

Confidence Interval Estimation: Single Population

Dr. A. Ramesh

Department of Management Studies

Goals

After completing this lecture, you should be able to:

- Distinguish between a point estimate and a confidence interval estimate
- Construct and interpret a confidence interval estimate for a single population mean using both the Z and t distributions
- Form and interpret a confidence interval estimate for a single population proportion
- Create confidence interval estimates for the variance of a normal population

Confidence Intervals

- Confidence Intervals for the Population Mean, μ
 - when Population Variance σ^2 is Known
 - when Population Variance σ² is Unknown
- Confidence Intervals for the Population Proportion, \hat{p} (large samples)
- Confidence interval estimates for the variance of a normal population

Definitions

- An estimator of a population parameter is
 - a random variable that depends on sample information . . .
 - whose value provides an approximation to this unknown parameter

A specific value of that random variable is called an estimate

Point and Interval Estimates

- A point estimate is a single number,
- a confidence interval provides additional information about variability

Point Estimates

We can estimate a Population Parameter		with a Sample Statistic (a Point Estimate)
Mean	μ	X
Proportion	Р	ĝ

Unbiasedness

• A point estimator $\hat{\theta}$ is said to be an unbiased estimator of the parameter θ if the expected value, or mean, of the sampling distribution of $\hat{\theta}$ is θ ,

$$\mathsf{E}(\hat{\Theta}) = \Theta$$

- Examples:
 - The sample mean $\overline{\chi}$ is an unbiased estimator of μ
 - The sample variance s^2 is an unbiased estimator of σ^2
 - The sample proportion \hat{p} is an unbiased estimator of P

Unbiasedness

(continued)

• $\hat{\theta}_1$ is an unbiased estimator, $\hat{\theta}_2$ is biased:

Bias

- Let $\hat{\Theta}$ be an estimator of θ
- The bias in $\hat{\theta}$ is defined as the difference between its mean and θ

$$\mathsf{Bias}(\hat{\theta}) = \mathsf{E}(\hat{\theta}) - \theta$$

The bias of an unbiased estimator is 0

Most Efficient Estimator

- Suppose there are several unbiased estimators of θ
- The most efficient estimator or the minimum variance unbiased estimator of θ is the unbiased estimator with the smallest variance
- Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators of θ , based on the same number of sample observations. Then,
 - $-\hat{\theta}_1$ is said to be more efficient than $\hat{\theta}_2$ if $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$
 - The relative efficiency of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$ is the ratio of their variances:

Relative Efficiency =
$$\frac{\text{Var}(\hat{\theta}_2)}{\text{Var}(\hat{\theta}_1)}$$

Confidence Intervals

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals.

Confidence Interval Estimate

- An interval gives a range of values:
 - Takes into consideration variation in sample statistics from sample to sample
 - Based on observation from 1 sample
 - Gives information about closeness to unknown population parameters
 - Stated in terms of level of confidence
 - Can never be 100% confident

Confidence Interval and Confidence Level

- If $P(a < \theta < b) = 1 \alpha$ then the interval from a to b is called a 100(1 α)% confidence interval of θ .
- The quantity (1α) is called the confidence level of the interval (α) between 0 and 1)
 - In repeated samples of the population, the true value of the parameter θ would be contained in 100(1 α)% of intervals calculated this way.
 - The confidence interval calculated in this manner is written as a < θ < b with 100(1 α)% confidence

Estimation Process

Confidence Level, $(1-\alpha)$

(continued)

- Suppose confidence level = 95%
- Also written $(1 \alpha) = 0.95$
- A relative frequency interpretation:
 - From repeated samples, 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter

General Formula

• The general formula for all confidence intervals is:

Point Estimate ± (Reliability Factor)(Standard Error)

• The value of the reliability factor depends on the desired level of confidence

Confidence Intervals

Confidence Interval for μ (σ^2 Known)

- Assumptions
 - Population variance σ^2 is known
 - Population is normally distributed
 - If population is not normal, use large sample
- Confidence interval estimate:

$$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \; < \; \mu \; < \; \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

(where $z_{\alpha/2}$ is the normal distribution value for a probability of $\alpha/2$ in each tail)

Margin of Error

The confidence interval,

$$\left| \overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right| < \mu < \left| \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right|$$

• Can also be written as $\overline{\mathbf{x}} \pm \mathbf{ME}$ where ME is called the margin of error

$$ME = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Reducing the Margin of Error

$$ME = z_{\alpha/2} \, \frac{\sigma}{\sqrt{n}}$$

The margin of error can be reduced if

- the population standard deviation can be reduced ($\sigma \downarrow$)
- The sample size is increased (n↑)
- The confidence level is decreased, $(1 \alpha) \downarrow$

Finding the Reliability Factor, $z_{\alpha/2}$

• Consider a 95% confidence interval:

• Find $z_{.025} = \pm 1.96$ from the standard normal distribution table

Common Levels of Confidence

• Commonly used confidence levels are 90%, 95%, and 99%

Confidence Level	Confidence Coefficient, $1-\alpha$	Z _{α/2} value
80%	.80	1.28
90%	.90	1.645
95%	.95	1.96
98%	.98	2.33
99%	.99	2.58
99.8%	.998	3.08
99.9%	.999	3.27

Intervals and Level of Confidence

Example

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
- Determine a 95% confidence interval for the true mean resistance of the population.

Example

(continued)

• A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is .35 ohms.

• Solution:

$$\overline{x} \pm z \frac{\sigma}{\sqrt{n}}$$

$$=2.20\pm1.96\,(.35/\sqrt{11})$$

$$= 2.20 \pm .2068$$

$$1.9932 < \mu < 2.4068$$

Interpretation

- We are 95% confident that the true mean resistance is between 1.9932 and 2.4068 ohms
- Although the true mean may or may not be in this interval,
 95% of intervals formed in this manner will contain the true mean

Confidence Intervals

