Определение отображения 1.2.1

Пусть X, Y - топологические пространства.

 $f\colon X o Y$ - непрерывные в точке $x_0\in X\iff orall V$ - окрестность точки $f(x_0)\ \exists U$ - окрестность точки $x_0:f(U)\subset V$

Определение непрерывности

 $f : \ X o Y$ - непрерывна $\iff orall x_0 \in X, \ f$ - непрерывна в x_0

Функция называется непрерывной, если она непрерывна в каждой точки $x_0 \in X$

Лемма 1.2.2

Пусть $f:\ X o Y$ - отображение топологического пространства

- 1. f непрерывна в x_0
- 2. $\forall V$ окрестности $f(x_0),\, f^{-1}(V)$ является окрестностью x_0
- 3. $\forall A\subset X$, из того, что x_0 является точкой прикосновения A следует, что $f(x_0)$ является точкой прикосновения множества f(A)

Доказательство

Пусть $f \colon X o Y$ - отображение множества $A \subset X, \ B \subset Y$

 $f(A)\subset Y$: образ A при отображении f $f(A)\stackrel{def}{=}\{f)x\}$

□ Дописать доказательство (Спросить у Дины)

Задача

Доказать следствие свойства:

Пусть $f:\ X o Y$ - отображение множеств

 $A,\ A_{i}\,(i\in J)$ - подмножества X

 $B,\ B_{i}\ (i\in J)$ - подмножества Y

1.1

1.
$$f({\displaystyle \mathop{\cup}_{i \in J}} A_i) = {\displaystyle \mathop{\cup}_{i \in J}} f(A_i)$$

2.
$$f\left(igcap_{i \in J} A_i
ight) \subset \cap f(A_i)_i$$

3.
$$f(X \backslash A) \supset f(X) \backslash f(A)$$

2.2

1.
$$f^{-1}(\underset{i\in J}{\cup}B_i)=\underset{i\in J}{\cup}f^{-1}(B_i)$$

2.
$$f^{-1}(\mathop{\cap}\limits_{i\in J}B_i)=\mathop{\cap}\limits_{f^{-1}}(B_i)$$

3.
$$f^{-1}\left(Yigcap_{i\in J}B_i
ight)=\cap f^{-1}(B_i)$$

3. 3

1.
$$f^{-1}\left(f(A)
ight)\supset A$$

2.
$$f\left(f^{-1}(B)\right)\subset B$$

Доказательство леммы 1.2.2

$$(1) \implies (2)$$

Пусть V - окрестность $f(x_0)$.

Тогда по (1) $\exists V$ - окрестность точки $x_0: f(U) \subset V$.

Тогда $U\subset f^{-1}(V)$

B с.у., если $x \in U$, то $f(x_0) \in V \implies x_0 \in f^{-1}(V)$

Так как U - окрестность точки x_0 , то по

Дописать

Теорема 1.2.3 (об условии эквивалентной непрерывности)

Следуя условиям эквивалентности для $f:\ X o Y$

- 1. f непрерывно
- 2. $orall V\subset Y$ открытое множество, $f^{-1}(V)$ открытое
- 3. $orall B\subset Y$ замкнутое, $f^{-1}(B)\subset X$ замкнутое

Доказательство

$$(1) \implies (2)$$

Пусть $x_0 \in f^{-1}(V)$ - произвольное

Тогда $f(x_0) \in V$, и V - открытая точка, то V - открытая точка $f(x_0)$

 $f^{-1}(V)$ - окрестность точки x_0

Таким образом, $f^{-1}(V)$ является окрестностью каждой своей точки $\stackrel{\text{п. }1.2.4}{\Longrightarrow} f^{-1}(V)$ - открытое множество.

$$(2) \implies (1)$$

Пусть $x_0 \in X$.

