(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 21. Mai 2004 (21.05.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/043032 A2

- (51) Internationale Patentklassifikation7: H04L 29/06, H04J 3/06, H04L 12/18, 1/16, H04R 27/00
- (21) Internationales Aktenzeichen: PCT/CH2003/000720
- (22) Internationales Anmeldedatum:

4. November 2003 (04.11.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

1861/02

6. November 2002 (06.11.2002) CH

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BARIX AG [CH/CH]; Wiesenstrasse 17, CH-8008 Zürich (CH).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): RIETSCHEL, Johannes [DE/CH]; Hadlaubstrasse 96, CH-8006 Zürich (CH). SAUTER, Silvan [CH/CH]; Museumstrasse 45, CH-9000 St. Gallen (CH). STÄHELI, Reto [CH/CH]; Höhenstrasse 59, CH-9500 Wil (CH).
- (74) Anwalt: BREMI, Tobias; Isler & Pedrazzini AG, Gotthardstrasse 53, Postfach 6940, CH-8023 Zürich (CH).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT (Gebrauchsmuster), AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (Gebrauchsmuster), CZ, DE (Gebrauchsmuster), DE, DK (Gebrauchsmuster), DK, DM, DZ, EC, EE (Gebrauchsmuster), EE, EG, ES, FI (Gebrauchsmuster), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK (Gebrauchsmuster), SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: METHOD AND DEVICE FOR THE SYNCHRONISED RESTITUTION OF DATA FLOWS
- (54) Bezeichnung: VERFAHREN UND VORRICHTUNG ZUR SYNCHRONISIERTEN WIEDERGABE VON DATENSTRÖ-**MEN**
- (57) Abstract: The invention relates to a method for the restitution of data flows or data packets transmitted over a network, using at least two restitution appliances which are at least indirectly connected to the network. The aim of the invention is to ensure a synchronised and error-free restitution. To this end, in order to synchronise the restitution by means of the at least two restitution appliances, either one of the restitution appliances, as the master, provides its internal clock as the reference, and the other restitution appliances, as the slaves, co-ordinate their internal clock with that of the master by means of the network and restitute the data flows or data packets according to said co-ordinated clock, or the internal clock of an external appliance also available on the network is used as the master, and all restitution appliances, as the slaves, co-ordinate their internal clock with that of the master by means of the network, and restitute the data flows or data packets according to said co-ordinated clock.
- (57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zur Wiedergabe von über wenigstens ein Netzwerk übertragenen Datenströmen oder Datenpaketen mittels wenigstens zweier wenigstens mittelbar an das Netzwerk angebundener Wiedergabegeräte. Dabei wird eine synchronisierte und fehlerfreie Wiedergabe gewährleistet, indem zur Synchronisation der Wiedergabe mit den wenigstens zwei Wiedergabegeräten entweder eines der Wiedergabegeräte als Master seine interne Uhr als Referenz vorgibt und die anderen Wiedergabegeräte als Slave ihre interne Uhr über das Netzwerk mit jener des Masters abgleichen und die Wiedergabe von Datenströmen oder Datenpaketen in Abhängigkeit dieser abgeglichenen Uhr wiedergeben, oder indem die interne Uhr eines externen, ebenfalls am Netz verfügbaren Gerätes als Master verwendet wird und alle Wiedergabegeräte als Slave eine interne Uhr über das Netzwerk mit jener des Masters abgleichen und die Wiedergabe von Datenströmen oder Datenpaketen in Abhängigkeit dieser abgeglichenen Uhr wiedergeben.

5

BESCHREIBUNG

TITEL

Verfahren und Vorrichtung zur synchronisierten Wiedergabe von Datenströmen

TECHNISCHES GEBIET

Die vorliegende Erfindung betrifft ein Verfahren zur Wiedergabe von über wenigstens ein Netzwerk übertragenen Datenströmen oder Datenpaketen mittels wenigstens zweier wenigstens mittelbar an das Netzwerk angebundener Wiedergabegeräte. Sie betrifft ausserdem ein Datenverarbeitungsprogramm zur Durchführung eines derartigen Verfahrens sowie eine Vorrichtung zur Durchführung eines derartigen Verfahrens.

15

20

25

STAND DER TECHNIK

Die Übertragung von digital gespeicherten, multimedialen Datenströmen über Netzwerkinfrastruktur, die Speicherung dieser Ströme auf computerähnlichen Apparaten und die Wiedergabe in professionellen Anwendungen und auch im Heimbereich ist bereits omnipräsent. Dies insbesondere im Audiobereich, indem die für die Übertragung und Speicherung notwendigen Datenraten und -mengen dank effektiver Komprimierverfahren (MP3) stark reduziert werden konnten. Im Videosegment arbeiten viele fieberhaft an immer besseren Komprimierverfahren (MPEG-4) um auch hier die "online"-Verfügbarkeit und z.B. den Echtzeitabruf von Spielfilmen mit üblicher Infrastruktur (ADSL, Kabelmodem und PC) möglich zu machen. Im Heimbereich würde sich ein sehr grosser Markt öffnen, wenn Audiodaten sehr genau synchronisiert, ohne Qualitätsverlust, d.h. digital mit Fehlerkorrektur, über

verschiedene Medien, insbesondere jedoch per Funk, verteilt ausgegeben werden könnten. Bisher bekannte Verfahren (z.B. die analoge Modulation der Daten auf HF Träger ohne Rückkanal) sind qualitativ weder hochwertig noch betriebssicher. Zuverlässige Systeme, die z.B. auch einen S/PDIF (Sony/Philips Digital Interface, digitaler Audioausgang) oder analoge Audiosignale ohne merklichen Qualitätsverlust zuverlässig (d.h. mit Rückkanal) über verdrahtete oder drahtlose Infrastruktur verteilen können, sind bisher nicht verfügbar.

DARSTELLUNG DER ERFINDUNG

- Der Erfindung liegt demnach die Aufgabe zugrunde, ein Verfahren zur Verfügung zu stellen, welches es erlaubt, über wenigstens ein Netzwerk übertragene Datenströme oder Datenpakete mittels wenigstens zweier wenigstens mittelbar an das Netzwerk angebundener Wiedergabegeräte in fehlerfreier und synchronisierter Weise wiederzugeben.
- Die Lösung dieser Aufgabe wird dadurch erreicht, dass zur Synchronisation der Wiedergabe mit den wenigstens zwei Wiedergabegeräten entweder eines der Wiedergabegeräte als Master seine interne Uhr als Referenz vorgibt und die anderen Wiedergabegeräte als Slave ihre interne Uhr über das Netzwerk mit jener des Masters abgleichen und die Wiedergabe von Datenströmen oder Datenpaketen in Abhängigkeit dieser abgeglichenen Uhr wiedergeben, oder dass die interne Uhr eines externen, ebenfalls am Netz verfügbaren Gerätes als Master verwendet wird und alle Wiedergabegeräte als Slave ihre interne Uhr über das Netzwerk mit jener des Masters abgleichen und die Wiedergabe von Datenströmen oder Datenpaketen in Abhängigkeit dieser abgeglichenen Uhr wiedergeben.
- Der Kern der Erfindung besteht somit darin, die Synchronisation der einzelnen Wiedergabegeräte durch die Definition einer Referenzuhr zu gewährleisten. Dabei ist der Begriff Uhr nicht im exakten Sinne zu verstehen, sondern vielmehr einfach im Sinne eines zeitlichen Referenzsystems, innerhalb welchem alle Teilnehmer des Systems, d. h. Master und Slave gleich laufen. Mit anderen Worten kann die hier

20

25

genannte Uhr sowohl absolut nicht der tatsächlichen Uhrzeit entsprechen, als auch in ihrer Laufgeschwindigkeit von der Laufgeschwindigkeit eine Uhr abweichen. Wichtig ist nur, dass die einzelnen Teilnehmer untereinander in einem identischen, gleich getakteten Zeitsystem arbeiten. Die Slaves führen mit anderen Worten ggf: einfach eine zum Master synchron laufende Uhr respektive ein synchron laufendes Referenzsystem zur Wiedergabe der Daten, welche Uhr respektive welches Referenzsystem nicht mit der tatsächlichen, auf dem Slave vorhandenen Uhr identisch sein muss. Es wird dann gewissermassen eine separate Kopie der Master-Uhr auf den Slaves geführt. Die im Rahmen dieser Erfindung wesentliche Synchronisation zielt also nicht in erster Linie darauf ab, so genannte real time Bedingungen sicherstellen zu können, sondern vielmehr darauf, eine möglichst hohe Datenintegrität zu gewährleisten, wobei der Moment des Abspielens nicht von höchster Bedeutung ist, sondern nur die relative Synchronisation. Wesentlich ist beim vorgeschlagenen System der Synchronisation, dass nicht der Master dazu beauftragt ist, die einzelnen Slaves im Takt zu halten, sondern dass die einzelnen Slaves selbstständig für ihre Anpassung an den Master verantwortlich zeichnen und dies selbsttätig durchführen. Dadurch ergibt sich der Vorteil, dass der Master nicht zwingend darüber informiert sein muss, was für weitere Teilnehmer im Netz im Moment gerade in synchronisierter Weise mitspielen. Die Verwaltung eines Systems vereinfacht sich dadurch erheblich. Der Master stellt nur seine Uhr zur Verfügung und der Master selber ändert dieses Referenzsystem auch nicht ab, so sehr es auch von einer tatsächlichen Uhrzeit abweichen mag.

Gemäss einer ersten bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich beim Netzwerk um ein Netzwerk, in welchem Datenpakete in asynchroner Weise übertragen werden. Die Synchronisation von Datenströmen ist insbesondere dann relevant, wenn das Netzwerk nicht deterministisch ist, d. h. wenn die Daten asynchron übermittelt werden. In einem asynchronen Netzwerk kann nicht davon ausgegangen werden, dass Daten stets die gleiche Zeit von Punkt A zu Punkt B benötigen. Ausserdem werden die Daten nicht in einem konstanten Takt übermittelt. Entsprechend werden in einem derartigen Netzwerk inhärent Daten zu unterschiedlichen Zeitpunkten über unterschiedliche Wege (z.B. über Switches oder Router) bei den Wiedergabegeräten ankommen, was die Synchronisation besonders wichtig macht.

