SEQUENCE LISTING

Sequence No.: 1

Sequence length: 154

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

100

Cell line: HT-1080

Clone name: HP00658

Sequence description

Met Lys Val Ser Ala Ala Ala Leu Ala Val Ile Leu Ile Ala Thr Ala

1 5 10 15

Leu Cys Ala Pro Ala Ser Ala Ser Pro Tyr Ser Ser Asp Thr Thr Pro

20 25 30

Cys Cys Phe Ala Tyr Ile Ala Arg Pro Leu Pro Arg Ala His Ile Lys

35 40 45

Glu Tyr Phe Tyr Thr Ser Gly Lys Cys Ser Asn Pro Ala Val His

50 55 60

Arg Ser Arg Met Pro Lys Arg Glu Gly Gln Gln Val Trp Gln Asp Phe

65 70 75 80

Leu Tyr Asp Ser Arg Leu Asn Lys Gly Lys Leu Cys His Pro Lys Glu

85 90 95

Pro Pro Ser Val Cys Gln Pro Arg Glu Glu Met Gly Ser Gly Val His

105 110

115

120

125

Thr Gln Ile Cys Leu Phe Leu Leu Ala Leu Val Leu Ala Trp Glu Ala

130

135

140

Ser Pro His Tyr Pro Thr Pro Pro Ala Pro

145

1,50

Sequence No.: 2

Sequence length: 315

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP00714

Sequence description

Met Asp Leu Arg Gln Phe Leu Met Cys Leu Ser Leu Cys Thr Ala Phe

1

5

10

15

Ala Leu Ser Lys Pro Thr Glu Lys Lys Asp Arg Val His His Glu Pro

20

25

30

Gln Leu Ser Asp Lys Val His Asn Asp Ala Gln Ser Phe Asp Tyr Asp

35

40

45

His Asp Ala Phe Leu Gly Ala Glu Glu Ala Lys Thr Phe Asp Gln Leu

50

55

60

Thr Pro Glu Glu Ser Lys Glu Arg Leu Gly Lys Ile Val Ser Lys Ile

				85					90					95	
Ile	L y s	Phe	Ala	Gln	Lys	Arg	Trp	Ile	Tyr	Glu	Asp	Val	Glu	Arg	Gln
			100					105					110		
Trp	Lys	Gly	His	Asp	Leu	Asn	G1u	Asp	Gly	Leu	Val	Ser	Trp	Glu	Glu
		115		Ž,			120					125			
Tyr	Lys	Asn	Ala	Thr	Tyr	Gly	Tyr	Val	Leu	Asp	Asp	Pro	Asp	Pro	Asp
	130					135					140				
Asp	Gly	Phe	Asn	Tyr	Lys	Gln	Met	Met	Val	Arg	Asp	Glu	Arg	Arg	Phe
145					150					155					160
L y s	Met	Ala	Asp	Lys	Asp	Gly	Asp	Leu	Ile	Ala	Thr	Lys	Glu	Glu	Phe
				165			X		170					175	
Thr	Ala	Phe	Leu	His	Pro	Glu	Glu	Tyr	Asp	Tyr	Met	Lys	Asp	Ile	Val
			180					18 5					190		
Val	Gln	Glu	Thr	Met	Glu	Asp	Ile	Asp	Lys	Asn	Ala	Asp	Gly	Phe	Ile
		195					200					205			
Asp	Leu	Glu	Glu	Tyr	Ile	Gly	Asp	Met	Tyr	Ser	His	Asp	Gly	Asn	Thr
	210					215					220				
Asp	G1u	Pro	Glu	Trp	Val	Lys	Thr	Glu	Arg	Glu	Gln	Phe	Val	Glu	Phe
225					230					235					240
Arg	Asp	Lys	Asn	Arg	Asp	Gly	Lys	Met	Asp	L y s	Glu	G1u	Thr	Lys	Ası
				245					250)				255	+
Trp	Ile	Leu	Pro	Ser	Asp	Tyr	Asp	His	Ala	Glu	Ala	Glu	Ala	Arg	His
			260)				265	j				270)	
Leu	Val	Туг	Glu	Ser	Asp	Glr	Asn	Lys	Asp	Gly	Lys	Leu	Thr	Lys	Gl
		275	5				280)				285	5		
Glu	Ile	Val	Asp	Lys	туг	Asp	Lev	Phe	e Val	G1 _y	Ser	Gli	Ala	Thr	As
	290)				295	5				300)			

Sequence No.: 3

Sequence length: 158

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP00876

Sequence description

Met Ala Ser Arg Ser Met Arg Leu Leu Leu Leu Ser Cys Leu Ala

1 5 10 15

Lys Thr Gly Val Leu Gly Asp Ile Ile Met Arg Pro Ser Cys Ala Pro

20 25 30

Gly Trp Phe Tyr His Lys Ser Asn Cys Tyr Gly Tyr Phe Arg Lys Leu

35 40 45

Arg Asn Trp Ser Asp Ala Glu Leu Glu Cys Gln Ser Tyr Gly Asn Gly

50 55 60

Ala His Leu Ala Ser Ile Leu Ser Leu Lys Glu Ala Ser Thr Ile Ala

65 70 75 80

Glu Tyr Ile Ser Gly Tyr Gln Arg Ser Gln Pro Ile Trp Ile Gly Leu

85 90 95

His Asp Pro Gln Lys Arg Gln Gln Trp Gln Trp Ile Asp Gly Ala Met

100 105 110

Tyr Leu Tyr Arg Ser Trp Ser Gly Lys Ser Met Gly Gly Asn Lys His

As a constant Method of the contract of the contr

68 140 135 130 Glu Cys Asn Lys Arg Gln His Phe Leu Cys Lys Tyr Arg Pro 155 150 145 Sequence No.: 4 Sequence length: 376 Sequence type: Amino acid Topology: Linear Sequence kind: Protein Hypothetical: No Original source: Organism species: Homo sapiens Cell kind: Liver Clone name: HP01134 Sequence description Met Val Trp Lys Val Ala Val Phe Leu Ser Val Ala Leu Gly Ile Gly 15 10 5 1 Ala Val Pro Ile Asp Asp Pro Glu Asp Gly Gly Lys His Trp Val Val 30 25 Ile Val Ala Gly Ser Asn Gly Trp Tyr Asn Tyr Arg His Gln Ala Asp 35 Ala Cys His Ala Tyr Gln Ile Ile His Arg Asn Gly Ile Pro Asp Glu

55

Gln Ile Val Val Met Met Tyr Asp Asp Ile Ala Tyr Ser Glu Asp Asn 75 70

Pro Thr Pro Gly Ile Val Ile Asn Arg Pro Asn Gly Thr Asp Val Tyr 90 85

Cir Civ Val Pro Lvs Asp Tvr Thr Glv Glu Asp Val Thr Pro Gln Asn

Phe	Leu	Ala	Val	Leu	Arg	Gly	Asp	Ala	Glu	Ala	Val	Lys	Gly	ITe	GIĀ
		115					120					125			
Ser	Gly	Lys	Val	Leu	L y s	Ser	Gly	Pro	Gln	Asp	His	Val	Phe	Ile	Tyr
	130					135					140				
Phe	Thr	Asp	His	Gly	Ser	Thr	Gly	Ile	Leu	Val	Phe	Pro	Asn	Glu	Asp
145					150					155					160
Leu	His	Val	Lys	Asp	Leu	Asn	Glu	Thr	Ile	His	Tyr	Met	Tyr	Lys	His
				165	1				170					17 5	
Lys	Met	Tyr	Arg	L y s	Met	Val	Phe	Tyr	Ile	Glu	Ala	Суs	Glu	Ser	G1y
			180			Ť,	,	185					190		
Ser	Met	Met	Asn	His	Leu	Pro	,Asp	Asn	Ile	Asn	Va1	Tyr	BÍÁ	Thr	Thr
		195					200					205			
Ala	Ala	Asn	Pro	Arg	Glu	Ser	Ser	Tyr	Ala	Суs	Tyr	Tyr	Asp	Glu	L y s
	210					215					220				
Arg	Ser	Thr	Tyr	Leu	Gly	Asp	Trp	Tyr	Ser	Val	Asn	Trp	Met	Glu	Asp
225					230					235					240
Ser	Asp	Val	Glu	Asp	Leu	Thr	Lys	Glu	Thr	Leu	His	Lys	Gln	Tyr	His
				245					250					255	
Leu	Va1	Lys	Ser	His	Thr	Asn	Thr	Ser	His	Val	Met	Gln	Tyr	G1y	n s A
			260					265					270		
L y s	Thr	Ile	Ser	Thr	Met	Lys	Val	Met	Gln	Phe	Gln	Gly	Met	Lys	Arg
		275					280					285			
Lys	Ala	Ser	Ser	Pro	Val	Pro	Leu	Pro	Pro	Val	Thr	His	Leu	Asp	Leu
	290)				295					300				
Thr	Pro	Ser	Pro	Asp	Val	Pro	Leu	Thr	Ile	Met	Lys	Arg	Lys	Leu	Met
305					310)				315					320
Asn	Thi	Asn	. Asp	Leu	Glu	ı Glu	Ser	Arg	Gln	Leu	Thr	Glu	Glu	Ile	Gln

1340

345

350

Asn Leu Cys Qlu Lys Pro Tyr Pro Leu His Arg Ile Lys Leu Ser Met

355

360

365

Asp His Val Cys Leu Gly His Tyr

370

375

Sequence No.: 5

Sequence length: 173

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10029

Sequence description

Met Ala Ala Pro Ser Gly Gly Trp Asn Gly Val Arg Ala Ser Leu Trp

1

5

10

15

Ala Ala Leu Leu Cly Ala Val Ala Leu Arg Pro Ala Glu Ala Val

20

25

30

Ser Glu Pro Thr Thr Val Ala Phe Asp Val Arg Pro Gly Gly Val Val

35

40

45

His Ser Phe Ser His Asn Val Gly Pro Gly Asp Lys Tyr Thr Cys Met

50

55

60

Phe Thr Tyr Ala Ser Gln Gly Gly Thr Asn Glu Gln Trp Gln Met Ser

85

90

95

Pro Gln Gly Lys Ser Tyr Leu Tyr Phe Thr Gln Phe Lys Ala Glu Val

100

105

110

Arg Gly Ala Glu Ile Glu Tyr Ala Met Ala Tyr Ser Lys Ala Ala Phe

115

120

125

Glu Arg Glu Ser Asp Val Pro Leu Lys Thr Glu Glu Phe Glu Val Thr

130

135

140

Lys Thr Ala Val Ala His Arg Pro Gly Ala Phe Lys Ala Glu Leu Ser

145

150

155

160

Lys Leu Val Ile Val Ala Lys Ala Ser Arg Thr Glu Leu

165

170

Sequence No.: 6

Sequence length: 73

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10189

Sequence description

Met Gly Val Lys Leu Glu Ile Phe Arg Met Ile Ile Tyr Leu Thr Phe

1

5

10

15

Pro Val Ala Met Phe Trp Val Ser Asn Gln Ala Glu Trp Phe Glu Asp

40

45

Glu Ile Glu Glu Phe Lys Glu Arg Leu Arg Lys Arg Arg Glu Glu Lys

50

55

60

Leu Leu Arg Asp Ala Gln Gln Asn Ser

65

70

Sequence No.: 7

Sequence length: 11/4

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Original source:

Organism species: Homo sapiens

Cell kind: Histiocyte lymphoma

Cell line: U937

Clone name: HP10269

Sequence description

Met Arg Pro Phe Phe Leu Leu Cys Phe Ala Leu Pro Gly Leu Leu His

5

10

15

Ala Gln Gln Ala Cys Ser Arg Gly Ala Cys Tyr Pro Pro Val Gly Asp

20

25

30

Leu Leu Val Gly Arg Thr Arg Phe Leu Arg Ala Ser Ser Thr Cys Gly

35

40

45

Leu Thr Lys Pro Glu Thr Tyr Cys Thr Gln Tyr Gly Glu Trp Gln Met

50

55

60

Lys Cys Cys Lys Cys Asp Ser Arg Gln Pro His Asn Tyr Tyr Ser His

60

70

75

ลก

				85					90					95	
Sar	Gln	Asn	Asp		Asn	Pro	Val	Ser	Leu	Gln	Leu .	Asp	Leu	Asp	Arg
JE1	0111		100					105					110		
Ara	Phe	Gln		Gln	Glu	Val	Met	Met	Glu	Phe	Gln	Gly	Pro	Met	Pro
n. g		115					120					125			
Δla	G1 v		Leu	Ile	Glu	Arg	Ser	Ser	Asp	Phe	Gly	Lys	Thr	Trp	Arg
1114	130					135					140				
Val		Gln	Tyr	Leu	Ala	Ala	Asp	Cys	Thr	Ser	Thr	Phe	Pro	Arg	Val
145	-,-				150					155					160
	Gln	Gly	Arg	Pro	Gln	Ser	Trp	Gln	Asp	Val	Arg	Суs	Gln	Ser	Leu
J				165			$\frac{1}{\lambda}$		170					1/5	
Pro	Gln	Arg	Pro	Asn	Ala	Arg	Leu	Asn	Gly	Gly	Lys	Va 1	Gln	Leu	Asn
			180					185					190		
Leu	Met	Asp	Leu	Val	Ser	Gly	Ile	Pro	Ala	Thr	Gln	Ser	Gln	Lys	Ile
		195					200					205			
Gln	Glu	ı Val	l Gly	Glu	Ile	Thr	Asn	Leu	Arg	Val	Asn	Phe	Thr	Arg	Leu
	210)				215					220				
Ala	Pro	Va:	l Pro	o Glm	Arg	Gly	Tyr	His	Pro	Pro	Ser	Ala	Tyr	Tyr	Ala
225	5				230)				235					240
Val	L Sei	r Gl	n Let	ı Arg	g Lev	Glr	Gly	Ser	Cys	Phe	C y s	His	Gly	His	Ala
				245					250					255	
Asp	p Ar	g Cy	s Ala	a Pro	o Lys	Pro	Gly	Ala	Ser	Ala	Gly	Pro	Ser	Thr	Ala
			26	0				265	5				270)	
Va:	1 G1	n Va	l Bi	s As	p Val	L Cy	s Val	L C y s	s Gli	n His	s As n	Thr	Ala	Gly	7 Pro
		27	5				280	0				285	5		
Ası	n C y	s Gl	u Ar	g Cy	s Ala	a Pr	o Ph	e Ty	r Ası	n Ası	n Arg	g Pro	Tr	Ar	g Pro
	29	0				29	5				300)			

