집단 비교 방법의 예제

Example: Dietary intake

 Mean daily dietary intake(kJ) over 10 pre-menstrual and 10 post-menstrual days (Manocha et al., 1986)

subject	pre_m	post_m	diff	
1	5260	3910	1350	
2	5470	4220	1250	
3	5640	3885	1755	
4	6180	5160	1020	/ 개인내의 차이
5	6390	5645	745	를 살펴봄으로
6	6515	4680	1835	(W
7	6805	5265	1540	개인간 변동의
8	7515	5975	1540	제거가 가능한
9	7515	6790	725	설계
10	8230	6900	1330	
11	8770	7335	1435	
mean	6753.64	5433.18	1320.45	
s.d.	1142.12	1216.83	366.75	

SAS: Normaility

- Test of Normality
 - Plot : Normal Probability Plot(NPP), Quantile-Quantile plot(Q-Q plot)
 - Test : Shapiro-Wilk's test, Kolmogorov-Smirnov's Test/ Chi-square test

네 DATA에 대한 분	포분석	
작업 역할 분포 요약 정규 로그 정규 지수 와이블 베타 감마 검마 모표 인생 제목	## ## ## ## ## ## ## ## ## ## ## ## ##	

- 정규성 검정과 정규분포에 대한 적합성 검정

정규성 검정									
검정		통계량	p-값						
Shapiro-Wilk	W	0.937371	Pr < W	0.4901					
Kolmogorov-Smirnov	D	0.151102	Pr > D	>0.1500					
Cramer-von Mises	W-Sq	0.0433	Pr > W-Sq	>0.2500					
Anderson-Darling	A-Sq	0.296907	Pr > A-Sq	>0.2500					

	정규 분포에 대한 적합도 검정						
검정	통격	∥량	1	o-값			
Kolmogorov-Smirnov	D	0.15110175	Pr > D	>0.150			
Cramer-von Mises	W-Sq	0.04329964	Pr > W-Sq	>0.250			
Anderson-Darling	A-Sq	0.29690723	Pr > A-Sq	>0.250			

SAS: Paired T-test

● 모수적 방법 : Paired t-test

Assumption: Normal Distribution

1) direct

2) using difference

					Statistics					
Difference	N	Lower CL Mean	Mean	Upper CL Mean	Lower CL Std Dev	Std Dev	Upper CL Std Dev	Std Err	Minimu m	Maximu m
Post_M - P re_M	11	-1567	-1320	-1074	256.25	366.75	643.61	110.58	-1835	-725

T-Tests

Difference DF t Value
$$Pr > |t|$$

Post_M - Pre_M 10 -11.94 <.0001

$$t = \frac{\overline{d} - H_0}{se(\overline{d})} = \frac{\overline{d} - H_0}{s.d.(d)/n} = \frac{-1320 \cdot .5 - 0}{366 \cdot .7/\sqrt{11}} = \frac{-1320 \cdot .5}{110 \cdot .6} = -11 \cdot .94$$

Statistics										
Variable	N	Lower CL Mean	Mean	Upper CL Mean	Lower CL Std Dev	Std Dev	Upper CL Std Dev	Std Err	Minimu m	Maximu m
Diff	11	1074.1	1320.5	1566.8	256.25	366.75	643.61	110.58	725	1835

Example: Nonparametric

- 비모수적 방법 : 대응자료분석 및 one sample sign test
 - Assumption : distribution-free
 - 1) One sample sign test
 - 2) Wilcoxon mateched pairs signed rank sum test

One sample sign test

- 귀무가설: no differences 혹은 부위(+/-)가 동일
 [참고: 11명 자료 중 5.5명이 증가하고 감소하면 차이가 없다는 의미로 검정]
- 검정통계량 $\frac{|11-5.5|-0.5}{\sqrt{11\times0.5\times(1-0.5)}} = 3.02 \sim app . Normal$
- p-값 = 0.003 (기각)

Wilcoxon matched pairs signed rank sum test

- 기본 개념 : 증가군의 순위과 감소군의 순위를 비교하여 검정하는 방법
- _ 과정
 - 1) 차이 계산 : 차이가 '0'인 자료 제외
 - 2) 절대값 차이의 순위값 부여 : 차이가 동일한 경우 평균순위부여
 - 3) 순위값에 차이의 부호 부여

