DEVELOPPEMENTS LIMITÉS USUELS

Le développement limité de MAC LAURIN au voisinage de x=0 à l'ordre "n" pour une fonction "f" indéfiniment dérivable s'écrit :

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0) + x^n\epsilon(x) \quad \text{avec } \lim_{x \to 0} \epsilon(x) = 0$$

on obtient , au voisinage de 0 , les développements limités suivants :

fonction	développement limité fonction usuelle
$\frac{1}{1-x}$	$1 + x + x^2 + \dots + x^n + x^n \epsilon(x)$
sinx	$x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^p \frac{x^{2p+1}}{(2p+1)!} + x^{2p+2} \epsilon(x) \qquad (n = 2p+2)$
shx	$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + \frac{x^{2p+1}}{(2p+1)!} + x^{2p+2} \epsilon(x)$ $(n = 2p + 2)$
cosx	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^p \frac{x^{2p}}{(2p)!} + x^{2p+1} \epsilon(x) \qquad (n = 2p + 1)$
chx	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2p}}{(2p)!} + x^{2p+1} \epsilon(x) (n = 2p + 1)$
e^x	$1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + x^n \epsilon(x)$
$\ln(1+x)$	$x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + x^n \epsilon(x)$
$(1+x)^{\alpha}$ $\alpha \in R$	$1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!}x^{2} + \dots + \frac{\alpha(\alpha - 1)\dots(\alpha - n + 1)}{n!}x^{n} + x^{n}\epsilon(x)$
tanx	$x + \frac{x^3}{3} + \frac{2}{15}x^5 + x^6\epsilon(x)$
thx	$x - \frac{x^3}{3} + \frac{2}{15}x^5 + x^6\epsilon(x)$

fonction	développement limité fonction réciproque usuelle
Arcsinx	$x + \frac{x^3}{6} + \frac{3}{8} \frac{x^5}{5} + \dots + \frac{1 * 3 * \dots (2p-1)}{2 * 4 * \dots (2p)} \frac{x^{2p+1}}{2p+1} + x^{2p+2} \epsilon(x) \qquad (n = 2p+2)$
Argshx	$x - \frac{x^3}{6} + \frac{3}{8} \frac{x^5}{5} + \dots + (-1)^p \frac{1 * 3 * \dots (2p-1)}{2 * 4 * \dots 2n} \frac{x^{2p+1}}{2p+1} + x^{2p+2} \epsilon(x) (n = 2p+2)$
Arctanx	$x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^p \frac{x^{2p+1}}{(2p+1)} + x^{2p+2} \epsilon(x) \qquad (n = 2p+2)$
Argthx	$x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2p+1}}{(2p+1)} + x^{2p+2} \epsilon(x)$ $(n = 2p+2)$