Fall 2010

Midterm

Directions: This is a closed book exam. Every student must show work in every problem with *full* details legibly to receive marks. *Answers alone are worth very little!!!*

Notations: \mathbb{R} denotes the set of all real numbers. \mathbb{Q} denotes the set of all rational numbers. The variable n in the problems below takes on positive integer values $1, 2, 3, \ldots$

1. (11 Marks) Let A be a nonempty bounded subset of \mathbb{R} such that $\inf A = 1$ and $\sup A = 3$. Let $B = \{\sqrt{2x(15 + xy)} : x \in (2, 4) \cap \mathbb{Q}, y \in A\}.$

Prove that B is bounded. Determine (with proof) the infimum and supremum of B.

2. (11 Marks) Prove the sequence $\{x_n\}$ converges, where

$$x_1 = 5$$
 and $x_{n+1} = \frac{7}{x_n + 5}$,

and find its limit. Show work!

- 3. (11 marks) Do either (a) or (b) below:
 - (a) Determine (with proof) all positive irrational numbers b such that

$$\sum_{k=1}^{\infty} \frac{\cos(k-3b)}{(2k-b)\left((\ln k)^2+1\right)}$$

converges.

(b) Determine (with proof) whether the set

$$S = \left\{ b : b \in (0, +\infty) \setminus \mathbb{Q} \text{ and } \sum_{k=1}^{\infty} \frac{\cos(k - 3b)}{(2k - b)((\ln k)^2 + 1)} \text{ converges} \right\}$$

is countable or not.

Fall 2009

Midterm

Directions: This is a closed book exam. Every student must show work in every problem with correct details legibly to receive marks. *Answers alone are worth very little!!!*

Notations: \mathbb{R} denotes the set of all real numbers. \mathbb{Q} denotes the set of all rational numbers.

- 1. (a) (5 marks) Determine (with proof) <u>all</u> nonnegative real number b such that the series $\sum_{k=1}^{\infty} \frac{2^{k+3}}{k^2(b+1)^k}$ converges. (This means for the <u>remaining</u> nonnegative real number b, you also have to explain why the series diverges.) Show details!
 - (b) (5 marks) Let a_1, a_2, a_3, \ldots be real numbers in the open interval (0, 1) such that $\sum_{k=1}^{\infty} a_k$ converges. Determine (with proof) whether $\sum_{k=1}^{\infty} \frac{\sin a_k}{1 a_k}$ converges or not.
- 2. (12 Marks) Let D be a nonempty bounded subset of \mathbb{R} such that $\inf D = 3$ and $\sup D = 5$. Let $A = \{xy + xy^3 : x \in (2, \pi] \cap \mathbb{Q}, y \in D\}.$

Show that A is bounded. Determine (with proof) the infimum and supremum of A.

3. (11 marks) Let S be the set of <u>all</u> points (x, y) in the coordinate plane that satisfy the equations $x^2 + y^2 = a^2 \quad \text{and} \quad y = x^2 - x^3 + b$

for some $a, b \in \mathbb{Q}$ with $a \neq b$. Determine (with proof) if S is countable or not.

-End of Paper-

Fall 2008

Midterm

Directions: This is a closed book exam. Works (including scratch works) must be shown legibly to receive credits. *Answers alone are worth very little!!!*

Notations: \mathbb{R} denotes the set of all real numbers. \mathbb{Q} denotes the set of all rational numbers.

- 1. (a) (6 marks) Determine if the series $\sum_{k=1}^{\infty} (\cos k) \sin \left(\frac{1}{k^2 + \sqrt{2}}\right)$ converges. Show work!
 - (b) (8 marks) Prove the sequence $\{x_n\}$ converges, where

$$x_1 = 1$$
 and $x_{n+1} = \frac{4\sqrt{x_n} + x_n}{3}$

and find its limit. Show work!

