CALCULER DES AIRES

I. Aire d'une figure

Définition 1

L'aire d'une figure est la mesure de sa surface intérieure dans une unité d'aire donnée.

II. Encadrer une aire

III. Périmètre et aire

Remarque

Deux figures ayant la même aire n'ont pas nécessairement le même périmètre. Deux figures ayant le même périmètre n'ont pas nécessairement la même aire.

IV. Unités d'aires usuelles

Définition 2

L'unité de mesure des aires est le **mètre carré**, on le note m^2 , c'est l'aire d'un carré de 1 m de côté.

Remarque

De la même manière nous pouvons définir :

- $-1 dm^2$ est l'aire d'un carré de 1 dm de côté.
- $-1 cm^2$ est l'aire d'un carré de 1 cm de côté.
- $1 mm^2$ est l'aire d'un carré de 1 mm de côté.

13

Pour mesurer la superficie des terrains, on utilise l'are(a) et l'hectare(ha):

- $-1 a = 1 dam^2 = 100 m^2$
- $1 ha = 1 hm^2 = 10000 m^2$

V. Convertir des unités d'aire

Propriété 1.

Dans un carré de 1 cm de côté, on peut construire $10 \times 10 = 100$ carrés de 1 mm de côté. Donc $1 cm^2 = 100 mm^2$

 $1 cm^2$

1 cm

1dm

Méthode

Nous pouvons nous aider d'un tableau de conversion.

km^2	hm^2	dam^2	m^2		dm^2		cm^2		mm^2	
			2	5						
			2	5	0	0				

Ainsi: $25 m^2 = 2500 dm^2$.

Application

Effectuer les conversions suivantes :

$$28 m^2 = \dots cm^2$$
 $4,32 dm^2 = \dots m^2$ $1 cm^2 = \dots mm^2$ $3,3 dm^2 = \dots mm^2$ $2,1 dm^2 = \dots dam^2$

VI. Calculs d'aire de surfaces particulières

1. Aire d'un carré

Propriété 2.

L'aire d'un carré est donnée par la formule :

$$\mathcal{A}_{carr\'e} = c\^{o}t\acute{e} \times c\^{o}t\acute{e}$$

$$\mathcal{A}_{carr\'e} = c \times c$$

Application

- 1. Un carré a un côté de 3 cm. Calculer son aire.
- 2. Un carré a une aire de $64 dm^2$. Calculer la longueur de son côté.

2. Aire d'un rectangle

Propriété 3.

L'aire d'un rectangle est donnée par la formule :

$$\mathcal{A}_{rectangle} = largeur \times Longueur$$

$$\mathcal{A}_{rectangle} = l \times L$$

Preuve : L'aire du rectangle correspond au nombre de carreaux verts unitaires rentrant à l'intérieur. Pour la calculer, on multiplie le nombre d'unité rentrant dans la largeur par le nombre d'unité rentrant dans la longueur. Ici :

$$3 \times 5 = 15 u$$

Application

- 1. Un rectangle a une largeur de $6\,km$ et une aire de $90\,km^2$. Calculer sa longueur.
- 2. Un rectangle a une longueur de 17 dam et une largeur de 9 dam. Calculer son aire.
- 3. Un rectangle a une longueur de 15 m et une aire de 135 m^2 . Calculer sa largeur.

3. Aire d'un triangle

Propriété 4. Aire d'un triangle rectangle

L'aire d'un triangle rectangle est donnée par la formule :

$$\mathcal{A}_{triangle\,rectangle} = \frac{a \times b}{2}$$

Preuve : Il s'agit de l'aire d'un **demi-rectangle**, donc la moitié de l'aire du rectangle dont une des diagonales est [AB].

Propriété 5. Aire d'un triangle quelconque

L'aire d'un triangle quelconque est donné par la formule :

$$\mathcal{A}_{triangle} = \frac{base \times hauteur}{2}$$

$$\mathcal{A}_{triangle} = \frac{b \times h}{2}$$

Où la hauteur (h) désigne une perpendiculaire à un côté du triangle passant par le sommet opposé et la base (b) désigne le côté que la hauteur coupe.

Remarques

- Deux triangles de même hauteur et de même base ont la même aire.
- L'aire d'un triangle ne dépend pas du côté choisi.

Application

Le triangle ABC a une hauteur de $10\,mm$ et une aire de $85\,mm^2$. Calculer la longueur de sa base.

4. Aire d'un disque

Un **disque** est un cercle contenant une surface.

Propriété 6.

L'aire d'un disque est donnée par la formule :

$$\mathcal{A}_{disque} = \pi \times rayon \times rayon = \pi \times rayon^2$$

$$\mathcal{A}_{disque} = \pi \times r^2$$

Remarque

 r^2 se prononce "r au carré" et signifie qu'il faut prendre le nombre $r \times r$.

Preuve : La preuve de la formule de l'aire du disque a été apportée par le grand mathématicien Archimède. Il a découpé le disque en secteurs égaux puis les a rassemblés pour former une sorte de rectangle dont la largeur est le rayon et la longueur est la moitié du périmètre :

En augmentant le nombre de secteurs la forme ressemble de plus en plus à un rectangle et pour un nombre infini de secteur elle devient un rectangle. La formule de l'aire du rectangle nous donne :

$$\mathcal{A}_{disque} = r \times \frac{\mathcal{P}}{2} = r \times \frac{2 \times \pi \times r}{2} = \pi \times r \times r$$

Application

Déterminer l'aire du disque de centre O et de rayon $4\,hm$.

VII. Formulaire

VIII. Les savoir-faire du parcours

- Savoir exprimer l'aire d'une figure en fonction d'une unité d'aire.
- Savoir convertir des unités d'aire.
- Savoir calculer l'aire d'un carré.
- Savoir calculer l'aire d'un rectangle.
- Savoir calculer l'aire d'un triangle.
- Savoir calculer l'aire d'un disque.
- Savoir résoudre un problème d'aire.