FCC 15.231 DXX Test Report

for

I-DING MEDICAL EQUIPMENT CO., LTD.

No. 66, Pizitou Rd., Zuoying Dist., Kaohsiung City 81352, Taiwan (R.O.C.)

Product: Enuresis Alarm

Model : UA433

Brand : IDING

FCC ID : 2ALYMIDING2017

Prepared by: : AUDIX Technology Corporation, EMC Department

The statement is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, TAF or any government agencies.

File Number: C1M1701144 Report Number: EM-F170253

TABLE OF CONTENTS

<u>D</u> (escrip	otion	Page		
TE	ST R	EPORT CERTIFICATION	4		
1.		VISION RECORD OF TEST REPORT			
2.					
3.		NERAL INFORMATION			
J.	3.1.	Description of Application			
	3.1.	Description of EUT			
	3.3.	Antenna Information			
	3.4.	EUT Specifications Assessed in Current Report			
	3.5.	Description of Key Components			
	3.6.	Test Configuration			
	3.7.	Tested Supporting System List	8		
	3.8.	Setup Configuration			
	3.9.	Operating Condition of EUT			
		Description of Test Facility			
		Measurement Uncertainty			
4.	ME.	ASUREMENT EQUIPMENT LIST			
	4.1.	Radiated Emission Measurement			
	4.2.	TO CONGRETE INTOMOST CONTENT			
5.	CO	NDUCTED EMISSION	11		
6.	RAJ	DIATED SPURIOUS EMISSION	12		
	6.1.	Block Diagram of Test Setup	12		
	6.2.	Radiated Emission Limits			
	6.3.	Test Procedure			
	6.4.	Measurement Result Explanation			
	6.5.	Test Results			
7.	EM	ISSION BANDWIDTH MEASUREMENT			
	7.1.	Block Diagram of Test Setup			
	7.2.	Specification Limits			
	7.3.	Test Procedure			
	7.4.	Test Results			
8.		RIODIC OPERATED MEASUREMENT			
	8.1.	Block Diagram of Test Setup			
	8.2.	Specification Limits			
	8.3.	Test Procedure			
_	8.4.				
9.	DEV	VIATION TO TEST SPECIFICATIONS			

APPENDIX A TEST DATA AND PLOTS APPENDIX B TEST PHOTOGRAPHS

TEST REPORT CERTIFICATION

Applicant I-DING MEDICAL EQUIPMENT CO., LTD. : Manufacturer I-DING MEDICAL EQUIPMENT CO., LTD.

EUT Description

(1) Product: **Enuresis Alarm**

(2) Model **UA433** (3) Brand **IDING**

Applicable Standards:

47 CFR FCC Part 15 Subpart C ANSI C63.10:2013

Audix Technology Corp. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report. Audix Technology Corp. does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens and samples.

Date of Report: 2018.01.19

Reviewed by: She Cheng/Manager)

(Sabrina Wang/Administrator)

Approved by:

1. REVISION RECORD OF TEST REPORT

Edition No	Issued Data	Revision Summary	Report Number
0	2018. 01. 19	Original Report	EM-F170253

2. SUMMARY OF TEST RESULTS

Rule Description		Results		
15.207	15.207 Conducted Emission			
15.209/15.231(b)	Radiated Spurious Emission and Fundamental Frequency	PASS		
15.231(c)	Emission Bandwidth	PASS		
15.231(a)(2)	Periodic Operated	PASS		
15.203	Antenna Requirement	Compliance		
Note: The EUT only employs Batteries.				

3. GENERAL INFORMATION

3.1. Description of Application

Applicant	I-DING MEDICAL EQUIPMENT CO., LTD. No. 66, Pizitou Rd., Zuoying Dist., Kaohsiung City 81352, Taiwan (R.O.C.)	
Manufacture	I-DING MEDICAL EQUIPMENT CO., LTD. 8F2, No.288-7, Xinya Rd., Qianzhen Dist., Kaohsiung City 806, Taiwan (R.O.C.)	
Product	Enuresis Alarm	
Model	UA433	

3.2. Description of EUT

Test Model	UA433
Serial Number	N/A
Power Rating	DC 12V (A23 Battery)
RF Features	ASK (OOK)
Accessories	Launcher (Transmitter) x1Alarm x1Sensor x1
Date of Receipt	2017. 01. 10
Date of Test	2017. 05. 12

3.3. Antenna Information

None.

3.4. EUT Specifications Assessed in Current Report

Modulation	Fundamental Range (MHz)	Channel Number
ASK (OOK)	433.91	1

3.5. Description of Key Components

None.

3.6. Test Configuration

Duty Cycle

TX _{on}	TX_{on+off}	Duty Cycle Factor (dB)
(0.99875*3)+(0.331875*22)=10.30	42.65	-12.34

Item	Test Frequency
Radiated Spurious Emission and Fundamental Frequency	433.91MHz
Emission Bandwidth	433.91MHz
Periodic Operated	433.91MHz

1	N	O.	tρ	1	
П	N	()	I.C		

	1 .	1 T		
 N /I /	ahı.	1 1)evic	•

Portable Device, and 3 axis were assessed, and the worst axis was Lie.

■ Lie □ Side □ Stand

3.7. Tested Supporting System List

None.

3.8. Setup Configuration

3.8.1. EUT Configuration for Radiated Emission

3.8.2. EUT Configuration for RF Conducted Test Items

3.9. Operating Condition of EUT

To Set EUT on RF function under continues transmitting.

3.10.Description of Test Facility

Name of Test Firm	Audix Technology Corporation / EMC Department No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan Tel: +886-2-26092133 Fax: +886-2-26099303 Website: www.audixtech.com Contact e-mail: attemc_report@audixtech.com	
Accreditations	The laboratory is accredited by following organizations under ISO/IEC 17025:2005 (1) NVLAP(USA) NVLAP Lab Code 200077-0 (2) TAF(Taiwan) No. 1724 (3) FCC OET Designation No. TW1004 & TW1090 & TW1724	
Test Facilities	 Semi-Anechoic Chamber (IC Test Site Registration No.: 5183B-1) Fully Anechoic Chamber (IC Test Site Registration No.: 5183B-4) 	

3.11.Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	
	9kHz~30MHz	± 0.5dB	
Radiation Test (Distance: 3m)	30MHz~1000MHz	± 3.68dB	
(Bistance, sin)	Above 1GHz	± 5.82dB	

Remark : Uncertainty = $ku_c(y)$

Test Item	Uncertainty
Emission Bandwidth (20dB)	± 0.2kHz
Periodic Operated	± 0.05s

4. MEASUREMENT EQUIPMENT LIST

4.1. Radiated Emission Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
1.	Spectrum Analyzer	Agilent	N9010A-526	MY53400071	2017. 09. 13	1 Year
2.	Spectrum Analyzer	Agilent	N9010A-526	MY52220368	2017. 11. 08	1 Year
3.	Test Receiver	R & S	ESCS30	100338	2017. 06. 19	1 Year
4.	Amplifier	HP	8447D	2944A06305	2017. 02. 16	1 Year
5.	Amplifier	Sonoma	310N	187161	2017. 06. 08	1 Year
6.	Loop Antenna	R & S	HFH2-Z2	891847/27	2016. 12. 23	1 Year
7.	Bilog Antenna	TESEQ	CBL6112D	33821	2017. 01. 21	1 Year
8.	Horn Antenna	ETS-Lindgren	3117	00135902	2017. 03. 08	1 Year
9.	Digital Thermo-Hygro Meter	iMax	HTC-1	No.1 3m A/C	2017. 04. 21	1 Year
10.	Digital Thermo-Hygro Meter	EVERY DAY	E-512	RF-02	2017. 04. 21	1 Year
11.	Test Software	Audix	e3	V.6.1206197	N.C.R.	N.C.R.
12.	Test Software	Audix	e3	V.6.110601	N.C.R.	N.C.R.

