Learning From Data Lecture 8: ICA, CCA, & HGR Maximal Correlation

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

11/14/2019

Today's Lecture

Unsupervised Learning (Part II)

- ► Independent Component Analysis (ICA)
- Canonical Correlation Analysis (CCA)
- HGR Maximal Correlation

Written Assignment 3 is due next Saturday.

Programming Assignment 4 and project will be released next week.

Independent Component Analysis

The cocktail party problem

- ▶ *n* microphones at different locations of the room, each recording a mixture of *n* sound sources
- ▶ How to "unmix" the sound mixtures?

ICA vs PCA

Brian imaging

- ▶ Different brain matters: gray matter, white matter, cerebrospinal fluid (CSF), fat, muscle/skin, glial matter etc.
- An MRI scan is a mixture of different brain matters

EEG Analysis

- Electrodes on patient scalp measure a mixture of different brain activations
- Finding independent activation sources helps removing artifacts in the signal

Problem Model

Case: n=2

- ▶ Observed random variables: x_1, x_2
- ▶ Independent sources: $s_1, s_2 \in \mathbb{R}$

$$x_1 = a_{11}s_1 + a_{12}s_2$$

$$x_2 = a_{21}s_1 + a_{22}s_2$$

A is called the mixing matrix

$$x = As$$

The blind source separation (cocktail party) problem

Given repeated observation $\{x^{(i)}; i = 1, ..., m\}$, recover sources $s^{(i)}$ that generated the data $(x^{(i)} = As^{(i)})$

Independent Component Analysis (ICA)

The blind source separation (cocktail party) problem

Given repeated observation $\{x^{(i)}; i=1,\ldots,m\}$, recover sources $s^{(i)}$ that generated the data $(x^{(i)}=As^{(i)})$

Let $W=A^{-1}$ be the **unmixing matrix** Goal of ICA: Find W, such that given $x^{(i)}$, the sources can be recovered by $s^{(i)}=Wx^{(i)}$

$$W = \begin{bmatrix} -w_1^T - \\ \vdots \\ -w_n^T - \end{bmatrix}$$

ICA Ambiguities

Assume data is **non Gaussian**, ICA has two ambiguities:

- ▶ Permutation of original sources $s_1, ..., s_n$
- Scaling of w_i

Why is Gaussian data problematic?

As long as the data is non-Gaussian, given enough data, we can recover the n independent sources.

Densities and Linear Transformations

Theorem 1

If random vector s has density p_s , and x = As for a square, invertible matrix A, then the density of x is

$$p_{x}(x) = p_{s}(Wx)|W|,$$

where $W = A^{-1}$

ICA Algorithm

Joint distributions of *independent* sources $s = \{s_1, \dots, s_n\}$:

$$p(s) = \prod_{i=1}^n p_s(s_i)$$

The density on $x = As = W^{-1}s$:

$$p(x) = \prod_{i=1}^{n} p_{s}(w_{i}^{T}x)|W|$$

Choose the sigmoid function $g(s) = \frac{1}{1+e^{-s}}$ as the *non-Gaussian* cdf for p_s , then

$$p_s(s)=g'(s)$$

ICA Algorithm

Given a training set $\{x^{(1)}, \dots, x^{(m)}\}$, the log likelihood is

$$I(W) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \log g'(w_{j}^{T} x^{(i)}) + \log |W| \right)$$

Stochastic gradient ascent learning rule for sample $x^{(i)}$:

$$W := W + \alpha \left(\begin{bmatrix} 1 - 2g(w_1^T x^{(i)}) \\ \vdots \\ 1 - 2g(w_n^T x^{(i)}) \end{bmatrix} x^{(i)^T} + (W^T)^{-1} \right)$$

Check this at home!

Canonical Correlation Analysis

Canonical Correlation Analysis

Canonical correlation analysis (CCA) finds the associations among two sets of variables.

