Topology Qualifying Exam Review

D. Zack Garza

Table of Contents

Contents

Ta	Table of Contents				
1	Preface 1.1 Notation	5 5			
2 Summary and Topics: Point-Set Topology					
3	Definitions3.1 Point-Set Topology3.2 Algebraic Topology3.3 Homotopy	7 13 28			
4	Examples 4.1 Point-Set 4.1.1 Common Spaces and Operations 4.1.2 Alternative Topologies 4.1.3 Connectedness	29 32			
5	"Analysis"-esque Results in Topology	3 3			
6	Theorems 6.1 Metric Spaces and Analysis 6.2 Compactness 6.3 Separability 6.4 Maps and Homeomorphism 6.5 The Tube Lemma 6.5	36			
7	Summary of Standard Topics	39			
8	Examples: Algebraic Topology 8.1 Standard Spaces and Modifications	40 40 44			
9	Low Dimensional Homology Examples	44			
10	Table of Homotopy and Homology Structures	44			
11	Theorems: Algebraic Topology 11.1 General Homotopies	46 47 47 48			

Table of Contents

Contents

	11.2.3 Calculating π_1	
	11.2.4 Facts	51
	11.3 General Homotopy Theory	52
10		
12	Covering Spaces 12.1 Useful Facts	53
	12.2 Universal Covers	
	12.2.1 Examples	
	12.2.2 Applications	61
13	CW and Simplicial Complexes	63
	13.1 Degrees	
	13.2 Examples of CW Complexes/Structures	
	13.3 Examples of Simplicial Complexes	
	13.4 Cellular Homology	
	13.5 Constructing a CW Complex with Prescribed Homology	
	15.5 Constructing a CW Complex with Prescribed Homology	UC
14	Homology	69
	14.1 Useful Facts	69
	14.2 Known Homology	
	14.3 Mayer-Vietoris	
	14.4 More Exact Sequences	
	14.5 Relative Homology	
	14.5 Relative Holliology	10
15	Fixed Points and Degree Theory	74
		_
16		74
	16.1 Classification of Surfaces	
	16.2 Manifolds	
	16.2.1 3-Manifolds, and Knot Complements	80
17	Extra Problems: Algebraic Topology	81
	17.1 Homotopy 101	
	$17.2 \ \pi_1 \ \dots \ $	
	17.3 Surfaces	
	17.5 Surfaces	02
18	Fall 2014	82
	18.1 1	82
		82
		83
	10.4 4	Ou
	10 5 5	0/
	18.5 5	84
19	18.5 5	84 84
19	Summer 2003	
19	Summer 2003 19.1 1	84
19	Summer 2003 19.1 1	84 84 85
19	Summer 2003 19.1 1	84 84 85 86

Contents

19.6 6	89
19.7 7	92
19.8 8	92
19.9 9	93
20 Fall 2017 Final	95
20.1 1	95
20.2 2	95
20.3 3	95
20.4 4	96
20.5 5	96
20.6 6	97
21 Appendix: Homological Algebra	97
21.1 Exact Sequences	97
21.2 Five Lemma	98
21.3 Free Resolutions	98
21.4 Properties of Tensor Products	99
21.5 Properties of Hom	99
21.6 Properties of Tor	99
21.7 Properties of Ext	
21.8 Computing Tor	99
21.9 Computing Ext	100
21.10Hom/Ext/Tor Tables	100
22 Appendix: Unsorted Stuff	101
22.1 Cap and Cup Products	101
22.2 The Long Exact Sequence of a Pair	
22.3 Tables	
22.4 Homotopy Groups of Lie Groups	
22.5 Higher Homotopy	
22.6 Higher Homotopy Groups of the Sphere	
22.7 Misc	
22.8 Building a Moore Space	
Bibliography	107

1 Preface

1 | Preface

References:

- Munkres [2]
- Hatcher [1]

Some fun resources:

• The Line with Two Origins

1.1 Notation

Notation	Definition	
$X \times Y, \prod_{i \in I} X_j, X^{\times n}$	Direct Products	
$X \oplus Y, \bigoplus_{i \in I}^{j \in J} X_j, X^{\oplus n}$	Direct sums	
$X \otimes Y, \bigotimes_{j \in J} X_j, X^{\otimes n}$	Tensor products	
$X * Y, *_{j \in J} X_j, X^{*n}$	Free products	
\mathbb{Z}^n	The free abelian group of rank n	
F_n, \mathbb{Z}^{*n}	The free group on n generators	
$\pi_0(X)$	The set of path components of X	
G=1	The trivial abelian group	
G = 0	The trivial nonabelian group	

Remark 1.1.1: I use e_G or $1_G, 0_G$ to denote identity elements in a group G.

Remark 1.1.2(on direct sums vs direct products): $A \times B$ denotes the direct product of modules. $A \oplus B$ denotes a direct sum: the subset of $A \times B$ where only finitely many terms are nonzero. Both the product and direct sum have coordinate-wise operations. For finite index sets $|J| < \infty$, the direct sum and product coincide, but in general there is only an injection $\bigoplus_j X_i \hookrightarrow \prod_j X_j$. In the direct sum $\bigoplus_j X_j$ have only finitely many nonzero entries, while the product allows infinitely many nonzero entries. So in general, I always use the product notation.

Remark 1.1.3 (on notation for free groups and free products): The free group on n generators is the free product of n free abelian groups, but is not generally abelian! So we use multiplicative notation, and elements

$$x \in \mathbb{Z}^{*n} = \langle a_1, \dots, a_n \rangle$$

1.1 Notation 5

2 Preface

are finite words in the noncommuting symbols a_i^k for $k \in \mathbb{Z}$. E.g. an element may look like $x = a_1^2 a_2^4 a_1 a_2^{-2}$.

Remark 1.1.4(on notation for free abelian groups): The free abelian group of rank n is the abelianization of \mathbb{Z}^{*n} , and its elements are characterized by

$$x \in \mathbb{Z}^{*n} = \langle a_1, \cdots, a_n \rangle \implies x = \sum_n c_i a_i \text{ for some } c_i \in \mathbb{Z}$$

where the a_i are some generating set of n elements and we used additive notation since the group is abelian. E.g. such an element may look like

$$x = 2a_1 + 4a_2 + a_1 - a_2 = 3a_1 + 3a_2.$$

Remark 1.1.5 (on indexing conventions and list notation): Spaces are assumed to be connected and path connected, so $\pi_0(X) = H_0(X) = \mathbb{Z}$. So I virtually never consider anything occurring at index zero in these notes.

Graded objects such as π_*, H_*, H^* are sometimes represented as lists, which always start indexing at 1. Examples:

$$\pi_*(X) = [\pi_1(X), \pi_2(X), \pi_3(X), \cdots]$$

$$H_*(X) = [H_1(X), H_2(X), H_3(X), \cdots].$$

1.2 Background Algebra

Fact 1.2.1

An injective group morphism $f: X \hookrightarrow Y$ where X is trivial forces Y to be trivial.

Proposition 1.2.2 (Morphisms between groups finite and infinite groups).

There are no nontrivial homomorphisms from finite groups into free groups. In particular, any group morphism $f: \mathbb{Z}_n \to \mathbb{Z}$ is trivial.

Proof(?).

Let $f: G \to H$, then $f(1_G) = 1_H$. Supposing $g \in G$ is torsion of order n, we have

$$1_H = f(1_G) = f(g^n) = f(g)^n,$$

so f(g) is torsion of order dividing n. But a free group is torsionfree.

Remark 1.2.3 (How to use this fact): This is especially useful if you have some $f: A \to B$ and you look at the induced homomorphism $f_*: \pi_1(A) \to \pi_1(B)$. If the former is finite and the latter contains a copy of \mathbb{Z} , then f_* has to be the trivial map $f_*([\alpha]) = e \in \pi_1(B)$ for every $[\alpha] \in \pi_1(A)$. You can play a similar game when you take homology or cohomology.

1.2 Background Algebra 6

2 | Summary and Topics: Point-Set Topology

Some key high-level topics:

- Connectedness
- Compactness
- Metric spaces
- Hausdorff spaces

3 | Definitions

3.1 Point-Set Topology

Remark 3.1.1 (on the term 'locally'): The prefix "locally blah" almost always means that for every $x \in X$, there exists *some* neighborhood $N_x \ni x$ which has property "blah".

Definition 3.1.2 (Basis for a topology)

A set \mathcal{B} is a **basis** for a topology iff

- \mathcal{B} is closed under intersections,
- Every $x \in X$ is in some basic set,
- If x is in the intersection of two basis sets $B_1 \cap B_2$, there is a third basic open $B_3 \ni x$ with $B_3 \subset B_1 \cap B_2$.

The topology **generated** by \mathcal{B} is the following: $U \subseteq X$ is open iff for each $x \in U$ there is a basic open B with $x \in B \subset U$. Equivalently, every open set is a union of basic open sets.

Definition 3.1.3 (Bounded)

A set S in a metric space (X, d) is bounded iff there exists an $m \in \mathbb{R}$ such that d(x, y) < m for every $x, y \in S$.

Definition 3.1.4 (Comparability of topologies)

Given two topologies τ_1, τ_2 ,

- τ_1 is finer than τ_2 iff $\tau_1 \supseteq \tau_2$.
- τ_1 is **coarser** than τ_2 iff $\tau_1 \supseteq \tau_2$.

Two topologies are **comparable** if either $\tau_1 < \tau_2$ or $\tau_2 < \tau_1$.

Note: more open sets is like having a "finer" resolution.

Is this actually a poset relation? Fails reflexivity

Definition 3.1.5 (Connected)

A space X is **connected** iff there does not exist a disconnection $X = A \coprod B$ with A, B nonempty open sets. I.e. X can not be written as the disjoint union of two proper nonempty open sets. Equivalently, X contains no proper nonempty clopen sets.

Note that there is an additional condition for a subspace $Y \subset X$ to be connected:

$$\operatorname{cl}_Y(A) \cap V = A \cap \operatorname{cl}_Y(B) = \emptyset.$$

Definition 3.1.6 (Connected Components)

Set $x \sim y$ iff there exists a connected set $U \ni x, y$ and take equivalence classes. These classes are the **connected components** of X.

Definition 3.1.7 (Closed Sets)

- A set is closed if and only if its complement is open.
- A set is closed iff it contains all of its limit points.
- A closed set in a subspace: $Y \subset X \implies \operatorname{cl}_Y(A) := \operatorname{cl}_X(A) \cap Y$.

Definition 3.1.8 (Closed Maps)

See Definition 3.1.26.

Definition 3.1.9 (Closure of a set)

For $U \subseteq X$, the closure of U in X is given by $\operatorname{Cl}_X(U) = \bigcap_{\substack{B \supseteq U \\ \operatorname{closed}}} B$, the intersection of all closed sets in X containing U. For $Y \subseteq X$ a subspace containing U, the closure of U in Y is $\operatorname{Cl}_Y(U) = \operatorname{Cl}_X(U) \cap Y$. In general, we write $\overline{U} \coloneqq \operatorname{cl}_X(U)$.

An equivalent condition: $x \in \overline{U} \iff$ every neighborhood of x intersects U^b

Definition 3.1.10 (Compact)

A topological space (X, τ) is **compact** iff every open cover has a *finite* subcover. That is, if $\{U_j\}_{j\in J}\subseteq \tau$ is a collection of open sets such that $X=\bigcup_{j\in J}U_j$, then there exists a *finite* subset

$$J' \subset J$$
 such that $X \subseteq \bigcup_{j \in J'} U_j$.

Definition 3.1.11 (Continuous Map)

A map $f: X \to Y$ between topological spaces is **continuous** if and only if whenever $U \subseteq Y$ is open, $f^{-1}(U) \subseteq X$ is open.

Definition 3.1.12 (Cover)

A collection of subsets $\{U_{\alpha}\}$ of X is said to **cover** X iff $X = \bigcup_{\alpha} U_{\alpha}$. If $A \subseteq X$ is a subspace, then this collection **covers** A iff $A \subseteq \bigcup_{\alpha} U_{\alpha}$.

^aThis is theorem 17.4 in Munkres

 $[^]b$ Munkres 17.5

Definition 3.1.13 (Dense)

A subspace $Q \subset X$ is **dense** iff every neighborhood of every point in x intersects Q. Equivalently, $\operatorname{cl}_X(Q) = Q$.

Definition 3.1.14 (First Countable)

A space is **first-countable** iff every point admits a countable neighborhood basis.

Definition 3.1.15 (Hausdorff)

A topological space X is *Hausdorff* iff points can be separated by disjoint neighborhoods: for every $p \neq q \in X$ there exist disjoint open sets $U \ni p$ and $V \ni q$.

Definition 3.1.16 (Injection)

A map $\iota:A\to B$ with a **left** inverse $f:B\to A$ satisfying $f\circ\iota=\mathrm{id}_A$. Note that this is equivalent to $f(x)=f(y)\implies x=y$.

Definition 3.1.17 (Lebesgue Number)

For (X, d) a compact metric space and $\{U_{\alpha}\} \rightrightarrows X$, there exists a **Lebesgue number** $\delta_L > 0$ which satisfies

$$A \subset X$$
, diam $(A) < \delta_L \implies A \subseteq U_\alpha$ for some α .

Definition 3.1.18 (Limit Point)

For $A \subset X$, x is a **limit point** of A if every punctured neighborhood P_x of x intersects A. I.e., every neighborhood of x intersects A at a point other than x. Equivalently, $x \in \operatorname{cl}_X(A \setminus \{x\})$.

Definition 3.1.19 (Locally Connected)

A space is **locally connected** iff every neighborhood of every point admits a smaller connected neighborhood. I.e. for all $x \in X$, for all $N_x \ni x$, there exists a connected set $U \subset X$ with $x \in U$.

Definition 3.1.20 (Locally Compact)

A space X is locally compact iff every $x \in X$ has a neighborhood contained in a compact subset of X.

Note: authors such as Hartshorne often also require that X is Hausdorff, and refer to the above definition as quasicompactness.

Definition 3.1.21 (Locally Finite)

A collection of subsets S of X is *locally finite* iff each point of M has a neighborhood that intersects at most finitely many elements of S.

Definition 3.1.22 (Locally Path-Connected)

A space X is **locally path-connected** iff every point in X admits some path-connected neighborhood. Equivalently, X admits a basis of path-connected open subsets.

Definition 3.1.23 (Neighborhood)

A **neighborhood** of a point x is any open set containing x.

Definition 3.1.24 (Normal)

A space is **normal** if any two disjoint closed subsets can be separated by neighborhoods.

Definition 3.1.25 (Neighborhood Basis)

If $p \in X$, a **neighborhood basis** at p is a collection \mathcal{B}_p of neighborhoods of p such that if N_p is a neighborhood of p, then $N_p \supseteq B$ for at least one $B \in \mathcal{B}_p$.

Definition 3.1.26 (Open and Closed Maps)

A map $f: X \to Y$ is an **open map** (respectively a **closed map**) if and only if whenever $U \subseteq X$ is open (resp. closed), f(U) is again open (resp. closed)>

Definition 3.1.27 (Paracompact)

A topological space X is **paracompact** iff every open cover of X admits an open locally finite refinement.

Definition 3.1.28 (Quotient Map)

A map $q: X \to Y$ is a **quotient map** if and only if

- 1. q is surjective, and
- 2. $U \subseteq Y$ is open if and only if $q^{-1}(U)$ is open.

Definition 3.1.29 (Path Connected)

A space X is **path connected** if and only if for every pair of points $x \neq y$ there exists a continuous map $f: I \to X$ such that f(0) = x and f(1) = y.

Definition 3.1.30 (Path Components)

Set $x \sim y$ iff there exists a path-connected set $U \ni x, y$ and take equivalence classes.

Definition 3.1.31 (Precompact)

A subset $A \subseteq X$ is **precompact** iff $cl_X(A)$ is compact.

Definition 3.1.32 (Product topology)

For (X, τ_X) and (Y, τ_Y) topological spaces, defining

$$\tau_{X\times Y} \coloneqq \left\{ U \times V \mid U \in \tau_X, V \in \tau_Y \right\}$$

yields the **product topology** on $X \times Y$.

Definition 3.1.33 (Quasicompact)

A topological space X (possible non-Hausdorff) is **quasi-compact** iff every open cover admits a finite subcover. If X is additionally Hausdorff, X is said to be **compact**.

Note: this is a distinction coming from algebraic geometry, and Hartshorne in particular.

Definition 3.1.34 (Refinement)

A cover $\mathcal{V} \rightrightarrows X$ is a **refinement** of $\mathcal{U} \rightrightarrows X$ iff for each $V \in \mathcal{V}$ there exists a $U \in \mathcal{U}$ such that $V \subseteq U$.

Definition 3.1.35 (Regular)

A space X is **regular** if whenever $x \in X$ and $F \not\ni x$ is closed, F and x are separated by neighborhoods.

Definition 3.1.36 (Retract)

A map r in $A \overset{\hookrightarrow}{\longleftarrow} B$ satisfying

$$r \circ \iota = \mathrm{id}_A$$
.

A **retract** of B onto a subspace A is a map $r: B \to A$ that is a left-inverse for the inclusion $f: A \hookrightarrow B$, so $r \circ f = \mathrm{id}_A$:

$$\operatorname{id}_A \subset A \xrightarrow{k - \frac{r}{f}} B$$

Link to (partial) Diagram

Equivalently, a continuous map $r: B \to A$ with $r|_A = \mathrm{id}_A$ restricting to the identity on A, i.e. fixing A pointwise. Note that r is necessarily a surjection.

Alt: Let X be a topological space and $A \subset X$ be a subspace, then a **retraction** of X onto A is a map $r: X \to X$ such that the image of X is A and r restricted to A is the identity.

Remark 3.1.37: If X retracts onto A with $\iota: A \hookrightarrow X$, then i_* is injective. Any nonempty space retracts to a point via a constant map.

Definition 3.1.38 (Saturated)

A subset $U \subseteq X$ is **saturated** with respect to a surjective map $p: X \twoheadrightarrow Y$ if and only if whenever $U \cap p^{-1}(y) = V \neq \emptyset$, we have $V \subseteq U$, i.e. U contains every set $p^{-1}(y)$ that it intersects. Equivalently, U is the complete inverse image of a subset of Y.

Definition 3.1.39 (Separable spaces)

A space X is **separable** iff X contains a countable dense subset.

Definition 3.1.40 (Second Countable)

A space is *second-countable* iff it admits a countable basis.

Definition 3.1.41 (The subspace topology)

For (X, τ) a topological space and $U \subseteq X$ an arbitrary subset, the space (U, τ_U) is a topological space with a **subspace topology** defined by

$$\tau_U := \left\{ Y \cap U \mid U \in \tau \right\}.$$

Definition 3.1.42 (Surjection)

A map π with a **right** inverse f satisfying

$$\pi \circ f = \mathrm{id}$$

Definition 3.1.43 (T_n Spaces (Separation Axioms))

- T_0 : Points are distinguishable. For any 2 points $x_1 \neq x_2$, at least one x_i (say x_1) admits a neighborhood not containing x_2 .
- T_1 : For any 2 points, both admit neighborhoods not containing the other. Equivalently, points are closed.
- T_2 : For any 2 points, both admit *disjoint* separating neighborhoods.
- $T_{2.5}$: For any 2 points, both admit *disjoint closed* separating neighborhoods.
- T_3 : T_0 & regular. Given any point x and any closed $F \not\ni x$, there are neighborhoods separating F and x.
- $T_{3.5}$: T_0 & completely regular. Any point x and closed $F \not\ni x$ can be separated by a continuous function.
- T_4 : T_1 & normal. Any two disjoint closed subsets can be separated by neighborhoods.

Example 3.1.44 (Counterexamples for separation axioms):

- Not T_0 : the space $\left\{f: \mathbb{R} \to \mathbb{C} \mid \int_{\mathbb{R}} |f|^2 < \infty\right\}$, since two a.e. equal functions aren't distinguishable (they have precisely the same set of neighborhoods).
- T_1 but not T_0 : Spec R for $R \in \mathsf{CRing}$ with the Zariski topology. There are points that aren't closed: Spec $R \setminus \mathsf{mSpec}\ R$.

Definition 3.1.45 (Topology)

- Using open sets: closed under arbitrary unions and finite intersections.
- Using closed sets: closed under arbitrary intersections and finite unions.

Remark 3.1.46: A mnemonic: in \mathbb{R} , $\cap_{n\in\mathbb{N}}(-1/n,1/n)=\{0\}$ which is closed in \mathbb{R} .

Definition 3.1.47 (Topological Embedding)

A topological **embedding** is a continuous map $f: X \to Y$ which is a homeomorphism onto its image, i.e. $X \cong_{\mathsf{Top}} f(X)$.

Definition 3.1.48 (Uniform Continuity)

For $f:(X,d_x)\to (Y,d_Y)$ metric spaces,

$$\forall \varepsilon > 0, \ \exists \delta > 0 \text{ such that } d_X(x_1, x_2) < \delta \implies d_Y(f(x_1), f(x_2)) < \varepsilon.$$

3.2 Algebraic Topology

 \sim

Definition 3.2.1 (Acyclic)

Definitions

Definition 3.2.2 (Alexander duality)

Definitions

Definition 3.2.3 (Basis of a module)

For an R-module M, a basis B is a linearly independent generating set.

