UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA CURSO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO

Retificador e Conversor CC-CC

RELATÓRIO DA DISCIPLINA DE FUNDAMENTOS DA ELETRÔNICA DE POTÊNCIA Prof. Rafael Concatto Beltrame

Guilherme Ramos Londero Raul Santos Ferreira

> Santa Maria, RS, Brasil 2022

SUMÁRIO

Introduç	ÃO	2	
CAPÍTUI	LO 1	PARÂMETROS E RETIFICADOR DE ONDA COMPLETA	3
1.1	Parâ	metros	3
1.2	Retif	icador de Onda Completa	3
1.3	Conv	versor CC-CC Flyback	6
CAPÍTUI	LO 2	PROJETO DO RETIFICADOR E DO CONVERSOR	8
2.1	Proje	eto do Retificador de onda completa	8
2.2	Proje	eto do Conversor CC-CC Flyback	9
CAPÍTUI	L O 3	SIMULAÇÕES	13
3.1	Simu	lação do retificador de onda completa	13
3.2	Simu	ılação do conversor CC-CC Flyback	15
CAPÍTUI	L O 4	Conclusão	17
REEEDÊNC	IAC DI	DI IOCDÁFICAS	18

Introdução

A Eletrônica de Potência pode ser definida como a ciência que estuda conversores estáticos para o processamento eficiente da energia elétrica, adequando-se às especificações de carga [1]. Os conversores estáticos são definidos como dispositivos eletrônicos que convertem energia sem necessitar de peças móveis, pois são construídos por elementos passivos lineares (resistores, capacitores e indutores) e não lineares (diodos), e também por elementos ativos (MOSFET, SCR, TBJ, IGBT).

Os conversores estáticos são empregados no controle do fluxo de energia entre dois ou mais sistemas elétricos [1], algumas de suas aplicações são: Fontes chaveadas, Acionamento/controle de velocidade de máquinas elétricas, transmissão de energia elétrica em corrente contínua, No-breaks, fontes renováveis de energia, entre outras.

Este relatório tem como objetivo a apresentação do projeto e simulações de um conversor CC-CC de topologia FlayBack, a alimentação será feita através de um retificador de onda completa em configuração ponte. Para as simulações fez-se necessário a aplicação do software PSIM, que apesar de ter sido projetado especificamente para uso em simulações de eletrônica de potência e acionamento de motores, pode ser usado para qualquer circuito eletrônico.

CAPÍTULO 1 PARÂMETROS E RETIFICADOR DE ONDA COMPLETA

1.1 Parâmetros

Os parâmetros utilizados para os componentes nas simulações no PSIM foram os de componentes ideais, ou seja, sem perdas. Os parâmetros tanto do retificador quanto do conversor CC-CC Flayback estão expostos na Tabela 1.

Tabela 1 - Especificações dos conversores.

	Retifica	ndor			Conver	sor CC-CC			
Grupo	Tensão Eficaz da Rede (v _{rede})	Ondulação de Tensão $(\Delta V_{CC\%})$	Topologia	Potência de Saída (P _o)	Tensão de Saída (V _o)	Frequência de Chaveamento ¹ (f _s)	Ondulação de Tensão (Δν _{ο%})	Ondulação de Corrente $(\Delta i_{L\%})$	
1	127 V 60 Hz	1,0%	Buck	500 W	50 V	1,4 kHz	2,5 %	20 %	
2	127 V 60 Hz	1,0%	Boost	500 W	350 V	1,4 kHz	2,5 %	20 %	
3	127 V 60 Hz	0,5%	Buck-Boost	500 W	250 V	1,4 kHz	2,5 %	20 %	
4	127 V 60 Hz	0,5%	Flyback	90 W	3500 V	1,4 kHz	2,5 %	20 %	
5	220 V 60 Hz	1,0%	Buck	400 W	100 V	1,8 kHz	2,0 %	15 %	
6	220 V 60 Hz	1,0%	Boost	400 W	600 V	1,8 kHz	2,0 %	15 %	
7	220 V 60 Hz	0,5%	Buck-Boost	400 W	450 V	1,8 kHz	2,0 %	15 %	
8	220 V 60 Hz	0,5%	Flyback	80 W	6000 V	1,8 kHz	2,0 %	15 %	

Fonte: Autores

1.2 Retificador de Onda Completa

A estrutura do retificador de onda completa em ponte é apresentado na Figura 2.

Figura 1 - Retificador de onda completa.

