

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

MAC: 1111.2222.3333

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

Receiver

Sender

Layer	Name	Includes
7		
6		
5		
4		
3		
2		
1		

Sender

Layer	Name	Includes
7	Application	
6		
5		
4		
3		
2		
1		

Receiver

L3

L4

- Host A (10.10.10.10/24) wants to send a packet to the FQDN www.flackbox.com, but it doesn't know the destination IP address
- It will hold the packet and send a DNS request to its DNS server at 10.10.100.10
- Host A compares its IP address and subnet mask to the destination address of the DNS server and sees it is on a different subnet, so the DNS request needs to be sent via its default gateway
- Host A will hold the DNS request and send a broadcast ARP request for its default gateway at 10.10.10.1

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

ARP Request from 10.10.10.10 'I'm looking for 10.10.10.1, What's your MAC address?'
Src MAC: 1111.2222.3333

Dst MAC: FFFF.FFFF.

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- The ARP request will be received by Switch 1
- Switch 1 will add an entry in its MAC address table mapping Host A's MAC address 1111.2222.3333 to Port 1
- Switch 1 will flood the broadcast traffic out all ports apart from the one it was received on

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

MAC: 1111.2222.3333

DNS: 10.10.100.1

ARP Request from 10.10.10.10 'I'm looking for 10.10.10.1, What's your MAC address?'

Src MAC: 1111.2222.3333

Dst MAC: FFFF.FFFF.

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- The ARP request will hit Router A's interface 10.10.10.1
- Router A will process the ARP request and see it is for itself
- Router A will send a unicast ARP reply to Host A
- Router A will add an entry for Host A mapping IP address 10.10.10.10 to MAC address 1111.2222.3333 to its ARP cache

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

ARP Reply 'I'm 10.10.10.1, Here's my MAC address'

Src MAC: 4444.5555.6666

Dst MAC: 1111.2222.3333

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- Switch 1 will add an entry in its MAC address table mapping Router A's MAC address 4444.5555.6666 to Port 2
- Switch 1 will send the ARP reply out only Port 1 which Host A is plugged into (which it already has in its MAC address table)

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

ARP Reply 'I'm 10.10.10.1, Here's my MAC address' Src MAC: 4444.5555.6666

Dst MAC: 1111.2222.3333

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- Host A will add an entry for Router A mapping IP address 10.10.10.1 to MAC address 4444.5555.6666 to its ARP cache
- It will use this whenever it needs to send traffic to another IP subnet
- Host A will send the DNS request for www.flackbox.com

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

DNS Request

'Tell me the IP address of

www.flackbox.com'

Src MAC: 1111.2222.3333

Dst MAC: 4444.5555.6666

Src IP: 10.10.10.10

Dst IP: 10.10.100.10

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

Switch 1 will send the DNS request out only Port 2 which Router A is plugged into (which it already has in its MAC address table)

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

DNS Request

'Tell me the IP address of

www.flackbox.com'

Src MAC: 1111.2222.3333

Dst MAC: 4444.5555.6666

Src IP: 10.10.10.10

Dst IP: 10.10.100.10

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- Router A will receive the DNS request packet and see that the destination IP address is 10.10.100.10
- Router A has an interface in the subnet 10.10.100.0/24, so it knows the destination should be available out that port
- It doesn't know the MAC address of 10.10.100.10 so it will hold the DNS request packet and send an ARP request out of the 10.10.100.1 interface

IP Address: 10.10.10.1 MAC: 4444.5555.6666 IP Address: 10.10.11.1 MAC: 5555.6666.7777 IP Address: 10.10.11.2 MAC: 6666.7777.8888 IP Address: 10.10.12.1 MAC: 7777.8888.9999

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

IP Address: 10.10.100.1

MAC: 8888.9999.AAAA

DG: 10.10.12.1

MAC: 2222.3333.4444

www.flackbox.com

IP Address: 10.10.12.10/24

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

ARP Request from 10.10.100.1 'I'm looking for 10.10.100.10, What's your MAC address?'