His	Ser	Glu	Thr	Cys	His	Phe	Asp	Pro	Ala	Val	Phe	Ala	Ala	Ser	Gln
				325					330					335	
Gly	Ala	Tyr	Gly	Gly	V μ1	Cys	Asp	Asn	Суs	Arg	Asp	His	Thr	Glu	Gly
			340					345					350		
L y s	Asn	Cys	Glu	Arg	Cys	Gln	Leu	His	Tyr	Phe	Arg	Asn	Arg	Arg	Pro
		35 5				N.	360					365			
Gly	Ala	Ser	Ile	Gln	Glu	Thr	Cys	Ile	Ser	Cys	Glu	Cys	Asp	Pro	Asp
	370					375					380				
Gly	Ala	Val	Pro	Gly	Ala	Pro	Cys	Asp	Pro	Val	Thr	Gly	Gln	Cys	Val
385					390		-			395					400
Cys	Lys	Glu	His	Val	Gln	Gly	Glu	Arg	Cys	Asp	Leu	Cys	Lys	Pro	Gl y
				405					410					415	
Phe	Thr	Gly	Leu	Thr	Tyr	Ala	Asn	Pro	Gln	Gly	Cys	His	Arg	Cys	Asp
			420					425					430		
Cys	Asn	Ile	Leu	Gly	Ser	Arg	Arg	Asp	Met	Pro	Суѕ	Asp	Glu	Glu	Ser
		435					440					445			
Gly	Arg	Cys	Leu	С у ѕ	Leu	Pro	Asn	Val	Val	Gly	Pro	Lys	Cys	Asp	Gln
	450					455					460				
Cys	Ala	Pro	Tyr	His	Trp	Lys	Leu	Ala	Ser	Gly	Gln	Gly	Cys	Glu	Pro
465					470					475					480
Cys	Ala	Cys	Asp	Pro	His	Asn	Ser	Leu	Ser	Pro	Gln	Cys	Asn	Gln	Phe
				485					490					495	
Thr	Gly	Gln	Cys	Pro	C y s	Arg	Glu	Gly	Phe	Gly	Gly	Leu	Met	Суs	Ser
			500					505					510		
Ala	Ala	Ala	Ile	Arg	Gln	Cys	Pro	Asp	Arg	Thr	Tyr	Gly	Asp	Val	Ala
		515					520					525			
Thr	Gly	C y s	Arg	Ala	C y s	Asp	Cys	Asp	Phe	Arg	Gly	Thr	Glu	Gly	Pro

545					550					555					560
Gly	Pro	Arg	Cys	Asp	Gln	Cys	Gln	Arg	Gly	Tyr	Cys	Asn	Arg	Tyr	Pro
				565					570					575	
Val	Cys	Val	Ala	Cys	His	Pro	Суs	Phe	Gln	Thr	Tyr	Asp	Ala	Asp	Leu
			580			1.		585					59 0		
Arg	Glu	Gln	Ala	Leu	Arg	Phe	Gly	Arg	Leu	Arg	Asn	Ala	Thr	Ala	Ser
		595					600					605			
Leu	Trp	Ser	G1y	Pro	Gly	Leu	Gl u	Asp	Arg	Gly	Leu	Ala	Ser	Arg	Ile
	610					615					620				
Leu	Asp	Ala	Lys	Ser	Lys	Ile			Ile	Arg	Ala	Val	Leu	Ser	Ser
625					630		; s	<i>;</i>		635					640
Pro	Ala	Val	Thr	Glu	Gln	Glu	Val	Ala	Gln	Val	Ala	Ser	Ala	Ile	Leu
				645					650					655	
Ser	Leu	Arg	Arg	Thr	Leu	Gln	Gly	Leu	Gln	Leu	Asp	Leu	Pro	Leu	Glu
			660					665					670		
Glu	Glu	Thr	Leu	Ser	Leu	Pro	Arg	Asp	Leu	Glu	Ser	Leu	Asp	Arg	Ser
		675					68 0					685			
Phe	Asn	Gly	Leu	Leu	Thr	Met	Tyr	Gln	Arg	Lys	Arg	Glu	Gln	Phe	Glu
	690					695					700				
Lys	Ile	Ser	Ser	Ala	Asp	Pro	Ser	Gly	Ala	Phe	Arg	Met	Leu	Ser	Thr
705					710					715					720
Ala	Tyr	Glu	Gln	Ser	Ala	Gln	Ala	Ala	Gln	Gln	Val	Ser	Asp	Ser	Ser
				72 5					730					73 5	
Arg	Leu	Leu	Asp	Gln	Leu	Arg	Asp	Ser	Arg	Arg	Glu	Ala	Glu	Arg	Let
			740					745					750		
Val	Arg	Gln	Ala	Gly	Gly	Gly	Gly	Gly	Thr	Gly	Ser	Pro	Lys	Leu	Val
		755					760					765			

Asn	Lys	Leu	Cys	Gly	Asn	Ser	Arg	GIN	met	MIN	Cys	1111	FLO	116	Ser
785					790					795					800
Cys	Pro	Gly	Glu	Leu	С у в	Pro	Gln	Asp	Asn	Gly	Thr	Ala	Cys	Gly	Ser
				805					810					815	
Arg	Cys	Arg	G1y	Val	Leu	Pro	Arg	Ala	Gly	G1 y	Ala	Phe	Leu	Met	Ala
			820					825					830		
Gly	Gln	Val	Ala	Glu	Gln	Leu	Arg	Gly	Phe	Asn	Ala	Gln	Leu	Gln	Arg
		835					840					542			
Thr	Arg	Gln	Met	Ile	Arg	Ala	Ala	Glu	Glu	Ser	Ala	Ser	Gln	Ile	Gln
	850					855					860				
Ser	Ser	Ala	Gln	Arg	Leu	Glu	Thr	Cln	val	Ser	Ala	Ser	Arg	Ser	Gln
865					870					875					880
Met	Glu	Glu	Asp	Val	Arg	Arg	Thr	Arg	Leu	Leu	Ile	Gln	Gln	Val	Arg
				885					890					895	
Asp	Phe	Leu	Thr	Asp	Pro	Asp	Thr	Asp	Ala	Ala	Thr	Ile	Gln	Glu	Val
			900					905					910		
Ser	Glu	Ala	Val	Leu	Ala	Leu	Trp	Leu	Pro	Thr	Asp	Ser	Ala	Thr	Val
		915					920					92 5			
Leu	Gln	Lys	Met	Asn	Glu	Ile	Gln	Ala	Ile	Ala	Ala	Arg	Leu	Pro	Asn
	930					935					940				
Val	Asp	Leu	Val	Leu	Ser	G1n	Thr	Lys	Gln	Asp	Ile	Ala	Arg	Ala	Arg
945					950					955					960
Arg	Leu	Gln	Ala	Glu	Ala	Glu	Glu	Ala	Arg	Ser	Arg	Ala	His	Ala	Val
				965					970					975	
Glu	Gly	Gln	Val	Glu	Asp	Val	Val	Gly	Asn	Leu	Arg	Gln	Gly	Thr	Val
			980					985					990		
Ala	Leu	Gln	Glu	Ala	Gln	Asp	Thr	Met	Gln	Gly	Thr	Ser	Arg	Ser	Let
								^				100	5		

1010 1015 1020

Ala Glu Lys Leu Val Thr Ser Met Thr Lys Gln Leu Gly Asp Phe Trp

1025 1030 1035 1040

Thr Arg Met Glu Glu Leu Arg His Gln Ala Arg Gln Gln Gly Ala Glu
1045 1050 1055

Ala Val Gln Ala Gln Gln Leu Ala Glu Gly Ala Ser Glu Gln Ala Leu
1060 1065 1070

Ser Ala Gln Glu Gly Phe Glu Arg Ile Lys Gln Lys Tyr Ala Glu Leu 1075 1080 1085

Lys Asp Arg Leu Gly Gln Ser Ser Met Leu Gly Glu Gln Gly Ala Arg

1090 1095 1100

Ile Gln Ser Val Lys Thr Glu Ala Glu Glu Leu Phe Gly Glu Thr Met
1105 1110 1115 1120

Glu Met Met Asp Arg Met Lys Asp Met Glu Leu Glu Leu Leu Arg Gly
1125 1130 1135

Ser Gln Ala Ile Met Leu Arg Ser Ala Asp Leu Thr Gly Leu Glu Lys
1140 1145 1150

Arg Val Glu Gln Ile Arg Asp His Ile Asn Gly Arg Val Leu Tyr Tyr

1155 1160 1165

Ala Thr Cys Lys

1170

Sequence No.: 8

Sequence length: 122

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Organism species: Homo sapiens Cell kind: Stomach cancer Clone name: HP10298 Sequence description Met Gly Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser Tyr 15 10 5 1 Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp 30 25 20 Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys 40 35 Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Arg Ile Leu Thr 55 50 Val Gly Pro Gln Ser Leu Gly Ser Glu Ala Leu Ala Ser Pro Thr Arg 75 70 Arg Ala Ala Cys Thr Val Phe Thr Ala Thr Ala Ser Thr Arg Thr Trp 90 85 Gly Pro Pro Leu Pro His Ser Leu Thr Gly Cys Val Phe Ile Glu Trp

110 105 100

Phe Val Phe Pro Cys Gly Leu Glu Pro Phe

120 115

Sequence No.: 9

Sequence length: 175

Sequence type: Amino acid

Topology: Linear

Sequence kind: Protein

Hypothetical: No

Cell kind: Stomach cancer

Clone name: HP10368

Sequence description

Met Glu Lys Ile Pro Val Ser Ala Phe Leu Leu Val Ala Leu Ser

1 5 10 15

Tyr Thr Leu Ala Arg Asp Thr Thr Val Lys Pro Gly Ala Lys Lys Asp

20 25 3

Thr Lys Asp Ser Arg Pro Lys Leu Pro Gln Thr Leu Ser Arg Gly Trp

40 45

Gly Asp Gln Leu Ile Trp Thr Gln Thr Tyr Glu Glu Ala Leu Tyr Lys

50 55 60

Ser Lys Thr Ser Asn Lys Pro Leu Met Ile Ile His His Leu Asp Glu

65 70 75 80

Cys Pro His Ser Gln Ala Leu Lys Lys Val Phe Ala Glu Asn Lys Glu

85 90 95

Ile Gln Lys Leu Ala Glu Gln Phe Val Leu Leu Asn Leu Val Tyr Glu

100 105 110

Thr Thr Asp Lys His Leu Ser Pro Asp Gly Gln Tyr Val Pro Arg Ile

115 120 125

Met Phe Val Asp Pro Ser Leu Thr Val Arg Ala Asp Ile Thr Gly Arg

130 135 140

Tyr Ser Asn Arg Leu Tyr Ala Tyr Glu Pro Ala Asp Thr Ala Leu Leu

145 150 155 **16**0

Leu Asp Asn Met Lys Lys Ala Leu Lys Leu Leu Lys Thr Glu Leu

165 170 175

Sequence No.: 10

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Cell line: HT-1080

Clone name: HP00658

Sequence description

A	TGAAGGTCT	CCGCGGCAGC	CCTCGCTGTC	ATCCTCATTG	CTACTGCCCT	CTGCGCTCCT	60
G	CATCTGCCT	CCCCATATTC	CTCGGACACC	ACACCCTGCT	GCTTTGCCTA	CATTGCCCGC	120
С	CACTGCCCC	GTGCCCACAT	CAAGGAGTAT	TTCTACACCA	GTGGCAAGTG	CTCCAACCCA	180
G	CAGTCGTCC	ACAGGTCAAG	GATGCCAAAG	AGAGAGGGAC	AGCAAGTCTG	GCAGGATTTC	240
С	TGTATGACT	CCCGGCTGAA	CAAGGGCAAG	CTTTGTCACC	CGAAAGAACC	GCCAAGTGTG	30 0
T	GCCAACCCA	GAGAAGAAAT	GGGTTCGGGA	GTACATCAAC	TCTTTGGAGA	TGAGCTAGGA	36 0
T	GGAGAGTCC	TTGAACCTGA	ACTTACACAA	ATTTGCCTGT	TTCTGCTTGC	TCTTGTCCTA	42 0
G	CTTGGGAGG	CTTCCCCTCA	CTATCCTACC	CCACCCGCTC	CT		462

