Project Report

REAL-TIME COMMUNICATION SYSTEM POWERED BY AI FOR SPECIALLY ABLED

Submitted by

PNT2022TMID44126

M.HARIHARAN(723919104002)

NAGALAPURAM CHAKARAVARTHI(723919106301)

S.VANITHA(723919106006)

C.VIJAY(723919106007)

TABLE OF CONTENTS

1		
	INTRODUCTION	

- 1.1 PROJECT OVERVIEW
- 1.2 PURPOSE
- 2. LITERATURE SURVEY
 - 2.1 EXISTING PROBLEM
 - 2.2 REFERENCES
 - 2.3 PROBLEM STATEMENT DEFINITION
- 3. IDEATION AND PROPOSED SOLUTION
 - 3.1 EMPATHY MAP CANVAS
 - 3.2 IDEATION & BRAINSTORMING
 - 3.3 PROPOSED SOLUTION
 - 3.4 PROBLEM SOLUTION FIT
- 4. REQUIREMENT ANALYSIS
 - 4.1 FUNCTIONAL REQUIREMENTS
 - 4.2 NON FUNCTIONAL REQUIREMENTS

5. PROJECT DESIGN

- 5.1 DATA FLOW DIAGRAM
- 5.2 SOLUTION & TECHNICAL ARCHITECTURE
- 5.3 USER STORIES
- 6. PROJECT PLANNINGAND SCHEDULING
 - 6.1 SPRINT PLANNING AND ESTIMATION
 - 6.2 SPRINT DELIVERY SCHEDULE
- 7. CODING & SOLUTIONING
 - 7.1 FEATURE 1
 - 7.2 FEATURE 2
- 8. TESTING
 - 8.1 TEST CASES
 - 8.2 USER ACCEPTANCE TESTING
- 9. RESULTS
 - 9.1 PERFORMANCE METRICS
- 10. ADVANTAGES & DISADVANTAGES
 - **10.1 ADVANTAGES**
 - **10.2 DISADVANTAGES**
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

SOURCE CODE

GITHUB

PROJECT DEMO

CHAPTER 1 INTRODUCTION

1.1 ProjectOverview

Real-time communications (RTC) is any mode of <u>telecommunications</u> in which all users can exchange information instantly or with negligible <u>latency</u> or transmission delays. In RTC, there is always a direct path between the sourceand the destination. Although the link might containseveral

intermediate <u>nodes</u>, the data goes from source to destination without being stored in between them. In contrast, <u>asynchronous</u> or time shifting communications, such as email and voicemail, always involve some form of data <u>storage</u> between the source and the destination. In these cases, there is an anticipated delay between the transmission and receipt of the information.

1.2 Purpose

Real-time communication (RTC) refers to any communication that happens betweentwo (or more) individuals in real-time – with minimal latency and without transmission delays. Some examples of real-time communication include landline phones, mobile calls, instant messaging, VoIP, and videoconferencing.

CHAPTER 2 LITERATURE SURVEY

2.1 ExistingProblem

In our society, we have people with disabilities. The technology is developing day by day but no significant developments are undertaken for the betterment of these people. Communication between deaf-mute and a normal person has always been a challenging task. It is very difficult for mute people to convey theirmessage to normal people. Since normal peopleare not trained on handsign language. In emergency times conveying their message is very difficult. The human hand has remained a popular choice to convey information in situations where other forms like speech cannot be used. Voice Conversion System with Hand Gesture Recognition and translation will be very useful to have a proper conversation between a normal person and an impaired person in any language.

2.2 Reference

- 1.**Year 1955:** An Allen Newell and Herbert A. Simon created the "first artificial intelligence program, Which was named as "**Logic Theorist**".
- 2. **Year 1956** John McCarthy coined the term 'artificial intelligence' and had the first AI conference.
- **3. AI** was a term first coined at Dartmouth College in 1956. Cognitive scientist Marvin Minsky was optimistic about the technology's future.
- **4.** This program had proved **38** of **52** Mathematics theorems, and find new and more elegant proofs for some theorems
- **5. Year 1972:** The first intelligent humanoid robot was built in Japan which was named as WABOT-1.
- **6. Year 1997:** In the year 1997, IBM Deep Blue beats world chess champion, Gary Kasparov.
- **7.** Deep learning, big data and artificial general intelligence (**2011**-present)
- **8.** Self-awareness AI is the future of Artificial Intelligence. These machines will be super intelligent, and will have their own consciousness, sentiments, and self-awareness.

