NLP

FROM TWEETS TO INSIGHTS

SENTIMENT ANALYSIS OF APPLE & GOOGLE PRODUCTS

PROBLEM STATEMENT

"Every tweet is a review. But with thousands of voices speaking at once, how do we filter the noise and measure how people really feel about Apple and Google products?".

PROJECT OBJECTIVE

The objective of this project is to develop a Natural Language Processing (NLP) model capable of classifying tweets about Apple and Google products into positive, negative, or neutral sentiment categories. By leveraging advanced text processing and machine learning techniques, the model aims to provide accurate, automated insights into consumer opinions expressed on Twitter.

DATASET OVERVIEW

•Source: CrowdFlower (Data.world) - 9,000+ tweets about Apple & Google products.

•Size: ~9,100 tweets, 3 columns.

Features

•tweet_text \rightarrow raw tweet

•emotion_in_tweet_is_directed_at →
 product/brand mentioned (iPhone, iPad, Google),
 etc.).

•is_there_an_emotion_directed_at_a_brand_or_product

→ sentiment (Positive, Negative, Neutral).

METHODOLOGY

TOOLS USED

CHALLENGES

Tweets are highly unstructured and also non-grammatical

Out of Vocabulary Words

Lexical Variation

Extensive usage of acronyms like asap, lol,
 afaik,noisy(hashtags,emojis,URLs) texts ,sarcasm,imbalanced data.

EXPLORATORY DATA ANALYSIS

SENTIMENT DISTRIBUTION

WORD CLOUD FOR POSITIVE & NEGATIVE EMOTIONS

EMOTION DISTRIBUTION IN THE TWEETS

SENTIMENT DISTRIBUTION BY BRAND/PRODUCT

Modeling & Evaluation

Binary Classification

 Logistic Regression baseline (Positive vs Negative)

Benchmark Model

 Standalone Naive Bayes (Multiclass)

2025

Multiclass Classification (3 classes)

- Random Forest
- XGBoost
- SVC
- Naive Bayes
- Logistic Regesoression

Evaluation Metrics

- Confusion Matrices
- Model comparison (accuracy & insights)

RESULTS-BINARY CLASSIFIER

Binary Classifier (Positive vs Negative) - Results

[&]quot;Model achieves high accuracy (86%) with strong detection of positive tweets, but struggles with negative sentiment due to class imbalance."

RESULTS-MULTICLASS CLASSIFIER

"Model achieves 67% accuracy, performing well on 'No emotion' but failing to capture minority classes, especially 'I can't tell'."

SUMMARY

Conclusion & Recommendations

Conclusion

- Sentiment analysis = insights into Google & Apple perception
- Preprocessing improved accuracy
- Final model (pipeline_multi2) strong on pos/neg
- Real-time monitoring helps business act fast

Recommendations

- Deployment: Cloud API (Flask/FastAPI)
- Monitoring:
 Dashboards (Streamuts / Power ΒΙ/τα)
- Continuous Learning:
 Retrain with new tweets
- Business Use:
 Marketing, support, risk detection

