

Polarimetric Depth EstimationGroup 1 - Final Presentation

Kağan Küçükaytekin

Witold Pacholarz

Tobias Preintner

Ragıp Volkan Tatlıkazan

Supervisors: Patrick Ruhkamp, HyunJun Jung

Advanced Topics in 3D Computer Vision

Technical University of Munich

Munich, 28.07.2022

Agenda

- Motivation
- Related Work
- Polarimetric characteristics
- Architecture and losses
- Results and analysis
- Demonstration
- Limitations
- Conclusions
- Future development

Motivation

What is monocular depth estimation?

"Digging Into Self-Supervised Monocular Depth Estimation" Clément Godard, Oisin Mac Aodha, Michael Firman, Gabriel Brostow; ICCV 2019

Motivation

- What is monocular depth estimation?
- Where is it applied?

Motivation

- What is monocular depth estimation?
- Where is it applied?
- Why polarised images?

www.ai.googleblog.com

Goal

Quantitative and qualitative improvement of the supervised monocular depth estimation for photometrically challenging objects by leveraging polarimetric characteristics of light

www.robots.ieee.org

Related work

Monodepth2

- Popular baseline for depth estimation
- Sequential frames as train data
- Depth loss using downscaled predictions

"Digging Into Self-Supervised Monocular Depth Estimation" Clément Godard, Oisin Mac Aodha, Michael Firman, Gabriel Brostow; ICCV 2019

Related work

Shape from Polarization for Complex Scenes in the Wild

- Normals estimation for full scenes
- Encoder-decoder structure
- Attention in bottleneck

"Shape from Polarization for Complex Scenes in the Wild" Chenyang Lei, Chenyang Qi, Jiaxin Xie, Na Fan, Vladlen Koltun and Qifeng Chen; CVPR 2022

Related work

Polarimetric Pose Prediction

- Prediction of 6D pose
- Utitizes a normal encoder

"Polarimetric Pose Prediction" Daoyi Gao, Yitong Li, Patrick Ruhkamp, Iuliia Skobleva, Magdalena Wysocki, HyunJun Jung, Pengyuan Wang, Arturo Guridi, Nassir Navab, Benjamin Busam (ECCV 2022)

Dataset

HAMMER

- RGB images
- 4 polarised images
 (0, 45, 90 and 135 deg)
- Instance masks
- Depth ground truth

"Is my Depth Ground-Truth Good Enough? HAMMER - Highly Accurate Multi-Modal Dataset for DEnse 3D Scene Regression" HyunJun Jung, Patrick Ruhkamp, Guangyao Zhai, Nikolas Brasch, Yitong Li, Yannick Verdie, Jifei Song, Yiren Zhou, Anil Armagan, Slobodan Ilic, Aleš Leonardis, Benjamin Busam; 2022

Light polarisation

- Initially: a beam of light with multiple directional waves (unpolarised)
- After going through a polariser: some particular rays remain (polarised)

Polarimetric characteristics

polarised images

DOLP

Polarimetric characteristics

specular normals 1

diffuse normals

specular normals 2

Data preprocessing

- Augmentation:
 - horizontal flip
 - o random brightness, contrast, saturation, hue jitter
- Downscaling images for loss calculations
- Speeding up training with pre-splitting polarised images
- Standardisation of RGB and XOLP encoder inputs

Architecture development

Baseline architecture

Loss Functions

Depth Regression

$$\mathcal{L}_1(y, \hat{y}) = |y - \hat{y}|$$

Smoothing Loss (d stands for disparity):

$$\mathcal{L}_s(d,\hat{I}) = \frac{\partial d}{\partial x} e^{-\partial \hat{I}/\partial x} + \frac{\partial d}{\partial y} e^{-\partial \hat{I}/\partial y}$$

- Discourage shrinking of the estimated depth

Overall:

$$\mathcal{L} = \alpha \mathcal{L}_1 + \beta \mathcal{L}_s$$

Architecture - proof of concept

- Performs better
- Polarization contains significant information

Architecture - blending the priors

- Adding XOLP alone did not increase the results
- Can still add more information

Loss Functions

Depth Regression

$$\mathcal{L}_1(y, \hat{y}) = |y - \hat{y}|$$

Smoothing Loss (d stands for disparity):

$$\mathcal{L}_s(d,\hat{I}) = \frac{\partial d}{\partial x} e^{-\partial \hat{I}/\partial x} + \frac{\partial d}{\partial y} e^{-\partial \hat{I}/\partial y}$$

