

Theory: If you drink alcohol you must be at least 18.

Theory: If you drink alcohol you must be at least 18. Which cards do you turn over?

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol \implies " \ge 18"

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol ⇒ "≥ 18"

"< 18" ⇒ Don't Drink Alcohol.

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol \implies " \ge 18"

"< 18" ⇒ Don't Drink Alcohol. Contrapositive.

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol \implies " \ge 18"

"< 18" ⇒ Don't Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol ⇒ "≥ 18"

"< 18" ⇒ Don't Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

Propositional Forms:

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol ⇒ "≥ 18"

"< 18" ⇒ Don't Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

Propositional Forms: $\land, \lor, \neg, P \implies Q \equiv \neg P \lor Q$.

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol ⇒ "≥ 18"

"< 18" ⇒ Don't Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

Propositional Forms: $\land, \lor, \neg, P \implies Q \equiv \neg P \lor Q$.

Truth Table. Putting together identities. (E.g., cases, substitution.)

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol ⇒ "≥ 18"

"< 18" \implies Don't Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

Propositional Forms: $\land, \lor, \neg, P \implies Q \equiv \neg P \lor Q$.

Truth Table. Putting together identities. (E.g., cases, substitution.)

Predicates, P(x), and quantifiers. $\forall x, P(x)$.

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol ⇒ "≥ 18"

"< 18" ⇒ Don't Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

Propositional Forms: $\land, \lor, \neg, P \implies Q \equiv \neg P \lor Q$.

Truth Table. Putting together identities. (E.g., cases, substitution.)

Predicates, P(x), and quantifiers. $\forall x, P(x)$.

DeMorgan's: $\neg (P \lor Q) \equiv \neg P \land \neg Q$.

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol ⇒ "≥ 18"

"< 18" ⇒ Don't Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

Propositional Forms: $\land, \lor, \neg, P \implies Q \equiv \neg P \lor Q$.

Truth Table. Putting together identities. (E.g., cases, substitution.)

Predicates, P(x), and quantifiers. $\forall x, P(x)$.

DeMorgan's: $\neg (P \lor Q) \equiv \neg P \land \neg Q$. $\neg \forall x, P(x) \equiv \exists x, \neg P(x)$.

CS70: Lecture 2. Outline.

Today: Proofs!!!

- 1. By Example.
- 2. Direct. (Prove $P \Longrightarrow Q$.)
- 3. by Contraposition (Prove $P \Longrightarrow Q$)
- 4. by Contradiction (Prove *P*.)
- 5. by Cases

If time: discuss induction.

Integers closed under addition.

Integers closed under addition.

$$a, b \in Z \implies a + b \in Z$$

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4?

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4?

7|23?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4?

7|23?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4?

7|23?

4|2?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4?

7|23?

4|2?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4?

7|23?

4|2?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q=5,

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No *q* where true.

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No *q* where true.

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

Divides.

- a|b means
- (A) a divides b.
- (B) There exists $k \in \mathbb{N}$, with a = kb.
- (C) There exists $k \in \mathbb{N}$, with k = ka.
- (D) b divides a.

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq'

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq' where $q, q' \in Z$

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'=a(q-q') Done?

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq' = a(q - q') Done? (b - c) = a(q - q')

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c)=a(q-q')$$
 and $(q-q')$ is an integer so by definition of divides

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b=aq and c=aq' where $q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so by definition of divides a|(b-c)

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c). **Proof:** Assume a|b and a|c b=aq and c=aq' where $q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so by definition of divides a|(b-c)

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c). **Proof:** Assume a|b and a|c b=aq and c=aq' where $q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so by definition of divides a|(b-c)

Works for $\forall a, b, c$?

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c). **Proof:** Assume a|b and a|c b=aq and c=aq' where $q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so by definition of divides

Works for $\forall a, b, c$?

a|(b-c)

Argument applies to every $a, b, c \in Z$.

Used distributive property and definition of divides.

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume
$$a|b$$
 and $a|c$

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c)=a(q-q')$$
 and $(q-q')$ is an integer so by definition of divides

$$a|(b-c)$$

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in Z$.

Used distributive property and definition of divides.

Direct Proof Form:

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c). **Proof:** Assume a|b and a|c $b=aq \text{ and } c=aq' \text{ where } q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so by definition of divides

Works for $\forall a, b, c$?

a|(b-c)

Argument applies to *every* $a, b, c \in Z$.

Used distributive property and definition of divides.

Direct Proof Form:

Goal: $P \Longrightarrow Q$

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c). **Proof:** Assume a|b and a|c b=aq and c=aq' where $q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so by definition of divides a|(b-c)

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Used distributive property and definition of divides.

Direct Proof Form:

Goal: $P \Longrightarrow Q$ Assume P.

```
Theorem: For any a, b, c \in \mathbb{Z}, if a|b and a|c then a|(b-c).
Proof: Assume a|b and a|c
  b = aq and c = aq' where q, q' \in Z
b-c=aq-aq'=a(q-q') Done?
(b-c)=a(q-q') and (q-q') is an integer so by definition of divides
   a|(b-c)
Works for \forall a, b, c?
 Argument applies to every a, b, c \in Z.
  Used distributive property and definition of divides.
Direct Proof Form:
 Goal: P \Longrightarrow Q
  Assume P.
```

```
Theorem: For any a, b, c \in \mathbb{Z}, if a|b and a|c then a|(b-c).
Proof: Assume a|b and a|c
  b = aq and c = aq' where q, q' \in Z
b-c=aq-aq'=a(q-q') Done?
(b-c)=a(q-q') and (q-q') is an integer so by definition of divides
   a|(b-c)
Works for \forall a, b, c?
 Argument applies to every a, b, c \in Z.
  Used distributive property and definition of divides.
Direct Proof Form:
 Goal: P \Longrightarrow Q
  Assume P.
  Therefore Q.
```

Let D_3 be the 3 digit natural numbers.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|
```

$$n = 121$$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is 605

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum:

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a + 10b + c = 11k + 99a + 11b$$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)$$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)$$

Left hand side is *n*,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \Longrightarrow Q$:

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \Longrightarrow Q$:

Assumed P: 11|a-b+c.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \Longrightarrow Q$:

Assumed P: 11|a-b+c. Proved Q: 11|n.

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|n

```
Thm: \forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n Is converse a theorem? \forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)
```

```
Thm: \forall n \in D_3, (11|alt. sum of digits of n) \Longrightarrow 11|n Is converse a theorem? \forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n) Yes?
```

```
Thm: \forall n \in D_3, (11|alt. sum of digits of n) \Longrightarrow 11|n Is converse a theorem? \forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n) Yes? No?
```

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Proof:

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Proof: Assume 11|n.

n = 100a + 10b + c = 11k

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n. $n = 100a + 10b + c = 11k \Longrightarrow 99a + 11b + (a - b + c) = 11k$

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b
```

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b)
```

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b) \Longrightarrow
a - b + c = 11\ell
```

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b) \Longrightarrow
a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z
```

That is 11 alternating sum of digits.

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b) \Longrightarrow
a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z
```

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff Often works with arithmetic properties ...

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every ⇒ is ⇔ Often works with arithmetic propertiesnot when multiplying by 0.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties ...

...not when multiplying by 0.

We have.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties ...

...not when multiplying by 0.

We have.

Theorem: $\forall n \in \mathbb{N}', (11|\text{alt. sum of digits of } n) \iff (11|n)$

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

Thm: For $n \in \mathbb{Z}^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 and n = k'd.

Thm: For $n \in Z^+$ and $d \mid n$. If n is odd then d is odd. n = 2k + 1 and n = k'd. what do we know about d?

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1 and n = k'd. what do we know about d? What to do?

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1 and n = k'd. what do we know about d? What to do? Is it even true?

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1 and n = k'd. what do we know about d? What to do? Is it even true? Hey, that rhymes

Thm: For $n \in Z^+$ and $d \mid n$. If n is odd then d is odd. n = 2k + 1 and n = k'd. what do we know about d? What to do? Is it even true? Hey, that rhymes ...and there is a pun

Thm: For $n \in \mathbb{Z}^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 and n = k'd. what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 and n = k'd. what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 and n = k'd. what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 and n = k'd. what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 and n = k'd. what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

Thm: For $n \in \mathbb{Z}^+$ and d|n. If n is odd then d is odd.

n = 2k + 1 and n = k'd. what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$...and prove $\neg P$.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 and n = k'd. what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 and n = k'd. what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 and n = k'd. what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume ¬Q

