

系统工程原理与方法

第八讲、系统评价

彭勤科

系统工程研究所

E-mail: qkpeng@xjtu.edu.cn

Tel: 82667964

2020年6月3日

主要内容

- 系统评价概述
- 系统评价的步骤
- 系统评价方法
- 关联矩阵法
- 专家调查法
- 专家打分综合方法
- 模糊综合评价方法
- > 层次分析法

多系统评价概述

- 概念与意义
 - 』 意义
 - 系统评价的要素
 - ◎ 对象
 - 目的
 - ◎ 指标
 - 评价者
- 评价标准
 - **。** 多指标评价
- 评价问题特点
 - 多指标、多因素
 - **。** 评价信息的不完全
 - **。** 多领域知识
- 专家往往不专

多系统评价的步骤

多系统评价方法

- 费用-效益分析法
- 关联矩阵法
- 关联树方法
- 。层次分析法
- 模糊评价法

关联矩阵法

设m个评价指标 P_1, P_2, \dots, P_m ,

每个评价指标对应的权值为 w_1, w_2, \dots, w_m ;

设有n个评价对象 A_1, A_2, \dots, A_n ,

评价对象 A_1, A_2, \dots, A_n 关于评价指标 P_j 的评价值为 $v_{1j}, v_{2j}, \dots, v_{nj}$ 。

关联矩阵法的关键是确定评价指标的相对权重 w_1, w_2, \cdots, w_m 以及评价对象 A_1, A_2, \cdots, A_n 对应于评价指标 P_j 的评价值为 $v_{1j}, v_{2j}, \cdots, v_{nj}$ 。在已知 w_1, w_2, \cdots, w_m 和 $v_{1j}, v_{2j}, \cdots, v_{nj}$ 的情况下,关联矩阵法可以用下面(关联)矩阵表表示:

美联矩阵法 - 关联矩阵表

指标 P 权重W	P_1	P_2	P_j	P_m	综合评价
对象 A	w_1	w_2	w_j	w_{m}	v_i
A_1	v_{11}	<i>v</i> ₁₂	v_{1j}	v_{1m}	$v_1 = \sum_{j=1}^m w_j v_{1j}$
A_2	v_{21}	v_{22}	v_{2j}	v_{2m}	$v_2 = \sum_{j=1}^m w_j v_{2j}$
				•••	•••
A_n	v_{n1}	v_{n2}	v_{nj}	v_{nm}	$v_n = \sum_{j=1}^m w_j v_{nj}$

参专家调查法 - DELPHI方法

DELPHI方法(兰德公司,60年代)

DELPHI方法-特点

- 原则:独立性、匿名性、客观性。
- 。调查过程的要求
 - 调查范围的广泛性:在首轮进行调查时,被调查人员/专家的选取要具有广泛的分布性;
 - 调查结果的收敛性:专家的反馈结果在几次 以后可以收敛,达成一致;
 - 不断改进的准确性:专家的反馈结果一轮到 另一轮应变得更为准确。

DELPHI方法 —方法指南

- 从为DELPHI小组人员那里获得愿意的协议。
- 。向小组完整地说明DELPHI的手续和步骤。
- 以最简明的形式陈述事件、要素和预测。
- 尽可能使意见询问表容易回答。
- 使用数量适当的提问,少一些问题比太多的问题要好。
- 说明为什么包括了矛盾的事件、要素和预测,避免小组成员认为是在"误导他们"。
- DELPHI组负责人不能在小组成员的反馈中加入自己的个人见解,不要干涉小组的审议和商讨。
- 对DELPHI小组成员工作要给予适当的补偿(报酬)。
- DELPHI小组成员必须具有对所讨论问题的相关知识。

专家打分综合方法

设m个专家 P_1, P_2, \dots, P_m ,其权值为 w_1, w_2, \dots, w_m ;有n个评价对象 A_1, A_2, \dots, A_n ,专家 P_j 对 A_1, A_2, \dots, A_n 的打分值为 $v_{1j}, v_{2j}, \dots, v_{nj}$ 。 专家打分综合法见专家打分表

