FIGURE 1

GGGGCTTCGGCGCCAGCGCCAGCGCTAGTCGGTCTGGTAAGGATTTACAAAAGGTGCAGGTA ${\tt TGAGCAGGTCTGAAGACTAACATTTTGTGAAGTTGTAAAACAGAAAACCTGTTAGAA} {\color{red} {\bf ATG}} {\tt TGG}$ TGGTTTCAGCAAGGCCTCAGTTTCCTTCCTTCAGCCCTTGTAATTTGGACATCTGCTGCTTTC ATATTTTCATACATTACTGCAGTAACACTCCACCATATAGACCCGGCTTTACCTTATATCAGT GACACTGGTACAGTAGCTCCAGAAAAATGCTTATTTGGGGCCAATGCTAAATATTGCGGCAGTT TTATGCATTGCTACCATTTATGTTCGTTATAAGCAAGTTCATGCTCTGAGTCCTGAAGAGAAC GTTATCATCAAATTAAACAAGGCTGGCCTTGTACTTGGAATACTGAGTTGTTTAGGACTTTCT ATTGTGGCAAACTTCCAGAAAACAACCCTTTTTGCTGCACATGTAAGTGGAGCTGTGCTTACC TTTGGTATGGGCTCATTATATGTTTGTTCAGACCATCCTTTCCTACCAAATGCAGCCCAAA ATCCATGGCAAACAAGTCTTCTGGATCAGACTGTTGTTGGTTATCTGGTGTGGAGTAAGTGCA CTTAGCATGCTGACTTGCTCATCAGTTTTGCACAGTGGCAATTTTTGGGACTGATTTAGAACAG AAACTCCATTGGAACCCCGAGGACAAAGGTTATGTGCTTCACATGATCACTACTGCAGCAGAA TGGTCTATGTCATTTTCCTTCTTTGGTTTTTTCCTGACTTACATTCGTGATTTTCAGAAAATT TCTTTACGGGTGGAAGCCAATTTACATGGATTAACCCTCTATGACACTGCACCTTGCCCTATT ${\tt AACAATGAACGAACACGGCTACTTTCCAGAGATATT} {\tt {\tt TGA}} {\tt TGAAAGGATAAAATATTTCTGTAA}$ TGATTATGATTCTCAGGGGATTGGGGAAAGGTTCACAGAAGTTGCTTATTCTTCTCTGAAATTT TCAACCACTTAATCAAGGCTGACAGTAACACTGATGAATGCTGATAATCAGGAAACATGAAAG AAGCCATTTGATAGATTATTCTAAAGGATATCATCAAGAAGACTATTAAAAAACACCTATGCCT ATACTTTTTTATCTCAGAAAATAAAGTCAAAAGACTATG

FIGURE 2

<subunit 1 of 1, 266 aa, 1 stop</pre>

<MW: 29766, pI: 8.39, NX(S/T): 0

MWWFQQGLSFLPSALVIWTSAAFIFSYITAVTLHHIDPALPYISDTGTVAPEKCLFGAMLNIA
AVLCIATIYVRYKQVHALSPEENVIIKLNKAGLVLGILSCLGLSIVANFQKTTLFAAHVSGAV
LTFGMGSLYMFVQTILSYQMQPKIHGKQVFWIRLLLVIWCGVSALSMLTCSSVLHSGNFGTDL
EQKLHWNPEDKGYVLHMITTAAEWSMSFSFFGFFLTYIRDFQKISLRVEANLHGLTLYDTAPC
PINNERTRLLSRDI

Important features:

Type II transmembrane domain:

amino acids 13-33

Other Transmembrane domains:

amino acids 54-73, 94-113, 160-180, 122-141

N-myristoylation sites.

amino acids 57-63, 95-101, 99-105, 124-130, 183-189

FIGURE 3

CGGACGCGTGGGCGACGCGTGGGGGAGAGCCGCAGTCCCGGCTGCAGCACCTGGGAGAAGGC AGACCGTGTGAGGGGGCCTGTGGCCCCAGCGTGCTGTGGCCTCGGGGAGTGGGAAGTGGAGGC ${\tt AGGAGCCTTCCTTACACTTCGCC} \underline{{\tt ATG}} {\tt AGTTTCCTCATCGACTCCAGCATCATGATTACCTCCC}$ AGATACTATTTTTGGATTTGGGTGGCTTTTCTTCATGCGCCAATTGTTTAAAGACTATGAGA TACGTCAGTATGTTGTACAGGTGATCTTCTCCGTGACGTTTGCATTTTCTTGCACCATGTTTG AGCTCATCATCTTTGAAATCTTAGGAGTATTGAATAGCAGCTCCCGTTATTTTCACTGGAAAA TGAACCTGTGTGTAATTCTGCTGATCCTGGTTTTCATGGTGCCTTTTTACATTGGCTATTTTA TTGTGAGCAATATCCGACTACTGCATAAACAACGACTGCTTTTTTCCTGTCTCTTATGGCTGA CCTTTATGTATTTCTTCTGGAAACTAGGAGATCCCTTTCCCATTCTCAGCCCAAAACATGGGA TCTTATCCATAGAACAGCTCATCAGCCGGGTTGGTGTGATTGGAGTGACTCTCATGGCTCTTC TTTCTGGATTTGGTGCTGTCAACTGCCCATACACTTACATGTCTTACTTCCTCAGGAATGTGA CTGACACGGATATTCTAGCCCTGGAACGGCGACTGCTGCAAACCATGGATATGATCATAAGCA AAAAGAAAAGGATGGCAATGGCACGGAGAACAATGTTCCAGAAGGGGGAAGTGCATAACAAAC CATCAGGTTTCTGGGGAATGATAAAAAGTGTTACCACTTCAGCATCAGGAAGTGAAAATCTTA CTGATCTATATGCTACCAAGGAGAGAATAGAATACTCCAAAACCTTCAAGGGGAAATATTTTA ATTTTCTTGGTTACTTTTTCTCTATTTACTGTGTTTTGGAAAATTTTCATGGCTACCATCAATA TTGTTTTTGATCGAGTTGGGAAAACGGATCCTGTCACAAGAGGCATTGAGATCACTGTGAATT ATCTGGGAATCCAATTTGATGTGAAGTTTTGGTCCCAACACATTTCCTTCATTCTTGGTAA TAATCATCGTCACATCCATCAGAGGATTGCTGATCACTCTTACCAAGTTCTTTTATGCCATCT CTAGCAGTAAGTCCTCCAATGTCATTGTCCTGCTATTAGCACAGATAATGGGCATGTACTTTG TCTCCTCTGTGCTGCTGATCCGAATGAGTATGCCTTTAGAATACCGCACCATAATCACTGAAG TCCTTGGAGAACTGCAGTTCAACTTCTATCACCGTTGGTTTGATGTGATCTTCCTGGTCAGCG CTCTCTCTAGCATACTCTTCCTCTATTTGGCTCACAAACAGGCACCAGAGAAAGCAAATGGCAC CACCTTCATAGCATACTCCTTCCCCGTCAGGTGATACTATGACCATGAGTAGCATCAGCCAGA ACATGAGAGGGAGAACTAACTCAAGACAATACTCAGCAGAGAGCATCCCGTGTGGATATGAGG CTGGTGTAGAGGCGGAGAGGCCAAGAAACTAAAGGTGAAAAATACACTGGAACTCTGGGGC AAGACATGTCTATGGTAGCTGAGCCAAACACGTAGGATTTCCGTTTTAAGGTTCACATGGAAA AAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACT TGTTTATTGCAGCTTATAATG

FIGURE 4

MSFLIDSSIMITSQILFFGFGWLFFMRQLFKDYEIRQYVVQVIFSVTFAFSCTMFELIIFEIL
GVLNSSSRYFHWKMNLCVILLILVFMVPFYIGYFIVSNIRLLHKQRLLFSCLLWLTFMYFFWK
LGDPFPILSPKHGILSIEQLISRVGVIGVTLMALLSGFGAVNCPYTYMSYFLRNVTDTDILAL
ERRLLQTMDMIISKKKRMAMARRTMFQKGEVHNKPSGFWGMIKSVTTSASGSENLTLIQQEVD
ALEELSRQLFLETADLYATKERIEYSKTFKGKYFNFLGYFFSIYCVWKIFMATINIVFDRVGK
TDPVTRGIEITVNYLGIQFDVKFWSQHISFILVGIIIVTSIRGLLITLTKFFYAISSSKSSNV
IVLLLAQIMGMYFVSSVLLIRMSMPLEYRTIITEVLGELQFNFYHRWFDVIFLVSALSSILFL
YLAHKQAPEKQMAP

Important features:

Signal peptide:

amino acids 1-23

Potential transmembrane domains:

amino acids 37-55, 81-102, 150-168, 288-311, 338-356, 375-398, 425-444

N-glycosylation sites.

amino acids 67-70, 180-183 and 243-246

Eukaryotic cobalamin-binding proteins

amino acids 151-160

FIGURE 5

CCAGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAGTGGCCATCTG AGGTGTTTCCCTGGCTCTGAAGGGGTAGGCACG**ATG**GCCAGGTGCTTCAGCCTGGTGTTGCTT $\tt CTCACTTCCATCTGGACCACGAGGCTCCTGGTCCAAGGCTCTTTGCGTGCAGAAGAGCTTTCC$ ATCCAGGTGTCATGCAGAATTATGGGGATCACCCTTGTGAGCAAAAAGGCGAACCAGCAGCTG AATTTCACAGAAGCTAAGGAGGCCTGTAGGCTGCTGGGACTAAGTTTGGCCGGCAAGGACCAA GTTGAAACAGCCTTGAAAGCTAGCTTTGAAACTTGCAGCTATGGCTGGGTTGGAGATGGATTC TGGAAGGTTCCAGTGAGCCGACAGTTTGCAGCCTATTGTTACAACTCATCTGATACTTGGACT AACTCGTGCATTCCAGAAATTATCACCACCAAAGATCCCATATTCAACACTCAAACTGCAACA CAAACAACAGAATTTATTGTCAGTGACAGTACCTACTCGGTGGCATCCCCTTACTCTACAATA CCTGCCCCTACTACTCCTCCTCCTGCTCCAGCTTCCACTTCTATTCCACGGAGAAAAAAATTG ATTTGTGTCACAGAAGTTTTTATGGAAACTAGCACCATGTCTACAGAAACTGAACCATTTGTT GAAAATAAAGCAGCATTCAAGAATGAAGCTGCTGGGTTTTGGAGGTGTCCCCACGGCTCTGCTA GTGCTTGCTCTCTTTTTGGTGCTGCAGCTGGTCTTGGATTTTGCTATGTCAAAAGGTAT GTGAAGGCCTTCCCTTTTACAAACAAGAATCAGCAGAAGGAAATGATCGAAACCAAAGTAGTA AAGGAGGAGAAGCCCAATGATAGCAACCCTAATGAGGAATCAAAGAAAACTGATAAAAACCCA GAAGAGTCCAAGAGTCCAAGCAAAACTACCGTGCGATGCCTGGAAGCTGAAGTT**TAG**ATGAGA CAGAAATGAGGAGACACCTGAGGCTGGTTTCTTTCATGCTCCTTACCCTGCCCCAGCTGGG GAAATCAAAAGGGCCAAAGAACCAAAGAAGAAGTCCACCCTTGGTTCCTAACTGGAATCAGC TCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAATGCCCTTCTCCTTATTGTAACCCT GTCTGGATCCTATCCTCCTACCTCCAAAGCTTCCCACGGCCTTTCTAGCCTGGCTATGTCCTA ATAATATCCCACTGGGAGAAAGGAGTTTTGCAAAGTGCAAGGACCTAAAACATCTCATCAGTA TCCAGTGGTAAAAAGGCCTCCTGGCTGTCTGAGGCTAGGTGGGTTGAAAGCCAAGGAGTCACT GAGACCAAGGCTTTCTCTACTGATTCCGCAGCTCAGACCCTTTCTTCAGCTCTGAAAGAGAAA CACGTATCCCACCTGACATGTCCTTCTGAGCCCGGTAAGAGCAAAAGAATGGCAGAAAAGTTT AGCCCCTGAAAGCCATGGAGATTCTCATAACTTGAGACCTAATCTCTGTAAAGCTAAAATAAA TTTCTGGTCTCTACCACTGCTGATATTTTCTCTAGGAAATATACTTTTACAAGTAACAAAAAT AAAAACTCTTATAAATTTCTATTTTTATCTGAGTTACAGAAATGATTACTAAGGAAGATTACT CAGTAATTTGTTTAAAAAGTAATAAAATTCAACAAACATTTGCTGAATAGCTACTATATGTCA AGTGCTGTGCAAGGTATTACACTCTGTAATTGAATATTATTCCTCAAAAAATTGCACATAGTA GAACGCTATCTGGGAAGCTATTTTTTTCAGTTTTTGATATTTCTAGCTTATCTACTTCCAAACT AATTTTTATTTTTGCTGAGACTAATCTTATTCATTTTCTCTAATATGGCAACCATTATAACCT TAATTTATTATTAACATACCTAAGAAGTACATTGTTACCTCTATATACCAAAGCACATTTTAA AAGTGCCATTAACAAATGTATCACTAGCCCTCCTTTTTCCAACAAGAAGGGACTGAGAGATGC AGAAATATTTGTGACAAAAAATTAAAGCATTTAGAAAACTT

FIGURE 6

MARCFSLVLLLTSIWTTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACRL LGLSLAGKDQVETALKASFETCSYGWVGDGFVVISRISPNPKCGKNGVGVLIWKVPVSRQFAA YCYNSSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTTPPAPA STSIPRRKKLICVTEVFMETSTMSTETEPFVENKAAFKNEAAGFGGVPTALLVLALLFFGAAA GLGFCYVKRYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKKTDKNPEESKSPSKTTV RCLEAEV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

FIGURE 7

CGCCGCGCTCCCGCACCCGCGCCCACCGCGCCGCTCCCGCATCTGCACCCGCAGCCCG GCGCCTCCCGGCGGAGCGAGCAGATCCAGTCCGGCCCGCAGCGCAACTCGGTCCAGTCGGG TGGCGGCGGCGGTCCCACGGCCCCGCGCCCGACGGCGACCTCGGCTCCAGTCAAGC CCGGCCCGGCTCTCAGCTACCCGCAGGAGGAGGCCACCCTCAATGAGATGTTCCGCGAGGTTG AGGAACTGATGGAGGACACGCAGCACAAATTGCGCAGCGCGGTGGAAGAGATGGAGGCAGAAG AAGCTGCTGCTAAAGCATCATCAGAAGTGAACCTGGCAAACTTACCTCCCAGCTATCACAATG TAACCAACAACCAGACTGGACAAATGGTCTTTTCAGAGACAGTTATCACATCTGTGGGAGACG AAGAAGGCAGAAGGAGCCACGAGTGCATCATCGACGAGGACTGTGGGCCCAGCATGTACTGCC AGTTTGCCAGCTTCCAGTACACCTGCCAGCCATGCCGGGGCCAGAGGATGCTCTGCACCCGGG ACAGTGAGTGCTGTGGAGACCAGCTGTGTGTCTGGGGTCACTGCACCAAAATGGCCACCAGGG GCAGCAATGGGACCATCTGTGACAACCAGAGGGACTGCCAGCCGGGGCTGTGCTGTGCCTTCC AGAGAGGCCTGCTGTTCCCTGTGCACACCCCTGCCCGTGGAGGGCGAGCTTTGCCATGACC CCGCCAGCCGGCTTCTGGACCTCATCACCTGGGAGCTAGAGCCTGATGGAGCCTTGGACCGAT GCCCTTGTGCCAGTGGCCTCCTCTGCCAGCCCCACAGCCACAGCCTGGTGTATGTGTGCAAGC CGACCTTCGTGGGGAGCCGTGACCAAGATGGGGAGATCCTGCTGCCCAGAGAGGTCCCCGATG AGTATGAAGTTGGCAGCTTCATGGAGGAGGTGCGCCAGGAGCTGGAGGACCTGGAGAGGAGCC TGACTGAAGAGATGGCGCTGGGGGAGCCTGCGGCTGCCGCTGCACTGCTGGGAGGGGAAG GGTGTGTGTTTAGGCGTGGGCTGACCAGGCTTCTTCCTACATCTTCTTCCCAGTAAGTTTCC CCTCTGGCTTGACAGCATGAGGTGTTGTGCATTTGTTCAGCTCCCCCAGGCTGTTCTCCAGGC TTCACAGTCTGGTGCTTGGGAGAGTCAGGCAGGGTTAAACTGCAGGAGCAGTTTGCCACCCCT GTCCAGATTATTGGCTGCTTTGCCTCTACCAGTTGGCAGACAGCCGTTTGTTCTACATGGCTT TGATAATTGTTTGAGGGGAGGAGATGGAAACAATGTGGAGTCTCCCTCTGATTGGTTTTGGGG AAATGTGGAGAAGAGTGCCCTGCTTTGCAAACATCAACCTGGCAAAAATGCAACAAATGAATT TTCCACGCAGTTCTTTCCATGGGCATAGGTAAGCTGTGCCTTCAGCTGTTGCAGATGAAATGT TCTGTTCACCCTGCATTACATGTGTTTATTCATCCAGCAGTGTTGCTCAGCTCCTACCTCTGT GCCAGGGCAGCATTTTCATATCCAAGATCAATTCCCTCTCTCAGCACAGCCTGGGGAGGGGGT CATTGTTCTCCTCGTCCATCAGGGATCTCAGAGGCTCAGAGACTGCAAGCTGCTTGCCCAAGT CACACAGCTAGTGAAGACCAGAGCAGTTTCATCTGGTTGTGACTCTAAGCTCAGTGCTCTCTC TTTCTTGAGGCATGCACATCTGGAATTAAGGTCAAACTAATTCTCACATCCCTCTAAAAGTAA ACTACTGTTAGGAACAGCAGTGTTCTCACAGTGTGGGGCAGCCGTCCTTCTAATGAAGACAAT GATATTGACACTGTCCCTCTTTGGCAGTTGCATTAGTAACTTTGAAAGGTATATGACTGAGCG TAGCATACAGGTTAACCTGCAGAAACAGTACTTAGGTAATTGTAGGGCGAGGATTATAAATGA AATTTGCAAAATCACTTAGCAGCAACTGAAGACAATTATCAACCACGTGGAGAAAATCAAACC GAGCAGGGCTGTGTGAAACATGGTTGTAATATGCGACTGCGAACACTGAACTCTACGCCACTC CACAAATGATGTTTTCAGGTGTCATGGACTGTTGCCACCATGTATTCATCCAGAGTTCTTAAA GTTTAAAGTTGCACATGATTGTATAAGCATGCTTTCTTTGAGTTTTAAATTATGTATAAACAT AAA

FIGURE 8

MQRLGATLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQH
KLRSAVEEMEAEEAAAKASSEVNLANLPPSYHNETNTDTKVGNNTIHVHREIHKITNNQTGQM
VFSETVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRDSECCGDQL
CVWGHCTKMATRGSNGTICDNQRDCQPGLCCAFQRGLLFPVCTPLPVEGELCHDPASRLLDLI
TWELEPDGALDRCPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEVGSFME
EVRQELEDLERSLTEEMALGEPAAAAAALLGGEEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316, 327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

FIGURE 9

ACGGCCCACCTTGTGAACTCCTCGTGCCCAGGGCTGATGTGCGTCTTCCAGGGCTACTCATCC AAAGGCCTAATCCAACGTTCTGTCTTCAATCTGCAAATCTATGGGGTCCTGGGGCTCTTCTGG ACCCTTAACTGGGTACTGGCCCTGGGCCAATGCGTCCTCGCTGGAGCCTTTGCCTCCTTCTAC TGGGCCTTCCACAAGCCCCAGGACATCCCTACCTTCCCCTTAATCTCTGCCTTCATCCGCACA CTCCGTTACCACACTGGGTCATTGGCATTTGGAGCCCTCATCCTGACCCTTGTGCAGATAGCC CGGGTCATCTTGGAGTATATTGACCACAAGCTCAGAGGAGTGCAGAACCCTGTAGCCCGCTGC ATCATGTGCTGTTTCAAGTGCTGCCTCTGGTGTCTGGAAAAATTTATCAAGTTCCTAAACCGC AATGCATACATCATGATCGCCATCTACGGGAAGAATTTCTGTGTCTCAGCCAAAAATGCGTTC ATGCTACTCATGCGAAACATTGTCAGGGTGGTCGTCCTGGACAAAGTCACAGACCTGCTGCTG CGCATCCCGGGGCTGGGTAAAGACTTTAAGAGCCCCCACCTCAACTATTACTGGCTGCCCATC ATGACCTCCATCCTGGGGGCCTATGTCATCGCCAGCGGCTTCTTCAGCGTTTTCGGCATGTGT GTGGACACGCTCTTCCTCTGCTTCCTGGAAGACCTGGAGCGGAACAACGGCTCCCTGGACCGG CCCTACTACATGTCCAAGAGCCTTCTAAAGATTCTGGGCAAGAAGAACGAGGCGCCCCCGGAC AGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCTCCGTCTCTATTAAAAATACAA AAATTAGCCGAGAGTGGTGGCATGCACCTGTCATCCCAGCTACTCGGGAGGCTGAGGCAGGAG AATCGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAACC TGTTAACTC

FIGURE 10

RTRGRTRGGCEKVPINTSCNPTAHLVNSSCPGLMCVFQGYSSKGLIQRSVFNLQIYGVLGLFW
TLNWVLALGQCVLAGAFASFYWAFHKPQDIPTFPLISAFIRTLRYHTGSLAFGALILTLVQIA
RVILEYIDHKLRGVQNPVARCIMCCFKCCLWCLEKFIKFLNRNAYIMIAIYGKNFCVSAKNAF
MLLMRNIVRVVVLDKVTDLLLFFGKLLVVGGVGVLSFFFFSGRIPGLGKDFKSPHLNYYWLPI
MTSILGAYVIASGFFSVFGMCVDTLFLCFLEDLERNNGSLDRPYYMSKSLLKILGKKNEAPPD
NKKRKK

Important features:

Transmembrane domains:

amino acids 57-80 (type II), 110-126, 215-231, 254-274

N-glycosylation sites.

amino acids 16-20, 27-31, 289-293

Hypothetical YBR002c family proteins.

amino acids 276-288

Ammonium transporters proteins.

amino acids 204-231

N-myristoylation sites.

amino acids 60-66, 78-84

Amidation site.

amino acids 306-310

FIGURE 11

CCTGCTCCCTGCTCAGCTGCGCGTCCTGCCTCTGCGGCTCTGCCCCCTGCATCCTGTGCAGCT GCTGCCCGCCAGCCGCAACTCCACCGTGAGCCGCCTCATCTTCACGTTCTTCCTCTTCCTGG GGGTGCTGGTGCCATCATTATGCTGAGCCCGGGCGTGGAGAGTCAGCTCTACAAGCTGCCCT GGGTGTGTGAGGAGGGGCCGGGATCCCCACCGTCCTGCAGGGCCACATCGACTGTGGCTCCC TGCTTGGCTACCGCGCTGTCTACCGCATGTGCTTCGCCACGGCGGCCTTCTTCTTCTTTTT TCACCCTGCTCATGCTCTGCGTGAGCAGCCGGGACCCCCGGGCTGCCATCCAGAATGGGT TTTGGTTCTTTAAGTTCCTGATCCTGGTGGGCCTCACCGTGGGTGCCTTCTACATCCCTGACG AGCTGGTGCTCATCGACTTTGCGCACTCCTGGAACCAGCGGTGGCTGGGCAAGGCCGAGG CGATCGCGGCCGTGGCGCTGATGTTCATGTACTACACTGAGCCCAGCGGCTGCCACGAGGGCA AGGTCCAGGACGCCCAGCTCGGGTCTGCTGCAGGCCTCGGTCATCACCCTCTACACCA TGTTTGTCACCTGGTCAGCCCTATCCAGTATCCCTGAACAGAAATGCAACCCCCATTTGCCAA CCCAGCTGGGCAACGAGACAGTTGTGGCAGGCCCCGAGGGCTATGAGACCCAGTGGTGGGATG CCCCGAGCATTGTGGGCCTCATCATCTTCCTCCTGTGCACCCTCTTCATCAGTCTGCGCTCCT CAGACCACCGGCAGGTGAACAGCCTGATGCAGACCGAGGAGTGCCCACCTATGCTAGACGCCA CACAGCAGCAGCAGCAGGTGGCAGCCTGTGAGGGCCGGGCCTTTGACAACGAGCAGGACG GCGTCACCTACAGCTACTCCTTCTTCCACTTCTGCCTGGTGCTGGCCTCACTGCACGTCATGA TGACGCTCACCAACTGGTACAAGCCCGGTGAGACCCGGAAGATGATCAGCACGTGGACCGCCG TGTGGGTGAAGATCTGTGCCAGCTGGGCAGGGCTGCTCCTCTACCTGTGGACCCTGGTAGCCC CACTCCTCCTGCGCAACCGCGACTTCAGCTGAGGCAGCCTCACAGCCTGCCATCTGGTGCCTC CTGCCACCTGGTGCCTCTCGGCTCGGTGACAGCCAACCTGCCCCCTCCCCACACCAATCAGCC AGGCTGAGCCCCACCCTGCCCCAGCTCCAGGACCTGCCCCTGAGCCGGGCCTTCTAGTCGT ACGGTGGAGCTGCCTCTTCCTTCCCTCCTGTTGCCCATACTCAGCATCTCGGATGAAA GGGCTCCCTTGTCCTCAGGCTCCACGGGAGCGGGGCTGCTGGAGAGAGCGGGGAACTCCCACC ACAGTGGGGCATCCGGCACTGAAGCCCTGGTGTTCCTGGTCACGTCCCCCAGGGGACCCTGCC CCCTTCCTGGACTTCGTGCCTTACTGAGTCTCTAAGACTTTTTCTAATAAACAAGCCAGTGCG TGTAAAAAAA

FIGURE 12

MGACLGACSLLSCASCLCGSAPCILCSCCPASRNSTVSRLIFTFFLFLGVLVSIIMLSPGVES
QLYKLPWVCEEGAGIPTVLQGHIDCGSLLGYRAVYRMCFATAAFFFFFFTLLMLCVSSSRDPR
AAIQNGFWFFKFLILVGLTVGAFYIPDGSFTNIWFYFGVVGSFLFILIQLVLLIDFAHSWNQR
WLGKAEECDSRAWYAGLFFFTLLFYLLSIAAVALMFMYYTEPSGCHEGKVFISLNLTFCVCVS
IAAVLPKVQDAQPNSGLLQASVITLYTMFVTWSALSSIPEQKCNPHLPTQLGNETVVAGPEGY
ETQWWDAPSIVGLIIFLLCTLFISLRSSDHRQVNSLMQTEECPPMLDATQQQQQQVAACEGRA
FDNEQDGVTYSYSFFHFCLVLASLHVMMTLTNWYKPGETRKMISTWTAVWVKICASWAGLLLY
LWTLVAPLLLRNRDFS

Signal sequence:

amino acids 1-20

Transmembrane domains:

amino acids 40-58, 101-116, 134-150, 162-178, 206-223, 240-257, 272-283, 324-340, 391-406, 428-444

FIGURE 13

 $\tt CGGGCCAGCCTGGGGCGGCCGGCCAGGAACCACCCGTTAAGGTGTCTTCTCTTTAGGGATGGT$ GAGGTTGGAAAAAGACTCCTGTAACCCTCCTCCAGG**ATG**AACCACCTGCCAGAAGACATGGAG AACGCTCTCACCGGGAGCCAGAGCTCCCATGCTTCTCTGCGCAATATCCATTCCATCAACCCC AGGAGGACTTTCTGTTTGTCACCTTTGACCTCTTATTCGTAACATTACTGTGGATAATA GAGTTAAATGTGAATGGAGGCATTGAGAACACATTAGAGAAGGAGGTGATGCAGTATGACTAC TATTCTTCATATTTTGATATATTTCTTCTGGCAGTTTTTCGATTTAAAGTGTTAATACTTGCA TATGCTGTGTGCAGACTGCGCCATTGGTGGGCAATAGCGTTGACAACGGCAGTGACCAGTGCC TTTTTACTAGCAAAAGTGATCCTTTCGAAGCTTTTCTCTCAAGGGGCTTTTGGCTATGTGCTG CCCATCATTCATCCTTGCCTGGATTGAGACGTGGTTCCTGGATTTCAAAGTGTTACCT CAAGAAGCAGAAGAAAACAGACTCCTGATAGTTCAGGATGCTTCAGAGAGGGCAGCACTT ATACCTGGTGGTCTTTCTGATGGTCAGTTTTATTCCCCTCCTGAATCCGAAGCAGGATCTGAA GAAGCTGAAGAAAACAGGACAGTGAGAAACCACTTTTAGAACTA**TGA**GTACTACTTTTGTTA TCGACAGTAAAGTTGAAATGGTGACGTCCACTGCTGGCTTTATTGAACAGCTAATAAAGATTT CTGGTAAGGTAATGTCATGATTCATCCTCTCTCAGTGAGACTGAGCCTGATGTGTTAACAAA TAGGTGAAGAAGTCTTGTGCTGTATTCCTAATCAAAAGACTTAATATATTGAAGTAACACTT CAGATTTATTTTGTATTTCTTTTTTAACACTCTACATTTCCCTTGTTTTTTAACTCATGCACA TGTGCTCTTTGTACAGTTTTAAAAAGTGTAATAAAATCTGACATGTCAATGTGGCTAGTTTTA TTTTTCTTGTTTTGCATTATGTGTATGGCCTGAAGTGTTGGACTTGCAAAAGGGGAAGAAAGG AATTGCGAATACATGTAAAATGTCACCAGACATTTGTATTATTTTTATCATGAAATCATGTTT TTCTCTGATTGTTCTGAAATGTTCTAAATACTCTTATTTTGAATGCACAAAATGACTTAAACC ATTCATATCATGTTTCCTTTGCGTTCAGCCAATTTCAATTAAAATGAACTAAATTAAAAA

FIGURE 14

MNHLPEDMENALTGSQSSHASLRNIHSINPTQLMARIESYEGREKKGISDVRRTFCLFVTFDL LFVTLLWIIELNVNGGIENTLEKEVMQYDYYSSYFDIFLLAVFRFKVLILAYAVCRLRHWWAI ALTTAVTSAFLLAKVILSKLFSQGAFGYVLPIISFILAWIETWFLDFKVLPQEAEEENRLLIV QDASERAALIPGGLSDGQFYSPPESEAGSEEAEEKQDSEKPLLEL

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domains:

amino acids 54-72, 100-118, 130-144, 146-166

N-myristoylation sites.

amino acids 14-20, 78-84, 79-85, 202-208, 217-223

FIGURE 15

ACTCGAACGCAGTTGCTTCGGGACCCAGGACCCCCTCGGGCCCGACCCGCCAGGAAAGACTGA GGCCGCGCCTGCCCCGCCCGGCTCCCTGCGCCCGCCGCCTCCCGGGACAGAAG**ATG**TGCT CCAGGGTCCCTCTGCTGCCGCTGCTCCTGCTACTGGCCCTGGGGCCTGGGGTGCAGGGCT GCCCATCCGGCTGCCAGTGCAGCCAGCCACAGACAGTCTTCTGCACTGCCCGCCAGGGGACCA CGGTGCCCGAGACGTGCCACCCGACACGGTGGGGCTGTACGTCTTTGAGAACGGCATCACCA TGCTCGACGCAGCCTTTGCCGGCCTGCCGGGCCTGCAGCTCCTGGACCTGTCACAGAACC AGATCGCCAGCCTGCCCAGCGGGTCTTCCAGCCACTCGCCAACCTCAGCAACCTGGACCTGA CGGCCAACAGGCTGCATGAAATCACCAATGAGACCTTCCGTGGCCTGCGGCGCCTCGAGCGCC TCTACCTGGGCAAGAACCGCATCCGCCACATCCAGCCTGGTGCCTTCGACACGCTCGACCGCC TGCTGCTGCTGGACCTCAGCCACAACAGCCTCCTGGCCCTGGAGCCCGGCATCCTGGACACTG CCAACGTGGAGGCGCTGCGTGGTCTGGGGCTGCAGCAGCTGGACGAGGGGCTCTTCA GCCGCTTGCGCAACCTCCACGACCTGGATGTGTCCGACAACCAGCTGGAGCGAGTGCCACCTG TGATCCGAGGCCTCCGGGGCCTGACGCGCCTGCGGCTGGCCGGCAACACCCGCATTGCCCAGC TGCGGCCCGAGGACCTGGCCGGCCTGGCTGCCCTGCAGGAGCTGGATGTGAGCAACCTAAGCC TGCAGGCCCTGCCTGGCGACCTCTCGGGCCTCTTCCCCCGCCTGCGGCTGCTGCAGCTGCCC GCAACCCTTCAACTGCGTGTGCCCCCTGAGCTGGTTTGGCCCCTGGGTGCGCGAGAGCCACG TCACACTGGCCAGCCCTGAGGAGACGCGCTGCCACTTCCCGCCCAAGAACGCTGGCCGGCTGC TCCTGGAGCTTGACTACGCCGACTTTGGCTGCCCAGCCACCACCACCACAGCCACAGTGCCCA CCACGAGGCCCGTGGTGCGGGAGCCCACAGCCTTGTCTTCTAGCTTGGCTCCTACCTGGCTTA GCCCCACAGCGCCGGCCACTGAGGCCCCCAGCCGCCTCCACTGCCCCACCGACTGTAGGGC CTGTCCCCCAGCCCCAGGACTGCCCACCGTCCACCTGCCTCAATGGGGGCACATGCCACCTGG GGACACGGCACCTGGCGTGCTTGTGCCCCGAAGGCTTCACGGGCCTGTACTGTGAGAGCC AGATGGGGCAGGGGACACGGCCCAGCCCTACACCAGTCACGCCGAGGCCACCACGGTCCCTGA CCCTGGGCATCGAGCCGGTGAGCCCCACCTCCCTGCGCGTGGGGCTGCAGCGCTACCTCCAGG GGAGCTCCGTGCAGCTCAGGAGCCTCCGTCTCACCTATCGCAACCTATCGGGCCCTGATAAGC GGCTGGTGACGCTGCGTGCCTCGCTCGCTGAGTACACGGTCACCCAGCTGCGGCCCA CCTGCGGGGAGGCCCATACACCCCCAGCCGTCCAACCACGCCCCAGTCACCCAGGCCC GCGAGGCCAACCTGCCGCTCCTCATTGCGCCCGCCCTGGCCGCGGTGCTCCTGGCCGCGCTGG CTGCGGTGGGGGCAGCCTACTGTGTGCGGCGGGGGGGGCCATGGCAGCAGCGGCTCAGGACA CAGGCCCGAAGGCAACAGAGGGCGGTGGAGAGGCCCTGCCCAGCGGGTCTGAGTGTGAGGTGC CACTCATGGGCTTCCCAGGGCCTGGCCTCCAGTCACCCCTCCACGCAAAGCCCTACATC**TAA**G CCAGAGAGAGACAGGGCAGCTGGGGCCGGGCTCTCAGCCAGTGAGATGGCCAGCCCCCTCCTG CTGCCACACCACGTAAGTTCTCAGTCCCAACCTCGGGGATGTGTGCAGACAGGGCTGTGTGAC CACAGCTGGGCCCTGTTCCCTCTGGACCTCGGTCTCCTCATCTGTGAGATGCTGTGGCCCAGC TGACGAGCCCTAACGTCCCCAGAACCGAGTGCCTATGAGGACAGTGTCCGCCCTGCCCTCCGC AACGTGCAGTCCCTGGGCACGGCGGCCCTGCCATGTGCTGGTAACGCATGCCTGGGTCCTGC GGAGAGCGGGTAGGCGCTGTGTGACTCTAGTCTTGGCCCCAGGAAGCGAAGGAACAAAAGAA ATCCTTTCCCATTTATTCTGGGAAGATGTTTTTCAAACTCAGAGACAAGGACTTTGGTTTTTG TAAGACAAACGATGATATGAAGGCCTTTTGTAAGAAAAAATAAAAGATGAAGTGTGAAA

FIGURE 16

MCSRVPLLLPLLLLALGPGVQGCPSGCQCSQPQTVFCTARQGTTVPRDVPPDTVGLYVFENG
ITMLDAGSFAGLPGLQLLDLSQNQIASLPSGVFQPLANLSNLDLTANRLHEITNETFRGLRRL
ERLYLGKNRIRHIQPGAFDTLDRLLELKLQDNELRALPPLRLPRLLLLDLSHNSLLALEPGIL
DTANVEALRLAGLGLQQLDEGLFSRLRNLHDLDVSDNQLERVPPVIRGLRGLTRLRLAGNTRI
AQLRPEDLAGLAALQELDVSNLSLQALPGDLSGLFPRLRLLAAARNPFNCVCPLSWFGPWVRE
SHVTLASPEETRCHFPPKNAGRLLLELDYADFGCPATTTTATVPTTRPVVREPTALSSSLAPT
WLSPTAPATEAPSPPSTAPPTVGPVPQPQDCPPSTCLNGGTCHLGTRHHLACLCPEGFTGLYC
ESQMGQGTRPSPTPVTPRPPRSLTLGIEPVSPTSLRVGLQRYLQGSSVQLRSLRLTYRNLSGP
DKRLVTLRLPASLAEYTVTQLRPNATYSVCVMPLGPGRVPEGEEACGEAHTPPAVHSNHAPVT
QAREGNLPLLIAPALAAVLLAALAAVGAAYCVRRGRAMAAAAQDKGQVGPGAGPLELEGVKVP
LEPGPKATEGGGEALPSGSECEVPLMGFPGPGLQSPLHAKPYI

Important features:

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 579-599

EGF-like domain cysteine pattern signature.

amino acids 430-442

Leucine zipper pattern.

amino acids 197-219, 269-291

N-glycosylation sites.

amino acids 101-105, 117-121, 273-277, 500-504, 528-532

Tyrosine kinase phosphorylation sites.

amino acids 124-131, 337-345

N-myristoylation sites.

amino acids 23-29, 27-33, 70-76, 142-148, 187-193, 348-354, 594-600, 640-646

FIGURE 17

GCAGCGCGAGGCGGCGTGGTGGCTGAGTCCGTGGTGGCAGAGGCGAAGGCGACAGCTC**ATG** CGGGTCCGGATAGGGCTGACGCTGCTGTGTGCGGTGCTGAGCTTGGCCTCGGCGTCC TCGGATGAAGAAGGCAGCCAGGATGAATCCTTAGATTCCAAGACTACTTTGACATCAGATGAG TCAGTAAAGGACCATACTACTGCAGGCAGAGTAGTTGCTGGTCAAATATTTCTTGATTCAGAA GAATCTGAATTAGAATCCTCTATTCAAGAAGAGGGAAGACAGCCTCAAGAGCCCAAGAGGGGGAA AGTGTCACAGAAGATATCAGCTTTCTAGAGTCTCCAAATCCAGAAAACAAGGACTATGAAGAG CCAAAGAAAGTACGGAAACCAGCTTTGACCGCCATTGAAGGCACAGCACATGGGGAGCCCTGC GGCAGACTGTGGTGTGCTACAACCTATGACTACAAAGCAGATGAAAAGTGGGGCTTTTGTGAA ACTGAAGAAGAGGCTGCTAAGAGACGGCAGATGCAGGAAGCAGAAATGATGTATCAAACTGGA ATGAAAATCCTTAATGGAAGCAATAAGAAAAGCCAAAAAAGAGAAGCATATCGGTATCTCCAA AAGGCAGCAAGCCATACCAAAGCCCTGGAGAGAGTGTCATATGCTCTTTTATTTGGT ${ t TCTCCCAAGGGACAGACTGCTCTTGGCTTTCTGTATGCCTCTGGACTTGGTGTTAATTCAAGT$ CAGGCAAAGGCTCTTGTATATTATACATTTGGAGCTCTTGGGGGCAATCTAATAGCCCACATG $\tt GTTTTGGTAAGTAGACTT{\color{red}{TAG}} TGGAAGGCTAATAATATTAACATCAGAAGAATTTGTGGTTTA$ TAGCGGCCACAACTTTTTCAGCTTTCATGATCCAGATTTGCTTGTATTAAGACCAAATATTCA GTTGAACTTCCTTCAAATTCTTGTTAATGGATATAACACATGGAATCTACATGTAAATGAAAG TTGGTGGAGTCCACAATTTTTCTTTAAAATGATTAGTTTGGCTGATTGCCCCTAAAAAGAGAG ATCTGATAAATGGCTCTTTTTAAATTTTCTCTGAGTTGGAATTGTCAGAATCATTTTTTACAT TAGATTATCATAATTTTAAAAATTTTTCTTTAGTTTTTCAAAATTTTTGTAAATGGTGGCTATA GAAAAACAACATGAAATATTATACAATATTTTGCAACAATGCCCTAAGAATTGTTAAAATTCA TGGAGTTATTTGTGCAGAATGACTCCAGAGAGCTCTACTTTCTGTTTTTTACTTTTCATGATT GGCTGTCTTCCCATTTATTCTGGTCATTTATTGCTAGTGACACTGTGCCTGCTTCCAGTAGTC TCATTTCCCTATTTTGCTAATTTGTTACTTTTTCTTTGCTAATTTGGAAGATTAACTCATTT

