Università degli studi di Milano - Bicocca

Scuola di Economia e Statistica Corso di laurea Magistrale in SCIENZE STATISTICHE ED ECONOMICHE

Natural Language Processing in finance

Un'applicazione basata sul modello FinBERT

Relatore: Prof. Matteo Maria Pelagatti Correlatore: Prof. Antonio Candelieri

> Tesi di Laurea di: Moreno Sanna Matr. N. 783008

> > UNIVERSITA

Introduzione e scopo della tesi

- Le opinioni condivise sui social network influiscono sull'andamento dei titoli finanziari?
- Scopo della tesi:
 - 1) Indagare la relazione fra i messaggi condivisi su Twitter e i risultati degli asset Tesla e BMW.
 - 2) Provare a costruire una strategia finanziaria basata sul sentimento estratto dai tweet.
- I messaggi sono stati analizzati tramite un modello di Natural Language Processing di nome FinBERT.

Architettura:

- 12 layer encoder.
- 1 layer finale.
- 110M di parametri.

Tre step di training:

- Pretrainig su corpora generali.
- Pretrainig su corpora finanziario.
- Fine-tuning for Sentiment Analysis.

Sentiment Analysis con FinBERT:

- Classifica ogni frase come positiva, negativa o neutrale, attribuendo a ciascuna etichetta una probabilità.
- Calcola un sentiment score per ogni frase.

Costruzione dataset

- 1. Analisi dei tweet condivisi nel periodo 01.01.2019-31.03.2020 (12.4M Tesla, 6M BMW).
- 2. Somma e media degli indicatori per giorno, con e senza *retweet* (*pond*).
- 3. Espressione dei risultati dei due asset come:
 - Rendimenti.
 - Extrarendimenti (rendimenti Tesla e BMW meno i rendimenti del fondo CARZ).
 - Segno dei rendimenti e degli extrarendimenti (Var. dicotomica: 1 segno positivo, 0 negativo)
- 4. Unione degli indicatori e dei risultati, sulla base del giorno di manifestazione.
 - Sono stati considerati anche il primo (*lag1*) e il secondo ritardo (*lag2*).

Variabili:

Dim. datasets: 311 righe x 79 colonne.

• Indicatori probabilità (es: *sum positive*).

Training set: 250 righe x 79 colonne.

• Indicatori sentimento (es: *mean_sentiment_score*). **Test set:** 61 righe x 79 colonne.

• Conteggio etichette e tweet (es: *n positive*).

Modelli e metodi statistici utilizzati

Problemi di regressione:

- Metodo backward basato sul criterio di Acaike : $AIC = -2log like lihood(\hat{\beta}, \hat{\sigma}^2) + 2p$
- Regressione Lasso: $\widehat{\boldsymbol{y}} = \widehat{\mu}_{\lambda}^{L} \mathbf{1} + \boldsymbol{X} \widehat{\boldsymbol{\beta}}_{\lambda}^{L}$ $(\widehat{\mu}_{\lambda}^{L}, \widehat{\boldsymbol{\beta}}_{\lambda}^{L}) = argmin_{(\boldsymbol{\mu}, \boldsymbol{\beta}) \in RxR^{p}} \frac{1}{2n} \big| |\boldsymbol{y} \mu \mathbf{1} \boldsymbol{X} \boldsymbol{\beta}| \big|_{2}^{2} + \lambda \big| |\boldsymbol{\beta}| \big|_{1}; \ \lambda \geq \mathbf{0}$
- Support Vector Machine, con kernel polinomiale:

$$f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i < \mathbf{h}(\mathbf{x}), \mathbf{h}(\mathbf{x}_i) >; \qquad K_p(\mathbf{x}, \mathbf{x}') = (coef0 + \gamma < \mathbf{x}, \mathbf{x}' >)^d$$

• $Modello\ AR(1) + eGARCH(0,1)$:

$$(1 - \phi_1 B)(Y_t - \boldsymbol{\alpha}^T \boldsymbol{X_t}) = \varepsilon_t; \quad \varepsilon_t = \xi_t \sigma_t; \quad \ln(\sigma_t^2) = \omega + \beta_1 \ln(\sigma_{t-1}^2); \quad \xi_t \sim ged(0, 1, r) \ i. \ i. \ d$$

