

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ
Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής
Εργαστήριο Ηλεκτρονικής

Ηλεκτρονική Ι

40 Εξάμηνο, Ακαδημαϊκό Έτος 2021-2022

1η Σειρά Ασκήσεων

Καθ. Παύλος-Πέτρος Σωτηριάδης

19 Μαρτίου 2022

Μελέτη: Επανάληψη των προαπαιτούμενων γνώσεων που βασίζονται στο μάθημα της Ανάλυσης Γραμμικών Κυκλωμάτων και το κομμάτι διδασκαλίας των κ. Εανθάκη-Βουδούκη στις διόδους και τα τρανζίστορ BJT και MOSFET.

Διευκρινίσεις:

- Οι ασκήσεις είναι ατομικές και παραδίδονται **ηλεκτρονικά** στη σελίδα του μαθήματος στο helios, έως και την Κυριακή, **3 Απριλίου** 2022. Η μορφή του αρχείου να είναι μόνο **PDF.** Προτείνεται η συμπίεσή του.
- Χρησιμοποιήστε τα Θεωρήματα Thévenin, Norton, Επαλληλίας και Millman στις ασκήσεις που περιέχουν ανάλυση κυκλωμάτων όσο μπορείτε περισσότερο. Κάθε επιστημονικά τεκμηριωμένη λύση θα θεωρηθεί ορθή.
- Σε όσες ασκήσεις ζητείται χρήση LT SPICE, να παρουσιάσετε και σχολιάσετε συνοπτικά τις κατάλληλες γραφικές παραστάσεις για τα αποτελέσματα των προσομοιώσεων.
- Σε όσες ασκήσεις δεν δίνονται τιμές στοιχείων βρείτε την απάντηση σε μορφή γενικού τύπου.
- Ορθή επίλυση όλων των σειρών ασκήσεων που θα δοθούν μέσα στο εξάμηνο προσδίδει βαθμολογική ενίσχυση ως και 1 μονάδα στον τελικό βαθμό. Η παράδοσή τους δεν είναι υποχρεωτική, αλλά συνίσταται για την κατάλληλη προετοιμασία.

Ασκηση 1

Δίνεται το κύκλωμα του Σχήματος 1.

- 1. Βρείτε την κατά Thevenin ισοδύναμη πηγή και σύνθετη αντίσταση για το δικτύωμα αριστερά των σημείων Α και Β.
- 2. Χρησιμοποιώντας το ισοδύναμο Thevenin βρείτε το ρεύμα IL.

Σχήμα 1

Άσκηση 2

Για το κύκλωμα γέφυρας του Σχήματος 2.

- 1. Βρείτε το ισοδύναμο Thevenin όπως φαίνεται από την αντίσταση R_L .
- 2. Υποθέτοντας ότι $R_1=R_2=R_3=R_4=R$, βρείτε το ισοδύναμο Norton.
- 3. Θεωρώντας ότι V_b =20V, R_1 =1 Ω , R_2 =2 Ω , R_3 =3 Ω , R_4 =4 Ω και R_L =10 Ω , βρείτε την τάση u_{ab} .

Δίνεται το κύκλωμα του Σχήματος 3.

- 1. Βρείτε το ισοδύναμο Thevenin για το δικτύωμα αριστερά των σημείων a και b
- 2. Βρείτε το ρεύμα Ι_L.

Άσκηση 4

Βρείτε το ισοδύναμο Thevenin για το δικτύωμα αριστερά των σημείων a και b του κυκλώματος του σχήματος 4, στις περιπτώσεις όπου:

- 1. k=0
- 2. k=0.1

Σχήμα 4

Άσκηση 5 Spice

Στο κύκλωμα του Σχήματος 5, για τις τιμές R_1 =20k Ω , R_2 =10k Ω , R_3 =1k Ω , R_4 =2k Ω και β =50, και χρησιμοποιώντας το θεώρημα Thevenin για τις αντιστάσεις R_1 και R_2 , βρείτε την τιμή της τάσης στα άκρα της αντίστασης R_4 . Ποια η λειτουργία του κυκλώματος αυτού; Χρησιμοποιώντας το πρόγραμμα LT SPICE να εκτελέσετε κατάλληλη προσομοίωση για την εύρεση της τάσης στα άκρα της R_4 .

Άσκηση 6

Στο κύκλωμα του σχήματος 6, να βρεθεί το ισοδύναμο Thevenin μεταξύ των ακροδεκτών a και b και να υπολογιστεί το ρεύμα που διαρρέει την αντίσταση 14Ω.

Στο κύκλωμα του σχήματος 7, να βρείτε το ισοδύναμο Thevenin μεταξύ των ακροδεκτών A και B

Άσκηση 8

Για το κύκλωμα του σχήματος $\mathbf{8}$, βρείτε το κέρδος τάσης $\mathbf{u}_0/\mathbf{u}_1$ και το κέρδος ρεύματος $\mathbf{i}_o/\mathbf{i}_s$.

Άσκηση 9 Spice

Για το κύκλωμα του σχήματος 9 να βρείτε την τάση εξόδου u_0 . Σχεδιάστε τη διάταξη στο πρόγραμμα LT SPICE και προσομοιώστε τη ζητούμενη τάση (.op).

Άσκηση 10 Spice

Στο κύκλωμα του σχήματος 10, να βρεθεί η τιμή της αντίστασης R_X , ώστε η τιμή του κέρδους I_0/u_s να είναι ίση με -0.227 Ampere/Volt. Για την τιμή της R_x που βρήκατε, υλοποιείστε το κύκλωμα στο πρόγραμμα LT SPICE και εκτελέστε DC sweep προσομοιώση του ρεύματος εξόδου για τιμές της πηγής από -10mV μέχρι 10mV. Έπειτα εκτελέστε παραμετρική προσομοίωση για 5 ακόμα τιμές της R_x της επιλογής σας.

Στο κύκλωμα του σχήματος 11, να βρεθεί η αντίσταση εισόδου R_{in} που «βλέπουν» τα άκρα που είναι σηματοδοτημένα με >>. Hint: Βρείτε το λόγο R_{in} = v_s/i_s .

Σχήμα 11

Άσκηση 12

Στο κύκλωμα του σχήματος 12, να βρεθεί η αντίσταση εισόδου R_{in} που «βλέπουν» τα άκρα που είναι σηματοδοτημένα με >>. Hint: Βρείτε το λόγο R_{in} = v_s / i_s . Όπου v_s η τάση στα άκρα της πηγής ρεύματος.

Σχήμα 12

Στο κύκλωμα του σχήματος 13, να βρεθεί το ισοδύναμο Norton του δικτυώματος αριστερά των ακροδεκτών >> (χωρίς να συνυπολογιστεί το φορτίο Load).

Άσκηση 14

Στο κύκλωμα του σχήματος 14, να βρεθεί το ισοδύναμο Thevenin του δικτυώματος αριστερά των ακροδεκτών >> (χωρίς να συνυπολογιστεί το φορτίο Load).

Σχήμα 14

Άσκηση 15 Spice

Στο κύκλωμα του σχήματος 15, να βρεθεί η τιμή της διαγωγιμότητας g, έτσι ώστε η τάση εξόδου του κυκλώματος να είναι ν₀=10Volts. Για την τιμή της g που βρήκατε, υλοποιείστε το κύκλωμα στο πρόγραμμα LT SPICE και εκτελέστε DC sweep προσομοιώση της τάσης εξόδου για τιμές της πηγής από -10mV μέχρι 10mV.

Σχήμα 15

Στο κύκλωμα του σχήματος 16, βρείτε τα ακόλουθα:

- 1. Το ισοδύναμο Thevenin για το δικτύωμα αριστερά των ακροδεκτών που είναι σηματοδοτημένοι με <<.
- 2. Την αντίσταση εισόδου που «βλέπει» η πηγή u_S στο κύκλωμα.

