

UAV-Net: A Fast Aerial Vehicle Detector for Mobile Platforms

3rd International Workshop on Computer Vision for UAVs – CVPR 2019 Tobias Ringwald, Lars Sommer, Arne Schumann, Jürgen Beyerer and Rainer Stiefelhagen

Karlsruhe Institute of Technology – Institute for Anthropomatics and Robotics, Computer Vision for Human-Computer Interaction Fraunhofer Institute of Optronics, System Technologies and Image Exploitation

Motivation

- Deep learning best solution for object detection
- Large server clusters for training and inference
- "Intelligence" also desired in edge devices
- Problems with weight, power supply and dimensions

Solution

- Jetson platform by NVIDIA
- For use in "intelligent" cars, cameras, drones etc.
- Embedded GPU with cuDNN stack
- Jetson TX2:
 - **8GB RAM**
 - 6-core CPU @ 2GHz
 - 256 CUDA cores
 - Max. 15W
- Is it enough?

UAV-Net

- Small and efficient detector for on-board object detection
- Very low memory footprint
- On par with state-of-the-art detection models
- Evaluated on 3 different datasets
- Design decisions: Meta-architecture, backbone, layers, filters

DLR 3K Munich

Platforms

VEDAI

Tobias Ringwald et al. – UAV-Net: A Fast Aerial Vehicle Detector for Mobile

UAVDT

Meta-architectures

- Candidates: Faster R-CNN^[1], SSD^[2] and YOLOv2^[3]
- SSD offers best trade-off, YOLOv2 competitive
- Quick SSD recap:
 - Base network (backbone), initially VGG-16
 - Extra feature layers
 - Convolutional layers for classification and box regression
 - Non-maximum suppression

Meta-Architecture Modifications

- SSD makes use of multiple scales
 - **Constant GSD**
 - Use 8× downsampled feature maps
 - Found by ablation study
- Box sizes and ratios
 - Boxes have to fit the object size
 - Clustering approach similar to DSSD^[4]
 - Saves filters in the prediction layers with next to no change in accuracy

Base Networks

- Many different networks in literature
 - MobileNet^[5]
 - ShuffleNet^[6]
 - SqueezeNet^[7]
 - ZynqNet^[8]
- ZynqNet (SqueezeNet-like architecture)
 - Only standard layers
 - Strided convolution instead of pooling
 - Alternating 3×3 and 1×1 for squeeze layer

Tobias Ringwald et al. – UAV-Net: A Fast Aerial Vehicle Detector for Mobile

- Additional changes
 - No ReLU after squeeze layer
 - **ELU instead of ReLUs**

Platforms

Regression and Classification Layers

- SSD uses 3×3 convolutions by default
- But strongest feature for vehicles is the windshield
- On a 8× downsampled feature map only 1 "pixel" is covered
- 1×1 convolutions are sufficient
- No loss in average precission

Objective is to reduce number of filters in the base network from N to $\phi \times N$

- Iterate from back to front (later layers have more filters)
- Delete **k** filters in layer L_n , according to l_1 norm
- Calculate validation sensitivity **S**
- Yielding tuples of (S, L_n, k)
- Remove worst tuple from network according to metric
- No retraining required!

- Target is predefined φ value
 - Only one hyperparameter
 - Arbitrarily chosen: 0.5, 0.25, 0.15 etc.
 - Can be adjusted for use case
- Pruning decision can be any metric, also depending on application area (speed vs. accuracy)
- Final network only has to be finetuned once for a few iterations

DLR 3K results:

Network	AP (%)	Inference Speed (FPS)			
Network		Titan X	GTX 1060	Jetson TX2	
VGG	97.2	27.9	11.7	1.3	
ZynqNet	97.2	184.9	81.9	14.7	
$\overline{\text{UAV-Net}_{\varphi = 1.000}}$	97.2	194.1	83.8	15.9	
$UAV-Net_{\varphi} = 0.750$	97.2	225.8	98.8	18.8	
$\text{UAV-Net}_{\varphi} = 0.500$	97.1	265.2	116.2	22.7	
$UAV-Net_{\varphi} = 0.250$	95.4	342.6	153.3	31.3	
$\text{UAV-Net}_{\varphi=0.150}$	91.3	410.0	181.2	38.2	
$UAV-Net_{\varphi} = 0.075$	11.1	426.8	203.5	43.1	

DLR 3K results:

Network	AP (%)	Inference Speed (FPS)			
		Titan X	GTX 1060	Jetson TX2	
VGG	97.2	27.9	11.7	1.3	
ZynqNet	97.2	184.9	81.9	14.7	
$UAV-Net_{\varphi = 1.000}$	97.2	194.1	83.8	15.9	
$UAV-Net_{\varphi} = 0.750$	97.2	225.8	98.8	18.8	
$UAV-Net_{\varphi} = 0.500$	97.1	265.2	116.2	22.7	
$UAV-Net_{\varphi} = 0.250$	95.4	342.6	153.3	31.3	
$UAV-Net_{\varphi} = 0.150$	91.3	410.0	181.2	38.2	
$UAV-Net_{\varphi} = 0.075$	11.1	426.8	203.5	43.1	

