Enrollment No.....

In the circuit switch is moved from position a to b at t=0 and steady state has 6 been reached at t=0-. Find the current i(t), using Laplace transform method.



Q.6 Attempt any two:

Determine the Z-parameter for the network shown in figure below: -



Find the g parameters for the given circuit?



Determine the h parameters of the given network: -



Q.1

5

5

5

Faculty of Engineering

End Sem (Odd) Examination Dec-2019

EE3CO07 / EX3CO07 Circuit Analysis and Synthesis

Branch/Specialisation: EE/EX Programme: B.Tech.

**Duration: 3 Hrs. Maximum Marks: 60** 

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

| i.                                                                                                                                                | A practical voltage s                                                                                                        | source consists of                          |                          |                         | 1 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------|-------------------------|---|--|
| 1.                                                                                                                                                | A practical voltage source consists of  (a) An ideal voltage source in series with an internal resistance                    |                                             |                          |                         |   |  |
| (b) An ideal voltage source in parallel with an internal resistance                                                                               |                                                                                                                              |                                             |                          |                         |   |  |
|                                                                                                                                                   | (c) Both (a) and (b) are correct                                                                                             |                                             |                          |                         |   |  |
|                                                                                                                                                   | (d) None of these                                                                                                            | are correct                                 |                          |                         |   |  |
| ii.                                                                                                                                               | ` '                                                                                                                          | of two resistance                           | R. & R. in par           | allel The total current | 1 |  |
| ii. The circuit consists of two resistance $R_1$ & $R_2$ in parallel. The passing through the circuit is IT. The current passing through $R_2$ is |                                                                                                                              |                                             |                          |                         | - |  |
|                                                                                                                                                   | (a) IT $R_1/R_1+R_2$                                                                                                         | circuit is 11. The c                        | (b) IT $R_2 / R_1 + R_2$ |                         |   |  |
|                                                                                                                                                   | (a) IT $R_1/R_1+R_2$<br>(c) IT $(R_1+R_2)/R_1$                                                                               |                                             | (d) IT $(R_1 + R_2)/F$   |                         |   |  |
| iii.                                                                                                                                              |                                                                                                                              | Superposition theorem is not valid only for |                          |                         |   |  |
| 111.                                                                                                                                              | (a) Voltages respons                                                                                                         | `                                           | (b) Current respo        | nnses                   | 1 |  |
|                                                                                                                                                   | (c) Power responses                                                                                                          |                                             | (d) All of these         | )113C3                  |   |  |
| iv                                                                                                                                                | iv. In a Complex impedance circuit, the maximum power transfer occurs when the load impedance is equal to                    |                                             |                          |                         | 1 |  |
| 17.                                                                                                                                               |                                                                                                                              |                                             |                          |                         | _ |  |
|                                                                                                                                                   | (a) Source impedance                                                                                                         | -                                           |                          |                         |   |  |
|                                                                                                                                                   | (b) Source resistance                                                                                                        |                                             |                          |                         |   |  |
|                                                                                                                                                   | (c) Complex conjugate of source impedance                                                                                    |                                             |                          |                         |   |  |
|                                                                                                                                                   | (d) None of these                                                                                                            | or so <b>urce</b> po                        |                          |                         |   |  |
| v.                                                                                                                                                | ` '                                                                                                                          | occurs in any circ                          | uit when.                |                         | 1 |  |
|                                                                                                                                                   | <ul><li>v. Transient behaviour occurs in any circuit when.</li><li>(a) There are sudden changes of applied voltage</li></ul> |                                             |                          |                         |   |  |
| (b) The voltage source is shorted                                                                                                                 |                                                                                                                              |                                             |                          |                         |   |  |
|                                                                                                                                                   | (c) The circuit is connected or disconnected from the supply.                                                                |                                             |                          |                         |   |  |
|                                                                                                                                                   | (d) All the above happen.                                                                                                    |                                             |                          |                         |   |  |
| vi.                                                                                                                                               | The time constant of                                                                                                         |                                             | it is                    |                         | 1 |  |
|                                                                                                                                                   | (a) 1/RC                                                                                                                     | (b) R/C                                     | (c) RC                   | (d)e-RC                 |   |  |
| vii.                                                                                                                                              | The Laplace transfor                                                                                                         | ` '                                         | ` '                      | ` '                     | 1 |  |
|                                                                                                                                                   | (a) 1/s                                                                                                                      | (b) 1                                       | (c) 1/s2                 | (d) 1/s+a               |   |  |
|                                                                                                                                                   |                                                                                                                              |                                             |                          |                         |   |  |

