$12a_{0800} (K12a_{0800})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle b-u, \\ u^{16} - u^{15} - 6u^{14} + 5u^{13} + 14u^{12} - 8u^{11} - 12u^{10} - u^9 - 6u^8 + 14u^7 + 16u^6 - 6u^5 - 4u^4 - 8u^3 - 4u^2 + a + 2u^{17} - u^{16} + \dots + 4u + 1 \rangle$$

$$I_2^u = \langle u^{29} - 10u^{27} + \dots + b + 1, -u^{28} + 9u^{26} + \dots + a + 1, u^{30} - u^{29} + \dots + 2u - 1 \rangle$$

$$I_3^u = \langle b+1, a, u-1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 48 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layers.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b - u, u^{16} - u^{15} + \dots + a + 2u, u^{17} - u^{16} + \dots + 4u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{16} + u^{15} + \dots + 4u^{2} - 2u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{15} - u^{14} + \dots - 7u^{2} - 4u \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{15} - u^{14} + \dots - 5u^{2} - 4u \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} - 2u^{3} + u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{8} + 3u^{6} - 3u^{4} + 1 \\ -u^{10} + 4u^{8} - 5u^{6} + 3u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{16} + u^{15} + \dots + 4u^{2} - 3u \\ u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-2u^{16} + 6u^{15} + 12u^{14} - 38u^{13} - 32u^{12} + 92u^{11} + 48u^{10} - 78u^9 - 40u^8 - 56u^7 + 132u^5 + 48u^4 - 24u^3 - 40u^2 - 50u - 18$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing	
c_1, c_7, c_9 c_{11}	$u^{17} + 3u^{16} + \dots - 20u - 4$	
c_2, c_8	$u^{17} - 3u^{16} + \dots + 4u - 2$	
$c_3, c_4, c_5 \\ c_6, c_{10}, c_{12}$	$u^{17} - u^{16} + \dots + 4u + 1$	

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_7, c_9 c_{11}	$y^{17} + 19y^{16} + \dots + 8y - 16$		
c_2, c_8	$y^{17} + 3y^{16} + \dots - 20y - 4$		
$c_3, c_4, c_5 \\ c_6, c_{10}, c_{12}$	$y^{17} - 15y^{16} + \dots - 2y - 1$		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.015819 + 0.919296I		
a = 0.01726 - 1.91592I	12.59050 + 3.33698I	-1.74242 - 2.42496I
b = -0.015819 + 0.919296I		
u = -0.015819 - 0.919296I		
a = 0.01726 + 1.91592I	12.59050 - 3.33698I	-1.74242 + 2.42496I
b = -0.015819 - 0.919296I		
u = -1.25414		
a = -3.12432	-6.31627	-14.3970
b = -1.25414		
u = -1.245520 + 0.229336I		
a = -1.37037 - 2.30613I	-3.83323 + 4.04550I	-10.81210 - 4.36543I
b = -1.245520 + 0.229336I		
u = -1.245520 - 0.229336I		
a = -1.37037 + 2.30613I	-3.83323 - 4.04550I	-10.81210 + 4.36543I
b = -1.245520 - 0.229336I		
u = -0.080998 + 0.665320I		
a = 0.12402 - 1.59512I	3.24651 + 2.33383I	-1.26781 - 4.48047I
b = -0.080998 + 0.665320I		
u = -0.080998 - 0.665320I		
a = 0.12402 + 1.59512I	3.24651 - 2.33383I	-1.26781 + 4.48047I
b = -0.080998 - 0.665320I		
u = 1.346580 + 0.091150I		
a = 1.77757 - 0.81741I	-10.21630 - 3.30364I	-18.3839 + 4.0252I
b = 1.346580 + 0.091150I		
u = 1.346580 - 0.091150I		
a = 1.77757 + 0.81741I	-10.21630 + 3.30364I	-18.3839 - 4.0252I
b = 1.346580 - 0.091150I		
u = 1.324670 + 0.275245I		
a = 0.89163 - 1.84476I	-5.62027 - 9.18761I	-13.0093 + 8.4138I
b = 1.324670 + 0.275245I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.324670 - 0.27524	5I	
a = 0.89163 + 1.84476I	-5.62027 + 9.18761I	-13.0093 - 8.4138I
b = 1.324670 - 0.27524	5I	
u = -1.289570 + 0.43438	91	
a = -0.19449 - 2.10821I	4.65712 + 6.34473I	-8.38113 - 3.64612I
b = -1.289570 + 0.43438	9I	
u = -1.289570 - 0.43438	91	
a = -0.19449 + 2.10821I	4.65712 - 6.34473I	-8.38113 + 3.64612I
b = -1.289570 - 0.43438	9I	
u = 1.316590 + 0.43636	4I	
a = 0.18956 - 2.01627I	4.26790 - 13.04860I	-8.96446 + 7.94392I
b = 1.316590 + 0.43636	4I	
u = 1.316590 - 0.43636	4I	
a = 0.18956 + 2.01627I	4.26790 + 13.04860I	-8.96446 - 7.94392I
b = 1.316590 - 0.43636	4I	
u = -0.228864 + 0.24048	6I	
a = 0.626966 - 0.76243	4I - 0.289179 + 0.793664I	-7.24014 - 8.54497I
b = -0.228864 + 0.24048	6I	
u = -0.228864 - 0.24048	61	
a = 0.626966 + 0.76243	$4I \mid -0.289179 - 0.793664I$	-7.24014 + 8.54497I
b = -0.228864 - 0.24048	6I	

