UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

MIGUEL MORETO

LOCALIZAÇÃO DE FALTAS DE ALTA IMPEDÂNCIA EM SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA: UMA METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS.

MIGUEL MORETO

LOCALIZAÇÃO DE FALTAS DE ALTA IMPEDÂNCIA EM SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA: UMA METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS.

Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal do Rio Grande do Sul como parte dos requisitos para a obtenção do título de Mestre em Engenharia Elétrica.

Área de concentração: Automação e Instrumentação Eletro-Eletrônica

ORIENTADOR: Prof. Dr. Arturo Suman Bretas

CO-ORIENTADOR: Prof. Dr. Alexandre Sanfe-

lice Bazanella

MIGUEL MORETO

LOCALIZAÇÃO DE FALTAS DE ALTA IMPEDÂNCIA EM SISTEMAS DE DISTRIBUIÇÃO DE ENERGIA: UMA METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS.

Orientador: _____

Esta dissertação foi julgada adequada para a obtenção do título de Mestre em Engenharia Elétrica e aprovada em sua forma final pelo Orientador e pela Banca Examinadora.

	Doutor pela Virginia Polytechnic Institute and State University – EUA
Banca Examinadora:	
	Jacqueline Gisele Rolim, UFSC a Universidade Federal de Santa Catarina, Florianópolis, Brasil
	ão Bosco Augusto London Jr, USP-EESC Universidade de São Paulo, São Paulo, Brasil
	meu Reginatto, UFRGS Universidade Federal de Santa Catarina, Florianópolis, Brasil
	Coordenador do PPGEE: Prof. Dr. Carlos Eduardo Pereira

Prof. Dr. Arturo Suman Bretas, UFRGS

DEDICATÓRIA

Dedico este trabalho primeiramente a minha família, meus pais que sempre deram todo apoio necessário para que eu chegasse até aqui, meu irmão e minha irmã que estiveram sempre do meu lado quando eu precisei e constituem, para mim, um exemplo de vida.

AGRADECIMENTOS

Agradeço ao meu orientador, prof. Dr. Arturo Suman Bretas e ao meu co-orientador, prof. Dr. Alexandre Sanfelice Bazanella, pela grande dedicação demonstrada por eles ao longo deste trabalho. Ao bolsista de iniciação científica Rodrigo Salim um agradecimento pela sua importante contribuição em diversos resultados que serão apresentados no decorrer do trabalho.

Não posso deixar de agradecer a todos os colegas que fiz durante estes dois anos de mestrado, em especial aos engenheiros mestres Fernando Porrua e Felipe Kühne, que sempre estiveram presentes tanto nos momentos mais difíceis quanto nos mais descontraídos.

Um agradecimento especial ao programa de pós-graduação em engenharia elétrica da UFRGS pela oportunidade e estrutura oferecidas bem como aos professores que foram os responsáveis por grande parte do conhecimento adquirido ao longo destes dois anos.

Finalmente, agradeço à CAPES pelo apoio financeiro, sem o qual eu não teria condições de realizar este trabalho.

RESUMO

O presente trabalho apresenta uma nova metodologia de diagnóstico de faltas em sistemas de distribuição de energia. O esquema proposto é capaz de obter uma estimativa precisa da localização tanto de faltas sólidas e lineares quanto de faltas de alta impedância. Esta última classe de faltas representa um grande problema para as concessionárias distribuidoras de energia elétrica, uma vez que seus efeitos nem sempre são detectados pelos dispositivos de proteção utilizados. Os algoritmos de localização de faltas normalmente presentes em relés de proteção digitais são formulados para faltas sólidas com ou baixa resistência de falta. Sendo assim, sua aplicação para localização de faltas de alta impedância resulta em estimativas errôneas da distância de falta. A metodologia proposta visa superar esta deficiência dos algoritmos de localização tradicionais através da criação de um algoritmo baseado em redes neurais artificiais que poderá ser adicionado como uma rotina adicional de um relé de proteção digital. O esquema proposto utiliza dados oscilográficos pré e pós-falta que são processados de modo que sua localização possa ser estimada através de um conjunto de características extraídas dos sinais de tensão e corrente. Este conjunto de características é classificado pelas redes neurais artificiais de cuja saída resulta um valor relativo a distância de falta. Além da metodologia proposta, duas metodologias para localização de faltas foram implementadas, possibilitando a obtenção de resultados comparativos. Os dados de falta necessários foram obtidos através de centenas de simulações computacionais de um modelo de alimentador radial de distribuição. Os resultados obtidos demonstram a viabilidade do uso da metodologia proposta para localização de faltas em sistemas de distribuição de energia, especialmente faltas de alta impedância.

Palavras-chave: Faltas de alta impedância, Sistemas de distribuição, Redes Neurais Artificiais, Localização de faltas, Detecção de faltas.

ABSTRACT

This work presents a new power distribution systems fault diagnosis methodology. The proposed scheme is capable to obtain precise fault location estimations for both linear low impedance and high impedance faults. This last class of fault represents an important subject for the power distribution utilities because these kinds of fault are rarely detected by the protection devices commonly used in such systems. The digital relays fault location algorithms are developed for solid faults with low fault resistance. In this way, its application in high impedance faults results in erroneous fault location estimations. The proposed methodology was developed to overcome the deficiency showed by the traditional fault location techniques with the use of artificial neural networks. The presented algorithm can be used as a additional digital relay routine. The scheme uses pre and post fault oscilographic data which are processed in such a way that the fault location can be estimated by a set of characteristics extracted from the voltage and current signals. This characteristics set is classified by the artificial neural networks whose output results in a fault distance relative value. Two other fault location methodologies were implemented as well, making possible to obtain comparative results. The necessary fault data were obtained through hundreds of computational simulations of a radial power distribution feeder model. The results of this work show the proposed methodology viability in estimating fault location in power distribution systems, especially high impedance faults.

Keywords: High impedance faults, distribution systems, artificial neural networks, fault location, fault detection.

SUMÁRIO

LISTA	A DE ILUSTRAÇÕES	10
LISTA	A DE TABELAS	13
LISTA	A DE ABREVIATURAS	14
1 IN 1.1 1.2 1.3 1.4	NTRODUÇÃO	16 18 19 20 20
2 P 2.1	ROTEÇÃO DE SISTEMAS ELÉTRICOS DE DISTRIBUIÇÃO Dispositivos de Proteção de Linhas de Distribuição	22 23
2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	Elos Fusíveis Religadores Automáticos Seccionadores Automáticos Relés de Sobre-corrente Relés Digitais	24 26 27 28 35
3 L	OCALIZAÇÃO DE FALTAS	42 43
3.1.1 3.1.2 3.1.3	Faltas Fase-fase	44 46 47
3.2.1 3.2.2	Método de Takagi	49 49 52
3.3 3.3.1 3.3.2	Método de Takagi Considerando Linhas Curtas	57 57 59
3.4 3.4.1 3.4.2	Localização de Faltas em Linhas de Distribuição de Energia	61 63 67
4 F. 4.1 4.2	ALTAS DE ALTA IMPEDÂNCIA	69 70 74
	Modelo 1: Resistência de Falta Não-linear	75

4.2.2 4.3	Modelo 2: Circuito Elétrico	
5 R	EDES NEURAIS ARTIFICIAIS	81
5.1	O que é uma Rede Neural Artificial	
5.2	Modelo do neurônio	
5.3	Tipos de Função de Ativação	
5.4	Arquitetura de Redes Neurais Artificiais	
5.4.1	Redes feedforward de Camada Única	
5.4.2	Redes <i>feedforward</i> de Múltiplas Camadas	
5.4.3	Redes Recorrentes	
5.5	Paradigmas de Aprendizagem	
5.5.1	Aprendizado Supervisionado (com professor)	
5.5.2	Aprendizado Não-supervisionado	
5.6	Algoritmos de Aprendizagem	
5.6.1	O Perceptron de Rosemblatt	
5.6.2	O Perceptron de Múltiplas Camadas	
3.0.2	O i ciception de Munipias Camadas	.)
6 M	ETODOLOGIA DE LOCALIZAÇÃO PROPOSTA	104
6.1	Visão Geral	
6.2	Estrutura	. 106
6.3	Extração de características (pré-processamento) dos dados	. 108
6.3.1	Componente DC e estimação de fasores	
6.3.2	Cálculo das componentes simétricas	
6.4	Identificação do tipo da falta e ponto de incidência	
6.5	Estimativa da localização da falta	. 115
7 IN	MPLEMENTAÇÃO DA METODOLOGIA PROPOSTA	119
		11/
7.1	Sistema de distribuição utilizado	
	-	. 120
7.1	Sistema de distribuição utilizado	. 120. 121
7.1 7.2	Sistema de distribuição utilizado	. 120. 121. 124
7.1 7.2 7.3	Sistema de distribuição utilizado	. 120. 121. 124. 124
7.1 7.2 7.3 7.3.1	Sistema de distribuição utilizado	. 120. 121. 124. 124. 125
7.1 7.2 7.3 7.3.1 7.3.2	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta	. 120. 121. 124. 125. 126
7.1 7.2 7.3 7.3.1 7.3.2 7.4	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs	. 120. 121. 124. 125. 126. 127
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs Treinamento da RNA 1	 120 121 124 125 126 127 128
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs Treinamento da RNA 1 Treinamento das RNAs 2 e 3 Algoritmos para faltas de baixa impedância	. 120 . 121 . 124 . 124 . 125 . 126 . 127 . 128 . 129
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs Treinamento da RNA 1 Treinamento das RNAs 2 e 3 Algoritmos para faltas de baixa impedância ESULTADOS OBTIDOS	. 120 . 121 . 124 . 125 . 126 . 127 . 128 . 129
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs Treinamento da RNA 1 Treinamento das RNAs 2 e 3 Algoritmos para faltas de baixa impedância ESULTADOS OBTIDOS Resultados do método de Takagi para linhas curtas	. 120 . 121 . 124 . 125 . 126 . 127 . 128 . 129 . 130
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5 8 R 8.1 8.1.1	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs Treinamento da RNA 1 Treinamento das RNAs 2 e 3 Algoritmos para faltas de baixa impedância ESULTADOS OBTIDOS Resultados do método de Takagi para linhas curtas Influência da distância de falta	. 120 . 121 . 124 . 125 . 126 . 127 . 128 . 129 . 130 . 130
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5 8 R 8.1 8.1.1 8.1.2	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs Treinamento da RNA 1 Treinamento das RNAs 2 e 3 Algoritmos para faltas de baixa impedância ESULTADOS OBTIDOS Resultados do método de Takagi para linhas curtas Influência da distância de falta Influência da resistência de falta	. 120 . 121 . 124 . 125 . 126 . 127 . 128 . 129 . 130 . 130 . 133
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5 8 R 8.1 8.1.1 8.1.2 8.1.3	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs Treinamento da RNA 1 Treinamento das RNAs 2 e 3 Algoritmos para faltas de baixa impedância ESULTADOS OBTIDOS Resultados do método de Takagi para linhas curtas Influência da distância de falta Influência do tipo de falta	. 120 . 121 . 124 . 125 . 126 . 127 . 128 . 129 . 130 . 130 . 133 . 134
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5 8 R 8.1.1 8.1.2 8.1.3 8.1.4	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs Treinamento da RNA 1 Treinamento das RNAs 2 e 3 Algoritmos para faltas de baixa impedância ESULTADOS OBTIDOS Resultados do método de Takagi para linhas curtas Influência da distância de falta Influência do tipo de falta Influência do carregamento	. 120 . 121 . 124 . 125 . 126 . 127 . 128 . 129 . 130 . 133 . 134 . 134
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs Treinamento da RNA 1 Treinamento das RNAs 2 e 3 Algoritmos para faltas de baixa impedância ESULTADOS OBTIDOS Resultados do método de Takagi para linhas curtas Influência da distância de falta Influência do tipo de falta Influência do carregamento Influência da FAI	. 120 . 121 . 124 . 125 . 126 . 127 . 128 . 129 . 130 . 130 . 133 . 134 . 134 . 135
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5 8 R 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs Treinamento da RNA 1 Treinamento das RNAs 2 e 3 Algoritmos para faltas de baixa impedância ESULTADOS OBTIDOS Resultados do método de Takagi para linhas curtas Influência da distância de falta Influência do tipo de falta Influência do carregamento Influência da FAI Análise geral	. 120 . 121 . 124 . 125 . 126 . 127 . 128 . 129 . 130 . 130 . 133 . 134 . 135 . 135
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs Treinamento da RNA 1 Treinamento das RNAs 2 e 3 Algoritmos para faltas de baixa impedância ESULTADOS OBTIDOS Resultados do método de Takagi para linhas curtas Influência da distância de falta Influência da resistência de falta Influência do tipo de falta Influência do carregamento Influência da FAI Análise geral Resultados para o método de Lee et al (2004)	. 120 . 121 . 124 . 125 . 126 . 127 . 128 . 129 . 130 . 133 . 134 . 135 . 135 . 135
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5 8 R 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs Treinamento da RNA 1 Treinamento das RNAs 2 e 3 Algoritmos para faltas de baixa impedância ESULTADOS OBTIDOS Resultados do método de Takagi para linhas curtas Influência da distância de falta Influência da resistência de falta Influência do carregamento Influência da FAI Análise geral Resultados para o método de Lee et al (2004) Influência da distância de falta	. 120 . 121 . 124 . 125 . 126 . 127 . 128 . 129 . 130 . 130 . 133 . 134 . 135 . 135 . 135 . 136
7.1 7.2 7.3 7.3.1 7.3.2 7.4 7.4.1 7.4.2 7.5 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.2	Sistema de distribuição utilizado Simulações no ATP-EMTP Obtenção dos padrões de entrada das RNAs Identificação do ponto de incidência e tipo de falta Estimativa da localização da falta Criação e treinamento das RNAs Treinamento da RNA 1 Treinamento das RNAs 2 e 3 Algoritmos para faltas de baixa impedância ESULTADOS OBTIDOS Resultados do método de Takagi para linhas curtas Influência da distância de falta Influência da resistência de falta Influência do tipo de falta Influência do carregamento Influência da FAI Análise geral Resultados para o método de Lee et al (2004)	. 120 . 121 . 124 . 125 . 126 . 127 . 128 . 129 . 130 . 133 . 134 . 135 . 135 . 135 . 136 . 139 . 140

8.2.4	Influência do carregamento
8.2.5	Influência da FAI
8.2.6	Análise geral
8.3 Re	sultados da metodologia proposta
8.3.1	Influência da distância de falta
8.3.2	Influência da resistência de falta
8.3.3	Influência do tipo de falta
8.3.4	Influência do carregamento
8.3.5	Influência da FAI
8.3.6	Análise geral
8.4 Co	omparação das metodologias
	ACLUSÕES
REFERÊ	ENCIAS 154
ANEXO	A DADOS E IMPLEMENTAÇÃO DO ALIMENTADOR SEGMEN-
	TADO
ANEXO	B DESCRIÇÃO DO SISTEMA NO ATP 161
ANEXO	C ARQUIVO DE ENTRADA DO EMTP 162

LISTA DE ILUSTRAÇÕES

1	Exemplo de um sistema de distribuição de energia	17
2	Exemplo de elo fusível e chave fusível utilizados na proteção de SDE.	24
3	Exemplo de curvas de fusão de elos fusíveis (DELMAR LTDA, 2003).	25
4	Religador automático (ABB Inc, 2004)	27
5	Seccionador automático instalado (Joslyn High Voltage, 1996)	28
6	Curvas de Tempo x Corrente de relés de sobrecorrente (MELLO, 1979).	31
7	Exemplo de esquema de coordenação com RSTIs (HOROWITZ; PHADI	ζE,
	1995)	31
8	Exemplo de esquema de coordenação com RSIs e RSTIs (HOROWITZ;	
	PHADKE, 1995)	33
9	Componentes de um relé de indução (MELLO, 1979)	35
10	Relé de copo cilíndrico (MELLO, 1979).	35
11	Blocos de um relé digital (PHADKE; THORP, 1988)	36
12	Sobreposição de espectros de um sinal amostrado	37
13	Sistema de transmissão exemplo	44
14	Rede de sequência para uma falta fase-fase sólida	44
15	Rede de sequência para uma falta fase-fase-terra sólida	45
16	Rede de sequência para uma falta trifásica sólida	46
17	Rede de sequência para uma falta fase-terra sólida	46
18	Resistência de falta	48
19	Decomposição do sistema faltoso (TAKAGI et al., 1981)	50
20	Rede de sequência para uma falta trifásica	53
21	Rede de sequência para uma falta fase-terra	54
22	Rede de sequência para uma falta fase-fase	55
23	Rede de sequência para uma falta fase-fase-terra	56
24	Modelo simplificado de alimentador de distribuição	63
25	Modelo completo de alimentador de distribuição	66
26	Diagrama unifilar de uma FAI fase-terra	70
27	Sistema teste de Emanuel et al (1990)	72
28	(a) Corrente de falta e (b) curva V-I do arco obtidas por Sultan et	
	al (1994)	72
29	Corrente de falta obtida por Nam et al. (2001)	73
30	Modelo de FAI proposto por Nam et al. (2001)	75
31	Modelo de FAI proposto por Emanuel et al. (1990)	76

32	Conteúdo harmônico da corrente de falta; (a): 2^a harmônica e (b): 3^a harmônica (EMANUEL et al., 1990)
33	Exemplo de corrente de falta obtida com o modelo de Emanuel et
33	al. (1990)
34	Neurônio biológico
35	Neurônio de McCullogh & Pitts
36	Modelo matemático do neurônio (HAYKIN, 2001)
37	Funções de ativação mais utilizadas
38	Rede alimentada adiante de camada única
39	Rede alimentada adiante de múltiplas camadas
40	Rede neural recorrente
41	Aprendizado supervisionado (HAYKIN, 2001)
42	Aprendizado não supervisionado (HAYKIN, 2001)
43	Diagrama de fluxo de sinal do perceptron (HAYKIN, 2001) 94
44	Fronteira de decisão bidimensional (HAYKIN, 2001) 95
45	Separabilidade linear (HAYKIN, 2001)
46	Ilustração do processo de aprendizagem
47	Diagrama de blocos simplificado da metodologia proposta 107
48	Ilustração do ponto de incidência em uma falta fase-fase 108
49	Diagrama de blocos da metodologia proposta
50	Diagrama de blocos do pré-processamento do sinal 109
51	Circuito R-L
52	Circuito <i>mimic</i>
53	Tipos de falta
54	Varredura para identificação do ponto de incidência
55	Fluxograma do algoritmo de detecção do ponto de incidência 116
56	Diagrama de blocos da etapa de localização de faltas
57	Diagrama unifilar do alimentador simulado
58	Resultado do método de Takagi para faltas A-g, BC-g e ABC-g 131
59	Resultado do método de Takagi para falta BC
60	Resultado do método de Takagi para faltas A-g, BC-g e ABC-g com 50% de carga
61	Resultado do método de Takagi para falta BC com 50% de carga 133
62	Resultado do método de Lee para faltas faltas A-g, BC-g e ABC-g 136
63	Resultado do método de Lee para faltas faltas A-g, BC-g e ABC-g,
03	incluindo FAIs
64	Resultado do método de Lee para falta BC com 100% de carregamento.137
65	Resultado do método de Lee para faltas faltas A-g, BC-g e ABC-g
03	com 50% de carregamento
66	Resultado do método de Lee para faltas BC com 50% de carregamento. 140
67	Resultado para falta A-g com 100% de carregamento
68	Resultado para faltas BC-g e ABC-g com 100% de carregamento 143
69	Resultado para falta BC com 100% de carregamento
70	Resultado para falta A-g com 50% de carregamento
71	Resultado para faltas BC-9 e ABC-9 com 50% de carregamento.

72	Resultado para falta BC com 50% de carregamento	146
73	Implementação do sistema segmentado em 67 pontos	161

LISTA DE TABELAS

1	Funções de um relé digital de proteção de alimentadores 105
2	Dados do alimentador simulado
3	Casos simulados
4	Características das RNAs utilizadas
5	Saídas da RNA 1
6	Parâmetros de treinamento da RNA 1
7	Parâmetros de treinamento das RNA 2 e 3
8	Resultados do método de Takagi para linhas curtas com 100% de carga.132
9	Resultados do método de Takagi para linhas curtas com 50% de carga. 133
10	Resultados do método de Lee com 100% de carregamento 138
11	Resultados do método de Lee com 50% de carregamento
12	Resultados da metodologia proposta com carregamento de 100% 144
13	Resultados da metodologia proposta com carregamento de 50% 144
14	Resultados comparativos das metodologias implementadas 148
15	Dados do alimentador segmentado em 67 pontos

LISTA DE ABREVIATURAS

A/D Conversor Analógico/Digital

A-g Falta A-terra

AB Falta AB

AB-g Falta AB-terra

ABC-g Falta trifásica

ABNT Associação Brasileira de Normas Técnicas

AC Falta AC

AC-g Falta AC-terra

ATP Alternative Transient Program

B-g Falta B-terra

BC Falta BC

BC-g Falta BC-terra

C-g Falta C-terra

DFT Transformada Discreta de Fourier (*Discrete Fourier Transform*)

EE Energia Elétrica

EEPROM Electrical Eraseble ROM

EMQ Erro Médio Quadrático

EMTP Electromagnetics Transient Program

FAI Falta de Alta Impedância

FFT Transformada Rápida de Fourier (Fast Fourier Transform)

MLP Perceptron de Múltiplas Camadas (Multilayer Perceptron)

PIE Produtor Independente de Energia

RAM Random Access Memory

RNA Rede Neural Artificial

ROM Read Only Memory

RSI Relé de Sobrecorrente Instantâneo

RSTD Relé de Sobrecorrente de Tempo Definido

RSTI Relé de Sobrecorrente de Tempo Inverso

RSTMI Relé de Sobrecorrente de Tempo Muito Inverso

SCADA Supervisory Control And Data Acquisition

SDE Sistemas de Distribuição de Energia Elétrica

SEP Sistemas Elétricos de Potência

TACS Transient Analysis of Control Systems

1 INTRODUÇÃO

Sistemas de distribuição de energia elétrica (SDE) é o nome dado ao conjunto de equipamentos responsáveis pelo fornecimento de energia elétrica (EE) aos consumidores ligados em um nível de tensão que pode chegar a algumas dezenas de kilovolts. A necessidade de que a energia elétrica seja fornecida a todos os consumidores de uma forma contínua e com qualidade faz com que os SDE apresentem uma topologia bastante complexa. O fornecimento de EE aos consumidores é feito através de linhas de distribuição, também chamadas de alimentadores. Geralmente estas são linhas trifásicas radiais com tensões entre 10kV a 23kV. Ramificações no alimentador podem ser necessárias para que consumidores mais afastados do seu trajeto possam ser beneficiados. Em uma área urbana, por exemplo, um alimentador pode possuir várias ramificações e sub-ramificações, as quais podem ser tanto trifásicas quanto monofásicas. Em diversos pontos dos SDE estão localizados transformadores de distribuição, os quais fazem o rebaixamento da tensão para os consumidores de baixa tensão, usualmente 127V ou 220V.

A Figura 1 ilustra uma representação de um sistema elétrico de potência (SEP) hipotético com destaque para os SDE. Nesta representação, a energia elétrica gerada (1) é entregue ao sistema de transmissão (2), o qual, através de subestações (3) fornece energia aos SDE. Podem ser vistos os alimentadores e suas ramificações (4) e os transformadores de distribuição (5).

Figura 1: Exemplo de um sistema de distribuição de energia.

Para um usuário de energia elétrica, os SEP aparentam estar sempre em condições estáveis, ou seja, sem perturbações e com capacidade de fornecimento infinita. No entanto, sabe-se que o sistema está sujeito a constantes distúrbios criados por variações randômicas de carga, por faltas ocasionadas pela interferência do meio ambiente e por faltas resultantes de falhas em equipamentos de operação (BRETAS, 1998).

Em SDE, os alimentadores são normalmente constituídos de cabos aéreos não isolados instalados em postes junto à ruas e avenidas. Em função deste tipo de constituição, o número de acidentes e defeitos que resultam em curto-circuitos ou até mesmo na queda de condutores é maior do que em sistemas de transmissão. Ainda, a grande extensão dos SDE também influenciam no elevado número de ocorrências que podem levar a interrupção no fornecimento de EE (AL-DABBAGH; AL-DABBAGH, 1999).

Em casos de ocorrência de falhas nos equipamentos ou acidentes, os sistemas de proteção tomam medidas corretivas, retirando o alimentador ou parte dele de operação. Na seqüência, são despachadas as equipes de manutenção que executarão a busca pelo ponto de ocorrência do defeito na rede de modo que este possa ser reparado e o sistema religado.

1.1 Motivação

Em função da topologia predominantemente radial dos SED, um grande número de consumidores pode permanecer sem fornecimento de EE após a atuação do sistema de proteção. Desta forma, o tempo gasto pelas equipes de manutenção na localização do ponto de ocorrência da falta deve ser o menor possível, de modo a aumentar a confiabilidade do sistema e reduzir custos operacionais. O tempo e a freqüência com que um dado conjunto de consumidores permanece sem fornecimento de EE é medido ao longo do mês e com isso são calculados os índices de confiabilidade adotados pela agência reguladora do setor elétrico. Em função destes índices, a concessionária de distribuição de energia pode até mesmo ser penalizada através de multas.

Assim, obter uma estimativa do local de ocorrência da falta antes do envio das equipes de manutenção representa uma etapa importante no processo de redução do tempo de interrupção de energia aos consumidores. Sua importância é ressaltada em sistemas de distribuição rurais, onde as linhas (alimentadores) são de grande extensão e percorrem longos trechos desabitados. Conforme será visto mais adiante neste trabalho, diversas formas de localização de faltas foram e vem sendo estudadas pela comunidade científica de modo a diminuir o tempo de interrupção. As mais comuns são baseadas no cálculo da impedância de seqüência positiva da linha até o ponto de falta, a qual é medida na subestação a partir dos sinais de corrente e tensão (LEE et al., 2004).

Um classe especial de faltas que podem ocorrer em sistemas de distribuição de energia elétrica (SDE) são as chamadas faltas de alta impedância (FAIs). Seu nome provém do fato de que geralmente este tipo de falta apresenta uma resistência de valor elevado no ponto da falta. Com isso, a corrente de falta apresenta uma magnitude baixa se comparada com a resultante de faltas sólidas (também chamadas faltas francas). Uma característica

importante associada a FAIs é a sua não-linearidade, ou seja, a corrente de falta produzida pode não ser puramente senoidal, mas uma composição de diversas freqüências harmônicas da fundamental. A não-linearidade está associada principalmente ao arco elétrico que pode estar presente no ponto de contato do condutor com a terra ou outro objeto durante a ocorrência de uma FAI.

Devido a suas características, a presença das FAIs pode não ser detectada nos sinais de tensão e corrente utilizados pelos dispositivos de proteção em sistemas de distribuição de EE. Ainda, a baixa amplitude de corrente gerada pelas FAIs podem fazer com que sua presença seja confundida com acréscimos de carga ou chaveamento de bancos de capacitores no sistema. Como resultado, os sistemas de proteção podem não atuar corretamente na eliminação deste tipo de defeito, resultando em riscos a população e danos materiais aos consumidores e ao sistema.

Diversos algoritmos vem sendo desenvolvidos para identificação e eliminação de FAIs. A maioria deles é baseado na extração de características impostas pelas FAIs nos sinais de corrente e tensão medidos na subestação. Estas peculiaridades resultam do arco elétrico geralmente presente em FAIs. Apesar dos diversos trabalhos relativos a detecção de FAIs, nenhum relativo a localização foi encontrado durante a revisão bibliográfica realizada nesta dissertação.

1.2 Objetivos

O trabalho proposto nesta dissertação tem como objetivo o desenvolvimento de uma metodologia de localização de faltas, tanto de alta quanto de baixa impedância, baseada em redes neurais artificiais. Esta metodologia consiste de um algoritmo que pode ser adicionado como uma função extra de um relé de proteção digital.

1.3 Proposta

O algoritmo proposto é baseado em redes neurais artificiais (RNAs). Esta técnica vem sendo amplamente utilizada em sistemas de potência, dada sua capacidade de "aprender" através de exemplos relações de entrada-saída não-lineares complexas e sua estrutura modular, possibilitando processamento paralelo (AGGARWAL; SONG, 1998).

Dos sinais analisados é extraído um conjunto de características que permitem identificar tanto faltas sólidas quanto faltas de alta impedância. Estas características são aplicadas à entrada das RNAs e são obtidos através da análise do conteúdo harmônico dos sinais de corrente e tensão amostrados na subestação de distribuição de EE. Em função de sua facilidade de cálculo e ampla utilização, filtros de Fourier são utilizados para este fim.

O algoritmo de localização poderá ser utilizado como uma rotina interna de um relé de proteção digital dado que este possua função de oscilografia digital. Neste trabalho, dada a indisponibilidade de dados oscilográficos de casos reais, foram realizadas simulações computacionais levando em conta as características das FAIs.

As grandezas extraídas são aplicadas a um conjunto de RNAs responsáveis por determinar o ponto de incidência da falta (o instante inicial de ocorrência da falta), o tipo de falta e uma estimativa de sua localização geográfica.

1.4 Estrutura do trabalho

Na sequência desta introdução, serão apresentados no Capítulo 2 uma revisão dos dispositivos utilizados na proteção de alimentadores de distribuição. Em seguida, no Capítulo 3 são expostos métodos de localização de faltas de baixa impedância. No Capítulo 4 as faltas de alta impedância, suas características e formas de modelagem são apresentados. Uma revisão sobre redes neurais artificiais é feita no Capítulo 5. A metodologia de

localização de FAI é exposta em detalhes no Capítulo 6, sendo sua implementação apresentada no Capítulo 7. Os resultados obtidos são então comparados com as metodologias tradicionais. O resultado desta comparação e apresentado e comentado no Capítulo 8. Finalmente, algumas considerações finais e sugestões de trabalhos futuros são feitas no Capítulo 9.

2 PROTEÇÃO DE SISTEMAS ELÉTRICOS DE DISTRI-BUIÇÃO

Os sistemas de distribuição de energia são responsáveis pelo elo de ligação entre o consumidor final e o sistema de transmissão, provendo energia instantâneamente, na tensão e freqüência corretas e na quantidade exata necessária para o consumidor. Para este último, a energia elétrica fornecida aparenta ser imperturbável, constante e de infinita capacidade. No entanto, sistemas de energia, especialmente sistemas de distribuição, estão sujeitos a diversas perturbações causadas por acréscimos de cargas, faltas ocasionadas por fontes naturais, falhas de equipamentos, etc. O caráter de regime permanente da energia fornecida ao consumidor é mantido basicamente por dois fatores: A grande dimensão do sistema frente as cargas individuais e as corretas ações corretivas tomadas pelos sistemas de proteção em casos de distúrbios (HOROWITZ; PHADKE, 1995). Os sistemas de proteção são, desta forma, de fundamental importância no fornecimento de energia elétrica.

De modo a manter a qualidade do fornecimento de energia elétrica ao consumidor, os sistemas de proteção devem atender aos seguintes requisitos, conforme Giguer (1988):

- Seletividade: Somente deve ser isolada a parte defeituosa do sistema, mantendo em serviço as demais partes;
- 2. Rapidez: As sobrecorrentes geradas pela falta devem ser extintas no menor tempo possível, de modo a dificultar que o defeito interfira em outras partes do sistema;

- 3. Sensibilidade: A proteção deve ser sensível aos defeitos que possam ocorrer no sistema;
- 4. Segurança: A proteção não deve atuar de forma errônea em casos onde não houver falta, bem como deixar de atuar em casos faltosos;
- 5. Economia: A implementação do sistema de proteção deve ser econômicamente viável.

De modo a satisfazer os requisitos acima, a instalação e ajuste dos equipamentos de proteção em uma linha de distribuição (geralmente chamado de *alimentador*) deve levar em conta a existência de cargas e ramificações em seu percurso. Além disso, chaves distribuídas ao longo do sistema podem mudar a topologia de um determinado alimentador em caso de ocorrência de faltas ou sobrecargas, o que também deve ser considerado na proteção. Estas características fazem com que freqüentemente haja a necessidade de instalação de dispositivos de proteção em diversos pontos do sistema.

Com a utilização de vários dispositivos de proteção ao longo do alimentador, surge um outro fator a ser considerados no projeto de sistemas de proteção: A coordenação dos diversos dispositivos de proteção. A coordenação é necessária para que somente o dispositivo de proteção mais próximo da falta atue, isolando esta do resto do sistema e satisfazendo o requisito da seletividade e proporcionando maior confiabilidade ao sistema. A coordenação é feita com a escolha e ajuste adequados dos dispositivos de proteção utilizados (GIGUER, 1988).

