FEITOSA, M., CALLIOLI, C. A., & CAROLI, A. (1984). Matrizes, vetores e geometria analítica. São Paulo: Nobel.

Capítulo 1: Matrizes

1. Noção de matriz

Matriz: tabela $A_{m \times n}$ com elementos dispostos em m linhas e n colunas, $m, n \ge 1$.

$$A_{m imes n} = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Notação: $A=(a_{ij})(1\leq i\leq m,\ 1\leq j\leq n).$

Igualdade: $A = B \leftrightarrow a_{ij} = b_{ij}, \forall \ i,j.$

2. Adição de matriz

Sejam $A_{m\times n}=(a_{ij})$ e $B_{m\times n}=(b_{ij})$.

$$A+B=C_{m imes n}=(c_{ij}):c_{ij}=a_{ij}+b_{ij}$$

• Matriz nula:

$$A=(a_{ij}): a_{ij}=0, orall\ i,j\Rightarrow A=O$$

• Matriz oposta:

$$A=(a_{ij}), B=(b_{ij}): b_{ij}=-a_{ij}, orall \ i,j\Rightarrow B=-A$$

• Diferença entre matrizes:

$$A - B = A + (-B) = C = (c_{ij}) : c_{ij} = a_{ij} - b_{ij}, \forall i, j$$

Propriedades da adição:

- 1. A + B = B + A (comutativa);
- 2. (A + B) + C = A + (B + C) (associativa);
- 3. A + O = A (elemento neutro);
- 4. A + (-A) = O.

3. Produto de um número real por uma matriz

Sejam $A=(a_{ij})$ e $t\in\mathbb{R}$.

$$tA = B = (b_{ij}): b_{ij} = t \cdot a_{ij}$$

Propriedades:

- 1. a(bA) = (ab)A;
- 2. a(A + B) = aA + aB;
- 3. (a + b)A = aA + bA;
- 4. $1 \cdot A = A$.

4. Somatórias

$$a_1 + a_2 + a_3 + \ldots + a_n = \sum_{i=1}^n a_i$$

Propriedades:

1.
$$a \sum_{i=1}^{n} b_{i} = \sum_{i=1}^{n} ab_{i};$$

2. $\sum_{i=1}^{n} a_{i} + \sum_{i=1}^{n} b_{i} = \sum_{i=1}^{n} (a_{i} + b_{i});$
3. $\sum_{j=1}^{m} \sum_{i=1}^{n} a_{i} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i};$
4. $\left(\sum_{i=1}^{n} a_{i}\right) \left(\sum_{j=1}^{m} b_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i}b_{j}.$

5. Produtos de matrizes

Sejam $A_{m \times n} = (a_{ij})$ e $B_{n \times p} = (b_{jk})$.

$$A\cdot B=C_{m imes p}=(c_{ik}):c_{ik}=\sum_{j=1}^n(a_{ij}\cdot b_{jk})$$

• Matriz unidade de ordem *n*:

$$I_n = (\delta_{ij}): \delta_{ij} = \left\{egin{array}{ll} 1, & i=j \ 0, & i
eq j \end{array}
ight. \quad 1 \leq i,j \leq n$$

• δ_{ij} é o <u>símbolo de Kronecker</u>.

Propriedades:

- 1. $A_{m \times n}, B_{n \times p}, C_{p \times r} \Rightarrow (AB)C = A(BC)$ (associativa);
- 2. $A_{m \times n}, B_{m \times n}, C_{n \times p} \Rightarrow (A+B)C = AC + BC$ (distributiva à direita);
- 3. $A_{n\times p}, B_{n\times p}, C_{m\times n} \Rightarrow C(A+B) = CA + CB$ (distributiva à esquerda);
- 4. $A_{m \times n} \Rightarrow AI_n = A = I_m A$ (elemento neutro);
- 5. $A_{m\times n}, B_{n\times p}, t\in \mathbb{R} \Rightarrow (tA)B = A(tB) = t(AB);$
- 6. $O_{m \times n} \cdot A_{n \times p} = O_{m \times p}$;
- 7. $\exists A, B : A_{m \times n} \cdot B_{n \times p} = O_{m \times n}$.

6. Matriz transposta

Sejam $A_{m imes n} = (a_{ij})$ e $B_{n imes m} = (b_{ji})$.

$$b_{ji} = a_{ij}, orall \ i,j \Rightarrow B = A^t$$

Propriedades:

- 1. $(A+B)^t = A^t + B^t$;
- 2. $(\lambda A)^t = \lambda A^t$;
- 3. $(AB)^t = B^t A^t$;
- 4. $(A^t)^t = A$.
- Matriz simétrica: $A^t = A$.

7. Matrizes inversíveis

Se a matriz quadrada $A_{m \times m}$ é inversível, então:

$$\exists \ B_{m \times m} : AB = BA = I_m \Rightarrow B = A^{-1}$$

- Uma matriz inversível é dita não singular. Uma matriz não inversível é chamada singular.
- Se A é inversível, sua inversa é única:

$$B = BI_n = B(AB') = (BA)B' = I_nB' = B'$$

- Se A é inversível, então, sua inversa também é inversível e $(A^{-1})^{-1}=A$.
- Se A e B são inversíveis, o produto é inversível e $(AB)^{-1}=B^{-1}A^{-1}$.

Determinante:

Cada matriz quadrada está associada a um número real chamado determinante: $\det A$.

Complemento algébrico (ou cofator):

Dada a matriz quadrada $A_{n\times n}$, chama-se cofator C_{ij} do elemento a_{ij} de A o produto de $(-1)^{i+j}$ pelo determinante da matriz obtida eliminando de A a linha i e a coluna j.

- $\sum_{i=1}^n a_{ij} C_{ij} = \det A$ (regra de Laplace);
- $ullet \sum_{j=1}^n a_{ij} C_{kj} = 0 \quad (i
 eq k);$
- $ullet \sum_{j=1}^n a_{ij} C_{kj} = \delta_{ik} \det A$ (linhas);
- $\bullet \ \, \sum_{j=1}^n a_{ji}C_{jk} = \delta_{ik}\det A.$

Matriz adjunta:

Seja a matriz quadrada $A_{m \times m} = (a_{ij})$.

Considere-se $ar{A}=B=(b_{ij}):b_{ij}=C_{ij}$ (cofator).

A transposta $(\bar{A})^t$ é dita <u>matriz adjunta</u> de A: $(\bar{A})^t = \mathrm{adj}(A)$.

- $\bullet \ \ B=\mathrm{adj}(A)\to AB=BA=(\det A)\cdot I_n.$
- $\det(A \cdot B) = \det A \cdot \det B$.

$$ullet \ \exists \ A^{-1}
ightarrow \det(A^{-1}) = rac{1}{\det A}.$$

- - Necessária: $\det(A^{-1}) = \frac{1}{\det A}$;
 - \circ Suficiente: $AB=BA=\det A\cdot I_n, \det A
 eq 0
 ightarrow A^{-1}=rac{1}{\det A}B.$

Aplicação:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

pode ser escrito como:

$$Ax = b$$

onde:

$$A=(a_{ij}),\quad x=egin{pmatrix} x_1\ x_2\ dots\ x_n \end{pmatrix},\quad b=egin{pmatrix} b_1\ b_2\ dots\ b_n \end{pmatrix}$$

e, sendo A inversível, a solução é dada por: $x = A^{-1}b$.

Capítulo 2: Vetores

8. Segmentos orientados

Segmento orientado: par ordenado de pontos, origem e extremidade.

- Notação: AB (A é a origem, B é a extremidade).
- Observações: $AB = CD \Leftrightarrow A = C \land B = D$. $AB \neq BA$.

Segmento nulo: origem = extremidade. Ex.: AA.

Segmento oposto: BA é o segmento orientado oposto a AB.

