

	Ejercicio 3. Usando como lenguaje el que contiene únicamente la igualdad, escribir enunciados que expresen:
	Ψ_{α} a. Existen al menos dos elementos. $(\exists x)(\exists y)(x \neq y)$
	Ψ _b b. Existen exactamente dos elementos. $(\exists x)(\exists y)(x \neq y) \land (\exists z)(x \neq z) \land (\exists z)(x \neq z)$
	c. Existen a lo sumo dos elementos.
	Agregando al lenguaje un símbolo de predicado unario P , escribir:
	d. Existen a lo sumo dos elementos y al menos uno que cumplen la propiedad $P. \int_{C_{\Lambda}}^{\rho} (\tilde{J}_{\chi}) [f(\chi)]$
	e. Si existe un elemento que cumple la propiedad P , es único. $(\forall x) [f(x) \rightarrow (\not\exists x)(x \neq y)]$
	f. Existe un elemento que cumple la propiedad P y es único. (\exists_{\times}) (\exists_{\times}) (\exists_{\times})
	Ejercicio 4. Considerar un lenguaje con igualdad y un símbolo de función unario f . Escribir una fórmula φ que cumpla $\mathcal{A} \models \varphi$ sii $f_{\mathcal{A}}$ es inyectiva pero no sobreyectiva. ¿Es φ satisfacible? ¿Es satisfacible por un modelo finito?
	$\forall : (\forall x_1, x_2) \left[\left\{ (x_1) = \left\{ (x_2) \rightarrow x_1 = x_2 \right\} \land (\exists y) (\forall x) \right] \right] (\forall x) = \chi$
I	$C = \emptyset$, $F = \{\{\}\}$, $P = \{=\}$, $V_{I} = N$, $V_{I}(x) = 2 \cdot x$ SAT
	No se puede para un modelo finito porque al ir de un U finito a otro U finito si o si vas
•	a tener una f sobreyectiva.

Ejercicio 5. Sea P un símbolo de relación unario y sea f un símbolo de función binario. Para cada una de las fórmulas $\forall x \forall y \ f(x,y) = x, \ \exists x \forall y \ f(x,y) = y, \ \exists x (P(x) \land \forall y \ P(f(x,y)))$ hallar una interpretación que la satisfaga y otra que no la satisfaga.
$U_{I} = IN$, $P_{I}(x) = \chi_{20}$, no $SAT : \int_{I} (x, y) = \chi_{+y}$, $SAT : \int_{I} (x, y) = \chi_{-y}$
$U_{\bar{L}_2} = N$, $P_{\bar{J}_2}(x) = x \ge 0$, or SAT : $\{ \hat{I}_2(x, y) = y + 1 \}$, SAT : $\{ \hat{I}_2(x, y) = x + y \}$ $\{ x = 0 \}$
$U_{\overline{I}_3} = N , P_{\overline{I}_3}(x) = x pr, nor SAT; \begin{cases} (x, y) = x + y \end{cases}$, $SAT: \begin{cases} (x, y) = 2 \cdot (x + y) \end{cases}$

Dar un ejemplo de un lenguaje sin constantes y una interpretación de dicho lenguaje con universo infinito tal que todo elemento del universo de la interpretación dada sea distinguible.

$$\frac{f_{0}(x) = (\exists y) [\gamma < \chi]}{f_{1}(x) = \neg f_{0}(x) (\forall y) [\gamma < \chi \rightarrow f_{0}(\gamma)]}$$

$$\frac{f_{1}(x) = \neg f_{0}(x) (\forall y) [\gamma < \chi \rightarrow f_{0}(\gamma) (\forall y) [\gamma < \chi \rightarrow f_{0}(\gamma) (\gamma)]}{f_{1}(x) = \neg f_{0}(x) (\chi) (\chi) (\chi) (\chi) (\chi) (\chi)}$$

Ejercicio 7. Sea \mathcal{L} un lenguaje con igualdad y un símbolo de función binario, y sean \mathcal{I}_1 e \mathcal{I}_2 las siguientes interpretaciones:

$$\mathcal{I}_1 = (\mathbb{N}, +)$$
 $\mathcal{I}_2 = (\mathbb{N}, \cdot)$

donde $\mathbb N$ denota el conjunto de los números naturales. Probar que 1 es un elemento distinguido en ambas interpretaciones.

$$I_{1}) \quad \psi_{1}(x) = (\forall y) \left[y < x \rightarrow \psi_{0}(x) \right] \qquad I_{2}) \quad \psi_{1}(x) = (\forall y) \left[x \cdot y = y \right]$$

$$x < y = \left(\exists_{z} \right) \left[x + z = y \land x \neq y \right]$$

$$\psi_{0}(x) = (\forall y) \left[x + y = y \right]$$

Ejercicio 8. Sea \mathcal{L} un lenguaje de primer orden con igualdad y con un símbolo de predicado binario ≤. Probar que todos los elementos del universo de la siguientes interpretaciones son distinguibles,

Observación: Estos esquemas se conocen como "Diagramas de Hasse" y la relación que describen es la menor relación reflexiva y transitiva que contiene a los pares explicitados en el diagrama. Por ejemplo, en a), se tienen los pares (1,1), (2,2), (2,6) entre otros aunque no estén explícitamente en el esquema.

a)

$$\Psi_{i}(x) = (\forall y) [x \leq y]$$
 Soy menor o igual a todos

 $\Psi_b(x) = (\forall y) [y \leqslant x]$ Todos son menores o iguales a mi

$$\Psi_{3}(x) = (\forall y) \left(y \leqslant x \rightarrow \Psi_{1}(x) \vee y = x \right) \wedge \left(\exists x' \right) \left(\exists y \right) \left(\exists z \right) \left[x' \neq y \neq z \right]$$

Los unicos menores a X son 1 y si mismo.

X es menor o iqual a exactamente 3 elementos.

 $f_{\mathcal{L}}(x) = f_{\mathcal{L}}(x) + f_{\mathcal{L}}(x) + f_{\mathcal{L}}(x) + f_{\mathcal{L}}(x) = f_{\mathcal{L}}(x)$ No soy nadie mas que el 2.

 $\psi_{1}(x) = (\forall \gamma) \left[x \leqslant \gamma \right]$ Soy menor o igual a todos $\psi_{2}(x) = \neg \psi_{1}(x) \wedge (\forall \gamma) \left[\gamma \leqslant x \rightarrow x = \gamma \vee \psi_{1}(x) \right]$ No soy 1 y solo son menores o iguales a minimum of the solution o

 $\psi_3(\kappa) = (\exists \gamma) [x \neq \gamma, \kappa \leq \gamma] \land \neg \psi(\kappa) \land \neg \psi(\kappa$ $f_{4}(x) = \frac{1}{2} \left(\frac{1}{2} \right) \left[\frac{x \neq y \land x \leqslant y}{1} \right] \land \left(\frac{1}{2} \right) \left[\frac{y}{3} \left(\frac{1}{2} \right) \rightarrow \frac{7}{2} \leqslant \frac{x}{2} \right]$ Soy el mayor y 3 es menor o igual

 $\psi_{S(x)} = \neg \psi_{I}(x)$ Soy distinto a todos los demas

Ejercicio 10. Dada una interpretación \mathcal{I} con universo A, decimos que una relación $R \subseteq A^n$ es expresable con el lenguaje \mathcal{L} si existe una \mathcal{L} -fórmula $\varphi(x_1, \dots, x_n)$ con n variables libres tal que para toda valuaciń v cumpla $\mathcal{I} \models \varphi(x_1, \dots, x_n)[v]$ sii $(v(x_1), \dots, v(x_n)) \in R$. Demostrar que las siguientes relaciones son expresables.

a. I₁ = ⟨N, *, =⟩ con * el producto de naturales.

 $R_1 = \{(n,m) : n \text{ divide a } m\}. \ \bigvee_{R_1} (\chi_{x,y}) = (\exists_z) \left[\chi_{x,z} = \gamma\right]$

 $P_{1} = \{n : n \text{ es primo}\}. \ \psi_{\beta_{1}}(\chi) = (\forall_{\gamma}) \left[\psi_{\beta_{1}}(\gamma, \chi) \rightarrow \gamma = 1 \lor \gamma = \chi \right]$ $b. \ \mathcal{I}_{2} = \langle \mathbb{N}, +, =, 0, 1 \rangle \text{ con } + \text{ la suma de naturales.}$ $R_{2} = \{(n, m) : n < m\}. \ \psi_{\mathcal{K}_{2}}(\chi) = (\exists_{\mathcal{L}}) \left[\chi + \chi = \gamma \land \chi \neq \gamma \right]$ $c. \ \mathcal{I}_{3} = \langle L, \circ, = \rangle \text{ con } L \text{ el conjunto de todas las listas, } \circ \text{ la concatenación de listas.}$

Ejercicio 11. Decimos que una clase de modelos K es definible con el lenguaje \mathcal{L} si existe una sentencia φ tal que para toda interpretación \mathcal{I} y valuación v cumpla $\mathcal{I} \models \varphi[v]$ sii $\mathcal{I} \in \mathsf{K}$. Demostrar que las siguientes clases de modelos son definibles con su respectivo lenguaje.

a. $\mathcal{L}_0 = \{=\}$. $\mathsf{K}_0 = \emptyset$. $\psi : (\mathcal{J}_{\mathcal{X}}) \left[\mathcal{X} = \mathcal{X} \right]$

b. $\mathcal{L}_1 = \{=\}$. $K_1 = \{\text{todas las interpretaciones}\}$. $\forall : (\forall x) [x = x]$

c. $\mathcal{L}_2 = \{P, =\}$ con P predicado binario. $\mathsf{K}_2 = \{\mathcal{I} : P^{\mathcal{I}} \text{ es reflexivo y transitivo}\}$

d. $\mathcal{L}_3 = \{f, g, =\} \text{ con } f, g \text{ funciones unarias. } \mathsf{K}_3 = \{\mathcal{I} : \operatorname{Im} f^{\mathcal{I}} \subseteq \operatorname{Im} g^{\mathcal{I}}\}. \ \forall \ \exists \ (\forall \varkappa, y) \ \exists \ (x) = y \rightarrow (\exists \varkappa) \ \exists (x') = y \rightarrow (\exists x') = y \rightarrow (\exists x'$