Pipeline Design Documentation

End-to-End Data Management Pipeline for Customer Churn (Assignment I)

This repository contains a complete, submission-ready implementation of an end-to-end data management pipeline for a churn prediction use case.

Contents

- Step 1 Problem Formulation (included below)
- Step 2 Data Ingestion
- Step 3 Raw Data Storage (partitioned "data lake" layout)
- Step 4 Data Validation (CSV report)
- Step 5 Data Preparation (clean dataset + EDA outputs)
- Step 6 Data Transformation & Storage (SQLite)
- Step 7 Feature Store (metadata + retrieval)
- Step 8 Data Versioning (DVC workflow)
- Step 9 Model Building (train + evaluate + save best model)
- Step 10 Orchestration (Airflow DAG / Prefect flow)
- > **IMPORTANT**: This project is designed to run locally. Internet is only required if you want to demonstrate the mock REST API in Step 2. Otherwise, the sample CSV is sufficient.

How to Run the Entire Pipeline

Running the Pipeline

1. **Start Docker Desktop**

Ensure Docker Desktop is running before proceeding.

2. **Navigate to the project directory**

```
```bash
 cd Airflow/airflow-docker
3. **Build the Docker containers (without cache)**
 ```bash
 docker compose build --no-cache
4. **Start the containers**
 ```bash
 docker compose up -d
5. **Access the Airflow UI**
 Open http://localhost:8080 in your browser and log in with:
 - **Username:** `airflow`
 - **Password:** `airflow`
Quickstart (One-click Runner)
Option A - Makefile
```bash
# Run all steps sequentially
make all
```

Option B – Shell Script

```
```bash
Same as 'make all'
bash run_all.sh
```

### **Option C – Prefect (optional)**

```
```bash
pip install prefect==2.*
python orchestrate_prefect.py
```

Step 1 – Problem Formulation (Summary for Submission)

Business Problem: Predict addressable customer churn to reduce revenue loss and acquisition costs, and to improve CLV.

```
**Objectives**:
```

- 1) Predict churn probability for each customer
- 2) Identify key churn drivers
- 3) Automate the data pipeline end-to-end
- 4) Enable continuous model updates via versioned artifacts

^{**}Data Sources**: Web logs, transaction data, and customer profiles (this demo uses transactions CSV + mock web API).

^{**}Outputs**: Clean datasets, engineered features, deployable model (.pkl), versioncontrolled datasets.

```
**Metrics**: Accuracy, Precision, Recall, F1-score, ROC-AUC.
How Each Step Works
Step 2 – Data Ingestion
- Ingests `sample_data/transactions.csv`
- Optionally fetches web logs from a mock API
- Logs to `logs/ingestion.log`
Run:
```bash
python data_ingestion.py

Step 3 – Raw Data Storage
- Moves files from `data/raw/` into a partitioned lake under `data_lake/raw/`:
`source=<name>/ingestion_date=YYYY-MM-DD/run_id=<YYYYMMDD_HHMMSS>/
part-00001.csv`
Run:
```bash
python storage_raw_upload.py
...
```

Step 4 – Data Validation

- Automated checks (missing, dtypes, ranges, duplicates, date anomalies)
- Report: `reports/data_quality_report.csv`

```
Run:
```bash
python data_validation.py
Step 5 – Data Preparation
- Cleans missing values
- Parses dates, encodes categoricals, scales numerics (keeps IDs intact)
- EDA: histograms & boxplots saved to `reports/`
Run:
```bash
python data_preparation.py
Step 6 – Data Transformation & Storage
- Engineers features: total spend, count, average value, tenure days, recency days
- Stores features in SQLite: `data/feature_store.db` (table `customer_features`)
Run:
```bash
python data_transformation.py
```

#### **Step 7 – Feature Store**

- Adds metadata table `feature\_metadata`
- Registers feature descriptions & versions

- Retrieval function for training Run: ```bash python feature\_store.py ... **Step 8 – Data Versioning (DVC)** Example workflow: ```bash pip install dvc dvc init dvc add data\_lake/raw dvc add data/clean dvc add data/feature\_store.db git add data\_lake/raw.dvc data/clean.dvc data/feature\_store.db.dvc .gitignore git commit -m "Track raw and transformed datasets with DVC" # Optional remote example for S3 # dvc remote add -d myremote s3://your-bucket-name/dvcstore # dvc push Step 9 – Model Building

- Trains Logistic Regression & Random Forest
- Evaluates and saves best model to `models/`

Run:

```
```bash
python model_building.py
Step 10 - Orchestration
Airflow
- DAG in 'dags/churn_pipeline_dag.py'
- Suggested schedule: `0 2 * * *`
Setup (example, local):
```bash
export AIRFLOW_HOME="$(pwd)/.airflow"
pip install "apache-airflow==2.9.3" --constraint "https://raw.githubusercontent.com/
apache/airflow/constraints-2.9.3/constraints-3.11.txt"
airflow db init
airflow users create --username admin --password admin --firstname Admin --lastname
User --role Admin --email admin@example.com
airflow webserver -p 8080 # terminal 1
airflow scheduler
 # terminal 2
Prefect (alternative)
```bash
pip install prefect==2.*
python orchestrate_prefect.py
...
```

Screenshots to Capture (for Submission)

- Airflow UI: Graph view + Grid view with a successful run
- Task logs for model training metrics
- Folder trees: `data_lake/raw/...`, `reports/*`, `models/*`
- DVC: terminal output for 'dvc status', 'git log'

Screenshots to Include

Airflow UI - Graph View of DAG

Airflow UI - Grid View after successful run

Airflow Task Logs showing model metrics

Local folder structure after run (data_lake, reports, models)

DVC terminal output (dvc status, git log)

```
airflow@448alae96830:/opt/airflow/DM4ML_Assignment_ByStage$
airflow@448alae96830:/opt/airflow/DM4ML_Assignment_ByStage$ dvc status

Data and pipelines are up to date.
airflow@448alae96830:/opt/airflow/DM4ML_Assignment_ByStage$ git log --oneline --graph --decorate -n 5

* 12b52fa (HEAD -> master) Track transactions.csv with DVC

* 45a4aa2 Stop tracking transactions.csv in Git, move to DVC

* 6ff00bf Initial commit - added project structure
airflow@448alae96830:/opt/airflow/DM4ML_Assignment_ByStage$
```