Numerical on Finding Total Hardness

Example-1 Express the following constituents as $CaCO_3$ eq.: (1) 162 mg/L of $Ca(HCO_3)_2$, (2) 111 mg/L of $CaCl_2$, and (3) 117 mg/L NaCl, Given: At mass: Ca = 40, C = 12, O = 16, H = 1, Na = 23, Cl = 35.5

Solution: (1) $Ca(HCO_3)_2$ as $CaCO_3$ eq. = $162 \times 100/162 = 100$ mg/l, here n-factor = $2 \times 100/162 = 100/162 = 100/162 = 100/162 = 100/162 = 100/162 = 100/162 = 100/162 = 100/162 = 100/162 = 10$

- (2) $CaCl_2$ as $CaCO_3$ eq. = 111 x 100/111 = 100 mg/l, here n-factor = 2
- (3) NaCl as $CaCO_3$ eq. = 117 x 100/2 x 58.5 = 100 mg/l, here n-factor = 1

Example-2 A water sample contains 136 mg/L of CaSO₄. Calculate the hardness as equivalent amount of CaCO₃. (At mass of Ca = 40, S = 32, O = 16)

Solution: Equivalent of $CaCO_3 = 136 \times [100/(2 \times 136/2) = 100 \text{ ppm}]$

Example-3 How many gram of MgSO₄ dissolved per litre gives 200 ppm of hardness as equivalent amount of CaCO₃. (At mass: Mg = 24, S = 32, O = 16)

Solution: Equivalent of $CaCO_3 = (S, strength of hardness substance in mg/L) x [100/ (2 x M/n-factor)]$

So, (S, strength of hardness substance in mg/L) = Equivalent of CaCO₃/ [100/(2 x M/n-factor)]Or S = 200/[100/(120)] = 240 mg/L = 0.24 g/L

Example-4 A sample of water on analysis was found to contain the following impurities:

Impurity	Ca(HCO ₃) ₂	Mg(HCO ₃) ₂	MgSO ₄	CaSO ₄	K ₂ SO ₄
Quantity	4	6	8	10	10
(mg/L)					
Mol Wt.	162	146	120	136	134

Calculate the temporary, permanent, and total hardness of water in ppm, ⁰Fr and ⁰Cl.

Solution: $N.B.: K_2SO_4$ is a non-hardness constituent.

Impurity	Quantity (mg/L)	n-factor	Mol. Wt.	CaCO ₃ eq. in mg/L
Ca(HCO ₃) ₂	4	2	162	4 x (100/162)= 2.47
Mg(HCO ₃) ₂	6	2	146	6 x (100/146)= 4.11
MgSO ₄	8	2	120	8 x (100/120)= 8.33
CaSO ₄	10	2	136	10 x (100/136)= 5.88

- (i) Temporary Hardness (due to bicarbonates of Ca and Mg) = 2.47 + 4.11 = 6.58 ppm = $6.58 \times 0.1 \, ^{0}$ Fr = $0.658 \, ^{0}$ Fr = $6.58 \times 0.07 \, ^{0}$ Cl = $0.46 \, ^{0}$ Cl
- (ii) Permanent hardness (due to sulphates of Ca and Mg) = 5.88 + 8.33 = 14.21 ppm = 1.421 0 Cl = 0.995 0 Cl
- (iii) Total hardness = $6.58 + 14.21 = 20.79 \text{ ppm} = 2.079 ^{0}\text{Fr} = 0.9947 ^{0}\text{Cl}$

Example-5

A sample of water on analysis was found to contain the following impurities:

Impurity	Ca(HCO ₃) ₂	CaSO ₄	MgCl ₂	CaCl ₂	NaCl
Quantity	16.2	27.2	9.5	22.2	10
(mg/L)					
Mol Wt.	162	136	95	111	58.5

Calculate the temporary, permanent, and total hardness of water in ppm, ⁰Fr and ⁰Cl.

Impurity	Quantity (mg/L)	n-factor	Mol. Wt.	CaCO ₃ eq. in mg/L
Ca(HCO ₃) ₂	16.2	2	162	16.2 x (100/162)= 10
CaSO ₄	27.2	2	136	27.2 x (100/136)= 20
MgCl ₂	9.5	2	95	9.5 x (100/95)= 10
CaCl ₂	22.2	2	111	22.2 x (100/111)= 20

Solution:

N.B.: NaCl is a non-hardness constituent.

- (i) Temporary Hardness (due to $Ca(HCO_3)_2$) = 10 mg/L = 10 ppm = 10 x 0.1 0 Fr = 1.0 0 Fr = 10 x 0.07 0 Cl = 0.7 0 Cl
- (ii) **Permanent hardness (due to** CaSO₄, MgCl₂, CaCl₂) = 20 + 10 + 20 = 50 mg/L = 50 ppm = 5.0 0 F = 3.5 0 Cl
- (iii) Total hardness = $10 + 50 = 60 \text{ ppm} = 6 ^{0}\text{Fr} = 4.2 ^{0}\text{Cl}$

Example-6 Find the Total hardness of water if water containing 100 mg/L of $Ca(HCO_3)_{2,}$ 200 mg/L of $Mg(HCO_3)_2$ and 250 mg/L NaCl is boiled for 15 minute.

Ans. Total Hardness = 0, as Temporary hardness is removed by boiling. NaCl is non-hardness mass.

Example-7 A water sample contains 150 mg/L of Ca(HCO₃)₂, 111 mg/L of CaCl₂, 12 mg/L of MgSO₄, and 250 mg/L of Na₂SO₄. Find the temporary, permanent and total hardness of water after boiling for 10 minute.

Ans. (i) $Ca(HCO_3)_2$ can be removed by boiling. So, Temp. Hardness = 0

Na₂SO₄ is a non-hardness mass.

(ii) Here, Permanent hardness is due to presence of dissolved $CaCl_2$ and $MgSO_4$ in water.

So, at first we have to express these hardness constituents as CaCO₃ eq.

 $CaCl_2$ as $CaCO_3$ eq. = (111 x 100/111) = 100 mg/L; Molar mass of $CaCl_2$ = 111, n-factor = 2

 $MgSO_4$ as $CaCO_3$ eq. = $(12 \times 100/120) = 10 \text{ mg/L}$; Molar mass of $MgSO_4 = 120$, n-factor = 2

So, **Perm. Hardness** = $100 + 10 = 110 \text{ mg/l} = 110 \text{ ppm} = 11 ^{0}\text{Fr} = 7.7 ^{0}\text{Cl}$.

(iii) Total hardness = Temp + Perm. = $0 + 110 = 110 \text{ mg/l} = 110 \text{ ppm} = 11 ^{0}\text{Fr} = 7.7 ^{0}\text{Cl}$.

Example-8. A water sample contains 150 mg/L of NaHCO $_3$, 111 mg/L of NaCl, 12 mg/L of K $_2$ SO $_4$, and 250 mg/L of Na $_2$ SO $_4$. Find the total hardness of water.

Ans. Total hardness of water = 0 (as all are non-hardness constituents.)