4CCS1ELA-ELEMENTARY LOGIC WITH APPLICATIONS

5-Proving with Natural Deduction

5.2-EXAMPLES USING THE BASIC RULES

Dr. Odinaldo Rodrigues

odinaldo.rodrigues@kcl.ac.uk

Room BH(S) TBC, +44 (0)20 7848 2087

Department of Informatics

King's College London

WORKED EXAMPLES

Show that
$$(A \lor B) \rightarrow C \vdash (A \rightarrow C) \land (B \rightarrow C)$$

1. $(A \lor B) \rightarrow C$

Data

Show that
$$(A \lor B) \rightarrow C \vdash (A \rightarrow C) \land (B \rightarrow C)$$

1. $(A \lor B) \rightarrow C$

Data

2. $A \rightarrow C$

From subcomputation box below

Show that
$$(A \lor B) \rightarrow C \vdash (A \rightarrow C) \land (B \rightarrow C)$$

1. $(A \lor B) \rightarrow C$

Data

From subcomputation box below

 $3 B \rightarrow C$

2. $A \rightarrow C$

From subcomputation box below

Show that
$$(A \lor B) \rightarrow C \vdash (A \rightarrow C) \land (B \rightarrow C)$$

1. $(A \lor B) \rightarrow C$

2. $A \rightarrow C$

Data

From subcomputation box below

 $3 B \rightarrow C$

From subcomputation box below

Show that $(A \lor B) \rightarrow C \vdash (A \rightarrow C) \land (B \rightarrow C)$

1. $(A \lor B) \rightarrow C$

Data

2. $A \rightarrow C$

From subcomputation box below

 $3 B \rightarrow C$

From subcomputation box below

Show that $(A \lor B) \rightarrow C \vdash (A \rightarrow C) \land (B \rightarrow C)$

1. $(A \lor B) \rightarrow C$

Data

2. $A \rightarrow C$

From subcomputation box below

2.1 A Assume

 $3 B \rightarrow C$

From subcomputation box below

Show that $(A \lor B) \rightarrow C \vdash (A \rightarrow C) \land (B \rightarrow C)$

- 1. $(A \lor B) \rightarrow C$ Data 2. $A \rightarrow C$ From subcomputation box below 2.1 A Assume C2.2 $A \lor B$ From 2.1 and $(\lor I)$
- 3. $B \rightarrow C$ From subcomputation box below

Show that $(A \lor B) \rightarrow C \vdash (A \rightarrow C) \land (B \rightarrow C)$

- 1. $(A \lor B) \rightarrow C$ Data
- 2. $A \rightarrow C$ From subcomputation box below

2.1 A	Assume	<u>C</u>
2.2 A ∨ B	From 2.1 and $(\lor I)$	
2.3 C	From 2.2, 1. and $(\rightarrow E)$	

3. $B \rightarrow C$ From subcomputation box below

- 1. $(A \lor B) \rightarrow C$ Data
- 2. $A \rightarrow C$ From subcomputation box below

2.1 A	Assume	<u>C</u>
2.2 <i>A</i> ∨ <i>B</i>	From 2.1 and $(\lor I)$	
2.3 <i>C</i>	From 2.2, 1. and $(\rightarrow E)$	

- 3. $B \rightarrow C$ From subcomputation box below \underline{C}
- 4. $(A \rightarrow C) \land (B \rightarrow C)$ From 2. and 3. and $(\land I)$

- 1. $(A \lor B) \rightarrow C$ Data
- 2. $A \rightarrow C$ From subcomputation box below

2.1 A	Assume	<u>C</u>
2.2 A∨B	From 2.1 and (∨I)	
2.3 C	From 2.2. 1. and $(\rightarrow E)$	

- 3. $B \rightarrow C$ From subcomputation box below \underline{C}
- 4. $(A \rightarrow C) \land (B \rightarrow C)$ From 2. and 3. and $(\land I)$

- 1. $(A \lor B) \rightarrow C$ Data
- 2. $A \rightarrow C$ From subcomputation box below

