CS543/ECE549 Assignment 1

Name: Huey-Chii Liang

NetId: hcliang2

Part 1: Implementation Description

- 1. In order to make the pictures as close to each other as possible to reduce the calculation time, I cut off the edge blanks before dividing the original picture into three equal parts.
- 2. Next, I calculated the displacement relationship between the pictures through normalized cross-correlation (NCC). Among them I set the window size to 15.
- 3. Since we don't know which picture is red, green or blue at the beginning, I list every possible combination of stacked pictures and display the results, as shown below:

- According to these pictures, we can know that the six pictures to be tested are all BGR from top to bottom because the [B, G, R] pictures are the most plausible one.
- 4. After knowing what the red, green and blue pictures are, I used the displacement results just calculated to combine the pictures. The results are shown in Part 2.

Part 2: Basic Alignment Outputs

A. Channel Offsets

Using channel **Blue** as base channel:

Image	Green (h,w) offset	Red (h,w) offset
00125v.jpg	[-1, -1]	[-2, -4]
00149v.jpg	[1, -3]	[1, -5]
00153v.jpg	[2, -1]	[3, 3]
00351v.jpg	[0, -3]	[-1, 0]
00398v.jpg	[-1, -1]	[-2, -3]
01112v.jpg	[1, -7]	[2, -9]

Using channel **Green** as base channel:

Image	Blue (h,w) offset	Red (h,w) offset
00125v.jpg	[1, 1]	[-1, -3]
00149v.jpg	[-1, 3]	[0, -2]
00153v.jpg	[-2, 1]	[2, 0]
00351v.jpg	[0, 3]	[0, 2]
00398v.jpg	[1, 1]	[-1, -1]
01112v.jpg	[-1, 7]	[1, -2]

Using channel **Red** as base channel:

Image	Blue (h,w) offset	Green (h,w) offset
00125v.jpg	[2, 4]	[1, 3]
00149v.jpg	[-1, 5]	[0, 2]
00153v.jpg	[-3, -3]	[-2, 0]
00351v.jpg	[1, 0]	[0, -2]
00398v.jpg	[2, 3]	[1, 1]
01112v.jpg	[-2, 9]	[-1, 2]

B. Output Images

Insert the aligned colorized outputs for each image below (in compressed jpeg format):

Image	Blue as base channel	Green as base channel	Red as base channel
00125v			
00149			
00153			
00351			
00398			

Part 3: Multiscale Alignment Outputs

A. Channel Offsets

Using channel **Blue** as base channel:

Image	Green (h,w) offset	Red (h,w) offset
01047u.tif	[0, -39]	[1, -55]
01657u.tif	[-6, -9]	[-17, -26]
01861a.tif	[24, 5]	[47, 19]

Using channel **Green** as base channel:

Image	Blue (h,w) offset	Red (h,w) offset
01047u.tif	[0, 39]	[12, -16]
01657u.tif	[6, 9]	[-9, -14]
01861a.tif	[-24, -5]	[23, 12]

Using channel **Red** as base channel:

Image	Blue (h,w) offset	Green (h,w) offset
01047u.tif	[-1, 55]	[-12, 16]
01657u.tif	[17, 26]	[9, 14]
01861a.tif	[-47, -19]	[-23, -12]

B. Output Images

Insert the aligned colorized outputs for each image below (in compressed jpeg format):

Image	Blue as base channel	Green as base channel	Red as base channel
-------	----------------------	-----------------------	---------------------

C. Multiscale Running Time Improvement

Report improvement for the multiscale solution in terms of running time (feel free to use an estimate if the single-scale solution takes too long to run). For timing, you can use the python time module, as described in the assignment instructions.

Single-scale running time > 1 hour

 $Multiscale\ running\ time = 170\ sec$