3.3 Relation to subgroups

November 1, 2021

Introduction

They are invariants that tell things apart.

They are invariants that tell things apart.

De Rham cohomology

 $H_{dR}^{i}(X)$ is a real vector space.

Smooth manifold

They are invariants that tell things apart.

De Rham cohomology

 $H_{dR}^{i}(X)$ is a real vector space.

This invariant distinguishes spheres up to homotopy equivalence:

They are invariants that tell things apart.

De Rham cohomology

 $H_{dR}^{i}(X)$ is a real vector space.

This invariant distinguishes spheres up to homotopy equivalence:

For
$$n > m \ge 0$$
, we have $S^n \not\simeq S^m$ since

$$H^n(S^n) \cong \mathbb{Z}$$
 but $H^n(S^m) \cong 0$.

They also help classify things.

Nonabelian group cohomology (chapter 2)

group (nonabelian) group with compatible G-action
$$H^0(G,A)=A^G$$
 is a group.

 $H^1(G,A)$ is a pointed set.

H1 classifies twisted forms.

They also help classify things.

Nonabelian group cohomology (chapter 2)

$$H^0(G,A) = A^G$$
 is a group.

 $H^1(G,A)$ is a pointed set.

H1 classifies twisted forms.

Group cohomology (chapter 3)

group \mathcal{L} abelian group with compatible G-action $H^{i}(G,A)$ for $i\geq 0$.

 $H^2(G,A)$ classifies group extensions of G by A 0-class corresponds to split extension (the semidirect product $A \rtimes G$ with the given G-action on A)

De Rham cohomology $H^{\bullet}(X)$

De Rham cohomology $H^{\bullet}(X)$

Break the manifold X up into subspaces U and V

De Rham cohomology $H^{\bullet}(X)$

Break the manifold X up into subspaces U and V and relate $H^{\bullet}(U)$ and $H^{\bullet}(V)$ to $H^{\bullet}(X)$. (Mayer-Vietoris sequence)

Group cohomology $H^i(G,A)$

Group cohomology $H^i(G, A)$

Break G-module A up into a short exact sequence

$$0 \to A' \to A \to A'' \to 0.$$

Group cohomology $H^i(G, A)$

Break G-module A up into a short exact sequence

$$0 \to A' \to A \to A'' \to 0.$$

This induces a long exact sequence in cohomology.

Group cohomology $H^i(G, A)$

Break G-module A up into a short exact sequence

$$0 \to A' \to A \to A'' \to 0.$$

This induces a long exact sequence in cohomology.

Group cohomology $H^i(G, A)$

Break G-module A up into a short exact sequence

$$0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0.$$

This induces a long exact sequence in cohomology.

Group cohomology $H^i(G, A)$

Break G-module A up into a short exact sequence

$$0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$$
.

This induces a long exact sequence in cohomology.

Or break G up.

 $ightharpoonup H < G \Rightarrow H \text{ acts on } A$

Group cohomology $H^i(G, A)$

Break G-module A up into a short exact sequence

$$0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$$
.

This induces a long exact sequence in cohomology.

Or break G up.

▶ $H < G \Rightarrow H$ acts on $A \Rightarrow \text{get } H^{\bullet}(H, A)$.

Group cohomology $H^i(G, A)$

Break G-module A up into a short exact sequence

$$0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$$
.

This induces a long exact sequence in cohomology.

- ▶ $H < G \Rightarrow H$ acts on $A \Rightarrow \text{get } H^{\bullet}(H, A)$.
- $ightharpoonup H \lhd G$

Group cohomology $H^i(G, A)$

Break G-module A up into a short exact sequence

$$0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$$
.

This induces a long exact sequence in cohomology.

- ▶ $H < G \Rightarrow H$ acts on $A \Rightarrow \text{get } H^{\bullet}(H, A)$.
- ► $H \triangleleft G \not\Rightarrow G/H$ acts on A (since H-action on A may be nontrivial)

Group cohomology $H^i(G, A)$

Break G-module A up into a short exact sequence

$$0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$$
.

This induces a long exact sequence in cohomology.

- ▶ $H < G \Rightarrow H$ acts on $A \Rightarrow \text{get } H^{\bullet}(H, A)$.
- ► $H \triangleleft G \not\Rightarrow G/H$ acts on A (since H-action on A may be nontrivial)
- ► $H \triangleleft G \Rightarrow G/H$ acts on A^H

Group cohomology $H^i(G, A)$

Break G-module A up into a short exact sequence

$$0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$$
.

This induces a long exact sequence in cohomology.

- ▶ $H < G \Rightarrow H$ acts on $A \Rightarrow \text{get } H^{\bullet}(H, A)$.
- ► $H \triangleleft G \not\Rightarrow G/H$ acts on A (since H-action on A may be nontrivial)
- ▶ $H \triangleleft G \Rightarrow G/H$ acts on $A^H \Rightarrow \text{get } H^{\bullet}(G/H, A^H)$.

