## เซต

## บทที่ 1

#### **Discrete Mathematics for Computer Science**



ดาวน์โหลดเอกสารได้ที่

https://bit.ly/Discrete-ENS

อ.เอิญ สุริยะฉาย (ENS)

ภาควิชาวิทยาการคอมพิวเตอร์และสารสนเทศ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

Earn S. (ENS) ComSci, KMUTNB

## ระบบจำนวนจริง





## ระบบจำนวนจริง



| ชื่อ           | สัญลักษณ์      | ตัวอย่าง | บรรยาย                                                                       |  |
|----------------|----------------|----------|------------------------------------------------------------------------------|--|
| จำนวนเต็มบวก   | l <sup>+</sup> | 1 2 3    | <b>จำนวนเต็มบวก</b> คือ จำนวนที่นับสิ่งของต่างๆ ซึ่งแบ่ง                     |  |
|                |                |          | ออกเป็น 2 ประเภทคือ                                                          |  |
|                |                |          | จำนวนคู่ คือ จำนวนที่หารด้วย 2 ลงตัว เช่น 2, 4,                              |  |
|                |                |          | จำนวนคี่ คือ จำนวนที่หารด้วย 2 ไม่ลงตัว เช่น 1, 3, 5,                        |  |
| จำนวนเต็มลบ    | [-             | -1 -2 -3 |                                                                              |  |
| จำนวนเต็มศูนย์ | l <sub>0</sub> | 0        |                                                                              |  |
| จำนวนเต็ม      | I              | -1 0 1   | <b>จำนวนเต็ม</b> คือ จำนวนที่สามารถเขียนได้ โดยไม่ใช่เศษส่วน                 |  |
|                |                |          | หรือทศนิยม เช่น 21, 4, −20 แต่จำนวนเหล่านี้ 9.75, $\frac{5}{2}$ , $\sqrt{3}$ |  |
|                |                |          | ไม่ใช่จำนวนเต็ม เซตของจำนวนเต็มเป็นเซตย่อยของจำนวน                           |  |
|                |                |          | จริง และประกอบด้วย จำนวนเต็มบวก (1, 2, 3,)                                   |  |
|                |                |          | จำนวนเต็มศูนย์ (0) และจำนวนเต็มลบ (-1, -2, -3,)                              |  |

## ระบบจำนวนจริง



| ชื่อ         | สัญลักษณ์ | ตัวอย่าง                                                    | บรรยาย                                                                        |
|--------------|-----------|-------------------------------------------------------------|-------------------------------------------------------------------------------|
| จำนวนตรรกยะ  | Q         | $\left \frac{0}{2}, \frac{1}{3}, \sqrt{49}, 5, 0.75\right $ | <b>จำนวนตรรกยะ</b> คือ จำนวนที่สามารถเขียนในรูป                               |
|              |           | 2 3                                                         | เศษส่วน จำนวนเต็ม ทศนิยมที่ซ้ำไม่รู้จบ                                        |
|              |           |                                                             | เช่น $\frac{1}{2}$ , $\frac{2}{1}$ , $\frac{25}{10}$ , $0.5$ , $-\frac{5}{1}$ |
| จำนวนอตรรกยะ | Q'        | $\sqrt{3}$ , $\sqrt{7}$                                     | <b>จำนวนอตรรกยะ</b> คือ จำนวนที่ไม่สามารถเขียน                                |
|              |           |                                                             | ได้ในรูปเศษส่วน หรือทศนิยมที่ไม่ซ้ำไม่รู้จบ เช่น                              |
|              |           |                                                             | $\sqrt{3},\sqrt{5},\sqrt{7}$                                                  |
| จำนวนจริง    | R         | จำนวนอตรรกยะ                                                | <b>จำนวนจริง</b> คือ จำนวนที่สามารถจับคู่หนึ่งต่อ                             |
|              |           | และ                                                         | หนึ่งกับจุดบนเส้นจำนวนได้                                                     |
|              |           | จำนวนตรรกยะ                                                 |                                                                               |



