

COMP3600/6466 Algorithms

Lecture 3

S2 2016

Dr. Hassan Hijazi Prof. Weifa Liang

Asymptotic notations

 $O(g(n)) = \{f(n) : \text{ there } \mathbf{exist} \text{ positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le c \cdot g(n) \text{ for all } n \ge n_0\}, \text{ e.g. } 8 \lg n = O(n).$

 $\Omega(g(n)) = \{f(n) : \text{ there } \mathbf{exist} \text{ positive constants } c \text{ and } n_0 \text{ such that } 0 \le c \cdot g(n) \le f(n) \text{ for all } n \ge n_0\}, \text{ e.g. } 26n^7 + 2013 = \Omega(n^5).$

 $\Theta(g(n)) = \{f(n) : \text{there } \mathbf{exist} \text{ positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \text{ for all } n \ge n_0\}, \text{ e.g. } 5 \cdot 2^n + n^6 - 10^{10} = \Theta(2^n).$

$$o(g(n)) = \{f(n) : \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \ (f(n) \text{ and } g(n) \text{ positive})\}, \text{ e.g. } 10^5 \cdot 2^n = o(3^n).$$

$$\omega(g(n)) = \{ f(n) : \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \ (f(n) \text{ and } g(n) \text{ positive}) \}, \quad \text{e.g. } 2^n = \omega(n^3).$$

Asymptotic notations

$$f(n) = O(g(n))$$

$$\uparrow$$

There exist positive c and n_0 such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \le c$$
 If the limit exists

$$\lim_{n \to \infty} \left(\frac{1}{n} + 1 \right) \le 1 \implies \left(\frac{1}{n} + 1 \right) \le 1$$

$$\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right) = c \implies f(n) = \Theta(g(n)) \left(c_1 = \frac{c}{2} \text{ and } c_2 = \frac{3}{2}c \right)$$

Order of growth hierarchy

- Constant
- Logarithmic
- Fractional Power
- Linear
- Quasilinear
- Polynomial
- Quasi-polynomial
- Exponential

c

 $\lg n$

 n^{ϵ}

n

 $n \lg^k n$

 n^k

 $2^{\lg^k n}$

 2^{n^k}

 $(0 < \epsilon < 1)$

Increasing order

 $(k \ge 1)$

 $g_2(n)$

 $g_1(n)$

. . .

 $g_k(n)$

$$g_i(n) = O(g_{i+1}(n)), \ \forall i \in \{1, \dots, k-1\}$$

$$g_i(n) = \Omega(g_{i-1}(n)), \ \forall i \in \{2, \dots, k\}$$

Consider the statement: af(n) = O(f(n)), a > 0

$$O(f(n))$$
 is a set

O(f(n)) is a set of infinite size

Reminder: f(n) = O(g(n)) stands for $f(n) \in O(g(n))$

$$2n^3 + 3n^2 + 5 = 2n^3 + \Theta(n^2)$$

Interpretation: There is some function f(n) in $\Theta(n^2)$ such that $2n^3 + 3n^2 + 5 = 2n^3 + f(n)$.

$$2n^3 + \Theta(n^2) = \Theta(n^3)$$

Interpretation: For any choice $f(n) \in \Theta(n^2)$, there is a function $g(n) \in \Theta(n^3)$ such that $2n^3 + f(n) = g(n)$.

Transitivity holds for *O*-notation:

$$f(n) = O(g(n))$$
 and $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$.

It also holds for Ω , Θ , o, and ω .

Examples:

1.
$$\frac{1}{n} = O(\log n)$$
 and $\log n = O(n^3) \Rightarrow \frac{1}{n} = O(n^3)$

2.
$$3n^3 + 2n^2 + n = \Omega(3n^3)$$
 and $3n^3 = \Omega(n^3) \Rightarrow 3n^3 + 2n^2 + n = \Omega(n^3)$

3.
$$2n^2 = \Theta(n^2)$$
 and $n^2 = \Theta(3n^2) \Rightarrow 2n^2 = \Theta(3n^2)$

where the symbol \Rightarrow means "implies".