- Discourage shrinking of the estimated depth

Overall:

$$\mathcal{L} = \alpha \mathcal{L}_1 + \beta \mathcal{L}_s$$

Loss Functions

Depth Regression

$$\mathcal{L}_1(y, \hat{y}) = |y - \hat{y}|$$

Smoothing Loss (d stands for disparity):

$$\mathcal{L}_s(d,\hat{I}) = \frac{\partial d}{\partial x} e^{-\partial \hat{I}/\partial x} + \frac{\partial d}{\partial y} e^{-\partial \hat{I}/\partial y}$$

- Discourage shrinking of the estimated depth
- Normals Loss

$$\mathcal{L}_n(n,\hat{n}) = 1 - cos(\angle(n,\hat{n}))$$

Overall:

$$\mathcal{L} = \alpha \mathcal{L}_1 + \beta \mathcal{L}_s + \theta \mathcal{L}_n$$

Too much load on the decoder

Combine features channel-wise

Skip connections for high resolution depth estimation

 Skip connections from the joint encoder boost results for non-Lambertian objects

Final architecture

Ablations

Ablations – losses

$$\mathcal{L} = \alpha \mathcal{L}_1 + \beta \mathcal{L}_s + \theta \mathcal{L}_n$$

GLASS	a1	abs_rel	log_rms	rms	sq_rel
$\theta = 0$	0.9575	0.08241	0.09517	0.06184	0.00762
$\theta = 0.35$	0.9896	0.08115	0.09086	0.05855	0.00652
θ = 1	0.9566	0.09645	0.10460	0.06821	0.00930
$\beta = 0$	0.9628	0.09977	0.10770	0.07119	0.00988
losses only at scale 0	0.9456	0.08838	0.10110	0.06576	0.00825

Initial setup: $\alpha = 1$, $\beta = 1$, $\theta = 0.35$; scales: 0, 1, 2, 3. The table indicates changes of the specified values.

Ablations – losses

$$\mathcal{L} = \alpha \mathcal{L}_1 + \beta \mathcal{L}_s + \theta \mathcal{L}_n$$

GLASS	a1	abs_rel	log_rms	rms	sq_rel
$\theta = 0$	0.9575	0.08241	0.09517	0.06184	0.00762
$\theta = 0.35$	0.9896	0.08115	0.09086	0.05855	0.00652
$\theta = 1$	0.9566	0.09645	0.10460	0.06821	0.00930
$\beta = 0$	0.9628	0.09977	0.10770	0.07119	0.00988
losses only at scale 0	0.9456	0.08838	0.10110	0.06576	0.00825

METAL	a1	abs_rel l	og_rms	rms	sq_rel
$\theta = 0$	0.9113	0.1278	0.1335	0.08742	0.01389
$\theta = 0.35$	0.9767	0.1135	0.1218	0.07607	0.01006
$\theta = 1$	0.9021	0.1419	0.1476	0.09614	0.01609
$\beta = 0$	0.8377	0.1586	0.1607	0.10720	0.02086
losses only at scale 0	0.8700	0.1495	0.1492	0.09899	0.01765

Initial setup: $\alpha = 1$, $\beta = 1$, $\theta = 0.35$; scales: 0, 1, 2, 3. The table indicates changes of the specified values.

GLASS	a1	abs_rel	log_rms	rms	sq_rel
RGB	0.9417	0.10610	0.11730	0.07361	0.009677
RGB + XOLP	0.9908	0.06904	0.08126	0.05221	0.004954
RGB + normals	0.9723	0.08807	0.09818	0.06648	0.008598
RGB + XOLP + normals	0.9896	0.08115	0.09086	0.05855	0.006523

METAL	a1	abs_rel	log_rms	rms	sq_rel
RGB	0.9700	0.09246	0.1103	0.07016	0.008178
RGB + XOLP	0.9974	0.09275	0.1029	0.06387	0.006764
RGB + normals	0.9884	0.11570	0.1237	0.07703	0.009956
RGB + XOLP + normals	0.9767	0.11350	0.1218	0.07607	0.010060

OBJECTS	a1	abs_rel	log_rms	rms	sq_rel
RGB	0.93670	0.10331	0.12908	0.08602	0.0123
RGB + XOLP	0.91344	0.09740	0.13261	0.09063	0.0129
RGB + normals	0.91583	0.10257	0.13679	0.09447	0.0140
RGB + XOLP + normals	0.92258	0.10347	0.13486	0.09236	0.0132