#### 1) ช่วงเปิด

 $-(-4,5) = \{ x \mid -4 < x < 5 \}$ 



 โดยจุดที่เป็นวงกลมโปร่งใส เป็นจุดที่ไม่อยู่ในเซต ดังนั้น -4 และ 5 จึง ไม่อยู่ในเซต และเทียบเท่ากับวงเล็บเปิด "(",")"



#### 2) ช่วงปิด

 $[1, 10] = \{ x \mid 1 \le x \le 10 \}$ 



 โดยจุดที่เป็นวงกลมทึบ เป็นจุดที่อยู่ในเซต ดังนั้น 1 และ 10 จึงอยู่ใน เซต และเทียบเท่ากับวงเล็บปิด "[","]"



## 3) ช่วงกึ่งเปิดปิด

• 
$$(-5, 10] = \{ x \mid -5 < x \le 10 \}$$



#### 4) ช่วงอนันต์

#### ITA



- เซต คือ กลุ่มของสิ่งต่างๆ ซึ่งต้องทราบแน่นอนว่ามีสิ่งใดอยู่ในกลุ่ม บ้าง โดยสิ่งที่อยู่ในกลุ่มเรียกว่า "สมาชิก"
  - $A = \{1,2,3,4,5\}$
  - $B = \{2,1,1,3\}$

#### เซต



เซตว่าง คือ ไม่มีสมาชิก (Ø) หรือ {}

- เซตจำกัด (finite sets) คือ เซตที่บอกจำนวนสมาชิกได้
  - เช่น A = { 1,2,3,4 ...., 100 }

- เซตอนันต์ (infinite sets) คือ เซตที่ไม่สามารถบอกจำนวนสมาชิกได้
  - เช่น A = { 1,2,3,4 .... }

## เซตที่เท่ากัน



 เซตที่เท่ากัน คือ เซตที่มีสมาชิกเหมือนกันหมด โดยไม่พิจารณาลำดับ และสมาชิกสามารถซ้ำกัน

$$\blacksquare$$
 A = {1,2,3,4,5}

$$B = \{x \in I^+ \mid 1 \le x \le 5\}$$

$$A = \{1,2,3,4,5\}$$

$$B = \{x \in I \mid 0 \le x \le 5\}$$

$$\blacksquare$$
 A = {1,2,3,4,5}

$$B = \{1,2,3,4,5,5\}$$

# เซตที่เท่ากัน



•  $A = \{1,2,3\} B = \{2,1,1,3\}$ 

■ 
$$A = \{1,2,3,4,5\} B = \{x \in R \mid 1 \le x \le 5\}$$

- A = {แดง, เหลือง, ชมพู, เขียว, แสด}
- B = {เงาะ, ลำไย, มะม่วง, ชมพู่, แตงโม}

## เซตที่เทียบเท่ากัน



• เซตที่เทียบเท่ากัน คือ เซตที่มีจำนวนสมาชิกเท่ากัน

• 
$$A = \{1,2,3,4,5\}$$
  $B = \{1,2,3,4,5,5\}$ 

- A = {แดง,เหลือง,ชมพู,เขียว,แสด}
- B = {เงาะ,ลำไย, มะม่วง,ชมพู่, แตงโม}

■ A = 
$$\{1,2,3,4,5\}$$
 B =  $\{x \in I^+ \mid 1 \le x \le 5\}$ 

#### สมาชิก



• สมาชิก ถ้าเซต A คือ  $\{1, 2, 3\}$  แล้ว  $1 \in A$ 

$$\blacksquare$$
 A = {1, 2, 3}

• 
$$A = \{x \in I^+ \mid 0 \le x \le 3\} = \{0, 1, 2, 3\}$$

$$A = \{1, 2, 3\}$$

### สับเซต



- สับเซต (SUBSET) คือ ทั้งหมดของเซต A อยู่ใน B
- หรือ A เป็นสับเซตของ B (A ⊂ B)

$$\blacksquare$$
 B = {1,2,3} A = {1,2}

• 
$$B = \{1,2,3\} C = \{1,4\}$$

สรุป 
$$A \subset B$$

### เพาเวอร์เซต



• เพาเวอร์เซต (POWERSET) P(A) คือเซตเป็นไปได้ทั้งหมดที่เป็น สมาชิกของเซต A

- A =  $\{1, 2\}$  P(A) =  $\{\emptyset, \{1\}, \{2\}, \{1,2\}\}$  = จำนวนคือ  $2^n$
- $\blacksquare$  B = {1,2,3}
- P(B) =