专家P	P_1	P_2	•••	P_{j}		P_m	综合打分
对象 4 权重 W	w_1	w_2	•••	w_{j}	•••	W_m	v_{i}
A_1	<i>v</i> ₁₁	v_{12}		v_{1j}		v_{1m}	$v_1 = m \sum_{j=1}^n w_j v_{1j}$
A_2	v_{21}	v_{22}		v_{2j}	••••	v_{2m}	$v_2 = \sum_{j=1}^m w_j v_{2j}$
•••			•••	••			•••
A_n	v_{n1}	v_{n2}		v_{nj}	•••	v_{nm}	$v_n = \sum_{j=1}^m w_j v_{nj}$
评价结果	根据综合	合打分	v_i (i	= 1,2,	·,n)	的大小拍	非序

模糊综合评价方法

设有n个评价因素 A_1, A_2, \dots, A_n , 评价因素集合记为:

$$A = (A_1, A_2, \cdots, A_n)$$

其重要程度由n维隶属函数向量 $W = (w_1, w_2, \dots, w_n)$ 表示,其中 $\sum_{i=1}^{n} w_i = 1$,

$$0 \le w_i \le 1$$
, $i = 1, 2, \dots, n$

再假设每个指标的评语为 v_1,v_2,\cdots,v_m , 评语集合记为:

$$V = (v_1, v_2, \cdots, v_m)$$

这些评语的隶属函数向量用 m 维模糊向量表示:

$$B = (b_1, b_2, \cdots, b_m)$$

其中
$$b_j \in [1,0]$$
,且 $\sum_{j=1}^m b_j = 1$ 。

沙模糊综合评价方法 (续)

对评价因素 A_1, A_2, \dots, A_n , 评语隶属函数向量的取值构成一个 $n \times m$

矩阵, 记为

$$R = egin{bmatrix} B_{A_1} \ B_{A_2} \ \dots \ B_{A_n} \end{bmatrix}$$

称矩阵R为模糊评价矩阵。

综合评价结果(向量)利用下式计算

$$B = WR$$

假设能给出综合各评语的记分方法, $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$,则评价得到的总分值

$$d = \alpha B^T$$

沙模糊综合评价方法 - 举例

• 某服装厂对新产品方案的评价

评价因素集 A={款式色彩,穿着舒适,销售价格},评语集合 V={很好,较好,不太好,不好},通过专家分析和市场调查,对款式色彩有 20%人很欢迎、70%比较欢迎、10%人不太欢迎,因此,对款式色彩评价的隶书度为

$$B_{\text{max} \oplus \text{sg}} = (0.2 \quad 0.7 \quad 0.1 \quad 0.0)$$

同样有

$$B_{\text{穿着舒服}} = \begin{pmatrix} 0.0 & 0.4 & 0.5 & 0.1 \end{pmatrix}$$

$$B_{销售价格} = \begin{pmatrix} 0.2 & 0.3 & 0.4 & 0.1 \end{pmatrix}$$

模糊综合评价方法 - 举例 (续)

因此,得到对此新产品评价的模糊矩阵

$$R = \begin{bmatrix} 0.2 & 0.7 & 0.1 & 0.0 \\ 0.0 & 0.4 & 0.5 & 0.1 \\ 0.2 & 0.3 & 0.4 & 0.1 \end{bmatrix}$$

如果知道评价指标的权值为

则市场对该服装的综合评价为

归一化后得到

则评价得到的总分值

多个新产品可以通过各自的总分值进行评价。

$$W = \begin{pmatrix} 0.2 & 0.5 & 0.3 \end{pmatrix}$$

$$\overline{B} = WR = (0.2 \quad 0.4 \quad 0.5 \quad 0.1)$$

$$B = \begin{pmatrix} 0.17 & 0.34 & 0.40 & 0.09 \end{pmatrix}$$

假设能给出综合各评语的记分方法,如
$$\alpha = (1 \ 0.7 \ 0.4 \ 0.1)$$

$$d = \alpha B^T = 0.69$$

层次分析法

一个简单例子: 通过两两比较确定一组物品重量

用 w_1, w_2, \dots, w_n 记n个物品的重量,假设可以精确得到两两物品之间 重量的比值,则可以得到如下重量比较矩阵

$$A = \begin{bmatrix} w_1/w_1 & w_1/w_2 & \cdots & w_1/w_n \\ w_2/w_1 & w_2/w_2 & \cdots & w_2/w_n \\ \cdots & \cdots & \cdots & \cdots \\ w_n/w_1 & w_n/w_2 & \cdots & w_n/w_n \end{bmatrix}$$