- 검정통계량 (동점자료가 없는 경우)

$$T_1 = \frac{\sum R_i}{\sqrt{\sum R_i^2}}$$

$$T_1 = \frac{\sum_{i} R_i}{\sqrt{n(n+1)(2n+1)/6}}$$

(+]를 이용하는 경우) $T^+ = \sum_{i=1}^n \psi(D_i) \cdot R_i^+$ where $\psi(D_i) = 1, D_i > 0$ and $0, D_i \le 0$ _ 기각기준

- 일반형, 동점이 없거나 적은 경우 : 정규분포로 가정하여 검정
- T^+ 를 이용하는 경우 : 별도의 분위표를 이용

Example: Hodgkins disease

 Numbers of T4 and T8 cells/mm3 in blood samples in remission from Hodgkins disease (Shapiro et al., 1986)

id	Gr	T4	Т8	T4-T8	Abs(T4-T8)	Rank	
1	Hodgkins	396	836	-440	440	13	
2	Hodgkins	568	978	-410	410	12	
3	Hodgkins	1212	1678	-466	466	14	=63
4	Hodgkins	171	212	-41	41	4	-03
5	Hodgkins	554	670	-116	116	7	4
6	Hodgkins	1104	1335	-231	231	10	
7	Hodgkins	257	272	-15	15	2	
8	Hodgkins	435	446	-11	11	1	
9	Hodgkins	295	262	33	33	3	\ ~~~
10	Hodgkins	397	340	57	57	6	√ 순위합 ↓
11	Hodgkins	288	236	52	52	5	=147
12	Hodgkins	1004	786	218	218	9	=147
13	Hodgkins	431	311	120	120	8	
14	Hodgkins	795	449	346	346	11	
15	Hodgkins	1621	811	810	810	18	
16	Hodgkins	1378	686	692	692	17	
17	Hodgkins	902	412	490	490	15	
18	Hodgkins	958	286	672	672	16	
19	Hodgkins	1283	336	947	947	19	1
20	Hodgkins	2415	936	1479	1479	20	11

SAS: Wilcoxon signed rank test

정규성 검정

• 정규성 검정: T4 자료에 대한 검토

검정 통계량 p-값 Shapiro-Wilk W 0.891445 Pr < W0.0286 Kolmogorov-Smirnov 0.173853 0.1116 Pr > DCramer-von Mises W-Sq 0.093205 Pr > W-Sq0.1326 Anderson-Darling A-Sq 0.650398 Pr > A-Sq0.0804

• 정규성 검정 : 절대값 차이 자료에 대한 검토

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable abs_D Classified by Variable gr

gr	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score	
1 2	8 12	63.0 147.0	84.0 126.0	12,961481 12,961481	7,8750 12,2500	

Wilcoxon Two-Sample Test

Statistic 63,0000

Normal Approximation One-Sided Pr < Z

Two-Sided Pr > IZI

t Approximation One-Sided Pr < Z Two-Sided Pr > IZI -1.5816 0.0569

0.0651

0.1302

양측검정으로 판단 하면 귀무가설 채택 하므로 차이가 없음

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 2,6250 Pr > Chi-Square 0.1052

[참고 1] outlier (skewed data)의 해결: 정규분포를 이용하는 경우 1) 제거 2) 자료변환

[참고 2] 모수방법 대신 비모수방법 이용 검토

Example: Energy expenditure

 24hour total energy expenditure (MJ/day) in groups of lean and obese women (Prentice et al., 1986)

Lean	Obese
6.13	8.79
7.05	9.19
7.48	9.21
7.48	9.68
7.53	9.69
7.58	9.97
7.90	11.51
8.08	11.85
8.09	12.79
8.11	
8.40	
10.15	
10.88	

SAS: Two Independent Groups

	Equality of Variances 등분산									
Variable	Method	N	um DF	Den DF	F Value	F	Pr > F	가정		2
Energy	Folded I	F	8	12	1.27	0	.6797			
				Statist	ics					
Variable	Gr	N Lower Me		Upper CL Mean	Lower CL Std Dev	Std Dev	Upper CL Std Dev	Std Err	Min	Max
Energy	Lean	13 7.3	8.0662	8.8143	0.8878	1.2381	2.0437	0.3434	6.13	10.88
Energy	Obese	9 9.22	10.298	11.372	0.9442	1.3979	2.678	0.466	8.79	12.79
Energy	Diff (1-2)	-3.4	-2.232	-1.052	0.9979	1.3043	1.8836	0.5656		
			T-Tes	sts						
Variable	Met	hod	Variances		DF 1	Value	Pr > 1	t t	유의현 F이 존	<u>한</u> 독재 🔪
Energy	Poo	led (Equal		20	-3.95	0.000	8		رر
Energy	Satt	erthwaite	Unequal		15.9	-3.86	0.001	4		

살찐 여성과 날씬한 여성의 에너지 소비량에 대한 차이를 유의수준 5%수준에서 살펴보면, 통계적으로 유의한 차이를 보여주고 있으며, 차이는 2MJ정도임.

