ECUACIONES DIFERENCIALES - EXAMEN FINAL 25/2/08

NOMBRE: CONDICIÓN:

Atención: Los alumnos regulares deben realizar solo los ejercicios marcados con*

Ejercicio 1

- a) Demostrar la condición necesaria para que la ecuación M(x,y)dx + N(x,y)dy = 0 sea exacta.
- * b) Definir factor integrante y encontrar su expresión cuando sólo depende de x o de y (demostrar una de ellas).
- * c) Resolver y(x+y+1)dx + x(x+3y+2)dy = 0 con y(2) = 1.

* Ejercicio 2

- a) Explicar y demostrar el método de variación de parámetros de orden dos.
- * b) Encontrar la solución complementaria, una solución particular y la solución general de la ecuación

$$(D-1)^2 = \frac{e^{2x}}{(e^x + 1)^2}$$

* c) Con la ayuda de una sustitución, hallar la solución general de $y'' = x(y')^2$

* Ejercicio 3

a) Las bacterias de una cierta colonia nacen y mueren a una tasa proporcional al número existente, de forma que la ecuación que gobierna al crecimiento de la colonia es

$$y' = (k_1 - k_2)y$$
.

Determinar si k_1 y k_2 si se conoce que la colonia duplica su tamaño cada 24 horas y que cada 8 horas tendría tan sólo la mitad de su tamaño inicial si no hubiese nacimientos.

b) Demostrar que las trayectorias ortogonales de la familia $(x+y)^2 = cx^2$ son circunferencias con centro en el origen.

Ejercicio 4

- * a) Enuncie las condiciones suficientes de existencia de la transformada de Laplace.
- b) Demostrar lo enunciado en a).
- c) Por definición, hallar $\mathcal{L}\{\mu(t-a)\}\$ donde $\mu(t-a)$ es la función salto unidad.
- * d) Use la Transformada para determinar la carga q(t) en el capacitor, en un circuito RC cuya forma es

$$R\frac{dq}{dt} + \frac{1}{C}q(t) = E(t)$$
 con los siguientes datos: $q(0) = 0$, $R = 2.5\Omega$, $C = 0.08 f$, $E(t) = 5V$ cuando $t > 3$
y $E(t) = 0$ cuando $0 \le t \le 3$.

Ejercicio 4

- * a) Formular en cada caso una ecuación diferencial lineal de segundo orden y homogénea que tenga como puntos ordinarios
 - i) todos los números reales
 - ii) todos los números reales excepto el 6 y el -3.
- * b) Si deseamos expresar la solución de la forma $y = \sum_{n=0}^{\infty} c_n (x-2)^n$ ¿cuál sería el radio de

convergencia de la serie en los dos casos del ítem a?

c) Encontrar
$$x(t)$$
 e $y(t)$ soluciones del sistema
$$\begin{cases} x'(t) - 4y(t) = 1 \\ x - 2 = -y'(t) \end{cases}$$