COMP 170 Discrete Mathematical Tools for CS 2006 Fall Semester – Written Assignment # 6 Distributed: Oct 24, 2006 – Due: Oct 31, 2006 at end of class

The top of your submission should contain (i) your name, (ii) your student ID #, (ii) your email address and (iv) your tutorial section.

Please write clearly and briefly. For all questions you should also provide a short explanation as to *how* you derived the solution. A solution that consists of just a number will be counted as wrong.

2nd Note: Please follow the guidelines on doing your own work and avoiding plagiarism given on the class home page. Don't forget to *acknowledge* individuals who assisted you, or sources where you found solutions.

3rd Note: Most of these problems are taken (some modified) from sections 3.1, 3.2 and 3.3 of the textbook.

4th Note: Your assignment can either be submitted at the end of your Tuesday lecture session or before 5PM in the collection bin in front of room 4213A.

- **Problem 1:** Show that the statements $s \Rightarrow t$ and $\neg s \lor t$ are equivalent.
- **Problem 2:** Prove the DeMorgan's law that states $\neg(p \land q) = \neg p \lor \neg q$.
- **Problem 3:** Show that $p \oplus q$ is equivalent to $(p \land \neg q) \lor (\neg p \land q)$.
- **Problem 4:** (Distributive "laws")
 - (a) Is $w \wedge (u \oplus v)$ equivalent to $(w \wedge u) \oplus (w \wedge v)$?
 - (a) Is $w \lor (u \oplus v)$ equivalent to $(w \lor u) \oplus (w \lor v)$?
- **Problem 5:** Which of the following statements (in which Z^+ stands for the positive integers and Z stands for all integers) is true and which is false? Don't forget to explain why.
 - (a) $\forall z \in Z^+ (z^2 + 6z + 10 > 20)$
 - (b) $\forall z \in Z (z^2 z \ge 0)$
 - (c) $\exists z \in Z^+ (z z^2 > 0)$
 - (d) $\exists z \in Z (z^2 z = 6)$
- **Problem 6:** Consider the statement: "For all primes p, either p is odd or p is 2."
 - (a) Use symbolic statements and a universal quantifier to express the above statement.
 - (b) Express the negation of the statement in (a) using an existential quantifier.
- **Problem 7:** Let p(x) stand for "x is a prime," q(x) for "x is even," and r(x,y) stand for "x = y". Use these three symbolic statements and appropriate logical notation to write the statement "There is one and only one even prime." (Use the set Z^+ of positive integers for your universe.)

Problem 8: (a) Construct a contrapositive proof that for all real numbers x, if $x^2 - 2x \neq -1$ then $x \neq 1$. (b) Construct a proof by contradiction that for all real numbers x, if $x^2 - 2x \neq -1$ then $x \neq 1$.