Aarch64 most common instructions

General conventions
Containers: x (64-bit register), w (32-bit register)

if {S} is present flags will be affected

rd, rn, rm: w or x registers; op2: register, modified register or #immn (n-bit immediate)

n (of n-bit immediate values) depends heavily on context. Out of bond values will generate a syntax error

	Instruction	Mnemonic	Syntax	Explanation	Flags
	Addition	ADD{S}	ADD{S} rd, rn, op2	rd = rn + op2	{Yes}
	Subtraction	SUB{S}	SUB{S} rd, rn, op2	rd = rn - op2	{Yes}
	Negation	NEG{S}	NEG{S} rd, op2	rd = -op2	{Yes}
	with carry	NGC{S}	NGC{S} rd, rm	rd = -rm - ~C	{Yes}
	Unsigned multiply	MUL	MUL rd, rn, rm	rd = rn x rm	()
	Unsigned multiply long	UMULL	UMULL xd, wn, wm	xd = wn x wm	
	Unsigned multiply high	UMULH	UMULH xd, xn, xm	xd = <127:64> of xn x xm	
S	Signed multiply long	SMULL	SMULH xd, xn, xm	xd = wm x wn (signed operands)	
tior	Signed multiply high	SMULH	SMULL xd, wn, wm	xd = <127:64 > of xn x xm (signed operands)	
era.	Multiply and add	MADD	MADD rd, rn, rm, ra	rd = ra + (rn x rm)	
obe	Multiply and sub	MSUB	MSUB rd, rn, rm, ra	rd = ra - (rn x rm)	
tic	Multiply and neg	MNEG	MNEG rd, rn, rm	rd = -(rn x rm)	
hme	Unsigned multiply and add long	UMADDL	UMADDL xd, wn, wm, xa	xd = xa + (wm x wn)	
ŗ	Unsigned multiply and sub long	UMSUBL	UMSUBL xd, wn, wm, xa	xd = xa - (wn x wn)	
⋖	Unsigned multiply and neg long	UMNEGL	UMNEGL xd, wn, wn	$xd = -(w \times wn)$	
	Signed multiply and add long	SMADDL	SMADDL xd, wn, wm, xa	xd = xa + (wm x wn)	
	Signed multiply and sub long Signed multiply and neg long	SMSUBL	SMSUBL xd, wn, wm, xa	xd = xa - (wm x wn)	
	, , , , ,	SMNEGL	SMNEGL xd, wn, wm	xd = - (wm x wn)	
	Unsigned divide	UDIV	UDIV rd, rn, rm	rd = rn / rm	
	Signed divide	SDIV	SDIV rd, rn, rm	rd = rn / rm	
	Note: the remainder may be comput	ted using t	he MSUB instruction as numerat	or - (quotient x denominator)	
	bBitwise AND	AND	AND{S} rd, rn, op2	rd = rn & op2	{Yes}
	Bitwise AND with neg	BIC	BIC{S} rd, rn, op2	rd = rn & ~op2	{Yes}
Ñ	Bitwise OR	ORR	ORR rd, rn, op2	rd = rn op2	
tion	Bitwise OR with neg	ORN	ORN rd, rn, op2	rd = rn ~op2	
rat	Bitwise XOR	EOR	EOR rd, rn, op2	rd = rn ⊕ op2	
do	Bitwise XOR with neg	EON	EON rd, rn, op2	rd = rn ⊕ ~op2	
la:	Logical shift left	LSL	LSL rd, rn, op2	Logical shift left (stuffing zeros enter from right)	
ogic	Logical shift right	LSR	LSR rd, rn, rm	Logical shift right (stuffing zeros enter from left)	
ا ک	Arithmetic shift right	ASR	ASR rd, rn, op2	Arithmetic shift right (preserves sign)	
۸żs		ROR	ROR rd, rn, op2	Rotate right (carry not involved)	
Bit	Rotate right Move to register	MOV	MOV rd, op2	rd = op2	
	Move to register, neg	MVN	MVN rd, op2	rd = ~op2	
	Test bits	TST	TST rn, op2	rn & op2	Yes
obs	Bitfield insert	BFI	BFI rd, rn, #lsb, #width	Moves a bitfield of #width bits starting at source bit 0 to destination starting at bit #lsb	
field	Bitfield extract Signed bitfield extract	UBFX	UBFZ rd, rn, #lsb, #width	Moves a bitfield of #width bits starting at source bit #lsb to destination starting at bit 0; clears all other rd bits	
Bit	Signed bitfield extract	SBFX	SBFZ rd, rn, #lsb, #width	Moves a bitfield of #width bits starting at source bit #lsb to destination starting at bit 0; sign extends the result	
	Count leading sign	CLS	CLS rd, rm	Count leading sign bits	
bs	Count leading sign	CLZ	CLZ rd, rm	Count leading zero bits	\vdash
0	Reverse bit	RBIT	RBIT rd, rm	Reverse bit order	
	Reverse byte	REV	REV rd, rm	Reverse byte order	
it/	Reverse byte in half word	REV16	REV16 rd, rm	Reverse byte order on each half word	\vdash
	Reverse byte in word	REV32	REV32 xd, xm	Reverse byte order on each word	
	Store single register	STR	rt, [addr]	Mem[addr] = rt	
	Subtype byte	STRB	wt, [addr]	Byte[addr] = wt<7:0>	
	Subtype half word	STRH	wt, [addr]	HalfWord[addr] = wt<15:0>	
Lons	unscaled address offset	STUR	STUR rt, [addr]	Mem[addr] = rt (unscaled address)	
operations	Store register pair	STP	STP rt, rm, [addr]	Stores rt and rm in consecutive addresses starting at addr	\vdash
oper	Load single register	LDR	LDR rt, [addr]	rt = Mem[addr]	\vdash
	Sub-type byte	LDRB	LDRB wt, [addr]	wt = Byte[addr] (only 32-byte containers)	\vdash
Store	Sub-type byte Sub-type signed byte	LDRSB	LDRSB rt, [addr]	rt = Sbyte[addr] (signed byte)	\vdash
and	Sub-type signed byte Sub-type half word	LDRH	LDRH wt, [addr]	wt = HalfWord[addr] (only 32-byte containers)	
	Sub-type nath word Sub-type signed half word	LDRSH	LDRSH rt, [addr]	rt = Mem[addr] (load one half word, signed)	
Load	Sub-type signed word	LDRSW	LDRSW xt, [addr]	xt = Sword[addr] (signed word, only for 64-byte containers)	
	unscaled address offset	LDUR	LDUR rt, [addr]	rt = Mem[addr] (stylled word, only for our byte containers)	+-
	Load register pair	LDDR	LDP rt, rm, [addr]	Loads rt and rm from consecutive addresses starting at addr	
	Louis register patr	בטו	Lor (c, in, [addi]	Leads to and the from consecutive addresses starting at dudi	

