

Borcherd van Brakell & Vic Segers

Bedrijfsvoorstelling

Project voorstelling

Technologieën

Implementatie

Demo architecture

INHOUDSOPGAVE

- 6 Onderzoeksvragen
- 7 Implementatie
- **B** Demo showcase
- **9** Reflectie

Bedrijfsvoorstelling

- Expertise centrum van Hogeschool PXL
- 21 allround medewerkers
- Primaire domeinen: VR/AR, IoT, AI en robotica

Project voorstelling

ARCHITECTURE

- Ontworpen voor ontwikkelaars
- Biedt kant-en-klare omgeving om in te ontwikkelen
- Minimalistisch ontwerp

SHOWCASE

- Architecture als basis
- Toepassing van onderzoeksvragen
- UAV scant en brengt omgeving in kaart
- Andere UAV navigeert autonoom naar gekozen object

ROS

Robot Operating System

Gazebo

3D dynamische simulator

MAVROS

Translation layer tussen ROS en MAVLink

PX4 Autopilot

Automatische piloot systeem

Python

High-level programmeertaal

Docker

Containerisatie software

RViz

ROS

Robot Operating System

Gazebo

3D dynamische simulator

MAVROS

Translation layer tussen ROS en MAVLink

PX4 Autopilot

Automatische piloot systeem

Python

High-level programmeertaal

Docker

Containerisatie software

RViz

ROS

Robot Operating System

Gazebo

3D dynamische simulator

MAVROS

Translation layer tussen ROS en MAVLink

PX4 Autopilot

Automatische piloot systeem

Python

High-level programmeertaal

Docker

Containerisatie software

RViz

ROS

Robot Operating System

Gazebo

3D dynamische simulator

MAVROS

Translation layer tussen ROS en MAVLink

PX4 Autopilot

Automatische piloot systeem

Python

High-level programmeertaal

Docker

Containerisatie software

RViz

ROS

Robot Operating System

Gazebo

3D dynamische simulator

MAVROS

Translation layer tussen ROS en MAVLink

PX4 Autopilot

Automatische piloot systeem

Python

High-level programmeertaal

Docker

Containerisatie software

RViz

ROS

Robot Operating System

Gazebo

3D dynamische simulator

MAVROS

Translation layer tussen ROS en MAVLink

PX4 Autopilot

Automatische piloot systeem

Python

High-level programmeertaal

Docker

Containerisatie software

RViz

ROS

Robot Operating System

Gazebo

3D dynamische simulator

MAVROS

Translation layer tussen ROS en MAVLink

PX4 Autopilot

Automatische piloot systeem

Python

High-level programmeertaal

Docker

Containerisatie software

RViz

ROS

Robot Operating System

Gazebo

3D dynamische simulator

MAVROS

Translation layer tussen ROS en MAVLink

PX4 Autopilot

Automatische piloot systeem

Python

High-level programmeertaal

Docker

Containerisatie software

RViz

Implementatie architecture

Hoe kan een UAV autonoom navigeren in een dynamische omgeving?

Dynamische omgeving

Oriëntatie

Pad planning

Pad uitvoering

Dynamische omgeving

Definitie

Eigenschappen

In- en outdoor specifiek

Dynamisch

Oriëntatie

Observatie

Sensoren

Dynamische eigenschappen

Mappen en lokaliseren

SLAM algoritmen

ORB-SLAM2

BLAM!

RTAB-Map

Cartographer

hdl_graph_slam

Pad planning

Uitvoerbaar pad

Doel

Pad uitvoering

Implementatie showcase

8
Demo showcase

Demo showcase indoor

