Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application and reflects the amendment of claims 1, 10, 22 and 55; the cancellation of claims 3-4, 8-9, 12 and 24-26; and the addition of new claims 58-62.

Listing of Claims:

- 1. (Currently Amended) A process for the production of paper which comprises;
- (i) providing a suspension containing cellulosic fibers, and optional fillers,
- (ii) adding to said suspension a drainage and retention aid comprising at least 0.001% by weight, based on dry stock substance, of an-anionic microparticulate material silicabased particles and at least 0.001% by weight, based on dry stock substance, of a cationic organic polymer which comprises in polymerized form a cationic monomer having an aromatic group represented by the general formula (I):

$$\begin{array}{c|cccc} CH_2 = C - R_1 & R_2 & & (I) \\ & & & | & & \\ O = C - A_1 - B_1 - N^+ - Q & X^- & \\ & & & | & \\ & & R_3 & & \end{array}$$

wherein R_1 is H or CH_3 , R_2 and R_3 are each an alkyl group having from 1 to 3 carbon atoms, A_1 is O or NH, B_1 is an alkylene group of from 2 to 4 carbon atoms or a hydroxy propylene group, Q is benzyl, and X^- is an anionic counterion, wherein the polymer is prepared from a monomer mixture consisting essentially of from 2 to 50 mole% cationic monomer having an aromatic group and from 98 to 50 mole% (meth)acrylamide; and (iii) forming and dewatering the obtained suspension on a wire, wherein the suspension that is dewatered on the wire has a conductivity between 2.4 and 10 mS/cm.

2. **(Previously Presented)** The process of claim 1, wherein the suspension that is dewatered on the wire has a conductivity of at least 5.0 mS/cm.

3.-5. (Cancelled)

- 6. **(Original)** The process of claim 1, wherein the cationic organic polymer has a weight average molecular weight of at least 1,000,000.
- 7. **(Original)** The process of claim 1, wherein the cationic organic polymer is prepared from a monomer mixture comprising from 5 to 20 mole% of cationic monomer having an aromatic group and from 95 to 80 mole% of other copolymerizable monomers.

8.-9. (Cancelled)

- 10. **(Currently Amended)** The process of claim—8_1, wherein the anionic inorganic silica-based particles are aluminium-modified silica-based particles.
- 11. **(Original)** The process of claim 1, wherein the drainage and retention aid further comprises a low molecular weight cationic organic polymer.

12. (Cancelled)

13. **(Original)** The process of claim 1, wherein the drainage and retention aid further comprises an aluminium compound.

14. Cancelled.

15. (Original) The process of claim 1, wherein the suspension comprises recycled fibers.

16 -20. **Cancelled.**

- 21. **(Previously Presented)** The process of claim 1, wherein the suspension that is dewatered on the wire has a content of di- and multivalent cations of at least 300 ppm.
- 22. (Currently Amended) A process for the production of paper which comprises;
- (i) providing a suspension containing cellulosic fibres, and optional fillers,
- (ii) adding to said suspension drainage and retention aids comprising a cationic organic polymer which comprises in polymerized form a cationic monomer having an aromatic group represented by the general formula (I):

$$\begin{array}{c|cccc} CH_2 \!\!=\!\! C \!\!-\!\! R_1 & R_2 & (I) \\ & & | & | & \\ O \!\!=\!\! C \!\!-\!\! A_1 \!\!-\!\! B_1 \!\!-\!\! N^{^+} \!\!-\!\! Q & X^{^-} \\ & & | & \\ & & R_3 & \end{array}$$

wherein R_1 is H or CH_3 , R_2 and R_3 are each an alkyl group having from 1 to 3 carbon atoms, A_1 is O or NH, B_1 is an alkylene group of from 2 to 4 carbon atoms or a hydroxy propylene group, Q is benzyl, and X^- is an anionic counterion, wherein the polymer is prepared from a monomer mixture consisting essentially of from 2 to 50 mole% cationic monomer having an aromatic group and from 98 to 50 mole% (meth)acrylamide; and anionic-microparticulate-material silica-based particles;

- (iii) forming and dewatering the obtained suspension on a wire, wherein the suspension that is dewatered on the wire has a conductivity between 2.4 and 10 mS/cm and obtaining a wet web of paper and white water, recirculating white water and introducing fresh water to form a suspension containing cellulosic fibres, and optional fillers, to be dewatered, wherein the amount of fresh water introduced is less than 20 tons per ton of dry paper produced.
- 23. **(Previously Presented)** The process of claim 22, wherein less than 10 tons of fresh water is introduced per ton of dry paper produced.

