

How to use BAGS

bagselect = rosbag('ex_multiple_topics.bag');

Create MATLAB object

%Select a subset of the messages, filtered by time and topic.
bagselect2 = select(bagselect,'Time',...
[bagselect.StartTime bagselect.StartTime + 1],'Topic','/odom');

Possibility to select a subset

% Read messages as a structure. Specify the DataFormat name-value pair % when reading the messages. Inspect the first structure in the returned % cell array of structures.

msgStructs = readMassages(bagsslost2 | DataFormat| | struct|);

msgStructs = readMessages(bagselect2,'DataFormat','struct');
msgStructs{1}

Create a cell array of data

Assignment I -A

What we expect from you

Starting from a Bag file provided (*ex_A1.bag*), evaluate at each time:

- minimum distance respect to obstacles
- An estimate of /cmd vel sequence provided to the robot

List of suggested steps

HINT: this part of the assignment can be done using just MATLAB (windows)

- Subscribe to bag messages
- Evaluate minimum distance (and save it)
- Evaluate /cmd_vel in consecutive time steps (odom?) and save it
- Write a publisher with that sequence (and save a bag)
- Use matlab to plot results for the report

Assignment I -B

What we expect from you

Starting from a your cmd_vel estimated:

Evaluate how accurate it is

List of suggested steps

HINT: this part of the assignment requires the use of Gazebo + ROS

- Run estimated commands (a bag prev saved? Simulink or directly ROS?)
- Save robot behavior with your estimated commands
- Compare the original and reproduced robot behavior and provide a proof for the report

