Contrôle continu Data Structures and Algorithms

Mars 2017

Durée : 1h20. Documents de CM/TD autorisés. Présentation, clarté et orthographe seront pris en compte dans la note finale. Il est également important de bien justifier toutes vos réponses. Le barème est indicatif.

Exercice 1 (Algorithme glouton pour MIN VERTEX COVER - 4 points)

On rappelle la définition du problème MIN-VERTEX-COVER (MIN-VC).

MIN-VERTEX-COVER (MIN-VC)

Instance: un graphe G = (V, E), où $V = \{v_1, v_2 \dots v_n\}$

Solution : un ensemble $V' \subseteq V$ qui couvre toutes les arêtes de G

Mesure : le nombre |V'| de sommets dans V'

Nous avons vu en CM un algorithme d'approximation de ratio 2 pour MIN-VC. Appelons cet algorithme \mathcal{G} (comme glouton). On appelle $K_{n,n}=(V_1\cup V_2,E)$ le graphe biparti dans lequel l'ensemble des sommets est partitionné en V_1 et V_2 , tel que $|V_1|=|V_2|=n$, et où toutes les arêtes possibles existent entre V_1 et V_2 . On appelle opt_n la taille d'un plus petit vertex cover dans $K_{n,n}$.

- 1. Soit X un vertex cover quelconque de $K_{n,n}$. Est-il possible d'avoir $v_1 \in V_1, v_2 \in V_2, v_1 \notin X$ et $v_2 \notin X$? Pourquoi?
- 2. En déduire que $opt_n \ge n$.
- 3. Montrer que $opt_n \leq n$. Illustrer votre réponse sur $K_{4,4}$.
- 4. Quelle solution est renvoyée par G sur $K_{n,n}$, et quelle est la taille de cette solution? Justifier.
- 5. Quelle conclusion peut-on en tirer concernant \mathcal{G} ?

Exercice 2 (Programmation Linéaire et Approximation pour MIN-VC - 6 points)

Voici la description d'un programme linéaire en nombre entiers (qu'on appellera (IP)), construit à partir d'un graphe G:

$$\begin{aligned} & \text{minimize } x_1 + x_2 + \ldots + x_n \\ & \text{subject to } x_i + x_j \geq 1 & \forall (v_i, v_j) \in E(G) \\ & x_i \in \{0, 1\} & \forall v_i \in V(G) \end{aligned}$$

- 1. Indiquer comment, partant d'une solution de (IP), on peut construire une solution de MIN-VC qui a le même optimum (on attend ici une réponse précise et argumentée).
- 2. Indiquer comment, partant d'une solution de MIN-VC, on peut construire une solution de (IP) qui a le même optimum (on attend ici une réponse précise et argumentée).

Les Questions 1. et 2. ci-dessus montrent donc que les problèmes (IP) et MIN-VC sont équivalents. Voici maintenant la description d'un programme linéaire (qu'on appellera (LP)). Cela veut dire qu'ici les y_i ne sont pas nécessairement des entiers, mais peuvent prendre n'importe quelles valeurs réelles entre 0 et 1.

$$\begin{aligned} & \text{minimize } y_1 + y_2 + \ldots + y_n \\ & \text{subject to } y_i + y_j \geq 1 & & \forall (v_i, v_j) \in E(G) \\ & & 0 \leq y_i \leq 1 & & \forall v_i \in V(G) \end{aligned}$$

Les problèmes de type (LP) peuvent se résoudre en temps polynomial, alors que les problèmes de type (IP) sont NP-complets. L'idée est donc d'utiliser le problème (LP) pour obtenir une approximation du problème (IP), et donc une approximation du problème MIN-VC.

3. Montrer que, pour tout graphe G, $opt(LP) \leq opt(IP)$.

Appelons $y^*=(y_1^*,y_2^*\dots y_n^*)$ une solution optimale obtenue pour (LP). On définit alors $x^A=(x_1^A,x_2^A\dots x_n^A)$ de la manière suivante : pour tout $1\leq i\leq n,$ $x_i^A=1$ si $y_i^*\geq \frac{1}{2},$ et $x_i^A=0$ sinon.

- 4. Montrer que si y^* est une solution optimale pour (LP), alors x^A est une solution pour (IP) (cela revient à montrer que si $y_i^* + y_i^* \ge 1$, alors $x_i^A + x_i^A \ge 1$).
- 5. Montrer que pour tout $1 \le i \le n, x_i^A \le 2y_i^*$.

Soit
$$opt(LP) = y_1^* + y_2^* + \dots + y_n^*$$
, et $sol(IP) = x_1^A + x_2^A + \dots + x_n^A$.

