Decomposição de Séries Temporais

Profa. R. Ballini

Bibliografia Básica:

- Pesaran, M. H. (2015). Time Series and Panel Data Econometrics. Cap. 12 – 12.5.
- Morettin, P. A. (2004). *Análise de Séries Temporais*. Cap. 3.

Introdução a Série Temporal

Definição

Uma série temporal é uma sequencia de observações feitas arranjadas ao longo do tempo.

Principais objetivos em se estudar séries temporais:

- Descrição. Descrever propriedades da série, ou seja, a tendência de longo prazo, componente sazonal, componente cíclico, observações discrepantes (outliers), alterações estruturais (mudanças no padrão da tendência), etc.
- Predição: predizer valores futuros com base em valores passados. Aqui assume-se que o futuro envolve incerteza, ou seja as previsões não são perfeitas.
- Explicação. Usar a variação em uma série para explicar a variação em outra série.

Introdução a Série Temporal

Abordagens para tratar séries temporais:

1. Técnicas Descritivas: gráficos, identificação de padrões, etc.

2. Métodos não paramétricos: alisamento ou suavização

- Modelos Probabilísticos: Seleção, comparação e adequação de modelos, estimação, predição. Ferramenta básica é a função de autocorrelação.
- 4. Outras Abordagens: modelos de espaço de estados, modelos não lineares, séries multivariadas, processos de longa dependência, modelos para volatilidade, etc.

Decomposição Clássica

Considere uma série temporal $\{Z_t, t=1,...,N\}$ que pode ser representada como a soma dos componentes:

- Tendência (T_t): componente de longo prazo associado ao movimento da variável no tempo;
- Ciclo (Ct): componente de médio prazo associado a períodos de expansão ou recessão econômica;
- Sazonalidade (S_t): componente de curto prazo associado a variações provocadas pelas épocas do ano (feriados, estação do ano, etc);
- Resíduo (ϵ_t) : componente que não se pode explicar, variável aleatória, também denominada de ruído.

Decomposição Clássica

Tipos de modelos:

1. Aditivo: variâncias estabilizadas no tempo (homocedástico)

$$Z_t = T_t + S_t + C_t + \epsilon_t \tag{1}$$

2. Multiplicativo: variâncias crescentes no tempo (heterocedástica)

$$Z_t = T_t \times S_t \times C_t + \epsilon_t \tag{2}$$

Exemplos de séries temporais

Faça os gráficos das seguintes séries:

- Dados mensais de total de passageiros em linhas aéreas internacionais nos EUA entre 1949 a 1960 (Box, Jenkins, Reinsel & Ljung, 2016)
- Número anual de linces capturados em armadilhas entre 1821 a 1934 no Canadá (Brockwell & Davis, 1991)
- Medições anuais de vazões do Rio Nilo em Ashwan entre 1871 e 1970 (Cobb, G. W., 1978)
- Consumo de Gás no Reino Unido entre o primeiro trimestre de 1960 e o quarto trimestre de 1986 (Durbin, J. & Koopman, S. J., 2001)

Tendência

Vamos iniciar supondo que a série Z_t seja formada apenas pelos componentes de tendência e aleatório:

$$Z_t = T_t + \epsilon_t \tag{3}$$

Estimando a tendência \widehat{T}_t , obtemos uma série ajustada para tendência ou livre de tendência:

$$Y_t = Z_t - \widehat{T}_t \tag{4}$$

Neste caso, Y_t é a série das estimativas do componente aleatório $\widehat{\epsilon}_t$.

Na literatura há vários métodos para estimar a tendência, sendo que os frequentemente usados são:

- 1. Ajuste de uma função do tempo, como um polinômio;
- 2. Suavizar (ou filtrar) os valores da série, por meio de médias móveis;

Tendência Polinômial

Vamos supor que a tendência T_t possa ser representada por um polinômio de ordem m, ou seja:

$$T_t = \beta_0 + \beta_1 t + \beta_2 t^2 + \ldots + \beta_m t^m$$
 (5)

em que $\beta_0, \beta_1, \ldots, \beta_m$ são parâmetros a serem estimadas e $t=1,2,\ldots,N$ representa o tempo. Para estimar os parâmetros $\beta_j, j=0,1,\ldots,m$ usamos o método dos mínimos quadrados (MQO).