Definition 3.2.4 (Boundary)

Definitions

Definition 3.2.5 (Boundary of a manifold)

Points $x \in M^n$ defined by

$$\partial M = \{x \in M : H_n(M, M - \{x\}; \mathbb{Z}) = 0\}$$

Definition 3.2.6 (Cap Product)

Denoting $\Delta^p \xrightarrow{\sigma} X \in C_p(X; G)$, a map that sends pairs (p-chains, q-cochains) to (p-q)-chains $\Delta^{p-q} \to X$ by

$$H_p(X;R) \times H^q(X;R) \xrightarrow{\frown} H_{p-q}(X;R)$$

 $\sigma \frown \psi = \psi(F_0^q(\sigma))F_a^p(\sigma)$

where F_i^j is the face operator, which acts on a simplicial map σ by restriction to the face spanned by $[v_i \dots v_j]$, i.e. $F_i^j(\sigma) = \sigma|_{[v_i \dots v_j]}$.

Definition 3.2.7 (Cellular Homology)

Definitions

Definition 3.2.8 (Cellular Map)

A map $X \xrightarrow{f} Y$ is said to be cellular if $f(X^{(n)}) \subseteq Y^{(n)}$ where $X^{(n)}$ denotes the n- skeleton.

Definition 3.2.9 (Chain)

An element $c \in C_p(X; R)$ can be represented as the singular p simplex $\Delta^p \to X$.

Definition 3.2.10 (Chain Homotopy)

Given two maps between chain complexes $(C_*, \partial_C) \xrightarrow{f, g} (D_*, \partial_D)$, a chain homotopy is a family $h_i : C_i \to B_{i+1}$ satisfying

$$f_i - g_i = \partial_{B,i-1} \circ h_n + h_{i+1} \circ \partial_{A,i}$$

.

Definition 3.2.11 (Chain Map)

A map between chain complexes $(C_*, \partial_C) \xrightarrow{f} (D_*, \partial_D)$ is a chain map iff each component $C_i \xrightarrow{f_i} D_i$ satisfies

$$f_{i-1} \circ \partial_{C,i} = \partial_{D,i} \circ f_i$$

(i.e this forms a commuting ladder)

Definition 3.2.12 (Closed manifold)

A manifold that is compact, with or without boundary.

Definition 3.2.13 (Coboundary)

Definitions

Definition 3.2.14 (Cochain)

An cochain $c \in C^p(X; R)$ is a map $c \in \text{hom}(C_p(X; R), R)$ on chains.

Definition 3.2.15 (Cocycle)

Definitions

Definition 3.2.16 (Constant Map)

A constant map $f: X \to Y$ iff $f(X) = y_0$ for some $y_0 \in Y$, i.e. for every $x \in X$ the output value $f(x) = y_0$ is the same.

Definition 3.2.17 (Colimit)

For a directed system (X_i, f_{ij}) , the **colimit** is an object X with a sequence of projections $\pi_i: X \to X_i$ such that for any Y mapping into the system, the following diagram commutes:

Example 3.2.18 (of colimits):

- Products
- Pullbacks
- Inverse / projective limits
- The *p*-adic integers \mathbb{Z}_p .

Definition 3.2.19 (Contractible)

A space X is **contractible** if id_X is nullhomotopic. i.e. the identity is homotopic to a constant map $c(x) = x_0$.

Equivalently, X is contractible if $X \simeq \{x_0\}$ is homotopy equivalent to a point. This means that there exists a mutually inverse pair of maps $f: X \to \{x_0\}$ and $g: \{x_0\} \to X$ such that $f \circ g \simeq \operatorname{id}_{\{x_0\}}$ and $g \circ f \simeq \operatorname{id}_{X}$.

Definition 3.2.20 (Coproduct)

Definitions

Definition 3.2.21 (Covering Space)

A **covering space** of X is the data $p: \tilde{X} \to X$ such that

- 1. Each $x \in X$ admits a neighborhood U such that $p^{-1}(U)$ is a union of disjoint open sets in $\tilde{V}_i \subseteq X$ (the **sheets** of \tilde{X} over U),
- 2. $p|_{V_i}: V_i \to U$ is a homeomorphism for each sheet.

An **isomorphism** of covering spaces $\tilde{X}_1 \cong \tilde{X}_2$ is a commutative diagram

Link to diagram

 $[^]a\mathrm{This}$ is a useful property because it supplies you with a homotopy.

Definition 3.2.22 (Cup Product)

A map taking pairs (p-cocycles, q-cocycles) to (p+q)-cocyles by

$$H^{p}(X;R) \times H^{q}(X;R) \xrightarrow{\smile} H^{p+q}(X;R)$$
$$(a \cup b)(\sigma) = a(\sigma \circ I_{0}^{p}) \ b(\sigma \circ I_{p}^{p+q})$$

where $\Delta^{p+q} \xrightarrow{\sigma} X$ is a singular p+q simplex and

$$I_i^j: [i, \cdots, j] \hookrightarrow \Delta^{p+q}$$
.

is an embedding of the (j-i)-simplex into a (p+q)-simplex.

Example 3.2.23 (Applications of the cup product): On a manifold, the cup product is Poincaré dual to the intersection of submanifolds. Also used to show $T^2 \not\simeq S^2 \vee S^1 \vee S^1$.

Definition 3.2.24 (CW Complex)

Definitions

Definition 3.2.25 (CW Cell)

An *n*-cell of X, say e^n , is the image of a map $\Phi: B^n \to X$. That is, $e^n = \Phi(B^n)$. Attaching an *n*-cell to X is equivalent to forming the space $B^n \coprod_f X$ where $f: \partial B^n \to X$.

- A 0-cell is a point.
- A 1-cell is an interval $[-1,1]=B^1\subset\mathbb{R}^1$. Attaching requires a map from $S^0=\{-1,+1\}\to X$
- A 2-cell is a solid disk $B^2 \subset \mathbb{R}^2$ in the plane. Attaching requires a map $S^1 \to X$.
- A 3-cell is a solid ball $B^3 \subset \mathbb{R}^3$. Attaching requires a map from the sphere $S^2 \to X$.

Definition 3.2.26 (Cycle)

Definitions

Definition 3.2.27 (Deck transformation)

For a covering space $\tilde{X} \xrightarrow{p} X$, self-isomorphisms $f: \tilde{X} \to \tilde{X}$ of covering spaces are referred to as **deck transformations**.

Definition 3.2.28 (Deformation)

Definitions

Definition 3.2.29 (Deformation Retract)

A map r in $A \overset{\hookrightarrow}{\longleftarrow} X$ that is a retraction (so $r \circ \iota = \mathrm{id}_A$) that also satisfies $\iota \circ r \simeq \mathrm{id}_X$.

Note that this is equality in one direction, but only homotopy equivalence in the other.

Equivalently, a map $F: I \times X \to X$ such that

$$F_0(x) = \operatorname{id}_X F_t(x) \Big|_A = \operatorname{id}_A F_1(X) = A.$$

Alt:

A deformation retract is a homotopy $H: X \times I \to X$ from id_X to id_A where $H|_A = \mathrm{id}_A$ fixes A at all times.

$$\begin{aligned} H: X \times I \to X \\ H(x,0) &= \mathrm{id}_X \\ H(x,1) &= \mathrm{id}_A \\ x \in A \implies H(x,t) \in A \quad \forall t \end{aligned}$$

Remark 3.2.30: A deformation retract between a space and a subspace is a homotopy equivalence, and further $X \simeq Y$ iff there is a Z such that both X and Y are deformation retracts of Z. Moreover, if A and B both have deformation retracts onto a common space X, then $A \simeq B$.

Definition 3.2.31 (Degree of a Map of Spheres)

Given any $f: S^n \to S^n$, there are induced maps on homotopy and homology groups. Taking $f^*: H^n(S^n) \to H^n(S^n)$ and identifying $H^n(S^n) \cong \mathbb{Z}$, we have $f^*: \mathbb{Z} \to \mathbb{Z}$. But homomorphisms of free groups are entirely determined by their action on generators. So if $f^*(1) = n$, define n to be the **degree** of f.

Definition 3.2.32 (Derived Functor)

For a functor T and an R-module A, a left derived functor (L_{nT}) is defined as $h_n(TP_A)$, where P_A is a projective resolution of A.

Definition 3.2.33 (Dimension of a manifold)

For $x \in M$, the only nonvanishing homology group $H_i(M, M - \{x\}; \mathbb{Z})$

Definition 3.2.34 (Direct Limit)

Definitions

Definition 3.2.35 (Direct Product)

Definitions

Definition 3.2.36 (Direct Sum)

Definitions

Definition 3.2.37 (Euler Characteristic)

Definitions

Definition 3.2.38 (Exact Functor)

A functor T is right exact if a short exact sequence

$$0 \to A \to B \to C \to 0$$

yields an exact sequence

$$\dots TA \to TB \to TC \to 0$$

and is *left exact* if it yields

$$0 \to TA \to TB \to TC \to \dots$$

Thus a functor is exact iff it is both left and right exact, yielding

$$0 \to TA \to TB \to TC \to 0.$$

Example 3.2.39 (of an exact functor): $-\otimes_R$ - is a right exact bifunctor.

Definition 3.2.40 (Exact Sequence)

Definitions

Definition 3.2.41 (Excision)

Definitions

Definition 3.2.42 (Ext Group)

Definitions

Definition 3.2.43 (Flat)

An R-module is flat if $A \otimes_R -$ is an exact functor.

Definition 3.2.44 (Free and Properly Discontinuous)

An action $G \cap X$ is **properly discontinuous** if each $x \in X$ has a neighborhood U such that all of the images g(U) for $g \in G$ are disjoint, i.e. $g_1(U) \cap g_2(U) \neq \emptyset \implies g_1 = g_2$. The action

is **free** if there are no fixed points.

Sometimes a slightly weaker condition is used: every point $x \in X$ has a neighborhood U such that $U \cap G(U) \neq \emptyset$ for only finitely many G.

Definitions

Definition 3.2.45 (Free module)

A -module M with a basis $S = \{s_i\}$ of generating elements. Every such module is the image of a unique map $\mathcal{F}(S) = \mathbb{R}^S \twoheadrightarrow M$, and if $M = \langle S \mid \mathcal{R} \rangle$ for some set of relations \mathcal{R} , then $M \cong \mathbb{R}^S / \mathcal{R}$.

Definition 3.2.46 (Free Product)

Definitions

Definition 3.2.47 (Free product with amalgamation)

Definitions

Definition 3.2.48 (Fundamental Class)

For a connected, closed, orientable manifold, [M] is a generator of $H_n(M; \mathbb{Z}) = \mathbb{Z}$.

Definition 3.2.49 (Fundamental Group)

Definitions

Definition 3.2.50 (Generating Set)

 $S = \{s_i\}$ is a generating set for an R- module M iff

$$x \in M \implies x = \sum r_i s_i$$

for some coefficients $r_i \in R$ (where this sum may be infinite).

Definition 3.2.51 (Gluing Along a Map)

Definitions

Definition 3.2.52 (Group Ring)

Definitions

Definition 3.2.53 (Homologous)

Definitions

Definition 3.2.54 (Homotopic)

Definitions

Definition 3.2.55 (Homotopy)

Let X,Y be topological spaces and $f,g:X\to Y$ continuous maps. Then a **homotopy** from f to g is a continuous function

 $F: X \times I \to Y$

such that

F(x,0) = f(x) and F(x,1) = g(x)

for all $x \in X$. If such a homotopy exists, we write $f \simeq g$. This is an equivalence relation on Hom(X,Y), and the set of such classes is denoted $[X,Y] := \text{hom}(X,Y)/\simeq$.

Definition 3.2.56 (Homotopy Class)

Definitions

Definition 3.2.57 (Homotopy Equivalence)

Let $f: X \to Y$ be a continuous map, then f is said to be a homotopy equivalence if there exists a continuous map $g: X \to Y$ such that

 $f \circ g \simeq \mathrm{id}_Y$ and $g \circ f \simeq \mathrm{id}_X$.

Such a map g is called a homotopy inverse of f, the pair of maps is a homotopy equivalence. If such an f exists, we write $X \simeq Y$ and say X and Y have the same homotopy type, or that they are homotopy equivalent.

Note that homotopy equivalence is strictly weaker than homeomorphic equivalence, i.e., $X \cong Y$ implies $X \simeq Y$ but not necessarily the converse.

Definition 3.2.58 (Homotopy Extension Property)

Definitions

Definition 3.2.59 (Homotopy Groups)

Definitions

Definition 3.2.60 (Homotopy Lifting Property)

Definitions

Definition 3.2.61 (Intersection Pairing)

For a manifold M, a map on homology defined by

$$H_{\widehat{i}}M \otimes H_{\widehat{j}}M \to H_{\widehat{i+j}}X$$

 $\alpha \otimes \beta \mapsto \langle \alpha, \beta \rangle$

obtained by conjugating the cup product with Poincaré Duality, i.e.

$$\langle \alpha, \beta \rangle = [M] \frown ([\alpha]) \smile [\beta]).$$

Then, if [A], [B] are transversely intersecting submanifolds representing α, β , then

$$\langle \alpha, \beta \rangle = [A \cap B]$$

. If $\hat{i} = j$ then $\langle \alpha, \beta \rangle \in H_0M = \mathbb{Z}$ is the signed number of intersection points. Alt: The pairing obtained from dualizing Poincare Duality to obtain

$$F(H_iM) \otimes F(H_{n-i}M) \to \mathbb{Z}$$

Computed as an oriented intersection number between two homology classes (perturbed to be transverse).

Definition 3.2.62 (Inverse Limit)

Definitions

Definition 3.2.63 (Intersection Form)

The nondegenerate bilinear form cohomology induced by the Kronecker Pairing:

$$I: H^k(M_n) \times H^{n-k}(M^n) \to \mathbb{Z}$$

where n = 2k.

- When k is odd, I is skew-symmetric and thus a *symplectic form*.
- When k is even (and thus $n \equiv 0 \pmod{4}$) this is a symmetric form.
- Satisfies $I(x,y) = (-1)^{k(n-k)}I(y,x)$

Definition 3.2.64 (Kronecker Pairing)

A map pairing a chain with a cochain, given by

$$H^n(X;R) \times H_n(X;R) \to R$$

 $([\psi,\alpha]) \mapsto \psi(\alpha)$

which is a nondegenerate bilinear form.

Definition 3.2.65 (Kronecker Product)

Definitions

Definition 3.2.66 (Lefschetz duality)

Definitions

Definition 3.2.67 (Lefschetz Number)

Definitions

Definition 3.2.68 (Lens Space)

Definitions

Definition 3.2.69 (Local Degree)

At a point $x \in V \subset M$, a generator of $H_n(V, V - \{x\})$. The degree of a map $S^n \to S^n$ is the sum of its local degrees.

Definition 3.2.70 (Local Orientation)

Definitions

Definition 3.2.71 (Limit)

Definitions

Definition 3.2.72 (Linear Independence)

A generating S for a module M is linearly independent if $\sum r_i s_i = 0_M \implies \forall i, r_i = 0$ where $s_i \in S, r_i \in R$.

Definition 3.2.73 (Local homology)

 $H_n(X, X - A; \mathbb{Z})$ is the local homology at A, also denoted $H_n(X \mid A)$

Definition 3.2.74 (Local orientation of a manifold)

At a point $x \in M^n$, a choice of a generator μ_x of $H_n(M, M - \{x\}) = \mathbb{Z}$.

Definition 3.2.75 (Long exact sequence)

Definitions

Definition 3.2.76 (Manifold)

An *n*-manifold is a Hausdorff space in which each neighborhood has an open neighborhood homeomorphic to \mathbb{R}^n .

Definition 3.2.77 (Manifold with boundary)

A manifold in which open neighborhoods may be isomorphic to either \mathbb{R}^n or a half-space $\{\mathbf{x} \in \mathbb{R}^n \mid x_i > 0\}$.

Definition 3.2.78 (Mayer-Vietoris Sequence)

Definitions

Definition 3.2.79 (Monodromy)

Definitions

Definition 3.2.80 (N-cell)

Definitions

Definition 3.2.81 (N-connected)

Definitions

Definition 3.2.82 (Normal covering space (a.k.a. 'regular'))

A covering space is **normal** if and only if for every $x \in X$ and every pair of lifts \tilde{x}_1, \tilde{x}_2 , there is a deck transformation f such that $f(\tilde{x}_1) = \tilde{x}_2$.

Definition 3.2.83 (Nullhomotopic)

A map $X \xrightarrow{f} Y$ is *nullhomotopic* if it is homotopic to a constant map $X \xrightarrow{g} \{y_0\}$; that is, there exists a homotopy

$$F: X \times I \to Y$$

 $F|_{X \times \{0\}} = f$ $F(x, 0) = f(x)$
 $F|_{X \times \{1\}} = g$ $F(x, 1) = g(x) = y_0$

Alt:

If f is homotopic to a constant map, say $f: x \mapsto y_0$ for some fixed $y_0 \in Y$, then f is said to be nullhomotopic. In other words, if $f: X \to Y$ is nullhomotopic, then there exists a homotopy $H: X \times I \to Y$ such that H(x,0) = f(x) and $H(x,1) = y_0$.

Note that constant maps (or anything homotopic) induce zero homomorphisms.

Definition 3.2.84 (Orbit space)

For a group action $G \curvearrowright X$, the **orbit space** X/G is defined as X/\sim where $\forall x,y\in X,x\sim y\iff \exists g\in G\mid g.x=y.$

Definition 3.2.85 (Orientable manifold)

A manifold for which an orientation exists, see "Orientation of a Manifold".

Definition 3.2.86 (Orientation cover)

For any manifold M, a two sheeted orientable covering space \tilde{M}_o . M is orientable iff \tilde{M} is disconnected. Constructed as

$$\tilde{M} = \coprod_{x \in M} \left\{ \mu_x \mid \mu_x \text{ is a local orientation} \right\}.$$

Definition 3.2.87 (Orientation of a manifold)

A family of $\{\mu_x\}_{x\in M}$ with local consistency: if $x,y\in U$ then μ_x,μ_y are related via a propagation.

Formally, a function

$$M^n \to \coprod_{x \in M} H(X \mid \{x\})$$

 $x \mapsto \mu_x$

such that $\forall x \exists N_x$ in which $\forall y \in N_x$, the preimage of each μ_y under the map $H_n(M \mid N_x) \twoheadrightarrow H_n(M \mid y)$ is a single generator μ_{N_x} .

TFAE:

- *M* is orientable.
- The map $W:(M,x)\to\mathbb{Z}_2$ is trivial.
- $\tilde{M}_o = M \prod \mathbb{Z}_2$ (two sheets).
- \tilde{M}_o is disconnected
- The projection $M_o \to M$ admits a section.

Definition 3.2.88 (Oriented manifold)

Definitions

Definition 3.2.89 (Path)

Definitions

Definition 3.2.90 (Path Lifting Property)

Definitions

Definition 3.2.91 (Perfect Pairing)

A pairing alone is an R-bilinear module map, or equivalently a map out of a tensor product since $p: M \otimes_R N \to L$ can be partially applied to yield $\varphi: M \to L^N = \hom_R(N, L)$. A pairing is **perfect** when φ is an isomorphism.

Definition 3.2.92 (Poincaré Duality)

For a closed, orientable n-manifold, following map $[M] \frown$ is an isomorphism:

$$D: H^{k}(M; R) \to H_{n-k}(M; R)$$
$$D(\alpha) = [M] \frown \alpha$$

Definition 3.2.93 (Projective Resolution)

Definitions

Definition 3.2.94 (Properly Discontinuous)

Definitions

Definition 3.2.95 (Pullback)

Definitions

Definition 3.2.96 (Pushout)

Definitions

Definition 3.2.97 (Quasi-isomorphism)

Definitions

Definition 3.2.98 (R-orientability)

Definitions

Definition 3.2.99 (Relative boundaries)

Definitions

Definition 3.2.100 (Relative cycles)

Definitions

Definition 3.2.101 (Relative homotopy groups)

Definitions

Definition 3.2.102 (Semilocally Simply Connected)

A space X is **semilocally simply connected** if every $x \in X$ has a neighborhood U such that $U \hookrightarrow X$ induces the trivial map $\pi_1(U; x) \to \pi_1(X, x)$.

Definition 3.2.103 (Short exact sequence)

Definitions

Definition 3.2.104 (Simplicial Complex)

Given a simplex $\sigma = [v_1 \cdots v_n]$, define the **face map**

$$\partial_i: \Delta^n \to \Delta^{n-1}$$

$$\sigma \mapsto [v_1 \cdots \widehat{v_i} \cdots v_n]$$

A simplicial complex is a set K satisfying

1.
$$\sigma \in K \implies \partial_i \sigma \in K$$
.

2.
$$\sigma, \tau \in K \implies \sigma \cap \tau = \emptyset, \ \partial_i \sigma, \text{ or } \partial_i \tau.$$

This amounts to saying that any collection of (n-1)-simplices uniquely determines an n-simplex (or its lack thereof), or that that map $\Delta^k \to X$ is a continuous injection from the standard simplex in \mathbb{R}^n .

