F(O)MG Few-shot Music Generation

Anand, Ben & Suhail

University of British Columbia

April 4, 2018

Introduction

Problem Statement

Generate music matching styles of individual artists with few-shot meta learning.

Number of songs per artist is limited.

Introduction

Music Generation

Music generation is a hard problem

- ▶ Long sequences / concept of time
- Relatively large vocabulary
- Not all generated sequence produces music

Introduction

Comparison with Text

Text - Drive Man Car Blue

Music - Gon T_{0.2} D_{off} A_{off} F_{on} T_{0.1}

- ► A random jumbo of words still conveys meaning
- ► A random MIDI sequence is usually senseless

Data Processing MIDI and Vocabulary

Our MIDI format contains,

- ▶ 16 instruments
- ON / OFF for each of 128 pitches per instrument
- ▶ 32 velocity levels per instrument
- 100 time-shift controls
- ▶ 4710 controls in total

To generate a single note, must set velocity, turn note $\mathrm{ON},$ advance time, and turn note $\mathrm{OFF}.$

Model Agnostic Meta Learning (MAML)¹

- Learn a good initial guess
- Converge to any solution in a few iterations

Figure: Illustration of meta learning

¹https://arxiv.org/pdf/1703.03400.pdf

Main idea of MAML,

- Instantiate meta_net and learner_net
- Copy params from meta_net to learner_net
- 3. Train model as usual with support set on learner_net
- 4. Query the model with query set on learner_net
- Calculate gradient from (4) and apply to meta_net
- 6. Repeat (2) (5)

Experiment

Dataset and Environment

Dataset obtained from freemidi²

- ► Training/Validation/Testing 296 / 53 / 53 artists
- ▶ 15 songs from each artist
- Divided into support set of 10, and query set of 5
- ► Each input sequence is truncated to 150

Training is done on Ubuntu 16.04 with GTX 1080 Ti.

- ▶ Baseline 6 to 7 Hours
- ▶ MAML \sim 40 hours

²https://freemidi.org

Experiment

Training

Training MAML

- meta_net picks 3 random artists at a time
- learner_net trains on support set for 10 iterations
- Return loss on query set to meta_net
- 10 epochs in total

Training Baseline only involves the second step. This is just encoder-decoder.

We'll play query input, Baseline, followed by MAML.

Loss Comparison

Figure: Evaluation loss comparison for three different artists.

Result

Analysis & Discussion

Some general observations,

- ► MAML converges faster than Baseline
- Convergence behaviour is more smooth
- MAML often starts at a higher loss, but converges to a lower minimum

Conclusion

Lessons Learned

We attempted and learned,

- ➤ SNAIL³ Simple neural attentive meta learner. We couldn't adapt to fit our task.
- Music and text generation is waaaay different.
- Meta-learning rocks!

³https://arxiv.org/pdf/1707.03141.pdf

Conclusion

Few things we want to try,

- ► MIDI-GLoVe⁴ word2vec for MIDI
- Reptile⁵ Modified MAML with smaller computation and memory footprint

F(O)MG

⁴https://github.com/brangerbriz/midi-glove

⁵https://blog.openai.com/reptile/

Conclusion

Thank you!

References

https://github.com/brangerbriz/midi-glove.

Reptile: A Scalable Meta-Learning Algorithm. https://blog.openai.com/reptile/.

C. Finn, P. Abbeel, and S. Levine.

Model-agnostic meta-learning for fast adaptation of deep networks.

CoRR, abs/1703.03400, 2017.