OPERATING MANUAL

MODEL 7142

Multichannel Transceiver PMC/XMC Module

Pentek, Inc. One Park Way Upper Saddle River, NJ 07458 (201) 818–5900 http://www.pentek.com

Copyright © 2006 – 2009

Manual Part No: 800.71420 Rev: B.8 – October 9, 2009

Manual Revision History

Date	Revision	<u>Comments</u>		
4/11/06	Preliminary	Preliminary release.		
9/1/06 to 10/17/06		Chapter 5, removed Local Interrupt Flag & Enable Registers. Sect 5.4, added FPGA Data In/Out Register. Sect 5.8, added PCI DCM Control Register. Sect 5.9, added Local DMA Request Status Register. Sect 5.11, added DMA PCI Interrupt Enable Flag Register. Sect 5.17, added bit D14, PCI Address Hold. Sect 6.5, added bit D01 Test Ramp. Sect 6.13.2, corrected Memory Bank Depth. Sect 1.16, updated Specifications. Sect 2.5, added Option identity (–500) for XMC Connector. Sect 6.13.2, corrected Memory Bank 0 & 1 max depth.		
2/5/07 to 4/13/07		For Rev C PCBs : Sect 2.2, added jumper block JB2, PCI Bus Mode. Sect 1.16, updated Power Specifications. Sect 2.2.1 corrected jumper JB1 factory default settings. Added Sect 7.4, description of ADC to DDR Memory data packing. Sect 1.16, corrected Analog Signal coupling to AC per KBCase 1320. Table 2–5 reversed P/N designations for each signal pair per KBCase 1321. Sect 4.7, added Figure 4–5 timing delays.		
8/9/07	A	Release of manual.		
10/10/07	В	Sect 1.16, corrected input clock spec to '1 to 300 MHz'. Sect 4.4, corrected DAC FIFO size. Chapters 3, 4, 5, & 6, changed name of GBLink FIFOs to User FIFOs. For 7142 PMC with PCI7142 revision date of 10/01/07 or greater. Sect 4.5.5, 5.7.3, 5.21, 5.22, 5.23, added FPGA Load DMA description & registers.		
10/15/07	B.1	Sect 1.6, 1.16, 4.3, 6.12 added Option 101, DAC5687.		
11/5/07	B.2	Sect 1.4, introduced new FPGA terms: PCI FPGA (XC4VFX60) & Signal FPGA (XC4VSX55). Sect 1.13, updated baseline FPGA usage percentages. Moved Vendor Data Sheets to separate document, 809.7x420.		
11/15/07	B.3	Sect 6.14.2, corrected (reversed) BAR2 addresses of User In/Out FIFOs.		
1/9/08	B.4	Sect 2.5, corrected Pentek part # for JTAG PCB to 004.71402.		
2/12/08	B.5	Added Option 100, XC4VFX100 (PCI) FPGA, & Option 110, XC4VLX100 (Signal) FPGA.		
3/3/08	B.6	Sect 2.6.1, corrected full scale input to +10 dBm.		
2/6/09	B.7	Sect 6.5, removed Test Ramp bit D01 per KBCase 1338.		
10/9/09	B.8	Sect 2.4, added note for 3.3V and 5V power supplies. Sect 2.5, updated for Rev B JTAG PCB. Sect 5.18.3, corrected Transfer Interval Count description.		

Warranty

Pentek warrants that all products manufactured by Pentek conform to published Pentek specifications and are free from defects in materials and workmanship for a period of one year from the date of delivery when used under normal operating conditions and within the service conditions for which they were furnished. The obligation of Pentek arising from a warranty claim shall be limited to repairing or at its option, replacing without charge, any product that in Pentek's sole opinion proves to be defective within the scope of the warranty. Pentek must be notified in writing of the defect or nonconformity within the warranty period and the affected product returned to Pentek within thirty days after discovery of such defect or nonconformity. Buyer shall prepay shipping charges, taxes, duties and insurance for products returned to Pentek for warranty service. Pentek shall pay for the return of products to buyer except for products returned from another country.

Pentek shall have no responsibility for any defect or damage caused by improper installation, unauthorized modification, misuse, neglect, inadequate maintenance, or accident, or for any product that has been repaired or altered by anyone other than Pentek or its authorized representatives.

The warranty described above is buyer's sole and exclusive remedy and no other warranty, whether written or oral, is expressed or implied. Pentek specifically disclaims fitness for a particular purpose. Under no circumstances shall Pentek be liable for any direct, indirect, special, incidental, or consequential damages, expenses, losses or delays (including loss of profits) based on contract, tort, or any other legal theory.

Copyrights

With the exception of those items listed below, the contents of this publication are Copyright © 2006 – 2009, Pentek, Inc. All Rights Reserved. Contents of this publication may not be reproduced in any form without written permission.

Trademarks

Pentek, GateFlow, and ReadyFlow are registered trademarks or trademarks of Pentek, Inc.

DuPont is a trademark of E.I. du Pont de Nemours and Company. Linux is a registered trademark of Linus B. Torvaids. LTC is a registered trademark of Linear Technology Corporation. PowerPC is a registered trademark of International Business Machines Corporation. Microsoft are gistered trademark of Microsoft and Windows are registered trademarks of Microsoft Corporation. VxWorks is a registered trademark of Wind River Systems, Inc. Xilinx, MultiLINX, and Virtex are registered trademarks of Xilinx, Inc.

		Page
	Chapter 1: Introduction	
1.1	General Description	17
1.2	Features	17
1.3	Block Diagram	18
	Figure 1-1: Model 7142 Block Diagram	18
1.4	Principle of Operation	19
1.5	Analog to Digital Input Conversion	20
1.6	Digital to Analog Output Conversion	20
1.7	FPGA Digital Interfaces	20
1.8	PMC Baseboard Interface	21
1.9	XMC Baseboard Interface (Option 5xx)	21
1.10	Memory	
1.11	Timing and Synchronization	22
1.12	Interrupts	22
1.13	FPGA Configuration	23
1.14	Board Support Software	24
1.15	Supporting Documentation	
1.16	Specifications	25
	Chapter 2: Installation and Connections	
2.1	Inspection	
2.2	Jumper Block Settings	
	Figure 2-1: Model 7142 PCB Assembly Drawing, Component Side	
	2.2.1 Factory Default Jumpers	
2.3	Table 2–1: Factory Default Jumpers	
2.3	Baseboard Connectors	
	2.3.1 PMC Connectors2.3.2 PCI FPGA I/O Connections (Option 104)	
	Table 2–2: Option 104 PCI FPGA I/O Pin Connections	
	2.3.3 XMC Connection (Option 5xx)	
	2.3.3.1 Communication Protocol	
	2.3.3.2 Connector Pin–out	
	Table 2–3: XMC P5 (Primary) Connector Pin–out	
	2.3.3.3 Serial RapidIO Signals	
2.4	Installing the Model 7142 on a PMC Baseboard	
	Figure 2-2: Typical PMC/XMC Baseboard - Connectors & Mounting Hardware	
	Figure 2–3: Baseboard PMC/XMC Connections	

			Page
		Chapter 2: Installation and Connections (continued)	
2.5	Installi	ng the Pentek JTAG PC Assembly	39
		2-4: Model 7142 - JTAG PC Assembly Mounting	
	2.5.1	JTAG J2 Connector	
		Table 2-4: JTAG J2 Connector	
	2.5.2	JTAG J3 Connector	40
		Table 2-5: JTAG J3 Connector	40
	2.5.3	Xilinx JTAG J4 Connector	41
		Table 2–6: Xilinx JTAG J4 Connector	41
2.6	Front I	Panel Connections	42
	Figure	2-5: Model 7142 Front Panel	42
	2.6.1	Clock Input Connector	42
	2.6.2	Analog Output Connector	42
	2.6.3	Analog Input Connectors	42
	2.6.4	SYNC/GATE Connector	
		Table 2–7: SYNC/GATE Connector Pins	
2.7		Panel LEDs	
	2.7.1	Master LEDs	44
	2.7.2	Terminate LEDs	44
	2.7.3	Over Temperature LED	
	2.7.4	Clock LEDs	
	2.7.5	Overload LEDs	44
		Chapter 3: Model 7142 Memory Maps	
3.1	Overvi	iew	45
3.2	Model	7142 Address Mapping	45
		3–1: Model 7142 PCI Memory Map	
		3–2: Pentek Baseboards PCI Base Address Settings	
3.3		ry Maps	
	3.3.1	PCI7142 Memory Map	
		Table 3-3: PCI7142 Registers Memory Map	
	3.3.2	Signal FPGA Memory Map	
		Table 3-4: Signal FPGA Registers Memory Map	

Page Chapter 4: Model 7142 Resource Operation 4.1 Analog to Digital Input Conversion55 4.2 4.3 Digital To Analog Output56 4.3.1 4.3.2 4.4 Figure 4-1: FIFO Block Diagram58 4.4.1 Initializing the FIFOs59 4.4.2 Table 4–1: FIFO Status Registers......62 4.5 Table 4–2: DMA Use by FIFOs63 4.5.1 DMA Demand Mode Operation64 Table 4-3: Recommended Demand Mode Settings......64 Figure 4–2: FIFO DMA Timing (2 cycles)......65 4.5.2 DMA Non-Demand Mode Operation65 4.5.3 4.5.4 DMA Interrupts67 4.5.5 Figure 4-3: FPGA Load DMA Block Diagram......68 4.6 Figure 4-4: DDR Memory Control Logic......70 DDR Memory FIFOs71 4.6.1 Table 4-4: DDR Memory FIFOs Use71 4.6.2 DDR Memory Triggering71 4.7 4.7.1 Figure 4-5: Gate/Sync/Clock Logic Diagram73 Figure 4-6: Gate/Sync/Clock Signal Path Timing......74 4.7.2 4.7.3 Pre/Post-Triggering76 4.7.4 4.8 4.8.1 4.8.2 4.8.3 Local Bus PCI Interrupts80 4.8.4 DMA PCI Interrupts80 4.8.5 PCI Bus Interrupt Outputs81 4.9

		Page
	Chapter 5: PCI7142 Registers	
5.1	Overview	83
	Figure 5–1: PCI7142 Interface Diagram	
5.2	PCI Interrupt Flag Register	
	Table 5–1: PCI Interrupt Flag Register	
	Table 5–2: PCI Interrupt Flag Register Bits	
5.3	PCI Interrupt Enable Registers	
	Table 5-3: PCI Interrupt Enable Registers	
	Table 5-4: PCI Interrupt Enable Register Bits	
5.4	FPGA Data In/Data Out Registers	
	Table 5-5: FPGA Data In/Data Out Registers	
5.5	Board/Channel Reset Register	
	Table 5-6: Board/Channel Reset Register	
5.6	PCI7142 Revision Register	
	Table 5–7: PCI7142 Revision Register	
5.7	Virtex Config Register	
	Table 5–8: Virtex Config Register	
	5.7.1 Configuration Data [D7:D0]	
	5.7.2 WRITE STROBE	
	5.7.3 DATA SRC	
	5.7.4 DIRECTION	
	5.7.5 INIT	92
	5.7.6 DONE	
	5.7.7 PRGM	92
	5.7.8 LD SRC	92
5.8	PCI DCM Control Register	93
	Table 5-9: PCI DCM Control Register	93
	5.8.1 DCM RST	93
	5.8.2 LOCKD 1/0	
5.9	Local DMA Request Status Register	
	Table 5–10: Local DMA Request Status Register	
5.10	PCI Bus Status Register	
	Table 5-11: PCI Bus Status Register	95
5.11	DMA PCI Interrupt Enable/Flag Register	96
	Table 5–12: DMA PCI Interrupt Enable/Flag Register	
	5.11.1 FPGA DMA FIFO Status	
	5.11.2 FPGA DMA DONE FLAG	97
	5.11.3 FPGA DMA DONE EN	
	5.11.4 INTD/C/B/A	
	5.11.5 DMAn FLAG	
	5.11.6 DMAn EN	
5.12	Local DMA In Address Remap Register	
	Table 5–13: Local DMA In Address Remap Register	
	Table 5–14: Default DMA In Mapping	99

Page Chapter 5: PCI7142 Registers (continued) 5.13 Table 5-15: Local DMA Out Address Remap Register.....100 Table 5-16: Default DMA Out Mapping......100 5.14 Table 5–17: DMA Command Register......101 5.15 Table 5–18: DMA Use by FIFOs102 Table 5-19: DMAx Current Transfer Counter Register102 5.15.1 DMA Active103 5.15.2 5.15.3 5.16 Table 5-20: DMAx Current PCI Address Register.....104 5.17 Table 5-21: DMAx Command/Status Register105 5.17.15.17.2 5.17.3 5.17.4 5.17.5 Signaled System Error Flag106 5.17.6 Received Target Abort Flag107 5.17.7 5.17.8 Signaled Target Abort Flag107 5.17.9 5.17.10 5.17.11 5.17.12 5.17.13 5.17.145.17.15 5.17.165.17.17 5.18 5.18.1 Interrupt Counter109 5.18.2 5.18.3 Transfer Interval Count110 Table 5-23: Valid Transfer Interval Count Values110 5.19 Table 5-24: DMAx Descriptor Transfer Count Registers.....111 5.19.1 5.19.2 Transfer Count112 5.19.3

		Page
	Chapter 5: PCI7142 Registers (continu	ued)
5.20	DMAx Descriptor PCI Address Registers	113
	Table 5-25: DMAx Descriptor PCI Address Registers	113
5.21	FPGA Load DMA Command/Status Register	114
	Table 5–26: FPGA Load DMA Command/Status Register	114
	5.21.1 DMA Status	
	5.21.2 FIFO Reset	
	5.21.3 DMA Start	
5.22	FPGA Load DMA Transfer Count Register	
	Table 5–27: FPGA Load DMA Transfer Count Register	
5.23	FPGA Load DMA PCI Address Register	
	Table 5–28: FPGA Load DMA PCI Address Register	116
	Chapter 6: Signal FPGA Registers	
6.1	Overview	117
	Figure 6-1: Signal FPGA Interface Diagram	117
6.2	ID Readout Register	
	Table 6–1: ID Readout Register	
6.3	TWSI Port Register	
	Table 6-2: TWSI Port Register	119
	Table 6-3: TWSI Bus Addresses	
	6.3.1 LM83 Temperature Sensor	120
	Table 6–4: LM83 Programmable Sensors	
	6.3.2 ADM1024 Hardware Monitor	
	Table 6–5: ADM1024 Programmable Sensors	121
6.4	DCM Control Register	122
	Table 6-6: DCM Control Register	122
	6.4.1 DCM LOCKED	122
	6.4.2 DCM RST	122
	6.4.3 DCM SEL	
	Figure 6-2: DAC FIFO Clock Logic	123
6.5	Miscellaneous Control Register	124
	Table 6-7: Miscellaneous Control Register	124
6.6	FPGA Revision Registers	
	Table 6-8: FPGA Revision Register 1	125
	Table 6–9: FPGA Revision Register 2	
6.7	Core Option Register	126
	Table 6–10: Core Option Register	126

Page

Chapter 6: FPGA Registers (continued)

6.8	Sync B	us Registers	5	127
	Figure	6-3: Gate/S	Sync/Clock Logic Diagram	127
	6.8.1		Bus A Control Register	
			-11: Master Bus A Control Register	
		6.8.1.1	GATE POL	128
		6.8.1.2	GATE SRC	129
		6.8.1.3	SEL GATE	129
		6.8.1.4	SYNC POL	129
		6.8.1.5	SYNC SRC	129
		6.8.1.6	SEL SYNC	130
		6.8.1.7	CLK SRC	130
		6.8.1.8	SEL CLK	130
		6.8.1.9	TERM	130
		6.8.1.10	MASTR	131
	6.8.2	Sync A C	Generator Register	132
			-12: Sync A Generator Register	
	6.8.3		Generator Register	
		Table 6–	-13: Gate A Generator Register	133
	6.8.4		Bus B Control Register	
			-14: Master Bus B Control Register	
		6.8.4.1	GATE POL	
		6.8.4.2	GATE SRC	
		6.8.4.3	SEL GATE	135
		6.8.4.4	SYNC POL	135
		6.8.4.5	SYNC SRC	135
		6.8.4.6	SEL SYNC	136
		6.8.4.7	CLK SRC	136
		6.8.4.8	SEL CLK	136
		6.8.4.9	TERM	136
		6.8.4.10	MASTR	137
	6.8.5	Sync B G	Generator Register	138
		Table 6–	-15: Sync B Generator Register	138
	6.8.6		Generator Register	
			-16: Gate B Generator Register	
	6.8.7	•	sk Register	
		Table 6–	-17: Sync Mask Register	140

				Page
			Chapter 6: FPGA Registers (continued)	
6.9	Interru	pt Registers		141
	6.9.1		nterrupt Enable Register	
		Table 6–1	18: System Interrupt Enable Register	141
		Table 6–1	19: System Interrupt Register Bits	142
	6.9.2		nterrupt Flag Register	
		Table 6-2	20: System Interrupt Flag Register	143
	6.9.3	System In	nterrupt Status Register	144
			21: System Interrupt Status Register	
	6.9.4		on Interrupt LINT Enable Registers	
			22: Application Interrupt LINT Enable Registers	
			23: Application Interrupt Register Bits	
	6.9.5		on Interrupt Flag Register	
			24: Application Interrupt Flag Register	
	6.9.6		on Interrupt Status Register	
	4 D C D		25: Application Interrupt Status Register	
6.10				
	6.10.1		c Bus Select Register	
			26: ADC Sync Bus Select Register	
	6.10.2		O Control Registers	
			27: ADC FIFO Control Registers	
		6.10.2.1	ARM	
		6.10.2.2	PRE/POST TRIGGER	
		6.10.2.3	WORD SWAP	
		6.10.2.4	PACK MODE	
		6.10.2.5	GATE SEL	
		6.10.2.6	GATE CONTROL	
		6.10.2.7	TRIG CLEAR	
		6.10.2.8	HOLD MODE	153
		6.10.2.9	GATE/TRIG	153
		6.10.2.10	FIFO RESET	153
		6.10.2.11	FIFO ENABLE	153
	6.10.3	ADC FIFO	O Status Registers	154
		Table 6–2	28: ADC FIFO Status Registers	154
		6.10.3.1	FIFO Flag Bits	154
		6.10.3.2	TRIGGER CAPTURE	155
		6.10.3.3	FIFO WRITE ENABLED	155
		6.10.3.4	FIFO Status Bits	155

Page **Chapter 6: FPGA Registers** (continued) 6.10 ADC Registers (continued) ADC Post Trigger Delay Length Registers156 6.10.4 Table 6-30: ADC Post Trigger Delay Length MSB Registers......156 6.10.5 ADC Pre Trigger Count Capture Registers157 Table 6-31: ADC Pre Trigger Count Capture LSB Registers......157 Table 6–32: ADC Pre Trigger Count Capture MSB Registers157 6.10.6 Table 6-33: ADC Trigger Length LSB Registers158 Table 6-34: ADC Trigger Length MSB Registers158 6.10.7 Table 6-35: ADC FIFO Interrupt Mask Registers......159 6.10.8 ADC FIFO Almost Empty Level Registers160 Table 6–36: ADC FIFO Almost Empty Level Registers160 6.10.9 ADC FIFO Almost Full Level Registers161 Table 6-37: ADC FIFO Almost Full Level Registers161 6.10.10 ADC FIFO Decimation Divide Registers162 Table 6–38: ADC FIFO Decimation Divide Register......162 6.11 6.11.1 Table 6-39: DAC Sync Bus Select Register.....163 6.11.2 Table 6-40: DAC Control/Status Register164 6.11.2.1 Table 6-41: DAC Control/Status Register States164 Figure 6-4: DAC FIFO Clock Logic.....165 6.11.2.2 6.11.2.3 DAC RESET165 6.11.2.4 6.11.3 Table 6-42: DAC FIFO Control Register166 WORD SWAP167 6.11.3.1 6.11.3.2 PACK MODE167 6.11.3.3 6.11.3.4 GATE CONTROL168 6.11.3.5 TRIG CLEAR168 6.11.3.6 6.11.3.7 6.11.3.8 6.11.3.9

Page **Chapter 6: FPGA Registers** (continued) 6.11 DAC Registers (continued) 6.11.4 Table 6-43: DAC FIFO Status Register......170 6.11.4.1 6.11.4.2 6.11.4.3 FIFO WRITE ENABLED171 6.11.4.4 6.11.5 Table 6-44: DAC Trigger Length LSB Register172 Table 6-45: DAC Trigger Length MSB Register.....172 6.11.6 Table 6-46: DAC FIFO Interrupt Mask Register173 6.11.7 Table 6-47: DAC FIFO Almost Empty Level Register......174 6.11.8 Table 6-48: DAC FIFO Almost Full Level Register175 6.11.9 Table 6-49: DAC Post Trigger Delay Length LSB Register......176 6.12 6.12.1 Table 6-51: DAC5686 Read Register......178 6.12.1.1 6.12.1.2 6.12.2 Table 6-52: DAC5686 Write Register......179 6.12.2.1 6.12.2.2 6.12.2.3 6.12.2.4

Page **Chapter 6: FPGA Registers** (continued) 6.13 DDR Memory Control Register180 6.13.1 Table 6-53: DDR Memory Control Register......180 6.13.1.1 Figure 6-5: DDR Memory Control Logic......181 DAC SOURCE181 6.13.1.2 6.13.1.3 6.13.1.4 BANK SELECT183 6.13.1.5 Table 6-54: DDR Memory Bank Data Paths......183 6.13.2 Table 6-55: DDR Memory Depth LSB Registers184 Table 6-56: DDR Memory Depth MSB Registers......184 6.13.3 Table 6-57: DDR Memory R/W Address LSB Registers......186 Table 6-58: DDR Memory R/W Address MSB Registers......186 6.13.4 Table 6-59: DDR Memory Capture End Address LSB Registers.......187 Table 6-60: DDR Memory Capture End Address MSB Registers187 6.13.5 Table 6-61: DDR Memory Trigger Address LSB Registers188 Table 6-62: DDR Memory Trigger Address MSB Registers188 6.13.6 Table 6-63: DDR Memory FIFO Control Registers......189 FIFO RESET189 6.13.6.1 6.13.6.2 6.13.7 Table 6–64: DDR Memory FIFO Status Registers......190 6.13.7.1 6.13.7.2 DDR Memory FIFO Interrupt Mask Registers192 6.13.8 Table 6–65: DDR Memory FIFO Interrupt Mask Registers192 6.13.9 Table 6–66: DDR Memory FIFO Almost Empty Level Registers...............193 DDR Memory FIFO Almost Full Level Registers194 6.13.10 Table 6-67: DDR Memory FIFO Almost Full Level Registers194

			Page
		Chapter 6: FPGA Registers (continued)	
6.14	User FI	FO Registers	195
	6.14.1	User FIFO Control Registers	
		Table 6-68: User FIFO Control Registers	
		6.14.1.1 FIFO RESET	
		6.14.1.2 FIFO ENABLE	195
	6.14.2	User FIFO Status Registers	196
		Table 6-69: User FIFO Status Registers	
		6.14.2.1 FIFO Flag Bits	
		6.14.2.2 FIFO WRITE ENABLED	197
		6.14.2.3 FIFO Status Bits	197
	6.14.3	User FIFO Interrupt Mask Registers	198
		Table 6-70: User FIFO Interrupt Mask Registers	198
	6.14.4	User FIFO Almost Empty Level Registers	
		Table 6-71: User FIFO Almost Empty Level Registers	
	6.14.5	User FIFO Almost Full Level Registers	
		Table 6–72: User FIFO Almost Full Level Registers	
6.15		FO Registers	
	6.15.1	Test FIFO Control Register	
		Table 6–73: Test FIFO Control Register	
		6.15.1.1 RESET	
		6.15.1.2 ENABLE	
	6.15.2	Test FIFO Status Register	
		Table 6–74: Test FIFO Status Register	
		6.15.2.1 FIFO Flag Bits	
		6.15.2.2 FIFO Status Bits	
	6.15.3	Test FIFO Interrupt Mask Register	
		Table 6–75: Test FIFO Interrupt Mask Register	
	6.15.4	Test FIFO Almost Empty Level Register	205
		Table 6–76: Test FIFO Almost Empty Level Register	
	6.15.5	Test FIFO Almost Full Level Register	
		Table 6-77: Test FIFO Almost Full Level Register	206

Page Chapter 7: Data Routing and Formatting 7.1 Figure 7-1: Data Routing Block Diagram.....207 7.2 7.3 7.3.1 Table 7–1: Data Format – ADC FIFO, Unpacked209 7.3.2 Table 7-2: Data Format - ADC FIFO, Time Packed210 Table 7–3: Data Format – ADC FIFO, Time Packed, Word Swap......210 7.4 ADC FIFO to DDR Memory Routing211 7.4.1 Table 7–4: Data Format – DDR Memory, Channel Unpacked212 Table 7–5: Data Format – DDR Memory, Channel Unpacked, Word Swap......212 7.4.2 Channel Packed213 Table 7-6: Data Format - DDR Memory, Channel Packed......213 Table 7–7: Data Format – DDR Memory, Channel Packed, Word Swap213 7.5 DAC Data Routing and Formats214 7.5.1 Table 7–8: Data Format – DAC FIFO, Unpacked214 Table 7–9: Data Format – DAC FIFO, Unpacked, Word Swap......214 7.5.2 Table 7–10: Data Format – DAC FIFO, 16-bit Packed216 Table 7-11: Data Format - DAC FIFO, 16-bit Packed, Word Swap......216 7.5.3 Table 7–12: Data Format – DAC FIFO, 8-bit Packed218 Table 7–13: Data Format – DAC FIFO, 8-bit Packed, Word Swap......218

		Page
	Appendix A: PCI Configuration Space Registers	
A.1	Introduction	A-1
A.2	PCI Configuration Space Registers	A-1
	Table A-1: PCI Configuration Space Header (Type 00h)	
	Table A-2: PCI Base Address Registers	

Chapter 1: Introduction

1.1 General Description

The Pentek Model 7142 is a multi–channel, high–speed data converter suitable for connection to HF or IF ports of a communications system. It includes four A/D converters and one D/A converter capable of bandwidths to 40 MHz and above. The Model 7142 uses the popular PMC format and supports the emerging VITA 42 XMC standard with optional switched fabric interfaces.

The Model 7142 module can be attached directly to any digital signal processing (DSP) baseboard equipped with a PMC expansion site, such as the Pentek Models 4205 and 4295 VMEbus baseboards.

1.2 Features

Complete software radio interface solution
VITA 42.0 XMC compatible with switched fabric interfaces
Four 125 MHz 14-bit A/Ds
One digital upconverter
One 500 MSPS 16-bit D/A
768 MB of DDR2 SDRAM
Xilinx [®] Virtex [™] -4 FPGAs
Up to 2.0 seconds of delay or data capture at 125 MHz
Dual timing buses for independent input and output clock rates
LVDS clock/sync bus for multi-module synchronization
32 pairs of LVDS connections to the Virtex–4 FPGA for custom I/O
Ruggedized and conduction-cooled versions available

1.3 Block Diagram

The following is a simplified block diagram of the Model 7142 digital transceiver.

The following defines the different uses of the term 'Channel' in this manual (refer also to the block diagram above).

- Analog Input Channels There are four analog input channels, one for each analog RF input, identified as A/D 1, A/D 2, A/D 3, and A/D 4, corresponding to the RF inputs labeled CH 1 IN, CH2 IN, CH3 IN, and CH 4 IN on the front panel.
- **Analog Output Channel** There is one digital upconverter output channel for the DAC5686, identified as DAC, corresponding to the RF output labeled DAC OUT on the front panel.

1.4 Principle of Operation

The Model 7142 is a complete software radio transceiver suitable for direct connection to HF or IF ports of a communications system. Using the popular PMC/XMC module format, it includes four A/D and one D/A converters.

The 7142 is compatible with VITA 42 XMC carrier boards, providing 4x serial data links between the XMC and the carrier. These links support Serial RapidI/O, PCI Express, and Aurora protocols and provide a dedicated high–speed streaming data path.

The 7142 features a Xilinx[®] Virtex–4 XC4VSX55 FPGA (XC4VLX100 with Option 110) and a Xilinx Virtex–4 XC4VFX60 FPGA (XC4VFX100 with Option 100). The XC4VSX55 (or XC4VLX100) FPGA, identified as the "Signal FPGA" in this manual, can be preconfigured with one of a variety of optional IP cores to provide signal translation, processing, and time delay functions. In addition to pre–configured functions, user–created FPGA programming is supported by Pentek's GateFlow[®] Designer's Kit, Model 4953 Option 142. The XC4VFX60 (or XC4VFX100) FPGA, identified as the "PCI FPGA" in this manual, provides board interfaces including PCI. PCI FPGA I/O connections are provided through the optional PMC P4 connector (Option 104).

The 7142 includes a large 768–MByte block of DDR2 SDRAM. This memory is controlled by the Signal FPGA and is organized as three 256–MByte banks, 32 Mbyte deep by 32 bits wide. Separate banks (separate address and data per bank) allow simultaneous access to all banks. This memory can be used as buffer memory when transfering data between board resource or to off–board resources.

Four A/D converters provide input to the Signal FPGA, where the data can be formatted, processed or routed to board resources.

The D/A converter includes both interpolation filters and an upconverter stage capable of producing baseband I & Q and quadrature modulation analog output.

The module includes dual onboard crystal oscillators for clocking, but can also accept external clocks through a front panel MMCX connector. The 7142 is equipped with a dual LVDS front panel clock and sync bus that can synchronize up to eight modules with built—in master/termination functions. The bus format is compatible with other Pentek PMC and VIM modules and will work with the Model 9190 Clock and Sync Distribution Amplifier for synchronizing up to 80 modules.

The 7142 is available in extended temperature and conduction–cooled ruggedized versions (Option 70x).

1.5 Analog to Digital Input Conversion

The Model 7142 is designed for a maximum input sampling frequency of 125 MHz. The front end accepts four full scale analog HF or IF inputs on front panel MMCX connectors at +10 dBm into 50 ohms with transformer coupling into four Linear Technology LTC[®]2255 14-bit 125 MHz A/D converters. The digital outputs are delivered into the Signal FPGA for signal processing or for routing to other module resources.

1.6 Digital to Analog Output Conversion

The Model 7142 is designed with a maximum output sample rate of 320 MSPS in upconverter mode and 500 MSPS in D/A only mode. One Texas Instruments DAC5686 (DAC5687 with Option 101) digital upconverter and D/A accepts a baseband real or complex data stream from the Signal FPGA with signal band—widths up to 40 MHz.

When operating as an upconverter, it interpolates and translates real or complex baseband input signals to any IF center frequency between DC and 160 MHz. It delivers real or quadrature (I+Q) analog outputs through a 320–MSPS 16–bit D/A converter to a front panel MMCX connector at +4 dBm into 50 ohms. If translation is disabled, the DAC5686 acts as an interpolating 16–bit D/A with output sampling rates up to 500 MSPS.

1.7 FPGA Digital Interfaces

The Model 7142 includes a Xilinx Virtex-4 XC4VSX55 FPGA (XC4VLX100 with Option 110), the Signal FPGA, which serves as a control and status engine with data and programming interfaces to each of the on-board resources including the A/D converters, DDR2 SDRAM memory, digital upconverter and D/A converter. The Signal FPGA is factory programmed by Pentek to implement the standard data multiplexing, channel selection, data packing, gating, triggering, and memory control functions specified in this document.

A Xilinx Virtex–4 XC4VFX60 FPGA (XC4VFX100 with Option 100), the PCI FPGA, provides board interfaces including PCI and Serial I/O. This FPGA also includes two PowerPC® cores which can be used as local microcontrollers to create complete application engines. Option 104 adds interface to the P4 PMC connector with 32 pairs of LVDS connections to the PCI FPGA for custom I/O.

The FPGAs can be reprogrammed by the user from a PMC baseboard processor. Refer to Section 1.13, FPGA Configuration, for additional information about gate array configuration programming.

1.8 PMC Baseboard Interface

The Signal FPGA is connected to the PMC baseboard through a PCI Master/Slave interface (Standard PCI 2.2 Interface), the Pentek PCI7142. The PCI7142 is programmed in the PCI FPGA. This interface includes separate DMA controllers for efficient transfers to and from the module. Data widths of 32 or 64 bits and data rates of 33 or 66 MHz are supported.

Through this PCI interface, any processor on the PMC baseboard can receive data from any LTC2255. In addition, any processor on the PMC baseboard can send data to the DAC5686 for output. Any PCI Bus Master can control all programmable features on the board, including the four LTC2255s, the DAC5686, the high–speed interfaces, SDRAM memories, and all FPGA memory map registers.

1.9 XMC Baseboard Interface (Option 5xx)

Model 7142 Option 5xx is compatible with VITA 42.0 XMC carrier boards. This emerging standard provides a 4x 2.5 GHz data link between the XMC and the carrier. This link can support switched interconnect protocols including Serial RapidIO and PCI Express. The interface provides a dedicated high–speed streaming data path independent of the PCI interface.

1.10 Memory

Three independent banks of DDR2 (Double Data Rate 2) SDRAM are available to the Signal FPGA. Built–in memory functions include an A/D data transient capture mode with pre– and post–triggering; a D/A waveform generator mode; and an A/D data delay mode for applications like tracking receivers.

Custom user—installed functions within the Signal FPGA can take advantage of the SDRAM for many other purposes.

The SDRAMs are also available as a resource for the two PowerPC processor cores within the Signal FPGA.

1.11 Timing and Synchronization

Two independent internal timing buses (A and B) can provide either a single clock or two different clock rates for the input and output signals. Each timing bus includes a clock, a sync, and a gate or trigger signal. Signals from either Timing Bus A or B can be selected as the timing source for the A/Ds and the upconverter and the D/As. One external reference clock is accepted, and two internal clocks may be used for each timing bus.

A front panel 26-pin LVDS Clock/Sync connector allows multiple modules to be synchronized.

- In the slave mode, the 7142 accepts differential LVDS inputs that drive the clock, sync, and gate signals for the two internal timing buses.
- In the master mode, the LVDS bus can drive one or both sets of timing signals from the two internal timing buses for synchronizing multiple modules.

Up to seven slave 7142 modules can be driven from the LVDS bus master, supporting synchronous sampling and sync functions across all connected boards. Up to 80 boards may be synchronized with a Model 9190 Clock and Sync Generator.

1.12 Interrupts

The Model 7142 has several maskable interrupt sources. PCI interrupts may be generated by A/D converter overload, DMA transfers, FIFO flags, transitions on Sync Bus gate or sync signals, clock loss on either Sync Bus, or a hardware over–temperature or power supply over–voltage.

Onboard sensors constant monitoring of critical voltages and temperatures on the Model 7142 PCB. The sensors are programmable for voltage and temperature limits. If the voltage/temperature fall outside of the set limits, an interrupt can be generated.

1.13 FPGA Configuration

The Model 7142 includes a Xilinx Virtex–4 XC4VSX55 (or XC4VLX100) Signal FPGA and a Virtex–4 XC4VFX60 (or XC4VFX100) PCI FPGA. The Model 7142 is shipped with a default set of logic functions for the FPGAs, on JTAG–programmable serial EEPROMs. Upon power–up, this set of default functions is loaded into each FPGA. The baseline functionality consumes about 42.8% of the Signal FPGA, and about 46.4% of the PCI FPGA.

The Signal FPGA can be configured with user functions in one of several ways:

- The default Signal FPGA configuration is loaded from the serial EEPROM. This is the mode that the board will come up in at power up. Reprogramming may also be forced at any time through the PMC/PCI interface (see Section 5.7).
- The second method is byte—wide upload from a PMC baseboard processor. This is done by the baseboard processor selecting this mode, then forcing a reprogram and writing the configuration data one byte at a time to the Signal FPGA configuration data register (see Section 5.7). In this way, the Signal FPGA can be rapidly configured for the user's requirement.
- The third method is to configure the Signal FPGA directly via JTAG with a Xilinx Parallel III or MultiLINXTM cable.
- The last method is to use the serial EEPROM configuration method, but the user may overwrite the default programming by reprogramming the EEPROM at the JTAG interface.

NOTE: This last method will permanently overwrite the default configuration supplied by Pentek. The default configuration is supplied with the available GateFlow FPGA Design Kit so that it can be restored if necessary.

The user may modify, add to, or replace the default logic functions on the EEPROMs with user–defined functions. In this way, additional custom hardware signal processing can be accomplished. Pentek has available GateFlow FPGA Design Kits that provide information that a user requires to modify the programmable logic functions for either FPGA. Pentek offers this as a separate development package, Model 4953 Option 142. Contact Pentek at (201) 818–5900 for details about this package.

With Option 104, the Model 7142 provides I/O connections from 64 PCI FPGA spare pins to the VMEbus through a PMC connector. See Section 2.3.2 for description of these connections.

1.14 Board Support Software

The Pentek GateFlow[®] FPGA Design Kit (Model 4953 Option 142) facilitates user—installed FPGA functions using the Xilinx ISE Foundation tool suite. The FPGA Design Kit allows the user to configure FPGAs for implementing preprocessing functions such as convolution, framing, pattern recognition or decompression. The Pentek GateFlow IP Core Libraries include high–performance receivers, FFTs and pulse compression algorithms. Factory installed IP Cores are available.

Several Pentek software packages are available to speed development tasks for the Model 7142. Pentek's Model 4999 Option 142 ReadyFlow[®] Board Support Libraries contain a set of C-language routines for the Model 7142. Refer to the ReadyFlow documentation for the Model 7142, Pentek part #801.71420.

The following available software drivers allow high–level programming for various workstation platforms. Refer to the software documentation indicated for each.

- Pentek Model 4994 Option 142 Linux® Driver, Pentek document #806.71400.
- Pentek Model 4995 Option 142 Windows® Driver, Pentek document #805.71400.
- Pentek Model 4996 Option 142 VxWorks® Driver, Pentek document #803.71400.

1.15 Supporting Documentation

In addition to the operating instructions provided in this manual, copies of the following datasheets for the programmable devices on the Model 7142 are provided in the Pentek Model 7x42 Series Supplemental Manual, part number 809.7x420. This document is available on the CD provided by Pentek, in file **8097x420.pdf** (PDF format).

Linear Technology Corporation – LTC2255/LTC2254 14–Bit ADCs Data Sheet
Texas Instruments – DAC5686 and DAC5687 Digital–to–Analog Converter Data Sheets
Analog Devices, Inc. – ADM1024 System Hardware Monitor Data Sheet
National Semiconductor Corporation – LM83 Temperature Sensor Data Sheet

1.16 Specifications

Analog Signal Inputs

Quantity: Four signal inputs, one per A/D converter

Connector Type: Front panel MMCX connectors **Input Type:** Single–ended, non–inverting

Full Scale Input: +10 dBmCoupling: AC Input Impedance: 50Ω Analog Input RF Transformers:

Quantity: Four (one per input channel)
Type: Coilcraft WBC1–1TLB
3dB Passband: 250 kHz to 700 MHz

Insertion Loss: 0.58 dB max.

Analog Signal Output

Quantity: One signal output

Connector Type: Front panel MMCX connector **Output Type:** Single–ended, non–inverting

Coupling: AC Output Impedance: 50Ω Standard Output Transformer:

Type: Coilcraft WBC4–6TLB
3dB Passband: 300 kHz to 700 MHz
Output Power: +4 dBm into 50 ohms

Option 002 Output Transformer: Type: TBD

External Clock Inputs

Quantity: One clock input

Connector Type: Front panel MMCX connector **Signal Type:** Sine wave, 45–55% duty cycle

Frequency Range: 1 to 300 MHz * Voltage Range: 0 to +10 dBm Coupling: AC coupled

Input Impedance: 50Ω

* Limited by ADC or DAC characteristics (see next page)

Internal Clocks

Sync Bus A125 MHz crystal oscillatorSync Bus B100 MHz crystal oscillator

Sync/Gate Bus Inputs/Outputs

Connector Type: Front panel 26–pin connector

Signals: Clock In/Out: 4 pins (two LVDS pairs, Clk A & Clk B)

Sync In/Out: 4 pins (two LVDS pairs, Sync A & Sync B) Gates In/Out: 4 pins (two LVDS pairs, Gate A & Gate B)

TTL Sync In: 1 pin (single-ended)

TTL Gate/Trigger In: 1 pin (single-ended)

1.16 Specifications (continued)

Analog/Digital Converters

Quantity: Four

Device: Linear Technology LTC2255 (see Section 1.15)

Sampling Rate: 1 MHz to 125 MHz

Resolution: 14 bits

A/D Data Reduction: Data from the A/Ds can be written directly into the Signal

FPGA at a rate equal to the A/D clock decimated by

any value between 1 and 4096

Clock Source: Clock from Sync bus A or B, each bus clock source can be

from onboard crystal oscillator, front panel external

clock, or LVDS clock, selectable via software

Digital/Analog Upconverter

Quantity: One

Device:

Standard: Texas Instruments DAC5686 Option 101: Texas Instruments DAC5687

(see Section 1.15)

Sampling Rate: 320 MSPS in upconvert mode, 500 MSPS in D/A only mode

DAC Resolution: 16 bits

Input Data Rate: 160M 32-bit words per second

Coupling: Transformer coupled Output IF: DC to 160 MHz *

Output Signal: Analog, real or quadrature

Interpolation filters: 2x, 4x, 8x, 16x (16x not available in DAC5687)

Clock Source: Clock from Sync bus A or B, each bus clock source can be

from onboard crystal oscillator, front panel external

clock, or LVDS clock, selectable via software

* Since maximum data bandwidth is 160 MHz,

synthesizing IF signals at this limit is not practical

Field-Programmable Gate Arrays

Signal FPGA

Device:

Standard: Xilinx Virtex-4 XC4VSX55
Option 110: Xilinx Virtex-4 XC4VLX100
Configuration: Factory programmed by Pentek:

A/D, D/A, DDR2 Memory, FIFOs

PCI FPGA

Device:

Standard: Xilinx Virtex-4 XC4VFX60
Option 100: Xilinx Virtex-4 XC4VFX100
Configuration: Factory programmed by Pentek:

PCI7142 PCI interface,

DMA High-speed interfaces (Option 5xx)

FPGA I/O (Option 104): PMC **P4** connector, with 64 I/O lines to FPGA

1.16 Specifications (continued)

DDR2 SDRAM memory

Size: 768 MBytes, organized as three banks of 64 M x 32

Interface: Interfaced to Signal FPGA

Bus Width: 32 bits

Clocks

Quantity: Two, one per Sync Bus

Clock Sources: Separately selectable from external clocks or onboard

crystal oscillator

External Clocks: Front panel LVDS Sync Bus (one Clock input) or

front panel MMCX connector inputs

Internal Clocks 125 MHz crystal oscillator, Sync Bus A

100 MHz crystal oscillator, Sync Bus B

<u>Gates</u>

Quantity: Two, one per Sync Bus

Gate Sources: Separately selectable from external or internal gates **External Gates**: Front panel LVDS Sync Bus (two Gate inputs) or

TTL Gate/Trigger input

Internal Gates: Generated from programmable registers (one for each gate)

Gate Polarity: Programmable polarity for external gates

Gate Disable: Each gate can be disabled; when gate is disabled, writes

default to enabled

Triggering: Each gate can be programmed as a trigger, programmable

trigger length up to 16,383 FIFO writes

Syncs 5

Quantity: Two, one per Sync Bus

Sync Source: Separately selectable from external or internal syncs External Sync: Front panel LVDS Sync Bus (two Sync inputs) or

TTL Sync input

Internal Sync: Generated from programmable register

Sync Pulse Width: 2 clock cycles, minimum

Temperature and Voltage Sensors

Temperature

Quantity: Three PCB temperature sensors (see Section 6.3.1)
Controller: National Semiconductor LM83 (see Section 1.15)

Interface: TWSI Bus

Voltage

Quantity: Eight PCB voltage sensors (see Section 6.3.2)
Controller: Analog Devices ADM1024 (see Section 1.15)

Interface: TWSI Bus

1.16 **Specifications** (continued)

PCI Interface

Device: Pentek PCI7142 Core (programmed in Xilinx XC4VFX60 or

XC4VFX100 FPGA)

Compliance: Standard PCI 2.2 Interface

Support for 3.3V signal logic only

PCI Bus: 64 bit, 66 MHz (can support 32 bit and/or 33 MHz)

Local Bus: 64 bit, 66 MHz

Data Transfer Modes: Direct Slave Mode and DMA Master/Slave Mode,

9-channel demand-mode and chaining controller

Control: Any PCI bus master (such as a PMC baseboard processor)

can control both sync buses, the LTC2255s, DAC5686,

the FPGAs, and all onboard registers.