	Instruction	Mnemonic	Syntax	Explanation	Flags
	Branch	В	B target	Jump to target	
tior	Branch and link	BL	BL target	Writes the addr of the next instr to X30 and jumps to target	
operation	Return	RET	RET {Xm}	Returns from sub-routine jumping to register Xm (default: X30)	
	Conditional branch	B.CC	B.cc target	If (cc) jump to target	
anch.	Compare and branch if zero	CBZ	CBZ rd, target	If (rd=0) jump to target	
B	Compare and branch if not zero	CBNZ	CBNZ rd, target	If (rd≠0) jump to target	
	Conditional select	CSEL	CSEL rd, rn, rm, cc	If (cc) rd = rn else rd = rm	
Su	with increment,	CSINC	CSINC rd, rn, rm, cc	If (cc) rd = rn else rd = rm+1	
ations	with negate,	CSNEG	CSNEG rd, rn, rm, cc	If (cc) rd = rn else rd = -rm	
opera	with invert	CSINV	CSINV rd, rn, rm, cc	If (cc) rd = rn else rd = ~rm	
	Conditional set	CSET	CSET rd, cc	If (cc) rd = 1 else rd = 0	
Conditional	with mask,	CSETM	CSETM rd, cc	If (cc) rd = -1 else rd = 0	
nd:t	with increment,	CINC	CINC rd, rn, cc	If (cc) rd = rn+1 else rd = rn	
ပိ	with negate,	CNEG	CNEG rd, rn, cc	If (cc) rd = -rn else rd = rn	
	with invert	CINV	CINV rd, rn, cc	If (cc) rd = ~rn else rd = rn	
	Compare	СМР	CMP rd, op2	Rd - op2	Yes
obs	with negative	CMN	CMN rd, op2	rd - (-op2)	Yes
are	Conditional compare	CCMP	CCMP rd, rn, #imm4, cc	If (cc) NZCV = CMP(rd,rn) else NZCV = #imm4	Yes
Compare	with negative	CCMN	CCMP rd, rn, #imm4, cc	If (cc) NZCV = CMP(rd,-rn) else NZCV = #imm4	Yes
	Note: for these instructions rn can also be an #imm5 (5-bit unsigned immediate value 031)				

Aarch64 accessory information

Condition codes (magnitude of operands)						
LO	Lower, unsigned	C = 0				
HI	Higher, unsigned	C = 1 and Z = 0				
LS	Lower or same, unsigned	C = 0 or Z = 1				
HS	Higher or same, unsigned	C = 1				
LT	Less than, signed	N != V				
GT	Greater than, signed	Z = 0 and N = V				
LE	Less than or equal, signed	Z = 1 and N != V				
GE	Greater than or equal, signed	N = V				

Con	Condition codes (direct flags)				
EQ	Equal	Z = 1			
NE	Not equal	Z = 0			
MI	Negative	N = 1			
PL	Positive or zero	N = 0			
VS	Overflow	V = 1			
VC	No overflow	V = 0			
cs	Carry	C = 0			
cc	No carry	C = 1			

Sub typ	ub types (suffix of some instructions)					
B/SB	8 bits					
H/SH	16 bits					
W/SW	32 bits					

	the result of the last operation was negative, cleared to 0 otherwise					
Z	the result of the last operation was zero, cleared to 0 otherwise					
С	the last operation resulted in a carry, cleared to 0 otherwise					
٧	he last operation caused overflow, cleared to 0 otherwise					

Sizes,	in Assembly and C				
8	8 byte				
16	Half word	short int			
32	word	int			
64	double word	long int			
128	guad word	_			

Addressing modes (base: register; offset: register or immediate)			
[base]	MEM[base]		
[base, offset]	ase, offset] MEM[base+offset]		
[base, offset]!	MEM[base+offset] then base = base + offset	(pre indexed)	
[base], offset	MEM[base] then base = base + offset	(post indexed)	

	catting convention (register use)					
Params: X0X7; Result: X0						
	Reserved: X8, X16X18 (do not use these)					
	Unprotected: X9X15 (callee may corrupt)					
	Protected: X19X28 (callee must preserve)					

Op2 processing (applied to O	p2 before anything else)
LSL LSR ASR #imm6	
SXTW / SXTB {#imm2}	Sign extension/Sign extension after LSL #imm2

Aarch64 floating point instructions

General concepts and conventions

Registers: Di (double precision: 64-bit, c:double), Si (single precision: 32-bit, c:float); i:0..31

Hi (half precision: 16-bit, c:non standard); i:0..31

Call convention: Reg0..Reg7 - arguments, Reg0 - result; Reg={D,S,H}; Reg8..Reg15 should be preserved by callee

Containers: r = {D,S,H}; #immn = n-bit constant

1.11.11	Mnemonic	Syntax	Explanation	Flags	
ddition	FADD	FADD rd, rn, rm	rd = rn + rm	Yes	
ubtraction	FSUB	FSUB rd, rn, rm	rd = rn - rm	Yes	
ultiply	FMUL	FMUL rd, rn, rm	rd = rn x rm	Yes	
ultiply and neg	FNMUL	FNMUL rd, rn, rm	rd = - (rn x rm)	Yes	
ultiply and add	FMADD	FMADD rd, rn, rm, ra	rd = ra + (rn x rm)	Yes	
ultiply and add neg	FNMADD	FNMADD rd, rn, rm, ra	rd = - (ra + (rn x rm))	Yes	
ultiply and sub	FMSUB	FMSUB rd, rn, rm, ra	rd = ra - (rn x rm)	Yes	
ultiply and sub neg	FNMSUB	FNMSUB rd, rn, rm, ra	rd = (rn x rm) - ra	Yes	
ivide	FDIV	FDIV rd, rn, rm	rd = rn / rm	Yes	
egation	FNEG	FNEG rd, rn	rd = - rn	Yes	
bsolute value	FABS	FABS rd, rn	rd = rn	Yes	
aximum	FMAX	FMAX rd, rn, rm	rd = max(rn,rm)	Yes	
inimum	FMIN	FMIN rd, rn, rm	rd = min(rn,rm)	Yes	
quare root	FSQRT	FSQRT rd, rn	rd = sqrt(rn)	Yes	
ound to integer	FRINTI	FRINTI rd, rn	rd = round(rn)	Yes	
Note: r={D,S,H} but operands and result must be of same type					
etween registers of equal size	FMOV	FMOV rd, rn	rd = rn (rd={D,S,H,X,W}; rn={D,S,H,X,W,WZR,XZR})		
onditional select	FCSEL	FCSEL rd, rn, rm, cc	If (cc) rd = rn else rd = rm		
Notes: Data movement with decreasing precision may lead to rounding or NaN					
	ultiply and neg ultiply and add ultiply and add neg ultiply and sub ultiply and sub neg ivide egation bsolute value axximum inimum quare root ound to integer Note: r={D,S,H} but operands and etween registers of equal size onditional select Notes: Data movement with decreas	ultiply and neg FNMUL ultiply and add FMADD ultiply and add neg FNMADD ultiply and sub FMSUB ultiply and sub neg FNMSUB ivide FDIV egation FNEG bsolute value FABS aximum FMAX inimum FMIN quare root FSQRT ound to integer FRINTI Note: r={D,S,H} but operands and result mus etween registers of equal size FMOV onditional select FCSEL Notes: Data movement with decreasing precisi	ultiply and neg FNMUL FNMUL rd, rn, rm ultiply and add FMADD FMADD rd, rn, rm, ra ultiply and add neg FMSUB FMSUB FMSUB rd, rn, rm, ra ultiply and sub FMSUB FNMSUB rd, rn, rm, ra ivide FDIV FDIV rd, rn, rm egation FNEG FNEG rd, rn bosolute value FABS FABS rd, rn inimum FMIN FMIN rd, rn, rm quare root FSQRT FSQRT rd, rn Note: r={D,S,H} but operands and result must be of same type etween registers of equal size FMOV FMOV rd, rn rm FMOV rd, rn FCSEL FCS	ultiply and neg	

	The state of the s							
_								
١	Compare	FCMP	FCMP rn, rm	NZCV = compare(rn,rm)	Yes			
	Compare with zero	FCMP	FCMP rd, #0.0	NZCV = compare(rn,0)	Yes			
,	Conditional compare	FCCMP	FCCMP rn, rm, #imm4, cc	If (cc) NZCV = compare(rn,rm) else NZCV = #imm4	Yes			
٥	Notes: comparison of FP numbers can lead to wrong conclusions on very similar operands due to rounding errors In general flag behaviour is similar to the integer compares. See table below.							

	3	FCVT	FCVT rd, rn	rd = rn	(r={D,S,H})	
rsi	signed integer to FP	SCVTF	SCVTF rd, rn	rd = rn	(rd={D,S,H}, rn={X,W})	
l ve	unsigned integer to FP	UCVTF	UCVTF rd, rn	rd = rn	(rd={D,S,H}, rn={X,W})	
8	FP to signed integer	FCVTNS	FCVTNS rd, rn	rd = rn	(rd={X,W}, rn={D,S,H})	
mat	FP to unsigned integer	FCVTNU	FCVTNU rd, rn	rd = rn	(rd={X,W}, rn={D,S,H})	
For	Note: conversion to integer can lead to an exception if the destination container does not have the required size					

cc	CMP Meaning	FCMP meaning
EQ	Equal	Equal
NE	Not equal	Not equal (or unordered)
ΗI	Unsigned greater than	Greater than (or unordered)
HS	Unsigned greater than or equal to	Greater than or equal to (or unordered)
L0	Unsigned less than	Less than
LS	Unsigned less than or equal to	Less than or equal to
GT	Signed greater than	Greater than
GE	Signed greater than or equal to	Greater than or equal to
LT	Signed less than	Less than (or unordered)
LE	Signed less than or equal to	Less than or equal to (or unordered)
VS	Signed overflow	Unordered (at least one argument was NaN)

Aarch64 Advanced SIMD instructions (NEON)

General concepts and conventions

Vector Registers: Vi (128-bit - quadword), i:0..31; each reg can be structured in lanes of {8,16,32,64} bits {B,H,S,D} Syntax for structure: Vi.nk, i=reg number, n=nbr of lanes, k=lane type {B,H,S,D}; nk={8B,16B,4H,8H,2S,4S,1D,2D} Syntax for register element: Vi.k[n], i=register number, k=lane type {B,H,S,D}, n=element number Examples: V3.4S = V3 structured in 4 lanes of 32 bits; V5.B[0] = rightmost byte of V5 (least significant byte)

Scalar Registers (Scl): Qi(128-bit), Di(64-bit), Si(32-bit), Hi(16-bit), Bi(8-bit); Shared with FP registers

Instructions: not necessarily new mnemonics but new syntax and behaviour Can operate vectors, scalars and in some cases scalars with vectors

Examples: ADD W0,W1,W2 (signed integer addition); ADD V0.4S,V1.4S,V2.4S (signed 4-component integer vector addition)

The following tables contain only new instructions. Most of the classic instructions, for both integer and FP data, are still valid but adopt the new syntax and behaviour.

Variants can have different suffixes - {L,W,N,P} (long, wide, narrow, pairing)

Prefix F for floating point data types; prefixes {SQ,UQ} for integer signed/unsigned saturating arithmetic

Instruction	Mnemonic	Syntax	Explanation Fla			
Duplicate vector element	DUP	DUP Vd.nk, Vs.k[m]	Replicate single Vs element to all elements of Vd			
scalar element	DUP	DUP Vd.nk, Scl	Replicate scalar Scl to all elements of Vd (S=lsbits of $\{X,W\}$)			
Insert vector element	INS	<pre>INS Vd.k[i], Vs.r[j]</pre>	Copy element r[j] of Vs to element k[i] of Vd			
Insert vector element scalar element Extract narrow	INS	INS Vd.k[i], Scl	Copy scalar Scl to element k[i] of Vd (S=lsbits of {X,W})			
Extract narrow	XTN	XTN Vd.nk, Vs.mj	$dim(j) = 2 \times dim(k)$			
for higher lanes	XTN2	XTN2 Vd.nk, Vs.mj	The same, but using the most significant lanes of Vd			
Note: 64-bit scalar can only be used with 64-bit lanes, 32-bit scalar can be used with 32/16/8-bit lanes						
Signed move to scalar register	SMOV	SMOV Rd, Vn.T[i]	Copy vector element to register, sign extended (dim R > dim T)			
Unsigned	UMOV	UMOV Rd, Vn.T[i]	Copy vector element to register, unsigned (dim R >= dim T)			
Signed long (add as example)	SADDL	SADDL Vd.nk, Vs.nj, Vr.np	dim(k) = 2 x dim(j,p) (ex: SADDL V0.2D,V1.2S,V2.2S)			
for higher lanes	SADDL2	SADDL2 Vd.nk, Vs.nj, Vr.np	The same, but using the most significant lanes of Vs and Vr			
بر. for wide operands	SADDW	SADDW Vd.nk, Vs.nj, Vr.np	$dim(k,j) = 2 \times dim(p)$			
for wide operands wide operands, higher lanes	SADDW2	SADDW2 Vd.nk, Vs.nj, Vr.np	The same, but using the most significant lanes of Vr			
Narrow operands (sub as example)	SUBHN	SUBHN Vd.nk, Vs.nj, Vr.np	$dim(j,p) = 2 \times dim(k)$			
	ADDP	ADDP Vd.nk, Vs.nj, Vr.np	Operate adjacent register pairs			
Shift element left	SHL	SHL Vd.nk, Vs.nj, #imm	Shift left each vector element #imm bits			
Paired (ADD as example) Shift element left Signed shift right unsigned	SSHR	SSHR Vd.nk, Vs.nj, #imm	Shift right each vector element, sign extended, #imm bits			
unsigned	USHR	USHR Vd.nk, Vs.nj, #imm	The same but unsigned			
Bit select Reverse elements	BSL	BSL Vd.nk, Vs.nj, Vr.np	Select bits from Vs or Vr depending on bits of Vd (1:Vs, 0:Vr)			
Reverse elements	REV64	REV64 Vd.nk, Vs.nj	Reverse elements in 64-bit doublewords			
Other arithmetic instructions: ABS, MUL, NEG, SMAX, SUB, UMIN, FADD, etc. adopt a vector syntax and behaviour Other logic instructions: AND, BIC, EOR, NOT, ORN, ORR, REV32, REV16, etc. do the same Format conversions from/to floating point adopt a vector behaviour: UCVTF, SCVTF, FCVTNU, FCVTNS (ex: UCVTF V2.4S, V1.4S)						
Add across lanes	ADDV	ADDV Scl, Vs.nk	Add all elements of Vs into a scalar (ex: ADDV S0, V2.4S)			
Signed long add across lanes	SADDLV	SADDLV Scl, Vs.nk	The same but dim(Scl) larger than k (ex: SADDLV D0, V2.4S)			
Signed long add across lanes Signed maximum across lanes minimum	SMAXV	SMAXV Scl, Vs.nk	Maximum goes to scalar Scl			
minimum minimum	SMINV	SMINV Scl, Vs.nk	Minimum goes to scalar Scl			
Notes: prefix {U,S,F} defines data type (ex: FMINV finds the minimum element of an FP vector) FP add across lanes is illegal						
Compare bitwise vector	CMcc	CMcc Vd.nk, Vn.nj, Vm.np	if true Vd.k[i]=-1 (all ones) else Vd.k[i]=0			
with zero	CMcc	CMcc Vd.nk, Vn.nj, #0	Compare vector with zero cc=default conditions+{LE,LT}			
FP compare vector	FCMcc	FCMcc Vd.nk, Vn.nj, Vm.np	The same, but for vectors of FP elements			
Notes: default conditions cc={EQ,GE,GT,HS,HI} conditions {LS,LE,LO,LT} are achieved by reversing the operands and using the opposite condition Flags NZCV are not afected						