Analysis

3 Tricks

Lem. (Bernouilli) $(1+x)^n \ge 1 + n \cdot x \quad \forall n \in \mathbb{N}, x > -1.$

Teil I

Folgen und Reihen

1 Konvergenz von Folgen

Def. Eine Folge a_n konvergiert gegen $a \in \mathbb{R}$, falls $\forall \epsilon > 0 \ \exists N = N(\epsilon) \in \mathbb{N}, \ \forall n > N \colon |a_n - a| < \epsilon.$

Def. Eine Folge a_n konvergiert gegen $a \in \mathbb{R}$, falls es $l \in \mathbb{R}$ gibt, so dass $\forall \epsilon > 0$ die Menge $\{n \in \mathbb{N}^* : a_n \notin] | l - \epsilon, l + \epsilon[\}$ endlich ist.

Thm. (Monotone) Sei $(a_n)_{n\geqslant 1}$ monoton fallend und nach unten beschränkt. Dann konvergiert $(a_n)_{n\geqslant 1}$ mit Grenzwert $\lim_{n\to\infty}a_n=\inf\{a_n:n\geqslant 1\}$.

Thm. (Cauchy) Die Folge $(a_n)_{n\geqslant 1}$ ist genau dann konvergent, falls $\forall \varepsilon > 0 \quad \exists N \geqslant 1$ so dass $|a_n - a_m| < \varepsilon \quad \forall n, m \geqslant N$

2 Konvergenz von Reihen

Thm. (Cauchy) Die Reihe $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, falls. $\forall \varepsilon > 0 \quad \exists N \geqslant 1$ mit $\left|\sum_{k=n}^{m} a_k\right| < \varepsilon \quad \forall m \geqslant n \geqslant N$

Thm. (Ratio) Sei $(a_n)_{n\geqslant 1}$ mit $a_n\neq 0 \quad \forall n\geqslant 1$. Falls

$$\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1$$

dann konvergiert die Reihe absolut. Falls $\liminf_{n\to\infty}\square>1$ divergiert die Reihe.

Thm. (Root) Falls

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

dann konvergiert $\sum_{n=1}^\infty a_n$ absolut. Falls $\square>1,$ dann divergiert die Reihe.