Data Analytics CS301 Modeling: Formal Basics

Week 9: 13th March Spring 2020 Oliver BONHAM-CARTER

Good Read

How canceled events and self-quarantines save lives, in one chart

https://www.vox.com/2020/3/10/21171481/coronavirus-us-cases-quarantine-cancellation

Flattening the curve

Time since first case

Modeling Basics

- What are models?
 - Data does not provide much insight unless something can be learned from it.
 - The ability to use data to extract meaning and extra value (the learning)
- Let's talk about...
 - How to extract some meaning from your data
 - How to make predictions using your data as training

Modeling Basics

- Topics include
 - Modeling
 - -Linear regression
 - -Multivariate regression
 - -Interaction terms

Types of Models (i)

Support Vector Machines

 Supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis.

Generalized Linear Models

 Flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution

Generalized additive models

 Generalized linear model in which the linear predictor depends linearly on unknown smooth functions of some predictor variables, and interest focuses on inference about these smooth functions

Types of Models (ii)

Linear Regression

- Linear approach for modeling the relationship between a scalar dependent variable y and one or more explanatory variables (or independent variables) denoted X
- (we have begun this study)

LOESS Regression

 Combining much of the simplicity of linear least squares regression, but building with the flexibility of nonlinear regression.

Logistic Regression

 Models where the dependent variable is categorical (i.e., 0's or 1's as factors)

Let's Begin Our Discussion...

- Working with models begins with a basic question to answer from the analysis of data.
- We will walk through each of these with a formal discussion

Q1: Do taller people make more money?

Q2: Do hotter places have more crime?

How Do we Answer The Question?

- Modeling: We employ a computational framework which we used data to build (for training).
- Play with the model to see what happens when we change a part of the data ...

 A function is a mathematical description of a relationship.

• If one variable completely determines another, every (x, y) data point will fall on the **function** line.

 This is what real data looks like on a good day!

Relationships Between Variables

- If the actual relationship is affected by other variables, data points may not fall directly on the function line.
- Noise: The greater the effect of other variables, the weaker the relationship. This is normally the situation with real data.

So, A Model, Then?

- Noise is what we get in data when not every point does what it is supposed to do.
- Modeling attempts to more-correctly identify relationships in noisy data.

Let's Talk Linear Models

- Linear regression: How much do/does my independent variable(s) influence my dependent variables?
- As one variable climbs, does the other also climb (decline) at some predicable rate?
- Can I impose some value into my model to determine a what-if type of question which is firmly based on my data?

Let's Talk Linear Models

Another Linear Model

How To Best Draw a Line Through The Data?

• A *residual* of an observed value is the difference between the observed value and the estimated value of the quantity of interest

How To Best Draw a Line Through The Data?

ALLEGHENY COLLEGE

- Residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared errors of prediction (SSE)
- The sum of the squares of residuals (deviations predicted from actual empirical values of data).

Types of Questions to Address With Data

Do you think that hotter places have more crime?

Do you think that taller people make more money?

File: wages.csv

Crime Data Set

• Is there a relationship between crime and temperature? State statistics from 2009.

```
rm(list = ls()) # remove old vars
# open the crime dataset from the data.
c <- file.choose() # set the filename
crime <- read.csv(c) # load and read the data.</pre>
```


Crime Data Set

View(crime) #or
tbl_df(crime)

	state	abbr	low	murder	tc2009
	<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>
1	Alabama	AL	-27	7.1	4337.5
2	Alaska	AK	-80	3.2	3567.1
3	Arizona	AZ	-40	5.5	3725.2
4	Arkansas	AR	-29	6.3	4415.4
5	California	CA	- 45	5.4	3201.6
6	Colorado	CO	-61	3.2	3024.5
7	Connecticut	СТ	-32	3.0	2646.3
8	Delaware	DE	-17	4.6	3996.8
9	Florida	FL	-2	5.5	4453.7
10	Georgia	GA	-17	6.0	4180.6

. . .

