Session 3:

Stochastic GD

a= 2 con local min con Ensil Ju ~ Jus

Random - Levy L' march agreem agreem agreem of the service of the

for example. $\chi_{new} = 0.999 \chi$

ماسے مر مر تواسم اسریم حود را ماں دریس سم = م min سیتے دالا

Rosenbruek function su su au au i 20 sa ini

f(x,y)= (a-x)2 + b(y-x2)2

(x*,y*) = (0, 02)

if putting a = 1 b = 700 global min = 0 (1,1)

es min Use de 1 s n Zu de 500 s de 2000

 $f(\vec{x}) = \sum_{i=1}^{N} \left[-100 \left(x_{i+1} - x_{i}^{2}\right)^{2} + \left(1 - x_{i}^{2}\right)^{2}\right]$

if N=3

1 min - (7,7,1) = Global

Global - (4,1...,1)

if 4(N < 7 min - lead - (-1,1,...,1)

was Jus a Grand truth wis a pri in
اس آمر به عنان Grone truth ی عمل می سر ار ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر
GD steps:
n = Iteration = epochs ~ 100
- a ~ 0.007
- u = Momentum u ~ 0.9
Unsumble start = (A, ,B) ~ Random _ minnimum est
Noise Amplitude = 2 ~ N(0,1)
でん(ず) - でん(ず) + ぴて
-1 \sim (\times) $+6$ $($
Eix stochastic GD
.)
- Moise deeny ~ 0.99 - Noise curs
Code 1 Leeture 3 : 3 5 mg Usi N.
سا ترون Min در عمل RB بالسعاده از GD.

دومین دوس کی کی کون که مربور از GD است.
Particle Swarm Opt (PSO) (boy to amplex system) Viscele Model

Viscele Model

July 2-1

Viscele Model

July 2-2 * حيد بريده عا به هم حسر مي (هدر اي و حدر او ديديد عام عسر النجاب له عد المعاد عمر سی مها مه عدم مدری ما دسری برای 2 بعد در مدل وسی دارانم. - ۲ -معان بر الى دره تر مراسم بر بر مراسم بر مراسم الم $\frac{\partial_{i}(t+\Delta t)}{\partial_{i}(t+\Delta t)} = \frac{\partial_{i}}{\partial_{i}} \frac{\partial_{i}(t)}{\partial_{i}(t)}$ $\frac{\partial_{i}(t+\Delta t)}{\partial_{i}(t+\Delta t)} = \frac{\partial_{i}}{\partial_{i}(t+\Delta t)}$ $\frac{\partial_{i}(t+\Delta t)}{\partial_{i}(t+\Delta t)}$ $\frac{\partial_{i}(t+\Delta t)}{\partial$ می حل می می در می در برد می در برد می در می در می دوند می دون tolerance or iteration for stopping fune

- Inertia wieght : w

- C1, C2 - Cognitive & social factors

r, r Random

step 2:

- Initial Positions:

 $\overline{X}_{i} = (X_{ix}, X_{iy})$

- Velocity.

 $\frac{1}{N_i} = (N_{ix}, N_{iy})$

- Personed Best

P . x .

_Global Best

G , = X ;

= > in each step => f(x,y) -o min

Litness cost function in Biology is

8 mg upolate min $v_{x}^{t+1} = w v_{ix}^{t} + c_{1} r_{i}^{t} \left(P_{ix} - x_{ix} \right)$ $+ C_2 r_2 (G_{ix} - X_{ix})$ me update 1600 de pus de y cer 1 inte $\begin{cases} x^{t+1} = x^{t} + v^{t+1} \\ x^{ix} = x^{t} + v^{ix} \end{cases}$ $\begin{cases} x^{t+1} = x^{t} + v^{t+1} \\ x^{iy} = x^{iy} + v^{iy} \end{cases}$ Code 2 leeture 3.

(Som in post of the page - PSO Un رای مقالہ جارے دوں PSO میل قبل ترانت ان PSO رائع تر است رداس درس Opt از رُسَال المره.