Лабораторная работа № 2.

Тема: Синтез комбинационных суммирующих устройств. АЛУ.

1.Цель работы:

Изучить принципы работы суммирующих устройств.

2. Программа работы.

- 2.1.Синтезировать и начертить схему полусумматора и одноразрядного сумматора.
- 2.2. Ввести схему полусумматора и проверить его работу.
- 2.3. Ввести схему одноразрядного сумматора и проверить его работу.
- 2.4. Изучить принцип работы 4-х разрядного АЛУ К155ИПЗ (SN74181).
- 2.5. Начертить и ввести схему исследования АЛУ.
- 2.6. Исследовать работу АЛУ К155ИП3.

3. Краткие теоретические сведения.

Сумматор – схема, осуществляющая получение арифметической суммы двух одноразрядных двоичных чисел. Числа в двоичной системе складываются по тем же правилам, что и в десятичной системе счисления:

Основу сумматоров составляют либо элементарные одноразрядные комбинационные сумматоры, либо элементарные автоматы с памятью. Соответственно принято делить сумматоры на комбинационные и накапливающие.

Одноразрядные комбинационные сумматоры, осуществляют сложение двух двоичных разрядов X, Y и значения переноса Z из младшего разряда и осуществляют выработку значения суммы S и переноса P в старший разряд.

Одноразрядный сумматор с тремя входами строится в соответствии с таблицей 1 двоичного сложения.

Таблица. 1.

Χ	Υ	Z	S	Р
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Полусумматор осуществляет функцию неравнозначности или суммы по модулю два (исключающее ИЛИ) и реализуется в соответствии с таблицей 2

Таблица 2.

X	Υ	S	Р
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- 4. Методические указания по выполнению работы.
- 4.1.Синтезировать полусумматор в соответствии с переключательной функцией приведенной в таблице 2. Отразить процедуру синтеза в отчете.
- 4.1.1.Зарисовать в отчет схему электрическую принципиальную, в соответствии с полученным аналитическим выражением, по примеру функциональной схемы на рис. 1.
 - 4.1.2. Ввести схему полусумматора.
- 4.1.3.Продемонстрировать преподавателю правильность функционирования полусумматора.
- 4.2. Синтезировать одноразрядный комбинационный сумматор в соответствии с переключательной функцией приведенной в таблице 1. Отразить процедуру синтеза в отчèте.
- 4.2.1.Зарисовать в отчèт схему электрическую принципиальную, в соответствии с полученным аналитическим выражением, по примеру функциональной схемы на рис.2.
 - 4.2.2. Ввести схему сумматора.
- 4.2.3. Продемонстрировать преподавателю правильность функционирования сумматора.
 - 4.3. Изучить принцип работы АЛУ К155ИПЗ (SN74181).

Арифметико-логическое устройство кроме арифметических операций позволяет выполнять и логические операции. Примером АЛУ является микросхема К155ИПЗ графическое обозначение которой приведено на рис.3.

В соответствии с графическим обозначением:

- -A1 \div A4 информационные входы первого 4-х разрядного операнда (A); -B1 \div B4 информационные входы второго 4-х разрядного операнда (B); -F0 \div F3 входы по которым осуществляется задание выполняемой функции;
- Z- вход переноса, он используется в тех случаях, когда производятся операции над числами с разрядностью больше четыр \dot{e} х;
 - -М вход задания режима работы АЛУ, при М=0 - режим арифметических операций, при М=1 - режим логических операций;

- -S1÷S4 информационные выходы, на которых фиксируется результат выполнения операции;
 - $-\overline{P}$ выход переноса.

Данная ИС имеет выходы, предназначенные для ускоренного распространения переносов. Описание этих выводов здесь опускается.

В табл. 3 приведена таблица истинности ИС К155ИП3 в режиме арифметических операций. В табл.4 приведена таблица истинности ИС К155ИП3 в режиме логических операций. Знак X в таблицах обозначает любое значение: 0 или 1 (безразличное значение); знак □ обозначает суммирование по модулю два.

Таблица 3.

Z	F3	F2	F1	F0	Операции
0	0	0	0	0	A+1
1	0	0	0	0	Α
0	0	0	1	1	0000
1	0	0	1	1	1111
0	0	1	1	0	A-B
1	0	1	1	0	A-B-1
0	1	0	0	1	A+B+1
1	1	0	0	1	A+B
0	1	1	0	0	A+A+1
1	1	1	0	0	A+A
0	1	1	1	1	Α
1	1	1	1	1	A-1

На базе данной ИС можно строить и многоразрядные АЛУ разрядности кратной четырем.

Данная ИС имеет большие возможности арифметической и логической обработки информации.

- 4.3.1. Занести в отчет схему на рис.4.
- **4.3.2.** Ввести схему.
- 4.3.3. Проверить работу схемы, и продемонстрировать преподавателю, в режиме выполнения логических функций:

					Таблица 4
Z	F3	F2	F1	F0	Операц
					ИИ
X	0	0	0	0	\overline{A}
					\overline{AV}
X	0	0	0	1	В
X	0	0	1	0	$\overline{A}B$
X	0	0	1	1	0
X	0	1	0	0	\overline{AB}
X	0	1	0	1	B
X	0	1	1	0	A⊕B
					A_
X	0	1	1	1	A B
X	1	0	0	0	$\overline{A}VB$
X	1	0	0	1	$\overline{A \oplus B}$
X	1	0	1	0	В
X	1	0	1	1	AB
X	1	1	0	0	1
X	1	1	0	1	AV \overline{B}
X	1	1	1	0	AVB
X	1	1	1	1	A

- поразрядной конъюнкции (**AB**) двух операндов *A* и *B*, для *A*=0110, *B*=1101;
- поразрядной дизъюнкции (**AVB**), для *A*=1010, *B*=0111;
- суммирования по модулю два (**A**⊕**B**), для *A*=0011, *B*=0101
- 4.3.4.Проверить работу схемы, и продемонстрировать преподавателю, в режиме выполнения арифметических операций:
 - вычитания (**A-B**), для *A*=1110, *B*=0101;
 - сложения (**A+B**), для *A*=0110, *B*=0101;
 - 5. Содержание отчета.
 - 5.1 Описание процедуры синтеза схем.
 - 5.2 Схемы синтезированных устройств.
 - 5.3 Схема ALU на ИС К155ИП3.
 - 5.4Выводы
 - 6. Контрольные вопросы.
 - 6.1. Нарисовать две модификации схемы одноразрядного полусумматора.
 - 6.2. Начертить таблицу истинности для одноразрядного полусумматора.

Функциональная схема полусумматора.

Рис. 1 Функциональная схема одноразрядного комбинационного сумматора.

Рис.2 . Условное обозначение ИС К155ИП3.

_				. 0
2 23	A 1	АЛУ	S 1	9
23	A2	AJIY	S2	-10 -
<u>21</u>	A3		S3	11
<u> 19</u>	A4			12
1	B1		S4	_13_
<u>22</u>	B2			<u>16</u>
<u>20</u>			Ī	
	B3			
<u>18</u>	B4			
6				
20	F0			
5	F1			
4	F2			
3	F3			
7	77			
	Z			
8	M			

Рис.3.

Схема для исследования ИС К155ИПЗ.

Рис.4.