solution

December 17, 2023

1 Druhý projekt z předmětu MSP 2023/2024

Autor:

David	Chocholaty,	xchoch09	

Projekt se skládá ze dvou úloh:

- využití bayesovských odhadů a simulace rozdělení z naměřených dat,
- regresní analýza.

```
[1]: # Import potřebných knihoven a funkcí pro první i druhou úlohu.
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as stats
import statsmodels.formula.api as smf
import numpy as np
import seaborn as sns

from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
from statsmodels.stats.outliers_influence import variance_inflation_factor
from statsmodels.tools.tools import add_constant
from statsmodels.stats._adnorm import normal_ad
from statsmodels.stats.stattools import durbin_watson
```

1.1 Úloha 1 - Bayesovské odhady

1.1.1 a) Konjugované apriorní a aposteriorní rozdělení, prediktivní rozdělení

Zadání:

Předpokládáme, že počet připojení na internetovou síť za 1 ms je popsaný náhodnou veličinou s Poissonovým rozdělením s parametrem , t.j. \sim (). O parametru máme následující expertní odhad: každých 5 ms by mělo nastat 10 připojení. Pozorovali jsme připojení po dobu 100 ms. Pozorovaní o počtu připojení za každou 1 ms jsou uvedené v souboru measurements.csv ve sĺoupci "úloha_1 a)".

Vašim zadáním je z této expertní informace urči konjugované apriorní rozdělení k parametru Poissonova rozdělení a na základě pozorovaní určit aposteriorní rozdělení. Dále určete apriorní a aposteriorní prediktivní rozdělení pozorovaní.

```
[2]: # Načtení vstupních dat ze souboru xlsx z listu s názvem "Úloha 1".

df_1 = pd.read_excel(open('Projekt-2_Data.xlsx', 'rb'), sheet_name='Úloha 1')

df_1
```

```
[2]:
             uloha_1 a)
                          uloha_1 b)_prior
                                              skupina
                                                       uloha_1 b)_pozorování
     0
                    2.0
                                   3.634785
                                                                      3.626656
                    2.0
                                   2.868113
                                                    0
     1
                                                                      3.008269
     2
                    1.0
                                   2.149160
                                                    0
                                                                      2.989829
     3
                    3.0
                                   4.263065
                                                    0
                                                                      2.371630
     4
                    0.0
                                                                      4.009366
                                   2.594745
                                                    0
     99995
                    NaN
                                   1.725637
                                                 9999
                                                                           NaN
                                   4.048414
                                                 9999
     99996
                    NaN
                                                                           NaN
     99997
                    NaN
                                   3.000662
                                                 9999
                                                                           NaN
     99998
                    NaN
                                   3.058451
                                                 9999
                                                                           NaN
     99999
                    NaN
                                   4.487418
                                                 9999
                                                                           NaN
```

[100000 rows x 4 columns]

```
[3]: # Načtení hodnot pozorování pro úlohu "a".

OBSERVATIONS_COUNT = 100

observations = df_1['uloha_1 a)'][:OBSERVATIONS_COUNT]
observations = observations.astype('int64')
observations
```

```
[3]: 0
            2
            2
     1
     2
            1
     3
            3
            0
     4
     95
            3
     96
            0
            3
     97
            1
     98
     99
     Name: uloha_1 a), Length: 100, dtype: int64
```

Zadání:

1) Do jednoho obrázku vykreslíte apriorní a aposteriorní hustotou parametru Poissonova rozdělení

Konjugovaná apriorní pravděpodobnost bude určena na základě expertní informace. Dle [1] jsou parametry alfa a beta interpretovány jako celkový počet výskytů v intervalech. Aposteriorní alfa a beta budou vypočítány dle vztahů z [1], tedy

$$\alpha + \sum_{i=1}^{n} x^{i}, \beta + n.$$

[1] https://en.wikipedia.org/wiki/Conjugate_prior

```
[4]:  # Apriorní alfa a beta (expertní informace).
     alpha_prior = 10
     beta_prior = 5
     # Aposteriorní alfa a beta.
     alpha_posterior = alpha_prior + sum(observations)
     beta_posterior = beta_prior + len(observations)
     print('Apriorní:')
     print('----')
     print('alfa: ' + str(alpha_prior))
     print('beta: ' + str(beta_prior))
     print()
     print('Aposteriorní:')
     print('----')
     print('alfa: ' + str(alpha_posterior))
     print('beta: ' + str(beta_posterior))
     # Nastavení hodnot osy x (), pro které se budou vykreslovat body v y-ové ose_{\sqcup}
      → (Hustota pravděpodobnosti).
     x = np.linspace(0, 8, 1000)
     # Výpočet funkce hustoty pravděpodobnosti s využitím gamma rozdělení pomocí
      →příslušné funkce ze stats.gamma.
     # P\check{r}i výpočtu s využitím parametrů alfa a beta se parametr beta zadává v_\sqcup
      ⇔převrácené hodnotě, tedy 1/beta.
     pdf_prior = stats.gamma.pdf(x, alpha_prior, scale=1/beta_prior)
     pdf_posterior = stats.gamma.pdf(x, alpha_posterior, scale=1/beta_posterior)
     # Vyobrazení grafu hustoty.
     fig, ax = plt.subplots(1, 1)
     plt.title('Apriorní a aposteriorní hustota parametru ')
     ax.plot(x, pdf_prior, color='royalblue', label='Apriorní hustota', alpha=0.75)
     ax.plot(x, pdf_posterior, color='dimgray', label='Aposteriorní hustota', u
      \rightarrowalpha=0.75)
     ax.legend(loc='best')
```

```
plt.xlabel(' ')
plt.ylabel('Hustota pravděpodobnosti')
plt.show()
```

Apriorní:

alfa: 10

alfa: 10 beta: 5

Aposteriorní:

alfa: 176 beta: 105

Zadání:

2) Do jednoho obrázku vykreslíte apriorní a aposteriorní prediktivní hustotou pozorovaní za jeden časový interval.

```
[5]: # Nastavení hodnot osy x (Počet připojení za 1 ms), pro které se budou
     ⇔vykreslovat
     # hodnoty v y-ové ose (Hustota pozorování x).
     x = np.arange(0, 9)
     # Výpočet pravděpodobnostní funkce s využitím Negativního binomického rozdělení
     ⇔pomocí příslušné funkce
     # ze stats.nbinom. Při výpočtu s parametry alfa a beta se parametr beta zadává<sub>L</sub>
     \rightarrowve tvaru: beta / (1 + beta),
     # vice viz: https://en.wikipedia.org/wiki/Conjugate prior.
     pmf_prior = stats.nbinom.pmf(x, alpha_prior, beta_prior/(1 + beta_prior))
     pmf_posterior = stats.nbinom.pmf(x, alpha_posterior, beta_posterior/(1 +__
      ⇔beta_posterior))
     # Vyobrazení grafu prediktivní hustoty.
     fig, ax = plt.subplots(1, 1)
     plt.title('Apriorní a aposteriorní prediktivní hustota')
     plt.bar(x - 0.2, pmf_prior, width=0.4, color='royalblue', edgecolor = 'black', u
      ⇒linewidth=0.7,
             label='Apriorní prediktivní hustota', alpha=0.75)
    plt.bar(x + 0.2, pmf_posterior, width=0.4, color='dimgray', edgecolor = u
      label='Aposteriorní prediktivní hustota', alpha=0.75)
     ax.legend(loc='best')
     plt.xlabel('Počet připojení za 1 ms')
     plt.ylabel('Hustota pozorování x')
     plt.show()
```


Zadání:

3) Sestrojte 95% interval spolehlivosti pro parametr z apriorního a aposteriorního rozdělení a porovnejte je.

```
[6]: # Interval spolehlivosti pro apriorní rozdělení.
low_prior = stats.gamma.ppf(0.025, alpha_prior, scale=1/beta_prior)
high_prior = stats.gamma.ppf(0.975, alpha_prior, scale=1/beta_prior)

# Interval spolehlivosti pro aposteriorní rozdělení.
low_posterior = stats.gamma.ppf(0.025, alpha_posterior, scale=1/beta_posterior)
high_posterior = stats.gamma.ppf(0.975, alpha_posterior, scale=1/beta_posterior)

print("Apriorní:")
print(low_prior, high_prior)
print("Aposteriorní:")
print(low_posterior, high_posterior)
```

Apriorní:

0.9590777392264868 3.416960690283833

Aposteriorní:

1.4376938284869922 1.9327207471868797

Jelikož interval aposteriorního odhadu je užší, vyplývá, že oproti apriornímu odhadu je aposteriorní odhad přesnější.

Zadání

4) Vyberte si dva aposteriorní bodové odhady parametru , porovnejte je a okomentujte jejich výběr.

Pro porovnání byly vybrány bodové odhady s využitím střední hodnoty a mediánu.

```
[7]: mean = alpha_posterior / beta_posterior
median = stats.gamma.ppf(0.5, a=alpha_posterior, scale=1/beta_posterior)

print("Střední hodnota:")
print(mean)
print()
print("Medián:")
print(median)
```

Střední hodnota:

1.6761904761904762

Medián:

1.6730169441241727

Na základě skutečnosti, že hodnoty obou odhadů jsou velmi podobné, vyplývá, že rozložení dat je symetrické.

Zadání:

Vyberte si jeden apriorní a jeden aposteriorní bodový odhad počtu pozorovaní a porovnejte je.

Byl vybrán bodový aposteriorní a apriorní bodový odhad s využitím střední hodnoty.

Apriorní:

1.9999999999999

Aposteriorní:

1.6761904761904758

Apriorní bodový odhad byl získán z expertní informace a odpovídá parametru .

Aposteriorní bodový odhad zahrnuje i data získaná měřením. Hodnota aposteriorního bodového odhadu je nižší než apriorního bodového odhadu.

1.1.2 b) Aproximace diskrétním rozdělením

Zadání:

Integrál ve jmenovateli Bayesově větě je ve většině praktických aplikací důvodem, proč nejsme schopní odvodit aposteriorní hustotu analyticky. Jeden ze způsobů, jak překonat tento problém a odhadnout parametru (ne vektor parametrů) je, že zvolíme diskrétní aproximaci a neřešitelný integrál přejde na sumu.

Poznámka:

Nyní řešíme odhad aposteriorní hustoty a paramertů v případě, že apriorní informace (hustota) je ve formě naměřených hodnot (sloupec "uloha_1 b)_prior") a rozdělení procesu, který sledujete, je také ve tvaru naměřených hodnot (sloupec "uloha_1 b)_pozorovania"). Tedy místo zadání dvou hustot máme naměřené hodnoty a s pomocí tříděného statistického souboru odhadneme hustoty. Pak se plocha pod hustotou spočítá součtem četností (obdoba numerického počítání integrálu obdélníkovou metodou).

Víme, že délka zpracování procesu v milisekundách ms má odseknuté normální rozdělení (truncated normal distribution) viz.: https://en.wikipedia.org/wiki/Truncated_normal_distribution s parametry

$$\mu = 3, \sigma^2 = 1, a = 1.$$

Naší úlohou je odhadnout parametr , t.j. **maximální** dobu trvání procesu. Máme historické záznamy o jeho délce trvání (sloupec "uloha 1 a)_prior") na počítačích podobné výkonové řady. Provedli jsme sérii pozorovaní po 10, číslo série pozorovaní v tabulce v sloupci "skupina". Z těchto záznamů vyjádříte apriorní informaci o parametru .

