Computabilidad y Complejidad

Práctica 5

- 1) Si el tiempo de ejecución en el mejor caso de un algoritmo, $t_m(n)$, es tal que $t_m(n) \in \Omega(f(n))$ y el tiempo de ejecución en el peor caso de un algoritmo, $t_p(n)$, es tal que $t_p(n) \in O(f(n))$, ¿Se puede afirmar que el tiempo de ejecución del algoritmo es $\Theta(f(n))$?
- 2) Determinar cuáles de las siguientes afirmaciones son verdaderas y cuáles son falsas:
 - a) $\frac{1}{2}n^2 3n \in \Theta(n^2)$.
 - b) $n^3 \in O(n^2)$.
 - c) $n^2 \in \Omega(n^3)$.
 - d) $2^n \in \Theta(2^{n+1})$.
 - e) $n! \in O((n+1)!)$.
 - f) $f: \mathbb{N} \to \mathbb{R}^{\geq 0}, f(n) \in O(n) \Longrightarrow [f(n)]^2 \in O(n^2).$
 - g) $f: \mathbf{N} \to \mathbb{R}^{\geq 0}, f(n) \in O(n) \Longrightarrow 2^{f(n)} \in O(2^n).$
 - h) $f: \mathbf{N} \to \mathbb{R}^{\geq 0}$ y $k \in \mathbb{R}^{\geq 0}$, $kf(n) \in O(f(n))$.
 - i) Para todo polinomio p(n) de grado
 $m,\,p(n)\in O(n^m).$
 - $\mathbf{j}) \ \alpha,\beta \in I\!\!R, \alpha < \beta \Longrightarrow n^\alpha \in O(n^\beta).$
- 3) Probar que se cumplen las siguientes propiedades para $f,g,h: \mathbb{N} \to \mathbb{R}^{\geq 0}$,
 - Reflexividad:
 - a) $f(n) \in O(f(n))$
 - b) $f(n) \in \Theta(f(n))$
 - c) $f(n) \in \Omega(f(n))$
 - Transitividad:
 - d) Si $f(n) \in O(g(n))$ y $g(n) \in O(h(n)) \Longrightarrow f(n) \in O(h(n))$
 - e) Si $f(n) \in \Theta(g(n))$ y $g(n) \in \Theta(h(n)) \Longrightarrow f(n) \in \Theta(h(n))$
 - f) Si $f(n) \in \Omega(g(n))$ y $g(n) \in \Omega(h(n)) \Longrightarrow f(n) \in \Omega(h(n))$
 - g) Simetría: $f(n) \in \Theta(g(n)) \iff g(n) \in \Theta(f(n))$.
 - h) Simetría transpuesta: $f(n) \in O(g(n)) \iff g(n) \in \Omega(f(n))$.