$$II. \\ I_2^u = \langle u^{29} - 10u^{27} + \dots + b + 1, \ -u^{28} + 9u^{26} + \dots + a + 1, \ u^{30} - u^{29} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u\\-u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1\\-u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{28} - 9u^{26} + \dots - 5u - 1\\-u^{29} + 10u^{27} + \dots - u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} - 2u\\-u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{27} - 10u^{25} + \dots - 16u^{2} - 6u\\-u^{29} + 9u^{27} + \dots + u - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{25} + 8u^{23} + \dots - 5u - 1\\-2u^{29} + 19u^{27} + \dots + u - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} - 2u^{3} + u\\u^{7} - 3u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{8} + 3u^{6} - 3u^{4} + 1\\-u^{10} + 4u^{8} - 5u^{6} + 3u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{22} - 7u^{20} + \dots - 4u - 1\\-2u^{29} + 20u^{27} + \dots + u - 2 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$=4u^{29}-40u^{27}-4u^{26}+176u^{25}+36u^{24}-416u^{23}-140u^{22}+476u^{21}+280u^{20}+56u^{19}-228u^{18}-892u^{17}-176u^{16}+920u^{15}+540u^{14}+112u^{13}-300u^{12}-784u^{11}-236u^{10}+296u^{9}+284u^{8}+240u^{7}+20u^{6}-112u^{5}-76u^{4}-48u^{3}-12u^{2}-2$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7, c_9 c_{11}	$(u^{15} + 3u^{14} + \dots + 8u^2 - 1)^2$
c_2, c_8	$(u^{15} + u^{14} + \dots + 2u + 1)^2$
$c_3, c_4, c_5 \\ c_6, c_{10}, c_{12}$	$u^{30} - u^{29} + \dots + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1, c_7, c_9 c_{11}	$(y^{15} + 19y^{14} + \dots + 16y - 1)^2$	
c_2, c_8	$(y^{15} + 3y^{14} + \dots + 8y^2 - 1)^2$	
$c_3, c_4, c_5 \\ c_6, c_{10}, c_{12}$	$y^{30} - 21y^{29} + \dots - 16y + 1$	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.003710 + 0.352470I		
a = -0.310106 + 0.106023I	-3.26563 - 1.73642I	-11.57231 + 4.08118I
b = 1.197040 + 0.205439I		
u = -1.003710 - 0.352470I		
a = -0.310106 - 0.106023I	-3.26563 + 1.73642I	-11.57231 - 4.08118I
b = 1.197040 - 0.205439I		
u = -0.039142 + 0.923066I		
a = -1.25369 + 1.52176I	8.49724 + 8.19235I	-5.30498 - 5.35870I
b = 1.299550 - 0.440363I		
u = -0.039142 - 0.923066I		
a = -1.25369 - 1.52176I	8.49724 - 8.19235I	-5.30498 + 5.35870I
b = 1.299550 + 0.440363I		
u = 0.006457 + 0.907657I		
a = 1.26734 + 1.55206I	8.68612 - 1.54935I	-4.90398 + 0.66420I
b = -1.275180 - 0.450373I		
u = 0.006457 - 0.907657I		
a = 1.26734 - 1.55206I	8.68612 + 1.54935I	-4.90398 - 0.66420I
b = -1.275180 + 0.450373I		
u = -1.09543		
a = 0.681427	-2.03422	-3.51620
b = 0.231455		
u = -1.144780 + 0.271378I		
a = 0.776168 + 0.778536I	0.109911 + 1.108490I	-4.48602 - 0.68443I
b = 0.050886 - 0.582477I		
u = -1.144780 - 0.271378I		
a = 0.776168 - 0.778536I	0.109911 - 1.108490I	-4.48602 + 0.68443I
b = 0.050886 + 0.582477I		
u = 1.197040 + 0.205439I		
a = 0.192214 - 0.213199I	-3.26563 - 1.73642I	-11.57231 + 4.08118I
b = -1.003710 + 0.352470I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.197040 - 0.205439I		
a = 0.192214 + 0.213199I	-3.26563 + 1.73642I	-11.57231 - 4.08118I
b = -1.003710 - 0.352470I		
u = 1.245200 + 0.056118I		
a = -0.303735 + 0.483850I	-4.53214 - 1.75942I	-14.8508 + 5.0146I
b = -0.497721 - 0.447731I		
u = 1.245200 - 0.056118I		
a = -0.303735 - 0.483850I	-4.53214 + 1.75942I	-14.8508 - 5.0146I
b = -0.497721 + 0.447731I		
u = -0.191672 + 0.711539I		
a = -0.90899 + 1.57838I	-0.87635 + 5.68434I	-7.79510 - 7.47679I
b = 1.261970 - 0.268055I		
u = -0.191672 - 0.711539I		
a = -0.90899 - 1.57838I	-0.87635 - 5.68434I	-7.79510 + 7.47679I
b = 1.261970 + 0.268055I		
u = 1.261970 + 0.268055I		
a = -0.566534 + 0.872590I	-0.87635 - 5.68434I	-7.79510 + 7.47679I
b = -0.191672 - 0.711539I		
u = 1.261970 - 0.268055I		
a = -0.566534 - 0.872590I	-0.87635 + 5.68434I	-7.79510 - 7.47679I
b = -0.191672 + 0.711539I		
u = -0.497721 + 0.447731I		
a = -0.134683 + 1.055100I	-4.53214 + 1.75942I	-14.8508 - 5.0146I
b = 1.245200 - 0.056118I		
u = -0.497721 - 0.447731I		
a = -0.134683 - 1.055100I	-4.53214 - 1.75942I	-14.8508 + 5.0146I
b = 1.245200 + 0.056118I		
u = -1.256250 + 0.462320I		
a = -0.578274 - 0.179714I	4.73497 - 3.25615I	-8.32867 + 2.40088I
b = 1.279350 + 0.437720I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.256250 - 0.462320I		
a = -0.578274 + 0.179714I	4.73497 + 3.25615I	-8.32867 - 2.40088I
b = 1.279350 - 0.437720I		
u = 1.279350 + 0.437720I		
a = 0.556509 - 0.222909I	4.73497 - 3.25615I	-8.32867 + 2.40088I
b = -1.256250 + 0.462320I		
u = 1.279350 - 0.437720I		
a = 0.556509 + 0.222909I	4.73497 + 3.25615I	-8.32867 - 2.40088I
b = -1.256250 - 0.462320I		
u = -1.275180 + 0.450373I		
a = 0.690774 + 1.153910I	8.68612 + 1.54935I	-4.90398 - 0.66420I
b = 0.006457 - 0.907657I		
u = -1.275180 - 0.450373I		
a = 0.690774 - 1.153910I	8.68612 - 1.54935I	-4.90398 + 0.66420I
b = 0.006457 + 0.907657I		
u = 1.299550 + 0.440363I		
a = -0.651100 + 1.156960I	8.49724 - 8.19235I	-5.30498 + 5.35870I
b = -0.039142 - 0.923066I		
u = 1.299550 - 0.440363I		
a = -0.651100 - 1.156960I	8.49724 + 8.19235I	-5.30498 - 5.35870I
b = -0.039142 + 0.923066I		
u = 0.050886 + 0.582477I		
a = 0.99593 + 1.97518I	0.109911 - 1.108490I	-4.48602 + 0.68443I
b = -1.144780 - 0.271378I		
u = 0.050886 - 0.582477I		
a = 0.99593 - 1.97518I	0.109911 + 1.108490I	-4.48602 - 0.68443I
b = -1.144780 + 0.271378I		
u = 0.231455		
a = -3.22507	-2.03422	-3.51620
b = -1.09543		

