Write your name here Surname	Othe	r names
Pearson Edexcel GCSE	Centre Number	Candidate Number
Methods	in Math	ematics
Unit 1: Methods 1		ciliatics
Unit 1: Methods 1	Centres ONLY 014 – Morning	Higher Tier Paper Reference 5MM1H/01

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators must not be used.

Information

- The total mark for this paper is 100
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

GCSE Mathematics 2MM01

Formulae: Higher Tier

You must not write on this formulae page. Anything you write on this formulae page will gain NO credit.

Volume of prism = area of cross section \times length

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Surface area of sphere = $4\pi r^2$

In any triangle ABC

Sine Rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule $a^2 = b^2 + c^2 - 2bc \cos A$

Area of triangle = $\frac{1}{2} ab \sin C$

Area of trapezium = $\frac{1}{2} (a + b)h$

Volume of cone =
$$\frac{1}{3}\pi r^2 h$$

Curved surface area of cone = πrl

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$ where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Answer ALL questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

You must NOT use a calculator.

1 (a) Work out 24.5×1.8

(3)

(b) Work out 46.08 ÷ 1.2

(3)

(Total for Question 1 is 6 marks)

- 2 Using the information that $15.6 \times 28 = 436.8$
 - (i) write down the value of 156×2.8

(ii) find the value of 15.6×29

(Total for Question 2 is 2 marks)

*3

Diagram **NOT** accurately drawn

ABC is a right-angled triangle.

Angle $B = 90^{\circ}$

Angle $ACB = 22^{\circ}$

P is a point on AB.

Q is a point on AC.

$$\tilde{A}P = \tilde{A}Q.$$

Work out the size of angle APQ.

Give reasons for each stage of your working.

(Total for Question 3 is 5 marks)

4 Here are two fair 3-sided spinners.

Lottie spins each of the spinners once.

Each spinner lands on a number.

Lottie multiplies the two numbers together to get the score.

(i) Find the probability that the score is 12

(ii) Find the probability that the score is less than 8

(Total for Question 4 is 5 marks)

There are 30 children in a class.
21 of the children sing in the choir. 10 of the children play in the band. 6 of the children sing in the choir and play in the band.
(a) Draw a Venn diagram to show this information.
(4)
One of the children from the class is chosen at random.
(b) Work out the probability that this child plays in the band, but does not sing in the choir.
(2)
(Total for Question 5 is 6 marks)

6	(a)	Simplify	m	X	m	X	m	×	m
v	(4)	Diffipiti	111		111	, ,	111		111

(1)

(b) Simplify
$$p^9 \div p^3$$

(1)

(c) Simplify
$$4x^2y \times 7x^3y^2$$

(2)

(d) Expand and simplify
$$3(x-2y) + 5(x+y)$$

(2)

(Total for Question 6 is 6 marks)

7 There are 50 counters in a bag.

The counters are blue or yellow or black or white.

A counter is taken at random from the bag.

The table shows each of the probabilities that the counter will be blue or black or white.

Colour	blue	yellow	black	white
Probability	0.4		0.3	0.16

Work out the number of yellow counters in the bag.

(Total for Question 7 is 4 marks)

8 The diagram shows a pentagon *ABCDE*. The pentagon has one line of symmetry.

Diagram **NOT** accurately drawn

In ABCDE,

$$AB = 6 \text{ cm}$$

$$EC = 10 \text{ cm}$$

AB is parallel to EC

Work out the area of the pentagon ABCDE.

(Total for Question 8 is 5 marks)

***9** *PQRS* is a square.

Diagram **NOT** accurately drawn

All measurements are in centimetres.

Show that the perimeter of the square is 10 cm.

(Total for Question 9 is 4 marks)

10 The diagram shows a cuboid on a 3-D grid.

Diagram **NOT** accurately drawn

The point A has coordinates (6, 4, 0).

The point B has coordinates (0, 0, 5).

(a) Write down the coordinates of the point P.

(1)

(b) Find the coordinates of the midpoint of AB.

(Total for Question 10 is 3 marks)

*11 The diagram shows a straight line L drawn on a grid.

y = 2x - 1 is the equation of a different straight line.

Which straight line has the greater gradient? Show how you get your answer.

(Total for Question 11 is 4 marks)

12

Triangle **A** is mapped onto triangle **B** by a reflection in the *y*-axis. Triangle **B** is mapped onto triangle **C** by a reflection in the line y = -1

Describe a **single** transformation that maps triangle **A** onto triangle **C**.

(Total for Question 12 is 3 marks)

13 The universal set is $\{a, b, c, d, e, f, g, h, i, j, k\}$

Set
$$X = \{a, e, g, k\}$$

Set $Y = \{a, b, c, d, f, g, j\}$

A letter is to be chosen at random from the universal set.

(a) Work out P(X)

(2)

(b) Work out $P(X \cap Y)$

(2)

(c) Work out P(Y')

(1)

(Total for Question 13 is 5 marks)

14 (a) Write in standard form 250×10^3

(1)

(b) Write as an ordinary number 3.59×10^{-2}

(1)

(c) Work out $1.5 \times 10^4 + 6.3 \times 10^3$

Give your answer in standard form.

(2)

(Total for Question 14 is 4 marks)

15 The diagram shows two similar triangles.

Diagram **NOT** accurately drawn

Find the value of *y*.

(Total for Question 15 is 2 marks)

16 (a) Factorise fully

$$5 - 80x^2$$

(2)

(b) Expand and simplify (2x - 5y)(3x - 4y)

(2)

(Total for Question 16 is 4 marks)

17 (a) Write down the value of $9^{\frac{1}{2}}$		
(b) Write down the value of $8^{-\frac{1}{3}}$	(1)
2^k = 16(c) Write down the value of k.	(1)
(d) Solve $8^5 = 2^{2m+3}$	(1)
	(3	
	(Total for Question 17 is 6 marks	

18 Solve
$$\frac{2x-3}{2} + \frac{x+6}{3} = 1$$

(Total for Question 18 is 4 marks)

- **19** Whenever Finlay plays a tennis match the probability that he wins is 0.7 Finlay plays two tennis matches.
 - (a) Complete the probability tree diagram.

(b) Work out the probability that Finlay wins both matches.

(2)

(2)

(c) Work out the probability that Finlay loses at least one match.

(2)

(Total for Question 19 is 6 marks)

20 Solve $(x-1)^2 - 2(x-1) - 3 = 0$

(Total for Question 20 is 4 marks)

*21

Diagram **NOT** accurately drawn

L, M, N and P are points on the circumference of a circle, centre O. LOPT and MNT are straight lines.

Angle $MLP = 65^{\circ}$. Angle $NPM = 45^{\circ}$.

Work out the size of angle *NTP*. Give a reason for each stage of your working.

(Total for Question 21 is 5 marks)

(Total for Question 22 is 3 marks)

23

Diagram **NOT** accurately drawn

In the diagram,

$$\overrightarrow{OB} = \mathbf{b}$$

$$\overrightarrow{OC} = \mathbf{c}$$

$$\overrightarrow{OC} = \frac{1}{3} \overrightarrow{OA}$$

$$\overrightarrow{BD} = \frac{1}{4} \overrightarrow{BA}$$

Find \overrightarrow{CD} in terms of **b** and **c**. Give your answer in its simplest form. You must show all your working.

(Total for Question 23 is 4 marks)

TOTAL FOR PAPER IS 100 MARKS

BLANK PAGE

