Essentials of Calculus

Homework 3.3 The chain rule

1. Suppose f and g have values given by the following table

\boldsymbol{x}	1	2	3	4	5
f(x)	5	3	4	9	1
f'(x)	5	-2	3	2	9
g(x)	4	5	1	2	4
g'(x)	-4	4	-2	3	2

and let h(x) = f(g(x)), h(x) = g(f(x)). Evaluate the following expressions:

a) h'(1)

Numeric answer: h'(1) = -8

b) h'(2)

Numeric answer: h'(2) = 36

c) h'(3)

Numeric answer: h'(3) = -10

d) k'(1)

Numeric answer: k'(1) = 10

e) k'(2)

Numeric answer: k'(2) = 4

f) k'(3)

Numeric answer: k'(3) = 9

2. Find f'(x) for the following f(x):

a)
$$f(x) = (x^2 + 1)^5$$

Numeric answer: $f'(x) = 10x(x^2 + 1)^4$

b)
$$f(x) = \sqrt{2x + 5}$$

Numeric answer: $f'(x) = (2x + 5)^{-1/2}$

c)
$$f(x) = \frac{1}{(2x^2-2)^3}$$

Numeric answer: $f'(x) = -12x(2x^2 - 2)^{-4}$

$$d) f(x) = e^{x^2}$$

Numeric answer: $f'(x) = 2xe^{x^2}$

e)
$$f(x) = e^{2x-4}$$

Numeric answer: $f'(x) = 2e^{2x-4}$

f)
$$f(x) = e^{\sqrt{x}}$$

Numeric answer: $f'(x) = \frac{1}{2}x^{-1/2}e^{\sqrt{x}}$

g)
$$f(x) = \ln(x^2 - x)$$

Numeric answer: $f'(x) = \frac{2x-1}{x^2-x}$

h)
$$f(x) = \ln(2x + 5)$$

Numeric answer: $f'(x) = \frac{2}{2x+5}$

i)
$$f(x) = \frac{3}{\sqrt{x+2}} - 4e^{x^4}$$

Numeric answer: $f'(x) = \frac{-3}{2}(x+2)^{-3/2} - 16x^3e^{x^4}$

j)
$$f(x) = 3(x^2 + 3x - 5)^3 + 2e^{x^2 - 4} - 5\ln(2x^3 + 1)$$

Numeric answer: $f'(x) = 9(2x+3)(x^2+3x-5)^2 + 4xe^{x^2-4} - \frac{30x}{2x^3+1}$

k)
$$f(x) = 5e^{2x-1} - 4\ln(10x^3)$$

Numeric answer: $f'(x) = 10e^{2x-1} - \frac{120x^2}{10x^3}$

1)
$$f(x) = 5x^3 + 7 - 3e^{x^3}$$

Numeric answer: $f'(x) = 15x^2 - 9x^2e^{x^3}$

m)
$$f(x) = \sqrt{x} + 2\sqrt{x^2 + 1} + 3\sqrt{e^x - 1}$$

Numeric answer: $f'(x) = \frac{1}{2}x^{-1/2} + 2x(x^2 + 1)^{-1/2} + \frac{3}{2}e^x(e^x - 1)^{-1/2}$

3. Let $f(x) = x^2 + 2x + 3e^{x-2}$. Find an equation for the tangent line to y = f(x) at x = 2.

Numeric answer: The tangent line is y-11 = 9(x-4)

4. Let $f(x) = \frac{2}{x^2+1} + 2$. Find an equation for the tangent line to y = f(x) at x = 1.

Numeric answer: The tangent line is y-11 = 9(x-4)

5. In t seconds, an object will be $f(t) = 5 + 2(t^2 + t)^4$ feet away. How fast will it be going in t = 2 seconds?

Numeric answer: The velocity will be 8640 feet/sec.

6. The cost function for a company making q boxes of crayons is $C(q) = 0.01q^2 + 20 \ln(2q+1)$ dollars. What is the marginal cost at q = 10 boxes?

Numeric answer: MC(10) = 2.10 dollars/box.

7. The cost function for a company packaging q gallons of spring water is $C(q) = 100 + 0.05\sqrt{q^4 + q}$ dollars. What is the marginal cost at q = 5 gallons?