Sequence No.: 11

Sequence length: 945

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

- inamo

Clone name: HP00714

Sequence description

ATGGACCTGC GAC	CAGTTTCT	TATGTGCCTG	TCCCTGTGCA	CAGCCTTTGC	CTTGAGCAAA	60
CCCACAGAAA AGA	AAGGACCG 1	TGTACATCAT	GAGCCTCAGC	TCAGTGACAA	GGTTCACAAT	120
GATGCTCAGA GT	TTTGATTA T	TGACCATGAT	GCCTTCTTGG	GTGCTGAAGA	AGCAAAGACC	180
TTTGATCAGC TGA	ACACCAGA A	AGAGAGCAAG	GAAAGGCTTG	GAAAGATTGT	AAGTAAAATA	240
CATTOCOCACA ACC	ACGGGTT 1	TGTCACTGTG	GATGAGCTCA	AAGACTGGAT	TAAATTTGCA	300
CAAAAGCGCT GGA	ATTTACGA (GGATGTAGAG	CGACAGTGGA	AGGGGCATGA	CCTCAATGAG	360
GACGGCCTCG TT	CCTGGGA (GGAGTATAAA	AATGCCACCT	ACGGCTACGT	TTTAGATGAT	420
CCAGATCCTG ATO	GATGGATT :	TAACTATAAA	CAGATGATGG	TTAGAGATGA	GCGGAGGTTT	480
AAAATGGCAG ACA	AAGGATGG A	AGACCTCATT	GCCACCAAGG	AGGAGTTCAC	AGCTTTCCTG	540
CACCCTGAGG AG	ratgacta (CATGAAAGAT	ATAGTAGTAC	AGGAAACAAT	GGAAGATATA	600
GATAAGAATG CT	GATGGTTT (CATTGATCTA	GAAGAGTATA	TTGGTGACAT	GTACAGCCAT	660
GATGGGAATA CT	GATGAGCC A	AGAATGGGTA	AAGACAGAGC	GAGAGCAGTT	TGTTGAGTTT	720
CGGGATAAGA ACC	CGTGATGG (GAAGATGGAC	AAGGAAGAGA	CCAAAGACTG	GATCCTTCCC	780
TCAGACTATG ATO	CATGCAGA (GGCAGAAGCC	AGGCACCTGG	TCTATGAATC	AGACCAAAAC	840
AAGGATGGCA AG	CTTACCAA (GGAGGAGATC	GTTGACAAGT	ATGACTTATT	TGTTGGCAGC	900
CAGGCCACAG AT	ITTGGGGA (GGCCTTAGTA	CGGCATGATG	AGTTC		945

Sequence No.: 12

Sequence length: 474

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

ATGGCTTCCA GAAGCATGCG GCTGCTCCTA TTGCTGAGCT GCCTGGCCAA AACAGGAGTC 60
CTGGGTGATA TCATCATGAG ACCCAGCTGT GCTCCTGGAT GGTTTTACCA CAAGTCCAAT 120
TGCTATGGTT ACTTCAGGAA GCTGAGGAAC TGGTCTGATG CCGAGCTCGA GTGTCAGTCT 180
TACGGAAACG GAGCCCACCT GGCATCTATC CTGAGTTTAA AGGAAGCCAG CACCATAGCA 240
GAGTACATAA GTGGCTATCA GAGAAGCCAG CCGATATGGA TTGGCCTGCA CGACCCACAG 300

ACTOCCACT GATTGATGG GCCATGTATC TGTACAGATC CTGGTCTGGC 360

AAGTCCATGG GTGGGAACAA GCACTGTGCT GAGATGAGCT CCAATAACAA CTTTTTAACT 420
TGGAGCAGCA ACGAATGCAA CAAGCGCCAA CACTTCCTGT GCAAGTACCG ACCA 474

Sequence No.: 13

Sequence length: 1128

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver

Clone name: HP01134

Sequence description

ATGGTTTGGA AAGTAGCTGT ATTCCTCAGT GTGGCCCTGG GCATTGGTGC CGTTCCTATA 60

GATGATCCTG AAGATGGAGG CAAGCACTGG GTGGTGATCG TGGCAGGTTC AAATGGCTGG 120

TATAATTATA GGCACCAGGC AGACGCGTGC CATGCCTACC AGATCATTCA CCGCAATGGG 180

ATTCCTGACG AACAGATCGT TGTGATGATC TACGATGACA TTGCTTACTC TGAAGACAAT 240

CCCACTCCAG GAATTGTGAT CAACAGGCCC AATGGCACAG ATGTCTATCA GGGAGTCCCG 300

AAGGACTACA CTGGAGAGGA TGTTACCCCA CAAAATTTCC TTGCTGTGTT GAGAGGCGAT 360

WO 98/11217 PCT/JP97/03239

CTTCATGTAA AGGACCTGAA TGAGACCATC CATTACATGT ACAAACACAA AATGTACCGA 540 AAGATGGTGT TCTACATTGA AGCCTGTGAG TCTGGGTCCA TGATGAACCA CCTGCCGGAT 600 AACATCAATG TTTATGCAAC TACTGCTGCC AACCCCAGAG AGTCGTCCTA CGCCTGTTAC 660 TATGATGAGA AGAGGTCCAC GTACCTGGGG GACTGGTACA GCGTCAACTG GATGGAAGAC 720 TCGGACGTGG AAGATCTGAC TAAAGAGACC CTGCACAAGC AGTACCACCT GGTAAAATCG 780 CACACCAACA CCAGCCACGT CATGCAGTAT GGAAACAAAA CAATCTCCAC CATGAAAGTG 840 ATGCAGTTTC AGGGTATGAA ACGCAAAGCC AGTTCTCCCG TCCCCCTACC TCCAGTCACA 900 CACCTTGACC TCACCCCCAG CCCTGATGTG CCTCTCACCA TCATGAAAAG GAAACTGATG 960 AACACCAATG ATCTGGAGGA GTCCAGGCAG CTCACGGAGG AGATCCAGCG GCATCTGGAT 1020 TACGAGTATG CGTTGAGACA TTTGTACGTG CTGGTCAACC TTTGTGAGAA GCCGTATCCG 1080 CTTCACAGGA TAAAATTGTC CATGGACCAC GTGTGCCTTG GTCACTAC 1128

Sequence No.: 14

Sequence length: 519

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10029

Sequence description

ATGGCGGCG CCAGCGGAGG GTGGAACGGC GTCCGCGCGA GCTTGTGGGC CGCGCTGCTC 60
CTAGGGGCCG TGGCGCTGAG GCCGGCGGAG GCGGTGTCCG AGCCCACGAC CGTGGCGTTT 120
GACGTGCGGC CCGGCGGCGT CGTGCATTCC TTCTCCCATA ACGTGGGCCC GGGGACAAA 180

- Program - Caramogon

TGGGGACUN GOGAAGACC... GARGARIA

TCCTATCTGT ACTTCACACA GTTCAAGGCA GAGGTGCGGG GCGCTGAGAT TGAGTACGCC 360
ATGGCCTACT CTAAAGCCGC ATTTGAAAGG GAAAGTGATG TCCCTCTGAA AACTGAGGAA 420
TTTGAAGTGA CCAAAAACAGC AGTGGCTCAC AGGCCCGGGG CATTCAAAGC TGAGCTGTCC 480
AAGCTGGTGA TTGTGGCCAA GGCATCGCGC ACTGAGCTG 519

Sequence No.: 15

Sequence length: 219

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10189

Sequence description

ATGGGGGTGA AGCTGGAGAT ATTTCGGATG ATAATCTACC TCACTTTCCC TGTGGCTATG 60

TTCTGGGTTT CCAATCAGGC CGAGTGGTTT GAGGACGATG TCATACAGCG CAAGAGGGAG 120

CTGTGGCCAC CTGAGAAGCT TCAAGAGATA GAGGAATTCA AAGAGAGGTT ACGGAAGCGG 180

CGGGAGGAGA AGCTCCTTCG CGACGCCCAG CAGAACTCC 219

Sequence No.: 16

Sequence length: 3516

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

معقع والإلا

Organism species: Homo sapiens

Cell kind: Lymphoma

Cell line: U937

Clone name: HP10269

Sequence description

ATGAGACCAT	TCTTCCTCTT	GTGTTTTGCC	CTGCCTGGCC	TCCTGCATGC	CCAACAAGCC	60
ም ርርፕርርርር	GGGCCTGCTA	TCCACCTGTT	GGGGACCTGC	TTGTTGGGAG	GACCCGGTTT	120
CTCCGAGCTT	CATCTACCTG	TGGACTGACC	AAGCCTGAGA	CCTACTGCAC	CCAGTATGGC	180
GAGTGGCAGA	TGAAATGCTG	CAAGTGTGAC	TCCAGGCAGC	CTCACAACTA	CTACAGTCAC	240
CGAGTAGAGA	ATGTGGCTTC	ATCCTCCGGC	CCCATGCGCT	GGTGGCAGTC	CCAGAATGAT	300
GTGAACCCTG	TCTCTCTGCA	GCTGGACCTG	GACAGGAGAT	TCCAGCTTCA	AGAAGTCAŤĠ	360
ATGGAGTTCC	AGGGGCCCAT	GCCTGCCGGC	ATGCTGATTG	AGCGCTCCTC	AGACTTCGGT	420
AAGACCTGGC	GAGTGTACCA	GTACCTGGCT	GCCGACTGCA	CCTCCACCTT	CCCTCGGGTC	480
CGCCAGGGTC	GGCCTCAGAG	CTGGCAGGAT	GTTCGGTGCC	AGTCCCTGCC	TCAGAGGCCT	540
AATGCACGCC	TAAATGGGGG	GAAGGTCCAA	CTTAACCTTA	TGGATTTAGT	GTCTGGGATT	600
CCAGCAACTC	AAAGTCAAAA	AATTCAAGAG	GTGGGGGAGA	TCACAAACTT	GAGAGTCAAT	660
TTCACCAGGC	TGGCCCCTGT	GCCCCAAAGG	GGCTACCACC	CTCCCAGCGC	CTACTATGCT	720
GTGTCCCAGC	TCCGTCTGCA	GGGGAGCTGC	TTCTGTCACG	GCCATGCTGA	TCGCTGCGCA	780
CCCAAGCCTG	GGGCCTCTGC	AGGCCCCTCC	ACCGCTGTGC	AGGTCCACGA	TGTCTGTGTC	840
TGCCAGCACA	ACACTGCCGG	CCCAAATTGT	GAGCGCTGTG	CACCCTTCTA	CAACAACCGG	900
CCCTGGAGAC	CGGCGGAGGG	CCAGGACGCC	CATGAATGCC	AAAGGTGCGA	CTGCAATGGG	960
CACTCAGAGA	CATGTCACTT	TGACCCCGCT	GTGTTTGCCG	CCAGCCAGGG	GGCATATGGA	1020
GGTGTGTGTG	ACAATTGCCG	GGACCACACC	GAAGGCAAGA	ACTGTGAGCG	GTGTCAGCTG	1080
CACTATTTCC	GGAACCGGCG	CCCGGGAGCT	TCCATTCAGG	AGACCTGCAT	CTCCTGCGAG	1140
TGTGATCCGG	ATGGGGCAGT	GCCAGGGGCT	CCCTGTGACC	CAGTGACCGG	GCAGTGTGTG	1200
TGCAAGGAGC	ATGTGCAGGG	AGAGCGCTGT	GACCTATGCA	AGCCGGGCTT	CACTGGACTC	1260
ACCTACGCCA	ACCCGCAGGG	CTGCCACCGC	TGTGACTGCA	ACATCCTGGG	GTCCCGGAGG	1320