FIGURE 18

MRVRIGLTLLLCAVLLSLASASSDEEGSQDESLDSKTTLTSDESVKDHTTAGRVVAGQIFLDS
EESELESSIQEEEDSLKSQEGESVTEDISFLESPNPENKDYEEPKKVRKPALTAIEGTAHGEP
CHFPFLFLDKEYDECTSDGREDGRLWCATTYDYKADEKWGFCETEEEAAKRRQMQEAEMMYQT
GMKILNGSNKKSQKREAYRYLQKAASMNHTKALERVSYALLFGDYLPQNIQAAREMFEKLTEE
GSPKGQTALGFLYASGLGVNSSQAKALVYYTFGALGGNLIAHMVLVSRL

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 195-199, 217-221, 272-276

Tyrosine kinase phosphorylation site.

amino acids 220-228

N-myristoylation sites.

amino acids 120-126, 253-259, 268-274, 270-274, 285-291, 289-295

Glycosaminoglycan attachment site.

amino acids 267-271

Microbodies C-terminal targeting signal.

amino acids 299-303

Type II fibronectin collagen-binding domain protein.

amino acids 127-169

Fructose-bisphosphate aldolase class-II protein.

amino acids 101-119

FIGURE 19

AATTCAGATTTTAAGCCCATTCTGCAGTGGAATTTCATGAACTAGCAAGAGGACACCATCTTC ${\tt TTGTATTATACAAGAAAGGAGTGTACCTATCACACAGGGGGGAAAA} {\color{red} {\tt ATG}} {\tt CTCTTTTGGGTGC}$ TAGGCCTCCTAATCCTCTGTGGTTTTCTGTGGACTCGTAAAGGAAAACTAAAGATTGAAGACA TCACTGATAAGTACATTTTTATCACTGGATGTGACTCGGGCTTTGGAAACTTGGCAGCCAGAA TCAAGAGGACTGCCCAGTGGGTGAAGAACCAAGTTGGGGAGAAAGGTCTCTGGGGTCTGATCA AACCTATTGAAGTGAACCTGTTTGGACTCATCAGTGTGACACTAAATATGCTTCCTTTGGTCA AGAAAGCTCAAGGGAGAGTTATTAATGTCTCCAGTGTTGGAGGTCGCCTTGCAATCGTTGGAG GGGGCTATACTCCATCCAAATATGCAGTGGAAGGTTTCAATGACAGCTTAAGACGGGACATGA CAGTAAAGGTAATTGAAAAAAAACTCGCCATTTGGGAGCAGCTGTCTCCAGACATCAAACAAC AATATGGAGAAGGTTACATTGAAAAAAGTCTAGACAAACTGAAAGGCAATAAATCCTATGTGA ACATGGACCTCTCCCGGTGGTAGAGTGCATGGACCACGCTCTAACAAGTCTCTTCCCTAAGA CTCATTATGCCGCTGGAAAAGATGCCAAAATTTTCTGGATACCTCTGTCTCACATGCCAGCAG $\tt CTTTGCAAGACTTTTTATTGTTGAAACAGAAAGCAGAGCTGGCTAATCCCAAGGCAGTG{\color{red}{TGA}CCAAGGCAGTG{\color{red}{TGA}CCAAGGCAGTG{\color{re$ TCAGCTAACCACAAATGTCTCCTCCAGGCTATGAAATTGGCCGATTTCAAGAACACATCTCCT TTTCAACCCCATTCCTTATCTGCTCCAACCTGGACTCATTTAGATCGTGCTTATTTGGATTGC AAAAGGGAGTCCCACCATCGCTGGTGGTATCCCAGGGTCCCTGCTCAAGTTTTCTTTGAAAAG GAGGGCTGGAATGGTACATCACATAGGCAAGTCCTGCCCTGTATTTAGGCTTTGCCTGCTTGG TGTGATGTAAGGGAAATTGAAAGACTTGCCCATTCAAAATGATCTTTACCGTGGCCTGCCCCA TGCTTATGGTCCCCAGCATTTACAGTAACTTGTGAATGTTAAGTATCATCTCTTATCTAAATA

FIGURE 20

MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIAACLTE SGSTALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDWLT LEDYREPIEVNLFGLISVTLNMLPLVKKAQGRVINVSSVGGRLAIVGGGYTPSKYAVEGFNDS LRRDMKAFGVHVSCIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEGYIEKSLDKLKG NKSYVNMDLSPVVECMDHALTSLFPKTHYAAGKDAKIFWIPLSHMPAALQDFLLLKQKAELAN PKAV

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 136-152

N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

Glycosaminoglycan attachment site.

amino acids 39-42

N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

FIGURE 21

CTGAGGCGGCGGTAGCATGGAGGGGGAGAGTACGTCGGCGGTGCTCTCGGGCTTTGTGCTCGG CGCACTCGCTTTCCAGCACCTCAACACGGACTCGGACACGGAAGGTTTTCTTCTTGGGGAAGGT AAAAGGTGAAGCCAAGAACAGCATTACTGATTCCCAAATGGATGATGTTGAAGTTGTTTATAC AATTGACATTCAGAAATATATTCCATGCTATCAGCTTTTTAGCTTTTATAATTCTTCAGGCGA AGTAAATGAGCAAGCACTGAAGAAAATATTATCAAATGTCAAAAAGAATGTGGTAGGTTGGTA GCAGGAGCATTTTTCAAACCAAGACCTTGTTTTTCTGCTATTAACACCAAGTATAATAACAGA AAGCTGCTCTACTCATCGACTGGAACATTCCTTATATAAACCTCAAAAAAGGACTTTTTCACAG GGTACCTTTAGTGGTTGCCAATCTGGGCATGTCTGAACAACTGGGTTATAAAACTGTATCAGG TTCCTGTATGTCCACTGGTTTTAGCCGAGCAGTACAAACACACAGCTCTAAATTTTTTGAAGA AGATGGATCCTTAAAGGAGGTACATAAGATAAATGAAATGTATGCTTCATTACAAGAGGAATT AAAGAGTATATGCAAAAAAGTGGAAGACAGTGAACAAGCAGTAGATAAACTAGTAAAGGATGT AAACAGATTAAAACGAGAAATTGAGAAAAGGAGAGGAGCACAGATTCAGGCAGCAAGAGAGAA GAACATCCAAAAAGACCCTCAGGAGAACATTTTTCTTTGTCAGGCATTACGGACCTTTTTTCC AAATTCTGAATTTCTTCATTCATGTGTTATGTCTTTAAAAAATAGACATGTTTCTAAAAAGTAG CTGTAACTACAACCACCATCTCGATGTAGTAGACAATCTGACCTTAATGGTAGAACACACTGA CATTCCTGAAGCTAGTCCAGCTAGTACACCACAAATCATTAAGCATAAAGCCTTAGACTTAGA TGACAGATGGCAATTCAAGAGATCTCGGTTGTTAGATACACAAGACAAACGATCTAAAGCAAA TACTGGTAGTAACCAAGATAAAGCATCCAAAATGAGCAGCCCAGAAACAGATGAAGAAAT TGAAAAGATGAAGGGTTTTGGTGAATATTCACGGTCTCCTACATTT**TGA**TCCTTTTAACCTTA CAAGGAGATTTTTTTTTTTGCCTGATGGGTAAAGCCAAACATTTCTATTGTTTTTACTATGTT GAGCTACTTGCAGTAAGTTCATTTGTTTTTACTATGTTCACCTGTTTGCAGTAATACACAGAT AACTCTTAGTGCATTTACTTCACAAAGTACTTTTTCAAACATCAGATGCTTTTATTTCCAAAC CTTTTTTCACCTTTCACTAAGTTGTTGAGGGGAAGGCTTACACAGACACATTCTTTAGAATT GGAAAAGTGAGACCAGGCACAGTGGCTCACACCTGTAATCCCAGCACTTAGGGAAGACAAGTC AGGAGGATTGATTGAAGCTAGGAGTTAGAGACCAGCCTGGGCAACGTATTGAGACCATGTCTA GAAAATTTATCTGAGTCATTAAAATTCTCCTTAAGTGATACTTTTTTAGAAGTACATTATGGC TAGAGTTGCCAGATAAAATGCTGGATATCATGCAATAAATTTGCAAAACATCATCTAAAATTT AAAAAAAAAAAAAAAAAAAAA

FIGURE 22

MEGESTSAVLSGFVLGALAFQHLNTDSDTEGFLLGEVKGEAKNSITDSQMDDVEVVYTIDIQK
YIPCYQLFSFYNSSGEVNEQALKKILSNVKKNVVGWYKFRRHSDQIMTFRERLLHKNLQEHFS
NQDLVFLLLTPSIITESCSTHRLEHSLYKPQKGLFHRVPLVVANLGMSEQLGYKTVSGSCMST
GFSRAVQTHSSKFFEEDGSLKEVHKINEMYASLQEELKSICKKVEDSEQAVDKLVKDVNRLKR
EIEKRRGAQIQAAREKNIQKDPQENIFLCQALRTFFPNSEFLHSCVMSLKNRHVSKSSCNYNH
HLDVVDNLTLMVEHTDIPEASPASTPQIIKHKALDLDDRWQFKRSRLLDTQDKRSKANTGSSN
QDKASKMSSPETDEEIEKMKGFGEYSRSPTF

Important features:

Signal peptide:

amino acids 1-19

N-glycosylation sites.

amino acids 75-79, 322-326

N-myristoylation site.

amino acids 184-154

Growth factor and cytokines receptors family.

amino acids 134-150

FIGURE 23

CAAGCAGCGCGCAGCGAACGCCCGCCGCCCACACCCTCTGCGGTCCCCGCGGCGCCTGCCACCCTTCCCTCC TTCCCCGCGTCCCCGCCTCGCCGGCCAGTCAGCTTGCCGGGGTTCGCTGCCCCGCGAAACCCCGAGGTCACCAGCC CGCGCCTCTGCTTCCCTGGGCCGCCGCCGCCTCCACGCCCTCCTTCTCCCCTGGCCCGGCGCCTGGCACCGGGG ACCGTTGCCTGACGCGAGGCCCAGCTCTACTTTTCGCCCCGCGTCTCCTCCGCCTGCTCGCCTCTTCCACCAACT $\tt TTCCCGTCCGGTCCCAAAGGTGGGAACGCGTCCGCCCCGGCCCGCACC \underline{ATG} GCACGGTTCGGCTTGCCCGCGCTT$ TGTCCCCAGGGTTCTACCTGCTGCTCTCAAGAGATGGAGGAGAAGTACAGCCTGCAAAGTAAAGATGATTTCAAA AGTGTGGTCAGCGAACAGTGCAATCATTTGCAAGCTGTCTTTGCTTCACGTTACAAGAAGTTTGATGAATTCTTC AAAGAACTACTTGAAAATGCAGAGAAATCCCTGAATGATATGTTTGTGAAGACATATGGCCATTTATACATGCAA AATTCTGAGCTATTTAAAGATCTCTTCGTAGAGTTGAAACGTTACTACGTGGTGGGAAATGTGAACCTGGAAGAA ATGCTAAATGACTTCTGGGCTCGCCTCCTGGAGCGGATGTTCCGCCTGGTGAACTCCCAGTACCACTTTACAGAT GAGTATCTGGAATGTGTGAGCAAGTATACGGAGCAGCTGAAGCCCTTCGGAGATGTCCCTCGCAAATTGAAGCTC CAGGTTACTCGTGCTTTTGTAGCAGCCCGTACTTTCGCTCAAGGCTTAGCGGTTGCGGGAGATGTCGTGAGCAAG GTCTCCGTGGTAAACCCCACAGCCCAGTGTACCCATGCCCTGTTGAAGATGATCTACTGCTCCCACTGCCGGGGT GATTTTGAATGGAACAATTTCATAGATGCTATGCTGATGGTGGCAGAGAGGCTAGAGGGTCCTTTCAACATTGAA GCCTTCAGTGCTCGCTTCAGACCACATCACCCCGAGGAACGCCCAACCACAGCAGCTGGCACTAGTTTGGACCGA $\tt CTGGTTACTGATGTCAAGGAGAAACTGAAACAGGCCAAGAAATTCTGGTCCTCCCTTCCGAGCAACGTTTGCAAC$ GATGAGAGGATGGCTGCAGGAAACGGCAATGAGGATGACTGTTGGAATGGGAAAGGCAAAAGCAGGTACCTGTTT GCAGTGACAGGAAATGGATTAGCCAACCAGGGCAACAACCCAGAGGTCCAGGTTGACACCAGCAAACCAGACATA AACTCTGAGAAAAAGTGTTCATCAAAAAGTTAAAAGGCACCAGTTATCACTTTTCTACCATCCTAGTGACTTTGC $\tt TTTTTAAATGAATGGACAACAATGTACAGTTTTTACTATGTGGCCACTGGTTTAAGAAGTGCTGACTTTGTTTTC$ TCATTCAGTTTTGGGAGGAAAAGGGACTGTGCATTGAGTTGGTTCCTGCTCCCCCAAACCATGTTAAACGTGGCT TTCTCATTTCGTTTGTGGGTTTTTTTTTCCAACTGTGATCTCGCCTTGTTTCTTACAAGCAAACCAGGGTCCCTT TTATTAAAAGAAAAGCCCAAAAAGC

FIGURE 24

MARFGLPALLCTLAVLSAALLAAELKSKSCSEVRRLYVSKGFNKNDAPLHEINGDHLKICPQG
STCCSQEMEEKYSLQSKDDFKSVVSEQCNHLQAVFASRYKKFDEFFKELLENAEKSLNDMFVK
TYGHLYMQNSELFKDLFVELKRYYVVGNVNLEEMLNDFWARLLERMFRLVNSQYHFTDEYLEC
VSKYTEQLKPFGDVPRKLKLQVTRAFVAARTFAQGLAVAGDVVSKVSVVNPTAQCTHALLKMI
YCSHCRGLVTVKPCYNYCSNIMRGCLANQGDLDFEWNNFIDAMLMVAERLEGPFNIESVMDPI
DVKISDAIMNMQDNSVQVSQKVFQGCGPPKPLPAGRISRSISESAFSARFRPHHPEERPTTAA
GTSLDRLVTDVKEKLKQAKKFWSSLPSNVCNDERMAAGNGNEDDCWNGKGKSRYLFAVTGNGL
ANQGNNPEVQVDTSKPDILILRQIMALRVMTSKMKNAYNGNDVDFFDISDESSGEGSGSGCEY
QQCPSEFDYNATDHAGKSANEKADSAGVRPGAQAYLLTVFCILFLVMQREWR

Important features:

Signal peptide:

amino acids 1-22

ATP/GTP-binding site motif A (P-loop).

amino acids 515-524

N-glycosylation site.

amino acids 514-518

Glycosaminoglycan attachment sites.

amino acids 494-498, 498-502

N-myristoylation sites.

amino acids 63-69, 224-230, 276-282, 438-444, 497-503, 531-537

Glypicans proteins.

amino acids 54-75, 105-157, 238-280, 309-346, 423-460, 468-506

FIGURE 25

FIGURE 26

 ${\tt MKVLISSLLLLIPLMLMSMVSSSLNPGVARGHRDRGQASRRWLQEGGQECECKDWFLRAPRRK} \\ {\tt FMTVSGLPKKQCPCDHFKGNVKKTRHQRHHRKPNKHSRACQQFLKQCQLRSFALPL} \\$

Important features:

Signal peptide:

amino acids 1-22

N-myristoylation sites.

amino acids 27-33, 46-52

FIGURE 27

GGACGCCAGCGCCTGCAGAGGCTGAGCAGGGAAAAAGCCAGTGCCCCAGCGGAAGCACAGCTC ${\tt AGAGCTGGTCTGCC} \underline{\textbf{ATG}} \texttt{GACATCCTGGTCCCACTCCTGCAGCTGCTGGTGCTGCTTCTTACCC}$ TGCCCCTGCACCTCATGGCTCTGCTGGGCTGCTGGCAGCCCCTGTGCAAAAGCTACTTCCCCT ACCTGATGGCCGTGCTGACTCCCAAGAGCAACCGCAAGATGGAGAGCAAGAAACGGGAGCTCT TCAGCCAGATAAAGGGGCTTACAGGAGCCTCCGGGAAAGTGGCCCTACTGGAGCTGGGCTGCG GAACCGGAGCCAACTTTCAGTTCTACCCACCGGGCTGCAGGGTCACCTGCCTAGACCCAAATC CCCACTTTGAGAAGTTCCTGACAAAGAGCATGGCTGAGAACAGGCACCTCCAATATGAGCGGT TTGTGGTGGCTCCTGGAGAGGACATGAGACAGCTGGCTGATGGCTCCATGGATGTGGTGTCT GCACTCTGGTGCTGTGCTGTGCAGAGCCCAAGGAAGGTCCTGCAGGAGGTCCGGAGAGTAC TGAGACCGGGAGGTGTGCTCTTTTTCTGGGAGCATGTGGCAGAACCATATGGAAGCTGGGCCT TCATGTGGCAGCAAGTTTTCGAGCCCACCTGGAAACACATTGGGGATGGCTGCTGCCTCACCA GAGAGACCTGGAAGGATCTTGAGAACGCCCAGTTCTCCGAAATCCAAATGGAACGACAGCCCC CTCCCTTGAAGTGGCTACCTGTTGGGCCCCACATCATGGGAAAGGCTGTCAAACAATCTTTCC ${\tt CTATCTATCTTCCACTGAGAGGGACC} {\color{red} {\bf TAG}} {\tt CAGAATGAGAGAGACATTCATGTACCACCTACT}$ AGTCCCTCTCCCCCAACCTCTGCCAGGGCAATCTCTAACTTCAATCCCGCCTTCGACAGTGA AAAAGCTCTACTTCTACGCTGACCCAGGGAGGAAACACTAGGACCCTGTTGTATCCTCAACTG CAAGTTTCTGGACTAGTCTCCCAACGTTTGCCTCCCAATGTTGTCCCTTTCCTTCGTTCCCAT GGTAAAGCTCCTCTCGCTTTCCTCCTGAGGCTACACCCATGCGTCTCTAGGAACTGGTCACAA AAGTCATGGTGCCTGCATCCCTGCCAAGCCCCCTGACCCTCTCTCCCCACTACCACCTTCTT CCTGAGCTGGGGGCACCAGGGAGAATCAGAGATGCTGGGGATGCCAGAGCAAGACTCAAAGAG GCAGAGGTTTTGTTCTCAAATATTTTTTAATAAATAGACGAAACCACG

FIGURE 28

MDILVPLLQLLVLLTLPLHLMALLGCWQPLCKSYFPYLMAVLTPKSNRKMESKKRELFSQIK GLTGASGKVALLELGCGTGANFQFYPPGCRVTCLDPNPHFEKFLTKSMAENRHLQYERFVVAP GEDMRQLADGSMDVVVCTLVLCSVQSPRKVLQEVRRVLRPGGVLFFWEHVAEPYGSWAFMWQQ VFEPTWKHIGDGCCLTRETWKDLENAQFSEIQMERQPPPLKWLPVGPHIMGKAVKQSFPSSKA LICSFPSLQLEQATHQPIYLPLRGT

Important features:

Signal peptide:

amino acids 1-23

Leucine zipper pattern.

amino acids 10-32

N-myristoylation sites.

amino acids 64-70, 78-84, 80-86, 91-97, 201-207

FIGURE 29

FIGURE 30

MLLLTLLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTCSQAQP RGEGEKVGDG

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

FIGURE 31

GTTTGAATTCCTTCAACTATACCCACAGTCCAAAAGCAGACTCACTGTGTCCCAGGCTACCAG TTCCTCCAAGCAAGTCATTTCCCTTATTTAACCGATGTGTCCCTCAAACACCTGAGTGCTACT $CCCTATTTGCATCTGTTTTGATAAATGATGTTGACACCCTCCACCGAATTCTAAGTGGAATC{oldsymbol A}$ **TG**TCGGGAAGAGATACAATCCTTGGCCTGTGTATCCTCGCATTAGCCTTGTCTTTGGCCATGA TGTTTACCTTCAGATTCATCACCACCCTTCTGGTTCACATTTTCATTTCATTTGGTTATTTTGG GATTGTTGTTTGTCTGCGGTGTTTTTATGGTGGCTGTATTATGACTATACCAACGACCTCAGCA TAGAATTGGACACAGAAAGGGAAAATATGAAGTGCGTGCTGGGGTTTGCTATCGTATCCACAG GCATCACGGCAGTGCTCGTCTTGATTTTTTGTTCTCAGAAAGAGAAATAAAATTGACAGTTG AGCTTTTCCAAATCACAAATAAAGCCATCAGCAGTGCTCCCTTCCTGCTGTTCCAGCCACTGT GGACATTTGCCATCCTCATTTTCTTCTGGGTCCTCTGGGTGGCTGTGCTGAGCCTGGGAA CTGCAGGAGCTGCCCAGGTTATGGAAGGCGGCCAAGTGGAATATAAGCCCCTTTCGGGCATTC GGTACATGTGGTCGTACCATTTAATTGGCCTCATCTGGACTAGTGAATTCATCCTTGCGTGCC AGCAAATGACTATAGCTGGGGCAGTGGTTACTTGTTATTTCAACAGAAGTAAAAATGATCCTC CTGATCATCCCATCCTTTCGTCTCTCCCATTCTTCTTCTACCATCAAGGAACCGTTGTGA AAGGGTCATTTTTAATCTCTGTGGTGAGGATTCCGAGAATCATTGTCATGTACATGCAAAACG CACTGAAAGAACAGCAGCATGGTGCATTGTCCAGGTACCTGTTCCGATGCTGCTACTGCTGTT TCTGGTGTCTTGACAAATACCTGCTCCATCTCAACCAGAATGCATATACTACAACTGCTATTA ATGGGACAGATTTCTGTACATCAGCAAAAGATGCATTCAAAATCTTGTCCAAGAACTCAAGTC ACTTTACATCTATTAACTGCTTTGGAGACTTCATAATTTTTCTAGGAAAGGTGTTAGTGGTGT GTTTCACTGTTTTTGGAGGACTCATGGCTTTTAACTACAATCGGGCATTCCAGGTGTGGGCAG TCCCTCTGTTATTGGTAGCTTTTTTTTGCCTACTTAGTAGCCCATAGTTTTTTTATCTGTGTTTG AAACTGTGCTGGATGCACTTTTCCTGTGTTTTGCTGTTTGATCTGGAAACAAATGATGGATCGT CAGAAAAGCCCTACTTTATGGATCAAGAATTTCTGAGTTTCGTAAAAAGGAGCAACAAATTAA ACAATGCAAGGGCACAGCAGGACAAGCACTCATTAAGGAATGAGGAGGGAACAGAACTCCAGG CCATTGTGAGA**TAG**ATACCCATTTAGGTATCTGTACCTGGAAAACATTTCCTTCTAAGAGCCA TAAACCCTATTCTTCCTCAAAA

FIGURE 32

MSGRDTILGLCILALALSLAMMFTFRFITTLLVHIFISLVILGLLFVCGVLWWLYYDYTNDLS
IELDTERENMKCVLGFAIVSTGITAVLLVLIFVLRKRIKLTVELFQITNKAISSAPFLLFQPL
WTFAILIFFWVLWVAVLLSLGTAGAAQVMEGGQVEYKPLSGIRYMWSYHLIGLIWTSEFILAC
QQMTIAGAVVTCYFNRSKNDPPDHPILSSLSILFFYHQGTVVKGSFLISVVRIPRIIVMYMQN
ALKEQQHGALSRYLFRCCYCCFWCLDKYLLHLNQNAYTTTAINGTDFCTSAKDAFKILSKNSS
HFTSINCFGDFIIFLGKVLVVCFTVFGGLMAFNYNRAFQVWAVPLLLVAFFAYLVAHSFLSVF
ETVLDALFLCFAVDLETNDGSSEKPYFMDQEFLSFVKRSNKLNNARAQQDKHSLRNEEGTELQ
AIVR

Important features:

Signal peptide:

amino acids 1-20

Putative transmembrane domains:

amino acids 35-54, 75-97, 126-146, 185-204, 333-350, 352-371

N-glycosylation sites.

amino acids 204-208, 295-299, 313-317

N-myristoylation sites.

amino acids 147-153, 178-184, 196-202, 296-275, 342-348

FIGURE 33

GTTCGATTAGCTCCTCTGAGAAGAAGAGAAAAGGTTCTTGGACCTCTCCCTGTTTCTTCCTTA TGGTGAAAATTTTTTGAAAAAAAATTGCCTTCTTCAAACAAGGGTGTCATTCTGATATTT<u>**AT**</u> $\underline{\boldsymbol{G}}$ AGGACTGTTGTTCTCACTATGAAGGCATCTGTTATTGAAATGTTCCTTGTTTTGCTGGTGAC TGGAGTACATTCAAACAAAGAAACGGCAAAGAAGATTAAAAAGGCCCAAGTTCACTGTGCCTCA GATCAACTGCGATGTCAAAGCCGGAAAGATCATCGATCCTGAGTTCATTGTGAAATGTCCAGC AGGATGCCAAGACCCCAAATACCATGTTTATGGCACTGACGTGTATGCATCCTACTCCAGTGT GTGTGGCGCTGCCGTACACAGTGGTGTGCTTGATAATTCAGGAGGGAAAATACTTGTTCGGAA GGTTGCTGGACAGTCTGGTTACAAAGGGAGTTATTCCAACGGTGTCCAATCGTTATCCCTACC ACGATGGAGAGAATCCTTTATCGTCTTAGAAAGTAAACCCAAAAAGGGTGTAACCTÁCCCATC AGCTCTTACATACTCATCATCGAAAAGTCCAGCTGCCCAAGCAGGTGAGACCACAAAAGCCTA TCAGAGGCCACCTATTCCAGGGACAACTGCACAGCCGGTCACTCTGATGCAGCTTCTGGCTGT CACTGTAGCTGTGGCCACCCCCACCACCTTGCCAAGGCCATCCCCTTCTGCTGCTTCTACCAC CAGCATCCCCAGACCACAATCAGTGGGCCACAGGAGCCAGGAGATGGATCTCTGGTCCACTGC CACCTACACAAGCAGCCAAAACAGGCCCAGAGCTGATCCAGGTATCCAAAGGCAAGATCCTTC AGGAGCTGCCTTCCAGAAACCTGTTGGAGCGGATGTCAGCCTGGGACTTGTTCCAAAAGAAGA ATTGAGCACACAGTCTTTGGAGCCAGTATCCCTGGGAGATCCAAACTGCAAAATTGACTTGTC GTTTTTAATTGATGGGAGCACCAGCATTGGCAAACGGCGATTCCGAATCCAGAAGCAGCTCCT GGCTGATGTTGCCCAAGCTCTTGACATTGGCCCTGCCGGTCCACTGATGGGTGTTGTCCAGTA AGCCATAGAGAAAATTACTCAGAGAGGAGGACTTTCTAATGTAGGTCGGGCCATCTCCTTTGT GACCAAGAACTTCTTTTCCAAAGCCAATGGAAACAGAAGCGGGGCTCCCAATGTGGTGGTGGT GATGGTGGATGGCTGGCCCACGGACAAAGTGGAGGAGGCTTCAAGACTTGCGAGAGAGTCAGG AATCAACATTTCTTCATCACCATTGAAGGTGCTGCTGAAAATGAGAAGCAGTATGTGGTGGA GCCCAACTTTGCAAACAAGGCCGTGTGCAGAACAAACGGCTTCTACTCGCTCCACGTGCAGAG CTGGTTTGGCCTCCACAAGACCCTGCAGCCTCTGGTGAAGCGGGTCTGCGACACTGACCGCCT GGCCTGCAGCAAGACCTGCTTGAACTCGGCTGACATTGGCTTCGTCATCGACGGCTCCAGCAG TGTGGGGACGGCAACTTCCGCACCGTCCTCCAGTTTGTGACCAACCTCACCAAAGAGTTTGA GATTTCCGACACGGACACGCGCATCGGGGCCGTGCAGTACACCTACGAACAGCGGCTGGAGTT TGGGTTCGACAAGTACAGCAGCAAGCCTGACATCCTCAACGCCATCAAGAGGGTGGGCTACTG GAGTGGTGGCACCAGCACGGGGGCTGCCATCAACTTCGCCCTGGAGCAGCTCTTCAAGAAGTC CAAGCCCAACAAGAGGAAGTTAATGATCCTCATCACCGACGGGAGGTCCTACGACGACGTCCG GATCCCAGCCATGGCTGCCCATCTGAAGGGAGTGATCACCTATGCGATAGGCGTTGCCTGGGC TGCCCAAGAGGGAGCTAGAAGTCATTGCCACTCACCCCGCCAGAGACCACTCCTTCTTTGTGGA CGAGTTTGACAACCTCCATCAGTATGTCCCCAGGATCATCCAGAACATTTGTACAGAGTTCAA $\tt CTCACAGCCTCGGAAC{\color{red}{TGA}} ATTCAGAGCAGGCAGGCAGCCAGCAAGTGCTGCTTACTAACTG$ ACGTGTTGGACCACCCCACCGCTTAATGGGGCACGCACGGTGCATCAAGTCTTGGGCAGGGCA TGGAGAAACAAATGTCTTGTTATTATTCTTTGCCATCATGCTTTTTCATATTCCAAAACTTGG AGTTACAAAGATGATCACAAACGTATAGAATGAGCCAAAAGGCTACATCATGTTGAGGGTGCT GGAGATTTTACATTTTGACAATTGTTTTCAAAATAAATGTTCGGAATACAGTGCAGCCCTTAC GACAGGCTTACGTAGAGCTTTTGTGAGATTTTTAAGTTGTTATTTCTGATTTGAACTCTGTAA CCCTCAGCAAGTTTCATTTTTGTCATGACAATGTAGGAATTGCTGAATTAAATGTTTAGAAGG

FIGURE 34

MRTVVLTMKASVIEMFLVLLVTGVHSNKETAKKIKRPKFTVPQINCDVKAGKIIDPEFIVKCP
AGCQDPKYHVYGTDVYASYSSVCGAAVHSGVLDNSGGKILVRKVAGQSGYKGSYSNGVQSLSL
PRWRESFIVLESKPKKGVTYPSALTYSSSKSPAAQAGETTKAYQRPPIPGTTAQPVTLMQLLA
VTVAVATPTTLPRPSPSAASTTSIPRPQSVGHRSQEMDLWSTATYTSSQNRPRADPGIQRQDP
SGAAFQKPVGADVSLGLVPKEELSTQSLEPVSLGDPNCKIDLSFLIDGSTSIGKRRFRIQKQL
LADVAQALDIGPAGPLMGVVQYGDNPATHFNLKTHTNSRDLKTAIEKITQRGGLSNVGRAISF
VTKNFFSKANGNRSGAPNVVVVMVDGWPTDKVEEASRLARESGINIFFITIEGAAENEKQYVV
EPNFANKAVCRTNGFYSLHVQSWFGLHKTLQPLVKRVCDTDRLACSKTCLNSADIGFVIDGSS
SVGTGNFRTVLQFVTNLTKEFEISDTDTRIGAVQYTYEQRLEFGFDKYSSKPDILNAIKRVGY
WSGGTSTGAAINFALEQLFKKSKPNKRKLMILITDGRSYDDVRIPAMAAHLKGVITYAIGVAW
AAQEELEVIATHPARDHSFFVDEFDNLHQYVPRIIQNICTEFNSQPRN

Important features:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 181-200

N-glycosylation sites.

amino acids 390-394, 520-524

N-myristoylation sites.

amino acids 23-29, 93-99, 115-121, 262-268, 367-373, 389-395, 431-437, 466-472, 509-515, 570-576, 571-577, 575-581, 627-633

Amidation site.

amino acids 304-308

FIGURE 35

CCGAGCACAGGAGTTGCCTGCGTTTAGGAGGTGGCTGCGTTGTGGGAAAAGCTATCAAGGAA GAAATTGCCAAACCATGTCTTTTTTTTTTTTTTCTGTTTTTCAGAGTAGTTCACAACAGATCTGAGTGTTT TAATTAAGCATGGAATACAGAAAAACAACAAAAAACTTAAGCTTTAATTTCATCTGGAATTCCA GTGGTGCTCTCCGACTACTCACCCCGAGTGTAAAGAACCTTCGGCTCGCGTGCTTCTGAGCTG CTGTGG**ATG**GCCTCGGCTCTCTGGACTGTCCTTCCGAGTAGGATGTCACTGAGATCCCTCAAA TGGAGCCTCCTGCTGTCACTCCTGAGTTTCTTTGTGATGTGGTACCTCAGCCTTCCCCAC TACAATGTGATAGAACGCGTGAACTGGATGTACTTCTATGAGTATGAGCCGATTTACAGACAA GACTTTCACTTCACACTTCGAGAGCATTCAAACTGCTCTCATCAAAATCCATTTCTGGTCATT AAAAAGTCTTGGTGGGGATATGAGGTTCTTACATTTTTCTTATTAGGCCAAGAGGCTGAAAAG GAAGACAAAATGTTGGCATTGTCCTTAGAGGATGAACACCTTCTTTATGGTGACATAATCCGA CAAGATTTTTTAGACACATATAATAACCTGACCTTGAAAACCATTATGGCATTCAGGTGGGTA GGCAATTTAGTGAAGTATCTTTTAAACCTAAACCACTCAGAGAAGTTTTTCACAGGTTATCCT CTAATTGATAATTATTCCTATAGAGGATTTTACCAAAAAACCCATATTTCTTACCAGGAGTAT CCAAGGATCTATGAAATGATGGGTCACGTAAAACCCATCAAGTTTGAAGATGTTTATGTCGGG TATAGAATCCATTTGGATGTCTGTCAACTGAGACGTGTGATTGCAGCCCATGGCTTTTCTTCC ${\tt AAGGAGATCATCTTTTGGCAGGTCATGCTAAGGAACACCACATGCCATTAT} {\color{red}{\textbf{TAA}}} {\tt CTTCAC}$ TGGAAAATTCATGGGGAGGTCAGTGTGCTGGCTTACACTGAACTGAAACTCATGAAAAACCCA GACTGGAGACTGGAGGTTACACTTGTGATTTATTAGTCAGGCCCTTCAAAGATGATATGTGG AGGAATTAAATATAAAGGAATTGGAGGTTTTTGCTAAAGAAATTAATAGGACCAAACAATTTG GACATGTCATTCTGTAGACTAGAATTTCTTAAAAGGGTGTTACTGAGTTATAAGCTCACTAGG CTGTAAAAACAAACAATGTAGAGTTTTATTTATTGAACAATGTAGTCACTTGAAGGTTTTGT GTATATCTTATGTGGATTACCAATTTAAAAATATATGTAGTTCTGTGTCAAAAAAACTTCTTCA CTGAAGTTATACTGAACAAAATTTTACCTGTTTTTTGGTCATTTATAAAGTACTTCAAGATGTT GCAGTATTTCACAGTTATTATTTAAAATTACTTCAACTTTGTGTTTTTAAATGTTTTGAC GATTTCAATACAAGATAAAAAGGATAGTGAATCATTCTTTACATGCAAACATTTTCCAGTTAC TTAACTGATCAGTTTATTATTGATACATCACTCCATTAATGTAAAGTCATAGGTCATTATTGC ATATCAGTAATCTCTTGGACTTTGTTAAATATTTTACTGTGGTAATATAGAGAAGAATTAAAG CAAGAAAATCTGAAAA

FIGURE 36

MASALWTVLPSRMSLRSLKWSLLLLSLLSFFVMWYLSLPHYNVIERVNWMYFYEYEPIYRQDF HFTLREHSNCSHQNPFLVILVTSHPSDVKARQAIRVTWGEKKSWWGYEVLTFFLLGQEAEKED KMLALSLEDEHLLYGDIIRQDFLDTYNNLTLKTIMAFRWVTEFCPNAKYVMKTDTDVFINTGN LVKYLLNLNHSEKFFTGYPLIDNYSYRGFYQKTHISYQEYPFKVFPPYCSGLGYIMSRDLVPR IYEMMGHVKPIKFEDVYVGICLNLLKVNIHIPEDTNLFFLYRIHLDVCQLRRVIAAHGFSSKE IITFWQVMLRNTTCHY

Important features:

Type II transmembrane domain:

amino acids 20-39

N-glycosylation sites.

amino acids 72-76, 154-158, 198-202, 212-216, 326-330

Glycosaminoglycan attachment site.

amino acids 239-243

Ly-6 / u-PAR domain proteins.

amino acids 23-37

N-myristoylation site.

amino acids 271-277

FIGURE 37

 $\tt CGCTCGGGCACCAGCCGCGGCAAGG{\color{red} ATG} GAGCTGGGTTGCTGGACGCAGTTGGGGCTCACTTTTCTTCAGCTCCT$ TCTCATCTCGTCCTTGCCAAGAGAGTACACAGTCATTAATGAAGCCTGCCCTGGAGCAGAGTGGAATATCATGTG TCGGGAGTGCTGTGAATATGATCAGATTGAGTGCGTCTGCCCCGGAAAGAGGGGAAGTCGTGGGTTATACCATCCC GAGCTGCCGAAATGGCTCATGGGGGGGTACCTTGGATGACTTCTATGTGAAGGGGTTCTACTGTGCAGAGTGCCG AGCAGGCTGGTACGGAGGAGACTGCATGCGATGTGGCCAGGTTCTGCGAGCCCCAAAGGGTCAGATTTTGTTGGA AAGCTATCCCCTAAATGCTCACTGTGAATGGACCATTCATGCTAAACCTGGGTTTGTCATCCAACTAAGATTTGT CATGTTGAGTCTGGAGTTTGACTACATGTGCCAGTATGACTATGTTGAGGTTCGTGATGGAGACAACCGCGATGG ${\tt CCAGATCATCAAGCGTGTCTGTGGCAACGAGCGGCCAGCTCCTATCCAGAGCATAGGATCCTCACTCCACGTCCT}$ CTTCCACTCCGATGGCTCCAAGAATTTTGACGGTTTCCATGCCATTTATGAGGAGATCACAGCATGCTCCTCATC $\tt CCCTTGTTTCCATGACGGCACGTGCGTCCTTGACAAGGCTGGATCTTACAAGTGTGCCTGCTTGGCAGGCTATAC$ ${\tt TGGGCAGCGCTGTGAAAATCTCCTTGAAGAAAGAAACTGCTCAGACCCTGGGGGCCCAGTCAATGGGTACCAGAA}$ CTCCTATGTTCTTAGTGGCAATGAGAAAAGAACTTGCCAGCAGAATGGAGAGTGGTCAGGGAAACAGCCCATCTG CATAAAAGCCTGCCGAGAACCAAAGATTTCAGACCTGGTGAGAAGGAGTTCTTCCGATGCAGGTTCAGTCAAG ${\tt AGCCCTTCCCTTTGGAGATCTGCCCATGGGATACCAACATCTGCATACCCAGCTCCAGTATGAGTGCATCTCACC}$ $\tt CCTGGTGAATGAGCGCACTGTGGTGGTGGCTGCCCACTGTGTTACTGACCTGGGGAAGGTCACCATGATCAAGAC$ AGCAGACCTGAAAGTTGTTTTGGGGAAATTCTACCGGGATGATGACCGGGATGAGAAGACCATCCAGAGCCTACA GATTTCTGCTATCATTCTGCATCCCAACTATGACCCCATCCTGCTTGATGCTGACATCGCCATCCTGAAGCTCCT GGAGTCCCACATCACTGTGGCTGGAATGTCCTGGCAGACGTGAGGAGCCCTGGCTTCAAGAACGACACACT GCGCTCTGGGGTGGTCAGTGTGGACTCGCTGCTGTGTGAGGACCATGAGGACCATGGCATCCCAGTGAG TGTCACTGATAACATGTTCTGTGCCAGCTGGGAACCCACTGCCCCTTCTGATATCTGCACTGCAGAGACAGGAGG CTATGATAAAACATGCAGCCACAGGCTCTCCACTGCCTTCACCAAGGTGCTGCCTTTTAAAGACTGGATTGAAAG AAATATGAAA**TGA**ACCATGCTCATGCACTCCTTGAGAAGTGTTTCTGTATATCCGTCTGTACGTGTGTCATTGCG TGAAGCAGTGTGGGCCTGAAGTGTGATTTGGCCTGTGAACTTGGCTGTGCCAGGGCTTCTGACTTCAGGGACAAA ACTCAGTGAAGGGTGAGTAGACCTCCATTGCTGGTAGGCTGATGCCGCGTCCACTACTAGGACAGCCAATTGGAA GATGCCAGGGCTTGCAAGAAGTAAGTTTCTTCAAAGAAGACCATATACAAAACCTCTCCACTCCACTGACCTGGT GGTCTTCCCCAACTTTCAGTTATACGAATGCCATCAGCTTGACCAGGGAAGATCTGGGCTTCATGAGGCCCCTTT TGAGGCTCTCAAGTTCTAGAGAGCTGCCTGTGGGACAGCCCAGGGCAGCAGAGCTGGGATGTGCTGTTT GTGTACATGGCCACAGTACAGTCTGGTCCTTTTCCTTCCCCATCTCTTGTACACATTTTAATAAAATAAGGGTTG

