CORRECTION TO "ZERO-ENTROPY AFFINE MAPS ON HOMOGENEOUS SPACES"

DAVE WITTE

ABSTRACT. Proposition 6.4 of the author's paper [American Journal of Mathematics 109 (1987) 927–961] is incorrect. This invalid proposition was used in the proof of Corollary 6.5, so we provide a new proof of the latter result.

Professor A. Starkov has pointed out an error in the proof of Proposition 6.4 of the author's paper [American Journal of Mathematics 109 (1987) 927–961]. Contrary to the assertion near the end of the first paragraph, it may not be possible to choose T^* to be a subgroup of $\langle g \rangle^*$. (The problem is that $\langle g \rangle^*$ may not contain a maximal torus of $(\operatorname{Rad} G)^*$, because the maximal torus of $\langle g \rangle^*$ may be diagonally embedded in LEVI* \times T^* .) The proposition cannot be salvaged, so the claim must be retracted.

Fortunately, Proposition 6.4 was used only in the proof of Corollary 6.5, for which we can give a direct proof. As it is no longer a corollary, we now reclassify this as a proposition.

Proposition 6.5. Suppose g is an ergodic translation on a locally faithful finite-volume homogeneous space $\Gamma \backslash G$ of a Lie group G, and assume $G = \Gamma G^{\circ} = G^{\circ} \langle g \rangle$. If g has zero entropy, then, for some nonzero power g^{n} of g, there is a finite-volume homogeneous space $\Gamma' \backslash G'$ of some Lie group G' whose radical is nilpotent, and a continuous map $\psi \colon \Gamma' \backslash G' \to \Gamma \backslash G$ that is affine for some translation $g' \in G'$ via g^{n} . Furthermore, every fiber of ψ is finite.

Proof. Assume for simplicity that G is connected and simply connected. (A remark on the general case follows the proof.) Because g is ergodic, we may assume $\Gamma\langle g \rangle$ is dense in G.

Let G^* be the identity component of the Zariski closure of $\operatorname{Ad} G$ in $\operatorname{Aut}(\mathfrak{G})$, let S^* be a maximal compact torus of the Zariski closure of $\operatorname{Ad}_G\langle g\rangle$, and let L^*T^* be a reductive Levi subgroup of G^* , containing S^* . (So L^* is semisimple and T^* is a maximal torus of $\operatorname{Rad} G^*$ that centralizes L^* . From Prop. 6.2, we know that T^* is compact.) The composition of Ad_G and the projection from G^* onto $T^*/(L^* \cap T^*)$ is a homomorphism, which, because

I would like to thank Alexander Starkov for bringing this error to my attention, and for the gracious manner in which he did so. This research was partially supported by a grant from the National Science Foundation.

G is simply connected, can be lifted to a homomorphism $\pi: G \to T^*$. Define a map $\phi: G \to G \rtimes T^*$ by $x^{\phi} = (x, x^{-\pi})$, where $x^{-\pi} = (x^{-1})^{\pi}$. Notice that

$$(xy)^{\phi} = x^{\phi} \cdot (y^{x^{-\pi}})^{\phi}, \tag{1}$$

for all $x, y \in G$.

The definition of ϕ is based on the nilshadow construction of Auslander and Tolimieri [AT] (or see [W, §4]). In particular, Rad G^{ϕ} is the nilshadow of Rad G, so Rad G^{ϕ} is nilpotent.

Let $\overline{\Gamma}\backslash \overline{G}$ be the faithful version of $\Gamma^{\phi}\backslash G^{\phi}$. More precisely, let $\overline{\Gamma}=\Gamma^{\phi}/N$ and $\overline{G}=G^{\phi}/N$, where N is the largest normal subgroup of G^{ϕ} contained in Γ^{ϕ} . We know Γ^{π} is finite (see Prop. 4.20), so, replacing Γ by a finite-index subgroup, we may assume $\Gamma^{\pi}=e$. This implies that $(\gamma x)^{\phi}=\gamma^{\phi}x^{\phi}$ for all $\gamma\in\Gamma$ and $x\in G$, so ϕ induces a well-defined homeomorphism $\overline{\phi}\colon\Gamma\backslash G\to\overline{\Gamma}\backslash\overline{G}$.

Unfortunately, $\overline{\phi}$ is not affine for g if T^* does not centralize g. We will compensate for the action of T^* by composing with a twisted affine map. Assume for simplicity that $L^* \cap T^* = e$. (Under this assumption, the map $L^* \times T^* \to L^*T^*$ is an isomorphism. In general, it is a finite cover.) Let $S_L^* = (L^* \cap S^*)^\circ$, and let S_Δ^* be a subtorus of S^* that is complementary to S_L^* and contains $S^* \cap T^*$. Let S_\perp^* be the image of S_Δ^* under the projection $L^* \times T^* \to L^*$, and notice that $S_L^* \cap S_\perp^* = e$. Thus, we have

$$S^* = S_L^* \times S_\Delta^* \subset S_L^* \times S_\perp^* \times T^* \subset L^* \times T^*.$$

Because $\Gamma\langle g\rangle$ is dense in G and $\Gamma^{\pi}=e$, we see that S^*_{Δ} finitely covers T^* , via the projection $S^*_{\perp}\times T^*\to T^*$.