对此物品重量的比较矩阵 $A = (a_{ij})_{n \times n}$ $(a_{ij} = w_i/w_j)$ 和物品重量向量 $W = \begin{bmatrix} w_1 & w_2 & \cdots & w_n \end{bmatrix}^T$, \mathbf{f}

$$AW = \begin{bmatrix} w_1/w_1 & w_1/w_2 & \cdots & w_1/w_n \\ w_2/w_1 & w_2/w_2 & \cdots & w_2/w_n \\ \cdots & \cdots & \cdots & \cdots \\ w_n/w_1 & w_n/w_2 & \cdots & w_n/w_n \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \cdots \\ w_n \end{bmatrix} = \begin{bmatrix} nw_1 \\ nw_2 \\ \cdots \\ nw_n \end{bmatrix} = nW$$

遗层次分析法(续1)

表明n是矩阵A的特征值,W是对应的特征向量。而且可以证明矩阵A的最大特征值 $\lambda_{max} = n$,其余特征值等于零。

对物品重量的比较矩阵 $A = (a_{ij})_{n \times n}$ $(a_{ij} = w_i/w_j)$,容易证明如下性质:

(1)
$$a_{ij} > 0, a_{ij} = 1/a_{ji}, i \neq j, i = 1, 2, \dots, n, j = 1, 2, \dots, n$$

(2)
$$a_{ii} = 1, i = 1, 2, \dots, n$$

(3)
$$a_{ij} \times a_{jk} = a_{ik}$$
, $i = 1, 2, \dots, n, j = 1, 2, \dots, n, k = 1, 2, \dots, n$

因此,在已知重量比较矩阵A的情况下,通过求解A的最大特征值 λ_{max} 对应的特征向量W,此特征向量的分量就是物品的重量。

层次结构模型

- 最高层:表示解决问题的目的;
- 中间层:表示实现总体目标的各种政策、评价指标和评价准则等;
- 最底层:措施和方案层。

為构造判断矩阵

定义 8.1 设有n个对象,若它们两两比较值构成的矩阵 $A = (a_{ij})_{n \times n}$ 满足

条件: (1) $a_{ij} > 0, a_{ij} = 1/a_{ji}, i \neq j, i = 1, 2, \dots, n, j = 1, 2, \dots, n$

(2) $a_{ii} = 1, i = 1, 2, \dots, n$

则称矩阵 A 为判断矩阵,也称满足这两个条件的矩阵为正互**反矩阵**

比较值取值的规定

重要程度	a_{ij}				
相等(当)	1				
<i>i</i> 比 <i>j</i> 较强	3				
<i>i</i> 比 <i>j</i> 强	5				
<i>i</i> 比 <i>j</i> 很强	7				
i比j绝对强	9				
介于上述之间	2, 4, 6, 8				

判断矩阵的一致性

定义: 如果正互反矩阵 $A = (a_{ij})_{n \times n}$ 满足

$$a_{ij} \times a_{jk} = a_{ik}$$
 $i = 1, 2, \dots, n, j = 1, 2, \dots, n, k = 1, 2, \dots, n$

则称 4 为一致矩阵。

备注:一致矩阵的定义是类比物体重量的比较关系。

一致矩阵A的性质:

