Оглавление

1	Графы	4	2
	1.1 Критический путь в сетевом графике	6	2

Глава 1

Графы

1.1 Критический путь в сетевом графике

Дан сетевой график $G = \langle M, N \rangle$. Для каждой дуги задана $t(u) \geq 0$. N – работы **Максимальный** путь показывает **минимальное** время работ (если максимально распараллелить) Можно свести задачу к алгоритму Дейкстры, если все веса домножить на -1. Но мы так делать не будем

Алгоритм.

- 1. Топологическая сортировка
- $2. \ \forall i \in M \quad v[i] \coloneqq 0$

$$3. \quad \begin{cases} \textbf{for } i \coloneqq 1 \ to \ w \ \textbf{do} \\ \textbf{for } u \in N_i^- \ \textbf{do} \\ & | \ \textbf{if } v[end(u)] < v[i] + t[u] \ \textbf{then} \\ & | \ v[end(u)] \coloneqq v[i] + t[u] \end{cases}$$
 end

На выходе получаем вектор v, где v[i] – максимальная длина пути из i_0 (начальная фиктивная вершина) в i. Тогда $v[i_+]$ (конечная фиктивная вершина) – длина критического пути

Пусть теперь задано W — отношение частичного порядка N — множество работ

Алгоритм.

- 1. Строим транзитивное замыкание W
- $2. \ u \in N \to \pi_i, \qquad i \in 1:p$
- 3. У нас есть разбиения $D_i = \{ \pi_i, N \setminus \pi_i \}$
- 4. Строим произведение разбиений D_i . Обозначим его $D := \bigcup_i \rho_j$
- 5. Строим граф $G = \langle M_1 \cup M_2, N \cup F \rangle$, где:
 - \bullet Каждое π_i даст нам вершину из M_1
 - \bullet Каждое ho_i даст нам вершину из M_2
 - \bullet N наши изначальные работы
 - *F* фиктивные работы

Процесс построения графа:

- (a) u = (beg u, end u), где:
 - beg $u = \pi_i(u)$
 - end $u = \rho_j$, $u \in \rho_j$

- (b) Добавляем фиктивные дуги F, которые будут вести из M_2 в M_1 Каждая дуга будет $\rho_j \to \pi_i$ так, что $\pi_i = \bigcap \rho_j$
- (с) Удаляем лишние фиктивные дуги по двум правилам:
 - Если фиктивная дуга соединяет две вершины, между которыми есть другой путь
 - \bullet Если из какой-то вершины выходит ровно одна фиктивная дуга, то можно склеить эти вершины

Если входит ровно одна – аналогично