

Machine Learning Express

The Art of Explanation: Making Your... Lee LeFever Broché EUR 21,83

EUR 7.70

Cro-Magnon toi-même!: Petit guide... Michel Raymond Poche

★★★★ (10)

Panorama de la physique Gilbert Pietryk Broché EUR 27,08

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

Presented clip

Clip reconstructed from brain activity

Machine Learning

- Matérialisation concrète des travaux en Intelligence Artificielle
- Apprendre aux machines à réaliser des tâches sans les programmer explicitement
- Apprendre à partir des données
- ☐ Généraliser à partir de cas particuliers

Stastiques VS Machine Learning (version courte)

- → Statistiques cherchent à expliquer comment ont été générées les données, ainsi que la dynamique sous-jacente
- → ML s'intéresse plus au pouvoir prédictif et à l'exploitation des données

Exemple régression linéaire

- → Statistiques cherchent à expliquer la tendance générale des données
 - → ML souhaite, connaissant x d'une nouvelle variable, prédire le y correspondant

Apprentissage supervisé / non supervisé

Régression / Classification

Clusterisation

Classification : Arbres de décision (supervisé)

Clusterisation (non-supervisé)

Frontière de décision

Identification de clusters

Apprentissage

- Optimisation d'une métrique par rapport aux données disponibles
- Validation de la capacité du modèle à généraliser à de nouvelles données

Valider la généralisation

Dataset complet Optimisation Train

Test

Validation

Problèmes d'overfitting

Problèmes d'overfitting

scikit-learn

Machine Learning in Python

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- . Built on NumPy, SciPy, and matplotlib
- · Open source, commercially usable BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors,

random forest, ...

Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso, ...

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

mean-shift. ...

Examples

overview // get pandas // documentation // community // talks

Python Data Analysis Library

pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.

Note

We are proud to announce that pandas has become a sponsored project of the (NUMFocus organization). This will help ensure the success of development of pandas as a world-class open-source project.

VERSIONS

Release

0.17.1 - November 2015

download // docs // pdf

Development

0.18.0 - January 2015

github // docs

Previous Releases

0.17.0 - download // docs // pdf