Indi	cator	thom	atic	aroa
ınaı	cator	Them	atic	area

Climate

Indicator group

Bioclimatic indicators

Indicator Code

CL B01 CUR XXXX

Attribute ID

Annual Mean Temperature in the decade (reanalysis data)

Units

°C

Data Source

Wouters, H., (2021): Global bioclimatic indicators from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

DOI: <u>10.24381/cds.bce175f0</u> (Accessed on 07-August-2024)

Indicator description

Annual Mean Temperature in the decade (reanalysis data)

Methodology

Zonal average of the Annual Mean Temperature pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

1970, 1980, 1990, 2000, 2010

Climate

Indicator group

Bioclimatic indicators

Indicator Code

CL B01 P45 XXXX

Attribute ID

Annual Mean Temperature in the decade (projection rcp 4.5 data)

Units

°C

Data Source

Wouters, H., (2021): Global bioclimatic indicators from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

DOI: <u>10.24381/cds.bce175f0</u> (Accessed on 07-August-2024)

Indicator description

Annual Mean Temperature in the decade (projection rcp 4.5 data)

Methodology

Zonal average of the Annual Mean Temperature pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

2020, 2030

Uncertainties & Best practices

Climate

Indicator group

Bioclimatic indicators

Indicator Code

CL B01 P85 XXXX

Attribute ID

Annual Mean Temperature in the decade (projection rcp 8.5 data)

Units

°C

Data Source

Wouters, H., (2021): Global bioclimatic indicators from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

DOI: 10.24381/cds.bce175f0 (Accessed on 07-August-2024)

Indicator description

Annual Mean Temperature in the decade (projection rcp 8.5 data)

Methodology

Zonal average of the Annual Mean Temperature pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

2020, 2030

Uncertainties & Best practices

Climate

Indicator group

Bioclimatic indicators

Indicator Code

CL B04 CUR XXXX

Attribute ID

Temperature Seasonality (standard deviation ×100) - reanalysis data

Units

°C

Data Source

Wouters, H., (2021): Global bioclimatic indicators from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

DOI: 10.24381/cds.bce175f0 (Accessed on 07-August-2024)

Indicator description

Temperature Seasonality (standard deviation ×100) - reanalysis data

Methodology

Zonal average of the Temperature Seasonality pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

1970, 1980, 1990, 2000, 2010

Climate

Indicator group

Bioclimatic indicators

Indicator Code

CL B04 P45 XXXX

Attribute ID

Temperature Seasonality (standard deviation ×100) - projection rcp 4.5 data

Units

°C

Data Source

Wouters, H., (2021): Global bioclimatic indicators from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

DOI: <u>10.24381/cds.bce175f0</u> (Accessed on 07-August-2024)

Indicator description

Temperature Seasonality (standard deviation ×100) - projection rcp 4.5 data

Methodology

Zonal average of the Temperature Seasonality pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

2020, 2030

Uncertainties & Best practices

Climate

Indicator group

Bioclimatic indicators

Indicator Code

CL B04 P85 XXXX

Attribute ID

Temperature Seasonality (standard deviation ×100) - projection rcp 8.5 data

Units

°C

Data Source

Wouters, H., (2021): Global bioclimatic indicators from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

DOI: <u>10.24381/cds.bce175f0</u> (Accessed on 07-August-2024)

Indicator description

Temperature Seasonality (standard deviation ×100) - projection rcp 8.5 data

Methodology

Zonal average of the Temperature Seasonality pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

2020, 2030

Uncertainties & Best practices

Climate

Indicator group

Bioclimatic indicators

Indicator Code

CL B07 CUR XXXX

Attribute ID

Temperature Annual Range - reanalysis data

Units

°C

Data Source

Wouters, H., (2021): Global bioclimatic indicators from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

DOI: <u>10.24381/cds.bce175f0</u> (Accessed on 07-August-2024)

Indicator description

Temperature Annual Range - reanalysis data

Methodology

Zonal average of the Temperature Annual Range pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

1970, 1980, 1990, 2000, 2010

Climate

Indicator group

Bioclimatic indicators

Indicator Code

CL B07 P45 XXXX

Attribute ID

Temperature Annual Range - projection rcp 4.5 data

Units

°C

Data Source

Wouters, H., (2021): Global bioclimatic indicators from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

DOI: <u>10.24381/cds.bce175f0</u> (Accessed on 07-August-2024)

Indicator description

Temperature Annual Range - projection rcp 4.5 data

Methodology

Zonal average of the Temperature Annual Range pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

2020, 2030

Uncertainties & Best practices

Climate

Indicator group

Bioclimatic indicators

Indicator Code

CL B07 P85 XXXX

Attribute ID

Temperature Annual Range - projection rcp 8.5 data

Units

°C

Data Source

Wouters, H., (2021): Global bioclimatic indicators from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

DOI: <u>10.24381/cds.bce175f0</u> (Accessed on 07-August-2024)

Indicator description

Temperature Annual Range - projection rcp 8.5 data

Methodology

Zonal average of the Temperature Annual Range pixels values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

2020, 2030

Uncertainties & Best practices

Climate

Indicator group

Bioclimatic indicators

Indicator Code

CL B12 CUR XXXX

Attribute ID

Annual Precipitation mean in the decade - reanalysis data

Units

mm year⁻¹

Data Source

Wouters, H., (2021): Global bioclimatic indicators from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

DOI: 10.24381/cds.bce175f0 (Accessed on 07-August-2024)

Indicator description

Annual Precipitation mean in the decade - reanalysis data

Methodology

Zonal average of the Annual Precipitation mean in the decade pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

1970, 1980, 1990, 2000, 2010

Climate

Indicator group

Bioclimatic indicators

Indicator Code

CL B12 P45 XXXX

Attribute ID

Annual Precipitation mean in the decade - projection rcp 4.5 data

Units

mm year⁻¹

Data Source

Wouters, H., (2021): Global bioclimatic indicators from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

DOI: 10.24381/cds.bce175f0 (Accessed on 07-August-2024)

Indicator description

Annual Precipitation mean in the decade - projection rcp 4.5 data

Methodology

Zonal average of the Annual Precipitation mean in the decade pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

2020, 2030

Uncertainties & Best practices

Climate

Indicator group

Bioclimatic indicators

Indicator Code

CL_B12_P85_XXXX

Attribute ID

Annual Precipitation mean in the decade - projection rcp 8.5 data

Units

mm year⁻¹

Data Source

Wouters, H., (2021): Global bioclimatic indicators from 1979 to 2018 derived from reanalysis. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).

DOI: 10.24381/cds.bce175f0 (Accessed on 07-August-2024)

Indicator description

Annual Precipitation mean in the decade - projection rcp 8.5 data

Methodology

Zonal average of the Annual Precipitation mean in the decade pixels values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

2020, 2030

Uncertainties & Best practices

Ind	icator	thoma	tic area
ına	ICAI OF	inema	iic area

Climate

Indicator group

Climate classification

Indicator Code

CL KOP CUR XXXX

Attribute ID

Köppen-Geiger classification of the majority of UC surface - current conditions

Units

categorical

Data Source

Beck, H., Zimmermann, N., McVicar, T. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5, 180214 (2018). https://doi.org/10.1038/sdata.2018.214

Indicator description

Köppen-Geiger classification of the majority of UC surface - current conditions

Methodology

Spatial join of the Köppen-Geiger classification layer. The classification covering the greater area of the urban center is considered as the indicator value.

Methodology Short

Spatial join

Temporal Coverage

2025

Climate

Indicator group

Climate classification

Indicator Code

CL KOP 119 XXXX

Attribute ID

Köppen-Geiger classification of the majority of UC surface - projection ssp 119

Units

categorical

Data Source

Beck, H., Zimmermann, N., McVicar, T. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5, 180214 (2018). https://doi.org/10.1038/sdata.2018.214

Indicator description

Köppen-Geiger classification of the majority of UC surface - projection ssp 119

Methodology

Spatial join of the Köppen-Geiger classification layer. The classification covering the greater area of the urban center is considered as the indicator value.

Methodology Short

Spatial join

Temporal Coverage

2040, 2070

Climate

Indicator group

Climate classification

Indicator Code

CL KOP 126 XXXX

Attribute ID

Köppen-Geiger classification of the majority of UC surface - projection ssp 126

Units

categorical

Data Source

Beck, H., Zimmermann, N., McVicar, T. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5, 180214 (2018). https://doi.org/10.1038/sdata.2018.214

Indicator description

Köppen-Geiger classification of the majority of UC surface - projection ssp 126

Methodology

Spatial join of the Köppen-Geiger classification layer. The classification covering the greater area of the urban center is considered as the indicator value.

Methodology Short

Spatial join

Temporal Coverage

2040, 2070

Climate

Indicator group

Climate classification

Indicator Code

CL KOP 245 XXXX

Attribute ID

Köppen-Geiger classification of the majority of UC surface - projection ssp 245

Units

categorical

Data Source

Beck, H., Zimmermann, N., McVicar, T. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5, 180214 (2018). https://doi.org/10.1038/sdata.2018.214

Indicator description

Köppen-Geiger classification of the majority of UC surface - projection ssp 245

Methodology

Spatial join of the Köppen-Geiger classification layer. The classification covering the greater area of the urban center is considered as the indicator value.

Methodology Short

Spatial join

Temporal Coverage

2040, 2070

Climate

Indicator group

Climate classification

Indicator Code

CL KOP 370 XXXX

Attribute ID

Köppen-Geiger classification of the majority of UC surface - projection ssp 370

Units

categorical

Data Source

Beck, H., Zimmermann, N., McVicar, T. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5, 180214 (2018). https://doi.org/10.1038/sdata.2018.214

Indicator description

Köppen-Geiger classification of the majority of UC surface - projection ssp 370

Methodology

Spatial join of the Köppen-Geiger classification layer. The classification covering the greater area of the urban center is considered as the indicator value.

Methodology Short

Spatial join

Temporal Coverage

2040, 2070

Ind	icator	thoma	tic area
ına	ICAI OF	inema	iic area

Climate

Indicator group

Climate classification

Indicator Code

CL KOP 434 XXXX

Attribute ID

Köppen-Geiger classification of the majority of UC surface - projection ssp 434

Units

categorical

Data Source

Beck, H., Zimmermann, N., McVicar, T. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5, 180214 (2018). https://doi.org/10.1038/sdata.2018.214

Indicator description

Köppen-Geiger classification of the majority of UC surface - projection ssp 434

Methodology

Spatial join of the Köppen-Geiger classification layer. The classification covering the greater area of the urban center is considered as the indicator value.

Methodology Short

Spatial join

Temporal Coverage

2040, 2070

Climate

Indicator group

Climate classification

Indicator Code

CL KOP 460 XXXX

Attribute ID

Köppen-Geiger classification of the majority of UC surface - projection ssp 460

Units

categorical

Data Source

Beck, H., Zimmermann, N., McVicar, T. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5, 180214 (2018). https://doi.org/10.1038/sdata.2018.214

Indicator description

Köppen-Geiger classification of the majority of UC surface - projection ssp 460

Methodology

Spatial join of the Köppen-Geiger classification layer. The classification covering the greater area of the urban center is considered as the indicator value.

Methodology Short

Spatial join

Temporal Coverage

2040, 2070

Climate

Indicator group

Climate classification

Indicator Code

CL KOP 585 XXXX

Attribute ID

Köppen-Geiger classification of the majority of UC surface - projection ssp 585

Units

categorical

Data Source

Beck, H., Zimmermann, N., McVicar, T. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5, 180214 (2018). https://doi.org/10.1038/sdata.2018.214

Indicator description

Köppen-Geiger classification of the majority of UC surface - projection ssp 585

Methodology

Spatial join of the Köppen-Geiger classification layer. The classification covering the greater area of the urban center is considered as the indicator value.

