \cdots + |x_n|$.

- \bullet ℓ^1 -Ball
 - ℓ^1 -Minimization is convex
 - Solution equal to ℓ^0 -minimization.

 $\tilde{y} = \tilde{A}x$

ℓ^1 -Minimization Routines

- Matching pursuit [Mallat 1993]
 - **①** Find most correlated vector \mathbf{v}_i in A with \mathbf{y} : $i = \arg\max \langle \mathbf{y}, \mathbf{v}_j \rangle$.
 - 2 $A \leftarrow A^{(i)}, x_i \leftarrow \langle \mathbf{y}, \mathbf{v}_i \rangle, \mathbf{y} \leftarrow \mathbf{y} x_i \mathbf{v}_i.$ 3 Repeat until $\|\mathbf{y}\| < \epsilon$.
- Basis pursuit [Chen 1998]
 - ① Start with number of sparse coefficients m = 1.
 - ② Select m linearly independent vectors B_m in A as a basis

$$\mathbf{x}_m = B_m^{\dagger} \mathbf{y}.$$

- **Q** Repeat swapping one basis vector in B_m with another vector not in B_m if improve $\|\mathbf{y} B_m \mathbf{x}_m\|$.
- **1** If $\|\mathbf{y} B_m \mathbf{x}_m\|_2 < \epsilon$, stop; Otherwise, $m \leftarrow m+1$, repeat Step 2.
- Quadratic solvers: $\mathbf{y} = A\mathbf{x}_0 + \mathbf{z} \in \mathbb{R}^d$, where $\|\mathbf{z}\|_2 < \epsilon$

$$\mathbf{x}^* = \arg\min\{\|\mathbf{x}\|_1 + \lambda \|\mathbf{y} - A\mathbf{x}\|_2\}$$

[LASSO, Second-order cone programming]: Much more expensive.

Matlab Toolboxes for ℓ^1 -Minimization

- ℓ^1 -Magic by Candes
- SparseLab by Donoho
- cvx by Boyd

Sparse Representation Classification

Solve $(P_1) \Rightarrow \mathbf{x}_1$.

Project x₁ onto face subspaces:

$$\delta_{1}(\mathbf{x}_{1}) = \begin{bmatrix} \alpha_{1} \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \delta_{2}(\mathbf{x}_{1}) = \begin{bmatrix} 0 \\ \alpha_{2} \\ \vdots \\ 0 \end{bmatrix}, \cdots, \delta_{K}(\mathbf{x}_{1}) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \alpha_{K} \end{bmatrix}. \tag{1}$$

Sparse Representation Classification

Solve $(P_1) \Rightarrow \mathbf{x}_1$.

Project x_1 onto face subspaces:

$$\delta_{1}(\mathbf{x}_{1}) = \begin{bmatrix} \alpha_{1} \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \delta_{2}(\mathbf{x}_{1}) = \begin{bmatrix} 0 \\ \alpha_{2} \\ \vdots \\ 0 \end{bmatrix}, \cdots, \delta_{K}(\mathbf{x}_{1}) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \alpha_{K} \end{bmatrix}. \tag{1}$$

- Define residual $r_i = \|\tilde{\mathbf{y}} \tilde{A}\delta_i(\mathbf{x}_1)\|_2$ for Subject i:
 - \bullet id(y) = arg min_{i=1,...,K} { r_i }

Partial Features on Extended Yale B Database

Features	Nose	Right Eye	Mouth & Chin
Dimension	4,270	5,040	12,936
SRC [%]	87.3	93.7	98.3
nearest-neighbor [%]	49.2	68.8	72.7
nearest-subspace [%]	83.7	78.6	94.4
Linear SVM [%]	70.8	85.8	95.3

SRC: sparse-representation classifier

Extension I: Outlier Rejection

• ℓ^1 -Coefficients for invalid images

Extension I: Outlier Rejection

• ℓ^1 -Coefficients for invalid images

Outlier Rejection

When ℓ^1 -solution is not sparse or concentrated to one subspace, the test sample is invalid.

$$\text{Sparsity Concentration Index: SCI(x)} \doteq \frac{K \cdot \max_i \|\delta_i(\mathbf{x})\|_1 / \|\mathbf{x}\|_1 - 1}{K - 1} \in [0, 1].$$

Figure: ROC curve on Eigenfaces and AR database.

Extension II: Occlusion Compensation

Discussion

Extension II: Occlusion Compensation

● Sparse representation + sparse error

$$y = Ax + e$$

Occlusion compensation

$$\mathbf{y} = \begin{pmatrix} A & | & I \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{e} \end{pmatrix} = B\mathbf{w}$$

AR Database

Figure: Training samples for Subject 1.

AR Database

Figure: Training samples for Subject 1.

(a) random corruption

(b) occlusion

AR Database

Figure: Training samples for Subject 1.

(a) random corruption

(b) occlusion

Future Directions

Open problems:

- Pose variation
- Scalability to > 1000 subjects

Open problems:

- Pose variation
- Scalability to > 1000 subjects

Other databases:

- Multi-PIE (about 350 subjects)
- Chinese CASPEAL (about 1000-3000 subjects)

Experiments

Future Directions

Open problems:

- Pose variation
- Scalability to > 1000 subjects

Other databases:

- Multi-PIE (about 350 subjects)
- Chinese CASPEAL (about 1000-3000 subjects)

Wish list: Because few algorithm succeed under all-weather conditions (illumination, expression, pose, disguise), we are looking forward to a comprehensive database

- large number of subjects
- carefully controlled subclasses

Acknowledgments

Collaborators

- Berkeley: Prof. Shankar Sastry
- UIUC: Prof. Yi Ma, John Wright, Arvind Ganesh

Funding Support

ARO MURI: Heterogeneous Sensor Networks (HSNs)

References

- Robust Face Recognition via Sparse Representation, (in press) PAMI, 2008.
- http://www.eecs.berkeley.edu/~yang

