Problem 1

> sols:=solve(x^3-3*x^2+3,x);

> sols:=solve(x^3-3*x^2+3,x);

$$sols := \frac{\left(-4+4 \operatorname{I}\sqrt{3}\right)^{1/3}}{2} + \frac{2}{\left(-4+4 \operatorname{I}\sqrt{3}\right)^{1/3}} + 1, -\frac{\left(-4+4 \operatorname{I}\sqrt{3}\right)^{1/3}}{4}$$

$$-\frac{1}{\left(-4+4 \operatorname{I}\sqrt{3}\right)^{1/3}} + 1 + \frac{1}{2} - \frac{2}{\left(-4+4 \operatorname{I}\sqrt{3}\right)^{1/3}} - \frac{2}{\left(-4+4 \operatorname{I}\sqrt{3}\right)^{1/3}} + 1}{2},$$

$$-\frac{\left(-4+4 \operatorname{I}\sqrt{3}\right)^{1/3}}{4} - \frac{1}{\left(-4+4 \operatorname{I}\sqrt{3}\right)^{1/3}} + 1$$

$$-\frac{1\sqrt{3}\left(\frac{\left(-4+4 \operatorname{I}\sqrt{3}\right)^{1/3}}{2} - \frac{2}{\left(-4+4 \operatorname{I}\sqrt{3}\right)^{1/3}}\right)}{2}$$

sols:=evalc([sols]); # Use complex numbers tricks to simplify

$$sols := \left[\left[2\cos\left(\frac{2\pi}{9}\right) + 1, -\cos\left(\frac{2\pi}{9}\right) + 1 - \sqrt{3}\sin\left(\frac{2\pi}{9}\right), -\cos\left(\frac{2\pi}{9}\right) + 1 \right]$$

$$+ \sqrt{3}\sin\left(\frac{2\pi}{9}\right) \right]$$

$$(2)$$

> evalf(sols); # Evaluate using floating-point numbers [[2.532088886, -0.8793852421, 1.347296356]](3)

> plot(x^3-3*x^2+3,x=-1..3);

Problem 2

 $> plot(x^5-3*x^2+1,x=-2..2);$

> Digits:=20: # Variable-precision arithmetic

> fsolve(x^5-3*x^2+1=0,x);

$$-0.56107000717028161263, 0.59924102796568577923, 1.3480469412913384769$$
 (5)

Problem 3

> restart:

>
$$x_{kp1} := (x_k, x_{km1}) - x_k - (x_k - x_{km1}) / (f(x_k) - f(x_k m_1)) * f(x_k);$$

 $x_{kp1} := (x_k, x_{km1}) \mapsto x_k - \frac{(x_k - x_{km1}) \cdot f(x_k)}{f(x_k) - f(x_{km1})}$
(6)

Part b

$$\psi := (x_{-}k, x_{-}km1) \mapsto \frac{x_{-}kp1(x_{-}k, x_{-}km1) - \xi}{(x_{-}k - \xi) \cdot (x_{-}km1 - \xi)}$$
(7)

> psi_expr:=simplify(psi(x_k,x_km1));

$$psi_expr := \frac{x_k - \frac{(x_k - x_km1) f(x_k)}{f(x_k) - f(x_km1)} - \xi}{(x_k - \xi) (x_km1 - \xi)}$$
(8)

To complete part b we need to use that f(xi)=0

limit(psi_expr,x_k=xi); # Maple cannot do calculation!

$$\lim_{\substack{x_{-}k \to \xi}} \frac{x_{-}k - \frac{(x_{-}k - x_{-}km1) f(x_{-}k)}{f(x_{-}k) - f(x_{-}km1)} - \xi}{(x_{-}k - \xi) (x_{-}km1 - \xi)}$$
(9)

> psi_series:=convert(series(psi_expr, x_k=xi, 2),polynom);

$$psi_series := -\frac{(-x_km1 + \xi) f(\xi)}{(f(\xi) - f(x_km1)) (x_km1 - \xi) (x_k - \xi)}$$
 (10)

$$+ \frac{1 - \frac{\left(-x_{-}km1 + \xi\right) D(f) (\xi)}{f(\xi) - f(x_{-}km1)} - \frac{\left(1 - \frac{\left(x_{-}km1 - \xi\right) D(f) (\xi)}{-f(\xi) + f(x_{-}km1)}\right) f(\xi)}{f(\xi) - f(x_{-}km1)}}{x_{-}km1 - \xi}$$

> psi_limit_Maple:=simplify(psi_series,{f(xi)=0}); # Now use that f
 (xi)=0 to help Maple

$$psi_limit_Maple := \frac{D(f)\left(\xi\right)\left(x_km1 - \xi\right) - f(x_km1)}{\left(-x_km1 + \xi\right)f(x_km1)} \tag{11}$$

Now let's try to do this ourselves in a smart way

> piece_1:=eval(psi_expr, f(x_k)=0);

$$piece_1 := \frac{1}{x_km1 - \xi}$$
 (12)

piece_2:=simplify(psi_expr-piece_1);

$$piece_2 := -\frac{(x_-k - x_-km1) f(x_-k)}{(f(x_-k) - f(x_-km1)) (x_-k - \xi) (x_-km1 - \xi)}$$
 (13)

 \rightarrow problem:=f(x_k)/(x_k - xi);

$$problem := \frac{f(x_k)}{x_k - \xi}$$
 (14)

> piece_3:=simplify(piece_2/problem);

$$piece_{3} := \frac{x_{-}k - x_{-}km1}{(f(x_{-}k) - f(x_{-}km1)) (-x_{-}km1 + \xi)}$$
 (15)

> psi_new:=piece_1+problem*piece_3;

$$psi_new := \frac{(x_k - x_km1) f(x_k)}{(f(x_k) - f(x_km1)) (-x_km1 + \xi) (x_k - \xi)} + \frac{1}{x_km1 - \xi}$$
 (16)

simplify(psi_expr-psi_new); # They are the same
0 (17)

> simplify(series(problem, x_k=xi, 2), {f(xi)=0});

$$D(f)(\xi) + O((x_k - \xi))$$
(18)

psi_limit:=simplify(eval(piece_1+D(f)(xi)*piece_3, x_k=xi));

$$psi_limit := \frac{1}{x \ km1 - \xi} + \frac{D(f)(\xi)}{f(\xi) - f(x \ km1)}$$
 (19)

Part c

> limit(psi_limit, x_km1=xi);

$$\frac{D^{(2)}(f)(\xi)}{2D(f)(\xi)}$$
 (20)

Part d

> x_k_m_xi_kp1:=k->A*(x[k-1]-xi)^q;

$$x_k_m x_i kp1 := k \mapsto A \cdot (x_{k-1} - \xi)^q$$
 (21)

> psi_limit_assumpt:=x_k_m_xi_kp1(k+1)/x_k_m_xi_kp1(k)/(x[k-1]-xi);

$$psi_limit_assumpt := \frac{\left(x_k - \xi\right)^q}{\left(x_{k-1} - \xi\right)^q \left(x_{k-1} - \xi\right)}$$
(22)

> psi_limit_assumpt := x_k_m_xi_kp1(k)^q/((x[k - 1] - xi)^q*(x[k - 1] - xi));

$$psi_limit_assumpt := \frac{\left(A\left(x_{k-1} - \xi\right)^q\right)^q}{\left(x_{k-1} - \xi\right)^q\left(x_{k-1} - \xi\right)}$$
(23)

simplify(psi_limit_assumpt, symbolic)

$$A^{q} \left(x_{k-1} - \xi \right)^{q^{2} - q - 1}$$
 (24)

> solve(q^2 - q - 1, q);

$$\frac{\sqrt{5}}{2} + \frac{1}{2}, -\frac{\sqrt{5}}{2} + \frac{1}{2}$$
 (25)

Why symbolic algebra is not to be mixed with floating-point computations without care

Apply secant method to Problem 1

 $> f:=x->x^3-3*x^2+3$;

$$f := x \mapsto x^3 - 3 \cdot x^2 + 3 \tag{26}$$

> secant_p1:=simplify(x_kp1(x_k,x_km1));

$$secant_p1 := \frac{-3 + x_{_}kx_{_}km1^{2} + (x_{_}k^{2} - 3x_{_}k)x_{_}km1}{x_{_}km1^{2} + (x_{_}k - 3)x_{_}km1 + x_{_}k^{2} - 3x_{_}k}$$
 (27)

> x[0]:=1; x[1]:=2;

$$x_0 := 1$$
 $x_1 := 2$ (28)

The results we are computing are rational numbers, not floating-point numbers! By k=10 they are too big to print on the page!

> for k from 1 to 5 do $x[k+1]:=x_kp1(x[k],x[k-1])$; od;

$$x_2 \coloneqq \frac{15}{11}$$
$$x_3 \coloneqq \frac{529}{393}$$

$$x_4 \coloneqq \frac{66023412}{49004075}$$

$$x_5 \coloneqq \frac{1318937136659233329507}{978951013655099172194}$$

$$x_6 := \frac{2726636338039721566536316010597265960721326874147789996216}{2023783651789131303748689752504497223739420185726960598147}$$
 (29)

> Digits:=20: > evalf(x[6]);

> fsolve(x^3-3*x^2+3,x);

$$-0.87938524157181676811, 1.3472963553338606977, 2.5320888862379560704$$
 (31)