

The Fourth Course

Binary Trees

Binary Trees

DEFINITION:

A binary tree is either <u>empty</u>, or it consists of a node called the <u>root</u> together with two binary trees called the <u>left subtree</u> and the <u>right subtree</u> of the root, , which are <u>disjoint</u> from each other and from the root.

Notation

- Node, Children, Edge,
- Parent, Ancestor, Descendant,
- Path, Length (the number of edges),
- Depth(0), Height(1), Level(0),
- Leaf Node, Internal Node,
- Subtree, degree

Binary Trees

There is one empty binary tree, one binary tree with one node, and two with two nodes:

These are different from each other.

Binary Trees

The binary trees with three nodes are:

日中国 南 开 大 学 CanKai University 1919

计算具有n个结点的不同二叉树的棵数

Catalan 函数

$$\mathbf{b_n} = \frac{1}{n+1} \mathbf{C_{2n}}^n = \frac{1}{n+1} \frac{(2n)!}{n! \cdot n!}$$

***** 例
$$\mathbf{b}_3 = \frac{1}{3+1} \mathbf{C}_6^3 = \frac{1}{4} \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 5$$

$$\mathbf{b}_4 = \frac{1}{4+1} \mathbf{C}_8^4 = \frac{1}{5} \frac{8 \cdot 7 \cdot 6 \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1} = 14$$

二叉树的性质

性质1

若二叉树的层次从0开始,则在二叉树的第i层最多有 2^i 个结点。($i \ge 0$)

[证明用数学归纳法]

- * i = 0时,根结点只有1个, 2'= 20 =1;
- * 若设 i = k 时性质成立,即该层最多有 2^k 个结点,则当 i = k+1 时,由于第 k 层每个结点最多可有 2 个子女,第 k+1 层最多结点个数可有 $2^*2^k = 2^{k+1}$ 个,故性质成立。

性质2

高度为 h 的二叉树最多有 2^h -1个结点。(h≥1)

[证明用求等比级数前k项和的公式]

高度为h的二叉树有h层,各层最多结点个数相加,得到等比级数,求和得:

$$2^0 + 2^1 + 2^2 + \dots + 2^{h-1} = 2^h - 1$$

★ 空树的高度为 0,只有根结点的树的高度 为 1。

Full and Complete Binary Trees

* <u>Full</u> binary tree: each node either is a leaf or is an internal node with exactly two non-empty children.

Complete binary tree: If the height of the tree is d, then all levels except possibly level d are completely full. The bottom level has all nodes to the left side.

別中国 オ チ 大 少 CanKai University 1919

Full tree

Complete tree

Full Binary Tree Theorem

Theorem: The number of leaves in a non-empty full binary tree is one more than the number of internal nodes.

That is:

$$n_0 = n_2 + n_1 + 1$$

 $n_1 = 0$
 $n_0 = n_2 + 1$

Full tree

$$n_0 = 4$$

$$n_2 = 3$$

$$n_0=4$$
 $n_2=3$
 $n_0=n_2+1$

Full Binary Tree Theorem

- Proof (by Mathematical Induction):
 - *Base Case: A full binary tree with 1 internal node must have two leaf nodes.

*Induction Hypothesis: Assume any full binary tree T containing n-1 internal nodes has n leaves.

Full Binary Tree Theorem

*Induction Step: Given tree T with n internal nodes, pick internal node I with two leaf children. Remove I's children, call resulting tree T'. By induction hypothesis, T' is a full binary tree with n leaves.

Restore i's two children. The number of internal nodes has now gone up by 1 to reach n. The number of leaves has also gone up by 1.

Full Binary Tree Theorem Corollary

Theorem: The number of NULL pointers in a non-empty binary tree is one more than the number of nodes in the tree.

Proof: Replace all null pointers with a pointer to an empty leaf node. This is a full binary tree.

