Приднестровский государственный университет им. Т. Г. Шевченко Физико-математический факультет Кафедра прикладной математики и информатики

«	*	- 2017 г.
доц.		Коровай А. В.
зав.	кафедрой ПМиИ,	
«До	пущено к защитн	Ξ≫

Курсовая работа по дисциплине «Доклад» ТЕОРЕМА ГАУССА

Выполнил:

студент 503 группы $\Phi M \Phi$ Гаусс К.

Руководитель:

ст. преп. кафедры ПМиИ Великодный В. И.

КИДАТОННА

В	статье кратко	изложены	сведения о	теореме	Гаусса —	важной и	и полезной	$\ll \coprod$	Ітуке»
---	---------------	----------	------------	---------	----------	----------	------------	---------------	--------

СОДЕРЖАНИЕ

Введение	4
1. Формула для электрической индукции	4
1.1. Интегральная форма	5
1.2. Дифференциальная форма	5
2. Дивергенция	5
Заключение	7
Список литературы	8
А. Приложение	8

ВВЕДЕНИЕ

 $Teopema\ \Gamma aycca\ (закон\ \Gamma aycca)$ — один из основных законов электродинамики, входит в систему уравнений Максвелла. Выражает связь (а именно равенство с точностью до постоянного коэффициента) между потоком напряжённости электрического поля сквозь замкнутую поверхность произвольной формы и алгебраической суммой зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε_0 . Применяется отдельно для вычисления электростатических полей.

Теорему Гаусса можно записать для:

- электрической индукции
- магнитной индукции

Рассмотрим только первый случай.

Рис. 1. Поток вектора через замкнутую поверхность

1. ЄОРМУЛА ДЛЯ ЭЛЕКТРИЧЕСКОЙ ИНДУКЦИИ

1.1. ИНТЕГРАЛЬНАЯ ФОРМА

Для поля в диэлектрической среде электростатическая теорема Гаусса может быть записана в виде (1).

$$\Phi_{\mathbf{D}} \equiv \oint_{S} \mathbf{D} d\mathbf{S} = 4\pi Q. \tag{1}$$

СГС	СИ
$\Phi_{\mathbf{D}} \equiv \oint_{S} \mathbf{D} d\mathbf{S} = 4\pi Q$	$\Phi_{\mathbf{D}} \equiv \oint_{S} \mathbf{D} d\mathbf{S} = Q$

1.2. ДИФФЕРЕНЦИАЛЬНАЯ ФОРМА

В дифференциальной форме:

$$\operatorname{div} \mathbf{D} \equiv \nabla \cdot \mathbf{D} = 4\pi \rho, \tag{2}$$

Все выражения записаны для единиц в системе СГС. За подробностями обращайтесь к \cite{Matter} .

2. ДИВЕРГЕНЦИЯ

В выражении (2) используется дивергенция. Это векторный оператор, определяемый следующим образом:

$$\operatorname{div} \mathbf{A} = \nabla \mathbf{F} = \lim_{n \to \infty} \frac{\Phi_F}{V},\tag{3}$$

где Φ_F — поток векторного поля.

В декартовых координатах:

$$\operatorname{div} \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}.$$
 (4)

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

А. ПРИЛОЖЕНИЕ