微分方程式の数値解析とデータサイエンス 正誤表

宮武勇登・佐藤峻 / 2025年10月4日

表 1: 正誤一覧

ページ	行・位置	誤	正	備考
7	注意 2.1	$oldsymbol{g}(t;oldsymbol{ heta})$	$oldsymbol{v}(t;oldsymbol{ heta})$	文字の誤り
	上から 6			
	行目			
7	注意 2.1	$m{f}(m{v}'(t;m{ heta}))$	$oldsymbol{f}(oldsymbol{v}(t;oldsymbol{ heta}))$	f の中の v の微分
	上から			が不要
	12 行目			
18	表の中の	17(?)	16(?)	数字の誤り
	p = 10			
	に対応す			
	る最小段			
	数 s	2 1 2	2 1	
27	注意 2.3	$u_1 = (u_0 - 1)\frac{2-h}{2+h} + \frac{2}{2+h}$	$u_1 = (u_0 - 1)\frac{2 - h}{2 + h} + 1$	u_1 の計算の誤り.
	下から 2	2 10 2 10	2 1 16	例そのものが適切
	行目			ではない.
31		かつ g が x に	かつgがzに	文字の誤り
	の6行目			
	上			
36		$= (\cdots)^{T} S(\cdots) = 0$	$=h(\cdots)^{T}S(\cdots)=0$	h が必要
	(最初の			
	数式の 2			
	行目)			Marie and
36	Gonzalez	$f(\boldsymbol{u}) + f(\boldsymbol{v})$	$f(oldsymbol{u}) - f(oldsymbol{v})$	符号の誤り
	による離れている。			
	散勾配:			
	右辺第2			
	項の分子 の最初			
39		ホ が ホ ⁻¹ た洪たオレキ	ホ が ホ _ ホ ⁻¹ を洪ちす	▲ 一 が必亜
39	足我 2.0	$oldsymbol{\Phi}_h$ が $oldsymbol{\Phi}_{-h}^{-1}$ を満たすとき	$oldsymbol{\Phi}_h$ が $oldsymbol{\Phi}_h = oldsymbol{\Phi}_{-h}^{-1}$ を満たすとき	$\Psi_h = \lambda^2 \mathcal{L} \mathcal{L}$
42	下から 6	3^s 回の合成で $2s$ 次解法を	3^s 回の合成で $2(s+1)$ 次解	数式の誤り
	行目		法を	
47	下から 2	$Y^{T}Y + I$	$Y^{\scriptscriptstyleT}Y = I$	数式の誤り
	行目			
54	3.2.1 節	$ abla_{m{u}(t)}C(m{u}(t_N;m{ heta}))$	$ abla_{m{u}}C(m{u}(t_N;m{ heta}))$	(t) が不要
	最後の別			
	行立ての			
	数式			
				(次ページに続く)

ページ	行・位置	誤	正	備考
55	最初の数 式の右辺 第一項	$(abla_{m{ heta}}m{u}(t_N;m{ heta}))^{\scriptscriptstyleT} abla_{m{u}}C(m{u}(t_N;m{ heta}))^{\scriptscriptstyleT}$	$oldsymbol{arepsilon} \left(abla_{oldsymbol{u}} C(oldsymbol{u}(t_N; oldsymbol{ heta})) ight)^{T} abla_{oldsymbol{ heta}} oldsymbol{u}(t_N; oldsymbol{ heta})$	ε行列とベクトルの 順序が逆
55	上以外の 残り二つ の別行立 ての数式	$(abla_{m{ heta}}m{u}(t_N;m{ heta}))^{\scriptscriptstyle{\intercal}}m{\delta}(t_N)$	$(\nabla_{m{u}} C(m{u}(t_N;m{ heta}))^{\scriptscriptstyleT} m{\delta}(t_N)$	$oldsymbol{\delta}(t_N)$ と内積をとる相手の誤り
56	最後の行	$ abla_{m{u}}$	$ abla_{m{ heta}}$	文字の誤り
81	16-17 行 目	比較すると, KLS 法のほうが 格段に誤差が小さい.また, KLS 法については	比較すると,KSL 法のほうが 格段に誤差が小さい.また, KSL 法については	文字の誤り

10 次の陽的 Runge-Kutta 法について

本書の出版日と同日に、arXiv に

M. Stepanov: On Runge-Kutta methods of order 10, arXiv:2504.17329

が公開された. この論文の主張は、15段の陽的 Runge-Kutta 法を代数的に導いたというものである.

2025年5月現在,本書の著者の二人は,この論文の主張について,数学的(および数値実験による)検証を行っていないが,すでに一部の研究者は,検証を行ったうえで,この主張は成立していると考えているようである.

注意 2.3 の修正および補足

以下,時間の添字は上付きで表す.

ここで挙げている $\dot{u}=1-u$ や $\dot{u}=1-u^2$ に対し中点則を適用すると, $u^{(0)}=1$ ならば $u^{(1)}=1$ であり,この注意で取り上げる例としては不適切であった.

別の例として

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 - u_1^2 \\ -u_1 u_2 \end{bmatrix}$$

を考える.この方程式に対し,初期値が $\| {m u}^{(0)} \|^2 = 1$ を満たすとき, $Q({m u}) = \| {m u} \|^2$ は保存量である.この方程式に対して中点則を適用すると

$$\frac{u_1^{(1)} - u_1^{(0)}}{h} = 1 - \left(\frac{u_1^{(1)} + u_1^{(0)}}{2}\right)^2, \quad \frac{u_2^{(1)} - u_2^{(0)}}{h} = -\left(\frac{u_1^{(1)} + u_1^{(0)}}{2}\right) \left(\frac{u_2^{(1)} + u_2^{(0)}}{2}\right)$$

となる. これを解いて

$$u_1^{(1)} = -u_1^{(0)} + \frac{2\sqrt{2u_1^{(0)}h + h^2 + 1} - 2}{h}, \quad u_2^{(1)} = -\frac{\sqrt{2u_1^{(0)}h + h^2 + 1} - 3}{\sqrt{2u_1^{(0)}h + h^2 + 1} + 1}u_2^{(0)}$$

を得る($u_1^{(1)}$ については二つの解があるが,微分方程式の近似解として自然な方を選択する).簡単のため $u_1^{(0)}=0,\,u_2^{(0)}=1$,さらに h=3/4 のとき

$$u_1^{(1)} = \frac{2}{3}, \quad u_2^{(1)} = \frac{7}{9}$$

であるが、 $\|\mathbf{u}^{(1)}\|^2 \approx 1.04938$ より $Q(\mathbf{u})$ は保存されていないことが分かる.