

Pauta Ayudantía 10 Estructuras Algebraicas

Profesor: Pedro Montero

Ayudante: Sebastián Fuentes

30 de mayo de 2023

Problema 1. Sea A anillo y M un A-módulo finitamente generado. El objetivo de este problema es mostrar que todo endomorfismo u: M woheadrightarrow M sobrevectivo es un isomorfismo. Para ello proceda como sigue:

- 1. Utilice u para definir una estructura de A[X]-módulo sobre M tal que M = IM para $I = \langle X \rangle$.
- 2. Considere $\varphi = \mathrm{id}_M : M \to M$ y encuentre $P(X) = X^n + c_1 X^{n-1} + \ldots + c_{n-1} X + c_n$ en A[X] tal que $P(\varphi)$ y $c_j \in I^j$.
- 3. Calcule $P(\varphi)(m)$ para $m \in M$ y concluya que u es inyectiva.

Demostración. Podemos dotar a M de estructura de A[X]-módulo mediante $X \cdot m = u(m)$ para todo $m \in M$ e imponiendo las condiciones necesarias para que esta estructura esté bien definida, es decir, $P \cdot m = P(u)(m)$ para todo $m \in M$.

Sea $I = \langle X \rangle \subseteq A[X]$ ideal. Notamos entonces que el hecho que u sea sobreyectivo implica que M = u(M) = IM. Sea $\varphi = \mathrm{id}_M$ el morfismo identidad. El teorema de Cayley-Hamilton implica que existe un polinomio:

$$P = T^{n} + c_{1}(X)T^{n-1} + \ldots + c_{n-1}(X)T + c_{n}(X) \in A[X][T]$$

tal que $P(\varphi) = 0$. Más aún, por una observación hecha en clases, tenemos que $c_j(X) \in I^j = \langle X^j \rangle$ para todo $j \in \{1, \dots, n\}$. Por lo anterior podemos entonces escribir $c_j = Xd_j$ para cierto $d_j \in A[X]$. Para $m \in M$ arbitrario calculamos entonces que:

$$0 = P(\varphi)(m) = (\varphi^{n} + c_{1}(X)\varphi^{n-1} + \dots + c_{n-1}(X)\varphi + c_{n}(X) id_{M})(m)$$

$$= m + c_{1}(X) \cdot m + \dots + c_{n-1}(X) \cdot m + c_{n}(X) \cdot m$$

$$= m + X \cdot \underbrace{(d_{1}(X) \cdot m + \dots + d_{n}(X) \cdot m)}_{=:Q(X)(m)}$$

$$= m + XQ(X) \cdot m$$

$$= m + u(Q(u)(m))$$

$$= m + Q(u)(u(m))$$

Del cálculo anterior deducimos entonces que u es inyectivo pues si u(m)=0 entonces m=0 así que u es un isomorfismo. Más aún, podemos notar que $(Q(u)\circ u)(m)=-m$ para todo $m\in M$, es decir, $u^{-1}=-Q(u)$.

Problema 2. Sea A un anillo y $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ una familia arbitraria de A-módulos. Decimos que un A-módulo M es suma directa de la familia $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ si existen morfismos de A-módulos $i_{\lambda}:M_{\lambda}\to M$ verificando la siguiente propiedad universal: para todo A-módulo N y toda colección de morfismos $f_{\lambda}:M_{\lambda}\to N$, existe un único morfismo de A-módulos $f:M\to N$ tal que para cada $\lambda\in\Lambda$ el siguiente diagrama conmuta:

1. Muestre que la suma directa es única módulo un único isomorfismo.

MAT214 UTFSM

2. Demuestre que la suma directa definida en cátedra, es decir,

$$\bigoplus_{\lambda \in \Lambda} M_{\lambda} := \{ (m_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} M_{\lambda} \text{ tal que } m_{\lambda} = 0 \text{ salvo finitos } \lambda \in \Lambda \}$$

es una suma directa de $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ en el sentido anterior.

3. Concluya que la suma directa verifica $\operatorname{Hom}\left(\bigoplus_{\lambda\in\Lambda}M_{\lambda},N\right)\cong\prod_{\lambda\in\Lambda}\operatorname{Hom}\left(M_{\lambda},N\right)$.

Demostración.