III.
$$I_3^u = \langle b+1, \ a, \ u-1 \rangle$$

(i) Arc colorings

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
$c_1, c_2, c_7 \\ c_8, c_9, c_{11}$	u		
c_3, c_4, c_{10}	u+1		
c_5, c_6, c_{12}	u-1		

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
$c_1, c_2, c_7 \\ c_8, c_9, c_{11}$	y		
$c_3, c_4, c_5 \\ c_6, c_{10}, c_{12}$	y-1		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0	-3.28987	-12.0000
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7, c_9 c_{11}	$u(u^{15} + 3u^{14} + \dots + 8u^2 - 1)^2(u^{17} + 3u^{16} + \dots - 20u - 4)$
c_2, c_8	$u(u^{15} + u^{14} + \dots + 2u + 1)^{2}(u^{17} - 3u^{16} + \dots + 4u - 2)$
c_3, c_4, c_{10}	$(u+1)(u^{17}-u^{16}+\cdots+4u+1)(u^{30}-u^{29}+\cdots+2u-1)$
c_5, c_6, c_{12}	$(u-1)(u^{17}-u^{16}+\cdots+4u+1)(u^{30}-u^{29}+\cdots+2u-1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7, c_9 c_{11}	$y(y^{15} + 19y^{14} + \dots + 16y - 1)^{2}(y^{17} + 19y^{16} + \dots + 8y - 16)$
c_2, c_8	$y(y^{15} + 3y^{14} + \dots + 8y^2 - 1)^2(y^{17} + 3y^{16} + \dots - 20y - 4)$
$c_3, c_4, c_5 \\ c_6, c_{10}, c_{12}$	$(y-1)(y^{17}-15y^{16}+\cdots-2y-1)(y^{30}-21y^{29}+\cdots-16y+1)$