FEDERAL UNIVERSITY OF TECHNOLOGY, MINNA COURSE- CHM 111

BY CLEVER-B TEAM

- A chemical reaction is said to be at equilibrium at. A: Minimal degree of freedom and maximum entropy B: Minimal degree of freedom and minimal entropy C: Maximum degree of freedom and maximum entropy
- Predict the spontaneity of a chemical process if ΔG^o = 141.7 and K = 1.4 x 10⁻²⁵ at 298K. A: Spontaneous process B: Non spontaneous C: An equilibrium process
- 3. Estimate the boiling point of water given ΔH^o = 44.01KJmol⁻¹ and ΔS^o = 118.3 J/Kmol⁻¹. A: 100^o C B: 93.7^o C C: 97.3^o C
- 4. Which of the following statements is true for the effect of catalyst on equilibrium. A: affects the rates of the reactions B: alter the equilibrium position C: no effect on rates and equilibrium position
- 5. Which of the following principles is used in predicting changes in equilibrium concentrations? **A: Le Chateliers** B: Zeroth C: Boyles
- 6. The following reaction is at equilibrium.

 C_{l2} (g) + 3F₂ (g) ↔
 2ClF₃ (g)

 How will the system respond if the volume is increased at constant temperature? A: The reaction will shift to the right. B: There will be no change to the equilibrium position C: The reaction will shift to the left
- 7. The following reaction is at equilibrium.

 CF₂ Br₂ (g) ↔ CF₂ (g) + 2Br(g) ΔH= 424 kJ mol^{—1}

 CF₂ (b) + 2Br(g) ΔH= 424 kJ mol^{—1}

 CF₂ (c) ↔ CF₂ (d) ↔ CF₂ (e) ↔ CF₂ (f) ↔ CF₂ (harr) &harring (f) &har
- 8. Consider this equation: 2CO(g) + O₂ (g) ↔ 2CO₂ (g)
Suppose the equation is rewritten as CO(g) + ½O₂ (g) ↔ CO₂ (g) with an equilibrium constant Kc'. What is the relationship between Kc and Kc'? A: Kc[,] = Kc B: Kc[,] = (Kc) ½ C: Kc[,] = ½(Kc)
- 9. Identify the INCORRECT statement below regarding chemical equilibrium. A: All chemical reactions are, in principle, reversible. B: Equilibrium is achieved when the concentrations of species become constant. C: Equilibrium is achieved when reactant and product concentrations are equal.
- In which of the following reactions will the point of equilibrium shift to the left when the pressure on the system is increased? A: C(s) + O₂ (g) ↔ CO₂ (g)
 B: CaCO₃ (s) ↔ CaO(s) + CO₂ (g) C: 2Mg(s) + O₂ (g) ↔ 2MgO(s)
- 11. What happens when a catalyst is added to a system at equilibrium? A: The reaction follows an alternative pathway of lower activation energy. B: The heat of reaction decreases. C: The potential energy of the reactants decreases.

- 12. The reaction A ↔ B has an equilibrium constant of K = 10⁻⁴. Which of the following statements is always correct? A: The reaction will have 50% product B and 50% reactant A at equilibrium. B: The reaction is very favourable and will have mostly product B at equilibrium. C: The reaction is unfavourable and will not have very much product B at equilibrium.
- 13. Which of the following statements most accurately relates the properties of a liquid at room temperature with its vapour pressure? A: liquid low vapour pressure will probably have a high surface tension and a high boiling point. B: liquid low vapour pressure will probably have a low surface tension and a high boiling point. C: liquid high vapour pressure will probably have a low surface tension and a high boiling point.
- 14. For a reversible reaction, the equilibrium lies to the. A: Left B: Right C: middle
- 15. Which of the following is true for the composition of equilibrium mixture. If ΔG = 0 and<i> K</i> = 1 the mixture is. A: Mostly products B: Mostly reactants C: Neither reactants nor products are favoured
- 16. Calculate the value of K at 298K for the following reaction N₂ (g) + 3H₂ (g) ↔ 2NH₃ (g)

 5.97 x 10⁵ B: 13.3 C: -13.3
- 17. Of the following reactions, which of the reaction process is only spontaneous at high temperatures? A: ΔH +, Δ S B: ΔH +, Δ S C: ΔH -, Δ S -
- 18. The incomplete combustion of carbon is described by the following equation
 /> 2C(s) + O₂ (g) →2CO(g)
br /> How does the spontaneity of this process depend upon temperature? A: spontaneous (ΔG < 0) at all temperatures. B: Spontaneous process at high temperature C: Non spontaneous process
- 19. A condition of a predation process describes an endothermic process with an increase in system entropy, ?G will be negative if. A: TΔS is greater than ΔH B: TΔS is less than ΔH C: TΔS = 0
- 20. At 25[?]C, a reaction has a Gibb's free energy change of +45kJ. If the enthalpy change of the reaction is +35kJ, what is the entropy change of the reaction? A: -400JK B: -33.6JK C: 33.6JK
- 21. Energy can neither be created nor destroyed but can be converted from one form to other is inferred from. A: zeroth low of thermodynamic B: first law of thermodynamics C: second law to thermodynamics
- 22. From the eqution 2NO₂ (g) ↔ N₂ O₄ (g)
When the value of the reaction quotient before any reaction occurs is zero (0) at 25 °C, the concentration changes so that at equilibrium, [NO₂] = 0.016 M and [N₂ O₄] = 0.042 M.
What is the value of the equilibrium constant for the reaction? A: 1.6 x 10² B: -1.6 x 10⁵ C: 0.016
- 23. For the reaction, 2SO₂ (g) + O₂ (g) ↔ 2SO₃ (g) the concentrations at equilibrium are
 [SO₂] = 0.90 M, [O₂] = 0.35 M, and [SO₃] = 1.1 M. What is the value of the equilibrium constant, <i>K_c </i>? A: <i>K_c </i> = 3.4 B: <i>K_c </i> = 6.9 C: <i>K_c </i> = 4.3

- Calculate the reaction quotient and determine the direction of the equilibrium shift. A: $\langle i \rangle Q \langle sub \rangle c \langle sub \rangle \langle i \rangle = 1.9 \times 10 \langle sup \rangle -7 \langle sup \rangle$, shift left B: $\langle i \rangle Q \langle sub \rangle c \langle sub \rangle \langle i \rangle = 6.45 \times 10 \langle sup \rangle + 6 \times$
- 25. Which of the statements defines the activity of a substance. A: degree of randomness of a system B: a measure of its effective concentration under specified conditions. C: a measure of heat content of a substance
- 26. A system in which reactants and products are found in two or more phases is a. A: Phase equilibrium B: chemical equilibrium C: Heterogeneous equilibrium
- 27. One of the following is an example of heterogeneous equilibria. A: C₂
 H₆ (g) ↔ C₂ H₄ (g) + H₂ (g) B: CO(g) +
 H₂ O(g) ↔ CO₂ (g) + H₂ (g) C: PbCl₂ (s)
 →Pb²⁺ (aq) + 2Cl⁻ (aq)
- 28. A chemical reaction is said to be at equilibrium at. A: Minimal degree of freedom and maximum entropy B: Minimal degree of freedom and minimal entropy C: Minimal entropy and minimal degree of freedom
- 29. Predict the spontaneity of a chemical process if ΔG^o = 141.7 and K = 1.4 x 10⁻²⁵ at 298K. A: Spontaneous process B: Non spontaneous C: An equilibrium process
- 30. Estimate the boiling point of water given ΔH^o = 44.01KJmol⁻¹ and ΔS^o = 118.3 J/Kmol⁻¹. A: 93.7^o C B: 97.3^o C C: 97.3kj/mol
- 31. Which of the following statements is true for the effect of catalyst on equilibrium. **A: affects the** rates of the reactions B: alter the equilibrium position C: catalyst remains in the reactants
- 32. Which of the following principles is used in predicting changes in equilibrium concentrations? A: Fritz Haber B: Le Chateliers C: Zeroth
- 33. The following reaction is at equilibrium.
 C_{l2} (g) + 3F₂ (g) ↔ 2ClF₃ (g)
 How will the system respond if the volume is increased at constant temperature? A: The reaction will shift to the right. B: There will be no change to the equilibrium position C: The reaction will shift to the left
- 34. The following reaction is at equilibrium.

 CF₂ Br₂ (g) ↔
 CF₂ (g) + 2Br(g) ΔH= 424 kJ mol^{—1}

 the system respond if the temperature is decreased? A: The reaction will shift to the left. B: The reaction will shift to the right. C: reaction stops
- 35. Consider this equation: 2CO(g) + O₂ (g) ↔ 2CO₂ (g)
Suppose the equation is rewritten as CO(g) + ½O₂ (g) ↔ CO₂ (g) with an equilibrium constant Kc'. What is the relationship between Kc and Kc'? A: Kc[,] = Kc B: Kc[,] = (Kc) ½ C: Kc[,] = ½(Kc)
- 36. Identify the INCORRECT statement below regarding chemical equilibrium. A: All chemical reactions are, in principle, reversible. B: Equilibrium is achieved when the concentrations of species become constant. C: Equilibrium is achieved when reactant and product concentrations are equal.
- 37. In which of the following reactions will the point of equilibrium shift to the left when the pressure on the system is increased? A: C(s) + O₂ (g) ↔ CO₂ (g)

