DM-IMECC-UNICAMP - Cálculo III - MA311 - T. Z
Prof. Marcelo M. Santos - 1a. prova, 13/09/2010

Aluno: ______ RA: _____
Assinatura (idêntica à do RG): _____

Observações: Tempo de prova: 100min. Justifique sucintamente todas as suas afirmações. É proibido o uso de qualquer equipamento eletrônico; em particular do celular ou calculadora. Desligue o celular! Não destaque o grampo da prova. Cada questão vale 2,0 pontos.

- 1. a) (1,0 ponto) Resolva a equação $y' + \frac{1-2x}{x}y = e^{2x}$.
- **b)** (1,0 ponto) Sem resolver o problema, determine o intervalo dado pelo Teorema de Existência e Unicidade (TEU) no qual a solução do PVI

$$(\ln x)y' + y = \cot gx, \quad y(2) = 3$$

está definida. Não se esqueça de justificar suas afirmações.

- **2.** a) (1,0 ponto) Resolva a equação $\frac{dy}{dx} = \frac{x^2}{1+y^2}$.
- b) (1,0 ponto) Mostre que a equação $ydx + (2xy e^{-2y})dy = 0$ não é exata e determine um fator integrante.
- 3. a) (1,0 ponto) Resolva a equação homogênea y''' + y' = 0.
 - b) (0,5 pontos) Dê a forma de uma solução particular da equação

$$y''' + y' = \cos x$$

que pode ser determinada pelo método dos coeficientes indeterminados.

- c) (0,5 pontos) Determine uma solução particular desta equação.
- **4. a)** (1,0 ponto) Resolva a equação de Euler $x^2y'' + 3xy' + y = 0, x > 0.$
- b) (1,0 ponto) Transforme esta equação numa equação com coeficientes constantes fazendo a mudança de variável $x = e^z$ (ou $z = \ln x$).
- **5. a)** (1,0 ponto) Verifique que $y_1 = e^x$ é uma solução da equação xy'' (x+N)y' + Ny = 0, qualquer que seja $N \in \mathbb{R}$. Para N = 1, determine outra solução y_2 tal que $\{y_1, y_2\}$ seja um conjunto fundamental de soluções, pelo método de redução de ordem ("variação do parâmetro").
- b) (1,0 ponto) Sejam y_1 e v funções diferenciáveis (não particularizar) num intervalo aberto não-degenerado I tais que $y_1(x_0) \neq 0$ e $v'(x_0) \neq 0$,

para algum $x_0 \in I$. Mostre que y_1 e $y_2 = vy_1$ são linearmente independentes em I, calculando o Wronskiano $W(y_1, y_2)$. Mostre também que se y_1 e $y_2 = vy_1$ são soluções de uma EDO linear homogênea de segunda ordem y''+p(x)y'+q(x)y=0 (qualquer), com os coeficientes p(x), q(x) sendo funções contínuas em I, e se y_1 não se anula em I, então $v'(x) = \frac{y_1(x_0)^2 v'(x_0)}{y_1(x)^2} \mathrm{e}^{-\int_{x_0}^x p(s) ds}, \quad x \in I.$

$$v'(x) = \frac{y_1(x_0)^2 v'(x_0)}{y_1(x)^2} e^{-\int_{x_0}^x p(s)ds}, \ x \in I.$$

BOA PROVA!

Gabarito

1. a) (1,0 ponto) Resolva a equação $y' + \frac{1-2x}{x}y = e^{2x}$.

Fator integrante:

$$\mu = e^{\int \frac{1-2x}{x} dx} = e^{\int (\frac{1}{x}-2) dx}$$

$$e^{\ln|x|-2x} = e^{\ln|x|} e^{-2x}$$

$$|x|e^{-2x} = \pm xe^{-2x}$$

0,5 pontos até aqui.