- viii. Laplace transform analysis gives
  - (a) Time domain response only
- (b) Frequency domain response only

1

(c) Both (a) and (b)

- (d) None of these
- ix. If  $Z_{11}=2\Omega$ ;  $Z_{12}=1\Omega$ ;  $Z_{21}=1\Omega$  and  $Z_{22}=3\Omega$ , what is the determinant of 1 admittance matrix.
  - (a) 5

- (b) 1/5
- (c) 1
- (d) 0
- x. The number of possible combinations generated by four variables taken two at 1 a time in a two-port network is
  - (a) Four
- (b) Two
- (c) Six
- (d) Eight
- Q.2 i. Explain independent ideal and practical sources with their characteristics.
  - ii. Find the terminal voltage across a & b (Vab) in the figure shown below using 6 source transformer techniques.



OR iii. Draw the graph for the network shown in figure below & determine the number 6 of possible trees.



- Q.3 i. Derive the necessary condition to transfer the maximum power from source to 4 load.
  - ii. Replace the circuit in the figure with Norton's equivalent circuit across 6 terminals a & b.



OR iii. Determine the source voltage Vs, so that the current through 2-ohm resistor is **6** zero by superposition theorem.



Q.4 i. Find i (0+) if switch is closed at t=0 and steady state is reached with switched 4 open. Draw circuit at t=0+



ii. In the given circuit, the switch K is moved from position 1 to 2 at t=0, obtain 6 the values of I, di/dt and d2i/dt2 at t



OR iii. Write down the KVL equation for final position of Switch (close). Draw the 6 circuit at t=0+ if switch is closed at t=0 and then find i(0+),  $\frac{di}{dt}$  (0+),  $\frac{di2}{dt^2}$  (0+)



Q.5 i. Find the current i(t) in the circuit shown in fig below, using Laplace transform 4 method.



ii. Find the expression for the voltage v(t), if switch is opened at t=0, using 6 Laplace transform method.



P.T.O.

