Beyond the exponential family

Eric Pedersen, Gavin Simpson, David Miller August 6th, 2016

$$f(x|\theta) \sim \exp(\sum_{i} \eta_{i}(\theta)T_{i}(x) - A(\theta))$$

Most glm families (Poisson, Gamma, Gaussian, Binomial) are exponential families

$$f(x|\theta) \sim \exp(\sum_{i} \eta_{i}(\theta)T_{i}(x) - A(\theta))$$

Computationally easy

$$f(x|\theta) \sim \exp(\sum_{i} \eta_{i}(\theta)T_{i}(x) - A(\theta))$$

- Computationally easy
- Has sufficient statistics: easier to estimate parameter variance

$$f(x|\theta) \sim \exp(\sum_{i} \eta_{i}(\theta)T_{i}(x) - A(\theta))$$

- Computationally easy
- Has sufficient statistics: easier to estimate parameter variance
- ... but it doesn't describe everything

$$f(x|\theta) \sim \exp(\sum_{i} \eta_{i}(\theta)T_{i}(x) - A(\theta))$$

- Computationally easy
- Has sufficient statistics: easier to estimate parameter variance
- ... but it doesn't describe everything
- mgcv has expanded to cover many new families

$$f(x|\theta) \sim \exp(\sum_{i} \eta_{i}(\theta)T_{i}(x) - A(\theta))$$

- Computationally easy
- Has sufficient statistics: easier to estimate parameter variance
- ... but it doesn't describe everything
- mgcv has expanded to cover many new families
- Lets you model a much wider range of scenarios with smooths

What we'll cover

- "Counts": Negative binomial and Tweedie distributions
- Modelling proportions with the Beta distribution
- Robust regression with the Student's t distribution
- Ordered and unorderd categorical data
- Multivariate normal data
- Modelling exta zeros with zero-inflated and adjusted families
- NOTE: All the distributions we're covering here have their own quirks. Read the help files carefully before using them!

Modelling "counts"

Counts and count-like things

- Response is a count (not always integer)
- Often, it's mostly zero (that's complicated)
- Could also be catch per unit effort, biomass etc
- Flexible mean-variance relationship

Tweedie distribution

- $Var(count) = \varphi(count)^q$
- Common distributions are sub-cases:
 - $\blacksquare q = 1 \Rightarrow Poisson$
 - $\blacksquare q = 2 \Longrightarrow Gamma$
 - $\mathbf{q} = 3 \Rightarrow \text{Normal}$
- We are interested in 1 < q < 2
- (here q = 1.2, 1.3, ..., 1.9)
- tw()

Negative binomial

- Var(count) = $(count) + \varkappa(count)^2$
- Estimate χ
- Is quadratic relationship a "strong" assumption?
- Similar to Poisson: Var(count) = (count)
- nb()

Modelling proportions

The Beta distribution

- Proportions; continuous, bounded at 0 & 1
- Beta distribution is convenient choice
- Two strictly positive shape parameters, $\alpha \& \beta$
- Has support on $x \in (0,1)$
- Density at x = 0 & x = 1 is ∞ , fudge
- betareg package
- betar() family in mgcv

Beta or Binomial?

The binomial model also model's proportions — more specifically it models the number of successes in m trials. If you have data of this form then model the binomial counts as this can yield predicted *counts* if required.

If you have true percentage or proportion data, say estimated prpotional plant cover in a quadrat, then the beta model is appropriate.

Also, if all you have is the percentages, the beta model is unlikely to be terribly bad.

Stereotypic behaviour in captive cheetahs

To illustrate the use of the betar() family in mgcv we use a behavioural data set of observations on captive cheetahs. These data are prvided and extensively analysed in Zuur et al () and originate from Quirke et al (2012).

Stereotypic behaviour in captive cheetahs

- data collected from nine zoos
- at randomised times of day a random number of scans (videos) of captive cheetah behaviour were recorded and analysed over a period of several months
- presence of stereotypical behaviour was recorded
- all individuals in an enclosure were assessed; where more than 1 individual data were aggregated over individuals to achieve 1 data point per enclosure per sampling occasion
- a number of covariates were also recorded
- data technically a binomial counts but we'll ignore count data and model the proportion of scans showing stereotypical behaviour

Cheetah: data processing

```
cheetah <- read.table("../data/beta-regression/ZooData.txt",
header = TRUE)
names(cheetah)</pre>
```

```
[1] "Number" "Scans" "Proportion" "Size" "Visual" [6] "Raised" "Visitors" "Feeding" "Oc" "Other" [11] "Enrichment" "Group" "Sex" "Enclosure" "Vehicle" [16] "Diet" "Age" "Zoo" "Eps"
```

