

Méthodes de Monte-Carlo

M2 Radiophysique médicale, INSTN, 2023

Clément GAUCHY (clement.gauchy@cea.fr) Blog: clgch.github.io

CEA SACLAY

Sommaire

- 1. Méthodes Monte-Carlo: simulation aléatoire pour le calcul d'intégrales
- 2. Algorithmes Monte-Carlo Markov Chain (MCMC)

Les origines

- Le principe des méthodes Monte-Carlo est apparu au laboratoire de Los Alamos, à la fin des années 40
- Idée: Simuler la diffusion des neutrons dans un matériau fissile en utilisant de la simulation aléatoire
- Les méthodes MC sont désormais présentes dans tout les domaines impliquant de la simulation numérique: physique, finance, statistique,...

Figure 1: Stanislaw Ulam, mathématicien et fondateur des méthodes Monte-Carlo

Pourquoi Monte-Carlo?

Figure 2: Casino de Monte-Carlo, Monaco

L'oncle de Stanislaw Ulam jouait beaucoup au casino de Monte-Carlo, où les jeux de hasard sont rois !

Les premières simulations Monte-Carlo étaient faites "à la main"...

Comment simuler l'aléatoire avec un ordinateur ?

Comment simuler l'aléatoire avec un ordinateur ?

On détermine une suite de nombres dans [0, 1] dit pseudo-aléatoires.

Comment simuler l'aléatoire avec un ordinateur ?

On détermine une suite de nombres dans [0, 1] dit pseudo-aléatoires.

Exemple: Générateur congruentiel linéaire

$$z_{k+1} \equiv (az_k + c) \mod m \qquad x_{k+1} = \frac{z_{k+1}}{m-1}$$

On choisit des bons paramètres a, c, m pour "tromper" les test statistiques et génerer une loi uniforme $\mathcal{U}([0,1])$. Le premier terme x_0 de la suite est appellé seed.

Comment simuler l'aléatoire avec un ordinateur ?

On détermine une suite de nombres dans [0, 1] dit pseudo-aléatoires.

Exemple: Générateur congruentiel linéaire

$$z_{k+1} \equiv (az_k + c) \mod m \qquad x_{k+1} = \frac{z_{k+1}}{m-1}$$

On choisit des bons paramètres a, c, m pour "tromper" les test statistiques et génerer une loi uniforme $\mathcal{U}([0,1])$. Le premier terme x_0 de la suite est appellé seed.

La plupart des languages informatique utilisent des algorithmes plus sophistiqués comme Mersenne-Twister

Soit $X \sim P$, comment générer des réalisations de X à partir d'échantillon de $U \sim \mathcal{U}([0,1])$?

Soit $X \sim P$, comment générer des réalisations de X à partir d'échantillon de $U \sim \mathcal{U}([0,1])$?

Soit $F_X = \mathbb{P}(X \le x)$ la fonction de répartition de X.

$$F_X(X) \sim \mathcal{U}([0,1])$$

On utilise alors la propriété $F_X^{-1}(U) \sim P$.

Méthode très efficace si on a une expression simple de F_X^{-1}

Méthode d'acceptation rejet de Von Neumann

Méthode d'acceptation rejet de Von Neumann

On veut échantilloner X de densité de proba f et on sait échantilloner Y de loi g tel que $f \le M \times g$.

Méthode d'acceptation rejet de Von Neumann

On veut échantilloner X de densité de proba f et on sait échantilloner Y de loi g tel que $f \le M \times g$.

- On simule $U \sim \mathcal{U}([0, 1])$
- On simule $Y \sim g$.
- Si U < f(Y)/Mg(Y), alors on accepte le Y simulé comme un tirage selon f

Une particule se déplace dans un matériau, sa probabilité d'intéragir entre une distance x et x + dx est

 Σdx

avec Σ la section efficace macroscopique (en m^{-1}).

Une particule se déplace dans un matériau, sa probabilité d'intéragir entre une distance x et x + dx est

$$\Sigma dx$$

avec Σ la section efficace macroscopique (en m^{-1}).

On note P(x) la probabilité que le particule ait atteint la distance x sans interactions.

$$P(x + dx) = P(x)\mathbb{P}(\text{aucune interactions entre}[x, x + dx])$$
 Hypothèse d'indépendance $P(x + dx) = P(x)(1 - \Sigma dx)$ $\frac{dP}{dx} = -P(x)\Sigma$

On a donc
$$P(x) = \exp(-\Sigma x)$$

A COLO

Probabilité de ne pas intéragir jusqu'à la distance puis d'intéragir en x + dx:

$$P(x)\Sigma dx = \underbrace{\sum \exp(-\Sigma x)}_{\text{densit\'e de probabilit\'e}} dx$$

La fonction de répartition $F(x) = \int_{0}^{x} \sum \exp(-\Sigma s) ds = 1 - \exp(-\Sigma x)$ est facile à inverser !

$$1 - \exp(-\Sigma x) = u \iff x = \frac{-\ln(u)}{\Sigma}$$

Soit X la variable aléatoire du libre parcours d'une particule dans le matériau. Elle a pour densité $\Sigma \exp(-\Sigma x)$.

