Sin x &x

Let
$$T_n = \int_0^{\infty} \sin^n x \, dx$$

We have $T_n = -\frac{\sin^n x}{\cos x} + \frac{(n-1)T_{n-2}}{n}$

Then abore eyn, we have

 $T_{n-2} = \frac{n-3}{n-2} \cdot T_{n-4}$

Find $= \frac{n-3}{n-2} \cdot T_{n-4}$

Then $T_{n-6} = \frac{n-7}{n-4} \cdot T_{n-6}$
 $T_{n-6} = \frac{n-7}{n-6} \cdot T_{n-6}$
 $T_n = \frac{n-7}{n-1} \cdot T_{n-6}$
 $T_n = \frac{n-7}{n-1} \cdot T_{n-6}$
 $T_n = \frac{n-7}{n-1} \cdot T_{n-6}$
 $T_n = \frac{n-1}{n} \cdot T_n$
 $T_n = \frac{n-1}{n} \cdot T_n$

 $\frac{1}{n} = \int \frac{(n-1)}{n} \frac{(n-3)}{(n-2)} \frac{(n-5)}{(n-4)} = \frac{9}{3} \cdot \frac{1}{3} \cdot \frac{1}{$