

Dr. S. Franz

MA4016 - Engineering Mathematics 6

Problem Sheet 6: Discrete Mathematics (March 12, 2010)

1. Are all elements of the sequence f_n , $n=1,2,\ldots$ with

$$f_n = n^2 - n + 41$$

primes?

r												
	n	f_n	prime?	n	f_n	prime?	n	f_n	prime?	n	f_n	prime?
	1	41		11	151		21	461		31	971	
	2	43	$\sqrt{}$	12	173	$\sqrt{}$	22	503	$\sqrt{}$	32	1033	\checkmark
	3	47	$\sqrt{}$	13	197	$\sqrt{}$	23	547	$\sqrt{}$	33	1097	\checkmark
	4	53	$\sqrt{}$	14	223	$\sqrt{}$	24	593	$\sqrt{}$	34	1163	\checkmark
	5	61		15	251		25	641	$\sqrt{}$	35	1231	\checkmark
	6	71	$\sqrt{}$	16	281	$\sqrt{}$	26	691	$\sqrt{}$	36	1301	\checkmark
	7	83	$\sqrt{}$	17	313	$\sqrt{}$	27	743	$\sqrt{}$	37	1373	\checkmark
	8	97	$\sqrt{}$	18	347	$\sqrt{}$	28	797	$\sqrt{}$	38	1447	\checkmark
	9	113		19	383		29	853	$\sqrt{}$	39	1523	\checkmark
	10	131	$\sqrt{}$	20	421	$\sqrt{}$	30	911	\checkmark	40	1601	$\sqrt{}$

but $f_{41} = 41^2 - 41 + 41 = 41 \cdot 41 = 1681$ is composite. Nevertheless, the number of primes in the sequence f_n is above average. There are e.g. 581 primes in $\{f_1, \ldots, f_{1000}\}$ compared to 168 primes in $\{1, \ldots, 1000\}$.

2. If the product of two integers is 2⁷3⁸5²7¹¹ and their greatest common divisor is 2³3⁴5, what is their least common multiple?

$$\begin{array}{lll} a \cdot b = 2^7 3^8 5^2 7^{11} & \Rightarrow & a_1 + b_1 = 7 & a_2 + b_2 = 8 \\ & a_3 + b_3 = 2 & a_4 + b_4 = 11 \\ \gcd(a,b) = 2^3 3^4 5 & \Rightarrow & \min\{a_1,b_1\} = 3, & \max\{a_1,b_1\} = 7 - 3 = 4 \\ & \min\{a_2,b_2\} = 4, & \max\{a_2,b_2\} = 8 - 4 = 4 \\ & \min\{a_3,b_3\} = 1, & \max\{a_3,b_3\} = 2 - 1 = 1 \\ & \min\{a_4,b_4\} = 0, & \max\{a_4,b_4\} = 11 - 0 = 11 \end{array}$$

and therefore $lcm(a, b) = 2^4 3^4 5 \cdot 7^{11}$.

University of Limerick Department of Mathematics and Statistics Dr. S. Franz

3. Show that whenever $n \geq 3$, $f_n > \alpha^{n-2}$, where f_n is the *n*-th Fibonacci number and $\alpha = (1 + \sqrt{5})/2$.

A proof with strong induction can be found in Rosen, chapter 4.3, example 6. A direct proof uses the explicit formula for the Fibonacci numbers.

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

$$= \left(\frac{1+\sqrt{5}}{2} \right)^{n-2} \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{1+\sqrt{5}} \right)^{n-2} \left(\frac{1-\sqrt{5}}{2} \right)^2 \right]$$

$$= \left(\frac{1+\sqrt{5}}{2} \right)^{n-2} \frac{1}{2\sqrt{5}} \left[(3+\sqrt{5}) - \underbrace{(3-\sqrt{5})}_{>0} \left(\frac{1-\sqrt{5}}{1+\sqrt{5}} \right)^{n-2} \right]$$

$$\geq \left(\frac{1+\sqrt{5}}{2} \right)^{n-2} \frac{1}{2\sqrt{5}} \left[(3+\sqrt{5}) - (3-\sqrt{5}) \left(\frac{1-\sqrt{5}}{1+\sqrt{5}} \right) \right]$$

$$= \left(\frac{1+\sqrt{5}}{2} \right)^{n-2} \frac{4}{1+\sqrt{5}} > \left(\frac{1+\sqrt{5}}{2} \right)^{n-2}.$$

4. How many divisions are required to find gcd(34,55) using the Euclidean algorithm? What is the bound from Lamé's theorem?

8 divisions are needed and Lamé's theorem gives upper bound of $5 \cdot 2 = 10$ divisions. 34 and 55 are two consecutive Fibonacci numbers.

5. Apply the extended Euclidean algorithm to find the greatest common divisor and \boldsymbol{s},t in

 $\mathbf{a})$

$$gcd(1529, 14038) = 1529s + 14038t, \quad s, t \text{ integers},$$

step	x	y	s_0	s_1	t_0	t_1	r	q	s	t
1	14038	1529	1	0	0	1	277	9	1	-9
2	1529	277	0	1	1	-9	144	5	-5	46
3	277	144	1	-5	-9	46	133	1	6	-55
4	144	133	-5	6	46	-55	11	1	-11	101
5	133	11	6	-11	-55	101	1	12	138	-1267
6	11	1	-11	138	101	-1267	0	11	-1529	14038
7	1	0	138	11	-1267	14038				

$$\gcd(1529, 14038) = 1 = 138 \cdot 14038 - 1267 \cdot 1529.$$

b)

$$gcd(1529, 14039) = 1529s + 14039t$$
, s, t integers,

step	x	y	s_0	s_1	t_0	t_1	r	q	s	t
1	14039	1529	1	0	0	1	278	9	1	-9
2	1529	278	0	1	1	-9	139	5	-5	46
3	278	139	1	-5	-9	46	0	2	11	-101
4	139	0	-5	11	46	-101				

$$\gcd(1529, 14039) = 139 = -5 \cdot 14039 + 46 \cdot 1529.$$