Ve sloupci "uloha_1 b)_pozorovania" jsou naše pozorování délky trvání procesu Vyjádřete funkci věrohodnosti (sloupec "uloha_1 b)_pozorovania") (v tomto případe také jen její diskrétní aproximace) a následně diskrétní aposteriorní hustotu.

```
[9]: # Načtení naměřených hodnot pro úlohu "b".

MEASUREMENTS_COUNT = 100000

measured_vals_prior = df_1[['skupina', 'uloha_1 b)_prior']][:MEASUREMENTS_COUNT]

measured_vals_prior
```

```
3
              0
                          4.263065
4
              0
                          2.594745
99995
           9999
                          1.725637
99996
           9999
                          4.048414
99997
           9999
                          3.000662
99998
           9999
                          3.058451
99999
           9999
                          4.487418
```

[100000 rows x 2 columns]

3.626656

```
[10]: # Načtení hodnot pozorování pro úlohu "b".

process_distribution = df_1['uloha_1 b)_pozorování'][:OBSERVATIONS_COUNT]

process_distribution
```

```
1
      3.008269
2
      2.989829
3
      2.371630
4
      4.009366
95
      3.438933
96
      3.430973
97
      3.727306
98
      4.257909
99
      2.081679
Name: uloha_1 b)_pozorování, Length: 100, dtype: float64
```

Zadání:

[10]: 0

1) Do jednoho grafu vykreslíte apriorní, aposteriorní hustotou a funkci věrohodnosti. Funkci věrohodnosti normujte tak, aby jej součet byl 1 kvůli porovnatelnosti v obrázku.

Postup vytváření apriorního rozdělení je následující. Vstupní data (100 000 hodnot) jsou rozdělena dle atributu "skupina" do 10 000 skupin po 10 hodnotách. Následně je zvolen zástupce příslušné skupiny. Za zástupce se uvažuje největší hodnota ze všech 10-ti hodnot.

Z následných 10 000 hodnot (zástupců 10 000 skupin) je vytvořena datová sada, ze které bude vytvořeno diskrétní rozdělení. Dané diskrétní rozdělení je vytvořené rozdělením 10 000 hodnot na intervaly, a to celkem na 50 intervalů stejné délky. Daným způsobem se získá diskrétní apriorní rozdělení.

```
[11]: # Hodnoty parametrů ze zadání.
a = 1
mu = 3
sigma_sqr = 1
```

```
# Normalizace parametru "a".
a_norm = (a - mu) / sigma_sqr

# Ziskāni 10 000 hodnot, které představují zāstupce 10 000 skupin.
groups = measured_vals_prior.groupby('skupina')['uloha_1 b)_prior'].max()

# Ziskāni diskrétniho apriorniho rozděleni (apriorni hustoty).
hist, bins = np.histogram(groups, bins=50)
hist = hist / 10000

print("Apriorni hustota:")
print(hist)
```

Apriorní hustota:

```
[0.0003 0.0003 0.0003 0.0011 0.002 0.0037 0.0047 0.0068 0.0091 0.0115 0.016 0.0225 0.0241 0.0324 0.0387 0.037 0.0496 0.0477 0.0555 0.0581 0.0565 0.0531 0.0533 0.0507 0.0516 0.0435 0.0412 0.0366 0.0311 0.0237 0.0225 0.0203 0.0161 0.0153 0.0115 0.0098 0.0101 0.0061 0.0065 0.0043 0.0036 0.0023 0.0027 0.0016 0.0013 0.001 0.001 0.0005 0.0004 0.0004]
```

Následně je provedeno vytváření funkce věrohodnosti a aposteriorního rozdělení. Aposteriorní pravděpodobnost je vypočítána dle následujícího vztahu:

$$P(b|D) = \frac{(\prod_{i=1}^n P(d_i|b)) \cdot P(b)}{\sum_{b_i \in B} (\prod_{i=1}^n P(d_i|b_j) \cdot P(b_j))}$$

Nejprve se vypočítají středy jednotlivých intervalů (x-ová osa, b_j). Hodnota b se následně normalizuje. Poté je již možné vypočítat funkci věrohodnosti (likelihood), a to s využitím funkce stats.truncnorm.pdf, která vypočítá funkci hustoty pravděpodobnosti pro odseknuté normální rozdělení (z anglického truncated normal distribution) pro danou hodnotu parametru b a pro všechna data, která byla získána pozorováním (atribut uloha_1 b)_pozorování). Následně jsou jednotlivé hodnoty funkce věrohodnosti sumovány do proměnné divider_sum, která bude po iteraci přes všechny středy intervalů obsahovat hodnotu jmenovatel, která je pro všechny čitatele stejná (suma přes všechny hodnoty parametru b).

Po výpočtu hodnoty likelihood je možné vypočítat hodnotu aposteriorního rozdělení, a to vynásobením s apriorní informací, tedy likelihood * hist[i-1]. Po konečném vypočítání všech čitatelů uvedeného vztahu budou všechny poděleny hodnotou jmenovatele, který byl dříve popsán. Následně budou datové struktury typu list poděleny součtem všech vlastních hodnot, aby byla získána funkce hustoty pravděpodobnosti (součet všech hodnot je roven 1).

```
[12]: # Proměnná pro postupné sumování a získání finální hodnoty dělitele
# pro výpočet aposteriorního rozdělení.
divider_sum = 0

# Uchování středů intervalů pro následné vyobrazení pomocí grafu.
bins_centers = []
```

```
# Funkce věrohodnosti.
likelihoods = []
# Aposteriorní hustota.
posterior = []
# Iterace přes středy intervalů.
for i in range(1, len(bins)):
   # Výpočet středu intervalu.
   b_j = (bins[i - 1] + bins[i]) / 2
   bins_centers.append(b_j)
    # Normalizace parametru "b".
   b_norm = (b_j - mu) / sigma_sqr
   # Výpočet funkce věrohodnosti pro všechna pozorování a dané b.
   likelihood = np.prod([stats.truncnorm.pdf(data, a norm, b norm, mu, u
 ⇒sigma_sqr) for data in process_distribution])
   likelihoods.append(likelihood)
   # Uchování hodnoty likelihood pro následné dělení (postupně jsou sumovány
    # jednotlivé hodnoty proměnné likelihood).
   divider_sum = divider_sum + likelihood
    # Výpočet čitatele uvedeného vztahu, tedy vynásobení likelihood s apriorní
 ⇒informací.
   posterior.append(likelihood * hist[i-1])
# Získání hustoty funkce věrohodnosti - součet všech hodnot je roven 1.
likelihoods = likelihoods/sum(likelihoods)
# Získání výsledné hodnoty uvedeného vztahu, tedy výpočet jednotlivých čitatelů
⇔výsledným
# jmenovatelem (daný jmenovatel je pro všechny čitatele stejný, jelikož seu
 ⇒jedná o sumu
# přes všechny hodnoty parametru b).
posterior = posterior / divider sum
# Získání aposteriorní hustoty - součet všech hodnot je roven 1.
posterior = posterior/sum(posterior)
print("Funkce věrohodnosti:")
print(likelihoods)
print()
print("Aposteriorní hustota:")
print(posterior)
```

Funkce věrohodnosti:

[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

```
0.
           0.
                     0.
                               0.
                                          0.
                                                    0.
0.
           0.
                     0.
                               0.
                                          0.
                                                    0.
                                          0.06080918 0.05586125
0.
           0.
                     0.
                               0.
0.05226924 0.04963764 0.04769849 0.04626526 0.04520517 0.04442194
0.04384474 0.04342097 0.04311131 0.04288626 0.04272366 0.04260695
0.04252373 0.04246482 0.0424234 0.0423945 0.04237448 0.04236072
0.04235133 0.04234497]
Aposteriorní hustota:
ГО.
           0.
                     0.
                                                    0.
                               0.
                                          0.
0.
           0.
                     0.
                               0.
                                          0.
                                                    0.
0.
           0.
                     0.
                               0.
                                          0.
                                                    0.
0.
           0.
                     0.
                               0.
                                          0.
                                                    0.
                                          0.19634908 0.13745431
0.
           0.
                     0.
                               0.
0.12210347 0.10461803 0.07973148 0.07349297 0.05397409 0.04519838
0.04597674 0.02749975 0.02909404 0.01914635 0.01596873 0.01017437
0.00175884 0.00175858]
```

Následně bude vyobrazena v grafu apriorní hustota, aposteriorní hustota a funkce věrohodnosti.

Zadání:

2) Z aposteriorní hustoty určete 95% interval spolehlivosti (konfidenční interval) pro parametr .

```
[14]: # Výpočet kumulativního součtu.
cdf = np.cumsum(posterior)

# Hledání hodnot na krajích 95% intervalu spolehlivosti.
lower_bound = bins_centers[np.where(cdf >= 0.025)[0][0]]
upper_bound = bins_centers[np.where(cdf >= 0.975)[0][0]]

print("95% Interval spolehlivosti pro parametr b:")
print(f"Dolní hranice: {lower_bound}")
print(f"Horní hranice: {upper_bound}")
```

95% Interval spolehlivosti pro parametr b:

Dolní hranice: 5.693712028182375 Horní hranice: 7.008910628347767

Zadání:

3) Vyberte dva bodové odhady parametru a spočítejte je.

Vybrány byly bodové odhady s využitím střední hodnoty a mediánu.

```
[15]: mean = sum(bins_centers * posterior)
```

```
median_index = np.where(cdf >= 0.5)[0][0]
median = bins_centers[median_index]

print("Střední hodnota:")
print(mean)
print()
print("Medián:")
print(median)
```

Střední hodnota:

6.052771319832352

Medián:

5.956751748215453

1.2 Úloha 2 - Regrese

Zadání:

Disclaimer: data (včetně "příběhu") jsou vygenerovaná a nemusí mít dobrý obraz v realitě. Berte proto prosím výsledky z regrese s "rezervou". Díky.

Podařilo se Vám pomocí stroje času vrátit do doby "zlatého věku" sociálních sítí a rozhodli jste se konkurovat Facebooku a Twitteru. V souboru Data_v1.0.csv máte k dispozici záznamy od více než 500 uživatelů o rychlosti odezvy (sloupec ping [ms]) během používání Vaší aplikace. Ke každému zápisu máte navíc k dispozici o počtu uživatelů (sloupec ActiveUsers) v daném okamžiku, o procentu uživatelů, kteří momentálně interagují s prezentovaným obsahem (sloupec Interacting-Pct), o procentu uživatelů, kteří jen tupě scrollují po Vaší obdobě timeline/twitterfeedu (sloupec ScrollingPct) a o operačním systému zařízení ze kterého se uživatel připojil (OSType).

Zadání:

1) Pomocí zpětné eliminace určete vhodný regresní model. Za výchozí "plný" model považujte plný kvadratický model (všechny interakce druhého řádu a všechny druhé mocniny, které dávají smysl). - Zapište rovnici Vašeho finálního modelu. - Diskutujte splnění předpokladů lineární regrese a základní regresní diagnostiky. - Pokud (až během regresního modelování) identifikujete některé "extrémně odlehlé hodnoty" můžete ty "nejodlehlejší" hodnoty, po alespoň krátkém zdůvodnění, vyřadit.

Příprava dat Načtení dat z xlsx souboru:

```
[16]: # Načtení vstupních dat ze souboru xlsx z listu s názvem "Úloha 2".

df_2 = pd.read_excel(open('Projekt-2_Data.xlsx', 'rb'), sheet_name='Úloha 2')

# Přejmenování atributu 'Ping [ms]' na 'Ping' pro následnou jednodušší práci su atributem.

df_2 = df_2.rename(columns={'Ping [ms]' : 'Ping'})
```

 df_2

[16]:		OSType	ActiveUsers	InteractingPct	ScrollingPct	Ping
	0	iOS	4113	0.8283	0.1717	47
	1	iOS	7549	0.3461	0.6539	46
	2	Windows	8855	0.2178	0.7822	55
	3	Android	8870	0.0794	0.9206	56
	4	MacOS	9559	0.7282	0.2718	76
		•••	•••	•••	•••	
	497	iOS	5315	0.1974	0.8026	28
	498	MacOS	1392	0.2373	0.7627	24
	499	iOS	6014	0.8112	0.1888	54
	500	Android	5118	0.2345	0.7655	39
	501	MacOS	2660	0.9390	0.0610	55

[502 rows x 5 columns]

Jeden z předpokladů regrese je nezávislost reziduí, která bude dále ověřena.

