RECURSION – ANALYZING ALGORITHMS USING RECURRENCES

DISCRETE STRUCTURES II

DARRYL HILL

BASED ON THE TEXTBOOK:

DISCRETE STRUCTURES FOR COMPUTER SCIENCE: COUNTING, RECURSION, AND PROBABILITY

BY MICHIEL SMID

Recursive Algorithms and Recurrences

Analyzing algorithms uses a form of counting

We are counting significant operations

We will analyze recursive algorithms and count steps using recurrences

- Recurrences are simply recursive functions
- You have seen this before, however...
- ...to be done properly you should prove the closed form using induction

Start by counting the number of memory accesses in Mergesort

If you were Provided Two Sorted Lists (of lengths x and y)

Could you Merge them into a Single Sorted List (of length x+y)?

Compare the front elements of the lists

If you were Provided Two Sorted Lists (of lengths x and y)

Could you Merge them into a Single Sorted List (of length x+y)?

2 5 8 9

3 4 6

1 is smallest, so append it to the sorted list, and remove it.

If you were Provided Two Sorted Lists (of lengths x and y)

Could you Merge them into a Single Sorted List (of length x+y)?

Repeat the process!

If you were Provided Two Sorted Lists (of lengths x and y)

Could you Merge them into a Single Sorted List (of length x+y)?

2 < 3, so append 2 and remove it from original list.

1	2			

If you were Provided Two Sorted Lists (of lengths x and y)

Could you Merge them into a Single Sorted List (of length x+y)?

3 < 5, so append 3 and remove it from original list.

1	2	3				
					l	l

If you were Provided Two Sorted Lists (of lengths x and y)

Could you Merge them into a Single Sorted List (of length x+y)?

Process continues...

1 2 3 4

If you were Provided Two Sorted Lists (of lengths x and y)

Could you Merge them into a Single Sorted List (of length x+y)?

Process continues...

1 2 3 4 5

If you were Provided Two Sorted Lists (of lengths x and y)

Could you Merge them into a Single Sorted List (of length x+y)?

8 9

When one list is gone, we can add the rest to the end at once.

1 2 3 4 5 6

If you were Provided Two Sorted Lists (of lengths x and y)

Could you Merge them into a Single Sorted List (of length x+y)?

Final sorted result:

1 2 3 4 5 6 8 9

If you were Provided Two Sorted Lists (of lengths x and y)

Could you Merge them into a Single Sorted List (of length x+y)?

Final sorted result:

1 2 3 4 5 6 8 9

Since we remove an item from a list after each comparison, we require len(list1) + len(list2) memory accesses!

How do you Sort a Singleton List (i.e., a List of Length 1)?

Procedure for Sorting a List:

Divide the Unsorted List (of Length L)

into Two Lists (of Length $\lceil L/2 \rceil$ and $\lfloor L/2 \rfloor$ respectively)

Sort the Sublists and then Merge them into a Single Sorted List

How do you Sort a Singleton List (i.e., a List of Length 1)?

Procedure for Sorting a List:

Divide the Unsorted List (of Length L)

into Two Lists (of Length \[\L/2 \] and \[\L/2 \] respectively)

Sort the Sublists and then Merge them into a Single Sorted List

Can the Procedure Itself be Used to Solve this Subproblem?

Recursive Approach

If the Unsorted List is of Length 1, Return

Otherwise, Divide the list in Half (approximately) into Two Sublists

Recursively Call Mergesort on Each Sublist and Merge the Return Values

```
sort(item):
   if (len(item) \leq 1):
       return item
   else
       right \( \text{sort(item[len(item)/2:len(item)]} \)
       return merge(left, right)
                    merge(left, right):
                        j = 0, k = 0
                        for i ∈ [0, len(left)+len(right)):
                            if left[j] < right[k]:</pre>
                               item[i] ← left[j] ; j++
                            else:
                               item[i] ← right[k] ; k++
                        return item
```

7 | 4 | 1 | 6 | 5 | 2 | 9 | 8

We cut our list in two at each step!