Geralmente, uma função linear (m=1) ou quadrática (m=2) será apropriada para representar uma tendência monotonicamente crescente ou decrescente.

A tendência na equação (5) é uma função determinística (função matemática) do tempo e algumas vezes é chamada de *tendência global* (i.e. vale para toda a série).

Componente sazonal

Vamos supor que uma série temporal Z_t seja composta pelo componente sazonal S_t e o componente aleatório ϵ_t :

$$Z_t = S_t + \epsilon_t \tag{6}$$

Aqui, o objetivo é estimar S_t de forma que, subtraindo este componente de Z_t , obtem-se uma série sem o componente sazonal, chamada de série dessazonalizada. Ou seja, um procedimento de ajustamento sazonal consistem em:

- 1. Obter uma estimativa \hat{S}_t de S_t ;
- 2. Calcular:

$$Z_t^{SA} = Z_t - \hat{S}_t$$

Sazonalidade

Empiricamente, defini-se o componente sazonal como fenômenos que ocorrem regularmente de ano para ano.

Exemplos de séries com componentes sazonais: vendas do comércio na época do Natal e períodos de chuva e de seca no ano que afetam a safra agrícola, etc.

Possíveis modelos sazonais:

- 1. Variáveis dummies (binárias). O coeficiente de cada variável *dummy* representa o fator sazonal do respectivo mês, trimestre, etc;
- 2. Médias Móveis para se obter os fatores sazonais.
- 3. Modelo ARIMA sazonal.

Removendo Sazonalidade - Variáveis Dummies

Supondo que Z_t seja uma série com periodicidade trimestral. A partir de uma representação do componente sazonal por dummies, temos:

$$Z_t = \beta_0 + \beta_1 D_2 + \beta_3 D_3 + \beta_4 D_4 + \epsilon_t$$

em que D_i representa as dummies para cada trimestre exceto o primeiro, ou seja, todos os efeitos medidos por D_i serão relativos ao primeiro trimestre.

Ajustada a regressão por MQO podemos fazer um teste F para verificarmos a presença de uma sazonalidade trimestral determinística nos dados.

A série Z_t menos a parte que capta os efeitos da sazonalidade é igual a parte "filtrada" da série, ou seja, a série dessazonalizada:

$$\widehat{\epsilon}_t = Z_t - \widehat{\beta}_0 + \widehat{\beta}_1 D_2 + \widehat{\beta}_3 D_3 + \widehat{\beta}_4 D_4$$

Remoção da Tendência e sazonalidade

Considerando uma série temporal com periodicidade trimestral, e incluindo dummies para cada trimestre exceto o primeiro, para representar o componente sazonal, ou seja:

$$S_t = \alpha_0 + \alpha_2 D_2 + \alpha_3 D_3 + \alpha_4 D_4$$

e supondo o modelo uma função linear para representar a tendência \mathcal{T}_t dado por:

$$T_t = \beta_0 + \beta_1 t$$

estima-se por MQO os parâmetros α 's e β 's, e obtemos a estimativa da série Y_t :

$$\widehat{Y}_t = \widehat{\gamma_0} + \widehat{\beta_1}t + \widehat{\alpha_2}D_2 + \widehat{\alpha_3}D_3 + \widehat{\alpha_4}D_4$$

em que $\widehat{\gamma_0}=\widehat{\beta}_0+\widehat{\alpha}_0$. Subtraindo Z_t de \widehat{Z}_t , obtém-se a série de resíduos:

$$\widehat{\epsilon}_t = Z_t - \widehat{Z}_t$$

Exemplo

Considerando a série do PIB Agropecuária do Brasil, Fonte IPEADATA, período 2000 T1 a 2018 T4, faça:

- 1. Gráfico da série:
- Ajuste um modelo de decomposição clássica, usando os dados de 2000 T1 a 2018 T4.

Obtenção de tendência por Médias Móveis

Média móvel é uma média que se movimenta, ou seja, todas as médias móveis têm como padrão um intervalo de período fixo ("janela") onde para cada nova informação apresentada, retira-se a mais antiga e recalcula-se a média.

