Tecnología Electrónica Ingeniería en Electrónica

Universidad Tecnológica Nacional Facultad Regional Córdoba

Unidad 1

- CONFIABILIDAD ANALISIS DE FALLA
 - OBJETIVO
 - Predecir estadísticamente cual será el comportamiento de las partes de un dispositivo o sistema electrónico utilizando para el análisis las condiciones ambientales y el campo de aplicación.

Confiabilidad

- Resultado del Análisis
 - Determinar la vida útil
 - Determinar los eslabones débiles del sistema en la etapa de diseño
 - Cambio de los mismos
 - Cambio en las condiciones de operación
 - Mejorar la percepción del usuario al presentar una vida útil mas alta.
 - Reducir la logística aplicada a las reparaciones
 - Evitar fallas que puedan ser catastróficas en aplicaciones críticas.

Etapas de Análisis

- Calculo del tiempo medio entre fallas MTBF (Medium Time Between Failures)
 - Usamos como referencia para el cálculo el MIL-HDBK-217F
 - Calculo de la confiabilidad de cada componente o grupo de ellos
 - Sistema de cálculo por la Cuenta de partes
- Modos de fallas y análisis crítico
- Análisis preliminar de peligro
 Análisis de falla peligrosa

Calculo de la confiabilidad de un componente

$$\lambda_p = \lambda_b * \pi T * \pi A * \pi R * \pi S * \pi C * \pi Q * \pi E \left[\frac{fallas}{10^6 horas} \right]$$

 λ_p Cantidad de Fallas en un millon de horas

 λ_b Tasa base de fallas referida a condiciones eléctricas y de temperatura

 πT Modificador segun temperaturade juntura del dispositiv o

πA Dependede com oserá utilizado el componente

 πR Dependedel nivel de potencia disipada respectodel máxim oque puede disipar

 π S Factor de stress entre voltajes aplicados y los máximos permitidos

 πC Dependedel métodode contruccion

 πQ Factor de calidad del componente

πE Factor de aplicación con respectoal ambientede aplicación

▶ EJEMPLO – 1

- Transistor de Potencia en conmutación
- Ciclo de trabajo 30%
- Potencia a disipar 30W
- Potencia Máxima 100W
- Aplicación en automóvil
- Temperatura de trabajo 50°C
- Temperatura de Juntura 90°C
- Vceo 200V
- Vceo aplicada 100V
- Frecuencia de Conmutación 100Khz

▶ EJEMPLO – 2

- Transistor de Potencia en conmutación
- Ciclo de trabajo 30%
- Potencia a disipar 30W
- Potencia Máxima 50W
- Aplicación en automóvil
- Temperatura de trabajo 50°C
- Temperatura de Juntura 120°C
- Vceo 150V
- Vceo aplicada 100V
- Frecuencia de Conmutación 100Khz

	Factor	EJEMPLO 1	EJEMPLO 2
Transistor	λb	0.00074	0.00074
Temp. de Juntura	πΤ	3.6	5.6
Aplicación	πΑ	0.70	0.70
Potencia	πR	5.5	5.5
Relacion VCEo	πS	0.29	0.39
Factor de Calidad	πQ	5.5	5.5
Ambiente	πΕ	9.0	9.0
TOTAL	λpt	0.147230	0.30799
horas		6.802.721	3.247.807

$$\lambda_{PT} = \lambda_b * \pi T * \pi A * \pi R * \pi S * \pi Q * \pi E \left[\frac{fallas}{10^6 horas} \right]$$

Base Failure Rate - λ_b

Туре	λ _b
NPN and PNP	.00074

Temperature Factor - π_T

T _J (°C)	π_{T}	T _J (°C)	π _T
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1.0 1.1 1.3 1.4 1.6 1.7 1.9 2.1 2.3 2.5 2.8 3.0 3.3 3.6 3.9 4.2	105 110 115 120 125 130 135 140 145 150 156 160 165 170 175	4.5 4.8 5.2 5.6 5.9 6.3 6.8 7.2 7.7 8.1 8.6 9.1 9.7

$$\pi_{T} = \exp\left(-2114\left(\frac{1}{T_{J}+273}-\frac{1}{298}\right)\right)$$