Comprimento: número real não negativo associado a um segmento orientado que denota o comprimento daquele segmento em determinada unidade.

- Notação: \overline{AB} .
- Observações: $\overline{AB}=\overline{BA}$, $\overline{AA}=0$.

Direção e sentido:

- Sejam os segmentos não nulos AB e CD.
 - \circ Têm a mesma direção se $AB \parallel CD$ (paralelos).
 - o Os sentidos só podem ser comparados se têm a mesma direção.
- $AB \in BA$ têm sentidos opostos (e mesma direção).

Segmentos equipolentes: AB e CD são equipolentes se têm o mesmo comprimento, a mesma direção e o mesmo sentido.

- Notação: $AB \sim CD$.
- Observações:
 - $AA \sim BB$, $\forall A, B$ (segmentos nulos sempre equipolentes).
 - \circ Sejam AB e CD não nulos e não colineares. $AB\sim CD\equiv AB\parallel CD\wedge AC\parallel BD$ (ABCD é um paralelogramo).

Propriedades da equipolência:

- 1. $AB \sim BA$ (reflexiva);
- 2. $AB \sim CD \rightarrow CD \sim AB$ (simétrica);
- 3. $AB \sim CD, CD \sim EF \Rightarrow AB \sim EF$ (transitiva);
- 4. Sejam o segmento orientado AB e o ponto C, $\exists ! D : AB \sim CD$ (transporte);
- 5. $AA \sim BB$, $\forall A, B$;
- 6. $AB \sim CD \rightarrow BA \sim DC$;
- 7. $AB \sim CD \rightarrow AC \sim BD$ (regra do paralelogramo).

9. Vetores

Vetor determinado por um segmento orientado AB: conjunto de todos os segmentos orientados equipolentes a AB.

- Notação: \overrightarrow{AB} ou B-A.
- Observações:

$$\circ \ \overrightarrow{AB} = \overrightarrow{CD} \leftrightarrow AB \sim CD.$$

- \circ Os segmentos orientados equipolentes a AB são representantes do vetor \overrightarrow{AB} .
- \circ Todos os segmentos orientados nulos, equipolentes entre si, determinam um único vetor chamado vetor nulo $\vec{0}.$
- Seja um vetor $\vec{v} = \overrightarrow{AB}$, $\overrightarrow{BA} = -\overrightarrow{AB} = -\vec{v}$ é chamado de *vetor oposto* de \vec{v} . \overrightarrow{BA} é representado por qualquer DC tal que CD seja representante de \overrightarrow{AB} .

Propriedades dos vetores:

1.
$$A - A = \vec{0}$$
;

2.
$$-(B-A) = A - B$$
;

3.
$$B - A = D - C \to C - A = D - B$$
.

10. Soma de um ponto com um vetor

Sejam um ponto A e um vetor \vec{v} : $\exists ! \ B: B-A=\vec{v}$.

B chama-se soma do ponto A com o vetor $ec{v}$: $B=A+ec{v}$

• Observações: $A - \vec{v} = A + (-\vec{v})$.

Propriedades:

1.
$$A + \vec{0} = A$$
;

2.
$$(A - \vec{v}) + \vec{v} = A$$
;

3.
$$A + \vec{v} = B + \vec{v} \Rightarrow A = B$$
;

4.
$$A + \vec{v} = A + \vec{u} \Rightarrow \vec{v} = \vec{u}$$
 ;

5.
$$A + (B - A) = B$$
.

11. Adição de vetores

Sejam \vec{u} , \vec{v} e A. Considerem-se $B=A+\vec{u}$ e $C=B+\vec{u}$.

O vetor $\vec{w} = C - A = (A + \vec{u}) + \vec{v} - A = \vec{u} + \vec{v}$ não depende de A. \vec{w} é a soma de \vec{u} com \vec{v} .

Propriedades:

1.
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
 (comutativa);

2.
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$
 (associativa);

3.
$$\vec{u} + \vec{0} = \vec{u}$$
 (elemento neutro);

4.
$$\vec{u} + (-\vec{u}) = \vec{0}$$
.

