Projekt robota trójnożnego

Jakub Mazur

26 sierpnia 2022

Spis treści

1	Nog	ga robo	ota	1
	1.1	Model	matematyczny	1
		1.1.1	Forward kinematics	1
		1.1.2	Forward kinematics - denavit hartenberg [1]	1
		1.1.3	Invert kinematics	1

1 Noga robota

Noga ma 3 stopnie swobody. Wszystkie są typu obrotowego, przy czym dwie obracają się dookoła osi poziomej, a jedna dookoła osi pionowej. Są to te same osi obrotu co w przypadku ramienia robotycznego typu antromorficznego.

1.1 Model matematyczny

1.1.1 Forward kinematics

$$a_{temp} = a_2 \cos \alpha_1 + a_3 \cos (\alpha_2 - \alpha_1) + a_1$$

$$Y = a_{temp} \cdot \sin \alpha_0$$

$$X = a_{temp} \cdot \cos \alpha_0$$

$$Z = h_0 - h_1 + a_2 \sin \alpha_1 - a_3 \sin (\alpha_2 - \alpha_1)$$
(1)

1.1.2 Forward kinematics - denavit hartenberg [1]

Gdzie:

 θ_i - angle from x_{n-1} to x_n around z_{n-1}

 α_i - angle from z_{n-1} to z_n around x_n

 r_i - distance between the origin of the n-1 frame and the origin of the n frame along the x_n direction.

 d_i - distance from x_{n-1} to x_n along the z_{n-1} direction

1.1.3 Invert kinematics

Odwrotną kinematykę można obliczyć poprzez rozwiązanie równań kinematyki prostej. Najprościej jest wyprowadzić wzór na α_0 , można to zrobić łącząc wzór na X i Y:

$$\begin{cases} Y = a_{temp} \cdot \sin \alpha_0 \\ X = a_{temp} \cdot \cos \alpha_0 \end{cases}$$
 (2)

$$\begin{cases} Y = a_{temp} \cdot \sin \alpha_0 \\ a_{temp} = \frac{X}{\cos \alpha_0} \end{cases}$$
 (3)

$$Y = \frac{X}{\cos \alpha_0} \cdot \sin \alpha_0 \tag{4}$$

$$\alpha_0 = \arctan \frac{Y}{X} \tag{5}$$

Literatura

- [1] How to Find Denavit-Hartenberg Parameter Tables, blogpost by Automatic Addison
- $[2]\,$ Alexander Wallen Kiessling, Niclas Maatta (2020) Anthropomorphic Robot Arm