O funcionamento do retificador ocorre em duas etapas: A primeira etapa ocorre durante o primeiro semiciclo, a tensão da fonte é positiva, os diodos D1 e D4 são polarizados diretamente e conduzem a corrente de carga [2]. A segunda etapa ocorre durante o semiciclo negativo da fonte e temos os diodos D2 e D3 conduzindo a corrente de carga [2].

Abaixo na Figura 2, é apresentando a forma de onda da tensão de entrada (Vs) gerada por fonte senoidal $Vm = sin(\omega t)$ e a forma de onda da tensão de saída (VI)

Figura 2 - Formas de ondas. Fonte: Rashid – Eletrônica de potência – Circuitos, Dispositivos e Aplicações (PDF)

A partir da integração da forma de onda é possível obter a tensão média de saída (Vo).

$$Vo = \frac{1}{2\pi} \int_{0}^{2\pi} Vo(\omega t) d\omega t$$

(1)

A integral apresentada acima pode ser calculada no intervalo de 0 a 2π ou pode-se calcular no intervalo de 0 a π e multiplicar o resultado por 2, o método escolhido foi o segundo.

$$Vo = \frac{2}{2\pi} \int_{0}^{\pi} Vin(\omega t) d\omega t$$

(1.1)

$$Vo = \frac{1}{\pi} \int_{0}^{\pi} V max * sen(\omega t). d\omega t$$

(1.2)

$$Vo = \frac{Vmax}{\pi} * \left[-\cos \cos \left(\omega t\right) \right]_0^{\pi}$$

(1.3)

$$Vo = \frac{2}{\pi} * Vmax = 0,636 * Vmax [V]$$

(1.4)

A equação 1 mostra a tensão média obtida na carga com um retificador de onda completa do tipo ponte. Tendo conhecimento da tensão máxima aplicada, pode-se calcular o valor da tensão média de saída para qualquer valor de tensão máxima.

Um filtro capacitivo pode ser inserido, diminuindo a ondulação de tensão. Esse filtro capacitivo foi inserido em paralelo com o resistor, como mostra a Figura 3.

Figura 3 – Retificador de onda completa com Filtro Capacitivo.

A forma de onda com o filtro capacitivo aplicado é apresentada na Figura 4. A capacitância do capacitor é calculada a partir da ondulação de tensão (ripple), ou seja, uma porcentagem da variação entre Vmax e Vmin.

Figura 4 – Forma de onda na carga com filtro capacitivo.

Fonte: Autores

A equação 2 apresenta todos os cálculos necessários ate se chegar ao valor de capacitância necessário para o filtro.

$$Vmax = Vrede * \sqrt{2} [V]$$

(2)
$$Vmin = Vmax * (1 - \Delta Vo\%)[V]$$

(2.1)

$$Vo \cong \frac{Vmax + Vmin}{2} [V] \tag{2.2}$$

$$Po = \frac{Vo^2}{R}$$
 [W]

$$C = \frac{Po}{f(Vmax^2 - Vmin^2)} [F]$$
 (2.4)

Tendo as equações do retificador de onda completa do tipo ponte definidas, é possível prosseguir para a etapa de projeto do mesmo.

1.3 Conversor CC-CC Flyback

Um conversor CC-CC, conhecido também como conversor CC [3], é um circuito eletrônico que tem como função converter uma tensão ou corrente em forma contínua de determinada amplitude em uma tensão ou corrente de amplitude diferente da original.

Os conversores CC-CC possuem muitas topologias diferentes, como buck, boost, buck-boost, forward, flyback entre outros. As aplicações mais comuns para os conversores CC-CC são: Controle de velocidade de motores CC, Fontes chaveadas, Correção de fator de potência, Adaptação de tensão contínua. O conversor selecionado pelo autor para o projeto é da topologia Flyback.

O conversor Flyback é derivado do conversor CC-CC Buck-Boost, também sendo um conversor rebaixador-elevador, ele pode proporcionar altos ganhos de tensão devido ao seu indutor acoplado que é semelhante a um transformador. Porém devido à dispersão do indutor acoplado, usualmente apresenta rendimentos na faixa de 70% a 80%, limitando sua aplicação a baixas potências, inferior a 100w [4]. A Figura 5 apresenta um conversor CC-CC Flyback isolado.

Figura 5 - Conversor Flyback Isolado.

