EE610A Analog VLSI Circuits Project Report

Course: EE610A Analog VLSI Circuits

Project: Differential Amplifier Design

Instructor: Prof. Imon Mondal

Student Name: Shital Niras

Roll Number: 230967

Date:03 July,2025

1. Abstract

This report presents the design and simulation of a single-stage differential amplifier using a pMOS input stage for a non-inverting amplifier configuration. The goal was to achieve a loop gain ≥ 40 dB, bandwidth ≥ 25 MHz, and CMRR ≥ 80 dB using Cadence Virtuoso and 45nm GPDK. This report details the design approach, theoretical calculations, simulation results, and temperature performance from 0°C to 70°C.

2. Design Specifications

Parameter	Value
Input Stage	pMOS
VDD	1.8 V
Load Capacitance (CL)	20 pF
Minimum Loop Gain	40 dB
Minimum Bandwidth	25 MHz
Minimum CMRR	80 dB

3. Design Approach

3.1 Determining Transconductance (gm)

Using the unity-gain bandwidth relation:

$$f_unity = gm / (2\pi * CL)$$

Given:

- -CL = 20 pF
- Required -3 dB bandwidth ≥ 25 MHz

We compute:

gm =
$$2\pi \times 25$$
 MHz × 20 pF ≈ 6.28 mS

Hence, $gm \ge 6.28$ mS is required for the input differential pair.

3.2 Using Lookup Tables for Parameter Selection

DC simulations were performed in Cadence ADE to extract gm, gds, ID, and V_GT. These were exported to CSV and plotted externally.

Graphs were analyzed to select points with high gm, good gm/gds (intrinsic gain), and moderate V_ov.

Graphs for PMOS were attached;

NMOS were evaluated

similarly

3.3 Loop Gain and Intrinsic Gain Requirement

In a negative feedback system:

Loop Gain = $A_DM \times \beta$

```
For \beta = 0.5 and Loop Gain > 100:

A_DM > 200

A_DM = gm × (r_o1 || r_o2)

Assuming r_o1 = r_o2 \Rightarrow A_DM = gm × r_o / 2 \Rightarrow gm/gds > =400
```

This was infeasible with a basic differential pair. Thus, we chose a cascode configuration.

3.4 Cascode Configuration

For cascode:

 $A_DM \approx gm \times (gm \times r_o)^2$

Target: gm/gds ≥ 30, gm \approx 8 mS

gm-ID plots helped determine ID, V_ov, and W/L ratios. Bias voltages and gate voltages were set accordingly.

3.5 Biasing and Sizing Strategy

Using gm-ID and V_ov plots, we sized PMOS inputs for higher gm without increasing current. Biasing ensured cascode transistors remained in saturation.

3.6 Sizing of Other Transistors

Transistors PM4–PM7 (PMOS) and NM0–NM3 (NMOS) were sized using the required gm and ID from graphs.

3.7 CMRR Consideration

To achieve high CMRR:

$$CMRR = A_DM / A_CM \approx gm / gds$$

A_CM is approximately 1/(2*gmp*Rx) where Rx is output resistance of tail current source cascade configuration

$$Rx = gm * r01 * r02$$

Tail current source was cascoded. PM0-PM3 were sized carefully to maintain common-mode rejection and bias.

4. Schematic Diagram

5. Temperature Sweep Analysis

Temperature	(° C)	Loop Gain (dB)	Bandwidth (MHz)	CMRR (dB)
0		42. 382	29.75	90. 4176
27		41. 6892	27	88. 6211
50		40. 9641	25.8	86. 5148
70		40. 2076	24. 49	84. 33

6. DC Operating Point Results

Extracted from Cadence simulation (ADE \rightarrow Results \rightarrow Print \rightarrow DC Operating Point):

Transistor	W/L	(μm/μm)	gm (mS)	gds (µS)	Vov (V)	Cgs (fF)	Cgd (fF)
PMO	27 /	0.18	6.09	1.29m	-0. 299	-53.7	-5.95
PM1	27 /	0.18	6.04	1.33m	-0. 299	-53.69	-5.99
PM2	27 /	0.18	6. 78	530. 69	-0. 288	-52.97	-5.45

Vov Transistor W/L (μ m/ μ m) gm (mS) gds (μ S) Cgs (fF) Cgd (fF) (V) PM3 27 / 0.18 6.54 700 -0.293 -53-5.57100 / 0.18 9.79 PM4 -0.088 -155474.13 -20.37100 / 0.18 9.79 PM5 473.33 -0.088 -155.184 -20.37 46 / 0.18 PM6 7.32 333. 578 -0.135 -79.42-9.246 / 0.18 PM7 7.32 329 -0.134 - 79.38-9.2505 / 6 NMO 5.61 154.35 −28.81p −720 0.189 NM1 505 / 6 5.61 162 0.189 -28.81p -780 NM2505 / 6 5.53 177.61 0.194 −29.53p −795 NM3 505 / 6 177.82 0.194 −29.53p −797 5.53

7. Simulation Results

Include plots for:

- Open-loop gain and phase

Adm Plot

Loop gain and phase

- Closed-loop gain and phase

- Transient response with step input

Steady-State Error Analysis

A step input of $10 \, mV$ (0.01 V) was applied with Vbias of 630 mV to the non-inverting amplifier. The output settled at:

Vout, ss=649.4593 mV

The bias voltage was 640 mV, so the actual output step is:

 Δ Vout=649. 4593 mV-640 mV=9. 4593 mV

Since the expected ideal output step is 10 mV, the simulated steady-state error is:

SSEsim=0. 01 V-0. 0094593 V=0. 0005407 V=**540. 7** μV

Theoretical Steady-State Error

The loop gain from simulation is:

Aloop=1041.6892/20 \approx 121.31

The theoretical SSE is:

SSEtheoretical= $1/(1+Aloop)=1/(1+121.31)\approx 0.00818$

For a 10 mV step input:

SSEtheoretical= $10 \text{ mV} \times 0.00818 \approx 81.8 \mu \text{ V}$

- Transient response with 150 mV $cos(\omega t)$ for $\omega = \omega 3dB$

V+ - V- plot

Input Output Plots

- Transient response with 150 mV $cos(\omega t)$ for $\omega = \omega 3dB/10$

V+ - V- plot

Input Output Plot

- Difference between diffamp input voltages
- At $\omega = \omega_3 dB$, the peak input difference was 166.71 mV
- At $\omega = \omega_3 dB/10$, the peak input difference was only 14.92 mV

6. Theoretical Calculations

Calculate and explain: ICMR+, ICMR-, CMRR, Gain, etc., using small-signal parameters from DC simulation.


```
CATE CALCULATION

CATE 20 (3) | Admin |

Adm = 9m, m, 4 (Reg 11 Fez)

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m, 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, m, 1 | 34, m,

Rol = 9m, m, m, m, 1 | 34, m,

Rol = 9m, m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, 1 | 34, m,

Rol = 9m, m, m, m, 1 | 34, m,

Rol = 9m, m, m, m, 1 | 34, m,
```


10. Conclusion

Theoretical and Simulated Results

The following parameters were computed both theoretically (using incremental parameters from DC operating point simulation) and verified through Cadence simulation.

Parameter Theoretical Value Simulated Value

ICMR⁺ 0. 70 V 0. 73 V ICMR⁻ 0. 261 V 0. 49 V CMRR 87. 75 dB 88. 6211 dB

11. References

EE610 Lectures

Thank You