Grafos

Caminos de costo mínimo

- Data Structures and Algorithm Analysis in Java; 2nd Ed. Mark Allen Weiss (Capítulo 9)
- Estructuras de datos y algoritmos; Mark Allen Weiss. (Capítulo 9)

Agenda

- Caminos de costo mínimo
 - Definición
 - Algoritmos para el cálculo del camino mínimo desde un origen en:
 - Grafos sin peso
 - Grafos con pesos positivos
 - Algortimo de Dijkstra: dos implementaciones
 - Grafos con pesos positivos y negativos
 - Grafos acíclicos
 - Algoritmo para el cálculo de los caminos mínimos entre todos los pares de vértices

Camino de costo mínimo Definición

Sea G=(V,A) un grafo dirigido y pesado, el costo c(i,j) está asociado a la arista v(i,j).

Dado un camino: $v_1, v_2, v_3, \ldots, v_N$

El costo del camino es:

$$C = \sum_{i=1}^{N-1} c(i, i+1)$$

Este valor también se llama longitud del camino pesado. La longitud del camino no pesado es la cantidad de aristas

Camino de costo mínimo Definición (cont.)

El camino de costo mínimo desde un vértice v_i a otro vértice v_j es aquel en que la suma de los costos de las aristas es mínima.

Esto significa que:

$$C = \sum_{i=1}^{N-1} c(i, i+1)$$
 es mínima

Camino de costo mínimo

Ejemplos:

Ciudades conectadas por Rutas con distancias

Personas conectadas a través de las redes sociales

Camino de costo mínimo

Ejemplo:

Caminos posibles desde el vértice 1 al vértice 2

Algoritmos de Caminos mínimos

- Grafos sin peso
- Grafos con pesos positivos
- Grafos con pesos positivos y negativos
- Grafos dirigidos acíclicos

Algoritmos de Caminos mínimos

Los algoritmos calculan los caminos mínimos desde un vértice origen *s* a **todos** los restantes vértices del grafo

Algoritmos de Caminos mínimos Grafos sin pesos

Ejemplos

> Seis grados de separación

Se le llama seis grados de separación a la hipótesis que intenta probar que cualquiera en la Tierra puede estar conectado a cualquier otra persona del planeta a través de una cadena de conocidos que no tiene más de cinco intermediarios (conectando a ambas personas con sólo seis enlaces)

Ilana

Cathy

Número de Erdős

Es un modo de describir la distancia colaborativa, en lo relativo a trabajos matemáticos entre un autor y Paul Erdős (matemático húngaro considerado uno de los escritores más prolíficos de trabajos matemáticos)

Si la **mujer de rojo** colabora directamente con Erdős en un trabajo, y luego el **hombre de azul** colabora con ella; entonces el hombre de azul tiene un número de Erdős con valor 2, y está "a dos pasos" de Paul Erdős (asumiendo que nunca ha colaborado directamente con éste).

El número de Bacon es una aplicación de la misma idea en la industria fílmica- un cálculo que conecta actores que han aparecido junto al actor *Kevin Bacon* en alguna película.

Algoritmos de Caminos mínimos

Grafos sin pesos

codo) a cualquiera de estos dos personajes, y paramos de contar.

Algoritmos de Caminos mínimos

Grafos sin pesos

https://twitter.com/DiegoGolombek/status/1245326104090509312

Algoritmos de Caminos mínimos Grafos sin pesos

- ➤ Para cada vértice v se mantiene la siguiente información:
 - \triangleright D_v: distancia mínima desde el origen s (inicialmente ∞ para todos lo vértices excepto el origen con valor 0)
 - > P_v: vértice por donde paso para llegar
 - Conocido: dato booleano que me indica si está procesado (inicialmente todos en 0)

(este último campo no va a ser necesario para esta clase de grafos)

Algoritmos de Caminos mínimos Grafos sin pesos

> Estrategia: Recorrido en amplitud (BFS)

Pasos:

- Avanzar por niveles a partir del origen, asignando distancias según se avanza (se utiliza una cola)
- ► Inicialmente, es $D_w = \infty$. Al inspeccionar w se reduce al valor correcto $D_w = D_v + 1$
- \triangleright Desde cada v, visitamos a todos los nodos adyacentes a v

Algoritmos de Caminos mínimos Grafos sin pesos (cont.)

Algoritmos de Caminos mínimos Grafos sin pesos (cont.)

Valores iniciales de la tabla

V _i	D_{v}	$P_{\rm v}$	Conoc
V_0	∞	0	0
V_1	8	0	0
V_2	0	0	0
V_3	∞	0	0
V_4	∞	0	0
V_5	∞	0	0
V_6	∞	0	0

Algoritmos de Caminos mínimos basado en BFS

```
Camino min GrafoNoPesadoG,s) {
       para cada vértice v \in V
(1)
(2)
           D_v = \infty; P_v = 0; Conoc_v = 0;
       D_s = 0; Encolar (Q,s); Conoc_s = 1;
(3)
       Mientras (not esVacio(Q)){
(4)
(5)
          Desencolar (Q,u);
          para c/vértice \mathbf{w} \in V adyacente a u \in V
(6)
              si (w no es conocido) {
(7)
                        D_w = D_u + 1;
(8)
                        P_{w} = u;
(9)
(10)
                        Encolar(Q,w); Conoc_w = 1;
(11)
(12)
(13)
```

Algoritmos de Caminos mínimos basado en BFS

```
Camino min GrafoNoPesadoG,s) {
       para cada vértice v \in V
(1)
(2)
            D_v = \infty; P_v = 0; Conoc_v = 0;
       D_s = 0; Encolar (Q,s); Conoc<sub>v</sub> = 1;
(3)
       Mientras (not esVacio(Q)) {
(4)
(5)
           Desencolar (Q,u);
           para c/vértice \mathbf{w} \in V adyacente a u \in V
(6)
               si (w no es conocido) {
(7)
                         D_{w} = D_{u} + 1;
(8)
                         P_{w} = u;
(9)
                         Encolar(Q,w); Conoc_w = 1;
(10)
(11)
(12)
(13)
```

Algoritmos de Caminos mínimos Grafos sin pesos (cont.)

Valores iniciales de la tabla

Vi	D_{v}	P _v	Conoc
V_0	∞	0	0
V_1	8	0	0
V_2	0	0	0
V_3	∞	0	0
V_4	∞	0	0
V_5	∞	0	0
V_6	∞	0	0

Algoritmos de Caminos mínimos Grafos sin pesos (cont.)

Valores iniciales de la tabla

V _i	D_{v}	$P_{\rm v}$
V_0	8	0
V_1	8	0
V_2	0	0
V_3	8	0
V_4	8	0
V_5	8	0
V_6	8	0

Algoritmos de Caminos mínimos basado en BFS

```
Camino_min_GrafoNoPesadoG,s) {
       para cada vértice v \in V
(1)
            D_v = \infty; P_v = 0;
(2)
       D_s = 0; Encolar (Q,s);
(3)
       Mientras (not esVacio(Q)) {
(4)
           Desencolar(Q,u);
(5)
           para c/vértice \mathbf{w} \in V adyacente a u \in V
(6)
               si (D_w = \infty) 
(7)
                          D_{w} = D_{y} + 1;
(8)
(9)
                         P_{w} = u;
                         Encolar(Q,w);
(10)
(11)
(12)
(13)
```

Algoritmos de Caminos mínimos Grafos con pesos positivos

Encontrar los caminos más cortos desde Casita a cada una de las librerías Encontrar la ruta aérea más corta desde Buenos Aires a Asunción

Algoritmo de Dijkstra

Estrategia: Algoritmo de Dijkstra

Pasos:

- Dado un vértice origen s, elegir el vértice v que esté a la menor distancia de s, dentro de los vértices no procesados
- ➤ Marcar v como procesado
- > Actualizar la distancia de w adyacente a v

Algoritmo de Dijkstra (cont.)

- ➤ Para cada vértice v mantiene la siguiente información:
 - \triangleright D_v: distancia mínima desde el origen (inicialmente ∞ para todos lo vértices excepto el origen con valor 0)
 - > P_v: vértice por donde paso para llegar
 - Conocido: dato booleano que me indica si está procesado (inicialmente todos en 0)

Algoritmo de Dijkstra (cont.)

La actualización de la distancia de los adyacentes
 w se realiza con el siguiente criterio:

 \triangleright Se compara D_w con D_v + c(v,w)

Distancia de sa w (sin pasar por v)

Distancia de sa w, pasando por v

 \triangleright Se actualiza si $D_w > D_v + c(v,w)$

Algoritmo de Dijkstra Ejemplo

Valores	iniciales	de la	tabla

V	D_{v}	P _v	Conoc.
1	0	0	0
2	8	0	0
3	8	0	0
4	8	0	0
5	8	0	0
6	∞	0	0

** 1	-	-		-	
 Valores 	al	Se	leccionar	el	vértice 1
Value	uı		CCCIOII	\mathbf{c}	V CI LICC I

•Actualiza la distancia de 3, 5 y 6

V	D_{v}	P _v	Conoc.
1	0	0	1
2	8	0	0
3	40	1	0
4	8	0	0
5	10	1	0
6	5	1	0

T71	1	-		1	/	
Valores	al	se	leccionar	el	verfice.	h
V CLIOI CD	u	50	CCCIOII	\mathbf{c}	V CI LICC	\mathbf{O}

