

甲烷和烷烃

日期:	时间:	姓名:	
Date:	Time:	Name:	

	-
Y	1

初露锋芒

甲烷

甲烷在自然界的分布很广,甲烷是最简单的有机物,是天然气,沼气,坑气等的主要成分,俗称瓦斯。也是含碳量最小(含氢量最大)的烃,也是天然气、沼气、油田气及煤矿坑道气的主要成分。它可用来作为燃料及制造氢气、炭黑、一氧化碳、乙炔、氢氰酸及甲醛等物质的原料。

甲烷,化学式 CH4,是最简单的烃,由一个碳和四个氢原子通过 sp³杂化的方式组成,因此甲烷分子的结构为正四面体结构,四个键的键长相同键角相等。在标准状态下甲烷是一无色无味气体。一些有机物在缺氧情况下分解时所产生的沼气其实就是甲烷。从理论上说,甲烷的键线式可以表示为一个点"•",但实际并没有看到过有这种用法,可能原因是"•"号同时可以表示电子。所以在中学阶段把甲烷视为没有键线式。

甲烷主要是作为燃料,如天然气和煤气,广泛应用于民用和工业中。作为化工原料,可以用来生产乙炔、 氢气、合成氨、碳黑、硝氯基甲烷、二硫化碳、一氯甲烷、二氯甲烷、三氯甲烷、四氯化碳和氢氰酸等。

天王星的大气层也存在甲烷和氢气。据德国核物理研究所的科学家经过试验发现,植物和落叶都产生甲烷,而生成量随着温度和日照的增强而增加。另外,植物产生的甲烷是腐烂植物的 10 到 100 倍。他们经过估算认为,植物每年产生的甲烷占到世界甲烷生成量的 10%到 30%。行星中发现甲烷据国外媒体报道,美国天文学家 19 日宣布,他们首次在太阳系外一颗行星的大气中发现了甲烷,这是科学家首次在太阳系外行星探测到有机分子,从而增加了确认 太阳系外存在生命的希望。该小组还证实了先前的猜测,即这颗名叫 HD 189733b 的行星的大气中有水。

甲烷是创造适合生命存在的条件中,扮演重要角色的有机分子。美国宇航局喷气推进实验室的天文学家,利用绕轨运行的"哈勃"太空望远镜得到了一张行星大气的红外线分光镜图谱,并发现了其中的甲烷痕迹。

行星 HD 189733b 位于狐狸座, 距地球 63 光年, 是一类叫做"热木星"大行星, 其表面灼热, 不可能存在液态水。HD 189733b 围绕其恒星转一圈只需两天。由于距离恒星太近, 这颗行星表面温度高达 900℃ (1650 华氏度), 足以把银子熔化。

不过,值得注意的是探测到甲烷。这种方法可以沿用到环绕所谓的"可居住区"(Goldilocks Zone)中温度较低的恒星运转的其它行星,"可居住区"不冷也不热,正好适合孕育生命。

学习目标 1. 简单认识有机物的概念

 2. 学习甲烷的物质结构和性质

 3. 类推烷烃的基本性质

 重难点 甲烷的结构和基本性质

根深蒂固

一、有机物

1. 定义: 含有碳元素的化合物为有机物。

少数含碳化合物如 CO、 CO_2 、碳酸、碳酸盐、金属碳化物、氰化物、硫氰化物等,因它们的组成与性质跟无机物相似,故仍属无机物。也就是说,有机物一定含碳元素,但含碳元素的物质不一定是有机物。且有机物都是化合物,没有单质。

- 2. 组成元素: 主要元素碳, 其他元素氢、氧、氮、磷、硫、卤素等
- 3. 有机物的结构特点
- (1) 每个碳原子可形成四个共价键
- (2) 碳原子之间或与其他原子可形成各式链
- (3) 有机物大多都存在同分异构现象
- 4. 有机物结构的表达形式:
- (1)分子式:用元素符号表示纯净物(单质、化合物)分子的组成及相对分子质量的化学式。即有机物分子里所含元素的种类及各原子的数目
- (2) 电子式: 用小黑点或者其他记号(如 X)表示原子的最外层电子数的式子。用":"可表示共用电子对(共价键)
- (3)结构式:用元素符号和短线表示化合物(或单质)分子中原子的排列和结合方式的式子。有机物中用短线"—"表示共用电子对(共价键),一条短线就是一个共价单键,两条就是双键,三条就是三键
 - (4) 结构简式: 把结构式中的单键省略之后的一种简略表达形式
- (5) 键线式: 只用键线来表示碳架。每个线段的端点都是 C, C 要构成 4 个键保持稳定,键数不够的用 H 来补齐

