Ostfalia lochschule für angewandte Wissenschaften	Modulprüfung Embedded Systems	Name:
Wissenschaften	Embedded Systems	Vorname
akultät Fahrzeugtechnik Prof. DrIng. V. von Holt	WS 2012/13	Matr.Nr.:
nstitut für Fahrzeuginformatik Ind Fahrzeugelektronik	23.01.2013	Unterschrift

Zugelassene Hilfsmittel: **Einfacher Taschenrechner**

Zeit: 60 Minuten

Echtzeitbetriebssysteme:

ciriebaaya	sterrie.		
2	3	Summe	Note
(22)	(20)	(54)	Note
	2	2 3 (22) (20)	2 3 Summe

Embedded Systems:

Ausarbeitung (50%)	Labor (50%)	Summe	Note

Aufgabe 1 (12 Punkte) – Kurzfragen

a) (5 P) Bei Echtzeitsystemen müssen Aktionen u.a. "**rechtzeitig**" erfolgen. Was versteht man unter dem Begriff "**Rechtzeitigkeit**" und welche **Varianten** der "**Rechtzeitigkeit**" gibt es (Skizze)?

Aufgabe 2 (22 Punkte) - Scheduling

Ein Regelungssystem verfügt zur Messwerterfassung über 2 Sensoren, die in unterschiedlichen Intervallen Messwerte zur Zustandserfassung des Systems liefern. Die Sensormesswerte sowie die Regelung sollen in jeweils eigenen Tasks ablaufen. Zur Visualisierung und Steuerung des Systems ist eine weitere Task vorgesehen. Die folgende Tabelle enthält die Zykluszeiten sowie die Laufzeiten der einzelnen Tasks:

Tasks	Zykluszeit [ms]	Laufzeit[ms]
Sensor 1	10	12
Sensor 2	5	12
Regelung	20	4
Visualisierung	50	5

(Die Deadline der Tasks entspricht der Periodendauer/Zykluszeit.)

a) (4 P) Berechnen Sie die **Prozessorlast**, die durch das **Taskset** verursacht wird! Ist das gegebene Taskset **realisierbar**?

b) (10 P) Das Taskset soll durch ein Rate-Monotonic-Scheduling realisiert werden soll. Welche Prioritäten müssen den Tasks jeweils zugewiesen werden? (Höchste Priorität: 0) Nach welcher Regel werden die Prioritäten vergeben? Ist das Taskset in jedem Fall mit RMS-Scheduling umsetzbar? Weisen Sie den Schedule für den Worst-Case anhand des untenstehenden Schedulediagramms nach! Gehen Sie dabei davon aus, dass zum Zeitpunkt t=0 alle Tasks lauffähig sind bzw. alle Ereignisse eintreffen!

c) (8 P) Alternativ soll geprüft werden, ob das Taskset auch durch ein **Time-Slice-Scheduling** realisierbar ist. Für die Task mit der **höchsten Prozessorlast** soll die Zeitscheibe zu **2ms** gewählt werden. Wählen Sie passende Zeitscheiben für die anderen Tasks und weisen Sie im untenstehenden Schedulediagramm nach, ob die Realisierbarkeit gegeben ist oder nicht!

Aufgabe 3 (20 Punkte) – Semaphore / Synchronisation / Kommunikation

a) (8 P) In einem Regelungssystem ähnlich der Aufgabe 2 existieren 4 Tasks. 2 Tasks dienen dazu Sensorwerte einzulesen, die über ein Shared Memory der Regelungs-Task übergeben werden. Um das Shared Memory gegenüber konkurrierenden Zugriffen zu schützen, ist ein Mutex-Semaphor zur Absicherung vorgesehen..

Folgende Funktionen stehen zur Verfügung:

Geben Sie den **Ablauf des Zugriffs** auf das **Shared Memory** aus einer der **Sensor-Tasks** und aus der **Regelungs-Task** in Form eines **Aktivitätsdiagramms** oder in Form von **Pseudocode** an!

b)	(8 P) Das o.a. Kommunikationskonzept hat mehrere Nachteile : Einer besteht darin, dass keine Reihenfolgesynchronisation zwischen den Sensor-Tasks und der Regelungs-Task erfolgt. Die Regelungs-Task kann das Shared Memory belegen , auch wenn gar keine neuen Sensormesswerte vorliegen. Erweitern Sie das vorhandene Konzept um einen Kommunikations-/Synchronisationsmechanismus, der diesen Nachteil behebt !
c)	(4 P) Ein weiterer Nachteil besteht in der Vergabe der Prioritäten an die Tasks. Welcher Fehler fällt Ihnen dabei auf bzw. welche besondere Eigenschaften muss das Echtzeitbetriebssystem
	besitzen, damit das Scheduling zufriedenstellend läuft?