OBJECTS	a1	abs_rel	log_rms	rms	sq_rel
RGB	0.93670	0.10331	0.12908	0.08602	0.0123
RGB + XOLP	0.91344	0.09740	0.13261	0.09063	0.0129
RGB + normals	0.91583	0.10257	0.13679	0.09447	0.0140
RGB + XOLP + normals	0.92258	0.10347	0.13486	0.09236	0.0132

OBJECTS WITHOUT BOX	a1	abs_rel	log_rms	rms	sq_rel
RGB	0.95123	0.09958	0.12432	0.07799	0.01144
RGB + XOLP	0.97161	0.08409	0.11243	0.07149	0.00892
RGB + normals	0.96648	0.09153	0.11942	0.07777	0.01055
RGB + XOLP + normals	0.97417	0.09036	0.11605	0.07379	0.00943

Final architecture

Final architecture – with attention

Ablations – polarimetric characteristics

OBJECTS	a1	abs_rel	log_rms	rms	sq_rel
RGB	0.93670	0.10331	0.12908	0.08602	0.0123
RGB + XOLP	0.91344	0.09740	0.13261	0.09063	0.0129
RGB + normals	0.91583	0.10257	0.13679	0.09447	0.0140
RGB + XOLP + normals	0.92258	0.10347	0.13486	0.09236	0.0132
RGB + XOLP + normals + attention	0.96769	0.08841	0.11351	0.07738	0.0010

- 100

[cm]

Qualitative analysis – polarimetry

glass

- 160

- 140

- 120

- 100

- 80

60

[cm]

Qualitative analysis – normals loss

normals loss weight: 0,35

without normals loss

normals loss weight: 1

Qualitative analysis – normals loss

GT

normals loss weight: 0,35

without normals loss

normals loss weight: 1

Qualitative analysis – loss at multiple scales

GT

depth loss at multiple scales

depth loss at one scale

Qualitative analysis – smoothing loss

Point Cloud

GT

final architecture's prediction

Point Cloud

GT

final architecture's prediction

Demonstration with the RGB prediction

Limitations

Depth artifacts at object edges influenced by:

- the used interpolation type
- convolutions

depth GT + bilinear interpolation

Limitations

Limitations

 Drop of performance on the whole scene when using polarimetric characteristics, mostly because of the background influence

WHOLE SCENE	a1	abs_rel l	og_rms	rms	sq_rel
RGB	0.9690	0.0817	0.1050	0.0835	0.0085
RGB + XOLP	0.9023	0.0978	0.1298	0.1138	0.0131
RGB + normals	0.8653	0.1018	0.1405	0.1094	0.0159
RGB + XOLP + normals	0.8977	0.0995	0.1330	0.1094	0.0138

Conclusions

- We implemented

 a supervised monocular depth
 prediction model leveraging
 polarimetric characteristics
- Our depth estimation for photometrically challenging objects outperforms the plain RGB model

RGB + XOLP + normals

Conclusions

- Normals loss increases object smoothness and sharpness
- Smoothing loss and loss calculation at multiple scales prevent shrinking of objects
- Higher normals loss weight improves normals predictions

Conclusions

The developed model serves as a solid base for further advancements

Future development

 Self-supervision (inspired by Monodepth2) as HAMMER includes trajectories

"Digging Into Self-Supervised Monocular Depth Estimation" Clément Godard, Oisin Mac Aodha, Michael Firman, Gabriel Brostow; ICCV 2019

Self-supervised losses leveraging inverse polarimetric transformations

(as in CroMo)

Future development

 Our architecture making use of attention gives best results – potential for further improvements

"Shape from Polarization for Complex Scenes in the Wild" Chenyang Lei, Chenyang Qi, Jiaxin Xie, Na Fan, Vladlen Koltun and Qifeng Chen; CVPR 2022

Future development

- Making use of additional modalities as HAMMER has more to offer:
 - ToF
 - real depth images

"Is my Depth Ground-Truth Good Enough? HAMMER - Highly Accurate Multi-Modal Dataset for DEnse 3D Scene Regression" HyunJun Jung, Patrick Ruhkamp, Guangyao Zhai, Nikolas Brasch, Yitong Li, Yannick Verdie, Jifei Song, Yiren Zhou, Anil Armagan, Slobodan Ilic, Aleš Leonardis, Benjamin Busam; 2022

Verifying influence of refractive indices (e.g. by using attention)

