Step	Algorithm: $y := \alpha x + y$
1a	$\{y = \widehat{y} $
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_B has 0 rows, y_B has 0 rows
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right\}$
3	while $m(x_B) < m(x)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land m(x_B) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	$ \left\{ \left(\begin{array}{c} y_0 \\ \psi_1 \\ y_2 \end{array}\right) = \left(\begin{array}{c} \widehat{y}_0 \\ \widehat{\psi}_1 \\ \alpha x_2 + \widehat{y}_2 \end{array}\right) $
8	$\psi_1 := \alpha \chi_1 + \psi_1$
7	$ \left\{ \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \widehat{y}_0 \\ \alpha \chi_1 + \widehat{\psi}_1 \\ \alpha x_2 + \widehat{y}_2 \end{pmatrix} \right\} $
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
2	$\left\{ \qquad \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$
1b	$\{y = \alpha x + \widehat{y} $

Step	Algorithm: $y := \alpha x + y$
1a	{
4	where
2	
3	while do
2,3	
5a	where
6	
8	
7	
5b	
2	
	endwhile
2,3	$\left\{ \qquad \qquad \land \neg (\qquad \qquad) \right.$
1b	{

Step	Algorithm: $y := \alpha x + y$	
1a	$\{y=\widehat{y}$	}
4	where	
2		
3	while do	
2,3	$\left\{ \begin{array}{c} \wedge \end{array} \right.$	
5a	where	
6		
8		
7		
5b		
2		
	endwhile	
2,3	$\left\{ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right.$	
1b	$\{y = \alpha x + \widehat{y}$	}

Step	Algorithm: $y := \alpha x + y$
1a	$\{y = \hat{y} $
4	where
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right\}$
3	while do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \wedge \right\}$
5a	where
6	
8	
7	
5b	
2	$\left\{ \qquad \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land \neg () \right\}$
1b	$\{y = \alpha x + \widehat{y} $

Step	Algorithm: $y := \alpha x + y$
1a	$\{y = \widehat{y} $
4	where
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right\}$
3	while $m(x_B) < m(x)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \wedge m(x_B) < m(x) \right\}$
5a	where
6	
8	
7	
5b	
2	$\left\{ \qquad \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$
1b	$\{y = \alpha x + \widehat{y} $

Step	Algorithm: $y := \alpha x + y$
1a	$\{y = \widehat{y} $
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_B has 0 rows, y_B has 0 rows
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right\}$
3	while $m(x_B) < m(x)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land m(x_B) < m(x) \right\}$
5a	where
6	
8	
7	
5b	
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$
1b	$\{y = \alpha x + \widehat{y} $

Step	Algorithm: $y := \alpha x + y$
1a	$\{y=\widehat{y}\}$
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_B has 0 rows, y_B has 0 rows
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right\}$
3	while $m(x_B) < m(x)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land m(x_B) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	
8	
7	
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$
1b	$\{y = \alpha x + \widehat{y} $

Step	Algorithm: $y := \alpha x + y$	
1a	$\{y = \widehat{y}\}$.
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_B has 0 rows, y_B has 0 rows	
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right\}$	
3	while $m(x_B) < m(x)$ do	
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land m(x_B) < m(x) \right\}$	
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row	
6	$ \left\{ \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \widehat{y}_0 \\ \widehat{\psi}_1 \\ \alpha x_2 + \widehat{y}_2 \end{pmatrix} $	
8		
7		
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$	
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right.$	
	endwhile	
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$	
1b	$\{y = \alpha x + \widehat{y}\}$	

Step	Algorithm: $y := \alpha x + y$
1a	
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_B has 0 rows, y_B has 0 rows
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right\}$
3	while $m(x_B) < m(x)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land m(x_B) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	$ \left\{ \begin{array}{c} y_0 \\ \psi_1 \\ y_2 \end{array} \right) = \begin{pmatrix} \widehat{y}_0 \\ \widehat{\psi}_1 \\ \alpha x_2 + \widehat{y}_2 \end{pmatrix} \\ $
8	
7	$\left\{ \begin{array}{c} \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \widehat{y}_0 \\ \alpha \chi_1 + \widehat{\psi}_1 \\ \alpha x_2 + \widehat{y}_2 \end{pmatrix} \right.$
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$
1b	$\boxed{\{y = \alpha x + \widehat{y}\}}$

