Axiom 1 (Reflexiveness for Equality): x = x.

Axiom 2 (Equality Used): If x = y, then $\Phi_{[a \to x]} \Leftrightarrow \Phi_{[a \to y]}$.

Theorem 3 (Symmetry and Transitivity for Equality):

- (1) If x = y, then y = x.
- (2) If x = y and y = z, then x = z.

Theorem 4 (Equality Used): If x = y, then:

- (1) $\Phi_{[a \to x]} \Leftrightarrow \Phi_{[a \to y]}$
- $(2) \ \odot_{[a \to x]} = \odot_{[a \to y]}$
- (3) $\Phi \Leftrightarrow \Phi_{[x \to y]}$
- $(4) \ \odot = \odot_{[x \to y]}$

Axiom 5 (Membership): $a \in \{x \mid \Phi\} \Leftrightarrow \Phi_{[x \to a]}$.

Warning: this axiom is broken.

Definition 6 (Inclusion): $a \subseteq b \Leftrightarrow (\forall z \mid z \in a \Rightarrow z \in b).$

Theorem 7 (Reflexivity and Transitivity for Inclusion):

- (1) $a \subseteq a$.
- (2) If $a \subseteq b$ and $b \subseteq c$, then $a \subseteq c$.

Axiom 8 (Equality Gained): If $(\forall z \ \ \ \ z \in a \Leftrightarrow z \in b)$, then a = b.

Theorem 9: $y = \{ z \mid z \in y \}.$

Theorem 10 (Equality as Double Inclusion): a = b if and only if $a \subseteq b$ and $b \subseteq a$.

Definition 11 (Empty Set): $\{\} = \{x \mid x \neq x\}$

Theorem 12 (Empty Set is Empty): $x \notin \{\}$.

Theorem 13 (Minimality of the Empty Set):

- $(1) \{\} \subseteq a.$
- (2) If $a \subseteq \{\}$, then $a = \{\}$.

Theorem 14 (Only the Empty Set is Empty): If $x \notin a$ for all x, then $a = \{\}$.

Theorem 15 (Nonemptiness): $a \neq \{\} \Leftrightarrow (\exists x \mid x \in a).$

Definition 16 (Singleton): $\{x\} = \{a \mid a = x\}.$

Definition 17 (Doubleton): $\{x,y\} = \{a \mid (a=x) \lor (a=y)\}.$

Definition 18 (More Ways to List Elements):

- $(1) \{x, y, z\} = \{ a \mid (a = x) \lor (a = y) \lor (a = z) \}$
- (2) $\{x, y, z, u\} = \{a \mid (a = x) \lor (a = y) \lor (a = z) \lor (a = u) \}$
- (3) $\{x, y, z, u, v\} = \{a \mid (a = x) \lor (a = y) \lor (a = z) \lor (a = u) \lor (a = v)\}$
- $(4) \{x, y, z, u, v, w\} = \{a \mid (a = x) \lor (a = y) \lor (a = z) \lor (a = u) \lor (a = v) \lor (a = w) \}$

Theorem 19 (Singleton and Inclusion): $x \in S$ if and only if $\{x\} \subseteq S$.

Theorem 20: $\{x,y\} = \{y,x\}$

Theorem 21: $\{x\} = \{y\}$ if and only if x = y.

Theorem 22: $\{x,y\} = \{u\}$ if and only if x = y = u.

Theorem 23: If $\{x,y\} = \{u,v\}$, then either x = u and y = v, or x = v and y = u.

Definition 24 (Being a Singleton): A set is said to be a *singleton* iff it has the form $\{x\}$ for some x. That is, we call s a singleton iff $(\exists x \mid s = \{x\})$.

Theorem 25 (Existence and Uniqueness in Terms of Singleton):

A set s is a singleton if and only if it has a unique element. That is, s is a singleton if and only if

$$\left(\,\exists x \; \mathbf{!}\; x \in s \land \left(\,\forall y \; \mathbf{!}\; y \in s \Rightarrow y = x\,\right)\,\right).$$

Definition 26 (Occupant): Let s be a singleton. The *occupant* of s is denoted by occ(s) and defined by

$$occ(s) = \{ z \mid (\forall x \mid x \in s \Rightarrow z \in x) \}.$$

Theorem 27 (Essence of Occupant): $occ(\{g\}) = g$.

Definition 28 (Intersection and Union):

- $(1) \ a \cap b = \{ x \ \mathbf{1} \ (x \in a) \land (x \in b) \}$
- $(2) \ a \cup b = \{ x \mid (x \in a) \lor (x \in b) \}$

Theorem 29 (Algebraic Properties of Intersection and Union):

- $(1) a \cap b = b \cap a (commutativity of \cap)$
- (2) $a \cup b = b \cup a$ (commutativity of \cup)
- (3) $(a \cap b) \cap c = a \cap (b \cap c)$ (associativity of \cap)
- $(4) \qquad (a \cup b) \cup c = a \cup (b \cup c) \qquad (associativity of \cup)$
- $(5) \quad a \cup (b \cap c) = (a \cup b) \cap (a \cup c) \qquad \qquad (\cup \text{ distributes over } \cap)$
- $(6) a \cap (b \cup c) = (a \cap b) \cup (a \cap c) (\cap distributes over \cup)$
- (7) $a \cap a = a$ (idempotence of \cap)
- (8) $a \cup a = a$ (idempotence of \cup)
- (9) $a \cup \{\} = a$ ($\{\}$ is an identity for \cup)
- (10) $a \cap \{\} = \{\}$ ($\{\}$ is an annihilator for $\{\}$)

Theorem 30 (Maximality of Intersection):

The set $b \cap c$ is a subset of both b and c, and it contains anything that is a subset of both b and c. That is,

- (1) $b \cap c \subseteq b$
- (2) $b \cap c \subseteq c$
- (3) If $a \subseteq b$ and $a \subseteq c$, then $a \subseteq b \cap c$.

Theorem 31 (Minimality of Union):

The set $b \cup c$ contains both b and c, and it is a subset of any set that contains both b and c. That is,

- (1) $b \subseteq b \cup c$
- (2) $c \subseteq b \cup c$
- (3) If $b \subseteq a$ and $c \subseteq a$, then $b \cup c \subseteq a$.

Theorem 32 (Inclusion in Terms of \cap and \cup):

The following are equivalent:

- $(1) \ a \subseteq b$
- (2) $a \cap b = a$
- $(3) \ a \cup b = b$

Definition 33 (Relative Complement): $a \setminus b = \{ x \mid (x \in a) \land (x \notin b) \}$

Theorem 34 (De Morgan's Law - Set Theory Version):

- $(1) \ a \setminus (b \cap c) = (a \setminus b) \cup (a \setminus c)$
- $(2) \ a \setminus (b \cup c) = (a \setminus b) \cap (a \setminus c)$

Theorem 35 (Iterated Relative Complement): $a \setminus (a \setminus b) = a \cap b$.

Definition 36 (Power Set): $\mathcal{P}(x) = \{ y \mid y \subseteq x \}.$

Theorem 37: $\mathcal{P}(\{x\}) = \{\{\}, \{x\}\}.$

Definition 38 (Ordered Pair): $(x, y) = \{\{x\}, \{x, y\}\}.$

Theorem 39 (Essence of Pairs):

$$(x,y)=(u,v)$$
 if and only if $x=u$ and $y=v$.

Definition 40: A set is called a *pair* if and only if it has the form (a, b) for some a and b. That is, we call x a pair if and only if

$$(\exists a, b \ \mathbf{i} \ x = (a, b)).$$

A set s is called a set of pairs or a relation if every element of s is a pair.

Definition 41 (Cartesian Product):

$$A \times B = \{ x \mid (\exists a, b \mid x = (a, b) \land a \in A \land b \in B) \}.$$

Theorem 42 (Essence of Cartesian Product):

$$(y, z) \in A \times B$$
 if and only if $y \in A$ and $z \in B$.

Theorem 43 (Cartesian Products and Emptiness):

- (1) $A \times B$ is nonempty if and only if A and B are both nonempty.
- (2) $A \times B$ is empty if and only if either A is empty or B is empty.

Theorem 44: If $A \subseteq B$ and $C \subseteq D$, then $A \times C \subseteq B \times D$.

Theorem 45:

$$(A \times C) \cap (B \times D) \subseteq (A \cap B) \times (C \cap D).$$

Theorem 46: If A is nonempty and $A \times C \subseteq B \times D$, then $C \subseteq D$.

Definition 47 (Domain and Range): Let S be a set of pairs. The *domain* and the range of S are denoted respectively by dom(S) and ran(S), and they are defined as follows:

$$dom(S) = \{x \mid (\exists y \mid (x, y) \in S)\}$$

ran(S) = \{y \mid (\exists x \mid (x, y) \in S)\}

Definition 48 (Function): A set f is said to be a function iff f is a set of pairs and

$$\left(\,\forall x,y,z\ \mathbf{1}\ (x,y),(x,z)\in f\ \Rightarrow\ y=z\,\right).$$

Theorem 49: If f is a function and $x \in dom(f)$, then

$$\{y \mid (x,y) \in f\}$$

is a singleton.

Definition 50 (Function Evaluation): Let f be a function and let $x \in \text{dom}(f)$. By Theorem 49, there is a unique y such that $(x, y) \in f$. We denote this unique y by "f(x)", and we call it the value of f at x. Formally, we are making the definition

$$f(x) = occ(\{y \mid (x, y) \in f\}).$$

Theorem 51 (Essence of Evaluation): If f is a function then

- (1) If $x \in \text{dom}(f)$, then $(x, f(x)) \in f$.
- (2) If $(x, y) \in f$, then y = f(x).
- (3) If $x \in \text{dom}(f)$, then $(x, y) \in f \Leftrightarrow y = f(x)$.

Theorem 52: If f is a function, then $y \in ran(f)$ if and only if y = f(x) for some $x \in dom(f)$.

Theorem 53 (Equality of Functions): If f and g are functions, then f = g if and only if dom(f) = dom(g) and f(x) = g(x) for all $x \in dom(f)$.

Definition 54 (Mapping):

$$f: X \to Y \Leftrightarrow (f \text{ is a function } \land \\ dom(f) = X \land \\ ran(f) \subseteq Y).$$

Theorem 55: If f is a function, then $f: X \to Y$ if and only if $f \subseteq X \times Y$ and $X \subseteq \text{dom}(f)$.

Theorem 56 (Piecewise Function Definition):

If f and g are functions and $dom(f) \cap dom(g) = \{\}$, then $f \cup g$ is a function.

Definition 57 (Injectivity, Surjectivity, and Bijectivity):

Assume that $f: X \to Y$.

- (1) f is injective iff for all $x, y \in X$, we have $f(x) = f(y) \Rightarrow x = y$.
- (2) f is surjective onto Y iff ran(f) = Y.
- (3) f is bijective onto Y iff f is both injective and surjective onto Y.

Theorem 58 : Assume that f is a function. Then f is injective if and only if

$$(\forall x,y,z \ \mathbf{1} \ (x,y),(z,y) \in f \ \Rightarrow \ x=z).$$

Theorem 59: Assume that $f: X \to Y$. Then f is surjective onto Y if and only if

$$(\forall y \mid y \in Y \Rightarrow (\exists x \mid x \in X \land f(x) = y)).$$

Definition 60 (Composite):

$$S \circ T = \{ (x, z) \mid (\exists y \mid (x, y) \in T \land (y, z) \in S) \}.$$

Theorem 61 (Associativity of Composition): $S \circ (T \circ U) = (S \circ T) \circ U$

Theorem 62 (Domain and Range of Composite):

- (1) If $ran(T) \subseteq dom(S)$, then $dom(S \circ T) = dom(T)$.
- (2) $ran(S \circ T) \subseteq ran(S)$

Theorem 63 (Essence of Composition):

(1) If f and g are functions, then $g \circ f$ is a function and

$$(g \circ f)(x) = g(f(x))$$

for all $x \in \text{dom}(g \circ f)$.

(2) If $f: X \to Y$ and $g: Y \to Z$, then $g \circ f: X \to Z$.

Definition 64 (Identity Function): The *identity function on* A is denoted by id_A and defined by

$$id_A = \{ (x, x) \mid x \in A \}.$$

Theorem 65 (Facts about id_A):

- (1) $id_A: A \to A$.
- (2) $id_A(x) = x$ for all $x \in A$.
- (3) If $f: A \to B$, then $f \circ id_A = f$.
- (4) If $g: B \to A$, then $\mathrm{id}_A \circ g = g$.

Definition 66 (Reverse): The reverse of S is denoted by S^{\dashv} and defined by

$$S^{\dashv} = \{\, (y,x) \mid (x,y) \in S \,\}\,.$$

Theorem 67 (Essence of Reversal): $(x,y) \in S \Leftrightarrow (y,x) \in S^{\dashv}$.

Theorem 68 (Double Reversal): If S is a set of pairs, then

$$S^{\dashv\dashv} = S.$$

Theorem 69 (Reversal, Domain, and Range):

- $(1) \operatorname{dom}(S^{\dashv}) = \operatorname{ran}(S).$
- (2) $\operatorname{ran}(S^{\dashv}) = \operatorname{dom}(S)$.

Theorem 70 (Reversal and Composition): $(S \circ T)^{\dashv} = T^{\dashv} \circ S^{\dashv}$.

Definition 71 (Invertibility): If f is a function, then f is said to be *invertible* if and only if f^{\dashv} is also a function. In this context, we will refer to f^{\dashv} as the inverse of f.

Theorem 72 (Invertibility of Injections): If f is a function, then f^{\dashv} is a function if and only if f is injective.

Theorem 73: If $f: X \to Y$ and f is injective, then $f^{\dashv}: \operatorname{ran}(f) \to X$.

Theorem 74: If f is an invertible function, $x \in \text{dom}(f)$, and $y \in \text{ran}(f)$, then

$$f(x) = y \Leftrightarrow x = f^{\dashv}(y)$$

Theorem 75: If $f: X \to Y$ and f is a bijection onto Y, then $f^{\dashv}: Y \to X$ and f^{\dashv} is a bijection onto X.

Theorem 76: If $f: X \to Y$ and f is injective, then $f^{\dashv} \circ f = id_X$.

Theorem 77 (Inverse and Composition): If $f: X \to Y$ and f is a bijection onto Y, then

- (1) $f \circ f^{\dashv} = \mathrm{id}_Y$.
- (2) $f^{\dashv} \circ f = \mathrm{id}_X$.

Theorem 78 (Composition, Injectivity, and Surjectivity):

Assume that $f: X \to Y$ and $g: Y \to Z$.

- (1) If f and g are injective, then $g \circ f$ is injective.
- (2) If $g \circ f$ is injective, then f is injective.
- (3) If f is surjective onto Y and g is surjective onto Z, then $g \circ f$ is surjective onto Z.
- (4) If $g \circ f$ is surjective onto Z, then g is surjective onto Z.
- (5) If f is bijective onto Y and g is bijective onto Z, then $g \circ f$ is bijective onto Z.

Theorem 79 (Cancellation of Composite): Assume that $f, g: X \to Y$.

- (1) If $h: Y \to Z$, h is injective, and $h \circ f = h \circ g$, then f = g.
- (2) If $h: Z \to X$, h is surjective onto X, and $f \circ h = g \circ h$, then f = g.

Theorem 80 (Left-Invertible Functions): Assume that $f: X \to Y$. If

$$\left(\,\exists g \ \mathbf{!} \ g: Y \to X \ \land \ g \circ f = \mathrm{id}_X\,\right),$$

then f is injective.

Theorem 81 (Right-Invertible Functions): Assume that $f: X \to Y$. If

$$(\exists g : g : Y \to X \land f \circ g = \mathrm{id}_Y),$$

then f is surjective onto Y.

Axiom 82 (Axiom of Choice): If $f: X \to Y$ and f is surjective onto Y, then there exists a function $g: Y \to X$ such that $f \circ g = \mathrm{id}_Y$.

Theorem 83 (Bijectivity and Isomorphism): Assume that $f: X \to Y$. Then f is a bijection onto Y if and only if

$$(\exists g : g : Y \to X \land g \circ f = \mathrm{id}_X \land f \circ g = \mathrm{id}_Y).$$

Definition 84 (Image): The image of A under S is denoted by S[A] and defined by

$$S[A] = \{ y \mid (\exists x \mid x \in A \land (x,y) \in S) \}.$$

Theorem 85 (Image for Functions): Assume that $f: X \to Y$.

(1) If $A \subseteq X$, then

$$f[A] = \{ f(a) \mid a \in A \}.$$

In other words,

$$y \in f[A] \Leftrightarrow (\exists a \ \ y = f(a) \land a \in A).$$

(2)

$$f^\dashv[B] = \{\, x \ \mathbf{1} \ x \in X \, \wedge \, f(x) \in B \,\}\,.$$

So if $x \in X$, then

$$x \in f^{\dashv}[B] \iff f(x) \in B.$$

Theorem 86 (Image and Composition): $(g \circ f)[A] = g[f[A]]$.

Theorem 87: Assume that $f: X \to Y$, $A \subseteq X$, and $B \subseteq Y$.

- $(1) \ f[f^{\dashv}[B]] \subseteq B.$
- $(2) \ A \subseteq f^{\dashv}[f[A]].$
- (3) If $B \subseteq \operatorname{ran}(f)$, then $f[f^{\dashv}[B]] = B$.
- (4) If f is injective, then $f^{\dashv}[f[A]] = A$.

Theorem 88 (Preimage Plays Nice): Assume that $f: X \to Y$, $A \subseteq Y$, and $B \subseteq Y$.

- $(1) \ f^{\dashv}[A \cup B] = f^{\dashv}[A] \cup f^{\dashv}[B]$
- $(2) f^{\dashv}[A \cap B] = f^{\dashv}[A] \cap f^{\dashv}[B]$
- $(3) f^{\dashv}[A \setminus B] = f^{\dashv}[A] \setminus f^{\dashv}[B]$

Definition 89 (Successor): $next(x) = x \cup \{x\}.$

Definition 90 (Certain Numbers):

$$0 = \{\}$$
 $5 = \text{next}(4)$
 $1 = \text{next}(0)$ $6 = \text{next}(5)$
 $2 = \text{next}(1)$ $7 = \text{next}(6)$
 $3 = \text{next}(2)$ $8 = \text{next}(7)$
 $4 = \text{next}(3)$ $9 = \text{next}(8)$

Definition 91 (Inductive): A set J is said to be *inductive* if it contains 0 and it contains next(n) for every n that it contains. That is,

$$J$$
 is inductive $\Leftrightarrow (0 \in J \land (\forall n \mid n \in J \Rightarrow \text{next}(n) \in J))$

Definition 92: $\mathbb{N} = \{ n \mid (\forall J \mid J \text{ is inductive } \Rightarrow n \in J) \}.$

Theorem 93 (Essence of \mathbb{N}):

- (1) \mathbb{N} is inductive.
- (2) If J is inductive, then $\mathbb{N} \subseteq J$.

Theorem 94 (Mathematical Induction):

If

$$\Phi_{[x\to 0]}$$

and

$$\left(\forall n \mid n \in \mathbb{N} \Rightarrow \left(\Phi_{[x \to n]} \Rightarrow \Phi_{[x \to \mathrm{next}(n)]}\right)\right)$$

both hold, then it follows that

$$(\forall n \mid n \in \mathbb{N} \Rightarrow \Phi_{[x \to n]}).$$

Definition 95 (Order for \mathbb{N}):

- $(1) x < y \Leftrightarrow x \in y.$
- (2) $x \le y \Leftrightarrow (x \in y \lor x = y)$.