20

25

30

Gemäss einer weiteren bevorzugten Ausführungsform findet der Abgleich der Uhr auf dem Slave nicht nur vor der ersten Wiedergabe beim Einschalten oder Zuschalten des Slave statt, sondern vielmehr auch periodisch während der Wiedergabe der Daten. Diese Aktualisierung ist insbesondere bei langen, zusammenhängenden Datenströmen wichtig, da selbst kleinste Unterschiede in der Laufgeschwindigkeit der internen Uhr von Master und Slave über eine längere Zeit zu einer grossen Differenz führen können. Typischerweise erfolgt eine derartige neue Synchronisation alle 30 Sekunden. Vorzugsweise wird die periodische Aktualisierung dazu verwendet, auf dem Slave eine systematische Anpassung der Laufgeschwindigkeit der internen Uhr des Slave an jene des Masters zum Ausgleich von Unterschieden in der internen Laufzeitcharakteristik von Master und Slave vorzunehmen. Eine derartige systematische Anpassung, welche gewissermassen ein " ziehen " zwischen Slave und Master erlaubt, ist ähnlich zur im Bereich des Abgleichs von klassischen Uhren auf Netzwerken (ntp, Network Time Protocol). Dadurch wird eine möglichst glatte Anpassung zwischen den Zeitsystemen von Master und Slave gewährleistet, und es wird verhindert, dass einfach bei einem mismatch zum Ausgleich von Laufzeitdifferenzen z. B. auf dem Slave Datenpakete weggelassen werden oder Leerstellen eingefügt werden. Dennoch kann es bei grossen Zeitunterschieden (typischerweise mehr als z. B. 100ms im Audiobereich), wie sie aber typischerweise nur dann auftreten, wenn die Datenübertragung problematisch ist, erforderlich werden, die Wiedergabe auf dem Slave durch derartige stufenweise Eingriffe vorzunehmen. Typischerweise besteht die systematische Anpassung darin, die interne Uhr des Slave respektive deren Laufgeschwindigkeit mit einem konstanten Korrekturfaktor zu skalieren.

Der Abgleich der internen Uhr auf dem Slave kann auf unterschiedliche Weise geschehen. Wichtig ist dabei insbesondere, dass nicht einfach die Zeit auf dem Master abgefragt wird und anschliessend nach deren Übertragung tel quel auf dem Slave eingesetzt wird, sondern dass der Tatsache Rechnung getragen wird, dass die Übertragung der Zeit respektive deren Anfrage über das Netz ebenfalls eine gewisse Zeit beansprucht hat. Gerade im Rahmen dieser Erfindung gewünschte Zeitgenauigkeit im Bereich von derartig typischen Übertragungszeiten in Netzwerken liegt, sollte dies berücksichtigt werden. Vorzugsweise wird dabei entsprechend so vorgegangen, dass die

15

20

30

interne Uhr des Master vom Slave insbesondere bevorzugt mehrmals abgefragt wird, und indem wenigstens ein, bevorzugt eine Mehrzahl von Datenpaketen, welche mit den Paketen zur Abfrage der Zeit auf dem Master identisch sein können, vom Slave zum Master übertragen und wieder zurückübermittelt werden, und die interne Uhr im Slave in Abhängigkeit einer insbesondere durchschnittlichen Laufzeit von Datenpaketen zwischen Master und Slave an die Uhr im Master angeglichen wird. Es wird mit anderen Worten über mehrere Abfragen eine mittlere Datenlaufzeit, wie sie für das spezifische Netzwerk typisch ist, ermittelt, und erst nach Kenntnis dieser typischen Datenlaufzeit unter deren Berücksichtigung die Zeit auf dem Slave angepasst. Dabei spielt aber normalerweise nicht nur die Datenlaufzeit über das Netzwerk eine Rolle, sondern auch Bearbeitungszeiten in den Geräten. Entsprechend sollten zusätzlich zur Berücksichtigung der Laufzeit als Mittelwert Bearbeitungszeiten in den Geräten, üblicherweise als zusätzlicher konstanter additiver Beitrag berücksichtigt werden.

Wird ein derartiges System von Wiedergabegeräten in Betrieb genommen, so ist es wichtig, rechtzeitig einen Master zu definieren, damit die einzelnen Wiedergabegeräte nicht alle gegenseitig versuchen, sich relativ zueinander abzugleichen. Gemäss einer bevorzugten Ausführungsform der Erfindung wird dies vorteilhafter Weise so gemacht, dass das erste, mit der Wiedergabe beauftragte Wiedergabegerät automatisch als Master definiert wird. Typischerweise verläuft dies so, dass ein Gerät, wenn es zu Wiedergabe aufgefordert wird, sich zunächst einfach einmal als potentiellen Master versteht, aber keinerlei mastertypischen Aktionen beginnt. In dem Moment, in welchem es von einem anderen Wiedergabegerät eine Anfrage bekommt, den abgespielten Datenstrom zur Verfügung zu stellen, wird das Gerät zum Master. Das anfragende Gerät wird automatisch zum Slave. Selbstverständlich ist es auch möglich, ein Gerät als Master zu definieren, diese Lösung weist aber den Nachteil auf, dass, wenn dieser Master aus irgendwelchen Gründen einmal nicht betrieben werden soll oder ausfällt, dass System in einem undefinierten Zustand ist. In entsprechender Weise sollte ausserdem im Protokoll festgehalten werden, dass, bei Ausfall oder Abschalten des aktuellen Masters, sich das erste, dieses realisierende Gerät, automatisch als neuer Master im Netzwerk definiert und die Aufgabe als Master sofort übernimmt.

15

20

25

Das vorgeschlagene Verfahren findet vorzugsweise im Bereich von digitalen Audiooder Videodaten oder einer Kombination davon Anwendung. Insbesondere bevorzugt
handelt es sich entsprechend bei den Daten respektive Datenströmen um komprimierte
oder unkomprimierte Audiodateien wie MP3, WAV, MPEG, Windows Media etc.
Grundsätzlich kann es sich bei der Wiedergabe entweder um so genannte " multi-room
"-Wiedergabe, d. h. um die Wiedergabe von identischen Medien- insbesondere
Audiodateien in synchronisierter Weise handeln, oder aber auch um so genannte "
multi-channel "-Wiedergabe, bei welcher insbesondere bei Audio-Dateien in
Stereoformat oder Vielkanalformaten wie z.B. Dolby 5.1, DTS etc, auf
unterschiedlichen Wiedergabegeräten die unterschiedlichen Kanäle wiedergegeben
werden.

Gemäss einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird wenigstens ein Teil der Datenströme oder Datenpakete vor der Wiedergabe in den Wiedergabegeräten zwischengepuffert, wobei bei Audiodateien typischerweise im Bereich von ca. 1 bis 5 sec gepuffert wird. Bevorzugt und mit grossem Vorteil z. B. bei Realtime Sprachanwendungen, erfolgt die Pufferung dynamisch und den Gegebenheiten des Netzwerks angepasst. Je kleiner die Puffer sind, desto kürzer ist die Latenzzeit, die gewartet werden muss, bis ein Stream gespielt werden kann. Entsprechend ist es von Vorteil, möglichst kleine Puffer zu verwenden. Je höher die Qualität des verwendeten Netzwerks, umso kleiner können die Puffer gestaltet werden, da in diesem Fall weniger Ausfälle und entsprechend auch weniger Repetitionen nötig sind. Eine dynamische Allozierung des Puffers trägt diesem Sachverhalt optimal Rechnung und kann entsprechend zur Optimierung der Latenzzeit genutzt werden. Diese Pufferung, welche vorzugsweise in einem so genannten Ringpuffer stattfindet, erlaubt eine auf der einen Seite genaue Synchronisation, indem nämlich der Ausgabepointer beim Master und beim Slave einfach gleich gesetzt werden, auf der anderen Seite werden so auch Korrekturmechanismen (so genannte "retry-Protokolle") wesentlich einfacher möglich, was im Zusammenhang mit der hier angestrebten Datenintegrität von grosser Bedeutung ist.

30 Insbesondere im Zusammenhang mit der Ausgabe von Audiodateien erweist es sich als

15

20

25

30

vorteilhaft, die Synchronisation der einzelnen Wiedergabegeräte im Bereich von weniger als 100ms auszulegen. Bevorzugt sollten die Laufzeitunterschiede weniger als 10ms oder weniger als 2ms, insbesondere bevorzugt weniger als 1 ms betragen. Aus der Psychoakustik ist bekannt, dass ein normales Gehör in der Lage ist, grössere Laufzeitunterschiede von mehr als 30 ms als Echo wahrzunehmen, was im Rahmen dieser Erfindung eben genau verhindert werden soll. Es zeigt sich, dass auch im bereits genannten "multi-channel " Betrieb eine Genauigkeit von im Bereich von 1 ms genügend ist. Die Synchronisation von Datenströmen in dieser Genauigkeit kann in einem typischen Netzwerk nicht mehr ohne eine aktive Synchronisation der einzelnen Wiedergabegeräte gewährleistet werden, insbesondere können ohne aktive Synchronisation keine weiteren Teilnehmer einfach so zugeschaltet werden. Typischerweise handelt es sich beim Netzwerk um ein klassisches, verkabeltes Netzwerk, vorzugsweise kann es sich dabei aber auch um ein kabelloses Netzwerk, insbesondere ein Funknetzwerk handeln (z. B. Wifi, wireless fidelity, auch IEEE802.11b genannt, oder Nachfolgestandards mit höherer Datenrate wie z.B. IEEE 802.11a). Soll, wie gemäss einer anderen bevorzugten Ausführungsform der vorliegenden Erfindung vorgeschlagen, ein weiteres Wiedergabegerät in synchronisierter Weise zugeschaltet werden, so geschieht dies vorzugsweise, indem sich das zugeschaltete Gerät automatisch auf den vorhandenen Master abgleicht und nach Pufferung eines Teils der Daten selber die Wiedergabe aufnimmt. Ebenso erweist es sich u.U. als sehr vorteilhaft, die Verzögerung eines Clients gegenüber dem Master gezielt einstellen zu können. Damit lassen sich grosse Räume, Kirchen etc wesentlich besser akustisch mit Daten versorgen und akustische Eigenschaften/Laufzeiten in diesen Gebäuden kompensieren. Es handelt sich dann aber um eine gezielte, d.h. gewünschte und systematische Verzögerung. Die dabei verwendete Zeitverschiebung bei der Wiedergabe auf unterschiedlichen Geräten ist konstant eingestellt und bleibt synchronisiert.

