IEOR E4004 HW3

Question 1

(a) <u>Sets:</u>

- 1. W: Set of workers, indexed by W, where W=1,2...100.
- 2. D: set of departments, indexed by of (battery, body, assembly, paint and quality control).
- 3. S: Set of shifts, indexed by s (morning, afternoon, night).
- 4. T: set of days. indexed by t (Mon-Sun)

Parameters

- 1. Qw,d,s,t: availability of worker w for department d on shift S and day t (1 if available, 0 otherwise).
- 2. Pw,d,Sit:preference score of worker w for department d on shift S. and day t. (1 to 10)
- 3. ew,d,s,t: effective score of worker w for department d on shift s. and day t. (1 to 10)
- 4. min_staffa,s,t: Minimum staffing requirement for department d on shift s and day t
- 5. max_staffa,s,t: Maximum staffing capacity for department d on shift s and day t.

<u>Decision Variables</u>

Xw.d.s.t: Binary variable indicating whether worker w is assigned to department d for shift s on day t. (1 if assigned, 0 otherwise)

Objectives

max EEEE Pw.d,s,t × Cw.d,s,t × xw,d,s,t

Constraints

- 1. Single shift per day: $\sum_{d \in D} \sum_{S \in S} xw, d, s, t \leq 1$, $\forall w \in W$, $\forall t \in T$
- 2. Weekly nork limit: ∑∑∑ Xw.d,s,t ≤ 5, tweW deD seS teT
- 3. Availability constraint: $Xw.a.s.t \in aw.d.s.t$, where $aw.a.s.t \in \{0,1\}$ $\forall w \in W$, $\forall a \in D$, $\forall s \in S$, $\forall t \in T$.

4. Staffing requirements:

∑ Xw,d,s,t ≥ min_staff d,s,t \deD. \deD. \deS, \deT weW

Zw,d,s,t ≤ max_staff d,s,t ∀d∈D, ∀s∈S, ∀+∈T

5. Binary decision variable: Xw.d.s.tefo.1}

YWEW, HOED, HSES, HOET

(b) From above, the problem can be formulated as:

max EEEE Pw.d.s.t × Cw.d.s.t × xw.d.s.t

S.t. $\sum_{d \in D} \sum_{S \in S} x w, d, s, t \leq 1$, $\forall w \in W$, $\forall t \in T$

∑∑∑ Xw.d, s,t ≤ S, ∀weW deD seS teT

Xw.d,s,t ≤ aw.d,s,t, YweW, YdeD, HseS, HteT.

E Xw,d,s,t z min_staff d,s,t, tdeD, tseS, tteT

Zw,d,s,t ≤ max_staff d,s,t, ∀d∈D, ∀s∈S, ∀+∈T

Xw,d,S,+ E {0,1}, TWEW, HAED, HSES, HEET.

(C) The result is shown below, with codes attached in appendix.

Solution count 3: 30953 27166 12303

Optimal solution found (tolerance 1.00e-04) Best objective 3.095300000000e+04, best bound 3.095300000000e+04, gap 0.0000%

	Worker_ID	Department	Shift	Day
0	1	Body	Afternoon	Sun
1	1	Assembly	Afternoon	Mon
2	1	Assembly	Afternoon	Tue
3	1	Paint	Afternoon	Wed
4	1	Quality	Morning	Thur
495	100	Assembly	Afternoon	Fri
496	100	Paint	Afternoon	Thur
497	100	Paint	Afternoon	Sat
498	100	Quality	Night	Wed
499	100	Quality	Night	Sun

From the result, the maximum total preference—adjusted effectiveness should be 30953, and a snapshot of the optimal solution is shown on the left.

Question 2

For this question, we introduce a binary variable $y \in \{0,1\}$

1) If y=0, the first constraint is satisfied

2) If y=1, the second constraint is satisfied

Then, we introduce a large positive number M.

By the big-M method, in order to satisfy at least one constraint, we have the formulation:

a21 x1 + a22 x2 + a33 x3 + ··· + a2n xn ≥ b2 - M(1-y)

Therefore we satisfy the requirement.

Question 3

We can draw the feasible region as there're 2 variables below:

The feasible region is the black dots noted in the graph, since it is an integer programming problem. (In total 11 dots).

Original LP

max Z=4x1-x2

S.t. $7x_1 - x_2 \leq 14$

X2 ≤ 3

22/1-2/2=3

K1, X2 30

⇒ z=8.429 (2.857, 3)

Sub-problem 1

max Z=421-22 S.t. $7x_1 - x_2 \leq 14$ X2 ≤ 3 22/1-2/2=3 X1, X2 30 $\mathcal{N}_1 \leq 2$

$$\Rightarrow z = 7.5$$

$$(x_1, x_2) = (2, 0.5)$$

Feasible Region for sub I

Sub-problem 2

max Z=421-X2 S.t. $7x_1 - x_2 \leq 14$ X2 ≤ 3 22/1-2/2=3 K1, X2 30 W1 23

Infeasible

Sub-problem 4

max Z=4x1-x2 S.t. $7x_1 - x_2 \leq 14$ X2 ≤ 3 22/1-2/2=3 X1, X2 30 %,≤Z, %≥≤0 ⇒ 2=6 $(\chi_1,\chi_2) = (1.5,0)$

Sub-problem3

max Z=4x1-x2 S.t. $7\chi_1 - \chi_2 \leq 14$ X2 ≤ 3 22/1-2/2=3 X1, X2 30 %, ≤2, x2≥1 ⇒ z=7 $(\chi_1,\chi_2)=(2,1)$

The black line is a feasible region.

- We can start the branch and bound method by relaxing the original IP to LP first.
- 1. We solve the LP, and get Z=8.429, $(x_1,x_2)=(2.857,3)$. we further use x_1 to branch.
- 2. Sub-problem 1 (add $x_1 \le 2$) z = 7.5, $(x_1, x_2) = (2.0.5)$.
- 3. Sub-problem 2 (add XIZ3) Infeasible.
- 4. Sub-problem 3, branch from sub-problem $1 + (x_2 \ge 1)$ Z=7, $(x_1,x_2)=(2,1)$. Optimal.
- 5. Sub-problem 4, branch from sub-problem $1 + (x_2 \le 0)$. Z = 6, $(x_1, x_2) = (1.5, 0)$.
- From the tree, since $Z_3 = 7 > 6 = 24$, we have no need to branch sub-problem 4 since it has provided an upper bound for this branch. So the optimal value should be 7, with $(x_1, x_2) = (2, 1)$.