2.1 A	Assume	<u>C</u>
2.2 <i>A</i> ∨ <i>B</i>	From 2.1 and $(\lor I)$	
2.3 C	From 2.2, 1. and $(\rightarrow E)$	

- 3. $B \rightarrow C$ From subcomputation box below C 3.1 B Assume C From 3.1 and (\vee I)
- 4. $(A \rightarrow C) \land (B \rightarrow C)$ From 2. and 3. and $(\land I)$

- 1. $(A \lor B) \rightarrow C$ Data
- 2. $A \rightarrow C$ From subcomputation box below

		C
2.1 A	Assume	<u>~</u>
2.2 <i>A</i> ∨ <i>B</i>	From 2.1 and (∨I)	
23 C	From 2.2.1 and $(\rightarrow E)$	

- 3. $B \rightarrow C$ From subcomputation box below

 3.1 B Assume

 3.2 $A \lor B$ From 3.1 and $(\lor I)$ 3.3 C From 3.2, 1, and $(\to E)$
- 4. $(A \rightarrow C) \land (B \rightarrow C)$ From 2. and 3. and $(\land I)$

Show that $A \vee B$, $\neg B \vdash A$

Show that $A \vee B$, $\neg B \vdash A$

$$\frac{A \rightarrow C, B \rightarrow C, A \lor B}{C} (\lor E)$$

Show that $A \vee B$, $\neg B \vdash A$

1. $A \vee B$

data

2. ¬B data

$$\frac{A \rightarrow C, B \rightarrow C, A \lor B}{C} (\lor E)$$

Show that $A \vee B$, $\neg B \vdash A$

- A ∨ B
- data

- 2. ¬B
- data
- A→A
- From subcomputation box below

$$\frac{A \rightarrow C, B \rightarrow C, A \lor B}{C} (\lor E)$$

- 4. *B*→*A*
- From subcomputation box below

5. A

From 1., 3., 4., and (∨E)

Show that $A \vee B$, $\neg B \vdash A$

- A ∨ B
- data
- 2. ¬*B* data
- 3. $A \rightarrow A$ From subcomputation box below

 3.1 A Assume
 3.2 A From 3.1

 4. $B \rightarrow A$ From subcomputation box below

$$\frac{A \rightarrow C, B \rightarrow C, A \lor B}{C} (\lor E)$$

5. A From 1., 3., 4., and $(\lor E)$

Show that $A \vee B$, $\neg B \vdash A$

- 1. $A \vee B$
- data
- 2. ¬B
- data

3.	$A{\rightarrow}A$		From subcomputation box below	
	3.1	Α	Assume	

From 3 1

4.
$$B \rightarrow A$$
 From subcomputation box below

4.1 B Assume

$$\frac{A \rightarrow C, B \rightarrow C, A \lor B}{C}$$
 (\lor E

5. Ä From 1., 3., 4., and (∨E) Α

Show that $A \vee B$, $\neg B \vdash A$

- 1. $A \vee B$
- data
- 2. ¬B data
- 3. $A \rightarrow A$ From subcomputation box below

 3.1 A Assume

 3.2 A From 3.1
- 4. $B \rightarrow A$ From subcomputation box below

. ,,,	1 10111 00	boompatation box bolow
4.1	В	Assume <u>A</u>
4.2	$\neg A \rightarrow B$	From subcomputation below
4.3	$\neg A \rightarrow \neg B$	From subcomputation below

5. A From 1., 3., 4., and (∨E)

 $\frac{A \rightarrow C, B \rightarrow C, A \lor B}{C}$ (\lor E)

Show that $A \vee B$, $\neg B \vdash A$

- 1. $A \vee B$
- data
- 2. ¬B
- data

3.	3. <i>A</i> → <i>A</i>			From subcomputation box below	
				_	A
		3.1	Α	Assume	
		3.2	Α	From 3.1	

4. *B*→*A* From subcomputation box below Assume 4.2 $\neg A \rightarrow B$ From subcomputation below 4.3 $\neg A \rightarrow \neg B$ From subcomputation below

> From 4.2, 4.3, and (¬E) From 1., 3., 4., and (VE)

$$\frac{A \rightarrow C, B \rightarrow C, A \lor B}{C}$$
 (\lor E)

Show that $A \vee B$, $\neg B \vdash A$

- 1. $A \vee B$
- data
- 2. ¬B
- data
- A→A From subcomputation box below Assume
 - 3.2 A From 3 1
- 4. $B \rightarrow A$ From subcomputation box below

