

Universidad Nacional de Lanús Departamento de Desarrollo Productivo y Tecnológico Licenciatura en Sistemas

PRESENTACIÓN DE REPASO PARA EL EXAMEN PARCIAL

Sistemas Operativos

Objetivos del SO:

- Abstraer la complejidad del hardware al usuario y sus aplicaciones.
- Administrar y proteger los recursos de la computadora:

de Procesos

de Entrada/Salida

de Procesadores

de Memoria

de Sistemas de Archivos

de Seguridad

SISTEMA OPERATIVO

- <u>Unidad 1:</u> Administración de concurrencia entre procesos en sistemas operativos
- <u>Unidad 2:</u> Manejo de Interbloqueo en sistemas operativos
- <u>Unidad 3:</u> Sistemas Operativos Distribuidos
- <u>Unidad 4:</u> Comunicación y sincronización en Sistemas Operativos Distribuidos
- <u>Unidad 5</u>: Memoria compartida en sistemas distribuidos
- Unidad 6: Administración de Recursos y Archivos en sistemas distribuidos
- <u>Unidad 7:</u> Seguridad y Transacciones en sistemas operativos distribuidos
- <u>Unidad 8:</u> Sistemas Operativos Especiales
- Unidad 9: Convivencia de sistemas operativos

SINCRONIZACIÓN DE PROCESOS

SINCRONIZACIÓN DE PROCESOS

Exclusión Mutua

Controla el acceso de los Recursos Compartidos de los Procesos

Condiciones:

- ✓ Si no hay ningún proceso dentro de la región crítica, un proceso que desee accederla podrá hacerlo.
- Sólo un proceso por vez puede acceder a la región crítica.
- Un proceso puede estar en la región crítica un tiempo finito.
- En algún momento un proceso debe poder acceder a su región crítica.
- ✓ Un fallo de un proceso fuera de la región crítica no debe afectar al resto.
- ✓ No se debe asumir velocidad de procesamiento ni cantidad de procesos.

SINCRONIZACIÓN DE PROCESOS

Exclusión Mutua

Mecanismos de Implementación:

	¿Confiable?	¿Dificultad para implementar y probar?	¿Equitativo?	¿Espera Activa?
Software (puro)	Poco	Mucha	Depende implementación	Sí
Hardware (puro)	Sí (con 1 CPU y sin bugs)	Regular	Poco	
Semáforos	Mucho		Sí	No
Monitores		Poco		

INTERBLOQUEO ENTRE PROCESOS

DeadLock

también denominado Interbloqueo entre Procesos,

INTERBLOQUEO ENTRE PROCESOS

Mecanismos para resolver DeadLock & Starvation:

■ Estrategia del Avestruz → No hacer nada

□ Prevenir → Eliminar las condiciones del DeadLock

□ Evitar → Asignar Recursos si no hay Espera Circular (Algoritmo del Banquero)

Detectar & Eliminar →

Si hay Espera Circular, romperla

Conjunto de computadoras que se integran para hacer desaparecer la dualidad local / remoto para ofrecer la visión de un «sistema único»

Objetivos de un Sistema Distribuido:

Distribuir el Trabajo.

Compartir Recursos.

- Logrando:
 - Alto Rendimiento
 - Alta Escalabilidad
 - Alta Disponibilidad

Características de un Sistema Distribuido:

- Concurrencia
- ✓ Interoperabilidad y Modularidad Sistema Abierto
- ✓ Fiabilidad y Confiabilidad Sistema Seguro
- Consistencia

> Tipos de Sistemas Distribuidos:

CLUSTER

❖ GRID

❖ SIMÉTRICO O P2P

CLUSTER:

Equipos Homogéneos

Brindan Servicios Específicos

Cualquier nodo puede realizar las tareas brindadas (nodos especializados)

Decisiones Centralizadas («Nodo Coordinador»)

Interconectadas en subred LAN pequeña

Equipos Heterogéneos

Realizan diferentes tipos de Tareas y Servicios

Cualquier nodo puede realizar cualquier tarea (nodos generalizados)

Decisiones
Descentralizadas
(Todos los Nodos)

Interconectadas en LAN mediana

Equipos Heterogéneos

Realizan diferentes tipos de Tareas y Servicios

Grupos de nodos realizan ciertas tareas (grupos de nodos especializados)

Decisiones Mixtas (Estructura Jerárquica)

Interconectadas en WAN mediana o grande (Organizaciones Virtuales)

Cuestiones para implementar un Sistema Distribuido:

- ¿Cómo distribuir la Carga de Trabajo?
- ¿Cómo administrar los Recursos Compartidos?
- ¿Cómo lograr la Sincronización de Procesos?
- ¿Cómo manejar el Deadlock?
- ¿Cómo lograr un 'Estado Consistente'?
- ¿Cómo asegurar la Confiabilidad y Fiabilidad?

- Cuestiones para implementar un Sistema Distribuido:
 - ¿Cómo distribuir la Carga de Trabajo?
 - ¿Cómo administrar los Recursos Compartidos?
 - ¿Cómo lograr la Sincronización de Procesos?
 - ¿Cómo manejar el Deadlock?
 - ¿Cómo lograr un 'Estado Consistente'?
 - ¿Cómo asegurar la Confiabilidad y Fiabilidad?

Migración de Procesos:

 Mecanismo que permite cambiar la computadora en que se ejecuta un proceso transfiriéndolo a otra de la misma red.

Migración de Procesos:

 Mecanismo que permite cambiar la computadora en que se ejecuta un proceso transfiriéndolo a otra de la misma red.

Migración de Procesos:

 Mecanismo que permite cambiar la computadora en que se ejecuta un proceso transfiriéndolo a otra de la misma red.

DISTRIBUIR LA CARGA DE TRABAJO:

(Load Distribution o Load Sharing)

- Método usado para compartir el trabajo a realizar entre varias computadoras.
- Idealmente se logra un «balance de la carga».
- Ventajas:
 - Mejor rendimiento.
 - Mayor disponibilidad.
 - Menor uso de la red.

Migración de Procesos:

- Requerimientos:
 - Ejecución determinística
 - Transparencia de ubicación
 - Transferencia no perjudicial
 - Escalabilidad
 - Heterogeneidad
- Cuestiones de Implementación:
 - a) Política de Información
 - b) Política de Transferencia
 - c) Política de Selección
 - d) Política de Ubicación

- Cuestiones para implementar un Sistema Distribuido:
 - ¿Cómo distribuir la Carga de Trabajo?
 - ¿Cómo administrar los Recursos Compartidos?
 - ¿Cómo lograr la Sincronización de Procesos?
 - ¿Cómo manejar el Deadlock?
 - ¿Cómo lograr un 'Estado Consistente'?
 - ¿Cómo asegurar la Confiabilidad y Fiabilidad?

Estado Global Consistente:

- Está definido en un Sistema Distribuido por:
 - el estado interno de cada computadora (memoria)
 - el estado de los canales de comunicación (mensajes encolados)
- Se utiliza para :
 - detección del deadlock.
 - establecimiento de puntos de recuperación.
 - detección de objetos que no se encuentren referenciados o utilizados por los procesos.
 - ✓ detección de procesos finalizados (correctamente o por error).
- No existe memoria compartida → Mensajes
- No existe un 'reloj global'
- → Relojes Virtuales

Algoritmo de la Instantánea o Snapshot

- Cuestiones para implementar un Sistema Distribuido:
 - ¿Cómo distribuir la Carga de Trabajo?
 - ¿Cómo administrar los Recursos Compartidos?
 - ¿Cómo lograr la Sincronización de Procesos?
 - ¿Cómo manejar el Deadlock?
 - ¿Cómo lograr un 'Estado Consistente'?
 - ¿Cómo asegurar la Confiabilidad y Fiabilidad?

Sincronización de Procesos:

- Implementación de Exclusión Mutua mediante Mensajes:
 - Se basa en la utilización de las primitivas de comunicación (sockets + mensajes) para controlar el acceso a la región crítica
 - Funciones:

Sincronización de Procesos:

¿Cómo manejar la sincronización con mensajes cuando existen múltiples nodos y procesos?

Estrategias:

Centralizada

→ el Nodo Monitor puede ser un 'cuello de botella'

Descentralizada:

Con Token

→ se puede perder el 'Token' (se debe regenerar)

Sin Token

→ requiere intercambiar muchos mensajes en redes muy grandes

- Cuestiones para implementar un Sistema Distribuido:
 - ¿Cómo distribuir la Carga de Trabajo?
 - ¿Cómo administrar los Recursos Compartidos?
 - ¿Cómo lograr la Sincronización de Procesos?
 - ¿Cómo manejar el Deadlock?
 - ¿Cómo lograr un 'Estado Consistente'?
 - ¿Cómo asegurar la Confiabilidad y Fiabilidad?

DeadLock:

¿Cómo detectar el Deadlock entre múltiples procesos ejecutando en distintos nodos?

- Cuestiones para implementar un Sistema Distribuido:
 - ¿Cómo distribuir la Carga de Trabajo?
 - ¿Cómo administrar los Recursos Compartidos?
 - ¿Cómo lograr la Sincronización de Procesos?
 - ¿Cómo manejar el Deadlock?
 - ¿Cómo lograr un 'Estado Consistente'?
 - ¿Cómo asegurar la Confiabilidad y Fiabilidad?

Administración de Recursos:

- ¿Cómo acceder a recursos sin conocer su ubicación?
 - → Nombres Globales (usando «servidores de nombre»)

- ¿Cómo mejorar el acceso de Recursos Remotos?
 - Transferencia Masiva
 & Cache Datos (debe ser consistente)

- Administración de Recursos:
 - ¿Cómo mejorar la Disponibilidad de Recursos?
 - Replicación de Recursos (Manejo de Copias) usando:
 - Versionado
 - Transacciones
 - Algoritmos:
- Actualiza Todo o Nada
- Primera Copia
- Gossiping
- Manejo del Quorum

Sistema de Archivos Distribuido:

 Permite generar un Sistema de Archivos Global compartido entre los nodos de un Sistema Distribuido.

Memoria Distribuida:

 Permite generar secciones de Memoria Compartida entre los nodos de un Sistema Distribuido.

- Cuestiones para implementar un Sistema Distribuido:
 - ¿Cómo distribuir la Carga de Trabajo?
 - ¿Cómo administrar los Recursos Compartidos?
 - ¿Cómo lograr la Sincronización de Procesos?
 - ¿Cómo manejar el Deadlock?
 - ¿Cómo lograr un 'Estado Consistente'?
 - ¿Cómo asegurar la Confiabilidad y Fiabilidad?

- ¿Cómo asegurar la Confiabilidad y Fiabilidad?
 - → Transacciones Distribuidas
 - ✓ Garantizan condición ACID (ACAP)
 - ✓ Pueden ser de 1 o 2 fases
 - → Manejo de Fallos en Sistemas Distribuidos
 - Recuperación de Fallos
 - hacia Adelante
 - hacia Atrás (basado en Transacciones, Estados o ambos)
 - ✓ Tolerancia a Fallos

SISTEMAS OPERATIVOS DISTRIBUIDOS

¿Cómo asegurar la Confiabilidad y Fiabilidad?

→ Seguridad en Sistemas Distribuidos

SISTEMAS OPERATIVOS DISTRIBUIDOS

- ¿Cómo asegurar la Confiabilidad y Fiabilidad?
 - → Seguridad en Sistemas Distribuidos
 - Mecanismos de Seguridad
 - Kerberos:
 - Autentificación de Usuarios
 - Acceso a Servicios
 - Encriptación de Mensajes:
 - usando sólo clave simétrica
 - usando claves simétricas y asimétricas con hash
 (Digital Envelope)

SISTEMAS OPERATIVOS DISTRIBUIDOS

Cuestiones para implementar un Sistema Distribuido:

¿Cómo distribuir la Carga de Trabajo?

¿Cómo administrar los Recursos Compartidos?

¿Cómo lograr la Sincronización de Procesos?

¿Cómo manejar el Deadlock?

¿Cómo lograr un 'Estado Consistente'?

¿Cómo asegurar la Confiabilidad y Fiabilidad?

SISTEMA OPERATIVO

SISTEMAS
OPERATIVOS

SISTEMAS
OPERATIVOS
EMBEBIDOS

SISTEMAS
OPERATIVOS DE
TIEMPO REAL

SISTEMAS OPERATIVOS ESPECIALES

> SISTEMAS OPERATIVOS DE TIEMPO REAL:

(o RTOS)

- Es un SO donde la planificación del procesador está regulada y controlada.
- Características:
 - Considera criticidad además de la prioridad de los Procesos
 - Da importancia a los Deadlines
 - Planificación de tareas periódicas y aperiódicas
 - Módulos de E/S probados y cronometrados
 - Puede ser Rígidos / Duros ó Flexibles / Blandos
- Es:
- ✓ predecible
- ✓ determinista
- ✓ fiable

SISTEMAS OPERATIVOS ESPECIALES

> SISTEMAS OPERATIVOS EMBEBIDOS:

(o SO Móviles)

- Sistemas Operativos que se ejecutan en HW no convencionales.
- Características:
 - Diseño optimizado
 - Puede ser en Tiempo Real o no.
 - Manejo de dispositivos especiales

 (con drivers incorporados al SO).
 - Generalmente no soportan el uso de Memoria Virtual.
 - Funcionalidades para el manejo de energía.
 - Gran tolerancia a fallos.

> Virtualización:

- Framework que permite distribuir los recursos existentes en un computadora en múltiples ambientes.
- Los ambientes pueden aplicar un hardware similar o se puede emular uno diferente.

Hypervisor

Virtualización:

Arquitecturas:

Hosted

APLICACIONES APLICACIONES APLICACIONES APLICACIONES Consola SO (Guest) SO (Guest) SO (Guest) SO (Guest) **APLICACIONES** de VMM HW virtual HW virtual HW virtual HW virtual **VMM** VMM SISTEMA OPERATIVO (Host) **HARDWARE HARDWARE**

- Virtualización:
 - Tipos:

Virtualización Completa

(Full Virtualization)

Virtualización Parcial

(Paravirtualización)

Virtualización:

- Aplicaciones:
 - ✓ Aplicaciones Software Heredadas
 - ✓ Software Poco Confiable
 - Encapsulamiento de Ambientes
 - Consolidación de Servidores

Preguntas

¡¡GRACIAS!!