V - окрестность точки $f(x_0) \implies \exists V': \ f(x_0) \in V' \subset V$

 V^\prime - открыто

$$\implies x_0 \in A^{-1}(V') \subset A^{-1}(V)$$

Так как V' - открыто, то $f^{-1}(V')$ - открыто $\implies f^{-1}(V)$ - открытая точка $x_0 \stackrel{1.2.2}{\Longrightarrow} f$ - непрерывна в точке x_0

$$(2) \iff (3)$$

Получается из окрестности замкнутого множества и того факта, что $f^{-1}(Y \backslash C) = X \backslash f^{-1}(C)$

$$f:\;(lpha,eta) o\mathbb{R}$$

$$f$$
 неизвестна в точке $x_0\iff orall \epsilon>0$: $orall x:|x-x_0|<\delta,|f(x)-f(x_0)|<\epsilon$ $x\in (x_0-\delta,x_0+\delta)\implies f(x)\in (f(x_0)-\epsilon,f(x_0)+\epsilon)$

Теорема 1.2.4

Пусть $(X,d_X),\ (Y,d_Y)$ - метрические пространства

 $T_{1} = T_{d_{x}}; \ T_{2} = T_{d_{y}}$ - метрические топологии на X

 $f:\ X o Y$ - отображение

$$x_0 \in X$$

$$f$$
 - непрерывна в точке $x_0\iff orall \epsilon>0$: $d_X(x,x_0)<\delta$, то $d_Y\left(f(x),f(x_0)
ight)<\epsilon$ $d_X\left(x_1;x_2
ight)=(x_1-x_2)$

$$d_Y(y_1; y_2) = (y_1 - y_2)$$

Доказательство

$$(\Longrightarrow)$$

Пусть $\epsilon > 0$

$$V = B(f(x_0), \epsilon)$$

V - открытое множество

По определению непрерывной функции в точке, $\exists U$ - открытое в точке $x_0:\ f(U)\subset V$

$$\overset{ ext{по определению}}{\Longrightarrow}$$
 $\exists \delta>0:\ B(x_0,\delta)\subset U$, то есть $f(B(x_0,\delta))\subset V$, то есть

$$orall x \in B(x_0,\delta), \ f(x) \in B\left(f(x_0),\epsilon
ight)$$

То есть
$$orall x:\ d_X(x_0,x)<\delta,\ d_Y(f(x_0),f(x))<\epsilon$$

Определение 1.2.5

Пусть (X,T) топологическое пространство.

 $B\subset T.$ Множество B называется базой, топологии

$$T \iff \forall U \in T, \forall x \in U \ \exists V \in B: \ x \in V \subset U$$

Теорема 1.2.6

Пусть (X,d) - метрическое пространство.

 T_d - метрическая топология на X.

$$B\subset T_d:\ U\in B\iff\exists x\in X,\ \exists n>0$$
 - целое.

$$U = B\left(x, \frac{1}{n}\right)$$

Тогда B - база T_d

Доказательство

Пусть $U \in T$

Тогда $orall a \in U \ \exists \epsilon \geq 0$

$$B(a,\epsilon)\subset U.$$

По свойствам вещественных чисел, $\exists n$ - натуральное, $\frac{1}{n} < \epsilon$, такое, что

$$B\left(a,rac{1}{n}
ight)\subset B(a,\epsilon)\subset U \ \left(x-rac{1}{n},x+rac{1}{n}
ight)$$

Теорема 1.2.7

Пусть (X,T) - топологическое пространство

 $B\subset T$. Следовательно по условию эквивалентности,

1. B - база T

2.
$$\forall U \in T \ \exists \ \{V_i \in B | i \in J\} : \underset{i \in J}{\cup} V_i = U$$

Доказательство

$$(1) \implies (2)$$

Пусть $U \in T$

Тогда, по определению базы, $\forall x \in U, \; \exists V_x \in B: \; x \in V_x \subset U$

Убедимся, что $U=\mathop{\cup}\limits_{x\in U}V_x$

 $V_x\subset U$, to $\cup V_x\subset U$

Наоборот, если $y \in U$, то $y \in V_y \subset U \implies y \in \cup V_x$

 $(2) \implies (1)$

Пусть $U \in T, \ x \in U$

По $(2),\exists\,\{V_i\in B|i\in J\}: \cup V_i=U$, то $x\in \cup V_i\implies i_0\in J:\ x\in V_{i_0}$

...

