§1 Lecture 03-10

 $f_n(x) = x^n, x \in [0, 1]$. For each n fixed. f_n is continuous.

$$\lim_{n \to \infty} f_n(x) \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$$

Question. When does $\lim_{n\to\infty} f_n(x)$ exist and is continuous. We need to impose some further conditions to ensure that $\lim f_n(x)$ is continuous.

Suppose $f(x) = \lim_{n \to \infty} f_n(x)$. f is continuous at x_0 iff

$$\lim_{x \to x_0} f(x) = f(x_0) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x)$$
$$= \lim_{x \to x_0} \lim_{n \to \infty} f_n(x)$$

So interchanging the two limits and it is still equal.

Definition 1.2 (Uniform Convergence). Let $\{f_n\}$ be a sequence of functions on X. We say that $\{f_n\}$ is uniformly convergent in X to f if $\forall \epsilon > 0$, $\exists N$ such that $|f_n(x) - f(x)| < 0$ $\epsilon, \ \forall n \geq N.$

Note 1.3. The choice of N is independent of $x \in X$. It depends only on $\epsilon > 0$.

Example 1.4

Let's revisit the example $\{x^n\}$.

$$f_n \to f$$
 uniformly continuous $\Rightarrow f_n(x) \to f(x)$ pointwise

$$|f_n(x) - f(x)| < \epsilon \text{ if } n > N(\epsilon).$$

- $|f_n(x) f(x)| < \epsilon \text{ if } n \ge N(\epsilon).$ 1. When x = 1, this is true $\forall n$. 2. The problem is $0 \le x < 1$.

$$\Rightarrow |x^n| < \epsilon, \ \forall n \ge N(\epsilon)$$

For all N fixed, we can always find x_n , such that $x_n^n \to 1$, $n \to \infty$.

Lemma 1.5

 $f_n \to f$ is uniformly continuous iff $\forall \epsilon > 0$, $\exists N$ such that $\forall m > n \geq N$, $|f_m(x) - f_n(x)| < \epsilon, \forall x \in X$.

Proof. \Rightarrow . Suppose $f_n \to f$ is uniformly continuous. i.e.

$$\exists N$$
, such that $\forall n \geq N$,

$$|f_n(x) - f(x)| < \frac{\epsilon}{2}, \ \forall x \in X$$

Then

$$m > n \ge N$$

 $|f_m(x) - f_n(x)| \le |f_m(x) - f(x)| + |f(x) - f_n(x)| \le \epsilon/2 + \epsilon/2 = \epsilon$

 \Leftarrow . If (*) holds, then $\{f_n(x)\}$ is cauchy. $f_n(x) \to f(x), \ \forall x \in X$ pointwise because \mathbb{R} is complete.

$$|f_n(x) - f(x)| \le |f_n(x) - f_m(x)| + |f_m(x) - f(x)| \le \epsilon + |f_m(x) - f(x)|$$

Let $m \to \infty$

$$\epsilon + |f_m(x) - f(x)| \le \epsilon$$

Theorem 1.6

Suppose $\{f_n\}$ is a sequence of continuous functions defined in X. Suppose $f_n \to f$ is uniformly convergent in X. Then f is continuous in X.

Theorem 1.7

Suppose $\{f_n\}$ is a sequence of continuous functions uniformly convergent to f in X, $x_0 \in X$ is a limit point of X. Suppose then

$$\lim_{x \to x_0} f_n(x) = A_n$$

$$\lim_{x \to x_0} f(x) = \lim_{n \to \infty} A_n = A$$

Proof. By cauchy (*), $\forall \epsilon > 0$, $\exists N$, $|f_m(x) - f_n(x)| \leq \epsilon$, $\forall m > n \geq N, \forall x \in X$. \square

Let $x \to x_0 \Rightarrow |A_m - A_n| < \epsilon$, $m \ge N \Rightarrow \{A_n\}$ is cauchy. $A_n \to A$.

$$|f(x) - A| \le |f(x) - f_n(x)| + |f_n(x) - A_n| + |A_n - A|$$

We need to find $\delta > 0$ such that $\forall x \in B_{\delta}(x_0), |f(x) - A| < 3\epsilon$. Set $n = N \Rightarrow |f(x) - A| \le 2\epsilon + |f_N(x) - A_N|$. By the assumption, $\lim_{x \to x_0} f_N(x) = A_n \Rightarrow \exists \delta > 0$ such that $|f_N(x) - A_n| < \epsilon, \ \forall x \in B_{\delta}(x_0)$. This is the δ we are looking for.

Theorem 1.8 (M-test)

When $f_n \to f$ is uniformly continuous in X. $|f_n(x)| \le M_n, \ \forall x \in X, \text{ consider } \sum_{n=1}^{\infty} f_n(x) \text{ is uniform if } \sum_{n=1}^{\infty} \infty M_n \text{ is convergent.}$