Cheetah: model fitting

```
Family: Beta regression(14.008)
Link function: logit
Formula:
Proportion ~ s(log(Size)) + s(Visitors) + s(Enclosure) +
s(Vehicle) +
    s(Age) + s(Zoo, bs = "re") + Feeding + Oc + Other + Enrichment
+
   Group + Sex
Parametric coefficients:
           Estimate Std. Error z value Pr(>|z|)
                                -9.153 < 2e-16
(Intercept) -2.62170
                    0.28642
Feeding2 -0.47018 0.24004 -1.959 0.050146
0c2 0.89374 0.23419 3.816 0.000135 ***
Other2 -0.08821 0.22063 -0.400 0.689296
Enrichment2 -0.17821 0.24557 -0.726 0.468016
Group2 -0.57576 0.21491 -2.679 0.007382
SexFemale 0.16167
                    0.17415 0.928 0.353228
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                  edf Ref.df Chi.sq p-value
s(log(Size)) 2.8849353 3.606 27.687 1.23e-05
s(Visitors)
            1.0000412
                      1.000 0.088
                                    0.76716
                      1.979 1.177 0.51516
s(Enclosure) 1.6013765
s(Vehicle) 1.0000789 1.000 7.391 0.00656
       1.0001662 1.000 7.216 0.00723
s(Age)
                       8.000 0.000
            0.0000217
                                     0.62533
s(Zoo)
```

Cheetah: model smooths

Modelling outliers

The student-t distribution

- Models continuous data w/ longer tails than normal
- Far less sensitive to outliers
- Has one extra parameter: df.
- bigger df: t dist approaches normal

The student-t distribution: Usage

```
set.seed(4)
n=300
dat = data.frame(x=seq(0,10,length=n))
dat$f = 20*exp(-dat$x)*dat$x
dat$y = 1*rt(n,df = 3) + dat$f
norm_mod = gam(y~s(x,k=20), data=dat,
family=gaussian(link="identity"))
t_mod = gam(y~s(x,k=20), data=dat, family=scat(link="identity"))
```

The student-t distribution: Usage

The student-t distribution: Usage

```
Family: Scaled t(2.976, 0.968)
Link function: identity
Formula:
y \sim s(x, k = 20)
Parametric coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.02664 0.06853 29.57 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
       edf Ref.df Chi.sq p-value
s(x) 13.27 15.71 1221 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.695 Deviance explained = 63.1% -REML = 546.75 Scale est. = 1 n = 300
```

Modelling multi-dimensional data

Ordered categorical data

- Assumes data are in discrete categories, and categories fall in order
- e.g.: conservation status: "least concern", "vulnerable", "endangered", "extinct"
- fits a linear latent model using covariates, w/ threshold for each level
- First cut-off always occurs at -1

Ordered categorical data

Ordered categorical data

Using ocat

```
n= 200
dat = data.frame(x1 = runif(n,-1,1),x2=2*pi*runif(n))
dat$f = dat$x1^2 + sin(dat$x2)
dat$y_latent = dat$f + rnorm(n,dat$f)
dat$y = ifelse(dat$y_latent<0,1, ifelse(dat$y_latent<0.5,2,3))
ocat_model = gam(y~s(x1)+s(x2), family=ocat(R=3),data=dat)
plot(ocat_model,page=1)</pre>
```


Using ocat

summary(ocat_model)

```
Family: Ordered Categorical(-1,-0.09)
Link function: identity
Formula:
y \sim s(x1) + s(x2)
Parametric coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.5010 0.2792 1.794 0.0727.
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(x1) 3.452 4.282 18.67 0.00133 **
s(x2) 5.195 6.270 84.34 1.09e-15 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Deviance explained = 57.7%
```

Using ocat

Unordered categorical data

 What do you do if categorical data doesn't fall in a nice order?

Unordered categorical data

What do you do if categorical data doesn't fall in a nice

 Model probability of a category occurring relative to an (arbitrary) reference level

- Model probability of a category occurring relative to an (arbitrary) reference level
- one linear equation for each category except the reference class

- Model probability of a category occurring relative to an (arbitrary) reference level
- one linear equation for each category except the reference class
- $p(y = i|\mathbf{x}) = \exp(\mu_i(\mathbf{x}))/(1 + \sum_j \exp(\mu_j(\mathbf{x}))$

- Model probability of a category occurring relative to an (arbitrary) reference level
- one linear equation for each category except the reference class
- $p(y = i|\mathbf{x}) = \exp(\mu_i(\mathbf{x}))/(1 + \sum_j \exp(\mu_j(\mathbf{x}))$
- $\mu_i(\mathbf{x}) = s_{1,j}(x_1) + s_{2,j}(x_2)$

