

Computación Inteligente

Máster en Ingeniería en Informática

Área de Ciencias de la Computación

e Inteligencia Artificial

Departamento de Tecnologías de la Información

PRÁCTICA 1 (Versión 1 – Noviembre de 2021) Soft Computing

Objetivos.

El objetivo de esta práctica es implementar sistemas difusos completos, específicamente, un Sistema Basado en Reglas Difusas para Regresión (o Control) (SBRD), y un Sistema de Clasificación Basado en Reglas Difusas (SCBRDs). La práctica comprenderá todas las etapas de los mismos, desde la generación de reglas a partir de un conjunto de datos (aprendizaje de reglas), la realización del código del algoritmo de regresión y clasificación, y opcionalmente, para el caso de la regresión, un mecanismo de post-procesamiento para reducir el número de reglas basado en algoritmos evolutivos.

Enunciado de la práctica

Los SBRDs y SCBRDs son aplicaciones típicas de los sistemas difusos. Ambas son bien conocidas por su capacidad expresiva o de interpretabilidad por poder mezclar el conocimiento aportado por el experto con el obtenido o aprendido por métodos automáticos, y por su capacidad interpolativa, es decir, por hacer participar a las diferentes reglas de la decisión final y no necesariamente a una única regla concreta de su Base de Conocimiento.

Trabajaremos con conjuntos de datos o ejemplos (*datasets*) típicos de un repositorio reconocido, aprenderemos el conjunto de reglas mediante la adaptación de un algoritmo derivado de uno de los clásicos, implementaremos la regresión y la clasificación, y verificaremos su comportamiento, además de aplicar un post-procesamiento evolutivo de selección de reglas para reducir el conjunto de ellas en el caso de la regresión.

Implementación de un Algoritmo de Regresión o Control Difuso

Se trata de implementar el algoritmo de regresión o control *fuzzy* completo, es decir, con capacidad de predecir instancias nuevas empleando su Base de Conocimiento previamente aprendida mediante los algoritmos estudiados en las sesiones teóricas.

Los operadores y mecanismos que se deben implementar son:

- el *producto* (i.e. *t-norma* del *producto algebraico*) para el *matching*,
- el mínimo (i.e. t-norma del producto lógico) para la inferencia,
- el Punto de Máximo Valor ponderado por el matching para la desborrosificación.

Aprendizaje de la Base de Conocimiento

El conjunto de ejemplos que debe emplear es el *delta_ail*, con 5 variables, y sobre 7000 datos, que puede descargar desde https://sci2s.ugr.es/keel/category.php?cat=reg

El universo de las variables lo particionará en 3 y 5 etiquetas, para comparar los resultados.

La base de reglas debe aprenderse con el algoritmo estudiado en las sesiones de teoría, el archiconocido *Método de Wang y Mendel*, que encuentra las reglas por un criterio de cubrimiento y calidad individual de cada regla.

El conjunto de datos se dividirá en partes, como se explicará en la sección sobre la experimentación.

Evaluación del Sistema de Regresión o Control

Se empleará el error cuadrático medio entre la solución ideal y la obtenida, es decir, consistirá en medir la precisión (ver medida en la teoría) con todo el conjunto de prueba (ver sección de experimentación posterior).

Algoritmo Evolutivo (opcional) para la Selección de Reglas

Se implementará un algoritmo genético generacional para la selección de reglas, es decir, para obtener un conjunto menor y más compacto de ellas, al tiempo que más preciso. Empleará codificación binaria, y los siguientes operadores genéticos y otras características:

- Operador de cruce en un punto. Probabilidad de cruce 0.9.
- Operador de mutación aleatorio uniforme sobre el cromosoma de 0.01 (una vez el cromosoma debe mutar con probabilidad 0.01, aleatoriamente se escogerá el cromosoma que muta).
- 21 cromosomas como longitud de población.
- La inicialización de los cromosomas será: un cromosoma con todas las reglas activas (esto es, genes a 1), y el resto de cromosomas aleatoriamente.
- Número de generaciones: 50 sin mejora en el mejor cromosoma.

- Puede emplear elitismo, de parámetro 3.
- La función objetivo mediará-el error cuadrático medio.

Implementación de un Algoritmo de Clasificación Difuso

Se trata de implementar el algoritmo de clasificación *fuzzy* completo, es decir, con capacidad de clasificar instancias nuevas empleando su Base de Conocimiento previamente aprendida mediante los algoritmos estudiados en las sesiones teóricas.

Los operadores y mecanismos que se deben implementar son

- el mínimo (i.e. t-norma del producto lógico) para el matching,
- el producto algebraico para la función de ponderación,
- el método de Regla Ganadora.

Aprendizaje del Clasificador

El conjunto de ejemplos que debe emplear es el Glass1, con 9 variables, 7 clases, y 214 ejemplos, que puede descargar desde https://sci2s.ugr.es/keel/category.php?cat=clas

El universo de las variables lo particionará en 3 y 5 etiquetas, para comparar los resultados.

La base de reglas debe aprenderse con el algoritmo estudiado en las sesiones de teoría, conocido como método *Chi*, derivado del archiconocido *Método de Wang y Mendel*, que encuentra las reglas por un criterio de cubrimiento y calidad individual de cada regla.

El conjunto de datos se dividirá en partes, como se explicará en la sección sobre la experimentación.

Evaluación del Clasificador

La precisión del clasificador con un conjunto de ejemplos, la cual se llevará a cabo mediante esta ecuación clásica empleada habitualmente en la medida de error de clasificadores:

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

donde TP, TN, FP y FN son respectivamente los contadores de True Positive, True Negative, False Positive y False Negative, (Positivo Verdadero, Negativo Verdadero, Positivo Falso y Negativo Falso), es decir, se divide el número de predicciones correctas entre el número total de predicciones (correctas más erróneas).

Experimentación y Presentación de los Resultados

Se trabajará con un modelo de validación cruzada (de orden 5) con 5 particiones de datos, esto es, 5 particiones aleatorias al 20%, y se crearán 5 particiones combinando grupos de 4 al 80%, y una restante del 20% como prueba. Los datasets que descarga del repositorio, vienen ya particionados: si no lo estuviesen hagan la partición anterior por vd. Mismo.

Se presentarán los resultados en dos tablas, una para el problema de regresión y otra para el de clasificación, en las que se mostrarán los resultados con el conjunto de entrenamiento y prueba en columnas diferentes. Dado que empleará particiones de 3 y 5 etiquetas en cada caso, debe incluir ambos resultados.

Si realiza la parte opcional de regresión (el algoritmos evolutivo) incluya la tabla de resultados del mismo, es decir, indique si usó 3 ó 5 etiquetas, y cómo mejora con respecto a la versión no ajustada (en número de reglas y en precisión).

Los resultados obtenidos con 3 y 5 etiquetas deben comprarse, es decir, hay que hacer un estudio de ellos y deducir conclusiones entre ambas situaciones, más que implementar y quedarse sólo en los resultados obtenidos: lo relevante es poder llegar a hacer el análisis y hacerlo correctamente.

Fecha y Método de Entrega:

Las prácticas se realizarán individualmente. El día 20 de Diciembre debe estar subido a Moodle antes de las 23:55 sin retrasos en un único fichero comprimido ZIP, que contenga:

- Documento DOC (MS Word) ó PDF con las tablas de resultados y análisis.
- Ficheros de código fuente completo ejecutable utilizado.
- *Scripts*, si los ha utilizado.

Permanezca atento/a a posibles versiones mejoradas de este documento.