DATA AND ATTRIBUTE

BEIYU LIN

REVIEW

- What is Data Mining?
- Why Data Mining is important?
- Data Mining and its Applications
- Real Life Examples

WHAT IS DATA

A collection of data objects and their attributes

- An attribute is a property or characteristic of an object
 - Examples: age, gender, income of a person
 - also known as variable, field, characteristic, dimension, or feature
- An object is described by a collection of attributes
 - also known as record, point, case, sample, entity, or instance

Tid	Refund	Taxable Income	Cheat
1	Yes	125K	No
2	No	100K	No
3	No	70K	No
4	Yes	120K	No
5	No	95K	Yes
6	No	60K	No
7	Yes	220K	No
8	No	85K	Yes
9	No	75K	No
10	No	90K	Yes

ATTRIBUTE VALUES

Attribute values

- numbers or symbols assigned to an attribute for a particular object
- Attributes and attribute values
 - - Same attribute can be mapped to different attribute values
 - Example: occupational group can be measured in sales or technicians
 - Different attributes can be mapped to the same set of values

Attribute	Category		
Race	African		
	Coloured		
	Indian		
	White		
Gender	Female		
	Male		
Age (in years)	0–19		
	20–29		
	30–39		
	40–49		
	50–59		
	60–79		
Occupational	Manager		
group	Information technology		
	Technicians		
	Sales		
	Supervisory		
	Clerical or admin		

TYPES OF ATTRIBUTES

- - Nominal
 - Examples: ID numbers, zip codes
- - Ordinal
 - Examples: rankings
 - taste of red wine on a scale from I-I0; grades (A,A-, B+, B, B-, ...);
- - Interval
 - Examples: calendar dates.
- - Ratio
 - Examples: elapsed time (e.g., time to go to school)

PROPERTIES OF ATTRIBUTE VALUES

■ The type of an attribute depends on the properties/operations it possesses:

```
Distinctness: = ≠
Order: < >
Differences: + -
Ratios: * /
```

- Nominal attribute: distinctness (e.g., ID number)
- Ordinal attribute: distinctness & order (e.g. ranking)
- Interval attribute: distinctness, order & meaningful differences (e.g., calendar dates)
- Ratio attribute: all 4 properties/operations

ATTRIBUTE

	Attribute Type	Description	Examples	Operations
Categorical Qualitative	Nominal	Nominal attribute values only distinguish. (=, ≠)	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, $\chi 2$ test
Cate Qua	Ordinal	Ordinal attribute values also order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Numeric Quantitative	Interval	For interval attributes, differences between values are meaningful. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, t and F tests
Nu Quar	Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, current	geometric mean, harmonic mean, percent variation

This categorization of attributes is due to S. S. Stevens

ATTRIBUTE

	Attribute Type	Transformation	Comments	
cal ve	Nominal	Any permutation of values	If all employee ID numbers were reassigned, would it make any difference?	
Categorical Qualitative	Ordinal An order preserving change of values, i.e., new_value = f(old_value) where f is a monotonic function		An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.	
Numeric Quantitative	Interval	new_value = a * old_value + b where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).	
ੂੰ ਕੁ	Ratio	new_value = a * old_value	Length can be measured in meters or feet.	

This categorization of attributes is due to S. S. Stevens

DISCRETE AND CONTINUOUS ATTRIBUTES

Discrete Attribute

- a finite or countably infinite set of values
- Examples: a set of eye colors (blue, green, black, brown...)
- Often represented as integer variables (e.g., 0, 1, 2, ..).
- Note: binary attributes are a special case of discrete attributes (e.g., I or 0)

Continuous Attribute

- Has real numbers as attribute values (e.g., heights: 5.4, 6.3, etc)
- Examples: temperature, height, or weight.
- Continuous attributes are typically represented as floating point variables (weight: 111.5 pounds)

CRITIQUES OF THE ATTRIBUTE CATEGORIZATION

- Incomplete
- Partially ordered (e.g. missing values)
- Partial membership
- Asymmetric binary
- Cyclical (e.g., daily routines)
- Multivariate

- Relationships between the data (auto-correlations; not independent; not from an identical distribution)
- Real data is approximate and noisy
- may not recognize the proper attribute types
- approximate one attribute type by another

KEY MESSAGES FOR ATTRIBUTE TYPES

Choose the operations that are "meaningful" for the type of data

- distinctness, order, intervals, and ratios are only four properties of data
- the data type you see
- may not capture the full information or may suggest hidden properties
- analysis may depend on other properties of the data (e.g., many statistical analyses depend only on the distribution)
- it may vary in different domains.

IMPORTANT CHARACTERISTICS OF DATA

- Dimensionality (number of attributes) -- high dimensional data brings some challenges (e.g., using genes as attribute while studying health related problems)
- Sparsity -- only presence counts
 (e.g., the GPS based traffic trajectory data)
- Resolution patterns depend on the scale
- Size of data

TYPES OF DATA SETS

- Record
 - Data Matrix
 - Document Data
 - -Transaction Data
- Graph
 - -World Wide Web
 - Molecular Structures

- Ordered
 - Spatial Data
 - -Temporal Data
 - Sequential Data (e.g., IoT data)
 - Genetic Sequence Data

RECORD DATA

 a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Taxable Income	Cheat
1	Yes	125K	No
2	No	100K	No
3	No	70K	No
4	Yes	120K	No
5	No	95K	Yes
6	No	60K	No
7	Yes	220K	No
8	No	85K	Yes
9	No	75K	No
10	No	90K	Yes

DATA MATRIX

- with same fixed set of attributes and multiple objects.
- data set can be represented by an m (rows) by n (columns) matrix

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

DOCUMENT DATA

- Each document becomes a 'term' vector (or word-based)
 - each term/word is an attribute of the vector
 - the value of each attribute is the number of times this term / word occurs in the document.

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TRANSACTION DATA

- A special type of data, where
 - each transaction involves a set of items.
 - for example, a person went for a grocery shopping.
 a. the set of products purchased is a transaction,
 b. the individual products that were purchased are the items.
 - can also represented as record data

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

GRAPH DATA

Examples: Generic graph, a molecule, and webpages

IOT DATA

Sensor types: infrared motion(narrow/wide-area), ambient light, magnetic, and temperature sensors.

2011-06-13	21:48:43	Bathroom	ON	Personal_Hygiene
2011-06-13	21:48:44	Bathroom	OFF	Personal_Hygiene
2011-06-13	22:47:02	Bedroom	ON	Personal_Hygiene
2011-06-13	22:47:04	Bedroom	OFF	Sleep
2011-06-13	22:47:06	Bedroom	ON	Sleep
2011-06-14	10:11:24	Kitchen	ON	Wash_Dishes
2011-06-14	10:11:25	Kitchen	OFF	Wash_Dishes
2011-06-14	10:11:40	Kitchen	ON	Cook
2011-06-14	10:11:41	Kitchen	OFF	Wash_Dishes

imgbin.com