Real Analysis I : Measure Theory

Lecture by Ikhan Choi Notes by Ikhan Choi

Contents

Chapter 1. Topological measures	Ē
1. Radon measures	(
2. The Riesz-Markov-Kakutani theorem	7
2.1. The first theorem	7
Chapter 2. Hmmmm	ç
0.2. Convergence in measure	ć

CHAPTER 1

Topological measures

1. Radon measures

In LCH, compact finiteness and locally finiteness are equivalent.

DEFINITION 1.1. A Radon measure is a Borel measure which is

- (1) outer regular on all Borel sets,
- (2) inner regular on all open sets,
- (3) compact finite.

Radon measures are rather simply characterized when the base space is σ -compact.

Theorem 1.1. A Radon measure is inner regular on all σ -finite Borel sets.

PROOF. Let E be a Borel set with $\mu(E) < \infty$. By outer regularity, there is an open set $U \supset E$ such that

$$\mu(U) < \mu(E) + \frac{\varepsilon}{2}.$$

Then,

$$\mu(U \setminus E) < \frac{\varepsilon}{2}.$$

By outer regularity, there is an open set $V \supset U \setminus E$ such that

$$\mu(V) < \mu(U \setminus E) + \frac{\varepsilon}{2}.$$

By inner regularity, there is a compact set $K \subset U$ such that

$$\mu(K)\frac{\varepsilon}{2} > \mu(U).$$

Then, we have $K \setminus V \subset E$ and

$$\mu(K \setminus V) = blabla$$

cptfin Borel regular = λ Radon = λ cptfin Borel sigma-cpt cptfin Borel regular = Radon = λ cptfin Borel second countable = λ every open is sigma cpt cptfin Borel regular = Radon = cptfin Borel

COROLLARY 1.2. If X is σ -compact, then a compact finite Borel measure is Radon if and only if it is regular.

Theorem 1.3. If X is second countable, then every compact finite Borel measure is regular.

2. The Riesz-Markov-Kakutani theorem

In this section, we always assume X is a locally compact Hausdorff space. Hence we can use the Urysohn lemma: If K is compact and F is closed, then we can find a continuous function $f: X \to [0,1]$ such that $f|_K = 1$ and $f|_F = 0$.

2.1. The first theorem. Positivity of linear functional itself implies a rather strong continuity property.

Theorem 2.1. Let $C_c(X)$ be a space of compactly supported continuous functions on X. (Give an LF topology with a directed inductive family $C_K(X)$.) If a linear functional I is positive, then continuous with respect to the topology.

PROOF. Let K be a compact subset. We want to show $|I(f)| \lesssim ||f||$ for $f \in C_K(X)$. The proof idea comes from $|\int_K f d\mu| \le \mu(K) ||f||$. Choose $\phi \in C_c(X)$ such that $\phi|_K = 1$.

Jordan decomposition: $(C_0(X), u)^* \subset (C_c(X), LF)^*$ converse?

CHAPTER 2

Hmmmm

0.2. Convergence in measure. Since $\{f_n(x)\}_n$ diverges if and only if

$$\exists k > 0, \quad \forall n_0 > 0. \quad \exists n > n_0 : \quad |f_n(x) - f(x)| > n^{-1},$$

we have

$$\{x : \{f_n(x)\}_n \text{ diverges}\} = \bigcup_{k>0} \bigcap_{n_0>0} \bigcup_{n>n_0} \{x : |f_n(x) - f(x)| > n^{-1}\}$$
$$= \bigcup_{k>0} \limsup_n \{x : |f_n(x) - f(x)| > n^{-1}\}.$$

Since for every k

$$\lim_{n} \sup_{n} \{x : |f_{n}(x) - f(x)| > k^{-1}\} \subset \lim_{n} \sup_{n} \{x : |f_{n}(x) - f(x)| > n^{-1}\},$$

we have

$${x: \{f_n(x)\}_n \text{ diverges}\} \subset \limsup_n \{x: |f_n(x) - f(x)| > n^{-1}\}.}$$

Theorem 0.2. Let f_n be a sequence of measurable functions on a measure space (X,μ) . If f_n converges to f in measure, then f_n has a subsequence that converges to f μ -a.e.

PROOF. Since $d_{f_n-f}(1/k) \to 0$ as $n \to \infty$, we can extract a subsequence f_{n_k} such that

$$\mu(\lbrace x : |f_{n_k}(x) - f(x)| > k^{-1}\rbrace) > 2^{-k}.$$

Since

$$\sum_{k=1}^{\infty} \mu(\{x : |f_{n_k}(x) - f(x)| > k^{-1}\}) < \infty,$$

by the Borel-Canteli lemma, we get

$$\mu(\limsup_{k} \{x : |f_{n_k}(x) - f(x)| > k^{-1}\}) = 0.$$

Therefore, f_{n_k} converges μ -a.e.