Methodology Short

Spatial join

Temporal Coverage

2040, 2070

Climate

Indicator group

Renewable potential

Indicator Code

CL REN PVO XXXX

Attribute ID

Average daily PV potential

Units

kWh/kWp

Data Source

Photovoltaic power potential obtained from the "Global Solar Atlas 2.0, a free, web-based application is developed and operated by the company Solargis s.r.o. on behalf of the World Bank Group, utilizing Solargis data, with funding provided by the Energy Sector Management Assistance Program (ESMAP). For additional information: https://globalsolaratlas.info. Access 21/06/2024

Indicator description

Average daily PV potential

Methodology

Zonal average of the Photovoltaic power potential layer in the decade pixels values touching the urban center

Methodology Short

Zonal statistics (avg)

Temporal Coverage

2020

Climate

Indicator group

Renewable potential

Indicator Code

CL REN W01 XXXX

Attribute ID

Mean wind speed at 10 m above ground

Units

m/s

Data Source

Neil N. Davis, Jake Badger, Andrea N. Hahmann, Brian O. Hansen, Niels G. Mortensen, Mark Kelly, Xiaoli G. Larsén, Bjarke T. Olsen, Rogier Floors, Gil Lizcano, Pau Casso, Oriol Lacave, Albert Bosch, Ides Bauwens, Oliver James Knight, Albertine Potter van Loon, Rachel Fox, Tigran Parvanyan, Søren Bo Krohn Hansen, Duncan Heathfield, Marko Onninen, Ray Drummond; *The Global Wind Atlas: A high-resolution dataset of climatologies and associated web-based application*; Bulletin of the American Meteorological Society, Volume 104: Issue 8, Pages E1507-E1525, August 2023,

DOI: https://doi.org/10.1175/BAMS-D-21-0075.1

Global Wind Speed obtained from the Global Wind Atlas version 3.3, a free, web-based application developed, owned and operated by the Technical University of Denmark (DTU). The Global Wind Atlas version 3.3 is released in partnership with the World Bank Group, utilizing data provided by Vortex, using funding provided by the Energy Sector Management Assistance Program (ESMAP). For additional information: https://globalwindatlas.info.

Indicator description

Mean wind speed at 10 m above ground

Methodology

Zonal average of wind speed at 10 m layer in the decade pixels values touching the urban center

Methodology Short

Zonal statistics (avg)

Temporal Coverage

2020

Climate

Indicator group

Renewable potential

Indicator Code

CL REN W05 XXXX

Attribute ID

Mean wind speed at 50 m above ground

Units

m/s

Data Source

Neil N. Davis, Jake Badger, Andrea N. Hahmann, Brian O. Hansen, Niels G. Mortensen, Mark Kelly, Xiaoli G. Larsén, Bjarke T. Olsen, Rogier Floors, Gil Lizcano, Pau Casso, Oriol Lacave, Albert Bosch, Ides Bauwens, Oliver James Knight, Albertine Potter van Loon, Rachel Fox, Tigran Parvanyan, Søren Bo Krohn Hansen, Duncan Heathfield, Marko Onninen, Ray Drummond; *The Global Wind Atlas: A high-resolution dataset of climatologies and associated web-based application*; Bulletin of the American Meteorological Society, Volume 104: Issue 8, Pages E1507-E1525, August 2023,

DOI: https://doi.org/10.1175/BAMS-D-21-0075.1

Global Wind Speed obtained from the Global Wind Atlas version 3.3, a free, web-based application developed, owned and operated by the Technical University of Denmark (DTU). The Global Wind Atlas version 3.3 is released in partnership with the World Bank Group, utilizing data provided by Vortex, using funding provided by the Energy Sector Management Assistance Program (ESMAP). For additional information: https://globalwindatlas.info.