24.-26. (Cancelled)

- 27. (Previously Presented) A process for the production of paper which comprises;
- (i) providing a suspension containing cellulosic fibers, and optional fillers,
- (ii) adding to said suspension drainage and retention aids comprising a cationic organic polymer which comprises in polymerized form a cationic monomer having an aromatic group represented by the general formula (I):

$$\begin{array}{c|cccc} CH_2 \!\!=\!\! C \!\!-\!\! R_1 & R_2 & (I) \\ & & | & & \\ O \!\!=\!\! C \!\!-\!\! A_1 \!\!-\!\! B_1 \!\!-\!\! N^+ \!\!-\!\! Q & X^- \\ & & | & \\ & & R_3 & & \end{array}$$

wherein R_1 is H or CH_3 , R_2 and R_3 are each an alkyl group having from 1 to 3 carbon atoms, A_1 is O or NH, B_1 is an alkylene group of from 2 to 4 carbon atoms or a hydroxy propylene group, Q is benzyl, and X^- is an anionic counterion, wherein the polymer is prepared from a monomer mixture consisting essentially of from 2 to 50 mole% cationic monomer having an aromatic group and from 98 to 50 mole% (meth)acrylamide; and anionic organic particles; and

(iii) forming and dewatering the obtained suspension on a wire, wherein the suspension that is dewatered on the wire has a conductivity between 5.5 and 10 mS/cm.

28. (Cancelled)

- 29. **(Previously Presented)** The process of claim 1 wherein the suspension that is dewatered on the wire has a conductivity of at least 7.5 mS/cm.
- 30. (**Previously Presented**) The process of claim 27 wherein the anionic organic particles are cross-linked anionic vinyl addition polymers.

31. **(Previously Presented)** The process of claim 27 wherein the cationic organic polymer is an acrylamide-based polymer.

32-48. (Cancelled)

- 49. **(Previously Presented)** The process of claim 1 wherein the cationic monomer is dimethylaminoethylacrylate benzyl chloride quaternary salt or dimethylaminoethylmethacrylate benzyl chloride quaternary salt.
- 50. **(Previously Presented)** The process of claim 1 wherein the drainage and retention aid further comprises anionic organic particles.
- 51. **(Previously Presented)** The process of claim 50 wherein the anionic organic particles are cross-linked anionic vinyl addition polymers.
- 52. **(Previously Presented)** The process of claim 1 wherein the drainage and retention aid further comprises a water-soluble anionic vinyl addition polymer.
- 53. (**Previously Presented**) The process of claim 52 wherein the water-soluble anionic vinyl addition polymer is a copolymer comprising an anionic monomer which is acrylic acid, methacrylic acid or sulfonated vinyl addition monomer.
- 54. **(Previously Presented)** The process of claim 52 wherein the water-soluble anionic vinyl addition polymer is a copolymer comprising acrylamide.
- 55. (Currently Amended) The process of claim—9_1 wherein the anionic inorganic particles are silica-based particles having have a specific surface area above 100 m²/g.

- 56. (**Previously Presented**) The process of claim 22 wherein the cationic monomer is dimethylaminoethylacrylate benzyl chloride quaternary salt or dimethylaminoethylmethacrylate benzyl chloride quaternary salt.
- 57. (**Previously Presented**) The process of claim 27 wherein the cationic monomer is dimethylaminoethylacrylate benzyl chloride quaternary salt or dimethylaminoethylmethacrylate benzyl chloride quaternary salt.
- 58. **(New)** The process of claim 55, wherein the anionic silica-based particles are in the form of a silica sol having an S-value in the range of from 8 to 45% and a specific surface area of from 500 to 950 m²/g.
- 59. **(New)** The process of claim 1, wherein the monomer mixture consists of from 2 to 50 mole% cationic monomer having an aromatic group and from 98 to 50 mole% (meth)acrylamide.
- 60. (New) The process of claim 22, wherein the anionic silica-based particles are in the form of a silica sol having an S-value in the range of from 8 to 45% and a specific surface area of from 500 to 950 m^2/g .
- 61. **(New)** The process of claim 22, wherein the monomer mixture consists of from 2 to 50 mole% cationic monomer having an aromatic group and from 98 to 50 mole% (meth)acrylamide.
- 62. **(New)** The process of claim 27, wherein the monomer mixture consists of from 2 to 50 mole% cationic monomer having an aromatic group and from 98 to 50 mole% (meth)acrylamide.