6.002x

CIRCUITS AND ELECTRONICS

Review

- Nonlinear circuits can use the node method
- Small signal trick resulted in linear response

Today

- Dependent sources
- Amplifiers

Reading: Chapter 7.1, 7.2

Dependent Sources

Elements we have seen previously

Resistor

Independent
Current source

independent vokage sours +v-

2-terminal 1-port devices

Dependent sources

A new element for our toolchest; can be linear or nonlinear

E.g., Voltage Controlled Current Source VCCS
Current at output port is a function of voltage at the input port

Dependent source in a circuit

First, an Example with an independent source

Example 1: Find ${\it V}$

independent current source

Mode meltrod:

$$\frac{V}{R} - J_o = 0$$

$$V = J_o R$$

Dependent Sources: Example

Dependent Sources: Examples

Example 2: Find V

voltage controled current source

Mode melhod:

Other Types of Dependent Sources output control port ν_I port Similarly, output control port ν_I port Euraent Controlled Evraent source

Another dependent source example

Simplify our Drawing

Solve

Node method

$$\frac{V_0 - V_S}{R_L} + (D) = 0$$
 $\frac{V_0 - V_S}{R_L} + (D) = 0$
 $\frac{V_0}{R_L} + (D) = 0$
 $\frac{V_0}{R_L} + (D) = 0$

$$\dot{v_0} = V_S - \frac{k}{2} \left(v_{iN} - 1 \right)^2 R_L \quad \text{for } v_{iN} > 1V$$

$$v_0 = V_S \quad \text{for } v_{iN} < 1V$$

Hold that thought

otherwise

Superposition with Dependent Sources

linear

One way

- leave all dependent sources in (note, dependent sources must be linear!)
- solve for one independent source at a time
- [section 3.5.1 of the text]

linear errent

nesistare nets

Tulinial and of w2 -

VCCS

io = b. VI

nonlinea

Next, Amplifiers

hig abollion

- gati

Why amplify?

Signal amplification key to both analog and digital processing.

Analog:

Besides the obvious advantages of being heard farther away, amplification is key to noise tolerance during communication

Why amplify?

Amplification is key to noise tolerance during communication

Mo amplification

MMMMM Iom

useful

signal

huh?

Try amplification

Why amplify?

Amplification if fundamental to the digital domain as well

Why amplify?

Digital domain:

Static discipline requires amplification!

An amplifier is a 3-ported device, actually

We often don't show the power port.

Also, for convenience we commonly observe

"the common ground discipline."

In other words, all ports often share a common reference point called "ground."

How do we build one?

You already have! Remember...

$$i_D = rac{K}{2} ig(v_{I\!N} - I ig)^2 \quad ext{for } v_{I\!N} \! \ge I$$
 $i_D = 0 \qquad ext{otherwise}$

Node method:

$$\frac{v_O - V_S}{R_L} + i_D = 0$$

$$(v_O) = V_S - i_D R_L$$

$$(v_O) = V_S - i_D R_L$$

$$(v_O) = V_S - \frac{K}{2} (v_D - 1)^2 R_L$$
 for $v_I \ge 1$

$$v_O = V_S$$
 for $v_I < 1$

Claim: This is an amplifier

So, where's the amplification?

 v_O versus v_I curve

Plot v_O versus v_I $v_0 = 10 - 5(v_1 - 1)^2 \rightarrow \sqrt{1} > 10$ ν_I v_{O} 10 V IDV 8.75V Measure v_o . bil V change mi VI 2 V 2.8V 1.50

One nit ...

Mathematically,

$$v_O = V_S - \frac{K}{2} R_L (v_I - 1)^2$$
what

But, what happens Here with a practical device?

So this is mathematically predicted behavior in our amplifier built with an abstract dependent source

One nit ...

However, looking at the circuit

If our VCCS is a device that can source (or supply) power

then the mathematically predicted behavior will be observed

i.e.
$$v_O = V_S - \frac{K}{2} R_L (v_I - 1)^2$$
 where v_O goes -ve

However, if our VCCS is a passive device

i.e., it does not provide power gain

Then it cannot source power, so v_O cannot go -ve.

So, something must give!

Turns out, our model breaks down.

Commonly

$$i_D = \frac{K}{2} \left(v_I - 1 \right)^2$$

will no longer be valid when $v_O \le 0$.

e.g. i_D saturates (stops increasing) and we observe:

We will look at a practical device shortly...