A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 4EJ

Bookmark

Show all steps: ON

ON

Problem

Let f be a homomorphism from G onto H with kernel K:

$$f: G \xrightarrow{\kappa} H$$

If *S* is any subgroup of *H*, let $S^* = \{x \in G: f(x) \in S\}$. Prove:

$$S \cong S^*/K$$
.

Step-by-step solution

Step 1 of 3

Suppose that *G* is any group. Let the mapping

$$f: G_K \to H$$

is a homomorphism from G onto H with kernel K. Assume that S is any subgroup of H and consider the following set:

$$S^* = \{x \in G : f(x) \in S\}.$$

Note that, the set S^* forms a subgroup of G. Consider the following restriction map $g:S^*\to S$ defined as

$$g(x) = f(x)$$
 for every $x \in S^*$.

Objective is to prove that $S \cong S^* / K$.

According to the fundamental homomorphism theorem, if $f: G \to H$ is a homomorphism of G onto H, with kernel K then

$$H \cong G/K$$

Comment

g(ab) = f(ab)	
$= f(a) \cdot f(b)$	p)
$=g(a)\cdot g(b)$).
This shows that g is	s homomorphism also onto because f is onto.
Since codomain of	g is same as mapping f and K is the kernel of f , therefore $K = \ker g$.
Comment	
	Step 3 of 3
Hence, by fundame	ental homomorphism theorem it conclude that $S \cong S^* / K$.
Comment	

First prove that the restriction map g is a homomorphism from s^* onto s with s = s with s = s onto s onto s onto s onto s with s = s onto s onto s onto s onto s with s onto s o

Assume that $x, y \in S^*$. Then use the homomorphism of mapping f in the following manner: