Hierarchical Control for Bipedal Locomotion using Central Pattern Generators and Neural Networks

Sayantan Auddy

Adviser: Dr. Sven Magg

http://www.informatik.uni-hamburg.de/WTM/

Motivation

Outline

- Motivation
- Research Questions
- Architecture
- Low-level Control Experiments
- High-level Control Experiments
- Conclusion and Future Work

Research Questions

- Can bipedal locomotion be achieved by using a low-level CPG-based controller modulated by a high-level neural network controller, and is such a control mechanism beneficial for walking?
- Do feedback mechanisms for CPGs improve the gait? How do different feedback mechanisms compare against each other?

Architecture Overview

Architecture Overview

Robot

NICO robot used in simulation [Kerzel, 2017]

10 leg joints, 2 shoulder joints

Force sensors added

Architecture Overview

Central Pattern Generator - Matsuoka Oscillator

Low-level Controller

Low-level Feedback: Angle Feedback

Low-level Feedback: Phase Reset

Architecture Overview

High-level Controller: Turning Mechanism

$$l_hip_y = o_2 \times \Psi_l \times GAIN_1 + BIAS_1$$

 $r_hip_y = o_3 \times \Psi_r \times GAIN_1 + BIAS_1$

$$\Psi_l > \Psi_r \quad \Psi_l = \Psi_r \quad \Psi_l < \Psi_r$$

High-level Controller: Neural Network

Architecture Details

Low-level Control – Experimental Setup

Chromosome Structure

Open Loop

Angle Feedback

Phase Reset

k_f	GAIN1	GAIN2	GAIN3	GAIN4	GAIN5	GAIN6	BIAS1	BIAS2	BIAS3	BIAS4	
k_f	GAIN1	GAIN2	GAIN3	GAIN4	GAIN5	GAIN6	BIAS1	BIAS2	BIAS3	BIAS4	k
k_f	GAIN1	GAIN2	GAIN3	GAIN4	GAIN5	GAIN6	BIAS1	BIAS2	BIAS3	BIAS4	

Genetic Algorithm Parameters

Population size	200 (20 seconds each)
Generations	30 (3 runs)
Selection	Tournament selection (size=3)

Crossover 2-point crossover ($\mathbb{P}=80\%$)

Mutation Number from a Gaussian distribution ($\mathbb{P}=10\%$)

Fitness function

$$f = distance_x + (0.5 \times t_{up})$$

Low-level Control Optimization Results – Fitness

Low-level Control Optimization Results— Distance

Gait Evaluation Test Results

Low-level Control – Videos

High-level Control - Setup

* Deep Deterministic Policy Gradient Algorithm [Lillicrap, 2015]

High-level Control – Training Setup

Reward Function

$\Psi_l \Psi_r$	gain factors				
$\Phi_l \Phi_r$	Neural network output				
ξ	Controls influence of Neural Network 1.0 - No influence 0.0 - High influence				

	-100	if the robot falls
$T = \begin{cases} 1 & \text{if } T = 0 \end{cases}$	$\zeta_{dev}(-dev_y^{abs}) + \zeta_{dist}(distance_x) + \zeta_{\gamma}(-torso_{\gamma}^{abs})$	otherwise

Setup	ζ_{dev}	ζ _{dist}	ζ_{γ}	ξ
Setup 1	1.0	0.5	1.0	0.1
Setup 2	1.0	0.5	1.0	0.4
Setup 3	1.0	0.3	1.0	0.1
Setup 4	1.0	0.3	1.0	0.4

Setup	ζ_{dev}	ζ_{dist}	ζ_{γ}	ξ
Setup 1	1.0	0.5	1.0	0.1
Setup 2	1.0	0.5	1.0	0.4
Setup 3	1.0	0.3	1.0	0.1
Setup 4	1.0	0.3	1.0	0.4

Setup	ζ_{dev}	ζ_{dist}	ζ_{γ}	ξ
Setup 1	1.0	0.5	1.0	0.1
Setup 2	1.0	0.5	1.0	0.4
Setup 3	1.0	0.3	1.0	0.1
Setup 4	1.0	0.3	1.0	0.4

Setup	ζ_{dev}	ζ_{dist}	ζ_{γ}	ξ
Setup 1	1.0	0.5	1.0	0.1
Setup 2	1.0	0.5	1.0	0.4
Setup 3	1.0	0.3	1.0	0.1
Setup 4	1.0	0.3	1.0	0.4

Setup	ζ_{dev}	ζ_{dist}	ζ_{γ}	ξ
Setup 1	1.0	0.5	1.0	0.1
Setup 2	1.0	0.5	1.0	0.4
Setup 3	1.0	0.3	1.0	0.1
Setup 4	1.0	0.3	1.0	0.4

High-level Control – Test Results

High-level Control – Videos

All videos: 2.5x

Conclusion

Summary

- Bio-inspired hierarchical controller for bipedal locomotion
- Low-level CPG controller optimized by a genetic algorithm
- Feedback mechanisms compared
- High-level neural network controller trained using reinforcement learning

