Name: Test 3 2024.5.16

Note: Show detailed and organized mathematic works. Make your calculation accuracy to at least the 4th digit behind the decimal point.

1. (20%) For each of the circuits in Figure 1, Use, assuming the transistor is to have $\beta = 50$ and $|V_{BE}| = 0.7V$ independent of the current level, derive the node voltages and branch currents.

2. (20%) For the circuits in Figure 2, assuming the transistor is to have $\beta = 100$, $|V_{BE(active)}| = |V_{BE(sat)}| \approx 0.7$ (V), and $|V_{CE(sat)}| \approx 0.2$ (V). Some Measurements have been made on these circuits, with the results indicated in the figure. Find the values of the other labeled voltages and currents (V_1 , I_1 , V_2 , I_2).

3. (35%) For the circuit in Figure 3, assuming the transistor is to have β =50, $V_{BE(active)} \cong 0.7$ (V), $V_{BE(sat)} \cong 0.8$ (V), and $V_{CE(sat)} \cong 0.2$ (V), $V_{CE(EOS)} \cong 0.3$ (V).

(A) (10%) With $V_B\!=\!4\,V,$ find all branch currents and node voltages.

(B) (15%) With $V_B = 8 \text{ V}$, find all branch currents and node voltages, and also β_{force} to verify that the transistor is in saturation.

(C) (10%) Find the $V_{B(min)}$ and $I_{B(min)}$ required to drive the transistor into the edge of saturation.

- 4. (30%) In the circuit of Fig. 3, the transistor has $\beta = 40$, $|V_{BE(active)}| = |V_{BE(sat)}| \approx 0.7$ (V), and $|V_{CE(sat)}| \approx 0.2$ (V).
 - (A) (10%) Find the values of V_B , V_E , and V_C .
 - (B) (10%) If R_B is raised to 100 $k\Omega$, what voltages (V_B , V_E , and V_C) result?
 - (C) (10%) With $R_B=100 \text{ k}\Omega$, what value of β for replaced Q would return the voltages to the values first calculated in (A)?

5. (30%) Assume $\beta = 100$, $|V_{BE(active)}| \simeq |V_{BE(sat)}| \simeq 0.7$ (V), and $|V_{CE(sat)}| \simeq 0.2$ (V) for Q_1 and Q_2 in the circuit of Figure 5, based on the defined current directions, evaluate I_B , I_L , I_{C1} , I_{C2} , and V_O with (A) $V_I = 10$ V, (B) $V_I = 0$ V, (C) $V_I = -5$ V.