- •Actualiza la distancia de 2
- La distancia de 5 es mayor que la de la tabla (no se actualiza)

V	D_{v}	P _v	Conoc.
1	0	0	1
2	25	6	0
3	40	1	0
4	∞	0	0
5	10	1	0
6	5	1	1

T 7 1	- 4	4 .	- 4	,
 Valores 	al	seleccionar	el	vértice 5
V aloi ob	u	bolocolollar	\mathbf{c}	V CI LICC 3

•Actualiza la distancia de 4

V	D_{v}	P _v	Conoc.
1	0	0	1
2	25	6	0
3	40	1	0
4	30	5	0
5	10	1	1
6	5	1	1

Próximo vértice a elegir

V	D_{v}	P _v	Conoc.
1	0	0	1
(2)	25	6	0
3	40	1	0
4	30	5	0
5	10	1	1
6	5	1	1

•Valores al	l seleccionar e	1 vértice 2

• La distancia de 4 es igual que la de la tabla (no se actualiza)

V	D_{v}	P _v	Conoc.
1	0	0	1
2	25	6	1
3	40	1	0
4	30	5	0
5	10	1	1
6	5	1	1

Los próximos vértices a elegir son: 2, 4 y 3 en ese orden.

El resultado final es:

V	D_{v}	P_{v}	Conoc.
1	0	0	1
2	25	6	1
3	35	4	1
4	30	5	1
5	10	1	1
6	5	1	1

Algoritmo de Dijkstra

```
Dijkstra(G, w, s){
       para cada vértice v \in V
(1)
            D_{x} = \infty; \qquad P_{x} = 0;
(2)
(3) 	 D_{s} = 0;
(4)
   para cada vértice v \in V {
           u = vérticeDesconocidoMenorDist;
(5)
           Marcar u como conocido;
(6)
           para cada vértice w \in V adyacente a u
(7)
              si (w no está conocido)
(8)
                  si (D_w > D_u + c(u, w)) 
(9)
                      D_{w} = D_{u} + c(u,w);
(10)
(11)
                      P_{w} = u;
(12)
(13)
(14) }
```

Algoritmo de Dijkstra Tiempo de ejecución (I)

Si almacenamos las distancias en un vector, tendremos que :

- El bucle *para* de la línea (4) se ejecuta para todos los vértices
 - \rightarrow |V| iteraciones
- La operación *vérticeDesconocidoMenorDist* -línea (5)- es O(|V|) y dado que se realiza |V| veces
 - \rightarrow el costo total de *vérticeDesconocidoMenorDist* es $O(|V|^2)$
- El bucle *para* de la línea (7) se ejecuta para los vértices adyacentes de cada vértice. El número total de iteraciones será la cantidad de aristas del grafo.
 - \rightarrow |E| iteraciones
- \triangleright El costo total del algoritmo es ($|V|^2 + |E|$) es O($|V|^2$)

Algoritmo de Dijkstra Tiempo de ejecución (II)

Optimización: la operación *vérticeDesconocidoMenorDist* es más eficiente si almacenamos las distancias en una heap.

- La operación *vérticeDesconocidoMenorDist* -línea (5)- es O(log|V|) y dado que se realiza |V| veces
 - → el costo total de *vérticeDesconocidoMenorDist* es O(|V| log |V|)
- ➤ El bucle *para* de la línea (7) que se ejecuta para los vértices adyacentes de cada vértice, también supone *modificar* la prioridad (distancia) y *reorganizar* la heap luego de la línea (10). Cada iteración es O(log|V|)
 - \rightarrow realiza|E| iteraciones, O(|E| log|V|)
- \triangleright El costo total del algoritmo es (|V| log|V|+ |E| log|V|) es O(|E| log|V|)

Algoritmo de Dijkstra Tiempo de ejecución (III)

Variante para evitar modificar y reorganizar la heap:

la actualización de la heap luego de la línea (10) se puede resolver insertando el vértice \boldsymbol{w} y su nuevo valor $\boldsymbol{D}_{\boldsymbol{w}}$ cada vez que éste se modifica.