Nezávislost reziduí Nyní je nutné ověřit (ne)závislost reziduí, tedy závislost jednotlivých sloupců ze vstupních dat. Závislost atributů bude ověřena pomocí VIF (z anglického Variance inflation factor). Pro VIF platí, že pokud je hodnota atributu větší než 10, vyplývá, že atribut je kolineární. Takový atribut bude rovnou vyřazen a nebude považován za možný vstup modelu. Zároveň ještě bude získána také korelační matice.

```
/home/david/anaconda3/lib/python3.11/site-
packages/statsmodels/regression/linear_model.py:1781: RuntimeWarning: divide by
zero encountered in scalar divide
   return 1 - self.ssr/self.centered_tss
/home/david/anaconda3/lib/python3.11/site-
packages/statsmodels/stats/outliers_influence.py:198: RuntimeWarning: divide by
zero encountered in scalar divide
   vif = 1. / (1. - r_squared_i)
```

```
[17]: VIF

const 0.000000

ActiveUsers 1.001625

InteractingPct inf

ScrollingPct inf
```

```
[18]: # Zobrazení korelace prediktorů.
X.corr()
```

[18]: ActiveUsers InteractingPct ScrollingPct const const NaNNaNNaN NaN1.000000 ActiveUsers ${\tt NaN}$ 0.040275 -0.040275 InteractingPct 0.040275 1.000000 -1.000000 ${\tt NaN}$ ScrollingPct NaN-0.040275 -1.000000 1.000000

Z výsledků VIF a korelační matice vyplývá, že atributy InteractingPct a ScrollingPct jsou vzájemně kolineární. Následně budou tyto dva atributy vyobrazeny ještě v grafu.

```
[19]: # Vyobrazení závislosti atributů InteractingPct a ScrollingPct.
fig = plt.figure()
ax = fig.add_subplot()

plt.scatter(df_2.InteractingPct, df_2.ScrollingPct, marker='.')
plt.title("Závislost atributů InteractingPct a ScrollingPct")
ax.set_xlabel('InteractingPct')
ax.set_ylabel('ScrollingPct')
plt.show()
```


Nyní je nutné pro vstup modelu ponechat pouze jeden z výše uvedených kolineárních atributů. Dále proto bude ve vstupu modelu ponechán pouze atribut InteractingPct.

Následně pro potřeby zpětné eliminace bude kategorický atribut OSType převeden na kódování 1 z n (z anglického one-hot encoding).

```
return df

# Převedení kategorického atributu 'OSType' na kódování 1 z n.

df_2 = one_hot_enc(df_2, 'OSType')

df_2
```

[20]:	ActiveUsers	InteractingPct	ScrollingPct	Ping	MacOS	Windows	iOS
0	4113	0.8283	0.1717	47	0.0	0.0	1.0
1	7549	0.3461	0.6539	46	0.0	0.0	1.0
2	8855	0.2178	0.7822	55	0.0	1.0	0.0
3	8870	0.0794	0.9206	56	0.0	0.0	0.0
4	9559	0.7282	0.2718	76	1.0	0.0	0.0
	•••	•••		•••			
497	5315	0.1974	0.8026	28	0.0	0.0	1.0
498	1392	0.2373	0.7627	24	1.0	0.0	0.0
499	6014	0.8112	0.1888	54	0.0	0.0	1.0
500	5118	0.2345	0.7655	39	0.0	0.0	0.0
501	2660	0.9390	0.0610	55	1.0	0.0	0.0

[502 rows x 7 columns]

Poté jsou přidány veškeré interakce druhého řádu, které budou následně použity pro vstup modelu. Manuální rozšíření dat o požadované sloupce oproti využití funkcí knihovny statsmodels je především vhodné pro následnou aplikaci zpětné eliminace.

```
[21]: # Funkce slouží pro přidání nového sloupce, který vznikne násobením dvou sloupců
      # zadaných jako parametry funkce. Tento nový sloupec je následně přidán do⊔
       \hookrightarrow dataframe.
      def add_mul_column(df, first_col, second_col):
          # Nastavení názvu nového sloupce.
          new_col_name = first_col + '_' + second_col
          # Ověření, zda se sloupec již nenachází v dataframe.
          # Jedná se o ošetření při vícenásobném zavolání funkce se stejnýmiu
       \rightarrow parametry.
          if new_col_name not in df:
              # Přidání nového sloupce na konec dataframe, který vznikne násobením
       ⇔hodnot dvou původních sloupců.
              df.insert(loc=len(df.columns), column=new col name, value=df[first col]__
       →* df[second_col])
              return df
          return df
      # Přidání všech vhodných interakcí druhého řádu.
      df_2 = add_mul_column(df_2, 'ActiveUsers', 'InteractingPct')
```

```
df_2 = add_mul_column(df_2, 'ActiveUsers', 'MacOS')
      df_2 = add_mul_column(df_2, 'ActiveUsers', 'Windows')
      df_2 = add_mul_column(df_2, 'ActiveUsers', 'iOS')
      df_2 = add_mul_column(df_2, 'InteractingPct', 'MacOS')
      df_2 = add_mul_column(df_2, 'InteractingPct', 'Windows')
      df_2 = add_mul_column(df_2, 'InteractingPct', 'iOS')
      df_2 = add_mul_column(df_2, 'ActiveUsers', 'ActiveUsers')
      df 2 = add mul column(df 2, 'InteractingPct', 'InteractingPct')
      df 2
[21]:
           ActiveUsers
                         InteractingPct ScrollingPct Ping
                                                              MacOS Windows
                                                                               iOS \
                                 0.8283
                                                0.1717
                                                                 0.0
                                                                           0.0
                                                                               1.0
      0
                  4113
                                                           47
      1
                  7549
                                 0.3461
                                                0.6539
                                                           46
                                                                 0.0
                                                                           0.0 1.0
      2
                                 0.2178
                                                0.7822
                                                                 0.0
                                                                           1.0 0.0
                  8855
                                                           55
                                                                 0.0
      3
                  8870
                                 0.0794
                                                0.9206
                                                           56
                                                                           0.0 0.0
      4
                   9559
                                 0.7282
                                                0.2718
                                                           76
                                                                 1.0
                                                                           0.0 0.0
                   •••
                                  •••
      497
                  5315
                                 0.1974
                                                0.8026
                                                           28
                                                                 0.0
                                                                           0.0
                                                                                1.0
      498
                   1392
                                 0.2373
                                                0.7627
                                                           24
                                                                 1.0
                                                                           0.0 0.0
                                                                 0.0
                                                                          0.0 1.0
      499
                   6014
                                 0.8112
                                                0.1888
                                                           54
      500
                  5118
                                 0.2345
                                                0.7655
                                                           39
                                                                 0.0
                                                                           0.0 0.0
      501
                                                0.0610
                                                                 1.0
                                                                           0.0 0.0
                   2660
                                 0.9390
                                                           55
           ActiveUsers_InteractingPct
                                        ActiveUsers MacOS
                                                            ActiveUsers Windows \
                             3406.7979
                                                        0.0
      0
      1
                             2612.7089
                                                        0.0
                                                                              0.0
                             1928.6190
      2
                                                        0.0
                                                                           8855.0
      3
                              704.2780
                                                        0.0
                                                                              0.0
      4
                             6960.8638
                                                    9559.0
                                                                              0.0
      . .
                                                        0.0
      497
                             1049.1810
                                                                              0.0
      498
                                                    1392.0
                                                                              0.0
                              330.3216
      499
                             4878.5568
                                                       0.0
                                                                              0.0
      500
                             1200.1710
                                                        0.0
                                                                              0.0
      501
                             2497.7400
                                                    2660.0
                                                                              0.0
                                                    InteractingPct_Windows
           ActiveUsers_iOS
                             InteractingPct_MacOS
      0
                     4113.0
                                            0.0000
                                                                     0.0000
      1
                     7549.0
                                            0.0000
                                                                     0.0000
      2
                        0.0
                                            0.0000
                                                                     0.2178
      3
                        0.0
                                            0.0000
                                                                     0.0000
      4
                        0.0
                                            0.7282
                                                                     0.0000
      497
                     5315.0
                                            0.0000
                                                                     0.0000
```

0.2373

0.0000

0.0

498

```
499
              6014.0
                                      0.0000
                                                                0.0000
500
                  0.0
                                      0.0000
                                                                0.0000
501
                  0.0
                                      0.9390
                                                                0.0000
     InteractingPct_iOS ActiveUsers_ActiveUsers
0
                  0.8283
                                           16916769
1
                  0.3461
                                           56987401
2
                  0.0000
                                          78411025
3
                  0.0000
                                          78676900
4
                  0.0000
                                           91374481
. .
497
                  0.1974
                                           28249225
498
                  0.0000
                                            1937664
499
                  0.8112
                                           36168196
500
                  0.0000
                                           26193924
501
                  0.0000
                                           7075600
     InteractingPct_InteractingPct
0
                           0.686081
                           0.119785
1
2
                           0.047437
3
                           0.006304
4
                           0.530275
497
                           0.038967
498
                           0.056311
499
                           0.658045
500
                           0.054990
501
                           0.881721
```

[502 rows x 16 columns]

Vyobrazení původních dat:

```
[22]: # Vyobrazení grafu obsahujícího původní data.
fig = plt.figure(figsize=(12, 12))
ax = fig.add_subplot(111, projection='3d')

x = np.arange(0, 10000, 100)
y = np.arange(0.0, 1.0, 0.01)
X, Y = np.meshgrid(x, y)

# Vykreslení původních dat.
ax.scatter(df_2.ActiveUsers, df_2.InteractingPct, df_2.Ping, marker='o')
plt.title("Původní data")
```

```
ax.set_xlabel('ActiveUsers', fontsize=12)
ax.set_ylabel('InteractingPct', fontsize=12)
ax.zaxis._axinfo['juggled'] = (1, 2, 2)
ax.set_zlabel('Ping', fontsize=12, rotation=90)
plt.show()
```

Původní data

Definice plného modelu: Dalším krokem po přípravě dat je samotná definice plného modelu, tedy modelu, který obsahuje veškeré smysluplné interakce druhého řádu. Na základě skutečnosti, že atributy MacOS, Windows a iOS vznikly pomocí kódování 1 z n z kategorického atributu OSType, nemá význam pro definici formule uvažovat jejich druhé mocniny. Následné atributy značeny s využitím znaku '_' představují atributy, které vznikly násobením daných dvou atributů. Například

atribut ActiveUsers_InteractingPct vznikl výpočtem ActiveUsers * InteractingPct s využitím dříve definované funkce add_mul_column().

```
[23]: # Vytvoření plného modelu.
      formula_definition = 'Ping ~ ActiveUsers + InteractingPct + MacOS + Windows +
       →iOS + ' + \
          'ActiveUsers_InteractingPct + ' + \
          'ActiveUsers_MacOS + ' + \
          'ActiveUsers_Windows + ' + \
          'ActiveUsers_iOS + ' + \
          'InteractingPct_MacOS + ' + \
          'InteractingPct_Windows + ' + \
          'InteractingPct_iOS + ' + \
          'ActiveUsers_ActiveUsers + ' + \
          'InteractingPct_InteractingPct'
      full_model = smf.ols(formula=formula_definition, data=df_2)
      full_model_fit = full_model.fit()
      # Výpis souhrnu informací o modelu.
      full_model_fit.summary()
```