Soit X la variable aléatoire du libre parcours d'une particule dans le matériau. Elle a pour densité $\Sigma \exp(-\Sigma x)$.

Le libre parcours moyen ℓ est $\ell = \mathbb{E}[X] = \int_{0}^{+\infty} x \Sigma \exp(-\Sigma x) dx$.

Soit X la variable aléatoire du libre parcours d'une particule dans le matériau. Elle a pour densité $\Sigma \exp(-\Sigma x)$.

Le libre parcours moyen
$$\ell$$
 est $\ell = \mathbb{E}[X] = \int_{0}^{+\infty} x \Sigma \exp(-\Sigma x) dx$.

Á partir d'un échantillon $(X_i)_{1 \le i \le N}$ i.i.d génerés selon la loi de X, on peut utiliser la loi des grands nombres pour faire l'approximation suivante:

$$\ell \approx \frac{1}{N} \sum_{i=1}^{N} X_i$$

Soit X la variable aléatoire du libre parcours d'une particule dans le matériau. Elle a pour densité $\Sigma \exp(-\Sigma x)$.

Le libre parcours moyen
$$\ell$$
 est $\ell = \mathbb{E}[X] = \int_{0}^{+\infty} x \Sigma \exp(-\Sigma x) dx$.

Á partir d'un échantillon $(X_i)_{1 \le i \le N}$ i.i.d génerés selon la loi de X, on peut utiliser la loi des grands nombres pour faire l'approximation suivante:

$$\ell \approx \frac{1}{N} \sum_{i=1}^{N} X_i$$

Les méthodes Monte-Carlo peuvent servir a calculer des intégrales

W 60 60 Monte-Carlo pour la quadrature numérique

On cherche à calculer $I = \mathbb{E}[g(X)] = \int_{\mathbb{R}^d} g(x) f(x) dx$ avec f la densité de proba. de X

Monte-Carlo pour la quadrature numérique

On cherche à calculer $I = \mathbb{E}[g(X)] = \int_{\mathbb{R}^d} g(x) f(x) dx$ avec f la densité de proba. de X

Estimateur Monte-Carlo: la moyenne empirique à partir de N simulations $(X_i)_{1 \le i \le N}$ i.i.d. de même loi que X.

$$\widehat{I}_N = \frac{1}{N} \sum_{i=1}^N g(X_i)$$

W W W

Monte-Carlo pour la quadrature numérique

On cherche à calculer $I = \mathbb{E}[g(X)] = \int_{\mathbb{R}^d} g(x) f(x) dx$ avec f la densité de proba. de X

Estimateur Monte-Carlo: la moyenne empirique à partir de N simulations $(X_i)_{1 \le i \le N}$ i.i.d. de même loi que X.

$$\widehat{I}_N = \frac{1}{N} \sum_{i=1}^N g(X_i)$$

Propriétés:

- Estimateur sans biais $\mathbb{E}[\widehat{I_N}] = I$
- Convergence (dite "forte") asymptotique grâce à la lois des grands nombres: $\widehat{I_N} \xrightarrow[N \to +\infty]{} I$
- Variance de l'estimateur MC:

$$\mathrm{Var}(\widehat{I_N}) = \frac{1}{N} \mathrm{Var}(g(X))$$

Inconvénient: Convergence lente en $1/\sqrt{N}$

Avantage: Vitesse de convergence indépendante de la dimension d de X

W W W

On utilise la notion d'intervalle de confiance pour contrôler l'erreur sur \widehat{I}_N .

On utilise la notion d'intervalle de confiance pour contrôler l'erreur sur \widehat{l}_N .

Estimateur de la variance

$$S_N^2 = \frac{1}{N} \sum_{i=1}^N (g(X_i) - \widehat{I}_N)^2$$

On utilise la notion d'intervalle de confiance pour contrôler l'erreur sur \widehat{l}_N .

Estimateur de la variance

$$S_N^2 = \frac{1}{N} \sum_{i=1}^N (g(X_i) - \widehat{I}_N)^2$$

Pour N petit:

$$\mathbb{P}(I \in [\widehat{I}_N - t_{N-1,\frac{1+\alpha}{2}} \frac{S_N}{\sqrt{N-1}}, \widehat{I}_N + t_{N-1,\frac{1+\alpha}{2}} \frac{S_N}{\sqrt{N-1}}]) \approx \alpha$$

w m m

On utilise la notion d'intervalle de confiance pour contrôler l'erreur sur \widehat{l}_N .

Estimateur de la variance

$$S_N^2 = \frac{1}{N} \sum_{i=1}^N (g(X_i) - \widehat{I}_N)^2$$

Pour N petit:

$$\mathbb{P}(I \in [\widehat{I_N} - t_{N-1, \frac{1+\alpha}{2}} \frac{S_N}{\sqrt{N-1}}, \widehat{I_N} + t_{N-1, \frac{1+\alpha}{2}} \frac{S_N}{\sqrt{N-1}}]) \approx \alpha$$

Pour N grand:

$$\mathbb{P}(I \in [\widehat{I_N} - u_{\frac{1+\alpha}{2}} \frac{S_N}{\sqrt{N-1}}, \widehat{I_N} + u_{\frac{1+\alpha}{2}} \frac{S_N}{\sqrt{N-1}}]) \approx \alpha$$

w MAN

On utilise la notion d'intervalle de confiance pour contrôler l'erreur sur \widehat{l}_N .

