# Mathematical Optimization for Decision Making

Yuanzhe(Roger) Li

12/10/2019

### Outline

- Overview of Mathematical Programming
- Mixed-Integer Programming (MIP) Models
- Examples of MIP Applications
  - Traveling salesman problem
  - Warehouse allocation problem
- The Role of Mathematical Optimization in Data Science

## Mathematical Programming

- Mathematical programming is the selection of a best element (with regard to some criterion) from some set of available alternatives.
- A mathematical programming problem consists of
  - a set of variables that describe the state of the modeled system,
  - a set of constraints that define the region in which the states are allowed,
  - an objective function that provides an assessment of the system for any given states, and
  - external data that serve as input parameters.

# Formulating a Mathematical Programming Problem

■ The general form of a mathematical programming model with n variables and m constraints is

$$\begin{array}{ll} \text{max or min} & f(x_1,...,x_n) \\ & \text{s.t.} & g_i(x_1,...,x_n) \leq 0, \quad i=1,...,m \\ & (x_1,...,x_n) \in \mathbf{S} \end{array}$$

- The inequality constraints can cover  $\leq$  and  $\geq$ , as well as equality cases.
- S may be either continuous (e.g.,  $\mathbb{R}^n$ ) or discrete (e.g.,  $\mathbb{Z}^n$ ).

# Nomenclature for Mathematical Programming

- A *solution* is an assignment of values of variables
- A *feasible region* is the set of all possible solutions that satisfy all the constraints.

$$\mathcal{F} = \{ \mathbf{x} \in \mathbf{S} | g_i(\mathbf{x}) \le 0, i = 1, ..., m \}$$

- The *objective value* of a solution is obtained by evaluating  $f(\cdot)$  at the given solution.
- An *optimal solution* (for a minimization problem) is one whose corresponding objective value is less than or equal to that of all other feasible solutions.

# Categorizing Mathematical Programming Problems

- The type of a mathematical programming problem depends on the forms of the objective (f) and the constraints  $(g_i)$ , as well as the set S.
  - Unconstrained (m=0 and  $\mathbf{S}=\mathbb{R}^n$ ) vs. Constrained
  - Linear (f and  $g_i$ 's are linear and  $\mathbf{S} = \mathbb{R}^n$ ) vs. Nonlinear
  - Convex (f is a convex function and the feasible region  $\mathcal{F}$  is a convex set) vs. Nonconvex
  - lacktriangle Continuous (e.g.,  $\mathbf{x} \in \mathbb{R}^n$ ) vs. Discrete (e.g.,  $\mathbf{x} \in \mathbb{Z}^n$ )
- Knowing the type of the problem helps us understand how difficult it will be to solve it, and choose a suitable mathematical programming solver.

# Mixed-Integer Programming (MIP) Models

■ The general form of a MIP is

max or min 
$$f(\mathbf{x})$$
 s.t.  $g_i(\mathbf{x}) \leq 0, i = 1, ..., m$   $\mathbf{x} \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$ 

- Why do we need integer variables?
  - model indivisible physical entities (e.g., shares of stocks)
  - binary (0-1) variables can be used to model logical conditions or combinatorial structures.

# Example 1 - traveling salesman problem (TSP)

■ Problem definition (from wikipedia)

The travelling salesman problem (TSP) asks the following question: Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

## Example of a random path



 $\blacksquare$  Finding the optimal path by brute force takes O(n!)

### Formulate TSP as a MIP

#### Miller-Tucker-Zemlin formulation

■ Label the cities with 1, ..., n and define:

$$x_{ij} = \begin{cases} 1 & \text{if a path goes from city } i \text{ to city } j \\ 0 & \text{otherwise} \end{cases}$$

lacksquare Use another variable  $u_i$  to denote the ordering of the cities.