XMC Interface (Option 5xx)

Compliance: VITA 42.0-2005 XMC draft standard

XMC Connector: 114-pin (Samtec ASP-105885-01 or equivalent) **Protocol:** ANSI/VITA 42.2–2006 XMC SerialRapidIO standard

Estimated Power Consumption

Current Draw: +3.3V $\pm 5V$ +12V<u>-12V</u> 1.35A

2.5A 0.2A * NC

* 12V only connected to voltage test circuit

Board Power: 16.95 Watts

Note: Power estimated with FPGA base circuitry. Power consumption increases

when custom user FPGA designs are added. Different aspects of the FPGA design contribute to power consumption such as clock speed, number of logic slices used, number of DSP multipliers used, and amount of block RAM used.

Physical

Dimensions: Standard PMC module

Depth: 149.0 mm (5.87 in) Height: 74 mm (2.91 in) Weight: 127.6 grams (4.5 oz)

1.16 Specifications (continued)

Environmental

Commercial Applications – Level L0

Cooling Method (operational): Forced Air Operating Temperature: 0° to 50°C Storage Temperature: -20° to 90°C

Relative Humidity: 0 to 95% non-condensing

Pentek Ruggedization Level L1

Option Number: -701
Cooling Method (operational): Forced Air
Operating Temperature: 0° to 50° C

Storage Temperature: -40° C to $+100^{\circ}$ C Sine Vibration: 2g, 20-500 Hz

Random Vibration: $0.01g^2/Hz$, 20-2000 Hz

Shock: 10g, 11ms

Relative Humidity:

No conformal coating: 0% to 95% non-condensing Conformal coating (Option 720): 0% to 100% non-condensing

Pentek Ruggedization Level L2

Option Number: -702
Cooling Method (operational): Forced Air
Operating Temperature: -20° to 65° C
Storage Temperature: -40° C to +100° C
Sine Vibration: 2g, 20–500 Hz

Random Vibration: $0.04g^2/Hz$, 20-2000 Hz

Shock: 20g, 11ms

Relative Humidity:

No conformal coating: 0% to 95% non–condensing Conformal coating (Option 720): 0% to 100% non–condensing

Pentek Ruggedization Level L3

Call Pentek

Pentek Ruggedization Level L4

Call Pentek

Page 30

This page is intentionally blank

Chapter 2: Installation and Connections

2.1 Inspection

After unpacking, inspect the unit carefully for possible damage to connectors or components. If any damage is discovered, contact Pentek immediately at (201) 818–5900. Please save the shipping container and packing material in case reshipment is required.

2.2 Jumper Block Settings

The following subsections describe user operating parameters that are set by shorting jumpers on the Model 7142 PCB. The user should not change jumpers that are not described in the following sections—those are reserved for factory test and setup purposes only.

The term jumper (or jumper block) refers to a group of two or more pins on a circuit board that may be connected in pairs by a shorting jumper to set or change an operating characteristic of the board. Pins connected in this manner are referred to as installed, or shorted. Pins that are not connected are referred to as removed, or open. The shorting jumpers used on the Model 7142 are for 0.020" (0.51 mm) square pins spaced on 0.079" (2.00 mm) centers. These jumpers are Pentek part number 356.00010 (DuPontTM part number 86730–001, or equivalent).

As shipped from the factory, all jumpers are installed in default positions on your board. The default operating parameters they select may or may not meet your requirements. Before installing your Model 7142 onto a PMC baseboard, please review the following subsections to determine whether you need to change any of these settings.

All user jumpers are located on the component side of the board, which is illustrated in Figure 2–1 on the next page.

The user should not change jumpers that are not identified in this chapter—all other jumpers are reserved for factory test and setup purposes only.

2.2 Jumper Block Settings (continued)

An assembly drawing of the component side of the Model 7142 PCB is provided below, showing all user jumpers and connectors on the board.

2.2.1 Factory Default Jumpers

Jumper blocks **JB1** and **JB2**, located on the 7142 PCB (see Figure 2–1 above), are for factory use only and should not be changed by the user.

Table 2–1: Factory Default Jumpers			
Jumper Pins 1–2 Pins 3–4		Default Function	
JB1	Removed *	Removed *	Factory Use only
JB2	Removed *	Installed *	Factory Use only
* Factory Default Setting NOTE: JB2 is present only on boards identified as Rev C or greater.			

DO NOT change these Factory Default jumper settings!

2.3 Baseboard Connectors

The following subsections describe the baseboard PMC/XMC connectors on the Model 7142 PCB. Refer to Figure 2–1 for the location of these connectors on the PCB.

2.3.1 PMC Connectors

The Model 7142 PMC is connected to a PMC baseboard using four 64–pin connectors, designated **P1**, **P2**, **P3**, and **P4** (see Figure 2–1). These connectors are defined by the PMC standard, as follows:

- **P1** and **P2** (PMC Pn1 and Pn2 respectively) contain the 32–bit PCI bus interface plus associated power, ground, reserved pins, and other necessary signals.
- **P3** (PMC Pn3) supports expansion to the 64-bit PCI bus interface.
- **P4** (PMC Pn4) supports user–defined I/O. Standard PMC–VME baseboards route the 64 signals from the **P4** connector directly to the VMEbus backplane **P2** connector.

2.3.2 PCI FPGA I/O Connections (Option 104)

Option 104 for the Model 7142 provides connections from the PCI FPGA spare pins to the VMEbus using PMC connector **P4** on the PMC baseboard. These connections are programmed for low–voltage differential signals (LVDS) in the default FPGA configuration—the user can reconfigure these pins with custom FPGA programming (see Section 1.13, FPGA Configuration).

With Option 104, 32 pairs of LVDS connections are routed from the PCI FPGA to PMC connector **P4**. These are available to the user for custom I/O. Table 2–2, on the following page, identifies the LVDS signals that are connected from the FPGA to the PMC **P4** connector pins, and to the VMEbus **P2** connector pins on standard PMC–VME baseboards.

Use the FPGA Data In/Out Registers, Section 5.4, to read and write data using this connector.

- The LVDS_OUT signals in Table 2–2 are outputs from the FPGA Data Out Register, with LVDS_OUT_x0 from bit D0 and LVDS_OUT_x15 from bit D15.
- The LVDS_IN signals in Table 2–2 are inputs to the FPGA Data In Register, with LVDS_IN_x0 from bit D0 and LVDS_IN_x15 from bit D15.

2.3 Baseboard Connectors (continued)

2.3.2 PCI FPGA I/O Connections (continued)

Table 2–2: Option 104 PCI FPGA I/O Pin Connections									
FPGA Signal	PMC P4 Pin	VME P2 Pin	FPGA Signal	PMC P4 Pin	VME P2 Pin				
LVDS_OUT_P0	1	USER-C1	LVDS_OUT_P8	33	USER-C17				
LVDS_IN_P0	2	USER-A1	LVDS_IN_P8	34	USER-A17				
LVDS_ OUT _N0	3	USER-C2	LVDS_ OUT _N8	35	USER-C18				
LVDS_IN_N0	4	USER-A2	LVDS_IN_N8	36	USER-A18				
LVDS_ OUT _P1	5	USER-C3	LVDS_ OUT _P9	37	USER-C19				
LVDS_IN_P1	6	USER-A3	LVDS_IN_P9	38	USER-A19				
LVDS_ OUT _N1	7	USER-C4	LVDS_ OUT _N9	39	USER-C20				
LVDS_IN_N1	8	USER-A4	LVDS_IN_N9	40	USER-A20				
LVDS_ OUT _P2	9	USER-C5	LVDS_ OUT _P10	41	USER-C21				
LVDS_IN_P2	10	USER-A5	LVDS_IN_P10	42	USER-A21				
LVDS_ OUT _N2	11	USER-C6	LVDS_ OUT _N10	43	USER-C22				
LVDS_IN_N2	12	USER-A6	LVDS_IN_N10	44	USER-A22				
LVDS_ OUT _P3	13	USER-C7	LVDS_ OUT _P11	45	USER-C23				
LVDS_IN_P3	14	USER-A7	LVDS_IN_P11	46	USER-A23				
LVDS_ OUT _N3	15	USER-C8	LVDS_ OUT _N11	47	USER-C24				
LVDS_IN_N3	16	USER-A8	LVDS_IN_N11	48	USER-A24				
LVDS_ OUT _P4	17	USER-C9	LVDS_ OUT _P12	49	USER-C25				
LVDS_IN_P4	18	USER-A9	LVDS_IN_P12	50	USER-A25				
LVDS_ OUT _N4	19	USER-C10	LVDS_ OUT _N12	51	USER-C26				
LVDS_IN_N4	20	USER-A10	LVDS_IN_N12	52	USER-A26				
LVDS_ OUT _P5	21	USER-C11	LVDS_ OUT _P13	53	USER-C27				
LVDS_IN_P5	22	USER-A11	LVDS_IN_P13	54	USER-A27				
LVDS_ OUT _N5	23	USER-C12	LVDS_ OUT _N13	55	USER-C28				
LVDS_IN_N5	24	USER-A12	LVDS_IN_N13	56	USER-A28				
LVDS_ OUT _P6	25	USER-C13	LVDS_ OUT _P14	57	USER-C29				
LVDS_IN_P6	26	USER-A13	LVDS_IN_P14	58	USER-A29				
LVDS_ OUT _N6	27	USER-C14	LVDS_ OUT _N14	59	USER-C30				
LVDS_IN_N6	28	USER-A14	LVDS_IN_N14	60	USER-A30				
LVDS_ OUT _P7	29	USER-C15	LVDS_ OUT _P15	61	USER-C31				
LVDS_IN_P7	30	USER-A15	LVDS_IN_P15	62	USER-A31				
LVDS_ OUT _N7	31	USER-C16	LVDS_ OUT _N15	63	USER-C32				
LVDS_IN_N7	32	USER-A16	LVDS_IN_N15	64	USER-A32				

2.3 Baseboard Connectors (continued)

2.3.3 XMC Connection (Option 5xx)

Option 5xx for the Model 7142 provides an XMC connector that follows the VITA 42.0–2005 XMC Switched Mezzanine Card Auxiliary Standard (draft). See Figure 2–1 for location of this connector, **P5**, on the PCB.

2.3.3.1 Communication Protocol

The 7142 XMC interface uses the ANSI/VITA 42.2–2006 standard for Serial RapidIO as the communication protocol, which provides two 4x data streaming interfaces to the XMC carrier board.

2.3.3.2 Connector Pin-out

The 114-pin XMC connector is Samtec ASP-105885-01 or equivalent. The pin definitions are shown below.

Table 2–3: XMC P5 (Primary) Connector Pin–out									
Pin	Α	В	С	D	E	F			
01	DP00+ (S0_TD0+)	DP00- (S0_TD0-)	3.3V	DP01+ (S0_TD1+)	DP01- (S0_TD1-)	VPWR			
02	GND	GND	TRST#	GND	GND	MRSTI#			
03	DP02+ (S0_TD2+)	DP02- (S0_TD2-)	3.3V	DP03+ (S0_TD3+)	DP03- (S0_TD3-)	VPWR			
04	GND	GND	TCK	GND	GND	MRSTO#			
05	DP04+ (S1_TD0+)	DP04- (S1_TD0-)	3.3V	DP05+ (S1_TD1+)	DP05- (S1_TD1-)	VPWR			
06	GND	GND	TMS	GND	GND	+12V			
07	DP06+ (S1_TD2+)	DP06- (S1_TD2-)	3.3V	DP07+ (S1_TD3+)	DP07- (S1_TD3-)	VPWR			
08	GND	GND	TDI	GND	GND	-12V			
09	DP08+ (RFU)	DP08- (RFU)	RPS (UD)	DP09+ (RFU)	DP09- (RFU)	VPWR			
10	GND	GND	TDO	GND	GND	GA0			
11	DP10+ (S0_RD0+)	DP10- (S0_RD0-)	MBIST#	DP11+ (S0_RD1+)	DP11- (S0_RD1-)	VPWR			
12	GND	GND	GA1	GND	GND	MPRESENT#			
13	DP12+ (S0_RD2+)	DP12- (S0_RD2-)	3.3V AUX	DP13+ (S0_RD3+)	DP13- (S0_RD3-)	VPWR			
14	GND	GND	GA2	GND	GND	MSDA			
15	DP14+ (S1_RD0+)	DP14- (S1_RD0-)	RPS (UD)	DP15+ (S1_RD1+)	DP15- (S1_RD1-)	VPWR			
16	GND	GND	MVMRO	GND	GND	MSCL			
17	DP16+ (S1_RD2+)	DP16- (S1_RD2-)	RFU	DP17+ (S1_RD3+)	DP17- (S1_RD3-)	RFU			
18	GND	GND	RPS (UD)	GND	GND	RPS (UD)			
19	DP18+ (RFU)	DP18- (RFU)	RPS (UD)	DP19+ (RFU)	DP19- (RFU)	RPS (UD)			

Signal names of Serial RapidIO implementation per VITA 42.2–2006 shown in parentheses. See Section 2.3.3.3, next page, for definition of these Serial RapidIO signals.

2.3 Baseboard Connectors (continued)

2.3.3 XMC Connector (continued)

2.3.3.3 Serial RapidIO Signals

The following XMC connector signals are defined by the XMC Serial RapidIO Protocol Layer Standard, ANSI/VITA 42.2–2006.

□ S0_RD[0..3] – Link 0 Differential Receive

These signals are used by the XMC to receive high–speed protocol–specific data from the carrier over Link 0. These signals shall tolerate EIA–644 signal levels. If the XMC implements a 1X link over Link 0, signal S0_RD[0] shall be used.

□ S0_TD[0..3] – Link 0 Differential Transmit

These signals are used by the XMC to transmit high–speed protocol–specific data from the carrier over Link 0. These signals shall tolerate EIA–644 signal levels. If the XMC implements a 1X link over Link 0, signal S0_TD[0] shall be used.

☐ S1_RD[0..3] – Link 1 Differential Receive

These signals are used by the XMC to receive high–speed protocol–specific data from the carrier over Link 1. These signals shall tolerate EIA–644 signal levels. If the XMC implements a 1X link over Link 1, signal S1_RD[0] shall be used.

☐ S1 TD[0..3] – Link 1 Differential Transmit

These signals are used by the XMC to transmit high–speed protocol–specific data from the carrier over Link 1. These signals shall tolerate EIA–644 signal levels. If the XMC implements a 1X link over Link 1, signal S1_TD[0] shall be used.

2.4 Installing the Model 7142 on a PMC Baseboard

The Model 7142 mounts on the component (top) side of a PMC/XMC baseboard or carrier. Refer to the operating manual supplied with your baseboard for any specific instructions. A typical PMC/XMC baseboard is illustrated in Figure 2–2 below.

REMOVE POWER to the PMC/XMC baseboard before installation!

DO NOT plug the Model 7142 into a baseboard or carrier that uses any PMC signal voltage level other than 3.3 volts.

(Note that the PMC key in Figure 2–2 below is in the 3.3V position.)

The Model 7142 requires both a 3.3V and a 5V power supply.

Ensure that the PMC/XMC baseboard or carrier you are using has both a 3.3V and a 5V power supply.

2.4 Installing the Model 7142 on a PMC Baseboard (continued)

Attach an ESD strap to your wrist—attach the other end to a ground source. The ESD strap must be secured both to your wrist and to ground throughout the procedure.

Pentek PMC baseboards are supplied with PMC standoffs, PMC voltage key, and mounting screws. Ensure that the standoffs and key are installed on the baseboard at the locations shown in Figure 2–3 below.

- 1) Remove the PMC blank front panel from the front panel of the PMC baseboard (see Figure 2–2 on the prior page).
- 2) Position the Model 7142 front panel into the opening from behind the PMC baseboard front panel, and position the module so that the PMC card's key hole is over the PMC key on the baseboard (see below).

- 3) **GENTLY but firmly**, press down on the areas of the PMC card opposite the connectors to fully seat the module's connectors into the baseboard. The connectors on the underside of the PMC card should connect smoothly with the corresponding connectors on the baseboard.
- 4) Using two flat—head Phillips screws (supplied with the 7142), secure the Model 7142 PCB to the baseboard standoffs, through the PCB's standoff holes.

2.5 Installing the Pentek JTAG PC Assembly

If you need to use JTAG connections to the Model 7142 (e.g., to download code to the configuration EEPROMs or to the PowerPC core), a special JTAG connector PC assembly, Pentek part # 004.71402, must be mounted onto the 7142 board. This unit may be mounted onto the 7142 after the 7142 has been mounted onto a PMC baseboard.

An assembly drawing of the Model 7142 is provided below, mounted onto a PMC baseboard, showing the JTAG PC assembly mounting orientation.

To mount the JTAG PC assembly onto the 7142:

- 1) First remove the two flat-head mounting screws that secure the Model 7142 PCB to the baseboard standoffs (those used in the last step in Section 2.4).
- 2) Plug the JTAG PC assembly into the connector **J1** on the 7142 (see figure above), and secure to the 7142 and baseboard using the two captive screws on the JTAG board.

The JTAG **J2**, **J3**, and **J4** connectors are described on the following pages.

2.5 Installing the Pentek JTAG PC Assembly (continued)

The following subsections describe the JTAG connectors on the 004.71402 PC assembly. Refer to Figure 2–4 for the location of these connectors on the JTAG PC assembly.

2.5.1 JTAG J2 Connector

The JTAG **J2** In–Circuit Program Chain (ISP) connector provides a connection to download programs and to perform boundary–scan tests on 7142 PCB devices. This connector is reserved for Pentek factory use only. The pinout for this 14–pin header is given in the following table.

	Table 2–4: JTAG J2 Connector					
Signal	Pin Number			Pin Number	Signal	
TMS	1	_		2	No Connection	
TDI	3	1	2	4	GND	
+3.3 V	5	" -	4 6	6	No Connection	
TDO	7		8	8	GND	
TCK_RET	9		■ 10 ■ 12	10	No Connection	
TCK	11	13	14	12	GND	
No Connection	13			14	No Connection	

2.5.2 JTAG J3 Connector

The JTAG **J3** connector provides a connection to download programs and to control the execution of those programs on the PowerPC core in the FPGA. This connector is reserved for Pentek factory use only. The pinout for this 16–pin header is given in the following table.

	Table 2–5: JTAG J3 Connector					
Signal	Pin Number		Pin Number	Signal		
PPC_TDO	1	_	2	No Connection		
PPC_TDI	3	1 1 2	4	PPC_TRST_N		
No Connection	5	3 • • 4	6	+ 3.3 V		
PPC_TCK	7	5 ■ ■ 6 7 ■ ■ 8	8	No Connection		
PPC_TMS	9	9 • 10	10	No Connection		
PPC_HALT_N	11	11 ■ ■ 12 13 ■ ■ 14	12	No Connection		
No Connection	13	15 🔳 🔳 16	14	No Connection		
No Connection	15		16	GND		

2.5 Installing the Pentek JTAG PC Assembly (continued)

2.5.3 Xilinx JTAG J4 Connector

The Xilinx JTAG **J4** connector provides a connection to a Xilinx standard JTAG cable interface to download programs and perform boundary scan tests on 7142 PCB devices. This connector is reserved for Pentek factory use only. The pinout for this 14–pin connector is given in the following table.

Table 2–6: Xilinx JTAG J4 Connector					
Signal	Pin Number		Pin Number	Signal	
GND	1	_	2	+3.3 V	
GND	3	1 2	4	TMS	
GND	5	3 ■ ■ 4 5 ■ ■ 6	6	TCK	
GND	7	7 8	8	TDO	
GND	9	9 10 10 12	10	TDI	
GND	11	13 🔳 14	12	No Connection	
GND	13		14	No Connection	

NOTE: The Xilinx JTAG J4 connector is provided only on Revision B of the Pentek 004.71402 JTAG PC assembly. For Revision A JTAG PC assembly, use the JTAG **J2** connector, Section 2.5.1, to download programs and perform boundary scan tests.

2.6 Front Panel Connections

The Model 7142 PMC front panel is illustrated in the figure at the right. The front panel includes six MMCX microminiature coaxial connectors for input/output of analog and clock signals, and a 26-pin Sync bus connector labeled **SYNC/GATE**. These connectors are described in the following subsections.

The front panel also includes eleven LED indicators. These are described in Section 2.7, on page 44.

2.6.1 Clock Input Connector

EXT CLK

The front panel has one MMCX microminiature coaxial socket receptacle, labeled **EXT CLK**, for input of an external sample clock.

The external clock signal must be a sine wave of 0 to 10 dBm, with a frequency range from 1 to 125 MHz for ADC use, or from 1 to 300 MHz for DAC use.

The clock can be used as the reference signal to derive the sample clock signal for the A/D converters and digital receivers. This input is enabled using the Master Control Register SEL CLK bit (see Section 6.8.1.8).

Figure 2–5: Model 7142 Front Panel

2.6.2 Analog Output Connector

DAC OUT

The front panel has one MMCX microminiature coaxial socket receptacle for analog signal output, labeled **DAC OUT**.

The analog output signal is within the range of +4 dBm (–2 dBm with Option 002). This output is driven by an RF transformer into 50 Ω output impedance.

2.6.3 Analog Input Connectors

CH1 – CH4 IN

The front panel has four MMCX microminiature coaxial socket receptacles for analog signal inputs, labeled **CH 1, CH 2**, **CH 3**, and **CH 4 IN**, one for each A/D input channel.

The analog input signal must be +10 dBm full scale. Each input drives an RF transformer, with 50 Ω input impedance.

2.6 Front Panel Connections (continued)

2.6.4 SYNC/GATE Connector

SYNC/GATE

The 26-pin **SYNC/GATE** front panel connector provides two independent sets of clock, sync, and gate input/output pins for the low-voltage differential signal (LVDS) timing buses. When the Model 7142 is a bus Master, these pins output the buses to other slave units. When the 7142 is a bus Slave, these pins input all LVDS bus signals from a bus Master. This connector also provides two TTL Gate/Sync inputs. The mating 26-pin connector is Pentek part # 353.02607 (ERNI # 214346).

The following table shows the connector pin configuration.

Table 2–7: SYNC/GATE Connector Pins						
Signal	Pin				Pin	Signal
TTL GATE	B1				A1	GND
TTL SYNC	B2			,	A2	GND
GATE A-	В3	B1 ▶	• •	A1	A3	GATE A+
GND	B4	B2 B3	•	A2 A3	A4	GND
SYNC A-	B5	B4	• •	A4	A 5	SYNC A+
GND	B6	B5 B6	• •	A5 A6	A6	GND
CLK A-	B7	B7	•	A7	A7	CLK A+
GND	B8	B8 B9		A8 A9	A8	GND
GATE B-	B9	B10 B11	•	A10 A11	A9	GATE B+
GND	B10	B11	• •	A11	A10	GND
SYNC B-	B11	B13	• •	A13	A11	SYNC B+
GND	B12				A12	GND
CLK B-	B13				A13	CLK B+

2.7 Front Panel LEDs

The Model 7142 front panel has eleven LED indicators, illustrated in Figure 2–5.

2.7.1 Master LEDs

MAS A, MAS B

There are two yellow **MAS** LEDs, one for each Sync Bus (**A** or **B**). The **MAS** LED illuminates when this Model 7142 is the bus Master (MASTR bit D00 = 1, Master Bus A/B Control Register, Section 6.8.1.10 or 6.8.4.10). The bus Master generates all sync/gate/clock signals on the LVDS bus. When only a single 7142 is used, it must be a Master.

2.7.2 Terminate LEDs

TRM A, TRM B

There are two yellow **TRM** LEDs, one for each Sync Bus (**A** or **B**). The yellow **TRM** LED illuminates when this Model 7142 bus is terminated (TERM bit D01 = 1, Master Bus A/B Control Register, Section 6.8.1.10 or 6.8.4.10). When this 7142 is the last Slave unit or only unit on the Sync Bus, you must enable bus termination.

2.7.3 Over Temperature LED

TMP

There are several temperature/voltage sensors on the Model 7142 PCB. The sensor thresholds are set by a PMC baseboard processor (see TWSI Port Register, Section 6.3). When an over–temperature or over–voltage condition is indicated, the red **TMP** LED illuminates on the front panel. In addition, an over–temperature/voltage interrupt is available to any processor on the PMC baseboard (see Table 6–19, page 142).

NOTE:

You must set up the temperature/voltage sensors' serial port following power on of the PMC baseboard (see TWSI Port Register, Section 6.3).

2.7.4 Clock LEDs

CLK DET A, CLK DET B

There are two green **CLK DET** LEDs, one for each Sync Bus (**A** or **B**). The green **CLK DET** LEDs illuminates when a valid sample clock signal is detected on the associated Sync Bus. If the LED is not illuminated, then no clock has been detected and no data from the input stream can be processed.

2.7.5 Overload LEDs

CH1 - CH4 OV

There are four red overload LEDs, one for each A/D input, labeled **CH1**, **CH2**, **CH3**, and **CH4 OV**. Each LED is an indicator for an A/D overload detection function in each LTC2255 A/D converter. When an overload indication is set by the LTC2255, the associated OVLD LED illuminates. In addition, an OVLD interrupt may be generated from each A/D overload indication to a PMC baseboard processor (see Table 6–19, page 142).

Chapter 3: Model 7142 Memory Maps

3.1 Overview

This chapter describes access to the Model 7142 resources and control registers from a PMC baseboard processor. Memory maps to these resources are given from the baseboard processor's viewpoint.

3.2 Model 7142 Address Mapping

The Model 7142 is controlled from the PMC baseboard through a PCI Bus interface, the Pentek PCI7142 core. All 7142 resources are configured to be available in PCI Address Space. Table 3–1, below, provides a memory map for these resources, relative to PCI Base Address Registers BAR0, BAR1, and BAR2 in the PCI7142. (See Appendix A for a summary of the PCI Configuration Space Registers for the Model 7142.)

Table 3–1: Model 7142 PCI Memory Map					
PCI Bus Address * Resource Information					
BAR0 + 0x00000 - 0x0FFFF	PCI7142 Registers	Section 3.3.1			
BAR0 + 0x10000 - 0x1FFFF	User Space	Section 4.9			
BAR1 + 0x00000 - 0x7FFFF Reserved -					
BAR2 + 0x0000 - 0xFFFF Signal FPGA Registers Section 3.3.2					
* For Pentek PMC baseboards, see Table 3-2, below for the PCI Base Address settings.					

Table 3-2: Pentek Baseboards PCI Base Address Settings					
Base Address Register Model 4205 Model 4295					
BAR0	0x4400 0000	TBD			
BAR1	0x4408 0000	TBD			
BAR2	0x4410 0000	TBD			

3.3 Memory Maps

3.3.1 PCI7142 Memory Map

The following is the memory map of the PCI7142 internal registers accessible from a PMC baseboard processor. All PCI7142 registers are 32 bits wide, however since the PCI local bus is a 64-bit data path, the register addresses are in increments of 64 bits (8 bytes). Refer to Chapter 5 for description of these registers.

NOTE: Access these registers using PCI Base Address Register 0 (**BAR0**).

Table 3–3: PCI7142 Registers Memory Map				
Address Offset *	Register	Access	Information	
	Interrupt Control Registers			
0x0000	PCI Interrupt Flag	R/Clr	Section 5.2	
0x0008	Reserved	_	_	
0x0010	PCI Interrupt A Enable	R/W		
0x0018	PCI Interrupt B Enable	R/W	Section 5.3	
0x0020	PCI Interrupt C Enable	R/W	Section 5.3	
0x0028	PCI Interrupt D Enable	R/W		
0x0030 - 0x0048	Reserved	-	_	
	Board Option Registers			
0x0050	FPGA Data In (Option 104 only)	R.O.	Continu F 4	
0x0058	FPGA Data Out (Option 104 only)	R/W	Section 5.4	
0x0060 - 0x0068	Reserved	_	_	
	PCI7142 Control Registers			
0x0070	Board/Channel Reset	R/W	Section 5.5	
0x0078	PCI7142 Revision	R.O.	Section 5.6	
0x0080	Virtex Config Register	R/W	Section 5.7	
0x0088	PCI DCM Control	R/W	Section 5.8	
0x0090	Local DMA Request Status	R.O.	Section 5.9	
0x0098	Reserved	_	_	
0x00A0	PCI Bus Status	R.O.	Section 5.10	
0x00A8	DMA PCI Interrupt Enable/Flag	R/Clr	Section 5.11	
0x00B0	Local DMA In Base Address Remap	R/W	Section 5.12	
0x00B8	Local DMA Out Base Address Remap	R/W	Section 5.13	
* O	ffset from PCI Base Address Register 0 (BAR0), see	e Table 3-2		

3.3.1 PCI7142 Memory Map (continued)

NOTE: Access these registers using PCI Base Address Register 0 (**BAR0**).

Table 3-3: PCI7142 Registers Memory Map (continued)						
Address Offset *	Register	Access	Information			
DMA Control Registers						
0x0100	DMA Command	R/W	Section 5.14			
0x0108	Reserved	_	_			
0x0110	DMA0 Current Transfer Counter	R.O.	Section 5.15			
0x0118	DMA0 Current PCI Address	R.O.	Section 5.16			
0x0120	DMA1 Current Transfer Counter	R.O.	Section 5.15			
0x0128	DMA1 Current PCI Address	R.O.	Section 5.16			
0x0130	DMA2 Current Transfer Counter	R.O.	Section 5.15			
0x0138	DMA2 Current PCI Address	R.O.	Section 5.16			
0x0140	DMA3 Current Transfer Counter	R.O.	Section 5.15			
0x0148	DMA3 Current PCI Address	R.O.	Section 5.16			
0x0150	DMA4 Current Transfer Counter	R.O.	Section 5.15			
0x0158	DMA4 Current PCI Address	R.O.	Section 5.16			
0x0160	DMA5 Current Transfer Counter	R.O.	Section 5.15			
0x0168	DMA5 Current PCI Address	R.O.	Section 5.16			
0x0170	DMA6 Current Transfer Counter	R.O.	Section 5.15			
0x0178	DMA6 Current PCI Address	R.O.	Section 5.16			
0x0180	DMA7 Current Transfer Counter	R.O.	Section 5.15			
0x0188	DMA7 Current PCI Address	R.O.	Section 5.16			
0x0190	DMA8 Current Transfer Counter	R.O.	Section 5.15			
0x0198	DMA8 Current PCI Address	R.O.	Section 5.16			
	DMA Descriptor Registers					
0x1000	DMA0 Command/Status	R/W	Section 5.17			
0x1008	DMA0 Transfer Interval Counter	R/W	Section 5.18			
0x1010	DMA0 Descriptor 0 Transfer Count	R/W	Section 5.19			
0x1018	DMA0 Descriptor 0 PCI Address	R/W	Section 5.20			
0x1020	DMA0 Descriptor1 Transfer Count	R/W	Section 5.19			
0x1028	DMA0 Descriptor 1 PCI Address	R/W	Section 5.20			
0x1030	DMA0 Descriptor 2 Transfer Count	R/W	Section 5.19			
0x1038	DMA0 Descriptor 2 PCI Address	R/W	Section 5.20			
0x1040	DMA0 Descriptor 3 Transfer Count	R/W	Section 5.19			
0x1048	DMA0 Descriptor 3 PCI Address	R/W	Section 5.20			
* Of	fset from PCI Base Address Register 0 (BAR0), se	ee Table 3-2				

3.3.1 PCI7142 Memory Map (continued)

NOTE: Access these registers using PCI Base Address Register 0 (**BAR0**).

Table 3–3: PCI7142 Registers Memory Map (continued)							
Address Offset *	Register	Access	Information				
	DMA Descriptor Registers (continued)						
0x1050 - 0x1FF8	Reserved	_	_				
0x2000 - 0x2048	DMA1 (same as ten DMA0 registers)	R/W	(see DMA0)				
0x2050 - 0x2FF8	Reserved	_	-				
0x3000 - 0x3048	DMA2 (same as ten DMA0 registers)	R/W	(see DMA0)				
0x3050 - 0x3FF8	Reserved	_	-				
0x4000 - 0x4048	DMA3 (same as ten DMA0 registers)	R/W	(see DMA0)				
0x4050 - 0x4FF8	Reserved	_	-				
0x5000 - 0x5048	DMA4 (same as ten DMA0 registers)	R/W	(see DMA0)				
0x5050 - 0x5FF8	Reserved	_	-				
0x6000 - 0x6048	DMA5 (same as ten DMA0 registers)	R/W	(see DMA0)				
0x6050 - 0x6FF8	Reserved	_	-				
0x7000 - 0x7048	DMA6 (same as ten DMA0 registers)	R/W	(see DMA0)				
0x7050 - 0x7FF8	Reserved	_	-				
0x8000 - 0x8048	DMA7 (same as ten DMA0 registers)	R/W	(see DMA0)				
0x8050 - 0x8FF8	Reserved	_	-				
0x9000 - 0x9048	DMA8 (same as ten DMA0 registers)	R/W	(see DMA0)				
0x9050 - 0x9FF8	Reserved	_	_				
	Signal FPGA Load DMA Registers						
0xA000	FPGA Load DMA Command/Status	R/W	Section 5.21				
0xA008	Reserved	_	_				
0xA010	FPGA Load DMA Transfer Count	R/W	Section 5.22				
0xA018	FPGA Load DMA PCI Address	R/W	Section 5.23				
0xA020 - 0xFFF8	Reserved	_	_				
* 0	ffset from PCI Base Address Register 0 (BAR0), see	e Table 3–2					

3.3.2 Signal FPGA Memory Map

The following is the memory map of the Signal FPGA registers accessible from a PMC baseboard. All Signal FPGA registers are 16 bits wide, however since the PCI local bus is a 64-bit data path, the register addresses are in increments of 64 bits (8 bytes). Refer to Chapter 6 for description of these registers.

NOTE: Access these registers using PCI Base Address Register 2 (**BAR2**).

Table 3–4: Signal FPGA Registers Memory Map				
Address Offset *	Register	Access	Information	
	Global Registers			
0x8000	ID Readout	R.O.	Section 6.2	
0x8008	Reserved	_	_	
0x8010	Reserved	_	_	
0x8018	TWSI Port	R/W	Section 6.3	
0x8020	DCM Control	R/W	Section 6.4	
0x8028	Miscellaneous Control	R/W	Section 6.5	
0x8030	Reserved	_	_	
0x8038	FPGA Revision 1	R.O.	Coation 6.6	
0x8040	FPGA Revision 2	R.O.	Section 6.6	
0x8048	Core Option	R.O.	Section 6.7	
0x8050 - 0x8078	Reserved	_	_	
	Clock/Sync/Gate Registers			
0x8080	Master Bus A Control	R/W	Section 6.8.1	
0x8088	Sync A Generator	R/W	Section 6.8.2	
0x8090	Gate A Generator	R/W	Section 6.8.3	
0x8098	Master Bus B Control	R/W	Section 6.8.4	
0x80a0	Sync B Generator	R/W	Section 6.8.5	
0x80a8	Gate B Generator	R/W	Section 6.8.6	
0x80b0	Sync Mask	R/W	Section 6.8.7	
0x80b8 - 0x80f8	Reserved	_	_	
* O	ffset from PCI Base Address Register 2 (BAR2), se	ee Table 3-2		

3.3.2 Signal FPGA Memory Maps (continued)

NOTE: Access these registers using PCI Base Address Register 2 (**BAR2**).

Table 3–4: Signal FPGA Registers Memory Map (continued)						
Address Offset *	Register	Access	Information			
Interrupt Registers						
0x8100	System Interrupt Enable	R/W	Section 6.9.1			
0x8108	System Interrupt Flag	R/Clr	Section 6.9.2			
0x8110	System Interrupt Status	R.O.	Section 6.9.3			
0x8118	Application Interrupt Lint0 Enable	R/W				
0x8120	Application Interrupt Lint1 Enable	R/W	Castian C O 4			
0x8128	Application Interrupt Lint2 Enable	R/W	Section 6.9.4			
0x8130	Application Interrupt Lint3 Enable	R/W				
0x8138	Application Interrupt Flag	R/Clr	Section 6.9.5			
0x8140	Application Interrupt Status	R.O.	Section 6.9.6			
	FIFO Status Registers					
0x8148	ADC 1 FIFO Status	R/Clr				
0x8150	ADC 2 FIFO Status	R/Clr	Section 6.10.3			
0x8158	ADC 3 FIFO Status	R/Clr	Section 6.10.3			
0x8160	ADC 4 FIFO Status	R/Clr				
0x8168	User In FIFO Status	R/Clr	Section 6.14.2			
0x8170	User Out FIFO Status	R/Clr	Section 6.14.2			
0x8178	DAC FIFO Status	R/Clr	Section 6.11.4			
0x8180	Reserved	_	_			
0x8188	DDR Memory Read FIFO Status	R/Clr	Continuo (10.7			
0x8190	DDR Memory Write FIFO Status	R/Clr	Section 6.13.7			
0x8198	Test FIFO Status	R/Clr	Section 6.15.2			
0x81a0 - 0x83f8	Reserved	_	-			
* O	ffset from PCI Base Address Register 2 (BAR2), se	e Table 3-2				

3.3.2 Signal FPGA Memory Maps (continued)

NOTE: Access these registers using PCI Base Address Register 2 (**BAR2**).

Tal	Table 3–4: Signal FPGA Registers Memory Map (continued)					
Address Offset *	Register	Access	Information			
DAC, DAC FIFO Registers						
0x8400	DAC Sync Bus Select	R/W	Section 6.11.1			
0x8408	DAC Control / Status	R/W	Section 6.11.2			
0x8410	DAC FIFO Control	R/W	Section 6.11.3			
0x8418	DAC FIFO Trigger Length LSB	R/W	Section 6.11.5			
0x8420	DAC FIFO Trigger Length MSB	R/W	Section 6.11.5			
0x8428	DAC FIFO Interrupt Mask	R/W	Section 6.11.6			
0x8430	DAC FIFO Almost Empty Level	R/W	Section 6.11.7			
0x8438	DAC FIFO Almost Full Level	R/W	Section 6.11.8			
0x8440	DAC FIFO Post Trigger Delay Length LSB	R/W	Section 6.11.9			
0x8448	DAC FIFO Post Trigger Delay Length MSB	R/W	Section 6.11.9			
0x8450 - 0x8468	Reserved	-	_			
0x8470	DAC5686 Read	R.O	Coation 6.10			
0x8478	DAC5686 Write	W.O	Section 6.12			
0x8480 - 0x87f8	Reserved	-	_			
	DDR Memory Registers					
0x8800	DDR Memory Control	R/W	Section 6.13.1			
0x8808	DDR Memory Bank 0 Depth LSB	R/W				
0x8810	DDR Memory Bank 0 Depth MSB	R/W				
0x8818	DDR Memory Bank 1 Depth LSB	R/W	0			
0x8820	DDR Memory Bank 1 Depth MSB	R/W	Section 6.13.2			
0x8828	DDR Memory Bank 2 Depth LSB	R/W				
0x8830	DDR Memory Bank 2 Depth MSB	R/W				
0x8838	DDR Memory Bank 0 R/W Address LSB	R/W				
0x8840	DDR Memory Bank 0 R/W Address MSB	R/W	Section 6.13.3			
0x8848	DDR Memory Bank 1 R/W Address LSB	R/W				
0x8850	DDR Memory Bank 1 R/W Address MSB	R/W				
0x8858	DDR Memory Bank 2 R/W Address LSB	R/W				
0x8860	DDR Memory Bank 2 R/W Address MSB	R/W				
* O	ffset from PCI Base Address Register 2 (BAR2), see	Table 3-2				

3.3.2 Signal FPGA Memory Maps (continued)

NOTE: Access these registers using PCI Base Address Register 2 (**BAR2**).

Tal	Table 3–4: Signal FPGA Registers Memory Map (continued)				
Address Offset *	Register	Access	Information		
	DDR Memory Registers (continued)				
0x8868	DDR Memory Bank 0 Capture End Address LSB	R.O.			
0x8870	DDR Memory Bank 0 Capture End Address MSB	R.O.			
0x8878	DDR Memory Bank 1 Capture End Address LSB	R.O.	Section 6.13.4		
0x8880	DDR Memory Bank 1 Capture End Address MSB	R.O.	Section 6.13.4		
0x8888	DDR Memory Bank 2 Capture End Address LSB	R.O.			
0x8890	DDR Memory Bank 2 Capture End Address MSB	R.O.			
0x8898	DDR Memory Bank 0 Trigger Address LSB	R.O.			
0x88a0	DDR Memory Bank 0 Trigger Address MSB	R.O.	Section 6.13.5		
0x88a8	DDR Memory Bank 1 Trigger Address LSB	R.O.	Section 6.13.5		
0x88b0	DDR Memory Bank 1 Trigger Address MSB	R.O.			
0x88b8 - 0x88f8	Reserved	_	_		
	ADC FIFO Registers				
0x8900	ADC 1 Post Trigger Delay Length LSB	R/W			
0x8908	ADC 1 Post Trigger Delay Length MSB	R/W			
0x8910	ADC 2 Post Trigger Delay Length LSB	R/W			
0x8918	ADC 2 Post Trigger Delay Length MSB	R/W	Section 6.10.4		
0x8920	ADC 3 Post Trigger Delay Length LSB	R/W	Section 6.10.4		
0x8928	ADC 3 Post Trigger Delay Length MSB	R/W			
0x8930	ADC 4 Post Trigger Delay Length LSB	R/W			
0x8938	ADC 4 Post Trigger Delay Length MSB	R/W			
0x8940	ADC 1 Pre Trigger Count Capture LSB	R.O.			
0x8948	ADC 1 Pre Trigger Count Capture MSB	R.O.			
0x8950	ADC 2 Pre Trigger Count Capture LSB	R.O.			
0x8958	ADC 2 Pre Trigger Count Capture MSB	R.O.	Section 6.10.5		
0x8960	ADC 3 Pre Trigger Count Capture LSB	R.O.	3ection 6.10.5		
0x8968	ADC 3 Pre Trigger Count Capture MSB	R.O.			
0x8970	ADC 4 Pre Trigger Count Capture LSB	R.O.			
0x8978	ADC 4 Pre Trigger Count Capture MSB	R.O.			
0x8980 - 0x8bf8	Reserved	_	_		
* 0	* Offset from PCI Base Address Register 2 (BAR2), see Table 3-2				

3.3.2 Signal FPGA Memory Maps (continued)

NOTE: Access these registers using PCI Base Address Register 2 (**BAR2**).