Indicator description

Mean wind speed at 50 m above ground

Methodology

Zonal average of wind speed at 50 m layer in the decade pixels values touching the urban center

Methodology Short

Zonal statistics (avg)

Temporal Coverage

2020

Climate

Indicator group

Renewable potential

Indicator Code

CL REN W10 XXXX

Attribute ID

Mean wind speed at 100 m above ground

Units

m/s

Data Source

Neil N. Davis, Jake Badger, Andrea N. Hahmann, Brian O. Hansen, Niels G. Mortensen, Mark Kelly, Xiaoli G. Larsén, Bjarke T. Olsen, Rogier Floors, Gil Lizcano, Pau Casso, Oriol Lacave, Albert Bosch, Ides Bauwens, Oliver James Knight, Albertine Potter van Loon, Rachel Fox, Tigran Parvanyan, Søren Bo Krohn Hansen, Duncan Heathfield, Marko Onninen, Ray Drummond; *The Global Wind Atlas: A high-resolution dataset of climatologies and associated web-based application*; Bulletin of the American Meteorological Society, Volume 104: Issue 8, Pages E1507-E1525, August 2023,

DOI: https://doi.org/10.1175/BAMS-D-21-0075.1

Global Wind Speed obtained from the Global Wind Atlas version 3.3, a free, web-based application developed, owned and operated by the Technical University of Denmark (DTU). The Global Wind Atlas version 3.3 is released in partnership with the World Bank Group, utilizing data provided by Vortex, using funding provided by the Energy Sector Management Assistance Program (ESMAP). For additional information: https://globalwindatlas.info.

Indicator description

Mean wind speed at 100 m above ground

Methodology

Zonal average of wind speed at 100 m layer in the decade pixels values touching the urban center

Methodology Short

Zonal statistics (avg)

Temporal Coverage

2020

Climate

Indicator group

Renewable potential

Indicator Code

CL REN W15 XXXX

Attribute ID

Mean wind speed at 150 m above ground

Units

m/s

Data Source

Neil N. Davis, Jake Badger, Andrea N. Hahmann, Brian O. Hansen, Niels G. Mortensen, Mark Kelly, Xiaoli G. Larsén, Bjarke T. Olsen, Rogier Floors, Gil Lizcano, Pau Casso, Oriol Lacave, Albert Bosch, Ides Bauwens, Oliver James Knight, Albertine Potter van Loon, Rachel Fox, Tigran Parvanyan, Søren Bo Krohn Hansen, Duncan Heathfield, Marko Onninen, Ray Drummond; *The Global Wind Atlas: A high-resolution dataset of climatologies and associated web-based application*; Bulletin of the American Meteorological Society, Volume 104: Issue 8, Pages E1507-E1525, August 2023,

DOI: https://doi.org/10.1175/BAMS-D-21-0075.1

Global Wind Speed obtained from the Global Wind Atlas version 3.3, a free, web-based application developed, owned and operated by the Technical University of Denmark (DTU). The Global Wind Atlas version 3.3 is released in partnership with the World Bank Group, utilizing data provided by Vortex, using funding provided by the Energy Sector Management Assistance Program (ESMAP). For additional information: https://globalwindatlas.info.

Indicator description

Mean wind speed at 150 m above ground

Methodology

Zonal average of wind speed at 150 m layer in the decade pixels values touching the urban center

Methodology Short

Zonal statistics (avg)

Temporal Coverage

2020

Climate

Indicator group

Renewable potential

Indicator Code

CL REN W20 XXXX

Attribute ID

Mean wind speed at 200 m above ground

Units

m/s

Data Source

Neil N. Davis, Jake Badger, Andrea N. Hahmann, Brian O. Hansen, Niels G. Mortensen, Mark Kelly, Xiaoli G. Larsén, Bjarke T. Olsen, Rogier Floors, Gil Lizcano, Pau Casso, Oriol Lacave, Albert Bosch, Ides Bauwens, Oliver James Knight, Albertine Potter van Loon, Rachel Fox, Tigran Parvanyan, Søren Bo Krohn Hansen, Duncan Heathfield, Marko Onninen, Ray Drummond; *The Global Wind Atlas: A high-resolution dataset of climatologies and associated web-based application*; Bulletin of the American Meteorological Society, Volume 104: Issue 8, Pages E1507-E1525, August 2023,