Example: Nonparametric

- 비모수적 방법 : 독립 표본(집단)에 대한 검정
 - Assumption : distribution-free, independent groups
 - 1) Mann-Whitney test : U [참고 : $U = n_1 n_2 \frac{1}{2} n_1 (n_1 + 1) T$]
 - 2) Whitney-Wilcoxon test : T(표본수가 작은 그룹의 순위합)
 - 특징: 왜도가 심하거나 특이값이 존재하는 경우에 유용
 - 분석과정
 - 1) 집단 구분없이 자료를 크기순으로 배열하여 순위 부여
 - 2) 집단별 순위합 계산
 - $\ \, \text{검정통계량} \, : \, T = \sum_{i} R(X_i) \, (\text{S점이 없는 경우}) \\ (\text{S점이 많은 경우}) \\ T_1 = \frac{T E(T)}{\sqrt{Var(T)}} = \frac{T n \left(\frac{N+1}{2}\right)}{\sqrt{\frac{n \cdot m}{N(N-1)} \sum_{i=1}^{N} R_i^2 \frac{n \cdot m(N+1)^2}{4(N-1)}}}$
 - 기각기준 : 분위표/정규분포표 이용

SAS: Mann-Whitney

🛝 DATA에 대한 비	모수적 밀원분산분석	
작업 역할 분석 정확 p-값 결과 제목		Whitney test -Wilcoxon test ☑ 경험적 분포함수(EDF) 통계량 계산(E) ☐ 분류 레벨로 결측값 포함(I) ☐ 연속성 상관계수 생략(U)

Wilcoxon Scores (Rank Sums) for Variable Energy Classified by Variable Gr									
Gr	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score				
Lean	13	103.0	149.50	14.970751	7.923077				
Obese	9 150.0 103.50 14.970751 16.666667								
	Average scores were used for ties.								

Wilcoxon Two-Sample Test 150.0000 Statistic (S) **Normal Approximation** Z 3.0727 One-Sided Pr > Z 0.0011 0.0021 Two-Sided Pr > |Z|t Approximation One-Sided Pr > Z 0.0029 Two-Sided Pr > |Z|0.0058 **Kruskal-Wallis Test Exact Test Chi-Square** 9.6476 One-Sided Pr >= S 5.287E-04 DF Two-Sided Pr >= |S - Mean| 0.0010 Z includes a continuity correction of 0.5. Pr > Chi-Square 0.0019

Example : Cardiac Bypass

- Red Cell folate levels(ug/l) in three groups of cardiac bypass patients after 24h ventilation(Amess et al., 1978)
 - Gr I: 50% nitrous oxide and 50% oxygen mixture(24h)
 - Gr II: 50% nitrous oxide and 50% oxygen mixture(operation)
 - Gr III: no nitrous oxide and 30-50% oxygen (24h)

Gr1	Gr2	Gr3
243	206	241
251	210	258
275	226	270
291	249	293
347	255	328
354	273	
380	285	
392	295	
	309	

SAS: ANOVA

流 DATA에 대한 일원	분산분석					
작업 역할 검정	평균 > 평균 비교					
평균 평균 비교 통계량 계산	주효과: Gr					
도표	_사용할 방법	UNIAN	OFO			
결과	■ Bonferroni t-검정(<u>B</u>)	신뢰수준	95%			
제목	■ Tukey의 스튜던트화 범위검정(HSD)(<u>T</u>)					
	■ Duncan의 다중범위검정(<u>D</u>)					
	□ Dunnett의 t-검정(U)					
	☐ Fisher의 최소 유의차 검정(F)					
	☐ Gabriel의 다중비교절차(<u>G</u>)					
	☑ Student-Newman-Keuls 다중범위검정(<u>E</u>)					
	☐ Waller-Duncan k-비율 t-검정(<u>₩</u>)					
	☐ Scheffe의 다중비교절차(<u>H</u>)					
	☐ Ryan-Einot-Gabriel-Welsch 다중범위검정(<u>Y</u>)					