Example: two sets of measurements of 406 cars:

- Specification: Engine displacement (Disp), horsepower (HP), weight (Wgt)
- Measurement: Acceleration (Accel), MPG

find important features that explain covariation between sets of variables

CCA Definitions

- ▶ Random vectors $X = \begin{bmatrix} x_1 \\ \vdots \\ x_{n_1} \end{bmatrix}$ and $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_2} \end{bmatrix}$
- Covariance matrix $\Sigma_{XY} = cov(X, Y)$
- CCA finds vectors a and b such that the random variables a^TX and b^TY maximize the correlation

$$\rho = corr(a^T X, b^T Y)$$

- ► $U = a^T X$ and $V = b^T Y$ are called **the first pair of** canonical variables
- ightharpoonup Subsequent pairs of canonical variables maximizes ho while being *uncorrelated* with all previous pairs

Review: Singular Value Decomposition

A generalization of eigenvalue decomposition to rectangle $(m \times n)$ matrices M.

$$M = U\Sigma V^{T} = \sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}$$

- ▶ $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices
- ▶ $\Sigma \in \mathbb{R}^{m \times n}$ is a rectangular diagonal matrix. Examples:

$$\Sigma = egin{bmatrix} \sigma_1 & 0 & 0 \ 0 & \sigma_2 & 0 \ 0 & 0 & \sigma_3 \ 0 & 0 & 0 \end{bmatrix} \quad \Sigma = egin{bmatrix} \sigma_1 & 0 & 0 & 0 \ 0 & \sigma_2 & 0 & 0 \ 0 & 0 & \sigma_3 & 0 \end{bmatrix}$$

Diagonal entries $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_k$, $k = \min(n, m)$ are called **singular values of** M.

Review: Singular Value Decomposition

A non-negative real number σ is a singular value for $M \in \mathbb{R}^{m \times n}$ if and only if there exist unit-length $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ such that

$$Mv = \sigma u$$
$$M^{\mathsf{T}} u = \sigma v$$

u is called the **left singular value** of σ , v is called the **right singular value** of σ

Connection to eigenvalue decomposition

Given SVD of matrix $M = U\Sigma V^T$,

- ▶ $M^T M = (V \Sigma^T U^T)(U \Sigma V^T) = V(\Sigma^T \Sigma) V^T \leftarrow v_i$ is an eigenvector of $M^T M$ with eigenvalue σ_i^2
- ► $MM^T = (U\Sigma V^T)(V^T\Sigma^T U) = U(\Sigma\Sigma^T)U^T \leftarrow u_i$ is an eigenvector of MM^T with eigenvalue σ_i^2

CCA Derivations

The original problem:

$$(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}}{\operatorname{argmax}} \operatorname{corr}(a^T X, b^T Y) \tag{1}$$

Assume $\mathbb{E}[x_1] = \ldots = \mathbb{E}[x_{n_1}] = \mathbb{E}[y_1] = \ldots = \mathbb{E}[y_{n_2}] = 0$,

$$corr(a^{T}X, b^{T}X) = \frac{\mathbb{E}[(a^{T}X)(b^{T}Y)]}{\sqrt{\mathbb{E}[(a^{T}X)^{2}]\mathbb{E}[(a^{T}Y)^{2}]}}$$
$$= \frac{a^{T}\Sigma_{XY}b}{\sqrt{a^{T}\Sigma_{XX}a}\sqrt{b^{T}\Sigma_{YY}b}}$$

(1) is equivalent to:

$$(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}, b \in R^{n_2}}{\operatorname{argmax}} \quad a^T \Sigma_{XY} b$$

$$a^T \Sigma_{XX} a = b^T \Sigma_{YY} b = 1$$

$$(2)$$

CCA Derivations

Define $\Omega \in R^{n_1 \times n_2}$, $c \in \mathbb{R}^{n_1}$ and $d \in \mathbb{R}^{n_2}$,

$$\Omega = \sum_{XX}^{-\frac{1}{2}} \sum_{XY} \sum_{YY}^{-\frac{1}{2}}$$

$$c = \sum_{XX}^{\frac{1}{2}} a$$

$$d = \sum_{YY}^{\frac{1}{2}} b$$

(2) can be written as

$$(c_1, d_1) = \underset{c \in \mathbb{R}^{n_1}, d \in \mathbb{R}^{n_2}}{\operatorname{argmax}} c^T \Omega d$$

$$||c||^2 = ||d||^2 = 1$$
(3)

 (c_1, d_1) can be solved by SVD, then the first pair of canonical variables are

$$a_1 = \sum_{XX}^{-\frac{1}{2}} c_1, \quad b_1 = \sum_{YY}^{-\frac{1}{2}} d_1$$

CCA Derivations

$$egin{aligned} (c_1,d_1) &= \mathop{\mathsf{argmax}}\limits_{c \in \mathbb{R}^{n_1},\, d \in \mathbb{R}^{n_2}} c^{\mathcal{T}} \Omega d \ &||c||^2 = ||d||^2 = 1 \end{aligned}$$

Proposition 1

 c_1 and d_1 are the left and right unit singular vectors of Ω with the largest singular value.

