# Deep Learning MSDS 631

Convolutional Neural Networks

Michael Ruddy

# Questions?

- From last lecture?

## **Overview**

- What/Why is a Convolution?
- CNN-specific hyperparameters
- Basic CNN history/set-up

## Why are images special?

- Images are deceptively hard
- Images are big
- Geometry matters!
  - Pixels near each other interact in different ways to create features than pixels far away
  - This is free data that we lose if we simply consider an image as a data vector



- Fancy linear operation useful for spatial data

- Fancy linear operation useful for spatial data

| 1  | .5  | 1  | 0 |   |            |            |  |
|----|-----|----|---|---|------------|------------|--|
| 0  | .25 | .5 | 1 | * | $\lceil 1$ | $0 \rceil$ |  |
| 1  | .25 | 0  | 1 | 不 | 0          | $2 \mid$   |  |
| .5 | 0   | 1  | 1 |   | _          | _          |  |

- Fancy linear operation useful for spatial data



- Fancy linear operation useful for spatial data

Grayscale Image

Filter  $\begin{bmatrix}
1 & .5 & 1 & 0 \\
0 & .25 & .5 & 1 \\
1 & .25 & 0 & 1 \\
5 & 0 & 1 & 1
\end{bmatrix}

*

<math display="block">
\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}

=
\begin{bmatrix}
1 & 0 \\
0 & 2
\end{bmatrix}$ 

- Fancy linear operation useful for spatial data
- Element-wise product

$$(1 \times 1) + (.5 \times 0) + (0 \times 0) + (.25 \times 2)$$
  
= 1.5

Grayscale Image



- Fancy linear operation useful for spatial data
- Element-wise product

$$(.5 \times 1) + (1 \times 0) + (.25 \times 0) + (.5 \times 2) = 1.5$$



- Fancy **linear** operation useful for spatial data
- Element-wise product

$$(1 \times 1) + (0 \times 0) + (.5 \times 0) + (1 \times 2) = 3$$



- Fancy linear operation useful for spatial data
- Element-wise product



- Fancy linear operation useful for spatial data
- Element-wise product

Grayscale Image 
$$\begin{bmatrix} .5 & 1 & 0 \end{bmatrix}$$



Filter

Grayscale Image

- Fancy linear operation useful for spatial data
- Element-wise product

$$\begin{bmatrix} 1 & .5 & 1 & 0 \\ 0 & .25 & .5 & 1 \\ 1 & 25 & 0 & 1 \end{bmatrix}$$



- Fancy linear operation useful for spatial data
- Element-wise product



- Only four parameters!
  - If input is dimension 16 and output is dimension 9, how many for FC?



- Only four parameters!
- Translational Equivariance
  - If I shift my image, I shift the output!



- Only four parameters!
- Translational Equivariance
- Weight Sharing (detect same feature translated to different parts of the image)



Intuition: <u>Edge</u> <u>Detection</u>

- Only four parameters!
- Translational Equivariance
- Weight Sharing (detect same feature translated to different parts of the image)



- In a Conv. layer we apply many filter to get many features



- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"





Layer 3



Layer 2



Layer 1 Convolutional Deep Belief Networks for Scalable Unsupervised Laerning of Hierarchical Representations, Lee H., Grosse R., Ranganath R., Ng A.

- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"

**RGB** Image



- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"



- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"



- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"



- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"
- Filter channels must match input channels!!!



- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"
- Filter channels must match input channels!!!



- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"
- Filter channels must match input channels!!!



- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"
- Filter channels must match input channels!!!



- In a Conv. layer we apply many filter to get many features
- Applying N filters to an image results in an output with N "channels"
- Filter channels must match input channels!!!





- Number of Filters



- Number of Filters
- Stride of the filter
  - "How far it jumps when sliding"

Stride 1



- Number of Filters
- Stride of the filter
  - "How far it jumps when sliding"

Stride 1



- Number of Filters
- Stride of the filter
  - "How far it jumps when sliding"

Stride 1



- Number of Filters
- Stride of the filter
  - "How far it jumps when sliding"



- Number of Filters
- Stride of the filter
  - "How far it jumps when sliding"



- Number of Filters
- Stride of the filter
  - "How far it jumps when sliding"



- Number of Filters
- Stride of the filter
  - "How far it jumps when sliding"



- Number of Filters
- Stride of the filter
  - What is the dimension of the output for Stride 1 vs. Stride 2?

| $\lceil 1 \rceil$ | .5  | 1  | 0 |   |                   |            |
|-------------------|-----|----|---|---|-------------------|------------|
| 0                 | .25 | .5 | 1 | * | $\lceil 1 \rceil$ | $0 \rceil$ |
| 1                 | .25 | 0  | 1 | 不 | 0                 | $2 \mid$   |
|                   | 0   |    |   |   |                   | _          |

- Number of Filters
- Stride of the filter
- Size of filter

| 1            | .5  | 1  | 0 |   | Г₁ | _ | <sub>1</sub> 7 |
|--------------|-----|----|---|---|----|---|----------------|
| ١٠           | 25  | 5  | 1 |   | 1  | Э | 1              |
|              | .20 | •0 |   | * | 0  | 1 | 2              |
| 1            | .25 | 0  | 1 | * |    | 1 |                |
| $\lfloor .5$ | 0   | 1  | 1 |   | ГΤ | 1 | υJ             |
| L • •        | U   |    |   |   |    |   |                |

- Number of Filters
- Stride of the filter
- Size of filter
  - What is output dimension here if stride = 1?

|   | 1  | .5  | 1  | 0        |   |            | _ | _ ¬         |  |
|---|----|-----|----|----------|---|------------|---|-------------|--|
|   |    |     |    |          |   | 1          | 5 | 1           |  |
|   | U  | .23 | .3 | Т        | * | 10         | 1 | $2 \mid$    |  |
|   | 1  | .25 | 0  | 1        | * |            |   |             |  |
|   | .5 |     |    |          |   | <b>L</b> 1 | 1 | $0 \rfloor$ |  |
| ı | .0 | U   | 1  | <b>L</b> |   |            |   |             |  |

- Number of Filters
- Stride of the filter
- Size of filter
- Problem: size of output keep shrinking!
  - Only a few convolutional layers before the resulting 2D dimensions are very small

- Number of Filters
- Stride of the filter
- Size of filter
- Problem: size of output keep shrinking!
  - Only a few convolutional layers before the resulting 2D dimensions are very small
- Solution: Zero padding



- Number of Filters
- Stride of the filter
- Size of filter
- Padding



- Number of Filters
- Stride of the filter
- Size of filter
- Padding



Padding by one

- Common choices for a Conv-Layer:
  - Stride = 1
  - Odd Filter Size (3x3, 5x5, etc.)
  - "Same" padding 1,2



- Common choices for a Conv-Layer:
  - Stride = 1
  - Odd Filter Size (3x3, 5x5, etc.)
  - "Same" padding



- LeNet-5 by Yann LeCun









- LeNet-5 by Yann LeCun

down-sampling









- AlexNet wins ImageNet Competition in 2012



Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

- AlexNet wins ImageNet Competition in 2012
- By 2015 we have CNNs with >100 layers, better than human-level performance



Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

- Reduce size of output
- Minimal information loss in practice
- Intuition: reduce resolution of the image

- Reduce size of output
- Minimal information loss in practice
- Intuition: reduce resolution of the image
- Max Pooling



- Reduce size of output
- Minimal information loss in practice
- Intuition: reduce resolution of the image
- Max Pooling



2x2 filter size

- Reduce size of output
- Minimal information loss in practice
- Intuition: reduce resolution of the image
- Max Pooling

- 2x2 filter size

- Stride 2

| <b>7</b> 1   | .5  | 1  | 0  | ************************************** |
|--------------|-----|----|----|----------------------------------------|
| 0            | .25 | .5 | 1  | $\lceil 1 \rceil$                      |
| 1            | .25 | 0  | 1  | 1  1                                   |
| $\lfloor .5$ | 0   | 1  | 1_ |                                        |

- Reduce size of output
- Minimal information loss in practice
- Intuition: reduce resolution of the image
- Max Pooling
- Average Pooling



2x2 filter size

- Done along spatial dimension, preserves channels



- LeNet-5 by Yann LeCun



### Summary

- Convolution Layers
  - Suited for Spatial Data
  - Less Parameters than FC Layers, Weight sharing
- Common Hyperparameters
  - Number of Filters, Filter Size, Stride, Padding
- Common Sequence
  - Conv -> Activation -> Conv -> Activation -> Downsampling
  - Repeat until unrolled into final FC layers

### Deeper NNs

- After the success of AlexNet, CNNs got deeper
- Why not just start with as many layers as possible?



