2015-1 期中试卷解答

而
$$\frac{1+2+\cdots n}{n^2+n+n} = \frac{n(n+1)}{2(n^2+2n)} \rightarrow \frac{1}{2}$$
, $\frac{1+2+\cdots n}{n^2+n+1} = \frac{n(n+1)}{2(n^2+n+1)} \rightarrow \frac{1}{2}$ $(n \to \infty)$ 故原极限 = $\frac{1}{2}$ \circ

2.
$$l = \exp \lim_{x \to 0} \frac{1}{x} \ln(\frac{e^x + e^{2x} + \dots + e^{nx}}{n}) = \exp \lim_{x \to 0} \frac{1}{x} (\frac{e^x + e^{2x} + \dots + e^{nx}}{n} - 1)$$

$$= \exp \lim_{x \to 0} \frac{1}{n} \frac{(e^x - 1) + (e^{2x} - 1) + \dots + (e^{nx} - 1)}{x} = \exp \frac{1}{n} (1 + 2 + \dots + n) = e^{\frac{n+1}{2}}$$

3.
$$\Rightarrow x = \frac{1}{t}$$
, y $l = \lim_{x \to +\infty} \frac{\ln\left(x \sin \frac{1}{x}\right)}{1/x^2} = \lim_{t \to 0^+} \frac{\ln\left(\frac{1}{t} \sin t\right)}{t^2} = \lim_{t \to 0^+} \frac{\frac{\sin t}{t} - 1}{t^2} \quad (\text{ fin} \ln(1 + u) \sim u)$

$$= \lim_{t \to 0^+} \frac{\sin t - t}{t^3} = \lim_{t \to 0^+} \frac{\cos t - 1}{3t^2} = -\frac{1}{6}$$

4. 由
$$0 = \lim_{x \to +\infty} \frac{(1+a)x^2 + (1-a+b)x + 1 - b}{1-x}$$
 推得 $1+a=0$, $1-a+b=0$, 所以 $a=-1$, $b=-2$

推得
$$r=3$$
 , $c=\frac{1}{6}$, 因此, $u(x)=\arcsin x-x$ 的主部是 $\frac{1}{6}x^3$, 阶数为3 .

7.
$$\frac{dy}{dx} = \frac{x \cos x - \sin x}{x^2}$$
 ; $\frac{dy}{d(\cot x)} = \frac{\frac{x \cos x - \sin x}{x^2} dx}{-\frac{1}{\sin^2 x} dx} = \frac{\sin^3 x - x \sin^2 x \cos x}{x^2}$.

8.
$$\exists x = 0 \exists f, y = 1, \exists f'(0) = \frac{1}{\frac{1}{2^x} \ln \frac{1}{2} + 3x^2 \Big|_{x=0}} = \frac{1}{\ln \frac{1}{2}} = -\frac{1}{\ln 2}$$

9. 因
$$y = \frac{1}{2x^2 - 3x + 1} = \frac{1}{x - 1} - \frac{2}{2x - 1}$$
 ,所以

$$y^{(10)}(x) = \frac{(-1)^{10}10!}{(x-1)^{11}} - \frac{2 \cdot 2^{10}(-1)^{10}10!}{(2x-1)^{11}} \quad (\vec{x}) = \frac{10!}{(x-1)^{11}} - \frac{2^{11}10!}{(2x-1)^{11}})$$

10. 公式法
$$\frac{dy}{dx} = \frac{1 - \frac{1}{1 + t^2}}{\frac{2t}{1 + t^2}} = \frac{t}{2}$$
, 链导法 $\frac{d^2y}{dx^2} = \frac{1}{2} \cdot \frac{1 + t^2}{2t} = \frac{1 + t^2}{4t}$.

11. 间断点为
$$x = 0$$
, $x = \pm 1$ 。 因 $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{x \sin(1-x)}{-x(x^2-1)} = \sin 1$,

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x\sin(1-x)}{x(x^2-1)} = -\sin 1$$
, 所以 $x = 0$ 为跳跃间断点;

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x \sin(1-x)}{x(x-1)(x+1)} = \lim_{x \to 1} \frac{(1-x)}{(x-1)(x+1)} = -2, \text{ 所以 } x = 1 \text{ 为可去间断点 };$$

$$\lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{x \sin(1-x)}{|x|(x-1)(x+1)} = \infty, \text{ 所以 } x = -1 \text{ 为无穷间断点(或第二类间断点)}$$

