9 Component Damage

The following topics are addressed in this section:

- 9.1 Loss of Metallization
- 9.2 Chip Resistor Element
- 9.3 Leaded/Leadless Devices
- 9.4 Ceramic Chip Capacitors
- 9.5 Connectors
- 9.6 Relays
- 9.7 Transformer Core Damage
- 9.8 Connectors, Handles, Extractors, Latches
- 9.9 Edge Connector Pins
- 9.10 Press Fit Pins
- 9.11 Backplane Connector Pins
- 9.12 Heat Sink Hardware

Figure 9-1

- 1. Metallization missing
- 2. Adhesive coating
- 3. Resistive element
- 4. Substrate (ceramic/alumina)
- 5. Terminal end

Figure 9-2

Figure 9-3 1. Leaching

Acceptable - Class 1,2,3

- Metallization loss on any termination side (not the end face) of a 5-sided termination component, up to 25% of the component width (W) or the component thickness (T).
- Maximum of 50% of metallization loss of top metallization area (for each terminal end) of a 3-sided termination component, Figures 9-1,2.

- Metallization loss on the terminal end face exposing the ceramic, Figure 9-3 (1).
- Metallization loss on any termination side (not the end face) on a five-sided termination component greater than 25% of component width (W) or component thickness (T), Figures 9-4 and 9-5.
- Metallization loss greater than 50% of the top area on a 3-sided termination component, Figures 9-5 and 9-6.
- Irregular shapes exceeding maximum or minimum dimensions for that component type.

9.1 Loss of Metallization (cont.)

Figure 9-4

Figure 9-5

Figure 9-6

9.2 Chip Resistor Element

Figure 9-7

Figure 9-8

Acceptable - Class 1,2,3

- For chip resistors, any chip-out (nick) of the top surface (adhesive coating) of 1206 and larger component is less than 0.25 mm [0.00984 in] from the edge of the component.
- No damage to the resistive element in area B.

Defect - Class 1,2,3

Any chip-outs in resistive elements.

9.3 Leaded/Leadless Devices

These criteria are applicable to leaded and leadless devices.

Figure 9-9

Figure 9-10

Figure 9-11

- 1. Chip
- 2. Crack

Target - Class 1,2,3

- · Finish not damaged.
- Component bodies are free of scratches, cracks, chips, and crazing.
- ID markings are legible.

Acceptable - Class 1,2,3

- Chips or scratches that do not expose the component substrate or active element, or affect structural integrity, form, fit, or function.
- Chips or cracks in component meniscus that do not expose the component substrate or active element, or affect structural integrity, form, fit, or function.
- · Structural integrity is not compromised.
- No evidence of cracks or damage to the lid or lead seals of a component.
- Dents, scratches do not affect form, fit & function and do not exceed manufacturer's specifications.
- · No burned, charred components.

9.3 Leaded/Leadless Devices (cont.)

Figure 9-12

Figure 9-13

Figure 9-14

Figure 9-15

Acceptable - Class 1 Process Indicator - Class 2,3

- Indentations or chipouts on **plastic** body components do not enter lead seal or lid seals or expose an internal functional element, Figures 9-12,13,14.
- Component damage has not removed required identification.
- · Component insulation/sleeving has damage provided that:
- Damaged area shows no evidence of increasing, e.g., rounded edges of the damage with no cracks, sharp corners, brittle material from heat damage, etc., Figures 9-13, 14.
- Exposed component conductive surface provides no danger of shorting to adjacent components or circuitry, Figure 9-15.

9.3 Leaded/Leadless Devices (cont.)

Figure 9-16

- 1. Chip enters seal
- 2. Exposed lead
- 3. Seal

Figure 9-17

Figure 9-18

Figure 9-19

- Chip out or crack that enters into the seal, Figure 9-16.
- There are cracks leading from the chipout on a ceramic body component, Figure 9-16.
- Chip or crack that exposes the component substrate or active element, or affects hermeticity, integrity, form, fit, or function; Figures 9-17,18,19,20. Chips or cracks in glass body, Figures 9-21,22.
- Cracked or damaged glass bead beyond part specification (not shown).
- Required identification is missing due to component damage, Figure 9-23.
- The insulating coating is damaged to the extent that the internal functional element is exposed or the component shape is deformed (not shown).
- Damaged area shows evidence of increasing, for instance from cracks, sharp corners, brittle material from heat, etc., Figure 9-24.
- Damage permits potential shorting to adjacent components or circuitry.
- · Flaking, peeling, or blistering of plating.
- Burned, charred components (the charred surface on a component has black, dark brown appearance due to excessive heat), Figure 9-25.
- Dents, scratches in the component body that affect form, fit & function or exceed component manufacturer's specifications, not shown.
- Cracks in shield material, Figure 9-26.

9.3 Leaded/Leadless Devices (cont.)

Figure 9-20

Figure 9-22
1. Cracked insulator

Figure 9-24

Figure 9-21

Figure 9-23

Figure 9-25

Figure 9-26

9.4 Ceramic Chip Capacitors

Figure 9-27

Figure 9-28

Target - Class 1,2,3

• No nicks, cracks, or stress fractures.

