HW/SW Co-design Project

G8:

Boran Car

Victor Statescu

Outline

- Project Goal
- System design
- Coprocessor design
- Implementation
- Results
- Conclusions

Project Goal

 The design of a cryptographic system that would support RSA and ElGamal 1024 bit encryption and decryption

System Components

• 8051 μController

- Memory mapped interface (shared memory)
 - Possibility of pipeline
 - Limitations of Gezel

Custom Crypto-Coprocessor

8051 μController

- 4 8-bit ports:
 - P1 used for signaling to the coprocessor;
 - Only two pins used;
 - Po, P2 used for xbus access;
 - P3 used for serial I/O, interrupts, control signals, etc.;
- Memory:
 - 2kB + 1 B (512B shared with the coprocessor);

Memory Mapped Interface (shared memory)

512B used to share data with coprocessor;

- Addresses mapping:
 - oxooo ox6oo used by the μController;
 - ox600 ox801 mapped into ox000-ox201 for the coprocessor;

Crypto coprocessor

- Operations performed by the dedicated HW:
 - Montgomery product;
 - Montgomery inversion;

Montgomery multiplication		Montgomery inversion	
SW (12MHz)	HW (12MHz)	SW (12MHz)	HW (12MHz)
1.3 S	o.2 ms	16 s	100 ms

Coprocessor main data-path

Memory allocation

- ox600 ox680 1024-bit number;
- ox680 ox700 1024-bit number;
- ox700 ox780 1024-bit number;
- ox780 ox800 command queue (up to 128 commands);
- ox8oo state signaling from the coprocessor;

Instructions implemented

- Halt
- Init
- Montgomery multiplication
- Montgomery squaring
- Montgomery inversion
- Load u from the shared memory
- Load v from the shared memory
- Store result to shared memory
- Store quotient to memory (Montgomery only)

Coprocessor improvements

- Command queuing:
 - Up to 128 commands can be queued
 - Implemented for:
 - Speed-up;
 - Pipelining;
- Result is written in register u for efficient transitivity;
- Montgomery quotient computation:
 - Doubling the bit-length;

SW implementation

- Function library:
 - montpro Montgomery product
 - montinv Montgomery inversion
 - modexp Modular exponentiation
- Methods:
 - add1024 adding 1024-bit numbers
 - subtract1024 subtracting 1024-bit numbers
 - multiply1024 multiplies 1024-bit numbers to produce a 2048-bit
 - larger or equal checks if the number is larger or equal than a number

HW implementation

GEZEL to VHDL conversion

- Separate data-paths for adder and shifter:
 - For optimization of critical components

Manual redesign of the adder (in VHDL);

RS	SA	ElGa	ımal
# Clock Cycles	Duration	# Clock Cycles	Duration
5 mil	1.25 S	4.5 mil	1.125 S
Frequency = 4MHz			

FPGA Results			
	Used	Available	%
Slices	14587	13696	106%
Flip-flops	6274	27392	22%
4-input LUTs	26857	27392	98%

Macro Statistics		
# Adders/Subtractors	4	
10-bit adder	2	
1026-bit adder carry in	1	
11-bit subtractor	1	
# Registers	6251	
Flip-Flops	6251	
# Comparators	1	
1024-bit comparator equal	1	
# Multiplexers	1	
1026-bit 4-to-1 multiplexer	1	

RS	SA	ElGa	ımal
# Clock Cycles	Duration	# Clock Cycles	Duration
5 mil	1.25 S	4.5 mil	1.125 S
Frequency = 4MHz			

FPGA Results			
	Used	Available	%
Slices	13951	13696	101%
Flip-flops	6267	27392	22%
4-input LUTs	26033	27392	95%

Macro Statistics		
# Adders/Subtractors	5	
10-bit adder	2	
513-bit adder carry in	2	
11-bit subtractor	1	
# Registers	6251	
Flip-Flops	6251	
# Comparators	1	
1024-bit comparator equal	1	
# Multiplexers	1	
1026-bit 4-to-1 multiplexer	1	

Conclusions

 The presented results show that our design is in line with other industrial designs;

• The maximal allowable frequency achieved: 20.449MHz;

The area requirements were finally met;