Através de LKT e LCK, podemos definir as seguintes equações:

$$\frac{dil}{dt} = \frac{Vin}{Lm}$$

$$Vd = -(nVin + Vo)$$

$$(3.1)$$

$$I2 = -\frac{ll}{n}$$

$$(3.2)$$

$$Vl = -\frac{Vo}{n}$$

$$\frac{dil}{dt} = -\frac{Vo}{n^*Lm} \tag{3.4}$$

Em regime permanente, tem-se de energia no indutor:

$$\frac{Vo}{Vin} = n * \frac{D}{1-D} \tag{4}$$

CAPÍTULO 2 PROJETO DO RETIFICADOR E DO CONVERSOR

2.1 Projeto do Retificador de onda completa

Para o projeto do retificador, é necessário primeiramente calcular o valor da tensão máxima, utilizando os dados apresentados na Tabela 2 e a Equação 2, com o valor máximo de tensão é possível então calcular a tensão média na carga utilizando a Equação 1.

Tabela 2 – Especificações do projeto

Variável	Valor especificado no projeto
Tensão da rede eficaz (Vin)	220 V
Frequência da rede (f)	60HZ
Ondulação de tensão (ripple)	0.5%

Fonte: Autores

Todos cálculos realizados no projeto foram feitos utilizando o *software* Matlab, através de scripts elaborados pelo próprio autor. Utilizando as equações citadas e os dados apresentados, encontram-se os seguintes valores para a tensão máxima e média de saída, respectivamente:

$$Vmax = 311.127 [V]$$

 $Vo = 197.877 [V]$

A tensão mínima foi calculada utilizando a ondulação de tensão definida no projeto, através da Equação 2.1.

Vmin = 309.571 [V]

O valor de capacitância para o capacitor de filtro é definido pela Equação 2.4. Utilizando a equação e os valores apresentados na Tabela 1 e 2 temos o seguinte resultado:

$$C = 1.4 [mF]$$

Para a especificação dos diodos utilizados no retificador, é necessário saber a tensão máxima do diodo e a corrente média, a Equação 5 e Equação 6 foram utilizadas para o cálculo, respectivamente. Para a tensão, foi utilizado um fator de segurança de 50%

$$Vdmax = Vmax * 1.5$$
(5)
$$Idmed = \frac{Vmax}{\pi^*Ro}$$
(6)

Substituindo os valores nas equações tem-se os seguintes resultados:

$$Vdmax = 466.690 [V]$$

 $Idmed = 0.082 [A]$

A fim de especificar os *part number* comercial para os diodos foi utilizado os valores encontrados através da Equação 5 e Equação 6. Com esses valores foi selecionado o diodo do fabricante Diotec Semiconductor, com *part* number 1N4005 [5], que possui uma *Vdmax* 600V e *Idmed* de 1A.

2.2 Projeto do Conversor CC-CC Flyback

Após a etapa de projeto do Retificador ser concluída, passou-se para a etapa de projeto do Conversor CC-CC Flyback, nessa etapa será apresentado o cálculo dos valores do indutor e do capacitor de filtro. A esquemática de um conversor CC-CC Flyback já foi apresentada na Figura 5.

Os parâmetros especificados para o projeto são apresentados na Tabela 3. O valor da razão cíclica foi escolhido pelo autor [6]

Tabela 3 - Especificações do projeto do Conversor

Variável	Valor especificado no projeto
Potência de Saída (Po)	80 W
Tensão de Saída (Vo)	6000 V
Frequência de Chaveamento (Fs)	1.8 kHz
Ondulação de Tensão (ΔVo%)	2%
Ondulação de corrente (ΔI _L %)	15%
Razão cíclica (D)	0.7

Fonte: Autores

Primeiramente foi calculado o número de espiras do transformador, através da equação 7. Essa equação nos mostra a relação do número de espiras no secundário, caso o número de espiras da primeira for igual a 1. Para o projeto foi adotado o número de espiras no primário igual a 1. Assim como no projeto do retificador, para o projeto do conversor, também foi utilizado o software Matlab para as rotinas de cálculos, através de scripts elaborados pelo próprio autor.

$$n = \frac{Vo}{Vcc} * \frac{1-D}{D}$$
(7)

O segundo passo é calcular a resistência de carga, através da Equação 8. Também é necessário calcular a corrente média da carga, através da Equação 9.

$$Ro = \frac{Vo^2}{Po} [\Omega]$$

(8)

$$Io = \frac{Vo}{Ro} [A]$$
(9)

Tendo o valor da corrente média de carga, é possível calcular a corrente média no indutor, entretanto ainda é necessário a corrente média de entrada, calculada através da Equação 11. Para o cálculo da corrente média de entrada é necessário a potência de entrada, como especificado no projeto, os componentes são ideais, ou seja, a potência de entrada é igual a de saída, conforme a Equação 10.

