Henry Letellier 1^{ère}G3

<u>Mathématiques</u> <u>Exercice complémentaire de mathématiques</u> <u>Tiers Temps</u>

<u>Mathématiques</u> Exercice complémentaire de mathématiques

Exercice 1:

1)

$$x=0.05$$

 $f(0.05) = \frac{45*0.05}{44*0.05+1} = 0.70$

1

1^{ère}G3

<u>Mathématiques</u> <u>Exercice complémentaire de mathématiques</u>

Tiers Temps

La probabilité conditionnelle que la personne ait produit des anticorps sachant que le résultat du test est positif est 0,70.

2)

X	0,02	0,04	0,06	0,08	0,10	0,12	0,14	0,16	0,18	0,20
f(x)	0,479	0,652	0,742	0,796	0,833	0,860	0,880	0,896	0,908	0,918

3)a)

Pour tout $x \in [0;1]$,

$$g(x)=1-f(x)=1-\frac{45x}{44x+1}$$

$$g(x) = \frac{44x + 1 - 45x}{44x + 1} = \frac{1 - x}{44x + 1}$$

b)

$$g(0,05) = \frac{1-0.05}{44*0.05+1} = 0.30$$

Le taux de faux positifs, c'est-à-dire la proportion de personnes testées positives mais n'ayant pas produit d'anticorps en réponse immunitaire après avoir été infectées par le virus est de 0,30.

4)a)

Pour tout $x \in [0;1]$,

44x+1>0

Donc
$$\frac{1-x}{44x+1} \le 0,1$$

$$1-x \le 0,1(44x+1)$$

$$1-x \le 4,4x+0,1$$

$$1-0,1 \le 4,4x+x$$

$$0,9 \le 5,4x$$

$$\frac{0.9}{5.4} \le x$$

4)b)

Le taux de faux positif est inférieur à 10% pour 0,17≤x≤1

<u>Mathématiques</u> <u>Exercice complémentaire de mathématiques</u> <u>Tiers Temps</u>

$$\frac{1-x}{44x+1} \le 0.01$$

 $1-x \le 0.01(44x+1)$

 $1-x \le 0,44+0,01$

 $1-0.01 \le 0.44x + x$

 $0,99 \le 1,44x$

$$\frac{0.99}{1.44} \le x$$

D'où x≥0,69.

Le taux de faux positif est inférieur 1% pour 0,69≤x≤1

Exercice 2:

1)a)

 $P(T \cap A)=P(A)*P_A(T)$

 $P(T \cap A) = x*0,90=0,9x$

1)b)

 $P(T \cap \overline{A}) = P(\overline{A}) * P_{\overline{A}}(T)$

 $P(T \cap \overline{A}) = (1-x)*0.02 = 0.02-0.02x$

Henry Letellier 1^{ère}G3

<u>Mathématiques</u> Exercice complémentaire de mathématiques **Tiers Temps**

1)c)

D'après la formule des probabilités totales

$$P(T)=P(A\cap T)+P(\overline{A}\cap T)$$

$$P(T)=0.9x+0.02-0.02x$$

$$P(T)=0.88x+0.02$$

1)d)

$$P(\overline{T})=1-P(T)$$

$$P(\overline{T})=1-(0.88x+0.02)$$

$$P(\overline{T})=1-0.88x-0.02$$

$$P(\overline{T}) = 0.98 - 0.88x$$

2)

$$P_T(A) = \frac{P(A \cap T)}{P(T)} = VPP$$

$$VPP = \frac{0.9x*100}{(0.88x+0.02)*100}$$

$$VPP = \frac{\frac{90x}{2}}{\frac{88x+2}{2}}$$

3)

$$P_{\overline{T}}(\overline{A}) = \frac{P(\overline{A} \cap \overline{T})}{P(\overline{T})} = VPN$$

$$VPN = \frac{0.98(1-x)*100}{0.988-0.88*100}$$

$$VPN = \frac{\frac{98(1-x)}{2}}{\frac{98-88x}{2}}$$
$$VPN = \frac{49(1-x)}{49-44x}$$

$$VPN = \frac{49(1-x)}{49-44x}$$

Henry
Letellier

1èreG3

<u>Mathématiques</u> <u>Exercice complémentaire de mathématiques</u> <u>Tiers Temps</u>

4)

X	0,02	0,04	0,06	0,08	0,10	0,12	0,14	0,16	0,18	0,20
VPP	0,479	0,652	,0742	0,796	0,833	0,860	0,890	0,896	0,908	0,918
VPN	0,998	0,996	0,994	0,991	0,989	0,986	0,984	0,981	0,978	0,975

5)

$$VPP = \frac{45x}{44x+1} \text{ avec } 0 \le x \le 1$$

On calcule la dérivée

$$VPP' = \frac{45(44x+1)-44*45x}{(44x+1)^2}$$

$$VPP' = \frac{45}{(44x+1)^2} > 0$$

6)

$$VPN = \frac{49(1-x)}{49-44x}$$

On calcule la dérivée

$$VPN' = \frac{-49(49-44x)-(-44)*49(1-x)}{(49-44x)^2}$$

$$VPN' = \frac{-1960x - 245}{(49 - 44x)^2}$$

samedi 6 juin 2020

Henry Letellier 1èreG3

<u>Mathématiques</u> <u>Exercice complémentaire de mathématiques</u> <u>Tiers Temps</u>