DOI: https://doi.org/10.1175/BAMS-D-21-0075.1

Global Wind Speed obtained from the Global Wind Atlas version 3.3, a free, web-based application developed, owned and operated by the Technical University of Denmark (DTU). The Global Wind Atlas version 3.3 is released in partnership with the World Bank Group, utilizing data provided by Vortex, using funding provided by the Energy Sector Management Assistance Program (ESMAP). For additional information: https://globalwindatlas.info.

Indicator description

Mean wind speed at 200 m above ground

Methodology

Zonal average of wind speed at 200 m layer in the decade pixels values touching the urban center

Methodology Short

Zonal statistics (avg)

Temporal Coverage

2020

Climate

Indicator group

Warm Days

Indicator Code

CL WDS CUR XXXX

Attribute ID

Percentage of days with maximum temperature - reanalysis data

Units

%

Data Source

Sandstad, M., Schwingshackl, C., Iles, C., (2022): Climate extreme indices and heat stress indicators derived from CMIP6 global climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.776e08bd (Accessed on 29-August-2024)

Indicator description

Percentage of days with maximum temperature above the corresponding calendar day 90th percentile of maximum temperature for a 5-day moving window in the base period 1961-1990 - reanalysis data

Methodology

Zonal average of the data layer pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

1970, 1980, 1990, 2000, 2010

Uncertainties & Best practices

Climate

Indicator group

Warm Days

Indicator Code

CL WDS 126 XXXX

Attribute ID

Percentage of days with maximum temperature - projection ssp 126

Units

%

Data Source

Sandstad, M., Schwingshackl, C., Iles, C., (2022): Climate extreme indices and heat stress indicators derived from CMIP6 global climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.776e08bd (Accessed on 29-August-2024)

Indicator description

Percentage of days with maximum temperature above the corresponding calendar day 90th percentile of maximum temperature for a 5-day moving window in the base period 1961-1990 - projection ssp 126

Methodology

Zonal average of the data layer pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

2020, 2030

Uncertainties & Best practices

Climate

Indicator group

Warm Days

Indicator Code

CL WDS 245 XXXX

Attribute ID

Percentage of days with maximum temperature - projection ssp 245

Units

%

Data Source

Sandstad, M., Schwingshackl, C., Iles, C., (2022): Climate extreme indices and heat stress indicators derived from CMIP6 global climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.776e08bd (Accessed on 29-August-2024)

Indicator description

Percentage of days with maximum temperature above the corresponding calendar day 90th percentile of maximum temperature for a 5-day moving window in the base period 1961-1990 - projection ssp 245

Methodology

Zonal average of the data layer pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

2020, 2030

Uncertainties & Best practices

Climate

Indicator group

Warm Days

Indicator Code

CL WDS 370 XXXX

Attribute ID

Percentage of days with maximum temperature - projection ssp 370

Units

%

Data Source

Sandstad, M., Schwingshackl, C., Iles, C., (2022): Climate extreme indices and heat stress indicators derived from CMIP6 global climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.776e08bd (Accessed on 29-August-2024)

Indicator description

Percentage of days with maximum temperature above the corresponding calendar day 90th percentile of maximum temperature for a 5-day moving window in the base period 1961-1990 - projection ssp 370

Methodology

Zonal average of the data layer pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

2020, 2030

Uncertainties & Best practices

Climate

Indicator group

Warm Days

Indicator Code

CL WDS 585 XXXX

Attribute ID

Percentage of days with maximum temperature - projection ssp 585

Units

%

Data Source

Sandstad, M., Schwingshackl, C., Iles, C., (2022): Climate extreme indices and heat stress indicators derived from CMIP6 global climate projections. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.776e08bd (Accessed on 29-August-2024)

Indicator description

Percentage of days with maximum temperature above the corresponding calendar day 90th percentile of maximum temperature for a 5-day moving window in the base period 1961-1990 - projection ssp 585

Methodology

Zonal average of the data layer pixel values touching the urban center.