Als Datenquellen für den Master können unterschiedliche Datenquellen in Frage kommen. Die Datenpakete oder Datenströme können entweder von einem separaten Datenserver abgeholt oder von diesem geschickt werden, oder auf einem der Wiedergabegeräte abgeholt oder von diesem geschickt werden, oder auf den Wiedergabegeräten bereits zur Verfügung stehen, oder dem System über einen Analog-

15

20

25

Digitalwandler nach Einspeisung in analoger Form in digitaler Form zur Verfügung gestellt werden.

Eine weitere bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass die Datenpakete oder Datenströme von einer Datenquelle in einen Ringpuffer im Master eingelesen werden, wobei jedes eingelesene Byte mit einer eindeutigen Adresse (einfacher Weise einfach ein 32 bit-counter, beginnend bei 0) versehen ist, und dass der Master in einem vom Einlesen des Datenstromes in den Ringpuffer unabhängigen Prozess die Daten des Ringpuffers blockweise, insbesondere sofort nach Einlesen, per Broadcast, insbesondere per UDP Broadcast und weiterhin insbesondere per multicast, auf das Netzwerk schickt, ergänzt durch einen Protokollheader, der unter anderem die Adresse des ersten übermittelten Bytes, die genaue Masterzeit, die Adresse des vom Master als nächstes an den Codec des Masters zu übermittelnden Bytes enthält. Grundsätzlich können die Daten vom Master in unterschiedlicher Weise an die Slaves weitergegeben werden. Der einfachste Ansatz ist ein so genanntes unicast, d. h. der Master verschickt die Daten separat an jeden weiteren Slave. Dies führt aber bei Anwesenheit von mehreren selbst zu einer unnötigen Belastung des Netzwerks. Entsprechend sollte vorzugsweise die Verteilung optimiert so geschehen, dass der Master die Daten mit einem multicast an alle weiteren Wiedergabegeräte weitergibt. Die erforderliche Bandbreite bleibt so unabhängig von der Anzahl der Slaves weitgehend konstant (es kommen nur eventuelle weitere Synchronisationspakete für den Zeitabgleich hinzu, die praktisch keine Bandbreite beanspruchen). Der Ausgabepointer, respektive dessen Position auf dem Master wird an die Slaves als Adresse des vom Master als nächstes an den Codec des Masters zu übermittelnden Bytes übergeben. Dabei wird davon ausgegangen, dass Master und Slave über ähnliche Architekturen verfügen, bei welchen die Zeitspanne zwischen Ansteuerung des Codec und effektiver Ausgabe am Audio-Ausgang (Lautsprecher) so gut wie identisch sind. Wenn dies nicht der Fall ist, müssen entsprechende Korrekturen berücksichtigt werden (z. B. erforderlich bei wesentlichen Verstärkungsverzögerungen in einem der Ausgabegeräte etc.). Wie erwähnt kann die Position des Ausgabepointers auf dem Master einfach als Header mit den eigentlichen Datenpaketen übermittelt werden. Alternativ oder zusätzlich ist es aber auch möglich, die Adresse des vom Master als nächstes an den Codec des Masters zu

15

20

25

30

übermittelnden Bytes wenigstens teilweise in unabhängigen Kontrollblöcken, welche mit den Kontrollblöcken zur Überprüfung der Uhr auf dem Master identisch sein können, zu übermitteln. Hierbei ist es insbesondere auch notwendig, die Laufzeit des Paketes, an Hand der durchschnittlichen Laufzeit oder der vom Server übermittelten Laufzeit, einzubeziehen und den Zähler eventuell dementsprechend zu korrigieren.

Wie bereits weiter oben erwähnt spielt die Integrität der Daten im Zusammenhang mit der vorliegenden Erfindung eine grosse Rolle. Es ist klar, dass unidirektionale Verfahren (wie z.B. analoge oder digitale Übertragung ohne Rückkanal/Rückmeldung wie das genannte Multicast/Broadcast), will man möglichst verlustfreie Übertragung erreichen, nicht ausreichen und ein bidirektionales Kommunikationsverfahren mit Datenpufferung gewählt werden muss, damit bei temporärem Datenverlust eine Wiederholung angefordert und neue Übertragung durchgeführt werden kann, bevor die lokalen Puffer mit bereits übertragenen Daten leer laufen. Entsprechend wird vorzugsweise ein Korrekturmechanismus oder auch "retry-Protokoll" vorgesehen, über welches verlorene oder beschädigte Datenpakete auf den Slaves berichtigt werden können. Entsprechend wird zur Sicherung der Datenintegrität bei von einem Slave festgestelltem Verlust eines Datenteils auf dem Netzwerk dieses Datenteil nach Anforderung vom Slave vom Master wiederholt gesendet. Dies erfolgt nun nicht unmittelbar nach der Anfrage, sondern der Master nimmt dieses wiederholte Senden erst nach Verzögerung wahr. Typischerweise beträgt diese Verzögerung einige ms. Der Grund dafür ist, dass üblicherweise in einem Netzwerk eine fehlerhafte Übertragung gleich von mehreren Slaves gleichzeitig erfahren wird. Entsprechend werden sich auch mehrere Slaves mit einer Anforderung beim Master melden. Die Slaves werden nun derart programmiert, dass sie die Anforderungen in gestaffelter Weise absetzen (dies kann einem programmierten Zeit-Schema entsprechen oder aber auch entsprechend zufällig generierter Zeitunterschiede zwischen den Anfragen). Wartet nun der Master mit seiner entsprechenden Korrektur-Datenübertragung, bis sämtliche Slaves, bei denen eine fehlerhafter Eingang festgestellt wurde, ihre Anforderung abgesetzt haben, so kann verhindert werden, dass identische Anforderungen mehrfach über das Netzwerk geschickt werden.

10

20

Ausserdem wird vorzugsweise so vorgegangen, dass ein Slave nur dann einen Retry-Request absetzt, solange er nicht eine bestimmte Anzahl (wenigstens einer) von gleichen Requests von anderen Wiedergabegeräten resp. Slaves im Netz beobachtet hat. Dies entspricht einer Repetition (einfach von mehreren Geräten ausgeführt) und gewährleistet eine höhere Datensicherheit. Ausserdem werden vorzugsweise vom Slave nur dann respektive nur solange derartige Retry-Requests abgesetzt, als er sich sicher ist, dass das angefragte Datenpaket noch rechtzeitig vom Master übermittelt und anschliessend vom Slave abgespielt werden kann. Ist diese Bedingung nämlich nicht mehr erfüllt, muss der Slave ohnehin neu auf den Datenstrom aufsetzen, da sein Puffer leerläuft, bevor die erforderlichen Daten vom Master zur Verfügung gestellt werden können. Werden ohne Berücksichtigung dieser Bedingung Retry-Requests immer weiter abgesetzt, so resultiert eine unnötige Last auf dem Netz.

Alternativ und insbesondere bei kurzen fehlenden Datenabschnitten ist es in einer derartigen Situation, d. h. wenn der Slave feststellt, dass sein Datenvorrat für eine kontinuierliche Wiedergabe ungenügend ist, möglich, nicht abzubrechen und erneut auf den Datenstrom aufzusetzen, sondern vielmehr in jenem Zeitabschnitt, in welchem die Daten nicht zur Verfügung stehen (Loch im Puffer) die Wiedergabe kurz auszublenden.

Der Master schickt das entsprechende Korrektur-Datenpaket nach der Wartezeit mit einem broadcast oder multicast nochmals auf das Netz, und sämtliche Slaves, die dieses Paket brauchen, können es in ihren Ringpuffer einbauen. Ausserdem sollten die Slaves auf dem Netz mithören, ob Korrektur-Anfragen, wie sie sie gerade abzusetzen beabsichtigen, bereits an den Master gegangen sind. Ist dies der Fall, so verzichtet der Slave auf eine weitere Anfrage, da ja das entsprechende Korrekturpaket ohnehin vom Master in einem multicast zur Verfügung gestellt werden wird.

Eine weitere Verbesserung der Koordination und insbesondere der Steuerung zwischen Master und Wiedergabegeräten resp. Slaves kann erreicht werden, indem in den Datenströmen oder Datenpaketen wenigstens ein Kommando zusammen mit einem zugehörigen Ausführungszeitpunkt an die Wiedergabegeräte übermittelt wird. Beispielsweise können dabei Kommandi wie Pause, Play, Stop, etc. übergeben werden.

Bevorzugt sollte der Ausführungszeitpunkt so gewählt werden, dass zwischen der

15

20

25

30

Übergabe des Kommandos an das Netzwerk und dem Ausführungszeitpunkt wenigstens die längste im Netzwerk festgestellte Netzwerkverzögerungszeit zwischen Master und Wiedergabegerät verstreichen kann. So kann sichergestellt werden, dass beim Ankommen des Kommandos beim jeweiligen Wiedergabegerät der Ausführungszeitpunkt noch nicht in der Vergangenheit liegt.

Diese maximale Netzwerkverzögerungszeit kann beispielsweise vom Master von Zeit zu Zeit ermittelt und anschliessend abgelegt werden. Typischerweise kann zu dieser maximalen Netzwerkverzögerungszeit sicherheitshalber noch ein zusätzlicher Beitrag hinzugefügt werden, beispielsweise im Bereich von 1 - 20 ms. Dieser zusätzliche Beitrag dient dazu, die Netzwerkübertragungstoleranz (Sicherheitsmarge) und die Verarbeitungszeit im Sender und Empfänger abzudecken. Diese maximale Netzwerkverzögerungszeit sollte dynamisch angepasst werden, da sich diese maximale Netzwerkverzögerungszeit auf Grund von Veränderungen im Netz stark ändern kann. So ändert sich diese charakteristische Zeit beispielsweise, wenn die Last auf dem maximalen Netzwerk ansteigt (typischerweise Zunahme der Netzwerkverzögerungszeit), oder wenn weitere Wiedergabegeräte oder andere Geräte zugeschaltet oder abgeschaltet werden.

