Package 'mcen'

March 22, 2023

Type Package

Title Multivariate Cluster Elastic Net							
Version 1.2.1							
Date 2023-03-22							
Author Ben Sherwood [aut, cre], Brad Price [aut]							
Depends R (>= 3.0.0), glmnet, flexclust, Matrix, parallel, faraway, methods, stats							
Maintainer Ben Sherwood <ben.sherwood@ku.edu></ben.sherwood@ku.edu>							
Description Fits the Multivariate Cluster Elastic Net (MCEN) presented in Price & Sherwood (2018) <arxiv:1707.03530>. The MCEN model simultaneously estimates regression coefficients and a clustering of the responses for a multivariate response model. Currently accommodates the Gaussian and binomial likelihood.</arxiv:1707.03530>							
ByteCompile TRUE							
License MIT + file LICENSE							
NeedsCompilation yes							
Repository CRAN							
Date/Publication 2023-03-22 22:10:08 UTC							
R topics documented:							
•							
beta_adjust 2 beta_adjust_bin 3 bin_horse 3 CalcHorseBin 4 CalcHorseEBin 5 cluster 5 cluster.vals 6 coef.cv.mcen 7 coef.mcen 7 cv.mcen 8 get_best_cvm 9							
motrix multiply							

2 beta_adjust

beta _.	_adjust	Adju y.	ısts	th	e ı	al	ие	of	th	е с	oe	ffi	cie	ent	s i	0	ac	co	un	t fo	or	th	e.	SC	ali	in	g e	of.	x e	an	d
Index																															22
	vl_binom		٠		•	•		•	•		•	•	•		•	•	•		•	•	•	•		•		•	•	•	•	•	21
	squared_error																														20
	SetEq																														
	randomly_assign .																														19
	print.mcen																														19
	print.cv.mcen																														18
	pred_eval.mgauss_n	ncen																													17
	pred_eval.mbinom_i	ncen																													17
	pred_eval																														16
	predict.mcen																														16
	predict.cv.mcen																														15
	mcen_workhorse .																														14
	mcen_bin_workhors	e																													13
	mcen.init																														12
	mcen																														11

Description

Adjusts the value of the coefficients to account for the scaling of x and y.

Usage

```
beta_adjust(beta, sigma_x, sigma_y, mean_x, mean_y)
```

Arguments

beta	The estiamte of beta with scaled data.
sigma_x	Sample tandard deviations of the original predictors.
sigma_y	Sample standard deviations of the orignal responses.
mean_x	Sample means of the original predictors .
mean_y	Sample means of the original responses.

Value

Returns the adjusted coefficients

Author(s)

Ben Sherwood
 ben.sherwood@ku.edu>, Brad Price
 brad.price@mail.wvu.edu>

beta_adjust_bin 3

of x .	beta_adjust_bin	Adjusts the value of the binomial coefficients to account for the scaling of x .
----------	-----------------	--

Description

Adjusts the value of the binomial coefficients to account for the scaling of x.

Usage

```
beta_adjust_bin(beta, sigma_x)
```

Arguments

beta The estiamte of beta with scaled data.

sigma_x Sample tandard deviations of the original predictors.

Value

Returns the adjusted coefficients

Author(s)

Ben Sherwood
 ben.sherwood@ku.edu>, Brad Price
 brad.price@mail.wvu.edu>

bin_horse The workhorse function for the binomial updates in mcen. It uses I. WLS glmnet updates to solve the regression problem.	IR-
--	-----

Description

The workhorse function for the binomial updates in mcen. It uses IRWLS glmnet updates to solve the regression problem.

