绝密 * 启用前

2019 年全国硕士研究生入学统一考试

森哥五套卷之数学(一)试卷 (模拟三)

考生注意: 本试卷共二十三题, 满分 150 分, 考试时间为 3 小时.

得分 评卷人

一、选择题: 1~8 小题, 每小题 4 分, 共 32 分. 在每小题给出的四个选项中, 只有一个 符合要求, 把所选项前的字母填在题后的括号里.

- (1) 设 $\varphi(x)$ 在x = 0处连续,若 $f(x) = \begin{cases} \frac{\varphi(x)(e^{x^2} 1)}{\tan x \sin x}, & x \neq 0, \\ \frac{1}{\sin x \sin x}, & x \neq 0, \end{cases}$ 且f(x)也在x = 0处连续,则有().
- (A) $\varphi(0) = 0, \varphi'(0)$ 未必存在 (B) $\varphi(0) = 1, \varphi'(0)$ 未必存在
- (C) $\varphi(0) = 0, \varphi'(0) = 1$
- (D) $\varphi(0) = 0, \varphi'(0) = \frac{1}{2}$
- (2) 设非常值函数 f(x) 在[-1,1]连续,若对[-1,1]上的任意偶函数 g(x) ,积分 $\int_{-1}^{1} f(x)g(x)dx = 0$,则 下列不正确的是()
 - (A) $\int_{-1}^{1} [f(x) + f(-x)]g(x)dx = 0$ (B) $\int_{-1}^{1} [f(x) f(-x)]g(x)dx = 0$

- (C) f(x) 为奇函数
- (D) f(x) 未必一定是奇函数
- (3) 设 $\varphi(x,y) \neq 0$ 且具有连续的一阶偏导数,函数u(x,y)的全微分 $du = \frac{ydx + xdy}{\varphi(x,y)}$,则下列等式成立 的是().
- (A) $x\varphi'_{v}(x,y) = y\varphi'_{r}(x,y)$
- (B) $x\varphi'_{v}(x,y) = -y\varphi'_{v}(x,y)$
- (C) $x\phi'_x(x, y) = y\phi'_y(x, y)$ (D) $x\phi'_x(x, y) = -y\phi'_y(x, y)$
- (4) 设 $b_n > 0(n = 1, 2, \dots)$, 下述命题正确的是(
 - (A) 若 $\sum_{n=1}^{\infty} b_n$ 发散, $\sum_{n=1}^{\infty} (a_n a_{n+1})$ 发散, 则 $\sum_{n=1}^{\infty} a_n b_n$ 必发散
 - (B) 若 $\sum_{n=1}^{\infty} b_n$ 发散, $\sum_{n=1}^{\infty} (a_n a_{n+1})$ 收敛, 则 $\sum_{n=1}^{\infty} a_n b_n$ 必发散
 - (C) 若 $\sum_{n=1}^{\infty} b_n$ 收敛, $\sum_{n=1}^{\infty} (a_n a_{n+1})$ 收敛,则 $\sum_{n=1}^{\infty} a_n b_n$ 必收敛
 - (D) 若 $\sum_{n=1}^{\infty} b_n$ 收敛, $\sum_{n=1}^{\infty} (a_n a_{n+1})$ 发散,则 $\sum_{n=1}^{\infty} a_n b_n$ 必收敛
- (5) 设 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 是 4 维非零列向量组,矩阵 $A=(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$, A^* 为 A 的伴随矩阵,已知方程组 Ax = 0 的通解为 $k(1,0,-1,0)^T$,则方程组 $A^*x = 0$ 的基础解系为 ().

(A)
$$\alpha_1, \alpha_2, \alpha_3$$

(B)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$$

(C)
$$\alpha_2, \alpha_3, \alpha_4$$

(C)
$$\alpha_2, \alpha_3, \alpha_4$$
 (D) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$

(6) 设A为4阶实对称矩阵,且 $A^2 + 2A - 3E = O$,若r(A - E) = 1,则二次型 $x^T Ax$ 的规范形是().