4.1	В	Assume	<u>A</u>
4.2	$\neg A{ ightarrow} B$	From subcomputation belo	w
	4.2.1 <i>¬A</i>	Assume <u>B</u>	
4.3	4.2.2 <i>B</i> ¬ <i>A</i> →¬ <i>B</i>	From 4.1 From subcomputation belo	w
	7. 7.2	. rom cascompatation solo	

4.4 A From 4.2, 4.3, and (¬E) From 1., 3., 4., and (VE)

 $\frac{A{\rightarrow}C,B{\rightarrow}C,A\vee B}{2}$

Α

Show that $A \vee B$, $\neg B \vdash A$

- 1. $A \lor B$
- data
- 2. *¬B*
- data
- 3. $A \rightarrow A$ From subcomputation box below

 3.1 A Assume

 3.2 A From 3.1
- 4. $B \rightarrow A$ From subcomputation box below

4.1 <i>B</i>	Assume <u>A</u>
4.2 ¬ <i>A</i> → <i>B</i>	From subcomputation below
4.2.1 ¬A	Assume <u>B</u>
4.2.2 B	From 4.1
4.3 ¬ <i>A</i> →¬ <i>B</i>	From subcomputation below
4.3.1 ¬A	Assume $\frac{\neg B}{}$
4.3.2 ¬ <i>B</i>	From 2
4.4 A	From 4.2, 4.3, and (¬E)

5. *A* From 1., 3., 4., and (\vee E)

 $\frac{A \rightarrow C, B \rightarrow C, A \lor B}{C}$ (\lor E)

Show that $A \vee B$, $\neg B \vdash A$

- 1. $A \lor B$
- data
- 2. ¬B data
- 3. A→A From subcomputation box below
 - 3.1 *A* Assume 3.2 *A* From 3.1
- 4. $\overrightarrow{B} \rightarrow A$ From subcomputation box below

4.1	В	Assume <u>A</u>
4.2	$\neg A \rightarrow B$	From subcomputation below
	4.2.1 ¬ <i>A</i>	Assume <u>B</u>
	4.2.2 B	From 4.1
4.3	$\neg A \rightarrow \neg B$	From subcomputation below
	4.3.1 ¬ <i>A</i>	Assume $\frac{\neg B}{}$
	4.3.2 ¬B	From 2
4.4	A	From 4.2, 4.3, and (¬E)

5. A From 1., 3., 4., and (∨E)

$$\frac{A \rightarrow C, B \rightarrow C, A \lor B}{C} (\lor E)$$

$$\frac{A \vee B, \neg B}{A} \quad (\vee E2)$$

will be introduced as a variant rule!

Α

Show that $\vdash \neg (A \land \neg A)$ (This shows that $\neg (A \land \neg A)$ is a tautology)

Show that $\vdash \neg (A \land \neg A)$ (This shows that $\neg (A \land \neg A)$ is a tautology)

1. $A \wedge \neg A \rightarrow A$

From subcomputation box below

Show that $\vdash \neg (A \land \neg A)$ (This shows that $\neg (A \land \neg A)$ is a tautology)

1. $A \wedge \neg A \rightarrow A$

From subcomputation box below

2 $A \wedge \neg A \rightarrow \neg A$

From subcomputation box below

Show that $\vdash \neg (A \land \neg A)$ (This shows that $\neg (A \land \neg A)$ is a tautology)

1. $A \land \neg A \rightarrow A$ From subcomputation box below

2. $A \land \neg A \rightarrow \neg A$ From subcomputation box below

3. $\neg (A \land \neg A)$ From 1. and 2. and $(\neg I)$

Show that $\vdash \neg (A \land \neg A)$ (This shows that $\neg (A \land \neg A)$ is a tautology)

1.
$$A \land \neg A \rightarrow A$$
 From subcomputation box below

1.1 $A \land \neg A$ Assume

1.2 A From 1.1 and (\land E)

2. $A \land \neg A \rightarrow \neg A$ From subcomputation box below

3. $\neg (A \land \neg A)$ From 1. and 2. and $(\neg I)$

Show that $\vdash \neg (A \land \neg A)$ (This shows that $\neg (A \land \neg A)$ is a tautology)