12. 设x(t)为t时刻飞机与汽车的水平距离,设y(t)为t时刻飞机与汽车的距离,则

$$x^2(t) + h^2 = y^2(t)$$

其中 h=3 km. 两边求导,得 $2x\frac{dx}{dt}=2y\frac{dy}{dt}$,由题设知,在 $t=t_0$ 时, $y(t_0)=5$ km, $\frac{dy}{dt}\Big|_{t=t_0}=-160$ km/h,

故
$$x(t_0) = 4 \text{ km}$$
, $\frac{dx}{dt}\Big|_{t=t_0} = \frac{y(t_0)}{x(t_0)} \cdot \frac{dy}{dt}\Big|_{t=t_0} = -200 \text{ km/h}$,于是汽车的速度为 $200 - 120 = 80 \text{ km/h}$.

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 当 $x \neq 0$ 时,初等函数 $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$ 有定义,所以

连续; 而 $\lim_{x\to 0} (2x\sin\frac{1}{x} - \cos\frac{1}{x})$ 不存在, 所以 f'(x) 在 x=0 处不连续。

14. 方程
$$y = \sin(x+y)$$
 两边对 x 求导,得 $y' = \cos(x+y)(1+y')$,解得 $y' = \frac{\cos(x+y)}{1-\cos(x+y)}$

在方程 $y' = \cos(x+y)(1+y')$ 两边再对 x 求导: $y'' = -\sin(x+y)(1+y')^2 + \cos(x+y)y''$

解得
$$y'' = \frac{-\sin(x+y)(1+y')^2}{1-\cos(x+y)} = \frac{-\sin(x+y)}{[1-\cos(x+y)]^3}$$

其中
$$\lim_{x\to 0} \frac{x - \ln(1+x)}{x^2} = \lim_{x\to 0} \frac{1 - \frac{1}{1+x}}{2x} = \lim_{x\to 0} \frac{1}{1+x} \cdot \frac{x}{2x} = \frac{1}{2}$$
 , $\lim_{x\to 0} \frac{f'(\xi) - f'(0)}{\xi} = f''(0)$

由夹挤准则可得
$$\lim_{x\to 0} \frac{\xi}{x} = 1$$
 , 因此 $\lim_{x\to 0} \frac{f(x) - f(\ln(1+x))}{x^3} = \frac{1}{2} f''(0)$ 。

由泰勒公式,
$$f(x) = f(0) + \frac{1}{2}f''(0)x^2 + o(x^2)$$
,于是 $f(\ln(1+x)) = f(0) + \frac{1}{2}f''(0)\ln^2(1+x) + o(x^2)$

$$\lim_{x\to 0} \frac{f(x) - f(\ln(1+x))}{x^3} = \frac{1}{2} f''(0) \lim_{x\to 0} \frac{x^2 - \ln^2(1+x)}{x^3} - \dots$$
 此处将余项抵消不严格。
$$= \frac{1}{2} f''(0) \lim_{x\to 0} \frac{x - \ln(1+x)}{x^2} \cdot \frac{x + \ln(1+x)}{x} \quad (洛必达法则) = \frac{1}{2} f''(0)$$

16. 因 f(x) 周期为 5, 故点 (6, f(6)) 处的切线等同于点 (1, f(1)) 处的切线. f(6) = f(1), f'(6) = f'(1) 。

因为 f(x) 在 x = 1 处可导, 从而连续。在等式 $f(1 + \sin x) - 3f(1 - \sin x) = 8x + o(x)$ 两边取 $x \to 0$ 的极限,

得 f(1) = 0 ,且

$$\lim_{x \to 0} \frac{f(1+\sin x) - 3f(1-\sin x)}{x} = \lim_{x \to 0} \left[8 + \frac{o(x)}{x}\right] = 8$$

另一方面,依据导数定义

$$\lim_{x \to 0} \frac{f(1+\sin x) - 3f(1-\sin x)}{x} = \lim_{x \to 0} \frac{f(1+\sin x) - f(1)}{x} - 3\lim_{x \to 0} \frac{f(1-\sin x) - f(1)}{x}$$

$$= \lim_{x \to 0} \frac{f(1+\sin x) - f(1)}{\sin x} + 3\lim_{x \to 0} \frac{f(1-\sin x) - f(1)}{-\sin x} = f'(1) + 3f'(1) = 4f'(1) ,$$

从而 f'(1) = 2, 故所求切线方程为 y - 0 = 2(x - 6) 即 2x - y - 12 = 0.