Um die zeitraubende Ermittlung der Bitrate, mit welcher der Master die Datenströme oder Datenpakete auf dem Netzwerk bereitstellt, und welche das Wiedergabegerät benötigt, um die im Netzwerk auftretenden Verzögerungen zu berechnen, zu vermeiden, kann diese Bitrate gleich in den Datenströmen oder Datenpaketen des Masters übermittelt werden.

Vorzugsweise wird dann, wenn ein Wiedergabegerät neu auf einen bereits ablaufenden Stream aufgeschaltet werden soll (beispielsweise beim neuen Zuschalten eines Gerätes oder wenn ein Datenverlust trotz Retry-Request zu einem irreparablen Leeerlaufen des Puffers geführt hat), so vorgegangen, dass ein zugeschaltetes Wiedergabegerät die aus dem Netzwerk empfangenen Datenströme oder Datenpakete unmittelbar, d. h. vom ersten Byte an, das empfangen wird, an seinen Codec übergibt. Der Codec des Wiedergabegerätes verwirft zunächst die eingespeisten Daten in Stummschaltung, bis ein erster gültiger Frame detektiert wird. Der Codec wird anschliessend unter

20

25

30

Vermerkung des aktuellen Bytes (welches nicht unbedingt das erste Byte des entsprechenden Frames sein muss) angehalten. Im Augenblick, wenn dieses aktuelle Byte auf dem Master gespielt wird, wird der Codec im Wiedergabegerät dann wieder aufgeschaltet und verarbeitet den Datenstrom respektive die Datenpakete unter Wiedergabe. Wenn der Stream zum Codec nach Erreichen des ersten gültigen Frames gestoppt wird, und danach gleichzeitig mit dem Master die Wiedergabe (Streaming) gestartet werden soll, so muss berücksichtigt werden, dass der Puffer im Codec des Wiedergabegerätes (Slave) in diesem Moment nicht voll ist, d. h. zum Beispiel halb leer ist. Dies bedeutet, dass zu Beginn die Daten viel schneller zum Codec gesendet werden, weil dieser seinen Puffer auch immer möglichst voll haben will. Entsprechend muss etwas später mit der Wiedergabe (Streaming) losgelegt werden, da der Slave dann den Master durch das schnellere Füllen ja aufholt.

Durch dieses Abwarten des ersten gültigen Frames im Codec kann vermieden werden, dass der in der Regel langsamere Prozessor im Wiedergabegerät den Stream, d. h. Datenstrom respektive die Datenpakete, parsen, d. h. analysieren und zerlegen muss, und der Codec wird dazu verwendet, auf den Stream aufzusetzen. Wenn der Master einen neuen Stream beginnt, ist ein derartiges Verfahren typischerweise nicht erforderlich.

Das vorgeschlagene Verfahren erlaubt auch den Betrieb von Baumstrukturen. Eine derartige kaskadische Synchronisation kann dadurch erreicht werden, dass wenigstens eines der Wiedergabegeräte seinerseits als Master für ein Sub-Netzwerk (z.B. LAN) eingesetzt wird. Bevorzugt werden dann entsprechende Repetitionen an den obersten Master (Root-Master) weitergegeben. So lassen sich beliebig viele Wiedergabegeräte synchronisieren, und jedes der Wiedergabegeräte kann seinerseits als Repeater (Wiedergabegerät, dass sowohl als Slave als auch als Master aktiv ist) verwendet werden. Grundsätzlich ist es so auch möglich, einen derart als Master wirksamen Slave in ein anderes Netzwerk aussenden zu lassen. Für den Root-Master resultieren anschliessend natürlich veränderte maximale Netzwerkverzögerungszeiten, welchen dann entsprechend Rechnung getragen werden muss. Es kann so eine sehr effiziente und gegebenenfalls weitläufige Replikation des Datenstroms realisiert werden.

15

20

Wenigstens eines der Wiedergabegeräte kann dabei vorteilhafterweise über einen Speicher verfügen, welcher Audio-Daten bereitstellt. Es kann sich bei diesem Speicher beispielsweise um ein Laufwerk (CD, DVD oder ähnliches) handeln, in welchem ein entsprechend beschriebenes Medium bereitgestellt wird. Alternativ kann es sich beim Speicher um einen internen beschreibbaren oder nur lesbaren Speicher handeln. Dieser Speicher wird als Quelle von Audio-Daten verwendet. Der Inhalt dieser Audio-Daten kann gegebenenfalls vom Master oder von einer anderen Datenquelle (denkbar ist auch ein Tuner zum Empfang von Radio-Input) bezogen werden.

Weitere bevorzugte Ausführungsformen des erfindungsgemässen Verfahrens sind in den abhängigen Ansprüchen beschrieben.

Weiterhin betrifft die vorliegenden Erfindung ein Datenverarbeitungsprogramm zur Durchführung eines Verfahrens, wie es oben beschrieben ist, sowie ein Wiedergabegerät zur Durchführung eines derartigen Verfahrens. Das Wiedergabegerät verfügt dabei vorzugsweise über ein Netzwerkinterface (respektive allgemeiner über eine Kommunikationsschnittstelle), über eine zentrale Rechnereinheit mit Speicher, sowie über Mittel zur wenigstens mittelbaren Ausgabe von analogen oder digitalen Daten, insbesondere in Form eines Lautsprechers. Im Speicher eines derartigen Wiedergabegeräts ist ein Datenverarbeitungsprogramm zur Durchführung dieses Verfahrens fest programmiert ist, und dieses Programm aktiviert sich nach Einschaltung der Speisung selbsttätig, wobei das Wiedergabegerät insbesondere bevorzugt über Mittel zur automatischen Integration des Geräts in das Netzwerk verfügt.

Weitere bevorzugte Ausführungsformen sind in den abhängigen Ansprüchen beschrieben.

25 KURZE ERLÄUTERUNG DER FIGUREN

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit den Zeichnungen näher erläutert werden. Es zeigen:

Fig. 1 eine schematische Darstellung eines Systems mit synchronisierten Wiedergabegeräten; und

20

25

Fig. 2 a) eine schematische Darstellung des Ringpuffers auf einem Slave und b) eine schematische Darstellung des Ringpuffers auf einem Master.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNG

Als Ausführungsbeispiel zur vorliegenden Erfindung soll ein System beschrieben werden, bei welchem eine "Sendeeinheit" einen von einer (digitalen oder analogen) Audio-Datenquelle angelieferten kontinuierlichen Datenstrom drahtlos an mehrere verteilte Wiedergabegeräte (typisch Aktivlautsprecher) verteilt, wobei diese verschiedene Kanäle des gleichen Datenstromes decodieren und ausgeben. Die Sendereinheit verfügt dazu über eine CPU, d. h. einen Prozessor, Pufferspeicher, sowie über mindestens eine bidirektionale Kommunikationsschnittstelle, im beschriebenen Beispiel ein 802.11b Funknetzwerkinterface, sowie einen Audioeingang für analoge oder digitale Audiodaten sowie selber über einen Audioausgang (ist also auch Wiedergabegerät). Die anderen Wiedergabegeräte verwenden die gleiche Architektur, besitzen aber statt einem Audioeingang einen digitalen und/oder analogen 15 Audioausgang und eventuell Leistungsverstärker und Schallwandler/Lautsprecher.

In der nun folgenden Beschreibung werden Bezeichnungen verwendet, die wie folgt definiert sein sollen:

- Der Server ist eine Datenquelle für Audiodaten und kann ein beliebiges Gerät zur Bereitstellung der Daten sein. Es kann sich dabei z. B. um einen Server eines Content-Providers handeln, oder aber auch um einen einfachen Musik- oder Video-Server. Insbesondere ist auch eine digitale Eingangsschaltung (z.B. S/PDIF), eine Analog/Digitalwandlung und/oder ein Codec, der einen Datenstrom komprimiert/codiert (typisch ein digitaler Signalprozessor), als "Server" zu betrachten.
- Wiedergabegerät: ein Gerät zur Wiedergabe des Medienstromes, das die hier beschriebenen Protokolle unterstützt.
- Master: ein Wiedergabegerät, das von einem anderen Gerät eine Aufforderung bekommen hat, den gerade spielenden Datenstrom weiterzureichen.

- System: eine Menge von mindestens zwei Wiedergabegeräten, die in einer gemeinsamen Kommunikationsstruktur installiert sind.
- Slave: ein Teilnehmer, der per Userinterface oder Kommando oder Festeinstellung/Parametrierung dazu aufgefordert wurde, synchron zu einem anderen Wiedergabegerät ("Master") zu spielen.
- Es können mehrere Slaves den gleichen Datenstrom synchron abspielen. Daher werden die Slaves zur Kennzeichnung mit Nummern versehen.

Normalbetrieb ohne Synchronisation:

10 Alle Wiedergabegeräte arbeiten autonom. Die Wiedergabegeräte können alle unabhängig voneinander Mediendaten von einer gemeinsamen oder von unterschiedlichen Datenquellen ausgeben. Die Datenquellen können dabei im Netzwerk angeordnet sein, oder aber es kann sich oben bereits auf den Wiedergabegeräten gespeicherte Daten handeln.

15

20

25

5

Automatisches Erkennen und Suchen von Teilnehmern:

Jedes Wiedergabegerät enthält einen "Discovery Server", der bei Eintreffen eines bestimmten Netzwerkblockes (UDP Datagramm auf eine spezifische Portnummer, UDP ist ein standard, low-overhead, verbindungsloses, host-to-host Protokoll, welches den Austausch von Datenpaketen über geschaltete Computernetzwerke erlaubt. Es erlaubt einem Programm auf einem Computer, ein Datagramm an ein Programm auf einem anderen Computer zu schicken) mit einem Antwortblock reagiert. Alternativ können andere Discovery-Protokolle, so z.B. SSDP (Simple Service Discovery Protocol, ein Unterprotokoll von UPNP, Universal plug and play ist ein Standard, welcher dazu verwendet wird, eine direkte und automatische Anbindung von Peripheriegeräten in einem lokalen Netzwerk ohne Konfiguration zu erlauben) benutzt werden.