1. Supongamos que M, M' son dos A-módulos verificando la propiedad universal del enunciado, y denotamos sus morfismos asociados por $i_{\lambda}: M_{\lambda} \to M, i'_{\lambda}: M_{\lambda} \to M'$ respectivamente. Podemos entonces aplicar la propiedad universal de M al A-módulo M' junto con sus morfismos asociados para obtener los siguientes diagramas conmutativos:

y similar podemos aplicar la propiedad universal de M' a M:

Componiendo los diagramas anteriores obtenemos:

Ahora, notar que los morfismos identidad $\mathrm{id}_M, \mathrm{id}_{M'}$ cumplen trivialmente las condiciones de conmutatividad $\mathrm{id}_M \circ i_\lambda = i_\lambda$ y $\mathrm{id}_{M'} \circ i'_\lambda = i'_\lambda$, así que por la unicidad del morfismo en la propiedad universal se tiene que $f \circ g = \mathrm{id}_{M'}$ y $g \circ f = \mathrm{id}_M$, por lo que $M \cong M'$ y más aún, el isomorfismo es único.

2. La manera más natural de definir los morfismos asociados a $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ corresponde a las inclusiones:

$$i_{\lambda}: M_{\lambda} \to \bigoplus_{\lambda \in \Lambda} M_{\lambda}, \qquad x \mapsto (x_{\lambda'})_{\lambda' \in \Lambda}, \quad x_{\lambda} = x, x_{\lambda'} = 0 \quad \forall \lambda' \neq \lambda$$

Consideremos entonces un A-módulo arbitrario N junto con una familia de morfismos $f_{\lambda}: M_{\lambda} \to N$. Afirmamos entonces que el morfismo dado por la propiedad universal será:

$$f:\bigoplus_{\lambda\in\Lambda}M_\lambda\to N,\qquad (x_\lambda)_{\lambda\in\Lambda}\mapsto \sum_{\lambda\in\Lambda}f_\lambda(x_\lambda)$$

MAT214 UTFSM

el cual por definición de la suma directa esta bien definido, pues la suma es finita, y es directo verificar que f es un morfismo de A-módulos. Vemos entonces directamente que

$$(f \circ i_{\lambda})(x) = f(i_{\lambda}(x)) = f_{\lambda}(x)$$

Resta entonces verificar la unicidad del morfismo anterior. Supongamos existe otro morfismo $f': \bigoplus_{\lambda \in \Lambda} M_{\lambda} \to N$ satisfaciendo $f' \circ i_{\lambda} = f_{\lambda}$ para todo $\lambda \in \Lambda$. Notamos directamente que:

$$f'((x_{\lambda})_{\lambda \in \Lambda}) = f'\left(\sum_{\lambda \in \Lambda} (\cdots, 0, x_{\lambda}, 0, \cdots)\right) = \sum_{\lambda \in \Lambda} f'(i_{\lambda}(x_{\lambda})) = \sum_{\lambda \in \Lambda} f_{\lambda}(x_{\lambda}) = f((x_{\lambda})_{\lambda \in \Lambda})$$

3. El hecho de que hay una biyección entre estos dos conjuntos de morfimos es nada más que reescribir la propiedad universal, pues esta establece que para cada colección de morfismos $(f_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} \operatorname{Hom}(M_{\lambda}, N)$ se tiene un único $f \in \operatorname{Hom}\left(\bigoplus_{\lambda \in \Lambda} M_{\lambda}, N\right)$, y en la otra dirección, dado f podemos definir $f_{\lambda} = f \circ i_{\lambda}$, y por construcción estas asignaciones son inversas una de la otra. Resumiendo, tenemos

$$\prod_{\lambda \in \Lambda} \operatorname{Hom}(M_{\lambda}, N) \xrightarrow{\sim} \operatorname{Hom}\left(\bigoplus_{\lambda \in \Lambda} M_{\lambda}, N\right), \qquad (f_{\lambda})_{\lambda \in \Lambda} \mapsto f$$

El hecho de que esta biyección es un morfismo de A-módulos se sigue del hecho que si $(f_{\lambda})_{\lambda \in \Lambda}, (g_{\lambda})_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} \operatorname{Hom}(M_{\lambda}, N)$ morfismos, por definición tenemos que $f \circ i_{\lambda} = f_{\lambda}$, $g \circ i_{\lambda} = g_{\lambda}$, así que sumando estas identidades tenemos $(f+g) \circ i_{\lambda} = f_{\lambda} + g_{\lambda}$ para todo $\lambda \in \Lambda$, y por la unicidad de la propiedad universal, la asignación definida lleva $(f_{\lambda} + g_{\lambda})_{\lambda \in \Lambda}$ en f + g. La situación es idéntica al considerar multiplicación por escalares.

Problema 3. Sea A un anillo, M un A-módulo finitamente generado y $\varphi: M \twoheadrightarrow A^n$ morfismo sobreyectivo de A-módulos. Demuestre que $\ker(\varphi)$ es finitamente generado.

