

Electronic Engineering Team: Litia Kalima, Boya Lu

Week 1 Update - 18/01/2025

Project Overview

- "Happy" is an assistive robot platform being developed by the RoboNotts team.
- It's built on an AMY-M2-W1 disinfection robot chassis.
- The robot is designed to be modular and flexible.
- We're using ROS2 (Humble) as the software framework.
- Our long-term goal is to create a platform for research and competition (e.g., RoboCup@Home).

The Challenge: Power System Redesign

- The existing power system has failed.
 - The cause of the failure is currently unknown.
 - The original system was designed for a disinfection robot, not our specific needs.
- Our task: Design and build a new, safe, reliable, and efficient power system.

Deconstructing the Original Power System

- The original unit (K01-24V105AH) was a combined battery, charger, and inverter.
- It provided 220V AC and 24V DC.
- It was designed for high-power disinfection lamps.
- Knowing why the old power system died would help prevent the risk repeating the same mistake.

Safety is Our Top Priority

- A recent incident with the battery highlighted the importance of safety.
- Lead-acid batteries can be dangerous if mishandled (short circuits, overheating).
- Our new design will prioritize safety through:
 - Proper wiring and insulation.
 - Fuses and circuit breakers.
 - A Battery Management System (BMS).
 - Careful testing procedures.
- Use safety equipment
 - Safety Gloves
 - Safety Glasses
 - Anti-Static Bracelet

For illustration purposes only

Power Budget (Preliminary)

- This table shows the *estimated* power requirements of the key components.
- We are initially prioritising the LiDAR, motors, controllers and potentially the NUC.
- Peak current values are crucial for selecting fuses, wiring, and DC-DC converter output capacity.
- *Typical current* values are used to estimate battery life.
- We are still gathering complete data for all components (see 'Status' column).

Component	Nominal Voltage (V)	Typical Current (A)	Peak Current (A)	Power (W)	Status
Motors (x2)	24	?	6.9	120	Needs Testing
Motor Controllers (x2)	24	?			Needs Testing
NUC	19	?	3.42	65 (Peak)	Needs Testing
LiDAR	9-36?	?	?	4	Needs Testing
Wi-Fi AP	12	?	2?	65 (Peak)?	Needs Testing
Robotic Arm	24	?		20	Needs Testing
Other sensors					
Totals				274	

Evaluating Power System Options

- Option 1: Basic (Direct DC + Resistors) FOR TESTING ONLY
 - Direct connection from battery to components (using resistors to limit current/voltage).
 - Extremely simple for initial testing.
 - **HIGHLY UNSAFE** for long-term use. No battery protection.
- Option 2: DC-AC Inverter
 - Uses a DC-AC inverter to generate mains voltage.
 - Relies on existing AC adapters (Router, NUC, Robotic Arm).
 - *Highly inefficient* (significant power loss).
 - Not recommended.
- Option 3: Recommended (DC-DC + BMS)
 - Uses DC-DC converters for efficient voltage conversion.
 - Includes a BMS for safety and battery health.
 - Modular and expandable.
 - Our recommended approach.

Feature	Option 1 (Resistors)	Option 2 (Inverter)	Option 3 (DC-DC + BMS)
Efficiency	Very Low	Low	High
Safety	Very Low	Medium	High
Complexit y	Very Low	Low	Medium
Voltage Regulation	Very Poor	Good	Good

Proposed Solution: Efficient DC-DC Power

- We will use a DC-DC converter-based system for maximum efficiency.
- This avoids the power loss associated with DC-AC-DC conversion.
- We will use a 24V battery system (two 12V lead-acid batteries in series).
- DC-DC converters will provide the required voltages (19V, 12V, etc.).

Note: This is an oversimplified block diagram. Detailed wiring diagram to be created featuring fuses, bus bar, circuit breaker, power switch etc. as per requirement.

Battery Management System (BMS)

- Protects the battery from overdischarge, over-current, and short circuits.
- Balances the cells in seriesconnected batteries.
- Provides information about battery health and state of charge.
- Essential for safety and battery longevity.

Our Next Steps (2 week plan)

- Finalise the power budget table
- Select specific DC-DC converter models.
- Select a BMS.
- Create a detailed wiring diagram.
- Release first draft of shopping list (components to buy – we'll need a list of suppliers the CMS uses)
- Design and simulate the circuit
- Collaborate with the mechanical team on battery and power system placement.
- Potentially begin testing basic resistor circuit

