

Tarea 2

6 de Septiembre 2023

 2^{0} semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado - B. Barías
 Diego Pérez - 22203583

Problema 1

1. Definimos el siguiente ψ :

$$\psi := A \land B \land C \quad \text{donde} \left\{ \begin{array}{l} A = p \lor q \lor r \lor \neg s \lor t \lor \neg v \\ B = p \lor q \lor \neg r \lor s \lor t \lor \neg v \\ C = p \lor q \lor \neg r \lor \neg s \lor t \lor \neg v \end{array} \right.$$

Claramente ψ está en CNF, por lo que basta demostrar que $\varphi \equiv \psi$.

Supongamos por contradicción que existe una valuación σ tal que $\sigma(\varphi) \neq \sigma(\psi)$. Tenemos 2 casos:

- a) $\sigma(\varphi) = 0$ y $\sigma(\psi) = 1$ Notar que $\sigma(A) = \sigma(B) = \sigma(C) = 1$ y $\sigma(\neg p \to \neg v) = 0$, por lo que $\sigma(p) = 0$ y $\sigma(v) = 1$. Similarmete, de $\sigma((r \lor s) \to (q \lor t)) = 0$ obtenemos $\sigma(q \lor t) = 0$ entonces $\sigma(q) = \sigma(t) = 0$ y $\sigma(r \lor s) = 1$. Si $\sigma(r) = 1$, entonces, para que B y C sean verdad, $\sigma(s) = \sigma(\neg s) = 1$, que no se puede, por lo que $\sigma(s) = 1$ y $\sigma(r) = 0$. Esta valuación cumple $\sigma(A) = 0$. Contradicción.
- b) $\sigma(\varphi) = 1 y \sigma(\psi) = 0$ Hay 3 subcasos:
 - 1) $\frac{\sigma(A)=0}{\sigma(\varphi)=0}$ \Longrightarrow $\sigma(p)=\sigma(q)=\sigma(r)=\sigma(t)=0$ y $\sigma(s)=\sigma(v)=1$, que cumple $\sigma(\varphi)=0$ contradicción.
 - 2) $\underline{\sigma(B) = 0} \implies \sigma(p) = \sigma(q) = \sigma(s) = \sigma(t) = 0$ y $\sigma(r) = \sigma(v) = 1$, que cumple $\sigma(\varphi) = 0$ contradicción.
 - 3) $\underline{\sigma(C)} = 0 \implies \sigma(p) = \sigma(q) = \sigma(t) = 0$ y $\sigma(r) = \sigma(s) = \sigma(v) = 1$, que cumple $\sigma(\varphi) = 0$ contradicción.

En todos los casos llegamos a una contradicción, por lo que $\sigma(\varphi) = \sigma(\psi)$ para toda valuación σ , como queríamos.

2. **Afirmación:** $(a \leftrightarrow b) \equiv (a \land b) \lor (\neg a \land \neg b)$.

<u>Demostración</u>: Usaremos tabla de verdad:

a	b	$a \wedge b$	$\neg a \land \neg b$	$(a \wedge b) \vee (\neg a \wedge \neg b)$	$a \leftrightarrow b$
0	0	0	1	1	1
0	1	0	0	0	0
1	0	0	0	0	0
1	1	1	0	1	1

Se concluye ya que ambas columnas son idénticas.

Definiendo el siguiente ψ y trabajando:

$$\psi := \left(\bigvee_{i=1}^n (p_i \wedge q_i)\right) \vee \left(\bigvee_{i=1}^n (\neg p_i \wedge \neg q_i)\right) \equiv \bigvee_{i=1}^n ((p_i \wedge q_i) \vee (\neg p_i \wedge \neg q_i)) \stackrel{\text{Afirmación}}{\equiv} \bigvee_{i=1}^n (p_i \leftrightarrow q_i) = \varphi$$

Como ψ está claramente en DNF, podemos concluír que dicho ψ sirve.

Problema 2

1. Respuesta: No

Demostraremos que de hecho, $\{W,\neg\}$ no es funcionalmente completo, que implicará la respuesta.

