Course No.	Course Name	L-T-P-Credits	Year of Introduction
IC202	LINEAR SYSTEMS AND	3-1-0-4	2016
	NETWORKS		

Prerequisite: Nil

Course Objectives

- To model linear circuits and systems using differential equations and Transfer Functions...
- To expose to the concept of poles and zeros.
- To develop equations for large linear circuits by using network laws, and analyse their responses to different types of signals in time domain.
- To familiarise with two port network parameters.

Prerequisites

Laplace Transform, Kirchhoff's voltage and current law.

Syllabus

Differential equation model and Transfer Function model—Poles and zeros - transfer matrix. Laplace Transform analysis of RL, RC and RLC networks. Initial conditions in the circuit elements of resistance, inductance and capacitance - DC, Sinusoidal and exponential inputs- RLC circuits with DC excitation. Network functions: Ladder networks- Network functions for general networks- Poles and zeroes. Restriction of poles and zero locations for driving point function and other transfer function- Time domain behavior from pole zero plot- Two port network parameters- Short circuit admittance parameters- Open circuit impedance parameters- Hybrid parameters- Relationship between parameter sets.

Expected Outcome

Upon completion of this course, students will be able to

- 1. Use network laws, like Kirchhoff's voltage and current law, to write equations for large linear circuits.
- 2. Transform time domain signals and circuits parameters to frequency domain.
- 3. Apply the Laplace transform to linear circuits and systems.
- 4. Sketch the poles and zeros of a network function and their effects on time and frequency domain responses.

Text books

- 1. Van Valkenberg, Network Analysis, Prentice Hall of India
- 2. Desoer C.A. & Kuh E.S., Basic Circuit Theory, McGraw Hill

Reference books

- 1. Ryder J.D., Networks, Lines and Fields, Prentice Hall
- 2. Siskind, *Electrical Circuits*. McGraw Hill
- 3. Edminister, Electric Circuits, Schaum's Outline Series, McGraw Hill
- 4. Huelsman L.P., Basic Circuit Theory. Prentice Hall of India

Course Plan					
Module	Contents	Hours	Sem.		
			Exam		
			Marks		
I		8	15%		
	Introduction to system modeling- open loop and closed				
	loop systems.				
	Differential equation model and Transfer function				
	model – Impulse response and transfer function –				
	concept of poles and zeros - transfer matrix.	1.0	4=0/		
II		10	15%		
	Determination of transfer functions for simple				
	electrical, mechanical, electromechanical, hydraulic				
	and pneumatic systems - Analogous systems.				
TTT	FIRST INTERNAL EXAM	10	150/		
III		10	15%		
	Laplace Transform analysis of RL, RC and RLC	1111			
	networks. Transients- Review of transients in RC and				
	RL networks with and significance of time constant- Initial conditions in the circuit elements of resistance,				
	inductance and capacitance- Evaluation of initial condition- Initial state of a network- RLC network with				
	internal excitation.				
IV	internal excitation.	9	15%		
1 4	RC and RLC networks with external excitation, DC,		15/0		
	Sinusoidal and exponential inputs- RLC circuits with				
	DC excitation.				
SECOND INTERNAL EXAM					
V		10	20%		
,	Network functions: Network function for one port and	10	_0,0		
	two port networks- Ladder networks- Network				
	functions for general networks- Poles and zeroes.				
	Restriction of poles and zero locations for driving point				
	function and other transfer function- Time domain				
	behavior from pole zero plot				
	1 1	1			

VI		9	20%		
	Two port network parameters- relationship of two port				
	parameters- Short circuit admittance parameters- Open				
	circuit impedance parameters- Hybrid parameters-				
	Relationship between parameter sets.				
	END SEMESTER EXAM				

QUESTION PAPER PATTERN:

Maximum Marks: 100 Exam Duration: 3 Hours

Part A

Answer any two out of three questions from Module 1 and 2 together. Each question carries 15 marks and can have not more than four sub divisions. $(15 \times 2 = 30 \text{ marks})$

Part B

Answer any two out of three questions from Module 3 and 4 together. Each question carries 15 marks and can have not more than four sub divisions. $(15 \times 2 = 30 \text{ marks})$

Part C

Answer any two out of three questions from Module 5 and 6 together. Each question carries 20 marks and can have not more than four sub divisions. $(20 \times 2 = 40 \text{ marks})$

Total 100 Marks

Note: Each part shall have questions uniformly covering both the modules in it.

2014