#### Cartesian Product



- <mark>ผลคูณคาร์ทีเซียน (Cartesian Product)</mark> ของ A และ B เขียนแทน ด้วย A×B
- คือ เซตของคู่ลำดับ (a, b) ทั้งหมดที่ a∈A และ b∈B
- โดย A×B = { (a, b) | a∈A และ b∈B }
  - $A = \{1,2,3\}$   $B = \{x, y\}$
  - $\bullet$  A×B =

#### เอกภพสัมพันธ์



• เอกภพสัมพันธ์ (Universal) หรือ U คือ ขอบเขตทั้งหมดที่พิจารณา

- เช่น U = {1,2,3,4,5,6,7,8,9}
- เซต A คือ {1,2,3,4}

## Quiz



■ A = [1, 2, 3, x] แล้ว A เป็นเซต หรือไม่

■ A = {-1, 0, {1,2} } จงหา P(A)

A = {∅, 0, {∅} } จงหา P(A)

#### Union



- Union (∪) สำหรับยูเนียนระหว่างเซตสองเซต คือ การเอาเซตทั้งสอง เซตมารวมกันเป็นเซตเดียว นั้นคือ การเอาสมาชิกมารวมกัน
- สัญลักษณ์ที่ใช้แทนคำว่ายูเนียน คือ  $\cup$  ตัวอย่างเช่น

$$A = \{1,2\}$$

$$B = \{2,3\}$$

$$A = \{1,2\}$$
  $B = \{2,3\}$   $\rightarrow$   $A \cup B = \{1,2,3\}$ 



 $A \cup B$  is shaded.

#### Intersection



- Intersection (△) สำหรับอินเตอร์เซกกันของเซตสองเซต คือ การหา สมาชิกส่วนที่ซ้ำกันจากสองเซตมาเขียนเป็นอีกเซตหนึ่ง

$$A = \{1,2\}$$

$$B = \{2,3\}$$

$$A = \{1,2\}$$
  $B = \{2,3\}$   $\rightarrow$   $A \cap B = \{2\}$ 



 $A \cap B$  is shaded.

#### Difference



- Difference (-) สำหรับการหาผลต่างระหว่างเซตหรือจับเซตสองเซต มาลบกัน ให้คิดว่าเอาเซตข้างหน้าเป็นตัวตั้ง จากนั้นถ้าหากมีสมาชิก ตัวไหนซ้ำกับในเซตด้านหลังให้ตัดออก
- สัญลักษณ์แทนการลบ คือ เครื่องหมายลบ ตัวอย่างเช่น

$$A = \{1,2\}$$

$$B = \{2,3\}$$

$$A = \{1,2\}$$
  $B = \{2,3\}$   $\rightarrow$   $A - B = \{1\}$ 



A - B is shaded.

### Complement



- Complement (') สำหรับคอมพลีเมนต์ของเซต เป็นการดำเนินการ บนเซตเซตเดียว ทำได้โดยการเอายูนิเวอร์สหรือเอกภพสัมพัทธ์เป็น ตัวตั้งแล้วลบออกด้วยเซตนั้นๆ หรือ การหาสมาชิกทั้งหมดที่ไม่อยู่ใน เซตนั้น แต่อยู่ในยูนิเวอร์ส
- สัญลักษณ์ของคอมพลีเมนต์ คือ ' ตัวอย่างเช่น



 $\overline{A}$  is shaded.

