# 第二章 运算放大器及其线性应用

——2.2 集成运算放大器

李泳佳 东南大学电子系国家ASIC工程中心 yongjia.li@outlook.com



# 2.2 集成运算放大器



# 本节内容

2.2.1 集成运放的基本特性

2.2.2 理想运放的线性与非线性应用



### ✓ 放大器回顾:

- **前一节课所讲放大器**,以**电流**或者**电压**的形式放大微弱信号
- 能量来自电源, 但经过放大电路内部晶体管控制
- 输入信号形状任意,输出信号应该不失真
- 放大电路可以是**单芯片集成**的,也可以用**分立器件**搭建





### ✓ 系统应用里的芯片与分立器件:

- 电阻, 电容, 电感。。。
- 二极管,三极管, MOS管。。。
- 芯片







### ✓ 为什么要集成?

- 成本, 一颗集成运放芯片价格可能低于一个电阻或者电容!
- 系统体积, 芯片集成度越高系统体积越小
- 加工工艺, 匹配精度更高, 寄生参数更小

### ✓ 为什么还用分立?

- 性能





https://www.ti.com/product/NE5532



- ✓ 集成运算放大器简称**集成运放** 
  - 是几乎所有模拟及数模混合系统的基石
  - 由高增益的多级放大级、驱动级、偏置电路组成

提供电流或电 压偏置以稳定 提供高增益, 工作点 保证运算精度 偏置电压 互补输出级, 差分输入级, 电流源 正负极性输出 抑制共模干扰 差动放大 中间放大 互补输出  $V_{o}$  $V_i$ 输入级 级 级



### ✓ 运放的符号表示:

- 两输入, 一输出
- 国家标准符号, 使用符号
- u和v在本课程通用,都指电压





### ✓ 运放输入输出极性:

- 极性: 直观理解为变化趋势

- **同相输入端**: 同相输入端电压**增加**,输出电压**同方向增加** 

- **反相输入端**: 反相输入端电压**增加**,输出电压**反方向增加 (同向减小)** 





### ✓ 差模信号和共模信号:

- **差模信号**: 大小相等,极性相反, $v_{id} = v_{i1} - v_{i2}$ 

- 共模信号: 大小相等, 极性相同,  $v_{ic} = (v_{i1} + v_{i2})/2$ 







### ✓ 差模信号和共模信号:

- **差模信号**: 大小相等,极性相反, $v_{id} = v_{i1} - v_{i2}$ 

- 共模信号: 大小相等, 极性相同,  $v_{ic} = (v_{i1} + v_{i2})/2$ 





### ✓ 运放的主要指标:

- 开环差模电压放大倍数:

$$A_{od} = \left| \frac{u_0}{u_{id}} \right|_{R_I = \infty}$$

$$A_{od} = \left| \frac{u_0}{u_{id}} \right|_{R_L = \infty} \qquad A_{od}(dB) = 20 \lg \left| \frac{u_0}{u_{id}} \right|_{R_L = \infty}$$

- 开环共模电压放大倍数:

$$A_{oc} = \left| \frac{u_0}{u_{ic}} \right|$$

- 共模抑制比 (CMRR) :  $K_{CMR} = \left| \frac{A_{od}}{A_{col}} \right|$ 

$$K_{CMR} = \left| \frac{A_{od}}{A_{oc}} \right|$$

$$K_{CMR}(dB) = 20 \lg \left| \frac{A_{od}}{A_{oc}} \right|$$

- 输入 (出) 电阻:





### ✓ 理想运放:

-将集成运放的各项技术指标理想化

| 技术指标                 | 理想运放     | 仪表运放OP07 | 音频运放NE5532 |
|----------------------|----------|----------|------------|
| 开环差模增益 Aod           | $\infty$ | 112 dB   | 70 dB      |
| 共模抑制比 CMRR           | $\infty$ | 120 dB   | 100 dB     |
| 输入电阻 R <sub>id</sub> | $\infty$ | 50 MΩ    | 300 kΩ     |
| 输出电阻 R。              | 0        | 60 Ω     | 0.3 Ω      |



### ✓ 线性应用:

- 运放输出电压是输入电压的线性放大:  $V_0 = (V_+ V_-) \times A$
- 输出无限大?





### ✓ 线性区与非线性区:

- 线性区:  $V_0 = (V_+ - V_-) \times A$ 

- **非线性区**:输出饱和,V<sub>O</sub>最高受电源电压V<sub>CC</sub>限制,最低受地gnd限制





### ✓ 虚断:

- 理想运放,流入两输入端的电流为零,开路,称之为虚假开路, "**虚断**"
- 电流的角度理解:
  - 输入电阻无穷大时, 理想运放从信号源抽取的电流为0
  - 运放输入端口流不进电流,就像**断开**一样





### ✓ 虚短 (线性区):

- 理想运放连接为负反馈,两输入端的电压相等,虚假短路,"**虚短**"
- 电压的角度理解:
  - 基于运放**输入输出**关系,**∞放大,输出有限**: V<sub>O</sub>=(V<sub>+</sub>-V<sub>-</sub>)×A
  - 基于运放连接为负反馈的前提:



$$V_{0} = V_{-}$$

$$V_{0} = (V_{+} - V_{-}) \times A$$

$$V_{0} = (V_{+} - V_{0}) \times A$$

$$V_{0} = V_{+} \times \frac{A}{\Delta + 1}$$