## **Marking Scheme**

## EE3CO07 / EX3CO07 Circuit Analysis and Synthesis

| Q.1 | i.                                                                                                           | A practical voltage source consists of                                                                                                                |                       | 1 |  |  |
|-----|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---|--|--|
|     | ii.                                                                                                          | (a) An ideal voltage source in series with an internal resistance The circuit consists of two resistance $R_1$ & $R_2$ in parallel. The total current |                       | 1 |  |  |
|     |                                                                                                              | passing through the circuit is IT. The current passing thro                                                                                           | ugh R <sub>2</sub> is |   |  |  |
|     | iii.                                                                                                         | (a) IT R <sub>1</sub> /R <sub>1</sub> +R <sub>2</sub> Superposition theorem is not valid only for                                                     |                       | 1 |  |  |
|     |                                                                                                              | (c) Power responses                                                                                                                                   |                       |   |  |  |
|     | iv. In a Complex impedance circuit, the maximum power transfer                                               |                                                                                                                                                       |                       | 1 |  |  |
|     |                                                                                                              | when the load impedance is equal to                                                                                                                   |                       |   |  |  |
|     |                                                                                                              | (c) Complex conjugate of source impedance                                                                                                             |                       |   |  |  |
|     | v.                                                                                                           | Transient behaviour occurs in any circuit when.                                                                                                       |                       | 1 |  |  |
|     |                                                                                                              | (d) All the above happen.                                                                                                                             |                       |   |  |  |
|     | vi.                                                                                                          | The time constant of a series RC circuit is                                                                                                           |                       | 1 |  |  |
|     |                                                                                                              | (c) RC                                                                                                                                                |                       |   |  |  |
|     | vii.                                                                                                         | The Laplace transform of unit step function is                                                                                                        |                       | 1 |  |  |
|     |                                                                                                              | (a) 1/s                                                                                                                                               |                       |   |  |  |
|     | viii.                                                                                                        | Laplace transform analysis gives                                                                                                                      |                       | 1 |  |  |
|     |                                                                                                              | (b) Frequency domain response only                                                                                                                    |                       |   |  |  |
|     | ix. If $Z_{11}=2\Omega$ ; $Z_{12}=1\Omega$ ; $Z_{21}=1\Omega$ and $Z_{22}=3\Omega$ , what is the determinant |                                                                                                                                                       |                       | 1 |  |  |
|     |                                                                                                              | admittance matrix.                                                                                                                                    |                       |   |  |  |
|     |                                                                                                              | (c) 1                                                                                                                                                 |                       |   |  |  |
|     | x. The number of possible combinations generated by four variables tal                                       |                                                                                                                                                       |                       |   |  |  |
|     |                                                                                                              | two at a time in a two-port network is                                                                                                                |                       |   |  |  |
|     |                                                                                                              | (c) Six                                                                                                                                               |                       |   |  |  |
| Q.2 | i.                                                                                                           | Independent ideal sources with their characteristics                                                                                                  | 2 marks               | 4 |  |  |
| Q.2 |                                                                                                              | Practical sources with their characteristics                                                                                                          | 2 marks               | • |  |  |
|     | ii. Find the terminal voltage across a & b (Vab) in the figure shown bel                                     |                                                                                                                                                       |                       | 6 |  |  |
|     | using source transformer techniques.                                                                         |                                                                                                                                                       |                       |   |  |  |
|     |                                                                                                              | Step marking                                                                                                                                          | 4 marks               |   |  |  |
|     |                                                                                                              | Result                                                                                                                                                | 2 marks               |   |  |  |
| OR  | iii.                                                                                                         | Draw the graph                                                                                                                                        | 2 marks               | 6 |  |  |
| OI  | 111.                                                                                                         | Matrix                                                                                                                                                | 2 marks               | Ū |  |  |
|     |                                                                                                              | Number of possible trees                                                                                                                              | 2 marks               |   |  |  |
|     |                                                                                                              | rumoer of possible dees                                                                                                                               | 2 marks               |   |  |  |
| Q.3 | i.                                                                                                           | Derivation                                                                                                                                            | 2 marks               | 4 |  |  |
|     |                                                                                                              | Necessary condition                                                                                                                                   | 2 marks               |   |  |  |
|     |                                                                                                              |                                                                                                                                                       |                       |   |  |  |

|           | ii.  | Replace the circuit in the figure with Norton's equivalent circuit across terminals a & b.                                                                                                                                                         |                                              | 6 |
|-----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---|
|           |      | Isc = -0.75  Amp                                                                                                                                                                                                                                   | 2 marks                                      |   |
|           |      | Rth = 38.7 Kohm                                                                                                                                                                                                                                    | 2 marks                                      |   |
|           |      | Norton's equivalent circuit                                                                                                                                                                                                                        | 2 marks                                      |   |
| OR        | iii. | Determine the source voltage Vs, so that the current resistor is zero by superposition theorem.                                                                                                                                                    | through 2-ohm                                | 6 |
|           |      | I across $2 \text{ ohm} = 0$                                                                                                                                                                                                                       | 3 marks                                      |   |
|           |      | Vs = 16.97 < - 8.13 Volt                                                                                                                                                                                                                           | 3 marks                                      |   |
| Q.4       | i.   | i (0-) = 10/6 Amp                                                                                                                                                                                                                                  | 1 mark                                       | 4 |
|           |      | i(0+) = 10/6  Amp                                                                                                                                                                                                                                  | 1 mark                                       |   |
|           |      | Circuit at t=0+                                                                                                                                                                                                                                    | 2 marks                                      |   |
|           | ii.  | Values of I,                                                                                                                                                                                                                                       | 2 marks                                      | 6 |
|           |      | Value of di/dt                                                                                                                                                                                                                                     | 2 marks                                      |   |
|           |      | Value of d2i/dt2 at t                                                                                                                                                                                                                              | 2 marks                                      |   |
| OR        | iii. | i(0+)                                                                                                                                                                                                                                              | 2 marks                                      | 6 |
|           |      | $\frac{di}{dt}(0+)$                                                                                                                                                                                                                                | 2 marks                                      |   |
|           |      | $\frac{di2}{dt2}$ (o +)                                                                                                                                                                                                                            | 2 marks                                      |   |
| Q.5       | i.   | Current i(t)                                                                                                                                                                                                                                       | 2 marks                                      | 4 |
|           |      | Current i(s)                                                                                                                                                                                                                                       | 2 marks                                      |   |
|           | ii.  | Expression for the voltage $v(t)$ , if switch is opened at $t=0$ transform method.                                                                                                                                                                 | ), using Laplace                             | 6 |
|           |      | transform method:                                                                                                                                                                                                                                  |                                              |   |
|           |      | Stenwise marking                                                                                                                                                                                                                                   |                                              |   |
| OR        | iii. | Stepwise marking Find the current i(t), using Laplace transform method.                                                                                                                                                                            |                                              | 6 |
| OR        | iii. | •                                                                                                                                                                                                                                                  | 3 marks                                      | 6 |
| OR        | iii. | Find the current i(t), using Laplace transform method.                                                                                                                                                                                             | 3 marks<br>3 marks                           | 6 |
| OR<br>Q.6 | iii. | Find the current i(t), using Laplace transform method.  Current i(t)                                                                                                                                                                               |                                              | 6 |
|           | iii. | Find the current i(t), using Laplace transform method.  Current i(t)  Current i(s)                                                                                                                                                                 | 3 marks                                      | 5 |
|           |      | Find the current i(t), using Laplace transform method.  Current i(t)  Current i(s)  Attempt any two:                                                                                                                                               | 3 marks                                      |   |
|           |      | Find the current i(t), using Laplace transform method.  Current i(t)  Current i(s)  Attempt any two:  Determine the Z-parameter for the network shown in figure                                                                                    | 3 marks                                      |   |
|           |      | Find the current $i(t)$ , using Laplace transform method.<br>Current $i(t)$<br>Current $i(s)$<br>Attempt any two:<br>Determine the Z-parameter for the network shown in figure $Z_{11} = 20$ ohm                                                   | 3 marks re below 1 mark                      |   |
|           |      | Find the current $i(t)$ , using Laplace transform method.<br>Current $i(t)$<br>Current $i(s)$<br>Attempt any two:<br>Determine the Z-parameter for the network shown in figure $Z_{11} = 20$ ohm<br>$Z_{12} = 5$ ohm                               | 3 marks re below 1 mark 1 mark               |   |
|           |      | Find the current $i(t)$ , using Laplace transform method.<br>Current $i(t)$<br>Current $i(s)$<br>Attempt any two:<br>Determine the Z-parameter for the network shown in figur $Z_{11} = 20$ ohm<br>$Z_{12} = 5$ ohm<br>$Z_{21} = 20$ ohm           | 3 marks re below 1 mark 1 mark 1 mark        |   |
|           |      | Find the current $i(t)$ , using Laplace transform method. Current $i(t)$ Current $i(s)$ Attempt any two: Determine the Z-parameter for the network shown in figure $Z_{11} = 20$ ohm $Z_{12} = 5$ ohm $Z_{21} = 20$ ohm $Z_{22} = 15$ ohm          | 3 marks re below 1 mark 1 mark 1 mark 1 mark |   |
|           | i.   | Find the current $i(t)$ , using Laplace transform method. Current $i(t)$ Current $i(s)$ Attempt any two: Determine the Z-parameter for the network shown in figure $Z_{11} = 20$ ohm $Z_{12} = 5$ ohm $Z_{21} = 20$ ohm $Z_{22} = 15$ ohm Solution | 3 marks re below 1 mark 1 mark 1 mark 1 mark | 5 |

|      | $g_{21} = 3 \text{ ohm}$                        | 1 mark |   |
|------|-------------------------------------------------|--------|---|
|      | $g_{22} = -1$ ohm                               | 1 mark |   |
|      | Solution                                        | 1 mark |   |
| iii. | Determine the h parameters of the given network |        | 5 |
|      | $h_{11} = 1/2 \text{ (s+1)}$                    | 1 mark |   |
|      | $h_{12} = s / (s+1)$                            | 1 mark |   |
|      | $h_{21} = 2s + 3/s + 1 $                        | 1 mark |   |
|      | $h_{22} = 11s + 1/5(s+1)$                       | 1 mark |   |
|      | Solution                                        | 1 mark |   |

\*\*\*\*\*