Динамическая настройка параметров в социальнодемографическом рекламном сервере

Предлагается исследовать зависимость количества показов рекламы и точности попадания в целевую аудиторию от алгоритма показа рекламы на рекламном сервере (крутилке), чтобы по результатам исследования построить оптимальный алгоритм.

I. Проблема

Коррекция некоторых параметров рекламного сервера предназначена для выполнения комбинации трех условий:

- Выполнения полного плана количества показов рекламы.
- Заданного распределения показов во времени.
- Максимального удовлетворения условий социально-демографического таргетинга (то есть условий показа рекламы представителям различных социально-демографических групп).

Необходимо найти такой алгоритм коррекции параметров, который обеспечит выполнение этих условий.

II. Предлагаемое решение

II.1. Общие слова

Описывается поведение рекламного сервера при помощи системы обыкновенных дифференциальных уравнений (ОДУ), решением которой является количество показов во времени и значения динамически меняющихся параметров во времени. Динамика этих величин считается зависящей от трафика, плана показа и таргета размещения, а также от распределения аудитории по соц-дем признакам.

Определяется критерий качества работы сервера, включающий в себя точность следования графику, соответствие общего числа показов требуемому объему размещения, а также точность попадания в целевую аудиторию.

Фильтрация по соц-дем признакам зависит от выполнения плана и вводится с использованием явного параметра, причем этот параметр предполагается динамически настраиваемым.

Пользователь определяет параметрический класс функций как описания динамики параметра фильтрации. Для любых функций из этого класса можно найти решение системы ОДУ и вычислить значение критерия. При помощи итерационного процесса находятся именно те функции, которые наилучшим образом удовлетворяют заданному критерию.

II.2. Обозначения

t — время.

T — длительность размещения.

z(t) — нарастающий общий трафик.

S(t) – требуемое нарастающее значение количества показов по плану.

x(t) — реальное количество показов, достигнутых к моменту времени t.

y(t) — параметр фильтрации по соц-дем признакам — порог вероятности попадания в таргет для прохождения фильтра

 ω – вероятность посетителя попасть в таргет.

 $\rho(\omega)$ – распределение аудитории по вероятности попадания в таргет.

 $f(z(t), x(t), S(t), \beta)$ – функция коррекции параметра у.

 β – подбираемый параметр.

II.3. Система ОДУ

$$\frac{dx}{dt} = \dot{z}(t) \int_{y}^{1} \rho(\omega) d\omega$$

$$\frac{dy}{dt} = f_{\beta}(z, x, S)$$

$$f_{\beta}(z, x, S) = f(z, x, S, \beta), \quad \beta = const$$

$$S = S(t)$$

$$x(t = 0) = X_{0}$$

$$y(t = 0) = Y_{0}$$
(1)

II.4. Дополнительные условия

- $\int_0^1 \rho(\omega) d\omega = 1$ $S(t) \lesssim \dot{z}(t)$ $0 \le y \le 1$

II.5. Критерии качества

При решении уравнений с параметром β находятся функции x(t), y(t). По этим функциям определяется качество решения, для чего вводятся два критерия.

1. Критерий точности попадания в таргет:

$$C_1(\beta) = 1 - \frac{1}{x(T) - X_0} \int_0^T dt \ \dot{x}(t) \int_y^1 \omega \rho(\omega) d\omega$$
 (2)

Этот критерий измеряет долю рекламных объявлений, показанных нецелевой аудитории, относительно общего числа показов.

2. Критерий откруга:
$$C_2(\beta) = \frac{|x(T) - S(T)|}{S(T)} \tag{3}$$

Этот критерий измеряет точность выполнения условия по количеству откругов.

Критерий 2 может как использоваться для «твердого» условия $C_2=0$, так и входить в функционал для оптимизации.

Функционал для минимизации:

$$\Phi(\beta) = A C_1(\beta) + B C_2(\beta), \tag{4}$$

 $A \ll B$, например, A = 1, B = 10.

Цель:

$$\Phi(\beta) \to min \tag{5}$$

II.6. Шаги анализа

Ручной режим

- Загружается распределение $\rho(\omega)$.
- Загружается план откруга S(t).
- Выбирается конкретная имплементация функции $f(z, x, S, \beta)$.
- Задается значение параметра β .
- Загружается функция трафика z(t).
- Задаются начальные условия X_0, Y_0 .
- Решается система ОДУ (1).
- Строится траектория решения на плоскости (S,x).
- Строится график функции y(t).
- Вычисляются значения $C_1(\beta)$ и $C_2(\beta)$.

Автоматический режим

- Загружается распределение $\rho(\omega)$.
- Загружается план откруга S(t).
- Выбирается конкретная имплементация функции $f(z, x, S, \beta)$.
- Задаются границы значений параметра β .
- Загружается функция трафика z(t).
- Задаются начальные условия $X_0 = S(0), Y_0$.
- Система ОДУ (1) решается многократно с разными значениями β ; находится такое значения β^* , которое минимизирует $\Phi(\beta)$.
- Система ОДУ (1) решается многократно с $\beta = \beta^*$ и с разными значениями X_0, Y_0 ; находится область таких (X_0, Y_0) , при которых $x(t) \to S(t)$ с ростом t.
- Строятся траектории всех решений на плоскости (S,x).

II.7. Принятие решения

Автоматический режим с одинаковыми условиями применяется ко всем предложенным классам функций $f(z,x,S,\beta)$, для каждого класса находятся оптимальные функции $f_{\beta^*}(z,x,S)$. Таким образом, для каждого класса находятся значения критериев $C_1(\beta^*)$ и $C_2(\beta^*)$, а также области устойчивости на плоскости (X_0,Y_0) .

Значения критериев и области устойчивости рассматриваются на предмет приемлемости, и принимается решение о целесообразности использования таких функций.

III. Фронт работ

- Аналитика: предложение классов функции $f(z, x, S, \beta)$
- Модуль численного интегрирования
- Модуль интерполяции табулированной функции
- Модуль численное решение ОДУ
- Итерационный процесс поиска оптимальных параметров β
- GUI: ввод параметров и представление результата
- Модуль чтения данных
- Диспетчерская программа, вызывающая все остальные модули (кроме GUI)

IV. Пример

$$S(t) = 3t + \sin t$$

$$z(t) = 4t + \cos t$$

$$\rho(\omega) = 6\omega(1 - \omega)$$

$$f(z, x, S, \beta) = \beta (x - z)$$

$$\beta = 0.01$$

$$X_0 = 0$$

$$Y_0 = 0$$

$$T = 1$$