Sample proof for transitivity

Claim: f(n) = O(g(n)) and $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$. Proof:

- f(n) = O(g(n)) means: There are constants $n_1 > 0$ and $c_1 > 0$ such that $0 \le f(n) \le c_1 g(n)$ for $n \ge n_1$.
- g(n) = O(h(n)) means: There are constants $n_2 > 0$ and $c_2 > 0$ such that $0 \le g(n) \le c_2 h(n)$ for $n \ge n_2$.
- We obtain $0 \le f(n) \le c_1 g(n) \le c_1 c_2 h(n)$ for $n \ge \max(n_1, n_2)$.
- Since $c = c_1c_2$ and $n_0 = \max(n_1, n_2)$ are positive constants, f(n) = O(h(n)) follows by the-O definition.

Comparison of functions

Let f(n) and g(n) be asymptotically positive.

- Reflexivity:
 - 1. Holds for O, Ω , and Θ , e.g. f(n) = O(f(n)), $4n^2 = \Omega(4n^2)$, $n \log n = \Theta(n \log n)$.
 - 2. Not true for o() and $\omega()$, e.g. $\log n \neq o(\log n)$, $n \neq \omega(n)$.
- Symmetry:
 - 1. $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$.
 - 2. But this is not true for O and Ω , e.g. $\log \log n = O(\log n)$ but $\log n \neq O(\log \log n)$.

Sample proof for reflexivity

Proof:

- We want to show $f(n) = \Omega(f(n))$, which means: There are constants $n_0 > 0, c > 0$ such that $0 \le cf(n) \le f(n)$ for $n \ge n_0$.
- This is true, because $1 \cdot f(n) \leq f(n)$ for all natural numbers, and f(n) is assumed to be asymptotically nonnegative.
- More precisely, c = 1 and some large enough n_0 satisfy the definition, so $f(n) = \Omega(f(n))$ follows.

Further properties

- $O(g_1(n) + g_2(n)) = O(\max\{g_1(n), g_2(n)\})$, e.g. $O(n^5 + \log n) = O(n^5)$.
- $O(g_1(n)) + O(g_2(n)) = O(\max\{g_1(n), g_2(n)\}),$ e.g. $O(n^3) + O(n^2) = O(n^3).$
- $O(g_1(n)) \cdot O(g_2(n)) = O(g_1(n) \cdot g_2(n))$, e.g. $O\left(\frac{1}{n}\right) \cdot O(\log n) = O\left(\frac{\log n}{n}\right)$.
- However, $\frac{O(n^2)}{O(n)}$ is meaningless.
- $\frac{\Omega(g_1(n))}{O(g_2(n))} = \Omega\left(\frac{g_1(n)}{g_2(n)}\right)$, e.g. $\frac{1}{O(n)} = \frac{\Omega(1)}{O(n)} = \Omega\left(\frac{1}{n}\right)$.
- $\frac{O(g_1(n))}{\Omega(g_2(n))} = O\left(\frac{g_1(n)}{g_2(n)}\right)$, e.g. $\frac{O(n^2)}{\Omega(n)} = O(n)$.

Notations and Common Functions

- Monotonicity: A function f(n) is monotonically increasing if m < n implies $f(m) \le f(n)$ and it is strictly increasing if m < n implies f(m) < f(n). Similarly, f(n) is monotonically decreasing if m < n implies $f(m) \ge f(n)$ and strictly decreasing if m < n implies f(m) > f(n).
- Floors and ceilings: For any real x, the floor of x, denoted by $\lfloor x \rfloor$, is the greatest integer less than or equal to x. The ceiling of x, denoted by $\lceil x \rceil$, is the least integer greater than or equal to x. We have $x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$.
- Polynomials: Given a nonnegative integer d, a polynomial in n is a function of the form $p(n) = \sum_{i=0}^{d} c_i n^i$, where c_i is a constant for each i, called a coefficient of the polynomial. The degree of a polynomial is the highest power that occurs.
 - E.g. $p(n) = 3n^7 4n^5 + 1.1n^2 100$ is a polynomial of degree 7.

Notations and Common Functions

Iterated logarithm

$$\lg^{(0)} n = n$$
, $\lg^{(1)} n = \lg n$, $\lg^{(2)} n = \lg \lg n$, $\lg^{(3)} n = \lg \lg \lg n$, ...
In general: $\lg^{(k+1)} n = \lg \lg^{(k)} n$.

Iterated logarithm function: $\lg^* n = \min\{i \geq 0 \mid \lg^{(i)} n \leq 1\}.$

Exercise: Determine the value of $\lg^* 2^{16}$.