- 9. Machine learning based techniques in data analysis (Lavanya Vemulapalli, Dr.P.Chandrasekhar 2018
- **10.** Based Real Time Communication for Physically and Speech Disabled People (Omg Chin Ann, Marlene Valeriu Lu **-2019**)
- **11.** Survey on Application of Artificial Intelligence in Cyber Security (Shidawa Baba Atiku, Achi Unimke Aaron, Fathima Shittu- **2020**
- **12.** Systematic review of computer vision symantic analysis in medical (Antonio Victor Alencar Lundgren, Byron Leite Dantas Bezzerra **2021**
- **13. Year 2020** Baidu releases the Liner fold AI algorithm to medical and scientific and medical teams developing a vaccine during the early stages of the SARS-CoV-2 (COVID-19) pandemic. The algorithm can predict the RNA sequence of the virus in only 27 seconds, which is 120 times faster than other methods.

2.3 PROBLEM STATEMENT DEFINITION

Statement – In the recent years, there has been rapid increase in the number of deaf and dumb victims due to birth defects, accidents and oral diseases. Since deaf and dumb people cannot communicate with normal person so they have to depend on some sort of visual communication. A World Health Organization report says around 63 million people in India suffer from either complete or partial deafness, and of these, at least 50 lakh are children. Communication between deaf-mute and a normal person has always been a challenging task.

Description - The Deaf/Dump people needs a way to communicate easily and quickly with the normal people, so that the Deaf/Dump people feel confident enough to express there thought, ideas, and can make conversation with the normal people.

CHAPTER 3 IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP

3.2 IDEATION AND BRAINSTORMING

Brainstorm Write down any ideas that come to mind that address your problem statement. ① 10 minutes

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. Once all sticky notes have been grouped, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

① 20 minutes

Prioritize

Your team should all be on the same page about what's important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

20 minutes

3.3 PROPOSED SOLUTION

S.No	Parameter	Description
	Problem Statement (Problem to	Existence of complications in
1.	be solved)	understanding inputs from user.
2.	Idea / Solution description	Real-time captioning or translations for people with a hearing impairment or even people who don't speak the language.
3.	Novelty / Uniqueness	We are making use of a convolution neural network to create a model that is trained on different hand gestures.
4.	Social Impact / Customer Satisfaction	Voice Conversion System with Hand Gesture Recognition and translation will be very useful to have a proper conversation between a normal person and an
5.	Business Model (Revenue Model)	impaired person in any language. This business model truly revolutionizes accessibility and people with disabilities can drastically improve their everyday lives. The person who is incapable of speaking can easily chat with normal people and the people with hearing impairments can also understand the speech of
		normal person using this device.

Accessibility for people with disabilities is high and hearing-impaired users can use text descriptions. Device is portable and power consumption is low. Battery can be charged and reused again. It is user friendly.

3.3 PROBLEM SOLUTIONFIT

CHAPTER 4

REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FR	Functional	Sub Requirement
No.	Requirement (Epic)	(Story / Sub-Task)
FR-1	User Registration	Registration through
		Gmail
FR-2	User Confirmation	Confirmation via Email
FR-3	User Communication	Communication can be
		done through pc or
		mobile camera.
FR-4	User requirement	Option should be shown
		for hand sign to text and
		voice conversion and
		vice versa.
FR-5	Communication	Tutor can be made
	requirement	available to have one to
		one teaching for user.
FR-6	Regulatory requirements	App shutdown in case of
		cyber attack
FR-7	Reporting	If any issues found in the
		application,
		automatically it will be
		notified to the
		developer.
FR-8	Compliance to rules or	Terms and conditions,
	law	private policy, End
		usersubscription
		agreement.

4.2 NON FUNCTIONAL REQUIREMENTS

Non-Functional	Description
Requirement	
Usability	The camera captures all
	expressions including facial
	expressions and hand
	gestures which can be easily
	used by all age groups. It can
	be used by deaf-mute people
	and their care takers.
Security	The system is more secure
	and information of the
	customers is also maintained
	confidentially.
Reliability	The system is very liable, it
	can last for long amounts of
	time if well maintained.
Performance	The performance of the
	model is efficient. The cost-
	effective nature of the system
	makes it extremely liable.
	The latency is very less for
	the conversion process.
Availability	The solution is suitable for
	different languages and can
	be used in many countries. It
	can be trained for all the
	available sign languages.
	This model can be used at
	any time anywhere.
	Requirement Usability Security Reliability Performance

NFR-6

Scalability

The system gives output rapidly. It also predicts quickly when it gets so many inputs at a time. It predicts different types of sign language at a time. Up to 25000 users can be use this model at a time.

