Thm.

C:
$$y^2 = f(x) = x^3 + ax^2 + bx + c$$
 $a_1 l_1, c \in \mathbb{Z}$

(1) $P \in C(\mathbb{Q})$ has finite order

 $P \in C(72)$

(2) $P \in C(l\mathbb{Q})$ that finite order

and $2P \neq \emptyset$ $P = (x_1 y_1)$

then $y^2 \mid D = -4a^2c + a^2b^2 + 18abc - 4b^2 - 27c^2$

(1) $\Rightarrow (2)$

$$f: c(\Omega) \longrightarrow Q$$

$$(x_1) \longrightarrow (x_1)$$

$$\frac{m}{n} \in \mathbb{R} \Rightarrow (n,p)$$
In the ring $\mathbb{Z}/p^{2\nu}$

 $\exists b \in \mathcal{Z} \text{ s.t. } \text{ nb} \equiv 1 \mod p^{2\nu}$ $\downarrow \text{bm} \longrightarrow \frac{m}{n}.$

Yepine, P∈ C(q) has finite order > P = O

 $P \in C(q)$, finite order and $P \neq Q$ $\exists \ \nu \ s.t. \ P \in C(q^{\nu})$

P € C(q"+1).

Let m be the order of P $t: C(q^{\nu}) \longrightarrow q^{\nu}R$ $q^{3\nu}I$

mt(P) = t(mp) $= 0 in <math>e^{\gamma R/e^{3\nu}}$

 $\Rightarrow mt(P) \in q^{3\nu}R. \qquad Pt \in C(q^{\nu}).$ $\Rightarrow t(P) \in q^{3\nu}R \qquad \Leftrightarrow t(P) \in q^{\nu}R.$ $\Rightarrow Pt \in C(q^{3\nu}) \qquad \Leftrightarrow t(P) \in q^{\nu}R.$

(ii) If $q \mid m$ $\Rightarrow m = q \cdot n \quad \text{fn some } n$ Instead of P, we will consider $n \cdot P$ $P \in C(q) \Rightarrow n \cdot P \in C(q)$

Ju's.t. nP = C(qv') + C(qv'+1)

$$9 + (np) = 0$$
 in $9^{2^{1}/2}$
 $9 + (np) = 9^{3\nu'-1}/2$
 $9 + (np) = 9^{3\nu'-1}/2$

$$y^2 = x^3 - x^2 + x$$

 $D = -3$

Substitute
$$y^2 = 1$$

 $x^3 - x^2 + x - 1 = 0$
 $(x-1)(x^2 + 1) = 0$
 $(x-1)(x^2 + 1) = 0$

Mazur's Hearn

then the points of finite order in C(Q)
town
has orla N 1 = N \(10 \) N = 12.

Check for Franka: