# Operációs rendszerek BSc

11. Gyak.

2022. 04. 27.

# Készítette:

Bodnár Máté

László Bsc

Mérnökinformatikus

**GOVLWD** 

- 1. feladat Adott egy rendszer (foglalási stratégiák), melyben a következő
  - -Szabad területek: 30k, 35k, 15k, 25k, 75k, 45k és
  - -Foglalási igények: 39k, 40k, 33k, 20k, 21k állnak rendelkezésre.

A rendszerben a memória 4 kbyte-os blokkokban kerül nyilvántartásra, ennél kisebb méretű töredék igény esetén a teljes blokk lefoglalásra kerül.

Határozza meg változó méretű partíció esetén a következő algoritmusok felhasználásával:

first fit, next fit, best fit, worst fit a foglalási igényeknek megfelelő helyfoglalást – táblázatos formában (az ea. bemutatott mintafeladat alapján)!

Hasonlítsa össze, hogy a teljes szabad memóriaterület hány százaléka vész el átlagosan az egyes algoritmusok esetén! A kapott eredményeket ábrázolja oszlop diagrammal! Magyarázza a kapott eredményeket és hogyan lehet az eredményeket javítani!

First fit

| Memória terület mérete | Lefoglalt méret | Megmaradt terület | Process | l | Process | Igény |
|------------------------|-----------------|-------------------|---------|---|---------|-------|
| 30k                    | 20k             | 10k               | P4      |   | P1      | 39k   |
| 35k                    | 33k             | 2k                | Р3      |   | P2      | 40k   |
| 15k                    |                 |                   |         |   | Р3      | 33k   |
| 25k                    | 21k             | 4k                | P5      |   | P4      | 20k   |
| 75k                    | 39k             | 36k               | P1      |   | P5      | 21k   |
| 45k                    | 40k             | 5k                | P2      |   |         |       |

### **Next fit**

| NEXT FIT               |                 |                   |         |         |       |
|------------------------|-----------------|-------------------|---------|---------|-------|
| Memória terület mérete | Lefoglalt méret | Megmaradt terület | Process | Process | Igény |
| 30k                    | 21k             | 9k                | P5      | P1      | 39k   |
| 35k                    | 33k             | 2k                | P3      | P2      | 40k   |
| 15k                    |                 |                   |         | Р3      | 33k   |
| 25k                    | 20k             | 5k                | P4      | P4      | 20k   |
| 75k                    | 39k             | 36k               | P1      | P5      | 21k   |
| 45k                    | 40k             | 5k                | P2      |         |       |

### **Best fit**

| BEST FIT               |                 |                   |         |         |       |
|------------------------|-----------------|-------------------|---------|---------|-------|
| Memória terület mérete | Lefoglalt méret | Megmaradt terület | Process | Process | lgény |
| 30k                    | 21k             | 9k                | P5      | P1      | 39k   |
| 35k                    | 33k             | 2k                | P3      | P2      | 40k   |
| 15k                    |                 |                   |         | Р3      | 33k   |
| 25k                    | 20k             | 5k                | P4      | P4      | 20k   |
| 75k                    | 40k             | 35k               | P2      | P5      | 21k   |
| 45k                    | 39k             | 6k                | P1      |         |       |

### Worst fit

| WORST FIT              |                 |                   |         |         |       |
|------------------------|-----------------|-------------------|---------|---------|-------|
| Memória terület mérete | Lefoglalt méret | Megmaradt terület | Process | Process | Igény |
| 30k                    | 20k             | 10k               | P4      | P1      | 39k   |
| 35k                    | 33k             | 2k                | P3      | P2      | 40k   |
| 15k                    |                 |                   |         | Р3      | 33k   |
| 25k                    | 21k             | 4k                | P5      | P4      | 20k   |
| 75k                    | 39k             | 36k               | P1      | P5      | 21k   |
| 45k                    | 40k             | 5k                | P2      |         |       |

