GP-based Model Predictive Control*

Dimitrios Gkoutzos¹, Luzia Knödler² and Lucas Rath³

Abstract—Describe topic and relevance in a few sentences so that the reader is motivated to read the whole paper.

I. INTRODUCTION

Introduce topic and describe motivation and relevance of problem/topic.

In this paper we give an introduction to the results presented in paper(s) [1]. We present the main results, discuss ideas and illustrate the results with simulations.

Notation. Define notation.

II. BACKGROUND

Necessary background in nonlinear systems and control (material beyond what was considered in the course.)

III. MAIN RESULTS

Ideas, theorems, proofs and discussions

IV. EXAMPLES

Show and discuss simulation examples etc....

V. CONCLUSIONS

Summarize the main points (with more details than in the preceding introduction). The paper should not be between 4 and 8 pages.

APPENDIX

Appendixes should appear before the acknowledgment.

ACKNOWLEDGMENT

References

 R. Brockett. The early days of geometric nonlinear control. Automatica, 50:2203–2224, 2014.

^{*}Project within the course Statistical Learning and Stochastic Control, University of Stuttgart, December 7, 2019.

¹Dimitrios Gkoutzos is a student of the Master study programm Engineering Cybernetics, University of Stuttgart, albert.author@papercept.net

²Luzia Knödler is a student of the Master study program Engineering Cybernetics, University of Stuttgart, b.d.researcher@ieee.org

³Lucas Rath is a student of the Master study program Engineering Cybernetics, University of Stuttgart, and of the Master study program Systems, Control and Mechatronics, Chalmers University of Technology, b.d.researcher@ieee.org