					t3 t3		lω
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\tau_1^{\#1}_{+}\alpha\beta$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\sigma_{1}^{#2} + \alpha \beta = \frac{\sqrt{2}}{k^2 (1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	^{‡2} † αβ	$\tau_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	#	1	1	3	3	3	2	2	21
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$2ik\sigma_0^{\#1}$	$\tau_{1}^{\#2}\alpha + 2ik \sigma_{1}^{\#2}\alpha == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1}^{\#1}\alpha\beta + ik \sigma_{1}^{\#2}\alpha\beta == 0$	$\sigma_{2}^{\#1}\alpha\beta\chi == 0$	$\tau_{2+}^{\#1}\alpha\beta==0$	Total #:

$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}$ \vec{l} kt_3	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 <i>ikt</i> 3 3
$f_{1}^{\#1}{}_{lphaeta}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	k ² t ₂	0	0	0	0
$\omega_1^{\#_+^2}{}_{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	4 <u>7</u> 3	$-\frac{1}{3}$ i kt ₂	0	0	0	0
$\omega_{1}^{\#1}_{+}{}_{\alpha\beta}$	$\omega_{1}^{#1} + \alpha^{\beta} k^{2} (2r_{3} + r_{5}) + \frac{2t_{2}}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}$ \bar{l} $\sqrt{2}$ kt_2	0	0	0	0
	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + ^{lphaeta}$	$f_1^{#1} + \alpha^{\beta}$	$\omega_{1}^{\#_{1}} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} + ^{lpha}$	$f_1^{#2} + \alpha$

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}\dagger$	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{t_2}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_2^{\#1} \dagger^{\alpha\beta}$		0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^+\alpha\beta}^{\#1}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1}$ † $^{\alpha\beta\chi}$	0	0	0

_	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\#1}\dagger$	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0^{+}}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	t_2

Lagrangian density

 $\frac{2}{3}t_{3} \omega_{i}^{\alpha i} \omega_{\kappa\alpha}^{\kappa} + \frac{2}{3}t_{2} \omega_{i}^{\kappa\lambda} \omega_{\kappa\lambda}^{i} + \frac{1}{3}t_{2} \omega_{\kappa\lambda}^{i} \omega_{\kappa\lambda}^{\kappa\lambda} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}^{2} - \frac{1}{2}r_{3}\partial_{i}\omega^{\kappa\lambda}_{\kappa}\partial^{i}\omega_{\lambda}^{\alpha}_{\alpha} - r_{5}\partial_{i}\omega^{\kappa\lambda}_{\kappa}\partial^{i}\omega_{\lambda}^{\alpha}_{\alpha} + \frac{1}{2}r_{3}\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\theta\kappa\lambda} - r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} + r_{5}\partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} - \frac{1}{2}r_{3}\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta} - r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta} + r_{3}\partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta} + 2r_{5}\partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta} + \frac{1}{6}t_{2}\partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{6}t_{2}\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta} + \frac{1}{6}t_{2}\partial^{\alpha}f_{\kappa}\partial^{\kappa}f_{\alpha\lambda}^{\epsilon} - \frac{2}{3}t_{3}\omega_{\kappa\alpha}^{\alpha}\partial^{\kappa}f_{i}^{\epsilon} - \frac{2}{3}t_{3}\partial_{\kappa}f_{\kappa\alpha}\partial^{\kappa}f_{i}^{\epsilon} + \frac{2}{3}t_{3}\partial_{\kappa}f_{\lambda}\partial^{\kappa}f_{i}^{\epsilon} + \frac{1}{3}t_{2}\omega_{i\theta\kappa}\partial^{\kappa}f_{\kappa}^{\epsilon} - \frac{2}{3}t_{3}\omega_{\kappa\alpha}^{\alpha}\partial^{\kappa}f_{\kappa}^{\epsilon} + \frac{2}{3}t_{3}\omega_{\kappa\alpha}\partial^{\kappa}f_{\kappa}^{\epsilon} + \frac{2}{3}t_{3}\omega_{\kappa\alpha}\partial^$

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$

(No massive particles)