Group Theoretic Approach to Quantum Field Theory

Shashwat Chakraborty (200260049)

1 Groups

A group is a set G on which a multiplication operator (*) is defined with the following properties:

- Closure: If $x, y \in G$ then $x * y \in G$;
- Existence of Identity: There exists an identity element (e) in G such that a*e=e*a=a for all $a\in G$;
- Existence of Inverse For every element a in G, there exists an element a^{-1} in G such that $a*a^{-1}=a^{-1}*a=e$;
- Associative Property: Let $x, y, z \in G$, then (x * y) * z = x * (y * z);

Hilbert Space

It is a linear vector space. It has an inner product operation that satisfies certain conditions:

• Conjugate Symmetry:

$$<\Psi_1,\Psi_2> = <\Psi_2,\Psi_1>$$

• Linear w.r.t Second Vector:

$$<\Psi_1, a\Psi_2 + b\Psi_3> = a < \Psi_1, \Psi_2> + b < \Psi_1, \Psi_3>$$

• Anti-linear w.r.t First Vector:

$$< a\Psi_1 + b\Psi_2, \Psi_3 > = a^* < \Psi_1, \Psi_2 > + b^* < \Psi_2, \Psi_3 >$$

Unitary Operator: A bounded linear operator $U: H \to H$ on a Hilbert space H which satisfies the following conditions:

- *U* is surjective
- U preserves the inner product of the Hilbert space, i.e., for all vectors x,
 y in H, we have

$$_{H}=< x, y>_{H}$$

In quantum mechanical systems \to transformations are associated with unitary operators in Hilbert space. For each element x in G there exists a D(x) which is a unitary operator which satisfies the multiplication law: D(x)D(y) = D(x*y) for all x, y in G.

Representation

A mapping which satisfies the above condition is called a **representation** of the group.

Permutation Group:

Figure 1.1: Representation of Permutation Group

Abelian and Non-Abelian Groups

Commutative groups are known as **Abelian groups**, whereas the non-commutative groups are called **Non-Abelian groups**.

The minimal set using the elements of which, the group under consideration can be constructed, provided the relations are all specified is called the **generating set** of the group. eg: $\{a\}$ with the relation $a^n=e$ generates the group $\{e,a,a^2,....a^{n-1}\}$

A group whose generating set contains a single element is called a cyclic group.

Reducible and Irreducible representations

A representation which can be reduced to a block diagonal form using symmetry transformations is called a reducible representation.

$$D'(x) = SD(x)S^{-1} = \begin{bmatrix} D'_1(x) & 0\\ 0 & D'_2(x) \end{bmatrix}$$

 D^\prime can be written as the direct sum of D_1^\prime and D_2^\prime , i.e.,

$$D' = D_1' \oplus D_2'$$

A representation is irreducible if it is not equivalent to any block diagonal matrix.

§ Chapter 1 Exercises

I.A If $x \in G$, then prove that the inverse element $x^{-1} \in G$ is unique.

Let's assume that x_1^{-1} and x_2^{-1} are two different inverses of $x \in G$. They must satisfy:

$$x * x_1^{-1} = x_1^{-1} * x = e (1.1)$$

$$x * x_2^{-1} = x_2^{-1} * x = e (1.2)$$

We take the relation $x \ast x_1^{-1} = e$, and pre-multiply x_2^{-1} , which gives

$$x_2^{-1} * x * x_1^{-1} = x_2^{-1} * e (1.3)$$

Using Eq. (1.2), we get

$$x_1^{-1} = x_2^{-1} (1.4)$$

Contradiction!!!

Hence proved.

I.B Find the multiplication law for a group having three elements and prove that it is unique.

Consider a group of three elements $\{e,a,b\}$. Multiplication law should be such that it satisfies closure. Let's take the elements one by one and find the possible values of their products with all elements.

		е	а	b
	е	е	а	b
ĺ	а	а	a*a	a*b
	b	b	b*a	b*b

For * operator to define a valid multiplication law, each row and each column must have every element of the group occurring once. a*a can take two values e and b. If takes e then b*a automatically becomes b. This makes two elements on row three equal, which is not something we want.

Hence, a*a must be b. which implies b*a=e. Thus, a and b are inverses of each other. Therefore, a*b=e. This renders b*b=a. Thus the final multiplication law is

	е	а	b
е	е	а	b
а	а	b	е
b	b	е	а

I.C Show that the representation of S(3) is reducible.

Clearly, all the matrices which define the permutation representation of 3 objects, have a common eigen-vector $[1\ 1\ 1]^T$. This means, the solution spaces of each of the matrices have a common basis vector $[111]^T$. Thus, this representation can be decompes into a 1×1 and a 2×2 representation. Hence the permutation representation of 3 objects is reducible!