Model Assessment and Comparison Examples

Lin Zhang

Department of Biostatistics School of Public Health University of Minnesota

- Data: Estimated log relative hazards $Y_{ij} = \hat{\beta}_{ij}$ obtained by fitting separate Cox proportional hazards regressions to the data from each of J = 18 clinical units participating in I = 6 different AIDS studies.
- To these data we wish to fit the cross-study model,

$$egin{array}{lll} Y_{ij} = a_i + b_j + s_{ij} + \epsilon_{ij}, & i = 1, \ldots, I, \ j = 1, \ldots, J, \\ & ext{where} & a_i & = & ext{study main effect} \\ & b_j & = & ext{unit main effect} \\ & s_{ij} & = & ext{study-unit interaction term, and} \\ & \epsilon_{ij} & \stackrel{iid}{\sim} & N(0, \sigma_{ij}^2) \\ \end{array}$$

and the estimated standard errors from the Cox regressions are used as (known) values of the σ_{ij} .

Estimated Unit-Specific Log Relative Hazards								
	<u> </u>							
	Toxo	adi/ddC			Fungal	CIVIV		
Unit			ZDV+ddI	ZDV + ddC				
A	0.814	NA	-0.406	0.298	0.094	NA		
B	-0.203	NA	NA	NA	NA	NA		
C	-0.133	NA	0.218	-2.206	0.435	0.145		
D	NA	NA	NA	NA	NA	NA		
E	-0.715	-0.242	-0.544	-0.731	0.600	0.041		
F	0.739	0.009	NA	NA	NA	0.222		
G	0.118	0.807	-0.047	0.913	-0.091	0.099		
Н	NA	-0.511	0.233	0.131	NA	0.017		
1	NA	1.939	0.218	-0.066	NA	0.355		
J	0.271	1.079	-0.277	-0.232	0.752	0.203		
K	NA	NA	0.792	1.264	-0.357	0.807		
L	-0.002	0.300	-0.103	-0.431	0.837	0.373		
M	-0.076	1.413	0.658	-0.022	-0.164	-0.64		
N	0.651	-0.470	0.060	0.421	-0.112	-0.010		
0	-0.249	0.098	-0.272	-0.163	0.860	0.081		
P	0.003	0.292	0.705	0.608	-0.327	1.044		
Q	NA	0.195	0.605	0.187	NA	-0.201		
R	1.217	0.165	0.385	0.172	-0.022	0.203		

- Goal: To obtain fitted y_{ij} , and identify which clinics are opinion leaders (strongly agree with overall result across studies) and which are dissenters (strongly disagree).
- Here, overall results all favor the treatment (i.e. mostly negative Ys) except in Trial 1 (Toxo). Thus we multiply all the Y_{ij} 's by -1 for $i \neq 1$, so that larger Y_{ij} correspond to stronger agreement with the overall in all cases.
- Note that some values are missing ("NA") since
 - not all 18 units participated in all 6 studies
 - the Cox estimation procedure did not converge for some units that had few deaths

- With I + J + IJ parameters but fewer than IJ data points, some effects must be treated as random!
- Second stage of our model:

$$a_i \stackrel{iid}{\sim} N(0, 100^2), \quad b_j \stackrel{iid}{\sim} N(0, \sigma_b^2), \quad \text{and} \quad s_{ij} \stackrel{iid}{\sim} N(0, \sigma_s^2)$$

Third stage of our model:

$$\sigma_b \sim Unif(0.01, 100)$$
 and $\sigma_s \sim Unif(0.01, 100)$

That is, we

- preclude borrowing of strength across studies, but
- encourage borrowing of strength across units
- WinBUGS code to do the analysis ...

Questions

• Which clinical unit has the most positive effect?

• Which clinical unit has the most negative effect?