- Diferença de vetores: $\vec{w} = \vec{u} + (-\vec{v}) = \vec{u} \vec{v}$ é a diferença de \vec{u} e \vec{v} .
- Métodos gráficos:
 - o Soma: "conectada" a extremidade de \vec{u} à origem de \vec{v} , $\vec{u}+\vec{v}$ é dado pelo vetor que tem por origem a origem de \vec{u} e por extremidade a extremidade de \vec{v} .
 - o Diferença: "conectadas" as origens de \vec{u} e de \vec{v} , $\vec{u}+(-\vec{v})=\vec{u}-\vec{v}$ é dado pelo vetor que tem por origem a extremidade de \vec{v} e por extremidade a extremidade de \vec{u} .

12. Módulo, direção e sentido

Módulo: o módulo $|\vec{v}|$ de um vetor \vec{v} é o comprimento de qualquer um de seus representantes.

Direção e sentido: a direção e o sentido de $\vec{u} \neq \vec{0}$ (não nulo) são a direção e o sentido de qualquer um de seus representantes.

- Observações:
 - o $\vec{u}=\vec{v}$ se e somente se têm o mesmo módulo, mesma direção e mesmo sentido.
 - Módulo, direção e sentido determinam univocamente um vetor.
 - \circ Vetor unitário: um vetor $ec{v}$ é dito unitário se $|ec{v}|=1$.
 - O *versor* de um vetor $\vec{v} \neq \vec{0}$ é o vetor unitário de mesmo sentido que \vec{v} .
 - o Dois vetores são paralelos se têm a mesma direção ou pelo menos um deles é nulo.

13. Produto de um número real por um vetor

Sejam $a \in \mathbb{R}^*$ (real não nulo) e $\vec{v} \neq \vec{0}$. O vetor $\vec{w} = a \cdot \vec{v}$, produto de a e \vec{v} , é definido por:

- 1. $|ec{w}|=|a||ec{v}|$;
- 2. $\vec{w} \parallel \vec{v}$ (mesma direção);
- 3. O sentido de \vec{w} é o mesmo de de \vec{v} , se a>0, e contrário ao de \vec{v} , se a<0.
- Observações:
 - $ullet \ a=0 ee ec v = ec 0
 ightarrow ec w = a ec v = ec 0.$
 - \circ Se $ec{v}
 eq 0$, $rac{1}{|ec{v}|} ec{v}$ é o versor de $ec{v}$.

Propriedades:

1.
$$a(b\vec{v}) = (ab)\vec{v}$$
;

2.
$$a(\vec{u}+\vec{v})=a\vec{u}+a\vec{v}$$
 ;

3.
$$(a+b)\vec{u} = a\vec{u} + a\vec{v}$$
;

4.
$$1\vec{v} = \vec{v}$$
.

Espaço vetorial:

"Um conjunto V munido de duas operações satisfazendo as propriedades de adição de vetores/matrizes e de multiplicação de um número real por vetor/matriz é o que se chama $espaço\ vetorial$ ".

14. Dependência linear

Sejam $ec{v}_1, ec{v}_2, \ldots, ec{v}_n \ (n \geq 1)$. Diz-se que eles são *linearmente dependentes* se

$$\exists \ a_i
eq 0 \in (a_1,a_2,\ldots,a_n): \sum_{i=1}^n a_i ec{v}_i = ec{0}.$$

• Para provar que $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ são *linearmente independentes*, basta provar $\sum a_i \vec{v}_i = \vec{0} \Rightarrow a_1 = a_2 = \dots = a_n = 0$ (solução trivial).

Combinação linear: $\vec{v} = \sum a_i \vec{v}_i$ é dita combinação linear dos vetores \vec{v}_i com coeficientes a_i .