- **B: CaCO₃ (s) ↔ CaO(s) + CO₂ (g)** C: 2Mg(s) + O₂ (g) ↔ 2MgO(s)
- 38. What happens when a catalyst is added to a system at equilibrium? A: The reaction follows an alternative pathway of lower activation energy. B: The heat of reaction decreases. C: The potential energy of the reactants decreases.
- 39. The reaction A ↔ B has an equilibrium constant of K = 10⁻⁴. Which of the following statements is always correct? A: The reaction will have 50% product B and 50% reactant A at equilibrium. B: The reaction is very favourable and will have mostly product B at equilibrium. C: The reaction is unfavourable and will not have very much product B at equilibrium.
- 40. Which of the following statements most accurately relates the properties of a liquid at room temperature with its vapour pressure? A: liquid low vapour pressure will probably have a high surface tension and a high boiling point. B: liquid low vapour pressure will probably have a low surface tension and a high boiling point. C: liquid high vapour pressure will probably have a low surface tension and a high boiling point.
- 41. For a reversible reaction, the equilibrium lies to the. A: Left B: Right C: middle
- 42. Which of the following is true for the composition of equilibrium mixture. If ΔG = 0 and<i> K</i> = 1 the mixture is. A: Mostly products B: Mostly reactants C: Neither reactants nor products are favoured
- 43. Calculate the value of K at 298K for the following reaction N₂ (g) + 3H₂ (g) ↔ 2NH₃ (g)

 5.97 x 10⁵ B: 13.3 C: -13.3
- 44. Of the following reactions, which of the reaction process is only spontaneous at high temperatures? A: Δ H +, Δ S B: Δ H +, Δ S C: Δ H -, Δ S -
- 45. The incomplete combustion of carbon is described by the following equation

 O₂ (g) →2CO(g)

 How does the spontaneity of this process depend upon temperature? A: spontaneous (ΔG < 0) at all temperatures. B: Spontaneous process at high temperature C: Non spontaneous process
- 46. If ΔH is negative and ΔS is positive, this condition describes. A: Spontaneous process at low temperature B: Non spontaneous process C: Spontaneous process at all temperatures
- 47. A condition of a predation process describes an endothermic process with an increase in system entropy, ?G will be negative if. A: TΔS is greater than ΔH B: TΔS is less than ΔH C: TΔS = 0
- 48. At 25[?]C, a reaction has a Gibb's free energy change of +45kJ. If the enthalpy change of the reaction is +35kJ, what is the entropy change of the reaction? A: -400JK B: -33.6JK C: 33.6JK
- 49. Energy can neither be created nor destroyed but can be converted from one form to other is inferred from. A: zeroth low of thermodynamic B: first law of thermodynamics C: second law to thermodynamics
- 50. From the equation 2NO₂ (g) ↔ N₂ O₄ (g)
 When the value of the reaction quotient before any reaction occurs is zero (0) at 25 °C, the concentration changes so that at equilibrium, [NO₂] = 0.016 M and

- [N₂ O₄] = 0.042 M.
 What is the value of the equilibrium constant for the reaction? A: 1.6 x 10² B: -1.6 x 10⁵ C: 0.016
- 51. For the reaction, 2SO₂ (g) + O₂ (g) ↔ 2SO₃ (g) the concentrations at equilibrium are
 [SO₂] = 0.90 M, [O₂] = 0.35 M, and [SO₃] = 1.1 M. What is the value of the equilibrium constant, <i>K_c </i>? A: <i>K_c </i> = 3.4 B: <i>K_c </i> = 6.9 C: <i>K_c </i> = 4.3
- 52. A 1.00-L flask containing 0.0500 mol of NO(g), 0.0155 mol of Cl2(g), and 0.500 mol of NOCl

 /> 2NO(g) + Cl₂ (g) ↔ 2NOCl(g) <i>K_c </i> = $4.6 \times 104 <$ br/>
 Calculate the reaction quotient and determine the direction of the equilibrium shift. A: <i>Q_c </i> = 0.5 shifts right B: <i>Q_c <i>D_c <i>D<sub>c<
- 53. Which of the statements defines the activity of a substance. A: degree of randomness of a system B: a measure of its effective concentration under specified conditions. C: a measure of heat content of a substance
- 54. A system in which reactants and products are found in two or more phases is a. A: Phase equilibrium B: chemical equilibrium C: Heterogeneous equilibrium
- 55. The following factors affects the position of an equilibrium EXCEPT. A: Temperature B: Pressure