3. $|K \cap B_{\varepsilon}(\sigma)| < \infty$ for every $\sigma \in K$, identifying $\sigma \subseteq \mathbb{R}^n$.

Definition 3.2.105 (Simplicial Map)

For a map

$$K \xrightarrow{f} L$$

between simplicial complexes, f is a simplicial map if for any set of vertices $\{v_i\}$ spanning a simplex in K, the set $\{f(v_i)\}$ are the vertices of a simplex in L.

Definition 3.2.106 (Simply Connected)

A space X is **simply connected** if and only if X is path-connected and every loop $\gamma: S^1 \to X$ can be contracted to a point.

Equivalently, there exists a lift $\hat{\gamma}: D^2 \to X$ such that $\hat{\gamma}|_{\partial D^2} = \gamma$.

Equivalently, for any two paths $p_1, p_2 : I \to X$ such that $p_1(0) = p_2(0)$ and $p_1(1) = p_2(1)$, there exists a homotopy $F : I^2 \to X$ such that $F|_0 = p_1$, $F|_0 = p_2$.

Equivalently, $\pi_1 X = 1$ is trivial.

Definition 3.2.107 (Singular Chain)

$$x \in C_n(x) \implies X = \sum_i n_i \sigma_i = \sum_i n_i (\Delta^n \xrightarrow{\sigma_i} X).$$

Definition 3.2.108 (Singular Cochain)

$$x \in C^n(x) \implies X = \sum_i n_i \psi_i = \sum_i n_i (\sigma_i \xrightarrow{\psi_i} X).$$

Definition 3.2.109 (Singular Homology)

Definitions

Definition 3.2.110 (Tor Group)

For an R-module

$$\operatorname{Tor}_{R}^{n}(-,B)=L_{n}(-\otimes_{R}B),$$

where L_n denotes the *n*th left derived functor.

Definition 3.2.111 (Universal Cover)

Definitions

Definition 3.2.112 (Weak Homotopy Equivalence)

Definitions

Definition 3.2.113 (Weak Topology)

Definitions

Definition 3.2.114 (Wedge Product)

Definitions

3.3 Homotopy

Definition 3.3.1 (Cone)

For a space X, defined as

$$CX = \frac{X \times I}{X \times \{0\}}.$$

Example: The cone on the circle CS^1

Note that the cone embeds X in a contractible space CX.

Definition 3.3.2 (Suspension)

Compact represented as $\Sigma X = CX \coprod_{\mathrm{id}_X} CX$, two cones on X glued along X. Explicitly given by

$$\Sigma X = \frac{X \times I}{(X \times \{0\}) \cup (X \times \{1\}) \cup (\{x_0\} \times I)}.$$

Definition 3.3.3 (Smash Product)

Definitions

Definition 3.3.4 (Moore Space)

Definitions

Definition 3.3.5 (Mapping Cone)

Definitions

Definition 3.3.6 (Mapping Cylinder)

Definitions

Definition 3.3.7 (Mapping Path Space)

Definitions

Definition 3.3.8 (Loop Space)

Definitions

3.3 Homotopy 28

Definition 3.3.9 (Eilenberg-MacLane Space)

Definitions

4 | Examples

4.1 Point-Set

4.1.1 Common Spaces and Operations

Example 4.1.1 (Nice spaces): The following are some standard "nice" spaces:

$$S^n, \mathbb{D}^n, T^n, \mathbb{RP}^n, \mathbb{CP}^n, \mathbb{M}, \mathbb{K}, \Sigma_g, \mathbb{RP}^{\infty}, \mathbb{CP}^{\infty}.$$

Example 4.1.2(A bank of counterexamples): The following are useful spaces to keep in mind to furnish counterexamples:

- Finite discrete sets with the discrete topology.
- Subspaces of \mathbb{R} : $(a,b),(a,b],(a,\infty)$, etc.
 - Sets given by real sequences, such as $\{0\} \cup \left\{\frac{1}{n} \mid n \in \mathbb{Z}^{\geq 1}\right\}$
- C
- The topologist's sine curve
- One-point compactifications
- \mathbb{R}^{ω} for ω the least uncountable ordinal (?)
- The Hawaiian earring
- The Cantor set

Examples of some more exotic spaces that show up less frequently:

- HP^n , quaternionic projective space
- The Dunce Cap
- The Alexander Horned sphere

Break these into separate examples and explain properties.

Example 4.1.3 (Non-Hausdorff spaces): The following spaces are non-Hausdorff:

• The cofinite topology on any infinite set.

Examples 29

4 Examples

- ℝ/ℚ
- The line with two origins.
- Any variety $V(J) \subseteq \widetilde{\mathbb{A}}_{/k}^n$ for k a field and $J \leq k[x_1, \dots, x_n]$.

Example 4.1.4(Constructed spaces): The following are some examples of ways to construct specific spaces for examples or counterexamples:

- Knot complements in S^3
- Covering spaces (hyperbolic geometry)
- Lens spaces
- Matrix groups
- Prism spaces
- Pair of pants
- Seifert surfaces
- Surgery
- Simplicial Complexes
 - Nice minimal example:

4.1 Point-Set 30

Fact 4.1.5 (Operations)
Some common operations that combine spaces:

4.1 Point-Set 31

4 Examples

- Cartesian product $A \times B$
- Wedge product $A \vee B$
- Connect Sum A # B
- Quotienting A/B
- Puncturing $A \setminus \{a_i\}$
- Smash product
- Join
- Cones
- Suspension
- Loop space
- Identifying a finite number of points

4.1.2 Alternative Topologies

Example 4.1.6 (Nonstandard topologies): The following are some nice examples of topologies to put on familiar spaces to produce counterexamples:

- Discrete
- Cofinite
- Discrete and Indiscrete
- Uniform

Example 4.1.7 (The cofinite topology): The cofinite topology on any space X is always

- Non-Hausdorff
- Compact

Proposition 4.1.8 (Topology is discrete if and only if points are open).

A topology (X, τ) is the discrete topology iff points $x \in X$ are open.

Proof (?).

If $\{x\}_i$ is open for each $x_i \in X$, then

- Any set U can be written as $U = \bigcup_{i \in I} x_i$ (for some I depending on U), and
- Unions of open sets are open.

Thus U is open.

Example 4.1.9 (The discrete topology): Some facts about the discrete topology:

- Definition: every subset is open.
- Always Hausdorff
- Compact iff finite

4.1 Point-Set 32

- Totally disconnected
- If X is discrete, every map $f: X \to Y$ for any Y is continuous (obvious!)

Example 4.1.10 (The indiscrete topology): Some facts about the indiscrete topology:

- Definition: the only open sets are \emptyset, X
- Never Hausdorff
- If Y is indiscrete, every map $f: X \to Y$ is continuous (obvious!)
- Always compact

4.1.3 Connectedness

Space	Connected	Locally Connected
\mathbb{R}	√	√
$[0,1] \cup [2,3]$		\checkmark
Sine Curve	\checkmark	
\mathbb{Q}		

5 "Analysis"-esque Results in Topology

Proposition 5.0.1 (The rationals are neither open nor closed). $\mathbb{Q} \subset \mathbb{R}$ is not open and not closed.

This follows because every neighborhood of $q \in \mathbb{Q}$ contains an irrational and every neighborhood of $q' \in \mathbb{R} \setminus \mathbb{Q}$ contains a rational.

6 Theorems

Proposition 6.0.1 (The continuous image of a...).

The following properties are "pushed forward" through continuous maps, in the sense that if property P holds for X and $f: X \to Y$, then f(X) also satisfies P:

- Compactness
- Separability
- If f is surjective:
 - Connectedness

- Density

The following are **not preserved**:

- Openness
- Closedness

See more here.

6.1 Metric Spaces and Analysis

Theorem 6.1.1 (Cantor's Intersection Theorem).

A bounded collection of nested closed sets $C_1 \supset C_2 \supset \cdots$ in a metric space X is nonempty $\iff X$ is complete.

Theorem 6.1.2 (Cantor's Nested Intervals Theorem).

If $\{[a_n, b_n] \mid n \in \mathbb{Z}^{\geq 0}\}$ is a nested sequence of compact intervals in a topological space X, then their intersection is nonempty.

If X is a complete metric space and the diameters $\operatorname{diam}([a_n, b_n]) \xrightarrow{n \to \infty} 0$, then their intersection contains exactly one point.

Proposition 6.1.3 (Continuous on compact \implies uniformly continuous).

A continuous function on a compact set is uniformly continuous.

Proof(?).

Take $\left\{B_{\frac{\varepsilon}{2}}(y) \mid y \in Y\right\} \rightrightarrows Y$, pull back to an open cover of X, has Lebesgue number $\delta_L > 0$, then $x' \in B_{\delta_L}(x) \implies f(x), f(x') \in B_{\frac{\varepsilon}{2}}(y)$ for some y.

Corollary 6.1.4(Lipschitz implies uniformly continuous).

Lipschitz continuity implies uniform continuity (take $\delta = \varepsilon/C$)

Remark 6.1.5: Counterexample to the converse: $f(x) = \sqrt{x}$ on [0, 1] has unbounded derivative.

Theorem 6.1.6 (Extreme Value Theorem).

For $f: X \to Y$ continuous with X compact and Y ordered in the order topology, there exist points $c, d \in X$ such that $f(x) \in [f(c), f(d)]$ for every x.

Theorem 6.1.7 (Sequentially compact if and only if complete and totally bounded). A metric space X is sequentially compact iff it is complete and totally bounded.

Theorem 6.1.8 (Totally bounded if and only if Cauchy subsequences exist).

A metric space is totally bounded iff every sequence has a Cauchy subsequence.

Theorem 6.1.9 (Compact if and only if complete and totally bounded).

A metric space is compact iff it is complete and totally bounded.

Theorem 6.1.10 (Baire).

If X is a complete metric space, X is a **Baire space**: the intersection of countably many dense open sets in X is again dense in X.

6.2 Compactness

Theorem 6.2.1 (Closed if and only if compact in Hausdorff spaces).

 $U \subset X$ a Hausdorff spaces is closed \iff it is compact.

Theorem 6.2.2(Closed subset of compact is compact).

A closed subset A of a compact set B is compact.

Proof (?).

- Let $\{A_i\} \rightrightarrows A$ be a covering of A by sets open in A.
- Each $A_i = B_i \cap A$ for some B_i open in B (definition of subspace topology)
- Define $V = \{B_i\}$, then $V \rightrightarrows A$ is an open cover.
- Since A is closed, $W := B \setminus A$ is open
- Then $V \cup W$ is an open cover of B, and has a finite subcover $\{V_i\}$
- Then $\{V_i \cap A\}$ is a finite open cover of A.

Theorem 6.2.3 (Continuous image of compact is compact).

The continuous image of a compact set is compact.

Proof(?).

Let $f: X \to f(X)$ be continuous. Take an open covering $\mathcal{U} \rightrightarrows f(X)$, then $f^{-1}(\mathcal{U}) \rightrightarrows X$, which is cover by opens since f is continuous. Take a finite subcover by compactness of X, then they push forward to a finite subcover of f(X).

Theorem 6.2.4(Closed in Hausdorff \implies compact).

A closed subset of a Hausdorff space is compact.

6.3 Separability

6.2 Compactness 35

Proposition 6.3.1 (Properties preserved under retracts).

A retract of a Hausdorff/connected/compact space is closed/connected/compact respectively.

Proposition 6.3.2(?).

Points are closed in T_1 spaces.

6.4 Maps and Homeomorphism

Theorem 6.4.1 (Continuous bijections from compact to Hausdorff are homeomorphisms).

A continuous bijection $f: X \to Y$ with X is compact and Y is Hausdorff is a homeomorphism.

Proof (?).

Show that f^{-1} is continuous by showing f is a closed map. If $A \subseteq X$ is closed in a compact space, A is compact. The continuous image of a compact set is compact, so f(A) is compact. A compact set in a Hausdorff space is closed, so f(A) is closed in Y.

Remark 6.4.2(On retractions): Every space has at least one retraction - for example, the constant map $r: X \to \{x_0\}$ for any $x_0 \in X$.

Theorem 6.4.3 (When open maps are homeomorphisms).

A continuous bijective open map is a homeomorphism.

Theorem 6.4.4 (Characterizations of continuous maps, Munkres 18.1).

For $f: X \to Y$, TFAE:

- f is continuous
- $A \subset X \implies f(\operatorname{cl}_X(A)) \subset \operatorname{cl}_X(f(A))$
- B closed in $Y \implies f^{-1}(B)$ closed in X.
- For each $x \in X$ and each neighborhood $V \ni f(x)$, there is a neighborhood $U \ni x$ such that $f(U) \subset V$.

Proof (?).

See Munkres page 104.

Theorem 6.4.5 (Maps from compact to Hausdorff spaces, Lee A.52).

If $f: X \to Y$ is continuous where X is compact and Y is Hausdorff, then

• f is a closed map.

6.3 Separability 36

6 Theorems

- If f is surjective, f is a quotient map.
- If f is injective, f is a topological embedding.
- If f is bijective, it is a homeomorphism.

6.5 The Tube Lemma

Theorem 6.5.1 (The Tube Lemma).

Let X, Y be spaces with Y compact, and let $x_0 \in X$. Let $N \subseteq X \times Y$ be an open set containing the slice $x_0 \times Y$, then there is a neighborhood $W \ni x$ in X such that $N \supset W \times Y$:

Figure 1: Image_2021-05-21-00-28-13

Remark 6.5.2: Compactness in one factor is a necessary condition. For a counterexample, \mathbb{R}^2 and let N be the set contained between a Gaussian and its reflection across the x-axis. Then no tube about y = 0 is entirely contained within N:

6.5 The Tube Lemma 37

6 Theorems

Figure 2: image_2021-05-21-01-39-26

Proof (Sketch).

• For each $y \in Y$ choose neighborhoods $A_y, B_y \subseteq Y$ such that

$$(x,y) \in A_y \times B_y \subseteq U$$
.

- By compactness of Y, reduce this to finitely many $B_y \rightrightarrows Y$ so $Y = \bigcup_{j=1}^n B_{y_j}$
- Set $O := \bigcap_{j=1}^n B_{y_j}$; this works.

Proof (Detailed proof of the Tube Lemma).

Check this proof!

- Let $\{U_j \times V_j \mid j \in J\} \rightrightarrows X \times Y$.
- Fix a point $x_0 \in X$, then $\{x_0\} \times Y \subset N$ for some open set N.
- By the tube lemma, there is a $U^x \subset X$ such that the tube $U^x \times Y \subset N$.
- Since $\{x_0\} \times Y \cong Y$ which is compact, there is a finite subcover $\{U_j \times V_j \mid j \leq n\} \Rightarrow \{x_0\} \times Y$.
- "Integrate the X": write

$$W = \bigcap_{j=1}^{n} U_j,$$

then $x_0 \in W$ and W is a finite intersection of open sets and thus open.

6.5 The Tube Lemma 38

- Claim: $\{U_j \times V_j \mid j \leq n\} \rightrightarrows W \times Y$
 - Let $(x,y) \in W \times Y$; want to show $(x,y) \in U_j \times V_j$ for some $j \leq n$.
 - Then $(x_0, y) \in \{x_0\} \times Y$ is on the same horizontal line
 - $-(x_0,y) \in U_j \times V_j$ for some j by construction
 - So $y \in V_j$ for this j
 - Since $x \in W$, $x \in U_j$ for every j, thus $x \in U_j$.
 - So $(x,y) \in U_j \times V_j$

7 | Summary of Standard Topics

- Algebraic topology topics:
 - Classification of compact surfaces
 - Euler characteristic
 - Connect sum
 - Homology and cohomology groups
 - Fundamental group
 - Singular/cellular/simplicial homology
 - Mayer-Vietoris long exact sequences for homology and cohomology
 - Diagram chasing
 - Degree of maps from $S^n \to S^n$
 - Orientability, compactness
 - Top-level homology and cohomology
 - Reduced homology and cohomology
 - Relative homology
 - Homotopy and homotopy invariance
 - Deformation retract
 - Retract
 - Excision
 - Kunneth formula
 - Factoring maps
 - Fundamental theorem of algebra
- Algebraic topology theorems:
 - Brouwer fixed point theorem
 - Poincaré lemma
 - Poincaré duality
 - de Rham theorem
 - Seifert-van Kampen theorem
- Covering space theory topics:
 - Covering maps

- Free actions
- Properly discontinuous action
- Universal cover
- Correspondence between covering spaces and subgroups of the fundamental group of the base
- Lifting paths
- Homotopy lifting property
- Deck transformations
- The action of the fundamental group
- Normal/regular cover

8 | Examples: Algebraic Topology

8.1 Standard Spaces and Modifications

Example 8.1.1 (Spheres and Balls):

$$\mathbb{D}^n = \mathbb{B}^n := \left\{ \mathbf{x} \in \mathbb{R}^n \mid \|\mathbf{x}\| \le 1 \right\} \mathbb{S}^n \qquad := \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \|\mathbf{x}\| = 1 \right\} = \partial \mathbb{D}^n$$

Note: I'll immediately drop the blackboard notation, this is just to emphasize that they're "canonical" objects.

The sphere can be constructed in several equivalent ways:

- $S^n \cong D^n/\partial D^n$: collapsing the boundary of a disc is homeomorphic to a sphere.
- $S^n \cong D^n \coprod_{n \in \mathbb{N}} D^n$: gluing two discs along their boundary.

Note the subtle differences in dimension: S^n is a manifold of dimension n embedded in a space of dimension n + 1.

Figure 3: Low Dimensional Discs/Balls vs Spheres

Example 8.1.2 (Real Projective Space): Constructed in one of several equivalent ways:

- S^n/\sim where $\mathbf{x}\sim -\mathbf{x},$ i.e. antipodal points are identified.
- The space of lines in \mathbb{R}^{n+1} .

One can also define $\mathbb{RP}^{\infty} := \varinjlim_{n} \mathbb{RP}^{n}$. Fits into a fiber bundle of the form

Example 8.1.3 (Complex Projective Space): Defined in a similar ways,

• Taking the unit sphere in \mathbb{C}^n and identifying $\mathbf{z} \sim -\mathbf{z}$.

• The space of lines in \mathbb{C}^{n+1}

Can similarly define $\mathbb{CP}^{\infty} := \varinjlim_{n} \mathbb{CP}^{n}$. Fits into a fiber bundle of the form

$$S^1 \longrightarrow S^{2n+1} \downarrow \\ \mathbb{CP}^n$$

Example 8.1.4 (*Torii*): The n-torus, defined as

$$T^n := \prod_{j=1}^n S^1 = S^1 \times S^1 \times \cdots.$$

Example 8.1.5 (Grassmannians): The real Grassmannian, $Gr(n,k)_{/\mathbb{R}}$, i.e. the set of k dimensional subspaces of \mathbb{R}^n . One can similar define $Gr(n,k)_{\mathbb{C}}$ for complex subspaces. Note that $\mathbb{RP}^n = Gr(n,1)_{\mathbb{R}}$ and $\mathbb{CP}^n = Gr(n,1)_{/\mathbb{C}}$.

Example 8.1.6 (Stiefel Manifolds): The Stiefel manifold $V_n(k)_{\mathbb{R}}$, the space of orthonormal k-frames in \mathbb{R}^n ?

Example 8.1.7(*Lie Groups*): Lie Groups:

- The general linear group, $GL_n(\mathbb{R})$
 - The special linear group $SL_n(\mathbb{R})$
- The orthogonal group, $O_n(\mathbb{R})$
 - The special orthogonal group, $SO_n(\mathbb{R})$
- The real unitary group, $U_n(\mathbb{C})$
 - The special unitary group, $SU_n(\mathbb{R})$
- The symplectic group Sp(2n)

Example 8.1.8 (More random geometric examples): Some other spaces that show up, but don't usually have great algebraic topological properties:

- Affine *n*-space over a field $\mathbb{A}^n(k) = k^n \rtimes GL_n(k)$
- The projective space $\mathbb{P}^n(k)$
- The projective linear group over a ring R, $PGL_n(R)$
- The projective special linear group over a ring R, $PSL_n(R)$
- The modular groups $PSL_n(\mathbb{Z})$

- Specifically $PSL_2(\mathbb{Z})$

Example 8.1.9 (Eilenberg-MacLane Spaces): K(G, n) is an Eilenberg-MacLane space, the homotopy-unique space satisfying

$$\pi_k(K(G, n)) = \begin{cases} G & k = n, \\ 0 & \text{else} \end{cases}$$

Some known examples:

- $K(\mathbb{Z},1) = S^1$ $K(\mathbb{Z},2) = \mathbb{CP}^{\infty}$

Example 8.1.10 (Moore Spaces): M(G, n) is a Moore space, the homotopy-unique space satisfying

$$H_k(M(G, n); G) = \begin{cases} G & k = n, \\ 0 & k \neq n. \end{cases}$$

Some known examples:

- $M(\mathbb{Z},n)=S^n$
- $M(\mathbb{Z}/2\mathbb{Z},1) = \mathbb{RP}^2$
- $M(\mathbb{Z}/p\mathbb{Z},n)$ is made by attaching e^{n+1} to S^n via a degree p map.

