Отчет по практике 3 Вариант 1

Готфрид Матвей ИА-231

20 марта 2025 г.

Задание 1: Энергетический спектр Гауссовского стационарного случайного процесса

Энергетический спектр x(t) равен $G(\omega)$ с параметрами G_0 , B^2/Γ ц, и α , рад/с. Требуется:

- 1. Определить корреляционную функцию $B(\tau)$ случайного процесса.
- 2. Рассчитать величины эффективной ширины спектра и интервала корреляции процесса.
- 3. Изобразить графики $G(\omega)$ и $B(\tau)$ с указанием масштаба по осям и показать на них эффективную ширину спектра и интервал корреляции.

Данные для варианта 1:

$$G(\omega) = G_0 \frac{\alpha^2}{\alpha^2 + \omega^2}, \quad G_0 = 0.02, \quad \alpha = 200$$

Решение

Пункт 1.1: Определить корреляционную функцию $B(\tau)$ случайного процесса

Энергетический спектр $G(\omega)$ и корреляционная функция $B(\tau)$ связаны через преобразование Фурье (по теореме Винера-Хинчина):

$$B(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) e^{i\omega\tau} d\omega$$

Дано:

$$G(\omega) = 0.02 \frac{40000}{40000 + \omega^2}$$

Так как $G(\omega)$ — четная функция, то:

$$B(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 0.02 \frac{40000}{40000 + \omega^2} \cos(\omega \tau) d\omega$$
$$B(\tau) = \frac{800}{2\pi} \int_{-\infty}^{\infty} \frac{\cos(\omega \tau)}{40000 + \omega^2} d\omega$$

Вычислим интеграл:

$$\int_{-\infty}^{\infty} \frac{\cos(\omega \tau)}{(200)^2 + \omega^2} d\omega = \frac{\pi}{200} e^{-200|\tau|}$$

Подставим:

$$B(\tau) = \frac{800}{2\pi} \cdot \frac{\pi}{200} e^{-200|\tau|} = 2e^{-200|\tau|}$$

Ответ:

$$B(\tau) = 2e^{-200|\tau|}$$

Пункт 1.2: Рассчитать величины эффективной ширины спектра и интервала корреляции процесса

Эффективная ширина спектра $\Delta \omega$

$$\Delta\omega = \frac{\int_{-\infty}^{\infty} G(\omega) \, d\omega}{G(0)}$$

1. Найдем G(0):

$$G(0) = 0.02$$

2. Найдем $\int_{-\infty}^{\infty} G(\omega) d\omega$:

$$\int_{-\infty}^{\infty} 0.02 \frac{40000}{40000 + \omega^2} d\omega = 800 \cdot \frac{\pi}{200} = 4\pi$$

3. Тогда:

$$\Delta\omega = \frac{4\pi}{0.02} = 200\pi$$

Интервал корреляции τ_k

$$\tau_k = \frac{\int_0^\infty B(\tau) \, d\tau}{B(0)}$$

1. Найдем B(0):

$$B(0) = 2$$

2. Найдем $\int_0^\infty B(\tau) \, d\tau$:

$$\int_0^\infty 2e^{-200\tau} d\tau = 2 \cdot \frac{1}{200} = \frac{1}{100}$$

3. Тогда:

$$\tau_k = \frac{\frac{1}{100}}{2} = \frac{1}{200}$$

Ответ:

$$\Delta\omega=200\pi\,\mathrm{pag/c},\quad au_k=rac{1}{200}\,\mathrm{c}$$

Пункт 1.3: Изобразить графики $G(\omega)$ и $B(\tau)$

Γ рафик $G(\omega)$

$$G(\omega) = 0.02 \frac{40000}{40000 + \omega^2}$$

- $G(0)=0.02,\,G(\omega)\to 0$ при $\omega\to\infty.$
- Эффективная ширина спектра: $\Delta \omega = 200\pi \approx 628.32 \, \mathrm{pag/c}$.
- Масштаб по оси ω : от -1000 до $1000\,\mathrm{pag/c}$, шаг $200\,\mathrm{pag/c}$.
- Масштаб по оси $G(\omega)$: от 0 до 0.02, шаг 0.005.
- Отметить диапазон от $-100\pi \approx -314.16$ до $100\pi \approx 314.16$.

Γ рафик B(au)

$$B(\tau) = 2e^{-200|\tau|}$$

- B(0) = 2, $B(\tau) \to 0$ при $\tau \to \infty$.
- Интервал корреляции: $\tau_k = 0.005 \, \mathrm{c}$.
- Масштаб по оси τ : от -0.02 до 0.02 с, шаг 0.005 с.
- Масштаб по оси $B(\tau)$: от 0 до 2, шаг 0.5.
- Отметить точку $\tau = 0.005 \, \mathrm{c}$.