AMENDMENTS TO THE SPECIFICATION

Please amend the second full paragraph on page 1 of the specification as follows:

The present invention is directed to a novel protocol for an ad-hoc, peer-to-peer radio network system having coordinating channel access to shared parallel data channels via a separate reservation channel. This system is disclosed in <u>United States Patent Number 6,404,756, granted on June 11, 2002</u>, copending application serial number 09/705,588, filed on November 3, 2001, entitled "Methods and Apparatus for Coordinating Channel Access to Shared Parallel Data Channels", which application is incorporated by reference herein in its entirety.

Please amend the paragraph bridging page 1 and page 2 of the specification as follows:

The network system having coordinating channel access to shared parallel data channels via a separate reservation channel [[of]] in United States Patent Number 6,404,756 copending application serial number 09/705.588 is directed to a network system, such as radio network, where each node, or radio terminal, of the network is capable of serving as a node or hop of a routing path of a call from another, or to another radio terminal. In that system, communication between nodes or radio terminals is achieved using Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol with the addition of multiple parallel data channels serviced by one reservation channel. By dedicating a separate reservation channel for the multiple parallel data channels, collision-free access by all of the competing nodes or terminals of the service group of the network is greatly reduced. Communications between terminals or nodes is set up by information exchanged on the separate reservation channel, which information includes all of the call set-up information such as data channel desired to be used for transferring voice, video or data, the desired power level of at least initial transmission, messaging such as Request-to-Send (RTS), Clear-to-Send (CTS), Not-Clear-to-Send (NCLS), Acknowledgment (ACK) for indicating reception of the transmitted call, Non-Acknowledgment (NACK) for indicating improper reception of the call, etc. In this system, in order to further ensure fast, adequate and collision-free transmission and reception, besides a primary modem typically provided with the

transceiver of each node or terminal, a secondary modem is also provided which is dedicated to the reservation channel when the primary modem of the transceiver is occupied, such as when sending out data on a data channel. This system also provides for collision free transmission and reception between nodes or terminals by transmitting the reservation and data channels in time slots of time frames, with the information as to which time slot is to be used being included in the messaging transmitted by the reservation channel. Such a format not only provides collision-free transmission, but also allows for Quality-of-Service (QOS) for different types of Class-of-Service (CoS), Thus, not only may voice and video be transmitted, besides data, but voice and data transmission may be prioritized, so that when competing calls vie for a data channel, the delay-dependent voice or video transmissions will take precedence. This prioritization is accomplished by assigning prioritized calls for transmission in earlier time slots of a time frame.

Please amend the last full paragraph of page 2 of the specification as follows:

The network system disclosed in <u>United States Patent Number 6,404,756</u> U.S.

Application Serial Number 09/705,588 ensures that every node or terminal of a service set of terminals has the most information regarding all of other terminals of that service set, so that the choice of data channel to be used, any required delay is transmitting the call, information on power level, and the like, are checked and updated by each terminal by a practically continuous monitoring of the reservation channel.

Please amend the first full paragraph of page 3 of the specification as follows:

As explained above, the system disclosed in <u>United States Patent Number 6,404,756</u>
U.S. Application Serial Number 09/705,588 utilizes protocol that provides collision-free channel access, which also emphasizes improving geographic reuse of the frequency spectrum.

Please amend the first full paragraph of page 4 of the specification as follows:

In commonly-owned <u>United States Patent Number 6,873,839</u>, issued March 29, 2005, entitled <u>Prioritized Routing For An Ad-Hoc, Peer-To-Peer Mobile Radio Access System"</u> provisional application serial number 60/248,182, which application is incorporated by reference herein, there is disclosed an ad-hoc, peer-to-peer radio system for use as a stand-alone system that is also connected to a cellular network and/or PSTN. The ad-hoc mobile radio networking system thereof is capable of receiving and transmitting voice, data and video calls through any number of different types of telecommunication networks, such as the PSTN, the Internet, and the like, besides the cellular and next-generation cellular networks.