Estimateur de la variance

$$S_N^2 = \frac{1}{N} \sum_{i=1}^N (g(X_i) - \widehat{I}_N)^2$$

Pour N petit:

$$\mathbb{P}(I \in [\widehat{I_N} - t_{N-1, \frac{1+\alpha}{2}} \frac{S_N}{\sqrt{N-1}}, \widehat{I_N} + t_{N-1, \frac{1+\alpha}{2}} \frac{S_N}{\sqrt{N-1}}]) \approx \alpha$$

Pour N grand:

$$\mathbb{P}(I \in [\widehat{I_N} - u_{\frac{1+\alpha}{2}} \frac{S_N}{\sqrt{N-1}}, \widehat{I_N} + u_{\frac{1+\alpha}{2}} \frac{S_N}{\sqrt{N-1}}]) \approx \alpha$$

C'est $Var(\widehat{l_N})$ qui pilote la largeur de l'intervalle de confiance !

A MARK

Réduction de variance

On rappelle que $Var(\widehat{I_N}) = \frac{1}{N}Var(g(X))$.

Réduction de variance

On rappelle que $\operatorname{Var}(\widehat{I_N}) = \frac{1}{N} \operatorname{Var}(g(X))$.

Contrôler la variance de l'intégrande \iff Contrôler la précision de la méthode Monte-Carlo

Réduction de variance

On rappelle que $\operatorname{Var}(\widehat{I_N}) = \frac{1}{N}\operatorname{Var}(g(X))$.

Contrôler la variance de l'intégrande \iff Contrôler la précision de la méthode Monte-Carlo

Il existe toute une variété de méthodes de réduction de variance:

- Échantillonage d'importance
- Stratification
- Variable de contrôle
- Conditionnement
- **...**

Réduction de variance par variable de contrôle (control variates)

- Intégration de la fonction g par Monte Carlo: choix de X et approximation de $\mathbb{E}(g(X))$
- Soit une fonction h(X) appelée variable de contrôle dont on connait l'espérance $\mu = \mathbb{E}(h(X))$
- On définit la variable aléatoire en fonction d'une constante α :

$$W_{\alpha}(X) = g(X) + \alpha(h(X) - \mu) \rightarrow \mathbb{E}(W_{\alpha}(X)) = \mathbb{E}(g(X))$$

Le calcul de l'intégrale peut donc se faire sur la fonction $W_{\alpha}(X)$. Sa variance est :

$$\operatorname{Var}(W_{\alpha}(X)) = \operatorname{Var}(g(X)) + \alpha^{2}\operatorname{Var}(h(X)) + 2\alpha\operatorname{Cov}(g(X), h(X))$$

Comme fonction de α , la variance de $W_{\alpha}(X)$ atteint son minimun pour la valeur :

$$lpha_{ ext{opt}} = -\frac{\operatorname{Cov}(g(X), h(X))}{\operatorname{Var}(h(X))}$$

$$\operatorname{Var}(W_{lpha_{ ext{opt}}}(X)) = \operatorname{Var}(g(X)) - \underbrace{\frac{\left[\operatorname{Cov}(g(X), h(X))\right]^2}{\operatorname{Var}(h(X))}}_{ ext{r\'eduction de la variance}}$$

$$= \operatorname{Var}(g(X))(1 - \rho_{g(X), h(X)}^2)$$

en notant $\rho_{g(X),h(X)}$ le coefficient de corrélation entre les variables g(X) et h(X)

Intérêt de choisir une variable de controle la plus corrélée à g(X) (pas toujours évident)

W W W

Exemple d'utilisation d'une variable de contrôle

- Calcul de $I = \int_0^1 g(x) dx$
- $q(x) = 1 + x \rightarrow I = \ln(2)$
- Par tirages MC d'une loi uniforme $X \sim \mathcal{U}(0,1)$:

$$\bar{G}_n = (1/n) \sum_{i=1}^n \frac{1}{1 + X_i}$$

- On prend comme variable de contrôle
 - h(X) = 1 + X, $\mu = 3/2$
- On peut calculer $\rho_{g(X),h(X)} \approx 0.6$

Figure 3: Les courbes en pointillés correspondent à l'intervalle de confiance à 95%

Échantillonage d'importance (Importance sampling)

- Calcul de l'intégrale $I = \int_D g(x)f(x)dx$ où $x \in \mathbb{R}^d$ et g(x) une fonction de $D \subset \mathbb{R}^d$ dans \mathbb{R} et f une certaine densité de probabilité
- La représentation de I comme une espérance n'est pas unique:

$$I = \int_{D} g(x)f(x)dx = \int_{D} \frac{g(x)f(x)}{h(x)}h(x)dx = \mathbb{E}_{X \sim h} \left[\frac{g(x)f(x)}{h(x)} \right]$$

