Time-Aware Ancient Chinese Text Translation and Inference

Ernie Chang, Yow-Ting Shiue, Hui-Syuan Yeh, Vera Demberg Department of Language Science and Technology, Saarland University Department of Computer Science, University of Maryland, College Park

Outline

- Background
- Task Formulation
- Proposed Framework:

- Experimental Results & Discussion
- Conclusion

Why to people need a better understanding of ancient Chinese, including its translation to modern text?

- The Chinese language is spoken by more than 1.3 billion people
 - Chinese inherits a lot of phrases from ancient time.
 - However, its ancient variant (or ancient
 Chinese) is mastered only by a few.
 - This proves to be a bottleneck in understanding the essence of the Chinese culture.

What important purposes may an ancient Chinese translation & chronology inference system serve?

- 1. Education: Ancient Chinese is an essential part of the curriculum in all Chinese-speaking regions.
 - A translation system can bolster the understanding of ancient texts.
- 2. Historical Linguistics: Chronology inference may help to settle the linguistic debate with regard to the era of origin of text.
 - Especially useful where carbon dating cannot pinpoint the exact era
 - But where their linguistic features can formulate a clear-cut time period

What are the challenges for building such a translation system?

Need more efficient ways of utilizing available data

- Extensive timeline of ancient texts
 - E.g. Pre-Qin (先秦) era and Song dynasty (宋朝) are roughly 700 years apart.
 - This gap witnessed a **drastic evolution of linguistic properties**, especially the meaning and usage of words and phrases.
- Different eras often consist of various amounts of available data
 - Data imbalance complicates the design of the translation systems and limits their generalizability.
 - Past attempts at building such translation systems yield limited performance mainly due to data scarcity in some eras.

Why at a fine-grained view, "ancient Chinese" may not be considered a single language with a static word-meaning mapping?

Language change across time suggests a time-aware modeling approach

- The dynamic word-meaning mapping over time can be seen in, e.g., the usage of polysemous Chinese words, many of which are highly ambiguous.
 - Example 看('kàn')
 - Meaning Lost: Back in early ancient time, it has many meanings such as "to visit" and "to listen", in addition to the major modern meaning, "to look"
 - Subtle Lexical Semantic Shift:
 - Earliest known meaning of "看" is "to look into the distance"
 - Meaning of "to look at something closely" emerged during the Han (汉) period and eventually became the prominent meaning

Task Formulation

- Our approach is inspired by recent advances in machine translation and text style transfer/generation
 - Utilize semi-supervised techniques to tackle similar data scarceness challenges
 - Align latent representations of different languages/styles
- Data for translation model
 - Nonparallel datasets *A* and *M*: sentences in Ancient Chinese (zh-a) and Modern Chinese (zh-m) respectively
 - Parallel dataset *P*: pairs of sentences in both variants of text
 - Data size |A|, $|M| \gg |P|$

Task Formulation

Main Task

Convert input ancient Chinese text a to its modern variant m

Auxiliary Task

Predict the chronological period *c* of the ancient text *a*

Multi-label Prediction of Translation & Chronological Context

$$L = L_{supervised}(P)$$

Limited Parallel Data

Multi-label Prediction of Translation & Chronological Context

$$L = L_{supervised}(P) + L_{lm}(A)$$

Augment with ancient text w/o translation

$$L = L_{supervised}(P) + L_{lm}(A)$$

Multi-label Prediction of Translation & Chronological Context

$$L = L_{supervised}(P) + L_{lm}(A) + L_{lm}(M)$$

Augment with modern text (usually easy to obtain)

Multi-label Prediction of Translation & Chronological Context zh-m

$$L = L_{supervised}(P) + L_{lm}(A) + L_{lm}(M)$$

Semi-supervised Training Objective

- Solution: Time-aware reranking with a large-scale language model
 - Pre-train a GPT-2 model with a large modern Chinese corpus
 - Continue to train it on chronologically-annotated ancient-modern sentence pairs, maximizing $p_{\text{GPT}-2}(a, m, c)$
- Use #1: Chronology Inference
 - Predict the era of the text to provide more context for understanding
- Use #2: Quality Estimation for Reranking
 - Consider all translation candidates m' and chronological periods c'
 - Select the best candidate according to $p_{GPT-2}(a, m', c')$

Experiments:

Dataset Construction

Released for future research

Chronology label	# sentence pairs
pre-qin (先秦)	1,244
han (汉)	20,460
song (宋)	7,103