性质4

具有 $n(n \ge 0)$ 个结点的完全二叉树的高度为 $\log_2(n+1)$

证明: 设完全二叉树的高度为h,则有

$$2^{h-1}-1 < n \leq 2^{h}-1$$

上面h-1层结点数 包括第h层的最大结点数

变形

$$2^{h-1} < n+1 \le 2^h$$

取对数

$$h-1 \leq \log_2(n+1) \leq h$$

有
$$h = \lceil \log_2(n+1) \rceil$$

Linked implementation of binary tree

Binary Tree Implementation

Linked Binary Tree Specifications

- Binary tree class

right

right

data

data

left

left

Linked Binary Tree Specifications

Binary node class

template <class Entry> class Binary_node { public:

```
// data members
```

Entry data;

Binary_node<Entry> *left;

Binary_node<Entry> *right;

// constructors

```
Binary_node();
Binary_node(const Entry &x);
```

};

Constructor

* template <class Entry>
Binary_tree<Entry> ::Binary_tree()
/* Post: An empty binary tree has been created. */
{
 root = NULL;
}

Empty

template <class Entry>
bool Binary_tree<Entry> ::empty() const
/* Post: A result of true is returned if the binary tree is
empty. Otherwise, false is returned. */
{
 return root == NULL;
}

Space Overhead

- From Full Binary Tree Theorem:
 - Half of pointers are NULL.
 - * If leaves only store information, then overhead depends on whether tree is full.
 - * All nodes the same, with two pointers to children:
 - Total space required is (2p +d)n.
 - Overhead: 2pn.
 - * If p = d, this means 2p/(2p + d) = 2/3 overhead.

(4x * (2x + a)) - c)

Space Overhead

Eliminate pointers from leaf nodes:

$$\frac{\frac{n}{2}(2p)}{\frac{n}{2}(2p)+dn} = \frac{p}{p+d}$$

- This is 1/2 if p = d.
- * 2p/(2p +d) if data only at leaves⇒2/3 overhead.
- Some method is needed to distinguish leaves from internal nodes.

二叉树的三叉链表表示

lchilddataparentrchild左子女指针双亲指针右子女指针

二叉树链表表示的示例

Traversals

- Any process for visiting the nodes in some order is called a <u>traversal</u>.
- A _traversal_ is a manner of _visiting_ each node in a tree once. What you do when visiting any particular node depends on the application;
 - you might print a node's value
 - perform some calculation upon it.
- There are several different traversals, each of which orders the nodes differently.
- Any traversal that lists every node in the tree exactly once is called an <u>enumeration</u> of the tree's nodes.

Traversal of Binary Trees

- * At a given node there are three tasks to do in some order: Visit the node itself (V); traverse its left subtree (L); traverse its right subtree (R).
- There are six ways to arrange these tasks:

By standard convention, these are reduced to three by considering only the ways in which the left subtree is traversed before the right.

別中国 オ 年 大 歩 CanKai University 1919-

Traversal of Binary Trees

- Many traversals can be defined recursively.
- In a _preorder_ traversal, you visit each node before recursively visiting its children, which are visited from left to right. The root is visited first.
- Each node is visited only once, so a preorder traversal takes O(n) time, where n is the number of nodes in the tree. All the traversals we will consider take O(n) time.

別中国 東 チ 大 st CanKai University 1911

Traversal of Binary Trees

- These three names are chosen according to the step at which the given node is visited.
 - * With preorder traversal we first visit a node, then traverse its left subtree, and then traverse its right subtree.
 - * With <u>inorder traversal</u> we first traverse the left subtree, then visit the node, and then traverse its right subtree.
 - * With <u>postorder</u> <u>traversal</u> we first traverse the left subtree, then traverse the right subtree, and finally visit the node.

Expression Trees

Expression: a+b

Preorder: + a b

Inorder: a + b

Postorder: a b +

Expression: log x

Preorder: log x

Inorder: log x

Postorder: x log

 $\log x$

Expression: n!

Preorder:! n

Inorder: n!

Postorder: n!

Expression Trees

Expression: $a - (b \times c)$

Preorder: -a × b c

Inorder: $a - b \times c$

Postorder: a b c × -

Expression: (a < b) or (c < d)

Preorder: or < a b < c d

Inorder: a < b or c < d

Postorder: a b < c d < or

Inorder traversal

* Result:

Preorder traversal

* Result:

- + a * b - c d / e f

Postorder traversal

* Result:

从 a+b*(c-d)-e/f 生成表达式树

- (1) 先根据运算符的优先级对表达式加括号 ((a+(b*(c-d)))-(e/f))
- (2) 脱一层括号, (a+(b*(c-d))) (e/f), 取两个括号中间的 "-"为根,将表达式分为两部分,左子树是(a+(b*(c-d))),右子树为(e/f)