# Formulate TSP as a MIP (continued)

$$\begin{aligned} & \min & & \sum_{i=1}^{n} \sum_{j \neq i, j=1}^{n} d_{ij} x_{ij} \\ & \text{s.t.} & & x_{ij} \in \{0, 1\} & & i, j = 1, ..., n \\ & & u_i \in \mathbf{Z} & & i = 2, ..., n \\ & & \sum_{i=1, i \neq j}^{n} x_{ij} = 1 & & j = 1, ..., n \\ & & \sum_{j=1, j \neq i}^{n} x_{ij} = 1 & & i = 1, ..., n \\ & & u_i - u_j + n x_{ij} \leq n - 1 & 2 \leq i \neq j \leq n \\ & & 0 \leq u_i \leq n - 1 & 2 \leq i \leq n \end{aligned}$$

### MIP solution to TSP

■ We use the GLPK solver to optimize the MIP formulated above.

| trip_id | from $(i)$ | to $(j)$ | distance |
|---------|------------|----------|----------|
| 1       | 1          | 5        | 57.053   |
| 2       | 5          | 9        | 99.740   |
| 3       | 9          | 10       | 122.182  |
| 4       | 10         | 3        | 115.221  |
| 5       | 3          | 4        | 173.915  |
| 6       | 4          | 2        | 44.997   |
| 7       | 2          | 8        | 132.161  |
| 8       | 8          | 6        | 45.231   |
| 9       | 6          | 7        | 86.718   |
| 10      | 7          | 1        | 77.813   |

### Visualize the optimal path of the TSP



## Example 2 - facility location problem (FLP)

- Wikipedia definition: A branch of operations research concerned with the optimal placement of facilities to minimize transportation cost while considering other factors.
- We consider a simple warehouse allocation problem, where facilities can be built in *m* potential locations to serve *n* customers. The goal is to minimize the total transportation cost and fixed facility cost.

### Visualization of a FLP

### Warehouse location problem (n=100, m=20)



Black dots represent customers. Red squares show potential locations to build warehouses.

### Formulate FLP as MIP

#### Warehouse allocation problem

- Let  $I = \{1, ..., n\}$  be the set of customers,  $J = \{1, ..., m\}$  the set of potential locations.
- Define two set of binary variables:

$$y_j = \begin{cases} 1 & \text{a warehouse is built at location } j \\ 0 & \text{otherwise} \end{cases}$$

and

$$x_{ij} = \begin{cases} 1 & \text{if customer } i \text{ will be served by warehouse at } j \\ 0 & \text{otherwise} \end{cases}$$

### Formulate FLP as a MIP

$$\begin{split} & \min \quad \sum_{i=1}^n \sum_{j=1}^m \operatorname{transportation\_cost}_{ij} \cdot x_{ij} + \sum_{j=1}^m \operatorname{fixed\_cost}_j \cdot y_j \\ & \text{s.t.} \quad \sum_{j}^m x_{ij} = 1, \quad \forall i = 1, ..., n \\ & \quad x_{ij} \leq y_j, \quad \forall i = 1, ..., n \quad j = 1, ..., m \\ & \quad x_{ij} \in \{0, 1\}, \quad \forall i = 1, ..., n \quad j = 1, ..., m \\ & \quad y_j \in \{0, 1\}, \quad \forall j = 1, ..., m \end{split}$$

### MIP solution to the FLP

#### Optimal warehouse locations and customer assignment



# Mathematical Optimization and Machine Learning

- Use machine learning and mathematical optimization in conjunction.
  - E.g., use machine learning model predictions as input parameters to formulate the final decision making problem as a mathematical program.
- Use mathematical optimization to directly solve machine learning models.

### References

- Ted Ralphs 2015. *ISE 347/447: Financial Optimization (Fall 2015)*, lecture notes, Lehigh University.
- Dirk Schumacher 2018. *ompr: Model and Solve Mixed Integer Linear Programs*, R package version 0.8.0.
- To get serious about mathematical optimization, checkout Boyd and Vandenberghe (2004)