УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 13

> Студент Шубин Егор Вячеславович Р3109

Преподаватель Поляков Владимир Иванович Функция $f(x_1,x_2,x_3,x_4,x_5)$ принимает значение 1 при $-2 \le x_2x_30 - x_4x_5x_1 \le 3$ и неопределенное значение при $x_2x_30 - x_4x_5x_1 = -2$.

Таблица истинности

N⁰	x_1	x_2	x_3	x_4	x_5	x_2x_30	$x_4x_5x_1$	x_2x_30	$x_4x_5x_1$	f
0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	0	2	0	2	d
2	0	0	0	1	0	0	4	0	4	0
3	0	0	0	1	1	0	6	0	6	0
4	0	0	1	0	0	2	0	2	0	1
5	0	0	1	0	1	2	2	2	2	1
6	0	0	1	1	0	2	4	2	4	d
7	0	0	1	1	1	2	6	2	6	0
8	0	1	0	0	0	4	0	4	0	0
9	0	1	0	0	1	4	2	4	2	1
10	0	1	0	1	0	4	4	4	4	1
11	0	1	0	1	1	4	6	4	6	d
12	0	1	1	0	0	6	0	6	0	0
13	0	1	1	0	1	6	2	6	2	0
14	0	1	1	1	0	6	4	6	4	1
15	0	1	1	1	1	6	6	6	6	1
16	1	0	0	0	0	0	1	0	1	1
17	1	0	0	0	1	0	3	0	3	0
18	1	0	0	1	0	0	5	0	5	0
19	1	0	0	1	1	0	7	0	7	0
20	1	0	1	0	0	2	1	2	1	1
21	1	0	1	0	1	2	3	2	3	1
22	1	0	1	1	0	2	5	2	5	0
23	1	0	1	1	1	2	7	2	7	0
24	1	1	0	0	0	4	1	4	1	1
25	1	1	0	0	1	4	3	4	3	1
26	1	1	0	1	0	4	5	4	5	1
27	1	1	0	1	1	4	7	4	7	0
28	1	1	1	0	0	6	1	6	1	0
29	1	1	1	0	1	6	3	6	3	1
30	1	1	1	1	0	6	5	6	5	1
31	1	1	1	1	1	6	7	6	7	1

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \,$

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5)$ $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5)$ $(\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$ $(\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K	$^{-1}(f)$		$K^2(f)$	Z(f)	
m_0	00000		m_0 - m_1	0000X	√	m_0 - m_1 - m_4 - m_5	00X0X	001X0
m_4	00100		m_0 - m_4	00X00	\checkmark	m_0 - m_4 - m_{16} - m_{20}	X0X00	0X001
m_{16}	10000	✓	m_0 - m_{16}	X0000	✓	m_4 - m_5 - m_{20} - m_{21}	X010X	1X000
m_1	00001	✓	m_4 - m_5	0010X	√	m_{10} - m_{11} - m_{14} - m_{15}	01X1X	010X1
m_5	00101	$\overline{}$	m_4 - m_6	001X0		m_{10} - m_{14} - m_{26} - m_{30}	X1X10	0X110
m_9	01001	✓	m_1 - m_5	00X01	\checkmark	m_{14} - m_{15} - m_{30} - m_{31}	X111X	1100X
m_{10}	01010	✓	m_1 - m_9	0X001				110X0
m_{20}	10100	✓	m_{16} - m_{20}	10X00	✓			X1001
m_{24}	11000	✓	m_{16} - m_{24}	1X000				11X01
m_6	00110	✓	m_4 - m_{20}	X0100	\checkmark			1X101
m_{14}	01110	√	m_{10} - m_{11}	0101X	✓			111X1
m_{21}	10101	✓	m_9 - m_{11}	010X1				00X0X
m_{25}	11001	✓	m_{10} - m_{14}	01X10	\checkmark			X0X00
m_{26}	11010	✓	m_6 - m_{14}	0X110				X010X
m_{11}	01011	√	m_{20} - m_{21}	1010X	✓			01X1X
m_{15}	01111	√	m_{24} - m_{25}	1100X				X1X10
m_{29}	11101	✓	m_{24} - m_{26}	110X0				X111X
m_{30}	11110	√	m_5 - m_{21}	X0101	\checkmark			
m_{31}	11111	√	m_9 - m_{25}	X1001				
			m_{10} - m_{26}	X1010	√			
			m_{14} - m_{15}	0111X	\checkmark			
			m_{11} - m_{15}	01X11	✓			
			m_{25} - m_{29}	11X01				
			m_{26} - m_{30}	11X10	\checkmark			
			m_{21} - m_{29}	1X101				
			m_{14} - m_{30}	X1110	√			
			m_{30} - m_{31}	1111X	\checkmark			
			m_{29} - m_{31}	111X1				
			m_{15} - m_{31}	X1111	√			