(A)
$$y_1^2 + y_2^2 + y_3^2 - y_4^2$$

(B)
$$y_1^2 - y_2^2 - y_3^2 - y_4^2$$

(C)
$$y_1^2 + y_2^2 - y_3^2 - y_4^2$$

(D)
$$y_1^2 + y_2^2 + y_3^2 - y_4^2$$

(7) 设随机变量(X,Y)的联合分布函数为F(x,y), X和Y的边缘分布函数分别为 $F_{X}(x)$ 和 $F_{Y}(y)$,

则 $Z = \min\{X,Y\}$ 的分布函数为(

(A)
$$1-\left[1-F_X(x)\right]\left[1-F_Y(y)\right]$$
 (B) $1-\left[1-F_X(x)\right]\left[1-F_Y(x)\right]$

(B)
$$1 - [1 - F_X(x)][1 - F_Y(x)]$$

(C)
$$F_{x}(x)+F_{y}(y)-F(x,y)$$

(C)
$$F_{x}(x) + F_{y}(y) - F(x, y)$$
 (D) $F_{x}(x) + F_{y}(x) - F(x, x)$

(8)设总体 $X\sim B\left(n,p\right)$, $X_{1},X_{2}\cdots,X_{m}$ 为来自总体 X 的简单随机样本, \overline{X} 和 S^{2} 分别为样本均值和样 本方差,则以下说法正确的是().

(A)
$$E(\overline{X}) = mp$$
, $E(S^2) = mp(1-p)$

(B)
$$E(\overline{X}) = np$$
, $E(S^2) = (m-1)np(1-p)$

(C)
$$D(\bar{X}) = \frac{1}{n} mp(1-p), \quad E\left[\sum_{i=1}^{m} (X_i - \bar{X})^2\right] = (n-1)mp(1-p)$$

(D)
$$D(\bar{X}) = \frac{1}{m} np(1-p), \quad E\left[\sum_{i=1}^{m} (X_i - \bar{X})^2\right] = (m-1)np(1-p)$$

评卷人 得分

二、填空题:9~14 小题,每小题 4 分,共 24 分. 把答案填在题中的横线上.

(9) 设
$$y = y(x)$$
 由方程 $\ln(x^2 + y) + e^x - xy = 0$ 确定,则 d $y|_{x=0} =$ _____.

(10)
$$\[\psi f(x) = \int_{\sqrt{\frac{\pi}{2}}}^{\sqrt{x}} \frac{dt}{1 + (\tan t^2)^2} \], \ \[\psi \int_0^{\frac{\pi}{2}} \frac{f(x)}{\sqrt{x}} dx = \underline{\qquad} \].$$

(11) 设 $y = xe^x + e^{-x}$ 为二阶常系数线性微分方程 $y'' + ay' + by = ce^{-x}$ 的一个特解,则该方程满足初始条 件 y(0) = 2, y'(0) = -1 的特解是 . .

(12) 设 $z = \varphi(u), u = f(x + y, x^2 - y^2)$, 其中 φ 具有连续的导数, f 具有连续的偏导数,则

$$y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = \underline{\hspace{1cm}}.$$

(13)设 $\alpha_1,\alpha_2,\alpha_3$ 是线性无关的 3维列向量组, α_4 = $-2\alpha_1$ + α_2 + α_3 ,且

- (14) 设随机变量 X 的分布律为 $P\{X=k\} = \frac{A}{2^k}, k=1,2,\cdots, A$ 为常数,则 E[X(X-1)] =______.
- 三、解答题:15~23 小题, 共94分. 解答应写出文字说明、证明过程或演算步骤.

得分	评卷人

(15)(本题满分 10 分)设函数 f(x) 在 x = 0 处二阶可导,且

$$\lim_{x \to 0} \left[e^x - x - \frac{1}{2} x^2 + \int_0^x f(t) dt \right]^{\frac{1}{\sqrt{1 + x^2} - 1) \arctan x}} = e^{\frac{2}{3}},$$

求f''(0).

得分	评卷人

(16)(本题满分 10 分)设二元函数 z = z(x, y)的全微分为

$$dz = (2xy^3 + ae^y \sin x)dx + (bx^2y^2 + e^y \cos x)dy$$
,

且 z(0,0)=1. 求: (I) z=z(x,y) 的表达式; (II) z(x,y) 在点($\frac{\pi}{4},0$) 处沿各个方向的方向导数的最大值.