Table 3-4: Signal FPGA Registers Memory Map (continued)				
Address Offset *	Register	Access	Information	
	ADC FIFO Registers (continued)			
0x8c00	ADC Sync Bus Select	R/W	Section 6.10.1	
0x8c08	ADC 1 FIFO Control	R/W	Section 6.10.2	
0x8c10	ADC 1 Trigger Length LSB	R/W	Section 6.10.6	
0x8c18	ADC 1 Trigger Length MSB	R/W	Section 6.10.6	
0x8c20	ADC 1 FIFO Interrupt Mask	R/W	Section 6.10.7	
0x8c28	ADC 1 FIFO Almost Empty Level	R/W	Section 6.10.8	
0x8c30	ADC 1 FIFO Almost Full Level	R/W	Section 6.10.9	
0x8c38	ADC 1 FIFO Decimation Divider	R/W	Section 6.10.10	
0x8c40	ADC 2 FIFO Control	R/W	Section 6.10.2	
0x8c48	ADC 2 Trigger Length LSB	R/W	Coation 6 10 6	
0x8c50	ADC 2 Trigger Length MSB	R/W	Section 6.10.6	
0x8c58	ADC 2 FIFO Interrupt Mask	R/W	Section 6.10.7	
0x8c60	ADC 2 FIFO Almost Empty Level R/V		Section 6.10.8	
0x8c68	ADC 2 FIFO Almost Full Level R/W		Section 6.10.9	
0x8c70	ADC 2 FIFO Decimation Divider		Section 6.10.10	
0x8c78	ADC 3 FIFO Control	R/W	Section 6.10.2	
0x8c80	ADC 3 Trigger Length LSB	R/W	Section 6.10.6	
0x8c88	ADC 3 Trigger Length MSB	R/W	Section 6.10.6	
0x8c90	ADC 3 FIFO Interrupt Mask	R/W	Section 6.10.7	
0x8c98	ADC 3 FIFO Almost Empty Level	R/W	Section 6.10.8	
0x8ca0	ADC 3 FIFO Almost Full Level	R/W	Section 6.10.9	
0x8ca8	ADC 3 FIFO Decimation Divider	R/W	Section 6.10.10	
0x8cb0	ADC 4 FIFO Control	R/W	Section 6.10.2	
0x8cb8	ADC 4 Trigger Length LSB	R/W	Section 6.10.6	
0x8cc0	ADC 4 Trigger Length MSB	R/W	Gection 0.10.0	
0x8cc8	ADC 4 FIFO Interrupt Mask R/W		Section 6.10.7	
0x8cd0	ADC 4 FIFO Almost Empty Level	R/W	Section 6.10.8	
0x8cd8	ADC 4 FIFO Almost Full Level	R/W	Section 6.10.9	
0x8ce0	ADC 4 FIFO Decimation Divider	R/W	Section 6.10.10	
0x8ce8 - 0x8d30	Reserved	-	_	
* Offset from PCI Base Address Register 2 (BAR2), see Table 3–2				

3.3.2 Signal FPGA Memory Maps (continued)

NOTE: Access these registers using PCI Base Address Register 2 (**BAR2**).

Table 3-4: Signal FPGA Registers Memory Map (continued)				
Address Offset * Register		Access	Information	
	Test FIFO Registers			
0x8d38	Test FIFO Control	R/W	Section 6.15.1	
0x8d40	Test FIFO Flags Interrupt Mask	R/W	Section 6.15.3	
0x8d48	Test FIFO Almost Empty Level	R/W	Section 6.15.4	
0x8d50	Test FIFO Almost Full Level	R/W	Section 6.15.5	
	DDR Memory FIFO Registers			
0x8d58	DDR Memory Read FIFO Control	R/W	Section 6.13.6	
0x8d60 - 0x8d68	Reserved	_	_	
0x8d70	DDR Memory Read FIFO Flags Interrupt Mask	R/W	Section 6.13.8	
0x8d78	DDR Memory Read FIFO Almost Empty Level	R/W	Section 6.13.9	
0x8d80	DDR Memory Read FIFO Almost Full Level	R/W	Section 6.13.10	
0x8d88	DDR Memory Write FIFO Control	R/W	Section 6.13.6	
0x8d90 - 0x8d98	Reserved	_	_	
0x8da0	0x8da0 DDR Memory Write FIFO Flags Interrupt Mask		Section 6.13.8	
0x8da8 DDR Memory Write FIFO Almost Empty Level		R/W	Section 6.13.9	
0x8db0	0x8db0 DDR Memory Write FIFO Almost Full Level		Section 6.13.10	
0x8db8 - 0x8df8	Reserved	_	_	
	User Registers			
0x8e00	Reserved	-	_	
0x8e08	User Out FIFO Control	R/W	Section 6.14.1	
0x8e10	User Out FIFO Flags Interrupt Mask	R/W	Section 6.14.3	
0x8e18	User Out FIFO Almost Empty Level	R/W	Section 6.14.4	
0x8e20	User Out FIFO Almost Full Level	R/W	Section 6.14.5	
0x8e28	User In FIFO Control	R/W	Section 6.14.1	
0x8e30	User In FIFO Flags Interrupt Mask	R/W	Section 6.14.3	
0x8e38	User In FIFO Almost Empty Level	R/W	Section 6.14.4	
0x8e40	User In FIFO Almost Full Level	R/W	Section 6.14.5	
0x8e48 - 0x8e78	Reserved	_		
0x8e80 - 0x8f78	User Signal FPGA Address Space	R/W	Section 4.9	
0x8f80 - 0x8ff8	Reserved	_	-	
* (* Offset from PCI Base Address Register 2 (BAR2), see Table 3-2			

Chapter 4: Model 7142 Resource Operation

4.1 Overview

This chapter describes operation of the Model 7142 resources from a PMC baseboard processor.

4.2 Analog to Digital Input Conversion

The Model 7142 is designed for a maximum input sampling frequency of 125 MHz. It accepts four analog RF inputs at +4dBm full scale into 50 ohms on front panel MMCX connectors. Each of the four inputs is transformer coupled, and digitized by a Linear Technology LTC2255 14–bit, 125–MHz A/D converter (ADC).

Refer to the Linear Technology LTC2255 data sheet (see Section 1.15) for description of the A/D converter operation. There are no user–programmable registers for the LTC2255 on the Model 7142.

The outputs of the A/Ds are delivered, in parallel, to the Signal FPGA through 14–bit paths. Each of these data paths is routed to an PCI Interface FIFO, as follows:

- A/D 1 output to ADC 1 FIFO
- A/D 2 output to ADC 2 FIFO
- A/D 3 output to ADC 3 FIFO
- A/D 4 output to ADC 4 FIFO

See Section 7.3, ADC Data Routing and Formatting, for additional information about the formatting of ADC FIFO data. See Section 4.4 for description of FIFO Operation.

Each A/D output may also be routed to the DDR2 Memory, see Section 4.6.

The clock source for the A/D converters can be selected from one of two different sources, Sync Bus A or Sync Bus B. See Section 4.7 for description of the board's Timing and Synchronization.

4.3 Digital To Analog Output

The Model 7142 is designed with a maximum output sample rate of 320 MHz in upconverter mode and 500 MSPS in D/A only mode. One Texas Instruments 16–bit DAC5686 (DAC5687 with Option 101) is used to produce an analog output capable of operating in D/A only and quadrature modulation modes. The D/A has built–in interpolation filters settable to 2x, 4x, 8x, and 16x (16x is not provided in the DAC5687).

NOTE: The following refer only to the DAC 5686. In all instances, the same operating descriptions apply to the DAC 5687 with Option 101.

When operating as an upconverter, the DAC5686 interpolates and translates real or complex baseband input signals to any IF center frequency between DC and 160 MHz. It delivers real or quadrature (I+Q) analog outputs through a 320 MHz 16–bit D/A converter to a front panel MMCX connector at +4dBm full scale into 50 ohms.

In D/A only mode, the DAC5686 acts as a dual interpolating 16–bit D/A producing one output with sampling rates up to 500 MSPS. In modes that include frequency translation, the DAC5686 accepts real or complex inputs and produces an upconverted and interpolated, real or complex single output.

NOTE: The Model 7142 routes only the channel B output of the DAC5686 to the front panel DAC OUT connector. However, depending on the mode of operation, both DAC input data channels A and B may be used.

Refer to the Texas Instruments DAC5686 data sheet (see Section 1.15) for description of DAC operation. Setup and operation of the DAC5686 is controlled by a set of Signal FPGA registers, described in Section 6.12.

The Signal FPGA routes data from the DAC FIFO to DAC5686 channels A and B, depending on the packing mode selected. See Section 7.5, DAC Data Routing and Formatting, for additional information about these data packing modes and formats.

The clock and sync signals for the D/A converter can be selected from one of two different sources, Sync Bus A or Sync Bus B. See Section 4.7 for description of the board's Timing and Synchronization.

4.3 Digital To Analog Output (continued)

4.3.1 DAC5686 Digital Input Modes

Two digital data input modes are defined by the DAC5686. Data (I and Q) can be input to the DAC5686 from the Signal FPGA as separate parallel streams on two data buses (**Dual Bus Mode**), or as a single interleaved data stream on one data bus (**Interleaved Bus Mode**). Refer to the Texas Instruments DAC5686 data sheet (see Section 1.15) for detailed descriptions of these input modes.

The Signal FPGA provides different packing modes of DAC FIFO data that support these digital data input modes. Refer to Section 7.5, DAC Data Routing and Formatting, for additional information about these data packing modes and formats. See Section 4.4 for description of FIFO Operation.

4.3.2 DAC5686 Operating Modes

The DAC5686 provides two modes of operation: **Dual-channel Baseband I&Q Transmission** and **Quadrature Modulation**.

- In dual-channel baseband I&Q transmission mode, the DAC5686 provides two independent digital to analog conversion paths. In this mode, interpolation filtering increases the DAC update rate, which reduces sinx/x roll-off and enables the use of relaxed analog post-filtering.
- In quadrature modulation mode, on-chip mixing provides baseband—to-IF up-conversion. Mixing frequencies are flexibly chosen with a 32-bit programmable NCO. Channel carrier selection is performed at baseband by complex mixing in the Signal FPGA. Baseband I and Q from the Signal FPGA are input to the DAC5686, which interpolates the low date rate signal to higher data rates. The single DAC output (channel B) is the final IF single-sideband spectrum presented to RF.

Refer to the Texas Instruments DAC5686 data sheet (see Section 1.15) for detailed descriptions of these operating modes.

4.4 FIFO Operation

There are ten user–programmable PCI Interface FIFOs in the Signal FPGA, which provide direct high–speed data transfer between the PMC baseboard PCI bus and the various resources on the 7142.

NOTE: PCI bus interface FIFOs are 64 bits wide. In this manual, data formats are described in reference to 32–bit words. Thus, whenever data is read from or written to the FIFOs, it is formatted as two 32–bit words for each FIFO word.

- Each ADC, User, Memory, and Test FIFO is 8 KBytes deep (1K x 64 on PCI bus side, 2K x 32 on device side).
- The DAC FIFO is 64 KBytes deep (8K x 64 on PCI bus side, 16K x 32 on DAC side).

The following block diagram illustrates the interfaces and data flow for these FIFOs.

The following pages identify the 7142 registers used for setting the FIFO boundary flag levels, enabling interrupts from FIFO flags, and monitoring FIFO status bits.

4.4.1 Initializing the FIFOs

1) First, set the programmable Almost Full and Almost Empty boundary flag levels using the applicable FIFO AE/AF Level Registers, as listed below.

FIFO	Register	Reference	
ADC 1 FIFO	ADC 1 FIFO AE/AF Levels		
ADC 2 FIFO	ADC 2 FIFO AE/AF Levels	Sections 6 10 9 6 10 0	
ADC 3 FIFO	ADC 3 FIFO AE/AF Levels	Sections 6.10.8, 6.10.9	
ADC 4 FIFO	ADC 4 FIFO AE/AF Levels		
DAC FIFO	DAC FIFO E/AF Levels	Sections 6.11.7, 6.11.8	
DDR Memory Read FIFO	DDR Memory Read FIFO AE/AF Levels	Cookiese C 10 0 C 10 10	
DDR Memory Write FIFO	DDR Memory Write FIFO AE/AF Levels	Sections 6.13.9, 6.13.10	
User Out FIFO	User Out FIFO AE/AF Levels	Castiana C 14 4 C 14 F	
User In FIFO	User In FIFO AE/AF Levels	Sections 6.14.4, 6.14.5	
Test FIFO	Test FIFO AE/AF Levels	Sections 6.15.4, 6.15.5	

2) Next, reset the FIFO using bit D01 of the applicable FIFO Control Register, listed below.

FIFO	Register	Reference	
ADC 1 FIFO	ADC 1 FIFO Control		
ADC 2 FIFO	ADC 2 FIFO Control	Section 6.10.2	
ADC 3 FIFO	ADC 3 FIFO Control	Section 6.10.2	
ADC 4 FIFO	ADC 2 FIFO Control		
DAC FIFO	DAC FIFO Control	Section 6.11.3	
DDR Memory Read FIFO	FO DDR Memory Read FIFO Control		
DDR Memory Write FIFO	DDR Memory Write FIFO Control	Section 6.13.6	
User Out FIFO	User Out FIFO Control	Coation 6 14 1	
User In FIFO	User In FIFO Control	Section 6.14.1	
Test FIFO	Test FIFO Control	Section 6.15.1	

NOTE: While the FIFO is in reset, you cannot read or write to the FIFO.

You must first clear the FIFO Reset bit (bit D01 of the applicable register, above), and then wait four clock cycles before you can write to the FIFO.

4.4.1 Initializing the FIFOs (continued)

3) Next, enable the desired boundary flag interrupts using the applicable FIFO Interrupt Mask Register, as listed below.

FIFO	Register	Reference
ADC 1 FIFO	ADC 1 FIFO Interrupt Mask	
ADC 2 FIFO	ADC 2 FIFO Interrupt Mask	Section 6.10.7
ADC 3 FIFO	ADC 3 FIFO Interrupt Mask	Section 6.10.7
ADC 4 FIFO	ADC 4 FIFO Interrupt Mask	
DAC FIFO	DAC FIFO Interrupt Mask	Section 6.11.6
DDR Memory Read FIFO DDR Memory Read FIFO Interrupt		Section 6.13.8
DDR Memory Write FIFO	DDR Memory Write FIFO Interrupt Mask	Section 6.13.6
User Out FIFO	User Out FIFO Interrupt Mask	Section 6.14.3
User In FIFO	User In FIFO Interrupt Mask	Section 6.14.3
Test FIFO	Test FIFO Interrupt Mask	Section 6.15.3

4) Next, select the source and characteristics of the gates used to control the FIFO writes using the applicable FIFO Control Register, as listed below.

FIFO	Register	Reference	
ADC 1 FIFO	ADC 1 FIFO Control		
ADC 2 FIFO	ADC 2 FIFO Control	Section 6.10.2	
ADC 3 FIFO	ADC 3 FIFO Control	Section 6.10.2	
ADC 4 FIFO	ADC 4 FIFO Control		
DAC FIFO	DAC FIFO Control	Section 6.11.3	
DDR Memory Read FIFO	DDR Memory Read FIFO Control	NA	
DDR Memory Write FIFO	DDR Memory Write FIFO Control		
User Out FIFO	O User Out FIFO Control NA		
User In FIFO	User In FIFO Control	INA	
Test FIFO	Test FIFO Control	NA	

4.4.1 Initializing the FIFOs (continued)

5) Next, if using trigger mode, set the Trigger Length using the applicable FIFO Trigger Length Registers, as listed below.

FIFO	Register	Reference	
ADC 1 FIFO	ADC 1 FIFO Trigger Length		
ADC 2 FIFO	ADC 2 FIFO Trigger Length	Section 6 10 6	
ADC 3 FIFO	ADC 3 FIFO Trigger Length	Section 6.10.6	
ADC 4 FIFO	ADC 4 FIFO Trigger Length		
DAC FIFO	DAC FIFO Trigger Length	Section 6.11.5	
DDR Memory Read FIFO	DDR Memory Read FIFO DDR Memory Read FIFO Trigger Length		
DDR Memory Write FIFO	DDR Memory Write FIFO Trigger Length	- NA	
User Out FIFO User Out FIFO Trigger Length		NA NA	
User In FIFO	User In FIFO Trigger Length	T INA	
Test FIFO	Test FIFO Trigger Length		

6) Finally, enable the FIFO operation using the applicable FIFO Control Register, as listed below.

FIFO	Register	Reference	
ADC 1 FIFO	ADC 1 FIFO Control		
ADC 2 FIFO	ADC 2 FIFO Control	Section 6.10.2	
ADC 3 FIFO	ADC 3 FIFO Control	Section 6.10.2	
ADC 4 FIFO	ADC 4 FIFO Control		
DAC FIFO	DAC FIFO Control	Section 6.11.3	
DDR Memory Read FIFO	DDR Memory Read FIFO Control	Section 6 12 6	
DDR Memory Write FIFO	DDR Memory Write FIFO Control	Section 6.13.6	
User Out FIFO	User Out FIFO Control	Section 6.14.1	
User In FIFO	User In FIFO Control	Section 6.14.1	
Test FIFO	Test FIFO Control	Section 6.15.1	

4.4.2 FIFO Data Transfers

Following FIFO Initialization as described in Section 4.4.1, the FIFO is ready for data transfers. The PMC baseboard performs FIFO reads and writes using DMA operation. Refer to Section 4.5 on the next page for description of DMA Operation.

PMC baseboard data reads occur from an Incoming FIFO and writes occur to an Outgoing FIFO. Read and write operations will cause the appropriate FIFO status flags to be set and cleared when the data reaches the programmed boundary conditions.

You can monitor the FIFO operation using the applicable FIFO Status Register, as listed below.

Table 4–1: FIFO Status Registers			
FIFO	Reference		
ADC 1 FIFO	ADC 1 FIFO Status		
ADC 2 FIFO	ADC 2 FIFO Status	Section 6 10 2	
ADC 3 FIFO	ADC 3 FIFO Status	Section 6.10.3	
ADC 4 FIFO	ADC 4 FIFO Status		
DAC FIFO	DAC FIFO Status	Section 6.11.4	
DDR Memory Read FIFO	DDR Memory Read FIFO Status	Section 6.13.7	
DDR Memory Write FIFO	ite FIFO DDR Memory Write FIFO Status		
User Out FIFO	User Out FIFO Status	Section 6.14.2	
User In FIFO	User In FIFO Status	3ection 6.14.2	
Test FIFO	Test FIFO Status	Section 6.15.2	

Read and write operations will also cause the appropriate FIFO status flags to assert PCI interrupts if enabled. See Section 4.8 for description of Interrupt Operation using the FIFO flag bits.

See Section 7.3, ADC Data Routing and Formats, for additional information about the formatting of ADC FIFO data. See Section 7.4, ADC FIFO to DDR Memory Routing, for additional information about DDR Memory formats. See Section 7.5, DAC Data Routing and Formats, for additional information about DAC FIFO packing modes and formats.

NOTE: The User Out and In FIFOs are not connected to any board resources in the default 7142 configuration. The user may route FPGA signals through these FIFOs with custom FPGA logic using the available Pentek GateFlow® FPGA Design Kit, Model 4953 Option 142 (see Section 1.13).

4.5 DMA Operation

The PMC baseboard performs FIFO reads and writes using DMA operation. The PCI7142 incorporates nine high–performance DMA channels. The nine DMA channels (DMA0 through DMA8) are assigned to the PCI Interface FIFOs (Section 4.4) as shown in the following table:

Table 4–2: DMA Use by FIFOs				
DMA Channel	DMA Channel FIFO Direction *			
DMA0	ADC 1 FIFO	Incoming		
DMA1	ADC 2 FIFO	Incoming		
DMA2	ADC 3 FIFO	Incoming		
DMA3	ADC 4 FIFO	Incoming		
DMA4	User In FIFO	Incoming		
DMA5	Reserved	Incoming		
DMA6	DAC FIFO	Outgoing		
DMA7	User Out FIFO	Outgoing		
DMA8	DDR Memory Read FIFO	Incoming		

^{*} The FIFO direction, Incoming or Outgoing, is labeled in reference to the controlling PMC baseboard processor; that is, 'Incoming' refers to data flow from the 7142 devices to the PMC baseboard

Each DMA channel has the capability to transfer data between PCI devices, SDRAM, or 7142 resources. The DMA uses the FIFOs for temporary DMA data storage. These FIFOs allows all DMA channels to work concurrently since each channel utilizes a separate FIFO. For example, DMA0 transfers data from ADC channel 1 to the PCI bus using one FIFO, while DMA6 transfers data from the PCI bus to the DAC output channel using another FIFO.

The DMA channels are programmable from the PCI bus using DMA Descriptors. Each DMA channel has four DMA Descriptors that can be chained. Each DMA Descriptor is loaded by the DMA controller into the channel's working registers while the DMA transaction is active.

DMA Demand Mode is the recommended mode of DMA operation for the FIFOs, as described in Section 4.5.1.

NOTE: In addition to the nine DMA channels identified above, a separate DMA channel exists for DMA transfers from the PCI bus to the Signal FPGA. This FPGA Load DMA operation is described in Section 4.5.5.

4.5.1 DMA Demand Mode Operation

DMA Demand Mode operation uses the FIFO flags to gate the DMA controller on and off to ensure no loss of data.

To use DMA Demand Mode, set the following programmable flags and values:

- In the DMA Command Status Register, Section 5.17, set Demand Mode to 1 (Enable), set Burst Mode to 1 (Enable), and set the Maximum Burst Count greater than 0.
- In the applicable FIFO Almost Full register (Section 6.10.9 for ADC FIFOs, Section 6.11.8 for DAC FIFOs), set the FIFO Almost Full level greater than the burst length.
- In the applicable FIFO Almost Empty register (Section 6.10.8 for ADC FIFOs, Section 6.11.7 for DAC FIFOs), set the FIFO Almost Empty level to the Almost Full level (above) minus 32.

The following shows the Pentek–recommended settings for each FIFO.

Table 4-3: Recommended Demand Mode Settings					
FIFO Max. Burst Count Almost Full Almost Empty					
ADC FIFOs	512	544	512		
DAC FIFOs 2048 6176 6144					

Demand Mode operates as follows when set up as described above:

- a) Reading from an ADC FIFO When the ADC FIFO Almost Full condition occurs, a DMA Request is asserted to transfer data from the FIFO to the programmed destination address. When the Almost Empty occurs, the DMA Request is cleared.
- b) Writing to a DAC FIFO When the DAC FIFO Almost Empty condition occurs, a DMA Request is asserted to transfer data from the programmed source address to the FIFO. When the Almost Full occurs, the DMA Request is cleared.

Once the DMA transfers starts it will run until the Burst Count completes.

Figure 4–2 on the next page illustrates the DMA operation signal timing.

4.5.1 DMA Demand Mode Operation (continued)

Figure 4–2 below illustrates the DMA operation signal timing.

4.5.2 DMA Non-Demand Mode Operation

To use non-demand mode DMA operation, set the following programmable flags and values:

- In the DMA Command Status Register, Section 5.17, set Demand Mode to 0 (Disable), set Burst Mode to 1 (Enable), and set the Transfer Count Register, Section 5.19, equal to or less than the size of the applicable FIFO.
- Set the Maximum Burst Count in the DMA Command Status Register, Section 5.17, for non-demand mode as follows:
 - If the Maximum Burst Count = 0, the burst length will be the size of the Transfer Count.
 - If the Maximum Burst Count is greater than 0, the Burst Count (and Transfer Count) must be equal to or less than the size of the applicable FIFO.

4.5.3 DMA Channel Programming

Each DMA channel can programmed for separate, independent DMA transfers using the associated DMA Command/Status Register, Section 5.17, DMA Transfer Interval Counter Register, Section 5.18, and DMA Descriptor Registers. There are four Descriptors for each DMA channel, identified as Descriptor 0 through 3, and there are two registers for each descriptor, the DMA Descriptor Transfer Count Register, Section 5.19, and the DMA Descriptor PCI Address Register, Section 5.20.

To setup a DMA channel for operation (note that each set of registers used must be for the same DMA channel):

- 1) Use the DMA Command/Status Register, Section 5.17, to set the operating mode for the channel.
- 2) Use the DMA Descriptor Transfer Count Registers, Section 5.19, and the DMA Descriptor PCI Address Registers, Section 5.20, to specify the transfer count and PCI (source or destination) address for each Descriptor to be used for this data transfer. If using several descriptors, be sure to set the Chain bit D31=1 in each Descriptor Transfer Count Register. Setting bit D31=1 in the last Descriptor will cause the chain to go back to Descriptor 0.
- 3) If DMA interrupts are desired, enable the applicable interrupt bits in the PCI Interrupt Enable Register, Section 5.3. The types of DMA interrupts that can be generated by a DMA Channel are described in Section 4.5.4.
 - If a DMA Chain Finish interrupt is desired, you must also enable the end of chain interrupt (bit D30) for that DMA channel in the DMA Descriptor Transfer Count Registers, Section 5.19.
- 4) Start the DMA operation using the DMA Command/Status Register, Section 5.17.
- 5) Use the DMA Current Transfer Count Register, Section 5.15, and the DMA Current PCI Address Register, Section 5.16, to monitor the progress of the data transfer.

4.5.4 DMA Interrupts

Three types of DMA completion interrupts can be generated during DMA operation. Each DMA channel (0 through 8) has a separate set of bits for generating, enabling, and monitoring each of these interrupts.

• DMA Chain Finish

This interrupt is generated at the end of the last Descriptor transfer specified in the DMA Descriptor Transfer Count Registers, Section 5.19, when the Chain bit D31 is set to '0', End of Chain. This signifies completion of the entire linked chain of data transfers.

• DMA Descriptor Finish

This interrupt is generated at the end of the Descriptor transfer count specified in each DMA Descriptor Transfer Count Register, Section 5.19. This signifies completion of just one of the Descriptor's data transfer.

• DMA Xfer Interval Count Finish

This interrupt is generated at the end of the transfer interval count specified in the DMA Transfer Interval Counter Register, Section 5.18. This signifies completion of a designated portion of the data transfer. The DMA Transfer Interval Counter Register records a count of these interrupts.

Transfer Interval Count is specified in words. Words are either 32 or 64 bits wide, as specified by Data Width, bit D07, in the DMA Command/Status Register, Section 5.17.

When any of one of these conditions occurs, the applicable Flag bit is set in the PCI Interrupt Flag Register, Section 5.2, and an interrupt is generated if enabled by the associated PCI Interrupt Enable Register, Section 5.3.

In addition, an interrupt can be generated during DMA operation if a buffer overrun has occurred on any DMA channel. When this condition occurs, the applicable Flag bit is set in the DMA PCI Interrupt Enable/Flag Register, Section 5.11, and a PCI interrupt is generated to the PCI bus if enabled by the associated Enable bit in this register.

See Section 4.8 for description of the board's Interrupt Operation.

4.5.5 FPGA Load DMA Operation

NOTE: FPGA Load DMA operation is available only in 7142 boards with a PCI FPGA revision date greater that 10/01/07 (see Section 5.6).

In addition to the nine DMA channels described in the previous sections, a separate DMA channel is provided for DMA transfers from the PCI bus to the Signal FPGA. This DMA channel receives 32–bits words from the PCI bus, each containing four 8–bit FPGA configuration data words. The DMA channel uses a 1K FIFO for temporary data storage. The FIFO receives 32–bit data from the DMA engine and transmits 8–bit words to the Signal FPGA at the same data rate as the PCI bus.

The following figure illustrates the flow of data from the PMC baseboard to the Signal FPGA using this DMA channel.

To program the FPGA Load DMA channel for operation:

- 1) Use the Virtex Config Register, Section 5.7, to set the Signal FPGA DATA SRC to the DMA FIFO.
- 2) Use the DMA Transfer Count Register, Section 5.22, and the FPGA DMA PCI Address Register, Section 5.23, to specify the transfer count and PCI address of the data to be loaded to the Signal FPGA.

(Continued on the next page.)

4.5.5 FPGA Load DMA Operation (continued)

- 3) If a DMA interrupt is desired, enable the FPGA DMA DONE EN bit in the DMA PCI Interrupt Flag/Enable Register, Section 5.11.
- 4) Start the DMA operation using the FPGA Load DMA Command/Status Register, Section 5.21.
- 5) Use the DMA Status bit of the FPGA Load DMA Command/Status Register, Section 5.21 to monitor the progress of the data transfer.

For a single data block transfer, the Signal FPGA upload is complete.

If you use multiple blocks, you must wait until each transfer has completed before starting the next block DMA transfer, as follows (continuing from Step 5 above).

- 6) Wait until the prior DMA transfer has completed, as indicated by DMA Status = 1 (Done), bit D04 in the FPGA Load DMA Command/Status Register, Section 5.21.
- 7) Use the DMA Transfer Count Register, Section 5.22, and the FPGA DMA PCI Address Register, Section 5.23, to specify the transfer count and PCI address of the next block of data to be loaded to the Signal FPGA.
- 8) Start the DMA operation using the FPGA Load DMA Command/Status Register, Section 5.21.
- 9) Use the DMA Status bit of the FPGA Load DMA Command/Status Register, Section 5.21 to monitor the progress of the data transfer.

If there are more blocks to transfer, repeat the above steps starting at Step 6.

NOTE: All other DMA channels should be idle while you are transferring data to the Signal FPGA with this DMA channel.

4.6 DDR Memory Operation

Three independent banks of DDR2 SDRAM are available from the Signal FPGA to support transient capture or popular applications such as tracking receivers. Each bank is 256 MBytes for a total of 768 MBytes of available memory.

The following is a simplified block diagram of the DDR Memory interfaces and control logic. Use the DDR Memory Registers, described in Section 6.13, to setup and control the operation of all DDR Memory data transfers.

NOTE: The registers used for programming the PCI Interface ADC and DAC FIFOs (Section 4.4) also set the same programming parameters for the associated DDR Memory ADC and DAC FIFOs.

4.6 DDR Memory Operation (continued)

4.6.1 DDR Memory FIFOs

There are five DDR Memory FIFOs; each is 8 KBytes (2 KWord by 32 bits). These FIFOs provide direct high–speed data transfers between the ADC inputs and DDR Memory, or between DDR Memory and the DAC output, when enabled by the DDR Memory Control Register, Section 6.13.1.

NOTE: The DDR Memory interface FIFOs are 32 bits wide. Thus, whenever data is read from or written to these FIFOs, it is formatted as a single 32–bit word.

Figure 4–4 on the prior page illustrates the data flow for the DDR Memory FIFOs. The following table lists the DDR Memory FIFOs and their use.

Table 4–4: DDR Memory FIFOs Use	
DDR Memory FIFO	FIFO Use
ADC1 FIFO	From LTC2255 A/D Channel 1 to Bank 0
ADC2 FIFO	From LTC2255 A/D Channel 2 to Bank 0
ADC3 FIFO	From LTC2255 A/D Channel 3 to Bank 1
ADC4 FIFO	From LTC2255 A/D Channel 4 to Bank 1
DAC FIFO	From Bank 2 to DAC5686

When the ADC2 and/or ADC4 channels are enabled by the BANK x PACK bits of the DDR Memory Control Register, Section 6.13.1, data packing is performed by interleaving successive 16-bit words from the two associated ADC FIFOs to the respective DDR Memory Bank (ADC1 and 2 to BANK 0, or ADC3 and 4 to BANK 1). See Section 7.4, ADC FIFO to DDR Memory Routing, for additional information about data packing from the DDR Memory ADC FIFOs to DDR Memory.

The registers used for programming the PCI Interface ADC and DAC FIFOs (see Section 4.4) also set the same programming parameters for the associated DDR Memory ADC and DAC FIFOs.

4.6.2 DDR Memory Triggering

There are two types of triggering modes provided for data capture using the DDR Memory FIFOs, Pre–Trigger and Post–Trigger. These triggering modes are described in Section 4.7.4.

4.7 Timing and Synchronization

The Model 7142 provides two internal timing buses, Sync Bus A and Sync Bus B, which provide two independent sets of clock, sync, and gate signals. The clock, sync, and gate signals can go out or in on the front panel LVDS Sync Bus connector. This connector also provides two TTL Gate/Sync inputs that can be used by either Sync Bus. The front panel also has one MMCX microminiature coaxial socket receptacle for input of an external sample clock.

See Figure 4–5 on the next page for a simplified logic diagram of the clock, sync, and gate signals. See Figure 4–6 on page 74 for the timing delays introduced by the circuit elements in these signals' paths.

The front panel LVDS Sync Bus includes two independent sets of clock, sync, and gate signals. The multi-pin connector (Section 2.6.4) has signals for Bus A on the upper pins and Bus B on the lower pins. It allows one Model 7142 to act as a bus master, driving the sample clock, sync, and gate signals out using LVDS differential signaling. Additionally, the front panel cable can be split to allow board-to-board cabling of two independent buses, Bus A and Bus B. Up to seven slave 7142's can be driven on each bus, supporting synchronous sampling and sync functions across all connected boards. If more than seven boards need to be synchronized, Pentek's Model 9190 Clock and Sync Generator allows synchronization of up 80 I/O modules.

Each of the front panel sync buses is connected through LVDS drivers and receivers to the board's internal sync buses. On each board, clock and sync signals for the A/D can be driven from either Bus A or Bus B. Similarly the D/A section of each board can be driven from either sync bus, allowing the A/D, receiver, and upconverter sections to operate asynchronously if a different sync bus is used for each, or for the A/D, receiver, and upconverter sections to operate synchronously if the same bus is chosen for both.

Setup and operation of the Sync Buses is controlled by a set of Signal FPGA registers, described in Section 6.8.

4.7.1 Syncs

A Sync signal is routed to the Phase Synchronization input (PHSTR) on the DAC5686. This sync can be driven directly from the front panel LVDS Sync Bus SYNC A or B signal (Section 2.6.4) if the Model 7142 is a Sync Bus Slave, or from a sync signal generated on the board.

Each onboard sync can be selected from a register write (Sync A/B Generator Register, Section 6.8.2 or Section 6.8.5), or the external TTL SYNC input (Section 2.6.4) can be selected for both syncs. The polarity of the external TTL SYNC input is programmable.

When the Model 7142 is a Sync Bus Master, the onboard generated sync is output to the respective LVDS Sync Bus.

The following diagram shows the timing delays introduced by the circuit elements in the Clock, Gate, and Sync signal paths.

4.7.2 Clocks

The clocks for all board functions (LTC2255 A/Ds, DAC5686, and Signal FPGA FIFOs) can be driven from the front panel LVDS Sync Bus CLK A or B signal (Section 2.6.4) if the Model 7142 is a Sync Bus Slave, or from a clock generated on the board.

Each onboard clock can be selected from the onboard crystal oscillators (selected by the Master Bus A/B Control Register, Section 6.8.1 or 6.8.4), or from the external MMCX EXT CLK input (Section 2.6.1).

When the Model 7142 is a Sync Bus Master, the onboard clock is output to the respective LVDS Sync Bus.

4.7.3 Gates

Gates are used to enable writes to the PCI bus interface FIFOs and the DDR Memory FIFOs (DAC and ADC FIFOs). Gate selection is controlled by the Master Bus A/B Control Register, Section 6.8.1 or 6.8.4, and by the individual FIFO Control Registers, Sections 6.11.3 (DAC FIFO) and 6.10.2 (ADC FIFOs). Gates may be individually disabled, in which case FIFO writes are always enabled.

Each gate can be driven directly from the front panel LVDS Sync Bus GATE A or B signal (Section 2.6.4) if the Model 7142 is a Sync Bus Slave, or from a gate signal generated on the board.

Each onboard generated gate can be selected from a register write (Gate A/B Generator Register, Section 6.8.3 or 6.8.6), or the external TTL GATE input (Section 2.6.4) can be selected for both gates. The polarity of each external TTL GATE input is programmable.

When the Model 7142 is a Sync Bus Master, the gate generated onboard is output to the respective LVDS Sync Bus.

Each gate may be programmed to act as a trigger (Trigger mode) using the FIFO Control Registers, Sections 6.11.3 and 6.10.2. In this case, the gate is generated after a desired polarity logic transition on the external gate source or register write, and the resulting gate continues either indefinitely (Hold mode) or for a programmed number of FIFO writes up to 16,383 (Trigger Length). At any time the triggered gate may be asynchronously disabled by a control register write.

When Trigger mode is selected for a Gate signal, Pre– or Post–Triggering can be used for certain FIFOs, as described in the following subsection.

4.7.4 Pre/Post-Triggering

When Trigger mode is selected for a Gate signal, Pre– or Post–Triggering can be used for certain FIFO data transfers. Use the applicable Trigger Length Registers, Sections 6.10.6 and 6.11.5, to specify the trigger length.

Do not use Trigger HOLD mode with these functions.

☐ Post-Triggering (the default mode, ADC and DAC FIFOs)

Post–Triggering allows you to specify a number of data samples to delay, after receipt of a trigger, before the data is actually transferred (written to or read from the associated FIFO). At the end of this delay, the data samples are transferred until the number of samples defined by the Trigger Length are transferred. Use the Post Trigger Delay Length Registers, Section 6.10.4 or 6.11.9, to specify the post–trigger delay.

Post–Triggering is illustrated below.

☐ Pre-Triggering (ADC FIFOs only)

Pre–Triggering allows you to transfer data samples (write to the ADC FIFO) before receipt of the trigger. This transfer starts when you ARM the trigger with the ADC FIFO Control Register, Section 6.10.2. After the trigger is received, the data samples continue to be transferred until the number of samples defined by the Trigger Length are transferred, in addition to the Pre–Trigger count. Use the Pre Trigger Count Capture Registers, Section 6.10.5, to determine the actual number of A/D data samples stored in the ADC FIFO before receipt of the trigger.

Pre-Triggering is illustrated below.

Pre–Triggering is provided only for the ADC FIFOs, and should only be used for ADC writes to the DDR Memory, Section 4.6.

4.8 Interrupt Operation

The 7142 PMC module can generate four PCI interrupt outputs, INTA through INTD, on the PCI bus to the PMC baseboard. Refer to the Operating Manual supplied with your PMC baseboard for description of the board's interrupt response operation.

The 7142 can generate four Local bus interrupt outputs, LINTo0 through LINTo3, on the local PCI bus from 7142 resources.

The following figure illustrates the interrupt signal routing on the Model 7142.

4.8.1 System Interrupts

The System Interrupt Registers (Sections 6.9.1 to 6.9.3) contain interrupt status, flag, and enable bits for several system interrupt conditions. The System Interrupts include the following signals/conditions:

- VOLT/TEMP This interrupt is associated with a temperature/voltage limit interrupt from the LM83 or ADM1024 sensors. (To determine the sensor causing the interrupt, use the TWSI Port Register, Section 6.3.)
- CLK A LOSS, CLK B LOSS Each of these interrupts is associated with a Clock loss interrupt from one of the 7142 Sync Buses, A or B.
- OVLD AD1, OVLD AD2, OVLD AD3, OVLD AD4 Each of these interrupts is associated with an analog input overload interrupt from one of the four A/D converters.
- User Defined There are eight user–defined interrupts that can be programmed for custom FPGA core applications.

In response to these interrupt signals, the System Interrupt Enable Register, Section 6.9.1, can be enabled to assert an interrupt to the Application Interrupt Registers, identified in Section 4.8.2 below.

4.8.2 Application Interrupts

The set of Application Interrupt Registers (Sections 6.9.4 to 6.9.6) contain interrupt status, flag, and enable bits for the FIFO Flags and the System Interrupt conditions. The Application Interrupts include the following signals/conditions:

- SYS INT This interrupt is associated with an interrupt from the System Interrupt Enable Register, identified in Section 4.8.1 above.
- GATE B, GATE A Each of these interrupts is associated with a Sync Bus GATE (A or B) interrupt. The interrupt occurs at the start of the respective gate signal.
- SYNC B, SYNC A Each of these interrupts is associated with a Sync Bus SYNC (A or B) interrupt. The interrupt occurs at the start of the respective Sync pulse.

4.8.2 Application Interrupts (continued)

- TRIGGER CAPTURE This interrupt is associated with an interrupt from the OR'ed result of the ADC and DAC FIFO Trigger Capture bits. Use the applicable FIFO Status Registers, Sections 6.10.3 and 6.11.4, to determine the interrupting FIFO.
- DDR MEMORY READ FIFO This interrupt is associated with a FIFO flag condition from the DDR Memory Read FIFO. Use the DDR Memory Read FIFO Status Registers, Section 6.13.7, to determine the interrupting condition from this FIFO.
- DDR MEMORY WRITE FIFO This interrupt is associated with a FIFO flag condition from the DDR Memory Write FIFO. Use the DDR Memory Write FIFO Status Registers, Section 6.13.7, to determine the interrupting condition from this FIFO.
- DAC FIFO This interrupt is associated with a FIFO flag condition from the DAC FIFO. Use the DAC FIFO Status Register, Section 6.11.4, to determine the interrupting condition from the FIFO.
- ADC 1 FIFO, ADC 2 FIFO, ADC 3 FIFO, ADC 4 FIFO Each of these interrupts is associated with a FIFO flag condition from one of the ADC FIFOs. Use the ADC FIFO Status Registers, Section 6.10.3, to determine the interrupting condition from the associated FIFO.
- User Out FIFO, User In FIFO Each of these interrupts is associated with a FIFO flag condition from one of the User FIFOs (Out or In). Use the User FIFO Status Registers, Section 6.14.2, to determine the interrupting condition from the associated FIFO.

In response to these interrupt signals, any of the four Application Interrupt LINT Enable Registers, Section 6.9.4, can be enabled to assert any of the four local bus interrupt inputs, LINTi0 to LINTi3, to the PCI Interrupt Flag Registers, identified in Section 4.8.3 below.

4.8.3 Local Bus PCI Interrupts

The PCI Interrupt Registers (Sections 5.2 and 5.3) contain interrupt flag and enable bits for the DMA Channels and the Application Interrupt conditions. The PCI Interrupts include the following signals/conditions:

- LINTix Each of these interrupts is associated with one of the PCI local bus interrupt inputs, LINTi0 through LINTi3, from the Application Interrupt Enable Register, identified in Section 4.8.2 above.
- DMAn Chain Finish Each of these interrupts is associated with a DMA Chain finish interrupt from the associated DMA channel. This interrupt is generated at the end of the last descriptor transfer specified in the DMA Descriptor Transfer Count Registers, Section 5.19, when the Chain bit D31 is set to '0', End of Chain.
- DMAn Descriptor Finish Each of these interrupts is associated with a DMA Descriptor finish interrupt from the associated DMA. This interrupt is generated at the end of the descriptor transfer count specified in each DMA Descriptor Transfer Count Register, Section 5.19.
- DMAn Xfer Interval Count Finish Each of these interrupts is associated with a DMA Xfer Interval Count Finish interrupt from that DMA. This interrupt is generated at the end of the transfer interval count specified in the DMA Transfer Interval Counter Register, Section 5.18.

(See also Section 4.5.4 for further description of these DMA Interrupts.)

In response to these interrupt signals, any of the four PCI Interrupt Enable Registers, Section 5.3, can be enabled to assert any of the PCI bus interrupt outputs, INTA to INTD, to the PCI Bus, as identified in Section 4.8.5 below.

4.8.4 DMA PCI Interrupts

The DMA PCI Interrupt Enable/Flag Register (Section 5.11) contains interrupt flag and enable bits for DMA channel overrun conditions. In response to these conditions, this register can enabled assertion of any PCI bus interrupt output, INTA to INTD, to the PCI Bus, as described in Section 4.8.5 below.

Note that the PCI bus interrupts from this register are ORed with the PCI interrupts from the PCI Interrupt Enable Registers, Section 4.8.3, on the applicable PCI interrupt signal line (INTA to INTD).

4.8.5 PCI Bus Interrupt Outputs

Four PCI Bus interrupts, INTA to INTD, are associated with interrupt signals from the PCI Interrupt Flag Register, identified in Section 4.8.3 above, OR'ed with interrupt signals from the DMA PCI Interrupt Enable/Flag Register identified in Section 4.8.4 above.

Any of the four PCI Interrupt Enable Registers, Section 5.3, can be enabled to assert an interrupt from the OR'ed result of the flag bits, to the applicable PCI interrupt output, INTA to INTD. In addition any of the four PCI Bus interrupts can be enabled from the DMA PCI Interrupt Enable/Flag Register, Section 5.11. The PCI bus interrupt signals from both sets of registers are OR'ed on the applicable PCI interrupt line (INTA to INTD).

4.9 User FPGA Address Space

Each 7142 FPGA (the Signal FPGA and PCI FPGA) has a block of addresses reserved for user applications.

• The XC4VFX60 (or XC4VFX100) PCI FPGA provides board interfaces including PCI and Serial I/O. The PCI FPGA also includes two PowerPC cores which can be used as local microcontrollers to create complete application engines. The default Pentek FPGA configuration provides related control registers, which are described in Chapter 5. See Section 3.3.1 for the memory map for these registers.