Tomando $\mu = xe^{-2x}$ (se μ é um fator integrante então $c\mu$ também é, para qualquer constante c) e mutiplicando a equação por μ , temos:

$$(xe^{-2x}y)' = e^{2x}xe^{-2x} = x$$

$$xe^{-2x}y = \int x dx + c = \frac{x^2}{2} + c$$

$$y = \frac{x}{2}e^{2x} + \frac{c}{x}e^{2x}$$

+0.5

b) (1,0 ponto) Sem resolver o problema, determine o intervalo dado pelo Teorema de Existência e Unicidade (TEU) no qual a solução do PVI

$$(\ln x)y' + y = \cot gx, \quad y(2) = 3$$

está definida.

A equação é linear 0,3 pontos e os coeficientes $\ln x$ e $\cot x = \cos x / \sin x$ são funções contínuas, respectivamente, nos intervalos $(0, \infty)$ e $(0, \pi)$, contendo o ponto $x_0 = 2$. Além disso, a função $\ln x$ (coeficiente de y') não se anula no intervalo $(1, \pi)$, ainda contendo o ponto $x_0 = 2$. Então, pelo T.E.U., concluimos que a solução do PVI está definida no intervalo $(1, \pi)$. +0,3

2. a) (1,0 ponto) Resolva a equação
$$\frac{dy}{dx} = \frac{x^2}{1+y^2}$$
.

A equação é separável. De fato, podemos escrevê-la como

$$(1+y^2)dy = x^2 dx$$

0,5

logo, a sua solução é dada (implicitamente) por

$$\int (1+y^2)dy = \int x^2 dx$$

+0,3

Resolvendo as integrais, obtemos

$$y + \frac{y^3}{3} = \frac{x^3}{3} + c.$$

+0,2

b) (1,0 ponto) Mostre que a equação $ydx + (2xy - e^{-2y})dy = 0$ não é exata e determine um fator integrante.

$$M = y$$
, $N = 2xy - e^{-2y}$.

$$M_y = 1, \quad N_x = 2y$$

logo $M_y \neq N_x$ para todo (x, y) no plano (\mathbb{R}^2) tal $y \neq 1/2$. Então, por um Teorema visto em aula (no livro-texto), a equação não é exata (em nenhum retângulo aberto do plano).

0,4

Fator integrante: (equação do fator integrante μ :

$$(\mu M)_y = (\mu N)_x, \quad M\mu_y - N\mu_x + (M_y - N_x)\mu = 0;$$

 $\mu = \mu(y) \Rightarrow \quad M\mu' + (M_y - N_x)\mu = 0)$

$$\frac{M_y - N_x}{M} = \frac{1 - 2y}{y}$$

é uma função dependente apenas da variável y. Então a equação admite um fator integrante $\mu = \mu(y)$ solução da edo de primeira ordem

$$\mu' + \frac{1 - 2y}{y}\mu = 0.$$

+ 0.3

Resolvendo esta edo (v. questão 1a)), obtemos que $\mu = \frac{1}{y}e^{2y}$ é um fator integrante da equação $ydx + (2xy - e^{-2y})dy = 0$. + 0.3

3. a) (1,0 ponto) Resolva a equação homogênea y''' + y' = 0.

Equação característica: $r^3 + r = 0$, $r(r^2 + 1) = 0$; raízes: $0, \pm i$ - todas com multiplicidade 1.

0,5

$$y = c_1 + c_2 \cos x + c_3 \sin x$$

+0,5

b) (0,5 pontos) $D\hat{e}$ a forma de uma solução particular da equação $y''' + y' = \cos x$

que pode ser determinada pelo método dos coeficientes indeterminados.

$$\cos x \equiv P_m(x) e^{\alpha x} \cos \beta x$$

onde $P_m(x) = 1$, m = 0 (polinômio de grau m = 0 - uma constante), $\alpha = 0, \beta = 1$. $\alpha + i\beta = i$ é uma raiz de multiplicidade 1 da equação característica (v. item a)).

0,25

Logo, uma solução particular dada pelo método dos coeficientes indeterminados é

$$Y = x^{s}(Q_0(x)\cos x + R_0(x)\sin x)$$

onde s=1 e Q_0,R_0 são polinômios de grau 0 (ou seja, constantes) i.e.

$$Y = x(a\cos x + b\mathrm{sen}x)$$

onde a e b são constantes (a serem determinadas por substituição na equação). + **0,25**

c) (0,5 pontos) Determine uma solução particular desta equação.

Pelo método dos coeficientes indeterminados¹:

$$Y' = (a\cos x + b\text{sen}) + x(-a\text{sen}x + b\text{cox}x)$$

$$Y'' = 2(-a\text{sen}x + b\text{cox}) + x(-a\text{cox}x - b\text{sen}x)$$

$$Y''' = 3(-a\text{sen}x - b\text{cox}) + x(a\text{sen}x - b\text{cox}x)$$

¹Pelo método da variação dos parâmetros a resolução fica mais longa.

Daí, $Y''' + Y' = -2(a \sin x + b \cos x)$; substituindo na equação, obtemos

$$-2a\mathrm{sen}x - 2b\mathrm{cox} = \cos x$$
.

Como as funções seno e cosseno são linearmente independentes, segue-se que -2a=1 e -2b=0, i.e. a=-1/2 e b=0. Então uma solução particular é

$$Y = -\frac{1}{2}x\cos x.$$

+0,25

4. a) (1,0 ponto) Resolva a equação de Euler $x^2y'' + 3xy' + y = 0, x > 0.$

Equação indicial (substituindo $y=x^r$ na equação, obtemos $r(r-1)x^r+3rx^r+x^r=0$): $r(r-1)+3r+1=0,\ r^2+2r+1=0,\ (r+1)^2=0$;

0,5

raízes: r = -1, com multiplicidade 2. Logo,

$$y = c_1 x^{-1} + c_2 x^{-1} \ln x.$$

+0.5

b) (1,0 ponto) Transforme esta equação numa equação com coeficientes constantes fazendo a mudança de variável $x = e^z$ (ou $z = \ln x$).

$$y' \equiv \frac{dy}{dx} =$$
 (pela Regra da Cadeia) $\frac{dy}{dz}\frac{dz}{dx} = \frac{1}{x}\frac{dy}{dz} + \mathbf{0,2}$

$$y'' = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \left(\frac{1}{x} \frac{dy}{dz} \right) = -\frac{1}{x^2} \frac{dy}{dz} + \frac{1}{x} \frac{d}{dx} \frac{dy}{dz}$$
$$= -\frac{1}{x^2} \frac{dy}{dz} + \frac{1}{x} \left(\frac{d}{dz} \frac{dy}{dz} \right) \frac{dz}{dx}$$
$$= -\frac{1}{x^2} \frac{dy}{dz} + \frac{1}{x^2} \frac{d^2y}{dz^2}$$

+ 0,3

Substituindo estas expressões na equação, obtemos

$$x^{2} \left(-\frac{1}{x^{2}} \frac{dy}{dz} + \frac{1}{x^{2}} \frac{d^{2}y}{dz^{2}} \right) + 3x \left(\frac{1}{x} \frac{dy}{dz} \right) + y = 0$$

logo,

$$\frac{d^2y}{dz^2} + 2\frac{dy}{dz} + y = 0.$$

5. a) (1,0 ponto) Verifique que $y_1 = e^x$ é uma solução da equação xy'' - (x+N)y' + Ny = 0, qualquer que seja $N \in \mathbb{R}$. Para N = 1, determine outra solução y_2 tal que $\{y_1, y_2\}$ seja um conjunto fundamental de soluções, pelo método de redução de ordem ("variação do parâmetro").

 $y_1 = y_1' = y_2'' = e^x$; substituindo no lado esquerdo da equação, temos $xe^x - (x+N)e^x + Ne^x = (x-x-N+N)e^x = 0,$

logo y_1 é uma solução.