Fact 8.1.11 (about standard low-dimensional spaces)

- $\mathcal{M} \simeq S^1$ where \mathcal{M} is the Mobius band.
- $\mathbb{CP}^n = \mathbb{C}^n \coprod \mathbb{CP}^{n-1} = \coprod_{i=0}^n \mathbb{C}^i$
- $\mathbb{CP}^n = S^{2n+1}/S^n$
- $S^n/S^k \simeq S^n \vee \Sigma S^k$.

Remark 8.1.12(Accidental isomorphisms): In low dimensions, there are some "accidental" homeomorphisms:

- $\mathbb{RP}^1 \cong S^1$
- $\mathbb{CP}^1 \cong S^2$
- $SO(3) \cong \mathbb{RP}^2$?

8.2 Modifying Known Spaces

Example 8.2.1 (Deleting points): Write D(k, X) for the space X with $k \in \mathbb{N}$ distinct points deleted, i.e. the punctured space $X - \{x_1, x_2, \dots x_k\}$ where each $x_i \in X$.

Example 8.2.2 (Bouquets of Spheres): The "generalized uniform bouquet"? $\mathcal{B}^n(m) = \bigvee_{i=1}^n S^m$.

There's no standard name for this, but it's an interesting enough object to consider!

Example 8.2.3 (Other ways to modify a known space): Possible modifications to a space X:

- Remove a line segment
- Remove an entire line/axis
- Remove a hole
- Quotient by a group action (e.g. antipodal map, or rotation)
- Remove a knot
- Take complement in ambient space

9 | Low Dimensional Homology Examples

Fact 9.0.1 (Table of low-dimensional homology)

$$S^{1} = \begin{bmatrix} \mathbb{Z}, & \mathbb{Z}, & 0, & 0, & 0, & 0 \to \end{bmatrix}$$

$$\mathcal{M} = \begin{bmatrix} \mathbb{Z}, & \mathbb{Z}, & 0, & 0, & 0, & 0 \to \end{bmatrix}$$

$$\mathbb{RP}^{1} = \begin{bmatrix} \mathbb{Z}, & \mathbb{Z}, & 0, & 0, & 0, & 0 \to \end{bmatrix}$$

$$\mathbb{RP}^{2} = \begin{bmatrix} \mathbb{Z}, & \mathbb{Z}_{2}, & 0, & 0, & 0, & 0 \to \end{bmatrix}$$

$$\mathbb{RP}^{3} = \begin{bmatrix} \mathbb{Z}, & \mathbb{Z}_{2}, & 0, & \mathbb{Z}, & 0, & 0 \to \end{bmatrix}$$

$$\mathbb{RP}^{4} = \begin{bmatrix} \mathbb{Z}, & \mathbb{Z}_{2}, & 0, & \mathbb{Z}_{2}, & 0, & 0 \to \end{bmatrix}$$

$$S^{2} = \begin{bmatrix} \mathbb{Z}, & \mathbb{Z}_{2}, & 0, & \mathbb{Z}_{2}, & 0, & 0 \to \end{bmatrix}$$

$$\mathbb{T}^{2} = \begin{bmatrix} \mathbb{Z}, & \mathbb{Z}^{2}, & \mathbb{Z}, & 0, & 0, & 0 \to \end{bmatrix}$$

$$\mathbb{K} = \begin{bmatrix} \mathbb{Z}, & \mathbb{Z}^{2}, & \mathbb{Z}, & 0, & 0, & 0 \to \end{bmatrix}$$

$$\mathbb{CP}^{1} = \begin{bmatrix} \mathbb{Z}, & 0, & \mathbb{Z}, & 0, & 0, & 0 \to \end{bmatrix}$$

$$\mathbb{CP}^{2} = \begin{bmatrix} \mathbb{Z}, & 0, & \mathbb{Z}, & 0, & 0, & 0 \to \end{bmatrix}$$

10 | Table of Homotopy and Homology Structures

Remark 10.0.1: The following is a giant list of known homology/homotopy.

X	$\pi_*(X)$	$H_*(X)$	CW Structure	$H^*(X)$
\mathbb{R}^1	0	0	$\mathbb{Z} \cdot 1 + \mathbb{Z} \cdot x$	0
\mathbb{R}^n	0 k	0	$(\mathbb{Z}\cdot 1 + \mathbb{Z}\cdot x)^n$	0
$D(k, \mathbb{R}^n)$	$\pi_* \bigvee S^1$	$\bigoplus H_*M(\mathbb{Z},1)$	1 + kx	?
B^n	$\pi_*(\mathbb{R}^n)$	$\overset{k}{H_*}(\mathbb{R}^n)$	$1 + x^n + x^{n+1}$	0
S^n	$[0\ldots,\mathbb{Z},?\ldots]$	$H_*M(\mathbb{Z},n)$	$1 + x^n \text{ or } \sum_{i=0}^n 2x^i$	$\mathbb{Z}[_nx]/(x^2)$
D(1 C7)	$\pi_* \bigvee^{k-1} S^1$	(T)	1=0	
$D(k, S^n)$	$\pi_* \bigvee S^1$	$\bigoplus_{k=1} H_*M(\mathbb{Z},1)$	$1 + (k-1)x^1$?
T^2	$\pi_*S^1 \times \pi_*S^1$	$(H_*M(\mathbb{Z},1))^2 \times H_*M(\mathbb{Z},2)$	$1 + 2x + x^2$	$\Lambda(_1x_1,_1x_2)$
T^n	$\prod \pi_* S^1$	$\prod_{i=1}^{n} (H_*M(\mathbb{Z},i))^{\binom{n}{i}}$	$(1+x)^n$	$\Lambda(_1x_1,_1x_2,\ldots_1x_n)$
$D(k, T^n)$ $S^1 \vee S^1$	$[0,0,0,0,\ldots]?$ $\pi_*S^1*\pi_*S^1$	$[0, 0, 0, 0, \dots]$? $(H_*M(\mathbb{Z}, 1))^2$	$1+x \\ 1+2x$?
n			·	•
$\bigvee_{i=1}^{S^1}$	$*^n\pi_*S^1$	$\prod H_*M(\mathbb{Z},1)$	1+x	?
\mathbb{RP}^1 \mathbb{RP}^2	π_*S^1 $\pi_*K(\mathbb{Z}/2\mathbb{Z},1) +$	$H_*M(\mathbb{Z},1)$ $H_*M(\mathbb{Z}/2\mathbb{Z},1)$	$ 1 + x 1 + x + x^2 $	${}_0\mathbb{Z} imes {}_1\mathbb{Z}$ ${}_0\mathbb{Z} imes {}_2\mathbb{Z}/2\mathbb{Z}$
	$\pi_* K(\mathbb{Z}/2\mathbb{Z},1) + \\ \pi_* S^2$. () , ,		J 2 ,
\mathbb{RP}^3	$\pi_*K(\mathbb{Z}/2\mathbb{Z},1) + \pi_*S^3$	$H_*M(\mathbb{Z}/2\mathbb{Z},1) + H_*M(\mathbb{Z},3)$	$1 + x + x^2 + x^3$	$_0\mathbb{Z} \times _2\mathbb{Z}/2\mathbb{Z} \times _3\mathbb{Z}$
\mathbb{RP}^4	$\pi_* K(\mathbb{Z}/2\mathbb{Z},1) + \pi_* S^4$	$H_*M(\mathbb{Z}/2\mathbb{Z},1) + H_*M(\mathbb{Z}/2\mathbb{Z},3)$	$1 + x + x^2 + x^3 + x^4$	$_0\mathbb{Z} \times (_2\mathbb{Z}/2\mathbb{Z})^2$
$\mathbb{RP}^n, n \geq 4$	- K(7/27 1)	$\prod H_*M(\mathbb{Z}/2\mathbb{Z},i)$	\sum_{m}^{n}	$_0\mathbb{Z} imes\prod^{n/2}{_2\mathbb{Z}/2\mathbb{Z}}$
even $n \ge 4$	$\pi_*K(\mathbb{Z}/2\mathbb{Z},1) + \pi_*S^n$	$\prod_{\substack{11*1\\ \text{odd } i < n}} \prod_{\substack{11*1\\ \text{odd } i < n}} (\mathbb{Z}/2\mathbb{Z}, t)$	$\sum_{i=1}^{n} x^{i}$ $\sum_{i=1}^{n} x^{i}$	$ \begin{array}{c} 0 \mathbb{Z} \wedge \prod_{i=1}^{2\mathbb{Z}/2\mathbb{Z}} \\ \end{array} $
$\mathbb{RP}^n, n \ge 4$	$\pi_*K(\mathbb{Z}/2\mathbb{Z},1) +$	$\prod H_*M(\mathbb{Z}/2\mathbb{Z},i) \times$	$\sum_{i=1}^{n} x^{i}$	$H^*(\mathbb{RP}^{n-1}) \times_n \mathbb{Z}$
odd	π_*S^n	odd $i \le n-2$ H_*S^n	i=1	
\mathbb{CP}^1	$\pi_*K(\mathbb{Z},2) + \pi_*S^3$	H_*S^2	$x^{0} + x^{2}$	$\mathbb{Z}[2x]/(2x^2)$
\mathbb{CP}^2	$\pi_*K(\mathbb{Z},2) + \pi_*S^5$	$H_*S^2 \times H_*S^4$	$x^{0} + x^{2} + x^{4}$	$\mathbb{Z}[2x]/(2x^3)$
$\mathbb{CP}^n, n \geq 2$	$\pi_* K(\mathbb{Z}, 2) + \\ \pi_* S^{2n+1}$	$\prod^{n} H_*S^{2i}$	$\sum_{i=1}^{N} x^{2i}$	$\mathbb{Z}[2x]/(2x^{n+1})$
Mobius Band	π_*S^1	${}^{i=1}_{H_*S^1}$	$ \begin{array}{c} i = 1 \\ 1 + x \end{array} $?
Klein Bottle	$K(\mathbb{Z} \rtimes_{-1} \mathbb{Z}, 1)$	$H_*S^1 \times H_*\mathbb{RP}^\infty$	$1 + 2x + x^2$?

Fact 10.0.2 (used to fill out the above table)

- \mathbb{R}^n is a contractible space, and so $[S^m, \mathbb{R}^n] = 0$ for all n, m which makes its homotopy groups all zero.
- $D(k, \mathbb{R}^n) = \mathbb{R}^n \{x_1 \dots x_k\} \simeq \bigvee_{i=1}^k S^i$ by a deformation retract.
- $S^n \cong B^n/\partial B^n$ and employs an attaching map

$$\varphi: (D^n, \partial D^n) \to S^n$$

 $(D^n, \partial D^n) \mapsto (e^n, e^0).$

- $B^n \simeq \mathbb{R}^n$ by normalizing vectors.
- Use the inclusion $S^n \hookrightarrow B^{n+1}$ as the attaching map.
- $\mathbb{CP}^1 \cong S^2$.
- $\mathbb{RP}^1 \cong S^1$.
- Use $\left[\pi_1, \prod\right] = 0$ and the universal cover $\mathbb{R}^1 \twoheadrightarrow S^1$ to yield the cover $\mathbb{R}^n \twoheadrightarrow T^n$.
- Take the universal double cover $S^n \to \mathbb{RP}^n$ to get equality in $\pi_{i\geq 2}$.
- Use $\mathbb{CP}^n = S^{2n+1}/S^1$
- Alternatively, the fundamental group is $\mathbb{Z} * \mathbb{Z}/bab^{-1}a$. Use the fact the $\tilde{K} = \mathbb{R}^2$.
- $M \simeq S^1$ by deformation-retracting onto the center circle.
- $D(1, S^n) \cong \mathbb{R}^n$ and thus $D(k, S^n) \cong D(k-1, \mathbb{R}^n) \cong \bigvee^{k-1} S^1$

11 | Theorems: Algebraic Topology

11.1 General Homotopies

Fact 11.1.1 (Contracting Spaces in Products)

$$X \times \mathbb{R}^n \simeq X \times \operatorname{pt} \cong X$$
.

Fact 11.1.2 (π_0, H_0 detect path components)

The ranks of π_0 and H_0 are the number of path components.

Theorem 11.1.3 (Convex sets admit homotopies).

Any two continuous functions into a convex set are homotopic.

Proof (?).

The linear homotopy. Supposing X is convex, for any two points $x, y \in X$, the line tx + (1-t)y is contained in X for every $t \in [0,1]$. So let $f, g: Z \to X$ be any continuous functions into X.

Then define $H: Z \times I \to X$ by H(z,t) = tf(z) + (1-t)g(z), the linear homotopy between f, g. By convexity, the image is contained in X for every t, z, so this is a homotopy between f, g.

11.2 Fundamental Group

~

11.2.1 Definition

Definition 11.2.1 (The Fundamental Group)

Given a pointed space (X, x_0) , we define the fundamental group $\pi_1(X)$ as follows:

• Take the set

$$L := \left\{ \alpha : S^1 \to X \mid \alpha(0) = \alpha(1) = x_0 \right\}.$$

• Define an equivalence relation $\alpha \sim \beta$ iff $\alpha \simeq \beta$ in X, so there exists a homotopy

$$H:S^{1} \times I \to X$$

$$\begin{cases} H(s,0) = \alpha(s) \\ H(s,1) = \beta(s), \end{cases}$$

- Check that this relation is
 - Symmetric: Follows from considering H(s, 1-t).
 - Reflexive: Take $H(s,t) = \alpha(s)$ for all t.
 - Transitive: Follows from reparameterizing.
 - Define L/\sim , which contains elements like $[\alpha]$ and $[\mathrm{id}_{x_0}]$, the equivalence classes of loops after quotienting by this relation.
 - Define a product structure: for $[\alpha], [\beta] \in L/\sim$, define $[\alpha][\beta] = [\alpha \cdot \beta]$, where we just need to define a product structure on actual loops. Do this by reparameterizing:

$$(\alpha \cdot \beta)(s) \coloneqq \begin{cases} \alpha(2s) & s \in [0, 1/2] \\ \beta(2s-1) & s \in [1/2, 1]. \end{cases}$$

- Check that this map is:
 - Continuous: by the pasting lemma and assumed continuity of f, g.
 - Well-defined: ?
- Check that this is actually a group

- Identity element: The constant loop $id_{x_0}: I \to X$ where $id_{x_0}(t) = x_0$ for all t.
- Inverses: The reverse loop $\bar{\alpha}(t) := \alpha(1-t)$.
- Closure: Follows from the fact that start/end points match after composing loops, and reparameterizing.
- Associativity: Follows from reparameterizing.

Remark 11.2.2(a summary): Elements of the fundamental group are homotopy classes of loops, and every continuous map between spaces induces a homomorphism on fundamental groups.

11.2.2 Conjugacy in π_1 :

- See Hatcher 1.19, p.28
- See Hatcher's proof that π_1 is a group
- See change of basepoint map

11.2.3 Calculating π_1

Proposition 11.2.3 (Using universal covers).

If $\tilde{X} \to X$ the universal cover of X and $G \curvearrowright \tilde{X}$ with $\tilde{X}/G = X$ then $\pi_1(X) = G$.

Proposition 11.2.4 (Killing homotopy).

 $\pi_1 X$ for X a CW-complex only depends on the 2-skeleton X^2 , and in general $\pi_k(X)$ only depends on the k+2-skeleton. Thus attaching k+2 or higher cells does not change π_k .

Theorem 11.2.5 (Seifert-van Kampen).

Suppose $X = U_1 \cup U_2$ where U_1, U_2 , and $U := U_1 \cap U_2 \neq \emptyset$ are open and path-connected ^a, and let $x_0 \in U$.

Then the inclusion maps $i_1:U_1\hookrightarrow X$ and $i_2:U_2\hookrightarrow X$ induce the following group homomorphisms:

$$i_1^*: \pi_1(U_1, x_0) \to \pi_1(X, x_0)$$

 $i_2^*: \pi_1(U_2, x_0) \to \pi_1(X, x_0)$

There is a natural isomorphism

$$\pi_1(X) \cong \pi_1 U *_{\pi_1(U \cap V)} \pi_1 V,$$

where the amalgamated product can be computed as follows: A $\mathbf{pushout}$ is the colimit of the following diagram

48

Figure 4: Example of a pushout of spaces

For groups, the pushout is realized by the amalgamated free product: if

$$\begin{cases} \pi_1 U_1 = A = \left\langle G_A \mid R_A \right\rangle \\ \pi_1 U_2 = B = \left\langle G_B \mid R_B \right\rangle \end{cases} \implies A *_Z B \coloneqq \left\langle G_A, G_B \mid R_A, R_B, T \right\rangle$$

where T is a set of relations given by

$$T = \left\{ \iota_1^*(z)\iota_2^*(z)^{-1} \mid z \in \pi_1(U_1 \cap U_2) \right\},\,$$

where $\iota_2^*(z)^{-1}$ denotes the inverse group element. If we have presentations

$$\pi_1(U, x_0) = \left\langle u_1, \dots, u_k \mid \alpha_1, \dots, \alpha_l \right\rangle$$

$$\pi_1(V, w) = \left\langle v_1, \dots, v_m \mid \beta_1, \dots, \beta_n \right\rangle$$

$$\pi_1(U \cap V, x_0) = \left\langle w_1, \dots, w_p \mid \gamma_1, \dots, \gamma_q \right\rangle$$

then

$$\pi_{1}(X, w) = \left\langle u_{1}, \dots, u_{k}, v_{1}, \dots, v_{m} \middle| \begin{cases} \alpha_{1}, \dots, \alpha_{l} \\ \beta_{1}, \dots, \beta_{n} \\ I(w_{1}) J(w_{1})^{-1}, \dots, I(w_{p}) J(w_{p})^{-1} \end{cases} \right\rangle$$

$$= \frac{\pi_1(U_1) * \pi_1(U_2)}{\left\langle \left\{ \iota_1^*(w_i) \iota_2^*(w_i)^{-1} \mid 1 \le i \le p \right\} \right\rangle}$$

^aNote that the hypothesis that $U_1 \cap U_2$ is path-connected is necessary: take S^1 with U, V neighborhoods of the poles, whose intersection is two disjoint components.

Proof (Sketch).

- Construct a map going backwards
- Show it is surjective
 - "There and back" paths
- Show it is injective
 - Divide $I \times I$ into a grid

Example 11.2.6 (Pushing out with van Kampen): $A = \mathbb{Z}/4\mathbb{Z} = \langle x \mid x^4 \rangle, B = \mathbb{Z}/6\mathbb{Z} = \langle y \mid x^6 \rangle, Z = \mathbb{Z}/2\mathbb{Z} = \langle z \mid z^2 \rangle$. Then we can identify Z as a subgroup of A, B using $\iota_A(z) = x^2$ and $\iota_B(z) = y^3$. So

$$A *_{Z} B = \langle x, y \mid x^{4}, y^{6}, x^{2}y^{-3} \rangle$$

Proposition 11.2.7(π_1 of a wedge).

$$\pi_1(X \vee Y) = \pi_1(X) * \pi_1(Y).$$

Proof(?).

By van Kampen, this is equivalent to the amalgamated product over $\pi_1(x_0) = 1$, which is just a free product.

11.2.4 Facts

Fact 11.2.8

 H_1 is the abelianization of π_1 .

Proposition 11.2.9(π_1 of a product, Hatcher 1.12).

If X, Y are path-connected, then

$$\pi_1(X \times Y) = \pi_1(X) \times \pi_2(Y).$$

Proof (sketch).

- A loop in $X \times Y$ is a continuous map $\gamma: I \to X \times Y$ given by $\gamma(t) = (f(t), g(t))$ in components.
- γ being continuous in the product topology is equivalent to f,g being continuous maps to X,Y respectively.
- Similarly a homotopy $F: I^2 \to X \times Y$ is equivalent to a pair of homotopies f_t, g_t of the corresponding loops.

• So the map $[\gamma] \mapsto ([f], [g])$ is the desired bijection.

Proposition 11.2.10 (π_1 detects simply-connectedness).

 $\pi_1(X) = 1$ iff X is simply connected.

Proof(?).

 \Rightarrow : Suppose X is simply connected. Then every loop in X contracts to a point, so if α is a loop in X, $[\alpha] = [\mathrm{id}_{x_0}]$, the identity element of $\pi_1(X)$. But then there is only one element in in this group.

 \Leftarrow : Suppose $\pi_1(X) = 0$. Then there is just one element in the fundamental group, the identity element, so if α is a loop in X then $[\alpha] = [\mathrm{id}_{x_0}]$. So there is a homotopy taking α to the constant map, which is a contraction of α to a point.

:::{.fact "Unsorted facts"}

• For a graph G, we always have $\pi_1(G) \cong \mathbb{Z}^n$ where n = |E(G - T)|, the complement of the set of edges in any maximal tree. Equivalently, $n = 1 - \chi(G)$. Moreover, $X \simeq \bigvee^n S^1$ in this case.

:::

11.3 General Homotopy Theory

Theorem 11.3.1 (Whitehead's Theorem).

A map $X \xrightarrow{f} Y$ on CW complexes that is a weak homotopy equivalence (inducing isomorphisms in homotopy) is in fact a homotopy equivalence.

⚠ Warning 11.3.2

Individual maps may not work: take $S^2 \times \mathbb{RP}^3$ and $S^3 \times \mathbb{RP}^2$ which have isomorphic homotopy but not homology.