Group cohomology $H^i(G, A)$

Break G-module A up into a short exact sequence

$$0 \to A' \to A \to A'' \to 0.$$

This induces a long exact sequence in cohomology.

Or break G up.

- ▶ $H < G \Rightarrow H$ acts on $A \Rightarrow \text{get } H^{\bullet}(H, A)$.
- ► $H \triangleleft G \not\Rightarrow G/H$ acts on A (since H-action on A may be nontrivial)
- ▶ $H \triangleleft G \Rightarrow G/H$ acts on $A^H \Rightarrow \text{get } H^{\bullet}(G/H, A^H)$.

How can we relate $H^{\bullet}(H, A)$ and $H^{\bullet}(G/H, A^H)$ to $H^{\bullet}(G, A)$?

Relating $H^{\bullet}(H, A)$, $H^{\bullet}(G/H, A^H)$, $H^{\bullet}(G, A)$

Relating
$$H^{\bullet}(H, A)$$
, $H^{\bullet}(G/H, A^H)$, $H^{\bullet}(G, A)$

Let G be a group, A a G-module, and H a subgroup of G. Then there exist group homomorphisms, called **restriction maps**,

Res :
$$H^i(G, A) \to H^i(H, A)$$
 for all $i \ge 0$.

Relating
$$H^{\bullet}(H, A)$$
, $H^{\bullet}(G/H, A^H)$, $H^{\bullet}(G, A)$

Let G be a group, A a G-module, and H a subgroup of G. Then there exist group homomorphisms, called **restriction maps**,

Res :
$$H^i(G, A) \to H^i(H, A)$$
 for all $i \ge 0$.

If [G : H] = n is finite, there exist group homomorphisms, called **corestriction maps**,

Cor:
$$H^i(H, A) \to H^i(G, A)$$
 for all $i \ge 0$.

Relating
$$H^{\bullet}(H, A)$$
, $H^{\bullet}(G/H, A^H)$, $H^{\bullet}(G, A)$

Let G be a group, A a G-module, and H a subgroup of G. Then there exist group homomorphisms, called **restriction maps**,

$$\operatorname{Res}: H^i(G,A) \to H^i(H,A) \qquad \text{for all} \quad i \geq 0.$$

If [G : H] = n is finite, there exist group homomorphisms, called **corestriction maps**,

Cor :
$$H^i(H, A) \to H^i(G, A)$$
 for all $i \ge 0$.

If instead H is a normal subgroup of G, there exist group homomorphisms, called **inflation maps**,

Inf:
$$H^i(G/H, A) \to H^i(G, A)$$
 for all $i \ge 0$.

Relating Res, Cor, Inf

Relating Res, Cor, Inf

Theorem A. Let G be a group, A a G-module, and H a subgroup of finite index n in G. Then

$$\mathsf{Cor} \circ \mathsf{Res} : H^i(G, A) \to H^i(G, A)$$

is given by multiplication by n for all $i \ge 0$.

Theorem B. Let G be a group, A a G-module, and H a normal subgroup of G. There exists a map

$$\tau: H^1(H,A)^{G/H} \to H^2(G/H,A^H),$$

called the transgression map, fitting into an exact sequence

$$0 \longrightarrow H^{1}(G/H, A^{H}) \xrightarrow{\operatorname{Inf}} H^{1}(G, A) \xrightarrow{\operatorname{Res}} H^{1}(G/H, A)^{G/H}$$

$$\stackrel{\tau}{\longrightarrow} H^2(G/H, A^H) \stackrel{\mathsf{Inf}}{\longrightarrow} H^2(G, A)$$

Application

Theorem A. Let G be a group, A a G-module, and H a subgroup of finite index n in G. Then

$$\mathsf{Cor} \circ \mathsf{Res} : H^i(G,A) \to H^i(G,A)$$

is given by multiplication by n for all $i \ge 0$.

Theorem A. Let G be a group, A a G-module, and H a subgroup of finite index n in G. Then

$$\mathsf{Cor} \circ \mathsf{Res} : H^i(G,A) \to H^i(G,A)$$

is given by multiplication by n for all $i \ge 0$.

Corollary. If G is a finite group of order n, then $n \cdot H^i(G, A) = 0$ for any G-module A and i > 0.

Theorem A. Let G be a group, A a G-module, and H a subgroup of finite index n in G. Then

$$\mathsf{Cor} \circ \mathsf{Res} : H^i(G,A) \to H^i(G,A)$$

is given by multiplication by n for all $i \geq 0$.

Corollary. If G is a finite group of order n, then $n \cdot H^i(G, A) = 0$ for any G-module A and i > 0.

Proof.

$$H^{i}(G,A) \xrightarrow{\text{Res}} H^{i}(H,A) \xrightarrow{\text{Cor}} H^{i}(G,A).$$

Theorem A. Let G be a group, A a G-module, and H a subgroup of finite index n in G. Then

$$\mathsf{Cor} \circ \mathsf{Res} : H^i(G,A) \to H^i(G,A)$$

is given by multiplication by n for all $i \ge 0$.

Corollary. If G is a finite group of order n, then $n \cdot H^i(G, A) = 0$ for any G-module A and i > 0.

