How does $y = c_1e^{(\alpha+ib)x} + c_2e^{-ibx}$ turn into $y = d_1ecosbx + d_2e^{ox}sinbx$?

ANS

Use the following facts

 $e^{ix} = \sin(x)i + \cos(x) = e^{-ix} = \sin(-x)i + \cos(-x)$ $= -\sin(x)i + \cos(x)$ (use symmetries $\sin(x)i + \cos(x)$

Then $y = c, e^{(\alpha+ib)x} + c_2 e^{(\alpha-ib)x}$ $= c, e^{\alpha x} e^{ibx} + c_2 e^{\alpha x} e^{-ibx}$ $= e^{\alpha x} (c, e^{ibx} + c_2 e^{-ibx})$ $= e^{\alpha x} (c, e^{ibx} + c, e^{ibx})$ $= e^{\alpha x} (c, e^{ibx}) + c, e^{ibx}$ $= e^{\alpha x} (c, e^{ibx}) + c, e^{ibx}$ $+ c_2(o_3(b_x) + c_2 e^{ibx})$ $= e^{\alpha x} (c, e^{ibx}) + c, e^{ibx}$