

Sesión 1 Lógica de Proposiciones Introducción Teórica

Departamento de Informática Ciencia de la Computación e Inteligencia Artificial Universidad de Oviedo

Lógica de proposiciones

Lógica a nivel de enunciados o proposiciones atómicas (no descomponibles).

La unidad más pequeña que tratamos en lógica de proposiciones es el enunciado.

No se analiza o discute el significado: se centra en su verdad o falsedad.

"3+3" ¿es una proposición? y

"Hace calor" ¿lo es?

L0. Sintaxis. Alfabeto

Alfabeto del Lenguaje Proposicional: conjunto de símbolos que se pueden utilizar para construir las cadenas del lenguaje

Conjunto finito o numerable de símbolos proposicionales

$$\mathcal{P} = \{p, q, r, p1, \ldots\}$$

Conjunto de símbolos de conectivas:

$$\neg$$
, \wedge , \vee , \rightarrow , \leftrightarrow

Conectiva	Conexión Gramatical	
_	no	Negación
٨	у	Conjunción
V	0	Disyunción
\rightarrow	Si entonces	Implicación
\leftrightarrow	si y sólo si	Doble implicación

- Símbolos de Verdad: V, F (Constantes Lógicas)
- Símbolos de puntuación: (...), para ganar legibilidad {, }, [,]

Nombre de la conectiva	Representación en lógica	Frases en lenguaje natural
Negación	~p	no p
		es falso p
		no es cierto p
Conjunción	p∧q	руq
		p pero q
		p sin embargo q
		p no obstante q
		p a pesar de q
Disyunción	p∨q	poq
		o p o q o ambos
		al menos p o q
		como mínimo p o q
Condicional	$p \rightarrow q$	si p entonces q
	(p sería el antecedente y q el consecuente)	p sólo si q
		q si p
		q cuando p
		q es necesario para p
		p es suficiente para q
		no p a menos que q
Bicondicional	$p \leftrightarrow q$	p es necesario y suficiente para q
		p sí y sólo si q

L0. Del L. Natural al L. Proposicional

Formalizar: Transformar una frase del lenguaje natural al lenguaje de lógica proposicional

Si <u>el sensor se activa y no hay vigilante</u> entonces <u>la alarma salta</u>

Si p y no q entonces r

 $(p \land \neg q) \rightarrow I$

Proposiciones simples

Identificar enunciados declarativos simples en L. Natural

"el sensor se activa" (p)

"hay vigilante" (q)

"salta la alarma" (r)

Conectivas

Identificar conexiones gramaticales

Si..entonces.. (\rightarrow)

· (^

No (¬)

L0. Del L. Natural al L. Proposicional

Traduce de L. Natural a L. Proposicional. Sesión 1, Ejercicio 3.

- a) Es septiembre y no tengo vacaciones.
- b) Estudio o no apruebo el examen.
- c) Si no estudio no apruebo el examen.
- d) Para aprobar el examen es necesario estudiar.
- e) Es suficiente copiar para suspender.
- No me voy de vacaciones a menos que apruebe.
- g) Tengo clase sí y sólo sí soy estudiante.

L0. Formalización de frases

a) Es septiembre y no tengo vacaciones.

p: Es septiembre

q: Tengo vacaciones

p **y no** q

$$p \land \neg q$$

b) Estudio o no apruebo el examen

p: Estudio

q: Apruebo el examen

p o no q

$$p \lor \neg q$$

c) Si no estudio no apruebo el examen

p: Estudio

q: Apruebo el examen

Si no p **no** q

$$\neg p \rightarrow \neg q$$

L0. Formalización de frases

d) Para aprobar el examen es necesario estudiar

p: Aprobar el examen

q: Estudiar

Para p es necesario q q es necesario para p

$$p \rightarrow q$$
? ó $q \rightarrow p$?

$$p \rightarrow q$$

e) Es suficiente copiar para suspender

p: Copiar

q: Suspender

Es suficiente p para q p es suficiente para q

$$p \to q$$

L0. Formalización de frases

No me voy de vacaciones a menos que apruebe.

p: me voy de vacaciones

q: apruebo

No p a menos que q

$$p \to q \quad \neg q \to \neg p \quad \neg p \lor q$$

g) Tengo clase sí y sólo sí soy estudiante

p: Tengo clase

q: Soy estudiante

p si y solo si q

$$p \leftrightarrow q$$

L0. Del L. Natural al L. Proposicional

Traduce de L. Natural a L. Proposicional. Sesión 1, Ejercicio 3.

a) Es septiembre y no tengo vacaciones.

a) $p \wedge \neg q$

b) Estudio o no apruebo el examen.

b) $p \vee \neg q$

c) Si no estudio no apruebo el examen.

- c) $\neg p \rightarrow \neg q$
- d) Para aprobar el examen es necesario estudiar.
- d) $p \rightarrow q$

e) Es suficiente copiar para suspender.

- e) $p \rightarrow q$
- No me voy de vacaciones a menos que apruebe.
- f) $p \rightarrow q$

g) Tengo clase sí y sólo sí soy estudiante.

g) $p \leftrightarrow q$

L0. Razonamiento

Premisas seguidas de una conclusión

Ejemplo

Si el sensor se activa y no hay vigilante, la alarma salta. La alarma no salta pero el sensor se activa. Por tanto, hay vigilante.

Si el sensor se activa y no hay vigilante, la alarma salta La alarma no salta pero el sensor se activa

Hay vigilante

$$\{p \land \neg q \to r, \neg r \land p\} \models q$$

Traducido

$$p \land \neg q \rightarrow r$$

$$\neg r \wedge p$$

q

L0. Sintaxis. Reglas

- Conjunto \mathcal{F} de **Fórmulas Bien Formadas (fbf)**: cadenas de símbolos del lenguaje L0 sintácticamente correctas.
- Fórmulas Bien Formadas (fbf). Se obtienen aplicando un número finito de veces las siguientes reglas sintácticas:
 - Caso básico. Símbolos Proposicionales y Constantes Lógicas
 - Arr Fórmulas atómicas /proposiciones
 - {**V**,**F**} ⊂ *F*
 - Paso inductivo. Si F y G son fbf entonces también lo son:
 - (¬F), (F∧G), (F∨G), (F→G), (F↔G) ∈ F
 Fórmulas compuestas
- Las fbf se denominan simplemente fórmulas

L0. Sintaxis: Prioridad de Conectivas

Permite omitir el uso de paréntesis

Prioridades*

Ejemplos

Fórmula con paréntesis	Fórmula equivalente sin paréntesis
(p∧(¬q))	p∧¬q
((p∧q)→r)	p∧q→r
$((\neg p) \leftrightarrow (q \lor r))$	¬p↔q∨r
$((p \lor (q \land p)) \rightarrow r)$	$p \lor q \land p \to r$

Entre conectivas de igual nivel tiene prioridad la más a la izquierda **Ejemplo**: Escribimos $p \rightarrow q \rightarrow r$ en lugar de $((p \rightarrow q) \rightarrow r)$

(*) M. Ben-Ari. Mathematical Logic for Computer Science. Springer-Verlag, 2012.

L0. Semántica. Interpretación

Interpretación

Sea \mathcal{P} el conjunto de símbolos proposicionales de una fórmula F, una **Interpretación** I para la fórmula F es una aplicación

$$I: \mathcal{P} \rightarrow \{V, F\}$$

Ejemplo
$$I = \{ p^I = V, q^I = F, r^I = V \}$$

Fórmula $F : p \land \neg q \rightarrow r$ $J = \{ p^J = F, q^J = V, r^J = F \}$
...

¿Cuántas interpretaciones posibles puede tener una fórmula proposicional?

2ⁿ donde n es el número símbolos proposicionales distintos de la fórmula

L0. Semántica. Reglas

Dada una interpretación /, el valor de verdad bajo / de una fórmula F (F) viene dado por las siguientes reglas semánticas

1. Si $F = \text{proposición atómica } \mathbf{p}, F' = \mathbf{p}'$

L0. Semántica. Evaluación

Evaluar la Fórmula $\mathbf{F} = \mathbf{p} \wedge \neg \mathbf{q} \rightarrow \mathbf{r}$ bajo las interpretaciones I y J

l es un *Contramodelo* para F

$$J = \{ p^{J} = F, q^{J} = V, r^{J} = F \}$$

$$p \land \neg q \rightarrow r$$

$$F \quad \neg V \quad F$$

$$F \land F$$

$$F \rightarrow F$$

$$V$$