Contents

Machine Learning Take-Home Assignment	2
Special instructions to run the notebook	2
Part 1: Classification of Facial Expressions	2
1.2.1. Image figures	2
1.2.2. Histograms showing the data	2
1.3.1. Accuracy of the KNN and other metrics	3
2 Misclassified images:	3
1.3.2. The baseline hyperparameters	4
1.3.3. Table of the classifiers that were used	5
Part 2: Regression to estimate the width of a grey kangaroo's nose	6
2.2.1. The plot	6
2.3.2. The R2 result	6
2.3.3. Mean R2 score	6
2.3.4. Each regressor with it corresponding score + figure	6
2.4. The imputation method results	7
Resources used:	7

Machine Learning Take-Home Assignment

Quinten Cabo

u789241 & 2042646

Special instructions to run the notebook

To run the notebook python 3.9 is required. The following packages are also required:

- sklearn
- numpy
- matplotlib
- imblearn

Part 1: Classification of Facial Expressions

1.2.1. Image figures

Figure 1: The 3 faces with titles

1.2.2. Histograms showing the data

Figure 2: The unbalanced histogram plots

959 data points were oversampled from the training set to balance the data.

Figure 3: The balanced histogram plots

Is the dataset balanced? No. The dataset was not balanced at all. There are almost double the targets with label 0 vs targets with label 1. Likewise there are almost double the targets with label 1 vs label 2.

1.3.1. Accuracy of the KNN and other metrics

Model	K Nearest Neighbors
Parameter used	K:1
Train score	1.0
Test score	0.74
Precision score	0.736 0.890 0.5
Recal score	0.762 0.921 0.780
F1 score	0.819 0.929 0.64
Support	122 64 41
Training Seconds	3.101

2 Misclassified images:

Figure 4: Misclassified images

1.3.2. The baseline hyperparameters

K 1 till 87 where checked with steps of 2. The best K was K = 9.

This K = 9 gave a baseline test score of 0.75 and a baseline train score of 0.76.

Figure 5: 1.3.2 k graph

1.3.3. Table of the classifiers that were used

Model	Decision Tree	Kernel SVM	Linear SVM	Naive Bayes
Best Parameters	criterion: entropy splitter: best max_depth: 9 max_features: auto ccp_alpha: 0.0 random_state: 137	C: 100 kernel: 'rbf' random_state: 137	C: 0.0001 random_state: 137	None
Train Score	0.86	1.0	0.87	0.62
Test Score	0.71	0.85	0.83	0.63
Validation Score	0.63	0.90	0.84	0.65
Precision	[0.756 0.71 0.553]	[0.855 0.966 0.676]	[0.892 0.924 0.56]	[0.617 0.917 0.5]
Recal	[0.787 0.688 0.512]	[0.918 0.891 0.61]	[0.811 0.953 0.683]	[0.885 0.344 0.341]
F1	[0.771 0.698 0.532]	[0.918 0.891 0.61]	[0.85 0.938 0.615]	[0.727 0.5 0.406]
Support	[122 64 41]	[122. 64. 41.]	[122. 64. 41.]	[122. 64. 41.]
Training Seconds	0.077	0.723	3.551	0.012

Model	Random Forest	Gradient Boosting	Ensemble voting
Best Parameters	n_estimators: 200 criterion: 'gini' random_state: 137	n_estimators: 200 criterion: 'friedman_mse' random_state: 137	estimators = 'best other models' voting = 'hard'
Train Score	1.0	1.0	0.96
Test Score	0.84	0.86	0.84
Validation Score	0.81	0.88	0.84
Precision	[0.791 0.963 0.84]	[0.855 0.949 0.73]	[0.736 0.891 0.5]
Recal	[0.959 0.812 0.512]	[0.918 0.875 0.659]	[0.869 0.766 0.341]
F1	[0.867 0.881 0.636]	[0.885 0.911 0.692]	[0.797 0.824 0.406]
Support	[122. 64. 41.]	[122. 64. 41.]	[122. 64. 41.]
Training Seconds	4.618	75.809	73.506

The best classifier that I found was a Kernel Support Vector Machine with C=100, kernel: 'rbr', 'random_state': 137. It had a validation score of 0.9. The highest validation score out of all models.

All models beat the baseline classifier except for the Naive Bayes and the Decision Tree.

Part 2: Regression to estimate the width of a grey kangaroo's nose

2.2.1. The plot

Figure 6: Scatter plot of the nose data

2.3.2. The R2 result

The linear regression got an R2 score 0.777.

2.3.3. Mean R2 score

The Cross validated R2 scores were [0.6176 0.635 0.901 -1.487 0.502]. The Mean R2 score was 0.234

2.3.4. Each regressor with it corresponding score + figure

Model	Linear Regression	Support Vector Regression	Decision Tree Regression
R2 score	0.234	0.86	0.864

Nasal Lenght vs Nasal width for male grey kangaroos

Figure 7: Different regression techniques

Decision Tree Regression was the best regression method.

2.4. The imputation method results

Model	Mean imputation	KNN imputation (k=3)
R2 score	0.617	0.7

The KNN imputation method was the best. With a score of 0.7

Resources used:

- SKlearn documentation (https://scikit-learn.org/)
- Python documentation (https://docs.python.org/3/)
- Table generator (https://www.tablesgenerator.com/)

Stackoverflow:

- https://stackoverflow.com/questions/9031783/hide-all-warnings-in-ipython
- https://stackoverflow.com/questions/33885051/using-spyder-python-to-open-npy-file
- https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
- https://stackoverflow.com/questions/55767312/how-to-position-suptitle
- https://stackoverflow.com/questions/39539476/how-to-sharex-and-sharey-axis-in-for-loop
- https://stackoverflow.com/questions/17753398/using-matplotlib-is-it-possible-to-set-properties-for-all-subplots-on-a-figure
- https://stackoverflow.com/questions/43162506/undefinedmetricwarning-f-score-is-ill-defined-and-being-set-to-0-0-in-labels-wi

- https://stackoverflow.com/questions/45554008/error-in-python-script-expected-2d-array-got-1d-array-instead
- https://stackoverflow.com/questions/4455076/how-to-access-the-ith-column-of-a-numpy-multidimensional-array-https://stackoverflow.com/questions/52763325/how-to-obtain-only-the-name-of-a-models-object-in-scikitlearn
- https://stackoverflow.com/questions/38068669/dynamic-for-loops-in-python
- https://stackoverflow.com/questions/36901/what-does-double-star-asterisk-and-star-asterisk-dofor-parameters
- https://stackoverflow.com/questions/27122757/sklearn-set-params-takes-exactly-1-argument
- https://stackoverflow.com/questions/11351032/named-tuple-and-default-values-for-optional-keyword-arguments