Please amend the second full paragraph of page 5 of the specification as follows:

The system of the present invention is much more complex due to multiple, parallel data channels that are coordinated by a single reservation channel. In this system, a combination of CSMA/CA, TDMA (time division multiple access), FDMA (frequency division multiple access), and CDMA (code division multiple access) is used within the channel access algorithm. The transceiver used in the system employs two modems to solve the channel reliability issues with multiple channel designs, as disclosed in the above-described <u>United States Patent Number 6.404.756</u> eopending U.S. Application Serial No. 09/705,588. Specifically, the system dedicates a receive-only modem for gathering channel usage information on the reservation channel. The reservation channel operates a hybrid CSMA/CA and TDMA algorithm. The remainder of the protocol uses FDMA for the multiple data channels, and CDMA for multiple users on the same data channel.

Please amend the first full paragraph of page 6 of the specification as follows:

Reference is also had to copending, commonly-owned <u>United States Patent Number</u> 6,873,839, issued March 29, 2005, U.S. patent application serial number 09/.fi on 2001, entitled "Prioritized-Routing for an Ad-Hoc, Peer-to-Peer, Mobile Radio Access System", which is incorporated by reference herein, in which there is disclosed an example of routing table messaging which may be used in the present invention.

Please amend the first full paragraph of page 7 of the specification as follows:

The system of the present invention utilizes a method and algorithm which, in the preferred embodiment, is intended for an ad-hoc network system called "ArachNet", and is based on leastenergy routing of calls from between network radio terminals. In simple terms, the major component of the routing decision is to choose to 'route to the destination that uses the least amount of energy over the complete route. The major reason for this is that at least-energy routing minimizes the radiated RE energy, in order to reduce interference between terminals A consequence of this is that it creates the most efficient use of the power supply of the terminals. Routing tables based on this least energy routing a developed by the system of the invention, and stored at one or more radio terminals, which routing tables are transmitted and stored by other terminals forming part of the link by which a call is connected. An example of such a routing table is disclosed in copending, commonly-owned United States Patent Number 6.873.839, issued March 29, 2005, U.S. patent application serial number 09/—filed on 2001, entitled "Prioritized-Routing for an Ad-Hoc, Peer-to-Peer, Mobile Radio Access System", which is incorporated by reference herein.

Please amend the last full paragraph of page 8 of the specification as follows:

While the protocol method of the present invention is disclosed with regard to an ad-hoc, peer-to-peer radio system, the protocol is equally applicable to any wireless LAN, wireline network, and the like, to which the method and system disclosed in <u>United States Patent Number 6.404.756</u> eopending U.S. application serial no. 09/705.588 may apply.

Please amend the first full paragraph of page 15 of the specification as follows:

The protocol (AP) of the system of the present invention applies to an ad-hoc, peer-to-peer radio network system having coordinating channel access to shared parallel data channels via a separate reservation channel, as disclosed in United States Patent Number-6.404.756 eopending U.S. Application Serial No. 09/705,588. In the radio network system of the invention, there is no fixed base station; each radio terminal is capable of acting as a mobile base station. The protocol of the present invention provides such an ad-hoc, peer-to-peer radio system with the capability of preventing collisions of data transfer. In high-density populated area (conference halls, stadium, downtown of big cities, etc.), the protocol of the present invention allows each terminal to perform close to its maximum theoretical capacity, while dropping the requests in excess. Such behavior is in contrast with conventional polling-type protocols that cannot provide any service when the number of requested connections is larger than a particular fraction of terminal capacity.

Please amend the paragraph bridging page 19 and page 20 of the specification as follows:

The power level of the modern for the configuration channel (CC) information is greater than that of the modem for transmitting data on the data channels (DC), since an AT must first send out connectivity information with enough power to reach other AT's of its respective service set (SS). Once this has been done, and a routing path determined, which routing path will indicate the first AT that shall constitute the first hop or link of the routing path, which hop is closer to the requesting AT than at least most of all of the other AT's of the SS, the other modem dedicated to the transmission of [[,]] data on the DC's will only have to transmit at a power level less than that of the modern dedicated to the configuration channel. Thus, since applications data (AD) are transmitted at a lower power than that of the configuration data (CD), the condition for collision in data channels can be identified before it occurs, with appropriate measures being taken for preventing it, such as the use of CDMA. In addition, since the data channel data is' transmitted at a lower power level, interference is reduced since the RE waves of the data channels do not propagate as far along the SS. It is noted that in the case where the primary modern is used most of the time for transmitting both configuration data as well as channel data, with the dedicated reservation-channel modem only being used when the primary modem is occupied with sending out messaging on the data channels, the primary modem will have its power level changed in accordance with which channel it is transmitting, as disclosed in United States Patent Number 6,404,756 copending U.S. Application Serial No. 09/705,588. However, in the preferred form of the invention, the dedicated configuration-channel modern receives and transmits configuration data regardless of the state of the primary modem.