- El tamaño de la heap puede crecer hasta |E|. Dado que $|E| \le |V|^2$, $\log |E| \le 2 \log |V|$, el costo total del algoritmo no varía
- ➤ El costo total del algoritmo es O(|E| log|V|)

Algoritmos de Caminos mínimos Grafos con pesos positivos y negativos

Ejemplos:

- > Simulaciones científicas
- > Redes de flujo
- > Protocolos de ruteo basados en vector de distancias

Algoritmos de Caminos mínimos Grafos con pesos positivos y negativos

> Estrategia: Encolar los vértices

Si el grafo tiene aristas negativas, el algoritmo de Dijkstra puede dar un resultado erróneo.

V	$\mathbf{D_{v}}$	P _v	Conoc.
S	0	0	1
u	-5	S	1
V	2	S	1

Error!!

La distancia mínima de s a u es -8

Algoritmos de Caminos mínimos Grafos con pesos positivos y negativos (cont.)

Pasos:

- Encolar el vértice origen s.
- Procesar la cola:
 - > Desencolar un vértice.
 - \triangleright Actualizar la distancia de los adyacentes D_w siguiendo el mismo criterio de Dijkstra.
 - ➤ Si w no está en la cola, encolarlo.

El costo total del algoritmo es O(|V| |E|)

Algoritmos de Caminos mínimos Grafos con pesos positivos y negativos (cont.)

```
Camino min GrafoPesosPositivosyNegativosG,s) {
       D_s = 0; Encolar (Q,s);
(1)
       Mientras (not esVacio(Q)) {
(2)
(3)
          Desencolar(Q,u);
          para c/vértice \mathbf{w} \in V adyacente a u \in V
(4)
              si (D_w > D_u + c(u, w))  {
(5)
                      D_{w} = D_{u} + C(u, w);
(6)
                      P_{w} = u;
(7)
                      si (w no está en Q)
(8)
                          Encolar(O, w);
(9)
(10)
(11)
(12)
```

- > Encontrar la ganancia máxima en un período de tiempo
- Determinar el tiempo requerido para completar una tarea

- Estrategia: Orden Topológico
 - Optimización del algoritmo de Dijkstra
 - La selección de cada vértice se realiza siguiendo el orden topológico
 - Esta estrategia funciona correctamente, dado que al seleccionar un vértice *v*, no se va a encontrar una distancia *dv* menor, porque ya se procesaron todos los caminos que llegan a él

El costo total del algoritmo es O(|V| + |E|)

```
Camino_min_GrafoDirigidoAcíclico(G,s){
      Ordenar topológicamente los vértices de G;
      Inicializar Tabla de Distancias(G, s);
      para c/vértice u del orden topológico
         para c/vértice w \in V adyacente a u
              si (D_w > D_u + c(u,w))  {
                     D_{w} = D_{u} + c(u,w);
                     P_{w} = u;
```

```
Camino_min_GrafoDirigidoAcíclico(G,s) {
     Calcular el grado in de todos los vértices;
     Encolar en Q los vértices con grado_in = 0;
     para cada vértice \mathbf{v} \in V
         D_{v} = \infty; P_{v} = 0;
     D_{s} = 0;
     Mientras (!esVacio(Q)){
         Desencolar(Q,u);
         para c/vértice w \in V advacente a u \in V
            Decrementar grado de entrada de w
            si (grado_in[w] = 0)
                Encolar(Q,w);
            \mathbf{si} (D_n != \infty)
                 \mathbf{si} \ D_{w} > D_{n} + c(u,w)  {
                     D_w = D_u + c(u,w);
                     P_{w} = u;
```

Caminos mínimos entre todos los pares de vértices

- Estrategia: Algoritmo de Floyd
 - ➤ Lleva dos matrices D y P, ambas de |V| x |V|

Matriz de costos mínimos

Matriz de vértices intermedios

El costo total del algoritmo es $O(|V|^3)$

Algoritmo de Floyd

```
Toma cada vértice como intermedio, para calcular los caminos

para k=1 hasta cant_Vértices(G)

para i=1 hasta cant_Vértices(G)

para j=1 hasta cant_Vértices(G)

si (D[i,j] > D[i,k] + D[k,j]) {

D[i,j] = D[i,k] + D[k,j]; Distancia entre los vértices i y j, pasando por k.}
```

Grafos	BFS O(V+E)	Dijkstra O(E log V)	Algoritmo modificado (encola vértices) O(V*E)	Optimización de Dijkstra (sort top) O(V+E)
No pesados	Óptimo	Correcto	Malo	Incorrecto si tiene ciclos
Pesados	Incorrecto	Óptimo	Malo	Incorrecto si tiene ciclos
Pesos negativos	Incorrecto	Incorrecto	Óptimo	Incorrecto si tiene ciclos
Grafos pesados acíclicos	Incorrecto	Correcto	Malo	Óptimo

Correcto → adecuado pero no es el mejor Malo → una solución muy lenta