NOM (majuscules)	Prénom:	Groupe:		
(pas de point sans justification -	- 21 mars 2018 - 30 mn - seule la réponse donnée à l'endroit p) – So ² /(n-1)/n; à vous de savoir ce d	orévu sera prise en considération)		
Exercice 1. Un ordinateur pris au hasard a omémoire vive. 1. (4pts) Calculer l'espérance et	des probabilité 0.50, 0.32, 0.12, 0.06 la variance de M.	6 d'avoir M=4, 5, 6, ou 7 giga de		
	espérance=			
	vari	ance=		
▼				
	$(5)^{T}$ vp := $(4 \ 5 \ 6 \ 7)^{T}$			
$\mu := \sum_{k=1}^{4} \left(pr_k \cdot vp_k \right) = 4.7$	$(5)^{T}$ $vp := (4 \ 5 \ 6 \ 7)^{T}$ $\sum_{k=1}^{4} \left[(pr_{k}) \cdot (vp_{k})^{2} \right] = 0$	- 23.26		
et var $\sigma^2 = \sum_{k=1}^4$	$\left[pr_k \cdot \left(vp_k \right)^2 \right] - \mu^2 = 0.792$			
<u> </u>				
2. (2 pts) Sur un échantillon de 100 ordinateurs qui suivent cette loi, on en trouve 47 qui ont M= 4 giga de mémoire. De même il y en a 35, 13, et 5 qui ont M= 5, 6 et 7 giga respectivement. i. Calculer la somme des M observés.				
ii. Calculer la somme des carrés	des M.	Somme:		
		Somme carrés:		
iii. En déduire la variance empirio	que de l'échantillon :			
iv. De quelle valeur cette varianc	Var empirique se se rapproche-t-elle si l'échantillon d	ue: devient grand?		
	R	léponse :		
So := $47 \cdot 4 + 35 \cdot 5 + 13 \cdot 6 + 5$	$5.7 = 476$ S2 := $47.4^2 + 35.6$	$\cdot 5^2 + 13 \cdot 6^2 + 5 \cdot 7^2 = 2340$		
var empirique : $\frac{S2}{99} - \frac{S}{99}$	$\frac{o^2}{100} = 0.75$ se rapproche trouvée plus	de la var théor 0.792 haut quand taille $n \to \infty$.		

trouvée plus haut quand taille $n \to \infty$.

dexp(x,lamest)

•

Exercice 2. (4 pts) Un vecteur Xv contient les instants (en secondes) auxquels des clients arrivent suivant l'ouverture d'un magasin: par exemple Xv=(12, 220, 450....,) veut dire que les 1ers, 2ème et 3ème clients sont arrivés à la 12ème, 220ème et 450ème secondes suivant l'ouverture.

1. Ecrire le code R qui produit le vecteur Diav des "durées inter-arrivées".

2. Si on suppose que la v.a. Dia suit une loi exponentielle, donnez la ligne du programme R qui produit l'estimation lamest du paramètre λ .

Réponse:

3. Donnez l'expression R pour la densité estimée correspondante de la v.a. Dia en une valeur x.

Réponse:

durées interarrivées:
 n=length(Xv); Diav=numeric(n)
 Diav[1]=Xv[1]
 for (i=2:n)
 {Diav[i]=Xv[i]-Xv[i-1]}
 # espérance estimée:
 lamest=1/(mean(Diav))
 #densité en x: