Inteligencia Artificial - Problemas propuestos

Alumno: Marko Echevarria Narrea

1 Ejercicio propuesto

Considere una red neuronal Perceptrón Multicapa tal como la mostrada en la figura.

Asuma que todas las neuronas de procesamiento usan como función de activación la logística sigmoide.

Responda:

- a. Realice la etapa forward (hacia adelante) de la red. El valor de salida deseado es 0.5.
- b. Realice la etapa backward (backpropagation o retropropagación del error) de la red. Considere una tasa de aprendizaje de 1 y, por razones de facilidad para la solución de este problema, no considere biases en la red.
- c. Realice una etapa forward (hacia adelante) más y comente el resultado que obtuvo respecto del anterior.

Caso se requiera puede usar las siguientes expresiones matemáticas:

$$\delta_k = (t_k - y_k) \times f'(u_k)$$
$$\delta_j = (\sum \delta_k - w_k) \times f'(u_j)$$

Derivada de la funcion logistica sigmoide $f'(u) = f(u) \cdot [1 - f(u)]$

Nota

- 1. No se han considerado biases en las neuronas ocultas ni en las de salida.
- 2. En este problema los pesos de las conexiones entre las neuronas de entrada y las ocultas se simbolizan como wji, y los pesos de las conexiones entre estas neuronas y las neuronas de salida, se simbolizan como zkj.

2 Resolucion

Forward

Suponemos que x_i hace referencia a cada input de cada neurona de la capa de entrada

$$x_i = s_i$$
 entonces $x_1 = s_1$ y $x_2 = s_2$

 u_i : Entrada neta en la neurona

 $f(u_i)$: activación de la neurona

Primera neurona oculta: $u_1 = w_{11} \cdot x_1 + w_{12} \cdot x_2$ (regla de propagación)

Segunda neurona oculta: $u_2 = w_{21} \cdot x_1 + w_{22} \cdot x_2$ (regla de propagación)

Primera neurona oculta: $f(u_1) = \frac{1}{1+e^{u_1}}$ (regla de activación)

Segunda neurona oculta: $f(u_2) = \frac{1}{1+e^{u_2}}$ (regla de activación)

Entrada neta en primera neurona oculta: $(0.35 \cdot 0.1) + (0.9 \cdot 0.4) = 0.395$

Salida de la primera neurona oculta: 0.5975.

Entrada neta en segunda neurona oculta: $(0.9 \cdot 0.6) + (0.35 \cdot 0.8) = 0.82$.

Salida de la segunda neurona oculta: 0.6942.

Link de referencia