FIGURE 38

MELGCWTQLGLTFLQLLLISSLPREYTVINEACPGAEWNIMCRECCEYDQIECVCPGKREVVG
YTIPCCRNEENECDSCLIHPGCTIFENCKSCRNGSWGGTLDDFYVKGFYCAECRAGWYGGDCM
RCGQVLRAPKGQILLESYPLNAHCEWTIHAKPGFVIQLRFVMLSLEFDYMCQYDYVEVRDGDN
RDGQIIKRVCGNERPAPIQSIGSSLHVLFHSDGSKNFDGFHAIYEEITACSSSPCFHDGTCVL
DKAGSYKCACLAGYTGQRCENLLEERNCSDPGGPVNGYQKITGGPGLINGRHAKIGTVVSFFC
NNSYVLSGNEKRTCQQNGEWSGKQPICIKACREPKISDLVRRRVLPMQVQSRETPLHQLYSAA
FSKQKLQSAPTKKPALPFGDLPMGYQHLHTQLQYECISPFYRRLGSSRRTCLRTGKWSGRAPS
CIPICGKIENITAPKTQGLRWPWQAAIYRRTSGVHDGSLHKGAWFLVCSGALVNERTVVVAAH
CVTDLGKVTMIKTADLKVVLGKFYRDDDRDEKTIQSLQISAIILHPNYDPILLDADIAILKLL
DKARISTRVQPICLAASRDLSTSFQESHITVAGWNVLADVRSPGFKNDTLRSGVVSVVDSLLC
EEQHEDHGIPVSVTDNMFCASWEPTAPSDICTAETGGIAAVSFPGRASPEPRWHLMGLVSWSY
DKTCSHRLSTAFTKVLPFKDWIERNMK

Important features of the protein:

Signal peptide:

amino acids 1-23

EGF-like domain cysteine pattern signature.

amino acids 260-272

N-glycosylation sites.

amino acids 96-100, 279-283, 316-320, 451-455, 614-618

N-myristoylation sites.

amino acids 35-41, 97-103, 256-262, 284-290, 298-304, 308-314, 474-480, 491-497, 638-644, 666-672

Amidation site.

amino acids 56-60

Serine proteases, trypsin family.

amino acids 489-506

CUB domain proteins profile.

amino acids 150-167

FIGURE 39

GGTTCCTACATCCTCATCTGAGAATCAGAGAGCATAATCTTCTTACGGGCCCGTGATTTATTAACGTGGCTTA ${\tt ATCTGAAGGTTCTCAGTCAAATTCTTTGTGATCTACTGATTGTGGGGGGCATGGCAAGGTTTGCTTAAAGGAGCTT}$ $\tt TTCTGTTGCTTGGCTTGGCTCAGTCCTGCTAACTACATTGACAATGTGGGCAACCTGCACTTCCTGTATT$ ${\tt CAGAACTCTGTAAAGGTGCCTCCCACTACGGCCTGACCAAAGATAGGAAGAGGGCGCTCACAAGATGGCTGTCCAG}$ ACGGCTGTGCGAGCCTCACAGCCACGGCTCCCCCAGAGGTTTCTGCAGCTGCCACCATCTCCTTAATGACAG CTGGCCGGAGCAACCGAACTAGGGCACGGCCCTTTGAGAGATCCACTATTAGAAGCAGATCATTTAAAAAAATAA ATCGAGCTTTGAGTGTTCTTCGAAGGACAAAGAGCGGGAGTGCAGTTGCCAACCATGCCGACCAGGGCAGGGAAA ATTCTGAAAACACCACTGCCCCTGAAGTCTTTCCAAGGTTGTACCACCTGATTCCAGATGGTGAAATTACCAGCA TCAAGATCAATCGAGTAGATCCCAGTGAAAGCCTCTCTATTAGGCTGGTGGGAGGTAGCGAAACCCCACTGGTCC ATATCATTATCCAACACATTTATCGTGATGGGGTGATCGCCAGAGACGCCGGCTACTGCCAGGAGACATCATTC TAAAGGTCAACGGGATGGACATCAGCAATGTCCCTCACAACTACGCTGTGCGTCTCCTGCGGCAGCCCTGCCAGG TGCTGTGGCTGACTGTGATGCGTGAACAGAAGTTCCGCAGCAGGAACAATGGACAGGCCCCGGATGCCTACAGAC $\verb|CCCGAGATGACAGCTTTCATGTGATTCTCAACAAAAGTAGCCCCGAGGAGCAGCTTGGAATAAAACTGGTGCGCA|$ AGGTGGATGAGCCTGGGGTTTTCATCTTCAATGTGCTGGATGGCGGTGTGGCATATCGACATGGTCAGCTTGAGG AGAATGACCGTGTGTTAGCCATCAATGGACATGATCTTCGATATGGCAGCCCAGAAAGTGCGGCTCATCTGATTC AGGCCAGTGAAAGACGTGTTCACCTCGTCGTGTCCCGCCAGGTTCGGCAGCGGAGCCCTGACATCTTTCAGGAAG $\verb|CCGGCTGGAACAGCAATGGCAGCTGGTCCCCAGGGGCCAGGGGGAGGAGGAGCAACACTCCCAAGCCCCTCCATCCTA|\\$ CAATTACTTGTCATGAGAAGGTGGTAAATATCCAAAAAGACCCCGGTGAATCTCTCGGCATGACCGTCGCAGGGG GAGCATCACATAGAGAATGGGATTTGCCTATCTATGTCATCAGTGTTGAGCCCGGAGGAGTCATAAGCAGAGATG GAAGAATAAAAACAGGTGACATTTTGTTGAATGTGGATGGGGTCGAACTGACAGAGGTCAGCCGGAGTGAGGCAG TGGCATTATTGAAAAGAACATCATCCTCGATAGTACTCAAAGCTTTGGAAGTCAAAGAGTATGAGCCCCAGGAAG TGTGGCTGGAATTACCACGGTGCTTGTATAACTGTAAAGATATTGTATTACGAAGAAACACAGCTGGAAGTCTGG CACCAGCATACAATGATGGAAGAATTAGATGTGGTGATATTCTTCTTGCTGTCAATGGTAGAAGTACATCAGGAA ${ t TGATACATGCTTGCTTGGCAAGACTGCTGAAAGAACTTAAAGGAAGAATTACTCTAACTATTGTTTCTTGGCCTG$ GCACTTTTTTA<u>TAGAATCAATGATGGGTCAGAGGAAAAACAGAAAAATCACAAATAGGCTAAGAAGTTGAAACACT</u> ATATTTATCTTGTCAGTTTTTATATTTAAAGAAAGAATACATTGTAAAAATGTCAGGAAAAGTATGATCATCTAA TGTATACCCCACTGAATTCAAGCTGATTTAAAATTTAAAATTTGGTATATGCTGAAGTCTGCCAAGGGTACATTAT GGCCATTTTTAATTTACAGCTAAAATATTTTTTAAAATGCATTGCTGAGAAACGTTGCTTTCATCAAACAAGAAT AAATATTTTTCAGAAGTTAAA

FIGURE 40

MKALLILVLPWLSPANYIDNVGNLHFLYSELCKGASHYGLTKDRKRRSQDGCPDGCASLTATA
PSPEVSAAATISLMTDEPGLDNPAYVSSAEDGQPAISPVDSGRSNRTRARPFERSTIRSRSFK
KINRALSVLRRTKSGSAVANHADQGRENSENTTAPEVFPRLYHLIPDGEITSIKINRVDPSES
LSIRLVGGSETPLVHIIIQHIYRDGVIARDGRLLPGDIILKVNGMDISNVPHNYAVRLLRQPC
QVLWLTVMREQKFRSRNNGQAPDAYRPRDDSFHVILNKSSPEEQLGIKLVRKVDEPGVFIFNV
LDGGVAYRHGQLEENDRVLAINGHDLRYGSPESAAHLIQASERRVHLVVSRQVRQRSPDIFQE
AGWNSNGSWSPGPGERSNTPKPLHPTITCHEKVVNIQKDPGESLGMTVAGGASHREWDLPIYV
ISVEPGGVISRDGRIKTGDILLNVDGVELTEVSRSEAVALLKRTSSSIVLKALEVKEYEPQED
CSSPAALDSNHNMAPPSDWSPSWVMWLELPRCLYNCKDIVLRRNTAGSLGFCIVGGYEEYNGN
KPFFIKSIVEGTPAYNDGRIRCGDILLAVNGRSTSGMIHACLARLLKELKGRITLTIVSWPGTFL

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-112, 157-161, 289-293, 384-388

Tyrosine kinase phosphorylation sites.

amino acids 433-441, 492-500

N-myristoylation sites.

amino acids 51-57, 141-147, 233-239, 344-350, 423-429, 447-453, 467-473, 603-609

FIGURE 41

ACCAGGCATTGTATCTTCAGTTGTCATCAAGTTCGCAATCAGATTGGAAAAGCTCAACTTGAA $\texttt{GCTTTCTTGCCTGCAGTGAAGCAGAGAGATAGATATTATTCACGTAATAAAAAAC \textbf{\textbf{ATG}} \texttt{GGCTT}$ CAACCTGACTTTCCACCTTTCCTACAAATTCCGATTACTGTTGCTGTTGACTTTGTGCCTGAC AGTGGTTGGGTGGCCACCAGTAACTACTTCGTGGGTGCCATTCAAGAGATTCCTAAAGCAAA GGAGTTCATGGCTAATTTCCATAAGACCCTCATTTTGGGGAAGGGAAAAACTCTGACTAATGA AGCATCCACGAAGAAGGTAGAACTTGACAACTGTCCTTCTGTGTCTCCTTACCTCAGAGGCCA GAGCAAGCTCATTTTCAAACCAGATCTCACTTTGGAAGAGGTACAGGCAGAAAATCCCAAAGT GTCCAGAGGCCGGTATCGCCCTCAGGAATGTAAAGCTTTACAGAGGGTCGCCATCCTCGTTCC CCACCGGAACAGAGAAACACCTGATGTACCTGCTGGAACATCTGCATCCCTTCCTGCAGAG GCAGCAGCTGGATTATGGCATCTACGTCATCCACCAGGCTGAAGGTAAAAAGTTTAATCGAGC CAAACTCTTGAATGTGGGCTATCTAGAAGCCCTCAAGGAAGAAAATTGGGACTGCTTTATATT CCACGATGTGGACCTGGTACCCGAGAATGACTTTAACCTTTACAAGTGTGAGGAGCATCCCAA GCATCTGGTGGTTGGCAGGAACAGCACTGGGTACAGGTTACAGTGGATATTTTGGGGG TGTTACTGCCCTAAGCAGAGAGCAGTTTTTCAAGGTGAATGGATTCTCTAACAACTACTGGGG ATGGGGAGGCGAAGACGATGACCTCAGACTCAGGGTTGAGCTCCAAAGAATGAAAATTTCCCG GCCCTGCCTGAAGTGGGTAAATATACAATGGTCTTCCACACTAGAGACAAAGGCAATGAGGT GAACGCAGAACGGATGAAGCTCTTACACCAAGTGTCACGAGTCTGGAGAACAGATGGGTTGAG TAGTTGTTCTTATAAATTAGTATCTGTGGAACACAATCCTTTATATATCAACATCACAGTGGA ${\tt TTTCTGGTTTGGTGCA} \underline{{\tt TGA}}{\tt CCCTGGATCTTTTGGTGATGTTTGGAAGAACTGATTCTTTGTTT}$ GCAATAATTTTGGCCTAGAGACTTCAAATAGTAGCACACATTAAGAACCTGTTACAGCTCATT GTTGAGCTGAATTTTTCCTTTTTGTATTTTCTTAGCAGAGCTCCTGGTGATGTAGAGTATAAA ACAGTTGTAACAAGACAGCTTTCTTAGTCATTTTGATCATGAGGGTTAAATATTGTAATATGG ATACTTGAAGGACTTTATATAAAAGGATGACTCAAAGGATAAAATGAACGCTATTTGAGGACT TAAGACTGCTGAATGTCTGAGAGAACCAGAGTTGTTCTCGTCCAAGGTAGAAAGGTACGAAGA TACAATACTGTTATTCATTTATCCTGTACAATCATCTGTGAAGTGGTGGTGTCAGGTGAGAAG GCGTCCACAAAAGAGGGGAGAAAAGGCGACGAATCAGGACACAGTGAACTTGGGAATGAAGAG GTAGCAGGAGGGTGGAGTGTCGGCTGCAAAGGCAGCAGTAGCTGAGCTGGTTGCAGGTGCTGA TAGCCTTCAGGGGAGGACCTGCCCAGGTATGCCTTCCAGTGATGCCCACCAGAGAATACATTC TCTATTAGTTTTTAAAGAGTTTTTGTAAAATGATTTTGTACAAGTAGGATATGAATTAGCAGT TTACAAGTTTACATATTAACTAATAATAATATGTCTATCAAATACCTCTGTAGTAAAATGTG AAAAAGCAAAA

FIGURE 42

MGFNLTFHLSYKFRLLLLTLCLTVVGWATSNYFVGAIQEIPKAKEFMANFHKTLILGKGKTL
TNEASTKKVELDNCPSVSPYLRGQSKLIFKPDLTLEEVQAENPKVSRGRYRPQECKALQRVAI
LVPHRNREKHLMYLLEHLHPFLQRQQLDYGIYVIHQAEGKKFNRAKLLNVGYLEALKEENWDC
FIFHDVDLVPENDFNLYKCEEHPKHLVVGRNSTGYRLRYSGYFGGVTALSREQFFKVNGFSNN
YWGWGGEDDDLRLRVELQRMKISRPLPEVGKYTMVFHTRDKGNEVNAERMKLLHQVSRVWRTD
GLSSCSYKLVSVEHNPLYINITVDFWFGA

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 4-8, 220-224, 335-339

Xylose isomerase proteins.

amino acids 191-202

FIGURE 43

FIGURE 44

MALSSQIWAACLLLLLLASLTSGSVFPQQTGQLAELQPQDRAGARASWMPMFQRRRRRDTHF PICIFCCGCCHRSKCGMCCKT

Important features:

Signal peptide:

amino acids 1-24

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 58-59

N-myristoylation site.

amino acids 44-50

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 1-12

FIGURE 45

 ${ t GTGGCTTCATTTCAGTGGCTGACTTCCAGAGAGCAAT}$ CCTCATCTATATCCTTTGGCAGCTCACAGGGTCAGCAGCCTCTGGACCCGTGAAAGAGCTGGT CGGTTCCGTTGGTGGGCCCGTGACTTTCCCCCTGAAGTCCAAAGTAAAGCAAGTTGACTCTAT TGTCTGGACCTTCAACACACCCCTCTTGTCACCATACAGCCAGAAGGGGGCACTATCATAGT GACCCAAAATCGTAATAGGGAGAGAGTAGACTTCCCAGATGGAGGCTACTCCCTGAAGCTCAG CAAACTGAAGAAGAATGACTCAGGGATCTACTATGTGGGGATATACAGCTCATCACTCCAGCA GCCCTCCACCCAGGAGTACGTGCTGCATGTCTACGAGCACCTGTCAAAGCCTAAAGTCACCAT GGGTCTGCAGAGCAATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATGGAACATGG GGAAGAGGATGTGATTTATACCTGGAAGGCCCTGGGGCAAGCAGCCAATGAGTCCCATAATGG GTCCATCCTCCCCATCTCCTGGAGATGGGGAGAAAGTGATATGACCTTCATCTGCGTTGCCAG GAACCCTGTCAGCAGAAACTTCTCAAGCCCCATCCTTGCCAGGAAGCTCTGTGAAGGTGCTGC TGATGACCCAGATTCCTCCATGGTCCTCCTGTGTCTCCTGTTGGTGCCCCCTCCTGCTCAGTCT GAAGAAGAGAGTGGACATTTGTCGGGAAACTCCTAACATATGCCCCCATTCTGGAGAGAACAC AGAGTACGACACAATCCCTCACACTAATAGAACAATCCTAAAGGAAGATCCAGCAAATACGGT ${\tt CACACCAAGGCTATTTGCCTATGAGAATGTTATC} {\color{red}{\textbf{TAG}}} {\color{blue}{\textbf{ACAGCAGTGCACTCCCCTAAGTCTCT}}}$ **GCTCA**

FIGURE 46

MAGSPTCLTLIYILWQLTGSAASGPVKELVGSVGGAVTFPLKSKVKQVDSIVWTFNTTPLVTI
QPEGGTIIVTQNRNRERVDFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQQPSTQEYVLHVYE
HLSKPKVTMGLQSNKNGTCVTNLTCCMEHGEEDVIYTWKALGQAANESHNGSILPISWRWGES
DMTFICVARNPVSRNFSSPILARKLCEGAADDPDSSMVLLCLLLVPLLLSLFVLGLFLWFLKR
ERQEEYIEEKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPANTVYSTVEIPKKMEN
PHSLLTMPDTPRLFAYENVI

Important features:

Signal peptide:

amino acids 1-22

Transmembrane domain:

amino acids 224-250

Leucine zipper pattern.

amino acids 229-251

N-glycosylation sites.

amino acids 98-102, 142-146, 148-152, 172-176, 176-180, 204-208, 291-295

FIGURE 47

FIGURE 48

MTCCEGWTSCNGFSLLVLLLLGVVLNAIPLIVSLVEEDQFSQNPISCFEWWFPGIIGAGLMAI PATTMSLTARKRACCNNRTGMFLSSFFSVITVIGALYCMLISIQALLKGPLMCNSPSNSNANC EFSLKNISDIHPESFNLQWFFNDSCAPPTGFNKPTSNDTMASGWRASSFHFDSEENKHRLIHF SVFLGLLLVGILEVLFGLSQIVIGFLGCLCGVSKRRSQIV

Important features:

Transmembrane domains:

amino acids 10-31 (type II), 50-72, 87-110, 191-213

N-glycosylation sites.

amino acids 80-84, 132-136, 148-152, 163-167

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 223-227

N-myristoylation sites.

amino acids 22-28, 54-60, 83-89, 97-103, 216-222

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 207-218

TNFR/NGFR family cysteine-rich region protein.

amino acids 4-12

FIGURE 49

FIGURE 50

MERVTLALLLAGLTALEANDPFANKDDPFYYDWKNLQLSGLICGGLLAIAGIAAVLSGKCKY KSSQKQHSPVPEKAIPLITPGSATTC

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domain:

amino acids 36-59

N-myristoylation sites.

amino acids 41-47, 45-51, 84-90

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7.

amino acids 54-67

FIGURE 51

TTCCAGGGGCCCTGGCCTGCTGCTGGCCTCTGCCTGGGCAGTGGGGAGGCTGGCCCC CTGCAGAGCGGAGAGGAAAGCACTGGGACAAATATTGGGGAGGCCCTTGGACATGGCCTGGGA GACGCCTGAGCGAAGGGGTGGGAAAGGCCATTGGCAAAGAGGCCGGAGGGGCAGCTGGCTCT CCAGGCTTTGGCGCAGCAGATGCTTTGGGCAACAGGGTCGGGGAAGCAGCCCATGCTCTGGGA AACACTGGGCACGAGATTGGCAGACAGGCAGAAGATGTCATTCGACACGGAGCAGATGCTGTC ATCTTTGGCTCTCAAGGTGGCCTTGGAGGCCAGGGCCAGGGCAATCCTGGAGGTCTGGGGACT CCCTGGGGTCAAGGAGGCCAATGGAGGGCCCACCAAACTTTGGGACCAACACTCAGGGAGCTGTG GCCCAGCCTGGCTATGGTTCAGTGAGAGCCAGCAACCAGAATGAAGGGTGCACGAATCCCCCA CCATCTGGCTCAGGTGGAGGCTCCAGCAACTCTGGGGGAGGCAGCGGCTCACAGTCGGGCAGC AGTGGCAGTGGCAGCAATGGTGACAACAACAATGGCAGCAGCAGTGGTGGCAGCAGCAGTGGC AGCAGCAGTGGCAGCAGTGGCGGCAGCAGTGGCGGCAGCAGTGGCAGCAGTGGCAAC AGTGGTGGCAGCAGAGGTGACAGCGGCAGTGAGTCCTCCTGGGGATCCAGCACCGGCTCCTCC TCCGGCAACCACGGTGGGAGCGGCGGAGGAAATGGACATAAACCCGGGTGTGAAAAGCCAGGG AATGAAGCCCGCGGGAGCGGGAATCTGGGATTCAGGGCTTCAGAGGACAGGGAGTTTCCAGC AACATGAGGGAAATAAGCAAAGAGGGCAATCGCCTCCTTGGAGGCTCTGGAGACAATTATCGG GGGCAAGGGTCGAGCTGGGGCAGTGGAGGAGGTGACGCTGTTGGTGGAGTCAATACTGTGAAC TCTGAGACGTCTCCTGGGATGTTTAACTTTGACACTTTCTGGAAGAATTTTAAATCCAAGCTG $\mathsf{GGTTTCATCAACTGGGATGCCATAAACAAGGACCAGAGAAGCTCTCGCATCCCG}$ $\mathsf{\underline{TGA}}$ CCTCCA GACAAGGAGCCACCAGATTGGATGGGAGCCCCCACACTCCCTCATAAAACACCACCCTCTCA

FIGURE 52

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

```
amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80, 90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 155-161, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224, 236-242, 238-244, 239-245, 240-246, 245-251, 246-252, 249-252, 253-259, 256-262, 266-272, 270-276, 271-277, 275-281, 279-285, 283-289, 284-290, 287-293, 288-294, 291-297, 292-298, 295-301, 298-304, 305-311, 311-317, 315-321, 319-325, 322-328, 323-329, 325-331, 343-349, 354-360, 356-362, 374-380, 381-387, 383-389, 387-393, 389-395, 395-401
```

Cell attachment sequence.

amino acids 301-304

FIGURE 53

GGAGAAGAGGTTGTGTGGGACAAGCTGCTCCCGACAGAAGG**ATG**TCGCTGCTGAGCCTGCCCT GGCTGGGCCTCAGACCGGTGGCAATGTCCCCATGGCTACTCCTGCTGCTGGTTGTGGGCTCCT GGCTACTCGCCCGCATCCTGGCTTGGACCTATGCCTTCTATAACAACTGCCGCCGGCTCCAGT GTTTCCCACAGCCCCAAAACGGAACTGGTTTTGGGGTCACCTGGGCCTGATCACTCCTACAG AGGAGGGCTTGAAGGACTCGACCCAGATGTCGGCCACCTATTCCCAGGGCTTTACGGTATGGC TGGGTCCCATCATCCCTTCATCGTTTTATGCCACCCTGACACCATCCGGTCTATCACCAATG TCCATTTCAACATCCTGAAGTCCTATATAACGATCTTCAACAAGAGTGCAAACATCATGCTTG ${\sf ACAAGTGGCAGCACCTGGCCTCAGAGGGCAGCAGTCGTCTGGACATGTTTGAGCACATCAGCC}$ TCATGACCTTGGACAGTCTACAGAAATGCATCTTCAGCTTTGACAGCCATTGTCAGGAGAGGC CCAGTGAATATATTGCCACCATCTTGGAGCTCAGTGCCCTTGTAGAGAAAAGAAGCCAGCATA TCCTCCAGCACATGGACTTTCTGTATTACCTCTCCCATGACGGGCGGCGCTTCCACAGGGCCT GCCGCCTGGTGCATGACTTCACAGACGCTGTCATCCGGGAGCGGCGTCGCACCCTCCCCACTC AGGGTATTGATGATTTTTTCAAAGACAAAGCCAAGTCCAAGACTTTGGATTTCATTGATGTGC TTCTGCTGAGCAAGGATGAAGATGGGAAGGCATTGTCAGATGAGGATATAAGAGCAGAGGCTG ACACCTTCATGTTTGGAGGCCATGACACCACGGCCAGTGGCCTCTCCTGGGTCCTGTACAACC TTGCGAGGCACCCAGAATACCAGGAGCGCTGCCGACAGGAGGTGCAAGAGCTTCTGAAGGACC GCGATCCTAAAGAGATTGAATGGGACGACCTGGCCCAGCTGCCCTTCCTGACCATGTGCGTGA AGGAGAGCCTGAGGTTACATCCCCCAGCTCCCTTCATCTCCCGATGCTGCACCCAGGACATTG TTCTCCCAGATGGCCGAGTCATCCCCAAAGGCATTACCTGCCTCATCGATATTATAGGGGTCC ATCACAACCCAACTGTGTGGCCGGATCCTGAGGTCTACGACCCCTTCCGCTTTGACCCAGAGA ACAGCAAGGGGAGGTCACCTCTGGCTTTTATTCCTTTCTCCGCAGGGCCCAGGAACTGCATCG GGCAGGCGTTCGCCATGGCGGAGATGAAAGTGGTCCTGGCGTTGATGCTGCTGCACTTCCGGT $\tt TTTGGCTGCGGGTGGAGCCCCTGAATGTAGGCTTGCAG{\color{blue} TGACCCATCCACCTGTT}$ TTTTTGCAGATTGTCATGAATAAAACGGTGCTGTCAAA

FIGURE 54

MSLLSLPWLGLRPVAMSPWLLLLLVVGSWLLARILAWTYAFYNNCRRLQCFPQPPKRNWFWGH
LGLITPTEEGLKDSTQMSATYSQGFTVWLGPIIPFIVLCHPDTIRSITNASAAIAPKDNLFIR
FLKPWLGEGILLSGGDKWSRHRRMLTPAFHFNILKSYITIFNKSANIMLDKWQHLASEGSSRL
DMFEHISLMTLDSLQKCIFSFDSHCQERPSEYIATILELSALVEKRSQHILQHMDFLYYLSHD
GRRFHRACRLVHDFTDAVIRERRRTLPTQGIDDFFKDKAKSKTLDFIDVLLLSKDEDGKALSD
EDIRAEADTFMFGGHDTTASGLSWVLYNLARHPEYQERCRQEVQELLKDRDPKEIEWDDLAQL
PFLTMCVKESLRLHPPAPFISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNPTVWPDPEVYD
PFRFDPENSKGRSPLAFIPFSAGPRNCIGQAFAMAEMKVVLALMLLHFRFLPDHTEPRRKLEL
IMRAEGGLWLRVEPLNVGLQ

Important features:

Transmembrane domains:

amino acids 13-32 (type II), 77-102

Cytochrome P450 cysteine heme-iron ligand signature.

amino acids 461-471

N-glycosylation sites.

amino acids 112-116, 168-172

FIGURE 55

FIGURE 56

MGPVKQLKRMFEPTRLIATIMVLLCFALTLCSAFWWHNKGLALIFCILQSLALTWYSLSFIPF ARDAVKKCFAVCLA

Important features:

Signal peptide:

amino acids 1-33

Type II fibronectin collagen-binding domain protein.

amino acids 30-72

FIGURE 57

AAGTCCATTTTCAAGCTCAGTGTCTTCATCCCCTCCCAGGAATTCTCCACCTACCGCCAGTGGAAGCAGAAAATT GTACAAGCTGGAGATAAGGACCTTGATGGGCAGCTAGACTTTGAAGAATTTGTCCATTATCTCCAAGATCATGAG AAGAAGCTGAGGCTGGTGTTTAAGATTTTGGACAAAAAGAATGATGGACGCATTGACGCGCAGGAGATCATGCAG ${\tt ACGATGACCATCGACTGGAACGAGTGGAGAGACTACCACCTCCTCCACCCCGTGGAAAACATCCCCGAGATCATC}$ GAATCAGCCATCAAATTCATGGCCTATGAGCAGATCAAGCGCCTTGTTGGTAGTGACCAGGAGACTCTGAGGATT CACGAGAGGCTTGTGGCAGGGTCCTTGGCAGGGGCCATCGCCCAGAGCAGCATCTACCCAATGGAGGTCCTGAAG ACCCGGATGGCGCTGCGGAAGACAGGCCAGTACTCAGGAATGCTGGACTGCGCCAGGAGGATCCTGGCCAGAGAG GGGGTGGCCGCCTTCTACAAAGGCTATGTCCCCAACATGCTGGGCATCATCCCCTATGCCGGCATCGACCTTGCA GTCTACGAGACGCTCAAGAATGCCTGGCTGCAGCACTATGCAGTGAACAGCGCGGACCCCGGCGTGTTTGTGCTC CAGGCGCAAGCCTCTATTGAGGGCGCTCCGGAGGTGACCATGAGCAGCCTCTTCAAACATATCCTGCGGACCGAG GGGGCCTTCGGGCTGTACAGGGGGCTGGCCCCCAACTTCATGAAGGTCATCCCAGCTGTGAGCATCAGCTACGTG $\tt GTCTACGAGAACCTGAAGATCACCCTGGGCGTGCAGTCGCGG{\color{red}{\textbf{TGA}}} CGGGGGGGGGGCCGCCCGGCAGTGGACTCG{\color{red}{\textbf{CGCGGGGGGGGGGGGGCCGCCCGGCAGTGGACTCG}} \\$ AAGCTGTGAAAACCCTAGACGCACCCGCAGGGAGGGTGGGGAGAGCTGGCAGGCCCAGGGCTTGTCCTGACC CACATGTGTAAGGACAGGACATTTTCTGCAGTGCCTGCCAATAGTGAGCTTGGAGCCTGGAGGCCGGCTTAGTTC TTCCATTTCACCCTTGCAGCCAGCTGTTGGCCACGGCCCCTGCCCTCTGGTCTGCCGTGCATCTCCCTGTGCCCT ATAATCCATGATGAAAGGTGAGGTCACGTGGCCTCCCAGGCCTGACTTCCCAACCTACAGCATTGACGCCAACTT GGCTGTGAAGGAAGAGGAAAGGATCTGGCCTTGTGGTCACTGGCATCTGAGCCCTGCTGATGGCTGGGGCTCTCG GGCATGCTTGGGAGTGCAGGGGGCTCGGGCTGCCTGGCCTGCACAGAAGGCAAGTGCTGGGGCTCATGGTG CTCTGAGCTGGCCTGGACCCTGTCAGGATGGGCCCCACCTCAGAACCAAACTCACTGTCCCCACTGTGGCATGAG AGGCCTTAATTATGGACTGTTGGGAAAAGGGTTTTGTCCAGAAGGACAAGCCGGACAAATGAGCGACTTCTGTGC GGGGGCCTTGGGCCGCTGCAGTCACATCTGTCCAGAGAAATTCCTTTTGGGACTGGAGGCAGAAAAGCGGCCAG AAGGCAGCCCTGGCTCCTTTCCTTTGGCAGGTTGGGGAAGGGCTTGCCCCCAGCCTTAGGATTTCAGGGTTT GACTGGGGGCGTGGAGAGAGGGAGGAACCTCAATAACCTTGAAGGTGGAATCCAGTTATTTCCTGCGCTGCGA GGGTTTCTTTATTTCACTCTTTTCTGAATGTCAAGGCAGTGAGGTGCCTCTCACTGTGAATTTGTGGTGGGCGGG GGCTGGAGGAGGGGGGGGGGCTGGCTCCGTCCCTCCCAGCCTTCTGCTTGCCTTAACAATGCCGGCCAA $\tt CTGGCGACCTCACGGTTGCACTTCCATTCCACCAGAATGACCTGATGAGGAAATCTTCAATAGGATGCAAAGATC$

FIGURE 58

MLCLCLYVPVIGEAQTEFQYFESKGLPAELKSIFKLSVFIPSQEFSTYRQWKQKIVQAGDKDL
DGQLDFEEFVHYLQDHEKKLRLVFKILDKKNDGRIDAQEIMQSLRDLGVKISEQQAEKILKSM
DKNGTMTIDWNEWRDYHLLHPVENIPEIILYWKHSTIFDVGENLTVPDEFTVEERQTGMWWRH
LVAGGGAGAVSRTCTAPLDRLKVLMQVHASRSNNMGIVGGFTQMIREGGARSLWRGNGINVLK
IAPESAIKFMAYEQIKRLVGSDQETLRIHERLVAGSLAGAIAQSSIYPMEVLKTRMALRKTGQ
YSGMLDCARRILAREGVAAFYKGYVPNMLGIIPYAGIDLAVYETLKNAWLQHYAVNSADPGVF
VLLACGTMSSTCGQLASYPLALVRTRMQAQASIEGAPEVTMSSLFKHILRTEGAFGLYRGLAP
NFMKVIPAVSISYVVYENLKITLGVQSR

Important features:

Signal peptide:

amino acids 1-16

Putative transmembrane domains:

amino acids 284-304, 339-360, 376-394

Mitochondrial energy transfer proteins signature.

amino acids 206-215, 300-309

N-glycosylation sites.

amino acids 129-133, 169-173

Elongation Factor-hand calcium-binding protein.

amino acids 54-73, 85-104, 121-140

FIGURE 59

GGAAGGCAGCGGCAGCTCCACTCAGCCAGTACCCAGATACGCTGGGAACCTTCCCCAGCC**ATG** ATTGCACTCATCATTGGCTTTGGTATTTCAGGGAGACACTCCATCACAGTCACTACTGTCGCC TCAGCTGGGAACATTGGGGAGGATGGAATCCTGAGCTGCACTTTTGAACCTGACATCAAACTT TCTGATATCGTGATACAATGGCTGAAGGAAGGTGTTTTAGGCTTGGTCCATGAGTTCAAAGAA GGCAAAGATGAGCTGTCGGAGCAGGATGAAATGTTCAGAGGCCGGACAGCAGTGTTTGCTGAT CAAGTGATAGTTGGCAATGCCTCTTTGCGGCTGAAAAACGTGCAACTCACAGATGCTGGCACC TACAAATGTTATATCATCACTTCTAAAGGCAAGGGGAATGCTAACCTTGAGTATAAAACTGGA GCCTTCAGCATGCCGGAAGTGAATGTGGACTATAATGCCAGCTCAGAGACCTTGCGGTGTGAG GCTCCCCGATGGTTCCCCCAGCCCACAGTGGTCTGGGCATCCCAAGTTGACCAGGGAGCCAAC TTCTCGGAAGTCTCCAATACCAGCTTTGAGCTGAACTCTGAGAATGTGACCATGAAGGTTGTG TCTGTGCTCTACAATGTTACGATCAACACACATACTCCTGTATGATTGAAAATGACATTGCC AAAGCAACAGGGGATATCAAAGTGACAGAATCGGAGATCAAAAGGCGGAGTCACCTACAGCTG CTAAACTCAAAGGCTTCTCTGTGTGTCTCTTCTTTCTTTGCCATCAGCTGGGCACTTCTGCCT CTCAGCCCTTACCTGATGCTAAAATAATGTGCCTTGGCCACAAAAAAGCATGCAAAGTCATTG TTACAACAGGGATCTACAGAACTATTTCACCACCAGATATGACCTAGTTTTATATTTCTGGGA AAAATAATTCATGTGAACTAGACAAGTGTGTTAAGAGTGATAAGTAAAATGCACGTGGAGACA AGTGCATCCCCAGATCTCAGGGACCTCCCCCTGCCTGTCACCTGGGGAGTGAGAGGACAGGAT AGTGCATGTTCTTTGTCTCTGAATTTTTAGTTATATGTGCTGTAATGTTGCTCTGAGGAAGCC CCTGGAAAGTCTATCCCAACATATCCACATCTTATATTCCACAAATTAAGCTGTAGTATGTAC CCTAAGACGCTGCTAATTGACTGCCACTTCGCAACTCAGGGGCGGCTGCATTTTAGTAATGGG TCAAATGATTCACTTTTTATGATGCTTCCAAAGGTGCCTTGGCTTCTCTTCCCAACTGACAAA TGCCAAAGTTGAGAAAAATGATCATAATTTTAGCATAAACAGAGCAGTCGGGGACACCGATTT AAAAAAAAAAAAAAAAAA

FIGURE 60

MASLGQILFWSIISIIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEPDIK LSDIVIQWLKEGVLGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRLKNVQLTDAG TYKCYIITSKGKGNANLEYKTGAFSMPEVNVDYNASSETLRCEAPRWFPQPTVVWASQVDQGA NFSEVSNTSFELNSENVTMKVVSVLYNVTINNTYSCMIENDIAKATGDIKVTESEIKRRSHLQ LLNSKASLCVSSFFAISWALLPLSPYLMLK

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 258-281

N-glycosylation sites.

amino acids 112-116, 160-164, 190-194, 196-200, 205-209, 216-220, 220-224

N-myristoylation sites.

amino acids 52-58, 126-132, 188-194

FIGURE 61

 ${\tt TGACGTCAGAATCACC} \underline{{\tt ATG}} {\tt GCCAGCTATCCTTACCGGCAGGGCTGCCCAGGAGCTGCAGGACA}$ AGCACCAGGAGCCCCTCCGGGTAGCTACTACCCTGGACCCCCCAATAGTGGAGGGCAGTATGG TAGTGGGCTACCCCTGGTGGTGGTTATGGGGGTCCTGCCCCTGGAGGGCCTTATGGACCACC AGCTGGTGGAGGGCCCTATGGACACCCCAATCCTGGGATGTTCCCCTCTGGAACTCCAGGAGG ACCATATGGCGGTGCAGCTCCCGGGGGCCCCTATGGTCAGCCACCTCCAAGTTCCTACGGTGC $\tt CCAGCAGCCTGGGCTTTATGGACAGGGTGGCGCCCCTCCCAATGTGGATCCTGAGGCCTACTC$ CCTGGTCAACTGCAATTGGTCTTCATTCAATGATGAGACCTGCCTCATGATGATAAACATGTT TGACAAGACCAAGTCAGGCCGCATCGATGTCTACGGCTTCTCAGCCCTGTGGAAATTCATCCA GCAGTGGAAGAACCTCTTCCAGCAGTATGACCGGGACCGCTCGGGCTCCATTAGCTACACAGA GCTGCAGCAAGCTCTGTCCCAAATGGGCTACAACCTGAGCCCCCAGTTCACCCAGCTTCTGGT CTCCCGCTACTGCCACGCTCTGCCAATCCTGCCATGCAGCTTGACCGCTTCATCCAGGTGTG CACCCAGCTGCAGGTGCTGACAGAGGCCTTCCGGGAGAAGGACACAGCTGTACAAGGCAACAT $\texttt{CCGGCTCAGCTTCGAGGACTTCGTCACCATGACAGCTTCTCGGATGCTA} \underline{\textbf{TGA}} \texttt{CCCAACCATCT}$ GTGGAGAGTGGAGTGCACCAGGGACCTTTCCTGGCTTCTTAGAGTGAGAGAAGTATGTGGACA AGAGGGTGGAGAGTCCTGCATCATAGCCACCAAATAGTGAGGACCGGGGCTGAGGCCACACAG ATAGGGGCCTGATGGAGGAGGATAGAAGTTGAATGTCCTGATGGCCATGAGCAGTTGAGTG GCACAGCCTGGCACCAGGAGCAGGTCCTTGTAATGGAGTTAGTGTCCAGTCAGCTGAGCTCCA CCCTGATGCCAGTGGTGAGTGTTCATCGGCCTGTTACCGTTAGTACCTGTGTTCCCTCACCAG GTCTATGGGACCAGTGGCTTGGATTCTGCCACACCCATAAATCCTTGTGTGTTAACTTCTAGC TGCCTGGGGCTGGCCCTGCTCAGACAAATCTGCTCCCTGGGCATCTTTGGCCAGGCTTCTGCC CCCTGCAGCTGGGACCCCTCACTTGCCTGCCATGCTCTGCTCGGCTTCAGTCTCCAGGAGACA TCCAGTGAAATTGTAAGCTTCAATAAAAGGATGAAACTCTGA

FIGURE 62

MASYPYRQGCPGAAGQAPGAPPGSYYPGPPNSGGQYGSGLPPGGGYGGPAPGGPYGPPAGGGP YGHPNPGMFPSGTPGGPYGGAAPGGPYGQPPPSSYGAQQPGLYGQGGAPPNVDPEAYSWFQSV DSDHSGYISMKELKQALVNCNWSSFNDETCLMMINMFDKTKSGRIDVYGFSALWKFIQQWKNL FQQYDRDRSGSISYTELQQALSQMGYNLSPQFTQLLVSRYCPRSANPAMQLDRFIQVCTQLQV LTEAFREKDTAVOGNIRLSFEDFVTMTASRML

Important features of the protein:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 147-150

Casein kinase II phosphorylation sites.

amino acids 135-138, 150-153, 202-205, 271-274

N-myristoylation sites.

amino acids 9-14, 15-20, 19-24, 33-38, 34-39, 39-44, 43-48, 61-66, 70-75, 78-83, 83-88, 87-92, 110-115

FIGURE 63

 $\texttt{CAGG} \underline{\textbf{ATG}} \texttt{CAGGGCCGCGTGGCAGGGAGCTGCGCTCCTCTGGGCCTGCTCTGTCTTCA}$ TCTCCCAGGCCTCTTTGCCCGGAGCATCGGTGTTGTGGAGGAGAAAGTTTCCCAAAACTTCGG GACCAACTTGCCTCAGCTCGGACAACCTTCCTCCACTGGCCCCTCTAACTCTGAACATCCGCA GCCCGCTCTGGACCCTAGGTCTAATGACTTGGCAAGGGTTCCTCTGAAGCTCAGCGTGCCTCC ATCAGATGGCTTCCCACCTGCAGGAGGTTCTGCAGTGCAGAGGTGGCCTCCATCGTGGGGGCCT GCCTGCCATGGATTCCTGGCCCCCTGAGGATCCTTGGCAGATGATGGCTGCTGCGGCTGAGGA CCGCCTGGGGGAAGCGCTGCCTGAAGAACTCTCTTACCTCTCCAGTGCTGCGGCCCTCGCTCC GGGCAGTGGCCCTTTGCCTGGGGAGTCTTCTCCCGATGCCACAGGCCTCTCACCTGAGGCTTC ACTCCTCCACCAGGACTCGGAGTCCAGACGACTGCCCCGTTCTAATTCACTGGGAGCCGGGGG AAAAATCCTTTCCCAACGCCCTCCCTGGTCTCTCATCCACAGGGTTCTGCCTGATCACCCCTG GGGTACCCTGAATCCCAGTGTGTCCTGGGGAGGTGGAGGCCCTGGGACTGGTTGGGGAACGAG GCCCATGCCACACCCTGAGGGAATCTGGGGTATCAATAATCAACCCCCAGGTACCAGCTGGGG AAATATTAATCGGTATCCAGGAGGCAGCTGGGGAAATATTAATCGGTATCCAGGAGGCAGCTG GGGGAATATTAATCGGTATCCAGGAGGCAGCTGGGGGAATATTCATCTATACCCAGGTATCAA TAACCCATTTCCTCCTGGAGTTCTCCGCCCTCCTGGCTCTTCTTGGAACATCCCAGCTGGCTT $\texttt{CCCTAATCCTCCAAGCCCTAGGTTGCAGTGGGGCC} \underline{\textbf{TAG}} \texttt{AGCACGATAGAGGGGAAACCCAACATT}$ GGGAGTTAGAGTCCTGCTCCCGCCCCTTGCTGTGTGGGCCTCAATCCAGGCCCTGTTAACATGT TTCCAGCACTATCCCCACTTTTCAGTGCCTCCCCTGCTCATCTCCAATAAAATAAAAGCACTT

FIGURE 64

MQGRVAGSCAPLGLLLVCLHLPGLFARSIGVVEEKVSQNFGTNLPQLGQPSSTGPSNSEHPQP ALDPRSNDLARVPLKLSVPPSDGFPPAGGSAVQRWPPSWGLPAMDSWPPEDPWQMMAAAAEDR LGEALPEELSYLSSAAALAPGSGPLPGESSPDATGLSPEASLLHQDSESRRLPRSNSLGAGGK ILSQRPPWSLIHRVLPDHPWGTLNPSVSWGGGGPGTGWGTRPMPHPEGIWGINNQPPGTSWGN INRYPGGSWGNINRYPGGSWGNINRYPGGSWGNIHLYPGINNPFPPGVLRPPGSSWNIPAGFP NPPSPRLQWG

Important features of the protein:

Signal peptide:

amino acids 1-26

Casein kinase II phosphorylation sites.

amino acids 56-59, 155-158

N-myristoylation sites.

amino acids 48-53, 220-225, 221-226, 224-229, 247-252, 258-263, 259-264, 269-274, 270-275, 280-285, 281-286, 305-310

FIGURE 65

FIGURE 66

 ${\tt MGSGLPLVLLITLLGSSHGTGPGMTLQLKLKESFLTNSSYESSFLELLEKLCLLLHLPSGTSV} \\ {\tt TLHHARSQHHVVCNT}$

Important features:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 37-41

N-myristoylation sites.

amino acids 15-21, 19-25, 60-66

FIGURE 67

ACGGACCGAGGTTCGAGGGAGGGACACGGACCAGGAACCTGAGCTAGGTCAAAGACGCCCGG
GCCAGGTGCCCCGTCGCAGGTGCCCCTGGCCGGAGATGCGGTAGGAGGGCGAGCGCGAGAAG
CCCCTTCCTCGGCGCTGCCAACCCGCCACCCAGCCCATCGGAACCCCGGGCTGGGGCTGCTT
CTGGCGCTGGGCCTGCCGTTCCTGCTGGCCCGCTGGGGCCGAGCCTGGGGCAAATACAGACC
ACTTCTGCAAATGAGAATAGCACTGTTTTGCCTTCATCCACCAGCTCCAGCTCCGATGGCAAC
CTGCGTCCGGAAGCCATCACTGCTATCATCGTGGTCTTCTCCCTCTTGGCTGCCTTCCTC
GCTGTGGGGCTGGCACTGTTGGTGCGGAAGCTTCGGGAGAAGCGGAGGGCACCTAC
CGGCCCAGTAGCGAGGAGCAGTTCTCCCATGCAGCCCGGGCCCCTCAGGACTCCAAG
GAGACGTGCAGGGCTGCCTGCCCATCTAGGTCCCTCTCCTGCATCTGTCTCCCTTCATTGC
TGTGTGACCTTGGGGAAAGGCAGTGCCCTCTCTGGGCAGTCCAAGACCAGTGCTTAATAG
CAGGGAAGAAGGTACTTCAAAGACTCTGCCCCTGAGGTCAAGAGAGGATGGGGCTATTCACTT

FIGURE 68

MANPGLGLLLALGLPFLLARWGRAWGQIQTTSANENSTVLPSSTSSSSDGNLRPEAITAIIVV FSLLAALLLAVGLALLVRKLREKRQTEGTYRPSSEEQFSHAAEARAPQDSKETVQGCLPI

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 56-80

N-glycosylation site.

amino acids 36-40

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 86-90

Tyrosine kinase phosphorylation site.

amino acids 86-94

N-myristoylation sites.

amino acids 7-13, 26-32

FIGURE 69

CCAGAAGATGAAAAATAATTGAACAAATAGAGGATATGGTGACTACAGCTTCTACGTACCTGTTTGAAGCCACA CCAAAACATGAAAACCATAAACATGCTGATGTTATAGTTGCACCACCTACACTCCCAGGTAGAGATGAACCATAC ACCAAGCAGTTCACAGAATGTGGAGAGAAAGGCGAATACATTCACTTCACCCCTGACCTTCTACTTGGAAAAAAA CAAAATGAATATGGACCACCAGGCAAACTGTTTGTCCATGAGTGGGCTCACCTCCGGTGGGGAGTGTTTGATGAG GGTAGAAATAGAGTTTATAAGTGTCAAGGAGGCAGCTGTCTTAGTAGAGCATGCAGAATTGATTCTACAACAAAA CTGTATGGAAAAGATTGTCAATTCTTTCCTGATAAAGTACAAACAGAAAAAGCATCCATAATGTTTATGCAAAGT ATTGATTCTGTTGTTGAATTTTGTAACGAAAAAACCCATAATCAAGAAGCTCCAAGCCTACAAAACATAAAGTGC AATTTTAGAAGTACATGGGAGGTGATTAGCAATTCTGAGGATTTTAAAAACACCATACCCATGGTGACACCACCT $\tt CCTCCACCTGTCTTCTCATTGCTGAAGATCAGTCAAAGAATTGTGTGCTTAGTTCTTGATAAGTCTGGAAGCATG$ GGGGGTAAGGACCGCCTAAATCGAATGAATCAAGCAGCAAAACATTTCCTGCTGCAGACTGTTGAAAATGGATCC TGGGTGGGGATGGTTCACTTTGATAGTACTGCCACTATTGTAAATAAGCTAATCCAAATAAAAAGCAGTGATGAA AGAAACACTCATGGCAGGATTACCTACATATCCTCTGGGAGGAACTTCCATCTGCTCTGGAATTAAATATGCA ACTGCAAGTTCTTGTATTGATGAAGTGAAACAAAGTGGGGCCATTGTTCATTTTATTGCTTTGGGAAGAGCTGCTGATGAAGCAGTAATAGAGATGAGCAAGATAACAGGAGGAAGTCATTTTTATGTTTCAGATGAAGCTCAGAACAAT GGCCTCATTGATGCTTTTGGGGCTCTTACATCAGGAAATACTGATCTCTCCCAGAAGTCCCTTCAGCTCGAAAGT AAGGGATTAACACTGAATAGTAATGCCTGGATGAACGACACTGTCATAATTGATACTACAGTGGGAAAGGACACG TTCTTTCTCATCACATGGAACAGTCTGCCTCCCAGTATTTCTCTCTGGGATCCCAGTGGAACAATAATGGAAAAT TTCACAGTGGATGCAACTTCCAAAATGGCCTATCTCAGTATTCCAGGAACTGCAAAGGTGGGCACTTGGGCATAC AATCTTCAAGCCAAAGCGAACCCAGAAACATTAACTATTACAGTAACTTCTCGAGCAGCAAATTCTTCTGTGCCT CTACAAGGATATGTACCTGTTCTTGGAGCCAATGTGACTGCTTTCATTGAATCACAGAATGGACATACAGAAGTT TTGGAACTTTTGGATAATGGTGCAGGCGCTGATTCTTTCAAGAATGATGGAGTCTACTCCAGGTATTTTACAGCA TATACAGAAAATGGCAGATATAGCTTAAAAGTTCGGGCTCATGGAGGAGCAAACACTGCCAGGCTAAAATTACGG CCTCCACTGAATAGAGCCGCGTACATACCAGGCTGGGTAGTGAACGGGGAAATTGAAGCAAACCCGCCAAGACCT GAAATTGATGAGGATACTCAGACCACCTTGGAGGATTTCAGCCGAACAGCATCCGGAGGTGCATTTGTGGTATCA GATAAGATTATTCTTACATGGACAGCACCAGGAGATAATTTTGATGTTGGAAAAGTTCAACGTTATATCATAAGA ATAAGTGCAAGTATTCTTGATCTAAGAGACAGTTTTGATGATGCTCTTCAAGTAAATACTACTGATCTGTCACCA AAGGAGGCCAACTCCAAGGAAAGCTTTGCATTTAAACCAGAAAATATCTCAGAAGAAAATGCAACCCACATATTT ATTGCCATTAAAAGTATAGATAAAAGCAATTTGACATCAAAAGTATCCAACATTGCACAAGTAACTTTGTTTATC $\tt CCTCAAGCAAATCCTGATGACATTGATCCTACACCTACTCCTACTCCTACTCCTACTCCTGATAAAAGTCATAAT$ TCTGGAGTTAATATTTCTACGCTGGTATTGTCTGTGATTGGGTCTGTTGTAATTGTTAACTTTATTTTAAGTACC ACCATT**TGA**ACCTTAACGAAGAAAAAATCTTCAAGTAGACCTAGAAGAGAGTTTTAAAAAAACAAAACAATGTAA GTAAAGGATATTTCTGAATCTTAAAATTCATCCCATGTGTGATCATAAACTCATAAAAATAATTTTAAGATGTCG GAAAAGGATACTTTGATTAAATAAAAACACTCATGGATATGTAAAAACTGTCAAGATTAAAATTTAATAGTTTCA TTTATTTGTTATTTTGTAAGAAATAGTGATGAACAAAGATCCTTTTTCATACTGATACCTGGTTGTATATT

FIGURE 70

MGLFRGFVFLLVLCLLHQSNTSFIKLNNNGFEDIVIVIDPSVPEDEKIIEQIEDMVTTASTYL
FEATEKRFFFKNVSILIPENWKENPQYKRPKHENHKHADVIVAPPTLPGRDEPYTKQFTECGE
KGEYIHFTPDLLLGKKQNEYGPPGKLFVHEWAHLRWGVFDEYNEDQPFYRAKSKKIEATRCSA
GISGRNRVYKCQGGSCLSRACRIDSTTKLYGKDCQFFPDKVQTEKASIMFMQSIDSVVEFCNE
KTHNQEAPSLQNIKCNFRSTWEVISNSEDFKNTIPMVTPPPPPVFSLLKISQRIVCLVLDKSG
SMGGKDRLNRMNQAAKHFLLQTVENGSWVGMVHFDSTATIVNKLIQIKSSDERNTLMAGLPTY
PLGGTSICSGIKYAFQVIGELHSQLDGSEVLLLTDGEDNTASSCIDEVKQSGAIVHFIALGRA
ADEAVIEMSKITGGSHFYVSDEAQNNGLIDAFGALTSGNTDLSQKSLQLESKGLTLNSNAWMN
DTVIIDSTVGKDTFFLITWNSLPPSISLWDPSGTIMENFTVDATSKMAYLSIPGTAKVGTWAY
NLQAKANPETLTITVTSRAANSSVPPITVNAKMNKDVNSFPSPMIVYAEILQGYVPVLGANVT
AFIESQNGHTEVLELLDNGAGADSFKNDGVYSRYFTAYTENGRYSLKVRAHGGANTARLKLRP
PLNRAAYIPGWVVNGEIEANPPRPEIDEDTQTTLEDFSRTASGGAFVVSQVPSLPLPDQYPPS
QITDLDATVHEDKIILTWTAPGDNFDVGKVQRYIIRISASILDLRDSFDDALQVNTTDLSPKE
ANSKESFAFKPENISEENATHIFIAIKSIDKSNLTSKVSNIAQVTLFIPQANPDDIDPTPTPT

Signal peptide:

amino acids 1-21

Putative transmembrane domains:

amino acids 284-300, 617-633

Leucine zipper pattern.

amino acids 469-491, 476-498

N-glycosylation site.

amino acids 20-24, 75-79, 340-344, 504-508, 542-546, 588-592, 628-632, 811-815, 832-836, 837-841, 852-856, 896-900

FIGURE 71

CTCCTTAGGTGGAAACCCTGGGAGTAGAGTACTGACAGCAAAGACCGGGAAAGACCATACGTCCCCGGGCAGGGG TGACAACAGGTGTCATCTTTTTGATCTCGTGTGTGGCTGCCTTCCTATTTCAAGGAAAGACGCCAAGGTAATTTT GACCCAGAGGAGCAATGATGTAGCCACCTCCTAACCTTCCCTTCTTGAACCCCCAGTTATGCCAGGATTTACTAG AGAGTGTCAACTCAACCAGCAAGCGGCTCCTTCGGCTTAACTTGTGGTGGAGGAGAACCTTTGTGGGGCTGC GTTCTCTTAGCAGTGCTCAGAAGTGACTTGCCTGAGGGTGGACCAGAAGAAAGGAAAGGTCCCCTCTTGCTGTTG GCTGCACATCAGGAAGGCTGTGATGGGAATGAAGGTGAAAACTTGGAGATTTCACTTCAGTCATTGCTTCTGCCT GCAAGATCATCCTTTAAAAGTAGAGAAGCTGCTCTGTGTGGTGGTTAACTCCAAGAGGCAGAACTCGTTCTAGAA GGAAATGGATGCAAGCAGCTCCGGGGGCCCCAAACGCATGCTTCCTGTGGTCTAGCCCAGGGAAGCCCTTCCGTG GGGGCCCCGGCTTTGAGGGATGCCACCGGTTCTGGACGCATGGCTGATTCCTGA<u>ATG</u>ATGATGGTTCGCCGGGGG CTGCTTGCGTGGATTTCCCGGGTGGTGTTTTGCTGGTGCTCCTCTGCTGTGCTATCTCTGTCCTGTACATGTTG GCCTGCACCCCAAAAGGTGACGAGGAGCAGCTGGCACTGCCCAGGGCCAACAGCCCCACGGGGAAGGAGGGGTAC CAGGCCGTCCTTCAGGAGTGGGAGGAGCACCACCGCAACTACGTGAGCAGCCTGAAGCGGCAGATCGCACAGCTC AAGGAGGAGCTGCAGGAGAGGAGTGAGCAGCTCAGGAATGGGCAGTACCAAGCCAGCGATGCTGCTGGCCTGGGT GTGAATGCTGGCGTCAAGCTGGCCACAGAGTATGCAGCAGTGCCTTTCGATAGCTTTACTCTACAGAAGGTGTAC GCCATTGAATCAGCCTTGGAGACCCTGAACAATCCTGCAGAGAACAGCCCCAATCACCGTCCTTACACGGCCTCT GATTTCATAGAAGGGATCTACCGAACAGAAAGGGACAAAGGGACATTGTATGAGCTCACCTTCAAAGGGGACCAC AAACACGAATTCAAACGGCTCATCTTATTTCGACCATTCAGCCCCATCATGAAAGTGAAAATGAAAAGCTCAAC ATGGCCAACACGCTTATCAATGTTATCGTGCCTCTAGCAAAAAGGGTGGACAAGTTCCGGCAGTTCATGCAGAAT GAAGTCAAAGGAATACTTGAAAACACTTCCAAAGCTGCCAACTTCAGGAACTTTACCTTCATCCAGCTGAATGGA GAATTTTCTCGGGGAAAGGGACTTGATGTTGGAGCCCGCTTCTGGAAGGGAAGCAACGTCCTTCTCTTTTTCTGT GATGTGGACATCTACTTCACATCTGAATTCCTCAATACGTGTAGGCTGAATACACAGCCAGGGAAGAAGGTATTT CAGCTGGTCATAAAGAAGGAAACTGGATTTTGGAGAGACTTTTGGATTTTGGGATGACGTGTCAGTATCGGTCAGAC TTCATCAATATAGGTGGGTTTGATCTGGACATCAAAGGCTGGGGCGGAGAGGATGTGCACCTTTATCGCAAGTAT CTCCACAGCAACCTCATAGTGGTACGGACGCCTGTGCGAGGACTCTTCCACCTCTGGCATGAGAAGCGCTGCATG GACGAGCTGACCCCGGAGCAGTACAAGATGTGCATGCAGTCCAAGGCCATGAACGAGGCATCCCACGGCCAGCTG TGA ACTCCCAGAGAAGGATTGTGGGAGACACTTTTTCTTTCCTTTTGCAATTACTGAAAGTGGCTGCAACAGAGA AAAGACTTCCATAAAGGACGACAAAAGAATTGGACTGATGGGTCAGAGATGAGAAAGCCTCCGATTTCTCTCTGT TGGGCTTTTTACAACAGAAATCAAAATCTCCGCTTTGCCTGCAAAAGTAACCCAGTTGCACCCTGTGAAGTGTCT GACAAAGGCAGAATGCTTGTGAGATTATAAGCCTAATGGTGTGGAGGTTTTGATGGTGTTTACAATACACTGAGA ${\tt CCTGTTGTTTTGTGTGCTCATTGAAATATTCATGATTTAAGAGCAGTTTTGTAAAAAATTCATTAGCATGAAAGG}$ CAAGCATATTTCTCCTCATATGAATGAGCCTATCAGCAGGGCTCTAGTTTCTAGGAATGCTAAAATATCAGAAGG ACCATAAATATCGTGTCATATTTTCCCCAAGATTAACCAAAAATAATCTGCTTATCTTTTTGGTTGTCCTTTTAA CACTTTGCAAGCCTTACAAGAGAGCACAAGTTGGCCTACATTTTTATATTTTTTAAGAAGATACTTTGAGATGCA TTATGAGAACTTTCAGTTCAAAGCATCAAATTGATGCCATATCCAAGGACATGCCAAATGCTGATTCTGTCAGGC ACTGAATGTCAGGCATTGAGACATAGGGAAGGAATGGTTTGTACTAATACAGACGTACAGATACTTTCTCTGAAG AGTATTTTCGAAGAGGAGCAACTGAACACTGGAGGAAAAGAAAATGACACTTTCTGCTTTACAGAAAAGGAAAACT ${\tt CATTCAGACTGGTGATATCGTGATGTACCTAAAAGTCAGAAACCACATTTTCTCCTCAGAAGTAGGGACCGCTTT}$ CTTACCTGTTTAAATAAACCAAAGTATACCGTGTGAACCAAACAATCTCTTTTCAAAACAGGGTGCTCCTCGTGG $\tt CCAGAATCTAGTGGGATGGAAGTTTTTGCTACATGTTATCCACCCCAGGCCAGGTGGAAGTAACTGAATTATTTT$ TTAAATTAAGCAGTTCTACTCAATCACCAAGATGCTTCTGAAAATTGCATTTTATTACCATTTCAAACTATTTTT CTAATTATCTCTTTGAGTCCTTGCTTCTGTTTGCTCACAGTAAACTCATTGTTTAAAAGCTTCAAGAACATTCAA TGAATGGAAGGTGGTATTGCACAGCTAATAAAATATGATTTGTGGATATGAA

FIGURE 72

MMMVRRGLLAWISRVVVLLVLLCCAISVLYMLACTPKGDEEQLALPRANSPTGKEGYQAVLQE
WEEQHRNYVSSLKRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADLLAFLHS
QVDKAEVNAGVKLATEYAAVPFDSFTLQKVYQLETGLTRHPEEKPVRKDKRDELVEAIESALE
TLNNPAENSPNHRPYTASDFIEGIYRTERDKGTLYELTFKGDHKHEFKRLILFRPFSPIMKVK
NEKLNMANTLINVIVPLAKRVDKFRQFMQNFREMCIEQDGRVHLTVVYFGKEEINEVKGILEN
TSKAANFRNFTFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVDIYFTSEFLNTCRLNTQPG
KKVFYPVLFSQYNPGIIYGHHDAVPPLEQQLVIKKETGFWRDFGFGMTCQYRSDFINIGGFDL
DIKGWGGEDVHLYRKYLHSNLIVVRTPVRGLFHLWHEKRCMDELTPEQYKMCMQSKAMNEASH
GOLGMLVFRHEIEAHLRKOKOKTSSKKT

Important features:

Signal peptide:

amino acids 1-27

N-glycosylation sites.

amino acids 315-319, 324-328

N-myristoylation sites.

amino acids 96-102, 136-142, 212-218, 311-317, 339-345, 393-399

Amidation site.

amino acids 377-381

FIGURE 73

GAGACTGCAGAGGGAGATAAAGAGAGAGGGCAAAGAGCCAAGAGATTTGTCCTGGGGATC CAGAAACCCATGATACCCTACTGAACACCGAATCCCCTGGAAGCCCACAGAGACAGAGACAGC CTCCTCCCTCTCTCTCTGCCTGTCCTAGTCCTCTAGTCCTCAAATTCCCAGTCCCCTGC ACCCCTTCCTGGGACACT**ATG**TTGTTCTCCGCCCTCCTGCTGGAGGTGATTTGGATCCTGGCT GCAGATGGGGGTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGGCCAGCCTCT GACCCTGATTTGCCTGCTCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGCCTTTGGAC $\mathtt{CTGCACAACAATGGCCACACAGTGCAACTCTCTCTGCCCTCTACCCTGTATCTGGGTGGACTT$ CCCCGAAAATATGTAGCTGCCCAGCTCCACCTGCACTGGGGTCAGAAAGGATCCCCAGGGGGG TCAGAACACCAGATCAACAGTGAAGCCACATTTGCAGAGCTCCACATTGTACATTATGACTCT GATTCCTATGACAGCTTGAGTGAGGCTGCTGAGAGGCCTCAGGGCCTGGCTGTCCTGGGCATC CTAATTGAGGTGGGTGAGACTAAGAATATAGCTTATGAACACATTCTGAGTCACTTGCATGAA GTCAGGCATAAAGATCAGAAGACCTCAGTGCCTCCCTTCAACCTAAGAGAGCTGCTCCCCAAA CAGCTGGGGCAGTACTTCCGCTACAATGGCTCGCTCACAACTCCCCCTTGCTACCAGAGTGTG CTCTGGACAGTTTTTTATAGAAGGTCCCAGATTTCAATGGAACAGCTGGAAAAGCTTCAGGGG ACATTGTTCTCCACAGAAGAGGGCCCTCTAAGCTTCTGGTACAGAACTACCGAGCCCTTCAG CCTCTCAATCAGCGCATGGTCTTTGCTTCTTTCATCCAAGCAGGATCCTCGTATACCACAGGT GAAATGCTGAGTCTAGGTGTAGGAATCTTGGTTGGCTGTCTCTGCCTTCTCCTGGCTGTTTAT TTCATTGCTAGAAAGATTCGGAAGAAGAGGCTGGAAAACCGAAAGAGTGTGGTCTTCACCTCA GCACAAGCCACGACTGAGGCA**TAA**ATTCCTTCTCAGATACCATGGATGTGGATGACTTCCCTT CATGCCTATCAGGAAGCCTCTAAAATGGGGTGTAGGATCTGGCCAGAAACACTGTAGGAGTAG TAAGCAGATGTCCTCCTTCCCCTGGACATCTCTTAGAGAGGAATGGACCCAGGCTGTCATTCC AGGAAGAACTGCAGAGCCTTCAGCCTCTCCAAACATGTAGGAGGAAATGAGGAAATCGCTGTG TTGTTAATGCAGAGANCAAACTCTGTTTAGTTGCAGGGGAAGTTTGGGATATACCCCAAAGTC CTCTACCCCCTCACTTTTATGGCCCTTTCCCTAGATATACTGCGGGATCTCTCCTTAGGATAA AGAGTTGCTGTTGAAGTTGTATATTTTTGATCAATATATTTTGGAAATTAAAGTTTCTGACTTT

FIGURE 74

MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPDLPA LQPHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQIN SEATFAELHIVHYDSDSYDSLSEAAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRHKDQ KTSVPPFNLRELLPKQLGQYFRYNGSLTTPPCYQSVLWTVFYRRSQISMEQLEKLQGTLFSTE EEPSKLLVQNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVGCLCLLLAVYFIARKI RKKRLENRKSVVFTSAQATTEA

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

FIGURE 75

TGCCGCTGCCGCCGCTGCTGTTGCTCCTGGCGGCGCCCTTGGGGGACGGGCAGTTCCCTGTG TCTCTGGTGGTTTGCCTAAACCTGCAAACATCACCTTCTTATCCATCAACATGAAGA<mark>ATG</mark>TCC TCACAAATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTTCTGTTGTCCTG ACAGCTCCAGAGAAGTGGAAGAGAAATCCAGAAGACCTTCCTGTTTCCATGCAACAAATATAC TCCAATCTGAAGTATAACGTGTCTGTGTTGAATACTAAATCAAACAGAACGTGGTCCCAGTGT GTGACCAACCACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTTACTGCGTACACGTG GAGTCCTTCGTCCCAGGGCCCCCTCGCCGTGCTCAGCCTTCTGAGAAGCAGTGTGCCAGGACT TTGAAAGATCAATCATCAGAGTTCAAGGCTAAAATCATCTTCTGGTATGTTTTGCCCATATCT ATTACCGTGTTTCTTTTTCTGTGATGGGCTATTCCATCTACCGATATATCCACGTTGGCAAA GAGAAACACCCAGCAAATTTGATTTTGATTTATGGAAATGAATTTGACAAAAGATTCTTTGTG CCTGCTGAAAAAATCGTGATTAACTTTATCACCCTCAATATCTCGGATGATTCTAAAATTTCT CATCAGGATATGAGTTTACTGGGAAAAAGCAGTGATGTATCCAGCCTTAATGATCCTCAGCCC AGCGGGAACCTGAGGCCCCCTCAGGAGGAAGAGAGGTGAAACATTTAGGGTATGCTTCGCAT TTGATGGAAATTTTTTGTGACTCTGAAGAAAACACGGAAGGTACTTCTCTCACCCAGCAAGAG TCCCTCAGCAGAACAATACCCCCGGATAAAACAGTCATTGAATATGAATATGATGTCAGAACC ACTGACATTTGTGCGGGGCCTGAAGAGCAGGAGCTCAGTTTGCAGGAGGAGGTGTCCACACAA GGAACATTATTGGAGTCGCAGGCAGCGTTGGCAGTCTTGGGCCCGCAAACGTTACAGTACTCA TACACCCCTCAGCTCCAAGACTTAGACCCCCTGGCGCAGGAGCACACAGACTCGGAGGAGGGG CCGGAGGAAGAGCCATCGACGACCCTGGTCGACTGGGATCCCCAAACTGGCAGGCTGTGTATT CCTTCGCTGTCCAGCTTCGACCAGGATTCAGAGGGCTGCGAGCCTTCTGAGGGGGATGGGCTC GGAGAGGAGGGTCTTCTATCTAGACTCTATGAGGAGCCGGCTCCAGACAGGCCACCAGGAGAA AATGAAACCTATCTCATGCAATTCATGGAGGAATGGGGGTTATATGTGCAGATGGAAAAC**TGA** TGCCAACACTTCCTTTTGCCTTTTGTTTCCTGTGCAAACAAGTGAGTCACCCCTTTGATCCCA GCCATAAAGTACCTGGGATGAAAGAAGTTTTTTCCAGTTTGTCAGTGTCTGTGAGAATTACTT ${\tt TGATGGTGGGCCTCTGGAGTCCAGGGGCTGGCCGGTTGTTCTATGCAGAGAAAGCAGTCAATA}$

FIGURE 76

MSYNGLHQRVFKELKLLTLCSISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQQ
IYSNLKYNVSVLNTKSNRTWSQCVTNHTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQCA
RTLKDQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFDKRF
FVPAEKIVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKHLGYA
SHLMEIFCDSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSLQEEVS
TQGTLLESQAALAVLGPQTLQYSYTPQLQDLDPLAQEHTDSEEGPEEEPSTTLVDWDPQTGRL
CIPSLSSFDQDSEGCEPSEGDGLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEWGLYVQMEN

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 140-163

N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

FIGURE 77

GAGGAGCGGGCCGAGGACTCCAGCGTGCCCAGGTCTGGCATCCTGCACTTGCTGCCCTCTGAC ${ t ACCTGGGAAG{ t ATG}}$ GCCGGCCCGTGGACCTTCACCCTTCTCTGTGGTTTGCTGGCAGCCACCTT GATCCAAGCCACCCTCAGTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGAAAA GCTGACACAGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGCTCAG TGCCATGCGGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCTGGTGAACACCGTCCT GAAGCACATCATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGAAGCCCTC GGCCAATGACCAGGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCAACACGCC CCTGGTCAAGACCATCGTGGAGTTCCACATGACGACTGAGGCCCAAGCCACCATCCGCATGGA CACCAGTGCAAGTGGCCCCACCCGCCTGGTCCTCAGTGACTGTGCCACCAGCCATGGGAGCCT GCGCATCCAACTGCTGTATAAGCTCTCCTTCCTGGTGAACGCCTTAGCTAAGCAGGTCATGAA CCTCCTAGTGCCATCCCTGCCCAATCTAGTGAAAAACCAGCTGTGTCCCGTGATCGAGGCTTC CTTCAATGGCATGTATGCAGACCTCCTGCAGCTGGTGAAGGTGCCCATTTCCCTCAGCATTGA CCGTCTGGAGTTTGACCTTCTGTATCCTGCCATCAAGGGTGACACCATTCAGCTCTACCTGGG GGCCAAGTTGTTGGACTCACAGGGAAAGGTGACCAAGTGGTTCAATAACTCTGCAGCTTCCCT GACAATGCCCACCCTGGACAACATCCCGTTCAGCCTCATCGTGAGTCAGGACGTGGTGAAAGC TGCAGTGGCTGCTGTCCTCTCCAGAAGAATTCATGGTCCTGTTGGACTCTGTGCTTCCTGA GAGTGCCCATCGGCTGAAGTCAAGCATCGGGCTGATCAATGAAAAGGCTGCAGATAAGCTGGG ATCTACCCAGATCGTGAAGATCCTAACTCAGGACACTCCCGAGTTTTTTATAGACCAAGGCCA TGCCAAGGTGGCCCAACTGATCGTGCTGGAAGTGTTTCCCTCCAGTGAAGCCCTCCGCCCTTT GTTCACCCTGGGCATCGAAGCCAGCTCGGAAGCTCAGTTTTACACCAAAGGTGACCAACTTAT ACTCAACTTGAATAACATCAGCTCTGATCGGATCCAGCTGATGAACTCTGGGATTGGCTGGTT CCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCCACTCCATCCTGCTGCCGAACCA GAATGGCAAATTAAGATCTGGGGTCCCAGTGTCATTGGTGAAGGCCTTGGGATTCGAGGCAGC TGAGTCCTCACTGACCAAGGATGCCCTTGTGCTTACTCCAGCCTCCTTGTGGAAACCCAGCTC ${\tt TCCTGTCTCCCAG} \underline{{\tt TGA}} {\tt AGACTTGGATGGCAGCCATCAGGGAAGGCTGGGTCCCAGCTGGGAGT}$

FIGURE 78

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAMR
EKPAGGIPVLGSLVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVK
TIVEFHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMNLLV
PSLPNLVKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYLGAKL
LDSQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVLPESAH
RLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEALRPLFTL
GIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIIHSILLPNQNGK
LRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQ

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

FIGURE 79

GAGAGAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAGA GCTTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGCC<u>ATG</u>GC CTCTCTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGGCCTTTTTGGGCACACTGGT TGCCATGCTGCTCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCATTGTGACAGCAGT CATCTATAGCACCCTTCTGGGCCTGCCCGCTGACATCCAGGCTGCCCAGGCCATGATGGTGAC ATCCAGTGCAATCTCCTCCCTGGCCTGCATTATCTCTGTGGTGGGCATGAGATGCACAGTCTT CTGCCAGGAATCCCGAGCCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTTCATCCTTGG AGGCCTCCTGGGATTCATTCCTGTTGCCTGGAATCTTCATGGGATCCTACGGGACTTCTACTC ACCACTGGTGCCTGACAGCATGAAATTTGAGATTGGAGAGGCTCTTTACTTGGGCATTATTTC TTCCCTGTTCTCCCTGATAGCTGGAATCATCCTCTGCTTTTCCTGCTCATCCCAGAGAAATCG CTCCAACTACTACGATGCCTACCAAGCCCAACCTCTTGCCACAAGGAGCTCTCCAAGGCCTGG ${\tt TCAACCTCCCAAAGTCAAGAGTGAGTTCAATTCCTACAGCCTGACAGGGTATGTG}{{\tt TGA}}{\tt AGAAC}$ CAGGGGCCAGAGCTGGGGTGGCTGGGTCTGTGAAAAACAGTGGACAGCACCCCGAGGGCCA CCATTGGATTGAGCAAAGGCAGAAATGGGGGCTAGTGTAACAGCATGCAGGTTGAATTGCCAA GGATGCTCGCCATGCCAGCCTTTCTGTTTTCCTCACCTTGCTGCTCCCCTGCCCTAAGTCCCC AACCCTCAACTTGAAACCCCATTCCCTTAAGCCAGGACTCAGAGGATCCCTTTGCCCTCTGGT AGACCCTCTCTCTGGCTGAGGTTGGCTCTTAGCTCATTGCTGGGGATGGGAAGGAGAAGCAGT GGCTTTTGTGGGCATTGCTCTAACCTACTTCTCAAGCTTCCCTCCAAAGAAACTGATTGGCCC TGGAACCTCCATCCCACTCTTGTTATGACTCCACAGTGTCCAGACTAATTTGTGCATGAACTG AAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAGGATGCAGGATGGGAGGACAGGAA GGCAGCCTGGGACATTTAAAAAAAATA

FIGURE 80

MASLGLQLVGYILGLLGTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGITQ CDIYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVAGGVFFI LGGLLGFIPVAWNLHGILRDFYSPLVPDSMKFEIGEALYLGIISSLFSLIAGIILCFSCSSQR NRSNYYDAYQAQPLATRSSPRPGQPPKVKSEFNSYSLTGYV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

FIGURE 81

TCCCCGCGTTCTCTTTCCACCTTTCTCTTCTTCCCACCTTAGACCTCCCTTCCTGCCCTCCTT TCCTGCCCACCGCTGCTTCCTGGCCCTTCTCCGACCCCGCTCTAGCAGCAGACCTCCTGGGGT CTGTGGGTTGATCTGTGGCCCCTGTGCCTCCGTGTCCTTTTCGTCTCCCCTTCCCCGACTCC ${\tt GCTCCCGGACCAGCGGCCTGACCCTGGGGAAAGG}$ GTTCTGCCTTTTCCATGGGAAGAGATACTCCCCCGGCGAGAGCTGGCACCCCTACTTGGAGCC ACAAGGCCTGATGTACTGCCTGCGCTGTACCTGCTCAGAGGGCGCCCCATGTGAGTTGTTACCG CCTCCACTGTCCGCCTGTCCACTGCCCCAGCCTGTGACGGAGCCACAGCAATGCTGTCCCAA GTGTGTGGAACCTCACACTCCCTCTGGACTCCGGGCCCCACCAAAGTCCTGCCAGCACAACGG GACCATGTACCAACACGGAGAGATCTTCAGTGCCCATGAGCTGTTCCCCTCCCGCCTGCCCAA CCAGTGTGTCCTCTGCAGCTGCACAGAGGGCCAGATCTACTGCGGCCTCACAACCTGCCCCGA ACCAGGCTGCCCAGCACCCCTCCCACTGCCAGACTCCTGCTGCCAAGCCTGCAAAGATGAGGC AAGTGAGCAATCGGATGAAGAGGACAGTGTGCAGTCGCTCCATGGGGTGAGACATCCTCAGGA TCCATGTTCCAGTGATGCTGGGAGAAAGAGAGGCCCGGGCACCCCAGCCCCACTGGCCTCAG GATCGTCCTGAAGGAGAAACATAAGAAAGCCTGTGTGCATGGCGGGAAGACGTACTCCCACGG GGAGGTGTGGCACCCGGCCTTCCGTGCCTTCGGCCCCTTGCCCTGCATCCTATGCACCTGTGA GGATGGCCGCCAGGACTGCCAGCGTGTGACCTGTCCCACCGAGTACCCCTGCCGTCACCCCGA GAAAGTGGCTGGGAAGTGCTGCAAGATTTGCCCAGAGGACAAAGCAGACCCTGGCCACAGTGA GATCAGTTCTACCAGGTGTCCCAAGGCACCGGGCCGGGTCCTCGTCCACACATCGGTATCCCC AAGCCCAGACAACCTGCGTCGCTTTGCCCTGGAACACGAGGCCTCGGACTTGGTGGAGATCTA CCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAGAGAGGTGAAGTACCTGGCCCAAG GCCACACAGCCAGAATCTTCCACTTGACTCAGATCAAGAAAGTCAGGAAGCAAGACTTCCAGA AAGAGGCACAGCACTTCCGACTGCTCGCTGGCCCCCACGAAGGTCACTGGAACGTCTTCCTAG CCCAGACCCTGGAGCTGAAGGTCACGGCCAGTCCAGACAAAGTGACCAAGACATAACAAAGAC ATTACCCTCAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 82

MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCTC
SEGAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIFSA
HELFPSRLPNQCVLCSCTEGQIYCGLTTCPEPGCPAPLPLPDSCCQACKDEASEQSDEEDSVQ
SLHGVRHPQDPCSSDAGRKRGPGTPAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKHKKAC
VHGGKTYSHGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKCCKICP
EDKADPGHSEISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLVKDEETE
AQRGEVPGPRPHSQNLPLDSDQESQEARLPERGTALPTARWPPRRSLERLPSPDPGAEGHGQS
RQSDQDITKT