Mit Hilfe des Suchprotokolls verschafft sich jedes Wiedergabegerät eine Liste von anderen Wiedergabegeräten, deren konfigurierten Namen, insofern verfügbar, und deren

Netzwerkadressen (IP Adresse). Diese Suche wird immer wieder wiederholt, so dass Ergänzungen der Liste durch neu hinzugekommene Geräte automatisch erfolgen. Nicht mehr vorhandene Geräte werden nach einer bestimmten Zeit wieder aus der Liste entfernt.

Eine beispielsweise in Form einer Homepage organisierte Software erlaubt es anschliessend, sämtliche in einem Netzwerk vorhandenen Wiedergabegeräte über Anfrage bei einem spezifischen Wiedergabegerät innerhalb des Netzwerks sichtbar zu machen. Dazu ist kein Installationsaufwand notwendig, die entsprechende Software visualisiert automatisch sämtliche Teilnehmer und stellt die Möglichkeit zur Verfügung, einzelne Teilnehmer an anderer in synchronisierter Weise anzubinden (z. B. über ein auslösen via cgi-Kommando). So ist ein einfaches Handling sichergestellt.

Aufforderung zur Synchronisation:

Ein Teilnehmer kann durch verschiedene Einflüsse stimuliert werden, sich mit einem anderen Gerät zu synchronisieren und dessen Medienstrom wiederzugeben:

- 1. durch fixe Konfiguration ("Setup"). Ein solcher Teilnehmer versucht sich konstant auf den konfigurierten Master zu synchronisieren.
- 2. durch Kommando von einer Applikation (z.B. per cgi Kommando, vgl. oben)
- 3. durch Empfang eines Kommandos über UDP auch der Fall "ALLE" synchronisieren auf Teilnehmer xxxx ist machbar
- 4. durch Aktion des Benutzers und Auslösen via User Interface

Wird ein Teilnehmer stimuliert, sich mit einem anderen zu synchronisieren, passiert das folgende:

25 Zeitsynchronisation:

20

Slave-Geräte müssen sehr genau mit dem Master synchronisieren. Hierzu ist eine genaue Synchronisation einer gemeinsamen Zeitbasis notwendig. Es ist nicht

20

25

notwendig, dass diese "Master-Slave-Systemzeit" irgendeinen Bezug zu anderen Systemen wie z.B. der Weltzeit hat, auch ist die Genauigkeit (Laufgeschwindigkeit) dieser Zeit unerheblich – solange beide Geräte möglichst genau synchron laufen.

Die Zeitsynchronisation der Wiedergabegeräte muss periodisch wiederholt werden, um Abweichungen über die Zeit zu korrigieren. Der Ablauf einer Zeitsynchronisation geschieht dabei ähnlich einem aus der Bereich der Zeitanpassung bekannten Protokoll, nämlich ntp (network time protocol). Dabei handelt es sich um ein Protokoll zur Synchronisation der Uhren auf Computern eines Netzwerks.

Im vorliegenden Fall wird wie folgt vorgegangen:

- Der verwendete Ansatz ist das Anfordern der Zeit beim Server unter Berücksichtigung der durchschnittlichen Laufzeit der Daten. Das Gerät selbst nimmt seine aktuelle Zeit und misst die Dauer bis zur Antwort vom Server. Diese Antwort enthält die aktuelle Serverzeit zum Zeitpunkt des Eintreffens der Anfrage. Wird dieser Vorgang mehrfach durchgeführt, können geringfügige Schwankungen in den Datenlaufzeiten ausgeglichen werden:
 - a) Slave schickt UDP Datagramm an den Teilnehmer auf den er synchronisieren will, und fordert dessen aktuelle Zeit an. In dem Telegramm wird die "eigene" Zeit mitgegeben (Sendezeit)
 - b) Das Telegramm wird vom Empfänger mit der lokalen (Master-) Zeit versehen, wobei die "Slave"-Sendezeit erhalten bleibt, und an den Slave zurückgeschickt.
 - c) Der Slave empfängt das vom Master zurückgesendete Telegramm und trägt es in eine Tabelle ein, wobei die Empfangszeit notiert wird.
 - d) Die Schritte a-c passieren mehrmals (bei der ersten Synchronisation z. B. mind. 8x, bei Resynchronisation 3x), mit dem Ziel, per Durchschnittsbildung unter Weglassen von Extremwerten ein möglichst genaues Ergebnis zu bekommen.
 - e) Sind genügend aussagekräftige Daten in der Tabelle vorhanden, wird ausgewertet. Hierzu wird die Differenz (aktuelle Slavezeit minus Slave-Sendezeit) eines jeden Telegrammes gebildet und geprüft, ob das Telegramm lange unterwegs war (grosse Differenz). Nur die Telegramme mit der kleinsten

10

20

Differenz werden genommen, und es kann im Normalfall angenommen werden, dass bei gleichen Geräten die Übertragungszeit in etwa symmetrisch auf beide Übertragungsstrecken entfällt. Hierdurch kann eine von der normalen Slavezeit unabhängige "Masterzeit" im Slave sehr genau auf den Master synchronisiert werden.

Auf normalem Ethernet und sogar auf 802.11 Wireless Netzwerken sind die Übertragungszeiten im unbelasteten Zustand typisch kleiner als 1ms, auf jeden Fall unter 5 ms, und bei Annahme der "symmetrischen" Verzögerung kann die Zeitsynchronisation der Teilnehmer mit dem beschriebenen Verfahren auf deutlich weniger als 1ms sichergestellt werden.

Somit wird also eine durchschnittliche Laufzeit der Daten innerhalb eines möglichst kurzen Zeitabschnittes ermittelt. Abzüglich einer geschätzten oder empirisch ermittelten Konstante von 0,01-1ms für die unterschiedliche Verarbeitungszeit beim Senden und Empfangen der Daten innerhalb der Geräte kommt man nun auf eine momentane Laufzeit für ein Datenpaket. Diese Laufzeit wird nun bei der Ermittlung der aktuellen Systemzeit berücksichtigt.

Die Zeitsynchronisation wird dann in regelmässigen Abständen wiederholt, typ. alle 30 Sekunden, wobei ein Zeitstempel im Weiterleitungsprotokoll zur Überwachung in der Regel genügt und damit die Resynchronisation nur bei deutlichen Diskrepanzen ausgelöst wird.

Datensynchronisation:

Allgemeines: Um die Synchronisation von "N" Slaves auf einen Master ohne "N"-fache Datenmenge auf dem Netzwerk zu bewerkstelligen, ist es im Sinne einer möglichst geringen erforderlichen Bandbreite auf dem Netzwerk vorteilhaft, die Streamingdaten vom Master per Multicast/Broadcast zu verteilen. Broadcast/Multicast ist nicht "sicher", d.h. Daten können verloren gehen. Es wird also ein Wiederholungsmechanismus benötigt. Die Anforderung von Wiederholungen kann unidirektional – mit direkter Adressierung – erfolgen.

15

20

25

30

Um mehrere unabhängige Synchronisationsgruppen (Kanäle) einfach und automatisch einzurichten, sollte für die Datenverteilung pro Kanal eine unterschiedliche Portnummer benutzt werden. Es ist dadurch mit hoher Wahrscheinlichkeit sichergestellt, dass in der beschriebenen Implementierung jeder Teilnehmer eine individuelle Portnummer aus seiner IP Adresse und einer Konstanten ableitet. Es werden die letzten 12 Bit der IP Adresse plus eine Konstante (z.B. 40.000) addiert. Eine solche Portnummer ist in einem typischen Netzwerk mit Class C Adressierung garantiert eindeutig.

Die individuelle Portnummer eines jeden Teilnehmers wird bei dem "Discovery" Protokoll mit übermittelt, und jeder Teilnehmer kennt daher die "Kanalnummer" eines jeden potentiellen Masters.

Anmeldung: Nachdem die Zeitsynchronisation hergestellt ist (siehe oben), fordert der Slave das Wiedergabegerät, dessen Datenstrom er synchronisiert wiedergeben will, auf, die "Master"-Rolle zu übernehmen. Dies geschieht durch Senden eines Kommandos (SYNC_REQ) auf den (Master)-spezifischen UDP Port/Kanal. Eine Quittung vom Master bestätigt den Empfang des Kommandos, bei Nichtbestätigung wiederholt der Slave das Kommando, notfalls mehrfach.

Streaming: Der Master empfängt die Streamingdaten z.B. von einem Server, typischerweise per tcp Verbindung, eventuell per http, oder auch von einer lokalen digitalen oder analogen Schnittstelle, Codec o.ä.. Die Funktion des Systems ist von der eingesetzten Datenquelle völlig unabhängig. Alle eingehenden Daten werden in einen Ringpuffer eingeschrieben. Bei jedem "Start" eines Streams wird ein Bytezähler (32bit) zurückgesetzt. Jedes eingehende Byte vom Server wird gezählt und hat so eine eindeutige "Adresse".

Der Master schickt in einem vom Empfangen des top Stromes unabhängigen Prozess die Daten des Ringpuffers blockweise, sofort nach Eintreffen, per UDP Broadcast auf das Netzwerk, ergänzt durch einen Protokollheader, der unter anderem die "Adresse" des ersten übermittelten Bytes, die genaue Masterzeit, die Adresse des vom Master als nächstes an den Codec zu übermittelnden Bytes etc enthält. Dies ist in Fig. 2b) dargestellt. Der Ringpuffer 5 ist ständig mit Daten gefüllt. Der Ausgabepointer 6 steht an einer bestimmten Stelle und schickt die dort gelesenen Daten an den lokalen

15

20

Codec/Wandler zur Wiedergabe. Der Ausgabepointer 6 verschiebt sich entsprechend der internen Uhr des Master vorwärts (vgl. Pfeilrichtung). Der Dateneingangspointer 8 zeigt diejenige Position an, an welcher gerade die von einem Server empfangenen Daten in den Ringpuffer 5 eingelesen werden. im wesentlichen unmittelbar "dahinter" in Leserichtung befindet sich der Datenweitergabepointer 10, welcher die Position angibt, an welcher die im Ringpuffer 5 vorhandenen Daten vom Master an die Slaves über ein Multicast/Broadcast weitergegeben werden. Mit dem Bezugszeichen 12 ist dabei ein typisches Datenpaket angegeben. Im Ringsspeicher 5 befindet sich entsprechend ein "Datenvorrat " 9, von welchem der wesentliche Teil für ggf. notwendige "retryprotokolle" zur Verfügung steht (vgl. weiter unten). Typischerweise umfasst dieser Datenvorrat ca. 1 bis 4 Sekunden Daten. Nicht mehr für Korrekturprotokolle zur Verfügung steht der Sicherheitsbereich unmittelbar vor dem Ausgabepointer 6, da dieser nicht mehr sinnvoll übergeben werden kann.

