Bayes Nets: Approximate Inference

AIMA Chapter 14.5, PRML Chapter 11

Approximate Inference by Sampling

- Goal: probability P
- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute some quantity from the samples
 - Show this converges to the true probability P

- Why sample?
 - Often very fast to get a decent approximate answer
 - The algorithms are very simple and general (easy to apply to fancy models)
 - They require very little memory (O(n))

Sampling from a discrete distribution

- Sampling from given distribution
 - Step 1: Get sample u from uniform distribution over [0, 1)
 - Random() in many programing languages
 - Step 2: Convert this sample u into an outcome for the given distribution by associating each outcome x with a P(x)-sized subinterval of [0,1)

Example

С	P(C)
red	0.6
green	0.1
blue	0.3

$$\begin{aligned} 0 &\leq u < 0.6, \rightarrow C = red \\ 0.6 &\leq u < 0.7, \rightarrow C = green \\ 0.7 &\leq u < 1, \rightarrow C = blue \end{aligned}$$

- If random() returns u = 0.83, then our sample is C = blue
- E.g, after sampling 8 times:

Sampling in Bayes Nets

- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling

- For i=1, 2, ..., n (in topological order)
 - Sample X_i from $P(X_i | parents(X_i))$
- Return $(x_1, x_2, ..., x_n)$

Using samples

We'll get a bunch of samples from the BN:

- If we want to know P(W)
 - We have counts <w:4, ¬w:1>
 - Normalize to get $P(W) = \langle w:0.8, \neg w:0.2 \rangle$
 - This will get closer to the true distribution with more samples
- If we want to know $P(C \mid r, w)$
 - Count (c, r, w) and $(\neg c, r, w)$
 - Normalize to get $P(C | r, w) = \langle c:0.67, \neg c:0.33 \rangle$

This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$

...i.e. the BN's joint probability

- Let the number of samples of an assignment be $N_{PS}(x_1 \dots x_n)$
- So $\hat{P}(x_1, ..., x_n) = N_{PS}(x_1, ..., x_n)/N$

Then
$$\lim_{N\to\infty} \widehat{P}(x_1,\ldots,x_n) = \lim_{N\to\infty} N_{PS}(x_1,\ldots,x_n)/N$$

= $S_{PS}(x_1,\ldots,x_n)$
= $P(x_1\ldots x_n)$

I.e., the sampling procedure is consistent

Rejection Sampling

Rejection Sampling

- A simple modification of prior sampling for conditional probabilities
- Let's say we want P(C | r, w)
- When generating a sample, reject it immediately if not R=true, W=true
- It is consistent for conditional probabilities (i.e., correct in the limit)

Rejection Sampling

- Input: evidence $e_1,...,e_k$
- For i=1, 2, ..., n
 - Sample X_i from $P(X_i | parents(X_i))$
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle
- Return $(x_1, x_2, ..., x_n)$

- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(Shape | Color=blue)

pyramid, green
pyramid, red
sphere, blue
cube, red
sphere, green

- Idea: fix evidence variables, sample the rest
 - Problem: sample distribution not consistent!
 - Solution: weight each sample by probability of evidence variables given parents

- Input: evidence $e_1,...,e_k$
- w = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - x_i = observed value_i for X_i
 - Set $w = w * P(x_i \mid Parents(X_i))$
 - else
 - Sample x_i from P(X_i | Parents(X_i))
- return (x₁, x₂, ..., x_n), w

Using samples

We'll get a bunch of weighted samples from the BN:

c, ¬s, r, w	0.1
c, s, r, w	0.2
¬c, s, r, w	0.3
c, ¬s, r, w	0.1
¬c, ¬s, r, w	0.5

- If we want to know P(C| r, w)
 - We have weight sums <(c, r, w): 0.4, $(\neg c, r, w)$: 0.8>
 - Normalize to get $P(C | r, w) = \langle c : 0.33, \neg c : 0.67 \rangle$
 - This will get closer to the true distribution with more samples

Sampling distribution (z is sampled and e is fixed evidence)

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$

Together, weighted sampling distribution is consistent

$$S_{\text{WS}}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$$
$$= P(\mathbf{z}, \mathbf{e})$$

Importance Sampling

- Likelihood weighting is an instance of importance sampling
 - Suppose it is difficult to sample from p(x)
 - Generate samples from a proposal distribution q(x)
 - q(x) is easy to draw samples from
 - Weight each sample by p(x)/q(x)
- The choice of q(x) would greatly influence the speed of convergence
 - If you want to estimate the expectation of f(x)
 - Then q(x) should be close to being proportional to |f(x)|p(x)

$$q(x) \propto |f(x)| p(x)$$
 $rac{f(x)p(x)}{q(x)}$

- Likelihood weighting is good
 - All samples are used
 - The values of downstream variables are influenced by upstream evidence

- Likelihood weighting still has weaknesses
 - The values of *upstream* variables are unaffected by downstream evidence
 - With many downstream evidence, we may
 - mostly get samples that are inconsistent with the evidence and thus have very small weights
 - get a few lucky samples with very large weights, which dominate the result
- We would like each variable to "see" all the evidence!

Gibbs Sampling

Gibbs Sampling

- Generate each sample by making a random change to the preceding sample
 - Evidence variables remain fixed. For each of the non-evidence variable, sample its value conditioned on all the other variables
 - $= X_i' \sim P(X_i \mid X_1,...,X_{i-1},X_{i+1},...,X_n)$
 - In a Bayes net

$$P(X_i \mid x_1,...,x_{i-1},x_{i+1},...,x_n)$$

$$= P(X_i \mid markov_blanket(X_i))$$

$$= \alpha P(X_i \mid u_1,...,u_m) \prod_i P(y_i \mid parents(Y_i))$$

Gibbs Sampling Example: P(S | r)

- Step 1: Fix evidence
 - \blacksquare R = true

- Step 2: Initialize other variables
 - Randomly

- Step 3: Repeat
 - Choose an arbitrary non-evidence variable X
 - Resample X from P(X | markov_blanket(X))

Sample $S \sim P(S \mid c, r, \neg w)$

Sample $C \sim P(C \mid s, r)$

Sample $W \sim P(W \mid s, r)$

Why doing this?

- Samples soon begin to reflect all the evidence in the network
- Eventually they are being drawn from the true posterior!

Theorem: Gibbs sampling is consistent

Markov Chain Monte Carlo (MCMC)

- MCMC is a family of randomized algorithms for approximating some quantity of interest over a very large state space
 - Markov chain = a sequence of randomly chosen states ("random walk"),
 where each state is chosen conditioned on the previous state
 - **■** Monte Carlo = a very expensive city in Monaco with a famous casino
 - Monte Carlo = an algorithm (usually based on sampling) that is likely to find a correct answer
- MCMC = sampling by constructing a Markov chain
- Gibbs, Metropolis-Hastings, Hamiltonian, Slice, etc.

Metropolis-Hastings

Repeat

- 1. Draw a sample from a proposal distribution g(x'|x)
 - g(x'|x) is typically easy to sample from
- 2. Accept this sample with probability

$$\min\left(1, \frac{P(x')g(x|x')}{P(x)g(x'|x)}\right)$$

 Gibbs is a special case of Metropolis-Hastings in which the acceptance rate is always 1

Summary

Prior Sampling P

Rejection Sampling P(Q | e)

Likelihood Weighting P(Q | e)

