

Armed Forces College of Medicine

AFCM

1- Gluconeogenesis

BY

Dr. Marwa Ali

**Lecturer of Medical Biochemistry
And Molecular Biology**

INTENDED LEARNING OBJECTIVES (ILOs)

By the end of this lecture the student will be able to:

1. Discuss Biochemical importance of gluconeogenesis
2. Mention different gluconeogenic substrates
3. Illustrate different gluconeogenesis pathways

Outlines

What is gluconeogenesis

Gluconeogenic substrates

Gluconeogenesis pathways

Biochemical importance of gluconeogenesis

What is gluconeogenesis

Brain fuels

- They are food stuffs that supply the brain with energy.
- The brain is an **energy-hungry organ** as it uses **ten times** more energy than the rest of the organs.

What are the different sources of brain fuels during **well-fed state**?

Dietary carbohydrates are digested giving **glucose** which is the main fuel of the brain.

What are the different sources of brain fuels during **fasting state**?

Case presentation

A patient 45 years old
with a history of liver cell
failure developed
hypoglycemia during
prolonged fasting

WHY?

Answer

After an overnight fast, 75-80% of glucose released into the circulation derives from the liver and the remaining 20-25% derives from the kidneys

Gluconeogenesis

All pathways responsible for formation of glucose from non carbohydrate sources.

Examples: lactate ,aminoacids, glycerol & propionyl COA

Organs involved in gluconeogenesis

- In **liver** (major site) & **kidney cortex**. These organs contain **complete set of enzymes** required for synthesis of glucose from non carbohydrate sources
- Occurs **partially in mitochondria** and **partially in the cytosol**

Gluconeogenic substrates

Substrates of

Lactate

**Glycero
l**

**Amino
acids**

**Propiony
l COA**

Gluconeogenesis pathways

1- Gluconeogenesis from lactate

Sources of Lactate:

From **anaerobic** tissues as:

RBCs,

Renal medulla,

Retina,

Lens,

Testis, and

From sever muscular exercise

1- Gluconeogenesis from lactate

Lactate is released & delivered to the **liver** and **reconverted** to pyruvate by **lactate dehydrogenase** then $\rightarrow\rightarrow$ glucose (by gluconeogenesis), which is released back into the

1- Gluconeogenesis from

1

Cori Cycle

Lactate

Glucose

Glycolysis

Gluconeogenesis

Note:

- we need **2 lactate** molecules to produce **one glucose** molecule
 - Pyruvate carboxylase enzyme is a **mitochondrial** enzyme
- **PEPCK** reaction is driven by hydrolysis of **GTP**.

The 3 irreversible enzymes of glycolysis are reversed as follow:

- **Pyruvate Kinase:** by Pyruvate Carboxylase & phosphoenol pyruvate carboxykinase (PEPCK).
- **PhosphoFructokinase I:** by Fructose 1,6 bisphosphatase.
- **Hexokinase/glucokinase:** by Glucose 6 phosphatase.

2- Gluconeogenesis from Amino acids

- Aminoacids (mostly **Alanine & glutamine**) from muscle proteolysis are the **major source** of glucose during **prolonged** fasting & starvation.

2- Gluconeogenesis from Amino acid

- Amino acids are metabolized 1st to release NH₃ through deamination or transamination to give pyruvic or oxalacetate

2- Gluconeogenesis from Amino acids

Alanine is one of the predominant aminoacid released during prolonged fasting from muscle & delivered to the liver

and reconverted to glucose by Alanine transaminase, which is released back into the circulation

2- Gluconeogenesis from Amino acids

Glucose-alanine Cycle

All A.As can give \rightarrow Glucose Except (Lysine & Leucine)

3- Gluconeogenesis from Glycerol

- Glycerol is released during **Lipolysis** & delivered to the liver.

4- Gluconeogenesis from Propionyl COA

It is a product of **oxidation of odd-number fatty acids** & catabolism of amino acids as **valine , isoleucine & methionine.**

N.B.

It is not a significant glucogenic precursor in human beings

4- Gluconeogenesis from Propionyl CoA

Lecture Quiz

Which one of the following reactions is unique to gluconeogenesis?

- A. Lactate \rightarrow pyruvate
- B. Phosphoenolpyruvate \rightarrow pyruvate
- C. Oxaloacetate \rightarrow phosphoenolpyruvate
- D. Glucose 6-phosphate \rightarrow fructose 6 phosphate
- E. 1,3-Bis-phosphoglycerate \rightarrow 3-phosphoglycerate

Energy requirement in gluconeogenesis to form 1 glucose molecule is dependant on starting point:

- Starting with 2 **pyruvate** cost **6 ATP**:
 $2 \times (1 \text{ ATP for pyruvate carboxylase} + 1 \text{ ATP for phosphoglycerate kinase} + 1 \text{ GTP for PEPCK})$
- Starting with 2 **oxaloacetate** cost **4 ATP**
- Starting with 2 **glycerol** we need **2 ATP**

Gluconeogenesis is a costly metabolic process

Biochemical importance of gluconeogenesis

Biochemical importance of gluconeogenesis

1. Maintain a **basal level of glucose** in the circulation during **prolonged fasting & starvation** this is because...
 - *Brain has a minimum requirement of 120g glucose/day*
 - *Glucose is the main source of energy to anaerobic cells ex: RBCs*
2. Gluconeogenesis also help To **clear lactate** and prevent lactic acidosis.

So, gluconeogenesis is active in the following conditions:

- 1- During **prolonged fasting & starvation**: it begins nearly 6 hrs after last meal & become **fully active after complete depletion** of liver glycogen (10-18 hrs).
- 2- **Unbalanced diet** (decrease carbohydrates & increase fat and/or protein).

So, gluconeogenesis is active in the following conditions:

- 3- Type **I diabetes mellitus** (stimulation of enzymes of gluconeogenesis).
- 4- **Cushing syndrome** (high cortisol level stimulate muscle proteolysis & enzymes of gluconeogenesis).
- 5- **Sever muscle exercise** (increase lactate which is a substrate of gluconeogenesis).

Take Home Message

- **Gluconeogenesis:**
Synthesis of glucose from noncarbohydrates
Anabolic & Energy-consuming
- Four unique enzymes are required for the reversal of the 3 irreversible reactions of glycolysis
- Both gluconeogenesis & glycolysis are reciprocally-regulated
- Impaired gluconeogenesis leads to fasting hypoglycemia and may cause lactic acidosis

Thank
you

Marwa Ali