A 25MVA, 60Hz generator delivers 20MW over a double circuit line to an infinite bus. Under healthy conditions $P_e = 2.58 \text{ Sin}\delta$ p.u. When a three phase fault occurs on one of the lines, $P_e = 0.936 \text{ Sin}\delta$ p.u. After clearance of the fault by opening of the circuit breakers at the ends of the line, $P_e = 2.06 \text{ Sin}\delta$ p.u. Use the equal area criterion to determine the maximum load angle excursion if fault clearance occurs at $\delta = 100.5^{\circ}$.

Initial load angle δ_0 is given by:

$$\delta_0 = \sin^{-1} \frac{0.8}{2.58} = 0.314 \text{ rad}$$

Load angle at end of accelerating region δ_A is given by:

$$\delta_A = \sin^{-1} \frac{0.8}{0.936} = 1.012 \text{ rad}$$

Therefore accelerating area is equal to:

$$A_{1} = \int_{0.314}^{1.012} (0.8 - 0.936 \sin \delta) d\delta$$

$$A_{1} = [0.8\delta + 0.936 \cos \delta]_{0.314}^{1.012}$$

$$A_{1} = 0.8(1.012 - 0.314) + 0.936(\cos 1.012 - \cos 0.314)$$

$$A_{1} = 0.164$$

Circuit breaker clears fault at $\delta = 100.5^{\circ} = 1.754$ rad. So decelerating area up to opening of breaker A2 is given by:

$$A_2 = \int_{1.012}^{1.754} (0.936 \sin \delta - 0.8) d\delta$$

$$A_2 = \left[-0.936 \cos \delta - 0.8 \delta \right]_{1.012}^{1.754}$$

$$A_2 = -0.936 (\cos 1.754 - \cos 1.012) - 0.8 (1.754 - 1.012)$$

$$A_2 = 0.0728$$

Decelerating area after opening of breaker until maximum load angle (unknown) A3 is given by:

$$A_{3} = \int_{1.754}^{\delta_{\text{max}}} (2.06 \sin \delta - 0.8) d\delta$$

$$A_{3} = \left[-2.06 \cos \delta - 0.8 \delta \right]_{1.754}^{\delta_{\text{max}}}$$

$$A_{3} = -2.06 (\cos \delta_{\text{max}} - \cos 1.754) - 0.8 (\delta_{\text{max}} - 1.754)$$

$$A_{3} = -2.06 \cos \delta_{\text{max}} - 0.375 - 0.8 \delta_{\text{max}} + 1.4$$

$$A_{3} = 1.025 - 2.06 \cos \delta_{\text{max}} - 0.8 \delta_{\text{max}}$$

Now for equal area criteria $A_1 = A_2 + A_3$,therefore:

$$A_3 = 1.025 - 2.06\cos\delta_{\text{max}} - 0.8\delta_{\text{max}} = 0.0912$$

rearranging:

$$2.06\cos\delta_{\max} + 0.8\delta_{\max} = 0.933$$

A solution to this equation is obtained by 'trial and error'

$\delta_{\sf max}$	$2.06\cos\delta_{\text{max}}$ + $0.8\delta_{\text{max}}$
1.8	0.972
1.9	0.854
1.85	0.912
1.84	0.924
1.83	0.936