Egzamin maj 2007 r. Arkusz I, zadanie 3.

W tabeli podany jest algorytm, który pozwala obliczyć wartość pewnej sumy dla danej dodatniej liczby całkowitej n.

1	p1←1
2	suma←0
3	dla k←1…n wykonuj
4	p1←p1*n
5	p2 ←1
6	dla i←1…n wykonuj
7	p2←p2*k
8	suma←suma+p1+p2

- 3.1. Podaj, jaką wartość przyjmie zmienna p1 w wyniku działania powyższego algorytmu dla n=3.
- 3.2. Podaj, jaką wartość przyjmie zmienna p2 w wyniku działania powyższego algorytmu dla n=3.
- 3.3. Podaj, jaką wartość przyjmie zmienna *suma* w wyniku działania powyższego algorytmu dla n = 3.
- 3.4. Zakreślając właściwą odpowiedź, zaznacz, jaką wartość przyjmie zmienna *suma* w wyniku działania powyższego algorytmu:

a)
$$\sum_{k=1}^{n} \left(k^{k} + n^{2} \right)$$

b)
$$\sum_{k=1}^{n} \left(n^{n} + k^{n} \right)$$

$$c) \sum_{i=1}^{k} \left(n^{k} + k^{2} \right)$$

d)
$$\sum_{k=1}^{n} \left(n^{k} + k^{n} \right)$$

e)
$$\sum_{k=1}^{n} \left(n^{n} + k^{k} \right)$$

gdzie
$$\sum_{k=1}^{n} a_k = a_1 + a_2 + ... + a_n$$

- 3.5. Zakreślając właściwą odpowiedź, podaj, ile wynosi liczba operacji arytmetycznych (dodawań i mnożeń) wykonywanych w czasie realizacji przedstawionego algorytmu.
 - a) 3n
 - b) $n^2 + 3n$
 - c) $2^{n}+n^{2}$
 - d) $n^{n}+2^{n}$
 - e) $n!+2^n$
- 3.6. Zmień wiersze 6. i 7. w rozważanym algorytmie w taki sposób, aby po jego wykonaniu wartością zmiennej *suma* było $\sum_{k=1}^{n} (n^k + k!)$, gdzie $k! = 1 \cdot 2 \cdot ... \cdot k$.