# 测定介质中的声速

# 一、数据及处理

1、共振频率

$$f_0 = 40.126kHz$$
  
$$\sigma_{f_0} = 0.001kHz$$

# 2、极值法

# (1) 数据记录

| 极值点i | $x_i/mm$ | $V_{pp}/V$ | 极值点i | $x_i/mm$ | $V_{pp}/V$ |
|------|----------|------------|------|----------|------------|
| 1    | 14. 023  | 3. 62      | 11   | 53.610   | 1.04       |
| 2    | 18. 515  | 3.09       | 12   | 49. 511  | 1. 19      |
| 3    | 22. 954  | 2.61       | 13   | 44. 997  | 1.30       |
| 4    | 27. 063  | 2. 20      | 14   | 40.609   | 1.42       |
| 5    | 31. 192  | 1.74       | 15   | 36. 281  | 1.61       |
| 6    | 36. 327  | 1.61       | 16   | 31.837   | 1.87       |
| 7    | 40. 782  | 1.45       | 17   | 27. 378  | 2. 18      |
| 8    | 45. 061  | 1.31       | 18   | 22.863   | 2. 58      |
| 9    | 49. 720  | 1. 18      | 19   | 18. 371  | 3. 01      |
| 10   | 53. 569  | 1.03       | 20   | 14.700   | 3. 57      |

## (2) 数据处理

| 平均位置i | $\overline{x_i}/mm$ | $\overline{V_{pp}}/V$ |
|-------|---------------------|-----------------------|
| 1     | 14. 362             | 3.60                  |
| 2     | 18. 443             | 3.05                  |
| 3     | 22. 908             | 2.50                  |
| 4     | 27. 220             | 2. 19                 |
| 5     | 31. 514             | 1.80                  |
| 6     | 36. 304             | 1.61                  |
| 7     | 40.700              | 1.44                  |
| 8     | 45. 029             | 1.30                  |
| 9     | 49.616              | 1. 18                 |
| 10    | 53. 590             | 1.04                  |

| i                                    | 1      | 2      | 3      | 4      | 5      |
|--------------------------------------|--------|--------|--------|--------|--------|
| $\Delta x_i = \frac{1}{5}(x_{i+5} -$ | 4. 388 | 4. 451 | 4. 424 | 4. 479 | 4. 415 |
| $x_i)/mm$                            |        |        |        |        |        |

利用逐差法处理数据:

$$\overline{\Delta x} = \frac{\sum_{i=1}^{5} \Delta x_i}{5} = 4.4317mm$$

计算不确定度:

$$\sigma_A = \sqrt{\frac{\sum_{i=1}^5 (\Delta x_i - \overline{\Delta x})^2}{5(5-1)}} = 0.0139mm$$

$$\sigma_B = e/\sqrt{3} = 0.00577mm$$
  
$$\sigma_{\overline{\Delta x}} = \sqrt{(\sigma_A)^2 + (\sigma_A)^2} = 0.015mm$$

故

$$\overline{\Delta x} \pm \sigma_{\overline{\Delta x}} = (4.432 \pm 0.015) mm$$

因此得到声波波长为

$$\lambda = 2\overline{\Delta x} = 8.864mm$$
$$\lambda \pm \sigma_{\lambda} = (8.86 \pm 0.03)mm$$

因此得到声速为

$$v = \lambda f_0 = 355.516m/s$$

$$\sigma_v = v \sqrt{(\frac{\sigma_{f_0}}{f_0})^2 + (\frac{\sigma_{\lambda}}{\lambda})^2} = 1.2m/s$$

因此

$$v \pm \sigma_v = (355.5 \pm 1.2)m/s$$

## 3、相位法

| 同相点i | x <sub>i</sub> /mm | $x_i'/mm$ | $\overline{x}_i/mm$ |
|------|--------------------|-----------|---------------------|
| 1    | 18. 082            | 17. 922   | 18. 002             |
| 2    | 27. 130            | 27. 036   | 27. 083             |
| 3    | 36. 010            | 35. 923   | 35. 966             |
| 4    | 44. 821            | 44. 759   | 44. 790             |
| 5    | 53. 572            | 53. 414   | 53. 493             |
| 6    | 62. 359            | 62. 232   | 62. 300             |
| 7    | 71. 162            | 71.098    | 71. 130             |
| 8    | 79. 791            | 79. 751   | 79. 771             |
| 9    | 88. 292            | 88. 371   | 88. 332             |
| 10   | 97. 217            | 97. 118   | 97. 168             |



 $\forall x_i - i$ 做线性拟合 $x_i = a + bi$ :

$$a \pm \sigma_a = (9.53 \pm 0.11)mm$$
  
 $b + \sigma_b = (8.776 \pm 0.018)mm$   
 $r = 0.99998$ 

斜率b的大小即为声波波长,故

$$v = \lambda f_0 = 352.1458m/s$$

$$\sigma_v = v \sqrt{\left(\frac{\sigma_{f_0}}{f_0}\right)^2 + \left(\frac{\sigma_{\lambda}}{\lambda}\right)^2} = 0.72m/s$$

