

Galgotias University, Greater Noida Winter 2020-21

		Course Handout
	Course details	
	Faculty	
	name	
	Programme	B.Tech
1	Semester	II .
	Section	
	Course code	BBS10T1003
	Course title	Linear Algebra and Differential Equations
		epartment of Computer Science and Engineering
2		videly as a premier department of Computer Science and
_		r value-based education, multidisciplinary research and
	innovation.	
	Mission of the	Department of Computer Science and Engineering
		The mission of the Computer Science and Engineering
		Department is
		Create a strong foundation on fundamentals of SCSE
		through OB-TLP.
3		2. Establish state-of-the-art facilities for Analysis, Design and
3		Implementation to develop sustainable ethical solutions. 3. Conduct multidisciplinary research for developing
		innovative solutions.
		4. Involve the students in group activity including that of
		professional bodies to develop leadership and
		communication skills.
	Programme ed	lucational objectives (PEOs)
	PEO1	Graduates of Computer Science and Engineering will be globally
		competent and provide sustainable solutions for interdisciplinary
		problems as team players
	PEO2	Graduates of Computer Science and Engineering will engage in
4		professional activities with ethical practices in the field of
		Computer Science & Engineering to enhance their own stature to
	DECO	contribute society
	PEO3	Graduates of Computer Science and Engineering will acquire
		specialize knowledge in trending technologies for research, innovation and product development
	PEO4	innovation and product development
	PEU4	

	Programme out	comes						
			Knowledge					
	P02	Problem and	alysis					
	P03	Design/deve	elopment of	solutions				
	P04	Conduct inv	estigations					
		of complex	problems					
5	PO5	Modern too	Modern tool usage					
3	P06	The enginee	er and societ	.y				
	PO7 Environment and sustainability							
		Ethics						
	PO9 Individual or team work							
		Communica						
			agement ar	nd finance				
		Life-long Le						
	Programme spe							
				g technologie				
6					artificial intelli			
		Robotics, Augmented reality, Data analytics, Ubiquitous						
		Computing to develop insights for problem solving.						
	PSO3							
	Course outcome							
	CO1	Determine Matrix algebra, invertibility, rank and Solve systems						
		of linear equations using Gauss elimination and Cramer's rule.(K5,K3)						
	CO2	Find real Vector spaces & Linear transformation and summarize						
	002				associated wit			
_	CO3				ctors and their			
7					orthogonalizati			
	CO4				e nth order line			
			l equations (· · · · · · · · · · · · · · · · · · ·		
			•	, ,				
	CO5	Classify pa	artial differer	ntial equation	ns and apply m	nethod of		
		separation	of variables	s to solve PDI	E.(K3,K4)			
	C06			Matrices to fi				
8	Evaluation	Duration	Marks	Date	Nature of	Evaluation		
	Component		(50)	&Time	Component	Component		
	MTE	2 Hrs	50		Closed	MTE		
		45			Book			
	Quiz-1/2/3	15 mins	5		Closed	Quiz-1		
	Online	each			Book			
	Online				Closed			
	Learning using Swayam/NPT	45 mins	5		Book	Quiz-2		
	EL/Coursera(s				DOOK			
	LL/Coursera(S	:L/Coursera(s						

	elflearning)					
	Assignment(s)	Within two days	5	Any time throughou t the semester	Open Book	Assignment(s)
	Presentation(S eminar/mini- project/poster)	15 minutes	5	On a scheduled date	-	-
9	List of teaching					
10	Presentations, Ir				am and Video	courses.
10	Open hour for s	tudents: As	per the Time	e lable		
11	RF CAMPUS					
12	Recommended http://npte		ses/12210401		/courses/12210	3012/
10	Recommended	list of online	oourooo lika	- C\\/ \\/\/ \ \ \ /\/	NDTEL /N/OOC	2 ata
13 14	Recommended					
15	Students' Presei		nojects/pro	Jects/ technic	ar training etc	. .
16			·// http://nnt	el ac in/cours	es/122104018/	
	List of e-books. URL- http://nptel.ac.in/courses/122104018/ URL- http://nptel.ac.in/courses/122103012/					
			טאב- וונון	o.//IIptel.ac.III/	COUI SES/ IZZ IU	JU IZ/
17	List of NPTEL/M	OOCS/SWA	YAM/Course	es/Video		
18	Content beyond	l Syllabus:				
19	List of mini proj	ects/project	S			

