Aufgaben zu Kapitel 1

Abitur 2019 B1

Gegeben ist die Funktion $f: x \mapsto 2 - ln(x-1)$ mit maximalem Definitionsbereich D_f . Der Graph von f wird mit G_f bezeichnet.

- 3 **1 a)** Zeigen Sie, dass $D_f =]1; +\infty[$ ist, und geben Sie das Verhalten von f an den Grenzen des Definitionsbereichs an.
 - b) Berechnen Sie die Nullstelle von f.
 - c) Beschreiben Sie, wie G_f schrittweise aus dem Graphen der in IR^+ definierten Funktion $x \mapsto \ln x$ hervorgeht. Erklären Sie damit das Monotonieverhalten von G_f .

Abitur 2017 A1

2

5

4

2

- **1** Gegeben ist die Funktion $g: x \mapsto 2 \cdot \sqrt{4+x} 1$ mit maximaler Definitionsmenge D_g . Der Graph von g wird mit G_g bezeichnet.
- a) Geben Sie D_g und die Koordinaten des Schnittpunkts von G_g mit der y-Achse an.
 - **b)** Beschreiben Sie, wie G_g schrittweise aus dem Graphen der in IR_0^+ definierten Funktion $w: x \mapsto \sqrt{x}$ hervorgeht, und geben Sie die Wertemenge von g an.

Abitur 2015 B1

1 Gegeben ist die Funktion f mit $f(x) = \frac{1}{x+1} - \frac{1}{x+3}$ und Definitionsbereich $D_f = IR \setminus \{-3; -1\}$. Der Graph von f wird mit G_f bezeichnet.

Die in IR \ $\{-3;-1\}$ definierte Funktion k : $x \mapsto 3 \cdot \left(\frac{1}{x+1} - \frac{1}{x+3}\right) - 0,2$ stellt im

Bereich $-0.5 \le x \le 2$ eine gute Näherung für die Funktion h dar.

b) Beschreiben Sie, wie der Graph der Funktion k aus dem Graphen der Funktion f aus Aufgabe 1 hervorgeht.

Abitur 2021 B1

- **3** Betrachtet wird die in IR definierte Funktion $p: x \mapsto \frac{40}{(x-12)^2+4}$;
- a) Beschreiben Sie, wie G_p aus dem Graphen der in IR definierten Funktion $h: x \mapsto \frac{5}{x^2+4} \text{ schrittweise hervorgeht, und begründen Sie damit, dass}$ $G_p \text{ bezüglich der Gerade mit der Gleichung } x=12 \text{ symmetrisch ist.}$

Aufgaben zu Kapitel 2

Abitur 2021 A2

2 Geben Sie jeweils den Term einer in IR definierten Funktion an, die die angegebene Wertemenge W hat.

2 **a)**
$$W =]-\infty;1]$$

2 **b)** W =
$$]3; +\infty[$$

Abitur 2020 B1

Gegeben ist die in IR definierte Funktion $f: x \mapsto \frac{x^2-1}{x^2+1}$; die Abbildung 1 zeigt ihren Graphen G_f .

Abb. 1

1 a) Bestätigen Sie rechnerisch, dass G_f symmetrisch bezüglich der y-Achse ist, und untersuchen Sie anhand des Funktionsterms das Verhalten von f für $x \to +\infty$. Bestimmen Sie diejenigen x-Werte, für die f(x) = 0,96 gilt.

Abitur 2018 A1

4 1 Geben Sie für die Funktionen f₁ und f₂ jeweils die maximale Definitionsmenge und die Nullstelle an.

$$f_1: x \mapsto \frac{2x+3}{x^2-4}$$
 $f_2: x \mapsto ln(x+2)$

2 Geben Sie den Term einer in IR definierten Funktion an, deren Graph im Punkt (2|1) eine waagrechte Tangente, aber keinen Extrempunkt hat.

Abitur 2015 A1

3

- **1** Gegeben ist die Funktion $f: x \mapsto (x^3 8) \cdot (2 + \ln x)$ mit maximalem Definitionsbereich D.
- 1 a) Geben Sie D an.
- **b)** Bestimmen Sie die Nullstellen von f.

Abitur 2013

5 1 Geben Sie für die Funktion f mit f(x) = ln(2013 – x) den maximalen Definitionsbereich D, das Verhalten von f an den Grenzen von D sowie die Schnittpunkte des Graphen von f mit den Koordinatenachsen an.