HW 3 Advanced Linear Algebra

Jonathan Fogel

March 2021

1 Idempotent Operators

Setup: Suppose that T is an idempotent operator on a vector space V– that is, $T=T^2$.

1.1 Eigenvalues

Question: Find all possible eigenvalues of T.

Answer: Suppose the idempotent operator T has eigenvector v and eigenvalue λ . We can then show that:

$$Tv = \lambda v$$

and we can show:

$$Tv = T^2v = TTv = T\lambda v = \lambda Tv = \lambda^2 v$$

So we know that:

$$\lambda v = \lambda^2 v$$
$$\lambda = \lambda^2$$

Since λ is an eigenvalue, and therefore a scalar, we than know that λ can only be 1 or 0. So the only possible eigenvalues are 1 and 0.

1.2 Examples

Question: Give two examples of idempotent operators on \mathbb{R}^2 .

Answer: One clearly idempotent operator on \mathbb{R}^2 is I. This is shown below.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Another idempotent matrix is $\begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix}$. This is shown below.

$$\begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix}^2 = \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 4-2 & 4-2 \\ -2+1 & -2+1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix}$$

1.3 Relationship between Ker(T), Range(T), and V

Question: Prove that $V=\ker(T)\oplus Range(T)$.

Proof: For all $v \in V$:

$$v = v - T(v) + T(v)$$

$$v = (v - T(v)) + T(v)$$

First we look at the first term of the equation, (v-T(v)). If we apply T to this term, we see that:

$$T(v - T(v)) = T(v) - T(T(v)) = T(v) - T^{2}(v) = T(v) - T(v) = 0$$

So $(v-T(v)) \in Ker(T)$. Now we look at the second term, T(v). T(v) is clearly in the image of T, by definition, so we now know that any vector v in space V can be decomposed into one part that is in the image and one part in the kernel, so:

$$V = ker(T) \oplus Range(T)$$

2 Fibonacci Sequence

Setup: (Compare Axler's problem 5.C.16) Define the Fibonacci sequence recursively: $F_1 = F_2 = 1$; $F_n = F_{n-1} + F_{n-2}$ when $n \ge 3$. Define T on \mathbb{R}^2 by T(x, y) = (y, x+y).

2.1 $T^n(0,1)$

Question: Show by induction: $T^n(0,1) = (F_n, F_{n+1})$ for each $n \in \mathbb{N}$.

Proof: Let transformation T be defined as T(x, y) = (y, x+y). Start with the base case of n=1. We then have:

$$T(0,1) = (1,1) = (F_1, F_1) = (F_1, F_2)$$

So for the base case, n=1, $T^n(0,1)=(F_n,F_{n+1})$ is true. Now suppose the equality is true for n=k. Then for n=k+1, we find:

$$T^{k+1}(0,1) = T(T^k(0,1)) = T(F_k, F_{k+1}) = (F_{k+1}, F_k + F_{k+1})$$

From the recursive definitions, we know that $F_k + F_{k+1} = F_{k+2}$, so we rewrite:

$$T^{k+1}(0,1) = (F_{k+1}, F_{k+2})$$

So the equality is true for n=k+1 if it is true for n=k. Therefore, by induction, $T^n(0,1) = (F_n, F_{n+1}).$

2.2**Eigenvalues**

Question: Find the eigenvalues of T, and a corresponding basis of \mathbb{R}^2 of eigenvectors.

Answer: Let λ be an eigenvalue corresponding to eigenvector (a, b). Then we can show:

$$T(a,b) = \lambda(a,b) = (\lambda a, \lambda b)$$

But we also know, by definition of T, that:

$$T(a,b) = (b, a+b)$$

So we combine these formulas to find:

$$\lambda a = b$$
$$\lambda = \frac{b}{a}$$

And also that:

$$\lambda b = a + b$$
$$\lambda = \frac{a}{b} + 1$$

Substituting $\frac{a}{b}$ for $\frac{1}{\lambda}$ then gives us:

$$\lambda = \frac{1}{\lambda} + 1$$

We can then represent this as a quadratic and solve to find that for:

$$\lambda^2 - \lambda - 1 = 0$$

$$\lambda = \frac{1 \pm \sqrt{5}}{2}$$

So the eigenvalues for T are $\frac{1+\sqrt{5}}{2}$, and $\frac{1-\sqrt{5}}{2}$. To find their corresponding eigenvectors, I will start by creating a matrix representation of T. Because we know that T(0,1)=(1,1), and that T(1,1)=(1,2), it is straightforward to write T in the form:

$$T = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Using $\lambda = \frac{1+\sqrt{5}}{2}$ we find the first eigenvector by using:

$$(T - \frac{1 + \sqrt{5}}{2}I) \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

$$T = \begin{bmatrix} -\frac{1 + \sqrt{5}}{2} & 1 \\ 1 & 1 - \frac{1 + \sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -\frac{1 + \sqrt{5}}{2} & 1 \\ 1 & \frac{1 - \sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$
And so we find that:
$$\begin{cases} -\frac{1 + \sqrt{5}}{2}x + y = 0 \\ x + \frac{1 - \sqrt{5}}{2}y = 0 \end{cases}$$

These are actually equivalent equations. Using the first equation, we set the free variable x to 1, which gives us $y=\frac{1+\sqrt{5}}{2}$. We now have an eigenvector, e_1 :

$$e_1 = \begin{bmatrix} 1\\ \frac{1+\sqrt{5}}{2} \end{bmatrix}$$

We can do the same process to $\lambda = \frac{1-\sqrt{5}}{2}$ to find the other eigenvector, e_2 , to be:

$$e_2 = \begin{bmatrix} 1\\ \frac{1-\sqrt{5}}{2} \end{bmatrix}$$

This then gives us the basis:

$$\left[\begin{bmatrix} 1\\ \frac{1+\sqrt{5}}{2} \end{bmatrix}, \begin{bmatrix} 1\\ \frac{1-\sqrt{5}}{2} \end{bmatrix} \right]$$

2.3 $T^n(0,1)$ Continued

Question: Use the solution of 2.2 to compute $T^n(0,1)$. Conclude (that is, prove) that:

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

Proof: First, we will break down (0,1) with the above basis.

$$(0,1) = C_1 e_1 + C_2 e_2$$

$$(0,1) = C_1 \begin{bmatrix} 1\\ \frac{1+\sqrt{5}}{2} \end{bmatrix} + C_2 \begin{bmatrix} 1\\ \frac{1-\sqrt{5}}{2} \end{bmatrix}$$
$$(0,1) = \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\ \frac{1+\sqrt{5}}{2} \end{bmatrix} - \frac{1}{\sqrt{5}} \begin{bmatrix} 1\\ \frac{1-\sqrt{5}}{2} \end{bmatrix}$$
$$(0,1) = \frac{1}{\sqrt{5}} (e_1 - e_2)$$

We now look at $T^n(0,1)$:

$$T^{n}(0,1) = T^{n}\left(\frac{1}{\sqrt{5}}(e_{1} - e_{2})\right)$$

$$T^{n}(0,1) = \frac{1}{\sqrt{5}}(T^{n}(e_{1}) - T^{n}(e_{2}))$$

$$T^{n}(0,1) = \frac{1}{\sqrt{5}}(\lambda_{1}^{n}(e_{1}) - \lambda_{2}^{n}(e_{2}))$$

$$T^{n}(0,1) = \frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}(e_{1}) - \left(\frac{1-\sqrt{5}}{2}\right)^{n}(e_{2})\right)$$

We then focus on the just first component of $T^n(0,1)$, F_n (proven in subsection 2.1). Since 1 is the first component of both e_1 and e_2 , we then find:

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

3 Cauchy-Schwarz Application

Question: (Compare Axler 6.A.11) Use the Cauchy-Schwarz inequality to prove that:

$$(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \ge 9$$

for all positive numbers a, b, c.

Proof: One example of the Cauchy Schwarz inequality is that if $x_1, x_2...x_n$ and $y_1, y_2...y_n \in \mathbb{R}$, then:

$$|x_1y_1 + x_2y_2...x_ny_n|^2 \le (x_1^2 + x_2^2...x_n^2)(y_1^2 + y_2^2...y_n^2)$$