- Chronology Annotation
 - 28,807 ancient Chinese prose sentences (Liu et al., 2019)
 - Consider 3 chronology labels: pre-qin (先秦), han (汉), song (宋)
 - Annotation is based on which ancient book the sentences are taken from

• Parallel Data

- 10% chronologically-annotated sentences for development and test set respectively
- Additional 4,760 sentences from ancient Chinese poems w/ modern Chinese translation (Shang et al., 2019)

Experiments:

Dataset Construction

- Nonparallel data (Shang et al., 2019)
 - Source side (zh-a): sentences from ancient poems, w/o translations
 - Target side (zh-m): sentences from modern lyrics

		# sentences	# characters (source, target)
Nonparallel	zh-a	269,409	4M
	zh-m	77,687	826K
Parallel	Train	27,807	(524K, 797K)
	Dev	2,880	(59K, 88K)
	Test	2,880	(60K, 90K)

• GPT-2 pre-training data: 1.2GB of Chinese Wikipedia text

Experiments: Model Configurations

- Translation model based on Fairseq
 - Tokenization: character-based
 - Source vocabulary size: 4,824
 - Target vocabulary size: 4,600
 - Transformers, ~ 54M parameters
- Reranking model based on GPT-2
 - ~ 82M parameters

Results & Discussion:

Ancient-to-modern Translation

Training objectives	BLEU-4
$L_{supervised}$ (Liu et al., 2019)	19.59
$L_{supervised} + L_{lm}(M)$	23.05
$L_{supervised} + L_{lm}(M) + L_{lm}(A)$	23.15
+ share decoder embeddings	24.38
+ time-aware reranking	24.51

zh-a nonparallel data may help the encoder to maintain crucial semantic information.

- Source and target side vocabularies have a large overlap
- May also serve as evidence that there are still ancient components in modern Chinese

zh-m nonparallel data enhances the decoder's ability to generate modern Chinese.

Human Evaluation	Adequacy	Fluency
(randomly sampled		(avg. of
100 sentences)	3 experts)	3 experts)
0-5 scale	4.06	3.68

Results & Discussion:

Ancient-to-modern Translation

BLEU-4 on subsets of test data

Training objectives	BLEU-4	pre-qin	han	song
$L_{supervised}$ (Liu et al., 2019)	19.59	14.41	20.02	19.13
$L_{supervised} + L_{lm}(M)$	23.05	15.97	23.32	23.17
$L_{supervised} + L_{lm}(M) + L_{lm}(A)$	23.15	14.15	23.34	23.72
+ share decoder embeddings	24.38	15.70	24.52	24.99
+ time-aware reranking	24.51	15.50	24.62	25.24

- Translations of ancient text chronologically closer to modern Chinese (han and song) tend to yield better performances
 - Semantic gaps are generally smaller
- Leveraging zh-m nonparallel data is most helpful for the song period
 - Much closer to modern Chinese compared to the text from the other two periods

Results & Discussion:

Chronology Inference

Period (# test)	Precision	Recall	F1
pre-qin (117)	0.05	0.53	0.09
han (2043)	0.85	0.57	0.68
song (720)	0.85	0.27	0.41
Accuracy			0.49
Macro avg.	0.58	0.45	0.39
Weighted avg.	0.82	0.49	0.59

- Performance depends very much on the data **scarcity** and the **closeness** of chronological periods.
 - On the Chinese historical timeline, han is very close to pre-qin, but han and song are more separated.

Results & Discussion: Chronology Inference

- Another source of difficulty: ancient Chinese writings tend to quote a considerable amount of text written in previous time periods
 - For example, a history book written in the **song** period may inherit narratives written in **pre-qin** and **han** for the history before **han**
 - So it is challenging to perform chronology inference based solely on the linguistic properties of individual sentences
 - Chronology inference can still provide useful signals for the translation model to better capture semantic differences across time.

Conclusion

- We present a framework that translates ancient Chinese texts into its modern correspondence in low resource scenarios with:
 - Very little parallel data
 - Large number of monolingual sentences without ancient-modern alignment
- We display the usefulness of chronology inference as an auxiliary task that hints at potential diachronic semantic gaps.
- We hope to extend this research to further model additional contextual information about each era.

Thank you!

感謝聆聽

Time-aware Ancient Text Translation and Inference

https://github.com/orina1123/time-aware-ancient-text-translation