UNITED STATES PATENT AND TRADEMARK OFFICE **CERTIFICATE OF CORRECTION**

PATENT NO. : 6,878,576 B1 APPLICATION NO. : 10/716991

DATED : April 12, 2005 INVENTOR(S) : Mears et al.

> It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

The title page showing the print figure should be deleted, and replaced with the attached amended title page.

On the title page, Item (56), References Cited,

Insert: "H01L 29/14" after "EP 0393135 11/1994"

In the Drawings

Delete: FIG. 1 Insert: New FIG. 1

Page 1 of 4

Delete: FIG. 2 Insert: New FIG. 2

UNITED STATES PATENT AND TRADEMARK OFFICE **CERTIFICATE OF CORRECTION**

PATENT NO.

: 6,878,576 B1

Page 2 of 4

DATED

INVENTOR(S)

APPLICATION NO.: 10/716991 : April 12, 2005 : Mears et al.

> It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Drawings

Delete: FIG. 4 Insert: New FIG. 4

Column 1, Line 67

Delete: "in a silicon"

Insert: --in silicon--

Column 2, Line 1

Delete: "electromuminescence"

Insert: --electroluminescene--

Column 2, Line 60

Delete: "superlattice and has"

Insert: --superlattice has--

Column 5, Line 14

Delete: "gate 35"

Insert: --gate 38--

Column 5, Line 62

Delete: "gate 35"

Insert: --gate 38--

Column 7, Line 66

Delete: "from the both"

Insert: --from both--

Column 9, Lines

of 46-48

Delete: "In other processes and devices the structures

the present invention may be formed on a portin of a

wafer or across substantially all of a wafer."

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.

: 6,878,576 B1

Page 3 of 4

DATED

APPLICATION NO.: 10/716991

INVENTOR(S)

: April 12, 2005 : Mears et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 9, Line 61

Delete: "also formed"

Insert: --also be formed--

Signed and Sealed this

Thirty-first Day of October, 2006

JON W. DUDAS
Director of the United States Patent and Trademark Office

(12) United States Patent Mears et al.

US 6,878,576 B1 (10) Patent No.: (45) Date of Patent: Apr. 12, 2005

(54) METHOD FOR MAKING SEMICONDUCTOR DEVICE INCLUDING BAND-ENGINEERED SUPERLATTICE

(75) Inventors: Robert J. Mears, Wellesley, MA (US); Jean Augustin Chan Sow Fook Yiptong, Waltham, MA (US); Marek Hytha, Brookline, MA (US); Scott A. Kreps, Southborough, MA (US); Ilija Dukovski, Newton, MA (US)

(73) Assignee: RJ Mears, LLC, Waltham, MA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 10/716,991

(22) Filed: Nov. 19, 2003

Related U.S. Application Data

Continuation of application No. 10/647,061, filed on Aug. 22, 2003, which is a continuation-in-part of application No. 10/603,696, filed on Jun. 26, 2003, and a continuation-in-part of application No. 10/603,621, filed on Jun. 26, 2003.

(51)	Int. Ci	H01L 21/20
(52)	U.S. Cl	438/162; 438/479; 438/301
(58)	Field of Search	438/22-47, 149-162,

U.S. PATENT DOCUMENTS

438/217, 222-228, 229-301, 479-508 (56)

References Cited

4,485,128 A	11/1984	Dalal et al 427/85
4,503,447 A	* 3/1985	Infrate et al 357/16
4,594,603 A	6/1986	Holonyak, Jr 357/16
4,894,691 A	• 1/1990	Matsui 257/6
4,937,204 A		Ishibashi et al 437/110
4,969,031 A	11/1990	Kobayashi et al 357/63
4,980,750 A		Ueno 148/334
5,023,674 A	• 6/1991	Hikosaka et al 257/24
5,055,887 A	• 10/1991	Yamazaki 257/20
5,216,262 A	6/1993	Tsu 257/17
5,270,247 A	• 12/1993	Sakuma et al 117/89

5,357,119 A * 10/1994 Wang et al. 257/18 (Continued)

FOREIGN PATENT DOCUMENTS

EP	0393135	• 11/1994	
GB	2347520	9/2000	G02B/5/18
JP	61145820 A	7/1986	H01L/21/20
JP	61220339 A	9/1986	H01L/21/322
WO	WO 99/63580	12/1999	H01L/3/00
wo	02/103767	12/2002	H01L/21/20

OTHER PUBLICATIONS

Xuan Luo et al.; "Chemical Design of Direct-Gap Light-Emitting Silicon", published Jul. 25, 2002 by The American Physical Society; vol. 89, No. 7.

R. Tsu; University of North Carolina at Charlotte, "Phenomena in Silicon Nanostructrue Devices"; published Sep. 6, 2000 © Springer-Verlag 2000.

P.D. Ye et al., "GaAs MOSFET with Oxide Gate Dielectric Grown by Atomic Layer Deposition"; © 2003 Agere Systems, Mar. 2003.

Novikov et al; "Silicon-based Optoelectronics" © 1999-2003 by John Wiley & Sons, Inc.; pp/ 1-6.

Primary Examiner-Savitri Mulpuri (74) Attorney, Agent, or Firm—Allen, Dyer, Doppelt, Milbrath & Gilchrist, P.A.

ABSTRACT

A method is for making a semiconductor device by forming a superlattice that, in turn, includes a plurality of stacked groups of layers. The method may also include forming regions for causing transport of charge carriers through the superlattice in a parallel direction relative to the stacked groups of layers. Each group of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and an energy bandmodifying layer thereon. The energy-band modifying layer may include at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions so that the superlattice may have a higher charge carrier mobility in the parallel direction than would otherwise occur. The superlattice may also have a common energy band structure therein.

36 Claims, 9 Drawing Sheets