Der Slave empfängt diese Datagramme und trägt die empfangenen Daten seinerseits in einen Ringpuffer 5 ein. Der Protokollheader wird direkt ausgewertet, und zwar wird die Masterzeit auf Genauigkeit überprüft, und die Information "Masterzeit/Aktuelles Byte" (steht für den aktuellen Abspielmoment) wird zwischengespeichert, respektive dazu verwendet, den Ausgabepointer 6 einer richtigen Ort zu schieben respektive dessen Laufcharakteristik anzupassen. Der Ringpuffer 5 vom Slave ist in Fig. 2a) dargestellt. Der Dateneingangspointer 7 befindet sich an der Position des Datenweitergabepointers 10 des Master (unter Berücksichtigung natürlich der Laufzeit über das Netzwerk), und idealerweise befindet sich der Datenausgabepointer 6 an der identischen Stelle wie beim Master.

Typischerweise sollte, um Datenverluste zu vermeiden respektive um ein ggf. erforderliches "ziehen" zu ermöglichen, der Ringpuffer auf den Slaves grösser sein als jene auf dem Master. Es ist nebenbei bemerkt auch möglich, die Position des aktuellen Byte, welches vom Master auf den Codec geschickt wird, indirekt über den für Zustand des Ringpuffers zu ermitteln. Sind Ringpuffer von Master und Slave gleich voll, so ist die Synchronisation in Ordnung. Ist der Ringpuffer von einem Slave weniger gefüllt oder voller als jene des Masters, so zeigt dies eine entsprechende Verschiebung der

Ausgabe an.

10

15

20

25

30

Retry-Protokoll (Korrekturmechanismus):

Der Slave kann einfach feststellen, ob ein Datenpaket verloren gegangen ist. Dies ist genau dann der Fall, wenn ein neues Datenpaket empfangen wird, dessen erstes Byte nicht eine konsekutive Adresse hat (Datenlücke).

Wenn ein Datenpaket verloren geht, geschieht dies typischerweise auf dem Netzwerk und in der Regel für mehrere oder alle Slaves im "Kanal". Um unnötige Belastung des Netzwerkes zu vermeiden, wird ein intelligentes Retryverfahren eingesetzt. Alle Slaves empfangen das "neue" Datenpaket zum etwa gleichen Zeitpunkt und können daher etwa gleichzeitig feststellen, dass Daten verloren gegangen sind. Jeder Client verzögert jetzt eine individuelle Zeit (Zufallsgesteuert oder per Algorithmus aus der IP Adresse oder MAC Adresse abgeleitet), im Bereich 1 bis z.B. 30ms, bevor er eine "Retry-Anforderung" aussendet. Diese Retry-Anforderung wird dann per Broadcast auf den für den "Kanal" spezifischen UDP Port geschickt, und kann so von allen auf den Kanal aufgeschalteten Teilnehmern - nicht nur dem Master - empfangen werden. Während die Clients, die einen Retry auslösen wollen, die individuelle Zeit warten, wird der Empfang von UDP Datagrammen fortgesetzt. Ein von einem anderen Client ausgelöster Retry beendet das Warten und verhindert das Aussenden des eigenen Retries, wenn es sich um die gleiche (gleiche erste nicht vorhandene Byteadresse) oder eine Anforderung nach noch mehr Daten handelt - hierdurch werden mehrfache identische Retryanforderungen wirkungsvoll verhindert und die Last auf dem Netzwerk minimiert.

Stellt ein Slave fest, dass der Datenverlust im Rahmen der zur Verfügung stehenden Zeit ohnehin durch den Master mit einem erneuten Senden nicht mehr ausgeglichen werden kann, so beendet er seine Retry-Requests. So kann vermieden werden, dass unnötige Retry-Requests, welche das Netz nur belasten, ohne dem Slave anschliessend Nutzen zu bringen, weiter abgesetzt werden. Anschliessend kann ein Slave entweder bis zum letzten zur Verfügung stehenden Byte abspielen und dann erneut auf den Datenstrom aufsetzen, oder, und dies ist insbesondere bei kurzen Abschnitten mit Datenverlust ggf. durchaus sinnvoll, er unterbricht die Wiedergabe innerhalb des Fensters, dessen Daten nicht zur Verfügung stehen.

Auf der Seite des Masters wird, wenn ein Retry eintrifft, für eine bestimmte Zeit (z.B. 30 ms, gleich wie die maximale Client-Verzögerung plus max. interne Verarbeitungszeit für eingehende Datenblöcke) gewartet, bevor mit der Wiederholung der Aussendung begonnen wird. Mit dieser Verzögerung kann verhindert werden dass ein Retry ab einer bestimmten Stelle begonnen wird, dann aber noch eine Retryanforderung auf eine frühere Stelle einläuft.

Grundsätzlich werden alle Daten ab der angeforderten Stelle bis zum Ende des Master-Streamingbuffers wiederholt.

Slaves ignorieren alle eingehenden Daten die sie schon "kennen", wobei dies nicht blockspezifisch, sondern "bytespezifisch" ausgeführt wird – ein Retryblock kann teilweise alte und teilweise neue Daten enthalten.

Wiederaufsetzen:

10

15

Es kann passieren, dass ein Slave durch massive Empfangsstörung über längere Zeit keine Daten empfangen hat und damit einen "Underrun" produziert, d.h. der Streamingbuffer wird leer. In diesem Falle werden keine Retries mehr angefordert, sondern der Slave synchronisiert sich wieder komplett neu gemäss dem beschriebenen Verfahren. In diesem Falle muss die Ausgabe des Mediastromes auf dem Slave für einen kurzen Zeitraum unterbrochen werden.

20 Aufsetzen auf einen laufenden Datenstrom:

Slaves können jederzeit auf einen laufenden Datenstrom aufsetzen, ein synchroner Start ist nicht notwendig. Dies geschieht mittels der folgenden Methode:

- 1) der Slave füllt den Streamingpuffer mit den auf dem Kanal übertragenen Daten
- der Slave verfolgt die vom Master in den Broadcasts mit übermittelten Adressen
 der aktuell ausgegebenen Bytes
 - 3) zusätzlich kann der Slave mit spezifischen Abfragen vom Master genau erfahren, welches Byte (Adresse) dieser gerade an den Codec ausgegeben hat.
 - 4) Es wird die Adresse des ersten in den Streamingbuffer eingeschriebenen Bytes

mit der vom Master übermittelten aktuellen Ausgabeadresse verglichen. Sind diese gleich oder hat der Master bereits mehr Daten ausgegeben, wird sofort mit der Wiedergabe begonnen.

5 Feinabgleich:

10

15

20

Durch regelmässige Abfrage des Masters (analog der Zeitsynchronisation, implementiert in den gleichen Datenblöcken wie die Zeitsynchronisation) kann festgestellt werden ob der Client gegenüber dem Master eher "hinterherläuft" oder "vorwegläuft", und zwar sehr einfach durch Differenzbildung der aktuell an den Codec ausgegebenen Byteadressen. Diese Daten müssen natürlich über die Zeit gemittelt werden.

Ist der Client im Streamingbuffer bereits weiter als der Master, kann der Codec durch leichte Verlangsamung der Clockfrequenz etwas gebremst werden bis genaue Synchronisation erreicht ist. Analog wird die Codec-Clockfrequenz leicht angehoben wenn der Client im Mittel dem Master hinterherläuft.

Beenden des Master Modus:

Der Master kann die Notwendigkeit des Aussendens von Daten – also die Masterrolle – dadurch überprüfen, dass Aktivität von Slaves, zumindest zur Zeitsynchronisation, besteht. Wird über einen längeren Zeitraum (mindestens 3x Abfrageintervall Zeitsynchronisation) keine Clientaktivität mehr registriert, kann der Master wieder in den normalen Teilnehmermodus wechseln und das Aussenden der Broadcasts beenden.

WO 2004/043032 PCT/CH2003/000720

24

BEZUGSZEICHENLISTE

	1	Wiedergabegerät (Master)
	2	Wiedergabegerät (Slave)
5	3	Daten-Server
	4	Netzwerk
	5	Ringpuffer für Daten
	6	Datenausgabepointer (Slave/Master)
	7	Dateneingangspointer (Slave)
10	8	Dateneingangspointer (Master)
	9	Datenvorrat
	10	Datenweitergabepointer (Master)
	11	Sicherheitsbereich
	12	Datenpaket für Slaves

15

PATENTANSPRÜCHE

- 1. Verfahren zur Wiedergabe von über wenigstens ein Netzwerk (4) übertragenen Datenströmen oder Datenpaketen mittels wenigstens zweier wenigstens mittelbar an das Netzwerk (4) angebundener Wiedergabegeräte (1,2),
 - dadurch gekennzeichnet, dass
 - zur Synchronisation der Wiedergabe mit den wenigstens zwei Wiedergabegeräten (1,2)
- entweder eines der Wiedergabegeräte als Master (1) seine interne Uhr als
 Referenz vorgibt und die anderen Wiedergabegeräte (2) als Slave ihre interne
 Uhr über das Netzwerk (4) mit jener des Masters (1) abgleichen oder eine Kopie
 der Master-Uhr führen und die Wiedergabe von Datenströmen oder
 Datenpaketen in Abhängigkeit dieser abgeglichenen Uhr wiedergeben,
- oder dass die interne Uhr eines externen, ebenfalls am Netz verfügbaren Gerätes als Master verwendet wird und alle Wiedergabegeräte als Slave (2) ihre interne Uhr über das Netzwerk (4) mit jener des Masters abgleichen und die Wiedergabe von Datenströmen oder Datenpaketen in Abhängigkeit dieser abgeglichenen Uhr wiedergeben.
- 20 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich beim Netzwerk (4) um ein Netzwerk (4) handelt, in welchem Datenpakete in asynchroner Weise oder synchroner Weise übertragen werden.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
 dass der Abgleich der Uhr auf dem Slave (2) vor der ersten Wiedergabe geschieht, und insbesondere bevorzugt periodisch während der Wiedergabe aktualisiert wird.

- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die periodische Aktualisierung dazu verwendet wird, auf dem Slave (2) eine systematische Anpassung der Laufgeschwindigkeit der internen Uhr des Slave (2) an jene des Masters (1) zum Ausgleich von Unterschieden in der internen Laufzeitcharakteristik von Master (1) und Slave (2) vorzunehmen.
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die systematische Anpassung darin besteht, die interne Uhr des Slave (2) mit einem konstanten Korrekturfaktor zu skalieren.

5

6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Abgleich der internen Uhr erfolgt, indem die interne Uhr des Master (1) vom Slave (2) insbesondere bevorzugt mehrmals abgefragt wird, und indem wenigstens ein, bevorzugt eine Mehrzahl von Datenpaketen, welche mit den Paketen zur Abfrage der Zeit auf dem Master (1) identisch sein können, vom Slave (2) zum Master (1) übertragen und wieder zurückübermittelt werden, und die interne Uhr im Slave (2) in Abhängigkeit einer insbesondere durchschnittlichen Laufzeit von Datenpaketen zwischen Master (1) und Slave (2) an die Uhr im Master (1) angeglichen wird.

20

- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Laufzeit als Mittelwert unter Berücksichtigung der Bearbeitungszeiten in den Geräten (2) berechnet wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste, mit der Wiedergabe beauftragte Wiedergabegerät (1,2) automatisch als Master (1) definiert wird.

- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei den Datenströmen oder Datenpaketen um digitale Audio- oder Videodaten oder eine Kombination davon handelt, insbesondere um komprimierte oder unkomprimierte Audiodateien wie MP3, WAV, MPEG, Windows Media etc.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass es auf den Wiedergabegeräten (1,2) entweder die gleichen Daten wiedergegeben werden, oder dass unterschiedliche Kanäle der Daten, insbesondere bei Audio-Dateien in Stereoformat oder Multikanal (z.B. Dolby 5.1, DTS etc.), auf unterschiedlichen Wiedergabegeräten (1,2) wiedergegeben werden.
- 11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Teil der Datenströme oder Datenpakete vor der Wiedergabe in den Wiedergabegeräten (1,2) zwischengepuffert (5) werden, wobei bei Audiodateien typischerweise im Bereich von ca. 1 bis 5 sec gepuffert wird, und wobei insbesondere bevorzugt die Pufferung dynamisch und den Gegebenheiten des Netzwerks angepasst erfolgt.
- 20 12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Synchronisation der einzelnen Wiedergabegeräte (1,2) im Bereich von weniger als 100ms, bevorzugt von weniger als 10ms oder weniger als 2ms, und insbesondere bevorzugt von weniger als 1 ms erfolgt.
- 25 13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich beim Netzwerk (4) um ein kabelloses Netzwerk, insbesondere ein Funknetzwerk handelt.

- 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass während der Wiedergabe von wenigstens einem Wiedergabegerät (1,2) wenigstens ein weiteres synchronisiert zugeschaltet wird, indem sich das zugeschaltete Gerät (2)automatisch auf den vorhandenen Master (1) abgleicht und nach Pufferung eines Teils der Daten selber die Wiedergabe aufnimmt.
- 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Datenpakete oder Datenströme entweder von einem separaten Datenserver (3) abgeholt werden, oder auf einem der Wiedergabegeräte (1) abgeholt werden, oder auf den Wiedergabegeräten (1,2) bereits zur Verfügung stehen, oder dem System über einen Analog-Digitalwandler und/oder eventueller Komprimier/Codiereinheit nach Einspeisung in analoger oder digitaler Form in digitaler Form zur Verfügung gestellt werden.
- 15 16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Datenpakete oder Datenströme von einer Datenquelle in einen Ringpuffer (5) im Master (1) eingelesen, wobei jedes eingelesene Byte mit einer eindeutigen Adresse versehen ist, und dass der Master (1) in einem vom Einlesen des Datenstromes in den Ringpuffer (5) unabhängigen Prozess die Daten des Ringpuffers (5) blockweise, insbesondere sofort nach Einlesen, per Broadcast, insbesondere per UDP Broadcast und weiterhin insbesondere per multicast, auf das Netzwerk schickt, ergänzt durch einen Protokollheader, der unter anderem die Adresse des ersten übermittelten Bytes, die genaue Masterzeit, die Adresse des vom Master (1) als nächstes an den Codec des Masters (1) zu übermittelnden Bytes enthält.
 - 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Adresse des vom Master als nächstes an den Codec des Masters (1) zu übermittelnden Bytes wenigstens teilweise in unabhängigen Kontrollblöcken, welche mit den

Kontrollblöcken zur Überprüfung der Uhr auf dem Master identisch sein können, übermittelt wird.

- 18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,

 dass zur Sicherung der Datenintegrität bei von einem Slave (2) festgestelltem

 Verlust eines Datenteils auf dem Netzwerk (4) dieses Datenteil nach

 Anforderung vom Slave (2) vom Master (1) wiederholt gesendet wird, wobei der

 Master (1) dieses wiederholte Senden erst nach Verzögerung, insbesondere im

 Bereich von einigen ms, vornimmt, und wobei die Slaves (2) die Anforderungen

 in gestaffelter Weise derart vornehmen, dass identische Anforderungen nur

 einmal über das Netzwerk geschickt werden.
- 19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in den Datenströmen oder Datenpaketen wenigstens ein Kommando, beispielsweise ausgewählt aus der Gruppe Pause, Play, Stop, zusammen mit einem zugehörigen Ausführungszeitpunkt an die Wiedergabegeräte (1,2) übermittelt wird, wobei bevorzugt der Ausführungszeitpunkt so gewählt wird, dass zwischen der Übergabe des Kommandos an das Netzwerk (4) und dem Ausführungszeitpunkt wenigstens die längste im Netzwerk (4) festgestellte Netzwerkverzögerungszeit zwischen Master (1) und Wiedergabegerät (1,2) verstreichen kann.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in den Datenströmen oder Datenpaketen die Bitrate des Masters (1) übermittelt wird, mit welcher der Master (1) die Datenströme oder Datenpakete auf dem Netzwerk (4) bereitstellt, wobei bevorzugt das Wiedergabegerät (1,2) diese Bitrate dazu verwendet, um die im Netzwerk auftretenden Verzögerungen zu ermitteln.

21. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein zugeschaltetes Wiedergabegerät (1,2) die aus dem Netzwerk empfangenen Datenströme oder Datenpakete unmittelbar an den Codec übergibt, wobei dieser Codec die eingespeisten Daten in Stummschaltung verwirft, bis der Codec einen ersten gültigen Frame detektiert, der Codec anschliessend unter Vermerkung des aktuellen Bytes angehalten wird und der Codec im Wiedergabegerät dann wieder den Datenstrom respektive die Datenpakete verarbeitet und auf Wiedergabe geschaltet wird, wenn dieses aktuelle Byte auf dem Master (1) gespielt wird.

10

5

22. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eines der Wiedergabegeräte (1,2) seinerseits als Master für ein Sub-Netzwerk eingesetzt wird, wobei bevorzugt entsprechende Repetitionen an den obersten Master weitergegeben werden.

15

23. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eines der Wiedergabegeräte (1,2) über einen Speicher verfügt, welcher als Quelle von Audio-Daten verwendet wird, wobei der Inhalt dieser Audio-Daten gegebenenfalls vom Master (1) oder von einer anderen Datenquelle bezogen wird.

20

24. Datenverarbeitungsprogramm zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 23.

25

25. Wiedergabegerät zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass es über ein Netzwerkinterface, über eine zentrale Rechnereinheit mit Speicher sowie über Mittel zur wenigstens mittelbaren Ausgabe von Daten, insbesondere in Form eines Lautsprechers, verfügt, dadurch gekennzeichnet, Speicher dass im ein WO 2004/043032 PCT/CH2003/000720

31

Datenverarbeitungsprogramm nach Anspruch 19 fest programmiert ist, und dass sich dieses Programm nach Einschaltung der Speisung selbsttätig aktiviert, wobei das Wiedergabegerät insbesondere bevorzugt über Mittel zur automatischen Integration des Geräts in das Netzwerk verfügt.

١

Fig.

WO 2004/043032 A3

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK (Gebrauchsmuster), SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen
- (88) Veröffentlichungsdatum des internationalen
 Recherchenberichts: 5. August 2004

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

jener des Masters abgleichen und die Wiedergabe von Datenströmen oder Datenpaketen in Abhängigkeit dieser abgeglichenen Uhr wiedergeben, oder indem die interne Uhr eines externen, ebenfalls am Netz verfügbaren Gerätes als Master verwendet wird und alle Wiedergabegeräte als Slave eine interne Uhr über das Netzwerk mit jener des Masters abgleichen und die Wiedergabe von Datenströmen oder Datenpaketen in Abhängigkeit dieser abgeglichenen Uhr wiedergeben.

al Application No PCT/CH 03/00720

A. CLASSIFICATION OF SUBJECT MATTER
1PC 7 H04L29/06 H04J3/06 H04L12/18 H04L1/16 H04R27/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 HO4L HO4J HO4R G10H G11B G06F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Category ° Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Χ XIE Y ET AL: "ADAPTIVE MULTIMEDIA 1-5, 8-15. SYNCHRONIZATION IN A TELECONFERENCE SYSTEM" 19-25 1996 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC). CONVERGING TECHNOLOGIES FOR TOMORROW'S APPLICATIONS. DALLAS, JUNE 23 - 27, 1996, IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), NEW YORK, IEEE, US, vol. 3, 23 June 1996 (1996-06-23), pages 1355-1359, XP000625031 ISBN: 0-7803-3251-2 page 1355, right-hand column, paragraph 2 page 1357, right-hand column, paragraph 4 - page 1358, left-hand column, paragraph 2 figure 3 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 11.06.2004 20 February 2004 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Pieper, T