Now take a,b,c $\in \mathbb{R}$, and suppose that $x_1 = \sqrt{a}, x_2 = \sqrt{b}, x_3 = \sqrt{c}, y_1 = \frac{1}{\sqrt{a}}, y_2 = \frac{1}{\sqrt{b}}, y_3 = \frac{1}{\sqrt{c}}$. We can then show that:

$$\left| \frac{\sqrt{a}}{\sqrt{a}} + \frac{\sqrt{b}}{\sqrt{b}} + \frac{\sqrt{c}}{\sqrt{c}} \right|^2 \le (\sqrt{a}^2 + \sqrt{b}^2 + \sqrt{c}^2)(\frac{1}{\sqrt{a}}^2 + \frac{1}{\sqrt{b}}^2 + \frac{1}{\sqrt{c}}^2)$$
$$3^2 \le (a+b+c)(\frac{1}{a} + \frac{1}{b} + \frac{1}{c})$$
$$9 \le (a+b+c)(\frac{1}{a} + \frac{1}{b} + \frac{1}{c})$$

4 $\mathcal{P}_2(\mathbb{R})$ and its Inner Product

Setup: Let $V=\mathcal{P}_2(\mathbb{R})$.

4.1 Inner Products

Question: Show that the pairing $\langle f, g \rangle = \int_0^2 f(x)g(x)dx$ defines an inner product on V.

Answer: We will now check each property of an inner product:

$$\begin{cases} \langle v,v\rangle \geq 0 \text{ For all v in V} \\ \langle v,v\rangle = 0 \text{ iff v=0} \\ \langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle \text{ For all u,v,w in V} \\ \langle \lambda u,v\rangle = \lambda \langle u,v\rangle \text{ For all u,v in V} \\ \langle u,v\rangle = \overline{\langle v,u\rangle} \text{ For all u,v in V} \end{cases}$$

We now check positivity. Because the coefficients in V are all real, than for any v in V, $v(x)^2$ has to have non-negative coefficients. So the function $v(x)^2$ must be ≥ 0 . So:

$$v(x)^{2} \ge 0$$

$$\int_{0}^{2} v(x)^{2} dx \ge \int_{0}^{2} 0 dx$$

$$\int_{0}^{2} v(x)v(x) dx \ge 0$$

$$\langle v, v \rangle \ge 0$$

We now check definiteness.

If
$$\langle v, v \rangle = 0$$
, then:

$$\int_0^2 v(x)v(x)dx = 0$$

$$\int_0^2 v(x)^2 dx = 0$$

But $v(x)^2$ is a positive function unless v(x)=0. So if $\langle v,v\rangle=0$, then v(x)=0. Now we show the converse. If v(x)=0, then:

$$\langle v, v \rangle = \langle 0, 0 \rangle = \int_0^2 0 dx = 0$$

So the converse is true as well. the inner product then has definiteness. We now check additivity in first slot.

$$\langle u + v, w \rangle = \int_0^2 (u(x) + v(x))w(x)dx = \int_0^2 (u(x)w(x) + v(x)w(x))dx$$

$$\langle u + v, w \rangle = \int_0^2 u(x)w(x)dx + \int_0^2 v(x)w(x)dx$$
$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$$

We now check homogeneity in first slot.

$$\langle \lambda u, v \rangle = \int_0^2 \lambda u(x) v(x) dx$$
$$\langle \lambda u, v \rangle = \lambda \int_0^2 u(x) v(x) dx$$
$$\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$$

We now check conjugate symmetry. Since we only have real coefficients, we can write:

$$\overline{\langle u, v \rangle} = \langle u, v \rangle$$

We continue to show:

$$\langle u, v \rangle = \int_0^2 u(x)v(x)dx = \int_0^2 v(x)u(x)dx$$

 $\langle u, v \rangle = \langle v, u \rangle = \overline{\langle v, u \rangle}$

This definition holds for all of the properties, so it is an acceptable inner product on V.

4.2 Norms

Question: Find $||2x^2 - x - 7||$, using the norm induced by this inner product.

Answer: First we are reminded of the definition of norm, with respect to an inner product.

$$||a|| = \sqrt{\langle a, a \rangle}$$

So we find:

$$||2x^{2} - x - 7|| = \sqrt{\langle (2x^{2} - x - 7), (2x^{2} - x - 7)\rangle}$$

$$||2x^{2} - x - 7|| = \sqrt{\int_{0}^{2} (2x^{2} - x - 7)(2x^{2} - x - 7)dx}$$

$$||2x^{2} - x - 7|| = \sqrt{\int_{0}^{2} (4x^{4} - 4x^{3} - 27x^{2} + 14x + 49)dx}$$

$$||2x^{2} - x - 7|| = \sqrt{\left[\frac{4x^{5}}{5} - x^{4} - 9x^{3} + 7x^{2} + 49x\right]_{0}^{2}}$$
$$||2x^{2} - x - 7|| = \sqrt{\frac{318}{5}}$$

4.3 Gram-Schmidt Procedure

Question: Use the Gram-Schmidt procedure to transform the list 1, x, x^2 to an orthonormal basis. Explain your steps.