因此

$$v \pm \sigma_v = (352.15 \pm 0.72) m/s$$

#### 4、气体参量法

(1) 温度t

$$t = 27.8^{\circ}\text{C}$$

$$\sigma_t = \frac{e_t}{\sqrt{3}} = 0.58^{\circ}\text{C}$$

(2) 压强**p** 

$$p = 754.1mmHg = 1.00432 \times 10^{5} Pa$$
 
$$\sigma_{p} = \frac{e_{p}}{\sqrt{3}} = 0.058mmHg = 7.7Pa$$
 
$$p \pm \sigma_{p} = (1.00432 \pm 0.00077) \times 10^{5} Pa$$

(3) 相对湿度

干湿表温度计读数: 干表 $t_d=23$ °C 湿表 $t_w=21$ °C 由表上读出相对湿度为

$$w = 81\%$$

$$\sigma_w = \frac{e_w}{\sqrt{3}} = 0.58\%$$

$$w \pm \sigma_w = (81 \pm 1)\%$$

(4) 声速计算

$$v = 331.45 \times \sqrt{(1 + \frac{t}{T}) \times (1 + \frac{0.3192p_w}{p})}$$

其中 $p_w = w \times p_s$ 为水蒸气分压, $p_s$ 为当前温度下水蒸气饱和气压。 查饱和水蒸气压与温度关系表:

| 温度t/℃          | 25     | 26     | 27     | 28   | 29     | 30     |
|----------------|--------|--------|--------|------|--------|--------|
| 饱和蒸气压 $p_s/Pa$ | 3167.6 | 3361.3 | 3565.3 | 3780 | 4005.4 | 4243.3 |

对 $p_s$ 和t的数值大小进行线性拟合 $p_s = a + bt$ 得

$$a = (-2225.7 \pm 1.3)Pa$$
  
 $b = (215.01 \pm 0.02)Pa/^{\circ}C$   
 $r = 0.99931$ 

可见在25~30°C的范围内,可以近似认为 $p_s$ 和t满足线性关系 $p_s = a + bt$ . 因此声速的表达式可以写为

$$v = 331.45 \times \sqrt{(1 + \frac{t}{T}) \times (1 + \frac{0.3192w \times (a + bt)}{p})} = 349.584m/s$$

$$\sigma_v = \sqrt{(\frac{\partial v}{\partial t} \times \sigma_t)^2 + (\frac{\partial v}{\partial w} \times \sigma_w)^2 + (\frac{\partial v}{\partial p} \times \sigma_p)^2} = 0.39m/s$$

所以声速为

$$v \pm \sigma_v = (349.6 \pm 0.4) m/s$$

所以有效数字位数为4位.

- 5、水中声速的测量数据(声光效应法)
- (1) 共振频率 $f_0$

$$f_0 = 11.210MHz$$
  $\sigma_{f_0} = \frac{e_{f_0}}{\sqrt{3}} = 0.58kHz$   $f_0 \pm \sigma_{f_0} = (11.210 \pm 0.001)MHz$ 

(2) 衍射屏到水槽中心距离L

$$\begin{split} L_1 &= 401.0cm \text{ , } \sigma_{L_1} = 0.06cm \\ L_2 &= 408.8cm \text{ , } \sigma_{L_2} = 0.06cm \\ L &= \frac{L_1 + L_2}{2} = 404.9cm \\ \sigma_{L} &= \sqrt{(\frac{\sigma_{L_1}}{2})^2 + (\frac{\sigma_{L_2}}{2})^2} = 0.04cm \\ L &\pm \sigma_{L} = (404.9 \pm 0.1)cm \end{split}$$

(3) 光波波长**λ** 

实验使用He-Ne激光器,波长为

$$\lambda = 632.8nm$$

(4) 衍射光斑位置

| 光斑级数i    | -2    | -1    | 0 | 1    | 2    |
|----------|-------|-------|---|------|------|
| $x_i/cm$ | -3.86 | -1.95 | 0 | 1.93 | 3.80 |

 $\forall x_i - i$ 线性拟合 $x_i = a + bi$ :

$$a = (-0.016 \pm 0.012)cm$$

$$b = (1.920 \pm 0.004)cm$$

$$r = 0.999977$$

$$\Delta x \pm \sigma_{\Delta x} = (1.920 \pm 0.004)cm$$

(5) 声速计算 声波波长Λ

$$\Lambda = \frac{L}{\Delta x} \lambda = 1.33448 \times 10^{-4} m$$

$$\sigma_{\Lambda} = \Lambda \times \sqrt{\left(\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_{\Delta x}}{\Delta x}\right)^2} = 2.8 \times 10^{-7} m$$

