Curs 3

Permutări cu repetiție. Combinări. Algoritmi de ordonare și generare

Octombrie 2015

Cuprins

- Algoritmi de ordonare și generare pentru permutări cu repetiție
- Reprezentarea binară a submulţimilor
 - > Algoritmi de ordonare și generare
- Generarea rapidă a combinărilor
- Submulțimi ordonate lexicografic
- Generarea k-combinărilor

Permutări cu repetiție

r-permutările cu repetiție ale unui alfabet $A = \{a_1, \ldots, a_n\}$ sunt secvențele ordonate de forma

$$\langle x_1,\ldots,x_r\rangle$$

unde $x_1, \ldots, x_r \in A$.

- Același simbol poate să apară de mai multe ori în o r-permutare cu repetiție
- \triangleright Conform regulii produsului, există n^r r-permutări cu repetiție

Permutări cu repetiție

Algoritmi de ordonare și generare în ordine lexicografică

r-permutările cu repetiție pot fi ordonate lexicografic, la fel ca și r-permutările obișnuite.

Exemplu $(A = \{a_1, a_2\} \text{ cu } a_1 < a_2, r = 3)$

r-permutare cu repetiție a lui A	rang
$\langle a_1, a_1, a_1 angle$	0
$\langle {\sf a}_1, {\sf a}_1, {\sf a}_2 angle$	1
$\langle {\sf a}_1, {\sf a}_2, {\sf a}_1 angle$	2
$\langle {\sf a}_1, {\sf a}_2, {\sf a}_2 angle$	3
$\langle {\sf a}_2, {\sf a}_1, {\sf a}_1 angle$	4
$\langle {\sf a}_2, {\sf a}_1, {\sf a}_2 angle$	5
$\langle {\sf a}_2, {\sf a}_2, {\sf a}_1 angle$	6
$\langle a_2, a_2, a_2 \rangle$	7

Definiție (Ordonare lexicografică)

 $\langle x_1, \dots, x_r \rangle < \langle y_1, \dots, y_r \rangle$ dacă există $k \in \{1, \dots, n\}$ astfel încât $x_k < y_k$ și $x_i = y_i$ pentru toți $1 \le i < k$.

Ordonarea și generarea *r*-permutărilor cu repetiție Observații

Fie
$$A = \{a_1, a_2, \dots, a_n\}$$
 cu $a_1 < a_2 < \dots < a_n$.

• Dacă definim $index(a_i) := i - 1$ pentru $1 \le i \le n$ și înlocuim a_i cu $index(a_i)$ în enumerarea lexicografică a r-permutărilor, avem

r-permutare cu repetiție a lui A	rang
$\langle a_1,\ldots,a_1,a_1,a_1\rangle \leftrightarrow \langle 0,\ldots,0,0,0 \qquad \rangle$	0
:	:
$\langle a_1, \ldots, a_1, a_1, a_n \rangle \leftrightarrow \langle 0, \ldots, 0, 0, n-1 \rangle$ $\langle a_1, \ldots, a_1, a_2, a_1 \rangle \leftrightarrow \langle 0, \ldots, 0, 1, 0 \rangle$	n-1
$\langle a_1,\ldots,a_1,a_2,a_1\rangle \leftrightarrow \langle 0,\ldots,0,1,0 \qquad \rangle$	n
:	:
$\langle a_1,\ldots,a_1,a_2,a_n\rangle \leftrightarrow \langle 0,\ldots,0,1,n-1\rangle$	2n-1
<u>:</u>	:

Observație: r-permutarea cu repetiție a indecșilor este reprezentarea în baza n a rangului.

Ordonarea și generarea *r*-permutărilor cu repetiție Exerciții

- **3** Să se definească un algoritm care calculează rangul unei r-permutări cu repetiție $\langle x_1, \ldots, x_r \rangle$ a lui $A = \{1, \ldots, n\}$ în raport cu ordinea lexicografică.
- ② Să se definească un algoritm care calculează r-permutarea cu repetiție a lui $A = \{1, \ldots, n\}$ care are rangul k în raport cu ordinea lexicografică.
- ③ Să se definească un algoritm care calculează r-permutarea cu repetiție care urmează imediat după r-permutarea cu repetiție $\langle x_1, \ldots, x_r \rangle$ a lui A.