Theorem 2

 c_i and d_i are the left and right unit singular vectors of Ω with the ith largest singular value.

CCA Algorithm

Input: Covariance matrices for centered data *X* and *Y*:

- $ightharpoonup \Sigma_{XY}$, invertible Σ_{XX} and Σ_{YY}
- ▶ Dimension $k \le \min(n_1, n_2)$

Output: CCA projection matrices A_k and B_k :

- $\qquad \qquad \textbf{Compute } \Omega = \Sigma_{XX}^{-\frac{1}{2}} \Sigma_{XY} \Sigma_{YY}^{-\frac{1}{2}} \\$
- Compute SVD decomposition of Ω

$$\Omega = \begin{bmatrix} | & \dots & | \\ c_1 & \dots & c_{n_1} \\ | & \dots & | \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} -d_1^T - \\ \vdots \\ -d_{n_2}^T - \end{bmatrix}$$

lacksquare $A_k = \Sigma_{XX}^{-\frac{1}{2}}[c_1,\ldots,c_k]$ and $B_k = \Sigma_{YY}^{-\frac{1}{2}}[d_1,\ldots,d_k]$

Discussion of CCA

- CCA only measures linear dependencies
- ▶ Non-linear generalizations:
 - Kernel CCA (KCCA)
 - ▶ Deep CCA (DCCA)
 - ► Maximal HGR Correlation

Non-linear dependency between x_1 and x_2

Maximal HGR Correlation Analysis

A Non-linear Measure of Dependence

Hirschfeld-Gebelein-Renyi (HGR) maximal correlation

Given random variables X, Y, the HGR maximal correlation is

$$\rho(X; Y) = \max_{f(X), g(Y)} \mathbb{E}[f(X)g(Y)]$$

$$s.t.\mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = 0$$

$$\mathbb{E}[f^{2}(X)] = \mathbb{E}[g^{2}(Y)] = 1$$

where $f: \mathcal{X} \to \mathbb{R}$ and $g: \mathcal{Y} \to \mathbb{R}$ are real-valued functions

Example of HGR maximal correlation

Synthesized data:
$$y^{(i)}=\exp\left(\sin\left(2\pi x^{(i)}+\frac{\epsilon^{(i)}}{2}\right)\right)$$
, $e^{(i)}\approx\mathcal{N}(0,1)$ for $i=1,\ldots,200$

Example of HGR maximal correlation

Use multi-dimensional HGR maximal correlation to learn unsupervised features from MNIST.

Example of HGR maximal correlation

Use multi-dimensional HGR maximal correlation to learn unsupervised features from MNIST.

How to solve it?

Assume X and Y are both discrete with alphabet X, Y.

$$\mathbb{E}[f(x)g(y)] = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{X,Y}(x,y)f(x)g(y)$$

Define
$$\phi(x) \triangleq \sqrt{P_X(x)}f(x)$$
, $\psi(y) \triangleq \sqrt{P_Y(y)}g(y)$, then

$$\mathbb{E}[f(x)g(y)] = \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \frac{P_{X,Y}(x,y)}{\sqrt{P_X(x)P_Y(y)}} \phi(x)\psi(y) = \psi^{\mathsf{T}} \mathcal{B} \phi$$

- ▶ Matrix $B \in \mathbb{R}^{|\mathcal{Y}| \times |\mathcal{X}|}$, where $B(y, x) \triangleq \frac{P_{X,Y}(x,y)}{\sqrt{P_X(x)P_Y(y)}}$
- Vectors $\phi \in \mathbb{R}^{|\mathcal{X}|}, \psi \in \mathbb{R}^{|\mathcal{Y}|}$

How to represent the constraints using ϕ and ψ ?

How to solve it?

Given
$$\phi(x) = \sqrt{P_X(x)}f(x)$$
, $\psi(y) = \sqrt{P_Y(y)}g(y)$

Unit-variance constraints

- $\mathbb{E}[f(x)^2] = 1 \implies \sum_{x} P_X(x) \left(\frac{\phi(x)}{\sqrt{P_X(x)}}\right)^2 = \sum_{x} \phi(x)^2 = ||\phi||^2 = 1$
- Similarly, $\mathbb{E}[g(y)^2] = 1 \implies ||\psi||^2 = 1$

