The concrete delivery problem

- J. Kinable, T. Wauters, G. Vanden Berghe, 2014
- Constraints:
 - Concrete is produced at several homogeneous production sites located some distance away from the customers.
 - Trucks start at a central depot, travel to a production plant, unload their cargo at one of the construction sites
- Objective: maximize the number of satisfied customers, weighted by their demand
- · Instance:
 - To facilitate a future comparison of CDP implementations, large number of problem instances are published.
- Solution:
 - Integer Programming models
 - first ILP: combination of CVRPTW with Split Deliveries, and the Parallel Machine Scheduling Problem (PMSP) with Time Windows and Maximum Time Lags
 - A truck can only be used once for every customer, and whenever it is used, its delivery must be succeeded by another delivery
 - second ILP: allows a single vehicle to visit customers more than once by representing each customer by a of customer nodes
 - Constraint programming model.
 - Heuristic
 - · Steepest Descent and best fit
 - Fix-and-optimize heuristic

First ILP

- The concrete trucks start their trip at a central (source) depot and travel between production sites and customers.
- At the end of the day, the trucks return to an end (sink) depot (which may not be the same as the starting depot).
- directed, weighted graph G(V,A) $V = \{0\} \cup C \cup \{n+1\}$:
 - 0: source
 - n+1: sink
- · Arc costs:
 - $c_{0,i}=\min_{p\in P}t_{0,p}+t_{p,i}, orall i\in C.$
 - $ullet c_{i,j} = \min_{p \in P} t_{i,p} + t_{p,j}, orall i, j \in C.$
 - $c_{i,n+1} = t_{i,n+1}$
 - $c_{0,n+1}=0$.
- Parameters:
 - p_k : Time required to empty truck $k \in K$
 - γ : Maximum time lag between consecutive deliveries.
- · Variables:
 - x_{ijk} is a binary variable indicating whether vehicle k travels from i to j
 - ullet C_k^i record the time that vehicle k finishes its delivery to customer i.
 - y_i denotes whether customer i is serviced.
 - z_{kl}^i is equal to one if truck k delivers its payload immediately before truck l to customer i, zero otherwise.
 - k₀ represents a dummy truck
 - $K_0 = K \cup \{k_0\}$
- Model
 - $max \sum_{i \in C} q_i y_i$
 - Ensures that sufficient concrete is delivered at construction site

$$ullet$$
 $\sum_{k\in K}\sum_{j\in\delta^+(i)}q_kx_{ijk}\geq q_iy_i, i\in C$

 Determine the shape of a feasible tour: a tour starts at the source depot, visits a number of pickup and delivery points and finally returns to the sink depot.

$$ullet \; \sum_{j \in \delta^+(0)} x_{0jk} = \sum_{i \in \delta^-(n+1)} x_{i,n+1,k} = 1, k \in K$$

$$ullet$$
 $\sum_{i\in\delta^+(i)}x_{ijk}=\sum_{i\in\delta^-(i)}x_{j,i,k}$, $c\in C, k\in K$

• The dummy truck must be scheduled

$$ullet \sum_{l\in K_0} z_{k_0l}^i = 1$$
 , $i\in V$.

• Flow preservation constraints, each delivery has exactly one successor and one predecessor

$$ullet \sum_{l \in K_0 \setminus \{k\}} z^i_{kl} = \sum_{l \in K_0 \setminus \{k\}} z^i_{lk}, k
eq l$$

• Between two consecutive visits, starting, processing and travel times have to be taken into account

$$ullet$$
 $C_k^i + t_{ij} - M(1-x_{ijk}) \leq C_k^j - p_k$, $i,j \in V, k \in K$

• Enforce that deliveries do not overlap in time:

$$ullet C_k^i - M(1-z_{kl}^i) \leq C_l^i - p_l$$

• Enforce a maximum time lag between consecutive deliveries

$$ullet C_l^i - p_l \leq C_k^i + \gamma + M(1-z_{kl}^i)$$

- $a_i + p_k \leq C_k^i \leq b_i$, $i \in V$
- $ullet \sum_{l \in K_0 \setminus \{k\}} z^i_{kl} = \sum_{j \in N} x_{ijk}$, $orall k \in K, i \ inC$

