

Model Development Phase Template

Date	09 July 2024
Team ID	SWTID1720023141
Project Title	Prediction and Analysis of Liver Patient Data Using Machine Learning
Maximum Marks	6 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code

Logistic Regression

```
# LogisticRegression
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr.fit(x_train, y_train)
y_pred_lr = lr.predict(x_test)
y_pred_lr
```

KNeighborsClassifier

```
#KNeighborsClassifier
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(x_train, y_train)
ypred_knn = knn.predict(x_test)
```


SVC

```
#SVC()
from sklearn.svm import SVC
svm = SVC()
svm.fit(x_train, y_train)
y_pred_svm = svm.predict(x_test)
```

RandomForestClassifier

```
from sklearn.ensemble import RandomForestClassifier

rfc = RandomForestClassifier()
rfc.fit(x_train, y_train)
ypred_rfc = rfc.predict(x_test)
```

Model Selection Report:

Model	Classification Report					Accuracy	Confusion Matrix	
Logistic	print(classif:	precision 0.75 0.45		f1-score	support 128 47	<pre>lr_acc = accuracy_score(y_pred, y_test) lr_acc</pre>	<pre>conmat=confusion_matrix(y_test,y_pred) print(conmat)</pre>	
Regression	accuracy macro avg weighted avg	0.60 0.67	0.55 0.72		175 175 175	0.72	[[117 11] [38 9]]	

K neighbors Classifier	: print(classif	precision 0.81 0.42 0.61 0.71	recall 0.80 0.43	f1-score 0.80 0.43 0.71 0.61	support 109 37 146 146 146	<pre>knn_acc = accuracy_score(ypred_knn, y_test) print(knn_acc) 0.7054794520547946</pre>	<pre>confusion_matrix(y_test,ypred_knn) array([[87, 22],</pre>
Random Forest Classifier	print(classific p 1 2 accuracy macro avg weighted avg	0.80 0.46 0.63 0.71		,ypred_rfc f1-score 0.82 0.41 0.73 0.61 0.72		<pre>rfc_acc = accuracy_score(ypred_rfc, y_test) print(rfc_acc) 0.7264957264957265</pre>	<pre>confusion_matrix(y_test,ypred_rfc) array([[74, 13],</pre>
SVC	print(classifing) 1 2 accuracy macro avg weighted avg	cation_repo precision 0.74 0.00 0.37 0.55		f1-score 0.85 0.00 0.74 0.43 0.63		accuracy_score(y_pred_svm, y_test) 0.7435897435897436	<pre>confusion_matrix(y_test,y_pred_svm) array([[87, 0],</pre>