[23]:

Dep. Variable:	Ping	R-squared:	0.844
Model:	OLS	Adj. R-squared:	0.839
Method:	Least Squares	F-statistic:	187.9
Date:	Sun, 17 Dec 2023	Prob (F-statistic):	5.18e-186
Time:	16:02:17	Log-Likelihood:	-1598.4
No. Observations:	502	AIC:	3227.
Df Residuals:	487	BIC:	3290.
Df Model:	14		
Covariance Type:	nonrobust		

	coef	std err	t	$P> \mathbf{t} $	[0.025]	0.975]
Intercept	-0.3388	2.354	-0.144	0.886	-4.965	4.287
${f Active Users}$	0.0100	0.001	17.571	0.000	0.009	0.011
${\bf Interacting Pct}$	37.6062	4.567	8.234	0.000	28.633	46.580
MacOS	2.0017	2.260	0.886	0.376	-2.440	6.443
Windows	7.8174	2.217	3.526	0.000	3.461	12.174
iOS	-0.0483	2.265	-0.021	0.983	-4.499	4.403
${\bf Active Users_Interacting Pct}$	-0.0031	0.000	-8.532	0.000	-0.004	-0.002
${f Active Users_MacOS}$	0.0014	0.000	4.536	0.000	0.001	0.002
${\bf Active Users_Windows}$	-0.0008	0.000	-2.505	0.013	-0.001	-0.000
${f Active Users_iOS}$	-0.0011	0.000	-3.369	0.001	-0.002	-0.000
${\bf InteractingPct_MacOS}$	-0.3566	2.530	-0.141	0.888	-5.327	4.614
${\bf InteractingPct_Windows}$	0.4260	2.721	0.157	0.876	-4.919	5.771
${f InteractingPct_iOS}$	0.2678	2.691	0.100	0.921	-5.020	5.556
${\bf Active Users_Active Users}$	-4.17e-07	4.4e-08	-9.469	0.000	-5.03e-07	-3.3e-07
InteractingPct_InteractingPct	-3.7258	3.492	-1.067	0.287	-10.587	3.135

Omnibus:	228.442	Durbin-Watson:	1.933
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3152.488
Skew:	1.603	Prob(JB):	0.00
Kurtosis:	14.851	Cond. No.	1.06e + 09

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.06e+09. This might indicate that there are strong multicollinearity or other numerical problems.

Následně bude vypočítána hodnota VIF a také korelační matice pro jednotlivé prediktory.

```
[24]:
                                            VIF
      Intercept
                                      79.081437
      ActiveUsers
                                      30.108570
      InteractingPct
                                      26.021105
      MacOS
                                      14.530955
      Windows
                                      13.726080
      iOS
                                      13.164975
      ActiveUsers_InteractingPct
                                       8.851002
      ActiveUsers_MacOS
                                      10.454073
      ActiveUsers_Windows
                                      10.189613
      ActiveUsers_iOS
                                       9.061267
      InteractingPct_MacOS
                                       7.586537
      InteractingPct_Windows
                                       6.857633
      InteractingPct_iOS
                                       6.028016
      ActiveUsers_ActiveUsers
                                      22.499134
      InteractingPct_InteractingPct
                                      16.060875
```

```
[25]: # Zobrazení korelace prediktorů.
X.corr()
```

```
[25]: Intercept ActiveUsers InteractingPct \
Intercept NaN NaN NaN NaN ActiveUsers NaN 1.000000 0.040275
```

InteractingPct	NaN	0.040275	1.000000	
MacOS	NaN	-0.000136	0.086466	
Windows	NaN	0.003135	-0.016964	
iOS	NaN	-0.063206	-0.062634	
ActiveUsers_InteractingPct	NaN	0.591746	0.752979	
ActiveUsers_MacOS	NaN	0.243697	0.072359	
ActiveUsers_Windows	NaN	0.258029	0.010807	
ActiveUsers_iOS	NaN	0.189859	-0.050601	
<pre>InteractingPct_MacOS</pre>	NaN	-0.004409	0.388633	
InteractingPct_Windows	NaN	0.035105	0.248636	
InteractingPct_iOS	NaN	-0.045884	0.244987	
ActiveUsers_ActiveUsers	NaN	0.977081	0.033100	
<pre>InteractingPct_InteractingPct</pre>	NaN	0.025793	0.967446	
G -				
	MacOS	Windows	iOS \	
Intercept	NaN	NaN I	NaN	
ActiveUsers	-0.000136	0.003135 -0.0633	206	
InteractingPct	0.086466	-0.016964 -0.0626	334	
MacOS	1.000000	-0.371550 -0.3413	322	
Windows	-0.371550	1.000000 -0.334	506	
iOS	-0.341322	-0.334506 1.0000	000	
ActiveUsers_InteractingPct	0.052512	0.002608 -0.0849	945	
ActiveUsers_MacOS	0.881244	-0.327426 -0.300	788	
ActiveUsers_Windows	-0.325207	0.875271 -0.292	783	
ActiveUsers_iOS		-0.290521 0.868		
InteractingPct_MacOS		-0.305071 -0.280		
InteractingPct_Windows	-0.309767			
InteractingPct_iOS	-0.272791	-0.267344 0.799		
ActiveUsers_ActiveUsers		0.009084 -0.055		
InteractingPct_InteractingPct		-0.042324 -0.053		
3 44				
	ActiveUse	rs_InteractingPct	t ActiveUsers_MacOS	\
Intercept		Nal		
ActiveUsers		0.591746	0.243697	
InteractingPct		0.752979	0.072359	
MacOS		0.052512	0.881244	
Windows		0.002608	3 -0.327426	
iOS		-0.08494	5 -0.300788	
ActiveUsers_InteractingPct		1.00000	0.193768	
ActiveUsers_MacOS		0.193768		
ActiveUsers_Windows		0.163826		
ActiveUsers_iOS		0.053582		
InteractingPct_MacOS		0.271050		
InteractingPct_Windows		0.210449		
InteractingPct_iOS		0.13246		
ActiveUsers_ActiveUsers		0.57671		
InteractingPct_InteractingPct		0.72073		
		3.1.23102	_	

	ActiveUsers_Windows	ActiveUsers_iOS \
Intercept	NaN	NaN
ActiveUsers	0.258029	0.189859
InteractingPct	0.010807	-0.050601
MacOS	-0.325207	-0.296440
Windows	0.875271	-0.290521
iOS	-0.292783	0.868507
ActiveUsers_InteractingPct	0.163826	0.053582
ActiveUsers_MacOS	-0.286586	-0.261236
ActiveUsers_Windows	1.000000	-0.254284
ActiveUsers_iOS	-0.254284	1.000000
<pre>InteractingPct_MacOS</pre>	-0.267019	-0.243400
InteractingPct_Windows	0.759496	-0.242212
InteractingPct_iOS	-0.233998	0.698777
ActiveUsers_ActiveUsers	0.261283	0.184717
<pre>InteractingPct_InteractingPct</pre>	-0.017146	-0.050135
	InteractingPct_MacOS	InteractingPct_Windows \
Intercept	NaN	NaN
ActiveUsers	-0.004409	0.035105
InteractingPct	0.388633	0.248636
MacOS	0.821075	-0.309767
Windows	-0.305071	0.833716
iOS	-0.280251	-0.278883
ActiveUsers_InteractingPct	0.271050	0.210449
ActiveUsers_MacOS	0.719630	-0.272980
ActiveUsers_Windows	-0.267019	0.759496
ActiveUsers_iOS	-0.243400	-0.242212
InteractingPct_MacOS	1.000000	-0.254342
InteractingPct_Windows	-0.254342	
InteractingPct_iOS	-0.223982	-0.222889
ActiveUsers_ActiveUsers	-0.008598	0.038643
InteractingPct_InteractingPct	0.399878	0.216347
	InteractingPct_iOS	ActiveUsers_ActiveUsers \
Intercept	NaN	NaN
ActiveUsers	-0.045884	0.977081
InteractingPct	0.244987	0.033100
MacOS	-0.272791	-0.004621
Windows	-0.267344	0.009084
iOS	0.799219	-0.055587
ActiveUsers_InteractingPct	0.132465	0.576716
ActiveUsers_MacOS	-0.240395	0.229636
ActiveUsers_Windows	-0.233998	0.261283
ActiveUsers_iOS	0.698777	0.201203
InteractingPct_MacOS	-0.223982	-0.008598
THE TACETHER CO LIGORD	-0.223902	-0.000380

```
      InteractingPct_Windows
      -0.222889
      0.038643

      InteractingPct_iOS
      1.000000
      -0.044630

      ActiveUsers_ActiveUsers
      -0.044630
      1.000000

      InteractingPct_InteractingPct
      0.235957
      0.018258
```

InteractingPct_InteractingPct

_
NaN
0.025793
0.967446
0.108126
-0.042324
-0.053518
0.720732
0.086850
-0.017146
-0.050135
0.399878
0.216347
0.235957
0.018258
1.000000

Vyobrazení plného modelu:

```
[26]: print('Parametry plného modelu:')
      print(full_model_fit.params)
      # Vyobrazení grafu plného modelu.
      fig = plt.figure(figsize=(12,12))
      ax = fig.add_subplot(111, projection='3d')
      x = np.arange(0, 10000, 100)
      y = np.arange(0.0, 1.0, 0.01)
      X, Y = np.meshgrid(x, y)
      # Získání hodnot prediktorů pro jednotlivé OS.
      zs_macos = full_model_fit.params['Intercept'] + \
          full_model_fit.params['MacOS'] + \
          full_model_fit.params['ActiveUsers'] * X + \
          full model fit.params['ActiveUsers MacOS'] * X + \
          full_model_fit.params['InteractingPct'] * Y + \
          full model fit.params['InteractingPct MacOS'] * Y + \
          full_model_fit.params['ActiveUsers_InteractingPct'] * X * Y + \
          full_model_fit.params['ActiveUsers_ActiveUsers'] * X * X + \
          full_model_fit.params['InteractingPct_InteractingPct'] * Y * Y
      zs_win = full_model_fit.params['Intercept'] + \
```

```
full_model_fit.params['Windows'] + \
   full model fit.params['ActiveUsers'] * X + \
   full_model_fit.params['ActiveUsers_Windows'] * X + \
   full_model_fit.params['InteractingPct'] * Y + \
   full_model_fit.params['InteractingPct_Windows'] * Y + \
   full_model_fit.params['ActiveUsers_InteractingPct'] * X * Y + \
   full model fit.params['ActiveUsers ActiveUsers'] * X * X + \
   full_model_fit.params['InteractingPct_InteractingPct'] * Y * Y
zs ios = full model fit.params['Intercept'] + \
   full model fit.params['iOS'] + \
   full model fit.params['ActiveUsers'] * X + \
   full model fit.params['ActiveUsers iOS'] * X + \
   full_model_fit.params['InteractingPct'] * Y + \
   full model fit.params['InteractingPct iOS'] * Y + \
   full_model_fit.params['ActiveUsers_InteractingPct'] * X * Y + \
   full_model_fit.params['ActiveUsers_ActiveUsers'] * X * X + \
   full_model_fit.params['InteractingPct_InteractingPct'] * Y * Y
zs_android = full_model_fit.params['Intercept'] + \
   full_model_fit.params['ActiveUsers'] * X + \
   full model fit.params['InteractingPct'] * Y + \
   full_model_fit.params['ActiveUsers_InteractingPct'] * X * Y + \
   full model fit.params['ActiveUsers ActiveUsers'] * X * X + \
   full_model_fit.params['InteractingPct_InteractingPct'] * Y * Y
Z macos = zs macos.reshape(X.shape)
Z win = zs win.reshape(X.shape)
Z_ios = zs_ios.reshape(X.shape)
Z_android = zs_android.reshape(X.shape)
# Vyobrazení povrchu pro jednotlivé OS.
macos_surface = ax.plot_surface(X, Y, Z_macos, color='green', label='MacOS')
windows_surface = ax.plot_surface(X, Y, Z_win, color='blue', label='Windows')
ios_surface = ax.plot_surface(X, Y, Z_ios, color='orange', label='iOS')
android_surface = ax.plot_surface(X, Y, Z_android, color='red', label='Android')
# Ošetření problému s matplotlib legendou.
# Více viz:
# https://stackoverflow.com/questions/55531760/
 \Rightarrow is-there-a-way-to-label-multiple-3d-surfaces-in-matplotlib
macos_surface._facecolors2d = macos_surface._facecolor3d
macos_surface._edgecolors2d = macos_surface._edgecolor3d
windows surface. facecolors2d = windows surface. facecolor3d
windows_surface._edgecolors2d = windows_surface._edgecolor3d
```

```
ios_surface._facecolors2d = ios_surface._facecolor3d
ios_surface._edgecolors2d = ios_surface._edgecolor3d
android_surface._facecolors2d = android_surface._facecolor3d
android_surface._edgecolors2d = android_surface._edgecolor3d

plt.title("Plný kvadratický model")
ax.legend(loc='best')
ax.set_xlabel('ActiveUsers', fontsize=12)
ax.set_ylabel('InteractingPct', fontsize=12)
ax.zaxis._axinfo['juggled'] = (1, 2, 2)
ax.set_zlabel('Ping', fontsize=12, rotation=90)

plt.show()
```

Parametry plného modelu:

Intercept -3.388459e-01 ActiveUsers 1.002406e-02 InteractingPct 3.760617e+01 MacOS 2.001747e+00 Windows 7.817378e+00 iOS -4.833230e-02 ActiveUsers_InteractingPct -3.086297e-03 ActiveUsers_MacOS 1.397350e-03 -7.618681e-04 ActiveUsers_Windows ActiveUsers_iOS -1.058353e-03 InteractingPct_MacOS -3.565678e-01 InteractingPct_Windows 4.260464e-01 InteractingPct_iOS 2.678486e-01 ActiveUsers_ActiveUsers -4.169698e-07 InteractingPct_InteractingPct -3.725768e+00

dtype: float64

Získání výsledného modelu pomocí algoritmu zpětné eliminace: Nyní bude z plného modelu dle jednotlivých kroků algoritmu zpětné eliminace vytvořen výsledný model. Algoritmus začíná tak, že nejprve musí být určena hladina významnosti, která bude definovat hladinu určující, zda daný prediktor zůstane v modelu dle jeho P-hodnoty. Pro účely projektu byla zvolena hladina 0.05. Algoritmus vychází z plného modelu, pro který byly uvedeny jeho výsledky včetně P-hodnot pro všechny prediktory. Následně započne cyklická část algoritmu, která pokračuje, dokud se v modelu nachází prediktor, pro který platí, že P-hodnota > 0.05:

- Je vybrán prediktor s největší P-hodnotou.
 - Pokud platí, že P-hodnota > 0.05, prediktor je odstraněn.
 - V opačném případě algoritmus končí a je vytvořen výsledný model.

Odstranění prediktoru iOS:

[27]:

Dep. Variable:	Ping	R-squared:	0.844
Model:	OLS	Adj. R-squared:	0.840
Method:	Least Squares	F-statistic:	202.8
Date:	Sun, 17 Dec 2023	Prob (F-statistic):	3.57e-187
Time:	16:02:18	Log-Likelihood:	-1598.4
No. Observations:	502	AIC:	3225.
Df Residuals:	488	BIC:	3284.
Df Model:	13		

Covariance Type: nonrobust

	\mathbf{coef}	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
Intercept	-0.3714	1.793	-0.207	0.836	-3.894	3.151
${f Active Users}$	0.0100	0.001	18.742	0.000	0.009	0.011
${\bf InteractingPct}$	37.6338	4.375	8.603	0.000	29.038	46.229
MacOS	2.0290	1.863	1.089	0.277	-1.632	5.690
Windows	7.8447	1.810	4.335	0.000	4.289	11.400
${\bf Active Users_Interacting Pct}$	-0.0031	0.000	-8.590	0.000	-0.004	-0.002
${f Active Users_MacOS}$	0.0014	0.000	5.017	0.000	0.001	0.002
${\bf Active Users_Windows}$	-0.0008	0.000	-2.796	0.005	-0.001	-0.000
${f Active Users_iOS}$	-0.0011	0.000	-5.155	0.000	-0.001	-0.001
${\bf InteractingPct_MacOS}$	-0.3729	2.408	-0.155	0.877	-5.104	4.358
${\bf InteractingPct_Windows}$	0.4095	2.605	0.157	0.875	-4.709	5.528
${f InteractingPct_iOS}$	0.2368	2.262	0.105	0.917	-4.208	4.682
${\bf Active Users _Active Users}$	-4.171e-07	4.38e-08	-9.524	0.000	-5.03e-07	-3.31e-07
InteractingPct_InteractingPct	-3.7327	3.473	-1.075	0.283	-10.557	3.092

Omnibus:	228.481	Durbin-Watson:	1.933
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3153.673
Skew:	1.603	Prob(JB):	0.00
Kurtosis:	14.853	Cond. No.	9.61e + 08

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.61e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Odstranění prediktoru InteractingPct_iOS:

[28]:

Dep. Variable:	Ping	R-squared:	0.844
Model:	OLS	Adj. R-squared:	0.840
Method:	Least Squares	F-statistic:	220.1
Date:	Sun, 17 Dec 2023	Prob (F-statistic):	2.36e-188
Time:	16:02:18	Log-Likelihood:	-1598.4
No. Observations:	502	AIC:	3223.
Df Residuals:	489	BIC:	3278.
Df Model:	12		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025	0.975]
Intercept	-0.3703	1.791	-0.207	0.836	-3.889	3.149
${f Active Users}$	0.0100	0.001	19.067	0.000	0.009	0.011
${\bf Interacting Pct}$	37.7781	4.148	9.108	0.000	29.628	45.928
MacOS	2.0221	1.860	1.087	0.278	-1.633	5.677
Windows	7.8395	1.807	4.338	0.000	4.289	11.390
${\bf Active Users_Interacting Pct}$	-0.0031	0.000	-8.657	0.000	-0.004	-0.002
${\bf Active Users_MacOS}$	0.0014	0.000	5.392	0.000	0.001	0.002
${\bf Active Users_Windows}$	-0.0008	0.000	-2.941	0.003	-0.001	-0.000
${f Active Users_iOS}$	-0.0010	0.000	-8.061	0.000	-0.001	-0.001
${\bf InteractingPct_MacOS}$	-0.4989	2.084	-0.239	0.811	-4.593	3.595
${\bf InteractingPct_Windows}$	0.2836	2.308	0.123	0.902	-4.252	4.819
${\bf Active Users _Active Users}$	-4.168e-07	4.37e-08	-9.539	0.000	-5.03e-07	-3.31e-07
$Interacting Pct_Interacting Pct$	-3.7301	3.470	-1.075	0.283	-10.547	3.087

Omnibus:	228.487	Durbin-Watson:	1.933
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3154.636
Skew:	1.603	Prob(JB):	0.00
Kurtosis:	14.855	Cond. No.	9.26e + 08

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.26e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Odstranění prediktoru InteractingPct_Windows:

[29]:

Dep. Variable:	Ping	R-squared:	0.844
Model:	OLS	Adj. R-squared:	0.840
Method:	Least Squares	F-statistic:	240.6
Date:	Sun, 17 Dec 2023	Prob (F-statistic):	1.50e-189
Time:	16:02:18	Log-Likelihood:	-1598.4
No. Observations:	502	AIC:	3221.
Df Residuals:	490	BIC:	3271.
Df Model:	11		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025	0.975]
Intercept	-0.4127	1.756	-0.235	0.814	-3.862	3.037
${f Active Users}$	0.0100	0.001	19.086	0.000	0.009	0.011
${\bf InteractingPct}$	37.8763	4.066	9.315	0.000	29.887	45.865
MacOS	2.0635	1.828	1.129	0.259	-1.528	5.655
Windows	7.9604	1.514	5.258	0.000	4.985	10.935
${\bf Active Users_Interacting Pct}$	-0.0031	0.000	-8.669	0.000	-0.004	-0.002
${f Active Users_MacOS}$	0.0014	0.000	5.401	0.000	0.001	0.002
${\bf Active Users_Windows}$	-0.0008	0.000	-2.944	0.003	-0.001	-0.000
${f Active Users_iOS}$	-0.0010	0.000	-8.068	0.000	-0.001	-0.001
${\bf InteractingPct_MacOS}$	-0.5925	1.938	-0.306	0.760	-4.399	3.214
${f Active Users_Active Users}$	-4.168e-07	4.37e-08	-9.548	0.000	-5.03e-07	-3.31e-07
InteractingPct_InteractingPct	-3.7303	3.466	-1.076	0.282	-10.541	3.080

Omnibus:	228.480	Durbin-Watson:	1.932
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3153.948
Skew:	1.603	Prob(JB):	0.00
Kurtosis:	14.853	Cond. No.	9.14e + 08

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.14e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Odstranění prediktoru InteractingPct_MacOS:

[30]:

Dep. Variable:	Ping	R-squared:	0.844
Model:	OLS	Adj. R-squared:	0.841
Method:	Least Squares	F-statistic:	265.2
Date:	Sun, 17 Dec 2023	Prob (F-statistic):	9.41e-191
Time:	16:02:19	Log-Likelihood:	-1598.5
No. Observations:	502	AIC:	3219.
Df Residuals:	491	BIC:	3265.
Df Model:	10		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} \gt \mathbf{t} $	[0.025	0.975]
Intercept	-0.3369	1.736	-0.194	0.846	-3.749	3.075
${f Active Users}$	0.0100	0.001	19.112	0.000	0.009	0.011
${\bf Interacting Pct}$	37.7205	4.030	9.360	0.000	29.802	45.639
MacOS	1.7623	1.538	1.146	0.252	-1.260	4.784
${f Windows}$	7.9544	1.513	5.259	0.000	4.983	10.926
${f Active Users_Interacting Pct}$	-0.0031	0.000	-8.674	0.000	-0.004	-0.002
${f Active Users_MacOS}$	0.0014	0.000	5.404	0.000	0.001	0.002
${\bf Active Users_Windows}$	-0.0008	0.000	-2.943	0.003	-0.001	-0.000
${f Active Users_iOS}$	-0.0010	0.000	-8.084	0.000	-0.001	-0.001
${f Active Users_Active Users}$	-4.17e-07	4.36e-08	-9.563	0.000	-5.03e-07	-3.31e-07
InteractingPct_InteractingPct	-3.7675	3.461	-1.089	0.277	-10.567	3.032
O:l	220 600 1	D1-2 XX	7_4	1.0	99	

Omnibus:	229.699	Durbin-Watson:	1.933
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3207.912
Skew:	1.611	Prob(JB):	0.00
Kurtosis:	14.958	Cond. No.	9.12e + 08