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 and n = k'd. what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 and n = k'd. what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
  n = 2k + 1 and n = k'd, what do we know about d?
What to do? Is it even true?
 Hey, that rhymes ...and there is a pun ... colored blue.
Anyway, what to do?
Goal: Prove P \Longrightarrow Q.
Assume \neg Q
...and prove \neg P.
Conclusion: \neg Q \Longrightarrow \neg P equivalent to P \Longrightarrow Q.
Proof: Assume \neg Q: d is even. d = 2k.
d \mid n so we have
  n = qd
```

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 and n = k'd. what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

$$n = qd = q(2k)$$

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

$$n = 2k + 1$$
 and $n = k'd$. what do we know about d ?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

$$n = qd = q(2k) = 2(kq)$$

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

$$n = 2k + 1$$
 and $n = k'd$. what do we know about d ?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

$$n = qd = q(2k) = 2(kq)$$

n is even.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

$$n = 2k + 1$$
 and $n = k'd$. what do we know about d ?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

$$n = qd = q(2k) = 2(kq)$$

n is even. $\neg P$

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

$$n = 2k + 1$$
 and $n = k'd$. what do we know about d ?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

$$n = qd = q(2k) = 2(kq)$$

n is even. $\neg P$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$ n^2 is even, $n^2 = 2k$, ...

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$ n^2 is even, $n^2 = 2k$, ... $\sqrt{2k}$ even?

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

 $P = 'n^2$ is even.'

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

 $P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'

Q = 'n is even'

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

 $P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'

Q = 'n is even' $\neg Q =$ 'n is odd'

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

 $P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'

Q = 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Q = 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

n = 2k + 1

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition:
$$(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$$

Q = 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

n = 2k + 1

 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition:
$$(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$$

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove
$$\neg Q \Longrightarrow \neg P$$
: n is odd $\Longrightarrow n^2$ is odd.

$$n = 2k + 1$$

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$$

$$n^2 = 2I + 1$$
 where I is a natural number..

... and n^2 is odd!

$$\neg Q \Longrightarrow \neg P$$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition:
$$(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$$

$$P = 'n^2$$
 is even.' $\neg P = 'n^2$ is odd'

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove
$$\neg Q \Longrightarrow \neg P$$
: *n* is odd $\Longrightarrow n^2$ is odd.

$$n = 2k + 1$$

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$$

$$n^2 = 2I + 1$$
 where *I* is a natural number..

... and n^2 is odd!

$$\neg Q \Longrightarrow \neg P \text{ so } P \Longrightarrow Q \text{ and } ...$$

 $\neg Q \Longrightarrow \neg P \text{ so } P \Longrightarrow Q \text{ and } \dots$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Theorem: $\sqrt{2}$ is irrational.

Theorem: $\sqrt{2}$ is irrational.

Must show:

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$,

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P \Longrightarrow P_1$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P \Longrightarrow P_1 \cdots$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

 $\neg P$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \implies Q_1$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \implies \textit{Q}_1 \cdots$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \implies Q_1 \cdots \implies \neg R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \Longrightarrow R \land \neg R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \implies Q_1 \cdots \implies \neg R$$

$$\neg P \Longrightarrow R \land \neg R \equiv \mathsf{False}$$

or
$$\neg P \Longrightarrow False$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \Longrightarrow R \land \neg R \equiv \mathsf{False}$$

or
$$\neg P \Longrightarrow False$$

Contrapositive of $\neg P \Longrightarrow False$ is $True \Longrightarrow P$.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \implies R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

or
$$\neg P \Longrightarrow \textit{False}$$

Contrapositive of $\neg P \Longrightarrow \textit{False}$ is $\textit{True} \Longrightarrow P$.

Theorem P is true.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \implies R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

or
$$\neg P \Longrightarrow False$$

Contrapositive of $\neg P \Longrightarrow False$ is $True \Longrightarrow P$.