Theorem 11.3.3 (Hurewicz).

The Hurewicz map on an n-1-connected space X is an isomorphism $\pi_{k \leq n} X \to H_{k \leq n} X$. I.e. for the minimal $i \geq 2$ for which $\pi_{iX} \neq 0$ but $\pi_{\leq i-1} X = 0$, $\pi_{iX} \cong H_{iX}$.

Theorem 11.3.4(Cellular Approximation).

Any continuous map between CW complexes is homotopy equivalent to a cellular map.

Example 11.3.5 (Applications of cellular approximation):

- $\pi_{k \le n} S^n = 0$
- $\pi_n(X) \cong \pi_n(X^{(n)})$

Theorem 11.3.6 (Freudenthal Suspension).

Theorem

- :::{.fact title="Unsorted facts about higher homotopy groups}
 - $\pi_{i\geq 2}(X)$ is always abelian.
 - X simply connected $\implies \pi_k(X) \cong H_k(X)$ up to and including the first nonvanishing H_k
 - $\pi_k \bigvee X \neq \prod \pi_k X$ (counterexample: $S^1 \vee S^2$)
 - Nice case: $\pi_1 \bigvee X = *\pi_1 X$ by Van Kampen.
 - $\pi_i(\widehat{X}) \cong \pi_i(X)$ for $i \geq 2$ whenever $\widehat{X} \twoheadrightarrow X$ is a universal cover.
 - $\pi_i(S^n) = 0$ for i < n, $\pi_n(S^n) = \mathbb{Z}$

- Not necessarily true that
$$\pi_i(S^n) = 0$$
 when $i > n!!!$
 \diamondsuit E.g. $\pi_3(S^2) = \mathbb{Z}$ by Hopf fibration

- $S^n/S^k \simeq S^n \vee \Sigma S^k$
 - $\Sigma S^n = S^{n+1}$
- General mantra: homotopy plays nicely with products, homology with wedge products.
- $\pi_k \prod X = \prod \pi_k X$ by LES.²
- In general, homotopy groups behave nicely under homotopy pull-backs (e.g., fibrations and products), but not homotopy push-outs (e.g., cofibrations and wedges). Homology is the opposite.
- Constructing a $K(\pi, 1)$: since $\pi = \langle S \mid R \rangle = F(S)/R$, take $\bigvee^{|S|} S^1 \cup_{|R|} e^2$. In English, wedge a circle for each generator and attach spheres for relations.

:::

12 Covering Spaces

Some pictures to keep in mind when it comes to covers and path lifting:

Covering Spaces 53

¹More generally, in **Top**, we can look at $A \leftarrow \text{pt} \rightarrow B$ – then $A \times B$ is the pullback and $A \lor B$ is the pushout. In this case, homology $h : \textbf{Top} \rightarrow \textbf{Grp}$ takes pushouts to pullbacks but doesn't behave well with pullbacks. Similarly, while π takes pullbacks to pullbacks, it doesn't behave nicely with pushouts.

²This follows because $X \times Y \twoheadrightarrow X$ is a fiber bundle, so use LES in homotopy and the fact that $\pi_{i \geq 2} \in \mathbf{Ab}$.

Figure 5: Picture to keep in mind

Covering Spaces 54

Figure 6: A more complicated situation

Covering Spaces 55

12.1 Useful Facts

Fact 12.1.2 (Euler characteristics are multiplicative on covering spaces)

For $p: A \to B$ an *n*-fold cover,

$$\chi(A) = n \chi(B).$$

Fact 12.1.3

Covering spaces of orientable manifolds are orientable.

Fact 12.1.4

The preimage of a boundary point under a covering map must also be a boundary point

Fact 12.1.5

Normal subgroups correspond to normal/regular coverings, where automorphisms act freely/transitively. These are "maximally symmetric".

12.2 Universal Covers

Proposition 12.2.1 (Existence of universal covers).

If X is

- Connected,
- Locally path-connected, and
- Semilocally simply connected,

then X admits a universal cover: if $C \xrightarrow{q} X$ is a covering map with C connected, then there exists a covering map $\tilde{p}: \tilde{X} \to C$ making the following diagram commute:

Link to diagram

12.1 Useful Facts 56

That is, any other cover C of X is itself covered by \tilde{X} . Note that by this universal property, \tilde{X} is unique up to homeomorphism when it exists.

Theorem 12.2.2 (Homotopy lifting property for covers, Hatcher 1.30).

Let $p: \tilde{X} \to X$ be any covering space, $F: Y \times I \to X$ be any homotopy, and $\tilde{F}_0: Y \to \tilde{X}$ be any lift of F_0 . Then there exists a unique homotopy $\tilde{F}: Y \to \tilde{X}$ of \tilde{F}_0 that lifts F:

Link to diagram

Theorem 12.2.3 (Lifting criterion for covers, Hatcher 1.33).

If $f: Y \to X$ with Y path-connected and locally path-connected, then there exists a unique lift $\tilde{f}: Y \to \tilde{X}$ if and only if $f_*(\pi_1(Y)) \subset \pi_*(\pi_1(\tilde{X}))$:

Link to diagram

Moreover, lifts are unique if they agree at a single point.

Remark 12.2.4 (Automatic lifts): Note that if Y is simply connected, then $\pi_1(Y) = 0$ and this holds automatically!

Proposition 12.2.5 (Covering spaces induce injections on π_1 , Hatcher 1.31).

Given a covering space $\tilde{X} \xrightarrow{p} X$, the induced map $p^* : \pi_1(\tilde{X}) \to \pi_1(X)$ is injective. The image consists of classes $[\gamma]$ whose lifts to \tilde{X} are again loops.

Theorem 12.2.6 (Fundamental theorem of covering spaces, Hatcher 1.39).

For $\tilde{X} \xrightarrow{p} X$ a covering space with

- \tilde{X} path-connected,
- X path-connected and locally path-connected,

letting H be the image of $\pi_1(\tilde{X})$ in $\pi_1(X)$, we have

- 1. \tilde{X} is normal if and only if $H \leq \pi_1(X)$,
- 2. $G(\tilde{X}) \cong \operatorname{Aut}_{\operatorname{Cov}(\tilde{X})} N_{\pi_1(X)}(H)$, the normalizer of H in $\pi_1(X)$.

In particular, if \tilde{X} is normal, $\operatorname{Aut}(\tilde{X}) \cong \pi_1(X)/H$, and if \tilde{X} is the universal cover, $\operatorname{Aut}(\tilde{X}) = \pi_1(X)$.

Fact 12.2.7

There is a contravariant bijective correspondence

If one fixes \tilde{x}_0 as a basepoint for $\pi_1(\tilde{X})$, this yields

Proposition 12.2.8 (Number of sheets in a covering space, Hatcher 1.32).

For X, \tilde{X} both path-connected, the number of sheets of a covering space is equal to the index

$$[p^*(\pi_1(\tilde{X})) : \pi_1(X)].$$

Note that the number of sheets is always equal to the cardinality of $p^{-1}(x_0)$.

12.2.1 Examples

Example 12.2.9 (The circle S^1): Identify $S^1 \subset \mathbb{C}$, then every map $p_n : S^1 \to S^1$ given by $z \mapsto z^n$ a yields a covering space \tilde{X}_n . The induced map can be described on generators as

$$p_n^*: \pi_1(S^1) \to \pi_1(S^1)$$
$$[\omega_1] \mapsto [\omega_n] = n[\omega_1]$$

and so the image is isomorphic to $n\mathbb{Z}$ and thus

$$p_n^*(\pi_1(S^1)) = \operatorname{Aut}_{\operatorname{Cov}}(\tilde{X}_n) = \mathbb{Z}/n\mathbb{Z}.$$

where the deck transformations are rotations of the circle by $2\pi/n$. The universal cover of S^1 is \mathbb{R} ; this is an infinitely sheeted cover, and the fiber above x_0 has cardinality $|\mathbb{Z}|$.

Example 12.2.10 (*Projective n-space* \mathbb{RP}^n): The universal cover of \mathbb{RP}^n is S^n ; this is a two-sheeted cover. The fiber above x_0 contains the two antipodal points.

Example 12.2.11 (*The torus*): The universal cover of $T = S^1 \times S^1$ is $\tilde{X} = \mathbb{R} \times \mathbb{R}$. The fiber above the base point contains every point on the integer lattice $\mathbb{Z} \times \mathbb{Z} = \pi_1(T) = \operatorname{Aut}(\tilde{X})$

Fact 12.2.12

For a wedge product $X = \bigvee_{i}^{n} \tilde{X}_{i}$, the covering space \tilde{X} is constructed as a infinite tree with *n*-colored vertices:

- Each vertex corresponds to one of the universal covers \tilde{X}_i ,
- The color corresponds to which summand \tilde{X}_i appears,
- T The neighborhood of each colored vertex has edges corresponding (not bijectively) to generators of $\pi_1(X_i)$.

Example 12.2.13 (Covering spaces of wedges of spheres): The fundamental group of $S^1 \vee S^1$ is $\mathbb{Z} * \mathbb{Z}$, and the universal cover is the following 4-valent Cayley graph:

Figure 7: The universal cover of $\S^1 \vee S^1$

See Hatcher p.58 for other covers.

Corollary 12.2.14 (Every subgroup of a free group is free).

Idea for a particular case: use the fact that $\pi_1(\bigvee^k S^1) = \mathbb{Z}^{*k}$, so if $G \leq \mathbb{Z}^{*k}$ then there is a covering space $X \twoheadrightarrow \bigvee^k S^1$ such that $\pi_1(X) = G$. Since X can be explicitly constructed as a graph, i.e. a CW complex with only a 1-skeleton, $\pi_1(X)$ is free on its maximal tree.

Example 12.2.15 (of a universal covering space): The fundamental group of $\mathbb{RP}^2 \vee \mathbb{RP}^2$ is $\mathbb{Z}_2 * \mathbb{Z}_2$, corresponding to an infinite string of copies of 2-valent S^2 s:

Figure 8: Another universal cover.

Example 12.2.16 (of a universal covering space): The fundamental group of $\mathbb{RP}^2 \vee T^2$ is $\mathbb{Z}_2 * \mathbb{Z}$, and the universal cover is shown in the following image. Each red vertex corresponds to a copy of S^2 covering \mathbb{RP}^2 (having exactly 2 neighbors each), and each blue vertex corresponds to \mathbb{R}^2 cover \mathbb{T}^2 , with $|\mathbb{Z}^2|$ many vertices as neighbors.

Figure 9: Universal cover of $\mathbb{T}^2 \vee \mathbb{RP}^2$

12.2.2 Applications

Theorem 12.2.17(Maps into contractible spaces are always nullhomotopic). If X is contractible, every map $f: Y \to X$ is nullhomotopic.

Proof(?).

If X is contractible, there is a homotopy $H: X \times I \to X$ between id_X and a constant map $c: x \mapsto x_0$. So construct

$$H': Y \times I \to X$$

$$H'(y,t) \coloneqq \begin{cases} H(f(y),0) = (\mathrm{id}_X \circ f)(y) = f(y) & t = 0 \\ H(f(y),1) = (c \circ f)(y) = c(y) = x_0 & t = 1 \\ H(f(y),t) & \text{else.} \end{cases}$$

Then H' is a homotopy between f and a constant map, and f is nullhomotopic.

Corollary 12.2.18 (Factoring through a contractible space implies nullhomotopic). Any map $f: X \to Y$ that factors through a contractible space Z is nullhomotopic.

Proof (?).

We have the following situation where $f = p \circ \tilde{f}$:

Link to diagram

Since every map into a contractible space is nullhomotopic, there is a homotopy $\tilde{H}: Y \times I \to Z$ from \tilde{f} to a constant map $c: Y \to Z$, say $c(y) = z_0$ for all y. But then $p \circ \tilde{H}: X \times I \to Y$ is also a homotopy from f to the map $p \circ c$, which satisfies $(p \circ c)(y) = p(z_0) = x_0$ for some $x_0 \in X$, and is in particular a constant map.

Proposition 12.2.19 (Application: showing one space can not cover another). There is no covering map $p: \mathbb{RP}^2 \to \mathbb{T}^2$.

Proof(?).

- Use the fact that $\pi_1(\mathbb{T}^2) \cong \mathbb{Z}^2$ and $\pi_1(\mathbb{RP}^2) = \mathbb{Z}/2\mathbb{Z}$ are known.
- The universal cover of \mathbb{T}^2 is \mathbb{R}^2 , which is contractible.
- Using the following two facts, p_* is the trivial map:
 - By the previous results, p is thus nullhomotopic.
 - Since p is a covering map, $p_*: \mathbb{Z}/2\mathbb{Z} \hookrightarrow \mathbb{Z}^2$ is injective.
- Since p was supposed a cover, this can be used to imply that $\mathrm{id}_{\mathbb{T}^2}$ is nullhomotopic.
- Covering maps induce injections on π_1 , and the only way the trivial map can be injective is if $\pi_1(T^2) = 0$, a contradiction.

Theorem 12.2.20 (When actions yield covering maps onto their quotients, Hatcher 1.40).

If $G \cap X$ is a free and properly discontinuous action, then

- 1. The quotient map $p: X \to X/G$ given by p(y) = Gy is a normal covering space,
- 2. If X is path-connected, then $G = Aut_{Cov}(X)$ is the group of deck transformations for the cover p,

3. If X is path-connected and locally path-connected, then $G \cong \pi_1(X/G)/p_*(\pi_1(X))$.

Fact 12.2.21 (Some common covering spaces)

$$\mathbb{Z}/2\mathbb{Z} \longrightarrow S^n \downarrow \\ \mathbb{RP}^n$$

$$\mathbb{Z}^{*n} \longrightarrow \operatorname{Cayley}(n)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\bigvee_{n} S^{1}$$

given by the n-valent Cayley graph covering a wedge of circles.

- $T^2 \xrightarrow{\times 2} \mathbb{K}$ $\mathbb{Z}/q\mathbb{Z} \to L_{p/q} \xrightarrow{\pi} S^3$
- $\mathbb{Z}/n\mathbb{Z} \to \mathbb{C}^* \xrightarrow{z^n} \mathbb{C}$

13 CW and Simplicial Complexes

Missing a lot on CW complexes

13.1 Degrees

Fact 13.1.1 (Useful properties of the degree of a map between spheres)

- $\deg \operatorname{id}_{S^n} = 1$
- $\deg(f \circ g) = \deg f \cdot \deg g$
- deg r = -1 where r is any rotation about a hyperplane, i.e. $r([x_1 \cdots x_i \cdots x_n]) = [x_1 \cdots x_i \cdots x_n]$.
- The antipodal map on $S^n \subset \mathbb{R}^{n+1}$ is the composition of n+1 reflections, so deg $\alpha = (-1)^{n+1}$.

13.2 Examples of CW Complexes/Structures

Example 13.2.1(Spheres): $S^n = e^0 \cup e^n$: a point and an *n*-cell.

Example 13.2.2 (Real Projective Space): $\mathbb{RP}^n = e^1 \cup e^2 \cup \cdots \cup e^n$: one cell in each dimension.

Example 13.2.3 (Complex Projective Space): $\mathbb{CP}^n = e^2 \cup e^4 \cup \cdots e^{2n}$

Examples 4.17. The common surfaces S^2 , T^2 , K and P^2 all have presentations:

- The sphere: ⟨a | aa⁻¹⟩ or ⟨a, b | abb⁻¹a⁻¹⟩
- (2) The torus: (a, b | aba⁻¹b⁻¹)
- (3) The projective plane: \(\lambda \ | aa \rangle \) or \(\lambda a, b \ | abab \rangle \)
- (4) The Klein Bottle: ⟨a, b | abab⁻¹⟩

Figure 14. Polygonal presentation of S^2 , \mathbb{T}^2 , \mathbb{P}^2 , and K.

Figure 10: Fundamental domains

Example 13.2.4 (Surfaces):

13.3 Examples of Simplicial Complexes

Simplicial complex on a torus.

Figure 11: Torus

Example 13.3.2(Torus):

Figure 12: Klein Bottle and \mathbb{RP}^2

Example 13.3.3(Klein Bottle and \mathbb{RP}^2):

Example 13.3.4 (Non-example): For counterexamples, note that this fails to be a triangulation of T:

Triangulation of a torus?

Figure 13: Not a Torus

This fails - for example, the specification of a simplex [1, 2, 1] does not uniquely determine a triangle in the this picture.

13.4 Cellular Homology

• S^n has the CW complex structure of 2 k-cells for each $0 \le k \le n$.

How to compute:

1. Write cellular complex

$$0 \to C^n \to C^{n-1} \to \cdots C^2 \to C^1 \to C^0 \to 0$$

2. Compute differentials $\partial_i: C^i \to C^{i-1}$

13.4 Cellular Homology 67

- 3. Note: if C^0 is a point, ∂_1 is the zero map.
- 4. Note: $H_nX = 0 \iff C^n = \emptyset$.
- 5. Compute degrees: Use $\partial_n(e_i^n) = \sum_i d_i e_i^{n-1}$ where

$$d_i = \deg(\text{Attach } e_i^n \to \text{Collapse } X^{n-1}\text{-skeleton}),$$

which is a map $S^{n-1} \to S^{n-1}$.

Alternatively, choose orientations for both spheres. Then pick a point in the target, and look at points in the fiber. Sum them up with a weight of +1 if the orientations match and -1 otherwise.

- 6. Note that $\mathbb{Z}^m \xrightarrow{f} \mathbb{Z}^n$ has an $n \times m$ matrix
- 7. Row reduce, image is span of rows with pivots. Kernel can be easily found by taking RREF, padding with zeros so matrix is square and has all diagonals, then reading down diagonal if a zero is encountered on nth element, take that column vector as a basis element with -1 substituted in for the nth entry.

For example:

6. Or look at elementary divisors, say n_i , then the image is isomorphic to $\bigoplus n_i \mathbb{Z}$

13.5 Constructing a CW Complex with Prescribed Homology

1. Attach an e^n to a point to get $H_n = \mathbb{Z}$

2. Attach an e^{n+1} with attaching map of degree d to get $H_n = \mathbb{Z}_d$

14 | Homology

14.1 Useful Facts

Fact 14.1.1

 $H_0(X)$ is a free abelian group on the set of path components of X. Thus if X is path connected, $H_0(X) \cong \mathbb{Z}$. In general, $H_0(X) \cong \mathbb{Z}^{|\pi_0(X)|}$, where $|\pi_0(X)|$ is the number of path components of X.

Proposition 14.1.2 (Homology commutes with wedge products).

$$\tilde{H}_*(A \vee B) \cong H_*(A) \times H_*(B)$$

$$H_n\left(\bigvee_{\alpha} X_{\alpha}\right) \cong \prod_{\alpha} H_n X_{\alpha}$$

See footnote for categorical interpretation.^a

 $a\bigvee$ is the coproduct in the category \mathbf{Top}_0 of pointed topological spaces, and alternatively, $X\vee Y$ is the pushout in \mathbf{Top} of $X\leftarrow \mathrm{pt}\to Y$

May need some good pair condition?

Example 14.1.3 (Application):

$$H_n(\bigvee_k S^n) = \mathbb{Z}^k.$$

Proof (?).

Mayer-Vietoris.

⚠ Warning 14.1.4

 $H_k\left(\prod_{\alpha}X_{\alpha}\right)$ is **not** generally equal to $\prod_{\alpha}(H_kX_{\alpha})$. The obstruction is due to torsion – if all groups are torsionfree, then the Kunneth theorem³ yields

$$H_k(A \times B) = \prod_{i+j=k} H_i A \otimes H_j B$$

Homology 69

³The generalization of Kunneth is as follows: write $\mathcal{P}(n,k)$ be the set of partitions of n into k parts, i.e. $\mathbf{x} \in$

Homology Homology

Theorem 14.1.5 (Excision).

Todo

Excision

:::{.fact title="Assorted facts}

- $H_n(X) = 0 \iff X$ has no *n*-cells.
- $C^{0}X = pt \implies d_1: C^1 \to C^0$ is the zero map. :::

14.2 Known Homology

Example 14.2.1 (Spheres):

$$H_i(S^n) = \begin{cases} \mathbb{Z} & i = 0, n \\ 0 & \text{else.} \end{cases}$$

Example 14.2.2 (Real Projective Spaces):

Example 14.2.3 (Complex Projective Spaces):

Example 14.2.4 (Surfaces):

Homology examples

14.3 Mayer-Vietoris

Fact 14.3.1 (Useful algebra fact)

Since \mathbb{Z} is free and thus projective, any exact sequence of the form $0 \to \mathbb{Z}^n \to A \to \mathbb{Z}^m \to 0$ splits and $A \cong \mathbb{Z}^n \times \mathbb{Z}^m$.

Theorem 14.3.2 (Mayer-Vietoris).

