SISTEMA INTELIGENTE DE GESTIÓN DE LA INFRAESTRUCTURA FÍSICA

Transformación Digital para la Infraestructura Física

VISIÓN DEL PROYECTO

Desarrollar una plataforma integral que revolucione la gestión de la infraestructura vial urbana mediante tecnologías emergentes, inteligencia artificial y análisis predictivo, garantizando un mantenimiento proactivo, eficiente y transparente de la red vial.

OBJETIVOS ESTRATÉGICOS

Objetivo general

Implementar un ecosistema tecnológico integrado que automatice, optimice y prediga el mantenimiento de la malla vial urbana, mejorando la calidad de vida ciudadana y la eficiencia en la inversión pública.

Objetivos específicos

- Automatizar la detección y priorización de intervenciones viales
- Predecir el deterioro y optimizar el ciclo de vida de activos viales
- Monitorear en tiempo real el avance de obras públicas
- Consolidar datos en una arquitectura cloud escalable y segura
- Fomentar la transparencia mediante datos abiertos

COMPONENTES DEL SISTEMA

1. SISTEMA DE GESTIÓN DE LA MALLA VIAL

Funcionalidades:

- Plataforma Geoespacial Interactiva: Dashboard con visualización en tiempo real del estado vial alimentado por reportes ciudadanos y ubicación automatizada de baches.
- Motor de Priorización Inteligente: Algoritmos que evalúan criticidad basada en flujo vehicular, impacto social, costos operativos e historial de fallas.
- **Sistema Integrado de PQRS**: Conexión directa con reportes ciudadanos y equipos de campo para retroalimentación continua.

Valor Agregado:

Reducción del 40% en tiempos de respuesta y optimización del 30% en asignación de recursos.

2. SISTEMA PREDICTIVO DE DETERIORO VIAL

Arquitectura de predicción integrada: El sistema implementa una solución de machine learning basada en algoritmos de regresión (Random Forest y Gradient Boosting) que alimenta simuladores de envejecimiento vial para generar predicciones precisas y accionables del deterioro de la infraestructura.

Funcionalidades centrales:

- Motor predictivo: Algoritmos de regresión optimizados que procesan variables multidimensionales incluyendo volumen de tráfico vehicular, condiciones climáticas históricas y proyectadas, especificaciones técnicas de materiales de construcción, edad cronológica de cada tramo e historial completo de intervenciones de mantenimiento para generar índices de deterioro predictivo por segmento vial.
- Simuladores de envejecimiento dinámico: Modelos computacionales que integran las predicciones base con escenarios variables de uso y exposición ambiental, permitiendo simular diferentes trayectorias de deterioro bajo condiciones cambiantes de tráfico estacional, eventos climáticos extremos y estrategias alternativas de mantenimiento preventivo.
- Dashboards de vida útil Inteligente: Interfaces interactivas que transforman las predicciones algorítmicas en estimaciones visuales de vida útil remanente por tramo vial, incorporando mapas de calor predictivos que identifican zonas de riesgo emergente y generan alertas tempranas automáticas cuando los modelos detectan aceleración inesperada en patrones de deterioro.
- Diferenciación por tipología vial: Sistema de clasificación predictiva especializada que adapta los algoritmos de regresión a las características específicas de cada tipo de infraestructura - desde vías troncales de alto tráfico con modelos optimizados para cargas pesadas, hasta ciclorutas con predictores enfocados en desgaste por uso recreativo y exposición climática diferenciada, pasando por vías secundarias y barriales con modelos calibrados para patrones de tráfico local y presupuestos de mantenimiento limitados.

Impacto esperado: Extensión del 25% en vida útil de activos viales y reducción del 35% en costos de mantenimiento correctivo.

3. MONITOREO INTELIGENTE DE OBRAS

Sistema Integrado de Supervisión Digital: El sistema establece un ecosistema de control que transforma la supervisión tradicional de obras públicas mediante la integración de herramientas de visualización comparativa, fiscalización móvil inteligente y análisis predictivo de desempeño, creando un ambiente de gestión automatizado que conecta el avance físico en campo con la toma de decisiones estratégicas.

Arquitectura de Supervisión: La plataforma centra su operación en un Centro de Control Comparativo que visualiza continuamente el avance real versus cronograma planificado a través de dashboards interactivos, detecta automáticamente desviaciones significativas en tiempo, presupuesto o especificaciones técnicas, y genera alertas inmediatas que permiten intervención correctiva oportuna. Este centro se alimenta de información capturada mediante Herramientas Móviles de Fiscalización especializadas que equipan a supervisores de campo con capacidades de reconocimiento de voz para dictado hands-free de reportes técnicos, reconocimiento de imagen para verificación de materiales y cumplimiento de especificaciones, y sincronización en tiempo real con el sistema central para actualización continua del estado de cada proyecto.

El sistema se complementa con un **Motor de Evaluación de Desempeño** que procesa los históricos de ejecución de contratistas mediante análisis de series temporales, identifica patrones recurrentes de comportamiento y detecta anomalías en desempeños pasados, generando scores predictivos de riesgo que permiten supervisión diferenciada según el perfil de cada contratista y optimización en la asignación de recursos de fiscalización hacia los proyectos de mayor riesgo potencial.

Beneficios: Incremento del 50% en eficiencia de supervisión y reducción del 20% en sobrecostos por desviaciones.

•

5. ARQUITECTURA CLOUD PARA GESTIÓN INTELIGENTE

Infraestructura Tecnológica:

- **Arquitectura Híbrida Multi-nube**: Despliegue en AWS, Azure y GCP para garantizar escalabilidad y continuidad
- **Data Lake Centralizado**: Integración de datos geoespaciales, sensores, obras, contratistas y reportes ciudadanos
- Pipelines ETL/ELT: Orquestación mediante Apache Airflow y DBT para procesamiento automatizado de datos
- MLOps Avanzado: Despliegue y monitoreo continuo de modelos predictivos en producción
- Gobernanza y Seguridad: Cumplimiento normativo ISO 27001 y regulaciones colombianas de protección de datos

STACK TECNOLÓGICO

Desarrollo y Análisis

- Lenguajes: Python, JavaScript, SQL
- Librerías ML: TensorFlow, PyTorch, Scikit-learn, XGBoost
- Procesamiento de Datos: Pandas, NumPy, Dask
- Geoespacial: Shapely, Geopandas, Folium
- Visión Artificial: OpenCV, YOLO, Detectron2

Plataformas y Servicios

- GIS: ArcGIS Enterprise, QGIS, PostGIS, Mapbox
- Visualización: Power BI, Dash, Streamlit, Plotly
- Cloud Computing: AWS SageMaker, Azure ML, Google Vertex Al
- Base de Datos: PostgreSQL + PostGIS, BigQuery, MongoDB
- Streaming: Apache Kafka, Azure Event Hubs

MLOps y DevOps

- Orquestación: Apache Airflow, Prefect
- Versionado ML: MLflow, DVC, Weights & Biases
- APIs: FastAPI, Flask, Django REST
- Contenedores: Docker, Kubernetes
- Monitoreo: Prometheus, Grafana, ELK Stack

III PLAN DE IMPLEMENTACIÓN

FASE 1: DIAGNÓSTICO Y ARQUITECTURA (Meses 1-3)

- Evaluación de infraestructura actual
- Diseño de arquitectura tecnológica
- Definición de estándares de datos
- Selección y configuración de herramientas base

FASE 2: DESARROLLO DE PROTOTIPOS (Meses 4-8)

- Implementación de módulos core
- Desarrollo de modelos predictivos iniciales
- Creación de dashboards básicos
- Pruebas de concepto con datos históricos

FASE 3: PILOTO CONTROLADO (Meses 9-12)

- Despliegue en zona piloto seleccionada
- Validación de modelos con datos reales
- Refinamiento de algoritmos
- Capacitación de equipos operativos

FASE 4: ESCALAMIENTO COMPLETO (Meses 13-18)

- Implementación citywide
- Optimización de performance
- Integración completa de sistemas
- Programa de mejora continua

ESTRUCTURA ORGANIZACIONAL

Equipos Clave

- Dirección de Proyecto: Coordinación general y toma de decisiones estratégicas
- Equipo Técnico: Desarrollo, implementación y mantenimiento de sistemas
- Equipo de Datos: Análisis, modelado predictivo y business intelligence
- Equipo de Campo: Validación, capacitación y retroalimentación operativa

Colaboración Institucional

- Secretaría de Planeación: Alineación estratégica y normativa
- Área de Sistemas: Infraestructura tecnológica y seguridad
- Secretaría de Obras: Operación y mantenimiento vial
- Contratistas: Integración de procesos y datos operativos