Theorem *P* is true. And proven.

Theorem: $\sqrt{2}$ is irrational.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$:

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2=a^2$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2=a^2$$

 a^2 is even $\implies a$ is even.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2=a^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even. a and b have a common factor.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even. a and b have a common factor. Contradiction.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even. a and b have a common factor. Contradiction.

Theorem: There are infinitely many primes.

Theorem: There are infinitely many primes.

Proof:

Theorem: There are infinitely many primes.

Proof:

▶ Assume finitely many primes: $p_1,...,p_k$.

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

ightharpoonup q cannot be one of the primes as it is larger than any p_i .

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q,

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- ightharpoonup p | q x

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup p > p | q x \implies p \le q x$

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup p | q x \implies p \le q x = 1.$

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- ▶ so $p \le 1$.

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup p > p | q x \implies p \le q x = 1.$
- ▶ so $p \le 1$. (Contradicts R.)

Theorem: There are infinitely many primes.

Proof:

- ▶ Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow p|q-x \implies p \leq q-x=1.$
- ▶ so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow p|q-x \implies p \leq q-x=1.$
- ▶ so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Did we prove?

▶ "The product of the first *k* primes plus 1 is prime."

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.
- The chain of reasoning started with a false statement.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.
- The chain of reasoning started with a false statement.

Consider example..

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.
- The chain of reasoning started with a false statement.

Consider example..

 $ightharpoonup 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- No.
- ▶ The chain of reasoning started with a false statement.

Consider example..

- \triangleright 2 × 3 × 5 × 7 × 11 × 13 + 1 = 30031 = 59 × 509
- ▶ There is a prime *in between* 13 and q = 30031 that divides q.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.
- The chain of reasoning started with a false statement.

Consider example..

- \triangleright 2 × 3 × 5 × 7 × 11 × 13 + 1 = 30031 = 59 × 509
- ▶ There is a prime in between 13 and q = 30031 that divides q.
- ▶ Proof assumed no primes in between p_k and q.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even!

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd +odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even + odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible. Case 2: a even, b odd: even - even + odd = even. Not possible. Case 3: a odd, b even: odd - even + even = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible.

Case 4: a even, b even: even - even + even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even + odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even + even = even. Not possible. Case 4: *a* even, *b* even: even - even + even = even. Possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible.

Case 2: *a* even, *b* odd: even - even + odd = even. Not possible.

Case 3: *a* odd, *b* even: odd - even + even = even. Not possible.

Case 4: *a* even, *b* even: even - even + even = even. Possible.

The fourth case is the only one possible,

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible. Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Theorem: There exist irrational x and y such that x^y is rational.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

Þ

$$x^y =$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}}$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2}$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2). One of the cases is true so theorem holds.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2). One of the cases is true so theorem holds.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds?

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don't know!!!

Theorem: 3 = 4

Theorem: 3 = 4

 $\textbf{Proof:} \ \mathsf{Assume} \ 3 = 4.$

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Don't assume what you want to prove!

Theorem: 1 = 2

Proof:

Theorem: 1 = 2

Proof: For x = y, we have

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^2 - xy) = x^2 - y^2$$

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^2 - xy) = x^2 - y^2$$

 $x(x - y) = (x + y)(x - y)$

Theorem: 1 = 2Proof: For x = y, we have $(x^2 - xy) = x^2 - y^2$

$$x(x-y) = (x+y)(x-y)$$
$$x = (x+y)$$

Theorem: 1 = 2 Proof: For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y) x = (x + y)x = 2x

Theorem: 1 = 2
Proof: For
$$x = y$$
, we have
 $(x^2 - xy) = x^2 - y^2$
 $x(x - y) = (x + y)(x - y)$
 $x = (x + y)$
 $x = 2x$
 $1 = 2$

```
Theorem: 1 = 2

Proof: For x = y, we have

(x^2 - xy) = x^2 - y^2

x(x - y) = (x + y)(x - y)

x = (x + y)

x = 2x

1 = 2
```

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Poll: What is the problem?

- (A) Assumed what you were proving.
- (B) No problem. Its fine.
- (C) x y is zero.
- (D) Can't multiply by zero in a proof.

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Poll: What is the problem?

- (A) Assumed what you were proving.
- (B) No problem. Its fine.
- (C) x y is zero.
- (D) Can't multiply by zero in a proof.

Dividing by zero is no good.

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Poll: What is the problem?

- (A) Assumed what you were proving.
- (B) No problem. Its fine.
- (C) x y is zero.
- (D) Can't multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!

Be really careful!

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Poll: What is the problem?

- (A) Assumed what you were proving.
- (B) No problem. Its fine.
- (C) x y is zero.
- (D) Can't multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool! Also: Multiplying inequalities by a negative.

Be really careful!

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Poll: What is the problem?

- (A) Assumed what you were proving.
- (B) No problem. Its fine.
- (C) x y is zero.
- (D) Can't multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!

Also: Multiplying inequalities by a negative.

$$P \Longrightarrow Q$$
 does not mean $Q \Longrightarrow P$.

Direct Proof:

Direct Proof:

To Prove: $P \Longrightarrow Q$.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero. Watch converse.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero. Watch converse. ...

CS70: Note 3. Induction!

Poll. What's the biggest number?

- (A) 100
- (B) 101
- (C) n+1
- (D) infinity.
- (E) This is about the "recursive leap of faith."

CS70: Note 3. Induction!

- Poll. What's the biggest number?
 - (A) 100
- (B) 101
- (C) n+1
- (D) infinity.
- (E) This is about the "recursive leap of faith."
 - 1. The natural numbers.
 - 2. 5 year old Gauss.
 - 3. ..and Induction.
 - 4. Simple Proof.

0,

0, 1,

0, 1, 2,

0, 1, 2, 3,

0, 1, 2, 3,

0, 1, 2, 3, ..., *n*,

 $0, 1, 2, 3, \dots, n, n+1,$

The natural numbers.

0, 1, 2, 3, ..., n, n+1, n+2, n+3,

The natural numbers.

0, 1, 2, 3, ..., n, n+1, n+2, n+3, ...

Teacher: Hello class.

Teacher: Hello class.

Teacher:

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

$$\forall (n \in N) : P(n).$$

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

$$\forall (n \in N) : P(n).$$

$$P(n)$$
 is " $\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$ ".

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

$$\forall (n \in N) : P(n).$$

$$P(n)$$
 is " $\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$ ".

Principle of Induction:

► Prove *P*(0).

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

$$\forall (n \in N) : P(n).$$

$$P(n)$$
 is " $\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$ ".

Principle of Induction:

- ► Prove *P*(0).
- Assume P(k), "Induction Hypothesis"

Teacher: Hello class.

Teacher: Please add the numbers from 1 to 100.

Gauss: It's $\frac{(100)(101)}{2}$ or 5050!

Five year old Gauss Theorem: $\forall (n \in N) : \sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$.

It is a statement about all natural numbers.

$$\forall (n \in N) : P(n).$$

$$P(n)$$
 is " $\sum_{i=0}^{n} i = \frac{(n)(n+1)}{2}$ ".

Principle of Induction:

- ► Prove *P*(0).
- Assume P(k), "Induction Hypothesis"
- ▶ Prove P(k+1). "Induction Step."

Theorem: For all natural numbers n, $0+1+2\cdots n=\frac{n(n+1)}{2}$

Theorem: For all natural numbers n, $0+1+2\cdots n=\frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$?

