Math 240: Discrete Structures I

Assignment 2: Solutions

- 1. Proof Techniques
 - (a) Give a direct proof that: If x is an integer then $x^3 x$ is divisible by 3.

Proof. We have

$$x^{3} - x = x(x^{2} - 1)$$

$$= x(x - 1)(x + 1)$$

$$= (x - 1)x(x + 1)$$

But x-1, x and x+1 are three consecutive integers. Thus the number 3 must divide exactly one of them.

Alternate Proof. Division with remainder gives x = 3q + r for some positive q and r between 0 and 2. Thus, we have

$$x^{3} - x = (3q + r)^{3} - (3q + r)$$

$$= (3q + r)(9q^{2} + 6qr + r^{2}) - 3q - r$$

$$= 27q^{3} + 18q^{2}r + 3qr^{2} + 9q^{2}r + 6qr^{2} + r^{3} - 3q - r$$

$$= 3(9q^{3} + 9q^{2}r + 3qr^{2} - q) + r^{3} - r .$$

Since q and r are integers, the term multiplied by 3 can be ignored. Thus, the expression is divisible by 3 if and only if $r^3 - r$ is divisible by 3. But, we know that r is either 0, 1 or 2. So $r^3 - r$ is 0 - 0 = 0, 1 - 1 = 0 or 8 - 2 = 6, which are all divisible by 3, as desired.

(b) Give a contrapositive proof that: Let x and y be real numbers. If the product $x \cdot y$ is irrational then either x or y is an irrational number.

Proof. We will show the contrapositive, namely, that if both x and y are rational, then $x \cdot y$ is rational. Since x and y are rational, we have $x = \frac{a}{b}$ and $y = \frac{c}{d}$ where a, b, c, d are integers. It follows that $x \cdot y = \frac{ac}{bd}$, which is clearly a quotient of two integers, as desired.

2. Proofs by Contracition.

Prove by contradiction that:

(a) There are no integers x and y such that 6x + 14y = 1.

Proof. Suppose not, then there exist integers x and y such that 6x + 14y = 1. Thus $3x + 7y = \frac{1}{2}$. But x and y are integers so this is impossible. \Box

(b) Let x, y, z be integers. If $x^2 + y^2 = z^2$ then either x or y is even.

Proof. Suppose not, then there exist integers x, y and z such that x and y are odd, and $x^2 + y^2 = z^2$. Since both x and y are odd, x^2 and y^2 are odd, and therefore z^2 must be even. Because z^2 is even, we know, by the theorem seen in class, that z must be even. So, we have that z = 2k for some integer k, and $z^2 = 4k^2$. It follows that $4|z^2$. However, x = 2n + 1 and y = 2m + 1 for some value of n and m, so $x^2 = 4n^2 + 4n + 1$ and $y^2 = 4m^2 + 4m + 1$, from which we get

$$z^2 = 4n^2 + 4m^2 + 4n + 4m + 2 ,$$

which is clearly not divisible by 4, amounting to a contradiction. \Box

- 3. Proofs by Induction.
 - (a) Prove by induction that, for any $n \in \mathbb{N}$, $n \geq 2$,

$$\left(1 - \frac{1}{2^2}\right) \cdot \left(1 - \frac{1}{3^2}\right) \cdot \left(1 - \frac{1}{4^2}\right) \cdot \dots \cdot \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$$

Proof. We begin by showing the base case n=2, is satisfied. In fact, we have $(1-\frac{1}{2^2})=\frac{3}{4}=\frac{2+1}{2\cdot 2}$, as claimed. It remains to show the induction step. Suppose the property holds for n=k, then we show it must hold for n=k+1. In fact, we have

$$\prod_{i=2}^{k+1} \left(1 - \frac{1}{i^2} \right) = \left(1 - \frac{1}{(k+1)^2} \right) \cdot \prod_{i=2}^k \left(1 - \frac{1}{i^2} \right)$$

$$= \left(1 - \frac{1}{(k+1)^2} \right) \cdot \frac{k+1}{2k} \quad \text{by Ind. Hyp.}$$

$$= \frac{(k+1)^2 - 1}{(k+1)^2} \cdot \frac{k+1}{2k}$$

$$= \frac{(k+1)^2 - 1}{2k(k+1)}$$

$$= \frac{k^2 + 2k}{2k(k+1)}$$

$$= \frac{k+2}{2(k+1)},$$

as desired.

