STAT1006 Week 12 Cheat Sheet

Lisa Luff

11/6/2020

Contents

Interaction in Regression	2
Interaction Model	2
Predictive Ability of Linear Models PRESS	
Strategies for Modelling	3
Bias-Variance Trade-Off	4
Strategies for Dealing with Outliers	4
In R	5

Interaction in Regression

- An alternative to variable selection
- When there is multi-collinearity between explanatory variables, rather than remove one of them, treat them as interacting (take collinearity into account, and keep both)
- This is used when:
 - There is a joint effect on the response
 - * So their combined correlation is more significant than their individual correlation
 - * Or explanatory variables show as being insignificant in the linear model, but there is a high R^2 and R^2_{adi} value
 - And/or both are equally import to take into consideration for the purpose of the experiment

Interaction Model

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$, where
 - $-\beta_0$ is the intercept
 - β_1 and β_2 and the slopes of explanatory variables 1 and 2
 - β_3 **The Interaction Term** takes into account the interaction between explanatory variables 1 and 2
- β_3 :
 - Positive means the response is boosted (or enhanced) by large values for both X_1 and X_2
 - Negative meand the response is reduced (or interfered with) by large values for both X_1 and X_2 * **Be careful** if the explanatory variables have negative values
- In practice, β_3 will be an additional variable included in model assessments, created by multiplying explanatory variable 1 with explanatory variable 2
 - Models including interaction terms should be compared to a full model of all terms and interaction terms

Predictive Ability of Linear Models

- To ensure models are a good measure of predicted values, you can use two methods:
 - Internal measure PRESS (Predicted Residual Sum of Squares) \hat{y}_{-i}
 - External measure RMSEP (Root Mean Squared Error of Prediction) Test set

PRESS

- Predicted Residual Sum of Squares
- 1. Leave out the i^{th} observation for y_i (Denoted as \hat{y}_{-i}), then fit a model
- 2. Then use the model to predict the value of the y_i that was left out
- 3. Calculate the residual $y_i \hat{y}_{-i}$ and square it
- 4. Repeat for all values of y_i
- $PRESS = \sum_{i=1}^{n} (Y_i \hat{y}_{-i})^2 = \sum_{i=1}^{n} \left(\frac{\hat{e}_i}{1 h_{ii}}\right)^2$, where
 - $-\hat{e}_i$ is error
 - $-h_{ii}$ is the hat martix element to represent leverage
 - The lower the better

RMSEP

- Root Mean Squared Error of Prediction
- 1. Split data randomly into a training set and a test set
- About 80% 20% split
- 2. Create model from training set
- 3. Calculate root mean squared error of prediction on test set
- $RMSEP = \sqrt{\frac{\sum_{i=1}^{n} (y_i^t \hat{y}_i^t)^2}{n_t}}$, where
 - $-y_i^t$ and \hat{y}_i^t are the the test values for y_i and \hat{y}_i $-n_t$ is the number of test values

 - The lower the better
 - * Keep in mind different set splits will result in different RMSEP values
- 4. Calculate a plot of the predicted values against the actual values
- The closer to the line, the better the prediction

Strategies for Modelling

Bias-Variance Trade-Off

- Bias is the amount of error introduced by approximation using a model that is simpler than real life
- $Var(\epsilon)$ is the irreducible error, which is an upper bound on the accuracy of our prediction
- The general version of our model is $y = f(X) + \varepsilon$
 - The best estimate of the response is $\hat{Y} = \hat{f}(X)$
 - For any new data (x_0, y_0) , our prediction is $\hat{Y}_0 = \hat{f}(x_0)$
- This means that for a large number of observations, the average squared prediction error is $Ave(y_0 \hat{f}(x_0))^2$ (MSE)
 - We want a model that minimises this
- MSE as above can be broken down into $E(y_0 \hat{f}(x_0))^2 = Var(\hat{f}(x_0)) + [Bias(\hat{f}(x_0))]^2 + Var(\epsilon)$
 - As such, they the directional inverse of each other
 - * As the complexity (number of explanatory variables) increase, so will variance and bias will decrease
 - * As the complexity decreases, so will variance and bias will increase
- So when we decide a model to go with, we are choosing the amount of trade-off we find acceptable for each
 - There can be many good sets, so this decision needs to be based on what best suits the objective

Strategies for Dealing with Outliers

In R

- PRESS
 - Can use leaps package, but doesn't output fitted models press(modellm)
 - Otherwise there is a package DAAG with a press function $\operatorname{press}(modellm)$
- Creating a training and test set samplevalues -> sample(nrow(df), floor(0.2, * nrow(df))) test -> df[samplevalues,] training -> df[-samplevalues,]
 Compare model to prediction prediction -> predict(modellm, newdata = test) actual -> df\$y plot(actual, prediction) abline(0, 1)
- RMSEP RMSEP <- sqrt(sum((actual - prediction)^2)/length(actual))