Sea $P = \{p\}$. Usaremos inducción estructural para demostrar que toda fórmula en L(P) (construída usando $\{W, \neg\}$) es lógicamente equivalente a p o $\neg p$. Como $p \land \neg p \not\equiv \neg p$ y $p \land \neg p \not\equiv p$, esto es suficiente.

<u>CB</u>: Tomamos p, que trivialmente cumple $p \equiv p$.

<u>HI:</u> Supongamos que $\alpha, \beta, \gamma \in L(p)$ son todas equivalentes a p o $\neg p$ y están construíadas solo usando W, p y \neg .

TI: Tenemos que demostrar que cualquier fórmula φ generada con α, β, γ es equivalente a p o $\neg p$. Por simetría, tenemos 3 casos:

- a) $\overline{\varphi = \alpha}$ Es directo ya que $\alpha \equiv p$ o $\alpha \equiv \neg p$ por HI.
- b) $\boxed{\varphi = \neg \alpha}$ Es directo ya que $\alpha \equiv p$ o $\alpha \equiv \neg p$ por HI.
- c) $\varphi = W(\alpha, \beta, \gamma)$ Por palomar, hay 2 fórmulas de $\{\alpha, \beta, \gamma\}$ (digamos α y β) que son equivalentes. Analizamos la tabla de verdad:

α	γ	$W(\alpha, \alpha, \gamma)$
0	0	0
0	1	0
1	0	1
1	1	1

Luego, $W(\alpha, \beta, \gamma) \equiv \alpha$ y por HI, $W(\alpha, \beta, \gamma) \equiv p$ o $\neg p$, como queríamos. Concluímos por inducción.

2. A lo largo de este ejercicio, consideramos $P = \{p, q\}$ con $p \neq q$ variables.

a) Falso Consideramos $\Sigma_1 = \{q\}$ y $\alpha = \beta = p$. Claramente $\beta \models \alpha$, por lo que $(\Sigma_1 \cup \{\beta\}) \models \alpha$ pero $\Sigma_1 \not\models \alpha$.

b) Verdadero Supongamos por contradicción, que $\Sigma_1 \models \alpha$ y $\Sigma_2 \models \beta$ y que existe una valuación σ tal que $\sigma(\Sigma_1 \cup \Sigma_2) = 1$ y $\sigma(\alpha \wedge \beta) = 0$. De la última ecuación, obtenemos que al menos uno de $\sigma(\alpha)$ o $\sigma(\beta)$ es 0, digamos sin pérdida de generalidad que $\sigma(\alpha) = 0$. Como $\Sigma_1 \models \alpha$, sigue que $\sigma(\Sigma_1) = 0$, por lo que $\sigma(\Sigma_1 \cup \Sigma_2) = 0$, pero habíamos asumido que $\sigma(\Sigma_1 \cup \Sigma_2) = 1$. Concluímos por contradicción.

c) Falso Sea $\Sigma_1 = \{p\}$ y $\alpha = q$. Claramente $\Sigma_1 \not\models \alpha$ pero $\Sigma_1 \not\models \neg \alpha$.

d) | Verdadero

 \Longrightarrow Supongamos por contradicción que $\Sigma_1 \models \alpha \to \beta$ y que existe una valuación σ tal que $\sigma(\Sigma_1 \cup \{\alpha\}) = 1$ y $\sigma(\beta) = 0$. Como $\sigma(\Sigma_1) = 1$ y $\Sigma_1 \models \alpha \to \beta$, tenemos que $\sigma(\alpha \to \beta) = 1$. Sin embargo, esto es una contradicción ya que $\sigma(\alpha) = 1$ y $\sigma(\beta) = 0$. Concluímos por contradicción.

Eupongamos por contradicción que $\Sigma_1 \cup \{\alpha\} \models \beta$ y que existe una valuación σ tal que $\sigma(\Sigma_1) = 1$ y $\sigma(\alpha \to \beta) = 0$. Con esta última igualdad obtenemos que $\sigma(\alpha) = 1$ y $\sigma(\beta) = 0$. Sin embargo, la existencia de esta valuación contradice que $\Sigma_1 \cup \{\alpha\} \models \beta$. Concluímos por inducción.