T_J = Junction Temperature (°C)

	Factor	EJEMPLO 1	EJEMPLO 2
Transistor	λb	0.00074	0.00074
Temp. de Juntura	πΤ	3.6	5.6
Aplicación	πΑ	0.70	0.70
Potencia	πR	5.5	5.5
Relacion VCEo	πS	0.29	0.39
Factor de Calidad	πQ	5.5	5.5
Ambiente	πΕ	9.0	9.0
TOTAL	λpt	0.147230	0.30799
horas		6.802.721	3.247.807

$\lambda_{PT} = \lambda_b * \pi T * \pi A * \pi R * \pi S * \pi Q * \pi E \left[\frac{fallas}{10^6 horas} \right]$

Application Factor - π_A

Application	π _A
Linear Amplification	1.5
Switching	.70

Power Rating Factor - π_R

Rated Power (P _r , Watts)	π _R
P _r ≤ .1	.43
P _r = .5	.77
P _r = 1.0	1.0
P _r = 5.0	1.8
P _r = 10.0	2.3
P _r = 50.0	4.3
Pr = 100.0	5.5
P _r = 500.0	10

 $\pi_R = .43$ Rated Power $\le .1W$ $\pi_R = (P_r)^{.37}$ Rated Power > .1W

	Factor	EJEMPLO 1	EJEMPLO 2
Transistor	λb	0.00074	0.00074
Temp. de Juntura	πΤ	3.6	5.6
Aplicación	πΑ	0.70	0.70
Potencia	πR	5.5	5.5
Relacion VCEo	πS	0.29	0.39
Factor de Calidad	πQ	5.5	5.5
Ambiente	πΕ	9.0	9.0
TOTAL	λ p t	0.147230	0.30799
horas		6.802.721	3.247.807

Voltage Stress Factor - π_S

Applied Vo	Applied VCE/Rated VCEO			
0 < V _S : .3 < V _S : .4 < V _S .5 < V _S .6 < V _S .7 < V _S .8 < V _S .9 < V _S	≤ .4 ≤ .5 ≤ .6 ≤ .7 ≤ .8 ≤ .9	π _S .11 .16 .21 .29 .39 .54 .73		
πS	.045 exp (3.1(Vs))	(0 < V _s ≤ 1.0)		
V _s -	 Applied VCE / Rated VCEO 			
V _{CE} ≈	Voltage, Collector to Emitter			
V _{CEO} -	Voltage, Collector to Emitter, Base Open			

$$\lambda_{PT} = \lambda_b * \pi T * \pi A * \pi R * \pi S * \pi Q * \pi E \left[\frac{fallas}{10^6 horas} \right]$$

	Factor	EJEMPLO 1	EJEMPLO 2
Transistor	λ b	0.00074	0.00074
Temp. de Juntura	πΤ	3.6	5.6
Aplicación	πΑ	0.70	0.70
Potencia	πR	5.5	5.5
Relacion VCEo	πS	0.29	0.39
Factor de Calidad	πQ	5.5	5.5
Ambiente	πΕ	9.0	9.0
TOTAL	λ p t	0.147230	0.30799
horas		6.802.721	3.247.807

$$\lambda_{PT} = \lambda_b * \pi T * \pi A * \pi R * \pi S * \pi Q * \pi E \left[\frac{fallas}{10^6 horas} \right]$$

Quality Factor - πQ

Quality	πQ
JANTXV	.70
JANTX	1.0
JAN	2.4
Lower	5.5
Plastic	8.0
1	

Environment Factor - π_F

Environment	πE
G _B	1.0
G _F	6.0
G _M	9.0
NS	9.0
NU	19
Aic	13
A _{IF}	29
Auc	20
A _{UF}	43
A _{RW}	24
S _F	.50
M _F	14
ML	32
cլ	320

	Ejemplo 1	Ejemplo 2
Transistor	0.00074	0.00074
Temp. de Juntura	3.6	5.6
Aplicación	0.70	0.70
Potencia	5.5	5.5
Relacion VCEo	0.29	0.39
Factor de Calidad	5.5	5.5
Ambiente	9.0	9.0
TOTAL Individual	$\Lambda p1 = 0.147230$	Λp2= 0.30799
Total Sistema	$\Lambda p1 + \Lambda p2 = 0.45522$	
Total Sistema	2.196.740	

- Sistema de cálculo por la Cuenta de partes
 - En este método se analiza el ámbito de aplicación y la calidad del componente.
 - El resultado final tendrá en cuenta todos los componentes del sistema.

$$\lambda_{Pequi} = \sum_{1}^{n} N_i * (\lambda g * \pi Q)i$$

$$\lambda_{Pequi} = \sum_{1}^{n} N_i * (\lambda g * \pi Q)i$$

- λPequi = probabilidad de falla equipo
- λg = Tasa de falla de parte genérica
- πQ = Factor de calidad parte genérica
- Ni = Cantidad de partes genéricas
- n = Cantidad de distintas partes genéricas

Section	Part Type	Env.→ GB	G _F	G _M	N _S	Nυ	A _{IC}	A _{IF}	^uc	^ue	^RW	8 _F	ME	M	વ
		T _J (°C) → 50	60	65	60	65	75	75	90	90	75	50	65	75	60
	DIODES														
6.1	General Purpose Analog	.0036	.028	.049	.043	.10	.092	.21	.20	.44	.17	.0018	.076	.23	1.5
6.1	Switching	.00094	.0075	.013	.011	.027	.024	.054	.054	.12	.045	.00047	.020	.060	.40
6.1	Fast Recovery Pwr. Rectilier	.065	.52	.89	.78	1.9	1.7	3.7	3.7	8.0	3.1	.032	1.4	4.1	28
6.1	Power Rectilier/ Schottky Pwr.	.0028	.022	.039	.034	.082	.073	.16	.16	.35	.13	.0014	.060	.18	1.2
6.1	Transient Suppressor/Varistor	.0029	.023	.040	.035	.084	.075	.17	.17	.36	.14	.0015	.062	.18	1.2
6.1	Voltage Ref/Reg. (Avalanche	.0033	.024	.039	.035	.082	.066	.15	.13	.27	.12	.0016	.050	.16	1.3
	and Zener)											.0070	.000		1.0
6.1	Current Regulator	.0056	.040	.066	.060	.14	.11	.25	.22	.46	.21	.0028	.10	.28	2.1
6.2	Si Impati (i ≤ 35 GHz)	.86	2.8	8.9	5.6	20	11	14	36	62	44	.43	18	67	350
6.2	Gunn/Bulk Effect	.31	.76	2.1	1.5	4.6	2.0	2.5	4.5	7.6	7.9	.16	3.7	12	94
6.2	Tunnel and Back	.004	.0096	.0026	.0019	.058	.025	.032	.057	.097	.10	.002	.048	.15	
6.2	PIN	.028	.068	.19	.14	.41	.18	.22	.40	.69	.71	.014			1.2
6.2	Schottky Barrier and Point	.047	.11	.31	.23	.68	.30	.37	.67	1.1	1.2		.34	1.1	8.5
	Contact (200 MHz s1 s 35 GHz)				.20	.00	.50	.37	.07	*.1	1.2	.023	.56 .	1.8	14
6.2	Varactor	.0043	.010	.029	.021	.063	.028	.034	.062	.11	.11	.0022			
6.10	Thyristor/SCR	.0025	.020	.034	.030	.072	.064	.14	.14				.052	.17	1.3
				.004	.000	.072	.004	.14	.14	.31	.12	.0012	.053	.16	1.1
	TRANSISTORS														
6.3	NPN/PNP (1 < 200 MHz)	.00015	.0011	.0017	.0017	.0037	.0030	.0067	.0060	.013	.0056	.000073	.0027	.0074	.05
6.3	Power NPN/PNP (f < 200 MHz)	.0057	.042	.069	.063	.15	.12	.26	.23	.50	.22	.0029	.11	.29	2.2
6.4	SI FET (I & 400 MHz)	.014	.099	.16	.15	.34	.28	.62	.53	1.1	.51	.0069	.25	.68	5.3
6.9	SI FET (1 > 400 MHz)	.099	.24	.64	.47	1.4	.61	.76	1.3	2.3	2.4	.049	1.2	3.6	30
6.8	GaAs FET (P < 100 mW)	.17	.51	1.5	1.0	3.4	1.8	2.3	5.4	9.2	7.2	.083	2.8	11	
6.8	GaAs FET (P≥ 100 mW)	.42	1.3	3.9	2.5	8.5	4.5	5.6	13	23	18	.21	6.9	27	63 166
6.5	Unijunction	.016	.12	.20	.18	.42	.36	.80	.74	1.6	.66	.0079		.88	6.4
6.6	RF, Low Noise (1 > 200 MHz, P < 1W)	.094	.23	.63	.46	1.4	.60	.75	1.3	2.3	2.4	.047	.31 1.1	3.6	28
6.7	RF, Power (P≥1W)	.074	.15	.37	.29	.81	.29	.37	.52	.88	.037	.33	.68	1.8	18