Plot of posterior means of $\theta_{ij} = a_i + b_j + s_{ij}$

- \Diamond Unit P (j=16) is an opinion leader; Unit E (j=5) is a dissenter
- \Diamond Substantial shrinkage towards 0 has occurred: mostly positive values; no estimated θ_{ii} greater than 0.6

Model Assessment

 We assess the overall fitness of the two-way ANOVA model using the Bayesian p-value:

$$egin{array}{lcl} egin{array}{lcl} egin{array}{lcl} eta_{m{ heta}|\mathbf{y}}[P(T(\mathbf{y}^{rep},m{ heta})>T(\mathbf{y},m{ heta}))] \ &=& \int P(T(\mathbf{y}^{re},m{ heta})>T(\mathbf{y},m{ heta})|m{ heta})\; p(m{ heta}|\mathbf{y})dm{ heta}, \ &pprox &rac{1}{G}\sum_{g=1}^G I_{T(\mathbf{y}^{rep(g)},m{ heta}^{(g)})>T(\mathbf{y},m{ heta}^{(g)})} \end{array}$$

where $\theta^{(g)} \sim p(\theta|\mathbf{y})$ and then $\mathbf{y}^{rep(g)} \sim p(\mathbf{y}^{rep}|\theta^{(g)})$.

 Here we consider test quantity / "discrepancy measure" to be the sum of squared standardized residuals

$$T(\mathbf{y}, \mathbf{\theta}) = \sum_{i,j} \frac{(y_{ij} - \theta_{ij})^2}{Var(y_{ij})}$$

Good for "omnibus goodness-of-fit" measure

Marginal Check

• Conduct marginal check using the marginal p-value:

$$\begin{aligned} p_{ij} &= E_{\boldsymbol{\theta}|\mathbf{y}}[P(T(y_{ij}^{rep}, \boldsymbol{\theta}) > T(y_{ij}, \boldsymbol{\theta}))] \\ &= \int P(T(y_{ij}^{rep}, \boldsymbol{\theta}) > T(y_{ij}, \boldsymbol{\theta})|\boldsymbol{\theta}) \ p(\boldsymbol{\theta}|\mathbf{y})d\boldsymbol{\theta}, \\ &\approx \frac{1}{G} \sum_{g=1}^{G} I_{T(y_{ij}^{rep(g)}, \boldsymbol{\theta}^{(g)}) > T(y_{ij}, \boldsymbol{\theta}^{(g)})} \end{aligned}$$

where $m{ heta}^{(g)} \sim p(m{ heta}|\mathbf{y})$ and then $\mathbf{y}^{rep(g)} \sim p(\mathbf{y}^{rep}|m{ heta}^{(g)}).$

• Consider the same test quantity: squared standardized residuals

$$T(y_{ij}, \boldsymbol{\theta}) = \frac{(y_{ij} - \theta_{ij})^2}{Var(y_{ij})}$$

Questions

Does the Bayesian p-value suggest an overall model fitness?

• Which data point is likely to be an outlier based on marginal p-values?

Model Comparison

• Since we lack replications for each study-unit (i-j) combination, the interactions s_{ij} in this model were only weakly identified, and the model might well be better off without them (or even without the unit effects b_j). As such, compare a variety of reduced models:

```
Y[i,j] ~ dnorm(theta[i,j],P[i,j])
#M1: theta[i,j] <- a[i]+b[j]+s[i,j] # full model
#M2: theta[i,j] <- a[i] + b[j] # drop interactions
#M3: theta[i,j] <- a[i] # study effect only
#M4: theta[i,j] <- b[j] # unit effect only</pre>
```

• We use DIC and WAIC to compare these four models.

DIC and WAIC calculation in WinBUGS

- DIC is directly available in WinBUGS.
- WAIC is given by

$$WAIC = -2Ippd + 2p_{WAIC}$$

$$= -2\sum_{i=1}^{n} \log \left(E_{\theta|\mathbf{y}} \left[p(y_i|\theta) \right] \right) + 4\sum_{i=1}^{n} var_{\theta|\mathbf{y}} [\log p(y_i|\theta)]$$

- Each term can be computed via Monte Carlo methods given posterior samples of point predictive density $p(y_i|\theta)$ and log point predictive density $\log p(y_i|\theta)$

Questions

• Which model do you choose based on DIC?

• Which model do you choose based on WAIC?

DIC results for Cross-Study Data:

model	\overline{D}	p_D	DIC
full model	122.0	12.8	134.8
drop interactions	123.4	9.7	133.1
study effect only	126.0	6.0	132.0
unit effect only	122.9	6.2	129.1

- The DIC-best model is the one with only the unit effects b_i .
- These DIC differences are not much larger than their possible Monte Carlo errors, so almost any of these models could be justified here.