Exploratory Plots

```
#plot with general trend line
crime \%>\% ggplot(aes(x = low, y = tc2009))
+ geom point(alpha = I(1/4)) +
geom smooth()
#plot with linear model line
crime \%>% ggplot(aes(x = low, y = tc2009))
+ geom_point(alpha = I(1/4)) +
geom smooth(method = Im)
```


Plots: General Trends

crime %>% ggplot(aes(x = low, y = tc2009)) + geom_point(alpha = I(1/4)) + geom_smooth()

Plots: Linear Model Line

crime %>% ggplot(aes(x = low, y = tc2009)) + $geom_point(alpha = I(1/4)) + geom_smooth(method = Im)$

This
is
the
model's
line
here!

Build a Linear Model

- How much does *low (indep)* influence *tc2009 (dep)*
- Linear model syntax

Model formula:
response ~ predictor(s)

mod <- Im(tc2009 ~ low, data = crime)

Models Use Formulas

R formulas are expressions built with ~ (tilda)

```
tc2009 ~ low
```

gives: tc2009 ~ low

class(tc2009 ~ low)

gives: [1] "formula"

Models Use Formulas

 Formulas only need to include the response and predictor variables

$$y = f(x) = \alpha + \beta x + \epsilon$$

#Syntax to Build the linear model:

Types of Formulas

response ~ explanatory dependent ~ independent

outcome ~ predictors

Intercept and Coefficient

mod

```
> mod
Call:
lm(formula = tc2009 ~ low, data = crime)
Coefficients:
(Intercept)
                      low
    4256.86
                    21.65
```


Coef

Shows the model's coefficients (I.e., intercept, slopes)

```
coef(mod)
coefficients(mod)
# (Intercept) low
# 4256.86158 21.64725
```


Interpreting Models

Linear models are very easy to interpret

$$y = \alpha + \beta x + \epsilon$$

lpha is the expected value of y when x is 0.

 β is the expected increase in y associated with a one unit increase in x

low

Coefficients: For Prediction coef (mod)

```
coefficients(mod)
# (Intercept)
```

4256.86158 21.64725

The best estimate of tc2009 for a state with low = -10 is 4256.86 + 21.6 * (-10) = 4040.86

 $(x,y) \leftarrow (-10, 4040.86)$

Coefficient Calculator Function

```
# create function to find y for x
tellMeY <- function(x_int){</pre>
  #function to get the y value for an entered x
value
  # The best estimate of tc2009 for a state with low
of inputted value x_int
  cat(" intercept :", mod$coefficients[1] )
  cat("\n slope :", mod$coefficients[2] )
  y = mod$coefficients[1] + x_int *
mod$coefficients[2]
  cat("\n y = ",y)
tellMeY(-10) # note: x = -10 also, my "what if?"
enabler
```


ALLEGHENY COLLEGE

This function is now my data!!

Based on our training using data, If x = -10, my Y will be about 4040.86

The best estimate of tc2009 for a state with low = -10 is 4256.86 + 21.6 * (-10) = 4040.86

I can even predict *y*, based on my own values of x!

Due to error, there is a slight difference between **This** value and our own value.

Forecasting the Data

```
?predict

crime %>% ggplot(aes(x = low, y = predict(mod))) +
geom_point(alpha = I(1/4))

crime %>% ggplot(aes(x = low, y = predict(mod))) +
geom_point(alpha = I(1/4)) + geom_smooth()
```


Aside: intercept terms

R includes an intercept term in each model by default

$$y = (\alpha) + \beta x + \epsilon$$

Study at x = 0? (Does x = 0 make sense here?)

Every linear model has a y intercept. Including a lets this term vary. Not including a forces the intercept to (0, 0).

- The *y*-intercept is the place where the regression line crosses the y-axis (where x = 0), and is denoted by *b* from y = mx + b
- Meaningful interpretation: Sometimes the *y*-intercept has meaningful interpretation (and sometimes not)
- No meaning for the y-intercept when data is not present near the point where x = 0 (and the model suggests that data is present at this point)

Ex: A model where rain

(x) is used to predict tree growth (y)

If *rain* = 0, then *tree_growth* = 0

As a result, the regression line may cross *y*-axis at some other point (other than zero)

You can explicitly ask for an intercept by including the number one, 1, as a formula term. You can remove the intercept by including a zero or negative 1.

```
# equivalent - includes intercept

Im(tc2009 ~ 1 + low, data = crime)

Im(tc2009 ~ low, data = crime)

# equivalent - removes intercept

Im(tc2009 ~ low - 1, data = crime)

Im(tc2009 ~ 0 + low, data = crime)
```