Usage

```
bin_horse(Y, X, delta, gamma_y, y_clusters, set_length, eps, maxiter)
```

4 CalcHorseBin

Arguments

Y the matrix of responses

X the matrix of predictors with the intercept included

delta the tuning parameter for the lasso penalty

gamma_y the tuning parameter for the ridge fusion penalty

y_clusters the cluster assignments from the provided clustering algorithm

set_length the size of each cluster corresponding to a given response. r dimensions with

each element containing the cluster size of that responses cluster.

eps the tolerance for conversion normally 1e-5

maxiter the maximum number of iterations

Value

Returns a matrix of coefficients

Author(s)

Brad Price

brad.price@mail.wvu.edu>

CalcHorseBin	Creates the the working response for all responses for glmnet binomial
	family

Description

Creates the the working response for all responses for glmnet binomial family

Usage

```
CalcHorseBin(Y, X, Beta)
```

Arguments

Y is the matrix of responses result is the list of vectors needed for the working

responses in glmnet

X the matrix of predictors.

Beta current iteration of the regression coefficients

Author(s)

Brad Price

brad.price@mail.wvu.edu>

CalcHorseEBin 5

CalcHorseEBin	Creates the probabilities and working response for the glmnet update for a given response with a binomial family
	jor a given response with a bitomai jamily

Description

Creates the probabilities and working response for the glmnet update for a given response with a binomial family

Usage

```
CalcHorseEBin(X, Beta, Y, r)
```

Arguments

X the matrix of predictors.

Beta current iteration of the regression coefficients

Y is the matrix of responses

r the response of interest result is a list of things needed for the working response

in glmnet

Author(s)

Brad Price

brad.price@mail.wvu.edu>

cluster

Wrapper function for different clustering methods

Description

Wrapper function for different clustering methods

Usage

```
cluster(x, cNum, clusterMethod = "kmeans", clusterIterations = 100,
    clusterStartNum = 30)
```

Arguments

x data to be clustered. Clustering will be done on the columns.

cNum number of cluster centers

clusterMethod "kmean" for kmeans function, "kmeanspp" for kcca implementation of kmeans++ clusterIterations

number of maximum iterations for clustering

clusterStartNum

random number of starting points used

6 cluster.vals

Value

Returns cluster assignments

Author(s)

Ben Sherwood
 ben.sherwood@ku.edu>, Brad Price
 brad.price@mail.wvu.edu>

cluster.vals

Returns the cluster values from a cv.mcen object.

Description

Returns the cluster values from a cv.mcen object.

Usage

```
cluster.vals(obj)
```

Arguments

obj

The cv.mcen object.

Value

Returns the clusters from the model with the smallest cross-validation error.

Author(s)

Ben Sherwood
 ben.sherwood@ku.edu>, Brad Price
 brad.price@mail.wvu.edu>

Examples

```
x <- matrix(rnorm(400),ncol=4)
beta <- beta <- matrix(c(1,1,0,0,0,0,-1,-1,0,0,-1,-1,1,1,0,0),ncol=4)
y <- x%*%beta + rnorm(400)
mcen_fit <- cv.mcen(x,y,ky=2,gamma_y=3)
mcen_cluster <- cluster.vals(mcen_fit)</pre>
```

coef.cv.mcen 7

coef.cv.mcen	Returns the coefficients from the cv.mcen object with the smallest cross-validation error.

Description

Returns the coefficients from the cv.mcen object with the smallest cross-validation error.

Usage

```
## S3 method for class 'cv.mcen'
coef(object, ...)
```

Arguments

```
object The cv.mcen object.... Additional values to be passed.
```

Value

The matrix of coefficients for the best MCEN model as determined by cross-validation.

Author(s)

Ben Sherwood
 ben.sherwood@ku.edu>, Brad Price
 brad.price@mail.wvu.edu>

Examples

```
x <- matrix(rnorm(400),ncol=4)
beta <- beta <- matrix(c(1,1,0,0,0,0,-1,-1,0,0,-1,-1,1,1,0,0),ncol=4)
y <- x%*%beta + rnorm(400)
mcen_fit <- cv.mcen(x,y,ky=2,gamma_y=3)
best_coef <- coefficients(mcen_fit)</pre>
```

coef.mcen

Returns the coefficients from an meen object.

Description

Returns the coefficients from an mcen object.

Usage

```
## S3 method for class 'mcen'
coef(object, delta = NULL, ...)
```

8 cv.mcen

Arguments

object The mcen object.

delta The L1 tuning parameter
... Additional values to pass on.