Please amend the second full paragraph on page 20 of the specification as follows:

When first powered on, or when approaching a group, the new terminal (AT) listens to messages in the time frames (TF), creates a utilization map based thereon, and computes its transmit power, in the manner disclosed in <u>United States Patent Number 6.404,756 eopending U.S. Application Serial No. 09/705,588</u>. According to the protocol of the present invention, it submits the first message in the last time slot (TS) of the time frame, using as much power as needed in order to reach all AT's from which it has received similar messaging, that is its service

Appl. No. 09/846,434 Amdt. Dated September 27, 2006 Reply to Office Action of October 27, 2005

set (SS). The message shows the utilization map it knows about, and requests to register with the closest AT. In the utilization map, it marks as busy all time slots (TS) during which a message or high-level noise was received during the last time frame, and also marks the time slot where it intends to move to with the next frame. The TS where it wants to move in the next time frame will have been reported as free in utilization maps of all AT's of the SS. In every time frame, the AT creates the utilization map based on time slots it identified as being busy (a signal was received during the TS), and it receives similar maps from all other AT's in the transmit-set of each AT (TxS). Identifying free TS's consists in making a bit-wise OR between all received maps. The result shows free time slots as bits with value zero and busy TS as bits with value one.

Please amend the second full paragraph on page 21 of the specification as follows:

The group of messages for data transfer planning is used for adjusting the transmit power, building, re-building, re-routing and releasing links, as described hereinbelow in detail. As disclosed in <u>United States Patent Number 6,404,756 eopending U.S. Application Serial No. 09/705,588</u>, some of them are used before starting the transfer of data packet, and some are used while the data transfer takes place. Data' Channels (DC's) are mainly used for moving data packets from one AT to another. Some of the data transfers require confirmation/rejection of received data, and some not. A rejection of received data is an automatic request for retransmitting the associated data package. Broadcast services do not require any confirmation of received data correctness.

Please amend the paragraph bridging page 29 and page 30 of the specification as follows:

The protocol of the present invention is based on least energy routing determination, as discussed previously especially when transmitting data. The routing table messaging that is exchanged between terminals may have a format as that disclosed in copending, commonly-owned United States Patent Number 6,873,839, issued March 29, 2005, U.S. patent application serial number 09/——filed on 2001, entitled "Prioritized-Routing for an Ad-Hoc, Peer-to-Peer, Mobile Radio Access System which is incorporated by reference herein.

Please amend the first full paragraph on page 30 of the specification as follows:

The minimum energy routing of the protocol of the invention is used to setup the optimal path of a call. The following algorithm of the protocol of the present invention is based on this minimum energy routing.

Please amend the abstract of the disclosure of the specification as follows:

An ad-hoc, peer-to-peer radio system includes a series of radio terminals forming a service group, each radio terminal having a transceiver for communicating with terminals in the same service group, computer means, and memory for storing program software. Within the system, a method and protocol for communication among the terminals includes establishing a connection with one radio terminal based on time-division access; initiating an outgoing call from the radio terminal including registering with another radio terminal for serving as a node in the call connection by transmitting a registration request; and initially transmitting said registration request on a last time slot(TS) of a respective time frame (TF), said last time slot serving as a configuration channel.

A novel protocol for an ad-hoc, peer-to-peer radio network that provides collision-free channel access with an emphasis on improving geographic reuse of the frequency spectrum. The protocol of the invention is executed on the reservation or control channel, and provides a method for allocating data transactions on the data channels. The system of the invention utilizes multiple parallel data channels 'that are coordinated by a single-reservation channel. The transceiver of the system employs two modems' to solve the channel reliability issues with multiple channel designs, where one is dedicated as a receive-only modem for gathering channel usage information on the reservation channel. High quality voice, video and data may be transmitted. The reservation channel implements a time division multiple access algorithm with dynamic slot allocation. In a distributed manner, nodes determine geographic reuse of slots based on channel quality extracted from the modem. Signal quality calculations are used to determine the likelihood of a slot reuse causing destructive interference within a node's neighborhood. Requests for slot usage are compared with the known traffic pattern and accepted or rejected by nodes within RE signal transe based on the signal quality calculations.