Demostración. Sea e_1, \ldots, e_n base de A^n y sean $u_1, \ldots, u_n \in M$ tales que $\varphi(u_i) = e_i$ para todo $i = 1, \ldots, n$. Consideremos $N := \langle u_1, \ldots, u_m \rangle_{A-mod}$ el A-submódulo generado. Dado que $M/\ker(\varphi) \cong A^n$, tenemos que $M = N + \ker(\varphi)$, y además si $x = \sum a_i u_i \in N \cap \ker(\varphi)$ entonces $0 = \varphi(x) = \sum a_i e_i \Rightarrow a_i = 0$ para todo $i = 1, \ldots, n$, así que x = 0. Por lo tanto, tenemos que $M = N \oplus \ker(\varphi)$ y de aquí podemos concluir que $\ker(\varphi)$ es finitamente generado pues M y N lo son. En efecto, $M = \langle x_1, \ldots, x_m \rangle_{A-mod}$ para ciertos $x_i \in M$, y luego $x_i = y_i + z_i$ para ciertos $y_i \in \ker(\varphi), z_i \in N$. Es directo entonces notar que $\ker(\varphi) = \langle y_1, \ldots, y_n \rangle_{A-mod}$.

Problema 4. Sean A, B anillos locales con ideales maximales $\mathfrak{m}_A, \mathfrak{m}_B$, respectivamente. Sea $f: A \to B$ un morfismo de anillos. Decimos que f es un morfismo local si $f^{-1}(m_B) = m_A$. Sean $(A, \mathfrak{m}_A), (B, \mathfrak{m}_B)$ anillos locales noetherianos y $f: A \to B$ morfismo local. Suponga que:

- 1. $A/\mathfrak{m}_A \to B/\mathfrak{m}_B$ es un isomorfismo.
- 2. $\mathfrak{m}_A \to \mathfrak{m}_B/\mathfrak{m}_B^2$ es sobreyectivo.
- 3. B es un A-módulo finitamente generado, considerando la estructura de A-módulo inducida por f, ie, $a \cdot b = f(a)b$.

Demuestre que f es sobreyectivo.

Indicación: Use el Lema de Nakayama para demostrar que si A es un anillo local con ideal maximal \mathfrak{m} , M un A-módulo finitamente generado y $N\subseteq M$ submódulo entonces $M=N+\mathfrak{m}M$ implica M=N.

MAT214 UTFSM

Demostración. Explicamos en primer lugar cuáles son los morfismos a los que se hace referencia en el enunciado. Como es costumbre disponemos de un morfismo de proyección $B \xrightarrow{\pi} B/\mathfrak{m}_B$, y luego podemos considerar la composición:

$$A \xrightarrow{f} B \xrightarrow{\pi} B/\mathfrak{m}_B$$

y notamos que:

$$\mathfrak{m}_B \subseteq \ker(\pi) \quad \Rightarrow \quad \mathfrak{m}_A = f^{-1}(\mathfrak{m}_B) \subseteq \ker(\pi \circ f)$$

así que por la propiedad universal del cociente obtenemos un morfismo $A/\mathfrak{m}_A \to B/\mathfrak{m}_B$. El morfismo del punto 2. viene simplemente de considerar la restricción de f a \mathfrak{m}_A y componer con la proyección $\mathfrak{m}_B \to \mathfrak{m}_B/\mathfrak{m}_B^2$. Probemos ahora el resultado. Dado que B es un anillo noetheriano, \mathfrak{m}_B es un B-módulo finitamente generado $f(\mathfrak{m}_A)$ es un B-submódulo finitamente generado de \mathfrak{m}_B . Además, el punto 2. nos da que $\mathfrak{m}_B = f(\mathfrak{m}_A) + \mathfrak{m}_B^2$. Ahora, como \mathfrak{m}_B es finitamente generado, podemos aplicar el Lema de Nakayama al cociente $\mathfrak{m}_B/f(\mathfrak{m}_A)$ pues

$$\mathfrak{m}_B(\mathfrak{m}_B/f(\mathfrak{m}_A)) = (m_B^2 + f(\mathfrak{m}_A))/f(\mathfrak{m}_A) = \mathfrak{m}_B/f(\mathfrak{m}_A)$$

y por lo tanto $\mathfrak{m}_B/f(\mathfrak{m}_A)=0$, de donde $\mathfrak{m}_B=f(\mathfrak{m}_A)$.

Por otro lado, el punto 1. nos da que $B = f(A) + \mathfrak{m}_B B$, y dado que la estructura de A-módulo en B se define mediante f, tenemos que $\mathfrak{m}_B B = \mathfrak{m}_A B$, así que tenemos $B = f(A) + \mathfrak{m}_A B$, y como B es un A-módulo finitamente generado usando el Lema de Nakayama de manera similar a lo hecho anteriormente, obtenemos que f(A) = B. \square