CHAPTER 5 PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 SOLUTION AND TECHNICAL ARCHITECTURE

Solution Architechutre-Real Time Communication by Al for Specially Abled

5.3 USER STORIES

User Type	Functional	User	User Story / Task	Acceptance criteria	Priority	Release
	Requirement (Epic)	Story				
		Number				
Customer	Registration	USN-1	Not Required	I can access my account / dashboard	High	Sprint-1
(Desktop user)				dashboard		
	Login	USN-2	Not Required		High	Sprint-1
	Dashboard	USN-3	Not Required			
Customer (Desktop user)	Main page	USN-4	As a User, I can enter the web page once clicked, which provides be the Guidelines to use the app		Medium	Sprint-1
Customer (Desktop user)	Guidelines	USN-5	As a User, I can give a read through the guidelines to understand the functioning of the app.	I can give a read through the guidelines.	Medium	Sprint-1
Customer (Desktop user)	Convert Sign	USN-6	_	I can click the button Convert sign and directed me to main screen.	Medium	Sprint-2
Customer (Desktop user)	Camera(Hand movement detection)	USN-7	As a User, I can show my hand sign towards the camera which converts them into text manner.	I can show my hand sign towards the camera accurately.	High	Sprint-2
Customer (Desktop vser)	Voice mode	USN-8	the voice mode which provides the text in the	I can click on the voice mode which provides the text in the form of speech.	High	Sprint-2

Customer Care Executive	Provide the necessary functionalities required to use the app.	of Camera required, and other factors that are	I can provide the Specifications of Camera required, and other factors	Low	Sprint-1
Customer Care Executive	Check the performance of the app	As an Executive, I can check the usage and queries obtained from the end users.	I can check the usage and queries obtained from the end users.	Medium	Sprint-1
Administrator	Receive queries based on the usage		I can take the queries from the customer care and perform necessary phases again.	High	Sprint-2

CHAPTER 6

PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	As a user, I can collect the dataset from various resources with different data	10	Low	Nagalapuram Chakaravarthi Vanitha S
Sprint-1	Image Preprocessing	USN-2	As a user, I can import ImageDataGenerator Library and configure it, Apply ImageDataGenerator Functionality to Train and Test Dataset	10	Medium	Vanitha S Vijay C
Sprint-2	Model Building	USN-3	As a user, I will get an application with ML model which provides accurate communication and sharing data with sensor.	5	High	Hariharan M Nagalapuram Chakakravathi Vanitha S Vijay C
Sprint-2	Add CNN layers	USN-4	Creating the model and adding the input, hidden, and output layers to it.	5	High	Hariharan M Nagalapuram Chakakravathi Vanitha S Vijay C

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-2	Compiling the model	USN-5	With both the training data defined and model defined, it's time to configure the learning process.	2	Medium	Hariharan M Vanitha S
Sprint-2	Fit and Save the model	USN-6	As a user, the model is saved & integrated with an android application or web application in order to predict something	6	Medium	Nagalapuram Chakaravarthi Vijay C
Sprint-2	Test the Model	USN-7	As a user, let us test our model with our image dataset.	2	Low	Hariharan M
Sprint-3	Building UI Application	USN-8	As a user, I will use technical button to operate the microphone for recognize.	10	High	Hariharan M Vijay C
Sprint-3		USN-9	As a user, I can know the details of the fundamental usage of the application.	5	Low	Vanitha S
Sprint-3		USN-10	As a user, I can see the prediction with help of technical in the application.	5	Medium	Nagalapuram Chakaravarthi
Sprint-4	Train the model on IBM	USN-11	As a user, I train the model on IBM and integrate flask/Django with scoring end point.	10	High	Hariharan M Nagalapuram Chakakravathi Vanitha S Vijay C
Sprint-4	Cloud Deployment	USN-12	As a user, I can access the web application and make the use of the product from anywhere.	10	High	Hariharan M Nagalapuram Chakakravathi Vijay C

L

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story	Duration	Sprint	Sprint	Story Points	Sprint
	Points		StartDate	End Date	Completed	Release Date
				(Planned)	(as on	(Actual)
					Planned End	
					Date)	
Sprint-1	20	5 Days	24 Oct 2022	28 Oct	20	28 Oct 2022
				2022		
Sprint-2	20	5 Days	30 Oct 2022	03 Nov	20	03 Nov 2022
				2022		
Sprint-3	20	5 Days	05 Nov 2022	09 Nov	20	09 Nov 2022
				2022		
Sprint-4	20	5 Days	11 Nov 2022	15 Nov	20	15 Nov 2022
				2022		

CHAPTER 7 CODING & SOLUTIONING

7.1 FEATURE 1

Using Live webstreaming for real time capture

```
@app.route('/')
def index():
  return render template('index.html')
@app.route('/video')
def video():
  return Response(generate frames(),mimetype='multipart/x-mixed-replace;
boundary=img')
if name ==" main ":
  app.run(debug=False)
7.2 FEATURE 2
## read the camera frame to predict the live webcam value
success,img=camera.read()
 if not success:
       break
     else:
       imgOutput = img.copy()
       hands, img = detector.findHands(img)
       if hands:
          hand = hands[0]
          x, y, w, h = hand['bbox']
```

CHAPTER 8 TESTING

8.1 TEST CASES

Test case ID	Test case ID Feature Type		Test Scenario
Home Page_TC_001	Functional	Home Page	Verify user is able to see the Home is displayed or not
Home Page_TC_002	5	Home Page	Verify the UI elements in Home page Shown
Home Page_TC_003	iome Fage_TC_003 Functional		Verify user has available for live webstreaming
Home Page_TC_004	SI .	Webstreaming	Verify the UI elements in webstreaming page Shown
Home Page_TC_GOS	Functional	Home Page	Verify user is able to show the hands

Home Page_TC_006	Functional	Home Page	Verify user is able to show the hands in clearly
Home Page_TC_007	Functional	Home page	Verify user is able to show the hands in clearly
Home Page_TC_008	51	Webstreaming	Verify the UI elements predicted value
Home Page_TC_009	Functional	Home page	Verify user is able to show the hand signs
Home Page_TC_010	Functional	home page	Verify user is able to show the hand signs

Pre-Requisite	Steps To Execute		
Internet Connection	1.Enter URL and click go		
Web application need browser to run	1.Enter URL and click go 2.Verify Home page shown with below UI elements: Indirotuction of Signlanguage Detection		
Open to browser	1.Enter URL(http://127.0.0.1.5000) and click go 2.To display on Uve webstreaming		
Web application need browser to run	1.Emer URL(http://127.0.0.1:5000/) and click go 2.To display on tive webstreaming 1.We can checkup to correctly see the page		
Internet Connection	1.Enter URL(http://127.0.0.1:5000) and click go 2.To display on tive webstreaming 3.We can checkup to correctly see the page 4.Detect the hands first 5.Match to the model		

Internet Connection	1.Enter URL(http://1127.0.0.1:5000)) and click go 2.To display on Live webstreaming
Internet Connection	1.Enter URL[http://127.0.0.1:5000]] and click go 2.To display on Live webstreaming 3.We can checkup to correctly see the page 4.Detect the hands first 5.Match to the model
Web application need browser to run	1.Enter URL(http://127.0.0.1-\$000)) and click go 2.Click on Recognize button 3.Enter Recognize page then Enter Recognize page then click choose button 4.My Computer console open then select user data 5.Click on select button 6.click recognize button
Internet Connection	Click choose button Show the hand signs To display the predicted value
Internet Connection	1.5how to Predicted

Test Cata	Expected Result	Actual Result	Status
http://127.0.0.1:5000	Home Page should display	Working as expected	Pass
http://127.0.0.1:5000	Application should show below UI elements to show the content	Working as expected	Pacs
http://127.0.0.1-5000	Uper should redirected to Recognize as hand signs	Working so expected	Pacs
http://127.0.0.1-5000	User can verify to the true webstreaming	Working as expected	Pacs
http://127.0.0.1-5000	It has matching to the labels	Working as expected	Pacs

