MUR QANUNU

Qordon Mur 3 Yanvar 1929 cu ildə anadan olub və San Francisco, Kaliforniya Intel şirkətinin mənəvi təqaüdçü idarə heyətinin sədri, qurucu ortağı və Mur Qanununun müəllifidir. 2000-ci ildə Forbes jurnalında ABŞ –ın ən zəngin 400 adam sıralamasında 26 milyard ABŞ dolları sərvəti ilə 5-ci sırada iştirak etmişdir və 2007-ci ildə 4.5 milyard dollar sərvətlə 68 – cı sıraya düşmüşdü.

1965-ci ildə İntel kompaniyasından Qordon Mur inteqral sxemlərdə tranzistorların sayının mümkün artım əmsallarını proqnozlaşdırmışdı. İndi Mur qanunu kimi tanıdığımız bu proqnoza görə "silikon çiplərin hesablama gücü hər 18 ayda 2 dəfə artacaqdı". Proqnoz heyrətamiz dərəcədə dəqiq çıxdı. The Economist jurnalında (2000-ci ilin oktyabrı) qeyd edilirdi ki, 1 Mhs hesablama gücünün qiyməti 1970-ci ildə 7601 dollardan 1999-cı ildə 0.17 dollara qədər düşmüşdü. Eyni zamanda, həmin dövr ərzində 1 meqabayt informasiyanın saxlanma dəyəri 5257 dollardan 0.17 dollara, 1 trln bit informasiyanın ötürülmə dəyəri isə 150 000 dollardan 0.12 dollara qədər yenmişdi.

İBRAHİM İSMAYIL: MÜƏLLİF HÜQUQU QORUNUR

2007-ci ildə Mur bəyan etdi ki, qarşıda gələn 10 ildə artıq Mur qanunları işə yaramayacaq. Səbəb atomların və işığın məhdud təbiətləridir. Bu səbəbdən 2020-ci ildən sonra yeni texnologiya erası başlamalıdır. Əks halda texnologiya erası bitmiş hesab olunur. (Texnoloji sinqulyarlıq haqda da oxuya bilərsiz). Nəzəri fizika professoru Mitio Kaku da hesab edir ki, Mur qanunu artıq aktuallığını itirir və yaxın 10 ildə qüvvədə olmayacaq. "Biz artıq Mur qanununun ləngiməsini müşahidə edirik. Mövcud texnologiyalar ilə məhsuldarlığın həminki artım sürətini saxlamaq mümkün deyil" - Mitio Kaku belə hesab edir. Onun sözlərinə görə, ən mühüm problemlərdən biri istilik verilməsi olacaq, o, miniatürləşdirmə ilə bağlı təyin edilmiş qiymətləri ötəcək və çiplər sadəcə "əriyəcəklər". Bundan əlavə, tranzistorların sıxlığını sonsuz olaraq kiçiltmək qeyrimümkündür: Heyzenberqin qeyri-müəyyənlik prinsipinə görə, elektronların itkisi müşahidə olunacaq."

İNTEL	İL	1975- ci illərdən sonra, x	Hər İntel başına düşən tranzistorlar, y	
Intel - 4040; 500-740KHs	1975	0	4500	
Intel - 8008; 500-800KHs	1978	3	29000	
Intel - 8080; 2-4MHs	1982	7	90000	
Intel - 8085; 2-6MHs	1985	10	229000	
Intel - 8086; 4-10MHs	1989	14	1200000	
Intel - 8088; 5-10MHs	1993	18	3100000	
Intel - 80186; 6-25MHs	1995	20	5500000	

İBRAH

Biz eksponensial reqressiya üzərində intel şirkətinin məlumatlarını $y = ae^{bx}$ tənliyi üzərində tətbiq edəciyik. Burda isə b > 0 -dır.