Level of Gr	N	Folate	
		Mean	Std Dev
Gr1	8	316.625000	58.7170880
Gr2	9	256.444444	37.1217965
Gr3	5	278.000000	33.7564809

분산 동질성 검정

1) Levene : 표준검정

2) Bartlett : 우도비검정 수정, 정규분포가정

3) Welch : 등분산 기각

시 사용

	Levene's Test for Homogeneity of Folate Variance ANOVA of Squared Deviations from Group Means						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Gr	2	18765720	9382860	4.14	0.0321		
Error	19	43019786	2264199				

Bartlett's Test for Homogeneity of Folate Variance

Source DF Chi-Square Pr > ChiSq Gr 2 2.0951 0.3508

Source	DF	Sum of Squares	Mean Square F Value	Pr > F
Model	2	15515.76641	7757.88321 3.71	0.0436
Error	19	39716.09722	2090.32091	
Corrected Total	21	55231.86364		

R-Square	Coeff Var	Root MSE	Folate Mean
0.280921	16.14252	45.72003	283.2273

Source	DF	Anova SS	Mean Square	F Value	Pr > F
Gr	2	15515.76641	7757.88321	3.71	0.0436

15515.76641 7757.88321 Gr 2 3.71

차이가 존재하는 것으로 나타남.

심장 보조관 수술환자에 대한 질소와 산소 공급 수준에 따른 폴산염 수준의 차 이가 존재하는 지 분산분석으로 살펴본 결과 유의수준 5%수준에서 유의미한

Multiple comparisons : S-N-K

 This test controls the Type I experimentwise error rate under the complete null hypothesis but not under partial null hypotheses.

Alpha		0.05	
Error Degrees of Freedom		19	
Error Mean Square		2090.321	평균 순위차이
Harmonic Mean of Cell Sizes		6.878981	=j-i+1
Number of Means	2	3	
Critical Range	51.598112	62.62823	

Means with the same letter are not significantly different.

SNK Grouping	Mean	N	Gr
A	316.63	8	Gr1
Α	278.00	5	Gr3
A	256.44	9	Gr2

그룹간 차이는 존재하지 않음

• Multiple comparisons : Duncan

 This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	19
Error Mean Square 20	90.321
Harmonic Mean of Cell Sizes 6.8	378981
Number of Means 2	3
Critical Range 51.60	54.15

Means with the same letter are not significantly different.

SNK Grouping		Mean	N	Gr
	А	316.63	8	Gr1
В	A	278.00	5	Gr3
В		256.44	9	Gr2

그룹간 차이는 존재

Example: Nonparametric

- 비모수적 방법 : Kruskal-Wallis 검정
 - Assumption : distribution-free, independent groups
 - 특징: Mann-Whitney 검정의 확장
 - 분석과정

- 기각기준 : 카이제곱분포표 이용

SAS: Kruskal-Wallis

Wilcoxon Scores (Rank Sums) for Variable Folate Classified by Variable Gr						
Gr	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score	
Gr1	8	120.0	92.00	14.651507	15.000000	
Gr2	9	77.0	103.50	14.974979	8.55556	
Gr3	5	56.0	57.50	12.763881	11.200000	

Kruskal-Wallis Test

Chi-Square

4.1852

DF

2

Pr > Chi-Square 0.1234

집단간 차이가 존재하는지에 대해 비모수방법으로 살펴본 결과, 5%의 유의수준에서 유의한 차이가 없는 것으로 나타남.

ANOVA: Two-way

• 두 요인 A(i), B(j)의 영향에 대한 연구 : 반복 실험을 가정

	수준B1	수준B2	• • •	수준Bj
수준A1	\mathcal{Y}_{111}	y ₁₂₁		y_{1J1}
	•••	•••	• • •	•••
	y_{11n}	y_{12n}		y_{1Jn}
	$\overline{\mathcal{Y}}_{11}$.	\overline{y}_{12} .	• • •	$\overline{\mathcal{Y}}_{1J}$.
• • •	• • •	• • •	• • •	• • •
수준Ai	<i>y</i> ₁₁₁	<i>y</i> ₁₂₁		y_{IJ1}
	•••	•••	• • •	•••
	y_{I1n}	y_{I2n}		y_{IJn}
	$\overline{\mathcal{Y}}_{I1}$.	$\overline{y}_{I2.}$	• • •	$\overline{\mathcal{Y}}_{IJ}$.

• 분산분석모형 : α, β 는 주효과, $(\alpha\beta)$ 는 교호작용효과

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \varepsilon_{ijk}$$
 where $\varepsilon_{ijk} \sim N(0, \sigma^2)$

- 가정 : 오차항~독립, 정규분포, 등분산 가정
- 효과에 대한 조건 : (모수인자 ; fixed factor)

$$\sum_{i} \alpha_{i} = 0, \sum_{j} \beta_{j} = 0, \sum_{i} (a\beta)_{ij} = \sum_{j} (a\beta)_{ij} = 0$$

- 분석 관점
 - 주효과(main effects) 에 대한 분석
 - 교호작용효과(interaction effects)에 대한 분석

• 분산분석표

요인	제곱합(SS)	자유도(df)	평균제곱(MS)	F-ratio
Α	SSA	dfA=I-1	MSA	MSA/MSE
В	SSB	dfB=J-1	MSB	MSB/MSE
AXB	SSAXB	dfAxB=(I-1)(J-1)	MSAxB	MSAxB/MSE
Error	SSE	dfE=IxJx(n-1)	MSE	
Total	SST	(lxJxn)-1		

$$- \ \, \bigcirc \ \, | \ \, SST = \sum_{i} \sum_{j} \sum_{k} (y_{ijk} - \overline{y}_{...})^{2} \qquad SSA = (Jn) \sum_{i} (\overline{y}_{i..} - \overline{y}_{...})^{2}$$

$$SSB = (In) \sum_{j} (\overline{y}_{.j.} - \overline{y}_{...})^{2} \qquad SSAxB = n \sum_{i} \sum_{j} (\overline{y}_{ij.} - \overline{y}_{i...} - \overline{y}_{.j.} + \overline{y}_{...})^{2}$$

$$SSE = \sum_{i} \sum_{j} \sum_{k} (y_{ijk} - \overline{y}_{ij.})^{2}$$

$$MSk = \frac{SSk}{dfk}, \quad k = A, B, AxB$$

• 가설의 기각 판단

- 일반적인 가설 검정의 원리와 동일: F-분포 이용
- 검정 과정
 - ① 교호작용효과에 대한 검정 : 유의하지 않으면 주효과 검정
 - ② 주효과에 대한 검정
 - ③ 다중비교 및 사후분석으로 동일집단 분류

[참고]

- 1. 분산분석 모형에서 교호작용효과가 유의하면 주효과분석은 의미가 없으므로 교호작용효과가 유의하지 않은 경우에 주효과에 대한 검정을 수행함.
- 분산분석모형을 표현할 때 교호작용이 유의하면 주효과는 모형에 반드시 포함시켜 표현해야 함.
- 3. 반복이 없는 경우는 교호작용효과가 존재하지 않음.
- 4. 사후분석 및 다중비교는 귀무가설이 기각된 경우에 수행하며, 다중 비교방법에 따라 집단간 차이유무의 결과가 다르게 나타남.

Example : 혈액 칼슘 자료

- 호르몬 처리(3종)와 성별(2종)에 따른 혈액 칼슘값의 차이가 존재하는 지에 대한 자료(교재 p.30)
 - 남녀별 15명을 랜덤하게 배정하여 실험

	Tr1	Tr2	Tr3
Male	16.87	19.07	32.05
	16.18	18.77	28.71
	17.12	17.63	34.65
	16.83	16.99	28.79
	17.19	18.04	24.46
	15.86	17.20	30.54
	14.92	17.64	32.41
Female	15.63	17.89	28.97
	15.24	16.78	28.46
	14.80	16.72	29.65

SAS: Two-way ANOVA

등분산 가정에 위배

- 선형모형 관점의 분석
 - Proc ANOVA
 - Proc GLM
- 분산분석표 : 분산분석모형에 대한 검정

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	5	1154.550147	230.910029	72.64	<.0001	
Error	24	76.292400	3.178850			
Corrected Total	29	1230.842547				

• 분산분석모형의 설명력

R-Square	Coeff Var	Root MSE	Ca Mean		
0.938016	8.403983	1.782933	21.21533		

• 주효과 및 교호작용 효과에 대한 분산분석표

Source	DF	Type I SS	Mean Square	F Value	Pr > F
Gender	1	4.062720	4.062720	1.28	0.2694
Trt	2	1146.642007	573.321003	180.35	<.0001
Gender*Trt	2	3.845420	1.922710	0.60	0.5543