Generic Fallure Rate - $\lambda_{\bf g}$ (Fallures/10⁶ Hours) for Discrete Semiconductors

				Mare - V	9 1. 2.10		Hours) I	OI DISCI	ere Sem	iconauc	iors	
Section #	Part Type	Env.→ GB	G ^E	G _M	NS	NU	A _{IC}	A _{IF}	^ uc	^uf	^FW	s
		T _J (°C) → 50	60	65	60	65	75	75	90	90	75	5
	DIODES											
6.1	General Purpose Analog	.0036	.028	.049	.043	.10	.092	.21	.20	.44	.17	.00
6.1	Switching	.00094	.0075	.013	.011	.027	.024	.054	.054	.12	.045	.000
6.1	Fast Recovery Pwr. Rectilier	.065	.52	.89	.78	1.9	1.7	3.7	3.7	8.0	3.1	.03
6.1	Power Rectilier/ Schottky Pwr.	.0028	.022	.039	.034	.082	.073	.16	.16	.35	.13	.00
6.1	Transient Suppressor/Varistor	.0029	.023	.040	.035	.084	.075	.17	.17	.36	.14	.00
6.1	Voltage Ref/Reg. (Avalanche	.0033	.024	.039	.035	.082	.066	.15	.13	.27	.12	.00
	and Zener)											
6.1	Current Regulator	.0058	.040	.066	.060	.14	.11	.25	.22	.46	.21	.00
6.2	Si Impett (1 ≤ 35 GHz)	.86	2.8	8.9	5.6	20	11	14	36	62	44	.4
6.2	Gunn/Bulk Effect	.31	.76	2.1	1.5	4.6	2.0	2.5	4.5	7.6	7.9	.1
6.2	Tunnel and Back	.004	.0096	.0026	.0019	.058	.025	.032	.057	.097	.10	.ox
6.2	PIN	.028	.068	.19	.14	.41	.18	.22	.40	.69	.71	.0
6.2	Schottky Barrier and Point	.047	.11	.31	.23	.68	.30	.37	.67	1.1	1.2	.04
	Contact (200 MHz s1 s 35 GHz)	ĺ										
6.2	Varactor	.0043	.010	.029	.021	.063	.028	.034	.062	.11	.11	.00
6.10	Thyristor/SCR	.0025	.020	.034	.030	.072	.064	.14	.14	.31	.12	.00
	TRANSISTORS											
6.3	NPN/PNP (1 < 200 MHz)	.00015	.0011	.0017	.0017	.0037	.0030	.0067	.0060	.013	.0056	.000
6.3	Power NPN/PNP (f < 200 MHz)	.0057	.042	.069	.063	.15	.12	.26	.23	.50	.22	.00
6.4	SI FET (I ≤ 400 MHz)	.014	.099	.16	.15	.34	.28	.62	.53	1.1	.51	.00
6.9	SI FET (1 > 400 MHz)	000	24	64	47		.20	.02	.53		.51	.00

