Liam Hardiman October 26, 2018

260A - Homework 1

Problem 1.

- (i) Show that ℓ^p , $1 \le p \le \infty$, is a Banach space.
- (ii) Prove that $\ell^{\infty} = (\ell^1)^*$, but $(\ell^{\infty})^* \neq \ell^1$.

Proof. (i) Let $a = (a^{(n)})$ and $b = (b^{(n)})$ be in ℓ^p , $1 . We have by Hölder's inequality for any complex <math>\lambda$

$$\begin{aligned} \|a + \lambda b\|_{p}^{p} &= \sum_{n=1}^{\infty} |a^{(n)} + \lambda b^{(n)}|^{p} \\ &= \sum_{n=1}^{\infty} |a^{(n)} + \lambda b^{(n)}| \cdot |a^{(n)} + \lambda b^{(n)}|^{p-1} \\ &\leq \sum_{n=1}^{\infty} |a^{(n)}| \cdot |a^{(n)} + \lambda b^{(n)}|^{p-1} + |\lambda| \sum_{n=1}^{\infty} |b^{(n)}| \cdot |a^{(n)} + \lambda b^{(n)}|^{p-1} \\ &\leq (\|a\|_{p} + |\lambda| \|b\|_{p}) \left(\sum_{n=1}^{\infty} |a^{(n)} + \lambda b^{(n)}|^{(p-1)\frac{p}{p-1}} \right)^{\frac{p-1}{p}} \\ &= (\|a\|_{p} + |\lambda| \|b\|_{p}) \|a + \lambda b\|_{p}^{p-1}, \end{aligned}$$

Which shows that $||a + \lambda b||_p \le ||a||_p + |\lambda| ||b||_p < \infty$. This shows both that ℓ^p , $1 , is a vector space (as linear combinations of elements of <math>\ell^p$ have finite p-norm) and that the p-norm satisfies the triangle inequality (take $\lambda = 1$).

 ℓ^1 is a vector space and the $\|\cdot\|_1$ norm satisfies the triangle inequality thanks to the triangle inequality on \mathbb{C} :

$$||a + \lambda b||_1 = \sum_{n=1}^{\infty} |a^{(n)} + \lambda b^{(n)}|$$

$$\leq \sum_{n=1}^{\infty} |a^{(n)}| + |\lambda| \sum_{n=1}^{\infty} |b^{(n)}|$$

$$= ||a||_p + |\lambda| ||b||_p.$$

Similarly, for $a, b \in \ell^{\infty}$ and $\lambda \in \mathbb{C}$ we have

$$||a + \lambda b||_{\infty} = \sup_{n \ge 1} |a^{(n)} + \lambda b^{(n)}| \le \sup_{n \ge 1} (|a^{(n)}| + |\lambda||b^{(n)}|) \le \sup_{n \ge 1} |a^{(n)}| + |\lambda| \sup_{n \ge 1} |b^{(n)}| = ||a||_{\infty} + |\lambda| ||b||_{\infty}.$$

We then have that ℓ^p is a normed complex vector space. We now need to show completeness. First let's treat the case of $p < \infty$. Suppose that $\{a_n\}$ is a Cauchy sequence in ℓ^p (here $a_i^{(j)}$ is the *j*-th entry in the *i*-th element of the sequence). Since this sequence is Cauchy we have that for any $\epsilon > 0$ we can find $N \in \mathbb{N}$ so that for all m, n > N

$$||a_m - a_n||_p < \epsilon \iff \sum_{k=1}^{\infty} |a_m^{(k)} - a_n^{(k)}|^p < \epsilon^p.$$

Since each term in the above sum is nonnegative, we must have that $|a_m^{(k)} - a_n^{(k)}| < \epsilon$ for each k. In particular, we have that for any fixed k, $\{a_n^{(k)}\}$ is a Cauchy sequence of complex numbers. Since $\mathbb C$ is complete, we have that $a_n^{(k)} \to a^{(k)} \in \mathbb C$ as $n \to \infty$.