- (1) $a_{ij} = 1/a_{ji}$, $a_{ii} = 1$, $i = 1, 2, \dots, n$, $j = 1, 2, \dots, n$
- (2) A 的转置矩阵 A^T 也是一致矩阵
- (3) rank(A) = 1
- (4) A 的最大特征值 $\lambda_{max} = n$,其余特征值等于零。
- (5) 若最大特征值 λ_{max} 对应的特征向量为 $W = (w_1, w_2, \dots, w_n)^T$,则

$$a_{ij} = w_i / w_j$$
, $i = 1, 2, \dots, n$, $j = 1, 2, \dots, n$

一致性判别指标

SEI - 21

$$CI = \frac{\lambda_{\max} - n}{n - 1}$$

当判断矩阵完全一致时,CI = 0, $\lambda_{max} - n$ 越大,CI 越大,判断矩阵的一致性越差,因此,CI 值要求越小越好。

随着n的增大,判断的误差也在变大,为了合理验证判断矩阵的一致性,需要考虑n的影响,因此,使用随机一致性指标CR。

$$CR = \frac{CI}{RI}$$

式中 RI 为平均随机一致性指标,下表是 500 个样本的平均值

矩阵阶数	3	4	5	6	7	8	9	10	11	12	13	14	15
RI	0.52	0.89	1.12	1.26	1.36	1.41	1.46	1.49	1.52	1.54	1.56	1.58	1.59

当 CR < 0.1 时, 判断矩阵的一致性是可以接受的。

最大特征值及其特征向量的计算

(1)幂法 步骤一: 任取与判断矩阵 A 同阶的归一化初始向量 W° ;

步骤二: 利用迭代公式计算 $(w_i^{k+1}$ 表示 W^{k+1} 的第i个分量)

$$\overline{W}^{k+1} = AW^k$$

$$\alpha = \sum_{i=1}^n \overline{w}_i^{k+1}$$

$$W^{k+1} = \frac{1}{\alpha} \overline{W}^{k+1}$$

$$k = 0,1,2,\cdots$$

步骤三: 对预先给定的精度 $\varepsilon(>0)$, 当

$$\max_{1 \le i \le n} |\overline{w_i}^{-k+1} - w_i^k| < \varepsilon$$

时迭代停止,令 $W = W^{k+1}$

$$\lambda_{\max} = \frac{1}{n} \sum_{i=1}^{n} \frac{w_i^{k+1}}{w_i^k}$$

则入max和W为所求的最大特征值和特征向量。

最大特征值及其特征向量的计算 和积法(近似方法)

步骤一: 对判断矩阵 4 的每一列进行归一化

$$\overline{a}_{ij} = \frac{a_{ij}}{\sum_{k=1}^{n} a_{kj}}$$
 $i, j = 1, 2, \dots, n$

步骤二: 把正规化的判断矩阵每列相加

$$\overline{w}_i = \sum_{j=1}^n \overline{a}_{ij}$$
 $i = 1, 2, \dots, n$

步骤三: 对向量 $\overline{W} = (\overline{w_1}, \overline{w_2}, \dots, \overline{w_n})^T$ 进行归一化

$$w_i = \frac{\overline{w_i}}{\sum_{j=1}^n \overline{w_j}} \qquad i = 1, 2, \dots, n$$

步骤四: $\Diamond W = (w_1, w_2, \dots, w_n)^T$,则W为所求的特征向量。

步骤五: 计算最大特征值 $\lambda_{\max} = \sum_{i=1}^{n} \frac{(AW)_{i}}{w}$, 式中 $(AW)_{i}$ 为 AW 的i个分量。

最大特征值及其特征向量的计算-方根法(近似方法)

步骤一: 把判断矩阵 4 的元素按行相乘

$$\overline{w}_i = \prod_{j=1}^n a_{ij} \qquad i = 1, 2, \dots, n$$

步骤二: 把所得的乘积开 n 次方

$$\overline{w}_i = \sqrt[n]{\overline{w}_i} \qquad i = 1, 2, \dots, n$$

步骤三: 对向量 $\overline{W} = (\overline{w_1}, \overline{w_2}, \dots, \overline{w_n})^T$ 进行归一化

$$w_i = \frac{\overline{w_i}}{\sum_{j=1}^n \overline{w_j}} \qquad i = 1, 2, \dots, n$$

步骤四: $\Diamond W = (w_1, w_2, \dots, w_n)^T$,则W为所求的特征向量。

步骤五: 计算最大特征值 $\lambda_{\max} = \sum_{i=1}^{n} \frac{(AW)_i}{w_i}$,式中 $(AW)_i$ 为 AW 的 i 个分量。