Value

The matrix of coefficients.

Author(s)

Ben Sherwood
 ben.sherwood@ku.edu>, Brad Price
 brad.price@mail.wvu.edu>

Examples

```
x <- matrix(rnorm(400),ncol=4)
beta <- beta <- matrix(c(1,1,0,0,0,0,-1,-1,0,0,-1,-1,1,1,0,0),ncol=4)
y <- x**beta + rnorm(400)
mcen_fit <- mcen(x,y,ky=2,gamma_y=3,delta=c(1,2))
best_coef <- coefficients(mcen_fit,delta=1)</pre>
```

cv.mcen

Cross validation for meen function

Description

Cross validation for meen function

Usage

```
cv.mcen(x, y, family = "mgaussian", ky = seq(2, 4), gamma_y = seq(0.1,
5.1, 0.5), nfolds = 10, folds = NULL, cluster_y = NULL, delta=NULL, n.cores = 1,
...)
```

Arguments

X	Matrix set of predictors.
у	Matrix set of responses.
family	The exponential family the response corresponds to.
ky	A vector with the number of possible clusters for y.
gamma_y	Set of tuning parameter for clustering penalty in response categories.
nfolds	Number of folds used in the cross-validation.
folds	A vector of length n, where this identifies what fold of the kfold cross validation each observation belongs to.

get_best_cvm 9

cluster_y a priori definition of clusters. If clusters are provided they will remain fixed and

are not estimated. Objective function is then convex.

delta Tuning parameter for the L1 penalty

n.cores Number of cores used for parallel processing.

... The variables passed to meen

Value

Returns a cv.mcen object.

models A list of meen objects.
cv Cross validation results.

ky The same value as the input ky.

gamma_y The same value as the input gamma_y.

Author(s)

Ben Sherwood <ben.sherwood@ku.edu>, Brad Price <brad.price@mail.wvu.edu>

References

Price, B.S. and Sherwood, B. (2018). A Cluster Elastic Net for Multivariate Regression. arXiv preprint arXiv:1707.03530. http://arxiv-export-lb.library.cornell.edu/abs/1707.03530.

Examples

```
x <- matrix(rnorm(400),ncol=4)
beta <- beta <- matrix(c(1,1,0,0,0,0,-1,-1,0,0,-1,-1,1,1,0,0),ncol=4)
y <- x**beta + rnorm(400)
cv_fit <- cv.mcen(x,y,ky=2)</pre>
```

get_best_cvm

Gets the index position for the model with the smallest cross-validation error.

Description

Gets the index position for the model with the smallest cross-validation error.

Usage

```
get_best_cvm(model)
```

Arguments

model

The cv.mcen object.

10 matrix_multiply

Value

Returns the index for the model with the smallest cross-validation error.

Author(s)

Ben Sherwood <ben.sherwood@ku.edu>, Brad Price <brad.price@mail.wvu.edu>

Examples

```
x <- matrix(rnorm(400),ncol=4)
beta <- beta <- matrix(c(1,1,0,0,0,0,-1,-1,0,0,-1,-1,1,1,0,0),ncol=4)
y <- x**beta + rnorm(400)
mcen_fit <- cv.mcen(x,y,ky=2,gamma_y=3)
get_best_cvm(mcen_fit)</pre>
```

matrix_multiply

matrix multiply

Description

matrix multiply

Usage

```
matrix_multiply(beta, x)
```

Arguments

beta Matrix of coefficients.

x Design matrix.

