· Conductors, dielectrics, and capacitance

*Current and current density

J [A/m7] current density

CoNormal current density

$$\Delta I = \frac{\Delta Q}{\Delta t} = L_0 \Delta S \frac{\Delta x}{\Delta t} = L_0 \Delta S \sigma x$$

$$J_x = \frac{\Delta T}{\Delta S} = AOI_x$$

Locanvection current density

*Continuity of current

Previously

However, in a region bounded by a closed surface

autward flowing

Integral form of the continuity equation

$$I = \int_{K_1} (\vec{p} \cdot \vec{J}) dV = -\frac{dQ_i}{dt} = -\frac{d}{dt} \int_{V_{01}} h_i dv$$

if we keep the surface constant

$$(\nabla \cdot T) = -\frac{\partial f_{ij}}{\partial t}$$

a Point form of the continuity equation

this equation indicates that the current, or charge per second, diverging from a small volume per unit volume is equal to the time rate of decrease of charge per unit volume at every point.

Conductor

Energy Gap

od	
lower	
ienue	
and	
	ed lence

Insulator

Semiconductor

For an electron

- mobility of an electron (positive by definition)

-odrift velocity

Assuming that Jand Eare uniform

$$I = \int J \cdot J = JS = DJ = \frac{J}{S}$$

$$V_{ab} = -\int E \cdot J \cdot dI = -E \cdot L_{a} = E \cdot L_{a}$$

$$V = EL \Rightarrow DE = L$$

$$J = \frac{J}{S} = OE = OV \Rightarrow V = \frac{L}{OS} I, \quad \frac{L}{OS} = R$$

$$\therefore V = IR \int Ohmis Law$$

because E=0 E-dl=0 between any two points on the surface

- 1) The static electric field inside a conductor is zero
- z) The static electric field intensity at the surface of a conductor is everywhere directed normal to that surface
- 3) The conductor surface is an equipotential surface

*Semiconductors

in metallic conductors

in semiconductors

*The nature of dielectric materials

if there are n dipoles per unit volume and we deal with a volume In

$$Q_b = -\oint \vec{P} \cdot \vec{ds}$$
 (the dot product is gonna be negative)

$$\vec{D} = \vec{e} \cdot \vec{E} + \vec{P}
\vec{Q} = \vec{b} \cdot \vec{D} \cdot \vec{dS} = \int_{S} ds ds, \quad \vec{b}_{1} = \vec{\nabla} \cdot \vec{D} \cdot$$

The linear relationship between Pand E is
$$P = x \in E$$
 electric susceptibility

In anisotrapic materials

In summary, for isotropic materials

*Boundary conditions for perfect dielectric materials Region 2 Ez JE. at = 0 Etani Dw - EnDh - Etanz Dw + EnDh=0 lim (Frandw-En Ah-Etanz Dw+En Ah) = Franz Dw-Etanz Dw=0 (Flam - Etanz) DW = O Etani = Etanz to calculate the tangential component of the field

Generally

to calculate the normal component of the field

$$D_{N_1} = \Omega_{COS} \frac{\Theta_1}{\Theta_2}$$

$$D_{N_2} = D_{2OS} \frac{\Theta_2}{\Theta_2}$$

$$\frac{D_{tan_1}}{D_{tan_2}} = \frac{D_1 sin\theta_1}{D_2 sin\theta_2} = \frac{E_1}{E_2} = D E_2 D_1 sin\theta_1 = E_1 D_2 sin\theta_2$$

$$D_{N_1} = D_{N_2}$$

 $D_{1005}\theta_1 = D_{2005}\theta_2$

$$\frac{\mathcal{E}_{2}\mathcal{D}_{1}sin\theta_{1}}{\mathcal{D}_{2}cos\theta_{2}} = \frac{\mathcal{E}_{1}\mathcal{D}_{2}sin\theta_{2}}{\mathcal{D}_{2}cos\theta_{2}}$$

$$\mathcal{E}_{z} \tan \theta_{i} = \mathcal{E}_{i} \tan \theta_{z} = \mathcal{E}_{j} \frac{\tan \theta_{i}}{\tan \theta_{z}} = \frac{\mathcal{E}_{i}}{\mathcal{E}_{z}}$$

$$D_{2} = \sqrt{D_{N_{2}}^{2} + D_{tan_{2}}^{2}}$$

$$D_{N_{2}} = D_{2}^{2} \cos^{2}\theta_{2} = D_{1}^{2} \cos^{2}\theta_{1} = D_{N_{1}}^{2}$$

$$D_{tan_{2}} = D_{tan_{1}} \left(\frac{\mathcal{E}_{2}}{\mathcal{E}_{1}}\right) = D_{sin}\theta_{1} \left(\frac{\mathcal{E}_{2}}{\mathcal{E}_{1}}\right)$$

$$D_{tan_{2}}^{2} = D_{1}^{2} \sin^{2}\theta_{1} \left(\frac{\mathcal{E}_{2}}{\mathcal{E}_{1}}\right)^{2}$$

$$D_{2} = \sqrt{D_{1}^{2} \cos^{2}\theta_{1} + D_{1}^{2} \sin^{2}\theta_{1} \left(\frac{\mathcal{E}_{2}}{\mathcal{E}_{1}}\right)^{2}}$$

$$D_2 = \sqrt{D_1^2 \cos^2 \theta_1 + D_1^2 \sin^2 \theta_1 \left(\frac{E_2}{E_1}\right)^2}$$

$$D_2 = D_1 \sqrt{\cos^2 \theta_1 + \sin^2 \theta_1 \left(\frac{E_2}{E_1}\right)^2}$$

$$\mathcal{E}_{2}\mathcal{E}_{2}=\mathcal{E}_{1}\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{1}\mathcal{E}_{3}\mathcal{E}_{1}\mathcal{E}_{1}\mathcal{E}_{2}\mathcal{E}_{3}\mathcal{E}_{1}\mathcal{E}_{3}\mathcal{E$$

$$E_2 = E_1 \sqrt{\cos^2 \Theta_1 \left(\frac{E_1}{E_2}\right)^2 + \sin^2 \Theta_1}$$

* Boundary conditions between conductor and dielectric

$$\vec{D} = 0$$
 (inside the conductor

-Any charge that is introduced internally within a conducting material arrives at the surface as a surface charge

$$\overrightarrow{\nabla} \cdot \overrightarrow{J} = -\frac{\partial h}{\partial t}$$
 Continuity equation

$$\nabla \cdot \sigma \vec{E} = -\frac{3k}{5t}, \vec{E} = \frac{\vec{D}}{\vec{\epsilon}}$$

$$h = -\frac{\varepsilon}{\sigma} \frac{\partial h}{\partial t}$$

$$-\frac{\sigma}{\varepsilon}\int_{0}^{t}dt=\int_{0}^{v}\frac{dv}{dv}$$

$$-\frac{\sigma}{\varepsilon}t = \ln\left(\frac{h}{h}\right)$$

$$ds = de^{-(0/\epsilon)t}$$

$$ds = de^{-(\sigma/\epsilon)t}$$