急层次单排序

(1) 问题

确定n个对象(候选方案) B_1, B_2, \cdots, B_n 关于指标A的排序/最优决策/评价结果。

(2) 方法

- 构造判断矩阵A
- 一直性验证;
- 计算判断矩阵对应于最大特征值 Amax = n 的特征向量

$$W = (w_1, w_2, \cdots, w_n)^T$$

● 把w标准化(归一化),根据各个w,的大小确定排序。

急层次总排序

设层次 A 有 A_1, A_2, \dots, A_m 个因素,其总排序权值为 $\alpha_1, \alpha_2, \dots, \alpha_m$;与 α_i 对应的本层次 B 有 B_1, B_2, \dots, B_n 个因素, B 层对应上层次因素 A_i 的单层排序的权值为 $b_{1i}, b_{2i}, \dots, b_{ni}$ 。

层次总排序表

2000111110								
层次 A 层次 B	A_1 α_1	$A_2 \dots A_2 \dots$	A_i α_i	A_m α_m	B 层总排序 <i>β_i</i>			
B_1	<i>b</i> ₁₁	b_{12}	b_{1i}	b_{1m}	$\beta_1 = \sum_{j=1}^m \alpha_j b_{1j}$			
B_2	b_{21}	b_{22}	b_{2i}	b_{2m}	$\beta_2 = \sum_{j=1}^m \alpha_j b_{2j}$			
			***	•••				
B_n	b_{n1}	b_{n2}	b_{ni}	b_{nm}	$\beta_n = \sum_{j=1}^m \alpha_j b_{nj}$			

是次总排序中一致性指标的计算

在层次总排序中,两个层次的一致性检验指标之间有相应的计算 关系,设

- CI 为层次 A 总排序的一致性指标
- RI 为层次 A 总排序的平均随机一致性指标
- CR 为层次 A 总排序的随机一致性指标

用 CI_i 表示与 α_i 对应的B层中判断矩阵的一致性指标,用 RI_i 表示与 α_i 对应的B层中判断矩阵的平均随机一致性指标,则A层一致性指标与B层的一致性指标之间的关系为

$$CI = \sum_{i=1}^{m} \alpha_i CI_i$$
, $RI = \sum_{i=1}^{m} \alpha_i RI_i$, $CR = \frac{CI}{RI}$

同样当CR < 0.1 时,层次总排序的计算结果具有满意的一致性。

是次分析法的步骤

- 分析与建立层次模型
- 利用单层排序方法计算每一层相对于上一层准则排序的加权值向量
- 从底层到高层,利用综合排序方法计算方案层对于各层直至最高层的总排序。

层次分析法举例

某军工企业名品生产方案评价

层次分析法举例(续1)

一个简化后的情况(两层)

沙层次分析法举例(续2)

O—A判断矩阵(对目标O而言,评价准则A1、A2、A3相对重要性比较)

О	$\mathbf{A_1}$	\mathbf{A}_2	\mathbf{A}_3	W
$\mathbf{A_1}$	1	1	3	0.4286
$\mathbf{A_2}$	1	1	3	0.4286
$\mathbf{A_3}$	1/3	1/3	1	0.1428

其中 $\lambda_{\text{max}} = 3$, CI = 0, CR = 0

沙层次分析法举例(续3)

• A1—P判断矩阵(对准则A1而言,方案P1、P2、P3 相对重要性比较)

$\mathbf{A_1}$	$\mathbf{P_1}$	\mathbf{P}_{2}	\mathbf{P}_3	W
P_1	1	3	5	0.6370
P_2	1/3	1	3	0.2583
P_3	1/5	1/3	1	0.1047

其中 $\lambda_{\text{max}} = 3.0385$, CI = 0.0193, CR = 0.58, CR = 0.0332 < 0.1

沙层次分析法举例(续4)

• **A2—P判断矩阵**(对准则**A2**而言,方案**P1、P2、P3** 相对重要性比较)

$\mathbf{A_2}$	P ₁	\mathbf{P}_{2}	P_3	W
P ₁	1	2	3	0.5499
P_2	1/2	1	1	0.2402
P_3	1/3	1	1	0.2098

其中 $\lambda_{max} = 3.0184, CI = 0.0092, CR = 0.58, CR = 0.0159 < 0.1$

沙层次分析法举例(续5)