Value

Returns x times beta

Author(s)

Ben Sherwood <ben.sherwood@ku.edu>, Brad Price <brad.price@mail.wvu.edu>

mcen 11

mcen Fits an MCEN model

Description

Fits an MCEN model

Usage

```
mcen(x, y, family = "mgaussian", ky = NULL, delta = NULL, gamma_y = 1,
  ndelta = 25, delta.min.ratio = NULL, eps = 1e-05,
  scale_x = TRUE, scale_y = TRUE, clusterMethod = "kmeans",
  clusterStartNum = 30, clusterIterations = 10, cluster_y = NULL,
  max_iter = 10, init_beta = NULL, n.cores = 1)
```

Arguments

X	Matrix of predictors.
у	Matrix of responses.

family Type of likelihood used two options "mgaussian" or "mbinomial".

ky Clusters for response.

delta L1 penalty.

gamma_y Penalty for with y clusters difference in predicted values.

ndelta Number of delta parameters.

delta.min.ratio

Ratio between smallest and largest delta.

eps Convergence criteria.

scale_x Whether x matrix should be scaled, default is True.
scale_y Whether y matrix should be scaled, default is True.

clusterMethod K-means function used kmeans or kmeanspp.

clusterStartNum

Number of random starting points for clustering.

clusterIterations

Number of iterations for cluster convergence.

cluster_y An a priori definition of clusters. If clusters are provided they will remain fixed

and are not estimated. Objective function is then convex.

max_iter Maximum number of iterations for coefficient estimates.

init_beta Clustering step requires an initial estimate, default is to use elastic net solution.

n.cores Number of cores used for calculation default is 1.

12 mcen.init

Value

returns a MCEN object

beta List of the coefficient estimates.

delta Value of delta.
gamma_y Value of gamma_y.

ky Value of ky.

y_clusters List of the clusters of y.

Author(s)

Ben Sherwood <ben.sherwood@ku.edu>, Brad Price <brad.price@mail.wvu.edu>

References

Price, B.S. and Sherwood, B. (2018). A Cluster Elastic Net for Multivariate Regression. arXiv preprint arXiv:1707.03530. http://arxiv-export-lb.library.cornell.edu/abs/1707.03530.

Examples

```
x <- matrix(rnorm(400),ncol=4)
beta <- beta <- matrix(c(1,1,0,0,0,0,-1,-1,0,0,-1,-1,1,1,0,0),ncol=4)
y <- x%*%beta + rnorm(400)
mcen_fit <- mcen(x,y,ky=2,delta=1)</pre>
```

mcen.init

Provides initial estimates for the meen functionF

Description

Provides initial estimates for the mcen functionF

Usage

```
mcen.init(x, y, family = "mgaussian", delta = NULL, gamma_y = 1,
  intercept = FALSE)
```

Arguments

x the n x p design matrix

y the n x y matrix of responses

family type of likelihood used two options "mgaussian" or "mbinomial"

delta sparsity tuning parameter

gamma_y tuning parameter for clustering responses

intercept whether an intercept should be included in the model

mcen_bin_workhorse 13

Value

matrix of coefficients

Author(s)

Ben Sherwood
 ben.sherwood@ku.edu>, Brad Price
 brad.price@mail.wvu.edu>

mcen_bin_workhorse	Calculates cluster assignment and coefficient estimates for a binomial
	mcen.

Description

Calculates cluster assignment and coefficient estimates for a binomial mcen.

Usage

```
mcen_bin_workhorse(beta, delta = NULL, y, x, family = "mbinomial",
   ky = NULL, gamma_y = 1, eps = 1e-05, clusterMethod = "kmeans",
   clusterIterations = 100, clusterStartNum = 30, cluster_y = NULL,
   max_iter = 10)
```

Arguments

beta	Initial estimate of coefficients.				
delta	Tuning parameter for L1 penalty.				
у	Matrix of responses.				
Х	Matrix of predictors.				
family	type of likelihood used two options "mgaussian" or "mbinomial"				
ky	Number of clusters used for grouping response variables.				
gamma_y	Tuning parameter for the penalty between fitted values for responses in the same				
	group.				
eps	Convergence criteria				
clusterMethod	Which clustering method was used, currently support kmeans or kmeanspp				
clusterIterations					
	Number of iterations for cluster convergence				
clusterStartNu	m				
	Number of random starting points for clustering				
cluster_y	An a priori definition of clusters. If clusters are provided they will remain fixed and are not estimated. Objective function is then convex.				

