Out[4]:

	ld	Diagnosis	Radius_Mean	Texture_Mean	Perimeter_Mean	Area_Mean	Smoothness_I
448	911685	В	11.49	14.59	73.99	404.9	0.1
123	867387	В	15.71	13.93	102.00	761.7	0.0
4							>

```
In [5]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 535 entries, 0 to 534
Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype			
0	Id	535 non-null	int64			
1	Diagnosis	535 non-null	object			
2	Radius Mean	535 non-null	float64			
3	Texture_Mean	535 non-null	float64			
4	Perimeter_Mean	535 non-null	float64			
5	Area_Mean	535 non-null	float64			
6	Smoothness_Mean	535 non-null	float64			
7	Compactness_Mean	535 non-null	float64			
8	Concavity_Mean	535 non-null	float64			
9	Concave Points_Mean	535 non-null	float64			
10	Symmetry_Mean	535 non-null	float64			
11	Fractal_Dimension_Mean	535 non-null	float64			
12	Radius_Se	535 non-null	float64			
13	Texture_Se	535 non-null	float64			
14	Perimeter_Se	535 non-null	float64			
1 5	Area_Se	535 non-null	float64			
16	Smoothness_Se	535 non-null	float64			
17	Compactness_Se	535 non-null	float64			
18	Concavity_Se	535 non-null	float64			
19	Concave Points_Se	535 non-null	float64			
20	Symmetry_Se	535 non-null	float64			
21	Fractal_Dimension_Se	535 non-null	float64			
22	Radius_Worst	535 non-null	float64			
23	Texture_Worst	535 non-null	float64			
24	Perimeter_Worst	535 non-null	float64			
25	Area_Worst	535 non-null	float64			
26	Smoothness_Worst	535 non-null	float64			
27	Compactness_Worst	535 non-null	float64			
28	Concavity_Worst	535 non-null	float64			
29	Concave Points_Worst	535 non-null	float64			
30	Symmetry_Worst	535 non-null	float64			
31	Fractal_Dimension_Worst	535 non-null	float64			
dtypes: float64(30), int64(1), object(1)						
memoi	ry usage: 133.9+ KB					

localhost:8888/notebooks/Desktop/My projects/3.0 Breast_Cancer_Detection/Breast_Cancer_Detection/notebooks/2.0 Exploratory_Data_Analysis.ip...

```
In [6]: df.describe(
)
```

Out[6]:

	ld	Radius_Mean	Texture_Mean	Perimeter_Mean	Area_Mean	Smoothness_Me
count	5.350000e+02	535.000000	535.000000	535.000000	535.000000	535.0000
mean	2.800529e+07	14.009338	19.153065	91.027121	639.084673	0.0955
std	1.172244e+08	3.268515	4.160548	22.439502	313.983225	0.0132
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.0526
25%	8.690515e+05	11.725000	16.070000	75.265000	421.950000	0.0858
50%	9.060240e+05	13.300000	18.770000	86.100000	546.300000	0.0949
75%	8.812860e+06	15.635000	21.680000	102.750000	759.950000	0.1044
max	9.113205e+08	25.220000	33.810000	171.500000	1878.000000	0.1398
4						•

Univariate Analysis

```
In [7]: # univariate analysis on diagnosis_variable
plt.figure(figsize=(6,3))
    sns.countplot(data = df, x = "Diagnosis")
    plt.title("Count of Diagnosis variable")
    plt.savefig("C:\\Users\\yozil\\Desktop\\My projects\\3.0 Breast_Cancer_Detection
plt.show()
```


As we can see from the above plot:

1. in our dataset we have more of benign groups than those of malignants.

```
In [8]: # Univariate analysis on radius mean variable
plt.figure(figsize=(6,3))
sns.distplot(df.Radius_Mean)
plt.title("Distribution_of_Radius_Mean_Variable")
plt.savefig("C:\\Users\\yozil\\Desktop\\My projects\\3.0 Breast_Cancer_Detection
plt.show()
```


As we can see from the above distplot:

- 1. slightly more records have a "Radius RMean" value less than that of the mean.
- 2. most of the records have a "Radius_Mean" value between 10 and 20

```
In [9]: # Univariate analysis on Texture mean variable
plt.figure(figsize=(6,3))
sns.distplot(df.Texture_Mean)
plt.title("Distribution_of_Texture_Mean_Variable")
plt.savefig("C:\\Users\\yozil\\Desktop\\My projects\\3.0 Breast_Cancer_Detection
plt.show()
```


As we can see from the texture mean variable distribution plot above:

- 1. The distribution plot shows a bell-shaped curve, which is characteristic of a normal distribution.
- 2. The distribution appears to be fairly symmetric around the center.
- 3. The data points are spread between approximately 5 and 35, with the highest density around the center.