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

			0-кубы														
		0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
		0	0	0	1	1	1	1	0	0	0	1	1	1	1	1	1
Про	Простые импликанты		1	1	0	0	1	1	0	1	1	0	0	0	1	1	1
		0	0	0	0	1	1	1	0	0	0	0	0	1	0	1	1
			0	1	1	0	0	1	0	0	1	0	1	0	1	0	1
		0	4	5	9	10	14	15	16	20	21	24	25	26	29	30	31
A	001X0		X														
В	0X001				X												
С	1X000								X			X					
D	010X1				X												
E	0X110						X										
F	1100X											X	X				
G	110X0											X		X			
H	X1001				X								X				
I	11X01												X		X		
J	1X101										X				X		
K	111X1														X		X
L	00X0X	X	X	X													
M	X0X00	X	X						X	X							
N	X010X		X	X						X	X						
О	01X1X					X	X	X									
Р	X1X10					X	X							X		X	
Q	X111X						X	X								X	X

Ядро покрытия:

$$T = \{\}$$

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (L \lor M) \ (A \lor L \lor M \lor N) \ (L \lor N) \ (B \lor D \lor H) \ (O \lor P) \ (E \lor O \lor P \lor Q) \ (O \lor Q) \ (C \lor M) \ (M \lor N)$$

$$(J \lor N) \ (C \lor F \lor G) \ (F \lor H \lor I) \ (G \lor P) \ (I \lor J \lor K) \ (P \lor Q) \ (K \lor Q)$$

Приведем выражение в ДНФ:

 $Y = BCILNPQ \lor BCIMNPQ \lor BFIMNPQ \lor BFJLMPQ \lor BFJMNPQ \lor BFKMNOP \lor BFKMNPQ \lor BGIMNPQ \lor BFIMNPQ \lor CDILNPQ \lor CDIMNPQ \lor CHILNPQ \lor CHILNPQ \lor CHILNPQ \lor CHILNPQ \lor CHILNPQ \lor CHILNPQ \lor CHKLNOP \lor CHKLNPQ \lor CHKLNPQ \lor CHKMNOP \lor CHKMNPQ \lor DFIMNPQ \lor DFJMNPQ \lor DFKMNOP \lor DFKMNPQ \lor DFKMNOP \lor DFKMNPQ \lor DFIMNPQ \lor FHJMNPQ \lor FHJMNPQ \lor FHJMNPQ \lor FHKMNOP \lor FHKMNOP \lor FHKMNPQ \lor GHJMNPQ \lor$

Возможны следующие покрытия:

$$C_{1} = \begin{cases} T \\ B \\ C \\ I \\ L \\ N \\ P \\ Q \end{cases} = \begin{cases} 0X001 \\ 1X000 \\ 11X01 \\ 00X0X \\ X010X \\ X1111X \end{cases} \qquad C_{2} = \begin{cases} T \\ B \\ C \\ I \\ M \\ N \\ P \\ Q \end{cases} = \begin{cases} 0X001 \\ 1X000 \\ 11X01 \\ X0X00 \\ X010X \\ X1X10 \\ X111X \end{cases} \qquad C_{3} = \begin{cases} T \\ B \\ F \\ I \\ M \\ N \\ P \\ Q \end{cases} = \begin{cases} 0X001 \\ 1100X \\ 11X01 \\ X0X00 \\ X010X \\ X1X10 \\ X111X \end{cases}$$

$$S_{1}^{a} = 24 \qquad S_{2}^{a} = 24 \qquad S_{2}^{a} = 24 \qquad S_{3}^{a} = 24 \\ S_{1}^{b} = 31 \qquad S_{2}^{a} = 31 \qquad S_{3}^{a} = 31$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0X001\\ 1X000\\ 11X01\\ 00X0X\\ X010X\\ X1X10\\ X111X \end{cases}$$
$$S^{a} = 24$$
$$S^{b} = 31$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee x_1 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_4} \vee \overline{x_2} \, x_3 \, \overline{x_4} \vee x_2 \, x_4 \, \overline{x_5} \vee x_2 \, x_3 \, x_4$$

Минимизация булевой функции на картах Карно

Определение МДНФ

 $f = \overline{x_1}\,\overline{x_3}\,\overline{x_4}\,x_5 \vee x_1\,\overline{x_3}\,\overline{x_4}\,\overline{x_5} \vee x_1\,x_2\,\overline{x_4}\,x_5 \vee \overline{x_1}\,\overline{x_2}\,\overline{x_4} \vee \overline{x_2}\,x_3\,\overline{x_4} \vee x_2\,x_4\,\overline{x_5} \vee x_2\,x_3\,x_4$

Определение МКНФ

 $f = (x_2 \lor x_3 \lor \overline{x_5}) \ (x_2 \lor \overline{x_4}) \ (x_3 \lor \overline{x_4} \lor \overline{x_5}) \ (x_1 \lor \overline{x_2} \lor x_4 \lor x_5) \ (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4) \ (\overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f = \overline{x_1} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee x_1 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee x_1 \, x_2 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_4} \vee \overline{x_2} \, x_3 \, \overline{x_4} \vee x_2 \, x_4 \, \overline{x_5} \vee x_2 \, x_3 \, x_4 \qquad S_Q = 31 \quad \tau = 2$$

$$f = \overline{x_4} \, (\overline{x_1} \, (\overline{x_2} \vee \overline{x_3} \, x_5) \vee \overline{x_2} \, x_3 \vee x_1 \, \overline{x_3} \, \overline{x_5} \vee x_1 \, x_2 \, x_5) \vee x_2 \, x_4 \, (x_3 \vee \overline{x_5}) \qquad S_Q = 27 \quad \tau = 6$$

$$\varphi = \overline{x_2} \vee \overline{x_3} \, x_5$$

$$\overline{\varphi} = x_2 \, (x_3 \vee \overline{x_5})$$

$$f = \overline{x_4} \, (\overline{x_1} \, \varphi \vee \overline{x_2} \, x_3 \vee x_1 \, \overline{x_3} \, \overline{x_5} \vee x_1 \, x_2 \, x_5) \vee \overline{\varphi} \, x_4 \qquad S_Q = 25 \quad \tau = 6$$

Факторизация и декомпозиция МКНФ

$$f = (x_2 \vee x_3 \vee \overline{x_5}) \ (x_2 \vee \overline{x_4}) \ (x_3 \vee \overline{x_4} \vee \overline{x_5}) \ (x_1 \vee \overline{x_2} \vee x_4 \vee x_5) \ (x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \ (\overline{x_2} \vee \overline{x_3} \vee x_4 \vee x_5)$$

$$S_Q = 26 \quad \tau = 2$$

$$f = (x_2 \vee \overline{x_4}) \ (x_3 \vee \overline{x_5} \vee x_2 \overline{x_4}) \ (x_1 \vee \overline{x_2} \vee x_4 \vee \overline{x_3} x_5) \ (\overline{x_2} \vee \overline{x_3} \vee x_4 \vee x_5)$$

$$S_Q = 21 \quad \tau = 3$$

$$\varphi = x_2 \overline{x_4}$$

$$\overline{\varphi} = \overline{x_2} \vee x_4$$

$$f = (x_2 \vee \overline{x_4}) \ (x_3 \vee \overline{x_5} \vee \varphi) \ (\overline{\varphi} \vee x_1 \vee \overline{x_3} x_5) \ (\overline{\varphi} \vee \overline{x_3} \vee x_5)$$

$$S_Q = 20 \quad \tau = 4$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = \overline{x_4} \ (\overline{x_1} \varphi \vee \overline{x_2} x_3 \vee x_1 \overline{x_3} \overline{x_5} \vee x_1 x_2 x_5) \vee \overline{\varphi} x_4 \quad (S_Q = 25, \tau = 6)$$
$$\varphi = \overline{x_2} \vee \overline{x_3} x_5$$

Схема по упрощенной МКНФ:

$$f = (x_2 \vee \overline{x_4}) \ (x_3 \vee \overline{x_5} \vee \varphi) \ (\overline{\varphi} \vee x_1 \vee \overline{x_3} x_5) \ (\overline{\varphi} \vee \overline{x_3} \vee x_5) \quad (S_Q = 20, \tau = 4)$$
$$\varphi = x_2 \overline{x_4}$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\varphi \, x_4} \, \overline{\overline{x_1} \, x_4} \, \overline{\varphi} \, \overline{\overline{x_2} \, x_3 \, \overline{x_4}} \, \overline{x_1 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5}} \, \overline{x_1 \, x_2 \, \overline{x_4} \, x_5} \quad (S_Q = 33, \tau = 8)$$

$$\varphi = x_2 \, \overline{\overline{x_3} \, x_5}$$

Схема по упрощенной МКНФ в базисе И, НЕ:

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{x_4}} \overline{\overline{x_1}} \overline{\overline{\overline{x_3}} \overline{x_5}} \overline{\overline{x_2} \overline{x_5}} \overline{\overline{\overline{x_1}} \varphi} \overline{\overline{\overline{x_2}} \overline{x_3}} \overline{\overline{\varphi}} \overline{x_4} \quad (S_Q = 30, \tau = 8)$$

$$\varphi = \overline{x_2} \overline{\overline{\overline{x_3}} \overline{x_5}}$$

Схема по упрощенной МКН Φ в базисе И-НЕ с ограничением на число входов:

