CS4102 Algorithms

Spring 2022

Warm Up

What is the asymptotic run time of MergeSort if its recurrence is

$$T(n) = 2T\left(\frac{n}{2}\right) + 209n$$

Tree Method

 \Rightarrow 209*n* per level

 $\approx \log_2 n$ levels of recursion

1 | 1

1

1

1

1

• • •

_ ||

1

 $T(n) = 209n \sum_{i=0}^{\log n} 1 = 209n \log_2 n$

Tree Method

$$T(n) = 2T(n/2) + 209n$$

What is the cost?

Cost at level
$$i$$
: $\frac{2^i}{2^i} \cdot \frac{209n}{2^i} = 209n$

Total cost:
$$T(n) = \sum_{i=0}^{\log_2 n} 209n$$

$$= 209n \sum_{i=0}^{\log_2 n} 1 = n \log_2 n$$
$$= \Theta(n \log n)$$

Number of subproblems

Cost of subproblem

1

209n

2

209n/2

4

209n/4

 2^k

 $209n/2^{k}$

Multiplication

Want to multiply large numbers together

$$4102$$
 $\times 1819$

n-digit numbers

- What makes a "good" algorithm?
- How do we measure input size?
- What do we "count" for run time?

"Schoolbook" Method

Can we do better?

4 1 0 2

 $\times 1819$

n-digit numbers

How many total multiplications?

```
What about cost 36918 n mults of additions? 4102 n mults 9(n^2) 32816 n mults 1000 n mults 1000
```

 $\Rightarrow n \text{ levels}$ $\Rightarrow \Theta(n^2)$

1. Break into smaller subproblems

a b =
$$10\frac{n}{2}$$
 a + b

$$\times c d = 10\frac{n}{2}c + d$$

$$10^{n}(a \times c) +$$

$$10\frac{n}{2}(a \times d + b \times c) +$$

$$(b \times d)$$

Divide and Conquer Multiplication

Divide:

– Break n-digit numbers into four numbers of n/2 digits each (call them a, b, c, d)

Conquer:

- If n > 1:
 - Recursively compute ac, ad, bc, bd
- If n = 1: (i.e. one digit each)
 - Compute ac, ad, bc, bd directly (base case)

Combine:

$$10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$$

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$$

Recursively solve

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

3. Use asymptotic notation to simplify

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

$$T(n) = 5n \sum_{i=0}^{\log_2 n} 2^i$$

$$\frac{4}{2} \cdot 5n$$

$$\frac{16}{4} \cdot 5n$$

$$2^{\log_2 n} \cdot 5n$$

3. Use asymptotic notation to simplify

asymptotic notation to simplify
$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

$$T(n) = 5n \sum_{i=0}^{\log_2 n} 2^i$$

$$T(n) = 5n \frac{2^{\log_2 n + 1} - 1}{2 - 1}$$

$$T(n) = 5n(2n - 1) = \Theta(n^2)$$

Karatsuba Multiplication

1. Break into smaller subproblems

a b =
$$10^{\frac{n}{2}}$$
 a + b
 \times c d = $10^{\frac{n}{2}}$ c + d

$$10^{n}$$
 (a × c) +

$$10^{\frac{n}{2}}$$
 (a × d + b × c) +
(b × d)

a b × c d

Karatsuba

$$10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$$

Can't avoid these

This can be simplified

$$(a+b)(c+d) =$$

$$ac + ad + bc + bd$$

$$\frac{ad + bc}{\text{Two}} = \frac{(a + b)(c + d) - ac - bd}{\text{One multiplication}}$$
One multiplication

Karatsuba Algorithm

- 1. Recursively compute: ac, bd, (a + b)(c + d)
- 2. (ad + bc) = (a + b)(c + d) ac bd
- 3. Return $10^{n}(ac) + 10^{\frac{n}{2}}(ad + bc) + bd$

Pseudo-code

- 1. $x \leftarrow \text{Karatsuba}(a, c)$
- 2. $y \leftarrow \text{Karatsuba}(b, d)$
- 3. $z \leftarrow \text{Karatsuba}(a + b, c + d) x y$
- 4. Return $10^n x + 10^{n/2} z + y$

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Karatsuba Multiplication

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{n/2}((a+b)(c+d) - ac - bd) + bd$$

Recursively solve

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Need to compute **3** multiplications, each of size n/2: ac, bd, (a + b)(c + d)

2 shifts and 6 additions on n-digit values

Karatsuba

3. Use asymptotic notation to simplify

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

$$T(n) = 8n \sum_{i=0}^{\log_2 n} (3/2)^i$$

$$8n \cdot 1$$

$$8n \cdot \frac{3}{2}$$

$$8n \cdot \frac{9}{4}$$

$$8n \cdot \frac{3^{\log_2 n}}{2^{\log_2 n}}$$

Karatsuba

3. Use asymptotic notation to simplify

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

$$T(n) = 8n \sum_{i=0}^{\log_2 n} (3/2)^i$$

$$T(n) = 8n \frac{{\binom{3}{2}}^{\log_2 n + 1} - 1}{\frac{3}{2} - 1}$$

Math, math, and more math...(see lecture supplement)

$$T(n) = 24(n^{\log_2 3}) - 16n = \Theta(n^{\log_2 3})$$

 $\approx \Theta(n^{1.585})$

Recurrence Solving Techniques

Four methods for solving recurrences

Unrolling: expand the recurrence

Tree: get a picture of recursion

Guess/Check: Substitution by guessing the solution and using induction to prove

"Cookbook": Use magic (a.k.a. Master Theorem)

Induction (review)

Goal:

 $\forall k \in \mathbb{N}, P(k) \text{ holds}$

Base case(s): P(1) holds

Technically, called strong induction

Hypothesis:
$$\forall x \leq x_0, P(x)$$
 holds

Inductive step: show $P(1), ..., P(x_0) \Rightarrow P(x_0 + 1)$

Guess and Check Intuition

- Show: $T(n) \in O(g(n))$
- Consider: $g_*(n) = c \cdot g(n)$ for some constant c, i.e. pick $g_*(n) \in O(g(n))$
- Goal: show $\exists n_0$ such that $\forall n > n_0$, $T(n) \leq g_*(n)$
 - (definition of big-O)
- Technique: Induction
 - Base cases:
 - show $T(1) \le g_*(1), T(2) \le g_*(2), \dots$ for a small number of cases (may need additional base cases)
 - Hypothesis:
 - $\forall n \leq x_0, T(n) \leq g_*(n)$
 - Inductive step:
 - Show $T(x_0 + 1) \le g_*(x_0 + 1)$

Need to ensure that in inductive step, can either appeal to a <u>base</u> <u>case</u> or to the <u>inductive hypothesis</u>

Karatsuba Guess and Check (Loose)

$$T(n) = 3 T\left(\frac{n}{2}\right) + 8n$$

Goal:
$$T(n) \le 3000 \, n^{1.6} = O(n^{1.6})$$

Base cases:
$$T(1) = 8 \le 3000$$

$$T(2) = 3(8) + 16 = 40 \le 3000 \cdot 2^{1.6}$$

... up to some small k

Hypothesis:
$$\forall n \leq x_0, T(n) \leq 3000n^{1.6}$$

Inductive step: Show that
$$T(x_0 + 1) \le 3000(x_0 + 1)^{1.6}$$

Karatsuba Guess and Check (Loose)

Mergesort Guess and Check

$$T(n) = 2 T\left(\frac{n}{2}\right) + n$$

Goal:
$$T(n) \le n \log_2 n = O(n \log_2 n)$$

Base cases:
$$T(1) = 0$$

$$T(2) = 2 \le 2 \log_2 2$$

... up to some small k

Hypothesis:
$$\forall n \leq x_0 \ T(n) \leq n \log_2 n$$

Inductive step:
$$T(x_0 + 1) \le (x_0 + 1) \log_2(x_0 + 1)$$

Math, math, and more math...(on board, see lecture supplemental)

Mergesort Guess and Check

Karatsuba Guess and Check

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$
Goal:
$$T(n) \le 24n^{\log_2 3} - 16n = O(n^{\log_2 3})$$

Base cases: by inspection, holds for small n (at home)

Hypothesis:
$$\forall n \leq x_0, T(n) \leq 24n^{\log_2 3} - 16n$$

Inductive step:
$$T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} - 16(x_0 + 1)$$

Math, math, and more math...(on board, see lecture supplemental)

Karatsuba Guess and Check

What if we leave out the -16n?

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Goal:
$$T(n) \le 24n^{\log_2 3} - 16n = O(n^{\log_2 3})$$

Base cases: by inspection, holds for small n (at home)

Hypothesis:
$$\forall n \leq x_0, T(n) \leq 24n^{\log_2 3} - 16n$$

Inductive step:
$$T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} - 16(x_0 + 1)$$

What we wanted:
$$T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3}$$
 Induction failed! What we got: $T(x_0 + 1) \le 24(x_0 + 1)^{\log_2 3} + 8(x_0 + 1)$

Recurrence Solving Techniques

Four methods for solving recurrences

Unrolling: expand the recurrence

Tree: get a picture of recursion

Guess/Check: Substitution by guessing the solution and using induction to prove

"Cookbook": Use magic (a.k.a. Master Theorem)

Observation

- Divide: D(n) time
- Conquer: recurse on small problems, size s
- Combine: C(n) time
- Recurrence:

$$T(n) = D(n) + \sum T(s) + C(n)$$

Many D&C recurrences are of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n),$$
 where $f(n) = D(n) + C(n)$

Remember...

- MergeSort: $T(n) = 2 T\left(\frac{n}{2}\right) + n$
- D&C Multiplication: $T(n) = 4T(\frac{n}{2}) + 5n$
- Karatsuba: $T(n) = 3T\left(\frac{n}{2}\right) + 8n$

General

$$T(n) = \sum_{i=0}^{\log_b n} a^i f\left(\frac{n}{b^i}\right)$$

3 Cases

 $L = \log_b n$

$$T(n) = f(n) + af\left(\frac{n}{b}\right) + a^2f\left(\frac{n}{b^2}\right) + a^3f\left(\frac{n}{b^3}\right) + \dots + a^Lf\left(\frac{n}{b^L}\right)$$

Case 1:

Most work happens at the leaves

Case 2:

Work happens consistently throughout

Case 3:

Most work happens at top of tree

Master Theorem

$$T(n) = \frac{a}{a}T\left(\frac{n}{b}\right) + f(n)$$

```
Case 1: if f(n) \in O(n^{\log_b a} - \varepsilon) for some constant \varepsilon > 0, then T(n) \in \Theta(n^{\log_b a})
```

```
Case 2: if f(n) \in \Theta(n^{\log_b a}), then T(n) \in \Theta(n^{\log_b a} \log n)
```

Case 3: if
$$f(n) \in \Omega(n^{\log_b a + \varepsilon})$$
 for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) \in \Theta(f(n))$

Master Theorem Example 1

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

Case 2

$$\Theta(n^{\log_2 2} \log n) = \Theta(n \log n)$$

Tree method

Master Theorem Example 2

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Case 1

$$\Theta(n^{\log_2 4}) = \Theta(n^2)$$

Tree method

$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Master Theorem Example 3

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Case 1

$$\Theta(n^{\log_2 3}) \approx \Theta(n^{1.5})$$

Karatsuba

$$T(n) = 3T\left(\frac{n}{2}\right) + 8n$$

Master Theorem Example 4

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

- Case 1: if $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- Case 2: if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

$$T(n) = 2T\left(\frac{n}{2}\right) + 15n^3$$

Case 3

$$\Theta(n^3)$$

Tree method

