

n Aula #24 Execução de Projetos e Detecção de Anomalias

Desenvolver um projeto de modelo Supervisionado

- 1. Analise Exploratória
- 2. Propor um tratamento para amostragem
- 3. Treinar Modelos Preditivos
- 4. Avaliar Qualidade de Ajustes
- 5. Propor Tratamentos e um Desenho do Modelo "em Produção"

- Base de dados de 2 dias de transações de cartões de crédito (Europa)
- Variáveis explicativas são componentes principais
- Somente Valor e Time estão com "formatação" original

Antes de Começar

CRISP-DM

- 1. Entendimento do Problema
- 2. Entendimento dos Dados
- 3. Preparação de Dados e Feature Engineering
- 4. Modelagem/ Treinamento **Algoritmos** dos supervisionados
- 5. Avaliação da Qualidade do Modelo
- 6. Deployment "Colocar em produção"

Métricas de Acurácia – Modelos de Classificação

- <u>Métricas</u> para avaliar a qualidade do ajuste do modelo
 - Missclassification = $\frac{FP+FN}{Total\ de\ casos}$
 - Acurácia = $\frac{TP+TN}{Total\ de\ casos}$
 - Precision = $P = \frac{TP}{TP+FP}$
 - Altos valores de precision estão relacionados a baixa taxa de FP
 - Recall = $R = \frac{TP}{TP + FN}$
 - Altos valores de recall estão relacionados a baixa taxa de FN

Conclusões:

- Alto recall e Baixo precision -> prejudica o cliente, pois o cliente era bom (0) e foi classificado como ruim (1).
- Baixo recall e Alto precision -> beneficia o cliente, pois o cliente era ruim (1) e foi classificado como bom (0).
- Altos valores de precision e recall são indicativos de um

Métricas de Acurácia — Modelos de Classificação

A curva ROC, mede, fração a fração, quantos 1's foram capturados (taxa de true positive) vs quantos 0's foram capturados (taxa de false positive).

<u>Métricas</u>

-
$$Sensibilidade = Recall = \frac{TP}{TP+FN}$$

-
$$Especific idade = \frac{TN}{TN+FP}$$

Prática

Fraude Transacional de Cartões de Crédito

- Analisar Evento e Variáveis Explicativas
- Ajustar Modelos de Classificação KNN e Regressão Logística (opcional Decision Tree)
- Críticar métricas de acurácia

Como lidar com o "Class Imbalance"

- 1. Existe uma quantidade considerável de Clientes Maus?
- 2. Diminuir sem viés a amostra da categoria dominante
- 3. Utilizar métricas de perfomance adequadas ou mais robustas
- 4. Algoritmos Baseados em árvores de decisão ("Ensemble Trees")

- a) Amostra Sintética SMOTE Synthetic Minority Over-sampling Technique
- b) Algoritmos com parametros de penalização
- c) Algoritmos de detecção de Anomalias

SMOTE – Amostra Sintética

- 1. Oversampling
- 2. Filosofia semelhante ao Método KNN
- 3. Novos dados da classe minoritária são gerados baseando se na relação das características/features

da classe minoritária

SMOTE – Amostra Sintética – Algoritmo

Regular

- 1. Buscar K vizinhos mais próximos
- 2. Sortear aleatóriamente um Fator λ
- 3. X_novo= $V_1 + \lambda (V_1 V_2)$ (2 vizinhos)

Referêcia

SMOTE – Imbalanced Learning

class imblearn.over_sampling.SMOTE(ratio='auto', random_state=None, k=None, k_neighbors=5, m=None, m_neighbors=10, out_step=0.5, kind='regular', svm_estimator=None, n_jobs=1) [source] [source]

http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html

Algoritmos com parâmetros de penalização

- SVM
- SVC
- **Logistic Regression**

http://scikit-learn.org/stable/modules/svm.html http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane_unbalanced.html

Conceito(1/2)

Detecção de Anomalias

- Cada Variável Explicativa (Feature) possuí uma média e desvio padrão
- Comparar a Probabilidade Normal da observação com a média –j e desvio padrão-j da Feature -j

•
$$P_j(X_i = x_i) = \frac{1}{\sqrt{2\pi\sigma_j}} \times e^{\frac{-(x_i - \mu_j)}{2\sigma_j^2}}$$

- Para n-variáveis -> Prob = $P_{j=1} \times P_{j=2} \times \cdots \times P_{j=n}$
- Existe uma fronteira vísivel $Prob < \varepsilon$?

Abordagens avançadas : Cálculo da Normal Multivariada

Conceito(2/2)

Mahalanobis Distance

```
from scipy.spatial.distance import mahalanobis
import scipy as sp
import pandas as pd

x = pd.read_csv('IrisData.csv')
x = x.ix[:,1:]

Sx = x.cov().values
Sx = sp.linalg.inv(Sx)

mean = x.mean().values

def mahalanobisR(X,meanCol,IC):
    m = []
    for i in range(X.shape[0]):
        m.append(mahalanobis(X.ix[i,:],meanCol,IC) ** 2)
    return(m)

mR = mahalanobisR(x,mean,Sx)
```

Detecção multivariada de outliers

Distância de Mahalanobis

$$D^2 = (x_i - vetor_{m\acute{e}dias})^T \Sigma^{-1} (x_i - vetor_{m\acute{e}dias})$$

- Métodos de Cluster : analisar elementos fora dos clusters
- Métodos de regressão : ajuste linerar e busca pelos maiores erros ou gráfico de residuos
- Conselho Prático: Foque mais em outliers univariados

https://stackoverflow.com/questions/29817090/is-there-a-python-equivalent-to-the-mahalanobis-function-in-r-if-not-how-can

Prática

Fraude Transacional de Cartões de Crédito

- Detecção de Anomalias
- Calculem o Z-Score das Variáveis
- Filtre os valores anomalos de Saldo
- Criem 3 valores previstos através do Z-score (sugestão: |Zscore| > 1.96, |Zscore| > 2 e
 |Zscore| >3)
- Comparem Matriz de Confusão
- Multivariado, Selecionem 3 variáveis e repitam o processo acima

Modelos "em produção"

- Escrever a Regra de Escoragem sem risco operacional?
- PMML
- Feature Engineering em produção -> Cuidado com variáveis relativas
- Monitorar Distribuição das Variáveis Explicativas

http://dmg.org/pmml/pmml_examples/index.html