1 First Concepts

Definition 1. A function is a rule assigning a unique output (also called value) to a given input (also called point) from some domain of allowed inputs.

Definition 2. The **domain** of a function is the set of all inputs for which the function is defined. Sometimes we write dom(f) for the domain of a function f.

Definition 3. The range of a function is the set of all possible outputs which the functions gives. Sometimes we write ran(f) for the range of a function f.

Definition 4. The composition of two functions f and g, written $f \circ g$, is the function given by

$$f \circ g(x) = f(g(x))$$

That is, for a given input x, first apply the function g to get an output g(x). Then use this as the input for the function f, to get the output f(g(x)).

Definition 5. The inverse of a function f, written as f^{-1} , is a function so that

$$f \circ f^{-1}(x) = x,$$

WARNING!: One needs to be careful about the domains here.

Definition 6. The **graph** of a function f is the collection of all ordered pairs (x, f(x)), where x is in the domain of f, plotted on a Cartesian coordinate system.

2 Kinds of Functions

Definition 7. A polynomial is a function of the form

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $a_0, a_1, ..., a_n$ are some real numbers (called 'coefficients').

If $a_n = 0$, we could ignore it and add up fewer things. The largest natural number n with $a_n \neq 0$ is called the **degree** of the polynomial.

For instance

$$p(x) = 3x^4 - 2x^2 + \sqrt{7}x + 7$$

is a polynomial of degree 4.

Definition 8. A polynomial of degree 1 is called a linear function.

Definition 9. A polynomial of degree 2 is called **quadratic**, a polynomial of degree 3 is called **quadratic**, a polynomial of degree 4 is called **quartic**, ...

Definition 10. A power function is a function of the form

$$f(X) = x^a$$

where a is some real number.

If a = -1, this is called the **reciprocal** function, which has domain all non-zero numbers, and is given by the formula

$$f(x) = x^{-1} = \frac{1}{x}$$

If a is negative, say a = -3, we take the reciprocal of the positive version:

$$f(X) = x^{-3} = \frac{1}{x^3}$$

Definition 11. A rational function is a function of the form one polynomial divided by another:

$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

Definition 12. An algebraic function is a function which can be built (by adding, multiplying, dividing, and composing) from polynomials and fractional power functions (x^a with a a fraction).

Functions which are not algebraic are called 'transcendental'.

Definition 13. An exponential function is a function of the form

$$f(x) = b^x$$

The number b is called the **base** of the exponential.

Definition 14. A logarithmic function is an inverse of an exponential function. We write

$$g(x) = \log_b(x)$$

for the inverse of $f(x) = b^x$.

Definition 15. A trigonometric function is any of the following six functions: $\sin(x)$, $\cos(x)$, $\tan(x)$, $\csc(x)$, $\sec(x)$, and $\cot(x)$ (in order, these are 'sine', 'cosine', 'tangent', 'cosecant', 'secant', and 'cotangent').

'cosine', 'tangent', 'cosecant', 'secant', and 'cotangent'). Recall these are related by $\tan(x) = \frac{\sin(x)}{\cos(x)}$, $\csc(x) = \frac{1}{\sin(x)}$, $\sec(x) = \frac{1}{\cos(x)}$, and $\cot(x) = \frac{1}{\tan(x)}$