CHAPTER 3 STACKS AND QUEUES

3.1 The stack abstract data type

- A stack is an ordered list in which insertions and deletions are made at one end called the top.
 - Given a stack $S = (a_0, ..., a_{n-1})$, we say that a_0 is the bottom element, a_{n-1} is the top element, and a_i is on top of element a_{i-1} , 0 < i < n.
 - The restrictions on the stack imply that if we add the elements A, B, C, D, E to the stack, in that order, then E is the first element we delete from the stack
 - Figure 3.1 illustrates this sequence of operations.
 - Since the last element inserted into a stack is the first element removed, a stack is also known as a *Last-In-First-Out* (*LIFO*) list.

The ADT specification of the stack is shown in Structure 3.1

```
structure Stack is
  objects: a finite ordered list with zero or more elements.
  functions:
    for all stack \in Stack, item \in element, max\_stack\_size \in positive integer
     Stack CreateS(max_stack_size) ::=
                      create an empty stack whose maximum size is max_stack_size
    Boolean IsFull(stack, max_stack_size) ::=
                      if (number of elements in stack == max - stack - size)
                      return TRUE
                      else return FALSE
    Stack Add(stack, item) ::=
                      if (IsFull(stack)) stack = full
                      else insert item into top of stack and return
    Boolean IsEmpty(stack) ::=
                      if (stack == CreateS(max = stack = size))
                       return TRUE
                      else return FALSE
    Element Delete(stack) ::=
                      if (IsEmpty(stack)) return
                      else remove and return the item on the top of the stack.
```

 The easiest way to implement this ADT is by using a one dimensional array, say stack[MAX_STACK_SIZE], where MAX_STACK_SIZE is the maximum number of entries.

```
Stack CreateS(max_stack_size) ::=
      #define MAX_STACK_SIZE 100 /*maximum stack size*/
     typedef struct {
              int key;
              /* other fields */
              } element;
      element stack[MAX_STACK_SIZE];
      int top = -1;
Boolean IsEmpty(Stack) ::= top < 0;
Boolean IsFull(Stack) ::= top >= MAX_STACK_SIZE-1;
```

```
void add(int *top, element item)
{
/* add an item to the global stack */
  if (*top >= MAX_STACK_SIZE-1) {
    stack_full();
    return;
  }
  stack[++*top] = item;
}
```

Program 3.1: Add to a stack

```
element delete(int *top)
{
/* return the top element from the stack */
   if (*top == -1)
      return stack_empty(); /* returns an error key */
   return stack[(*top)--];
}
```

Program 3.2: Delete from a stack

3.2 The queue abstract data type

- A queue is an ordered list in which all insertions take place at one end and all deletions take place at the opposite end.
 - Given a queue $Q = (a_0, ..., a_{n-1})$, we say that a_0 is the front element, a_{n-1} is the rear element, and a_{i+1} is behind a_i , $0 \le i < n-1$.
 - The restrictions on the queue imply that if we insert the elements A, B, C, D, E, in that order, then A is the first element we delete from the queue
 - Figure 3.4 illustrates this sequence of operations.
 - Since the first element inserted into a queue is the first element removed, a stack is also known as a *First-In-First-Out* (*FIFO*) list.

The ADT specification of the queue appears in Structure 3.2.

```
structure Queue is
  objects: a finite ordered list with zero or more elements.
  functions:
    for all queue \in Queue, item \in element, max\_queue\_size \in positive integer
    Queue CreateQ(max\_queue\_size) ::=
                     create an empty queue whose maximum size is max_queue_size
    Boolean IsFullQ(queue, max_queue_size) ::=
                     if (number of elements in queue == max_queue_size)
                     return TRUE
                     else return FALSE
    Queue AddQ(queue, item) ::=
                     if (IsFullQ(queue)) queue = full
                     else insert item at rear of queue and return queue
    Boolean IsEmptyQ(queue) ::=
                     if (queue == CreateQ(max = queue = size))
                     return TRUE
                     else return FALSE
    Element DeleteQ(queue) ::=
                     if (IsEmptyQ(queue)) return
                     else remove and return the item at front of queue.
```

Structure 3.2: Abstract data type *Queue*

- The simplest way to implement this ADT is by using a one dimensional array and two variables, *front* and *rear*.

```
void addq(int *rear, element item)
{
/* add an item to the queue */
   if (*rear == MAX_QUEUE_SIZE-1) {
      queue_full();
      return;
   }
   queue[++*rear] = item;
}
```