- Idée: On peut biaiser l'échantillonage en simulant X selon g pour rendre plus probable les réalisations "importantes".
- On propose l'estimateur suivant:

$$\widehat{I_n} = \frac{1}{N} \sum_{i=1}^{N} g(X_i) \frac{f(X_i)}{h(X_i)}$$

avec f(x)/h(x) appellé le rapport de vraisemblance

W MAR

Echantillonage d'importance (2)

L'estimateur est non biaisé:

$$\mathbb{E}[\widehat{I}_{N}] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{h} \left[g(X_{i}) \frac{f(X_{i})}{h(X_{i})} \right] = \mathbb{E}_{h} \left[g(X) \frac{f(X)}{h(X)} \right] = \int_{D} \frac{g(x)f(x)}{h(x)} h(x) dx = I$$

Convergence de l'estimateur (par la loi forte des grand nombres):

$$\widehat{I_N} \xrightarrow[N \to +\infty]{} I$$

La variance de l'estimateur s'écrit:

$$\operatorname{Var}(\widehat{I_N}) = \frac{1}{N} \operatorname{Var}_h \left(g(X) \frac{f(X)}{h(X)} \right) = \frac{1}{N} \left(\mathbb{E}_{X \sim t} \left[g(X)^2 \frac{f(X)}{h(X)} \right] - t^2 \right)$$

Le choix astucieux de h peut réduire drastiquement la variance !

Échantillonage d'importance optimal

La meilleur distribution de probabilité h est celle minimisant $\operatorname{Var}(\widehat{I_N}) \hookrightarrow \operatorname{Soit} h^*$ la meilleur distribution, alors

$$h^* \in \operatorname*{argmin}_h \mathbb{E}_{\mathbf{X} \sim \mathbf{f}} \left[g(\mathbf{X})^2 \frac{f(\mathbf{X})}{h(\mathbf{X})} \right] = \int_{\mathcal{D}} g(\mathbf{X})^2 \frac{f^2(\mathbf{X})}{h(\mathbf{X})} d\mathbf{X}$$

w m m

Échantillonage d'importance optimal

La meilleur distribution de probabilité h est celle minimisant $\operatorname{Var}(\widehat{I_N}) \hookrightarrow \operatorname{Soit} h^*$ la meilleur distribution, alors

$$h^* \in \underset{h}{\operatorname{argmin}} \mathbb{E}_{X \sim f} \left[g(X)^2 \frac{f(X)}{h(X)} \right] = \int_D g(X)^2 \frac{f^2(X)}{h(X)} dX$$

La solution de ce problème de minimisation est:

$$h^*(x) = \frac{g(x)f(x)}{\int_D g(u)f(u)du}$$

w m m

Échantillonage d'importance optimal

La meilleur distribution de probabilité h est celle minimisant $\operatorname{Var}(\widehat{I_N}) \hookrightarrow \operatorname{Soit} h^*$ la meilleur distribution, alors

$$h^* \in \underset{h}{\operatorname{argmin}} \mathbb{E}_{X \sim f} \left[g(X)^2 \frac{f(X)}{h(X)} \right] = \int_D g(x)^2 \frac{f^2(x)}{h(x)} dx$$

La solution de ce problème de minimisation est:

$$h^*(x) = \frac{g(x)f(x)}{\int_D g(u)f(u)du}$$

On peut remarquer que $\operatorname{Var}_{h^*}\left(g(X)\frac{f(X)}{h^*(X)}\right)=0$!

w mass

Échantillonage d'importance optimal

La meilleur distribution de probabilité h est celle minimisant $Var(\widehat{I_N}) \hookrightarrow Soit h^*$ la meilleur distribution, alors

$$h^* \in \operatorname*{argmin}_h \mathbb{E}_{\mathbf{X} \sim \mathbf{f}} \left[g(\mathbf{X})^2 \frac{f(\mathbf{X})}{h(\mathbf{X})} \right] = \int_{\mathcal{D}} g(\mathbf{X})^2 \frac{f^2(\mathbf{X})}{h(\mathbf{X})} d\mathbf{X}$$

La solution de ce problème de minimisation est:

$$h^*(x) = \frac{g(x)f(x)}{\int_D g(u)f(u)du}$$

On peut remarquer que $\operatorname{Var}_{h^*}\left(g(X)rac{f(X)}{h^*(X)}
ight)=0$!

⚠ Le dénominateur de h^* est... $I = \int_D g(x)f(x)dx$ la quantité que l'on cherche à estimer ! Cette loi n'est pas utile en pratique, mais on peut chercher à l'approcher par une famille paramétrique de lois $\{h_\theta, \theta \in \Theta\}$.

$$heta_* \in \operatorname*{argmin}_{ heta \in \Theta} \mathcal{D}(h^*, h_ heta)$$

Exemple de réduction de variance par échantillonnage d'importance

- $g(x) = 3x^2 \text{ et intégrale}$ $I = \int_0^1 g(x) dx = 1$
- Choix uniforme U(0, 1), $f(x) = 1_{[0,1]}(x)$

$$Var(g(X)) = \int_0^1 (3x^2 - 1)^2 dx = \frac{4}{5}$$

Choix plus astucieux par échantillonnage d'importance : $f(x) = 2x \, 1_{[0,1]}(x)$.

