For the general divide-and-conquer recurrence relation T(n), the *Master Theorem* makes it straightforward to determine divide-and-conquer (and even some decrease-and-conquer) algorithms'efficiency classes. Bear in mind what it does **not** do. It does **NOT** give you an *explicit solution* (a function in terms of n only) to the T(n) recurrence relation.

The theorem states that for T(n) = aT(n/b) + f(n), where f(n) computes the cost of dividing the problem into smaller ones and of combining their solutions:

<u>If</u>		
T(1)	Ш	c,
a	\wedge	0,
b	>	1,
c	>	0,
n	=	$b^{k}, k = 0, 1, 2, \dots (n \text{ is a power of } b),$
d	2	0, and
f(n)	\in	$\Theta(n^d),$

then

$$a < b^d \to T(n) \in \Theta(n^d);$$

$$a = b^d \to T(n) \in \Theta(n^d \log n);$$

$$a > b^d \to T(n) \in \Theta(n^{\log a});$$

where the logs are \log_b , log to the base b.