Conversão de Autômatos Finitos Não Determinísticos (AFND) para Autômatos Finitos Determinísticos (AFD)

Prof. Juan Moises Mauricio Villanueva

jmauricio@cear.ufpb.br

www.cear.ufpb.br

 São autômatos finitos em que pelo menos um símbolo (evento) de entrada possui varias transições de saídas para outros estados

Para o estado A, com o símbolo de entrada O, leva o autômato para dois estados B ou C Teria que se analisar independentemente o caminho para dois estados A->B ou A->C

• Exemplo: Desenvolver um autômato que identifique números inteiros múltiplos de 4

Representação binaria

com símbolos 0 e 1

Uma representação binaria de um número inteiro é múltiplo de 4 se os dois últimos dígitos são zeros

Considera-se A como o estado inicial

Pode receber infinitos 0 ou 1

Estado Final ou Marcado

Estando no estado A, e sendo realizada a leitura do símbolo 0, esta transição poderá levar a dois estados A ou B, tornado assim o AUTÔMATO FINITO NÃO DETERMINÍSTICO - AFND.

• Realizando a análise no simulador de autômatos

Maior custo computacional para analisar o autômato, devido aos diversos caminhos ou opções que poderia seguir após a leitura de um símbolo

Entrada: 1010100 **A1**010100 1A010100 10A10100 101A0100 1010A100 10101A00 101010A0 1010100A Retroceder na análise FAIL - Backtracking 101010A0 1010100B Retroceder na análise FAIL - Backtracking ______ 10101A00 101010B0 1010100C Palayra Reconhecida SUCCESS pelo Autômato (a entrada é múltiplo de 4)

Realizando a análise no simulador de autômatos

Entrada: 1010101

Maior custo computacional para analisar o autômato, devido aos diversos caminhos ou opções que poderia seguir após a leitura de um símbolo

A1010101 1A010101 10**A1**0101 101A0101 1010**A1**01 10101A01 101010A1 1010101A FAIL - Backtracking 101010A1 ______ FAIL - Backtracking 10101**A0**1 101010**B1** FAIL - Backtracking ______ 1010A101 ______ FAIL - Backtracking

101A0101 1010**B1**01 FAIL - Backtracking ______ 10A10101 FAIL - Backtracking =========== 1A010101 10**B1**0101 FAIL - Backtracking **A1**010101 =========== FAIL

Palavra Não Reconhecida pelo Autômato (a entrada não é múltiplo de 4)

Estado Inicial

Estado	Símbolo 0	Símbolo 1
{A}		

Estado Inicial

	Estado	Símbolo 0	Símbolo 1
ı	{A}	{A , B}	

A entrada do símbolo 0 pode ocasionar o deslocamento para os estados A ou B: {A , B}

Estado Inicial

	Estado	Símbolo 0	Símbolo 1
al	{A}	{A , B}	{A}

Dos conjuntos gerados após a entradas dos símbolos 0 e 1, deve se analisar aqueles que não foram tratados ainda, neste caso o conjunto {A , B}

Estado Inicial

	Estado	Símbolo 0	Símbolo 1
ıl	{A}	{A , B}	{A}
	{A , B}		

Deve-se analisar a transição da união {A, B}, para cada símbolo de entrada

Estado Inicial

	Estado	Símbolo 0	Símbolo 1
l	{A}	{A , B}	{A}
	{A , B}	{A,B,C}	

Para o estado A, com o símbolo de entrada 0, é deslocado para os estados A ou B. Para o estado B, com o símbolo de entrada 0, é deslocado para o estado C.

Estado Inicial

Estado	Símbolo 0	Símbolo 1
{A}	{A , B}	{A}
{A , B}	{A,B,C}	{A}

Para o estado A, com o símbolo de entrada 1, é deslocado para os estados A. Para o estado B, com o símbolo de entrada 1, não existe deslocamento de estado.

Estado Inicial

Estado	Símbolo 0	Símbolo 1
{A}	{A , B}	{A}
{A , B}	{A , B , C}	{A}

Dos conjuntos formados deve se analisar aquele que não foi tratado ainda, neste caso {A , B , C}

Estado Inicial

Estado	Símbolo 0	Símbolo 1
{A}	{A , B}	{A}
{A, B}	{A , B , C}	{A}
{A,B,C}	•	

Realizando a análise para os símbolos de entrada 0 e 1

Estado Inicial

Estado	Símbolo 0	Símbolo 1
{A}	{A , B}	{A}
{A, B}	{A , B , C}	{A}
{A , B , C}	{A , B , C}	{A}
		$\sqrt{}$

Não tem novos conjuntos gerados se finaliza o procedimento de transição.

Estado Inicial

Estado	Novos Estados	Símbolo 0	Símbolo 1
{A}	e0 (inicial)	{A,B}	{A}
{A, B}	e1	{A,B,C}	{A}
{A,B, C }	e2 (final)	{A,B,C}	{A}

O estado final é aquele que contem o conjunto com o estado final do AFND original, ou seja "C"

Estado Inicial

Estado	Novos Estados	Símbolo 0	Símbolo 1
{A}	e0 (inicial)	{A,B} (e1)	{A} (e0)
{A, B}	e1	{A,B,C} (e2)	{A} (e0)
{A,B, C }	e2 (final)	{A,B,C} (e2)	{A} (e0)

Renomeando os estados

Estado Inicial

Estado	Novos Estados	Símbolo 0	Símbolo 1
{A}	e0 (inicial)	{A,B} (e1)	{A} (e0)
{A , B}	e1	{A,B,C} (e2)	{A} (e0)
{A , B , C }	e2 (final)	{A,B,C} (e2)	{A} (e0)

Analisando o Autômato Equivalente

Entrada: 1010100

e01010100

1**e00**10100

10e110100

101e00100

1010e1100

10101e000

101010e10

1010100e2

=========

SUCCESS

Entrada: 1010101

e01010101

1e0010101

10e110101

101e00101

1010e1101

10101e001

101010e11

1010101e0

========

FAIL - Backtracking

========

e01010101

========

FAIL

========

Conversor usando o Simulador de Autômatos

Entrada: 1010100

q11010100

1q1010100

10**q21**0100

101**q10**100

1010**q21**00

10101**q10**0

101010q20

1010100**q3**

·-----

SUCCESS

=========

Exemplo 2 – Conversão de AFND para AFD

Estado Inicial

Estado	Símbolo a	Símbolo b
{q1}	{q1,q2}	{q1}
{q1,q2}	{q1,q3}	{q1,q3}
{q1,q3}	{q1,q4}	{q1}
{q1,q4}	{q1,q4}	{q1,q4}

	Estado	Símbolo a	Símbolo b
Estado Inicial	{q1} (e0)	{q1 , q2} (e1)	{q1} (e0)
	{q1 , q2} (e1)	{q1 , q3}	{q1 , q3} (e2)
	{q1 , q3} (e2)	{q1 , q4}	{q1} (e0)
Estado Final	{q1 , q4 } (e3)	{q1 , q4} <mark>(e3)</mark>	{q1 , q4} (e3)

	Estado	Símbolo a	Símbolo b
Estado Inicial	{q1} (e0)	{q1 , q2} (e1)	{q1} (e0)
	{q1 , q2} (e1)	{q1 , q3} <mark>(e2)</mark>	{q1 , q3} (e2)
	{q1 , q3} (e2)	{q1 , q4} (e3)	{q1} (e0)
Estado Final	{q1 , q4 } (e3)	{q1 , q4}	{q1 , q4} <mark>(e3)</mark>

Entrada: abaabaa

=========

Entrada: abaabaa

q1abaabaa aq1baabaa abq1aabaa abaq1abaa abaaq1baa abaabq1aa abaabaq1a abaabaaq1 ======= FAIL - Backtracking abaabaq1a abaabaaq2 FAIL - Backtracking abaabq1aa abaabaq2a abaabaaq3 FAIL - Backtracking abaaq1baa FAIL - Backtracking abaq1abaa abaaq2baa abaabq3aa abaabaq4a abaabaaq4 **SUCCESS**

Exercício 3 – Conversão de AFND para AFD, simulação e análise