교호작용효과는 유의한 차이(영향)를 보여주지 못하므로 모형은 주효과로만 표현

제3 유형의 제곱합(SS3)

효과 통제후 남은 효과를 분석하는 제곱합

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Gender	1	4.062720	4.062720	1.28	0.2694
Trt	2	1146.642007	573.321003	180.35	<.0001
Gender*Trt	2	3.845420	1.922710	0.60	0.5543

• 분산분석모형의 계수 추정치

Parameter	Estimate		Standard Error	t Value	Pr > t
Intercept	29.81200000	В	0.79735187	37.39	<.0001
Gender Female	0.19400000	В	1.12762582	0.17	0.8648
Gender Male	0.00000000	В			
Trt Tr1	-12.97400000	В	1.12762582	-11.51	<.0001
Trt Tr2	-11.71200000	В	1.12762582	-10.39	<.0001
Trt Tr3	0.00000000	В			
Gender*Trt Female Tr1	-1.74200000	В	1.59470373	-1.09	0.2855
Gender*Trt Female Tr2	-1.04800000	В	1.59470373	-0.66	0.5173
Gender*Trt Female Tr3	0.00000000	В			
Gender*Trt Male Tr1	0.00000000	В			
Gender*Trt Male Tr2	0.00000000	В			
Gender*Trt Male Tr3	0.00000000	В			

교호작용효과의 계수 추정치

[참고] 모형 제곱합에 대한 분할 제곱합의 표현 방법

- . Type I SS; Model문에서 설명요인의 표현 순서에 따라 모형 제곱합이 얼마만큼 증분되는가를 표현
 - 모형에서 요인들의 순서를 어떻게 두느냐에 따라 값이 달라짐
- . Type III SS; 반응변수에 영향을 미치는 여러 요인의 효과를 제거(보정)한 후 각 설명요인이 고유하게 기여하는 제곱합(요인의 고유기여분)을 표현
 - 분산분석모형에서는 동일하나 공분산분석에서는 제 1종 제곱합과 다르게 나타남.

Non-parametric 2-way ANOVA

- Friedman's 2-way ANOVA
 - Assumptions of 2-way ANOVA in parametric method
 - No missing observations per cells
 - No requirement for the data to be Normally distributed, the residual are expected to have a Normal distribution (the model is appropriate does not necessarily follow)
 - Non-parametric 2-way ANOVA
 - no fulfil the assumptions of the parametric method
 - the model will not fit well
 - wide variation in the s.d.'s

Friedman's 2-way ANOVA

- Procedures
 - give the rank for each subject
 - compute the rank-sum in the *i*-th group
 (a similar way to the Kruscal-Wallis)
 - Calculate the statistic H
 - k groups and n subjects (no replications)

$$H = \frac{12}{nk(k+1)} \sum_{i=1}^{k} \left[R_i - n(k+1)/2 \right]^2 \sim \chi^2(k-1) \quad under \quad H_0$$

- n(k+1)/2 is the expected value for R_i if the null hypothesis is true and all groups are the same

$$H = \frac{12}{nk(k+1)} \sum_{i=1}^{k} R_{i}^{2} - 3n(k+1)$$
 only one observation in each cell and a few ties

Example: Immersion suit leakage

 Immersion suit leakage(g) during simulated helicopter underwater escape (Light et al, 1987)

Diving Suit type					Diving Suit type_rank						
subjects	5 A	۱ E	3 ()	subjec [*]	ts A	В	C		
	1	308	132	454	64		1	3	2	4	1
	2	102	526	0	28		2	3	4	1	2
	3	182	134	96	30		3	4	3	2	1
	4	268	324	264	90		4	3	4	2	1
	5	166	228	134	34		5	3	4	2	1
	6	332	296	458	6		6	3	2	4	1
	7	198	350	200	90		7	2	4	3	1
	8	28	274	16	24		8	3	4	1	2
Mean		198	283	202.75	45.75	sum		24	27	19	10
SD		103.06	127.33	178.94	31.63	mean		3.00	3.38	2.38	1.25

$$H = \frac{12}{nk(k+1)} \sum_{i=1}^{k} R_{i}^{2} - 3n(k+1) = 12.45$$

$$p - value = \Pr(\chi^{2}(3) < 12.45) < 0.01$$

- Multiple comparisons
 - Comparison of pairs of groups : Wilcoxon matched pair test
- the Friedman's test with two groups is equivalent to an extension of the sign test rather than the Wilcoxon test