Theorem 96 (Essence of Order and Succession):

- (1) x < next(x).
- (2) $x < \text{next}(y) \iff x \le y$.

Theorem 97 (About 0): If $n \in \mathbb{N}$, then

- (1) 0 < next(n).
- (2) $0 \le n$.
- (3) $0 \neq \text{next}(n)$.

Theorem 98 (Predecessor): If $n \in \mathbb{N}$ and $n \neq 0$, then n = next(m) for some $m \in \mathbb{N}$.

Theorem 99 (Succession Preserves Order): Assume that $n \in \mathbb{N}$.

- (1) If m < n, then $next(m) \le n$.
- (2) If m < n, then next(m) < next(n).

Theorem 100 (Transitivity for Order on \mathbb{N}): Assume that $n, m, k \in \mathbb{N}$.

- (1) If n < m and m < k, then n < k.
- (2) If $n \le m$ and m < k, then n < k.
- (3) If n < m and $m \le k$, then n < k.
- (4) If $n \le m$ and $m \le k$, then $n \le k$.

Theorem 101 : If n < m and $m \in \mathbb{N}$, then $n \in \mathbb{N}$.

Theorem 102 (Irreflexivity for Order on \mathbb{N}): If $n \in \mathbb{N}$, then $\neg (n < n)$

Theorem 103 (Successor Cancels): Assume that $n, m \in \mathbb{N}$.

- (1) If next(m) < next(n), then m < n
- (2) If next(m) = next(n), then m = n.

Theorem 104 (Trichotomy for Order on \mathbb{N} **):** Assume that $n, m \in \mathbb{N}$. Then either m < n, n < m, or m = n, and only *one* of these conditions holds. That is,

- (1) $(m = n) \lor (m < n) \lor (n < m)$.
- (2) $\neg (m = n \land m < n)$.
- (3) $\neg (m = n \land n < m)$.
- $(4) \neg (m < n \land n < m).$

Definition 105 (Minimum): Given $A \subseteq \mathbb{N}$, we say that n is a minimum of A if and only if $n \in A$ and $(\forall a \ a \in A \Rightarrow n \leq a)$.

Theorem 106 (Well-Ordering of \mathbb{N}): Every nonempty set of natural numbers has a minimum. That is, if $A \subseteq \mathbb{N}$ then

$$A \neq \{\} \Rightarrow (\, \exists n \; \mathbf{!} \; n \in A \; \wedge \; (\, \forall a \; \mathbf{!} \; a \in A \Rightarrow n \leq a \,)\,)\,.$$

Theorem 107 (Definition by Recursion - Existence):

If $s \in X$ and $r: X \to X$, then there exists an $f: \mathbb{N} \to X$ such that f(0) = s and

$$(\,\forall n \; \mathbf{!} \; n \in \mathbb{N} \; \Rightarrow \; f(\mathrm{next}(n)) = r(f(n))\,)\,.$$

Theorem 108 (Definition by Recursion - Uniqueness):

Assume that $s \in X$ and $r: X \to X$. If

- (1) $f, g: \mathbb{N} \to X$,
- (2) f(0) = g(0) = s,
- (3) $(\forall n, x \mid n \in \mathbb{N} \Rightarrow f(\text{next}(n)) = r(f(n)))$, and
- (4) $(\forall n, x \mid n \in \mathbb{N} \Rightarrow g(\operatorname{next}(n)) = r(g(n))),$ then f = g.