Methodology Short

Zonal Statistics (avg)

Temporal Coverage

2020, 2030

Uncertainties & Best practices

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A01 XXXX

Attribute ID

Share of urban center area in "compact highrise" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "compact highrise" Local Climate Zone

Methodology

Share of area of the urban center classified as "compact highrise" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A02 XXXX

Attribute ID

Share of urban center area in "compact midrise" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "compact midrise" Local Climate Zone

Methodology

Share of area of the urban center classified as "compact midrise" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A03 XXXX

Attribute ID

Share of urban center area in "compact lowrise" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "compact lowrise" Local Climate Zone

Methodology

Share of area of the urban center classified as "compact lowrise" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A04 XXXX

Attribute ID

Share of urban center area in "open highrise" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "open highrise" Local Climate Zone

Methodology

Share of area of the urban center classified as "open highrise" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A05 XXXX

Attribute ID

Share of urban center area in "open midrise" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "open midrise" Local Climate Zone

Methodology

Share of area of the urban center classified as "open midrise" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A06 XXXX

Attribute ID

Share of urban center area in "open lowrise" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "open lowrise" Local Climate Zone

Methodology

Share of area of the urban center classified as "open lowrise" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A07 XXXX

Attribute ID

Share of urban center area in "lightweight lowrise" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "lightweight lowrise" Local Climate Zone

Methodology

Share of area of the urban center classified as "lightweight lowrise" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A08 XXXX

Attribute ID

Share of urban center area in "large lowrise" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "large lowrise" Local Climate Zone

Methodology

Share of area of the urban center classified as "large lowrise" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A09 XXXX

Attribute ID

Share of urban center area in "sparsely built" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "sparsely built" Local Climate Zone

Methodology

Share of area of the urban center classified as "sparsely built" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A10 XXXX

Attribute ID

Share of urban center area in "heavy industry" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "heavy industry" Local Climate Zone

Methodology

Share of area of the urban center classified as "heavy industry" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A11 XXXX

Attribute ID

Share of urban center area in "dense trees" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "dense trees" Local Climate Zone

Methodology

Share of area of the urban center classified as "dense trees" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A12 XXXX

Attribute ID

Share of urban center area in "scattered trees" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "scattered trees" Local Climate Zone

Methodology

Share of area of the urban center classified as "scattered trees" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A13 XXXX

Attribute ID

Share of urban center area in "bush, scrub" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "bush, scrub" Local Climate Zone

Methodology

Share of area of the urban center classified as "bush, scrub" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A14 XXXX

Attribute ID

Share of urban center area in "low plants" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "low plants" Local Climate Zone

Methodology

Share of area of the urban center classified as "low plants" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL LCZ A15 XXXX

Attribute ID

Share of urban center area in "bare rock or paved" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "bare rock or paved" Local Climate Zone

Methodology

Share of area of the urban center classified as "bare rock or paved" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL_LCZ_A16_XXXX

Attribute ID

Share of urban center area in "bare soil or sand" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "bare soil or sand" Local Climate Zone

Methodology

Share of area of the urban center classified as "bare soil or sand" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025

Climate

Indicator group

Local climate Zone

Indicator Code

CL_LCZ_A17 XXXX

Attribute ID

Share of urban center area in "water" Local Climate Zone

Units

Categorical

Data Source

Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth Syst Sci Data. 2022a; 14(8):3835-3873. doi:10.5194/essd-14-3835-2022. https://essd.copernicus.org/articles/14/3835/2022/

Demuzere M, Kittner J, Martilli A, et al. Global Local Climate Zone map. Zenodo (2022b) doi:10.5281/zenodo.6364594. https://zenodo.org/records/8419340

Indicator description

Share of urban center area that is classified as "water" Local Climate Zone

Methodology

Share of area of the urban center classified as "water" over total urban center area.

Methodology Short

Ratio

Temporal Coverage

2025