This PCI FPGA has a block of user registers reserved for custom processing of interface data. Access these registers using PCI Base Address Register 0 (**BAR0**) at offset addresses **0x10000** to **0x1FFFF**.

• The XC4VSX55 (or XC4VLX100) Signal FPGA serves as a control and status engine with data and programming interfaces to each of the on–board resources including the A/D converters, DDR2 SDRAM memory, digital upconverter and D/A converters. The default Pentek FPGA configuration provides related control registers, which are described in Chapter 6. See Section 3.3.2 for the memory map for these registers.

This Signal FPGA has a block of user registers reserved for custom processing of related data from or to these resources. Access these registers using PCI Base Address Register 2 (**BAR2**) at offset addresses **0x8E80** to **0x8F7F**.

In the default FPGA configurations, these registers perform no functions on the board, but are available as read/write temporary storage. You can read and write any type of data to each register.

NOTE: If you have ordered a Pentek–defined custom FPGA Option, these user registers may be programmed for that option's processing. Any such use of these User FPGA Address Space registers is defined in the applicable Pentek documentation for that option.

Chapter 5: PCI7142 Registers

5.1 Overview

The Signal FPGA is connected to the PMC baseboard through a PCI Master/Slave interface (Standard PCI 2.2), the Pentek PCI7142 (programmed in the XC4VFX60 or XC4VFX100 PCI FPGA). This interface provides direct Slave Mode and DMA Master/Slave Mode, 9–channel demand mode, and chaining controller. Through this interface, any PCI Bus Master can control all programmable features on the board, including the four LTC2255s, the DAC5686, and all FPGA memory map registers. Data widths of 32 or 64 bits and data rates of 33 or 66 MHz guarantee compatibility with PMC, VME, cPCI, and PCI platforms.

This chapter describes the PCI7142 internal registers accessible from a PMC baseboard processor. All descriptions are given from the baseboard processor's viewpoint. All PCI7142 registers are 32 bits wide—however since the PCI local bus is a 64-bit data path, the register addresses are in increments of 64 bits (8 bytes). Refer to Section 3.3.1 for the memory map of all PCI7142 registers.

The following is a simplified block diagram of the PCI7142 interfaces, indicating the location of the PCI7142 internal registers. (See Figure 6–1 for a simplified block diagram of the Signal FPGA interfaces and its registers.)

5.2 PCI Interrupt Flag Register

The PCI Interrupt Flag Register has one read/clear bit associated with each interrupt condition from various 7142 resources.

The following table shows which bit in this register is associated with each interrupt condition. The paragraphs following the table provide descriptions of these bits.

Table 5-1: PCI Interrupt Flag Register R/Clr @ BAR0+0x0000									
	D31	D30	D29	D28	D27	D26	D25	D24	
Bit Name	Reserved	LINTi3	LINTi2	LINTi1	LINTi0	DMA8 Xfer Interval Count Finish	DMA8 Descriptor Finish	DMA8 Chain Finish	
			Read:	0 = No inter	•				
Function			Clear:	1 = Interrupt 1 = Clear lat					
	D23	D22	D21	D20	D19	D18	D17	D16	
Bit Name	DMA7 Xfer Interval Count Finish	DMA7 Descriptor Finish	DMA7 Chain Finish	DMA6 Xfer Interval Count Finish	DMA6 Descriptor Finish	DMA6 Chain Finish	DMA5 Xfer Interval Count Finish	DMA5 Descriptor Finish	
Function		Read: 0 = No interrupt 1 = Interrupt latched Clear: 1 = Clear latch							
	D15	D14	D13	D12	D11	D10	D09	D08	
Bit Name	D15 DMA5 Chain Finish	D14 DMA4 Xfer Interval Count Finish	D13 DMA4 Descriptor Finish	D12 DMA4 Chain Finish	D11 DM3 Xfer Interval Count Finish	D10 DMA3 Descriptor Finish	DMA3 Chain Finish	DMA2 Xfer Interval Count Finish	
Bit Name Function	DMA5 Chain	DMA4 Xfer Interval	DMA4 Descriptor Finish Read:	DMA4 Chain	DM3 Xfer Interval Count Finish rupt t latched	DMA3 Descriptor	DMA3 Chain	DMA2 Xfer Interval	
	DMA5 Chain	DMA4 Xfer Interval	DMA4 Descriptor Finish Read:	DMA4 Chain Finish 0 = No inter 1 = Interrupt	DM3 Xfer Interval Count Finish rupt t latched	DMA3 Descriptor	DMA3 Chain	DMA2 Xfer Interval	
	DMA5 Chain Finish	DMA4 Xfer Interval Count Finish	DMA4 Descriptor Finish Read: Clear:	DMA4 Chain Finish 0 = No interior 1 = Interrupt 1 = Clear later	DM3 Xfer Interval Count Finish rupt t latched	DMA3 Descriptor Finish	DMA3 Chain Finish	DMA2 Xfer Interval Count Finish	
Function	DMA5 Chain Finish D07 DMA2 Descriptor	DMA4 Xfer Interval Count Finish D06 DMA2 Chain	DMA4 Descriptor Finish Read: Clear: D05 DMA1 Xfer Interval Count Finish Read:	DMA4 Chain Finish 0 = No inter 1 = Interrupt 1 = Clear lat D04 DMA1 Descriptor	DM3 Xfer Interval Count Finish rupt t latched tch D03 DMA1 Chain Finish rupt t latched	DMA3 Descriptor Finish D02 DMA0 Xfer Interval	DMA3 Chain Finish D01 DMA0 Descriptor	DMA2 Xfer Interval Count Finish D00 DMA0 Chain	

5.2 PCI Interrupt Flag Register (continued)

Each bit of this register latches an interrupt occurrence. A logic '1' in any bit in this register indicates that an interrupt has occurred.

Since these bits latch in response to an interrupt, to detect subsequent interrupts, you must clear the bits in this register. To clear any bit in this register that is set to logic '1' you must write a '1' to that bit.

The following table describes the interrupt condition associated with each bit of the PCI Interrupt Flag register.

	Table 5-2:	PCI Interrupt Flag Register Bits
Bit Name	Bit Positions	Interrupt Function
DMAn Chain Finish	D0, D3, D6, D9, D12 D15, D18, D21, D24	Each of these flag bits is associated with a DMA Chain finish interrupt on the PCI bus from the associated DMA. This interrupt is generated at the end of the last descriptor transfer specified in the DMA Descriptor Transfer Count Register, Section 5.19, when the Chain bit D31 is set to '0', End of Chain.
DMAn Descriptor Finish D1, D4, D7, D10, D13 D16, D19, D22, D25		Each of these flag bits is associated with a DMA Descriptor finish interrupt on the PCI bus from the associated DMA. This interrupt is generated at the end of the descriptor transfer count specified in each DMA Descriptor Transfer Count Register, Section 5.19.
DMAn Xfer Interval Count Finish D2, D5, D8, D11, D14 D17, D20, D23, D26		Each of these flag bits is associated with a DMA Transfer Interval Count finish interrupt on the PCI bus from the associated DMA. This interrupt is generated at the end of the transfer interval count specified in the DMA Transfer Interval Counter Register, Section 5.18.
LINTin	D27, D28, D29, D30	Each of these flag bits is associated with one of the PCI local bus interrupt inputs, LINTi0 through LINTi3. The PCI local bus interrupts are associated with the Application Interrupt LINT Enable Registers, Section 6.9.4.

Refer to Interrupt Operation, Section 4.8, for further description of interrupt routing and operation on the Model 7142.

5.3 PCI Interrupt Enable Registers

The PCI Interrupt Enable Registers contains enable bits for each interrupt condition defined in the PCI Interrupt Flag Register, Section 5.2. Each bit enables or disables the generation of a PCI interrupt output to the PMC baseboard in response to these interrupts. There are four PCI Interrupt Enable Registers, one for each PCI bus interrupt (INTA to INTD). Each register enables interrupts for the respective PCI bus interrupt to the PMC baseboard.

The following table shows which bit in this register is associated with each interrupt condition. The paragraphs following the table provide descriptions of these bits.

	Table 5-3: PCI Interrupt Enable Registers INTA: R/W @ BAR0+0x0010 INTB: R/W @ BAR0+0x0018 INTC: R/W @ BAR0+0x0020 INTD: R/W @ BAR0+0x0028									
	D31	D30	D29	D28	D27	D26	D25	D24		
Bit Name	PCI INTx	LINTi3	LINTi2	LINTi1	LINTi0	DMA8 Xfer Interval Count Finish	DMA8 Descriptor Finish	DMA8 Chain Finish		
Function				0 = Disabl 1 = Enable	-					
	D23	D22	D21	D20	D19	D18	D17	D16		
Bit Name	DMA7 Xfer Interval Count Finish	DMA7 Descriptor Finish	DMA7 Chain Finish	DMA6 Xfer Interval Count Finish	DMA6 Descriptor Finish	DMA6 Chain Finish	DMA5 Xfer Interval Count Finish	DMA5 Descriptor Finish		
Function					e Interrupt e Interrupt					
	D15	D14	D13	D12	D11	D10	D09	D08		
Bit Name	DMA5 Chain Finish	DMA4 Xfer Interval Count Finish	DMA4 Descriptor Finish	DMA4 Chain Finish	DM3 Xfer Interval Count Finish	DMA3 Descriptor Finish	DMA3 Chain Finish	DMA2 Xfer Interval Count Finish		
Function				0 = Disabl 1 = Enable	e Interrupt e Interrupt					
	D07	D06	D05	D04	D03	D02	D01	D00		
Bit Name	DMA2 Descriptor Finish	DMA2 Chain Finish	DMA1 Xfer Interval Count Finish	DMA1 Descriptor Finish	DMA1 Chain Finish	DMA0 Xfer Interval Count Finish	DMA0 Descriptor Finish	DMA0 Chain Finish		
Function				0 = Disabl 1 = Enable	e Interrupt e Interrupt					
	All	bits defaul	t to the log	jic '0' state	at power of	on and rese	et			

5.3 PCI Interrupt Enable Registers (continued)

Each bit of this register enables or disables the generation of a PCI bus interrupt (INTA to INTD, depending on the register used) to the PMC baseboard. Setting the bit associated with a given interrupt to logic '1' enables the generation of a PCI bus interrupt when that interrupt condition occurs. When a bit is cleared to logic '0' (its default state), the PCI bus interrupt will not be generated by the defined interrupt condition.

The following table describes the interrupt condition associated with each bit of the PCI Interrupt Enable register.

	Table 5-4:	PCI Interrupt Enable Register Bits
Bit Name	Bit Positions	Interrupt Function
DMAn Chain Finish	D0, D3, D6, D9, D12 D15, D18, D21, D24	Each of these enable bits is associated with a DMA Chain finish interrupt on the PCI bus from the associated DMA. This interrupt is generated at the end of the last descriptor transfer specified in the DMA Descriptor Transfer Count Register, Section 5.19, when the Chain bit D31 is set to '0', End of Chain.
DMAn Descriptor Finish	D1, D4, D7, D10, D13 D16, D19, D22, D25	Each of these enable bits is associated with a DMA Descriptor finish interrupt on the PCI bus from the associated DMA. This interrupt is generated at the end of the descriptor transfer count specified in each DMA Descriptor Transfer Count Register, Section 5.19.
DMAn Xfer Interval Count Finish	D2, D5, D8, D11, D14 D17, D20, D23, D26	Each of these enable bits is associated with a DMA Transfer Interval Count finish interrupt on the PCI bus from the associated DMA. This interrupt is generated at the end of the transfer interval count specified in the DMA Transfer Interval Counter Register, Section 5.18.
LINTin	D27, D28, D29, D30	Each of these enable bits is associated with one of the local bus input interrupts, LINTi0 through LINTi3, from the Signal FPGA. The PCI local bus interrupts are generated using the Application Interrupt LINT Enable Registers, Section 6.9.4.
PCI INTx	D31	This bit enables the PCI Interrupt output for the associated register, INTA through INTD.

Refer to Interrupt Operation, Section 4.8, for further description of interrupt routing and operation on the Model 7142.

5.4 FPGA Data In/Data Out Registers

The FPGA Data In/Data Out registers allow reading from or writing to the VMEbus using XC4VFX60 (or XC4VFX100) PCI FPGA spare pins. Standard PMC–VME base–boards route these I/O signals from the PCI FPGA through PMC **P4** connector directly to the VMEbus backplane **P2** connector.

NOTE: This capability is provided only with Option 104 (see Section 2.3.2).

The following table shows the contents of these registers.

	Table 5-5: FPGA Data In/Data Out Registers Data In: R.O. @ BAR0+0x0050 Data Out: R/W @ BAR0+0x0058															
								D31 -	- D16							
Bit Name								Not	used							
Function					1	Write v	with ze	eros, N	∕lask v	vhen r	eading)				
	D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
Bit Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function		0 = '0' 1 = '1'														
		Α	II bits	defau	ılt to	the lo	gic '0	' state	at po	ower	on an	d res	et			

Bits D0 through D15 correspond to the LVDS input and output signals described for Option 104 in Section 2.3.2. The LVDS_OUT signals shown in Table 2–2 are from the FPGA Data Out Register, with LVDS_OUT_x0 from bit D0 and LVDS_OUT_x15 from bit D15. The LVDS_IN signals are for the FPGA Data In Register, with LVDS_IN_x0 from bit D0 and LVDS_IN_x15 from bit D15.

5.5 Board/Channel Reset Register

The Board/Channel Reset Register provides a reset for the entire 7142 PMC module.

The following table shows the contents of this register. The paragraphs following the table provide descriptions of the bits in this register.

	Table 5–6: Board/Channel Reset Register R/W @ BAR0+0x0070								
		D31 – D16							
Bit Name		Not used							
Function		Write with zeros, Mask when reading							
	D15	D14 – D00							
Bit Name	Board Reset	Reserved							
Function	0 =Run 1 =Reset	Write with zeros, Mask when reading							
	Α	ll bits default to the logic '0' state at power on and reset							

Bit D15 issues a reset to the entire Model 7142 PMC module. When the bit is set to logic '1' the 7142 is in reset. When the bit is cleared to logic '0' (its default state) the 7142 is in a normal run state.

5.6 PCI7142 Revision Register

The PCI7142 Revision Register identifies the Pentek version number and the date of the PCI7142 code currently installed in the XC4VFX60 (or XC4VFX100) PCI FPGA.

The following table shows the contents of this register. The paragraphs below PCI7142 Revision Register describe the contents of the register.

Table 5–7: PCI7142 Revision Register R.O. @ BAR0+0x0078								
	D31 – D28	D31 – D28 D27 – D24 D23 – D20 D19 – D16						
Bit Name	YE	AR	MONTH					
Function	3rd Digit of Year	4th Digit of Year	1st Digit of Month	2nd Digit of Month				
	D15 – D12	D11 – D08	D07 -	- D00				
Bit Name	D/	ΑΥ	PCI7142 CODE REVISION					
Function	1st Digit of Day	2nd Digit of Day	PCI FPGA Pentek Co	ode Revision Number				

The PCI7142 revision date is coded as six hexadecimal characters, as follows:

Year: Bits D31 – D28, 3rd digit of Year

Bits D27 - D24, 4th digit of Year

Month: Bits D23 – D20, 1st digit of Month

Bits D19 - D16, 2nd digit of Month

Day: Bits D15 – D12, 1st digit of Day

Bits D11 – D08, 2nd digit of Day

The PCI7142 Code Revision number (bits D07 – D00) is a binary value that identifies the Pentek version number of the code in the Pentek PCI7142 PCI interface core, starting at revision 0.

For example, the date of **July 15, 2005** (7/15/05) would appear as follows in the PCI7142 Revision Register, assuming a code revision of '1'.

PCI7142 Revision Register = 0x05071501

5.7 Virtex Config Register

The Virtex Config Register is used to reconfigure/reprogram the XC4VSX55 (or XC4VLX100) Signal FPGA. The bits in this register allow you to read and set the status of the Signal FPGA configuration cycle, and to control uploading the configuration to the Signal FPGA from a PMC baseboard processor. Refer to Section 1.13, FPGA Configuration, for additional information about configuring the Signal FPGA.

The following table shows the contents of the Virtex Config Register. The subsections following the table provide descriptions of the bits in this register.

	Table 5-8: Virtex Config Register R/W @ BAR0+0x0080									
				D31 -	- D16					
Bit Name				Not	used					
Function			Write v	with zeros, I	Mask when re	eading				
	D15	D14	D13	D12	D11	D10	D09	D08		
Bit Name	D7	D6	D5	D4	D3	D2	D1	D0		
Function			Signa	I FPGA Co	nfiguration	Data				
	D07	D06	D05	D04	D03 *	D02 *	D01	D00		
Bit Name	WRITE STROBE	DATA SRC	DIRECTION	Reserved	INIT	DONE	PRGM	LD SRC		
Function	0 = Disable 1 = DMA 0 = Read 1 = Write 0s, Mask read 1 = Done 0 = Disable 0 = EEPROM 1 = Done 0 = Disable 0 = EEPROM 1 = Upload 1 = Upload									
	A	II bits defa		bits are Re gic '0' state	ead Only e at power o	on and res	et			

5.7.1 Configuration Data [D7:D0]

Bits D15 - D08

These eight bits contain configuration data to be written to the Signal FPGA. These bits are valid only when DATA SRC, bit D06, Section 5.7.3, is cleared to 0, and LD SRC, bit D00, Section 5.7.8, is set to 1.

5.7.2 WRITE STROBE

Bit D07

This bit enables the write strobe to the Virtex Config Data Register. When you set this bit to logic '1', you can write configuration data to the Signal FPGA. Clear the bit to logic '0' (its default state) to disable writing configuration data to the Signal FPGA.

5.7 **Virtex Config Register** (continued)

5.7.3 DATA SRC

Bit D06

This bit selects the source of the Signal FPGA upload data when LD SRC, bit D00, Section 5.7.8, is set to 1. Clear the bit to logic '0' (its default state) to write configuration data to the FPGA using the Configuration Data bits (bits D15 – D08, Section 5.7.1) in this register. When you set this bit to logic '1' you can upload configuration data to the FPGA from the PCI bus using the FPGA Load DMA channel (see Section 4.5.5).

5.7.4 DIRECTION

Bit D05

This bit sets the read/write access of the Virtex Config Data Register. Clear the bit to logic '0' (its default state) to read configuration data from the Signal FPGA. When you set this bit to logic '1' you can write configuration data to the FPGA. To write with the Virtex Config Data Register, you must also enable configuration upload (LD SRC bit D00 = 1, Section 5.7.8).

5.7.5 **INIT** Bit D03

This read—only bit indicates the status of the Signal FPGA's 'INIT' pin. At initialization of a configuration cycle this bit goes to logic '0', then logic '1'. It remains at logic '0' if an error in configuration data is detected. When read as logic '1' initialization is done.

5.7.6 DONE Bit D02

This read—only bit indicates the status of the Signal FPGA's 'DONE' pin. When read as logic '0' the FPGA is in the configuration cycle. When read as logic '1' the FPGA has completed configuration.

5.7.7 PRGM Bit D01

This bit starts the Signal FPGA configuration reprogramming. The Signal FPGA begins a configuration reprogramming cycle after you transition this bit from logic '0', to logic '1', then to logic '0', while in Serial EEPROM or Processor Upload mode (see LD SRC, below).

5.7.8 LD SRC Bit D00

This bit selects the source of the Signal FPGA configuration data. When you clear this bit to logic '0' (its default state) the FPGA selects its configuration data from the onboard Serial EEPROMs. When you set this bit to logic '1' you can upload the configuration from a PMC processor using the Configuration Data bits (D15 – D08) in this register, or from the FPGA Load DMA channel, depending on the DATA SRC bit D06, Section 5.7.3.

5.8 PCI DCM Control Register

The PCI DCM Control Register controls each Digital Clock Manager (DCM) on the XC4VFX60 (or XC4VFX100) PCI FPGA.

The following table shows the contents of the DCM Register. The subsections following the table provide descriptions of each control bit in this register.

	Table 5–9: PCI DCM Control Register R/W @ BAR0+0x0088									
				D31	– D08					
Bit Name				Res	erved					
Function			Write \	with zeros, I	Mask when r	reading				
	D07	D07 D06 D05 D04 D03 D02 D01 * D00 *								
Bit Name			Reserved			DCM RST	LOCKD 1	LOCKD 0		
Function		Write with zeros, Mask when reading 0 = Not 0 = Not locked locked 1 = Loc								
	* These bits are Read Only All bits default to the logic '0' state at power on and reset									

5.8.1 DCM RST

This bit resets both DCM clocks 0 and 1. Set the bit to logic '1' to reset the DCM clocks. Clear the bit to logic '0' (its default state) to return the DCM clocks to normal operation.

5.8.2 LOCKD 1/0

Bits D01, D00

Bit D02

Each of these read—only bits indicates the locked status of a DCM clock. When read as logic '0' the DCM clock output is not locked. When read as logic '1' the DCM clock output is locked.

5.9 Local DMA Request Status Register

The read–only Local DMA Request Status Register reads the DMA Request status of each DMA request. The following table shows the contents of this register.

NOTE: This register is for Pentek factory use only.

	Table 5-10: Local DMA Request Status Register R.O. @ BAR0+0x0090								
				D31 -	- D16				
Bit Name				Not	used				
Function			Write	with zeros, N	Mask when r	eading			
	D15	D14	D13	D12	D11	D10	D09	D08	
Bit Name		Rese	erved		TEST FIFO Write	TEST FIFO Read	DDR Write FIFO	DDR Read FIFO	
Function	Write v	vith zeros, N	Mask when	reading		Factory	use only		
	D07	D06	D05	D04	D03	D02	D01	D00	
Bit Name	User Out FIFO	DAC FIFO	Reserved	User In FIFO	ADC 4 FIFO	ADC 3 FIFO	ADC 2 FIFO	ADC 1 FIFO	
Function	Factory use only								
	All	bits defaul	t to the log	jic '0' state	at power c	n and rese	et		

Register Bit	DMA Request Number	FIFO
D00	DMA Request 0	ADC 1 FIFO
D01	DMA Request 1	ADC 2 FIFO
D02	DMA Request 2	ADC 3 FIFO
D03	DMA Request 3	ADC 4 FIFO
D04	DMA Request 4	User In FIFO
D05	DMA Request 5	Reserved
D06	DMA Request 6	DAC FIFO
D07	DMA Request 7	User Out FIFO
D08	DMA Request 8	DDR Memory Read FIFO
D09	DMA Request 9	DDR Memory Write FIFO
D10	DMA Request 10	Test FIFO Read
D11	DMA Request 11	Test FIFO Write

5.10 PCI Bus Status Register

The PCI Bus Status Register is a read—only register that indicates the speed of the PMC bus that the 7142 is connected to on the PMC baseboard, 33 MHz or 66 MHz.

The following table shows the contents of this register.

	Table 5–11: PCI Bus Status Register R.O. @ BAR0+0x00A0								
	D31 – D01	D00							
Bit Name	Reserved	Bus Speed							
Function	Write with zeros, Mask when reading	0 = 33 MHz 1 = 66 MHz							
	All bits default to the logic '0' state at power on and reset								

5.11 DMA PCI Interrupt Enable/Flag Register

The DMA PCI Interrupt Enable/Flag Register enables or disables assertion of a PCI interrupt to the PMC baseboard in response to a DMA channel buffer overrun. The following table shows the contents of this register. The subsections following the table provide descriptions of the bits in this register.

		Table 5–12		I Interrupt @ BAR0+0:	Enable/Fla x00A8	ıg Registe	f	
	D31	D30	D29	D28	D27	D26	D25	D24
Bit Name		Reserved						FPGA DMA FIFO Status
Function		Write with zeros, Mask when reading					0 = OK 1 = Underflow	
	D23 *	D22	D21	D20	D19	D18	D17 *	D16
Bit Name	FPGA DMA DONE FLAG	FPGA DMA DONE EN	INTD	INTC	INTB	INTA	DMA8 FLAG	DMA8 EN
Function	0 = Not done 1 = Done	0 = Disable 1 = Enable			isable nable		0 = OK 1 = Overrun	0 = Disable 1 = Enable
	D15 *	D14	D13 *	D12	D11 *	D10	D09 *	D08
Bit Name	DMA7 FLAG	DMA7 EN	DMA6 FLAG	DMA6 EN	DMA5 FLAG	DMA5 EN	DMA4 FLAG	DMA4 EN
Function	0 = OK 1 = Overrun	0 = Disable 1 = Enable	0 = OK 1 = Overrun	0 = Disable 1 = Enable	0 = OK 1 = Overrun	0 = Disable 1 = Enable	0 = OK 1 = Overrun	0 = Disable 1 = Enable
	D07 *	D06	D05 *	D04	D03 *	D02	D01 *	D00
Bit Name	DMA3 FLAG	DMA3 EN	DMA2 FLAG	DMA2 EN	DMA1 FLAG	DMA1 EN	DMA0 FLAG	DMA0 EN
Function	0 = OK 1 = Overrun	0 = Disable 1 = Enable	0 = OK 1 = Overrun	0 = Disable 1 = Enable	0 = OK 1 = Overrun	0 = Disable 1 = Enable	0 = OK 1 = Overrun	0 = Disable 1 = Enable

* These bits are Read/Clear Flag bits. Each bit can be cleared only by writing a '1' to that bit.

IMPORTANT! When reset, including power-up, the state of the Read/Clear bits are unknown.

You should clear this register before using it, by writing '1's into all FLAG bits.

Register Bits	DMA Channel	Associated FIFO
D00, D01	DMA0	ADC 1 FIFO
D02, D03	DMA1	ADC 2 FIFO
D04, D05	DMA2	ADC 3 FIFO
D06, D07	DMA3	ADC 4 FIFO
D08, D09	DMA4	User In FIFO
D10, D11	DMA5	Reserved
D12, D13	DMA6	DAC FIFO
D14, D15	DMA7	User Out FIFO
D16, D17	DMA8	DDR Memory Read FIFO
D22, D23, D24	FPGA Load DMA	FPGA Load DMA FIFO

5.11 DMA PCI Interrupt Enable/Flag Register (continued)

NOTE: Bits D24, D23, and D22 are available only in 7142 boards with a PCI FPGA revision date greater that 10/01/07 (see Section 5.6).

5.11.1 FPGA DMA FIFO Status

Bit D24

This read—only bit indicates the status of the FPGA Load DMA FIFO. When read as logic '1' the Signal FPGA has a data underflow condition. When read as logic '0' the FIFO indicates no underflow.

5.11.2 FPGA DMA DONE FLAG

Bit D23

This bit latches a DMA done condition for the FPGA Load DMA channel. A logic '1' in this bit indicates the end of the transfer count specified in the FPGA Load DMA Transfer Count Register, Section 5.22. A logic '0' indicates the DMA is not done. When this bit changes to '1' a PCI bus interrupt can be asserted if the associated enable bit (Section 5.11.3 below) is enabled and one of the INTA/D bits is enabled (Section 5.11.4 below).

Since this bit latches in response to an interrupt, to detect a subsequent FPGA Load DMA done condition, you must clear the FLAG bit. To clear the FLAG bit, write a '1' to the bit.

See Section 4.5.5 for description of FPGA Load DMA channel operation.

5.11.3 FPGA DMA DONE EN

Bit D22

This bit enables or disables an FPGA Load DMA done interrupt to the PCI Interrupt line enabled (INTD to INTA, Section 5.11.4 below). Setting this bit to '1' enables the interrupt at the end of the FPGA Load DMA Transfer Count. When the bit is cleared to logic '0' (its default state) this interrupt will not be generated.

5.11.4 INTD/C/B/A

Bits D21 - D18

Each of these four bits enables or disables the generation of a PCI bus interrupt (INTA to INTD, depending on the bit) to the PMC baseboard in response to a DMA channel buffer overrun. Setting a bit to logic '1' enables the generation of the associated PCI bus interrupt when any DMA FLAG bit in this register (Section 5.11.5 below) is set to '1' and the associated DMA EN bit in this register (Section 5.11.6 below) is set to '1'. When a bit is cleared to logic '0' (its default state) that PCI bus interrupt will not be generated.

Note that the PCI bus interrupt is ORed with the PCI interrupt from the PCI Interrupt Enable Registers, Section 5.3, on the applicable PCI interrupt signal line (INTA to INTD).

5.11 DMA PCI Interrupt Enable/Flag Register (continued)

5.11.5 DMAn FLAG

Bits D17/D15/D13/D11/D09/D07/D05/D03/D01

Each of these bits latches a buffer overrun condition for the respective DMA channel. A logic '1' in any bit in this register indicates that a channel buffer overrun has occurred. A '0' indicates no buffer overrun. When one of these bits changes to '1' a PCI bus interrupt can be asserted if the associated DMA EN bit (Section 5.11.6 below) is enabled and one of the INTA/D bits is enabled (Section 5.11.4 above).

Since these bits latch in response to an interrupt, to detect a subsequent channel buffer overrun, you must clear the FLAG bits in this register. To clear any FLAG bit in this register that is set to logic '1' you must write a '1' to that bit.

5.11.6 DMAn EN

Bits D16/D14/D12/D10/D08/D06/D04/D02/D00

Each of these bits enables or disables a DMA buffer overrun interrupt to the PCI Interrupt line enabled (INTD to INTA, Section 5.11.4 above). Setting the bit associated with a given DMA channel to logic '1' enables the interrupt when that channel overrun occurs. When a bit is cleared to logic '0' (its default state) the interrupt will not be generated by the channel overrun.

5.12 Local DMA In Address Remap Register

The Local DMA In Address Remap Register permits remapping each incoming DMA channel for use with a different incoming FIFO.

The following table shows the contents of this register.

	Та	ıble 5–13:	Local DM R/W @	A In Addre BAR0+0x0	•	Register		
	D31 – D28	D27 – D24	D23 – D20	D19 – D16	D15 – D12	D11 – D08	D07 – D04	D03 – D00
Bit Name	Reserved	DMA8	DMA5	DMA4	DMA3	DMA2	DMA1	DMA0
Function	Write 0s, Mask read			FIFO	Codes, see	below		
All bi	ts default to	the defa	ult FIFOs a	ıt power on	and reset	(see Table	5–14, belo	ow)

Each incoming DMA channel has a four-bit field in this register that maps an incoming FIFO to that channel. The mapping code for the four bits in each field is as follows, in hex:

0x0 = ADC 1 FIFO

0x1 = ADC 2 FIFO

0x2 = ADC 3 FIFO

0x3 = ADC 4 FIFO

0x4 = User In FIFO

0x5 = (Reserved)

0x8 = DDR Memory Read FIFO

0xC = Test FIFO Read

The default mapping is shown in the following table:

	Table 5-14: Default DMA In Mapping						
DMA Channel	FIFO	Register Bits	Code				
DMA0	ADC 1 FIFO	D03 – D00	0				
DMA1	ADC 2 FIFO	D04 – D07	1				
DMA2	ADC 3 FIFO	D08 – D11	2				
DMA3	ADC 4 FIFO	D12 – D15	3				
DMA4	User In FIFO	D16 – D19	4				
DMA5	Reserved	D20 – D23	5				
DMA8	DDR Memory Read FIFO	D24 – D27	8				

5.13 Local DMA Out Address Remap Register

The Local DMA Out Address Remap Register permits remapping each outgoing DMA channel for use with a different outgoing FIFO.

The following table shows the contents of this register.

	Table 5-15: Local DMA Out Address Remap Register R/W @ BAR0+0x00B8	•			
	D31 – D08	D07 – D04	D03 – D00		
Bit Name	Reserved	DMA7	DMA6		
Function Write with zeros, Mask when reading FIFO Codes, see below					
All bi	ts default to the default FIFOs at power on and reset (see Table	5–16, belo	ow)		

Each outgoing DMA channel has a four-bit field in this register that maps an outgoing FIFO to that channel. The mapping code for the four bits in each field is as follows, in hex:

0x6 = DAC FIFO

0x7 = User Out FIFO

0x9 = DDR Memory Write FIFO

0xD = Test FIFO Write

The default mapping is shown in the following table:

Table 5-16: Default DMA Out Mapping					
DMA Channel	FIFO	Register Bits	Code		
DMA6	DAC FIFO	D03 – D00	6		
DMA7	User Out FIFO	D07 – D04	7		

5.14 DMA Command Register

The DMA Command Register specifies the type of PCI Bus read and write commands used for DMA operations.

The following table shows the contents of this register.

Table 5-17: DMA Command Register R/W @ BAR0+0x0100							
	D31 – D08	D07 – D04	D03 – D00				
Bit Name	Reserved	PCI Write Command Code for DMA	PCI Read Command Code for DMA				
Function	Write with zeros, Mask when reading	0111	1100				
	All bits default to the state indicated above at power on and reset						

The PCI Write command (bits D07 – D04) is fixed at code '0111', Memory Write.

The PCI Read command (bits D03 – D00) defaults to code '1100', Memory Read Multiple. The following codes are valid for the PCI Read command:

0110 - Memory Read

1100 – Memory Read Multiple

1110 – Memory Read Line

5.15 DMAx Current Transfer Counter Registers

The read—only DMA Current Transfer Counter Register indicates the current status and data transfer count for the applicable DMA channel. There are nine DMA Current Transfer Count registers, one for each DMA channel (0 through 8), which support nine data transfer FIFOs. The nine DMA channels are assigned to the following FIFOs (note that the Direction given is from the PMC baseboard):

T	able 5–18: DMA Use by FIF0)s
DMA Channel	FIFO	Direction
DMA0	ADC 1 FIFO	Incoming
DMA1	ADC 2 FIFO	Incoming
DMA2	ADC 3 FIFO	Incoming
DMA3	ADC 4 FIFO	Incoming
DMA4	User In FIFO	Incoming
DMA5	Reserved	Incoming
DMA6	DAC FIFO	Outgoing
DMA7	User Out FIFO	Outgoing
DMA8	DDR Memory Read FIFO	Incoming

The following table shows the contents of this DMA Current Transfer Counter Register. The subsections following the table provide descriptions of the bits in this register.

	Tal		DMAx Current Trandma0: R.O. @ BARDMA1: R.O. @ BARDMA2: R.O. @ BARDMA3: R.O. @ BARDMA4: R.O. @ BARDMA5: R.O. @ BARDMA6: R.O. @ BARDMA7: R.O. @ BARDMA7: R.O. @ BARDMA8: R.O. @	0+0x0120 0+0x0130 0+0x0140 0+0x0150 0+0x0160 0+0x0170 0+0x0180
	D31	D30	D29 – D28	D27 – D00
Bit Name	DMA Active	Reserved	Descriptor Pointer	Transfer Count
Function	0 = DMA Active 1 = No DMA	Write 0s, Mask read	Current Descriptor number	Current data transfer count, in words (32-bit or 64-bit, see Section 5.15.3)
	When res	et, includin	g power–up, the sta	ate of this register is unknown.

5.15 DMAx Current Transfer Status Registers (continued)

5.15.1 DMA Active

Bit D31

This bit indicates the current active status of the applicable DMA channel, depending on the register accessed. When read as logic '0' the DMA channel is active (a data transfer is running). When read as logic '1' the DMA channel is not active.

5.15.2 Descriptor Pointer

Bits D29 - D28

These two bits indicate the number of the current Descriptor that is active for the applicable DMA channel, depending on the register accessed. There are four Descriptors for each DMA channel, identified as 0 through 3.

The four Descriptors can programmed for separate DMA transfers using the DMA Command/Status Register, Transfer Interval Counter Register, four Descriptor Transfer Count Registers, and four Descriptor PCI Address Registers (see Sections 5.17 to 5.20).

5.15.3 Transfer Count

Bits D27 - D00

This field indicates the current transfer count of the applicable DMA channel, depending on the register accessed. The Transfer Count is a 28-bit binary value, with bit D27 the MSB. Words are either 32 or 64 bits wide, as specified by Data Width, bit D07, in the DMA Command/Status Register, Section 5.17.10.

This register field is loaded with the programmed Transfer Interval Count, Section 5.18.3, at the start of the DMA, and decrements to zero during the transfer.

5.16 DMAx Current PCI Address Registers

The read—only DMA Current PCI Address indicates the current PCI address for the applicable DMA channel. There are nine DMA Current PCI Address registers, one for each DMA channel (0 through 8). See Table 5–18 on page 102 for the FIFOs assigned to each DMA channel.

The following table shows the contents of this register.

	Table 5–20: DMAx Current PCI Address Register
	DMA0: R.O. @ BAR0+0x0118
	DMA1: R.O. @ BAR0+0x0128
	DMA2: R.O. @ BAR0+0x0138
	DMA3: R.O. @ BAR0+0x0148
	DMA4: R.O. @ BAR0+0x0158
	DMA5: R.O. @ BAR0+0x0168
	DMA6: R.O. @ BAR0+0x0178
	DMA7: R.O. @ BAR0+0x0188
	DMA8: R.O. @ BAR0+0x0198
	D31 – D00
Bit Name	PCI Address
Function	Current PCI Address for DMAx
	When reset, including power-up, the state of this register is unknown.

5.17 DMAx Command/Status Registers

The DMA Command/Status Register is used to control DMA operation for the applicable DMA channel. There are nine DMA Command/Status Count registers, one for each DMA channel (0 through 8). The bits in this register allow you to set and monitor the operating mode of the DMA channel and the PCI bus data transfer associated with that DMA operation.

The following table shows the contents of the DMA Command/Status Register. The subsections following the table provide descriptions of the bits in this register.

		Table 5	21 · DMA	v Common	d/Status B	Pogistor			
		i abie 5		x Comman		iegister			
				R/W @ BAR(
		DMA1: R/W @ BAR0+0x2000 DMA2: R/W @ BAR0+0x3000							
		DMA3: R/W @ BAR0+0x3000 DMA3: R/W @ BAR0+0x4000							
				1/W @ BAR(R/W @ BAR(
				1/W @ BAR(R/W @ BAR(
				R/W @ BAR					
			DMA7: F	R/W @ BAR	0008x0+0				
			DMA8: F	R/W @ BAR	0+0x9000				
				D31 -	- D16				
Bit Name				Maximum E	Burst Count				
Function				Burst Cour	nt, in words				
	D15 ***	D14	D13 **	D12 **	D11 **	D10 **	D09 **	D08 **	
			Detected	0'	Deseived	Desciusal	Cianalad		
	DVC		Detected	Signaled	Received	Received	Signaled	Data Darity	
Bit Name	DAC	PCI Address	Parity Error	Signaled System Error	Master Abort	Target Abort	Target Abort	Data Parity	
Bit Name	DAC Buffering	PCI Address		·				Data Parity Error Flag	
		PCI Address 0 = Increment	Parity Error Flag	System Error	Master Abort	Target Abort	Target Abort Flag	,	
Bit Name Function	Buffering		Parity Error Flag	System Error Flag	Master Abort Flag	Target Abort Flag	Target Abort Flag	Error Flag	
	Buffering 0 = Enable	0 = Increment	Parity Error Flag 0 = No Error	System Error Flag 0 = No Error	Master Abort Flag 0 = No Abort	Target Abort Flag 0 = No Abort	Target Abort Flag 0 = No Abort	Error Flag 0 = No Parity	
	Buffering 0 = Enable 1 = Disable	0 = Increment 1 = Hold	Parity Error Flag 0 = No Error 1 = Error D05	System Error Flag 0 = No Error 1 = Error	Master Abort Flag 0 = No Abort 1 = Abort	Target Abort Flag 0 = No Abort 1 = Abort	Target Abort Flag 0 = No Abort 1 = Abort	Error Flag 0 = No Parity 1 = Parity	
	Buffering 0 = Enable 1 = Disable D07	0 = Increment 1 = Hold	Parity Error Flag 0 = No Error 1 = Error D05 Demand	System Error Flag 0 = No Error 1 = Error	Master Abort Flag 0 = No Abort 1 = Abort D03	Target Abort Flag 0 = No Abort 1 = Abort	Target Abort Flag 0 = No Abort 1 = Abort	Error Flag 0 = No Parity 1 = Parity	
Function	Buffering 0 = Enable 1 = Disable D07	0 = Increment 1 = Hold D06	Parity Error Flag 0 = No Error 1 = Error D05	System Error Flag 0 = No Error 1 = Error D04 **	Master Abort Flag 0 = No Abort 1 = Abort D03 DMA	Target Abort Flag 0 = No Abort 1 = Abort D02	Target Abort Flag 0 = No Abort 1 = Abort D01 *	Error Flag 0 = No Parity 1 = Parity D00	
Function	Buffering 0 = Enable 1 = Disable D07 Data Width	0 = Increment 1 = Hold D06 Burst Mode	Parity Error Flag 0 = No Error 1 = Error D05 Demand Mode	System Error Flag 0 = No Error 1 = Error D04 **	Master Abort Flag 0 = No Abort 1 = Abort D03 DMA Channel Buffer Reset	Target Abort Flag 0 = No Abort 1 = Abort D02	Target Abort Flag 0 = No Abort 1 = Abort D01 * DMA Start	Error Flag 0 = No Parity 1 = Parity D00 DMA Enable	
Function	Buffering 0 = Enable 1 = Disable D07 Data Width 0 = 32	0 = Increment 1 = Hold D06 Burst Mode 0 = N/A	Parity Error Flag 0 = No Error 1 = Error D05 Demand Mode 0 = Disable	System Error Flag 0 = No Error 1 = Error D04 ** DMA Status	Master Abort Flag 0 = No Abort 1 = Abort D03 DMA Channel Buffer Reset 0 = Run	Target Abort Flag 0 = No Abort 1 = Abort D02 DMA Abort	Target Abort Flag 0 = No Abort 1 = Abort D01 * DMA Start 0 = Stop	Error Flag 0 = No Parity 1 = Parity D00 DMA Enable 0 = Disable	
Function Bit Name	Buffering 0 = Enable 1 = Disable D07 Data Width	0 = Increment 1 = Hold D06 Burst Mode	Parity Error Flag 0 = No Error 1 = Error D05 Demand Mode	System Error Flag 0 = No Error 1 = Error D04 ** DMA Status 0 = DMA	Master Abort Flag 0 = No Abort 1 = Abort D03 DMA Channel Buffer Reset	Target Abort Flag 0 = No Abort 1 = Abort D02 DMA Abort 0 = N/A	Target Abort Flag 0 = No Abort 1 = Abort D01 * DMA Start	Error Flag 0 = No Parity 1 = Parity D00 DMA Enable	
Function Bit Name	Buffering 0 = Enable 1 = Disable D07 Data Width 0 = 32	0 = Increment 1 = Hold D06 Burst Mode 0 = N/A	Parity Error Flag 0 = No Error 1 = Error D05 Demand Mode 0 = Disable 1 = Enable	System Error Flag 0 = No Error 1 = Error D04 ** DMA Status 0 = DMA Active	Master Abort Flag 0 = No Abort 1 = Abort D03 DMA Channel Buffer Reset 0 = Run 1 = Reset	Target Abort Flag 0 = No Abort 1 = Abort D02 DMA Abort 0 = N/A 1 = Abort	Target Abort Flag 0 = No Abort 1 = Abort D01 * DMA Start 0 = Stop	Error Flag 0 = No Parity 1 = Parity D00 DMA Enable 0 = Disable	
Function Bit Name	Buffering 0 = Enable 1 = Disable D07 Data Width 0 = 32	0 = Increment 1 = Hold D06 Burst Mode 0 = N/A	Parity Error Flag 0 = No Error 1 = Error D05 Demand Mode 0 = Disable 1 = Enable * Bit D	System Error Flag 0 = No Error 1 = Error D04 ** DMA Status 0 = DMA Active 1 = Done	Master Abort Flag 0 = No Abort 1 = Abort D03 DMA Channel Buffer Reset 0 = Run 1 = Reset	Target Abort Flag 0 = No Abort 1 = Abort D02 DMA Abort 0 = N/A 1 = Abort	Target Abort Flag 0 = No Abort 1 = Abort D01 * DMA Start 0 = Stop	Error Flag 0 = No Parity 1 = Parity D00 DMA Enable 0 = Disable	

^{***} Bit D15 applies only to DMA Channels 6 and 7 (DMA6 & DMA7).

