```
In [21]: # import data analysis library
         import pandas as pd
         # import numerical computing library (arrays, matrices, etc.)
         import numpy as np
         # import plotting library
         from matplotlib.pyplot import subplots
         # import operating system library
         import os
         # import statistical computing library
         import statsmodels.api as sm
         # import VIF and ANOVA functions
         from statsmodels.stats.outliers_influence import variance_inflation_factor a
         from statsmodels.stats.anova import anova_lm
         # import data loading
         from ISLP import load_data
         # import model methods
         from ISLP.models import (ModelSpec as MS, summarize, poly)
In [22]: # specify desired path
         path = "/Users/karanvirmann/Desktop"
         # change working directory
         os.chdir(path)
         # check if current working directory changed
         retval = os.getcwd()
         print("%s" % retval)
        /Users/karanvirmann/Desktop
In [23]: # load training data
         combine = pd.read_csv('training_combine_data.csv')
         # display training data
         combine
```

localhost:8888/lab 1/10

Out[23]:

	Player	Pos	School	College	Ht	Wt	40yd	Vertical	Bench	Broa Jum
0	Israel Abanikanda	RB	Pittsburgh	College Stats	10- May	216	NaN	NaN	NaN	Na
1	Yasir Abdullah	LB	Louisville	College Stats	01- Jun	237	4.47	36.5	NaN	129
2	Devon Achane	RB	Texas A&M	College Stats	09- May	188	4.32	33.0	NaN	Na
3	Jordan Addison	WR	USC	College Stats	11- May	173	4.49	34.0	NaN	122
4	Adetomiwa Adebawore	DE	Northwestern	College Stats	02- Jun	282	4.49	37.5	27.0	125
•••		•••		•••			•••	•••	•••	
314	Luke Wypler	С	Ohio St.	College Stats	03- Jun	303	5.14	30.5	NaN	106
315	Bryce Young	QB	Alabama	College Stats	10- May	204	NaN	NaN	NaN	Na
316	Byron Young	DT	Alabama	College Stats	03- Jun	294	NaN	26.0	24.0	108
317	Byron Young	EDGE	Tennessee	College Stats	02- Jun	250	4.43	38.0	22.0	132
318	Cameron Young	DT	Mississippi St.	College Stats	03- Jun	304	5.10	NaN	NaN	Na

319 rows × 14 columns

localhost:8888/lab 2/10

```
In [24]: # restrict training data to include only columns for player, 40 yd, vertical
    combine = combine[['Player', 'Wt', '40yd', 'Vertical', 'Broad Jump']]

# removing observations with no measurement for 40yd, vertical, broad jump a
    combine = combine.dropna()

# check if data presentation is as desired
    combine
```

Out[24]:		Player	Wt	40yd	Vertical	Broad Jump
	1	Yasir Abdullah	237	4.47	36.5	129.0
	3	Jordan Addison	173	4.49	34.0	122.0
	4	Adetomiwa Adebawore	282	4.49	37.5	125.0
	8	Jake Andrews	305	5.15	26.0	102.0
	10	Malaesala Aumavae-Laulu	317	5.23	28.5	106.0
	•••					
	307	Michael Wilson	213	4.58	37.5	125.0
	309	Dee Winters	227	4.49	30.5	117.0
	312	Darnell Wright	333	5.01	29.0	114.0
	314	Luke Wypler	303	5.14	30.5	106.0

Byron Young 250 4.43

182 rows × 5 columns

317

```
In [25]: # scatter plots of individual predictors vs response
fig_1, axes = subplots(nrows=1, ncols=3, figsize=(15,5))

# 40yd vs weight
axes[0].scatter(combine[['Wt']], combine[['40yd']], marker='o')
axes[0].set_xlabel("weight")

# 40yd vs vertical
axes[1].scatter(combine[['Vertical']], combine[['40yd']], marker='o')
axes[1].set_xlabel("vertical jump height")
axes[1].set_ylabel("40yd time")

# 40yd vs broad jump
axes[2].scatter(combine[['Broad Jump']], combine[['40yd']], marker='o')
axes[2].set_xlabel("broad jump")
axes[2].set_ylabel("40yd time")
```