### **Euler diagram**



 แผนภาพออยเลอร์ (Euler diagram) เป็นแผนภาพที่ใช้ในการอธิบาย ความสัมพันธ์ของเซตต่างๆ โดยให้วงกลมแต่ละวงแทนแต่ละเซต และแสดงความสัมพันธ์ของแต่ละเซตด้วย การครอบซึ่งแสดงความ เป็นสับเซต การทับซ้อนกันหรือการไม่ทับซ้อนกัน ซึ่งแสดงว่าทั้งสอง เซตไม่มีความสัมพันธ์กัน



 $A \cup B$  is shaded.



 $A \cap B$  is shaded.



- 1. จงพิสูจน์ ถ้า 3x 15 = 0 แล้ว x = 5
  - แก้สมการ x = 15 / 3 = 5 เป็นจริง
  - สรุปข้อความนี้ เป็นจริง

2. จงพิสูจน์ 23 ∈ A โดย

- กรณีนี้คือ x = 23 โดยเงื่อนไขคือ x และ k เป็นจำนวนเต็ม
- แก้สมการ 23 = 3k + 5 ได้ผลลัพธ์คือ k = 6 ซึ่งเป็นจำนวนเต็ม
- สรุป 23 ∈ A



• 3. จงพิสูจน์ว่า A  $\subset$  B กำหนด

$$A = \{ 2^1, 2^2, 2^3, 2^4, ... \}$$
  $B = \{ 2, 4, 6, 8, ... \}$ 

$$A = \{ 2^i \mid i \in \{1,2,3,... \} \}$$
 ดังนั้น  $A = \{ 2, 4, 8, 16, 32, ..... \}$ 

$$B = \{ 2j \mid j \in \{1,2,3,... \} \}$$
 ดังนั้น  $B = \{ 2, 4, 6, 8, 10, ..... \}$ 

- วิเคราะห์ A ⊂ B คือ ทุกอย่างใน A ต้องอยู่ใน B ถ้ามีเพียงกรณีเดี่ยวที่ A
   ไม่อยู่ใน B แสดงว่า A ⊄ B
- พิจารณาจากเซตแล้วพบว่า สมาชิกของเซต A เป็นจำนวนคู่เท่านั้น ซึ่ง เป็นสมาชิกของเซต B
- สรุป A ⊂ B



4. จากข้อ 3 จงพิสูจน์ว่า B ⊄ A

$$A = \{ 2^1, 2^2, 2^3, 2^4, ... \}$$
  $B = \{ 2, 4, 6, 8, ... \}$ 
 $B = \{ 2j \mid j \in \{1,2,3,... \} \}$  ดังนั้น  $B = \{ 2, 4, 6, 8, 10, ...... \}$ 
 $A = \{ 2^i \mid i \in \{1,2,3,... \} \}$  ดังนั้น  $A = \{ 2, 4, 8, 16, 32, ...... \}$ 

- วิเคราะห์ B ⊂ A คือ ทุกอย่างใน B ต้องอยู่ใน A ถ้ามีเพียงกรณีเดียวที่ B
   ไม่อยู่ใน A แสดงว่า B ⊄ A
- พิจารณาจากเซตแล้วพบว่า สมาชิกของเซต B คือ 6 ซึ่งไม่เป็นสมาชิก ของเซต A
- สรุป B ⊄ A



■ 5. 
$$A = \{x \in R \mid x^2 + x - 6 = 0\}$$

$$B = \{2, -3\}$$



$$B = \{ x \mid x = 2k+2 \}$$

- จงพิสูจน์ว่า A = B โดยที่ A จะเท่ากับ B ได้ก็ต้องเมื่อ A  $\subset$  B และ B  $\subset$  A พิสูจน์ A  $\subset$  B โดยนำ A และ B จับเท่ากัน เพื่อแก้สมการดังนี้

$$B = A$$

$$2k+2 = 2j$$

$$2k+2 = 2j-2 + 2$$

$$2k+2 = 2(j-1) + 2$$

$$k = j - 1$$

k = j - 1 j มีค่าต่ำสุดคือ 1 ดังนั้น k มีค่าเป็น 0 แต่ k สามารถมี

ค่าเป็น 0 ได้ k > -1



พิสูจน์ B ⊂ A โดยนำ A และ B จับเท่ากัน เพื่อแก้สมการดังนี้

$$A = B$$
  $2j = 2(k+1)$   $j = k+1$   $k$  มีค่าต่ำสุดคือ  $0$  ดังนั้น  $j$  มีค่าเป็น  $1$  ซึ่ง  $j \in I^+$  สรุป  $B \subset A$ 

