# Power analyses

Post hoc power analyses and determination of sample sizes for study design



## Today's agenda

- 1. Reading quiz [2pm section] [4pm section]
- 2. Type II errors: review and further exploration
- 3. [lecture/lab] Power analysis
  - a. Sample size calculations
  - b. Post-hoc power analyses

#### A thought experiment

Suppose that for the cloud data you'd performed a two-sided test:

```
H_0: \mu_{\text{seeded}} = \mu_{\text{unseeded}}
```

$$H_A: \mu_{\text{seeded}} \neq \mu_{\text{unseeded}}$$

Welch Two Sample t-test

Almost below the significance threshold but not quite.

The data **do not provide sufficient evidence to reject** the null hypothesis that seeding has no effect relative to the alternative of an increase or decrease in mean rainfall due to seeding (T = 1.998 on 33.86 degrees of freedom, p = 0.05377).

The point estimate for the difference is 277.4 acre-feet.

- The test says this observed difference could plausibly be due to sampling variation
- But is it also plausible that our test result is wrong if the difference is real?

#### Type II error rates

Recall: a type II error is failing to reject a false null hypothesis.

In the context of two-sample inference a type II error occurs when:

- the true difference is  $\delta \neq 0$
- we test and fail to reject  $H_0: \delta \neq 0$

The type II error rate depends on both known and unknown factors:

- ullet [unknown] magnitude of  $\delta$
- [unknown] population variability  $\sigma$
- [known] significance level
- [known] sample sizes

What was the type II error rate for the cloud seeding test?

#### Simulating type II errors

Summary stats for cloud data:

| Treatment | mean  | sd    | n  |
|-----------|-------|-------|----|
| Seeded    | 442   | 650.8 | 26 |
| Unseeded  | 164.6 | 278.4 | 26 |

We can approximate the type II error rate by:

- 1. simulating datasets with matching summary statistics c. the sample size n was
- 2. performing two-sided tests of no difference
- 3. computing the proportion of fail-to-reject decisions

```
1 type2sim(delta = 277, n = 26, sd = 650, alpha = 0.05)
[1] 0.689
```

⇒ if the true difference were exactly as estimated, our test result would be incorrect nearly 70% of the time!

What would happen to the error rate if...

- a. the true difference delta were bigger?
- b. the significance level alpha were smaller?
- c. the sample size n was larger?
- d. the variability of rainfall **sd** were less?

#### Simulating type II errors

Open the lab and use the simulation function type2sim to fill in the table by changing arguments accordingly.

- try a few magnitudes of difference for each scenario
- repeat runs for each setting once or twice to confirm effect

| Factor                   | Change  | Effect on error rate |
|--------------------------|---------|----------------------|
| true difference in means | larger  |                      |
| true difference in means | smaller |                      |
| population variability   | larger  |                      |
| population variability   | smaller |                      |
| sample size              | larger  |                      |
| sample size              | smaller |                      |
| significance level       | larger  |                      |
| significance level       | smaller |                      |

Based on your explorations, do you think our original test decision was erroneous?

#### Statistical power

The **power** of a test refers to its true rejection rates across alternatives and is defined as:

$$\beta(\delta) = \underbrace{(1 - \text{type II error rate}_{\delta})}_{\text{correct decision rate when null is false}}$$

Power is often interpreted as a detection rate for a specified alternative  $\delta$ :

- high type II error → low power → low detection rate
- low type II error → high power → high detection rate

In general tests have low power for alternatives close to the null value (where "close" is relative to sampling variability).

Theory allows a direct calculation of power, given sample size, significance level, population standard deviation, and population difference in means.

#### Power curves

Power is usually construed as a *curve* depending on the true difference.

Power curve for the test exactly as performed with the cloud seeding data:



All other attributes of the test are fixed to approximate the test performed:

- sample size n = 26
- significance level  $\alpha = 0.05$
- population standard deviation  $\sigma = 650$  (larger of two group estimates)

### Factors affecting power

Power depends on all the same factors as type II error rates

| Factor                   | Change  | Effect on error rate | Effect on power |
|--------------------------|---------|----------------------|-----------------|
| true difference in means | larger  |                      |                 |
| true difference in means | smaller |                      |                 |
| population variability   | larger  |                      |                 |
| population variability   | smaller |                      |                 |
| sample size              | larger  |                      |                 |
| sample size              | smaller |                      |                 |
| significance level       | larger  |                      |                 |
| significance level       | smaller |                      |                 |

#### Two common power analyses

Post hoc analysis: how much power does the test I conducted have if the true difference is exactly equal to my estimate? Helps to interpret negative results:

- low power → failure to reject was likely
- high power → failure to reject was not likely

Don't over-interpret post-hoc analyses

Failure to reject using a well-powered test *does not confirm* the null hypothesis.