		Wir	ter 2019-20		
		BMA201	(Linear Algebra and Differential	Equations)	
			B.Tech. First Year		
			Second Semester		
			Lecture Plan		
		Facult	y Name:		
Lecture No.	Date	Learning Outcomes	Topics To Be Covered	Book (Section/Page	Remark

			No./Author)	
Unit-I: Matrice	S	Contact h	ours: 6	
1.	Matrices: Basic Concepts	Matrix, vectors, Determinants: Definition, addition and scalar multiplication. Matrix multiplication. Transposition of matrix, vectors. Some special square matrices: symmetric and skew symmetric matrices, orthogonal matrices, upper and lower triangular matrices, Diagonal matrix.	(7.1,7.2/257/T2) (3.0/136/T1)	
2	Elementary row transformation	Inverse of a matrix(Using Gauss Jordan elimination method),	(3.3/163/T1) (3.3/175/T1) (7.8/301/T2)	
3-4		Rank of a matrix	(7.4/ 283/T2) 3.5/191/T1)	Discuss LI and LD of Vectors(T opic of unit-II)
5	System of Non- Homogeneous Linear Equations	Existence and uniqueness of the solution of non-homogeneous system AX=b using rank, finding solutions by simple Gauss elimination method and also by Cramer's Rule	(2.0/58/T1) (7.5/288/T2) (7.3/279/T2) (7.7/297/T2)	
6	System of Homogeneous Linear Equations	Trivial and non-trivial solutions of Homogeneous system AX=0, finding non-trivial solutions by simple Gauss elimination method	(7.5/288/T2) (2.0/57/T1)	
Unit II: Vector	Spaces-I	•	Contact Ho	ours: 10
7.	Vector Space	Definition of vector space,	(7.9/309/T2)	
8.		Linear independence and	(6.0/427/T1)	

		dependence of vectors,	(6.0/443/T1)
9.		Basis and dimension	(3.3/3.3.3/3.26/R1)
			(6.2/443/T1)
10.	Linear Transformation	Definition of Linear transformations,	(3.3/3.3.4/3.29/R1)
11.		range and kernel of a linear map,	(6.4/472/T1)
12.		Rank and nullity of Linear transformation	(6.5/481/T1)
13.		rank- nullity theorem(only statement) and its applications	(6.7/518/T1)
14.		Composition of Linear map	(3.6/219/T1)
15.		Inverse of linear transformation,	(3.6/221/T1)
16.		Matrix associated with linear map	(6.6/497/T1)
Unit-III: Vecto	or Spaces-II		Contact Hours: 10
17.	Eigen value problem	Defining Eigen values and Eigen vectors of a square matrix, Symmetric, Skew Symmetric& Orthogonal Matrix.	(8.1/323/T2)
18.		finding Eigen vectors corresponding to distinct Eigen values.	(4.1/254/T1)
19.	Eigen value problem (Continued)	Finding Eigen vectors corresponding to repeated Eigen values	(8.1/323/T2) (4.1/254/T1)

