海淀区九年级第二学期期末练习 数学

2016.6

学校	班级	姓名	成绩	
, \(\sigma_{\bullet}				

- 考 1. 本试卷共 8 页,共三道大题,29 道小题,满分 120 分,考试时间 120 分钟。
- 生 2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、画图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束,将本试卷、答题卡一并交回。

一、选择题(本题共30分,每小题3分)

下面各题均有四个选项,其中只有一个是符合题意的.

- 1. 2022 年冬奥会由北京和张家口两市联合承办. 北京到张家口的自驾距离约为 196 000 米. 196 000 用科学记数法表示应为
 - A. 1.96×10^5 B. 19.6×10^4 C. 1.96×10^6 D. 0.196×10^6
- 2. 中华文化底蕴深厚, 地方文化活动丰富多彩. 下面的四幅简笔画是从我国地方文化活动中 抽象出来的,其中是轴对称图形的是

3. 下列计算正确的是

A. $a^2 \cdot a^3 = a^6$ B. $a^8 \div a^4 = a^2$ C. $(a^3)^2 = a^6$ D. 2a + 3a = 6a

4. 如图,边长相等的正方形、正六边形的一边重合,则∠1的度

数为

A. 20°

B. 25°

C. 30°

D. 35°

- 5. 如图,数轴上有M,N,P,Q四个点,其中点 P 所表示的数为 a,则数 -3a 所对应的点可能是
 - A. *M*

- B. *N* C. *P* D. *Q*

6. 在一次中学生趣味数学竞赛中,参加比赛的10名学生的成绩如下表所示:

分数	80	85	90	95
人数	1	4	3	2

这 10 名学生所得分数的平均数是

- A. 86
- B. 88
- C. 90
- D. 92
- 7. 如图, A, B, C, D为 \odot O上的点, $OC \perp AB$ 于点E, 若 $\angle CDB=30^{\circ}$,

OA = 2,则AB的长为

- A. $\sqrt{3}$
- B. $2\sqrt{3}$
- C. 2
- D. 4

8. 某通信公司自 2016年2月1日起实行新的4G飞享套餐,部分套餐资费标准如下:

-t do	D -##			1 V/2 +H1	
套餐	月费	套餐内包	套餐外	小	
类型	(元/月)	国内数据流量(MB)	国内主叫(分钟)	国内流量	国内主叫
套餐1	18	100	0		
套餐 2	28	100	50	0.29	0.19
套餐3	38	300	50	元/MB	元/分钟
套餐 4	48	500	50		

小明每月大约使用国内数据流量 200MB, 国内主叫 200 分钟, 若想使每月付费最少, 则 他应预定的套餐是

- A. 套餐 1
- B. 套餐 2
- C. 套餐 3 D. 套餐 4
- 9. 随着"互联网+"时代的到来,一种新型的打车方式受到 火元) 大众欢迎. 该打车方式采用阶梯收费标准. 打车费用 y(单 位:元)与行驶里程 x (单位:千米)的函数关系如图所 示. 如果小明某次打车行驶里程为20千米,则他的打车 费用为

- B. 34 元
- C. 36元
- D. 40 元

10. 如图 1, 抛物线 $y = -x^2 + bx + c$ 的顶点为 P, 与 x 轴交于 A, B 两点. 若 A, B 两点间 的距离为m, $n \in m$ 的函数,且表示 $n \in m$ 的函数关系的图象大致如图 2 所示,则n可能为

A. PA + AB

B. PA - AB

AB

D.

二、填空题(本题共18分,每小题3分)

- 11. 当分式 $\frac{x-2}{2x+1}$ 的值为 0 时, x 的值为
- 12. 分解因式: 3x²-12=
- 13. 据传说, 古希腊数学家、天文学 家泰勒斯曾利用相似三角形的原理, 在金字塔影子的顶部立一根木杆,借 助太阳光线构成两个相似三角形,来 测量金字塔的高度. 如图所示, 木杆 EF 的长为 2m, 它的影长 FD 为 3m,

测得 OA 为 201m,则金字塔的高度 BO 为_ m.

- 14. 请写出一个图象过(2,3)和(3,2)两点的函数解析式
- 15. 在某次试验数据整理过程中,某个事件发生的频率情况如下表所示.

试验次数	10	50	100	200	500	1000	2000
事件发生的频率	0.245	0.248	0.251	0.253	0.249	0.252	0.251

估计这个事件发生的概率是______(精确到 0.01), 试举出一个随机事件的例子,

使它发生的概率与上述事件发生的概率大致相同:

16. 阅读下面材料:

实际生活中,有时会遇到一些"不能接近的角",如图中的 $\angle P$,我们可以采用下面的方法作一条直线平分 $\angle P$.

