Homework Assignment #1

Steven Au NLP 201 Flanigan

October 24, 2023

Problem 1

Problem 2

a) The set of strings over the alphabet $\{a, b, c\}$ in which the substring bc never occurs.

b) The set of strings over the alphabet $\{1, 7\}$ that end in 11711.

c) The set of strings over the alphabet $\{0,1\}$ which are divisible by three when interpreted as a binary number (ignoring leading zeroes).

Steven Au Homework #1

Problem 3

The set of strings over the alphabet $\{1,7\}$ ending in 11711.

The NFA does not need to be deterministic and we can remove a lot of the edges.

Problem 4

a) The set of strings over $\{a, b, c\}$ in which the substring bc never occurs.

$$c^*(b|ac^*)^*$$

b) The language described in Problem 2.3: The set of strings over $\{0,1\}$ which are divisible by three when interpreted as a binary number (ignoring leading zeroes).

$$0*(1|(01*0)*1)*$$

Problem 5

We may define generalized regular expressions (GREs) as follows:

- 1. \emptyset is a GRE denoting the empty language.
- 2. ε is a GRE denoting the language $\{\varepsilon\}$.
- 3. For each $\sigma \in \Sigma$, σ is a GRE denoting the language $\{\sigma\}$.

October 24, 2023 Page 2

Steven Au Homework #1

4. If α and β are GREs, denoting the languages A and B, respectively, then

- $(\alpha \mid \beta)$ is a GRE denoting $A \cup B$.
- $(\alpha\beta)$ is a GRE denoting A.B.
- α^* is a GRE denoting A^* .

new $(\alpha \wedge \beta)$ is a GRE denoting $A \cap B$.

new $\neg \alpha$ is a GRE denoting \bar{A} .

- 1. Base Cases: \emptyset and ε are regular by definition. Any finite language is regular, and both of these represent finite languages.
- 2. Same case as 1.
- 3. Finite Automaton (FA) Construction: Create a DFA that only accepts strings of length 1 containing the symbol σ and rejects all other strings in a trap state. Therefore a DFA can be constructed for any single symbol from the alphabet proving a language is regular.
- 4. Closure Properties: Regular languages are closed under certain operations like union, intersection, complement, concatenation, and Kleene star.
 - Union $(\alpha \mid \beta)$: If A and B are regular languages, then their union $A \cup B$ is also regular.
 - Concatenation $(\alpha\beta)$: If A and B are regular, then their concatenation $A \cdot B$ is also regular.
 - Kleene Star (α^*) : If A is regular, then its Kleene star A^* is regular. The Kleene star represents zero or more concatenations of the language with itself.
 - Intersection $(\alpha \wedge \beta)$: If A and B are regular, then their intersection $A \cap B$ is also regular. Create a deterministic finite automaton (DFA) from the DFAs that accept A and B with product construction. The resultant DFA accepts an input if and only if both original DFAs accept the input.
 - Complement $(\neg \alpha)$: If A is regular, then its complement is regular. Swapping the accepting and non-accepting states of the DFA that recognizes A, results in a DFA will accept exactly the strings that the original DFA rejected.

Problem 6

- 1. False. Counterexample: $L_1 = \{a^n b^n \mid n \geq 0\}$ is not regular. $L_2 = \Sigma^*$ is regular and contains L_1 .
- 2. False. Counterexample: For $L_1 = \Sigma^*$ (all strings) and $L = \emptyset$, L_2 can be any language, including non-regular ones.
- 3. False. Counterexample: With $L_1 = \emptyset$ and $L = \Sigma^*$, L_2 can be anything, even non-regular.

October 24, 2023 Page 3

Steven Au Homework #1

4. **False.** Counterexample: For $L_i = \Sigma^* - \{a^i\}$, each L_i is regular. The infinite intersection excludes all strings a^n , which is not regular.

5. **True.** Explanation: If $\beta | \alpha \gamma$ is in $L(\gamma)$, then $L(\alpha^* \beta)$ must be in $L(\gamma)$.

October 24, 2023 Page 4