

Executive Summary

- Motivation: Combinational circuits with sequential circuits allow to implement a complex design
- Problem: We need a procedure to transform our design idea to a circuit
- Overview:
 - State definitions.
 - Finite State Machine (FSM) design.
 - FSM examples.
- Conclusion: A complex idea can be implemented as a digital design using sequential and combinational building blocks

Introduction

Definitions

Finite State Machines

Conclusion

Recall: D Flip-Flop

- Inputs: WE, D
- Function
 - Samples D on rising edge of WE
 - When WE rises from 0 to 1, D passes through to Q
 - Otherwise, Q holds its previous value
 - Q changes only on rising edge of WE
- Activated on the WE edge (edge-triggered).

D Flip-Flop Symbols

D Flip-Flop operation is associated with a CLK (clock) instead of a WE.

Recall: D Flip-Flop Internal Circuit

 Two back-to-back latches (L1 and L2) controlled by complementary WE

- When **WE** = **0**
 - L1 is transparent
 - L2 is opaque
 - D passes through to N1
- When WE = 1
 - L2 is transparent
 - L1 is opaque
 - N1 passes through to Q
- Thus, on the edge of the WE (when WE rises from 0 1)
 - D passes through to Q

Recall: Gated D Latch vs D Flip-Flop

At the lab we use a clock (clk) to change the Q value using D input

Introduction

Definitions

Finite State Machines

Conclusion

State Definitions

State:

- In a system, it is a snapshot of all the important elements (at the time of taking the snapshot).
- In a circuit, all the information about a circuit necessary to define its future behavior.
 - State elements: "store the state" or store one bit (e.g.: latches, flip-flops).
- Diagram example: a semaphore

State Definitions

State:

- In a system, it is a snapshot of all the important elements (at the time of taking the snapshot).
- In a circuit, all the information about a circuit necessary to define its future behavior.
 - State elements: "store the state" or store one bit (e.g.: latches, flip-flops).
- Diagram example: a semaphore

10

- Clock is a general mechanism that triggers transition from one state to another in a sequential circuit
 - Clock synchronizes state changes across many sequential circuit elements
 - Combinational logic evaluates for the length of the clock cycle

- At the start of a clock cycle (), system state changes
 - During a clock cycle, the state stays constant
 - In the semaphore example, we are assuming the traffic light stays in each state an equal amount of time

Introduction

Definitions

Finite State Machines

Conclusion

Finite State Machine (FSM)

- A discrete-time model of a stateful system
- Each state represents a snapshot of the system at a given time
- Can model a semaphore, washing machine, a computer processor, etc.
- An FSM state diagram can visually represent:
 - 1. All possible states
 - 2. Transition conditions
- It is defined as finite because it has:
 - A finite number of states (snapshot)
 - 2. A **finite** number of external inputs
 - 3. A **finite** number of external outputs
 - 4. An explicit specification of all state transitions
 - 5. An explicit specification of what determines each external output value

FSM Elements

Sequential Circuits

- State register
 - Stores current state
 - Loads next state at clock edge

Combinational Circuits

- Next state logic:
 - Computes the next state
- Ouput logic:
 - Computes the outputs

State Register Implementation

- How can we implement a state register? Two properties:
 - 1. We need to store data at the **beginning** of every clock cycle

Problem: State Register with Latches

- If we wire a clock to WE of a latch
 - Whenever the clock is high, the latch propagates D to Q
 - The latch is transparent

Solution: State Register with D Flip-Flop

• 1) state change on clock edge, 2) data available for full cycle

- When the clock is low, master propagates D to the input of slave (Q unchanged)
- Only when the clock is high, slave latches D (Q stores D)
- At the rising edge of clock (clock going from 0->1), Q gets assigned D

Recall: D Flip-Flop

- Inputs: WE, D
- Function
 - Samples D on rising edge of WE
 - When WE rises from 0 to 1, D passes through to
 Q
 - Otherwise, Q holds its previous value
 - Q changes only on rising edge of WE
- Activated on the WE edge (edge-triggered).

D Flip-Flop Symbols D Q

D Flip-Flop operation is associated with a CLK (clock) instead of a WE.

We will explain the clock in later lectures.

