Applying Type-Level and Generic Programming in Haskell

Summer School on Generic and Effectful Programming

Andres Löh

6–10 July 2015

Datatype-generic programming

Express algorithms that make use of the structure of datatypes

Datatype-generic programming

Express algorithms that make use of the structure of datatypes

$$eq_A :: A \rightarrow A \rightarrow Bool$$

A class

```
class Generic a where
  type Rep a
  from :: a -> Rep a
  to :: Rep a -> a
```

where from and to are inverses.

A class

class Generic a where type Rep a from :: a -> Rep a to :: Rep a -> a

where from and to are inverses.

```
geq :: Generic a => Rep a -> Rep a -> Bool
```


A class

class Generic a where type Rep a from :: a -> Rep a to :: Rep a -> a

where from and to are inverses.

```
geq :: Generic a => Rep a -> Bool
```

```
eq :: Generic a => a -> a -> Bool
eq x y = geq (from x) (from y)
```


Choices

Much flexibility in the details, in particular the definition of Rep.

Choices

Much flexibility in the details, in particular the definition of Rep.

The choice of Rep determines expressive power and flavour of generic programs.

Choices

Much flexibility in the details, in particular the definition of Rep.

The choice of Rep determines expressive power and flavour of generic programs.

In this lecture series: generics-sop.

Applications

- ► (De-)serialization
- Data generation
- Data traversals
- Data navigation
- ▶ ...

The generics-sop view on data, informally

Sample datatypes

Sample datatypes

- Choice between constructors,
- each with a sequence of arguments.

Sample datatypes

- Choice between constructors,
- each with a sequence of arguments.

```
C_i x_0 \dots x_{n_i-1}
```


The plan

$$C_i x_0 \dots x_{n_i-1}$$

- ► Choice between constructors modelled as an *n*-ary sum.
- Sequence of fields modelled as an n-ary product.

We'll need Haskell type-level programming concepts along the way.

Extensions, extensions

DataKinds GADTs TypeOperators TypeFamilies RankNTypes ConstraintKinds MultiParamTypeClasses **UndecidableInstances** StandaloneDeriving ScopedTypeVariables PolyKinds FlexibleInstances FlexibleContexts DefaultSignatures

Plan for the week

Today:

- ▶ Learn about *n*-ary products.
- Along the way, discuss everything we need in terms of Haskell type-level programming features.

Wednesday:

- ▶ Introduce *n*-ary sums and the generics-sop view.
- Representing datatypes using generics-sop.
- Simple applications.

Friday:

More applications.

Kinds and data kinds

Types and kinds

- ► Values / terms have types.
- ► Types have kinds.

Example:

```
GHCi> :type 'x'
'x' :: Char
GHCi> :kind Char
Char :: *
```

Stars and functions

```
Int :: *
Double :: *
Bool :: *
Char :: *
() :: *
Void :: *
```

```
data () = () -- one value
data Void -- no values
```


Stars and functions – contd.

```
Maybe :: * -> *

[] :: * -> *

IO :: * -> *

(,) :: * -> * -> *

Either :: * -> * -> *
```

Stars and functions – contd.

```
Maybe :: * -> *
[] :: * -> *
IO :: * -> *
(,) :: * -> * -> *
Fither :: * -> * -> *
Maybe Int
IO [Bool]
                     :: *
Either Char
                    :: * -> *
Either Char (Maybe Int) :: *
IO Maybe -- kind error
```


Data kinds and promotion

```
data Bool = False | True
```

Defines a datatype with (data) constructors:

```
Bool :: *
False :: Bool
True :: Bool
```

Data kinds and promotion

```
data Bool = False | True
```

Defines a datatype with (data) constructors:

```
Bool :: *
False :: Bool
True :: Bool
```

Defines also a kind with (type) constructors:

```
Bool :: □
'False :: Bool
'True :: Bool
```

Both False and True are uninhabited.

Data kinds and promotion – contd.

