Modeling Software Aging and Rejuvenation Beyond the Enabling Restriction

Laura Carnevali¹ Marco Paolieri² Benedetta Picano¹ Riccardo Reali¹ Leonardo Scommegna¹ Roberto Verdecchia¹ Enrico Vicario¹

¹Dept. of Information Engineering, University of Florence ²Dept. of Computer Science, University of Southern California

Quallta'23 - June 2023

- this is about:
 - Stochastic models of software aging and rejuvenation
 - How class of the underlying stochastic process changes the expressivity
 - What are the consequences of expressivity change
 - Extension from MRgP under enabling restriction . . .
 - ... by creating models in the class of MRgP under bounded regeneration

Sofware Aging & Rejuvenation Systems

- Systems of interest : long running hardware/software systems
- Software Aging: gradual shift from a robust state to degraded one
- Rejuvenation: restoration to the robust state through a proactive maintenance
 - Advantage: prevent failures
 - Drawback: implies a cost (downtime increment)
- Rejuvenation Schedule: plan when to perform the rejuvenation:
 - Time-Triggered: periodic rejuvenation
 - Event-Based: relying on diagnostic tests

Software Aging & Rejuvenation Model

- Quantitative models analyse:
 - Effect of aging in the system
 - How rejuvenation impacts on the failure rate
 - Find the optimal rejuvenation schedule taking into account the trade-off between reliability and availability
- Differ in:
 - Available model specification approaches
 - Class of the underlying stochastic process

Continuous Time Markov Chain (CTMC)

- Expressivity:
 - Markov condition: always satisfied
 - Sojourn Time: only Exponential (memoryless) distributions
 - Transition Selection: time-independent random switch
 - Not good news for expressivity
- Specification:
 - Direct representation of the stochastic process
 - Higher level formalisms (SPN)

4/32

Model from: Huang, Kintala, Kolettis, Fulton "Software rejuvenation: Analysis, module and applications", FTCS 1995

Semi-Markov Processes (SMP)

- Expressivity:
 - Markov Condition: satisfied at the beginning of each sojourn time
 - Sojourn Time: GEN distributed durations
 - Transition Selection: based on a time-dependent random switch
 - · Loses memory at each transition
- Specification:
 - Direct representation of the stochastic process

Model from: Dohi, Goseva-Popstojanova, Trivedi "Statistical non-parametric algorithms to estimate the optimal software rejuvenation schedule", PRDC 2000

L. Carnevali et al. Quallta 2023 - Florence 5 / 32

Markov Regenerative Processes (MRgP)

- Expressivity:
 - ullet Markov Condition: eventually satisfied w.p.1 at some point: the regeneration
 - Sojourn Time: GEN distributed durations
 - Transition Selection: based on the states and the time spent on them, since the last regeneration point
 - Represent activities overlapping their durations in epochs delimited by regenerations
- Specification:
 - Direct representation of the stochastic process
 - Usually expressed through higher level formalisms (SPN)

Modeling SAR Systems

- SAR systems literature deepens numerical approach with both CTMC and SMP
- Full-fledged MRgP models are hard to analyse numerically
- No general technique to built the process kernels
- MRgP under enabling restriction:
 - Consolidated numerical methods to analyse SAR
 - Basically, at most one GEN distribution fireable in any state

L. Carnevali et al. Quallta 2023 - Florence 7 / 32

Consequences of the Enabling Restriction

Enabling Restriction:

- The single GEN distribution is usually (necessarily) spent for the rejuvenation timer
- Distributions with finite coefficient of variation would result in substantial approximation
- · Remaining durations can be modeled only as EXP

Limits:

- No concurrent GEN timers can be represented
- Durations can only fit the first moment from observational data

A Step Further, MRgPs Under Bounded Regeneration Restriction

Bounded Regeneration:

- Durations can be **DET** or **exponomial** distributions
- Bounded supports distribution also allowed
- Constraint: regeneration always reached within a bounded number of events

Stochastic State Classes:

- Numerical solution of model under bounded regeneration restriction
- Implemented in the Sirio Library of the Oris Tool.¹

¹Paolieri, Biagi, Carnevali, Vicario, "The ORIS Tool: Quantitative Evaluation of Non-Markovian Systems" TSE 2021

