Association Analysis (5)

Evaluation of Association Patterns

- Association analysis algorithms have the potential to generate a large number of patterns.
 - In real commercial databases we could easily end up with thousands or even millions of patterns, many of which might not be interesting.
- Very important to establish a set of well accepted criteria for evaluating the quality of association patterns.
- **First set** of criteria can be established through statistical arguments.
 - Patterns involving mutually independent items or cover very few transactions are considered uninteresting because they may capture spurious relationships in the data [confidence, support].
 - Will talk also for interest factor.
- Second set of criteria can be established through subjective arguments.

Subjective Arguments

- A pattern is considered subjectively uninteresting unless it reveals unexpected information about the data.
- E.g., the rule {Butter} → {Bread} isn't interesting, despite having high support and confidence values.
- On the other hand, the rule {Diapers} → {Beer} is interesting because the relationship is quite unexpected and may suggest a new crossselling opportunity for retailers.
- **Drawback**: Incorporating subjective knowledge into pattern evaluation is a difficult task because it requires a considerable amount of prior information from the domain experts.

Computing Interestingness Measures

• Given a rule $X \rightarrow Y$, the information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \rightarrow Y$

	Y	Y	
X	f_{11}	f_{10}	f_{1+}
X	f_{01}	f_{00}	f_{0+}
	f_{+1}	f_{+0}	T

f₁₁: support of X and Y

 f_{10} : support of X and \overline{Y}

f₀₁: support of X and Y

f₀₀: support of X and Y

Pitfall of Confidence

	Coffee	¬Coffee	
Tea	150	50	200
¬Tea	750	150	900
	900	200	1100

The pitfall of confidence can be traced to the fact that the measure ignores the support of the itemset in the rule consequent.

Consider association rule: Tea \rightarrow Coffee

Confidence=

P(Coffee, Tea)/P(Tea) = P(Coffee|Tea) = 150/200 = 0.75 (seems quite high)

But, P(Coffee) = 0.9

Thus knowing that a person is a tea drinker actually decreases his/her probability of being a coffee drinker from 90% to 75%!

⇒ Although confidence is high, rule is misleading

In fact
$$P(Coffee | \neg Tea) =$$

$$P(Coffee, \neg Tea)/P(\neg Tea) = 750/900 = 0.83$$

Statistical Independence

- Population of 1000 students
- 600 students know how to swim (S)
- 700 students know how to bike (B)
- 420 students know how to swim and bike (S,B)
- P(S|B) = P(S) ($P(S \land B)/P(B) = .42 / .7 = .6 = P(S)$)
- $P(S \land B)/P(B) = P(S)$
- $P(S \land B) = P(S) \times P(B) => Statistical independence$
- $P(S \land B) > P(S) \times P(B) \Rightarrow$ Positively correlated
 - i.e. if someone knows how to swim, then it is more probable he knows how to bike, and vice versa
- $P(S \land B) < P(S) \times P(B) => Negatively correlated$
 - i.e. if someone knows how to swim, then it is less probable he/she knows how to bike, and vice versa

Interest Factor

Measure that takes into account statistical dependence

Interest =
$$\frac{P(X,Y)}{P(X)P(Y)} = \frac{f_{11}/N}{(f_{1+}/N)\times(f_{+1}/N)} = \frac{N\times f_{11}}{f_{1+}\times f_{+1}}$$

- Interest factor compares the frequency of a pattern against a baseline frequency computed under the statistical independence assumption.
- The **baseline** frequency for a pair of mutually independent variables is:

$$\frac{f_{11}}{N} = \frac{f_{1+}}{N} \times \frac{f_{+1}}{N} \qquad \text{Or equivalently} \quad f_{11} = \frac{f_{1+} \times f_{+1}}{N}$$

Interest Equation

- Previous equation follows from the standard approach of using simple fractions as estimates for probabilities.
- The fraction f_{11}/N is an estimate for the joint probability P(A,B), while f_{1+}/N and f_{+1}/N are the estimates for P(A) and P(B), respectively.
- If A and B are statistically independent, then $P(A,B)=P(A)\times P(B)$, thus the Interest is 1.

$$I(A, B)$$
 $\begin{cases} = 1, & \text{if } A \text{ and } B \text{ are independent;} \\ > 1, & \text{if } A \text{ and } B \text{ are positively correlated;} \\ < 1, & \text{if } A \text{ and } B \text{ are negatively correlated.} \end{cases}$

Example: Interest

	Coffee	¬Coffee	
Tea	150	50	200
¬Tea	750	150	900
	900	200	1100

Association Rule: Tea → Coffee

```
Interest = 150*1100 / (200*900)= 0.92 (< 1, therefore they are negatively correlated)
```

Effect of Support Distribution

 Many real data sets have skewed support distribution where most of the items have relatively low to moderate frequencies, but a small number of them have very high frequencies.

