LOGICĂ MATEMATICĂ ȘI COMPUTAȚIONALĂ Cursul XIII

Claudia MUREŞAN cmuresan@fmi.unibuc.ro, cmuresan11@yahoo.com

Universitatea din București Facultatea de Matematică și Informatică București

2016-2017, Semestrul I

Cuprinsul acestui curs

Teorii deductive Moisil

Observație

- Teoriile deductive, introduse de matematicianul român Grigore C.
 Moisil, sunt o construcție matematică ce generalizează, cuprinde toate sistemele logice.
- Pentru studiul teoriilor deductive, recomand cursul tipărit de bazele informaticii al Profesorului Virgil-Emil Căzănescu, indicat în bibliografia din Cursul I.

Definiție

- O teorie deductivă este o pereche T = (F, R), unde:
 - F este o mulțime nevidă, ale cărei elemente se numesc fraze (ale lui T);
 - $F^+ := \{f_1 f_2 \dots f_n \mid n \in \mathbb{N}^*, f_1, f_2, \dots, f_n \in F\}$ este mulțimea succesiunilor finite și nevide de fraze; elementele lui F^+ se numesc texte; dacă $n \in \mathbb{N}^*$, iar $f_1, f_2, \dots, f_n \in F$, atunci n se numește $lungimea\ textului\ f_1 f_2 \dots f_n$;
 - se consideră $F \subseteq F^+$: frazele coincid cu textele de lungime 1;
 - $R \subseteq F^+$; elementele lui R se numesc *reguli* (ale lui T).

Vom păstra notațiile din definiția anterioară până la sfârșitul acestui curs.

Notație

- O regulă de lungime mai mare sau egală cu 2, $f_1f_2...f_nf$, cu $n \in \mathbb{N}^*$ și $f_1, f_2,...,f_n, f \in F$, se mai notează sub forma $\{f_1, f_2,...,f_n\} \longrightarrow f$.
- O regulă de lungime 1, f, cu $f \in F$, se mai notează sub forma $\emptyset \longrightarrow f$.

Definiție

- Regulile de lungime mai mare sau egală cu 2 se numesc reguli de deducție (ale lui T).
- Regulile de lungime 1 se numesc axiome (ale lui T). Vom nota cu A mulţimea axiomelor lui T.

Remarcă

Conform definiției de mai sus, are loc: $A = F \cap R$.

Observație

Exemplificăm mai jos pentru calculul propozițional clasic. În mod similar, calculul cu predicate clasic poate fi descris ca teorie deductivă.

Exemplu

Calculul propozițional clasic este o teorie deductivă T=(F,R), unde F=E este mulțimea enunțurilor calculului propozițional clasic, iar R este formată din:

- o mulțime infinită de axiome, anume mulțimea regulilor $\emptyset \longrightarrow \varphi$, cu $\varphi \in E$, φ enunț de una dintre formele (A_1) , (A_2) , (A_3) (\longrightarrow este simbolul din notația pentru regulile unei teorii deductive);
- o mulțime infinită de reguli de deducție (toate de lungime 3), corespunzătoare lui (MP), anume mulțimea $\{\{\varphi,\varphi\to\psi\}\to\psi\mid\varphi,\psi\in E=F\}$ (\to din interiorul acoladelor interioare este conectorul logic numit *implicație* al calculului propozițional clasic, în timp ce \longrightarrow din exteriorul acoladelor interioare este simbolul din notația pentru regulile unei teorii deductive).

Definiție

Se numește demonstrație (în teoria deductivă T) un text $f_1f_2\ldots f_n$, cu $n\in\mathbb{N}^*$ și $f_1,f_2,\ldots,f_n\in F$, cu proprietatea că: pentru orice $i\in\overline{1,n}$, există $k\in\mathbb{N}$ și $j_1,j_2,\ldots,j_k\in\overline{1,i-1}$, astfel încât $\{f_{j_1},f_{j_2},\ldots,f_{j_k}\}\longrightarrow f_i\in R$.