Quotes are generally optional; False and True also allowed.

```
GHCi> :kind Bool
Bool :: *
GHCi> :tvpe True
True :: Bool
GHCi> :type False
False :: Bool
GHCi>:kind 'True
'True :: Bool
GHCi>:kind 'False
'False :: Bool
GHCi> :kind True
True :: Bool
GHCi>:kind False
False :: Bool
```


Generalized algebraic data types (GADTs)

Generalizing lists in several steps

```
type T1 = [Int]
type T2 = Vec Int (Suc (Suc Zero)))
type T3 = HList '[Char, Bool, Int]
type T4 = NP Maybe '[Char, Bool, Int]
```

Generalizing lists in several steps

[Just 'x', Nothing, Just 3] :: T4

Vectors – promoting natural numbers

```
data Nat = Zero | Suc Nat
```

As a type:

```
Nat :: *
Zero :: Nat
```

Suc :: Nat -> Nat

As a kind:

```
Nat :: □
'Zero :: Nat
```

'Suc :: Nat -> Nat

From lists to vectors

```
data [a] = [] | a : [a]
```

From lists to vectors

```
data [a] = [] | a : [a]
```

Renaming constructors:

```
data List a = LNil | LCons a (List a)
```


From lists to vectors

```
data [a] = [] | a : [a]
```

Renaming constructors:

```
data List a = LNil | LCons a (List a)
```

GADT syntax:

```
data List (a :: *) where
  LNil :: List a
  LCons :: a -> List a -> List a
```


Defining vectors

Lists:

```
data List (a :: *) where
  LNil :: List a
  LCons :: a -> List a -> List a
```

Vectors:

```
data Vec (a :: *) (n :: Nat) where
  VNil :: Vec a Zero
  VCons :: a -> Vec a n -> Vec a (Suc n)
infixr 5 'VCons' -- for infix use
deriving instance Show a => Show (Vec a n)
```


Vector examples

Pattern matching on GADTs

```
vtail :: Vec a (Suc n) -> Vec a n
vtail (VCons x xs) = xs
```

No case for VNil needed (or possible).

Pattern matching on GADTs

```
vtail :: Vec a (Suc n) -> Vec a n
vtail (VCons x xs) = xs
```

No case for VNil needed (or possible).

Example:

```
GHCi> vtail ('x' 'VCons' VNil)
VNil
```

```
GHCi> vtail (vtail ('x' 'VCons' VNil))
```

results in a type error!

Pattern matching on GADTs – contd.

Pattern matching on GADTs – contd.

```
vmap :: (a -> b) -> Vec a n -> Vec b n
vmap f VNil = VNil
vmap f (x 'VCons' xs) = f x 'VCons' vmap f xs
```

First case:

```
n ~ Zero
```


Pattern matching on GADTs – contd.

```
vmap :: (a -> b) -> Vec a n -> Vec b n
vmap f VNil = VNil
vmap f (x 'VCons' xs) = f x 'VCons' vmap f xs
```

First case:

```
n ~ Zero
```

Second case:

```
n ~ Suc n'
```


An applicative interface for vectors

The Applicative class

```
class Functor f where
  fmap :: (a -> b) -> f a -> f b

class (Functor f) => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b
```

We've already seen that we can map over vectors . . .

Generalizing replicate

What to do with the Int for vectors?

Generalizing replicate

What to do with the Int for vectors?

```
vreplicate :: a -> Vec a n
```

won't work.

Generalizing replicate – using a class

```
class VReplicate (n :: Nat) where
  vreplicate :: a -> Vec a n
```

Generalizing replicate – using a class

```
class VReplicate (n :: Nat) where
  vreplicate :: a -> Vec a n
```

```
instance VReplicate Zero where
  vreplicate _ = VNil
instance VReplicate n => VReplicate (Suc n) where
  vreplicate x = x 'VCons' vreplicate x
```

Generalizing replicate – using a class

```
class VReplicate (n :: Nat) where
  vreplicate :: a -> Vec a n

instance VReplicate Zero where
  vreplicate _ = VNil
instance VReplicate n => VReplicate (Suc n) where
  vreplicate x = x 'VCons' vreplicate x
```