ı

http://127.0-0.1-5000	Predict to the signs should display	Working as expected	Pass
http://127.0-0.1-5000	If user not show any signs to not recognising	Working as expected	Pass
http://327.0-0 1-5000	Detect to the hand sign in display for square box	Working as expected	Pacs
эн р //127.0 б 1-5000	input sign will detect. After detect status no show predicted labels	Working as expected	Pacs
http://127.0.0 1-5000	If user not show any signs to not recognising	Working as expected	Pacs

Commnets	TC for Automati on(Y/N)	BUG ID	Executed By
Steps are clear to follow	No	No Bug	Nagalapuram chakaravarthi
Steps are clear to follow	No	No Bug	Vijay C
Steps are clear to follow	No	No Bug	Vanitha S
Steps are clear to follow	No	No Bug	Hariharan M
Steps are clear to follow	No	No Bug	Nagalapuram chakaravarthi

Steps are clear to follow	No	No Bug	Vijay C
Steps are clear to follow	No	No Bug	Vanitha S
Steps are clear to follow	No	No Bug	Hariharan M
Steps are clear to follow	No	No Bug	Nagalapuram chakaravarthi
Steps are clear to follow	No	No Bug	Hariharan M

8.2 USER ACCEPTANCE TESTING

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This reportshows the number of resolvedor closed bugs at each severitylevel, and how they were resolved.

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	9	6	2	0	17
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	6	2	4	20	32
Not Reproduced	0	0	1	0	1
Skipped	0	0	0	1	1
Won't Fix	0	0	2	1	3
Totals	18	11	12	23	64

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	4	0	0	4
Client Application	8	0	0	8
Security	2	0	0	2
Outsource Shipping	1	0	0	1
Exception Reporting	7	0	1	6
Final Report Output	4	0	0	4
Version Control	2	0	0	2

CHAPTER 9 RESULTS

9.1 PERFORMANCE METRICS

Use the test case for performance testing

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Total params: 15,750,473 Trainable params: 15,750,473 Non-trainable params: 0	See image 1(Below Attached)
2.	Accuracy	Training Accuracy - 0.9993 Validation Accuracy - 0.9667	See Image 2(Below Attached)
3.	Confidence Score (OnlyYoloProjects)	Class Detected - 9	
		Confidence Score- 9	

Image 1:

```
Layer (type)
                         Output Shape
                                                Param #
conv2d (Conv2D)
                        (None, 62, 62, 32)
                                               320
max_pooling2d (MaxPooling2D (None, 31, 31, 32)
flatten (Flatten)
                      (None, 30752)
dense (Dense)
                     (None, 512)
                                          15745536
dense_1 (Dense)
                        (None, 9)
Total params: 15,750,473
Trainable params: 15,750,473
Non-trainable params: 0
```

Image 2:

```
Epoch 1/10
24/24 [====================] - ETA: 0s - loss: 1.1151 - accuracy: 0.5966MARNING:tensorflow:Your input ran out of data; interrupting training. Ma
ke sure that your dataset or generator can generate at least 'steps_per_epoch " epochs' batches (in this case, 40 batches). You may need to use the repeat
function when building your dataset.
Epoch 2/10
24/24 [----
     Epoch 3/10
Epoch 4/10
24/24 [----
Epoch 5/10
     Epoch 6/10
24/24 [----
     Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
24/24 [------] - 56s 2s/step - loss: 0.0030 - accuracy: 0.9993
```

CHAPTER 10 ADVANTAGES& DISADVANTAGES

10.1 ADVANTAGES

It enables employees from across the world to communicate with each other 24×7 and share ideas or solve problems quickly. It is a cost-effective way of getting several people from different locations attend meetings and conferences – without having to spend time or money on travel, and accommodation.

10.2 DISADVANTAGES

The biggest disadvantage of communication is that it takes a lot of time to listen, speak, read, orwrite to someone. While trying to do one thing you can accidentally hurt another person's feelings by not listening or paying attention. This could result in damaging your relationship with them.

CHAPTER 11 CONCLUSION

11.1 CONCLUSION

Real-time communication (RTC) workloads can be deployed on AWS to attain scalability, elasticity, and high availability while meeting the key requirements. Today, several customers are using AWS, its partners, and open source solutions to run RTC workloads with reduced cost and faster agility aswell as a reduced global footprint. The reference architectures and best practices provided in this white paper can help customers successfully set up RTC workloads on AWS and optimize the solutions to meet end user requirements while optimizing for the cloud. It is very helpful for disability persons to find out the correct values. This project for dedicated to all disability persons and it executed successfully.