Teoremas:

- Sejam $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$. Se existe \vec{v}_i que é uma combinação linear dos outros, então eles são linearmente dependentes.
- Sejam $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$. Se k $(1 \le k \le n)$ desses vetores são linearmente dependentes, eles são linearmente dependentes.
- $ec{v}$ é linearmente dependente se e somente se $ec{v}=ec{0}$.
- Para que dois vetores sejam linearmente dependentes, é condição necessária e suficiente que eles sejam paralelos:
 - $\circ \ \vec{v} \neq 0, \ \vec{u} \parallel \vec{v} \Rightarrow \exists \ t : \vec{u} = t\vec{v}.$
- Três vetores são coplanares se podem ser representados por segmentos orientados paralelos a um mesmo plano.
 - Para que três vetores sejam linearmente dependentes, é condição necessária e suficiente que sejam coplanares.
 - Existência: se \vec{u} , \vec{v} e \vec{w} são coplanares, $\exists \ (a,b,c), \ a \neq 0 \lor b \neq 0 \lor c \neq 0 : a\vec{u} + b\vec{v} + c\vec{w} = 0$. Sendo que $c \neq 0$, então $\vec{w} = -\frac{a}{c}\vec{u} \frac{b}{c}\vec{v}$.
 - Unicidade: $\vec{w}=m\vec{v}+n\vec{u}=m'\vec{v}+n'\vec{u}\Rightarrow (m-m')\vec{v}+(n-n')\vec{u}=\vec{0}$. Dado que $\vec{u}\perp\vec{v}$ (linearmente independentes), estão $m-m'=0 \land n-n'=0 \Rightarrow m=m' \land n=n'$.
 - Se \vec{u} e \vec{v} são linearmente independentes, todo vetor \vec{w} coplanar a \vec{u} e \vec{v} se exprime de forma única como combinação linear de \vec{u} e \vec{v} :
 - $\blacksquare \exists ! (m,n) : \vec{w} = m\vec{v} + n\vec{u}.$
- Quatro vetores sempre linearmente dependentes.
 - \circ Se \vec{u}_1 , \vec{u}_2 e \vec{u}_3 são linearmente independentes, todo \vec{v} se exprime de forma única como combinação linear de \vec{u}_1 , \vec{u}_2 e \vec{u}_3 .
 - \blacksquare $\exists ! (a_1, a_2, a_3) : \vec{v} = a_1 \vec{u}_1 + a_2 \vec{u}_2 + a_3 \vec{u}_3.$

15. Bases

Base no espaço: terna $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ de vetores linearmente independentes.

Base no plano: tupla (\vec{e}_1, \vec{e}_2) de vetores linearmente independentes.

Base na reta: $\vec{e} \neq \vec{0} \in r$.

Se $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ formam uma base, então todo vetor \vec{v} se exprime unicamente como combinação linear de $\vec{e}_1,\vec{e}_2,\vec{e}_3$.

• $\exists ! (a_1, a_2, a_3) : \vec{v} = a_1 \vec{e}_1 + a_2 \vec{e}_2 + a_3 \vec{e}_3.$

 a_1, a_2, a_3 são *coordenadas* (ou *componentes*) de \vec{v} em relação à base $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$.

• $\exists ! \ \vec{v} : \vec{v} = \sum a_i \vec{e}_i$.

Fixada uma base $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$, costuma-se representar \vec{v} por meio da terna (a_1,a_2,a_3) ou da matriz-coluna $\vec{v}=\begin{pmatrix}a_1\\a_2\end{pmatrix}$.