Let L be a semisimple Levi subgroup of G with $\operatorname{Ad}_G L = L^*$, and let \overline{L} be the corresponding Levi subgroup of \overline{G} . Since $\operatorname{Rad} \overline{G}$ is nilpotent, and $\overline{\Gamma} \backslash \overline{G}$ is faithful, we know that $Z(\overline{G})$ is compact (see Cor. 4.6), so some compact torus $\overline{S}_{\perp} \subset \overline{L}$ finitely covers S_{\perp}^* , via the map $\operatorname{Ad}_{\overline{G}}$.

By construction, we know that T^* is finitely covered by S_{Δ}^* , so the homomorphism $\pi\colon G\to T^*$ lifts to a homomorphism $G\to S_{\Delta}^*$. By composing this with the projection $S_{\Delta}^*\to S_{\perp}^*$, we obtain a homomorphism $G\to S_{\perp}^*$. Then, since \overline{S}_{\perp} finitely covers S_{\perp}^* , this lifts to a homomorphism $\overline{\pi}\colon G\to \overline{S}_{\perp}$. Note that, from the definition of $\overline{\pi}$, we have $(\mathrm{Ad}_{\overline{G}}(x^{\overline{\pi}}), x^{\pi}) \in S_{\Delta}^*$, for all $x\in G$. Because $S_{\Delta}^*\subset S^*$ is contained in the identity component of the Zariski closure of $\mathrm{Ad}_{G}\langle g\rangle$, which centralizes g, this implies that

$$g^{x^{-\pi}x^{-\overline{\pi}}} = g. (2)$$

Replacing Γ by a finite-index subgroup, we may assume $\Gamma^{\overline{\pi}} = e$; hence $\overline{\pi}$ induces a well-defined map from $\Gamma \backslash G$ to \overline{S}_{\perp} . Thus, we may define a homeomorphism

$$\psi \colon \Gamma \backslash G \to \overline{\Gamma} \backslash \overline{G} \colon x \mapsto x^{\overline{\phi}} \cdot x^{-\overline{\pi}}.$$
 (3)

Then

$$(xg)^{\psi} \stackrel{(3)}{=} (xg)^{\overline{\phi}} \cdot (xg)^{-\overline{\pi}} \stackrel{(1)}{=} (x^{\overline{\phi}} g^{x^{-\pi}\phi}) (x^{-\overline{\pi}} g^{-\overline{\pi}}) \stackrel{(3)}{=} x^{\psi} g^{x^{-\pi} x^{-\overline{\pi}}\phi} g^{-\overline{\pi}} \stackrel{(2)}{=} x^{\psi} g^{\phi} g^{-\overline{\pi}}.$$
 In other words, ψ is affine for g via $g^{\phi} g^{-\overline{\pi}}$.

Remark. If G is not connected, then, because $G = G^{\circ}\langle g \rangle$, there is no harm in assuming $G = G^{\circ} \rtimes \langle g \rangle$, and we may assume G° is simply connected.

Let G^* and G^- be the identity components of the Zariski closures of $\operatorname{Ad} G$ and $\operatorname{Ad} G^{\circ}$, respectively. By replacing g with a power g^n , we may assume $\operatorname{Ad} g \in G^*$. Let S^+ be a maximal compact torus of the Zariski closure of $\operatorname{Ad}_G\langle g \rangle$, and let $S^* = (S^+ \cap G^-)^{\circ}$. Let L^*T^+ be a reductive Levi subgroup of G^* , containing S^+ , and define $T^* = T^+ \cap G^-$.

Let T_LT^+ be a maximal compact torus in G^* , containing S^+ (where T_L is a compact torus in L^*), so T_LT^* is a maximal compact torus in G^- . Then $T_LT^*S^+ = T_LT^+$, so there is a subtorus Z of S^+ that is almost complementary to T_LT^* in T_LT^+ . Assume for simplicity that $ZT_L \cap T^* = e$, so there is a natural projection $G^* \to T^*$. Then we may define a homomorphism $\pi: G \to T^*$ by composing Ad_G with this projection.

We now construct a semidirect product $G^* \rtimes T^*$. Let

$$H = \frac{G^{\circ} \rtimes G^{*}}{\{(x^{-1}, \operatorname{Ad} x) \mid x \in [G, G]\}}.$$

We may assume $\operatorname{Ad} g^n \not\in \operatorname{Ad} G^{\circ}$, for all $n \neq 0$, for otherwise we could assume G is connected. Therefore, $G \cong G^{\circ}(\operatorname{Ad} g)$ injects into H. Because

$$[\operatorname{Ad} g, T^*] \subset [G^*, G^*] = \operatorname{Ad}[G, G],$$

we see that $T^* \subset N_H(G)$. Therefore, T^* is a group of automorphisms of G, so we may form the semidirect product $G \times T^*$.

With these definitions of G^* , T^* , S^* , L^* , π , and $G^* \rtimes T^*$ in hand, we may proceed essentially as in the proof above.

References

[AT] L. Auslander, R. Tolimieri: Splitting theorems and the structure of solvmanifolds. *Ann. Math.* **92** (1970) 164–173

[W] D. Witte: Superrigidity of lattices in solvable Lie groups. *Invent. Math.* **122** (1995) 147–193

Department of Mathematics, Oklahoma State University, Stillwater, OK $74078\,$

E-mail address: dwitte@math.okstate.edu