0,2

 $y_2 = vy_1 = ve^x$ $(cy_1 \text{ \'e solução para qualquer constante } c; v \text{ \'e a variação do "parâmetro" } c)$ $y_2' = v'e^x + ve^x$ $y_2'' = v''e^x + 2v'e^x + ve^x;$

substituindo na equação, obtemos

$$x (v''e^{x} + 2v'e^{x} + ve^{x}) - (x+1) (v'e^{x} + ve^{x}) + ve^{x} = 0$$

$$x(v'' + 2v' + v) - (x+1)(v' + v) + v = 0$$

$$xv'' + (x-1)v' = 0$$

$$v'' + (1 - \frac{1}{x})v' = 0$$

(equação de ordem reduzida/de ordem 1 para v')

+0,3

(fator integrante: $e^{\int (1-\frac{1}{x})} dx = e^{x-\ln x} = xe^x$)

$$(xe^{x}v')' = 0$$

$$xe^{x}v' = c_{1}$$

$$v' = c_{1}xe^{-x}$$

$$v = c_{1} \int xe^{-x}dx \ (\equiv \int udv)$$

$$v = c_{1}(-xe^{-x} + \int e^{-x}dx) = -c_{1}xe^{-x} - c_{1}e^{-x} + c_{2}$$

$$v = xe^{-x} + e^{-x}$$

+0,3

$$y_2 = (xe^{-x} + e^{-x})e^x$$
$$y_2 = 1 + x$$

b) (1,0 ponto) Sejam y₁ e v funções diferenciáveis (não particularizar) num intervalo aberto não-degenerado I tais que $y_1(x_0) \neq 0$ e $v'(x_0) \neq 0$, para algum $x_0 \in I$. Mostre que y_1 e $y_2 = vy_1$ são linearmente independentes em I, calculando o Wronskiano $W(y_1, y_2)$. Mostre também que se y_1 $e y_2 = vy_1$ são soluções de uma EDO linear homogênea de segunda ordem y'' + p(x)y' + q(x)y = 0 (qualquer), com os coeficientes p(x), q(x) sendo funções contínuas em I, e se y_1 não se anula em I, então $v'(x) = \frac{y_1(x_0)^2 v'(x_0)}{y_1(x)^2} e^{-\int_{x_0}^x p(s) ds}, \quad x \in I.$

$$v'(x) = \frac{y_1(x_0)^2 v'(x_0)}{y_1(x)^2} e^{-\int_{x_0}^x p(s)ds}, \quad x \in I.$$

$$W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} y_1 & vy_1 \\ y'_1 & v'y_1 + vy'_1 \end{vmatrix}$$
$$= v'y_1^2$$

Daí, temos que $W(y_1, y_2)(x_0) = v'(x_0)y_1(x_0)^2 \neq 0$, pois por hipótese $v'(x_0) \neq 0$ $0 \in y_1(x_0) \neq 0$, logo as funções são linearmente independentes (v. Teorema dado em aula e no livro-texto).

0.5

Se y_1 e $y_2 = vy_1$ são soluções de uma EDO linear homogênea de segunda ordem y'' + p(x)y' + q(x)y = 0, com os coeficientes p(x), q(x) sendo funções contínuas em I, então $W(y_1,y_2)=c\mathrm{e}^{-\int p(x)dx}$, para alguma constante c e qualquer primitiva $\int p(x)dx$ de p (fórmula de Abel).

Tomando a primitiva $\int_{x_0}^x p(s)ds$, ficamos com $W(y_1,y_2) = ce^{-\int_{x_0}^x p(s)ds}$ e $c = W(y_1,y_2)(x_0)$. Mas $W(y_1,y_2) = ce^{-\int_{x_0}^x p(s)ds}$ $W(y_1, y_2)(x_0)$. Mas $W(y_1, y_2) = v'y_1^2$, então

$$v'(x)y_1(x)^2 = v'(x_0)y_1(x_0)^2 e^{-\int_{x_0}^x p(s)ds},$$

logo,

$$v'(x) = \frac{v'(x_0)y_1(x_0)^2}{y_1(x)^2} e^{-\int_{x_0}^x p(s)ds}.$$

+ 0.3