4.2. RF Conducted Measurement

Item	Туре	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
1.	Spectrum Analyzer	R&S	FSV30	101181	2017. 07. 10	1 Year
2.	Wide Band Antenna	Diamond	RH799	N/A	N.C.R	N.C.R
3.	Digital Thermo-Hygro Meter	Datronn	KT-905	RF	2017. 04. 21	1 Year

File Number: C1M1701144 Report Number: EM-F170253

5. CONDUCTED EMISSION

[The EUT only employs Batteries power for operation, no conductive emission limits are required according to FCC Part 15 Section §15.207]

6. RADIATED SPURIOUS EMISSION

6.1. Block Diagram of Test Setup

- 6.1.1. Block Diagram of EUT Indicated as section 3.8
- 6.1.2. Setup Diagram for 9kHz-30MHz

6.1.3. Setup Diagram for 30MHz-1000MHz

6.1.4. Setup Diagram for above 1GHz

File Number: C1M1701144 Report Number: EM-F170253

6.2. Radiated Emission Limits

6.2.1. General Limit

In any 100kHz bandwidth outside the frequency band, the radio frequency power produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205 must also comply with the radiated emission limits specified as below.

Frequency (MHz)	Distance (m)	Limits			
riequency (wiriz)	Distance (III)	dBμV/m	μV/m		
0.009 - 0.490	300	67.6	2400/kHz		
0.490 - 1.705	30	87.6	24000/kHz		
1.705 - 30	30	29.5	30 100		
30 - 88	3	40.0			
88- 216	3	43.5	150		
216- 960	3	46.0	200		
Above 960	3	54.0	500		
Above 1000	3	74.0 dBμV/m (Peak) 54.0 dBμV/m (Average)			

Remark : (1) $dB\mu V/m = 20 \log (\mu V/m)$

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Fundamental and emission fall within operation band are exempted from this section.
- (5) Pursuant to ANSI C63.10: 6.6.4.3, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

6.2.2. Limite for Fundamental Frequency

In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250
¹ :Linear Interpolations		

Remark : (1) $dB\mu V/m = 20 \log (\mu V/m)$

- (2) The tighter limit applies to the edge between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- (4) Where limit of Fundamental Freq. is calculated by: $41.6667x433.91-7083.3333=10996.681164\mu\text{V/m}=80.83d\text{B}\mu\text{V/m}$
- (5) The limits in this table are based on CFR 47 Part 15.231(b).

6.3. Test Procedure

Frequency Range 9kHz~30MHz:

The EUT setup on the turn table which has 0.8 m height to the ground. The turn table rotated 360 degrees and antenna fixed to 1 m to find the maximum emission level. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

- (1) RBW = 9kHz with peak and average detector.
- (2) Detector: average and peak (9kHz-490kHz)

Q.P. (490kHz-30MHz)

Frequency Range 30MHz ~ above 1GHz to 10th harmonic:

The EUT setup on the turn find table which has 80 cm (for 30-1000 MHz) and 1.5m (for above 1GHz) height to the ground. The turn table rotated 360 degrees and antenna varied from 1 m to 4 m to find the maximum emission level. Both horizontal and vertical polarization are required. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10-2013 regulation.

Frequency below 1 GHz:

Spectrum Analyzer is used for pre-testing with following setting:

- (1)RBW = 120KHz
- (2)VBW $\geq 3 \times RBW$.
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the Q.P. detector is not required. Otherwise using Q.P. for finally measurement.

Frequency above 1GHz to 10th harmonic:

Peak Detector:

- (1)RBW = 1MHz
- $(2)VBW > 3 \times RBW$.
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.
- (7) When peak-detected value is lower than limit that the measurement using the average detector is not required. Otherwise using average detector for finally measurement.

Average Detector:

Option 1:

- (1)RBW = 1MHz
- $(2)VBW \ge 1/T$.
- (3)Detector = Peak.
- (4)Sweep time = auto.
- (5)Trace mode = max hold.
- (6) Allow sweeps to continue until the trace stabilizes.

Option 2:

Average Emission Level= Peak Emission Level+ D.C.C.F.

6.4. Measurement Result Explanation

P	eak	Emis	sion	Level=	=Antenna	Factor +	Cable	Loss +	Meter	Reading
---	-----	-------------	------	--------	----------	----------	-------	--------	-------	---------

Average Emission Level l=Antenna Factor + Cable Loss + Meter Reading

Average Emission Level= Peak Emission Level+ DCCF

Duty Cycle Correction Factor (DCCF)= 20log (TY /TY /) press

Duty Cycle Correction Factor (DCCF)= $20\log (TX_{on}/TX_{on+off})$ presented in section 3.6

ERP= Peak Emission Level-95.2dB-2.14dB

6.5. Test Results

Please refer to Appendix A.

