

Universidade Federal da Paraíba

Coordenação do Curso de Ciência de Dados e Inteligência Artificial

Modelo de Aprendizagem Linear I

Prof. Gilberto Farias

Regressão x Classificação

Roteiro

- Representando dados reais
 - Revisando o PLA
 - Prática SimpleSpam
- Classificação Linear
 - Uso da Regressão Linear
 - Prática Classificação com Regressão Linear
- Como aproximar h(x) de f(x)?
- Métricas de aprendizado

Representando dados reais

Notas de aula Yaser Abu-Mostafa

Representação da entrada

Entrada bruta $x = (x_0, x_1, \dots, x_{256})$

Modelo linear $\mathbf{w} = (w_0, w_1, \dots, w_{256})$

Características: extrair informação útil

intensidade e simetria $x = (x_0, x_1, x_2)$

Modelo linear (w_0, w_1, w_2)

Ilustração da classificação

 $x = (x_0, x_1, x_2)$ x_1 : intensidade x_2 : simetria g(x)simetria intensidade

Adaptado das notas de aula de Yaser Abu-Mostafa

Classificar *email* como span

☐ ☆ ➤ Sistemas/UFPB	oi PROGEP/CQVSST/DQVS REITERA A OF	25 de mai.
🗌 😭 ➤ Lucidio Cabral	Fwd: Convite: Desenvolvimento de Curso	22 de mai.
🗌 🏠 ➤ Lourdes Maria Rodri.	ci Convocação para a 1ª Reunião Extraord	22 de mai.
🗌 🦙 ➤ rhaian jose farias .	ci RE: Prova 1 - Rhaian Barros - ESTRUTU	22 de mai.
🗌 🙀 🔰 Yuri Christian 6	Disponibilização dos cursos do Coursera g	22 de mai.
Ruy, Ruy, Alisson 4	[professoresppgi_ufpb:3205] Cadastro de o	18 de mai.
OR Spectrum (ORSP)	ci Are you willing to review ORSP-D-19-0	17 de mai.
🗌 🦙 ┣ Thiago Gouveia	Fwd: [seminarios-grafos] Próximo seminári	13 de mai.
🗌 🏠 ⋗ Danielle Rousy Dias.	i LC-EaD-Plano de Aplicação de Provas-2	5 de mai.

Banco de mensagens de *emails*

#"gratuito"	#"livre"	span
2	3	+1
4	3	+1
0	0	-1
4	0	+1
0	4	+1
0	0	-1
4	1	+1
2	2	+1
0	0	-1
1	0	-1
3	2	+1
0	1	-1
1	4	+1
2	4	+1
1	3	+1
1	1	-1
0	2	-1
2	3	+1
4	4	+1
3	4	+1

Exemplos de Treinamento

X		Υ
#"gratuito"	#"livre"	span
2	3	+1
4	3	+1
0	0	-1
4	0	+1
0	4	+1
0	0	-1
4	1	+1
2	2	+1
0	0	-1
1	0	-1
3	2	+1
0	1	-1
1	4	+1
2	4	+1
1	3	+1
1	1	-1
0	2	-1
2	3	+1
4	4	+1
3	4	+1

Analisando o PLA para dados linearmente não separáveis

PLA:

Pocket:

Regressão linear para Classificação

- Regressão linear aprende uma função de valor real $y = f(x) \in \mathbb{R}$
- Valores binário também são valores reais! $\pm 1 \in \mathbb{R}$
- Use a regressão linear para pegar um w onde $w^T x_n \approx y_n = \pm 1$
- Use $sign(w^Tx_n)$ para concordar com $y_n = \pm 1$
- Constrói uma boa ponderação inicial para classificação.

$$h(x) = sign\left(\sum_{i=0}^{d} w_i x_i\right)$$

Modelo perceptron

Função hipótese g()

Emails para classificar

Como Aproximar h(x) de f(x)?

O que significa " $h \approx f$ "??

- No aprendizado n\u00e3o se espera replicar a fun\u00e7\u00e3o alvo f perfeitamente;
- A medição de erro quantifica a aproximação da função hipótese h;

Medição de erro: E(h, f)

Medida de erro pontual: e(h(x), f(x))

Exemplos:

Erro quadrático: $e(h(x), f(x)) = (h(x) - f(x))^2$

Erro binário: $e(h(x), f(x)) = [h(x) \neq f(x)]$

Medindo o erro da função hipótese

- O erro E(h, f) é a média dos erros individuais e(h(x), f(x))
- Erro dentro da amostra:

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} e(h(x_n), f(x_n))$$

Erro fora da amostra:

$$E_{out}(h) = E_{\mathbf{x}}[e(h(\mathbf{x}), f(\mathbf{x}))]$$

Escolhendo uma medição de erro

Tipos de erros:

- 1. falso positivo
- 2. falso negativo

Verificação de digital

Como penalizar cada tipo de erro?

