Esercizi del corso

Analisi Matematica - Mod. 1

Primo semestre 2024/2025

Foglio 3: Funzioni trigonometriche

Esercizio 1 (Equazioni trigonometriche).....

Risolvere le seguenti equazioni $(k \in \mathbb{Z})$.

(a)
$$\sin(2x - \pi) = \cos x$$

S:
$$x \in \left\{ \frac{\pi}{2} + k\pi; -\frac{\pi}{6} + 2k\pi; \frac{7}{6}\pi + 2k\pi \right\}$$

(b)
$$\cos x = -\sin x$$

S:
$$x \in \left\{ -\frac{\pi}{4} + k\pi \right\}$$

(c)
$$4\cos^2 x - 3 = 0$$

S:
$$x \in \left\{ \pm \frac{\pi}{6} + 2k\pi; \pm \frac{5}{6}\pi + 2k\pi \right\}$$

(d)
$$2\cos x + 2\sin x - (\sqrt{3} + 1) = 0$$

S:
$$x \in \left\{ \frac{\pi}{3} + 2k\pi; \frac{\pi}{6} + 2k\pi \right\}$$

(e)
$$4\sin^2 x - 9\cos^2 x = 0$$

S:
$$x \in \left\{ \pm \operatorname{arctg}\left(\frac{3}{2}\right) + k\pi \right\}$$

(f)
$$3\sin^2 x - 8\sqrt{3}\sin x \cos x + 15\cos^2 x = 0$$

S:
$$x \in \left\{ \frac{\pi}{3} + k\pi; \arctan\left(\frac{5\sqrt{3}}{3}\right) + k\pi \right\}$$

(g)
$$4\sin^2(x)\cos^2(x) - 4\cos^4(x) = 0$$

S:
$$x \in \left\{ \frac{\pi}{2} + k\pi; \frac{\pi}{4} + k\frac{\pi}{2} \right\}$$

Esercizio 2 (Funzioni trigonometriche inverse).....

- (a) Trovare il dominio di $f(x) = \arctan(\arcsin(x))$
- (b) Trovare il dominio di $f(x) = \log_3 |\operatorname{arctg}(x)|$
- (c) Veriif care che $\arcsin(x) + \arccos(x) = \frac{\pi}{2} \quad \forall x \in [-1,1]$
- (d) Verificare che $\forall x \in \mathbb{R}$ si ha: $\sin(\arctan(x)) = \frac{x}{\sqrt{1+x^2}}$ (idea: porre $\alpha = \arctan(x)$, cioè $\tan x = x$).

Esercizio 3 (Disequazioni).....

Risolvere le seguenti disequazioni $(k \in \mathbb{Z})$.

(a)
$$\sin x > \frac{1}{2}$$

S:
$$x \in \left[\frac{\pi}{6} + 2k\pi, \frac{5}{6}\pi + 2k\pi \right]$$

(b)
$$\tan x \ge \sqrt{3}$$

S:
$$x \in \left[\frac{\pi}{3} + k\pi, \frac{\pi}{2} + k\pi \right]$$

(c)
$$\cos x > -\frac{1}{2}$$

S:
$$x \in \left] -\frac{2}{3}\pi + 2k\pi, \frac{2}{3}\pi + 2k\pi \right[$$

(d)
$$2\sin^2 x + 5\cos x - 4 > 0$$

S:
$$x \in \left[-\frac{\pi}{3} + 2k\pi, \frac{\pi}{3} + 2k\pi \right[$$

$$(e) \qquad 3\tan^2 x - 1 \ge 0$$

S:
$$x \in \left[\frac{\pi}{6} + k\pi, \frac{\pi}{2} + k\pi \right] \cup \left[\frac{\pi}{2} + k\pi, \frac{5}{6}\pi + k\pi \right]$$

(f)
$$\cos(2x) + \sin x \ge 0$$

S:
$$x \in \left[-\frac{\pi}{6} + 2k\pi, \frac{7}{6}\pi + 2k\pi \right]$$

(g)
$$\cos^2 x + (\sqrt{3} - 1)\sin(x)\cos(x) - \sqrt{3}\sin^2 x > 0$$

S:
$$x \in \left[-\frac{\pi}{6} + k\pi, \frac{\pi}{4} + k\pi \right]$$

(h)
$$(1 - 2\sin x)(2\cos x + \sqrt{3}) \le 0$$

S:
$$x \in \left[\frac{\pi}{6} + 2k\pi, \frac{7}{6}\pi + 2k\pi\right]$$

(i)
$$(3\tan^2 x - 1)(\sin x + 1) \ge 0$$

S:
$$x \in \left[\frac{\pi}{6} + k\pi, \frac{\pi}{2} + k\pi\right] \cup \left[\frac{\pi}{2} + k\pi, \frac{5}{6}\pi + k\pi\right]$$

$$(j) \qquad \frac{\cos^2 x - \sin^2 x}{\sqrt{3} \tan(x) + 1} \le 0$$

S:
$$x \in \left[\frac{\pi}{4} + k\pi, \frac{\pi}{2} + k\pi\right] \cup \left[\frac{3}{4}\pi + k\pi, \frac{5}{6}\pi + k\pi\right]$$

$$(k) \qquad \frac{\sqrt{3}\sin x - \cos x}{1 - \sin^2 x} \ge 0$$

S:
$$x \in \left[\frac{\pi}{6} + 2k\pi, \frac{\pi}{2} + 2k\pi\right[\cup \right] \frac{\pi}{2} + 2k\pi, \frac{7}{6}\pi + 2k\pi$$