$$Pin = Pout [W]$$

$$Iin = \frac{Pin}{Vcc} [A]$$
(11)

A corrente média no indutor é calculada através da Equação 12. Com o valor da corrente média no indutor, podemos calcular a ondulação da corrente no indutor, conforme a Equação 13. Para o cálculo da ondulação de corrente no capacitor, é utilizado a Equação 14.

$$Il = Iin + Io * n [A]$$

$$(12)$$

$$\Delta IL = \Delta iL * IL [A]$$

$$(13)$$

$$\Delta VO = \Delta Vo * Vo [V]$$

$$(14)$$

Com todos os valores já calculados, é possível então partir para o cálculo da indutância do indutor e da capacitância do capacitor, conforme a Equação 15 e Equação 16, respectivamente.

$$L = \frac{Vcc * D}{\Delta IL * fs} [H]$$
(15)

$$C = \frac{Io^*D}{\Delta VO^*fs} [F]$$
(16)

Todos os resultados obtidos através das equações descritas acima, são demonstrados na Tabela 4.

Tabela 4 – Resultados do projeto do Conversor

Variável	Resultado
n	8.264
Ro	450 [kΩ]
Io	0.013 [A]
Iin	0.257 [A]
II	0.367 [A]
ΔIL	0.055 [A]
ΔVO	120 [V]
Lm	2.195 [H]
С	43.21 [nF]

Para a especificação do diodo do Conversor, é necessário utilizar a Equação 17 e Equação 18. Já para o mosfet do conversor, é necessário utilizar a Equação 19 e Equação 20. Esses cálculos são necessários, pois a partir dos valores obtidos nele, é que se pode procurar um diodo e um mosfet compatível com a aplicação. Para os valores de tensão foi aplicado um fator de segurança de 50%.

$$Vdmax = Vo * 1.5 [V]$$
(17)
 $Id = \frac{Vo}{Ro} [A]$
(18)
 $Vdss = Vmax * 1.5 [V]$
(19)
 $Is = IL [A]$
(20)

Substituindo os valores nas equações tem-se os seguintes resultados:

Vdmax = 9000 [V] Id = 0.013 [A] Vdss = 466.690 [V] Is = 0.367 [A]

Como já citado antes, os valores acima foram utilizados para definir o part number do diodo e do mosfet. O diodo selecionado foi o DV10P [7] da empresa Dean Technology e o mosfet o FDD6N50TM-F085 [8] da empresa OnSemi. Ambos satisfazem os requisitos de projeto.

CAPÍTULO 3 SIMULAÇÕES

3.1 Simulação do retificador de onda completa

Para as simulações tanto do retificador quanto do conversor, deve-se primeiro calcular os parâmetros de simulação que serão utilizados no *software* PSIM. A licença estudantil do PSIM possui uma limitação de 6000 pontos por período, ou seja, os tempos de simulação não podem ultrapassar esse valor. Para a simulação do retificador foi utilizado uma resolução de 1000 pontos por período, o que nos leva aos seguintes parâmetros:

$$T_{s} = 55.4 [ms]$$
 $Time_{Step} = 55.6 [us]$
 $Total_{Time} = 0.667 [s]$

$$Start_{Time} = 0.664 [s]$$

Utilizando os valores obtidos no Capítulo 2, foi possível realizar as simulações. O primeiro gráfico a ser plotado foi a tensão de entrada pela tensão de saída (*Vin x Vcc*), conforme mostra a figura 6.

Figura 6 - Grafico Vin x Vcc.

Fonte: Autores

A Figura 6 comprova que o retificador está funcionando como deve, transformando uma tensão máxima de 311V alterna em uma tensão contínua de 311V.

O próximo gráfico a ser plotado foi o da corrente drenada pela fonte de tensão, a onda da corrente é apresentada na Figura 7.

Figura 7 - Corrente drenada pela fonte.

Fonte: Autores

Utilizando o software PSIM, foi calculado o fator de potência e a THD da corrente suprimida pela rede. Os resultados são demonstrados na Figura 8 e de uma forma mais simples na Tabela 5.

	X1	X2	Δ	PF	THD
Time	1.66670e-02	3.33330e-02	1.66660e-02 🔒		freq=200
I1	1.70537e-08	1.70537e-08	2.61932e-16	1.67842e-01	2.85057e+00
V3	1.54577e+02	1.54998e+02	4.20709e-01		1.38314e+00

Figura 8 - Fator de potência e THD

Fonte: Autores

Tabela 5 – Fator de potência e THD

Variável	Valor calculado
Fator de potência (Fp)	0.167
THD% (total harmonic distortion)	285%

Fonte: Autores

A fim de realizar uma averiguação dos dados, foi montada a Tabela 6, a fim de comparar os valores obtidos no projeto e os valores obtidos através da simulação.