All bits default to the logic '0' state at power on and reset

5.17 DMAx Command/Status Registers (continued)

5.17.1 Maximum Burst Count

Bits D31 - D16

The burst count is a 16-bit binary value, with bit D31 the MSB. This value specifies the maximum data transfer burst length, in words, for the applicable DMA channel. See Data Width, Section 5.17.10 below, for the word size of each transfer, 32-bit or 64-bit. See Sections 4.5.1 and 4.5.2 for description of Burst Mode DMA operation.

NOTE: When in 32-bit mode, the burst count must be an even value.

5.17.2 DAC Buffering

Bit D15

This bit enables or disables buffering of the data transfer for the applicable DMA channel PCI bus data transfer. When set to logic '0' buffering is enabled to the output device. When set to logic '1' the DMA channel does not buffer the data transfer to this device. Typically, this should be set to '1' to disable buffering.

NOTE: This bit is applicable only to DMA channels 6 and 7 (Out FIFOs).

5.17.3 PCI Address Hold

Bit D14

This bit sets the PCI address to increment or hold for the applicable DMA channel PCI bus data transfer. When set to logic '0' the PCI address increments. When set to logic '1' the DMA address holds and does not increment.

5.17.4 Detected Parity Error Flag

Bit D13

This read—only bit indicates the PCI bus Parity Error status for the applica—ble DMA channel PCI bus data transfer. When read as logic '0' the DMA channel did not detect a PCI bus parity error. When read as logic '1' the DMA channel detected a PCI bus parity error.

5.17.5 Signaled System Error Flag

Bit D12

This read—only bit indicates the PCI bus SERR pin status for the applicable DMA channel PCI bus data transfer. When read as logic '0' the DMA channel did not detect a PCI bus SERR error. When read as logic '1' the DMA channel detected a PCI bus SERR error.

5.17.6 Received Master Abort Flag

Bit D11

This read—only bit indicates the current Master Abort status for the applica—ble DMA channel PCI bus data transfer. When read as logic '0' a PCI Bus Master did not terminate the data transfer. When read as logic '1' a PCI Bus Master did terminate the data transfer by a bus Master Abort.

5.17 DMAx Command/Status Registers (continued)

5.17.7 Received Target Abort Flag

Bit D10

This read—only bit indicates the current Target Abort status for the applica—ble DMA channel PCI bus data transfer. When read as logic '0' a Target Abort did not terminate the data transfer. When read as logic '1' a Target Abort has terminates the bus master's data transfer.

5.17.8 Signaled Target Abort Flag

Bit D09

This read—only bit indicates the current Target Abort status of the Target device for the applicable DMA channel PCI bus data transfer. When read as logic '0' the Target device did not terminate the transaction with a Target Abort. When read as logic '1' the Target device terminated the transaction with a Target Abort.

5.17.9 Data Parity Error Flag

Bit D08

This read—only bit indicates the enabled PCI bus PERR pin status for the applicable DMA channel PCI bus data transfer. When read as logic '0' the no PCI bus parity errors have occurred. When read as logic '1' the DMA channel detected a PERR parity error from the bus Master. This error flag can only be set if the Parity Error Response (bit 6 of the bus master's Command Register) is enabled.

5.17.10 Data Width

Bit D07

This bit sets the PCI bus data width of the DMA transfer for the applicable DMA channel. When set to logic '0' the PCI bus data width is 32–bits. When set to logic '1' the PCI bus data width is 64–bits.

The setting of this bit affects the Maximum Burst Count, Section 5.17.1. When this bit is cleared to 0 the burst count is the number of 32-bit words; when this bit is set to 1 the burst count is the number of 64-bit words.

5.17.11 Burst Mode

Bit D06

This bit sets Burst Mode DMA operation for the applicable DMA channel. When set to logic '1' each data transfer is in multiple bursts, and Maximum Burst Count, Section 5.17.1, specifies the maximum transfer of each burst.

NOTE: This bit should not be cleared to logic '0'.

See Sections 4.5.1 and 4.5.2 for description of Burst Mode DMA operation.

5.17 DMAx Command/Status Registers (continued)

5.17.12 Demand Mode

Bit D05

This bit sets Demand Mode DMA operation for the applicable DMA channel. When set to logic '0' the Demand Mode is not enabled. When set to logic '1' Demand Mode is enabled. See Section 4.5.1 for description of Demand Mode Operation.

5.17.13 DMA Status

Bit D04

This read—only bit indicates the current active status for the applicable DMA channel. When read as logic '0' the DMA channel is active (a data transfer is running). When read as logic '1' the DMA channel is not active.

5.17.14 DMA Channel Buffer Reset

Bit D03

This bits issues a reset to one of the DMA channel buffers in the PCI7142. This reset flushes any remaining data from the respective buffer in the PCI7142 (this reset does not clear or reset the associated FIFO in the Signal FPGA). When the bit is set to logic '1' the channel is in reset. When the bit is cleared to logic '0' (its default state) the channel is in a normal run state.

5.17.15 DMA Abort

Bit D02

This bit aborts DMA operation for the applicable DMA channel. When this bit is set to logic '1' the DMA channel aborts the current transfer. This bit cannot be cleared to logic '0' by the user—the DMA channel logic clears this bit when it aborts the channel.

5.17.16 DMA Start

Bit D01

This bit starts DMA operation for the applicable DMA channel. When this bit is set to logic '1' the channel starts transferring data if the channel is enabled.

5.17.17 DMA Enable

Bit D00

This bit enables the applicable DMA channel. Writing a logic '1' enables the channel to transfer data. Writing a logic '0' disables the channel from starting a DMA transfer, and if in the process of transferring data, suspends the transfer (pause).

5.18 DMAx Transfer Interval Counter Registers

The DMA Transfer Interval Counter Register is used to setup and monitor DMA Count Interrupt operation for the applicable DMA channel. There are nine DMA Transfer Interval Counter registers, one for each DMA channel (0 through 8). The following table shows the contents of the DMA Transfer Interval Counter Register. The subsections following the table provide descriptions of the bits in this register.

	7	DMA0: F DMA1: F DMA2: F DMA3: F DMA4: F DMA5: F DMA6: F DMA7: F	ansfer Interval Count 3/W @ BAR0+0x1008 3/W @ BAR0+0x2008 3/W @ BAR0+0x3008 3/W @ BAR0+0x4008 3/W @ BAR0+0x5008 3/W @ BAR0+0x6008 3/W @ BAR0+0x7008 3/W @ BAR0+0x8008 3/W @ BAR0+0x8008	er Register
	D31	D30 – D28	D27 – D24 *	D23 – D00
Bit Name	Reset	Reserved	Interrupt Counter	Transfer Interval Count
Function0 =Run 1 =ResetWrite with zeros, Mask when readingCurrent Interrupt CountTransfer Count, in words-1, see Section 5.18.3				
* These bits are Read Only All bits default to the logic '0' state at power on and reset				

5.18.1 Reset Bit D31

This bit resets both the Interrupt Counter and the Transfer Interval Counter. When the bit is set to logic '1' the counters are in reset (reset does not clear this register). When the bit is cleared to logic '0' (its default state) the counters are released for counting (run state).

5.18.2 Interrupt Counter

Bits D27 - D24

The Interrupt Counter is a 4-bit read-only binary value, with bit D27 the MSB. This value indicates the current count of the number of DMA Count interrupts that has been generated.

5.18 DMAx Transfer Interval Counter Registers (continued)

5.18.3 Transfer Interval Count

Bits D23 - D00

Transfer Interval Count is a 24-bit binary value, with bit D23 the MSB. This value specifies the count that will generate a DMA Transfer Interval Count Finish interrupt to the PCI Interrupt Flag Register, Section 5.2.

This transfer count is calculated as the desired number of data words (which must be a power of 2) minus one. Data words are either 32 or 64 bits wide, as specified by Data Width, bit D07, in the DMA Command/Status Register, Section 5.17.10. The valid transfer interval count values are:

Table 5-23: Valid Transfer Interval Count Values				
Data Word Count	Transfer Interval Count	Bits D23 - D00		
4 words	3	0x3		
8 words	7	0x7		
16 words	15	0xF		
32 words	31	0x1F		
64 words	63	0x3F		
128 words	127	0x7F		
256 words	255	0xFF		
512 words	511	0x1FF		
1,024 words	1023	0x3FF		
2,048 words	2047	0x7FF		
4,096 words	4095	0xFFF		
8,192 words	8191	0x1FFF		
16,384 words	16383	0x3FFF		
32,768 words	32767	0x7FFF		
65,536 words	65535	0xFFFF		
131,072 words	131071	0x1 FFFF		
262,144 words	262143	0x3 FFFF		
524,288 words	524287	0x7 FFFF		
1,048,576 words	1048575	0xF FFFF		
2,097,152 words	2097151	0x1F FFFF		
4,194,304 words	4194303	0x3F FFFF		
8, 388,608 words	8,388,607	0x7F FFFF		
16,777,216 words	16,777,215	0xFF FFFF		

5.19 DMAx Descriptor Transfer Count Registers

The DMA Descriptor Transfer Count Registers are used to setup the DMA operation Descriptors of the applicable DMA channel. There are nine DMA channels, DMA (0 through 8), and four Descriptors for each DMA channel, for a total of 36 DMA Descriptor Transfer Count Registers. Each of these registers has an associated DMA Descriptor PCI Address Register, Section 5.20, that must be programmed at the same time.

The following table shows the contents of the DMA Transfer Count Register. The subsections following the table provide descriptions of the bits in this register.

Table 5–24: DMAx Descriptor Transfer Count Registers					
		Descriptor	<u>Descriptor 1</u>	Descriptor 2	Descriptor 3
DMA0	: R/W @	BAR0+0x10	D10 BAR0+0x1020	BAR0+0x1030	BAR0+0x1040
DMA1	: R/W @	BAR0+0x20	D10 BAR0+0x2020	BAR0+0x2030	BAR0+0x2040
DMA2	: R/W @	BAR0+0x30	D10 BAR0+0x3020	BAR0+0x3030	BAR0+0x3040
DMA3	: R/W @	BAR0+0x40	D10 BAR0+0x4020	BAR0+0x4030	BAR0+0x4040
DMA4	: R/W @	BAR0+0x50	D10 BAR0+0x5020	BAR0+0x5030	BAR0+0x5040
DMA5	: R/W @	BAR0+0x60	D10 BAR0+0x6020	BAR0+0x6030	BAR0+0x6040
DMA6	: R/W @	BAR0+0x70	D10 BAR0+0x7020	BAR0+0x7030	BAR0+0x7040
DMA7	: R/W @	BAR0+0x80	D10 BAR0+0x8020	BAR0+0x8030	BAR0+0x8040
DMA8	: R/W @	BAR0+0x90	D10 BAR0+0x9020	BAR0+0x9030	BAR0+0x9040
	D31	D30	D29- D28	D2	7 – D00
Bit Name	Chain	Interrupt	Reserved	Tran	sfer Count
F	0 = End	0 = Disable	Write with zeros,	Transfer	Count, In Bytes
Function	1 = Next	1 = Enable	Mask when reading		9.3 for bits D02 – D00)
	All bits default to the logic '0' state at power on and reset				

5.19.1 Chain Bit D31

This bit enables the next Descriptor in the chain for the applicable DMA channel, depending on the register accessed. When you clear this bit to logic '0' (its default state) the descriptor chain ends at this Descriptor. Set the bit to logic '1' to continue (link) the data transfer to the next Descriptor.

When you set this bit to '1' for Descriptor 3, the data transfer continues, restarting at Descriptor 0, for a continuous transfer. A continuous transfer can only be stopped using the DMA Abort bit, Section 5.17.15, for this DMA channel.

NOTE: If you setup a DMA channel for a continuous data transfer (Chain bit D31 = 1 in all four Descriptors), you must ensure that the gating signal used for the transfer is not stopped before you stop the transfer or the channel may hang up.

5.19 DMAx Descriptor Transfer Count Registers (continued)

5.19.2 Interrupt

Bit D30

This bit enables an end of chain interrupt for the applicable DMA channel. When set to logic '0' the end of chain interrupt is not enabled. When set to logic '1' an end of chain interrupt is enabled.

When enabled, at the end of the last descriptor transfer count specified for this channel a DMA Chain Finish interrupt will be generated to the PCI Interrupt Flag Register, Section 5.2. You must enable the applicable DMA Chain Finish bit in the PCI Interrupt Enable Register, Section 5.3, to route this interrupt to the PCI or Local bus.

5.19.3 Transfer Count

Bits D27 - D00

The Transfer Count is a 28-bit binary value, with bit D27 the MSB. This value indicates the data transfer count, in bytes, for this Descriptor.

The Transfer Count must be an even number of bytes for the word size specified, 32–bit or 64–bit. Thus, if 32–bit transfers are specified, Transfer Count bits D01 and D00 must be '0'; if 64–bit transfers are specified, bits D02, D01, and D00 must be '0'. See Data Width, Section 5.17.10, for the word size.

5.20 DMAx Descriptor PCI Address Registers

The DMA Descriptor PCI Address Registers are used to setup the DMA operation Descriptors of the applicable DMA channel. There are nine DMA channels, DMA (0 through 8), and four Descriptors for each DMA channel, for a total of 36 DMA Descriptor PCI Address Registers. Each of these registers has an associated DMA Descriptor Transfer Count Register, Section 5.19, that must be programmed at the same time.

The following table shows the contents of the DMA Descriptor PCI Address Register. The paragraphs following the table provide descriptions of the bits in this register.

	Table 5–25: DMAx Descriptor PCI Address Registers						
		Descriptor 0	Descriptor 1	Descriptor 2	Descriptor 3		
DMA0:	R/W @	BAR0+0x1018	BAR0+0x1028	BAR0+0x1038	BAR0+0x1048		
DMA1:	R/W @	BAR0+0x2018	BAR0+0x2028	BAR0+0x2038	BAR0+0x2048		
DMA2:	R/W @	BAR0+0x3018	BAR0+0x3028	BAR0+0x3038	BAR0+0x3048		
DMA3:	R/W @	BAR0+0x4018	BAR0+0x4028	BAR0+0x4038	BAR0+0x4048		
DMA4:	R/W @	BAR0+0x5018	BAR0+0x5028	BAR0+0x5038	BAR0+0x5048		
DMA5:	R/W @	BAR0+0x6018	BAR0+0x6028	BAR0+0x6038	BAR0+0x6048		
DMA6:	R/W @	BAR0+0x7018	BAR0+0x7028	BAR0+0x7038	BAR0+0x7048		
DMA7:	R/W @	BAR0+0x8018	BAR0+0x8028	BAR0+0x8038	BAR0+0x8048		
DMA8:	R/W @	BAR0+0x9018	BAR0+0x9028	BAR0+0x9038	BAR0+0x9048		
	D31 – D00						
Bit Name	PCI Address						
Function	Function Source/Destination PCI Address						
		All bits default to	the logic '0' state	at power on and re	eset		

The PCI Address specifies the source or destination PCI bus address (depending on the associated FIFO's direction) for the data transfer. The PCI address is a 32-bit address.

NOTE: Each DMA channel has four possible Descriptors that can be linked to provide a continuous data transfer. There are two registers for each Descriptor, the DMA Descriptor PCI Address Register, above, and the DMA Descriptor Transfer Count Register, Section 5.19.

5.21 FPGA Load DMA Command/Status Register

NOTE: FPGA Load DMA operation is available only in 7142 boards with a PCI FPGA revision date greater that 10/01/07 (see Section 5.6).

The FPGA Load DMA Command/Status Register controls operation of the FPGA Load DMA channel. The bits in this register allow you to start and monitor the DMA channel and the PCI bus data transfer to the Signal FPGA. See Section 4.5.5 for description of FPGA Load DMA channel operation.

The following table shows the contents of the FPGA Load DMA Command/Status Register. The subsections following the table describe the bits in this register.

	Table 5–26: FPGA Load DMA Command/Status Register R/W @ BAR0+0xA000							
				D31 -	- D08			
Bit Name				Rese	erved			
Function		Write with zeros, Mask when reading						
	D07	D07						
Bit Name		Reserved		DMA Status	FIFO Reset	Reserved	DMA Start	Reserved
Function	Write with zeros, Mask when reading 0 = DMA Active 1 = Done 0 = Run Nrite 0s, Mask read 0 = Stop Write 0s, Mask read 1 = Start Mask read							
* Bit D01 is Write Only ** Bit D04 is Read Only All bits default to the logic '0' state at power on and reset								

5.21.1 DMA Status

Bit D04

This read—only bit indicates the current active status for the FPGA Load DMA channel. When read as logic '0' the DMA channel is active (a PCI bus data transfer is running). When read as logic '1' the DMA channel is not active.

5.21.2 FIFO Reset

Bit D03

This bits issues a reset to the FPGA Load DMA channel FIFO in the PCI7142. This reset flushes any remaining data from the FIFO. When the bit is set to logic '1' the channel is in reset. When the bit is cleared to logic '0' (its default state) the channel is in a normal run state.

5.21.3 DMA Start

Bit D01

This write—only bit starts FPGA Load DMA operation. When this bit is set to logic '1' the FPGA Load DMA channel starts transferring data.

5.22 FPGA Load DMA Transfer Count Register

NOTE: FPGA Load DMA operation is available only in 7142 boards with a PCI FPGA revision date greater that 10/01/07 (see Section 5.6).

The FPGA Load DMA Transfer Count Register is used to setup DMA operation of the FPGA Load DMA channel. This register has an associated FPGA Load DMA PCI Address Register, Section 5.20, that must be programmed at the same time. Refer to Section 4.5.5 for description of FPGA Load DMA channel operation.

The following table shows the contents of this register.

Table 5-27: FPGA Load DMA Transfer Count Register R/W @ BAR0+0xA010					
	D31– D28 D27 – D00				
Bit Name	Reserved	Transfer Count			
Function	Function Write with zeros, Mask when reading Transfer Count, In words				
All bits default to the logic '0' state at power on and reset					

The Transfer Count is a 28-bit binary value, with bit D27 the MSB. This value specifies the data transfer count, in 32-bit words, for the FPGA Load DMA channel.

5.23 FPGA Load DMA PCI Address Register

NOTE: FPGA Load DMA operation is available only in 7142 boards with a PCI FPGA revision date greater that 10/01/07 (see Section 5.6).

The FPGA Load DMA PCI Address Register is used to setup the DMA operation of the FPGA Load DMA channel. This register has an associated FPGA Load DMA Transfer Count Register, Section 5.19, that must be programmed at the same time.

The following table shows the contents of this register.

	Table 5–28: FPGA Load DMA PCI Address Register				
	R/W @ BAR0+0xA018				
	D31 – D00				
Bit Name	PCI Address				
Function	Function Source PCI Address				
	All bits default to the logic '0' state at power on and reset				

The PCI Address is a 32-bit value that specifies the source PCI bus address of the data transfer, for the FPGA Load DMA channel.

Chapter 6: Signal FPGA Registers

6.1 Overview

The XC4VSX55 (or XC4VLX100) Signal FPGA is connected to the PMC baseboard through the Pentek PCI7142 core. Through this PCI interface, any processor on the PMC baseboard can receive data from any LTC2255, and/or send data to the DAC5686 for two channels of output. Any PCI Bus Master can control all programmable features on the board, including the four LTC2255s, the DAC5686, and all Signal FPGA memory map registers.

This chapter describes the Signal FPGA registers accessible from a PMC baseboard processor. All descriptions are given from the baseboard processor's viewpoint. All FPGA registers are 16 bits wide, however since the PCI local bus is a 64–bit data path, the register addresses are in increments of 64 bits (8 bytes). Refer to Section 3.3.2 for the memory map of all Signal FPGA registers in the Model 7142.

Below is a simplified block diagram of the Signal FPGA interfaces, indicating the location of the FPGA internal registers. (See Figure 6–5 on page 181 for illustration of the FPGA 'Switching and Routing' between the FIFOs and the A/Ds, DAC, and DDR Memory. See Figure 5–1 for a simplified block diagram of the PCI7142 interfaces.)

6.2 ID Readout Register

The ID Readout Register is a read—only register that provides the Pentek Model 7142 board identification. When read, it always returns a value of **0x7142**.

Table 6-1: ID Readout Register R.O. @ BAR2+0x8000						
	D15 – D12					
Bit Name	Board Identification					
Function	0111 0001 0100 0010					

6.3 TWSI Port Register

The TWSI Port Register allows you to program the voltage/temperature sensor thresholds over the board's serial TWSI (Two–Wire Serial Interface) bus.

The board's voltage/temperature sensors provide constant monitoring of critical voltages and temperatures on the PCB. When an over-temperature or over-voltage condition is indicated, the red **TMP** LED is illuminated on the front panel, and an over-temperature/voltage interrupt is available to a baseboard processor (see Table 6–19).

The following table shows this register's bit layout. The paragraphs following this table describe these bits.

Table 6-2: TWSI Port Register R/W @ BAR2+0x8018						
	D15 – D03	D02	D01	D00		
Bit Name	Reserved	SER DIR	SER CLK	SER DAT		
Function	Function Write with zeros, Mask when reading 0 = Write 1 = Read Serial Clock Serial Data					
All bits default to the logic '0' state at power on and reset						

The TWSI Port Register contains three bits: one bit sets the read/write direction of the register (SER DIR) and the other two provide the serial clock (SER CLK) and data (SER DATA) to/from the serial TWSI bus.

NOTE: You must set up the TWSI bus devices following power on of the Model 7142. The following paragraphs describe the setup of these devices. Routines for programming these devices are provided in the ReadyFlow board support software for the Model 7142 (Pentek part #801.71420).

The devices on the TWSI bus include an Analog Devices ADM1024 Hardware Monitor and a National Semiconductor LM83 Temperature Sensor. You can program these devices from the Temperature/Voltage Sense Register, using internal registers in each device, as described in the following paragraphs.

6.3 TWSI Port Register (continued)

Each device on the TWSI bus has a separate bus address, as listed in the following table. The bus address is sent first, as serial data.

Table 6–3: TWSI Bus Addresses					
Device Write Address Read Address Information					
LM83 Temperature Sensor	0x30	0x31	Section 6.3.1		
ADM1024 Hardware Monitor	0x58	0x59	Section 6.3.2		

The TWSI bus addresses consist of the 7-bit serial bus address of the device in the first seven most significant bits, plus the least significant bit = 0/1 for write/read.

6.3.1 LM83 Temperature Sensor

There are several temperature sensors in the LM83 that can be programmed on the serial TWSI bus, using LM83 internal registers (refer to the LM83 data sheet, see Section 1.15, for description of these registers).

The following table lists the programmable sensors on the LM83:

Table 6–4: LM83 Programmable Sensors					
LM83 Input	ReadyFlow Limits *				
D1	60° C				
D2	70° C				
D3	60°C				
(internal)	50° C				
	LM83 Input D1 D2 D3				

^{*} These limits are programmed if you run the Pentek ReadyFlow 7142 Hardware Monitor routines for the LM83 using the default values.

A red front panel **TEMP** LED (Section 2.7.3) is illuminated by the LM83 during an over–temperature condition—when any of the four inputs exceeds the HIGH setpoint limit.

A separate over–temperature interrupt signal is provided from the LM83 to the Interrupt Status Register, Section 6.9.3, based on over–temperature of the four programmed limits.

6.3 TWSI Port Register (continued)

6.3.2 ADM1024 Hardware Monitor

The board uses several voltage sensor inputs in the ADM1024 that can be programmed on the serial TWSI bus, using ADM1024 internal registers (refer to the ADM1024 data sheet, see Section 1.15, for description of the registers associated with these inputs).

The following table lists the programmable voltage sensors on the ADM1024:

Table 6–5: ADM1024 Programmable Sensors					
Monitored Condition	ADM1024 Input	ReadyFlow Limits *			
+5 Volt supply	+5 VIN	+5 Volts, ±10%			
+12 Volt supply	+12 VIN	+12 Volts, ±10%			
+3.3 Volt supply	Vcc	+3.3 Volts, ±10%			
+1.2 Volt supply A	+Vccp1	+1.2 Volts, ±10%			
+1.25 Volt supply	AIN1	+1.25 Volt, ±10%			
+2.5 Volt RapidIO supply	AIN2	+2.5 Volt, ±10%			
+2.5 Volt supply	+2.5 Vin	+2.5 Volt, ±10%			
+1.8 Volt supply	Vccp2	+1.8 Volt, ±10%			

^{*} These limits are programmed if you run the Pentek ReadyFlow 7142 Hardware Monitor routines for the ADM1024 using the default values.

An interrupt indicating voltage out of limit is also provided from the ADM1024 to the Interrupt Status Register, Section 6.9.3.

6.4 DCM Control Register

The DCM Control Register controls the Digital Clock Managers (DCM) on the XC4VSX55 (or XC4VLX100) Signal FPGA. Two DCMs in the Signal FPGA are used to control the clock signal provided to the DAC FIFO. See Figure 6–2 on the following page for illustration of the DCM logic for the DAC FIFO clock.

The following table shows the contents of the DCM Register. The subsections following the table provide descriptions of each control bit in this register.

	Table 6–6: DCM Control Register R/W @ BAR2+0x8020							
	D15	D14	D13	D12	D11	D10	D09	D08
Bit Name				Rese	erved			
Function		Write with zeros, Mask when reading						
	D07	D06 *	D05 *	D04	D03	D02	D01	D00
Bit Name	Reserved	PLLLOCK DCM LOCKED	DAC CLK DCM LOCKED	DCM RST	DCM SEL	Reserved		
Function	Write 0, Mask read	0 =Not locked 1 =Locked	0 =Not locked 1 =Locked	0 =Run 1 =Reset	0 =Input clock 1 =DCM	Write with zeros, Mask when reading		•
	* These bits are Read Only All bits default to the logic '0' state at power on and reset							

6.4.1 DCM LOCKED

Bits D06, D05

Each of these read—only bits indicates the locked status of one of the DCM clocks. Bit D06 is the status of the DCM for the PLLLOCK clock; bit D05 is the status of the DCM for the DAC5686 clock input. When read as logic '0' the DCM is not locked. When read as logic '1' the DCM is locked.

6.4.2 DCM RST

Bit D04

This bit resets both DCMs. Set the bit to logic '1' to reset the DCMs. Clear the bit to logic '0' (its default state) to return the DCMs to normal operation.

6.4.3 DCM SEL

Bit D03

This bit selects or bypasses the DCM operation on both clock lines. Clear the bit to logic '0' (its default state) to bypass the DCM and use the clock source directly (use for clocks up to 80 MHz). Set the bit to logic '1' to use the DCMs on both clock sources (use for clocks of 32 MHz and up).

6.4 DCM Control Register (continued)

There are two clock signals that can be selected for clocking writes to the DAC FIFO.

- The clock output from the DAC5686 PLLLOCK pin (if the DAC PLL is disabled by the PLL VDD bit, DAC Control/Status Register, Section 6.11.2) or
- The DAC Clock (selected by the DAC Sync Bus Select Register, Section 6.11.1)

When the DAC FIFO CLK bit D03 (DAC Control/Status Register, Section 6.11.2) is cleared to logic '0' (the default state) the clock output from the DAC5686 PLLLOCK pin is routed to the DAC FIFO. When set to logic '1' the DAC input clock is routed to the DAC FIFO.

To ensure that the DAC FIFO clock is compensated for Signal FPGA circuit delays, both signals can be controlled by DCMs in the Signal FPGA using the DCM SEL bit D03. Clear the bit to logic '0' (its default state) to bypass the DCM and use the clock source directly (use for clocks up to 80 MHz). Set the bit to logic '1' to use the DCMs on both clock sources (use for clocks of 32 MHz and up).

6.5 Miscellaneous Control Register

The Miscellaneous Control Register sets the Endian byte swap mode of the board.

The following table shows the contents of this register. The subsections following the table provide descriptions of each control bit in this register.

Table 6-7: Miscellaneous Control Register R/W @ BAR2+0x8028						
	D15 – D03 D02 D01 D00					
Bit Name	Reserved	ENDIANNESS	Reserved			
Function	Write with zeros, Mask when reading	0 = Little Endian 1 = Big Endian	Write zeros, Mask read			
All bits default to the logic '0' state at power on and reset						

The ENDIANNESS bit configures all FIFO transfers across the PCI bus to operate in big or little endian mode. When the bit is cleared to logic '0' (its default state) the FIFO transfers are in little Endian mode. When this bit is set to logic '1' the FIFO transfers are in big Endian mode and the eight bytes of each FIFO 64–bit word are reversed in order.

6.6 FPGA Revision Registers

The two FPGA Revision Registers identify the Pentek version number and the date of the FPGA code currently installed in the XC4VSX55 (or XC4VLX100) Signal FPGA.

The following tables show the contents of these two registers. The paragraphs below FPGA Revision Register describe the contents of these registers.

Table 6-8: FPGA Revision Register 1 R.O. @ BAR2+0x8038					
	D15 – D12 D11 – D08 D07 – D04 D03 – D00				
Bit Name	YE	AR	MOI	NTH	
Function	3rd Digit of Year	4th Digit of Year	1st Digit of Month	2nd Digit of Month	

Table 6-9: FPGA Revision Register 2 R.O. @ BAR2+0x8040							
	D15 – D12	D15 – D12 D11 – D08 D07 – D04 D03 – D00					
Bit Name	D/	ΑΥ	FPGA CODI	EREVISION			
Function	1st Digit of Day 2nd Digit of Day Signal FPGA Pentek Code Revision Number						

The Signal FPGA code revision date is coded as six hexadecimal characters in the two registers as follows:

Year: FPGA Revision Register 1, bits D15 – D12, 3rd digit of Year

FPGA Revision Register 1, bits D11 – D08, 4th digit of Year

Month: FPGA Revision Register 1, bits D07 – D04, 1st digit of Month

FPGA Revision Register 1, bits D03 – D00, 2nd digit of Month

Day: FPGA Revision Register 2, bits D15 – D12, 1st digit of Day

FPGA Revision Register 2, bits D11 – D08, 2nd digit of Day

The Signal FPGA Code Revision number (FPGA Revision Register 2, bits D07 – D00) is a binary value, starting at revision 0.

For example, the date of **July 15, 2006** (7/15/06) would appear as follows in the two registers, assuming a code revision of '1'.

FPGA Revision Register 1 = 0x0607

FPGA Revision Register 2 = 0x1501

6.7 Core Option Register

The read—only Core Option Register identifies the Pentek Option number of the FPGA IP Core programmed in the XC4VSX55 (or XC4VLX100) Signal FPGA.

The following table shows the contents of this register. The paragraphs below describe the contents of this register.

Table 6-10: Core Option Register R.O. @ BAR2+0x8048							
	D15 – D12 D11 – D08 D07 – D04 D03 – D00						
Bit Name	D15 – D12	D11 – D8	D7 – D4	D3 – D0			
Function	4th digit of 3rd digit of 2nd digit of 1st digit of Option Number Option Number Option Number Option Number						
All bits default to the number of the installed Core at power on and reset							

The Option Number is coded as four hexadecimal characters as follows:

Bits D15 – D12, 4th digit of Option Number

Bits D11 – D08, 3rd digit of Option Number

Bits D07 – D04, 2nd digit of Option Number

Bits D03 – D00, 1st digit of Option Number

For example, Option 430 would appear as follows in this register: **0x0430**. If no Pentek FPGA IP Core is provided with the board, this register will read **0x0000**.

6.8 Sync Bus Registers

The following subsections describe the Signal FPGA registers that control Sync Buses A and B. Refer to Section 4.7, Timing and Synchronization, for additional information about the sync, gate, and clock signals. The following illustrates the Sync Bus logic.

6.8.1 Master Bus A Control Register

The Master Bus A Control Register allows you to configure the Model 7142 Sync Bus A as a Master or Slave on the LVDS Sync Bus, toggle the onboard sync bus termination, select the source of the clock, select the source and polarity of the sync, and enable the onboard oscillator.

The following table shows the contents of the Master Control Register. The subsections following the table provide descriptions of each control bit in this register.

	Table 6-11: Master Bus A Control Register R/W @ BAR2+0x8080								
		D15 – D11				D10	D09	D08	
Bit Name		Reserved				GATE POL	GATE SRC	SEL GATE	
Function		Write with zeros, Mask when reading				0 = Negative 1 = Positive	0 = Use SEL GATE (D08) 1= LVDS Bus	0 = Register 1 = Ext TTL Gate	
	D07	D06	D05	D04	D03	D02	D01	D00	
Bit Name	SYNC POL	SYNC SRC	SEL SYNC	CLK SRC	Reserved	SEL CLK	TERM	MASTR	
Function	0 = Negative 1 = Positive	0 = Use SEL SYNC (D05) 1= LVDS Bus	0 = Register 1 = Ext TTL Sync	0 = Use SEL CLK (D02) 1= LVDS Bus	Write 0, mask read	0 = Oscillator 1 = Ext Clock	0 = None 1 = Terminated	0 = Slave 1 = Master	
	А	II bits defau	ılt to the lo	gic '0' state	at power	on and res	et		

6.8.1.1 GATE POL

Bit D10

This bit selects the polarity of the External TTL GATE input selected for sync bus A (see GATE SRC, below). When the bit is cleared to logic '0' (its default state), a negative input enables FIFO input in Gate mode or triggers on a negative—going edge in Trigger mode. When the bit is set to logic '1', a positive input enables FIFO inputs in Gate mode or triggers on a positive—going edge in Trigger mode.

Polarity does not apply to the LVDS Gate/Trigger input nor to a gate generated by the onboard register (Section 6.8.3).

6.8.1 Master Bus A Control Register (continued)

6.8.1.2 GATE SRC

Bit D09

This bit selects the source of the sync bus A GATE signal from either the LVDS Sync Bus or an on–board sync signal. When this bit is cleared to logic '0' (its default state) the gate is selected by SEL GATE, bit D08. When the bit is set to logic '1' the LVDS Sync Bus (SYNC/GATE connector, Section 2.6.4) is the source.

6.8.1.3 SEL GATE

Bit D08

When Sync Bus A on this 7142 is the LVDS Sync Bus Master (MASTR bit D00 = 1) or when the LVDS Sync Bus gate input is not used (GATE SRC bit D09 = 0), this bit selects the gate signal for sync bus A from either a register or the external TTL GATE input. When this bit is cleared to logic '0' (its default state) the Gate A Generator Register, Section 6.8.3, is the source of the gate. When the bit is set to logic '1' the TTL GATE input (SYNC/GATE connector, Section 2.6.4) is the source of the gate.

6.8.1.4 SYNC POL

Bit D07

This bit selects the polarity of the External TTL SYNC input selected for sync bus A (see SYNC SRC, below). Polarity does not apply to the LVDS Sync input nor to a gate generated by the onboard register (Section 6.8.2). When this bit is cleared to logic '0' (its default state) a negative sync is a reset. When the bit is set to logic '1' a positive sync is a reset.

6.8.1.5 SYNC SRC

Bit D06

This bit selects the source of the sync bus A SYNC signal from either the LVDS Sync Bus or an on–board sync signal. When this bit is cleared to logic '0' (its default state) the sync is selected by SEL SYNC bit D05. When the bit is set to logic '1' the LVDS Sync Bus (SYNC/GATE connector, Section 2.6.4) is the source.

6.8.1 Master Bus A Control Register (continued)

6.8.1.6 SEL SYNC

Bit D05

When Sync Bus A on this 7142 is the LVDS Sync Bus Master (MASTR bit D00 = 1) or when the LVDS Sync Bus sync input is not used (SYNC SRC bit D06 = 0), this bit selects the sync bus A sync signal from either a register or the external TTL SYNC input. When this bit is cleared to logic '0' (its default state) the Sync A Generator Register, Section 6.8.2, is the source of the sync. When the bit is set to logic '1' the external TTL sync input (SYNC/GATE connectors, Section 2.6.4) is the source of the sync.

6.8.1.7 CLK SRC

Bit D04

This bit selects the source of the sync bus A clock from either the LVDS Sync Bus or an onboard clock source. When the bit is cleared to logic '0' (its default state) the LVDS Sync Bus is bypassed and the clock is selected by SEL CLK bit D02, below. When this bit is set to logic '1' the EXT LVDS CLK A input (SYNC/GATE connector, Section 2.6.4) is the source of the clock.

6.8.1.8 SEL CLK

Bit D02

When Sync Bus A on this 7142 is the LVDS Sync Bus Master (MASTR bit D00 = 1) or when the LVDS Sync Bus clock input is not used (CLK SRC bit D04 = 0), this bit selects the sync bus A clock signal from either the onboard oscillator or the external clock input. When this bit is cleared to logic '0' (its default state) onboard Oscillator A is selected and this oscillator is enabled. When the bit is set to logic '1' the external clock input is used (MMCX EXT CLK connector, Section 2.6.1) and Oscillator A is disabled.

6.8.1.9 TERM

Bit D01

This bit enables termination of LVDS Sync Bus A by a Slave, or by a Master if it is the only unit on the bus. When the bit is cleared to logic '0' (its default state) the sync bus is not terminated. When the bit is set to logic '1' the bus is terminated. The sync bus must be terminated when this Model 7142 is the last (or only) Slave on the bus, or if it is a Master or the only unit on the bus.

6.8.1 Master Bus A Control Register (continued)

6.8.1.10 MASTR Bit D00

This bit sets this Model 7142 as either Master or Slave on LVDS Sync Bus A. When the bit is cleared to logic '0' (its default state) this 7142 is a Slave. When bit is set to logic '1' this 7142 is the Sync Bus A Master. When only one 7142 is used it must be set as a Master.

When set as a Sync Bus Master, this Model 7142 Sync Bus A is the source of the sync, clock, and gate signals output to the LVDS Sync Bus. You must select these sources using control bits SYNC SRC (bits D05, D06), CK SRC (bit D04), and GATE SRC (bits D09, D08), and if needed, generate the sync and/or gate signals using the Gate A Generator Register (Section 6.8.3) and Sync A Generator Register (Section 6.8.2).

6.8.2 Sync A Generator Register

The Sync A Generator Register is used on a 7142 that is configured as a Sync Bus Master (MASTR = 1, Master Bus A Control Register, Section 6.8.1.10), or on a 7142 that is not connected to an external LVDS Sync Bus.

The following table shows the contents of the Sync Generator Register.

	Table 6–12: Sync A Generator Register R/W @ BAR2+0x8088		
	D15 – D01	D00	
Bit Name	Reserved	SYNC	
Function	Write with zeros, Mask when reading	0 = Reset 1 = Release	
Bit D00 defaults to the logic '1' state at power on and reset			

If the sync source is set to the onboard register (SYNC SRC= 00, Master Bus A Control Register, Section 6.8.1.5), the SYNC bit in this register creates the sync signal (SYNC A) for the board, and for output to the LVDS Sync Bus (SYNC/GATE connector, Section 2.6.4) for a Sync Bus Master.

The Sync A signal can be enabled and routed to different devices on the board using the Sync Mask Register, Section 6.8.7, DAC Sync Bus Select Register, Section 6.11.1, and ADC Sync Bus Select Register, Section 6.10.1.

When the bit is cleared to logic '0' the device is in reset. When the bit is set to logic '1' (its default state) the device is released for normal operation.

6.8.3 Gate A Generator Register

The Gate A Generator Register is used on a 7142 that is configured as a Sync Bus Master (MASTR = 1, Master Bus A Control Register, Section 6.8.1.10), or on a 7142 that is not connected to an external LVDS Sync Bus.

The following table shows the contents of the Gate Generator Register.

Table 6–13: Gate A Generator Register					
	R/W @ BAR2+0x8090				
	D15 – D01	D00			
Bit Name	Reserved	GATE			
Function	Write with zeros,	0 = Enable			
	Mask when reading	1 = Disable			
	Bit D00 defaults to the logic '1' state at power on and reset				

If the gate source is set to the onboard register (GATE SRC= 00, Master Bus A Control Register, Section 6.8.1.2), the GATE bit in this register creates the gate signal (Gate A) for FIFO writing control, and for output to the LVDS Sync Bus (SYNC/GATE connector, Section 2.6.4) for a Sync Bus Master.

When the bit is cleared to logic '0', FIFO writes are enabled. When the bit is set to logic '1' (its default state) FIFO writes are disabled.

6.8.4 Master Bus B Control Register

The Master Bus B Control Register allows you to configure the Model 7142 sync bus B as a Master or Slave on the LVDS Sync Bus, toggle the onboard sync bus termination, select the source of the clock, select the source and polarity of the sync, and enable the onboard oscillator.

The following table shows the contents of the Master Control Register. The subsections following the table provide descriptions of each control bit in this register.

	Table 6-14: Master Bus B Control Register R/W @ BAR2+0x8098							
			D15 – D11			D10	D09	D08
Bit Name		Reserved				GATE POL	GATE SRC	SEL GATE
Function		Write with zeros, Mask when reading				0 = Negative 1 = Positive	0 = Use SEL GATE (D08) 1= LVDS Bus	0 = Register 1 = Ext TTL Gate
	D07	D06	D05	D04	D03	D02	D01	D00
Bit Name	SYNC POL	SYNC SRC	SEL SYNC	CLK SRC	Reserved	SEL CLK	TERM	MASTR
Function	0 = Negative 1 = Positive	0 = Use SEL SYNC (D05) 1= LVDS Bus	0 = Register 1 = Ext TTL Sync	0 = Oscillator 1= LVDS Bus	Write 0, mask read	0 = Oscillator 1 = Ext Clock	0 = None 1 = Terminated	0 = Slave 1 = Master
	А	II bits defau	ılt to the lo	gic '0' state	at power	on and res	et	

6.8.4.1 GATE POL

Bit D10

This bit selects the polarity of the External TTL GATE input selected for sync bus B (see GATE SRC, below). When the bit is cleared to logic '0' (its default state), a negative input enables FIFO input in Gate mode or triggers on a negative—going edge in Trigger mode. When the bit is set to logic '1', a positive input enables FIFO inputs in Gate mode or triggers on a positive—going edge in Trigger mode.

Polarity does not apply to the LVDS Gate/Trigger input nor to a gate generated by the onboard register (Section 6.8.6).

6.8.4 Master Bus B Control Register (continued)

6.8.4.2 GATE SRC

Bit D09

This bit selects the source of the sync bus B GATE signal from either the LVDS Sync Bus or an on–board sync signal. When this bit is cleared to logic '0' (its default state) the gate is selected by SEL GATE, bit D08. When the bit is set to logic '1' the LVDS Sync Bus (SYNC/GATE connector, Section 2.6.4) is the source.

6.8.4.3 SEL GATE

Bit D08

When Sync Bus B on this 7142 is the LVDS Sync Bus Master (MASTR bit D00 = 1) or when the LVDS Sync Bus gate input is not used (GATE SRC bit D09 = 0), this bit selects the gate signal for sync bus B from either a register or the external TTL GATE input. When this bit is cleared to logic '0' (its default state) the Gate B Generator Register, Section 6.8.6, is the source of the gate. When the bit is set to logic '1' the external TTL gate input (SYNC/GATE connector, Section 2.6.4) is the source of the gate.

6.8.4.4 SYNC POL

Bit D07

This bit selects the polarity of the External TTL SYNC input selected for sync bus B (see SYNC SRC, below). Polarity does not apply to the LVDS Sync input nor to a gate generated by the onboard register (Section 6.8.5). When this bit is cleared to logic '0' (its default state) a negative sync is a reset. When the bit is set to logic '1' a positive sync is a reset.

6.8.4.5 SYNC SRC

Bit D06

This bit selects the source of the sync bus B SYNC signal from either the LVDS Sync Bus or an on–board sync signal. When this bit is cleared to logic '0' (its default state) the sync is selected by SEL SYNC bit D05. When the bit is set to logic '1' the LVDS Sync Bus (SYNC/GATE connector, Section 2.6.4) is the source.

6.8.4 Master Bus B Control Register (continued)

6.8.4.6 SEL SYNC

Bit D05

When Sync Bus B on this 7142 is the LVDS Sync Bus Master (MASTR bit D00 = 1) or when the LVDS Sync Bus sync input is not used (SYNC SRC bit D06 = 0), this bit selects the sync bus B sync signal from either a register or the external TTL SYNC input. When this bit is cleared to logic '0' (its default state) the Sync A Generator Register, Section 6.8.5, is the source of the sync. When the bit is set to logic '1' the external TTL sync input (SYNC/GATE connectors, Section 2.6.4) is the source of the sync.