CHAPTER 12 FUTURE SCOPE

- Through image recognition technology, Al understands the context of objects in photos and describes photosto people.
- The speech-to-text and text-to-speech technologies helped those people who had speechimpediments
- The product in AI that narrates the entire world around them visually impaired by reading texts, describing whereabouts and the looks of the nearby peopleby identifying and recognizing faces andemotions.
- Autonomous vehicles are in trend and their success is due to Al technology. These vehicles can be beneficial to people living with limited physical mobility
- To improve the new signs to detect with use this projects.
- to implement the some new options of tools.

CHAPTER 13 APPENDIX

13.1 SOURCE CODE

```
app.py:
    from flask import Flask,render_template,Response
import cv2
from cvzone.HandTrackingModule import HandDetector
from cvzone.ClassificationModule import Classifier
import numpy as np
import math

app=Flask(__name__)

def generate_frames():
    camera=cv2.VideoCapture(0)

detector = HandDetector(maxHands=1)
    classifier = Classifier("Model/keras_model.h5", "Model/labels.txt")

offset = 20
```

```
imgSize = 300
folder = "Data/C"
counter = 0
imgResize = 0
labels = ["A", "B", "C","D","E","F","G","H","I"]
while True:
  ## read the camera frame
  success,img=camera.read()
  if not success:
    break
  else:
    imgOutput = img.copy()
    hands, img = detector.findHands(img)
    if hands:
      hand = hands[0]
      x, y, w, h = hand['bbox']
      imgWhite = np.ones((imgSize, imgSize, 3), np.uint8) * 255
      imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset]
      imgCropShape = imgCrop.shape
      aspectRatio = h / w
      if aspectRatio > 1:
         k = imgSize / h
         wCal = math.ceil(k * w)
         imgResize = cv2.resize(imgCrop, (wCal, imgSize))
        imgResizeShape = imgResize.shape
        wGap = math.ceil((imgSize - wCal) / 2)
```

```
prediction, index = classifier.getPrediction(imgWhite, draw=False)
           print(prediction, index)
         else:
           try:
             k = imgSize / w
             hCal = math.ceil(k * h)
             imgResize = cv2.resize(imgCrop, (imgSize, hCal))
           except Exception as e:
             print(str(e))
           imgResizeShape = imgResize.shape
           hGap = math.ceil((imgSize - hCal) / 2)
           imgWhite[hGap:hCal + hGap, :] = imgResize
           prediction, index = classifier.getPrediction(imgWhite, draw=False)
         cv2.rectangle(imgOutput, (x - offset, y - offset-50),
                 (x - offset+90, y - offset-50+50), (255, 0, 255), cv2.FILLED)
         cv2.putText(imgOutput, labels[index], (x, y -26),
cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
         cv2.rectangle(imgOutput, (x-offset, y-offset),
                 (x + w + offset, y + h + offset), (255, 0, 255), 4)
      ret,buffer=cv2.imencode('.jpg',imgOutput)
      imgOutput=buffer.tobytes()
      yield(b'--img\r\n'
          b'Content-Type: image/jpeg\r\n\r\n' + imgOutput + b'\r\n')
```

imgWhite[:, wGap:wCal + wGap] = imgResize

```
@app.route('/')
def index():
  return render_template('index.html')
@app.route('/video')
def video():
  return Response(generate_frames(),mimetype='multipart/x-mixed-replace;
boundary=img')
if __name__=="__main__":
  app.run(debug=False)
train.py:
# -*- coding: utf-8 -*-
@author: welcome
import cv2
from cvzone.HandTrackingModule import HandDetector
import numpy as np
import math
import time
cap = cv2.VideoCapture(0)
detector = HandDetector(maxHands=1)
offset = 20
imgSize = 300
folder = "Data/I"
```

```
counter = 0
while True:
  success, img = cap.read()
  hands, img = detector.findHands(img)
  if hands:
    hand = hands[0]
    x, y, w, h = hand['bbox']
    imgWhite = np.ones((imgSize, imgSize, 3), np.uint8) * 255
    imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset]
    imgCropShape = imgCrop.shape
    aspectRatio = h / w
    if aspectRatio > 1:
      k = imgSize / h
      wCal = math.ceil(k * w)
      imgResize = cv2.resize(imgCrop, (wCal, imgSize))
      imgResizeShape = imgResize.shape
      wGap = math.ceil((imgSize - wCal) / 2)
      imgWhite[:, wGap:wCal + wGap] = imgResize
    else:
      k = imgSize / w
      hCal = math.ceil(k * h)
      imgResize = cv2.resize(imgCrop, (imgSize, hCal))
      imgResizeShape = imgResize.shape
      hGap = math.ceil((imgSize - hCal) / 2)
      imgWhite[hGap:hCal + hGap, :] = imgResize
    cv2.imshow("ImageCrop", imgCrop)
    cv2.imshow("ImageWhite", imgWhite)
```

```
cv2.imshow("Image", img)
key = cv2.waitKey(1)
if key == ord("s"):
    counter += 1
    cv2.imwrite(f'{folder}/Image_{time.time()}.jpg',imgWhite)
    print(counter)# -*- coding: utf-8 -*-
```

