

Inteligência Artificial Docente: Dalila Durães

• • • • • • • •

Conceção e otimização de modelos de Machine Learning

• • • • • • •

Camila Pinto PG53712 Ano Letivo 2023/2024

Conteúdo

01 Introdução

02 Dataset

03 Exploração de dados

Preparação de dados e modelação

Modelos e Resultados

06 Conclusão

Introdução

- O setor imobiliário, por natureza dinâmica reflete as condições socioeconômicas de uma região,refletindo não apenas as preferências dos compradores e vendedores, mas também as nuances econômicas e demográficas. Neste contexto, proponho um estudo aprofundado do mercado imobiliário de Melbourne, com o objetivo específico de analisar os dados e prever os preços de venda das propriedades.
- Para atingir o objetivo de previsão de preços, adotarei a metodologia CRISP-DM (CrossIndustry Standard Process for Data Mining). Esta abordagem estruturada compreende etapas como: compreensão do negócio, compreensão dos dados e da sua qualidade, preparação dos dados (seleção dos atributos e limpeza), modelação, avaliação e, por fim, implementação.

Atributos

- · Suburb nome do subúrbio,
- · Address morada,
- · Rooms Número de quartos,
- Type br quarto(s); h casa, chalé, vila, geminada; u apartamento, duplex; t casa em condomínio; dev site terreno para desenvolvimento; o res outras residenciais, Price Preço em dollars,
- Method S propriedade vendida; SP propriedade vendida antecipadamente; PI propriedade não vendida em leilão; PN vendida antecipadamente sem divulgação; SN vendida sem divulgação; NB sem oferta; VB oferta do vendedor; W retirada antes do leilão; SA vendida após o leilão; SS vendida após o leilão sem divulgação de preço. N/A preço ou lance mais alto não disponível,
- · SellerG Agente imobiliário,
- · Date Data de venda,
- Distance Distância do CBD(central business district), Postcode código postal,
- Bedroom quantidade de quartos.
- · Bathroom número de casas de banho.
- Car quantidade de vagas para os carros.
- · Landsize tamanho do terreno.
- BuildingArea tamanho do edíficio.
- YearBuilt ano de construção,
- CouncilArea concelho,
- · latitude.
- longitude,
- · Regionname Nome da região,
- · Propertycount quantidade de propriedades existentes no subúrbio

Exploração dos dados 03

Atributos region name e council area

A partir da análise do dataset verifica-se que os atributos region name e council área estavam relacionados. Analisando a figura nota-se que os atributos correspondem a mesma informação, visto que as frequências são em muitos casos 100%, e não em todos devido à elevada quantidade de missing values.

Cross Tabulation of CouncilArea by Regionname									
Frequency Row Percent	Eastern Metropolitan	Eastern Victoria	Northern Metropolitan	Northern Victoria	South-Eastern Metropolitan	Southern Metropolitan	Western Metropolitan	V	
?	242	9	336	15	125	355	280		
	17,6771%	0,6574%	24,5435%	1,0957%	9,1308%	25,9313%	20,4529%		
Banyule	478		116						
	80,4714%		19,5286%						
Bayside						489			
						100%			
Boroondara	1					1 159			
	0,0862%					99,9138%			
Brimbank							424		
							100%		
Cardinia		8							
		100%							
Casey		11			27				
		28,9474%			71,0526%				
Darebin			934						
			100%						
Frankston		8			45				

Atributos car, yearbuilt e building area

A partir da análise do módulo Statistics verificou-se que os atributos mencionados possuem um elevado número de missing values.

Statistics								
Rows: 21 Columns: 9								
Name	Туре	# Missing values	Minimum	Maximum	25% Quantile	50% Quantile (M	. 75% Quantile	Mean
Date	String	0	③	o	①	0	③	0
Distance	Number (double)	0	0	48.1	6.1	9.2	13	10.138
Postcode	Number (double)	0	3,000	3,977	3,044	3,084	3,148	3,105.302
Bedroom2	Number (double)	0	0	20	2	3	3	2.915
Bathroom	Number (double)	0	0	8	1	1	2	1.534
Car	Number (double)	62	0	10	1	2	2	1.61
Landsize	Number (double)	0	0	433,014	177	440	651	558.416
BuildingArea	Number (double)	6450	0	44,515	93	126	174	151.968
YearBuilt	Number (double)	5375	1,196	2,018	1,940	1,970	1,999	1,964.684
CouncilArea	String	1369	③	0	o	0	③	②
Lattitude	Number (double)	0	-38.183	-37.409	-37.857	-37.802	-37.756	-37.809
Longtitude	Number (double)	0	144.432	145.526	144.93	145	145.058	144.995

Atributos price, landsize e builing area

• Com o auxilio do módulo Data Explorer, seguido do módulo para visualização Box Plot, foi possível identificar a presença de uma grande quantidade de outliers nestes atributos.

Atributos price, rooms, distance

• • • • •

Column Filter

Numeric Outliers

Rule Engine

De modo a homogeneizar a amostra foi usado o modo stratifed sampling, assim foram testados varios atributos de modo a selecionar o que iria fornecer melhor desempenho ao modelo. Optouse pelo type cuja diferença do segundo melhor classifado é 1,94%. Para o modelo Regression Linear, optei por usar o

modo Draw Randomly.

irst partition Flow	Variables	Joh Manage	r Selection	Memory Policy	,		
Choose size of first		Job Manager	Sciection	r-lettion y r-olicy			
Absolute				100 💠			
● Relative[%] 80 •							
○ Take from top							
C Linear sampling	1						
O Draw randomly							
			0	Tunn			
 Stratified samp 	iing		3	Туре	~		
Use random se	ed		202	22			

Decision Tree

General -	Class column S Mean(Price) V
	class countril 3 Medit(Price)
	Quality measure Gini index V
	Pruning method MDL ~
	Reduced Error Pruning
	Min number records per node 16 🕏
	Number records to store for view 10 000 ♣
	Average split point
	Number threads 12 🕏
	Skip nominal columns without domain information
Root split	
	Force root split column
	Root split column D BuildingArea ~
Binary nomina	l splits
	Binary nominal splits
	Max #nominal 10 💠

Após vários testes, concluiu-se que a melhor configuração do node coincide com a utilização do Gini index e do MDL. Assim, obteu-se uma accuracy de 77,19%.

Tuning

Primeiro testei aumentando o número de min number records per node alncançando o valor ótimo. Posteriormente, decidi implementar um loop com o objetivo de otimizar os parâmentros respeitando a função de preço, para tal segui o que foi aprendido nas aulas. Deste modo verifiquei que o melhor valor é 1777.

Random Florest

Linear Regression

Row	Prediction (Mean(Price)) Number (double)
R^2	0.676
mea	0.102
mea	0.017
root	0.131
mea	0.004
mea	0.307
adju	0.676

Tendo em conta estes resultados verificamos que o valor de 0.676 significa que aproximadamente 67,6% da variabilidade nos dados de saída é explicada pelo modelo.O valor mean signed difference de 0.004 sugere que, em média, o modelo tem uma ligeira tendência de superestimar as previsões em relação aos valores reais.Por fim, o valor R² ajustado ,0.676, é o mesmo que o R² padrão, indicando que o ajuste do modelo permanece consistente após ajustar para o número de variáveis.

Em suma, com a realização deste projeto foi possível conceber e otimizar modelos de machine learning, nomeadamente os modelos de Decision Tree, Random Florest e Linear Regression. Além disso, verificou-se um desempenho ligeiramente melhor por parte do modelo baseado em Random Forest.

Obrigado!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**