CS26210: The Al Toolbox Part 2

reasoning in an uncertain world

Mark Neal and Elio Tuci mjn@aber.ac.uk elt7@aber.ac.uk

Basics

- Me for a couple of lectures
 - Knowledge Representation
 - Introduction to Logic
- Elio for about 10
 - Fuzzy Logic
 - Probabilistic Reasoning
- Back to me for the last section
 - Predicate Logic
 - Prolog

Basics

- Assessment by in-class test and assignments:
 - 1st assignment on fuzzy logic 15%
 - 2nd in-class test on set theory, probability etc... 15%
 - 3rd assignment on Bayesian networks 20%
 - 4th Programming in Prolog 50%
- Try to think through things you are taught in context of systems you might come across
- Ask questions, look things up, read R+N

Knowledge Representation (1)

- How to represent information about real problems such that:
 - Sufficient information is captured
 - Information is in a format that allows useful manipulation of it to be done by the computer
- You will have seen some examples already in CS26110 and other places...
 - Genetic algorithms? Neural networks? Decision trees?

Knowledge Representation (2)

- Why does it matter?
 - Different representations are good for different things
 - Capturing the "right" information is not trivial
 - Attempting to capture too much can be disastrous
- This module is concerned with "High level" symbolic representations
 - Physical symbol system hypothesis
 - Enough to do useful reasoning (symbols, expressions and processes)

Knowledge Representation (3)

- Syntax
 - Attempting to capture too much can be disastrous
- Semantics
 - Enough to do useful reasoning (symbols, expressions and processes)
- Suitable syntax and semantics provide a framework within which to solve problems using automated reasoning if they are "appropriate"
- This is why knowledge representation matters

Knowledge Representation (4)

- "Appropriate" for what?
 - The domain that we are working in
 - The problem that we want to solve
- Some representations are better than others for different domains and different problems
- Their associated symbols, expressions and processes may
 - Capture more "appropriate" information
 - Allow faster computation of relationships
 - Use less memory to represent particular situations
 - Be faster to sort etc...
- This is called "bias"

Knowledge Representation (5)

- Questions to ask when attacking a problem:
 - What precisely is the problem I want to solve?
 - What information is pertinent?
 - What level of representation will be useful?
 - What are the symbols likely to be?
 - What operations on those symbols are needed?
- The result of answering these questions:
 - Select a syntactical and semantic framework in which to tackle the problem

Things to do...

- Go and read some stuff about this
- Think about how this might relate to problems you are familiar with
- Come back tomorrow for a very quick introduction to logic