The maximum number of iterations for estimating the coefficients

Author(s)

max_iter

Brad Price

brad.price@mail.wvu.edu>

14 mcen_workhorse

mcen_workhorse	Estimates the clusters and provides the coefficients for an meen object

Description

Estimates the clusters and provides the coefficients for an mcen object

Usage

```
mcen_workhorse(beta, delta = NULL, xx, xy, family = "mgaussian",
 ky = NULL, gamma_y = 0.5, eps = 1e-05, clusterMethod = "kmeans",
 clusterIterations = 100, clusterStartNum = 30, cluster_y = NULL,
 max_iter = 10, x = x)
```

Arguments

beta	The initial value of the coefficients	
delta	The sparsity (L1) tuning parameter	
xx	Matrix of transpose of x times x.	
ху	Matrix of transpose of x times y.	
family	Type of likelihood used two options "mgaussian" or "mbinomial"	
ky	Number of clusters for the response	
gamma_y	Penalty for the y clusters difference in predicted values	
eps	Convergence criteria	
clusterMethod	Which clustering method was used, currently support kmeans or kmeanspp	
clusterIterations		
	Number of iterations for cluster convergence	
clusterStartNum		
	Number of random starting points for clustering	
cluster_y	An a priori definition of clusters. If clusters are provided they will remain fixed and are not estimated. Objective function is then convex.	
max_iter	The maximum number of iterations for estimating the coefficients	
x	The design matrix	

Author(s)

Ben Sherwood <ben.sherwood@ku.edu>, Brad Price <brad.price@mail.wvu.edu>

predict.cv.mcen 15

predict.cv.mcen	Makes predictions from the model with the smallest cross-validation error.
predict.ev.meen	•

Description

Makes predictions from the model with the smallest cross-validation error.

Usage

```
## S3 method for class 'cv.mcen'
predict(object, newx, ...)
```

Arguments

object The cv.mcen object.

newx The X matrix of predictors.

... Additional parameters to be sent to predict.

Value

Returns the predicted values from the model with the smallest cross-validation error.

Author(s)

Ben Sherwood <ben.sherwood@ku.edu>, Brad Price <brad.price@mail.wvu.edu>

Examples

```
x <- matrix(rnorm(400),ncol=4)
beta <- beta <- matrix(c(1,1,0,0,0,0,-1,-1,0,0,-1,-1,1,1,0,0),ncol=4)
y <- x%*%beta + rnorm(400)
mcen_fit <- cv.mcen(x,y,ky=2,gamma_y=3)
new_x <- matrix(rnorm(12),ncol=4)
mcen_preds <- predict(mcen_fit, new_x)</pre>
```

pred_eval

predict.mcen

predictions from a meen model

Description

predictions from a mcen model

Usage

```
## S3 method for class 'mcen'
predict(object, newx, ...)
```

Arguments

object The mcen object.

newx A matrix of new observations.

... Additional variables to be sent to predict.

Value

Returns predictions for each beta of an mcen object

Author(s)

Ben Sherwood <ben.sherwood@ku.edu>, Brad Price <brad.price@mail.wvu.edu>

Examples

```
x <- matrix(rnorm(400),ncol=4)
beta <- beta <- matrix(c(1,1,0,0,0,0,-1,-1,0,0,-1,-1,1,1,0,0),ncol=4)
y <- x**beta + rnorm(400)
mcen_fit <- mcen(x,y,ky=2,delta=1)
new_x <- matrix(rnorm(12),ncol=4)
mcen_preds <- predict(mcen_fit, new_x)</pre>
```

pred_eval

Calculates the out of sample likelihood for an meen object

Description

Calculates the out of sample likelihood for an meen object

Usage

```
pred_eval(obj, test_x, test_y)
```

Arguments

obj	The mcen	object.

test_x The matrix of test predictors.
test_y The matrix of test responses.

Author(s)

Ben Sherwood <ben.sherwood@ku.edu>, Brad Price <brad.price@mail.wvu.edu>

pred_eval.mbinom_mcen Evaluates prediction error for multiple binomial responses.

Description

Evaluates prediction error for multiple binomial responses.

