DPP-1 BATCH COURSE TIMINGS 7:15P.M-8:15 P.M(EMERGE CLASS 11th)/5 P.M-6:30P.M (EXPERT BATCH)

JAI SHREE RAM

$$(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0$$
 are always

(a) Positive (b) Negative (c) Real

2. If the roots of $(b-c)x^2 + (c-a)x + (a-b) = 0$ are equal then a+c=0

(a) 2b

(b) b^2 (c) 3b (d) b

3. If the roots of equation $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are equal in magnitude but opposite in sign, then $(p+q) = \frac{1}{r}$

(a) 2r

(b) r (c) - 2r (d) None of these

If 3 is a root of $x^2 + kx - 24 = 0$, it is also a root of

(a) $x^2 + 5x + k = 0$ (b) $x^2 - 5x + k = 0$

(c) $x^2 - kx + 6 = 0$ (d) $x^2 + kx + 24 = 0$

5. For what values of k will the equation

 $x^2 - 2(1+3k)x + 7(3+2k) = 0$ have equal roots

(a) 1, -10/9 (b) 2, -10/9 (c) 3, -10/9

(d) 4, -10/9

6. If the difference between the corresponding roots of

 $x^2 + ax + b = 0$ and $x^2 + bx + a = 0$ is same and $a \ne b$, then

(a) a+b+4=0 (b) a+b-4=0

(c) a-b-4=0 (d) a-b+4=0

7. If the sum of the roots of the quadratic equation

 $ax^2 + bx + c = 0$ is equal to the sum of the squares of their

reciprocals, then a/c,b/a,c/b are in

(a) A.P. (b) G.P. (c) H.P. (d) None of these

8. If the roots of the equation $x^2 - 5x + 16 = 0$ are α , β and the roots of equation $x^2 + px + q = 0$ are $\alpha^2 + \beta^2$, $\alpha\beta/2$, then

(a) p = 1, q = -56 (b) p = -1, q = -56

(c) p = 1, q = 56 (d) p = -1, q = 56

9. If $\alpha \neq \beta$, but $\alpha^2 = 5\alpha - 3$, $\beta^2 = 5\beta - 3$, then the equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ is

DPP-1 BATCH COURSE TIMINGS 7:15P.M-8:15 P.M(EMERGE CLASS 11th)/5 P.M-6:30P.M (EXPERT BATCH)

JAI SHREE RAM

(a)
$$x^2 - 5x - 3 = 0$$

(a)
$$x^2 - 5x - 3 = 0$$
 (b) $3x^2 - 19x + 3 = 0$

(c)
$$3x^2 + 12x + 3 = 0$$
 (d) None of these

10. If α and β are roots of the equation $x^2 - ax + b = 0$ and $V_n = \alpha^n + \beta^n$, then

(a)
$$V_{n+1} = a V_n - b V_{n-1}$$
 (b) $V_{n+1} = b V_n - a V_{n-1}$

(b)
$$V_{n+1} = b V_n - a V_{n-1}$$

(c)
$$V_{n+1} = a V_n + b V_{n-1}$$
 (d) $V_{n+1} = b V_n + a V_{n-1}$

(d)
$$V_{n+1} = b V_n + a V_{n-1}$$

1. (c) 2.A 3.A 4.C 5.B 6.A 7.C 8.B9.B 10.A