# Elpazarolt memória

| Összes mem. | Megmaradt mem. | Elveszett |  |
|-------------|----------------|-----------|--|
| 225k        | 57k            | 25.3%     |  |

2. Gyakorló feladat: A feladat megoldásához először tanulmányozza Vadász Dénes:

Operációs rendszer jegyzet, a témához kapcsolódó fejezetét (6.4)., azaz Írjon C nyelvű programokat, ahol

kreál/azonosít szemafor készletet, benne N szemafor-t. A kezdő értéket 0-ra állítja semset.c,

- kérdezze le és írja ki a pillanatnyi szemafor értéket semval.c
- szüntesse meg a példácskák szemafor készletét semkill.c
- sembuf.sem\_op=1 értékkel inkrementálja a szemafort semup.c



## 👺 OS [Fut] - Oracle VM VirtualBox

Fájl Gép Nézet Bevitel Eszközök Súgó

```
File Edit View Search Terminal Help

mint@mint:~$ gcc semset.c -o semset

mint@mint:~$ ./semset

A Semid: 11

1. - set 0, semval: 0

2. - set 0, semval: 0

3. - set 0, semval: 0

mint@mint:~$
```



### OS [Fut] - Oracle VM VirtualBox

Fájl Gép Nézet Bevitel Eszközök Súgó

```
File Edit View Search Terminal Help
mint@mint:~$ gcc semset.c -o semset
mint@mint:~$ ./semset
A Semid: 11
1. - set 0, semval: 0
2. - set 0, semval: 0
3. - set 0, semval: 0
mint@mint:~$ nano semset.c
mint@mint:~$ nano semset.c
mint@mint:~$ gcc semval.c -o semval
mint@mint:~$ ./semval
A Semid: 11
semval 0: 0
semval 1: 0
semval 2: 0
mint@mint:~$
```

# ### GOD Next Bords Tomora Majo ### GOD Next Bords Tomora Major ### GOD

```
Aktiválja a Windowst endzert a Griph
```

```
👺 OS [Fut] - Oracle VM VirtualBox
 Fájl Gép Nézet Bevitel Eszközök Súgó
                                                                                                                                                                                                  mint@mint: ~
File Edit View Search Terminal Help
    t main(oib) {
    (e) | key = ftok("semset.c", (LDT)'S');
    inf flag = 00666 | IPC_CREA';
    int num of semaphs = NUM OF SeT€;
    int sem_id = semget(key, num_of_semaphs, flag);
    if (sem_id < 0) {
    perror("SEMGET HIRA ...");
    return -1;
} else {
    printf("A Semid: %d\n", sem_id);
}</pre>
     }
truer sembuf sem_op_buf;
sem_op_buf.sem_op = 1;
sem_op_buf.sem ftg = 0666;
printf("Semaph. number: ");
scanf("*hu", &sem_op_buf.sem_num);
      int rtn = semop(sem_id, &sem_op_buf, 1);
printf("up rtn: %d\n", rtn);
^G Get Help
^X Exit
                             ^O Write Out
^R Read File
                                                            ^W Where Is
^\ Replace
                                                                                           C Cur Pos M-U Undo
Go To Line M-E Redo
                                                                                                                                                                                                                     M-A Mark Text M-] To Bracket M-Q Previous
M-6 Copy Text ^Q Where Was M-W Next
                                                                                                                                                                                                                                                                                                                 ^B BackAlativálja♣ Pre
^F Forwardtiválja♣ Nex
```

```
mintgenint:

File ERR Vew Sauth Terminal Holip

mintgenint:

File ERR Vew Sauth Terminal Holip

mintgenint:

Service Sensett - 0 sensett

Senint il

- 1 - 50 0, senvolt: 0

2 - 50 0, senvolt: 0

2 - 50 0, senvolt: 0

3 - 50 0, senvolt: 0

5 -
```