Escolhendo uma medição de erro

Tipos de erros:

- 1. falso positivo
- 2. falso negativo

Verificação de digital

Como penalizar cada tipo de erro?

$$f$$

$$+1 \qquad -1$$

$$+1 \qquad \text{sem erro}$$
 $h \qquad -1 \qquad \text{sem erro}$

Escolhendo uma medição de erro

Tipos de erros:

- 1. falso positivo
- 2. falso negativo

Verificação de digital

Como penalizar cada tipo de erro?

$$f$$
+1 -1
+1 sem erro falso aceite
 h -1 falso rejeito sem erro

Depende da aplicação!

Medição de erro – para supermercados

Supermercado verifica a digital para dar descontos

Falso negativo é custoso;

Falso positivo é aceitável.

Medição de erro – para bancos

Banco verifica a digital para acessar conta

Falso positivo é um desastre;

Falso negativo é aceitável.

Métricas de qualidade do Aprendizado de Máquina

Matriz de confusão

h

	-1	+1
-1	#Verdadeiros Negativos (VN)	#Falsos Positivos (FP)
+1	#Falsos Negativos(FN)	#Verdadeiros Positivo (VP)

	classificado não spam	classificado spam
não spam	1000 (VN)	150 (FP)
spam	50 (FN)	100 (VP)

Acurácia

Quão frequente o classificador está correto?

$$acuracia = \frac{VP + VN}{VP + VN + FP + FN}$$

	classificado não spam	classificado spam
não spam	1000 (VN)	150 (FP)
spam	50 (FN)	100 (VP)

$$acuracia = \frac{100 + 1000}{100 + 1000 + 50 + 150} = 85\%$$

Paradoxo da Acurácia

	classificado não spam	classificado spam
não spam	1150 (VN)	O (FP)
spam	150 (FN)	0 (VP)

Classificador burro

$$acuracia = \frac{0 + 1150}{0 + 1150 + 0 + 150} = 88,4\%$$

Precisão

Daqueles que classifiquei como corretos, quantos efetivamente eram?

$$precisao^+ = \frac{VP}{VP + FP}$$

$$precisao^{+} = \frac{VP}{VP + FP}$$
 $precisao^{-} = \frac{VN}{VN + FN}$

	classificado não spam	classificado spam
não spam	1000 (VN)	150 (FP)
spam	50 (FN)	100 (VP)

$$precisao^+ = \frac{100}{100 + 150} = 40,0\%$$

$$precisao^{+} = \frac{100}{100 + 150} = 40,0\%$$
 $precisao^{-} = \frac{1000}{1000 + 50} = 95\%$

Recall

Quando realmente é da classe X, o quão frequente você classifica como X?

$$recall^+ = \frac{VP}{VP + FN}$$

$$recall^- = \frac{VN}{VN + FP}$$

	classificado não spam	classificado spam
não spam	1000 (VN)	150 (FP)
spam	50 (FN)	100 (VP)

$$recall^{+} = \frac{100}{100 + 50} = 66\%$$
 $recall^{-} = \frac{1000}{1000 + 150} = 87\%$

F1 score

$$f1^{+} = \frac{2 \cdot precisao^{+} \cdot recall^{+}}{precisao^{+} + recall^{+}}$$

$$f1^{-} = \frac{2 \cdot precisao^{-} \cdot recall^{-}}{precisao^{-} + recall^{-}}$$

 $f1 = \text{m\'edia ponderada } f1^+ \text{ e } f1^-$

$$\begin{cases} precisao^+ = 0.4 \\ recall^+ = 0.66 \end{cases}$$

$$\begin{cases} precisao^- = 0,95 \\ recall^- = 0,87 \end{cases}$$

$$f1^+ = \frac{2 \cdot 0.4 \cdot 0.66}{0.4 + 0.66} = 0.49$$

$$f1^{-} = \frac{2 \cdot 0.95 \cdot 0.87}{0.95 + 0.87} = 0.91$$

$$f1 = \frac{150 \cdot 0,49 + 1150 \cdot 0,91}{150 + 1150} = 86\%$$

Valor financeiro esperado de um classificador

Valor esperado do Classificador Binário (-1,+1)