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.12e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Odstranění prediktoru InteractingPct_InteractingPct:

```
[31]: # Odstraneni InteractingPct_InteractingPct
formula_definition = 'Ping ~ ActiveUsers + InteractingPct + MacOS + Windows + '__

'ActiveUsers_InteractingPct + ' + \
 'ActiveUsers_MacOS + ' + \
 'ActiveUsers_Windows + ' + \
 'ActiveUsers_iOS + ' + \
 'ActiveUsers_ActiveUsers'
model = smf.ols(formula=formula_definition, data=df_2)
model_fit = model.fit()

model_fit.summary()
```

[31]:

Dep. Variable:	Ping	R-squared:	0.843
Model:	OLS	Adj. R-squared:	0.841
Method:	Least Squares	F-statistic:	294.4
Date:	Sun, 17 Dec 2023	Prob (F-statistic):	9.61e-192
Time:	16:02:19	Log-Likelihood:	-1599.1
No. Observations:	502	AIC:	3218.
Df Residuals:	492	BIC:	3260.
Df Model:	9		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} \gt \mathbf{t} $	[0.025	0.975]
Intercept	0.2577	1.649	0.156	0.876	-2.981	3.497
Active Users	0.0100	0.001	19.101	0.000	0.009	0.011
InteractingPct	33.9892	2.120	16.030	0.000	29.823	38.155
MacOS	1.6826	1.537	1.095	0.274	-1.337	4.702
Windows	7.9718	1.513	5.270	0.000	5.000	10.944
ActiveUsers_InteractingPct	-0.0031	0.000	-8.677	0.000	-0.004	-0.002
$ActiveUsers_MacOS$	0.0014	0.000	5.430	0.000	0.001	0.002
$Active Users_Windows$	-0.0007	0.000	-2.919	0.004	-0.001	-0.000
$ActiveUsers_iOS$	-0.0010	0.000	-8.079	0.000	-0.001	-0.001
ActiveUsers_ActiveUsers	-4.163e-07	4.36e-08	-9.547	0.000	-5.02e-07	-3.31e-07
Omnibus	220 625	Dunhin '	Wataan	1	020	

Omnibus:	230.835	Durbin-Watson:	1.928
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3266.312
Skew:	1.617	Prob(JB):	0.00
Kurtosis:	15.070	Cond. No.	4.22e + 08

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.22e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Odstranění prediktoru MacOS:

[32]:

Dep. Variable:	Ping	R-squared:	0.843
Model:	OLS	Adj. R-squared:	0.840
Method:	Least Squares	F-statistic:	330.9
Date:	Sun, 17 Dec 2023	Prob (F-statistic):	9.30e-193
Time:	16:02:19	Log-Likelihood:	-1599.7
No. Observations:	502	AIC:	3217.
Df Residuals:	493	BIC:	3255.
Df Model:	8		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
Intercept	0.7923	1.575	0.503	0.615	-2.302	3.887
${f Active Users}$	0.0099	0.001	19.167	0.000	0.009	0.011
${\bf InteractingPct}$	34.2568	2.107	16.262	0.000	30.118	38.396
Windows	7.3575	1.405	5.236	0.000	4.597	10.118
${\bf Active Users_Interacting Pct}$	-0.0031	0.000	-8.832	0.000	-0.004	-0.002
${f Active Users_MacOS}$	0.0017	0.000	13.603	0.000	0.001	0.002
${f Active Users_Windows}$	-0.0007	0.000	-2.710	0.007	-0.001	-0.000
${f Active Users_iOS}$	-0.0011	0.000	-8.118	0.000	-0.001	-0.001
${\bf Active Users_Active Users}$	-4.146e-07	4.36e-08	-9.511	0.000	-5e-07	-3.29e-07
Omnibus:	242.580	Durbin-V	Vatson:	1.	931	

Omnibus:	242.580	Durbin-Watson:	1.931
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3742.643
Skew:	1.701	Prob(JB):	0.00
Kurtosis:	15.937	Cond. No.	4.21e + 08

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.21e+08. This might indicate that there are strong multicollinearity or other numerical problems.

Nyní po skončení algoritmu zpětné eliminace budou ještě vypočítány hodnoty VIF a korelační matice pro jednotlivé ponechané prediktory.

```
[33]:
                                         VIF
      Intercept
                                   35.644330
      ActiveUsers
                                   24.981312
      InteractingPct
                                    5.576012
      Windows
                                    5.551936
      ActiveUsers InteractingPct
                                    8.566008
      ActiveUsers_MacOS
                                    1.657555
      ActiveUsers_Windows
                                    6.474746
      ActiveUsers_iOS
                                    1.550683
      ActiveUsers_ActiveUsers
                                   22.204978
```

```
[34]:  # Zobrazení korelace prediktorů.
X.corr()
```

5-17	_			
[34]:	Intercept	ActiveUsers	InteractingPct	Windows
Intercept	NaN	NaN	NaN	
ActiveUsers	NaN	1.000000	0.040275	
InteractingPct	NaN	0.040275		-0.016964
Windows	NaN	0.003135	-0.016964	
ActiveUsers_InteractingPct	NaN	0.591746	0.752979	
ActiveUsers_MacOS	NaN	0.243697		-0.327426
ActiveUsers_Windows	NaN	0.258029		0.875271
ActiveUsers_iOS	NaN	0.189859		-0.290521
ActiveUsers_ActiveUsers	NaN	0.977081	0.033100	0.009084
	Activellser	rs_Interacting	oct ActiveUser:	s MacOS \
Intercept	ACUIVCOBCI	_	VaN	NaN
ActiveUsers		0.5917		. 243697
InteractingPct		0.7529		.072359
Windows		0.0026		.327426
ActiveUsers_InteractingPct		1.0000		. 193768
ActiveUsers_MacOS		0.1937		.000000
ActiveUsers_Windows		0.1638		. 286586
ActiveUsers_iOS		0.1030		. 261236
ActiveUsers_ActiveUsers		0.5767		.229636
Nedivedbelb_Nedivedbelb		0.070	0	. 220000
	ActiveUser	s_Windows Act	civeUsers_iOS `	\
Intercept		NaN	NaN	
ActiveUsers		0.258029	0.189859	
${\tt InteractingPct}$		0.010807	-0.050601	
Windows		0.875271	-0.290521	
${ t Active Users_Interacting Pct }$		0.163826	0.053582	
ActiveUsers_MacOS		-0.286586	-0.261236	
ActiveUsers_Windows		1.000000	-0.254284	
ActiveUsers_iOS		-0.254284	1.000000	
ActiveUsers_ActiveUsers		0.261283	0.184717	
	Activollan	s_ActiveUsers		
Intercept	ACCIVEOBEL	NaN		
ActiveUsers		0.977081		
InteractingPct		0.033100		
Windows		0.009084		
ActiveUsers_InteractingPct		0.576716		
ActiveUsers_MacOS		0.229636		
ActiveUsers_Windows		0.261283		
ActiveUsers_iOS		0.184717		
VCCTAGODGED_TOD		0.104/1/		

Na základě hodnot VIF a i z korelační matice je možné určit, že prediktory ActiveUsers a ActiveUsers_ActiveUsers jsou vzájemně závislé. Danou skutečnost lze odvodit z toho, že prediktor ActiveUsers_ActiveUsers vznikl získáním druhé mocniny prediktoru ActiveUsers. Proto bude ve

ActiveUsers_ActiveUsers

1.000000

výsledném modelu ponechán pouze jeden, a to ActiveUsers.

Odstranění prediktoru ActiveUsers_ActiveUsers:

[35]:

Dep. Variable:	Ping	R-squared:	0.814
Model:	OLS	Adj. R-squared:	0.812
Method:	Least Squares	F-statistic:	309.3
Date:	Sun, 17 Dec 2023	Prob (F-statistic):	4.99e-176
Time:	16:02:19	Log-Likelihood:	-1642.0
No. Observations:	502	AIC:	3300.
Df Residuals:	494	BIC:	3334.
Df Model:	7		
Covariance Type:	nonrobust		

	coef	std err	t	\mathbf{P} > $ \mathbf{t} $	[0.025]	0.975]
Intercept	9.9196	1.357	7.309	0.000	7.253	12.586
${f Active Users}$	0.0055	0.000	22.743	0.000	0.005	0.006
${\bf Interacting Pct}$	35.2710	2.286	15.426	0.000	30.779	39.763
Windows	7.7665	1.526	5.088	0.000	4.767	10.766
${\bf Active Users_Interacting Pct}$	-0.0033	0.000	-8.504	0.000	-0.004	-0.003
${\bf Active Users_MacOS}$	0.0017	0.000	12.726	0.000	0.001	0.002
${\bf Active Users_Windows}$	-0.0007	0.000	-2.840	0.005	-0.001	-0.000
${f Active Users_iOS}$	-0.0010	0.000	-7.445	0.000	-0.001	-0.001

Omnibus:	123.688	Durbin-Watson:	1.872
Prob(Omnibus):	0.000	Jarque-Bera (JB):	663.242
Skew:	0.959	Prob(JB):	9.53e-145
Kurtosis:	8.294	Cond. No.	6.56e + 04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.56e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Následně budou ještě jednou vypočítány hodnoty VIF a korelační matice.

```
[36]: X = pd.DataFrame(model.exog, columns=model.exog_names)

# Získání hodnot VIF a uložení do dataframe.
```

```
vif = pd.Series([variance_inflation_factor(X.values, i)
                       for i in range(X.shape[1])],
                        index=X.columns)
      vif_df = vif.to_frame()
      # Nastavení názvu sloupce.
      vif_df.columns = ['VIF']
      vif_df
[36]:
                                         VIF
                                   22.411971
      Intercept
      ActiveUsers
                                    4.567019
      InteractingPct
                                    5.561726
      Windows
                                    5.546736
      ActiveUsers InteractingPct
                                    8.550677
      ActiveUsers_MacOS
                                    1.656643
      ActiveUsers_Windows
                                    6.464752
      ActiveUsers_iOS
                                    1.550671
[37]: # Zobrazení korelace prediktorů.
      X.corr()
[37]:
                                   Intercept ActiveUsers InteractingPct
                                                                             Windows \
      Intercept
                                         NaN
                                                      NaN
                                                                       NaN
                                                                                 NaN
                                         NaN
                                                                  0.040275 0.003135
      ActiveUsers
                                                 1.000000
      InteractingPct
                                         NaN
                                                                  1.000000 -0.016964
                                                 0.040275
      Windows
                                         NaN
                                                                 -0.016964 1.000000
                                                 0.003135
      ActiveUsers_InteractingPct
                                         NaN
                                                 0.591746
                                                                  0.752979 0.002608
      ActiveUsers_MacOS
                                         NaN
                                                 0.243697
                                                                  0.072359 -0.327426
      ActiveUsers_Windows
                                         NaN
                                                 0.258029
                                                                  0.010807 0.875271
      ActiveUsers_iOS
                                         NaN
                                                 0.189859
                                                                 -0.050601 -0.290521
                                   ActiveUsers_InteractingPct ActiveUsers_MacOS \
      Intercept
                                                           NaN
                                                                              NaN
                                                                         0.243697
      ActiveUsers
                                                     0.591746
      InteractingPct
                                                     0.752979
                                                                         0.072359
      Windows
                                                     0.002608
                                                                        -0.327426
      ActiveUsers_InteractingPct
                                                     1.000000
                                                                         0.193768
      ActiveUsers MacOS
                                                     0.193768
                                                                         1.000000
      ActiveUsers_Windows
                                                     0.163826
                                                                        -0.286586
      ActiveUsers_iOS
                                                     0.053582
                                                                        -0.261236
                                   ActiveUsers_Windows ActiveUsers_iOS
      Intercept
                                                   NaN
                                                                     NaN
                                              0.258029
      ActiveUsers
                                                                0.189859
      InteractingPct
                                              0.010807
                                                               -0.050601
      Windows
                                                               -0.290521
                                              0.875271
```

ActiveUsers_InteractingPct	0.163826	0.053582
ActiveUsers_MacOS	-0.286586	-0.261236
ActiveUsers_Windows	1.000000	-0.254284
ActiveUsers_iOS	-0.254284	1.000000

Nyní již jsou hodnoty VIF v požadovaném rozsahu a je získán výsledný model dle algoritmu (ještě ovšem se nejedná o úplně konečný model, protože ještě bude nutné odstranit odlehlé hodnoty, jak bude následně provedeno).

