

Réalisez un traitement dans un environnement Big Data sur le Cloud

« Une application pour mieux connaître les fruits, un projet pour mieux maîtriser les données »

Projet: 9

Formation : Data Scientist

Oumou Faye

Mentor: Medina Hadjem

Plan de présentation

Introduction et Mission

Entreprise

Start-up AgriTech « **FRUITS** »

Propose des solutions innovantes pour la récolte des fruits

Mission

Développer une application mobile de reconnaissance de fruits

Processus

1. Le consommateur prend un fruit en photo

2. Le consommateur obtient instantanément des informations pertinentes sur ce fruit

<u>Problématique</u>

La quantité de données est volumineuse

La **quantité** de données va **augmenter** au fur et à mesure

Comment gérer le traitement d'un grand volume de données ?

Objectif

Mettre en place une première version du moteur de reconnaissance des images de fruits

Profiter d'une **architecture** sur le **Cloud** et réaliser les étapes de **traitement sur les images**

Sensibiliser le grand public à la biodiversité des fruits

Introduction et Mission

- Le jeu de données est disponible sur le site Kaggle
- Le jeu de données va rapidement augmenter

Simple Storage Service

Stockage distribué pour les images et les résultats

PaaS: Platform as a service

<u>IAM</u>

« Identity Access Management »

Gestion des droits d'accès et des rôles utilisateurs dans l'environnement AWS.

<u>EMR</u>

Elastic MapReduce

Service pour exécuter Spark/Hadoop sur des clusters dans le cloud

EC2

Elastic Compute Cloud

Machines virtuelles (workers) à la demande pour exécuter des traitements

EMR STUDIO

Elastic MapReduce Studio

Interface web pour coder et analyser les données via des notebook connecté à des clusters EMR

Le rôle des briques dans Amazon Web Services

Configuration S3 – Création du compartiment

Configuration S3 – Création du compartiment

- Le bucket S3 a été crée avec succès.
- Deux dossiers y on été ajoutés manuellement :
 - un pour les images à traiter,
 - un pour les résultats du traitement.

Configuration EMR - Le cluster

Configuration EMR - Le cluster

Configuration EMR - Le cluster

Primaire

Choisir un type d'instance EC2

- Nous avons utilisé l'instance EC2 : m5.xlarge.
- Elle est suffisamment puissante pour le traitement parallèle d'images.
- Elle est équilibrée entre performance et coût.
- Elle est adaptée à l'exécution de « User Defined Functions » de deep learning léger (ex: MobileNetV2).

Configuration IAM

EMR_DefaultRole

EMR_EC2_DefaultRole

Configuration EMR Studio

Configuration EMR Studio

- L'espace de travail EMR Studio a bien été crée.
- ➢ Il est prêt à être lancé pour accéder à JupyterLab et déployer la chaîne de traitement sur Amazon Web Services.

Résumer général des configurations AWS

- ✓ Le bucket S3 a été créé avec succès.
- ✓ Le cluster EMR est au statut « en attente » prêt à etre connecté à un notebook via le Kernel PySpark.
- ✓ Les rôles EMR_DefaultRole et EMR_EC2_Default possèdent les politiques nécessaires pour interagir avec le bucket contenant les images et avec le cluster EMR.
- ✓ L'environnement EMR Studio a bien été crée, et nous avons accès à l'interface JupyterLab via l'espace de travail.
- ✓ Bien que nos images ne contiennent aucune donnée personnelle identifiable, toutes les configurations sont déployées dans la région européenne (eu-west-3), assurant la conformité avec le RGPD (Règlement Générale sur la Protection des Données).

4

1

Pipeline PySpark de traitement des images

Chargement des données

- Images binaires lues depuis le bucket S3,
 - Label = nom du dossier parent
- Redimensionnement 224 X 224 X 3

Prétraitement des images pour assurer la compatibilité avec le modèle effectué

Extraction des Features (embeddings)

- Chargement du modèle MobileNetV2 (sans la couche de classification).
- Diffusion (broadcast des poids du modèle à tous les workers Spark).
- UDF pour l'extraction des embeddings.

Embeddings extraits

Stockage des résultats

- Sauvegarde des embeddings extraits au format Parquet dans le bucket S3
- Embeddings extraites
 e vecteurs de
 dimension 1280

Sauvegarde dans le bucket S3 au format compréssé (parquet) Réduction de dimension ACP

- Chargement des embeddings stockés en Parquet
- Application de l'ACP (20 composantes) pour réduire la dimension des vecteurs.
- Visualisation de la variance expliquée par composante
- Résultats ACP sauvegardés sur S3

Dimensions réduites

Particularité du modèle MobileNetV2

- Modèle léger et rapide, idéal pour des environnements distribués (comme Spark).
- Pré-entrainé sur ImageNet, ce modèle possède une bonne capacité à extraires des caractéristiques visuelles.
- Utilise une architecture optimisée avec des blocs « bottleneck » et des connexions résiduelles, facilitant l'apprentissage.
- Compatible avec des entrées d'image 224x224x3 (couramment utilisées).
- Permet d'extraire efficacement des **embeddings visuels**, en utilisant les couches **avant la classification finale**.