Network architecture	Model	Parameter	Relative
Network architecture	Size	Count	Size
VGG, 2 box sizes	30.19 MiB	7,912,316	100.0%
ZynqNet	0.89 MiB	230,782	2.9%
$UAV-Net_{\varphi} = 0.50$	0.39 MiB	101,934	1.3%
$UAV-Net_{\varphi=0.15}$	0.07 MiB	17,146	0.2%

VEDAI-1024 results:

Dataset	Model	AD (0/2)	Inference Speed (FPS)		
		AP (%)	Titan X	GTX 1060	Jetson TX2
VEDAI	VGG	96.4	16.7	5.8	0.7
VEDAI	UAV-Net $_{\varphi=1.00}$	95.7	123.5	50.2	9.9
VEDAI	UAV-Net $_{\varphi=0.50}$	95.2	168.0	73.8	13.9
VEDAI	UAV-Net $_{\varphi=0.15}$	93.5	256.4	125.9	22.9

What about other setups?

- Some modifications specific to dataset: constant GSD, constant object sizes etc.
- Evaluation also shown for UAVDT
 - 1x1 regression filters not large enough
 - Single box size not sufficient anymore
 - Other modifications still useful

DLR 3K Munich

UAVDT

UAVDT results:

Dataset	Model	AP (%)	Inference Speed (FPS)		
			Titan X	GTX 1060	Jetson TX2
UAVDT	R-FCN [17]	34.35	4.7	_	_
UAVDT	SSD [17]	33.62	41.6	_	_
UAVDT	Faster R-CNN [17]	22.32	2.8	_	_
UAVDT	RON [17]	21.59	11.1	_	_
	$\text{UAV-Net}_{\varphi=1.00}^{1\times1,c=1}$	26.21	214.0	98.8	18.3
UAVDT	UAV-Net $_{\varphi=1.00}^{5\times5,c=5}$	34.52	80.1	34.7	6.6
	$\text{UAV-Net}_{\varphi=1.00}^{3\times3,c=4}$	32.76	112.2	51.5	9.0
UAVDT	UAV-Net $_{\varphi=0.50}^{3\times3,c=4}$	31.82	132.5	69.2	11.4

Qualitative Results – DLR 3K

 $\text{UAV-Net}_{\phi=0.50}$

 $\mathsf{UAV}\text{-}\mathsf{Net}_{\phi=0.15}$

Qualitative Results – UAVDT

UAV-Net_{$\varphi=1.00$} (5×5,c=5)

UAV-Net_{$\varphi=0.50$} (3×3,c=4)

UAV-Net Summary

- Fast but still accurate vehicle detector
 - 38 FPS on DLR 3K with >90% mAP (test set)
- Ultra-low footprint for both model size and memory usage
 - As low as 0.07 MiB for DLR 3K and VEDAL
- Power envelope of <15W

Image Sources

- Title Slide: "Artificial Intelligence & AI & Machine Learning" by mikemacmarketing is licensed under CC BY 2.0
- Drone: https://fortunedotcom.files.wordpress.com/2015/12/drone.jpg
- **NVIDIA Titan V:** https://www.nvidia.com/content/dam/en-zz/es em/Solutions/geforce/TI TAN/TITANV/nvidia-titan-xp-shop-625-ud.jpg
- Jetson Platform: https://devblogs.nvidia.com/wp-content/uploads/2017/03/Figure1 TX2 -e1488772330657.png

https://devblogs.nvidia.com/wp-content/uploads/2017/03/JTX2_Devkit -e1488775199359-624x615.png

References

- [1] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-wards real-time object detection with region proposal net-works. In NIPS, 2015
- [2] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg, "SSD: single shot multibox detector," CoRR, vol. abs/1512.02325, 2015.
- [3] J. Redmon and A. Farhadi. YOLO9000: better, faster, stronger. CVPR, 2017.
- [4] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg.DSSD: Deconvolutional single shot detector.arXiv preprintarXiv:1701.06659, 2017
- [5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, "Mobilenets: Efficient convolutional neural networks for mobile vision applications," CoRR, vol. abs/1704.04861, 2017.
- [6] X. Zhang, X. Zhou, M. Lin, and J. Sun, "Shufflenet: An extremely efficient convolutional neural network for mobile devices," CoRR, vol. abs/1707.01083, 2017.
- [7] F. N. landola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer, "Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model size," CoRR, vol. abs/1602.07360, 2016.
- [8] D. Gschwend, "Zynqnet: An fpga-accelerated embedded convolutional neural network,", Swiss Federal Institute of Technology Zurich (ETH-Zurich), 2016.

Additional Slides

Qualitative Results – DLR 3K

 $\mathsf{UAV}\text{-}\mathsf{Net}_{\phi=0.50}$

 $\overline{\text{UAV-Net}}_{\varphi=0.15}$

Qualitative Results – DLR 3K Error Cases

 $\mathsf{UAV}\text{-}\mathsf{Net}_{_{\phi=0.50}}$

Qualitative Results – UAVDT