Определение 1.2.8

(X,T) - топологическое пространство

 $PB\subset T$ называется предбазой T

$$\iff \{W_1 \cap \ldots \cap W_k | W_i \in PB, k \in Z_{>0}\}$$

Образуют базу T

Теорема 1.2.9

Пусть $f:\ X o Y$ - отображение топологического пространства.

PB - предбаза топологии пространства Y.

Тогда если $\forall w \in PB, f^{-1}(W) \subset X$ - открыто, то f - непрерывное отображение.

В частности, если $f:\ X o R$ - отображение, и $\forall a\in R$, множества $\{x\in X|f(x)< a\}$ и $\{x\in X|f(x)> a\}$ открыты, то f - непрерывно в каждой точке X

Доказательство

Воспользуемся теоремой <u>1.2.3</u>, и для этого докажем, что $\forall V \subset Y$ - открытое множество $f^{-1}(V)$ является открытым.

Обозначим совокупность всех множеств вида $W_1 \cap a \ldots \cap W_k$, где $W_i \in PB$.

По условию, $f^{-1}(W_k)$ - открытое множество

$$\implies f^{-1}\left(W_1\cap\ldots\cap W_k
ight)=f^{-1}(W_1)\cap\ldots\cap f^{-1}(W_k)$$
 - открыто.

Поэтому $V=\cap V_i$, где $V_i\in B$

$$f^{-1}(V) = f^{-1}(\cup V_i) = \cup f^{-1}(V_i).$$

По доказанному, $f^{-1}(V_i)$ - открытое множество $\implies f^{-1}(V)$ - открыто, как объединение открытых

"В частности"

Докажем сначала, что $PB\left(\{(-\infty,a),(a,+\infty)|a\in R\}\right)$ - предбаза топологии множества вещественных чисел R

Пусть $B=W_1\cap\ldots\cap W_k$, где $W_i\in PB$

Легко видеть, что пересечение двух открытых интервалов $(\alpha_1, \beta_1) \cap (\alpha_2, \beta_2)$ снова являются открытым интервалом.

С другой стороны, $\forall \alpha_1, \beta_1, \ \ (\alpha, \beta) = (-\infty, \beta) \cap (\alpha, \infty+)$

Таким образом, B совпадает с множеством всех открытых интервалов прямой Пусть $U \subset R$ - открыто.

Тогда
$$\forall x \in U \exists \epsilon > 0: \; (x - \epsilon, x + \epsilon) \subset U$$

Ho
$$(x - \epsilon, x + \epsilon) \in B$$

Таким образом, PB - предбаза топологии R, поэтому основная часть теоремы $\underline{1.2.9}$ для доказательства непрерывности f достаточно установить, что $f^{-1}(-\infty,a)$ и $f^{-1}(b,+\infty)$ - открытые множества.

По определению

$$f^{-1} \ x \in f^{-1} \ (-\infty, a) \iff f(x) \in (-\infty, a) \iff -\infty < f(x) < a \iff f(x) < a$$
 $x \in f^{-1} \ (a, \infty) \iff a < f(x) < \infty \iff a < f(x)$

Таким образом, $f^{-1}(-\infty,a) = \{x \in X | f(x) < a\}$ - открытое по условию,

$$f^{-1}(a,\infty)=\{x\in X|f(x)>a\}$$
 - открыто по условию $\implies f$ - непрерывно

Теорема 1.2.10 (о задании топологии предбазой)

Пусть X - множество.

ho - произвольное множество подмножеств множества X

Тогда $\exists !$ топология на множестве X, такое, что ρ является предбазой топологии T

Теорема 1.2.11

Пусть X - множество.

B - некоторое множество подмножества X, такое, что

1.
$$\cup \{V | V \in B\} = X$$

2.
$$\forall V_1, V_2 \in B, V_1 \cap V_2 \in B$$

Тогда $\exists !T$ - топология на $X:\ B$ - база T

Утверждение

 $f : \ X o \mathbb{R}$ - неизвестная функция.

X - топологическое пространство.

Предположим, что $\forall \alpha \in \mathbb{R}$

$$egin{cases} \{X\in X|f(x)lpha\} & ext{открыто} \end{cases} \implies f$$
 - непрерывное в каждой точке $x_0\in X$

Доказательство

Из определения предбазы и свойств полного прообраза следует, что если $f: X \to Y$ - отображение топологического пространства и PB - предбаза Y, то из условия, что $f^{-1}(W) \subset X$ - открыто $\forall W \in PB$, следует, что f - непрерывно в каждой точке X

В данном случае заметим, что $egin{cases} \{X\in X|f(x)<lpha\}=f^{-1}\left(-\infty,lpha
ight),\ \{x\in X|f(x)>lpha\}=f^{-1}\left(lpha,\infty
ight). \end{cases}$

Покажем, что $PB=\{(-\infty,\alpha),(\alpha,\infty)|\alpha\in\mathbb{R}\}$ - является предбазой $\mathbb{R}.$ B с. д., заметим, что $(\infty,\alpha)\cap(B,\infty)=(\beta,\alpha),$ если $\beta<\alpha$ $\beta=B$

Теорема

Пусто
$$PB$$
 - предбаза Y

Если $\forall w \in PB \quad f^{-1}(w) \subset X$ - открыт, то f- непрерывное отображение

Доказательство

Это тоже было

Лучше посмотрите на код на python

2. Кривые и поверхности

2.1 Кривые и вектор-функции

2.1.1 Параметризованная кривая в (X, T)

 $\gamma:A o X-$ непрерывное отражение $A\subset R-$ множество без дырок

Если A=[lpha,eta], и $\gamma:\ [lpha,eta] o X$ - кривая, то $\gamma(lpha)\in X$ называется началом $\gamma,\,\gamma(eta)$ - концом γ

 $x \in X$ лежит на кривой $\equiv \gamma$ проходит через точку $x \iff \exists t_0 \in [lpha, eta] : \gamma(t_0) = x$

Наша кривая является отображением из t, и имеет скорость (за 1/2 доходит до середины, а за 1/3 до конца отрезка)

2.1.2 Координатные функции

V - векторное (линейное) пространство, f:A o V - отображение.

 $\{\overline{a}_1,\ldots,\overline{a}_n\}$ - базис V, $f(x)=f^1(x)\overline{a}_1+\ldots+f^n(x)\overline{a}_n.$

Функции $f^1,\dots,f^n:A o\mathbb{R}$ называются **координатными функциями** отображения \overline{f}

Функции f:A o V, если V - векторное пространство, называются **вектор-функция** $\overline{a}=lpha^1\overline{a}_1+\ldots+lpha^n\cdot\overline{a}_n$

2.1.3 Утверждение

 $\{\overline{a}_1,\ldots,\overline{a}_n\}$ - базис векторного пространства V.

Каждая вектор функция $\overline{f}:\ A o V$ однозначно задаёт набор своих координатных функций $f^1,\dots,f^n:A o\mathbb{R}$, т. с. таких, что $\overline{f}(x)=f^1(x)\overline{a}_1+\dots+f^n(x)\overline{a}_n$.

Наоборот, любой набор $g^1,\dots,g^n:A\to\mathbb{R}$ однозначно определяет отображение $g:A\to V:g^1,\dots,g^n$ - координатные функции g

Доказательство

 $\forall x\in A,\ f(x)\in V$, и по определению базиса, $f(x)\in lpha^1\overline{a}_1+\ldots+lpha^n\overline{a}_n$, где числа $lpha^1,\ldots,lpha^n$ определены для данных x однозначно.

Таким образом, $\forall x \in A \forall i \in 1, \dots, n$ задано единственное число α^i , которое обозначим $f^i(n)$.

Наоборот, если $g^i:A o\mathbb{R}$ - функции, то полагая $\overline{g}(x)=g^1(x)\overline{a}_1+\ldots+g^n(x)\overline{a}_n$, получаем вектор функцию $\overline{g}:A o V$, координатными функциями которой являются g^1,\ldots,g^n

2.1.4 Определение

Пусть $\overline{\gamma}(t)$ - ? вектор функці

$$ar{a} = ar{\gamma}(t_0) \iff egin{cases} \lim_{t o t_0} rac{|ar{\gamma}(t) - ar{\gamma}(t_0) - ar{a}(t - t_0)|}{t - t_0} = 0 \ \lim_{t o t_0} rac{ar{\gamma}(t) - ar{\gamma}(t_0)}{t - t_0} = ar{a} \end{cases}$$

Таким образом, $\overline{a}=\overline{\gamma}'(t_0)\iff \overline{\gamma}(t)\stackrel{def}{=}\overline{\gamma}(t_0)+\overline{a}(t-t_0)+\overline{\epsilon}(t)(t-t_0)$, где $\lim_{t\to t}\left(\overline{\epsilon}(t)\right)=0$

2.1.5 Определение

Пусть $\gamma: [lpha, eta] o X$ кривая, l - прямая, проходящая через точку $A = \gamma(t_0)$ l называют касательной к γ в тчк. A, если $\lim_{t o t_0} (\phi(t)) = 0$, где $\phi(t)$ - угол между l и секущей, проходящей через A и $\gamma(t)$, иначе говоря $\iff \lim_{t o t_0} \frac{h(t)}{|A\gamma(t)|} = 0$

2.1.6 Теорема

Пусть $\overline{\gamma}$ - вектор функция, задающую кривую $\gamma: [lpha, eta] o X$ $A=\gamma(t_0)$. Тогда, если $\overline{\gamma}'(t_0)
eq \overline{0}$, то кривая, проходящая через точку $A=\gamma(t_0)$ с направлением вектора $\bar{a}=\bar{\gamma}'(t_0)$, является касательной к кривой γ в точке A

2.1.6 Доказательство

Пусть O - начало координат в X, так что $\forall C, D \in X, \quad \overline{CD} = \overline{OD} - \overline{OC}$. В частности $A\gamma(t) = \overline{\gamma}(t) - \overline{OA}.$

И так как
$$A=\gamma(t_0)$$
, то $\overline{A\gamma}(t)=\overline{\gamma}(t)-\overline{\gamma}(t_0)$

$$\lim_{t\to t_0}\frac{h(t)}{|\bar{\gamma}(t)-\bar{\gamma}(t_0)|}=0$$

Из геометрии известно, что расстояние от точки $\gamma(t)$ до прямой l проходит через точку A с направлением вектора \overline{a} .

Находится так:

$$h(t)^2 = \left|A\gamma(t)
ight|^2 - rac{\left(\overline{a},\overline{A\gamma(t)}
ight)}{\left|a
ight|^2} = \left|\overline{\gamma}(t)-\overline{\gamma}(t_0)
ight|^2 - rac{\left(\overline{a},\gamma(t)-\gamma(t_0)
ight)}{\left|a
ight|^2}$$

Имеем $\overline{a}=\gamma'(t_0)$, т. е. $\gamma(t)=\gamma(t_0)+\overline{a}\left(t-t_0
ight)+\epsilon(t)\left(t-t_0
ight)$, где $\lim \epsilon(t)=0$

$$\gamma(t)-\gamma(t_0)=\left(\overline{a}+\overline{\epsilon}(t)
ight)(t-t_0)
ightarrow$$

$$h(t)^2=rac{(\overline{a}+\overline{\epsilon}(t))^2|t-t_0|^2|a|^2-(\overline{a},\overline{a}+\overline{\epsilon}(t))^2(t-t_0)^2}{|a|^2}\impliesrac{h(t)^2}{|\overline{\gamma}(t)-\overline{\gamma}(t_0)|}=rac{(t-t_0)^2\left(|\overline{a}+\overline{\epsilon}(t)|^2|a|^2-\overline{\epsilon}(t)|^2|a|^2}{|\overline{a}+\overline{\epsilon}(t)|^2(t-t_0)^2}$$
 $=rac{|\overline{a}+\overline{\epsilon}(t)|^2|a|^2-(a,\overline{a}+\overline{\epsilon}(t))^2}{|\overline{a}+\overline{\epsilon}(t)|^2}\implies$ переходя к пределу при $t\to t_0$ и учитывая, что

$$=rac{|\overline{a}+\overline{\epsilon}(t)|^2|a|^2-(a,\overline{a}+\overline{\epsilon}(t))^2}{|\overline{a}+\overline{\epsilon}(t)|^2}\implies$$
 переходя к пределу при $t o t_0$ и учитывая, что

$$\lim_{t o t_0}\overline{\epsilon}(t)=0$$
, то $rac{|a|^2|a|^2-(a,a)^2}{{|\overline{a}|}^2}=0$

2.1.7 Утверждение

Пусть $\overline{\gamma}: [lpha, eta] o V$ - вектор функция, где V - линейное пространство. 1.1

1. Если f: [lpha, eta] o R - вещественная функция, если $\exists f'(t_0)$ и $ar{\gamma}'(t_0)$, то

$$\left(fg
ight)'(t_{0})=f'\left(t_{0}
ight)\cdotar{\gamma}\left(t_{0}
ight)+f(t_{0})\cdotar{\gamma}'(t_{0})$$

2. Если $\overline{u},\overline{v}:\left[lpha,eta
ight]
ightarrow V$ - вектор функции, и $\exists\overline{u}'\left(t_{0}
ight),\overline{v}'(t_{0})$, то

$$\left(\overline{u},\overline{v}
ight)'(t_0) = \left(\overline{u}(t_0),\overline{v}'(t_0)
ight) + \left(u'(t_0),\overline{v}(t_0)
ight)$$

- 3. Если V 3-х мерное пространство, то $[\overline{u},\overline{v}]'(t_0)=[\overline{u}'(t_0),\overline{v}(t_0)]+[\overline{u}(t_0),\overline{v}'(t_0)]$
- 2. Если $\gamma,\delta\in R,\overline{u},\overline{v}$ вектор-функции, то $(\gamma\overline{u}+\delta\overline{v})'(t_0)=\gamma\overline{u}'(t_0)+\delta\overline{v}'(t_0)$
- 3. Если $\{\overline{a_1},\dots,\overline{a}_n\}$ базис V и $\overline{\gamma}(t)=\gamma'(t)\overline{a_1}+\dots+\gamma^n(t)\overline{a}_n$, то

$$\gamma'(t_0) = \left(\gamma^1\right)'(t_0)\overline{a_1} + \ldots + \left(\gamma^n\right)'(t_0)\overline{a}_n$$

4. Если $p_i\left[\gamma,\delta
ight] o R$ - вещественная функция, $p(t)\in\left[lpha,eta
ight]$, то $\left(\overline{\gamma}_o p
ight)'(t_0)=p'(t_0)\cdot\overline{\gamma}'(p(t_0))$