Acceptable - Class 1,2

• Nicks or chip-outs not greater than dimensions stated in Table 9-1, each considered separately.

Table 9-1 Chip-Out Criteria

(T)	25% of the thickness
(W)	25% of the width
(L)	50% of the length

Acceptable - Class 1,2,3

 Component color change due to thermal exposure in the reflow process.

Figure 9-29

- Any nick or chip-out in the termination area, or exposing an electrode.
- · Any cracks or stress fractures.
- Damage in excess of Table 9-1.

9.4 Ceramic Chip Capacitors (cont.)

Figure 9-30

Figure 9-31

Figure 9-32

Figure 9-33

9.5 Connectors

These criteria cover the plastic molded housings/shrouds which are used primarily as a guide for the mating connector. Connector pins are typically held by interference fit in a housing. Visual inspection of housings and shrouds includes physical damage such as cracks and deformation.

Target - Class 1,2,3

- · No discernable physical damage.
- No burrs on housing/shroud.
- No cracks in housing/shroud.
- · Connector/header pins are straight.

Figure 9-34

Acceptable - Class 1,2,3

- Burrs on housing but still attached (have not broken loose) and do not affect form, fit or function.
- Cracks in noncritical areas (do not impact integrity of the housing/shroud).
- Minor scratches, chips, or thermal deformation that do not compromise protection of the contacts or interfere with proper mating.
- Pins are bent off center by 25% pin thickness/diameter or less.

9.5 Connectors (cont.)

Figure 9-35

Figure 9-36

Figure 9-37

Defect - Class 1,2,3

Burrs, cracks or other deformations that impact the mechanical integrity or functionality of the housing.

Pins are bent off center by more than 25% pin thickness/diameter.

Acceptable - Class 1,2,3

- No evidence of burn or char.
- Minor chips, scrapes, scratches or melting that does not affect form, fit or function.

Process Indicator - Class 2,3

Slight discoloration.

9.5 Connectors (cont.)

Figure 9-38

Figure 9-39

- Evidence of burning or charring.
- Changes in shape, chips, scrapes, scratches, melting or other damage that affect form, fit or function.

9.6 Relays

Acceptable - Class 1,2,3

• Minor scratches, cuts, chips, or other imperfections that do not penetrate the case or affect the seal (not shown).

Figure 9-40

Defect - Class 1,2,3

- Scratches, cuts, chips, or other imperfections that penetrate the case or affect the seal, (A, B).
- The case is bulging or swollen, (C).

9.7 Transformer Core Damage

Figure 9-41

Figure 9-42

Acceptable - Class 1,2,3

Chips and/or scratches on exterior edges of core are permissible, providing they do not extend into core mating surfaces and do not exceed 1/2 the thickness of the core.

- Chip in the core material is located on mating surface (arrow).
- Chip extending greater than 50% of the core thickness.
- · Cracks in the core material.

9.8 Connectors, Handles, Extractors, Latches

This section shows some of the many different types of hardware mounted devices, e.g., connectors, handles, extractors and plastic molded parts.

Figure 9-43

- 1. Extractor
- 2. Securing hardware
- 3. Component lead

Figure 9-44 1. Crack

Target - Class 1,2,3

 No damage to part, printed board or securing hardware (rivets, screws, etc.).

Acceptable - Class 1

 Cracks in the mounted part extend no more than 50% of the distance between a mounting hole and a formed edge.

Defect - Class 1

• Cracks in the mounted part extend more than 50% of the distance between a mounting hole and a formed edge.

Defect - Class 2,3

· Cracks in mounted part.

- · Crack connects a mounting hole to an edge.
- · Damage/stress to connector lead pins.

9.9 Edge Connector Pins

Acceptable - Class 1,2,3

• Contact is not broken or twisted.

Figure 9-45

- Contacts are twisted or otherwise deformed (A).
- Contact is broken (B).

9.10 Press Fit Pins

Figure 9-46

Figure 9-47

Figure 9-48

- 1. Burr
- 2. Plating missing

- Damaged pin as a result of handling or insertion.
- Twisted.
- Mushroomed.
- Bent,
- Exposed basis metal.

9.11 Backplane Connector Pins

Figure 9-49

- A. Sheared/nonmating surface of connector pin
- B. Coined/mating surface of connector pin

Acceptable - Class 1,2,3

- Chip on non-mating surface of separable connector pin.
- Burnish on mating surface of separable connector pin, providing that plating has not been removed.
- · Chip that encroaches the mating surface of separable connector pin which will not be in the mating connector contact wear path.

Figure 9-50

Figure 9-51

- · Chipped pin on mating surface of separable connector, Figure 9-50.
- · Scratched pin that exposes non-precious plating or basis
- · Missing plating on required areas.
- Burr on pin, Figure 9-51.
- Cracked PCB substrate.
- · Pushed out barrel as indicated by copper protruding from bottom side of PCB.

9.12 Heat Sink Hardware

Figure 9-52

Acceptable - Class 1,2,3

• No damage or stress on heat sink hardware.

Figure 9-53

- Bent heatsink (A).
- Missing fins on heatsink (B).
- Damage or stress to heat sink hardware.