

TOPIC OUTLINE

The Quine-McCluskey Method

- Minterms
- Prime Implicants
- Essential Prime Implicants

QUINE-MCCLUSKEY_METHOD_

QUINE-MCCLUSKEY METHOD

The **Quine-McCluskey** method is a formal **tabular method** for applying the Boolean distributive law to various terms to find the minimum sum of products by eliminating literals that appear in two terms as complements.

Standard Minterm (SOP) Form

Group	ABC	Minterm
0	000	m_0
	001	m_1
1	010	m_2
	100	m_4
	011	m_3
2	101	m_5
	110	m_6
3	111	m_7

QUINE-MCCLUSKEY METHOD

<u>Steps</u>

- 1. Group minterm's by number of 1s.
- 2. If two minterms differ by only **one bit**, combine them by replacing the differing bit with "x".

Standard Minterm (SOP) Form

Group	ABC	Minterm	1 st Level
1	001 010	$m_1 \ m_2$	$(m_1, m_3)0x1$ $(m_1, m_5)x01$ $(m_2, m_3)01x$ $(m_2, m_6)x10$
2	011 101 110	m_3 m_5 m_6	

$$f = \bar{A}C + \bar{B}C + \bar{A}B + B\bar{C}$$

QUINE-MCCLUSKEY METHOD

<u>Steps</u>

- 1. Group minterm's by number of 1s.
- 2. If two minterms differ by only **one bit**, combine them by replacing the differing bit with "x".
- 3. Identify prime implicants. <u>Prime implicants</u> are terms that could not be combined further in the previous step.
- 4. Create prime implicant chart.
- 5. Write the simplified Boolean expression.

Standard Minterm (SOP) Form

Group	1 st Level
1	$(m_1, m_3)0x1$ $(m_1, m_5)x01$ $(m_2, m_3)01x$ $(m_2, m_6)x10$

Prime Implicants	m_1	m_2	m_3	m_5	m_6
$(m_1, m_3) \bar{A}C$	✓		✓		
$(m_1, m_5) \ \bar{B}C$	✓			✓	
$(m_2, m_3) \bar{A}B$		✓	✓		20
(m_2, m_6) $B\bar{C}$		✓			√

$$f = \bar{A}C + \bar{B}C + B\bar{C}$$

Logic Circuits 1

Use the Quine-McCluskey method to minimize the given standard SOP expression.

$$f = \sum m(13, 14, 15)$$

Group	ABCD	Minterm	1 st Level

Prime Implicants	m_{13}	m_{14}	m_{15}

Use the Quine-McCluskey method to minimize the given standard SOP expression.

$$f = \sum m(5, 6, 7, 12, 13, 14, 15)$$

Group	ABCD	Minterm	1 st Level
3			
			1
4			

Use the Quine-McCluskey method to minimize the given standard SOP expression.

$$f = \sum m(5, 6, 7, 12, 13, 14, 15)$$

Prime Implicants	m_5	m_6	m_7	m_{12}	m_{13}	m_{14}	m_{15}

Group	1 st Level	2 nd Level
2		
3		

Use the Quine-McCluskey method to minimize the given standard SOP expression.

$$f = \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}CD + \bar{A}B\bar{C}\bar{D} + \bar{A}B\bar{C}D$$
$$+ A\bar{B}C\bar{D} + AB\bar{C}\bar{D} + AB\bar{C}D + ABCD$$

Group	ABCD	Minterm	1 st Level
1			
2			
3			
4			

Use the Quine-McCluskey method to minimize the given standard SOP expression.

$$f = \bar{A}\bar{B}\bar{C}D + \bar{A}\bar{B}CD + \bar{A}B\bar{C}\bar{D} + \bar{A}B\bar{C}D$$
$$+ A\bar{B}\bar{C}\bar{D} + AB\bar{C}\bar{D} + AB\bar{C}D + AB\bar{C}D$$

Prime Implicants	m_1	m_3	m_4	m_5	m_{10}	m_{12}	m_{13}	m_{15}

Group	1 st Level	2 nd Level
1		
2		
3		

LABORATORY

