Image as MPS

For the group meeting of 24/10

MPS: reminders

Theorem: Any rank L tensor ψ with leg dimensions d can be written exactly as a product of matrices.

$$\psi_{\sigma_1,\ldots,\sigma_L} = A^{\sigma_1}\cdots A^{\sigma_L}$$

- $\sigma_i \in \{1,...,d\}$ are called physical indices
- $A^{\sigma_i} \in \mathbb{R}^{r_{i-1},r_i}$

Diagrammatically

The algorithm: from data to MPS

Consists essentially in doing SVD, reshaping, slicing. Here are the steps.

- Slice U into d matrices A^{σ_1} of size $1 \times r_1$ Slice U into d matrices $A^{\sigma_{i+1}}$ of size $r_i \times r_{i+1}$
- Reshape $SV^\dagger \to \psi$ into $r_1 d \times d^{L-2}$ Reshape $SV^\dagger \to \psi$ into $r_{i+1} d \times d^{L-1-i-1}$
- lack Done by MPS $(d, L, \psi, k, \epsilon)$

- Repeat for site i + 1
- At site $L-1: \psi = USV^{\dagger}$ $r_{L-2}d \times r_{L-1} \qquad r_{L-1} \times r_{L-1}$

$$SV^{\dagger} \rightarrow d \text{ matrices } \mathbb{R}^{r_{L-1},1}$$

Truncation: definitions

Let $\psi \in \mathbb{R}^{n \times m}$, with SVD decomposition : $\psi = USV^{\dagger}$

$$S = \begin{bmatrix} S_1 & & \\ & \ddots & \\ & & S_r \end{bmatrix},$$

- $r = \min(n, m)$
- $s_1 \ge s_2 \ge s_3 \ge \cdots \ge s_r$

Let $\epsilon > 0$ and $a_{\epsilon} = \#\{s_i \mid s_i > \epsilon\}$. Let $k \in \{2,3,...\}$. Then:

If
$$k \le a_{\epsilon}$$

If
$$k > a_{\epsilon}$$

$$U \to U_k \in \mathbb{R}^{n,k}$$

$$U \to U_{\epsilon} \in \mathbb{R}^{n,a_{\epsilon}}$$

$$S \to S_k \in \mathbb{R}^{k,k}$$

$$S \to S_{\epsilon} \in \mathbb{R}^{a_{\epsilon}, a_{\epsilon}}$$

$$V^{\dagger} \to V_k^{\dagger} \in \mathbb{R}^{k,m}$$

$$V^{\dagger} \rightarrow V_{\epsilon}^{\dagger} \in \mathbb{R}^{a_{\epsilon},m}$$

$$r o \min(a_{\epsilon}, k) =: r(\epsilon, k)$$

$$\begin{bmatrix} r_1, r_2, \dots, r_{L-1} \end{bmatrix}$$
 Truncation k, ϵ
$$\begin{bmatrix} r_1(\epsilon, k), r_2(\epsilon, k), \dots, r_{L-1}(\epsilon, k) \end{bmatrix}$$

k=1 not allowed since scalar cannot be reshaped k is an « additional » truncation, same at each step

Error induced by truncation : $e_{w}(k, \epsilon) := \frac{|\psi - \tilde{\psi}(k, \epsilon)|}{|\psi - \tilde{\psi}(k, \epsilon)|}$

Plots of the error : fixed ϵ

Input: normalized $\psi \in \mathbb{R}^{d^L \times 1}$ with entries $\sim \mathcal{U}(0,1)$

Goes to zero

• When increase ϵ , jumps

Plots of the error : fixed *k*

Input: normalized $\psi \in \mathbb{R}^{d^L \times 1}$ with entries $\sim \mathcal{U}(0,1)$

Bond dimensions

• Input: norm. $\psi \in \mathbb{R}^{d^L \times 1}$ with entries $\sim \mathcal{U}(0,1)$ • $k = \infty, \epsilon \to 0$: no truncation, max. bond dim.

$k = \infty$ fixed

What about images?

 \bullet image_to_vector(image_name,d, R) does that

Python allows to convert tiff images to np.array

$$= M \in \mathbb{R}^{n,n}$$

n is the number of pixels

No loss of information when Reshaping.

Raw data vector

Compressing the image

Now that we have the raw data vector from the image, we can use our MPS() function.

Original

$$k = 10^6, \epsilon = 0.01$$

Original

$$k = 100, \epsilon = 0.001$$

$$k = 10^6, \epsilon = 0.2$$

$$k = 10^6, \epsilon = 0.5$$

- We have seen a first way of writing an image as MPS.
- There is **another way**, that consists in setting the physical indices to be the value of the bit representation of the coordinates of each point in the image
- Advantage: two consecutive indices are highly entangled, allowing more compression with no loss of information [1]

^[1] Shinaoka, H., Wallerberger, M., Murakami, Y., Nogaki, K., Sakurai, R., Werner, P., & Kauch, A. (2022). Multi-scale space-time ansatz for correlation functions of quantum systems. *arXiv* preprint arXiv:2210.12984.

Consider a $n \times n$ image, $n := 2^R$

 $\forall (i,j) \in \{0,...,n-1\}^2$, then $\frac{i}{n},\frac{j}{n} \in [0,1[$ so have bit representation!

$$\frac{i}{N} = \frac{x_1}{2} + \frac{x_2}{2^2} + \frac{x_3}{2^3} + \dots + \frac{x_R}{2^R}$$

$$x_i, y_i \in \{0, 1\}$$

$$\frac{j}{N} = \frac{y_1}{2} + \frac{y_2}{2^2} + \frac{y_3}{2^3} + \dots + \frac{y_R}{2^R}$$

$$i \leftrightarrow N(x_1, \dots, x_R), \quad j \leftrightarrow N(y_1, \dots, y_R)$$

$$\sigma_1, \sigma_2 = x_1, y_1, \dots, \quad \sigma_{2R-1}, \sigma_{2R} = x_R, y_R$$

Let f be the color of pixel

$$f(x_1, y_1, x_2, y_2, \dots, x_R, y_R) = \psi_{\sigma_1, \sigma_2, \dots, \sigma_{2R-1}, \sigma_{2R}}$$

Comparing two ways of encoding image: bond dimensions