• A3—P判断矩阵(对准则A3而言,方案P1、P2、P3 相对重要性比较)

\mathbf{A}_3	$\mathbf{P_1}$	P_2	P_3	W
P ₁	1	5	7	0.7207
P_2	1/5	1	3	0.1957
P_3	1/7	1/3	1	0.0835

其中 $\lambda_{\text{max}} = 3.090, CI = 0.045, CR = 0.58, CR = 0.078 < 0.1$

沙层次分析法举例(续6)

。 层次总排序(对对目标O而言,方案P1、P2、P3相对 重要性比较)

O	${f A_1}$	\mathbf{A}_2	\mathbf{A}_3	层次 P	方案
P	0.4268	0.4268	0.1428	总排序 权值	排序
P_1	0.6347	0.5499	0.7207	0.6116	1
P_2	0.2583	0.2402	0.1957	0.2416	2
P ₃	0.1047	0.2098	0.0835	0.1467	3

其中 $\lambda_{\text{max}} = 3.090, CI = 0.045, CR = 0.58, CR = 0.078 < 0.1$

层次分析法举例(续7)

总排序的一致性验证

$$CI = \sum_{i=1}^{3} \alpha_i CI_i = 0.4268 \times 0.0193 + 0.4268 \times 0.0092 + 0.1248 \times 0.045 = 0.0186$$

$$RI = \sum_{i=1}^{3} \alpha_i RI_i = 0.4268 \times 0.58 + 0.4268 \times 0.58 + 0.1248 \times 0.58 = 0.58$$

$$CR = \frac{CI}{RI} = \frac{0.0186}{0.58} = 0.032 < 0.1$$

优化问题、决策问题、评价问题的区别

SEI - 37

• 优化问题

- **』** 掌握问题所有信息
- **n** 完全可以用数学形式描述
- **n** 客观性:问题解与求解人无关,完全可以计算机。

决策问题

- 部分掌握问题有关信息,决策环境具有不确定性。
- **』**数据工具使用受到限制
- n 主观性:问题解与决策者有关。

• 评价问题

- n 问题有关的许多信息不完整、相关知识有限, 甚至存在争议。
- **n** 数学工具使用受到很大限制。
- **n** 高度主观性: 依赖于来自不同领域的多个专家。

资料阅读

SEI - 38

- 阅读钱学森等提出的综合研讨员 用方面的文章,关注国际上与此方法相 近的研究领域。
 - 基于综合集成的研讨厅体系与系统复杂性 Ħ
 - 综合集成研讨厅中的研讨信息组织模型 п
 - 基于综合集成方法的网上舆论倾向分析与评 估系统方案
 - 武器装备论证综合集成研讨厅系统

沙资料阅读2

SEI - 39

- 选读下面(不限于此,鼓励自查文献)文章, 加深对系统评价方法及应用方面知识的认识。
 - · 产品数据管理应用系统评价方法的研究
 - 。 多层次系统的综合评价方法研究
 - n 面向指挥自动化效能评估的C3IEEE系统设计
 - . 模糊综合评判在物流系统评价中的应用
 - **。** 企业集成的评价准则
 - **工** 无人机电磁环境效应评估及其准则研究
 - A Quantitative Method for Evaluating Machine Translation Systems

沙资料阅读2(续)

- Design and evaluation of a generic software architecture for on-demand video servers
- Experimental evaluation of a COTS system for space applications
- Experimenting with quantitative evaluation tools for monitoring operational security
- Neural networks for short-term load forecasting-a review and evaluation
- Performance evaluation of storage systems based on network-attached disks
- Petri-net based performance-evaluation of distributed homogeneous task systems
- SCI evaluation in multinode environments for computing and data-processing
- Simulation-based performance evaluation of routing protocols for mobile ad hoc networks

- 阅读钱学森等提出的综合研讨厅及其应用方面的文章,关注国际上与此方法相关的研究领域,写出一篇利用群体/专家智能进行评价或决策的简要综述。
- 查阅最新相关学术论文,并结合自己研究 方向,说明层次分析法(或最新的其它评价方法)在系统评价中的应用。
- 简述优化问题、决策问题和评价问题的区别与联系。