OBJECTIFS DES MANIPULATIONS

+ Manipulation N°1

L'objectif de cette manipulation consiste à la **détermination de l'effet de la pression osmotique d'une solution sur l'état la cellule ;** Déterminer pour quelles valeurs de pression osmotique du milieu extérieur (Πsol), les cellules végétales de la betterave rouge sont en état de ;

- o Turgescence
- o Plasmolyse
- o Plasmolyse limite

+ Manipulation N° II

Cette deuxième manipulation vise à :

- \circ Détermination pondérale de la quantité d'eau échangée entre la cellule et le milieu extérieure en calculant le ΔP
- Déterminer la capacité du végétal étudié à absorber l'eau, en mesurant la succion initiale
 (So)
- O Détermination de l'état osmotique initial du matériel végétal étudié en comparant la valeur de succion initiale (So) avec celle de la plasmolyse limite ($\prod L$)

<u>Manipulation 1</u>: Effet de la concentration du milieu extérieur sur l'état cellulaire

2) Tableau

✓ Pression osmotique $\Pi = C \cdot R \cdot T$

Tube	1	2	3	4	5	6	7	8	9	10	11
[saccharo se] (mol/l)	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
État des cellules (T/ P)	T	T	T	T	T	Т	P	P	P	P	P
Pression osmotiqu e π	0	2.4485	4.897	7.3455	9.794	12.2425	14.691	17.1395	19.58 8	22. 036 5	24.485

3) la pression osmotique à la plasmolyse limite (PL) :

Concentration limite:

CL = 0.5 + 0.6/2 = 0.55 mol/L

 Π = CL.R.T = 0.55*0.083*(273+22)=13.46675 atm = 13.50 atm

<u>Manipulation 2</u>: Détermination pondérale de la quantité d'eau échangée entre la cellule et le milieu extérieure

1) Tableau :

$\Delta P = Pf - Pi / Pi \times 100$

Tube	1	2	3	4	5	6	7	8	9	10	11
[saccharose] (mol/l)	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
Poids initial Pi (g)	1,31	1,39	1,31	1,19	1,41	1,3	1,17	1,35	1,35	1,31	1,16
Poids final Pf (g)	1,64	1,68	1,64	1,42	1,55	1,4	1,36	1,37	1,3	1,19	1,05
ΔΡ (%)	25.19	20.86	25.19	19.32	9.92	7.69	16.23	1.48	-3.70	-9.16	-9.48

2) la courbe

 $C_o = 0.72 \text{ M}$

3) S_o succion (S).

$$S_0 = C_0 * R * T = 0.72 * 0.083 * (273 + 22) = 17.6292$$
 atm

4) Conclusion:

$$S_0(17.6292 \text{ atm}) > \Pi l(13.50 \text{ atm})$$

Donc le materiel vegetal est **SEC**