Ministerul Educației Naționale Societatea de Științe Matematice din România

Olimpiada Națională de Matematică, 2013 Etapa județeană și a municipiului București, 9 Martie, 2013

CLASA a XII-a

Problema 1. Să se calculeze limita $\lim_{n\to\infty} \int_0^1 e^{x^n} dx$.

Problema 2. Un grup (G, \cdot) are proprietatea (P), dacă, pentru orice automorfism f al lui G, există două automorfisme g și h ale lui G, astfel încât $f(x) = g(x) \cdot h(x)$, oricare ar fi $x \in G$. Să se arate că:

- (a) Orice grup care are proprietatea (P) este comutativ.
- (b) Orice grup comutativ finit de ordin impar are proprietatea (P).
- (c) Niciun grup finit de ordin 4n + 2, $n \in \mathbb{N}$, nu are proprietatea (P). (Ordinul unui grup finit este numărul de elemente ale acelui grup.)

Problema 3. Fie $f\colon [0,\pi/2]\to [0,\infty)$ o funcție crescătoare. Să se arate că:

(a)
$$\int_0^{\pi/2} (f(x) - f(\pi/4))(\sin x - \cos x) dx \ge 0.$$

(b) Există $a \in [\pi/4, \pi/2]$, astfel încât $\int_0^a f(x) \sin x \, dx = \int_0^a f(x) \cos x \, dx$. (Gazeta Matematică)

Problema 4. Fie $(A, +, \cdot)$ un inel cu proprietatea că x = 0 este unica soluție a ecuației $x^2 = 0$, $x \in A$. Fie $B = \{a \in A \mid a^2 = 1\}$. Să se arate că:

- (a) ab ba = bab a, oricare ar fi $a \in A$ şi $b \in B$.
- **(b)** (B, \cdot) este grup.