VİTMO

НИУ ИТМО

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

По дисциплине "Теория автоматического управления"

"Слежение и компенсация: виртуальный выход"

Вариант 30

Выполнил:

Александр Иванов, R3338

Преподаватели:

Перегудин А.А.

Пашенко А.В.

Санкт-Петербург, 2025

Содержание

1.	Kon	ипенсирующий регулятор	3
	1.1.	Анализ внешнего возмущения	4
	1.2.	Синтез регулятора	6
		1.2.1. Управляемость системы	6
		1.2.2. Feedback компонента	7
		1.2.3. Feedforward компонента	10
	1.3.	Выводы	14
2.	Сле	едящий регулятор	14
	2.1.	Анализ внешнего возмущения	15
	2.2.	Синтез регулятора	17
		2.2.1. Feedback компонента	17
		2.2.2. Feedforward компонента	19
	2.3.	Выводы	23

1. Компенсирующий регулятор

Рассмотрим систему

$$\hat{x} = Ax + Bu + B_f w_f, \quad x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T \tag{1}$$

с генератором внешнего возмущения

$$\dot{w}_f = \Gamma w_f, \quad w_f(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T \tag{2}$$

и виртуальным выходом

$$z = C_z x \tag{3}$$

где

$$A = \begin{bmatrix} 8 & 1 & 11 \\ 4 & 0 & 4 \\ -4 & -3 & -7 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}, \quad B_f = \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix},$$

$$C_z = \begin{bmatrix} -2 \\ -3 \\ -1 \end{bmatrix}^T, \quad \Gamma = \begin{bmatrix} -40 & 16 & 9 & 7 \\ -64 & 25 & 14 & 12 \\ -26 & 11 & 7 & 3 \\ -48 & 18 & 14 & 8 \end{bmatrix}$$

$$(4)$$

Схема моделирования этой системы приведена на рисунке 1.

Рис. 1: Схема моделирования системы

1.1. Анализ внешнего возмущения

Так как внешние возмущение задается линейной системой, можно найти его собственные числа, из которых будет понятен общий вид его выражения.

$$\sigma(\Gamma) = \begin{bmatrix} 0 \pm 3j & 0 \pm 2j \end{bmatrix} \tag{5}$$

Таким образом, так как вещественная часть всех собственных чисел матрицы равны нули, в комплексные части являются попарно сопряженными, то можно сказать, что внешнее возмущение будет иметь гармонический характер, состоящий из двух частотных составляющих.

Можно найти уравнение внешнего возмущения:

$$w_f = e^{\Gamma t} \cdot w_f(0) \tag{6}$$

График внешнего возмущения приведен на рисунке 2. Реакция разомкнутой системы (u=0)

Рис. 2: График внешнего возмущения

при начальных условиях $x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ на внешнее возмущение приведена на рисунках 3, 4 (состояние системы и виртуальный выход соответственно). Как видно на графиках, система

Рис. 3: Реакция разомкнутой системы на внешнее возмущение (состояние системы)

не является устойчивой. Это связано и с тем, что собственные числа матрицы A имеют положительную вещественную часть, и с тем, что внешнее возмущение имеет гармонический характер.

Рис. 4: Реакция разомкнутой системы на внешнее возмущение (виртуальный выход)

1.2. Синтез регулятора

Синтез регулятора, способного компенсировать внешнее возмущение, будет состоять из двух частей. Первая – синтез feedback компоненты, которая обеспечит стабилизацию системы. Для его синтеза можно воспользоваться модальными или немодальными методами. Вторая – синтез feedforward компоненты, которая обеспечит компенсацию внешнего возмущения.

1.2.1. Управляемость системы

Перед тем, как приступить к синтезу регулятора, проверим управляемость собственных чисел системы. Для этого найдем диагональную форму системы без внешнего возмущения.

$$A_{j} = \begin{bmatrix} -3.00 & 0.00 & 0.00 \\ 0.00 & 2.00 & -2.00 \\ 0.00 & 2.00 & 2.00 \end{bmatrix} \quad B_{j} = \begin{bmatrix} -0.00 \\ 2.12 \\ 4.95 \end{bmatrix}$$
 (7)

собственное число $\lambda_1=-3$ не является управляемым, но является стабилизируемым. Собственные числа $\lambda_2=2\pm 2j$ являются управляемыми.

1.2.2. Feedback компонента

Для синтезе регулятора вида $u = K_1 x$ воспользуемся методом немодального синтеза решением матричного неравенства Ляпунова с минимизацией нормы управления. Подробно синтез такого регулятора был рассмотрен в прошлой работе.

$$PA^{T} + AP + 2\alpha P + Y^{T}B^{T} + BY \leq 0, \quad H = YP^{-1}, \quad P \succ 0$$

$$\begin{bmatrix} P & x(0) \\ x(0)^{T} & 1 \end{bmatrix} \succ 0, \quad \begin{bmatrix} P & Y^{T} \\ Y & \mu^{2}I \end{bmatrix} \succ 0$$
(8)

где μ — ограничение на управление $\mu \geq \|u(t)\|_2$. Минимизируя μ при заданной степени устойчивости $\alpha=3$ и начальном состоянии $x(0)=\begin{bmatrix}0&0&0\end{bmatrix}^T$, получаем следующий регулятор:

$$K_1 = \begin{bmatrix} -4.57 & 0.29 & -4.57 \end{bmatrix} \tag{9}$$

Собственные числа системы, замкнутой регулятором K_1 :

$$\sigma(A + BK_1) = \begin{bmatrix} -3.00 + 4.55j \\ -3.00 - 4.55j \\ -3.00 \end{bmatrix}$$
(10)

Можно сделать вывод, что регулятор K_1 синтезирован корректно. Проведем промежуточные исследования системы. Промоделируем систему с регулятором K_1 без внешнего возмущения и с ним. В качестве начальных условий возьмем $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. График состояния системы без внешнего возмущения приведен на рисунке 5 (состояние системы) и 6 (виртуальный выход), а с внешним возмущением на рисунке 7 (состояние системы) и 8 (виртуальный выход).

Рис. 5: Состояние системы с регулятором K_1 без внешнего возмущения

Рис. 6: Выход системы с регулятором K_1 без внешнего возмущения

Рис. 7: Состояние системы с регулятором K_1 с внешним возмущением

Рис. 8: Выход системы с регулятором K_1 с внешним возмущением

Видно, что система, замкнутая регулятором K_1 без внешнего воздействия сходится к нулю, что подтверждает корректность синтеза регулятора. Но при этом система с внешним возмущением не имеет устойчивого состояния.

1.2.3. Feedforward компонента

Для синтеза компенсирующего регулятора воспользуемся уравнениями:

$$\begin{cases}
P\Gamma - AP = BY + B_f \\
C_z P = 0 \\
K_2 = Y - K_1 P
\end{cases}$$
(11)

Условием существования такого регулятора является принадлежность собственных чисел внешнего возмущения правой комплексной полуплоскости и принадлежность корней системы, замкнутой регулятором, левой комплексной полуплоскости. Оба эти условия выполняются. Решим систему с помощью пакета cvx в MATLAB, в результате получаем:

$$K_2 = \begin{bmatrix} -5.96 & 2.25 & 2.72 & 1.48 \end{bmatrix} \tag{12}$$

Проверим синтезированный регулятор на устойчивость при внешнем возмущении. График моделирования системы с внешним воздействием и начальными условиями $x(0) = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ с использованием *полного* регулятора $u = K_1x + K_2w_f$ приведен на рисунках 9 (состояние системы) и 10 (виртуальный выход). График управления, полученного с помощью полных регуляторов $K_1 + K_2$ приведен на рисунке 11. Видно, что выход системы сходится к нулю, что подтверждает корректность синтеза регулятора.

Рис. 9: Состояние системы с полным регулятором $K_1 + K_2$

Рис. 10: Выход системы с полным регулятором $K_1 + K_2$

Рис. 11: Управление системы с полным регулятором K_1+K_2

Сравнительные графики управления, формируемого разными регуляторами приведены на рисунке 12. где u_1 – управление, формируемое регулятором K_1 без внешнего воздействия, u_2 –

Рис. 12: Сравнение управления, формируемого разными регуляторами

управление, формируемое полным регулятором K_1 с внешним воздействием, u_3 – управление, формируемое полным регулятором K_1+K_2 с внешним воздействием.

Сравнительные графики виртуального выхода, формируемого разными регуляторами приведены на рисунке 13. где z_1 – выход системы с регулятором K_1 с внешним воздействием, z_2 – выход системы с полным регулятором K_1+K_2 с внешним воздействием.

Рис. 13: Сравнение виртуального выхода, формируемого разными регуляторами

1.3. Выводы

В результате исследования системы с внешним возмущением и различными регуляторами можно сделать следующие выводы: система с *классическим* немодальным регулятором K_1 не является устойчивой при наличии внешнего возмущения, содержащего гармонические составляющие. Система с *полным* регулятором $K_1 + K_2$ является устойчивой при наличии внешнего возмущения. При этом состояние системы с полным регулятором не сходится к нулю, компенсируя внешнее возмущение.

2. Следящий регулятор

Рассмотрим систему

$$\hat{x} = Ax + Bu, \quad x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T \tag{13}$$

с генератором внешнего возмущения

$$\dot{w}_g = \Gamma w_g, \quad w_g(0) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T \tag{14}$$

и виртуальным выходом

$$z = C_z x + D_z w_q \tag{15}$$

где

$$A = \begin{bmatrix} 8 & 1 & 11 \\ 4 & 0 & 4 \\ -4 & -3 & -7 \end{bmatrix}, B = \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix},$$

$$C_z = \begin{bmatrix} -2 \\ -3 \\ -1 \end{bmatrix}^T, \Gamma = \begin{bmatrix} -40 & 16 & 9 & 7 \\ -64 & 25 & 14 & 12 \\ -26 & 11 & 7 & 3 \\ -48 & 18 & 14 & 8 \end{bmatrix} D_z = \begin{bmatrix} 8 \\ -8 \\ 12 \\ -3 \end{bmatrix}^T$$

$$(16)$$

Схема моделирования этой системы представлена на рисунке 14.

Рис. 14: Схема моделирования системы с следящим регулятором

2.1. Анализ внешнего возмущения

Согласно результатам, полученным ранее, входное воздействие представляет собой гармонический сигнал, состоящий из двух частот. График входного воздействия представлен на рисунке 2. Проведем моделирование разомкнутой системы (u=0). Результаты моделирования представлены на рисунке 15 (график состояния системы) и 16 (график виртуального выхода системы). Видно, что система является неустойчивой. Состояние системы не сходится к нулю из-за неустойчивых собственных значений матрицы A.

Рис. 15: График состояния системы

Виртуальный выход системы также не сходится к нулю, при этом это еще обусловлено и тем, что входной воздействие, которое является его частью не сходится к нулю.

Рис. 16: График виртуального выхода системы

2.2. Синтез регулятора

Как и в случае компенсирующего регулятора, синтез следящего регулятора будет состоять из двух этапов: синтез feedback компоненты и синтез feedforward компоненты.

2.2.1. Feedback компонента

Синтез feedback компоненты будет идентичен такому же синтезу для компенсирующего регулятора. Возьмем результаты из предыдущего пункта (9).

$$K_1 = \begin{bmatrix} -4.57 & 0.29 & -4.57 \end{bmatrix}$$
 (17)

Промоделируем систему с полученным регулятором. Результаты моделирования представлены на рисунке 17 (график состояния системы) и 18 (график виртуального выхода системы). Видно, что регулятор справляется с задачей стабилизации состояния системы, но целевой

Рис. 17: График состояния системы с регулятором K_1

параметр (виртуальный выход) не стабилизируется. Это связано с тем, что в его составе есть входное воздействие, которое не стабилизируется.

Рис. 18: График виртуального выхода системы с регулятором K_1

2.2.2. Feedforward компонента

Для синтеза следящего регулятора воспользуемся уравнениями:

$$\begin{cases}
P\Gamma - AP = BY \\
C_z P + D_z = 0 \\
K_2 = Y - K_1 P
\end{cases}$$
(18)

Условием существования такого регулятора является принадлежность собственных чисел внешнего воздействия правой комплексной полуплоскости и принадлежность корней системы, замкнутой регулятором, левой комплексной полуплоскости. Оба эти условия выполняются. Решим систему с помощью пакета cvx в MATLAB, в результате получаем:

$$K_2 = \begin{bmatrix} 3.23 & -0.90 & 2.40 & -2.74 \end{bmatrix} \tag{19}$$

Промоделируем систему с управлением $u=K_1x+K_2w_g$. Результаты моделирования представлены на рисунке 19 (график состояния системы) и 20 (график виртуального выхода

системы). Видно, что теперь виртуальный выход системы стабилизировался, что говорит о

Рис. 19: График состояния системы с регулятором $K_1 + K_2$

том, что регулятор справляется с задачей слежения за входным воздействием.

Рис. 20: График виртуального выхода системы с регулятором K_1+K_2

Сравнительные графики приведены на рисунках 21 (сравнение управления) и 22 (сравнение виртуального выхода). Где u_1 – управление, формируемое регулятором K_1 , u_2 – управление, формируемое полным регулятором K_1+K_2 , z_1 – выход системы с регулятором K_1 , z_2 – выход системы с полным регулятором K_1+K_2 .

Видно, что управление, формируемое полным регулятором $K_1 + K_2$ не сходится к нулю, в отличие от управления, формируемого регулятором K_1 . Это связано с тем, что полный регулятор $K_1 + K_2$ учитывает входное воздействие, которое не стабилизируется. Таким образом получается добиться целевой задачи – виртуальный выход системы сходится к нулю.

Рис. 21: Сравнение управления

Рис. 22: Сравнение виртуального выхода

2.3. Выводы

В данном пункте был рассмотрен регулятор, способный следить за входным воздействием. Как и в прошлом случае, синтез регулятора состоял из двух этапов: синтез feedback компоненты, которая обеспечивает устойчивость системы, которая осталась неизменной в силу неизменности системы и синтез feedforward компоненты, которая обеспечивает стабилизацию виртуального выхода системы.