6.8.4.7 CLK SRC

Bit D04

This bit selects the source of the sync bus A clock from either the LVDS Sync Bus or an onboard oscillator. When the bit is cleared to logic '0' (its default state) the onboard oscillator is selected (for this setting, OSC DSBL bit D03, below, must be cleared to logic '0' to enable the oscillator). When this bit is set to logic '1' the EXT LVDS CLK A input (SYNC/GATE connector, Section 2.6.4) is the source of the clock.

6.8.4.8 SEL CLK

Bit D02

When Sync Bus B on this 7142 is the LVDS Sync Bus Master (MASTR bit D00 = 1) or when the LVDS Sync Bus clock input is not used (CLK SRC bit D04 = 0), this bit selects the sync bus B clock signal from either the onboard oscillator or the external clock input. When this bit is cleared to logic '0' (its default state) the onboard Oscillator B is selected and this oscillator is enabled. When the bit is set to logic '1' the external clock input is used (MMCX EXT CLK connector, Section 2.6.1) and Oscillator B is disabled.

6.8.4.9 TERM

Bit D01

This bit enables termination of LVDS Sync Bus B by a Slave, or by a Master if it is the only unit on the bus. When the bit is cleared to logic '0' (its default state) the sync bus is not terminated. When the bit is set to logic '1' the bus is terminated. The sync bus must be terminated when this Model 7142 is the last (or only) Slave on the bus, or if it is a Master or the only unit on the bus.

6.8.4 Master Bus B Control Register (continued)

6.8.4.10 MASTR Bit D00

This bit sets this Model 7142 as either Master or Slave on LVDS Sync Bus B. When the bit is cleared to logic '0' (its default state) this 7142 is a Slave. When bit is set to logic '1' this 7142 is the Sync Bus B Master. When only one 7142 is used it must be set as a Master.

When set as a Sync Bus Master, this Model 7142 Sync Bus B is the source of the sync, clock, and gate signals output to the LVDS Sync Bus. You must select these sources using control bits SYNC SRC (bits D05, D06), CK SRC (bit D04), and GATE SRC (bits D09, D08), and if needed, generate the sync and/or gate signals using the Gate B Generator Register (Section 6.8.6) and Sync B Generator Register (Section 6.8.5).

6.8.5 Sync B Generator Register

The Sync B Generator Register is used on a 7142 that is configured as a Sync Bus Master (MASTR = 1, Master Bus B Control Register, Section 6.8.4.10), or on a 7142 that is not connected to an external LVDS Sync Bus.

The following table shows the contents of the Sync Generator Register.

Table 6–15: Sync B Generator Register						
	R/W @ BAR2+0x80A0					
	D15 – D01	D00				
Bit Name	Reserved	SYNC				
Function	Write with zeros,	0 = Reset				
	Mask when reading	1 = Release				
	Bit D00 defaults to the logic '1' state at power on and reset					

If the sync source is set to the onboard register (SYNC SRC= 00, Master Bus B Control Register, Section 6.8.4.5), the SYNC bit in this register creates the sync signal (SYNC B) for the board, and for output to the LVDS Sync Bus (SYNC/GATE connector, Section 2.6.4) for a Sync Bus Master.

The Sync B signal can be enabled and routed to different devices on the board using the Sync Mask Register, Section 6.8.7, DAC Sync Bus Select Register, Section 6.11.1, and ADC Sync Bus Select Register, Section 6.10.1.

When the bit is cleared to logic '0' the device is in reset. When the bit is set to logic '1' (its default state) the device is released for normal operation.

NOTE: When using Sync B, the DAC clock must be set up properly using the DAC Control/Status Register, Section 6.11.2.

6.8.6 Gate B Generator Register

The Gate B Generator Register is used on a 7142 that is configured as a Sync Bus Master (MASTR = 1, Master Bus B Control Register, Section 6.8.4.10), or on a 7142 that is not connected to an external LVDS Sync Bus.

The following table shows the contents of the Gate Generator Register.

	Table 6-16: Gate B Generator Register R/W @ BAR2+0x80A8				
	D15 – D01	D00			
Bit Name	Reserved	GATE			
Function	Write with zeros, Mask when reading	0 = Enable 1 = Disable			
Bit D00 defaults to the logic '1' state at power on and reset					

If the gate source is set to the onboard register (GATE SRC= 00, Master Bus B Control Register, Section 6.8.4.2), the GATE bit in this register creates the gate signal (Gate B) for FIFO writing control, and for output to the LVDS Sync Bus (SYNC/GATE connector, Section 2.6.4) for a Sync Bus Master.

When the bit is cleared to logic '0', FIFO writes are enabled. When the bit is set to logic '1' (its default state) FIFO writes are disabled.

NOTE: When using Gate B, the DAC clock must be set up properly using the DAC Control/Status Register, Section 6.11.2.

6.8.7 Sync Mask Register

This register enables a sync signal to be applied to the DAC5686 Upconverter. The sync signal is derived from the either Sync Bus A or B depending on the setting of the DAC Sync Bus Select Register (Section 6.11.1).

The following table shows the contents of the Sync Mask Register.

	Table 6-17: Sync Mask Register R/W @ BAR2+0x80B0					
	D15 – D02	D01	D00			
Bit Name	Reserved	DAC	Reserved			
Function	Write with zeros, Mask when reading	0 = Disable 1 = Enable	Write 0, mask read			
Bit D00 defaults to the logic '1' state at power on and reset						

When bit D01 'DAC' is set to logic '1', the sync signal is enabled to the Phase synchronization input (PHSTR) for both DAC channels on the DAC5686. When the bit is cleared to logic '0', the sync is not enabled for the DAC5686.

6.9 Interrupt Registers

The following subsections describe the Signal FPGA registers that control the FGGA interrupts. Refer to Section 4.8, Interrupt Operation, for additional information about the use and programming of interrupts.

6.9.1 System Interrupt Enable Register

The System Interrupt Enable Register contains enable bits for several system interrupt conditions. Each bit enables or disables the generation of an interrupt to the Application Interrupt Status Registers, Section 6.9.6. The four Application Interrupt LINT Enable Registers, Section 6.9.4, can be configured to generate any of the four local bus interrupt inputs (LINTi0 to LINTi3) to the PCI7142 in response to these interrupts.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

Table 6–18: System Interrupt Enable Register R/W @ BAR2+0x8100									
		D15 – D08							
Bit Name		D15 – D08							
Function	User-Defined Read/Write								
	D07	D07 D06 D05 D04 D03 D02 D01 D00							
Bit Name	Reserved	OVLD AD4	OVLD AD3	VOLT/TEMP	CLK B LOSS	CLK A LOSS	OVLD AD2	OVLD AD1	
Function	Write 0, Mask read	0 = Disable Interrupt 1 = Enable Interrupt							
	All bits default to the logic '0' state at power on and reset								

Each bit of this register enables or disables an interrupt to the Application Interrupt Status Registers for a particular system interrupt condition. Setting a bit to logic '1' enables generation of a local interrupt when that interrupt condition occurs. When a bit is cleared to logic '0' (its default state) the interrupt will not be generated by the associated interrupt condition.

6.9 Interrupt Registers (continued)

6.9.1 System Interrupt Enable Register (continued)

The following table describes the interrupt condition associated with each bit of the System Interrupt register.

Table 6–19: System Interrupt Register Bits						
Bit Name Bit Position		Interrupt Function				
User-Defined	D15 – D08	These bits are reserved for user-defined interrupt functions				
VOLT/TEMP	D04	This bit is associated with a temperature/voltage limit interrupt from the LM83 or ADM1024 sensors. (To determine the sensor causing the interrupt, use the TWSI Port Register, Section 6.3.)				
CLK A LOSS	D03	This bit is associated with a Clock loss interrupt from one of the				
CLK B LOSS	D02	Sync Buses, A or B.				
OVLD AD4	D06					
OVLD AD3	D05	Each of these bits is associated with an analog input overload				
OVLD AD2	D01	interrupt from one of the four A/D converters.				
OVLD AD1	D00					

Note: These bit assignments and definitions apply to System Interrupt Enable Register, Section 6.9.1, System Interrupt Flag Register, Section 6.9.2, and System Interrupt Status Register, Section 6.9.3

6.9 Interrupt Registers (continued)

6.9.2 System Interrupt Flag Register

The System Interrupt Flag Register has one read/clear bit associated with each system interrupt condition (the same bit associations as in the System Interrupt Status Register, Section 6.9.3).

The following table shows which bit in this register is associated with each interrupt condition. Table 6–19, on the prior page, provides description of the interrupt condition associated with each of these bits.

Table 6-20: System Interrupt Flag Register R/Clr @ BAR2+0x8108									
		D15 – D08							
Bit Name	D15 – D08								
Function	User-Defined Read/Clear								
	D07	D06	D05	D04	D03	D02	D01	D00	
Bit Name	Reserved	OVLD AD4	OVLD AD3	VOLT/TEMP	CLK B LOSS	CLK A LOSS	OVLD AD2	OVLD AD1	
Function	Write 0, Mask read	Read: 0 = No interrupt 1 = Interrupt latched Clear: 1 = Clear latch							
IMPORTANT! When reset, including power-up, the state of this register is unknown. You should clear this register before using it, by writing '1's into all bits.									

Read:

Each bit of this register latches an interrupt occurrence. Logic '1' in any bit in this register indicates that an interrupt has occurred. Note that when any bit in the System Interrupt Status Register (Section 6.9.3) changes to logic '1' the corresponding bit in this register will also be set to logic '1'. However, when a bit in the System Interrupt Status Register clears from '1' to '0', the corresponding latched bit in this register does not clear, but remains at logic '1'.

Clear:

Since these bits latch in response to an interrupt, to detect subsequent interrupts, you must clear the bits in this register. To clear any bit in this register that is set to '1' you must write a '1' to that bit.

Refer to Interrupt Operation, Section 4.8, for further description of interrupt routing and operation on the Model 7142.

6.9 Interrupt Registers (continued)

6.9.3 System Interrupt Status Register

The System Interrupt Status Register has one read—only bit associated with each system interrupt condition (the same bit associations as in the System Interrupt Flag Register, Section 6.9.2).

The following table shows which bit in this register is associated with each interrupt condition. Table 6–19, on page 142, provides description of the interrupt condition associated with each of these bits.

Table 6-21: System Interrupt Status Register R.O. @ BAR2+0x8110									
		D15 – D08							
Bit Name		D15 – D08							
Function	User-Defined Read Only								
	D07	D06	D05	D04	D03	D02	D01	D00	
Bit Name	Reserved	OVLD AD4	OVLD AD3	VOLT/TEMP	CLK B LOSS	CLK A LOSS	OVLD AD2	OVLD AD1	
Function	Mask read	0 = No interrupt 1 = Overload	0 = No interrupt 1 = Overload	0 = No interrupt 1 = Overtemp	0 = No interrupt 1 = No Clock	0 = No interrupt 1 = No Clock	0 = No interrupt 1 = Overload	0 = No interrupt 1 = Overload	
When reset, including power-up, the state of this register is unknown.									

Each bit in this register changes whenever the associated interrupt indication changes.

- A status bit changes to logic '1' when the source interrupt occurs. Note that when a status bit in this register changes to '1' the corresponding bit in the System Interrupt Flag Register, Section 6.9.2, is set to '1'.
- A status bit in this register clears to '0' when that interrupt condition clears, whereas the associated bit in the System Interrupt Flag Register remains latched at logic '1' until it is cleared by that register's clear action, Section 6.9.2.

If the corresponding bit has been set to logic '1' in the System Interrupt Enable Register (Section 6.9.1), then an System Interrupt Status Register bit transition from logic '0' to logic '1' will also generate a local bus interrupt to the PCI interface. If you do not want an interrupt to occur and have set the corresponding interrupt enable bit to '0', you may poll the System Interrupt Status Register bit to determine if such an event has occurred.

6.9.4 Application Interrupt LINT Enable Registers

The Application Interrupt LINT Enable Registers contain enable bits for each application interrupt condition defined. Each bit enables or disables the generation of a local bus interrupt input (LINTix) to the PCI7142.

There are four Application Interrupt LINT Enable Registers, one for each local bus interrupt input (LINTi0 to LINTi3). Each register enables interrupts for the respective local bus interrupt. The PCI7142 can be configured, using the PCI Interrupt Enable Registers, Section 5.3, to route any of the four local bus interrupts (LINTi0 to LINTi3) to PCI interrupts (INTA to INTD).

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

	Та	ble 6–22:	LINTi0: F LINTi1: F LINTi2: F	n Interrupt R/W @ BAR: R/W @ BAR: R/W @ BAR: R/W @ BAR:	2+0x8118 2+0x8120 2+0x8128	ole Registe	ers	
	D15	D14	D13	D12	D11	D10	D09	D08
Bit Name	SYS INT	GATE B	GATE A	SYNC B	SYNC A	TRIGGER CAPTURE	DDR MEMORY READ FIFO	DDR MEMORY WRITE FIFO
Function					e Interrupt e Interrupt			
	D07	D06	D05	D04	D03	D02	D01	D00
Bit Name	Reserved	DAC FIFO	User Out FIFO	User In FIFO	ADC 4 FIFO	ADC 3 FIFO	ADC 2 FIFO	ADC 1 FIFO
Function	Write 0, Mask read				Disable Inte Enable Inte	•		
	All bits default to the logic '0' state at power on and reset							

Each bit of this register enables or disables the generation of a local bus interrupt (LINT0 to LINT3, depending on the register used) for a particular interrupt condition. Setting the bit associated with a given interrupt to logic '1' enables the generation of a local bus interrupt when that interrupt condition occurs. When a bit is cleared to logic '0' (its default state) the local bus interrupt will not be generated by the defined interrupt condition.

Table 6–23, on the next page, provides descriptions of the interrupt condition associated with each of these bits.

6.9.4 Application Interrupt LINT Enable Registers (continued)

The following table describes the interrupt condition associated with each bit of the four Application Interrupt Enable registers.

	Table 6-23	: Application Interrupt Register Bits
Bit Name	Bit Position	Interrupt Function
SYS INT	D15	This bit is associated with an interrupt from the OR'ed result of any of the enabled interrupts in the System Interrupt Enable Register (Section 6.9.1).
GATE B GATE A	D14 D13	Each of these bits is associated with an Sync Bus GATE (A or B) interrupt. The interrupt occurs at the start of the respective gate signal.
SYNC B SYNC A	D12 D11	Each of these bits is associated with an Sync Bus SYNC (A or B) interrupt. The interrupt occurs at the start of the respective Sync pulse.
TRIGGER CAPTURE	D10	This bit is associated with an interrupt from the OR'ed result of the ADC and DAC FIFO Trigger Capture bits. Use the applicable FIFO Status Registers, Sections 6.10.3 or 6.11.4, to determine the interrupting FIFO.
DDR MEMORY READ FIFO	D09	This bit is associated with an interrupt from the DDR Memory Read FIFO status flags (Full, Almost Full, Almost Empty, Empty). Use the DDR Memory Read FIFO Status Registers, Section 6.13.7, to determine the interrupting condition from this FIFO.
DDR MEMORY WRITE FIFO	D08	This bit is associated with an interrupt from the DDR Memory Write FIFO status flags (Full, Almost Full, Almost Empty, Empty). Use the DDR Memory Write FIFO Status Registers, Section 6.13.7, to determine the interrupting condition from this FIFO.
DAC FIFO	D06	This bit is associated with an interrupt from the DAC FIFO status flags (Full, Almost Full, Almost Empty, Empty). Use the DAC FIFO Status Register, Section 6.11.4, to determine the interrupting condition from the FIFO.
User Out FIFO User In FIFO	D05 D06	Each of these bits is associated with an interrupt from a User FIFO status flag (Full, Almost Full, Almost Empty, Empty). Use the User FIFO Status Registers, Section 6.14.2, to determine the interrupting condition from the associated FIFO.
ADC 4 FIFO ADC 3 FIFO ADC 2 FIFO ADC 1 FIFO	D03 D02 D01 D00	Each of these bits is associated with an interrupt from the ADC n FIFO status flags (Full, Almost Full, Almost Empty, Empty). Use the ADC FIFO Status Registers, Section 6.10.3, to determine the interrupting condition from the associated FIFO.
These bit assignm	ents and definition	ns apply to Application Interrupt Enable Register, Section 6.9.4

These bit assignments and definitions apply to Application Interrupt Enable Register, Section 6.9.4, Interrupt Flag Register, Section 6.9.5, and Interrupt Status Register, Section 6.9.6

6.9.5 Application Interrupt Flag Register

The Application Interrupt Flag Register has one read/clear bit associated with each application interrupt condition (the same bit associations as the Application Interrupt LINT Enable Register, Section 6.9.4).

The following table shows which bit in this register is associated with each interrupt condition. Table 6–23, on page 146, provides descriptions of the interrupt condition associated with each of these bits.

		Table 6-2		ation Inter @ BAR2+0x	. •	Register		
	D15	D14	D13	D12	D11	D10	D09	D08
Bit Name	SYS INT	GATE B	GATE A	SYNC B	SYNC A	TRIGGER CAPTURE	DDR MEMORY READ FIFO	DDR MEMORY WRITE FIFO
Function				0 = No inter 1 = Interrupt 1 = Clear lat	latched			
	D07	D06	D05	D04	D03	D02	D01	D00
Bit Name	Reserved	DAC FIFO	User Out FIFO	User In FIFO	ADC 4 FIFO	ADC 3 FIFO	ADC 2 FIFO	ADC 1 FIFO
Function	Write 0, Mask read			0 = No inter 1 = Interrupt 1 = Clear lat	latched			
IMP				oower–up, t efore using				vn.

Read:

Each bit of this register latches an interrupt occurrence. Logic '1' in any bit in this register indicates that an interrupt has occurred. Note that when any bit in the Application Interrupt Status Register (Section 6.9.6) changes to logic '1' the corresponding bit in this register will also be set to logic '1'. However, when a bit in the Application Interrupt Status Register clears from logic '1' to logic '0', the corresponding latched bit in this register does not clear, but remains at logic '1'.

Clear:

Since these bits latch in response to an interrupt, to detect subsequent interrupts, you must clear the bits in this register. To clear any bit in this register that is set to '1' you must write a '1' to that bit.

6.9.6 Application Interrupt Status Register

The Application Interrupt Status Register has one read—only bit associated with each application interrupt condition (the same bit associations as the Application Interrupt LINT Enable Register, Section 6.9.4).

The following table shows which bit in this register is associated with each interrupt condition. Table 6–23, on page 146, provides descriptions of the interrupt condition associated with each of these bits.

		Table 6–25	• •	tion Interri BAR2+0x	•	Register		
	D15	D14	D13	D12	D11	D10	D09	D08
Bit Name	SYS INT	GATE B	GATE A	SYNC B	SYNC A	TRIGGER CAPTURE	DDR MEMORY READ FIFO	DDR MEMORY WRITE FIFO
Function		0 = No Interrupt 1 = Interrupt condition asserted						
	D07	D06	D05	D04	D03	D02	D01	D00
Bit Name	Reserved	DAC FIFO	User Out FIFO	User In FIFO	ADC 4 FIFO	ADC 3 FIFO	ADC 2 FIFO	ADC 1 FIFO
Function	Mask read				= No Interru pt conditio	•		
	When re	set, includi	ng power-	up, the stat	e of this req	gister is unl	known.	

Each bit in this register changes whenever the associated interrupt indication changes.

- A status bit changes to logic '1' when the source interrupt occurs. Note that when a status bit in this register changes to '1' the corresponding bit in the Application Interrupt Flag Register, Section 6.9.5, is set to '1'.
- A status bit in this register clears to logic '0' when that interrupt condition clears, whereas the associated bit in the Application Interrupt Flag Register remains latched at '1' until it is cleared by that register's clear action, Section 6.9.5.

If the corresponding bit in any of the Application Interrupt LINT Enable Registers (Section 6.9.4) has been set to logic '1', then a transition from logic '0' to logic '1' will also generate that local bus interrupt to the PCI interface. If you do not want an interrupt to occur and have set the corresponding interrupt enable bit to '0', you may poll the Application Interrupt Status Register bit to determine if such an event has occurred.

6.10 ADC Registers

The following subsections describe the Signal FPGA registers that control analog to digital input data routing, including the LTC2255 data outputs. There are no user–programmable registers for the LTC2255 device.

6.10.1 ADC Sync Bus Select Register

The ADC Sync Bus Select Register selects either Sync Bus A or Sync Bus B to be used as the clock and sync signal source for the analog—to—digital input processing, including the LTC2255s and ADC FIFOs.

Refer to the Master Bus A/B Control Register, Section 6.8.1 or 6.8.4, to configure these signals for the selected Sync Bus.

The following table shows the contents of this register.

	Table 6-26: ADC Sync Bus Select Register R/W @ BAR2+0x8C00	
	D15 – D01	D00
Bit Name	Reserved	SEL
Function	Write with zeros, Mask when reading	0 = Bus A 1 = Bus B
	Bit D00 defaults to the logic '1' state at power on and reset	

Setting this bit to logic '0' selects Sync Bus A, setting to '1' selects Sync Bus B.

6.10.2 ADC FIFO Control Registers

There are four ADC FIFO Control Registers, one for each ADC channel, 1, 2, 3, and 4. Each register contains bits that select the data packing modes and the source and characteristics of the gate/trigger used to control writing data samples from the LTC2255's to the PCI Interface ADC FIFOs and the DDR Memory ADC FIFOs, and bits that specify the format of the data samples written to these FIFOs.

NOTE: The ADC FIFO register bit settings also control the same packing modes and operating characteristics of the associated DDR Memory ADC FIFOs (see Figure 6–5 on page 181).

The following table shows the contents of these registers. The subsections following the table provide descriptions of the bits in this register.

Table 6–27: ADC FIFO Control Registers

ADC 1: R/W @ BAR2+0x8C08 ADC 2: R/W @ BAR2+0x8C40 ADC 3: R/W @ BAR2+0x8C78 ADC 4: R/W @ BAR2+0x8CB0

	D15 -	- D14	D13	D12	D11	D10	D09	D08
Bit Name	Rese	erved	ARM	PRE/POST TRIGGER	Reserved	WORD SWAP	Reserved	PACK MODE
Function		th zeros, en reading	0 = Not Armed 1 = Arm	0 = Post 1 = Pre	Write 0s, Mask read	0 = No Swap 1 = Swap	Write 0s, Mask read	0 = No Pack 1 = Pack
	D07	D06	D05	D04	D03	D02	D01	D00
					200	0	יטם	D 00
Bit Name	GATE SEL	Reserved	GATE CONTROL	TRIG CLEAR	HOLD	GATE/TRIG	FIFO RESET	FIFO ENABLE
Bit Name Function	GATE SEL 0 = Gate A 1 = Gate B	Reserved Write 0s, Mask read			HOLD MODE 0 = None 1 - Hold			FIFO

All bits default to the logic '0' state at power on and reset

6.10.2 ADC FIFO Control Registers (continued)

6.10.2.1 ARM Bit D13

This bit arms the trigger for data transfers from the ADC channel (1, 2, 3, or 4 depending on the register used) to the associated ADC PCI Interface and DDR Memory FIFOs. When the bit is cleared to logic '0' (its default state) the trigger is not armed. When the bit is set to logic '1' the trigger is armed and the data transfer can be controlled by the next trigger.

Use the PRE/POST TRIGGER bit D12, Section 6.10.2.2, to specify the trigger delay mode for data transfers. When you select PRE trigger counting mode, you must ARM the trigger to start the transfer of data.

6.10.2.2 PRE/POST TRIGGER

Bit D12

This bit selects a trigger mode for data transfers from the ADC channel (1, 2, 3, or 4 depending on the register used) to the associated ADC PCI Interface and DDR Memory FIFOs. When the bit is cleared to logic '0' (its default state) POST trigger delay mode is selected. When the bit is set to logic '1' PRE trigger counting mode is selected.

- For POST trigger delay mode, use the Post Trigger Delay Length Registers, Section 6.10.4, to specify the POST trigger delay length.
- For PRE trigger counting mode, you must ARM the trigger, bit D13 Section 6.10.2.1, to start the transfer of data. Use the Pre Trigger Count Capture Registers, Section 6.10.5, to return the number of PRE trigger samples stored.

When using PRE/POST trigger modes, you must select Trigger mode using the GATE/TRIG bit D02, Section 6.10.2.9, and you must set a trigger length using the associated Trigger Length Register, Section 6.10.6.

See Section 4.7.4 for additional information on Pre/Post Trigger.

6.10.2 ADC FIFO Control Registers (continued)

6.10.2.3 WORD SWAP

Bit D10

This bit selects the 16-bit word swapping mode for writing data samples to the ADC FIFO (1, 2, 3, or 4). When the bit is cleared to logic '0' (its default state) the data is not swapped, and the first data sample (in A/D packed mode, see below) is in the lowest 16 bits of the 64-bit FIFO word. When the bit is set to logic '1' word swapping is enabled and each pair of 16-bit samples (in packed mode) are swapped in the 64-bit FIFO word, as follows:

Bits D00:15 are swapped with bits D16:31, Bits D32:47 are swapped with bits D48:63.

6.10.2.4 PACK MODE

Bit D08

This bit selects the data packing mode for writing data samples to the ADC FIFO (1, 2, 3, or 4). When the bit is cleared to logic '0' (its default state) the data is unpacked. When the bit is set to logic '1' the A/D data is packed.

Refer to Section 7.3, ADC Data Routing and Formats, for additional information about the ADC data packing modes.

6.10.2.5 GATE SEL

Bit D07

This bit selects the source of the gate for writes to the ADC FIFO (1, 2, 3, or 4). When the bit is cleared to logic '0' (its default state) Gate A is the source; when the bit is set to logic '1' Gate B is the source.

6.10.2.6 GATE CONTROL

Bit D05

This bit enables Gate operation on the ADC FIFO (1, 2, 3, or 4). When the bit is cleared to '0' (the default state) the FIFO is controlled by the Gate (gate control is Enabled). When the bit is set to '1' the FIFO is free running (gate control Disabled).

6.10.2 ADC FIFO Control Registers (continued)

6.10.2.7 TRIG CLEAR

Bit D04

This bit forces the selected gate to the inactive state in Trigger mode (GATE/TRIG bit D02 = 1, below). When this bit is cleared to logic '0' (its default state) there is no effect on the gate. When the bit is set to logic '1' the gate is forced to inactive (ADC FIFO writes disabled), regardless of the trigger length specified (Trigger Length Register, Section 6.10.6), and the TRIGGER CAPTURE bit D05 is cleared in the ADC FIFO Status Register, Section 6.10.3.

6.10.2.8 HOLD MODE

Bit D03

This bit enables a gate Hold after the trigger is received in Trigger mode (GATE/TRIG bit D02 = 1, below). When the bit is cleared to logic '0' (its default state) the selected gate is active (ADC FIFO writes enabled) for the specified trigger length after the trigger (specified using the Trigger Length Register, Section 6.10.6), and then goes inactive (ADC FIFO writes disabled). When the bit is set to logic '1' HOLD is enabled and the gate remains active (ADC FIFO writes enabled) after the trigger is received until the Trigger is cleared using the TRIG CLEAR bit D04, above.

Note that when HOLD is enabled, you must set the Trigger Length to any number greater than zero.

6.10.2.9 GATE/TRIG

Bit D02

This bit selects Gate or Trigger mode for the gate selected by GATE SEL (bit D07) for enabling ADC FIFO writes. When this bit is cleared to logic '0' (its default state) Gate mode is selected. When this bit is set to logic '1', Trigger mode is selected and you must set a trigger length using the Trigger Length Register, Section 6.10.6, or enable trigger Hold (HOLD MODE bit D03 above).

6.10.2.10 FIFO RESET

Bit D01

This bit resets the ADC FIFO (1, 2, 3, or 4). When the bit is cleared to logic '0' (its default state) the FIFO is in run. When the bit is set to logic '1' the FIFO is in reset.

6.10.2.11 FIFO ENABLE

Bit D00

This bit enables the ADC FIFO (1, 2, 3, or 4). When the bit is cleared to logic '0' (its default state) the FIFO is disabled. When the bit is set to logic '1' the FIFO is enabled.

6.10.3 ADC FIFO Status Registers

There are four ADC FIFO Status Registers, one for each ADC channel, 1, 2, 3, and 4. The ADC FIFO Status Registers have several flag and status bits associated with data transfers from each ADC channel. The following table shows the bit layout of this register. The subsections following the table describe these bits.

	A A A	ADC 1 FIFO ADC 2 FIFO ADC 3 FIFO	DC FIFO St : R/CIr @ B. : R/CIr @ B. : R/CIr @ B. : R/CIr @ B.	AR2+0x8148 AR2+0x8150 AR2+0x8158	3 0 3		
	D15 -	- D12		D11	D10	D09	D08
Bit Name	Reserved			FULL FLAG	ALMOST FULL FLAG	ALMOST EMPTY FLAG	EMPTY FLAG
Function		Write with zeros, Mask when reading Read: 0 = FIFO flag condition not active 1 = FIFO flag condition latched Clear: 1 = Clear latch					
	D07 – D06	D05 *	D04 *	D03 *	D02 *	D01 *	D00 *
Bit Name	Reserved	TRIGGER CAPTURE	FIFO WRITE ENABLED	FULL	ALMOST FULL	ALMOST EMPTY	EMPTY
Function	Write with zeros, Mask when reading	0 - Not done 1 - Done	0 - Not En 1 - Enabled		•	ndition not a condition acti	

* These bits are Read Only

IMPORTANT! When reset, including power-up, the state of this register is unknown. You should clear the register flag bits before using it, by writing '1's into bits D11 – D08.

6.10.3.1 FIFO Flag Bits

Bits D11 - D08

These four bits are latched read/clear bits associated with each FIFO flag condition. Note that when any status bit in this register (D03 – D00, Section 6.10.3.4) changes to '1' the corresponding flag bit will also be set to '1'. However, when a status bit clears from '1' to '0', the corresponding latched bit in this register does not clear, but remains at logic '1'.

Read: Logic '1' indicates that a FIFO flag has been active and not cleared, logic '0' indicates that the flag condition is not active.

<u>Clear</u>: Since these bits latch in response to a FIFO flag occurrence, to detect subsequent FIFO flags, you must clear the bits in this register. To clear any bit in this register that is set to '1' you must write a '1' to that bit.

6.10.3 ADC FIFO Status Registers (continued)

6.10.3.2 TRIGGER CAPTURE

Bit D05

This bit indicates the trigger capture status of the data transfer (ADC FIFO 1, 2, 3, or 4, depending on the register being accessed). When read as logic '0' the trigger has not completed. When read as logic '1' the trigger length is completed.

6.10.3.3 FIFO WRITE ENABLED

Bit D04

This bit indicates the write enable status of the FIFO (ADC FIFO 1, 2, 3, or 4, depending on the register being accessed). When read as logic '0' the FIFO is not write enabled. When read as logic '1' the FIFO is write enabled.

6.10.3.4 FIFO Status Bits

Bits D03 – D00

Each status bit is a non-latched version of the associated FIFO flag condition. When read as logic '1' the associated FIFO flag condition is active (true). When read as logic '0' the associated FIFO flag condition is inactive.

Note that when any status bit changes to logic '1' the corresponding flag bit in this register (Section 6.10.3.1) will also be set to logic '1'.

Use the ADC FIFO Almost Full and Almost Empty Level Registers, Sections 6.10.8 and 6.10.9, to set the Almost Full and Almost Empty FIFO levels.

6.10.4 ADC Post Trigger Delay Length Registers

There are eight ADC Post Trigger Delay Length Registers, two registers for each ADC data channel, 1, 2, 3, and 4. These registers specify the delay in storing data samples to the applicable ADC FIFO after the trigger is received. These registers are valid only when the associated ADC FIFO Control Register, Section 6.10.2, is set for POST trigger mode.

Each ADC channel's delay length is specified using two registers, one for the least significant 16 bits (LSB) and one for the most significant 16 bits (MSB). The following tables show the format of these registers.

	Table 6–29: ADC Post Trigger Delay Length LSB Registers
	ADC 1: R/W @ BAR2+0x8900
	ADC 2: R/W @ BAR2+0x8910
	ADC 3: R/W @ BAR2+0x8920
	ADC 4: R/W @ BAR2+0x8930
	D15 – D00
Bit Name	D15 – D0
Function	Post Trigger Delay Length least significant bits (LSB)
	All bits default to the logic '0' state at power on and reset

	Table 6–30: ADC Post Trigger Delay Length MSB Registers
	ADC 1: R/W @ BAR2+0x8908
	ADC 2: R/W @ BAR2+0x8918
	ADC 3: R/W @ BAR2+0x8928
	ADC 4: R/W @ BAR2+0x8938
	D15 – D00
Bit Name	D31- D16
Function	Post Trigger Delay Length most significant bits (MSB)
	All bits default to the logic '0' state at power on and reset

Post Trigger Delay Length is a 32-bit binary value, with the most significant bit (D31) in bit D15 of the MSB register. This value specifies the number of samples to delay, after the trigger is received, before writing A/D samples to the applicable ADC FIFO. See Section 4.7.4 for additional information on Post Triggering.

NOTE: When specifying a Post Trigger Delay Length for an ADC channel, be sure to write to BOTH registers for that ADC channel.

6.10.5 ADC Pre Trigger Count Capture Registers

There are eight ADC Pre Trigger Count Capture Registers, two registers for each ADC data channel, 1, 2, 3, and 4. These read—only registers return the number of data samples stored in the applicable ADC FIFO before the trigger is received. These registers are valid only when the associated ADC FIFO Control Register, Section 6.10.2, is set for PRE trigger mode.

Each ADC channel's pre trigger count is returned using two registers, one for the least significant 16 bits (LSB) and one for the most significant 16 bits (MSB). The following tables show the format of these registers.

	Table 6-31: ADC Pre Trigger Count Capture LSB Registers ADC 1: R.O. @ BAR2+0x8940 ADC 2: R.O. @ BAR2+0x8950 ADC 3: R.O. @ BAR2+0x8960 ADC 4: R.O. @ BAR2+0x8970
	D15 – D00
Bit Name	D15 – D0
Function	Pre Trigger Count Capture least significant bits (LSB)
	All bits default to the logic '0' state at power on and reset

	Table 6-	A A A	Pre Trigger Count Capture MSB Registers DC 1: R.O. @ BAR2+0x8948 DC 2: R.O. @ BAR2+0x8958 DC 3: R.O. @ BAR2+0x8968 DC 4: R.O. @ BAR2+0x8978
	D15 – D14	D13	D12 – D00
Bit Name	Reserved	WRAP	D28 – D16
Function	Mask read	0 = No wrap 1 = Wrap	Pre Trigger Count Capture most significant bits (MSB)
	All bit	s default t	o the logic '0' state at power on and reset

The Pre Trigger Count Capture is a 29-bit binary value, with the most significant bit (D29) in bit D12 of the MSB register. This value indicates the actual number of A/D data samples stored into the applicable ADC FIFO before the trigger is received. When bit D13 of the MSB register reads as logic '1' the number of data samples stored has exceeded the 29-bit Pre Trigger Count Capture field and has wrapped around. See Section 4.7.4 for additional information on Pre Triggering.

NOTE: When reading a Pre Trigger Count for an ADC channel, be sure to read BOTH registers for that ADC channel.

6.10.6 ADC Trigger Length Registers

There are eight ADC Trigger Length Registers, two for each ADC channel, 1, 2, 3, and 4. When Trigger mode is selected for an ADC FIFO gate (GATE/TRIG = 1, ADC FIFO Control Registers, Section 6.10.2.9), these registers set the length that the gate is active (ADC FIFO writes enabled) after receipt of the trigger. These registers apply to data transfers from the LTC2255 to both the PCI bus ADC FIFO and the DDR Memory ADC FIFO.

ADC Trigger Length is specified using two registers, one for the least significant 16 bits (LSB) and one for the most significant 16 bits (MSB). The following tables show the contents of the Trigger Length Registers.

	Table 6–33: ADC Trigger Length LSB Registers
	ADC 1: R/W @ BAR2+0x8C10
	ADC 2: R/W @ BAR2+0x8C48 ADC 3: R/W @ BAR2+0x8C80 ADC 4: R/W @ BAR2+0x8CB8
	D15 – D00
Bit Name	D15 – D00 D15 – D0
Bit Name Function	

	Table 6–34: ADC Trigger Length MSB Registers					
	ADC 1: R/W @ BAR2+0x8C18					
	ADC 2: R/W @ BAR2+0x8C50 ADC 3: R/W @ BAR2+0x8C88					
	ADC 3: 11/W @ BAR2+0x8CC0					
	D15 – D00					
Bit Name	D15 – D00 D31– D16					
Bit Name Function						

Trigger length is a 32-bit binary value, with the most significant bit (D31) in bit D15 of the MSB register. This value specifies the length of the write gate after the trigger as the number of ADC FIFO writes, up to 65,535. To specify a trigger length of N FIFO writes, set this register to N-1.

See Section 4.7.4 for information on ADC Pre/Post Triggering.

NOTE: When specifying a trigger length, be sure to write to BOTH Trigger Length Registers for that ADC channel.

6.10.7 ADC FIFO Interrupt Mask Registers

There are four ADC FIFO Interrupt Mask Registers, one for each ADC channel, 1, 2, 3, and 4. The Interrupt Mask Registers contain enable bits for each interrupt condition defined. Each bit enables or disables the generation of a local bus interrupt (LINTix) to the PCI7142.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

Table 6-35: ADC FIFO Interrupt Mask Registers ADC 1 FIFO: R/W @ BAR2+0x8C20 ADC 2 FIFO: R/W @ BAR2+0x8C58 ADC 3 FIFO: R/W @ BAR2+0x8C90 ADC 4 FIFO: R/W @ BAR2+0x8CC8							
	D15 – D06	D15 - D06				D00	
Bit Name	Reserved	TRIGGER CAPTURE	Reserved	FULL	ALMOST FULL	ALMOST EMPTY	EMPTY
Function Write with zeros, Mask when reading 0 = Disable Interrupt 1 = Enable Interrupt							
All bits default to the logic '0' state at power on and reset							

Each bit of this register enables or disables the generation of a local bus interrupt to the PCI7142, when interrupts are enabled for this register in the Application Interrupt Enable LINTx Registers, Section 6.9.4.

Setting the bit associated with a given interrupt to logic '1' enables the generation of a local bus interrupt when that interrupt condition occurs. When a bit is cleared to logic '0' (its default state) the local bus interrupt will not be generated by the associated interrupt condition.

The interrupt conditions are:

D05 – Trigger Capture, Trigger Length has been counted down to zero

D03 – FIFO is Full

D02 – FIFO is at the Almost Full level

D01 – FIFO is at the Almost Empty level

D00 – FIFO is Empty

6.10.8 ADC FIFO Almost Empty Level Registers

There are four ADC FIFO Almost Empty Level Registers, one for each ADC channel, 1, 2, 3, and 4. This register sets the programmable boundary flag level of the Almost Empty flag for the associated FIFO.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

Table 6-36: ADC FIFO Almost Empty Level Registers ADC 1 FIFO: R/W @ BAR2+0x8C28 ADC 2 FIFO: R/W @ BAR2+0x8C60 ADC 3 FIFO: R/W @ BAR2+0x8C98 ADC 4 FIFO: R/W @ BAR2+0x8CD0				
	D15 – D10 D09 – D00			
Bit Name	Reserved D9 – D0			
Function Write with zeros, Mask when reading FIFO Almost Empty Level				
	All bits default to the logic '0' state at power on and reset			

The Almost Empty Level is a 10-bit binary value, with bit D09 the MSB. This value specifies the FIFO Almost Empty flag depth.

NOTE: All 7142 FIFOs are 64 bits wide. Thus, the FIFO level programmed into this register indicates the level of 64–bit words. For example, if you set this register to a level of 12, the FIFO sets a boundary flag when the data transfer reaches 24 32–bit words.

While the FIFO is being read, when the data is at or below the Almost Empty level, the FIFO sets the Almost Empty Flag.

- The FIFO Almost Empty Flag is routed to the associated ADC FIFO Status Register, Section 6.10.3.
- If the Almost Empty Flag is enabled by the associated ADC FIFO Interrupt Mask Register, Section 6.10.7, a local bus interrupt will be asserted to the PCI7142.

6.10.9 ADC FIFO Almost Full Level Registers

There are four ADC FIFO Almost Full Level Registers, one for each ADC channel, 1, 2, 3, and 4. This register sets the programmable boundary flag level of the Almost Full flag for the associated FIFO.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

Table 6-37: ADC FIFO Almost Full Level Registers ADC 1 FIFO: R/W @ BAR2+0x8C30 ADC 2 FIFO: R/W @ BAR2+0x8C68 ADC 3 FIFO: R/W @ BAR2+0x8CA0 ADC 4 FIFO: R/W @ BAR2+0x8CD8				
	D15 – D10 D09 – D00			
Bit Name	Reserved	D9 – D0		
Function Write with zeros, Mask when reading FIFO Almost Full Level				
All bits default to the logic '0' state at power on and reset				

The Almost Full Level is a 10-bit binary value, with bit D09 the MSB. This value specifies the FIFO Almost Full flag depth.

NOTE: All 7142 FIFOs are 64 bits wide. Thus, the FIFO level programmed into this register indicates the level of 64–bit words. For example, if you set this register to a level of 12, the FIFO sets a boundary flag when the data transfer reaches 24 32–bit words.

While the FIFO is being written to, when the data is at or above the Almost Full level, the FIFO sets the Almost Full Flag.

- The FIFO Almost Full Flag is routed to the associated ADC FIFO Status Register, Section 6.10.3.
- If the Almost Full Flag is enabled by the associated ADC FIFO Interrupt Mask Register, Section 6.10.7, a local bus interrupt will be asserted to the PCI7142.

6.10.10 ADC FIFO Decimation Divide Registers

There are four ADC Decimation Divide Registers, one for each ADC channel, 1, 2, 3, and 4. This register sets the decimation rate of data samples written to the applicable ADC FIFO (1 or 2).

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

Table 6-38: ADC FIFO Decimation Divide Register ADC 1 FIFO: R/W @ BAR2+0x8C38 ADC 2 FIFO: R/W @ BAR2+0x8C70 ADC 3 FIFO: R/W @ BAR2+0x8CA8 ADC 4 FIFO: R/W @ BAR2+0x8CE0				
	D15 – D12 D11 – D00			
Bit Name	Reserved	B11 – B0		
Function Write with zeros, Mask when reading 12-bit rate divider 'N-1'				
	All bits default to the logic '0' state at power on and reset			

The rate divider is a 12-bit binary value, with bit D11 the MSB. To take every Nth sample, where N is any value between 1 and 4096, set this register to N-1.

6.11 DAC Registers

The following subsections describe the Signal FPGA registers that control digital to analog output processing, except for the DAC5686 (DAC5687 with Option 101). The DAC5686 contains internal programmable status and control registers. All reads and writes to the DAC5686 internal registers must use the DAC5686 Registers defined in Section 6.12.

NOTE: The following subsections refer only to the DAC 5686. In all instances, the same descriptions apply to the DAC5687 with Option 101.

6.11.1 DAC Sync Bus Select Register

The DAC Sync Bus Select Register selects either Sync Bus A or Sync Bus B to be used as the clock and sync signal source for the digital—to—analog output processing, including the DAC5686 and the DAC FIFOs. (The clock for the DAC FIFOs is also controlled by the DAC CLK bit in the DAC Control/Status Register, Section 6.11.2.)

Refer to the Master Bus A/B Control Register, Section 6.8.1 or 6.8.4, to configure these signals for the selected Sync Bus.

The following table shows the contents of this register.

	Table 6-39: DAC Sync Bus Select Register R/W @ BAR2+0x8400	
	D15 – D01	D00
Bit Name	Reserved	SEL
Function	Write with zeros, Mask when reading	0 = Bus A 1 = Bus B
	Bit D00 defaults to the logic '1' state at power on and reset	

Setting this bit to logic '0' selects Sync Bus A, setting to '1' selects Sync Bus B.

6.11.2 DAC Control/Status Register

The DAC Control/Status Register provides several control and status bits that control the interface to the DAC5686 and select the clock used to control writes to the DAC FIFO (illustrated in Figure 6–4 on the following page). The DAC5686 also contains internal status and control registers that are programmed using the DAC5686 Registers defined in Section 6.12.

The following table shows the contents of the DAC Control/Status Register. The subsections following the table describe the use of each bit.

	Table 6-40: DAC Control/Status Register R/W @ BAR2+0x8408					
	D15 – D04	D03	D02	D01	D00 *	
Bit Name	Reserved	DAC FIFO CLK	PLL VDD	DAC RESET	PLL LOCK	
Function	Write with zeros	0 = PLLLOCK 1 = DAC CLK		0 = Run 1 = Reset	0 = Unlocked 1 = Locked	
	* This bit is Read Only Bits D03 to D01 default to the logic '0' state at power on and reset.					

6.11.2.1 DAC FIFO CLK

Bit D03

This bit selects the clock source for the DAC FIFO. When the bit is cleared to logic '0' (its default state) the clock output from the DAC5686 PLLLOCK pin is routed to the DAC FIFO. When set to logic '1' the DAC input clock (selected by the DAC Sync Bus Select Register, Section 6.11.1) is routed to the DAC FIFO.

Refer to the DCM Control Register, Section 6.4, for description of the Signal FPGA DCMs used for the DAC FIFO clock.

	Table 6–41: DAC Control/Status Register States						
DAC CLK (D03)	PLL VDD (D02)	Condition					
0	0	invalid	DAC clock from PLLLOCK pin is selected. PLL is disabled.				
0	1	valid	Invalid DAC CLK and PLL VDD selection.				
1 I () I invalid I			DAC clock from PLLLOCK pin is bypassed. PLL is disabled. Used for DAC dual clock/full bypass modes.				
1 1 valid DAC clock from PLLLOCK pin is bypassed. PLL is enabled.							
Refer t	Refer to the DAC5686 data sheet (see Section 1.15) for description of PLL Mode operation.						

6.11.2 DAC Control/Status Register (continued)

6.11.2.2 PLL VDD

Bit D02

This bit enables the PLL supply voltage on the DAC5686. When the bit is cleared to logic '0' (its default state), the PLL is disabled on the DAC5686, and the PLLLOCK pin outputs the input rate clock. When set to logic '1', the PLL is enabled on the DAC5686, and the PLLLOCK pin indicates lock status (Section 6.11.2.4) and DAC CLK (bit D03) must be set to the Sync Bus clock.

6.11.2.3 DAC RESET

Bit D01

This bit issues a reset to the DAC5686. When the bit is cleared to logic '0' (its default state) the DAC is in a normal run state. When the bit is set to logic '1' the DAC is in reset.

6.11.2.4 PLL LOCK

Bit D00

This read—only bit is the status of the PLLLOCK pin on the DAC5686. The PLLLOCK pin output is only valid when PLL VDD is enabled (bit D03 set to logic '1'). When PLL is disabled, the PLLLOCK pin outputs the DAC input clock.

6.11.3 DAC FIFO Control Register

The DAC FIFO Control Register contains bits that select the data packing modes and the source and characteristics of the gates used to control reading data samples from the PCI Interface DAC FIFO or from the DDR Memory DAC FIFO for the DAC5686.

NOTE: The DAC FIFO register bit settings also control the same packing modes and operating characteristics of the DDR Memory DAC FIFO (see Figure 6–5 on page 181).

The following table shows the contents of the DAC FIFO Control Registers. The subsections following the table describe the bits in this register.

Table 6-42: DAC FIFO Control Register R/W @ BAR2+0x8410								
			D15 – D11			D10	D09	D08
Bit Name		Reserved WORD SWAP PACK MODE						
Function		Write with zeros, Mask when reading 0 = No Swap 1 = Swap 00 or 10 = Unpacked 01 = 8-bit Packed 11 = 16-bit Packed						it Packed
	D07	D06	D05	D04	D03	D02	D01	D00
Bit Name	GATE SEL	Reserved	GATE CONTROL	TRIG CLEAR	HOLD MODE	GATE/TRIG	FIFO RESET	FIFO ENABLE
Function	n 0 = Gate A Write 0s, 0 = Enable 1 = Force Gate Inactive 1 = Hold 0 = Run 0 = Run 0 = Disable 1 = Enable 1 = Enable 1 = Trigger 1 = Reset 1 = Enable							
	All	bits defaul	t to the lo	gic '0' state	at power	on and res	et	

6.11.3 DAC FIFO Control Register (continued)

6.11.3.1 WORD SWAP

Bit D10

This bit sets the 16-bit word swapping mode for reading from the DAC FIFO. When the bit is cleared to logic '0' (its default state), the data is not swapped, and the first 16-bit data sample is in the lowest 16 bits of the 64-bit FIFO word. When the bit is set to logic '1', word swapping is enabled and each pair of 16-bit samples are swapped in the 64-bit FIFO word, as follows:

Bits D00:15 are swapped with bits D16:31, Bits D32:47 are swapped with bits D48:63.

Refer to Section 7.2, FIFO Word Swap Formats, for additional information about the word swap modes.

6.11.3.2 PACK MODE

Bits D09, D08

These two bits set the packing mode for transferring data from the DAC FIFO to the DAC5686 input channels. The settings for the two packing mode bits are:

00	Unpacked	Four 16-bit samples are read from each 64-bit word of the DAC FIFO, two samples for each DAC5686 input channel (inputs A and B) See NOTE below.
01	8-bit Packed	Eight 8-bit samples are read from each 64-bit word of the DAC FIFO for DAC5686 input channel B
10	Unpacked	(See Unpacked, code 00, above)
11	16-bit Packed	Four 16-bit samples are read from each 64-bit word of the DAC FIFO for DAC5686 input channel B

Refer to Section 7.5, DAC Data Routing and Formats for additional information about these Pack Modes.

NOTE:

The Model 7142 routes DAC5686 channel B output only to the front panel DAC OUT connector. However, both DAC input channels A and B may be used, depending on the packing mode selected and the operating mode of the DAC5686 (upconversion uses both inputs).

6.11.3 DAC FIFO Control Register (continued)

6.11.3.3 GATE SEL

Bit D07

This bit selects the source of the gate for reads from the DAC FIFO. When the bit is cleared to logic '0' (its default state) Gate A is the source; when the bit is set to logic '1' Gate B is the source.

6.11.3.4 GATE CONTROL

Bit D05

This bit enables Gate operation on the DAC FIFO. When the bit is cleared to '0' (the default state) the FIFO is controlled by the Gate (gate control is Enabled). When the bit is set to '1' the FIFO is free running (gate control Disabled).

6.11.3.5 TRIG CLEAR

Bit D04

This bit forces the selected gate to the inactive state in Trigger mode (GATE/TRIG bit D02 = 1, below). When this bit is cleared to logic '0' (its default state) there is no effect on the gate. When the bit is set to logic '1' the gate is forced to inactive (DAC FIFO reads disabled), regardless of the trigger length specified (Trigger Length Register, Section 6.11.5), and the TRIGGER CAPTURE bit D05 is cleared in the DAC FIFO Status Register, Section 6.11.4.

6.11.3.6 HOLD MODE

Bit D03

This bit enables a gate Hold after the trigger is received in Trigger mode (GATE/TRIG bit D02 = 1, below). When the bit is cleared to logic '0' (its default state), the selected gate is active (DAC FIFO reads enabled) for the specified trigger length after the trigger (specified using the Trigger Length Register, Section 6.11.5), and then goes inactive (DAC FIFO reads disabled). When the bit is set to logic '1', HOLD is enabled and the gate remains active (DAC FIFO reads enabled) after the trigger is received until the Trigger is cleared using the TRIG CLEAR bit D04, above. Note that when HOLD is enabled, you must set the Trigger Length to any number greater than zero.

6.11.3.7 GATE/TRIG

Bit D02

This bit selects Gate or Trigger mode for the gate selected by GATE SEL (bit D07) for enabling DAC FIFO reads. When this bit is cleared to logic '0' (its default state) Gate mode is selected. When this bit is set to logic '1', Trigger mode is selected, and you must set a trigger length using the Trigger Length Register, Section 6.11.5, or enable trigger Hold (HOLD MODE bit D03 above).

6.11.3 DAC FIFO Control Register (continued)

6.11.3.8 FIFO RESET

Bit D01

This bit resets the DAC FIFO. When the bit is cleared to logic '0' (its default state) the FIFO is in run; when the bit is set to logic '1' the FIFO is in reset.

6.11.3.9 FIFO ENABLE

Bit D00

This bit enables the DAC FIFO. When the bit is cleared to logic '0' (its default state) the FIFO is disabled; when the bit is set to logic '1' the FIFO is enabled.

6.11.4 DAC FIFO Status Register

The DAC FIFO Status Register contains several flag and status bits associated with data transfers from the DAC FIFO to the DAC5686.

The following table shows the bit layout of this register. The subsections following the table describe these bits.

	Table 6-43: DAC FIFO Status Register R/Cir @ BAR2+0x8178						
	D15 -	- D12		D11	D10	D09	D08
Bit Name	Reserved			FULL FLAG	ALMOST FULL FLAG	ALMOST EMPTY FLAG	EMPTY FLAG
Function	Write with zeros, Mask when reading			Read: 0 = FIFO flag condition not active 1 = FIFO flag condition latched Clear: 1 = Clear latch			
	D07 – D06			D03 *	D02 *	D01 *	D00 *
Bit Name	Reserved		FIFO WRITE ENABLED	FULL	ALMOST FULL	ALMOST EMPTY	EMPTY
Function	Write with zeros, 0 - Not done 0 - Not En Mask when reading 1 - Done 1 - Enabled				•	ndition not a condition act	

^{*} These bits are Read Only

IMPORTANT! When reset, including power-up, the state of this register is unknown. You should clear the register flag bits before using it, by writing '1's into bits D11 – D08.

6.11.4.1 FIFO Flag Bits

Bits D11 - D08

These four bits are latched read/clear bits associated with each DAC FIFO flag condition. Note that when any status bit in this register (D03 – D00, Section 6.11.4.4) changes to '1' the corresponding flag bit will also be set to '1'. However, when a status bit clears from '1' to '0', the corresponding latched bit in this register does not clear, but remains at logic '1'.

Read: Logic '1' indicates that a FIFO flag has been active and not cleared, logic '0' indicates that the flag condition is not active.

<u>Clear</u>: Since these bits latch in response to a FIFO flag occurrence, to detect subsequent FIFO flags, you must clear the bits in this register. To clear any bit in this register that is set to '1' you must write a '1' to that bit.

6.11.4 DAC FIFO Status Register (continued)

6.11.4.2 TRIGGER CAPTURE

Bit D05

This bit indicates the trigger capture status of the data transfer for the DAC FIFO. When read as logic '0' the trigger has not completed. When read as logic '1' the trigger length is completed.

6.11.4.3 FIFO WRITE ENABLED

Bit D04

This bit indicates the write enable status of the DAC FIFO. When read as logic '0' the FIFO is not write enabled. When read as logic '1' the FIFO is write enabled.

6.11.4.4 FIFO Status Bits

Bits D03 - D00

Each status bit is a non-latched version of the associated FIFO flag condition. When read as logic '1' the associated FIFO flag condition is active (true). When read as logic '0' the associated FIFO flag condition is inactive.

Note that when any status bit changes to '1' the corresponding flag bit in this register (Section 6.11.4.1) will also be set to '1'.

Use the DAC FIFO Almost Full and Almost Empty Level Registers, Sections 6.11.7 and 6.11.8, to set the Almost Full and Almost Empty FIFO levels.

6.11.5 DAC FIFO Trigger Length Registers

There are two DAC Trigger Length Registers. The trigger length is specified using two registers, one for the least significant 16 bits (LSB) and one for the most significant 16 bits (MSB).

When Trigger mode is selected for a FIFO gate (GATE/TRIG = 1, DAC FIFO Control Register, Section 6.11.3.7), these registers set the length that the gate is active (DAC FIFO reads enabled) after receipt of the trigger.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

Table 6-44: DAC Trigger Length LSB Register R/W @ BAR2+0x8418				
D15 – D00				
Bit Name	D15 – D0			
Function	Function Trigger Length (N-1) least significant bits (LSB)			
	All bits default to the logic '0' state at power on and reset			

	Table 6-45: DAC Trigger Length MSB Register R/W @ BAR2+0x8420						
	D15 – D00						
Bit Name	D31- D16						
Function	Trigger Length (N-1) most significant bits (MSB)						
	All bits default to the logic '0' state at power on and reset						

The trigger length is a 32-bit binary value, with the most significant bit (D31) in bit D15 of the MSB register. This value specifies the length of the read gate after the trigger as the number of FIFO reads, up to 65,535. To specify a trigger length of N FIFO reads, set this register to N-1.

See Section 4.7.4 for information on DAC Post Triggering.

NOTE: When specifying a trigger length, be sure to write to BOTH Trigger Length Registers.

6.11.6 DAC FIFO Interrupt Mask Register

The DAC FIFO Interrupt Mask Register contains enable bits for each interrupt condition for the DAC FIFO. Each bit enables or disables the generation of a local bus interrupt (LINTix) to the PCI7142.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

Table 6–46: DAC FIFO Interrupt Mask Register R/W @ BAR2+0x8428								
	D15 – D06 D05 D04 D03 D02 D01 D00							
Bit Name	Reserved	TRIGGER CAPTURE	Reserved	FULL	ALMOST FULL	ALMOST EMPTY	EMPTY	
Function	Function Write with zeros, Mask when reading 0 = Disable Interrupt 1 = Enable Interrupt							
	All bits default to the logic '0' state at power on and reset							

Each bit of this register enables or disables the generation of a local bus interrupt to the PCI7142, when interrupts are enabled for this register in the Application Interrupt Enable LINTx Registers, Section 6.9.4.

Setting the bit associated with a given interrupt to logic '1' enables the generation of a local bus interrupt when that interrupt condition occurs. When a bit is cleared to logic '0' (its default state) the local bus interrupt will not be generated by the associated interrupt condition.

The interrupt conditions are:

D05 – Trigger Capture, Trigger Length has been counted down to zero

D03 - FIFO is Full

D02 – FIFO is at the Almost Full level

D01 – FIFO is at the Almost Empty level

D00 – FIFO is Empty

6.11.7 DAC FIFO Almost Empty Level Register

The DAC FIFO Almost Empty Level Register sets the programmable boundary flag level of the Almost Empty flag for the associated DAC FIFO.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

Table 6-47: DAC FIFO Almost Empty Level Register R/W @ BAR2+0x8430						
D15 – D14 D13 – D00						
Bit Name	Reserved	D13 – D0				
Function	Function Write with zeros, Mask when reading FIFO Almost Empty Level					
All bits default to the logic '0' state at power on and reset						

The Almost Empty Level is a 14-bit binary value, with bit D13 the MSB. This value specifies the FIFO Almost Empty flag depth.

NOTE: All 7142 FIFOs are 64 bits wide. Thus, the FIFO level programmed into this register indicates the level of 64–bit words. For example, if you set this register to a level of 12, the FIFO sets a boundary flag when the data transfer reaches 24 32–bit words.

While the FIFO is being read, when the data is at or below the Almost Empty level, the FIFO sets the Almost Empty Flag.

- The FIFO Almost Empty Flag is routed to the associated DAC FIFO Status Register, Section 6.11.4.
- If the Almost Empty Flag is enabled by the associated DAC FIFO Interrupt Mask Register, Section 6.11.6, a local bus interrupt will be asserted to the PCI7142.

6.11.8 DAC FIFO Almost Full Level Register

The DAC FIFO Almost Full Level Register sets the programmable boundary flag level of the Almost Full flag for the associated DAC FIFO.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

	Table 6-48: DAC FIFO Almost Full Level Register							
	R/W @ BAR2+0x8438							
	D15 – D14 D13 – D00							
Bit Name	Reserved D13 – D0							
Function	Function Write with zeros, Mask when reading FIFO Almost Full Level							
	All bits default to the logic '0' state at power on and reset							

The Almost Full Level is a 14-bit binary value, with bit D13 the MSB. This value specifies the FIFO Almost Full flag depth.

NOTE: All 7142 FIFOs are 64 bits wide. Thus, the FIFO level programmed into this register indicates the level of 64–bit words. For example, if you set this register to a level of 12, the FIFO sets a boundary flag when the data transfer reaches 24 32–bit words.

While the FIFO is being written to, when the data is at or above the Almost Full level, the FIFO sets the Almost Full Flag.

- The FIFO Almost Full Flag is routed to the associated DAC FIFO Status Register, Section 6.11.4.
- If the Almost Full Flag is enabled by the associated DAC FIFO Interrupt Mask Register, Section 6.11.6, a local bus interrupt will be asserted to the PCI7142.

6.11.9 DAC Post Trigger Delay Length Registers

There are two DAC Post Trigger Delay Length Registers. These registers specify the delay in reading data samples from the DAC FIFO, after the trigger.

This delay count is specified using two registers, one for the least significant 16 bits (LSB) and one for the most significant 16 bits (MSB). The following tables show the format of these registers.

	Table 6-49: DAC Post Trigger Delay Length LSB Register R/W @ BAR2+0x8440						
	D15 – D00						
Bit Name	D15 – D0						
Function	Function Post Trigger Delay Length least significant bits (LSB)						
	All bits default to the logic '0' state at power on and reset						

	Table 6-50: DAC Post Trigger Delay Length MSB Register R/W @ BAR2+0x8448						
	D15 – D00						
Bit Name	D31– D16						
Function	Function Post Trigger Delay Length most significant bits (MSB)						
	All bits default to the logic '0' state at power on and reset						

The Post Trigger Delay Length is a 32-bit binary value, with the most significant bit (D31) in bit D15 of the MSB register. This value specifies the number of samples to delay after the trigger before reading from the DAC FIFO.

See Section 4.7.4 for additional information on Post Triggering.

NOTE: When specifying a Post Trigger Delay Length, be sure to write to BOTH Post Trigger Delay Length registers.

6.12 DAC5686 Registers

The DAC5686 (DAC5687 with Option 101) contains internal programmable status and control registers. All reads and writes to these internal registers are programmed through the Model 7142 Signal FPGA. You can read and write data to the DAC5686 using the Model 7142 DAC5686 Registers defined in the Signal FPGA.

NOTE: The following subsections refer only to the DAC5686. In all instances, the same descriptions apply to the DAC5687 with Option 101.

The Signal FPGA defines two DAC5686 Registers, one for read accesses (DAC5686 Read Register) and one for write accesses (DAC5686 Write Register). The formats of these DAC Registers are provided in Sections 6.12.1 and 6.12.2, respectively, on the following two pages.

Each DAC Write Register access to the DAC5686 internal registers consists of data and a register address offset value to steer the data to the correct internal register. There are 16 internal registers in the DAC5686 (32 registers in the DAC5687) that can be accessed in this manner. Refer to the Texas Instruments DAC5686 data sheet (see Section 1.15) for the offset values and descriptions of these registers.

Writing data to a DAC5686 internal register is a single step.

• Write to the DAC5686 Write Register (Section 6.12.2) with DATA DIRECTION = 0, REG OFFSET [4:0] = the offset of the DAC5686 internal register, DATA [7:0] = the data to be written, and the remaining bits = 0.

Reading a DAC5686 internal register consists of two steps.

- 1) First, write to the DAC5686 Write Register (Section 6.12.2) with DATA DIRECTION = 1, REG OFFSET [4:0] = the offset of the DAC5686 internal register, and the remaining bits = 0. This identifies, to the DAC5686, the address of the register to be accessed during the read operation.
- 2) Then, read the DAC5686 Read Register (Section 6.12.1). The value of the identified DAC5686 internal register is contained in DATA [7:0], where STATUS = 0 indicates a valid value.

6.12.1 DAC5686 Read Register

The following table shows the contents of the DAC5686 Read Register, and the paragraphs following this table provide descriptions of these bits.

Table 6-51: DAC5686 Read Register R.O. @ BAR2+0x8470										
	D15	D15 D14 D13 D12 D11 D10 D09 D08								
Bit Name	STATUS	STATUS Reserved								
Function	0 = Valid 1 = Busy		Mask when reading							
	D07	D06	D06 D05 D04 D03 D02 D01 D00							
Bit Name	DATA 7	DATA 7 DATA 6 DATA 5 DATA 4 DATA 3 DATA 2 DATA 1 DATA 0								
Function	Function Data read from the DAC register (when STATUS = 0)									
	All bits default to the logic '0' state at power on and reset.									

6.12.1.1 STATUS

Bit D15

This bit indicates the read/write status of the DAC registers.

When you write to the DAC5686 Write Register, Section 6.12.2, this bit goes to logic '1' while the data is sent (serially). If you requested a Read (by setting Bit D15 = 1 in the DAC Write Register), this STATUS bit stays at '1' until the read from the DAC is complete.

When this STATUS bit reads logic '0', both registers are not busy, and if the DAC Write Register was set for a Read (Bit D15 = 1 in the DAC Write Register) the DATA bits contain valid data read from the DAC5686 internal register.

6.12.1.2 DATA

Bits D7 to D0

These bits contains the data read from the DAC5686 internal register selected by the DAC5686 Write Register, Section 6.12.2. This data is valid only when STATUS, bit D15, = 0.

NOTE:

Before you can access a DAC register, you must set the **sif4** bit in the **config_msb** DAC register, and specify a register offset to read, using the DAC Write Register.

6.12.2 DAC5686 Write Register

The following table shows the contents of the DAC5686 Write Register, and the paragraphs following this table provide descriptions of these bits.

Table 6-52: DAC5686 Write Register W.O. @ BAR2+0x8478									
	D15 D14 D13 D12 D11 D10 D09 D08								
Bit Name	DATA DIRECTION	N1	N0	REG OFFSET 4	REG OFFSET 3	REG OFFSET 2	REG OFFSET 1	REG OFFSET 0	
Function	0 = Write 1 = Read	Write wi	th zeros	Offset of DAC register to write to					
	D07	D06	D06 D05 D04 D03 D02 D01					D00	
Bit Name	DATA 7	DATA 6	DATA 5	DATA 4	DATA 3	DATA 2	DATA 1	DATA 0	
Function	When DATA DIRECTION = 0, data to write to the DAC register at offset REG OFFSET[40]. When DATA DIRECTION = 1, these bits are do not care.								
	All bits default to the logic '0' state at power on and reset.								

6.12.2.1 DATA DIRECTION

Bit D15

This bit indicates the read/write direction of the DATA [7:0] bits. Clear this bit to logic '0' (its default state) to indicate the DATA bits contain a valid value to write to the specified DAC5686 internal register. Set the bit to logic '1' to indicate the DATA bits are do not care, and the REG OFFSET is for a subsequent read by the DAC5686 Read Register, Section 6.12.2.

6.12.2.2 N1, N0

Bits D14 to D13

These bits must be cleared to logic '0' (their default state).

6.12.2.3 REG OFFSET

Bits D12 to D8

Set these bits to the (address) offset of the DAC5686 internal register to write to. Refer to the Texas Instruments DAC5686 data sheet (see Section 1.15) for the offset values of these registers.

6.12.2.4 DATA

Bits D7 to D0

These bits contain data to write to the DAC5686 internal register. This data is valid only when DATA DIRECTION, bit D15, = 0.

6.13 DDR Memory Registers

The following subsections describe the Signal FPGA registers that control DDR Memory operations. See Figure 6–5 on the next page for illustration of the DDR Memory Control logic. See Section 4.6 for additional information on DDR Memory Operation.

6.13.1 DDR Memory Control Register

The DDR Memory Control register contains bits that select the source and destination and control the operation of all DDR Memory data transfers.

The following table shows the contents of the DDR Memory Control Register. The subsections following the table provide descriptions of the bits in this register.

Table 6-53: DDR Memory Control Register R/W @ BAR2+0x8800										
	D15	D14	D13	D12	D11	D10	D09	D08		
Bit Name	Reserved	BANK 1 PACK	Reserved	BANK 0 PACK	Reserved	DAC SOURCE	Reserved	Reserved		
Function	Write 0s, Mask read	0 = ADC3 1 = ADC3 & 4	Write 0, Mask read	0 = ADC1 1 = ADC1 & 2	Write 0, Mask read	0 = DAC FIFO 1 = Memory	Write 0, Mask read	Write 0, Mask read		
	D07	D06	D05	D04	D03	D02	D01	D00		
Bit Name	lame Reserved BANK 2 BANK 1 BANK 0 Reserved BANK R/W BANK SELECT							SELECT		
Function	Write 0s, Mask read	0 = Disable 1 = Enable	0 = Disable 1 = Enable	0 = Disable 1 = Enable	Write 0, Mask read	0 = Read 1 = Write	See Section 6.13.1.5			
	All bits default to the logic '0' state at power on and reset									

6.13.1.1 BANK x PACK

Bits D14 & D12

Each of these bits enables packing data from two DDR Memory ADC FIFOs (ADC1 & 2, or ADC3 & 4, depending on the bit accessed) to one of the DDR Memory banks. When cleared to logic '0' (the default state) only one ADC channel is routed to the associated DDR Memory Bank (ADC1 FIFO to DDR BANK 0, or ADC3 FIFO to DDR BANK 1). When set to logic '1' two ADC channels are packed into the associated DDR Memory (ADC1 & 2 FIFOs to BANK 0, or ADC3 & 4 FIFOs to BANK 1).

See Section 7.4, ADC FIFO to DDR Memory Routing, for additional information about data packing from the ADC FIFOs to DDR Memory.

6.13.1 DDR Memory Control Register (continued)

Refer to Section 6.10.2 for setup and control of the DDR Memory ADC FIFOs. Refer to Section 6.11.3 for setup and control of the DDR Memory DAC FIFO.

6.13.1.2 DAC SOURCE

Bit D10

This bit selects the source for the DAC5686 input channels. When cleared to logic '0' (the default state) the PCI interface DAC FIFO is routed to the DAC5686 input channels. When set to logic '1' the DDR Memory Bank (DAC FIFO) is routed to the DAC5686 input channels.

6.13.1 DDR Memory Control Register (continued)

6.13.1.3 BANK x ENABLE

Bits D06, D05, D04

Each of these bits enables operation of the respective memory bank (0, 1, or 2 depending on the bit accessed). When cleared to logic '0' (the default state) the bank is Disabled. When set to logic '1' the bank is Enabled and the data transfer specified for that memory bank is initiated, starting with a memory bank read, followed by a memory bank write.

NOTE:

Before you change the DDR Memory Bank settings in bits D02, D01, or D00, you must first Disable the associated memory bank using the applicable BANK ENABLE bit. After making such a change, then Enable that memory bank.

NOTE:

The ADC FIFO Control Register, Section 6.10.2, sets the packing modes and operating characteristics of the DDR Memory ADC FIFOs (see Figure 6–5). Thus, if you enable a DDR Memory Bank for transfer from an ADC channel, you must also 'Enable' the associated ADC FIFO, Section 6.10.2. Packing must also be enabled (PACK MODE set to 'Pack') for any data transfers to a DDR Memory Bank.

6.13.1.4 BANK R/W

Bit D02

This bit selects the direction of data transfer, using the Memory Read or Memory Write FIFO, for the DDR Memory bank selected in the BANK SELECT bits, D01:D00, below. When cleared to logic '0' (the default state) the transfer is a read from the selected memory bank using the Memory Read PCI interface FIFO. When set to logic '1' the transfer is a write to the selected memory bank using the Memory Write PCI interface FIFO.

See Table 6–54 on the next page for the possible DDR Memory bank data routing paths.

6.13.1 DDR Memory Control Register (continued)

6.13.1.5 BANK SELECT

Bits D01, D00

These two bits select the DDR Memory bank for the Memory Read or Memory Write FIFO data transfer. The settings for these two bits are:

- 00 none (default)
- **01** BANK 0
- 10 BANK 1
- 11 BANK 2

The direction of the data transfer and the FIFO used are specified using the BANK R/W bit, D02, above. Note that when you access a selected memory bank with the Memory Read or Memory Write FIFO you can only perform one memory bank transfer at a time, either read or write, and you cannot access that memory bank from any other device.

Data routing through the DDR Memory banks is as follows:

Table 6-54: DDR Memory Bank Data Paths						
D02	D01	D00	Memory Bank Writes *	Memory Bank Reads		
0	0	0	ADC1/ADC2 to BANK 0 ADC3/ADC4 to BANK 1	BANK 2 to DAC		
0	0	1	ADC3/ADC4 to BANK 1	BANK 0 to Mem. Read FIFO BANK 2 to DAC		
0	1	0	ADC1/ADC2 to BANK 0	BANK 1 to Mem. Read FIFO BANK 2 to DAC		
0	1	1	ADC1/ADC2 to BANK 0 ADC3/ADC4 to BANK 1	BANK 2 to Mem. Read FIFO		
1	0	0	ADC1/ADC2 to BANK 0 ADC3/ADC4 to BANK 1	BANK 2 to DAC		
1	0	1	ADC3/ADC4 to BANK 1 Mem. Write FIFO to BANK 0	BANK 2 to DAC		
1	1	0	ADC1/ADC2 to BANK 0 Mem. Write FIFO to BANK 1	BANK 2 to DAC		
1	1	1	ADC1/ADC2 to BANK 0 ADC3/ADC4 to BANK 1 Mem. Write FIFO to BANK 2	none		

DDR Memory Bank writes (packing) from ADC2 and ADC4 to the associated DDR BANK must be enabled using bits D14 and D12. See Section 6.13.1.1.

6.13.2 DDR Memory Depth Registers

There are six DDR Memory Depth Registers, two registers for each memory bank, 0, 1, and 2. These registers specify the amount of 32-bit words in each memory bank, in 8-word increments, to be used for data input and output.

Each memory bank's depth is specified using two registers, one for the least significant 16 bits (LSB) and one for the most significant 16 bits (MSB). The following tables show the contents of these registers.

Table 6-55: DDR Memory Depth LSB Registers Bank 0: R/W @ BAR2+0x8808 Bank 1: R/W @ BAR2+0x8818 Bank 2: R/W @ BAR2+0x8828				
	D15 – D03	D02 – D00		
Bit Name	D15 – D3	D2 – D0		
Function	Memory Bank Depth least significant bits (LSB)	Must write zeros		
All bits default to the logic '0' state at power on and reset				

Table 6-56: DDR Memory Depth MSB Registers					
	Bank 0: R/W @ BAR2+0x8810				
	Bank 1: R/W @ BAR2+0x8820				
	Bank 2: R/W @ BAR2+0x8830				
	D15 – D00				
Bit Name	D31– D16				
Function	Function Memory Bank Depth most significant bits (MSB)				
All bits default to the logic '0' state at power on and reset					

The Memory Bank Depth is a 32-bit binary value, with the most significant bit (D31) in bit D15 of the MSB register. This value specifies the number of 32-bit words, in multiples of eight words, up to a maximum of 67,108,864 (0x0400 0000) words.

A Memory Bank Depth value of 0 (0x0) is not valid.

NOTE: When specifying a Memory Bank Depth for a memory bank, be sure to write to BOTH registers for that bank.

The use of these registers is described on the following page.

6.13.2 DDR Memory Depth Registers (continued)

Note that the Memory Bank Depth must be large enough to accommodate the data transfer specified by the Trigger Length.

There are two types of triggering provided for ADC and DAC FIFOs, Pre—Trigger and Post—Trigger. These triggering modes, described in Section 4.7.4, can be used as follows with DDR Memory transfers.

□ Post–Triggering (ADC or DAC channels) – With Post–Triggering, the data transfer starts at the end of the Post–Trigger delay length specified by the Post Trigger Delay Length Register, Section 6.10.4 or 6.11.9, and continues until the end of the Trigger Length specified by the associated Trigger Length Register, Section 6.10.6 or 6.11.5.

□ Pre–Triggering (ADC channels to Memory only) – In Pre–Triggering, data storage starts when the ADC FIFO is ARMed, and continues, wrapping around at the Memory Bank Depth, until the end of the Trigger Length specified by the ADC Trigger Length Register, Section 6.10.6. Use the Memory Capture End Address, Section 6.13.4, to determine the address of the last data sample stored. Use the ADC Pre Trigger Count Capture Register, Section 6.10.5, to determine the actual number of A/D data samples stored in the ADC FIFO before receipt of the trigger. (Note that the pre–trigger data storage may wrap around multiple times prior to receipt of the trigger—only one wrap around is illustrated below).

6.13.3 DDR Memory R/W Address Registers

There are six DDR Memory R/W Address Registers, two registers for each memory bank, 0, 1, and 2. These registers specify the starting address of the data to be read from or written to the respective memory bank.

Each memory bank's address is specified using two registers, one for the least significant 16 bits (LSB) and one for the most significant 16 bits (MSB). The following tables show the format of these registers.

Table 6–57: DDR Memory R/W Address LSB Registers					
	Bank 0: R/W @ BAR2+0x8838				
	Bank 1: R/W @ BAR2+0x8848				
	Bank 2: R/W @ BAR2+0x8858				
	D15 – D00				
Bit Name	D15 – D0				
Function	Memory Bank Address least significant bits (LSB)				
All bits default to the logic '0' state at power on and reset					

Table 6-58: DDR Memory R/W Address MSB Registers					
	Bank 0: R/W @ BAR2+0x8840				
	Bank 1: R/W @ BAR2+0x8850 Bank 2: R/W @ BAR2+0x8860				
	D15 – D00				
Bit Name	D31- D16				
Function	Memory Bank Address most significant bits (MSB)				
All bits default to the logic '0' state at power on and reset					

The Memory Bank Address is a 32-bit binary value, with the most significant bit (D31) in bit D15 of the MSB register. For Memory Write transfers, the associated bank registers specify the address to start writing data to the memory bank. For Memory Read transfers, these registers specify the address to start reading data from the memory bank.

Note that this address must be within the Memory Bank Depth specified for the associated memory bank using the DDR Memory Depth Registers, Section 6.13.2.

NOTE: When specifying a Memory Bank Address for a memory bank, be sure to write to BOTH registers for that bank.

6.13.4 DDR Memory Capture End Address Registers

There are six DDR Memory Capture End Address Registers, two registers for each memory bank, 0, 1, and 2. Each read—only register reports the memory address of the last data sample stored in the applicable DDR Memory bank after the completion of the write transfer from an ADC channel or Memory Write PCI FIFO to that memory bank.

Each memory bank's end address is reported using two registers, one for the least significant 16 bits (LSB) and one for the most significant 16 bits (MSB). The following tables show the format of these registers.

Table 6–59: DDR Memory Capture End Address LSB Registers					
	Bank 0: R.O. @ BAR2+0x8868				
	Bank 1: R.O. @ BAR2+0x8878 Bank 2: R.O. @ BAR2+0x8888				
	D15 – D00				
Bit Name	D15 – D0				
Function	Function DDR Memory End Address least significant bits (LSB)				
All bits default to the logic '0' state at power on and reset					

Table 6–60: DDR Memory Capture End Address MSB Registers					
	Bank 0: R.O. @ BAR2+0x8870				
	Bank 1: R.O. @ BAR2+0x8880 Bank 2: R.O. @ BAR2+0x8890				
	D15 – D00				
Bit Name	D31- D16				
Function	Function DDR Memory End Address most significant bits (MSB)				
All bits default to the logic '0' state at power on and reset					

The DDR Memory End Address is a 32-bit binary value, with the most significant bit (D31) in bit D15 of the MSB register. This value specifies the memory bank address of the last data sample that was written to that memory bank from the selected resource (ADC channel or Memory Write FIFO). The data path is defined by the DDR Memory Control Register bits D00 – D02, Section 6.13.1.

6.13.5 DDR Memory Trigger Address Registers

There are four DDR Memory Trigger Registers, two registers for each memory bank, 0 and 1. Each read—only register reports the starting memory address in the DDR Memory Bank at receipt of the trigger for a transfer to the Memory Read PCI interface FIFO.

These registers are valid only for data transfers from DDR Memory Bank 0 or 1 to the Memory Read FIFO.

This address is reported using two registers, one for the least significant 16 bits (LSB) and one for the most significant 16 bits (MSB). The following tables show the format of these registers.

Table 6-61: DDR Memory Trigger Address LSB Registers Bank 0: R.O. @ BAR2+0x8898 Bank 1: R.O. @ BAR2+0x88A8				
	D15 – D00			
Bit Name	D15 – D0			
Function	DDR Memory Trigger Address least significant bits (LSB)			
All bits default to the logic '0' state at power on and reset				

Table 6-62: DDR Memory Trigger Address MSB Registers				
Bank 0: R.O. @ BAR2+0x88A0				
	Bank 1: R.O. @ BAR2+0x88B0			
	D15 – D00			
Bit Name	D31– D16			
Function	DDR Memory Trigger Address most significant bits (MSB)			
All bits default to the logic '0' state at power on and reset				

The DDR Memory Trigger Address is a 32-bit binary value, with the most significant bit (D31) in bit D15 of the MSB register. This value specifies the starting memory bank address at receipt of the trigger for a transfer from this memory bank to the Memory Read PCI interface FIFO.

6.13.6 DDR Memory FIFO Control Registers

There are two FIFO Control Registers for the DDR Memory, one each for the DDR Memory Read and DDR Memory Write FIFOs. Each register contains bits that control the DDR Memory FIFO.

The following table shows the contents of these registers. The subsections following the table provide descriptions of the bits in this register.

Table 6-63: DDR Memory FIFO Control Registers DDR Memory Read FIFO: R/W @ BAR2+0x8D58 DDR Memory Write FIFO: R/W @ BAR2+0x8D88					
	D15 – D02	D01	D00		
Bit Name	Reserved	FIFO RESET	FIFO ENABLE		
Function	Write with zeros, Mask when reading	0 = Run 1 = Reset	0 = Disable 1 = Enable		
All bits default to the logic '0' state at power on and reset					

6.13.6.1 FIFO RESET

Bit D01

This bit resets the DDR Memory Read or DDR Memory Write FIFO. When the bit is cleared to logic '0' (its default state) the FIFO is in run; when the bit is set to logic '1' the FIFO is in reset.

6.13.6.2 FIFO ENABLE

Bit D00

This bit enables the DDR Memory Read or DDR Memory Write FIFO. When the bit is cleared to logic '0' (its default state) the FIFO is disabled; when the bit is set to logic '1' the FIFO is enabled.

6.13.7 DDR Memory FIFO Status Registers

There are two DDR Memory FIFO Status Registers, one each for the DDR Memory Read and DDR Memory Write FIFOs. Each register has several flag and status bits associated with the respective DDR Memory FIFO.

The following table shows the bit layout of this register. The subsections following the table provide descriptions of these bits.

Table 6-64: DDR Memory FIFO Status Registers DDR Memory Read FIFO: R/Clr @ BAR2+0x8188 DDR Memory Write FIFO: R/Clr @ BAR2+0x8190							
	D15 – D12 D11 D10 D09 D08						
Bit Name	Reserved	FULL FLAG	ALMOST FULL FLAG	ALMOST EMPTY FLAG	EMPTY FLAG		
Function	Write with zeros, Mask when reading	Read: 0 = FIFO flag condition not active 1 = FIFO flag condition latched Clear: 1 = Clear latch					
	D07 – D04	D03 *	D02 *	D01 *	D00 *		
Bit Name	Reserved	FULL	ALMOST FULL	ALMOST EMPTY	EMPTY		
Function	Write with zeros, Mask when reading	0 = FIFO flag condition not active 1 = FIFO flag condition active					

^{*} These bits are Read Only

IMPORTANT! When reset, including power-up, the state of this register is unknown. You should clear the register flag bits before using it, by writing '1's into bits D11 – D08.

6.13.7.1 FIFO Flag Bits

Bits D11 - D08

These four bits are latched read/clear bits associated with each DDR FIFO flag condition. Note that when any status bit in this register (D03 – D00, Section 6.13.7.2) changes to '1' the corresponding flag bit will also be set to '1'. However, when a status bit clears from '1' to '0', the corresponding latched bit in this register does not clear but remains at logic '1'.

Read: Logic '1' indicates that a FIFO flag has been active and not cleared, logic '0' indicates that the flag condition is not active.

<u>Clear</u>: Since these bits latch in response to a FIFO flag occurrence, to detect subsequent FIFO flags, you must clear the bits in this register. To clear any bit in this register that is set to '1' you must write a '1' to that bit.

6.13.7 DDR Memory FIFO Status Registers (continued)

6.13.7.2 FIFO Status Bits

Bits D03 – D00

Each status bit is a non-latched version of the associated FIFO flag condition. When read as logic '1' the associated FIFO flag condition is active (true). When read as logic '0' the associated FIFO flag condition is inactive.

Note that when any status bit changes to logic '1' the corresponding flag bit in this register (Section 6.13.7.1) will also be set to logic '1'.

Use the DDR Memory FIFO Almost Full and Almost Empty Level Registers, Sections 6.13.9 and 6.13.10, to set the Almost Full and Almost Empty FIFO levels.

6.13.8 DDR Memory FIFO Interrupt Mask Registers

There are two FIFO Interrupt Mask Registers for the DDR Memory, one each for the DDR Memory Read and DDR Memory Write FIFOs. The FIFO Interrupt Mask Registers contain enable bits for each FIFO interrupt condition defined. Each bit enables or disables the generation of a local bus interrupt (LINTix) to the PCI7142.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

Table 6-65: DDR Memory FIFO Interrupt Mask Registers DDR Memory Read FIFO: R/W @ BAR2+0x8D70 DDR Memory Write FIFO: R/W @ BAR2+0x8DA0							
	D15 – D04 D03 D02 D01 D00						
Bit Name	Reserved	FULL	ALMOST FULL	ALMOST EMPTY	EMPTY		
Function	Write with zeros, Mask when reading	0 = Disable Interrupt 1 = Enable Interrupt					
All bits default to the logic '0' state at power on and reset							

Each bit of this register enables or disables the generation of a local bus interrupt to the PCI7142, when interrupts are enabled for this register in the Application Interrupt Enable LINTx Registers, Section 6.9.4.

Setting the bit associated with a given interrupt to logic '1' enables the generation of a local bus interrupt when that interrupt condition occurs. When a bit is cleared to logic '0' (its default state) the local bus interrupt will not be generated by the associated interrupt condition.

The four flag conditions are:

D03 – FIFO Full

D02 – FIFO Almost Full

D01 – FIFO Almost Empty

D00 - FIFO Empty

6.13.9 DDR Memory FIFO Almost Empty Level Registers

There are two FIFO Almost Empty Level Registers for the DDR Memory, one each for the DDR Memory Read and DDR Memory Write FIFOs. This register sets the programmable boundary flag level of the Almost Empty flag for the associated FIFO.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

	Table 6-66: DDR Memory FIFO Almost Empty Level Registers DDR Memory Read FIFO: R/W @ BAR2+0x8D78 DDR Memory Write FIFO: R/W @ BAR2+0x8DA8		
	D15 – D10 D09 – D00		
Bit Name	Reserved D9 – D0		
Function	Function Write with zeros, Mask when reading FIFO Almost Empty Level		
	All bits default to the logic '0' state at power on and reset		

The Almost Empty Level is a 10-bit binary value, with bit D09 the MSB. This value specifies the FIFO Almost Empty flag depth.

NOTE: All 7142 FIFOs are 64 bits wide. Thus, the FIFO level programmed into this register indicates the level of 64–bit words. For example, if you set this register to a level of 12, the FIFO sets a boundary flag when the data transfer reaches 24 32–bit words.

While the FIFO is being read, when the data is at or below the Almost Empty level, the FIFO sets the Almost Empty Flag.

- The Almost Empty Flag is routed to the associated DDR Memory FIFO Status Register, Section 6.13.7.
- If the Almost Empty Flag is enabled by the associated DDR Memory FIFO Interrupt Mask Register, Section 6.13.8, a local bus interrupt will be asserted to the PCI7142.

