CSC 320 - Tutorial 4

1. Pumping lemma for regular languages

Pumping Lemma

If L is a regular language there exists some natural number p (the pumping length) where for any string s in L with a length of at least p (ie. $s \in L$ and $|s| \ge p$) s can be divided into substrings xyz satisfying the following conditions:

- 1. $|xy| \leq p$
- 2. |y| > 0
- 3. $xy^iz \in L \text{ for } i \geq 0$

Questions

lemma	
a. $L_1 = \{0^n 1^n 2^n \mid n \ge 0\}$	

1. Prove that the following languages are not regular using the pumping

b. $L_2 = \{w' \ w \mid w \in \{0, 1\} \ ^* \ \}$

2.	Is the string $s = 0^p 0^p$ a good choice to devise a contradiction to prove L ₂ is not regular? Why or why not?

Practice questions:

- 1. Show that $L = \{0^i 1^j | i > j\}$ is not regular
- 2. Show that $L = \{0^i 1^j | i < j\}$ is not regular
- 3. Show that $L = \{0^i 1^j | i \le j\}$ is not regular
- 4. Argue that L = $\{0^i 1^j | i \le j < 121\}$ is regular