N total memory accesses at each level of recursion to split the lists

Merge Sort Demo

 7
 4

 1
 6

 5
 2

 9
 8

We employ the same merging technique we saw earlier

 1
 6

 5
 2

 9
 8

4 7

 5
 2

 9
 8

4 7 1 6

9 8

1 7 | 1 |

2 | 5

4 7 1 6 2 5 8 9

2 5 8 9

1 4 6 7

1 4 6 7 2 5 8 9

Final sorted result:

1 2 4 5 6 7 8 9

Merge Sort: Efficiency

N total memory accesses at each level of recursion to merge

for an array of Length n (to simplify assume $n = 2^m$ for $m \in \mathbb{Z}^+$)

How Many Accesses to Split an Array of Length n in two? n

How Many Accesses to Merge Two Arrays of Length $\frac{n}{2}$? n

Let T(n) be the number of Accesses to sort an array of Length n

How Many Accesses to Mergesort array of Length ⁿ/₂?

T(n/2)

```
sort(item):
                                     merge(left, right):
    if (len(item) \leq 1):
                                         j = 0, k = 0
        return item
                                         for i ∈ [0, len(left)+len(right)):
    else
                                              if left[j] < right[k]:</pre>
        left ← sort(item[...
                                                  item[i] ← left[j] ; j++
        right ← sort(item[...
                                              else:
        return merge(left, right)
                                                  item[i] ← right[k] ; k++
                                          return item
T(n) = T(^{n}/_{2}) + T(^{n}/_{2}) + 2n
                                                                    Analyze using
         = 2 (T(^{n}/_{2})) + 2n
                                                                      Unfolding
```

```
sort(item):
                                     merge(left, right):
    if (len(item) \leq 1):
                                         i = 0, k = 0
        return item
                                         for i ∈ [0, len(left)+len(right)):
    else
                                              if left[j] < right[k]:</pre>
        left = sort(item[...
                                                  item[i] ← left[j] ; j++
        right ← sort(item[...
                                              else:
        return merge(left, right)
                                                  item[i] ← right[k] ; k++
                                          return item
T(n) = T(^{n}/_{2}) + T(^{n}/_{2}) + 2n
         = 2 (T(^{n}/_{2})) + 2n
                                                                    Analyze using
                                                                      Unfolding
```

$$T(^{n}/_{2}) = T(^{n}/_{4}) + T(^{n}/_{4}) + 2(^{n}/_{2})$$

= $2(T(^{n}/_{4})) + 2(^{n}/_{2})$

```
sort(item):
                                     merge(left, right):
    if (len(item) \leq 1):
                                         j = 0, k = 0
        return item
                                         for i ∈ [0, len(left)+len(right)):
    else
                                              if left[j] < right[k]:</pre>
        left = sort(item[...
                                                  item[i] ← left[j] ; j++
        right ← sort(item[...
                                              else:
        return merge(left, right)
                                                  item[i] ← right[k] ; k++
                                         return item
T(n) = T(^{n}/_{2}) + T(^{n}/_{2}) + 2n
         = 2 (T(^{n}/_{2})) + 2n
                                                                    Analyze using
         = 2(2(T(^{n}/_{4})) + 2(^{n}/_{2})) + 2n
                                                                     Unfolding
```

$$T(^{n}/_{2}) = T(^{n}/_{4}) + T(^{n}/_{4}) + 2(^{n}/_{2})$$

= $2(T(^{n}/_{4})) + 2(^{n}/_{2})$

```
sort(item):
                                    merge(left, right):
    if (len(item) \leq 1):
                                         j = 0, k = 0
        return item
                                        for i ∈ [0, len(left)+len(right)):
    else
                                             if left[j] < right[k]:</pre>
        left = sort(item[...
                                                 item[i] ← left[j] ; j++
        right ← sort(item[...
                                             else:
        return merge(left, right)
                                                 item[i] ← right[k] ; k++
                                         return item
T(n) = T(^{n}/_{2}) + T(^{n}/_{2}) + 2n
         = 2 (T(^{n}/_{2})) + 2n
                                                                  Analyze using
         = 2(2(T(^{n}/_{4})) + 2(^{n}/_{2})) + 2n
                                                                    Unfolding
         = 2*2(T(^{n}/_{4})) + 2n + 2n
```