$$\lambda_{Pequi} = 1*(0.069*5.5) = 0,3795 \left[Fallas / 10^6 \text{ horas} \right]$$

$$MTBF = \frac{1}{\lambda_{Pequi}} = \frac{1}{0,3795} = 2.635.046 \text{ horas}$$

- MTBF para el análisis de un solo transistor.
- Se considera que todos los componentes del mismo tipo tienen la misma probabilidad de fallas.
- Es mayor la probabilidad de falla.

Modo de falla

 Análisis del modo de fallas y sus efectos (FMEA – Failure Mode And Effects Analysis)

- En este método se analizan los posible modos en que puede fallar el dispositivo y cual será el impacto en el circuito.
- Podemos usar MIL-HDBK-338.

Modo de falla

- Ejemplo transistor bipolar
 - Transistor OPEN → 0.27
 - Transistor SHORT → 0.73

DEVICE TYPE	FAILURE MODE	MODE PROBABILITY (α)
Transducer	Out of Tolerance	.68
	False Response	.15
	Open	.12
	Short	.05
Transformer	Open	.42
	Short	.42
	Parameter Change	.16
Transistor, Bipolar	Short	.73
	Open	.27
Transistor, FET	Short	.51
	Output Low	.22
	Parameter Change	.17
	Open	.05
	Output High	.05
Transistor, GaAs FET	Open	.61
	Short	.26
	Parameter Change	.13
Transistor, R.F.	Parameter Change	.50
	Short	40

Modo de falla

- Ejemplo transistor bipolar
 - Transistor OPEN → 0.27
 - Transistor SHORT → 0.73
 - Y el factor de tiempo de falla antes calculado

$$\lambda_{Po} = 0.147 * 0.27 = 0.03969 \left[Fallas / 10^6 \text{ horas} \right]$$

$$\lambda_{PS} = 0.147 * 0.73 = 0.10731 [Fallas / 10^6 \text{ horas}]$$

- Se observa que la probabilidad de falla disminuye
- Se debe analizar el circuito para determinar los efectos ante algunas de las dos posibles fallas.

Falla y Avería

Falla y Avería

- Del análisis del circuito tendremos dos posibles caminos
 - Falla → El transistor no fue excitado
 - Avería → Se daño el componente

Falla y Avería

Ejemplo – Control Inyector Electrónico Automóvil

Falla y Avería

- Ejemplo Control Inyector Electrónico Automóvil
- VALVULA CERRADA

Modo de falla y Análisis crítico (FMECA)

- En este análisis se pretende determinar si un componente puede provocar una falla que sea catastrófica, la probabilidad de esa falla y la tolerancia a las mismas.
- La realización de un estudio FMECA permite identificar aquellos componentes críticos en los que debe enfatizarse el mantenimiento, o que deben ser objeto de rediseño.
- Por medio de este módulo se podrán realizar:
 - Evaluación de los Modos de Fallo del sistema
 - Evaluación de las Causas de Fallo
 - Análisis de los Efectos de la aparición de los Modos de Fallo.
 - Este análisis se hará a varios niveles: componente, equipo y sistema.
 - Asignación de la Severidad de cada uno de los Modos de Fallo
 - Asignación de Parámetros de Riesgo asociados al fallo
 - Asignación de la Probabilidad de Ocurrencia del fallo
 - Cálculo de la Criticidad del fallo
 - Determinación de los componentes críticos del sistema.

