1. (25 分) 设 G(s) 是一个安全的 PRG,输出空间为 $\{0,1\}^n$ 。 定义另一个 PRG 为 $G_1(s)$:= (G(s), G(s)) ,输出空间为 $\{0,1\}^{2n}$ 。 请问 $G_1(s)$ 是安全的 PRG 吗? 请证明你的结论

证明:

定义如下两个实验:

$$EXP(0)$$
: $r = G_1(s) := (G(s), G(s))$

$$EXP(1): r \stackrel{R}{\leftarrow} \{0, 1\}^{2n}$$

挑战者将r传递给攻击者作为输入。

构造攻击者算法 A, A 执行以下步骤:

- ① $r_1 | r_2 \leftarrow r, r_1 \in \{0, 1\}^n, r_2 \in \{0, 1\}^n$
- (2) $x \leftarrow r_1 \oplus r_2$
- ③ 若 x 为 0, 返回 0, 表示 r_1 和 r_2 为 G(s); 否则返回 1, 表示 r_1 和 r_2 为真随机序列

$$Adv_{PRG}[A, G_1] = |Pr[EXP(0)=1] - Pr[EXP(1)=1]| = |0-(1-\frac{1}{2^n})| = 1-\frac{1}{2^n}$$

由于优势不可忽略,因此,G₁(s)不是安全的PRG

1+. 补充. (25 分) 设 G(s) 是一个安全的 PRG,输出空间为 $\{0,1\}^n$ 。 定义另一个 PRG 为 $G_2(s_1,s_2):=(G(s_1),G(s_2))$ 。

请问 G₂(s) 是安全的 PRG 吗?

请证明你的结论

证明:

定义如下三个实验:

EXP (0):
$$r=G_2(s):=(G(s_1),G(s_2))$$

EXP (0.1):
$$r=(r_1, G(s_2))$$
 $r_1 \leftarrow \{0, 1\}^n$

EXP(1):
$$r=(r_1, r_2)$$
 $r_1, r_2 \leftarrow \{0, 1\}^n$

- (1) 假设存在算法 A₁能区分 EXP(0)和 EXP(0.1),其中 A₁的参数为 r, r∈ {0,1}²¹: 若 A₁(r)=0,则表示 A₁的参数 r 来自 EXP(0)中的串;若 A₁(r)=1,则表示 A₁的参数 r 来自 EXP(0.1)中的串。 我们可以通过算法 A₁来构造一个算法 B₁,算法 B₁可以用来区分 G(s)和真随机序列,给定 r₁′作为 B₁的输入,其中 r₁′∈ {0,1}¹¹,然后定义算法 B₁:
 - ① 令 $\mathbf{r}_2'=\mathbf{G}(\mathbf{s}_2)$, $\mathbf{s}_2 \overset{R}{\leftarrow} \mathbf{K}$, \mathbf{K} 为种子空间, $\mathbf{r}_2' \in \{0,1\}^n$
 - ② Call Alg. $A_1(r_1', r_2')$
 - ③ 若 $A_1(r_1', r_2')=0$,则返回 0,表示 r_1' 为 G(s); 否则返回 1,表示 r_1' 为真随机序列

$$Adv_{PRG}$$
[G, B_1]= Adv_{A_1} = $|Pr[EXP(0)=1]-Pr[EXP(0.1)=1]|>\epsilon_1(\epsilon_1$ 不可忽略)

因此 G(s) 为一个不安全的 PRG,与已知相矛盾,假设不成立,所以 EXP (0) 和 EXP (0.1) 不可区分, 所以 $|\Pr[EXP(0)=1]-\Pr[EXP(0.1)=1]| \leq \epsilon_1 (\epsilon_1$ 可忽略)

- (2) 假设存在算法 A₂能区分 EXP(0.1)和 EXP(1),其中 A₂的参数为 r, r∈ {0,1}²n: 若 A₂(r)=0,则表示 A₂的参数 r 来自 EXP(0.1)中的串;若 A₂(r)=1,则表示 A₂的参数 r 来自 EXP(1)中的串。 我们可以通过算法 A₂来构造一个算法 B₂,算法 B₂可以用来区分 G(s)和真随机序列,给定 r₂'作为 B₂的输入,其中 r₂'∈ {0,1}n,然后定义算法 B₂:
 - ① \mathfrak{P}_{1} $\overset{R}{\leftarrow} \{0,1\}^{n}$
 - ② Call Alg. $A_2(r_1', r_2')$
 - ③ 若 $A_2(r_1', r_2')=0$,则返回 0,表示 r_2' 为 G(s),否则返回 1,表示 r_2' 为真随机序列

$$Adv_{PRG}$$
[G, B₂]= Adv A₂=|Pr[EXP(0.1)=1]-Pr[EXP(1)=1]|> ϵ_2 (ϵ_2 不可忽略)