Solution: $\lg^* 2^{16}$ is the smallest integer i such that $\lg^{(i)} 2^{16} \le 1$. We have

It follows that $\lg^* 2^{16} = 4$.

Notations and Common Functions

• Exponentials: $(a^m)^n = a^{m \cdot n}$, $a^m a^n = a^{m+n}$, $\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$, $e^{\ln x} = \ln(e^x) = x$.

• Logarithms: $\lg n = \log_2 n$, $\ln n = \log_e n$, $\lg^k n = (\lg n)^k$, $\lg \lg n = \lg(\lg n)$.

• Factorials: Recall the definition of n factorial: $n! = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n$. We have $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$. (Stirling's formula)

For each statement, select between always true, never true, or sometimes true:

1.
$$f(n) = O(f(n)^2)$$

2.
$$f(n) = \Omega(g(n))$$
 and $f(n) = o(g(n))$

Let
$$f(n) = \sum_{i=1}^{n} i$$
 and $g(n) = n^2$. Prove that $f(n) = \Theta(g(n))$

Proof: First we rewrite f(n) in the form $f(n) = \frac{n(n+1)}{2} = \frac{n^2+n}{2} = \frac{1}{2}n^2 + \frac{1}{2}n$. We have to determine constants $c_1, c_2 > 0$ such that

$$0 \le c_1 \cdot n^2 \le \frac{1}{2} n^2 + \frac{1}{2} n \le c_2 \cdot n^2,$$

or, equivalently,

$$0 \le c_1 \le \frac{1}{2} + \frac{1}{2n} \le c_2,$$

when n is sufficiently large.

Since $\frac{1}{2n}$ can be made arbitrarily small by choosing large enough values of n, $c_1 = \frac{1}{4}$ and $c_2 = \frac{3}{4}$ satisfy the above inequalities for all sufficiently large n. Thus,

$$f(n) = \Theta(g(n)).$$

$$O(n^2) \neq O(n)$$

Proof: If $O(n^2) = O(n)$ was true, then, for any choice f(n) from the set $O(n^2)$, there would be a function g(n) in O(n) such that f(n) = g(n). In other words, $O(n^2)$ would be a subset of O(n). (Here, it is precise to use "subset", because on both sides of the equation, we have well-defined sets.)

However, $f(n) = n^2$ is a member of $O(n^2)$ but it is not a member of O(n). Thus, $O(n^2)$ is not a subset of O(n), that is, $O(n^2) \neq O(n)$. (Note that there are many many other functions in $O(n^2)$ that are not in O(n).)

$$n + n^2 O(\ln n) = O(n^2 \ln n)$$

Proof: We have to prove that, for any choice f(n) from the set $O(\ln n)$, there is a function g(n) in $O(n^2 \ln n)$ such that $n + n^2 f(n) = g(n)$, that is, $n + n^2 f(n)$ is an element of $O(n^2 \ln n)$.

Let f(n) be an arbitrary element of $O(\ln n)$. This means that, there is some c > 0 constant such that $0 \le f(n) \le c \cdot \ln n$ for all sufficiently large values of n. We obtain

$$0 \le n^2 f(n) \le c \cdot n^2 \ln n,$$

$$(0 \le) \ n \le n + n^2 f(n) \le n + c \cdot n^2 \ln n \le n^2 \ln n + c \cdot n^2 \ln n \le (c+1) \cdot n^2 \ln n$$

for large n. By the definition of O, this means that $n + n^2 f(n) = O(n^2 \ln n)$, as required.

Let $p(n) = \sum_{i=0}^{d} a_i n^i$ where $a^d > 0$. p(n) is a degree-d polynomial in n.

Given a constant k, prove the following properties:

- 1. If $k \geq d$, then $p(n) = O(n^k)$.
- 2. If $k \leq d$, then $p(n) = \Omega(n^k)$.
- 3. If k = d, then $p(n) = \Theta(n^k)$.
- 4. If k > d, then $p(n) = o(n^k)$.
- 5. If k < d, then $p(n) = \omega(n^k)$.

Explain why the following statement is meaningless: "The running time of algorithm A is at least $O(n^2)$ "

Show that
$$2^{n+1} = O(2^n)$$
, but $2^{2n} \neq O(2^n)$

Show that $\lceil \lg n \rceil!$ is not polynomially bounded, but $\lceil \lg \lg n \rceil!$ is.