Scilab Textbook Companion for Digital Signal Processing: A Modern Introduction by A. Ashok¹

Created by
Edulakante Nagarjun Reddy
B.Tech (pursing)
Electronics Engineering
NIT Surat(SVNIT)
College Teacher
Jigisha Patel
Cross-Checked by
K. Suryanarayan, IITB

May 16, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Digital Signal Processing: A Modern Introduction

Author: A. Ashok

Publisher: Cenage Learning India Private Limited

Edition: 5

Year: 2010

ISBN: 81-315-0179-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
2	Discrete Signals	6
3	Response of Digital Filters	17
4	z Transform Analysis	39
5	Frequency Domain Analysis	45
6	Filter Concepts	69
7	Digital Processing of Analog Signals	81
8	The Discrete Fourier Transform and its Applications	93
9	Design of IIR Filters	115
10	Design of FIR filters	135

List of Scilab Codes

Exa 2.1a	Signal energy and power	6
Exa 2.1b	Average power of periodic signals	6
Exa 2.1c	Average power of periodic signals	7
Exa 2.2	Operations on Discrete Signals	7
Exa 2.3a	Even and Odd parts of Discrete signals	9
Exa 2.3b	Even and Odd parts of Discrete signals	10
Exa 2.4a	Decimation and Interpolation of Discrete signals	11
Exa 2.4b	Decimation and Interpolation of Discrete signals	13
Exa 2.4c	Decimation and Interpolation of Discrete signals	13
Exa 2.4d	Decimation and Interpolation of Discrete signals	14
Exa 2.5	Describing Sequences and signals	14
Exa 2.6	Discrete time Harmonics and Periodicity	14
Exa 2.7	Aliasing and its effects	15
Exa 2.8	Signal Reconstruction	16
Exa 3.5	FIR filter response	17
Exa 3.19a	Analytical Evaluation of Discrete Convolution	17
Exa 3.19b	Analytical Evaluation of Discrete Convolution	19
Exa 3.19c	Analytical Evaluation of Discrete Convolution	20
Exa 3.20a	Properties of Convolution	22
Exa 3.20b	Properties of Convolution	23
Exa 3.21a	Convolution of finite length Signals	24
Exa 3.21b	Convolution of finite length Signals	25
Exa 3.21c	Convolution of finite length Signals	26
Exa 3.22	Convolution of finite length Signals	28
Exa 3.23	effect of Zero Insertion, Zero Padding on convol	30
Exa 3.25	Stability and Causality	32
Exa 3.26	Response to Periodic Inputs	33
Exa 3.27	Periodic Extension	34

Exa 3.28	System Response to Periodic Inputs	34
Exa 3.29		35
Exa 3.30		35
Exa 3.32		36
Exa 3.33	Autocorrelation and Cross Correlation	36
Exa 3.35	Periodic Autocorrelation and Cross Correlation	37
Exa 4.1b	z transform of finite length sequences	39
Exa 4.4a	Pole Zero Plots	39
Exa 4.4b		40
Exa 4.8	Stability of Recursive Filters	40
Exa 4.9	Inverse Systems	41
Exa 4.10		42
Exa 4.11		42
Exa 4.12	Inverse transform of Right sided sequences	43
Exa 4.20	z Transform of Switched periodic Signals	43
Exa 5.1c	DTFT from Defining Relation	45
Exa 5.3a	Some DTFT pairs using properties	47
Exa 5.3b		50
Exa 5.3d		53
Exa 5.3e		55
Exa 5.4		58
Exa 5.5		59
Exa 5.7		60
Exa 5.8a	The DTFT in System Analysis	62
Exa 5.8b	The DTFT in System Analysis	63
Exa 5.9a		64
Exa 5.9b	DTFT and steady state response	65
Exa 5.10a		66
Exa 5.10b		67
Exa 6.1	The Minimum Phase Concept	69
Exa 6.4	Linear Phase Filters	70
Exa 6.6		71
Exa 6.7a		73
Exa 6.7b	Filters and Pole Zero Plots	74
Exa 6.8		75
Exa 6.9		77
Exa 7.3	<u> </u>	81
Exa 7.4		82

Exa 7.6	Signal Reconstruction from Samples 83
Exa 7.7	Zero Interpolation and Spectrum Replication 84
Exa 7.8	Up Sampling and Filtering 85
Exa 7.9	Quantisation Effects
Exa 7.10	ADC considerations
Exa 7.11	Anti Aliasing Filter Considerations
Exa 7.12	Anti Imaging Filter Considerations 91
Exa 8.1	DFT from Defining Relation
Exa 8.2	The DFT and conjugate Symmetry 93
Exa 8.3	Circular Shift and Flipping
Exa 8.4	Properties of DFT
Exa 8.5a	Properties of DFT
Exa 8.5b	Properties of DFT
Exa 8.5c	Properties of DFT
Exa 8.6	Signal and Spectrum Replication
Exa 8.7	Relating DFT and DTFT
Exa 8.8	Relating DFT and DTFT
Exa 8.9a	The DFT and DFS of sinusoids
Exa 8.9b	The DFT and DFS of sinusoids 101
Exa 8.9c	The DFT and DFS of sinusoids 102
Exa 8.9d	The DFT and DFS of sinusoids 103
Exa 8.10	DFS of sampled Periodic Signals 105
Exa 8.11	The effects of leakage
Exa 8.15a	Methods to find convolution
Exa 8.15b	Methods to find convolution
Exa 8.16	Signal Interpolation using FFT 109
Exa 8.17	The Concept of Periodogram
Exa 8.18	DFT from matrix formulation
Exa 8.19	Using DFT to find IDFT
Exa 8.20	Decimation in Frequency FFT algorithm
Exa 8.21	Decimation in time FFT algorithm
Exa 8.22	4 point DFT from 3 point sequence
Exa 8.23	3 point IDFT from 4 point DFT
Exa 8.24	The importance of Periodic Extension
Exa 9.1	Response Invariant Mappings
Exa 9.2	Impulse Invariant Mappings
Exa 9.3ab	Modified Impulse Invariant Design
	Modified Impulse Invariant Design 119

Exa 9.5	Mappings from Difference Algorithms	120
Exa 9.6	Mappings From Integration Algorithms	121
Exa 9.7	DTFT of Numerical Algorithms	121
Exa 9.8a	a Bilinear Transformation	122
Exa 9.81	b Bilinear Transformation	124
Exa 9.9	D2D transformations	126
Exa 9.10	0a Bilinear Design of Second Order Filters	127
Exa 9.10	0b Bilinear Design of Second Order Filters	129
Exa 9.10	0c Bilinear Design of Second Order Filters	130
Exa 9.13	1 Interference Rejection	131
Exa 9.12	2 IIR Filter Design	133
Exa 10.2	2 Truncation and Windowing	135
Exa 10.3	3ab FIR lowpass Filter design	136
Exa 10.3	3cd FIR filter Design	137
Exa 10.4	4a Half Band lowpass FIR filter Design	140
Exa 10.4	4b Half Band bandstop FIR filter Design	142
Exa 10.5	5a Design by Frequency Sampling	144
Exa 10.5	5b Design by Frequency Sampling	146
Exa 10.6	6a Optimal FIR Bandstop Filter Design	148
Exa 10.6	6b Optimal Half Band Filter Design	149
Exa 10.	7 Multistage Interpolation	150
Exa 10.8	8 Design of Interpolating Filters	152
Exa 10.9	9 Multistage Decimation	153
Exa 10.3		154
AP 1	Alias Frequency	155

List of Figures

2.1	Operations on Discrete Signals
2.2	Even and Odd parts of Discrete signals
2.3	Even and Odd parts of Discrete signals
2.4	Even and Odd parts of Discrete signals
2.5	Even and Odd parts of Discrete signals
3.1	Analytical Evaluation of Discrete Convolution
3.2	Analytical Evaluation of Discrete Convolution
3.3	Analytical Evaluation of Discrete Convolution
3.4	Analytical Evaluation of Discrete Convolution
3.5	Analytical Evaluation of Discrete Convolution
3.6	Analytical Evaluation of Discrete Convolution
3.7	Convolution of finite length Signals
3.8	Convolution of finite length Signals
3.9	Convolution of finite length Signals
3.10	
3.11	Convolution of finite length Signals
3.12	Convolution of finite length Signals
3.13	Convolution of finite length Signals
3.14	Convolution of finite length Signals
4.1	Pole Zero Plots
4.2	Pole Zero plots
5.1	DTFT from Defining Relation
5.2	DTFT from Defining Relation
5.3	Some DTFT pairs using properties
5.4	Some DTFT pairs using properties
5.5	Some DTFT pairs using properties

5.6	Some DTFT pairs using properties
5.7	Some DTFT pairs using properties
5.8	Some DTFT pairs using properties
5.9	Some DTFT pairs using properties
5.10	DTFT of periodic Signals
	DTFT of periodic Signals 60
	Frequency Response of Recursive Filter 61
	The DTFT in System Analysis 62
	The DTFT in System Analysis 63
5.15	DTFT and steady state response 65
5.16	System Representation in various forms
5.17	System Representation in various forms
6.1	The Minimum Phase Concept
6.2	Linear Phase Filters
6.3	Linear Phase Filters
6.4	Frequency Response and Filter characteristics
6.5	Filters and Pole Zero Plots
6.6	Filters and Pole Zero Plots
6.7	Filters and Pole Zero Plots
6.8	Filters and Pole Zero Plots
6.9	Digital resonator Design
6.10	Digital resonator Design
	Periodic Notch Filter Design
6.12	Periodic Notch Filter Design
7.1	1 0 1 0
7.2 7.3	
7.4	Zero Interpolation and Spectrum Replication
7.5	
7.6 7.7	Up Sampling and Filtering
1.1	And imaging ritter Considerations
8.1	The DFT and DFS of sinusoids 100
8.2	The DFT and DFS of sinusoids
8.3	The DFT and DFS of sinusoids
8.4	The DFT and DFS of sinusoids

8.5	The DFT and DFS of sinusoids
8.6	The DFT and DFS of sinusoids
8.7	The DFT and DFS of sinusoids
8.8	The DFT and DFS of sinusoids 106
8.9	The effects of leakage
8.10	The effects of leakage
8.11	Signal Interpolation using FFT
9.1	Response Invariant Mappings
9.2	Response Invariant Mappings
9.3	Modified Impulse Invariant Design
9.4	DTFT of Numerical Algorithms
9.5	DTFT of Numerical Algorithms
9.6	Bilinear Transformation
9.7	Bilinear Transformation
9.8	D2D transformations
9.9	Bilinear Design of Second Order Filters
9.10	Bilinear Design of Second Order Filters
9.11	Bilinear Design of Second Order Filters
9.12	Interference Rejection
9.13	IIR Filter Design
	FIR lowpass Filter design
	FIR lowpass Filter design
	FIR filter Design
	FIR filter Design
	Half Band lowpass FIR filter Design
	Half Band lowpass FIR filter Design
	Half Band bandstop FIR filter Design
	Half Band bandstop FIR filter Design
	Design by Frequency Sampling
	Design by Frequency Sampling
	Optimal FIR Bandstop Filter Design
10.12	2Optimal Half Band Filter Design

Chapter 2

Discrete Signals

Scilab code Exa 2.1a Signal energy and power

```
1 //example 2.1.a,pg no.11
2 for i=1:1:50
3     x(1,i)=3*(0.5)^(i-1);
4 end
5 //summation of x
6 E=0
7 for i=1:1:50
8     E=E+x(1,i)^2;
9 end
10 disp("the energy of given signal is")
11 E
```

Scilab code Exa 2.1b Average power of periodic signals

```
1 //example 2.1b,pg.no.11
2 n=1:1:10;
3 xn=6*cos((2*%pi*n')/4);
4 a=4;
```

```
5 p=0;
6 for i=1:1:a
7    p=p+abs(xn(i)^2);
8 end
9 P=p/a;
10 disp("The average power of given signal is")
11 P
```

Scilab code Exa 2.1c Average power of periodic signals

```
//example 2.1c,pg.no.11
n=1:4;
xn=6*%e^((%i*%pi*n')/2);
a=4;
p=0;
for i=1:1:a
    p=p+abs(xn(i)^2);
end
P=p/a;
disp("The average power of given signal is")
P
```

Scilab code Exa 2.2 Operations on Discrete Signals

```
1 //example 2.2,pg no.12
2 x=[0 2 3 4 5 6 7];
3 n1=-3:1:3;
4 y=x;
5 n2=0:1:6;
6 f=x;
7 n3=-5:1:1;
```


Figure 2.1: Operations on Discrete Signals

```
8 g=x(length(x):-1:1);
9 n4 = -3:1:3;
10 h=x(length(x):-1:1);
11 n5 = -2:1:4;
12 s=x(length(x):-1:1);
13 n6=-5:1:1;
14 a=gca();
15 subplot (231);
16 plot2d3('gnn',n1,x);
17 ylabel('x[n]');
18 subplot (232);
19 plot2d3('gnn',n2,y);
20 ylabel('y[n]=x[n-3]');
21 subplot (233);
22 plot2d3('gnn',n3,f);
23 ylabel('f[n]=x[n+2]');
24 subplot (234);
25 plot2d3('gnn',n4,g);
26 ylabel('g[n]=x[-n]');
27 subplot (235);
```

```
28 plot2d3('gnn',n5,h);
29 ylabel('h[n]=x[-n+1]');
30 subplot(236);
31 plot2d3('gnn',n6,s);
32 ylabel('s[n]=x[-n-2]');
```

Scilab code Exa 2.3a Even and Odd parts of Discrete signals

```
1 //example 2.3a pg.no.14
2 clear; clc; close;
3 n = -2:2;
4 \times 1 = [4 -2 4 -6 0];
5 x2=0.5*x1//x[n]
6 x3=0.5*[x1(length(x1):-1:1)];//x[-n]
7 xe=(x2+x3);//even part
8 \text{ xo} = (x2-x3); // \text{odd part}
9 a=gca();
10 a.thickness=2;
11 a.x_location="middle";
12 a.y_location="middle";
13 plot2d3('gnn',n,xe,rect=[-4 -6 4 6])
14 xtitle('graphical representation of even part of x[n
      ] ', 'n', 'x[n]')
15 xset ('window',1)
16 b=gca();
17 b.thickness=2;
18 b.y_location="middle";
19 b.x_location="middle";
20 plot2d3('gnn',n,xo,rect=[-2 -4 2 4])
21 xtitle ('graphical representation of odd part of x[n]
      ', 'n', 'x[n]')
```


Figure 2.2: Even and Odd parts of Discrete signals

Scilab code Exa 2.3b Even and Odd parts of Discrete signals

```
1 //example 2.3a pg.no.14
2 clear; clc; close;
3 x1=[0 0 0 0 0 1 1 1 1 ];
4 n=-4:4;
5 x2=0.5*x1//x[n]
6 x3=0.5*[x1(length(x1):-1:1)]//x[-n]
7 xe=(x2+x3); //even part
8 xo=(x2-x3); //odd part
9 a=gca();
10 a.thickness=2;
11 a.y_location="middle";
12 a.x_location="middle";
13 plot2d3('gnn',n,xe,rect=[-4 -1 4 1]);
```


Figure 2.3: Even and Odd parts of Discrete signals

Scilab code Exa 2.4a Decimation and Interpolation of Discrete signals

```
1 //example 2.4a pg.no.17
```


Figure 2.4: Even and Odd parts of Discrete signals

Figure 2.5: Even and Odd parts of Discrete signals

```
2 x=[1 2 5 -1];
3 xm=2;//denotes 2nd sample has pad.
4 y=[x(1:2:xm-2),x(xm:2:length(x))]//decimation
5 h=[x(1:1/3:length(x))]//step interpolated
6 g=h;
7 for i=2:3
8     g(i:3:length(g))=0;
9 end
10 //zero interpolated
11 x1=1:3:3*length(x);
12 s=interpln([x1;x],1:10)//linear interpolated
```

Scilab code Exa 2.4b Decimation and Interpolation of Discrete signals

```
1 //example 2.4 b,c.pg.no.17
2 x=[3 4 5 6];
3 xm=3;//denotes 3rd sample has pad
4 xm=xm-1;//shifting
5 g=[x(xm-2:-2:1),x(xm:2:length(x))]//decimation
6 xm=3;
7 h=[x(1:1/2:length(x))]//step interpolated
```

Scilab code Exa 2.4c Decimation and Interpolation of Discrete signals

```
//example 2.4c,pg.no.17
x=[3 4 5 6];
xm=3;
xm=xm+1*(xm-1);//shift in pad due to interpolation
xm=xm-2//normal shifting
x1=[x(1:1/3:length(x))]//step interpolated
xm=3;
xm=xm+2*(xm-1)//shift in pad due to interpolation
y=[x1(1:2:xm-2),x1(xm:2:length(x1))]//decimation
```

Scilab code Exa 2.4d Decimation and Interpolation of Discrete signals

```
1 //example 2.4d,pg.no.17
2 x=[2 4 6 8]
3 xm=3;//denote 3rd sample has pad
4 x1=[1 3 5 7]
5 x2=interpln([x1;x],1:6)
6 xm=xm+1*(xm-1);//shift in pad due to interpolation
7 xm=xm-1//shift in pad due to delay
8 y=[x2(2:2:xm-2),x2(xm:2:length(x2))]//decimation
```

Scilab code Exa 2.5 Describing Sequences and signals

```
1 //example 2.5,pg.no.20
2 x=[1 2 4 8 16 32 64];
3 y=[0 0 0 1 0 0 0];
4 z=x.*y;
5 a=0;
6 for i=1:length(z)
7     a=a+z(i);
8 end
9 z,a//a=summation of z
```

Scilab code Exa 2.6 Discrete time Harmonics and Periodicity

```
1 //example 2.6 pg.no.23
2 function[p]=period(x)
3 for i=2:length(x)
4 v=i
```

```
if (abs(x(i)-x(1))<0.00001)
5
6
             k=2
             for j=i+1:i+i
7
                  if (abs(x(j)-x(k))<0.00001)
8
9
                       v = v + 1
10
                  end
11
             k=k+1;
12
             end
13
         end
14
        if (v==(2*i)) then
15
             break
16
        end
17 end
18 p = i - 1
19 endfunction
20 for i=1:60
21
        x1(i) = \cos((2*\%pi*8*i)/25);
22 \text{ end}
23 \text{ for } i=1:60
        x2(i) = exp(\%i*0.2*i*\%pi) + exp(-\%i*0.3*i*\%pi);
24
25 end
26 \text{ for } i=1:45
        x3(i)=2*cos((40*\%pi*i)/75)+sin((60*\%pi*i)/75);
27
28 end
29 \text{ period}(x1)
30 \text{ period}(x2)
31 period(x3)
```

check Appendix AP 1 for dependency:

Aliasfrequency.sci

Scilab code Exa 2.7 Aliasing and its effects

```
1 //example 2.7.pg.no.27
2 f=100;
```

```
3 s = 240;
4 s1=s;
5 aliasfrequency(f,s)
6 \text{ s} = 140;
7 s1=s;
8 aliasfrequency(f,s,s1)
9 s = 90;
10 \text{ s1=s};
11 aliasfrequency(f,s,s1)
12 \text{ s} = 35;
13 \text{ s1=s};
14 aliasfrequency(f,s,s1)
      check Appendix AP 1 for dependency:
      Aliasfrequency.sci
   Scilab code Exa 2.8 Signal Reconstruction
1 f=100;
2 s = 210;
3 s1=420;
4 aliasfrequency(f,s,s1)
5 s = 140;
6 aliasfrequency(f,s,s1)
```

Chapter 3

Response of Digital Filters

Scilab code Exa 3.5 FIR filter response

```
1 //Response of non-recursive Filters
2 for i=1:4
3     x(i)=0.5^i;
4 end
5 x1=[0;1;x(1:2)]
6 for i=1:4
7     y(i)=2*x(i)-3*x1(i);
8 end
9 y(1),y(2)
```

Scilab code Exa 3.19a Analytical Evaluation of Discrete Convolution

```
1 // Analytical evaluation of Discrete Convolution
2 clear; close; clc;
3 max_limit=10;
4 h=ones(1,max_limit);
5 n2=0:length(h)-1;
6 x=h;
```


Figure 3.1: Analytical Evaluation of Discrete Convolution

```
7 n1 = -length(x) + 1:0;
8 y = convol(x,h);
9 n=-length(x)+1:length(h)-1;
10 a=gca();
11 subplot(211);
12 plot2d3('gnn',n2,h)
13 xtitle('impulse Response', 'n', 'h[n]');
14 a.thickness=2;
15 a.y_location="origin";
16 subplot (212);
17 plot2d3('gnn',n1,x)
18 a.y_location="origin";
19 xtitle('input response', 'n', 'x[n]');
20 xset("window",1);
21 a=gca();
22 plot2d3('gnn',n,y)
23 xtitle('output response', 'n', 'y[n]');
```


Figure 3.2: Analytical Evaluation of Discrete Convolution

Scilab code Exa 3.19b Analytical Evaluation of Discrete Convolution

```
1 clear; close; clc;
2 max_limit=10;
3 for n=1:max_limit
4     h(n)=(0.4)^n;
5 end
6 n2=0:length(h)-1;
7 for n=1:max_limit
8     x(n)=(0.8)^n;
9 end
10 n1=-length(x)+1:0;
11 y=convol(x,h)
12 n=-length(x)+1:length(h)-1;
13 a=gca();
```


Figure 3.3: Analytical Evaluation of Discrete Convolution

Figure 3.4: Analytical Evaluation of Discrete Convolution

Scilab code Exa 3.19c Analytical Evaluation of Discrete Convolution

```
1 // Analytical Evaluation of Discrete convolution
2 clear; close; clc;
3 max_limit=5;
4 h(1)=0;
5 for n=2:max_limit
6
       h(n) = 0.8^n;
7 end
8 n2=0:length(h)-1;
9 x = [0 \text{ ones} (1: max\_limit)]
10 n1 = -length(x) + 1:0;
11 y = convol(x,h);
12 n=-length(x)+1:length(h)-1;
13 a=gca();
14 subplot (211);
15 plot2d3('gnn',n2,h)
16 xtitle('impulse Response', 'n', 'h[n]');
17 a.thickness=2;
18 a.y_location="origin";
```


Figure 3.5: Analytical Evaluation of Discrete Convolution

```
19    a=gca();
20    subplot(212);
21    plot2d3('gnn',n1,x)
22    a.y_location="origin";
23    xtitle('input response','n','x[n]');
24    xset("window",1);
25    a=gca();
26    plot2d3('gnn',n,y)
27    a.y_location="origin";
28    a.x_location="origin";
29    xtitle('output response','n','y[n]');
```

Scilab code Exa 3.20a Properties of Convolution

Figure 3.6: Analytical Evaluation of Discrete Convolution

```
1 // properties of convolution
2 x=[1 2 3 4 5];
3 h=[1 zeros(1:5)];
4 a=convol(x,h);
5 b=convol(h,x);
6 a==b
```

Scilab code Exa 3.20b Properties of Convolution

```
1 //Convolution with Step Function
2 x=[1 2 3 4 5];
3 h=[ones(1:5)];
4 a=convol(h,x);
5 b(1)=a(1);
6 for i=2:length(x)
7 b(i)=b(i-1)+x(i);
8 end
```

```
9 disp(a(1:length(x)),b,'Step Response is running sum of impulses can be seen below');
```

Scilab code Exa 3.21a Convolution of finite length Signals

```
1 //convolution of finite length signals
2 clear; close; clc;
3 max_limit=10;
4 h = [1 2 2 3];
5 n2=0:length(h)-1;
6 x = [2 -1 3];
7 \text{ n1=0:} length(x)-1;
8 y = convol(x,h);
9 \text{ n=0:length(h)+length(x)-2;}
10 a=gca();
11 subplot (211);
12 plot2d3('gnn',n2,h)
13 xtitle('impulse Response', 'n', 'h[n]');
14 a.thickness=2;
15 a.y_location="origin";
16 a=gca();
17 subplot (212);
18 plot2d3('gnn',n1,x)
19 a.y_location="origin";
20 a.x_location="origin";
21 xtitle('input response', 'n', 'x[n]');
22 xset("window",2);
23 a=gca();
24 plot2d3('gnn',n,y)
25 a.y_location="origin";
26 xtitle('output response', 'n', 'y[n]');
```


Figure 3.7: Convolution of finite length Signals

Scilab code Exa 3.21b Convolution of finite length Signals

```
1 clear; close; clc;
2 max_limit=10;
3 h=[2 5 0 4];
4 n2=-2:length(h)-3;
5 x=[4 1 3];
6 n1=-1:length(x)-2;
7 y=convol(x,h);
8 n=-3:length(x)+length(h)-5;
9 a=gca();
10 subplot(211);
11 plot2d3('gnn',n2,h)
12 xtitle('impulse Response', 'n', 'h[n]');
13 a.thickness=2;
```


Figure 3.8: Convolution of finite length Signals

```
14 a.y_location="origin";
15 a=gca();
16 subplot(212);
17 plot2d3('gnn',n1,x)
18 a.y_location="origin";
19 xtitle('input response', 'n', 'x[n]');
20 xset("window",1);
21 a=gca();
22 plot2d3('gnn',n,y)
23 a.y_location="origin";
24 a.x_location="origin";
25 xtitle('output response', 'n', 'y[n]');
```

 ${\bf Scilab\ code\ Exa\ 3.21c\ } {\bf Convolution\ of\ finite\ length\ Signals}$

Figure 3.9: Convolution of finite length Signals

Figure 3.10: Convolution of finite length Signals

```
1 clear; close; clc;
2 max_limit=10;
3 h = [1/2 1/2 1/2];
4 n2=0:length(h)-1;
5 x = [2 4 6 8 10];
6 \text{ n1=0:length}(x)-1;
7 y = convol(x,h);
8 n=0:length(x)+length(h)-2;
9 a=gca();
10 subplot (211);
11 plot2d3('gnn',n2,h);
12 xtitle('impulse Response', 'n', 'h[n]');
13 a.thickness=2;
14 a.y_location="origin";
15 a=gca();
16 subplot (212);
17 plot2d3('gnn',n1,x);
18 a.y_location="origin";
19 xtitle('input response', 'n', 'x[n]');
20 xset("window",1);
21 a=gca();
22 plot2d3('gnn',n,y)
23 a.y_location="origin";
24 a.x_location="origin";
25 xtitle('output response', 'n', 'y[n]');
```

Scilab code Exa 3.22 Convolution of finite length Signals

```
1 max_limit=10;
2 h=[2 5 0 4];
3 n2=0:length(h)-1;
```


Figure 3.11: Convolution of finite length Signals

Figure 3.12: Convolution of finite length Signals

```
4 x = [4 1 3];
5 \text{ n1=0:length}(x)-1;
6 y = convol(x,h);
7 \text{ n=0:length(x)+length(h)-2;}
8 a = gca();
9 subplot(211);
10 plot2d3('gnn',n2,h)
11 xtitle('impulse Response', 'n', 'h[n]');
12 a.thickness=2;
13 a.y_location="origin";
14 a=gca();
15 subplot (212);
16 plot2d3('gnn',n1,x)
17 a.y_location="origin";
18 a.x_location="origin";
19 xtitle('input response', 'n', 'x[n]');
20 xset ("window", 1);
21 a=gca();
22 plot2d3('gnn',n,y)
23 a.y_location="origin";
24 a.x_location="origin";
25 xtitle('output response', 'n', 'y[n]');
```

Scilab code Exa 3.23 effect of Zero Insertion, Zero Padding on convol.

```
1 //convolution by polynomial method
2 x=[4 1 3];
3 h=[2 5 0 4];
4 z=%z;
5 n=length(x)-1:-1:0;
6 X=x*z^n';
```


Figure 3.13: Convolution of finite length Signals

Figure 3.14: Convolution of finite length Signals

```
7 n1=length(h)-1:-1:0;
8 H=h*z^n1';
9 y=X*H
10 //effect of zero insertion on convolution
11 h=[2 0 5 0 0 0 4];
12 x=[4 0 1 0 3];
13 y=convol(x,h)
14 //effect of zero padding on convolution
15 h=[2 5 0 4 0 0];
16 x=[4 1 3 0];
17 y=convol(x,h)
```

Scilab code Exa 3.25 Stability and Causality

```
1 //concepts based on stability and Causality
2 function[]=stability(X)
3 if (abs(roots(X))<1)</pre>
       disp("given system is stable")
4
5 else
       disp("given system is not stable")
6
7 end
8 endfunction
9 x = [1 -1/6 -1/6];
10 z = \%z;
11 n = length(x) - 1: -1:0;
12 //characteristic eqn is
13 X = x * (z)^n
14 stability(X)
15 x = [1 -1];
16 \text{ n=length}(x)-1:-1:0;
17 //characteristic eqn is
18 X = x * (z)^n
19 stability(X)
20 x = [1 -2 1];
21 n = length(x) - 1: -1:0;
```

```
22 //characteristic eqn is
23 X=x*(z)^n'
24 stability(X)
```

Scilab code Exa 3.26 Response to Periodic Inputs

```
1 //Response of periodic inputs
2 function[p]=period(x)
3 for i=2:length(x)
4
       v = i
        if (abs(x(i)-x(1))<0.00001)
5
6
            k=2
7
            for j=i+1:i+i
8
                 if (abs(x(j)-x(k))<0.00001)
9
                     v = v + 1
10
                 end
11
            k=k+1;
12
            end
13
         end
14
        if (v==(2*i)) then
15
            break
16
        end
17 \text{ end}
18 p = i - 1
19 endfunction
20 x = [1 2 -3 1 2 -3 1 2 -3];
21 h=[1 1];
22 y = convol(x,h)
23 y(1) = y(4);
24 period(x)
25 period(y)
26 h=[1 1 1];
27 y = convol(x,h)
```

Scilab code Exa 3.27 Periodic Extension

```
1 //to find periodic extension
2 x=[1 5 2;0 4 3;6 7 0];
3 y=[0 0 0];
4 for i=1:3
5     for j=1:3
6         y(i)=y(i)+x(j,i);
7     end
8 end
9 y
```

Scilab code Exa 3.28 System Response to Periodic Inputs

```
1 //method of wrapping to fing convolution of periodic
       signal with one period
2 x = [1 2 -3];
3 h = [1 1];
4 y1 = convol(h,x)
5 y1 = [y1, zeros(5:9)]
6 y2=[y1(1:3);y1(4:6);y1(7:9)];
7 y = [0 \ 0 \ 0];
8 for i=1:3
       for j=1:3
9
            y(i)=y(i)+y2(j,i);
10
11
       end
12 end
13 y
14 x = [2 1 3];
15 h=[2 1 1 3 1];
16 y1 = convol(h,x)
17 y1 = [y1, zeros(8:9)]
```

```
18 y2=[y1(1:3);y1(4:6);y1(7:9)];

19 y=[0 0 0];

20 for i=1:3

21 for j=1:3

22 y(i)=y(i)+y2(j,i);

23 end

24 end

25 y
```

Scilab code Exa 3.29 Periodic Convolution

```
1 // periodic or circular convolution
2 x = [1 \ 0 \ 1 \ 1];
3 h = [1 2 3 1];
4 y1 = convol(h,x)
5 y1 = [y1, zeros(8:12)];
6 y2=[y1(1:4);y1(5:8);y1(9:12)];
7 y = [0 \ 0 \ 0 \ 0];
8 \text{ for } i=1:4
9
        for j=1:3
             y(i)=y(i)+y2(j,i);
10
11
        end
12 end
13 y
```

Scilab code Exa 3.30 Periodic Convolution by Circulant Matrix

```
// periodic convolution by circulant matrix
x=[1 0 2];
h=[1;2;3];
// generation of circulant matrix
c(1,:)=x;
for i=2:length(x)
```

```
7      c(i,:)=[x(length(x):length(x)-i),x(1:length(x)-i
          )]
8    end
9    c'
```

Scilab code Exa 3.32 Deconvolution By polynomial Division

```
1 //deconvolution by polynomial division
2 x=[2 5 0 4];
3 y=[8 22 11 31 4 12];
4 z=%z
5 n=length(x)-1:-1:0;
6 X=x*(z)^n'
7 n1=length(y)-1:-1:0;
8 Y=y*(z)^n1'
9 h=Y/X
```

Scilab code Exa 3.33 Autocorrelation and Cross Correlation

```
//discrete auto correlation and cross correlation
x=[2 5 0 4];
h=[3 1 4];
x1=x(length(x):-1:1)
h1=h(length(h):-1:1)
rxhn=convol(x,h1)
rhxn=convol(x1,h)
rhxn=rhxn(length(rhxn):-1:1)
//we observe that rhxn1=rxhn
x=[3 1 -4];
x1=x(length(x):-1:1)
rxxn=convol(x,x1)
//we observe that rxxn is even symmetric about origin
```

Scilab code Exa 3.35 Periodic Autocorrelation and Cross Correlation

```
1 //discrete periodic auto correlation and cross
      correlation
2 x = [2 5 0 4];
3 h = [3 1 -1 2];
4 x1=x(length(x):-1:1);
5 h1=h(length(h):-1:1);
6 rxhn=convol(x,h1)
7 rhxn=convol(x1,h)
8 rxxn=convol(x,x1)
9 rhhn=convol(h,h1)
10 y1=[rxhn, zeros(8:12)];
11 y2=[y1(1:4);y1(5:8);y1(9:12)];
12 y3=[rhxn, zeros(8:12)];
13 y4 = [y3(1:4); y3(5:8); y3(9:12)];
14 y5=[rxxn, zeros(8:12)];
15 y6 = [y5(1:4); y5(5:8); y5(9:12)];
16 y7=[rhhn, zeros(8:12)];
17 y8 = [y7(1:4); y7(5:8); y7(9:12)];
18 \text{ rxhp} = [0 \ 0 \ 0 \ 0];
19 rhxp=[0 0 0 0];
20 \text{ rxxn} = [0 \ 0 \ 0 \ 0];
21 rhhp=[0 0 0 0];
22 \text{ for } i=1:4
23
         for j=1:3
            rhxp(i)=rhxp(i)+y4(j,i);
24
            rxhp(i)=rxhp(i)+y2(j,i);
25
            rxxn(i) = rxxn(i) + y6(j,i);
26
27
            rhhp(i)=rhhp(i)+y8(j,i);
28
       end
29 end
30 rxhp
31 rhxp
```

32 rxxn

33 rhhp

Chapter 4

z Transform Analysis

Scilab code Exa 4.1b z transform of finite length sequences

```
1 function[za] = ztransfer(sequence,n)
2         z = poly(0, 'z', 'r')
3         za = sequence * (1/z) ^n'
4 endfunction
5 x1 = [2 1 -5 4];
6 n = -1: length(x1) - 2;
7 ztransfer(x1,n)
```

Scilab code Exa 4.4a Pole Zero Plots

```
1 //Pole-Zero plots
2 z=%z;
3 az=2*z*(z+1);
4 bz=(z-1/3)*((z^2)+1/4)*((z^2)+4*z+5);
5 poles=roots(bz)
6 zeroes=roots(az)
7 h=az/bz
```


Figure 4.1: Pole Zero Plots

```
8 plzr(h)
```

Scilab code Exa 4.4b Pole Zero plots

```
1 //Pole-Zero plots
2 z=%z;
3 az=z^4+4.25*z^2+1;
4 bz=z^4;
5 poles=roots(bz)
6 zeroes=roots(az)
7 h=az/bz
8 plzr(h)
```

Scilab code Exa 4.8 Stability of Recursive Filters

Figure 4.2: Pole Zero plots

```
1 //stability of recursive filter
\frac{1}{2} / | for roc : /z/ > /a/
3 a=input('enter the value of alpha')
4 z = \%z;
5 \text{ H=z/(z-a)};
6 if (abs(a)<1)
        disp("system is stable")
8
  else
       disp("system is not stable")
9
10
    end
    //for roc:/z/</a/
11
    if (abs(a)>1)
12
       disp("system is stable")
13
14 else
        disp("system is not stable")
15
16
    end
```

Scilab code Exa 4.9 Inverse Systems

```
1 //inverse systems
2 z=%z;
3 H=(1+2*(z^(-1)))/(1+3*(z^(-1)));
4 //inverse of H is
5 H1=1/H
6 H=1+2*(z^(-1))+3*(z^(-2));
7 H1=1/H
```

Scilab code Exa 4.10 Inverse Transform of sequences

```
//inverse transform of sequences
//(a)X(z)=3z^-1+5z^-3+2z^-4
z=%z;
X1=[3*z^-1;0;5*z^-3;2*z^-4];
n1=1:4;
ZI=z^n1';
x1=numer(X1.*ZI);
disp(x1,"x[n]=");
//(b)X(z)=2z^2-5z+5z^-1-2z^-2
X2=[2*z^2;-5*z;0;5*z^-1;-2*z^-2];
n2=-2:2;
ZI=z^n2';
x2=numer(X2.*ZI);
disp(x2,"x[n]=");
```

Scilab code Exa 4.11 Inverse Transform by Long Division

```
1 //inverse transform by long division
2 z=%z;
3 x=ldiv(z-4,1-z+z^2,5)
```

Scilab code Exa 4.12 Inverse transform of Right sided sequences

```
1 //inverse z transforms from standard transforms 2 z=%z; 3 xz=z/((z-0.5)*(z-0.25)); 4 yz=xz/z; 5 pfss(yz) 6 //hence x[n]=-4(0.25)^n*un+4(0.5)^n*un; 7 xz=1/((z-0.5)*(z-0.25)); 8 yz=xz/z; 9 pfss(yz) 10 //hence x[n]=-4(0.25)^n-1*u[n-1]+4(0.5)^n-1*u[n-1];
```

Scilab code Exa 4.20 z Transform of Switched periodic Signals

```
1 //z transform of switched periodic signals
2 z = \%z;
3 / sol. for 4.20a
4 x1 = [0 1 2];
5 n=0:2;
6 N = 3;
7 x1z=x1*(1/z)^n
8 xz = x1z/(1-z^-N)
9 // sol. for 4.20b
10 x1 = [0 \ 1 \ 0 \ -1];
11 n=0:3;
12 N = 4;
13 x1z=x1*(1/z)^n
14 xz = x1z/(1-z^-N)
15 / sol. for 4.20c
16 \text{ xz} = (2+z^-1)/(1-z^-3);
17 	 x1z = numer(xz)
18 //thus first period of xn is [2 1 0]
19 / sol. for 4.20d
20 xz = (z^-1-z^-4)/(1-z^-6);
```

```
21 x1z=numer(xz)
22 //thus first period of xn is [0 1 0 0 -1 0]
```

Chapter 5

Frequency Domain Analysis

Scilab code Exa 5.1c DTFT from Defining Relation

```
1 //DTFT of x[n]=(a)^n*u[n]
2 clear;
3 clc; close;
4 //DTS signal
5 a1=0.5;
6 \quad a2 = -0.5;
7 max_limit=10;
8 for n=0:max_limit-1
     x1(n+1) = (a1^n);
10
     x2(n+1)=(a2^n);
11 end
12 n=0:max_limit-1;
13 //discrete time fourier transform
14 wmax=2*\%pi;
15 K=4;
16 \text{ k=0:}(K/1000):K;
17 W=k*wmax/K;
18 x1=x1,
19 x2=x2,
20 XW1 = x1 * exp(%i*n'*W);
21 XW2=x2*exp(%i*n'*W);
```

```
22 XW1_Mag = abs(XW1);
23 XW2\_Mag=abs(XW2);
24 W=[-mtlb_fliplr(W), W(2:1001)]; //omega form
25 XW1_Mag=[mtlb_fliplr(XW1_Mag),XW1_Mag(2:1001)];
26 XW2_Mag=[mtlb_fliplr(XW2_Mag),XW2_Mag(2:1001)];
27 [XW1_phase,db]=phasemag(XW1);
28 [XW2_phase,db]=phasemag(XW2);
29 XW1_phase=[-mtlb_fliplr(XW1_phase),XW1_phase(2:1001)
30 XW2_phase=[-mtlb_fliplr(XW2_phase),XW2_phase(2:1001)
      ];
31
32 //plot for a>0
33 figure
34 subplot (3,1,1);
35 plot2d3('gnn',n,x1)
36 xtitle('Discrete time sequencex[n] a>0')
37 subplot (3,1,2);
38 \ a = gca();
39 a.y_location="origin";
40 a.x_location="origin";
41 plot2d3(W,XW1_Mag);
42 title('magnitude Response abs(exp(jw))')
43 subplot(3,1,3);
44 \ a = gca();
45 a.y_location="origin";
46 a.x_location="origin";
47 plot2d(W,XW1_phase);
48 title('magnitude Response abs(exp(jw))')
49 //plot for a<0
50 figure
51 subplot (3,1,1);
52 plot2d3('gnn',n,x2);
53 xtitle('Discrete Time sequence x[n] for a>0')
54 subplot (3,1,2);
55 a = gca();
56 a.y_location="origin";
57 a.x_location="origin";
```


Figure 5.1: DTFT from Defining Relation

```
58 plot2d(W,XW2_Mag);
59 title('Magnitude Response abs(X(jw))')
60 subplot(3,1,3);
61 a=gca();
62 a.y_location="origin";
63 a.x_location="origin";
64 plot2d(W,XW2_phase);
65 title('phase Response<(X(jw))')</pre>
```

Scilab code Exa 5.3a Some DTFT pairs using properties

```
1 //DTFT of x[n]=n*(a)^n*u[n]
2 clear;
3 clc; close;
```


Figure 5.2: DTFT from Defining Relation

```
4 //DTS signal
5 a1=0.5;
6 \quad a2 = -0.5;
7 max_limit=10;
8 for n=0:max_limit-1
     x1(n+1)=n*(a1^n);
10
     x2(n+1)=n*(a2^n);
11 end
12 \quad n=0:max_limit-1;
13 //discrete time fourier transform
14 wmax=2*\%pi;
15 K=4;
16 k=0:(K/1000):K;
17 W=k*wmax/K;
18 \times 1 = \times 1;
19 x2=x2;
20 XW1 = x1 * exp(%i*n'*W);
21 XW2 = x2 * exp(%i*n'*W);
22 \text{ XW1\_Mag=abs}(XW1);
23 XW2\_Mag=abs(XW2);
```

```
24 W=[-mtlb_fliplr(W), W(2:1001)]; //omega form
25 XW1_Mag=[mtlb_fliplr(XW1_Mag),XW1_Mag(2:1001)];
26 XW2_Mag=[mtlb_fliplr(XW2_Mag),XW2_Mag(2:1001)];
27 [XW1_phase,db]=phasemag(XW1);
28 [XW2_phase,db]=phasemag(XW2);
29 XW1_phase=[-mtlb_fliplr(XW1_phase),XW1_phase(2:1001)
     ];
30 XW2_phase=[-mtlb_fliplr(XW2_phase),XW2_phase(2:1001)
     ];
31
32 //plot for a>0
33 figure
34 subplot (3,1,1);
35 plot2d3('gnn',n,x1)
36 xtitle ('Discrete time sequencex[n] a>0')
37 subplot(3,1,2);
38 \quad a = gca();
39 a.y_location="origin";
40 a.x_location="origin";
41 plot2d3(W, XW1_Mag);
42 title ('magnitude Response abs (exp(jw))')
43 subplot (3,1,3);
44 \ a = gca();
45 a.y_location="origin";
46 a.x_location="origin";
47 plot2d(W,XW1_phase);
48 title('magnitude Response abs(exp(jw))')
49 //plot for a<0
50 figure
51 subplot (3,1,1);
52 plot2d3('gnn',n,x2);
53 xtitle('Discrete Time sequence x[n] for a>0')
54 subplot (3,1,2);
55 \quad a = gca();
56 a.y_location="origin";
57 a.x_location="origin";
58 plot2d(W,XW2_Mag);
59 title ('Magnitude Response abs(X(jw))')
```


Figure 5.3: Some DTFT pairs using properties

```
60 subplot(3,1,3);
61 a=gca();
62 a.y_location="origin";
63 a.x_location="origin";
64 plot2d(W,XW2_phase);
65 title('phase Response <(X(jw))')
```

Scilab code Exa 5.3b Some DTFT pairs using properties

```
1 //DTFT of x[n]=n*(a)^n*u[n]
2 clear;
3 clc; close;
4 //DTS signal
5 a1=0.5;
```


Figure 5.4: Some DTFT pairs using properties

```
6 \quad a2 = -0.5;
7 max_limit=10;
8 for n=0:max_limit-1
     x1(n+1) = (n+1)*(a1^n);
     x2(n+1)=(n+1)*(a2^n);
10
11 end
12 n=0:max_limit-1;
13 //discrete time fourier transform
14 wmax=2*%pi;
15 K=4;
16 \text{ k=0:}(K/1000):K;
17 W=k*wmax/K;
18 \times 1 = \times 1;
19 x2=x2;
20 XW1 = x1 * exp(%i*n'*W);
21 XW2 = x2 * exp(%i*n'*W);
22 XW1_Mag = abs(XW1);
23 XW2\_Mag=abs(XW2);
24 W=[-mtlb_fliplr(W),W(2:1001)];//omega form
25 XW1_Mag=[mtlb_fliplr(XW1_Mag),XW1_Mag(2:1001)];
```

```
26 XW2_Mag=[mtlb_fliplr(XW2_Mag),XW2_Mag(2:1001)];
27 [XW1_phase,db]=phasemag(XW1);
28 [XW2_phase,db]=phasemag(XW2);
29 XW1_phase=[-mtlb_fliplr(XW1_phase),XW1_phase(2:1001)
      ];
30 XW2_phase=[-mtlb_fliplr(XW2_phase),XW2_phase(2:1001)
      ];
31
32 //plot for a>0
33 figure
34 subplot (3,1,1);
35 plot2d3('gnn',n,x1)
36 xtitle('Discrete time sequencex[n] a>0')
37 subplot (3,1,2);
38 \ a = gca();
39 a.y_location="origin";
40 a.x_location="origin";
41 plot2d3(W,XW1_Mag);
42 title('magnitude Response abs(exp(jw))')
43 subplot (3,1,3);
44 a=gca();
45 a.y_location="origin";
46 a.x_location="origin";
47 plot2d(W,XW1_phase);
48 title('magnitude Response abs(exp(jw))')
49 //plot for a<0
50 figure
51 subplot(3,1,1);
52 plot2d3('gnn',n,x2);
53 xtitle('Discrete Time sequence x[n] for a>0')
54 subplot (3,1,2);
55 \quad a = gca();
56 a.y_location="origin";
57 a.x_location="origin";
58 plot2d(W,XW2_Mag);
59 title ('Magnitude Response abs(X(jw))')
60 subplot(3,1,3);
61 a=gca();
```


Figure 5.5: Some DTFT pairs using properties

```
62 a.y_location="origin";
63 a.x_location="origin";
64 plot2d(W,XW2_phase);
65 title('phase Response<(X(jw))')</pre>
```

Scilab code Exa 5.3d Some DTFT pairs using properties

```
1  //DTFT of x[n]=a^abs(n)
2  a=0.5;
3  n=-9:9;
4  x=a^abs(n);
5  // Discrete time Fourier Transform
```


Figure 5.6: Some DTFT pairs using properties

Figure 5.7: Some DTFT pairs using properties

```
6 \text{ k=0:} (4/1000):4;
7 w = (2*\%pi*k)/4;
8 xw = x * exp(%i*n'*w);
9 xw_mag=real(xw);
10 w=[-mtlb_fliplr(xw_mag),w(2:1001)];
11 xw_mag=[mtlb_fliplr(xw_mag),xw_mag(2:1001)];
12 figure
13 subplot(2,1,1);
14 a=gca();
15 a.x_location="origin";
16 a.y_location="origin";
17 plot2d3('gnn',n,x);
18 xtitle('discrete time sequence x[n]');
19 subplot(2,1,2);
20 a=gca();
21 a.x_location="origin";
22 a.y_location="origin";
23 plot2d(w,xw_mag);
24 title('discrete time fourier transform x(exp(jw))');
```

Scilab code Exa 5.3e Some DTFT pairs using properties

```
1 //DTFT of x[n]=n*(a)^n*u[n]
2 clear;
3 clc; close;
4 //DTS signal
5 a1=0.5;
6 a2=-0.5;
7 max_limit=10;
8 for n=0:max_limit-1
9 x1(n+1)=4*(a1^(n+3));
10 x2(n+1)=4*(a2^(n+3));
11 end
12 n=0:max_limit-1;
13 //discrete time fourier transform
```

```
14 wmax=2*\%pi;
15 K=4;
16 k=0:(K/1000):K;
17 W=k*wmax/K;
18 \times 1 = \times 1;
19 x2=x2;
20 XW1 = x1 * exp(%i*n'*W);
21 XW2=x2*exp(%i*n'*W);
22 \times XW1_Mag = abs(XW1);
23 XW2\_Mag=abs(XW2);
24 W=[-mtlb_fliplr(W),W(2:1001)];//omega form
25 XW1_Mag=[mtlb_fliplr(XW1_Mag),XW1_Mag(2:1001)];
26 XW2_Mag=[mtlb_fliplr(XW2_Mag), XW2_Mag(2:1001)];
27 [XW1_phase,db]=phasemag(XW1);
28 [XW2_phase,db]=phasemag(XW2);
29 XW1_phase=[-mtlb_fliplr(XW1_phase),XW1_phase(2:1001)
      ];
30 XW2_phase=[-mtlb_fliplr(XW2_phase),XW2_phase(2:1001)
      ];
31
32 //plot for a>0
33 figure
34 subplot (3,1,1);
35 plot2d3 ('gnn',n,x1)
36 xtitle('Discrete time sequencex[n] a>0')
37 subplot (3,1,2);
38 \ a = gca();
39 a.y_location="origin";
40 a.x_location="origin";
41 plot2d3(W, XW1_Mag);
42 title('magnitude Response abs(exp(jw))')
43 subplot (3,1,3);
44 \ a = gca();
45 a.y_location="origin";
46 a.x_location="origin";
47 plot2d(W,XW1_phase);
48 title('magnitude Response abs(exp(jw))')
49 //plot for a<0
```


Figure 5.8: Some DTFT pairs using properties

```
50 figure
51 subplot(3,1,1);
52 plot2d3('gnn',n,x2);
53 xtitle('Discrete Time sequence x[n] for a>0')
54 subplot(3,1,2);
55 \quad a=gca();
56 a.y_location="origin";
57 a.x_location="origin";
58 plot2d(W,XW2_Mag);
59 title('Magnitude Response abs(X(jw))')
60 subplot(3,1,3);
61 \quad a = gca();
62 a.y_location="origin";
63 a.x_location="origin";
64 plot2d(W,XW2_phase);
65 title('phase Response <(X(jw))')
```


Figure 5.9: Some DTFT pairs using properties

Scilab code Exa 5.4 DTFT of periodic Signals

```
1 //DTfT of periodic signals
2 x=[3 2 1 2];//one period of signal
3 n=0:3;
4 k=0:3;
5 x1=x*exp(%i*n'*2*k*%pi/4)
6 dtftx=abs(x1)
7 x=[3 2 1 2 3 2 1 2 3];
8 n=-4:4;
9 a=gca();
10 a.y_location="origin";
11 a.x_location="origin";
12 plot2d3('gnn',n,x);
13 xtitle('discrete periodic time signal');
```


Figure 5.10: DTFT of periodic Signals

```
14 x2=[dtftx dtftx 8];
15 a=gca();
16 xset('window',1);
17 a.x_location="origin";
18 a.y_location="origin";
19 plot2d3('gnn',n,x2);
20 xtitle('DTFT of discrete periodic signal');
```

Scilab code Exa 5.5 The DFT, DFS and DTFT

```
1 x=[1 0 2 0 3];//one period of signal
2 n=0:4;
3 k=0:4;
4 x1=x*exp(%i*n'*2*k*%pi/4)
```


Figure 5.11: DTFT of periodic Signals

```
5 DTFTx=abs(x1)
6 DFT=dft(x,-1)
7 DFS=DFT/5
```

Scilab code Exa 5.7 Frequency Response of Recursive Filter

```
1 a=0.5;b=1;
2 n=0:50;
3 h=b*(a^n);
4 // Discrete-Time Fourier transform
5 K=500;
6 k=-250:1:250;
7 w=%pi*k/K;
8 H=h*exp(-%i*n'*w);
9 // caluculation of phase and magnitude of h(z)
10 [phase_H,m]=phasemag(H);
```


Figure 5.12: Frequency Response of Recursive Filter

```
11 H=abs(H);
12 a=gca();
13 subplot(2,1,1);
14 a.y_location="origin";
15 plot2d(w/%pi,H);
16 xlabel('Frequency in radians')
17 ylabel('abs(H)')
18 title('magnitude Response')
19 subplot(2,1,2);
20 a=gca();
21 a.x_location="origin";
22 a.y_location="origin";
23 plot2d(w/(2*%pi),phase_H)
24 xlabel('Frequency in Radians');
25 ylabel('<(H)')
26 title('Phase Response'))
```


Figure 5.13: The DTFT in System Analysis

Scilab code Exa 5.8a The DTFT in System Analysis

```
1 //DTFT in system analysis
2 a=0.5; b=1;
3 n=0:50;
4 h=b*(a^n);
5 // Discrete-Time Fourier transform
6 \text{ K} = 500;
7 k=0:1:K;
8 \quad w = \%pi * k/K;
9 H=h*exp(-\%i*n'*w);
10 //x[n] is given as (a)^n*u[n]
11 xw=h*exp(-\%i*n'*w);
12 for i=1:501
       y(i) = H(i) *xw(i);
13
14 end
15 [phase_y,m]=phasemag(y);
```


Figure 5.14: The DTFT in System Analysis

```
16 y=real(y);
17 subplot(2,1,1)
18 plot2d(w/%pi,y);
19 xlabel('Frequency in radians')
20 ylabel('abs(y)')
21 title('magnitude Response')
22 subplot(2,1,2)
23 plot2d(w/%pi,phase_y)
24 xlabel('Frequency in Radians');
25 ylabel('<(y)')
26 title('Phase Response')</pre>
```

Scilab code Exa 5.8b The DTFT in System Analysis

```
1 a=0.5; b=1;
2 n=0:50;
```

```
3 h=4*(a^n);
4 // Discrete-Time Fourier transform
5 \text{ K} = 500;
6 \text{ k=0:1:K};
7 w = \%pi * k/K;
8 H=h*exp(-%i*n'*w);
9 //x[n] is given as (a)^n*u[n]
10 x=4*[ones(1:51)];
11 xw = x * exp(%i*n'*w);
12 for i=1:501
       y(i) = H(i) * xw(i);
13
14 end
15 [phase_y,m]=phasemag(y);
16 y=real(y);
17 subplot(2,1,1);
18 plot2d(w/%pi,y);
19 xlabel('Frequency in radians')
20 ylabel('abs(y)')
21 title ('magnitude Response')
22 subplot (2,1,2)
23 plot2d(w/%pi,phase_y)
24 xlabel('Frequency in Radians');
25 ylabel('<(y)')
26 title('Phase Response')
```

Scilab code Exa 5.9a DTFT and steady state response

```
1 //DTFT and steady state response
2 a=0.5,b=1;F=0.25;
3 n=0:(5/1000):5;
4 h=(a^n);
5 x=10*cos(0.5*%pi*n'+%pi/3);
6 H=h*exp(-%i*n'*F);
```


Figure 5.15: DTFT and steady state response

```
7 Yss=H*x;
8 [phase_Yss,m]=phasemag(Yss);
9 Yss=real(Yss);
10 subplot(2,1,1)
11 plot2d(n,Yss);
12 xlabel('Frequency in radians')
13 ylabel('abs(Yss)')
14 title('magnitude Response')
15 subplot(2,1,2)
16 plot2d(n,phase_Yss)
17 xlabel('Frequency in Radians');
18 ylabel('<(y)')
19 title('Phase Response')</pre>
```

Scilab code Exa 5.9b DTFT and steady state response

```
1 //DTFT and steady state response
2 a=0.8,b=1;F=0;
```

```
3 n=0:50;
4 h=(a^n);
5 x=4*[ones(1:10)];
6 H=h*exp(-%i*n'*F)
7 Yss=H*x
```

Scilab code Exa 5.10a System Representation in various forms

```
1 //System Representation in various forms
2 a=0.8; b=2;
3 n=0:50;
4 h=b*(a^n);
5 // Discrete-Time Fourier transform
6 \text{ K} = 500;
7 k=0:1:K;
8 \text{ w=\%pi*k/K};
9 H=h*exp(-\%i*n'*w);
10 // caluculation of phase and magnitude of h(z)
11 [phase_H,m]=phasemag(H);
12 H = abs(H);
13 subplot(2,1,1);
14 plot2d(w/%pi,H);
15 xlabel ('Frequency in radians')
16 ylabel('abs(H)')
17 title ('magnitude Response')
18 subplot(2,1,2)
19 plot2d(w/%pi,phase_H)
20 xlabel('Frequency in Radians');
21 ylabel('<(H)')
22 title('Phase Response')
```


Figure 5.16: System Representation in various forms

Scilab code Exa 5.10b System Representation in various forms

```
1 //System Representation in various forms
2 a=0.6; b=1;
3 n=0:50;
4 h=b*(a^n);
5 // Discrete-Time Fourier transform
6 \text{ K} = 500;
7 k=0:1:K;
8 \quad w = \%pi * k/K;
9 H=h*exp(-\%i*n'*w);
10 //caluculation of phase and magnitude of h(z)
11 [phase_H,m]=phasemag(H);
12 \text{ H=abs}(H);
13 subplot(2,1,1);
14 plot2d(w/%pi,H);
15 xlabel('Frequency in radians')
16 ylabel('abs(H)')
17 title ('magnitude Response')
18 subplot (2,1,2)
```


Figure 5.17: System Representation in various forms

```
19 plot2d(w/%pi,phase_H)
20 xlabel('Frequency in Radians');
21 ylabel('<(H)')
22 title('Phase Response')</pre>
```

Chapter 6

Filter Concepts

Scilab code Exa 6.1 The Minimum Phase Concept

```
1 //The minimum phase concept
2 z = \%z;
3 F=0:(0.5/400):0.5;
4 z = \exp(\%i * 2 * \%pi * F);
5 \text{ for } i=1:401
6 H1Z(i) = ((z(i)-1/2)*(z(i)-1/4))/((z(i)-1/3)*(z(i)
      -1/5));
7 end
8 \text{ for } i=1:401
9 H2Z(i) = (((-1/2)*z(i)+1)*(z(i)-1/4))/((z(i)-1/3)*(z(i)-1/3))
      )-1/5));
10 \, \text{end}
11 for i=1:401
12 H3Z(i) = (((-1/2)*z(i)+1)*((-1/4)*z(i)+1))/((z(i)-1/3)
      *(z(i)-1/5));
13 end
14 [phase_H1Z,m]=phasemag(H1Z);
15 [phase_H2Z,m]=phasemag(H2Z);
16 [phase_H3Z,m]=phasemag(H3Z);
```


Figure 6.1: The Minimum Phase Concept

```
17 a=gca();
18 a.x_location="origin";
19 xlabel('Digital Frequency F');
20 ylabel('phase[degrees]');
21 xtitle('phase of three filters');
22 plot2d(F,phase_H1Z,rect=[0,-200,0.5,200]);
23 plot2d(F,phase_H2Z,rect=[0,-200,0.5,200]);
24 plot2d(F,phase_H3Z,rect=[0,-200,0.5,200]);
```

Scilab code Exa 6.4 Linear Phase Filters

```
1 //linear phase filters
2 z=%z
3 H1Z=((z^3)+2*(z^2)+2*z+1)/(z^3);
4 //from pole zero diagram its not a linear phase filter
5 H2Z=(z^4+4.25*z^2+1)/(z^4);
6 xset('window',1);
```


Figure 6.2: Linear Phase Filters

```
7 plzr(H2Z);
8 //from pole zero diagram and LPF
9 // characteristics its a linear phase filter
10 H3Z=((z^4+2.5*z^3-2.5*z-1)/(z^4));
11 xset('window',2);
12 plzr(H3Z);
13 //from pole zero diagram and LPF
14 // characteristics its a linear phase filter
```

Scilab code Exa 6.6 Frequency Response and Filter characteristics

```
1 //Frequency Response and filter characteristics
```


Figure 6.3: Linear Phase Filters

Figure 6.4: Frequency Response and Filter characteristics

```
2 z = \%z;
3 F=0:(0.5/200):0.5;
4 z = \exp(\%i * 2 * \%pi * F);
5 H1=(1/3)*(z+1+z^-1);
6 H2=(z/4)+(1/2)+(1/4)*(z^{-1});
7 \text{ H1} = abs(H1);
8 \text{ H2} = abs(H2);
9 a = gca();
10 a.x_location="origin";
11 subplot (211);
12 plot2d(F,H1);
13 xlabel('Digital frequency F');
14 ylabel('impuse function H1(f)');
15 subplot (212);
16 plot2d(F, H2);
17 xlabel('Digital frequency F');
18 ylabel('impuse function H1(f)');
```

Scilab code Exa 6.7a Filters and Pole Zero Plots

```
1 z=%z;
2 s=%s;
3 F=0:(0.5/400):0.5;
4 s=exp(%i*2*%pi*F);
5 H1Z=(z^4+1)/(z^4+1.6982*z^2+0.7210);
6 for i=1:401
7     H1(i)=(s(i)^4+1)/(s(i)^4+1.6982*s(i)^2+0.7210);
8 end
9 H1=abs(H1);
10 plzr(H1Z);
11 a=gca();
12 xset('window',1);
13 a.x_location="origin";
14 a.y_location="origin";
15 plot2d(F,H1)
```


Figure 6.5: Filters and Pole Zero Plots

```
16 xlabel('Digital frequency F');
17 ylabel('magnitude');
18 xtitle('Magnitude spectrum of bandpass filter');
```

Scilab code Exa 6.7b Filters and Pole Zero Plots

```
1 z=%z;
2 s=%s;
3 F=0:(0.5/400):0.5;
4 s=exp(%i*2*%pi*F);
5 H1Z=(z^2+1-0.618*z)/(z^2-0.5857*z+0.898);
6 for i=1:401
7 H1(i)=(s(i)^2+1-0.618*s(i))/(s(i)^2-0.5857*s(i)+0.898);
```


Figure 6.6: Filters and Pole Zero Plots

```
8 end
9 H1=abs(H1);
10 plzr(H1Z);
11 a=gca();
12 xset('window',1);
13 a.x_location="origin";
14 a.y_location="origin";
15 plot2d(F,H1)
16 xlabel('Digital frequency F');
17 ylabel('magnitude');
18 xtitle('Magnitude spectrum of bandpass filter');
```

Scilab code Exa 6.8 Digital resonator Design

Figure 6.7: Filters and Pole Zero Plots

Figure 6.8: Filters and Pole Zero Plots

```
1 // Digital Resonator design with peak gain 50 HZ
2 //and 3 db bandwidth of 6HZ at sampling of 300 HZ
3 clf();
4 s = %s;
5 F = 0:150;
6 \text{ f=F/300};
7 s = \exp(\%i * 2 * \%pi * f);
8 for i=1:151
       H1(i) = (0.1054*(s(i)^2))/(s(i)^2-0.9372*s(i)
          +0.8783);
10 \text{ end}
11 H1 = abs(H1);
12 \text{ H2=H1}(40:60);
13 F1=40:60;
14 f1=F1/300;
15 a=gca();
16 a.x_location="origin";
17 a.y_location="origin";
18 plot2d(F,H1)
19 xlabel('Analog frequency F');
20 ylabel('magnitude');
21 xtitle ('Magnitude spectrum of digital resonator with
       peak 50HZ');
22 xset ('window',1);
23 a.x_location="origin";
24 a.y_location="origin";
25 plot2d(F1,H2)
26 xlabel('Analog frequency F');
27 ylabel('magnitude');
28 xtitle('passband detail');
```


Figure 6.9: Digital resonator Design

Figure 6.10: Digital resonator Design

Scilab code Exa 6.9 Periodic Notch Filter Design

```
1 // Periodic notch filter design at 60 HZ and sampling
       frequency 300HZ
2 z = \%z;
3 f=0:(0.5/400):0.5;
4 z1 = \exp(\%i * 2 * \%pi * f);
5 \text{ for } i=1:401
       H1Z(i) = (z1(i)^5-1)/((z1(i)^5)-(0.9^5));
       H2Z(i)=(z1(i)^5-1)/((z1(i)^5)-(0.99^5));
8 end
9 H1Z=abs(H1Z);
10 H2Z = abs(H2Z);
11 N1z=(1-z^-5)/(1-z^-1);
12 H3z=(N1z)/(horner(N1z,z/0.9));
13 H4z=(N1z)/(horner(N1z,z/0.99));
14 H3z=horner(H3z,z1);
15 H4z=horner(H4z,z1);
16 \quad a = gca();
17 a.x_location="origin";
18 a.y_location="origin";
19 plot2d(f,H1Z);
20 plot2d(f, H2Z);
21 xlabel('Digital frequency f');
22 ylabel ('magnitude');
23 xtitle ('Periodic Notch Filter N=5,R=0.9,0.99');
24 xset('window',1);
25 plot2d(f, H3z);
26 plot2d(f, H4z);
27 xlabel('Digital frequency f');
28 ylabel('magnitude');
29 xtitle ('Notch Filter that also passes DC N=5,R
      =0.9,0.99');
```


Figure 6.11: Periodic Notch Filter Design

Figure 6.12: Periodic Notch Filter Design

Chapter 7

Digital Processing of Analog Signals

Scilab code Exa 7.3 Sampling oscilloscope

```
1 //Sampling Oscilloscope Concepts
2 \text{ fo=100; a=50;}
3 s=(a-1)*fo/a;
4 B = 100 - s;
5 i=s/(2*B);
6 i=ceil(i);
7 disp(i, 'The sampling frequency can at max divided by
8 disp(s,2*B, 'range of sampling rate is between s and
      2*B');
9 \text{ fol} = 100;
10 \ a=50;
11 s1=(a-1)*fo1/a;
12 B1=400-4*s1;
13 j=s1/(2*B1);
14 j=ceil(j);
15 disp(j, 'The sampling frequency can at max divided by
       j ');
16 disp(s1,2*B1, 'range of sampling rate is between s1
```

```
and 2*B1');
```

Scilab code Exa 7.4 Sampling of Band pass signals

```
1 //sampling of bandpass signals
2 \text{ fc=4;fl=6;}
3 B=f1-fc;
4 xt = [0 1 2 1];
5 xtt=[0 1 2];
6 a=0; b=1; c=2;
7 xta=[xt];
8 \text{ xtb} = [0 \ 0 \ 2 \ 1 \ 0];
9 \text{ xtc} = [0 \ 0 \ 0 \ 2 \ 1 \ 0];
10 xt1=[xta xta xta];
11 xt2=[xtb xtb(length(xtb):-1:2) xtb(2:length(xtb))
      xtb(length(xtb):-1:2)];
12 xt3=[xtc(length(xtc):-1:2) xtc(3:length(xtc)) zeros
      (1:7) xtc(length(xtc):-1:2) xtc(3:length(xtc))];
13 f1=0:length(xt1)-1;
14 	ext{ } f2 = [0 	ext{ } 1 	ext{ } 1.001 	ext{ } 2:6 	ext{ } 6.001 	ext{ } 7 	ext{ } .001 	ext{ } 8:12 	ext{ } 12.001];
15 f3=[-10:-8 -7.99 -7:-6 -5.99 -5:6 6.01 7:8 8.01
      9:10];
16 subplot (211);
17 plot2d(f1,xt1);
18 xtitle("spectrum of signal sampled at 4KHZ");
19 subplot (212);
20 plot2d(f2,xt2);
21 xtitle("spectrum of signal sampled at 7KHZ");
22 xset('window',1);
23 b=gca();
24 b.y_location="origin"
25 plot2d(f3,xt3);
26 xtitle("spectrum of signal sampled at 14KHZ");
```


Figure 7.1: Sampling of Band pass signals

Scilab code Exa 7.6 Signal Reconstruction from Samples

```
1 //signal reconstruction from samples
2 //(a)By step interpolation method
3 x=[-1 2 3 2];
4 t=2.5;
5 ts=1;
6 t1=ceil(t);
7 t2=floor(t);
8 x1t=x(t2)
9 //(b)By linear interpolation method
10 x2t=(x(t1)+x(t2))/2
11 //(c)By sinc interpolation method
```


Figure 7.2: Sampling of Band pass signals

```
12 x3t=0; x1=[1 2 3 4];
13 for k=1:4
       x3t=x3t+(x1(k)*sinc(%pi*(t-(k-1))));
14
15 end
16 x3t//sinc interpolated value of x(2.5)
17 //(d)raised cosine interpolation method
18 \text{ x4t=0};
19 for k=1:4
       p = (\cos (0.5*\%pi*(t-k+1))/(1-(t-k+1)^2));
20
       xt=x1(k)*sinc(%pi*(t-k+1))*p;
21
22
       x4t = x4t + xt;
23 end
24 x4t//raised cosine interpolated value of x(2.5)
```

Scilab code Exa 7.7 Zero Interpolation and Spectrum Replication

```
1 //Zero interpolation and spectrum replication
2 XF=[0 1 2 1];
```

```
3 \text{ X1F} = [XF XF XF O];
4 YF=[X1F X1F];
5 \text{ DF=0.5*[XF XF 0]};
6 \text{ GF} = 0.5 * [XF \ 0 \ XF \ 0 \ XF \ 0];
7 f = -0.2:0.1:1;
8 f1 = -0.1:0.05:1.15;
9 f2=-0.4:0.2:1.2;
10 f3 = -0.2:0.1:1.2;
11 length(f3),length(GF)
12 a=gca();
13 a.y_location="origin";
14 subplot (211);
15 plot2d(f, X1F);
16 ylabel('X1F');
17 subplot (212);
18 a.y_location="origin";
19 plot2d(f1,YF);
20 ylabel('YF');
21 xset('window',1);
22 b=gca();
23 b.y_location="origin";
24 subplot (211);
25 plot2d(f2,DF);
26 ylabel('DF');
27 subplot (212);
28 b.y_location="origin";
29 plot2d(f3,GF);
30 ylabel('GF');
```

Scilab code Exa 7.8 Up Sampling and Filtering

Figure 7.3: Zero Interpolation and Spectrum Replication

Figure 7.4: Zero Interpolation and Spectrum Replication

```
1 clf();
2 X = [0 0.5 1 0.5];
3 \text{ XF} = [X \text{ O}];
4 \text{ WF} = [X X X O];
5 f = -0.5:0.25:0.5;
6 f1 = -0.75:0.125:0.75;
7 \text{ HF} = [0 \ 1 \ 1 \ 1 \ 0];
8 f2=[-0.126, -0.125:0.125:0.125, 0.126];
9 \text{ for } i=1:5
        YF(i) = WF(i) * HF(i);
10
11 end
12 f3=[-0.126 -0.125 \ 0 \ 0.125 \ 0.126];
13 a=gca();
14 a.y_location="origin";
15 subplot (211);
16 plot2d(f,XF);
17 xtitle('spectrum of XF');
18 a.y_location="origin";
19 subplot (212);
20 plot2d(f1,WF);
21 xtitle('spectrum of WF');
22 xset('window',1);
23 b=gca();
24 b.y_location="origin";
25 subplot (211);
26 plot2d(f2, HF);
27 xtitle('spectrum of HF');
28 b.y_location="origin";
29 subplot (212);
30 plot2d(f3,YF);
31 xtitle('spectrum of YF');
```


Figure 7.5: Up Sampling and Filtering

Figure 7.6: Up Sampling and Filtering

Scilab code Exa 7.9 Quantisation Effects

```
1 //(a) Quantisation effects
2 \text{ sig=0.005};
3 D=4;
4 B=log2(D/(sig*sqrt(12)));//no.of samples
5 //value of B to ensure quantisation error to 5mv
6 //(b) Quantisation error and noise
7 \text{ xn} = 0:0.2:2.0;
8 xqn=[0 \ 0 \ 0.5 \ 0.5 \ 1 \ 1 \ 1 \ 1.5 \ 1.5 \ 2 \ 2];
9 en=xn-xqn; // quantization error
10 // Quantisation signal top noise ratio
11 x=0; e=0;
12 for i=1:length(xn)
       x=x+xn(i)^2;
13
        e=e+en(i)^2;
14
15 end
16 / \text{method } 1
17 SNRQ = 10 * log 10 (x/e)
18 / \text{method } 2
19 SNRQ = 10 * log 10 (x/length (xn)) + 10.8 + 20 * log 10 (4) - 20 *
      log10(2)
20 SNRS=10*log10(1.33)+10*log10(12)+20*log10(4)-20*
      log10(2)
21 //from results we see that SNRS is statistical
      estimate
```

Scilab code Exa 7.10 ADC considerations

```
1 //ADC considerations
2 //(a) Aperture time TA
3 B=12;
4 fo=15000; //band limited frquency
5 TAm=(1/((2^B)))/(%pi*fo);
6 TAm=TAm*10^9
```

```
7 // Hence TA must satisfy TA<=TAm nano sec
8 //(b) conversion time of quantizer
9 TA = 4 * 10^{-9};
10 TH=10*10^-6; //hold time
11 S=30*10^3;
12 TCm = 1/S - TA - TH;
13 TCm=TCm * 10^6
14 //Hence TC must satisfy TC<=TCm micro sec
15 //(c) Holding capacitance C
16 \text{ Vo} = 10;
17 TH = 10 * 10^{-6};
18 B=12;
19 R=10^6; //input resistance
20 \text{ delv=Vo/(2^(B+1))};
21 Cm = (Vo*TH)/(R*delv);
22 \quad Cm = Cm * 10^9
23 //Hence C must satisfy C>=Cm nano farad
```

Scilab code Exa 7.11 Anti Aliasing Filter Considerations

```
//Anti Aliasing filter considerations
//minimum stop band attenuation As
B=input('enter no. of bits');//no. of samples
n=input('enter band width in KHZ');
As=20*log10(2^B*sqrt(6))
//nomalised frequency
Vs=(10^(0.1*As)-1)^(1/(2*n))
fp=4;//pass edge frequency
fs=Vs*fp//stop band frquency
S=2*fs//sampling frequency
fa=S-fp//aliaed frequency
Va=fa/fp;
//Attenuation at aliased frequency
Aa=10*log10(1+Va^(2*n))
```


Figure 7.7: Anti Imaging Filter Considerations

Scilab code Exa 7.12 Anti Imaging Filter Considerations

```
//Anti Imaging Filter considerations
Ap=0.5;//passband attenuation
fp=20;//passband edge frequency
As=60;//stopband attenuation
S=42.1;
fs=S-fp;//stopband edge frequency
e=sqrt(10^(0.1*Ap)-1);
e1=sqrt(10^(0.1*Ap)-1);
n=(log10(e1/e))/(log10(fs/fp));
n=ceil(n)//design of nth order butworth filter
//(b) Assuming Zero-order hold sampling
S1=176.4;
fs1=S1-fp;
```

```
14 Ap=0.316;
15 e2=sqrt(10^{(0.1*Ap)-1)};
16 n1=(log10(e1/e2))/(log(fs1/fp));//new order of
     butworth filter
17 n1=ceil(n1)
18 f=0:100;
19 x = abs(sinc(f*\%pi/S));
20 f1=0:500;
21 x1=abs(sinc(f1*%pi/S1));
22 a=gca();
23 subplot (211);
24 plot2d(f,x);
25 xtitle("spectra under normal sampling condition", "f(
     kHZ)", "sinc(f/s1)");
26 subplot (212);
27 plot2d(f1,x1);
28 xtitle("spectra under over sampling condition", "f(
     kHZ)", "sinc(f/s1)");
```

Chapter 8

The Discrete Fourier Transform and its Applications

Scilab code Exa 8.1 DFT from Defining Relation

```
//DFT from defining relation
//N-point DFT
x=[1 2 1 0];
XDFT=dft(x,-1);
disp(XDFT, 'The DFT of x[n] is');
//DFT of periodic signal x with period N=4
```

Scilab code Exa 8.2 The DFT and conjugate Symmetry

```
1 //The DTFT and conjugate symmetry
2 //8-point DFT
3 x=[1 1 0 0 0 0 0 0];
4 XDFT=dft(x,-1);
5 disp(XDFT, 'The DFT of x is ');
6 disp('from conjugate symmetry we see XDFT[k]=XDFT[8-k]');
```

Scilab code Exa 8.3 Circular Shift and Flipping

```
1 // Circular shift and flipping
2 //(a) right circular shift
3 y = [1 2 3 4 5 0 0 6];
4 f = y; g = y; h = y;
5 \text{ for } i=1:2
       b=f(length(f));
6
7
       for j = length(f) : -1 : 2
8
            f(j)=f(j-1);
9
        end
10
        f(1) = b;
12 disp(f, 'By right circular shift y[n-2] is');
13 //(b) left circular shift
14 for i=1:2
15
       a=g(1);
       for j=1:length(g)-1
16
17
            g(j)=g(j+1);
18
        g(length(g))=a;
19
20 end
21 disp(g, 'By left circular shift y[n+2] is');
22 //(c) flipping property
23 h=[h(1) h(length(h):-1:2)];
24 disp(h, 'By flipping property y[-n] is');
```

Scilab code Exa 8.4 Properties of DFT

```
1 x=[1 2 1 0];
2 XDFT=dft(x,-1)
3 //(a)time shift property
```

```
4 y = x;
5 for i=1:2
       a = y(1);
7
       for j=1:length(y)-1
            y(j) = y(j+1);
9
        end
10
        y(length(y))=a;
11 end
12 YDFT = dft(y, -1)
13 disp(YDFT, 'By Time-Shift property DFT of x[n-2] is')
14 //(b) flipping property
15 g=[x(1) x(length(x):-1:2)]
16 GDFT = dft(g, -1)
17 disp(GDFT, 'By Time reversal property DFT of x[-n] is
18 //(c) conjugation property
19 p = XDFT;
20 PDFT = [p(1); p(4:-1:2)];
21 disp(YDFT, 'BY conjugation property DFT of x*[n] is')
```

Scilab code Exa 8.5a Properties of DFT

```
1 //properties of DFT
2 //a1)product
3 xn=[1 2 1 0];
4 XDFT=dft(xn,-1)
5 hn=xn.*xn
6 HDFT=dft(hn,-1)
7 HDFT1=1/4*(convol(XDFT,XDFT))
8 HDFT1=[HDFT1,zeros(8:12)];
9 HDFT2=[HDFT1(1:4);HDFT1(5:8);HDFT1(9:12)];
10 HDFT3=[0 0 0 0];
11 for i=1:4
```

```
12
        for j=1:3
13
             HDFT3(i) = HDFT3(i) + HDFT2(j,i);
14
        end
15 end
16 disp(HDFT3, 'DFT of x[n]^2 is');
17 //a2) periodic convolution
18 vn = convol(xn, xn);
19 vn=[vn, zeros(8:12)];
20 vn = [vn(1:4); vn(5:8); vn(9:12)];
21 \text{ vn1} = [0 \ 0 \ 0 \ 0];
22 \quad for \quad i = 1:4
23
        for j=1:3
24
             vn1(i)=vn1(i)+vn(j,i);
25
        end
26 \, \text{end}
27 VDFT = dft(vn1, -1);
28 VDFT1=XDFT.*XDFT;
29 disp(VDFT1, 'DFT of x[n]*x[n] is ');
30 //a3) signal energy (parcewell's theorem)
31 \text{ xn}2=\text{xn}^2;
32 E=0;
33 for i=1:length(xn2)
        E=E+abs(xn2(i));
34
35 end
36 \times DFT2 = XDFT^2
37 \text{ E1=0};
38 for i=1:length(XDFT2)
39
        E1=E1+abs(XDFT2(i));
40 \text{ end}
41 E, (1/4)*E1;
42 disp(1/4*E1, 'The energy of the signal is');
```

Scilab code Exa 8.5b Properties of DFT

```
1 / b1) modulation
```

```
2 XDFT = [4 -2*\%i \ 0 \ 2*\%i];
3 xn=dft(XDFT,1)
4 for i=1:length(xn)
        zn(i)=xn(i)*%e^((%i*%pi*(i-1))/2);
6 end
7 disp(zn, 'The IDFT of XDFT[k-1] is');
8 ZDFT = [2*\%i 4 -2*\%i 0];
9 zn1=dft(ZDFT,1)
10 //b2) periodic convolution
11 HDFT=(convol(XDFT, XDFT))
12 HDFT = [HDFT, zeros (8:12)];
13 HDFT = [HDFT (1:4); HDFT (5:8); HDFT (9:12)];
14 \text{ HDFT1} = [0 \ 0 \ 0 \ 0];
15 \text{ for } i=1:4
16
        for j=1:3
17
             HDFT1(i) = HDFT1(i) + HDFT(j,i);
18
        end
19 end
20 HDFT1;
21 hn=dft(HDFT1,1)
22 \text{ hn1}=4*(xn.*xn);
23 disp(hn1, 'The IDFT of XDFT*XDFT is');
24 / b3) product
25 WDFT=XDFT.*XDFT;
26 \text{ wn} = \text{dft}(\text{WDFT}, 1)
27 wn1 = convol(xn, xn);
28 wn1=[wn1, zeros(8:12)];
29 wn1=[wn1(1:4); wn1(5:8); wn1(9:12)];
30 \text{ WN} = [0 \ 0 \ 0 \ 0];
31 \text{ for } i=1:4
32
        for j=1:3
33
             WN(i) = WN(i) + wn1(j,i);
34
        end
35 end
36 disp(WN, 'The IDFT of XDFT.XDFT is');
37 //b4) Central ordinates and signal Energy
38 E=0;
39 for i=1:length(xn)
```

Scilab code Exa 8.5c Properties of DFT

```
1 // Regular convolution
2 xn=[1 2 1 0];
3 yn=[1 2 1 0 0 0 0];
4 YDFT=dft(yn,-1)
5 SDFT=YDFT.*YDFT
6 sn=dft(SDFT,1)
7 sn1=convol(xn,xn)
```

Scilab code Exa 8.6 Signal and Spectrum Replication

```
1 //Signal and spectrum replication
2 \text{ xn} = [2 \ 3 \ 2 \ 1];
3 \text{ XDFT} = \text{dft}(xn, -1)
4 yn = [xn xn xn];
5 \text{ YDFT} = \frac{\text{dft}}{\text{(yn,-1)}}
6 YDFT1=3*[XDFT(1:1/3:length(XDFT))];
7 \text{ for } i=2:3
        YDFT1(i:3:length(YDFT1))=0;
9 end
10 YDFT1 (12:-1:11)=0;
11 disp(YDFT1, 'the DFT of x[n/3] is');
12 hn = [xn(1:1/3:length(xn))]
13 for i=2:3
        hn(i:3:length(hn))=0;
14
15 end
16 hn(12:-1:11)=0;
17 hn
```

Scilab code Exa 8.7 Relating DFT and DTFT

```
1 //relating DFT and IDFT
2 XDFT1=[4 -2*%i 0 2*%i];
3 xn1=dft(XDFT1,1);
4 disp(xn1,'The IDFT of XDFT1');
5 XDFT2=[12 -24*%i 0 4*%e^(%i*%pi/4) 0 4*%e^(-%i*%pi/4) 0 24*%i];
6 xn2=dft(XDFT2,1);
7 disp(xn2,'The IDFT of XDFT1');
```

Scilab code Exa 8.8 Relating DFT and DTFT

```
1 // Relating DFT and DTFT
2 xn=[1 2 1 0];
3 XDFT=dft(xn,-1);
4 // for F=k/4,k=0,1,2,3
5 for k=1:4
6     XF(k)=1+2*%e^(-%i*%pi*(k-1)/2)+%e^(-%i*%pi*(k-1));
7 end
8 XF,XDFT
9 disp(XF, 'The DFT of x[n] is ');
```

Scilab code Exa 8.9a The DFT and DFS of sinusoids

Figure 8.1: The DFT and DFS of sinusoids

```
1 //DFT and DFS of sinusoids
2 n2=0:0.5/1000:5.5/100;
3 xt=4*cos(100*%pi*n2');
4 n=0:(0.5)/100:(5.5)/100;//F=3/12 hence N=12
5 xn=4*cos(100*%pi*n');
6 XDFT=dft(xn,-1);
7 n1=0:11;
8 a=gca();
9 a.x_location="origin";
10 plot2d(n2,xt);
11 plot2d3('gnn',n,xn);
12 xset('window',1);
13 b=gca();
14 b.x_location="origin";
15 plot2d3('gnn',n1,XDFT);
```


Figure 8.2: The DFT and DFS of sinusoids

Scilab code Exa 8.9b The DFT and DFS of sinusoids

```
1 //DFT and DFS of sinusoids
2 n2=0:1/1280:31/128;
3 xt=4*sin(72*%pi*n2');
4 n=0:1/128:31/128; //F=9/32 hence N=32
5 xn=4*sin(72*%pi*n');
6 XDFT=abs(dft(xn,-1));
7 n1=0:31;
8 a=gca();
9 a.x_location="origin";
10 plot2d(n2,xt);
11 plot2d3('gnn',n,xn);
12 xset('window',1);
13 b=gca();
14 b.x_location="origin";
15 plot2d3('gnn',n1,XDFT);
```


Figure 8.3: The DFT and DFS of sinusoids

Scilab code Exa 8.9c The DFT and DFS of sinusoids

```
1 //DFT and DFS of sinusoids
2 n2=0:1/840:6/21;
3 xt=4*sin(72*%pi*n2')-6*cos(12*%pi*n2');
4 n=0:1/21:6/21;//F=3/12 hence N=12
5 xn=4*sin(72*%pi*n')-6*cos(12*%pi*n');
6 XDFT=abs(dft(xn,-1));
7 n1=0:6;
8 a=gca();
9 a.x_location="origin";
10 plot2d(n2,xt);
11 plot2d3('gnn',n,xn);
```


Figure 8.4: The DFT and DFS of sinusoids

Scilab code Exa 8.9d The DFT and DFS of sinusoids

```
1 //DFT and DFS of sinusoids
2 n2=0:1/2400:23/240;
3 xt=1+4*sin(120*%pi*n2')+4*sin(40*%pi*n2');
4 n=0:1/240:23/240;//F=9/32 hence N=32
5 xn=1+4*sin(120*%pi*n')+4*sin(40*%pi*n');
6 XDFT=abs(dft(xn,-1));
7 n1=0:23;
```


Figure 8.5: The DFT and DFS of sinusoids

Figure 8.6: The DFT and DFS of sinusoids $\,$

Figure 8.7: The DFT and DFS of sinusoids

```
8 a=gca();
9 a.x_location="origin";
10 plot2d(n2,xt);
11 plot2d3('gnn',n,xn);
12 xset('window',1);
13 b=gca();
14 b.x_location="origin";
15 plot2d3('gnn',n1,XDFT);
```

Scilab code Exa 8.10 DFS of sampled Periodic Signals

```
1 //DFS of sampled periodic signals
2 xn=[0 ones(2:16) 0 -ones(18:32)];
3 XDFS=0.032*dft(xn,-1);
```


Figure 8.8: The DFT and DFS of sinusoids

```
4 for i=1:length(XDFS)
5     if (abs(XDFS(i)) < 0.000001) then
6         XDFS(i) = 0;
7     end
8 end
9 disp(XDFS, 'The DFS of x[n] is');</pre>
```

Scilab code Exa 8.11 The effects of leakage

```
1 // Effects of leakage
2 n1=0:0.005:0.1;
3 n2=0:0.005:0.125;
4 n3=0:0.005:1.125;
5 xt1=(2*cos(20*%pi*n1')+5*cos(100*%pi*n1'));
6 xt2=(2*cos(20*%pi*n2')+5*cos(100*%pi*n2'));
7 xt3=(2*cos(20*%pi*n3')+5*cos(100*%pi*n3'));
8 XDFS1=abs(dft(xt1,-1))/20;
9 XDFS2=abs(dft(xt2,-1))/25;
```

```
10 XDFS3 = abs(dft(xt3,-1))/225;
11 f1=0:5:100;
12 f2=0:4:100;
13 f3=0:100/225:100;
14 a=gca();
15 a.x_location="origin";
16 plot2d3('gnn',f1,XDFS1);
17 xlabel('analog frequency');
18 ylabel ('Magnitude');
19 xset('window',1);
20 subplot (211);
21 plot2d3 ('gnn',f2, XDFS2);
22 xlabel('analog frequency');
23 ylabel('Magnitude');
24 subplot (212);
25 plot2d3('gnn',f3,XDFS3);
26 xlabel('analog frequency');
27 ylabel('Magnitude');
```

Scilab code Exa 8.15a Methods to find convolution

Figure 8.9: The effects of leakage

Figure 8.10: The effects of leakage

```
10 y1n=[0,0,0,y1n];

11 yn=yon+y1n

12 yn1=convol(xn,hn)
```

Scilab code Exa 8.15b Methods to find convolution

```
1 //(b) overlap -save method
2 xn=[1 2 3 3 4 5];
3 hn=[1 1 1];
4 xon=[0 0 1 2 3];
5 x1n=[2 3 3 4 5];
6 x2n=[4 5 0 0 0];
7 yon=convol(xon,hn);
8 y1n=convol(x1n,hn);
9 y2n=convol(x2n,hn);
10 yno=yon(3:5);
11 yn1=y1n(3:5);
12 yn2=y2n(3:5);
13 yn=[yno yn1 yn2]
14 YN=convol(xn,hn)
```

Scilab code Exa 8.16 Signal Interpolation using FFT

```
1 //signal interpolation using FFT
2 xn=[0 1 0 -1];
3 XDFT=dft(xn,-1)
4 ZT=[0 -2*%i 0 zeros(1:27) 0 2*%i];
5 xn1=dft(ZT,1);
6 t=0:1/length(xn1):1-(1/length(xn1));
7 a=gca();
8 a.x_location="origin";
```


Figure 8.11: Signal Interpolation using FFT

```
9 plot2d(t,xn1);
10 xlabel('time t');
11 ylabel('Amplitude');
12 xtitle('Interpolated Sinusoid:4 samples over one period');
```

Scilab code Exa 8.17 The Concept of Periodogram

```
1 //concept of periodogram
2 xn=[0 1 0 -1];
3 N=4;
4 XDFT=dft(xn,-1);
5 for i=1:length(XDFT)
6    p(i)=(1/N)*abs(XDFT(i)^2);
7 end
8 p//periodogram
```

Scilab code Exa 8.18 DFT from matrix formulation

```
1 //The DFT from the matrix formulation
2 xn=[1;2;1;0];
3 w=exp(-%i*%pi/2);
4 for i=1:4
5     for j=1:4
6         WN(i,j)=w^((i-1)*(j-1));
7     end
8 end
9 XDFT=WN*xn
```

Scilab code Exa 8.19 Using DFT to find IDFT

```
1 //using DFT to find IDFT
2 XDFT=[4;-2*%i;0;2*%i];
3 XDFTc=[4;2*%i;0;-2*%i];
4 w=exp(-%i*%pi/2);
5 for i=1:4
6     for j=1:4
7         WN(i,j)=w^((i-1)*(j-1));
8     end
9 end
10 xn=1/4*(WN*XDFTc)
```

Scilab code Exa 8.20 Decimation in Frequency FFT algorithm

```
1 //A four point decimation-in-frequency FFT algorithm
2 x=[1 2 1 0];
```

```
3  w=-%i;
4  xdft(1)=x(1)+x(3)+x(2)+x(4);
5  xdft(2)=x(1)-x(3)+w*(x(2)-x(4));
6  xdft(3)=x(1)+x(3)-x(2)-x(4);
7  xdft(4)=x(1)-x(3)-w*(x(2)-x(4));
8  XDFT=dft(x,-1);
9  xdft, XDFT
```

Scilab code Exa 8.21 Decimation in time FFT algorithm

```
1 //A four point decimation—in—time FFT algorithm
2 x=[1 2 1 0];
3 w=-%i;
4 xdft=[0 0 0 0];
5 for i=1:4
6     for j=1:4
7         xdft(i)=xdft(i)+x(j)*w^((i-1)*(j-1));
8     end
9 end
10 XDFT=dft(x,-1);
11 xdft,XDFT
```

Scilab code Exa 8.22 4 point DFT from 3 point sequence

```
1 //A 4-point DFT from a 3-point sequence
2 xn=[1;2;1];
3 w=exp(-%i*%pi/2);
4 for i=1:4
5     for j=1:3
6         WN(i,j)=w^((i-1)*(j-1));
7     end
8 end
9 XDFT=WN*xn
```

Scilab code Exa 8.23 3 point IDFT from 4 point DFT

```
1 //A 3-point IDFT from 4-point DFT
2 XDFT=[4;-2*%i;0;2*%i];
3 w=exp(-%i*%pi/2);
4 for i=1:4
5     for j=1:3
6         WN(i,j)=w^((i-1)*(j-1));
7     end
8 end
9 WI=WN';
10 xn=1/4*(WI*XDFT)
```

Scilab code Exa 8.24 The importance of Periodic Extension

```
1 //The importance of Periodic extension
\frac{2}{(a)} = \frac{1}{(a)} = 3
3 x = [1 2 1];
4 XDFT = dft(x, -1)
5 \text{ w=exp}(-\%i*2*\%pi/3);
6 \text{ for } i=1:3
         for j=1:3
              WN(i,j)=w^{((i-1)*(j-1))};
8
9
         end
10 \text{ end}
11 WI = WN';
12 \text{ xn} = 1/3 * WI * XDFT
13 //The result is periodic with M=3 & 1 period equals
       x[n]
14 //(b) For M=4
15 y = [1 \ 2 \ 1 \ 0];
```

```
16  YDFT=dft(y,-1)
17  w=exp(-%i*%pi/2);
18  for i=1:4
19         for j=1:4
20             WN(i,j)=w^((i-1)*(j-1));
21         end
22  end
23  WI=WN';
24  yn=1/4*WI*YDFT
```

Chapter 9

Design of IIR Filters

Scilab code Exa 9.1 Response Invariant Mappings

```
1 //Response in variant mappings
2 s = \%s; z = \%z;
3 \text{ HS}=1/(s+1);
4 f = 0:0.05:0.5;
5 HS1=horner(HS,(%i*%pi*2*f'));
6 \text{ ts=1};
7 HZ=z/(z-0.3679);
8 HZ1=horner(HZ, exp(%i*%pi*2*f'));
9 a = gca();
10 a.x_location="origin";
11 subplot (211)
12 plot2d(f, HS1);
13 plot2d(f, HZ1);
14 xlabel('Analog frequency f(Hz)');
15 ylabel('Magnitude');
16 xtitle('magnitude of H(s) and H(z)');
17 HZ1=HZ1-0.582; //magnitude after gain matching at dc
18 b=gca();
19 b.x_location="origin";
20 subplot (212);
21 plot2d(f, HS1);
```

```
22 plot2d(f, HZ1);
23 xlabel('Analog frequency f(Hz)');
24 ylabel('Magnitude');
25 xtitle('magnitude after gain matching at DC');
26 //Impulse response of analog and digital filter
27 t=0:0.01:6;
28 ht = exp(-t');
29 \quad n=0:6;
30 hn = exp(-n');
31 xset ('window',1)
32 c=gca();
33 subplot (211);
34 plot2d(t,ht);
35 plot2d3('gnn',n,hn);
36 xlabel('DT index n and time t=nts');
37 ylabel('Amplitude');
38 xtitle ('Impulse response of analog and digital
      filter');
39 //Step response of analog and digital filter
40 t=0:0.01:6;
41 st=1-exp(-t');
42 \quad n=0:6;
43 sn = (\%e - \%e^{(-n')})/(\%e - 1);
44 c=gca();
45 subplot (212);
46 plot2d(t,st);
47 plot2d3('gnn',n,sn);
48 xlabel('DT index n and time t=nts');
49 ylabel('Amplitude');
50 xtitle('Step response of analog and digital filter')
```


Figure 9.1: Response Invariant Mappings

Figure 9.2: Response Invariant Mappings

Scilab code Exa 9.2 Impulse Invariant Mappings

```
1 //Impulse invariant mappings
\frac{2}{\sqrt{a}} = \frac{1}{\sqrt{a}} = \frac{4s + 7}{s^2 + 5s + 4} to H(z) using
      impulse invariance
3 s = %s;
4 z = \%z;
5 HS = (4*s+7)/(s^2+5*s+4);
6 pfss(HS)
7 \text{ ts} = 0.5;
8 HZ=3*z/(z-\%e^{(-4*ts)})+z/(z-\%e^{(-ts)})
9 //(b) converting H(s)=4s+7/s^2+5s+4 to H(z) using
      impulse invariance
10 HS1=4/((s+1)*(s^2+4*s+5))
11 pfss(HS1);
12 HZ1=2*z/(z-\%e^-ts)+(2*1.414*z^2*\cos(-0.75*\%pi)
      -2*1.414*(z/\%e)*\cos(0.5-0.75*\%pi))/(z^2-2*(z/\%e)*
      \cos(0.5) + \%e^{-2}
```

Scilab code Exa 9.3ab Modified Impulse Invariant Design

```
1 //(a) Impulse invariant design
2 s=%s;z=%z;
3 HS=1/(s+1);
4 H1s=horner(HS,3*s/%pi)
5 H1z=%pi/3*z/(z-%e^(-%pi/3))
6 // Modified inmpulse invariant design
7 HZ=z/(z-1/%e);
8 HMZ=0.5*(z+1/%e)/(z-1/%e);// modified transfer function
9 H1Z=HZ/horner(HZ,1)
10 HM1Z=HMZ/horner(HMZ,1)
11 f=0:0.05:0.5;
```


Figure 9.3: Modified Impulse Invariant Design

```
12  HZ1=horner(HZ,exp(%i*2*%pi*f'));
13  HMZ1=horner(HMZ,exp(%i*2*%pi*f'));
14  H1Z1=horner(H1Z,exp(%i*2*%pi*f'));
15  HM1Z1=horner(HM1Z,exp(%i*2*%pi*f'));
16  a=gca();
17  a.x_location="origin";
18  plot2d(f,HZ1);
19  plot2d(f,HMZ1);
20  plot2d(f,HMZ1);
21  plot2d(f,HMIZ1);
22  xlabel('digital frequency');
23  ylabel('Magnitude');
24  xtitle('Impulse invariant design of H(s)=1/s+1 (dashed)');
```

Scilab code Exa 9.3cd Modified Impulse Invariant Design

```
1 //modified Impulse invariant Design
```

```
\frac{2}{\sqrt{(c)}}H(s)=4s+7/s<sup>2</sup>+5s+4
3 s = \%s; z = \%z;
4 HS = (4*s+7)/(s^2+5*s+4);
5 [d1]=degree(numer(HS));
6 [d2]=degree(denom(HS));
7 HZ = ((3*z)/(z-\%e^2-2))+(z/(z-\%e^2-0.5))
8 \text{ if } (d2-d1==1) \text{ then}
9
        h = (4+7/\%inf)/(1+5/\%inf+4/\%inf)
        HMZ = HZ - 0.5 * h
10
11 else
12
        HMZ = HZ
13 end
14 HS1=4/((s+1)*(s^2+4*s+5))
15 HZ1 = (0.2146*z^2+0.093*z)/(z^3-1.2522*z^2+0.527*z
       -0.0821);
16 [d1]=degree(numer(HS1));
17 [d2] = degree (denom (HS1));
18 \text{ if } (d2-d1==1) \text{ then}
        HMZ1=HZ1-0.5*h
19
20 else
21
        HMZ1 = HZ1
22 end
```

Scilab code Exa 9.5 Mappings from Difference Algorithms

```
//Mappings from difference algorithms
//Backward difference mappings
s=%s;z=%z;
ts=1;a=1;
HS=1/(s+a);
HZa=horner(HS,(z-1)/(z*ts))
z1=roots(denom(HZa))//for ts >0 HZa always stable
HZb=horner(HS,(z-1)/ts)
z2=roots(denom(HZb))//stable only for 0<ats<2
HZc=horner(HS,(z^2-1)/(2*z*ts))</pre>
```

```
11 z3=roots(denom(HZc))//magnitude of 1 pole is always >1 hence unstable
```

Scilab code Exa 9.6 Mappings From Integration Algorithms

Scilab code Exa 9.7 DTFT of Numerical Algorithms

```
1 //DTFT of numerical algorithms
2 //(a)For trapezoidal numerical integrator
3 ieee(2)
4 F=0:0.01:0.2;
5 HTF=1/(%i*2*tan(%pi*F'));
6 HIF=1/(%i*2*%pi*F');
7 Ha=1-((%pi*F')^2)/3-((%pi*F')^4/45);
8 //(b)For simphson's numerical integrator
9 Hb=((2*%pi*F')).*((2+cos(2*%pi*F'))./(3*sin(2*%pi*F')));
10 //For forward difference operator
```

```
11 HFF = (\%e^{(\%i*2*\%pi*F')}) - 1;
12 HDF=1/(%i*2*%pi*F');
13 Hc=1+(%i*2*\%pi*F')/2-(2*\%pi*F')^2/6;
14 Hc = abs(Hc);
15 //for central difference operator
16 HCF=sin(2*%pi*F')./(%i*4*%pi*%pi*F',^2);
17 Hd=abs(sin(2*%pi*F')./(2*%pi*F'));
18 length(F), length(Ha)
19 a=gca();
20 a.x_location="origin";
21 plot2d(F, Ha, rect = [0, 0.8, 0.2, 1.1]);
22 plot2d(F, Hb);
23 xtitle ("Magnitude spectrum of Integration algorithms
      ", "Digital Frequency F", "Magnitude");
24 xset ('window', 1);
25 plot2d(F, Hc, rect = [0, 0.8, 0.2, 1.1]);
26 plot2d(F, Hd);
27 xtitle ("Magnitude spectrum of difference algorithms"
      "," Digital Frequency F", "Magnitude,");
```

Scilab code Exa 9.8a Bilinear Transformation

```
// Bilinear transformation
//To convert bessel analog filter to digital filter
s=%s;
z=%z;
HS=3/(s^2+3*s+3);
Wa=4;//analog omega
Wd=%pi/2;//digital omega
```


Figure 9.4: DTFT of Numerical Algorithms

Figure 9.5: DTFT of Numerical Algorithms

Figure 9.6: Bilinear Transformation

```
8 T=(2/Wa)*(tan(Wd/2));
9 HZ=horner(HS,(2/T)*(z-1)/(z+1))
10 f=0:0.1:6;
11 HS1=horner(HS,(%i*4*f'/3));
12 HS1=abs(HS1);
13 HZ1=horner(HZ,exp(-%i*%pi*f'/6));
14 HZ1=abs(HZ1);
15 a=gca();
16 a.x_location="origin";
17 plot2d(f,HS1);
18 plot2d(f,HS1);
19 xlabel('Analog Frequency f[kHZ)');
20 ylabel('Magnitude');
21 xtitle('Bessel filter H(s) and digital filter H(z)');
;
```


Figure 9.7: Bilinear Transformation

Scilab code Exa 9.8b Bilinear Transformation

```
1 //Bilinear transformation
2 //To convert twin-T notch analog filter to digital
      filter
3 s = %s;
4 z = %z;
5 HS=(s^2+1)/(s^2+4*s+1);
7 S=240; f=60; //sampling and analog frequencies
8 W=0.5*%pi;//digital frequency
9 C=Wo/tan(0.5*W)
10 HZ=horner(HS,C*(z-1)/(z+1))
11 f=0:120;
12 HZ1=abs(horner(HZ,exp(-%i*%pi*f'/120)));
13 HS1=abs(horner(HS,(%i*f'/60)));
14 a=gca();
15 a.x_location="origin";
16 plot2d(f, HZ1);
17 plot2d(f, HS1);
```


Figure 9.8: D2D transformations

```
18 xlabel('Analog Frequency f[kHZ]');
19 ylabel('Magnitude');
20 xtitle('Notch filter H(S) and digital filter H(z)');
```

Scilab code Exa 9.9 D2D transformations

```
10 W2=0.75*\%pi;
11 K=tan(0.5*WD)/tan(0.5*(W2-W1))
12 a = -\cos(0.5*(W1+W2))/\cos(0.5*(W1-W2))/Mapping
      parameters k, a, A1, A2
13 A1=2*K*a/(K+1), A2=(K-1)/(K+1)
14 HBPZ=horner(HZ, -(z^2+A1*z+A2)/(A2*z^2+A1*z+1))
15 //(c)Lp 2 BS transformation
16 w1=3/8*\%pi; w2=5/8*\%pi; //band edges
17 K1 = tan(0.5*WD)*tan(0.5*(w2-w1))
18 a1=-\cos(0.5*(w1+w2))/\cos(0.5*(w2-w1))//\text{Mapping}
      parameters k1, a1, A1c, A2c
19 A1c=2*a1/(K1+1), A2c=-(K1-1)/(K1+1)
20 HBSZ=horner(HZ,(z^2+A1c*z+A2c)/(A2c*z^2+A1c*z+1))
21 f = 0:1/256:4;
22 for i=1:length(f)
23 HZ1(i)=horner(HZ, exp(-\%i*\%pi*f(i)/4));
24 end
25 \text{ HZ1} = abs(HZ1);
26 HHPZ1=abs(horner(HHPZ, exp(-%i*\%pi*f'/4)));
27 HBPZ1=abs(horner(HBPZ,exp(-%i*%pi*f',/4)));
HBSZ1=abs(horner(HBSZ, exp(-\%i*\%pi*f',/4)));
29 \ a = gca();
30 a.x_location="origin";
31 plot2d(f, HZ1);
32 plot2d(f, HHPZ1);
33 plot2d(f, HBPZ1);
34 plot2d(f, HBSZ1);
35 xlabel('Analog Frequency');
36 ylabel('Magnitude');
37 xtitle ('Digital-to-digital transformations of a low
      pass filter');
```

Scilab code Exa 9.10a Bilinear Design of Second Order Filters

Figure 9.9: Bilinear Design of Second Order Filters

```
1 // Bilinear design of second order filters
2 s = \%s; z = \%z;
3 fo=6; Wo=2*%pi*fo/25;
4 delf=5;S=25;
5 B = \cos(2*\%pi*fo/25)
6 C = tan(\pi/25)
7 HS=1/(s+1);
8 HZ=horner(HS,(z^2-(2*B*z)+1)/(C*(z^2)-C))
9 f=0:0.5:12.5;
10 HZ1=horner(HZ, exp(%i*2*%pi*f'/25));
11 HZ1 = abs(HZ1);
12 W2=(\%pi*delf/25)+acos(cos(Wo)*cos(\%pi*delf/25))
13 W1=W2-(2*\%pi*delf/25)
14 f1=S*W1/(2*\%pi), f2=S*W2/(2*\%pi)
15 f3=[f1;fo;f2];
16 HZf=abs(horner(HZ,exp(%i*2*%pi*f3'/25)));
17 a=gca();
18 a.x_location="origin";
19 plot2d(f, HZ1, rect = [0 0 13 1]);
20 plot2d3('gnn',f3,HZf);
```


Figure 9.10: Bilinear Design of Second Order Filters

```
21 xlabel('Analog Frequency f[kHZ]');
22 ylabel('Magnitude');
23 xtitle('Band pass filter fo=6kHZ, delf=5kHZ');
```

Scilab code Exa 9.10b Bilinear Design of Second Order Filters

```
1 // Bilinear design of second order filters
2 s=%s;z=%z;
3 f1=4;f2=9;
4 delf=f2-f1;S=25;
5 B=cos(%pi*(f1+f2)/25)/cos(%pi*(f2-f1)/25)
6 C=tan(%pi*delf/25)
7 HS=1/(s+1);
8 HZ=horner(HS,(z^2-(2*B*z)+1)/(C*(z^2)-C))
9 f=0:0.5:12.5;
10 HZ1=horner(HZ,exp(%i*2*%pi*f'/25));
```


Figure 9.11: Bilinear Design of Second Order Filters

```
11 HZ1=abs(HZ1);
12 fo=S*acos(B)/(2*%pi)
13 f3=[f1 fo f2];
14 HZf=abs(horner(HZ,exp(-%i*2*%pi*f3'/25)));
15 a=gca();
16 a.x_location="origin";
17 plot2d(f,HZ1);
18 plot2d3('gnn',f3,HZf);
19 xlabel('Analog Frequency f[kHZ]');
20 ylabel('Magnitude');
21 xtitle('Band pass filter f1=4kHZ,f2=9kHZ');
```

Scilab code Exa 9.10c Bilinear Design of Second Order Filters

```
1 //Bilinear design of second order filters
2 s=%s;z=%z;
```

```
3 fo=40; Wo=2*\%pi*fo/200;
4 delf=2; S=25;
5 \text{ delW}=2*\%pi*delf/200;
6 B = \cos(2*\%pi*fo/200)
7 K=0.557;
8 \quad C=K*tan(0.5*delW)
9 HS=1/(s+1);
10 HZ=horner(HS,(z^2-(2*B*z)+1)/(C*(z^2)-C))
11 f = 0:2:100;
12 f1=35:0.5:45;
13 HZ1=horner(HZ, exp(%i*2*%pi*f', 200));
14 HZ2=horner(HZ, exp(%i*2*%pi*f1', 200));
15 HZ1 = abs(HZ1);
16 HZ2=abs(HZ2);
17 a = gca();
18 a.x_location="origin";
19 subplot (211);
20 plot2d(f, HZ1);
21 xlabel('Analog Frequency f[kHZ]');
22 ylabel('Magnitude');
23 xtitle('peaking filter fo=40HZ, delf=2HZ');
24 subplot (212);
25 plot2d(f1,HZ2);
26 xtitle('Blowup of response 35HZ to 45HZ');
```

Scilab code Exa 9.11 Interference Rejection

```
//interference Rejection
//design oh high-Q and low-Q notch filters
s=%s;z=%z;
Q=50;
fo=60;S=300;
delf=fo/Q;
```


Figure 9.12: Interference Rejection

```
7 Wo=2*\%pi*fo/S;
8 delW=2*%pi*delf/S;
9 C=tan(0.5*delW), B=cos(Wo)
10 HS = (s)/(s+1);
11 H1Z = horner(HS, (z^2 - (2*B*z) + 1) / (C*(z^2) - C))
12 \quad Q1=5; delf1=fo/Q1;
13 delW1=2*\%pi*delf1/S;
14 C1 = tan(0.5 * delW1), B1 = cos(Wo)
15 H2Z=horner(HS,(z^2-(2*B1*z)+1)/(C1*(z^2)-C1))
16 \quad f = 0:0.5:150;
17 H1Z1=horner(H1Z,exp(%i*2*%pi*f',/S));
18 H2Z1=horner(H2Z, exp(%i*2*%pi*f',/S));
19 a=gca();
20 subplot (211);
21 plot2d(f, H1Z1);
22 xlabel('Analog Frequency f[Hz]');
23 ylabel('Magnitude');
24 xtitle('60 HZ notch filter with Q=50');
25 subplot (212);
26 plot2d(f, H2Z1);
```


Figure 9.13: IIR Filter Design

```
27 xlabel('Analog Frequency f[Hz]');
28 ylabel('Magnitude');
29 xtitle('60 HZ notch filter with Q=5');
```

Scilab code Exa 9.12 IIR Filter Design

```
9 omega=2*tan(0.5*W');//prewarping each band edge
                      frequency
10 epsilon=sqrt(10^(0.1*Ap)-1);
11 n=acosh(((10^(0.1*As)-1)/epsilon^2)^1/2)/(acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1/acosh(fs1
                     fp1));
12 n = ceil(n)
13 alpha=(1/n)*asinh(1/epsilon);
14 for i=1:n
                          B(i) = (2*i-1)*\%pi/(2*n);
15
16 end
17 \text{ for } i=1:n
                          p(i) = -\sinh(alpha) * \sin(B(i)) + \%i * \cosh(alpha) * \cos(B)
                                      (i));
19 end
20 \ Qs = 1;
21 for i=1:n
                           Qs=Qs*(s-p(i))
22
23 end
24 \quad Qo = 0.1634;
25 \text{ HPS=Qo/Qs}
26 HBPS=horner(HPS,(s^2+1.5045^2)/(s*1.202))
27 HZ=horner(HBPS, 2*(z-1)/(z+1))
28 \quad f = 0:0.001:0.5;
29 HZF=abs(horner(HZ,exp(%i*2*%pi*f')));
30 HBPF=abs(horner(HBPS, %i*2*%pi*f'));
31 a=gca();
32 plot2d(f, HZF);
33 plot2d(f, HBPF);
34 xlabel('Analog Frequency');
35 ylabel('magnitude');
36 xtitle ('band pass filter designed by the bilinear
                      transformation');
```

Chapter 10

Design of FIR filters

Scilab code Exa 10.2 Truncation and Windowing

```
1 //Truncation and Windowing
2 //(a)N=9, Barlett Window.
3 z = \%z;
4 Fc = 0.25;
5 n = -4:4;
6 hn=2*Fc*(sinc(0.5*n',*%pi))
7 Wn=1-(2*abs(n'))/8//Barlett window
8 \text{ hwn=hn.*Wn}
9 Hcz=0;
10 for i=1:length(hwn)
         Hcz=Hcz+hwn(i)*(z^{(2-i))};
12 end
13 Hcz//indicates delay of 0.15ms
14 //(b)N=6, vonhann Window
15 n1 = -2.5:2.5;
16 hn1=2*Fc*(sinc(0.5*n1',*%pi))
17 Wn1=0.5+0.5*(cos(0.4*%pi*n1'))//Vonhann window
18 \, \text{hwn1} = \text{hn1}.* \text{Wn1}
19 Hcz1=0;
20 for i=1:length(hwn1)
         Hcz1=Hcz1+hwn1(i)*(z^{((2-i))});
```

```
22 end 23 Hcz1//1st sample of hwn is 0 hence delay is 1.5ms
```

Scilab code Exa 10.3ab FIR lowpass Filter design

```
1 //FIR filter design using windows
2 //(a) Design of FIR filter to meet following
      specifications
3 fp=2; fs=4; Ap=2; As=40; S=20;
4 Fp=fp/S;Fs=fs/S;
5 Fc = 0.15;
6 z=\%z;
7 \text{ N1=3.21/(Fs-Fp)};
8 \text{ N1} = \text{ceil}(\text{N1})
9 N2=5.71/(Fs-Fp);
10 N2 = ceil(N2)
11 n1 = -16:16;
12 \quad n2 = -28.5:1:28.5;
13 hn1=2*Fc*(sinc(2*Fc*n1'));
14 hn2=2*Fc*(sinc(2*Fc*n2'));
15 Wn1=0.5+0.5*(cos(2*%pi*n1'/(N1-1)));//Vonhann window
16 \text{Wn2}=0.42+0.5*(\cos(2*\%\text{pi}*\text{n2}'/(\text{N2}-1)))+0.08*(\cos(4*\%\text{pi}))
      *n2', (N2-1))); //Blackman window
17 hwn1 = abs(hn1.*Wn1);
18 hwn2=abs(hn2.*Wn2);
19 [hwn1F, fr1] = frmag(hwn1, 256);
20 [hwn2F,fr2]=frmag(hwn2,256);
21 hwn1F1=20*log10(hwn1F);
22 hwn2F1=20*log10(hwn2F);
23 plot2d(fr1,hwn1F1);
24 plot2d(fr2(1:length(fr2)-2), hwn2F1(1:length(fr2)-2))
25 xlabel('Digital frequency');
26 ylabel('Magnitude [dB]');
27 title ('Low pass filter using vonhann and Blackmann
```

```
windows Fc = 0.15, vonhann N = 33, Blackman N = 58');
28 //(b) Minimum length design
29 \text{ Fcv} = 0.1313;
30 \text{ Fcb=0.1278};
31 \text{ Nv} = 23; \text{Nb} = 29;
32 \text{ nv} = -11:11;
33 \text{ nb} = -14:14;
34 \text{ hnv} = 2 * \text{Fcv} * (\text{sinc}(2 * \text{Fcv} * \text{nv}'));
35 hnb=2*Fcb*(sinc(2*Fcb*nb'));
36 \text{Wnv} = 0.5 + 0.5 * (\cos(2*\%\text{pi}*\text{nv}'/(\text{Nv}-1))); //\text{Vonhann window}
37 \text{Wnb}=0.42+0.5*(\cos(2*\%pi*nb'/(Nb-1)))+0.08*(\cos(4*\%pi))
       *nb'/(Nb-1)));//Blackman window
38 hwnv=abs(hnv.*Wnv);
39 \text{ hwnb=abs}(hnb.*Wnb);
40 [hwnvF,frv]=frmag(hwnv,256);
41 [hwnbF,frb]=frmag(hwnb,256);
42 hwnvF = 20 * log 10 (hwnvF);
43 hwnbF=20*log10(hwnbF);
44 b=gca();
45 xset ('window', 2);
46 plot(frv, hwnvF);
47 plot(frb, hwnbF);
48 xlabel('Digital frequency');
49 ylabel('Magnitude [dB]');
50 title ('Vonhann Fc=0.1313, Minimum N=23, Blackmann Fc
       =0.1278, Minimum N=29');
```

Scilab code Exa 10.3cd FIR filter Design

```
1 // Design of high pass FIR filter with specifications 2 // fp=4kHZ; fs=2kHZ; Ap=2dB; As=40dB
```


Figure 10.1: FIR lowpass Filter design

Figure 10.2: FIR lowpass Filter design

```
3 fp=2; fs=4; Ap=2; As=40; S=20;
4 Fp=fp/S;Fs=fs/S;
5 \text{ Ft} = 0.1;
6 \text{ Fc} = 0.15
7 N1=3.47/(Fs-Fp); //hamming
8 \text{ N1} = int(N1) + 1
9 N2=5.71/(Fs-Fp); //blackman
10 N2 = int(N2) + 1
11 [hn1]=eqfir(N1,[0 0.1;0.2 0.5],[0 1],[1 1]);
12 [HF1, fr1] = frmag(hn1, 512);
13 Hf1=20*log10(HF1);
14 [hn2]=eqfir(58,[0 0.1;0.2 0.43],[0 1],[1 1]);
15 [HF2, fr2] = frmag(hn2, 512);
16 Hf2=20*log10(HF2);
17 a=gca();
18 plot2d(fr1, Hf1, rect = [0 -120 0.5 4]);
19 plot2d(fr2(1:length(fr2)-5), Hf2(1:length(fr2)-5),
      rect=[0 -120 0.5 4]);
20 xlabel('Digital Frequency F');
21 ylabel ('Magnitude [dB]');
22 xtitle ('High pass filter using Hamming and Blackmann
       windows LPP Fc=0.35');
23 //Minimum Length Design
24 [hn3]=eqfir(22,[0 0.1;0.2 0.43],[0 1],[1 1]);
25 [HF3,fr3] = frmag(hn3,512);
26 \text{ Hf3}=20*\log 10 \text{ (HF3)};
27 [hn4]=eqfir(29,[0 0.1;0.2 0.5],[0 1],[1 1]);
28 [HF4, fr4] = frmag(hn4, 512);
29 Hf4=20*log10(HF4);
30 xset('window',1);
31 \quad a = gca();
32 plot2d(fr3(1:length(fr3)-5), Hf3(1:length(fr3)-5),
      rect = [0 -120 \ 0.5 \ 4]);
33 plot2d(fr4, Hf4, rect = [0 -120 0.5 4]);
34 xlabel('Digital Frequency F');
35 ylabel('Magnitude [dB]');
36 xtitle('Hamming LPP Fc=0.3293 N=22;Blackmann LPP Fc
      =0.3277 \text{ N}=29');
```


Figure 10.3: FIR filter Design

Scilab code Exa 10.4a Half Band lowpass FIR filter Design

```
1 // Half band FIR Filter Design
2 //(a)lowpass Half band Filter
3 s=%s;z=%z;
4 fp=8;fs=16;Ap=1;As=50;
5 S=2*(fs+fp);
6 Fp=fp/S;Fs=fs/S;Fc=0.25;
7 delp=(10^(Ap/20)-1)/(10^(Ap/20)+1);
8 dels=10^(-As/20);
9 del=min(delp,dels);
10 As0=-20*log10(del)
11 N1=(As0-7.95)/(14.36*(Fs-Fp))+1;
```


Figure 10.4: FIR filter Design

```
12 N1 = int(N1) + 1;
13 B=0.0351*(As0-8.7)
14 [hn1]=eqfir(19,[0 1/6;1/3 0.5],[1 0],[1 1]);
15 [HLPF1,fr1]=frmag(hn1,512);
16 HLPf1=20*log10(HLPF1);
17 a=gca();
18 plot2d(fr1, HLPf1);
19 xlabel('Digital Frequency');
20 ylabel('Magnitude in dB');
21 xtitle('Kaiser half band LPF:B=1.44;Fc=0.25');
22 [hn2]=eqfir(21,[0 1/6;1/3 0.5],[1 0],[1 1]);
23 [HLPF2, fr2] = frmag(hn2, 512);
24 \text{ HLPf2} = 20 * \frac{\log 10}{\ln \text{HLPF2}};
25 xset('window',1);
26 plot2d(fr2, HLPf2);
27 xlabel('Digital Frequency');
28 ylabel('Magnitude in dB');
29 xtitle('Hamming half-band LPF: N=21; Fc=0.25');
```


Figure 10.5: Half Band lowpass FIR filter Design

Scilab code Exa 10.4b Half Band bandstop FIR filter Design

```
1 // Half band FIR Filter Design
2 //(a)band-stop Half band Filter
3 s=%s;z=%z;
4 fp1=1;fs1=2;fp2=4;fs2=3;Ap=1;As=50;
5 S=2*(fs1+fs2);
6 Fp=0.5*(fs2/S-fs1/S);Fs=0.5*(fp2/S-fp1/S);
7 Fc=0.5*(Fp+Fs);Fo=0.25;
8 delp=(10^(Ap/20)-1)/(10^(Ap/20)+1);
9 dels=10^(-As/20);
10 del=min(delp,dels);
11 As0=-20*log10(del)
```


Figure 10.6: Half Band lowpass FIR filter Design

```
12 N1 = (As0 - 7.95) / (14.36*(Fs - Fp)) + 1;
13 N1 = ceil(N1);
14 B=0.0351*(As0-8.7)
   [hn1]=eqfir(31,[0 0.1;0.2 0.3;0.4 0.5],[1 0 1],[1 1
15
      1]);
16 [HBSF1, fr1] = frmag(hn1, 400);
17 HBSf1 = 20 * log10 (HBSF1);
18 a=gca();
19 plot2d(fr1, HBSf1);
20 xlabel('Digital Frequency');
21 ylabel('Magnitude in dB');
22 xtitle('Kaiser half band LPF:B=1.44;Fc=0.25');
23 [hn2]=eqfir(35,[0 0.1;0.2 0.3;0.4 0.5],[1 0 1],[1 1
      1]);
24 [HF2,fr2]=frmag(hn2,200);
25 \text{ HBSf2} = 20 * \log 10 \text{ (HF2)};
26 xset('window',1);
27 plot2d(fr2, HBSf2);
28 xlabel('Digital Frequency');
29 ylabel('Magnitude in dB');
```


Figure 10.7: Half Band bandstop FIR filter Design

```
30 xtitle('Hamming half-band LPF:N=21;Fc=0.25');
```

Scilab code Exa 10.5a Design by Frequency Sampling

```
1 //Fir low pass filter design by frequency sampling
2 z=%z;
3 N=10;
4 magHk=[1 1 1 0 0 0 0 0 1 1];
5 k=[0:7 -1 -2];
6 fik=-%pi*k'*(N-1)/N;
7 for i=1:length(fik)
8 H1k(i)=magHk(i)*exp(%i*fik(i));
```


Figure 10.8: Half Band bandstop FIR filter Design

Figure 10.9: Design by Frequency Sampling

```
9 end
10 H1n=(dft(H1k,1));
11 H2k=H1k;
12 H2k(3) = 0.5*\%e^{(-\%i*1.8*\%pi)};
13 H2k(9) = 0.5*\%e^{(\%i*1.8*\%pi)};
14 H2n = (dft(H2k, 1));
15 H1Z=0; H2Z=0;
16 for i=1:length(H1n)
       H1Z=H1Z+H1n(i)*z^{(-i)};
17
18 end
19 for i=1:length(H2n)
       H2Z=H2Z+H2n(i)*z^{(-i)};
20
21 end
22 F=0:0.01:1;
23 F1=0:0.1:0.9;
24 H1F=abs(horner(H1Z,exp(%i*2*%pi*F')));
25 H2F=abs(horner(H2Z,exp(%i*2*%pi*F')));
26 a=gca();
27 plot2d(F1, magHk);
28 plot2d(F, H2F);
29 plot2d(F, H1F);
30 xlabel('Digital Frequency F');
31 ylabel('magnitude');
32 xtitle('Low pass filter using frequency sampling');
```

Scilab code Exa 10.5b Design by Frequency Sampling

```
1 //Fir high pass filter design by frequency sampling
2 z=%z;
3 N=10;
4 magHk=[0 0 0 1 1 1 1 1 0 0];
5 k=[0:5 -4:-1:-1];
6 fik=(-%pi*k'*(N-1)/N)+(0.5*%pi);
```


Figure 10.10: Design by Frequency Sampling

```
7 for i=1:length(fik)
       H1k(i) = magHk(i) * exp(%i * fik(i));
8
9 end
10 H1n=(dft(H1k,1));
11 H2k=H1k;
12 H2k(3) = 0.5*\%e^{(-\%i*1.3*\%pi)};
13 H2k(9) = 0.5*\%e^{(\%i*1.3*\%pi)};
14 H2n = (dft(H2k, 1));
15 H1Z=0; H2Z=0;
16 for i=1:length(H1n)
17
       H1Z=H1Z+H1n(i)*z^{(-i)};
18 end
19 for i=1:length(H2n)
       H2Z=H2Z+H2n(i)*z^{(-i)};
20
21 end
22 \quad F = 0:0.01:1;
23 F1=0:0.1:0.9;
24 H1F=abs(horner(H1Z,exp(%i*2*%pi*F')));
25 H2F=abs(horner(H2Z,exp(%i*2*%pi*F')));
26 a=gca();
```


Figure 10.11: Optimal FIR Bandstop Filter Design

```
27 plot2d(F1,magHk);
28 plot2d(F,H2F);
29 plot2d(F,H1F);
30 xlabel('Digital Frequency F');
31 ylabel('magnitude');
32 xtitle('Low pass filter using frequency sampling');
```

Scilab code Exa 10.6a Optimal FIR Bandstop Filter Design

```
1 //optimal Fir band stop filter design
2 fp1=1;fp2=4;fs1=2;fs2=3;
3 Ap=1;As=50;S=10;
4 Fp1=fp1/S;Fp2=fp2/S;Fs1=fs1/S;Fs2=fs2/S;
5 FT=0.1;FC=0.25
6 //calculation of filter length
7 delp=(10^(Ap/20)-1)/(10^(Ap/20)+1);
```


Figure 10.12: Optimal Half Band Filter Design

```
8 dels=10^(-As/20);
9 N=1+((-10*log10(delp*dels)-13)/(14.6*FT))
10 N1=21;
11 [hn]=eqfir(N1,[0 0.1;0.2 0.3;0.4 0.5],[1 0 1],[1 1 1]);
12 [HF,fr]=frmag(hn,512);
13 Hf=20*log10(HF);
14 a=gca();
15 plot(fr,Hf);
16 xlabel('Digital frequency F');
17 ylabel('Magnitude in dB');
18 xtitle('optimal BSF:N=21;Ap=0.2225;As=56.79dB');
```

Scilab code Exa 10.6b Optimal Half Band Filter Design

```
1 //optimal Fir band pass filter design
```

```
2 \text{ fp=8; fs=16;}
3 \text{ Ap=1; As=50; S=48;}
4 Fp=fp/S;Fs=fs/S;
5 FT=0.1; FC=0.25
6 //calculation of filter length
7 delp = (10^{(Ap/20)} - 1)/(10^{(Ap/20)} + 1);
8 \text{ dels}=10^{(-As/20)};
9 del=min(delp,dels);
10 N=1+((-10*log10(del*del)-13)/(14.6*FT));
11 N1=19;
12 [hn]=eqfir(N1,[0 1/6;1/3 0.5],[1 0],[1 1]);
13 [HF, fr] = frmag(hn, 200);
14 Hf = 20 * log 10 (HF);
15 a=gca();
16 plot(fr, Hf);
17 xlabel('Digital frequency F');
18 ylabel ('Magnitude in dB');
19 xtitle('optimal Half band LPF N=17');
```

Scilab code Exa 10.7 Multistage Interpolation

```
//The concept of multistage Interpolation
//(a) Single stage interpolator
Sin=4; Sout=48;
fp=1.8;
fs=Sin-fp;
FT=(fs-fp)/Sout;
disp('By using single stage the total filter length is:')
L=4/FT
//(b)Two-stage interpolator
Sin=[4 12];
I=[3 4];//interpolating factors
Sout=[12 48];
fp=[1.8 1.8];
```

```
14 fs=Sin-fp;
15 L1=4*Sout./(fs-fp);
16 L=0;
17 for i=1:length(L1)
18
        L=L+L1(i);
19 end
20 disp('By using 2 stage interpolator filter length is
      :")
21 ceil(L)
22 //(c)3 stage interpolator with I1=2; I2=3; I3=2
23 Sin = [4 \ 8 \ 24];
24 I = [2 \ 3 \ 2];
25 Sout = [8 \ 24 \ 48];
26 fp = [1.8 \ 1.8 \ 1.8];
27 fs = Sin - fp;
28 L2=4*Sout./(fs-fp); L=0;
29 for i = 1: length (L2)
        L=L+L2(i);
30
31 end
32 disp('By using 3 stage interpolator filter length is
      :")
33 ceil(L)
34 / (d) 3 stage interpolator with I1=2; I2=3; I3=2
35 \sin = [4 \ 12 \ 24];
36 \quad I = [3 \quad 2 \quad 2];
37 Sout = [12 \ 24 \ 48];
38 fp = [1.8 \ 1.8 \ 1.8];
39 \text{ fs} = \text{Sin} - \text{fp};
40 L3=4*Sout./(fs-fp); L=0;
41 for i = 1: length (L3)
42
        L=L+L3(i);
43 end
44 disp ('By using 2 stage interpolator filter length is
      :")
45 ceil(L)
```

Scilab code Exa 10.8 Design of Interpolating Filters

```
1 //Design of interpolating filters
2 //(a) Design using a single stage interpolator
3 fp=1.8; Sout=48; Sin=4;
4 Ap=0.6; As=50;
5 fs=Sin-fp;
6 //finding ripple parameters
7 delp=(10^{(Ap/20)-1)/(10^{(Ap/20)+1)};
8 \text{ dels}=10^{(-As/20)};
9 N=Sout*(-10*log10(delp*dels)-13)/(14.6*(fs-fp))+1;
10 disp('By using single stage interpolator the filter
      design is: ');
11 ceil(N)
12 // Design using 3-stage interpolator with I1=2; I2=3;
      I3 = 2
13 Ap=0.2;
14 Sin=[4 8 24];
15 Sout = [8 24 48];
16 fp=[1.8 1.8 1.8];
17 fs=Sin-fp;
18 delp = (10^{(Ap/20)-1)/(10^{(Ap/20)+1)};
19 dels=10^{(-As/20)};
20 p=14.6*(fs-fp);
21 N1 = ((-10 * log10 (delp*dels) - 13)./p);
22 \text{ N1} = (\text{Sout.} * \text{N1}) + 1; N = 0;
23 for i=1:length(N1)
24
       N=N+N1(i);
25 end
26 disp('By using single stage interpolator the filter
      design is: ');
27 ceil(N)
```

Scilab code Exa 10.9 Multistage Decimation

```
1 //The concept of multistage Decimation
2 //(a) Single stage decimator
3 Sin=48; Sout=4;
4 \text{ fp=1.8;}
5 fs=Sout-fp;
6 FT=(fs-fp)/Sin;
7 disp('By using single stage the total filter length
      is: ')
8 L=4/FT
9 //(b)Two-stage decimator
10 Sin=[48 12];
11 D=[4 3]; //decimating factors
12 Sout = [12 4];
13 fp=[1.8 1.8];
14 fs=Sout-fp;
15 L1=4*Sin./(fs-fp);
16 L=0;
17 for i=1:length(L1)
       L=L+L1(i);
18
19 end
20 disp('By using 2 stage decimator filter length is:")
21 ceil(L)
22 //3 stage decimator with D1=2;D2=3;D3=2
23 Sin = [48 \ 24 \ 8];
24 D=[2 3 2];
25 Sout = [24 \ 8 \ 4];
26 fp = [1.8 \ 1.8 \ 1.8];
27 fs = Sout - fp;
28 L2=4*Sin./(fs-fp); L=0;
29 for i = 1: length (L2)
30
       L=L+L2(i);
31 end
```

Scilab code Exa 10.10 Maximally Flat FIR filter Design

```
//Maximally flat FIR filter design
Fp=0.2;
Fs=0.4;
Fc=0.3;
Ft=0.2;
No=1+0.5/Ft^2;
No=ceil(N0);
alpha=(cos(%pi*Fc))^2;
k=5; Mmin=14;
L=Mmin-k;
N=2*Mmin-1;
disp(N,'Hence with this length we can get maximally flat FIR filter with no ripples in passband');
```

Appendix

Scilab code AP 1 Alias Frequency

```
1 function[F]=aliasfrequency(f,s,s1)
2 if (s>2*f) then
       disp("alias has not occured")
3
4 else
       disp("alias has occured")
5
6 end
7 \text{ F=f/s};
8 for i=1:100
       if (abs(F) > 0.5)
           F=F-i;
10
11
       end
12 end
13 fa=F*s1;
14 disp(fa, "frequency of reconstructed signal is")
15 endfunction
```