

Міністерство освіти і науки України НТУУ «Київський політехнічний інститут» Фізико-технічний інститут

КРИПТОГРАФІЯ КОМП'ЮТЕРНИЙ ПРАКТИКУМ №4

Побудова регістрів зсуву з лінійним зворотним зв'язком та дослідження їх властивостей.

Виконали: Студенти III курсу ФТІ групи ФБ-71 Бабенко І.М.,Гончаренко Д.А.

> Перевірив: Чорний О. Завадська Л.О. Савчук М.М.

Мета роботи

Ознайомлення з принципами побудови регістрів зсуву з лінійним зворотним зв'язком; практичне освоєння їх програмної реалізації; дослідження властивостей лінійних рекурентних послідовностей та їх залежності від властивостей характеристичного полінома регістра.

Порядок виконання роботи

- 0. Уважно прочитати методичні вказівки до виконання комп'ютерного практикуму.
- 1. Вибрати свій варіант завдання згідно зі списком. Варіанти завдань містяться у файлі Crypto_CP4 LFSR_Var.
- 2. За даними характеристичними многочленами p1(x), p2(x) скласти лінійні рекурентні співвідношення для ЛРЗ, що задаються цими характеристичними многочленами.
- 3. Написати програми роботи кожного з ЛРЗ L1, L2.
- 4. За допомогою цих програм згенерувати імпульсні функції для кожного з ЛРЗ і підрахувати їх періоди.
- 5. За отриманими результатами зробити висновки щодо влавстивостей кожного з характеристичних многочленів p1(x), p2(x): многочлен примітивний над F2; не примітивний, але може бути незвідним; звідний.
- 6. Для кожної з двох імпульсних функцій обчислити розподіл k-грам на періоді, k≤ni, де ni степінь полінома fi(x), i=1,2 а також значення функції автокореляції A(d) для $0 \le d \le 10$. За результатами зробити висновки.

Результати:

$$\boxed{P_1(X) = X^{20} + X^{17} + X^{15} + X^{14} + X^9 + X^7 + X^5 + X^3 + X^2 + X + 1}$$

Period = 1048575

2-граммы	3-граммы	4-граммы	5-граммы	Autocor
01:130644	011:43904	0101:16347	11011:6496	1: 524288
00:131111	100:43648	1000:16528	01000:6624	2: 524288
11:131111	101:43904	1010:16462	10100:6560	3: 524288
10:131421	010:43648	1101:16461	00001:6560	4: 524288
	110:43392	1100:16206	00101:6368	5: 524288
	000:43733	1111:16302	10001:6560	6: 524288
	111:43648	0000:16374	01010:6560	7: 524288
	001:43648	1011:16580	10101:6624	8: 524288
		0110:16061	10010:6560	9: 524288
		0011:16470	11110:6624	10: 524288
		1110:16556	00010:6560	
		0100:16373	00111:6560	
		0001:16417	10000:6496	
		0111:16234	01111:6560	
		0010:16369	01001:6688	
		1001:16403	11100:6688	
			01011:6496	
			00011:6496	
			01101:6496	
			11101:6496	
			11111:6560	
			11001:6432	
			10111:6560	
			01100:6432	
			10011:6496	
			11010:6560	
			00000:6547	
			01110:6624	
			00110:6624	
			10110:6624	
			11000:6624	
			00100:6560	

$P_2(X) = X^{24} + X^{22} + X^{18} + X^{17} + X^{16} + X^{15} + X^{12} + X^{11} + X^9 + X^4 + X^2$	$\frac{1}{2} + X + 1$
	11 1

Period = 1118481

2-граммы	3-граммы	4-граммы	5-граммы	Autocor
01:139828	000:46659	0010:17680	01100:7093	1: 559680
10:139969	101:46536	1101:17614	00010:6960	2: 559392
00:140126	111:46120	0100:17497	01110:6954	3: 559392
11:139317	110:46744	0000:17591	11110:6980	4: 558432
	001:46744	0101:17467	01011:6971	5: 560000
	100:46744	0110:17471	00101:6908	6: 559488
	011:46744	1000:17482	00001:6936	7: 559488
	010:46536	1110:17374	10101:6988	8: 559392
		1111:17477	10001:7207	9: 558432
		1100:17219	10111:7089	10: 559488
		0111:17285	11011:7008	
		0001:17697	00110:7062	
		1011:17502	00011:7078	
		1001:17330	10110:6957	
		0011:17369	00111:6905	
		1010:17565	10010:6972	
			00100:6949	
			10011:6990	
			00000:6984	
			01111:6817	
			10100:7019	
			11001:6946	
			01001:6987	
			01000:7136	
			01101:6986	
			11000:6944	
			10000:7054	
			11101:6964	
			11100:6855	
			01010:7061	
			11010:7017	
			11111:6919	