Let a be the sequence of complex numbers whose k-th entry is built from our original Cauchy sequence by $a^{(k)} = \lim_{n \to \infty} a_n^{(k)}$. Our plan is to show that $a_n \to a$ in ℓ^p and that a is in ℓ^p . Fix $\epsilon > 0$. Then for some N we have that $||a_m - a_n||_p < \epsilon$ for all m, n > N. Our trick is to pass to a finite sum and then take limits in a particular order. For any L > 0 and m, n sufficiently large we have

$$\sum_{k=0}^{L} |a_m^{(k)} - a_n^{(k)}|^p \le ||a_m - a_n||_p^p < \epsilon^p.$$

Now the right-hand side does not depend on m, so taking $m \to \infty$ gives

$$\sum_{k=0}^{L} |a^{(k)} - a_n^{(k)}|^p < \epsilon^p.$$

Then we take $L \to \infty$ which gives $||a - a_n||_p < \epsilon$, so $a_n \to a$ in ℓ^p . We can use this to show that a is in ℓ^p since for all n

$$||a||_p \le ||a - a_n||_p + ||a_n||_p$$
.

For n large enough the first term on the right is bounded by ϵ and the second term is finite since each a_n is in ℓ^p . Thus, ℓ^p is complete, and therefore, a Banach space for $1 \le p < \infty$.

Now let $p = \infty$. If $\{a_n\}$ is a Cauchy sequence in ℓ^{∞} then for $\epsilon > 0$ and m, n sufficiently large we have that $\sup_{k>0} |a_m^{(k)} - a_n^{(k)}| < \epsilon$. Just like in the finite p case, this implies that for any fixed k, $\{a_n^{(k)}\}$ is a Cauchy sequence of complex numbers, so we can speak of the entrywise limit a. Also similar to the finite p case we have that for L large

$$\sup_{1 \le k \le L} |a_m^{(k)} - a_n^{(k)}| \le ||a_m - a_n||_{\infty} < \epsilon.$$

Sending m to infinity gives $\sup_{1 \le k \le L} |a^{(k)} - a_n^{(k)}| < \epsilon$ and then sending L to infinity gives $||a - a_n||_{\infty} \to 0$. The argument used in the $p < \infty$ case also shows that $a \in \ell^{\infty}$.

(ii) First we'll show that $(\ell^1)^* = \ell^\infty$ (i.e., they are isometrically isomorphic). Let $\varphi : \ell^\infty \to (\ell^1)^*$ be the map that sends $b \in \ell^\infty$ to T_b , where $T_b(a) = \sum_{k=1}^\infty a^{(k)} b^{(k)}$. That φ is linear is obvious. By Hölder's inequality we have that

$$|T_b(a)| \le \sum_{k=1}^{\infty} |a^{(k)}| |b^{(k)}| \le ||a||_1 \cdot ||b||_{\infty},$$

This shows that T_b is bounded, and therefore continuous, so the image of φ indeed lives in $(\ell^1)^*$. In particular, this shows that $\|\varphi(b)\| \leq \|b\|_{\infty}$ (so φ is a continuous map of vector spaces). To show that φ is an isometry, we need the reverse inequality.

Since $||b||_{\infty} = \sup_{k \geq 1} |b^{(k)}|$, for any $\epsilon > 0$, we can find a natural number N so that $|b^{(N)}| > ||b||_{\infty} - \epsilon$. Consequently, if we let e_n be the sequence in ℓ^1 whose n-th entry is 1 and whose other entries are 0, we have that we can always find N so that $|T_b(e_N)| = |b^{(N)}| > ||b||_{\infty} - \epsilon$. Since ϵ was arbitrary and $||e_n||_1 = 1$, we have that $||T_b||_{\infty} \geq ||b||_{\infty}$. Thus, $||\varphi(b)|| = ||b||_{\infty}$ and φ is an isometry.

Since isometries are injective, it remains to show that φ is surjective. Let T be a functional in $(\ell^1)^*$. For any $a \in \ell^1$ we have that $a = \sum_{k=1}^{\infty} a^{(k)} e_k$ where $\sum |a^{(k)}| < \infty$ and e_k is as it was above. Since $a = \lim_{N \to \infty} \sum_{k=1}^{N} a^{(k)} e_k$, continuity of T tells us that

$$T(a) = T\left(\sum_{k=1}^{\infty} a^{(k)} e_k\right) = \sum_{k=1}^{\infty} a^{(k)} T(e_k).$$

Since continuity is equivalent to boundedness, we have that $|T(e_k)| < M < \infty$ for some M. Thus, T is the image of the bounded sequence sequence $(T(e_1), T(e_2), \ldots)$ under φ , so φ is surjective. φ is then a surjective isometry $\ell^{\infty} \to (\ell^1)^*$.

Now let's show that $(\ell^{\infty})^* \neq \ell^1$. Let S be the subspace of ℓ^{∞} consisting of all convergent sequences and let $T: S \to \mathbb{C}$ be the map that sends a convergent sequence to its limit. T is clearly linear and it's bounded since

$$|T(a)| = |\lim_{k \to \infty} a^{(k)}| \le \limsup_{k \to \infty} |a^{(k)}| \le \sup_{k \ge 1} |a^{(k)}| = ||a||_{\infty}.$$

By the Hahn-Banach theorem, T extends to a continuous linear functional T on all of ℓ^{∞} that agrees with T on S.

If $\tilde{T}(a)$ could be written $\tilde{T}(a) = \sum_{k=1}^{\infty} a^{(k)} b^{(k)}$ for some $b \in \ell^1$, then for all n we would have $b^{(n)} = \tilde{T}(e_n) = T(e_n) = 0$. But then b would be the zero sequence and \tilde{T} is the zero functional, which is nonsense since $\tilde{T}(1,1,\ldots) = T(1,1,\ldots) = 1$. We conclude that \tilde{T} does not have the form required for $(\ell^{\infty})^* = \ell^1$.

Problem 2 Prove that if Z is a subspace of a normed linear space X, and $y \in X$ has distance d from Z, then there exists $\Lambda \in X^*$ such that $\|\Lambda\| \le 1$, $\Lambda(y) = d$ and $\Lambda(z) = 0$ for all $z \in Z$.

Proof. Consider the subspace $Y = Z \oplus ky$ of X, where k the field over which X is defined. This sum is indeed direct since y is not in Z. Define the function $f: Y \to \mathbb{R}$ by $f(z + \alpha y) = \alpha d$. f is linear since

$$f[\gamma(z + \alpha y) + (w + \beta y)] = f[(w + \gamma z) + (\beta + \gamma \alpha)y]$$
$$= (\beta + \gamma \alpha)d$$
$$= \gamma f(z + \alpha y) + f(w + \beta y).$$

3

We claim that $|f(z+\alpha y)| \leq ||z+\alpha y||$. Intuitively, this is because $|f(z+\alpha y)|$ is the distance from $z+\alpha y$ to Z, which is at most $||z+\alpha y||$, since $0 \in Z$. Rigorously, since $0 \in Z$ we have

$$|f(z + \alpha y)| = |\alpha \cdot d|$$

$$= |\alpha| \cdot \inf_{w \in Z} ||y - w||$$

$$= \inf_{w \in Z} ||\alpha y + z - w||$$

$$\leq ||\alpha y + z - 0||$$

$$= ||\alpha y + z||.$$

By the Hahn-Banach theorem, f extends to a continuous (as |f(x)| < ||x|| on Y) linear function Λ on all of X that also satisfies $|\Lambda(x)| \le ||x||$. This gives $||\Lambda|| \le 1$. Furthermore, since Λ agrees with f on Y, we have that $\Lambda(y) = f(y) = d$ and $\Lambda(z) = f(z) = f(z + 0y) = 0$ for all $z \in Z$.

Problem 3. Show that linear combinations of functions of the form

$$\mathbb{R} \ni t \mapsto \frac{1}{t-z}, \quad \operatorname{Im}(z) \neq 0$$

are dense in the space of continuous functions on \mathbb{R} which tend to zero at infinity.

Proof.