- 6. Montrer que $sol(IP) \le r \cdot opt(LP)$, où r est une valeur à déterminer.
- 7. Conclure quant à l'approximabilité de (IP) et de MIN-VC.
- 8. Indiquer (en français) les grandes étapes de l'algorithme d'approximation de ratio r pour MIN-VC que nous venons d'étudier.

FIGURE 1 – Exercice 3 : transformation de G_4 vers G_3

Exercice 3 (MIN-VC3 est APX-dur – 10 points)

On appelle MIN-VC3 (resp. MIN-VC4) le problème MIN-VC pour lequel les instances d'entrée sont les graphes de degré maximum 3 (resp. de degré maximum 4). Le but de cet exercice est de démontrer que MIN-VC3 est APX-dur, en se basant sur le fait que MIN-VC4 est APX-dur (ce que nous avons vu en TD, voir Exercice 1.1).

1. Montrer que dans un graphe G_d de degré maximum d et possédant n sommets, tout vertex cover de G_d est de taille au moins égale à $\frac{n}{d+1}$.

Partant de n'importe quel graphe G_4 de degré maximum 4, on le transforme en un graphe G_3 de degré maximum 3 en transformant tous les sommets de degré 4 de la manière décrite dans la Figure 1, page précédente.

On appellera V_4 l'ensemble des sommets de G_4 qui sont de degré exactement 4, et $n_4 = |V_4|$ le nombre de ces sommets

Pour commencer, partons d'un vertex cover de G_4 qu'on appelle C_4 , et construisons à partir de lui un vertex cover C_3 de G_3 . Pour cela, on observe un sommet v de G_4 .

- 2. Supposons que v est dans V_4 , et qu'il est aussi dans C_4 . Montrer que mettre v_1 et v_2 dans C_3 couvre dans G_3 les arêtes que couvre v dans G_4 , ainsi que les arêtes $\{v_1, v'\}$ et $\{v', v_2\}$.
- 3. Supposons que v est dans V_4 , et qu'il n'est pas dans C_4 . Montrer que mettre v' dans C_3 couvre dans G_3 les arêtes que couvre v dans G_4 , ainsi que les arêtes $\{v_1, v'\}$ et $\{v', v_2\}$.

Par ailleurs, si v n'est pas dans V_4 , on ne le met dans C_3 que s'il est présent dans C_4 .

4. Montrer que l'ensemble C_3 ainsi obtenu est un vertex cover de G_3 .

Soit c_3 la taille de C_3 et c_4 la taille de C_4 .

5. Montrer que $c_3 = c_4 + n_4$.

On admettra que la réciproque est vraie, c'est-à-dire que s'il existe un vertex cover C_3' de taille c_3' dans G_3 , alors on peut construire à partir de lui un vertex cover C_4' de taille $c_4' = c_3' - n_4$.

On appelle $opt(G_3)$ (resp. $opt(G_4)$) la taille du plus petit vertex cover de G_3 (resp. G_4).

6. Montrer que $opt(G_3) = opt(G_4) + n_4$.

Nous allons maintenant supposer que MIN-VC3 est dans PTAS, c'est-à-dire qu'il existe un algorithme A_3 qui, pour tout graphe G_3 de degré maximum 3, détermine un vertex cover de taille $a_3(G_3) \leq (1 + \varepsilon) \cdot opt(G_3)$.

Partant d'un graphe G_4 de degré maximum 4, on propose l'algorithme suivant, que l'on appellera A_4 :

- transformer G_4 en G_3 comme décrit à la Figure 1
- appeler l'algorithme A_3
- transformer le vertex cover obtenu par A_3 pour G_3 en un vertex cover pour G_4 , comme décrit ci-dessus

On appelle $a_3(G_3)$ (resp. $a_4(G_4)$) la taille du vertex cover obtenu par A_3 sur G_3 (resp. A_4 sur G_4).

- 7. Montrer que $a_4(G_4) = a_3(G_3) n_4$.
- 8. Montrer que $a_4(G_4) \leq (1+\varepsilon) \cdot opt(G_4) + \varepsilon \cdot n_4$.
- 9. En utilisant la Question 1., montrer que $a_4(G_4) \leq (1+6\varepsilon) \cdot opt(G_4)$.
- 10. Que signifie le résultat de la question précédente concernant le problème MIN-VC4?
- 11. Sachant que le problème MIN-VC4 est APX-dur, que peut-on en déduire pour MIN-VC3 ? (on attend ici une réponse précise et argumentée)