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Theorem: For all natural numbers n, $0+1+2\cdots n=\frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Induction Step: Show $\forall k \geq 0, P(k) \implies P(k+1)$

Theorem: For all natural numbers n, $0+1+2\cdots n=\frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Induction Step: Show $\forall k \geq 0, P(k) \implies P(k+1)$

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Induction Step: Show $\forall k \geq 0, P(k) \implies P(k+1)$

$$1+\cdots+k+(k+1) =$$

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Induction Step: Show $\forall k \geq 0, P(k) \implies P(k+1)$

$$1+\cdots+k+(k+1) = \frac{k(k+1)}{2}+(k+1)$$

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Induction Step: Show $\forall k \geq 0, P(k) \implies P(k+1)$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Induction Step: Show $\forall k \geq 0, P(k) \implies P(k+1)$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2(k+1)}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$

Theorem: For all natural numbers n, $0+1+2\cdots n=\frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Induction Step: Show $\forall k \geq 0, P(k) \implies P(k+1)$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k^2 + k + 2(k+1)}{2}$$

$$= \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Induction Step: Show $\forall k \geq 0, P(k) \implies P(k+1)$

Induction Hypothesis: $P(k) = 1 + \cdots + k = \frac{k(k+1)}{2}$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k^2 + k + 2(k+1)}{2}$$

$$= \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

P(k+1)!

Theorem: For all natural numbers n, $0 + 1 + 2 \cdots n = \frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Induction Step: Show $\forall k \geq 0, P(k) \implies P(k+1)$

Induction Hypothesis: $P(k) = 1 + \dots + k = \frac{k(k+1)}{2}$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k^2 + k + 2(k+1)}{2}$$

$$= \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

P(k+1)! By principle of induction...

Theorem: For all natural numbers n, $0+1+2\cdots n=\frac{n(n+1)}{2}$

Base Case: Does $0 = \frac{0(0+1)}{2}$? Yes.

Induction Step: Show $\forall k \geq 0, P(k) \Longrightarrow P(k+1)$ Induction Hypothesis: $P(k) = 1 + \cdots + k = \frac{k(k+1)}{2}$

$$1 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k^2 + k + 2(k+1)}{2}$$

$$= \frac{k^2 + 3k + 2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

P(k+1)! By principle of induction...

Note's visualization: an infinite sequence of dominos.

Prove they all fall down;

Note's visualization: an infinite sequence of dominos.

Prove they all fall down;

 \triangleright P(0) = "First domino falls"

Note's visualization: an infinite sequence of dominos.

Prove they all fall down;

- ightharpoonup P(0) = "First domino falls"
- $(\forall k) P(k) \Longrightarrow P(k+1):$

Note's visualization: an infinite sequence of dominos.

Prove they all fall down;

- \triangleright P(0) = "First domino falls"
- ► $(\forall k) P(k) \Longrightarrow P(k+1)$:

 "kth domino falls implies that k+1st domino falls"

Climb an infinite ladder?

Climb an infinite ladder?

P(0)

$$\forall k, P(k) \Longrightarrow P(k+1)$$

$$P(0) \Rightarrow P(k+1)$$

$$P(0) \Rightarrow P(1) \Rightarrow P(2)$$

$$P(0)$$

$$\forall k, P(k) \Longrightarrow P(k+1)$$

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3)$$

$$P(0) \Rightarrow P(k+1)$$

$$P(0) \Rightarrow P(1) \Rightarrow P(2) \Rightarrow P(3) \dots$$

$$P(0) \Rightarrow P(k+1)$$

$$P(0) \Rightarrow P(1) \Rightarrow P(2) \Rightarrow P(3) \dots$$

Your favorite example of forever...

Your favorite example of forever..or the natural numbers...

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k.

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