■ ดังนั้น A = B



|                              | + | - | <b>I</b> 0 | Q | Q' |
|------------------------------|---|---|------------|---|----|
| -555                         |   |   |            |   |    |
| 7.2121                       |   |   |            |   |    |
| $\frac{1}{2}$                |   |   |            |   |    |
| 96                           |   |   |            |   |    |
| $\sqrt{7}$                   |   |   |            |   |    |
| 0.51                         |   |   |            |   |    |
| 9                            |   |   |            |   |    |
| $\sqrt{7} \times \sqrt{343}$ |   |   |            |   |    |
| $(\sqrt{6})^2$               |   |   |            |   |    |
| 1.234852793                  |   |   |            |   |    |
| $\sqrt{3} \times \sqrt{9}$   |   |   |            |   |    |
| 0                            |   |   |            |   |    |



• 
$$A = \{x \in R \mid x^2 + x - 2 = 0\}$$

$$B = \{0,1,2,...\}$$



- จงแสดงว่า 30 ∉ A
- โดย A = {x | x เป็นจำนวนเต็ม และ x = 3k+5 เมื่อ k เป็นจำนวนเต็ม}



- จงพิสูจน์ว่า A ⊂ B กำหนด A = { x | x = 2k+5 เมื่อ k ∈ I+ }
- และ B = { x | x = 2j+1 เมื่อ j ∈ I+ }



- จงพิสูจน์ว่า B ⊄ A กำหนด A = { x | x = 2k+5 เมื่อ k ∈ I+ }
- และ B = { x | x = 2j+1 เมื่อ j ∈ I+ }

# คุณสมบัติของเซต



| 1)<br>A ⊂ A<br>Ø ⊂ A                          | 2)<br>A ∈ P(A)<br>Ø ∈ P(A)<br>P(Ø) = {Ø}         | 3)<br>U'=∅<br>Ø'=U<br>A∪A'=U<br>A∩A'=∅       |
|-----------------------------------------------|--------------------------------------------------|----------------------------------------------|
| 4) $A \cup A = A$ $A \cup \emptyset = A$      | 5)<br>A ⊂ A ∪ B<br>B ⊂ A ∪ B                     | 6)<br>A ∪ B = B ∪ A<br>(กฎการสลับที่)        |
| 7)<br>A∪(B∪C) = (A∪B)∪C<br>(กฎการเปลี่ยนหมู่) | 8) $A \cap A = A$ $A \cap \emptyset = \emptyset$ | 9)<br>A ∩ B ⊂ A<br>A ∩ B ⊂ B                 |
| 10)<br>A∩B = B∩A<br>(กฎการสลับที่)            | 11)<br>A∩(B∩C) = (A∩B)∩C<br>(กฎการเปลี่ยนหมู่)   | 12)<br>A∪(B∩C)= (A∪B)∩(A∪C)<br>(กฏการกระจาย) |

# คุณสมบัติของเซต



| 13)<br>A∩(B∪C) = (A∩B)∪(A∩C)<br>(กฎการกระจาย)                  | 14)<br>(A')' = A                            | 15)<br>(A ∪ B)′ = A′∩B′<br>(กฎเดอมอร์แกน) |
|----------------------------------------------------------------|---------------------------------------------|-------------------------------------------|
| 16)<br>(A ∩ B)' = A' ∪ B'<br>(กฎเดอมอร์แกน)                    | 17)<br>C - (A ∩ B) = (C - A) ∪ (C - B)      | 18)<br>(A ∩ B) - C = (A - C) ∩ (B - C)    |
| 19) $C - (A \cup B) = (C - A) \cap (C - B)$                    | 20) $(A \cup B) - C = (A - C) \cup (B - C)$ | $(A-B) \cap (B-A) = \emptyset$            |
| 22)<br>(A-B) ∩ (A ∩ B) = Ø หรือ<br>(B-A) ∩ (A ∩ B) = Ø         | 23)<br>A - B = A ∩ B' = B' - A'             | 24)<br>A ∩ B = A - B'                     |
| <b>25) A</b> ∪ <b>(A</b> ∩ <b>B)</b> = <b>A</b> (กฎการดูดกลีน) |                                             |                                           |



1. A ⊂ B ก็ต่อเมื่อ B' ⊂ A'





■ ดังนั้น A  $\subset$  B ก็ต่อเมื่อ B'  $\subset$  A' เป็นจริง



■ 2. A = B ก็ต่อเมื่อ A' = B'





ดังนั้น A = B ก็ต่อเมื่อ A' = B' เป็นจริง



3. ถ้า A ⊂ B แล้ว A ∩ B = A





■ ดังนั้น ถ้า A  $\subset$  B แล้ว A  $\cap$  B = A เป็นจริง



• 4. ถ้า A ⊂ B แล้ว A ∪ B = B





■ ดังนั้น ถ้า A  $\subset$  B แล้ว A  $\cup$  B = B เป็นจริง



5. ถ้า A ⊂ B หรือ A ⊂ C แล้ว A ⊂ B ∪ C





■ ดังนั้น ถ้า A  $\subset$  B **หรือ** A  $\subset$  C แล้ว A  $\subset$  B  $\cup$  C เป็นจริง



6. ถ้า B ⊂ A และ C ⊂ A แล้ว B ∪ C ⊂ A



■ ดังนั้น ถ้า B  $\subset$  A และ C  $\subset$  A แล้ว B  $\cup$  C  $\subset$  A เป็นจริง



7. ถ้า A ⊂ B และ A ⊂ C แล้ว A ⊂ B ∩ C



■ ดังนั้น ถ้า A  $\subset$  B **และ** A  $\subset$  C แล้ว A  $\subset$  B  $\cap$  C เป็นจริง



• ถ้า B ⊂ A หรือ C ⊂ A แล้ว B ∩ C ⊂ A

ล้ากรณีทั้งหมดของ C อยู่ใน A โดย B ∩ C ก็จะเป็นพื้นที่อยู่ ล้ากรณีทั้งหมดของ B อยู่ใน A โดย B ∩ C ก็จะเป็นพื้นที่อยู่ ใน A สามารถเขียนแผนภาพออยเลอร์ ได้ดังนี้

ใน A สามารถเขียนแผนภาพออยเลอร์ ได้ดังนี้





■ ดังนั้น ถ้า B  $\subset$  A หรือ C  $\subset$  A แล้ว B  $\cap$  C  $\subset$  A เป็นจริง

# แผนภาพออยเลอร์



 $\bullet$  C - (A ∩ B) = (C - A)  $\cup$  (C - B)





## แบบฝึกหัด 6



• ให้ A, B, C เป็นเซต จงหา n(A'∩B∩C) มีค่าเท่าไร

$$n(B) = 42$$

$$n(C) = 28$$

$$n(A \cap C) = 8$$

$$n(A \cap B \cap C) = 3$$

$$n(A \cap B \cap C') = 2$$

$$n(A \cap B \cap C) = 3$$
  $n(A \cap B \cap C') = 2$   $n(A \cap B' \cap C') = 20$ 

$$n(A \cup B \cup C) = 80$$



#### แบบฝึกหัด 7



- ข้อกำหนดว่า
  - รับประทานเนื้อ 10 คน รับประทานหมู 14 คน รับประทานไก่ 16 คน
  - รับประทานทั้งเนื้อและหมู 7 คน รับประทานทั้งเนื้อและไก่ 5 คน
  - รับประทานทั้งหมูและไก่ 5 คน
  - รับประทานทั้ง 3 อย่าง 3 คน

• ถ้าทุกคนตุ้องรับประทานอาหารอย่างน้อย 1 ชนิดจงหาว่าหอพักนี้มีผู้

อาศัยอยู่กี่คน

