Дискретные хаотические отображения и логистические отображения

1 Введение в дискретные отображения

Дискретные отображения представляют собой альтернативный подход к описанию эволюционных процессов во времени, который используется наряду с дифференциальными уравнениями. Они особенно полезны для моделирования динамики биологических популяций.

2 Простейшее дискретное отображение

Рассмотрим численность популяции x_n в год n. Численность в следующий год x_{n+1} можно выразить как функцию от x_n :

$$x_{n+1} = f(x_n) \tag{1}$$

При малой численности популяции численность изменяется по геометрической прогрессии:

$$x_{n+1} = \lambda x_n \tag{2}$$

При большой численности учитываются эффекты конкуренции:

$$x_{n+1} = \lambda x_n - x_n^2 \tag{3}$$

Это уравнение называется логистическим отображением.

3 Итерационные диаграммы

Эволюцию, описываемую дискретными отображениями, удобно представлять на итерационных диаграммах. На диаграмме откладывают зависимость x_{n+1} от x_n , т.е. функцию f(x), и проводят биссектрису.

4 Неподвижные точки и их устойчивость

Неподвижная точка X удовлетворяет уравнению:

$$X = f(X) \tag{4}$$

Устойчивость определяется величиной производной f'(X). Если |f'(X)| < 1, то точка устойчива, иначе неустойчива.

5 Циклы и динамический хаос

Отображение может иметь циклы различных периодов, например, цикл периода 2: $X_1, X_2, X_1, X_2, \dots$ При определенных параметрах может возникнуть динамический хаос.

6 Примеры дискретных отображений

6.1 Генератор пилообразных колебаний

Рассмотрим генератор с внешним воздействием, изменяющим верхний порог по гармоническому закону:

$$V(t) = U_0 + U_m \cos(\omega t) \tag{5}$$

6.2 Шарик на вибрирующем столе

Задача описывается двумерным отображением, где переменные — скорость шарика v_n и время удара t_n .

6.3 Распространение света в волноводе

Система описывается отображением:

$$\phi_{n+1} = \phi_n - 2a\sin x_n \tag{6}$$

$$x_{n+1} = x_n - h \tan \phi_n \tag{7}$$