如图,

- (1) 作直线 l 与 $\angle P$ 的两边分别交于点 A ,B ,分别作 $\angle PAB$ 和 $\angle PBA$ 的角平分线,两条角平分线相交于点 M ;
- (2) 作直线 $k \vdash \angle P$ 的两边分别交于点 C,D,分别作 $\angle PCD$ 和 $\angle PDC$ 的角平分线,两条角平分线相交于点 N;

所以,直线 MN 平分 $\angle P$.

P M B M B

请回答:上面作图方法的依据是

- 三、**解答题**(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)
- 17. 计算: $(-\frac{1}{3})^{-1} (\sqrt{3} 2)^0 + \left|1 \sqrt{2}\right| + 4\cos 45^\circ$

-5 -4 -3 -2 -1 0 1 2 3 4 5

- 19. 已知关于x的方程 $x^2 6x + k + 7 = 0$ 有两个不相等的实数根.
 - (1) 求k的取值范围;
 - (2) 当k为正整数时,求方程的根.

20. 己知:如图,在 $\triangle ABC$ 中, $\angle ACB$ =90°,点D在BC上,且BD=AC,过点D作DE \bot AB于点E,过点B作CB的垂线,交DE的延长线于点F.

求证: AB=DF.

21. 为了提升阅读速度,某中学开设了"高效阅读"课. 小静经过2个月的训练,发现自己现在每分钟阅读的字数比原来的2倍还多300字,现在读9100字的文章与原来读3500字的文章所用的时间相同. 求小静现在每分钟阅读的字数.

- 22. 如图,在 $\triangle ABC$ 中, $\angle ACB$ =90°,CD 为 AB 边上的中线,过点 D 作 DE \bot BC 于 E,过点 C 作 AB 的平行线与 DE 的延长线交于点 F,连接 BF,AE.
 - (1) 求证: 四边形 BDCF 为菱形;
 - (2) 若四边形 *BDCF* 的面积为 24, $\tan \angle EAC = \frac{2}{3}$,求 *CF* 的长.

- 23. 在平面直角坐标系 xOy 中, 直线 l_1 : $y = \frac{1}{2}x + b$ 与双曲线 $y = \frac{6}{x}$ 的一个交点为 A(m,1).
 - (1) 求 m 和 b 的值;
 - (2) 过 B(1,3) 的直线交 l_1 于点 D,交 y 轴于点 E. 若 BD=2BE ,求点 D 的坐标.

- 24. 如图,在 $\triangle ABC$ 中, $\angle C=90$ °,点 E 在 AB 上,以 AE 为直径的 $\odot O$ 切 BC 于点 D,连接 AD.
 - (1) 求证: *AD* 平分∠*BAC*;
 - (2) 若 \odot *O* 的半径为 5, $\sin \angle DAC = \frac{\sqrt{5}}{5}$,求 *BD* 的长.

25. 据报道,2015年我国每千名儿童所拥有的儿科医生数为0.43(将0~14岁的人群定义为儿童),远低于世界主要发达国家,儿科医生存在较大缺口.根据2000-2015年报道的相关数据,绘制统计图表如下:

全国人口、儿童人口、儿科医生及每千名儿童拥有的儿科医生数统计表

FT: 1/\	全国人口	儿童人口	儿科医生	每千名儿童拥有的
年份	(亿人)	(亿人)	(万人)	儿科医生数
2000	12.67	2.9	9.57	0.33
2005	13.06	2.65	10.07	0.38
2010	13.4	2.22	10.43	0.47
2015	13.7	2.26	9.72	0.43

2015年全国人口年龄构成统计图

根据以上信息解答下列问题:

- (1) 直接写出扇形统计图中 m 的值;
- (2) 根据统计表估计 2020 年我国人口数约为 亿人;
- (3) 若 2020 年我国儿童占总人口的百分比与 2015 年相同,请你估算到 2020 年我国儿科医生需比 2015 年增加多少万人,才能使每千名儿童拥有的儿科医生数达到 0.6.

26. 小明在做数学练习时,遇到下面的题目:

题目:如图 1,在 $\triangle ABC$ 中,D为AC边上一点,AB=AC, $\angle DBA = \angle A$,BD=BC.若CD=2, $\triangle BDC$ 的周长为 14,求AB的长.

参考答案: AB=8.

小明的计算结果与参考答案不同,因此他对参考答案产生了质疑.下面是他的分析、 探究过程,请你补充完整.

第一步,读题,并标记题目条件如下:

在 $\triangle ABC$ 中,D为 AC 边上一点,① $\underline{AB=AC}$;② $\underline{\angle DBA=\angle A}$;③ $\underline{BD=BC}$;④ $\underline{CD=2}$;⑤ $\underline{\triangle BDC}$ 的周长为 14.

