Методы обучения с подкреплением для решения задач сборки

Юнес Али

Рукаводитель: Ющенко А. С. Московский Государственный Технический Университет имени Н.Э.Баумана

Содержание

Введение

классическое управление робототехники глубокое обучение робототехники Постановка задачи

Направления исследований Обучения с подкреплением Алгоритмы обучения с подкреплением

План работы Новизна исследования Используемые технологии классическое управление робототехники

классическое управление робототехники

наблюдение

оценка состояния

планирование движения

низкий уровень контроля

команды мотора

глубокое обучение робототехники

глубокое обучение робототехники

структура системы обучения

Постановка задачи

Постановка задачи

▶ "плотный зазор цилиндрический стержня в отверстии" (Tight clearance cylindrical peg-in-hole task).

Введение

Важность реализации проекта

- Не зависит от модель робота (с точки зрения алгоритма динамеческий модель неизвесн)
- Необходимая Точность для выполнения задачи, превышает точность робота
- ▶ Сверхточные датчикы силы и момента \rightarrow камеру и датчики силы и положения
- ▶ Первый шаг к разработке интеллектуального Робота

Обучения с подкреплением

 Является подразделом машинного обучения, изучающим, как агент должен действовать в окружении, чтобы максимизировать некоторый долговременный выигрыш.

Обучения с подкреплением

Обучения с подкреплением

марковский процесс принятия решений

- $M = S, A, \tau, r$
- ▶ Состояния : $s \in S$
- ▶ Действия : $a \in A$, $a \sim \pi(a_t|s_t)$
- ▶ Вероятность переходов : $p(s_{t+1}|s_t, a_t) \in \tau$
- ▶ Функция вознаграждения : $r: S \times A \rightarrow R$

Алгоритмы обучения с подкреплением

Алгоритмы обучения с подкреплением

Самые важные современие адгоритмы (без использования моделей):

- 1. Алгоритмы с непрерывными моделями: DQN (2013), DDPG (2015)
- 2. Алгоритмы градиента стратегии: TRPO (2015), PPO (2017)

Алгоритмы обучения с подкреплением

Алгоритмы обучения с подкреплением

OpenAI gym environment "Reacher"

Алгоритмы обучения с подкреплением

Алгоритмы обучения с подкреплением

TT

Новизна исследования

- В особом случае серийных роботов, мы можем направить робота использовать полезных образцов во время процесса обучения.
- или мы используем гауссовские процессы, которые могут изучить модель среды из нескольких образцов.
- ▶ это направление исследований называется "Data-efficient reinforcement learning"

Используемые технологии

Используемые технологии

- ▶ Python, Keras, Tensorflow
- ► KUKA LBR HWA 14-r820
- ▶ ROS (Robotic Operatic System)

план раооты

- 1. Следовать развития темы исследований (Научные статьи)
- 2. Написать код алгоритмов (TRPO, PPO, DDPG)
- 3. Подготовка робота и экспериментальной среды
- 4. Попробовать алгоритм в симуляторе
- 5. Попробовать алгоритм на реальном роботе
- 6. Разработка алгоритма обучения

Используемые технологии

Конец

Спасибо за внимание!