## **Comparing Speeding Outcomes by Gender**



## **Task Description**

- 1. Create a DataFrame, 'female\_and\_speeding', that only includes female drivers who were stopped for speeding.
- 2. Create a DataFrame, 'male\_and\_speeding', that only includes male drivers who were stopped for speeding.
- 3. Count the stop outcomes for the female drivers and express them as proportions.
- 4. Count the stop outcomes for the male drivers and express them as proportions.

## **Code Solution**

- # Create a DataFrame of female drivers stopped for speeding female\_and\_speeding = ri[(ri['driver\_gender'] == 'F') & (ri['violation'] == 'Speeding')]
- # Create a DataFrame of male drivers stopped for speeding male\_and\_speeding = ri[(ri['driver\_gender'] == 'M') & (ri['violation'] == 'Speeding')]
- # Compute the stop outcomes for female drivers (as proportions)
  print(female and speeding['stop outcome'].value counts(normalize=True))

# Compute the stop outcomes for male drivers (as proportions)
print(male\_and\_speeding['stop\_outcome'].value\_counts(normalize=True))

## **Code Explanation**

- 1. The line 'female\_and\_speeding =  $ri[(ri['driver\_gender'] == 'F') \& (ri['violation'] == 'Speeding')]'$  filters the DataFrame to include only rows where the driver is female and the violation is speeding.
- 2. The line 'male\_and\_speeding =  $ri[(ri['driver\_gender'] == 'M') \& (ri['violation'] == 'Speeding')]'$  filters the DataFrame to include only rows where the driver is male and the violation is speeding.
- 3. The line
- 'print(female\_and\_speeding['stop\_outcome'].value\_counts(normalize=True))' calculates the proportion of each type of stop outcome (e.g., Citation, Warning) for female drivers who were stopped for speeding.
- 4. The line
- 'print(male\_and\_speeding['stop\_outcome'].value\_counts(normalize=True))' calculates the proportion of each type of stop outcome for male drivers who were stopped for speeding.