2.1.8 Определение

Пусть $\overline{f}:[lpha,eta] o V$ - вектор функция. $\overline{F}:[lpha,eta] o V$ называют **первообразной** для \overline{f} , если \overline{F} - непрерывна, и $orall t\in(lpha,eta)$

$$\overline{F}'(t) = \overline{f}(t)$$

2.1.9 Теоремы

Пусть $\overline{f}: [lpha, eta] o V$ - непрерывная вектор функция

- 1. Если \overline{F} и \overline{G} первообразные функции \overline{f} , то $\overline{F}-\overline{G}$ константа, то есть $\overline{F}(t)-\overline{G}(t)$ не зависит от t
- 2. Если \overline{F} первообразная \overline{f} , G первообразная \overline{g} , $\gamma,\delta\in R$, то $\alpha\overline{F}+\beta\overline{G}$ первообразные $\alpha\overline{f}+\beta\overline{g}$
- 3.3
- 1. $H\cdot \overline{F}$ первообразная $h\cdot \overline{F}+H+\overline{f}$, где h:[lpha,eta] o R, H первообразная h
- 2. Если \overline{F} первообразная $\overline{f},\overline{G}$ первообразная \overline{g} , то $\left(\overline{F},\overline{G}\right)$ это первообразная $\left(\overline{f},\overline{G}\right)+\left(\overline{F},\overline{g}\right)$
- 3. $\left[\overline{F},\overline{G}
 ight]$ первообразные $\left[\overline{f},\overline{G}
 ight]+\left[\overline{F},\overline{g}
 ight]$
- 4. Если $p:[\gamma,\delta] o R, p(t)\in [lpha,eta]$, то $\overline{F}_o p$ это первообразная функции $\overline{F}'-(p(t))\cdot p'(t)$
- 5. Если F'(t) первообразная $f'(t),\ \overline{f}:\overline{f}(t)=f'(t)\overline{a}1+\ldots+f^n(t)\overline{a}_n$, то покоординатное интегрирование валидно

2.1.10 Определение

Пусть $\overline{h}: [lpha, eta] o V$ - вектор функция.

 $\overline{H}: [lpha, eta] o V$ - ёё первообразная

 $\int\limits_{lpha}^{eta}\overline{h}(t)dt=\overline{H}(eta)-\overline{H}\left(lpha
ight)$ называется интегралом от lpha до eta функции \overline{h}

2.1.11 Свойства интеграла

1. Если \overline{h} неизвестная функция, то интеграл $\int\limits_{lpha}^{eta}\overline{h}(t)dt$ существует и однозначно определён

$$2.\int\limits_{\alpha}^{\beta}\Big(\gamma\overline{h}_{1}(t)+\delta\overline{h}_{2}\left(t\right)\Big)dt=\gamma\int\limits_{\alpha}^{\beta}\overline{h}_{1}(t)dt+\delta\int\limits_{\alpha}^{\beta}\overline{h}_{2}(t)dt$$

3. Если
$$\overline{h}(t)=h^1(t)\overline{a}_1+\ldots+\overline{h}^n\overline{a}_n$$
, где $\left\{\overline{a}^1,\ldots,\overline{a}^n\right\}$ - базис V , то $\int\limits_{lpha}^{eta}\overline{h}(t)dt=\left(\int\limits_{lpha}^{eta}h^1(t)dt
ight)\overline{a}_1+\ldots+\left(\int\limits_{lpha}^{eta}h^n(t)dt
ight)\overline{a}_n$

Доказательство

1. Пусть $\overline{h}(t) = h^1(t)\overline{a}_1 + \ldots + h^n(t)\overline{a}^n$

Если \overline{h} - непрерывна, то $h^1,\ldots,h^n:[lpha,eta] o R$ - непрерывны, \implies

 $\exists H^1,\ldots,H^n: [lpha,eta] o R$ - первообразная h^1,\ldots,h^n

По 2.1.9, $\overline{H}=H^1\overline{a}_1+\ldots+H^n\overline{a}_n$ - первообразная ?