因此 G(s) 为一个不安全的 PRG,与已知相矛盾,假设不成立,所以 EXP (0. 1) 和 EXP (1) 不可区分, 所以 $|Pr[EXP(0.1)=1]-Pr[EXP(1)=1]| \le ε_2 (ε_2$ 可忽略)

(3) 定义算法 A 用来区分 EXP(0)和 EXP(1),根据(1)和(2)中的优势可以得出:

$$Adv_{PRG}[G_2, A] = |Pr[EXP(0)=1]-Pr[EXP(1)=1]|$$

$$=|Pr[EXP(0)=1]-Pr[EXP(0.1)=1]+Pr[EXP(0.1)=1]-Pr[EXP(1)=1]|$$

$$\leq |\Pr[EXP(0)=1] - \Pr[EXP(0.1)=1]| + |\Pr[EXP(0.1)=1] - \Pr[EXP(1)=1]|$$

$$\leq \epsilon_1 + \epsilon_2 (\epsilon_1 + \epsilon_2 \overline{\eta} \otimes \mathbb{R})$$

$$=2Adv_{PRG}[G,B]$$

所以 EXP(0) 和 EXP(1) 不可区分,因此 $G_2(s)$ 是一个安全的 PRG。

2. (25 分) 设 G(s) 是一个安全的 PRG, 输出空间为 $\{0,1\}^n$ 。 定义另一个 PRG 为 $G_2(s_1||s_2):=(s_1,G(s_2))$ 。

请问 G₂(s) 是安全的 PRG 吗?

请证明你的结论

证明:

定义如下两个实验:

$$EXP(0)$$
: $r = G_2(s_1 | | s_2) := (s_1, G(s_2)), s_1, s_2 \overset{R}{\leftarrow} K, K 为种子空间$

$$EXP(1): \qquad r \stackrel{R}{\leftarrow} \{0, 1\}^{\frac{n+|s_1|}{2}}$$

假设存在算法 A 能区分 EXP(0) 和 EXP(1) ,挑战者将 r 传递给攻击者作为输入,若 A(r)=0 ,则表示 A 的参数 r 来自 EXP(0) ,若 A(r)=1 ,则表示 A 的参数 r 来自 EXP(1) ,是真随机序列。

我们可以通过算法 A 来构造一个算法 B,算法 B 可以用来区分 G(s) 和真随机序列,给定 r_1 ′作为 B 的输入,其中 r_1 ′ $\in \{0,1\}$ ",然后执行以下步骤:

- (1) Call Alg. $A(s_1', r_1')$, 其中 $s_1' \stackrel{R}{\leftarrow} K$, K 为种子空间
- (2) 若 $A(s_1', r_1')=0$,则返回 0,表示 r_1' 来自 G(s);否则返回 1,表示 r_1' 为真随机序列

$$Adv_{PRG}$$
[G, B]= Adv_{PRG} [G₂, A]= $|Pr[EXP(0)=1]-Pr[EXP(1)=1]|>\epsilon$ (ε 不可忽略)

因此 G(s) 为一个不安全的 PRG,与已知相矛盾,假设不成立,所以 $G_2(s)$ 和真随机序列不可区分,因此 $G_2(s)$ 是一个安全的 PRG。

3. (25 分) 设 G(s) 是一个安全的 PRG,输出空间为 $\{0,1\}^n$ 。 定义另一个 PRG 为 $G_3(s):=G(s)\oplus 1^n$ 。 请问 $G_3(s)$ 是安全的 PRG 吗? 请证明你的结论

定义如下两个实验:

 $EXP(0): r = G_3(s) := G(s) \oplus 1^n$

 $EXP(1): r \stackrel{R}{\leftarrow} \{0, 1\}^{n}$

假设存在算法 A 能够区分 EXP(0)和 EXP(1),若 A(r)=0,则表示 A 的参数 r 是来自 EXP(0)中的串;若 A(r)=1,则表示 A 的参数 r 是来自 EXP(1)中的串;我们可以通过 A 来定义算法 B,B 是用来区分 G(S)和真随机序列,给定 r_1 为 B 的输入,其中 r_1 \in $\{0,1\}^n$,然后执行如下步骤:

- ① Call Alg. $A(r_1 \oplus 1^n)$
- ② 若 A(r₁⊕1")=0, 则返回 0, 表示 r₁是 G(s); 否则返回 1, 表示 r₁是真随机序列

所以: Adv_{PRG}[G, B]= Adv_{PRG}[G₃, A]=| Pr[EXP(0)=1]-Pr[EXP(1)=1]|>ε(ε不可忽略)

因此 G 是一个不安全的 PRG,与已知相矛盾,因此假设不成立,所以 EXP(0)和 EXP(1)不可区分, 所以 G₃(s)是一个安全的 PRG。

4. (25 分) 设 G: S → R 是安全的 PRG.

设 (E, D) 是语义安全的对称加密方案, E: $K \times M \rightarrow C$.

假设 K = R.

构造一个新的对称加密方案 (E', D'), E': $S \times M \rightarrow C$, 其中

E'(s, m) := E(G(s), m), D'(s, c) := D(G(s), c).

