运筹学第二次作业(20230927)参考答案

1. 假设以下集合均为非空集合,请判断哪些集合一定有极点,并给出理由:

a)
$$\Omega = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathbb{R}^n, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m \}$$

- b) $\Omega = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} \ge \mathbf{b}, \mathbf{x} \in \mathbb{R}^n, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m \}$, 其中 A 为行满秩矩阵。
- c) $\Omega = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} \ge \mathbf{b}, \mathbf{x} \in \mathbb{R}^n, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m \}$, 其中 A 为列满秩矩阵。

解:

a) 该集合一定有顶点。

该集合的约束是标准形式的 LP 问题,且已知非空。则根据定理 1.2.5,其至少有一个基本可行解,继而根据定理 1.2.4,该基本可行解为 Ω 中的顶点。

b) 该集合不一定有顶点。

举反例即可。令 $A = \begin{bmatrix} 1 & 1 \end{bmatrix}$, b = 0, 则A行满秩且 Ω_2 非空,但此时

$$\Omega_2 = \{ x \in \mathbf{R}^2 | x_1 + x_2 \ge 0 \}$$

没有顶点。

c) 该集合一定有顶点。

设 $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$,且 $A = (a_1^T, a_2^T, ..., a_m^T)^T$, $b = (b_1, b_2, ..., b_m)^T$,其中 a_i^T 表示A的第i行。

由题意, $Ax \ge b$ 有解,则必有边界上的解x(否则可向任一超平面的内法向量方向移动到达边界),设起作用的约束(取等号)下标为 $c_1, c_2, ..., c_k$.

因为A列满秩, $m \ge n$,必能找到n个行向量线性无关,于是 $k \ge n$,也即必能找到一点 x^* ,满足:

$$egin{aligned} m{a}_{c_1}^T m{x}^* &= m{b}_{c_1} \ & \dots \ & m{a}_{c_k}^T m{x}^* &= m{b}_{c_k} \ & m{a}_{c_{k+1}}^T m{x}^* &> m{b}_{c_{k+1}} \end{aligned}$$

$$\boldsymbol{a}_{c_m}^T \boldsymbol{x}^* > \boldsymbol{b}_{c_m}$$

事实上当k > n时,存在冗余等式约束可去掉,故只用考虑k = n的情况。 当k = n时,等式约束解唯一。任何异于x*的解,前k个约束至少一个取大于号, 其线性组合不可能为x*,所以x*为顶点。

2. 验证 Beale 的例子

考虑如下线性规划问题

$$\max_{x_1, x_2, \dots, x_7} \frac{3}{4} x_4 - 20x_5 + \frac{1}{2} x_6 - 6x_7$$
s.t.
$$x_1 + \frac{1}{4} x_4 - 8x_5 - x_6 + 9x_7 = 0$$

$$x_2 + \frac{1}{2} x_4 - 12x_5 - \frac{1}{2} x_6 + 3x_7 = 0$$

$$x_3 + x_6 = 1$$

$$x_i \ge 0, i = 1, 2, \dots, 7$$

假设我们选择的初始基变量是 $\{x_1, x_2, x_3\}$,则得到如下的单纯型表

$$\mathbf{x}_{B}$$
 x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} RHS
 x_{1} 1 0 0 1/4 -8 -1 9 0
 x_{2} 0 1 0 1/2 -12 -1/2 3 0
 x_{3} 0 0 1 0 0 1 0 1
0 0 0 3/4 -20 1/2 -6 z-0

第一次选择 x_4 作为进基变量, x_1 作为出基变量,进行翻转,基变量变为 $\{x_4,x_2,x_3\}$,得到如下的单纯型表

第二次选择 x_5 作为进基变量, x_2 作为出基变量,进行翻转,基变量变为 $\{x_4,x_5,x_3\}$,得到如下的单纯型表

$$\mathbf{x}_{B}$$
 x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} RHS x_{4} -12 8 0 1 0 8 -84 0 x_{5} -1/2 1/4 0 0 1 3/8 -15/4 0 x_{3} 0 0 1 0 0 1 0 1 -1 -1 0 0 0 2 -18 z -0