2. (a) (6 marks) Determine (with proof) the supremum and infimum of

$$B = \{\cos x + \sin y : x, y \in (0, \pi/2] \cap \mathbb{Q}\}.$$

(b) (8 marks) Let D and E be nonempty bounded subsets of \mathbb{R} such that

$$\inf D = 3$$
, $\sup D = 5$, $\inf E = 7$ and $\sup E = 9$.

Determine (with proof) the supremum and infimum of the set

$$A = \left\{ x + \frac{1}{y} : \ x \in D, \ y \in E \right\}.$$

3. (5 marks) Prove that there exists a positive real number c which does <u>not</u> equal to any number of the form $2^{a+b\sqrt{2}}$, where $a,b\in\mathbb{Q}$.

Fall 2007

Midterm

Directions: This is a closed book exam. Works (including scratch works) must be shown legibly to receive credits. <u>Answers alone are worth very little!!!</u>

Notations: \mathbb{R} denotes the set of all real numbers. \mathbb{Q} denotes the set of all rational numbers.

- 1. (a) (6 marks) Determine (with proof) if $\sum_{k=1}^{\infty} \frac{2^k k^2}{(2k)!}$ converges.
 - (b) (6 marks) Determine (with proof) if $\sum_{k=3}^{\infty} \frac{\cos k}{k(\ln k)^2}$ converges.
- 2. (a) (7 marks) Let D be a nonempty subset of \mathbb{R} such that $\inf D = 2$ and $\sup D = 5$. Determine (with proof) the supremum and infimum of the set

$$A = \left\{ \frac{x}{y} : x, y \in D \right\}.$$

(b) (6 marks) Let c be a positive rational number. Determine (with proof) the supremum and infimum of

$$B = \{x + y : x \in [0, c\sqrt{2}] \cap \mathbb{Q}, \ y \in [0, c] \setminus \mathbb{Q}\}.$$

3. (8 marks) Let S be a nonempty countable subset of the interval $(0, +\infty)$. Prove that there exists a positive real number which is not the area of any triangle whose three sides have lengths in S.

Fall 2006

Examination

Directions: This is a closed book exam. Works (including scratch works) must be shown legibly to receive credits. *Answers alone are worth very little!!!*

Notations: \mathbb{R} denotes the set of all real numbers. \mathbb{Q} denotes the set of all rational numbers.

- 1. (a) (10 marks) Determine the set of <u>all</u> the positive numbers b such that $\sum_{k=1}^{\infty} \frac{k}{(k+b)^2}$ converges. Be sure to prove you have gotten all such b.
 - (b) (15 marks) Determine the set of <u>all</u> the positive numbers c such that $\sum_{k=1}^{\infty} \frac{(-1)^k k}{(k+c)^2}$ converges. Be sure to prove you have gotten all such c.
- 2. (25 marks) Let $\left(0,\frac{1}{2}\right) \cap \mathbb{Q} \subseteq A_1 \subseteq [0,1)$. For $n=1,2,3,\ldots$, let

$$A_{n+1} = \{ \sqrt{x} : x \in A_n \}.$$

Determine the supremum and infimum of $\bigcup_{k=1}^{\infty} A_k$ with proof.

- 3. (a) (5 marks) State the definition of a sequence a_1, a_2, a_3, \ldots of real numbers <u>converges</u> to a number L.
 - (b) (25 marks) Let x_1, x_2, x_3, \ldots and y_1, y_2, y_3, \ldots be sequences of positive numbers such that $\lim_{n\to\infty} x_n = 1 = \lim_{n\to\infty} y_n$. Prove that

$$\lim_{n \to \infty} \left(4x_n + \frac{1}{y_n} \right) = 5$$

by checking the definition of limit. Do not use the computation formulas for limits, sandwich theorem or l'Hopital's rule, otherwise you will get 0 mark for this problem!

4. (20 marks) Let

$$x_1 = 2$$
, $x_2 = 4$ and $x_{n+2} = \sqrt{10x_n - 9}$ for $n = 1, 2, 3, \dots$

Determine if the sequence x_1, x_2, x_3, \ldots converges or not with proof. In case of convergence, also find the limit.