Results: summary(mod)

```
> summary(mod)
Call:
lm(formula = tc2009 \sim low, data = crime)
Residuals:
         1Q Median 3Q
    Min
                                     Max
-1134.36 -647.13 98.03 533.62 1344.30
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4256.86 233.44 18.236 < 2e-16 ***
      21.65 5.33 4.061 0.000188 ***
low
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 649.9 on 46 degrees of freedom
Multiple R-squared: 0.2639, Adjusted R-squared: 0.2479
F-statistic: 16.49 on 1 and 46 DF, p-value: 0.000188
```


R-squared Value

- R2 is a statistic that will give some information about the goodness of fit of a model.
- The R2 coefficient of determination describes how well the regression predictions approximate the real data points.
 - An R2 of 1 indicates that the regression predictions perfectly fit the data.
- A measurement of how close the data are to the fitted regression line.

Residual standard error: 649.9 on 46 degrees of freedom Multiple R-squared: 0.2639, Adjusted R-squared: 0.2479 F-statistic: 16.49 on 1 and 46 DF, p-value: 0.000188

Extracting Info

- Create model object
- Run functions on model object to get details
 Try these commands

summary(mod)

predict(mod) # predictions at original vals

resid(mod) # residuals: the diff between data
point and the predicted from model

Consider This!

- Fit a linear model to the crime data set.
- Predict tc2009 (dep) with low (ind).
 What are the model's A and B variables? Hint: use coef (mod)

$$Y = \underline{A} + \underline{B} * x + \epsilon$$

Consider This!

 Try making a model with the other data set to determine whether taller people make more money.

Load the Wages Data

Fit a linear model to the wages data set that predicts *earn* with *height*.

```
rm(list = ls()) # remove old vars
# open the wages.csv dataset from
the data.

w <- file.choose() # set the
filename

wages <- read.csv(w) # load and
read the data.</pre>
```


Do Tall People Make More?

wages %>% ggplot(aes(x = height, y = earn)) + geom_point(alpha = I(1/4)) + geom_smooth()

wages %>% ggplot(aes(x = height, y = earn)) + geom_point(alpha = I(1/4)) + geom_smooth(method = Im) # regression line

Try switching the x's and y's for another view.

Correlations

```
# Find correlations using the "pearson"
method
cor(wages$earn, wages$height, method =
"pearson")
```

> # Find correlations using the "pearson" method
> cor(wages\$earn, wages\$height, method = "pearson")
[1] 0.2916002

ALLEGHENY COLLEGE

Dep And Indep Vars

- #make your model
- hmod <- Im(dependent ~ independent)
- Where dependent var is earn
- And independent var is height

$$y = \alpha + \beta x + \epsilon$$

ALLEGHENY COLLEGE

Earn Regressed Over height

- #make your model
- hmod <- lm(earn ~ height)
- Where dependent var is earn
- And independent var is height

$$(earn) = \alpha + \beta \times (height) + \epsilon$$

Earn Regressed Over height

```
hmod <- lm(earn ~ height, data = wages)
coef(hmod)
## (Intercept) height
## -126523.359 2387.196</pre>
```

$$earn = \alpha + \beta \times height + \epsilon$$

 $earn = -126523.36 + 2387.20 \times height + \epsilon$

Earn Regressed Over height

The best estimate of earn for someone 68 inches tall is

$$earn = -126523.36 + 2387.20 \times 68 + \epsilon$$

$$earn = 35806.24$$

Build a model.

- Fit a linear model to the wages data set
- How do we interpret the results?

Q: What happens when we regress *earn* over *race*?

Header

rmod <- Im(earn ~ race, data = wages)
coef(rmod) # get the model's y-intercepts and slopes</pre>

```
coef(rmod)
```

```
# (Intercept) racehispanic raceother racewhite
# 28372.09 -2886.79 3905.32 4993.33
```

Signif. codes:

summary(rmod)


```
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
              28372
                              10.204
                        2781
                                      <2e-16 ***
racehispanic
             -2887
                        4515
                              -0.639 0.5227
raceother
           3905
                        6428 0.608 0.5436
racewhite
              4993
                        2929 1.705
                                     0.0885 .
```

0.001 "** 0.01 "* 0.05 ". 0.1

Estimates From Coefficients