Program 3.3: Add to a queue

```
element deleteq(int *front, int rear)
{
/* remove element at the front of the queue */
   if (*front == rear)
     return queue_empty(); /*return an error key */
   return queue[++*front];
}
```

Program 3.4: Delete from a queue

- Example 3.2 [Job scheduling]:

• Figure 3.5 illustrates how an operating system might process jobs if it used a sequential representation for its queue.

front	rear	Q[0]	Q[1]	Q[2]	Q[3]	Comments
-1	-1					queue is empty
-1	0	J1				Job 1 is added
-1	1	J1	J2			Job 2 is added
-1	2	J1	J2	J3		Job 3 is added
0	2		J2	J3		Job 1 is deleted
1	2			J3		Job 2 is deleted

Figure 3.5: Insertion and deletion from a sequential queue

- It should be obvious that as jobs enter and leave the system, the queue gradually shift to right. This means eventually the rear index equals *MAX_QUEUE_SIZE-1*, suggest the queue is full.
- In this case, *queue_full* should move the entire queue to the left so that the first element is again at *queue*[0] and *front* is at -1. It should also recalculate *rear* so that it is correctly positioned.
 - » Shifting an array is very time-consuming, particularly when there are many elements in it. In fact, *queue_full* has a worst case complexity of O(MAX_QUEUE_SIZE).
- We can obtain a more efficient representation if we regard the agray queue[MAX_QUEUE_SIZE] as circular.

• We can obtain a more efficient representation if we regard the array *queue*[MAX_QUEUE_SIZE] as circular.

Figure 3.6: Empty and nonempty circular queues

Implementation

In order to implement such a circular queue, we need to perform two pointer operations:

```
*rear = (*rear+1)%Max_Q_size

*front = (*front+1)%Max_Q_size
```

Where % is the modulo operation and Max_Q_size is the queue size (6 in this example).

- Implementing *addq* and *deleteq* for a circular queue is slightly more difficult since we must assure that a circular rotation occurs.

```
void addq(int front, int *rear, element item)
{
/* add an item to the queue */
   *rear = (*rear+1) % MAX_QUEUE_SIZE;
   if (front == *rear) {
      queue_full(rear); /* reset rear and print error*/
      return;
   }
   queue[*rear] = item;
}
```

Program 3.5: Add to a circular queue

```
element deleteq(int *front, int rear)
{
   element item;
   /* remove front element from the queue and put it in item */
    if (*front == rear)
      return queue_empty(); /* queue_empty returns an error key */
    *front = (*front+1) % MAX_QUEUE_SIZE;
   return queue[*front];
}
```

3.3 A mazing problem

- In creating this program the first issue that confronts us is the representation of the maze.
 - The most obvious choice is a two dimensional array in which zeros represent the open paths and ones the barriers.
 - Figure 3.8 shows a simple maze.
 - Notice that not every position has eight neighbors.
 - To avoid checking for these border conditions we can surround the maze by a border of ones. Thus an $m \times p$ maze will require an $(m+2) \times (p+2)$ array.
 - The entrance is at position [1][1] and the exit at [m][p].

If X marks the spot of our current location,
 maze[row][col], then Figure 3.9 shows the possible moves from this position.

Figure 3.9: Allowable moves

- Another device that will simplify the problem is to predefine the possible directions to move in an array, move, as in Figure 3.10.
 - This is obtained from Figure 3.9.

Name	Dir	move[dir].vert	move[dir].horiz
N	0	-1	0
NE	1	-1	1
E	2	0	1
SE	3	1	1
S	4	1	0
SW	5	1	-1
W	6	0	-1
NW	7	-1	-1

Figure 3.10: Table of moves

- Program 3.7 is our initial attempt at a maze traversal algorithm.
 - It use a stack to save our current position.
 - It maintain a second two-dimensional array, *mark*, to record the maze positions already checked.

```
initialize a stack to the maze's entrance coordinates and
direction to north;
while (stack is not empty) {
  /* move to position at top of stack */
  <row, col, dir> = delete from top of stack;
  while (there are more moves from current position) {
    <next_row, next_col> = coordinates of next move;
    dir = direction of move;
    if ((next_row == EXIT_ROW) && (next_col == EXIT_COL))
       success;
    if (maze[next_row][next_col] == 0 &&
                 mark[next_row][next_col] == 0) {
    /* legal move and haven't been there */
       mark[next_row] [next_col] = 1;
       /* save current position and direction */
       add <row, col, dir> to the top of the stack;
       row = next_row;
       col = next_col;
       dir = north;
printf("No path found\n");
```