L. Carnevali et al. Qualita 2023 - Florence 9/32

Starting Point

First of Two Steps Ahead, Unleashing Distributions

L. Carnevali et al. QualIta 2023 - Florence 11/32

The SAR Model Baseline

- Based from the seminal model of Garg et al. ²
- Time-triggered Rejuvenation with DET timer
- Tweaked to make it more complex
- All the duration except timer are EXP

L. Carnevali et al. Quallta 2023 - Florence 12 / 32

² Garg, Puliafito, Telek, Trivedi "Analysis of software rejuvenation using Markov regenerative stochastic Petri net", ISSRE 1995

The SAR Model Baseline - The System

- System starts in robust state ("Up") and eventually goes in error ("Err" place)
- From erroneous state system may fail ("Down" place)
- Failure detection time is not negligible ("Down" and "Detected" places)

L. Carnevali et al. Quallta 2023 - Florence 13/32

The SAR Model Baseline - The Rejuvenation Mechanism

- Rejuvenation mechanism runs concurrently with the actual system
- When triggered ("Rej" place), it restores the system in the Up place
- Possible in both "Up" and "Err" places

Effects of the Model Expressiveness on the Analysis Results

Extension Beyond Enabling Restriction

- The same structure of concurrence
- GEN distributed Durations
- Stochastic parameters maintain the same expected values of the baseline

L. Carnevali et al. Quallta 2023 - Florence 16 / 32

Model from: Carnevali, Paolieri, Reali, Scommegna, Vicario, "A Markov Regenerative Model of Software Rejuvenation Beyond the Enabling Restriction". WoSAR 2022

The Optimal Rejuvenation Period

- Aim: Finding the best rejuvenation period
- A clock time aware of the reliability-availability trade-off
- The optimal value of the Wait clock transition

Finding the Optimal Rejuvenation Period

- Steady-state metrics are the core of the software aging analysis
- Unavailability $\bar{a}(p)$: quantifies the occurrence of states in which the system can not provide the service
- **Undetected failures** $\bar{r}(p)$: detect a reliability quality of the system
- Optimal rejuvenation period p*: selected minimizing:

$$p^* = \underset{p}{\operatorname{arg\,min}} \left[\frac{\bar{a}(p) + \bar{r}(p)}{2} \right]$$

- $\bar{r}(p)$: increase with the rejuvenation period p
- $\bar{a}(p)$: initial decrease with subsequent increase
- p^* : 1300 hours with $\left[\frac{\bar{a}(p)+\bar{r}(p)}{2}\right]=0.000091$

L. Carnevali et al. Quallta 2023 - Florence 19 / 32

- $\bar{r}(p)$: increase with the rejuvenation period p
- $\bar{a}(p)$: initial decrease with subsequent increase
- p^* : 1300 hours with $\left[\frac{\bar{a}(p)+\bar{r}(p)}{2}\right]=0.000091$

L. Carnevali et al. Quallta 2023 - Florence 19 / 32

- $\bar{r}(p)$: increase with the rejuvenation period p
- $\bar{a}(p)$: initial decrease with subsequent increase
- p^* : 1300 hours with $\left[\frac{\bar{a}(p)+\bar{r}(p)}{2}\right]=0.000091$

L. Carnevali et al. Quallta 2023 - Florence 19 / 32

- $\bar{r}(p)$: increase with the rejuvenation period p
- $\bar{a}(p)$: initial decrease with subsequent increase
- p^* : 1300 hours with $\left[\frac{\bar{a}(p)+\bar{r}(p)}{2}\right]=0.000091$

L. Carnevali et al. QualIta 2023 - Florence 19 / 32

- $\bar{r}(p)$: increase with the rejuvenation period p
- $\bar{a}(p)$: initial decrease with subsequent increase
- p^* : 1300 hours with $\left[\frac{\bar{a}(p)+\bar{r}(p)}{2}\right]=0.000091$

- $\bar{r}(p)$: monotonic trend increasing
- $\bar{a}(p)$: monotonic trend decreasing
- p*: cannot be assigned through the equation
- Selected p optimal as 2200 to anticipate the mean time of error detection (2300 hours)