Tabela 6 – Comparação Projeto x Simulação

Variavel	Valor de projeto	Valor de simulação	Erro %
Vcc	311.12	311.000	0.038
ΔVcc %	0.5	0.514	2.723

Fonte: Autores

3.2 Simulação do conversor CC-CC Flyback

Para a simulação do conversor CC-CC Flyback será usado os mesmos parâmetros e resolução utilizados no retificador.

Tomando os dados obtidos no capítulo 2, foi possível realizar as simulações. O primeiro gráfico visualizado é o da forma de onda da tensão de chaveamento do diodo mosfet $(Gs \ x \ t)$, como mostrado na Figura 9.

Figura 9 - Forma de onda da tensão de chaveamento do diodo mosfet.

Fonte: Autores

Na Figura 10 é plotado a forma de onda da tensão de saída do conversor \boldsymbol{V}_0 obtido em regime permanente de operação.

Figura 10 - Forma de onda da tensão de saída.

O último gráfico a ser visualizado e analisado para a verificação do projeto do conversor é a corrente do indutor I_L mostrado na Figura 11

Figura 11 - Forma de onda da corrente do indutor

Fonte: Autores

Agora para fins comparativos foram reunidos todos os dados do conversor tanto de projeto quanto simulado na Tabela 7 para verificar e validar através dos erros relativos ao projeto realizado.

Tabela 7 - Comparação Projeto x Simulação

Variável	Valor de projeto	Valor de simulação	Erro %
V_{0}	6000	5974.22	0.4315%
$\Delta_{v_0\%}$	2.0%	1.8797%	6.3999%
$\Delta_{i_L\%}$	15%	11.577%	22.814%

CAPÍTULO 4 CONCLUSÃO

O relatório presente teve como objetivo validar o estudo teórico de retificadores de onda completa e conversores CC-CC Flyback através de simulações, a fim de comparar resultados obtidos na etapa de projeto e resultados obtidos na etapa de simulação.

Acredita-se que o conversor projetado alcançou um desempenho dentro do esperado, tendo em vista que os erros percentuais foram baixos, conforme a Tabela 6 e Tabela 7. Caso fosse uma aplicação prática e não um estudo, acredita-se que os erros seriam maiores, devido ao fato de os componentes não serem ideias.

A maior dificuldade foi encontrada na hora de selecionar os componentes para aplicação. Outra dificuldade foi referente a parte da análise de dados da simulação.

Através do trabalho foi possível entender o funcionamento do retificador e de um conversor, o comportamento das ondas e também como selecionar componentes para uma aplicação prática. O trabalho se demonstrou muito agregado aos conhecimentos dos autores, pois para a realização do mesmo foi necessário a revisão de aulas e bibliografías.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] BELTRAME, R. C. APRESENTAÇÃO DA DISCIPLINA E DEFINIÇÕES BÁSICAS Disponível em: https://www.youtube.com/watch?v=5NfAVZ2s2p8 [2] BARBI. IVO. ELETRÔNICA DE POTÊNCIA – 6° EDIÇÃO [3] PEREIRA, H. A. CONVERSORES CC-CC Disponível em: https://www.gesep.ufv.br/wp-content/uploads/Aula 06-ELT-313-Conversores-CC-CC.pdf> [4] BELTRAME, R. C. CONVERSOR CC-CC FLYBACK Disponível em: https://www.youtube.com/watch?v=PCZZHFilggI&feature=youtu.be [5] ALLDATASHEET. Datasheet do diodo IN4005. Disponível < em: https://www.alldatasheet.com/datasheet-pdf/pdf/223362/DEC/1N4005.html> [6] BELTRAME, R. C. SIMULAÇÃO: CONVERSOR CC-CC FLYBACK Disponível em: < https://www.youtube.com/watch?v=PCZZHFilgqI&feature=youtu.be> [7] ASSETS.DEANTECHNOLOGY. Datasheet do diodo DV10P Disponível < https://assets.deantechnology.com/resources/30390/attachments/original/D-DV Series REV 2.0.pdf?1642363775> [8] ALLDATASHEET. Datasheet do mosfet FDD6N50TMF085 Disponível em: https://pdf1.alldatasheet.com/datasheetpdf/view/581974/FAIRCHILD/FDD6N50TMF085.ht <u>ml</u>>