Tipos de acertos:

- Acerto 1 (a_1) : classifica objeto como +1 e de fato ele é +1
- Acerto 2 (a_2) : classifica objeto como -1 e de fato ele é -1

Tipos de erros:

- Erro 1 (e_1) : classifica objeto como -1 e de fato ele é -1
- Erro 2 (e_1): classifica objeto como -1 e de fato ele é +1

$$v_e = p_{a_1} \cdot v_{a_1} - p_{e_1} \cdot v_{e_1} + p_{a_2} \cdot v_{a_2} - p_{e_2} \cdot v_{e_2}$$

$$p_{a_1} = ??$$

$$p_{e_1}$$
 = ??

$$p_{a_2}$$
 = ??

$$p_{e_2}$$
= ??

Valor esperado do Classificador Binário (-1,+1)

Tipos de acertos:

- Acerto 1 (a_1) : classifica objeto como +1 e de fato ele é +1
- Acerto 2 (a_2) : classifica objeto como -1 e de fato ele é -1

Tipos de erros:

- Erro 1 (e_1) : classifica objeto como -1 e de fato ele é -1
- Erro 2 (e_1): classifica objeto como -1 e de fato ele é +1

$$v_e = p_{a_1} \cdot v_{a_1} - p_{e_1} \cdot v_{e_1} + p_{a_2} \cdot v_{a_2} - p_{e_2} \cdot v_{e_2}$$

$$p_{a_1}$$
 = $recall^+$ p_{e_1} = 1 - $recall^+$

$$p_{a_2}$$
= $recall^ p_{e_2}$ = 1 - $recall^-$

Classificador de Crediário

Tipos de acertos:

- Acerto 1 (a_1): libera crediário ao cliente bom pagador
- Acerto 2 (a_2) : nega crediário ao cliente caloteiro

Tipos de erros:

- Erro 1 (e_1) : libera crediário ao cliente caloteiro
- Erro 2 (e_1): nega crediário ao cliente bom pagador

$$v_e = p_{a_1} \cdot v_{a_1} - p_{e_1} \cdot v_{e_1} + p_{a_2} \cdot v_{a_2} - p_{e_2} \cdot v_{e_2}$$

 v_{a_1} ??

 v_{a_2} ??

 v_{e_1} ??

 v_{e_2} ??

Classificador de Crediário

Tipos de acertos:

- Acerto 1 (a_1): libera crediário ao cliente bom pagador
- Acerto 2 (a_2) : nega crediário ao cliente caloteiro

Tipos de erros:

- Erro 1 (e_1) : libera crediário ao cliente caloteiro
- Erro 2 (e_1): nega crediário ao cliente bom pagador

$$v_e = p_{a_1} \cdot v_{a_1} - p_{e_1} \cdot v_{e_1} + p_{a_2} \cdot v_{a_2} - p_{e_2} \cdot v_{e_2}$$

 $v_{a_1}:$ valor mediano do empréstimo

 v_{a_2} : R\$0,0 (deixou de levar calote)

 $v_{e_1}:$ valor mediano do empréstimo

 v_{e_2} : R\$0,0 (deixou de ganhar na venda)

Estudo de caso: Crediário

Empresa de Varejo (base de crediário 2018-2021)

Estatística	Valor
nº orçamentos	179.262
nº aprovados	147.096
nº negados	32.166
Média de	<u>36.774</u>
aprovados anual	

Valor Orçamento		
média	R\$ 1.188,70	
desvio padrão	R\$ 827,20	
valor mínimo	R\$ 16,00	
1 quartil	R\$ 500,38	
2 quartil	R\$ 1003,70	
(mediana)		
3 quartil	R\$ 1.609,95	
valor máximo	R\$ 24.142,90	

Erro percentual na liberação de crédito

161.336 orçamentos testados

-2%

de redução do erro pelo Consultor de Crédito

99,3% Significância estatística do teste (0,6 p.p.)

Valor esperado por uso do Classificador de Crédito

$$V_e = p_{acerto} \cdot mediana_{valor} - p_{erro} \cdot mediana_{valor}$$

Sistema	Valor Esperado (V_e)
Crediário Atual	R\$947,90
Consultor de Crediário	R\$990,90

Ganho de R\$43,00

Valor Esperado Anual do classificador

+4,5% aumento na lucratividade

R\$1.581.282,00 ganho esperado anual

R\$ 43,00 ganho esperado por cada orçamento

36.774 orçamentos aprovados por ano