第二步,依据条件③、④、⑤,可以求得 $BD = BC = ______$;

第三步,作出 \triangle *BCD*,如图 2 所示;

第四步,依据条件①,在图 2 中作出 \triangle ABC;(尺规作图,保留作图痕迹)

图 2

第五步,对所作图形进行观察、测量,发现与标记的条件_____不符(填序号),去掉这个条件,题目中其他部分保持不变,求得 AB 的长为 .

小明:"该题目的已知条件存在自相矛盾的地方.若去掉矛盾的条件后,便可求出AB的长."

- 27. 已知: 点 P(m,n) 为抛物线 $y = ax^2 4ax + b$ ($a \neq 0$) 上一动点.
 - (1) P_1 (1, n_1), P_2 (3, n_2) 为P 点运动所经过的两个位置,判断 n_1 , n_2 的大小,并说明理由;
 - (2) 当 $1 \le m \le 4$ 时, n的取值范围是 $1 \le n \le 4$, 求抛物线的解析式.
- 28. 已知: AB = BC , $\angle ABC = 90^\circ$. 将线段 AB 绕点 A 逆时针旋转 α ($0^\circ < \alpha < 90^\circ$) 得 到线段 AD . 点 C 关于直线 BD 的对称点为 E ,连接 AE , CE .
 - (1) 如图,
 - ①补全图形;
 - ②求 *∠AEC* 的度数;

(2) 若 $AE = \sqrt{2}$, $CE = \sqrt{3} - 1$, 请写出求 α 度数的思路. (可以不写出计算结果)

29. 对于某一函数给出如下定义:若存在实数 p,当其自变量的值为 p 时,其函数值等于 p,则称 p 为这个函数的**不变值**. 在函数存在不变值时,该函数的最大不变值与最小不变值之差 q 称为这个函数的**不变长度**. 特别地,当函数只有一个不变值时,其不变长度 q 为零. 例如,下图中的函数有 0,1 两个不变值,其不变长度 q 等于 1.

- (1) 分别判断函数 y = x 1, $y = \frac{1}{x}$, $y = x^2$ 有没有不变值? 如果有,直接写出其不变长度;
- (2) 函数 $y = 2x^2 bx$.
 - ①若其不变长度为零, 求 b 的值;
 - ②若 $1 \le b \le 3$, 求其不变长度 q 的取值范围;

海淀区九年级第二学期期末练习

数学试卷参考答案

一、选择题(本题共30分,每小题3分)

题 号	1	2	3	4	5	6	7	8	9	10
答案	A	С	С	С	A	В	В	С	В	С

二、填空题(本题共18分,每小题3分)

题 号	11	12	13
答案	2	3(x+2)(x-2)	134

题 号	14	15	16
		0.25, 从一副去掉大小王	三角形的三条角平分线交
答案	$y = \frac{6}{x}$ (本题答案不唯一)	的扑克牌中抽出一张牌,	于一点;两点确定一条直
		牌的花色是红桃.	线.

三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)

17.
$$\mathbf{M}$$
: \mathbf{M} :

18. 解: 原不等式组为
$$\begin{cases} 8(x-1) > 5x - 17, & ① \\ x - 6 \le \frac{x - 10}{2}, & ② \end{cases}$$

不等式组的解集在数轴上表示如下:

- 19. 解: (1) ∵ 原方程有两个不相等的实数根,
 - $\Delta > 0$.
 - 即 36-4(k+7)>0.
- (2) : k < 2 且 k 为正整数,

 - $\therefore x^2 6x + 8 = 0$.
- 20. 证明: $: BF \perp BC, DE \perp AB$, $\angle ACB = 90^{\circ}$,
 - $\therefore \angle DBF = \angle BEF = \angle ACB = 90^{\circ}$.
 - \therefore $\angle 1 + \angle 2 = 90^{\circ}$, $\angle 2 + \angle F = 90^{\circ}$.

 - 在 $\triangle ABC$ 和 $\triangle DFB$ 中,

经检验, x = 500 是原方程的解,且符合题意.

$$\therefore 2x + 300 = 2 \times 500 + 300 = 1300$$
.

答: 小静现在每分钟阅读 1300 个字. 5 分

- 22. (1) 证明:
 - $\therefore \angle ACB = 90^{\circ}$,

- $\therefore AC \perp BC$.
- $: DE \perp BC$,
- $\therefore AC // DE$.

又: CF // AD,

- ∴ 四边形 ACFD 为平行四边形.1 分
- $\therefore AD = CF$.
- :: CD 为 AB 边上的中线,
- $\therefore AD = BD$.
- $\therefore BD = CF$.
- :.四边形 BDCF 为平行四边形.
- : $DE \perp BC$,

$$\therefore \tan \angle EAC = \frac{EC}{AC} = \frac{2}{3},$$

∴设
$$CE = 2x$$
, $AC = DF = 3x$.