$$\Lambda \pm \sigma_{\Lambda} = (1.3345 \pm 0.0028) \times 10^{-4} m$$

声速

$$v = \Lambda f_0 = 1495.96 m/s$$

$$\sigma_v = v \times \sqrt{\left(\frac{\sigma_\Lambda}{\Lambda}\right)^2 + \left(\frac{\sigma_{f_0}}{f_0}\right)^2} = 3.1m/s$$

$$v \pm \sigma_v = (1496.0 \pm 3.1)m/s$$

# 二、分析与讨论

1、声波能量随传播距离衰减规律

| 平均位置i | $\overline{x}_{\iota}/mm$ | $\overline{V_{pp}}/V$ | $\ln{(\overline{V_{pp}}^2)}$ |
|-------|---------------------------|-----------------------|------------------------------|
| 1     | 14. 362                   | 3.60                  | 2. 562                       |
| 2     | 18. 443                   | 3.05                  | 2. 230                       |
| 3     | 22. 908                   | 2.50                  | 1.832                        |
| 4     | 27. 220                   | 2. 19                 | 1.568                        |
| 5     | 31. 514                   | 1.80                  | 1. 176                       |
| 6     | 36. 304                   | 1.61                  | 0.952                        |
| 7     | 40.700                    | 1.44                  | 0.729                        |
| 8     | 45. 029                   | 1.30                  | 0. 525                       |
| 9     | 49.616                    | 1.18                  | 0.331                        |
| 10    | 53. 590                   | 1.04                  | 0.078                        |



可以看到随着距离的增加,电压峰峰值会衰减,并且衰减的速率随距离增加会减慢,根据其物理意义推测声波能量随距离指数衰减,根据波的理论知识知道波的能量正比于振幅的平方,对 $\ln{(\overline{V_{pp}}^2)} - x$ 线性拟合  $\ln{(\overline{V_{pp}}^2)} = a + bx$ :

$$a = 3.3 \pm 0.1$$
$$b = -0.0617 \pm 0.0027$$
$$r = 0.9923$$



可见 $\ln\left(\overline{V_{pp}}^2\right)$ 和x大致呈线性关系,所以声波能量随传播距离大致呈指数衰减。

#### 2、问题调研(SAW和FBAR滤波器原理)

#### (1) SAW 滤波器 [1][2]

理论基础: 声表面波(SAW)[3]: 沿着介质表面或界面传播的各种模式的波;



工作原理:主体是一片具有压电特性的基片材料,在上面有两个叉指换能器(IDT)[4],一个是发射端,负责将接收到的电信号转换为声信号,另一个是接收端,负责将接收到的声信号转化为电信号。声信号沿基片表面传播,根据基片的性质(压电性质、杨氏模量等)、形状和IDT的形状,基片会存在一系列振动

模式,声信号从发射端发生后,经过基片的挑选,符合要求的波会被接收端接收并转换为电信号。

## (2) FBAR 滤波器[5]



工作原理:基本原理与 SAW 滤波器相同,都经过:电声转换一选频滤波一声电转换,区别在于 SAW 滤波器中声波是沿着基片的表面传播的,而 FBAR 滤波器中声波在薄膜腔内传播;

#### 三、 收获与感想

在本次实验中,用三种方法测定了空气中的声速值,并用声光效应法测定了水中的声速值。在这个过程中,我对基本实验仪器的使用方法更加熟悉,同时也学习并理解了 Ramman-Nath 衍射的原理和适用条件。

在本次实验中,我印象最深的就是虽然我们都进行了预习,知道了声光效应实验的步骤,但对于老师提出的关于 Ramman-Nath 衍射的条件的问题还是没有回答出来。实验学习应该和理论的学习一样,不仅要知其然,更要知其所以然,不能仅仅满足于知道了实验的步骤和方法。

#### 参考文献:

- Wikipedia contributors. (2022, July 6). Surface acoustic wave. In Wikipedia, The Free Encyclopedia. Retrieved 06:20, September 18, 2022,
  - $from \ \underline{https://en.wikipedia.org/w/index.php?title=Surface\_acoustic\_wave\&oldid=1096809234$
- 2. SAW 滤波器\_百度百科 SAW 滤波器 百度百科 (baidu.com)
- 3. Lord Rayleigh (1885). "On Waves Propagated along the Plane Surface of an Elastic Solid". Proc. London Math. Soc. s1-17 (1): 4–11.
- 4. Wikipedia contributors. (2020, October 3). Interdigital transducer. In *Wikipedia, The Free Encyclopedia*. Retrieved 06:33, September 18, 2022,
  - from https://en.wikipedia.org/w/index.php?title=Interdigital\_transducer&oldid=981597815
- Wikipedia contributors. (2022, August 15). Thin-film bulk acoustic resonator. In Wikipedia, The Free Encyclopedia. Retrieved 06:40, September 18, 2022, from <a href="https://en.wikipedia.org/w/index.php?title=Thin-film\_bulk\_acoustic\_resonator&oldid=1104507086">https://en.wikipedia.org/w/index.php?title=Thin-film\_bulk\_acoustic\_resonator&oldid=1104507086</a>