Άσκηση 17

Στο κύκλωμα του σχήματος 17, βρείτε το ισοδύναμο Thevenin για το δικτύωμα αριστερά των ακροδεκτών που είναι σηματοδοτημένοι με +, -.

Σχήμα 17

Στο κύκλωμα του σχήματος 18, δίνεται το ισοδύναμο κύκλωμα ενός διπολικού τρανζίστορ στην ενεργό περιοχή (αρχικά παραλείπονται οι αντιστάσεις r_{π} και r_{o}).

 Δ ίνονται u_i =10mV, C_b =0.1nF, i_o =0.5mA, και V_A =70V. Θεωρείστε επίσης V_T =25mV.

Σχήμα 18

- 1. Βρείτε το DC ρεύμα εξόδου του transistor I_C.
- 2. Εάν ο συντελεστής διάχυσης των ηλεκτρονίων στη βάση είναι D_n=10cm²/sec πόσο είναι το μήκος βάσης;
- 3. Αν το βο του BJT είναι ίσο με 100, πόση είναι η παραλειφθείσα από το κύκλωμα αντίσταση (εισόδου) r_{π} ;
- 4. Βρείτε την αντίσταση (εξόδου) ro.

Ασκηση 19

Από μετρήσεις βρέθηκε ότι το ισοδύναμο κύκλωμα ασθενούς σήματος (IKAS) ενός διπολικού pnp transistor, με συντελεστή α=0.995 απ' το οποίο εξέρχεται DC ρεύμα 5mA, δίνεται από το ακόλουθο διάγραμμα. Δίνεται ότι $V_T=kT/q=25mV$ και ο συντελεστής διάχυσης των οπών είναι $10cm^2/s$.

Σχήμα 19

- 1. Βρείτε την τάση Early.
- 2. Βρείτε την τιμή της αντίστασης εισόδου (r_π) ενός πιο αντιπροσωπευτικού ΙΚΑΣ.
- 3. Το πλάτος της βάσης.

Ασκηση 20

Στο σχήμα 20, δίνεται ένα απλοποιημένο ισοδύναμο κύκλωμα μικρού σήματος MOSFET στον κόρο. Οι τιμές των στοιχείων και κάποια χαρακτηριστικά της τεχνολογίας δίνονται παρακάτω:

Πίνακας 1:

u=0.1mV	C=0.1pF	i=5μA	$\mu_n = 450 \text{cm}^2/\text{Vs}$
L=200nm	V _A =30V	t _{ox} =8nm	$\varepsilon_{\text{ox}} = 3.45 * 10^{-11} \text{F/m}$

Σχήμα 20

Αγνοώντας την χωρητικότητα C_{gb} να βρείτε τα ακόλουθα:

- 1. Την τάση υπεροδήγησης (overdrive voltage) V_{ov} .
- 2. Το πλάτος W του καναλιού.
- 3. Το ρεύμα Ι_D.
- 4. Την αντίσταση r_o .

Για το κύκλωμα του σχήματος 21, δίνονται οι τιμές του πίνακα 2, ενώ για τη νόθευση του BJT ισχύει N_A =100 N_D . Οι κινητικότητες οπών και ηλεκτρονίων θεωρούνται ίσες. Δίνονται επίσης: η σταθερά διάχυσης οπών D_p =10cm²/s, το μήκος διάχυσης L_n =1 μ m και ο χρόνος ζωής των οπών στην περιοχή της βάσης τ_h =250ns.

Πίνακας 2:

Σχήμα 21

- 1. Να βρεθεί η τιμή του α για το τρανζίστορ.
- 2. Να βρεθεί το πλάτος της βάσης (σε nm), αγνοώντας την επανασύνδεση των φορέων στη βάση.
- 3. Να βρεθεί το πλάτος της βάσης (σε nm), λαμβάνοντας υπόψη την επανασύνδεση των φορέων στη βάση.