$$T(^{n}/_{2}) = T(^{n}/_{4}) + T(^{n}/_{4}) + 2(^{n}/_{2})$$

= $2(T(^{n}/_{4})) + 2(^{n}/_{2})$

```
sort(item):
                                    merge(left, right):
    if (len(item) \leq 1):
                                         j = 0, k = 0
        return item
                                        for i ∈ [0, len(left)+len(right)):
    else
                                             if left[j] < right[k]:</pre>
        left = sort(item[...
                                                 item[i] ← left[j] ; j++
        right ← sort(item[...
                                             else:
        return merge(left, right)
                                                 item[i] ← right[k] ; k++
                                         return item
T(n) = T(^{n}/_{2}) + T(^{n}/_{2}) + 2n
         = 2 (T(^{n}/_{2})) + 2n
                                                                  Analyze using
         = 2(2(T(^{n}/_{4})) + 2(^{n}/_{2})) + 2n
                                                                    Unfolding
         = 2*2(T(^{n}/_{4})) + 2n + 2n
```

$$T(^{n}/_{4}) = T(^{n}/_{8}) + T(^{n}/_{8}) + 2(^{n}/_{4})$$

= $2(T(^{n}/_{8})) + 2(^{n}/_{4})$

```
sort(item):
                                     merge(left, right):
    if (len(item) \leq 1):
                                         j = 0, k = 0
        return item
                                         for i ∈ [0, len(left)+len(right)):
    else
                                              if left[j] < right[k]:</pre>
        left = sort(item[...
                                                  item[i] ← left[j] ; j++
        right ← sort(item[...
                                              else:
        return merge(left, right)
                                                  item[i] ← right[k] ; k++
                                         return item
T(n) = T(^{n}/_{2}) + T(^{n}/_{2}) + 2n
         = 2 (T(^{n}/_{2})) + 2n
                                                                    Analyze using
         = 2(2(T(^{n}/_{4})) + 2(^{n}/_{2})) + 2n
                                                                     Unfolding
         = 2*2(T(^{n}/_{4})) + 2n + 2n
         = 2*2(2(T(^{n}/_{8})) + 2(^{n}/_{4})) + 2n + 2n
T(^{n}/_{4}) = T(^{n}/_{8}) + T(^{n}/_{8}) + 2(^{n}/_{4})
         = 2 (T(^{n}/_{8})) + 2 (^{n}/_{4})
```

```
sort(item):
                                   merge(left, right):
    if (len(item) \leq 1):
                                       j = 0, k = 0
        return item
                                       for i ∈ [0, len(left)+len(right)):
    else
                                           if left[j] < right[k]:</pre>
        left = sort(item[...
                                                item[i] ← left[j] ; j++
        right ← sort(item[...
                                           else:
        return merge(left, right)
                                                item[i] ← right[k] ; k++
                                       return item
T(n) = T(^{n}/_{2}) + T(^{n}/_{2}) + 2n
         = 2 (T(^{n}/_{2})) + 2n
                                                                Analyze using
         = 2(2(T(^{n}/_{4})) + 2(^{n}/_{2})) + 2n
                                                                  Unfolding
         = 2*2(T(^{n}/_{4})) + 2n + 2n
         = 2*2(2(T(^{n}/_{8})) + 2(^{n}/_{4})) + 2n + 2n
         = 2*2*2(T(n/s)) + 2n + 2n + 2n
         ...after k steps...
         = 2^{k} (T(^{n}/_{2}^{k})) + 2nk
```

