In the Claims:

l	16.	(New)	An	apparatus	comprising:
•		()			

- 2 an analog photocell;
- a sample and hold amplifier, a first input to the sample and hold amplifier being a
- charge from the analog photocell, a second input to the sample and hold
- 5 amplifier being a reference voltage; and
- an analog to digital converter, the analog to digital converter converting the
- 7 output of the sample and hold amplifier to a digital value.--
- 1 17. (New) -- The apparatus of claim 16, wherein the sample and hold amplifier
- produces a scaled version of the voltage output of the analog photocell.--
- 1 18. (New) -- The apparatus of claim 17, wherein the sample and hold amplifier
- 2 matches the dynamic ranges of the analog photocell and the analog to digital
- 3 converter.--
- 19. (New) -- The apparatus of claim 17, wherein the sample and hold amplifier
- 2 modifies the dynamic range of the analog photocell based, at least in part, on
- 3 ambient light conditions.--
- 1 20. (New) -- The apparatus of claim 16, wherein the analog to digital converter
- 2 comprises:
- a voltage controlled oscillator, an input of the voltage controller oscillator being a
- 4 output from the sample and hold amplifier; and

5	a counter, the counter being driven by an output of the voltage controlled				
6	oscillator				

- 1 21. (New) --The apparatus of claim 20, further comprising a memory, the memory
 2 storing an output of the counter.--
- 1 22. (New) --The apparatus of claim 21, wherein counter is reset after a certain period of time.--
- 1 23. (New) --The apparatus of claim 22, wherein the period of time is an integration
 2 time for the analog photocell.--
- 1 24. (New) -- A method comprising:
- 2 inputting a charge of a analog photocell to a sample and hold amplifier;
- inputting a reference voltage to the sample and hold amplifier;
- 4 converting an output of the sample and hold amplifier to a digital value.--
- 1 25. (New) -- The method of claim 24, further comprising:
- 2 modifying the scale of the analog photocell charge using the sample and hold
 3 amplifier.--
- 1 26. (New) -- The method of claim 25, wherein the sample and hold amplifier matches
- a dynamic range of the analog photocell to a dynamic range appropriate for
- converting the output of the sample and hold amplifier to a digital value.--
- 27. (New) -- The method of claim 25, a dynamic range of the analog photocell is
- 2 modified based, at least in part, on ambient light conditions.--

l	28.	(New) The method of claim 24, wherein converting the output of the sample
2		and hold amplifier to a digital value comprises:
3		applying an output of the sample and hold amplifier to a voltage controlled
4		oscillator; and
5		driving a counter using the output of the voltage controlled oscillator
1	29.	(New) The method of claim 28, wherein a count from the counter is
2		proportional to the intensity of light on the analog photocell during a previous
3		integration time period for the photocell
1	30.	(New) The method of claim 29, further comprising storing a count from the
2		counter in a register
i	31.	(New) The method of claim 30, further comprising resetting the counter after
2		the passage of the integration time period for the photocell
1	32.	(New) An digital photocell comprising:
2		an analog photocell;
3		a sample and hold amplifier, a first input of the sample and hold amplifier being
4		an output of the analog photocell and a second input of the sample and
5	•	hold amplifier being a reference voltage;
6		a voltage controlled oscillator, an input to the voltage controlled oscillator being
7		an output of the sample and hold amplifier;
8		a counter, a speed at which the counter operates being controlled by an output of
9		the voltage controlled oscillator; and

- a register, the register storing an output of the counter.--
- 1 33. (New) -- The digital photocell of claim 32, wherein the counter counts for a
- specified time period and wherein the counter is reset at the end of the time
- 3 period.--
- 1 34. (New) -- The digital photocell of claim 32, wherein the time period is an
- 2 integration time period for the analog photocell.--
- 1 35. (New) -- The digital photocell of claim 34, wherein the output stored in the
- register is a digital value that reflects an intensity of light incident on the analog
- during the previous integration time period.--
- 1 36. (New) -- The digital photocell of claim 32, wherein the digital photocell is
- 2 included in a pixel array.--
- 1 37. (New) -- The digital photocell of claim 32, wherein the sample and hold amplifier
- 2 scales the input to the voltage controlled oscillator.--
- 1 38. (New) --The digital photocell of claim 37, wherein the input to the voltage
- 2 controlled oscillator is scaled based at least in part on ambient light levels.--
- 1 39. (New) -- A method comprising:
- applying a voltage of a analog photocell as a first input to a sample and hold
- 3 amplifier;
- applying a reference voltage as a second input to the sample and hold amplifier;

- applying an output of the sample and hold amplifier to a voltage controlled
- 6 oscillator;
- driving a counter with the output of the voltage controlled oscillator;
- saving a count from the counter; and
- 9 resetting the counter at the conclusion of a time period.--
- 1 40. (New) -- The method of claim 39, wherein the time period is an integration period
- 2 of the analog photocell.--
- 1 41. (New) -- The method of claim 39, wherein the count from the counter is saved in
- 2 a register.--
- 1 42. (New) -- The method of claim 39, wherein the count from the counter is
- 2 proportional to intensity of light incident on the analog photocell.--