```
In [10]: # Univariate analysis on Perimeter mean variable
plt.figure(figsize=(6,3))
sns.distplot(df.Perimeter_Mean)
plt.title("Distribution_of_Perimeter_Mean_Variable")
plt.savefig("C:\\Users\\yozil\\Desktop\\My projects\\3.0 Breast_Cancer_Detection
plt.show()
```


As we can see from the above distribution plot of Perimeter mean variable

- 1. The histogram shows a somewhat bell-shaped curve but with some deviations.
- 2. The distribution appears to be slightly skewed to the right (positive skewness), as the tail on the right side is longer than the left.
- 3. The data points are spread between approximately 25 and 175, with the highest density around the center.

```
In [11]: # Univariate analysis on Area mean variable
    plt.figure(figsize=(6,3))
    sns.distplot(df.Area_Mean)
    plt.title("Distribution_of_Area_Mean_Variable")
    plt.savefig("C:\\Users\\yozil\\Desktop\\My projects\\3.0 Breast_Cancer_Detection
    plt.show()
```


As we can see from the above Distribution Plot of Area_Mean variable

- 1. The histogram shows a right-skewed distribution rather than a bell-shaped curve.
- 2. The distribution is not symmetric; it has a longer tail on the right side.
- 3. The data points are spread between approximately 0 and 2000, with the highest density around lower values.

```
In [12]: # Univariate analysis on Smoothness mean variable
    plt.figure(figsize=(6,3))
    sns.distplot(df.Smoothness_Mean)
    plt.title("Distribution_of_Smoothness_Mean_Variable")
    plt.savefig("C:\\Users\\yozil\\Desktop\\My projects\\3.0 Breast_Cancer_Detection
    plt.show()
```


As we can see from the above smoothness mean distribution plot

- 1. The distribution appears to be approximately normal, centered around a mean smoothness value of approximately 0.10.
- 2. The smoothness values range roughly from 0.04 to 0.14, indicating the spread or variability in the data.

```
In [13]: # Univariate analysis on Compactness mean variable
plt.figure(figsize=(6,3))
sns.distplot(df.Compactness_Mean)
plt.title("Distribution_of_Compactness_Mean_Variable")
plt.savefig("C:\\Users\\yozil\\Desktop\\My projects\\3.0 Breast_Cancer_Detection
plt.show()
```


As we can see from the distribution Compactness distribution plot above:

- 1. The distribution has a peak around the 0.05 to 0.07 range, suggesting that the most frequent values for compactness mean are in this range.
- 2. The compactness values range from close to 0 to about 0.35, indicating a wide variability in the data.
- 3. The distribution is right-skewed (positively skewed), with a longer tail extending to the right. This indicates that while most values are clustered around the lower end, there are a few higher values stretching the distribution to the right.

```
In [14]: # Univariate analysis on Concavity mean variable
    plt.figure(figsize=(6,3))
    sns.distplot(df.Concavity_Mean)
    plt.title("Distribution_of_Concavity_Mean_Variable")
    plt.savefig("C:\\Users\\yozil\\Desktop\\My projects\\3.0 Breast_Cancer_Detection
    plt.show()
```


As we can see from the above concavity mean distribution plot:

- 1. The distribution has a peak around 0.02 to 0.04, suggesting that the most frequent values for concavity mean are in this range.
- 2. The concavity values range from close to 0 to about 0.4, indicating a wide variability in the data.
- 3. The distribution is right-skewed (positively skewed), with a longer tail extending to the right. This indicates that while most values are clustered around the lower end, there are a few higher values stretching the distribution to the right.

```
In [16]: # Univariate analysis on Concave Points_Mean variable
plt.figure(figsize=(6,3))
sns.distplot(df["Concave Points_Mean"])
plt.title("Distribution_of_Concave Points_Mean_Variable")
plt.savefig("C:\\Users\\yozil\\Desktop\\My projects\\3.0 Breast_Cancer_Detection
plt.show()
```

