CZ4041/CE4041: Machine Learning

Lecture 11: Density Estimation

Question 1

• Suppose a dataset of four 3-dimensional instances is shown below. Estimate the sample mean and covariance matrix (unbiased).

Data matrix

	X_1	X_2	X_3
P1	3	5	-1
P2	-1	8	3
P3	2	-4	-4
P4	0	-1	-6

$$\widehat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_i$$

$$\widehat{\mu} = \frac{1}{4} \sum_{i=1}^{4} Pi$$

$$\widehat{\mu} = \frac{1}{4} \sum_{i=1}^{4} Pi$$
 $\widehat{\mu} \begin{vmatrix} X_1 & X_2 & X_3 \\ 1 & 2 & -2 \end{vmatrix}$

Question 1 (cont.)

$$\widetilde{\boldsymbol{\Sigma}} = \frac{1}{N-1} \sum_{i=1}^{N} (\boldsymbol{x}_{i} - \widehat{\boldsymbol{\mu}}) (\boldsymbol{x}_{i} - \widehat{\boldsymbol{\mu}})^{T} = \frac{1}{N-1} \sum_{i=1}^{N} \widetilde{\boldsymbol{x}}_{i} \ \widetilde{\boldsymbol{x}}_{i}^{T} = \frac{1}{N-1} \widetilde{\boldsymbol{X}}^{T} (\widetilde{\boldsymbol{X}})$$
data matrix

X_1	X_2	X_3
1	2	- 2
	$\widehat{\mu}$	

X_1	X_2	X_3
2	3	1
-2	6	5
1	-6	- 2
- 1	-3	- 4

Centered

$$\widetilde{\mathbf{\Sigma}} = \frac{1}{4-1} \widetilde{\mathbf{X}}^T \widetilde{\mathbf{X}} = \begin{vmatrix} 3.33 & -3 & -2 \\ -3 & 30 & 19 \\ -2 & 19 & 15.33 \end{vmatrix}$$

Question 2

• Suppose a dataset of five 1-dimensional instances is shown in Table 2. Use histogram estimator with an origin of 0 and a width of 3, naive estimator with a width of 3, and 3-NN estimator to estimate the density function $\hat{p}(x)$ and compute the value of $\hat{p}(2.6)$ at 2.6, respectively.

Table 2: Data set for Question 2.

P1	P2	P3	P4	P5
1.2	2	10	-5.9	3.5

Histogram Estimator

- Simply partition x into distinct bins of a fixed width Δ
- Count the number N_t of training data points falling into bin t
- Turn this count into a normalized probability density via dividing by the total number of observed data points N and by the width Δ of the bins:

$$p_t = \frac{N_t}{N\Delta}$$

• The model for the density p(x) is constant over the width of each bin: find the bin where x is in (e.g., bin t), then

$$\hat{p}(\mathbf{x}) = \frac{\#\{\mathbf{x}_i \mid \mathbf{x}_i \text{ in the same bin as } \mathbf{x}\}}{N\Delta} = p_t$$

Histogram Estimator (cont.)

Query x | 2.6 |

2.6

Global intervals:
$$(-6,-3]$$
 $(-3,0]$ $(0,3]$ $(3,6]$ $(6,9]$ $(9,12]$ Counts: 1 0 2 1 0 1

$$\hat{p}(2.6) = \frac{\#\{P_i \mid P_i \text{ in the same bin as } 2.6\}}{N\Delta} = \frac{2}{5 \times 3} = 0.13$$

Naïve Estimator: An Alterative

• In Histogram Estimator, besides Δ , we have to choose an origin x_0 as well, the bins are the intervals defined as

$$(x_0 + m\Delta, x_0 + (m+1)\Delta]$$
0, positive or negative integers

• The Naïve Estimator does not need to set an origin

$$\hat{p}(x) = \frac{\#\{x_i \mid x_i \text{ in the same bin as } x\}}{N\Delta}$$
Given x , use x as a center to create a bin with a length of Δ

$$\hat{p}(x) = \frac{\#\{x_i \mid x_i \text{ in the same bin as } x\}}{N\Delta}$$

$$\frac{\Delta}{2} \times \frac{\Delta}{2}$$

$$\#\{x_i \mid x - \frac{\Delta}{2} < x_i \le x + \frac{\Delta}{2}\}$$

$$N\Delta$$

Naïve Estimator (cont.)

Training data

P_1	P_2	P_3	P_4	P_5
1.2	2	10	-5. 9	3.5

Query *x* 2.6

Local interval:
$$(2.6 - \frac{3}{2}, 2.6 + \frac{3}{2}]$$
 (1.1, 4.1]

$$\hat{p}(2.6) = \frac{\#\{P_i \mid P_i \text{ in the same bin as 2.6}\}}{N\Delta} = \frac{3}{5 \times 3} = 0.2$$

K-NN Estimator

• The *K*-NN Estimator *adapts* the amount of smoothing to the *local* density of data, and the degree of smoothing is controlled by *K*, the number of neighbors

Consider
$$K$$
 nearest $p(x) = \frac{K}{NV_x}$

The volume of the space centered at x that exactly contains K nearest neighbors of x

• For the multivariate case

$$\hat{p}(x) = \frac{K}{NV_{d_K(x)}}$$

The volume of the d-ball of the radius $d_K(x)$ centered at x. And $d_K(x)$ is the distance of x to the K-th nearest observed instance

• For the univariate case

$$\hat{p}(\mathbf{x}) = \frac{K}{N2d_K(\mathbf{x})}$$

K-NN Estimator (cont.)

Training data

P_1	P_2	P_3	P_4	P_5
1.2	2	10	-5. 9	3.5

Query x | 2.6

Distance between x and the training data

\bigcap	\prod_{D}	D	D	D
$^{I}1$	$ P_2 $	13	14	¹ 5
1.4	0.6	7.4	8.5	0.9

3rd NN

$$\hat{p}(x) = \frac{K}{N2d_K(x)} \longrightarrow \hat{p}(2.6) = \frac{3}{5 \times 2 \times 1.4} = 0.21$$

Thank you!