### Deeper NNs

- After the success of AlexNet, CNNs got deeper
- Why not just start with as many layers as possible?
  - Computer power, data



### Deeper NNs

- After the success of AlexNet, CNNs got deeper
- Why not just start with as many layers as possible?
  - Computer power, data
  - Problems with training (vanishing/exploding gradients)



## Vanishing/Exploding Gradients



## Vanishing/Exploding Gradients



$$F = f_1(w_1, f_2(w_2, f_3(w_3)))$$

$$F=f_1(w_1,f_2(w_2,f_3(w_3)))$$

$$F=f_1(w_1,f_2(w_2,f_3(w_3)))$$

$$F=f_1(w_1,f_2(w_2,f_3(w_3)))$$

$$rac{\partial F}{\partial w_1} = rac{\partial f_1}{\partial w_1} \ rac{\partial F}{\partial x_2} = rac{\partial f_1}{\partial f_2} rac{\partial f_2}{\partial x_2}$$

$$F=f_1(w_1,f_2(w_2,f_3(w_3)))$$

$$egin{array}{ll} \partial w_1 & \partial w_1 \ rac{\partial F}{\partial w_2} &= rac{\partial f_1}{\partial f_2} rac{\partial f_2}{\partial w_2} \ rac{\partial F}{\partial w_3} &= rac{\partial f_1}{\partial f_2} rac{\partial f_2}{\partial f_3} rac{\partial f_3}{\partial w_3} \end{array}$$

$$(.1)^3 = .001$$
  $\frac{\partial F}{\partial w_1} = \frac{\partial f_1}{\partial w_1}$   $\frac{\partial F}{\partial w_2} = \frac{\partial f_1}{\partial f_2} \frac{\partial f_2}{\partial w_2}$   $\frac{\partial F}{\partial w_3} = \frac{\partial f_1}{\partial f_2} \frac{\partial f_2}{\partial f_3} \frac{\partial f_3}{\partial w_3}$ 

 $F = f_1(w_1, f_2(w_2, f_3(w_3)))$ 

$$(2)^3 = 8$$
  $\frac{\partial F}{\partial w_1} = \frac{\partial f_1}{\partial w_1}$   $\frac{\partial F}{\partial w_2} = \frac{\partial f_1}{\partial f_2} \frac{\partial f_2}{\partial w_2}$   $\frac{\partial F}{\partial w_3} = \frac{\partial f_1}{\partial f_2} \frac{\partial f_2}{\partial f_3} \frac{\partial f_3}{\partial w_3}$ 

 $F = f_1(w_1, f_2(w_2, f_3(w_3)))$ 

- Early parameters can either get stuck, or become unstable during training

- Early parameters can either get stuck, or become unstable during training
- Skip Connection



- Early parameters can either get stuck, or become unstable during training
- Skip Connection
  - Gradient of earlier parameters depends more directly on output



- Early parameters can either get stuck, or become unstable during training
- Skip Connection
  - Gradient of earlier parameters depends more directly on output
  - Identity function easier to learn



### VGG vs. ResNet



### VGG vs. ResNet



#### "Residual Block"



# Other Techniques

- 1x1 Convolutions
  - With a 1x1 filter size you can condense the channel dimension
- Up-convolution
  - "Up-sample" to increase resolution using parameters
  - UNet
- Adaptive Pooling for Fully Convolutional Networks (FCNs)
  - Pool different shaped images to get same size output
- Normalization
  - Batch Normalization, Layer Normalization, Group Normalization
- 1D/3D Convolutions
  - For 3D: filter size maybe 3x3x3, input is of size (C,H,W,L)

## **UNet**