Proof. Let H = * in Theorem A and note $H^i(*, A) = 0$ for i > 0:

$$H^{i}(G,A) \xrightarrow{\text{Res}} H^{i}(H,A) \xrightarrow{\text{Cor}} H^{i}(G,A).$$

Theorem A. Let G be a group, A a G-module, and H a subgroup of finite index n in G. Then

$$\mathsf{Cor} \circ \mathsf{Res} : H^i(G,A) \to H^i(G,A)$$

is given by multiplication by n for all $i \ge 0$.

Corollary. If G is a finite group of order n, then $n \cdot H^i(G, A) = 0$ for any G-module A and i > 0.

Proof. Let H = * in Theorem A and note $H^i(*, A) = 0$ for i > 0:

$$H^{i}(G,A) \xrightarrow{\operatorname{Res}} H^{i}(*,A) \xrightarrow{\operatorname{Cor}} H^{i}(G,A).$$

Theorem A. Let G be a group, A a G-module, and H a subgroup of finite index n in G. Then

$$\mathsf{Cor} \circ \mathsf{Res} : H^i(G,A) \to H^i(G,A)$$

is given by multiplication by n for all $i \ge 0$.

Corollary. If G is a finite group of order n, then $n \cdot H^i(G, A) = 0$ for any G-module A and i > 0.

Proof. Let H = * in Theorem A and note $H^i(*, A) = 0$ for i > 0:

$$H^{i}(G,A) \xrightarrow{\operatorname{Res}} 0 \xrightarrow{\operatorname{Cor}} H^{i}(G,A).$$

Theorem A. Let G be a group, A a G-module, and H a subgroup of finite index n in G. Then

$$\mathsf{Cor} \circ \mathsf{Res} : H^i(G,A) \to H^i(G,A)$$

is given by multiplication by n for all $i \ge 0$.

Corollary. If G is a finite group of order n, then $n \cdot H^i(G, A) = 0$ for any G-module A and i > 0.

Proof. Let H = * in Theorem A and note $H^i(*, A) = 0$ for i > 0:

$$H^{i}(G,A) \xrightarrow{\operatorname{Res}} 0 \xrightarrow{\operatorname{Cor}} H^{i}(G,A).$$

So $\times n$ map is the $\times 0$ map.

Corollary. (Schur-Zassenhaus theorem, special case)

Let G be a group and A an abelian group. If |G| and |A| are finite and coprime, then any group extension of G by A is the semidirect product $A \rtimes G$.

Corollary. (Schur-Zassenhaus theorem, special case)

Let G be a group and A an abelian group. If |G| and |A| are finite and coprime, then any group extension of G by A is the semidirect product $A \rtimes G$.

Proof. An extension of G by A gives a G-module structure on A and an element of $H^2(G,A)$.

Corollary. (Schur-Zassenhaus theorem, special case)

Let G be a group and A an abelian group. If |G| and |A| are finite and coprime, then any group extension of G by A is the semidirect product $A \rtimes G$.

Proof. An extension of G by A gives a G-module structure on A and an element of $H^2(G,A)$. By earlier discussion, it suffices to show that $H^2(G,A)=0$.

Corollary. (Schur-Zassenhaus theorem, special case)

Let G be a group and A an abelian group. If |G| and |A| are finite and coprime, then any group extension of G by A is the semidirect product $A \rtimes G$.

Proof. An extension of G by A gives a G-module structure on A and an element of $H^2(G,A)$. By earlier discussion, it suffices to show that $H^2(G,A)=0$.

Corollary. (Schur-Zassenhaus theorem, special case)

Let G be a group and A an abelian group. If |G| and |A| are finite and coprime, then any group extension of G by A is the semidirect product $A \rtimes G$.

Proof. An extension of G by A gives a G-module structure on A and an element of $H^2(G,A)$. By earlier discussion, it suffices to show that $H^2(G,A)=0$.

Also
$$|A| \cdot H^2(G, A) = 0$$
.

Corollary. (Schur-Zassenhaus theorem, special case)

Let G be a group and A an abelian group. If |G| and |A| are finite and coprime, then any group extension of G by A is the semidirect product $A \rtimes G$.

Proof. An extension of G by A gives a G-module structure on A and an element of $H^2(G,A)$. By earlier discussion, it suffices to show that $H^2(G,A)=0$.

Also
$$|A| \cdot H^2(G, A) = 0$$
.

So
$$gcd(|G|, |A|) \cdot H^2(G, A) = 0$$
.

Corollary. (Schur-Zassenhaus theorem, special case)

Let G be a group and A an abelian group. If |G| and |A| are finite and coprime, then any group extension of G by A is the semidirect product $A \rtimes G$.

Proof. An extension of G by A gives a G-module structure on A and an element of $H^2(G,A)$. By earlier discussion, it suffices to show that $H^2(G,A)=0$.

Also
$$|A| \cdot H^2(G, A) = 0$$
.

So
$$1 \cdot H^2(G, A) = 0$$
.