Analyzing Mergesort Performance

let T (n) be the Number of Accesses to Sort array of Length n

```
sort(item):
                              merge(left, right):
   if (len(item) \leq 1):
                                  j = 0, k = 0
       return item
                                  for i ∈ [0, len(left)+len(right)):
   else
                                      if left[j] < right[k]:</pre>
       left = sort(item[...
                                          item[i] ← left[j] ; j++
       right ← sort(item[...
                                      else:
       return merge(left, right)
                                          item[i] ← right[k] ; k++
                                  return item
T(n) = 2^{k} (T(^{n}/_{2}^{k})) + 2nk
                                            This is the pattern we have unfolded
    ...How Many Steps (k) Until we Evaluate T (1)?
               T(1) occurs when n = 2^k
       = 2^{k} (T(^{n}/_{2^{k}})) + 2nk
                                                   n = 2^k
       = n(T(1)) + 2n(\log_2(n)) \log_2 n = k
        = 2n (log<sub>2</sub>(n))
```

Proving the Closed Form

let T (n) be the Number of Accesses to Sort array of Length n

$$T(1) = 0$$
 Base case $T(n) = T(n/2) + T(n/2) + 2n$ Recursive case $T(n) = 2n(\log_2(n))$ This is our guess for a closed form. Base Case $T(1)$:

$$T(n) = 2n(log_2(n))$$

 $T(1) = 2 \cdot 1 \cdot (log_2(1))$
 $= 0$

Proving the Closed Form

let T (n) be the Number of Accesses to Sort array of Length n

$$T(1) = 0$$

 $T(n) = T(^{n}/_{2}) + T(^{n}/_{2}) + 2n$

Base case Recursive case

$$T(n) = 2n(\log_2(n))$$

This is our guess for a closed form

Base Case T(1):

$$T(n) = 2n(log_2(n))$$

 $T(1) = 2 \cdot 1 \cdot (log_2(1))$
 $= 0$

Base case holds

Proving the Closed Form

let T(n) be the Number of Accesses to Sort array of Length n

$$T(1) = 0$$
 Base case $T(n) = T(^{n}/_{2}) + T(^{n}/_{2}) + 2n$ Recursive case

$$T(n) = 2n(\log_2(n))$$

This is our guess for a closed form.

Inductive Hypothesis: Assume that $T(n/2) = 2(n/2) (\log_2(n/2))$

$$T(n) = 2 \cdot T(^{n}/_{2}) + 2n$$

$$= 2 \cdot 2(^{n}/_{2}) (\log_{2}(^{n}/_{2})) + 2n$$

$$= 2 \cdot n (\log_{2}n - \log_{2}2) + 2n$$

$$= 2 \cdot n (\log_{2}n - 1) + 2n$$

$$= 2 \cdot n \cdot \log_{2}n - 2n + 2n$$

$$= 2 \cdot n \cdot \log_{2}n$$

$$= 2 \cdot n \cdot \log_{2}n$$

Thus
$$T(n) = n(\log_2(n))$$
by induction

Analyzing Mergesort Performance

let T (n) be the Number of Accesses to Sort array of Length n

$$T(1) = 0$$
 Base case
 $T(n) = T(|^n/_2|) + T(|^n/_2|) + 2n$ Recursive case

However, that is for $n = 2^m$. The actual recurrence looks like above.

Inductive Hypothesis: Assume that $T(k) \le 2(k) (\log_2(k))$ for k < n

If $\lfloor n/2 \rfloor = n/2$ then we have the same recurrence as before.

Thus assume that

$$[n/_{2}] = n^{-1}/_{2}$$
 and $[n/_{2}] = n^{+1}/_{2}$

Base Case: T(0) = 0 and T(1) = 0

Analyzing Mergesort Performance

let T(n) be the Number of Accesses to Sort array of Length n

$$T(1) = 0$$
 Base case
 $T(n) = T(|^n/_2|) + T(|^n/_2|) + 2n$ Recursive case

Inductive Hypothesis: Assume that $T(k) \le 2(k) (\log_2(k))$ for k < n

$$T(n) = T(^{n-1}/_{2}) + T(^{n+1}/_{2}) + 2n$$

$$= 2(^{n-1}/_{2}) (\log_{2}(^{n-1}/_{2})) + 2(^{n+1}/_{2}) (\log_{2}(^{n+1}/_{2})) + 2n$$

