

Formulário de Estatística

Formulario de Estatistica	
Fórmula de <i>Sturges</i>	$K = 1 + 3.322 \times \log_{10}(n) = 1 + \log_2(n)$, $K = n^{\circ}$ classes, $n = n^{\circ}$ observações
Quartis de ordem <i>p</i>	$q_{p} = \begin{cases} x_{(w)}, & w \text{ inteiro} \\ x_{(i)} + (w-i)(x_{(i+1)} - x_{(i)}), & w \text{ não inteiro} \end{cases}$ $w = \frac{p(n+1)}{4}, & i < w < i+1 (i, i+1 \text{ inteiros consecutivos})$
Mediana (dados agrupados em classes)	$\begin{aligned} \textit{Med} &= \widetilde{X} = L_i + \frac{\frac{n}{2} - F_i}{f_i} \left(U_i - L_i \right) \\ \textit{n} &= \text{n}^\circ \text{ observações} \\ [U_i, L_i[\text{ \'e a classe mediana (a que cont\'em a observação n/2)} \\ f_i, F_i &= \text{freq. da classe } i \text{ e freq. acumulada at\'e \`a classe } i - 1 \end{aligned}$
Moda (dados agrupados em classes)	$\label{eq:moda} \begin{aligned} \mathit{Moda} &= \mathbf{L}_i + \frac{\mathbf{f}_i - \mathbf{f}_{i-1}}{\left(\mathbf{f}_i - \mathbf{f}_{i-1}\right) + \left(\mathbf{f}_i - \mathbf{f}_{i+1}\right)} \big(\mathbf{U}_i - \mathbf{L}_i\big) \\ &\text{classe modal} &= \left[\mathbf{U}_i, \mathbf{L}_i\right] \\ &\mathbf{f}_i &= \text{frequência da classe } i \end{aligned}$
Variância amostral	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - n.\overline{X}^{2} \right]$
Coeficiente de correlação	$r = \frac{\left[\sum\limits_{i=1}^{n} x_i y_i - \frac{\left(\sum x_i\right)\left(\sum y_i\right)}{n}\right]}{\sqrt{\left[\sum\limits_{i=1}^{n} x_i^2 - \frac{\left(\sum x_i\right)^2}{n}\right]\left[\sum\limits_{i=1}^{n} y_i^2 - \frac{\left(\sum y_i\right)^2}{n}\right]}}$
Distribuição Binomial $B(n,p)$	$P(X = k) = C_k^n p^k (1 - p)^{n - k}, k = 0, 1, 2,, n$ E(X) = np, Var(X) = np(1 - p).
Distribuição Binomial Negativa $BN(r,p)$ $BN(r=1,p) \Leftrightarrow G(p)$	$P(X = k) = C_{r-1}^{k-1} p^r (1-p)^{k-r}, k = r, r+1, r+2,$ $E(X) = \frac{r}{p}, Var(X) = \frac{r(1-p)}{p^2}.$
Distribuição Hiper-Geométrica $H(N,D,n)$	$P(X = k) = \frac{C_k^D C_{n-k}^{N-D}}{C_n^N}, k = m \acute{a} x (0, n - N + D),, \min(n, D)$ $E(X) = np, \ Var(X) = np(1-p) \frac{N-n}{N-1}, \ \text{com} \ p = \frac{D}{N}.$
Distribuição de Poisson $P(\lambda)$	$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, k = 0,1,2,; \lambda > 0$ $E(X) = Var(X) = \lambda.$

