Question	Marking Guidance	Mark	Comments
1(a)	(Enthalpy change to) break the bond in 1 mol of chlorine (molecules)	1	Allow (enthalpy change to) convert 1 mol of chlorine molecules into atoms Do not allow energy or heat instead of enthalpy, allow heat energy
	To form (2 mol of) gaseous chlorine atoms / free radicals	1	Can score 2 marks for 'Enthalpy change for the reaction': $\text{Cl}_2(g) \to 2\text{Cl}(g)$
			Equation alone gains M2 only
			Can only score M2 if 1 mol of chorine molecules used in M1 (otherwise it would be confused with atomisation enthalpy)
			Any mention of ions, CE = 0
1(b)	(For atomisation) only 1 mol of chlorine atoms, not 2 mol (as in bond enthalpy) is formed / equation showing ½ mol Chlorine giving 1 mol of atoms	1	Allow breaking of one bond gives two atoms
			Allow the idea that atomisation involves formation of 1 mol of atoms not 2 mol
			Allow the idea that atomisation of chlorine involves half the amount of molecules of chlorine as does dissociation
			Any mention of ions, CE = 0
1(c)(i)	$\frac{1}{2}F_2(g) + \frac{1}{2}CI_2(g) \rightarrow CIF(g)$	1	

1(c)(ii)	$\Delta H = \frac{1}{2}E(F-F) + \frac{1}{2}E(CI-CI) - E(CI-F)$	1	Allow correct cycle
	$E(CI-F) = \frac{1}{2}E(F-F) + \frac{1}{2}E(CI-CI) - \Delta H$		
	= 79 + 121 - (-56)		
	$= 256 (kJ mol^{-1})$	1	-256 scores zero Ignore units even if wrong
1(c)(iii)	$\frac{1}{2}\text{CI}_2 + \frac{3}{2}\text{F}_2 \rightarrow \text{CIF}_3$ $\Delta H = \frac{1}{2}\text{ E(CI-CI)} + \frac{3}{2}\text{ E(F-F)} - \frac{3}{2}\text{ E(CI-F)}$	1	If equation is doubled CE=0 unless correcr answer gained by /2 at end This would score M1
	= 121 + 237 - 768 / (or 3 x value from (c)(ii))	1	This also scores M1 (note = 358 – 768)
	$= -410 (kJ \text{ mol}^{-1})$	1	If given value of 223 used ans = -311 Allow 1/3 for +410 and +311
1(c)(iv)	(Bond enthalpy of) CI-F bond in CIF is different from that in CIF ₃	1	Allow <u>CI-F</u> bond (enthalpy) is different in different compounds (QoL)
1(d)	NaCl is ionic / not covalent	1	