TGTGCCTGCG ACCCGCACAA CTCCCTCAGC CCACAGTGCA ACCAGTTCAC AGGGCAGTGC 1500 CCCTGTCGGG AAGGCTTTGG TGGCCTGATG TGCAGCGCTG CAGCCATCCG CCAGTGTCCA 1560 GACCGGACCT ATGGAGACGT GGCCACAGGA TGCCGAGCCT GTGACTGTGA TTTCCGGGGA 1620 ACAGAGGGCC CGGGCTGCGA CAAGGCATCA GGCCGCTGCC TCTGCCGCCC TGGCTTGACC 1680 GGGCCCCGCT GTGACCAGTG CCAGCGAGGC TACTGCAATC GCTACCCGGT GTGCGTGGCC 1740 TGCCACCCTT GCTTCCAGAC CTATGATGCG GACCTCCGGG AGCAGGCCCT GCGCTTTGGT 1800 ACACTOCICA ATGCCACCGC CAGCCTGTGG TCAGGGCCTG GGCTGGAGGA CCGTGGCCTG 1860 GCCTCCCGGA TCCTAGATGC AAAGAGTAAG ATTGAGCAGA TCCGAGCAGT TCTCAGCAGC 1920 CCCGCAGTCA CAGAGCAGGA GGTGGCTCAG GTGGCCAGTG CCATCCTCTC CCTCAGGCGA 1980 ACTCTCCAGG GCCTGCAGCT GGATCTGCCC CTGGAGGAGG AGACGTTGTC CCTTCCGAGA 2040 GACCTGGAGA GTCTTGACAG AAGCTTCAAT GGTCTCCTTA CTATGTATCA GAGGAAGAGG 2100 GAGCAGTTTG AAAAAATAAG CAGTGCTGAT CCTTCAGGAG CCTTCCGGAT GCTGAGCACA 2160 GCCTACGAGC AGTCAGCCCA GGCTGCTCAG CAGGTCTCCG ACAGCTCGCG CCTTTTGGAC 2220 CAGCTCAGGG ACAGCCGGAG AGAGGCAGAG AGGCTGGTGC GGCAGGCGGG AGGAGGAGGA 2280 GGCACCGGCA GCCCCAAGCT TGTGGCCCTG AGGCTGGAGA TGTCTTCGTT GCCTGACCTG 2340 ACACCCACCT TCAACAAGCT CTGTGGCAAC TCCAGGCAGA TGGCTTGCAC CCCAATATCA 2400 TGCCCTGGTG AGCTATGTCC CCAAGACAAT GGCACAGCCT GTGGCTCCCG CTGCAGGGGT 2460 GTCCTTCCCA GGGCCGGTGG GGCCTTCTTG ATGGCGGGGC AGGTGGCTGA GCAGCTGCGG 2520 GGCTTCAATG CCCAGCTCCA GCGGACCAGG CAGATGATTA GGGCAGCCGA GGAATCTGCC 2580 TCACAGATTC AATCCAGTGC CCAGCGCTTG GAGACCCAGG TGAGCGCCAG CCGCTCCCAG 2640 ATGGAGGAAG ATGTCAGACG CACACGGCTC CTAATCCAGC AGGTCCGGGA CTTCCTAACA 2700 GACCCCGACA CTGATGCAGC CACTATCCAG GAGGTCAGCG AGGCCGTGCT GGCCCTGTGG 2760 CTGCCCACAG ACTCAGCTAC TGTTCTGCAG AAGATGAATG AGATCCAGGC CATTGCAGCC 2820 AGGCTCCCCA ACGTGGACTT GGTGCTGTCC CAGACCAAGC AGGACATTGC GCGTGCCCGC 2880 CGGTTGCAGG CTGAGGCTGA GGAAGCCAGG AGCCGAGCCC ATGCAGTGGA GGGCCAGGTG 2940 GAAGATGTGG TTGGGAACCT GCGGCAGGGG ACAGTGGCAC TGCAGGAAGC TCAGGACACC 3000 ATGCAAGGCA CCAGCCGCTC CCTTCGGCTT ATCCAGGACA GGGTTGCTGA GGTTCAGCAG

CAGCAGCTTG	CGGAAGGTGC	CAGCGAGCAG	GCATTGAGTG	CCCAAGAGGG	ATTTGAGAGA	3240
ATAAAACAAA	AGTATGCTGA	GTTGAAGGAC	CGGTTGGGTC	AGAGTTCCAT	GCTGGGTGAG	3300
CAGGGTGCCC	GGATCCAGAG	TGTGAAGACA	GAGGCAGAGG	AGCTGTTTGG	GGAGACCATG	3360
GAGATGATGG	ACAGGATGAA	AGACATGGAG	TTGGAGCTGC	TGCGGGGCAG	CCAGGCCATC	3420
ATGCTGCGCT	CAGCGGACCT	GACAGGACTG	GAGAAGCGTG	TGGAGCAGAT	CCGTGACCAC	3480
ATCAATGGGC	GCGTGCTCTA	CTATGCCACC	TGCAAG			3516

Sequence No.: 17

Sequence length: 366

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10298

Sequence description

ATGGGCCTGT	TGCTCCTGGT	CCCATTGCTC	CTGCTGCCCG	GCTCCTACGG	ACTGCCCTTC	60
TACAACGGCT	TCTACTACTC	CAACAGCGCC	AACGACCAGA	ACCTAGGCAA	CGGTCATGGC	120
AAAGACCTCC	TTAATGGAGT	GAAGCTGGTG	GTGGAGACAC	CCGAGGAGAC	CCTGTTCACC	180
CGCATCCTAA	CTGTGGGCCC	CCAGAGCCTG	GGGTCCGAAG	CTTTGGCTTC	CCCGACCCGC	240
AGAGCCGCTT	GTACGGTGTT	TACTGCTACC	GCCAGCACTA	GGACCTGGGG	CCCTCCCCTG	300
CCGCATTCCC	TCACTGGCTG	TGTATTTATT	GAGTGGTTCG	TTTTCCCTTG	TGGGTTGGAG	36 0
CCATTT						366

Sequence No.: 18

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10368

Sequence description

						60
ATGGAGAAAA	TTCCAGTGTC	AGCATTCTTG	CTCCTTGTGG	CCCTCTCCTA	CACTUTGGCC	00
AGAGATACCA	CAGTCAAACC	TGGAGCCAAA	AAGGACACAA	AGGACTCTCG	ACCCAAACTG	120
CCCCACACCC	TCTCCAGAGG	TTGGGGTGAC	CAACTGATCT	GGACTCAGAC	ATATGAAGAA	180
	AATCCAAGAC					240
GCTCTATATA	ARICOARGAC	Miconsider	mmmccmc A A A	ATAAAGAAAT	CCAGAAATTG	300
	GTCAAGCTTT					360
GCAGAGCAGT	TTGTCCTCCT	CAATCTGGTT	TATGAAACAA	CTGACAAACA	CCTTTCTCCT	
GATGGCCAGT	ATGTCCCCAG	GATTATGTTT	GTTGACCCAT	CTCTGACAGT	TAGAGCCGAT	420
A TC A CTCGAA	GATATTCAAA	CCGTCTCTAT	GCTTACGAAC	CTGCAGATAC	AGCTCTGTTG	480
	TGAAGAAAGC					525
CTTGACAACA	TGAAGAAAGU	ICIOMAGIIO				

Sequence No.: 19

Sequence length: 1296

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Fibrosarcoma

Sequence characteristics:	
Code representing characteristics: CDS	
Existence site: 56 520	
Characterization method: E	
Sequence description	58
CCTGCAGAGG ATCAAGACAG CACGTGGACC TCGCACAGGCC TCTCCCACAG GTACC ATG	30
net 1	
	106
AAG GTC TCC GCG GCA GCC CTC GCT GTC ATC CTC ATT GCT ACT GCC CTC	100
Lys Val Ser Ala Ala Ala Leu Ala Val Ile Leu Ile Ala Thr Ala Leu	
5 10 15	154
TGC GCT CCT GCA TCT GCC TCC CCA TAT TCC TCG GAC ACC ACA CCC TGC	134
Cys Ala Pro Ala Ser Ala Ser Pro Tyr Ser Ser Asp Thr Thr Pro Cys	
20 25 30	222
TGC TTT GCC TAC ATT GCC CGC CCA CTG CCC CGT GCC CAC ATC AAG GAG	202
Cys Phe Ala Tyr Ile Ala Arg Pro Leu Pro Arg Ala His Ile Lys Glu	
35 40 45	
TAT TTC TAC ACC AGT GGC AAG TGC TCC AAC CCA GCA GTC GTC CAC AGG	250
Tyr Phe Tyr Thr Ser Gly Lys Cys Ser Asn Pro Ala Val Wal His Arg	
50 55 60 65	
TCA AGG ATG CCA AAG AGA GAG GGA CAG CAA GTC TGG CAG GAT TTC CTG	298
Ser Arg Met Pro Lys Arg Glu Gly Gln Gln Val Trp Gln Asp Phe Leu	
70 75 80	
TAT GAC TCC CGG CTG AAC AAG GGC AAG CTT TGT CAC CCG AAA GAA CCG	
Twr Asn Ser Arg Leu Asn Lys Gly Lys Leu Cys His Pro Lys Glu Pro	ı

90

CCA AGT GTG TGC CAA CCC AGA GAA GAA ATG GGT TCG GGA GTA CAT CAA

85

90

CTC TTT GGA GAT GAG CTA GGA TGG AGA GTC CTT GAA CCT GAA CTT ACA	442
Leu Phe Gly Asp Glu Leu Gly Trp Arg Val Leu Glu Pro Glu Leu Thr	
115 120 125	
CAA ATT TGC CTG TTT CTG CTT GCT CTT GTC CTA GCT TGG GAG GCT TCC	490
Gln Ile Cys Leu Phe Leu Leu Ala Leu Val Leu Ala Trp Glu Ala Ser	
130 135 140 145	
CCT CAC TAT CCT ACC CCA CCC GCT CCT TGAAGGGCCC AGA	530
Pro His Tyr Pro Thr Pro Pro Ala Pro	
150	
TTCTACCACA CAGCAGCAGT TACAAAAACC TTCCCCAGGC TGGACGTGGT GGCTCACGCC	590
TGTAATCCCA GCACTTTGGG AGGCCAAGGT GEGTGGATCA CTTGAGGTCA GGAGTTCGAG	650
ACCAGCCTGG CCAACATGAT GAAACCCCAT CTCTACTAAA AATACAAAAA ATTAGCCGGG	710
CGTGGTAGCG GGCGCCTGTA GTCCCAGCTA CTCGGGAGGC TGAGGCAGGA GAATGGCGTG	770
AACCCGGGAG GCGGAGCTTG CAGTGAGCCG AGATCGCGCC ACTGCACTCC AGCCTGGGCG	830
ACAGAGCGAG ACTCCGTCTC AAAAAAAAAA AAAAAAAAA AAATACAAAA ATTAGCCGGG	890
CGTGGTGGCC CACGCCTGTA ATCCCAGCTA CTCGGGAGGC TAAGGCAGGA AAATTGTTTG	950
AACCCAGGAG GTGGAGGCTG CAGTGAGCTG AGATTGTGCC ACTTCACTCC AGCCTGGGTG	1010
ACAAAGTGAG ACTCCGTCAC AACAACAACA ACAAAAAGCT TCCCCAACTA AAGCCTAGAA	1070
GAGCTTCTGA GGCGCTGCTT TGTCAAAAGG AAGTCTCTAG GTTCTGAGCT CTGGCTTTGC	1130
CTTGGCTTTG CCAGGGCTCT GTGACCAGGA AGGAAGTCAG CATGCCTCTA GAGGCAAGGA	1190
GGGGAGGAAC GCTGCACTCT TAAGCTTCCG CCGTCTCAAC CCCTCACAGG AGCTTACTGG	1250

Sequence No.: 20

Sequence length: 3311

Sequence type: Nucleic acid

CAAACATGAA AAATCGGCTT ACCATTAAAG TTCTCAATGC AACCAT

Strandedness: Double

Origin	nal s	ource:
--------	-------	--------

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP00714

Sequence characteristics:

Codo representing characteristics: CDS

Existence site: 57.. 1004

Characterization method: E

Sequence description

GAGCGGCGGC CACGGCATCC TGTGCTGTGG GGGCTACGAG GAAAGATCTA ATTATC ATG 59

1

GAC CTG CGA CAG TTT CTT ATG TGC CTG TCC CTG TGC ACA GCC TTT GCC

Asp Leu Arg Gln Phe Leu Met Cys Leu Ser Leu Cys Thr Ala Phe Ala

5 10 15

TTG AGC AAA CCC ACA GAA AAG AAG GAC CGT GTA CAT CAT GAG CCT CAG

Leu Ser Lys Pro Thr Glu Lys Lys Asp Arg Val His His Glu Pro Gln

20 25 30

CTC AGT GAC AAG GTT CAC AAT GAT GCT CAG AGT TTT GAT TAT GAC CAT

Leu Ser Asp Lys Val His Asn Asp Ala Gln Ser Phe Asp Tyr Asp His

35 40 45

GAT GCC TTC TTG GGT GCT GAA GAA GCA AAG ACC TTT GAT CAG CTG ACA 251

Asp Ala Phe Leu Gly Ala Glu Glu Ala Lys Thr Phe Asp Gln Leu Thr

50 55 60 65

CCA GAA GAG AGC AAG GAA AGG CTT GGA AAG ATT GTA AGT AAA ATA GAT

Pro Glu Glu Ser Lys Glu Arg Leu Gly Lys Ile Val Ser Lys Ile Asp

BOLL GAN AAN GAN WWW

Gly	Asp	Lys	Asp	Gly	Phe	Val	Thr	Val	Asp	Glu	Leu	Lys	Asp	Trp	Ile	
			8 5		\			90					95			
AAA	TTT	GCA	CAA	AAG	CGC	TGG	ATT	TAC	GAG	GAT	GTA	GAG	CGA	CAG	TGG	395
L y s	Phe	Ala	Gln	Lys	Arg	Trp	Ile	Tyr	Glu	Asp	Val	Glu	Arg	Gln	Trp	
		100					105					110				
AA G	GGG	CAT	GAC	CTC	AAT	GAG	GAC	GGC	CTC	GTT	TCC	TGG	GAG	GAG	TAT	443
Lys	Gly	His	Asp	Leu	Asn	Glu	Asp	Gly	Leu	Val	Ser	Trp	Glu	Glu	Tyr	
	115					120					125					
AAA	TAA	GCC	ACC	TAC	GGC	TAC	GTT	TTA	GAT	GAT	CCA	GAT	CCT	GAT	GAT	491
L y s	Asn	Ala	Thr	Tyr	Gly	Tyr	Val	Leu	Asp	Asp	Pro	Asp	Pro	Asp	Asp	
130					135		ı			140					145	
GGA	TTT	AAC	TAT	AAA	CAG	ATG	ATG	GTT	AGA	GAT	GAG	CGG	AGG	TTT	AAA	539
Gly	Phe	Asn	Tyr	L y s	Gln	Met	Met	Val	Arg	Asp	Glu	Arg	Arg	Phe	Lys	
				150					15 5					160		
ATG	GCA	GAC	AAG	GAT	GGA	GAC	CTC	ATT	GCC	ACC	AAG	GAG	GAG	TTC	ACA	587
Met	Ala	Asp	Lys	Asp	Gly	Asp	Leu	Ile	Ala	Thr	Lys	Glu	Glu	Phe	Thr	
			165					170				:	175			
GCT	TTC	CTG	CAC	CCT	GAG	GAG	TAT	GAC	TAC	ATG	AAA	GAT	ATA	GTA	GTA	635
Ala	Phe	Leu	His	Pro	Glu	Glu	Tyr	Asp	Tyr	Met	Lys	Asp	Ile	Val	Val	
		180					185					190				
CAG	GAA	ACA	ATG	GAA	GAT	ATA	GAT	AAG	AAT	GCT	GAT	GGT	TTC	ATT	GAT	683
Gln	Glu	Thr	Met	Glu	Asp	Ile	Asp	Lys	Asn	Ala	Asp	Gly	Phe	Ile	Asp	
	195					200					205					
CTA	GAA	GAG	TAT	ATT	GGT	GAC	ATG	TAC	AGC	CAT	GAT	GGG	AAT	ACT	GAT	731
Leu	Glu	Glu	Tyr	Ile	Gly	Asp	Met	Tyr	Ser	His	Asp	Gly	Asn	Thr	Asp	
210					215					220					225	
GAG	CCA	GAA	TGG	GTA	AAG	ACA	GAG	CGA	GAG	CAG	TTT	GTT	GAG	TTT	CGG	779
									~ 1	~1.	Pho	V n 1	۱۰۱	Pho	Arr	