6.13.10 DDR Memory FIFO Almost Full Level Registers

There are two FIFO Almost Full Level Registers for the DDR Memory, one each for the DDR Memory Read and DDR Memory Write FIFOs. This register sets the programmable boundary flag level of the Almost Full flag for the associated FIFO.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

	Table 6-67: DDR Memory FIFO Almost Full Level Registers			
	DDR Memory Read FIFO: R/W @ BAR2+0x8D80 DDR Memory Write FIFO: R/W @ BAR2+0x8DB0			
	D15 – D10 D09 – D00			
Bit Name	Reserved D9 – D0			
Function	Function Write with zeros, Mask when reading FIFO Almost Full Level			
	All bits default to the logic '0' state at power on and reset			

The Almost Full Level is a 10-bit binary value, with bit D09 the MSB. This value specifies the FIFO Almost Full flag depth.

NOTE: All 7142 FIFOs are 64 bits wide. Thus, the FIFO level programmed into this register indicates the level of 64–bit words. For example, if you set this register to a level of 12, the FIFO sets a boundary flag when the data transfer reaches 24 32–bit words.

While the FIFO is being written to, when the data is at or above the Almost Full level, the FIFO sets the Almost Full Flag.

- The FIFO Almost Full Flag is routed to the associated DDR Memory FIFO Status Register, Section 6.13.7.
- If the Almost Full Flag is enabled by the associated DDR Memory FIFO Interrupt Mask Register, Section 6.13.8, a local bus interrupt will be asserted to the PCI7142.

6.14 User FIFO Registers

The following subsections describe the Signal FPGA registers that control the User Out and User In FIFOs. These User FIFOs are not connected to any board resources in the default 7142 configuration. The user may route FPGA signals through these FIFOs with custom FPGA logic using the available Pentek GateFlow® FPGA Design Kit, Model 4953 Option 142 (see Section 1.13).

6.14.1 User FIFO Control Registers

There are two User FIFO Control Registers, one each for the User Out and User In FIFOs. Each register contains bits that control reading or writing data samples from or to the FIFO.

The following table shows the contents of the User FIFO Control Registers. The subsections following the table describe these bits.

	Table 6-68: User FIFO Control Registers User Out FIFO: R/W @ BAR2+0x8E08 User In FIFO: R/W @ BAR2+0x8E28				
	D15 – D08				
Bit Name	Reserved				
Function	Write with zeros, Mask when reading				
	D07	D01	D00		
Bit Name	Reserved	FIFO RESET	FIFO ENABLE		
Function	FunctionWrite with zeros, Mask when reading $0 = Run$ $1 = Reset$ $0 = Disab$ $1 = Enable$				
	All bits default to the logic '0' state at power on and rese	et			

6.14.1.1 FIFO RESET

Bit D01

This bit resets the User FIFO (Out or In, depending on the register being accessed). When the bit is cleared to logic '0' (its default state) the FIFO is in run; when the bit is set to logic '1' the FIFO is in reset.

6.14.1.2 FIFO ENABLE

Bit D00

This bit enables the User FIFO (Out or In). When the bit is cleared to logic '0' (its default state) the FIFO is disabled; when the bit is set to logic '1' the FIFO is enabled.

6.14.2 User FIFO Status Registers

There are two User FIFO Status Registers, one each for the User Out and User In FIFOs. Each register contains several flag and status bits associated with data transfers from each User FIFO.

The following table shows the bit layout of this register. The subsections following the table describe these bits.

Table 6-69: User FIFO Status Registers User In FIFO: R/Clr @ BAR2+0x8168 User Out FIFO: R/Clr @ BAR2+0x8170						
	D15 – D12		D11	D10	D09	D08
Bit Name	Reserved		FULL FLAG	ALMOST FULL FLAG	ALMOST EMPTY FLAG	EMPTY FLAG
Function	Write with zeros, Mask when reading	ŕ		Read: 0 = FIFO flag condition not active 1 = FIFO flag condition latched Clear: 1 = Clear latch		
	D07 – D05	D07 – D05 D04 *		D02 *	D01 *	D00 *
Bit Name	Reserved FIFO WRITE ENABLED		FULL	ALMOST FULL	ALMOST EMPTY	EMPTY
Function	Write with zeros, Mask when reading	0 - Not En 1 - Enabled		•	ndition not a condition acti	

^{*} These bits are Read Only

IMPORTANT! When reset, including power-up, the state of this register is unknown. You should clear the register flag bits before using it, by writing '1's into bits D11 – D08.

6.14.2.1 FIFO Flag Bits

Bits D11 - D08

These four bits are latched read/clear bits associated with each User FIFO flag condition. Note that when any status bit in this register (D03 – D00, Section 6.14.2.3) changes to '1' the corresponding flag bit will also be set to '1'. However, when a status bit clears from '1' to '0', the corresponding latched bit in this register does not clear, but remains at logic '1'.

Read: Logic '1' indicates that a FIFO flag has been active and not cleared, logic '0' indicates that the flag condition is not active.

<u>Clear</u>: Since these bits latch in response to a FIFO flag occurrence, to detect subsequent FIFO flags, you must clear the bits in this register. To clear any bit in this register that is set to '1' you must write a '1' to that bit.

6.14.2 User FIFO Status Registers (continued)

6.14.2.2 FIFO WRITE ENABLED

Bit D04

This bit indicates the write enable status of the User FIFO (Out or In, depending on the register accessed). When read as logic '0' the FIFO is not write enabled. When read as logic '1' the FIFO is write enabled.

6.14.2.3 FIFO Status Bits

Bits D03 – D00

Each status bit is a non-latched version of the associated FIFO flag condition. When read as logic '1' the associated FIFO flag condition is active (true). When read as logic '0' the associated FIFO flag condition is inactive. Note that when any status bit changes to logic '1' the corresponding flag bit in this register (Section 6.14.2.1) will also be set to logic '1'.

Use the User FIFO Almost Full and Almost Empty Level Registers, Sections 6.14.4 and 6.14.5, to set the Almost Full and Almost Empty FIFO levels.

6.14.3 User FIFO Interrupt Mask Registers

There are two User FIFO Interrupt Mask Registers, one each for the User Out and User In FIFOs. The User FIFO Interrupt Mask Registers contain enable bits for FIFO interrupt conditions. Each bit enables or disables the generation of a local bus interrupt (LINTix) to the PCI7142.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

Table 6-70: User FIFO Interrupt Mask Registers User Out FIFO: R/W @ BAR2+0x8E10 User In FIFO: R/W @ BAR2+0x8E30							
	D15 – D06	D15 – D06 D05 D04 D03 D02 D01 D00					
Bit Name	Reserved			FULL	ALMOST FULL	ALMOST EMPTY	EMPTY
Function	Function Write with zeros, Mask when reading					e Interrupt e Interrupt	
	All bits default to the logic '0' state at power on and reset						

Each bit of this register enables or disables the generation of a local bus interrupt to the PCI7142, when interrupts are enabled for this register in the Application Interrupt Enable LINTx Registers, Section 6.9.4.

Setting the bit associated with a given interrupt to logic '1' enables the generation of a local bus interrupt when that interrupt condition occurs. When a bit is cleared to logic '0' (its default state) the local bus interrupt will not be generated by the associated interrupt condition.

The User FIFO interrupt conditions are:

D03 - FIFO is Full

D02 – FIFO is at the Almost Full level

D01 – FIFO is at the Almost Empty level

D00 – FIFO is Empty

6.14.4 User FIFO Almost Empty Level Registers

There are two User FIFO Almost Empty Level Registers, one each for the User Out and User In FIFOs. This register sets the programmable boundary flag level of the Almost Empty flag for the associated FIFO.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

	Table 6-71: User FIFO Almost Empty Level Registers User Out FIFO: R/W @ BAR2+0x8E18 User In FIFO: R/W @ BAR2+0x8E38		
	D15 – D10 D09 – D00		
Bit Name	Reserved	D9 – D0	
Function	Function Write with zeros, Mask when reading FIFO Almost Empty Level		
	All bits default to the logic '0' state at power on and reset		

The Almost Empty Level is a 10-bit binary value, with bit D09 the MSB. This value specifies the FIFO Almost Empty flag depth.

NOTE: All 7142 FIFOs are 64 bits wide. Thus, the FIFO level programmed into this register indicates the level of 64–bit words. For example, if you set this register to a level of 12, the FIFO sets a boundary flag when the data transfer reaches 24 32–bit words.

While the FIFO is being read, when the data is at or below the Almost Empty level, the FIFO sets the Almost Empty Flag.

- The FIFO Almost Empty Flag is routed to the associated User FIFO Status Register, Section 6.14.2.
- If the Almost Empty Flag is enabled by the associated User FIFO Interrupt Mask Register, Section 6.14.3, a local bus interrupt will be asserted to the PCI7142.

6.14.5 User FIFO Almost Full Level Registers

There are two User FIFO Almost Full Level Registers, one each for the User Out and User In FIFOs. This register sets the programmable boundary flag level of the Almost Full flag for the associated FIFO.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

	Table 6-72: User FIFO Almost Full Level Registers User Out FIFO: R/W @ BAR2+0x8E20 User In FIFO: R/W @ BAR2+0x8E40		
	D15 – D10 D09 – D00		
Bit Name	Reserved	D9 – D0	
Function	Function Write with zeros, Mask when reading FIFO Almost Full Level		
	All bits default to the logic '0' state at power on and reset		

The Almost Full Level is a 10-bit binary value, with bit D09 the MSB. This value specifies the FIFO Almost Full flag depth.

NOTE: All 7142 FIFOs are 64 bits wide. Thus, the FIFO level programmed into this register indicates the level of 64–bit words. For example, if you set this register to a level of 12, the FIFO sets a boundary flag when the data transfer reaches 24 32–bit words.

While the FIFO is being written to, when the data is at or above the Almost Full level, the FIFO sets the Almost Full Flag.

- The FIFO Almost Full Flag is routed to the associated User FIFO Status Register, Section 6.14.2.
- If the Almost Full Flag is enabled by the associated User FIFO Interrupt Mask Register, Section 6.14.3, a local bus interrupt will be asserted to the PCI7142.

6.15 Test FIFO Registers

The following subsections describe the Signal FPGA registers that control the Test FIFO operations.

6.15.1 Test FIFO Control Register

There is one FIFO Control Register for the Test FIFO. This register contains bits that are used to control the FIFO operation.

The following table shows the contents of this register. The subsections following the table provide descriptions of the bits in this register.

	Table 6-73: Test FIFO Control Register R/W @ BAR2+0x8D38				
	D15 – D02	D01	D00		
Bit Name	Reserved	RESET	ENABLE		
Function	FunctionWrite with zeros, Mask when reading0 = Run 1 = Reset0 = Disab 1 = Enable				
All bits default to the logic '0' state at power on and reset					

6.15.1.1 RESET Bit D01

This bit resets the Test FIFO. When the bit is cleared to logic '0' (its default state) the FIFO is in run; when the bit is set to logic '1' the FIFO is in reset.

6.15.1.2 ENABLE

This bit enables the Test FIFO. When the bit is cleared to logic '0' (its default state) the FIFO is disabled; when the bit is set to logic '1' the FIFO is enabled.

Rev.: B.8

Bit D00

6.15.2 Test FIFO Status Register

The Test FIFO Status Register contains several flag and status bits associated with the Test FIFO.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

	Table 6-74: Test FIFO Status Register R/Clr @ BAR2+0x8198						
	D15 – D12 D11 D10 D09 [D08			
Bit Name	Reserved	FULL FLAG	ALMOST FULL FLAG	ALMOST EMPTY FLAG	EMPTY FLAG		
Function	Write with zeros, Mask when reading	Read: 0 = FIFO flag condition not active 1 = FIFO flag condition latched Clear: 1 = Clear latch					
	D07 – D04	D03 *	D02 *	D01 *	D00 *		
Bit Name	Reserved	FULL	ALMOST FULL	ALMOST EMPTY	EMPTY		
Function	Write with zeros, Mask when reading		•	ndition not a condition act			

^{*} These bits are Read Only

IMPORTANT! When reset, including power-up, the state of this register is unknown. You should clear the register flag bits before using it, by writing '1's into bits D11 – D08.

6.15.2.1 FIFO Flag Bits

Bits D11 - D08

These four bits are latched read/clear bits associated with each Test FIFO flag condition. Note that when any status bit in this register (D03 – D00, Section 6.15.2.2) changes to '1' the corresponding flag bit will also be set to '1'. However, when a status bit clears from '1' to '0', the corresponding latched bit in this register does not clear, but remains at logic '1'.

Read: Logic '1' indicates that a FIFO flag has been active and not cleared, logic '0' indicates that the flag condition is not active.

<u>Clear</u>: Since these bits latch in response to a FIFO flag occurrence, to detect subsequent FIFO flags, you must clear the bits in this register. To clear any bit in this register that is set to '1' you must write a '1' to that bit.

6.15.2 Test FIFO Status Register (continued)

6.15.2.2 FIFO Status Bits

Bits D03 – D00

Each status bit is a non-latched version of the associated FIFO flag condition. When read as logic '1' the associated FIFO flag condition is active (true). When read as logic '0' the associated FIFO flag condition is inactive.

Note that when any status bit changes to logic '1' the corresponding flag bit in this register (Section 6.15.2.1) will also be set to logic '1'.

Use the Test FIFO Almost Full and Test FIFO Almost Empty Level Registers, Sections 6.15.5 and 6.15.4, to set the Almost Full and Almost Empty FIFO levels.

6.15.3 Test FIFO Interrupt Mask Register

There is one Test FIFO Interrupt Mask Register. The FIFO Interrupt Mask Register contains enable bits for each FIFO interrupt condition defined. Each bit enables or disables the generation of a local bus interrupt (LINTix) to the PCI7142.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

	Table 6-75: Test FIFO Interrupt Mask Register R/W @ BAR2+0x8D40					
	D15 – D04	D03	D02	D01	D00	
Bit Name	Reserved	FULL	ALMOST FULL	ALMOST EMPTY	EMPTY	
Function	Function Write with zeros, Mask when reading 0 = Disable Interrupt 1 = Enable Interrupt					
All bits default to the logic '0' state at power on and reset						

Each bit of this register enables or disables the generation of a local bus interrupt to the PCI7142, when interrupts are enabled for this register in the Application Interrupt Enable LINTx Registers, Section 6.9.4.

Setting the bit associated with a given interrupt to logic '1' enables the generation of a local bus interrupt when that interrupt condition occurs. When a bit is cleared to logic '0' (its default state) the local bus interrupt will not be generated by the associated interrupt condition.

6.15.4 Test FIFO Almost Empty Level Register

There is one Test FIFO Almost Empty Level Register. This register sets the programmable boundary flag level of the Almost Empty flag for the FIFO.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

	Table 6-76: Test FIFO Almost Empty Level Register R/W @ BAR2+0x8D48			
D15 – D10 D09 – D00				
Bit Name	Reserved	D9 – D0		
Function	Function Write with zeros, Mask when reading FIFO Almost Empty Level			
	All bits default to the logic '0' state at power on and reset			

The Almost Empty Level is a 10-bit binary value, with bit D09 the MSB. This value specifies the FIFO Almost Empty flag depth.

NOTE: All 7142 FIFOs are 64 bits wide. Thus, the FIFO level programmed into this register indicates the level of 64–bit words. For example, if you set this register to a level of 12, the FIFO sets a boundary flag when the data transfer reaches 24 32–bit words.

While the FIFO is being read, when the data is at or below the Almost Empty level, the FIFO sets the Almost Empty Flag.

- The Almost Empty Flag is routed to the Test FIFO Status Register, Section 6.15.2.
- If the Almost Empty Flag is enabled by the Test FIFO Interrupt Mask Register, Section 6.15.3, a local bus interrupt will be asserted to the PCI7142.

6.15.5 Test FIFO Almost Full Level Register

There is one Test FIFO Almost Full Level Register. This register sets the programmable boundary flag level of the Almost Full flag for the associated FIFO.

The following table shows the bit layout of this register. The paragraphs following the table provide descriptions of these bits.

	Table 6-77: Test FIFO Almost Full Level Register R/W @ BAR2+0x8D50		
D15 – D10 D09 – D00			
Bit Name	Reserved	D9 – D0	
Function	Function Write with zeros, Mask when reading FIFO Almost Full Level		
	All bits default to the logic '0' state at power on and reset		

The Almost Full Level is a 10-bit binary value, with bit D09 the MSB. This value specifies the FIFO Almost Full flag depth.

NOTE: All 7142 FIFOs are 64 bits wide. Thus, the FIFO level programmed into this register indicates the level of 64–bit words. For example, if you set this register to a level of 12, the FIFO sets a boundary flag when the data transfer reaches 24 32–bit words.

While the FIFO is being written to, when the data is at or above the Almost Full level, the FIFO sets the Almost Full Flag.

- The FIFO Almost Full Flag is routed to the Test FIFO Status Register, Section 6.15.2.
- If the Almost Full Flag is enabled by the Test FIFO Interrupt Mask Register, Section 6.15.3, a local bus interrupt will be asserted to the PCI7142.

Chapter 7: Data Routing and Formatting

7.1 Overview

This chapter describes the ADC input and DAC output data routing and formatting.

NOTE: All FIFOs on the Model 7142 are 64 bits wide. Thus, the FIFO input/output data formats presented in this chapter are shown as 64–bit formats.

Analog Data Inputs

The Model 7142 has four analog RF input channels from front panel MMCX connectors. Each input channel includes an LTC2255 A/D converter that provides data directly to the Signal FPGA. The outputs of the four A/D converters are delivered, in parallel, to the Signal FPGA through four separate 14–bit paths. The Signal FPGA routes the LTC2255 digital output data directly to four ADC FIFOs.

See Section 7.3 for description of the ADC data input routing formats.

Analog Data Outputs

The Model 7142 has one Texas Instruments 16–bit DAC5686 that is capable of operating in D/A only or quadrature modulation modes. The D/A has built–in interpolation filters settable to 2x, 4x, 8x, and 16x. The Signal FPGA delivers 8–bit or 16–bit FIFO data to the DAC5686 where the analog output is sent to a 1–to–1 transformer and then passed to the front panel MMCX connector.

See Section 7.5 for description of the DAC data output routing formats.

7.2 FIFO Word Swap Formats

The data formats for the ADC and DAC FIFOS allow you to use a WORD SWAP feature with the FIFO data. When the WORD SWAP control bit is set to logic '1' in the associated FIFO Control Register (ADC FIFO Control Register, Section 6.10.2 or DAC FIFO Control Register, Section 6.11.3), word swapping is enabled and each pair of 16-bit samples are swapped in the 64-bit FIFO word, as follows:

Bits D00:15 are swapped with bits D16:31, Bits D32:47 are swapped with bits D48:63.

The data is swapped as illustrated below.

	Without WORD SWAP								
Bit	D63 – D48 D47 – D32 D31 – D16 D15 –								
Value	d[15:0] _d	d[15:0] _c	d[15:0] _b	d[15:0] _a					
		With WORD S	SWAP						
Bit	D63 - D48	D47 – D32	D31 - D16	1915 – D0					
Value	d[15:0] _c	d[15:0] _d	d[15:0] _a	d[15:0] _b					

This data WORD SWAP can be applied to any of the FIFO formats in the following sections: Section 7.3 ADC data routing formats and Section 7.5 DAC output data routing formats.

7.3 ADC Data Routing and Formats

Each input LTC2255 A/D converter channel provides 14–bit digital data directly to the ADC FIFOs (A/D 1 data to ADC 1 FIFO, A/D 2 to ADC 2 FIFO, etc.). The ADC output can be written to a FIFO at a programmed decimation rate, and may be unpacked or packed as set by the associated ADC FIFO Control Register, Section 6.10.2.4. The following subsections describe these data formats—these formats apply to both the PCI Interface and DDR Memory ADC FIFOs. WORD SWAP, Section 7.2, can be applied to any of these ADC FIFO formats.

7.3.1 Unpacked

Each ADC FIFO receives the raw 14–bit data directly from its associated LTC2255 A/D (A/D 1 data to ADC 1 FIFO, A/D 2 data to ADC 2 FIFO, etc.). Writing to the FIFO is controlled by the selected gate. The data is written to the FIFO at a programmed decimation rate N, where N is 1 to 4096, only when the gate is enabled.

When PACK MODE (bit D08 in the ADC FIFO Control Register) is cleared to 0, data is unpacked with two consecutive A/D samples duplicated in each 64–bit FIFO word. Each A/D sample is left justified in the 14 most significant bits out of 16 in each 16–bit segment of the 64–bit FIFO data word.

- The first sample, received at time 't', is placed into bits D15 to D2. The same sample is duplicated in bits D31 to D18.
- The next sample, received at time 't+1', is placed into bits D47 to D34. The same sample is duplicated in bits D63 to D50.

The ADC FIFO data is in the following format:

	Table 7-1: Data Format - ADC FIFO, Unpacked									
Bit	D63 – D50	D49 D48	D47 – D34	D33 D32	D31 – D18	D17 D16	D15 – D2	D1 D0		
Value	14-bit A/D sample[13:0] at time (t+1)	00	14-bit A/D sample[13:0] at time (t+1)	00	14-bit A/D sample[13:0] at time (t)	00	14-bit A/D sample[13:0] at time (t)	00		

With WORD SWAP enabled the data format is the same.

7.3.2 Time Packed

Each ADC FIFO receives the raw 14–bit data directly from its associated LTC2255 A/D (A/D 1 data to ADC 1 FIFO, A/D 2 to ADC 2 FIFO, etc.). The data is written to the FIFO at a programmed decimation rate N (1 to 4096), only when the selected gate is enabled.

When PACK MODE (bit D08 in the ADC FIFO Control Register) is set to 1, data is packed with four A/D samples in each 64–bit FIFO word.

Without WORD SWAP (disabled), data is packed with four consecutive A/D samples in each 64-bit FIFO word. Each A/D sample is left justified in the 14 most significant bits out of 16 in each of the 16-bit segments of the 64-bit FIFO data word.

- The first sample, received at time 't', is placed into bits D15 to D2.
- The next sample, received at time 't+1', is placed into bits D31 to D18.
- The next sample, received at time 't+2', is placed into bits D47 to D34.
- The next sample, received at time 't+3', is placed into bits D63 to D50.

The ADC FIFO data is packed in the following format:

	Table 7–2: Data Format – ADC FIFO, Time Packed									
Bit	D63 – D50	D49 D48	D47 – D34	D33 D32	D31 – D18	D17 D16	D15 – D2	D1 D0		
Value	14-bit A/D sample[13:0] at time (t+3)	00	14-bit A/D sample[13:0] at time (t+2)	00	14-bit A/D sample[13:0] at time (t+1)	00	14-bit A/D sample[13:0] at time (t)	00		

With WORD SWAP enabled, each consecutive pair of samples (e.g., t and t+1) is swapped as follows:

	Table 7–3: Data Format – ADC FIFO, Time Packed, Word Swap									
Bit	D63 – D50	D49 D48	D47 – D34	D33 D32	D31 – D18	D17 D16	D15 – D2	D1 D0		
Value	14-bit A/D sample[13:0]	00	14-bit A/D sample[13:0]	00	14-bit A/D sample[13:0]	00	14-bit A/D sample[13:0]	00		
Value	at time (t+2)		at time (t+3)		at time (t)		at time (t+1)			

7.4 ADC FIFO to DDR Memory Routing

Each input A/D converter channel also provides 14–bit raw digital data directly to the DDR Memory ADC FIFOs in parallel with the PCI Interface ADC FIFOs. The DDR Memory ADC FIFO data formats are the same as shown in Section 7.3, ADC Data Routing and Formats. The DDR Memory ADC FIFOs can transfer these samples to DDR Memory Banks 0 or 1 using the DDR Memory Control Register, Section 6.13.1.

NOTE: Packing must be enabled (PACK MODE, bit D08, set to 'Pack') in the associated ADC FIFO Control Register, Section 6.10.2.4, for any data transfers to the DDR Memories.

The BANK x PACK bits of the DDR Memory Control Register, Section 6.13.1.1, can set up transfers from a single ADC FIFO to a DDR Memory Bank (ADC1 FIFO to DDR BANK 0, or ADC3 FIFO to DDR BANK 1), or as packed data from two ADC FIFOs to each DDR Memory Bank (ADC1 & 2 FIFOs to BANK 0, or ADC3 & 4 FIFOs to BANK 1). The following subsections describe the DDR Memory data formats for each of these data transfers.

WORD SWAP, Section 7.2, can be applied to any of the ADC FIFO transfers. WORD SWAP does not alter the data transferred from the DDR Memory ADC FIFOs to DDR Memory. WORD SWAP affects only the data path from the LTC2255 A/D converter to the associated ADC FIFO. Thus, if WORD SWAP is enabled, the data is swapped when written from the A/D into the ADC FIFO, as illustrated in Section 7.3.2, before any transfer to DDR Memory. This WORD SWAP does affect the resulting DDR memory data format as shown in the following subsections.

NOTE: Although the DDR Memory data transfers are in 32-bit words, since the only user access to Bank 0 or Bank 1 is using the PCI Interface Memory Read FIFO the following DDR Memory formats are presented as 64-bit formats in the following sections.

7.4 ADC FIFO to DDR Memory Routing (continued)

7.4.1 Channel Unpacked

When only one ADC FIFO channel is routed to its associated DDR Memory Bank (the BANK x PACK bits of the DDR Memory Control Register are cleared, Section 6.13.1.1), consecutive 16-bit words from the DDR Memory ADC FIFO are written to each 32-bit word of the respective DDR Memory Bank (ADC1 FIFO to BANK 0, or ADC3 FIFO to BANK 1).

Without WORD SWAP the resulting DDR Memory data is in the following format (for each 64–bit word accessed through the Memory Read FIFO):

	Table 7–4: Data Format – DDR Memory, Channel Unpacked									
	BANK 0									
Bit	D63 – D50	D49 D48	D47 – D34	D33 D32	D31 – D18	D17 D16	D15 – D2	D1 D0		
Value	14-bit A/D 1 sample[13:0] at time (t+3)	00	14-bit A/D 1 sample[13:0] at time (t+2)	00	14-bit A/D 1 sample[13:0] at time (t+1)	00	14-bit A/D 1 sample[13:0] at time (t)	00		
			ВА	NK 1						
Bit	D63 – D50	D49 D48	D47 – D34	D33 D32	D31 – D18	D17 D16	D15 – D2	D1 D0		
Value	14-bit A/D 3 sample[13:0] at time (t+3)	00	14-bit A/D 3 sample[13:0] at time (t+2)	00	14-bit A/D 3 sample[13:0] at time (t+1)	00	14-bit A/D 3 sample[13:0] at time (t)	00		

With WORD SWAP consecutive samples (e.g., t and t+1) are swapped:

	Table 7–5: Data Format – DDR Memory, Channel Unpacked, Word Swap									
	BANK 0									
Bit	D63 – D50	D49 D48	D47 – D34	D33 D32	D31 – D18	D17 D16	D15 – D2	D1 D0		
Value	14-bit A/D 1 sample[13:0] at time (t+2)	00	14-bit A/D 1 sample[13:0] at time (t+3)	00	14-bit A/D 1 sample[13:0] at time (t)	00	14-bit A/D 1 sample[13:0] at time (t+1)	00		
			ВА	NK 1						
Bit	D63 – D50	D49 D48	D47 – D34	D33 D32	D31 – D18	D17 D16	D15 – D2	D1 D0		
Value	14-bit A/D 3 sample[13:0] at time (t+2)	00	14-bit A/D 3 sample[13:0] at time (t+3)	00	14-bit A/D 3 sample[13:0] at time (t)	00	14-bit A/D 3 sample[13:0] at time (t+1)	00		

7.4 ADC FIFO to DDR Memory Routing (continued)

7.4.2 Channel Packed

When the ADC2 and/or ADC4 FIFO channels are enabled by the BANK x PACK bits of the DDR Memory Control Register, Section 6.13.1.1, channel packing interleaves successive 16–bit words from each of the two associated DDR Memory ADC FIFOs to each 32–bit word of the respective DDR Memory Bank (ADC1 and 2 FIFOs to BANK 0, or ADC3 and 4 FIFOs to BANK 1).

Without WORD SWAP the resulting DDR Memory data is in the following format (for each 64-bit word accessed through the Memory Read FIFO):

	Table 7–6: Data Format – DDR Memory, Channel Packed									
	BANK 0									
Bit	D63 – D50	D49 D48	D47 – D34	D33 D32	D31 – D18	D17 D16	D15 – D2	D1 D0		
Value	14-bit A/D 2 sample[13:0] at time (t+1)	00	14-bit A/D 1 sample[13:0] at time (t+1)	00	14-bit A/D 2 sample[13:0] at time (t)	00	14-bit A/D 1 sample[13:0] at time (t)	00		
			ВА	NK 1						
Bit	D63 – D50	D49 D48	D47 – D34	D33 D32	D31 – D18	D17 D16	D15 – D2	D1 D0		
Value	14-bit A/D 4 sample[13:0] at time (t+1)	00	14-bit A/D 3 sample[13:0] at time (t+1)	00	14-bit A/D 4 sample[13:0] at time (t)	00	14-bit A/D 3 sample[13:0] at time (t)	00		

With WORD SWAP consecutive samples (e.g., t and t+1) are swapped:

	Table 7–7: Data Format – DDR Memory, Channel Packed, Word Swap									
	BANK 0									
Bit	D63 – D50	D49 D48	D47 – D34	D33 D32	D31 – D18	D17 D16	D15 – D2	D1 D0		
Value	14-bit A/D 2 sample[13:0] at time (t)	00	14-bit A/D 1 sample[13:0] at time (t)	00	14-bit A/D 2 sample[13:0] at time (t+1)	00	14-bit A/D 1 sample[13:0] at time (t+1)	00		
			ВА	NK 1						
Bit	D63 – D50	D49 D48	D47 – D34	D33 D32	D31 – D18	D17 D16	D15 – D2	D1 D0		
Value	14-bit A/D 4 sample[13:0] at time (t)	00	14-bit A/D 3 sample[13:0] at time (t)	00	14-bit A/D 4 sample[13:0] at time (t+1)	00	14-bit A/D 3 sample[13:0] at time (t+1)	00		

7.5 DAC Data Routing and Formats

The Signal FPGA receives digital data from the DAC FIFO, and then presents the digital data to the DAC5686's dual 16-bit interfaces (DAC input channels A and B). There are three packing modes of DAC FIFO data: Unpacked, 16-bit Packed, and 8-bit Packed. To choose the packing mode, set the Pack Mode bits in the DAC FIFO Control Register, Section 6.11.3. WORD SWAP, Section 7.2, can be applied to any of these modes.

The following subsections describe these data formats.

7.5.1 Unpacked

In Unpacked mode, the FPGA presents the DAC5686 with 16-bit digital samples from the DAC FIFO for both DAC input channels (see page 215 for illustration of the routing of the data samples to each DAC5686 channel).

Each 64-bit FIFO data word contains two consecutive 16-bit data samples for each DAC channel.

Without WORD SWAP (disabled), data is unpacked with data for DAC channel B in the upper 16 bits of each 32–bit half, and data for DAC channel A in the lower 16 bits of each 32–bit half of the 64–bit word.

- The first sample, for time 't', is placed into the lowest 32 bits of the 64-bit word, with the channel B sample in bits D31 to D16 and the channel A sample in bits D15 to D0.
- The next sample, for time 't+1', is placed into the highest 32 bits of the 64-bit word, with the channel B sample in bits D63 to D48 and the channel A sample in bits D47 to D32.

The DAC FIFO data is in the following format:

Table 7–8: Data Format – DAC FIFO, Unpacked							
Bit	D63 – D48	D47 – D32	D31 – D16	D15 – D0			
Value	data[15:0] for DAC channel B at time (t+1)	data[15:0] for DAC channel A at time (t+1)	data[15:0] for DAC channel B at time (t)	data[15:0] for DAC channel A at time (t)			

With WORD SWAP enabled, channel A and B data are swapped as follows:

Table 7–9: Data Format – DAC FIFO, Unpacked, Word Swap								
Bit	Bit D63 – D48 D47 – D32 D31 – D16 D15 – D0							
Value	data[15:0] for DAC	data[15:0] for DAC	data[15:0] for DAC	data[15:0] for DAC				
value	channel A at time (t+1)	channel B at time (t+1)	channel A at time (t)	channel B at time (t)				

7.5.1 Unpacked (continued)

The data routing *without* WORD SWAP is illustrated below.

			DAC5686	Input C	hannels			
		DAC Bit	DA[1	5 :0]	DB	[15:0]		
		Word 1	d[15:0	0]A _(t)	d[1	5:0]B _(t)		
		Word 2	d[15:0]	A _(t+1)	d[15	0]B _(t+1)		
		Word 3	d[15:0]	A _(t+2)	d [15	0]B _(t+2)		
		Word 4	d[15:0]	A _(t+3)	d[15	0]B _(t+3)		
		Word n						
							_	
Bit		D63:48	D47	:32	D31	D16		D15:D0
ord 1	d[⁻	15:0]B _(t+1)	d[15:0]A _(t+1)	d[15:	0]B _(t)		d[15:0]A _(t)
ord 2	d[15:0]B _(t+3)	d[15:0)]A _(t+3)	d[15:0)]B _(t+2)		d[15:0]A _(t+2)
ord n								

The data routing *with* WORD SWAP is illustrated below.

DAC FIFO

		DAC5686 Input C	hannels						
	DAC Bit	DA[15 :0]	DB[15:0]						
	Word 1	d[15:0]B _(t)	d[15:0]A _(t)						
	Word 2	d[15:0]B _(t+1)	d[15.0]A _(t+1)						
	Word 3	d[15:0]B _(t+2)	d[15:0]A _(t+2)						
	Word 4	d[15:0]B _(t+3)	d[15:0]A _(t+3)						
	Word n								
				_					
Bit	D63:48	D47:32	D31:D16	D15:D0					
Word 1	d[15:0]A _(t+1)	d[15:0]B _(t+1)	d[15:0]A _(t)	d[15:0]B _(t)					
Word 2	d[15:0]A _(t+3)	d[15:0]B _(t+3)	d[15:0]A _(t+2)	d[15:0]B _(t+2)					
Word n									
		DAC FIFO							

7.5.2 Packed, 16-bit

In 16-bit Packed mode, the Signal FPGA presents the DAC5686 with 16-bit digital samples from the DAC FIFO for DAC channel B only (see page 217 for illustration of the routing of the data samples to the DAC5686).

Without WORD SWAP (disabled), each 64-bit FIFO data word contains four consecutive 16-bit samples for DAC channel B. The samples are time—packed with the least significant 16 bits of the FIFO word containing the first sample.

- The first sample, for time 't', is placed into bits D15 to D0.
- The next sample, for time 't+1', is placed into bits D31 to D16.
- The next sample, for time 't+2', is placed into bits D47 to D32.
- The next sample, for time 't+3', is placed into bits D63 to D48.

The data is packed into the DAC FIFO in the following format:

	Table 7–10: Data Format – DAC FIFO, 16-bit Packed						
Bit	D63 – D48 D47 – D32 D31 – D16 D15 – D0						
Value	data[15:0] for DAC data[15:0] for DAC data[15:0] for DAC data[15:0] for DAC						
value	channel B at time (t+3) channel B at time		channel B at time (t+1)	channel B at time (t)			

With WORD SWAP enabled, each consecutive pair of data (e.g., t and t+1) is swapped as follows:

	Table 7-11: Data Format - DAC FIFO, 16-bit Packed, Word Swap					
Bit	D63 – D48 D47 – D32 D31 – D16 D15 – D0					
Value	data[15:0] for DAC data[15:0] for DAC data[15:0] for DAC channel B at time (t+2) channel B at time (t+3) channel B at time (t) channel B at time (t+1)					

7.5.2 Packed, 16-bit (continued)

The data routing *without* WORD SWAP is illustrated below.

		DAC Bit	DA	DB	[15:0]	
		Word 1	ı	d[1	5:0] _(t)	
		Word 2	-	d[15	5:0] _(t+1)	
		Word 3	-	d[18	.0] _(t+2)	
		Word 4	-	d[15	:0] _(t+3)	
		Word n	- /			
	·					
Bit	I	D63:48	D47:32	D31	:D16	D15:D0
Word 1	d[[15:0] _(t+3)	d[15:0] _(t+2)	d[15:	0] _(t+1)	d[15:0] _(t)
Word 2	d[[15:0] _(t+7)	d[15:0] _(t+6)	d[15:	0] _(t+5)	d[15:0] _(t+4)
Word n		***		•		
			DAC	FIFO		

The data routing *with* WORD SWAP is illustrated below.

		DAC5686 Input C	hannels	
	DAC Bit	DA	DB[15:0]	
	Word 1	-	d[15:0] _(t+1)	
	Word 2	-	d[15:0] _(t)	
	Word 3	_	d[15:0] _(t+3)	
	Word 4	_	a[15:0] _(t+2)	
	Word n	- /		
Bit	D63:48	D47:32	D31:D16	D1\5:D0
Word 1	d[15:0] _(t+2)	d[15:0] _(t+3)	d[15:0] _(t)	d[15:0] _(t+1)
Word 2	d[15:0] _(t+6)	d[15:0] _(t+7)	d[15:0] _(t+4)	d[15:0] _(t+5)
Word n				
		DAC	FIFO	

7.5.3 Packed, 8-bit

In 8-bit Packed mode, the Signal FPGA presents the DAC5686 with 8-bit digital samples from the DAC FIFO for DAC channel B only (see page 219 for illustration of the routing of the data samples to the DAC5686).

Without WORD SWAP (disabled), each 64-bit FIFO data word contains eight consecutive 8-bit samples for DAC channel B. The samples are time-packed with the least significant eight bits of the FIFO word containing the first sample.

- The first sample, for time 't', is placed into bits D9 to D0.
- The second sample, time 't+1', is placed into bits D15 to D8.
- The third sample, time 't+2', is placed into bits D23 to D16.

.

• The eighth sample, for time 't+7', is placed into bits D63 to D56.

The data is packed into the DAC FIFO in the following format:

	Table 7–12: Data Format – DAC FIFO, 8-bit Packed							
Bit	D63:56	D55:48	D47:D40	D39:D32	D31:24	D2316	D15:D8	D7:D0
Valu	data[7:0] for DAC channel B at time (t+7)	data[7:0] for DAC channel B at time (t+6)	data[7:0] for DAC channel B at time (t+5)	data[7:0] for DAC channel B at time (t+4)	data[7:0] for DAC channel B at time (t+3)	data[7:0] for DAC channel B at time (t+2)	data[7:0] for DAC channel B at time (t+1)	data[7:0] for DAC channel B at time (t)

With WORD SWAP enabled, consecutive sets of data (e.g., t plus t+1 and t+2 plus t+3) are swapped as follows:

Table 7-13: Data Format - DAC FIFO, 8-bit Packed, Word Swap								
Bit	D63:56	D55:48	D47:D40	D39:D32	D31:24	D2316	D15:D8	D7:D0
Value	data[7:0] for DAC channel B at time (t+5)	data[7:0] for DAC channel B at time (t+4)	data[7:0] for DAC channel B at time (t+7)	data[7:0] for DAC channel B at time (t+6)	data[7:0] for DAC channel B at time (t+1)	data[7:0] for DAC channel B at time (t)	data[7:0] for DAC channel B at time (t+3)	data[7:0] for DAC channel B at time (t+2)

7.5.3 Packed, 8-bit (continued)

The data routing *without* WORD SWAP is illustrated below.

	DAC5686 Input Channels						
DAC Bit	DA	DB[15:8]	DB[7:0]				
Word 1	1	d[7:0] _(t)	0				
Word 2	-	d[7:0] _(t+1)	0				
Word 3	-	d[7:0] _(t+2)	0				
Word 4	-	d[7:0] _(t+3)	0				
Word n	-	بر	\				

Bit	D63:56	D55:48	D47:D40	D39:D32	D31:24	D2316	D15:D8	D7:D0
Word 1	$d[7:0]_{(t+7)}$	d[7:0] _(t+6)	d[7:0] _(t+5)	d[7:0] _(t+4)	$d[7:0]_{(t+3)}$	d[7:0] _(t+2)	d[7:0] _(t+1)	d[7:0] _(t)
Word 2	$d[7:0]_{(t+15)}$	d[7:0] _(t+14)	d[7:0] _(t+13)	d[7:0] _(t+12)	d[7:0] _(t+11)	d[7:0] _(t+10)	$d[7:0]_{(t+9)}$	d[7:0] _(t+8)
Word n								
	DAC FIFO							

The data routing *with* WORD SWAP is illustrated below.

DAC5686 Input Channels						
DAC Bit	DA	DB[15:8]	DB[7:0]			
Word 1	-	d[7:0] _(t+2)	0			
Word 2	-	d[7:0] _(t+3)	0			
Word 3	-	d[7:0] _(t)	0			
Word 4	-	d[7:0] _(t+1)	0			
Word n	-	\ ا:ر	Q			

Bit	D63:56	D55:48	D47:D40	D39:D32	D31:24	D2316	D15:D8	D7:D0	
Word 1	$d[7:0]_{(t+5)}$	$d[7:0]_{(t+4)}$	$d[7:0]_{(t+7)}$	$d[7:0]_{(t+6)}$	$d[7:0]_{(t+1)}$	d[7:0] _(t)	d[7:0] _(t+3)	d[7:0] _(t+2)	
Word 2	d[7:0] _(t+13)	d[7:0] _(t+12)	d[7:0] _(t+15)	d[7:0] _(t+14)	$d[7:0]_{(t+9)}$	$d[7:0]_{(t+8)}$	d[7:0] _(t+11)	d[7:0] _(t+10)	
Word n									
	DAC FIFO								

Page 220

This page is intentionally blank

Appendix A: PCI Configuration Space Registers

A.1 Introduction

This Appendix shows the pre-defined header region of PCI Configuration Space.

A.2 PCI Configuration Space Registers

The PCI Configuration Space consists of fields that uniquely identify the device and allow the device to be generically controlled. The first 16 Bytes (four words) are defined the same for all types of PCI devices. The remaining words can have different layouts depending on the base function that the device supports. The PCI interface on the Model 7142 uses Header Type 00h, which has the layout shown in the table below. This table lists the PCI Configuration Space registers, their functions, and their base address in Configuration Space.

	Table A-1: PCI Configuration Space Header (Type 00h)						
Address		Register Function					
0x00	Devi	ce ID	Vend	lor ID			
0x04	Sta	itus	Comi	mand			
0x08		Class Code		Revision ID			
0x0C	BIST	Header Type	Latency Timer	Cache Line Size			
0x10		Base Address R	egister 0 (BAR0)				
0x14		Base Address Register 1 (BAR1)					
0x18		Base Address R	egister 2 (BAR2)				
0x1C		Base Address R	egister 3 (BAR3)				
0x20		Base Address R	egister 4 (BAR4)				
0x24		Base Address R	egister 5 (BAR5)				
0x28		Cardbus C	CIS Pointer				
0x2C	Subsystem ID Subsystem Vendor ID			Vendor ID			
0x30	Expansion ROM Base Address						
0x34	Reserved						
0x38	Reserved						
0x3C	Max_Lat	Min_Gnt	Interrupt Pin	Interrupt Line			

The Base Address Registers defined for the Model 7142 are shown on the next page.

A.2 PCI Configuration Space Registers (continued)

In the Model 7142, the first four Base Address Registers of PCI Configuration Space are used to configure the memory maps of board resources and registers. The following table shows the use of these registers in the 7142.

	Table A-2: PCI Base Address Registers						
Address	Register	Model 7142 Use					
0x10	Base Address Register 0 (BAR0)	Memory accesses to PCI7142 Local, Runtime, and DMA registers					
0x14	Base Address Register 1 (BAR1)	Memory accesses to 7142 FIFOs					
0x18	Base Address Register 2 (BAR2)	Memory accesses to 7142 FPGA Global, Clock/Sync/ Gate, Interrupt,D/A, A/D, Registers					
0x1C	Base Address Register 3 (BAR3)	not used on 7142					