

Problème	PI	20	Ь	lè	m	e
----------	----	----	---	----	---	---

Soit L1 une lentille plan-convexe taillée dans du verre (1) (1) d'indice n=1,5 et placée dans l'air d'indice 1. Le rayon de courbure de la face sphérique est : $\overline{S_1C_1} = R$. (Figure 1) Dans tout le problème les conditions de Gauss sont satisfaites. A-1°/ Quelle est la nature de cette lentille L_1 ? (Justifier sans calculs) A-2°/ L_1 est une lentille mince de centre O_1 $(S_1 \equiv S_2 \equiv O_1)$. Déterminer la relation de conjugaison de cette lentille mince, avec origine en O_1 , pour un objet A et son image A' en fonction de n et R. On notera A_1 l'image intermédiaire. A-3°/ Calculer la distance focale image f_1' de L_1 en fonction n et R. Faire l'application numérique pour $R = 6 \ cm$. En déduire sa vergence V_1 en dioptrie. B-1°/ On place à une distance de +4 cm derrière (après) la lentille L_1 , une lentille mince L_2 de centre o_2 de façon à constituer un doublet placé dans l'air. Quelle est la valeur en $\it cm$ de l'épaisseur e de ce système optique? B-2°/ Le symbole du doublet ainsi formé est : (3, 1, -1). Déterminer la distance focale image $f_2'(cm)$ de L_2 ? Quelle est sa nature?

°/	'a) Calculer la valeur en dioptrie de la vergence V du système ? En déduire sa nature.
	b) Quelles sont les valeurs des distances focales image $f'(cm)$ et objet $f(cm)$ du double
• <i>j</i>	$^\prime$ Calculer la valeur en cm de l'intervalle optique Δ de ce doublet.
	calculer la valeur en cm de l'intervalle optique à de ce doublet.
••••	
°/	$^\prime$ Déterminer les positions, par rapport à $oldsymbol{o}_1$, des foyers principaux F et F^\prime du doublet.
••••	
••••	
°/	$^\prime$ Calculer les positions, par rapport à o_1 , des points principaux $_{H}$ et $_{H'}$ du doublet.
•••••	

B-8°/ Retrouver, par construction géométrique, la position du foyer principal image F' et la position du point principal image H' du doublet. (Utiliser la figure 2 ci-après avec une échelle 1/2)

B-9°/ En utilisant les résultats des questions B-6 et B-7, placer uniquement les points cardinaux du système sur la figure 3 ci-dessous et trouver géométriquement la position de l'image A'B' d'un objet AB tel que $\overline{AB} = 1$ cm et $\overline{O_1A} = -6$ cm. (Echelle = x : 1/2, y : 3/1)

B-10°/ Quelle sera la position de L₂ par rapport à L₁ pour que ce doublet soit afocal ?

B-11°/ On dispose convenablement les deux lentilles pour avoir un système afocal. Un faisceau lumineux, de diamètre D, vient de l'infini parallèlement à l'axe optique et traverse le doublet. Calculer le diamètre d du faisceau émergent en fonction de D.
