الاسم:	مسابقة في مادة الفيزياء	
الرقم:	المدة: ساعة واحدة	

Cette épreuve, constituée de 3 exercices obligatoires, est formée de deux pages. L'usage des calculatrices non programmables est autorisé.

Premier exercice: Exploitation d'un document concernant une lentille convergente (7,5 pts)

Le document ci-dessous représente une lentille convergente (L) , son axe optique x'ox , un objet lumineux AB et un écran (E) .

A – Construction de l'image A₁B₁ de l'objet AB donnée par (L)

L'image A₁B₁ se forme sur l'écran.

- 1) Reproduire, à la même échelle, le document ci-dessus.
- 2) Préciser, en le justifiant, la position de l'image A₁ de A.
- 3) Tracer, en donnant les explications nécessaires, la marche du rayon lumineux permettant de trouver la position de l'image B₁ de B.

B – Caractéristiques de l'image A₁B₁

- 1) Donner la nature de A_1B_1 et trouver sa grandeur.
- 2) L'image A₁B₁ est-elle droite ou renversée par rapport à AB?
- 3) Trouver la distance $d = OA_1$ entre l'image et la lentille.

C - Détermination de la distance focale de (L)

- 1) Tracer, en le justifiant, la marche du rayon lumineux permettant de déterminer la position du foyer image F' de (L).
- 2) Déduire la valeur de la distance focale f de (L).

<u>Deuxième exercice</u>: Disjoncteur d'une cuisine (6,5 points)

L'installation électrique d'une cuisine est alimentée par une tension alternative sinusoïdale de valeur efficace U = 220 V.

Cette installation comporte les appareils électriques suivants :

- un réfrigérateur ;
- une machine à laver;
- un chauffe eau assimilé à un conducteur ohmique de puissance P = 1540 W;

- une lampe à incandescence portant les indications (220 V; 100 W).
- 1) Les appareils sont branchés en dérivation. Pourquoi?
- 2) a) La lampe fonctionne normalement. Pourquoi?
 - **b)** Calculer l'intensité efficace I₁ du courant traversant la lampe.
- 3) a) La tension efficace aux bornes du chauffe eau est de 220 V. Pourquoi?
 - **b)** Calculer l'intensité efficace I₂ du courant traversant le chauffe eau.
- 4) Sachant qu'en fonctionnement normal, les intensités efficaces des courants traversant le réfrigérateur et la machine à laver ont pour valeurs respectives I₃ = 5 A et I₄ = 10 A, déterminer la valeur de l'intensité efficace I du courant principal lorsque tous les appareils fonctionnent en même temps.
- 5) On voudrait protéger cette installation par un disjoncteur. Parmi les disjoncteurs portant les indications respectives 25 A, 30 A et 40 A, lequel est le mieux adapté ? Pourquoi ?

Troisième exercice: Mesure de la pression d'un gaz confiné (6 points)

Pour déterminer la pression d'un gaz confiné, un groupe d'élèves a réalisé les deux expériences suivantes. On donne : g = 10 N/kg.

A - Première expérience : détermination de la pression atmosphérique

Le groupe a rempli complètement un tube (T) avec du mercure de masse volumique $\rho = 13600 \text{ kg/m}^3$ puis il l'a retourné sur une cuve contenant du mercure. Le niveau du mercure dans le tube baisse et se fixe à 75 cm au-dessus de la surface libre du mercure dans la cuve (figure 1).

- 1) Que vaut la pression P_C en C? Pourquoi?
- 2) Déterminer, en Pascals, la valeur de la pression $P_{\rm B}$ en B
- 3) Les pressions en A et B ont la même valeur. Pourquoi ? En déduire la valeur de la pression atmosphérique P_{at} .

B - Deuxième expérience : détermination de la pression du gaz confiné dans le tube

Après avoir déterminé la valeur de la pression atmosphérique, le groupe a injecté dans le tube une certaine quantité d'un gaz. Le niveau du mercure dans le tube baisse de nouveau et se fixe à 70 cm au-dessus de la surface libre du mercure dans la cuve (figure 2).

- 1) Déterminer, en Pascals, la nouvelle valeur de la différence de pression $(P_B P_C)$.
- 2) En déduire la valeur de la pression P du gaz confiné dans le tube.

