머신러닝을 이용한 강동구 흡연부스 입지선정

김병화 김세하 노영준 박나현 박정원 서지원

프로젝트 배경 및 목표

연구배경

금연구역 확대와 흡연구역 부족

흡연권과 혐연권의 딜레마

간접흡연 피해 증가

적절한 위치에 흡연부스 설치를 통해 흡연권과 혐연권을 모두 보장할 수 있는 방안 필요

연구목표

- ✔ 데이터 분석을 통해 기존 서울시 내 흡연구역의 위치와 수를 파악하여 문제 상황 인식
- ✓ 최적의 흡연부스 입지 선정을 통해 흡연권과 혐연권 보장 및 간접흡연 최소화

연구과정

데이터 수집

데이터 이름	사용 데이터 내용	데이터 제공 사이트	사용 데이터 세부정보
국토교통부 전국 법정동	서울 법정동 코드	공공데이터포털	46,289개의 데이터
자치구단위 서울생활인구	강동구 총 인구 데이터	서울 열린데이터 광장	640,001개의 데이터
서울시 금연구역 정보	공원, 도서관 등 서울시 내 금연구역 파악	서울 열린데이터 광장	10,001개의 데이터
서울시 강동구 유흥주점영업 인허가정보	강동구 내 유흥주점 영업 정보 파악	서울 열린데이터 광장	289개의 데이터
서울시 강동구 일반음식점 인허가정보	강동구 내 일반음식점 영업 정보 파악	서울 열린데이터 광장	21,236개의 데이터
서울시 학원 교습소정보	강동구 내 학원 교습소 정보 파악	서울 열린데이터 광장	1,728개의 데이터
서울시 자치구별 흡연구역 정보	흡연구역 위치 및 운영 자치구 파악	공공데이터포털	1,061개의 데이터

자치구 선정

서울시내금연구역 26만여곳…흡연구역은 63곳뿐

✓ 서울시 내 흡연부스가 없는 4개의 자치구, 강동구, 도봉구, 금천구, 성북구 중 유동인구가 가장 많은 '**강동구**'를 선정

흡연부스 반경 설정 기준

"공공데이터를 활용한 흡연공간서비스 방안에 관한 연구", 이근원, 홍익대학교 대학원, 2021

'금연구역 외의 지정된 공공장소

흡연공간/부스 사용시 이해 가능한 이동시간은?'

- ▶ 100명 중 78명의 흡연자들이 5분 이하의 거리를 선호
- ✓ 흡연공간 사용시 이해 가능 이동 시간을 4분으로 설정
- ✓ 사람의 평균 걷는 속도 = 약 5 km/h

이해 가능한 이동 시간과 사람의 평균 걷는 속도를 바탕으로 흡연구역 간의 거리를 설정하면,

 $((5 km/h \div 60 min) \times 4 min) \div 2 \approx 166 m$

[MCLP] Model

Maximal Covering Location Problem

주어진 후보지의 개수로 지역 수요를 최대한 커버할 수 있도록 함

$$Maximize \sum_{i \in I} \omega_i y_i$$

Subject to $\sum_{j \in J} x_j = K$: 배치되는 흡연부스의 최소개수 $\sum_{j \in N_i} x_j \ge y_i \forall i \in I$

 $y_j = \begin{cases} 1, 수요 지점 i가 적어도 하나의 흡연부스에 의해 서비스되면 \\ 0, otherwise \end{cases}$

i: 수요지점 $index, i \in I$ j: 후보지 $index, j \in J$ $w_i:$ 수요량 (value) K: 설치할 흡연부스의 수S: 최대 서비스 거리 (166m) $d_{ij}:$ 수요지점 i로부터 후보지 j까지의 거리 $N_i = \{j | d_{ij} \leq S\}: i$ 로부터 서비스 거리 S안에 있는 후보지의 집합

 $w_i = lbl \times AreaRatio \times restaurant \times bar$

AreaRatio : 커버되지 않은 면적 비율 (0~1)

STEP 1. 그리드별 흡연 수요구역 Coverage 시각화

가중치 = $(1 - (a_i + b_i + f_i)) \times c_i \times (1 + 0.3 * d_i) \times (1 + 0.8 * e_i)$

 a_i : 후보지(i)의 커버 면적 내에 포함되는 '어린이보호구역' d_i : 후보지(i)의 커버 면적 내에 포함되는 '일반음식점 분포'

 b_i : 후보지(i)의 커버 면적 내에 포함되는 '금연구역'

 e_i : 후보지(i)의 커버 면적 내에 포함되는 '유흥주점 분포'

 c_i : 후보지(i)의 커버 면적 내에 포함되는 $^\prime$ 유동인구 수 $^\prime$

 f_i : 후보지(i)의 커버 면적 내에 포함되는 '학원 분포'

STEP 2. 모든 곳이 cover되는 최소의 흡연부스 개수 (K = 170)

STEP 3. 가장 취약한 50곳만 우선 최적의 입지를 선정

결론 및 기대효과

결론

- ✔ 데이터 분석을 통해 흡연부스 수요량이 높은 지역을 파악하였다.
- ✓ 최적화 Modeling을 통해 흡연부스 위치를 선정하였다.

한계점

- ✔ 쾌적한 부스 안의 환경을 유지하기 위한 관리가 필요함
- ✔ 유동인구에 따라 흡연부스 크기를 조절할 필요가 있음
- ✔ 눈에 띄는 장소에 흡연구역 안내표지판을 설치해야 함

- ✓ 흡연으로 인한 민원 감소 기대효과
 - ✓ 흡연이 가능한 장소가 늘어남으로써 흡연자의 흡연권 보장
 - ✓ 길에 버려지는 담배 꽁초 감소로 인한 도보 환경 개선 및 화재 위험 감소
 - ✓ 길거리 흡연 사례가 줄어들어 비흡연자의 간접흡연 감소