Definition 109 (Adding One): $\ddagger = \{ (n, \text{next}(n)) \mid n \in \mathbb{N} \}.$

Definition 110 (Adding n): Define $\mathcal{ADD} : \mathbb{N} \to \{f \mid f : \mathbb{N} \to \mathbb{N}\}$ to be the unique function that satisfies

- $\mathcal{ADD}(0) = \mathrm{id}_{\mathbb{N}}$ and
- $\mathcal{ADD}(\operatorname{next}(n)) = \ddagger \circ (\mathcal{ADD}(n))$ for all $n \in \mathbb{N}$.

Definition 111 (Addition): Assume that $a, b \in \mathbb{N}$. Then we define

$$a + b = \mathcal{ADD}(b)(a).$$

Theorem 112 (Essence of +): Assume that $m, n \in \mathbb{N}$. Then

- (1) $m+n \in \mathbb{N}$.
- (2) m+0=m.
- (3) m + next(n) = next(m+n).
- (4) next(n) = n + 1.
- (5) m + (n+1) = (m+n) + 1.

Theorem 113 (Properties of +): Assume that $m, n, k \in \mathbb{N}$. Then

- (1) m + (n+k) = (m+n) + k (associativity for +)
- (2) n + 0 = n (0 is a right-identity for +)
- (3) 0 + n = n (0 is a left-identity for +)
- (4) 1 + n = n + 1 (preliminary to commutativity)
- (5) m+n=n+m (commutativity for +)
- (6) $m < n \Rightarrow m + k < n + k$ (+ respects <)
- (7) $m + k = n + k \Rightarrow m = n$ (+ cancels under =)
- (8) $m + k < n + k \Rightarrow m < n$ (+ cancels under <)
- (9) $m + n = 0 \implies (m = 0 \land n = 0)$
- (10) $m + n = 1 \implies ((m = 1 \land n = 0) \lor (m = 0 \land n = 1))$
- (11) $m \leq m + k$
- (12) $m \le n \Rightarrow (\exists j \ j \in \mathbb{N} \land m + j = n)$ (solvability of certain equations)

Definition 114 (Cardinality):

- (1) $A \approx B \iff (\exists f \ \ f : A \to B \land f \text{ is a bijection onto } B).$
- (2) $A \leq B \Leftrightarrow (\exists f : A \to B \land f \text{ is injective}).$
- (3) $A \prec B \Leftrightarrow (A \leq B \land \neg (A \approx B)).$

Theorem 115:

- (1) $A \approx A$ (reflexivity for \approx)
- (2) If $A \approx B$ then $B \approx A$. (symmetry for \approx)
- (3) If $A \approx B$ and $B \approx C$, then $A \approx C$. (transitivity for \approx)

Theorem 116:

- (1) $A \leq A$ (reflexivity for \leq)
- (2) If $A \leq B$ and $B \leq C$, then $A \leq C$. (transitivity for \leq)

Theorem 117 (Preliminary to Cantor-Schroeder-Bernstein): If $C \subseteq A$ and $A \preceq C$, then $A \approx C$.

Theorem 118 (Cantor-Schroeder-Bernstein, AKA Antisymmetry for \leq): If $A \leq B$ and $B \leq A$, then $A \approx B$.

Theorem 119: If $A \leq B$, then there exists a surjection $g: B \to A$.

Definition 120 (Finiteness):

- (1) We say that A has n elements iff $n \in \mathbb{N}$ and $A \approx n$.
- (2) A set is *finite* iff it has n elements for some $n \in \mathbb{N}$.
- (3) A set is *infinite* iff it is not finite.

Theorem 121 (Element Swap): If $p, q \in A$, then there is a bijection $f : A \to A$ such that f(p) = q and f(q) = p.

Theorem 122 (\leq and \leq): If $n, m \in \mathbb{N}$, then

$$n \leq m \Leftrightarrow n \leq m$$
.

Theorem 123 (\approx and = for Natural Numbers): If $n, m \in \mathbb{N}$, then

$$n \approx m \Leftrightarrow n = m$$
.

Theorem 124 (Finite Choice - Preliminary Version): If $n \in \mathbb{N}$ and $f : A \to n$ surjectively, then there exists $g : n \to A$ such that $f \circ g = \mathrm{id}_n$.