7. EMISSION BANDWIDTH MEASUREMENT

7.1. Block Diagram of Test Setup

7.2. Specification Limits

The bandwidth of emission shall be no wider than 0.25% of the center frequency for device operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20dB down from the modulated carrier.

7.3. Test Procedure

- (1) Set RBW close to 1-5 % of OBW.
- (2) Set VBW≥RBW.
- (3) Detector = Peak.
- (4) Trace mode = \max hold.
- (5) Sweep = auto couple.
- (6) Allow the trace to stabilize.
- (7) Setting channel bandwidth function x dB to -20 dB to record the final bandwidth.

7.4. Test Results

Please refer to Appendix A

8. PERIODIC OPERATED MEASUREMENT

8.1. Block Diagram of Test Setup

8.2. Specification Limits

The operation of this device is automatically operated transmitter that is automatically shall cease transmission within 5 seconds after activation.

8.3. Test Procedure

- (1) Span = zero
- (2) RBW ≥ 100 kHz
- (3) VBW≥ RBW
- (4) Sweep = 5s
- (5) Detector function = peak
- (6) Trace = single sweep

8.4. Test Results

Please refer to Appendix A

9. DEVIATION TO TEST SPECIFICATIONS

[NONE]

APPDNDIX A

TEST DATA AND PLOTS

(Model: UA433)

TABLE OF CONTENTS

A.1	RADI	ATED SPURIOUS EMISSION	. 2
		Emissions Applied to General Requirement.	
		Fundamental Frequency	
A.2		SION BANDWIDTH MEASUREMENT	
	A.2.1	Emission Bandwidth	5
	A.2.2	Measurement Plots	5
A.3	PERI	ODIC OPERATED MEASUREMENT	. 6
	A.3.1	Periodic Operated	6
	A 3 2	Measurement Plots	6

A.1 RADIATED SPURIOUS EMISSION

Test Date 2017/05/12		Temp./Hum.	20°C/53%
Test Frequency	TX 433.91MHz	Test Voltage	DC 12V

A.1.1 Emissions Applied to General Requirement

A.1.1.1 Frequency 9kHz~30MHz

The emissions (9kHz~30MHz) not reported for there is no emission be found.

A.1.1.2 Frequency Below 1 GHz

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
101.78	17.38	2.29	4.73	24.40	43.50	19.10	Peak
280.26	19.45	4.12	2.02	25.59	46.00	20.41	Peak
559.62	24.35	6.62	1.56	32.53	46.00	13.47	Peak
727.43	25.92	7.23	1.36	34.51	46.00	11.49	Peak
868.08	26.97	8.00	2.54	37.51	46.00	8.49	Peak
956.35	27.54	8.54	2.07	38.15	46.00	7.85	Peak

Antenna at Vertical Polarization

Emission	Antenna	Cable	Meter	Emission	Limits	Margin	
Frequency	Factor	Loss	Reading	Level			Detector
(MHz)	(dB/m)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
30.97	24.28	1.22	3.01	28.51	40.00	11.49	Peak
101.78	17.38	2.29	4.75	24.42	43.50	19.08	Peak
326.82	20.66	4.68	2.56	27.90	46.00	18.10	Peak
645.95	25.18	6.91	1.70	33.79	46.00	12.21	Peak
818.61	26.66	7.72	1.50	35.88	46.00	10.12	Peak
962.17	27.58	8.59	2.28	38.45	54.00	15.55	Peak

File Number: C1M1701144 Report Number: EM-F170253

3038.00

46.25

Audix Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan Tel: +886 2 26099301 Fax: +886 2 26099303

