Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

Let $f(x) = x^2 + \frac{1}{x^2}$ and $g(x) = x - \frac{1}{x}$, $x \in R - \{-1,0,1\}$. 8.

If $h(x) = \frac{f(x)}{g(x)}$, then the local minimum value of h(x) is

[JEE - Main 2018]

(A) -3

(B) $-2\sqrt{2}$ (C) $2\sqrt{2}$

Let $f(x) = \ln x$ and $g(x) = x^2 - 1$ 8.

> Column-I contains composite functions and column-II contains their domain. Match the entries of column-I with their corresponding answer is column-II.

Column-I

Column-II

(A) fog

(P) (1, ∞)

(B) gof

 $(Q)(-\infty,\infty)$

(C) fof

(R) $(-\infty, -1)$ \cup $(1, \infty)$

(D) gog

(S) (0, ∞)

INTEGER TYPE

Number of integral values of x in the domain of function $f(x) = \sqrt{\ln |\ln |x||} +$ 3.

$$\sqrt{7|\mathbf{x}| - |\mathbf{x}|^2 - 10}$$
 is equal to

(A) 4

(B) 5

(C) 6

The graph of the function y = g(x) is shown. 1.

The number of solutions of the equation $||g(x)| - 1| = \frac{1}{2}$, is

- (A) 4
- (B) 5
- (C) 6
- (D) 8
- If minimum and maximum values of f(x) = 2|x-1| + |x+3| 3|x-4| are m and M 7. respectively then (m + M) equals
 - (A) 0
- (B) 1
- (C) 2
- (D) 3

Atomic Structure:

11. Select the correct curve(s):

If v = velocity of electron in Bohr's orbit

r = Radius of electron in Bohr's orbit

P.E. = Potential energy of electron in Bohr's orbit

K.E. = Kinetic energy of electron in Bohr's orbit

				_	
	β-line of Balmer series in He ⁺ is				
	(A) 1:1	(B) 1:2	(C) 1:4	(D) 3:16	
3.	A sodium street light gives off yellow light that has a wavelength of 600 nm. Then				
	(For energy of a photon take $E = \frac{12400 \text{ eV Å}}{\lambda (\text{Å})}$)				
	(A) frequency of this light is 7×10^{14} s ⁻¹ (B) frequency of this light is 5×10^{14} s ⁻¹				
	(C) wave number of the light is $3\times10^6~\text{m}^{-1}~$ (D) energy of the photon is approximately 2.07 eV				
39.	A light source of wavelength λ illuminates a metal and ejects photo-electrons with (K.E.) _{max} = 1 eV				
	Another light source of wavelength $\frac{\lambda}{3}$, ejects photo-electrons from same metal with				
	(K.E.)max = 4eV. Find the value of work function ?				
	(A) 1 eV	(B) 2 eV	(C) 0.5 eV	(D) None of these	

The energy of H-atom in nth orbit is En then energy in nth orbit of singly ionized helium atom

(B) E₀/4

(C) 2E_n

The ratio of wave length of photon corresponding to the α-line of Lyman series in H-atom and

(D) E_n/2

16.

30.

will be:

(A) 4En