- Model probability of a category occurring relative to an (arbitrary) reference level
- one linear equation for each category except the reference class
- $p(y = i|\mathbf{x}) = \exp(\mu_i(\mathbf{x}))/(1 + \sum_j \exp(\mu_j(\mathbf{x}))$
- $\mu_i(\mathbf{x}) = s_{1,j}(x_1) + s_{2,j}(x_2)$
- $p(y = 0|x) = 1/(1 + \sum_{j} exp(\mu_{j}(x))$

Using the multinom function

Using the multinom function

head(model_dat)

pairs(model_dat)

Using the multinom function

Understanding the results

```
multinom_pred_data = as.data.frame(expand.grid(road_dist
=seq(0,10, length=50),
                                                             tree cover
=c(0,0.33,0.66,1)))
multinom_pred = predict(multinom_model, multinom_pred_data,type =
"response")
colnames(multinom_pred) = c("monkey", "deer", "pig")
multinom_pred_data = cbind(multinom_pred_data,multinom_pred)
multinom_pred_data_long = multinom_pred_data %>%
    gather(species, probability, monkey, deer,pig)%>%
  mutate(tree_cover =paste("tree cover = ", tree_cover, sep=""))
ggplot(aes(road_dist,
probability, color=spécies), data=multinom_pred_data_long)+
  geom_line()+
   facet_grid(.~tree_cover)+
  theme_bw(20)
```


Other multivariate distributions to check out

 Fit a different smooth model for multiple y-variables, but allowing correlation between y's

- Fit a different smooth model for multiple y-variables, but allowing correlation between y's
- Example uses: multi-species distribution models, measuring latent correlations between environmental predictors

- Fit a different smooth model for multiple y-variables, but allowing correlation between y's
- Example uses: multi-species distribution models, measuring latent correlations between environmental predictors
- mgcv code: formula=list(y1~s(x1)+s(x2), y2 = s(x1)+s(x3)), family = mvn(d=2)

 Censored data: y measures time until an event occurs, or the study was stopped (censoring)

- Censored data: y measures time until an event occurs, or the study was stopped (censoring)
- Measures relative rates, rather than absolute rates (no intercepts)

- Censored data: y measures time until an event occurs, or the study was stopped (censoring)
- Measures relative rates, rather than absolute rates (no intercepts)
- Example uses: time until an individual is infected, time until a subpopulation goes extinct, time until lake is invaded

- Censored data: y measures time until an event occurs, or the study was stopped (censoring)
- Measures relative rates, rather than absolute rates (no intercepts)
- Example uses: time until an individual is infected, time until a subpopulation goes extinct, time until lake is invaded
- mgcv code: formula = y~s(x1)+s(x2), weights= censor.var, family=cox.ph

- Censored data: y measures time until an event occurs, or the study was stopped (censoring)
- Measures relative rates, rather than absolute rates (no intercepts)
- Example uses: time until an individual is infected, time until a subpopulation goes extinct, time until lake is invaded
- mgcv code: formula = y~s(x1)+s(x2), weights= censor.var, family=cox.ph
- censor.var = 0 if censored, 1 if not

 Model both the mean ("location") and variance ("scale") as smooth functions of predictors

- Model both the mean ("location") and variance ("scale") as smooth functions of predictors
- Example uses: detecting early warning signs in time series, finding factors driving population variability

- Model both the mean ("location") and variance ("scale") as smooth functions of predictors
- Example uses: detecting early warning signs in time series, finding factors driving population variability
- mgcv code: formula = list(y~s(x1)+s(x2), ~s(x2)+s(x3)), family=gaulss

- Model both the mean ("location") and variance ("scale") as smooth functions of predictors
- Example uses: detecting early warning signs in time series, finding factors driving population variability
- mgcv code: formula = list(y~s(x1)+s(x2), ~s(x2)+s(x3)), family=gaulss
- censor.var = 0 if censored, 1 if not

 Models the probability of zeros seperately from mean counts given that you've observed more than zero at a location.

- Models the probability of zeros seperately from mean counts given that you've observed more than zero at a location.
- Example uses: Counts of prey caught when a predator might switch between not hunting at all (zeros) and active hunting

- Models the probability of zeros seperately from mean counts given that you've observed more than zero at a location.
- Example uses: Counts of prey caught when a predator might switch between not hunting at all (zeros) and active hunting
- mgcv code: formula = list(y~s(x1)+s(x2), ~s(x2)+s(x3)), family=ziplss

The end of the distribution zoo

That's the end of this section! We convene after lunch (1:00 PM). You'll get to work through a few more advanced examples of your choice.