A.1.1.3 Frequency Above 1 GHz

Antenna at Horizontal Polarization

Antenna at 1101	izuiitai 1 uiai izat	1011						
Emission	Antenna	Cable	Me	eter	Emission	Limits	Margin	
Frequency	Factor	Loss	Rea	ding	Level			Detector
(MHz)	(dB/m)	(dB)	(dB	μV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
1302.00	28.04	4.21	21 11.27		43.52	74.00	30.48	Peak
1756.00	29.80	4.89	15.	.13	49.82	74.00	24.18	Peak
2170.00	31.84	5.71	20.	.83	58.38	74.00	15.62	Peak
2604.00	32.42	6.35	17.	.61	56.38	74.00	17.62	Peak
3038.00	32.89	6.85	16	.83	56.57	74.00	17.43	Peak
3472.00	32.81	7.48	4.	22	44.51	74.00	29.49	Peak
3906.00	33.21	7.89	8.	73	49.83	74.00	24.17	Peak
Emission	Peak Emission l	Level	DCCF	Aver	age Emission	Limits	Margin	
Frequency					Level			Remark
(MHz)	$(dB\mu V/m)$		(dB)	($dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
1302.00	43.52		-12.34		31.18	54.00	22.82	Average
1756.00	49.82		-12.34		37.48	54.00	16.52	Average
2170.00	58.38		-12.34		46.04	54.00	7.96	Average
2604.00	56.38		-12.34		44.04	54.00	9.96	Average
3038.00	56.57		-12.34		44.23	54.00	9.77	Average
3472.00	44.51		-12.34		32.17	54.00	21.83	Average
3906.00	49.83		-12.34		37.49	54.00	16.51	Average
Antenna at Vert	tical Polarization	1						
Emission	Antenna	Cable	Me	eter	Emission	Limits	Margin	
Frequency	Factor	Loss	Rea	ding	Level			Detector
(MHz)	(dB/m)	(dB)	(dB	μV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
1758.00	29.92	4.89	9.	19	44.00	74.00	30.00	Peak
2170.00	31.84	5.71	10.	.87	48.42	74.00	25.58	Peak
2604.00	32.42	6.35	5.	85	44.62	74.00	29.38	Peak
3038.00	32.89	6.85	6	51	46.25	74.00	27.75	Peak
Emission	Peak Emission l	Level	DCCF	Aver	age Emission	Limits	Margin	
Frequency					Level			Remark
(MHz)	$(dB\mu V/m)$		(dB)	($dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
1758.00	44.00		-12.34		31.66	54.00	22.34	Average
2170.00	48.42		-12.34		36.08	54.00	17.92	Average
2604.00	44.62		-12.34		32.28	54.00	21.72	Average

-12.34

33.91

54.00

20.09

Average

Audix Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan Tel: +886 2 26099301 Fax: +886 2 26099303

A.1.2 Fundamental Frequency

Antenna at Horizontal Polarization

Emission	Antenna	Cable	Me	eter	Emission	Limits	Margin	
Frequency	Factor	Loss	Rea	ding	Level			Detector
(MHz)	(dB/m)	(dB)	(dB	μV)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	
433.91	23.12	5.87	52	.18	81.17	100.83	19.66	Peak
Emission	Peak Emission	Level	DCCF	Avera	age Emission	Limits	Margin	
Frequency					Level			Remark
(MHz)	$(dB\mu V/m)$)	(dB)	(0	dBμV/m)	$(dB\mu V/m)$	(dB)	
433.91	81.17		-12.34		68.83	80.83	12.00	Average

Remark: Horizontal is the strongest polarization and peak value has complied with average limit, so vertical won't be listed in test report.

Audix Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan Tel: +886 2 26099301 Fax: +886 2 26099303

A.2 EMISSION BANDWIDTH MEASUREMENT

Test Date	2017/05/12	Temp./Hum.	20°C/53%
Test Frequency	TX 433.91MHz	Test Voltage	DC 12V

A.2.1 Emission Bandwidth

Center Frequency (MHz)	Occupied Bandwidth (MHz)	Tolerance (%)	Limit (%)
433.91	0.20380	0.047	0.25

A.2.2 Measurement Plots

File Number: C1M1701144 Report Number: EM-F170253

Audix Technology Corp. No. 53-11, Dingfu, Linkou, Dist., New Taipei City244, Taiwan Tel: +886 2 26099301 Fax: +886 2 26099303

A.3 PERIODIC OPERATED MEASUREMENT

Test Date	2017/05/12	Temp./Hum.	20°C/53%
Test Frequency	TX 433.91MHz	Test Voltage	DC 12V

A.3.1 Periodic Operated

Center Frequency (MHz)	Time (Sec.)	Limit (Sec.)
433.91	0.010	< 5

A.3.2 Measurement Plots

APPDNDIX B

TEST PHOTOGRAPHS

(Model: UA433)