墜落案 3 分析參考

從事燈具換裝作業發生墜落致死災害調查分析報告

重要提醒:本分析報告是基於所提供案例的有限資訊,並結合事故調查的專業方法論進行。部分內容為根據邏輯與經驗所做的合理推斷,並會明確標示為 (推斷)或 (假設)。一場實際、完整的事故調查,需要更詳盡的現場勘查、人員訪談與物證檢驗來支持所有結論。

事故基本資料

• 行業分類: 機電、電信及電路設備安裝業 (4331)

• **災害類型**: 墜落、滾落 (01)

媒介物: 工作臺 (416) (含施工架與移動梯之不安全組合)

• **罹災情形**: 死亡1人

• **事故時間**: 113 年 9 月 20 日 · 約 9 時許

• 事故地點: A 棟 5 樓屋突梯間

• 事故摘要: 勞工陳oo為換裝高度 5.96 公尺之天花板燈具,先爬上高度 3.4 公尺的施工架,再於施工架上架設移動梯繼續上爬。其同事李oo則於下方徒手嘗試穩定施工架。在上爬過程中,此一不穩定的組合倒塌,導致陳員自高處墜落,頭部撞擊樓梯扶手及平台,送醫後不治死亡。

一. 事件成因分析圖 (ECFC)

此圖將事故發生的事件及相關條件按時間順序呈現,以視覺化方式釐清因果關係。

二. 時間序列表

此表以表格形式記錄事故發生的先後順序和相關條件,為後續分析奠定基礎。

日期/時	事件描述	事實	主(P)/次	相關條件 1 (直接條件)	相關條件 2 (條件 1
間		/推	(S)事件		的背景或前提)
			軸		
113/9/20	罹災者陳員與同事李員	事實	S	作業點為高處。	屬於依法應加強管制
9:00 許	準備於 5.96 米高處換裝				的墜落高風險作業。
	燈具。				

113/9/20	陳員爬上 3.4 米高施工	事實	Р	1. 採用了極不安全的	1. 未規劃安全的作
9:00 許	架,並於其上再架設移			「架上架」作業方	業方法。
	動梯。			式。	2. 未提供合適高度
				2. 施工架高度不足以完	的作業設備。(推斷)
				成作業。	
113/9/20	同事李員於下方用手扶	事實	S	採取無效的穩定措施。	安全知識不足,不知
9:00 許	住施工架,試圖穩定。				此舉無法提供有效穩
					定力。
113/9/20	陳員沿著施工架上的移	事實	Р	攀爬的動作導致整個不	未使用安全帶等任何
9:00 許	動梯向上攀爬。			穩定系統的重心上移和	個人防墜護具。(推
				晃動。	盤斤)
113/9/20	移動梯與施工架組合瞬	事實	Р	1. 組合式平台達到不穩	1. 完全違反安全作
9:00 許	間不穩定而倒塌。			定臨界點。	業原則。
				2. 施工架基底可能不平	2. 未進行作業前風
				整(在樓梯上)。	險評估。(推斷)
113/9/20	罹災者連同移動梯自高	事實	Р	墜落過程中無任何防護	傷勢集中於頭部要
9:00 許	處墜落,頭部撞擊扶手			與緩衝。	害。
	與地面。				
113/9/20	四 (((大 / / / /)) 平 (大 / / / /)	事實	Р	傷勢過重。	高處墜落的衝擊力巨
12:03	罹災者經送醫急救後,	争貝	'	物分型主	同处空沿的街手刀已

三. 為何樹分析 (Why-Tree)

本分析從最終的傷害事件開始,透過不斷追問「為什麼」來探究事件的根本原因。

四. 屏障分析 (Barrier Analysis)

本分析旨在識別應有但失效、缺失或不足的屏障,導致危害接觸到目標。

• 危害: 位能 (從約6公尺高處墜落的重力)

• 目標: 罹災者陳員

屏障類	屏障	屏障表	屏障失效原因	屏障如何影響事故 (失效的後
型		現 (事		果)
		故時狀		
		態)		
工程控	1. 合適的工作	完全不	未能提供一個單一、穩固且高度	最致命的屏障失效 。這直接導
制	平台 (最關鍵	存在	足夠的作業平台(如移動式起重	致勞工為了完成任務,被迫
	屏障)		機、6 米高框式施工架)。	「創造」出一個極端危險的臨
				時作業平台。
工程控	2. 施工架的正	完全失	1. 施工架架設於不平的樓梯	使施工架本身就處於極不穩定
制	確搭設與穩定	效	上。	的狀態,任何微小的外力都可
			2. 採用徒手扶持此一無效的穩	能導致其傾倒。
			定方法 •	

