Titanic Passenger Survival Prediction

Student's Name: ADIDEV-C

E-mail: adidev.c146@gmail.com

Submission Date: 28/09/2025

Objective

- Extract the informations from the dataset
- Find common patterns and trends shown by the data
- Find the factors affecting the survival of a passenger
- Predict the chance of survival of a new passenger using the given details
- Cluster the data and analyse the situations on all the clusters

Dataset Overview

- The dataset contains the record of 100 passengers who either survived or not survived in the Titanic disaster
- Each of the passenger has 7 features, they are : PassengerID,Age,Gender,Pclass,Survived or not ,Embarked,TravelingAlone or not . etc
- The factors NOT affecting the state of survival of passenger are
 - PassengerID just a unique id given to the passenger
- All the features except PassengerID plays a major role in the survival rate of the passenger
 - Age
 - Gender
 - PClass
 - Embarked
 - Was Travelling Alone

Tools & Techniques

Orange

- I used orange to do the Exploratory Data Analysis(EDA) on this project
- Most of the EDA questions can be answered via plotting the data efficiently

Python

- I used python to apply the K-NN and K-Means algorithm to dataset
- I felt python is more appropriate for applying K-NN and K-Means to the datasets which has more than 3 features
- Libraries used:
 - Pandas
 - Numpy

Visual Studio Code

- To write the code for custom data analysis tools
- Google Sheets & Libre Office Calc
 - For viewing the data in table form, and exporting it to csv format

Exploratory Data Analysis (EDA)

1) Average age of passengers

When I selected the age column and applied the feature statistics, the mean was observed to be 39.6 we can round it to 40

MEAN AGE: 40

2) PClass with highest number of passengers

When I selected the class column via select columns widget and observed its distributions, I understood that class 1 has the highest number of passengers

CLASS WITH HIGHEST NUMBER OF PASSENGERS: CLASS 1

3) Number of passengers travelling alone

I selected the 'traveling alone' column with the select column widget and observed their distributions, its observed that 53 passengers were traveling alone

NUMBER OF PASSENGERS TRAVELLING ALONE: 53

4) Percentage of passengers survived

I selected the survival chance column and observed its distributions.

It is observed that 39% of the total passengers survived the disaster

PERCENTAGE OF PASSENGERS SURVIVED: 39%

5) Group with better chances of survival(male/female)

I observed the distributions of the survived and gender columns

In that distributions, I split the graph by the 'survived' feature. It is observed that, females had the better chance of survival

GROUP WITH BETTER CHANCE OF SURVIVAL: FEMALES

6) Number of passengers embarked from each place

I observed the distributions of **Embarked** feature.

Number of passengers embarked from Southampton: 34

Number of passengers embarked from Queenstown: 31

Number of passengers embarked from Cherbourg: 35

7) Which passenger class had the highest survival rate - below

When i checked the survival rate of each class using box plot,its clear that 2nd class had the highest survival rate for passengers below 18

PASSENGER CLASS WITH HIGHEST SURVIVAL RATE(BELOW 18): CLASS 2

8) Which combination had the best chance of survival

To find this, I needed to go through

all 4 groups

1)Female, Class 1

2)Female, Class 3

3)Male, Class 2

4) Male, Class 3

So i created 4 branches from the root dataset with the conditions to select the rows and visualised their survival rate using box-plot

Female, Class 1

CHANCE OF SURVIVAL: 100%

Female, Class 3

CHANCE OF SURVIVAL: 25%

Male, Class 2

CHANCE OF SURVIVAL: 0%

Male, Class 3

CHANCE OF SURVIVAL:24%

Result

From the above results,

We can understand that the combination "female-class1" had the best chance of survival

Methodology

K-NN Classification

- I used python for applying K-NN to the dataset
- I created a python script that compares the 101th passenger to the rest of them and calculates the Euclidean distance and save them to a JSON file
- I converted the categorical columns into numerical values using a map feature on pandas and also normalised the ages
- Then I used the JSON file as an input for another python function which returns the least 'k' values from a python dictionary including its key
- Using the key, I just grabbed those index from the csv file using pandas and displayed it on the screen.
- Using the above python function, I was able to find the answers to the data by changing the values of 'k'

K-NN Classification - Custom algorithm

K-Means Clustering

- I used python for applying K-Means to the dataset
- I searched the github, stackoverflow etc to find existing K-Means algorithms which allow us to fix the centroids for the clusters. But i found nothing. So I made my own algorithm to cluster the data
- First i did the preprocessing steps such as normalising age and converting categorical columns to numerical values
- Then i fixed the centroids and classified all points to cluster1 and cluster2 and stored them in a dictionary in the form {"passenger id":cluster}
- Then I used that dictionary to understand the dataset
- I also exported those dictionaries to JSON format, to be useful in case of manual reuse

K-Means Clustering - Custom algorithm

K-NN Classification Results

3 nearest neighbors

After running the python script for K-NN with K=3 The nearest points around the point 101 are observed to be

- 26 : distance = 1.41 unit
- 71 : distance = 1.41 unit
- 80 : distance = 1.41 unit

All three points were in the same distance from the reference point

Survival prediction K=5

After running the python script for K-NN with K=5 The nearest points around the point 101 are observed to be

- 26 : distance = 1.41 unit; survived = 1
- 71 : distance = 1.41 unit; survived = 0
- 80 : distance = 1.41 unit; survived = 0
- 41 : distance = 1.73 unit; survived = 1
- 32 : distance = 2.0 unit; survived = 0

No. of survived = 2 No. of not survived = 3

ACCORDING TO K-NN ALGORITHM, THE 101TH PASSENGER WILL NOT SURVIVE SURVIVAL STATUS = 0

Nearest survivals k=9

No. of survived = 5

No. of not survived = 4

After running the python script for K-NN with K=9
The nearest points around the point 101 are observed to be

- 26 : distance = 1.41 unit; survived = 1
- 71 : distance = 1.41 unit; survived = 0
- 80 : distance = 1.41 unit; survived = 0
- 41 : distance = 1.73 unit; survived = 1
- 32 : distance = 2.0 unit; survived = 0
- 57 : distance = 2.0 unit; survived = 1
- 92 : distance = 2.0 unit; survived = 0
- 15 : distance = 2.24 unit; survived = 1
- 69 : distance = 2.45 unit; survived = 1

K-Means Clustering Results

Passenger 99, Cluster

After running the python script for K-Means with K=2 The passenger 99 observed to be in cluster 2 (centroid = passenger 46)

Distance to passenger 4 = 2.83 (Cluster 1)
Distance to passenger 46 = 2.03 units (Cluster 2)

Passenger 99 is in Cluster 2 (centroid = passenger 46)

Distance: 9 <-> 46

Passenger 9 (pre-processed values): 1,1,1,2,1,0.8 Passenger 46 (pre-processed values): 1,3,1,2,1,0.0

Distance =
$$\sqrt{((1-1)^2+(1-3)^2+(1-1)^2+(2-2)^2+(1-1)^2+(0.8-0)^2)}$$

Distance between passenger 9 and 46 = 2.15 units

Cluster with more passengers

Cluster 1 : 66 passengers Cluster 2 : 34 passengers

Cluster 1 has more passengers

Insights and Learnings

Trends/Patterns

- Females had much higher survival rates than males.
- 1st class passengers survived at higher rates compared to 2nd and 3rd class.
- Younger passengers (teens and children) had slightly higher survival chances than older groups.
- Passengers traveling with others had better survival rates compared to those alone.

Unique Insights

Gender and class together formed the strongest predictors of survival.

- Traveling alone appeared to reduce survival chances -indicating the importance of family/social support.
- Embarkation port showed weaker relation with survival

Contribution of Tools

- In EDA section, the distributions chart helped a lot to unwind the details in the data
- In K-NN and K-Means, the lack of required tools helped me to create my own data analysing programs
- The techniques like saving data in a JSON format helped me to experiment with those values and optimise the analysis methods

Conclusion

- The project aimed to analyze survival patterns on the Titanic using data analysis tools
- Main findings: survival was influenced most by gender, passenger class, and whether the passenger traveled alone.
- Social and economic factors strongly affected survival in real-life disasters.
- Creating custom tools for analysis was a super interesting and rewarding task for me

References

- Websites
 - Stackoverflow : https://stackoverflow.com/
 - Numpy Documentation : https://numpy.org/devdocs/user/
 - Pandas Documentation : https://pandas.pydata.org/docs/
 - Github : https://github.com/

I created a github repository for this project

Project repository: https://github.com/adidev-c/school-connect-data-analysis