

SRM Institute of Science and Technology College of Engineering and Technology

Department of Mathematics

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023(ODD)

Course Code &Title: 18MAB201T-Transforms and Boundary Value Problems

Year &Sem: II/III

Tutorial 2 Part A

Q. No	Questions
1	Write down the appropriate solution of the vibration of string equation. How is it chosen?
2	Write down the form of the general solution of the vibration of string equation, if the string is fixed at its ends.
3	What does a^2 represent in the equation $u_{tt} = a^2 u_{xx}$?
4.	What does α^2 represent in the equation $u_t = \alpha^2 u_{xx}$?
5.	A tightly stretched string of length $2l$ is fastened at both ends. The midpoint of the string is displaced by a distance b transversely and the string is released from the rest in this position. Write down the corresponding partial differential equation, initial and boundary conditions.

Part B

6.	Derive all the possible solutions for one dimensional heat equation.
7.	Solve the heat equation:
	$u_{t} = 16u_{xx}, 0 < x < 1, t > 0,$ $u(0,t) = 0 = u(1,t), t \ge 0,$ $u(x,0) = (1-x)x, 0 \le x \le 1.$
8.	Solve the heat equation:
	$u_t = u_{xx}, 0 < x < 1, t > 0,$ $u(0,t) = 0 = u(1,t), t \ge 0,$ $u(x,0) = \sin^3 \pi x, 0 \le x \le 1.$
9.	Solve the wave equation:
	$u_t = 3u_{xx}, 0 < x < \pi, t > 0,$ $u(0,t) = 0 = u(\pi,t), t \ge 0,$ $u(x,0) = 3\sin 2x - 6\sin 5x, 0 \le x \le \pi.$
10.	A string is stretched between two fixed points at a distance of 60 cm and the points of the string are given initial velocities v , where
	$v = \frac{\lambda x}{30}, \qquad 0 < x < 30$ $= \frac{\lambda}{30} (60 - x), 30 < x < 60$
	$= \frac{1}{30}(60 - x), 30 < x < 60$ x being the distance from an end point. Find the displacement of the string at any time.