SDS 387 Linear Models

Fall 2024

Lecture 26 - Thu, Dec 5, 2024

Instructor: Prof. Ale Rinaldo

- · Announcement: final project due by sonday Dec 15
- · Lost time we sow that if we fit the OLS estimator

 B when the model is not necessarily linear and

the covariates are vandom then, for fixed of,

$$\sqrt{3} - 3^{*} = N_d(0, \Sigma'' V \Sigma'')$$

projection.

where
$$\leq = \mathbb{E} \left[\Phi \Phi^{\dagger} \right]$$
 and

V = Var [D. (Y-D.T/3*)]

Nost thre we colled this y.

That is Vor (B-B) has the same orympotic

distribution as in 1 5 wi

Ŀ

of To corry out formal statistical inference, we need a consisteril

· How do we estimate 21-1/2

A notival estimator is the plug-in estimator:

 $\hat{\mathcal{Z}}^{-1}$ $\hat{\mathcal{V}}$ $\hat{\mathcal{Z}}^{-1}$ where $\hat{\mathcal{Z}}_{1} = \hat{\mathcal{Z}}_{1}$ $\hat{\mathcal{D}}_{2}$ $\hat{\mathcal{D}}_{3}$

 $\hat{V} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{2} \right)^{2}$

To show that this is a consistent estimator it is sufficient to show that I = I - truckly follow

because the result will follow from CMT.

show that is I'm we will let

 $\hat{V} = \frac{1}{\Lambda} \sum_{i=1}^{N} \bar{D}_{i} = \bar{D}_{i}^{T} \left(V_{i} - \bar{D}_{i}^{T} \bar{B}_{i}^{T} \right)$

Then V -> V by WLLN . So

Let's do it: $\hat{V} - \hat{V} = \frac{1}{n} \sum_{k=1}^{n} \Phi_{k}^{-1} \left[\left(\Phi_{k}^{T} \hat{\beta}_{k} \right)^{2} - \left(\Phi_{k}^{T} \hat{\beta}_{k}^{T} \right)^{2} + 2 \gamma_{n} \Phi_{k}^{T} \left(\hat{\beta}_{k}^{T} - \hat{\beta}_{k}^{T} \right) \right]$

PE [ID 112].
Finde

 $=\frac{1}{2}\sum_{i=1}^{2}\Phi_{i}\left[\left(\Phi_{i}^{T}\left(\hat{\beta}-\beta^{*}\right)\right)^{2}+2\left(y_{i}-\Phi_{i}^{T}\beta^{*}\right)\Phi_{i}^{T}\left(\beta^{*}-\hat{\beta}\right)\right]$

 $\|\hat{V} - \tilde{V}\|_{op} \leq \frac{1}{\lambda} \sum_{i=1}^{n} \|\mathbf{p}_{i}\|^{2} \left[\left(\hat{\mathbf{p}}^{T} - \left(\hat{\mathbf{p}}^{T} - \mathbf{p}^{T}\right)\right)^{2} + 2\left(\mathbf{y}_{i} - \mathbf{p}^{T}, \mathbf{p}^{T}\right)\right]^{2}$

 $\frac{1}{n} \sum_{i=1}^{n} || \mathbf{D}_{i} ||^{2} \left(\mathbf{D}_{i}^{T} \left(\hat{\mathbf{G}}^{T} \mathbf{A}^{A} \right) \right)^{2} + \frac{2}{n} \sum_{i=1}^{n} || \mathbf{D}_{i} || \left(\mathbf{A}^{T} \mathbf{A}^{A} \right) || \mathbf{D}_{i} || \left(\mathbf{D}_{i}^{T} \left(\hat{\mathbf{G}}^{T} \mathbf{A}^{A} \right) \right) || \mathbf{D}_{i} || \left(\mathbf{D}_{i}^{T} \left(\hat{\mathbf{G}}^{T} \mathbf{A}^{A} \right) \right) || \mathbf{D}_{i} || \left(\mathbf{D}_{i}^{T} \left(\hat{\mathbf{G}}^{T} \mathbf{A}^{A} \right) \right) || \mathbf{D}_{i} || \mathbf{D}$

As for B:

B $\stackrel{\triangleright}{=}$ tr $\left(\text{Vor} \left[\mathcal{D}_{1} \left(Y_{1} - \mathcal{D}_{1}^{+} \mathcal{B}^{*} \right) \right] \right) = \text{tr} \left(\mathcal{V} \right)$ also

finite

A + 2 \(\text{AB} \\ \frac{1}{2} \) O by $\leq NVT$, and $\hat{V} - \hat{V} \stackrel{\triangleleft}{\leq} 0$.

Extension to non-iid dota.

Extension to non-ild dota.

Lai & Wel (1982) Least squares estimates in stochastic regression models with application to identifications and control of dynamical systems

We observe sequentially observations of the form $(\Phi_1, Y_1) \in \mathbb{R}^{d+1}$ $n = i_1 2, 3, ...$ where $Y_1 = \Phi_1 T_1 S_1^{d} + \Sigma_1^{d}$ where Φ_1 may depend on $\{(\Phi_1, \Sigma_2), j = i_1, ..., i_n\}$

and Σ_{n} ($(\Phi_{i}, \Sigma_{i}), i=1,...,i=1 \sim 0,6^{2}$ with $\mathbb{E}\left[\left[\Sigma_{n}\right]^{n} \mid (\Phi_{i}, \Sigma_{i}), i=1,...,i=1\right] < \infty$ Some $\alpha \geq 2$

Let \$\overline{\pi}^{(n)}\$ be the nod notrix whose (3)

Then If

$$A_{min} \left(\bigoplus^{(n)^{T}} \bigoplus^{(n)} \right) \rightarrow \infty$$
 $A_{min} \left(\bigoplus^{(n)^{T}} \bigoplus^{(n)} \right) = 0$
 $A_{min} \left(\bigoplus^{(n)^{T}} \bigoplus^{(n)} \right)$
 $A_{min} \left(\bigoplus^{(n)^{T}} \bigoplus^{(n)} \right) = 0$
 $A_{min} \left(\bigoplus^{(n)^{T}} \bigoplus^{($

5)