Problemi di classificazione:

• Regressione logistica regolarizzata:

$$p_i = \Lambda(X_i \boldsymbol{\beta}) = \frac{e^{X_i \boldsymbol{\beta}}}{(1 + e^{X_i \boldsymbol{\beta}})}$$

• Support Vector Machine, con kernel radiale e polinomiale:

$$f(x) = \sum_{i=1}^{n} \alpha_{i} y_{i} < h(x), h(x_{i}) > + \beta_{0}; \quad K_{r}(x, x') = e^{-\gamma \left| |x - x'| \right|^{2}}; \quad K_{p}(x, x') = (coef 0 + \gamma < x, x' >)^{d}$$
• Random Forest:
$$\bar{c}(x) = Mode[\hat{c}^{b}(x), b = 1, ...B]$$

Metriche utilizzate e valutazione delle performance

Problemi di regressione

- Modello di benchmark: Media della serie nel training set.
- Indice di correlazione di Pearson: $\rho = \frac{\sigma_{x,y}}{\sigma_x \sigma_y}$
- Root Mean Square Error: $RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i \hat{y}_i)^2}$
- RRMSE: $RRMSE = \frac{RMSE_1}{RMSE_0}$
- R^2 : $R^2 = 1 \frac{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i \bar{y})^2}$

Problemi di classificazione

- Modello di benchmark: Classificatore completamente random.
- Indice di correlazione di kendall: $\tau = \frac{nc-n}{\frac{n(n-1)}{2}}$
- Accuracy: $ACC = \frac{1}{n} \sum_{i=1}^{n} I(y_i = \hat{y}_i)$
- *AUC*
- Matrice di confusione e Curva ROC
- Mean Decrease Accuracy

Rendimenti Tesla

Modello Scelto

• **Regressione Lasso** con con λ =0.0021 (LOOCV).

Tabella riepilogativa e grafico

*	RMSE [‡]	RRMSE [‡]	R^2 [‡]
Lasso	0.0697	0.93	0.13
Benchmark	0.0749	1.00	0.00

$\mu = 0.0026$

$$\sigma = 0.043$$

$$\sigma_{\{02.20-03.20\}}=0.089$$

Variabili più correlate

 $\rho \ge 0.2$; $\rho \le -0.2$ (Pearson)

•	Correlazione
sum_sentiment_score	0.45
mean_sentiment_score	0.41
mean_positive	0.36
nean_sentiment_score_pond	0.35
sum_sentiment_score_pond	0.35
mean_positive_pond	0.25
n_positive_pond	0.22
n_positive	0.21
sum_negative	-0.21
n_negative_pond	-0.22
n_negative	-0.26
mean_negative_pond	-0.30
mean negative	-0.32

Variable Selection

 6 variabili selezionate tramite regressione lasso con λ=0.0021, (LOOCV):

sum_negative, sum_sentiment_score, mean_positive, mean_negative_lag1, mean_neutral_pond_lag1, n retweet lag2

Università degli studi di Milano – Bicocca

Natural Language Processing in finance

Segno rendimenti Tesla

Serie

$$S_+ = 163$$

$$S_{-} = 148$$

Modello Scelto

• SVM con kernel radiale con i seguenti parametri: $\gamma = 1$, C = 1 (CV 10 folds).

Tabella risultati, Matr di confusione e Curva ROC

*	Accuracy [‡]	AUC [‡]
SVM	0.721	0.718
SVM vs benchmark	0.221	0.218

-	pred_value_0	pred_value_1 ÷	Total ‡
True_value_0	16	14	30
True_value_1	3	28	31
Total	19	42	61

Variabili più correlate

 $\tau \ge 0.2; \tau \le -0.2$ (Kendall)

*	Correlazione
sum_sentiment_score	0.26
mean_sentiment_score	0.26
mean_sentiment_score_pond	0.22
sum_sentiment_score_pond	0.21
mean_negative	-0.21

Variable Selection

 Una variabile selezionata tramite regressione logistica regolarizzata con λ=0.066, (LOOCV):

 $sum_sentiment_score$

• Le variabili sono state standardizzate.

Extrarendimenti Tesla

Serie

$$\mu = 0.003$$

$$\sigma = 0.034$$

$$\sigma_{\{02.20-03.20\}}=0.058$$

Variabili più correlate

extrarendimenti_Tesla -0.15 0.00 0.10

$\rho \ge 0.2$; $\rho \le -0.2$ (Pearson)

•	Correlazione
sum_sentiment_score	0.50
mean_sentiment_score	0.45
mean_positive	0.39
sum_sentiment_score_pond	0.36
nean_sentiment_score_pond	0.36
mean_positive_pond	0.25
n_positive	0.22
n_positive_pond	0.21
sum_negative	-0.25
n_negative_pond	-0.25
n_negative	-0.30
mean_negative_pond	-0.31
mean_negative	-0.35

Università degli studi di Milano – Bicocca

Variable Selection

 8 variabili selezionate tramite regressione lasso con λ=0.0015, (LOOCV):

n_neutral, sum_sentiment_score,
mean_positive, mean_neutral_pond,
mean_negative_lag1,
mean_neutral_pond_lag1,
n_retweet_lag2, rend_lag2

• Le variabili sono state standardizzate.

Modello Scelto

• SVM con kernel polinomiale di parametri: $\gamma = 1.5 * 10^{-4}$, coef 0 = 3.5, degree = 5, C = 1, $\epsilon = 0.5$ (CV 10 folds).

Tabella riepilogativa e grafico

*	RMSE [‡]	RRMSE [‡]	R^2 [‡]
SVM	0.0453	0.88	0.19
Benchmark	0.0513	1.00	-0.03

Valori extrarendimenti vs previsioni - Tesla

Segno extrarendimenti Tesla

Serie

$$S_{+} = 177$$

$$S_{-} = 134$$

Variabili più correlate

 $\tau \ge 0.2$; $\tau \le -0.2$ (Kendall)

•	Correlazione [‡]
sum_sentiment_score	0.27
mean_sentiment_score	0.26
sum_sentiment_score_pond	0.22
mean_sentiment_score_pond	0.21
mean_negative	-0.21

Variable Selection

• 6 variabili selezionate tramite regressione logistica regolarizzata con λ =0.027, (LOOCV):

sum sentiment score, mean sentiment score lag1, sum negative pond lag2, n_positive_pond_lag2, sgn_lag1, sgn lag2

• Le variabili sono state standardizzate.

Modello Scelto

• SVM con kernel radiale con i seguenti parametri: $\gamma = \frac{1}{6}$, C = 1 (CV 10 folds).

Tabella risultati, Matr di confusione e Curva ROC

*	Accuracy [‡]	AUC
SVM	0.754	0.731
SVM vs benchmark	0.254	0.231

_	pred_value_0	pred_value_1	Total [‡]
True_value_0	15	9	24
True_value_1	6	31	37
Total	21	40	61

Curva Roc

20/01/2022

Rendimenti BMW

Serie

2020-01-02

Serie storica rendimenti BMW

2019-09-02

time

$$\mu = -0.001$$

$$\sigma = 0.021$$

$$\sigma_{\{02.20-03.20\}} = 0.06$$

Variabili più correlate

2019-05-02

2019-01-04

 $\rho \ge 0.08$; $\rho \le -0.08$ (Pearson)

*	Correlazione
rend_lag2	0.25
mean_sentiment_score_pond	0.10
mean_sentiment_score_pond_lag1	0.10
sum_sentiment_score_pond	0.09
sum_sentiment_score_pond_lag1	0.09
mean_negative_pond_lag1	-0.08

Variable Selection

• 10 variabili selezionate tramite **regressione lasso** con λ=0.0009, (LOOCV):

sum_negative, mean_negative,
sum_negative_lag1,
mean_negative_lag1,
mean_sentiment_score_pond_lag1,
rend_lag1, n_positive_pond_lag2,
mean_negative_lag2,
mean_sentiment_score_lag2,
mean_sentiment_score_pond_lag2

Modello Scelto

• Regressione lasso con λ = 0.0009 (LOOCV).

Tabella riepilogativa e grafico

•	RMSE [‡]	RRMSE [‡]	R^2 [‡]
Lasso	0.0391	1.02	-0.09
Benchmark	0.0382	1.00	-0.04

Valori rendimenti vs previsioni - BMW

20/01/2022

Segno rendimenti BMW

Serie storica segno rendimenti BMW 2019-01-04 2019-05-02 2019-09-02 2020-01-02

time

rie

$$S_{+} = 154$$

$$S_{-} = 158$$

Variabili più correlate

 $\tau \ge 0.08$; $\tau \le -0.08$ (Kendall)

segno_rendimenti_BMW 0.0 0.4 0.8

•	Correlazione [‡]	
sgn_lag1	0.18	
rend_lag1	0.17	
sgn_lag2	0.13	
mean_sentiment_score_pond_lag1	0.10	
sum_neutral	0.09	
n_neutral	0.09	
n_Tweet	0.09	

Variable importance

•	Mean Decrease Accuracy
rend_lag1	6.576250e-03
sum_neutral	4.402423e-03
n_Tweet	3.385141e-03
mean_positive_pond_lag1	3.205175e-03
n_neutral	2.082047e-03
sum_negative_lag1	1.655190e-03
sum_neutral_pond	1.495832e-03
n_neutral_pond	1.330577e-03

Modello Scelto

• **Random Forest** con m= $\sqrt{79}$ (CV 10 folds)

Tabella risultati, Matr di confusione e Curva ROC

*	Accuracy	AUC ‡
Random Forest	0.603	0.53
Random Forest vs benchmark	0.103	0.03

*	pred_value_0	pred_value_1 [‡]	Total [‡]
True_value_0	32	8	40
True_value_1	17	6	23
Total	49	14	63

Curva Roc

Università degli studi di Milano – Bicocca

Natural Language Processing in finance

Extrarendimenti **BMW**

Serie

Serie storica extrarendimenti BMW

$$\mu = -0.001$$

$$\sigma = 0.014$$

$$\sigma_{\{02.20-...20\}} = 0.038$$

Modello Scelto

Modello AR(1) + eGARCH(0,1), $\xi_t \sim GED(0,1)$

Tabella riepilogativa e grafico

^	RMSE [‡]	RRMSE [‡]	R^2 =
AR + eGARCH	0.0235	0.93	0.12
Benchmark	0.0252	1.00	-0.01

Variabili più correlate

$\rho \ge 0.08$; $\rho \le -0.08$ (Pearson)

*	Correlazione [‡]
rend_lag2	0.16
mean_sentiment_score_pond_lag1	0.11
mean_negative_lag2	0.11
sum_sentiment_score_pond_lag1	0.09
n_negative_lag2	0.08
mean_sentiment_score_lag2	-0.09
mean_negative_pond_lag1	-0.09
rend_lag1	-0.29

Variable Selection

• Variable selection tramite **metodo** backward basato sul criterio di Acaike con k=1.

Valori extrarendimenti vs previsioni - BMW Serie BMW AR+eGARCH Benchmark 2020-01-02 2020-02-03 2020-03-02 2020-03-30 time

20/01/2022 RUCOCC

Extrarendimenti BMW

Varabili Selezionate e Output AR(1)+eGARCH(0,1)

```
Robust Standard Errors:
         Estimate Std. Error
                                  t value Pr(>|t|)
        -0.205760
                     0.223575 -9.2032e-01 0.357407
ar1
mxreg1
         0.157933
                              2.0014e+00 0.045344
mxreg2
       -0.128715
                     0.014072 -9.1471e+00 0.000000
                     0.186960 4.4925e-01 0.653254
mxreg3
        0.083991
       -0.015791
                     0.000010 -1.5266e+03 0.000000
mxreq4
       -0.008759
                     0.000007 -1.2484e+03 0.000000
        0.008758
                     0.000007 1.2564e+03 0.000000
mxreg6
       -0.008755
                     0.000000 -2.3036e+04 0.000000
       -0.008751
                     0.000004 -2.2480e+03 0.000000
mxreq8
mxreg9 -0.007904
                     0.000007 -1.1504e+03 0.000000
mxreq10 0.007903
                     0.000006
                              1.2382e+03 0.000000
mxreq11 0.007892
                              2.2677e+03 0.000000
                     0.000003
mxreg12 0.005820
                     0.000003 1.9758e+03 0.000000
mxreq13 -0.005818
                     0.000007 -8.9028e+02 0.000000
mxreq14 0.005818
                              2.7783e+03 0.000000
mxreq15 0.005817
                               2.2267e+03 0.000000
mxreg16 -0.005131
                     0.000008 -6.5766e+02 0.000000
mxreg17 -0.005105
                     0.000006 -8.5645e+02 0.000000
mxreg18 -0.005085
                     0.000003 -1.7631e+03 0.000000
mxreq19 -0.000736
                     0.000000 -6.5121e+03 0.000000
mxreq20 -0.000718
                     0.000005 -1.4733e+02 0.000000
mxreq21 -0.000676
                     0.000013 -5.1854e+01 0.000000
mxreg22 -0.002799
                     0.000001 -2.4872e+03 0.000000
mxreg23 0.002799
                     0.000001 2.3350e+03 0.000000
mxreq24 -0.002799
                     0.000001 -2.4734e+03 0.000000
mxreg25 -0.002794
                     0.000002 -1.4141e+03 0.000000
mxreg26 -0.000046
                     0.000007 -6.6359e+00 0.000000
mxreq27 0.000027
                     0.000003 8.8659e+00 0.000000
mxreg28 -0.000012
                     0.000001 -1.5954e+01 0.000000
mxreg29 0.000008
                     0.000002 3.2436e+00 0.001180
         0.000098
                     0.018772
                              5.2370e-03 0.995821
omega
beta1
         0.900000
                     0.002467
                              3.6487e+02 0.000000
                     0.006736 2.9690e+02 0.000000
shape
         2.000000
```

• Vengono selezionate 29 variabili, cioè:

- Tutti i parametri sono significativi, ad eccezione di:
 - 1. Omega del modello eGARCH.
 - 2. Quelli associati al primo lag del rendimento (ar1 & mxreg3).
- *Shape* = 2, GED è uguale ad una normale standard.

Segno extrarendimenti BMW

Serie

Tabella risultati, Matr di confusione e Curva ROC

$$S_+ = 144$$

$$S_{-} = 160$$

*	Accuracy [‡]	AUC ‡	
SVM	0.656	0.57	
SVM vs benchmark	0.156	0.07	

Variabili più correlate

Modello Scelto

τ	≥ (0.08	, τ	\leq	-0.08
		(Ke	end	all)

•	Correlazione [‡]
n_negative	0.09
mean_neutral_pond	-0.09

• **SVM con kernel polinomiale** con i seguenti parametri:

$$\gamma = \frac{1}{79}$$
, $coef0 = 0$, $degree = 3$, $C = 1$ (CV 10 folds)

Le variabili sono state standardizzate.

20/01/2022

Conclusioni

Osservando i risultati ottenuti dalle analisi precedenti possiamo giungere alle seguenti considerazioni:

- 1. Le informazioni estratte dai tweet collegati a Tesla sono più correlate con i risultati del titolo, rispetto a quelle relative a BMW.
- 2. Gli extrarendimenti presentano una correlazione con le informazioni leggermente più forte rispetto ai rendimenti puri, almeno per quanto riguarda l'asset Tesla, e riescono ad essere previsti leggermente meglio.
- 3. Si ottengono risultati migliori nella previsione dei segni piuttosto che dei valori dei risultati, nonostante la correlazione dei segni con le informazioni sia decisamente minore.
- 4. Utilizzando le informazioni ricavate dai tweet non si è riusciti in ogni caso ad ottenere dei modelli davvero interessanti per la previsione dell'andamento degli asset collegati.
- 5. Prendendo in considerazione l'asset Tesla vediamo che le variabili più significative sono tutte non ritardate. Queste:
 - Non possono essere utilizzate per costruire una strategia finanziaria davvero perseguibile.
 - Resta il dubbio di capire effettivamente se si sono manifestati prima i risultati degli asset oppure se si sono condivisi prima i tweet, non avendo un dettaglio temporale maggiore rispetto a quello giornaliero.