Sample size determination: how much data do I need to collect to detect a difference of  $\delta$  using a particular test? Helps avoid two potential issues:

- too little data → study not likely to yield significant results
- too much data → study is too likely to yield significant results

#### Post-hoc analysis

Can we estimate the power of a test we already performed?

Feasible if we assume (a) a population standard deviation and (b) test conditions are met.

For the cloud seeding test:

```
power.t.test(delta = 250, # magnitude of difference
sd = 650, # largest population SD
n = 26, # smallest sample size
sig.level = 0.05,
type = 'two.sample',
alternative = 'two.sided')
```

```
Two-sample t test power calculation

n = 26
delta = 250
sd = 650
sig.level = 0.05
power = 0.2743235
alternative = two.sided

NOTE: n is number in *each* group
```

For a conservative estimate, use:

- *smallest* of the two sample sizes
- *largest* of the two standard deviations
- smaller difference than observed

⇒ our test would only reject in favor of a difference of the observed magnitude about 27% of the time

Failure to reject doesn't strongly rule out the alternative.

#### Your turn: post-hoc analysis

Consider testing whether body temperature differs by sex.

Summary stats and test result:

| sex    | mean  | sd     | n  |
|--------|-------|--------|----|
| female | 98.66 | 0.9929 | 19 |
| male   | 98.17 | 0.7876 | 20 |

```
1 t.test(body.temp ~ sex, data = temps)
```

Welch Two Sample t-test

```
data: body.temp by sex

t = 1.7118, df = 34.329, p-value = 0.09595

alternative hypothesis: true difference in means between
group female and group male is not equal to 0

95 percent confidence interval:
-0.09204497 1.07783444

sample estimates:
mean in group female mean in group male
98.65789 98.16500
```

Assume the true difference is actually 0.5 °F. Determine the power of the test above when:

- 1. Population SD is the smaller of the two groups
- 2. Population SD is the larger of the two groups
- 3. A one-sided test is used instead

Based on your answers, do you think the negative test result rules out the alternative?

#### Power curve for body temps

Assuming we underestimated the population standard deviation a bit, the power curve for a one-sided test would look like this:



#### **Assumptions:**

- n = 19 per group
- $\sigma = 1.2$  per group
- significance level  $\alpha = 0.05$
- one-sided test

Fairly low power for alternatives near the estimated difference (dashed line), so failure to reject doesn't strongly rule out the alternative.

#### The equal-variance t-test

If it is reasonable to assume the (population) standard deviations are the same in each group, one can gain a bit of power by using a different standard error:

$$SE_{\text{pooled}}(\bar{x} - \bar{y}) = \sqrt{\frac{s_p^2}{n_x} + \frac{s_p^2}{n_y}}$$
 where  $s_p = \sqrt{\frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}}$  weighted average of  $s_x^2 \& s_y^2$ 

In the case of the body temperature data,  $s_p$  = 0.8934. Check:

- How much power do we gain if we assume a common SD of 0.89?
- Does it change the outcome of the test (add var equal = T)?

Produces minimal gains and inflates type I error if not warranted, so better avoided unless you have a small sample size

#### Sample size calculation

If you were (re)designing the study, how much data should you collect to detect a specified effect size?

To detect a difference of 250 or more due to cloud seeding with power 0.9:

```
power.t.test(power = 0.9, # target power level

delta = 250, # smallest difference

sd = 650, # largest population SD

sig.level = 0.05,

type = 'two.sample',

alternative = 'two.sided')
```

```
Two-sample t test power calculation

n = 143.0276
delta = 250
sd = 650
sig.level = 0.05
power = 0.9
alternative = two.sided

NOTE: n is number in *each* group
```

For a conservative estimate, use:

- overestimate of the larger of the two standard deviations
- minimum difference of interest

⇒ we need at least 144 observations in each group to detect a difference of 250 or more at least 90% of the time

#### Your turn: sample size calculation

Suppose you are designing a follow-up study and wish to detect a difference of 0.4 °F at least 70% of the time. You know women have slightly higher body temperatures than men on average.

| Known direction? | Population SD                                   | Minimum <i>n</i> |
|------------------|-------------------------------------------------|------------------|
| No               | larger of prior estimates                       |                  |
| No               | 1.2 times larger than larger of prior estimates |                  |
| Yes              | larger of prior estimates                       |                  |
| Yes              | 1.2 times larger than larger of prior estimates |                  |

If it costs \$10 per participant to run the study, what's the best power achievable within a \$2K budget for the target detection magnitude?

#### Power vs. sample size curves

Minimum detectable difference at 5 levels of power as a function of sample size for a one-sided test:



Assumes  $\sigma = 1.2$  for a conservative estimate.

The best power achievable within budget for the target detection range is 0.7593159.

- increasing power to 0.8 will require n = 112 per group
  - \$240 over budget
- increasing power to 0.9 will require n = 155 per group
  - \$1050 over budget