TDS Mock ROE 4

Doc Created: 28/02/2025

Please find the dataset mock_roe_4.zip in the link below.

Mock ROE 4 link

It has:

- A set of HTML files biz-*.html that has a list of restaurants in San Francisco.
- A violations table in violations.db SQLite DB with food violations found in restaurant inspections.

Question 1:

Of the restaurants present in postal code 94110, how many had a **Moderate Risk** violation on a **Monday**?

Steps to answer:

- 1. From the violations table, count the violations grouped by business_id where the risk category is **Moderate Risk** and date is on a **Monday**.
- 2. Scrape the postal_code and business_id from each HTML file.
- 3. Add the violations count for all the restaurants where the postal code is 94110.

Correct Answer: 249

Question 2:

What is the highest average inspection score in the month 2015–05 that any latitude-longitude grid (rounded off to 2 decimal places) has received?

Steps to answer:

- 1. Scrape the business_id, latitude, and longitude from each HTML file. Drop missing values.
- Scrape the business_id and score from the PDF file inspections-2015-05.pdf.Drop missing values.
- 3. Join these two datasets on business_id.

- 4. Round off the latitude and longitude to 2 decimal places.
- 5. Find the average score for each rounded-off latitude-longitude combination.
- 6. Pick the highest of these averages.

Correct Answer: 94.44

Question 3:

Among these postal codes, which postal code has a restaurant furthest away from the centroid of the restaurants?

Postal Codes: 94116, 94127, 94117, 94114, 94115, 94132, 94108, 94111, 94105, 94134, 94131, 94109, 94121, 94107, 94133

Steps to answer:

- 1. Scrape the postal_code, latitude, and longitude from each HTML file having your postal code. Drop missing values.
- 2. For each postal code:
 - Calculate the average of the latitude and longitude values for all rows in each postal_code. This is (roughly) the centroid.
 - Calculate the Pythagorean distance between each restaurant and the centroid.
 - Calculate the average of these distances.
 - Pick the postal code with the restaurant having the highest AVERAGE_DISTANCE_FROM_CENTROID.

Correct Answer: 94121

Question 4:

Find the number of violations that were reported without an inspection (same business, same date) on or after 2016–02–23 in the **Moderate Risk** risk category.

Steps to answer:

- 1. Scrape the business_id and date from the inspections-*.pdf files. Drop missing values.
- 2. Extract the business_id and date from the violations table where the risk_category is **Moderate Risk** and date is on or after 2016-02-23.
- 3. Count the number of violations where the business_id and date are NOT in the inspections—*.pdf files.

Correct Answer: 11

Question 5:

How many businesses in postal code 94110 had a violation that contained one or more of the words water, unapproved, moderate, facilities, unsanitary and an associated inspection (same date, same business_id) with a score of 80 or more?

Steps to answer:

- 1. Scrape the business_id and postal_code from each HTML file. Drop missing values.
- 2. Scrape the business_id, date, and score from the PDF file inspections-*.pdf. Drop missing values.
- 3. Extract the business_id, date, and description from the violations table where the description contains one or more of the words water, unapproved, moderate, facilities, unsanitary.
- 4. Join the biz-*.html, the inspections-*.pdf, and the violations table data by matching business_id across all three datasets and the date across inspections-*.pdf and the violations table.
- 5. Filter the joined data where the description contains one or more of the words water, unapproved, moderate, facilities, unsanitary and the score is 80 or more.
- 6. Find the postal code of these businesses and filter those matching 94110.

Correct Answer: 256

Question 6:

Within the latitude-longitude bounds of 37.7, 37.9000000000000, -122.4, and -122.2, count the businesses with the most dissimilar description.

Steps to answer:

- 1. Scrape the business_id, latitude, longitude, and description from each HTML file. Drop missing values.
- 2. Also drop zero values for latitude or longitude.
- 3. Extract the business_id and description from the violations table.
- 4. Join the data from the HTML files and violations table on business_id.
- 5. Filter the joined data where the latitude is between 37.7 and 37.9000000000000 and the longitude is between -122.4 and -122.2.

- 6. Calculate the vector embeddings of all the descriptions using text-embedding-3small.
- 7. Find the centroid of the embeddings by averaging all the vector embeddings.
- 8. Find the most dissimilar embeddings (highest Pythagorean distance from the centroid).
- 9. Count the number of **UNIQUE** business_id s that have this most dissimilar embedding.

Correct Answer: 7

Question 7:

Using **linear regression**, predict the inspection score of a restaurant in these postal codes: 94121, 94133, 94116, 94103, 94117 on 2016-10-10.

Steps to answer:

- 1. Scrape the business_id, date, and score from the PDF files inspections-*.pdf. Drop missing values.
- 2. Scrape the business_id and postal_code from the HTML files biz-*.html for the postal codes mentioned above. Drop missing values.
- 3. Join the inspections data with the HTML data on business_id, combining data across all the above postal codes.
- 4. Calculate the regression slope of the inspection scores (Y) against the date (X).
- 5. Predict the inspection score for the date 2016-10-10.

Correct Answer: 87.94