Contribution

- High-level controller can improve the performance of CPG network
- Low-level feedback improves performance
- Hierarchical, modular controller not tightly coupled to a particular robot

Future work

- Improve turning mechanism
- Combining low-level feedbacks
- Balance control
- Implementation on the physical robot

Thank you for your attention

Literature

[Cristiano, 2014]	Julian Cristiano, Domenec Puig, and Miguel Angel Garcia. Locomotion control of a biped robot through a feedback CPG network. In ROBOT2013: First Iberian Robotics Conference, pages 527{540. Springer, 2014.
[Ishiguro, 2003]	Akio Ishiguro, Akinobu Fujii, and Peter Eggenberger Hotz. Neuromodulated Control of Bipedal Locomotion Using a Polymorphic CPG Circuit. Adaptive Behavior, 11(1):7, 2003.
[Kamimura, 2005]	Akiya Kamimura, Haruhisa Kurokawa, Eiichi Yoshida, Satoshi Murata, Kohji Tomita, and Shigeru Kokaji. Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Transactions on mechatronics, 10(3):314-325, 2005.
[Kerzel, 2017]	Matthias Kerzel, Erik Strahl, Sven Magg, Nicolas Navarro-Guerrero, Stefan Heinrich, and Stefan Wermter. Nico - neuro-inspired companion: A developmental humanoid robot platform for multimodal interaction. In Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pages 113-120, Aug 2017.
[Lillicrap, 2015]	Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.
[Matsuoka, 1985]	K Matsuoka. Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological cybernetics, 52(6):367-376, 1985.
[Matsuoka, 1987]	Kiyotoshi Matsuoka. Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics, 56(5-6):345-353, 1987.
[Shepherd, 1994]	Gordon M. Shepherd. Neurobiology. Oxford University Press, 1994.
[Tucker, 2015]	Tucker, Michael & Olivier, Jeremy & Pagel, Anna & Bleuler, Hannes & Bouri, Mohamed & Lambercy, Olivier & Millan, Jose del R. & Riener,

Journal of NeuroEngineering and Rehabilitation. 12. 1. 10.1186/1743-0003-12-1

Robert & Vallery, Heike & Gassert, Roger. (2015). Control Strategies for Active Lower Extremity Prosthetics and Orthotics: A Review.

Questions?

Matsuoka Oscillator Details

$$\begin{cases}
\tau \dot{u}_{1i} = -u_{1i} - w_0 y_{2i} - \beta v_{1i} + u_e + f_{1i} + s_{1i} \\
\tau' \dot{v}_{1i} = -v_{1i} + y_{1i}
\end{cases}$$

$$y_{1i} = max(0, u_{1i}) \text{ and } i = 1, ..., num$$

$$o_i = -m_1 y_{1i} + m_2 y_{2i}$$

$$\begin{cases}
\tau \dot{u_{2i}} = -u_{2i} - w_0 y_{1i} - \beta v_{2i} + u_e + f_{2i} + s_{2i} \\
\tau' \dot{v_{2i}} = -v_{2i} + y_{2i}
\end{cases}$$

$$y_{2i} = max(0, u_{2i}) \text{ and } i = 1, ..., num$$

$$s_{1i} = w_{ij} u_{1j}$$

$$s_{2i} = w_{ij} u_{2j}$$

 $\tau' = \tau_0' k_f$

Bias Position

Genetic Algorithm - Chromosomes

	Open loop			Angle feedback			Phase reset		
	run 1	run 2	run 3	run 1	run 2	run 3	run 1	run 2	run 3
k_f	0.4488	0.8144	0.4470	0.2258	0.7594	0.3178	0.3158	0.2840	0.2496
GAIN1	0.4167	0.7825	0.6213	0.5178	0.7708	0.3777	0.6792	0.4846	0.5626
GAIN2	0.1692	0.3372	0.0866	0.0101	0.0813	0.0234	0.0134	0.0469	0.0174
GAIN3	0.1861	0.0489	0.2071	0.0245	0.1381	0.0132	0.1478	0.0236	0.0140
GAIN4	0.6941	0.6607	0.7099	0.4555	0.8223	0.4567	0.4343	0.3094	0.3939
GAIN5	0.1372	0.0636	0.0818	0.2146	0.0223	0.2019	0.2060	0.2936	0.1845
GAIN6	0.5818	0.7723	0.4866	0.8918	0.2309	0.3309	0.3598	0.0883	0.9518
BIAS1	-0.1634	-0.0666	-0.1714	-0.1538	-0.0046	-0.0519	-0.1332	-0.2375	-0.3392
BIAS2	0.0356	0.3010	0.4983	0.1841	0.0895	0.0963	0.4287	0.2509	0.2576
BIAS3	-0.0147	-0.1895	-0.2999	-0.0973	-0.1217	-0.1156	-0.2780	-0.1445	-0.1045
BIAS4	0.0175	0.1774	0.0575	0.0107	0.5806	0.4814	0.5847	0.2630	0.0775
k	NA	NA	NA	0.7654	-0.6130	1.5364	NA	NA	NA

DDPG Algorithm