Theorem 125 (Finite Choice): If X is finite and $f: A \to X$ surjectively, then there exists $g: X \to A$ such that $f \circ g = \mathrm{id}_X$.

Theorem 126: If X is finite and $f: A \to X$ surjectively, then $X \preceq A$.

Theorem 127 (Adding One Element):

- (1) If X has n elements and $a \notin X$, then $X \cup \{a\}$ has n+1 elements.
- (2) If X is finite, then $X \cup \{a\}$ is finite.

Theorem 128 (Subsets Inherit Finiteness - Preliminary Version): If $n \in \mathbb{N}$ and $S \subseteq n$, then S is finite.

Theorem 129 (Images Inherit Finiteness): If $f: A \to B$, $X \subseteq A$, and X is finite, then f[X] is finite.

Theorem 130 (Subsets Inherit Finiteness): If X is finite and $S \subseteq X$, then S is finite.

Theorem 131 (\cup and +): If the set X has n elements, the set Y has m elements, and $X \cap Y = \{\}$, then $X \cup Y$ has n + m elements.

Theorem 132: Assume that $n \in \mathbb{N}$ and $f : n \to n$. If f is injective, then f is surjective onto n.

Theorem 133 (Infinitude of \mathbb{N}): \mathbb{N} is infinite.

Definition 134 (Countability): A set A is said to be *countably infinite* iff $A \approx \mathbb{N}$.

Theorem 135 (Hilbert's Hotel): $next(\mathbb{N}) \approx \mathbb{N}$.

Definition 136 (Even and Odd):

- (1) n is even iff n = k + k for some $k \in \mathbb{N}$.
- (2) n is odd iff n = k + k + 1 for some $k \in \mathbb{N}$.

Theorem 137: Every natural number is either odd or even.

Theorem 138: A natural number cannot be both odd and even.

Theorem 139: If $k, \ell \in \mathbb{N}$ and $k + k = \ell + \ell$ then $k = \ell$.

Theorem 140 (Doubling Countable Infinity): $2 \times \mathbb{N} \approx \mathbb{N}$.

Theorem 141 (Squaring Countable Infinity): $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$.

Theorem 142 (Cantor's Theorem): There does not exist a surjection $f: A \to \mathcal{P}(A)$.

Definition 143 (Uncountability): A set A is said to be *uncountably infinite* iff it is infinite, but it is not countably infinite.

Definition 144 (Relations):

- (1) R is a relation on A if and only if $R \subseteq A \times A$.
- (2) When R is a relation on A, we write "xRy" to mean " $(x,y) \in R$."

Definition 145 (Adjectives for Relations): Assume that $\sim \subseteq A \times A$.

- (1) \sim is reflexive on A iff $a \sim a$ for all $a \in A$.
- (2) \sim is symmetric iff $a \sim b \implies b \sim a$ for all a, b.
- (3) \sim is transitive iff $((a \sim b) \land (b \sim c)) \Rightarrow (a \sim c)$ for all a, b, c.
- (4) \sim is antisymmetric iff $((a \sim b) \land (b \sim a)) \Rightarrow (a = b)$ for all a, b.
- (5) \sim is total on A iff $(a \sim b) \lor (b \sim a)$ for all $a, b \in A$.

Definition 146 (Special Kinds of Relations): Assume that $\sim \subseteq A \times A$.

- (1) \sim is a preorder on A iff it is reflexive on A and transitive.
- (2) \sim is a partial order on A iff it is an antisymmetric preorder on A.
- (3) \sim is a total order on A iff it is a total partial order on A.
- (4) \sim is an equivalence relation on A iff it is a symmetric preorder on A.

Definition 147 (Equivalence Class): Assume that \sim is an equivalence relation on A and $a \in A$. Then we define

$$[a]_{\sim} = \{ x \mid x \sim a \}$$

and we call this the equivalence class of a, or the equivalence class of a modulo \sim . If the relation involved is clear from context, then we may simply write [a] instead of $[a]_{\sim}$.