• $x_{ijk} \in \{0,1\}$ $C_k^i \in Z$, $y_i \in \{0,1\}$

Second ILP

- The concrete trucks start their trip at a central (source) depot and travel between production sites and customers.
- At the end of the day, the trucks return to an end (sink) depot (which may not be the same as the starting depot).
- orall customer $i \in C$, $C^i = \{1, \ldots, n(i)\}$, $n(i) = \lceil rac{q_i}{\min_{k \in K}(q_k)}
 ceil$
- Time window $[a_u,b_u]=[a_i,b_i]\ i\in C, u\in C^i$
- $D = \cup_{i \in C} C^i$
- directed, weighted graph G(V,A) $V = \{0\} \cup D \cup \{n+1\}$: 0: source, n+1: sink
- delivery node c_h^i has a directed edge to a delivery node c_j^i if $h < j, i \in C, h, j \in C_i$.
- directed edge from c_u^i to $c_v^j, i \neq j$, except if c_v^j needs to be scheduled earlier than c_u^i
- · Arc costs:
 - $ullet c_{0,c^i_i}=\min_{p\in P}t_{0,p}+t_{p,i}, orall c^i_j\in D.$
 - $c_{c^iu,c^jv} = \min_{p \in P} t_{i,p} + t_{p,j}, orall c^iu, c^jv \in D, c^iu
 eq c^jv$
 - $ullet c_{c^i i, n+1} = t_{i, n+1}$
 - $c_{0,n+1} = 0$.
- · Parameters:
 - ullet p_k : Time required to empty truck $k\in K$
 - γ: Maximum time lag between consecutive deliveries.
- Variables:
 - ullet x_{ijk} is a binary variable indicating whether vehicle k travels from i to j
 - c^i records the time that delivery $i \in D$ is completed.
 - y_i denotes whether customer i is serviced.
- Model
 - $max \sum_{i \in C} q_i y_i$
 - Determine the shape of a feasible tour: a tour starts at the source depot, visits a number of pickup and delivery points and finally returns to the sink depot.
 - ullet $\sum_{j\in\delta^+(0)}x_{0jk}=\sum_{i\in\delta^-(n+1)}x_{i,n+1,k}=1, k\in K$
 - $ullet \; \sum_{j \in \delta^+(i)} x_{ijk} = \sum_{j \in \delta^-(i)} x_{j,i,k}$, $c \in C, k \in K$
 - S(i, lpha) = $\sum_{k \in K} \sum_{j \in \delta^+(i)} lpha x_{ijk}, i \in D$
 - Number of times a delivery can be made
 - $\bullet \ S(i,1) \leq 1, \forall i \in D$
 - · Ordering of deliveries
 - ullet $S(j+1,1) \leq S(j,1)$, $orall i \in C, j \in \{1,\ldots,n(i)-1\}$
 - ullet Sum of capacities of the vehicles performing the deliveries for customer $i\in C$ should cover the customer's demand
 - $ullet \; \; \sum_{j \in C^i} S(j,q_k) \geq q_i y_i$, $i \in C$
 - $ullet c^i M(1-x_{ijk}) \leq c^j p_k c_{ij}$, i
 eq 0
 - $c^i M(1-x_{ijk}) \leq c^j c_{ij}$, $orall (0,j) \in A$
 - $ullet c^i S(i,p_k) \geq a_i$
 - Enforce a maximum time lag between consecutive deliveries
 - ullet $c^{j+1}-S(j+1,p_k)-c^j\leq \gamma, i\in C,$ j \in {1,...,n(i)-1}\$
 - Enforce that deliveries do not overlap in time:

$$ullet c^{j+1} \geq c^j + S(j,p_k),$$
i \in C, $j \in \{1,\dots,n(i)-1\}$ • $a_i+p_k \leq C_k^i \leq b_i$, $i \in V$

-
$$x_{ijk} \in \C^{i}_k \in Z$$
, $y_i \in \C^{i}_k \in Z$,