Example:

```
type Three = Suc (Suc (Suc Zero))
```

```
GHCi> vreplicate 'x' :: Vec Char Three
VCons 'x' (VCons 'x' (VCons 'x' VNil))
```


Singleton natural numbers

```
data SNat (n :: Nat) where
  S7ero :: SNat 7ero
  SSuc :: SNatI n => SNat (Suc n)
class SNatI (n :: Nat) where
  sNat :: SNat n
instance SNatI Zero where
  sNat = S7ero
instance SNatI n => SNatI (Suc n) where
  sNat = SSuc
```


Generalizing replicate – using singletons

```
vreplicate :: forall a n . SNatI n => a -> Vec a n
vreplicate x = case sNat :: SNat n of
    SZero -> VNil
    SSuc -> x 'VCons' vreplicate x
```

This needs "scoped type variables".

Generalizing replicate – using singletons

```
vreplicate :: forall a n . SNatI n => a -> Vec a n
vreplicate x = case sNat :: SNat n of
   SZero -> VNil
   SSuc -> x 'VCons' vreplicate x
```

This needs "scoped type variables".

With singletons, we need only one class (SNatI) for all functions on natural numbers – but there is potentially more work being done at run-time.

Pointwise application

Where vreplicate fills the role of pure, we still need something corresponding to (<*>):

Heterogeneous lists, *n*-ary products

Promoted lists

```
data [a] = [] | a : [a]
```

As a type:

```
[] :: * -> *
[] :: forall(a :: *) . [a]
(:) :: forall(a :: *) . a -> [a] -> [a]
```

As a kind:

```
[] :: □ -> □
'[] :: forall(a :: □) . [a]
'(:) :: forall(a :: □) . a -> [a] -> [a]
```

Both '[] and '(:) are kind-polymorphic.

Promoted lists – examples

```
GHCi> :kind True ': '[]
True ': '[] :: [Bool]
GHCi> :kind '[Zero, Three]
'[Zero, Three] :: [Nat]
GHCi> :kind '[Char, Bool, Int]
'[Char, Bool, Int] :: [*]
GHCi> :kind '[Maybe, [], I0]
'[Maybe, [], I0] :: [* -> *]
```

Promoted lists – examples

```
GHCi> :kind True ': '[]
True ': '[] :: [Bool]
GHCi> :kind '[Zero, Three]
'[Zero, Three] :: [Nat]
GHCi> :kind '[Char, Bool, Int]
'[Char, Bool, Int] :: [*]
GHCi> :kind '[Maybe, [], I0]
'[Maybe, [], I0] :: [* -> *]
```

Quotes for type-level lists are often not optional:

```
GHCi> :kind '[Bool]
'[Bool] :: [*]
GHCi> :kind [Bool]
[Bool] :: *
```


Heterogeneous lists

```
data HList (xs :: [*]) where
  HNil :: HList '[]
  HCons :: x -> HList xs -> HList (x ': xs)
infixr 5 'HCons'
```


Heterogeneous lists

```
data HList (xs :: [*]) where
  HNil :: HList '[]
  HCons :: x -> HList xs -> HList (x ': xs)
infixr 5 'HCons'
```

Example:

```
GHCi> :type ('x' 'HCons' False 'HCons' HNil)
'x' 'HCons' False 'HCons' HNil :: HList '[Char, Bool]
```


Generalizing further

We often need lists of related types.

```
data NP (f :: k -> *) (xs :: [k]) where
  Nil :: NP f '[]
  (:*) :: f x -> NP f xs -> NP f (x ': xs)
infixr 5 :*
```

Generalizing further

We often need lists of related types.

```
data NP (f :: k -> *) (xs :: [k]) where
  Nil :: NP f '[]
  (:*) :: f x -> NP f xs -> NP f (x ': xs)
infixr 5 :*
```

```
newtype I a = I a
newtype K a b = K a
```

```
NP I xs \approx HList xs
NP (K a) xs \approx Vec a (Length xs)
```


Collapsing an environment

Collapsing an environment

Next goal: generalize vmap, vreplicate and vapply to environments.