Po odstranění prediktoru ActiveUsers_ActiveUsers se změnila hodnota R-squared z hodnoty 0.843 na hodnotu 0.814, ovšem i přes snížení této hodnoty lze argumentovat, že se zároveň snížila celková složitost modelu, a tedy může být daný krok eliminace prediktoru proveden.

Rovnice finálního modelu po aplikaci algoritmu je následující:

```
[38]: def get_reg_eq(model_fit):
    eq = f"y = {model_fit.params.Intercept:.6f}"

    for term in model_fit.params.index[1:]:
        eq += f" + {model_fit.params[term]:.6f} * {term}"

    print(f"Regression equation: {eq}")

get_reg_eq(model_fit)
```

Regression equation: y = 9.919642 + 0.005472 * ActiveUsers + 35.271023 * InteractingPct + 7.766522 * Windows + -0.003274 * ActiveUsers_InteractingPct + 0.001690 * ActiveUsers_MacOS + -0.000745 * ActiveUsers_Windows + -0.001048 * ActiveUsers_iOS

Ověřování linearity Z předpokladu vyplývá, že existuje lineární závislost mezi prediktorama a závislou proměnnou. Následně bude vyobrazen vztah reálných hodnot a predikovaných hodnot.

```
[39]: new_col_name = 'prediction'

if new_col_name not in df_2:
    df_2.insert(loc=len(df_2.columns), column=new_col_name, value=model_fit.
    fittedvalues)

df_2['prediction']
```

```
[39]: 0 46.177579
1 46.972684
2 60.914651
3 58.953590
4 81.274092
...
497 36.963066
```

```
498
             27.177504
      499
             49.166381
     500
             42.268240
      501
             53.911801
     Name: prediction, Length: 502, dtype: float64
[40]: ax = sns.lmplot(x='Ping', y='prediction', data=df_2, fit_reg=False)
      line_coordinates = np.arange(df_2['prediction'].min(), df_2['prediction'].max())
      plt.plot(line_coordinates, line_coordinates, color='chocolate', u
       ⇔linestyle='dotted', linewidth='2.7')
      ax.set(title='Porovnání reálných a predikovaných hodnot', xlabel='Reálné_
       ⇔hodnoty', ylabel='Predikované hodnoty')
     plt.show()
```

/home/david/anaconda3/lib/python3.11/site-packages/seaborn/axisgrid.py:118:
UserWarning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Vyplývá, že data jsou položena na diagonále, tudíž předpoklad je splněn. Zároveň lze detekovat dvě odlehlé hodnoty, které mohou být odstraněny. Takové hodnoty buď mohou nastat pouze velmi vyjímečně a nebo mohou vzniknout příčinou chyby měření.

Rezidua Předpokladem metody nejmenších čtverců (anglicky Least squares) je, že chyby pochází z normálního rozdělení.

```
[41]: plt.subplots(figsize=(10, 5))

ax = sns.histplot(model_fit.resid, kde=True)
ax.set(title='Distribuce rezidu1', xlabel='Rezidua', ylabel='Počet')

plt.show()
```


Na základě grafu by bylo možné usuzovat, že předpoklad je splněn, ovšem daná skutečnost ještě bude ověřena pomocí Anderson-Darlingova testu. Zároveň je možné pozorovat dříve detekované odlehlé hodnoty.

```
[42]: print(f"P-hodnota: {normal_ad(model_fit.resid)[1]}")
```

P-hodnota: 0.030169539168559602

Na základě Anderson-Darlingova testu lze zamítnout předpoklad normality, protože P-hodnota je menší než hodnota 0.05.

Následuje odstranění dvou odlehlých hodnot.

```
[43]: # Ošetření, pokud kód byl již jednou spuštěn, aby se data neupravovala znovu.
try:
    if DATA_IS_LOADED:
        print("Info: data are not reloaded.")
except:
    df_2 = df_2.drop(df_2[model_fit.resid > 35].index).reset_index()

DATA_IS_LOADED = True
df_2
```

[43]:	index	ActiveUsers	${\tt InteractingPct}$	ScrollingPct	Ping	MacOS	Windows	\
0	0	4113	0.8283	0.1717	47	0.0	0.0	
1	1	7549	0.3461	0.6539	46	0.0	0.0	
2	2	8855	0.2178	0.7822	55	0.0	1.0	
3	3	8870	0.0794	0.9206	56	0.0	0.0	

```
4
          4
                     9559
                                    0.7282
                                                   0.2718
                                                              76
                                                                     1.0
                                                                               0.0
. .
                                    0.1974
                                                                     0.0
                                                                               0.0
495
       497
                     5315
                                                   0.8026
                                                               28
496
       498
                                    0.2373
                                                   0.7627
                                                                     1.0
                                                                               0.0
                     1392
                                                              24
497
       499
                     6014
                                    0.8112
                                                   0.1888
                                                              54
                                                                     0.0
                                                                               0.0
498
       500
                                    0.2345
                                                   0.7655
                                                                     0.0
                                                                               0.0
                     5118
                                                              39
499
       501
                     2660
                                    0.9390
                                                   0.0610
                                                              55
                                                                     1.0
                                                                               0.0
     iOS
           ActiveUsers_InteractingPct
                                         ActiveUsers_MacOS
                                                              ActiveUsers Windows
0
     1.0
                             3406.7979
                                                         0.0
                                                                                0.0
1
     1.0
                             2612.7089
                                                         0.0
                                                                                0.0
2
     0.0
                             1928.6190
                                                         0.0
                                                                             8855.0
3
     0.0
                              704.2780
                                                         0.0
                                                                                0.0
4
     0.0
                             6960.8638
                                                      9559.0
                                                                                0.0
. .
495
                              1049.1810
                                                                                0.0
    1.0
                                                         0.0
496
                                                                                0.0
    0.0
                              330.3216
                                                      1392.0
497
     1.0
                             4878.5568
                                                         0.0
                                                                                0.0
498
     0.0
                              1200.1710
                                                         0.0
                                                                                0.0
499
    0.0
                                                                                0.0
                             2497.7400
                                                      2660.0
     ActiveUsers_iOS
                                               InteractingPct_Windows
                        InteractingPct_MacOS
0
               4113.0
                                       0.0000
                                                                  0.0000
1
               7549.0
                                       0.0000
                                                                  0.0000
2
                  0.0
                                       0.0000
                                                                  0.2178
3
                  0.0
                                       0.0000
                                                                  0.0000
4
                  0.0
                                                                  0.0000
                                       0.7282
                  •••
. .
                                        •••
495
                                       0.0000
                                                                  0.0000
               5315.0
496
                  0.0
                                       0.2373
                                                                  0.0000
497
               6014.0
                                       0.0000
                                                                  0.0000
498
                  0.0
                                       0.0000
                                                                  0.0000
499
                  0.0
                                       0.9390
                                                                  0.0000
                           ActiveUsers_ActiveUsers
     InteractingPct_iOS
0
                  0.8283
                                            16916769
1
                  0.3461
                                            56987401
2
                  0.0000
                                            78411025
3
                  0.0000
                                            78676900
4
                  0.0000
                                            91374481
. .
                      •••
495
                  0.1974
                                            28249225
496
                  0.0000
                                            1937664
497
                  0.8112
                                            36168196
498
                  0.0000
                                            26193924
499
                  0.0000
                                            7075600
```

	<pre>InteractingPct_InteractingPct</pre>	prediction
0	0.686081	46.177579
1	0.119785	46.972684
2	0.047437	60.914651
3	0.006304	58.953590
4	0.530275	81.274092
		•••
495	0.038967	36.963066
496	0.056311	27.177504
497	0.658045	49.166381
498	0.054990	42.268240
499	0.881721	53.911801

[500 rows x 18 columns]

Poté již může být vytvořen samotný výsledný model.

[44]:

Dep. Variable:	Ping	R-squared:	0.842
Model:	OLS	Adj. R-squared:	0.840
Method:	Least Squares	F-statistic:	374.2
Date:	Sun, 17 Dec 2023	Prob (F-statistic):	1.71e-192
Time:	16:02:20	Log-Likelihood:	-1592.3
No. Observations:	500	AIC:	3201.
Df Residuals:	492	BIC:	3234.
Df Model:	7		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
Intercept	8.5942	1.259	6.827	0.000	6.121	11.067
${f Active Users}$	0.0057	0.000	25.489	0.000	0.005	0.006
${\bf InteractingPct}$	36.6538	2.107	17.398	0.000	32.514	40.793
${f Windows}$	8.1826	1.404	5.827	0.000	5.424	10.941
${\bf Active Users_Interacting Pct}$	-0.0035	0.000	-9.825	0.000	-0.004	-0.003
${\bf Active Users_MacOS}$	0.0017	0.000	13.874	0.000	0.001	0.002
${f Active Users_Windows}$	-0.0008	0.000	-3.513	0.000	-0.001	-0.000
ActiveUsers_iOS	-0.0010	0.000	-8.087	0.000	-0.001	-0.001

Omnibus:	4.707	Durbin-Watson:	1.914
Prob(Omnibus):	0.095	Jarque-Bera (JB):	3.366
Skew:	0.020	Prob(JB):	0.186
Kurtosis:	2.600	Cond. No.	6.60e + 04

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.6e+04. This might indicate that there are strong multicollinearity or other numerical problems.

[45]: VIF 22.817977 Intercept ActiveUsers 4.598525 InteractingPct 5.601527 Windows 5.543347 ActiveUsers_InteractingPct 8.586170 ActiveUsers MacOS 1.654880 ActiveUsers_Windows 6.455178

[46]: # Zobrazení korelace prediktorů.
X.corr()

ActiveUsers_iOS

[46]: Intercept ActiveUsers InteractingPct Windows \

1.549256

Intercept	NaN	NaN	NaN	NaN	
ActiveUsers	NaN	1.000000	0.036544 0	0.000596	
InteractingPct	NaN	0.036544	1.000000 -0).018190	
Windows	NaN	0.000596	-0.018190 1	1.000000	
ActiveUsers_InteractingPct	NaN	0.590081	0.752473 0).001144	
ActiveUsers_MacOS	NaN	0.242860	0.071554 -0).327407	
ActiveUsers_Windows	NaN	0.257546	0.009830 0	.874629	
ActiveUsers_iOS	NaN	0.188768	-0.051566 -0).290542	

ActiveUsers_InteractingPct ActiveUsers_MacOS \
Intercept NaN NaN
ActiveUsers 0.590081 0.242860

InteractingPct	0.752473	0.071554
Windows	0.001144	-0.327407
ActiveUsers_InteractingPct	1.000000	0.192962
ActiveUsers_MacOS	0.192962	1.000000
ActiveUsers_Windows	0.163177	-0.286360
ActiveUsers_iOS	0.052500	-0.262490

	ActiveUsers_Windows	ActiveUsers_iOS
Intercept	NaN	NaN
ActiveUsers	0.257546	0.188768
InteractingPct	0.009830	-0.051566
Windows	0.874629	-0.290542
ActiveUsers_InteractingPct	0.163177	0.052500
ActiveUsers_MacOS	-0.286360	-0.262490
ActiveUsers_Windows	1.000000	-0.254117
ActiveUsers_iOS	-0.254117	1.000000

Na základě hodnot VIF lze konstatovat, že prediktory nejsou kolineární.