1975- ci ildən sonrakı illər, x _i	X_i^2	Hər İntel başına düşən tranzistorlar, y _i	ln y _i	$x_i * ln y_i$
0	0	4500	8,41183	0
3	9	29000	10,27505	30,82515
7	49	90000	11,40756	79,85292
10	100	229000	12,34148	123,41480
14	196	1200000	13,99783	195,96962
18	324	3100000	14,94691	269,04438
20	400	5500000	15,52026	310,40520
72	1078		86,90093	1009,51207

Yuxarıdakı cədvəldə tələb olunan cəm məbləğlərinin hesablanması nəticəsində b və ln a düsturlarını hesablayacayıq.

$$b = \frac{7(1009.51207) - 72(86.90093)}{7(1078) - (72)^2}$$
$$= 0.342810$$

İBRAHİM İSMAYIL: MÜƏLLİF HÜQUQU QORUNUR

GV

$$\ln a = \frac{86.9093 - (0.342810)(72)}{7}$$
$$= 8.888369$$

ona görədə

$$a = e^{\ln a} = e^{8.888369} = 7247.189$$

bununlada biz İntel şirkəti üçün y –eksponensial regressiya modelini əldə etmiş olacayıq :

$$y = 7247.189e^{0.343x}$$

İndi isə gəlin Mur Qanunu müqayisə edək.

Hər 18 ayda bir birləşdirilmiş dövrə üzərinə yerləşdirilə biləcək komponent sayının iki qatına çıxacağını və bunun kompüterlərin əməliyyat tutumlarında böyük artımlar yaradacağını, istehsal xərclərinin isə eyni qalacağını, hətta düşmə meyli göstərəcəyini nəzərdə tutan təcrübə müşahidə etmişdir.

1965-ci ildə, "mikroişlemciler içindəki tranzistor sayı hər il iki qatına çıxacaq" deyən Mur, daha sonralar 1975-ci ildə bu prinsipinin və hər iki ildə bir iki qatına çıxacaq şəkildə düzəltmişdir. Mur "18 ayda bir" ifadəsinin də özü tərəfindən söylənmədiyi mövzusunda da israr etmişdir. Özü tərəfindən heç bir zaman qanun olaraq tanımlanmayan ifadəsi, Kaliforniya Texnologiya Universiteti professoru və yüksək miqyaslı azaldılması mövzusunun qabaqcıllarından biri olan Carver Mead tərəfindən bu şəkildə adlandırılmışdır.

$$y = 7247.189e^{0.343x}$$
 bu formada $y = 7247.189(2)^x$ tənlik formasında yaza bilərik. Lakin $e^{0.343} = 2^{0.495}$

daha başqa ifadə ilə qeyd etsək $y=7247.189(2^{0.495x})$. Baxmayaraq ki, y ikiqat artır və nə vaxt ki, $2^{0.495x}=2$ və yaxud ekvivalent olaraq nə vaxt ki, 0.495x=1 olanda 2 il vaxtı ikiqat artıran təcrübə yolu ilə müəyyən olunmuş texnologiyadır.

İBRAHİM İSMAYIL: MÜƏLLİF HÜQUQU QORUNUR

```
import numpy as np
import matplotlib.pyplot as plt
DATA = np.array([[0, 4.5e3], [3, 2.9e4], [7, 9e4], [10, 2.29e5], [14, 1.2e6], [18, 3.1e6], [20, 5.5e6]])
X = np.column_stack((np.ones(r), DATA[:, 0]))
Y = np.log(DATA[:, 1])
B = np.linalg.lstsq(X, Y, rcond=None)[0]
print('\nThe Y intercept = \%8.3f and slope = \%5.3f \n' % (B[0], B[1]))
s = 'y = \%6.1f e^{(\%5.3f x)'} % (np.exp(B[0]), B[1])
Yest = X.dot(B)
Resid = Y - Yest
Xs = X[:, 1][np.argsort(X[:, 1])]
Ys = Yest[np.argsort(X[:, 1])]
plt.plot(X[:, 1], Y, 'ob', Xs, Ys, '-m')
plt.xlabel('1975-ci ildən sonrakı illər', fontsize=20)
plt.ylabel('İntel başına tranzistorlar', fontsize=20)
plt.show()
xintrp = np.arange(0, 20.1, 0.1).reshape(-1, 1)
r, c = xintrp.shape
xintrp = np.column_stack((np.ones(r), xintrp))
yestintrp = xintrp.dot(B)
plt.plot(DATA[:, 0], DATA[:, 1], 'ob', xintrp[:, 1], np.exp(yestintrp), '--r')
plt.xlabel('1975-ci ildən sonrakı illər', fontsize=20)
plt.ylabel('İntel başına tranzistorlar', fontsize=20)
plt.axis([-0.5, 22, -5e4, 7e6])
plt.text(5, 3.5e6, s, fontsize=20)
plt.title('Mur qanunu', fontsize=22)
plt.show()
```

The Y intercept = 8.888 and slope = 0.343

