Сила Ампера и сила Лоренца

Экспериментально установлено, что сила, действующая на заряд q, движущийся со скоростью \vec{v} со стороны магнитного поля индукции \vec{B} равна:

$$\vec{F} = kq[\vec{v}; \vec{B}] \tag{1}$$

Помимо магнитных сил, на заряд действуют и электростатические, поэтому полная сила равна:

$$\vec{F} = q\vec{E} + q[\vec{v}; \vec{B}] \tag{2}$$

(Установлено, что k=1). Эта сила называется силой Лоренца.

Найдем силу $d\vec{F}$, действующую со стороны поля на элемент проводника $d\vec{l}$. На каждый из носителей тока в проводнике действует сила:

$$\vec{F} = e[\vec{u}; \vec{B}] \tag{3}$$

В элементе провода длины dl содержится nSdl зарядов e, поэтому сила, действующая на этот элемент:

$$d\vec{F} = [ne\vec{u}; \vec{B}]Sdl \tag{4}$$

 $ne\vec{v}$ есть плотность тока \vec{j} , поэтому

$$d\vec{F} = [\vec{j}; \vec{B}]Sdl \tag{5}$$

 $\vec{j}Sdl$ можно заменить на $jSd\vec{l}$, если $\vec{j}\uparrow\uparrow\vec{l}$:

$$d\vec{F} = I[d\vec{l}; \vec{B}] \tag{6}$$

Эта сила называется силой Ампера.