threason for Constraint Satisfaction Problems

RESEARCH NOTES IN THE ENEXA PROJECT

March 26, 2025

We show, how Constraint Satisfaction Problems can be formalized by boolean tensor networks in the threason notation, and how their solution can be approached by tree search, possible in combination with monte carlo approaches.

1 Formalization

Definition 1. Let there be a hypergraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and $\mathcal{T}^{\mathcal{G}}$ be a tensor network of boolean constraint tensors $T^e[X_e]$ to each $e \in \mathcal{E}$, that is

$$\mathcal{T}^{\mathcal{G}} = \{ T^e \left[X_e \right] : e \in \mathcal{E} \} .$$

The Constraint Satisfaction Problem CSP to $\mathcal{T}^{\mathcal{G}}$ is the decision whether there is a state $x_{\mathcal{V}}$ such that

$$\langle \mathcal{T}^{\mathcal{G}} \rangle [X_{\mathcal{V}} = x_{\mathcal{V}}] = 1.$$

We say the CSP is satisfiable, when there is such a state, and unsatisfiable if not.

2 Solution

2.1 Global contraction

The most obvious solution is to contract the tensor network and decide the CSP based on

$$\langle \mathcal{T}^{\mathcal{G}} \rangle [\varnothing] > 0.$$

This can be demanding, when having a large and densely connected tensor network.

2.2 Message passing

Local contractions instead of global provide a tradeoff between generality and efficiency. Their results can be passed to further contractions by message passing. Whenever a local contraction vanishes, the CSP is unsatisfiable. However, the converse is not true: In general, we cannot conclude that the CSP is satisfiable, when a message-passing scheme does converge without vanishing.

2.3 Guessing

To decide a CSP it is enough to construct a state $x_{\mathcal{V}}$ which satisfies all constraint tensors. One procedure is to consecutively guess the state of some variables $v \in \mathcal{V}$ and check, whether the guess can satisfy the constraint tensor.

2.4 Orchestration in a Backtracking Search Tree

We build a search tree for a constructive solution of the CSP, where each node represents a guess of a variables state. After a guess, a message passing scheme of varying complexity is performed to calculate the imediate consequences of the guess. Then an intelligent agent decides whether to

• stop the message passing scheme

Figure 1: a) Tensor Network Representation of the Toy CSP, where two formulas $A1 \oplus A2$ and $E \Rightarrow A2$ have to be satisfied. The Knowledge Cores K contain the possible choices after a constraint propagation and are taken from $e_0, e_1, \underline{1}, \underline{0}$. b) The corresponding search tree, where the assignments to variables are guessed in the order E, A2, A1. At each parent with a single child, the other choice has been ruled out by constraint propagation. In our toy example with minimally connected constraints, single-core constraint propagation ensures that the guessed reasoning path remains consistent.

- increase the complexity of the scheme by extending the set of communicated variables, or the size of the contraction
- continue with a further guess of another variable
- undo the previous guess (e.g. necessary when reached a vanishing message indicating inconsistency)

3 Examples

3.1 Temporal Clue Game

- Nodes \mathcal{V} : To each characteristic of a murder (who, when, where, how etc) there is a categorical variable X_v with finite possibilities
- Edges \mathcal{E} : To each clue and accusation, there is a constraint tensor storing the possible states consistent with the clue

3.2 Graph Coloring

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ we design

- a variable to each nodes $v \in \mathcal{V}$ carrying the color
- a constraint to each edge $e \in \mathcal{E}$ by differing colors, i.e. $T^{(v_1,v_2)}[X_{v_1},X_{v_2}] = \mathbb{I}^{x_{v_1} \neq x_{v_2}}[X_{v_1},X_{v_2}]$

3.3 Knowledge Base Satisfiability

As described in the main report.

3.4 Sudoku

As described in the main report.

4 Toy Example

As a toy example, let there be a knowledge base of atoms A1 and A2 representing two accounts to be used in an accounting proposal, and E represents incoming invoices. The constraints are that exactly one of A1 or A2 is booked, that is $X_{A1} \oplus X_{A2}$.