Mnemonic:
$$X = A \cup B \rightsquigarrow (\cap, \oplus, \cup)$$

Let $X = A^{\circ} \cup B^{\circ}$; then there is a SES of chain complexes

$$0 \to C_n(A \cap B) \xrightarrow{x \mapsto (x, -x)} C_n(A) \oplus C_n(B) \xrightarrow{(x, y) \mapsto x + y} C_n(A + B) \to 0$$

where $C_n(A+B)$ denotes the chains that are sums of chains in A and chains in B. This yields

$$\mathcal{P}(n,k) \implies \mathbf{x} = (x_1, x_2, \dots, x_k) \text{ where } \sum_{i=1}^{k} x_i = n.$$
 Then

$$H_n\left(\prod_{j=1}^k X_j\right) = \bigoplus_{\mathbf{x} \in \mathcal{P}(n,k)} \bigotimes_{i=1}^k H_{x_i}(X_i).$$

14.2 Known Homology 70

14 Homology

a LES in homology:

$$\cdots H_n(A \cap B) \xrightarrow{(i^*, j^*)} H_n(A) \oplus H_n(B) \xrightarrow{l^* - r^*} H_n(X) \xrightarrow{\delta} H_{n-1}(A \cap B) \cdots$$

where

- $i: A \cap B \hookrightarrow A \text{ induces } i^*: H_*(A \cap B) \to H_*(A)$
- $j: A \cap B \hookrightarrow B$ induces $j^*: H_*(A \cap B) \to H_*(B)$
- $l: A \hookrightarrow A \cup B \text{ induces } l^*: H_*(A) \to H_*(X)$
- $r: B \hookrightarrow A \cup B$ induces $r^*: H_*(B) \to H_*(X)$

More explicitly,

$$\begin{array}{c}
\delta_{3} \\
 & \longrightarrow \\
H_{2}(A \cap B) \xrightarrow{(i^{*}, -j^{*})_{2}} H_{2}A \oplus H_{2}B \xrightarrow{(l^{*}-r^{*})_{2}} H_{2}(A \cup B) \\
 & \longrightarrow \\
\delta_{2} \\
 & \longrightarrow \\
H_{1}(A \cap B) \xrightarrow{(i^{*}, -j^{*})_{1}} H_{1}A \oplus H_{1}B \xrightarrow{(l^{*}-r^{*})_{1}} H_{1}(A \cup B) \\
 & \longrightarrow \\
\delta_{1} \\
 & \longrightarrow \\
\delta_{0} \\
 & \longrightarrow \\
\delta_{0}
\end{array}$$

The connecting homomorphisms $\delta_n: H_n(X) \to H_{n-1}(X)$ are defined by taking a class $[\alpha] \in H_n(X)$, writing it as an n-cycle z, then decomposing $z = \sum c_i$ where each c_i is an x + y chain. Then $\partial(c_i) = \partial(x + y) = 0$, since the boundary of a cycle is zero, so $\partial(x) = -\partial(y)$. So then just define $\delta([\alpha]) = [\partial x] = [-\partial y]$.

Handy mnemonic diagram:

Example 14.3.3(Application: computing the homology of a connect sum): $H_*(A\#B)$: Use the fact that $A\#B = A \cup_{S^n} B$ to apply Mayer-Vietoris.

14.3 Mayer-Vietoris 71

Proposition 14.3.4(Application: isomorphisms in the homology of spheres).

$$H^i(S^n) \cong H^{i-1}(S^{n-1}).$$

Proof.

Write $X = A \cup B$, the northern and southern hemispheres, so that $A \cap B = S^{n-1}$, the equator. In the LES, we have:

$$H^{i+1}(S^n) \to H^i(S^{n-1}) \to H^iA \oplus H^iB \to H^iS^n \to H^{i-1}(S^{n-1}) \to H^{i-1}A \oplus H^{i-1}B.$$

But A, B are contractible, so $H^iA = H^iB = 0$, so we have

$$H^{i+1}(S^n) \to H^i(S^{n-1}) \to 0 \oplus 0 \to H^i(S^n) \to H^{i-1}(S^{n-1}) \to 0.$$

In particular, we have the shape $0 \to A \to B \to 0$ in an exact sequence, which is always an isomorphism.

14.4 More Exact Sequences

Theorem 14.4.1 (Kunneth).

There exists a short exact sequence

$$0 \to \prod_{i+j=k} H_j(X;R) \otimes_R H_i(Y;R) \to H_k(X \times Y;R) \to \prod_{i+j=k-1} \operatorname{Tor}_R^1(H_i(X;R),H_j(Y;R)).$$

If R is a free R-module, a PID, or a field, then there is a (non-canonical) splitting given by

$$H_k(X \times Y) \cong \left(\prod_{i+j=k} H_i X \oplus H_j Y\right) \times \prod_{i+j=k-1} \operatorname{Tor}(H_i X, H_j Y)$$

Theorem 14.4.2 (UCT for Change of Group).

For changing coefficients from \mathbb{Z} to G an arbitrary group, there are short exact sequences

$$0 \to \operatorname{Tor}_{\mathbb{Z}}^{0}(H_{i}(X;\mathbb{Z}), A) \to H_{i}(X; A) \to \operatorname{Tor}_{\mathbb{Z}}^{1}(H_{i-1}(X;\mathbb{Z}), A) \to 0$$

$$\downarrow \downarrow$$

$$0 \to H_i X \otimes G \to H_i(X;G) \to \operatorname{Tor}_{\mathbb{Z}}^1(H_{i-1}X,G) \to 0$$

15 Homology

and

$$0 \to \operatorname{Ext}_{\mathbb{Z}}^{1}(H_{i-1}(X; \mathbb{Z}), A) \to H^{i}(X; A) \to \operatorname{Ext}_{\mathbb{Z}}^{0}(H_{i}(X; \mathbb{Z}), A) \to 0$$

$$0 \to \operatorname{Ext}(H_{i-1}X, G) \to H^i(X; G) \to \operatorname{hom}(H_iX, G) \to 0.$$

These split unnaturally:

$$H_i(X;G) = (H_{iX} \otimes G) \oplus \operatorname{Tor}(H_{i-1}X;G)$$

$$H^i(X;G) = \operatorname{hom}(H_iX,G) \oplus \operatorname{Ext}(H_{i-1}X;G)$$

When all of the H_iX are all finitely generated (e.g. if G is a field), writing $H_i(X;\mathbb{Z}) = \mathbb{Z}^{\beta_i} \oplus T_i$ as the sum of a free and a torsionfree module, we have

$$H^{i}(X; \mathbb{Z}) \cong \mathbb{Z}^{\beta_{i}} \times T_{i-1}$$

 $H^{i}(X; A) \cong (H_{i}(X; G))^{\check{}} := \text{hom}_{\mathbb{Z}}(H_{i}(X; G), G).$

In other words, letting F(-) be the free part and T(-) be the torsion part, we have

$$H^{i}(X; \mathbb{Z}) = F(H_{i}(X; \mathbb{Z})) \times T(H_{i-1}(X; \mathbb{Z}))$$

$$H_{i}(X; \mathbb{Z}) = F(H^{i}(X; \mathbb{Z})) \times T(H^{i+1}(X; \mathbb{Z}))$$

Might need assumptions: finite CW complex?

14.5 Relative Homology

Fact 14.5.1 (Some assorted facts)

- $H_n(X/A) \cong \tilde{H}_n(X,A)$ when $A \subset X$ has a neighborhood that deformation retracts onto it.
- LES of a pair

$$-(A \hookrightarrow X) \mapsto (A, X, X/A)$$

• For CW complexes $X = \{X^{(i)}\}$, we have

$$H_n(X^{(k)}, X^{(k-1)}) \cong \begin{cases} \mathbb{Z}[\{e^n\}] & k = n, \\ 0 & \text{otherwise} \end{cases}$$
 since $X^k/X^{k-1} \cong \bigvee S^k$

• $H_n(X, A) \cong_? H_n(X/A, pt)$

15 Fixed Points and Degree Theory

Theorem 15.0.1 (Lefschetz Fixed Point).

For $f: X \to X$, define the **trace** of f to be

$$\Lambda_f := \sum_{k>0} (-1)^k \operatorname{Tr}(f_* \mid H_k(X; \mathbb{Q}))$$

where $f_*: H_k(X; \mathbb{Q}) \to H_k(X; \mathbb{Q})$ is the induced map on homology. If $\Lambda_f \neq 0$ then f has a fixed point.

Theorem 15.0.2(?).

Every $f: B^n \to B^n$ has a fixed point.

Proof (?).

Theorem 15.0.3 (Hairy Ball).

There is no non-vanishing tangent vector field on even dimensional spheres S^{2n} .

Theorem 15.0.4 (Borsuk-Ulam).

For every $S^n \xrightarrow{f} \mathbb{R}^n \exists x \in S^n$ such that f(x) = f(-x).

16 Surfaces and Manifolds

Remark 16.0.1: The most common spaces appearing in this theory:

- \mathbb{S}^2 , $\mathbb{T}^2 := S^1 \times S^1$,
- K the Klein bottle
- M the Möbius Strip
- $\Sigma_n := \#_{i=1}^n \mathbb{T}^2$.

The first 4 can be obtained from the following pasting diagrams:

Instructions for making common surfaces

Figure 14: Pasting Diagrams for Surfaces

16.1 Classification of Surfaces

Theorem 16.1.1 (Classification of Surfaces).

The set of surfaces under connect sum forms a monoid with the presentation

$$\left\langle \mathbb{S}^2, \mathbb{RP}^2, \mathbb{T} \ \middle| \ \mathbb{S}^2 = 0, 3\mathbb{RP}^2 = \mathbb{RP}^2 + \mathbb{T}^2 \right\rangle = \left\{ \Sigma_{g,n} \ \middle| \ g, n \in \mathbb{Z}^{\geq 0} \right\}.$$

where $\Sigma_{g,n}$ is a surface of genus g with n discs removed to form boundary components. Surfaces are classified up to homeomorphism by orientability and χ , or equivalently "genus"

- In orientable case, actual genus, g equals the number of copies of \mathbb{T}^2 .
- In nonorientable case, k equals the number of copies of \mathbb{RP}^2 .

In each case, there is a formula

$$\chi(X) = \begin{cases} 2-2g-b & \text{orientable} \\ 2-k & \text{non-orientable}. \end{cases}$$

Proposition 16.1.2 (Polygon Models for Surfaces).

Every surface can be obtained as the identification space of a polygon labeled with sides $\alpha_i, \beta_i, \rho_i$.

2

Examples, general procedure?

Orientable?	-4	-3	-2	-1	0	1	2
Yes No	Σ_3 ?	Ø ?	$\frac{\Sigma_2}{?}$	Ø ?	$\mathbb{T}^2, S^1 \times I$ \mathbb{K}, \mathbb{M}	\mathbb{D}^2 \mathbb{RP}^2	\mathbb{S}^2 \emptyset

Fact 16.1.3

 ${\bf Proposition} \ 16.1.4 (Inclusion-Exclusion).$

$$X = U \cup V \implies \chi(X) = \chi(U) + \chi(V) - \chi(U \cap V).$$

Proof.

 Todo

Proo

Corollary 16.1.5 (Euler for Connect Sums).

$$\chi(A \# B) = \chi(A) + \chi(B) - 2.$$

Proof.

Set U = A, B = V, then by definition of the connect sum, $A \cap B = \mathbb{S}^2$ where $\chi(\mathbb{S}^2) = 2$

Proposition 16.1.6 (Decomposing \mathbb{RP}^2).

$$\mathbb{RP}^2 = \mathbb{M} \coprod_{\mathrm{id}_{\partial \mathbb{M}}} \mathbb{M}.$$

Proposition 16.1.7 (Decomposing a Klein Bottle).

$$\mathbb{K} \cong \mathbb{RP}^2 \# \mathbb{RP}^2.$$

Proof. Todo

Proposition 16.1.8 (Rewriting a Klein Bottle).

 $\mathbb{RP}^2 \# \mathbb{K} \cong \mathbb{RP}^2 \# \mathbb{T}^2.$

Proof. Todo

Proof

Proof.

16.2 Manifolds

Remark 16.2.1: To show something is not a manifold, try looking at local homology. Can use point-set style techniques like removing points, i.e. $H_1(X, X - pt)$; this should essentially always yield \mathbb{Z} by excision arguments.

Proposition 16.2.2(Dimension vanishing for homology of manifolds). If M^n is a closed and connected n-manifold, then $H^{\geq n}X = 0$.

16.2 Manifolds 79

Proposition 16.2.3 (Top homology for manifolds).

If M^n is a closed connected manifold, then $H_n = \mathbb{Z}$ and $Tor(H_{n-1}) = 0$. More generally,

$$\begin{cases} \mathbb{Z} & M^n \text{ is orientable} \\ 0 & \text{else.} \end{cases}$$

Proposition 16.2.4 (Poincaré Duality for manifolds).

For M^n a closed orientable manifold without boundary and \mathbb{F} a field,

$$H_k(M^n; \mathbb{F}) \cong H^{n-k}(M^n; \mathbb{F}) \iff M^n \text{ is closed and orientable.}$$

Proposition 16.2.5 (Relative Poincaré Duality for manifolds).

If M^n is a closed orientable manifold with boundary then

$$H_k(M^n; \mathbb{Z}) \cong H^{n-k}(M^n, \partial M^n; \mathbb{Z}).$$

Proposition 16.2.6 (Known Euler characteristics).

If M^n is closed and n is odd, then $\chi(M^n) = 0$.

Proof (?).

Todo. Uses Poincaré duality?

Proof!

Proposition 16.2.7 (Nondegenerate intersection pairings).

For M^n closed and orientable, the intersection pairing is nondegenerate modulo torsion.

Proposition 16.2.8 (Orientation covers).

For any manifold X there exists a covering space $p: \tilde{X}_o \to X$, the **orientation cover**, where any map $Y \to X$ factors through \tilde{X}_o . If X is nonorientable, then p is a double cover.

Theorem 16.2.9 (Lefschetz Duality).

Todo

Statement of Lefschetz duality

16.2.1 3-Manifolds, and Knot Complements

Fact 16.2.10

Every C-manifold is canonically orientable.

16.2 Manifolds 80

Proposition 16.2.11 (Homology of 3-manifolds).

Let M^3 be a 3-manifold, then its homology is given by the following (by cases):

- Orientable: $H_* = (\mathbb{Z}, \mathbb{Z}^r, \mathbb{Z}^r, \mathbb{Z})$
- Nonorientable: $H_* = (\mathbb{Z}, \mathbb{Z}^r, \mathbb{Z}^{r-1} \oplus \mathbb{Z}_2, \mathbb{Z})$

Proposition 16.2.12 (Homotopy type of knot complements).

For K a knot, $S^3 \setminus K$ is a $K(\pi, 1)$, and $\mathbb{R}^3 \setminus K \simeq S^2 \vee (S^3 \setminus K)$. Moreover, if K is nullhomologous and X is any 3-manifold,

$$H_1(X \setminus \nu(K)) \cong H_1X \times \mathbb{Z}$$

where $\nu(K)$ is a tubular neighborhood of K.

Proof (?).

Todo

todo

Proposition 16.2.13 (Homology of knot complements in S^3). For K a knot,

$$H_*(S^3 \setminus K) = [\mathbb{Z}, \mathbb{Z}, 0, 0, \cdots].$$

Proof.

Apply Mayer-Vietoris, taking $S^3 = n(K) \cup (S^3 - K)$, where $n(K) \simeq S^1$ and $S^3 - K \cap n(K) \simeq T^2$. Use the fact that $S^3 - K$ is a connected, open 3-manifold, so $H^3(S^3 - K) = 0$.

17 Extra Problems: Algebraic Topology

17.1 Homotopy 101

• Show that if $X \xrightarrow{f} X^n$ is not surjective, then f is nullhomotopic.

17.2 π_1

Fall 2014

- Compute π₁(S¹ ∨ S¹)
 Compute π₁(S¹ × S¹)

• Show that M is orientable if $\pi_1(M)$ has no subgroup of index 2.

Fall 2014

18.1 1

Let $X = \mathbb{R}^3 - \Delta^{(1)}$, the complement of the skeleton of regular tetrahedron, and compute $\pi_1(X)$ and $H_*(X)$.

Solution:

Lay the graph out flat in the plane, then take a maximal tree - these leaves 3 edges, and so $\pi_1(X) = \mathbb{Z}^{*3}.$

Moreover $X \simeq S^1 \vee S^1 \vee S^1$ which has only a 1-skeleton, thus $H_*(X) = [\mathbb{Z}, \mathbb{Z}^3, 0 \to]$.

18.2 2

Let $X = S^1 \times B^2 - L$ where L is two linked solid torii inside a larger solid torus. Compute $H_*(X)$.

Solution

18.3 3

Let L be a 3-manifold with homology $[\mathbb{Z}, \mathbb{Z}_3, 0, \mathbb{Z}, \ldots]$ and let $X = L \times \Sigma L$. Compute $H_*(X), H^*(X)$.

17.2 π_1 82 Fall 2014

Solution:

Useful facts:

• $H_k(X \times Y) \cong \bigoplus_{i+j=k} H_i(X) \otimes H_j(Y) \bigoplus_{i+j=k-1} \operatorname{Tor}(H_i(X), H_j(Y))$ • $\tilde{H}_i(\Sigma X) = \tilde{H}_{i-1}(X)$

•
$$\tilde{H}_i(\Sigma X) = \tilde{H}_{i-1}(X)$$

We will use the fact that $H_*(\Sigma L) = [\mathbb{Z}, \mathbb{Z}, \mathbb{Z}_3, 0, \mathbb{Z}].$

Represent $H_*(L)$ by $p(x,y) = 1 + yx + x^3$ and $H_*(\Sigma L)$ by $q(x,y) = 1 + x + yx^2 + x^4$, we can extract the free part of $H_*(X)$ by multiplying

$$p(x,y)q(x,y) = 1 + (1+y)x + 2yx^{2} + (y^{2}+1)x^{3} + 2x^{4} + 2yx^{5} + x^{7}$$

where multiplication corresponds to the tensor product, addition to the direct sum/product. So the free portion is

$$H_*(X) = [\mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}_3, \mathbb{Z}_3 \otimes \mathbb{Z}_3, \mathbb{Z} \oplus \mathbb{Z}_3 \otimes \mathbb{Z}_3, \mathbb{Z}^2, \mathbb{Z}_3^2, 0, \mathbb{Z}]$$
$$= [\mathbb{Z}, \mathbb{Z} \oplus \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z} \oplus \mathbb{Z}_3, \mathbb{Z}^2, \mathbb{Z}_3^2, 0, \mathbb{Z}]$$

We can add in the correction from torsion by noting that only terms of the form $Tor(\mathbb{Z}_3, \mathbb{Z}_3) =$ \mathbb{Z}_3 survive. These come from the terms i=1, j=2, so $i+j=k-1 \implies k=1+2+1=4$ and there is thus an additional torsion term appearing in dimension 4. So we have

$$H_*(X) = [\mathbb{Z}, \mathbb{Z} \times \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z} \times \mathbb{Z}_3, \mathbb{Z}^2 \times \mathbb{Z}_3, \mathbb{Z}_3^2, 0, \mathbb{Z}]$$
$$= [\mathbb{Z}, \mathbb{Z}, 0, \mathbb{Z}, \mathbb{Z}^2, 0, 0, \mathbb{Z}] \times [0, \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_3^2, 0, 0]$$

and

$$H^*(X) = [\mathbb{Z}, \mathbb{Z}, 0, \mathbb{Z}, \mathbb{Z}^2, 0, 0, \mathbb{Z}] \times [0, 0, \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_3^2, 0]$$
$$= [\mathbb{Z}, \mathbb{Z}, \mathbb{Z}_3, \mathbb{Z} \times \mathbb{Z}_3, \mathbb{Z}^2 \times \mathbb{Z}_3, \mathbb{Z}_3, \mathbb{Z}_3^2, \mathbb{Z}].$$

18.4 4

Let M be a closed, connected, oriented 4-manifold such that $H_2(M;\mathbb{Z})$ has rank 1. Show that there is not a free \mathbb{Z}_2 action on M.

Solution:

Useful facts:

- $X \twoheadrightarrow_{\times p} Y$ induces $\chi(X) = p\chi(Y)$
- Moral: always try a simple Euler characteristic argument first!

We know that $H_*(M) = [\mathbb{Z}, A, \mathbb{Z} \times G, A, \mathbb{Z}]$ for some group A and some torsion group G.

18.4 4 83

Letting $n = \operatorname{rank}(A)$ and taking the Euler characteristic, we have $\chi(M) = (1)1 + (-1)n +$ (1)1 + (-1)n + (1)1 = 3 - 2n. Note that this is odd for any n.

However, a free action of $\mathbb{Z}_2 \curvearrowright M$ would produce a double covering $M \to_{\times 2} M/\mathbb{Z}_2$, and multiplicativity of Euler characteristics would force $\chi(M) = 2\chi(M/\mathbb{Z}_2)$ and thus 3-2n=2kfor some integer k. This would require 3-2n to be even, so we have a contradiction.

18.5 5

Let X be T^2 with a 2-cell attached to the interior along a longitude. Compute $\pi_2(X)$.

Solution:

Useful facts:

- $T^2=e^0+e^1_1+e^1_2+e^2$ as a CW complex. $S^2/(x_0\sim x_1)\simeq S^2\wedge S^1$ when x_0,x_1 are two distinct points. (Picture: sphere with a string handle connecting north/south poles.)
- $\pi_{\geq 2}(\tilde{X}) \cong \pi_{\geq 2}(X)$ for $\tilde{X} \to X$ the universal cover.