Teoremas:

- $\vec{u} = (a_1, a_2, a_3), \vec{v} = (b_1, b_2, b_3) \Rightarrow \vec{u} + \vec{v} = (a_1 + b_1, a_2 + b_2, a_3 + b_3).$
- $ec{u}=(a_1,a_2,a_3)$ e $ec{v}=(b_1,b_2,b_3)$ são linearmente dependentes se e somente se a matriz $M = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} \text{ tem } \underbrace{\text{característica}}_{\text{característica}} \text{ (ou posto) menor do que 2 (número de linhas)}.$ $\circ \text{ Determinantes dos } \underbrace{\text{menores:}}_{\text{b}_2} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = 0.$

 - $\circ \vec{u}$ e \vec{v} são linearmente independentes se e somente se M tem posto igual a 2 (ou seja, um dos menores tem determinante diferente de zero).
 - Se \vec{u} e \vec{v} são linearmente dependentes, então $\frac{a_1}{b_1}=\frac{a_2}{b_2}=\frac{a_3}{b_3}~(\vec{v}\neq\vec{0})$ (ou seja, \vec{u} e \vec{v} são proporcionais).
- ullet $ec{u}=(a_1,a_2,a_3)$, $ec{v}=(b_1,b_2,b_3)$ e $ec{w}=(c_1,c_2,c_3)$ são linearmente dependentes se e somente se $\det M=egin{array}{c|ccc} a_1&a_2&a_3\b_1&b_2&b_3\c_1&c_2&c_3 \end{array}=0.$
 - \circ \vec{u} , \vec{v} e \vec{w} são linearmente dependentes se e somente se $\exists (x,y,z), \ x \neq 0 \lor y \neq 0 \lor z \neq 0 : x\vec{u} + y\vec{v} + z\vec{w} = 0.$
 - \circ Noutros termos, se somente se $x(a_1,a_2,a_3)+y(b_1,b_2,b_3)+z(c_1,c_2,c_3)=(0,0,0)$ ou se e somente se há solução não trivial para o sistema:

$$\begin{cases} a_1x + b_1y + c_1z = 0 \\ a_2x + b_2y + c_2z = 0 \\ a_3x + b_3y + c_3z = 0 \end{cases}$$

o Para que \vec{u} e \vec{v} e \vec{w} sejam linearmente independentes é necessário e suficiente que $\det M \neq 0$.

Mudança de base:

Sejam duas bases $E = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ e $F = (\vec{f}_1, \vec{f}_2, \vec{f}_3)$.

Os vetores \vec{f}_i são combinações lineares dos vetores \vec{e}_i , ou seja:

$$\left\{egin{aligned} ec{f}_1 &= a_{11}ec{e}_1 + a_{21}ec{e}_2 + a_{31}ec{e}_3 \ ec{f}_2 &= a_{12}ec{e}_1 + a_{22}ec{e}_2 + a_{32}ec{e}_3 \ ec{f}_3 &= a_{13}ec{e}_1 + a_{23}ec{e}_2 + a_{33}ec{e}_3 \end{aligned}
ight.$$

A matriz $A=egin{pmatrix} a_{11}&a_{12}&a_{13}\ a_{21}&a_{22}&a_{23}\ a_{31}&a_{32}&a_{22} \end{pmatrix}$ chama-se *matriz de mudança de base E* para base F.

- Note que as coordenadas de \vec{f}_i aparecem como *colunas* de dA.
- Como $ec{f}_1$, $ec{f}_2$ e $ec{f}_3$ são linear independentes, $\det A
 eq 0$.
- A matriz de mudança de uma base B para B é a matriz unidade I_n .
- Seja um vetor \vec{v} . Considerem-se (x_1, x_2, x_3) as coordenadas de \vec{v} em relação à base E e (y_1, y_2, y_3) as coordenadas de \vec{v} em relação a F.

$$egin{aligned} & \circ & x_j = \sum_{i=1}^3 (a_{ji} \cdot y_i), \quad j=1,2,3. \end{aligned}$$

$$\circ \ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \text{, ou seja, a matriz de coordenadas de } \vec{v} \text{ na base } E$$

é igual ao produto da matriz de mudança de base E para F pela matriz das coordenadas de \vec{v} em F.

- ullet Sejam as bases E, F e G. A matriz de mudança de base de E para G é igual ao produto da matriz de mudança de base de E para F pela matriz de mudança de base de F para G.
- ullet A matriz de mudança de base de F para E é a inversa da de E para F.