16.4.1(b) Note that

$$x^2 - 2x - 1 = (x - (1 + \sqrt{2}))(x - (1 - \sqrt{2})), x^2 - 2x - 1 = (x - (1 + 2\sqrt{2}))(x - (1 - 2\sqrt{2})),$$

thus the roots are contained within $\mathbb{Q}(\sqrt{2})$, and since $\mathbb{Q}(\sqrt{2})$ is a galois extension for f implies that $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = |Gal(\mathbb{Q}(\sqrt{2})/\mathbb{Q})|$.

- 16.6.1 For the equation $x^3 + x + 1$, $\Delta_f = -31$. Since $deg(\alpha) = 3$, this implies that $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$, which means that the order of the galois group $G(\mathbb{Q}(\alpha)/\mathbb{Q})$ is either 1 or 3. Since $\sqrt{-31}$ needs an extension of degree 2, then it is not contained in $\mathbb{Q}(\alpha)$. However, for the splitting field K, the square root of the discriminate is guaranteed to be within as $\sqrt{\Delta_f} = (\alpha_1 \alpha_2)(\alpha_2 \alpha_3)(\alpha_1 \alpha_3)$, which is just the product and difference of the roots. Therefore $\sqrt{-31} = \sqrt{\Delta_f} \in K$.
- 16.6.2 Note that we have the inherited automorphisms from $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{5})$ of $\sqrt{p} \mapsto -\sqrt{p}$ where p=2,3,5. Furthermore, we have $8=[\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5}):\mathbb{Q}]$ as we have 3 items being adjoined to \mathbb{Q} , and there is $2^3=8$ distinct elements which can be created by multiplying them together, represented by $\sqrt{2}^{b_0}\sqrt{3}^{b_1}\sqrt{5}^{b_2}$, where $b_i=0,1,i=0,1,2$. Furthermore, we can generate other automorphisms by chaining the swapping of signs of different roots. Furthermore, the swapping of signs is commutative. Finally our 3 inherited automorphisms each generate a subgroup of order 2. Therefore the only possible galois group is $(\mathbb{Z}/2\mathbb{Z})^3$, or the field on 8 elements.
- 16.7.2 b [F:L] = 9 cannot occur since [K:L][L:F] = [K:F] = |G(K/f)| = 24, and $9 \nmid 24$.
 - c Note that $C_2 \times C_{12} \cong C_2 \times C_3 \times C_4$ by the chinese remainder theorem. Since the following is a direct product, this implies that C_4 is normal. Therefore there is exactly one copy of C_4 , implying there is one intermediate field which has galois group C_4 .
- 16.7.4 Subfields of $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$:
 - (a) \mathbb{Q}
 - (b) $\mathbb{Q}(\sqrt{2})$
 - (c) $\mathbb{Q}(\sqrt{3})$
 - (d) $\mathbb{Q}(\sqrt{5})$
 - (e) $\mathbb{Q}(\sqrt{6})$
 - (f) $\mathbb{Q}(\sqrt{10})$
 - (g) $\mathbb{Q}(\sqrt{15})$
 - (h) $\mathbb{Q}(\sqrt{30})$
 - (i) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$
 - (j) $\mathbb{Q}(\sqrt{2}, \sqrt{5})$
 - (k) $\mathbb{Q}(\sqrt{3}, \sqrt{5})$

Alex Valentino Homework 5 452

- (l) $\mathbb{Q}(\sqrt{5}, \sqrt{6})$
- (m) $\mathbb{Q}(\sqrt{10}, \sqrt{3})$
- (n) $\mathbb{Q}(\sqrt{15}, \sqrt{2})$
- (o) $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$