20.	Eigen value problem (Continued)	Properties of Eigen values and eigen vectors	(3.51/3.63/R1) (4.3/292/T1)	
21.	Eigen bases	Define and explain eigenbasis of eigen vectors	(8.4/339/T2)	
22.	Diagonalization	Similar matrices, defining diagonalization of a square matix, necessary and sufficient condtion for a matrix to be digonalisable.	(8.4/340/T2) (4.4/301/T1) (3.5.2/3.71/R1)	
23.	Diagonalization(c ontinued)	Determining whether a matrix is diagonalizable, Diagonalising a matrix	(8.4/340/R1) (4.4/301/T1)	
24.	Inner Product Space	Revision of definition of field, and define inner product space (for complex and real field both) with examples	(7.9/309/T2) (3.9/3.9.4/3.99/R1) (7.1/531/T1)	
25.	Gram-Schmidt orthogonalizations	Define orthogonal sets and orthonormal sets with examples.	(5.0/368/T1)	
26.		Define Gram-Schmidt orthogonalizations process and Solve problems related to its application.	(3.9/3.9.4/3.99/R1) (5.3/388/T1)	
Unit-IV: Equation	Ordinary Differential	1	Contact Hours:	10
27.	Exact differential equation	Defining first order exact differential equation, necessary and sufficient condition, General solution.	(1.4/20/T2)	
28.	Homogeneous linear differential equation with constant coefficients	nth order homogeneous linear equation f(D)y=0,linear independence of solutions, auxiliary equation, solution: when roots of auxiliary	(2.1,2.2,2.3/46/T2) (5.1/5.1/R1)	

		equation are a) distinct, b)equal, c)complex.		
29.	Non- Homogeneous linear differential equation with costant coefficients	nth order non-homogeneous linear equation f(D)y=r(x), general solution =Complimentary function+ particular integral, method to find PI when r(x)=e ^{ax}	(2.7/79/T2)	You may Consider finding Pl by the method of undeter mined coefficie nts
30.		method to find PI when r(x)= sinax, cosax	(5.5/5.44/R1)	
31.	Non- Homogeneous linear differential equation with costant coefficients (Continued)	method to find PI when r(x)=x ⁿ ,	(5.5/5.44/R1)	You may Consider finding Pl by the method of undeter mined coefficie nts
32.		method to find PI when $r(x)=e^{ax}V(x)$, x^n sinax, x^n cosax	(5.5/5.44/R1)	
33.	Variation of parameter method	Variation of parameter method to find PI of a second order linear differential equation.	(2.10/99/T2)	
34.	Cauchy-Euler equations	Cauchy-Euler equation and its solution.	(/2.5/72/T3) (2.5/71/T2)	
35.	System of linear differential equations with constant	Finding solution of a system of linear equations.	(5.6/5.55/R1)	

	coefficients			
36.	Application of Linear Differential Equations to Electric circuits	Mathematical modeling. Basic elements of an electric circuit, Kirchhoff's law, solution of simple LR and CR circuits	(1.1/2, 29/T2)	
UNIT-V : Partia	I Differential Equation	Contact Hours: 9		
37.	PDE	Basic concept and classification of second order PDE	(9.5/9.5.1/R1)	
38.	Solution of PDEs by Separation of Variable method	Separation of variable method to solve second orders linear homogeneous PDEs with constant coefficients.	(12.1/540/T2)	Simple problems only
39.		Continued	(12.1/540/T2)	
40.	Solution of one- dimensional wave equation	One dimensional wave equation as mathematical model of vibrations of a stretched string, solution of 1-dim wave equation by SOV method.	(12.2,12.3/543/T2)	
41.	Solution of one- dimensional wave equation(continue d)	solution of 1-dim wave equation with different initial conditions.	(12.3/545/T2)	
42.	Solution of One- dimensional heat equation	One dimensional heat equation as mathematical model for the temperature distribution in a thin heated rod. Solution of 1-dim heat equation with both ends of the rod at 0°.	(12.5,12.6/557/T2)	
43.	Solution of One-	Solution of 1-dim heat equation	(12.6/563/T2)	

	dimensional heat equation(continue d)	when the rod has insulated ends.	
44.	Solution of Two dimensional Laplace equation.	Two dimensional Laplace equation as a mathematical model for the steady state temperature distribution in a thin rectangular plate, solution of the equation	(12.6/564/T2)
45.	Solution of Two dimensional Laplace equation(continue d)	Solution of Laplace equation with different boundary conditions.	(12.6/564/T2) (9.5.5/9.48/R1)
Module-Vi :N	ormal form of Matrices an	d It's Application	Contact Hours-3
46-48	Normal form of Matrices and It's Application	Normal form of Matrices and It's Application	

