W4995 Applied Machine Learning

Visualization and Matplotlib

01/25/17

Andreas Müller

Principles of data visualization

Why?
Explore

Communicate

Above else, show the data. Maximize the data-ink ratio.

- E. Tufte

Tools matter.

- W. S. Cleveland

Visual Channels

length (1D size)	- — —	colour hue	•
angle	//	texture density	$\oplus \oplus \bullet \bullet$
curvature)))	texture pattern	₩₩/
shape	+ • ■ 🛦	position (2D)	
area (2D size)	* * # II	depth (3D position)	/.·:
volume (3D size)		motion	.
lightness black/white		blur/sharpness	
colour saturation		containment	::
transparency		connection	Z.

Picking Channels

Quantitative validated

Cleveland and McGill, 1983 Heer and Bostock, 2010 MacKinley, 1986

position (2D)

length (1D size)

angle

area (2D size)

volume (3D size)

texture density

colour saturation

colour hue

Colormaps

Colormaps

Colormap evaluation: jet

Colormap evaluation: option_d.py

Colormap evaluation: gray

Colormap evaluation: jet

Colormap evaluation: option_d.py

Colormap evaluation: gray

matplotlib

matplotlib v2

update now! (you can enable classic style if your really want)

Other libs

- pandas plotting convenience
- seaborn ready-made stats plots
- bokeh alternative to matplotlib for in-browser
- several ggplot translations / interfaces

Imports

import matplotlib.pyplot as plt
import numpy as np

matplotlib & Jupyter

% matplotlib inline

% matplotlib notebook

- sends png to browser
- no panning or zooming
- new figure for each cell
- no changes to previous figures

- interactive widget
- all figure features
- need to create figures explicitly
- ability to update figures

Figures and axes

figure = one window or one image file axes = one drawing area with coordinate system

by default: each figure has one axis

Creating Figures and axes

1st way: don't.

Creates figure with axes on plot command

2nd way: fig = plt.figure()

Creates a figure with axes, sets current figure.

Can add more / different axes later.

3rd way: **fig, ax = plt.subplots(n, m)**Creates a figure with a regular grid of n x m axes.

More axes via subplots

ax = plt.subplot(n, m, i) # or plt.subplot(nmi)
places ax at position "i" in n x m grid (1-based index)

```
ax11 = plt.subplot(2, 2, 1)
ax21 = plt.subplot(2, 2, 2)
ax12 = plt.subplot(2, 2, 3)
ax22 = plt.subplot(2, 2, 4)
```


equivalent:

```
fig, axes = plt.subplots(2, 2)
ax11, ax21, ax12, ax22 = axes.ravel()
```

More axes via subplots

ax = plt.subplot(n, m, i) # or plt.subplot(nmi)
places ax at position "i" in n x m grid (1-based index)

```
ax11 = plt.subplot(2, 2, 1)
ax21 = plt.subplot(2, 2, 2)
ax2 = plt.subplot(2, 1, 2)
```


Two interfaces

Stateful interface - applies to current figure and axes object oriented interface - explicitly use object

```
sin = np.sin(np.linspace(-4, 4, 100))
fig, axes = plt.subplots(2, 2)
plt.plot(sin)
```



```
fig, axes = plt.subplots(2, 2)
axes[0, 0].plot(sin)
```


Differences between interfaces

Stateful

plt.title plt.xlim, plt.ylim plt.xlabel, plt.ylabel plt.xticks, plt.yticks

Object oriented

```
| ax.set_title
| ax.set_xlim, ax.set_ylim
| ax.set_xlabel, ax.set_ylabel
| ax.set_xticks, ax.set_yticks
(& ax.set_xtick_labels)
```

```
ax = plt.gca() # get current axes
fig = plt.gcf() # get current figure
```

Plotting commands

• Gallery:

http://matplotlib.org/gallery.html

Plotting commands summary

http://matplotlib.org/api/pyplot summary.html

plot

```
why?
fig, ax = plt.subplots (2, 4, figsize=(10, 5))
ax[0, 0].plot(sin)
ax[0, 1].plot(range(100), sin) # same as above
ax[0, 2].plot(np.linspace(-4, 4, 100), sin)
ax[0, 3].plot(sin[::10], 'o')
ax[1, 0].plot(sin, c='r')
ax[1, 1].plot(sin, '--')
ax[1, 2].plot(sin, lw=3)
ax[1, 3].plot(sin[::10], '--o')
plt.tight layout() # makes stuff fit - usually works
   1.0
                                  1.0
                                                                  1.0
                                                                                                 1.0
   0.5
                                                                                                 0.5
                                  0.5
                                                                  0.5
   0.0
                                  0.0
                                                                  0.0
                                                                                                 0.0
 -0.5
                                 -0.5
                                                                -0.5
                                                                                               -0.5
 -1.0
                                 -1.0
                                                                -1.0
                                                                                               -1.0
                                                                        -2.5
                 50
                           100
                                                50
                                                          100
                                                                               0.0
                                                                                      2.5
                                                                                                          2.5
                                                                                                                5.0
                                                                                                                     7.5
                                       0
                                                                                                     0.0
                                                                                                 1.0
   1.0
                                  1.0
                                                                 1.0
   0.5
                                  0.5
                                                                 0.5
                                                                                                 0.5
   0.0 -
                                                                                                 0.0
                                  0.0
                                                                  0.0
 -0.5
                                 -0.5
                                                                -0.5
                                                                                                -0.5
 -1.0
                                 -1.0
                                                                -1.0
                                                                                                -1.0
                 50
                           100
                                                50
                                                                                50
                                                                                          100
                                                                                                          2.5
                                                                                                                5.0
                                                                                                                      7.5
       0
                                       0
                                                           100
                                                                      0
                                                                                                     0.0
```

scatter

histogram

```
fig, ax = plt.subplots(1, 3, figsize=(10, 3))
ax[0].hist(np.random.normal(size=1000))
ax[1].hist(np.random.normal(size=1000), bins=100)
ax[2].hist(np.random.normal(size=1000), bins="auto")
```


bars

```
plt.figure()
plt.bar(range(len(gross)), gross)
plt.xticks(range(len(gross)), movie, rotation=90)
plt.tight_layout()
```



```
plt.figure()
plt.barh(range(len(gross)), gross)
plt.yticks(range(len(gross)), movie, fontsize=8)
ax = plt.gca()
ax.set_frame_on(False)
ax.tick_params(length=0)
plt.tight_layout()
```


heatmaps

```
fig, ax = plt.subplots(2, 2)
im1 = ax[0, 0].imshow(arr)
ax[0, 1].imshow(arr, interpolation='bilinear')
im3 = ax[1, 0].imshow(arr, cmap='gray')
im4 = ax[1, 1].imshow(arr, cmap='bwr', vmin=-1.5, vmax=1.5)
plt.colorbar(im1, ax=ax[0, 0])
plt.colorbar(im3, ax=ax[1, 0])
plt.colorbar(im4, ax=ax[1, 1])
```


hexgrids

Twin x / twiny

```
plt.figure()
ax1 = plt.gca()
line1, = ax1.plot(years, phds)
ax2 = ax1.twinx()
line2, = ax2.plot(years, revenue, c='r')
plt.legend((line1, line2), ("math PhDs awarded", "revenue by arcades"))
ax1.set_ylabel("Math PhDs awarded")
ax2.set_ylabel("revenue by arcades")
```