Esse tipo de modelo possui o objetivo de suavizar a série temporal, obtendo uma medida de tendência.

As médias móveis mais conhecidas são: Simples e Centrada.

Média Móvel Simples

A média móvel simples é dada pela média aritmética das r observações mais recentes, ou seja:

$$M_t = \frac{Y_t + Y_{t-1} + \ldots + Y_{t-r+1}}{r}$$

Ano	Vendas	Média Móvel (3 períodos)		
1970	5.3			
1971	7.8			
1972	7.8	6.967		
1973	8.7	8.100		
1974	6.7	7.733		

Média Móvel Centrada

Há duas formas de calcular a média móvel centrada ao se considerar o tamanho da "janela":

i. Quando *n* é ímpar, faz-se a média de *n* observações consecutivas, colocando o resultado exatamente na posição central:

$$Z_{t} = \frac{(Y_{t-m} + Y_{t-(m-1)} + \dots + Y_{t+(m-1)} + Y_{t+m})}{n}$$

em que m = (n - 1)/2.

Ano	Vendas	Média Móvel (3 períodos)
1970	5.3	
1971	7.8	6.97
1972	7.8	8.10
1973	8.7	7.73
1974	6.7	

Média Móvel Centrada

ii. Quando n é par, faz-se uma soma ponderada das n+1 observações consecutivas, sendo que a primeira e a última observação têm peso 1/(2n), as demais observações têm peso 1/(n). O resultado também é colocado exatamente na posição central:

$$Z_{t} = \frac{Y_{t-m}}{2n} + \frac{(Y_{t-(m-1)} + \ldots + Y_{t+(m-1)})}{n} + \frac{Y_{t+m}}{2n}$$

em que m = n/2.

Trim	Contratos	Total Móvel de Total Móvel de		Média Móvel	
	Contratos	4 períodos 2 períodos		Centrada	
I - 2003	24				
II - 2003	21				
		65			
III - 2003	11		126	15.75	
		61			
IV - 2003	9				
1-2004	20			, in the second	

Índices Sazonais por Médias Móveis

Um dos métodos para se obter os índices sazonais é o método da média móvel:

- 1. Obter as médias móveis de ordem igual a número de períodos sazonais;
- Obter médias móveis de 2 períodos, centradas, a partir das médias móveis calculadas no passo 1;
- Obter os índices sazonais para cada período, dividindo os valores originais da série pelas médias móveis centradas calculadas em 2;
- Correção dos índices sazonais: obter as medianas dos índices sazonais de cada período (por exemplo, a mediana dos índices sazonais de todos os janeiros existentes na série).

					f 1.	- ~
	Contratos	Total Móvel de	Total Móvel de	Média Móvel	Índices	Correção
		4 períodos	2 períodos	Centrada	Sazonais	Índice
I - 2003	24					
II - 2003	21					
		65				
III - 2003	11		126	15,75	0,698413	0,626434
		61				
IV - 2003	9		121	15,125	0,595041	0,564187
		60				
I - 2004	20		116	14,5	1,37931	1,421362
_		56				
II - 2004	20		109	13,625	1,46789	1,433945
		53				
III - 2004	7	-	101	12,625	0,554455	
		48				
IV - 2004	6		90	11,25	0,533333	
		42				
- 2005	15		82	10,25	1,463415	
		40				
II - 2005	14		80	10	1,4	
	j	40				
III - 2005	5					
IV - 2005	6					

Exemplo

Considerando a série do PIB Agropecuária do Brasil, Fonte IPEADATA, período 2000 T1 a 2018 T4, obtenha os componentes de tendência e sazonal por médias móveis.

Modelos de Suavização Exponencial

Quando uma série não apresenta tendência e nem sazonalidade, podemos utilizar a Suavização Exponencial Simples (SES) e realizar previsões.

Quando a série apresenta tendência, mas sem sazonalidade, podemos utilizar a Suavização Exponencial de Holt (SEH) e realizar previsões.

Quando temos uma série que apresenta sazonalidade, podemos utilizar a Suavização Exponencial de Holt-Winters (HW) e realizar previsões.

Modelo de Suavização Exponencial Simples (SES)

Suponha uma série Y_t sem tendência e sazonalidade. O estimador de SES é obtido a partir da seguinte equação:

$$\hat{Y}_t = \alpha Y_t + (1 - \alpha) \hat{Y}_{t-1}, \quad t = 1, \dots, N$$

em que $0 \le \alpha \le 1$ é chamada constante de suavização.

Modelo de Suavização Exponencial de Holt (SEH)

Modelo empregado para séries temporais com tendência, sem componente sazonal.

Os estimadores de SEH são obtidos a partir das seguintes equações:

$$\begin{split} \hat{Y}_t &= \alpha Y_t + (1 - \alpha)(\hat{Y}_{t-1} - \hat{T}_{t-1}), \ 0 \leq \alpha \leq 1, \ t = 3, 4, \dots, N \\ \hat{T}_t &= \beta(\hat{Y}_t - \hat{Y}_{t-1}) + (1 - \beta)\hat{T}_{t-1}, \ 0 \leq \beta \leq 1, \ t = 3, 4, \dots, N \end{split}$$

em que:

 Y_t é o valor observado da série temporal Y no instante t;

 \hat{Y}_t é o valor estimado do nível no instante t;

 $\hat{\mathcal{T}}_t$ é o valor estimado da tendência no instante t

 α e β são constantes de suavização.

Modelo de Suavização Exponencial de Holt-Winters (HW)

Modelo empregado para séries sazonais.

O método de Holt-Winters é baseado em três equações alisadoras: para o nível, tendência e sazonalidade.

Modelo de Suavização Exponencial de Holt-Winters (HW)

Modelo Aditivo:

$$\hat{Y}_{t} = \alpha (Y_{t} - \hat{S}_{t-s}) + (1 - \alpha)(\hat{Y}_{t-1} - \hat{T}_{t-1}), \ 0 \leq \alpha \leq 1, \ t = s + 1, \dots, N$$

$$\hat{T}_t = \beta(\hat{Y}_t - \hat{Y}_{t-1}) + (1 - \beta)\hat{T}_{t-1}, \ 0 \le \beta \le 1, \ t = s + 1, \dots, N$$

$$\hat{S}_t = \gamma (Y_t - \hat{Y}_{t-1} - \hat{T}_{t-1}) + (1 - \gamma)\hat{S}_{t-s} \ \ 0 \le \gamma \le 1, t = s+1, \dots, N$$

em que:

 Y_t é o valor observado da série temporal Y no instante t;

 \hat{Y}_t é o valor estimado do nível no instante t;

 \hat{T}_t é o valor estimado da tendência no instante t

 \hat{S}_t é o valor estimado da sazonalidade no instante t

 α , β e γ são constantes de suavização, determinadas a partir do menor valor da soma dos erros quadráticos.

Modelo de Suavização Exponencial de Holt-Winters (HW)

Modelo Multiplicativo:

$$\hat{Y}_t = \alpha \left(\frac{Y_t}{\hat{S}_{t-s}} \right) + (1 - \alpha)(\hat{Y}_{t-1} - \hat{T}_{t-1}), \quad 0 \le \alpha \le 1, \quad t = s+1, \dots, N$$

$$\hat{T}_t = \beta(\hat{Y}_t - \hat{Y}_{t-1}) + (1 - \beta)\hat{T}_{t-1}, \ 0 \le \beta \le 1, \ t = s + 1, \dots, N$$

$$\hat{S}_t = \gamma \left(\frac{Y_t}{\hat{Y}_{t-1} + \hat{T}_{t-1}} \right) + (1 - \gamma) \hat{S}_{t-s} \quad 0 \le \gamma \le 1, t = s+1, \dots, N$$

Exemplo

Considerando a série do PIB Agropecuária do Brasil, Fonte IPEADATA, período 2000 T1 a 2018 T4, ajuste um modelo de suavização exponencial de Holt-Winters.

Exercício

Para a série mensal de taxa de desemprego - RMSP (arquivo TaxaDesemprego.xlsx), a partir de janeiro de 1985:

- a) Obtenha a série dessazonalizada usando a técnica de variáveis dummies.
 Faça os gráficos da série original, da série sazonal e da série dessazonalizada
- Obtenha a série dessazonalizada a partir das médias móveis. Faça os gráficos da série original, da série sazonal e da série dessazonalizada.