– Program 3.8 contains the maze search algorithm.

```
void path (void)
 /* output a path through the maze if such a path exists */
   int i, row, col, next_row, next_col, dir, found = FALSE;
   element position;
   mark[1][1] = 1; top = 0;
   stack[0].row = 1; stack[0].col = 1; stack[0].dir = 1;
   while (top > -1 \&\& !found) {
     position = delete(&top);
     row = position.row; col = position.col;
     dir = position.dir;
     while (dir < 8 && !found) {
        /* move in direction dir */
        next_row = row + move[dir].vert;
        next_col = col + move[dir].horiz;
        if (next_row == EXIT_ROW && next_col == EXIT_COL)
          found = TRUE;
        else if ( !maze[next_row][next_col] &&
        ! mark[next_row][next_col]) {
          mark[next_row][next_col] = 1;
          position.row = row; position.col = col;
          position.dir = ++dir;
          add(&top, position);
          row = next_row; col = next_col; dir = 0;
        else ++dir;
if (found) {
     printf("The path is:\n");
     printf("row col\n");
     for (i = 0; i \le top; i++)
        printf("%2d%5d",stack[i].row, stack[i].col);
     printf("%2d%5d\n", row, col);
     printf("%2d%5d\n", EXIT_ROW, EXIT_COL);
   else printf("The maze does not have a path\n");
```

• Analysis of path:

- The worst case of computing time of path is O(mp), where m and p are, respectively, the number of rows and columns of the maze.

(My recommendation to process a Maze problem)

3.4 Evaluation of expressions

Introduction

 The representation and evaluation of expressions is of great interest to computer scientists.

- If we examine expressions (3.1) and (3.2), we notice that they contains operators, operands, and parentheses.

- The first problem with understanding the meaning of these or any other expressions and statements is figuring out the order in which the operations are performed.
 - We would have written (3.2) differently by using parentheses to change the order of evaluation:

```
x=((a/(b-c+d))*(e-a)*c (3.3)
```

- Within any programming language, there is a precedence hierarchy that determines the order in which we evaluate operators.
 - Figure 3.12 contains the precedence hierarchy for C. (next page)

Token	Operator	Precedence ¹	Associativity
()	function call	17	left-to-right
[]	array element	* 14	
-> .	struct or union member		
++	increment, decrement ²	16	left-to-right
++	decrement, increment ³	15	right-to-left
!	logical not		
~	one's complement		
-+	unary minus or plus	a 11	
& *	address or indirection		
sizeof	size (in bytes)		
(type)	type cast	14	right-to-left
* / %	multiplicative	13	left-to-right
+ -	binary add or subtract	12	left-to-right
<< >>	shift	11	left-to-right
> >=	relational	10	left-to-right
< <=			
== !=	equality	9	left-to-right
&	bitwise and	8	left-to-right
^	bitwise exclusive or	7	left-to-right
I	bitwise or	6	left-to-right
&&	logical and	5	left-to-right
II	logical or	4	left-to-right
?:	conditional	3	right-to-left
= += -= /= *= %=	assignment	2	right-to-left
<<= >>= &= ^= =			
,	comma	1	left-to-right

^{1.} The precedence column is taken from Harbison and Steele.

Figure 3.12: Precedence hierarchy for C

^{2.} Postfix form

^{3.} Prefix form

Evaluating postfix expressions

- The standard way of writing expressions is known as infix notation because in it we place a binary operator in-between its two operands.
- Although infix notation is the most common way of writing expressions, it is not the one used by compilers to evaluate expressions.
- Instead compilers typically use a parenthesis-free notation referred to as postfix.
 - In this notation, each operator appears after its operands.
 - Figure 3.13 contains several infix expressions and their postfix equivalents.

Infix	Postfix
2+3*4	2 3 4*+
a*b+5	ab*5+
(1+2)*7	1 2+7*
<i>a</i> * <i>b</i> / <i>c</i>	ab*c/
((a/(b-c+d))*(e-a)*c	abc -d +/ea -*c*
a/b-c+d*e-a*c	ab/c-de*+ac*-

Figure 3.13: Infix and postfix notation

- Evaluating postfix expressions is much simpler than the evaluation of infix expressions because:
 - There are no parentheses to consider.
 - To evaluate an expression we make a single left-to-right scan of it.
 - » We can evaluate an expression easily by using a stack.
 - » Figure 3.14 shows this processing when the input is nine character string 6 2/3-4 2*+.

	٠,	
		•

Token		Stack		Top
	[0]	[1]	[2]	
6	6			0
2	6	2		1
1	6/2			0
3	6/2	3		1
_	6/2-3			0
4	6/2-3	4		1
2	6/2-3	4	2	2
*	6/2-3	4*2		1
+	6/2-3+4*2			0

Figure 3.14: Postfix evaluation

$$X = A/B - C + D * E - A * C$$

$$A B / C - D E * + A C * -$$

$$X = A/B - C + D * E - A * C$$

$$X = A/B - C + D * E - A * C$$

$$X = A/B - C + D * E - A * C$$

 $A/B = X_1$

$$X = A/B - C + D * E - A * C$$

 X_1 C - D E * + A C * -

$$X = A/B - C + D * E - A * C$$

$$X = A/B - C + D * E - A * C$$

$$X = A/B - C + D * E - A * C$$
 $D E * + A C * X_1 - C = X_2$

$$X = A/B - C + D * E - A * C$$

 X_2 D E * + A C * -

$$X = A/B - C + D * E - A * C$$
 $X_2 D E * + A C * -$

$$X = A/B - C + D * E - A * C$$
 $X_2 D E * + A C * -$

$$X = A/B - C + D * E - A * C$$
 $X_2 D E * + A C * -$

$$X = A/B - C + D * E - A * C$$
 $X_2 + A C * - D*E = X_3$

$$X = A/B - C + D * E - A * C$$
 $X_2 X_3 + A C * -$

$$X = A/B - C + D * E - A * C$$

$$X_2 X_3 + A C * -$$

$$X = A/B - C + D * E - A * C$$

A C * -

 $X_2 + X_3 = X_4$

$$X = A/B - C + D * E - A * C$$

X₄ A C * -

$$X = A/B - C + D * E - A * C$$

$$X = A/B - C + D * E - A * C$$

$$X_4 A C * -$$

$$X = A/B - C + D * E - A * C$$

$$X = A/B - C + D * E - A * C$$

$$X_4$$
 - $A * C = X_5$

$$X = A/B - C + D * E - A * C$$

$$X_4 X_5$$

$$X = A/B - C + D * E - A * C$$

$$X_4 X_5$$
 -

$$X = A/B - C + D * E - A * C$$

Back

• We now consider the representation of both the stack and the expression.

(Next page: program 3.9, 3.10)

```
int eval(void)
/* evaluate a postfix expression, expr, maintained as a
global variable. '\0' is the the end of the expression.
The stack and top of the stack are global variables.
get_token is used to return the tokentype and
the character symbol. Operands are assumed to be single
character digits */
  precedence token;
  char symbol;
  int op1, op2;
  int n = 0; /* counter for the expression string */
  int top = -1;
  token = get_token(&symbol, &n);
  while (token != eos) {
     if (token == operand)
       add(&top, symbol-'0'); /* stack insert */
     else {
       /* remove two operands, perform operation, and
       return result to the stack */
       op2 = delete(&top); /*stack delete */
       op1 = delete(&top);
       switch(token) {
          case plus: add(&top,op1+op2);
                     break:
          case minus: add(&top, op1-op2);
                      break:
          case times: add(&top, op1*op2);
                      break;
          case divide: add(&top,op1/op2);
                       break;
          case mod: add(&top, op1%op2);
     token = get_token(&symbol, &n);
  return delete(&top); /* return result */
```

```
precedence get_token(char *symbol, int *n)
/* get the next token, symbol is the character
representation, which is returned, the token is
represented by its enumerated value, which
is returned in the function name */
  *symbol = expr[(*n)++];
  switch (*symbol) {
    case '(' : return lparen;
    case ')' : return rparen;
    case '+' : return plus;
    case '-' : return minus;
    case '/' : return divide;
    case '*': return times;
    case '%' : return mod;
    case ' ' : return eos;
    default : return operand; /* no error checking,
                          default is operand */
```

Program 3.10: Function to get a token from the input string

Infix to postfix

(第一法:加括號的作法)

- We can describe an algorithm for producing a postfix expression from an infix one as follows:
 - 1) Fully parenthesize the expression.
 - 2) Move all binary operators so that they replace their corresponding right parentheses.
 - 3) Delete all parentheses.

• Example:

```
a/b-c+d*e-a*c when fully parenthesize becomes: ((((a/b)-c)+(d*e))-(a*c))
Performing steps 2 and 3 gives
ab/c-de*+ac*-
```

(第二法: 不必加括號的作法)

Case 1. 沒有()

- 變數,放入 output
- Incoming operator, 看 stack 裡最靠外的 op 的 precedence 之高低。若 stack 內的 op 的 prec. 較低,才將 incoming op 壓入 stack. 若較高,則將 stack 的 op 先彈出,然後才將 incoming op 壓入 stack. 若相等,則將 stack 裡 op 彈出,才將 incoming op 壓入
- Example 3.3 [Simple expression]: Suppose we have the simple expression a+b*c, which yields abc*+ in postfix.

Token	Stack			Top	Output
	[0]	[1]	[2]		
а				-1	а
+	+			0	а
b	+			0	ab
*	+	*		1	ab
c	+	*		1	ab ab abc abc*+
eos				-1	abc*+

Figure 3.15: Translation of a + b*c to postfix

 Example 3.3 [Simple expression]: We use as our example the expression a*(b+c)*d, which yields abc+*d* in postfix.

Case 2. 有()	
基本上與上面 case 一樣,	只
是:	

- 在"("壓入 stack 之後,作 法就和上面一樣。
- 直到碰到 incoming 的是")" , 則將 stack 內 op 全彈出, 直到碰到第一個"("為止,並 將"(" delete 掉。

Token		Stack		Тор	Output
	[0]	[1]	[2]		
а				-1	а
*	*			0	a
(*	(1	a
b	*	(1	ab
+	*	(+	2	ab
c	*	(+	2	abc
)	*			0	abc +
*	*			0	<i>abc</i> +*
d	*			0	abc + *d
eos	*			0	abc +*d abc +*d

Figure 3.16: Translation of a*(b+c)*d to postfix

• The function *postfix* (Program 3.11) convert an infix expression into a postfix one.

```
void postfix(void)
/* output the postfix of the expression. The expression
string, the stack, and top are global */
  char symbol;
  precedence token;
  int n = 0;
  int top = 0; /* place eos on stack */
  stack[0] = eos;
  for (token = get_token(&symbol, &n); token != eos;
                          token = get_token(&symbol,&n)) {
     if (token == operand)
       printf("%c", symbol);
    else if (token == rparen) {
       /* unstack tokens until left parenthesis */
       while (stack[top] != lparen)
          print_token(delete(&top));
       delete(&top); /* discard the left parenthesis */
     else {
       /* remove and print symbols whose isp is greater
       than or equal to the current token's icp */
       while(isp[stack[top]] >= icp[token])
          print_token(delete(&top));
       add(&top, token);
  while ( (token=delete(&top)) != eos)
    print_token(token);
  printf("\n");
```

• Analysis of *postfix*:

– Complexity of function postfix is $\Theta(n)$, where n is the number of tokens in the expression.

Another Method

製作成 binary tree

Infix
$$a/b - c + d*e - a*c$$

Postfix $ab/c - de* + ac* c d e$

a

Visiting order (都是 depth first search)

Infix: LVR

Postfix: LRV

Prefix: VLR

Postfix Notation

Expressions are converted into Postfix notation before compiler can accept and process them.

$$X = A/B - C + D * E - A * C$$

Infix $A/B-C+D*E-A*C$
Postfix => $AB/C-DE*+AC*-$

Operation	Postfix
$T_1 = A / B$	T₁C-DE*+AC*-
$T_2 = T_1 - C$	T ₂ DE*+AC*-
T ₃ = D * E	T ₂ T ₃ +AC*-
$T_4 = T_2 + T_3$	T ₄ AC*-
T ₅ = A * C	T ₄ T ₅ -
$T_6 = T_4 - T_5$	T ₆