Course Description

Unit-l: Linear algebra is the study of linear systems of equations, vector spaces, and linear transformations. In this unit we study Matrices and Vectors. The common threads that run through the entire unit are elementary operations of a matrix, rank of a matrix and solution of system of linear equations by simple Gauss elimination method. We use these tools to find solution to the Inverse problem. Unit-II: It is introduction of Vector Space, Linear Independence of vectors. For a given linear transformation, find the kernel and range, find the basis for the kernel and range, and determine the nullity and rank. Unit-III: This unit contains the study of the characteristic equation and the eigenvalues and corresponding eigenvectors of a given matrix. Determine whether a given matrix is diagonalizable, symmetric, or orthogonal. Find (if possible) a nonsingular matrix P for a given matrix A such that P¹ AP is diagonal. **Unit-IV**: This unit deals with solution of Ordinary Differential Equations. The focus is on nth order linear differential equations of homogeneous as well as non-homogeneous type with constant coefficients. Variation of parameter method is introduced to find a particular integral of a second order linear equation. This method is important as it is also valid for variable coefficient problems. Solutions of Cauchy-Euler equation and system of linear differential equations with constant coefficients are obtained by reducing them to a single linear differential equation with constant coefficients. In the end we

solve some simple electric circuit problems as they are perfectly modeled by the type of differential equations we studied earlier in this topic. **Unit-V:** Three important **Partial Differential Equations**, namely, 1-dim wave, 1-dim heat and two dim Laplace equations are mathematical models of various engineering problems. In this unit we find solution of these equations by separation of variable method and using Fourier series expansion.

Text Books:

- T1. D. Poole, Linear Algebra: A Modern Introduction, 4th Edition, Brooks/Cole, 2015.
- T2. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons.
- T3. Peter V. O'Neil, Advanced Engineering Mathematics, 7th Edition, Cengage Learning.

Reference Books:

- R1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 5th Edition, Narosa Publishers.
- R2. Robert T. Smith and Roland B. Minton, Calculus, 4th Edition, McGraw Hill Education.
- R3. David C Lay, Linear Algebra and its application, 3rd Edition,
- **R4**. KENNETH HOFFMAN, **Linear Algebra**, 2nd Edition, PRENTICE-HALL, INC., Englewood Cliffs, New Jersey

Course Content

Module-I Contact Hours: 6

Matrices: Basic Operations on matrices and vectors, Determinants, Cramer Rule, Inverse of matrix using Gauss Jordan elimination, Rank of a matrix, Solution of system of linear equations: Gauss elimination.

Module-II Contact Hours: 10

Vector Spaces-I: Vector Space, Linear Independence of vectors, basis, dimension; Linear transformations (maps), range and kernel of a linear map, rank, nullity, rank-nullity theorem, Inverse of a linear transformation, composition of linear maps, Matrix associated with a linear map.

Module III Contact Hours: 10

Vector Spaces-II: Eigen values, eigenvectors, symmetric, skew-symmetric, and orthogonal

Matrices, eigenbases, Diagonalization; Inner product spaces, Gram-Schmidt orthogonalization.

Module-IV Contact Hours: 10

Ordinary Differential Equations: Basic concepts, Exact differential equations, Linear differential equations of second and higher order with constant coefficients, Method of variation of parameters, Cauchy-Euler equation, System of linear differential equations with constant coefficients, applications of linear differential equations.

Module-V Contact Hours: 9

Partial Differential Equation: Basic concepts, Classification of second order linear PDE, Method of separation of variables and its application in solving Wave equation (one dimension), heat equation (one dimension) and Laplace equation (two-dimension steady state only).

Module-VI

Normal form of matrices and It's Application

Compliance report

			School of	Basic and	Applied Scien	ce	
Prog	ramme						
Prog Chai	ramme r						
			Complian	ce report o	of course hand	out	
SI No	Course	e Course title	Section	Taught by faculty	Course coordinator	Course handout Submission date	Remarks by PC if any

Signature of PC; Signature of Dean:

Review by IQAC: