

EE585 Probabilistic Robotics

Department of Electrical and Electronics Engineering
Dr. Afşar Saranlı

Your Instructor?

The class?

Student introduction...

Then a short "quiz"...

The Quiz...

- 1. What do you expect from this course (why are you taking it?)
- 2. In METU, what do you aim to accomplish <u>academically</u> this term?
- 3. In general, what do aim to accomplish personally this term?

The Course?

Hmmm... What should I say?

Seems today is all about that!!

Textbook and References

Howie Choset, Kevin M. Lynch,
Seth Hutchinson, George A. Kantor,
Wolfram Burgard, Lydia E. Kavvaki,
and Sebastian Thrun
Foreword by Jean-Claude Latombe

Principles of
Robot Motion

Theory, Algorithms,
and Implementation

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)}$$

$$x_{t} = A_{t}x_{t-1} + B_{t}u_{t} + \varepsilon_{t}$$

$$z_{t} = C_{t}x_{t} + \delta_{t}$$

$$x_{t} = g(u_{t}, x_{t-1}) + \varepsilon_{t}$$

$$z_{t} = h(x_{t}) + \delta_{t}$$

What is going on?

What is going on?

What is going on?

What is going on?

Now what is happening?

And now?

Another example

Next Generation Robotics

Robotics:

"Science of perceiving and manipulating the physical world through computer controlled devices"

Robotic Agents

Intelligent Robotic Agent:

"A Device perceiving and manipulating the physical world through computer program control"

Robotic Agents

Think About the near future (or today even?):

- Cars safely steering themselves on highways,
- Devices that clean up nuclear disaster sites like Chernobyl or Fukushima,
- Robots that find human survivors in wreckages like that of 1999 Earthquake,
- Home robots that take care of daily tasks like vacuum, laundry, dishes, setting up/cleaning the table,
- Robots that explore inaccessible places like other planets, mines, underwater fields,
- Robotic sentries that patrol our dangerous borders.

Some Examples (IROS Conference)

Willow Garage healthcare robot

22 The iCub humanoid child

Some Examples (IROS Conference)

Quad-rotor with camera based mapping

Multi-Rotor flyer with stabilized camera

Some Examples (IROS Conference)

Multi-Rotor flyer with Laser Scanner

Kinematic Quadruped

Many Recent Planary Talks

Locomotion Policy Guided Traversability Learning [IROS 2022]

Keeping an Eye on Things, Keynote Talk [IROS 2021]

Uncertainty in Robotics

To do all this:

Robots need to accommodate the enormous uncertainty that exist in the real world!!

"But... robotics is around since the early 80s! We did not care about uncertainty before!"

Question: Why now and not before?

Why did we manage to ignore uncertainty in robotics before? When can we still sometimes ignore it today? What are the drawbacks such ignorance?

Sources of Uncertainty

Sensors:

Limitation of sensors, Range and Resolution Environment interaction Unpredictable Humans! Failure

Actuators:

Control noise, Wear and Tear, Environment interaction Failure

Programs/Algorithms:

Modeling errors,
Approximations,
missed bugs,
compromises for realtime operation

We now have to deal with it!

Robotics is moving to the open world...

and hence:

We need to deal with the uncertainty that can no longer be ignored.

Formally represent and deal with uncertainty through the Calculus of Probability Theory

Calculus of Probability Theory

"Represent the "belief" as a likelyhood distribution over the space of possibilities"
"Use calculus of Probability Theory to propagate "belief"

"Act to reduce uncertainty. Degrade gracefully in the presence of uncertainty."

An example: Localization

"Localization" is the problem of estimating robot pose (position and orientation with respect to an external reference frame)

- Robot has the map of the environment,
- But has to rely on its internal models and local, noisy sensor data to find its location on the map.

An example: "1D - Localization"

Robot in the environment does not know its location!

Robot **observes a door** (knows there are
3 doors in the map)

Sensor Model

Robot knows how its "door sensor" works. **Updates its "possible locations"** in the map.

Motion Model

Robot moves. Possible locations move with it. But this degrades its certainty about location possibilities.

Robot **observes a door** again.

Observation combines with the location possibilities to improve location estimate.

An example: "1D - Localization"

"Global Localization"

through:

"Bayes Filter"

More specifically:

"A Multi-Hypothesis Extended Kalman Filter"

Another example: Coastal Navigation

"Coastal Navigation"

an example of:

"Active control (exploration – exploitation) to reduce uncertainty about localization"

The Syllabus

Course Syllabus is already in odtuclass...

Let me know about any questions the next time...

An example of concepts together

The "Minerva" Tourguide Robot (1999)