$$\frac{g(x)}{f(x)} = \frac{3x}{2}$$

$$Var_f\left(\frac{g(X)}{f(X)}\right) = \int_0^1 (\frac{3x}{2} - 1)^2 2x dx = \frac{1}{8}$$

La variance a été divisé d'un facteur 6

Figure 4: Les courbes en pointillés correspondent à l'intervalle de confiance à 95%

Sommaire

- 1. Méthodes Monte-Carlo: simulation aléatoire pour le calcul d'intégrales
- 2. Algorithmes *Monte-Carlo Markov Chain* (MCMC)

Définition d'une chaîne de Markov

- Une chaîne de Markov est un modéle aléatoire pour lequel la probabilité des états du futur ne dépend que de l'état présent
- Soit $(X_t)_{t\geq 0}$ une suite de variables aléatoires à valeurs dans un ensemble E supposé fini $E=\{1,2,\ldots,M\}$ appelé espace des états
- $(X_t)_{t>0}$ est une chaîne de Markov si pour tout $t\geq 1$ et toute suite $(i_0,i_1,\ldots,i_{t-1},i,j)$

$$\mathbb{P}(X_{t+1} = j | X_0 = i_0, \dots, X_{t-1} = i_{t-1}, X_t = i) = \mathbb{P}(X_{t+1} = j | X_t = i)$$

- Autrement dit, le futur est totalement conditionné par le présent car dés qu'on connait le présent (la valeur de X_t) la loi du futur (X_{t+1}) est parfaitement définie sans connaissance du passé
- Chaîne est dite homogène lorsque la probabilité de transition ne dépend pas de t

$$p_{ii} = \mathbb{P}(X_{t+1} = j | X_t = i)$$

On appelle matrice de transition de la chaîne la matrice P de taille $M \times M$:

$${m P}=[p_{ij}]_{1\leq i,j,\leq M}$$

Propriétés

Il est trés facile de calculer la loi jointe de (X_0, X_1, \dots, X_t) à partir de la loi initiale

$$P(X_0 = i_0, X_1 = i_1, \dots, X_t = i_t) = \mathbb{P}(X_0 = i_0) p_{i_0 i_1} p_{i_1 i_2} \dots p_{i_{t-1} i_t}$$

La somme par ligne de **P** est égale à 1. En effet :

$$\begin{split} \sum_{j=1}^{M} p_{ij} &= \sum_{j=1}^{M} \mathbb{P}(X_{t+1} = j | X_t = i) = \sum_{j=1}^{M} \frac{\mathbb{P}(X_{t+1} = j, X_t = i)}{\mathbb{P}(X_t = i)} \\ &= \frac{1}{\mathbb{P}(X_t = i)} \sum_{j=1}^{M} \mathbb{P}(X_{t+1} = j, X_t = i), \text{ \'ev\'enements disjoints} \\ &= \frac{1}{\mathbb{P}(X_t = i)} \mathbb{P}(X_{t+1} \in \{1, 2, \dots, M\}, X_t = i) = \frac{\mathbb{P}(X_t = i)}{\mathbb{P}(X_t = i)} = 1 \end{split}$$

La matrice *P* admet donc 1 comme vecteur propre et 1 pour valeur propre associée :

$$P1 = 1 \times 1$$

Les matrices vérifiant ces propriétés sont appelées matrices stochastiques ou markoviennes

Equations de Chapman-Kolmogorov

On note π^t la loi de probabilité de la variable X_t définie par le vecteur ligne :

$$\pi^t = (\mathbb{P}(X_t = 1), \mathbb{P}(X_t = 2), \dots, \mathbb{P}(X_t = M))$$

■ A partir des probabilités conditionnelles et en se rappelant que les évènements $\{X_t = j\}$ et $\{X_t = k\}$ sont disjoints si $j \neq k$

$$\mathbb{P}(X_{t+1} = i, X_t = j) = \mathbb{P}(X_t = j) \times \mathbb{P}(X_{t+1} = i | X_t = j)$$

$$\sum_{j} \mathbb{P}(X_{t+1} = i, X_t = j) = \sum_{j} \mathbb{P}(X_t = j) \mathbb{P}(X_{t+1} = i | X_t = j)$$

$$\mathbb{P}(X_{t+1} = i, \bigcup_{j} X_t = j) = \sum_{j} \mathbb{P}(X_t = j) \mathbb{P}(X_{t+1} = i | X_t = j)$$

$$\{\bigcup_{j} X_t = j\} = \Omega \to \mathbb{P}(X_{t+1} = i) = \sum_{j} \mathbb{P}(X_t = j) \mathbb{P}(X_{t+1} = i | X_t = j)$$

$$\pi_i^{t+1} = \sum_{j} \pi_j^t p_{jj}$$

$$\to \pi^{t+1} = \pi^t \mathbf{P}$$

On en déduit les équations de Chapman-Kolmogorov :

$$\pi^{t} = \pi^{0} \mathbf{P}, \quad \mathbb{P}(X_{t} = j | X_{0} = i) = (\mathbf{P}^{t})_{ij}$$