第三次选择 x_6 作为进基变量, x_4 作为出基变量,进行翻转,基变量变为 $\{x_6,x_5,x_3\}$,得到如下的单纯型表

第四次选择 x_7 作为进基变量, x_5 作为出基变量,进行翻转,基变量变为 $\{x_6,x_7,x_3\}$,得到如下的单纯型表

$$\mathbf{x}_{B}$$
 x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} RHS
 x_{6} 2 -6 0 -5/2 56 1 0 0
 x_{7} 1/3 -2/3 0 -1/4 16/3 0 1 0
 x_{3} -2 6 1 5/2 -56 0 0 1
1 -1 0 1/2 -16 0 0 z-0

第五次选择 x_1 作为进基变量, x_6 作为出基变量,进行翻转,基变量变为 $\{x_1, x_7, x_3\}$,得到如下的单纯型表

第六次选择 x_2 作为进基变量, x_7 作为出基变量,进行翻转,基变量变为 $\{x_1, x_2, x_3\}$,得到如下的单纯型表

$$\mathbf{x}_{B}$$
 x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} RHS
 x_{1} 1 0 0 1/4 -8 -1 9 0
 x_{2} 0 1 0 1/2 -12 -1/2 3 0
 x_{3} 0 0 1 0 0 1 0 1
0 0 0 3/4 -20 1/2 -6 z-0

则此时循环到了初始状态。实际上在整个迭代过程中,虽然可行基矩阵不断改变,但对应的基本可行解始终是 $\mathbf{x} = [0,0,1,0,0,0,0]^T$,没有变化。

如果采用 Bland 法则,请重新计算上述例子,找到最优解。

解:

BV	x_1	x_2	x_3	χ_4	<i>x</i> ₅	χ_6	<i>x</i> ₇	RHS
$\overline{x_1}$	1	0	0	1/4	-8	-1	9	0
x_2	0	1	0	1/2	-12	-1/2	3	0
x_3	0	0	1	0	0	1	0	1
	0	0	0	3/4	-20	1/2	-6	Z
	l .							

BV	x_1	x_2	x_3	χ_4	<i>x</i> ₅	x_6	<i>x</i> ₇	RHS
x_4	4	0	0	1	-32	-4	36	0
x_2	-2	1	0	0	-32	3/2	-15	0
x_3	0	0	1	0	0	1	0	1
	-3	0	0	0	4	7/2	-33	Z

BV	x_1	x_2	x_3	χ_4	<i>x</i> ₅	x_6	<i>x</i> ₇	RHS
x_4	-12	8	0	1	0	8	-84	0
x_5	-1/2	1/4	0	0	1	3/8	-15/4	0
x_3	0	0	1	0	0	3/8	0	1
						2		Z

此时根据 Bland 法则,应选择下标最小的进基变量 x_1

BV	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	<i>x</i> ₇	RHS
x_6	-3/2	1	0	1/8	0	1	-21/2	0
x_5	1/16	-1/8	0	-3/64	1	0	3/16	0
x_3	3/2	-1	1	-1/8	0	0	21/2	1
	2	-3	0	-1/4	0	0	3	Z
BV	x_1	<i>x</i> ₂	χ_3	x_4	x_5	x_6	<i>x</i> ₇	RHS
x_6	0	-2	0	-1	24	1	-6	0
x_1	1	-2	0	-3/4	16	0	3	0
x_3	0	2	1	1	-24	0	6	1
	0	1	0	5/4	-32	0	-3	Z
BV	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	RHS
x_6	0	0	1	0	0	1	0	1
x_1	1	0	1	1/4	-8	0	9	1
x_2	0	1	1/2	1/2	-12	0	3	1/2
	0	0	-1/2	3/4	-20	0	-6	z-1/2
BV	x_1	χ_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	RHS
x_6	0	0	1	0	0	1	0	1
x_1	1	-1/2	3/4	0	-2	0	15/2	3/4
x_4	0	2	1	1	-24	0	6	1
	0	-3/2	-5/4	0	-2	0	-21/2	z-5/4

所有非基变量的检验数均为负数,得到最优解 $\mathbf{x}=(3/4,0,0,1,0,1,0)^{\mathsf{T}}$,最优值为 $z_{max}=5/4$.

