Алгоритмы. Задачи

1. Алгоритм Евклида

- а) Сложность относительно побитовых операций "+" и "-";
- б) Оценка сложности снизу.

2. Метод Гаусса

Оценка сверху для целочисленного метода Гаусса решения системы линейных уравнений.

3. Жорданова форма

Оценка сверху относительно побитовых операций "+" и "-" для алгоритма, определяющего тип жордановой формы для матрицы

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}, |a|, |b|, |c|, |d| \le M$$

4. Максимум сумм справа за один проход

Дан массив a длины n. Найдите за один проход по массиву $\max_j \sum_{k=j}^n a[k]$. Ограничение по памяти – O(1).

5. Максимакс и минимакс

Дан массив a длины n без нулей. Для k-ого подмассива с элементами одного знака (пусть его начальный и конечный индексы – i_1 и i_2) обозначим $m_k = max_j\{S_j', S_j''\}$, где

• a)
$$S'_j = \sum_{r=i_1}^j (x_r \mod 5 - 2)$$
, a $S''_j = \sum_{r=j}^{i_2} (x_r \mod 7 - 3)$.

• 6)
$$S'_j = \sum_{r=i_1}^j x_r$$
, a $S''_j = \sum_{r=j}^{i_2} x_r$.

Найти:

- a) $max_k\{m_k\}$
- 6) $min_k\{m_k\}$

Ограничение по времени – O(n), по памяти – O(1).

6. Алгоритм Кадана

Вычислить за один проход по массиву $\{x_i\}$ $\max_{i < j} \sum_{k=i}^j x_k$

7. Перестановки

Реализовать алгоритм перестановки массива букв по приведен-

Каковы оценки (сверху и снизу) сложности алгоритма?

8. Окна

Есть большая прямоугольная таблица символов, могут встречаться: '#' и пробел. Пустые области - это окна. Написать алгоритм, который максимально быстро определяет, являются ли все окна прямоугольными. Какова его сложность?

9. Лабиринт

Есть большая прямоугольная таблица символов, могут встречаться: '#' и пробел. '#' соответствует стенкам лабиринта, пробелы - дорожкам. В левой нижней и правой верхней позициях пробелы. Написать алгоритм, который определяет, есть ли путь из левого нижнего угла в правый верхний.