Answer: We start with the list 1, x, x^2 . First, we notice that every element of the list exists in vector space V. Now suppose x_n form a basis for V. Let $v_1=1$, $v_2=x$ and $v_3=x^2$. We now find x_1 by normalizing it.

$$x_1 = \frac{v_1}{\|v_1\|}$$

$$x_1 = \frac{1}{\sqrt{\int_0^2 1 dx}} = \frac{1}{\sqrt{2}}$$

We now have x_1 . We then use the following projection formula to find x_2 . Note that integration for the inner product will no longer be explicitly shown.

$$x_{2} = \frac{v_{2} - \langle v_{2}, x_{1} \rangle x_{1}}{\|v_{2} - \langle v_{2}, x_{1} \rangle x_{1}\|}$$

$$x_{2} = \frac{x - \langle x, \frac{1}{\sqrt{2}} \rangle \frac{1}{\sqrt{2}}}{\|x - \langle x, \frac{1}{\sqrt{2}} \rangle \frac{1}{\sqrt{2}}\|}$$

$$x_{2} = \frac{x - \sqrt{2} \frac{1}{\sqrt{2}}}{\|x - \sqrt{2} \frac{1}{\sqrt{2}}\|}$$

$$x_{2} = \frac{x - 1}{\|x - 1\|}$$

$$x_{2} = \frac{x - 1}{\sqrt{\langle x - 1, x - 1 \rangle}}$$

$$x_{2} = \frac{x - 1}{\sqrt{\frac{2}{3}}}$$

$$x_{2} = \frac{\sqrt{6}(x - 1)}{2}$$

We now have found x_2 . We do a similar, but longer projection procedure to find our third and final basis vector below.

$$x_{3} = \frac{v_{3} - \langle v_{3}, x_{1} \rangle x_{1} - \langle v_{3}, x_{2} \rangle x_{2}}{\|v_{3} - \langle v_{3}, x_{1} \rangle x_{1} - \langle v_{3}, x_{2} \rangle x_{2}\|}$$

$$x_{3} = \frac{x^{2} - \langle x^{2}, \frac{1}{\sqrt{2}} \rangle \frac{1}{\sqrt{2}} - \langle x^{2}, \frac{\sqrt{6}(x-1)}{2} \rangle \frac{\sqrt{6}(x-1)}{2}}{\|x^{2} - \langle x^{2}, \frac{1}{\sqrt{2}} \rangle \frac{1}{\sqrt{2}} - \langle x^{2}, \frac{\sqrt{6}(x-1)}{2} \rangle \frac{\sqrt{6}(x-1)}{2} \|}$$

$$x_{3} = \frac{x^{2} - \frac{4\sqrt{2}}{3} \frac{1}{\sqrt{2}} - \frac{2\sqrt{6}}{3} \frac{\sqrt{6}(x-1)}{2}}{\|x^{2} - \frac{4\sqrt{2}}{3} \frac{1}{\sqrt{2}} - \frac{2\sqrt{6}}{3} \frac{\sqrt{6}(x-1)}{2} \|}$$

$$x_{3} = \frac{x^{2} - 2x + \frac{2}{3}}{\|x^{2} - 2x + \frac{2}{3}\|}$$

$$x_{3} = \frac{x^{2} - 2x + \frac{2}{3}}{\sqrt{\langle x^{2} - 2x + \frac{2}{3} \rangle}}$$

$$x_{3} = \frac{x^{2} - 2x + \frac{2}{3}}{\sqrt{\frac{8}{45}}}$$

$$x_{3} = \frac{\sqrt{10} \left(3x^{2} - 6x + 2\right)}{4}$$

And so the Gram-Schmidt Procedure gives us the orthonormal basis:

$$\begin{cases} x_1 = \frac{1}{\sqrt{2}} \\ x_2 = \frac{\sqrt{6}(x-1)}{2} \\ x_3 = \frac{\sqrt{10}(3x^2 - 6x + 2)}{4} \end{cases}$$