Typical & Atypical Cognitive Development

Unit 5. Recap & Preparing for Exam 12th April 2019

Paul Seitlinger, Kati Aus, Grete Arro

School of Educational Sciences
Tallinn University

RECAP & PREPARING FOR EXAM

Today's assignment

- Reflecting key messages of each of the previous units
- Finding answers to corresponding key questions

Exam next week

- Form available at https://seasense.github.io on 20th April 2019
- Answers to be sent to <u>paul.seitlinger@tlu.ee</u> by **27**th **April 2019** the latest

Final assessment

- Announced at 10th May 2019
- Homework
 - 5 reflections: 15 points
 - 3 (compulsory) reading assignments: 9 points
- Exam: 16 points
- Maximum: 40 points (plus 3 extra points for the fourth optional Unit 3-reading assignment)

UNIT 0: INTRODUCTION TO BIOLOGICAL CONSTRAINTS OF COGNITIVE DEVELOPMENT

Key messages

- Much of neural development
 - is postponed until after birth.
 - consists in the development of efficient communication between neurons (within cell circuits)
 and increasingly specialized brain areas (of large-scale brain networks).
- Examples of biological mechanisms involved are synaptogenesis, myelination, and synaptic pruning.

Key question

 Why does the phenomenon of synaptic pruning indicate that fundamental learning mechanisms take place as an interaction of biological and environmental factors?

UNIT 1: TRANSACTIONAL MODEL OF GENE-ENVIRONMENT INTERACTIONS

Key messages

- Cognitive development can be understood as an interplay of maturation and learning.
- Results of behavior genetics can be interpreted meaningfully, only if context variables, such as socioeconomic status or age, are taken into account.

- Maturation
 - Which processes mediate between genetically encoded information and protein synthesis?
 - What is gene expressivity?
- Learning
 - How can we describe classical conditioning in biological terms?
 - What is the learning rule of Hebb?
- Which logic (in research on behavior genetics) underlies the estimation of h^2 , c^2 , and e^2 ?
- Which conditions help an individual fulfill her or his genetic potential?

UNIT 2: THEORIES OF COGNITIVE DEVELOPMENT

Key messages

- Piaget suggests that children progress through different stages of increasing intellectual sophistication: sensory-motor, preoperational, concrete-operational, and formal-operational.
- Contemporary approaches, such as Neo-Piagetian theories and the framework of Neuroconstructivism, aim to explain the mechanisms underlying this developmental progress.

- Why does the controversy between empiricism and nativism continue in the context of Neo-Piagetian theories?
- Which levels of observation are taken into account by the neuroconstructivism and which sources of constraints on cognitive development are associated with these levels?

UNIT 3: INDIVIDUAL DIFFERENCES IN COGNITIVE DEVELOPMENT

Key messages

- On a neuro-physiological level, executive functions (EF) are sub-served by a large-scale brain network spanning prefrontal and parietal regions.
- The strength of fronto-parietal connections increases from infancy to adulthood. The improvement of this "communication structure" goes hand in hand with EF improvements.
- Extensive engagement in cognitively demanding activities, such as learning to read, can increase a child's performance in tasks on EF.

- Which EF sub-functions are typically distinguished in the corresponding research literature and what are typical instruments to measure each of them?
- Which of these sub-functions contributes most to the prediction of a child's reading comprehension skills?
- Which "sources of constraints" (as proposed within the framework of neuroconstructivism) help us understand the reciprocal relations between reading comprehension and EF?

UNIT 4: NEUROPHYSIOLOGICAL CORRELATES & TRAINING OF EXECUTIVE FUNCTIONS

Key messages

- Positive EF training effects on a behavioral level (performance in EF tests) are reflected on a neurophysiological level in form of an increased fronto-parietal brain activation.
- Training programs that implement a certain set of empirically validated principles can improve EF.

- Why does the neuroconstructivist concept of interactive specialization help us understand the neurophysiological effects of effective EF training programs?
- Which of the above mentioned principles are easily implementable by a computer-based cognitive training on the one hand and physical exercises (integrating mindfulness) on the other hand?

Thank you for your attention ©