Ca și în calculul propozițional clasic și calculul cu predicate clasic:

Remarcă

Orice demonstrație începe cu o axiomă, i. e.: dacă $f_1f_2\dots f_n$ este o demonstrație, cu $n\in\mathbb{N}^*$ și $f_1,f_2,\dots,f_n\in F$, atunci $f_1\stackrel{\mathrm{not.}}{=}\emptyset\longrightarrow f_1\in R$ (desigur, axiomă). Acest fapt rezultă din transcrierea definiției anterioare pentru cazul i=1.

Notație

Dacă
$$\alpha = f_1 f_2 \dots f_n, \beta = g_1 g_2 \dots g_p \in F^+$$
, cu $n, p \in \mathbb{N}^*$ și $f_1, f_2, \dots, f_n, g_1, g_2, \dots, g_p \in F$, atunci notăm: $\alpha \beta := f_1 f_2 \dots f_n g_1 g_2 \dots g_p \in F^+$.

Remarcă

Fie $\alpha, \beta \in F^+$. Atunci:

- dacă α și β sunt demonstrații, atunci $\alpha\beta$ este o demonstrație (prin inducție matematică (obișnuită), acest rezultat poate fi generalizat de la concatenarea a două demonstrații la concatenarea unui număr finit și nevid de demonstrații);
- dacă $\alpha\beta$ este o demonstrație, atunci α este o demonstrație.

Definiție

Se numește *teoremă* (a teoriei deductive T) o frază $f \in F$ cu proprietatea că există o demonstrație care se termină în f, i. e. o demonstrație de forma $f_1 f_2 \dots f_n f$, cu $n \in \mathbb{N}$ și $f_1, f_2, \dots, f_n \in F$. Mulțimea teoremelor lui T se notează cu Teor(T).

Remarcă

Teor(T) este nevidă ddacă A este nevidă.

Într–adevăr, am observat că orice demonstrație începe cu o axiomă, și, evident, o axiomă constituie o demonstrație (de lungime 1), așadar există demonstrații ddacă există axiome, prin urmare există teoreme ddacă există axiome, în conformitate cu definiția de mai sus a teoremelor. În plus, se observă că $A \subseteq Teor(T)$.

Definiție (sisteme deductive: mulțimi de fraze închise la reguli)

O submulțime $X \subseteq F$ se zice R- \hat{n} chisă (sau \hat{n} chisă la regulile din R) ddacă, pentru orice $n \in \mathbb{N}$ și orice $f_1, f_2, \ldots, f_n, f \in F$, are loc:

dacă
$$\{f_1, f_2, \dots, f_n\} \subseteq X$$
 și $\{f_1, f_2, \dots, f_n\} \longrightarrow f \in R$, atunci $f \in X$.

Remarcă

Orice mulțime *R*–închisă include mulțimea axiomelor.

Intr-adevăr, dacă X este o mulțime de fraze R-închisă, atunci $\emptyset \subseteq X$, prin urmare $A \subseteq X$, în conformitate cu definiția axiomelor și definiția mulțimilor R-închise.

Propoziție

Teor(T) este cea mai mică mulțime R-închisă a lui T (desigur, în raport cu incluziunea).

Demonstrație: Pentru început, să demonstrăm că Teor(T) este R-închisă, folosind definiția mulțimilor R-închise, a teoremelor și a demonstrațiilor, precum și proprietatea care afirmă că o concatenare (finită și nevidă) de demonstrații este demonstrație.

Fie $n \in \mathbb{N}$ și $f_1, f_2, \ldots, f_n \in Teor(T)$, iar $f \in F$, astfel încât $\{f_1, f_2, \ldots, f_n\} \longrightarrow f \in R$.

Cum $f_1, f_2, \ldots, f_n \in Teor(T)$, rezultă că, pentru fiecare $i \in \overline{1, n}$, există o demonstrație $\alpha_i \in F^+$ pentru f_i .

Atunci $\alpha_1\alpha_2\ldots\alpha_n f$ este o demonstrație pentru f, ceea ce arată că $f\in Teor(T)$, așadar Teor(T) este R-închisă.