∵菱形 BDCF 的面积为 24,

$$\therefore \frac{1}{2}DF \cdot BC = 24. \dots 4 \%$$

- $\therefore DF \cdot EC = 24.$
- $\therefore 3x \cdot 2x = 24.$

∴
$$x_1 = 2$$
, $x_2 = -2$ (含).

$$\therefore CE = 4, \quad EF = \frac{1}{2} DF = 3.$$

23. 解: (1) : 点
$$A(m,1)$$
 在双曲线 $y = \frac{6}{r}$ 上,

$$\therefore$$
 m = 6.1 分

∴点
$$A$$
(6,1) 在直线 $y = \frac{1}{2}x + b$ 上,

$$\therefore$$
 b = −2.2 分

(2) 当点 B 在线段 DE 上时,如图 1,

过点D作 $DP \perp y$ 轴于P,过点B作 $BQ \perp y$ 轴

于Q.

可得 $\triangle EOB \hookrightarrow \triangle EPD$.

$$\therefore BD = 2BE$$
,

$$\therefore \frac{BQ}{DP} = \frac{BE}{DE} = \frac{1}{3}.$$

$$\therefore BQ = 1$$
,

$$\therefore DP = 3$$
.

:点
$$D$$
在直线 l_1 上,

$$\therefore$$
 点*D*的坐标为(3, $-\frac{1}{2}$).4 分

当点B在线段DE的延长线上时,如图 2,

同理, 由 BD = 2BE, 可得点 D 的坐标为

$$(-1,-\frac{5}{2})$$
.

综上所述, 点 D 的坐标为 $(3,-\frac{1}{2})$ 或

$$(-1,-\frac{5}{2})$$
. 5 $\%$

图 2

- 24. (1) 证明:连接OD.1分
 - ∵○O 切 BC 于点 D, $\angle C = 90^{\circ}$,
 - $\therefore \angle ODB = \angle C = 90^{\circ}$.
 - $\therefore OD // AC$.
 - $\therefore \angle ODA = \angle DAC$.
 - : OA = OD,
 - $\therefore \angle ODA = \angle OAD$.
 - $\therefore \angle OAD = \angle DAC$.
 - ∴ *AD* 平分 ∠*BAC*2 分

- (2) 解:连接*DE*.
- *∵AE* 为直径,

$$\therefore \angle ADE = 90^{\circ}$$
.

$$\therefore \angle OAD = \angle DAC \; , \; \sin \angle DAC = \frac{\sqrt{5}}{5} \; ,$$

$$\therefore \sin \angle OAD = \frac{\sqrt{5}}{5}.$$

- : OA = 5,
- $\therefore AE = 10$.

$$\therefore AD = 4\sqrt{5} . \dots 3 \ \%$$

$$\therefore CD = 4$$
, $AC = 8$.

$$: OD // AC$$
,

$$\therefore \frac{OD}{AC} = \frac{BD}{BC}.$$

$$\mathbb{H}\frac{5}{8} = \frac{BD}{BD+4}.$$

$$\therefore BD = \frac{20}{3}.$$

(3)
$$\frac{140000 \times 16.5\% \times 0.6}{1000} - 9.72 = 4.14.$$

26. 第二步: *BD* = *BC* = 6; ························1 分 第四步:

如图, $\triangle ABC$ 即为所求.

.....3 分

第五步: ② , 18.5 分

理由如下:

由题意可得抛物线的对称轴为x=2.

$$: P_1(1, n_1), P_2(3, n_2)$$
 在抛物线 $y = ax^2 - 4ax + b \perp$,

(2) 当a > 0时,

抛物线的顶点为(2,1),且过点(4,4),

当a < 0时,

抛物线的顶点为(2,4),且过点(4,1),

:. 抛物线的解析式为
$$y = -\frac{3}{4}x^2 + 3x + 1$$
.

$$:: AB = BC$$
, E, C 关于直线 BD 对称,

$$\therefore \angle C = \angle BEC$$
, $\angle BAE = \angle BEA$.

九年级数学 第17页(共

- $\therefore \angle ABC = 90^{\circ}$,
- $\therefore \angle BAE + \angle AEC + \angle C = 270^{\circ}$.
- ∴ ∠AEC = 135°.4 分
- (2) 求解思路如下:
- a. 连接 AC , 过点 A 作 AF \bot CE , 交 CE 延长 线于点 F , 如图 2 所示;

 $AB = BC = \sqrt{2}$,可证 $\triangle ABE$ 为等边三角形;

- - (2) ①:函数 $y = 2x^2 bx$ 的不变长度为零,
 - ∴方程 $2x^2$ bx = x 有两个相等的实数根.
 - ∴ *b* = −1.4 分

 - $: 1 \le b \le 3$,
 - $\therefore 1 \le x_2 \le 2$.