Src MAC: 8888.9999.AAAA

Dst MAC: FFFF.FFF

- The ARP request will be received by Switch 3
- Switch 3 will add an entry in its MAC address table mapping Router A's MAC address 8888.9999.AAAA to Port 1
- Switch 3 will flood the broadcast traffic out all ports apart from the one it was received on

IP Address: 10.10.10.1 MAC: 4444.5555.6666 IP Address: 10.10.11.1 MAC: 5555.6666.7777 IP Address: 10.10.11.2 MAC: 6666.7777.8888 IP Address: 10.10.12.1 MAC: 7777.8888.9999

•

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

IP Address: 10.10.100.1

MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

ARP Request from 10.10.100.1 'I'm looking for 10.10.100.10, What's your MAC address?'

Src MAC: 8888.9999.AAAA

Dst MAC: FFFF.FFFF.

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- The ARP request will hit the DNS Server's interface 10.10.100.10
- The DNS Server will process the ARP request and see it is for itself
- The DNS Server will send a unicast ARP reply to Router A
- The DNS Server will add an entry for Router A mapping IP address 10.10.100.1 to MAC address 8888.9999.AAAA to its ARP cache
- It will use this whenever it needs to send traffic to another IP subnet

IP Address: 10.10.10.1

MAC: 4444.5555.6666

IP Address: 10.10.11.1 MAC: 5555.6666.7777 IP Address: 10.10.11.2 MAC: 6666.7777.8888 IP Address: 10.10.12.1 MAC: 7777.8888.9999

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

ARP Reply

'l'm 10.10.100.10,

Here's my MAC address'

Src MAC: 3333.4444.5555

Dst MAC: 8888.9999.AAAA

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- Switch 3 will add an entry in its MAC address table mapping the DNS Server's MAC address 3333.4444.5555 to Port 2
- Switch 3 will send the ARP reply out only Port 1 which Router A is plugged into (which it already has in its MAC address table)

IP Address: 10.10.11.1 MAC: 5555.6666.7777

IP Address: 10.10.11.2 MAC: 6666.7777.8888

IP Address: 10.10.12.1 MAC: 7777.8888.9999

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

ARP Reply

'l'm 10.10.100.10,

Here's my MAC address'

Src MAC: 3333.4444.5555

Dst MAC: 8888.9999.AAAA

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- Router A will add an entry for the DNS Server mapping IP address 10.10.100.10 to MAC address 3333.4444.5555 to its ARP cache
- Router A will send the DNS request it was holding to the DNS Server

- The source and destination MAC addresses of a packet are updated hop by hop, the source and destination IP addresses always remain unchanged end to end
- The source and destination MAC addresses will be updated to come from Router A and go to the DNS Server
- The source and destination IP addresses are still Host A 10.10.10.10 and the DNS Server 10.10.100.10

IP Address: 10.10.10.1

MAC: 4444.5555.6666

IP Address: 10.10.11.1 MAC: 5555.6666.7777

IP Address: 10.10.11.2

MAC: 6666.7777.8888

IP Address: 10.10.12.1 MAC: 7777.8888.9999

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

DNS Request

'Tell me the IP address of

www.flackbox.com'

Src MAC: 8888.9999.AAAA

Dst MAC: 3333.4444.5555

Src IP: 10.10.10.10

Dst IP: 10.10.100.10

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

Switch 3 will send the ARP reply out only Port 2 which the DNS Server is plugged into (which it already has in its MAC address table)

IP Address: 10.10.11.1 MAC: 5555.6666.7777

IP Address: 10.10.11.2 MAC: 6666.7777.8888

IP Address: 10.10.12.1 MAC: 7777.8888.9999

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

MAC: 1111.2222.3333

DNS: 10.10.100.1

DNS Request

'Tell me the IP address of

www.flackbox.com'

Src MAC: 8888.9999.AAAA

Dst MAC: 3333.4444.5555

Src IP: 10.10.10.10

Dst IP: 10.10.100.10

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

The DNS Server will receive the DNS request packet and see that the destination is itself

	1

Layer	Name	Includes
7	Application	
6	Presentation	
5	Session	
4	Transport	
3	Network	
2	Data-Link	
1	Physical	

L3

L4

L5

L6

L7

me	Includes	Receiver
al:aa#:a.a		

Layer	Ivaille	illelades
7	Application	
6	Presentation	
5	Session	
4	Transport	
3	Network	
2	Data-Link	Dst: 3333.4444.5555
1	Physical	
	7 6 5 4 3	7 Application 6 Presentation 5 Session 4 Transport 3 Network 2 Data-Link

L2

L3

L4

L5

L6

L7

Layer	Name	Includes
7	Application	
6	Presentation	
5	Session	
4	Transport	
3	Network	Dst: 10.10.100.10
2	Data-Link	Dst: 3333.4444.5555
1	Physical	

Layer	Name	Includes
7	Application	
6	Presentation	
5	Session	
4	Transport	UDP Port 53
3	Network	Dst: 10.10.100.10
2	Data-Link	Dst: 3333.4444.5555
1	Physical	

Name	Includes
Application	
Presentation	
Session	
Transport	UDP Port 53
Network	Dst: 10.10.100.10
Data-Link	Dst: 3333.4444.5555
Physical	
	Application Presentation Session Transport Network Data-Link

Layer	Name	Includes
7	Application	
6	Presentation	
5	Session	
4	Transport	UDP Port 53
3	Network	Dst: 10.10.100.10
2	Data-Link	Dst: 3333.4444.5555
1	Physical	

Layer	Name	Includes
7	Application	
6	Presentation	
5	Session	
4	Transport	UDP Port 53
3	Network	Dst: 10.10.100.10
2	Data-Link	Dst: 3333.4444.5555
1	Physical	

Receiver

- The DNS Server will look in its DNS database and see an Address record for www.flackbox.com at 10.10.12.10
- It will send this information to Host A in a DNS response
- It knows to send the response to 10.10.10.10 from the source IP address in the DNS request
- It knows to send it via Router A because the destination is in another subnet
- It already has Router A's MAC address in its ARP cache

IP Address: 10.10.10.1 MAC: 4444.5555.6666

IP Address: 10.10.11.1 MAC: 5555.6666.7777

IP Address: 10.10.11.2 MAC: 6666.7777.8888

IP Address: 10.10.12.1 MAC: 7777.8888.9999

www.flackbox.com

MAC: 2222.3333.4444

DG: 10.10.12.1

IP Address: 10.10.12.10/24

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

MAC: 3333.4444.5555

DNS Reply: www.flackbox.com

is at 10.10.12.10

Src MAC: 3333.4444.5555

Dst MAC: 8888.9999.AAAA

Src IP: 10.10.100.10

Dst IP: 10.10.10.10

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

Switch 3 will receive the DNS response and send it out only Port 1 which Router A is plugged into (which it already has in its MAC address table)

IP Address: 10.10.10.1 MAC: 4444.5555.6666

IP Address: 10.10.11.1 MAC: 5555.6666.7777

IP Address: 10.10.11.2 MAC: 6666.7777.8888 IP Address: 10.10.12.1 MAC: 7777.8888.9999

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

DNS Reply: www.flackbox.com

is at 10.10.12.10

Src MAC: 3333.4444.5555

Dst MAC: 8888.9999.AAAA

Src IP: 10.10.100.10

Dst IP: 10.10.10.10

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- Router A will receive the DNS response packet and see that the destination IP address is 10.10.10.10
- Router A has an interface in the subnet 10.10.10.0/24, so it knows the destination is available out that port
- Router A already has the MAC address for 10.10.10.10 in its ARP cache

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

DNS Reply: www.flackbox.com

is at 10.10.12.10

Src MAC: 4444.5555.6666

Dst MAC: 1111.2222.3333

Src IP: 10.10.100.10

Dst IP: 10.10.10.10

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

Switch 1 will receive the DNS response and send it out only Port 1 which Host A is plugged into (which it already has in its MAC address table)

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

DNS Reply: www.flackbox.com

is at 10.10.12.10

Src MAC: 4444.5555.6666

Dst MAC: 1111.2222.3333

Src IP: 10.10.100.10

Dst IP: 10.10.10.10

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- Host A learns that www.flackbox.com is available at 10.10.12.10
- It can now update the packet it was waiting to send to www.flackbox.com with that destination IP address
- Host A sees that www.flackbox.com is not on its own subnet so it knows any packets it sends there must go via its default gateway

L3

L4

L3

L2

L3

L4

L5

L6

Sender

Layer	Name	Includes
7	Application	
6	Presentation	
5	Session	
4	Transport	TCP, Dst. Port 80
3	Network	Dst: 10.10.12.10
2	Data-Link	Dst: 4444.5555.6666
1	Physical	

Receiver

L3

L4

5

L6

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

HTTP Get Request

Src MAC: 1111.2222.3333

Dst MAC: 4444.5555.6666

Src IP: 10.10.10.10

Dst IP: 10.10.12.10

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

Switch 1 will send the packet to Router A which it already has in its MAC address table

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

HTTP Get Request

Src MAC: 1111.2222.3333

Dst MAC: 4444.5555.6666

Src IP: 10.10.10.10

Dst IP: 10.10.12.10

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- Router A will receive the packet with destination IP address 10.10.12.10
- Router A does not have any interfaces in the 10.10.12.0/24 subnet
- In this case it will need a route to get there
- The route can be either statically configured by an administrator or learned dynamically through a routing protocol

- In this example the administrator has configured a static route for 10.10.12.0/24 with the next hop address 10.10.11.2
- Router A has an Ethernet interface in the 10.10.11.0 subnet
- It doesn't know the MAC address for the next hop address 10.10.11.2 yet
- It will hold the HTTP packet and send an ARP request for 10.10.11.2

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

ARP Request from 10.10.11.1 'I'm looking for 10.10.11.2, What's your MAC address?' Src MAC: 5555.6666.7777

Dst MAC: FFFF.FFFF.

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- The ARP request will hit Router B's interface 10.10.11.2
- Router B will process the ARP request and see it is for itself
- Router B will send a unicast ARP reply to Router A
- Router B will add an entry for Router A mapping IP address 10.10.11.1 to MAC address 5555.6666.7777 to its ARP cache

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

ARP Reply 'I'm 10.10.11.2, Here's my MAC address'

Src MAC: 6666.7777.8888

Dst MAC: 5555.6666.7777

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

Router A will forward the HTTP packet it was holding to Router B

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

HTTP Get Request

Src MAC: 5555.6666.7777

Dst MAC: 6666.7777.8888

Src IP: 10.10.10.10

Dst IP: 10.10.12.10

MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- Router B will receive the HTTP packet and see that the destination IP address is 10.10.12.10
- Router B has an interface in the subnet 10.10.12.0/24, so it knows the destination should be available out that port
- It doesn't know the MAC address of 10.10.12.10 so it will hold the HTTP packet and send an ARP request out of the 10.10.12.1 interface

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

ARP Request from 10.10.12.1 'I'm looking for 10.10.12.10, What's your MAC address?' Src MAC: 7777.8888.9999

Dst MAC: FFFF.FFFF.

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- The ARP request will be received by Switch 2
- Switch 2 will add an entry in its MAC address table mapping Router B's MAC address 7777.8888.9999 to Port 1
- Switch 2 will flood the broadcast traffic out all ports apart from the one it was received on

MA MA

IP Address: 10.10.10.1

MAC: 4444.5555.6666

IP Address: 10.10.11.1 MAC: 5555.6666.7777 IP Address: 10.10.11.2

MAC: 6666.7777.8888

IP Address: 10.10.12.1 MAC: 7777.8888.9999

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

IP Address: 10.10.100.1

MAC: 8888.9999.AAAA

IP DO

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

ARP Request from 10.10.12.1

'I'm looking for 10.10.12.10,

What's your MAC address?'

Src MAC: 7777.8888.9999

Dst MAC: FFFF.FFFF

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- The ARP request will hit the Web Server's interface 10.10.12.10
- The Web Server will process the ARP request and see it is for itself
- The Web Server will send a unicast ARP reply to Router B
- The Web Server will add an entry for Router B mapping IP address 10.10.12.1 to MAC address 7777.8888.9999 to its ARP cache
- It will use this whenever it needs to send traffic to another IP subnet

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

ARP Reply 'I'm 10.10.12.10, Here's my MAC address' Src MAC: 2222.3333.4444

Dst MAC: 7777.8888.9999

MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- Switch 2 will add an entry in its MAC address table mapping the Web Server's MAC address 2222.3333.4444 to Port 2
- Switch 2 will send the ARP reply out only Port 1 which Router B is plugged into (which it already has in its MAC address table)

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

ARP Reply 'I'm 10.10.12.10, Here's my MAC address'

Src MAC: 2222.3333.4444

Dst MAC: 7777.8888.9999

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

- Router B will add an entry for the Web Server mapping IP address 10.10.12.10 to MAC address 2222.3333.4444 to its ARP cache
- Router B will send the HTTP request it was holding to the Web Server

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

HTTP Get Request

Src MAC: 7777.8888.9999

Dst MAC: 2222.3333.4444

Src IP: 10.10.10.10

Dst IP: 10.10.12.10

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

Switch 2 will send the HTTP request out only Port 2 which the Web Server is plugged into (which it already has in its MAC address table)

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

HTTP Get Request

Src MAC: 7777.8888.9999

Dst MAC: 2222.3333.4444

Src IP: 10.10.10.10

Dst IP: 10.10.12.10

MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

	=
	╛

Layer	Name	Includes
7	Application	
6	Presentation	
5	Session	
4	Transport	
3	Network	
2	Data-Link	
1	Physical	

L3

L4

L5

L6

L7

	•	
KΔ	ceiv	Δr
116	CCIV	CI

Layer	Name	Includes
7	Application	
6	Presentation	
5	Session	
4	Transport	
3	Network	
2	Data-Link	Dst: 2222.3333.4444
1	Physical	

Sender

=

Includes	Receiver

Layer	Name	includes
7	Application	
6	Presentation	
5	Session	
4	Transport	
3	Network	Dst: 10.10.12.10
2	Data-Link	Dst: 2222.3333.4444
1	Physical	

Sender

es es	Receiver
	1,000.00

Layer	Name	Includes
7	Application	
6	Presentation	
5	Session	
4	Transport	TCP Port 80
3	Network	Dst: 10.10.12.10
2	Data-Link	Dst: 2222.3333.4444
1	Physical	

Layer	Name	Includes
7	Application	
6	Presentation	
5	Session	
4	Transport	TCP Port 80
3	Network	Dst: 10.10.12.10
2	Data-Link	Dst: 2222.3333.4444
1	Physical	

Layer	Name	Includes
7	Application	
6	Presentation	
5	Session	
4	Transport	TCP Port 80
3	Network	Dst: 10.10.12.10
2	Data-Link	Dst: 2222.3333.4444
1	Physical	

Layer	Name	Includes
7	Application	
6	Presentation	
5	Session	
4	Transport	TCP Port 80
3	Network	Dst: 10.10.12.10
2	Data-Link	Dst: 2222.3333.4444
1	Physical	

The ARP and MAC addresses tables are already built so subsequent packets in either direction will flow without any need for ARP requests or switch flooding

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

HTTP Get Request

Src MAC: 1111.2222.3333

Dst MAC: 4444.5555.6666

Src IP: 10.10.10.10

Dst IP: 10.10.12.10

IP Address: 10.10.100.1 MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

HTTP Get Request

Src MAC: 5555.6666.7777

Dst MAC: 6666.7777.8888

Src IP: 10.10.10.10

Dst IP: 10.10.12.10

MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1

Host A

IP Address: 10.10.10.10/24

DG: 10.10.10.1

DNS: 10.10.100.1

MAC: 1111.2222.3333

HTTP Get Request

Src MAC: 7777.8888.9999

Dst MAC: 2222.3333.4444

Src IP: 10.10.10.10

Dst IP: 10.10.12.10

MAC: 8888.9999.AAAA

DNS Server

IP Address: 10.10.100.10/24

DG: 10.10.100.1

MAC: 3333.4444.5555

www.flackbox.com

IP Address: 10.10.12.10/24

DG: 10.10.12.1