Dále je vykreslen histogram po odstranění dvou odlehlých hodnot.

```
[47]: plt.subplots(figsize=(10, 5))

ax = sns.histplot(model_fit.resid, kde=True)
ax.set(title='Distribuce reziduí', xlabel='Rezidua', ylabel='Počet')

plt.show()
```


Na základě grafu histogramu lze usoudit, že nyní by již test normality mohl být splněn. Proto ještě jednou bude proveden test normality pomocí Anderson-Darlingova testu.

```
[48]: print(f"P-hodnota: {normal_ad(model_fit.resid)[1]}")
```

P-hodnota: 0.29993350780591116

Nyní již platí, že P-hodnota je větší než hodnota 0.05, a jedná se tedy o normální rozdělení.

Následně bude ověřena střední hodnota, která dle předpokladů musí být nulová.

```
[49]: print(f"Střední hodnota reziduí: {model_fit.resid.mean()}")
```

Střední hodnota reziduí: 2.725073500187136e-13

Na základě skutečnosti, že střední hodnota reziduí je velmi blízká hodnotě 0, lze považovat předpoklad za splněný.

Nakonec je vypsána ještě výsledná rovnice modelu po odstranění dvou odlehlých hodnot.

```
[50]: get_reg_eq(model_fit)
```

```
Regression equation: y = 8.594192 + 0.005670 * ActiveUsers + 36.653788 * InteractingPct + 8.182555 * Windows + <math>-0.003483 * ActiveUsers_InteractingPct + 0.001690 * ActiveUsers_MacOS + <math>-0.000847 * ActiveUsers_Windows + -0.001044 * ActiveUsers_iOS
```

Ověřování nezávislosti chyb Dalším krokem, který je nutné provést, je ověření nezávislosti chyb. K tomu bude použita statistika Durbin-Watson. Pokud výsledná hodnota statistiky bude blízká hodnotě 2.0, lze považovat předpoklad za splněný.

```
[51]: print(f"Durbin-Watson: {durbin_watson(model_fit.resid)}")
```

Durbin-Watson: 1.913712036776804

Na základě blízkosti hodnoty 1.913712036776804 k hodnotě 2.0 lze považovat předpoklad za splněný.

Homoskedasticita Jako poslední předpoklad metody nejmenších čtverců pro odhad parametrů regresní funkce bude ověřena homoskedasticita. Na základě té musí být rozptyl konstantní, neboli hodnoty by měly být rovnoměrně rozptýlené.

```
fig, ax = plt.subplots(figsize=(10, 5))

plt.scatter(x=df_2['prediction'], y=model_fit.resid, alpha=0.3)
plt.axhline(y=0, color='chocolate', linestyle='dotted', linewidth='2.7')
ax.set(title='Rezidua a predikované hodnoty', xlabel='Predikované hodnoty', u

sylabel='Rezidua')
plt.show()
```


Z grafu vyplývá, že i poslední předpoklad je splněn.

Vyobrazení výsledného modelu

```
[53]: print('Parametry výsledného modelu:')
      print(model_fit.params)
      fig = plt.figure(figsize=(12,12))
      ax = fig.add_subplot(111, projection='3d')
      x = np.arange(0, 10000, 100)
      y = np.arange(0.0, 1.0, 0.01)
      X, Y = np.meshgrid(x, y)
      zs_macos = model_fit.params['Intercept'] + \
          model_fit.params['ActiveUsers'] * X + \
          model_fit.params['ActiveUsers_MacOS'] * X + \
          model_fit.params['InteractingPct'] * Y + \
          model_fit.params['ActiveUsers_InteractingPct'] * X * Y
          # model_fit.params['ActiveUsers_ActiveUsers'] * X * X
          # model_fit.params['InteractingPct_InteractingPct'] * Y * Y
          # model_fit.params['MacOS'] + \
          # model_fit.params['InteractingPct_MacOS'] * Y + \
      zs_win = model_fit.params['Intercept'] + \
          model_fit.params['Windows'] + \
          model_fit.params['ActiveUsers'] * X + \
          model_fit.params['ActiveUsers_Windows'] * X + \
```

```
model_fit.params['InteractingPct'] * Y + \
    model_fit.params['ActiveUsers_InteractingPct'] * X * Y
    # model_fit.params['ActiveUsers_ActiveUsers'] * X * X
    # model_fit.params['InteractingPct_Windows'] * Y + \
    # model_fit.params['InteractingPct_InteractingPct'] * Y * Y
zs_ios = model_fit.params['Intercept'] + \
    model_fit.params['ActiveUsers'] * X + \
    model fit.params['ActiveUsers iOS'] * X + \
    model fit.params['InteractingPct'] * Y + \
    model fit.params['ActiveUsers InteractingPct'] * X * Y
    # model_fit.params['ActiveUsers_ActiveUsers'] * X * X
    # model fit.params['iOS'] + \
    # model_fit.params['InteractingPct_iOS'] * Y + \
    # model_fit.params['InteractingPct_InteractingPct'] * Y * Y
zs_android = model_fit.params['Intercept'] + \
    model_fit.params['ActiveUsers'] * X + \
    model_fit.params['InteractingPct'] * Y + \
    model_fit.params['ActiveUsers_InteractingPct'] * X * Y
    \# model_fit.params['ActiveUsers_ActiveUsers'] * X * X
    \begin{tabular}{ll} \# \ model\_fit.params['InteractingPct\_InteractingPct'] * Y * Y \\ \hline \end{tabular}
Z macos = zs macos.reshape(X.shape)
Z_win = zs_win.reshape(X.shape)
Z_ios = zs_ios.reshape(X.shape)
Z_android = zs_android.reshape(X.shape)
macos_surface = ax.plot_surface(X, Y, Z_macos, label='MacOS')
windows_surface = ax.plot_surface(X, Y, Z_win, label='Windows')
ios_surface = ax.plot_surface(X, Y, Z_ios, label='iOS')
android_surface = ax.plot_surface(X, Y, Z android, label='Android')
# Ošetření problému s matplotlib legendou.
# https://stackoverflow.com/questions/55531760/
 \rightarrow is-there-a-way-to-label-multiple-3d-surfaces-in-matplotlib
macos_surface._facecolors2d = macos_surface._facecolor3d
macos_surface._edgecolors2d = macos_surface._edgecolor3d
windows_surface._facecolors2d = windows_surface._facecolor3d
windows_surface._edgecolors2d = windows_surface._edgecolor3d
ios_surface._facecolors2d = ios_surface._facecolor3d
ios_surface._edgecolors2d = ios_surface._edgecolor3d
android_surface._facecolors2d = android_surface._facecolor3d
```

```
android_surface._edgecolors2d = android_surface._edgecolor3d

plt.title("Výsledný model")
ax.legend(loc='best')
ax.set_xlabel('ActiveUsers', fontsize=12)
ax.set_ylabel('InteractingPct', fontsize=12)
ax.zaxis._axinfo['juggled'] = (1, 2, 2)
ax.set_zlabel('Ping', fontsize=12, rotation=90)

plt.show()
```

Parametry výsledného modelu:

Intercept 8.594192 ActiveUsers 0.005670 InteractingPct 36.653788 Windows 8.182555 ActiveUsers_InteractingPct -0.003483 ActiveUsers_MacOS 0.001690 ActiveUsers_Windows -0.000847 ActiveUsers_iOS -0.001044

dtype: float64

Zadání:

2) Pomocí Vašeho výsledného modelu identifikujte, pro které nastavení parametrů má odezva nejproblematičtější hodnotu.

```
[54]: print(f"Nejvyšší hodnota predikce odezvy: {df_2['prediction'].max()} ms")

df_2[df_2['prediction'] == df_2['prediction'].max()]
```

Nejvyšší hodnota predikce odezvy: 83.00823447853553 ms

```
[54]:
           index ActiveUsers InteractingPct ScrollingPct Ping MacOS Windows \
      227
            227
                         9953
                                      0.6729
                                                     0.3271
                                                               76
                                                                     1.0
                                                                             0.0
              ActiveUsers_InteractingPct ActiveUsers_MacOS ActiveUsers_Windows \
          0.0
                                 6697.3737
                                                       9953.0
                                                                               0.0
      227
           ActiveUsers iOS InteractingPct MacOS InteractingPct Windows \
      227
                      0.0
                                          0.6729
                                                                     0.0
           InteractingPct_iOS ActiveUsers_ActiveUsers
      227
                          0.0
                                             99062209
           InteractingPct_InteractingPct prediction
      227
                               0.452794
                                          83.008234
```

Zadání:

3) Odhadněte hodnotu odezvy uživatele s Windows, při průměrném nastavení ostatních parametrů a vypočtěte konfidenční interval a predikční interval pro toto nastavení.

```
[55]: active_users_mean = df_2['ActiveUsers'].mean()
      interacting_pct_mean = df_2['InteractingPct'].mean()
      columns = {
          'ActiveUsers': active_users_mean,
          'InteractingPct': interacting pct mean,
          'Windows': 1.0,
          'ActiveUsers InteractingPct': active users mean * interacting pct mean,
          'ActiveUsers_MacOS': active_users_mean * df_2['MacOS'],
          'ActiveUsers_Windows': active_users_mean * df_2['Windows'],
          'ActiveUsers_iOS': active_users_mean * df_2['iOS']
      }
      prediction = model_fit.get_prediction(pd.DataFrame(columns, index=[0]))
      confidence_interval = model_fit.conf_int()
      summary = prediction.summary_frame(alpha=0.05)
      print(f"Bodový odhad:")
      print(prediction.predicted_mean[0])
      print()
      print(f"Konfidenční interval:")
      print(summary.mean_ci_lower[0], summary.mean_ci_upper[0])
      print()
      print(f"Predikční interval:")
      print(summary.obs_ci_lower[0], summary.obs_ci_upper[0])
```

Bodový odhad: 50.76953097185954

Konfidenční interval:

47.933603916608426 53.60545802711065

Predikční interval:

38.849514338779244 62.68954760493983

Zadání:

4) Na základě jakýchkoli vypočtených charakteristik argumentujte, zdali je Váš model "vhodný" pro další použití.

Na základě výše uvedeného jsou splněny všechny předpoklady lineární regrese (metody nejmenších čtverců pro odhad parametrů regresní funkce). Po aplikaci metody zpětné eliminace a po odstranění odlehlých hodnot je P-hodnota pro všechny prediktory rovna hodnotě 0.

Také hodnoty R-squared a Adj. R-squared, tedy koeficient determinace a adjustovaný koeficient determinace, dosahují slušných hodnot, a to 0.842 a 0.840. Jelikož jsou tyto hodnoty blíže k hodnotě 1 (daná statistika může nabývat hodnot v rozsahu 0 až 1), vyplývá, že model více vystihuje data, která byla vstupem modelu. Jelikož se adjustovaný koeficient determinace velmi neliší od koeficientu determinace, indikuje to, že model není příliš komplexní.

Na druhou stranu je hodnota čísla podmíněnosti (Cond. No.) velká, přesně 6.60e+04, což značí, že i malá změna ve vstupech způsobí velkou změnu koeficientu (matice soustavy je špatně podmíněná a její výsledek může být numerický špatně spočitatelný).

Souhrnně lze na základě výše uvedených argumentů považovat model za vhodný pro následné použití.