Zero-mean constraints

- $\mathbb{E}[f(x)] = 0 \Longrightarrow \sum_{x} P_X(x) \frac{\phi(x)}{\sqrt{P_X(x)}} = \sum_{x} \phi(x) \sqrt{P_X(x)} = \langle \phi, \sqrt{P_X} \rangle = 0, \text{ i.e.}$ $(\phi \perp \sqrt{P_X})$
- lacksquare Similarly, $\mathbb{E}[g(y)]=0 \implies \langle \psi, \sqrt{P_Y}
 angle = 0$, i.e. $(\psi \perp \sqrt{P_Y})$

HGR Maximal Correlation as an SVD problem

Alternative definition for HGR Maximal Correlation

$$\rho(X, Y) = \max_{\phi \in \mathbb{R}^{|X|}, \psi \in \mathbb{R}^{|Y|}} \psi^T B \phi$$
$$s.t. ||\phi||^2 = ||\psi||^2 = 1$$
$$\phi \perp \sqrt{P_X}, \psi \perp \sqrt{P_Y}$$

Proposition 2

 $(u_1, v_1) = \operatorname{argmax}_{||u||=||v||=1} u^T Bv$ are the largest left and right singular vector of B.

Proposition 3

The largest left and right singular vectors are $\sqrt{P_Y}$ and $\sqrt{P_X}$

Proposition 4

 ψ^* and ϕ^* are the 2nd largest left and right singular vectors of B, respectively.

Alternating Condition Expectation (ACE)

A generalization of power iteration for finding singular vectors:

ACE algorithm for 1d data [Breiman & Friedman 1985]

Breiman, L. and Friedman, J. H. Estimating optimal transformations for multiple regression and correlation. J. Am. Stat. Assoc., 80(391),1985b

Alternating Condition Expectation (ACE)

A generalization of power iteration for finding singular vectors:

ACE algorithm for 1d data [Breiman & Friedman 1985]

Breiman, L. and Friedman, J. H. Estimating optimal transformations for multiple regression and correlation. J. Am. Stat. Assoc., 80(391),1985b

Extension to high dimension case

k-dimensional HGR Maximal Correlation

$$\rho(X; Y) = \max_{\substack{f : \mathcal{X} \to \mathbb{R}^k \\ g : \mathcal{Y} \to \mathbb{R}^k}} \mathbb{E}[f(X)^T g(Y)] \leftarrow \text{ optimize k values in parallel}$$

$$g : \mathcal{Y} \to \mathbb{R}^k$$

$$s.t. \ \mathbb{E}[f_i(X)] = \mathbb{E}[g_i(Y)] = 0, \ \forall i = 1, \dots, k$$

$$\mathbb{E}[f_i(X)^T f_j(X)] = \mathbb{E}[g_i(Y)^T g_j(Y)] = \mathbf{1}\{i = j\}, \ \forall i, j = 1, \dots, k$$

ACE algorithm for k-d data

```
 \begin{array}{ll} \textbf{Data} \colon \text{ Discrete data samples} \\ & x^{(1)}, \dots, x^{(m)} \\ \textbf{Result} \colon \text{ compute } f^*(x), g^*(y) \\ \text{Randomly choose } g(y), y \in \mathcal{Y} \\ \text{such that } \mathbb{E}[g(Y)] = 0 \ ; \\ \textbf{while } \sigma \text{ not converged } \textbf{do} \\ & | f(x) \leftarrow \mathbb{E}_m[g(Y)|X = x] \ ; \\ & \text{ Normalize } f(x) \ \forall x \in \mathcal{X}; \\ & g(y) \leftarrow \mathbb{E}_m[f(X)|Y = y] \ ; \\ & \text{ Normalize } g(y) \ \forall y \in \mathcal{Y}; \\ & \sigma \leftarrow \mathbb{E}_m[f(X)^Tg(Y)]; \\ \end{array}
```

Normalize k-d feature: for all $x \in \mathcal{X}$,

$$f(x) \leftarrow f(x) - \mathbb{E}_m[f(X)]$$

$$f(x) \leftarrow f(x) \mathbb{E}_m[f(X)f(X)^T]^{-\frac{1}{2}}$$

g(y) is normalized similarly for all $y \in \mathcal{Y}$.

end

Discussion on HGR Maximal Correlation

- Useful for modal estimation from data
- ▶ ACE in Python: https://github.com/mace-cream/xyace (limited to discrete X and Y)
- Extension to continuous case: a deep neural network implementation of HGR maximal correlation [Wang et. al. 2018]

An Efficient Approach to Informative Feature Extraction from Multimodal Data, Wang, Lichen, et al. AAAI (2018).