

Curso de iniciación a los robots móviles

INTRODUCCIÓN

- ¿Qué es la robótica?
 Origen del nombre
- ¿Qué vamos a hacer?
- ¿Qué queréis hacer?
 Volveremos al final con la pregunta

¿Qué se puede llegar a hacer?

Alumnos del CEIP de Os Dices ganan un premio de robótica de la Agencia Espacial Europea

Publicado en 25 de octubre de 2013

¿Qué imagen tenemos de un robot?

ROBOTS MÓVILES SOBRE RUEDAS

¿Por qué dos motores y una rueda loca?

Otras opciones: tres o más ruedas, cadenas

LEYES DE LA ROBÓTICA. YO ROBOT

- 1. Un robot no puede hacer daño a un ser humano o, por inacción, permitir que un ser humano sufra daño.
- 2. Un robot debe obedecer las órdenes dadas por los seres humanos, excepto si estas órdenes entrasen en conflicto con la 1ª Ley.
- 3. Un robot debe proteger su propia existencia en la medida en que esta protección no entre en conflicto con la 1º o la 2º Ley.

PROYECTO SAPOCONCHO

MONTAJE MECÁNICO DEL ROBOT

Montaje de la base inferior

Montaje de la base superior

Montaje final

ELECTRONICA CON ARDUINO

Código y electrónica modular


```
- 0
oo robotwithlibrary | Arduino 1.0.5
Archivo Editar Sketch Herramientas Ayuda
  robotwithlibrary
 #include <RobotMovil.h>
RobotMovil robot;
void setup()
void loop()
  robot.forward(80,80,1000);
                                        Arduino Uno on COM7
```

Arduino Pro Micro (en IDE -> Leonardo)

Pequeño, económico, conveniente

Pines para control de motores marcados con un círculo

Placa de conexiones (breadboard mini)

Conectar un LED

Prueba de comunicación con Blink

CONEXIONADO DE MOTORES

Driver de motores L9110

- Control de velocidad
- Dirección de giro

AI-B -> Pin 3

AI-A -> Pin 5

GND -> GND

VCC -> RAW

B-IB -> Pin 6

B-IA -> Pin 9

Portapilas:

Rojo -> RAW

Negro -> GND

LIBRERÍA L9910 SAPOCONCHO

Eppur si mouve

Comprobación de movimiento adelante

- Más rápido, más lento. Límites.
- Caminar recto. Ajuste fino (tunning).
- Cambiar el nombre

SECUENCIAS DE MOVIMIENTOS

nombre.forward/reverse/rotate/brake

```
eppursimouve Arduino 1.6.4
Archivo Editar Programa Herramientas Ayuda
  eppursimouve §
#include <L9110.h>
L9110 sapoconcho(3,5,6,9);
void setup() {}
void loop() {
  sapoconcho.forward(128,128,1000);
  sapoconcho. reverse (128, 128, 1000);
  sapoconcho. rotate (128, 128, 1000);
  sapoconcho. rotate (128, 128, -1000);
  sapoconcho.brake(1000);
```

LA INSTRUCCIÓN ÚNICA

sapoconcho.drive(velocidad_izq , velocidad_der , tiempo);

RESPONDER A ORDENES EXTERIORES

- ¿Un coche teledirigido es un robot?
- Botonera de comando

INFORMACIÓN DEL EXTERIOR

Sensores de distancia y otros

Conexión de sensores de distancia

Vcc -> 5V GND -> GND Trig/Echo -> 7, 8

MANTEN LA DISTANCIA!

- Leer sensores ultrasonidos
- Movimiento adelante y atrás
- Probar a girar

keepdistance §

```
#include <L9110.h>
L9110 sapoconcho(3,5,6,9);
#include <NewPing.h>
NewPing sonar(7,7,50); //pin conexion, distancia maxima
void setup() {}
void loop() {
  delay (50);
  float d=sonar.ping_cm();
  if (d==0) d=50;
  if (d<20) {
    sapoconcho.forward(120,120,50);
  } else {
    sapoconcho. reverse (120, 120, 50);
```

Trenes de vehículos en línea por carretera

EVITA LOS OBSTÁCULOS!

- Mirar a derecha e izquierda
- Distancia mínima y dirección de giro
- ¿Cuánto giro?
- Interacción en un mismo espacio

```
void loop()
// lee los sensores HC-SR04
            // necesario para que el sensor espe
  float dist L = sonar L.ping cm();
  if (dist L==0) {dist L=50;} // corrige las dis-
  delay (30);
  float dist R = sonar R.ping cm();
  if (dist R==0) {dist R=50;}
  float dist=min(dist L, dist R);
// gira para evitar obstaculos
  if (dist<20)
    if (dist L>dist R) sapoconcho.rotate(250);
    else sapoconcho.rotate(-250);
  else sapoconcho.forward(240,240,0);
```

NO PISES LA RAYA!

- Sensores IR
- Evitar caídas y líneas negras (o blancas!)
- Uno, dos, tres sensores
- Siguelíneas

fritzing

Si pisa la línea, girar al otro lado Probar umbral con AnalogRead

```
siguelineas Arduino 1.6.4
Archivo Editar Programa Herramientas Ayuda
  siguelineas
#include <L9110.h>
L9110 sapoconcho(3,5,6,9);
void setup() {}
void loop()
1
  if (analogRead(A0)<500) sapoconcho.rotate(150,150,-100);
    (analogRead(A1)<500) sapoconcho rotate(150,150,100);
  sapoconcho. forward (150, 150, 100);
```