GAT AAG AAC CGT GAT GGG AAG ATG GAC AAG GAA GAG ACC AAA GAC TGG	827
Asp Lys Asn Arg Asp Gly Lys Met Asp Lys Glu Glu Thr Lys Asp Trp	
245 250 255	
ATC CTT CCC TCA GAC TAT GAT CAT GCA GAG GCA GAA GCC AGG CAC CTG	875
Ile Leu Pro Ser Asp Tyr Asp His Ala Glu Ala Glu Ala Arg His Leu	
260 265 270	
GTC TAT GAA TCA GAC CAA AAC AAG GAT GGC AAG CTT ACC AAG GAG GAG	923
Val Tyr Glu Ser Asp Gln Asn Lys Asp Gly Lys Leu Thr Lys Glu Glu	
275 280 285	
ATC GTT GAC AAG TAT GAC TTA TTT GTT GGC AGC CAG GCC ACA GAT TTT	971
Ile Val Asp Lys Tyr Asp Leu Phe Val Gly Ser Gln Ala Thr Asp Phe	
290 295 300 305	
GGG GAG GCC TTA GTA CGG CAT GAT GAG TTC TGAGCTACGG AGGAACCCT	1020
Gly Glu Ala Leu Val Arg His Asp Glu Phe	
310 315	
CATTTCCTCA AAAGTAATTT ATTTTTACAG CTTCTGGTTT CACATGAAAT TGTTTGCGCT	1080
ACTGAGACTG TTACTACAAA CTTTTTAAGA CATGAAAAGG CGTAATGAAA ACCATCCCGT	1140
CCCCATTCCT CCTCCTCTCT GAGGGACTGG AGGGAAGCCG TGCTTCTGAG GAACAACTCT	1200
AATTAGTACA CTTGTGTTTG TAGATTTACA CTTTGTATTA TGTATTAACA TGGCGTGTTT	1260
ATTTTTGTAT TTTTCTCTGG TTGGGAGTAT GATATGAAGG ATCAAGATCC TCAACTCACA	1320
CATGTAGACA AACATTAGCT CTTTACTCTT TCTCAACCCC TTTTATGATT TTAATAATTC	1380
TCACTTAACT AATTTTGTAA GCCTGAGATC AATAAGAAAT GTTCAGGAGA GAGGAAAGAA	1440
AAAAAATATA TGCTCCACAA TTTATATTTA GAGAGAGAAC ACTTAGTCTT GCCTGTCAAA	1500
AAAAAATATA TGCTCCACAA TTTATTTTT OODATAAAAAATATA TGCTCCACAA TTTATTTTTTTTTTTT	1560
CAACTGAACC TGCCATTACC TGGGCAAGGA AAGATCCCTT TGCTCTAGGA AAGCTTGGCC	1620
CAACTGAACC TGCCATTACC TGGGCAAGGA AAGATGACT TTGGCTAATT TTGTCAAGCA	1680
CAAATTGATT TTCTTCTTTT TCCCCCTGTA GGACTGAOTO TTOOCAATTGAOTO TCCCCCTGTA GGACTGAOTO TTOOCAATTGAOTO TCCCCCCTGTA GGACTGAOTO TTOOCAATTGAOTO TCCCCCCTGTA GGACTGAOTO TCCCCCCTGTA GGACTGAOTO TTOOCAATTGAOTO TCCCCCCTGTA GGACTGAOTO TCCCCCCTGTA GGACTGAOTO TCCCCCCTGTA GGACTGAOTO TCCCCCCTGTA GGACTGAOTO TCCCCCCTGTA GGACTGAOTO TCCCCCCCTGTA GGACTGAOTO TCCCCCCTGTA GGACTGAOTO TCCCCCCTGTA GGACTGAOTO TCCCCCCTGTA GGACTGAOTO TCCCCCCTGTA GGACTGAOTO TCCCCCCTGTA GGACTGAOTO TCCCCCCCTGTA GCACTGAOTO TCCCCCCCTGTA GGACTGAOTO TCCCCCCCCTGTA GGACTGAOTO TCCCCCCCTGTA GGACTGAOTO TCCCCCCCCTGTA GCACTGAOTO TCCCCCCCTGTA GGACTGAOTO TCCCCCCCTGTA GCACTGAOTO TCCCCCCCCTGTA GCACTGAOTO TCCCCCCCTGTA GCACTGAOTO TCCCCCCCTGTA GCACTGAOTO TCCCCCCCTGTA GCACTGAOTO TCCCCCCCTGTA GCACTGAOTO TCCCCCCCCTGTA GCACTGAOTO TCCCCCCCCTGTA GCACTGAOTO TCCCCCCCTGTA GCACTGAOTO TCCCCCCCCTGTA GCACTGAOTO TCCCCCCCCCTGTA GCACTGAOTO TCCCCCCCCCTGTA GCACTGAOTO TCCCCCCCCCTGTA GCACTGAOTO TCCCCCCCCCCTGTA GCACTGAOTO TCCCCCCCCCTGTA GCACTGAOTO TCCCCCCCCCTGTA GCACTGAOTO TCCCCCCCCCTGTA GCACTGAOTO TCCCCCCCCCTGTA GCACTGAOTO TCCCCCCCCTGTA GCACTGAOTO TCCCCCCCCCTGTA GCACTGAOTO TCCCCCCCCCTGTA GCACTA G	1740
CAGCTGTGGT GGGAAGAGTT AGGGCCAGTG TCTTGAAAAAT AGAAAGTGTTTT	190

and the second s

TGCCTTTTGA	AATCACTGTA	AATGCCCCCA	TCCGGTTCCT	CTTCTTCCCA	GGTGTGCCAA	1920
GGAATTAATC	TTGGTTTCAC	TACAATTAAA	ATTCACTCCT	TTCCAATCAT	GTCATTGAAA	1980
GTGCCTTTAA	CGAAAGAAAT	GGTCACTGAA	TGGGAATTCT	CTTAAGAAAC	CCTGAGATTA	2040
AAAAAAGACT	ATTTGGATAA	CTTATAGGAA	AGCCTAGAAC	CTCCCAGTAG	AGTGGGGATT	2100
TTTTTCTTCT	TCCCTTTCTC	TTTTGGACAA	TAGTTAAATT	AGCAGTATTA	GTTATGAGTT	2160
TGGTTGCAGT	GTTCTTATCT	TGTGGGCTGA	TTTCCAAAAA	CCACATGCTG	CTGAATTTAC	2220
CAGGGATCCT	CATACCTCAC	AATGCAAACC	ACTTACTACC	AGGCCTTTTT	CTGTGTCCAC	2280
TGGAGAGCTT	GAGCTCACAC	TCAAAGATCA	GAGGACCTAC	AGAGAGGGCT	CTTTGGTTTG	2340
AGGACCATGG	CTTACCTTTC	CTGCCTTTGA	CCCATCACAC	CCCATTTCCT	CCTCTTTCCC	2400
TCTCCCCGCT	GCCAAAAAA	AAAAAAAAAG	GAAACGTTTA	TCATGAATCA	ACAGGGTTTC	2460
AGTCCTTATC	AAAGAGAGAT	GTGGÄÄÄGAG	CTAAAGAAAC	CACCCTTTGT	TCCCAACTCC	<u>2520</u>
ACTTTACCCA	TATTTTATGC	AACACAAACA	CTGTCCTTTT	GGGTCCCTTT	CTTACAGATG	2580
GACCTCTTGA	GAAGAATTAT	CGTATTCCAC	GTTTTTAGCC	CTCAGGTTAC	CAAGATAAAT	2640
ATATGTATAT	ATAACCTTTA	TTATTGCTAT	ATCTTTGTGG	ATAATACATT	CAGGTGGTGC	2700
TGGGTGATTT	ATTATAATCT	GAACCTAGGT	ATATCCTTTG	GTCTTCCACA	GTCATGTTGA	2760
GGTGGGCTCC	CTGGTATGGT	AAAAAGCCAG	GTATAATGTA	ACTTCACCCC	AGCCTTTGTA	2820
CTAAGCTCTT	GATAGTGGAT	ATACTCTTTT	AAGTTTAGCC	CCAATATAGG	GTAATGGAAA	2880
TTTCCTGCCC	TCTGGGTTCC	CCATTTTTAC	TATTAAGAAG	ACCAGTGATA	TAATAATTA	2940
GCCACCAACT	CTGGCTTAGT	TAAGTGAGAG	TGTGAACTGT	GTGGCAAGAG	AGCCTCACAC	3000
CTCACTAGGT	GCAGAGAGCC	CAGGCCTTAT	GTTAAAATCA	TGCACTTGAA	AAGCAAACCT	3060
TAATCTGCAA	AGACAGCAGC	AAGCATTATA	CGGTCATCTT	GAATGATCCC	TTTGAAATTT	3120
TTTTTTTGTT	TGTTTGTTTA	AATCAAGCCT	GAGGCTGGTG	AACAGTAGCT	ACACACCCAT	3180
ATTGTGTGTT	CTGTGAATGC	TAGCTTTCTT	GAATTTGGAT	ATTGGTTATT	TTTTATAGAG	3240
TGTAAACCAA	GTTTTATATT	CTGCAATGCG	AACAGGTACC	TATCTGTTTC	TAAATAAAAC	3300
TGTTTACATT	С					3311

Sequence No.: 21

eque...

WO 98/11217 PCT/JP97/03239

95

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP00876

Sequence characteristics:

Code representing characteristics: CDS

Existence site: 147.. 623

Characterization method: E

Sequence description

ACTGGAGACA	CTGAAGAAGG	CAGGGGCCCT	TAGA	GTCI	TG G	TTG	CAAA	C AG	ATTT	GCAG	ים	-
		TTCAAAGAAG										C
		AGGAAG ATG									17	:
			Ala									
				1				5				

CTA TTG CTG AGC TGC CTG GCC AAA ACA GGA GTC CTG GGT GAT ATC ATC

Leu Leu Leu Ser Cys Leu Ala Lys Thr Gly Val Leu Gly Asp Ile Ile

10 15 20 25

ATG AGA CCC AGC TGT GCT CCT GGA TGG TTT TAC CAC AAG TCC AAT TGC 269

Met Arg Pro Ser Cys Ala Pro Gly Trp Phe Tyr His Lys Ser Asn Cys

30 35 40

TAT GGT TAC TTC AGG AAG CTG AGG AAC TGG TCT GAT GCC GAG CTC GAG

Tyr Gly Tyr Phe Arg Lys Leu Arg Asn Trp Ser Asp Ala Glu Leu Glu

45 50 55

TGT CAG TCT TAC GGA AAC GGA GCC CAC CTG GCA TCT ATC CTG AGT TTA 365

TTTAATAAAC CATTGTGTAC AT

Sequence	length:	1749
----------	---------	------

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Liver

Clone name: HP01134

Sequence characteristics: .

Code representing characteristics: CDS

Existence site: 117.. 1247

Characterization method: E

Sequence description

AATCACAGCA GTNCCGACGT CGTGGGTGTT TGGTGTGAGG CTGCGAGCCG CCGCCGCCAC 60

CACTGCCACC ACGGTCGCCT GCCACAGGTG TCTGCAATTG AACTCCAAGG TGCAGA ATG 119

Met

1

GTT TGG AAA GTA GCT GTA TTC CTC AGT GTG GCC CTG GGC ATT GGT GCC

Val Trp Lys Val Ala Val Phe Leu Ser Val Ala Leu Gly Ile Gly Ala

5 10 15

GTT CCT ATA GAT GAT CCT GAA GAT GGA GGC AAG CAC TGG GTG GTG ATC

215

Val Pro Ile Asp Asp Pro Glu Asp Gly Gly Lys His Trp Val Val Ile

20 25 30

GTG GCA GGT TCA AAT GGC TGG TAT AAT TAT AGG CAC CAG GCA GAC GCG 263

Val Ala Gly Ser Asn Gly Trp Tyr Asn Tyr Arg His Gln Ala Asp Ala

35 40 45

vs mis min cyl cer.