2.1 Dispositivos de Proteção de Linhas de Distribuição

Nesta seção serão descritos os dispositivos mais utilizados na proteção de sistemas aéreos primários (tensões de 10 a 25kV) de distribuição de energia.

2.1.1 Elos Fusíveis

Os elos fusíveis são dispositivos de proteção amplamente utilizados em sistemas de distribuição. Suas aplicação envolvem basicamente a proteção de ramais de alimentadores, cargas e transformadores de distribuição. Em caso de atuação os fusíveis resultam na súbita interrupção da corrente que circula pelo circuito, necessitando serem manualmente substituídos para que o sistema volte a sua condição de operação normal.

O elo fusível atua quando uma corrente de valor acima de sua capacidade de condução circular pelo elemento fusível, o qual fundirá, interrompendo o circuito. O elemento fusível é o principal componente do elo fusível, formado por um fio composto de liga de estanho, prata ou níquel-cromo. Os valores das correntes e tempos de fusão são função principalmente das dimensões e resistividade elétrica do elemento fusível. A Figura 2a apresenta uma foto de um elo fusível. Os elos fusíveis são utilizados juntamente com chaves mecânicas que abrem os contatos em casos de rompimento do fusível, facilitando também a sua troca e o religamento do circuito. Estas chaves são chamadas *chaves fusíveis* e um exemplo delas pode ser visto na Figura 2b. O elo fusível é alojado dentro de um tubo de fibra isolante o qual é revestido internamente por uma fibra especial. A queima desta fibra no instante de fusão do elemento fusível produz gases desionizantes importantes na extinção do arco elétrico que surge no momento em que o circuito é aberto.

Figura 2: Exemplo de elo fusível e chave fusível utilizados na proteção de SDE.

O tempo de atuação de um elo fusível é dependente de diversos fatores, dentre ele pode-se citar : A intensidade de corrente que passa pelo fusível; o tipo de material que constitui o elemento fusível; seu grau de envelhecimento e o tipo de material envolvente (GIGUER, 1988).

Outro parâmetro importante dos fusíveis é a máxima corrente que este pode interromper, sendo esta limitada pelos fatores: Capacidade de produção de gases do cartucho, pressão interna do cartucho, força decorrente da expulsão dos gases e capacidade térmica dos contatos (GIGUER, 1988).

Com base nos fatores acima citados, os fabricantes disponibilizam curvas de fusão (*tempo x corrente*) que são utilizadas no dimensionamento dos fusíveis e em sua coordenação com os outros dispositivos de proteção presentes no sistema. Um exemplo deste tipo de curva é apresentado na Figura 3.

Figura 3: Exemplo de curvas de fusão de elos fusíveis (DELMAR LTDA, 2003).

2.1.2 Religadores Automáticos

Os religadores automáticos são amplamente utilizados pelas concessionárias de distribuição de energia. Seu uso tem aumentado em função das desvantagens geradas pela atuação dos elos fusíveis em alguns casos, pois estes não são capazes de diferenciar uma falta permanente de uma transitória¹, sendo que estas últimas representam de 80 a 95% dos casos de falta ocorridos (GIGUER, 1988). A atuaçõs dos elos fusíveis em casos de faltas transitórias leva a elevados custos de operação e principalmente um maior tempo de interrupção, cujos índices de qualidade relacionados são avaliados pelas agências reguladoras, podendo resultar em multas para a empresa.

O religador é um dispositivo que pode ser trifásico ou monofásico e constituído de chaves controladas elétricamente e submersas em óleo ou a vácuo. Estas são ligadas em série no circuito, interrompendo-o de forma temporizada. Após detectar o defeito através da medida da corrente em seus terminais o religador dispara rapidamente, abrindo o circuito. Após um determinado tempo os terminais do religador são fechados. Se a falta for de caráter transitório, o sistema continuará operando após um mínimo tempo de interrupção. O processo de abrir e fechar pode se repetir várias vezes até que a falta seja eliminada. Se o defeito continuar após as várias tentativas, o religador abrirá definitivamente seu contatos, isolando a parte defeituosa do sistema. Os tempos de operação, o número de interrupções, os ajustes da corrente de disparo e outros parâmetros podem ser facilmente modificados pelo usuário, resultando em grande flexibilidade e possibilitando a coordenação com outros dispositivos de proteção, como os fusíveis por exemplo (GIGUER, 1988).

A Figura 4 apresenta uma foto dos interruptores de um religador automático moderno.

¹Faltas transitórias são faltas cuja corrente de falta desaparece ou diminui abruptamente em um curto intervalo de tempo, geralmente alguns ciclos de 60Hz, após sua ocorrência. Já as faltas permanentes apresentam um comportamento inverso, com a corrente de falta perdurando até a atuação do sistema de proteção.

Os religadores modernos permitem que seu controle e monitoramento seja feito remotamente, através de diversos meios de comunicação. Além disso, podem possuir registradores de perturbação cujos dados também podem ser acessados remotamente (ABB Inc, 2004).

Figura 4: Religador automático (ABB Inc, 2004).

Os religadores automáticos apresentam as seguintes vantagens, segundo Guiguer (1988):

1) Menor número de queima de elos fusíveis; 2) Menor deslocamento de equipes de manutenção para sua troca; 3) Facilidade de manobras; 4) Melhor seletividade de defeitos; 5)

Minimização dos efeitos maléficos às redes pelos curto-circuitos; 6) Menores danos aos condutores e transformadores; 7) Maior faturamento e 8) Melhor imagem da empresa.

2.1.3 Seccionadores Automáticos

O seccionador automático pode ser definido como:

Um equipamento utilizado para interrupção automática de circuitos, que abre seus contatos quando o circuito é desenergizado por um equipamento de proteção situado à sua retaguarda e equipado com dispositivo para religamento automático. (ELETROBRÁS, 1982)

Os seccionadores automáticos são dispositivos projetados para operar em conjunto com os religadores. Basicamente, ele é constituído de uma chave a óleo monofásica ou

trifásica e com a aparência de um religador. Seu controle pode ser tanto hidráulico quanto eletrônico.

Diferentemente do religador, o seccionador automático não interrompe a corrente de defeito. Ele é ligado a uma certa distância do religador, no seu lado de carga. A cada vez que o religador interrompe um corrente de falta, o seccionador conta a interrupção, e após um pré-determinado número de interrupções abre seus contatos antes da abertura definitiva do religador. Desta forma, um trecho sob condições de falta permanente pode ser isolado, permanecendo o religador e os demais trechos em situação normal. Além de sua operação normal, o seccionador pode ser operado manualmente para interromper a corrente nominal de carga e ser empregado como chave para seccionamento manual de alimentadores (GIGUER, 1988).

A Figura 5 apresenta uma vista de um seccionador instalado em um sistema de distribuição de energia.

Figura 5: Seccionador automático instalado (Joslyn High Voltage, 1996).

2.1.4 Relés de Sobre-corrente

Segundo o trabalho realizado pela Eletrobrás (1982) um *relé* é definido como:

Os dispositivos que supervisionam constantemente todas as grandezas de um sis-

tema elétrico, ou seja, tensões, correntes, freqüências, potências, bem como grandezas inerentes aos próprios componentes, como temperaturas, etc., são denominados relés.

De forma mais específica, na mesma referência citada, é definido o relé de sobrecorrente:

Relé de Sobrecorrente é um dispositivo com característica de tempo definido ou inverso e que atua quando a corrente em um circuito de corrente alternada excede a um valor prefixado.

Em sua aplicação nos sistemas de distribuição, os relés de sobrecorrente supervisionam os valores da corrente elétrica do alimentador na subestação, fazendo uso de transformadores de corrente, de modo a proteger todo o alimentador e suas cargas.

Quando ocorrem situações faltosas, é comum a elevação do valor da corrente para patamares várias vezes maior que a corrente nominal de carga. O relé de sobrecorrente então detecta este aumento da corrente, através da comparação com um valor pré-fixado (corrente de *pickup*). Estando o valor da corrente medida dentro de um intervalo previamente ajustado, o relé envia um sinal ao disjuntor de modo que este abra seus contatos desenergizando o alimentador. Para relés ligados nas fases do alimentador, a corrente de *pickup* é geralmente ajustada para valores situados entre a corrente máxima de carga e a mínima corrente de falta (GIGUER, 1988). Horowitz & Phadke (1995) sugerem um ajuste entre 200% da máxima corrente de carga do e 1/3 da mínima corrente de falta. Para relés ligados no terminal de neutro, o ajuste da corrente de *pickup* fica entre a corrente máxima de desequilíbrio entre as fases e o menor valor da corrente de curto-circuito fase-terra (GIGUER, 1988).

O tempo de atuação, ou de disparo, de um relé de sobrecorrente é um parâmetro que pode ser especificado pelo usuário. Consiste no tempo necessário para o relé atuar uma vez que a corrente medida ultrapassar o valor de *pickup* (HOROWITZ; PHADKE, 1995). Em função do tempo de atuação, pode-se classificar os relés de sobrecorrente nos seguintes tipos (ELETROBRÁS, 1982):

- Relé de Sobrecorrente Instantâneo (RSI). O relé atua após a ocorrência de sobrecorrentes em um intervalo de tempo muito curto (alguns ciclos ou menos). Não há retardo de tempo incluído propositalmente;
- Relé de Sobrecorrente de Tempo Definido (RSTD). O tempo de atuação é manualmente definido e independe do valor da corrente;
- Relé de Sobrecorrente de Tempo Inverso (RSTI). O tempo de operação é inversamente proporcional ao valor da corrente;
- Relé de Sobrecorrente de Tempo Muito Inverso (RSTMI). Apresentam variações
 mais acentuadas das características de tempo de atuação em função da corrente de
 atuação.

As características de tempo de atuação descritas acima podem ser melhor visualizadas através das curvas tempo-corrente ilustradas na Figura 6.

A flexibilidade de ajustes proporcionada pelos relés de sobrecorrente permite que vários relés possam ser utilizados de forma coordenada na proteção de sistemas radiais, especialmente em sistemas longos. A Figura 7 apresenta uma série de linhas radiais protegidas por relés de sobrecorrente de tempo inverso. A coordenação é feita ajustando-se a corrente de *pickup* e o tempo de atuação dos relés.

Figura 6: Curvas de Tempo x Corrente de relés de sobrecorrente (MELLO, 1979).

Figura 7: Exemplo de esquema de coordenação com RSTIs (HOROWITZ; PHADKE, 1995).

Na Figura 7, estão traçadas as curvas de operação de cada um dos relés em função da distância da falta. O eixo das abscissas corresponde à corrente de falta, a qual aumenta a medida que a distância da falta diminui. O eixo das ordenadas representa o ajuste do tempo de operação. A inversão das curvas dos RSTIs é explicada pelo sentido oposto de aumento da corrente em relação a Figura 6.

Através do ajuste da corrente de *pickup* é possível fazer com que cada um dos relés (Rab, Rbc, Rcd e Rd) atue somente se a falta F acontecer no trecho de linha correspondente. Os RSTIs também atuam como proteção de retaguarda caso ocorra algum defeito nos disjuntores ou nos relés das barras adjacentes. Os ajustes das correntes de *pickup* e do tempo de resposta dos RSTIs deve ser feito com o auxílio do fluxo de carga e de uma análise de faltas, determinando assim as condições operativas do sistema para que o sistema de proteção possa ser ajustado de acordo (HOROWITZ; PHADKE, 1995).

Referindo-se à Figura 7, para uma falta F aplicada no ponto mais distante da fonte, o relé Rd atua primeiro, abrindo o disjuntor 4. O relé Rcd tem um ajuste de tempo de operação maior, coordenado com o relé Rd que atuará primeiro. Caso alguma falha no relé ou no disjuntor da barra 4 ocorra, a falta será eliminada pelo relé da barra 3, mas com um tempo maior. Da mesma forma, o relé Rbc é coordenado com o relé Rcd e o relé Rab coordenado com Rbc através do ajuste dos tempos de operação de cada um. Assim, o relé Rab ligado ao disjuntor 1 não atuará a menos que nenhum dos outros relés atue, provido que a corrente de falta seja maior que seu ajuste de pickup.

Deve-se ressaltar que no esquema de coordenação de relés de sobrecorrente apresentado, quanto mais próxima a falta estiver da fonte (barra A) maior será o valor da corrente de falta e maior será tempo para que ela seja eliminada. Esta característica faz com que o sistema não apresente um bom desempenho para faltas próximas da fonte, uma vez que

este não apresenta rapidez na eliminação deste tipo de falta. A rapidez é um dos requisitos de um sistema de proteção, de modo a evitar o surgimento de defeitos em outras partes do sistema em função da falta que não foi eliminada a tempo. Uma maneira de resolver este problema, diminuindo o tempo de eliminação da falta, é acrescentando relés de sobrecorrente instantâneos, conforme pode ser visto na Figura 8.

Figura 8: Exemplo de esquema de coordenação com RSIs e RSTIs (HOROWITZ; PHADKE, 1995).

Neste esquema, cada relé instantâneo tem sua corrente de *pickup* ajustada em função de valores de corrente de falta calculados para o trecho correspondente. Segundo Mason (1956) o ajuste do RSI é feito de tal modo que o mesmo só atue no caso de faltas localizadas até uma distância em torno de 70% da linha. Assim, evita-se que o relé localizado em uma barra atue para faltas localizadas na barra seguinte, mantendo o critério da seletividade. No esquema da Figura 8, o RSI elimina a falta instantâneamente se esta for localizada a uma distância de até 70% do trecho correspondente de linha, ficando o resto sob proteção do RSTI. Os RSTI também têm função de proteção de retaguarda, caso algum dos RSIs ou disjuntores falhar. O resultado é uma diminuição no tempo de eliminação da falta neste esquema em comparação com o esquema utilizando somente RSTIs.

A maioria dos relés utilizados atualmente pelas companhias de distribuição na proteção de alimentadores são de origem eletromecânica. No entanto, esta categoria de relés não é mais utilizada em projetos de novas subestações ou ampliação de unidades existentes. Em sistemas de distribuição, relés eletromecânicos ainda são utilizados pois são dispositivos que existem em grande número, tornando sua troca por equipamentos mais modernos uma tarefa dispendiosa. Serão apresentados a seguir dois modelos de relés eletromecânicos utilizados na proteção de alimentadores de distribuição.

2.1.4.1 Relés de Indução Eletromagnética

Os relés de indução eletromagnética utilizam o princípio de um motor de indução, no qual o torque é desenvolvido por indução no rotor. Existem dois tipos básicos de relés de indução, o primeiro utiliza um disco de alumínio como rotor e o segundo faz uso de um copo cilíndrico.

Uma vista simplificada de um relé de indução pode ser vista na Figura 9. O disco recebe o torque motor da bobina de operação e o torque de retenção do conjunto mola, ímã de freio. O torque provido pelo ímã é função da velocidade do disco que, por sua vez, é função do torque da bobina de operação. A combinação destas forças resulta em uma característica de atuação do tipo tempo inverso, conforme visto na Figura 6 (MELLO, 1979).

Quando a bobina é energizada, surge um torque sobre o disco que o fará girar. O tempo necessário para fechar os terminais (atuar) é dado pelo percurso que o contato móvel montado no disco necessita percorrer. Desta forma, ajusta-se a posição inicial do disco, variando o retardo de atuação conforme desejado.

O relé de copo cilíndrico pode ser visto de forma simplificada na Figura 10. Este tipo de construção é adequado para relés instantâneos. Seu princípio de funcionamento é

Figura 9: Componentes de um relé de indução (MELLO, 1979).

semelhante ao relé de disco, porém, o rotor em forma de copo possui uma inércia menor do que o disco, resultando em uma operação mais rápida. Um contato móvel é fixado ao copo que se movimentará em função da força eletromotriz induzida resultante da corrente que circula nas bobina de atuação.

Figura 10: Relé de copo cilíndrico (MELLO, 1979).

2.1.5 Relés Digitais

Durante anos, a supervisão, controle e proteção dos sistemas de distribuição permaneceram relativamente inalterados. A maioria dos investimentos para aprimorar a supervisão, controle e proteção tem sido aplicado primeiramente nos sistemas de transmissão, uma vez que uma perturbação em uma linha de transmissão afeta um maior número de pessoas se comparado à uma perturbação em uma rede de distribuição, na maioria dos casos (SCHWEITZER; SCHEER; FELTIS, 1992).

Atualmente, as concessionárias de distribuição estão começando a aprimorar seus sistemas de distribuição com o uso de sistemas de monitoramento e controle remotos - SCADA. Investimentos estão sendo feitos também na proteção com o uso de novos relés de distribuição micro-processados (digitais) que melhoram significativamente a proteção da distribuição e reduzem os custos de capital operacional e de manutenção. Além disso, estes relés possibilitam que a aquisição de informações e ajustes sejam feitos remotamente, através de canais de comunicação.

Os relés digitais são construídos em torno de um processador digital. O processador executa continuamente um programa que verifica os sinais de entrada do relé implementando uma ou mais funções de proteção. A Figura 11 apresenta um esquemático com os principais blocos que compõem de um relé digital.

Figura 11: Blocos de um relé digital (PHADKE; THORP, 1988).

As entradas do relé são sinais analógicos de corrente e tensão obtidos a partir da saída de transdutores específicos. Em alguns casos são utilizadas entradas digitais para indicar o estado de chaves ou outros contatos. Antes de serem convertidos para sinais digitais, os sinais analógicos devem passar por um condicionamento que consiste de uma série de circuitos analógicos. Uma classe destes circuitos são os filtros anti-surto que tem a finalidade de eliminar eventuais distúrbios presentes nos sinais. Eles são constituídos de filtros passa-baixas com freqüência de corte da ordem de centenas de kHz, não afetando o espectro do sinal utilizado pelos relés (PHADKE; THORP, 1988).

Os sinais de entrada também devem passar por filtros *mimic* para remover eventuais componentes de corrente contínua que estiverem presentes e por filtros anti-aliasing de modo a limitar a banda de freqüência dos sinais de entrada em 1/2 da freqüência de amostragem (f_S) utilizada no conversor analógico digital. Esta é uma medida necessária para a não violação do critério de Nyquist. Segundo este, um sinal precisa ser amostrado pelo menos duas vezes em cada ciclo de variação, isto é, a freqüência de amostragem precisa ser no mínimo o dobro da maior freqüência presente no sinal. Se não for observado o critério, os sinais de mais alta freqüência serão errôneamente registrados devido a sobreposição dos espectros do sinal amostrado após sua transformação para o domínio freqüência (PHADKE; THORP, 1988). A Figura 12 ilustra este fenômeno que é chamado de *alias*, dando origem ao nome do filtro.

Figura 12: Sobreposição de espectros de um sinal amostrado.

Após a filtragem, os sinais analógicos são convertidos para digitas através de conversores Analógicos/Digitais (A/D) a uma taxa de amostragem fixa, geralmente de 8 a 32 vezes a freqüência fundamental (PHADKE; THORP, 1988). Os sinais digitalizados são então disponibilizados ao processador, que consiste na unidade central do relé sendo responsável pela estimação dos fasores de tensão e corrente medidos e pela implementação do algoritmo de proteção. Saídas digitais são disponibilizadas para que o relé atue nos disjuntores ou em outros dispositivos instalados na subestação. Formas de comunicação também são disponibilizadas pelo processador, permitindo o acesso aos dados remotamente e possibilitando interação com outros relés digitais na subestação.

Um relé digital faz uso de diversos tipos de memórias: Na memória volátil (RAM) são armazenadas temporariamente as amostras dos sinais que não foram processadas; Na memória de leitura (ROM), são armazenados os programas que são executados pelo processador; A memória não-volátil EEPROM é responsável por armazenar as configurações e parâmetros definidos pelo usuário; E na memória de massa são armazenados sinais amostrados de vários ciclos pré e pós-falta (oscilografias) para serem utilizados posteriormente para uma melhor análise do defeito ocorrido.

A forma como os relés digitais são construídos, com arquitetura semelhante a de um computador faz com que apresente características adicionais que proporcionam melhores índices de confiabilidade no fornecimento de energia ao consumidor. Algumas destas características serão descritas a seguir.

2.1.5.1 Adaptabilidade

Um sistema de distribuição de energia elétrica pode apresentar mudanças de características e topologias horárias ou sazonais. Estas mudanças, são devidas principalmente pelos seguintes fatores (SCHWEITZER; SCHEER; FELTIS, 1992):

- Manobras programadas para projetos de construção ou ações de manutenção;
- Manobras de emergência para reparos;
- Disjuntores de interligação de barramentos substituindo disjuntores de alimentador de distribuição;
- Transferências de carga sazonais.

O tradicional equipamento de proteção não se adapta facilmente às reconfigurações de sistemas de distribuição. Se novos ajustes forem necessários, eles têm de ser feitos manualmente, pois não há quaisquer ajustes em reserva. O tempo necessário para efetuar ou inserir e testar novas configurações retarda as respostas a emergências e introduz riscos de erro humano. Algumas vezes, os ajustes em relés não são alterados para manobras de emergência ou anormais, porque são muito demorados ou muito difíceis. Com isso, a proteção do sistema fica comprometida (SCHWEITZER; SCHEER; FELTIS, 1992).

Este problema é reduzido com o uso de relés digitais. A possibilidade de se implementar vários esquemas de proteção com características diferentes (*presets* ou grupos de ajustes) em um único dispositivo, além da sua capacidade de programação remota, fazem com que os sistemas de proteção utilizando relés digitais sejam adaptáveis facilmente às mudanças de topologia das redes de distribuição.

2.1.5.2 Relatórios de Eventos

Após a ocorrência de uma falta, os equipamentos de proteção tradicionais não fornecem informações suficientes para que se possa recriar a sequência de eventos gerados pela perturbação. Na maioria das vezes as únicas informações disponíveis são a magnitude da corrente de falta nas fases envolvidas. Nenhuma informação de sequência de tempo ou de magnitude precisa da corrente de falta é dada. Informações precisas são vitais para determinar as causas do defeito e possíveis soluções.

Os relés digitais mais modernos fornecem relatórios de eventos completos para cada perturbação detectada. Estes relatórios podem conter oscilografias de vários ciclos pré e pós-falta, data e hora da ocorrência da falta, estado das entradas e saídas do relé, estado do elementos internos do relé, ajustes do relé no momento da falta e em alguns casos até uma estimativa da localização da falta é apresentada. Os relatórios podem ser recuperados remotamente via canais de comunicação. Assim, o operador tem acesso a um maior número de informações com rapidez, podendo tomar medidas corretivas de forma mais eficiente (ROBERTS; SCHWEITZER, 1989).

2.1.5.3 *Auto-teste*

Os relés digitais utilizam componentes de estado sólido e não possuem peças móveis, proporcionando proteção mais confiável. No entanto, as falhas ainda podem ocorrer. Em função disto, a maioria dos relés digitais possuem funções de auto-teste automático, as quais verificam a correta operação do relé. Todas as partes internas do relé estão sujeitas ao auto-teste, exceto as entradas analógicas e os circuitos de entradas e saídas digitais. Se o auto-teste detectar uma condição anormal o relé pode fechar um contato de saída, enviar um sinal ou prover algum outro tipo de indicação da falha. A saída de alarme do auto-teste pode ser ligado ao sistema SCADA, por exemplo, facilitando o trabalho da equipe de manutenção (ZIMMERMAN, 1998).

2.1.5.4 Localização de Faltas

A localização de falta baseada na impedância reduz o tempo gasto pelas equipes de manutenção e de desligamento. As localizações das seções defeituosas da linha são iden-

tificadas pelo algoritmo localizador de falta que pode estar presente em relés digitais. Assim, os problemas podem ser prontamente isolados e reparados. Localizações de faltas transientes também podem ser identificadas e reparadas antes que ocasionem falhas permanentes no futuro. A distância da localização da falta é dada nos relatórios de eventos dos relés (SCHWEITZER; SCHEER; FELTIS, 1992).

Nos algoritmos de localização de faltas utilizados em relés digitais, a linha é considerada homogênea, como o mesmo tipo de condutor em toda sua extensão. Além disso, não são consideradas cargas, geradores, bancos de capacitores ou ramificações ao longo da linha, tornando seu uso limitado em sistemas de distribuição de energia. Apesar da localização de faltas em alimentadores de distribuição possuir limitações, os dados obtidos ainda são úteis para o seccionamento da rede e para o despacho das equipes de reparo (ZIMMERMAN, 1998).

2.1.5.5 Coordenação

Relés de distribuição micro-processados podem ser facilmente coordenados com outros dispositivos de sobre-corrente utilizados, como fusíveis e religadores. As características dos relés são geralmente definidas por equações matemáticas que representam características elétricas e físicas. Como os relés digitais são dispositivos programáveis, pode-se programá-los para emular diversos tipos de relés, como o de sobrecorrente do tipo disco de indução, por exemplo. A programação é feita com a inserção de curvas características dadas por equações matemáticas padronizadas (ZIMMERMAN, 1998). Além disso, elementos de sobrecorrente e funções de religamento são geralmente incluídas em um mesmo relé digital, podendo serem utilizadas para melhorar a coordenação com os diversos dispositivos de proteção presentes ao longo dos alimentadores.

3 LOCALIZAÇÃO DE FALTAS

É vantajoso determinar a localização precisa de uma falta em uma linha de transmissão ou distribuição de energia elétrica. Esta informação facilita o trabalho das equipes de manutenção, pois uma vez que estas já possuem uma estimativa da localização da falta, não é necessário realizar uma inspeção em toda linha.

Existem várias técnicas de localização de faltas, a maioria delas desenvolvida para sistemas de transmissão. Um método utilizado é a injeção de ondas viajantes na linha desenergizada (AURANGZEB; CROSSLEY; GALE, 2001). Uma vez que a falta tenha gerado uma descontinuidade na linha, pode-se medir o tempo das reflexões das ondas injetadas para determinar a distância da falta. Uma limitação desta técnica de localização de faltas é sua necessidade de equipamentos especiais e de elevado custo. Outras técnicas também foram recentemente propostas para localização de faltas em sistemas de transmissão (CARDOSO; ROLIM; ZÜRN, 2004; GALIJASEVIC; ABUR, 2003; SALAT; OSOWSKI, 2004). No entanto, as técnicas mais utilizadas são as que utilizam a medida das correntes e tensões produzidas pela falta. Nestas, determina-se a medida da impedância até a falta e uma vez conhecendo o valor da impedância da linha por unidade de comprimento, pode-se determinar a localização da falta. Este método não requer nenhum equipamento especial e pode facilmente ser implementado em relés digitais. (HO-ROWITZ; PHADKE, 1995).

Os relés de distância utilizam a medição de corrente e tensão para determinar a localização da falta. Estes dispositivos serão analisados a seguir. Na seqüência será apresentado o método de localização de faltas proposto por Takagi *et al* (1981) para linhas de transmissão e o esquema de Lee *et al* (2004) para linhas de distribuição.

3.1 Relés de Distância

O relé de distância é um dispositivo de proteção muito utilizado em sistemas de potência, especialmente em linhas de transmissão. Seu nome provém do fato de que ele propõe a medida da distância entre o local do relé e o ponto de falta na linha. Quando um curtocircuito ocorre na linha, uma corrente flui através de sua impedância fazendo surgir uma queda de tensão sobre esta impedância. O relé de distância mede a tensão e corrente no terminal da linha e efetivamente divide as duas grandezas, obtendo a impedância entre o local do relé e o ponto da falta. Desta forma, o relé de distância pode fazer uma distinção entre locais diferentes de falta, podendo ser definida uma zona de proteção que indicará qual o tamanho do trecho de linha que será protegido pelo relé (MELLO, 1979).

Assim sendo, sabendo-se o valor da impedância da linha por unidade de distância, pode-se obter uma estimativa da localização da falta a partir da impedância medida pelo relé de distância. Segundo Horowitz & Phadke (1995) independentemente do tipo de falta envolvida, os valores de tensão e corrente fornecidos ao relé devem ser tais que a impedância medida seja sempre a impedância de seqüência positiva da falta. A seguir, serão apresentadas as entradas apropriadas para os diversos tipos de falta, conforme Horowitz & Phadke (1995).

3.1.1 Faltas Fase-fase

Considere uma falta sólida (sem resistência de falta) entre as fases b e c aplicada no ponto F da linha de transmissão trifásica da Figura 13.

Figura 13: Sistema de transmissão exemplo.

A representação em componentes simétricas do sistema para este tipo de falta pode ser vista na Figura 14.

Figura 14: Rede de sequência para uma falta fase-fase sólida.

Neste caso:

$$E_F^{(1)} = E_F^{(2)} = E^{(1)} - Z_F^{(1)} \cdot I^{(1)} = E^{(2)} - Z_F^{(1)} \cdot I^{(2)}$$
(1)

Onde $E^{(1)}$, $E^{(2)}$, $I^{(1)}$ e $I^{(2)}$ são as componentes simétricas das tensões e correntes no ponto onde o relé está instalado. A impedâncias de seqüência positiva $(Z_F^{(1)})$ e negativa $(Z_F^{(2)})$ da linha são iguais. Então, isolando $Z_F^{(1)}$:

$$Z_F^{(1)} = \frac{E^{(1)} - E^{(2)}}{I^{(1)} - I^{(2)}} \tag{2}$$

Dadas as relações das tensões medidas pelo relé em função de suas componentes simétricas: $E_b=E^{(0)}+\alpha^2\cdot E^{(1)}+\alpha\cdot E^{(2)}$ e $E_c=E^{(0)}+\alpha\cdot E^{(1)}+\alpha^2\cdot E^{(2)}$ onde $\alpha=1\angle 120^\circ$ e $\alpha^2=1\angle -120^\circ$ pode se chegar a seguinte relação, aplicando as mesmas relações para a corrente:

$$(E_b - E_c) = (\alpha^2 - \alpha) \cdot (E^{(1)} - E^{(2)})$$

$$(I_b - I_c) = (\alpha^2 - \alpha) \cdot (I^{(1)} - I^{(2)})$$
(3)

Substituindo a equação (3) em (2):

$$Z_F^{(1)} = \frac{E_b - E_c}{I_b - I_c} = \frac{E^{(1)} - E^{(2)}}{I^{(1)} - I^{(2)}}$$
(4)

Então, um relé de distância medindo as tensões de linha das fases b e c e a diferença entre as duas correntes irá medir a impedância de seqüência positiva da falta. A mesma análise é válida para as faltas entre as fases a e b e a e c.

Um procedimento semelhante pode ser aplicado para faltas fase-fase-terra e trifásicas. As redes de seqüência para estes casos podem ser vistas nas Figuras 15 e 16 respectivamente.

Figura 15: Rede de seqüência para uma falta fase-fase-terra sólida.

Figura 16: Rede de sequência para uma falta trifásica sólida.

Para faltas fase-fase-terra, $Z_F^{(1)}$ é medido através da mesma equação de uma falta fase-fase. Para faltas trifásicas a equação é dada a seguir:

$$Z_F^{(1)} = \frac{E_a - E_b}{I_a - I_b} = \frac{E_b - E_c}{I_b - I_c} = \frac{E_c - E_a}{I_c - I_a}$$
 (5)

3.1.2 Faltas de Terra

Para uma falta entre a fase a e o terra as conexões das redes de sequência são apresentadas na Figura 17.

Figura 17: Rede de seqüência para uma falta fase-terra sólida.

As tensões e correntes no ponto do relé são dadas por:

$$E_F^{(1)} = E^{(1)} - Z_F^{(1)} \cdot I^{(1)}$$

$$E_F^{(2)} = E^{(2)} - Z_F^{(2)} \cdot I^{(2)}$$

$$E_F^{(0)} = E^{(0)} - Z_F^{(0)} \cdot I^{(0)}$$
(6)

Expressando a tensão na fase a no ponto da falta em função de suas componentes simétricas e considerando que seu valor é nulo:

$$E_{aF} = E_F^{(0)} + E_F^{(1)} + E_F^{(2)} = (E^{(0)} + E^{(1)} + E^{(2)}) - Z_F^{(1)} \cdot (I^{(1)} + I^{(2)}) - Z_F^{(0)} \cdot I^{(0)} = 0$$
(7)

$$E_{aF} = E_a - Z_F^{(1)} \cdot I_a - (Z_F^{(0)} - Z_F^{(1)}) \cdot I^{(0)} = 0$$
(8)

Onde I_a foi substituído pela soma $(I^{(0)}+I^{(1)}+I^{(2)})$ na equação (8).

Definindo uma nova corrente I'_a :

$$I_a' = I_a + \frac{Z_F^{(0)} - Z_F^{(1)}}{Z_F^{(1)}} \cdot I_0 = I_a + \frac{Z^{(0)} - Z^{(1)}}{Z^{(1)}} \cdot I^{(0)} = I_a + m \cdot I^{(0)}$$
(9)

Onde $Z^{(0)}$ e $Z^{(1)}$ são impedâncias de seqüência zero e positiva de toda a linha. O fator m é conhecido como fator de compensação, o qual compensa a corrente de fase do acoplamento mútuo da fase faltosa com as demais. Por fim, da equação (8) e (9) chega-se a expressão:

$$Z_F^{(1)} = \frac{E_a}{I_a'} \tag{10}$$

Assim sendo, se o relé de distância é energizado com a tensão da fase faltosa a e a corrente compensada, a impedância medida será a impedância de sequência positiva da falta.

3.1.3 Efeito da Resistência de Falta

Nas equações dos relés de distância desenvolvidas acima, a falta foi considerada como sendo sólida, ou seja, com uma resistência de curto-circuito nula. Em sistemas reais haverá o surgimento de arco elétrico entre os condutores envolvidos, para o caso de faltas entre fases ou entre os condutores e objetos aterrados nos casos de faltas de terra. Em ambos os casos, o caminho da corrente de falta apresentará uma resistência. Esta resistência de falta pode ser apenas a resistência do arco elétrico ou esta somada a resistência de aterramento da torre onde estão fixados os condutores.

A presença da resistência de falta leva a um erro na estimativa da localização da falta feita pelos relés de distância. Para verificar a influência deste erro na medida da distância pelo relé, considere o sistema de transmissão mostrado na Figura 18.

Figura 18: Resistência de falta.

Assume-se que a resistência de falta é iqual a R_F . Se a contribuição para a falta do terminal remoto R é I_R , a corrente de falta $I_F = I + I_R$ e a tensão no ponto onde está instalado o relé estão relacionadas pela seguinte equação:

$$E = Z_F \cdot I + R_F \cdot (I + I_R) \tag{11}$$

A impedância aparente Z_a medida pelo relé é:

$$Z_a = \frac{E}{I} = Z_F + R_F \cdot \left(\frac{I_R}{I} + 1\right) \tag{12}$$

O segundo termo do lado direito da equação acima corresponde a parcela de erro na estimativa da localização da falta. Segundo Horowitz & Phadke (1995), como a corrente I_R pode não estar em fase com I, a resistência de falta pode proporcionar erros tanto na parte real quanto na imaginária da impedância medida pelo relé, levando este a uma possível operação errônea. De modo a suprir esta deficiência na estimativa da localização de falta dos relés de distância, Takagi $et\ al\ (1981)$ propuseram um método de localização que não sofre influência da resistência de falta, resultando em estimativas mais precisas. Este método é descrito a seguir.

3.2 Método de Takagi

3.2.1 Formulação - Sistema Monofásico

A formulação a seguir é baseada no artigo de Takagi et al (1981). Primeiramente o método é apresentado para um sistema monofásico, sendo em seguida generalizado para um sistema trifásico com as equações correspondentes para cada tipo de falta.

A seguinte notação é utilizada ao londo desta seção:

Fasor de tensão no ponto da falta, ou tensão de falta; V_F

 I_F Fasor de corrente de falta;

Resistência de falta: R_F

Impedância da linha até o ponto de falta; Z_F

Distância da falta em relação ao terminal local; x

 V_{S} Fasor de tensão medido no terminal local S:

 I_S Fasor de corrente medido no terminal local S;

Parcela da corrente de falta proveniente do terminal S;

Parcela da corrente de falta proveniente do terminal R;

 $I_{FS}^{"}$ $I_{FR}^{"}$ $V_{S}^{"}$ $I_{S}^{"}$ Diferença de tensão entre pré e pós-falta, medida no ponto S;

Diferença de corrente entre pré e pós-falta, medida no ponto S;

 $\tilde{Z_C}$ Impedância característica da linha: $Z_C = \sqrt{L/C}$

Constante de propagação;

 $\operatorname{Im}(\cdot)$ Parte imaginária;

Índice de sequência (0, 1 ou 2);

 $(\cdot)^*$ Complexo conjugado;

 $(\cdot)^{(k)}$ Componente de sequência *j*;

Considere uma falta aplicada a uma distância x km do ponto S de uma linha de transmissão com impedância série z e condutâcia shunt y, conforme a Figura 19a. Com base no teorema da superposição de circuitos elétricos, o sistema pode ser separado em um sistema pré-falta e em um puramente faltoso, conforme a Figura 19b e 19c, respectivamente. A soma do sistema pré-falta com o sistema puramente faltoso resulta no sistema pós-falta da Figura 19a.

Sendo V_F o fasor tensão no ponto da falta F e I_F a corrente de falta que circula através da resistência de falta R_F , então:

$$V_F = R_F \cdot I_F = -R_F \cdot (I''_{FS} + I''_{FR}) \tag{13}$$

Figura 19: Decomposição do sistema faltoso (TAKAGI et al., 1981).

Onde I''_{FS} é a parcela da corrente de falta de que circula pela linha em direção ao ponto local S enquanto I''_{FR} circula em direção ao ponto remoto R. Com isso, define-se uma nova variável K(x) dada por:

$$K(x) \stackrel{\triangle}{=} \frac{I_{FR}''}{I_{FS}''} \tag{14}$$

Substituindo a equação (14) em (13) resulta em:

$$V_F = -R_F \cdot I_{FS}'' \cdot (1 + K(x)) \tag{15}$$

Como os valores de V_F e $I_{FS}^{\prime\prime}$ não são conhecidos, pode-se determiná-los utilizando dados do terminal local S a partir da representação da linha de transmissão por quadripólos:

$$V_F = A(x) \cdot V_S - B(x) \cdot I_S \tag{16}$$

$$I_{FS}'' = C(x) \cdot V_S'' - D(x) \cdot I_S''$$
(17)

Os parâmetros do quadripolo da linha SF são dados por:

$$A(x) = D(x) = \cosh(\gamma \cdot x) \tag{18}$$

$$B(x) = Z_c \cdot \sinh(\gamma \cdot x) \tag{19}$$

$$C(x) = \frac{\sinh(\gamma \cdot x)}{Z_c} \tag{20}$$

Onde $\gamma=\sqrt{z\cdot y}$ é a constante de propagação da linha e $Z_c=\sqrt{z/y}$ é a chamda impedância característica da linha.

Os fasores faltosos V_S e I_S da equação (16) são diretamente obtidos através de medidas no ponto local S da linha. Já os fasores puramente faltosos V_S'' e I_S'' podem ser calculados como a diferença entre os valores pré e pós-falta:

$$V_S'' \stackrel{\triangle}{=} V_S - V_S' \tag{21}$$

$$I_S'' \stackrel{\triangle}{=} I_S - I_S' \tag{22}$$

Então, a equação (15) pode ser re-escrita com base nos fasores disponíveis localmente:

$$A(x) \cdot V_S - B(x) \cdot I_S = -R_F \cdot \{1 + K(x)\} \cdot \{C(x) \cdot V_S'' - D(x) \cdot I_S''\}$$
 (23)

De outra forma:

$$R_F \cdot \{1 + K(x)\} = -\frac{A(x) \cdot V_S - B(x) \cdot I_S}{C(x) \cdot V_S'' - D(x) \cdot I_S''}$$
(24)

Na equação (24) três variáveis desconhecidas estão presentes: A distância da falta x, o valor da resistência de falta R_F e o valor de K(x). De modo a se determinar o valor de x deve-se eliminar as demais incógnitas da equação. Isto pode ser feito a partir de duas considerações:

- 1. A resistência de falta R_F é puramente resistiva, ou seja, um valor real;
- 2. A relação K(x) também é um valor real. Esta condição é valida considerando-se uma linha de transmissão sem perdas com as impedâncias das fontes sendo puramente indutivas (TAKAGI et al., 1981).

Então, a partir das considerações acima pode-se concluir que o lado esquerdo da equação (24) é um valor real. Desta forma, utilizando apenas o valor imaginário da equação, elimina-se R_F e K(x). O valor da distância x da falta é então obtido resolvendo a seguinte equação:

$$\operatorname{Im}\left[\frac{A(x)\cdot V_S - B(x)\cdot I_S}{C(x)\cdot V_S'' - D(x)\cdot I_S''}\right] = 0 \tag{25}$$

Como a equação (25) apresenta um comportamento não-linear, faz-se necessário o uso de técnicas de solução de equações não-lineares, como o método de Newton-Raphson, por exemplo. Assim, determina-se o valor de x apenas com medições locais, em um dos extremos da linha, não sendo necessários canais de comunicação para transmissão de dados remotos. Outra característica do algoritmo é que, conforme a equação (25), a resistência de falta R_F não afeta a solução do problema. A estimativa da localização da falta resultante do método de Takagi é superior àquela resultante dos relés de distância (TAKAGI et al., 1981).

3.2.2 Formulação - Sistema Trifásico

A equação básica do método de Takagi para localização de faltas, equação (25), pode ser utilizada para localização de faltas em sistemas trifásicos, englobando todos os tipos de falta: Trifásica, fase-terra, fase-fase-terra e fase-fase. O ponto de partida para a dedução das equações para os quatro tipos de falta é a equação (25), que a partir das equações (16) e (17) pode ser re-escrita da seguinte forma:

$$\operatorname{Im}\left[\frac{A(x)\cdot V_S - B(x)\cdot I_S}{C(x)\cdot V_S'' - D(x)\cdot I_S''}\right] = \operatorname{Im}\left[\frac{V_F}{I_{FS}''}\right] = 0 \tag{26}$$

Através da decomposição do sistema faltoso em redes de sequência pode-se determinar V_F para cada tipo de falta e com isso determinar a equação que será utilizada para o cálculo de x.

3.2.2.1 Falta Trifásica

A Figura 20 apresenta a rede de sequência para uma falta trifásica aplicada no ponto F de uma linha de transmissão.

Figura 20: Rede de sequência para uma falta trifásica.

Deve-se ressaltar que a apenas a parcela da corrente de falta proveniente do terminal local S, que é dada por $I_{FS}^{"}$, pode ser calculada através das equações de quadripolos das linhas, uma vez que para calcular a contribuição do terminal remoto seria necessária a medição de corrente naquele terminal. Assim sendo, utilizando a definição de K(x) apresentada na equação (14), pode-se chegar a seguinte equação em função apenas do terminal local:

$$V_F^{(1)} = R_F \cdot I_F^{(1)} \implies -R_F \cdot \left\{ 1 + K(x)^{(1)} \right\} = \frac{V_F^{(1)}}{I_{FS}^{"(1)}} \tag{27}$$

Substituindo $V_F^{(1)}$ e $I_{FS}^{\prime\prime(1)}$ pelos seus valores estimados através das equações de quadripolos da linha e tomando a parte imaginária de ambos os lados da igualdade, chega-se na equação a ser utilizada no cálculo da distância de falta x, supondo R_F e K(x) sendo valores reais.

$$\operatorname{Im}\left[\frac{A(x)^{(1)} \cdot V_S^{(1)} - B(x)^{(1)} \cdot I_S^{(1)}}{C(x)^{(1)} \cdot V_S^{\prime\prime(1)} - D(x)^{(1)} \cdot I_S^{\prime\prime(1)}}\right] = 0$$
 (28)

Ou seja, a equação (28) é iqual a equação básica (25), dado que no caso de faltas trifásicas, apenas a rede de sequência positiva está presente, podendo ser o sistema tratado

como monofásico.

3.2.2.2 Falta Fase-terra

Uma falta do tipo fase-terra engloba as três redes de seqüência da forma vista na Figura 21.

Figura 21: Rede de seqüência para uma falta fase-terra.

Neste caso:

$$I_F^{(0)} = I_F^{(1)} = I_F^{(2)} = \frac{I_F^{(1)}}{3}$$

$$V_F = 3 \cdot I_F^{(1)} \cdot R_F = V_F^{(0)} + V_F^{(1)} + V_F^{(2)}$$
(29)

Escrevendo em função apenas da contribuição do terminal local na corrente de falta:

$$-3 \cdot R_F \cdot \left\{ 1 + K(x)^{(1)} \right\} = \frac{V_F}{I_{FS}^{\prime\prime(1)}} \tag{30}$$

Então, utilizando-se as equações de quadripolos da linha na equação (30) e tomando a parte imaginária de ambos os lados da igualdade, chega-se a equação utilizada para o cálculo da localização de faltas fase-terra:

$$\operatorname{Im}\left[\frac{V_F^{(0)} + V_F^{(1)} + V_F^{(2)}}{C(x)^{(1)} \cdot V_S^{"(1)} - D(x)^{(1)} \cdot I_S^{"(1)}}\right] = 0$$
(31)

Onde:

$$V_F^{(k)} = A(x)^{(k)} \cdot V_S^{(k)} - B(x)^{(k)} \cdot I_S^{(k)}$$

$$k = \{0, 1, 2\}$$
(32)

3.2.2.3 Falta Fase-fase

Para este caso, a conexão das redes de seqüência é mostrada na Figura 22.

Figura 22: Rede de sequência para uma falta fase-fase.

Como não há circulação de corrente pelo terra, a rede de sequência zero não está presente. R_F é então dado por:

$$I_F^{(1)} = -I_F^{(2)}$$

$$V_F = R_F \cdot I_F^{(1)} = V_F^{(1)} - V_F^{(2)} \implies R_F = \frac{V_F^{(1)} - V_F^{(2)}}{I_F^{(1)}}$$
(33)

Levando em conta apenas a contribuição do terminal local na corrente de falta pode-se chegar a seguinte equação:

$$-R_F \cdot \left\{ 1 + K(x)^{(1)} \right\} = \frac{V_F^{(1)} - V_F^{(2)}}{I_{FS}^{"(1)}} \tag{34}$$

Tomando-se o imaginário de ambos os lados da igualdade, chega-se a equação final para o cálculo da distância de um falta fase-fase:

$$\operatorname{Im}\left[\frac{V_F^{(1)} - V_F^{(2)}}{C(x)^{(1)} \cdot V_S^{\prime\prime(1)} - D(x)^{(1)} \cdot I_S^{\prime\prime(1)}}\right] = 0$$
 (35)

Onde $V_F^{(1)}$ e $V_F^{(2)}$ são dados pela equação (32) com k=1,2.

3.2.2.4 Falta Fase-fase-terra

Finalmente, para uma falta envolvendo duas fase e o terra, as conexões entre as redes de seqüência são apresentadas na Figura 23, de onde se conclui que:

$$V_F = V_F^{(1)} - V_F^{(0)} = -3 \cdot R_F \cdot I_F^{(0)}$$

$$-3 \cdot R_F = \frac{V_F^{(1)} - V_F^{(0)}}{I_F^{(0)}}$$
(36)

Figura 23: Rede de seqüência para uma falta fase-fase-terra.

Levando em conta apenas a contribuição do terminal local na corrente de falta:

$$-R_F \cdot \left\{ 1 + K(x)^{(0)} \right\} = \frac{V_F^{(1)} - V_F^{(0)}}{I_{FS}^{\prime\prime(0)}}$$
 (37)

Utilizando a representação por quadripolos e tomando-se apenas a parte imaginária de ambos os lados da igualdade, chega-se a equação final para este tipo de falta:

$$\operatorname{Im}\left[\frac{V_F^{(1)} - V_F^{(0)}}{C(x)^{(0)} \cdot V_S^{\prime\prime(0)} - D(x)^{(0)} \cdot I_S^{\prime\prime(0)}}\right] = 0$$
(38)

Onde $V_F^{(0)}$ e $V_F^{(1)}$ são dados pela equação (32) com k=0,1.

Assim sendo, as equações (28), (31), (35) e (38) permitem estimar a distância da falta em linhas trifásicas para qualquer um dos tipos de falta existentes, bastando para isso, apenas a decomposição em componentes simétricas dos fasores trifásicos medidos localmente e a solução das equações não lineares.

3.3 Método de Takagi Considerando Linhas Curtas

No trabalho seguinte dos mesmos autores do método descrito na seção anterior, foi implementado um algoritmo para localização de faltas utilizando sistema digital microprocessado. O algoritmo apresentado leva em consideração que a linha de transmissão na qual ocorre a falta é suficientemente curta. Segundo os próprios autores, as aproximações realizadas são válidas para linhas menores do que 100 km (TAKAGI et al., 1982).

A seguir, será apresentado o equacionamento básico do método de Takagi considerando linhas curtas. Na sequencia, as mesmas considerações feitas supondo linhas curtas serão aplicadas as equações do método anterior, para os quatro tipos de faltas.

Durante a apresentação do método, será adotada a seguinte nomenclatura, para facilitar o desenvolvimento do texto:

- Método 1: Método proposto no trabalho de Takagi et al (1981), apresentado na seção anterior;
- Método 2: Método proposto no trabalho de Takagi et al (1982), considerando linhas de comprimento menor a 100 km.

3.3.1 Equacionamento Básico

O Método 2 é equacionado a partir das mesmas equações básicas do Método 1, equações (13), (16) e (17), re-escritas a seguir:

$$V_F = R_F \cdot I_F = -R_F \cdot (I''_{FS} + I''_{FR}) \tag{39}$$

$$V_F = V_S \cdot \cosh(\gamma \cdot x) - I_S \cdot Z_c \cdot \sinh(\gamma \cdot x)$$
(40)

$$I_{FS}'' = V_S'' \cdot \frac{\sinh(\gamma \cdot x)}{Z_c} - I_S'' \cdot \cosh(\gamma \cdot x)$$
(41)

A corrente de falta I_F é expressa em função de I''_{FS} pela seguinte equação:

$$I_F = I_{FS}'' \cdot \dot{\zeta} \tag{42}$$

Onde:

$$\dot{\zeta} = \zeta \cdot e^{j\theta} \ e \ \theta = \arg(I_F/I''_{FS})$$
 (43)

O ângulo θ representa a diferença angular entre as correntes de falta provenientes do terminal local S e remoto R. Segundo Takagi et~al~(1982), seu valor é esperado ser próximo de zero.

Substituindo as equações (43), (42), (41) e (40) em (39); e dividindo ambos os lados da igualdade por $\cosh(\gamma \cdot x)$ chega-se a seguinte expressão:

$$V_S - I_S \cdot Z_C \cdot \tanh(\gamma \cdot x) - \left(\frac{V_S''}{Z_C} \cdot \tanh(\gamma \cdot x) - I_S''\right) \cdot \zeta \cdot e^{j\theta} \cdot R_F = 0$$
 (44)

Percebe-se que ζ e R_F são números reais. Então, isolando o termo $\zeta \cdot R_F$ e tomando apenas a parte imaginária de ambos os lados da igualdade pode-se eliminar estar duas incógnitas da formulação, chegando a expressão da equação (45).

$$\operatorname{Im}\left\{ \left(V_S - I_S \cdot Z_C \cdot \tanh(\gamma \cdot x) \right) \cdot \left(\frac{V_S''}{Z_C} \cdot \tanh(\gamma \cdot x) - I_S'' \right)^* \cdot e^{-j\theta} \right\} = 0 \tag{45}$$

Na equação acima, θ e x são valores desconhecidos. Sabendo o valor de θ , a distância da falta x pode ser determinada. Conforme mencionado anteriormente, o ângulo θ representa a diferênça angular entre as correntes de falta do terminal local e remoto. Segundo Takagi et~al~(1982), seu valor é esperado ser zero ou próximo de zero. Então, substituindo θ por zero e usando as seguintes aproximações, que segundo Takagi et~al~(1982) são válidas para linhas curtas,

$$\tanh(\gamma \cdot x) \cong \gamma \cdot x \tag{46}$$

$$\frac{V_S''}{Z_c} \cdot \tanh(\gamma \cdot x) << I_S'' \tag{47}$$

chega-se a seguinte expressão que pode ser utilizada para determinar a distância da falta:

$$x = \frac{\operatorname{Im}(V_S \cdot I_S^{"*})}{\operatorname{Im}(Z \cdot I_S \cdot I_S^{"*})}$$
(48)

Onde $Z = \gamma \cdot Z_C$ é a impedância da linha por unidade de distância, Im representa a parte imaginária de um número complexo e * o seu conjugado.

3.3.2 Equacionamento do Método 1 Utilizando as Aproximações do Método 2

As aproximações utilizadas pelo Método 2 de Takagi foram aplicadas nas equações de localização de faltas obtidas pelo Método 1. A seguir, estas equações serão reescritas e será apresentado o seu equacionamento considerando as aproximações para linhas menores de 100 km.

3.3.2.1 Faltas Trifásicas

No Método 1, a distância de uma falta deste tipo aplicada em uma linha de transmissão é dada pela equação (28), reescrita a seguir:

$$\operatorname{Im}\left[\frac{A(x)^{(1)} \cdot V_S^{(1)} - B(x)^{(1)} \cdot I_S^{(1)}}{C(x)^{(1)} \cdot V_S^{\prime\prime(1)} - D(x)^{(1)} \cdot I_S^{\prime\prime(1)}}\right] = 0 \tag{49}$$

Reescrevendo-a incluindo a parte real (conforme a equação (24)) e substituindo os valores dos parâmetros dos quadripólos dados pelas equações (18), (19) e (20), fica-se com:

$$\frac{V_S^{(1)} \cdot \cosh(\gamma^{(1)} \cdot x) - Z_C^{(1)} \cdot I_S^{(1)} \cdot \sinh(\gamma^{(1)} \cdot x)}{\frac{V_S^{\prime\prime\prime(1)}}{Z_C^{(1)}} \cdot \sinh(\gamma^{(1)} \cdot x) - I_S^{\prime\prime(1)} \cdot \cosh(\gamma^{(1)} \cdot x)} = -R_F \cdot \{1 + K^{(1)}(x)\}$$
(50)

Dividindo o numerador e o denominador do lado esquerdo da igualdade da equação acima por $\cosh(\gamma^{(1)} \cdot x)$:

$$\frac{V_S^{(1)} - Z_C^{(1)} \cdot I_S^{(1)} \cdot \tanh(\gamma^{(1)} \cdot x)}{\frac{V_S''^{(1)}}{Z_C^{(1)}} \cdot \tanh(\gamma^{(1)} \cdot x) - I_S''^{(1)}} = -R_F \cdot \{1 + K^{(1)}(x)\}$$
(51)

Dado que $Z = \gamma \cdot Z_C$, manipulando algebricamente e aplicando as considerações das equações (46), (47) chega-se a seguinte expressão:

$$\left(V_S^{(1)} - Z^{(1)} \cdot I_S^{(1)} \cdot x\right) \cdot I_S^{\prime\prime(1)*} = -R_F \cdot \{1 + K^{(1)}(x)\} \cdot I_S^{\prime\prime(1)*} \cdot I_S^{\prime\prime(1)}$$
 (52)

Nota-se que R_F , $K^{(1)}(x)$ e $I_S''^{(1)*} \cdot I_S''^{(1)}$ são valores reais. Então considerando apenas a parte imaginária de ambos os lados da equação acima e manipulando-a algebricamente, pode-se chegar a uma expressão final para o cálculo da distância de aplicação de uma falta trifásica que independe de R_F e $K^{(1)}(x)$. Esta equação é apresentada em seguida.

$$x = \frac{\operatorname{Im}\left(V_S^{(1)} \cdot I_S^{"(1)*}\right)}{\operatorname{Im}\left(Z^{(1)} \cdot I_S^{(1)} \cdot I_S^{"(1)*}\right)}$$
(53)

Conforme visto na Figura 20 do item 3.2.2.1, na decomposição deste tipo de falta em redes de seqüência, apenas a rede de seqüencia positiva está presente, uma vez que a falta é equilibrada. Assim sendo, a equação (53) pode ser reescrita de forma igual a equação obtida pela formulação básica do Método 2, dada equação (48).

$$x = \frac{\operatorname{Im}(V_S \cdot I_S^{"*})}{\operatorname{Im}(Z \cdot I_S \cdot I_S^{"*})}$$
(54)

3.3.2.2 Faltas Fase-terra

Para este tipo de falta, a manipulação algébrica é semelhante àquela apresentada para faltas trifásicas. Apenas toma-se como ponto de partida uma equação diferente, neste caso, a equação (30). Logo:

$$-3 \cdot R_F \cdot \left\{ 1 + K(x)^{(1)} \right\} = \frac{V_F^{(0)} + V_F^{(1)} + V_F^{(2)}}{I_{FS}^{"(1)}}$$
 (55)

Substituindo $V_F^{(0)}$, $V_F^{(1)}$, $V_F^{(2)}$ e $I_{FS}^{\prime\prime(1)}$ pelas equações de quadripolos, dividindo numerador e denominador por $\cosh(\gamma^{(1)} \cdot x)$ e aplicando as aproximações dadas por (46) e (47), chega-se a expressão seguinte:

$$-3 \cdot R_F \cdot \left\{ 1 + K(x)^{(1)} \right\} = \frac{-x \cdot \left(Z^{(0)} \cdot I_S^{(0)} + Z^{(1)} \cdot I_S^{(1)} + Z^{(2)} \cdot I_S^{(2)} \right) + V_S^{(0)} + V_S^{(1)} + V_S^{(2)}}{-I_S''^{(1)}}$$
(56)

Manipulando algebricamente e tomando o imaginário de ambos os lados da igualdade, pode-se chegar a uma expressão para x:

$$x = \frac{\operatorname{Im}\left\{I_S^{\prime\prime(1)*} \cdot \left(V_S^{(0)} + V_S^{(1)} + V_S^{(2)}\right)\right\}}{\operatorname{Im}\left\{I_S^{\prime\prime(1)*} \cdot \left(Z^{(0)} \cdot I_S^{(0)} + Z^{(1)} \cdot I_S^{(1)} + Z^{(2)} \cdot I_S^{(2)}\right)\right\}}$$
(57)

3.3.2.3 Faltas Fase-fase

Dada a equação desenvolvida no Método 1 para este tipo de falta (equação (34)):

$$-R_F \cdot \left\{ 1 + K(x)^{(1)} \right\} = \frac{V_F^{(1)} - V_F^{(2)}}{I_{FS}^{"(1)}} \tag{58}$$

Realizando as mesmas manipulações algebricas utilizadas nos itens anteriores e aplicando as considerações para linhas curtas ((46) e (47)), chega-se a:

$$-R_F \cdot \left\{ 1 + K(x)^{(1)} \right\} = \frac{-x \cdot \left(Z^{(1)} \cdot I_S^{(1)} - Z^{(2)} \cdot I_S^{(2)} \right) + V_S^{(1)} - V_S^{(2)}}{-I_S''^{(1)}}$$
(59)

Manipulando novamente e tomando a parte imaginária para eliminar R_F e $K(x)^{(1)}$, chega-se a uma equação para x:

$$x = \frac{\operatorname{Im}\left\{I_S^{\prime\prime(1)*} \cdot \left(V_S^{(1)} - V_S^{(2)}\right)\right\}}{\operatorname{Im}\left\{I_S^{\prime\prime(1)*} \cdot \left(Z^{(1)} \cdot I_S^{(1)} - Z^{(2)} \cdot I_S^{(2)}\right)\right\}}$$
(60)

3.3.2.4 Faltas Fase-fase-terra

Para este tipo de falta:

$$-R_F \cdot \left\{ 1 + K(x)^{(0)} \right\} = \frac{V_F^{(1)} - V_F^{(0)}}{I_{FS}^{\prime\prime(0)}} \tag{61}$$

Realizando as mesmas manipulações e considerações dos ítens anteriores, chega-se a uma equação para x:

$$x = \frac{\operatorname{Im}\left\{I_S''^{(0)*} \cdot \left(V_S^{(1)} - V_S^{(0)}\right)\right\}}{\operatorname{Im}\left\{I_S''^{(0)*} \cdot \left(Z^{(1)} \cdot I_S^{(1)} - Z^{(0)} \cdot I_S^{(0)}\right)\right\}}$$
(62)

3.4 Localização de Faltas em Linhas de Distribuição de Energia

Os métodos de localização de faltas apresentados nas seções anteriores foram desenvolvidos especificamente para sistemas de transmissão de energia. As linhas de transmissão são geralmente consideradas homogêneas ao longo de sua extensão, ou seja, é constituída de um único condutor sem cargas ou derivações em pontos intermediários. Já nos sistemas de distribuição de energia, um mesmo alimentador pode ser constituído de segmentos com diferentes condutores resultando em trechos com valores de impedância por unidade de comprimento distintos. Além disso, diversas cargas e ramificações podem estar conectadas ao longo do alimentador. Estas características fazem com que os métodos descritos anteriormente não possam ser utilizados diretamente nestes sistemas. Para se obter uma estimativa precisa da distância da falta em SDE faz-se necessário considerar as diversas cargas conectadas ao longo do alimentador bem como eventuais ramificações laterais.

Recentemente, no trabalho de Lee *et al* (2004) foi apresentado um algoritmo iterativo para localização de faltas em sistemas de distribuição de energia que leva em conta as características de tais sistemas. O algoritmo executa o cálculo da distância de falta para cada seção do alimentador, sendo as tensões e correntes em cada nó do circuito estimadas via análise de circuitos. Assim, pode-se pensar no algoritmo proposto como a aplicação do método 2 de Takagi para cada trecho da linha de distribuição. Além do referido trabalho, Girgis *et al* (1993), Zhu *et al* (1997) e Das *et al* (2000) já haviam publicado anteriormente metodologias semelhantes, também baseadas nas estimativas dos valores de corrente e tensão em cada nó do alimentador. O algoritmo de Lee *et al* (2004) será detalhado a seguir, uma vez que será utilizado na comparação com o método de localização de faltas de alta impedância proposto no capítulo 6.

Além das técnicas baseadas na medida dos fasores fundamentais de corrente e tensão, também foram publicadas técnicas baseadas em ondas viajantes, onde é medido o tempo de reflexão dos sinais de alta freqüência gerados pela falta (EL-HAMI et al., 1992; BO;

WELLER; REDFERN, 1999).

3.4.1 O Método de Lee et al (2004) Para Localização de Faltas em SDE

Considere uma falta fase-terra envolvendo a fase a de um alimentador de distribuição de energia conforme a Figura 24.

Figura 24: Modelo simplificado de alimentador de distribuição.

Onde:

 V_{Sa} Fasor de tensão da fase a no terminal local S;

 I_{Sa} Fasor de corrente da fase a no terminal local S;

 V_{Fa} Fasor de tensão da fase a no ponto da falta;

 I_{La} Fasor de corrente de carga na fase a;

 Z_r Matriz de impedância equivalente da carga;

 Z_{La} Impedância da linha na fase a;

 I_F Corrente de falta;

 R_F Resistência de falta;

x Distância da falta em relação ao terminal local;

A tensão medida no terminal local, nó S é calculada pela equação (63).

$$V_{Sa} = x \cdot (Z_{La} \cdot I_{Sa}) + I_F \cdot R_F \tag{63}$$

A equação anterior pode ser manipulada da seguinte forma:

$$I_F \cdot I_F^* \cdot R_F = (-x \cdot Z_{La} \cdot I_{Sa} + V_{Sa}) \cdot I_F^* \tag{64}$$

Como $I_F \cdot I_F^* \cdot R_F$ é um valor real, tomando o imaginário de ambos os lados da igualdade pode-se eliminar R_F do equacionamento e chegar a uma expressão para x:

$$x = \frac{\text{Im}\{V_{Sa} \cdot I_F^*\}}{\text{Im}\{I_{La} \cdot I_{Sa} \cdot I_F^*\}}$$
(65)

Onde:

$$I_F = I_{Sa} - I_{La} \tag{66}$$

Em função da existência de cargas intermediárias ao longo de um alimentador de distribuição e da elevada resistência da linha, as quedas de tensão provocadas pela falta podem se tornar significativas, invalidando a hipótese de que a corrente de carga durante a falta (I_{La}) pode ser assumida como sendo seu valor pré-falta (I_{Sa}). Nota-se que se esta aproximação for feita, a equação (65) torna-se idêntica a equação (48) determinada pelo método 2 de Takagi.

Logo, I_{La} , é também uma incógnita na formulação. Lee *et al* (2004) propuseram em seu trabalho uma técnica iterativa para estimar seu valor. Este processo iterativo compõem o algoritmo de localização de faltas em SDE o qual é composto das seguintes etapas:

- 1. Assume-se I_{La} como sendo o valor da corrente de carga pré-falta;
- 2. Calcula-se a corrente de falta I_F utilizando (66)
- 3. Determina-se a primeira estimativa da localização da falta utilizando (65);
- 4. Calcula-se a tensão no ponto da falta utilizando (67)

$$\begin{bmatrix} V_{Fa} \\ V_{Fb} \\ V_{Fc} \end{bmatrix} = \begin{bmatrix} V_{Sa} \\ V_{Sb} \\ V_{Sc} \end{bmatrix} - x \cdot \begin{bmatrix} Z_{La} \cdot I_{Sa} \\ Z_{Lb} \cdot I_{Sb} \\ Z_{Lc} \cdot I_{Sc} \end{bmatrix};$$
(67)

- 5. Utiliza-se a tensão de falta para obter um valor de I_{La} atualizado;
- 6. Volta-se ao passo 2 com um novo valor de I_F e o processo é repetido até que x convirja para um certo valor.

3.4.1.1 Estimação da Corrente de Carga

Conforme visto no passo 4 do algoritmo proposto por Lee $et\ al\ (2004)$, faz-se necessário a estimação do valor da corrente de carga I_{La} durante a falta a partir do valor atualizado da tensão no ponto da falta.

Se a carga é modelada como impedância constante e seu valor é conhecido, pode-se calcular I_{La} da seguinte forma:

$$I_{La} = Y_{La} \cdot V_{Fa} \tag{68}$$

Na equação anterior, Y_{La} representa a matriz admitância combinada da seção da linha após o ponto da falta e da carga. Seu valor é dado por:

$$Y_{La} = [(1-x) \cdot Z_{La} + Z_r]^{-1}$$
(69)

Se a impedância da carga não for conhecida, pode-se estimar I_{La} a partir da equação (70).

$$I_{La} = \left(\frac{I'_{La}}{V'_{Fa}}\right) \cdot V_{Fa} \tag{70}$$

Onde:

 V_{Fa}^{\prime} é a tensão pré-falta da fase a no ponto da falta, dada por:

$$V'_{Fa} = V'_{Sa} - x \cdot Z_{La} \cdot I'_{La}; \tag{71}$$

 I'_{La} é a corrente de carga pré-falta da fase a;

 V_{Sa}^{\prime} é a tensão pré-falta da fase a medida no terminal local S.

Nota-se que na equação (70), Y_{La} foi substituído por uma estimativa do seu valor com base em valores pré-falta medidos na subestação.

3.4.1.2 Estimativa de V e I Nas Diversas Seções do Alimentador

Se a distância de falta obtida x é maior do que a extensão da seção considerada, significa que a falta não ocorreu nesta, mas sim em alguma das seções seguintes. Então,

um novo processo de localização da falta deve ser executado para a próxima seção, utilizando os valores de corrente e tensão no seu nó inicial. No entanto, como as medições de corrente e tensão são realizadas apenas na subestação, faz-se necessário uma maneira de estimar estes valores em cada nó do alimentador.

Considere o modelo completo de um alimentador radial exposto na Figura 25.

Figura 25: Modelo completo de alimentador de distribuição.

A tensão no nó k+1 pode ser obtida usando a equação (72),

$$V_{k+1} = V_k - Z_k \cdot I_k \tag{72}$$

onde:

 V_k é a tensão no nó k;

 Z_k é a impedância da k-ésima seção de linha;

 I_k é o valor da corrente na k-ésima seção.

Considerando as cargas como impedância constante, a k-ésima corrente de carga pode ser calculada através de (73)

$$I_{Lk} = V_k \cdot Y_{Lk} \tag{73}$$

onde Y_{Lk} é a corrente consumida pela carga conectada no nó k e Y_{Lk} é a admitância desta carga.

Finalmente, pode-se calcular a corrente da k-ésima seção do alimentador utilizando a equação (74).

$$I_k = I_{k-1} \cdot I_{Lk} \tag{74}$$

Assim, o algoritmo de localização de faltas em SDE proposto executa um processo de localização de faltas para cada seção do alimentador, utilizando as estimativas de V_k e I_k descritas acima. Uma vez que x converge para um valor de distância no intervalo da seção em análise o algoritmo é finalizado, bastando somar a distância x com o valor das distâncias das seções de linha anteriores para que a localização da falta seja determinada.

3.4.1.3 Demais Tipos de Falta

Na metodologia de Lee *et al* (2004) descrita até o momento foram consideradas apenas faltas fase-terra. A extensão da metodologia para os demais tipos de falta (fase-fase, fase-fase-terra, trifásica) é direta, uma vez que a equação utilizada para estimar a distância de falta x é a própria equação desenvolvida no método 2 de Takagi (TAKAGI et al., 1982). Assim sendo, pode-se substituir a equação (65) pela equação (54) ou (60) ou (62) de acordo com o tipo de falta correspondente.

3.4.2 Influência das Ramificações Laterais

Uma das características principais dos sistemas de distribuição de energia é a presença de ramificações laterais nos alimentadores. No método de localização de faltas descrito na seção anterior deste trabalho, a presença de ramificações laterais pode fazer com que uma determinada falta seja localizada em diversos pontos diferentes do sistema. Ou seja, a mesma falta, aplicada em locais diferentes pode induzir valores de tensão e corrente iguais na subestação.

No trabalho de Lee *et al* (2004) é também proposta uma metodologia para a identificação da lateral na qual ocorreu a falta. O método é baseado na observação dos padrões da corrente durante o tempo de isolamento da falta. Dados as características dos diversos dispositivos de proteção presentes ao longo do alimentador (basicamente fusíveis e religadores) e suas localizações, é possível determinar, através da forma de onda da corrente na subestação, qual dispositivo atuou no isolamento da falta e com isso, determina-se a lateral. Além destas informações, o método utiliza a medida da quantidade de carga interrompida após a atuação da proteção como indicativo da lateral envolvida na falta.

Em outro trabalho, Magnago & Abur (1999) utilizam transformadas wavelets e teoria de ondas viajantes para determinar em qual lateral ocorreu a falta. Uma vez determinada em qual lateral ocorreu a falta, a sua localização é determinada através do método desenvolvido por Girgis *et al* (1993) que utiliza a estimação dos valores de corrente e tensão nos diversos nós do alimentador de distribuição.

As metodologias de determinação da lateral envolvida na falta não serão detalhadas neste trabalho, uma vez que estas não serão consideradas na metodologia proposta de localização de faltas de alta impedância.

4 FALTAS DE ALTA IMPEDÂNCIA

As faltas de alta impedância (FAIs) constituem uma categoria de faltas em sistemas de distribuição que normalmente não é levada em conta no projeto dos sistemas de proteção utilizados. Uma FAI pode ser definida como uma falta que não pode ser detectada pelas proteções convencionais de sobrecorrente. Sua causa mais comum é o contato do condutor com árvores ou o rompimento e queda do mesmo ao solo (CABRAL; SENGER; SANTOS, 1992). Em função de sua característica radial e grande área de abrangência, os sistemas de distribuição são mais suscetíveis a este tipo de defeito, que embora não seja tão comum quanto faltas ditas *sólidas*. Quando ocorrem, as FAI geralmente proporcionam grandes riscos tanto no aspecto segurança quanto material (NAKA; SIQUEIRA, 1992).

A corrente de falta produzida por FAIs apresenta uma magnitude baixa se comparada com a resultante de faltas sólidas, principalmente devido ao envolvimento de uma resistência de falta de elevado valor no curto-circuito. A baixa magnitude de corrente é a principal característica de uma FAI, fazendo com que sua ocorrência possa ser confundida com variações rotineiras de carga, de modo que o operador do sistema muitas vezes não é capaz de identificar o defeito e executar as devidas ações corretivas (CABRAL; SENGER; SANTOS, 1992).

Assim como as faltas sólidas, as FAIs também podem ser classificadas nos quatro tipos

básicos: Faltas *fase-terra*, *fase-fase*, *fase-fase-terra* e *trifásica*. A Figura 26 apresenta um diagrama unifilar representando uma falta de alta impedância do tipo fase-terra.

Figura 26: Diagrama unifilar de uma FAI fase-terra.

O valor da resistência de falta R_f é desconhecido, dependendo principalmente das características do solo ou do objeto com o qual a(s) fase(s) faltosa(s) entrar(em) em contato. No entanto, diferentemente das faltas sólidas, as FAIs não podem ser modeladas como uma simples resistência linear pois deste modo estará se deixando de considerar uma de suas principais características, que é a presença do arco elétrico no ponto de incidência da falta (JEERINGS; LINDERS, 1989).

4.1 Características

Para se obter um modelo adequado de uma FAI faz-se necessário estudar suas características detalhadamente. Logo, o modelo deve levar em conta a influência do surgimento de arco elétrico no ponto da falta. Vários estudos foram realizados com o intuito de caracterizar o arco elétrico decorrente do contato entre um condutor energizado e o solo. Dentre estes estudos, podem-se destacar os trabalhos de Jeerings e Linders (1989); Emanuel et al (1990); Sultan et al. (1994) e Nam et al. (2001).

Em seu trabalho, Jeerings e Linders (1989) caracterizam as FAIs através de uma análise detalhada do contato condutor/solo. Esta análise resultou na determinação de que a

resistência do contato condutor/solo é não-linear, ocasionando o surgimento de componentes harmônicas na corrente de falta. Os autores também citam que a corrente elétrica e o tamanho do arco de uma FAI em sistemas de distribuição são menores do que em outras condições. Neste tipo de falta a corrente inicial pode chegar a menos de 100 amperes e o tamanho do arco em torno de uma ou duas polegadas. Com valores desta ordem de grandeza haverá uma vaporização insuficiente do metal proveniente do condutor para a formação dos íons metálicos necessários para o arco apresentar um comportamento de baixa impedância. Além disso, os vapores provenientes da vegetação que pode ser consumida pelo arco também afetam o seu comportamento de uma maneira desconhecida.

No trabalho de Emanuel et al (1990) as características do arco elétrico proveniente de FAI foram estudadas com base em dados experimentais resultantes de faltas propositalmente aplicadas ao final de um alimentador existente e em operação, conforme pode ser visto na Figura 27. Os autores caracterizaram o comportamento não-linear do arco utilizando análise harmônica. Foi comparado o espectro de freqüência resultante da aplicação de FAI com o espectro medido ao longo de uma semana na subestação, em condições normais de operação. Como resultado, determinaram que, para o alimentador estudado, a medida da 3^a harmônica na corrente de linha e da 2^a harmônica na corrente de neutro podem ser utilizadas como indicativo da FAI. Esta escolha do ponto de medição é devida ao fato de que, em condições normais, a presença das componentes de 2^a e 3^a são menos significativas na corrente de neutro e linha, respectivamente.

Em Sultan et al. (1994), as características do arco elétrico proveniente de FAIs, especificamente para o caso de condutores caídos ao solo, também foram estudadas a partir de dados experimentais. No entanto, os testes foram realizados em uma plataforma experimental especialmente desenvolvida para este fim, ou seja, não havia influência externa

Figura 27: Sistema teste de Emanuel et al (1990).

nas grandezas medidas. Dos dados obtidos, verificou-se que a corrente de falta produzida apresentou um comportamento não-linear, randômico na amplitude dos picos de corrente e também assimétrico na relação do semi-ciclo positivo com o negativo. Este comportamento pode ser verificado através da Figura 28(a). A curva V-I do arco também foi obtida experimentalmente, demonstrando a não-linearidade presente, podendo ser vista na Figura 28(b).

Figura 28: (a) Corrente de falta e (b) curva V-I do arco obtidas por Sultan et al (1994).

Nam et al. (2001) em experimentos realizados em um alimentador de distribuição de

22,9kV identificaram quatro características de uma FAI: 1) O valor da corrente de falta atinge seu valor máximo após algumas dezenas de ciclos (Buildup); 2) O processo de elevação do valor da corrente de falta é interrompido, ou atenuado, durante alguns ciclos, mantendo-se a um valor aproximadamente constante (Shoulder); 3) A curva V-I do arco é não-linear (não-linearidade); e, 4) O semi-ciclo positivo da corrente de falta difere do negativo (assimetria). Na Figura 29, pode-se verificar estas características na forma de onda da corrente de falta de um dos experimentos realizados.

Figura 29: Corrente de falta obtida por Nam et al. (2001).

Em outro trabalho (JEERINGS; LINDERS, 1990), foi feita uma análise das várias fontes de harmônicas que podem estar presentes em sistemas de distribuição e seus efeitos comparados com aqueles produzidos pelas harmônicas originarias de faltas de alta impedância. Ainda de acordo com o referido artigo, as harmônicas devidas às FAIs diferem das ambientes da seguinte forma:

 FAIs são do tipo fase-terra. Geralmente faltas envolvendo mais de um fase são dadas como faltas de baixa impedância. Caso contrário, pode-se interpretar como FAIs independentes.

- As harmônicas produzidas por uma FAI são originárias de apenas um ponto do sistema;
- 3. A corrente de falta de uma FAI está substancialmente em fase com a voltagem do sistema, o que significa que as harmônicas produzidas atingem seu valor de pico ao mesmo tempo que a componente fundamental da corrente de falta;
- 4. As harmônicas produzidas pela falta são função da tensão em seu ponto de aplicação, ao contrário de algumas fontes de harmônicas do ambiente que são função da corrente de carga.

Como resultados da análise, Jeerings e Linders (1990) concluem que a mudança na magnitude da 3^a harmônica da corrente juntamente com a variação do seu ângulo tendo como referência a tensão do sistema, constituem bons indicadores da presença de FAIs.

4.2 Modelagem

A obtenção de dados oscilográficos reais de corrente e tensão na ocorrência de FAIs em alimentadores de distribuição é uma tarefa difícil. Necessita-se de um sistema de monitoramento contínuo dos dados na(s) subestação(ões) consideradas. Tais sistemas apresentam um custo de instalação elevado, e mesmo assim não há garantias de que ao final do período monitorado haverão dados suficientes para um análise quantitativa de FAIs, dada a baixa freqüência com que este tipo de defeito ocorre na distribuição. Da mesma forma, a aplicação premeditada de FAIs em um alimentador de distribuição se mostra inviável, devido as conseqüências que tais testes podem resultar à qualidade da energia fornecida aos consumidores. Em função disto, os trabalhos realizados sobre o assunto aqui abordado fazem uso de simulações computacionais para resolver o problema da escassez de dados.

De modo a representar melhor as faltas de alta impedância no ambiente de simulação, buscaram-se modelos de falta que representassem da melhor forma possível uma situação real. Tais modelos devem levar em conta as características das FAIs descritas na seção anterior e devem ser flexíveis para que possam ser simuladas faltas com características distintas.

4.2.1 Modelo 1: Resistência de Falta Não-linear

O primeiro modelo estudado foi apresentado no trabalho de Nam et al. (2001). A FAI foi modelada utilizando-se duas resistências não-lineares. Estas resistências foram implementadas no EMTP 1 utilizando a ferramenta TACS 2 para controlar o valor das resistências (EMTP, 2002). Conforme pode ser visto na Figura 30, duas resistências foram utilizadas, R_1 responsável por implementar as características de não-linearidade e assimetria da FAI, atuando tanto em regime transitório quanto permanente e R_2 para simular os efeitos do *buildup* e *shoulder*, atuando somente em regime transitório.

Figura 30: Modelo de FAI proposto por Nam et al. (2001).

A curva não-linear de R_1 foi determinada através da medida experimental da corrente

¹Eletromagnetics Transient Program, é um software simulador de transitórios eletromagnéticos em sistemas de potência, amplamente utilizado pela comunidade científica.

²Transient Analysis of Control Systems é um módulo do EMTP que permite o uso de componentes controlados por grandezas medidas em outros pontos do circuito, possibilitando a modelagem de componentes não-lineares.

e tensão (curva V-I) de falta em regime permanente. Os dados da curva de resistividade de R_1 são então utilizados pelo controlador TACS para gerar os sinais de controle que atuarão nos valores das resistências. O valor de R_2 é também baseado em um curva obtida experimentalmente, no entanto, seu valor é função do tempo e não da tensão de falta. A ligação das duas resistências em série permite que sejam sobrepostos os efeitos de cada uma, obtendo-se um modelo completo para a simulação de FAIs.

4.2.2 Modelo 2: Circuito Elétrico

O segundo modelo de FAI apresentado foi desenvolvido por Emanuel et al. (1990). Com base em medições de campo e de testes em laboratório, os autores estudaram os efeitos das harmônicas produzidas por FAIs em alimentadores de distribuição. Um dos resultados do trabalho foi o modelo de simulação de FAIs representado na Figura 31.

Figura 31: Modelo de FAI proposto por Emanuel et al. (1990).

O modelo é constituído de dois diodos conectados em anti-paralelo através de duas fontes de corrente contínua. Desta forma, durante o semi-ciclo positivo, a corrente de falta circula através de V_P e durante o negativo, através de V_N . A partir de resultados experimentais, os autores do referido trabalho confirmaram que a segunda harmônica da

corrente é função principalmente de $\Delta V = V_N - V_P$, enquanto a terceira harmônica é função principalmente de $tan(\theta) = X_L/R$. Estas relações podem ser visualizadas nos gráficos da Figura 32.

Figura 32: Conteúdo harmônico da corrente de falta; (a): 2^a harmônica e (b): 3^a harmônica (EMANUEL et al., 1990).

Este modelo de FAI permite que sejam implementadas no ambiente de simulação, as características de *não-linearidade* e *assimetria* do arco elétrico decorrente de FAIs. A Figura 33 apresenta um exemplo de corrente de falta obtida por simulação utilizando o modelo de Emanuel et al. (1990). Na mesma figura pode ser visto o conteúdo harmônico resultante da aplicação de uma Transformada Discreta de Fourier (DFT) de um ciclo na corrente de falta.

Figura 33: Exemplo de corrente de falta obtida com o modelo de Emanuel et al. (1990).

4.3 Métodos de Detecção

Continuando o estudo das faltas de alta impedância em sistemas de distribuição de energia, buscou-se na literatura formas de detectar e classificar, conforme o tipo, a sua ocorrência. Este é um assunto importante no processo de localização. Primeiro, porque é necessário saber se existem formas confiáveis de se detectar as FAIs para assim ser inicializado o processo de localização. Segundo, porque será utilizada durante o algoritmo de localização, na determinação do ângulo de incidência e do tipo da falta dentro do conjunto de dados adquiridos da subestação e que serão utilizados pelo algoritmo de localização. Maiores detalhes desta utilização serão vistos na descrição do esquema de localização proposto.

Inúmeras são as técnicas desenvolvidas para detecção de FAIs. Cabral et al. (1992) desenvolveram uma metodologia de detecção de FAIs baseada na medida do desequilíbrio de corrente entre as fases do alimentador. Esta medida é feita em diversos pontos do alimentador, necessitando de um sistema de transmissão de dados. No trabalho de D. I. Jeerings e J. R. Linders (1991) é feita a medida dos fasores de tensão e corrente apenas

na subestação de distribuição. Como forma de detectar a ocorrência de uma FAI, os autores sugerem a análise da defasagem angular entre os fasores de primeira harmônica da tensão e de terceira harmônica da corrente. Também já foram sugeridos na literatura, métodos baseados na análise do conteúdo harmônico presente nos sinais de tensão e corrente medidos na subestação (LIEN et al., 1997) e métodos utilizando Transformadas Wavelet (HUANG; HSIEH, 1999; LAZKANO et al., 2000). Métodos chamados *refletométricos* que constituem basicamente na injeção de pulsos na linha e análise de suas reflexões também já foram estudados (NAKA; SIQUEIRA, 1992).

Além das metodologias apresentadas, também existem métodos de detecção de FAIs mistos, englobando alguma das técnicas descritas juntamente com algoritmos de inteligência computacional, por exemplo, RNAs, sistemas especialistas (BENNER; RUSSEL, 1997) e lógica fuzzy (JOTA; JOTA, 1998).

No que diz respeito as RNAs, estas vêm sendo amplamente utilizadas em conjunto com algumas das técnicas de detecção/classificação citadas anteriormente. Keyhani et al. (2001) calculam a energia de diversas sub-bandas de freqüência do sinal de corrente e aplicam os valores à entrada de uma RNA. Al-Dabbagh & Al-Dabbagh (1999) utilizam o espectro de freqüência da corrente. Butler & Momoh (2000) determinam uma série de coeficientes estatísticos do sinal de corrente que são enviados a RNA. Sharaf et al (1993) utilizam como grandezas de entrada da RNA os valores das componentes simétricas da 2^a , 3^a e 5^a harmônicas da corrente e tensão.

A principal motivação no uso de RNA provém de sua capacidade de reconhecimento de padrões de funções não-lineares, tendo como base um processo de treinamento a partir de exemplos, tornando seu uso na detecção de FAIs uma alternativa promissora. Além disso, as RNAs, após treinadas, apresentam baixo custo computacional, podendo serem

utilizadas em algoritmos operando em tempo-real na subestação.

5 REDES NEURAIS ARTIFICIAIS

5.1 O que é uma Rede Neural Artificial

A grande capacidade de processamento de informações do cérebro humano tem motivado pesquisas no sentido de encontrar modelos que reproduzam suas características computacionais, que são totalmente diferentes do computador digital convencional, possibilitando, desta forma, que se realize certas tarefas de uma maneira semelhante ao cérebro humano. O cérebro é um sistema de processamento de informação (computador) altamente complexo, não-linear e paralelo. Ele é constituído, basicamente, de unidades estruturais elementares chamadas de neurônios ou unidades de processamento que podem apresentar diversas entradas e diversas saídas estando maciçamente conectados uns com os outros na composição de uma rede neural (RN), cuja definição, citando HAY-KIN (2001), pode ser vista no texto abaixo:

Uma rede neural é um processador maciçamente paralelamente distribuído constituído de unidades de processamento simples, que têm a propensão natural para armazenar conhecimento experimental e torná-lo disponível para uso. Ela se assemelha ao cérebro humano em dois aspectos:

- O conhecimento é adquirido pela rede a partir de seu ambiente através de um processo de aprendizagem;
- 2. Forças de conexão entre neurônios, conhecidas como pesos sinápticos, são

utilizadas para armazenar o conhecimento adquirido.

As Redes Neurais Artificiais (RNAs) foram desenvolvidas tomando-se como base o cérebro humano. Elas fazem uma representação distribuída da informação, na forma de conexões entre um grande número de elementos simples (neurônios artificiais). Todos esses elementos realizam operacionalmente a mesma função, conforme será visto adiante, que é executar a soma ponderada de suas entradas e executar uma transformação (linear ou não-linear) sobre este valor. Assim, as Redes Neurais Artificiais são modelos matemáticos dos neurônios biológicos e suas interconexões em redes.

A grande vantagem no uso de redes neurais artificiais para solução de problemas complexos provém de algumas propriedades e capacidades úteis, descritas a seguir, conforme HAYKIN (2001):

Aprendizagem: É a habilidade da RNA de aprender acerca de seu ambiente através de um processo interativo de ajustes aplicados aos seus parâmetros livres (ex.: pesos sinápticos);

Generalização: Corresponde ao fato de a RNA apresentar uma saída adequada para uma entrada não presente no processo de aprendizagem;

Não-Linearidade: Uma RNA é não-linear se esta for constituída de neurônios artificiais também não-lineares. Esta é uma característica importante, pois a maioria dos sistemas físicos responsáveis pela geração dos sinais de entrada para a rede neural são não-lineares;

Adaptabilidade: É a capacidade que as RNAs possuem de adaptar seus pesos sinápticos perante a modificações no meio ambiente, ou seja, uma RNA treinada para operar em um ambiente específico pode facilmente ser re-treinada para absorver pequenas alterações no ambiente;

Tolerância a Falhas: o conhecimento é distribuído pela RNA, desta forma, uma parte das conexões pode estar inoperante, sem mudanças significativas no desempenho de toda a RNA;

Resposta a Evidências: Em sua utilização como classificadora de padrões, uma RNA pode fornecer, em sua saída, não somente a informação relativa a qual conjunto a entrada pertence, mas também uma informação sobre a confiança no resultado. Desta forma, pode se utilizar destas informações para rejeitar padrões ambíguos.

Estas características dotam as redes neurais artificiais com a capacidade de resolver problemas complexos que não podem ser resolvidos de forma tradicional. É o caso da tarefa de classificação de padrões, na qual deseja-se atribuir uma entre várias classes predefinidas para um determinado sinal de entrada (representando um objeto físico ou evento) do qual não se conhece seu modelo estatístico.

5.2 Modelo do neurônio

A unidade básica de processamento de uma rede neural artificial é o neurônio. Sua modelagem é inspirada no neurônio biológico, cuja figura representativa pode ser vista na Figura 34. Nesta figura podem ser vistas as partes constituintes do neurônio que são descritas a seguir:

Os dendritos são os elementos receptores, as entradas do neurônio;

Os axônios são as linhas de transmissão que transportam o sinal de saída do neurônio;

As sinapses são as regiões onde a saída de um neurônio e a entrada de outro entram em contato. O tipo de mais comum de sinapse no cérebro é a sinapse química onde um processo pré-sináptico libera uma substância química transmissora que se difunde na junção entre os neurônios e então atua em um processo pós-sináptico. Logo, a sinapse converte um sinal elétrico pré-sináptico em um sinal químico e então de volta em um

sinal elétrico pós-sináptico. A sinapse pode impor ao neurônio receptivo excitação ou inibição (HAYKIN, 2001);

O *corpo celular* é responsável pelo "processamento" dos sinais de entrada do neurônio. Quando os valores das entradas atingem um determinado limiar, o neurônio "dispara" liberando um impulso elétrico que flui do corpo celular para o axônio, que pode estar conectado à entrada de outro neurônio.

Figura 34: Neurônio biológico.

Desenvolveram-se modelos para o neurônio artificial, buscando reproduzir as características do neurônio biológico através da análise do seu funcionamento. Um dos trabalhos pioneiros foi o de *Warren S. McCullogh* e *Walter Pitts*, entitulado *A Logical Calculus of the Ideas Immanent in Nervous Activity*, que, em 1943, propuseram um modelo matemático para o neurônio. O neurônio tinha um número finito de entradas e uma saída. Este neurônio foi chamado de *Neurônio de McCullogh & Pitts* e pode ser visto na Figura 35. Sua operação pode ser resumida da seguinte forma:

- 1. Os sinais são apresentados às entradas x;
- Cada sinal é multiplicado por um número w, ou peso, que indica a sua influência na saída do neurônio (efeito de excitação ou inibição da sinapse);

- É feita a soma ponderada dos sinais, produzindo um nível de atividade (corpo celular);
- 4. Se este nível de atividade exceder um certo limiar, a unidade "ativa" sua saída y.

Figura 35: Neurônio de McCullogh & Pitts.

O modelo geral do neurônio pode ser visto na figura Figura 36. Este modelo não mais apresenta unicamente a função de ativação limiar utilizada no neurônio de McCulloch & Pitts, mas sim uma função de ativação $\varphi(.)$ que pode ser definida de várias formas. Também foi acrescentado um bias, representado por b_k , que tem o efeito de aumentar ou diminuir a entrada líquida da função de ativação. O funcionamento deste neurônio, que segue o mesmo princípio de funcionamento do anterior, pode ser descrito matematicamente pelas seguintes equações:

$$\nu_k = \sum_{j=1}^m w_{kj} \cdot x_j + b_k \tag{75}$$

$$y_k = \varphi(\nu_k) \tag{76}$$

Onde:

j é o índice das m entradas do neurônio;

 b_k é o bias aplicado ao neurônio k;

 ν_k chamado de campo local induzido, é a saída do combinador linear somado ao bias do neurônio k;

 x_i são os sinais de entrada do neurônio;

 w_{kj} são os pesos sinápticos do neurônio k;

 $\varphi(.)$ é a função de ativação do neurônio k.

Figura 36: Modelo matemático do neurônio (HAYKIN, 2001).

O parâmetro externo *bias*, pode ser incluído na formulação matemática como sendo um peso sináptico associado a uma entrada de valor constante unitário, desta forma, a representação matemática do neurônio pode ser simplificada, conforme a formulação a seguir:

$$\nu_k = \sum_{j=0}^m w_{kj} \cdot x_j \tag{77}$$

$$y_k = \varphi\left(\nu_k\right) \tag{78}$$

Onde:

$$x_0 = 1 e w_{k0} = b_k$$

Em uma notação matricial, pode-se obter a saída do neurônio a partir da seguinte equação:

$$y_k = \varphi\left(\vec{w}_k \cdot \vec{x}^T\right) \tag{79}$$

Onde:

 $\vec{w}_k = [w_{k0} \ w_{k1} \ w_{k2} \ \cdots \ w_{km}]$ é o vetor de pesos sinápticos, incluindo o bias; $\vec{x} = [x_0 \ x_1 \ x_2 \ \cdots \ x_m]$ é o vetor contendo os sinais de entrada.

Logo, a saída do neurônio k pode ser obtida realizando-se o produto interno do vetor de pesos sinápticos (incluindo o bias) com o vetor de entrada transposto e aplicando este resultado (que é o campo local induzido) à função de ativação $\varphi(.)$.

5.3 Tipos de Função de Ativação

Segundo HAYKIN (2001), existem três tipos básicos de função de ativação utilizados em RNAs, conforme podem ser vistas na Figura 37 e descritas a seguir:

(a) Função de limiar, utilizada no neurônio de McCulloch & Pitts, com a seguinte definição:

$$\varphi(\nu) = \begin{cases} 1, & se \ \nu \ge 0 \\ 0, & se \ \nu \le 0 \end{cases}$$
 (80)

(b) Função linear por partes, possui a seguinte definição:

$$\varphi(\nu) = \begin{cases} 1, & se \ \nu \ge 1/2 \\ \nu, & se \ -1/2 \le \nu \le +1/2 \\ 0, & se \ \nu \le -1/2 \end{cases}$$
 (81)

(c) Função sigmóide, é a função mais utilizada, definida por:

$$\varphi\left(\nu\right) = \frac{1}{1 + exp\left(-a \cdot \nu\right)} \tag{82}$$

onde a é o parâmetro de inclinação da função.

As funções de ativação acima descritas são funções pares, apresentando resultado no intervalo $[0\ 1]$. No entanto, dependendo da aplicação, deseja-se que a saída da RNA apresente também valores negativos, no intervalo $[-1\ +1]$, por exemplo. Neste caso, a função de ativação utilizada deverá ser ímpar. Especificamente, para a função sigmóide (c), sua correspondente ímpar é a função tangente hiperbólica.

Figura 37: Funções de ativação mais utilizadas.

5.4 Arquitetura de Redes Neurais Artificiais

Conforme mencionado anteriormente, uma rede neural é constituída por um conjunto de neurônios interligados. A forma como estes se conectam define a arquitetura da rede, que em geral pode ser de três classes diferentes, conforme o número de camadas de neurônios e o tipo de conexão entre elas.

Nos itens a seguir, são descritas as três classes de arquiteturas de redes neurais artificiais, conforme HAYKIN (2001).

5.4.1 Redes feedforward de Camada Única

Tendo-se os neurônios organizados em camadas, nesta forma mais simples de rede neural, existe uma camada de entrada (nós fonte) e uma camada de neurônios, cada qual sendo uma saída da rede.

Este tipo de arquitetura pode ser vista na Figura 38. A rede é dita *alimentada adiante*, pois a camada de nós fonte fornece os sinais de entrada para a camada de saída e não vice-versa, ou seja, não há laços de realimentação. O termo *camada única* se refere ao

fato de existir apenas uma camada de nós computacionais (neste caso, a camada de saída).

Nota-se que na representação presente na figura acima referida, os pesos sinápticos estão implícitos nas conexões entre as camadas.

Figura 38: Rede alimentada adiante de camada única.

5.4.2 Redes feedforward de Múltiplas Camadas

Nesta segunda classe de redes neurais, existe a presença de uma ou mais camadas de nós computacionais entre as camadas de entrada e saída, as quais são chamadas de camadas ocultas e constituídas, por sua vez, de neurônios ocultos. A Figura 39 apresenta esta arquitetura. Nesta figura, e na anterior (camada única), as redes representadas são ditas totalmente conectadas, visto que cada um dos nós de uma camada está conectado a todos os nós da camada seguinte. As redes que não possuem esta característica são ditas parcialmente conectadas. O processo de treinamento de redes alimentadas adiante de múltiplas camadas e de camada única será visto no capítulo seguinte deste trabalho.

Figura 39: Rede alimentada adiante de múltiplas camadas.

5.4.3 Redes Recorrentes

As redes neurais recorrentes diferem das redes alimentadas adiante por possuírem pelo menos um laço de realimentação. A Figura 40 apresenta uma rede deste tipo com um neurônio oculto (em cor cinza) e dois neurônios de saída. O processo de treinamento deste tipo de rede neural não será abordado neste trabalho.

Figura 40: Rede neural recorrente.

5.5 Paradigmas de Aprendizagem

A propriedade mais importante das redes neurais é a habilidade de aprender acerca de seu ambiente e com isso, melhorar o seu desempenho. Isto pode ser feito através de um processo iterativo de ajustes aplicados aos pesos sinápticos da rede, chamado de treinamento. O aprendizado ocorre quando a rede neural atinge uma solução generalizada para uma determinada classe de problemas.

A maioria dos modelos de redes neurais possui alguma regra de treinamento, onde os pesos de suas conexões sinápticas são ajustados de acordo com os padrões apresentados, ou seja, a rede aprende através de exemplos provenientes de casos reais conhecidos. Sendo assim a rede neural extrai regras básicas a partir dos exemplos, diferentemente da programação computacional tradicional (C, Pascal, Fortran, etc.) onde é necessário que as regras sejam previamente conhecidas.

A seguir serão apresentados duas metodologias de aprendizagem, freqüêntemente chamadas de *paradigmas de aprendizagem*.

5.5.1 Aprendizado Supervisionado (com professor)

O aprendizado supervisionado, também chamado aprendizado com um professor está representado através de um diagrama de blocos na Figura 41.

Figura 41: Aprendizado supervisionado (HAYKIN, 2001).

No paradigma de aprendizagem com um professor, o estado do ambiente é representado por um vetor que é aplicado à entrada da RNA e ao professor. O professor possui conhecimento sobre o ambiente, o qual é representado por um conjunto de *exemplos de entrada-saída*¹, fornecendo assim, a resposta desejada. O sinal de saída da RNA é então comparado com a resposta desejada, gerando um sinal de *erro* que é utilizado para ajustar os pesos sinápticos da rede de modo que esta, após o ajuste, apresente em sua saída uma resposta tão próxima quanto possível daquela desejada. Este processo é repetido para cada exemplo de treinamento até que a RNA *emule* o professor. Desta forma, o conhecimento do professor foi, de certa maneira, *transferido* para os pesos sinápticos da rede neural, e este não se faz mais necessário, pois a RNA já é capaz de lidar com o ambiente por si mesma.

Como medida de desempenho, pode ser utilizado o erro médio quadrático ou a soma dos erros quadrados da amostra de treinamento, função esta que é definida como uma função dos parâmetros livres da RNA (pesos sinápticos e bias). Tem-se então uma *su-perfície multidimensional de desempenho* ou, simplesmente, *superfície de erro*, tendo os parâmetros livres como coordenadas. Afim de que a rede melhor seu desempenho, ou seja, aprenda com o professor, busca-se encontrar o ponto de mínimo na superfície de erro. Conforme será visto mais adiante neste trabalho, o sistema de aprendizagem pode buscar este ponto de mínimo fazendo uso do *gradiente* da superfície de erro, que fornece a direção de descida mais íngreme da superfície.

5.5.2 Aprendizado Não-supervisionado

Como o próprio nome indica, nesta metodologia de aprendizagem, não há um professor responsável pelo fornecimento da resposta desejada, ou seja, não há exemplos da função a ser *aprendida* pela rede. Um exemplo de rede neural que faz uso desta forma de aprendizagem é o chamado *mapa auto-organizável*.

¹O conjunto de exemplos de entrada-saída é chamado de amostra de treinamento ou *época*.

Para o treinamento da rede não supervisionada, são utilizados apenas os valores de entrada, conforme pode ser visto no diagrama de blocos da Figura 42. Neste tipo de aprendizado, a rede utiliza os neurônios como classificadores, e as entradas como elementos a serem classificados, utilizando-se para isso um processo de competição e cooperação entre os neurônios da rede.

Figura 42: Aprendizado não supervisionado (HAYKIN, 2001).

Em sua forma mais simples, o aprendizado não-supervisionado pode ser descrito da seguinte forma: O sinal é aplicado à entrada da RNA e somente o neurônio vencedor (aquele que possui o maior valor do campo local induzido) se tornará ativo, e os demais permanecerão inativos. Os pesos sinápticos deste neurônio são então ajustados de acordo com uma regra de aprendizagem, tendendo assim, ao fim do processo, para um valor próximo do sinal de entrada. Desta forma, sinais de entrada com características semelhantes serão identificados pela ativação do mesmo neurônio. Cada neurônio ou conjunto de neurônios da rede será responsável por uma única classe de padrões de entrada, que deve ser mapeada após a finalização do treinamento.

5.6 Algoritmos de Aprendizagem

Nesta seção serão apresentados alguns algoritmos de aprendizagem supervisionada de dois tipos RNAs alimentas adiante, chamadas de perceptron de Rosemblatt e perceptron de múltiplas camadas.

5.6.1 O Perceptron de Rosemblatt

O perceptron de Rosemblatt tem sua construção baseada no neurônio não linear de McCullch & Pitts. Este modelo consiste em um combinador linear seguido por um limitador abrupto. Logo, o neurônio produz uma saída igual a +1 se o campo local induzido (ν) for positivo e -1 se este for negativo. Na Figura 43a pode ser vista a representação completa em diagrama de fluxo de sinal deste neurônio.

Figura 43: Diagrama de fluxo de sinal do perceptron (HAYKIN, 2001).

Re-escrevendo a equação (75), que fornece como resultado o campo local induzido, chega-se a seguinte equação, referente a Figura 43a:

$$\nu_k = \sum_{j=1}^m w_j \cdot x_j + b \tag{83}$$

O perceptron de Rosemblatt tem como objetivo classificar os sinais aplicados às entradas $(x_j$, com i=1,2,...,m) em duas classes distintas, C_1 se a saída y do perceptron for +1 e C_2 se a saída for -1. Logo, a fronteira de decisão da classificação é obtida quando o campo local induzido tem seu valor nulo, conforme a equação abaixo.

$$\sum_{j=1}^{m} w_j \cdot x_j + b = 0 \tag{84}$$

Portanto, existem duas região separadas por um *hiperplano* de dimensão m. Para melhor ilustrar esta fronteira, considere o caso de um perceptron com apenas duas entradas, o *hiperplano* de decisão, que no caso é uma reta, pode ser traçado em um gráfico

bi-dimensional, conforme a Figura 44 a seguir:

Figura 44: Fronteira de decisão bidimensional (HAYKIN, 2001).

Nota-se na figura acima, que o efeito do *bias* é deslocar a fronteira de decisão em relação à origem.

Para o correto funcionamento do perceptron, é necessário que as duas classes C_1 e C_2 sejam linearmente separáveis, o que quer dizer que os padrões a serem classificados devem estar suficientemente separados de modo que possa ser possível existir um hiperplano que os separe. A Figura 45 permite visualizar a separabilidade linear para um perceptron bi-dimensional. Em (a), padrões linearmente separáveis e em (b) não-linearmente separáveis.

Figura 45: Separabilidade linear (HAYKIN, 2001).

5.6.1.1 Algoritmo de Aprendizagem Para o Perceptron

Dado um conjunto de treinamento constituído de vetores de N entrada linearmente separáveis $\vec{\mathbf{x}}(n) = [\vec{x}(1) \ \vec{x}(2) \ \cdots \ \vec{x}(N)]$, onde n=1,2,...N representa o passo de iteração. Sendo conhecida a classe a qual cada elemento do conjunto pertence, o objetivo do algoritmo é encontrar um vetor de peso sináptico $\vec{w}(n) = [w_0 \ w_1 \ w_2 \ \cdots \ w_m]$, de modo que as seguintes desigualdades sejam satisfeitas (HAYKIN, 2001):

$$\vec{w} \cdot \vec{x}^{T}(n) > 0$$
 para todo vetor de entrada $\vec{x}(n)$ pertencente à classe C_1 ; $\vec{w} \cdot \vec{x}^{T}(n) \leq 0$ para todo vetor de entrada $\vec{x}(n)$ pertencente à classe C_2 .

O algoritmo usado na adaptação dos pesos sinápticos é então formulado da seguinte maneira, conforme (HAYKIN, 2001):

1. Se o n-ésimo elemento do conjunto de treinamento é corretamente classificado pelo vetor de peso $\vec{w}(n)$ calculado na n-ésima iteração, então o vetor de peso não é corrigido, ou seja:

$$\vec{w}(n+1) = \vec{w}(n)$$
 se $\vec{w} \cdot \vec{x}^T(n) > 0$ e $\vec{x}(n)$ pertence à classe C_1 ;
$$\vec{w}(n+1) = \vec{w}(n)$$
 se $\vec{w} \cdot \vec{x}^T(n) \le 0$ e $\vec{x}(n)$ pertence à classe C_2 .

 Caso contrário, o vetor de peso sinápticos é atualizado de acordo com a seguinte regra:

$$\vec{w}(n+1) = \vec{w}(n) + \eta(n) \cdot \vec{x}(n)$$
 se $\vec{w} \cdot \vec{x}^T(n) \le 0$ e $\vec{x}(n)$ pertence à classe C_1 ;
$$\vec{w}(n+1) = \vec{w}(n) - \eta(n) \cdot \vec{x}(n)$$
 se $\vec{w} \cdot \vec{x}^T(n) > 0$ e $\vec{x}(n)$ pertence à classe C_2 .

Onde: $\eta(n)$ é o parâmetro taxa de aprendizagem, responsável pelo ajuste aplicado ao vetor de peso na iteração n. Normalmente, este parâmetro é constante, independente do número da iteração.

5.6.2 O Perceptron de Múltiplas Camadas

Conforme pôde ser visto, o Perceptron de camada única de Rosemblatt possui a limitação de apenas classificar padrões linearmente separáveis. Esta restrição não mais aparece no perceptron de múltiplas camadas (MLP, do inglês *Multi Layer Perceptron*) dada a existência de uma ou mais camadas intermediárias (*camadas ocultas*) de neurônios entre a primeira camada e a saída. Desta forma o MLP é capaz de resolver problemas complexos e não-linearmente separáveis. Como exemplo, toma-se o problema do XOR, função lógica que não pode ser "aprendida" pelo perceptron de camada única.

O MLP consiste em uma rede alimentada no sentido camada de entrada-camada de saída, ou *feedforward*, de múltiplas camadas, como visto na Figura 39. No entanto, os neurônios que a constituem não são necessariamente binários, como no perceptron de Rosemblatt, e podem possuir uma função de ativação qualquer, por exemplo, *sigmóide*, *tangente hiperbólica* ou *linear*.

A utilização do MLP na solução de problemas complexos está amplamente difundida nas mais diversas áreas de pesquisa. Isso se deve principalmente ao algoritmo de treinamento supervisionado desenvolvido por Rumelhart, Hinton e Willians em 1986, chamado de *algoritmo de retropropagação* (back-propagation).O processo de treinamento, bem como o algoritmo acima referido, serão os temas tratados a seguir.

5.6.2.1 Treinamento do MLP - Colocação do Problema

O treinamento supervisionado de uma rede neural artificial de múltiplas camadas, conforme visto na seção 5.5.1, consiste em ajustar os pesos sinápticos dos neurônios da rede de modo que o sinal de erro resultante da comparação com a saída desejada apresente o menor valor possível. Pode-se então formular o problema da seguinte forma (HAYKIN,

2001):

$$e_i(n) = d_i(n) - y_i(n) \tag{85}$$

$$\xi(n) = \frac{1}{2} \cdot \sum_{j \in C} e_j^{2}(n) \tag{86}$$

$$w^* = \min_{w} \left(\xi(n) \right) \tag{87}$$

Onde:

j é o índice do neurônio de saída da rede;

C é o conjunto de todos os neurônios de saída da RNA;

 $e_j(n)$ é o sinal de erro na saída do neurônio j, na iteração n (i.e., na apresentação do n-ésimo exemplo de treinamento);

 $d_i(n)$ é a resposta desejada para o neurônio j, na iteração n;

 $y_i(n)$ é o sinal calculado pela rede presente na saída do neurônio j, na iteração n;

 $\xi(n)$ é a soma instantânea dos erros quadráticos, ou *energia* do erro na iteração n;

 w^* é o vetor de pesos sinápticos (parâmetros livres) da rede que minimiza o sinal de erro na saída.

Desta forma, o problema de treinamento de um MLP consiste em um problema de otimização, onde a cada iteração se deseja minimizar uma função custo, que neste caso é a soma instantânea dos erros quadráticos (Equação 86), em função dos parâmetros livres, encontrando um valor w^* que minimize $\xi(n)$ (Equação 87).

Com o problema formulado, pode-se passar para a apresentação do algoritmo de retropropagação.

5.6.2.2 Treinamento do MLP - Algoritmo de Retropropagação

Pode-se dizer que o algoritmo de retropropagação (RP) é uma generalização do algoritmo do mínimo quadrado médio (LMS), que utiliza a técnica do gradiente descendente,

de forma iterativa, para minimizar uma função de custo igual à diferença média quadrática entre a saída desejada e a saída real da RNA².

Em uma RNA de múltiplas camadas, os neurônios ocultos não são acessíveis na saída da rede, logo, não há uma maneira direta de determinação do grau de influência que um determinado neurônio oculto exerce na saída. Como conseqüência, não é possível saber como ajustar os pesos sinápticos de modo a reduzir o valor da função custo. Este problema, constitui o *problema da atribuição de crédito* (HAYKIN, 2001) que foi resolvido pelo algoritmo de RP propagando-se os sinais de erro para trás (retropropagação). O algoritmo de RP é então constituído de dois passos: A *propagação para frente* e a *propagação para trás* que serão apresentados separadamente a seguir.

Propagação para frente:

No primeiro passo do algoritmo de RP, calcula-se a saída da rede para a iteração n, dado o sinal de entrada. A saída do neurônio j é dada pela Equação 78, re-escrita a seguir:

$$y_j(n) = \varphi\left(\nu_j(n)\right) \tag{88}$$

Onde $\nu_j(n)$ é o campo local induzido do neurônio j, dado por:

$$\nu_{j}(n) = \sum_{i=0}^{m} w_{ji}(n) \cdot y_{i}(n)$$
(89)

Sendo m o número total de entradas da rede, $w_{ji}(n)$ o peso sináptico que conecta o neurônio i ao neurônio j, $y_i(n)$ o sinal de entrada do neurônio j, ou equivalentemente, o sinal de saída do neurônio i. Se o neurônio j estiver localizado na primeira camada oculta, $y_i(n) = x_i(n)$ então e se estiver localizado na camada de saída, então $y_j(n) = o_j(n)$ onde $o_j(n)$ é o j-ésimo sinal de saída da RNA.

O sinal de saída é então comparado com a resposta desejada, presente no conjunto de treinamento, de modo a obter o sinal de erro para o *j*-ésimo neurônio de saída, de acordo

²Uma descrição completa da técnica do gradiente descendente e do algoritmo LMS podem ser encontradas em (HAYKIN, 2001)

com a equação abaixo:

$$e_j(n) = d_j(n) - o_j(n)$$
 (90)

Propagação para trás (retropropagação):

Durante esta fase, o erro é propagado para trás em direção às entradas da RNA, atualizando-se os seus parâmetros livres de acordo com uma regra de correção do erro, de modo que a saída atual da rede aproxime-se da saída desejada. A forma como os parâmetros livres da rede são atualizados é dada pela *regra delta*, definida a seguir (HAYKIN, 2001).

$$\Delta w_{ii}(n) = \eta \cdot \delta_i(n) \cdot y_i(n) \tag{91}$$

Onde:

n é o índice da iteração;

 $\Delta w_{ji}(n)$ é a correção de peso aplicada na conexão entre o neurônio i e o neurônio j; η é o parâmetro taxa de aprendizagem;

 $\delta_j(n)$ é o gradiente local do neurônio j;

 $y_i(n)$ é o sinal de entrada do neurônio j, ou o sinal de saída do neurônio i.

O gradiente local do neurônio é definido como a derivada da função custo $\xi(n)$ com relação ao campo local induzido $\nu_j(n)$, apontando para as modificações necessárias aos pesos sinápticos de modo que a função custo tenha seu valor reduzido. O cálculo do gradiente local é possível tanto para neurônios da camada de saída, quanto para neurônios da camada oculta. Desta forma é resolvido o problema da atribuição de crédito. A taxa de aprendizagem η indica o tamanho do *passo* do algoritmo, logo, sua velocidade de convergência.

As equações utilizadas no cálculo do gradiente local serão apresentadas a seguir. Sua dedução completa não será apresentada neste trabalho, podendo ser encontradas com de-

talhes na referência bibliográfica.

Gradiente local de um neurônio localizado na camada de saída:

$$\delta_j(n) = e_j(n) \cdot \varphi_j'(\nu_j(n)) \tag{92}$$

Gradiente local de um neurônio localizado na camada oculta *j*:

$$\delta_j(n) = \varphi_j'(\nu_j(n)) \cdot \sum_k \delta_k(n) \cdot w_{kj}(n)$$
(93)

Onde:

k é o índice do(s) neurônio(s) à direita do neurônio j;

 $\varphi_j'\left(\nu_j(n)\right)$ é a derivada da função de ativação.

5.6.2.3 Resumo do Algoritmo de Retropropagação

A computação para frente e para trás é realizada iterativamente para cada padrão (vetor) aplicado à entrada da RNA, até a apresentação de todos os padrões (época). Os parâmetros livres da rede são ajustados para cada padrão apresentado de acordo com o erro calculado, buscando minimizar $\xi(n)$. A média aritmética de todas essas alterações corresponde a uma estimativa da alteração real que ocorreria se fosse considerada a minimização da função de custo *erro médio quadrático* (EMQ), sobre o todo o conjunto de treinamento, definido por:

$$\xi_{med} = \frac{1}{N} \sum_{n=1}^{N} \xi(n)$$
 (94)

O EMQ é a medida de desempenho utilizada pelo algoritmo de RP, representando a função custo a ser minimizada. A Figura 46 a seguir apresenta uma ilustração gráfica do processo de aprendizagem de um neurônio utilizando o algoritmo LMS, no qual o algoritmo de RP é baseado.

Segundo Haykin (2001) o algoritmo de retropropagação pode ser resumido nos seguintes passos:

Figura 46: Ilustração do processo de aprendizagem.

Passo 1: Inicialização;

Inicializa-se os pesos sinápticos e níveis de bias com valores aleatórios de uma distribuição uniforme com média zero e com desvio padrão tal que os campos locais induzidos dos neurônios se encontrem na região de transição entre as partes linear a saturada da função sigmóide.

Passo 2: Apresentação dos exemplos de treinamento;

Apresenta-se uma época de exemplos de treinamento e para cada exemplo executa-se a computação para frente e para trás, dadas pelos passos 3 e 4.

Passo 3: Computação para frente;

Calculam-se os sinais de saída para os neurônios da rede pelas equações (89) e (88). De forma mais geral:

$$\nu_j^{(l)}(n) = \sum_{i=0}^m w_{ji}^{(l)}(n) \cdot y_i^{(l-1)}(n)$$
(95)

$$y_j^{(l)}(n) = \varphi\left(\nu_j^{(l)}(n)\right) \tag{96}$$

Onde l é o índice da camada em que o neurônio se encontra localizado, variando de 1

(camada de entrada) até L (camada de saída) e j é o índice do neurônio na camada l.

Calcula-se o sinal de erro pela equação (85):

$$e_i(n) = d_i(n) - o_i(n) \tag{97}$$

Onde $y_{j}^{(L)}(n) = o_{j}(n)$.

Passo 4: Computação para trás;

Calculam-se os gradientes locais da rede pelas equações 92 e 93 re-escritas abaixo de uma forma mais geral.

$$\delta_{j}(n) = \begin{cases} e_{j}^{(l)}(n) \cdot \varphi_{j}' \left(\nu_{j}^{(l)}(n)\right) \\ \varphi_{j}' \left(\nu_{j}^{(l)}(n)\right) \cdot \sum_{k} \delta_{k}^{(l+1)}(n) \cdot w_{kj}^{(l+1)}(n) \end{cases}$$
(98)

A primeira equação é usada no caso do neurônio estar localizado na camada de saída, enquanto a segundo se o mesmo estiver na camada oculta *l*.

Atualizam-se os pesos de acordo com a regra delta:

$$w_{ii}^{(l)}(n+1) = w_{ii}^{(l)}(n) + \eta \cdot \delta_i^{(l)}(n) \cdot y_i^{(l-1)}(n)$$
(99)

Passo 5: Iteração.

Realizam-se os passos 3 e 4 até a apresentação de todos os exemplos de treinamento, em seguida volta-se ao passo 2 apresentando-se os exemplos de treinamento novamente, porém em uma ordem diferente das épocas anteriores. Após cada época, calcula-se o EMQ e se este estabilizar ou estiver abaixo de um determinado valor, então o algoritmo chegou ao ponto de mínimo.

O ponto de mínimo encontrado pelo algoritmo pode ser um mínimo local, neste caso, pode-se inicializar novamente a rede (passo 1) e buscar uma outra trajetória dos pesos sinápticos de modo que o EMQ mínimo desejado seja encontrado.

6 METODOLOGIA DE LOCALIZAÇÃO PROPOSTA

Neste capítulo será descrita em detalhes a metodologia de localização de faltas de alta impedância proposta.

6.1 Visão Geral

Conforme já mencionado neste trabalho, os relés de proteção digitais vêm sendo amplamente utilizados em novas instalações de distribuição de energia elétrica, além de estarem gradativamente substituindo os tradicionais relés eletromecânicos. A arquitetura computacional programável, na qual os relés digitais são baseados, permite a implementação de inúmeras funções de proteção em um único dispositivo. Cada função consiste de uma sub-rotina do software principal que é executado continuamente no relé. A Tabela 1 apresenta uma lista das funções primárias de um relé digital de proteção de alimentadores. Além das funções de proteção, um relé digital pode possuir funções de monitoramento, como oscilografia, armazenagem da seqüência dos últimos eventos ocorridos, localização de faltas, entre outras (SELINC, 2004).

A metodologia proposta foi desenvolvida para ser utilizada como uma função de monitoramento extra de um relé de proteção digital. O esquema consiste de um programa computacional que pode ser instalado como uma rotina do software interno do relé. Assim, na presença de uma falta em algum dos alimentadores monitorados, o relé, após tomar as ações corretivas para isolar o defeito, utiliza os dados oscilográficos adquiridos

Tabela 1: Funções de um relé digital de proteção de alimentadores

Funções de proteção	Descrição
50/51	Sobrecorrente de fase instantânea e temporizada
50/51G	Sobrecorrente residual instantânea e temporizada
50/51N	Sobrecorrente instantânea e temporizada de neutro
50/51Q (46)	Sobrecorrente instantânea e temporizada de seq. neg.
67/67G/67Q	Sobrecorrente direcional de fase, residual e de seq. neg.
67N	Sobrecorrente direcional de neutro
25	Verificação de sincronismo
79	Religamento automático, até quatro tentativas
27/59	Subtensão e sobretensão fase-neutro e entre fases
59G	Sobretensão residual
59Q (47)	Sobretensão de sequência negativa
50/62BF	Falha de disjuntor
60	Perda de potencial
81	Sub / Sobrefreqüência
51/67HZ	Sobrecorrente direcional de neutro de alta sensibilidade

Fonte: Selinc (2004)

durante a perturbação para calcular uma estimativa da localização da falta.

O esquema proposto é utilizado *offline*, ou seja, após a ocorrência da falta. Para isso, é necessária a detecção da falta por parte de relé. No caso de FAIs, estas podem não ser detectadas por relés de sobrecorrente baseados na medida da componente fundamental da corrente. A informação da ocorrência de uma FAI pode ser também obtida por detectores específicos ou de chamadas telefônicas de consumidores. Neste caso, a rotina de localização de FAI pode ser acionada remotamente pelo operador do sistema, via sistema SCADA, ou localmente, pelo painel de controle do relé na subestação.

Sistemas de distribuição de energia geralmente abrangem grandes áreas, o que os torna suscetíveis a ocorrência de faltas de causas variadas. Uma metodologia de localização de faltas para tais sistemas deve levar em conta este fator e considerar tanto a ocorrência de faltas de alta como de baixa impedância no cálculo da estimativa da localização da falta.

6.2 Estrutura

O processo de localização de faltas é executado com base em informações coletadas no sistema. Em SDE, tais informações podem ser, por exemplo, valores de tensão e corrente medidos na saída do alimentador na subestação. Em alguns casos, podem existir dispositivos instalados ao longo da rede e com disponibilidade de controle e acesso remoto (BASTARD et al 2002). Neste trabalho, não é considerada a presença de informações distribuídas ao longo de alimentadores de distribuição de energia. Assim sendo, todas as informações relativas à distância de ocorrência da falta são obtidas localmente, ou seja, através de medições na subestação. Esta característica torna simples a instalação do localizador, sem a necessidade de elevados investimentos em equipamentos de monitoração da rede.

Nos métodos de localização de faltas apresentados no Capítulo 3 deste trabalho, foi visto que apenas os valores de tensão e corrente na freqüência fundamental presentes na subestação são suficientes para a localização de faltas. Porém, nos métodos apresentados anteriormente, a impedância da falta era modelada como uma simples resistência linear. Para faltas de alta impedância, cujas características foram apresentadas no Capítulo 4, este modelo não representa corretamente os efeitos deste tipo de falta, onde há a ocorrência de arco-elétrico (TENGDIN; et al., 1996).

A característica não-linear e a baixa amplitude da corrente de falta produzida por uma FAI faz com que a medida dos fasores de corrente e tensão de freqüência fundamental não possam ser utilizados para caracterizar este tipo de defeito. Então, faz-se necessário obter, a partir dos sinais de corrente e tensão do alimentador, informações adicionais relativas somente à faltas da alta impedância. Algumas das informações que podem ser utilizadas para este fim são a randomicidade e a energia das harmônicas produzidas pela

FAI (BENNER; RUSSEL, 1997). Assim sendo, uma das etapas de uma metodologia de localização de FAIs é a extração de características dos sinais de entrada.

Feita a extração de características dos sinais de entrada, estas devem ser analisadas através de um algoritmo, do qual resultará uma indicação da ocorrência ou não da falta bem como sua provável localização. Diversos métodos vem sendo utilizados para este fim na literatura. Pode-se citar sistemas especialistas (BENNER; RUSSEL, 1997), regras de decisão (MOMOH; DIAS; LAIRD, 1997), lógica nebulosa (*fuzzy*) (JOTA; JOTA, 1998), árvores de decisão (SHENG; ROVNYAK, 2004) e redes neurais artificiais (AL-DABBAGH; AL-DABBAGH, 1999; SHARAF; SNIDER; DEBNATH, 1993; BUTLER; MOMOH, 2000).

Então, pode-se representar uma metodologia de localização de FAIs através de um diagrama de blocos simplificado, apresentado na Figura 47.

Figura 47: Diagrama de blocos simplificado da metodologia proposta.

Na primeira etapa, os dados oscilográficos são adquiridos no relé. Geralmente, estes dados são constituídos de alguns ciclos pré e pós falta, os quais devem ser corretamente identificados no conjunto de amostras fornecido. O instante de ocorrência da falta é chamado *ponto de incidência de falta* e deve ser determinado corretamente antes da execução do algoritmo de localização de faltas e do cálculo dos fasores. A Figura 48 ilustra um conjunto de dados de corrente elétrica para uma falta fase-fase onde é destacado o ponto de incidência da falta.

Figura 48: Ilustração do ponto de incidência em uma falta fase-fase.

Em função disto, é possível adicionar à metodologia um bloco responsável por determinar o ponto de incidência da falta, o qual é dado pelo número da amostra do sinal oscilográfico que corresponde ao instante inicial da falta. Na mesma etapa pode ser determinado também o tipo da falta (fase A-terra, fase B-terra, fases BC-terra, etc). O novo diagrama de blocos é apresentado da Figura 49.

Figura 49: Diagrama de blocos da metodologia proposta.

Nas seções seguintes serão apresentados separadamente e em detalhes cada bloco da metodologia de localização de faltas proposta.

6.3 Extração de características (pré-processamento) dos dados

Conforme visto no Capítulo 4, as FAIs não podem ser identificadas da mesma forma que faltas de baixa impedância. Isto se deve a baixa amplitude de corrente produzida e

a não-linearidade inerente à presença do arco elétrico no ponto da falta. Assim sendo, diversas informações diferentes foram extraídas dos sinais de corrente e tensão de modo a caracterizar totalmente as faltas.

Buscou-se na literatura quais são as grandezas extraídas dos sinais que melhor caracterizam uma FAI. Através dos trabalhos de Emanuel et al. (1990) observou-se que o módulo e o ângulo de fase da 2ª, 3ª e 5ª harmônicas da corrente medida podem ser utilizados para este fim. Jeerings e Linders (1990) demonstraram que a medida da defasagem angular entre a 3ª harmônica de corrente a a componente de freqüência fundamental da tensão apresenta uma relação singular com a presença de uma FAI.

Assim sendo, desenvolveu-se o extrator de características apresentado na Figura 50.

Figura 50: Diagrama de blocos do pré-processamento do sinal.

Os sinais trifásicos da tensão e da corrente do alimentador são aplicados a um filtro de Fourier (FF) considerando um ciclo da freqüência fundamental do sistema. A equação do filtro de Fourier para a estimação de fasores pode ser dada pela equação (100), conforme Phadke & Thorp (1988).

$$Y^{k} = \frac{2}{N} \cdot \sum_{n=1}^{N} y(n) \cdot \left[\cos \left(\frac{2\pi nk}{N} \right) + j \cdot \sin \left(\frac{2\pi nk}{N} \right) \right]$$
 (100)

Onde:

 Y^k Fasor estimado da harmônica de ordem k;

y Sinal amostrado;

N Número de amostras por ciclo;

n Número da amostra;

k Ordem da harmônica considerada (k = 1, 2, 3, ...);

São então calculados os fasores trifásicos de tensão e corrente fundamentais e corrente trifásica de 2ª, 3ª e 5ª harmônicas. A defasagem angular entre a 3ª harmônica de corrente e a fundamental de tensão é calculada diretamente a partir dos fasores obtidos.

6.3.1 Componente DC e estimação de fasores

Um aspecto importante que deve ser levado em conta na estimação dos fasores é a presença da componente DC no sinal analisado. Esta surge durante transitórios em circuitos R-L, e seu valor diminui em função da constante de tempo do circuito. A presença da componente DC é comum em faltas sólidas ou de baixa impedância em sistemas de transmissão e distribuição. Pode-se entender melhor sua origem através da analise de um circuito R-L simples, como o da Figura 51.

Figura 51: Circuito R-L.

Da aplicação da lei das malhas elétricas de Kirchhoff resulta a equação diferencial (101), cuja solução para i(t) com a chave fechando em t=0 e $e=V_m\cdot\sin(\omega t+\alpha)$ é dada pela equação (102) (GROSS, 1986).

$$e = L \cdot \frac{di}{dt} + i \cdot R \tag{101}$$

$$i = \frac{V_m}{\sqrt{R^2 + (\omega \cdot L)^2}} \cdot \left[\sin(\omega \cdot t + \alpha - \phi) - \sin(\alpha - \phi) \cdot e^{-(R/L) \cdot t} \right]$$
(102)

Onde $\phi = \arctan\left(\frac{\omega L}{R}\right)$. O termo $\sin(\alpha - \phi) \cdot e^{-(R/L) \cdot t}$ é a chamada componente DC. Nota-se que sua amplitude diminui exponencialmente ao longo do tempo. O ângulo α está relacionado com o instante do ciclo senoidal em que a chave é fechada, ou ângulo de incidência. Se $\alpha = \phi$ então a componente DC não aparece.

A componente DC pode apresentar valores significativos durante vários ciclos da freqüência fundamental (LIN; LIU, 2002). O filtro de Fourier apresentado anteriormente é amplamente utilizado na estimação de fasores devido a sua simplicidade e capacidade de rejeitar harmônicas indesejadas. No entanto sua performance é degradada na presença da componente DC, resultando em erros na estimação dos fasores e podendo levar o sistema de proteção a atuar errôneamente bem como prejudicar o cálculo da distância de falta (LIN; LIU, 2002; PHADKE; THORP, 1988).

Conforme Phadke & Thorp (1988), o método tradicional de eliminação da componente DC faz uso do chamado *mimic circuit*. Este consiste de um circuito L-R série ligado na saída do transformador de corrente utilizado na medição do sinal. O sinal de corrente contendo a componente DC é então transformado em um sinal de tensão medido sobre o circuito mimic, conforme a Figura 52.

Figura 52: Circuito mimic.

Os valores de l e r são escolhidos próximos dos valores de L e R do sistema. Deste modo, o sinal de tensão (v) medido sobre o circuito mimic será proporcional a corrente

medida sem a componente DC.

O circuito mimic é utilizado em conjunto com o filtro de Fourier na estimação de fasores. As incertezas associadas com a constante de tempo da componente DC (ângulo de incidência, distância da falta, mudanças na topologia do sistema, etc.) fazem com que o circuito mimic não a elimine completamente. Além disto, as harmônicas presentes no sinal tendem a ser amplificadas pelo circuito mimic (PHADKE; THORP, 1988).

Em função disto Lin & Liu (2002) desenvolveram um algoritmo baseado no filtro de Fourier para a eliminação da componente DC. Este algoritmo foi utilizado na estimação dos fasores neste trabalho. O método em questão faz uso do cálculo de três fasores consecutivos através do filtro de Fourier tradicional para estimar a constante de tempo da componente DC e com isso eliminar totalmente sua influência no cálculo do fasor.

O filtro de Fourier tradicional pode ser re-escrito da seguinte forma:

$$Y_r^k = \frac{2}{N} \cdot \sum_{n=0}^{N-1} y(n+r) \cdot e^{-j\frac{2\pi nk}{N}}$$
 (103)

Onde:

 Y_r^k Fasor estimado da harmônica de ordem k;

y Sinal amostrado;

r Número da amostra inicial do ciclo considerado;

Número de amostras por ciclo;

n Número da amostra;

k Ordem da harmônica considerada (k = 1, 2, 3, ...);

O fasor sem influência da componente DC é calculado da seguinte forma (LIN; LIU, 2002):

$$\widehat{Y}_r^k = \frac{d \cdot Y_r^k - Y_{r+1}^k}{d - a_k} \tag{104}$$

Onde,

$$a_k = e^{j\frac{2\pi k}{N}}$$
 e $d = \frac{a_1 \cdot Y_{r+1}^1 - Y_{r+2}^1}{a_1 \cdot Y_r^1 - Y_{r+1}^1}.$ (105)

Assim, através do filtro de Fourier modificado proposto por Lin & Liu (2002) exposto na equação (104) é possível o cálculo dos fasores de freqüência fundamental e harmônicas eliminando o efeito da componente DC.

6.3.2 Cálculo das componentes simétricas

A última etapa do bloco de pré-processamento dos dados é o cálculo das componentes simétricas dos fasores de corrente. Assim, pode-se medir o desequilíbrio entre as fases e possibilitar a identificação do tipo da falta. O cálculo é feito a partir do teorema de Fortescue, o qual estabelece que um conjunto de N tensões (ou correntes) de fase desequilibrado pode ser decomposto em N conjuntos equilibrados de fases chamados de componentes simétricas (GROSS, 1986).

Dado que $a=1\angle 120^o$, as componentes simétricas de um sistema trifásico são calculadas através da seguinte transformação:

$$\begin{bmatrix} V_A^{(0)} \\ V_A^{(1)} \\ V_A^{(2)} \\ V_A^{(2)} \end{bmatrix} = \frac{1}{3} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \cdot \begin{bmatrix} V_A \\ V_B \\ V_C \end{bmatrix} \quad \mathbf{e} \quad \begin{bmatrix} I_A^{(0)} \\ I_A^{(1)} \\ I_A^{(2)} \\ I_A^{(2)} \end{bmatrix} = \frac{1}{3} \cdot \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \cdot \begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix}$$
(106)

Onde os índices (0), (1) e (2) indicam as três componentes simétricas, chamadas de seqüência zero, positiva e negativa, respectivamente.

6.4 Identificação do tipo da falta e ponto de incidência

A etapa de identificação do tipo da falta e determinação do ponto de incidência é baseada no trabalho de Sharaf, Snider & Debnath (1993). O método citado foi estendido para identificar também faltas de baixa impedância e modeladas como resistências lineares.

O método aqui proposto consiste na aplicação do módulo dos fasores de seqüência positiva (1), negativa (2) e zero (0) das componentes harmônicas de 1^a, 2^a, 3^a e 5^a ordem da corrente em uma rede neural artificial do tipo alimentada adiante e totalmente conectada.

A RNA é treinada a partir de dados pós-falta de diversos casos envolvendo os dez tipos de faltas conhecidos: Faltas fase-terra (A-g, B-g e C-g), faltas entre duas fases e terra (AB-g, BC-g e AC-g), faltas fase-fase (AB, BC, AC) e faltas trifásicas (ABC-g). Os tipos de falta estão ilustrados na Figura 53. Também devem ser considerado no treinamento da RNA casos não faltosos. Em função das grandezas de entrada escolhidas para a RNA, esta possui em sua camada de entrada informações suficientes para identificar uma falta de alta ou de baixa impedância e com isso possibilitando a identificação do ponto de incidência da falta ao longo do conjunto de dados obtidos do oscilógrafo ou do relé. A saída da RNA consiste de 10 sinais binários, sendo cada um ativado para um tipo distinto de falta. Uma saída nula representa o caso não faltoso.

Figura 53: Tipos de falta.

Para determinar o ponto de incidência da falta, é feita uma varredura ao longo de todo o intervalo de tempo dos sinais amostrados no oscilógrafo. Considere a Figura 54.

Figura 54: Varredura para identificação do ponto de incidência.

Os sinais de entrada da RNA são calculados para cada instante amostral utilizando conjuntos de amostras equivalentes a um ciclo da freqüência fundamental. Assim, podese visualizar o processo como uma "janela" de um ciclo que se desloca através dos dados amostrados em intervalos de uma amostra ((a), (b), e (c) da Figura 54). Para cada movimento da janela, os dados de entrada são calculados e aplicados as entradas da RNA já treinada. Quando uma falta é detectada, o número da amostra inicial da janela é armazenado. Se nos próximos quatro movimentos da janela o código da falta identificada permanecer o mesmo, significa que o número da amostra armazenada corresponde realmente ao ponto de incidência da falta. Um fluxograma do algoritmo de detecção do instante de ocorrência da falta é apresentado na Figura 55.

Tendo-se determinado o número da amostra correspondente à estimativa do instante inicial de ocorrência da falta e o tipo da falta, o processo de estimação de sua distância é então iniciado.

6.5 Estimativa da localização da falta

No presente trabalho, buscaram-se formas de extrair certas informações dos sinais oscilográficos de entrada que fossem representativos quanto a localização da falta de alta

Figura 55: Fluxograma do algoritmo de detecção do ponto de incidência.

impedância. As grandezas calculadas para este fim foram baseadas em estudos previamente publicados relativos a caracterização de faltas de alta impedância (EMANUEL et al., 1990; NAM et al., 2001; JEERINGS; LINDERS, 1990). Tais grandezas, conforme Capítulo 4 vêm sendo utilizadas em algoritmos de detecção de FAIs.

Desta forma, é proposto neste trabalho, a utilização da amplitude da 3ª harmônica da corrente juntamente com a diferença angular entre a 3ª harmônica da corrente e a componente fundamental de tensão para o localização de FAIs. Os valores de fundamentais de corrente e tensão também são utilizados para a estimação da localização de faltas de baixa impedância lineares.

Na Figura 56 é apresentado o diagrama de blocos da etapa de localização de faltas.

A partir da informação do ponto de incidência da falta, são extraídos dos dados oscilográficos as amostras correspondendo a um ciclo pós-falta. Este ciclo é aplicado ao bloco de extração de características apresentado na Seção 6.3. São extraídos então os

Figura 56: Diagrama de blocos da etapa de localização de faltas.

fasores trifásicos da tensão de freqüência fundamental e da 3^a harmônica da corrente. Em seguida é feita a montagem do vetor de dados a ser aplicado à entrada da RNA (vetor X) de acordo com o tipo da falta identificado na etapa anterior. O vetor X é calculado a partir dos fasores obtidos do pré-processamento e é constituído da seguinte maneira:

$$X = [|V^{1h}| |I^{1h}| |I^{3h}| \Delta \theta^{1h} \Delta \theta^{3h}]$$
 (107)

Onde:

 $|V^{1h}|$ Módulo do fasor fundamental de tensão;

 $|I^{1h}|$ Módulo do fasor fundamental de corrente;

 $|I^{3h}|$ Módulo do fasor da terceira harmônica da corrente;

 $\Delta \theta^{1h}$ Diferença angular entre V^{1h} e I^{1h} ;

 $\Delta \theta^{3h}$ Diferença angular entre V^{1h} e I^{3h} .

O bloco seguinte é constituído pela RNA treinada de acordo com o tipo da falta. Uma RNA é treinada para faltas do tipo fase-terra, fase-fase-terra e trifásica-terra. Uma segunda RNA, de treinamento distinto, é utilizada no caso de faltas fase-fase.

Exemplificando, considere uma falta fase A-terra. As grandezas aplicadas à entrada

da RNA serão o módulo da tensão pós-falta $(|V_A^{1h}|)$ da fase A, o módulo da corrente pós-falta da fase A $(|I_A^{1h}|)$, o módulo da 3^a harmônica da corrente pós-falta $(|I_A^{3h}|)$, a diferença angular entre tensão e corrente fundamentais da fase A $(\Delta\theta_A^{1h})$ e a diferença angular entre o fasor fundamental de tensão e de 3^a harmônica da corrente da fase A $(\Delta\theta_A^{3h})$. Para faltas fase-fase, as grandezas consideras serão dadas pela diferença entre as fases envolvidas na falta.

7 IMPLEMENTAÇÃO DA METODOLOGIA PROPOSTA

Conforme apresentado no capítulo anterior, a metodologia de localização de faltas proposta faz uso de dados oscilográficos obtidos a partir de relés digitais. A partir destes dados, são calculadas as grandezas de entrada utilizadas no algoritmo. No entanto, como o esquema proposto é baseado em RNA, um grande conjunto de dados faz-se necessário para a execução de seu processo de treinamento, o qual é baseado na apresentação de diversos casos faltosos distintos em um mesmo alimentador à entrada da RNA para que esta "aprenda" através de exemplos a localização da falta.

A aquisição de dados reais de faltas em SDE para o treinamento de RNAs é inviável dada a quantidade de casos faltosos necessários para tal fim, que é da ordem de centenas. O processo de aquisição de dados exigiria longos períodos de monitoração do alimentador sem a garantia de ocorrência de casos adequados e suficientes de faltas. A aplicação deliberada de faltas experimentais em alimentadores também não é viável em função da complexidade e do custo de tal empreendimento que poderia inclusive degradar a qualidade da energia fornecida aos consumidores conectados no alimentador sob teste.

Sendo assim, a solução encontrada para a obtenção dos dados necessário ao treinamento das RNAs foi a modelagem do alimentador e suas cargas em um simulador computacional de transitórios em sistemas de potência. O uso do *software* de simulação permite a obtenção do número de casos faltosos que se fizerem necessários, variando-se o tipo de

falta, sua localização, topologia do sistema, dentre outros.

Para a obtenção dos dados oscilográficos necessários, foi utilizado neste trabalho o software ATP-EMTP. O Alternative Transients Program (ATP) (PRIKLER; HOIDALEN, 2002) é uma interface gráfica para o Electromagnetics Transient Program (EMTP), um programa computacional para simulações de fenômenos transitórios de natureza eletromecânica e eletromagnética em sistemas de potência. No ATP-EMTP podem ser simulados redes elétricas complexas e sistemas de controle de estrutura arbitrária.

A metodologia proposta de localização de faltas foi implementada no software Matlab (The Matworks Inc., 2002). O Matlab (*Matrix laboratory*) é um software desenvolvido para computações numéricas e elaboração de gráficos amplamente utilizado em trabalho científicos. Uma linguagem de programação própria é disponibilizada ao usuário, o qual tem a sua disposição um grande número de funções que podem ser utilizadas para solução de problemas numéricos nas mais variadas áreas de estudo (solução de sistemas lineares, processamento de sinais, redes neurais, otimização, lógica fuzzy, etc). Seu uso é ideal para a implementação e testes de novas metodologias, que posteriormente podem ser implementadas em linguagens de programação universais, como C, C++, Pascal e Fortran.

7.1 Sistema de distribuição utilizado

O sistema de distribuição simulado consiste de um alimentador radial com diversas cargas intermediárias adaptado da referência (WAKILEH; PAHWA, 1997). As diversas ramificações presentes no sistema original foram agregadas e substituídas por cargas equivalentes. A Figura 57 apresenta um diagrama unifilar do sistema simulado. Os dados de linha e cargas estão expostos na Tabela 2.

Para fins de simulações de localização de faltas, julgou-se necessário a criação de mais pontos de aplicação da falta além dos 14 nós apresentados pelo sistema. Uma seg-

Figura 57: Diagrama unifilar do alimentador simulado.

Q_{carga} [kVAr] Barra Distância $\overline{\mathbf{R}_{carga}}$ \mathbf{R}_{linha} \mathbf{X}_{linha} $\mathbf{X}_{\text{carga}}$ $[\Omega/km]$ $[\Omega]$ Comprimento Acumulada $[\Omega/km]$ $R[\Omega]$ $X[\Omega]$ [kW] $[\Omega]$ 0 4,18 4,18 0,28 0,27 1,154 1,141 2646 882 64,8 21,6 2 1,26 5,44 0,28 0,27 0,348 0,344 522 174 328,3 109,4 6,71 1632 3 1,26 0,28 0,27 0,348 0,344 4896 35,0 11,7 3 4 2,19 8,90 0,28 0,27 0,603 0,597 312 936 183,1 61,0 4 9,93 0,27 0 0 5 1.03 0.28 0.284 0.281 5 6 1.93 11,86 0,28 0,27 0,533 0,527 1806 602 94,9 31,6 0,27 6 1,58 13,44 0,28 0,436 0,431 0 7 1.58 0,436 1503 501 38.0 8 15.02 0.28 0.27 0.431 114.0 8 9 1,55 16,57 0,28 0,27 0,428 0,423 189 63 906,9 302,3 10 1,55 0,28 0,27 0,428 0,423 0 18,13 0 10 11 4,65 22,78 0.28 0,27 1.283 1.269 657 219 260,9 87.0

0,27

0,27

0,27

0,599

0,244

0,497

0,592

0,241

0,491

336

125

225

112

42

85

510,1

1369,0

740,7

170,0

460,0

279,8

Tabela 2: Dados do alimentador simulado.

mentação foi então realizada no sistema descrito acima de modo que cada segmento de linha apresentasse comprimento de aproximadamente 400m, resultando em um total de 67 pontos de aplicação da falta. A tabela com os dados do sistema segmentado pode ser vista no Anexo A.

7.2 Simulações no ATP-EMTP

11 12

12 13

2,17

0,89

1,80

24,95

25,84

27,64

0,28

0,28

0,28

O alimentador de distribuição da Figura 57 com 67 pontos de aplicação da falta foi implementado no software ATP-EMTP. Uma ilustração da tela principal do programa com o alimentador descrito pode ser vista no Anexo B. No Anexo C, o mesmo alimentador é descrito através de um arquivo texto, o qual é utilizado como dado de entrada pelo simulador de transitórios eletromagnéticos EMTP.

Os segmentos de linha do alimentador foram modelados como circuitos RL série, sem consideração de acoplamento entre as fases do sistema trifásico. As cargas são modela-

das como impedância constante com ligação Y, tendo o terminal de neutro aterrado. As faltas lineares foram modeladas como simples resistências, enquanto as FAIs foram modeladas utilizando o modelo de Emanuel et al. (1990), apresentado na Figura 31 da Seção 4.2.2. A forma de ligação conforme o tipo da falta foi feito de acordo com a Figura 53. A freqüência amostral utilizada nas simulações foi de 11520 amostras por segundo, resultando em 192 amostras por ciclo de 60Hz. O tempo de simulação considerado foi de 66,6 milisegundos, o que resulta em 4 ciclos de 60Hz. A ocorrência das faltas se deu no instante correspondente ao início do segundo ciclo de simulação. Na fase A, este instante corresponde a um ângulo de incidência de falta de 0°.

De modo a agilizar o processo de simulação dos diversos casos faltosos, foi desenvolvido um programa auxiliar utilizando linguagem C de programação. Este programa executa as modificações necessárias no arquivo texto de entrada do EMTP de modo a executar automaticamente 67 simulações, cada uma tendo a falta aplicada em um ponto diferente do alimentador. Assim, o software ATP é utilizado apenas na implementação do caso base de simulação. Sendo as simulações executadas efetivamente através do programa auxiliar desenvolvido.

Com isso, centenas de simulações puderam ser executadas. A Tabela 3 apresenta uma relação de todos os casos simulados. Para cada caso, foi simulada uma falta em cada um dos 67 nós presentes no alimentador, resultando em um total de 4020 simulações.

Tabela 3: Casos simulados.

Nome do caso	Tipo de falta	Modelo de falta	Carregamento
A1	A-g	HIF	100%
A2	A-g	HIF	50%
A3	A-g	RF = 0 ohm	100%
A4	A-g	RF = 10 ohm	100%
A5	A-g	RF = 20 ohm	100%
A6	A-g	RF = 50 ohm	100%
A7	A-g	RF = 100 ohm	100%
AA	A-g	RF = 0 ohm	50%

Nome do caso	Tipo de falta	Modelo de falta	Carregamento
AB	A-g	RF = 10 ohm	50%
AC	A-g	RF = 20 ohm	50%
AD	A-g	RF = 50 ohm	50%
AE	A-g	RF = 100 ohm	50%
B1	B-g	HIF	100%
B2	B-g	HIF	50%
C1	C-g	HIF	100%
C2	C-g	HIF	50%
D1	AB-g	HIF	100%
D2	AB-g	HIF	50%
E1	BC-g	HIF	100%
E2	BC-g	HIF	50%
E3	BC-g	RF = 0 ohm	100%
E4	BC-g	RF = 10 ohm	100%
E5	BC-g	RF = 20 ohm	100%
E6	BC-g	RF = 50 ohm	100%
E7	BC-g	RF = 100 ohm	100%
EA	BC-g	RF = 0 ohm	50%
EB	BC-g	RF = 10 ohm	50%
EC	BC-g	RF = 20 ohm	50%
ED	BC-g	RF = 50 ohm	50%
EE	BC-g	RF = 100 ohm	50%
F1	AC-g	HIF	100%
F2	AC-g	HIF	50%
G1	AB	HIF	100%
G2	AB	HIF	50%
H1	BC	HIF	100%
H2	BC	HIF	50%
H3	BC	RF = 0 ohm	100%
H4	BC BC	RF = 10 ohm	100%
H5	BC	RF = 20 ohm	100%
H6	BC	RF = 50 ohm	100%
H7	BC	RF = 100 ohm	100%
HA	BC	RF = 0 ohm	50%
НВ	BC BC	RF = 10 ohm	50%
HC	BC BC	RF = 20 ohm	50%
HD	BC BC	RF = 50 ohm	50%
HE	BC BC	RF = 100 ohm	50%
III.	AC AC	HIF	100%
I2	AC AC	HIF	50%
J1	ABC-g	HIF	100%
J2	ABC-g ABC-g	HIF	50%
J2 J3	ABC-g ABC-g	RF = 0 ohm	100%
J3 J4			
J4 J5	ABC-g	RF = 10 ohm	100%
J6	ABC-g ABC-g	RF = 20 ohm	100%
Јб Ј7	ABC-g ABC-g	RF = 50 ohm RF = 100 ohm	100%
JA			100%
	ABC-g	RF = 0 ohm	50% 50%
JB IC	ABC-g	RF = 10 ohm	50% 50%
JC	ABC-g	RF = 20 ohm	50%
JD	ABC-g	RF = 50 ohm	50%
JE	ABC-g	RF = 100 ohm	50%

7.3 Obtenção dos padrões de entrada das RNAs

Um *script*¹ de execução utilizando as funções do software Matlab foi desenvolvido para executar o pré-processamento dos sinais de tensão e corrente obtidos das simulações. O *script* importa os dados dos arquivos de saída do EMTP para o espaço de trabalho do Matlab. Em seguida são calculados os diversos fasores, utilizando-se o filtro de Fourier modificado descrito na Seção 6.3.1. Feito o pré-processamento para cada simulação realizada, é então montada uma matriz de dados onde as colunas representam os valores calculados e as linhas a simulação correspondente. Os valores presentes na matriz são normalizados de modo a apresentarem valores entre 0 e 1, adequados para o treinamento e teste das RNAs.

7.3.1 Identificação do ponto de incidência e tipo de falta

Para a etapa de detecção do ponto de incidência e tipo de falta é utilizado o módulo das componentes simétricas de corrente para freqüência fundamental e sua 2ª, 3ª e 5ª harmônicas. A matriz de dados resultante para esta etapa é então ilustrada a seguir:

$$Z_{detect} = \begin{bmatrix} |I_{1h}^{(0,1,2)}|^k & |I_{2h}^{(0,1,2)}|^k & |I_{3h}^{(0,1,2)}|^k & |I_{5h}^{(0,1,2)}|^k \\ \vdots & \vdots & \vdots & \vdots \\ |I_{1h}^{(0,1,2)}|^K & |I_{2h}^{(0,1,2)K}|^K & |I_{3h}^{(0,1,2)K}|^K & |I_{5h}^{(0,1,2)K}|^K \end{bmatrix}$$
(108)

Onde:

 Z_{detect} Matriz de características para detecção do ponto de incidência da falta;

 $|I^{(0,1,2)}|$ Módulo das componentes de sequência 0, +e- da corrente;

k Índice da simulação (k = 1, ..., K);

K Número total de simulações.

¹Um *script* pode ser definido como uma seqüência predeterminada de ações ou comandos que são executados por um programa principal, chamado de interpretador. Neste caso, o interpretador é o próprio Matlab.

Os valores dos elementos da matriz da equação (108) são normalizados com relação ao máximo valor do módulo da corrente fundamental encontrado na matriz, desta forma, mantém-se as relações entre as harmônicas e a componente fundamental inalteradas.

7.3.2 Estimativa da localização da falta

O conjunto de características dos sinais de entrada utilizados na etapa de localização difere do conjunto descrito anteriormente. Conforme visto na Seção 6.5, a matriz de características utilizada nesta etapa é então constituída da seguinte forma:

Onde:

 Z_{loc} Matriz de características para estimativa da localização da falta;

 $|V^{1h}|$ Módulo do fasor fundamental de tensão;

 $|I^{1h}|$ Módulo do fasor fundamental de corrente;

 $|I^{3h}|$ Módulo do fasor da terceira harmônica da corrente;

 $\Delta \theta^{1h}$ Diferença angular entre V^{1h} e I^{1h} ;

 $\Delta \theta^{3h}$ Diferença angular entre V^{1h} e I^{3h} .

k Índice da simulação (k = 1, ..., K);

K Número total de simulações.

Os dados que compõem a matriz Z_{loc} são calculados levando-se em consideração o tipo de falta. No caso de faltas fase-terra, os dados são calculados a partir da fase faltosa. Para faltas fase-fase-terra e trifásicas é escolhida uma das fases faltosas para o cálculo das grandezas enquanto que para faltas fase-fase, é feita a subtração das fases envolvidas na falta e a partir daí extraídas as características.

Os valores de módulo da componente fundamental de tensão são normalizados em função do máximo valor ocorrido ao longo das K simulações. Da mesma forma são

normalizados os valores de diferença angular. Os módulos dos fasores de corrente são normalizados em função do seu máximo valor de freqüência fundamental ocorrido.

7.4 Criação e treinamento das RNAs

Foram utilizadas neste trabalho, três redes neurais artificiais: Uma para identificação do tipo da falta (RNA 1), outra para localização de faltas envolvendo terra (RNA 2) e uma terceira para localização de faltas fase-fase (RNA 3). Estas RNAs foram também implementadas no software Matlab, utilizando-se para isso um conjunto de funções chamado de *Neural Network Toolbox* fornecido com o software.

Todas as RNAs utilizadas são do tipo perceptron de múltiplas camadas totalmente conectadas e alimentadas no sentido camada de entrada-camada de saída (*feedforward multilayer perceptron*). As características básicas de cada RNA podem ser resumidas na Tabela 4. O número de neurônios presente na camada oculta de cada RNA foi escolhido de forma empírica.

Tabela 4: Características das RNAs utilizadas

Característica	RNA 1	RNA 2	RNA 3
Número de entradas	12	5	5
Número de saídas	10	1	1
Camadas ocultas	1	1	1
Neurônios ocultos	15	7	7
Função de ativação da camada oculta	logsig	logsig	logsig
Função de ativação da camada de saída	linear	linear	linear

A RNA 1 utilizada na identificação do tipo de falta e do ponto de incidência possui dez saídas. Uma das saídas é ativada para cada tipo de falta, conforme a Tabela 5.

A saída das RNA 2 e 3 assume um valor normalizado entre 0 e 1 em função do comprimento total do alimentador, o qual é de 27,640km.

		Saída								
Tipo de falta	1	2	3	4	5	6	7	8	9	10
A-g	1	0	0	0	0	0	0	0	0	0
B-g	0	1	0	0	0	0	0	0	0	0
C-g	0	0	1	0	0	0	0	0	0	0
AB-g	0	0	0	1	0	0	0	0	0	0
BC-g	0	0	0	0	1	0	0	0	0	0
AC-g	0	0	0	0	0	1	0	0	0	0
AB	0	0	0	0	0	0	1	0	0	0
BC	0	0	0	0	0	0	0	1	0	0
AC	0	0	0	0	0	0	0	0	1	0
ABC-g	0	0	0	0	0	0	0	0	0	1
Sem falta	1	0	0	0	0	0	0	0	0	0

Tabela 5: Saídas da RNA 1

7.4.1 Treinamento da RNA 1

O treinamento das RNAs foi realizado utilizando o algoritmo de Levenberg-Marquardt (HAGAN; MENHAJ, 1994), o qual é uma variação do algoritmo de retro-propagação de erro e se encontra já implementado no *Neural Network Toolbox* do software Matlab[©].

O conjunto de treinamento utilizado para a RNA responsável pela identificação do tipo da falta foi constituído de modo a englobar todos os 10 tipos de falta considerados, modelados tanto como faltas lineares quanto não-lineares (HIFs). Então, o conjunto de treinamento para a RNA 1 é constituído de 306 casos simulados, descritos a seguir.

- Dez tipos de falta: A-g, B-g, C-g, AB-g, BC-g, AC-g, AB, BC, AC, ABC-g;
- Seis modelos de falta: HIF, $R_f=0\Omega$, $R_f=10\Omega$, $R_f=20\Omega$, $R_f=50\Omega$ e $R_f=100\Omega$;
- Um caso não faltoso para cada modelo de falta;
- Cinco pontos de aplicação da falta: Nós 1, 15, 30, 50 e 67.

Os parâmetros de treinamento utilizados podem ser vistos na Tabela 6.

ParâmetroValorCritério de paradaErro médio quadrático (EMQ)

0,0001

0.3

Tabela 6: Parâmetros de treinamento da RNA 1.

7.4.2 Treinamento das RNAs 2 e 3

Valor

Taxa de aprendizagem

Foram utilizados 4 tipos de faltas distintos para a geração do conjunto de treinamento das RNAs utilizadas na etapa de estimativa da localização da falta: Fase-terra (fase A), fase-fase-terra (fases B e C), fase-fase (fases B e C), trifásica. Para cada caso simulado foram aplicadas faltas em 67 posições distintas do alimentador. Destas 67 posições, 51 (3/4) foram utilizadas na etapa de treinamento, sendo o restante utilizado para teste da metodologia.

Para a RNA 2, responsável pela localização de faltas envolvendo terra, o conjunto de treinamento é formado a partir de 2448 simulações, descritas a seguir:

- Quatro tipos de falta: A-g, BC-g, BC, ABC-g;
- Seis modelos de falta: HIF, $R_f=0\Omega,\ R_f=10\Omega,\ R_f=20\Omega,\ R_f=50\Omega$ e $R_f=100\Omega;$
- 51 posições de aplicação da falta em cada caso;
- Dois valores de carregamento 100% e 50%.

Para a RNA 3 utilizada na localização de faltas fase-fase são 612 simulações:

- Um tipo de falta: BC;
- Seis modelos de falta: HIF, $R_f=0\Omega$, $R_f=10\Omega$, $R_f=20\Omega$, $R_f=50\Omega$ e $R_f=100\Omega$;
- 51 posições de aplicação da falta em cada caso;
- Dois valores de carregamento 100% e 50%.

Os parâmetros de treinamento utilizados podem ser vistos na Tabela 7.

Tabela 7: Parâmetros de treinamento das RNA 2 e 3					
Parâmetro	Valor				
Critério de parada	Erro médio quadrático (EMQ)				
Valor	0,00005				
Taxa de aprendizagem	0,2				

7.5 Algoritmos para faltas de baixa impedância

Os algoritmos de localização de faltas de baixa impedância descritos no Capítulo 3 também foram implementados utilizando o software Matlab[©]. Estes algoritmos foram aplicados as mesmas simulações realizadas para a implementação da metodologia proposta, com o objetivo de obter dados comparativos entre ambos os esquemas.

Foram implementados o método de Takagi *et al* (1981), o método de Takagi para linhas curtas (TAKAGI et al., 1982) e o método de Lee *et al* (2004) desenvolvido especificamente para linhas de distribuição. Assim como na metodologia proposta, o cálculo dos fasores de entrada foi feito através da implementação do Filtro de Fourier modificado, proposto por Lin & Liu (2002), também no Matlab[©].

8 RESULTADOS OBTIDOS

Neste capítulo serão apresentados os resultados das metodologias de localização de faltas descritas neste trabalho. Apenas o primeiro método apresentado por Takagi *et al* (1981) não será exposto, pois este é formulado para linhas de transmissão longas, e seus resultados aplicados em um sistema de distribuição com cargas intermediárias não serão considerados em função do grande percentual de erro encontrado.

8.1 Resultados do método de Takagi para linhas curtas

A seguir, são apresentados os resultados de localização de faltas para o método proposto por Takagi $et\ al\ (1982)$ que leva em consideração linhas de curta distância (extensão menor do que 50km). No gráficos das Figuras 58 e 59 são apresentados os valores de erro obtidos em função da distância de falta para o sistema com carregamento original. Para o sistema com metade de seu carregamento, estes resultados estão expostos nas Figuras 60 e 61. As faltas foram aplicadas nos 67 nós do alimentador e os erros percentuais foram calculados em função do comprimento total do alimentador, que é de 27,64km, conforme a equação (110), onde x é a distância de falta.

$$\operatorname{erro}[\%] = \left| \frac{x_{desejado}[\text{km}] - x_{obtido}[\text{km}]}{27,64 \text{ km}} \cdot 100 \right|$$
 (110)

Figura 58: Resultado do método de Takagi para faltas A-g, BC-g e ABC-g.

Figura 59: Resultado do método de Takagi para falta BC.

Para faltas envolvendo terra (A-g, BC-g e ABC-g), os resultados foram expostos em um mesmo gráfico, dada a semelhança entre os resultados encontrados. Esta semelhança se deve ao fato de que a equação para para localização de faltas fase-terra é utilizada em ambos os casos, devido aos modelos de falta utilizados, apresentados na Figura 53. No caso de faltas fase-fase-terra e trifásicas, utilizou-se apenas uma das fases faltosas no cálculo da distância, uma vez que o sistema é assumido como não possuindo acoplamento entre as fases. Testes utilizando equações diferentes para cada tipo de falta foram realizados, obtendo-se resultados semelhantes. Os erros obtidos na implementação da metodologia podem ser melhor visualizados com a ajuda da Tabela 8 onde são apresen-

Figura 60: Resultado do método de Takagi para faltas A-g, BC-g e ABC-g com 50% de carga.

tados os valores de erro máximo, mínimo e médio para estas faltas. Para o sistema com 50% de carregamento, estes valores podem ser vistos na Tabela 9.

Tabela 8: Resultados do método de Takagi para linhas curtas com 100% de carga.

	$Rf=0\Omega$	Rf=10 Ω	$Rf=20\Omega$	$Rf=50\Omega$	Rf=100 Ω	FAI		
	Falta fase-terra							
Erro Mínimo [m]	0	19,35	69,10	71,87	135,44	44,22		
Erro Máximo [m]	7620,89	6719,77	7432,93	10697,45	12754,029	17613,48		
Erro Médio [m]	2098,97	3417,95	4508,53	6127,2	7250,78	10480,52		
Erro Médio [%]	7,59	12,37	16,31	22,16	26,23	37,91		
			Falta fa	se-fase-terra				
Erro Mínimo [m]	0	46,99	2,76	58,04	138,2	207,31		
Erro Máximo [m]	7623,66	6750,17	7366,59	10484,61	12289,63	17143,57		
Erro Médio [m]	2099,63	3411,72	4478,95	6008,09	6959,67	9344,06		
Erro Médio [%]	7,6	12,34	16,2	21,74	25,18	33,8		
			Falta	fase-fase				
Erro Mínimo [m]	0	19,34	33,17	93,983	165,85	91,21		
Erro Máximo [m]	7620,89	7106,75	6733,59	8215,20	10589,65	12836,95		
Erro Médio [m]	2098,72	2672,15	3415,19	4880,71	6066,84	7660,58		
Erro Médio [%]	7,59	9,66	12,35	17,65	21,94	27,71		
		Falta trifásica-terra						
Erro Mínimo [m]	0	46,99	2,76	58,04	138,21	207,31		
Erro Máximo [m]	7623,66	6750,17	7366,59	10484,61	12289,63	17143,57		
Erro Médio [m]	2099,63	3411,72	4478,95	6008,09	6959,67	9344,06		
Erro Médio [%]	7,59	12,34	16,20	21,73	25,17	33,80		

Figura 61: Resultado do método de Takagi para falta BC com 50% de carga.

Tabela 9: Resultados do método de Takagi para linhas curtas com 50% de carga.

	Rf= 0Ω	Rf=10 Ω	$Rf=20\Omega$	Rf=50 Ω	Rf=100 Ω	FAI			
	Falta fase-terra								
Erro Mínimo [m]	2,764	69,105	30,406	74,633	38,699	8419,753			
Erro Máximo [m]	4815,236	3856,059	6396,359	10667,048	13937,096	23625,617			
Erro Médio [m]	1247,644	2488,275	3902,762	6723,896	9172,936	18443,32			
Erro médio [%]	4,51	9,00	14,11	24,32	33,18	66,72			
			Falta fas	se-fase-terra					
Erro Mínimo [m]	2,764	91,219	91,219	49,756	127,153	7529,681			
Erro Máximo [m]	4815,236	3839,474	6341,075	10468,03	13458,89	23117,01			
Erro Médio [m]	1247,933	2480,106	3867,487	6554,661	8718,163	17756,77			
Erro médio [%]	4,51	8,97	13,99	23,71	31,54	64,23			
			Falta	fase-fase					
Erro Mínimo [m]	2,764	41,463	80,162	124,389	146,503	3903,05			
Erro Máximo [m]	4815,236	4212,641	3847,766	7333,423	10564,77	14940,5			
Erro Médio [m]	1247,232	1715,372	2483,943	4478,252	6636,762	11347,04			
Erro médio [%]	4,51	6,206	8,986	16,201	24,01	41,05			
	Falta trifásica-terra								
Erro Mínimo [m]	2,764	91,219	91,219	49,756	127,153	7529,681			
Erro Máximo [m]	4815,23	3839,474	6341,075	10468,03	13458,89	23117,01			
Erro Médio [m]	1247,93	2480,106	3867,487	6554,661	8718,163	17756,77			
Erro médio [%]	4,51	8,97	13,99	23,71	31,54	64,23			

8.1.1 Influência da distância de falta

A distância em que a falta é aplicada exerce influência nos resultados obtidos pelo método de Takagi para linhas curtas. Pode-se verificar através das figuras apresentadas, que para faltas sólidas, o erro da estimativa aumenta em função do aumento da distância de falta. Para os demais valores de resistência de falta, os percentuais de erro apresentam os

maiores valores para faltas aplicadas no início do alimentador. A medida que a distância de falta aumenta, o valor do erro diminui chegando a valores próximos de zero em pontos finais do alimentador.

8.1.2 Influência da resistência de falta

Analisando os resultados das Tabelas 8 e 9 pode-se verificar a influência da resistência de falta na estimativa de sua localização. Valores maiores de resistência de falta acarretam maiores percentuais de erro médio. Em uma primeira análise, este comportamento não era esperado, uma vez que a resistência de falta é eliminada durante a formulação do algoritmo, o que teoricamente o tornaria invariante a variação deste parâmetro. No entanto, para o sistema de distribuição considerado, os efeitos da resistência da linha, ao contrário da formulação do método de Takagi, não podem ser desprezados. Como resultado, a corrente de falta não está em fase com a corrente medida na subestação, o que leva aos elevados percentuais de erro encontrados. Além disto, o método de Takagi também não considera a presença de cargas intermediárias, resultando também em erros na estimativa da localização de faltas.

8.1.3 Influência do tipo de falta

O tipo da falta exerce pouca influência na variação dos resultados obtidos. Os percentuais de erro médio apresentaram uma pequena variação para faltas fase-terra, fase-fase-terra e trifásicas. Apenas para o caso de faltas fase-fase, ouve uma redução significativa em seus valores.

8.1.4 Influência do carregamento

A diminuição do carregamento do sistema acarreta em uma redução nos percentuais de erro médio encontrados para faltas com resistência de 0Ω , 20Ω e 50Ω . Para valores de resistência de faltas maiores, ouve um aumento do erro na estimativa da localização de faltas. Conforme já mencionado, o método de Takagi não é formulado para linhas com cargas conectadas ao longo de sua extensão. Sendo assim, variando-se o carregamento, variam-se as impedâncias das cargas, o que influência na performance do algoritmo.

8.1.5 Influência da FAI

O comportamento do algoritmo de Takagi para localização de FAIs é semelhante ao comportamento para uma falta com elevado valor de resistência. Este comportamento pode ser visto nas Figuras 58, 59, 60 e 61 onde o formato da curva para FAIs é semelhante as demais, apenas deslocada, resultando em maiores erros na estimativa da localização da falta.

8.1.6 Análise geral

A partir dos resultados encontrados na aplicação desta metodologia para localização de faltas em sistemas de distribuição pode-se concluir que sua utilização em tal classe de sistemas não é aplicável em função dos elevados erros encontrados, chegando a valores de mais de 60%. O elevado percentual de erro encontrado pode ser explicado através das considerações feitas durante a formulação do método de Takagi. Uma das considerações feitas é de que a linha não apresenta perdas, o que não é válido para sistemas de distribuição, onde a resistência do alimentador pode ser da mesma ordem de grandeza de sua indutância. Também na formulação do método, não são consideradas cargas conectadas ao longo da linha, o que pode levar o algoritmo a resultados errôneos.

8.2 Resultados para o método de Lee *et al* (2004)

O método de localização de faltas desenvolvido por Lee *et al* (2004) foi especialmente formulado para sistemas de distribuição de energia elétrica.

A Figura 62 apresenta os resultados para faltas A-g, BC-g e ABC-g com 100% de carregamento no sistema. Novamente, para faltas fase-terra, fase-fase-terra e trifásicas, os erros apresentados foram similares em função da utilização da equação para faltas fase-terra para a estimação da localização de faltas para estes três tipos devido aos modelos de falta utilizados. Assim, um mesmo gráfico foi utilizado na apresentação dos resultados.

Figura 62: Resultado do método de Lee para faltas faltas A-g, BC-g e ABC-g.

Os resultados apresentados por esta metodologia para faltas lineares foram bastante significativos. No entanto, o método de Lee apresentou percentuais de erro elevados quando a falta considerada é de alta impedância não-linear, conforme ilustrado na Figura 63. Da mesma forma, para faltas do tipo fase-fase, os resultados são apresentados na Figura 64. Na Tabela 10 os resultados são apresentados de forma reduzida a partir dos erros médio, mínimo e máximo. Para o sistema com 50% de carregamento, os resultados são apresentados nas Figuras 65, 66 e na Tabela 11.

Figura 63: Resultado do método de Lee para faltas faltas A-g, BC-g e ABC-g, incluindo FAIs.

Figura 64: Resultado do método de Lee para falta BC com 100% de carregamento.

Tabela 10: Resultados do método de Lee com 100% de carregamento.

	R f= 0 Ω	Rf=10 Ω	R f=20Ω	Rf=50 Ω	Rf=100 Ω	FAI		
	Falta fase-terra							
Erro minimo [m]	0,00	0,00	0,00	2,76	5,53	3958,33		
Erro máximo [m]	58,05	60,81	71,87	442,27	997,88	21381,09		
Erro médio [m]	15,31	17,86	28,39	96,21	285,58	12483,66		
Erro médio [%]	0,05	0,06	0,10	0,35	1,03	45,16		
			Falta fa	se-fase-terra	ı			
Erro minimo [m]	0,00	0,00	0,00	0,00	0,00	3775,90		
Erro máximo [m]	58,05	66,34	71,87	442,27	1000,64	21173,77		
Erro médio [m]	15,55	19,60	26,98	95,76	283,60	12451,03		
Erro médio [%]	0,05	0,07	0,10	0,35	1,02	45,04		
			Falta	fase-fase				
Erro minimo [m]	0,00	5,53	5,53	5,53	2,76	3214,77		
Erro máximo [m]	60,81	88,45	226,66	738,04	1536,90	27655,82		
Erro médio [m]	16,79	42,00	84,25	242,51	526,31	14855,35		
Erro médio [%]	0,06	0,15	0,30	0,87	1,90	53,74		
		Falta trifásica-terra						
Erro minimo [m]	0,00	0,00	0,00	2,76	5,53	3958,33		
Erro máximo [m]	58,05	60,81	71,87	442,27	997,88	21381,09		
Erro médio [m]	15,31	17,86	28,39	96,21	285,58	12483,66		
Erro médio [%]	0,05	0,06	0,10	0,34	1,03	45,16		

Tabela 11: Resultados do método de Lee com 50% de carregamento.

	Rf= 0Ω	Rf=10 Ω	Rf=20 Ω	$Rf=50\Omega$	Rf=100 Ω	FAI		
	Falta fase-terra							
Erro Mínimo [m]	0,00	0,00	0,00	0,00	0,00	12267,52		
Erro Máximo [m]	58,05	63,58	63,58	129,92	503,08	80935,78		
Erro Médio [m]	15,68	17,37	19,72	47,69	123,73	54844,04		
Erro Médio [%]	0,06	0,06	0,07	0,17	0,45	198,41		
			Falta fas	se-fase-terra	ı			
Erro Mínimo [m]	0,00	0,00	0,00	2,76	0,00	12273,05		
Erro Máximo [m]	60,81	63,58	58,05	132,68	508,61	80360,82		
Erro Médio [m]	15,80	17,41	17,99	45,80	123,56	54725,96		
Erro Médio [%]	0,06	0,06	0,07	0,17	0,45	197,98		
			Falta	fase-fase				
Erro Mínimo [m]	0,00	5,53	2,76	2,76	5,53	5304,50		
Erro Máximo [m]	60,81	69,11	74,63	273,66	696,58	24349,84		
Erro Médio [m]	16,79	25,00	35,19	92,50	225,76	15477,91		
Erro Médio [%]	0,06	0,09	0,13	0,34	0,82	55,99		
		Falta trifásica-terra						
Erro Mínimo [m]	0,00	0,00	0,00	2,76	0,00	12273,05		
Erro Máximo [m]	60,81	63,58	58,05	132,68	508,61	80360,82		
Erro Médio [m]	15,80	17,41	17,99	45,80	123,56	54725,96		
Erro Médio [%]	0,06	0,06	0,07	0,17	0,45	197,98		

Figura 65: Resultado do método de Lee para faltas faltas A-g, BC-g e ABC-g com 50% de carregamento.

8.2.1 Influência da distância de falta

A influência da distância de falta nos resultados obtidos pode ser vista nas Figuras apresentadas. Nota-se a forma diferenciada dos gráficos, apresentando baixos valores de erro para faltas aplicadas no início e final do alimentador. Os *picos* de erro vistos nas Figuras 62, 64, 65 e 66 ocorrem quando a seção faltosa do alimentador é estimada errôneamente pelo algoritmo. Ou seja, o valor de x relativo a seção considerada resultou em um valor maior do que 1 quando na verdade seu valor deveria ser menor e vice-versa. Este erro na estimativa da seção faltosa ocorre principalmente em pontos próximos aos nós em que estão conectadas as cargas de maior potência do sistema. Sendo assim, podese afirmar que a estimativa da localização de falta resultante do método de Lee depende também da topologia do sistema estudado.

Figura 66: Resultado do método de Lee para faltas BC com 50% de carregamento.

8.2.2 Influência da resistência de falta

Analisando o efeito da variação da resistência linear de falta a partir das Tabelas 10 e 11 pode-se verificar um leve aumento nos valores dos erros médios conforme o valor de Rf aumenta. No entanto, esta variação se dá de uma forma significativamente mais suave do que no método de Takagi. No método de Lee, as influências das cargas conectadas ao longo do alimentador e de sua resistência são levadas em conta na formulação, em função disto, os efeitos da resistência de falta são menos significativos.

8.2.3 Influência do tipo de falta

O tipo da falta exerce pouca influência nos percentuais de erro encontrados. Para faltas fase-terra, fase-fase-terra e trifásica-terra, foram encontrados os mesmo valores de erro. Apenas para faltas fase-fase houve um acréscimo nos valores de erro.

8.2.4 Influência do carregamento

A redução do carregamento do sistema ocasiona uma redução no erro da estimativa da localização da falta, conforme pode ser observado nas Tabelas 10 e 11. Esta redução no erro não é verificada para FAIs, onde houve um acréscimo de aproximadamente 4 vezes o seu valor para faltas A-g, BC-g e ABC-g.

8.2.5 Influência da FAI

O resultados obtidos com o método de Lee são fortemente influênciados pelas FAIs. Erros médios percentuais de até 45% são encontrados para o sistema com carregamento integral. Para carregamento de 50%, o resultado é ainda pior, com percentuais de erro médio assumindo valores de até aproximadamente 200%. A variação do erro para FAIs pode ser explicada com base no modelo de FAI utilizado. Com a redução do carregamento, há um aumento do perfil de tensão no alimentador. Este aumento de tensão proporciona um aumento no conteúdo harmônico produzido pela falta, o que ocasiona maiores erros na estimação dos fasores fundamentais, levando a erros na estimativa da localização da falta.

8.2.6 Análise geral

O método proposto por Lee *et al* (2004) apresentou resultados considerados bons para faltas lineares, com erros médios abaixo de 2% do comprimento total da linha para o sistema com 100% de carregamento e abaixo de 1% para carregamento de 50%.

No entanto, os elevados valores de erros encontrados para faltas de alta impedância não-lineares atestam que a metodologia proposta por Lee *et al* (2004) não é adequada para localização de faltas de alta impedância. Para isto, suas características de não-linearidade devem ser levadas em conta.

8.3 Resultados da metodologia proposta

De modo a superar as deficiências encontradas na estimativa da localização de faltas de alta impedância nos algoritmos cujos resultados foram apresentados nas seções anteriores, foi proposta a metodologia baseada em RNAs. Após executado o treinamento das RNAs utilizando o conjunto de dados descrito na Seção 7.4.2, a metodologia foi aplicada aos mesmos casos considerados nas metodologia anteriores.

Os resultados para o sistema com seu carregamento original (100%) estão espostos nas Figuras 67 (fase A-g), 68 (BC-g e ABC-g) e 69 (BC). De modo a permitir uma melhor visualização dos resultados, apenas foram apresentadas as faltas com $R_f=0$, $R_f=20$, $R_f=100$ e FAIs. Um resumo dos resultados pode ser visto na Tabela 12. Para o caso com 50% de carregamento, os resultados são apresentados pelas Figuras 70, 71, 72 e Tabela 13.

Figura 67: Resultado para falta A-g com 100% de carregamento.

Conforme mencionado na descrição da metodologia proposta neste trabalho, uma mesma RNA é treinada para faltas fase-terra, fase-fase-terra e trifásica-terra. Em função disto, percebe-se grande semelhança nos gráficos obtidos para estes tipos de falta. Para faltas fase-terra, foram simuladas faltas envolvendo a fase A, enquanto para faltas do

Figura 68: Resultado para faltas BC-g e ABC-g com 100% de carregamento.

Figura 69: Resultado para falta BC com 100% de carregamento.

tipo fase-fase-terra, estavam envolvidas as fases B e C. O mesmo resultado foi obtido para faltas AB-g e ABC-g, uma vez que é utilizada a fase B para ambos os casos. Apenas uma leve diferença foi encontrada para a falta A-g onde os valores relativos a fase A foram utilizados no treinamento.

8.3.1 Influência da distância de falta

As variações do erro em função da distância de falta verificadas nas Figuras 67, 68, 69, 70, 71 e 72 são influênciadas principalmente pela topologia do sistema. Os maiores valores de erro ocorrem próximos das descontinuidades do alimentador, ou seja, nas

Tabela 12: Resultados da metodologia proposta com carregamento de 100%.

	Rf= 0Ω	R f=10Ω	Rf=20 Ω	Rf=50 Ω	R f=100Ω	FAI		
			Falta fa	ase-terra				
Erro mínimo [m]	5,05	5,59	8,01	6,30	3,20	0,71		
Erro máximo [m]	307,42	756,18	584,92	690,64	1821,05	567,25		
Erro médio [m]	111,47	154,20	208,82	299,44	644,00	181,81		
Erro médio [%]	0,40	0,56	0,76	1,08	2,33	0,66		
	Falta fase-fase-terra							
Erro mínimo [m]	1,45	3,30	2,37	1,59	7,50	5,79		
Erro máximo [m]	148,79	761,34	515,91	752,63	1795,90	678,83		
Erro médio [m]	44,50	159,73	198,97	288,04	650,17	188,50		
Erro médio [%]	0,16	0,58	0,72	1,04	2,35	0,68		
			Falta f	fase-fase				
Erro mínimo [m]	0,01	10,49	4,30	3,94	1,61	0,23		
Erro máximo [m]	206,95	182,25	282,74	442,81	1034,27	156,46		
Erro médio [m]	48,01	87,04	98,73	133,59	336,80	36,48		
Erro médio [%]	0,17	0,31	0,36	0,48	1,22	0,13		
			Falta trif	ásica-terra				
Erro mínimo [m]	1,45	3,30	2,37	1,59	7,50	5,79		
Erro máximo [m]	148,79	761,34	515,91	752,63	1795,90	678,83		
Erro médio [m]	44,50	159,73	198,97	288,04	650,17	188,50		
Erro médio [%]	0,16	0,58	0,72	1,04	2,35	0,68		

Tabela 13: Resultados da metodologia proposta com carregamento de 50%.

	Rf= 0Ω	Rf=10 Ω	Rf=20 Ω	Rf= 50Ω	Rf=100 Ω	FAI		
		Falta fase-terra						
Erro mínimo [m]	20,49	4,02	0,15	22,38	20,19	2,03		
Erro máximo [m]	688,72	819,02	773,14	1536,49	1012,53	467,62		
Erro médio [m]	284,76	144,96	265,51	524,36	418,87	166,21		
Erro médio [%]	1,03	0,52	0,96	1,90	1,52	0,60		
			Falta fas	e-fase-terra				
Erro mínimo [m]	3,25	3,04	2,80	18,69	11,54	5,54		
Erro máximo [m]	750,03	788,39	813,39	1540,39	964,50	405,27		
Erro médio [m]	210,01	120,80	266,79	525,00	420,54	147,37		
Erro médio [%]	0,76	0,44	0,97	1,90	1,52	0,53		
			fase-fase					
Erro mínimo [m]	4,77	0,40	7,98	0,82	24,31	0,52		
Erro máximo [m]	246,22	907,72	392,19	446,18	790,28	1262,88		
Erro médio [m]	65,87	118,03	173,82	105,77	219,51	450,89		
Erro médio [%]	0,24	0,43	0,63	0,38	0,79	1,63		
			Falta tri	fásica-terra				
Erro mínimo [m]	3,25	3,04	2,80	18,69	11,54	5,54		
Erro máximo [m]	750,03	788,39	813,39	1540,39	964,50	405,27		
Erro médio [m]	210,01	120,80	266,79	525,00	420,54	147,37		
Erro médio [%]	0,76	0,44	0,97	1,90	1,52	0,53		

Figura 70: Resultado para falta A-g com 50% de carregamento.

Figura 71: Resultado para faltas BC-g e ABC-g com 50% de carregamento.

distâncias onde estão conectadas as cargas do sistema e no início da linha.

8.3.2 Influência da resistência de falta

A resistência de falta exerce influência sobre a metodologia. Para o caso de carregamento 100%, a medida que seu valor é aumentado, o erro médio aumenta. Para FAIs, o erro encontrado é menor do que para resistências lineares de 100 ohms. Esta diferença é explica pelas grandezas aplicadas as entradas das RNAs, cujos valores são distintos para faltas lineares e não-lineares. Para o caso de 50% de carregamento, os erros não apresentaram um comportamento definido em função da resistência de falta.

Figura 72: Resultado para falta BC com 50% de carregamento.

8.3.3 Influência do tipo de falta

Analisando a influência do tipo da falta, pode-se verificar que para faltas BC-g e ABC-g, os valores de erro encontrados foram iguais entre si, tanto para o caso de 100% quanto de 50% de carregamento. Este comportamento é esperado dado que a fase utilizada para o cálculo das grandezas de entrada é a mesma, neste caso, a fase B. Para faltas fase-terra, a fase considerada foi a fase A, em função disto, os resultados encontrados são levemente diferentes dos encontrados para faltas BC-g e ABC-g. Os menores valores de erro médio foram encontrados para as faltas fase-fase, para as quais a RNA utilizada é treinada independentemente dos demais tipos de falta.

8.3.4 Influência do carregamento

A variação do carregamento de 100% para 50% resultou, de modo geral, em um acréscimo nos erros médios encontrados para faltas lineares, exceto para faltas com Rf=100 ohms. Para FAIs do tipo A-g, BC-g e ABC-g, o erro médio teve seu valor reduzido não mais do que 0,15%.

8.3.5 Influência da FAI

A metodologia foi desenvolvida levando-se em conta especialmente as característica das FAIs. Sendo assim, os erros encontrados na estimativa da localização deste tipo de falta são da mesma ordem de grandeza dos erros encontrados para faltas lineares, o que não foi verificado no método de Lee.

8.3.6 Análise geral

A partir dos dados obtidos, conclui-se que a metodologia proposta pode ser utilizada para localização de faltas, tanto lineares quanto não-lineares, dado que erros médios menores do que 2,5% foram obtidos em todos os casos simulados. Este resultado é considerado bom se comparado as diversas metodologias de localização de faltas presentes na literatura.

8.4 Comparação das metodologias

Com o intuito de melhor visualizar os resultados obtidos pelas três metodologias de localização de faltas apresentadas, estão expostos na Tabela 14 os valores de erro médio percentual para cada tipo, resistência de falta e metodologia.

A partir dos resultados da Tabela 14 pode-se verificar o efeito do aumento da resistência de falta no erro estimado pelas diversas metodologias. De uma maneira geral, este aumento acarreta também em um aumento no erro médio estimado. No método de Takagi, este efeito é mais significativo do que nos demais métodos, devido principalmente a sua formulação. Os percentuais de erro obtidos nos resultados da metodologia proposta para localização de FAIs foram considerados aceitáveis perante os resultados apresentados na literatura, ou seja, menores do que 5% do comprimento total da linha. As demais metodologias falham na localização deste tipo de falta.

Tabela 14: Resultados comparativos das metodologias implementadas.

Metodologia	R f= 0 Ω	Rf=10 Ω	Rf=20 Ω	Rf=50 Ω	Rf=100 Ω	FAI	
			Falt	a A-g			
Takagi 100%	7,59	12,37	16,31	22,16	26,23	37,91	
Lee 100%	0,05	0,06	0,10	0,35	1,03	45,16	
Proposta 100%	0,40	0,56	0,76	1,08	2,33	0,66	
Takagi 50%	4,51	9,00	14,11	24,32	33,18	66,72	
Lee 50%	0,06	0,06	0,07	0,17	0,45	198,41	
Proposta 50%	1,03	0,52	0,96	1,90	1,52	0,60	
			Falta BC-g 34 16,2 21,74 25,18				
Takagi 100%	7,6	12,34	16,2	21,74	25,18	33,8	
Lee 100%	0,05	0,07	0,10	0,35	1,02	45,04	
Proposta 100%	0,16	0,58	0,72	1,04	2,35	0,68	
Takagi 50%	4,51	8,97	13,99	23,71	31,54	64,23	
Lee 50%	0,06	0,06	0,07	0,17	0,45	197,98	
Proposta 50%	0,76	0,44	0,97	1,90	1,52	0,53	
		Falta BC					
Takagi 100%	7,59	9,66	12,35	17,65	21,94	27,71	
Lee 100%	0,06	0,15	0,30	0,87	1,90	53,74	
Proposta 100%	0,17	0,31	0,36	0,48	1,22	0,13	
Takagi 50%	4,51	6,206	8,986	16,201	24,01	41,05	
Lee 50%	0,06	0,09	0,13	0,34	0,82	55,99	
Proposta 50%	0,24	0,43	0,63	0,38	0,79	1,63	
			Falta	ABC-g			
Takagi 100%	7,59	12,34	16,20	21,73	25,17	33,80	
Lee 100%	0,05	0,06	0,10	0,34	1,03	45,16	
Proposta 100%	0,16	0,58	0,72	1,04	2,35	0,68	
Takagi 50%	4,51	8,97	13,99	23,71	31,54	64,23	
Lee 50%	0,06	0,06	0,07	0,17	0,45	197,98	
Proposta 50%	0,76	0,44	0,97	1,90	1,52	0,53	

Para as metodologias de Takagi e Lee, a variação dos erros em função do tipo da falta apenas mensurável para faltas fase-fase. Para os demais tipos (A-g, BC-g, BC), são verificados valores praticamente iguais. A metodologia proposta além de apresentar o mesmo comportamento com relação as faltas fase-fase, apresentou uma pequena variação nos erros para faltas A-g em relação as faltas BC-g e ABC-g. Esta variação é devida ao diferente ângulo de incidência da fase B com relação a fase A.

A redução do carregamento ocasionou uma melhora na estimativa da localização de faltas lineares para as metodologias de Takagi e Lee. Paras FAIs, a redução no carregamento resultou em acréscimo nos erros médios encontrados, dado o aumento do conteúdo harmônico gerado pelo modelo de FAI em função da variação da tensão no ponto de falta.

Para a metodologia proposta, a diminuição do carregamento resultou em uma melhor estimativa da localização de FAIs. Entretanto, para faltas lineares o percentual de erro médio aumento em relação ao caso com 100% de carregamento.

A partir dos dados obtidos, conclui-se que a metodologia proposta pode ser utilizada para localização de faltas, tanto lineares quanto não-lineares, pois erros médios menores do que 2,5% foram obtidos em todos os casos simulados, o que foi considerado bom perante os resultados apresentados de diversas metodologias de localização de faltas presentes na literatura.

9 CONCLUSÕES

O trabalho desenvolvido nesta dissertação apresentou uma nova metodologia desenvolvida para localização de faltas em sistemas de distribuição de energia elétrica. Uma das características diferenciais desta metodologia em relação as tradicionais é sua capacidade de obter também uma precisa estimativa da localização de faltas de alta impedância em alimentadores de distribuição. Tais tipos de falta representam um sério problema para as concessionárias de distribuição, uma vez que seus efeitos geralmente não são perceptíveis pelos equipamentos de proteção normalmente empregados em tal classe de sistemas elétricos.

Ao longo da realização deste trabalho não foram encontradas referências a outros trabalhos relacionados com localização de FAIs em SDE. Sendo assim, a metodologia proposta é inédita. Em função disto implementaram-se duas outras metodologias desenvolvidas para faltas lineares, de modo a comparar seus resultados com a metodologia proposta. A primeira é o método de Takagi formulado para linhas de transmissão curtas, com comprimento menor do que 50 km. Esta metodologia é amplamente utilizada e está presente como função adicional na maioria dos relés de proteção digitais. O segundo esquema de localização implementado é o método proposto por Lee *et al* (2004), especialmente desenvolvido para sistemas de distribuição.

Os resultados obtidos da implementação das três metodologias de localização de fal-

tas apresentado neste trabalho foram expostos no Capítulo 8. Em função dos grandes percentuais de erro encontrados, concluiu-se que o método de Takagi não é aplicável para o sistema de distribuição considerado em função da existência de diversas cargas conectadas ao longo do alimentador e das perdas ohmicas existentes na linha. Considerações estas que não foram levadas em conta na formulação do algoritmo. Já o método proposto por Lee *et al* (2004) apresentou resultados bastante precisos para faltas lineares (percentuais de erro máximo em torno de 5%), inclusive para valores de resistência de falta elevados. No entanto, sua performance na estimativa da localização de FAIs foi considerada insatisfatória, dados os percentuais de erro em torno de 80 a 100% encontrados.

A metodologia proposta apresentou resultados encorajadores. Sua performance foi considerada boa, tanto para faltas lineares como não-lineares. Os percentuais de erro encontrados para faltas de alta impedância, ou não-lineares, foram menores do que 1,5%, enquanto que para faltas lineares o erro máximo não ultrapassou 4% do comprimento total do alimentador.

Foi verificado que o aumento da resistência de falta tende a aumentar os erros obtidos na estimativa da localização de faltas. Este aumento no erro é mais significativo no método de Takagi.

A variação do tipo da falta apenas é significativa entre os casos de faltas fase-fase e faltas de terra (fase-terra, fase-fase-terra e trifásicas-terra). Para a metodologia de Takagi e a proposta, os erros apresentados para faltas fase-fase são, em geral, menores do que para falta de terra. Já para o método de Lee, faltas fase-fase lineares apresentam um percentual erro médio maior do que os demais tipos de falta.

A redução no carregamento do sistema resulta em piores estimativas de localização de FAIs para as metodologias de Takagi e Lee. No entanto, melhores estimativas são obtidas

para faltas lineares. O efeito do carregamento na metodologia proposta é recíproco. Com sua redução, os erros médios obtidos para FAIs tem seu valor reduzido, enquanto que para faltas lineares seu valor é aumentado.

O uso de redes neurais artificiais para a solução de problemas relativos a localização de faltas se mostrou uma alternativa promissora, dada a sua capacidade de sintetizar a partir de exemplos as relações complexas e não-lineares entre as grandezas aplicadas a sua entrada e a localização da falta. Entretanto, a utilização de tal técnica exige um grande número de situações exemplo para o seu processo de treinamento, os quais, neste caso, só podem ser obtidos através de simulações computacionais, dada a indisponibilidade de dados reais. Então, um correto modelamento do sistema e da falta se faz necessário para que a metodologia possa ser aplicada com sucesso.

Sendo assim, considerou-se a metodologia proposta como sendo promissora, digna de estudos futuros e aperfeiçoamentos. As grandezas utilizadas como entradas das RNAs para a localização de FAIs mostraram-se aplicáveis a solução do problema de localização de FAIs em sistemas de distribuição de energia elétrica.

9.1 Trabalhos futuros

De modo a aperfeiçoar a metodologia proposta, tornando-a mais abrangente e confiável, propõem-se algumas sugestões de trabalhos a serem realizados futuramente:

- Validação da metodologia realizando estudos de casos baseados em dados obtidos de alimentadores reais;
- Estudo dos efeitos da variação do ângulo de incidência da falta no resultado da metodologia proposta;
- Expansão da metodologia para que a mesma possa ser utilizada em alimentadores

que possuam ramificações laterais e geração distribuída;

- Estudo de diferentes topologias de redes neurais artificiais bom como de outros algoritmos de aprendizagem buscando a configuração ideal das RNAs, ou seja, o número de camadas e neurônios ocultos otimizado para a aplicação em questão;
- Aperfeiçoamento nos modelos dos elementos do sistema, visando a implementação de fontes geradoras de conteúdo harmônico, como cargas não-lineares e o efeito da curva de saturação de transformadores de distribuição e de corrente.

REFERÊNCIAS

ABB Inc. **Descriptive Bulletin - OVR Three Phase Recloser 15kV - 38kV.** Disponível *on-line* em http://www.abb.com/mediumvoltage. Acesso em Fev. 2005.

AGGARWAL, R.; SONG, Y. Artificial Neural Networks in Power Systems - Part 3. **Power Engineering Journal**, [S.l.], p.279–287, Dec. 1998.

AL-DABBAGH, M.; AL-DABBAGH, L. Neural Networks Based Algorithm for Detecting High Impedance Faults on Power Distribution Lines. In: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, 1999. **Proceedings...** [S.l.: s.n.], 1999. v.5, p.3386–3390.

AURANGZEB, M.; CROSSLEY, P. A.; GALE, P. Proceedings Eighth IEE International Conference on Developments in Power System Protection. In: SEVENTH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN POWER SYSTEM PROTECTION, Amsterdam, Netherlands, 2001. **Proceedings...** [S.l.: s.n.], 2001. p.403–406.

BENNER, C. L.; RUSSEL, B. D. Practical High-Impedance Fault Detection on Distribution Feeders. **IEEE Transactions on Industry Applications**, [S.l.], v.33, n.3, p.635–640, may 1997.

BO, Z. Q.; WELLER, G.; REDFERN, M. A. High-Impedance Fault Identification Using a Fuzzy Reasoning System. In: IEE PROCEEDINGS ON GENERATION, TRANSMISSION AND DISTRIBUTION, 1999. **Anais...** [S.l.: s.n.], 1999. v.146, n.1, p.73–79.

BRETAS, A. S. Esquema de Proteção Direcional Para Linhas de Transmissão de Alta Tensão Utilizando Redes Neurais Artificiais. 1998. Dissertação (Mestrado em engenharia) — Escola de Engenharia de São Carlos.

BUTLER, K. L.; MOMOH, J. A. A Neural Net Based Approach for Fault Diagnosis in Distribution Networks. In: POWER ENGINEERING SOCIETY WINTER MEETING, 2000. **Proceedings...** [S.l.: s.n.], 2000. v.2, p.1275–1278.

CABRAL, S. L. S.; SENGER, E. C.; SANTOS, J. C. Falta de Alta Impedância - Proposta de Solução Através de Sistemas Supervisórios. In: XI SEMINÁRIO NACIONAL DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA, Blumenau, SC, 1992. **Anais...** [S.l.: s.n.], 1992.

CARDOSO, G.; ROLIM, J. G.; ZÜRN, H. H. Application of Neural-Network Modules to Electric Power System Section Estimation. **IEEE Transactions on Power Delivery**, [S.l.], v.19, n.3, p.1034–1041, July 2004.