得分	评卷人
_	

(17)(本题满分 10 分)设 y = f(x)在区间 $[0,+\infty)$ 上单调递增且有一阶连续的导数,

 $f(0) = \frac{1}{2}$. 曲线 y = f(x) 在 [0,x] 上一段弧长的值是 y = f(x) 与 x 轴, y 轴及 x 轴上

过点 x 的垂线所围成图形的面积的两倍.

(I) 求 y = f(x) 的表达式; (II) 求由曲线 y = f(x) 位于 $x \in [0,1]$ 内的部分绕 x 轴旋转一周所形成的旋转体的侧面积.

得分 评卷人

(18)(本题满分10分)计算积分

$$I = \iiint_{\Omega} (\frac{x}{a} + \frac{y}{b} + \frac{z}{c})^2 dV$$
, 其中 $\Omega : x^2 + y^2 + z^2 \le R^2$, a, b, c 均大于零.

得分	评卷人

都考研数学一余丙森数学一模拟三答案关注一直播: 117035243(19)(本题满分 10 分)设 f(x) 具有二阶连续导数,f(0) = f'(0) = 0, f''(0) = 1,在 曲线 y = f(x) 上任取一点 $(x, f(x))(x \neq 0)$,设该点处曲线切线在 x 轴上的截距为 a_x ,

(I) 证明: $\lim_{x\to 0} a_x = 0$; (II) 证明: 当 $x\to 0$ 时, f(x)与 $\frac{x^2}{2}$ 为等价无穷小;

(III) 求极限 $\lim_{x\to 0} \frac{xf(a_x)}{a_x f(x)}$.

7

得分	评卷人

(20) (本题满分 11 分) 已知矩阵 $A=(\pmb{\alpha}_1,\pmb{\alpha}_2,\pmb{\alpha}_3,\alpha_4)$ 是 4 阶方阵, $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 是 4 维列向量. 若方程组 $Ax = \beta$ 的通解是 $(1,2,2,1)^T + k(1,-2,4,0^T)$,又 $B = (\alpha_3, \alpha_2, \alpha_1, \beta - \alpha_4)$,(I)求方程组 $Bx = \alpha_1 + 2\alpha_2 + 3\alpha_3$ 的通解;(II) $\boldsymbol{\alpha}_4$ 能否由

 $\boldsymbol{\alpha}_{\!\scriptscriptstyle 1}, \boldsymbol{\alpha}_{\!\scriptscriptstyle 2}, \boldsymbol{\alpha}_{\!\scriptscriptstyle 3}$ 线性表出?说明理由.

得分	评卷人

(21) (本题满分 11 分)设三阶实对称矩阵 A满足 $\left|E-A\right|$ =0,且

$$A \begin{pmatrix} 2 & 2 \\ 4 & -2 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -4 \\ 0 & 4 \\ 0 & -2 \end{pmatrix},$$

(I) 求矩阵 A 的特征值和特征向量; (II) 如果 β = $(1,-1,5)^T$,求 $A^n\beta$.

得分	评卷人

(22) (**本题满分 11 分**) 设有 A 和 B 两类电子产品,A 类产品的寿命服从 E(1) 分布,

B 类产品的寿命服从E(2)分布,现甲盒中有 $2 \land A$ 类产品和 $4 \land B$ 类产品,乙盒中

有A类和B类电子产品各3个,从甲盒中任取一个产品放入乙盒,再从乙盒中任取一个电子产品,

- (I) 求从乙盒中取出的是A类电子产品的概率;
- (II) 以 X 表示从乙盒中所取出电子产品的寿命, 求 X 的概率密度函数;
- (III) 求 $E(X^2)$.

评卷人 得分

(23) 设总体 X 的概率密度函数

$$f(x;\theta) = \begin{cases} \frac{4x^2}{\theta^3 \sqrt{\pi}} e^{-\frac{x^2}{\theta^2}}, x > 0, \\ 0, & x \le 0. \end{cases}$$

 X_1, X_2, \cdots, X_n 为来自总体X的简单随机样本, $ar{X}$ 为样本均值,

- (I) 求常数C, 使得 $C\bar{X}$ 为 θ 的无偏估计量; (II) 求 θ 的最大似然估计量 $\hat{\theta}_L$.