L. Carnevali et al. Quallta 2023 - Florence 20 / 32

- $\bar{r}(p)$: monotonic trend increasing
- $\bar{a}(p)$: monotonic trend decreasing
- p*: cannot be assigned through the equation
- Selected p optimal as 2200 to anticipate the mean time of error detection (2300 hours)

L. Carnevali et al. Quallta 2023 - Florence 20 / 32

- $\bar{r}(p)$: monotonic trend increasing
- $\bar{a}(p)$: monotonic trend decreasing
- p*: cannot be assigned through the equation
- Selected p optimal as 2200 to anticipate the mean time of error detection (2300 hours)

- $\bar{r}(p)$: monotonic trend increasing
- $\bar{a}(p)$: monotonic trend decreasing
- p*: cannot be assigned through the equation
- Selected p optimal as 2200 to anticipate the mean time of error detection (2300 hours)

Transient Evaluation of the Bounded Regeneration Model

- Unreliability (left): converges to 1 after 50000 hours
- **Unavailability** (center): peaks around the multiples of p^* (1300 hours)
- Cumulative unavailability (right): sharp increase around the multiples of p^* (smoothed as time advances)

L. Carnevali et al. Quallta 2023 - Florence 21 / 32

Transient Metrics Comparison

- Unavailability: bounded regeneration shows better performance
- Unreliability: enabling restriction make the model converge faster
- Type of distributions affect significantly the transient behavior

Bounded Regeneration: Beyond Parameters Fitting

- Using expressiveness gain not only to fit more precisely data
- Structure of concurrency modification to represent hybrid rejuvenation policies

Combining Event-Based and Time-Triggered Rejuvenation

- Structure of concurrency extended to include diagnostic process
- Same system behavior and rejuvenation effects
- Diagnostic tests executed during rejuvenation period

Combining Event-Based and Time-Triggered Rejuvenation

- Structure of concurrency extended to include diagnostic process
- Same system behavior and rejuvenation effects
- Diagnostic tests executed during rejuvenation period

Combining Event-Based and Time-Triggered Rejuvenation

- Structure of concurrency extended to include diagnostic process
- Same system behavior and rejuvenation effects
- Diagnostic tests affect rejuvenation times

Patameters of the Rejuvenating System

- Sensitivity and Specificity: modeled through t transitions
- Defer Times: modeled through w transitions (DET distributions)
- Customizable number of tests (2 in the example)

Parametrization of Times of Diagnostic Tests

• Aim: Identifying optimal defer times maintaining a uniform failure density over time:

$$\frac{\textit{P(KOwithinT|Observations)}}{\textit{T}} < \epsilon$$

- ullet Deferring rejuvenation of T units of time implies a failure probability of $T*\epsilon$
- The defer time is chosen to maintain a uniform first-failure rate

Parametrization Algorithm

- Within a Single Rejuvenation Epoch
- Incremental procedure to calculate the defer time T_{wK_n}
- K_n is a sequence of n words in $\{G, R\}$
- T_{wK_n} is calculated on top of $T_{wK_{n-1}}$

L. Carnevali et al. Quallta 2023 - Florence 29 / 32

Parametrization with Sensitivity and Specificity of 0.9 and $\epsilon=10^{-5}$

- Previous defer times are the same
- Test result is more relevant than the elapsed time
- A negative test result leads to immediate retesting
- A positive test, even after multiple negative tests, can result in a high deferment

Test Sequence	1 Test	2 Test	3 Test
W0	66.0	66.0	66.0
WG	12.0	12.0	12.0
WR	0.125	0.125	0.125
WGG		29.0	29.0
WGR		1.0	1.0
WRG		15.0	15.0
WRR		0.125	0.125
WGGG			24.0
WGGR			0.125
WGRG			45
WGRR			0.125
WRGG			57
WRGR			0.125
WRRG			0.17
WRRR			0.125

Quantities of Interest

- Unavailability (left): decreases as the number of tests increases
- Unuseful unavailability (center): same behavior of unavailability
- Unreliability (right): increases with the number of tests

Discussion and Future Directions

• Aim of the Work:

- Demonstrating that processes in the class of MRgP under bounded regeneration restriction provide an expressivity gain
- Modeling a Hybrid Rejuvenation Strategy

Ongoing Direction:

• Optimal Parametrization of defer times