

Reconstruction de surfaces

Jean-Emmanuel DESCHAUD

jean-emmanuel.deschaud@minesparis.psl.eu

Centre de Robotique Mines Paris - PSL

Nuages de points et modélisation 3D Vue d'ensemble

Plan du cours

- I. Introduction
 - I. Pourquoi faire?
 - II. Exemples de domaines d'applications
- II. Rendu de nuages de points
- III. Reconstruction de surfaces

Pourquoi faire?

 Visualisation d'un nuage de points sous CloudCompare

Exemples de domaines d'applications

- Archéologie
 - Restitutions
- Industrie
 - Qualité produit
- Jeux vidéos
 - Scènes réelles
- Patrimoine
 - Visite virtuelle

Démo « Fontainebleau » de Unity

Deux approches

Faire du rendu de nuage de points

- Faire de la reconstruction de surface
 - Puis du rendu à partir d'un maillage

Plan du cours

- I. Introduction / Problématique
- II. Rendu de nuages de points
 - I. Splatting
 - II. Rendu en espace image
 - III. Point-NeRF
- III. Reconstruction de surfaces

Rendu de nuage de points

Rendu de nuage de points

- 1. Visibilité des objets cachés
 - Des objets cachés sont visibles par
 « transparence » du nuage de points

- 2. Trous dans la surface
 - Projection d'un point sur un pixel
 - » -> Augmenter la taille des points

Splatting [Ray tracing point sampled geometry, 2000]

Splat :

- Centre, rayon, normale, couleur...
- La 3D résout la visibilité et le remplissage

(a) Bunny: 500 points, r = 0.04

(b) Bunny: 1900 points, r = 0.03

(c) Bunny: 34800 points, r = 0.014

Rendu en espace image

[Real-time Rendering of Massive Unstructured Raw Point Clouds using Screen-space Operators, 2011]

- Opérateurs espace image :
 - Visibilité
 - Remplissage

Amélioration du rendu points

[High quality and efficient direct rendering of massive real-worlds point clouds, 2017]

High quality and efficient direct rendering of massive real-world point clouds

H. Bouchiba, R. Groscot, J-E. Deschaud and F. Goulette

MINES ParisTech, PSL Research University, CAOR - Centre de robotique, 60 Bd St Michel 75006 Paris, France

Application à l'archéologie

Point-NeRF

[Point-NeRF: Point-based Neural Radiance Fields, 2022]

Point-NeRF

[Point-NeRF: Point-based Neural Radiance Fields, 2022]

Plan du cours

- I. Introduction / Problématique
- II. Rendu de nuages de points
- III. Reconstruction de surfaces
 - I. Problématique / Contraintes
 - II. Représentations d'une surface
 - III. Méthode Locale: IMLS
 - IV. Méthode Globale: PoissonRecon
 - V. Méthode Deep: Points2Surf

Représentation géométrique

- Maillage = ensemble de sommets connectés
 - Maillage polygonal : connexion entre sommets formant des cycles et définissant des polygones
 - Maillage triangulaire : polygone = triangle
 - On parle ici de maillage surfacique

Problématique sur les surfaces

Nuage de points

Surface reconstruite

Problématique sur les courbes

Problème pas si simple

Bruit de mesure

Densité non homogène

Superposition de courbes

Contraintes de la reconstruction

- La surface reconstruite peut être :
 - Continue ou non
 - Avec ou sans bords

Contraintes de la reconstruction

- La surface reconstruite peut être :
 - Approximante
 - Interpolante

Surface approximante

Surface interpolante

Représentation implicite

 Fonction implicite dont l'iso-zéro représente la surface :

$$S = \left\{ x \in \Re^3, f(x) = 0 \right\}$$

Changement de représentation

- Implicite -> Maillage :
 - Méthode classique : Marching cubes

Marching Cubes

[Marching cubes: A high resolution 3D surface construction algorithm, 1987]

- Espace découpé en voxels
- Fonction implicite calculée en chaque sommet d'un voxel
 - 256 possibilités qui amènent à la création de 0, 1, 2 ou 3 triangles dans chaque voxel

Marching Cubes

- Classification des cellules:
 - Intérieur
 - Extérieur
 - Intersectant

Marching Cubes

Critères de bonne méthode de reconstruction

Critères :

- Preuve de convergence
- Robustesse au bruit
- Robustesse aux points aberrants
- Robustesse aux données manquantes
- Rapidité/Mise à l'échelle

Qualification d'une « bonne » reconstruction

- Vérité Terrain (VT) obtenue par une technologie plus avancée / plus cher
 - Distance entre surface reconstruite et VT
- Mesures relatives sur la surface réelle
 - Comparaison avec la surface reconstruite

Plan du cours

- I. Introduction / Problématique
- II. Rendu de nuages de points
- III. Reconstruction de surfaces
 - I. Problématique / Contraintes
 - II. Représentations d'une surface
 - III. Méthode Locale : IMLS
 - I. Fonction de Hoppe (1992)
 - II. Implicit Moving Least Squares (2005)

Fonction de Hoppe

[Surface reconstruction from unorganized points, 1992]

• Principe:

Fonction de Hoppe

Surface non continue

Fonction de Hoppe

Résultat

Nuage de 4102 points venant d'un modèle CAO

Maillage obtenu par marching cubes

Plan du cours

- I. Introduction / Problématique
- II. Rendu de nuages de points
- III. Reconstruction de surfaces
 - I. Problématique / Contraintes
 - II. Représentations d'une surface
 - III. Méthode Locale : IMLS
 - I. Fonction de Hoppe (1992)
 - II. Implicit Moving Least Squares (2005)

Implicit Moving Least Squares (IMLS)

[Provably Good Moving Least Squares, 2005]

Fonction IMLS:

$$I(x) = \frac{\sum_{i} (n_i \cdot (x - p_i)) \theta(x - p_i)}{\sum_{i} \theta(x - p_i)}$$

avec
$$\theta(x - p_i) = e^{-\frac{\|x - p_i\|^2}{h^2}}$$

Iso-zéro de I

Pourquoi IMLS est une méthode locale ?