1.
$$A \land \neg A \rightarrow A$$
 From subcomputation box below

1.1 $A \land \neg A$ Assume

1.2 A From 1.1 and $(\land E)$

- 2. $A \land \neg A \rightarrow \neg A$ From subcomputation box below

 2.1 $A \land \neg A$ Assume

 2.2 $\neg A$ From 2.1 and (\land E)
- 3. $\neg (A \land \neg A)$ From 1. and 2. and $(\neg I)$

Show that $A \land \neg A \vdash B$

(This shows you how to derive any conclusion from an inconsistent set)

Show that $A \land \neg A \vdash B$

(This shows you how to derive any conclusion from an inconsistent set)

1. $A \wedge \neg A$

Data

Show that $A \land \neg A \vdash B$

(This shows you how to derive any conclusion from an inconsistent set)

- 1. $A \wedge \neg A$ Data
- 2. $\neg B \rightarrow A$ From subcomputation box below

3. $\neg B \rightarrow \neg A$ From subcomputation box below

Show that $A \land \neg A \vdash B$

(This shows you how to derive any conclusion from an inconsistent set)

- 1. $A \wedge \neg A$ Data
- 2. $\neg B \rightarrow A$ From subcomputation box below

3. $\neg B \rightarrow \neg A$ From subcomputation box below

4. B From 2. and 3. and $(\neg E)$

Show that $A \land \neg A \vdash B$

(This shows you how to derive any conclusion from an inconsistent set)

- 1. $A \wedge \neg A$ Data
- 2. $\neg B \rightarrow A$ From subcomputation box below

 2.1 $\neg B$ Assume

 2.2 A From 1. and (\land E)
- 3. $\neg B \rightarrow \neg A$ From subcomputation box below

4. *B* From 2. and 3. and (¬E)

Show that $A \land \neg A \vdash B$

(This shows you how to derive any conclusion from an inconsistent set)

- 1. $A \wedge \neg A$ Data
- 2. $\neg B \rightarrow A$ From subcomputation box below 2.1 $\neg B$ Assume
 - 2.2 *A* From 1. and (∧E)
- 3. $\neg B \rightarrow \neg A$ From subcomputation box below $3.1 \ \neg B$ Assume

From 1. and $(\land E)$

4. *B* From 2. and 3. and (¬E)

 $3.2 \neg A$

Now you have everything you need to provide a natural deduction proof for every valid argument in propositional logic.

These are some exercises you can do:

Now you have everything you need to provide a natural deduction proof for every valid argument in propositional logic.

These are some exercises you can do:

 Prove the validity of all arguments already shown to be valid via the truth-tables

Now you have everything you need to provide a natural deduction proof for every valid argument in propositional logic.

These are some exercises you can do:

- Prove the validity of all arguments already shown to be valid via the truth-tables
- Show both directions of every logical equivalence we have seen

That is, if $A \equiv B$, then you can show that $A \vdash B$ and $B \vdash A$

4CCS1ELA 5.2 - Examples Using the Basic Rules

Now you have everything you need to provide a natural deduction proof for every valid argument in propositional logic.

These are some exercises you can do:

- Prove the validity of all arguments already shown to be valid via the truth-tables
- Show both directions of every logical equivalence we have seen That is, if $A \equiv B$, then you can show that $A \vdash B$ and $B \vdash A$
- That all tautologies are valid

Now you have everything you need to provide a natural deduction proof for every valid argument in propositional logic.

These are some exercises you can do:

- Prove the validity of all arguments already shown to be valid via the truth-tables
- Show both directions of every logical equivalence we have seen
 That is, if A ≡ B, then you can show that A ⊢ B and B ⊢ A
- That all tautologies are valid
- That all variant rules can be derived from the basic ones alone (variant rules are presented in the next part)

Practice makes perfect!

To know more...

- Natural deduction is explained in detail in Chapter 3 of Gabbay and Rodrigues' "Elementary Logic with Applications", 1st edition.
- Tutorial list 5 contains several natural deduction examples.
- Proofs of all variant rules from the basic ones will be available as a supplemental material.