38.0

132.0

Out[25]: Text(0, 0.5, '40yd time')

localhost:8888/lab 3/10


```
In [27]: # function that plots an abline line
             ax.plot(xlim, ylim, *args, **kwargs)
```

```
In [28]: # plotting the least squares regression line with the scatter plot of weight
         ax_1 = combine.plot.scatter('Wt', '40yd')
         abline(ax_1, results_1.params[0], results_1.params[1], 'r--', linewidth=3)
```

4/10 localhost:8888/lab

In [29]: # plotting the least squares regression line with the scatter plot of vertic
ax_2 = combine.plot.scatter('Vertical', '40yd')
abline(ax_2, results_2.params[0], results_2.params[1], 'r--', linewidth=3)

localhost:8888/lab 5/10

In [30]: # plotting the least squares regression line with the scatter plot of weight
ax_3 = combine.plot.scatter('Broad Jump', '40yd')
abline(ax_3, results_3.params[0], results_3.params[1], 'r--', linewidth=3)


```
In [31]: # we plot the fitted values vs residuals on one figure
fig_2, axes_2 = subplots(nrows=1,ncols=3,figsize=(15,5))

axes_2[0].scatter(results_1.fittedvalues, results_1.resid)
axes_2[1].scatter(results_2.fittedvalues, results_2.resid)
axes_2[2].scatter(results_3.fittedvalues, results_3.resid)

# placing horizontal lines at residual value = 0

axes_2[0].axhline(0,c='k', ls='--');
axes_2[1].axhline(0,c='k', ls='--');
axes_2[2].axhline(0,c='k', ls='--');
```


localhost:8888/lab 6/10

```
# we therefore apply a concave function to the response
          log Y = np.log(Y)
In [33]: # we once again fit the simple linear regression line
          model_1_log = sm.OLS(log_Y, X_1)
          results_1_log = model_1_log.fit()
          model_2 log = sm.OLS(log_Y, X_2)
          results_2_log = model_2_log.fit()
          model_3 log = sm.OLS(log_Y, X_3)
          results_3_log = model_3_log.fit()
          # we plot the fitted values vs residuals of the log response on one figure
          fig_2, axes_2 = subplots(nrows=1,ncols=3,figsize=(15,5))
          axes_2[0].scatter(results_1_log.fittedvalues, results_1_log.resid)
          axes_2[1].scatter(results_2_log.fittedvalues, results_2_log.resid)
          axes_2[2].scatter(results_3_log.fittedvalues, results_3_log.resid)
          # placing horizontal lines at residual value = 0
          axes 2[0].axhline(0,c='k', ls='--');
          axes_2[1].axhline(0, c='k', ls='--');
          axes_2[2].axhline(0, c='k', ls='--');
         0.100
                                                                  0.100
                                      0.10
         0.075
                                                                  0.075
                                                                  0.050
                                      0.05
         0.025
                                                                  0.025
                                                                  0.000
         0.000
                                      0.00
        -0.025
                                                                 -0.050
        -0.050
                                      -0.05
                                                                 -0.075
        -0.075
                                      -0.10
        -0.100
                1.50
                      1.55
                            1.60
                                 1.65
                                          1.45
                                               1.50
                                                    1.55
                                                        1.60
                                                             1.65
                                                                      1.45
                                                                          1.50
                                                                               1.55
                                                                                   1.60
                                                                                       1.65
In [34]: # we notice no significant change in heteroskedasticity so we can continue w
          # we wish to construct a multiple linear regression model with polynomial te
          # to account for the non-linearity and collinearity of the features
          X_mlr1 = MS([poly('Broad Jump', degree=2), poly('Wt', degree=2), ('Vertical'
          X mlr2 = X mlr1.transform(combine)
          M = sm.OLS(Y, X_mlr1.transform(combine)).fit()
          # retrieve summary of coefficients
```