50					5 5					60					65	
ATC	GTT	GTG	ATG	ATG	DAT	GAT	GAC	ATT	GCT	TAC	TCT	GAA	GAC	AAT	CCC	3 59
Ile	Val	Val	Met	Met	Tyr	Asp	Asp	Ile	Ala	Tyr	Ser	Glu	Asp	Asn	Pro	
				70					75					80	•	
ACT	CCA	GGA	ATT	GTG	ATC	AAC	AGG	ccc	AAT	GGC	ACA	GAT	GTC	TAT	CAG	407
Thr	Pro	Gly	Ile	Val	Ile	Asn	Arg	Pro	Asn	Gly	Thr	Asp	Val	Tyr	Gln	
			Я5					90					95			
GGA	GTC	CCG	AAG	GAC	TAC	ACT	GGA	GAG	GAT	GTT	ACC	CCA	CAA	AAT	TTC	455
Gly	Val	Pro	Lys	Asp	Tyr	Thr	Gly	Glu	Asp	Val	Thr	Pro	Gln	Asn	Phe	
		100					105					110				
CTT	GCT	GTG	TTG	AGA	GGC	GAT	GCA	GAA	GCA	GTG	AAG	GGC	ATA	GGA	TCC	503
Leu	Ala	Val	Leu	Arg	Gly	Asp	Ala	Glu	Ala	Val	Lys	Gly	Ile	G1y	Ser	
	115					120					125					
GGC	AAA	GTC	CTG	AAG	AGT	GGC	CCC	CAG	GAT	CAC	GTG	TTC	ATT	TAC	TTC	551
Gly	Lys	Val	Leu	Lys	Ser	Gly	Pro	Gln	Asp	His	Val	Phe	Ile	Tyr	Phe	
130					135					140					145	
ACT	GAC	CAT	GGA	TCT	ACT	GGA	ATA	CTG	GTT	TTT	CCC	AAT	GAA	GAT	CTT	599
Thr	Asp	His	Gly	Ser	Thr	Gly	Ile	Leu	Val	Phe	Pro	Asn	Glu	Asp	Leu	
				150					155					160		
														CAC		647
His	Val	Lys	Asp	Leu	Asn	Glu	Thr	Ile	His	Tyr	Met	Tyr	L y s	His	Lys	
			165					170					175			
ATG	TAC	CGA	AAG	ATG	GTG	TTC	TAC	ATT	GAA	GCC	TGT	GAG	TCT	GGG	TCC	695
Met	Tyr	Arg	Lys	Met	Val	Phe	Tyr	Ile	Glu	Ala	Cys	Glu	Ser	Gl y	Ser	
		180					185					190				
ATG	ATG	AAC	CAC	CTG	CCG	GAT	AAC	ATC	AAT	GTT	TAT	GCA	ACT	ACT	GCT	743
Met	Met	Asn	His	Leu	Pro	Asp	Asn	Ile	Asn	Val	Tyr	Ala	Thr	Thr	Ala	

AND AND COLD AGA GARD IN THE TOTAL OF

Ala Asn Pro Arg Glu Ser Ser Tyr Ala Cys Tyr Tyr Asp Glu Lys Arg TCC ACG TAC CTG GGG GAC TGG TAC AGC GTC AAC TGG ATG GAA GAC TCG Ser Thr Tyr Leu Gly Asp Trp Tyr Ser Val Asn Trp Met Glu Asp Ser GAC GTG GAA GAT CTG ACT AAA GAG ACC CTG CAC AAG CAG TAC CAC CTG Asp Val Glu Asp Leu Thr Lys Glu Thr Leu His Lys Gln Tyr His Leu GTA AAA TCG CAC ACC AAC ACC AGC CAC GTC ATG CAG TAT GGA AAC AAA Val Lys Ser His Thr Asn Thr Ser His Val Met Gln Tyr Gly Asn Lys ACA ATC TCC ACC ATG AAA GTG ATG CAG TTT CAG GGT ATG AAA CGC AAA Thr Ile Ser Thr Met Lys Val Met Gln Phe Gln Gly Met Lys Arg Lys GCC AGT TCT CCC GTC CCC CTA CCT CCA GTC ACA CAC CTT GAC CTC ACC Ala Ser Ser Pro Val Pro Leu Pro Pro Val Thr His Leu Asp Leu Thr CCC AGC CCT GAT GTG CCT CTC ACC ATC ATG AAA AGG AAA CTG ATG AAC Pro Ser Pro Asp Val Pro Leu Thr Ile Met Lys Arg Lys Leu Met Asn ACC AAT GAT CTG GAG GAG TCC AGG CAG CTC ACG GAG GAG ATC CAG CGG Thr Asn Asp Leu Glu Glu Ser Arg Gln Leu Thr Glu Glu Ile Gln Arg CAT CTG GAT TAC GAG TAT GCG TTG AGA CAT TTG TAC GTG CTG GTC AAC His Leu Asp Tyr Glu Tyr Ala Leu Arg His Leu Tyr Val Leu Val Asn CTT TGT GAG AAG CCG TAT CCG CTT CAC AGG ATA AAA TTG TCC ATG GAC

CAC GTG TGC CTT GGT CAC TAC TGAAGAGCTG CCTCCTGGAA GCTTTT	1270
His Val Cys Leu Gly His Tyr	
370 375	
CCAAGTGTGA GCGCCCCACC GACTGTGTGC TGATCAGAGA CTGGAGAGGT GGAGTGAGAA	1330
GTCTCCGCTG CTCGGGCCCT CCTGGGGAGC CCCCGCTCCA GGGCTCGCTC CAGGACCTTC	1390
TTCACAAGAT GACTTGCTCG CTGTTACCTG CTTCCCCAGT CTTTTCTGAA AAACTACAAA	1450
TTAGGGTGGG AAAAGCTCTG TATTGAGAAG GGTCATATTT GCTTTCTAGG AGGTTTGTTG	1510
TTTTGCCTGT TAGTTTTGAG GAGCAGGAAG CTCATGGGGG CTTCTGTAGC CCCTCTCAAA	1570
AGGAGTETTT ATTETGAGAA TTTGAAGETG AAACETETTT AAATETTEAG AATGATTTTA	1630
TTGAAGAGGG CCGCAAGCCC CAAATGGAAA ACTGTTTTTA GAAAATATGA TGATTTTTGA	1690
TTGCTTTTGT ATTTAATTCT GCAGGTGTTC AAGTCTTAAA AAATAAAGAT TTATAACAG	1749

Sequence No.: 23

Sequence length: 988

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10029

Sequence characteristics:

Code representing characteristics: CDS

Existence site: 9.. 530

Characterization method: E

Met Ala Ala Pro Ser Gly Gly Trp Asn Gly Val Arg Ala Ser

Met Ala Ala Plo Ber 5-7										
1	5	10								
TTG TGG GCC GCG CTG	CTC CTA GGG GC	C GTG GCG CTG AGG CCG GCG G	AG 98							
Leu Trp Ala Ala Leu	Leu Leu Gly Ala	a Val Ala Leu Arg Pro Ala G	lu							
15	20	25	30							
GCG GTG TCC GAG CCC	ACG ACC GTG GC	G TTT GAC GTG CGG CCC GGC G	GC 146							
		a Phe Asp Val Arg Pro Gly (
35		40 45								
GTC GTG CAT TCC TTC	TCC CAT AAC GT	G GGC CCG GGG GAC AAA TAT	ACG 194							
		l Gly Pro Gly Asp Lys Tyr								
50	5 الر	60								
TGT ATG TTC ACT TAC	GCC TCT CAA GG	GA GGG ACC AAT GAG CAA TGG	CAG 242							
		ly Gly Thr Asn Glu Gln Trp								
65	70	75								
ATG AGT CTG GGG ACC	AGC GAA GAC CA	AC CAG CAC TTC ACC TGC ACC	ATC 290							
		is Gln His Phe Thr Cys Thr								
80	85	90								
	AAG TCC TAT C	TG TAC TTC ACA CAG TTC AAG	GCA 338							
		eu Tyr Phe Thr Gln Phe Lys								
95	100	105	110							
GAG GTG CGG GGC GCT	GAG ATT GAG T	AC GCC ATG GCC TAC TCT AAA	GCC 386							
		yr Ala Met Ala Tyr Ser Lys								
115		120 125								
GCA TTT GAA AGG GA	A AGT GAT GTC (CCT CTG AAA ACT GAG GAA TTT	GAA 434							
		Pro Leu Lys Thr Glu Glu Phe								
130		135 140								
	A GTG GCT CAC	AGG CCC GGG GCA TTC AAA GCT	GAG 482							

CTG TCC AAG CTG GTE ATT GTG GCC AAG GCA TCG CGC ACT GAG CTG	527
Leu Ser Lys Leu Val Ile Val Ala Lys Ala Ser Arg Thr Glu Leu	
160 165 170	
TGA CCAGCAGCCC TGTTGCGGGT GGCACCTTCT CATCTCCGGT GAAGCTGAAG	580
GGGCCTGTGG CCCTGAAAGG GCCAGCACAT CACTGGTTTT CTAGGAGGGA CTCTTAAGTT	640
TTCTACCTGG GCTGACGTTG CCTTGTCCGG AGGGGCTTGC AGGGTGGCTG AAGCCCTGGG	700
GCAGAGAACA GAGGGTCCAG GGCCCTCCTG GCTCCCAACA GCTTCTCAGT TCCCACTTCC	760
TGCTGAGCTC TTCTGGACTC AGGATCGCAG ATCCGGGGCA CAAAGAGGGT GGGGAACATG	820
GGGGCTATGC TGGGGAAAGC AGCCATGCTC CCCCCGACCT CCAGCCGAGC ATCCTTCATG	880
AGCCTGCAGA ACTGCTTTCC TATGTTTACC CAGGGGACCT CCTTTCAGAT GAACTGGGAA	940
GAGATGAAAT GTTTTTCAT ATTTAAATAA ATAAGAACAT TAAAAAGC	988

Sequence No.: 24

Sequence length: 390

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Epidermoid carcinoma

Cell line: KB

Clone name: HP10189

Sequence characteristics:

Code representing characteristics: CDS

Existence site: 102.. 323

Characterization method: E

MICANOLL MOCKALINO

GGCTTTGGGC GGAAC	TGG¢T TTGTTGA	ACCG GGAGAAA	CGA G ATG GGG (STG AAG CTG 116								
Met Gly Val Lys Leu												
			1	5								
GAG ATA TTT CGG	ATG ATA ATC	TAC CTC ACT	TTC CCT GTG GC	T ATG TTC 164								
Glu Ile Phe Arg 1	Met Ile Ile '	Tyr Leu Thr	Phe Pro Val Ala	a Met Phe								
	10	15		20								
TGG GIT 100 ALT	OTO COU DAG !	TGG TTT GAG	GAC GAT GTC AT	A CAG CGC 212								
Trp Val Ser Asn (Gln Ala Glu '	Trp Phe Glu	Asp Asp Val Ile	e Gln Arg								
25		30	3.	5								
AAG AGG GAG CTG	TGG CCA CCT (GAG AAG CTT	CAA GAG ATA GA	G GAA TTC 260								
Lys Arg Glu Leu	Trp Pro Pro (Glu Lys Leu	Gln Glu Ile Gl	ı Glu Phe								
40		45	50									
AAA GAG AGG TTA	CGG AAG CGG	CGG GAG GAG	AAG CTC CTT CG	C GAC GCC 308								
Lys Glu Arg Leu	Arg Lys Arg	Arg Glu Glu	Lys Leu Leu Ar	g Asp Ala								
5 5	60		65									
CAG CAG AAC TCC	TGAGGCCTCC A	AGTGGGAGT CO	CTAGCCCCT	350								
Gln Gln Asn Ser												
70												
CCCCTGATGA AATAT	ACATA TACTCA	GTTC CTTGTTA	ATTC	390								

Sequence No.: 25

Sequence length: 4667

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

· ... hand with the

Cell line: U937

Clone name: HP10269

Sequence characteristics:

