数据洞察报告

邓锦 10235501434

数据来源

GitHub 上具有协作行为日志数据的 500 名用户的个人信息(包括姓名、公司、邮箱及其地理位置等)

数据洞察分析

- 1. 人口统计分析
 - 国家地区分布

数据:

分析: 美国的用户数量最多,几乎是第二名德国的用户数量的两倍,有大约 120 人。中国用户数量排在第三,再往后依次是法国,加拿大,英国,荷兰,澳大利亚,瑞士等等。

● 城市级别分布

数据:

分析: 技术热点区域有旧金山,柏林,巴黎,东京,北京,苏黎世等等(忽略 location 里的国家只保留城市)。

● 时区分布

数据:

Timezone Distribution

分析: 时区是根据国家来生成的, 所以国家的如何分布, 时区如何分布(图一)。从图二可以看出 开发者主要分布在东一区和西五区(分是第一第二), 第三是东八区, 第四是未知(存在 用户未填写国家), 第五是中时区······

2. 协作行为分析

● 提交频率

数据:

分析: 绝大多数用户都是低频用户, 提交频数在 0~5000 之间。极少数用户的提交频数超过5000, 有一两个用户的提交频数来到了 35000 左右。

● 高频低频用户

数据:

分析: 图一为前 10%的用户,图二为后 10%的用户。高频用户少而且提交次数断层式高于一般用户,曲线激增。低频用户多且稳定,曲线平缓,有一个用户提交次数比低频用户还要

3. 影响力分析

● 总影响力与用户提交频率的关系 数据:

分析: 从图中可以看出, 总影响力和提交数并不是人们所期待的线性关系, 反而是两极分化的形式。根据这张散点图可以将用户分为三类: 第一类是普通用户, 这类用户的影响力和提交计数都不高, 但是用户的数量庞大; 第二类是高端用户, 这类用户提交次数不算太多, 但是质量高, 技术力强, 拥有很高的总影响力; 第三类是平凡用户, 他们反复, 频繁的提交, 但总影响力和普通用户是一个水平, 说明提交的技术力不高或者主题冷门, 没太多人关注, 频繁但平凡。

4. 事件分析

事件类型 event_type 与事件行动 event_action 交叉分析数据:

分析: 这张热力图反映事件类型和事件行为有着很高的相关性, pushEvent 类型总是与 added 行动同时出现, issueCommentEvent 类型和 PullRequestReviewEvent 类型总是伴随着 created 行动。

总结

这次实验对 Github 上的用户数据进行数据洞察, 还是很有趣的, 尤其是对数据之间内藏的联系进行发掘和分析。看似毫无关系的数据中却蕴藏着一些整个社区生态的规律, 还是挺令人振奋的。除此之外, 还有 AI 工具的利用, 极大的加快了我写代码的速度, AI 甚至能预测我下一句要写的代码是什么, 直接提示之后和要用的函数和变量, 大大的方便我写代码了。

遇到问题和解决方案

1. 根据 country 生成 timezone 时区信息

问 AI 后, AI 直接甩我一个字典 country_to_timezone, 里面是国家名到时区信息的映射。好在本次实验的 country 数量只有 52 个,这个字典不算太大,被 AI 暴力解决了(额,好像再多也没问题)。

2. 遇到函数 apply()报错: AttributeError: 'float' object has no attribute 'upper'

完全不知道为什么报错,问了 AI 才知道是数据集中存在缺失值导致的(data['country']中有缺失值)。解决方法:data['country'].fillna('Unknown')。