Higher-rank types

Generalizing vmap

Compare:

```
Vec a n
NP f xs
```

```
vmap :: (a -> b) -> Vec a n -> Vec b n
```

Generalizing vmap

Compare:

```
Vec a n
NP f xs
```

```
vmap :: (a -> b) -> Vec a n -> Vec b n
```

```
hmap :: ... \rightarrow NP f xs \rightarrow NP g xs
```

Generalizing vmap – contd.

We apply m to all elements of the list.

Generalizing vmap – contd.

We apply m to all elements of the list.

```
m :: forall x . f x -> g x
```

Generalizing vmap – contd.

```
hmap m Nil = Nil
hmap m (x :* xs) = m x :* hmap m xs
```

We apply m to all elements of the list.

```
m :: forall x . f x -> g x
```

```
hmap :: (forall x . f x \rightarrow g x) \rightarrow NP f xs \rightarrow NP g xs
```



```
group :: NP I '[Char, Bool, Int]
group = I 'x' :* I False :* I 3 :* Nil
unI :: I a -> a
unI (I x) = x
example :: NP Maybe '[Char, Bool, Int]
example = hmap (Just . unI) group
```

```
GHCi> example
Just 'x' :* (Just False :* (Just 3 :* Nil))
```


Generalizing vreplicate

Generalizing vreplicate

Singleton lists

```
data SList (xs :: [k]) where
 SNil :: SList '[]
 SCons :: SListI xs => SList (x ': xs)
class SListI (xs :: [k]) where
 slist :: Slist xs
instance SListI '[] where
 sList = SNil
instance SListI xs => SListI (x ': xs) where
 slist = SCons
```

We ignore the list elements (for now).

Completing hpure

Examples:

```
GHCi> hpure Nothing :: NP Maybe '[Char, Bool, Int]
Nothing :* (Nothing :* (Nothing :* Nil))
GHCi> hpure (K 0) :: NP (K Int) '[Char, Bool, Int]
K 0 :* (K 0 :* (K 0 :* Nil))
```

Generalizing vapply

```
vapply :: Vec (a \rightarrow b) n \rightarrow Vec a n \rightarrow Vec b n hap :: NP ... xs \rightarrow NP f xs \rightarrow NP g xs
```

What to do with the functions?

Generalizing vapply

```
vapply :: Vec (a -> b) n -> Vec a n -> Vec b n hap :: NP ... xs -> NP f xs -> NP g xs
```

What to do with the functions?

NP (
$$x \rightarrow (f x \rightarrow g x)) xs$$

Generalizing vapply

```
vapply :: Vec (a -> b) n -> Vec a n -> Vec b n hap :: NP ... xs -> NP f xs -> NP g xs
```

What to do with the functions?

NP (
$$x - g x$$
) xs

```
newtype (f -.-> g) x = Fn {apFn :: f x -> g x}
infixr 1 -.->
```

Generalizing vapply

```
vapply :: Vec (a -> b) n -> Vec a n -> Vec b n hap :: NP ... xs -> NP f xs -> NP g xs
```

What to do with the functions?

NP (
$$\x -> (f x -> g x)$$
) xs

hap :: NP
$$(f -.-> g)$$
 xs -> NP f xs -> NP g xs


```
hap :: NP (f -.-> g) xs -> NP f xs -> NP g xs
hap Nil Nil = Nil
hap (f :* fs) (x :* xs) = apFn f x :* hap fs xs
```

Using hap - an example

```
lists :: NP [] '[String, Int]
lists = ["foo", "bar", "baz"] :* [1..10] :* Nil
numbers :: NP (K Int) '[String, Int]
numbers = K 2 :* K 5 :* Nil
fn 2 :: (f a -> f' a -> f'' a)
     -> (f -.-> f' -.-> f'') a
fn_2 f = Fn (\langle x - \rangle Fn (\langle y - \rangle f x y))
take' :: (K Int -.-> [] -.-> []) a
take' = fn_2 (\(K n) xs -> take n xs)
```

```
GHCi> hpure take' 'hap' numbers 'hap' lists
["foo", "bar"] :* ([1, 2, 3, 4, 5] :* Nil)
```


Abstracting from classes, type functions

Mapping constrained functions?

```
hmap (K . show . unI) group
```

fails, because

```
K . show . unI :: forall x . Show x \Rightarrow I x \rightarrow K String x
```

does not match

forall x . f
$$x \rightarrow g$$

Х

Constraints are types of kind Constraint

```
GHCi> :kind Eq
Eq :: * -> Constraint
GHCi> :kind Functor
Functor :: (* -> *) -> Constraint
GHCi> :kind MonadReader
MonadReader :: * -> (* -> *) -> Constraint
```

Constraints are types of kind Constraint

```
GHCi> :kind Eq
Eq :: * -> Constraint
GHCi> :kind Functor
Functor :: (* -> *) -> Constraint
GHCi> :kind MonadReader
MonadReader :: * -> (* -> *) -> Constraint
```

Overloaded tuple syntax:

```
type NoConstraint = (() :: Constraint)
type SomeConstraints a = (Eq a, Show a)
type MoreConstraints f a = (Monad f, SomeConstraints a)
```


The All type family

The All type family

Example:

```
GHCi> :kind! All Eq '[Int, Bool]
All Eq '[Int, Bool] :: Constraint
= (Eq Int, (Eq Bool, ()))
```

(Constraints are flattened.)

Trying to define hcpure

We want:

```
hpure :: SListI xs => (forall a . f a)
hcpure :: (SListI xs, All c xs) => (forall a . c a => f a)
```

Then:

However, this does not work.

Limitations in GHC's type inference

Assume:

```
hcpure :: (SListI xs, All c xs) => (forall a . c a => f a)
hcpure = undefined
```

Then

```
minBound :: Bounded a => a
I minBound :: Bounded a => I a
```

```
GHCi> hcpure (I minBound) :: NP I '[Char, Bool]
```

is a type error.

Proxies

```
data Proxy (a :: k) = Proxy
```

Examples:

```
pBounded :: Proxy Bounded
```

pBounded = Proxy

pShow :: Proxy Show

pShow = Proxy

Using proxies to define hcpure

Using proxies to define hcpure

Example:

```
GHCi> hcpure pBounded (I minBound) :: NP I '[Char, Bool]
I '\NUL' :* (I False :* Nil)
GHCi> hcpure pShow (Fn (K . show . unI)) 'hap' group
K "'x'" :* (K "False" :* (K "3" :* Nil))
```


Summary

Lots of type system extensions and concepts in action:

- ► GADTs,
- promoted lists,
- singleton lists,
- ▶ higher-rank types,
- ► constraint kinds,
- proxies.

Summary

Lots of type system extensions and concepts in action:

- GADTs,
- promoted lists,
- singleton lists,
- higher-rank types,
- constraint kinds,
- proxies.

The type NP and a number of useful functions:

- ► hpure, hap, hmap, hzipWith
- hcpure, hcmap, (hczipWith)
- hcollapse

With NP, we can already express one-constructor datatypes nicely.

We'll add NS to express the choice between constructors.

Exercises

- Define heq :: ... => NP I xs -> NP I xs -> Bool via pattern matching.
- 2. Define hczipWith, i.e., hzipWith with a constrained function.
- 3. Define heq using hczipWith.
- 4. Can you generalize
 heq :: ... => NP f xs -> NP f xs -> Bool ?
- 5. Define hsequence :: Applicative f => NP f xs -> f (NP I xs).
- 6. Try to generalize

 foldr:: (a -> r -> r) -> r -> [a] -> r from lists

 to Vec and NP. Try to redefine e.g. hmap using the
 generalized foldr.