Quelques résultats

• Surfaces IMLS:

Plan du cours

- I. Introduction / Problématique
- II. Rendu de nuages de points

III. Reconstruction de surfaces

- I. Problématique / Contraintes
- II. Représentations d'une surface
- III. Méthode Locale: IMLS
- IV. Méthode Globale: PoissonRecon
- V. Méthode Deep: Points2Surf

Screened Poisson Reconstruction (SPR)

[Screened Poisson Surface Reconstruction, 2013]

2-variété inconnue

M

Fonction indicatrice

 χ_{M}

Gradient de l'indicatrice Points orientés

$$\nabla \chi_M$$

$$\nabla \chi_M \approx V$$

$$\nabla \chi_M \approx V$$
 et $\chi_M(p) \approx 0.5$

Approche de Poisson

• Trouver χ qui minimise :

$$E(\mathbf{\chi}) = \int \left\| \vec{V}(p) - \nabla \chi(p) \right\|^2 dp + \alpha \sum_{p \in \mathcal{P}} (\chi(p) - 0.5)^2$$

Résoudre équation de Laplace-Poisson

$$(\Delta - \alpha \tilde{I})\chi = \nabla \cdot \vec{V}$$

• Extraire l'isosurface $\chi^{-1}(0.5)$

Discrétisation

• Définir un espace de fonctions pour χ et V:

$$\chi(p) = \sum_{i=1}^{N} x_i B_i(p)$$

• Cela revient à résoudre : Ax = b

Avec:

$$A_{ij} = \langle \nabla B_i, \nabla B_j \rangle_{[0,1]^3} + \alpha \langle B_i, B_j \rangle_{(w,\mathscr{P})}$$
$$b_i = \langle \vec{V}, \nabla B_i \rangle_{[0,1]^3}$$

Discrétisation

- Besoin d'une solution précise seulement près de la surface
 - → Octree (arrêt : 1 à n points par cellule)

Implémentation

- Calculer l'octree
- Calculer le champs de vecteur
- Calculer la fonction indicatrice
- Extraire l'isosurface

Implémentation: octree

- Calculer l'octree
- Calculer le champs de vecteur
- Calculer la fonction indicatrice
- Extraire l'isosurface

Implémentation: champs de vecteur

- Calculer l'octree
- Calculer le champs de vecteur
- Calculer la fonction indicatrice
- Extraire l'isosurface

- Calculer l'octree
- Calculer le champs de vecteur
- Calculer la fonction indicatrice
 - Calculer la divergence
 - Résoudre l'équation de Poisson
- Extraire l'isosurface

- Calculer l'octree
- Calculer le champs de vecteur
- Calculer la fonction indicatrice
 - Calculer la divergence
 - Résoudre l'équation de Poisson
- Extraire l'isosurface

En partant des échantillons:

- Calculer l'octree
- Calculer le champs de vecteur
- Calculer la fonction indicatrice
 - Calculer la divergence
 - Résoudre l'équation de onl'isosurface

ECOLE DES MINES DE PARIS

En partant des échantillons:

- Calculer l'octree
- Calculer le champs de vecteur
- Calculer la fonction indicatrice
 - Calculer la divergence

ECOLE DES MINES DE PARIS

En partant des échantillons:

- Calculer l'octree
- Calculer le champs de vecteur
- Calculer la fonction indicatrice
 - Calculer la divergence

Résoudre l'équation de

- Calculer l'octree
- Calculer le champs de vecteur
- Calculer la fonction indicatrice
 - Calculer la divergence
 - Résoudre l'équation de

En partant des échantillons:

- Calculer l'octree
- Calculer le champs de vecteur
- Calculer la fonction indicatrice
 - Calculer la divergence

Résoudre l'équation de la lateration de lateration de la lateration de lateration de la lateration de la lateration de la lateration de la

- Calculer l'octree
- Calculer le champs de vecteur
- Calculer la fonction indicatrice
 - Calculer la divergence
 - Résoudre l'équation de Poisson
- Extraire l'isosurface

Implémentation: extraction de la surface

- Calculer l'octree
- Calculer le champs de vecteur
- Calculer la fonction indicatrice
- Extraire l'isosurface

Résultat : David de Michelangelo

- 215 millions de points provenant de 1000 scans
- 22 millions de triangles après la reconstruction

David – coups de burin

Reconstruction de Poisson

Avantages :

- Robuste au bruit
- S'adapte à la densité d'échantillonage (méthode globale)

Inconvénients :

- Nécessite normales et orientations
- Création d'artefacts dans des zones sans données -> surface trimming

Plan du cours

- I. Introduction / Problématique
- II. Rendu de nuages de points

III. Reconstruction de surfaces

- I. Problématique / Contraintes
- II. Représentations d'une surface
- III. Méthode Locale: IMLS
- IV. Méthode Globale: PoissonRecon
- V. Méthode Deep: Points2Surf

Points2Surf

[Learning Implicit Surfaces from Point Clouds, 2020]

- Méthode Deep :
 - Training set : ABC dataset
- Avantage :
 - Capable de généraliser
- Inconvénient :
 - Méthode très lente (X5 SPR)

Points2Surf

[Learning Implicit Surfaces from Point Clouds, 2020]

FIN

- I. Introduction / Problématique
- II. Rendu de nuages de points
- III. Reconstruction de surfaces