index.html:

```
<html lang="en">
```

```
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <meta http-equiv="X-UA-Compatible" content="ie=edge">
  <title>Singlanguage Classification</title>
  k href="https://cdn.bootcss.com/bootstrap/4.0.0/css/bootstrap.min.css" rel="stylesheet">
  <script src="https://cdn.bootcss.com/popper.js/1.12.9/umd/popper.min.js"></script>
  <script src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
  <script src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.js"></script>
  <link href="{{ url_for('static', filename='css/main.css') }}" rel="stylesheet">
  <style>
  .bg-dark {
    background-color: #4B92BB!important;
  }
  #result {
    color: #ffffff;
  }
  body
{
  background-image: url("../static/hand sign.jpg");
  background-size: 50%;
```

```
}
  </style>
</head>
<body>
  <nav class="navbar navbar-dark bg-dark">
    <div class="container">
      <a class="navbar-brand" href="#">Signlangue detection</a>
    </div>
  </nav>
  <div class="container">
    <div id="content" style="margin-top:2em">
    <div class="container">
     <div class="row">
      <div class="col-sm-6 bd">
       <h3>Singlanguage Classification: </h3>
       <br>
        <mark style="background-color:#a48c74;">Sign languages are languages that use
the visual-manual modality to convey meaning, instead of just spoken words. It used primarily by
the deaf and hard of hearing, it is also used by hearing individuals, such as those unable to
physically speak, those who have trouble with oral language due to a disability or condition
(augmentative and alternative communication), and those with deaf family members including
children of deaf adults.</mark>
      </div>
      <div class="col-sm-6">
         <div>
           <h4 class="mt-5">Sign Detection</h4>
          <img src="{{ url_for('video') }}" width="100%"> </div>
      <footer>
         <script src="{{ url_for('static', filename='js/main.js') }}" type="text/javascript"></script>
```

</footer>

```
</div>
    </div>
    </div>
  </div>
</body>
</html>
main.css:
.img-preview {
  width: 256px;
  height: 256px;
  position: relative;
  border: 5px solid #F8F8F8;
  box-shadow: 0px 2px 4px 0px rgba(0, 0, 0, 0.1);
  margin-top: 1em;
  margin-bottom: 1em;
}
.img-preview>div {
  width: 100%;
  height: 100%;
  background-size: 256px 256px;
  background-repeat: no-repeat;
  background-position: center;
}
input[type="file"] {
  display: none;
```

}

```
.upload-label{
  display: inline-block;
  padding: 12px 30px;
  background: #39D2B4;
  color: #fff;
  font-size: 1em;
  transition: all .4s;
  cursor: pointer;
}
.upload-label:hover{
  background: #34495E;
  color: #39D2B4;
}
.loader {
  border: 8px solid #f3f3f3; /* Light grey */
  border-top: 8px solid #3498db; /* Blue */
  border-radius: 50%;
  width: 50px;
  height: 50px;
  animation: spin 1s linear infinite;
}
@keyframes spin {
  0% { transform: rotate(0deg); }
  100% { transform: rotate(360deg); }
}
```

Sample Output

GitHub Link:

https://github.com/IBM-EPBL/IBM-Project-52323-1660996405

Project Demo Link:

 $\underline{https://drive.google.com/file/d/1EJxzPICn9H5qCM9u1LlEe5UB8ZotlDBF/view?usp=drivesdk}$