1a $\{y = \hat{y}\}$ 4 $x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_B has 0 rows, y_B has 0 rows 2 $\left\{\left(\frac{y_T}{y_B}\right) = \left(\frac{\hat{y}_T}{\alpha x_B + \hat{y}_B}\right)\right\}$ 3 while $m(x_B) < m(x)$ do 2,3 $\left\{\left(\frac{y_T}{y_B}\right) = \left(\frac{\hat{y}_T}{\alpha x_B + \hat{y}_B}\right) \land m(x_B) < m(x)\right\}$ 5a $\left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{x_B}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{y_B}\right)$	
where x_B has 0 rows, y_B has 0 rows $2 \left\{ \begin{pmatrix} y_T \\ y_B \end{pmatrix} = \begin{pmatrix} \widehat{y}_T \\ \alpha x_B + \widehat{y}_B \end{pmatrix} \right\}$ $3 \text{while } m(x_B) < m(x) \text{ do}$ $2,3 \left\{ \left(\frac{y_T}{y_B} \right) = \begin{pmatrix} \widehat{y}_T \\ \alpha x_B + \widehat{y}_B \end{pmatrix} \land m(x_B) < m(x) \right\}$	}
3 while $m(x_B) < m(x)$ do $2,3 \left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land m(x_B) < m(x) \right\}$	
2,3 $\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land m(x_B) < m(x) \right\}$	
$\begin{bmatrix} x_T \\ 5a \end{bmatrix} \rightarrow \begin{bmatrix} x_0 \\ \chi_1 \\ \end{bmatrix}, \begin{bmatrix} y_T \\ \psi_1 \\ \end{bmatrix} \rightarrow \begin{bmatrix} y_0 \\ \psi_1 \\ \end{bmatrix}$	
$\begin{pmatrix} x_B \end{pmatrix} \begin{pmatrix} \frac{1}{x_2} \end{pmatrix} \begin{pmatrix} y_B \end{pmatrix} \begin{pmatrix} \frac{1}{y_2} \end{pmatrix}$ where χ_1 has 1 row, ψ_1 has 1 row	
$6 \left\{ \begin{array}{c} y_0 \\ \psi_1 \\ y_2 \end{array} \right\} = \begin{pmatrix} \widehat{y}_0 \\ \widehat{\psi}_1 \\ \alpha x_2 + \widehat{y}_2 \end{pmatrix}$	
$\delta \qquad \qquad \psi_1 := \alpha \chi_1 + \psi_1$	
$7 \left\{ \begin{array}{c} \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \widehat{y}_0 \\ \alpha \chi_1 + \widehat{\psi}_1 \\ \alpha x_2 + \widehat{y}_2 \end{pmatrix} \right.$	
5b $\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$	
$2 \qquad \left\{ \qquad \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \right.$	
endwhile	
$2,3 \left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\widehat{y}_T}{\alpha x_B + \widehat{y}_B} \right) \land \neg (m(x_B) < m(x)) \right\}$	
$1b \{y = \alpha x + \widehat{y}$	}

Algorithm: $y := \alpha x + y$
$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_B has 0 rows, y_B has 0 rows
while $m(x_B) < m(x)$ do
$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
where χ_1 has 1 low, ψ_1 has 1 low
$\psi_1 := \alpha \chi_1 + \psi_1$
$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
endwhile

Algorithm: $y := \alpha x + y$

$$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$$

where x_B has 0 rows, y_B has 0 rows while $m(x_B) < m(x)$ do

$$\left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right)$$

where χ_1 has 1 row, ψ_1 has 1 row

$$\psi_1 := \alpha \chi_1 + \psi_1$$

endwhile

$$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$$