Код:

import AppKit import Darwin.C.math

// ------ SOURCE -----/ // var bigram : [String : Int] = ["00":0, "01":0, "10":0, "11":0]

var threegram : [String : Int] = ["000":0, "001":0, "01 0":0, "011":0, "100":0, "101":0, "111":0]

var fourgram : [String : Int] = ["0000":0, "0001":0, "0 010":0, "0011":0, "0100":0, "0101":0, "0110":0, "011

1":0, "1000":0, "1001":0, "1010":0, "1011":0, "1100" :0, "1101":0, "1110":0, "1111":0]

 $\begin{array}{l} var \; fivegram: [String:Int] = ["00000":0, "00001":0, "00010":0, "00011":0, "00101":0, "00101":0, "00110":0, "00101":0, "00111":0, "01100":0, "01001":0, "01101":0, "01111":0, "01110":0, "01110":0, "011111":0, "10000":0, "10001":0, "10010":0, "10011":0, "101000":0, "10111":0, "10111":0, "111000":0, "11111":0, "111000":0, "111111":0, "11100":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "11111":0, "11111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "111111":0, "11111":0, "11111":0, "11111"$

let polinom1 : [Int] = [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,1,0 ,1,0,0] // first polinom

```
let impulse1 : [Int] = [0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
                                                                 period int.append(period int[i-1])
,0,0,1] //impulse for first polinom
let polinom2 : [Int] = [1,1,1,0,1,0,0,0,0,1,0,1,1,0,0,1,1]
                                                               var sum array = [Int]()
,1,1,0,0,0,1,0] // second polinom
                                                               for i in 0...(period.count)-1 {
let impulse2 : [Int] = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
                                                                 let a = (period int[i] + period int[i+n])\%2
0,0,0,0,0,0,0,1 //impulse for second polinom
                                                                 sum array.append(a)
var period = ""
                                                               let sum : Int = sum array.reduce(0, +)
                                                               return sum
- FUNCTIONS -----
                                                            // ----- MAIN ----
func period_count(){
                                                            -----//
  var temp = [Int]()
  for i in 0...(impulse2.count)-1{
                                                            let methodStart = Date()
    let a : Int = impulse2[i]
                                                            period count()
                                                            print("\n")
    temp.append(a)
                                                            print("2-граммы: ")
  repeat {
                                                            bigram = ngramm count(dict: bigram, n: 2)
     var sum array = [Int]()
                                                            for item in bigram {
     for i in 0...(impulse2.count)-1{
                                                               print("\(item.key):\(item.value)")
       let a = polinom2[i] * temp[i]
       sum array.append(a)
                                                            print("\n")
                                                            print("3-граммы: ")
    let sum : Int = (sum array.reduce(0, +))\%2
                                                            threegram = ngramm count(dict: threegram, n: 3)
    temp.append(sum)
                                                            for item in threegram {
    period = period + String(temp[0])
                                                               print("\(item.key):\(item.value)")
    temp.removeFirst()
                                                            print("\n")
  } while(temp != impulse2)
  print("Period = \((period.count)\)")
                                                            print("4-граммы: ")
                                                            fourgram = ngramm count(dict: fourgram, n: 4)
                                                            for item in fourgram {
func ngramm count (dict: [String:Int], n: Int) -
                                                               print("\(item.key):\(item.value)")
> [String:Int] {
  var ngram = dict
                                                            print("\n")
  var temp_ngram = ""
                                                            print("5-граммы: ")
  for character in period {
                                                            fivegram = ngramm_count(dict: fivegram, n: 5)
     temp ngram = temp ngram + String(character)
                                                            for item in fivegram {
    if temp ngram.count == n  {
                                                               print("\(item.key):\(item.value)")
       ngram[temp ngram]!+=1
                                                            print("\n")
       temp ngram.removeAll()
                                                            for i in 1...10{
    }}
                                                               print("Autocor \(i): \(autocor(p: period, n: i))")
  return ngram
                                                            print("\n")
func autocor (p: String, n: Int) -> Int{
                                                            let methodFinish = Date()
  var period int = period.compactMap{$0.wholeNu
                                                            let executionTime = methodFinish.timeIntervalSince(
mberValue}
                                                            methodStart)
  for i in 1...n{
                                                            print("Execution time: \(executionTime)")
```

Висновок:

В даному комп'ютерному практикумі було набуто навичок роботи з лінійними регістрами зсуву, а саме: їх програмна реалізація, дослідження властивостей характеристичного полінома регістра. Окрім цього було досліджено властивості лінійних рекурентних послідовностей.