Math 76 Exercises -3.1A Integration by Parts

Evaluate each integral. Check by differentiating.

1.
$$\int x \ln x \, dx$$
 $u = \ln x$ $v = \frac{1}{2}x^2$
 $du = \frac{1}{4} dx$ $dv = x dx$

$$= \frac{1}{2}x^2 \ln x - \frac{1}{2} \int \frac{x^2}{x} dx$$

$$= \frac{1}{2}x^2 \ln x - \frac{1}{2} \int x \, dx = \left[\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C\right]$$
2. $\int (\ln x)^2 \, dx$ $u = (\ln x)^2$ $v = x$

$$du = 2 \ln x \cdot \frac{1}{x} \, dx \, dv = dx$$

$$= x (\ln x)^2 - 2 \int \ln x \, dx$$
 $u = \ln x$ $v = x$

$$= x (\ln x)^2 - 2 \int \ln x \, dx$$
 $u = \ln x$ $v = x$

$$= x (\ln x)^2 - 2 \int \ln x \, dx$$
 $u = \ln x$ $v = x$

$$= x (\ln x)^2 - 2 \int \ln x \, dx$$
 $u = \ln x$ $v = x$

$$= x (\ln x)^2 - 2 \int \ln x \, dx$$
 $u = \ln x$ $v = x$

$$= x (\ln x)^2 - 2 \int \ln x \, dx$$
 $u = \ln x$ $v = x$

$$= x (\ln x)^2 - 2 \int \ln x \, dx$$
 $u = \ln x$ $v = x$

$$= x (\ln x)^2 - 2 \int \ln x \, dx$$
 $u = \ln x$

$$= x - 3 \int (x - 3) \sin(5x + 1) \, dx$$

$$= -\frac{1}{5} (x - 3) \cos(5x + 1) + \frac{1}{5} \int \cos(5x + 1) \, dx$$

$$= -\frac{1}{5} (x - 3) \cos(5x + 1) + \frac{1}{5} \int \sin(5x + 1) \, dx$$

$$= -\frac{1}{5} (x - 3) \cos(5x + 1) + \frac{1}{25} \sin(5x + 1) + C$$

= $2\sqrt{x}e^{\sqrt{x}} - 2e^{\sqrt{x}} + C = 2e^{\sqrt{x}}(\sqrt{x} - 1) + C$

= 2tet - 2et + C