Signal peptide:

amino acids 1-25

FIGURE 83

GACAGCTGTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTTGCCCTCCGCTCACGCAGA GTCACCTCTCCTGTCATCCGTTTCCATGCCGTGAGGTCCATTCACAGAACACATCC**ATG**GCTC TCATGCTCAGTTTGGTTCTGAGTCTCCTCAAGCTGGGATCAGGGCAGTGGCAGGTGTTTGGGC CAGACAAGCCTGTCCAGGCCTTGGTGGGGGGAGGACGCAGCATTCTCCTGTTTCCTGTCTCCTA AGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGGCCAGTTCTCTAGCGTGGTCCACC TCTACAGGGACGGAAGGACCAGCCATTTATGCAGATGCCACAGTATCAAGGCAGGACAAAAC TGGTGAAGGATTCTATTGCGGAGGGGCGCATCTCTCTGAGGCTGGAAAACATTACTGTGTTGG ATGCTGGCCTCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAAGGCCATCTGGGAGC TACAGGTGTCAGCACTGGGCTCAGTTCCTCTCATTTCCATCACGGGATATGTTGATAGAGACA TCCAGCTACTCTGTCAGTCCTCGGGCTGGTTCCCCCGGCCCACAGCGAAGTGGAAAGGTCCAC AGATCTCTCTGACCGTCCAAGAGAACGCCGGGAGCATATCCTGTTCCATGCGGCATGCTCATC TGAGCCGAGAGGTGGAATCCAGGGTACAGATAGGAGATACCTTTTTCGAGCCTATATCGTGGC ACCTGGCTACCAAAGTACTGGGAATACTCTGCTGTGGCCTATTTTTTGGCATTGTTGGACTGA AGATTTTCTTCTCCAAATTCCAGTGGAAAATCCAGGCGGAACTGGACTGGAGAAGAAAGCACG GACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGACTCTGGATCCAGAGACGG CTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATAGAAAAGCTCCCCAGGAGG TGCCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGGCTTCTCAGAGTTTCCAAGCAG GGAAACATTACTGGGAGGTGGACGGAGGACACAATAAAAGGTGGCGCGTGGGAGTGTGCCGGG ATGATGTGGACAGGAGGAAGGAGTACGTGACTTTGTCTCCCGATCATGGGTACTGGGTCCTCA GACTGAATGGAGAACATTTGTATTTCACATTAAATCCCCGTTTTATCAGCGTCTTCCCCAGGA CCCCACCTACAAAATAGGGGTCTTCCTGGACTATGAGTGTGGGACCATCTCCTTCTTCAACA TAAATGACCAGTCCCTTATTTATACCCTGACATGTCGGTTTGAAGGCTTATTGAGGCCCTACA TTGAGTATCCGTCCTATAATGAGCAAAATGGAACTCCCATAGTCATCTGCCCAGTCACCCAGG AATCAGAGAAAGAGGCCTCTTGGCAAAGGGCCTCTGCAATCCCAGAGACAAGCAACAGTGAGT $\texttt{CCTCCTCACAGGCAACCACGCCCTTCCTCCCCAGGGGTGAAATG} \underline{\textbf{TAG}} \texttt{GATGAATCACATCCCA}$ CATTCTTCTTTAGGGATATTAAGGTCTCTCTCCCAGATCCAAAGTCCCGCAGCAGCCGGCCAA GGTGGCTTCCAGATGAAGGGGGACTGGCCTGTCCACATGGGAGTCAGGTGTCATGGCTGCCCT GAGCTGGGAGGGAAGAAGGCTGACATTACATTTAGTTTGCTCTCACTCCATCTGGCTAAGTGA TCTTGAAATACCACCTCTCAGGTGAAGAACCGTCAGGAATTCCCATCTCACAGGCTGTGGTGT AGATTAAGTAGACAAGGAATGTGAATAATGCTTAGATCTTATTGATGACAGAGTGTATCCTAA TGGTTTGTTCATTATATTACACTTTCAGTAAAAAAA

FIGURE 84

MALMLSLVLSLLKLGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQFSSV
VHLYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQKAI
WELQVSALGSVPLISITGYVDRDIQLLCQSSGWFPRPTAKWKGPQGQDLSTDSRTNRDMHGLF
DVEISLTVQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLFFGIV
GLKIFFSKFQWKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAP
QEVPHSEKRFTRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLSPDHGYW
VLRLNGEHLYFTLNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTCRFEGLLR
PYIEYPSYNEQNGTPIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLPRGEM

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 239-255

FIGURE 85

CTGCTCTGGGGGAGGGGGGGGGGAAGGACAGACAAGTAAACTGCTGACGATGCAGAGTTCC GTGACGGTGCAGGAAGGCCTGTGTGTCCATGTGCCCTGCTCCTTCTCCTACCCCTCGCATGGC TGGATTTACCCTGGCCCAGTAGTTCATGGCTACTGGTTCCGGGAAGGGGCCAATACAGACCAG GATGCTCCAGTGGCCACAAACAACCCAGCTCGGGCAGTGTGGGAGGAGACTCGGGACCGATTC CACCTCCTTGGGGACCCACATACCAAGAATTGCACCCTGAGCATCAGAGATGCCAGAAGAAGT GATGCGGGGAGATACTTCTTTCGTATGGAGAAAGGAAGTATAAAATGGAATTATAAACATCAC CGGCTCTCTGTGAATGTGACAGCCTTGACCCACAGGCCCAACATCCTCATCCCAGGCACCCTG GAGTCCGGCTGCCCCAGAATCTGACCTGCTCTGTGCCCTGGGCCTGTGAGCAGGGGACACCC CCTATGATCTCCTGGATAGGGACCTCCGTGTCCCCCCTGGACCCCTCCACCACCCGCTCCTCG GTGCTCACCCTCATCCCACAGCCCCAGGACCATGGCACCAGCCTCACCTGTCAGGTGACCTTC CCTGGGGCCAGCGTGACCACGAACAAGACCGTCCATCTCAACGTGTCCTACCCGCCTCAGAAC TTGACCATGACTGTCTTCCAAGGAGACGGCACAGTATCCACAGTCTTGGGAAATGGCTCATCT CTGTCACTCCCAGAGGGCCAGTCTCTGCGCCTGGTCTGTGCAGTTGATGCAGTTGACAGCAAT CCCCTGCCAGGCTGAGCCTGAGCTGGAGAGGCCTGACCCTGTGCCCCTCACAGCCCTCAAAC CCGGGGGTGCTGGAGCTGCCTTGGGTGCACCTGAGGGATGCAGCTGAATTCACCTGCAGAGCT CAGAACCCTCTCGGCTCTCAGCAGGTCTACCTGAACGTCTCCCTGCAGAGCAAAGCCACATCA GGAGTGACTCAGGGGGTGGTCGGGGGGGGGGCCTGGAGCCCAGGCCCTGGTCTTCCTGC GTCATCTTCGTTGTAGTGAGGTCCTGCAGGAAGAAATCGGCAAGGCCAGCAGCGGGCGTGGGA CCTTGGGCAGAAGACAGTCCCCCAGACCAGCCTCCCCAGCTTCTGCCCGCTCCTCAGTGGGG GAAGGAGAGCTCCAGTATGCATCCCTCAGCTTCCAGATGGTGAAGCCTTGGGACTCGCGGGGA CAGGAGGCCACTGACACCGAGTACTCGGAGATCAAGATCCACAGA**TGA**GAAACTGCAGAGACT CACCCTGATTGAGGGATCACAGCCCCTCCAGGCAAGGGAGAAGTCAGAGGCTGATTCTTGTAG AATTAACAGCCCTCAACGTGATGAGCTATGATAACACTATGAATTATGTGCAGAGTGAAAAGC TTTAACTAAAAGACAGACAAATTCCTA

FIGURE 86

MLLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPCSFSYPSHGWIYPGPVVHGYWFR
EGANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLSIRDARRSDAGRYFFRMEKGSI
KWNYKHHRLSVNVTALTHRPNILIPGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVSPLD
PSTTRSSVLTLIPQPQDHGTSLTCQVTFPGASVTTNKTVHLNVSYPPQNLTMTVFQGDGTVST
VLGNGSSLSLPEGQSLRLVCAVDAVDSNPPARLSLSWRGLTLCPSQPSNPGVLELPWVHLRDA
AEFTCRAQNPLGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRSCRKKSA
RPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPPPASARSSVGEGELQYASLSFQMV
KPWDSRGQEATDTEYSEIKIHR

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 351-370

FIGURE 87

ACCCAAGGAAAGTGCAGCTGAGACTCAGACAAGATTACA**ATG**AACCAACTCAGCTTCCTGCTG ACCTGTTCTTCGTCTCCATCTCTGCCCAGAAGCTGCAAGGAAATCAAAGACGAATGTCCTAGT GCATTTGATGGCCTGTATTTTCTCCGCACTGAGAATGGTGTTATCTACCAGACCTTCTGTGAC ATGACCTCTGGGGGTGGCGGCTGGACCCTGGTGGCCAGCGTGCATGAGAATGACATGCGTGGG AAGTGCACGGTGGGCGATCGCTGGTCCAGTCAGCAGGGCAAAGCAGACTACCCAGAGGGG GACGGCAACTGGGCCAACTACAACACCTTTGGATCTGCAGAGGCGGCCACGAGCGATGACTAC AAGAACCCTGGCTACTACGACATCCAGGCCAAGGACCTGGGCATCTGGCACGTGCCCAATAAG ${\tt TCCCCCATGCAGCACTGGAGAAACAGCTCCCTGCTGAGGTACCGCACGGACACTGGCTTCCTC}$ CAGACACTGGGACATAATCTGTTTGGCATCTACCAGAAATATCCAGTGAAATATGGAGAAGGA AAGTGTTGGACTGACAACGGCCCGGTGATCCCTGTGGTCTATGATTTTGGCGACGCCCAGAAA ACAGCATCTTATTACTCACCCTATGGCCAGCGGGAATTCACTGCGGGATTTGTTCAGTTCAGG GTATTTAATAACGAGAGAGCAGCCAACGCCTTGTGTGCTGGAATGAGGGTCACCGGATGTAAC ACTGAGCATCACTGCATTGGTGGAGGAGGATACTTTCCAGAGGCCAGTCCCCAGCAGTGTGGA GATTTTTCTGGTTTTGATTGGAGTGGATATGGAACTCATGTTGGTTACAGCAGCAGCCGTGAG ATAACTGAGGCAGCTGTGCTTCTATTCTATCGT**TGA**GAGTTTTGTGGGAGGGAACCCAGACCT CTCCTCCCAACCATGAGATCCCAAGGATGGAGAACAACTTACCCAGTAGCTAGAATGTTAATG GCAGAAGAGAAAACAATAAATCATATTGACTCAAGAAAAAAA

FIGURE 88

MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRTENG
VIYQTFCDMTSGGGGWTLVASVHENDMRGKCTVGDRWSSQQGSKADYPEGDGNWANYNTFGSA
EAATSDDYKNPGYYDIQAKDLGIWHVPNKSPMQHWRNSSLLRYRTDTGFLQTLGHNLFGIYQK
YPVKYGEGKCWTDNGPVIPVVYDFGDAQKTASYYSPYGQREFTAGFVQFRVFNNERAANALCA
GMRVTGCNTEHHCIGGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSSREITEAAVLLFYR

Important features:

Signal peptide:

amino acids 1-16

N-glycosylation site.

amino acids 163-167

Glycosaminoglycan attachment sites.

amino acids 74-78, 289-293

N-myristoylation sites.

amino acids 76-82, 115-121, 124-130, 253-259, 292-298

FIGURE 89

FIGURE 90

 ${\tt MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLGL} \\ {\tt FAVELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVTEM} \\ {\tt ALFVTVFGLKKKPF} \\$

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

FIGURE 91

ACTCGCTGCTGCTTCGTGTTCCTGGTGCAGGGTAGCCTCTATCTGGTCATCTGTGGCCAGGAT GATGGTCCTCCCGGCTCAGAGGACCCTGAGCGTGATGACCACGAGGGCCAGCCCCGGCCCCGG GTGCCTCGGAAGCGGGCCACATCTCACCTAAGTCCCGCCCCATGGCCAATTCCACTCTCCTA GGGCTGCTGGCCCCGCCTGGGGAGGCTTGGGGCATTCTTGGGCAGCCCCCCAACCGCCCGAAC CACAGCCCCCACCTCAGCCAAGGTGAAGAAAATCTTTGGCTGGGGCGACTTCTACTCCAAC ATCAAGACGGTGGCCCTGAACCTGCTCGTCACAGGGAAGATTGTGGACCATGGCAATGGGACC TTCAGCGTCCACTTCCAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCCTCGTGCCC CCCAGTAAAGCTGTAGAGTTCCACCAGGAACAGCAGATCTTCATCGAAGCCAAGGCCTCCAAA ATCTTCAACTGCCGGATGGAGTGGGAGAAGGTAGAACGGGGCCGCCGGACCTCGCTTTGCACC CACGACCCAGCCAAGATCTGCTCCCGAGACCACGCTCAGAGCTCAGCCACCTGGAGCTGCTCC CAGCCCTTCAAAGTCGTCTGTGTCTACATCGCCTTCTACAGCACGGACTATCGGCTGGTCCAG AAGGTGTGCCCAGATTACAACTACCATAGTGATACCCCCTACTACCATCTGGG**TGA**CCCGGG GCAGGCCACAGAGGCCAGGCCAGGGCTGGAAGGACAGGCCTGCCCATGCAGGAGACCATCTGG GTGGGGCCAGGGCCAAGTCTCAAGTGGCAGAGAAAGGGTCCCAAGTGCTGGTCCCAACCTGAA GCTGTGGAGTGACTAGATCACAGGAGCACTGGAGGAGGAGTGGGCTCTCTGTGCAGCCTCACA GGGCTTTGCCACGGAGCCACAGAGAGATGCTGGGTCCCCGAGGCCTGTGGGCAGGCCGATCAG TGTGGCCCCAGATCAAGTCATGGGAGGAAGCTAAGCCCTTGGTTCTTGCCATCCTGAGGAAAG CCTAGTGGGCCCCTGAGCCCCTTGTCGTGTGCTGAGCATGGCATGAGGCTGAAGTGGCAACC ATTCCCTCTTCTGCCAGTACTCCCCCTGTACCACCCATTGCTGATGGCACACCCATCCTTAAG CCTCTTCCACCCCAACCCCTGCTGGCTCCTCTGGGAGCATCCATGTCCCGGAGAGGGGTCCCT CAACAGTCAGCCTCACCTGTCAGACCGGGGTTCTCCCGGATCTGGATGGCGCCGCCCTCTCAG CAGCGGCACGGTGGGGCCGGGCCGCAGAGCATGTGCTGGATCTGTTCTGTGTGTCT GTCTGTGGGTGGGGGGGGGGGGGGGGGAGTCTTGTGAAACCGCTGATTGCTGACTTTTGTGTGA AGAATCGTGTTCTTGGAGCAGGAAATAAAGCTTGCCCCGGGGCA

FIGURE 92

MQLTRCCFVFLVQGSLYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMANS TLLGLLAPPGEAWGILGQPPNRPNHSPPPSAKVKKIFGWGDFYSNIKTVALNLLVTGKIVDHG NGTFSVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGRRTS LCTHDPAKICSRDHAQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKVCPDYNYHSDTPYYPSG

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase

amino acids 61-71

FIGURE 93

FIGURE 94

MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDNK DGPTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGFGI MSGVFSFVNTLSDSLGPGTVGIHGDSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKKWGIL LIVLLTHLLVSAQTFISSYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKNFLLY NQRSR

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

FIGURE 95

AATTTTTCACCAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTGTACATTTTGCCTCG ${ t TGGACCCAAAGGTAGCAATCTGAAAC{ t ATG}}$ ${ t AGGAGTACGATTCTACTGTTTTGTCTTAGGAT}$ ATCAGGGAACACTACCAAACCAACAGCAGTCAAATCAGGTCTTTCCTTCTTTAAGTCTGATAC CATTAACACAGATGCTCACACTGGGGCCAGATCTGCATCTGTTAAATCCTGCTGCAGGAATGA CACCTGGTACCCAGACCCACCCATTGACCCTGGGAGGGTTGAATGTACAACAGCAACTGCACC CACATGTGTTACCAATTTTTGTCACACAACTTGGAGCCCAGGGCACTATCCTAAGCTCAGAGG AATTGCCACAAATCTTCACGAGCCTCATCATCCATTCCTTGTTCCCGGGAGGCATCCTGCCCA CCAGTCAGGCAGGGGCTAATCCAGATGTCCAGGATGGAAGCCTTCCAGCAGGAGGAGCAGGTG TAAATCCTGCCACCCAGGGAACCCCAGCAGGCCGCCTCCCAACTCCCAGTGGCACAGATGACG ACTTTGCAGTGACCACCCCTGCAGGCATCCAAAGGAGCACACATGCCATCGAGGAAGCCACCA ${\tt CAGAATCAGCAAATGGAATTCAG} \underline{{\tt TAA}} {\tt GCTGTTTCAAATTTTTTCAACTAAGCTGCCTCGAATT}$ TGGTGATACATGTGAATCTTTATCATTGATTATATTATGGAATAGATTGAGACACATTGGATA GTCTTAGAAGAAATTAATTCTTAATTTACCTGAAAATATTCTTGAAATTTCAGAAAATATGTT CTATGTAGAGAATCCCAACTTTTAAAAACAATAATTCAATGGATAAATCTGTCTTTGAAATAT

FIGURE 96

MRSTILLFCLLGSTRSLPQLKPALGLPPTKLAPDQGTLPNQQQSNQVFPSLSLIPLTQM LTLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG TDDDFAVTTPAGIQRSTHAIEEATTESANGIQ

Signal peptide:

amino acids 1-16

FIGURE 97

GCTCAAGTGCCCTGCCTTGCCCCACCCAGCCCAGCCTGGCCAGAGCCCCCTGGAGAAGGAGCT $\texttt{CATG} \texttt{GTCCCTGCCTGGCTGTGGCTGCTTTGTGTCTCCGTCCCCAGGCTCTCCCCAAGGCCCAAGGCCCCCAAGGCCCCAAGGCCCCAAGGCCCCAAGGCCCCAAGGCCCAAGGCCCCAAGGCCCCCAAGGCCCCAAGGCCCCAAGGCCCCAAGGCCCCAAGGCCCCAAGGCCCAAGGCCCCCAAGGCCCCAAGGCCCCAAGGCCCCAAGGCCCCAAGGCCCCAAGGCCCCAAGGCCCAAGGCCCCCAAGGCCCCCAAGGCCAAGGCCCCCAAGGCCCCCAAGGCCCCCAAGGCCCCCAAGGCCCCAAGGCCCCAAGGCCCCAAGGC$ GCCTGCAGAGCTGTCTGTGGAAGTTCCAGAAAACTATGGTGGAAATTTCCCTTTATACCTGAC CAAGTTGCCGCTGCCCCGTGAGGGGGCTGAAGGCCAGATCGTGCTGTCAGGGGACTCAGGCAA GGCAACTGAGGGCCCATTTGCTATGGATCCAGATTCTGGCTTCCTGCTGGTGACCAGGGCCCT GGACCGAGAGGAGCAGGCAGAGTACCAGCTACAGGTCACCCTGGAGATGCAGGATGGACATGT CTTGTGGGGTCCACAGCCTGTGCTTGTGCACGTGAAGGATGAGAATGACCAGGTGCCCCATTT CTCTCAAGCCATCTACAGAGCTCGGCTGAGCCGGGGTACCAGGCCTGGCATCCCCTTCCTCTT CCTTGAGGCTTCAGACCGGGATGAGCCAGGCACAGCCAACTCGGATCTTCGATTCCACATCCT GAGCCAGGCTCCAGCCCAGCCTTCCCCAGACATGTTCCAGCTGGAGCCTCGGCTGGGGGCTCT GGCCCTCAGCCCCAAGGGGAGCACCAGCCTTGACCACGCCCTGGAGAGGACCTACCAGCTGTT GGTACAGGTCAAGGACATGGGTGACCAGGCCTCAGGCCACCAGGCCACTGCCACCGTGGAAGT CTCCATCATAGAGAGCACCTGGGTGTCCCTAGAGCCTATCCACCTGGCAGAGAATCTCAAAGT CCTATACCCGCACCACATGGCCCAGGTACACTGGAGTGGGGGGTGATGTGCACTATCACCTGGA GAGCCATCCCCGGGACCCTTTGAAGTGAATGCAGAGGGAAACCTCTACGTGACCAGAGAGCT GGACAGAGAGCCCAGGCTGAGTACCTGCTCCAGGTGCGGGCTCAGAATTCCCATGGCGAGGA CTATGCGGCCCCTCTGGAGCTGCACGTGCTGGTGATGAGAATGACAACGTGCCTATCTG CCCTCCCGTGACCCCACAGTCAGCATCCCTGAGCTCAGTCCACCAGGTACTGAAGTGACTAG ACTGTCAGCAGAGGATGCAGATGCCCCCGGCTCCCCCAATTCCCACGTTGTGTATCAGCTCCT GAGCCCTGAGCCTGAGGATGGGGTAGAGGGGAGAGCCTTCCAGGTGGACCCCACTTCAGGCAG TGTGACGCTGGGGGTGCTCCCACTCCGAGCAGGCCAGAACATCCTGCTTCTGGTGCTGGCCAT GGACCTGGCAGGCGCAGAGGGTGGCTTCAGCAGCACGTGTGAAGTCGAAGTCGCAGTCACAGA TATCAATGATCACGCCCCTGAGTTCATCACTTCCCAGATTGGGCCTATAAGCCTCCCTGAGGA TGTGGAGCCCGGGACTCTGGTGGCCATGCTAACAGCCATTGATGCTGACCTCGAGCCCGCCTT CCGCCTCATGGATTTTGCCATTGAGAGGGGAGACACAGAAGGGACTTTTGGCCTGGATTGGGA GCCAGACTCTGGGCATGTTAGACTCAGACTCTGCAAGAACCTCAGTTATGAGGCAGCTCCAAG TCATGAGGTGGTGGTGGTGCAGAGTGTGGCGAAGCTGGTGGGGCCCAGGCCCAGGCCCTGG AGCCACCGCCACGGTGACTGTGCTAGTGGAGAGAGTGATGCCACCCCCAAGTTGGACCAGGA GAGCTACGAGGCCAGTGTCCCCATCAGTGCCCCAGCCGGCTCTTTCCTGCTGACCATCCAGCC CATTGAGAAATTCTCCGGGGAGGTGCACACCGCCCAGTCCCTGCAGGGCGCCCAGCCTGGGGA CACCTACACGGTGCTTGTGGAGGCCCAGGATACAGCCCTGACTCTTGCCCCTGTGCCCTCCCA ATACCTCTGCACACCCCGCCAAGACCATGGCTTGATCGTGAGTGGACCCAGCAAGGACCCCGA TCTGGCCAGTGGGCACGGTCCCTACAGCTTCACCCTTGGTCCCAACCCCACGGTGCAACGGGA ${\tt TTGGCGCCTCCAGACTCTCAATGGTTCCCATGCCTACCTCACCTTGGCCCTGCATTGGGTGGA}$ GCCACGTGAACACATAATCCCCGTGGTGGTCAGCCACAATGCCCAGATGTGGCAGCTCCTGGT TCGAGTGATCGTGTGTCGCTGCAACGTGGAGGGGCAGTGCATGCGCAAGGTGGGCCGCATGAA GGGCATGCCCACGAAGCTGTCGGCAGTGGGCATCCTTGTAGGCACCCTGGTAGCAATAGGAAT CTTCCTCATCCTCATTTTCACCCACTGGACCATGTCAAGGAAGAAGGACCCGGATCAACCAGC CTCTGGCTCCATCTGAGTCCCCTGGGAGAGAGCCCAGCACCCAAGATCCAGCAGGGGACAGGA CAGAGTAGAAGCCCCTCCATCTGCCCTGGGGTGGAGGCACCATCACCATCACCAGGCATGTCT GCAGAGCCTGGACACCAACTTTATGGACTGCCCATGGGAGTGCTCCAAATGTCAGGGTGTTTG AAAAAAAAAAAG

FIGURE 98

MVPAWLWLLCVSVPQALPKAQPAELSVEVPENYGGNFPLYLTKLPLPREGAEGQIVLSGDSGK
ATEGPFAMDPDSGFLLVTRALDREEQAEYQLQVTLEMQDGHVLWGPQPVLVHVKDENDQVPHF
SQAIYRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQPSPDMFQLEPRLGAL
ALSPKGSTSLDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAENLKV
LYPHHMAQVHWSGGDVHYHLESHPPGPFEVNAEGNLYVTRELDREAQAEYLLQVRAQNSHGED
YAAPLELHVLVMDENDNVPICPPRDPTVSIPELSPPGTEVTRLSAEDADAPGSPNSHVVYQLL
SPEPEDGVEGRAFQVDPTSGSVTLGVLPLRAGQNILLLVLAMDLAGAEGGFSSTCEVEVAVTD
INDHAPEFITSQIGPISLPEDVEPGTLVAMLTAIDADLEPAFRLMDFAIERGDTEGTFGLDWE
PDSGHVRLRLCKNLSYEAAPSHEVVVVVQSVAKLVGPGPGPGATATVTVLVERVMPPPKLDQE
SYEASVPISAPAGSFLLTIQPSDPISRTLRFSLVNDSEGWLCIEKFSGEVHTAQSLQGAQPGD
TYTVLVEAQDTALTLAPVPSQYLCTPRQDHGLIVSGPSKDPDLASGHGPYSFTLGPNPTVQRD
WRLQTLNGSHAYLTLALHWVEPREHIIPVVVSHNAQMWQLLVRVIVCRCNVEGQCMRKVGRMK
GMPTKLSAVGILVGTLVAIGIFLILIFTHWTMSRKKDPDQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

FIGURE 99

GGCTGACCGTGCTACATTGCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCCACGCC TGAGTCCAAGATTCTTCCCAGGAACACAAACGTAGGAGACCCACGCTCCTGGAAGCACCAGCC TTTATCTCTTCACCTTCAAGTCCCCTTTCTCAAGAATCCTCTGTTCTTTGCCCTCTAAAGTCT TGGTACATCTAGGACCCAGGCATCTTGCTTTCCAGCCACAAAGAGACAG**ATG**AAGATGCAGAA AGGAAATGTTCTCCTTATGTTTGGTCTACTATTGCATTTAGAAGCTGCAACAAATTCCAATGA GACTAGCACCTCTGCCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACAGCCACCAA CTCTGGGTCCAGTGTGACCTCCAGTGGGGTCAGCACAGCCACCATCTCAGGGTCCAGCGTGAC CTCCAATGGGGTCAGCATAGTCACCAACTCTGAGTTCCATACAACCTCCAGTGGGATCAGCAC AGCCACCAACTCTGAGTTCAGCACAGCGTCCAGTGGGATCAGCATAGCCACCAACTCTGAGTC CAGCACAACCTCCAGTGGGGCCAGCACAGCCACCAACTCTGAGTCCAGCACACCCTCCAGTGG GGCCAGCACAGTCACCAACTCTGGGTCCAGTGTGACCTCCAGTGGAGCCAGCACTGCCACCAA CTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACTGCCACCAACTCTGAGTCTAGCACACT CTCCAGTGGGGCCAGCACCACCAACTCTGACTCCAGCACAACCTCCAGTGGGGCTAGCAC AGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCCAGCACAGCCACCAACTCTGAGTC CAGCACAGTGTCCAGTAGGGCCAGCACTGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGG GGCCAGCACACCCAACTCTGAGTCCAGAACGACCTCCAATGGGGCTGGCACAGCCACCAA CTCTGAGTCCAGCACCACCTCCAGTGGGGCCAGCACACCCAACTCTGACTCCAGCACAGT GTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGCACCACCACTCCAGTGGGGCCAGCAC AGCCACCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCTAGCACAGCCACCAACTCTGACTC CAGCACAACCTCCAGTGGGGCCGGCACAGCCACCAACTCTGAGTCCAGCACAGTGTCCAGTGG GATCAGCACAGTCACCAATTCTGAGTCCAGCACACCCTCCAGTGGGGCCCAACACACCCCAA CTCTGAGTCCAGTACGACCTCCAGTGGGGCCAACACAGCCACCAACTCTGAGTCCAGCACAGT GTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGTCAGCAC AGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCTAGCACAGCCACCAACTCTGACTC CAGCACAACCTCCAGTGAGGCCAGCACCAGCCAACTCTGAGTCTAGCACAGTGTCCAGTGG GATCAGCACAGTCACCAATTCTGAGTCCAGCACAACCTCCAGTGGGGCCCAACACACCCAA CTCTGGGTCCAGTGTGACCTCTGCAGGCTCTGGAACAGCAGCTCTGACTGGAATGCACAAC TTCCCATAGTGCATCTACTGCAGTGAGTGAGGCAAAGCCTGGTGGGTCCCTGGTGCCGTGGGA CTGTGTGAGAAACAGCCTGTCCCTGAGAAACACCTTTAACACAGCTGTCTACCACCCTCATGG CCTCAACCATGGCCTTGGTCCAGGCCCTGGAGGGAATCATGGAGCCCCCCACAGGCCCAGGTG GAGTCCTAACTGGTTCTGGAGGAGACCAGTATCATCGATAGCCATGGAGATGAGCGGGAGGAA GAAAATCTTGAAGAAGGTATTCCTCACCTTTCTTGCCTTTACCAGACACTGGAAAGAGAATAC GTGCTTGCCCCGGGGTGGGTATCTAGCTCTGAGATGAACTCAGTTATAGGAGAAAACCTCCAT

FIGURE 100

MKMQKGNVLLMFGLLLHLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATIS
GSSVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSESS
TPSSGASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSSTTS
SGASTATNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTTSNGA
GTATNSESSTTSSGASTATNSDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSSGASTA
TNSDSSTTSSGAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGANTATNS
ESSTVSSGASTATNSESSTTSSGVSTATNSESSTTSSGASTATNSDSSTTSSEASTATNSESS
TVSSGISTVTNSESSTTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAVSEAKPGGS
LVPWEIFLITLVSVVAAVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGPGPGGNHGAP
HRPRWSPNWFWRRPVSSIAMEMSGRNSGP

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 510-532

FIGURE 101

GGCCGGACGCCTCCGCGTTACGGGATGAATTAACGGCGGGTTCCGCACGGAGGTTGTGACCCC TACGGAGCCCCAGCTTGCCCACGCACCCCACTCGGCGTCGCGCGGCGTGCCCTGCTTGTCACA GGTGGGAGGCTGGAACTATCAGGCTGAAAAACAGAGTGGGTACTCTCTTCTGGGAAGCTGGCA ACAAATGGATGATGTGATAT**ATG**CATTCCAGGGGAAGGGAAATTGTGGTGCTTCTGAACCCAT GGTCAATTAACGAGGCAGTTTCTAGCTACTGCACGTACTTCATAAAGCAGGACTCTAAAAGCT TTGGAATCATGGTGTCATGGAAAGGGATTTACTTTATACTGACTCTGTTTTTGGGGAAGCTTTT TTGGAAGCATTTTCATGCTGAGTCCCTTTTTACCTTTGATGTTTGTAAACCCATCTTGGTATC GCTGGATCAACAACCGCCTTGTGGCAACATGGCTCACCCTACCTGTGGCATTATTGGAGACCA TCATGAACCATCGGACAAGAATGGACTGGATGTTCCTGTGGAATTGCCTGATGCGATATAGCT CCATGCAGGCTGCCTATATCTTCATTCATAGGAAATGGAAGGATGACAAGAGCCATTTCG AAGACATGATTGATTACTTTTGTGATATTCACGAACCACTTCAACTCCTCATATTCCCAGAAG GGACTGATCTCACAGAAAACAGCAAGTCTCGAAGTAATGCATTTGCTGAAAAAAATGGACTTC AGAAATATGAATATGTTTTACATCCAAGAACTACAGGCTTTACTTTTGTGGTAGACCGTCTAA GAGAAGGTAAGAACCTTGATGCTGTCCATGATATCACTGTGGCGTATCCTCACAACATTCCTC AATCAGAGAAGCACCTCCTCCAAGGAGACTTTCCCAGGGAAATCCACTTTCACGTCCACCGGT ATCCAATAGACACCCTCCCCACATCCAAGGAGGACCTTCAACTCTGGTGCCACAAACGGTGGG AAGAGAAAGAAGAGAGGCTGCGTTCCTTCTATCAAGGGGAGAAGAATTTTTATTTTACCGGAC AGAGTGTCATTCCACCTTGCAAGTCTGAACTCAGGGTCCTTGTGGTCAAATTGCTCTATAC TGTATTGGACCCTGTTCAGCCCTGCAATGTGCCTACTCATATATTTGTACAGTCTTGTTAAGT GGTATTTTATAATCACCATTGTAATCTTTGTGCTGCAAGAGAGAATATTTGGTGGACTGGAGA TCATAGAACTTGCATGTTACCGACTTTTACACAAACAGCCACATTTAAATTCAAAGAAAAATG AG**TAA**GATTATAAGGTTTGCCATGTGAAAACCTAGAGCATATTTTGGAAATGTTCTAAACCTT TCTAAGCTCAGATGCATTTTTGCATGACTATGTCGAATATTTCTTACTGCCATCATTATTTGT TGTAATTTCGATACTGTGTACATAGCAGGGAGTGATCGGGGTGAAATAACTTGGGCCAGAATA TTATTAAACAATCATCAGGCTTTTAAA

FIGURE 102

MHSRGREIVVLLNPWSINEAVSSYCTYFIKQDSKSFGIMVSWKGIYFILTLFWGSFFGSIFML
SPFLPLMFVNPSWYRWINNRLVATWLTLPVALLETMFGVKVIITGDAFVPGERSVIIMNHRTR
MDWMFLWNCLMRYSYLRLEKICLKASLKGVPGFGWAMQAAAYIFIHRKWKDDKSHFEDMIDYF
CDIHEPLQLLIFPEGTDLTENSKSRSNAFAEKNGLQKYEYVLHPRTTGFTFVVDRLREGKNLD
AVHDITVAYPHNIPQSEKHLLQGDFPREIHFHVHRYPIDTLPTSKEDLQLWCHKRWEEKEERL
RSFYQGEKNFYFTGQSVIPPCKSELRVLVVKLLSILYWTLFSPAMCLLIYLYSLVKWYFIITI
VIFVLQERIFGGLEIIELACYRLLHKQPHLNSKKNE

Important features of the protein:

Signal peptide:

amino acids 1-22

Transmembrane domains:

amino acids 44-63, 90-108, 354-377

FIGURE 103

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCTCCACGGCTCCTGCGCCTGAGACAGCTGGCCTGA CCTCCAAATCATCCATCCACCCCTGCTGTCATCTGTTTTCATAGTGTGAGATCAACCCACAGG AATATCC**ATG**GCTTTTGTGCTCATTTTGGTTCTCAGTTTCTACGAGCTGGTGTCAGGACAGTG GCAAGTCACTGGACCGGGCAAGTTTGTCCAGGCCTTGGTGGGGGAGGACGCCGTGTTCTCCTG CTCCCTCTTTCCTGAGACCAGTGCAGAGGCTATGGAAGTGCGGTTCTTCAGGAATCAGTTCCA TGCTGTGGTCCACCTCTACAGAGATGGGGAAGACTGGGAATCTAAGCAGATGCCACAGTATCG CATCACTCCCTCGGACATCGGCCTGTATGGGTGCTGGTTCAGTTCCCAGATTTACGATGAGGA GGCCACCTGGGAGCTGCGGGTGGCACCTGGGCTCACTTCCTCATTTCCATCGTGGGATA TGTTGACGGAGGTATCCAGTTACTCTGCCTGTCCTCAGGCTGGTTCCCCCAGCCCACAGCCAA GTGGAAAGGTCCACAAGGACAGGATTTGTCTTCAGACTCCAGAGCAAATGCAGATGGGTACAG CCTGTATGATGTGGAGATCTCCATTATAGTCCAGGAAAATGCTGGGAGCATATTGTGTTCCAT CCACCTTGCTGAGCAGAGTCATGAGGTGGAATCCAAGGTATTGATAGGAGAGACGTTTTTCCA GCCCTCACCTTGGCGCCTGGCTTCTATTTTACTCGGGTTACTCTGTGGTGCCCTGTGTGGTGT TGTCATGGGGATGATAATTGTTTTCTTCAAATCCAAAGGGAAAATCCAGGCGGAACTGGACTG GAGAAGAAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGACTCT GGATCCAGAGACGGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATAGAAA AGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGGCTTCTCA GGGTTTCCAAGCAGGGAGACATTACTGGGAGGTGGACGTGGGACAAAATGTAGGGTGGTATGT GGGAGTGTGTCGGGATGACGTAGACAGGGGGAAGAACAATGTGACTTTGTCTCCCAACAATGG GTATTGGGTCCTCAGACTGACAACAGAACATTTGTATTTCACATTCAATCCCCATTTTATCAG CCTCCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTTCCTGGACTATGAGGGTGGGACCAT CTCCTTCTTCAATACAAATGACCAGTCCCTTATTTATACCCTGCTGACATGTCAGTTTGAAGG CTTGTTGAGACCCTATATCCAGCATGCGATGTATGACGAGGAAAAGGGGACTCCCATATTCAT CAGACACAGCCAAGGGAGAGTGCTCCCGACAGGTGGCCCCAGCTTCCTCTCCGGAGCCTGCGC ACAGAGAGTCACGCCCCCCACTCTCCTTTAGGGAGCTGAGGTTCTTCTGCCCTGAGCCCTGCA GCAGCGGCAGTCACAGCTTCCAGATGAGGGGGGGATTGGCCTGACCCTGTGGGAGTCAGAAGCC ATGGCTGCCCTGAAGTGGGGACGGAATAGACTCACATTAGGTTTAGTTTGTGAAAACTCCATC CAGCTAAGCGATCTTGAACAAGTCACAACCTCCCAGGCTCCTCATTTGCTAGTCACGGACAGT GATTCCTGCCTCACAGGTGAAGATTAAAGAGACAACGAATGTGAATCATGCTTGCAGGTTTGA GGGCACAGTGTTTGCTAATGATGTGTTTTTATATTATACATTTTCCCACCATAAACTCTGTTT GCTTATTCCACATTAATTTACTTTTCTCTATACCAAATCACCCATGGAATAGTTATTGAACAC CTGCTTTGTGAGGCTCAAAGAATAAAGAGGAGGTAGGATTTTTCACTGATTCTATAAGCCCAG CATTACCTGATACCAAAACCAGGCAAAGAAAACAGAAGAAGAAGAAGGAAGGAAAACTACAGGTCCA TATCCCTCATTAACACAGACACAAAAATTCTAAATAAAATTTTAACAAATTAAACTAAACAAT ATATTTAAAGATGATATATAACTACTCAGTGTGGTTTGTCCCACAAATGCAGAGTTGGTTTAA AAAAAAAA

FIGURE 104

MAFVLILVLSFYELVSGQWQVTGPGKFVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHAV
VHLYRDGEDWESKQMPQYRGRTEFVKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEEAT
WELRVAALGSLPLISIVGYVDGGIQLLCLSSGWFPQPTAKWKGPQGQDLSSDSRANADGYSLY
DVEISIIVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCGALCGVVM
GMIIVFFKSKGKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVTHRKAP
QEVPHSEKRFTRKSVVASQGFQAGRHYWEVDVGQNVGWYVGVCRDDVDRGKNNVTLSPNNGYW
VLRLTTEHLYFTFNPHFISLPPSTPPTRVGVFLDYEGGTISFFNTNDQSLIYTLLTCQFEGLL
RPYIQHAMYDEEKGTPIFICPVSWG

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

FIGURE 105

CCTTCACAGGACTCTTCATTGCTGGTTGGCA ATG ATGTATCGGCCAGATGTGGTGAGGGCTAGGAAAAGAGTTTGTTGGGAACCCTGGGTTATCGGCCTCGTCATCTTCATATCCCTGATTGTCCT GGCAGTGTGCATTGGACTCACTGTTCATTATGTGAGATATAATCAAAAGAAGACCTACAATTA CTATAGCACATTGTCATTTACAACTGACAAACTATATGCTGAGTTTGGCAGAGAGGCTTCTAA CAATTTTACAGAAATGAGCCAGAGACTTGAATCAATGGTGAAAAATGCATTTTATAAATCTCC ATTAAGGGAAGAATTTGTCAAGTCTCAGGTTATCAAGTTCAGTCAACAGAAGCATGGAGTGTT GGCTCATATGCTGTTGATTTGTAGATTTCACTCTACTGAGGATCCTGAAACTGTAGATAAAAT TGTTCAACTTGTTTTACATGAAAAGCTGCAAGATGCTGTAGGACCCCCTAAAGTAGATCCTCA AACACGAAGAAGTAAAACTCTAGGTCAGAGTCTCAGGATCGTTGGTGGGACAGAAGTAGAAGA GGGTGAATGGCCCTGGCAGGCTAGCCTGCAGTGGGATGGGAGTCATCGCTGTGGAGCAACCTT AATTAATGCCACATGGCTTGTGAGTGCTGCTCACTGTTTTACAACATATAAGAACCCTGCCAG ATGGACTGCTTCCTTTGGAGTAACAATAAAACCTTCGAAAATGAAACGGGGTCTCCGGAGAAT AATTGTCCATGAAAAATACAAACACCCATCACATGACTATGATATTTCTCTTGCAGAGCTTTC TAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTTGTCTCCCTGATGCATCCTATGAGTT TCAACCAGGTGATGTGATGTTTGTGACAGGATTTGGAGCACTGAAAAATGATGGTTACAGTCA AAATCATCTTCGACAAGCACAGGTGACTCTCATAGACGCTACAACTTGCAATGAACCTCAAGC TTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTTAGAAGGAAAAACAGATGC ATGCCAGGGTGACTCTGGAGGACCACTGGTTAGTTCAGATGCTAGAGATATCTGGTACCTTGC TGGAATAGTGAGCTGGGGAGATGAATGTGCGAAACCCAACAAGCCTGGTGTTTATACTAGAGT ${\tt TACGGCCTTGCGGGACTGGATTACTTCAAAAACTGGTATC} {\tt TAA}{\tt GAGACAAAAGCCTCATGGAA}$ CAGATAACATTTTTTTTTTTTTTTTTGGGTGTGGAGGCCATTTTTAGAGATACAGAATTGGAGA AGACTTGCAAAACAGCTAGATTTGACTGATCTCAATAAACTGTTTGCTTGATGCATGTATTTT CTTCCCAGCTCTGTTCCGCACGTAAGCATCCTGCTTCTGCCAGATCAACTCTGTCATCTGTGA GCAATAGTTGAAACTTTATGTACATAGAGAAATAGATAATACAATATTACATTACAGCCTGTA TTCATTTGTTCTCTAGAAGTTTTGTCAGAATTTTGACTTGTTGACATAAATTTGTAATGCATA TATACAATTTGAAGCACTCCTTTTCTTCAGTTCCTCAGCTCCTCTCATTTCAGCAAATATCCA TTTTCAAGGTGCAGAACAAGGAGTGAAAGAAAATATAAGAAGAAAAAATCCCCTACATTTTA TTGGCACAGAAAAGTATTAGGTGTTTTTCTTAGTGGAATATTAGAAATGATCATATTCATTAT GAAAGGTCAAGCAAAGACAGCAGAATACCAATCACTTCATCATTTAGGAAGTATGGGAACTAA GTTAAGGAAGTCCAGAAAGAAGCCAAGATATATCCTTATTTTCATTTCCAAACAACTACTATG ATAAATGTGAAGAAGATTCTGTTTTTTTGTGACCTATAATAATTATACAAACTTCATGCAATG TACTTGTTCTAAGCAAATTAAAGCAAATATTTATTTAACATTGTTACTGAGGATGTCAACATA TAACAATAAAATATAAATCACCCA

FIGURE 106

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTYNYYSTLSFTTDK
LYAEFGREASNNFTEMSQRLESMVKNAFYKSPLREEFVKSQVIKFSQQKHGVLAHMLLICRFH
STEDPETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTLGQS
LRIVGGTEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFGVTIK
PSKMKRGLRRIIVHEKYKHPSHDYDISLAELSSPVPYTNAVHRVCLPDASYEFQPGDVMFVTG
FGALKNDGYSQNHLRQAQVTLIDATTCNEPQAYNDAITPRMLCAGSLEGKTDACQGDSGGPLV
SSDARDIWYLAGIVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

Transmembrane domain:

amino acids 21-40 (type II)

FIGURE 107

AGAGAAAGAAGCGTCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCCGCGAAGAAGTTCCC CAGCGCCGACGATCGCTGCCGTTTTGCCCTTGGGAGTAGGATGTGGTGAAAGGATGGGGCTTC GCCCTCAATCTGCTCTTTTGGTTAATGTCCATCAGTGTGTTGGCAGTTTCTGCTTGGATGAGG GACTACCTAAATAATGTTCTCACTTTAACTGCAGAAACGAGGGTAGAGGAAGCAGTCATTTTG ACTTACTTTCCTGTGGTTCATCCGGTCATGATTGCTGTTTGCTGTTTCCTTATCATTGTGGGG ATGTTAGGATATTGTGGAACGGTGAAAAGAAATCTGTTGCTTCTTGCATGGTACTTTGGAAGT TTGCTTGTCATTTTCTGTGTAGAACTGGCTTGTGGCGTTTGGACATATGAACAGGAACTTATG GTTCCAGTACAATGGTCAGATATGGTCACTTTGAAAGCCAGGATGACAAATTATGGATTACCT GTATATTTCACTGACTGGTTGGAAATGACAGAGATGGACTGGCCCCCAGATTCCTGCTGTTT AGAGAATTCCCAGGATGTTCCAAACAGGCCCACCAGGAAGATCTCAGTGACCTTTATCAAGAG GGTTGTGGGAAGAAATGTATTCCTTTTTGAGAGGAACCAAACAACTGCAGGTGCTGAGGTTT CTGGGAATCTCCATTGGGGTGACACAAATCCTGGCCATGATTCTCACCATTACTCTGCTCTGG GCTCTGTATTATGATAGAAGGGAGCCTGGGACAGACCAAATGATGTCCTTGAAGAATGACAAC TCTCAGCACCTGTCATGTCCCTCAGTAGAACTGTTGAAACCAAGCCTGTCAAGAATCTTTGAA CACACATCCATGGCAAACAGCTTTAATACACACTTTGAGATGGAGGAGTTA**TAA**AAAGAAATG TCACAGAAGAAAACCACAAACTTGTTTTATTGGACTTGTGAATTTTTTGAGTACATACTATGTG TTTCAGAAATATGTAGAAATAAAAATGTTGCCATAAAATAACACCTAAGCATATACTATTCTA TGCTTTAAAATGAGGATGGAAAAGTTTCATGTCATAAGTCACCACCTGGACAATAATTGATGC CCTTAAAATGCTGAAGACAGATGTCATACCCACTGTGTAGCCTGTGTATGACTTTTACTGAAC ACAGTTATGTTTTGAGGCAGCATGGTTTGATTAGCATTTCCGCATCCATGCAAACGAGTCACA TATGGTGGGACTGGAGCCATAGTAAAGGTTGATTTACTTCTACCAACTAGTATATAAAGTACT AATTAAATGCTAACATAGGAAGTTAGAAAATACTAATAACTTTTATTACTCAGCGATCTATTC TTCTGATGCTAAATAAATTATATATCAGAAAACTTTCAATATTGGTGACTACCTAAATGTGAT TTTTGCTGGTTACTAAAATATTCTTACCACTTAAAAGAGCAAGCTAACACATTGTCTTAAGCT GATCAGGGATTTTTTGTATATAAGTCTGTGTTAAATCTGTATAATTCAGTCGATTTCAGTTCT GATAATGTTAAGAATAACCATTATGAAAAGGAAAATTTGTCCTGTATAGCATCATTATTTTTA GCCTTTCCTGTTAATAAAGCTTTACTATTCTGTCCTGGGCTTATATTACACATATAACTGTTA TTTAAATACTTAACCACTAATTTTGAAAATTACCAGTGTGATACATAGGAATCATTATTCAGA ATGTAGTCTGGTCTTTAGGAAGTATTAATAAGAAAATTTGCACATAACTTAGTTGATTCAGAA AGGACTTGTATGCTGTTTTTCTCCCAAATGAAGACTCTTTTTGACACTAAACACTTTTTAAAA AGCTTATCTTTGCCTTCTCCAAACAAGAAGCAATAGTCTCCAAGTCAATATAAATTCTACAGA AAATAGTGTTCTTTTTCTCCAGAAAAATGCTTGTGAGAATCATTAAAACATGTGACAATTTAG AGATTCTTTGTTTTATTTCACTGATTAATATACTGTGGCAAATTACACAGATTATTAAATTTT TTTACAAGAGTATAGTATATTTATTTGAAATGGGAAAAGTGCATTTTACTGTATTTTGTGTAT TAA

FIGURE 108

MAREDSVKCLRCLLYALNILIFWLMSISVLAVSAWMRDYLNNVLTLTAETRVEEAVILTYFPVV
HPVMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQWS
DMVTLKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREFPGC
SKQAHQEDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWALYYDR
REPGTDQMMSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

FIGURE 109

CCAAGGCCAGAGCTGTGGACACCTTATCCCACTCATCCTCATCCTCTTCCTCTGATAAAGCCC AAGAGAAGGGGACAAAGGAACACCAGTATTAAGAGGATTTTCCAGTGTTTCTGGCAGTTGGTC CAGAAGG**ATG**CCTCCATTCCTGCTTCTCACCTGCCTCTTCATCACAGGCACCTCCGTGTCACC CGTGGCCCTAGATCCTTGTTCTGCTTACATCAGCCTGAATGAGCCCTGGAGGAACACTGACCA CCAGTTGGATGAGTCTCAAGGTCCTCCTCTATGTGACAACCATGTGAATGGGGAGTGGTACCA CTTCACGGGCATGCCGGGAGATGCCATGCCTACCTTCTGCATACCAGAAAACCACTGTGGAAC CCACGCACCTGTCTGGCTCAATGGCAGCCACCCCCTAGAAGGCGACGGCATTGTGCAACGCCA GGCTTGTGCCAGCTTCAATGGGAACTGCTGTCTCTGGAACACCACGGTGGAAGTCAAGGCTTG CCCTGGAGGCTACTATGTGTATCGTCTGACCAAGCCCAGCGTCTGCTTCCACGTCTACTGTGG TCATTTTTATGACATCTGCGACGAGGACTGCCATGGCAGCTGCTCAGATACCAGCGAGTGCAC GCAAAACAACGGTGGCTGCAGTGAGATCTGTGTGAACCTCAAAAACTCCTACCGCTGTGAGTG TGGGGTTGGCCGTGTGCTAAGAAGTGATGGCAAGACTTGTGAAGACGTTGAAGGATGCCACAA TAACAATGGTGGCTGCAGCCACTCTTGCCTTGGATCTGAGAAAGGCTACCAGTGTGAATGTCC CCGGGGCCTGGTGCTGTCTGAGGATAACCACACTTGCCAAGTCCCTGTGTTGTGCAAATCAAA TGCCATTGAAGTGAACATCCCCAGGGAGCTGGTTGGTGGCCTGGAGCTCTTCCTGACCAACAC CTCCTGCCGAGGAGTGTCCAACGGCACCCATGTCAACATCCTCTTCTCTCAAGACATGTGG TACAGTGGTCGATGTGGTGAATGACAAGATTGTGGCCAGCAACCTCGTGACAGGTCTACCCAA GCAGACCCCGGGGAGCAGCGGGGACTTCATCATCCGAACCAGCAAGCTGCTGATCCCGGTGAC CTGCGAGTTTCCACGCCTGTACACCATTTCTGAAGGATACGTTCCCAACCTTCGAAACTCCCC ACTGGAAATCATGAGCCGAAATCATGGGATCTTCCCATTCACTCTGGAGATCTTCAAGGACAA TGAGTTTGAAGAGCCTTACCGGGAAGCTCTGCCCACCCTCAAGCTTCGTGACTCCCTCTACTT TGGCATTGAGCCCGTGGTGCACGTGAGCGGCTTGGAAAGCTTGGTGGAGAGCTGCTTTGCCAC CCCCACCTCCAAGATCGACGAGGTCCTGAAATACTACCTCATCCGGGATGGCTGTGTTTCAGA TGACTCGGTAAAGCAGTACACATCCCGGGATCACCTAGCAAAGCACTTCCAGGTCCCTGTCTT CAAGTTTGTGGGCAAAGACCACAAGGAAGTGTTTCTGCACTGCCGGGTTCTTGTCTGTGGAGT GTTGGACGAGCGTTCCCGCTGTGCCCAGGGTTGCCACCGGCGAATGCGTCGTGGGGCAGGAGG $\mathsf{GGAC} \underline{\mathbf{TAG}} \mathtt{TTCGTAGCCATACCTCGAGTCCCTGCATTGGACGGCTCTGCTCTTTGGAGCTTCTC}$ CCCCCACCGCCCTCTAAGAACATCTGCCAACAGCTGGGTTCAGACTTCACACTGTGAGTTCAG ACTCCCAGCACCAACTCACTCTGATTCTGGTCCATTCAGTGGGCACAGGTCACAGCACTGCTG AACAATGTGGCCTGGGTGGGGTTTCATCTTTCTAGGGTTGAAAACTAAACTGTCCACCCAGAA AGACACTCACCCCATTTCCCTCATTTCTTTCCTACACTTAAATACCTCGTGTATGGTGCAATC AGACCACAAAATCAGAAGCTGGGTATAATATTTCAAGTTACAAACCCTAGAAAAATTAAACAG TTACTGAAATTATGACTTAAATACCCAATGACTCCTTAAATATGTAAATTATAGTTATACCTT GAAATTTCAATTCAAATGCAGACTAATTATAGGGAATTTGGAAGTGTATCAATAAAACAGTAT ATAATTT

FIGURE 110

MPPFLLLTCLFITGTSVSPVALDPCSAYISLNEPWRNTDHQLDESQGPPLCDNHVNGEWYHFT
GMAGDAMPTFCIPENHCGTHAPVWLNGSHPLEGDGIVQRQACASFNGNCCLWNTTVEVKACPG
GYYVYRLTKPSVCFHVYCGHFYDICDEDCHGSCSDTSECTCAPGTVLGPDRQTCFDENECEQN
NGGCSEICVNLKNSYRCECGVGRVLRSDGKTCEDVEGCHNNNGGCSHSCLGSEKGYQCECPRG
LVLSEDNHTCQVPVLCKSNAIEVNIPRELVGGLELFLTNTSCRGVSNGTHVNILFSLKTCGTV
VDVVNDKIVASNLVTGLPKQTPGSSGDFIIRTSKLLIPVTCEFPRLYTISEGYVPNLRNSPLE
IMSRNHGIFPFTLEIFKDNEFEEPYREALPTLKLRDSLYFGIEPVVHVSGLESLVESCFATPT
SKIDEVLKYYLIRDGCVSDDSVKQYTSRDHLAKHFQVPVFKFVGKDHKEVFLHCRVLVCGVLD
ERSRCAQGCHRRMRRGAGGEDSAGLQGQTLTGGPIRIDWED

Important features of the protein:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 89-93, 116-120, 259-263, 291-295, 299-303

Tyrosine kinase phosphorylation sites.

amino acids 411-418, 443-451

N-myristoylation sites.

amino acids 226-232, 233-239, 240-246, 252-258, 296-302, 300-306, 522-528, 531-537

Aspartic acid and asparagine hydroxylation site.

amino acids 197-209

ZP domain proteins.

amino acids 431-457

Calcium-binding EGF-like proteins.

amino acids 191-212, 232-253

FIGURE 111

GAGAGAGGCAGCAGCTTGCTCAGCGGACAAGGATGCTGGGCGTGAGGGACCAAGGCCTGCCCT TGTGTGGGGAGGCCCTCCTGCTGCCTTGGGGTGACAATCTCAGCTCCAGGCTACAGGGAGACC GGGAGGATCACAGAGCCAGC**ATC**TTACAGGATCCTGACAGTGATCAACCTCTGAACAGCCTCG ATGTCAAACCCCTGCGCAAACCCCGTATCCCCATGGAGACCTTCAGAAAGGTGGGGATCCCCA TCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGTGGTTGTCCTCATCAAGGTGATTC TGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCCGAGGAAGCAGCTGTGTG ACGGAGAGCTGGACTGTCCCTTGGGGGAGGACGAGGAGCACTGTGTCAAGAGCTTCCCCGAAG GGCCTGCAGTGGCAGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGGACTCGGCCA CAGGGAACTGGTTCTCTGCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAGACAGCCTGTA GGCAGATGGGCTACAGCAGAGCTGTGGAGATTGGCCCAGACCAGGATCTGGATGTTGTAAA TCACAGAAAACAGCCAGGAGCTTCGCATGCGGAACTCAAGTGGGCCCTGTCTCTCAGGCTCCC AGGAGGCCTCTGTGGATTCTTGGCCTTGGCAGGTCAGCATCCAGTACGACAAACAGCACGTCT GTGGAGGGAGCATCCTGGACCCCCACTGGGTCCTCACGGCAGCCCACTGCTTCAGGAAACATA CCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGGCAGCTTCCCATCCCTGG CTGTGGCCAAGATCATCATTGAATTCAACCCCATGTACCCCAAAGACAATGACATCGCCC TTGATGAGGAGCTCACTCCAGCCACCCCACTCTGGATCATTGGATGGGGCTTTACGAAGCAGA ATGGAGGGAAGATGTCTGACATACTGCTGCAGGCGTCAGTCCAGGTCATTGACAGCACACGGT GCAATGCAGACGATGCGTACCAGGGGGAAGTCACCGAGAAGATGATGTGTGCAGGCATCCCGG AAGGGGGTGTGGACACCTGCCAGGGTGACAGTGGTGGCCCCTGATGTACCAATCTGACCAGT GGCATGTGGTGGGCATCGTTAGCTGGGGGCTATGGCTGCGGGGGCCCCGAGCACCCCAGGAGTAT ACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATGTCTGGAAGGCTGAGCTG**TAA**TGCT GCTGCCCCTTTGCAGTGCTGGGAGCCGCTTCCTTCCTGCCCTGCCCACCTGGGGATCCCCCAA AGTCAGACACAGAGCAAGAGTCCCCTTGGGTACACCCCTCTGCCCACAGCCTCAGCATTTCTT GGAGCAGCAAAGGGCCTCAATTCCTGTAAGAGACCCTCGCAGCCCAGAGGCGCCCAGAGGAAG TCAGCAGCCCTAGCTCGGCCACACTTGGTGCTCCCAGCATCCCAGGGAGAGACACAGCCCACT GAACAAGGTCTCAGGGGTATTGCTAAGCCAAGAAGGAACTTTCCCACACTACTGAATGGAAGC AGGCTGTCTTGTAAAAGCCCAGATCACTGTGGGCTGGAGAGGAAAGGAAAGGGTCTGCGCCA GCCCTGTCCGTCTTCACCCATCCCCAAGCCTACTAGAGCAAGAAACCAGTTGTAATATAAAAT GCACTGCCCTACTGTTGGTATGACTACCGTTACCTACTGTTGTCATTGTTATTACAGCTATGG

FIGURE 112

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYYFL
CGQPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDSATGNWFSA
CFDNFTEALAETACRQMGYSRAVEIGPDQDLDVVEITENSQELRMRNSSGPCLSGSLVSLHCL
ACGKSLKTPRVVGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDVFNWK
VRAGSDKLGSFPSLAVAKIIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLPFFDEELTP
ATPLWIIGWGFTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPEGGVDTC
QGDSGGPLMYQSDQWHVVGIVSWGYGCGGPSTPGVYTKVSAYLNWIYNVWKAEL

Transmembrane domain:

amino acids 32-53 (typeII)

FIGURE 113

GGCTGGACTGGAACTCCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGAT TATAGGTGTAAGCCACCGTGTCTGGGCCTCTGAACAACTTTTTCAGCAACTAAAAAAGCCACAG ${\tt GAGTTGAACTGCTAGGATTCTGACT}$ AAAATCTGTTTTTTGTTCTCTTGTAACTAGCCTTTACCTTCCTAACACAGAGGATCTGTCACT GTGGCTCTGGCCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTTCTACCCACACCGT CCCCTCGAAGCCGGGGACAGCCTCACCTTGCTGGCCTCTCGCTGGAGCAGTGCCCTCACCAAC TGTCTCACGTCTGGAGGCACTGACTCGGGCAGTGCAGGTAGCTGAGCCTCTTGGTAGCTGCGG $\tt CTTTCAAGGTGGGCCTTGCCCTGGCCGTAGAAGGGGAT\\ {\color{red} TGA} CAAGCCCGAAGATTTCATAGGCG$ ATGGCTCCCACTGCCCAGGCATCAGCCTTGCTGTAGTCAATCACTGCCCTGGGGCCAGGACGG CATGTCCTGCACATCACCTGATCCATGGGCTAATCTGAACTCTGTCCCAAGGAACCCAGAGCT TGAGTGAGCTGTGGCTCAGACCCAGAAGGGGTCTGCTTAGACCACCTGGTTTATGTGACAGGA TGCCAAATTATGGGTCAGAAAAGATGGAGGTGTTGGGTTATCACAAGGCATCGAGTCTCCTGC ATTCAGTGGACATGTGGGGGAAGGGCTGCCGATGGCGCATGACACACTCGGGACTCACCTCTG GGGCCATCAGACAGCCGTTTCCGCCCCGATCCACGTACCAGCTGCTGAAGGGCAACTGCAGGC GGAAGGAGCAAGCAAAGTGACCATTTCTCCTCCCCTCCTTCCCTCTGAGAGGCCCTCCTATGT CCCTACTAAAGCCACCAGCAAGACATAGCTGACAGGGGCTAATGGCTCAGTGTTGGCCCAGGA GGTCAGCAAGGCCTGAGAGCTGATCAGAAGGGCCTGCTGTGCGAACACGGAAATGCCTCCAGT AAGCACAGGCTGCAAAATCCCCAGGCAAAGGACTGTGTGGCTCAATTTAAATCATGTTCTAGT AATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGGTTCAAATGATCTCCAAGGGCCCT TATACCCCAGGAGACTTTGATTTGAATTTGAAACCCCAAATCCAAACCTAAGAACCAGGTGCA TTAAGAATCAGTTATTGCCGGGTGTGGTGGCCTGTAATGCCAACATTTTGGGAGGCCGAGGCG GGTAGATCACCTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCCTGTCTC TACTAAAAATACAAAAAAACTAGCCAGGCATGGTGGTGTGTGCCTGTATCCCAGCTACTCGGG AGGCTGAGACAGGAGAATTACTTGAACCTGGGAGGTGAAGGAGGCTGAGACAGGAGAATCACT GTAA

FIGURE 114

MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTAS PCWPLAGAVPSPTVSRLEALTRAVQVAEPLGSCGFQGGPCPGRRRD

Signal peptide:

amino acids 1-15

FIGURE 115

 ${\tt CAGCAGTGGTCTCTCAGTCCTCTAAAGCAAGGAAAGAGTACTGTGTGCTGAGAGACC} \underline{{\tt ATG}} {\tt GC}$ AAAGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAAGCTTTTAAATCCAA GAAAATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTGGTATCCTGGCCCTAACTCTAAT TGTCCTGTTTTGGGGGGAGCAAGCACTTCTGGCCGGAGGTACCCAAAAAAAGCCTATGACATGGA GCACACTTTCTACAGCAATGGAGAGAAGAAGAAGATTTACATGGAAATTGATCCTGTGACCAG AACTGAAATATTCAGAAGCGGAAATGGCACTGATGAAACATTGGAAGTGCACGACTTTAAAAA CGGATACACTGGCATCTACTTCGTGGGTCTTCAAAAATGTTTTATCAAAACTCAGATTAAAGT GATTCCTGAATTTTCTGAACCAGAAGAGGAAATAGATGAGAATGAAGAAATTACCACAACTTT CTTTGAACAGTCAGTGATTTGGGTCCCAGCAGAAAAGCCTATTGAAAACCGAGATTTTCTTAA AAATTCCAAAATTCTGGAGATTTGTGATAACGTGACCATGTATTGGATCAATCCCACTCTAAT ATCAGTTTCTGAGTTACAAGACTTTGAGGAGGAGGAGAAGATCTTCACTTTCCTGCCAACGA AAAAAAAGGGATTGAACAAAATGAACAGTGGGTGGTCCCTCAAGTGAAAGTAGAGAAGACCCG TCACGCCAGACAAGCAAGTGAGGAAGAACTTCCAATAAATGACTATACTGAAAATGGAATAGA ATTTGATCCCATGCTGGATGAGAGAGGTTATTGTTGTATTTACTGCCGTCGAGGCAACCGCTA TTGCCGCCGCGTCTGTGAACCTTTACTAGGCTACTACCCATATCCATACTGCTACCAAGGAGG CAATGAATTTCTGCCTATGAGGCATCTGGCCCCTGGTAGCCAGCTCTCCAGAATTACTTGTAG

FIGURE 116

MAKNPPENCEDCHILNAEAFKSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAYD
MEHTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKTQI
KVIPEFSEPEEEIDENEEITTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWINPT
LISVSELQDFEEEGEDLHFPANEKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDYTENG
IEFDPMLDERGYCCIYCRRGNRYCRRVCEPLLGYYPYPYCYQGGRVICRVIMPCNWWVARMLGRV

Important features of the protein:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

FIGURE 117

GAGCTCCCCTCAGGAGCGCGTTAGCTTCACACCTTCGGCAGCAGGAGGGCGGCAGCTTCTCGC ${\tt AGGCGGCAGGGCGGCCAGGATC} {\tt ATG} {\tt TCCACCACCACTGCCAAGTGGTGGCGTTCCTCC}$ TGTCCATCCTGGGGCTGCCGGCTGCATCGCGGCCACCGGGATGGACATGTGGAGCACCCAGG ACCTGTACGACAACCCCGTCACCTCCGTGTTCCAGTACGAAGGGCTCTGGAGGAGCTGCGTGA GGCAGAGTTCAGGCTTCACCGAATGCAGGCCCTATTTCACCATCCTGGGACTTCCAGCCATGC TGCAGGCAGTGCGAGCCCTGATGATCGTAGGCATCGTCCTGGGTGCCATTGGCCTCCTGGTAT CCATCTTTGCCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTGCCAAAGCCAACATGA CACTGACCTCCGGGATCATGTTCATTGTCTCAGGTCTTTTGTGCAATTGCTGGAGTGTCTGTGT TTGCCAACATGCTGGTGACTAACTTCTGGATGTCCACAGCTAACATGTACACCGGCATGGGTG GGATGGTGCAGACTGTTCAGACCAGGTACACATTTGGTGCGGCTCTGTTCGTGGGCTGGGTCG CTGGAGGCCTCACACTAATTGGGGGTGTGATGATGTGCATCGCCTGCCGGGGCCTGGCACCAG AAGAAACCAACTACAAAGCCGTTTCTTATCATGCCTCAGGCCACAGTGTTGCCTACAAGCCTG GAGGCTTCAAGGCCAGCACTGGCTTTGGGTCCAACACCAAAAACAAGAAGATATACGATGGAG GTGCCCGCACAGAGGACGAGGTACAATCTTATCCTTCCAAGCACGACTATGTG**TAA**TGCTCTA AGACCTCTCAGCACGGGCGGAAGAAACTCCCGGAGAGCTCACCCAAAAAACAAGGAGATCCCA TCTAGATTTCTTCTTGCTTTTGACTCACAGCTGGAAGTTAGAAAAGCCTCGATTTCATCTTTG GAGAGGCCAAATGGTCTTAGCCTCAGTCTCTGTCTCTAAATATTCCACCATAAAACAGCTGAG TTATTTATGAATTAGAGGCTATAGCTCACATTTTCAATCCTCTATTTCTTTTTAAATATAA ACTCCCCTCTTCCTCCTAGTCAATAAACCCATTGATGATCTATTTCCCAGCTTATCCCCAAG AAAACTTTTGAAAGGAAAGAGTAGACCCAAAGATGTTATTTTCTGCTGTTTTGAATTTTTGTCTC CCCACCCCAACTTGGCTAGTAATAAACACTTACTGAAGAAGAAGCAATAAGAGAAAGATATT TGTAATCTCTCCAGCCCATGATCTCGGTTTTCTTACACTGTGATCTTAAAAGTTACCAAACCA AAGTCATTTTCAGTTTGAGGCAACCAAACCTTTCTACTGCTGTTGACATCTTCTTATTACAGC AACACCATTCTAGGAGTTTCCTGAGCTCTCCACTGGAGTCCTCTTTCTGTCGCGGGTCAGAAA TTGTCCCTAGATGAATGAGAAAATTATTTTTTTTAATTTAAGTCCTAAATATAGTTAAAATAA ATAATGTTTTAGTAAAATGATACACTATCTCTGTGAAATAGCCTCACCCCTACATGTGGATAG AAGGAAATGAAAAATAATTGCTTTGACATTGTCTATATGGTACTTTGTAAAGTCATGCTTAA GTACAAATTCCATGAAAAGCTCACACCTGTAATCCTAGCACTTTGGGAGGCTGAGGAGGAAGG ATCACTTGAGCCCAGAAGTTCGAGACTAGCCTGGGCAACATGGAGAAGCCCTGTCTCTACAAA ATACAGAGAGAAAAATCAGCCAGTCATGGTGGCATACACCTGTAGTCCCAGCATTCCGGGAG GCTGAGGTGGGAGGATCACTTGAGCCCAGGGAGGTTGGGGCCTGCAGTGAGCCATGATCACACC ACACAGCAAGTCCTAGGAAGTAGGTTAAAACTAATTCTTTAA

FIGURE 118

MSTTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTEC
RPYFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIMFI
VSGLCAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTLIGG
VMMCIACRGLAPEETNYKAVSYHASGHSVAYKPGGFKASTGFGSNTKNKKIYDGGARTEDEVQ
SYPSKHDYV

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

FIGURE 119

GGAAAAACTGTTCTCTTCTGTGGCACAGAGAACCCTGCTTCAAAGCAGAAGTAGCAGTTCCGG AGTCCAGCTGGCTAAAACTCATCCCAGAGGATA**ATG**GCAACCCATGCCTTAGAAATCGCTGGG CTGTTTCTTGGTGGTGTTGGAATGGTGGGCACAGTGGCTGTCACTGTCATGCCTCAGTGGAGA GTGTCGGCCTTCATTGAAAACAACATCGTGGTTTTTTGAAAACTTCTGGGAAGGACTGTGGATG AATTGCGTGAGGCAGGCTAACATCAGGATGCAGTGCAAAATCTATGATTCCCTGCTGGCTCTT TCTCCGGACCTACAGGCAGCCAGAGGACTGATGTGTGCTGCTTCCGTGATGTCCTTCTTGGCT TTCATGATGGCCATCCTTGGCATGAAATGCACCAGGTGCACGGGGGACAATGAGAAGGTGAAG GCTCACATTCTGCTGACGGCTGGAATCATCTTCATCATCACGGGCATGGTGGTGCTCATCCCT GTGAGCTGGGTTGCCAATGCCATCATCAGAGATTTCTATAACTCAATAGTGAATGTTGCCCAA AAACGTGAGCTTGGAGAAGCTCTCTACTTAGGATGGACCACGGCACTGGTGCTGATTGTTGGA GGAGCTCTGTTCTGCTGCGTTTTTTGTTGCAACGAAAAGAGCAGTAGCTACAGATACTCGATA CCTTCCCATCGCACAACCCAAAAAAGTTATCACACCGGAAAGAAGTCACCGAGCGTCTACTCC AGAAGTCAGTATGTGTTGTGTATGTTTTTTTAACTTTACTATAAAGCCATGCAAATGACA AAAATCTATATTACTTTCTCAAAATGGACCCCAAAGAAACTTTGATTTACTGTTCTTAACTGC CTAATCTTAATTACAGGAACTGTGCATCAGCTATTTATGATTCTATAAGCTATTTCAGCAGAA TGAGATATTAAACCCAATGCTTTGATTGTTCTAGAAAGTATAGTAATTTGTTTTCTAAGGTGG TTCAAGCATCTACTCTTTTTATCATTTACTTCAAAATGACATTGCTAAAGACTGCATTATTTT ACTACTGTAATTTCTCCACGACATAGCATTATGTACATAGATGAGTGTAACATTTATATCTCA CATAGAGACATGCTTATATGGTTTTATTTAAAATGAAATGCCAGTCCATTACACTGAATAAAT AGAACTCAACTATTGCTTTTCAGGGAAATCATGGATAGGGTTGAAGAAGGTTACTATTAATTG TTTAAAAACAGCTTAGGGATTAATGTCCTCCATTTATAATGAAGATTAAAATGAAGGCTTTAA TCAGCATTGTAAAGGAAATTGAATGGCTTTCTGATATGCTGTTTTTTAGCCTAGGAGTTAGAA TTTAAAACGCAGATATTTTGTCAAGGGGCTTTGCATTCAAACTGCTTTTCCAGGGCTATACTC AGAAGAAGATAAAAGTGTGATCTAAGAAAAAGTGATGGTTTTAGGAAAAGTGAAAATATTTTT CTTCTTGTACCATTTCTGTTTAGTTTTACTAAAATCTGTAAATACTGTATTTTTCTGTTTATT GAATGTGTTCTATTTGCTTTATACATTTATATTAATAAATTGTACATTTTTCTAATT

FIGURE 120

MATHALEIAGLFLGGVGMVGTVAVTVMPQWRVSAFIENNIVVFENFWEGLWMNCVRQANIRMQ CKIYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRCTGDNEKVKAHILLTAGIIF IITGMVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVFCCN EKSSSYRYSIPSHRTTQKSYHTGKKSPSVYSRSQYV

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

FIGURE 121

GGAGAGAGGCGCGCGGTGAAAGGCGCATTGATGCAGCCTGCGGCGCCTCGGAGCGCGGCG AGCCAGACGCTGACCACGTTCCTCCTCGGTCTCCTCCGCCTCCAGCTCCGCGCTGCCCGGC AGCCGGGAGCC**ATG**CGACCCCAGGGCCCCGCCGCCCCCGCAGCGGCTCCGCGGCCTCCTGC TGCTCCTGCTGCTGCAGCTGCCCGCGCCGTCGAGCGCCTCTGAGATCCCCAAGGGGAAGCAAA AGGCGCAGCTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGTGCTTACAAGGGCCAG CAGGAGTGCCTGGTCGAGACGGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTGGGATCC CAGGTCGGGATGGATTCAAAGGAGAAAAGGGGGGAATGTCTGAGGGAAAGCTTTGAGGAGTCCT GGACACCCAACTACAAGCAGTGTTCATGGAGTTCATTGAATTATGGCATAGATCTTGGGAAAA TTGCGGAGTGTACATTTACAAAGATGCGTTCAAATAGTGCTCTAAGAGTTTTGTTCAGTGGCT CACTTCGGCTAAAATGCAGAAATGCATGCTGTCAGCGTTGGTATTTCACATTCAATGGAGCTG ATTCAACAATTAATATTCATCGCACTTCTTCTGTGGAAGGACTTTGTGAAGGAATTGGTGCTG GATTAGTGGATGTTGCTATCTGGGTTGGCACTTGTTCAGATTACCCAAAAGGAGATGCTTCTA $\tt CTGGATGGAATTCAGTTTCTCGCATCATTATTGAAGAACTACCAAAA{\color{red}{\textbf{TAA}}} ATGCTTTAATTTT$ CATTTGCTACCTCTTTTTTTTTTTTTTTGCCTTGGAATGGTTCACTTAAATGACATTTTAAATAAG TTTATGTATACATCTGAATGAAAAGCAAAGCTAAATATGTTTACAGACCAAAGTGTGATTTCA TAGTTGGTTAGAATACTTTCTTCATAGTCACATTCTCTCAACCTATAATTTGGAATATTGTTG TGGTCTTTTGTTTTTTCTCTTAGTATAGCATTTTTAAAAAAATATAAAAAGCTACCAATCTTTG

FIGURE 122

MRPQGPAASPQRLRGLLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGVP GRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIAEC TFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMNSTI NIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

FIGURE 123

GCTGAGCGTGTGCGCGGTACGGGGCTCTCCTGCCTTCTGGGCTCCAACGCAGCTCTGTGGCTG AACTGGGTGCTCATCACGGGAACTGCTGGGCTATGGAATACAGATGTGGCAGCTCAGGTAGCC CCAAATTGCCTGGAAGAATACATCATGTTTTTCGATAAGAAGAAATTGTAGGATCCAGTTTTT TTTTTAACCGCCCCCTCCCCACCCCCCAAAAAAACTGTAAAGATGCAAAAACGTAATATCCAT GTTCTTGGAGTGTTCTGCGTGGCTGGCAAAGAATAATGTTCCAAAATCGGTCCATCTCCCAAG GGGTCCAATTTTTCTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCAGCTGACAGGGG CTGTCATGCAACTGGCCCCTAAGCCAAAGCAAAAGACCTAAGGACGACCTTTGAACAATACAA ${ t AGG}$ ACTGTCTTACTGACAATGCTTTCTTCTGCCGAACGAGGATGCCCTAAGGGCTGTAGGTGTGAA GGCAAAATGGTATATTGTGAATCTCAGAAATTACAGGAGATACCCTCAAGTATATCTGCTGGT TGCTTAGGTTTGTCCCTTCGCTATAACAGCCTTCAAAAACTTAAGTATAATCAATTTAAAGGG CTCAACCAGCTCACCTGGCTATACCTTGACCATAACCATATCAGCAATATTGACGAAAATGCT TTTAATGGAATACGCAGACTCAAAGAGCTGATTCTTAGTTCCAATAGAATCTCCTATTTTCTT AACAATACCTTCAGACCTGTGACAAATTTACGGAACTTGGATCTGTCCTATAATCAGCTGCAT TCTCTGGGATCTGAACAGTTTCGGGGGCTTGCGGAAGCTGCTGAGTTTACATTTACGGTCTAAC TCCCTGAGAACCATCCCTGTGCGAATATTCCAAGACTGCCGCAACCTGGAACTTTTGGACCTG GGATATAACCGGATCCGAAGTTTAGCCAGGAATGTCTTTGCTGGCATGATCAGACTCAAAGAA CTTCACCTGGAGCACAATCAATTTTCCAAGCTCAACCTGGCCCTTTTTCCAAGGTTGGTCAGC CTTCAGAACCTTTACTTGCAGTGGAATAAAATCAGTGTCATAGGACAGACCATGTCCTGGACC TGGAGCTCCTTACAAAGGCTTGATTTATCAGGCAATGAGATCGAAGCTTTCAGTGGACCCAGT GTTTTCCAGTGTGTCCCGAATCTGCAGCGCCTCAACCTGGATTCCAACAAGCTCACATTTATT GGTCAAGAGATTTTGGATTCTTGGATATCCCTCAATGACATCAGTCTTGCTGGGAATATATGG GAATGCAGCAGAAATATTTGCTCCCTTGTAAACTGGCTGAAAAGTTTTAAAGGTCTAAGGGAG AATACAATTATCTGTGCCAGTCCCAAAGAGCTGCAAGGAGTAAATGTGATCGATGCAGTGAAG AACTACAGCATCTGTGGCAAAAGTACTACAGAGAGGTTTGATCTGGCCAGGGCTCTCCCAAAG CCGACGTTTAAGCCCAAGCTCCCCAGGCCGAAGCATGAGAGCAAACCCCCTTTGCCCCCGACG GTGGGAGCCACAGAGCCCGGCCCAGAGACCGATGCTGACGCCGAGCACATCTCTTTCCATAAA ATCATCGCGGGCAGCGTGGCGCTTTTCCTGTCCGTGCTCGTCATCCTGCTGGTTATCTACGTG TCATGGAAGCGGTACCCTGCGAGCATGAAGCAGCTGCAGCAGCGCTCCCTCATGCGAAGGCAC AGGAAAAAGAAAAGACAGTCCCTAAAGCAAATGACTCCCAGCACCCAGGAATTTTATGTAGAT TATAAACCCACCAACACGGAGACCAGCGAGATGCTGCTGAATGGGACGGGACCCTGCACCTAT AACAAATCGGGCTCCAGGGAGTGTGAGGTA**TGA**ACCATTGTGATAAAAAGAGCTCTTAAAAAGC TGGGAAATAAGTGGTGCTTTATTGAACTCTGGTGACTATCAAGGGAACGCGATGCCCCCCCTC GAAGCTTGAACTCCGGTTTAATATAATACCTATTGTATAAGACCCTTTACTGATTCCATTAAT

FIGURE 124

MGFNVIRLLSGSAVALVIAPTVLLTMLSSAERGCPKGCRCEGKMVYCESQKLQEIPSSISAGC
LGLSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYFLN
NTFRPVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRIFQDCRNLELLDLG
YNRIRSLARNVFAGMIRLKELHLEHNQFSKLNLALFPRLVSLQNLYLQWNKISVIGQTMSWTW
SSLQRLDLSGNEIEAFSGPSVFQCVPNLQRLNLDSNKLTFIGQEILDSWISLNDISLAGNIWE
CSRNICSLVNWLKSFKGLRENTIICASPKELQGVNVIDAVKNYSICGKSTTERFDLARALPKP
TFKPKLPRPKHESKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVILLVIYVS
WKRYPASMKQLQQRSLMRRHRKKKRQSLKQMTPSTQEFYVDYKPTNTETSEMLLNGTGPCTYN
KSGSRECEV

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

FIGURE 125

 $\texttt{CCGTTATCGTCTTGCGCTACTGCTGA} \underline{\textbf{ATG}} \\ \texttt{TCCGTCCCGGAGGAGGAGGAGGCTTTTGCCGC} \\$ TGACCCAGAGATGGCCCCGAGCGAGCAAATTCCTACTGTCCGGCTGCGCGGCTACCGTGGCCG AGCTAGCAACCTTTCCCCTGGATCTCACAAAAACTCGACTCCAAATGCAAGGAGAAGCAGCTC TTGCTCGGTTGGGAGACGGTGCAAGAGAATCTGCCCCCTATAGGGGAATGGTGCGCACAGCCC TAGGGATCATTGAAGAGGAAGGCTTTCTAAAGCTTTGGCAAGGAGTGACACCCGCCATTTACA GACACGTAGTGTATTCTGGAGGTCGAATGGTCACATATGAACATCTCCGAGAGGTTGTGTTTG GCAAAAGTGAAGATGAGCATTATCCCCTTTGGAAATCAGTCATTGGAGGGATGATGGCTGGTG AAAGGAAACTGGAAGGAAAACCATTGCGATTTCGTGGTGTACATCATGCATTTGCAAAAATCT TAGCTGAAGGAGGATACGAGGGCTTTGGGCAGGCTGGGTACCCAATATACAAAGAGCAGCAC TGGTGAATATGGGAGATTTAACCACTTATGATACAGTGAAACACTACTTGGTATTGAATACAC CACTTGAGGACAATATCATGACTCACGGTTTATCAAGTTTATGTTCTGGACTGGTAGCTTCTA TTCTGGGAACACCAGCCGATGTCATCAAAAGCAGAATAATGAATCAACCACGAGATAAACAAG GAAGGGGACTTTTGTATAAATCATCGACTGACTGCTTGATTCAGGCTGTTCAAGGTGAAGGAT TCATGAGTCTATATAAAGGCTTTTTACCATCTTGGCTGAGAATGACCCCTTGGTCAATGGTGT

FIGURE 126

MSVPEEERLLPLTQRWPRASKFLLSGCAATVAELATFPLDLTKTRLQMQGEAALARLGDGAR
ESAPYRGMVRTALGIIEEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEHYP
LWKSVIGGMMAGVIGQFLANPTDLVKVQMQMEGKRKLEGKPLRFRGVHHAFAKILAEGGIRGL
WAGWVPNIQRAALVNMGDLTTYDTVKHYLVLNTPLEDNIMTHGLSSLCSGLVASILGTPADVI
KSRIMNQPRDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRMTPWSMVFWLTYEKIR
EMSGVSPF

Transmembrane domains:

amino acids 25-38, 130-147, 233-248

FIGURE 127

CGCGGATCGGACCCAAGCAGGTCGGCGGCGGCGGCAGGAGAGCGGCCGGGCGTCAGCTCCTCG ACCCCGTGTCGGGCTAGTCCAGCGAGGCGGACGGGCGGCGTGGGCCCATGGCCCAGGCCCGGC ATGGAGCGGTGGCGCGCTGGCGCTGGTGACGGGGGCCTCGGGGGGCATCGGCGCGCCC GTGGCCCGGGCCCTGGTCCAGCAGGGACTGAAGGTGGTGGGCTGCGCCCGCACTGTGGGCAAC ATCGAGGAGCTGGCTGAATGTAAGAGTGCAGGCTACCCCGGGACTTTGATCCCCTACAGA TGTGACCTATCAAATGAAGAGGACATCCTCTCCATGTTCTCAGCTATCCGTTCTCAGCACAGC GGTGTAGACATCTGCATCAACAATGCTGGCTTGGCCCGGCCTGACACCCTGCTCTCAGGCAGC ACCAGTGGTTGGAAGGACATGTTCAATGTGAACGTGCTGGCCCTCAGCATCTGCACACGGGAA GCCTACCAGTCCATGAAGGAGCGGAATGTGGACGATGGGCACATCATTAACATCAATAGCATG TCTGGCCACCGAGTGTTACCCCTGTCTGTGACCCACTTCTATAGTGCCACCAAGTATGCCGTC ACTGCGCTGACAGAGGGACTGAGGCAAGAGCTTCGGGAGGCCCAGACCCACATCCGAGCCACG TGCATCTCCCAGGTGTGGTGGAGACACAATTCGCCTTCAAACTCCACGACAAGGACCCTGAG AAGGCAGCTGCCACCTATGAGCAAATGAAGTGTCTCAAACCCGAGGATGTGGCCGAGGCTGTT ATCTACGTCCTCAGCACCCCCGCACACATCCAGATTGGAGACATCCAGATGAGGCCCACGGAG CAGGTGACC TAG TGACTGTGGGAGCTCCTCCTTCCCTCCCCACCCTTCATGGCTTGCCTCCTGCCTCTGGATTTTAGGTGTTGATTTCTGGATCACGGGATACCACTTCCTGTCCACACCCCGACC AGGGGCTAGAAATTTGTTTGAGATTTTTATATCATCTTGTCAAATTGCTTCAGTTGTAAATG ${ t TGAAAAATGGGCTGGGGAAAGGAGGTGGTGTCCCTAATTGTTTTACTTGTTAACTTGTTCTTG$ TGCCCCTGGGCACTTGGCCTTTGTCTGCTCTCAGTGTCTTCCCTTTGACATGGGAAAGGAGTT GTGGCCAAAATCCCCATCTTCTTGCACCTCAACGTCTGTGGCTCAGGGCTGGGGTGGCAGAGG ACTGCACCCTCTCCCCCTTATCTATCTCTCCTTCTCGGCTCCCCAGCCCAGTCTTGGCTTCTTGT CCCCTCCTGGGGTCATCCCTCCACTCTGACTCTGACTATGGCAGCAGAACACCAGGGCCTGGC

FIGURE 128

MARPGMERWRDRLALVTGASGGIGAAVARALVQQGLKVVGCARTVGNIEELAAECKSAGYPGT LIPYRCDLSNEEDILSMFSAIRSQHSGVDICINNAGLARPDTLLSGSTSGWKDMFNVNVLALS ICTREAYQSMKERNVDDGHIININSMSGHRVLPLSVTHFYSATKYAVTALTEGLRQELREAQT HIRATCISPGVVETQFAFKLHDKDPEKAAATYEQMKCLKPEDVAEAVIYVLSTPAHIQIGDIQ MRPTEQVT

Important features of the protein:

Signal peptide:

amino acids 1-17

N-myristoylation sites.

amino acids 18-24, 21-27, 22-28, 24-30, 40-46, 90-96, 109-115, 199-205

Short-chain alcohol dehyrogenase.

amino acids 30-42, 104-114

FIGURE 129

ATCATGTCCCTCCCACCCTCCTTTGACTGCGGGCCGTTCAGGTGCAGAGTCTCAGTTGCCCGG GAGCACCTCCCCTCCCGAGGCAGTCTGCTCAGAGGGCCTCGGCCCAGAATTCCAGTTCTGGTT TCATGCCAGCCTGTAAAAGGCCATGGAACTTTGGGTGAATCACCGATGCCATTTAAGAGGGGTT TTCTGCCAGGATGGAAATGTTAGGTCGTTCTGTGTCTGCGCTGTTCATTTCAGTAGCCACCAG CCACCTGTGGCCGTTGAGTGCTTGAAA TGA GGAACTGAGAAAATTAATTTCTCATGTATTTTTCTCATTTATTTATTTAATTTTTAACTGATAGTTGTACATATTTTGGGGGGTACATGTGATATTTTGG ATACATGTATACAATATAATGATCAAATCAGGGTAACTGGGATATCCATCACATCAAACAT TTATTTTTTATTCTTTTTAGACAGAGTCTCACTCTGTCACCCAGGCTGGAGTGCAGTGGTGCC ATCTCAGCTTACTGCAACCTCTGCCTGCCAGGTTCAAGCGATTCTCATGCCTCCACCTCCCAA GTAGCTGGGACTACAGGCATGCACCACAATGCCCAACTAATTTTTTGTATTTTTAGTAGAGACG GGGTTTTGCCATGTTGCCCAGGCTGGCCTTGAACTCCTGGCCTCAAACAATCCACTTGCCTCG GCCTCCCAAAGTGTTATGATTACAGGCGTGAGCCACCGTGCCTGGCCTAAACATTTATCTTTT CTTTGTGTTGGGAACTTTGAAATTATACAATGAATTATTGTTAACTGTCATCTCCCTGCTGTG ACTTCATCCCCACTCCTCTATCCTTCCCAACCTCTGATCACCTCATTCTACTCTCTACCTC CATGAGATCCACTTTTTTAGCTCCCACATGTGAGTAAGAAAATGCAATATTTGTCTTTCTGTG TTTCGTTCTTAATTTCAATTAAAATAACCACACATGGCAAAAA

FIGURE 130

 ${\tt MGLLLLVLFLSLLPVAYTIMSLPPSFDCGPFRCRVSVAREHLPSRGSLLRGPRPRIPVLVSCQ} \\ {\tt PVKGHGTLGESPMPFKRVFCQDGNVRSFCVCAVHFSSHQPPVAVECLK} \\$

Important features of the protein:

Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 86-92

Zinc carboxypeptidases, zinc-binding region 2 signature.

amino acids 68-79

FIGURE 131

TTCTGAAGTAACGGAAGCTACCTTGTATAAAGACCTCAACACTGCTGACC**ATG**ATCAGCGCAG CCTGGAGCATCTTCCTCATCGGGACTAAAATTGGGCTGTTCCTTCAAGTAGCACCTCTATCAG TTATGGCTAAATCCTGTCCATCTGTGTGTCGCTGCGATGCGGGTTTCATTTACTGTAATGATC GCTTTCTGACATCCATTCCAACAGGAATACCAGAGGATGCTACAACTCTCTACCTTCAGAACA ACCTATACCACAACAGTTTAGATGAATTTCCTACCAACCTCCCAAAGTATGTAAAAGAGTTAC ATTTGCAAGAAAATAACATAAGGACTATCACTTATGATTCACTTTCAAAAATTCCCTATCTGG AAGAATTACATTTAGATGACAACTCTGTCTCTGCAGTTAGCATAGAAGAGGGAGCATTCCGAG ACAGCAACTATCTCCGACTGCTTTTCCTGTCCCGTAATCACCTTAGCACAATTCCCTGGGGTT TGCCCAGGACTATAGAAGAACTACGCTTGGATGATAATCGCATATCCACTATTTCATCACCAT CTCTTCAAGGTCTCACTAGTCTAAAACGCCTGGTTCTAGATGGAAACCTGTTGAACAATCATG GTTTAGGTGACAAAGTTTTCTTCAACCTAGTTAATTTGACAGAGCTGTCCCTGGTGCGGAATT CCCTGACTGCTGCACCAGTAAACCTTCCAGGCACAAACCTGAGGAAGCTTTATCTTCAAGATA ACCACATCAATCGGGTGCCCCCAAATGCTTTTTCTTATCTAAGGCAGCTCTATCGACTGGATA TGTCCAATAATAACCTAAGTAATTTACCTCAGGGTATCTTTGATGATTTGGACAATATAACAC AACTGATTCTTCGCAACAATCCCTGGTATTGCGGGTGCAAGATGAAATGGGTACGTGACTGGT TACAATCACTACCTGTGAAGGTCAACGTGCGTGGGCTCATGTGCCAAGCCCCAGAAAAGGTTC GTGGGATGGCTATTAAGGATCTCAATGCAGAACTGTTTGATTGTAAGGACAGTGGGATTGTAA GCACCATTCAGATAACCACTGCAATACCCAACACAGTGTATCCTGCCCAAGGACAGTGGCCAG CTCCAGTGACCAAACAGCCAGATATTAAGAACCCCAAGCTCACTAAGGATCAACAAACCACAG GGAGTCCCTCAAGAAAACAATTACAATTACTGTGAAGTCTGTCACCTCTGATACCATTCATA TCTCTTGGAAACTTGCTCTACCTATGACTGCTTTGAGACTCAGCTGGCTTAAACTGGGCCATA GCCCGGCATTTGGATCTATAACAGAAACAATTGTAACAGGGGAACGCAGTGAGTACTTGGTCA CAGCCCTGGAGCCTGATTCACCCTATAAAGTATGCATGGTTCCCATGGAAACCAGCAACCTCT ACCTATTTGATGAAACTCCTGTTTGTATTGAGACTGAAACTGCACCCCTTCGAATGTACAACC CTACAACCACCCTCAATCGAGAGCAAGAGAAAGAACCTTACAAAAACCCCAATTTACCTTTGG CTGCCATCATTGGTGGGGCTGTGGCCCTGGTTACCATTGCCCTTCTTGCTTTAGTGTGTTGGT ATGTTCATAGGAATGGATCGCTCTTCTCAAGGAACTGTGCATATAGCAAAGGGAGGAGAAAAA AGGATGACTATGCAGAAGCTGGCACTAAGAAGGACAACTCTATCCTGGAAATCAGGGAAACTT CTTTTCAGATGTTACCAATAAGCAATGAACCCATCTCGAAGGAGGAGTTTGTAATACACACCA TATTTCCTCCTAATGGAATGAATCTGTACAAAAACAATCACAGTGAAAGCAGTAGTAACCGAA $\mathsf{GCTACAGAGACAGTGGTATTCCAGACTCAGATCACTCACACTCA}$ TGA GCAGACTTGTGTTTTGGGTTTTTTTAAACCTAAGGGAGGTGATGGT

FIGURE 132

MISAAWSIFLIGTKIGLFLQVAPLSVMAKSCPSVCRCDAGFIYCNDRFLTSIPTGIPEDATTL
YLQNNQINNAGIPSDLKNLLKVERIYLYHNSLDEFPTNLPKYVKELHLQENNIRTITYDSLSK
IPYLEELHLDDNSVSAVSIEEGAFRDSNYLRLLFLSRNHLSTIPWGLPRTIEELRLDDNRIST
ISSPSLQGLTSLKRLVLDGNLLNNHGLGDKVFFNLVNLTELSLVRNSLTAAPVNLPGTNLRKL
YLQDNHINRVPPNAFSYLRQLYRLDMSNNNLSNLPQGIFDDLDNITQLILRNNPWYCGCKMKW
VRDWLQSLPVKVNVRGLMCQAPEKVRGMAIKDLNAELFDCKDSGIVSTIQITTAIPNTVYPAQ
GQWPAPVTKQPDIKNPKLTKDQQTTGSPSRKTITITVKSVTSDTIHISWKLALPMTALRLSWL
KLGHSPAFGSITETIVTGERSEYLVTALEPDSPYKVCMVPMETSNLYLFDETPVCIETETAPL
RMYNPTTTLNREQEKEPYKNPNLPLAAIIGGAVALVTIALLALVCWYVHRNGSLFSRNCAYSK
GRRRKDDYAEAGTKKDNSILEIRETSFQMLPISNEPISKEEFVIHTIFPPNGMNLYKNNHSES
SSNRSYRDSGIPDSDHSHS

Important features of the protein:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 531-552

N-glycosylation sites.

amino acids 226-229, 282-285, 296-299, 555-558, 626-629, 633-636

Tyrosine kinase phosphorylation site.

amino acids 515-522

N-myristoylation sites.

amino acids 12-17, 172-177, 208-213, 359-364, 534-539, 556-561, 640-645

Amidation site.

amino acids 567-570

Leucine zipper pattern.

amino acids 159-180

Phospholipase A2 aspartic acid active site.

amino acids 34-44

FIGURE 133

CCGTCATCCCCTGCAGCCACCCTTCCCAGAGTCCTTTGCCCAGGCCACCCCAGGCTTCTTGG GGCGTGCAGAGGCAGTCTGGGCTTGGCCAGAGCTCAGGGTGCTGAGCGTGTGACCAGCAGTGA GCAGAGGCCGGCCATGGCCAGCCTGGGGCTGCTCCTGCTCTTACTGACAGCACTGCCACC GCTGTGGTCCTCCTCACTGCCTGGGCTGGACACTGCTGAAAGTAAAGCCACCATTGCAGACCT GATCCTGTCTGCGCTGGAGAGAGCCACCGTCTTCCTAGAACAGAGGCTGCCTGAAATCAACCT GGATGGCATGGTGGGGGTCCGAGTGCTGGAAGAGCAGCTAAAAAGTGTCCGGGAGAAGTGGGC CCAGGAGCCCCTGCTGCAGCCTGAGCCTGCGCGTGGGGATGCTGGGGGAGAAGCTGGAGGC TGCCATCCAGAGATCCCTCCACTACCTCAAGCTGAGTGATCCCAAGTACCTAAGAGAGTTCCA GCTGACCCTCCAGCCCGGGTTTTGGAAGCTCCCACATGCCTGGATCCACACTGATGCCTCCTT GGTGTACCCCACGTTCGGGCCCCAGGACTCATTCTCAGAGGAGAGAAGTGACGTGTGCCTGGT GCAGCTGCTGGGAACCGGGACGGACAGCAGCGAGCCCTGCGGCCTCTCAGACCTCTGCAGGAG CCTCATGACCAAGCCCGGCTGCTCAGGCTACTGCCTGTCCCACCAACTGCTCTTCTTCCTCTG GGCCAGAATGAGGGGATGCACACAGGGACCACTCCAACAGAGCCAGGACTATATCAACCTCTT CTGCGCCAACATGATGGACTTGAACCGCAGAGCTGAGGCCATCGGATACGCCTACCCTACCCG GGACATCTTCATGGAAAACATCATGTTCTGTGGAATGGGCGGCTTCTCCGACTTCTACAAGCT TGCTGAAGATGAAGAATTATCTAAAGCTATTCAATATCAGCAGCATTTTTCGAGGAGAGTGAA GAGGCGAGAAAAACAATTTCCAGATTCTCGCTCTGTTGCTCAGGCTGGAGTACAGTGGCGCAA TCTCGGCTCACTGCAACCTTTGCCTCCTGGGTTCAAGCAATTCTCTTGCCTCATCCTCCCGAG TAGCTGGGACTACAGGAGCGTGCCACCATACCTGGCTAATTTTTATATTTTTTTAGTAGAGAC AGGGTTTCATCATGTTGCTCATGCTGGTCTCGAACTCCTGATCTCAAGAGATCCGCCCACCTC AGGCTCCCAAAGTGTGGGATTAGAGACTGTGTTGAATAAAGGGCCAAGGTTCTTGCCACCCAGCACTCATGGGGGCTCTCTCCCC TAGATGGCTGCTCCCACAACACACACCCACAGCAGTGGCAGCCCTGGGTGGCTTCCTATACA TCCTGGCAGAATACCCCCCAGCAAACAGAGAGCCACACCCATCCACACCGCCACCACCAAGCA GCCGCTGAGACGGACGGTTCCATGCCAGCTGCCTGGAGGAGGAACAGACCCCTTTAGTCCTCA TCCCTTAGATCCTGGAGGGCACGGATCACATCCTGGGAAGAAGGCATCTGGAGGATAAGCAAA GCCACCCGACACCCAATCTTGGAAGCCCTGAGTAGGCAGGGCCAGGGTAGGTGGGGGCCGGG

FIGURE 134

MSARGRWEGGGRRACRGSLGLARAQGAERVTSSEQRPAMASLGLLLLLLLTALPPLWSSSLPG
LDTAESKATIADLILSALERATVFLEQRLPEINLDGMVGVRVLEEQLKSVREKWAQEPLLQPL
SLRVGMLGEKLEAAIQRSLHYLKLSDPKYLREFQLTLQPGFWKLPHAWIHTDASLVYPTFGPQ
DSFSEERSDVCLVQLLGTGTDSSEPCGLSDLCRSLMTKPGCSGYCLSHQLLFFLWARMRGCTQ
GPLQQSQDYINLFCANMMDLNRRAEAIGYAYPTRDIFMENIMFCGMGGFSDFYKLRWLEAILS
WQKQQEGCFGEPDAEDEELSKAIQYQQHFSRRVKRREKQFPDSRSVAQAGVQWRNLGSLQPLP
PGFKQFSCLILPSSWDYRSVPPYLANFYIFLVETGFHHVAHAGLELLISRDPPTSGSQSVGL

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 39-56

Tyrosine kinase phosphorylation sites.

amino acids 149-156, 274-282

N-myristoylation sites.

amino acids 10-16, 20-26, 63-69, 208-214

Amidation site.

amino acids 10-14

Glycoprotein hormones beta chain signature 1.

amino acids 230-237

FIGURE 135

TGCTGCTGCTATCGGGGGATGTCCAGAGCTCGGAGGTGCCCGGGGCTGCTGAGGGATCGG GAGGGAGTGGGGTCGGCATAGGAGATCGCTTCAAGATTGAGGGGCGTGCAGTTGTTCCAGGGG TGAAGCCTCAGGACTGGATCTCGGCGGCCCGAGTGCTGGTAGACGGAGAAGAGCACGTCGGTT TCCTTAAGACAGATGGGAGTTTTGTGGTTCATGATATACCTTCTGGATCTTATGTAGTGGAAG TTGTATCTCCAGCTTACAGATTTGATCCCGTTCGAGTGGATATCACTTCGAAAGGAAAAATGA GAGCAAGATATGTGAATTACATCAAAACATCAGAGGTTGTCAGACTGCCCTATCCTCCCAAA TGAAATCTTCAGGTCCACCTTCTTACTTTATTAAAAGGGAATCGTGGGGCTGGACAGACTTTC TAATGAACCCAATGGTTATGATGATGGTTCTTCCTTTATTGATATTTGTGCTTCTGCCTAAAG TGGTCAACACAAGTGATCCTGACATGAGACGGGAAATGGAGCAGTCAATGAATATGCTGAATT CCAACCATGAGTTGCCTGATGTTTCTGAGTTCATGACAAGACTCTTCTCTCTAAAATCATCTG $\mathsf{GCAAATCTAGCAGCGGCAGCAGTAAAACAGGCAAAAGTGGGGCTGGCAAAAGGAGGT{\mathbf{TAG}}$ TCAG GCCGTCCAGAGCTGGCATTTGCACAAACACGGCAACACTGGGTGGCATCCAAGTCTTGGAAAA CCGTGTGAAGCAACTACTATAAACTTGAGTCATCCCGACGTTGATCTCTTACAACTGTGTATGTT AACTTTTTAGCACATGTTTTGTACTTGGTACACGAGAAAACCCAGCTTTCATCTTTTGTCTGT ATGAGGTCAATATTGATGTCACTGAATTAATTACAGTGTCCTATAGAAAATGCCATTAATAAA TTATATGAACTACTATACATTATGTATATTAATTAAAACATCTTAATCCAGAAATCAAAAAAA AAAAAAAAAAAAAAAAAA

FIGURE 136

MAAALWGFFPVLLLLLLSGDVQSSEVPGAAAEGSGGSGVGIGDRFKIEGRAVVPGVKPQDWIS
AARVLVDGEEHVGFLKTDGSFVVHDIPSGSYVVEVVSPAYRFDPVRVDITSKGKMRARYVNYI
KTSEVVRLPYPLQMKSSGPPSYFIKRESWGWTDFLMNPMVMMMVLPLLIFVLLPKVVNTSDPD
MRREMEQSMNMLNSNHELPDVSEFMTRLFSSKSSGKSSSGSSKTGKSGAGKRR

Important features of the protein:

Signal sequence:

amino acids 1-23

Transmembrane domain:

amino acids 161-182

N-glycosylation site.

amino acids 184-187

Glycosaminoglycan attachment sites.

amino acids 37-40, 236-239

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 151-154

N-myristoylation sites.

amino acids 33-38, 36-41, 38-44, 229-234

Amidation site.

amino acids 238-241

ATP/GTP-binding site motif A (P-loop).

amino acids 229-236

FIGURE 137

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGGG GACCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTAT**ATG**CGTCAATTCCCCAAA CCAGGCCTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGCCACG ACCTGTGCCACCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATCTTCTCTTCACGGGAG GCTTGGCAGTTTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCCTCTAGT CTTGCCTTCAGCCTTCTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGGACTGAAG ACACTCAATTTGGGAAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATGGATTTTCT GAGATACGGGGCAGTGTGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTAAGGAGGACT GAGTCTTTGCAAGACACAAAGCCTGCGAATCGATGCTGCCTCCTGCGCCATTTGCTAAGACTC TATCTGGACAGGGTATTTAAAAACTACCAGACCCCTGACCATTATACTCTCCGGAAGATCAGC AGCCTCGCCAATTCCTTTCTTACCATCAAGAAGGACCTCCGGCTCTCTCATGCCCACATGACA TGCCATTGTGGGGAGGAAGCAATGAAGAAATACAGCCAGATTCTGAGTCACTTTGAAAAGCTG GAGACAGAA**TAG**GAGGAAAGTGATGCTGCTGCTAAGAATATTCGAGGTCAAGAGCTCCAGTCT TCAATACCTGCAGAGGAGGCATGACCCCAAACCACCATCTCTTTACTGTACTAGTCTTGTGCT GGTCACAGTGTATCTTATTTATGCATTACTTGCTTCCTTGCATGATTGTCTTTATGCATCCCC AATCTTAATTGAGACCATACTTGTATAAGATTTTTGTAATATCTTTCTGCTATTGGATATATT AAACTTTAAAAAAATTCACAGATTATATTTATAACCTGACTAGAGCAGGTGATGTATTTTTAT ACAGTAAAAAAAAAAACCTTGTAAATTCTAGAAGAGTGGCTAGGGGGGTTATTCATTTGTAT TCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGATATTTGAAATTGAACCAATGAC TACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATTGCACATCTACCTTACAATTACTG

FIGURE 138

MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSELRPE IFSSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNLQE IRNGFSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTPDHY TLRKISSLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALGELDI LLQWMEETE

Important features of the protein:

Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

FIGURE 139

CCTGGAGCCGGAAGCGCGGCTGCAGCAGGGCGAGGCTCCAGGTGGGGTCGGTTCCGCATCCAG GCGGAACACGGAGCGGAGCCCCAGCGCCCGAACCCTCGGCTGGAGCCAGTTCTAACTGGACC ACGCTGCCACCACCTCTCTCAGTAAAGTTGTTATTGTTCTGATAGATGCCTTGAGAGATGAT TTTGTGTTTGGGTCAAAGGGTGTGAAATTTATGCCCTACACAACTTACCTTGTGGAAAAAGGA GCATCTCACAGTTTTGTGGCTGAAGCAAAGCCACCTACAGTTACTATGCCTCGAATCAAGGCA TTGATGACGGGGAGCCTTCCTGGCTTTGTCGACGTCATCAGGAACCTCAATTCTCCTGCACTG CTGGAAGACAGTGTGATAAGACAAGCAAAAGCAGCTGGAAAAAGAATAGTCTTTTATGGAGAT GAAACCTGGGTTAAATTATTCCCAAAGCATTTTGTGGAATATGATGGAACAACCTCATTTTTC GTGTCAGATTACACAGAGGTGGATAATAATGTCACGAGGCATTTGGATAAAGTATTAAAAAGA GGAGATTGGGACATATTAATCCTCCACTACCTGGGGCTGGACCACATTGGCCACATTTCAGGG CCCAACAGCCCCCTGATTGGGCAGAAGCTGAGCGAGATGGACAGCGTGCTGATGAAGATCCAC ACCTCACTGCAGTCGAAGGAGAGAGAGACGCCTTTACCCAATTTGCTGGTTCTTTGTGGTGAC CATGGCATGTCTGAAACAGGAAGTCACGGGGCCTCCTCCACCGAGGAGGTGAATACACCTCTG ATTTTAATCAGTTCTGCGTTTGAAAGGAAACCCGGTGATATCCGACATCCAAAGCACGTCCAA TAGACGGATGTGGCTGCGACACTGGCGATAGCACTTGGCTTACCGATTCCAAAAGACAGTGTA GGGAGCCTCCTATTCCCAGTTGTGGAAGGAAGACCAATGAGAGAGCAGTTGAGATTTTTACAT TTGAATACAGTGCAGCTTAGTAAACTGTTGCAAGAGAATGTGCCGTCATATGAAAAAGATCCT GGGTTTGAGCAGTTTAAAATGTCAGAAAGATTGCATGGGAACTGGATCAGACTGTACTTGGAG GAAAAGCATTCAGAAGTCCTATTCAACCTGGGCTCCAAGGTTCTCAGGCAGTACCTGGATGCT CTGAAGACGCTGAGCTTGTCCCTGAGTGCACAAGTGGCCCAGTTCTCACCCTGCTCCTGCTCA GCGTCCCACAGGCACTGCACAGAAAGGCTGAGCTGGAAGTCCCACTGTCATCTCCTGGGTTTT CTCTGCTCTTTTATTTGGTGATCCTGGTTCTTTCGGCCGTTCACGTCATTGTGTGCACCTCAG GACTCTGGTTGAACACCTGGTGTGTGCCAAGTGCTGGCAGTGCCCTGGACAGGGGGCCTCAGG GAAGGACGTGGAGCAGCCTTATCCCAGGCCTCTGGGTGTCCCGACACAGGTGTTCACATCTGT GCTGTCAGGTCAGATGCCTCAGTTCTTGGAAAGCTAGGTTCCTGCGACTGTTACCAAGGTGAT TGTAAAGAGCTGGCGGTCACAGAGGAACAAGCCCCCCAGCTGAGGGGGGTGTGTGAATCGGACA GCCTCCCAGCAGAGGTGTGGGAGCTGCAGCTGAGGGAAGAAGAGACAATCGGCCTGGACACTC AGGAGGGTCAAAAGGAGACTTGGTCGCACCACTCATCCTGCCACCCCCAGAATGCATCCTGCC TCATCAGGTCCAGATTTCTTTCCAAGGCGGACGTTTTCTGTTGGAATTCTTAGTCCTTGGCCT CGGACACCTTCATTCGTTAGCTGGGGAGTGGTGGTGAGGCAGTGAAGAAGAGGCGGATGGTCA CACTCAGATCCACAGAGCCCAGGATCAAGGGACCCACTGCAGTGGCAGCAGGACTGTTGGGCC CCCACCCAACCCTGCACAGCCCTCATCCCCTCTTGGCTTGAGCCGTCAGAGGCCCTGTGCTG AGTGTCTGACCGAGACACTCACAGCTTTGTCATCAGGGCACAGGCTTCCTCGGAGCCAGGATG

FIGURE 140

MRLGSGTFATCCVAIEVLGIAVFLRGFFPAPVRSSARAEHGAEPPAPEPSAGASSNWTTLPPP LFSKVVIVLIDALRDDFVFGSKGVKFMPYTTYLVEKGASHSFVAEAKPPTVTMPRIKALMTGS LPGFVDVIRNLNSPALLEDSVIRQAKAAGKRIVFYGDETWVKLFPKHFVEYDGTTSFFVSDYT EVDNNVTRHLDKVLKRGDWDILILHYLGLDHIGHISGPNSPLIGQKLSEMDSVLMKIHTSLQS KERETPLPNLLVLCGDHGMSETGSHGASSTEEVNTPLILISSAFERKPGDIRHPKHVQ

Important features of the protein:

Signal peptide:

amino acids 1-34

Transmembrane domain:

amino acids 58-76

N-glycosylation sites.

amino acids 56-60, 194-198

N-myristoylation sites.

amino acids 6-12, 52-58, 100-106, 125-131, 233-239, 270-276, 275-281, 278-284

Amidation site.

amino acids 154-158

Cell attachment sequence.

amino acids 205-208

FIGURE 141

FIGURE 142

MLLLLEYNFPIENNCQHLKTTHTFRVKNLNPKKFSIHDQDHKVLVLDSGNLIAVPDKNYIRP EIFFALASSLSSASAEKGSPILLGVSKGEFCLYCDKDKGQSHPSLQLKKEKLMKLAAQKESAR RPFIFYRAQVGSWNMLESAAHPGWFICTSCNCNEPVGVTDKFENRKHIEFSFQPVCKAEMSPS EVSD

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 33-36

N-myristoylation site.

amino acids 50-55, 87-92

Interleukin-1

amino acids 37-182

FIGURE 143

CTAGAGAGTATAGGGCAGAAGGATGGCAGATGAGTGACTCCACATCCAGAGCTGCCTCTTT AATCCAGGATCCTGTCCTTCCTGTCCTGTAGGAGTGCCTGTTGCCAGTGTGGGGGTGAGACAAG TTTGTCCCACAGGGCTGTCTGAGCAGATAAGATTAAGGGCTGGGTCTGTGCTCAATTAACTCC ${\tt TGTGGGCACGGGGGCTGGGAAGAGCAAAGTCAGCGGTGCCTACAGTCAGCACC} \underline{{\tt ATG}} {\tt CTGGGCCC}$ TGCCGTGGAAGGGAGGTCTGTCCTGGGCGCTGCTGCTGCTTCTCTTAGGCTCCCAGATCCTGC TGATCTATGCCTGGCATTTCCACGAGCAAAGGGACTGTGATGAACACAATGTCATGGCTCGTT CCTACAGACTGGGGCACATCTTGAATTCCTGGAAGGAGCAGGTGGAGTCCAAGACTGTATTCT CAATGGAGCTACTGCTGGGGAGAACTAGGTGTGGGAAATTTGAAGACGACATTGACAACTGCC ATTTCCAAGAAAGCACAGAGCTGAACAATACTTTCACCTGCTTCTTCACCATCAGCACCAGGC CCACTCACAGGCTTGTCCATGTGCTCCCACATTCCGTGGACATCAGCACTACTCTCCTGA GGACTCTTCAGTGGCTGAGCAGCTTTGGACTTGTTTGTTATCCTATTTTTGCATGTTTTGAGA TCTCAGATCAGTGTTTTAGAAAATCCACACATCTTGAGCCTAATCATGTAGTGTAGATCATTA AAAAAAAAAAAAA

FIGURE 144

MLGLPWKGGLSWALLLLLLGSQILLIYAWHFHEQRDCDEHNVMARYLPATVEFAVHTFNQQSK DYYAYRLGHILNSWKEQVESKTVFSMELLLGRTRCGKFEDDIDNCHFQESTELNNTFTCFFTI STRPWMTQFSLLNKTCLEGFH

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 117-121, 139-143

N-myristoylation site.

amino acids 9-15

FIGURE 145

CTGTGCAGCTCGAGGCTCCAGAGGCACACTCCAGAGAGCCAAGGTTCTGACGCG**ATG**AGGA AGCACCTGAGCTGGTGGTGGCCACTGTCTGCATGCTGCTCTTCAGCCACCTCTCTGCGG TCCAGACGAGGGCATCAAGCACAGAATCAAGTGGAACCGGAAGGCCCTGCCCAGCACTGCCC TCGACATTGACTTCGGAGCCGAGGGCAACAGGTACTACGAGGCCAACTACTGGCAGTTCCCCG ATGGCATCCACTACAACGGCTGCTCTGAGGCTAATGTGACCAAGGAGGCATTTGTCACCGGCT GCATCAATGCCACCCAGGCGCGAACCAGGGGGGAGTTCCAGAAGCCAGACAACAAGCTCCACC AGAGGGGCGCAGGACTTCGGGTCACCATGCACCAGCCAGTGCTCCTCTGCCTTCTGGCTTTGA TCTGGCTCATGGTGAAA**TAA**GCTTGCCAGGAGGCTGGCAGTACAGAGCGCAGCAGCAAA TCCTGGCAAGTGACCCAGCTCTTCTCCCCCAAACCCACGCGTGTTCTGAAGGTGCCCAGGAGC GGCGATGCACTGCAAATGCCGCTCCCACGTATGCGCCCTGGTATGTGCCTGCGTTCT GATAGATGGGGGACTGTGGCTTCTCCGTCACTCCATTCTCAGCCCCTAGCAGAGCGTCTGGCA CACTAGATTAGTAGTAAATGCTTGATGAGAAGAACACATCAGGCACTGCGCCACCTGCTTCAC AGTACTTCCCAACACTCTTAGAGGTAGGTGTATTCCCGTTTTACAGATAAGGAAACTGAGGC CCAGAGAGCTGAAGTACTGCACCCAGCATCACCAGCTAGAAAGTGGCAGAGCCAGGATTCAAC ${\tt CCTGGCTTGTCTAACCCCAGGTTTTCTGCTCTGTCCAATTCCAGAGCTGTCTGGTGATCACTT}$ TATGTCTCACAGGGACCCACATCCAAACATGTATCTCTAATGAAATTGTGAAAGCTCCATGTT TAGAAATAAATGAAAACACCTGA

FIGURE 146

MRKHLSWWWLATVCMLLFSHLSAVQTRGIKHRIKWNRKALPSTAQITEAQVAENRPGAFIKQG RKLDIDFGAEGNRYYEANYWQFPDGIHYNGCSEANVTKEAFVTGCINATQAANQGEFQKPDNK LHQQVLWRLVQELCSLKHCEFWLERGAGLRVTMHQPVLLCLLALIWLMVK

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 157-171

N-glycosylation sites.

amino acids 98-102, 110-114

Tyrosine kinase phosphorylation site.

amino acids 76-83

N-myristoylation sites.

amino acids 71-77, 88-94, 93-99, 107-113, 154-160

Amidation site.

amino acids 62-66

FIGURE 147

FIGURE 148

MFRSSLLFWPPLCLLSLFLLILISSIYSESCKLEIFHFACQWGRSLSLSFYFLKFQLSDSGGT CEGLFYEYIA

Important features of the protein:

Signal peptide:

amino acids 1-25

N-myristoylation site.

amino acids 62-68

FIGURE 149

GTCTCCGCGTCACAGGAACTTCAGCACCCACAGGGCGGACAGCGCTCCCCTCTACCTGGAGAC TTGACTCCCGCGCCCCAACCCTGCTTATCCCTTGACCGTCGAGTGTCAGAGATCCTGCAGC ${\tt CGCCCAGTCCCGGCCCTCTCCCGCCCCACACCCTCCTGGCTCTTCCTGTTTTTACTCC}$ TCCTTTTCATTCATAACAAAAGCTACAGCTCCAGGAGCCCAGCGCCGGGCTGTGACCCAAGCC GAGCGTGGAAGA**TT**GGGTTCCTCGGGACCGGCACTTGGATTCTGGTGTTAGTGCTCCCGATT CAAGCTTTCCCCAAACCTGGAGGAAGCCAAGACAAATCTCTACATAATAGAGAATTAAGTGCA CCAGAAAACAAGCCAGGTCAGAGCAACTATTCTTTTGTTGATAACTTGAACCTGCTAAAGGCA ATAACAGAAAAGGAAAAATTGAGAAAGAAGACAATCTATAAGAAGCTCCCCACTTGATAAT AAGTTGAATGTGGAAGATGTTGATTCAACCAAGAATCGAAAACTGATCGATGATTATGACTCT ACTAAGAGTGGATTGGATCATAAATTTCAAGATGATCCAGATGGTCTTCATCAACTAGACGGG ACTCCTTTAACCGCTGAAGACATTGTCCATAAAATCGCTGCCAGGATTTATGAAGAAAATGAC AGAGCCGTGTTTGACAAGATTGTTTCTAAACTACTTAATCTCGGCCTTATCACAGAAAGCCAA GCACATACACTGGAAGATGAAGTAGCAGAGGTTTTACAAAAATTAATCTCAAAGGAAGCCAAC AATTATGAGGAGGATCCCAATAAGCCCACAAGCTGGACTGAGAATCAGGCTGGAAAAATACCA GAGAAAGTGACTCCAATGGCAGCAATTCAAGATGGTCTTGCTAAGGGAGAAAACGATGAAACA GTATCTAACACTTAACCTTGACAAATGGCTTGGAAAGGAGAACTAAAACCTACAGTGAAGAC AACTTTGAGGAACTCCAATATTTCCCAAATTTCTATGCGCTACTGAAAAGTATTGATTCAGAA AAAGAAGCAAAAGAAAACACTGATTACTATCATGAAAACACTGATTGACTTTGTGAAG ATGATGGTGAAATATGGAACAATATCTCCAGAAGAAGGTGTTTCCTACCTTGAAAACTTGGAT GAAATGATTGCTCTTCAGACCAAAAACAAGCTAGAAAAAAATGCTACTGACAATATAAGCAAG AAGATGGAAAAGGAATATGGAAGCTTGAAGGATTCCACAAAAGATGATAACTCCAACCCAGGA GGAAAGACAGATGAACCCAAAGGAAAAACAGAAGCCTATTTGGAAGCCATCAGAAAAAATATT GAATGGTTGAAGAAACATGACAAAAAGGGAAATAAAGAAGATTATGACCTTTCAAAGATGAGA GACTTCATCAATAAACAAGCTGATGCTTATGTGGAGAAAGGCATCCTTGACAAGGAAGAAGCC GAGGCCATCAAGCGCATTTATAGCAGCCTG**TAA**AAATGGCAAAAGATCCAGGAGTCTTTCAAC TGTTTCAGAAAACATAATATAGCTTAAAACACTTCTAATTCTGTGATTAAAATTTTTTGACCC AAGGGTTATTAGAAAGTGCTGAATTTACAGTAGTTAACCTTTTTACAAGTGGTTAAAACATAGC AAA

FIGURE 150

MGFLGTGTWILVLVLPIQAFPKPGGSQDKSLHNRELSAERPLNEQIAEAEEDKIKKTYPPENK
PGQSNYSFVDNLNLLKAITEKEKIEKERQSIRSSPLDNKLNVEDVDSTKNRKLIDDYDSTKSG
LDHKFQDDPDGLHQLDGTPLTAEDIVHKIAARIYEENDRAVFDKIVSKLLNLGLITESQAHTL
EDEVAEVLQKLISKEANNYEEDPNKPTSWTENQAGKIPEKVTPMAAIQDGLAKGENDETVSNT
LTLTNGLERRTKTYSEDNFEELQYFPNFYALLKSIDSEKEAKEKETLITIMKTLIDFVKMMVK
YGTISPEEGVSYLENLDEMIALQTKNKLEKNATDNISKLFPAPSEKSHEETDSTKEEAAKMEK
EYGSLKDSTKDDNSNPGGKTDEPKGKTEAYLEAIRKNIEWLKKHDKKGNKEDYDLSKMRDFIN
KQADAYVEKGILDKEEAEAIKRIYSSL

N-glycosylation sites:

amino acids 68-71, 346-349, 350-353

Casein kinase II phosphorylation site:

amino acids 70-73, 82-85, 97-100, 125-128, 147-150, 188-191, 217-220, 265-268, 289-292, 305-308, 320-323, 326-329, 362-365, 368-341, 369-372, 382-385, 386-389, 387-390

N-myristoylation sites:

amino acids 143-148, 239-244

FIGURE 151

CGGCTCGAGGCTCCCGCCAGGAGAAAGGAACATTCTGAGGGGAGTCTACACCCTGTGGAGCTC $\texttt{AAG} \underline{\textbf{ATG}} \texttt{GTCCTGAGTGGGGCGCTGTGCTTCCGAATGAAGGACTCGGCATTGAAGGTGCTTTAT}$ CTGCATAATAACCAGCTTCTAGCTGGAGGGCTGCATGCAGGGAAGGTCATTAAAGGTGAAGAG ATCAGCGTGGTCCCCAATCGGTGGCTGGATGCCAGCCTGTCCCCCGTCATCCTGGGTGTCCAG GGTGGAAGCCAGTGCCTGTCATGTGGGGTGGGGCAGGAGCCGACTCTAACACTAGAGCCAGTG AACATCATGGAGCTCTATCTTGGTGCCAAGGAATCCAAGAGCTTCACCTTCTACCGGCGGGAC ATGGGGCTCACCTCCAGCTTCGAGTCGGCTGCCTACCCGGGCTGGTTCCTGTGCACGGTGCCT GAAGCCGATCAGCCTGTCAGACTCACCCAGCTTCCCGAGAATGGTGGCTGGAATGCCCCCATC ACAGACTTCTACTTCCAGCAGTGTGACTGGGCAACGTGCCCCCCAGAACTCCCTGGGCAGAGGACCCCCACGTCTGACTTAGTGGGCACCTGACCACTTTGTCTTCTGGTTCCCAGTTTGGATAA ATTCTGAGATTTGGAGCTCAGTCCACGGTCCTCCCCCACTGGATGGTGCTACTGCTGTGGAAC CTTGTAAAAACCATGTGGGGTAAACTGGGAATAACATGAAAAGATTTCTGTGGGGGTGGGGTG GGGGAGTGGTGGGAATCATTCCTGCTTAATGGTAACTGACAAGTGTTACCCTGAGCCCCGCAG GCCAACCCATCCCCAGTTGAGCCTTATAGGGTCAGTAGCTCTCCACATGAAGTCCTGTCACTC ACCACTGTGCAGGAGGGGGGGGGTGGTCATAGAGTCAGGGGATCTATGGCCCTTGGCCCAGCCCC ACCCCCTTCCCTTTAATCCTGCCACTGTCATATGCTACCTTTCCTATCTCTTCCCTCATCATC TTGTTGTGGGCATGAGGAGGTGGTGATGTCAGAAGAAATGGCTCGAGCTCAGAAGATAAAAGA TAAGTAGGGTATGCTGATCCTCTTTTAAAAAACCCAAGATACAATCAAAAATCCCAGATGCTGGT CTCTATTCCCATGAAAAAGTGCTCATGACATATTGAGAAGACCTACTTACAAAGTGGCATATA TTGCAATTTATTTTAATTAAAAGATACCTATTTATATATTTCTTTATAGAAAAAAGTCTGGAA GAGTTTACTTCAATTGTAGCAATGTCAGGGTGGTGGCAGTATAGGTGATTTTTCTTTTAATTC TGTTAATTTATCTGTATTTCCTAATTTTTCTACAATGAAGATGAATTCCTTGTATAAAAATAA GAAAAGAAATTAATCTTGAGGTAAGCAGAGCAGACATCATCTCTGATTGTCCTCAGCCTCCAC GGAAACAGATCTCAGCAAAGCCACTGAGGAGGAGGCTGTGCTGAGTTTGTGTGGCTGGAATCT CTGGGTAAGGAACTTAAAGAACAAAAATCATCTGGTAATTCTTTCCTAGAAGGATCACAGCCC CTGGGATTCCAAGGCATTGGATCCAGTCTCTAAGAAGGCTGCTGTACTGGTTGAATTGTGTCC CCCTCAAATTCACATCCTTCTTGGAATCTCAGTCTGTGAGTTTATTTGGAGATAAGGTCTCTG CAGATGTAGTTAAGACAAGGTCATGCTGGATGAAGGTAGACCTAAATTCAATATGACTG GTTTCCTTGTATGAAAAGGAGAGACACAGAGACAGAGACGCGGGGAAGACTATGTAAAG ATGAAGGCAGAGATCGGAGTTTTGCAGCCACAAGCTAAGAAACACCAAGGATTGTGGCAACCA TCAGAAGCTTGGAAGAGGCAAAGAAGAATTCTTCCCTAGAGGCTTTAGAGGGATAACGGCTCT TAAGCCACCAAGGATAATTGGTTACAGCAGCTCTAGGAAACTAATACAGCTGCTAAAATGATC CCTGTCTCCTCGTGTTTACATTCTGTGTGTCCCCTCCCACAATGTACCAAAGTTGTCTTTG TGACCAATAGAATATGGCAGAAGTGATGGCATGCCACTTCCAAGATTAGGTTATAAAAGACAC CGCTCTGGGGGAAGCTAGCTGCCATGCTATGAGCAGGCCTATAAAGAGACTTACGTGGTAAAA AATGAAGTCTCCTGCCCACAGCCACATTAGTGAACCTAGAAGCAGAGACTCTGTGAGATAATC TATGCAGAGAAAGAG

FIGURE 152

MVLSGALCFRMKDSALKVLYLHNNQLLAGGLHAGKVIKGEEISVVPNRWLDASLSPVILGVQG GSQCLSCGVGQEPTLTLEPVNIMELYLGAKESKSFTFYRRDMGLTSSFESAAYPGWFLCTVPE ADQPVRLTQLPENGGWNAPITDFYFQQCD

N-myristoylation sites.

amino acids 29-34, 30-35, 60-65, 63-68, 73-78, 91-96, 106-111

Interleukin-1 signature.

amino acids 111-131

Interleukin-1 proteins.

amino acids 8-29, 83-120, 95-134, 64-103

FIGURE 153

CTTCAGAACAGGTTCTCCTTCCCCAGTCACCAGTTGCTCGAGTTAGAATTGTCTGCA**ATG**GCC GCCCTGCAGAAATCTGTGAGCTCTTTCCTTATGGGGACCCTGGCCACCAGCTGCCTCCTTCTC TTGGCCCTCTTGGTACAGGGAGGAGCAGCTGCGCCCATCAGCTCCCACTGCAGGCTTGACAAG TCCAACTTCCAGCAGCCCTATATCACCAACCGCACCTTCATGCTGGCTAAGGAGGCTAGCTTG GCTGATAACAACACAGACGTTCGTCTCATTGGGGAGAAACTGTTCCACGGAGTCAGTATGAGT GAGCGCTGCTATCTGATGAAGCAGGTGCTGAACTTCACCCTTGAAGAAGTGCTGTTCCCTCAA TCTGATAGGTTCCAGCCTTATATGCAGGAGGTGGTGCCCTTCCTGGCCAGGCTCAGCAACAGG CTAAGCACATGTCATATTGAAGGTGATGACCTGCATATCCAGAGGAATGTGCAAAAGCTGAAG GACACAGTGAAAAAGCTTGGAGAGAGTGGAGAGATCAAAGCAATTGGAGAACTGGATTTGCTG TTTATGTCTCTGAGAAATGCCTGCATT ${f TGA}$ CCAGAGCAAAGCTGAAAAATGAATAACTAACCC TTTTTCCATAAAAAAGATTACTTTCCATTCCTTTAGGGGAAAAAACCCCTAAATAGCTTCATG TTATATCATTTTATTAATATGGATTTATTTATAGAAACATCATTCGATATTGCTACTTGAGTG TAAGGCTAATATTGATATTTATGACAATAATTATAGAGCTATAACATGTTTATTTGACCTCAA TAAACACTTGGATATCCC

FIGURE 154

MAALQKSVSSFLMGTLATSCLLLLALLVQGGAAAPISSHCRLDKSNFQQPYITNRTFMLAKEA SLADNNTDVRLIGEKLFHGVSMSERCYLMKQVLNFTLEEVLFPQSDRFQPYMQEVVPFLARLS NRLSTCHIEGDDLHIQRNVQKLKDTVKKLGESGEIKAIGELDLLFMSLRNACI

Important features of the protein:

Signal peptide:

amino acids 1-33

N-glycosylation sites.

amino acids 54-58, 68-72, 97-101

N-myristoylation sites.

amino acids 14-20, 82-88

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 10-21

FIGURE 155

GGCTTGCTGAAAATAAAATCAGGACTCCTAACCTGCTCCAGTCAGCCTGCTTCCACGAGGCCT GTCAGTCAGTGCCCGACTTGTGACTGAGTGTGCAGTGCCCAGCATGTACCAGGTCAGTGCAGA CCAAGCTGCCAGGTTTGGGGGCTGGGGGCCAAGTGGAGTGAGAAACTGGGATCCCAGGGGGAGG GTGCAGATGAGGGAGCGACCCAGATTAGGTGAGGACAGTTCTCTCATTAGCCTTTTCCTACAG GTGGTTGCATTCTTGGCAATGGTCATGGGAACCCACACCTACAGCCACTGGCCCAGCTGCTGC CCCAGCAAAGGGCAGGACACCTCTGAGGAGCTGCTGAGGTGGAGCACTGTGCCTGTGCCTCCC CTAGAGCCTGCTAGGCCCAACCGCCACCCAGAGTCCTGTAGGGCCCAGTGAAGATGGACCCCTC AACAGCAGGGCCATCTCCCCCTGGAGATATGAGTTGGACAGAGACTTGAACCGGCTCCCCCAG GACCCCGGGGCAACTCGGAGCTGCTCTACCACAACCAGACTGTCTTCTACAGGCGGCCATGC CATGGCGAGAAGGGCACCCACAAGGGCTACTGCCTGGAGCGCAGGCTGTACCGTGTTTCCTTA $\texttt{GCTTGTGTGTGTGCGGCCCCGTGTGATGGGC} \underline{\textbf{TAG}} \texttt{CCGGACCTGCTGGAGGCTGGTCCCTTT}$ TTGGGAAACCTGGAGCCAGGTGTACAACCACTTGCCATGAAGGGCCAGGATGCCCAGATGCTT GGCCCCTGTGAAGTGCTGTCTGGAGCAGCAGGATCCCGGGACAGGATGGGGGGCTTTGGGGAA AACCTGCACTTCTGCACATTTTGAAAAGAGCAGCTGCTGCTTAGGGCCGCCGGAAGCTGGTGT CCTGTCATTTTCTCTCAGGAAAGGTTTTCAAAGTTCTGCCCATTTCTGGAGGCCACCACTCCT GTCTCTTCCTCTTTTCCCATCCCCTGCTACCCTGGCCCAGCACAGGCACTTTCTAGATATTTC ATCTACTTTGGGTGCATTCTAGTGTAGTTACTAGTCTTTTGACATGGATGATTCTGAGGAGGA

FIGURE 156

MRERPRLGEDSSLISLFLQVVAFLAMVMGTHTYSHWPSCCPSKGQDTSEELLRWSTVPVPPLE PARPNRHPESCRASEDGPLNSRAISPWRYELDRDLNRLPQDLYHARCLCPHCVSLQTGSHMDP RGNSELLYHNQTVFYRRPCHGEKGTHKGYCLERRLYRVSLACVCVRPRVMG

Important features of the protein:

Signal peptide:

amino acids 1-32

N-glycosylation site.

amino acids 136-140

Tyrosine kinase phosphorylation site.

amino acids 127-135

N-myristoylation sites.

amino acids 44-50, 150-156

FIGURE 157

 $\texttt{CCGGCG} \underline{\textbf{ATG}} \texttt{TCGCTCGTGCTAAGCCTGGCCGCGCTGTGCAGGAGCGCCGTACCCCGAGAG}$ CCGACCGTTCAATGTGGCTCTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTA ATCCCCGGAGACTTGAGGGACCTCCGAGTAGAACCTGTTACAACTAGTGTTGCAACAGGGGAC TATTCAATTTTGATGAATGTAAGCTGGGTACTCCGGGCAGATGCCAGCATCCGCTTGTTGAAG GCCACCAAGATTTGTGTGACGGGCAAAAGCAACTTCCAGTCCTACAGCTGTGTGAGGTGCAAT TACACAGAGGCCTTCCAGACTCAGACCAGACCCTCTGGTGGTAAATGGACATTTTCCTACATC GGCTTCCCTGTAGAGCTGAACACAGTCTATTTCATTGGGGCCCATAATATTCCTAATGCAAAT ATGAATGAAGATGGCCCTTCCATGTCTGTGAATTTCACCTCACCAGGCTGCCTAGACCACATA ATGAAATATAAAAAAAGTGTGTCAAGGCCGGAAGCCTGTGGGATCCGAACATCACTGCTTGT AAGAAGAATGAGGAGACAGTAGAAGTGAACTTCACAACCACTCCCCTGGGAAACAGATACATG GCTCTTATCCAACACAGCACTATCATCGGGTTTTCTCAGGTGTTTGAGCCACACCAGAAGAAA CAAACGCGAGCTTCAGTGGTGATTCCAGTGACTGGGGGATAGTGAAGGTGCTACGGTGCAGCTG ACTCCATATTTTCCTACTTGTGGCAGCGACTGCATCCGACATAAAGGAACAGTTGTGCTCTGC AGGCACGAAAGGATCAAGAAGACTTCCTTTTCTACCACCACACTACTGCCCCCCATTAAGGTT CTTGTGGTTTACCCATCTGAAATATGTTTCCATCACACAATTTGTTACTTCACTGAATTTCTT CAAAACCATTGCAGAAGTGAGGTCATCCTTGAAAAGTGGCAGAAAAAGAAAATAGCAGAGATG GGTCCAGTGCAGTGGCTTGCCACTCAAAAGAAGGCAGCAGACAAAGTCGTCTTCCTTTCC AATGACGTCAACAGTGTGCGATGGTACCTGTGGCAAGAGCGAGGGCAGTCCCAGTGAGAAC TCTCAAGACCTCTTCCCCCTTGCCTTTAACCTTTTCTGCAGTGATCTAAGAAGCCAGATTCAT CTGCACAAATACGTGGTGGTCTACTTTAGAGAGATTGATACAAAAGACGATTACAATGCTCTC AGTGTCTGCCCCAAGTACCACCTCATGAAGGATGCCACTGCTTTCTGTGCAGAACTTCTCCAT GTCAAGCAGCAGGTGTCAGCAGGAAAAAGATCACAAGCCTGCCACGATGGCTGCTCCTTG

TAG

FIGURE 158

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTTSVATGDYS
ILMNVSWVLRADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGF
PVELNTVYFIGAHNIPNANMNEDGPSMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKK
NEETVEVNFTTTPLGNRYMALIQHSTIIGFSQVFEPHQKKQTRASVVIPVTGDSEGATVQLTP
YFPTCGSDCIRHKGTVVLCPQTGVPFPLDNNKSKPGGWLPLLLLSLLVATWVLVAGIYLMWRH
ERIKKTSFSTTTLLPPIKVLVVYPSEICFHHTICYFTEFLQNHCRSEVILEKWQKKKIAEMGP
VQWLATQKKAADKVVFLLSNDVNSVCDGTCGKSEGSPSENSQDLFPLAFNLFCSDLRSQIHLH
KYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVKQQVSAGKRSQACHDGCCSL

Important features of the protein:

Signal peptide:

amino acids 1-14

Transmembrane domain:

amino acids 290-309

N-glycosylation sites.

amino acids 67 - 71, 103 - 107, 156 - 160, 183 - 187, 197 - 201 and 283 - 287

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 228 - 232 and 319 - 323

Casein kinase II phosphorylation sites.

amino acids 178 - 182, 402 - 406, 414 - 418 and 453 - 457

N-myristoylation site.

amino acids 116-122

Amidation site.

amino acids 488-452

FIGURE 159

FIGURE 160

MTVKTLHGPAMVKYLLLSILGLAFLSEAAARKIPKVGHTFFQKPESCPPVPGGSMKLDIGIIN ENQRVSMSRNIESRSTSPWNYTVTWDPNRYPSEVVQAQCRNLGCINAQGKEDISMNSVPIQQE TLVVRRKHQGCSVSFQLEKVLVTVGCTCVTPVIHHVQ

Signal sequence:

amino acids 1-30

N-glycosylation site.

amino acids 83-87

N-myristoylation sites.

amino acids 106-111, 136-141

FIGURE 161

ACACTGGCCAAACAAAAACGAAAGCACTCCGTGCTGGAAGTAGGAGGAGAGTCAGGACTCCCA GGACAGAGAGTGCACAAACTACCCAGCACAGCCCCCTCCGCCCCCTCTGGAGGCTGAAGAGGG ${\tt CAGCACAGGGCCTCAGGCCTGGGTGCCACCTGGCACCTAGAAG} {\color{red} {\bf ATG} {\tt CCTGTGCCCTGGTTCTT} }$ GCTGTCCTTGGCACTGGGCCGAAGCCCAGTGGTCCTTTCTCTGGAGAGGCTTGTGGGGCCTCA GGACGCTACCCACTGCTCTCCGGGCCTCTCCTGCCGCCTCTGGGACAGTGACATACTCTGCCT CGTGCATGGGCACTGGGAAGAGCCTGAAGATGAGGAAAAGTTTGGAGGAGCAGCTGACTCAGG GGTGGAGGAGCCTAGGAATGCCTCTCTCCAGGCCCAAGTCGTGCTCTCCTTCCAGGCCTACCC TACTGCCCGCTGCGTCCTGCAGGTGCAAGTGCCTGCTGCCCTTGTGCAGTTTGGTCAGTC TGTGGGCTCTGTGGTATATGACTGCTTCGAGGCTGCCCTAGGGAGTGAGGTACGAATCTGGTC GCTCAACGTGTCAGCAGATGGTGACAACGTGCATCTGGTTCTGAATGTCTCTGAGGAGCAGCA CTTCGGCCTCTCCCTGTACTGGAATCAGGTCCAGGGCCCCCAAAACCCCGGTGGCACAAAAA CCTGACTGGACCGCAGATCATTACCTTGAACCACACAGACCTGGTTCCCTGCCTCTGTATTCA GGTGTGGCCTCTGGAACCTGACTCCGTTAGGACGAACATCTGCCCCTTCAGGGAGGACCCCCG GGACGCACCGTGCTCGCTGCCCGCAGAAGCGGCACTGTGCTGGCGGGCTCCGGGTGGGGACCC CTGCCAGCCACTGGTCCCACCGCTTTCCTGGGAGAACGTCACTGTGGACAAGGTTCTCGAGTT CCCATTGCTGAAAGGCCACCCTAACCTCTGTGTTCAGGTGAACAGCTCGGAGAAGCTGCAGCT GCAGGAGTGCTTGTGGGCTGACTCCCTGGGGCCTCTCAAAGACGATGTGCTACTGTTGGAGAC ACGAGGCCCCCAGGACAACAGATCCCTCTGTGCCTTGGAACCCAGTGGCTGTACTTCACTACC CCAGTGTCTGCAGCTATGGGACGATGACTTGGGAGCGCTATGGGCCCCCATGGACAAATA CATCCACAAGCGCTGGGCCTCGTGTGGCCTGGCCTACTCTTTGCCGCTGCGCTTTCCCT CATCCTCCTTCTCAAAAAGGATCACGCGAAAGGGTGGCTGAGGCTCTTGAAACAGGACGTCCG CTCGGGGGCCGCCAGGGGCCGCGCGCTCTGCTCCTACTCAGCCGATGACTCGGGTTT $\tt CGAGCGCCTGGGGCGCCTGGCGTCGGCCTGTGCCAGCTGCCGCTGGCCGTAGA$ CCTGTGGAGCCGTCGTGAACTGAGCGCGCAGGGGCCCGTGGCTTGGTTTCACGCGCAGCGGCG CAGCGAGTGGCTACAGGATGGGGTGTCCGGGCCCGGGGCGCACGGCCCCGCACGACGCCTTCCG CGCCTCGCTCAGCTGCGTGCTGCCCGACTTCTTGCAGGGCCGGGCGCCCCGGCAGCTACGTGGG GGCCTGCTTCGACAGGCTGCTCCACCCGGACGCCGTACCCGCCCTTTTCCGCACCGTGCCCGT CTTCACACTGCCCTCCCAACTGCCAGACTTCCTGGGGGCCCTGCAGCAGCCTCGCGCCCCGCG GGCGGGGGACGGACT**TAA**ATAAAGGCAGACGCTGTTTTTCTAAAAAAA

FIGURE 162

MPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLWDSDILCLPGDIVPAPGPVLAP
THLQTELVLRCQKETDCDLCLRVAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRNASLQAQVV
LSFQAYPTARCVLLEVQVPAALVQFGQSVGSVVYDCFEAALGSEVRIWSYTQPRYEKELNHTQ
QLPALPWLNVSADGDNVHLVLNVSEEQHFGLSLYWNQVQGPPKPRWHKNLTGPQIITLNHTDL
VPCLCIQVWPLEPDSVRTNICPFREDPRAHQNLWQAARLRLLTLQSWLLDAPCSLPAEAALCW
RAPGGDPCQPLVPPLSWENVTVDKVLEFPLLKGHPNLCVQVNSSEKLQLQECLWADSLGPLKD
DVLLLETRGPQDNRSLCALEPSGCTSLPSKASTRAARLGEYLLQDLQSGQCLQLWDDDLGALW
ACPMDKYIHKRWALVWLACLLFAAALSLILLLKKDHAKGWLRLLKQDVRSGAAARGRAALLLY
SADDSGFERLVGALASALCQLPLRVAVDLWSRRELSAQGPVAWFHAQRRQTLQEGGVVVLLFS
PGAVALCSEWLQDGVSGPGAHGPHDAFRASLSCVLPDFLQGRAPGSYVGACFDRLLHPDAVPA
LFRTVPVFTLPSQLPDFLGALQQPRAPRSGRLQERAEQVSRALQPALDSYFHPPGTPAPGRGV
GPGAGPGAGDGT

Signal sequence:

amino acids 1-20

Transmembrane domain.

amino acids 453-475

N-glycosylation sites.

amino acids 118-121, 186-189, 198-201, 211-214, 238-241, 248-251, 334-337, 357-360, 391-394

Glycosaminoglycan attachment site.

amino acids 583-586

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 552-555

N-myristoylation sites.

amino acids 107-112, 152-157, 319-324, 438-443, 516-521, 612-617, 692-697, 696-701, 700-705

FIGURE 163

 ${\tt GGGAGGGCTCTGTGCCAGCCCCG} \underline{{\tt ATG}} {\tt AGGACGCTGCTGACCATCTTGACTGTGGGATCCCTGG}$ CTGCTCACGCCCCTGAGGACCCCTCGGATCTGCTCCAGCACGTGAAATTCCAGTCCAGCAACT TTGAAAACATCCTGACGTGGGACAGCGGGCCAGAGGGCACCCCAGACACGGTCTACAGCATCG AGTATAAGACGTACGGAGAGAGGGACTGGGTGGCAAAGAAGGGGCTGTCAGCGGATCACCCGGA AGTCCTGCAACCTGACGGTGGAGACGGGCAACCTCACGGAGCTCTACTATGCCAGGGTCACCGCT GTCAGTGCGGGAGGCCGGTCAGCCACCAAGATGACTGACAGGTTCAGCTCTCTGCAGCACACT ACCCTCAAGCCACCTGATGTGACCTGTATCTCCAAAGTGAGATCGATTCAGATGATTGTTCAT CCTACCCCACGCCAATCCGTGCAGGCGATGGCCACCGGCTAACCCTGGAAGACATCTTCCAT GACCTGTTCTACCACTTAGAGCTCCAGGTCAACCGCACCTACCAAATGCACCTTGGAGGGAAG CAGAGAGAATATGAGTTCTTCGGCCTGACCCCTGACACAGAGTTCCTTGGCACCATCATGATT TGCGTTCCCACCTGGGCCAAGGAGAGTGCCCCCTACATGTGCCGAGTGAAGACACTGCCAGAC CGGACATGGACCTACTCCTCCCGGAGCCTTCCTGTTCTCCATGGGCTTCCTCGTCGCAGTA CTCTGCTACCTGAGCTACAGATATGTCACCAAGCCGCCTGCACCTCCCAACTCCCTGAACGTC CAGCGAGTCCTGACTTTCCAGCCGCTGCGCTTCATCCAGGAGCACGTCCTGATCCCTGTCTTT GACCTCAGCGGCCCCAGCAGTCTGGCCCAGCCTGTCCAGTACTCCCAGATCAGGGTGTCTGGA CCCAGGGAGCCCGCAGGAGCTCCACAGCGGCATAGCCTGTCCGAGATCACCTACTTAGGGCAG CCAGACATCTCCATCCTCCAGCCCTCCAACGTGCCACCTCCCCAGATCCTCTCCCCACTGTCC TATGCCCCAAACGCTGCCCCTGAGGTCGGGCCCCCATCCTATGCACCTCAGGTGACCCCCGAA GCTCAATTCCCATTCTACGCCCCACAGGCCATCTCTAAGGTCCAGCCTTCCTCCTATGCCCCT CAAGCCACTCCGGACAGCTGGCCTCCCTCTATGGGGTATGCATGGAAGGTTCTGGCAAAGAC TCCCCCACTGGGACACTTTCTAGTCCTAAACACCTTAGGCCTAAAGGTCAGCTTCAGAAAGAG CCACCAGCTGGAAGCTGCATGTTAGGTGGCCTTTCTCTGCAGGAGGTGACCTCCTTGGCTATG GACCCAAATGTGCTACACAGTGGGGAGGAAGGGACACCACAGTACCTAAAGGGCCAGCTCCCC CCATGTTCCCCCTCGGACCAAGGTCCAAGTCCCTGGGGGCCTGCTGGAGTCCCTTGTGTGTCCC AAGGATGAAGCCAAGAGCCCAGCCCCTGAGACCTCAGACCTGGAGCAGCCCACAGAACTGGAT ${\tt TCTCTTTCAGAGGCCTGGCCCTGACTGTGCAGTGGGAGTCC} {\tt TGA} {\tt GGGGAATGGGAAAGGCTT}$ GCCACACTCTGCGATCTGGCCTCAGACGGGTGCCCTTGAGAGAGCAGAGGGAGTGGCATG CAGGGCCCCTGCCATGGGTGCGCTCCTCACCGGAACAAAGCAGCATGATAAGGACTGCAGCGG GGGAGCTCTGGGGAGCAGCTTGTGTAGACAAGCGCGTGCTCGCTGAGCCCTGCAAGGCAGAAA TGACAGTGCAAGGAGAAATGCAGGGAAACTCCCGAGGTCCAGAGCCCCACCTCCTAACACCA TGGATTCAAAGTGCTCAGGGAATTTGCCTCTCCTTGCCCCATTCCTGGCCAGTTTCACAATCT AGCTCGACAGAGCATGAGGCCCCTGCCTCTTCTGTCATTGTTCAAAGGTGGGAAGAGAGCCTG GAAAAGAACCAGGCCTGGAAAAGAACCAGAAGGAGGCTGGGCAGAACCAGAACCAGCCTGCACT TCCCAGCCAGGGCAACTGCCTGACGTTGCACGATTTCAGCTTCATTCCTCTGATAGAACAAAG CCTATCCTGAGAATGGGGTTTGAAAGGAAGGTGAGGGCTGTGGCCCCTGGACGGGTACAATAA CACACTGTACTGATGTCACAACTTTGCAAGCTCTGCCTTGGGTTCAGCCCATCTGGGCTCAAA ATGAAGTCATGTCTTTAAAGTGCTTAATAGTGCCTGGTACATGGGCCAGTGCCCAATAAACGGT AGCTATTTAAAAAAAAAAAAAAA

FIGURE 164

MRTLLTILTVGSLAAHAPEDPSDLLQHVKFQSSNFENILTWDSGPEGTPDTVYSIEYKTYGER
DWVAKKGCQRITRKSCNLTVETGNLTELYYARVTAVSAGGRSATKMTDRFSSLQHTTLKPPDV
TCISKVRSIQMIVHPTPTPIRAGDGHRLTLEDIFHDLFYHLELQVNRTYQMHLGGKQREYEFF
GLTPDTEFLGTIMICVPTWAKESAPYMCRVKTLPDRTWTYSFSGAFLFSMGFLVAVLCYLSYR
YVTKPPAPPNSLNVQRVLTFQPLRFIQEHVLIPVFDLSGPSSLAQPVQYSQIRVSGPREPAGA
PQRHSLSEITYLGQPDISILQPSNVPPPQILSPLSYAPNAAPEVGPPSYAPQVTPEAQFPFYA
PQAISKVQPSSYAPQATPDSWPPSYGVCMEGSGKDSPTGTLSSPKHLRPKGQLQKEPPAGSCM
LGGLSLQEVTSLAMEESQEAKSLHQPLGICTDRTSDPNVLHSGEEGTPQYLKGQLPLLSSVQI
EGHPMSLPLQPPSGPCSPSDQGPSPWGLLESLVCPKDEAKSPAPETSDLEQPTELDSLFRGLA
LTVOWES

Signal sequence.

amino acids 1-17

Transmembrane domain.

amino acids 233-250

N-glycosylation sites.

amino acids 80-83, 87-90, 172-175

N-myristoylation sites.

amino acids 11-16, 47-52, 102-107, 531-536, 565-570

FIGURE 165

TGGCCTACTGGAAAAAAAAAAAAAAAAAAAAAAAGTCACCCGGGCCCGCGGTGGCCACAAC**AT** CCAGTCGGATCTCAGCCACGGACGGCGTTTCTCGGACCTCAAAGTGTGCGGGGACGAAGAGTG CAGCATGTTAATGTACCGTGGGAAAGCTCTTGAAGACTTCACGGGCCCTGATTGTCGTTTTGT GAATTTTAAAAAAGGTGACGATGTATATGTCTACTACAAACTGGCAGGGGGATCCCTTGAACT TTGGGCTGGAAGTGTTGAACACAGTTTTGGATATTTTCCAAAAGATTTGATCAAGGTACTTCA AGGAAGAGATGATTTTAATAGTTATAATGTAGAAGAGCTTTTAGGATCTTTGGAACTGGAGGA CTCTGTACCTGAAGAGTCGAAGAAGCTGAAGAAGTTTCTCAGCACAGAGAGAAATCTCCTGA GGAGTCTCGGGGGCGTGAACTTGACCCTGTGCCTGAGCCCGAGGCATTCAGAGCTGATTCAGA GGATGGAGAGGTGCTTTCTCAGAGAGCACCGAGGGGCTGCAGGGACAGCCCTCAGCTCAGGA GAGCCACCCTCACACCAGCGGTCCTGCGGCTAACGCTCAGGGAGTGCAGTCTTCGTTGGACAC TTTTGAAGAAATTCTGCACGATAAATTGAAAGTGCCGGGAAGCGAAAGCAGAACTGGCAATAG TTCTCCTGCCTCGGTGGAGCGGGAGAAGACAGATGCTTACAAAGTCCTGAAAACAGAAATGAG TCAGAGAGGAAGTGGACAGTGCGTTATTCATTACAGCAAAGGATTTCGTTGGCATCAAAATCT AAGTTTGTTTTACAAAGATTGTTTT**TAG**TACTAAGCTGCCTTGGCAGTTTGCATTTTTGAGCC

FIGURE 166

MAAAPGLLFWLFVLGALWWVPGQSDLSHGRRFSDLKVCGDEECSMLMYRGKALEDFTGPDCRF VNFKKGDDVYVYYKLAGGSLELWAGSVEHSFGYFPKDLIKVLHKYTEEELHIPADETDFVCFE GGRDDFNSYNVEELLGSLELEDSVPEESKKAEEVSQHREKSPEESRGRELDPVPEPEAFRADS EDGEGAFSESTEGLQGQPSAQESHPHTSGPAANAQGVQSSLDTFEEILHDKLKVPGSESRTGN SSPASVEREKTDAYKVLKTEMSQRGSGQCVIHYSKGFRWHQNLSLFYKDCF

Important features of the protein:

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 294-298

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 30-34

Tyrosine kinase phosphorylation site.

amino acids 67-76

N-myristoylation sites.

amino acids 205-211, 225-231, 277-283

Amidation site.

amino acids 28-32

FIGURE 167

CCAGGACCAGGGCGCACCGGCTCAGCCTCTCACTTGTCAGAGGCCGGGGAAGAAGCAAAGC GCAACGGTGTGGTCCAAGCCGGGGCTTCTGCTTCGCCTCTAGGACATACACGGGACCCCCTAA CTTCAGTCCCCCAAACGCGCACCCTCGAAGTCTTGAACTCCAGCCCCGCACATCCACGCGCGG CACAGGCGCGGCAGGCGGCCGGCCGAAGGCGATGCGCGCAGGGGGTCGGGCAGCTGG GCTCGGGCGGGGAGTAGGGCCCGGCAGGGAGGCAGGGAGGCTGCATATTCAGAGTCGCGGG GCCGCGTGGTCAGCGGCCAAAAGGTGTGTTTTGCTGACTTCAAGCATCCCTGCTACAAAATGG CCTACTTCCATGAACTGTCCAGCCGAGTGAGCTTTCAGGAGGCACGCCTGGCTTGTGAGAGTG AGGGAGGAGTCCTCCTCAGCCTTGAGAATGAAGCAGAACAGAAGTTAATAGAGAGCATGTTGC AAAACCTGACAAAACCCGGGACAGGGATTTCTGATGGTGATTTCTGGATAGGGCTTTGGAGGA ATGGAGATGGGCAAACATCTGGTGCCTGCCCAGATCTCTACCAGTGGTCTGATGGAAGCAATT CCCAGTACCGAAACTGGTACACAGATGAACCTTCCTGCGGAAGTGAAAAGTGTGTTGTGATGT ATCACCAACCAACTGCCAATCCTGGCCTTGGGGGTCCCTACCTTTACCAGTGGAATGATGACA GGTGTAACATGAAGCACAATTATATTTGCAAGTATGAACCAGAGATTAATCCAACAGCCCCTG TAGAAAAGCCTTATCTTACAAATCAACCAGGAGACACCCATCAGAATGTGGTTGTTACTGAAG CAGGTATAATTCCCAATCTAATTTATGTTGTTATACCAACAATACCCCTGCTCTTACTGATAC TGGTTGCTTTTGGAACCTGTTGTTTCCAGATGCTGCATAAAAGTAAAGGAAGAACAAAAACTA **AA**TAACTCATTGACTTGGTTCCAGAATTTTGTAATTCTGGATCTGTATAAGGAATGGCATCAG AACAATAGCTTGGAATGGCTTGAAATCACAAAGGATCTGCAAGATGAACTGTAAGCTCCCCCT TGAGGCAAATATTAAAGTAATTTTTATATGTCTATTATTTCATTTAAAGAATATGCTGTGCTA ATAATGGAGTGAGACATGCTTATTTTGCTAAAGGATGCACCCAAACTTCAAACTTCAAGCAAA TGAAATGGACAATGCAGATAAAGTTGTTATCAACACGTCGGGAGTATGTGTGTTAGAAGCAAT TCCTTTTATTTCTTTCACCTTTCATAAGTTGTTATCTAGTCAATGTAATGTATATTGTATTGA AATTTACAGTGTGCAAAAGTATTTTACCTTTGCATAAGTGTTTGATAAAAATGAACTGTTCTA ATATTTATTTTTATGGCATCTCATTTTTCAATACATGCTCTTTTGATTAAAGAAACTTATTAC ATAATTCATCTTTCAGCTTCTCTGCTTTTGGTCAATGTCTAGGAAATCTCTTCAGAAATAAGA AGCTATTTCATTAAGTGTGATATAAACCTCCTCAAACATTTTACTTAGAGGCAAGGATTGTCT AATTTCAATTGTGCAAGACATGTGCCTTATAATTATTTTTAGCTTAAAATTAAACAGATTTTG TAATAATGTAACTTTGTTAATAGGTGCATAAACACTAATGCAGTCAATTTGAACAAAAGAAGT GACATACACAATATAAATCATATGTCTTCACACGTTGCCTATATAATGAGAAGCAGCTCTCTG AGGGTTCTGAAATCAATGTGGTCCCTCTCTTGCCCACTAAACAAAGATGGTTGTTCGGGGTTT GGGATTGACACTGGAGGCAGATAGTTGCAAAGTTAGTCTAAGGTTTCCCTAGCTGTATTTAGC CTCTGACTATATTAGTATACAAAGAGGTCATGTGGTTGAGACCAGGTGAATAGTCACTATCAG TGTGGAGACAAGCACACACAGACATTTTAGGAAGGAAAGGAACTACGAAATCGTGTGAAA ATGGGTTGGAACCCATCAGTGATCGCATATTCATTGATGAGGGTTTGCTTGAGATAGAAAATG GTGGCTCCTTTCTGTCTTATCTCCTAGTTTCTTCAATGCTTACGCCTTGTTCTTCTCAAGAGA AAGTTGTAACTCTCTGGTCTTCATATGTCCCTGTGCTCCTTTTAACCAAATAAAGAGTTCTTG

FIGURE 168

MSRVVSLLLGAALLCGHGAFCRRVVSGQKVCFADFKHPCYKMAYFHELSSRVSFQEARLACES EGGVLLSLENEAEQKLIESMLQNLTKPGTGISDGDFWIGLWRNGDGQTSGACPDLYQWSDGSN SQYRNWYTDEPSCGSEKCVVMYHQPTANPGLGGPYLYQWNDDRCNMKHNYICKYEPEINPTAP VEKPYLTNQPGDTHQNVVVTEAGIIPNLIYVVIPTIPLLLLILVAFGTCCFQMLHKSKGRTKT SPNQSTLWISKSTRKESGMEV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domain:

amino acids 214-235

N-glycosylation sites.

amino acids 86-89, 255-258

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 266-269

N-myristoylation sites.

amino acids 27-32, 66-71, 91-96, 93-98, 102-107, 109-114, 140-145, 212-217