個人防	3. 個人防墜系	完全失	未規劃、未提供、未要求使用,	移除了保護人員的 最後一道防
護具	統 (如安全	效 (未	 現場亦無合適的掛置錨點。(推	 線 。若有正確使用・即使平台
(PPE)	帶、安全母索)	使用)		倒塌,也能防止人員直接墜落
				地面。
行政管	4. 安全作業程	不存在	未針對「樓梯間高處燈具更換」	缺乏明確的作業指南,導致勞
理/程序	序 (SOP)	或無效	此類特殊、高風險作業・制定標	工只能依賴個人判斷和現場可
性		(推斷)	準化的安全作業程序。 ************************************	用的不安全工具來「解決問
				題」。
行政管	5. 作業前規劃	嚴重不	管理階層與作業人員未能辨識出	因為沒有辨識出風險,所以完
理	與風險評估	足 (推	「設備不足」及「架上架」是致	全沒有規劃任何對應的控制措
		鑑介)	命性危害。	施(屏障),導致作業在失控
				狀態下進行。
行政管	6. 現場作業監	失效	同事李員雖在場,但其角色是	監督的失效,讓一連串致命的
理	督		「協助」此不安全行為・而非	錯誤決策與行為得以持續進
			「監督」並制止,顯示缺乏具備	行,直至災難發生。
			安全職能的監督者。	

五. 變更分析 (Change Analysis)

本分析比較「事故狀況」與一個「理想的無事故狀況」,以識別導致事故的關鍵差異。

	± 1/ 11/ ND	// 	→ m ./÷/. T:	31 m 37 / 1 34 m W/ + 1/ //
因素	事故狀況	先前、理想或未發	差異 (變更)	放果評估 (此差異對事故的
(Factor)		生事故狀況 (比較		影響)
		基準)		
WHAT	使用不合適的設備組	使用單一、高度足	• 作業設備由	• 核心技術差異。使用不
(設備)	合 (3.4 米施工架 +	夠的合適設備 (如	「適用」變為	當設備是後續所有不安全
	移動梯) 來應對 5.96	6 米塔式施工架或	「不適用」。	行為的根源,直接創造了
	米的作業高度。	高空作業車)。	• 以「危險的臨	一個本質上就不穩定的作
			時組合」取代	業平台。
			「安全的單一設	
			備」。	
HOW	1. 採用「施工架上再	1. 遵循設備安全規	1. 作業方法由	1. 自創的危險方法完全破
(方法/程	架梯」的自創方法。	範或標準作業程序	「標準」變為	壞了結構力學上的穩定
序)	2. 採用「徒手扶持」	(SOP)搭設。	「自創且危	性,使倒塌成為可預見的
	作為無效的穩定措	2. 採用繋牆桿、斜	險」。	結果。
	施。	撐等有效的機械方	2. 穩定措施由	2. 徒手扶持給予作業者虛
		式固定。	「有效」變為	假的安全感,但無法抵抗
			「無效」。	平台失穩時的傾覆力矩。
WHERE	將施工架設置在不平	將作業平台設置在	• 工作平台的	• 在不穩定的基底上再疊
(地點/環	整、高低落差的「樓	「堅實、平坦」的	「基底穩定性」	加不穩定的組合,使整個
境)	梯」上。	地面上。	由優變劣。	系統的風險呈倍數增加,

				大幅降低了抵抗外力擾動
				的能力。
WHO	同事在下方扮演「無	應由「具備安全職	• 現場人員的角	• 缺乏有效的監督,使得
(人員/監	效的協助者」。	能的監督者」在場	色由「安全監	一連串致命的錯誤決策與
督)		指揮或監看。	督」變為「協同	行為,沒有在任何一個環
			犯錯」。	節被及時辨識與中斷。

六. 人為失誤分析 (Human Failure Analysis)

本分析探討影響人員行為的深層次原因,而非僅歸咎於個人。

失誤	主要不安全行為/失誤	根本原因 (組織與系統層面)
類型		
常規	罹災者陳員與同事李員:	* 作業規劃與資源提供的根本性失敗: 公司或管
性或	在明知設備不足的情況下,仍決定採用「架	理者未能為此項任務進行適當規劃,也未能提供
情境	上架」並以徒手扶持的極端危險方式進行作	正確、充足的作業設備。這是 系統性失誤 ,直接
性違	業。	將現場作業人員置於「要麼不做・要麼冒險做」
規		的困境中。
	此行為已非單純的錯誤,而是為了「完成任	* 安全文化與管理期望的偏差: 一個默許甚至鼓
	務」而採取的 違規 行為。如果過去曾這樣做	勵員工「克服困難」、「隨機應變」完成工作的
	過.屬於「常規性違規」;如果是因本次設	文化・會讓員工在安全與任務進度間選擇後者。
	備不足而被迫如此,則屬於「 情境性違	管理階層對安全的要求・顯然沒有落實到工作規
	規」。	劃層面。
知識	同事李員:	* 安全衛生教育訓練的失敗: 訓練內容未能讓勞
性錯	認為徒手扶持可以有效穩定施工架 。	工充分理解高處作業的力學原理與風險等級.導
誤		致他們採用了「看似有做・實則無效」的安慰性
		措施,這反映了訓練的深度與實用性不足。
知識	雇主/現場負責人:	* 管理階層的安全責任與能力不足: 負責人未能
性錯	指派或容許勞工在設備、計畫均不足的情況	履行其規劃、指揮、監督安全作業的職責。這可
誤 或	下‧執行此高風險作業 。	能是對高處作業風險的 知識性錯誤 (不知道多危
違規		險)·或是明知有風險但為求方便的 違規 決策。

