The impact of P-T profile on exoplanet transmission spectroscopy

Ema Šipková

Exoplanet Atmospheres

Primarily molecular composition

Deep in the atmosphere – chemical equilibrium

Higher in the atmosphere thermal inversions, anisotropic radiation, kinetic processes and clouds – deviation from chemical equilibrium

Exoplanet Spectra

Primary transit spectra

- Transmission spectra
- Light from the star passes through the exoplanet atmosphere
- Less sensitive to the temperature structure, but it can be extracted
- Extremely sensitive to atmospheric scale height

Secondary transit spectra

- Thermal emission spectra
- Difference between spectra of planet and the star when looking at planet dayside and spectra of the star when the planet lies behind the star
- Used for deriving the pressuretemperature profiles

Exoplanet Spectra

Giant planets

H₂ He with traces of H₂O CO CH₄ NH₃ PH₃ H₂S Na K

Terrestrial planets

H₂O CO CH₄ NH₃ PH₃ H₂S Na K CO₂ O₂ O₃ N₂O HNO₃ **Spectrum** - apparent radius of the planet at certain wavelength

$$\left(\frac{R_{\rm p}}{R_{\rm s}}\right)^2 = \delta$$

Initial elemental composition is the same as the composition of the host star, because both were formed from the collapse of one molecular cloud

The ratio of C/O tells us, where in the protoplanetary disk the planet was formed

Model Setup

Temperature [K]

	Hot Jupiter WASP 43b	Sub-Neptune K2-18b
$R_{p}[R_{J}]$	1.036	0.211
$M_{\rm p} \left[{\rm M_J} \right]$	2.052	0.028
$Z[Z_{\odot}]$	1	100
$R_{ m star} [{ m R}_{\odot}]$	0.667	0.411
T _{star} [K]	4520	3457
C/O	0.3 and 1.3	0.3 and 1.3

Chemistry setup

Chemistry model: FastChem

Molecules: CH₄ CO CO₂ H₂O H₂S HCN K Na NH₃ SO₂ TiO VO

Temperature [K]

Difference Plots

Noise Determination

- Mean noise: the feature may or may not be visible, depending on certain wavelength
- Minimum noise: the feature will not be visible independent of wavelength

Line Plots

C/O Comparison Plots

C/O Comparison Plots

Transmission Spectra - Again

Variations in A

Change the height of continuum, not shape

Variations in B

Change the shape of the spectra

Variations in C

Amplify some features, not significant

Transmission Spectra - Again

Change the height of continuum, not shape

Variations in B

Change the shape of the spectra

Variations in C

Amplify some features, not significant

Sub-Neptune

Yes, these are the "simpler" plots. Let's zoom in.

Sub-Neptune

There seems to be a trade-off between oxygen-bearing and carbon-bearing molecules

Sub-Neptune

The colder atmospheres are not so sensitive to C/O value. The trade-off becomes visible in hot atmospheres

Hot Jupiter

There seems to be a trade-off between oxygen-bearing and carbon-bearing molecules

Hot Jupiter

The colder atmospheres are not so sensitive to C/O value. The trade-off becomes visible in hot atmospheres

Hot Jupiter

Hot Jupiter Paradox

Overall transit depth good and very easy to observe (compared to other exoplanets)

Low metallicity – they are dominated by H and He, there are not enough metals to cause change with the changing p-T profile

P-T profile of hot jupiter cannot be sufficiently constrained using transmission spectra – we need to use other methods (secondary transit spectra)

Conclusions

Shape of spectra

Shape of the spectra changes with the change of the middle node (B). Changing the A inflates the atmosphere and only shifts the continuum, and changing C does not produce significant change, because density of molecules is too low

C-O trade-off

In carbon-rich atmospheres, the carbon-bearing molecules (HCN, CH₄) dominate, while oxygenbearing molecules (H₂O, CO₂) are not visible. In oxygen-rich atmospheres, it is exactly reversed. In colder atmospheres, their molecular compositions are very similar.

Hot Jupiter paradox

Detecting metals in subneptunes and determining
the p-T profile from them
should be easier than in hot
jupiters. Hot Jupiter
transmission spectra
cannot constrain the p-T
profiles.