По определению интеграла, $\exists \overline{H}(\beta) - \overline{H}(\alpha) = \int\limits_{\alpha}^{\beta} ?$

@tyferse, допиши, пж

2. To 2.19

Лекция 2.2 Кривизна, кручение и формы Френе

2.2.1 Теорема

Пусть γ - кривая, задаваемая вектором Френе и $\overline{\gamma}:(lpha,eta] o V.$

Пусть $\gamma'(t)$ непрерывна. $\forall t \in (\alpha, \beta)$ Тогда данная кривая задаётся равенством:

$$l\left(\gamma
ight)=\int\limits_{lpha}^{eta}\left|\overline{\gamma}'(t)
ight|dt$$

2.2.2 Определение

Пусть $\gamma(t)$ - кривая. $\tilde{\gamma}(\tau)$ называется естественной параметризацией кривой γ , если \exists функция $\tau(t)$, такая, что $\tilde{\gamma}(\tau(t))=\bar{\gamma}(t)$, и $\left|\tilde{\gamma}_{\tau}'\right|=1 \forall \tau$, т. е. если $\left|\tilde{\gamma}_{\tau}'\right|=1 \forall \tau$, и $\exists t(\tau)$ - такая же функция, что $\gamma(t(\tau))=\tilde{\gamma}(\tau)$

2.2.3 Теорема

Пусть $\overline{\gamma}(t)$ - вектор функция, задающая кривую γ .

 $ar{ ilde{\gamma}}$ - её естественная параметризация, такая, что $ar{ ilde{\gamma}}(au)=ar{\gamma}(t(au))$ и $ar{\gamma}(t)=ar{ ilde{\gamma}}(au(t))$, то

1.
$$au_t' = |\gamma_t'|$$

$$2. \ \overline{\tilde{\gamma_t'}} = \frac{\gamma_t'}{|\gamma_t'|}$$

 $ilde{\gamma}(au)$ называется естественной параметризацией

$$\alpha \leq \delta < \epsilon \leq \beta$$

$$au\left(\delta\right)=a,\ au\left(\epsilon\right)=b$$

что
$$ar{\gamma}(au(t))=ar{\gamma}(t)$$
, и то $\int\limits_{\delta}^{\epsilon}\left|ar{\gamma}'(t)
ight|dt=b-a.$

Иначе говоря, если $ilde{\gamma}(au)$ - естественная параметризация кривой, то $\int\limits_a^b \left| \overline{\tilde{\gamma}}(au) \right| d au = au\left(\epsilon\right) - au\left(\delta\right)$

Доказательство

@tyferse

2.2.4 Теорема

Пусть $\bar{\gamma}(t)$ $\bar{\gamma}: [\alpha, \beta] \to V$ - непрерывно дифференцируемый вектор, задающий кривую γ ,

такой, что $\gamma'(t)
eq 0 \quad orall t \in (lpha, eta)$

Тогда \exists естественная параметризация кривой $\overline{\gamma}$, а именно $\tau(t)=\int\limits_{\alpha}^{t}|\gamma'(y)|dy$ является непрерывно дифференцируемой, строго возрастающей функцией $\tau:[\alpha,\beta]\to[0,d]$, где $d=l\left(\gamma\right)=\int\limits_{\alpha}^{\beta}\left|\overline{\gamma}'(t)\right|dt$ так что у неё существует обратная $\phi:[0,d]\to[\alpha,\beta]$, так что $\phi\left(\tau(t)\right)=t,\ \tau\left(\phi\left(x\right)\right)=x\quad \forall x\in[0,d]$, и тогда $\overline{\tilde{\gamma}}\left(\tau\right)\stackrel{\mathrm{onp}}{=}\overline{\gamma}\left(\phi\left(\tau\right)\right)$ является естественной параметризацией $\overline{\gamma}$

Доказательство

@tyferse