Análisis Exploratorio de Datos

Distribución de Clases

El dataset de entrenamiento contiene 7,613 tweets distribuidos de la siguiente manera:

No Desastre (0): 4,342 tweets (57.03%)

Desastre (1): 3,271 tweets (42.97%)

La distribución está relativamente balanceada, lo cual es favorable para el entrenamiento de los modelos.

Preprocesamiento de Texto

Se implementó una función de limpieza que incluye:

Conversión a minúsculas

Eliminación de URLs

Cambio de símbolos @ y #

Eliminación de caracteres especiales y números

Filtrado de stopwords

Análisis de Frecuencias

Palabras Más Comunes

En tweets de desastre: Las palabras más frecuentes fueron altamente predictivas, incluyendo términos como "fire" (180), "disaster" (117), "suicide" (110), "police" (107), "killed" (93), "storm" (85) y "crash" (84). Estas palabras tienen una clara relación semántica con eventos de emergencia.

En tweets de no desastre: Dominaron palabras de uso cotidiano como "like" (253), "im" (248), "new" (170), "get" (163) y "love" (90), reflejando conversaciones personales y opiniones.

El análisis de bigramas reveló patrones aún más específicos:

Desastre: "suicide bomber", "oil spill", "burning buildings", "california wildfire"

No Desastre: "cross body", "youtube video", "body bag"

Resultados de Rendimiento

Modelo	Accuracy	Macro F1-Score	Precision (Desastre)	Recall (Desastre)
Regresión Logística	0.82	0.82	0.85	0.71
Naive Bayes	0.81	0.80	0.86	0.67
Linear SVC	0.79	0.79	0.77	0.74

Análisis de Resultados

La Regresión Logística emergió como el mejor modelo, mostrando el mejor balance entre precision y recall. Naive Bayes mostró alta precision pero bajo recall para la clase de desastre, indicando que era conservador en sus predicciones positivas. Linear SVC, sorprendentemente, tuvo el rendimiento más bajo.

Análisis de Sentimiento

Se implementó análisis de sentimiento usando VADER para explorar si la polaridad emocional podría mejorar la clasificación.

- Tweets de desastre tuvieron una puntuación promedio de sentimiento de -0.265
- Tweets de no desastre tuvieron una puntuación promedio de -0.061

Sin embargo, el análisis reveló casos interesantes:

- Tweets de desastre con sentimiento positivo
- Tweets de no desastre muy negativos

Impacto en el Modelo

Cuando se añadió la puntuación de sentimiento como característica adicional, no se observó mejora en el rendimiento:

- Macro F1-Score se redujo ligeramente de 0.82 a 0.81
- La accuracy se mantuvo en 0.82

Fortalezas del Modelo Final

Buen balance entre precision y recall

Capacidad de generalización demostrada en validación

Interpretabilidad clara de las características más importantes

Procesamiento eficiente de texto

Limitaciones

Dependencia de palabras clave específicas podría limitar la generalización a nuevos tipos de desastres

El recall de 0.71 indica que se pierden algunos desastres reales (29% de falsos negativos)

Sensibilidad al preprocesamiento de texto