Versatile Diffusion: Text, Images and Variations All in One Diffusion Model

— Xingqian Xu, Zhangyang Wang, Eric Zhang, Kai Wang, Humphrey Shi

Outline

- History of Generative Models
- Versatile Diffusion
- Network Architecture
- Disentanglement of Style and Semantic
- **Dual Context Blender**
- Questions

Generative Adversarial Networks

GAN focus on specific domains and specific tasks i.e. faces

New Horizons: Diffusion Model

Likelihood based models that gradually restore image contents from gaussian corruptions.

New Horizons: Diffusion Model

It has proven to be effective in bridge modalities and tasks.

DALL-E2 (2021)

Input: An astronaut riding a horse in photorealistic style.

What's Next?

Versatile Diffusion (2023)

Grand nebula in the universe.

(b) Image-Variation

(a) Text-to-Image

- There are stars that a child is watching about.
 Two young girls and a boy standing near a star.
 Two young girls are watching a star.
 Kids standing for their stars.
- - Houses on the lake with boats and trees beside there with the mountains on the background.

 • House, mountain, boat, somewhere

 - near lake

 House on the cliff near the lake.

 Houses on the lake with the trees.

(c) Image-to-Text

A house on a lake.

A picture in oil painting style.

Style

Semantic

A house on a lake.

tall castle

(f) Editable I2T2I

(d) Disentanglement

(e) Dual-Guided Generation

One Diffusion Step

Network Structure

Text Data Layers

Training

- For each of the flows compute the variational weighted losses and do regular backpropagation.
- Update model weights when the gradient in all flows are accumulated.
- VD is trained progressively in three settings:
- Single Flow: Image Variation
- Dual Flow: Text-to-Image and Image-variation
- Four Flow: All the tasks together

Disentanglement of Style and Semantic

Dual-context Blender

Results: Text to Image

"A wonderful evening in New York City with a great view of Brooklyn Bridge and a magnificent city view of Manhattan, HD 8K"

"A beautiful painting of waves crashing on a cliff by Thomas Cole"

Results: Image Variation

Variation #1

Variation #2

Results: Dual-Context Blender

Input

"100 mph"

"Traveling among the stars"

Limitations

- dimension generated using Bert which might be inadequate for long text Limited Latent Space: Optimus VAE's latent vector are 768 single sentences. It is weak in understanding word locations and orders
- Imperfect Text Data: There is domain shift in Optimus VAE's training data compare to VD's training data making it difficult to reconstruct certain images.

Question 1

How does the authors disentangle and semantic using the VD?

Question 2

Give three example of basic tasks VD can achieve?