Modo de falla y Análisis crítico (FMECA - Failure mode, effects, and criticality analysis)

- Este método se basa en fallas que en principio podrían ser las siguientes:
 - Operación Anticipada
 - Falla a operar en determinado tiempo
 - Operación intermitente
 - Falla en cesar una función en tiempo determinado
 - Pérdida o degradación durante la operación.

Propagación de una falla

- Cuando se evalúa un sistema podemos dividir al mismo en niveles.
- Esta división nos permitiría clasificar el efecto de una falla sobre un determinado sistema.
- En base a esto existirán
 - Efectos Locales o Primarios
 - Nivel Superior Siguiente o Efectos Secundarios
 - Función del Sistema o Efectos Finales

Clasificación de Falla

Se pueden analizar las fallas desde dos puntos de vista:

Severidad

- Se evalúa teniendo en cuenta las peores consecuencias que se pueden dar ante una falla.
- Probabilidad de Aparición
 - Es el análisis en base a la probabilidad de su ocurrencia. Tiene como base el análisis MTBF y FMEA.

Severidad

Podemos establecer cuatro categorías:

Categoría I → Catastrófico

Una falla que puede causar la pérdida total del sistema.

► Categoría II → Importante

 Una falla que puede causar lesiones graves, importantes daños materiales o daños en el sistema principal que traduzca en la pérdida de la misión.

▶ Categoría III → Marginal

 Puede causar lesiones leves, de menor importancia, daños materiales, que se traducirían en un retraso o pérdida de disponibilidad del sistema.

► Categoría IV → Menor

- Falla mínima que solo provocaría la necesidad de un mantenimiento o reparación programada.
- La determinación de la categoría será en base a lo que se desea proteger:
 - Personas, ambiente, producción.
 - Por lo tanto el rango que define cada intervalo será propio del sistema evaluado.

Probabilidad de Ocurrencia

- Podemos establecer cinco categorías:
- Nivel A → Frecuente
 - Probabilidad Superior a 0,20
- Nivel B → Razonablemente Probable
 - Probabilidad Mayor a 0,10 y menor a 0,20
- Nivel C → Ocasional
 - Probabilidad Mayor a 0,01 y menor a 0,10
- Nivel D → Remota
 - Probabilidad Mayor a 0,001 y menor a 0,01
- Nivel E → Improbable
 - Probabilidad menor a 0,001

Relación entre categoría y nivel de una falla

- Se debe ver sobre la gráfica adjunta la relación entre ocurrencia y severidad para hacer los ajustes correspondientes.
 - Para una falla Categoría I el nivel de falla debiera ser Nivel E
- De este análisis surgen los rediseños del sistema.

Número crítico del modo de falla

 El numero crítico de falla determina por si mismo la peligrosidad de un modo de falla determinado

$$Cm = \beta * \alpha * \lambda_p * t$$

- Donde
 - α = probabilidad de modo de falla.
 - (Open–Short)
 - β = probabilidad de pérdida de función
 - Tabla adjunta
 - λ=probabilidad de falla total MBTF
 - t = tiempo de funcionamiento requerido

Número crítico del modo de falla

 β = probabilidad de pérdida de función

EFECTO DE FALLA	VALOR de β
PERDIDA SEGURA	1.00
PROBABLE PERDIDA	>0.10 a <1.00
POSIBLE PERDIDA	>0 a < 0.10
SIN EFECTO	0

Matriz Crítica

	Nivel A				PEOR CASO			
o₹	Nivel B							
ILIDAI	Nivel C							
PROBABILIDAD DE OCURRENCIA	Nivel D							
PR	Nivel E	MEJOR CASO						
		Categoría IV	Categoría III	Categoría II	Categoría I			
		SEVERIDAD						

Matriz Crítica

INCREASING CRITICALITY

* NOTE: BOTH CRITICALITY NUMBER (Cr) AND PROBABILITY OF OCCURRENCE LEVEL ARE SHOWN FOR CONVENIENCE.