结构简式: H₂C = CH₂; 键线式: =。

5. 有机物与无机物没有严格的界限。

思考:有机物和无机物之间可以通过化学反应相互转化,该事实可以说明有机物和无机物没有严格的界限。 请举例。

6. 有机物与无机物的区别

性质和反应	有机物	无机物
溶解性	多数不溶于水,易溶于有机溶剂	有些溶于水,而不溶于有机溶剂
耐热性	多数不耐热,熔点较低	多数耐热,熔点一般较高
可燃性	多数可以燃烧	多数不能燃烧
电离性	多数是非电解质	多数是电解质
化学反应	一般比较复杂,副反应多,反应速率较慢	一般副反应少,反应速率较快

7. **烃: 仅含碳和氢两种元素的有机物称为碳氢化合物,又叫烃**(音 tīng "碳"、"氢"二字连读)。取碳的"火"字旁和氢的"圣",合成一个字。

二、石油

- 1. 石油的形成:石油是由远古时代的海洋或湖泊中的动植物遗体在地下经过漫长复杂的变化而形成的黏稠状液体。
 - 2. 石油的组成

元素组成:主要含有碳、氢两种元素。少量氮、氧、硫。微量磷、钾、硅、镁等元素物质组成:碳氢化合物。各种烷烃、环烷烃、芳香烃组成的混合物

- 3. 石油的炼制与加工
- (1) 石油的分馏:

原理: 依据混合物中各物质沸点不同

产物: 主要是轻质燃料(如汽油、煤油等)、重油。

(2) 热裂化与催化裂化

原理: 使分子中碳原子数较多的烃成为碳原子数较少的烃。

产品:汽油、煤油等燃料

(3) 催化重整

三、甲烷

1. 甲烷的结构

分子式	电子式	结构式	空间构型	球棍模型	比例模型
CH ₄	н н:с:н н	H H-C-H H	正四面体 键角: 109°28′	%	

思考: 甲烷的分子结构和白磷的分子结构都为正四面体, 两者一样吗?

2. 物理性质:

无色,无味的气体,不溶于水,密度比空气小,是天然气、沼气(坑气)、瓦斯和石油气的主要成分(天然气中按体积计, CH_4 占 80%-97%)。熔点为-182.5 $^{\circ}$ C,沸点为-164 $^{\circ}$ C。

3. 化学性质:

- (1)稳定性:甲烷在一般情况下与强酸、强碱、强氧化剂等都不起反应,也不能使溴水或高锰酸钾溶液褪色。
 - (2) 可燃性 (氧化反应)

化学方程式为:

现象: 甲烷气体安静地燃烧, 火焰呈淡蓝色; 烧杯内壁上有水生成; 澄清的石灰水变浑浊。

【注意】①甲烷点燃前必须和氢气一样检验纯度(空气中含甲烷5%~15%会爆炸)。

②煤层中的甲烷(瓦斯)在煤坑聚集,为了防止发生爆炸事故,可采取通风、严禁烟火等安全措施。

- ③常温下燃烧是体积减小的反应,100℃以上完全燃烧,反应前后体积不变。
- (3) 高温分解:

化学反应方程式为:

炭黑用于橡胶工业, H2用于合成氨、合成汽油等工业。

- (4) 取代反应:
- ①概念: 有机物分子里某些原子或原子团被其他原子或原子团所代替的反应叫取代反应。
- ②甲烷与氯气的取代反应。

【实验装置】如右图所示:

【实验现象】a 量筒内 Cl₂的黄绿色逐渐变浅,最后消失。

- b量筒内水面上升。
- c量筒内壁出现了油状液滴。
- d量筒内产生白雾

无光照时,无明显现象;光照时,"色变浅、液上升、出油滴、生白雾"。

【说明】在反应中 CH_4 分子里的1个H原子被 Cl_2 分子里的1个Cl原子所代替,但是反应并没有停止,生成的一氯甲烷仍继续跟氯气作用,依次生成二氯甲烷、三氯甲烷和四氯化碳(四氯甲烷)。

CH₃Cl +CI₂ → HCl+CH₂Cl₂

CH₂Cl₂ +Cl₂ ──漫射日光 → HCl+ CHCl₃

CHCl₃+CI₂ ── 漫射日光 → HCl+CCl₄

注意:

- a. 卤素为纯卤素(非水溶液),反应必须有条件,反应是逐步进行的。且反应后的产物为混合物,不能用来制备单独的一个产物
 - b. 甲烷的四种氯代产物都不溶于水,
- c. 常温下, CH_3Cl 是气体,其余都是无色油状液体。三氯甲烷(氯仿)和四氯甲烷(四氯化碳)是工业重要的溶剂,四氯化碳还是实验室里常用的溶剂、灭火剂,氯仿与四氯化碳常温常压下的密度均大于 $1g\cdot cm^{-3}$,即比水重。它们均不溶于水。
 - d. 四种卤代烃的比较

名称	一氯甲烷	二氯甲烷	三氯甲烷	四氯甲烷
状态	常温时为气态	常温时均为	液态	
俗称	(氯仿	四氯化碳
结构式	н н-с-сі н	C1 H-C-C1 H	С1 Н-С-С1 С1	C1 C1-C-C1 C1
空间构型	都	是四面体		正四面体
分子极性	都,	是极性分子		非极性分子
密度	<u> </u>	ž.	都	比水犬
用途	麻醉剂		溶剂	溶剂、灭火剂

思考 1: $V_{\text{Pt}}: V_{\text{All}} = 1:1$ 时,产物除了 HCl 以外,是不是只有一氯甲烷?

思考 2: 当 n 平成: n 氣气取值为多少的时候,产物除了 HCl,一定四种产物都有?

思考 3: 参加反应的氯气和产物中哪种物质的量是一样的? 生成物中哪种物质的量是最多的?

③取代反应与置换反应比较如表

	取代反应	置换反应				
⇔ ∨	有机物分子里的某些原子或原子团被其	一种单质和一种化合物左右生成另一种				
定义	它原子或原子团所代替的反应	单质和化合物的反应				
实例	CH ₃ CH ₂ Cl+NaOH 水	Zn+H ₂ SO ₄ →ZnSO ₄ +H ₂ ↑				
	CH ₃ CH ₂ OH+NaCl					
反应物与 产物	反应物、产物中不一定有单质	反应物、产物中一定有单质				
反应条件	反应能否进行受催化剂、温度、光照等	在水溶液中进行的置换反应遵循金属或				
	外界条件影响较大	非金属活动性的顺序				
反应过程	逐步取代,很多反应是可逆的	反应一般单项进行				
电子得失	不一定发生电子转移	一定有电子转移, 一定发生氧化还原反应				

【练一练】

- 1. 1mol 甲烷与氯气完全取代,需要多少 mol 的氯气?
- 2. 将 1mol 甲烷和 4mol 的氯气发生取代反应, 待反应完全后, 测得四种有机取代物的物质的量相等,
- (1)得到的产物为
- (2) 其中物质的量最多的产物是
- 3. 下列事实能说明甲烷分子是以碳原子为中心的的正四面体结构的是 ()
 - A. CH₃Cl 只有一种空间结构
- B. CH₂Cl₂只有一种空间结构
- C. CF₂Cl₂没有同分异构体
- D. 四个 C-H 键完全相同

- 4. 甲烷的实验室制法:
 - (1) 药品: 无水醋酸钠和碱石灰混和加热
 - (2) 反应原理: CH₃COONa + NaOH—CaO → CH₄↑+Na₂CO₃

无水醋酸钠和 NaOH 混合共热时发生脱羧反应,即-COOH 被 H 原子取代生成甲烷。

碱石灰中 CaO 的作用: ①吸收水分;

- ②使混合物疏松,利于甲烷逸出:
- ③稀释 NaOH, 防止高温下腐蚀玻璃。
- (3) 发生装置: 固固加热(同高锰酸钾制氧气、氯化铵制氨气)。
- (4) 收集方法: 排水法或向下排空气法。

【注意】

- a. 必须用无水醋酸钠而不能用醋酸钠晶体,碱石灰及大试管均应是干燥的。
- b. 不可加热温度过高,因高温发生副反应

5. 甲烷的用途

- (1) 燃料——天然气的主要成分是甲烷,可直接作燃料
- (2) 化工原料——高温分解制炭黑,用作燃料、油墨、油漆及橡胶的添加剂,氯仿和四氯化碳是重要的有机溶剂。

四、烷烃

1. 定义: 碳原子之间都是以碳碳单键结合成链状,碳原子剩余的价键全部跟氢原子结合,这样的烃叫做饱和烃,又叫烷烃。最简单的烷烃是 CH4。

【注意】

- (1) 烷烃中,C 原子的四个共价键除了以单键与C 原子相互结合成碳链外,其余的共价键都和 H 原子结合(被 H 原子所饱和),氢原子的数目达到最大值。
- (2)环烷烃是由碳和氢两种元素组成而性质与烷烃相似的饱和碳环化合物,不是链状也不饱和,所以不属于烷烃。

2. 烷烃的通式: C_nH_{2n+2} , (n≥1, n∈Z)

烷烃分子,随着碳原子数增多,分子组成的变化上有规律:每增加1个碳原子就同时增加2个氢原子。

- 3. 烷烃的结构
- (1) 化学键类型:原子之间均以单键结合。
- (2) 空间结构:碳原子之间以碳碳单键结合成链状,以任意一个碳原子为中心的连在该原子上的 4 个原子都行成四面体结构,所以烷烃中的碳原子并不在同一平面上。
 - (3) 烷烃 C_nH_{2n+2}中,有 n-1 个 C-C,有 2n+2 个 C-H,总共有 3n+1 个共价键。

【注意】a. 烷烃首先必须是烃,分子中只含有碳、氢两种元素。

- b. 烷烃分子中碳原子与碳原子之间都是单键,碳剩余的价键全部跟氢原子结合,每个碳原子的化合价都已充分利用。
 - c. 链状,可能有支链。
- d. 烷烃分子中,以任意一个碳原子为中心都是四面体结构,所以烷烃分子中的碳原子并不在同一条直线上,而是呈锯齿状排列,分子中各原子不可能都在同一平面上。也就是说,分子中只要含有以4个单键与其他原子成键的碳原子存在,该分子的所有原子不可能都在同一平面上。
- 4. 烷烃的物理性质

烷烃随着 C 原子数的增多, 其物理性质呈现规律性的变化。

- (1) 常温下,状态: C_1 - C_4 为气态, C_5 - C_{16} 为液态, C_{17} 以上为固态 特例: 新戊烷在常温常压下也是气体。
- (2) 熔沸点: 增大
- (3) 密度: 增大, 但均小于水的密度
- (4) 水溶性:都不溶于水,但能溶于有机溶剂

思考: 烷烃分子的熔沸点为什么会随着碳原子数的增大即相对分子质量的提高而升高呢?

- 5. 烷烃的化学性质: 甲烷与其他烷烃结构的相似不仅表现在物理性质上的规律性变化, 而且化学性质上 也具有极大的相似性
 - (1) 稳定性:通常情况下比较稳定,不与 KMnO4(H+)、酸、碱等反应。
 - (2) 可燃性: 氧化反应: 随着碳原子数的增多,燃烧越充分,火焰明亮,甚至伴有黑烟。

方程式:			
T #2 T			
/ / // TILL 1 \ . •			

(3) 高温分解:在隔绝空气、高温条件下,烷烃可以发生裂解(或裂化)反应。

$$C_8H_{18}$$
 — 高温 $C_4H_{10} + C_4H_8$

(4) 取代反应: 在光照条件下,与 Cl_2 、 Br_2 等卤素单质的气体发生取代反应。可逐步取代,生成多种卤代烃和卤化氢气体。

6. 同系物

定义:结构相似,在分子组成上相差一个或若干个相同原子团的物质,互称为同系物。

甲烷、乙烷、丙烷等都是烷烃的同系物。

关于烷烃的知识,可以概括如下:

- (1) 烷烃的分子中原子全部以单键相结合,它们的组成可以用通式 C_nH_{2n+2} 表示。
- (2) 这一类物质成为一个系统,同系物之间彼此相差一个或若干个 CH₂原子团,相对分子质量相差 14n。
 - (3) 同系物之间具有相似的分子结构,因此化学性质相似,物理性质则随分子量的增大而逐渐变化。

【练一练】

1.	下列分子式所表示的烃中,	属于烷烃的是	()
----	--------------	--------	---	---

- A. C₃H₆ B. C₄H₆ C. C₅H₁₂ D. C₆H₆

- 2. 下列关于同系物的叙述中,不正确的是 (
 - A. 烷烃的同系物的分子式可用通式 C_nH_{2n+2} 表示
 - B. 互为同系物的有机物也互为同分异构体
 - C. 两个同系物之间的相对分子质量差为 14 或 14 的整数倍
 - D. 同系物间具有相似的化学性质

题型1: 有机物相关概念辨析

例1	: 下	列物质中	属于有机	1物的是	()								
	①涩	質精;	②食盐;		③石墨	필 또 ;		④甲烷	ž;		⑤红糖;	;		
		Κ;						9食用			⑩醋酸			
	A.	1245	9	B. ①	45910)	C.	134	578	910		D.	145610	
变式	1:	下列说法	正确的是	₫ ()									
	A.	凡是含有	碳元素的	的化合物	都是有机	物								
	В.	某有机物	燃烧后生	E成 CO ₂	和 H ₂ O,	所以它	的组	成中一	定含有	「碳、	氢和氧三	三种元	元素	
	C.	多数有机	物受热时	容易分離	解,而且	容易燃	烧,	可利用	这一性	质来	区别有机	l物和	1无机物	
	D.	有机物和	无机物性	上 质差别	很大,所	· 以无机	物不	能转变	为有机	.物,	有机物せ	1不能	送转变为无机物	
本式		烃是()											
	-	含有 C、]		1有机物				B. 含	有C元	麦的	化合物			
		仅由C、I			内有机物							: ⊞ H₂(O 的化合物	
			, , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							,,,,	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
题	<u>₹</u> 2:	甲烷的	性质											
例 2	, 甲	烷是天然	气的主要	更成分,;	是高效、	低耗、	污染	小的清	洁能源	。下	列有关甲	月烷的	的说法正确的是(()
		甲烷燃烧												
	В.	物质的量	1:1的	甲烷与氯	气发生即	仅代反应	立时,	生成物	勿只有(CH ₃ C	1和 HCl			
	C.	0.5mol 甲	烷完全燃	烧时消	耗氧气最	多为 1:	mol							
	D.	甲烷分子	中的所有	「原子均 注	满足最外	层 8 电	子结	构						
		T 71 (m) [5	644 VEL 444	.	,									
-	-	下列叙述				7人 /s-t:								
		点燃甲烷 甲烷燃烧					1 7.14	与休州	业 :1					
		煤矿的矿												
		如果隔绝								21和勻	与			
	υ.	AL / MASC	T (40.1	, WITH WAS	Lij 1000 C	· 54.	1, 191	1 <i>7</i> 1 m+	- PX /YX A	六八日子	(
例 3	: 1r	nol 甲烷和	1氯气在	光照下反	应生成村	目同物质	质的量	量的4种	中取代产	^左 物,	则消耗	氯气的	的物质的量是()
	Α.	5mol	В.	2.5mol		C.	2mol		D.	1mol				
本式	1.	在业昭冬	姓 下 业	2.	的量的田		与混	会 充分	反应后	: 得	到产物炒	勿质的	力量最大的是()
	-	CH ₃ Cl		B. CH		沙山山米		CCl ₄	汉巡归	D.		<i>7)</i> (1);	重取八的足(,
	11.			D. CH	.C13		C.	CC14		ν.	1101			
变式	2:	若甲烷与	氯气以物	勿质的量.	之比1:	1 混合,	在分	と照 下律	导到的耳	取代产	^左 物是	()	
	①C	CH ₃ Cl	20	CH ₂ Cl ₂	(3	CHCl ₃	;	4	CCl ₄					
	A.	只有①	В.	只有③	C	. 12	③的	混合物		D.	1234	り的湄	是合物	

()

变式3: 下列反应属于取代反应的是 ()
A. $CH_4 \xrightarrow{\beta {=} (1000 {E})} C + 2H_2$ B. $2HI + Cl_2 \rightarrow I_2 + 2HCl$
C. $CH_4 + 2O_2 \xrightarrow{\text{filter}} CO_2 + 2H_2O$ D. $C_2H_6 + Cl_2 \xrightarrow{\mathcal{H}} C_2H_5Cl + HCl$
例 4:实验室制取甲烷时,所采用的发生和收集装置是 () ①具有双孔塞;导管及分液漏斗的烧瓶、酒精灯; ②瓶口向上的集气瓶; ③盛满水的倒置与水槽的集气瓶; ④具有单孔塞及导气管的大试管、酒精灯。A. ③ B. ①② C. ③④ D. ②④
变式 1: 将醋酸钠晶体(CH ₃ COONa·3H ₂ O)与干燥的碱石灰按一定的质量比混合后加热,几乎没有得到甲烷气体。 此次实验失败的原因是 () A. 用了醋酸钠晶体,应该用无水醋酸钠 B. 加热的温度不够高 C. 不能按质量比将反应物混合 D. 碱石灰过于干燥,实验效果反而不好
变式 2: 实验室制取 CH ₄ 的发生装置还可以用来制取的气体是 () A. HCl、Cl ₂ B. H ₂ S、CO ₂ C. NH ₃ 、O ₂ D. H ₂ 、SO ₂
题型 3: 烷烃的结构与性质
例 5: 下列分子式所表示的烃中,属于烷烃的是
变式 1: 某烷烃含 200 个氢原子,则该烃的分子式是 (
变式 2: 某直链烷烃分子里有 m 个氢原子,则含有的碳原子数为() A. m -2 B. $\frac{m}{2}$ C. $\frac{m}{2}$ -2 D. $\frac{m}{2}$ -1
例 6: 下列化学性质中,烷烃不具备的是() A. 一定条件下发生分解反应 B. 可以在空气中燃烧 C. 与 Cl ₂ 发生取代反应 D. 能使高锰酸钾溶液褪色
变式 1: 下列烷烃的沸点是: 甲烷,-162℃; 乙烷,-89℃; 丁烷; -1℃; 戊烷,+36℃。根据以上数字推断丙烷的沸点可能是 () A. 约-40℃ B. 低于-162℃ C. 低于-89℃ D. 高于+36℃
题型 4: 简单计算和实验
例 7:标准状况下,含 11.2L 甲烷与 22.4L 氧气的混合气体完全燃烧后恢复到标准状况时,它的体积为

A. 11.2L B. 22.4L C. 33.6L D. 44.8L

() A. 1:1 B. 1:2 C. 2:1 D. 任意比	
A. 1:1 B. 1:2 C. 2:1 D. 任意比	
变式 2: 甲烷和氢气混合气体 10mL,完全燃烧后生成 6mL 二氧化碳气体(气体体积在相同状况下测得) 混合气体中,甲烷和氢气的体积比约为 ()),则
A. 1:2 B. 2:3 C. 3:1 D. 3:2	
例 8: 一定量的甲烷燃烧后得到 CO 、 CO_2 和水蒸气三种产物,此混合气体的质量为 $49.6~g$,当其缓慢通过 $CaCl_2$ 时, $CaCl_2$ 增重 $25.2~g$,则:	无水
(1) 三种产物混合气体中的 CO 物质的量为mol;	
(2) 将产物混合气体中的 CO ₂ 通入足量澄清石灰水中得沉淀g;	
(3) 要使此甲烷完全燃烧还需 O_2 的物质的量为mol。	

变式 1: 3.6g 某链烃和 Cl₂发生取代反应,控制反应条件使其仅生成一氯代物,将反应生成的气体用 NaOH 溶 液吸收恰好和 0.1mol·L⁻¹ NaOH 溶液 500mL 完全反应,试解答下列问题:

- (1) 求该烃的分子量;
- (2) 若该烃既不能使 KMnO₄溶液褪色,又不能使溴水褪色,试求该烃的分子式。

变式 2: 室温时,20mL 某气态烃与过量的氧气混合,完全燃烧后的产物通过浓硫酸,再恢复到室温,气体体积减少了60mL,剩余气体再通过氢氧化钠溶液,体积又减少了40mL。求该气态烃的化学式。

例 9: 化学上常用燃烧法确定有机物的组成,这种方法是在电炉加热时用纯氧气氧化管内样品,根据产物的质量确定有机物的组成,下图装置是用燃烧法确定有机物分子式常用的装置。试回答下列问题:

(1)产生的氧气按从左到右流向,所选装置各导管的连接顺序是。
(2) C 装置中浓硫酸的作用是。
(3) D 装置中 MnO ₂ 的作用是。
(4) 燃烧管中 CuO 的作用是。
(5)若准确称取 0.90 g 样品(只含 C、H、O 三种元素中的两种或三种),经充分燃烧后,A 管质量增加 1.32g
B 管质量增加 0.54g,则该有机物的最简式为。
(6)要确定该有机物的分子式,还要。

是月	B. 甲烷	在导管		然该气体,	火焰呈浅	浅蓝色	,用干	燥的冷烧	杯罩在	火焰上ス	方,杯	壁有水流	商产生,	该气体一定
~_		点燃证	亥气体,	火焰呈泡	浅蓝色, 用]沾有	澄清石	灰水的冷	烧杯罩	在火焰	上方,	烧杯壁.	上有有色	色物质产生,
该生	气体	一定是	甲烷											
	D.	若上達	龙Β、C	的现象均	9出现了,	则可	判断该生	气体一定	是甲烷					
6 300			瓜熟	蒂落										
1.	下歹	削物质口	中,属于	一有机物的	的是 ()							
	A.	二氧化	化碳	В.	尿素		C. 蔗	搪	D.	碳酸氢铂	铵			
2.			几物分子 非极性領		 手与碳原			与其他原 有极性键		合的化学	学键是	()	
	C.	有非构	汲性键系	口极性键			D. 只	有离子键						
				'使城市生 品等属于	E活垃圾得 (身到合:)	理利用,	近年来	逐步实	施了生活	舌垃圾	分类投放	汝的办法	去。其中塑料
۸.,	,,,	无机物		В.	` //		C.	. 盐类		D. 非组	金属单	.质		
4.	A. B. C.	石油点 石油主 石油点	是远古时 上要含 C 是一种深	、H两种	测遗体在地 □元素,还 □液体,它	含有么	少量的]	N, O, S						
		F CI—C	-C1											
5.	关于				〔利昂-12				()				
			种同分界				是平面							
	C.	只有-	一种结构	3		D.	为止凹	面体结构						
6.	下歹	微粒中	卢,与 甲	烷分子具	具有相同质	子数	和相同日	电子数的	是()				
	Α.	NH ₃		B. H ₂ C)	C. 1	NH ₄ ⁺	D	. OH ⁻	=				
7.	天然	汽、流		1气燃烧的]化学方程	三式分别	别为:(CH ₄ + 2O ₂	2	\rightarrow CO ₂ +	2H ₂ O			
C ₃ F	$I_8 + 1$	5O ₂ —	点燃→30	$CO_2 + 4H_2$	O 现有一	套以尹	と然气 ガ	別燃料的炸	生具, i	改成燃液		油气,应	应采取的	力正确措施是
	()											
	A.	两种生	气体进力	(量都減)	b	В.	增大空	气进入量	或减小	液化气油	进入量			
	C.	两种生	气体进力	量都増力		D.	减小空	气进入量	或增大	液化气油	进入量	<u>.</u>		

变式 1: 由某种气体发生装置导出的气体为甲烷、一氧化碳、氢气中的一种,下列判断中正确的是()

A. 将气体通入 KMnO₄溶液,溶液颜色无变化,该气体一定是甲烷

8.	下列甲烷的氯代物中,常温下是气体的是 () A. CH ₃ Cl B. CH ₂ Cl ₂ C. CHCl ₃ D. CCl ₄
两月	如图所示,一端封闭的 U 形管,封闭的一端有一段 CH4 和 Cl2 的混合气体,在水平部分有一段气柱,其他 设为液柱,已知液体与气体不反应。使 CH4 和 Cl2 在稍暗的光线下缓慢反应,则中间气柱的长度将(假设中 气柱未移出 U 形管水平部分)
173	A. 变大 B. 变小 C. 不变 D. 难以确定 D. D. D. D. D. D. D. D.
	氯仿在空气中存放会被氧化,反应式为 $2CHCl_3+O_2 \rightarrow 2COCl_2+2HCl_3$ 若要检验氯仿是否变质,可选用的列是 ()
	A. 淀粉 KI 试纸 B. 氯气 C. NaOH 溶液 D. AgNO ₃ 溶液
11.	有一类组成最简单的有机硅化物叫硅烷,它的分子组成与烷烃相似。则下列说法中错误的是)
	A. 硅烷的分子通式可表示为 Si_nH_{2n+2} B. 甲硅烷(SiH_4)燃烧生成 SiO_2 和 H_2O C. 甲硅烷的沸点高于甲烷 D. 甲硅烷的稳定性比 CH_4 强
英国 北村 会员 (1	阅读下列短文,完成以下 4 题 国国家海洋学中心于 2009 年 8 月 14 日发。布新闻公报说,中心的研究人员及其同行利用声呐等手段探测到 及海洋中存在大量甲烷气泡,证实了全球变暖会使海底释放大量甲烷的说法。研究人员认为,这些甲烷可能 过来加剧全球变暖。) 已知天然气的主要成分 CH4 是一种会产生温室效。应的气体,等物质的量的 CH4 和 CO2 产生的温室效应,
	A. ①②③ B. 只有① C. ①和② D. 只有③) 可燃冰又称天然气水合物,它是海底的高压、低温条件下形成的,外观像冰。其化学式为 8CH ₄ ·46H ₂ O,本积可燃冰可贮载 100~200 体积的天然气。下面关于可燃冰的叙述不正确的是
(3) A. 可燃冰有可能成为人类未来的重要能源 C. 可燃冰提供了水可能变成油的例证 D. 可燃冰的主要可燃成分是甲烷)下列事实、事件、事故中与甲烷无关的是 A. 天然气的主要成分 B. 造成"光化学烟雾"的气体 C. "西气东输"工程 D. 煤矿中的瓦斯爆炸)下列叙述中正确的是 A. 在通常情况下,甲烷与高锰酸钾等强氧化剂不反应,与强酸、强碱也不反应 B. 甲烷燃烧能放出大量的热,所以它是一种很好的气体燃料,但点燃甲烷不必像点燃氢气那样事先验纯 C. 甲烷分子是空间正方体结构,甲烷分子中 4 个碳氢键是完全等同的 D. 1 mol CH4 与 4mol Cl2 发生取代反应后,测得四种有机取代物的物质的量相等

13.	 鉴别 H₂、CO 和 CH₄ 三种无色气体的方法止确的是 A. 比较三种气体的密度大小 B. 比较三种气体的溶解性 C. 鉴别三种气体燃烧后的产物 D. 将三种气体分别通过灼热的 CuO
14.	下列关于同系物的叙述中,不正确的是 () A. 烷烃的同系物的分子式可用通式 C_nH_{2n+2} 表示 B. 互为同系物的有机物也互为同分异构体 C. 两个同系物之间的相对分子质量差为 14 或 14 的整数倍 D. 同系物间具有相似的化学性质
15.	在同一系列中,所有的同系物都具有 () A. 相同的相对分子质量 B. 相同的物理性质 C. 相似的化学性质 D. 相同的最简式
16.	下列有关烷烃的叙述中,不正确的是 A. 在烷烃分子中,所有的化学键都为单键 B. 所有的烷烃在光照条件下都能与 Cl ₂ 发生取代反应 C. 烷烃的分子通式为 C _n H _{2n+2} ,符合该通式的烃不一定是烷烃 D. 随着碳原子数的增加,烷烃的熔沸点逐渐升高
17.	下列性质不属于烷烃性质的是 () A. 它们燃烧时生成 CO ₂ 和 H ₂ O B. 它们都溶于水 C. 它们能跟卤素发生取代反应 D. 通常情况下,它们跟酸、碱和氧化剂都不反应
18.	用下列结构简式表示的物质属于烷烃的是
19.	下列性质中属于烷烃特征性质的是 () A. 燃烧产物只有二氧化碳和水 B. 分子通式为 C _n H _{2n+2} ,与氯气发生取代反应 C. 它们是非电解质 D. 它们几乎不溶于水
	下列有关同系物的叙述中错误的是 () A. 同系物一定具有相同的最简式 B. 同系物符合同一个分子式的通式 C. 相邻同系物彼此在组成上相差一个 CH ₂ 原子团 D. 同系物化学性质基本相似,物理性质随碳原子数增加而有规律性地变化
21.	经测定,一瓶气体中只含有 C、H 两种元素,通常情况下这瓶气体不可能是 () A. 一种化合物 B. 一种单质和一种化合物的混合物 C. 两种化合物 D. 两种单质
22.	C ₂ H ₆ 、C ₂ H ₄ 、C ₂ H ₂ 三种烃充分燃烧,生成水的质量相等时,它们生成的二氧化碳的质量比是(A. 1:2:3 B. 2:3:6 C. 1:3:6 D. 2:3:4

23.	Α.		C. I	I, O	的原	子个	生成的 C `数比为 1	:2:3		В.	分子	中 C	和H的	原	子个数比			J ()
	東来的 7	温度和 (D压强)	,测彳	导反区	並后/)和过量 气体密度	为相同]条件	:下]	H ₂ 密,		5 倍,原	则原	泵混合气				
	A. 2	2:1			В.	1:	2		C.	1:	7		D.	. 7	':1				
25.	Α	一定有	甲烷				准状况下 勿	В.	一定	有Z	」烷				勿组成的	门说法	正确的	是()
							器中,在2:					论化学	反应。反	乏应	Z 停止后	使容易	器内恢复	复至 2:	50℃,
容器	A. J. B. J. C. J.	原 O ₂ 、 原 O ₂ 、 原 O ₂ 、	CH ₄	Na ₂ Na ₂ Na ₂	O ₂ 物 O ₂ 物 O ₂ 物	质的 质的 质的	论正确的 的量之比为 1量之比为 1量之比为 的量之比为	与1:2 三2:1 三1:2	: 6, : 4, : 6,	反反反	应后 ³ 应后 ³ 应后 ³	容器内 容器内	生成的 生成的	固固	体是 Na 体是 Na	a ₂ CO ₃	和 NaC 和 NaC	OH OH	
	虽为零	(150	℃),	将残	留物》	容于	置于盛有 水中,无]体积比为	气体产	生。	下	列叙词		的是		()	结束后	,容器	器内的
							物质的量										NaOH		
28.	(1) (2) (3) (4)	烷烃 烷烃 1L 烷	A 在 B 的 / C 的 / E / D	司温同分子中分子中	司压了 中含 中含有 气完	下蒸 ^を 有 20 頁 210 全燃	气密度是 00 个氢原 0 个电子_ 烧时,生 消耗标准	(子 成同温	1. [司压	。 下 15	-。 L 水蒸	- :气		o				
料放	入足	量的氧	气中	燃烧,	,并包	吏产生	和氢两种生的气体。	先通入	盛有						– . •				
												实	验前		实验员	f			
					(=	干燥	剂+U 形管	拿)的	质量			10	1.1g		102.9	g			
					(7	5灰	水+广口荆	瓦)的点	质量			31	2.0g		314.2	g			
((1) 实		华后,				.为	_g, {	段设厂	<u>,</u> []	瓶里	盛有足	是量的潛	登清	看 石灰水	,则	生成的	CO ₂ 质	5量为
(态矿物	_	中碳	元素	与氢	元素的质	量比为	与			物质的	量比_			0			

30. 某研究小组为了探究甲烷和氯气反应的情况,设计了几个实验。请填写下列空白:

【实验一】用如图所示装置,排水法收集一试管甲烷和氯气的混合气体,光照后观察到量筒内形成一段水柱, 认为有氯化氢生成。

- (1) 该反应的化学方程式为 ; (只写第一步)
- (2) 水槽中盛放的液体最好为____; (填标号)

A. 水

B. 饱和石灰水

C. 饱和食盐水

D. 饱和 NaHCO₃ 溶液

【实验二】用排蒸馏水法收集一试管甲烷和氯气的混合气体,光照反应后,滴加 $AgNO_3$ 溶液,看到有白色沉淀生成,认为有氯化氢生成。

(3) 该实验设计的错误之处______;

【实验三】

步骤一: 收集半试管氯气,加入 $10\,\mathrm{mL}$ 蒸馏水,充分振荡,采用 DIS 系统的 pH 传感器测溶液的 pH (下同)。测得 $\mathrm{pH}=3.26$ 。

步骤二: 收集一试管甲烷和氯气的混合气体(各占 50%),在 40 W 的日光灯下光照 6 min 后,加入 10 mL 蒸馏水,充分振荡,测得 pH = 1.00。

(4) 判断该反应中有氯化氢生成的依据是

(5)假设氯气完全参与反应,且不考虑氯气溶解于水。往反应后的溶液中加水稀释到 100.00~mL,取 20.00~mL 稀释液,加入 10.00~mL 浓度为 $0.01~mol\cdot L^{-1}$ 的 $AgNO_3$ 溶液恰好完全反应,则试管中原有氯气在标准状况下的体积为______mL。