Write $T^2 = e^0 + e_1^1 + e_2^1 + e_2^2$, where the first and second 1-cells denote the longitude and meridian respectively. By symmetry, we could have equivalently attached a disk to the meridian instead of the longitude, filling the center hole in the torus. Contract this disk to a point, then pull it vertically in both directions to obtain S^2 with two points identified, which is homotopy-equivalent to $S^2 \vee S_1$.

Take the universal cover, which is $\mathbb{R}^1 \cup_{\mathbb{Z}} S^2$ and has the same π_2 . This is homotopy-equivalent to $\bigvee S^2$ and so $\pi_2(X) = \prod \mathbb{Z}$ generated by each distinct copy of S^2 . (Alternatively written as $\mathbb{Z}[t, t^{-1}]$).

Summer 2003

19.1 1

Describe all possible covering maps between S^2, T^2, K

Solution:

18.5 5

Concepts Used:

1.
$$\tilde{X} \to X$$
 induces $\pi_1(\tilde{X}) \hookrightarrow \pi_1(X)$

2.
$$\chi(\tilde{X}) = n\chi(X)$$

3.
$$\pi_n(X) = [S^n, X]$$

4.
$$Y \to X$$
 with $\pi_1(Y) = 0$ and $\tilde{X} \simeq \text{pt} \implies \text{every } Y \xrightarrow{f} X$ is nullhomotopic.

5.
$$\pi_*(T^2) = [\mathbb{Z} * \mathbb{Z}, 0 \rightarrow]$$

6.
$$\pi_*(K) = [\mathbb{Z} \rtimes_{\mathbb{Z}_2} \mathbb{Z}, 0 \to]$$

7. Universal covers are homeomorphic.

8.
$$\pi_{\geq 2}(\tilde{X}) \cong \pi_{\geq 2}(X)$$

Spaces

•
$$S^2 \twoheadrightarrow T^2$$

•
$$S^2 \twoheadrightarrow K$$

•
$$K \rightarrow S^2$$

•
$$T^2 \twoheadrightarrow S^2$$

- All covered by the fact that

$$\mathbb{Z} = \pi_2(S^2) \neq \pi_2(X) = 0$$

for
$$X = T^2, K$$
.

•
$$K \rightarrow T^2$$

– Doesn't cover, would induce $\pi_1(K) \hookrightarrow \pi_1(T^2) \implies \mathbb{Z} \rtimes \mathbb{Z} \hookrightarrow \mathbb{Z}^2$ but this would be a non-abelian subgroup of an abelian group.

•
$$T^2 \rightarrow K$$

- ?

Not complete!

19.2 2

Show that \mathbb{Z}^{*2} has subgroups isomorphic to \mathbb{Z}^{*n} for every n.

Solution:

Concepts Used:

1.
$$\pi_1(\bigvee^k S^1) = \mathbb{Z}^{*k}$$

2. $\tilde{X} \to X \implies \pi_1(\tilde{X}) \hookrightarrow \pi_1(X)$

3. Every subgroup $G \leq \pi_1(X)$ corresponds to a covering space $X_G \to X$

4. $A \subseteq B \implies F(A) \leq F(B)$ for free groups.

It is easier to prove the stronger claim that $\mathbb{Z}^{\mathbb{N}} \leq \mathbb{Z}^{*2}$ (i.e. the free group on countably many generators) and use fact 4 above. Just take the covering space $\tilde{X} \to S^1 \vee S^1$ defined via the gluing map $\mathbb{R} \cup_{\mathbb{Z}} S^1$ which attaches a circle to each integer point, taking 0 as the base point. Then let a denote a translation and b denote traversing a circle, so we have $\pi_1(\tilde{X}) = \langle \bigcup_{n \in \mathbb{Z}} a^n b a^{-n} \rangle$ which is a free group on countably many generators. Since \tilde{X} is a covering space, $\pi_1(\tilde{X}) \hookrightarrow \pi_1(S^1 \vee S^1) = \mathbb{Z}^{*2}$. By 4, we can restrict this to n generators for any n to get a subgroup, and $A \leq B \leq C \implies A \leq C$ as groups.

Construct a space having $H_*(X) = [\mathbb{Z}, 0, 0, 0, 0, \mathbb{Z}_4, 0, \cdots].$

Solution:

Concepts Used:

- Construction of Moore Spaces
- $\hat{H}_n(\Sigma X) = \hat{H}_{n-1}(X)$, using $\Sigma X = C_X \cup_X C_X$ and Mayer-Vietoris.

Take $X = e^0 \cup_{\Phi_1} e^5 \cup_{\Phi_2} e^6$, where

$$\Phi_1: \partial B^5 = S^4 \xrightarrow{z \mapsto z^0} e^0$$

$$\Phi_2: \partial B^6 = S^5 \xrightarrow{z \mapsto z^4} e^5.$$

where $\deg \Phi_2 = 4$.

19.4 4

Compute H_* of the complement of a knotted solid torus in S^3 .

Solution:

Concepts Used:

- H_{*}(T²) = [Z, Z², Z, 0 →]
 N⁽¹⁾ ≃ S¹, so H_{≥2}(N) = 0.
 A SES 0 → A → B → F → 0 with F free splits.
- $0 \to A \to B \xrightarrow{\cong} C \to D \to 0$ implies A = D = 0.

Let N be the knotted solid torus, so that $\partial N = T^2$, and let $X = S^3 - N$. Then

- $S^3 = N \cup_{T^2} X$ $N \cap X = T^2$

and we apply Mayer-Vietoris to the reduced homology of S^3 :

$$H_4(T^2)$$
 \longrightarrow $H_4(N) \oplus H_4(X)$ \longrightarrow $H_4(S^3)$ \longrightarrow $H_3(T^2)$ \longrightarrow $H_3(N) \oplus H_3(X)$ \longrightarrow $H_3(S^3)$ \longrightarrow $H_2(N) \oplus H_2(X)$ \longrightarrow $H_2(S^3)$ \longrightarrow $H_1(S^3)$ \longrightarrow $H_1(S^3)$ \longrightarrow $H_1(S^3)$

We can plug in known information and deduce some maps:

We then deduce:

19.4 4 87

- $H_0(X) = \mathbb{Z}$: ? (Appeal to some path-connectedness argument?)
- $H_1(X) = \mathbb{Z}$ using the SES appearing on the first row:

$$0 \to \mathbb{Z}^{\oplus 2} \to \mathbb{Z} \oplus H_1(X) \to 0$$

which is thus an isomorphism.

• $H_2(X) = H_3(X) = 0$ by examining the SES spanning lines 3 and 2:

$$0 \hookrightarrow H_3(X) \hookrightarrow \mathbb{Z} \xrightarrow{\cong_{\partial_3}} \mathbb{Z} \twoheadrightarrow H_2(X) \twoheadrightarrow 0$$

Claim: ∂_3 must be an isomorphism. If this is true, $H_3(X) \cong \ker \partial_3 = 0$ and $H_2(X) \cong \operatorname{coker}(\partial_3) := \mathbb{Z}/\operatorname{im}(\partial_3) \cong \mathbb{Z}/\mathbb{Z} = 0$.

Why is this true?

19.5 5

Compute the homology and cohomology of a closed, connected, oriented 3-manifold M with $\pi_1(M) = \mathbb{Z}^{*2}$.

Solution:

Facts used:

- M closed, connected, oriented $\implies H_i(M) \cong H^{n-i}(M)$
- $H_1(X) = \mathsf{Ab}(\pi_1(X)).$
- For orientable manifolds $H_n(M^n) = \mathbb{Z}$

Homology

- Since M is connected, $H_0 = \mathbb{Z}$
- Since $\pi_1(M) = \mathbb{Z}^{*2}$, H_1 is the abelianization and $H_1(X) = \mathbb{Z}^2$
- Since M is closed/connected/oriented, Poincaré Duality holds and $H_2 = H^{3-2} = H^1 = \mathbf{F}H_1 + \mathbf{T}H_0$ by UCT. Since $H_0 = \mathbb{Z}$ is torsion-free, we have $H_2(M) = H_1(M) = \mathbb{Z}^2$.
- Since M is an orientable manifold, $H_3(M) = \mathbb{Z}$
- So $H_*(M) = [\mathbb{Z}, \mathbb{Z}^2, \mathbb{Z}^2, \mathbb{Z}, 0 \rightarrow]$

Cohomology

• By Poincaré Duality, $H^*(M) = \widehat{H_*(M)} = [\mathbb{Z}, \mathbb{Z}^2, \mathbb{Z}^2, \mathbb{Z}, 0, \cdots]$. (Where the hat denotes reversing the list.)

19.5 5

19.6 6

~

Compute $\operatorname{Ext}(\mathbb{Z} \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/3, \mathbb{Z} \oplus \mathbb{Z}/4 \oplus \mathbb{Z}/5)$.

Solution:

19.6 6

Concepts Used:

Facts Used:^a

• Since \mathbb{Z} is a free \mathbb{Z} -module,

$$\operatorname{Ext}(\mathbb{Z}, \mathbb{Z}/m) = 0$$

• Using the usual projective resolution $0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/n \to 0$,

$$\operatorname{Ext}(\mathbb{Z}/n,\mathbb{Z}) = \mathbb{Z}/n.$$

•

$$\operatorname{Ext}(\mathbb{Z}/n,\mathbb{Z}/m) = (\mathbb{Z}/m)/(n \cdot \mathbb{Z}/m) \cong (\mathbb{Z}/m)/(d \cdot \mathbb{Z}/m) \quad \text{where } d \coloneqq \gcd(m,n).$$

General principle: $\operatorname{Ext}(\mathbb{Z}/n, G) = G/nG$

By applying $\operatorname{Hom}_{\mathbb{Z}}(-,G)$ to the above resolution:

$$0 \longleftarrow \operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/n,G) \longleftarrow \operatorname{Hom}(\mathbb{Z},G) \longleftarrow \operatorname{Hom}(\mathbb{Z}/n,G) \longleftarrow 0$$

Link to Diagram

which can be identified with:

$$0 \longleftarrow G/nG \overset{*}{\swarrow}$$

$$G \longleftarrow Hom(\mathbb{Z}/n, G) \longleftarrow 0$$

Link to Diagram

3. Contravariant Hom takes coproducts to products:

$$\operatorname{Ext}(\bigoplus_{i\in I} A_i, \prod_{k\in K} B_k) = \prod_{i\in I} \prod_{k\in K} \operatorname{Ext}(A_i, B_k).$$

19.6 6

^aThanks to Oskar Henriksson for some fixes/clarifications and further explanations here!

Write

$$A_{-} := A_{1} \oplus A_{2} \oplus A_{3} := \mathbb{Z} \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/3$$

$$B_{-} := B_{1} \oplus B_{2} \oplus B_{3} := \mathbb{Z} \oplus \mathbb{Z}/4 \oplus \mathbb{Z}/5.$$

We can then define the bicomplex

$$C_{-,-} := \operatorname{Ext}(A_{-}, B_{-}) = \bigoplus_{0 \le i,k \le 3} \operatorname{Ext}(A_{i}, B_{k}),$$

i.e. $C_{i,k} := \text{Ext}(A_i, B_k)$, which can be organized into the following diagram where we take the Ext at each position and sum them all together:

$$\operatorname{Ext}(A_1, B_1)$$

$$\operatorname{Ext}(A_1, B_2)$$

$$\operatorname{Ext}(A_1, B_3)$$

$$\operatorname{Ext}(A_2, B_1)$$

$$\operatorname{Ext}(A_2, B_2)$$

$$\operatorname{Ext}(A_2, B_3)$$

$$\operatorname{Ext}(A_3,B_1)$$

$$\operatorname{Ext}(A_3, B_2)$$

$$\operatorname{Ext}(A_3, B_3)$$

Link to Diagram

Link to Diagram

This equals the following:

$$\operatorname{Ext}(\mathbb{Z},\mathbb{Z})$$

$$\operatorname{Ext}(\mathbb{Z},\mathbb{Z}/4)$$

$$\operatorname{Ext}(\mathbb{Z},\mathbb{Z}/5)$$

$$\operatorname{Ext}(\mathbb{Z}/2,\mathbb{Z})$$

$$\operatorname{Ext}(\mathbb{Z}/2,\mathbb{Z}/4)$$

$$\operatorname{Ext}(\mathbb{Z}/2,\mathbb{Z}/5)$$

$$\operatorname{Ext}(\mathbb{Z}/3,\mathbb{Z})$$

$$\operatorname{Ext}(\mathbb{Z}/3,\mathbb{Z}/4)$$

$$\operatorname{Ext}(\mathbb{Z}/3,\mathbb{Z}/5)$$

Which simplifies to:

$$\mathbb{Z}/2$$

$$\mathbb{Z}/2$$

$$\mathbb{Z}/3$$

19.6 6 91

Link to Diagram

So the answer is $\mathbb{Z}/2 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/3 \cong \mathbb{Z}/2 \oplus \mathbb{Z}/6$.

19.7 7

Show there is no homeomorphism $\mathbb{CP}^2 \xrightarrow{f} \mathbb{CP}^2$ such that $f(\mathbb{CP}^1)$ is disjoint from $\mathbb{CP}_1 \subset \mathbb{CP}_2$.

Solution:

Concepts Used:

- 1. Every homeomorphism induces isomorphisms on homotopy/homology/cohomology.
- 2. $H^*(\mathbb{CP}^2) = \mathbb{Z}[\alpha]/(\alpha^2)$ where deg $\alpha = 2$.
- 3. $[f(X)] = f_*([X])$
- 4. $a \frown b = 0 \implies a = 0$ or b = 0 (nondegeneracy).

Supposing such a homeomorphism exists, we would have $[\mathbb{CP}^1] \cap [f(\mathbb{CP}^1)] = 0$ by the definition of these submanifolds being disjoint. But $[\mathbb{CP}^1] \cap [f(\mathbb{CP}^1)] = [\mathbb{CP}^1] \cap f_*([\mathbb{CP}^1])$, where

$$f_*: H^*(\mathbb{CP}^2) \to H^*(\mathbb{CP}^2)$$

is the induced map on cohomology. Since the intersection pairing is nondegenerate, either $[\mathbb{CP}^1] = 0$ or $f_*([\mathbb{CP}^1]) = 0$. We know that $H^*(\mathbb{CP}^2) = \mathbb{Z}[\alpha]/\alpha^2$ where $\alpha = [\mathbb{CP}^1]$, however, so this forces $f_*([\mathbb{CP}^1]) = 0$. But since this was a generator of H^* , we have $f_*(H^*(\mathbb{CP}^2)) = 0$, so f is not an isomorphism on cohomology.

19.8 8

Describe the universal cover of $X = (S^1 \times S^1) \vee S^2$ and compute $\pi_2(X)$.

Solution:

Concepts Used:

- $\pi_{\geq 2}(\overline{X}) \cong \pi_{\geq 2}(X)$ for \overline{X} the universal cover of X
- Structure of the universal cover of a wedges
- $\overline{T^2} = \mathbb{R}^2$ and $\overline{S^2} = S^2$
- By Mayer-Vietoris, $H_n(\bigvee X_i) = \bigoplus H_n(X_i)$.

19.7 7

The universal cover can be identified as

$$\overline{X} = \mathbb{R}^2 \bigvee_{i,j \in \mathbb{Z}^2} S^2,$$

i.e. the plane with a sphere wedged onto every integer lattice point. We can then check

$$\pi_1(X) \cong \pi_1(\overline{X})$$

$$= \pi_1(\mathbb{R}^2 \bigvee_{i,j \in \mathbb{Z}^2} S^2)$$

$$= \pi_1(\mathbb{R}^2 \bigvee_{i,j \in \mathbb{Z}^2} S^2)$$

$$= \prod_{i,j \in \mathbb{Z}^2} \pi_1(\mathbb{R}^2) \times \pi_1(S^2)$$

$$= 0,$$

using that $\pi_1(S^2) = 0$. Then by Hurewicz, $\pi_2(X) \cong H_2(X)$, so we can compute

$$H_2(X) = H_2(\mathbb{R}^2 \bigvee_{i,j \in \mathbb{Z}^2} S^2)$$

$$= \bigoplus_{i,j \in \mathbb{Z}^2} H_2(\mathbb{R}^2) \oplus H_2(S^2)$$

$$= \bigoplus_{i,j \in \mathbb{Z}^2} \mathbb{Z}.$$

 \sim

19.9 9

Let $S^3 \to E \to S^5$ be a fiber bundle and compute $H_3(E)$.

Solution (Using the LES in Homotopy):

Concepts Used:

- Homotopy LES: $F \to E \to B \rightsquigarrow \pi_*F() \to \pi_*(E) \to \pi_*(B)$.
- Hurewicz: $\pi_{\leq n}(X) = 0, \pi_n(X) \neq 0 \implies \pi_n(X) \cong H_n(X).$
- $0 \to A \to B \to 0$ exact iff $A \cong B$

From the LES in homotopy we have

19.9 9

$$\pi_4(S^3) \longrightarrow \pi_4(E) \longrightarrow \pi_4(S^5) \longrightarrow$$

$$\longrightarrow \pi_3(S^3) \longrightarrow \pi_2(E) \longrightarrow \pi_2(S^5) \longrightarrow$$

$$\longrightarrow \pi_1(S^3) \longrightarrow \pi_1(E) \longrightarrow \pi_1(S^5) \longrightarrow$$

$$\longrightarrow \pi_0(S^3) \longrightarrow \pi_0(E) \longrightarrow \pi_0(S^5)$$

Link to Diagram

and plugging in known information yields

$$\pi_4(S^3) \longrightarrow \pi_4(E) \longrightarrow 0 \longrightarrow 0$$

$$0 \longrightarrow \pi_2(E) = 0 \longrightarrow 0$$

$$0 \longrightarrow \pi_1(E) = 0 \longrightarrow 0$$

$$0 \longrightarrow \pi_1(E) = 0 \longrightarrow 0$$

Link to Diagram

where

- Rows 3 and 4 force $\pi_3(E) \cong \mathbb{Z}$,
- Rows 0 and 1 force $\pi_0(E) = \mathbb{Z}$ (todo: not clear if this is true... is it even needed here?)

19.9 9

20 Fall 2017 Final

• The remaining rows force $\pi_1(E) = \pi_2(E) = 0$.

By Hurewicz, we thus have $H_3(E) = \pi_3(E) = \mathbb{Z}$.

Solution (Using the Serre spectral sequence):

Four-corner spectral sequences, only homology in degrees 1,3,5,8. No differentials hit anything

20 | Fall 2017 Final

20.1 1

Let X be the subspace of the unit cube I^3 consisting of the union of the 6 faces and the 4 internal diagonals. Compute $\pi_1(X)$.

20.2 2 \sim

Let X be an arbitrary topological space, and compute $\pi_1(\Sigma X)$.

Solution:

Write $\Sigma X = U \cup V$ where $U = \Sigma X - (X \times [0, 1/2])$ and $U = \Sigma X - X \times [1/2, 1])$. Then $U \cap V = X \times \{1/2\} \cong X$, so $\pi_1(U \cap V) = \pi_1(X)$.

But both U and V can be identified by the cone on X, given by $CX = \frac{X \times I}{X \times 1}$, by just rescaling the interval with the maps:

 $i_U: U \to CX$ where $(x,s) \mapsto (x,2s-1)$ (The second component just maps $[1/2,1] \to [0,1]$.) $i_V: V \to CX$ where $(x,s) \mapsto (x,2s)$. (The second component just maps $[0,1/2] \to [0,1]$)

But CX is contractible by the homotopy $H: CX \times I \to CX$ where H((c,s),t) = (c,s(1-t)). So $\pi_1(U) = \pi_1(V) = 0$.

By Van Kampen, we have $\pi_1(X) = 0 *_{\pi_1(X)} 0 = 0$.

20.3 3

Let $X = S^1 \times S^1$ and $A \subset X$ be a subspace with $A \cong S^1 \vee S^1$. Show that there is no retraction from X to A.

Fall 2017 Final 95

20 Fall 2017 Final

Solution:

We have $\pi_1(S^1 \times S^1) = \pi_1(S^1) \times \pi_1(S^1)$ since S^1 is path-connected (by a lemma from the problem sets), and this equals $\mathbb{Z} \times \mathbb{Z}$.

We also have $\pi_1(S^1 \vee S^1) = \pi_1(S^1) *_{\{pt\}} \pi_1(S^1)$, which by Van-Kampen is $\mathbb{Z} * \mathbb{Z}$.

Suppose X retracts onto A, we can then look at the inclusion $\iota: A \hookrightarrow X$. The induced homomorphism $\iota_*: \pi_1(A) \hookrightarrow \pi_1(X)$ is then also injective, so we've produced an injection from $f: \mathbb{Z} * \mathbb{Z} \hookrightarrow \mathbb{Z} \times \mathbb{Z}$.

This is a contradiction, because no such injection can exists. In particular, the commutator [a, b] is nontrivial in the source. But $f(aba^{-1}b^{-1}) = f(a)f(b)f(a)^{-1}f(b)^{-1}$ since f is a homomorphism, but since the target is a commutative group, this has to equal $f(a)f(a)^{-1}f(b)f(b)^{-1} = e$. So there is a non-trivial element in the kernel of f, and f can not be injective - a contradiction.