3. 某线性规划问题的约束条件是

$$2x_1 + 3x_2 + x_3 = 14$$
$$5x_1 + x_2 + x_4 = 9$$
$$x_i \ge 0, \quad i = 1,2,3,4$$

请问 x_1, x_2 所对应的列向量 A_1, A_2 是否构成可行基? 若是,请写出 B, N,并求出 B 对应的基本可行解。

解:

$$B = [A_1, A_2] = \begin{bmatrix} 2 & 3 \\ 5 & 1 \end{bmatrix}$$
满秩, $N = [A_3, A_4] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$,则 $B^{-1}b = \begin{bmatrix} 1 \\ 4 \end{bmatrix} > 0$
因此 A_1, A_2 构成可行基,基本可行解为 $(1,4,0,0)^{\mathsf{T}}$

4. 用单纯型法求解以下问题,其中起点为 $x_1 = x_2 = 0$

$$\max_{\substack{x_1, x_2 \\ \text{s.t.}}} 2x_1 + x_2$$
s.t.
$$5x_2 \le 15$$

$$6x_1 + 2x_2 \le 24$$

$$x_1 + x_2 \le 5$$

$$x_1 \ge 0, x_2 \ge 0$$

解:

BV	x_1	x_2	x_3	x_4	x_5	RHS
x_3	0	1	1	0	0	3
x_4	3	1	0	1	0	12
x_5	1	1	0	0	1	5
	2	1	0	0	0	Z

BV	x_1	x_2	x_3	x_4	<i>x</i> ₅	RHS
x_3	0	1	1	0	0	3
x_1	1	1/3	0	1/3	0	4
x_5	0	2/3	0	-1/3	1	1
	0	1/3	0	-2/3	0	z-8

BV	x_1	χ_2	x_3	<i>x</i> ₄	x_5	RHS
x_3	0	0	1	1/2	-3/2	3/2
x_1	1	0	0	1/2	-1/2	7/2
x_2	0	1	0	-1/2	3/2	3/2
	0	0	0	-1/2	-1/2	z-17/2

此时非基变量检验数均为负,得到最优解为 $(x_1,x_2)=(7/2,3/2)$,最优值为 17/2.

(请同学们区分最优解与最优值的概念)

附加题: 假设以下集合均为非空集合,请判断哪些集合一定有极点,并给出理由: d) $\Omega = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} \geq \mathbf{0}, \mathbf{c}^T\mathbf{x} = -1, \mathbf{x} \in \mathbb{R}^n, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m, \mathbf{c} \in \mathbb{R}^n \}$,其中 \mathbf{A} 为列满秩矩阵。 **解**:

该集合一定有极点。

设矩阵 B 和向量 b 分别为

$$\mathbf{B} = \begin{bmatrix} A \\ c^{\mathsf{T}} \\ -c^{\mathsf{T}} \end{bmatrix}, \mathbf{b} = \begin{bmatrix} \mathbf{0} \\ -1 \\ -1 \end{bmatrix}$$

则集合可以转换为 $\Omega = \{ \mathbf{x} \mid \mathbf{B}\mathbf{x} \geq \mathbf{b}, \mathbf{x} \in \mathbb{R}^n, \mathbf{B} \in \mathbb{R}^{(m+2)\times n}, \mathbf{b} \in \mathbb{R}^{m+2}, \mathbf{c} \in \mathbb{R}^n \}$. 由于 **A** 为列满秩矩阵,新加入两行只会让 **A** 的秩增加 1 或者不变,所以 **B** 也为列满秩矩阵。根据第 1 题 **c**)的结论,该集合一定有极点。