Math 381 - Fall 2022

Jay Newby

University of Alberta

Week 4

Last Time

- 1 Polynomial Interpolation: introduction and motivation
- 2 Lagrange polynomials
- Barycentric formula

Today

- 1 Barycentric formula (continued)
- ② Interpolation error
- Runge phenomenon

Lagrange Polynomials

We will use a special polynomial basis that is very well suited for interpolation. Let $y_j = f(x_j)$. The Lagrange interpolation is given by

$$p(x) = \sum_{j=0}^{n} y_j L_j(x)$$

The basis functions $L_j(x)$ are polynomials of degree n that satisfy

$$L_j(x_i) = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

These basis polynomials are

$$L_j(x) = \prod_{\substack{i=0\\i\neq j}}^n \frac{(x-x_i)}{(x_j-x_i)}$$

For a given set of points (x_j, y_j) , j = 0, 1, ..., n, with distinct $x_0, ..., x_n$, there exists a unique Lagrange interpolating polynomial,

$$p(x) = \sum_{j=0}^{n} y_j L_j(x).$$

For a given set of points (x_j, y_j) , j = 0, 1, ..., n, with distinct $x_0, ..., x_n$, there exists a unique Lagrange interpolating polynomial,

$$p(x) = \sum_{j=0}^{n} y_j L_j(x).$$

Proof: By construction p(x) is a polynomial of degree at most n and interpolates the points (x_j, y_j) (see previous lecture slides).

For a given set of points (x_j, y_j) , j = 0, 1, ..., n, with distinct $x_0, ..., x_n$, there exists a unique Lagrange interpolating polynomial,

$$p(x) = \sum_{j=0}^{n} y_j L_j(x).$$

Proof: By construction p(x) is a polynomial of degree at most n and interpolates the points (x_j, y_j) (see previous lecture slides). To prove uniqueness, suppose that q(x) is a Lagrange polynomial interpolating the points. We need to show that r(x) = p(x) - q(x) = 0.

$$q(x_i) = y_i$$
 and $p(x_i) = y_i$
 $\Rightarrow r(x_i) = p(x_i) - q(x_i) = 0$
 $\Rightarrow r(\cdot)$ has not roots at x_0, \dots, x_n

The difference of two polynomials of degree (at most) in is a polynomial of degree at most in

For a given set of points (x_j, y_j) , j = 0, 1, ..., n, with distinct $x_0, ..., x_n$, there exists a unique Lagrange interpolating polynomial,

$$p(x) = \sum_{j=0}^{n} y_{j} L_{j}(x).$$
degree zero poly nomin(
$$p(x) = C$$
includes C=0

Proof: By construction p(x) is a polynomial of degree at most n and interpolates the points (x_j, y_j) (see previous lecture slides). To prove uniqueness, suppose that q(x) is a Lagrange polynomial interpolating the points. We need to show that r(x) = p(x) - q(x) = 0. The polynomial r(x) has roots at the n+1 points x_j . Hence, we must have

$$r(x)$$
 has roots at the $n+1$ points x_j . Hence, we must have polynomial $r(x) = C\tilde{r}(x)\prod_{j=0}^n (x-x_j),$

However, r(x) is a polynomial of degree at most n. It follows that C=0.

The Barycentric formula is for practical use

$$p(x) = \sum_{j=0}^{n} y_{j} L_{j}(x) , L_{j}(x) = \prod_{\substack{i=0 \ i \neq j}}^{n} \frac{(x-x_{i})}{(x_{j}-x_{i})}$$

Barycentric interpolation formula

on formula
$$p(x) = \frac{\sum_{j=0}^{n} \frac{w_{j}y_{j}}{(x-x_{j})}}{\sum_{j=0}^{n} \frac{w_{j}}{(x-x_{j})}}, \text{ only place y afficers}$$

where the "weights" are

$$w_j = \frac{1}{\prod_{\substack{i=0\\i\neq j}}^n (x_j - x_i)}.$$

How do we derive the Barycentric formula?

We want to show that
$$L_{j}(x)$$

$$p(x) = \sum_{j=0}^{n} y_{j} \prod_{\substack{i=0 \ i \neq j}}^{n} \frac{(x-x_{i})}{(x_{j}-x_{i})} = \frac{\sum_{j=0}^{n} \frac{w_{j}y_{j}}{(x-x_{j})}}{\sum_{j=0}^{n} \frac{w_{j}}{(x-x_{j})}}, \quad w_{j} = \frac{1}{\prod_{\substack{i=0 \ i \neq j}}^{n} (x_{j}-x_{i})}$$

$$= \sum_{j=0}^{n} w_{j} y_{j} \prod_{\substack{i=0 \ i \neq j}}^{n} (x_{i}-x_{i}) \frac{(x_{i}-x_{j})}{(x_{i}-x_{j})} = \psi(x) \sum_{j=0}^{n} \frac{w_{j}y_{j}}{x_{i}-x_{j}}$$

$$\text{Want to show } \psi(x) = \frac{1}{\sum_{j=0}^{n} w_{j}} w_{j}$$

$$y(x)\sum_{i=0}^{n}\frac{w_{i}}{x-x_{i}}\equiv 0$$

$$w_{j} = \frac{1}{\prod_{i=0}^{n} (x_{j} - x_{i})}$$

$$\psi(x)\sum_{j=0}^{n}\frac{\omega_{j}y_{j}}{x-x_{j}}$$

Theorem

Let $f \in C^{n+1}[a, b]$, and let p be the interpolating polynomial for f on distinct nodes $x_0, \ldots, x_n \in [a, b]$. Then, for every $x \in [a, b]$, we have

$$f(x) - p(x) = \frac{f^{(n+1)}(\eta_x)}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

for some $\eta_x \in [a, b]$.

We will sketch proof next time.

Corollary

$$|f(x)-p(x)| \leq \frac{\|f^{(n+1)}\|_{\infty}}{(n+1)!} \prod_{i=0}^{n} |x-x_i|$$

Approximation error of polynomial interpolant

We want to understand (bound) the approximation error |f(x) - p(x)|, $x \in [a, b]$.

Example

Let $f(x) = \sin(x)$, $x \in [0, \pi/2]$, and consider n = 2 (3 points) at $x_0 = 0$, $x_1 = \pi/4$, and $x_2 = \pi/2$.

Look at Week 4 Jupyter notebook