Foundations of non-asymptotic statistics

Uncultured Tramp

September 7, 2016

Contents

1	Basic set-up	2
2	Fisher Information	3
3	Wilkes Phenomenon	4
4	Bernstein-von Mizes	5

1 Basic set-up

Sample size $n \in \mathbb{N}$,

Sample $Y: n \to \mathtt{RamdomVariable}(\mathbb{R}^d, \mathcal{B}\mathbb{R}^d),$

True Distribution \mathbb{P} : Probability (Ω, \mathcal{F}) ,

Model (0): $\forall k \in n : Y_k \sim \mathbb{P}$, Parameter Space $\Theta : \mathbf{Set}$,

Parametric Family $P: \Theta \to \text{Probability}(\Omega, \mathcal{F})$,

Specification (1): $\exists \theta \in \Theta : \mathbb{P} = P_{\theta}$,

True Parameter $\theta^* \in \Theta : \mathbb{P} = P_{\theta^*}$,

Kullbeck-Leiber Divergence

 $KL :: \mathtt{Density}(\mathbb{R}^d, \mathcal{B}\mathbb{R}^d) \to \mathtt{Density}(\mathbb{R}^d, \mathcal{B}\mathbb{R}^d) \to \mathbb{R}$

$$KL(f,g) = \int_{\text{supp}f} f \ln \left(\frac{f}{g}\right) d\lambda$$

KLIsZero :: $KL(f,g) = 0 \iff f = g$ a.e. $[\lambda]$

Assume that (1) is false. Model is misspecified.

Best parametric assumption $\theta^* = \arg\min_{\theta \in \Theta} KL(\mathbb{P}, P_{\theta})$

Log-Likelihood

$$L::\Theta\to\mathbb{R}$$

$$L(\theta) = \ln f_{\overline{P}_{\theta}}(Y) = \sum_{i=1}^{n} \ln f_{P_{\theta}}(Y_i)$$

Maximal likelihood estimation estimation $\tilde{\theta} = \arg\min_{\theta \in \Theta} KL(\hat{\mathbb{P}}, P_{\theta}) = \arg\max_{\theta \in \Theta} L(\theta)$ Distribution estimation

$$\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I_{(y_i, \infty)}(x)$$

 $\texttt{Regular} :: ?(\Theta \to \texttt{Probability}(\Omega, \mathcal{F}))$

 $P: \mathtt{Regular} \iff \exists C: \mathtt{Closed}(\mathbb{R}^d): \forall \theta \in \Theta \ . \ \mathrm{supp} \ P_\theta = C$

Linear model $Y = \Psi\theta + \epsilon$ where $\Psi : \mathtt{Matrix}(n \times p, \mathbb{R}), \epsilon \sim \mathcal{N}(0, \sigma^2 I)$ In case of linear model $\tilde{\theta} = (\Psi\Psi^\top)^{-1}\Psi^\top Y = \Psi^\dagger Y$

2 Fisher Information

Fisher Information

If Θ is a smooth manifold and L is smooth

$$F: \prod \theta \in \Theta . \mathcal{L}(T_{\theta}\Theta, T_{\theta}\Theta; \mathbb{R})$$

$$F(\theta) = \mathbb{E}_{\mathbb{P}} \nabla^2 L|_{\theta}$$

In case $\Theta = \mathbb{R}^p \ F(\theta) : \mathtt{Mat}(p \times p, \mathbb{R}).$

Assume Euclidean case and that $F(\theta^*)$ is non singular.

Entropy? $D = (F(\theta^*))^{\frac{1}{2}}$

Estimation error vectors $\xi = D^{-1}\nabla L(\theta^*)$

For linear model

$$L(\theta) = c - \frac{1}{2\sigma^2} \|Y - \Psi\theta\|^2$$
$$F(\theta) = \frac{1}{\sigma^2} \Psi^\top \Psi$$
$$\xi = \frac{1}{\sigma} (\Psi^\top \Psi)^{-\frac{1}{2}} \Psi (Y - \Psi\theta^*)$$

Asymptotic result

$$\lim_{n \to \infty} D(\tilde{\theta} - \theta^*) \to_d \xi \sim \mathcal{N}(0, I)$$

Non-asymptotic result

$$\mathbb{P}\left(\|D(\tilde{\theta} - \theta^*) - \xi\|\right) \le \diamondsuit(x)\right) \ge 1 - e^{-x}$$

where

$$\diamondsuit(x) \le \sqrt{\frac{(p+x)^2}{n}}$$

Concentration sets

$$\Theta_{\circ} :: \mathbb{R}_{++} \to ?\Theta$$

$$\Theta_{\circ}(r) = \{ \theta \in \Theta : ||D(\theta - \theta^*)|| \le r \}$$

Concentration result

$$\mathbb{P}(\tilde{\theta} \in \Theta(\diamondsuit(x))) \le 1 - e^{-x}$$

3 Wilkes Phenomenon

Asymptotic result
$$\begin{split} \lim_{n\to\infty} 2(L(\tilde{\theta}) - L(\theta^*)) \to_d \|\xi\|^2 \sim \chi^2(p) \\ \text{Non-asymptotic} \\ \mathbb{P}(|2L(\tilde{\theta}) - 2L(\theta^*) - \lambda\xi\lambda^2| \leq \triangle(x)) \leq 1 - \mathrm{e}^{-x} \end{split}$$

4 Bernstein-von Mizes