Ergodicité, chaînes irréductibles

Sous certaines conditions sur P, la loi de distribution π^t tend vers une loi π qui devient invariante :

$$\pi = \pi P$$

- Pour chaque matrice de transition il existe au moins une distribution invariante qui peut ne pas être unique.
- Une matrice de transition P est régulière si il existe t > 0 tel que la matrice P^t a tous ses éléments strictement positifs. Dans ce cas tous les états sont visités au cours du temps, ce qui correspond à la propriété physique d'ergodicité.
- Pour une chaîne de Markov régulière et donc ergodique, la distribution stationnaire μ est unique
- La propriété d'ergodicité garantit alors la convergence des X_t vers une variable Y de densité π et par conséquent pour presque toute valeur initiale X₀:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{t=1}^n g(X_t)=\mathbb{E}_Y(g(Y))$$

Introduction aux méthodes MCMC

- Les MCMC, Méthodes de Monte-Carlo par Chaînes de Markov permettent de simuler numériquement un grand nombre de distributions pour lequelles la densité de probabilité est connue à une constante près.
- Les cas où la loi d'échantillonnage n'est connue qu'au facteur de normalisation près :
 - Physique statistique: la densité de probabilité de trouver le systême dans l'état x d'énergie E(x) décrit par la distribution de Boltzmann: température T et k_B la constante de Boltzmann :

$$f(\mathbf{x}) \propto \exp\left[-E(\mathbf{x})/k_BT\right]$$

où le facteur de normalisation est la fonction de partition $Z = \int \exp[-E(\mathbf{x})/k_B T] d\mathbf{x}$

■ Inférence Bayésienne : loi a posteriori

$$\underbrace{\pi(\mathbf{X}|\text{observations})}_{\text{loi a posteriori}} \propto \underbrace{f(\text{observations}|\mathbf{X})}_{\text{vraisemblance}} \times \underbrace{\pi(\mathbf{X})}_{\text{loi a priori}}$$

Les MCMC permettent donc d'échantillonner une loi afin d'estimer des grandeurs d'intérêt comme l'espérance, la variance ou un taux d'évènements

Condition de réversibilité

On rappelle le cas discret de l'équation de Chapman-Kolmogorov :

$$\pi^{t+1} = \pi^t \mathbf{P} \Rightarrow \pi_j^{t+1} = \sum_i \pi_i^t p_{ij}$$

La passage au cas continu multidimensionnel s'obtient en remplaçant la somme discrète par une intégrale et en notant p(x → y) la probabilité de transition de l'état x à l'état y :

$$\pi^{t+1}(\mathbf{y}) = \int \pi^t(\mathbf{x}) p(\mathbf{x} \to \mathbf{y}) d\mathbf{x}$$

- On admet les résultats obtenus dans le cas discret : ergodicité → la distribution invariante est unique (celle qui correspond à la convergence au cours du temps des distributions initiales)
- On note $f(\mathbf{x})$ la densité de probabilité connue à un facteur près
- Théorème : si la loi de transition $p(\mathbf{x} \to \mathbf{y})$ est ergodique et si elle satisfait la condition de réversibilité :

$$f(\mathbf{x})p(\mathbf{x} \to \mathbf{y}) - f(\mathbf{y})p(\mathbf{y} \to \mathbf{x}) = 0$$

... alors la distribution de la chaîne converge vers une distribution proportionnelle à $f(\mathbf{x})$

Condition de réversibilité - Démonstration

- La chaîne étant supposée ergodique, elle converge vers une distribution invariante unique.
- Il suffit de montrer que la distribution $f(\mathbf{x})$ (à un coefficient α près) est invariante :

$$\pi^{t}(\mathbf{x}) = \alpha f(\mathbf{x}) \Rightarrow \pi^{t+1}(\mathbf{x}) = \alpha f(\mathbf{x})$$

Démonstration :

$$\begin{array}{lcl} \pi^{t+1}(\mathbf{x}) & = & \int \pi^t(\mathbf{y}) p(\mathbf{y} \to \mathbf{x}) d\mathbf{y} \\ & = & \int \alpha f(\mathbf{y}) p(\mathbf{y} \to \mathbf{x}) d\mathbf{y} \\ & = & \int \alpha f(\mathbf{x}) p(\mathbf{x} \to \mathbf{y}) d\mathbf{y} \text{ condition de réversibilité} \\ & = & \alpha f(\mathbf{x}) \underbrace{\int p(\mathbf{x} \to \mathbf{y}) d\mathbf{y}}_{=1} \\ & = & \alpha f(\mathbf{x}) \end{array}$$

Les MCMC permettent donc de générer une distribution de densité proportionnelle à f(x) à partir d'une probabilité de transition p(x → y) vérifiant l'équation

$$f(\mathbf{x})p(\mathbf{x} \to \mathbf{y}) = f(\mathbf{y})p(\mathbf{y} \to \mathbf{x})$$

Algorithme de Metropolis-Hastings

- Objectif: échantillonner selon une loi de proba $f(\mathbf{x})$ que l'on connait à une constante mutiplicative près
- L'algorithme nécessite une valeur initiale X_0 et une loi de transition $q(\mathbf{x} \to \mathbf{y})$ appellé aussi loi de proposition *proposal*.