Distribuição Uniforme $U(a, b)$	$f(x) = \begin{cases} \frac{1}{b-a} &, a \le x \le b \\ 0 &, \underline{\qquad} \end{cases}$
	$E(X) = \frac{a+b}{2}, Var(X) = \frac{(b-a)^2}{12}.$
Distribuição Normal	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}, -\infty < x, \mu < +\infty, \sigma > 0$
$N(\mu ; \sigma^2)$	$E(X) = \mu, Var(X) = \sigma^{2}.$
Distribuição Exponencial	$f(x) = \begin{cases} \lambda e^{-\lambda x} &, x > 0 \\ 0 &, \dots \end{cases}$
Ε(λ)	$E(X) = \frac{1}{\lambda}$, $Var(X) = \frac{1}{\lambda^2}$.
I.C. para a Média (variância conhecida)	$\left(\overline{x} - z_{(1-\alpha/2)} \cdot \frac{\sigma}{\sqrt{n}} ; \overline{x} + z_{(1-\alpha/2)} \cdot \frac{\sigma}{\sqrt{n}}\right) ; \qquad Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$
I.C. para a Média (variância desconhecida)	$\left(\overline{x} - t_{(1-\alpha/2)} \cdot \frac{s}{\sqrt{n}} ; \overline{x} + t_{(1-\alpha/2)} \cdot \frac{s}{\sqrt{n}}\right) ; \qquad T = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}} \sim t_{n-1}$
I.C. para a Diferença de Médias	$(\bar{x}_1 - \bar{x}_2) \pm z_{(1-\alpha/2)} \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1} + \frac{\sigma_2^2}{n_2}} \qquad ; \qquad Z_D = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$
(variâncias conhecidas)	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
I.C. para a Diferença de Médias	$(\overline{x}_1 - \overline{x}_2) \pm t_{(1-\alpha/2)} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \text{ com } \sigma_1^2 = \sigma_2^2; T_D^* = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}}} \sim t_{n_1 + n_2 - 2}$
(variâncias desconhecidas)	$(\bar{x}_1 - \bar{x}_2) \pm t'_{(1-\alpha/2)}, \sqrt{\frac{s_1^2 + \frac{s_2^2}{n_1}}{n_1 + \frac{s_2^2}{n_2}}}, \text{ com } \sigma_1^2 \neq \sigma_2^2; t'_{(1-\alpha/2)} = \frac{w_1 t_1 + w_2 t_2}{w_1 + w_2};$
	$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2} \qquad w_1 = S_1^2 / n_1; w_2 = S_2^2 / n_2; t_1 = t_{(1 - \alpha/2, n_1 - 1)}; t_2 = t_{(1 - \alpha/2, n_2 - 1)}$
I.C. para a proporção	$\left(\hat{p} - z_{(1-\alpha/2)} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}; \hat{p} + z_{(1-\alpha/2)} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right) ; Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0,1)$
I.C. aproximado para a Diferença de proporções	$(\hat{p}_{1} - \hat{p}_{2}) \pm z_{(1-\alpha/2)} \cdot \sqrt{\frac{\hat{p}_{1}(1-\hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{2}(1-\hat{p}_{2})}{n_{2}}}; Z_{D} = \frac{(\hat{p}_{1} - \hat{p}_{2}) - (p_{1} - p_{2})}{\sqrt{\frac{p_{1}(1-p_{1})}{n_{1}} + \frac{p_{2}(1-p_{2})}{n_{2}}}} \sim N(0,1)$
I.C. para a	
Variância	$\left(\frac{(n-1)S^{2}}{b}; \frac{(n-1)S^{2}}{a}\right) X^{2} = \frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2}_{(n-1)}$ $\Rightarrow a = \chi^{2}_{(\alpha/2;n-1)}; b = \chi^{2}_{(1-\alpha/2;n-1)}$
I.C. para a	$\left(\frac{S_1^2}{b.S_2^2}; \frac{S_1^2}{a.S_2^2}\right); \qquad F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} = \frac{\sigma_2^2}{\sigma_1^2} \frac{S_1^2}{S_2^2} \sim F_{(n_1 - 1, n_2 - 1)}$
Razão de Variâncias $\frac{\sigma_1^2}{\sigma_2^2}$	
2	$b = F_{(1-\alpha/2; n_1-1, n_2-1)}, a = F_{(\alpha/2; n_1-1, n_2-1)} = 1/F_{(1-\alpha/2; n_2-1, n_1-1)}$