注意 1,如果对 $f(1+\sin x)-3f(1-\sin x)=8x+o(x)$ 两边求导得 f'(1)=2,则有概念错误,不给此段分。

注意 2, 如果用洛必达求 $\lim_{x\to 0} \frac{f(1+\sin x)-3f(1-\sin x)}{x}$ 得 f'(1)=2 , 也会条件不足,不给此段分。

17. 显然
$$2 \le x_n < 3$$
 ; 由 $x_{n+1} - x_n = \frac{1}{x_n} - \frac{1}{x_{n-1}} = \frac{x_{n-1} - x_n}{x_n x_{n-1}}$ 知 $\{x_n\}$ 不单调 ,但由

$$x_{n+1} - x_{n-1} = \frac{1}{x_n} - \frac{1}{x_{n-2}} = \frac{x_{n-2} - x_n}{x_n x_{n-2}} = \frac{x_{n-1} - x_{n-3}}{x_n x_{n-1} x_{n-2} x_{n-3}}$$

知奇子列 $\{x_{2k-1}\}$ 与偶 $\{x_{2k}\}$ 分别单调 ,且简单计算可得 $x_1=2$, $x_2=\frac{5}{2}$, $x_3=\frac{12}{5}$, $x_4=\frac{29}{12}$, …

从而,得到偶子列 $\{x_{2k}\}$ 单调增;奇子列 $\{x_{2k-1}\}$ 单调减。由单调有界原理知奇子列 $\{x_{2k-1}\}$ 与偶 $\{x_{2k}\}$ 均收敛,

设其极限分别为
$$l_1$$
与 l_2 ,在 $x_{2k+1}=2+\frac{1}{x_{2k}}$, $x_{2k}=2+\frac{1}{x_{2k-1}}$ 两边取极限,得 $l_1=2+\frac{1}{l_2}$ 以及 $l_2=2+\frac{1}{l_1}$,

解此方程组得 $l_1=l_2=1+\sqrt{2}$,因此数列 $\{x_n\}$ 的极限存在,且 $\lim_{n\to\infty}x_n=1+\sqrt{2}$ 。

18. (1) 假设 $\forall x \in (a,b), f(x) \neq 0$,不妨设 f(x) > 0,则有

$$f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a^{+}} \frac{f(x)}{x - a} \ge 0; \quad f'_{-}(b) = \lim_{x \to b^{-}} \frac{f(x) - f(b)}{x - b} = \lim_{x \to b^{-}} \frac{f(x)}{x - b} \le 0$$

与 $f'_{+}(a) \cdot f'_{-}(b) > 0$ 矛盾,故至少存在一点 $\xi \in (a,b)$,使 $f(\xi) = 0$ 。

(2) 因f(x)在 $[a,\xi]$ 及 $[\xi,b]$ 上分别满足罗尔定理条件,故 $\exists \eta_1,\eta_2$,使得

$$f'(\eta_1) = f'(\eta_2) = 0$$
, $a < \eta_1 < \xi < \eta_2 < b$,

而 f'(x) 在 $[\eta_1, \eta_2]$ 上满足罗尔定理条件,所以 $\exists \eta \in (\eta_1, \eta_2) \subset (a,b)$,使 $f''(\eta) = 0$.

19. 由泰勒公式,
$$f(0) = f(c) + f'(c)(0-c) + \frac{f''(\xi_1)}{2!}(0-c)^2$$
, $0 < \xi_1 < c < 1$

$$f(1) = f(c) + f'(c)(1-c) + \frac{f''(\xi_2)}{2!}(1-c)^2, \quad 0 < c < \xi_2 < 1$$

两式相减
$$f(1) - f(0) = f'(c) + \frac{1}{2} [f''(\xi_2)(1-c)^2 - f''(\xi_1)c^2]$$
, 所以

$$f'(c) = f(1) - f(0) - \frac{1}{2} [f''(\xi_2)(1-c)^2 + f''(\xi_1)c^2]$$

由
$$|f(x)| \le a$$
, $|f''(x)| \le b$,得 $|f'(c)| \le 2a + \frac{b}{2}[(1-c)^2 + c^2]$

因在[0,1]
$$(1-c)^2 + c^2 = 2c^2 - 2c + 1 \le 1$$
,所以| $f'(c) \le 2a + \frac{b}{2}$.