

Trabalho Substituto da Segunda Prova Bimestral de 2020

PERÍODO NOTURNO

Prof^o Marcelo Porto Trevizan

Nome:	RA:
Assinatura:	Data: 20.11.2020 a 29.11.2020
	Orientações
• Este trabalho substituto de pro	va é individual ;
• este trabalho substituto será vá abaixo estiverem assinados;	lido apenas se o cabeçalho acima e o Acordo de Ética
• a tentativa identificada de plági na prova inteira;	o ou fraude poderá acarretar em nota zero na questão ou
• por favor, resolver de forma org	anizada e destacar as respostas;
• contém 12 questões;	
• não é obrigatória a resolução de	e todas as questões;
• o prazo para entrega é até as 23	Bh59 da data final apontada no cabeçalho acima;
• o arquivo de entrega deverá est	ar em formato PDF;
• <u>o enunciado deverá fazer parte d</u> entre uma questão e outra;	o arquivo enviado; folhas avulsas poderão ser intercaladas
	tos
• pontuação máxima de 10,0 pon	ius.

Acordo de Ética

A ética nasce no berço, caminha pela escola e acompanha toda a vida pessoal e profissional de cada pessoa.

Ciente da questão ética que nos permeia e de que <u>este trabalho</u> <u>substituto de prova é individual</u>, declaro que não cometerei qualquer tipo fraude ou plágio em sua resolução.

Assinatura

Nota sobre o Acordo de Ética

É possível interagir com um colega a respeito do conteúdo do trabalho e este **pode** dar uma dica para sua resolução. Todavia **não poderá fornecer a resolução** das questões, total ou parcial, seja por qual forma for.

Por exemplo, o colega poderá dizer "use o conceito de divisor de tensão", ou "consulte o capítulo N do livro X", mas não poderá ditar ou fornecer uma cópia da expressão que ele usou para resolver o exercício.

Boa Prova!!!

Questão 2 (1,5). Determinar V_x pelo Teorema da Superposição. Apresentar os circuitos intermediários. a) (0,5) b) (1,0)

Questão 3 (1,0). Calcular V_x por Transformação de Fonte. Apresentar o circuito transformado. Observação: o V_{R_2} no circuito original não é o mesmo que o " V_{R_2} " do circuito transformado.

Questão 4 (1,0). Determinar V_x por Análise de Malhas. Para tanto, pede-se:

- 1,0
- a) (0,5) Sistema de **equações literais** que descreve o circuito, por *Análise de Malhas*. Escreva a resposta final no espaço reservado.
- 0.5
- b) (0,25) Sistema de **equações numéricas** correspondente e os valores de I_{α} e I_{β} .
- 0.25

c) (0,25) O valor de V_x .

 $\begin{cases} \alpha : & I_{\alpha} + I_{\beta} = I_{\beta$

Questão 5 (1,5). Determinar V_x por Análise de Malhas. Para tanto, pede-se:

1,5

a) (0,75) Sistema de **equações literais** que descreve o circuito, por Análise de Malhas. Escreva a resposta final no espaço reservado.

1,0

1,25

b) (0,25) Sistema de **equações numéricas** correspondente e os valores de I_{α} e I_{β} .

c) (0,5) O valor de V_x .

 $I_{\alpha} + \underline{\hspace{1cm}} I_{\beta} = \underline{\hspace{1cm}}$ $I_{\beta} = \underline{\hspace{1cm}}$ $I_{\beta} = \underline{\hspace{1cm}}$

7

Questão 6 (1,25). Para o circuito abaixo, deseja-se obter V_x . Para tanto:

1,25

a) (0,75) Obter o sistema de **equações** *literais* que resolve o circuito, por *Análise Nodal*.

b) (0,25) Obter o sistema de sistema de **equações numéricas** correspondente e os valores de $V_A,\,V_B$ e V_C .

36

c) (0,25) Determinar o valor de V_x .

0.25

Questão 7 (1,5). Encontrar o Circuito Equivalente de Thévenin entre os pontos A e B. a) (0,5) 1,5 b) (1,0)

Questão 8 (1,25). Inicialmente, C encontra-se descarregado. Nos instantes t_0 , t_1 e t_2 , as chaves são comutadas conforme indicado. Pede-se traçar o esboço de $v_C(t) \times t$, $v_R(t) \times t$ e $i_C(t) \times t$ para $0 \le t < \infty$, indicando os valores dos pontos notáveis. Indicar os cálculos realizados. a) (0,5) b) (0,75) (Nota1: considerar as referências de tensão e corrente de acordo com o apresentado no circuito. Nota2: quando houver mais de um resistor, superpor as correspondentes curvas mas mantendo a clareza do traçado.)

1,25

Questão 9 (1,25). Inicialmente, L encontra-se descarregado. Nos instantes t_0 , t_1 e t_2 , as chaves são comutadas conforme indicado. Pede-se traçar o esboço de $v_L(t) \times t$, $v_R(t) \times t$ e $i_L(t) \times t$ para $0 \le t < \infty$, indicando os valores dos pontos notáveis. Indicar os cálculos realizados. a) (0,5) b) (0,75) (Nota1: considerar as referências de tensão e corrente de acordo com o apresentado no circuito. Nota2: quando houver mais de um resistor, superpor as correspondentes curvas mas mantendo a clareza do traçado.)

1,25

Questão 10 (2,0). Inicialmente, C encontra-se descarregado. Nos instantes t_0 , t_1 e t_2 , a chave é comutada para os pontos indicados, permanecendo lá até o próximo instante. Pede-se traçar o esboço de $v_C(t) \times t$, $v_R(t) \times t$ e $i_C(t) \times t$ para $0 \le t \le 270 \,\mathrm{ps}$, indicando os valores dos pontos notáveis. Ainda, indicar, no local reservado, os valores dos cálculos auxiliares. (Nota1: considerar as referências de tensão e corrente no capacitor de acordo com o apresentado nas aulas de teoria. Nota2: superpor as curvas de tensão sobre os resistores, mas manter a clareza do traçado.)

1,75

1,5

1,25

Cálculos auxiliares (usar 4 A.S.):

$$\tau 1 = 5 \quad \tau 1 = 5$$
 $\tau 2 = 5 \quad \tau 2 = 5$
 $\tau 3 = 5 \quad \tau 3 = 5$

Questão 11 (1,0). Dado o circuito abaixo, pede-se $v_x(t)$ e $i_x(t)$ para t=0 s (0,5) e $t\to\infty$ 1,0 (0,5). Considerar capacitores e indutores descarregados em t=0 s.

Questão 12 (0,25). A partir das definições de capacitância e indutância, pede-se provar, por análise das dimensões, que as expressões RC e L/R possuem unidade de tempo. (Nota: se não partir das definições ou se as definições forem incorretas, não será considerada a solução, nem como parcialmente correta.)