Recall: Gated D Latch vs D Flip-Flop

At the lab we use a clock (clk) to change the Q value using D input

Recall: 4-bit Register with D Flip Flop

Types of FSM

- Next state determined by current state and inputs
- Two types of finite state machines differ in output logic:
 - 1. Moore FSM: outputs depend only on current state

Moore FSM

1. Mealy FSM: outputs depend on current state and inputs

Mealy FSM

FSM example

- Design a modulo 8 Gray code counter with an UP/DOWN counter. Define an UP input. If UP= 1, the counter advances to the next number. If UP= 0, the counter retreats to the previous number.
- Add an output Y, where Y=1 every time the Gray count has only one zero.

FSM Black Box

- Inputs: ?
- Outputs: ?

1. Design the state diagram

2. Write down the next state logic

current state \$2:0	input up	next state s'2:0
000	1	001
001	1	011
011	1	010
010	1	110
110	1	111
111	1	101
101	1	100
100	1	000
000	0	100
001	0	000
011	0	001
010	0	011
110	0	010
111	0	110
101	0	111
100	0	101

$$\begin{split} S_2' &= UPS_1\overline{S_0} + \overline{UP}\overline{S_1}\overline{S_0} + S_2S_0 \\ S_1' &= S_1\overline{S_0} + UP\overline{S_2}S_0 + \overline{UP}S_2S_1 \\ S_0' &= UP \oplus S_2 \oplus S_1 \end{split}$$

3. Write down the output logic

4.Draw the schematic

Another FSM Example

- Traffic light controller
 - Inputs:
 - Traffic sensors: T_A , T_B (TRUE when there's traffic)
 - Outputs:
 - Lights: L_A, L_B
 - States: transitions each 5 seconds

FSM Black Box

- Inputs: CLK, Reset, T_A, T_B
- Outputs: L_A , L_B

Moore FSM: outputs labeled in each state

• **States:** Circles

• **Transitions:** Arcs

Moore FSM: outputs labeled in each state

• **States:** Circles

Transitions: Arcs

Moore FSM: outputs labeled in each state

• States: Circles

Transitions: Arcs

Moore FSM: outputs labeled in each state

• **States:** Circles

Transitions: Arcs

FSM State Transition Table

Current State	Inputs		Next State
S	T_A	T_B	S'
S 0	0	X	
S 0	1	X	
S 1	X	X	
S2	X	0	
S2	X	1	
S 3	X	X	

FSM State Transition Table

Current State	Inp	Next State	
S	T_A	T_B	S'
S0	0	X	S 1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S 3
S2	X	1	S2
S3	X	X	S0

FSM Encoded State Transition Table

Curren	t State	Inputs		outs Next Stat	
S_1	S_0	T_A	T_B	S'_1	S'_0
0	0	0	X		
0	0	1	X		
0	1	X	X		
1	0	X	0		
1	0	X	1		
1	1	X	X		

State	Encoding
S0	00
S 1	01
S2	10
S3	11

FSM Encoded State Transition Table

Curren	t State	Inp	uts	Next	State
S_1	S_0	T_A	T_B	S'_1	S'_0
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
Diate	Lifebuing
S0	00
S 1	01
S2	10
S3	11

$$S'_1 = (S_1 \cdot S_0) + (S_1 \cdot S_0 \cdot T_B) + (S_1 \cdot S_0 \cdot T_B)$$

$$S'_0 = (S_1 \cdot S_0 \cdot T_A) + (S_1 \cdot S_0 \cdot T_B)$$

FSM Encoded State Transition Table

Curren	nt State	Inp	Inputs		Next State	
S_1	S_0	T_A	T_B	S'_1	S'_0	
0	0	0	X	0	1	
0	0	1	X	0	0	
0	1	X	X	1	0	
1	0	X	0	1	1	
1	0	X	1	1	0	
1	1	X	X	0	0	

State	Encoding
Diate	Lifebuing
S0	00
S 1	01
S2	10
S3	11

$$S'_1 = S_1 \oplus S_0$$

$$S'_0 = \overline{S_1} \overline{S_0} \overline{T_A} + S_1 \overline{S_0} \overline{T_B}$$

Current State		Outputs			
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0				
0	1				
1	0				
1	1				