七. 根本原因分析與矯正改善措施

本章節匯總前述六項分析的結果,旨在明確事故的直接原因與根本原因,並依據控制階層理論,提出能有效防止災害再次發生的系統性改善建議。

(一) 立即原因

立即原因是指在事故發生前,直接導致事故發生的不安全行為與不安全狀況。

• 不安全的狀況 (Unsafe Conditions):

- 1. **提供的設備不足**: 所提供的施工架(3.4 公尺)高度不足以應對作業需求(5.96 公尺),這是導致後續所有不安全行為的源頭。
- 2. **工作平台本質不安全**: 將移動梯架設於施工架上,形成一個結構上與力學上都極不穩定的組合式平台。
- 3. **基底不穩固**: 施工架直接架設於不平整的樓梯梯級上·未能確保其水平與穩定。

不安全的行為 (Unsafe Acts):

- 1. **採用極端危險的作業方法**: 現場作業人員決定以「施工架上再架梯」的方式來彌補設備高度的不足,此為致命的錯誤決策 。
- 2. **穩定措施完全無效**: 以徒手扶持的方式試圖穩定施工架,此舉無法提供有效的支撐或穩定力,反而給予作業者虛假的安全感。
- 3. **未依規定使用個人防護具**: 在有墜落之虞的高處作業場所,罹災者未使用安全帶等個人防墜護具 (依墜落事實推斷)。

(二) 根本原因

根本原因是導致不安全行為與不安全狀況得以存在的、可被矯正的管理系統層級的缺陷。

- 1. 作業規劃與風險評估的完全失敗: 這是本次事故最核心的根本原因。管理階層或現場負責人在派工前,完全沒有對此項「非例行性高處作業」進行充分的規劃,未能辨識出作業高度(5.96m)與所備工具(3.4m 施工架)之間的巨大落差,也因此完全沒有評估到後續可能衍生的致命風險。
- 2. 安全作業程序與許可制度的關如:公司未建立針對高處作業的安全作業許可制度。若有此制度,作業前就必須檢核設備、方法、人員資格,當發現設備不足時,此項作業根本不應被批准執行。同時,也缺乏指導勞工在面對設備不足時應「停止作業並回報」,而非「自行設法解決」的標準程序。
- 3. 現場監督機制的完全失效: 現場雖有另一名同事,但其角色是「協助」執行不安全的行為,而非「監督」並制止。這顯示公司未指派具備安全衛生知識、有能力且被賦予權責的現場監督人員來管制高風險作業。
- 4. **安全衛生教育訓練不足或無效:** 作業人員對於「架上架」作業的致命危險性認知不足,也誤以為徒手扶持是有效的穩定方法,這反映出安全衛生教育訓練未能真下深植於員工的日常作業判斷中。

(三) 矯正改善措施建議

依據風險控制階層(消除>取代>工程控制>管理控制>個人防護具),提出以下矯正措施:

制度/管理層面 (最優先):

- 1. **立即建立並嚴格執行「高處作業許可制度」**: 規定凡於 2 公尺以上高處進行作業,皆必須事前申請「作業許可」。許可單上應詳列作業方法、使用設備、風險評估結果、控制措施、作業人員資格及現場監督人員,經權責主管審核批准後方可施工。
- 2. 強制落實「作業前危害辨識與風險評估(HIRA)」: 將風險評估列為所有作業 (特別是非例行性作業)的標準前置步驟。評估應由具備資格的人員執行,並確保評估結果能直接用於決定採用的設備與作業方法。
- 3. **修訂承攬管理程序**: 若涉及承攬商,必須將「施工計畫」與「風險評估報告」列為承攬合約的必要審查文件。業主或原事業單位應在作業前審查其安全性,並負起共同作業的指揮、協調與監督之責。

規劃/工程控制層面:

- 1. **建立安全的設備請購與管理程序**: 確保所有作業的設備採購或調度,均須 基於風險評估的結果。應建立設備清單,確保能為常見的高風險作業提供 合適、充足的安全設備(如不同高度的合梯、施工架、高空作業車等)。
- 2. **源頭管理**: 在承接工程或規劃作業時,就應將施工安全方法與成本納入考量,避免因預算或時程壓力,導致現場人員使用不安全的替代方案。

人員層面:

- 實施專項高處作業安全再訓練: 立即將本次事故作為活教材,對全體員工進行專項訓練。訓練重點應包含:(1)辨識何為不安全的作業方法與設備;
 (2)強調在設備或程序不明確時,勞工有權利與責任「停止作業」並向主管報告;(3)個人防墜護具的正確使用方法。
- 2. 明確現場作業負責人與監督者之職權: 對指派的現場負責人、監督人員進行專門訓練,授予其「立即停止不安全作業」的權力與責任,並進行有效的績效考核。