Combinări

Reprezentarea binară a submulțimilor

O r-combinare a unei mulțimi A cu n elemente este o submulțime cu r elemente a lui A.

Există o correspondență bijectivă între șirurile de n-biți și submulțimile mulțimii $A = \{a_1, a_2, \dots, a_n\}$:

$$B\subseteq A\mapsto b_{n-1}b_{n-2}\dots b_0\quad\text{unde }b_i=\left\{\begin{array}{ll}1&\text{dacă }a_{n-i}\in B\\0&\text{în caz contrar.}\end{array}\right.$$
 șir de n -biți $b_0b_1\dots b_{n-1}\mapsto$ submulțimea $\{a_{n-i}\mid b_i=1\}$ lui A

Exemplu

$$A = \{a_1, a_2, a_3, a_4, a_5\} \text{ unde } a_1 = a, a_2 = b, a_3 = c, a_4 = d, a_5 = e.$$

$$\emptyset \leftrightarrow 00000 \quad \{a, b\} \leftrightarrow 00011 \quad \{c, d, e\} \leftrightarrow 11100$$

$$\{a\} \leftrightarrow 00001 \quad \{a, c\} \leftrightarrow 00101 \quad \{b, c, d, e\} \leftrightarrow 11110$$

$$\{b\} \leftrightarrow 00010 \quad \{a, d\} \leftrightarrow 01001 \quad \{a, b, d, e\} \leftrightarrow 11011$$

$$\{c\} \leftrightarrow 00100 \quad \{a, e\} \leftrightarrow 10001 \quad \{a, c, d, e\} \leftrightarrow 11101$$

$$\{d\} \leftrightarrow 01000 \quad \{b, c\} \leftrightarrow 00110 \quad \{a, b, c, d\} \leftrightarrow 01111$$

$$\{e\} \leftrightarrow 10000 \quad \dots \quad \{a, b, c, d, e\} \leftrightarrow 11111$$

Calculul codificării ca șir binar a lunei submulțimi

Calcului combinării corespunzătoare unui șir de n-biți

```
Combination(b[0..n-1]: sir de biti,

A: multime ordonata \{a_1,\ldots,a_n\})

B:=\emptyset

for i:=0 to n-1 do

if b[i]=1 then

adauga a_{n-i} la B

return B
```

Ordonarea submulțimilor folosind codificări cu șiruri binare

Există o corespondență bijectivă între codificările cu șiruri binare de n-biți și numerele cuprinse între 0 și 2^n-1 :

- \triangleright şir de n-biţi $b[0...n-1] \mapsto \text{numărul } \sum_{i=0}^{n-1} b[i] \cdot 2^i$
- ightharpoonup număr $0 \le r < 2^n \mapsto$ șirul de *n*-biți b[0...n-1] unde

$$b[i] := \left\lfloor \frac{c_i}{2^i} \right\rfloor$$
 unde c_i este restul împărțirii lui r cu 2^{i+1} .

Definiție

Rangul unei submulțimi B a mulțimii ordonate A cu n elemente este

$$Rank(B,A) := \sum_{i=0}^{n-1} b[i] \cdot 2^{i}$$

unde b[0..n-1] este codificarea cu șir de n-biți a lui B ca submulțime a lui A.

Ordonarea submulțimilor unei mulțimi prin intermediul șirurilor de biți

Exemplu $(A = \{a_0, a_1, a_2\})$

submulţime	codificare binară	rang
	$b_2 b_1 b_0$	
Ø	000	0
$\{a_0\}$	001	1
$\{a_1\}$	010	2
$\{a_0, a_1\}$	011	3
$\{a_2\}$	100	4
$\{a_0, a_2\}$	101	5
$\{a_1, a_2\}$	110	6
$\{a_0, a_1, a_2\}$	111	7

OBSERVAŢIE. Acest mod de enumerare a submulţimilor unei mulţimi de numește ordonare canonică, iar șirul $b_2b_1b_0$ se numește cod canonic (sau binar).