$$= (n-1) (\log_{2}(^{n-1}/_{2})) + (n+1) (\log_{2}(^{n+1}/_{2})) + 2n$$

$$= (n-1) (\log_{2}(n-1)-1) + (n+1) (\log_{2}(n+1)-1) + 2n$$

$$= n \log_{2}(n-2) - \log_{2}(n-2) + 1 - n$$

$$+ n \log_{2}(n+2) + \log_{2}(n+2) - 1 - n + 2n$$

$$\leq 2 \cdot n \cdot \log_{2} n$$

Binary Search Algorithm:

Check the middle item

- If item is what we're looking for:
 - Then Done
- Elif item is > what we're looking for:
 - Search the left half
- Elif item is < what we're looking for:
 - Search the right half

1 2 4 6 7 10 14 16 17 21 22 34 41

Our list is sorted.

Searching for: 17

Ust pointer.

We test the **midpoint** first!

17 is **greater than** 14, so, if it is in the list at all, it **must** be in the second half.

The first half is **eliminated**. We repeat, testing the midpoint of the remainder.

17 is **less than** 22, so, if it is in the list at all, it **must** be in the first half of this sublist.

We check the midpoint again, and find it is equal to 17.

17 found at index 8, after just *three* comparisons. (Would be nine for linear search)

```
BinarySearch(item, L, start, end):
    if end < start: return
    mid = (start + end)/2;
    temp = L[mid];
    if item == temp: return;
    else if item < temp:
        BinarySearch(item, L, start, mid -1)
    else:
        BinarySearch(item, L, mid+1, end)</pre>
```

Analysis: count memory accesses $T(0) = \emptyset$ $T(n) \leq 1 + T(\frac{n}{2})$ Using unfolding to find a pattern: $T(n) \leq |+ T(\frac{n}{2})$ ≤ 1+1+丁(品)

```
BinarySearch(item, L, start, end):
   if end < start: return
   mid = (start + end)/2;
   temp = L[mid];
   if item == temp: return;
   else if item < temp:
        BinarySearch(item, L, start, mid -1)
   else:
        BinarySearch(item, L, mid+1, end)</pre>
```

$$T(n) \le k + T(\frac{n}{2^k})$$

 $\le k + 1 + T(0)$
 $2^k = n$
 $k = \log n$
 $0 \le T(n) \le \log n + 1$

This is our guess. We must prove using induction.

```
What we know: T(0) = \emptyset, T(1) = 1

T(n) = 1 + T(\frac{n}{2})
```

```
BinarySearch(item, L, start, end):
    if end < start: return
    mid = (start + end)/2;
    temp = L[mid];
    if item == temp: return;
    else if item < temp:
        BinarySearch(item, L, start, mid -1)
    else:
        BinarySearch(item, L, mid+1, end)</pre>
```

What we know: $T(0) = \emptyset$, T(1) = 1 $T(n) = 1 + T(\frac{n}{2})$

```
To show: T(n) = | t | cgn
BinarySearch(item, L, start, end):
   if end < start: return</pre>
   mid = (start + end)/2;
   temp = L[mid] ;
                                            Inductive Hypothesis:
T(\frac{2}{2}) \leq 1 + \log(\frac{2}{2})
   if item == temp: return ;
   else if item < temp:</pre>
      BinarySearch(item, L, start, mid -1)
   else:
      BinarySearch(item, L, mid+1, end)
                                             T(n) = + T(=)
                                                   < 1+1+ log =
                                                   \leq |+|+|\log n - \log 2
\leq |+|\log n
```

Things to know about recursion:

- 1. How to prove a closed form of a recursive function using induction.
- 2. How to map a problem to the Fibonacci Sequence (also, the Fibonacci sequence).
- 3. How to analyze a recursive algorithm (by finding a recursive function)
- 4. Using unfolding on a recurrence to find a closed form.