请证明 E' 也是语义安全的

证明:

定义如下四个实验:

EXP(0):

(1) 假设存在算法 A_1 能区分 EXP(0) 和 EXP(0.1),其中 A_1 的参数为 r, $r = E(G(s), m_0)$ 或者 $r = E(k, m_0)$ 若 $A_1(r) = 0$,则表示 A_1 的参数 $r = E(G(s), m_0)$;若 $A_1(r) = 1$,则表示 A_1 的参数 $r = E(k, m_0)$ 。

我们可以通过算法 A_1 来构造一个算法 B_1 ,算法 B_1 可以用来区分 G(s)和真随机序列,给定 r_1 作为 B_1 的输入,其中 $r_1 \in \{0,1\}^n$, A_1 和 B_1 进行如下交互:

- ① A₁把m₀, m₁ ∈ M, |m₀| = |m₁|发送给 B₁
- ② B_1 选择一个消息 m_0 ,连同自己的输入 r_1 作为 E 的输入执行对称加密方案 E
- ③ B₁将 E(r₁, m₀)发送给 A₁
- ④ 若 A_1 返回 0,则 B_1 返回 0,表示 r_1 为 G(s); 否则返回 1,表示 r_1 为真随机序列 所以:

 Adv_{PRG} [G, B_1]= Adv_{A_1} = $|Pr[EXP(0)=1]-Pr[EXP(0.1)=1]|>\epsilon_1(\epsilon_1$ 不可忽略)

因此 G(s) 为一个不安全的 PRG,与已知相矛盾,假设不成立,所以 EXP (0) 和 EXP (0.1) 不可区分,所以 $|\Pr[EXP(0)=1]-\Pr[EXP(0.1)=1]| \leq \epsilon_1 (\epsilon_1$ 可忽略) = $Adv_{PRG}[G, B]$

(2) 因为(E,D)是一个语义安全的对称加密方案,

所以: $|\Pr[EXP(0.1)=1] - \Pr[EXP(1.1)=1]| \leq \epsilon_2 (\epsilon_2$ 可忽略) = $Adv_{SS}[E, A]$

(3) 假设存在算法 A_2 能区分 EXP(1.1) 和 EXP(1),其中 A_2 的参数为 r, $r = E(k, m_1)$ 或者 $r = E(G(s), m_1)$:若 $A_2(r) = 0$,则表示 A_2 的参数 $r = E(G(s), m_1)$;若 $A_2(r) = 1$,则表示 A_2 的参数 $r = E(k, m_1)$ 。

我们可以通过算法 A_2 来构造一个算法 B_2 ,算法 B_2 可以用来区分 G(s) 和真随机序列,给定 r_2 作为 B_2 的输入,其中 r_2 \in $\{0,1\}$ ⁿ,然后 A_2 和 B_2 进行如下交互:

- ① $A_2 \times \mathbb{H}_{m_0}, m_1 \in M, |m_0| = |m_1|$ 发送给 B_2
- ② B_2 选择一个消息 m_1 ,连同自己的输入 r_2 作为 E 的输入执行对称加密方案 E
- ③ B₂将 E(r₂, m₁)发送给 A₂
- ④ 若 A₂返回 0, 则 B₂返回 0, 表示 r₂为 G(s); 否则返回 1,表示 r₂为真随机序列. 所以:

 Adv_{PRG} [G, B₂]=AdvA₂=|Pr[EXP(1.1)=1]-Pr[EXP(1)=1]|> ϵ_3 (ϵ_3 不可忽略) 因此 G(s)为一个不安全的 PRG,与已知相矛盾,假设不成立,所以 EXP(0)和 EXP(0.1)不可区分,所以 |Pr[EXP(1.1)=1]-Pr[EXP(1)=1]| $\leq \epsilon_3$ (ϵ_3 可忽略)= Adv_{PRG} [G, B]

(4) 定义算法 A'用来区分 EXP(0)和 EXP(1),根据(1)、(2)、(3)中的优势可以得出:

$$Adv_{SS}$$
[E', A']=|Pr[EXP(0)=1]-Pr[EXP(1)=1]|
=|Pr[EXP(0)=1]-Pr[EXP(0.1)=1]+Pr[EXP(0.1)=1]-Pr[EXP(1.1)=1]
+Pr[EXP(1.1)=1]-Pr[EXP(1)=1]|
 \leq |Pr[EXP(0)=1]-Pr[EXP(0.1)=1]|+|Pr[EXP(0.1)=1]-Pr[EXP(1.1)=1]|
+|Pr[EXP(1.1)=1]-Pr[EXP(1)=1]|
 \leq $\epsilon_1 + \epsilon_2 + \epsilon_3 (\epsilon_1 + \epsilon_2 + \epsilon_3$ 可忽略)
=2 Adv_{PRG} [G, B]+ Adv_{SS} [E, A]

所以 EXP(0)和 EXP(1)不可区分,因此 E'是语义安全的。