Convolutional Neural Network

CNN or ConvNet

Computer Vision Challenges

Image Classification

Is it Cat? [0/1]

Object Detection

Neural Style Transfer Content Image + Style Image = Generated Imgae

Fully Connected Network on Images

Image Classification

Is it Cat? [0/1]

64 X 64 X 3 = 12288

n

Arun Kumar Anala analaarun.k@gmail.com

Fully Connected Network on Images

Image Classification

Is it Cat? [0/1]

1000 X 1000 X 3 = 3 million

n

Arun Kumar Anala analaarun.k@gmail.com

CNN - High Level

Detect Vertical Edge

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

*

$$[10 \times 1 + 10 \times 0 + 10 \times (-1)] + [10 \times 1 + 10 \times 0 + 10 \times (-1)] + [10 \times 1 + 10 \times 0 + 10 \times (-1)] = 0$$

Detect Vertical Edge

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

0	30	

$$[10 \times 1 + 10 \times 0 + 0 \times (-1)] + [10 \times 1 + 10 \times 0 + 0 \times (-1)] + [10 \times 1 + 10 \times 0 + 0 \times (-1)] = 30$$

Detect Vertical Edge

0

0

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Detect Horizontal Edge

0	0	0	0
30	30	30	30
30	30	30	30
0	0	0	0

Filter - I don't know, but let CNN learn it

Detect Pattern in Images

112	76	144	55	43	23
164	43	43	34	25	13
12	13	30	67	44	14
6	45	24	77	87	89
64	64	60	67	65	67
34	35	54	60	44	56

Valid Convolution

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

f x f 3 x 3 * 1 0 -1 1 0 -1 1 0 -1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Output size is less than the input size

Same Convolution - Padding

 $a_{51} | a_{52} | a_{53} | a_{54} | a_{55} | a_{56}$

 $a_{61} | a_{62} | a_{63} | a_{64} | a_{65} | a_{66}$

Pad so that the output size is same as the input size

Strided Convolution

$$\left[\frac{(n+2p-f)}{s} + 1\right] \times \left[\frac{(n+2p-f)}{s} + 1\right]$$

$$3 \times 3$$

3	x 3	
1	0	-1
1	0	-1
1	0	-1

*

a ₁₁	a ₁₂	a ₁₃
a ₂₁	a ₂₂	a ₂₃
a ₃₁	a ₃₂	a ₃₃

Image - RGB vs B&W

3	4	6	2	1	7
3	5	4	9	8	8
1	7	5	4	6	6
7	2	6	5	4	5
6	1	7	7	2	4
5	3	3	1	4	3

6 x 6 x 1

6 x 6 x 3

Filter for RGB

6 x 6 x 3

Filter for RGB

		1	0	-1
	1	0	-1	-1
1	0	-1	-1	-1
1	0	-1	-1	
1	0	-1		

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

			3	5	4	9	8	8
			1	7	5	4	6	6
3	4	6	2	1	7	5	4	5
3	5	4	9	8	8	7	2	4
1	7	5	4	6	6	1	4	3

3	4	6	2	1	7
3	5	4	9	8	8
1	7	5	4	6	6
7	2	6	5	4	5
6	1	7	7	2	4
5	3	3	1	4	3

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

			3	4	6	2	1	7
			3	5	4	9	8	8
			1	7	5	4	6	6
3	4	6	2	1	7	5	4	5
3	5	4	9	8	8	7	2	4
1	7	5	4	6	6	1	4	3
_		-		1				

3	4	6	2	1	7	5
3	5	4	9	8	8	7
1	7	5	4	6	6	1
7	2	6	5	4	5	
6	1	7	7	2	4	
5	3	3	1	4	3	

Multiple Filters for RGB

6 x 6 x 3

3 x 3 x 3

*

3 x 3 x 3

				n		30		30	<u></u> 0
		()	3	30	3	30	0	0
	0		30	0	30	0	_ 0	0	-
0	;	30	(30		0	0	0	
0	(30	(30		0	0	0	0
0	(30	(30		0	0		
0	(30	(30		0			

4 x 4 x 4

Question

In a layer, if you have 20 filters of dimension 3x3x3 each, then how many parameter does that layer have?

```
For 1 filter

3 x 3 x 3 = 27 weights

1 = bias

So 28 parameter for 1 layer
```

For 20 filters in a layer 28 x 20 = **560 parameters**

Example of Convolutional layer

6 x 6 x 3

3 x 3 x 4

30

Types of layer in Convolutional Network

Convolution

6 x 6 x 3

Pool

Fully Connected

Max Pooling Layer

3	4	6	2	1	7
3	5	4	9	8	8
1	7	5	4	6	6
7	2	6	5	4	5
6	1	7	7	2	4
5	3	3	1	4	3

2 x 2 x 1

$$6 \times 6 \times 1$$

Max Pooling Layer

		3	4	6	2	1	7
	3	4	6	2	1	7	8
3	4	6	2	1	7	8	6
3	5	4	9	8	8	6	5
1	7	5	4	6	6	5	4
7	2	6	5	4	5	4	3
6	1	7	7	2	4	3	
5	3	3	1	4	3		•

2 x 2 x 3

Average Pooling Layer

3	4	6	2	1	7
3	5	4	9	8	8
1	7	5	4	6	6
7	2	6	5	4	5
6	1	7	7	2	4
5	3	3	1	4	3

6 x 6 x 1

2 x 2 x 1

POOL 2

POOL 1

 X_n

CONV 2

CNN Example

Image Classification using CIFAR10 dataset

Arun Kumar Anala analaarun.k@gmail.com

Exercise Image Classification

Load Dataset

Analyze Dataset

Prepare Dataset

Define Model

Train & Evaluate Model

Summarize Results

Predict New Image

Model Summary

Layer (type)	Input layer dimensions	Output Shape	Params #	Comments
Input		(32, 32, 3)		
CONV 1	5 x 5 x 3 x 6	(28, 28, 6)	456	(5 x 5 x 3 + 1) x 6
POOL 1	2 x 2	(14, 14, 6)	0	
CONV 2	5 x 5 x 6 x 16	(10, 10, 16)	2416	(5 x 5 x 6 + 1) x 16
POOL 2	2 x 2	(5, 5, 16)	0	
FC 1	5 x 5 x 16 = 400	120	48120	(400 + 1) x 120
FC 2	120	84	10164	(120 + 1) x 84
Softmax Output	84	10	850	(84 + 1) x 10
Total			62,006	

CNN vs Fully Connected Network on Images

Image Classification

Is it Cat? [0/1]

64 X 64 X 3 = 12288