- (3) 对左子树递归执行步骤(2); //若树空则不再递归
- (4) 对右子树递归执行步骤(2); //若树空则不再递归

 $x := (-b + (b \uparrow 2 - 4 \times a \times c) \uparrow 0.5) / (2 \times a)$

紀中国 東 井 大 学 CanKai University 1919-

Comparison tree

別中国 東 チ 大 学 CanKai University 1919-

Inorder traversal

```
template <class Entry>
  void Binary_tree<Entry> :: recursive_inorder(
  Binary_node<Entry> *sub_root, void (*visit)(Entry &))
  /* Pre: sub_root is either NULL or points to a subtree of the Binary tree .
  Post: The subtree has been traversed in inorder sequence.
  Uses: The function recursive inorder recursively */
       if (sub_root != NULL) {
              recursive_inorder(sub_root->left, visit);
              (*visit)(sub_root->data);
              recursive_inorder(sub_root->right, visit);
```


Preorder traversal

```
void preorder(BinNode* rt) // rt is root of a subtree
      if (rt == NULL) return; // Empty subtree
      visit(rt); // visit performs desired action
      preorder(rt->leftchild());
      preorder(rt->rightchild());
```

日本国本子大会 CanKai University 1919

Traversal Example

```
// Return the number of nodes in the tree
template < class Elem>
int count(BinNode<Elem>* subroot) {
 if (subroot == NULL)
  return 0; // Nothing to count
 return 1 + count(subroot->left())
       + count(subroot->right());
```


先序遍历二叉树的非递归算法

- ★ 若T!=NIL,则:
 - (1) 输出T->data;
 - (2) 按先序次序输出左子树中各结点的值;
 - (3) 按先序次序输出右子树中各结点的值。
- *若T==NIL,则表明以T为根指针的二叉树遍历完毕,应该返回(同时也表明对某一子树T1的左子树遍历完毕,下面应该对T1的右子树进行遍历了。此时,若栈不空,则应该根据存放在栈顶的指针找出T1的待遍历的右子树的根指针并赋给T,以继续遍历下去;若栈空则表明整个二叉树遍历完毕,结束。)

找右子树的方法

- *在先序遍历过T的整个左子树后,如何找到 T的右子树的根指针呢?有以下两种方法:
 - (1) 在输出过T->data后,将指针T的值保存到栈中,接着遍历T的左子树。在遍历完T的左子树并返回时,退出栈顶元素到T,再对T的右子树进行先序遍历。
 - (2) 输出T->data后,保存到栈中的不是T而是结点T的右孩子指针,接着遍历左子树,遍历完左子树并返回时,退出栈顶元素到T,然后先序遍历以T为根的子树。

算法框图

中序遍历二叉树的非递归算法

- ∗ 若T!=NIL,则:
 - (1) 按中序次序输出左子树中各结点的值;
 - (2) 输出T->data;
 - (3) 按中序次序输出右子树中各结点的值。
- *若T==NIL,则表明以T为根指针的二叉树遍历完毕,应该返回(同时也表明对某一子树T1的左子树遍历完毕,下面应该访问根结点,并对其右子树进行遍历了。此时,若栈不空,则栈顶元素一定为T1,取出栈顶元素并赋给T,在访问结点T以后继续遍历其右子树;若栈空则表明整个二叉树遍历完毕,结束。)

別中国 東 天 头 學 CanKai University 1919-

算法框图

后序遍历二叉树的非递归算法

- *(1) 若T!=NIL,则T及标志tag(0)入栈,遍历 其左子树(左孩子赋T,转(1));
- *(2)如果T=NIL,则返回,此时:
 - *(a) 若栈空,则整个遍历过程结束;
 - *(b) 若栈不空,表明栈顶结点的左子树或右子树已遍历完毕,此时,若栈顶结点的标志tag为0,则修改为1,并遍历其右子树(右孩子赋T,转(1));否则,退出并输出栈中右子树已遍历过后所的栈顶结点,再转(1)。

別中国 東 チ 大 歩 CanKai University 1919-

算法框图

Array Implementation

Position	0	1	2	3	4	5	6	7	8	9	10	11
Parent		0	0	1	1	2	2	3	3	4	4	5
Left Child	1	3	5	7	9	11						
Right Child	2	4	6	8	10							
Left Sibling			1		3		5		7		9	
Right Sibling		2		4		6		8		10		

Array Implementation

* Parent
$$(r) = (r - 1) / 2 0 < r < n$$

Leftchild(r) =
$$2r + 1$$
 $2r+1 < n$

*Rightchild(r) =
$$2r + 2$$
 $2r + 2 < n$

Leftsibling(r) =
$$r - 1$$
 0< $r < n$ and $r = 2t$

*Rightsibling(r) = r + 1 r+1 < n and r=2t+1

Array Implementation

极端情形: 只有右单支的二叉树

Level order

Questions?

线索二叉树 (Threaded Binary Tree)

- * 通过二叉树遍历,可将二叉树中所有结点的数据排列在一个线性序列中,可以找到某数据在这种排列下它的前驱和后继。
- 希望不必每次都通过遍历找出这样的线性序列。只要事先做预处理,将某种遍历顺序下的前驱、后继关系记在树的存储结构中,以后就可以高效地找出某结点的前驱、后继。
- * 为此,在二叉树存储结点中增加线索信息。

线索 (Thread)

pred	left	data	right	succ

增加前驱pred指针和后继succ指针的二叉树

* 改造树结点,将 pred 指针和 succ 指针压缩到 left 和 right 的空闲指针中,并增设两个标志 ltag 和 rtag,指明指针是指示子女还是前驱 / 后继。后者称为线索。

- * ltag (或rtag) = 0,表示相应指针指示左子女 (或右子女结点);
- * ltag (或rtag) = 1 ,表示相应指针为前驱(或后继)线索。

中序线索二叉树及其链表表示

寻找结点p在中序下的后继

寻找结点p在中序下的前驱

通过前序遍历建立前序线索二叉树

- *在前序线索二叉树上寻找指定结点前序下 的后继比较容易
 - *如果结点有左子女,左子女是前序下的后继;
 - *如果没有左子女,则右子女是前序下的后继。

前序序列 ABDCE

通过前序遍历建立前序线索二叉树

- *在前序线索二叉树中寻找指定结点*p的前序下的前驱
 - ★如果结点*p有前驱线索,则可直接找到前序下的前驱结点,否则
 - * 寻找结点*p的双亲*q:
 - ☀如果*q不存在,则*p无前驱;
 - *如果*p是*q的左子女,则*q 是*p的前驱结点;
 - *如果*p是*q的右子女,则前驱是*q左子树中前序下的最后一个结点。

后序线索二叉树

- *后序线索二叉树与前序线索二叉树是对称的,只要把左二叉树是对称的,只要把左、右互换即可。故不再详细讨论。
- * 后序线索二叉树的建立通过 后序遍历二叉树得到,只需 把建立线索的操作移到两个 递归语句后面,其他与中序 、前序线索二叉树建立算法 的代码基本一致。

Questions?

Huffman Coding Trees

- * ASCII codes: 8 bits per character.
- Fixed-length coding.
- Can take advantage of relative frequency of letters to save space.
- Variable-length coding

Z	K	F	С	U	D	L	E
2	7	24	32	37	42	42	120

- Weighted path length=weight * depth for leaves
- Build the tree with <u>minimum external path weight.</u> min(∑(weighted path length))

日本国本于大学 CanKai University 1919

Definition :

Weighted path length(带权路径长度) =weight * depth (for leaves) (权) (深度)

*建立一棵有<u>minimum external path</u> <u>weight.</u>

(最小外部路径权重)的树 min("∑"(weighted path length))

Huffman Tree Construction

Huffman Tree Construction

Huffman Tree

Assigning Codes

Letter	Freq	Code	Bits		
C	32	1110	4		
D	42	101	3		
E	120	0	1		
F	24	11111	5		
K	7	111101	6		
L	42	110	3		
U	37	100	3		
Z	2	111100	6		

Coding and Decoding

A set of codes is said to meet the prefix property if no code in the set is the prefix of another.

- Code for DEED: 10100101
- Decode 1011001110111101: DULK

* Expected cost per letter: $\sum (c_i * f_i) / f_T = 785 / 306 = 2.56536$

由百分制转换为五分制

```
if (a<60)
 b='bad';
else if (a<70)
    b='pass';
   else if (a<80)
        b='genneral';
      else if (a<90)
           b='good';
          else b='excellent';
```


假设一批学生成绩的分布规律如下

分数	0-59	60-69	70-79	80-89	90-100
比例(%)	5	15	40	30	10

- * 该算法将有80%的数据需要进行3次或3次以上的比较,才能得出结果。
- *若有10,000个数据进行换算,则总共需要 31,500次判断。
- *改进:
 - *将出现次数多的数据(如分数在70~79,占40%),尽早进行判定,出现次数少的数据(如60分以下或90以上)较晚进行判定,算法的比较次数有望降低。

带权路径长度(WPL)

改进算法

*对于10,000个数据该算法共需20,500次判断。

改进算法

* 10,000个数据进行换算,则共需要20,500

Questions?