Skewed distribution

Group	G_1	G_2	G_3
Support	< 1%	1% - 90%	> 90%
Number of Items	1735	358	20

- Tricky to choose the right support threshold for mining such data sets.
- If we set the threshold too high (e.g., 20%), then we may miss many interesting patterns involving the low support items from G1.
 - Such low support items may correspond to expensive products (such as jewelry) that are seldom bought by customers, but whose patterns are still interesting to retailers.
- Conversely, when the threshold is set too low, there is the risk of generating spurious patterns that relate a high-frequency item such as milk to low-frequency item such as caviar.

Cross support patterns

- They are patterns that relate a high frequency item such as milk to a low frequency item such as caviar.
 - Likely to be spurious because their correlations tend to be weak.
 - Large number of weakly correlated cross support patterns can be generated when the support threshold is sufficiently low.
- E.g. the confidence of $\{\text{caviar}\} \rightarrow \{\text{milk}\}\$ is likely to be high, but still the pattern is spurious, since there isn't probably any correlation between caviar and milk.
- So, we want to **detect** cross-support patterns by looking at some antimonotone property (such as APRIORI).
 - We don't want to use "interest" as a measure because it doesn't have an antimonotone property; it's rather used a post processing evaluation measure.
 - Towards this, a definition comes next.

Crosssupport patterns

Definition

A crosssupport pattern is an itemset $X = \{i_1, i_2, ..., i_k\}$ whose support ratio

$$r(X) = \frac{\min\{s(i_1), s(i_2), ..., s(i_k)\}}{\max\{s(i_1), s(i_2), ..., s(i_k)\}}$$

is less than a user specified threshold h_c .

Example

Suppose the support for milk is 70%, while the support for sugar is 10% and caviar is 0.04%

Given $h_c = 0.01$, the frequent itemset {milk, sugar, caviar} is a crosssupport pattern because its support ratio is

```
r = \min \{0.7, 0.1, 0.0004\} / \max \{0.7, 0.1, 0.0004\}= 0.0004 / 0.7 = 0.00058 < 0.01
```

Detecting crosssupport patterns

- E.g. assuming that $h_c = 0.3$, the itemsets $\{p,q\}, \{p,r\}, \text{ and } \{p,q,r\}$ are crosssupport patterns.
 - Because their support ratios, which are equal to 0.2, are less than the threshold h_c .
- We can apply a high support threshold, say, 20%, to eliminate the crosssupport patterns...but, this may come at the expense of discarding other interesting patterns such as the strongly correlated itemset {q,r} that has support equal to 16.7%.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r
0	1	1
1	1	1
1	1	1
1	1	1
1	1	1
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	0
1	0	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1	0	0
1	0	0
1	0	0
0	0	0
0	0	0
0	0	0
0	0	0

Lowest confidence rule

- Notice that the rule $\{p\} \rightarrow \{q\}$ has very low confidence because most of the transactions that contain p do not contain q.
- This observation suggests that:
 - Crosssupport patterns can be detected by examining the lowest confidence rule that can be extracted from a given itemset.

Finding lowest confidence

• Recall the antimonotone property of confidence:

```
conf(\{i_1,i_2\} \rightarrow \{i_3,i_4,...,i_k\}) \le conf(\{i_1,i_2,i_3\} \rightarrow \{i_4,...,i_k\})
```

- This property suggests that confidence never increases as we shift more items from the left to the righthand side of an association rule.
- Hence, the lowest confidence rule that can be extracted from a frequent itemset contains only **one item** on its lefthand side.

Finding lowest confidence

• Given a frequent itemset $\{i_1, i_2, i_3, i_4, \dots, i_k\}$, the rule

$$\{i_j\} \rightarrow \{i_1, i_2, i_3, i_{j-1}, i_{j+1}, i_4, \dots, i_k\}$$

has the lowest confidence if?

$$s(i_i) = \max \{s(i_1), s(i_2), ..., s(i_k)\}$$

• This follows directly from the definition of confidence as the ratio between the rule's support and the support of the rule antecedent.

Finding lowest confidence

• Summarizing, the lowest confidence attainable from a frequent itemset $\{i_1, i_2, i_3, i_4, \dots, i_k\}$, is

$$\frac{s(\{i_1, i_2, ..., i_k\})}{\max\{s(i_1), s(i_2), ..., s(i_k)\}}$$

- This is also known as the **h-confidence** measure or **all-confidence** measure.
- Because of the antimonotone property of support, the numerator of the honfidence measure is bounded by the minimum support of any item that appears in the frequent itemset. So,

h - confidence =
$$\frac{s(\{i_1, i_2, ..., i_k\})}{\max\{s(i_1), s(i_2), ..., s(i_k)\}} \le \frac{\min\{s(i_1), s(i_2), ..., s(i_k)\}}{\max\{s(i_1), s(i_2), ..., s(i_k)\}} = r(...)$$

hconfidence

- Clearly, crosssupport patterns can be eliminated by ensuring that the honfidence values for the patterns exceed h_c .
- Finally, observe that the measure is also antimonotone, i.e.,

```
hconfidence(\{i_1, i_2, ..., i_k\}) \geq hconfidence(\{i_1, i_2, ..., i_{k+1}\})
```

and thus can be incorporated directly into the mining algorithm.