Usage

```
## S3 method for class 'mbinom_mcen'
pred_eval(obj, test_x, test_y)
```

Arguments

obj The mbinom_mcen object.

test_x A matrix of the test predictors.

test_y A matrix of the test responses.

Author(s)

Ben Sherwood <ben.sherwood@ku.edu>, Brad Price <brad.price@mail.wvu.edu>

pred_eval.mgauss_mcen Calculates the prediction error for a mgauss_mcen object.

Description

Calculates the prediction error for a mgauss_mcen object.

Usage

```
## S3 method for class 'mgauss_mcen'
pred_eval(obj, test_x, test_y)
```

print.cv.mcen

Arguments

obj	The mgauss_mcen object.
test_x	The matrix of test predictors.
test_y	The matrix of test responses.

Author(s)

Ben Sherwood <ben.sherwood@ku.edu>, Brad Price <brad.price@mail.wvu.edu>

print.cv.mcen

Prints nice output for a cv.mcen object.

Description

Prints nice output for a cv.mcen object.

Usage

```
## S3 method for class 'cv.mcen'
print(x, ...)
```

Arguments

x The cv.mcen object.

... Additional parameters.

Value

Prints out information about where the cv.mcen object was minimized.

Author(s)

Ben Sherwood
 ben.sherwood@ku.edu>, Brad Price
 brad.price@mail.wvu.edu>

print.mcen 19

print.mcen

Prints nice output for an meen object.

Description

Prints nice output for an meen object.

Usage

```
## S3 method for class 'mcen'
print(x, ...)
```

Arguments

x The mcen object.

... Additional parameters.

Value

Prints out some basic information about the mcen object.

Author(s)

Ben Sherwood
 ben.sherwood@ku.edu>, Brad Price
 brad.price@mail.wvu.edu>

randomly_assign

randomly assign n samples to k groups

Description

randomly assign n samples to k groups

Usage

```
randomly_assign(n, k)
```

Arguments

n number of samples k number of groups

Value

Returns assignments of n into k groups

Author(s)

Ben Sherwood
 ben.sherwood@ku.edu>, Brad Price
 brad.price@mail.wvu.edu>

20 squared_error

SetEq

SetEq test set equivalence of two clustering sets

Description

SetEq test set equivalence of two clustering sets

Usage

```
SetEq(set1, set2)
```

Arguments

is the cluster assignments of the previous iteration set2 is the cluster assignments of the current clusters

Value

Returns a logical saying if the two clusterings are equal

Author(s)

Ben Sherwood <ben.sherwood@ku.edu>, Brad Price <brad.price@mail.wvu.edu>

squared_error

Calculates sum of squared error between two vectors or matrices

Description

Calculates sum of squared error between two vectors or matrices

Usage

```
squared_error(pred, test_y)
```

Arguments

pred the predictions

test_y the testing response values

Value

returns the sum of the squared differences between pred and test_y

Author(s)

Ben Sherwood <ben.sherwood@ku.edu>, Brad Price <brad.price@mail.wvu.edu>

vl_binom 21

vl_binom

Calculates out of sample error on the binomial likelihood

Description

Calculates out of sample error on the binomial likelihood

Usage

```
vl_binom(pred, test_y)
```

Arguments

pred The predicted values. test_y The test response values.

Author(s)

Brad Price

brad.price@mail.wvu.edu>

Index

```
\verb|beta_adjust|, 2
beta_adjust_bin, 3
bin_horse, 3
CalcHorseBin, 4
CalcHorseEBin, 5
cluster, 5
cluster.vals, 6
coef.cv.mcen, 7
coef.mcen, 7
cv.mcen, 8
\verb"get_best_cvm", 9
\verb|matrix_multiply|, \\ \frac{10}{}
mcen, 11
mcen.init, 12
mcen_bin_workhorse, 13
mcen_workhorse, 14
pred_eval, 16
pred_eval.mbinom_mcen, 17
pred_eval.mgauss_mcen, 17
predict.cv.mcen, 15
predict.mcen, 16
print.cv.mcen, 18
print.mcen, 19
randomly_assign, 19
SetEq, 20
squared\_error, 20
vl\_binom, 21
```