Particularité du modèle MobileNetV2

- ✓ Le modèle MobileNetV2 a été utilisé pour extraire des embeddings visuels à partir des images.
- ✓ MobileNetV2 est utilisé pour de nombreuse tâche de vision par ordinateur (computeur vision) classification d'images, détection d'objets, segmentation ou la reconnaissance faciale.
- Seule l'avant-dernière couche (juste avant la classification finale) a été conservée.
 Elle produit un vecteur de 1280 dimensions, servant de représentation visuelle de chaque image.

Utilité de PySpark dans le pipeline

- Traitement distribué des images en parallèle
- Utilisation des UDF pour appliquer MobileNetV2
- Optimisation du temps d'exécution

- Diffusion
 automatique des
 paramètres du
 modèle(broadcast)
- Tous les workers Spark appliquent localement le modèle
- Evite les rechargements inutiles => gain de performance

Réduction de dimension avec l'analyse en composante principale

L'objectif était de réduire dimensionnalité des caractéristiques (1280 dimensions) tout en conservant l'essentiel de l'information.

Composante	Var. expliqu?e (%) \	/ar. cumul?e (%)
1	66.15	66.15
2	19.35	85.50
3	5.26	90.76
4	3.17	93.94
5	2.22	96.15
6	2.09	98.24
7	1.13	99.37
8	0.31	99.68
9	0.20	99.88
10	0.10	99.98
11	0.02	100.00
12	0.00	100.00
13	0.00	100.00
14	0.00	100.00
15	0.00	100.00
16	0.00	100.00
17	0.00	100.00
18	0.00	100.00
19	0.00	100.00
20	0.00	100.00

Avantages:

- 1. Réduction du temps de calcul
- Moins de mémoire utilisé
- 3. Moins de bruit et redondance dans les données
- Préparation efficace pour effectuer la prédiction avec le modèle
- Les 2 premières composantes expliquent déjà 85,5 % de la variance.
- Avec seulement 6 composantes, on conserve 98 % de l'information.

Surveillance via les logs

▼ Completed Jobs (62) 1 Pages. Jump to 1 . Show 100 Items in a page. Go					
Job Id (Job Group) *	Description	Submitted	Duration	Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total
61 (65)	Job group for statement 65 parquet at NativeMethodAccessorImpl.java:0	2025/06/24 07:01:24	38 s	1/1	2/2
60 (64)	Job group for statement 64 showString at NativeMethodAccessorImpl.java:0	2025/06/24 07:00:08	0.5 s	1/1	1/1
59 (64)	Job group for statement 64 treeAggregate at RowMatrix.scala:139	2025/06/24 07:00:06	1 s	1/1	2/2
58 (64)	Job group for statement 64 isEmpty at RowMatrix.scala:441	2025/06/24 07:00:06	0.2 s	1/1	1/1
57 (64)	Job group for statement 64 isEmpty at RowMatrix.scala:441	2025/06/24 07:00:06	0.3 s	1/1	1/1
56 (64)	Job group for statement 64 treeAggregate at Statistics.scala:58	2025/06/24 07:00:05	0.7 s	1/1	2/2
55 (64)	Job group for statement 64 first at RowMatrix.scala:62	2025/06/24 07:00:05	0.5 s	1/1	1/1
54 (64)	Job group for statement 64 first at PCA-scala:44	2025/06/24 06:59:29	36 s	1/1	1/1
53 (62)	Job group for statement 62 isEmpty at RowMatrix.scalas441	2025/06/24 06:56:17	0.7 s	1/1	1/1
52 (62)	Job group for statement 62 isEmpty at RowMatrix.scala:441	2025/06/24 06:56:16	1 s	1/1	1/1
51 (62)	Job group for statement 62 treeAggregate at Statistics.scala:58	2025/06/24 06:56:15	1 s	1/1	2/2
50 (62)	Job group for statement 62 first at RowMatrix.scala:62	2025/06/24 06:56:14	0.8 s	1/1	1/1
40.753	lab according shakes and CO	2025/05/24 05:55:29	20 -	4 /4	474

- Le traitement des tâches est vérifié dans l'onglet « Jobs » de l'interface Spark.
- La durée d'exécution de chaque tâche est accessible.
- Vérification que tous les « stages » et « tasks » sont bien en statut « succeeded ».

Emils!

Surveillance via les logs

Visualisation de l'activation des « executors » (workers) dans le cluster.

- Observation du lancement parallèle des jobs.
- Confirmation que les poids du modèle ont été diffusés correctement sur l'ensemble des workers.

Conclusion et Perspectives

Nous avons effectué:

- Le traitement distribué d'images grâce à PySpark + AWS EC2.
- Utilisation de workers (machines virtuelles) connectés à AWS EC2 pour accélérer les traitements à grande échelle.
- Réduction de la dimension des images grâce à l'analyse en composantes principales (PCA):
- Pour réduire l'utilisation mémoire et accélérer les calculs.
- Le pipeline est prêt à intégrer un modèle de prédiction supervisé (fit/predict).

Perspectives:

- Test d'autres modèles d'extraction tels que ResNet (Residual Network) ou EfficientNet (Efficient Convolutional Network).
- Entraînement d'un modèle de prédiction (ex. MLP – Multi-Layer Perceptron, SVM – Support Vector Machine) à partir des embeddings extraits.
- Déploiement de l'interface utilisateur
 « front-end » de l'application mobile.
- Pipeline prêt à traiter un volume massif d'images.

Conclusion et Perspectives

Merci de votre attention

Question(s) ? / Réponse(s)