Ordonarea submulțimilor cu ajutorul șirurilor de biți (2)

Enumerarea submulțimilor prin intermediul reprezentării binare

Se dă o mulțime ordonată $A = \{a_0, a_1, \dots, a_{n-1}\}$, și $0 \le r < 2^n$

Să se determine submulțimea B a lui A cu rangul r

Enumerarea submulțimilor prin intermediul reprezentării binare

Problema 1:

Se d \check{a} o submulțime B a mulțimii ordonate A.

Să se determine submulțimea lui A care urmează după B în ordonarea prin intermediul reprezentării binare.

SUGESTIE: Se poate defini NextBinaryRankSubset(A,B) folosind algoritmii anteriori de ordonare și enumerare.

Enumerarea submulțimilor prin intermediul reprezentării binare

Problema 1:

Se d \check{a} o submulțime B a mulțimii ordonate A.

Să se determine submulțimea lui A care urmează după B în ordonarea prin intermediul reprezentării binare.

SUGESTIE: Se poate defini NextBinaryRankSubset(A,B) folosind algoritmii anteriori de ordonare și enumerare.

Problema 2: Să se genereze lista tuturor submulțimilor lui A în ordinea crescătoare a rangului calculat prin intermediul codificării binare.

Sugestie: Se poate folosi funcția Unrank(A, r) definită anterior.

Enumerarea submulțimilor cu modificări minime Coduri Grey

- Frank Grey a descoperit în 1953 o metodă de enumerare a tuturor submulțimilor unei mulțimi într-o ordine în care submulțimile consecutive diferă prin inserarea sau ștergerea unui singur element.
- Această schemă de enumerare se numește cod Grey reflectat standard.

Exemplu

Folosind metoda lui Grey, submulțimile of $\{a,b,c\}$ sunt enumerate în ordinea următoare:

$$\{\}, \{c\}, \{b, c\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, c\}, \{a\}\}$$

Codificările ca șiruri binare $b_0b_1b_2$ ale acestor submulțimi sunt:

$$000, 100, 110, 010, 011, 111, 101, 001$$

Se dorește enumerarea submulțimilor mulțimii $A=\{a_0,a_1,\ldots,a_{n-1}\}$ într-o ordine cu modificări minime între

submulțimi consecutive. Fie G_n lista respectivă.

Procedăm recursiv:

- Se calculează lista G_{n-1} a submulțimilor lui $B = \{a_1, \dots, a_{n-1}\}$ într-o ordine Grey cu modificări minime.
- ② Fie G'_{n-1} lista obțintă prin adăugarea lui a_0 la fiecare element al unei copii inversate a listei G_{n-1} .
- **3** G_n este rezultatul concatenării listei G_{n-1} cu G'_{n-1} .

Propertăți ale codurilor Grey reflectate

Se presupune că B este submulțime a mulțimii ordonate A cu n elemente.

Dacă

- m este rangul lui B in în ordinea enumerării lui Grey, și $m = \sum_{i=0}^{n-1} b_i \cdot 2^i$
- Codificarea ca șir de n biți a lui B este $c_0c_1\ldots c_{n-1}$

atunci

- $c_i = (b_i + b_{i+1}) \mod 2$ for all $0 \le i < n$, unde $b_n = 0$.
- Reciproc, se poate demonstra că

$$b_i = (c_i + c_{i+1} + \ldots + c_{n-1}) \mod 2$$
 pentru toţi $0 \le i < n$.

Coduri Grey

Exemplu $(A = \{a, b, c\} \text{ cu } a < b < c)$

submulțime	rang Grey	$b_0 b_1 b_2$	șir de biți	rang
В	m	astfel încât	al lui <i>B</i>	al lui B
		$m = \sum_{i=0}^{2} b_{2-i} 2^{i}$	c ₀ c ₁ c ₂	
{}	0	000	000	0
{ <i>c</i> }	1	100	100	4
{ <i>b</i> , <i>c</i> }	2	010	110	6
{ <i>b</i> }	3	110	010	2
{ a, b}	4	001	011	3
$ \begin{cases} a, b \\ a, b, c \end{cases} $	5	101	111	7
$\{a,c\}$	6	011	101	5
{a}	7	111	001	1

Se observă că $c_i = (b_i + b_{i+1}) \mod 2$ pentru toți $0 \le i < 3$, unde $b_3 = 0$.

Exerciții

- Folosiți ecuațiile de pe slide-ul precedent ca să implementați metodele de ordonare RankGrey(B,A) și de enumerare UnrankGrey(A,r) pentru enumerarea submulțimilor bazată pe coduri Grey.
- Să se definescă metoda NextGreyRankSubset(A,B) care calculează submulţimea lui A care urmează imediat după submulţimea B în enumerarea submulţimilor bazată pe coduri Grey.

k-combinări Generarea k-combinărilor

Se dă o mulțime ordonată A cu n elemente și $0 \le k \le n$. Să se genereze toate k-combinările lui A. Se dă o mulțime ordonată A cu n elemente și $0 \le k \le n$.

Să se genereze toate k-combinările lui A.

Metoda 1 (naivă și ineficientă): generare și testare

- Se generează toate cele 2ⁿ submulțimi ale lui A
- ② Se elimină submulțimile generate care nu au k elemente.

Se dă o mulțime ordonată A cu n elemente și $0 \le k \le n$.

Să se genereze toate k-combinările lui A.

Metoda 1 (naivă și ineficientă): generare și testare

- Se generează toate cele 2ⁿ submulțimi ale lui A
- ② Se elimină submulțimile generate care nu au k elemente.

Metoda 2 (recursie simplă): Dacă $A = \{a\} \cup B$ unde $a \notin B$ este cel mai mic element al lui A atunci

- Generează lista L_1 a tuturor (k-1)-combinărilor lui B, și fie L_2 lista tuturor k-combinărilor lui B.
- ② Fie L_3 lista ce se obține adăugând a la toate elementele lui L_1 .
- 3 Returnează rezultatul concatenării listelor L_2 și L_3 .

Ordonarea lexicografică a k-combinărilor

Enunțul problemei. Observații preliminare (1)

Se presupune că $A = \{1, 2, ..., n\}$ și $X = \{x_1, x_2, ..., x_k\} \subseteq A$ astfel încât $x_1 < x_2 < ... < x_k$.

Î: Care este rangul lui X în enumerarea lexicografică a k-combinărilor lui A?

k-combinările care apar înaintea lui X în ordine lexicografică sunt de 2 feluri:

- Cele care conțin un element mai mic decât x_1 .
- ② Cele al căror element minim este x_1 , dar restul elementelor este o (k-1)-combinare mai mică decât $\{x_2, x_3, \ldots, x_k\}$.

Ordonarea lexicografică a k-combinărilor

Enunțul problemei. Observații preliminare (1)

Se presupune că $A = \{1, 2, ..., n\}$ și $X = \{x_1, x_2, ..., x_k\} \subseteq A$ astfel încât $x_1 < x_2 < ... < x_k$.

Î: Care este rangul lui X în enumerarea lexicografică a k-combinărilor lui A?

k-combinările care apar înaintea lui X în ordine lexicografică sunt de 2 feluri:

- Cele care conțin un element mai mic decât x_1 .
- ② Cele al căror element minim este x_1 , dar restul elementelor este o (k-1)-combinare mai mică decât $\{x_2, x_3, \ldots, x_k\}$.
- \Rightarrow rangul lui X în enumerarea lexicografică a k-combinărilor lui A este N_1+N_2 unde
 - \triangleright N_1 este numărul k-combinărilor de primul fel
 - \triangleright N_2 este numărul k-combinărilor de al doilea fel

IPOTEZĂ: $A = \{1, 2, ..., n\}$. Cum putem calcula N_1 ?

IPOTEZĂ:
$$A = \{1, 2, ..., n\}$$
.
Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este

IPOTEZĂ: $A = \{1, 2, ..., n\}$.

Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este $\binom{n-i}{k-1}$

IPOTEZĂ: $A = \{1, 2, ..., n\}$.

Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (regula sumei)

IPOTEZĂ: $A = \{1, 2, ..., n\}$.

Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (regula sumei) Ştim că $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (vezi curs 1)

IPOTEZĂ: $A = \{1, 2, ..., n\}$.

Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (regula sumei) Ştim că $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (vezi curs 1) $\Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i+1}{k} - \binom{n-i}{k} = \binom{n}{k} - \binom{n-x_1+1}{k}$

Cum putem calcula N_2 ?

IPOTEZĂ: $A = \{1, 2, ..., n\}$.

Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (regula sumei) Ştim că $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (vezi curs 1) $\Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i+1}{k} - \binom{n-i}{k} = \binom{n}{k} - \binom{n-x_1+1}{k}$

Cum putem calcula N_2 ?

• N_2 este rangul lui $\{x_2, \dots, x_k\}$ în enumerarea lexicografică a (k-1)-combinărilor lui $\{x_1+1, x_1+2, \dots, n-1, n\}$

IPOTEZĂ: $A = \{1, 2, ..., n\}$.

Cum putem calcula N_1 ?

• Numărul k-combinărilor lui A care au pe i cel mai mic element este $\binom{n-i}{k-1} \Rightarrow N_1 = \sum_{i=1}^{x_1-1} \binom{n-i}{k-1}$ (regula sumei) Ştim că $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (vezi curs 1) $\Rightarrow N_1 = \sum_{i=1}^{x_1-1} \left(\binom{n-i+1}{k} - \binom{n-i}{k}\right) = \binom{n}{k} - \binom{n-x_1+1}{k}$

Cum putem calcula N_2 ?

- N_2 este rangul lui $\{x_2,\ldots,x_k\}$ în enumerarea lexicografică a (k-1)-combinărilor lui $\{x_1+1,x_1+2,\ldots,n-1,n\}$
- $\Rightarrow N_2$ se poate calcula recursiv.

Ordonarea lexicografică a k-combinărilor

Din observațiile anterioare rezultă următoarea implementare recursivă a operației de calcul al rangului:

• RankKSubset($\{x_1, \ldots, x_k\}$, $\{\ell, \ldots, n\}$) calculează rangul în ordine lexicografică a k-combinării $\{x_1, \ldots, x_k\}$ a mulțimii ordonate $\{\ell, \ell+1, \ldots, n-1, n\}$. Se presupune că $x_1 < x_2 < \ldots < x_k$.

```
\begin{aligned} & \operatorname{RankKSubset}(\{x_1, \dots, x_k\}, \ \{\ell, \ell+1, \dots, n\}) \\ & \text{if } (n = k \text{ or } k = 0) \\ & \text{return 0,} \\ & \rho := x_1 - \ell + 1 \\ & \text{if } (k = 1) \\ & \text{return } \rho - 1 \\ & \text{else} \\ & \text{return } \binom{n}{k} - \binom{n-\rho+1}{k} + \operatorname{RankKSubset}(\{x_2, \dots, x_k\}, \{x_1 + 1, \dots, n\}) \end{aligned}
```

Enunțul problemei. Observații preliminare

Ipoteze:

- $A = \{1, 2, ..., n\}$ și $X = \{x_1, x_2, ..., x_k\}$ cu $x_1 < x_2 < ... < x_k$ este submulțimea lui A cu rangul m în enumerarea lexicografică a tuturor k-combinărilor lui A. [Reţinem că $0 \le m < \binom{n}{k}$.]
- **î**: Care sunt valorile lui x_1, x_2, \ldots, x_k ?

Enumerarea lexicografică a k-combinărilor Enunțul problemei. Observații preliminare

1 Numărul total al k-combinărilor lui A care conțin un element $< x_1$ este

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m. \tag{1}$$

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1,\ldots,x_1-1\}$. Acest număr este $\leq m$ fiindcă toate aceste k-combinări sunt lexicografic mai mici decât X, care are rangul m.

Enumerarea lexicografică a k-combinărilor Enuntul problemei. Observații preliminare

1 Numărul total al k-combinărilor lui A care conțin un element $< x_1$ este

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m. \tag{1}$$

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1,\ldots,x_1-1\}$. Acest număr este $\leq m$ fiindcă toate aceste k-combinări sunt lexicografic mai mici decât X, care are rangul m.

② Numărul total al k-combinărilor lui A care conțin un element $\leq x_1$ este

$$\sum_{i=1}^{x_1} {n-i \choose k-1} = {n \choose k} - {n-x_1 \choose k} > m.$$
 (2)

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1,\ldots,x_1\}$. Acest număr este > m deoarece sunt m+1 întregi i între 0 și rangul lui X (care este m), și toate k-combinările cu un astfel de rang i conțin un element $\leq x_1$.

Enumerarea lexicografică a k-combinărilor Enuntul problemei. Observații preliminare

1 Numărul total al k-combinărilor lui A care conțin un element $< x_1$ este

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m. \tag{1}$$

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1,\ldots,x_1-1\}$. Acest număr este $\leq m$ fiindcă toate aceste k-combinări sunt lexicografic mai mici decât X, care are rangul m.

 $oldsymbol{2}$ Numărul total al k-combinărilor lui A care conțin un element $\leq x_1$ este

$$\sum_{i=1}^{x_1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1}{k} > m. \tag{2}$$

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1,\dots,x_1\}$. Acest număr este > m deoarece sunt m+1 întregi i între 0 și rangul lui X (care este m), și toate k-combinările cu un astfel de rang i conțin un element $\leq x_1$.

 \Rightarrow putem folosi (1) și (2) ca să aflăm x_1 : $\binom{n}{k} - \binom{n-x_1+1}{k} \le m < \binom{n}{k} - \binom{n-x_1}{k}$

Enumerarea lexicografică a k-combinărilor

Enunțul problemei. Observații preliminare

1 Numărul total al k-combinărilor lui A care conțin un element $< x_1$ este

$$\sum_{i=1}^{x_1-1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1+1}{k} \le m. \tag{1}$$

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1,\ldots,x_1-1\}$. Acest număr este $\leq m$ fiindcă toate aceste k-combinări sunt lexicografic mai mici decât X, care are rangul m.

② Numărul total al k-combinărilor lui A care conțin un element $\leq x_1$ este

$$\sum_{i=1}^{x_1} \binom{n-i}{k-1} = \binom{n}{k} - \binom{n-x_1}{k} > m. \tag{2}$$

unde $\binom{n-i}{k-1}$ este numărul k-combinărilor în care cel mai mic element este $i \in \{1,\dots,x_1\}$. Acest număr este > m deoarece sunt m+1 întregi i între 0 și rangul lui X (care este m), și toate k-combinările cu un astfel de rang i conțin un element $\leq x_1$.

 \Rightarrow putem folosi (1) și (2) ca să aflăm x_1 : $\binom{n}{k} - \binom{n-x_1+1}{k} \le m < \binom{n}{k} - \binom{n-x_1}{k}$

Celelalte elemente x_2, \ldots, x_k se pot determina recursiv.

Enumerarea lexicografică a k-combinărilor

```
UnrankKSubset(m, k, \{a_1, \ldots, a_n\}) produce k-combinarea
\{x_1,\ldots,x_k\} cu rangul m a lui \{a_1,\ldots,a_n\} în ordine lexicografică.
Se presupune că x_1 < \ldots < x_k si a_1 < \ldots < a_n.
UnrankKSubset(m, k, \{a_1, \ldots, a_n\})
if (k = 1)
    return a_{k+1}
else if (m=0)
    return \{a_1,\ldots,a_m\}
else
   u := \binom{n}{l}
   i \cdot = 1
   while \binom{i}{k} < u - m
   x1:=n-(i-1)
   return \{a_{n-i+1}\} \cup \text{UnrankKSubset}(m-u+\binom{n-x+1}{k}), k-1, \{a_{n-i+2}, \dots, a_n\}
```

Bibliografie

 S. Pemmaraju, S. Skiena. Combinatorics and Graph Theory with Mathematica. Section 2.3: Combinations. Cambridge University Press. 2003.