

CD4051BMS, CD4052BMS, CD4053BMS

CMOS Analog Multiplexers/Demultiplexers*

FN3316 Rev 0.00 December 1992

Features

- Logic Level Conversion
- · High-Voltage Types (20V Rating)
- · CD4051BMS Signal 8-Channel
- CD4052BMS Differential 4-Channel
- · CD4053BMS Triple 2-Channel
- · Wide Range of Digital and Analog Signal Levels:
 - Digital 3V to 20V
 - Analog to 20Vp-p
- Low ON Resistance: 125 Ω (typ) Over 15Vp-p Signal Input Range for VDD VEE = 15V
- High OFF Resistance: Channel Leakage of ±100pA (typ) at VDD - VEE = 18V
- · Logic Level Conversion:
 - Digital Addressing Signals of 3V to 20V (VDD VSS = 3V to 20V)
 - Switch Analog Signals to 20Vp-p (VDD VEE = 20V);
 See Introductory Text
- Matched Switch Characteristics: RON = 5Ω (typ) for VDD VEE = 15V
- Very Low Quiescent Power Dissipation Under All Digital Control Input and Supply Conditions: $0.2\mu W$ (typ) at VDD VSS = VDD VEE = 10V
- · Binary Address Decoding on Chip
- 5V, 10V and 15V Parametric Ratings
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Break-Before-Making Switching Eliminates Channel Overlap

Applications

- Analog and Digital Multiplexing and Demultiplexing
- · A/D and D/A Conversion
- Signal Gating
- * When these devices are used as demultiplexers the "CHANNEL IN/OUT" terminals are the outputs and the "COMMON OUT/IN" terminals are the inputs.

Description

CD4051BMS, CD4052BMS and CD4053BMS analog multiplexers/demultiplexers are digitally controlled analog switches having low ON impedance and very low OFF leakage current. Control of analog signals up to 20V peak-topeak can be achieved by digital signal amplitudes of 4.5V to 20V (if VDD-VSS = 3V, a VDD-VEE of up to 13V can be controlled; for VDD-VEE level differences above 13V, a VDD-VSS of at least 4.5V is required). For example, if VDD = +4.5V, VSS = 0, and VEE = -13.5V, analog signals from -13.5V to +4.5V can be controlled by digital inputs of 0 to 5V. These multiplexer circuits dissipate extremely low quiescent power over the full VDD-VSS and VDD-VEE supply voltage ranges, independent of the logic state of the control signals. When a logic "1" is present at the inhibit input terminal all channels are off.

The CD4051BMS is a single 8 channel multiplexer having three binary control inputs, A, B, and C, and an inhibit input. The three binary signals select 1 of 8 channels to be turned on, and connect one of the 8 inputs to the output.

The CD4052BMS is a differential 4 channel multiplexer having two binary control inputs, A and B, and an inhibit input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the analog inputs to the outputs.

The CD4053BMS is a triple 2 channel multiplexer having three separate digital control inputs, A, B, and C, and an inhibit input. Each control input selects one of a pair of channels which are connected in a single pole double-throw configuration.

The CD4051BMS, CD4052BMS and CD4053BMS are supplied in these 16 lead outline packages:

Braze Seal DIP *H4X †H4T

Frit Seal DIP H1E
Ceramic Flatpack H6W

Pinouts

Functional Diagrams

Functional Diagrams (Continued)

CD4052BMS

CD4053BMS

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V Operating Temperature Range.....-55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	θ_{ia}	$\theta_{\sf jc}$
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD) at +125°C	;
For TA = -55°C to +100°C (Package Type		
For TA = +100°C to +125°C (Package T	ype D, F, K)	Derate
Lineari	ty at 12mW	OC to 200mW
Device Dissipation per Output Transistor .		100mW
For TA = Full Package Temperature Rar	nge (All Pac	kage Types)
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
On-State Resistance	RON	VDD = 5V	•	1	+25°C	-	1050	Ω
RL = 10K Returned to		VIS = VSS to VDD		2	+125°C	-	1300	Ω
VDD - VSS/2				3	-55°C	-	800	Ω
		VDD = 10V		1	+25°C	-	400	Ω
		VIS = VSS to VDD		2	+125°C	-	550	Ω
				3	-55°C	-	310	Ω
		VDD = 15V VIS = VSS to VDD		1	+25°C	-	240	Ω
				2	+125°C	-	320	Ω
				3	-55°C	-	220	Ω
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ	A	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	V
(Note 4)		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V = VIS thru VEE = VSS	1k,	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	RL = 1k to VSS, IIS · OFF Channels	< 2μΑ	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V = VIS thru VEE = VSS	ı 1K	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	RL = 1K to VSS, ISS On All OFF Channels		1, 2, 3	+25°C, +125°C, -55°C	11	-	V
Off Channel Leakage	IOZL	VIN = VDD or GND	VDD = 20V	1	+25°C	-0.1	-	μΑ
Any Channel OFF		VOUT = 0V		2	+125°C	-1.0	-	μА
Or All Channels Off			VDD = 18V	3	-55°C	-0.1	-	μΑ
(Common Out/In)	IOZH	VIN = VDD or GND	VDD = 20V	1	+25°C	-	0.1	μA
(23)		VOUT = VDD		2	+125°C	-	1.0	μA
			VDD = 18V	3	-55°C	-	0.1	μA
NOTES: 1 All voltage		<u> </u>			av valtaga ia magavrad s	<u> </u>		

implemented.

- 2. Go/No Go test with limits applied to inputs.
- NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.
 - 4. VDD = 2.8V/3.0V, RL = 200k to VDD VDD = 20V/18V, RL = 10k to VDD

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	ITS	
PARAMETER	SYMBOL	CONDITIONS (Notes 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	720	ns
(Note 1) Address to Signal Out Channels On or Off	TPLH	VEE = VSS = 0V	10, 11	+125°C, -55°C	-	972	ns
Propagation Delay	TPZH	VDD = 5V, VIN = VDD or GND	9	+25°C	-	720	ns
(Note 1) Inhibit to Signal Out (Channel Turning On)	TPZL	VEE = VSS = 0V	10, 11	+125°C, -55°C	-	972	ns
Propagation Delay	TPHZ	VDD = 5V, VIN = VDD or GND	9	+25°C	-	450	ns
(Note 1) Inhibit to Signal Out (Channel Turning Off)	TPLZ	VEE = VSS = 0V	10, 11	+125°C, -55°C	-	608	ns

NOTES:

- 1. -55°C and +125°C limits guaranteed, 100% testing being implemented.
- 2. CL = 50pF, $RL = 10K\Omega$, Input TR, TF < 20ns.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

						LIMITS		
PARAMETER	SYMBOL	CONE	CONDITIONS		TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN	= VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
					+125°C	-	150	μА
		VDD = 10V, VI	N = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
					+125°C	-	300	μА
		VDD = 15V, VI	N = VDD or GND	1, 2	-55°C, +25°C	-	10	μА
					+125°C	-	600	μА
Input Voltage Low	VIL	VDD = VIS = 10V, VEE = VSS RL = 1K to VSS IIS , 2μA On/Off Channel		1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH			1, 2	+25°C, +125°C, -55°C	+7	-	V
Propagation Delay	TPHL	VDD = 10V	VEE = VSS = 0V	1, 2, 3	+25°C	-	320	ns
Address to Signal Out (Channels On or Off)	TPLH	VDD = 15V		1, 2, 3	+25°C	-	240	ns
,		VDD = 5V VEE = -5V		1, 2, 3	+25°C	-	450	ns
Propagation Delay	TPZH	VDD = 10V	VEE = VSS = 0V	1, 2, 3	+25°C	-	320	ns
Inhibit to Signal Out (Channel Turning On)	TPZL	VDD = 15V		1, 2, 3	+25°C	-	240	ns
(cramer raning cry		VDD = 5V VEE = -10V		1, 2, 3	+25°C	-	400	ns
Propagation Delay TPHZ		VDD = 10V	VEE = VSS = 0V	1, 2, 3	+25°C	-	210	ns
Inhibit to Signal Out (Channel Turning Off)	TPLZ	VDD = 15V		1, 2, 3	+25°C	-	160	ns
(* * * * * * * * * * * * * * * * * * *		VDD = 5V VEE = -15V		1, 2, 3	+25°C	-	300	ns
Input Capacitance	CIN	Any Address of	r Inhibit Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 10K, Input TR, TF < 20ns.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	\pm 1.0 μ A
ON Resistance	RONDEL10	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (F	Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D	•	Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1. 5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	MIL-STD-883		READ AND RECORD	
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR		
FUNCTION OPEN GRO	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz		
PART NUMBER	CD4051BMS					•	
Static Burn-In 1 Note 1	3	1, 2, 4 - 6, 7, 8, 9 - 15	16				
Static Burn-In 2 Note 1	3	7, 8	1, 2, 4 - 6, 9 - 16				
Dynamic Burn- In Note 1	-	4 - 6, 7, 8, 9, 12, 14	1, 2, 13, 15, 16	3	11	10	
Irradiation Note 2	3	7, 8	1, 2, 4 - 6, 9 - 16				
PART NUMBER	CD4052BMS					•	
Static Burn-In 1 Note 1	3, 13	1, 2, 4 - 6, 7, 8, 9 - 12, 14, 15	16				
Static Burn-In 2 Note 1	3, 13	7, 8	1, 2, 4 - 6, 9 - 12, 14 - 16				
Dynamic Burn- In Note 1	-	4 - 6, 7, 8, 12, 15	1, 2, 11, 14, 16	3, 13	10	9	
Irradiation Note 2	3, 13	7, 8	1, 2, 4 - 6, 9 - 12, 14 - 16				
PART NUMBER	CD4053BMS					•	
Static Burn-In 1 Note 1	4, 14, 15	1 - 3, 5 - 8, 9 - 13	16				
Static Burn-In 2 Note 1	4, 14, 15	7, 8	1 - 3, 5, 6, 9 - 13, 16				
Dynamic Burn- In Note 1	-	1, 5 - 8, 12	2, 3, 13, 16	4, 14, 15	9 - 11		
Irradiation Note 2	4, 14, 15	7, 8	1 - 3, 5, 6, 9 - 13, 16				

NOTE:

- 1. Each pin except pin 7 VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except pin 7 VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Typical Performance Characteristics

FIGURE 1. TYPICAL CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES)

FIGURE 3. TYPICAL CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLATGE (ALL TYPES)

FIGURE 5. TYPICAL ON CHARACTERISTICS FOR 1 OF 8 CHANNELS (CD4051BMS)

FIGURE 2. TYPICAL CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES)

FIGURE 4. TYPICAL CHANNEL ON RESISTANCE vs INPUT SIGNAL VOLTAGE (ALL TYPES)

FIGURE 6. TYPICAL DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (CD4051BMS)

Typical Performance Characteristics (Continued)

FIGURE 7. TYPICAL DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (CD4052BMS)

FIGURE 8. TYPICAL DYNAMIC POWER DISSIPATION vs SWITCHING FREQUENCY (CD4053BMS)

The ADDRESS (digital-control inputs) and INHIBIT logic levels are: "0" = VSS and "1" = VDD. The analog signal (through the TG) may swing from VEE to VDD

FIGURE 9. TYPICAL BIAS VOLTAGES

TRUTH TABLE

INPU	T STATE	S		"ON" CHANNEL(S)
CD4051BMS				
INHIBIT	С	В	Α	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	Х	Х	Х	NONE
CD4052BMS	•			
INHIBIT	ı	3	Α	
0	()	0	0x, 0y
0	()	1	1x, 1y
0		1	0	2x, 2y
0		1	1	3x, 3y
1		x	Х	NONE
CD4053BMS	•			
INHIBIT	A C	A OR B OR C		
0		0		ax or bx or cx
0		1		ay or by or cy
1		Χ		NONE

FIGURE 10. WAVEFORM, CHANNEL BEING TURNED ON, OFF (RL = $1k\Omega$)

FIGURE 11. WAVEFORM, CHANNEL BEING TURNED OFF, ON (RL = $1k\Omega$)

CD4053

FIGURE 13. PROPAGATION DELAY - INHIBIT INPUT TO SIGNAL OUTPUT

FIGURE 14. TYPICAL TIME-DIVISION APPLICATION OF THE CD4052BMS

Chip Dimensions and Pad Layouts

CD4051BMSH

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch)

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL. PASSIVATION: 10.4kÅ - 15.6kÅ, Silane
BOND PADS: 0.004 inches X 0.004 inches MIN
DIE THICKNESS: 0.0198 inches - 0.0218 inches

© Copyright Intersil Americas LLC 1999. All Rights Reserved.
All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html

Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