 C: Catalyst
- 56. Which one of the following statements regarding energy is false? A: The total energy in a chemical universe (a system and its surroundings) is constant B: Energy can be converted from one form to another C: The energy stored in chemical bonds is referred to as kinetic energy
- 57. First law of thermodynamics furnishes the relationship between. A: heat and work **B: heat,** work and properties of the system C: various properties of the system
- 58. In which direction does the transfer of energy as heat happen spontaneously? A: From cold to hot **B: From hot to cold** C: No changes occurs
- 59. Which one of the following statements best describes the enthalpy change of a reaction? A: The energy released when chemical bonds are formed during a chemical reaction B: The energy consumed when chemical bonds are broken during a chemical reaction C: The difference between the energy released by bond formation and the energy consumed by bond cleavage during a chemical reaction
- 60. Enthalpy is represented by which of the following symbols? A: <i>H</i> B: K</i> C: <i>S</i>
- 61. Which of the following terms describes a reaction in which there is a net transfer of energy from a system to its surroundings? **A: Exothermic** B: Endothermic C: Spontaneous
- 62. Which of the following statements regarding the Gibbs free energy change for a reaction is false? A: The Gibbs free energy change is the proportion of the enthalpy change of a reaction that is used to increase the entropy. B: If the Gibbs free energy change for a reaction is negative, the reaction happens spontaneously. C: The Gibbs free energy is represented by the symbol G
- 63. Energy is measured in which of the following units? A: Kelvin B: Joule C: Pascal
- 64. The formation of a chemical bond releases energy. True or false? A: True B: False C: All of the above
- 65. In case of spontaneous reaction, the reaction process favoured is. **A: Forward** B: Both direction C: Reverse

- 66. Which of the following is true for a closed system? A: mass entering = mass leaving B: mass does not enter or leave the system C: no reaction occur
- 67. When the value of K is greater than the I, then the reaction is. A: Forward reaction B: Backward reaction C: Spontaneous
- 68. Δ<i>G</i> for spontaneous reaction is. A: Negative B: Positive C: zero
- 69. Describe how matter and/or energy is redistributed when you empty a canister of compressed air into a room. A: greater and more uniform dispersal of matter B: much lesser dispersal of matter C: a reversible process
- 70. Describe how matter and/or energy is redistributed when you empty a canister of compressed air into a room. A: greater and more uniform dispersal of matter B: much lesser dispersal of matter C: a reversible process
- 71. Why do plastic materials tend to persist in the environment? A: Oxidation of plastics is fast and spontaneous B: Plastics are kinetically unstable C: Oxidation of plastics is slow and spontaneous
- 73. NaNO₃ (s)→Na⁺ (aq) + NO ^{?3} (aq). A: ΔS = positive B: ΔS = negative C: ΔS = +/-
- 74. The freezing of liquid water. A: ΔS = positive B: ΔS = negative C: ΔS is = 0
- 75. Will Ice Spontaneously Melt? The entropy change for the process

 %rarr;H₂ O(I)

 %rarr;H₂ Nelting is system and the surrounding as 22.1J/k and requires that the surrounding transfer 6.00kj of heat to the system. Is the process spontaneous at -10.00 ^o C? A:

 Melting is spontaneous at 10^o B: Melting is non spontaneous at 10^o C: Entropy is equal to 0
- 76. Determine if liquid water will spontaneously freeze at the same temperatures.

 H₂ O(s) →H₂ O(l)

 br /> Given the ΔS of the system and the surrounding as 22.1J/k and requires that the surrounding transfer 6.00kj of heat to the system. Is the process spontaneous at -10.00 ^o C? Is it a spontaneous at +10.00^o C? A: Freeing is spontaneous at -10^o B: Freeing is spontaneous at 10^o C: Entropy is equal to 0
- 77. S = k lnΔ W = k ln(1) = 0
br /> The above equation represents. A: First law of thermodynamics B: Second law of thermodynamics C: Third law of thermodynamics
- 78. What is the difference between S°, and ?So298 for a chemical change? A: S° standard enthalpy at 1 bar pressure B: ΔS^o 298 Standard change in entropy at room temperature C: S° Entropy of a perfect crystal at absolute zero
- 79. Which of the following options indicates that a chemical reaction is unfavorable? A: ΔH is negative B: ΔG is negative C: ΔS is negative
- 80. Consider the following reaction in a galvanic cell

 Strate of the following reaction in a galvanic cell

 Strate of the following statements about the reaction is false? A: The cell potential is positive B: The equilibrium constant is greater than one C: Gibb's free energy is positive
- 81. The two ways in which a closed system can share energy with it's surroundings are ----- and ----- A: heat and work B: exothermic and endothermic C: hot and cold

82. If a system is at equilibrium, what is the relationship between Δ<i>H</i> and Δ<i>S</i> A: <i>S</i> = T<i>H</i> B: ΔS=TΔH C: ΔS= ΔH/T