National University of Computer and Emerging Sciences

Lahore Campus

Operations Research (MT 4031)

QUIZ 2-BCS -7A

Total Marks: 10

weightage: 3

Date: 09-10-2024

Course Instructor(s) Dr. Uzma Bashir,

Q1: [4]

Consider the following LP model:

$$Maximize z = 4x_1 + 14x_2$$

$$2x_1 + 7x_2 + x_3 = 21$$

$$7x_1 + 2x_2 + x_4 = 21$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Check the optimality and feasibility of the basic solution given as:

Basic variables =
$$(x_2, x_1)$$
, Inverse = $\begin{pmatrix} \frac{7}{45} & -\frac{2}{45} \\ -\frac{2}{45} & \frac{7}{45} \end{pmatrix}$

SOLUTION:

Feasibility: (1 mark)

$$\begin{pmatrix} x_2 \\ x_1 \end{pmatrix} = \begin{pmatrix} 7/45 & -7/45 \\ -2/45 & 7/45 \end{pmatrix} \times \begin{pmatrix} 21 \\ 21 \end{pmatrix} = \begin{pmatrix} 7/3 \\ 7/3 \end{pmatrix}$$

Thus, the given solution is feasible.
The dual is constructed as: (1 mark)

minimize
$$w = 21y_1 + 21y_2$$

subject to

$$2y_1 + 7y_2 \ge 4$$

$$7y_1 + 2y_2 \ge 14$$

$$y_1 \ge 0$$

$$y_2 \ge 0$$

Solution of dual: (1 mark)

$$(y_1 \quad y_2) = (14 \quad 4) \times \begin{pmatrix} 7/45 & -7/45 \\ -2/45 & 7/45 \end{pmatrix} = (2 \quad 0)$$

Objective function coefficient of $x_3=y_1-0=2-0=2>0$ Objective function coefficient of $x_4=y_2-0=0-0=0$

(1 mark)

So, the given solution is optimal as well.

National University of Computer and Emerging Sciences

Lahore Campus

Q2: [6]

Solve the following LP using dual simplex method.

maximize
$$z = x_1 + 2x_2 + 3x_3$$

subject to

$$x_1 - x_2 + x_3 \ge 4$$

$$x_1 + x_2 + 2x_3 \le 8$$

$$x_2 - x_3 \ge 2$$

$$x_1, x_2, x_3 \ge 0$$

SOLUTION:

maximize
$$z = x_1 + 2x_2 + 3x_3$$

subject to

$$-x_1 + x_2 - x_3 \le -4$$

$$x_1 + x_2 + 2x_3 \le 8$$

$$-x_2 + x_3 \le -2$$

$$x_1, x_2, x_3 \ge 0$$

Putting in tableau form

Basic	x_1	x_2	x_3	x_4	x_5	x_6	Sol
Z	1	-2	-3	0	0	0	0
x_4	-1	1	-1	1	0	0	-4
x_5	1	1	2	0	1	0	8
x_6	0	-1	1	0	0	1	-2

Basic	x_1	x_2	x_3	x_4	x_5	x_6	Sol
Z	0	-3	-2	-1	0	0	4
x_1	1	-1	1	-1	0	0	4
<i>x</i> ₅	0	2	1	1	1	0	4
χ_6	0	-1	1	0	0	1	-2

Basic	x_1	x_2	x_3	x_4	x_5	x_6	Sol
Z	0	0	-5	-1	0	-3	10
x_1	1	0	0	-1	0	-1	6
x_5	0	0	3	1	1	2	0
x_2	0	1	-1	0	0	-1	2

Basic	x_1	x_2	x_3	x_4	x_5	x_6	Sol
Z	0	0	0	2/3	5/3	1/3	10
x_1	1	0	0	-1	0	-1	6
x_3	0	0	1	1/3	1/3	2/3	0
x_2	0	1	0	1/3	1/3	1/3	2

The optimal and feasible solution.

$$x_1 = 6, x_2 = 2, x_3 = 0, z = 10.$$