Output	Encoding		
green	00		
yellow	01		
red	10		

FSM Output Table

Current State		Outputs			
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding		
green	00		
yellow	01		
red	10		

$$L_{A1} = S_1$$

$$L_{A0} = S_1 \cdot S_0$$

FSM Output Table

Current State		Outputs			
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding		
green	00		
yellow	01		
red	10		

$$L_{A1} = S_1$$

$$L_{A0} = S_1 \cdot S_0$$

$$L_{B1} = S_1$$

$$L_{B0} = S_1 \cdot S_0$$

FSM Schematic: State Register

FSM Schematic: Next State Logic

$$S'_1 = S_1 \text{ xor } S_0$$

$$S_{\text{\tiny CS3501-COMPUTER ARCHITECTURE}}' = (S_1 \cdot S_0 \cdot T_A) + (S_1 \cdot S_0 \cdot T_B)$$

FSM Schematic: Output Logic

$$L_{A1} - S_1$$

$$L_{A0} = S_1 \cdot S_0$$

$$L_{B1} = S_1$$

$$L_{B0} = S_1 \cdot S_0$$

FSM Timing Diagram

FSM State Encoding

- How do we encode the state bits?
 - Three common state binary encodings with different tradeoffs
 - 1. Fully Encoded
 - 2. 1-Hot Encoded
 - 3. Output Encoded
- Let's see an example **Swiss** Semaphore with 4 states
 - Green, Yellow, Red, Yellow+Red

FSM State Encoding Types

1. Binary Encoding (Full Encoding):

- Use the minimum number of bits used to encode all states
 - Use $log_2(num_states)$ bits to represent the states
- Example states: 00, 01, 10, 11
- Minimizes # flip-flops, but not necessarily output logic or next state logic

2. One-Hot Encoding:

- Each bit encodes a different state
 - Uses num_states bits to represent the states
 - Exactly 1 bit is "hot" for a given state
- Example states: 0001, 0010, 0100, 1000
- Simplest design process very automatable
- Maximizes # flip-flops, minimizes next state logic

FSM State Encoding Types

3. Output Encoding:

- Outputs are directly accessible in the state encoding
- For example, since we have 3 outputs (light color), encode state with 3 bits, where each bit represents a color
- Example states: 001, 010, 100, 110
 - Bit₀ encodes **green** light output,
 - Bit₁ encodes **yellow** light output
 - Bit₂ encodes **red** light output
- Minimizes output logic
- Only works for Moore Machines (output function of state)

Which encoding to use?

Encoding:

Depends on the designer critera to optimize or follow constraints.

Recall: Types of FSM

- Next state determined by current state and inputs
- Two types of finite state machines differ in output logic:
 - 1. Moore FSM: outputs depend only on current state

Moore FSM

Recall: Types of FSM

- Next state determined by current state and inputs
- Two types of finite state machines differ in output logic:
 - 1. Moore FSM: outputs depend only on current state

Moore FSM

1. Mealy FSM: outputs depend on current state and inputs

Mealy FSM

FSM: Moore vs Mealy

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
 - The snail smiles whenever the last two digits it has crawled over are 01.
- Design Moore and Mealy FSMs of the snail's brain.

Moore FSM

Example Moore vs Mealy

Moore FSM

Mealy FSM

FSM Design Procedure

- 1. Identify inputs and outputs
- 2. Sketch state transition diagram
- 3. Write state transition table
- 4. Select state encodings
- **5.** For Moore machine:
 - a. Rewrite state transition table with state encodings
 - b. Write output table
- 5. For a Mealy machine:

Rewrite combined state transition and output table with state encodings

- 6. Write Boolean equations for next state and output logic
- 7. Sketch the circuit schematic

Homework

- Read the FSM Moore to Mealy conversion (and backwards) in Piazza>resources>lecture notes.
- Finish Chapter 3 from HH book.
- Try solving the suggested exercises (check piazza).

Outline

Introduction

Definitions

Finite State Machines

Conclusion

Conclusions

- We introduced fundamentals concepts finite state machines
- We detailed the design of finite state machines.
- A sequential circuit with combinational circuit allows to implement a finite state machine.
- We conclude that complex design can be implemented as a digital circuit following design guidelines and defining state transitions.

Finite State Machines

Computer Architecture

CS3501 - 2025I

PROF.: JGONZALEZ@UTEC.EDU.PE

