

RECUPERAÇÃO DE INFORMAÇÃO

Profa. Mcs. Patrícia Proença patricia.proenca@ifmg.edu.br

ATENÇÃO!!!

- O material a seguir é uma videoaula apresentada pela professora PATRÍCIA APARECIDA PROENÇA AVILA, como material pedagógico do IFMG, dentro de suas atividades curriculares ofertadas em ambiente virtual de aprendizagem. Seu uso, cópia e ou divulgação em parte ou no todo, por quaisquer meios existentes ou que vierem a ser desenvolvidos, somente poderá ser feito, mediante autorização expressa deste docente e do IFMG. Caso contrário, estarão sujeitos às penalidades legais vigentes".
- Conforme Art. 2°§1° da Nota Técnica nº 1/2020/PROEN/Reitoria/IFMG (SEI 0605498, Processo nº 23208.002340/2020-04

Modelo Booleanocontinuando

Profa. Mcs. Patrícia Proença patricia.proenca@ifmg.edu.br

Roteiro

- Ponderação IDF;
- Ponderação TF-IDF (term-frequency inverse document frequency);
- Propriedades do TF-IDF;

Breve resumo da aula anterior!

Ponderação TF

 Uma variante da ponderação TF muito utilizada na literatura, pois torna os pesos diretamente comparáveis aos pesos IDF é a seguinte:

$$tf_{i,j} = \begin{cases} 1 + \log f_{i,j} & se \ f_{i,j} > 0 \\ 0 & caso \ contrário \end{cases}$$

onde o logaritmo utiliza a base 2

- Alguns autores apresentaram trabalhos que mostraram:
 - ponderação pela frequência dos termos é útil para melhorar os resultados se comparada com a recuperação baseada em pesos binários;
 - mas o ganho ainda nem sempre é satisfatório;
 - Surgiu então estudos sobre melhorias na ponderação e surgiu a frequência inversa de documentos.

- Sparck Jones desenvolveu uma interpretação estatística da especificidade dos termos (1972), chamada de IDF, que tornou-se a pedra fundamental da ponderação de termos;
- Essa interpretação tem uma base heurística que motivou várias pesquisas sobre abordagens que fornecessem um embasamento teórico para o IDF;
- Para entender a ponderação IDF, primeiramente é preciso estudar os conceitos de exaustividade e de especificidade dos termos da linguagem.

• Exaustividade:

- é uma propriedade das descrições dos documentos.
- é interpretada como a abrangência que ela provê para os tópicos principais de um documento.
- Se adicionarmos novos termos do vocabulário a um documento, a exaustividade da descrição do documento aumenta.
- Além disso, a probabilidade que o documento satisfaça uma dada consulta também aumenta, isto é, a probabilidade de recuperação aumenta.

- Exaustividade:
- Quanto mais termos de indexação são atribuídos a um documento, mais exaustiva fica sua descrição;
 - Sua probabilidade de recuperação em resposta a uma consulta selecionada aleatoriamente também aumenta.
- Problema: Se muitos termos forem atribuídos a um documento, ele irá ser retornado para consultas para as quais ele não é relevante.

• Exaustividade:

- Isso sugere que o número médio de termos de indexação por documento deve ser otimizado de modo que a probabilidade de relevância de um documento recuperado seja maximizada;
- Esse número ótimo de termos de indexação define a exaustividade ótima para as descrições de tais documentos.

Especificidade:

- é uma propriedade dos termos de indexação.
- A especificidade de um termo de indexação é interpretada como quão bem um termo descreve o tópico de um documento.

Especificidade:

- é uma propriedade da semântica do termo, isto é, um termo é mais ou menos específico dependendo do seu significado.
- Exemplo: o termo "bebida" é menos específico do que os termos "chá" e "cerveja".
- Se a indexação fosse feita manualmente, poderíamos esperar que o termo "bebida" fosse usado para indexar mais documentos do que os termos "chá" e "cerveja".
- Uma alternativa é considerar a especificidade como uma função da utilização dos termos.

 A exaustividade da descrição de um documento pode ser quantificada como o número de termos de indexação que ele possui;

- A especificidade de um termo é uma função do inverso do número de documentos nos quais ele ocorre.
 - Ou seja se um termo aparece muitas vezes quer dizer que ele não é muito específico de um documento.

- Se as descrições dos documentos ficarem mais longas, a especificidade dos termos tende a ficar mais baixa.
 - Se um termo ocorrer em todos os documentos da coleção, sua especificidade é mínima e o termo não é útil para a recuperação.
- Ideia: ponderação de termos por especificidade/exaustividade
 - Para isso, os pesos dos termos podem ser representados como uma função das frequências relativas dos termos.

Como modelar os pesos usando os conceitos de especificidade e exaustividade?

- Problema: Com base nos conceitos de especificidade e exaustividade, gostaríamos de um modelo de ponderação que fizesse o seguinte:
 - 1. o valor do peso do termo será zero se ele puder ser encontrado em todos os documentos;
 - 2. o valor do peso do termo aumentará se ele estiver presente em poucos documentos.

- Como modelar os pesos usando os conceitos de especificidade e exaustividade?
- 1) Verificar a ocorrência do termo k_i para cada documento d_j da coleção e armazenar em :: n_i;
 - Quais documentos o termo aparece;
- 2) Calcular a frequência relativa inversa de cada termo :: N/n;
 - Onde N é o total de documentos;
- 3) Aplicar a função log (na base 2) na frequência relativa inversa de cada termo.

$$IDF_i = \log \frac{N}{n_i}$$

• Assim, quando n_i se aproxima de N, temos que IDF_i se aproxima de zero.

Ponderação IDF - Exemplo

Ponderação IDF - Exemplo

#	termo	n_i	$IDF_i = \log(N/n_i)$
1	to	2	1
2	do	3	0,415
3	is	1	2
4	be	4	0
5	or	1	2
6	not	1	2
7	I	2	1
8	am	2	1
9	what	1	2
10	think	1	2
11	therefore	1	2
12	da	1	2
13	let	1	2
14	it	1	2

Ponderação IDF - Comentários

- Observe que os termos mais seletivos na coleção ocorrem em apenas um documento;
- Os menos seletivos ocorrem em todos os documentos;
- Em coleções reais de grandes proporções, espera-se que que os termos mais seletivos sejam substantivos e grupos de substantivos;

Ponderação IDF - Comentários

 Os termos menos seletivos são geralmente artigos, conjunções e preposições, que são frequentemente chamadas de stopwords.

 Atualmente, a ponderação IDF fornece a base para os esquemas de ponderação modernos e é usada por quase todos os sistemas modernos de RI.

- Proposto por Salton e Yang (1973);
- Esquema de ponderação de termos mais popular entre os modelos de RI;
 - Combinam os fatores IDF e as frequências dos termos.
- Seja w_{i,i} o peso do termo associado ao par (k_i, d_i). Então, definimos:

$$w_{i,j} = \begin{cases} (1 + \log f_{i,j}) \times \log \frac{N}{n_i} & \text{se } f_{i,j} > 0 \\ 0 & \text{caso contrário} \end{cases}$$

que é conhecida por esquema de ponderação TF-IDF.

Ponderação TF-IDF - Exemplo

Ponderação TF-IDF - Exemplo

TERMO	fi,1	fi,2	fi,3	fi,4	wi,1	
to	4	2	-	-	3	
do	2	-	3	3		
is	2	-	-	-		
be	2	2	2	2		
or	-	1	-	-		
not	-	1	-	-		$w_{i,j}$
I	-	2	2	-		
am	-	2	1	-		
what	-	1	-	-		
think	-	-	1	-		
therefore	-	-	1	-		
da	-	-	-	3		
let	-	-	-	2		
it	-	-	-	2		
Tamanho do documento	10	11	10	12		

 $w_{i,j} = \begin{cases} (1 + \log f_{i,j}) \times \log \frac{N}{n_i} & \text{se } f_{i,j} > 0 \\ 0 & \text{caso contrário} \end{cases}$

Termo to no doc 1

*
$$\log fi, j = \log(4) = 2 \text{ (base 2)}$$

$$* log N/ni = log(4/2) = 1 (base 2)$$

* wi,j =
$$(1+2)*1 = 3$$

Exercício para praticar

_										
	TERMO	fi,1	fi,2	fi,3	fi,4		wi,1	wi,2	wi,3	wi,4
ı	to		2	-	-		3	2	0	0
	do	2	-	3	3					
	is	2	-	-	-					
	be	2	2	2	2					
	or	-	1	-	-					
	not	-	1	-	-					
	I	-	2	2	-					
	am	-	2	1	-					
	what	-	1	-	-					
	think	-	-	1	-					
	therefore	-	-	1	-					
	da	-	-	-	3					
	let	-	-	-	2					
	it	-	-	-	2					
	Tamanho do documento	10	11	10	12					

CALCULE O TF-IDF PARA OS DEMAIS TERMOS DA COLEÇÃO.

 Termos mais frequentes dentro de um documento e termos mais raros possuem um peso TF-IDF maior;

- Embora simples, os pesos TF-IDF são bastante eficazes, especialmente, para coleções genéricas:
 - Coleção de documentos sobre a qual não temos nenhuma informação.

Comentários

No decorrer da aula vimos...

- Dado um conjunto de termos de indexação para uma coleção de documentos, nem todos os termos são igualmente úteis para descrever o conteúdo dos documentos;
- Métodos usuais para ponderar termos envolvem o estudo da frequência dos termos presentes nos documentos.

No decorrer da aula vimos...

- Ponderação TF:
 - Baseada na frequência dos termos;
- Ponderação IDF:
 - Baseada na frequência relativa (inversa) dos termos;
- Ponderação TF-IDF:
 - Baseada em uma mescla entre a frequência dos termos e a frequência relativa (inversa) dos termos.