In [32]: # we detect non-constant variance or heteroskedasticity in the residual vs

localhost:8888/lab 7/10

summarize(M)

Out[34]:

```
coef
                                         std err
                                                      t P>|t|
                             4.823400 0.138000 35.034 0.000
                   intercept
poly(Broad Jump, degree=2)[0]
                             -1.511200 0.371000
                                                -4.068 0.000
                                                  3.287 0.001
poly(Broad Jump, degree=2)[1]
                             0.462100
                                       0.141000
       poly(Wt, degree=2)[0]
                             2.050400 0.206000
                                                  9.955 0.000
        poly(Wt, degree=2)[1]
                             0.336700 0.135000 2.485 0.014
         Vertical:Broad Jump -0.000032 0.000034 -0.943 0.347
```

```
In [35]: # load test data
         test_combine = pd.read_csv('test_set_combine2022.csv')
         # display test data
         test_combine
         # restrict to desired columns
         test_combine = test_combine[['Player', 'Wt', '40yd', 'Vertical', 'Broad Jump']
         # remove observations with non-values for any of 40yd, weight, vertical or b
         test_combine = test_combine.dropna()
         # view table of data
         test_combine
         # create table of only predictors
         X_test = test_combine[['Wt', 'Vertical', 'Broad Jump']]
         # transform data
         X_test_transform = X_mlr1.transform(X_test)
         # get predictions
         preds = M.get_prediction(X_test_transform)
In [36]: # get predictions as a table
         forty_predicted_times = pd.DataFrame({'40yd prediction': preds.predicted_mea
         # display results
         forty_predicted_times
```

localhost:8888/lab 8/10

Out[36]:		40yd prediction
	0	4.852941
	1	4.668249
	2	4.601060
	3	4.569997
	4	4.526380
	•••	
	182	4.445948
	183	4.502931
	184	5.033012
	185	5.111195
	186	4.761855

187 rows × 1 columns

In [37]: # display results of actual 2022 combine results
test_combine

Out[37]:		Player	Wt	40yd	Vertical	Broad Jump
	0	Cal Adomitis	235	4.97	29.5	107.0
	1	Austin Allen	253	4.83	34.0	121.0
	4	Tyler Allgeier	224	4.60	33.0	120.0
	5	Troy Andersen	243	4.42	36.0	128.0
	6	Tycen Anderson	209	4.36	35.5	123.0
	•••	•••				
	314	JT Woods	195	4.36	39.5	128.0
	315	Mike Woods	204	4.55	34.5	125.0
	319	Devonte Wyatt	304	4.77	29.0	111.0
	322	Nick Zakelj	316	5.13	28.5	110.0
	323	Bailey Zappe	215	4.88	30.0	109.0

187 rows × 5 columns

```
In [52]: # we iterate through the n observations to compute the test MSE
total = 0

for observed_value, predicted_value in zip(test_combine['40yd'], preds.predi
total += (observed_value - predicted_value)**2
```

localhost:8888/lab 9/10

```
n = test_combine.shape[0]
test_MSE = (1/n)*(total)

In [53]: test_MSE

Out[53]: 0.014451420876737892

In [63]: # find the average of the test data
    avg_time = test_combine['40yd'].sum()
    avg_time = (1/n)*(avg_time)

# create an array of avg 40 time
    avg_time_array = np.ones(test_combine.shape[0]) * avg_time

# compute baseline MSE
total_2 = 0

for ob_value, mean_value in zip(test_combine['40yd'], avg_time_array):
    total_2 += (ob_value - mean_value)**2
baseline_MSE = (1/n)*(total_2)
In [64]: baseline_MSE
```

Out[64]: 0.09316607852669506

We observe a 544.6% decrease in MSE when comparing the baseline MSE to our test MSE. We can conclude our model is an accurate predictor of forty-yard dash times.

localhost:8888/lab 10/10