Работа 1.2.3 Определение момента инерции твердых тел с помощью трифилярного подвеса

Валеев Рауф Раушанович группа 825

21 октября 2018 г.

Цель работы: измерение момента инерции ряда тел и сравнение результатов с расчетами по теоретическим формулам; проверка аддитивности моментов инерции и справедливости формулы Гюйгенса-Штейнера.

В работе используются: трифилярный подвес, секундомер, счетчик числа колебаний, набор тел, момент инерции которых надлежит измерить (диск, стержень, полый цилиндр и другие).

- 1. Проверяем пригодность установки (рис. 1) для возбуждения крутильных колебаний.
- 2. Проверяем, что время изменения периода крутильных колебаний в 2-3 раза много больше периода колебаний. Проверяем для ненагруженной платформы.
- 3. Находим оптимальную амплитуду, то есть такую, чтобы период не зависел от амплитуды колебаний, так как запускали по кнопке, то это примерно половина от максимальной амплитуды, которую мы можем сделать.
- 4. Измеряем параметры $z_0=(2,14\pm0,001)$ м, $R=(0,1145\pm0,0005)$ м, $r=(0,0305\pm0,0003)$ м. По ним вычисляем константу установки $k=(4,14\pm0,04)\cdot10^{-4}$ по формуле

$$k = \frac{gRr}{4\pi^2 z_0}$$

$$\sigma_k = k\sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{z_0}}{z_0}\right)^2}$$

5. Так же нам понадобятся массы всех представленных грузов:

$$m_{platform} = (0,9347 \pm 0,0003)kg$$

$$m_{ring} = (0,7479 \pm 0,0003)kg$$

$$m_{disk} = (0,5847 \pm 0,0003)kg$$

$$m_{beam} = (1,2728 \pm 0,0003)kg$$

- 6. Измеряем периоды колебаний ненагруженной платформы и платформы со каждым грузом по отдельности и с диском и кольцом (табл. 1)
- 7. Определяем моменты инерции каждого груза по формуле

$$I = kmT^{2}$$

$$\sigma_{I} = I\sqrt{\left(\frac{\sigma_{k}}{k}\right)^{2} + \left(\frac{\sigma_{m}}{m}\right)^{2} + 2\left(\frac{\sigma_{T}}{T}\right)^{2}}$$

- 8. Определяем I ненагруженной платформы (табл. 2).
- 9. Определяем момент инерции двух тел из набора сначала порознь, потом вместе (табл. 2). Проверяем аддитивность момента инерции, т.е. что $I_{together} = I_1 + I_2$. То есть 0,01428 = 0,0121 + 0,0096 0,0074 и действительно равно с погрешностью в 1%.
- 10. Помещаем на платформу диск, разрезанный по диаметру. Постепенно его раздвигая так, чтобы центр масс оставался на оси вращения снимаем зависимость I(h) (табл. 3)
- 11. Строим график зависимости $I(h^2)$ и определяем по нему массу и момент инерции диска.
- 12. Исходя из графика масса равна 1,35 кг, что равно реальной массе с точностью до 1%. Так же Нулевой импульс сходится с таблицей.
- 13. Измеряем все теоретические значения моментов инерции грузов по формулам

$$I_{disk} = \frac{mR^2}{2}$$

$$I_{ring} = mR^2$$

$$I_{platform} = \frac{mR^2}{2}$$

$$I_{stick} = \frac{mL^2}{12}$$

Тело			<i>T</i> , c			T_{sr} , c	$\sigma_{T_{sr}}, c$
Платформа	4,38	4,38	4,38	4,38	4,38	4,38	0,02
Платформа с кольцом	4,16	4,16	4,17	4,16	4,16	4,16	0,02
Платформа с диском	3,91	3,91	3,91	3,91	3,91	3,91	0,02
Платформа с бруском	3,68	3,67	3,67	3,68	3,67	3,67	0,02
Платформа с диском и кольцом	3,90	3,90	3,90	3,90	3,90	3,90	0,02

Таблица 1: T

Тело	I_{pract} , $K\Gamma \cdot M^2$	I_{teor} , $\kappa \Gamma \cdot M^2$	σ_I , kg·m ²	$\varepsilon,\%$
Платформа	0,00744	0,00731	0,00009	2
Платформа с кольцом	0,0121	0,0120	0,0001	1
Платформа с диском	0,0096	0,0094	0,0001	2
Платформа с бруском	0,0123	0,0124	0,0002	1
Платформа с диском и кольцом	0,0143	0,0143	0,0002	0

Таблица 2: І

$1a0\pi n \mu a 2.1$				
T, c	h, M			
3,1258	0			
3,1476	0,01			
3,1968	0,02			
3,4148	0,03			
3,5679	0,04			
3,6781	0,05			
3,8518	0,06			

Таблица 3: I(h)