Code representing characteristics: CDS

Existence site: 754.. 4272

Characterization method: E

Sequence description

10

CATTTAGTTA	CTCTGCTCAT	TTCTCTTAAG	CTTTCCTTGG	ATGAGTTGAG	CTTTGAATCC	60
TTCCTGATGA	ACCTTGCCTT	TTAAGGATCC	TCCAAATGCC	CCAAGAAGCT	GGGATTTTTC	120
ATTTTTTTT	TCACTGGGGA	GGGGAATGGT	GCTTTCCAGG	GTCCTGGATG	TTTGAGTCTT	180
CTCACCTTCC	AGCCCGGTGA	TATGTCTGGA	GCTTTAACTC	TCTATATAAG	CCCTAATCTT	240
rgtgttctct	GCCTGATCTT	CTGTCTGGGG	TGGTCCAGGT	CACAAGAAGA	AGCTGACCCC	300
rgctggcttt	GGGAAAATGC	TGAGTTCATT	GCCTGGCACA	AATGCAAGGG	CCCTTCCCCA	360
CCTGTGAAT	TCTGGTCTCT	GATGATCACT	TACATGTGCC	TTGTGCTTTC	TGTTTGAGGG	420
GCCCCTTGCA	GCCCCACAG	GCAGGTGGGC	ATTGTGGAGC	TCACTACAAG	AACTCTGGGA	480
CCGACCGACC	AACCCACTTG	CCCAGTCCCG	TCCTGGGAGG	TGGGGGTGCA	GTGACGACAG	540
ATGGGTGTGA	CGGCTGCCAG	ATTCCTGAGA	CCCGCCCTGC	GGTGGGGCTA	CACCCAGCCA	600
GGAGTCTCC	AGAGGTGAGG	CTGTTGTTTA	AAAACCTGGA	GCCGGGAGGG	GAGACCCCCA	660
CATTCAAGAG	GAGCTTTCAG	GCGATCTGGA	GAAAGAACGG	CAGAACACAC	AGCAAGGAAA	720
GGTCCTTTCT	GGGGATCACC	CCATTGGCTG	AAG ATG AG	A CCA TTC T	TC CTC TTG	774
			Met Ar	g Pro Phe P	he Leu Leu	

1

5

TGT TTT GCC CTG CCT GGC CTC CTG CAT GCC CAA CAA GCC TGC TCC CGT 822

Cys Phe Ala Leu Pro Gly Leu Leu His Ala Gln Gln Ala Cys Ser Arg

15 2

GGG GCC TGC TAT CCA CCT GTT GGG GAC CTG CTT GTT GGG AGG ACC CGG 870

Gly Ala Cys Tyr Pro Pro Val Gly Asp Leu Leu Val Gly Arg Thr Arg

Phe	Leu	Arg	Ala	Ser	Ser	Thr	Cys	Gly	Leu	Thr	Lys	Pro	Glu	Thr	Tyr	
40					45					50					5 5	
TGC	ACC	CAG	TAT	GGC	GAG	TGG	CAG	ATG	AAA	TGC	TGC	AAG	TGT	GAC	TCC	966
Cys	Thr	Gln	Tyr	Gly	Glu	Trp	Gln	Met	Lys	Cys	Cys	Lys	Cys	Asp	Ser	
				60					65					70		
AGG	CAG	CCT	CAC	AAC	TAC	TAC	AGT	CAC	CGA	GTA	GAG	AAT	GTG	GCT	TCA	1014
Arg	GŢII	7.0	mii	1 :=	m	ጥታታ	Sar	His	Arg	Val	Glu	Asn	Val	Ala	Ser	
			75					80					85			
TCC	TCC	GGC	ссс	ATG	CGC	TGG	TGG	CAG	TCC	CAG	AAT	GAT	GTG	AAC	CCT	1062
Ser	Ser	Gly	Pro	Met	Arg	Trp	Trp	Gln	Ser	Gln	Asn	Asp	Val	Asn	Pro	
		90					95		<i>t</i> .			100				
GTC	TCT	CTG	CAG	CTG	GAC	CTG	GAC	AGG	AGA	TTC	CAG	CTT	CAA	GAA	GTC	1110
Val	Ser	Leu	Gln	Leu	Asp	Leu	Asp	Arg	Arg	Phe	Gln	Leu	Gln	Glu	Val	
	105					110					115					
ATG	ATG	GAG	TTC	CAG	GGG	ccc	ATG	CCT	GCC	GGC	ATG	CTG	ATT	GAG	CGC	1158
Met	Met	Glu	Phe	Gln	Gly	Pro	Met	Pro	Ala	Gly	Met	Leu	Ile	G1u	Arg	
120					125					130					135	
TCC	TCA	GAC	TTC	GGT	AAG	ACC	TGG	CGA	GTG	TAC	CAG	TAC	CTG	GCT	GCC	1206
Ser	Ser	Asp	Phe	Gly	L y s	Thr	Trp	Arg	Val	Tyr	Gln	Tyr	Leu	Ala	Ala	
				140					145					150		
GAC	TGC	ACC	TCC	ACC	TTC	ССТ	CGG	GTC	CGC	CAG	GGT	CGG	CCT	CAG	AGC	1254
Asp	Cys	Thr	Ser	Thr	Phe	Pro	Arg	Val	Arg	Gln	Gly	Arg	Pro	Gln	Ser	
			155					160					165			
TGG	CAG	GAT	GTT	CGG	TGC	CAG	TCC	CTG	CCT	CAG	AGG	CCT	AAT	GCA	CGC	1302
Trp	Gln	Asp	Val	Arg	Суs	Gln	Ser	Leu	Pro	Gln	Arg	Pro	Asn	Ala	Arg	
		170					175					180				
CTA	AAT	GGG	GGG	AAG	GTC	CAA	CTT	AAC	CTT	ATG	GAT	TTA	GTG	TCT	GGG	1350

PCT/JP97/03239

ATT CCA GCA ACT CAA AGT CAA AAA ATT CAA GAG GTG GGG GAG ATC ACA Ile Pro Ala Thr Gln Ser Gln Lys Ile Gln Glu Val Gly Glu Ile Thr AAC TTG AGA GTC AAT TTC ACC AGG CTG GCC CCT GTG CCC CAA AGG GGC Asn Leu Arg Val Asn Phe Thr Arg Leu Ala Pro Val Pro Gln Arg Gly TAC CAC CCT CCC AGC GCC TAC TAT GCT GTG TCC CAG CTC CGT CTG CAG Tyr His Pro Pro Ser Ala Tyr Tyr Ala Val Ser Gln Leu Arg Leu Gln GGG AGC TGC TTC TGT CAC GGC CAT GCT GAT CGC TGC GCA CCC AAG CCT Gly Ser Cys Phe Cys His Gly His Ala Asp Arg Cys Ala Pro Lys Pro GGG GCC TCT GCA GGC CCC TCC ACC GCT GTG CAG GTC CAC GAT GTC TGT Gly Ala Ser Ala Gly Pro Ser Thr Ala Val Gln Val His Asp Val Cys GTC TGC CAG CAC AAC ACT GCC GGC CCA AAT TGT GAG CGC TGT GCA CCC Val Cys Gln His Asn Thr Ala Gly Pro Asn Cys Glu Arg Cys Ala Pro TTC TAC AAC AAC CGG CCC TGG AGA CCG GCG GAG GGC CAG GAC GCC CAT Phe Tyr Asn Asn Arg Pro Trp Arg Pro Ala Glu Gly Gln Asp Ala His GAA TGC CAA AGG TGC GAC TGC AAT GGG CAC TCA GAG ACA TGT CAC TTT Glu Cys Gln Arg Cys Asp Cys Asn Gly His Ser Glu Thr Cys His Phe GAC CCC GCT GTG TTT GCC GCC AGC CAG GGG GCA TAT GGA GGT GTG TGT Asp Pro Ala Val Phe Ala Ala Ser Gln Gly Ala Tyr Gly Gly Val Cys

CTG CAC TAT TTC CGG AAC CGG CGC CCG GGA GCT TCC ATT CAG GAG ACC Leu His Tyr Phe Arg Asn Arg Arg Pro Gly Ala Ser Ile Gln Glu Thr TGC ATC TCC TGC GAG TGT GAT CCG GAT GGG GCA GTG CCA GGG GCT CCC Cys Ile Ser Cys Glu Cys Asp Pro Asp Gly Ala Val Pro Gly Ala Pro TGT GAC CCA GTG ACC GGG CAG TGT GTG TGC AAG GAG CAT GTG CAG GGA Cys Asp Pro Val Thr Gly Gln Cys Val Cys Lys Glu His Val Gln Gly GAG CGC TGT GAC CTA TGC AAG CCG GGC TTC ACT GGA CTC ACC TAC GCC Glu Arg Cys Asp Leu Cys Lys Pro Gly Phe Thr Gly Leu Thr Tyr Ala AAC CCG CAG GGC TGC CAC CGC TGT GAC TGC AAC ATC CTG GGG TCC CGG Asn Pro Gln Gly Cys His Arg Cys Asp Cys Asn Ile Leu Gly Ser Arg AGG GAC ATG CCG TGT GAC GAG GAG AGT GGG CGC TGC CTT TGT CTG CCC Arg Asp Met Pro Cys Asp Glu Glu Ser Gly Arg Cys Leu Cys Leu Pro AAC GTG GTG GGT CCC AAA TGT GAC CAG TGT GCT CCC TAC CAC TGG AAG Asn Val Val Gly Pro Lys Cys Asp Gln Cys Ala Pro Tyr His Trp Lys CTG GCC AGT GGC CAG GGC TGT GAA CCG TGT GCC TGC GAC CCG CAC AAC Leu Ala Ser Gly Gln Gly Cys Glu Pro Cys Ala Cys Asp Pro His Asn TCC CTC AGC CCA CAG TGC AAC CAG TTC ACA GGG CAG TGC CCC TGT CGG Ser Leu Ser Pro Gln Cys Asn Gln Phe Thr Gly Gln Cys Pro Cys Arg

Glu Gly Phe Gly Gly Leu Met Cys Ser Ala Ala Ala Ile Arg Gln Cys CCA GAC CGG ACC TAT GGA GAC GTG GCC ACA GGA TGC CGA GCC TGT GAC Pro Asp Arg Thr Tyr Gly Asp Val Ala Thr Gly Cys Arg Ala Cys Asp TGT GAT TTC CGG GGA ACA GAG GGC CCG GGC TGC GAC AAG GCA TCA GGC Cys Asp Phe Arg Gly Thr Glu Gly Pro Gly Cys Asp Lys Ala Ser Gly CGC TGC CTC TGC CGC CCT GGC TTG ACC GGG CCC CGC TGT GAC CAG TGC Arg Cys Leu Cys Arg Pro Gly Leu Thr Gly Pro Arg Cys Asp Gln Cys CAG CGA GGC TAC TGC AAT CGC TAC CCG GTG TGC GTG GCC TGC CAC CCT Gln Arg Gly Tyr Cys Asn Arg Tyr Pro Val Cys Val Ala Cys His Pro TGC TTC CAG ACC TAT GAT GCG GAC CTC CGG GAG CAG GCC CTG CGC TTT Cys Phe Gln Thr Tyr Asp Ala Asp Leu Arg Glu Gln Ala Leu Arg Phe GGT AGA CTC CGC AAT GCC ACC GCC AGC CTG TGG TCA GGG CCT GGG CTG Gly Arg Leu Arg Asn Ala Thr Ala Ser Leu Trp Ser Gly Pro Gly Leu GAG GAC CGT GGC CTG GCC TCC CGG ATC CTA GAT GCA AAG AGT AAG ATT Glu Asp Arg Gly Leu Ala Ser Arg Ile Leu Asp Ala Lys Ser Lys Ile GAG CAG ATC CGA GCA GTT CTC AGC AGC CCC GCA GTC ACA GAG CAG GAG Glu Gln Ile Arg Ala Val Leu Ser Ser Pro Ala Val Thr Glu Gln Glu GTG GCT CAG GTG GCC AGT GCC ATC CTC TCC CTC AGG CGA ACT CTC CAG

Are mire to come

								-	• •								
GGC	CTG	CAG	CTG	GAT	C T G	ccc	CTG	GAG	GAG	GAG	ACG	TTG	TCC	CTT	CCG	2790)
Gly	Leu	Gln	Leu	Asp	Leu	Pro	Leu	Glu	Glu	Glu	Thr	Leu	Ser	Leu	Pro		
	665					67 0					675						
AGA	GAC	CTG	GAG	AGT	CTT	GAC	A GA	AGC	TTC	AAT	GGT	CTC	CTT	ACT	ATG	2838	3
Arg	Asp	Leu	Glu	Ser	Leu	Asp	Arg	Ser	Phe	Asn	Gly	Leu	Leu	Thr	Met		
680					685					690					695		
			AAC									AGT					6
Tyr	Gln	Arg	Lys	Arg	Glu	Gln	Phe	G1u	Lys	Ile	Ser	Ser	Ala	Asp	Pro	1	
				700					705					710			
TCA	GGA	GCC	TTC	CGG	ATG	CTG	AGC	ACA	GCC	TAC	GAG	CAG	TCA	GCC	CAG	; 293	4
Ser	Gly	Ala	Phe	Arg	, M et	Leu	Ser	Thr	Ala	Tyr	Glu	Gln	Ser	Ala	Glr	ı	
			715					720					725				
GCT	GCT	CAG	CAG	GT(TCC	GAC	AGC	TCG	CGC	CTT	TTG	GAC	CAG	CTC	AGG	298	2
Ala	Ala	Glr	ı Glr	val	L Ser	Asp	Ser	Ser	Arg	Lev	Leu	Asp	Gln	Leu	ı Arş	g	
		730					735					740					
GAC	AG(CG	G AGA	A GA	G GCA	GAG	AGG	CTG	GTG	CGG	CAG	GCG	GGA	. GG	A GG.	A 303	30
												Ala					
	74					750					755						
GG.	A GG	C AC	C GG	C AG	c cc	C AA	G CT	T GT	G GC	CT	G AGO	CTG	GAG	AT	G TC	T 30	78
												g Leu					
76					76					77	_				77		
TC	g TT	G CC	T GA	C CI	G AC	A CC	C AC	C TT	C AA	C AA	G CT	C TG	r GG(C AA	.C TC	CC 31	26
												u Cy					
				78					78					79			
AG	G CA	G A	rg go	T TO	C AC	c cc	A A	TA TO	A TG	c co	T GG	T GA	G CT	A TO	T C	CC 31	.74
												y G1					
***	υ - -			95				80					80				

AGG GCC GGT GGG GCC TTC TTG ATG GCG GGG CAG GTG GCT GAG CAG CTG Arg Ala Gly Gly Ala Phe Leu Met Ala Gly Gln Val Ala Glu Gln Leu CGG GGC TTC AAT GCC CAG CTC CAG CGG ACC AGG CAG ATG ATT AGG GCA Arg Gly Phe Asn Ala Gln Leu Gln Arg Thr Arg Gln Met Ile Arg Ala GCC GAG GAA TCT GCC TCA CAG ATT CAA TCC AGT GCC CAG CGC TTG GAG Ala Glu Glu Ser Ala Ser Gln Ile Gln Ser Ser Ala Gln Arg Leu Glu ACC CAG GTG AGC GCC AGC CGC TCC CAG ATG GAG GAA GAT GTC AGA CGC Thr Gln Val Ser Ala Ser Arg Ser Gln Met Glu Glu Asp Val Arg Arg ACA CGG CTC CTA ATC CAG CAG GTC CGG GAC TTC CTA ACA GAC CCC GAC Thr Arg Leu Leu Ile Gln Gln Val Arg Asp Phe Leu Thr Asp Pro Asp ACT GAT GCA GCC ACT ATC CAG GAG GTC AGC GAG GCC GTG CTG GCC CTG Thr Asp Ala Ala Thr Ile Gln Glu Val Ser Glu Ala Val Leu Ala Leu TGG CTG CCC ACA GAC TCA GCT ACT GTT CTG CAG AAG ATG AAT GAG ATC Trp Leu Pro Thr Asp Ser Ala Thr Val Leu Gln Lys Met Asn Glu Ile CAG GCC ATT GCA GCC AGG CTC CCC AAC GTG GAC TTG GTG CTG TCC CAG Gln Ala Ile Ala Ala Arg Leu Pro Asn Val Asp Leu Val Leu Ser Gln ACC AAG CAG GAC ATT GCG CGT GCC CGC CGG TTG CAG GCT GAG GCT GAG Thr Lys Gln Asp Ile Ala Arg Ala Arg Leu Gln Ala Glu Ala Glu

THE OWN AGO HOW OWN WAS THE WAY

PCT/JP97/03239

Glu Ala Arg Ser Arg Ala His Ala Val Glu Gly Gln Val Glu Asp Val GTT GGG AAC CTG CGG CAG GGG ACA GTG GCA CTG CAG GAA GCT CAG GAC Val Gly Asn Leu Arg Gln Gly Thr Val Ala Leu Gln Glu Ala Gln Asp ACC ATG CAA GGC ACC AGC CGC TCC CTT CGG CTT ATC CAG GAC AGG GTT The Mor Cla Cly Thr Ser Arg Ser Leu Arg Leu Ile Gln Asp Arg Val GCT GAG GTT CAG CAG GTA CTG CGG CCA GCA GAA AAG CTG GTG ACA AGC Ala Glu Val Gln Gln Val Leu Arg Pro Ala Glu Lys Leu Val Thr Ser ATG ACC AAG CAG CTG GGT GAC TTG TGG ACA CGG ATG GAG GAG CTC CGC Met Thr Lys Gln Leu Gly Asp Phe Trp Thr Arg Met Glu Glu Leu Arg CAC CAA GCC CGG CAG CAG GGG GCA GAG GCA GTC CAG GCC CAG CAT His Gln Ala Arg Gln Gln Gly Ala Glu Ala Val Gln Ala Gln Gln Leu GCG GAA GGT GCC AGC GAG CAG GCA TTG AGT GCC CAA GAG GGA TTT GAG Ala Glu Gly Ala Ser Glu Gln Ala Leu Ser Ala Gln Glu Gly Phe Glu AGA ATA AAA CAA AAG TAT GCT GAG TTG AAG GAC CGG TTG GGT CAG AGT Arg Ile Lys Gln Lys Tyr Ala Glu Leu Lys Asp Arg Leu Gly Gln Ser TCC ATG CTG GGT GAG CAG GGT GCC CGG ATC CAG AGT GTG AAG ACA GAG Ser Met Leu Gly Glu Gln Gly Ala Arg Ile Gln Ser Val Lys Thr Glu GCA GAG GAG CTG TTT GGG GAG ACC ATG GAG ATG ATG GAC AGG ATG AAA

GAC	ATG	GAG	TTG	GAG	ctd	CTG	CGG	GGC	AGC	CAG	GCC	ATC	ATG	CTG	CGC	4182
Asp	Met	Glu	Leu	Glu	Leu	Leu	Arg	G1 y	Ser	Gln	Ala	Ile	Met	Leu	Arg	
		1130)				1135	5				1140)			
TCA	GCG	GAC	CTG	ACA	GGA	C T G	GAG	AAG	CGT	GTG	GAG	CAG	ATC	CGT	GAC	4230
Ser	Ala	Asp	Leu	Thr	Gly	Leu	Glu	L y s	Arg	Val	Glu	Gln	Ile	Arg	Asp	
	114	5				1150)				1155	5				
CAC	ATC	AAT	GGG	CGC	GTG	CTC	TAC	TAT	GCC	ACC	TGC	AAG	T			4270
His	Ile	Asn	Gly	Arg	Val	Leu	Tyr	Tyr	Ala	Thr	Cys	L y s				
1160)				1165	5				1170)					
GATG	CTA	CAG (CTTC	CAGCO	C G1	TGC	CCAC	TCA	ATCT	CCG	CCTT	TGCI	TTT :	rggti	recece	4330
CAGA	TTG	GT 1	rgga/	ATGCT	T TO	CAT	CTCCA	E GC A	AGACT	TTC	ATGC	CAGCC	CTA A	AAGTA	CACCC	4390
TGGA																
	CCA	ccc (CTGG	rg t gi	CA GO	CTAG	raag <i>i</i>	A TTA	ACCCI	rg a g	CTGC	AGCI	GA (CCT	GAGCCA	4450
ATGG															GAGCCA ACTAAG	4450 4510
	GAC	AGT I	raca(CTTGA	C AG	ACA	AGAT	r GG7	rggag	GATT	GGCA	TGCC	CAT :	TGAA.		4510
AGCT	GACA	AGT 1	PACAC	CTTGA	AC AG	GACA/	AGAT	r GGT	rgga@	CCCC	GCCI	TGCC	CAT :	rgaa/ ctcc/	ACTAAG	4510 4570

Sequence No.: 26

Sequence length: 1086

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10298

113

Existence site: 138.. 506

Characterization method: E

Sequ	ence	des	crip	otion	1											
TTTA	ATTI	rcc c	CGAA	ATCA	G AC	TGC	rgcci	TGG	ACC	GGA	CAGO	CTCGC	CGG C	cccc	GAGA	G 60
CTCI	AGCC	GT C	GAGG	AGC1	rg co	CTGGG	GAC	TT	rgcco	TGG	GGCC	CCAC	CC 1	rggco	cccc	т 120
CACC	CTG	CA 1	GAG6	SAG A	ATG G	GC (CTG 1	rTG (CTC (CTG (STC C	CA 1	TG C	CTC C	CTG	170
Cly You Len Leu Val Pro Leu Leu Leu																
					1				5					10		
CTG	ccc	GGC	TCC	TAC	GGA	CTG	ССС	TTC	TAC	AAC	GGC	TTC	TAC	TAC	TCC	218
Leu	Pro	Gly	Ser	Tyr	Gly	Leu	Pro	Phe	Tyr	Asn	Gly	Phe	Tyr	Tyr	Ser	
		-	15					<i>i</i> 20					25			
AAC	AGC	GCC	AAC	GAC	CAG	AAC	CTA	GGC	AAC	GGT	CAT	GGC	AAA	GAC	CTC	266
												Gly				
		30		•			35	-				40				
СТТ	AAT		GTG	AAG	CTG	GTG	GTG	GAG	ACA	ccc	GAG	GAG	ACC	CTG	TTC	314
												Glu				
ДСИ	45	,		 , -		50					55					
ACC		A TC	СТА	АСТ	GTG.		ccc	CAG	AGC	CTG	GGG	TCC	GAA	GCT	TTG	362
												Ser				
	MIR	116	Leu	1111	65	O ₁	110		201	70	,				75	
60				222		000	000	mo m	A C C		ሞጥጥ	A CT	CCT	ACC		410
												ACT				410
Ala	Ser	Pro	Thr		Arg	Ala	Ala	Cys		VBI	Pne	Thr	AIR		Als	
				80					85					90		
												CTC				458
Ser	Thr	Arg	Thr	Trp	Gly	Pro	Pro	Leu	Pro	His	Ser	Leu	Thr	Gly	Cys	
			95					100					105			

GTA TTT ATT GAG TGG TTC GTT TTC CCT TGT GGG TTG GAG CCA TTT

560
620
680
740
800
860
920
980
1040
1086
_

(

Sequence No.: 27

Sequence length: 866

Sequence type: Nucleic acid

Strandedness: Double

Topology: Linear

Sequence kind: cDNA to mRNA

Original source:

Organism species: Homo sapiens

Cell kind: Stomach cancer

Clone name: HP10368

Sequence characteristics:

Code representing characteristics: CDS

Existence site: 73.. 600

Characterization method: E

Sequence description

ACTCAGAAGC TTGGACCGCA TCCTAGCCGC CGACTCACAC AAGGCAGGTG GGTGAGGAAA

Medicine of the control of the control

60

				1				5				1	.0			
GCC	CTC	TCC	TAC	ACT	ÇTG	GCC	AGA	GAT	ACC	ACA	GTC	AAA	CCT	GGA	GCC	159
					Leu											
	15					20					25					•
AAA		GAC	ACA	AAG	GAC	TCT	CGA	ccc	AAA	CTG	ccc	CAG	ACC	CTC	TCC	207
					Asp											
ن د					25					40					45	
AGA	GGT	TGG	GGT	GAC	CAA	CTC	ATC	TGG	ACT	CAG	ACA	TAT	GAA	GAA	GCT	255
Arg	Gly	Trp	Gly	Asp	Gln	Leu	Ile	Trp	Thr	Gln	Thr	Tyr	Glu	Glu	Ala	
				50					55					60		
CTA	TAT	AAA	TCC	AAG	ACA	AGC	AAC	AAA	CCC	TTG	ATG	ATT	ATT	CAT	CAC	303
					Thr		1									
			65					70					75			
TTG	GAT	GAG	TGC	CCA	CAC	AGT	CAA	GCT	TTA	AAG	AAA	GTG	TTT	GCT	GAA	351
Leu	Asp	Glu	Суs	Pro	His	Ser	Gln	Ala	Leu	Lys	Lys	Val	Phe	Ala	Glu	
		80					85					90				
AAT	AAA	GAA	ATC	CAG	AAA	TTG	GCA	GAG	CAG	TTT	GTC	CTC	CTC	TAA :	CTG	399
Asn	Lys	Glu	Ile	Gln	Lys	Leu	Ala	Glu	Gln	Phe	Val	Leu	Leu	Asn	Leu	
	95					100					105	5				
GTT	TAT	GAA	ACA	ACT	GAC	AAA	CAC	CTI	TCT	CCT	GA'	r GGC	CAG	TAT	GTC	447
Val	Tyr	Glu	Thr	Thr	Asp	Lys	His	Leu	Ser	Pro	Ası	Gly	Gl:	тул	Val	
110)				115	j				120)				125	
CCC	AGG	AT7	TA 1	TTI	GTI	GAC	CCA	TCT	CTC	ACA	GT'	r AG	A GC	C GA'	T ATC	495
Pro	Arg	, Ile	e Met	Phe	e Val	. Ası	Pro	Se:	Leu	Thi	Va	l Ar	g Ala	a As	p Ile	
				130	ס				135	5				14	0	
AC'	r GGA	A AGA	A TA'	r TC	A AA	C CG	r ct	C TA	r GC	AT T	G GA	A CC'	r gc.	A GA	T ACA	543
Th	r G13	z Are	z Tv:	r Sei	r Ası	n Arş	g Lei	и Т у :	r Ala	а Туг	r G1	u Pr	o Al	a As	p Thr	

THE STATE OF SALE AND A AAA AAA SALE AAA AAA SALE SALES SALE

116												
Ala Leu	Leu Leu Asp A	an Met Lye I	Lys Ala Leu	Lys Leu Leu	ı Lys Thr							
	160	165		170								
GAA TTG	TAAAGAAAAA AAA	ATCTCCAA GC	CCTTCTGT CT	GTCAGGCC TTC	G	640						
Glu Leu												
175			1									
AGACTTG	AAA CCAGAAGAAG	TGTGAGAAGA	CTGGCTAGTG	TGGAAGCATA	GTGAACACAC	700						
TGATTAG(GTT ATGGTTTAAT	GTTACAACAA	CTATTTTTA	AGAAAACAA	GTTTTAGAAA	760						
TTTGGTT:	ICA AGTGTACATG	TGTGAAAACA	ATATTGTATA	CTACCATAGT	GAGCCATGAT	820						

TTTCTAAAAA AAAAAATAAA TGTTTTGGGG GTGTTCTGTT TTCTCC