Fax: (+31-70) 340-3016

Intel Pal Application No PCT/CH 03/00720

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/CH 03/00/20
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 6 353 169 B1 (JUSZKIEWICZ HENRY E ET AL) 5 March 2002 (2002-03-05) column 7, line 14 - line 33 column 13, line 28 - line 33 column 14, line 47 - column 15, line 22 column 35, line 14 - line 19 column 38, line 51 - line 64 figures 2,4	1-3,9, 10,12, 15,19,20
X	US 6 072 879 A (SUYAMA AKIO ET AL) 6 June 2000 (2000-06-06) column 5, line 6 - line 11 column 7, line 37 - line 42 column 6, line 18 - line 22 figures 8,9	1-3,15
P,X	W0 03/023759 A (DIGIGRAM) 20 March 2003 (2003-03-20) abstract page 7, line 29 - page 8, line 3 page 10, line 2 - line 9 page 11, line 4 - line 12 page 6, line 14 - line 23 page 9, line 14 - line 19; figures 3,5,6	1,2,15
A	WO 02/076149 A (WOERNER HELMUT) 26 September 2002 (2002-09-26) page 4, paragraph 5 - page 5, paragraph 2 page 5, paragraph 4 page 1	1
A	US 6 091 826 A (LAITINEN ARVO OLAVI ET AL) 18 July 2000 (2000-07-18) abstract column 3, line 55 - line 67 column 4, line 27 - line 32 column 10, line 29 - line 38	13,15
A	JAN NEWMARCH: "A networked loudspeaker" NN, [Online] 19 July 2002 (2002-07-19), pages 1-9, XP002241563 Retrieved from the Internet: URL:http://jan.netcomp.monash.edu.au/inter netdevices/speaker/speaker.html> [retrieved on 2003-05-14] page 2, paragraph 7 - page 3, paragraph 4 page 8	13,15

International application No.
PCT/CH 03/00720

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)					
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:						
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:					
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:					
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).					
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)					
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:					
	see supplemental sheet					
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.					
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.					
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:					
4. X	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-5,8-15,19-25					
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.					

International application No. PCT/CH 03/00720

Box II

The International Searching Authority has determined that this international application contains multiple (groups of) inventions, as follows:

1. Claims 1-5, 8-15, 19-25

Synchronisation of playback devices connected via a network, one of the playback devices being the master.

1.1. Claim 1

Synchronisation of playback equipment connected via a network, an external device being the master.

2. Claims 6-7

Run-time alignment between master and slave, based on the slave querying the master clock.

3. Claims 16-17

Master ring buffer store and forwarding of the bytes read and the defined addressed assigned thereto.

4. Claim 18

Ensuring data integrity by means of staggered requests from the slave and repeated transmission by the master following a delay period.

INTERNATIONAL SEARCH REPORT Formation on patent family members

al Application No .PCT/CH 03/00720

	nt document search report	Publication date		Patent family member(s)		Publication date
US 6	353169 B1	05-03-2002	AU EP JP WO US CA	4489400 1183678 2004500586 0065571 2003172797 2306506	A1 T A1 A1	10-11-2000 06-03-2002 08-01-2004 02-11-2000 18-09-2003 26-10-2000
US 6	072879 A	06-06-2000	JP JP	2956642 10069280		04-10-1999 10-03-1998
WO 0)3023759 A	20-03-2003	FR WO US	2829655 03023759 2003050989	A2	14-03-2003 20-03-2003 13-03-2003
WO 0	2076149 A	26-09-2002	DE WO EP	10113088 02076149 1371264	A1	26-09-2002 26-09-2002 17-12-2003
US 6	6091826 A	18-07-2000	FI AT AU DE DE EP WO	97576 232028 4946196 69626042 69626042 0879502 9629779	T A D1 T2 A1	30-09-1996 15-02-2003 08-10-1996 06-03-2003 27-11-2003 25-11-1998 26-09-1996

a. Klassifizierung des anmeldungsgegenstandes IPK 7 H04L29/06 H04J3/06

H04L12/18

H04L1/16

H04R27/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) HO4L HO4J HO4R G10H G11B IPK 7

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal

C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN	
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	XIE Y ET AL: "ADAPTIVE MULTIMEDIA SYNCHRONIZATION IN A TELECONFERENCE SYSTEM" 1996 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC). CONVERGING TECHNOLOGIES FOR TOMORROW'S APPLICATIONS. DALLAS, JUNE 23 - 27, 1996, IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), NEW YORK, IEEE, US, Bd. 3, 23. Juni 1996 (1996-06-23), Seiten 1355-1359, XP000625031 ISBN: 0-7803-3251-2 Seite 1355, rechte Spalte, Absatz 2 Seite 1357, rechte Spalte, Absatz 4 - Seite 1358, linke Spalte, Absatz 2 Abbildung 3	1-5, 8-15, 19-25

 X	Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie. ausgeführt)
- Veröffentlichung, die sich auf eine mündliche Offenbarung,
- verbiehittenung, die sich auf eine mundliche Ollenbaufig. eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondem nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann alleln aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist
- "&" Veröffentlichung, die Mitglied derseiben Patentfamille ist

Absendedatum des internationalen Recherchenberichts

Datum des Abschlusses der internationalen Recherche

20. Februar 2004

Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

- 11 JUN 2004

Bevollmächtigter Bediensteter

Pieper, T

		CT/CH 03/00/20		
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		7	
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommende	n Teilø	Betr. Anspruch Nr.	
X	US 6 353 169 B1 (JUSZKIEWICZ HENRY E ET AL) 5. März 2002 (2002-03-05) Spalte 7, Zeile 14 - Zeile 33 Spalte 13, Zeile 28 - Zeile 33 Spalte 14, Zeile 47 - Spalte 15, Zeile 22 Spalte 35, Zeile 14 - Zeile 19 Spalte 38, Zeile 51 - Zeile 64 Abbildungen 2,4		1-3,9, 10,12, 15,19,20	
x	US 6 072 879 A (SUYAMA AKIO ET AL) 6. Juni 2000 (2000-06-06) Spalte 5, Zeile 6 - Zeile 11 Spalte 7, Zeile 37 - Zeile 42 Spalte 6, Zeile 18 - Zeile 22 Abbildungen 8,9		1-3,15	
P,X	WO 03/023759 A (DIGIGRAM) 20. März 2003 (2003-03-20) Zusammenfassung Seite 7, Zeile 29 - Seite 8, Zeile 3 Seite 10, Zeile 2 - Zeile 9 Seite 11, Zeile 4 - Zeile 12 Seite 6, Zeile 14 - Zeile 23 Seite 9, Zeile 14 - Zeile 19; Abbildungen 3,5,6		1,2,15	
A	WO 02/076149 A (WOERNER HELMUT) 26. September 2002 (2002-09-26) Seite 4, Absatz 5 - Seite 5, Absatz 2 Seite 5, Absatz 4 Seite 1		1	
A	US 6 091 826 A (LAITINEN ARVO OLAVI ET AL) 18. Juli 2000 (2000-07-18) Zusammenfassung Spalte 3, Zeile 55 - Zeile 67 Spalte 4, Zeile 27 - Zeile 32 Spalte 10, Zeile 29 - Zeile 38		13,15	
A	JAN NEWMARCH: "A networked loudspeaker" NN, [Online] 19. Juli 2002 (2002-07-19), Seiten 1-9, XP002241563 Gefunden im Internet: URL:http://jan.netcomp.monash.edu.au/internetdevices/speaker/speaker.html> [gefunden am 2003-05-14] Seite 2, Absatz 7 - Seite 3, Absatz 4 Seite 8		13,15	
ľ				

INTERNATIONALER RECHERCHENBERICHT

Feld I Be	emerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1
Gemäß Artil	kel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. An we	isprüche Nr. sil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
we	sprüche Nr. ill sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, ß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
we	sprüche Nr. il es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II Be	emerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internatie	onale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
. s i	iehe Zusatzblatt
1. Da	der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser ernationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da zus	für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine Bätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
inte	der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser ernationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die sprüche Nr.
taßi	r Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der Internationale Recher- enbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen er- t: -5,8-15,19-25
Bemerkunge	en hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Die internationale Recherchenbehörde hat festgestellt, dass diese internationale Anmeldung mehrere (Gruppen von) Erfindungen enthält, nämlich:

1. Ansprüche: 1-5,8-15,19-25

Synchronisierung von Wiedergabegeräten, die über ein Netzwerk verbunden sind, wobei eines der Wiedergabegeräte der Master ist.

1.1. Anspruch: 1

Synchronisierung von Wiedergabegeräten, die über ein Netzwerk verbunnden sind, wobei ein externes Gerät der Master ist.

2. Ansprüche: 6-7

Laufzeitausgleich zwischen Master und Slave mittels Abfrage der Master-Uhr durch den Slave

3. Ansprüche: 16-17

Master Ringpuffer und Weiterleitung der eingelesenen Bytes und deren eindeutigen Pufferadresse

4. Anspruch: 18

Sicherung der Datenintegrität mittels gestaffelter Anforderungen durch die Slaves und wiederholtes Sendens durch den Master nach einer Verzögerung

Seite 2 von 2

Angaben zu Veröffentlichung, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/CH 03/00720

	Recherchenbericht hrtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung	
U	6353169	B1	05-03-2002	AU EP JP WO US CA	2004500586 0065571	A1 T A1 A1	10-11-2000 06-03-2002 08-01-2004 02-11-2000 18-09-2003 26-10-2000
US	6072879	Α	06-06-2000	JP JP	2956642 10069280		04-10-1999 10-03-1998
WC	03023759	A	20-03-2003	FR WO US		A1 A2 A1	14-03-2003 20-03-2003 13-03-2003
WC	02076149	A	26-09-2002	DE WO EP	10113088 02076149 1371264	A1	26-09-2002 26-09-2002 17-12-2003
US	5 6091826	A	18-07-2000	FI AT AU DE DE EP WO	232028 4946196 69626042 69626042 0879502	B T A D1 T2 A1 A2	30-09-1996 15-02-2003 08-10-1996 06-03-2003 27-11-2003 25-11-1998 26-09-1996