Algorithm 1 Algorithme de Metropolis-Hastings

Require: Condition initiale X_0 , loi instrumentale $q(\mathbf{x} \to \mathbf{y})$. On pose t = 0

1: $\mathbf{x} = X_t$, tirage aléatoire \mathbf{y} avec la loi $q(\mathbf{x} \to \mathbf{y})$

2: $\alpha(\mathbf{x}, \mathbf{y}) = \min[1, \frac{f(\mathbf{y})q(\mathbf{y} \rightarrow \mathbf{x})}{f(\mathbf{x})q(\mathbf{x} \rightarrow \mathbf{y})}]$

3: tirage *U* variable uniforme [0, 1]

4: if $U < \alpha(\mathbf{x}, \mathbf{y})$ then

5: $X_{t+1} = \mathbf{y}$ (toujours vrai si $\alpha(\mathbf{x}, \mathbf{y}) = 1$)

6: else

7: $X_{t+1} = \mathbf{x}$

8: end if

9: t = t + 1 retour en 1

Comme l'algorithme ne depend que du rapport $f(\mathbf{x})/f(\mathbf{y})$, la densité de probabilité $f(\mathbf{x})$ peut donc être connue à une constante près (i.e. le facteur de normalisation ou fonction de partition).

Démonstration de la condition de réversibilité

Pour démontrer que $f(\mathbf{x})$ est proportionnelle à la distribution stationnaire de la chaîne de Markov, il suffit de vérifier que la chaîne est réversible par rapport à f:

$$f(\mathbf{x})p(\mathbf{x} \to \mathbf{y}) = f(\mathbf{y})p(\mathbf{y} \to \mathbf{x})$$

Compte tenu que le tirage q(x → y) est accepté avec une probabilité α(x, y) (paramètre d'une loi Bernoulli), la probabilité de transition est donc :

$$p(\mathbf{x} \to \mathbf{y}) = q(\mathbf{x} \to \mathbf{y})\alpha(\mathbf{x}, \mathbf{y})$$

Cas $\alpha(\mathbf{x}, \mathbf{y}) = 1 \Rightarrow \alpha(\mathbf{y}, \mathbf{x}) \leq 1$

$$f(\mathbf{x})p(\mathbf{x} \to \mathbf{y}) = f(\mathbf{x})q(\mathbf{x} \to \mathbf{y})\alpha(\mathbf{x}, \mathbf{y}) = f(\mathbf{x})q(\mathbf{x} \to \mathbf{y})$$

$$f(\mathbf{y})p(\mathbf{y}\to\mathbf{x}) = f(\mathbf{y})q(\mathbf{y}\to\mathbf{x})\alpha(\mathbf{y},\mathbf{x}) = f(\mathbf{y})q(\mathbf{y}\to\mathbf{x})\frac{f(\mathbf{x})q(\mathbf{x}\to\mathbf{y})}{f(\mathbf{y})q(\mathbf{y}\to\mathbf{x})} = f(\mathbf{x})q(\mathbf{x}\to\mathbf{y}) \quad (CQFD)$$

Cas $\alpha(\mathbf{x}, \mathbf{y}) < 1 \Rightarrow \alpha(\mathbf{y}, \mathbf{x}) = 1$

$$f(\mathbf{x})p(\mathbf{x}\to\mathbf{y}) = f(\mathbf{x})q(\mathbf{x}\to\mathbf{y})\alpha(\mathbf{x},\mathbf{y}) = f(\mathbf{x})q(\mathbf{x}\to\mathbf{y})\frac{f(\mathbf{y})q(\mathbf{y}\to\mathbf{x})}{f(\mathbf{x})q(\mathbf{x}\to\mathbf{y})} = f(\mathbf{y})q(\mathbf{y}\to\mathbf{x})$$

$$f(\mathbf{y})p(\mathbf{y} \to \mathbf{x}) = f(\mathbf{y})q(\mathbf{y} \to \mathbf{x})\alpha(\mathbf{y}, \mathbf{x}) = f(\mathbf{y})q(\mathbf{y} \to \mathbf{x})$$
 (CQFD)

Algorithme de Metropolis-Hastings - Loi de proposition

- Choix de la loi de proposition $q(\mathbf{x}, \mathbf{y})$ influence la qualité de l'algorithme. Le choix se fera pour obtenir (dans la mesure du possible) une exploration rapide de l'espace des états et une convergence vers la distribution stationnaire
- Version de l'algorithme de Metropolis original = la loi instrumentale est symétrique

$$q(\mathbf{x} \to \mathbf{y}) = q(\mathbf{y} \to \mathbf{x})$$

Le rapport des probabilités se simplifie :

$$\alpha(\mathbf{x}, \mathbf{y}) = \min[1, \frac{f(\mathbf{y})}{f(\mathbf{x})}]$$

Version de l'algorithme de Metropolis-Hastings indépendant : la loi de transition ne dépend pas de l'état courant :

$$q(\mathbf{x} \to \mathbf{y}) = q(\mathbf{y}) \Rightarrow \alpha(\mathbf{x}, \mathbf{y}) = \min[1, \frac{f(\mathbf{y})q(\mathbf{x})}{f(\mathbf{x})q(\mathbf{y})}]$$

Remarques : dans ce domaine un large champ de recherche notamment pour ajuster/adapter la loi instrumentale $q(\mathbf{x} \to \mathbf{y})$ au cours des tirages Monte Carlo

Metropolis-Hastings, pour ou contre?