- DAS, R.; SACHDEV, M. S.; SIDHU, T. S. A Fault Locator for Radial Subtransmission and Distribution Lines. In: POWER ENGINEERING SOCIETY SUMMER MEETING, 2000. **Proceedings...** [S.l.: s.n.], 2000. v.1, p.443–448.
- DELMAR LTDA. Catálogo técnico Elos Fusíveis de Distribuição Modelo H, K, T, EF e OLHAL. Disponível *on-line* em http://www.delmar.com.br/pdf/elos.pdf. Acesso em Fev. 2005.
- EL-HAMI, M.; LAI, L. L.; DARUVALA, D. J.; JOHNS, A. T. A New Travelling-Wave Based Scheme for Fault Detection on Overhead Power Distribution Feeders. **IEEE Transactions on Power Delivery**, [S.l.], v.7, n.4, p.1825–1833, Oct. 1992.
- ELETROBRÁS. **Proteção de Sistemas Aéreos de Distribuição**. Rio de Janeiro: Editora Campus Eletrobrás, 1982. 233p.
- EMANUEL, A. E.; CYGANSKY, D.; ORR, J. A.; SHILLER, S.; GULACHENSKI, E. M. High Impedance Fault Arcing on Sandy Soil in 15kV Distribution Feeders: contributions to the evaluation of the low frequency spectrum. **IEEE Transactions on Power Delivery**, [S.1.], v.5, n.2, p.676–686, apr 1990.
- EMTP. **Electromagnetic Transients Program Rule Book**. [S.l.]: CAUE COMITE ARGENTINO DE USUARIOS DE EMTP ATP, 2002.
- GALIJASEVIC, Z.; ABUR, A. Fault Area Estimation via Intelligent Processing of Fault-Induced Transients. **IEEE Transactions on Power Systems**, [S.l.], v.18, n.4, p.1241–1247, Nov. 2003.
- GIGUER, S. Proteção de Sistemas de Distribuição. Porto Alegre: Sagra, 1988. 344p.
- GIRGIS, A. A.; FALLON, C. M.; LUBKEMAN, D. L. A Fault Location Technique for Rural Distribution Feeders. **IEEE Transactions on Industry Applications**, [S.l.], v.29, n.6, p.1170–1175, Nov./Dec. 1993.
- GROSS, C. A. **Power System Analysis**. New York, USA: John Wiley & Sons Inc., 1986. 593p.
- HAGAN, M. T.; MENHAJ, M. B. Training Feedforward Networks With the Markardt Algorithm. **IEEE Transactions on Neural Networks**, [S.l.], v.5, n.6, p.989–993, nov 1994.
- HAYKIN, S. Redes Neurais: princípios e prática. 2.ed. Porto Alegre: Bookman, 2001.
- HOROWITZ, S. H.; PHADKE, A. G. **Power System Relaying**. Baldock, Hertfordshire, England: Research Studies Press LTD, 1995. 319p.
- HUANG, S.-J.; HSIEH, C.-T. High-impedance fault detection utilizing a Morlet wavelet transform approach. **IEEE Transactions on Power Delivery**, [S.l.], v.14, n.4, p.1401–1410, Oct 1999.
- JEERINGS, D. I.; LINDERS, J. R. Ground Resistance Revisited. **IEEE Transactions on Power Delivery**, [S.l.], v.4, n.2, p.949–956, apr 1989.
- JEERINGS, D. I.; LINDERS, J. R. Unique Aspects of Distribution System Harmonics Due to High Impedance Ground Faults. **IEEE Transactions on Power Delivery**, [S.l.], v.5, n.2, p.1086–1094, apr 1990.

- JEERINGS, D. I.; LINDERS, J. R. A Practical Protective Relay for Down-Conductor Faults. **IEEE Transactions on Power Delivery**, [S.l.], v.6, n.2, p.565–574, apr 1991.
- Joslyn High Voltage. **Sectionalizers.** Disponível *on-line* em http://www.joslynhivoltage.com/PDFFiles/DB750-202sectionalizer.PDF. Acesso em Fev. 2005.
- JOTA, F. G.; JOTA, P. R. S. High-Impedance Fault Identification Using a Fuzzy Reasoning System. In: IEE PROCEEDINGS ON GENERATION, TRANSMISSION AND DISTRIBUTION, 1998. **Anais...** [S.l.: s.n.], 1998. v.145, n.6, p.656–661.
- KEYHANI, R.; DERICHE, M.; PALMER, E. A High Impedance Fault Detector Using a Neural Network and Subband Decomposition. In: SIXTH INTERNATIONAL, SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, 2001. **Proceedings...** [S.l.: s.n.], 2001. v.2, p.458–461.
- LAZKANO, A.; RUIZ, J.; ARAMENDI, E.; LETURIONDO, L. A. A new approach to high impedance fault detection using wavelet packet analysis. In: NINTH INTERNATIONAL CONFERENCE ON HARMONICS AND QUALITY OF POWER, 2000. **Proceedings...** [S.l.: s.n.], 2000. v.3, p.1005–1010.
- LEE, S. J.; CHOI, M. S.; KANG, S. H.; JIN, B. G.; LEE, D. S.; AHN, B. S.; YOON, N. S.; KIM, H. Y.; WEE, S. B. An Intelligent and Efficient Fault Location and Diagnosis Scheme for Radial Distribution Systems. **IEEE Transactions on Power Delivery**, [S.l.], v.19, n.2, p.524–532, Apr 2004.
- LIEN, K.; CHEN, S.; LIAO, C.; GUO, T.; LIN, T.; SHEN, J. Energy Variance Criterion and Threshold Tuning Scheme for High Impedance Fault Detection. **IEEE Transactions on Power Delivery**, [S.l.], v.4, n.3, p.810–817, jul 1997.
- LIN, Y.-H.; LIU, C.-W. A New DFT-based Phasor Computation Algorithm for Transmission Line Digital protection. In: IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXHIBITION 2002: ASIA PACIFIC, 2002. **Proceedings...** [S.l.: s.n.], 2002. v.3, p.1733–1737.
- MAGNAGO, F. H.; ABUR, A. A New Fault Location Technique for Radial Distribution Systems Based on High Frequency Signals. In: POWER ENGINEERING SOCIETY SUMMER MEETING, Edmonton, Canada, 1999. **Proceedings...** [S.l.: s.n.], 1999. v.1, p.426–431.
- MASON, C. R. **The Art and Science of Protective Relaying**. New York: John Wiley & Sons, 1956. 410p.
- MELLO, F. P. de. **Proteção de Sistemas Elétricos de Potência**. Santa Maria: Imprensa Universitária UFSM, 1979. 298p.
- MOMOH, J. A.; DIAS, L. G.; LAIRD, D. N. An Implementation of a Hybrid Intelligent Tool for Distribution System Fault Diagnosis. **IEEE Transactions on Power Delivery**, [S.l.], v.12, n.2, p.1035–1040, Apr. 1997.
- NAKA, H. K.; SIQUEIRA, M. J. V. Faltas de Alta Impedância na Distribuição Diagnóstico / Soluções. In: XI SEMINÁRIO NACIONAL DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA, Blumenau, SC, 1992. **Anais...** [S.l.: s.n.], 1992.

- NAM, S. R.; PARK, J. K.; KANG, Y. C.; KIM, T. H. A Modeling Method of a High Impedance Fault in a Distribution System Using Two Series Time-Varying Resistances in EMTP. **IEEE Transactions on Power Delivery**, [S.l.], v.4, n.3, p.1175–1180, July 2001.
- PHADKE, A. G.; THORP, J. S. Computer Relaying for Power Systems. Baldock, Hertfordshire, England: Research Studies Press LTD, 1988. 289p.
- PRIKLER, L.; HOIDALEN, H. K. ATPDraw Version 3.5 User's Manual. Preliminary Release No. 1.0. 2002.
- ROBERTS, J.; SCHWEITZER, E. O. Analysis of Event Reports. In: ANNUAL WESTERN PROTECTIVE RELAY CONFERENCE, 16., Spokane, Washington, 1989. **Proceedings...** [S.l.: s.n.], 1989.
- SALAT, R.; OSOWSKI, S. Accurate Fault Location in the Power Transmission Line Using Support Vector Machine Approach. **IEEE Transactions on Power Systems**, [S.l.], v.19, n.2, p.979–986, May 2004.
- SCHWEITZER, E. O.; SCHEER, G. W.; FELTIS, M. W. A Fresh Look at Distribution Protection. In: SECOND INTERNATIONAL SYMPOSIUM ON DISTRIBUTION AUTOMATION AND DEMAND SIDE MANAGEMENT, Fort Louderdale, Florida, 1992. **Proceedings...** [S.l.: s.n.], 1992.
- SELINC. **SEL 351A Distribution Protection System**. Schweitzer Engineering Laboratories, Inc. Disponível *on-line* em http://www.selinc.com/instruction_manual/351a/351a_IM_20041210.pdf. Acesso em Fev. 2005.
- SHARAF, A. M.; SNIDER, L. A.; DEBNATH, K. Neural Network Based Relaying Scheme for Distribution System High Impedance Fault Detection. In: FIRST NEW ZE-ALAND INTERNATIONAL TWO-STREAM CONFERENCE ON ARTIFICIAL NEU-RAL NETWORKS AND EXPERT SYSTEMS, 1993. **Proceedings...** [S.l.: s.n.], 1993. p.321–324.
- SHENG, Y.; ROVNYAK, S. M. Decision Tree-Based Methodology for High Impedance Fault Detection. **IEEE Transactions on Power Delivery**, [S.l.], v.19, n.2, p.533–536, Apr. 2004.
- SULTAN, A. F.; SWIFT, G. W.; FEDIRCHUK, D. J. Detecting Arcing Downed-Wires Using Fault Current Flicker and Half-Cycle Asymmetry. **IEEE Transactions on Power Delivery**, [S.l.], v.9, n.1, p.461–470, Jan. 1994.
- TAKAGI, T.; YAMAKOSHI, Y.; BABA, J.; UEMURA, K.; SAKAGUCHI, T. A New Algorithm of an Accurate Fault Location for EHV/UHV Transmission Lines. Part I Fourier Transformation Method. **IEEE Transactions on Power Apparatus and Systems**, [S.l.], v.100, n.3, p.1316–1323, Mar. 1981.
- TAKAGI, T.; YAMAKOSHI, Y.; YAMAURA, M.; KONDOW, R.; MATSUSHIMA, T. Development of a New Type Fault Locator Using The One-Terminal Voltage and Current Data. **IEEE Transactions on Power Apparatus and Systems**, [S.l.], v.101, n.8, p.2892–2898, Aug. 1982.
- TENGDIN, J.; et al. High Impedance Fault Detection Technology. **Report of PSRC Working Group D15**, [S.l.], p.1–12, Mar. 1996.

The Matworks Inc. Matlab - The Language of Technical Computing, versão 6.5 R13. 2002.

WAKILEH, J. J.; PAHWA, A. Optimization of Distribution System Design to Accomodate Cold Load Pickup. **IEEE Transactions on Power Delivery**, [S.l.], v.12, n.1, p.339–345, Jan. 1997.

ZHU, J.; LUBCKEMAN, D. L.; GIRGIS, A. A. Automated Fault Location and Diagnosis on Electric Power Distribution Feeders. **IEEE Transactions on Power Delivery**, [S.l.], v.12, n.2, p.801–809, Apr. 1997.

ZIMMERMAN, K. Microprocessor-Based Distribution Relay Applications. Schweitzer Engineering Laboratories, Inc. Disponível *on-line* em http://www.selinc.com/techpprs/6013.pdf. Acesso em Fev. 2005.

ANEXO A DADOS E IMPLEMENTAÇÃO DO ALIMENTA-DOR SEGMENTADO

Tabela 15: Dados do alimentador segmentado em 67 pontos.

Ba	rra		Distância	\mathbf{R}_{linha}	\mathbf{X}_{linha}			\mathbf{P}_{carga}	\mathbf{Q}_{carga}	\mathbf{R}_{carga}	X_{carga}
i	j	Comprimento	Acumulada	$[\Omega/km]$	$[\Omega/km]$	$R[\Omega]$	$\mathbf{X}[\Omega]$	[kW]	[kVAr]	$[\Omega]$	$[\Omega]$
0	1	0,418		0,28	0,27	0,115	0,114				
1	2	0,418		0,28	0,27	0,115	0,114				
2	3	0,418		0,28	0,27	0,115	0,114				
3	4	0,418		0,28	0,27	0,115	0,114				
4	5	0,418		0,28	0,27	0,115	0,114				
5	6	0,418		0,28	0,27	0,115	0,114				
6	7	0,418		0,28	0,27	0,115	0,114				
7	8	0,418		0,28	0,27	0,115	0,114				
8	9	0,418		0,28	0,27	0,115	0,114				
9	10	0,418	4,18	0,28	0,27	0,115	0,114	2646	882	64,78	21,59
10	11	0,421		0,28	0,27	0,116	0,115				
11	12	0,421		0,28	0,27	0,116	0,115				
12	13	0,421	4,60	0,28	0,27	0,116	0,115	522	174	328,34	109,45
13	14	0,421		0,28	0,27	0,116	0,115				
14	15	0,421		0,28	0,27	0,116	0,115				
15	16	0,421	5,02	0,28	0,27	0,116	0,115	4896	1632	35,01	11,67
16	17	0,438		0,28	0,27	0,121	0,119				
17	18	0,438		0,28	0,27	0,121	0,119				
18	19	0,438		0,28	0,27	0,121	0,119				
19	20	0,438		0,28	0,27	0,121	0,119				
20	21	0,438	5,46	0,28	0,27	0,121	0,119	936	312	183,12	61,04
21	22	0,343		0,28	0,27	0,095	0,094				
22	23	0,343		0,28	0,27	0,095	0,094				
23	24	0,343	5,80	0,28	0,27	0,095	0,094	0	0		
24	25	0,386		0,28	0,27	0,107	0,105				
25	26	0,386		0,28	0,27	0,107	0,105				
26	27	0,386		0,28	0,27	0,107	0,105				
27	28	0,386		0,28	0,27	0,107	0,105				
28	29	0,386	6,19	0,28	0,27	0,107	0,105	1806	602	94,90	31,63
29	30	0,395		0,28	0,27	0,109	0,108				
30	31	0,395		0,28	0,27	0,109	0,108				
31	32	0,395		0,28	0,27	0,109	0,108				
32	33	0,395	6,59	0,28	0,27	0,109	0,108	0	0		
33	34	0,395		0,28	0,27	0,109	0,108				
34	35	0,395		0,28	0,27	0,109	0,108				
35	36	0,395		0,28	0,27	0,109	0,108				
36	37	0,395	6,98	0,28	0,27	0,109	0,108	1503	501	114,04	38,01
37	38	0,388		0,28	0,27	0,107	0,106				
38	39	0,388		0,28	0,27	0,107	0,106				
39	40	0,388		0,28	0,27	0,107	0,106				
40	41	0,388	7,37	0,28	0,27	0,107	0,106	189	63	906,86	302,29
41	42	0,388		0,28	0,27	0,107	0,106				
42	43	0,388		0,28	0,27	0,107	0,106				
43	44	0,388		0,28	0,27	0,107	0,106				

Ba	ırra		Distância	\mathbf{R}_{linha}	\mathbf{X}_{linha}			\mathbf{P}_{carga}	\mathbf{Q}_{carga}	\mathbf{R}_{carga}	$\mathbf{X}_{\mathrm{carga}}$
i	j	Comprimento	Acumulada	$[\Omega/\mathbf{km}]$	$[\Omega/\mathbf{km}]$	$R[\Omega]$	$\mathbf{X}[\Omega]$	[kW]	[kVAr]	$[\Omega]$	$[\Omega]$
44	45	0,388	7,76	0,28	0,27	0,107	0,106	0	0		
45	46	0,423		0,28	0,27	0,117	0,115				
46	47	0,423		0,28	0,27	0,117	0,115				
47	48	0,423		0,28	0,27	0,117	0,115				
48	49	0,423		0,28	0,27	0,117	0,115				
49	50	0,423		0,28	0,27	0,117	0,115				
50	51	0,423		0,28	0,27	0,117	0,115				
51	52	0,423		0,28	0,27	0,117	0,115				
52	53	0,423		0,28	0,27	0,117	0,115				
53	54	0,423		0,28	0,27	0,117	0,115				
54	55	0,423		0,28	0,27	0,117	0,115				
55	56	0,423	8,18	0,28	0,27	0,117	0,115	657	219	260,88	86,96
56	57	0,435		0,28	0,27	0,120	0,119				
57	58	0,435		0,28	0,27	0,120	0,119				
58	59	0,435		0,28	0,27	0,120	0,119				
59	60	0,435		0,28	0,27	0,120	0,119				
60	61	0,435	8,61	0,28	0,27	0,120	0,119	336	112	510,11	170,04
61	62	0,443		0,28	0,27	0,122	0,121				
62	63	0,443	9,06	0,28	0,27	0,122	0,121	125	42	1368,97	459,97
63	64	0,451		0,28	0,27	0,124	0,123				
64	65	0,451		0,28	0,27	0,124	0,123				
65	66	0,451		0,28	0,27	0,124	0,123				
66	67	0,451	9,51	0,28	0,27	0,124	0,123	225	85	740,69	279,82

ANEXO B DESCRIÇÃO DO SISTEMA NO ATP

Figura 73: Implementação do sistema segmentado em 67 pontos.

ANEXO C ARQUIVO DE ENTRADA DO EMTP

```
001 BEGIN NEW DATA CASE
003 C Generated by ATPDRAW fevereiro, quinta-feira 3, 2005
004 C A Bonneville Power Administration program
005 C Programmed by H. K. Høidalen at SEfAS - NORWAY 1994-2003
006 C -----
007 POWER FREQUENCY
                                  60.
008 C dT >< Tmax >< Xopt >< Copt >
013 /BRANCH
014 C < n 1>< n 2><ref1><ref2>< R \rightarrow< L \rightarrow< C \rightarrow
015 C < n 1>< n 2><ref1><ref2>< R >< A >< B ><Leng><>>0
                          260.9 87.
260.9 87.
016 Bus56A
017 Bus56B
                                                                       Ω
018 Bus56C
                          260.9 87.
    Bus13A
019 Bus13A
020 Bus13B
                          328.3 109.4
                          328.3 109.4
021 Bus13C
                          328.3 109.4
022 Bus61A
023 Bus61B
                          510.1 170.
510.1 170.
                                                                       0
                                                                       Ω
024 Bus61C
                         510.1 170.
025 TRANSFORMER
                                    X0016A
           9999
026
                          .001 47.6 6.9E4
027 169KVA
028 2RELEA
                          .001 1.913800.
029
    TRANSFORMER X0016A
                                    X0016B
030 169KVB
031 2RELEB
032
    TRANSFORMER X0016A
                                    X0016C
033 169KVC
034 2RELEC
035
    Bus41A
                          906.9 302.3
036 Bus41B
                         906.9 302.3
037 Bus41C
                         906.9 302.3
    Bus63A
Bus63B
                         1369. 460.
1369. 460.
038
039
                         1369. 460.
040 Bus63C
041 Bus67A
042 Bus67B
                          740.7 279.8
                                                                        0
                          740.7 279.8
                                                                        0
                         740.7 279.8
043 Bus67C
044 Bus45ABus46A
                         .1166 .1153
                                                                        Ω
                          .1166 .1153
045
    Bus45BBus46B
    Bus45CBus46C
                          .1166 .1153
046
047 Bus56ABus57A
                          .1199 .1185
                                                                        Ω
                          .1199 .1185
048
    Bus56BBus57B
049 Bus56CBus57C
                          .1199 .1185
050
    Bus61ABus62A
                          .1221 .1207
                                                                        0
051
052
                          .1221 .1207
.1221 .1207
    Bus61BBus62B
    Bus61CBus62C
                          .1243 .1229
053 Bus63ABus64A
054 Bus63BBus64B
055 Bus63CBus64C
                          .1243 .1229
.1243 .1229
                                                                        0
056 Bus37ABus38A
                          .1071 .1059
```

057	Bus37BBus38B	.1071	.1059		0
058	Bus37CBus38C	.1071	.1059	C	0
059	Bus17ABus18A	.1208	.1194		0
060	Bus17BBus18B	.1208	.1194	(0
061	Bus17CBus18C	.1208			0
062	Bus18ABus19A	.1208			0
063	Bus18BBus19B	.1208			0
064	Bus18CBus19C	.1208			0
065	Bus19ABus20A	.1208	.1194		0
066	Bus19BBus20B	.1208	.1194	(0
067	Bus19CBus20C	.1208	.1194	(0
068	Bus16ABus17A	.1208	.1194	(0
069	Bus16BBus17B	.1208			0
070	Bus16CBus17C	.1208			0
071	Bus21ABus22A	.0947			0
072	Bus21BBus22B	.0947			0
073	Bus21CBus22C	.0947	.0936	C	0
074	Bus24ABus25A	.1065	.1054	C	0
075	Bus24BBus25B	.1065	.1054		0
076	Bus24CBus25C	.1065	.1054	(0
077	Bus33ABus34A	.1091			0
078	Bus33BBus34B	.1091			0
079	Bus33CBus34C	.1091			0
080	Bus34ABus35A	.1091			0
081	Bus34BBus35B	.1091			0
082	Bus34CBus35C	.1091	.1079	C	0
083	Bus46ABus47A	.1166	.1153		0
084	Bus46BBus47B	.1166	.1153	(0
085	Bus46CBus47C	.1166			0
086	Bus21A	183.1	61.		0
087	Bus21B	183.1	61.		0
880	Bus21C	183.1	61.		0
089	XX0060VN	.0001			0
090	falta XX0228	50.	5.	C	0
091	XX0063VP	.0001			0
092	XX0228XX0063	1.E3		(0
093	XX0060XX0228	1.E3			0
094	Bus37A	114.	38.		0
095	Bus37B	114.	38.		0
096	Bus37C	114.	38.		0
097	Bus29A	94.9	31.6		0
098	Bus29B	94.9	31.6	C	0
099	Bus29C	94.9	31.6		0
100	Bus16A	35.	11.7	(0
101	Bus16B	35.	11.7		0
102	Bus16C	35.	11.7		0
103	Bus10A	64.8	21.6		0
104	Bus10B	64.8	21.6		0
105	Bus10C	64.8	21.6	C	0
106	Bus00ABus01A	.1154	.1141	C	0
107	Bus00BBus01B	.1154	.1141		0
108	Bus00CBus01C	.1154	.1141	(0
109	Bus01ABus02A	.1154			0
110	Bus01BBus02B	.1154			0
111	Bus01CBus02C	.1154			0
112	Bus02ABus03A	.1154			0
113	Bus02BBus03B	.1154		C	0
114	Bus02CBus03C	.1154	.1141	C	0
115	Bus03ABus04A	.1154	.1141		0
116	Bus03BBus04B	.1154	.1141	(0
117	Bus03CBus04C	.1154			0
118	Bus04ABus05A	.1154			0
119	Bus04BBus05B	.1154			0
120	Bus04CBus05C	.1154			0
121	Bus05ABus06A	.1154			0
122	Bus05BBus06B	.1154	.1141	C	0
123	Bus05CBus06C	.1154	.1141	C	0
124	Bus06ABus07A	.1154	.1141	(0
125	Bus06BBus07B	.1154			0
126	Bus06CBus07C	.1154			0
127	Bus07ABus08A	.1154			0
128	Bus07BBus08B	.1154			0
129	Bus07CBus08C	.1154	.1141		0

130	Bus08ABus09A	.1154	.1141	0
131	Bus08BBus09B		.1141	0
132	Bus08CBus09C	.1154	.1141	0
133	Bus09ABus10A	.1154	.1141	0
134	Bus09BBus10B		.1141	0
135	Bus09CBus10C	.1154	.1141	0
136	Bus20ABus21A	.1208	.1194	0
137	Bus20BBus21B		.1194	0
138	Bus20CBus21C	.1208	.1194	0
139	Bus11ABus12A	.1162	1149	0
140	Bus11BBus12B	.1162	.1149	0
141	Bus11CBus12C	.1162	.1149	0
142	Bus10ABus11A	.1162	1149	0
143	Bus10BBus11B		.1149	0
144	Bus10CBus11C	.1162	.1149	0
145	Bus12ABus13A	.1162	1149	0
146	Bus12BBus13B		.1149	0
147	Bus12CBus13C	.1162	.1149	0
148	Bus14ABus15A	1162	.1149	0
149	Bus14BBus15B	.1162		0
150	Bus14CBus15C	.1162	.1149	0
151	Bus13ABus14A	1162	.1149	0
152	Bus13BBus14B	.1162	.1149	0
153	Bus13CBus14C	.1162	.1149	0
154	Bus15ABus16A	.1162		0
155	Bus15BBus16B	.1162	.1149	0
156	Bus15CBus16C	.1162	.1149	0
157	Bus22ABus23A	.0947	0036	0
158	Bus22BBus23B	.0947	.0936	0
159	Bus22CBus23C	.0947	.0936	0
160	Bus23ABus24A	.0947	0036	0
161	Bus23BBus24B	.0947	.0936	0
162	Bus23CBus24C	.0947	.0936	0
163	Bus25ABus26A	1065	.1054	0
164	Bus25BBus26B	.1065	.1054	0
165	Bus25CBus26C	.1065	.1054	0
166	Bus26ABus27A		.1054	0
167	Bus26BBus27B	.1065	.1054	0
168	Bus26CBus27C	.1065	.1054	0
	Bus27ABus28A		.1054	0
169				
170	Bus27BBus28B	.1065	.1054	0
171	Bus27CBus28C	.1065	.1054	0
172	Bus28ABus29A		.1054	0
173	Bus28BBus29B	.1065	.1054	0
174	Bus28CBus29C	.1065	.1054	0
175	Bus35ABus36A	.1091	1070	0
176	Bus35BBus36B		.1079	0
177	Bus35CBus36C	.1091	.1079	0
178	Bus36ABus37A		.1079	0
179	Bus36BBus37B	.1091	.1079	0
180	Bus36CBus37C	.1091	.1079	0
181	Bus29ABus30A		.1079	0
182	Bus29BBus30B		.1079	0
183	Bus29CBus30C	.1091	.1079	0
184	Bus30ABus31A	1091	.1079	0
185	Bus30BBus31B		.1079	0
186	Bus30CBus31C	.1091	.1079	0
187	Bus31ABus32A	.1091	.1079	0
188	Bus31BBus32B		.1079	0
189	Bus31CBus32C	.1091	.1079	0
190	Bus32ABus33A	.1091	.1079	0
191	Bus32BBus33B		.1079	0
192	Bus32CBus33C	.1091	.1079	0
193	Bus38ABus39A		.1059	0
194	Bus38BBus39B		.1059	0
195	Bus38CBus39C	.1071	.1059	0
196	Bus39ABus40A		.1059	0
197	Bus39BBus40B		.1059	0
198	Bus39CBus40C	.1071	.1059	0
199	Bus40ABus41A		.1059	0
200	Bus40BBus41B		.1059	0
201	Bus40CBus41C	.1071	.1059	0
202	Bus41ABus42A		.1059	0
	1111111111111111111111111111111111	5 , _		0

```
.1071 .1059
203
     Bus41BBus42B
                                                                                      0
204
     Bus41CBus42C
                               .1071 .1059
                               .1071 .1059
205
     Bus42ABus43A
                                                                                      Ω
206
      Bus42BBus43B
                               .1071 .1059
                                                                                      0
207
      Bus42CBus43C
                               .1071 .1059
                                                                                      0
                               .1071 .1059
208
      Bus43ABus44A
                                                                                      0
                               .1071 .1059
.1071 .1059
      Bus43BBus44B
209
                                                                                      0
210
     Bus43CBus44C
                                                                                      0
211
     Bus44ABus45A
                               .1071 .1059
                                                                                      0
212
      Bus44BBus45B
                               .1071 .1059
                                                                                      0
     Bus44CBus45C
                               .1071 .1059
213
                                                                                      Ω
214
      Bus47ABus48A
                               .1166 .1153
                                                                                      0
                               .1166 .1153
.1166 .1153
215
      Bus47BBus48B
                                                                                      0
216
     Bus47CBus48C
                                                                                      0
                               .1166 .1153
217
     Bus48ABus49A
     Bus48BBus49B
                               .1166 .1153
218
                                                                                      0
219
      Bus48CBus49C
                               .1166 .1153
                                                                                      0
220
     Bus49ABus50A
                               .1166 .1153
     Bus49BBus50B
                               .1166 .1153
221
                                                                                      Ω
222
      Bus49CBus50C
                               .1166 .1153
                                                                                      0
223
     Bus50ABus51A
                               .1166 .1153
                                                                                      0
     Bus50BBus51B
                               .1166 .1153
224
                                                                                      0
225
      Bus50CBus51C
                               .1166 .1153
                                                                                      0
                               .1166 .1153
226
     Bus51ABus52A
                                                                                      0
227
      Bus51BBus52B
                               .1166 .1153
                                                                                      0
      Bus51CBus52C
                               .1166 .1153
228
                                                                                      0
     Bus52ABus53A
                               .1166 .1153
229
                                                                                      0
230
      Bus52BBus53B
                               .1166 .1153
                                                                                      0
                               .1166 .1153
.1166 .1153
231
      Bus52CBus53C
                                                                                      0
232
     Bus53ABus54A
                                                                                      0
                               .1166 .1153
233
     Bus53BBus54B
                               .1166 .1153
      Bus53CBus54C
234
                                                                                      0
235
      Bus54ABus55A
                               .1166 .1153
                                                                                      0
                               .1166 .1153
236
     Bus54BBus55B
                               .1166 .1153
     Bus54CBus55C
237
                                                                                      Ω
238
      Bus55ABus56A
                               .1166 .1153
                                                                                      0
                               .1166 .1153
239
     Bus55BBus56B
                               .1166 .1153
240
     Bus55CBus56C
                                                                                      0
                               .1199 .1185
.1199 .1185
241
      Bus57ABus58A
                                                                                      0
     Bus57BBus58B
242
                                                                                      0
243
      Bus57CBus58C
                               .1199 .1185
                                                                                      0
244
      Bus58ABus59A
                               .1199 .1185
                                                                                      0
245
                               .1199 .1185
     Bus58BBus59B
                                                                                      Ω
246
      Bus58CBus59C
                               .1199 .1185
                                                                                      0
                               .1199 .1185
247
      Bus59ABus60A
                                                                                      0
248
     Bus59BBus60B
                                                                                      0
      Bus59CBus60C
                               .1199 .1185
249
                               .1199 .1185
250
      Bus60ABus61A
                                                                                      0
                               .1199 .1185
251
      Bus60BBus61B
                                                                                      0
252
                               .1199 .1185
     Bus60CBus61C
      Bus62ABus63A
                               .1221 .1207
253
                                                                                      Ω
254
      Bus62BBus63B
                               .1221 .1207
                                                                                      0
255
     Bus62CBus63C
                               .1221 .1207
256
     Bus64ABus65A
                               .1243 .1229
                                                                                      0
257
      Bus64BBus65B
                               .1243 .1229
                                                                                      0
258
     Bus64CBus65C
                               .1243 .1229
                                                                                      0
259
      Bus65ABus66A
                               .1243 .1229
                                                                                      0
                               .1243 .1229
260
      Bus65BBus66B
                                                                                      0
                               .1243 .1229
261
     Bus65CBus66C
                                                                                      Ω
262
      Bus66ABus67A
                               .1243 .1229
                                                                                      0
263
     Bus66BBus67B
                                .1243 .1229
                                                                                      0
                               .1243 .1229
264
     Bus66CBus67C
                                                                                      0
265 /SWITCH
266 C < n 1>< n 2>< Tclose ><Top/Tde >< Ie ><Vf/CLOP >< type >
267 RELEA Bus00A
                                                            MEASURING
                                                                                      1
     RELEB Bus00B
                                                            MEASURING
                                                                                     1
268
269
     RELEC Bus00C
                                                            MEASURING
                                                                                     1
270 11XX0060XX0228
                                                                                      0
271 11XX0228XX0063
272
                                                           MEASURING
     XX0070falta
                                                                                      1
273
     Bus10CXX0070
                       .0333 1.
274 /SOURCE
275 C < n l><< Ampl. \rightarrow Freq. \rightarrow Phase/T0>< Al \rightarrow T1 \rightarrow TSTART \rightarrow TSTOP \rightarrow
```

```
276 1469KVA 0 6.9E4 60. -1. 1.
277 1469KVB 0 6.9E4 60. -120. -1. 1.
278 1469KVC 0 6.9E4 60. 120. -1. 1.
279 11VN 0 -6600. -1. 1.
280 11VP 0 6.E3 -1. 1.
281 /OUTPUT

282 BUSO 0 AB USO 0 B B USO 0 C B US 3 7 AB US 3 7 B B US 3 7 C B US 6 7 A B US 6 7 C B US 10 C 6 9 KVA 6 9 KVC

283 BLANK BRANCH

284 BLANK SWITCH

285 BLANK SOURCE

286 BLANK OUTPUT

287 BLANK PLOT

288 BEGIN NEW DATA CASE
```

289 BLANK