Şi acum să demonstrăm că Teor(T) este cea mai mică dintre mulțimile R-închise, adică să considerăm o mulțime R-închisă X, și să arătăm că $Teor(T) \subseteq X$. Fie $t \in Teor(T)$, arbitrară, fixată. Atunci există o demonstrație $f_1f_2 \dots f_nt$, cu $n \in \mathbb{N}$ și $f_1, f_2, \dots, f_n \in F$ (demonstrație de lungime n+1, care se termină în t). Avem de demonstrat că $t \in X$. Aplicăm inducție matematică după n.

Pasul de verificare: n=0: Dacă n=0, atunci $t \in A$, prin urmare $t \in X$, conform remarcii precedente.

Pasul de inducție: $0,1,\ldots,n-1,n\rightarrow n+1$: Fie $n\in\mathbb{N}$, cu proprietatea că orice demonstrație de lungime cel mult n+1 se termină într-o frază din X, și astfel încât există o demonstrație $f_1f_2\ldots f_{n+1}t$, cu $f_1,f_2,\ldots,f_n,f_{n+1}\in F$.

Rezultă, conform definiției unei demonstrații, că există $k \in \mathbb{N}$ și

 $j_1, j_2, \ldots, j_k \in \overline{1, n+1}$, astfel încât $\{f_{j_1}, f_{j_2}, \ldots, f_{j_k}\} \longrightarrow t \in R$. Dar, pentru fiecare $s \in \overline{1, k}$, $f_1 f_2 \ldots f_{j_s}$ este o demonstrație pentru f_{j_s} , de lungime cel mult n+1, așadar, conform ipotezei de inducție, rezultă că $f_{j_s} \in X$.

Prin urmare, $\{f_{j_1}, f_{j_2}, \dots, f_{j_k}\} \subseteq X$, iar $\{f_{j_1}, f_{j_2}, \dots, f_{j_k}\} \longrightarrow t \in R$. Cum X este R-închisă, rezultă că $t \in X$.

Rezultă că $Teor(T) \subseteq X$, ceea ce încheie a doua parte a demonstrației propoziției. Așadar, Teor(T) este cea mai mică mulțime R–închisă.

Definiție

Se numește consecință (pe F) un operator de închidere finitar pe $\mathcal{P}(F)$, adică un operator de închidere $C: \mathcal{P}(F) \to \mathcal{P}(F)$ cu proprietatea că, oricare ar fi $X \subseteq F$,

$$C(X) = \bigcup_{\substack{Y \subseteq X, \\ |Y| < \infty}} C(Y).$$

Propoziție

Mulțimea consecințelor (pe F) este în bijecție cu $\mathcal{P}(F^+)$ (mulțimea mulțimilor de reguli).

Schiţa demonstraţiei: Bijecţia căutată duce orice $R \subseteq F^+$ în consecinţa $C_R : \mathcal{P}(F) \to \mathcal{P}(F)$, definită prin: oricare ar fi $X \subseteq F$, $C_R(X) := Teor(F, X \cup R)$ (mulţimea teoremelor teoriei deductive cu mulţimea frazelor F şi mulţimea regulilor dată de R, la care se adaugă elementele lui X ca axiome).

Inversa acestei bijecții duce orice consecință C în mulțimea $R_C := \{\{f_1, f_2, \ldots, f_n\} \longrightarrow f \mid n \in \mathbb{N}, f_1, f_2, \ldots, f_n, f \in F, f \in C(\{f_1, f_2, \ldots, f_n\})\} \subseteq F^+.$ Se arată că prima dintre aceste funcții este corect definită, adică imaginea ei este o mulțime de consecințe. Este clar că a doua funcție este corect definită. Apoi se arată ca aceste funcții sunt bijecții, demonstrând că sunt inverse una alteia, adică, pentru orice consecință C, $C_{R_C} = C$, și, pentru orice $R \subseteq F^+$, $R_{C_R} = R$.