Avantages:

- Très simple & très général
- Permet l'échantillonnage selon une grande variété de distributions de probabilité

Metropolis-Hastings, pour ou contre?

Avantages:

- Très simple & très général
- Permet l'échantillonnage selon une grande variété de distributions de probabilité

Inconvénients:

- Le choix du proposal est crucial, c'est le degré de liberté principal de l'algorithme
- Fléau de la dimension
- Seulement des heuristiques pour vérifier la convergence de la chaîne de Markov vers sa distribution stationnaire

Convergence des MCMC

L'objectif du MCMC est d'échantillonner selon f connue à une constante multiplicative près

Convergence des MCMC

L'objectif du MCMC est d'échantillonner selon f connue à une constante multiplicative près

Aucune garantie de la convergence de la chaîne en temps fini!

Convergence des MCMC

L'objectif du MCMC est d'échantillonner selon f connue à une constante multiplicative près

Aucune garantie de la convergence de la chaîne en temps fini!

Il existe de nombreuses "astuces" pour à la fois s'assurer de la convergence de la chaîne et de l'accélérer:

- Burn-in
- Thinning
- Autocorrélation
- Taille d'échantillon effective (Effective Sample size ou ESS)

W 100 Ch

Application: segmentation TEP

La loi *a priori* pour chaque zone d'une image TEP est le champ de Potts:

$$\pi(\mathbf{z}) \propto \exp \left[\sum_{i=1}^{n} \sum_{i' \in \mathcal{V}(i)} \gamma \mathbf{1}_{Z_i = Z_{i'}} \right]$$

On se place dans le cas où il n'existe que 2 zones $z_i \in \{+1, -1\}$.

Application: segmentation TEP

La loi *a priori* pour chaque zone d'une image TEP est le champ de Potts:

$$\pi(\mathbf{z}) \propto \exp \left[\sum_{i=1}^{n} \sum_{i' \in \mathcal{V}(i)} \gamma \mathbf{1}_{Z_i = Z_{i'}} \right]$$

On se place dans le cas où il n'existe que 2 zones $z_i \in \{+1, -1\}$.

Dans ce cas, le champ de Potts est équivalent au modèle d'Ising, très utilisé en physique statistique.

A HOLD

Application: segmentation TEP

La loi *a priori* pour chaque zone d'une image TEP est le champ de Potts:

$$\pi(\mathbf{z}) \propto \exp \left[\sum_{i=1}^n \sum_{i' \in \mathcal{V}(i)} \gamma \mathbf{1}_{Z_i = Z_{i'}} \right]$$

On se place dans le cas où il n'existe que 2 zones $z_i \in \{+1, -1\}$.

Dans ce cas, le champ de Potts est équivalent au modèle d'Ising, très utilisé en physique statistique.

Pour une image de taille n, la constante de normalisation est

$$C(\gamma) = \sum_{(z_1, \dots, z_n) \in \{+1, -1\}^n} \exp \left[\sum_{i=1}^n \sum_{i' \in \mathcal{V}(i)} \gamma \mathbf{1}_{z_i = z_{i'}} \right]$$

Il faut sommer 2ⁿ composantes! Très coûteux pour des images TEP grandes!

→ Nécessité d'utiliser des techniques MCMC pour l'échantillonnage

Algorithme Metropolis-Hastings pour le champ de Potts

On remarque que $\pi(\mathbf{z}) \propto \exp[U(\gamma, \mathbf{z})]$ avec U une "fonction d'utilité".

Algorithme Metropolis-Hastings pour le champ de Potts

On remarque que $\pi(\mathbf{z}) \propto \exp[U(\gamma, \mathbf{z})]$ avec U une "fonction d'utilité".

On utilise comme *proposal* la procédure suivante:

- on choisit un pixel au hasard
- on change sa catégorie (i.e. si $z_i = +1$ alors il devient -1)

w www

Algorithme Metropolis-Hastings pour le champ de Potts

On remarque que $\pi(\mathbf{z}) \propto \exp[U(\gamma, \mathbf{z})]$ avec U une "fonction d'utilité".

On utilise comme proposal la procédure suivante:

- on choisit un pixel au hasard
- on change sa catégorie (i.e. si $z_i = +1$ alors il devient -1)

On calcule entre l'état précédent et l'état suivant le ratio d'acceptation:

$$\frac{\exp[U_{\text{next}}]}{\exp[U]} = \exp[\Delta U]$$

On peut calculer que

$$\Delta U = -\gamma * z_i * \sum_{i' \in \mathcal{V}_i} z_{i'}$$

Le nouvel état est accepté si $\Delta U > 0$ ou bien avec probabilité $\exp[\Delta U]$.

W W W

Illustration

Références

- The beginning of the Monte Carlo method, N. Metropolis, Los Alamos Science special issue, 1987
- Exemple de simulation MCMC https://chi-feng.github.io/mcmc-demo/app.html?algorithm=RandomWalkMH&target=banana