Support Vector Machines

Sidharth Baskaran

June 2021

Optimization Objective

- Alternative view of logistic regression
 - If y = 1, we want $h_{\theta}(x) \approx 1$, $\theta^T x \gg 0$

 - If y = 1, we want $h_{\theta}(x) \approx 1$, $\theta = 0$, we want $h_{\theta}(x) \approx 0$, $\theta^T x \ll 0$ Cost is $J(\theta) = -y \log \frac{1}{1 + e^{-\theta^T x}} (1 y) \log(1 \frac{1}{1 + e^{-\theta^T x}})$ * If y = 1, consider only $-y \log \frac{1}{1 + e^{-\theta^T x}}$, and $-(1 y) \log(1 \frac{1}{1 + e^{-\theta^T x}})$ for y = 0
 - Can approximate cost function term for each y = 0, 1 by 2 line segments to simplify optimization
- Recall for logistic regression must find

$$\begin{split} & \underset{\theta}{\text{LR}} \rightarrow \min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \underbrace{\left(-\log h_{\theta}(x^{(i)}) \right)}_{\text{cost}_{1}(\theta^{T}x^{(i)})} + (1-y^{(i)}) \underbrace{\left(-\log(1-h_{\theta}(x^{(i)})) \right)}_{\text{cost}_{0}(\theta^{T}x^{(i)})} \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2} \\ & \underset{\theta}{\text{SVM}} \rightarrow \min_{\theta} C \left[\sum_{i=1}^{m} y^{(i)} \text{cost}_{1}(\theta^{T}x^{(i)}) + (1-y^{(i)}) \text{cost}_{0}(\theta^{T}x^{(i)}) \right] + \frac{\lambda}{2} \sum_{j=1}^{n} \theta_{j}^{2} \end{split}$$

- Support vector machine
 - The $cost_{0,1}(\theta^T x^{(i)})$ are the line approximations
 - Get rid of $\frac{1}{m}$ by convention
 - Use a parameter C instead of λ to weight for regularization, so $C = \frac{1}{\lambda}$
 - Directly outputs 0 or 1 from hypothesis

Large Margin (SVM) Classifier

- Properties due to piecewise sigmoid line approximation
 - If y = 1, then $\theta^T x \ge 1$
 - If y = 0, then $\theta^T x \le -1$
- SVM decision boundary
 - When C is very large, want coefficient term to be 0
 - In a linear decision boundary, SVM finds largest margin (distance to clusters)
- Vector Inner Product
 - Let $u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$
 - $-u^Tv = u_1v_1 + u_2v_2 = p||u||$ where p is len(proj(u \rightarrow v))
 - * Thus if angle between v and u is greater than 90 then p < 0
 - $-||u|| = \sqrt{u_1^2 + u_2^2} \in \mathbb{R}$
- SVM Decision boundary Involves $\min_{\theta} \sum_{j=1}^{n} \theta_j^2 = \frac{1}{2}(\theta_1^2 + \theta_2^2) = \frac{1}{2}(\sqrt{\theta_1^2 + \theta_2^2})^2 = \frac{1}{2}||\theta||^2$ where C = 0 and $\theta_0 = 0$ for simplicity
 - $-\theta^T x^{(i)} = p^{(i)}||\theta|| = \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)}$

– Thus this the decision boundary can be redefined as $p^{(i)}||\theta|| \ge 1$ if $y^{(i)} = 1$ and $p^{(i)}||\theta|| \le -1$ if $y^{(i)} = 0$

Kernels

- Complex nonlinear decision boundary
 - Given x, compute new features based on proximity to landmarks (points) $l^{(i)}$

$$f_i = \text{similarity}(x,\ell^{(i)}) = \exp(-\frac{||x-\ell^{(i)}||^2}{2\sigma^2}$$

- Similarity function is the Gaussian kernel function $k(x, \ell^{(i)})$
 - Is ≈ 0 when far and ≈ 1 when close
 - Allows for defining new features for SVM to model complex nonlinear boundaries
- Given set of points $(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$ Choose $l^{(i)} = x^{(i)}$
- For training example $(x^{(i)}, y^{(i)})$, $f_m^{(i)} = \sin(x^{(i)}, l^{(m)})$ where $f_0^{(i)} = 1$ Hypothesis \rightarrow given x, compute features $f \in \mathbb{R}^{m+1}$ and predict y = 1 if $\theta^T f \ge 0$ and y = 0 if $\theta^T f < 0$
- Can plug this into the SVM cost function
- SVM parameters
 - Large $C \to \text{low bias, high variance (small } \lambda)$
 - Small $C \to \text{high bias, low variance (large } \lambda)$
 - $-\sigma^2 \rightarrow$ a large value means smoother variance of features f_i , so high bias, low variance