```
Child Gauss: (\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2}) Proof?
```

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

```
Child Gauss: (\forall n \in \mathbb{N})(\sum_{i=1}^n i = \frac{n(n+1)}{2}) Proof? Idea: assume predicate P(n) for n=k. P(k) is \sum_{i=1}^k i = \frac{k(k+1)}{2}. Is predicate, P(n) true for n=k+1? \sum_{i=1}^{k+1} i
```

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

$$\sum_{i=1}^{k+1} i = (\sum_{i=1}^{k} i) + (k+1)$$

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + (k+1) = \frac{k(k+1)}{2} + k + 1$$

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2.

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\textstyle \sum_{i=1}^{k+1} i = (\sum_{i=1}^k i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works!

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\textstyle \sum_{i=1}^{k+1} i = (\sum_{i=1}^k i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step.

Child Gauss:
$$(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\textstyle \sum_{i=1}^{k+1} i = (\sum_{i=1}^k i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \Longrightarrow P(k+1)$.

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof?

Child Gauss:
$$(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere.

Child Gauss:
$$(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\textstyle \sum_{i=1}^{k+1} i = (\sum_{i=1}^k i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\textstyle \sum_{i=1}^{k+1} i = (\sum_{i=1}^k i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\textstyle \sum_{i=1}^{k+1} i = (\sum_{i=1}^k i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\textstyle \sum_{i=1}^{k+1} i = (\sum_{i=1}^k i) + (k+1) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1

Child Gauss:
$$(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 (P(0))

plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step

Child Gauss: $(\forall \mathbf{n} \in \mathbb{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n=2

Child Gauss: $(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$ Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

Child Gauss:
$$(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n=2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

. . .

Child Gauss:
$$(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

true for n = k

Child Gauss:
$$(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere.
$$P(0)$$
 is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n=2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

. . .

true for $n = k \implies$ true for n = k + 1

Child Gauss:
$$(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

. . .

true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

Child Gauss:
$$(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

. . .

true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

. . .

Child Gauss:
$$(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

. . .

true for $n = k \implies$ true for n = k + 1 $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

. . .

Child Gauss:
$$(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere.
$$P(0)$$
 is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n=0 P(0) is true plus inductive step \implies true for n=1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n=2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

. . .

true for
$$n = k \implies$$
 true for $n = k + 1$ $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

Predicate, P(n), True for all natural numbers!

Child Gauss:
$$(\forall \mathbf{n} \in \mathbf{N})(\sum_{i=1}^{n} i = \frac{n(n+1)}{2})$$
 Proof?

Idea: assume predicate P(n) for n = k. P(k) is $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Is predicate, P(n) true for n = k + 1?

$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + \left(k+1\right) = \frac{k(k+1)}{2} + k + 1 = \frac{(k+1)(k+2)}{2}.$$

How about k+2. Same argument starting at k+1 works! Induction Step. $P(k) \implies P(k+1)$.

Is this a proof? It shows that we can always move to the next step.

Need to start somewhere. P(0) is $\sum_{i=0}^{0} i = 0 = \frac{(0)(0+1)}{2}$ Base Case.

Statement is true for n = 0 P(0) is true plus inductive step \implies true for n = 1 $(P(0) \land (P(0) \implies P(1))) \implies P(1)$ plus inductive step \implies true for n = 2 $(P(1) \land (P(1) \implies P(2))) \implies P(2)$

. . .

true for
$$n = k \implies$$
 true for $n = k + 1$ $(P(k) \land (P(k) \implies P(k+1))) \implies P(k+1)$

Predicate, P(n), True for all natural numbers! Proof by Induction.

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1+2\cdots n=\frac{n(n+1)}{2}$.
- ► For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1+2\cdots n=\frac{n(n+1)}{2}$.
- ► For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- ▶ The sum of the first *n* odd integers is a perfect square.

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- The sum of the first n odd integers is a perfect square.

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1+2\cdots n=\frac{n(n+1)}{2}$.
- ▶ For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- The sum of the first n odd integers is a perfect square.

The basic form

▶ Prove *P*(0). "Base Case".

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1+2\cdots n=\frac{n(n+1)}{2}$.
- For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- ▶ The sum of the first *n* odd integers is a perfect square.

- ▶ Prove P(0). "Base Case".
- $ightharpoonup P(k) \Longrightarrow P(k+1)$

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1+2\cdots n=\frac{n(n+1)}{2}$.
- For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- The sum of the first n odd integers is a perfect square.

- ▶ Prove P(0). "Base Case".
- $ightharpoonup P(k) \implies P(k+1)$
 - Assume P(k), "Induction Hypothesis"

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1+2\cdots n=\frac{n(n+1)}{2}$.
- For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- The sum of the first n odd integers is a perfect square.

- ▶ Prove P(0). "Base Case".
- $ightharpoonup P(k) \implies P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - Prove P(k+1). "Induction Step."

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1+2\cdots n=\frac{n(n+1)}{2}$.
- For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- The sum of the first n odd integers is a perfect square.

The basic form

- ▶ Prove P(0). "Base Case".
- $ightharpoonup P(k) \implies P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - ▶ Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- The sum of the first n odd integers is a perfect square.

The basic form

- ▶ Prove P(0). "Base Case".
- $ightharpoonup P(k) \Longrightarrow P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - ▶ Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!! Get to use P(k) to prove P(k+1)!

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1+2\cdots n=\frac{n(n+1)}{2}$.
- For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- The sum of the first n odd integers is a perfect square.

The basic form

- ▶ Prove P(0). "Base Case".
- $ightharpoonup P(k) \implies P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1 + 2 \cdots n = \frac{n(n+1)}{2}$.
- For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- The sum of the first n odd integers is a perfect square.

The basic form

- ▶ Prove P(0). "Base Case".
- $ightharpoonup P(k) \implies P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!!

The canonical way of proving statements of the form

$$(\forall k \in N)(P(k))$$

- For all natural numbers n, $1+2\cdots n=\frac{n(n+1)}{2}$.
- For all $n \in \mathbb{N}$, $n^3 n$ is divisible by 3.
- The sum of the first n odd integers is a perfect square.

The basic form

- ▶ Prove P(0). "Base Case".
- $ightharpoonup P(k) \implies P(k+1)$
 - Assume P(k), "Induction Hypothesis"
 - Prove P(k+1). "Induction Step."

P(n) true for all natural numbers n!!!Get to use P(k) to prove P(k+1)!!!! Next Time.

More induction!

Next Time.

More induction! "See you" on Tuesday!