Homework 3

Michael Pham

Fall 2023

Contents

1	Polynomial Basis	3
2	Linear Independence	4

1 Polynomial Basis

2 Linear Independence

Problem 2.1. Suppose v_1, \ldots, v_m are linearly independent in V and $w \in V$. Prove that

$$\dim \operatorname{Span}(v_1 - w, v_2 - w, \dots, v_m - w) \ge m - 1$$

Solution. We first observe that since v_1, \ldots, v_m are linearly independent, then that means that $\dim \mathrm{Span}(v_1, v_2, \ldots, v_m) = m$. Furthermore, since $\mathrm{Span}(w)$ is the span of only one vector, it follows then that $\dim \mathrm{Span}(w) \leq 1$.

Now, let us define

Now, with this in mind, let us define the space $V' \coloneqq \operatorname{Span}(v_1 - w, v_2 - w, \dots, v_m - w)$.