20.4 4

Show that for every map $f: S^2 \to S^1$, there is a point $x \in S^2$ such that f(x) = f(-x).

Solution:

Suppose towards a contradiction that f does not possess this property, so there is no $x \in S^2$ such that f(x) = f(-x).

Then define $g: S^2 \to S^1$ by g(x) = f(x) - f(-x); by assumption, this is a nontrivial map, i.e. $g(x) \neq 0$ for any $x \in S^2$.

In particular, -g(-x) = -(f(-x) - f(x)) = f(x) - f(-x) = g(x), so -g(x) = g(-x) and thus g commutes with the antipodal map $\alpha: S^2 \to S^2$.

This means g is constant on the fibers of the quotient map $p: S^2 \to \mathbb{RP}2$, and thus descends to a well defined map $\tilde{g}: \mathbb{RP}2 \to S^1$, and since $S^1 \cong \mathbb{RP}1$, we can identify this with a map $\tilde{g}: \mathbb{RP}2 \to \mathbb{RP}1$ which thus induces a homomorphism $\tilde{g}_*: \pi_1(\mathbb{RP}2) \to \pi_1(\mathbb{RP}1)$.

Since g was nontrivial, \tilde{g} is nontrivial, and by functoriality of π_1 , \tilde{g}_* is nontrivial.

But $\pi_1(\mathbb{RP}2) = \mathbb{Z}_2$ and $\pi_1(\mathbb{RP}1) = \mathbb{Z}$, and $\tilde{g}_* : \mathbb{Z}^2 \to \mathbb{Z}$ can only be the trivial homomorphism - a contradiction.

Remark 20.4.1: Alternate Solution Use covering space $\mathbb{R} \twoheadrightarrow S^1$?

20.5 5

How many path-connected 2-fold covering spaces does $S^1 \vee \mathbb{RP}2$ have? What are the total spaces?

Solution:

First note that $\pi_1(X) = \pi_1(S^1) *_{pt} \pi_1(\mathbb{RP}2)$ by Van-Kampen, and this is equal to $\mathbb{Z} * \mathbb{Z}_2$.

20.4 4 96

20.6 6

Let $G = \langle a, b \rangle$ and $H \leq G$ where $H = \langle aba^{-1}b^{-1}, a^2ba^{-2}b^{-1}, a^{-1}bab^{-1}, aba^{-2}b^{-1}a \rangle$. To what well-known group is H isomorphic?

21 | Appendix: Homological Algebra

21.1 Exact Sequences

Proposition 21.1.1(?).

The sequence $A \xrightarrow{f_1} B \xrightarrow{f_2} C$ is exact if and only if $\operatorname{im} f_i = \ker f_{i+1}$ and thus $f_2 \circ f_1 = 0$.

Fact 21.1.2

Some useful results:

- $0 \to A \hookrightarrow_f B$ is exact iff f is **injective**
- $B \rightarrow_f C \rightarrow 0$ is exact iff f is surjective
- $0 \to A \to B \to 0$ is exact iff $A \cong B$.
- $A \hookrightarrow B \to C \to D \twoheadrightarrow E \text{ iff } C = 0$
- $0 \to A \to B \xrightarrow{\cong} C \to D \to 0 \text{ iff } A = D = 0.$
 - Todo: Proof
- $0 \to A \to B \to C \to 0$ splits iff C is free.
- Can think of $C \cong \frac{B}{\operatorname{im} f_1}$.

Definition 21.1.3 (Splitting an exact sequence)

The sequences *splits* when a morphism $f_2^{-1}: C \to B$ exists. In **Ab**, this means $B \cong A \oplus C$, in **Grp** it's $B \cong A \rtimes_{\varphi} C$.

Example 21.1.4(of exact sequences):

•
$$0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\text{mod } 2} \frac{\mathbb{Z}}{2\mathbb{Z}} \to 0$$

•
$$1 \to N \xrightarrow{\iota} G \xrightarrow{p} \frac{G}{N} \to 1$$

- Groups and normal subgroups

•
$$1 \to \frac{\mathbb{Z}}{n\mathbb{Z}} \xrightarrow{\iota} D_{2n} \xrightarrow{?} \frac{\mathbb{Z}}{2\mathbb{Z}} \to 1$$

- Dihedral group and cyclic groups

$$\bullet \quad 0 \to I \cap J \xrightarrow{\Delta: x \mapsto (x,x)} I \oplus J \xrightarrow{f:(x,y) \mapsto x-y} I + J \to 0$$

- R-Modules

•
$$0 \to \frac{R}{I \cap J} \xrightarrow{\Delta: x \mapsto (x, x)} \frac{R}{I} \oplus \frac{R}{J} \xrightarrow{f: (x, y) \mapsto x - y} \frac{R}{I + J} \to 0$$

• $0 \to \mathbb{H}_1 \xrightarrow{\nabla} \mathbb{H}_{curl} \xrightarrow{\nabla \times} \mathbb{H}_{div} \xrightarrow{\nabla \cdot} \mathbb{L}_2 \to 0$

– Since $\nabla \times \nabla F = \nabla \cdot \nabla \times \bar{v} = 0$ in Hilbert spaces

Remark 21.1.5: Is $f_1 \circ f_2 = 0$ equivalent to exactness..? Answer: yes, every exact sequence is a chain complex with trivial homology. Therefore homology measures the failure of exactness.

Alternatively stated: Exact sequences are chain complexes with no cycles.

Remark 21.1.6: Any LES $A_1 \to \cdots \to A_6$ decomposes into a twisted collection of SES's; define $C_k = \ker(A_k \to A_{k+1}) \cong \operatorname{im}(A_{k-1} \to A_k)) \cong \operatorname{coker}(A_{k-2} \to A_{k-1})$, then all diagonals here are exact:

21.2 Five Lemma

Theorem 21.2.1(?).

If m, p are isomorphisms, l is an **surjection**, and q is an **injection**, then n is an **isomorphism**. Proof: diagram chase two "four lemmas", one on each side. Full proof here.

21.3 Free Resolutions

Example 21.3.1(?): The canonical example:

$$0 \to \mathbb{Z} \xrightarrow{\times m} \mathbb{Z} \xrightarrow{\pmod{m}} \mathbb{Z}_m \to 0$$

Or more generally for a finitely generated group $G = \langle g_1, g_2, \cdots, g_n \rangle$,

$$\cdots \to \ker(f) \to F[g_1, g_2, \cdots, g_n] \xrightarrow{f} G \to 0$$

where F denotes taking the free group.

Every abelian groups has a resolution of this form and length 2.

21.2 Five Lemma 98

21.4 Properties of Tensor Products

- $A \otimes B \cong B \otimes A$
- $(-) \otimes_R R^n = \mathrm{id}$
- $\bigoplus_{i} A_{i} \otimes \bigoplus_{j} B_{j} = \bigoplus_{i} \bigoplus_{j} (A_{i} \otimes B_{j})$ $\mathbb{Z}_{m} \otimes \mathbb{Z}_{n} = \mathbb{Z}_{d}$
- $\mathbb{Z}_n \otimes A = A/nA$

21.5 Properties of Hom

- $hom_R(\bigoplus A_i, \prod B_j) = \bigoplus \prod hom(A_i, B_j)$
- Contravariant in first slot, covariant in second
- Exact over vector spaces

21.6 Properties of Tor

- $\operatorname{Tor}_R^0(A,B) = A \otimes_R B$
- $\operatorname{Tor}(\bigoplus_{i}^{R} A_{i}, \bigoplus_{j}^{R} B) = \bigoplus_{i}^{R} \bigoplus_{j} \operatorname{Tor}(\mathbf{T}A_{i}, \mathbf{T}B_{j})$ where $\mathbf{T}G$ is the torsion component of G.
- $\operatorname{Tor}(\mathbb{Z}_n, G) = \ker(g \mapsto ng) = \{g \in G \mid ng = 0\}$
- $\operatorname{Tor}(A, B) = \operatorname{Tor}(B, A)$

21.7 Properties of Ext

- $\operatorname{Ext}_{R}^{0}(A, B) = \operatorname{hom}_{R}(A, B)$ $\operatorname{Ext}(\bigoplus_{i} A_{i}, \prod_{j} B_{j}) = \bigoplus_{i} \prod_{j} \operatorname{Ext}(\mathbf{T}A_{i}, B_{j})$
- $\operatorname{Ext}(F,G) = 0$ if F is free
- $\operatorname{Ext}(\mathbb{Z}_n, G) \cong G/nG$

21.8 Computing Tor

$$Tor(A, B) = h[\cdots \to A_n \otimes B \to A_{n-1} \otimes B \to \cdots A_1 \otimes B \to 0]$$

where A_* is any free resolution of A.

Shorthand/mnemonic:

Tor :
$$\mathcal{F}(A) \to (-\otimes B) \to H_*$$

21.9 Computing Ext

$$\operatorname{Ext}(A,B) = h[\cdots \operatorname{hom}(A,B_n) \to \operatorname{hom}(A,B_{n-1}) \to \cdots \to \operatorname{hom}(A,B_1) \to 0]$$

where B_* is a any free resolution of B.

Shorthand/mnemonic:

$$\operatorname{Ext}: \mathcal{F}(B) \to \operatorname{hom}(A, -) \to H_*$$

21.10 Hom/Ext/Tor Tables

$$\begin{array}{c|cccc} \operatorname{Tor} & \mathbb{Z}_m & \mathbb{Z} & \mathbb{Q} \\ \hline \mathbb{Z}_n & \mathbb{Z}_d & 0 & 0 \\ \mathbb{Z} & 0 & 0 & 0 \\ \mathbb{Q} & 0 & 0 & 0 \end{array}$$

Ext	\mathbb{Z}_m	\mathbb{Z}	Q
$\overline{\mathbb{Z}_n}$	\mathbb{Z}_d	\mathbb{Z}_n	0
\mathbb{Z}	0	0	0
\mathbb{Q}	0	$\mathcal{A}_{}/\mathbb{Q}$	0

Where $d = \gcd(m, n)$ and $\mathbb{Z}_0 := 0$.

Things that behave like "the zero functor":

- $\operatorname{Ext}(\mathbb{Z}, -)$
- $\operatorname{Tor}(-,\mathbb{Z}),\operatorname{Tor}(\mathbb{Z},-)$
- $\operatorname{Tor}(-,\mathbb{Q}), \operatorname{Tor}(\mathbb{Q},-)$

Thins that behave like "the identity functor":

- $hom(\mathbb{Z}, -)$
- $-\otimes_{\mathbb{Z}} \mathbb{Z}$ and $\mathbb{Z} \otimes_{\mathbb{Z}} -$

For description of $\mathcal{A}_{\sqrt{}}$, see here. This is a certain ring of adeles.

22 Appendix: Unsorted Stuff

- Assorted info about other Lie Groups:
- $O_n, U_n, SO_n, SU_n, Sp_n$
- $\pi_k(U_n) = \mathbb{Z} \cdot \mathbb{1}[k \text{ odd}]$

$$-\pi_1(U_n)=1$$

• $\pi_k(SU_n) = \mathbb{Z} \cdot \mathbb{1} [k \text{ odd}]$

$$- \pi_1(SU_n) = 0$$

- $\pi_k(U_n) = \mathbb{Z}/2\mathbb{Z} \cdot \mathbb{1} [k = 0, 1 \pmod{8}] + \mathbb{Z} \cdot \mathbb{1} [k = 3, 7 \pmod{8}]$
- $\pi_k(SP_n) = \mathbb{Z}/2\mathbb{Z} \cdot \mathbb{1} [k = 4, 5 \pmod{8}] + \mathbb{Z} \cdot \mathbb{1} [k = 3, 7 \pmod{8}]$
- Groups and Group Actions
 - $-\pi_0(G)=G$ for G a discrete topological group.
 - $-\pi_k(G/H) = \pi_k(G)$ if $\pi_k(H) = \pi_{k-1}(H) = 0$.
 - $-\pi_1(X/G) = \pi_0(G)$ when G acts freely/transitively on X.

22.1 Cap and Cup Products

 $\cup: H^p \times H^q \to H^{p+q}; (a^p \cup b^q)(\sigma) = a^p(\sigma \circ F_p)b^q(\sigma \circ B_q)$

where F_p , B_q is embedding into a p+q simplex.

For f continuous, $f^*(a \cup b) = f^*a \cup f^*b$

It satisfies the Leibniz rule

$$\partial(a^p \cup b^q) = \partial a^p \cup b^q + (-1)^p (a^p \cup \partial b^q)$$

$$\cap: H_p \times H^q \to H_{p-q}; \sigma \cap \psi = \psi(F \circ \sigma)(B \circ \sigma)$$

where F, B are the front/back face maps.

Given $\psi \in C^q, \varphi \in C^p, \sigma : \Delta^{p+q} \to X$, we have

$$\psi(\sigma \cap \varphi) = (\varphi \cup \psi)(\sigma)$$
$$\langle \varphi \cup \psi, \ \sigma \rangle = \langle \psi, \ \sigma \cap \varphi \rangle$$

Let M^n be a closed oriented smooth manifold, and $A^{\widehat{i}}, B^{\widehat{j}} \subseteq X$ be submanifolds of codimension i and j respectively that intersect transversely (so $\forall p \in A \cap B$, the inclusion-induced map $T_pA \times T_pB \to A$ T_pX is surjective.)

Then $A \cap B$ is a submanifold of codimension i + j and there is a short exact sequence

$$0 \to T_p(A \cap B) \to T_pA \times T_pB \to T_pX \to 0$$

which determines an orientation on $A \cap B$.

Then the images under inclusion define homology classes

- $\begin{array}{ll} \bullet & [A] \in H_{\widehat{i}}X \\ \bullet & [B] \in H_{\widehat{j}}X \\ \bullet & [A \cap B] \in H_{\widehat{i+j}}X. \end{array}$

Denoting their Poincare duals by

- $\begin{array}{l} \bullet \quad [A] \ \in H^i X \\ \bullet \quad [B] \ \in H^j X \\ \bullet \quad [A \cap B] \ \in H^{i+j} X \end{array}$

We then have

$$[A] \, \smile \, [B] \, = [A \cap B] \, \in H^{i+j}X$$

Example: in \mathbb{CP}^n , each even-dimensional cohomology $H^{2i}\mathbb{CP}^n$ has a generator α_i with is Poincare dual to an \hat{i} plane. A generic \hat{i} plane intersects a \hat{j} plane in a $\widehat{i+j}$ plane, yielding $\alpha_i \smile \alpha_j = \alpha_{i+j}$ for $i+j \le n$.

Example: For T^2 , we have - $H_1T^2 = \mathbb{Z}^2$ generated by [A], [B], the longitudinal and meridian circles. - $H_0T^2 = \mathbb{Z}$ generated by [p], the class of a point.

Then $A \cap B = \pm [p]$, and so

$$[A] \smile [B] = [p]$$
$$[B] \smile [A] = -[p]$$

22.2 The Long Exact Sequence of a Pair

LES of pair $(A, B) \implies \cdots H_n(B) \to H_n(A) \to H_n(A, B) \to H_{n-1}(B) \cdots$

$$(A,B) \qquad \stackrel{B}{\longleftarrow} \qquad \stackrel{\cdot}{\wedge} \qquad .$$

3.1.3 Example. The cases n=1,2 and part of the case n=3 are shown in the figure below.

Figure 3.1: Barycentric subdivision [10].

Figure 15: Barycentric Subdivision

22.3 Tables

Figure 16: Higher homotopy groups of \mathbb{RP}^n

	I	Iomo	otop	y gro	oups	of co	mple	ex pro	oject	ive sp	oaces	
	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}	π_{12}
CP^1	0	Z	Z	Z_2	Z_2	Z_{12}	Z_2	Z_2	Z_3	Z_{15}	Z_2	$Z_2 \times Z_2$
CP^2	0	Z	0	0	Z	Z_2	Z_2	Z_{24}	Z_2	Z_2	Z_2	Z_{30}
CP^3	0	Z	0	0	0	0	Z	Z_2	Z_2	Z_{24}	0	0
CP^4	0	Z	0	0	0	0	0	0	Z	Z_2	Z_2	Z_{24}

Figure 17: Higher homotopy groups of \mathbb{CP}^n

22.3 Tables 104

						Homo	otopy gro	ups of spl	heres			
	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}	π_{12}
S^1	Z	0	0	0	0	0	0	0	0	0	0	0
S^2	0	Z	Z	Z_2	Z_2	Z_{12}	Z_2	Z_2	Z_3	Z_{15}	Z_2	$Z_2 \times Z_2$
S^3	0	0	Z	Z_2	Z_2	Z_{12}	Z_2	Z_2	Z_3	Z_{15}	Z_2	$Z_2 \times Z_2$
S^4	0	0	0	Z	Z_2	Z_2	$Z \times Z_{12}$	$Z_2 \times Z_2$	$Z_2 \times Z_2$	$Z_{24} \times Z_3$	Z_{15}	Z_2
S^5	0	0	0	0	Z	Z_2	Z_2	Z_{24}	Z_2	Z_2	Z_2	Z_{30}
S^6	0	0	0	0	0	Z	Z_2	Z_2	Z_{24}	0	Z	Z_2
S^7	0	0	0	0	0	0	Z	Z_2	Z_2	Z_{24}	0	0
S^8	0	0	0	0	0	0	0	Z	Z_2	Z_2	Z_{24}	0

Figure 18: Homotopy groups of spheres.

		Homotopy groups of exceptional groups										
	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}	π_{12}
G_2	0	0	Z	0	0	Z_3	0	Z_2	Z_6	0	$Z \times Z_2$	0
F_4	0	0	Z	0	0	0	0	Z_2	Z_2	0	$Z \times Z_2$	0
E_6	0	0	Z	0	0	0	0	0	Z	0	Z	Z_{12}
E_7	0	0	Z	0	0	0	0	0	0	0	Z	Z_2
E_8	0	0	Z	0	0	0	0	0	0	0	0	0

Figure 19: Homotopy groups of exceptional groups

22.4 Homotopy Groups of Lie Groups

• O(n): $\pi_k O_n = ?$

- $U(n): \pi_k U_n$ is \mathbb{Z} in odd degrees and $\pi_1 U_n = 1$
 - Check
- $SU(n): \pi_k U_n$ is \mathbb{Z} in odd degrees and $\pi_1 U_n = 0$.
- $U_n: \pi_k(U_n)$ is $\mathbb{Z}/2\mathbb{Z}$ in degrees?

22.5 Higher Homotopy

- $n \geq 2 \implies \pi_n(X) \in \mathbf{Ab}$
- $\Sigma S^n = S^{n+1}$
- $[\Sigma^n X, Y] \cong [X, \Omega^n Y]$
- $\pi * n(\Omega X) = \pi * n + 1(X)$

$$-\pi_n(X) \cong \pi_0(\Omega^n X)$$

- $n \geq 2 \implies \pi_n(S^1) = 0$
- $k < n \implies \pi_k(S^n) = 0$
- $\pi_n(X)$ is the obstruction to $f: S^n \to X$ being lifted to $\widehat{f}: D^{n+1} \to X$
- $\pi_n(X) \cong H_n(X)$ for the first n such that $\pi_n(X) \neq 0$; $\forall k < n, H_k(X) = 0$.
- $k+2 \le 2n \implies \pi_k(S^n) \cong \pi_{k+1}(S^{n+1})$
- $\pi_k(S^n) = \pi_{k+1}S^{n+1} = \dots = \pi_{k+i}S^{n+i}$
- $F \to E \to B$ a fibration yields $\cdots \pi_n(F) \to \pi_n(E) \to \pi_n(B) \to \pi * n 1(F) \cdots$
- Freundenthal suspension, stable homotopy groups

22.6 Higher Homotopy Groups of the Sphere

- $\pi_n(S^n) = \mathbb{Z}$
- $\pi_{n+1}S^n = \mathbb{Z}_2 \text{ for } n \ge 4$
- $\pi_{n+2}(S^n) \cong \mathbb{Z}_2$
- $\pi_{n+3}S^n = \mathbb{Z}_8 \text{ for } n \ge 5$
- $\pi_5 S^2 = \mathbb{Z}_2$
- $\pi_6 S^3 = \mathbb{Z}_4$

- $\pi_7 S^4 = \mathbb{Z} \oplus \mathbb{Z}_4$ $\pi_k S^2 \cong \pi_k S^3$ $\pi_3 S^2 \cong \mathbb{Z}$ $\pi_4 S^2 \cong \mathbb{Z}_2$

22.7 Misc

• $\Omega(-)$ is an exact functor.

22.8 Building a Moore Space

- To build a Moore space $M(n,\mathbb{Z}_p)$, take $X=S^n$ and attach e^{n+1} via a map $\Phi:S^n=\partial B^{n+1}\to \mathbb{Z}$ $X^{(n)} = S^n$ of degree p.
 - To obtain $M(n, \prod G_i)$ take the corresponding $\bigvee X_i$
 - Can also use Mayer Vietoris to conclude $H_{n+1}(\Sigma X) = H_n(X)$, and just suspend spaces with known homology.

Bibliography

- Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
- James Raymond Munkres. Topology. Pearson, 2018.

22.7~Misc