(b) Prove by induction that, for any sets $A_1, A_2, ..., A_n$, De Morgan's Law generalises to

$$\overline{A_1 \cup A_2 \cup \dots \cup A_n} = \overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_n}$$

Proof. The base case here is n=2, that is De Morgan's Law. (It is clear that $\overline{A_1} = \overline{A_1}$, so we could also use n=1 as the base case.) It remains to show the induction step. Suppose the statement holds for n=k, we wish to show it holds for n=k+1. We have

$$\overline{A_1 \cup A_2 \cup \cdots \cup A_{k+1}} = \overline{(A_1 \cup A_2 \cup \cdots \cup A_k) \cup A_{k+1}}$$

$$= \overline{A_1 \cup A_2 \cup \cdots \cup A_k} \cap \overline{A_{k+1}}$$

$$= \overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_k} \cap \overline{A_{k+1}}$$
De Morgan
$$= \overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_k} \cap \overline{A_{k+1}}$$
Ind. Hyp.,

as desired. \Box

- 4. Predicate Calculus.
 - (a) What is the negation of the statement

 $\forall n \in \mathbb{N}$ (the remainder when n^2 is divided by 4 is either 0 or 1)

Answer: $\exists n \in \mathbb{N}$ (the remainder when n^2 is divided by 4 is either 2 or 3)

(b) Either the original statement in a) is true or its negation is true. Which one is it?

The original statement is true. *Proof.* If n is odd, then n=2m+1 and $n^2=4m^2+4m+1$, so the remainder is 1. Otherwise, if n is even, then n=2m and $n^2=4m^2$ so the remainder is 0.

- 5. More Predicate Calculus.
 - (a) What is the negation of the statement

$$\forall \text{ odd } m \in \mathbb{N} \ \exists n \in \mathbb{N} \ (m = n^2 - (n-1)^2)$$

Answer: \exists odd $m \in \mathbb{N} \ \forall n \in \mathbb{N} \ (m \neq n^2 - (n-1)^2)$.

(b) Either the original statement in a) is true or its negation is true. Which one is it?

The original statement is true. *Proof.* We have

$$n^2 - (n-1)^2 = n^2 - n^2 + 2n - 1 = 2n - 1$$

so for any odd m, we have m=2k-1 for some $k\geq 1$, and therefore $m=k^2-(k-1)^2$.

6. Axiomatic Systems.

Consider a geometry with lines and points that satisfy the following axioms:

- (A1) There is at least one line.
- (A2) For any two distinct points, there is exactly one line that goes through them both.
- (A3) There is no line that contains every point.
- (A4) Any two lines intersect in at least one point.

Prove that:

(a) Any two lines intersect in exactly one point.

Proof. Let L_1 and L_2 be two lines. By (A4), we know that $L_1 \cap L_2$ contains at least one point. We wish to show it contains exactly one point. Suppose not, and let x_1 and x_2 be two points in $L_1 \cap L_2$. By (A2), we know that there is exactly one line through x_1 and x_2 , which contradicts the fact that both L_1 and L_2 have this property.

(b) There is at least one point.

Proof. Suppose not, then the set of points is \emptyset , the empty set. By (A1), there must be at least one line, call it L. By (A3), the line L cannot contain every point. So there must be some point x that does not lie on L. (Observe that (A3) is trivially false if there are no points!) Thus there is at least one point.

(c) No point lies on every line.

Proof. By (A1), we know that there must be at least one line, and we know that there is a point. So take any arbitrary point x. If x lies on no line, we are done.

If x lies on some line L, then x cannot be the only point, otherwise the line L would contain every point, contradicting (A3).

So let y be some other point. By (A2) we know that there is a line L_1 through x and y. However, by (A3) there must be some point z outside of L_1 . Thus, by (A2), we have another line L_2 through x and z. Now $L_2 \neq L_1$ as z is on L_2 but not on L_1 .

By (A2), there must also be some line through y and z, call it L_3 . Again, $L_3 \neq L_1$ as z is on L_3 but not on L_1 .

If x lies on L_3 then $\{x,y\}$ lie on two distinct lines, L_1 and L_3 , a contradiction to (A2). Thus we have found a line L_3 that x does not lie on. The choice of x was arbitrary so no point can lie on every line.