Evaluation Mathématiques	
${ m TES4}$	TOTO toto
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

On a donc a_0	$b_0 = 800 \text{ et } b_0 = 800 $	= 1400.				
Question [cons	servation]	Par quelle re	elation entre a	$a_n ext{ et } b_n$	traduit-on la	conservation du
volume total d'e	au du circuit	?				☐f ☐p ■ j
${f Question}$ [an]	Justifier que	e, pour tout ent	ier naturel n, a	$_{n+1}=0,$	$75 \times a_n + 330$.	_f _p _j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
1 n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
·
Question [algorithme] L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes
de cet algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Ouestion [ummed] Montron que le quite (u.) est une quite géométrique dont en présisere le
Question [ungeo] Montrer que la suite (u_n) est une suite géométrique dont on précisera le
premier terme et la raison.
1

Question [unexplicite]	Exprimer u_n en fonction de n .	☐f ☐p ■ j
		1990 5900 757
Question [anexplicite]	En déduire que pour tout entier naturel n, a_n	$= 1320 - 520 \times 0, 75^{\circ}$ $\qquad \qquad $
	On cherche à savoir si, un jour donné, les deux b ume d'eau. Proposer une méthode pour répond	
Question [bonus] BONU	$\text{VS}: \text{Montrer que } 1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots$	$= \frac{11}{10} \boxed{\text{f } \boxed{\text{p } \blacksquare \text{j}}}$

Evaluation Mathématiques	
TES4	TATA tata
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

On a donc a_0	$b_0 = 800 \text{ et } b_0 = 800 $	= 1400.					
Question [cons		Par quelle r	elation entr	$e a_n ext{ et } b$	n traduit-or		servation d
volume total d e	au du circuit	<u> </u>					л <u>Б</u>
Question [an]	Justifier que	e, pour tout ent	ier naturel i	$a_{n+1} = 0$	$0,75 \times a_n + 3$	30.	f p j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
1 n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
·
Question [algorithme] L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes
de cet algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Ouestion [ummed] Montron que le quite (u.) est une quite géométrique dont en présisere le
Question [ungeo] Montrer que la suite (u_n) est une suite géométrique dont on précisera le
premier terme et la raison.
1

Question [unexplicite]	Exprimer u_n en fonction de n .	☐f ☐p ■ j
		1990 5900 757
Question [anexplicite]	En déduire que pour tout entier naturel n, a_n	$= 1320 - 520 \times 0, 75^{\circ}$ $\qquad \qquad $
	On cherche à savoir si, un jour donné, les deux b ume d'eau. Proposer une méthode pour répond	
Question [bonus] BONU	$\text{VS}: \text{Montrer que } 1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots$	$= \frac{11}{10} \boxed{\text{f } \boxed{\text{p } \blacksquare \text{j}}}$

Evaluation Mathématiques	
TES4	TITI toto
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

On a donc a_0	$b_0 = 800 \text{ et } b_0 = 800 $	= 1400.							
Question [cons	servation]	Par quelle	relation	entre a_n	et b_n	traduit-on	la conser	vation	du
volume total d'e	au du circuit	?					\Box f	_p [j
Question [an]	Justifier que	e, pour tout e	ntier natu	$\operatorname{irel} n, a_{n+1}$	-1 = 0,	$75 \times a_n + 330$). <u>f</u>	p	j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
1 n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
·
Question [algorithme] L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes
de cet algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Ouestion [ummed] Montron que le quite (u.) est une quite géométrique dont en présisere le
Question [ungeo] Montrer que la suite (u_n) est une suite géométrique dont on précisera le
premier terme et la raison.
1

Question [unexplicite]	Exprimer u_n en fonction de n .	☐f ☐p ■ j
		1990 5900 757
Question [anexplicite]	En déduire que pour tout entier naturel n, a_n	$= 1320 - 520 \times 0, 75^{\circ}$ $\qquad \qquad $
	On cherche à savoir si, un jour donné, les deux b ume d'eau. Proposer une méthode pour répond	
Question [bonus] BONU	$\text{VS}: \text{Montrer que } 1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots$	$= \frac{11}{10} \boxed{\text{f } \boxed{\text{p } \blacksquare \text{j}}}$

Evaluation Mathématiques	
$\mathbf{TES4}$	TUTU tata
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

On a donc $a_0 = 800$ et $b_0 = 1400$.

On a done a_0	$\rho_0 = 800 \text{ et } v_0 = 0$	= 1400.	
Question [cons	servation]	Par quelle relation entre a_n et b_n traduit-on la	conservation du
volume total d'e	au du circuit '	?	_f _p _j
Question [an]	Justifier que	e, pour tout entier naturel n , $a_{n+1} = 0,75 \times a_n + 330$.	fp j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
1 n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
·
Question [algorithme] L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes
de cet algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Ouestion [ummed] Montron que le quite (u.) est une quite géométrique dont en présisere le
Question [ungeo] Montrer que la suite (u_n) est une suite géométrique dont on précisera le
premier terme et la raison.
1

Question [unexplicite]	Exprimer u_n en fonction de n .	☐f ☐p ■ j
		1990 5900 757
Question [anexplicite]	En déduire que pour tout entier naturel n, a_n	$= 1320 - 520 \times 0, 75^{\circ}$ $\qquad \qquad $
	On cherche à savoir si, un jour donné, les deux b ume d'eau. Proposer une méthode pour répond	
Question [bonus] BONU	$\text{VS}: \text{Montrer que } 1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots$	$= \frac{11}{10} \boxed{\text{f } \boxed{\text{p } \blacksquare \text{j}}}$

Evaluation Mathématiques	
TES4	TETE toto
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

On a donc $a_0 = 800$ et $b_0 = 1400$.

On a de	one $a_0 = 800$ et $b_0 =$	= 1400.	
Question	[conservation]	Par quelle relation entre a_n et b_n traduit-on l	a conservation du
volume tota	al d'eau du circuit?		fp j
$\mathbf{Question} \mid$	[an] Justifier que	, pour tout entier naturel n , $a_{n+1} = 0,75 \times a_n + 330$	fp j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
1 n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
·
Question [algorithme] L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes
de cet algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Ouestion [ummed] Montron que le quite (u.) est une quite géométrique dont en présisere le
Question [ungeo] Montrer que la suite (u_n) est une suite géométrique dont on précisera le
premier terme et la raison.
1

Question [unexplicite]	Exprimer u_n en fonction de n .	☐f ☐p ■ j
		1990 5900 757
Question [anexplicite]	En déduire que pour tout entier naturel n, a_n	$= 1320 - 520 \times 0, 75^{\circ}$ $\qquad \qquad $
	On cherche à savoir si, un jour donné, les deux b ume d'eau. Proposer une méthode pour répond	
Question [bonus] BONU	$\text{VS}: \text{Montrer que } 1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots$	$= \frac{11}{10} \boxed{\text{f } \boxed{\text{p } \blacksquare \text{j}}}$

Evaluation Mathématiques	
TES4	TYTY tata
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

On a donc a_0	$= 800 \text{ et } b_0 =$	= 1400.				
Question [cons-			elation entre a	a_n et b_n	traduit-on la	conservation du
Question [an]	Justifier que	, pour tout enti	er naturel n, a	$_{n+1}=0,$	$75 \times a_n + 330.$	☐f ☐p ■ j

Variables: n est un nombre entier naturel
Variables : a est un nombre réèl
1 n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
5 n prend la valeur;
6 Fin
Sortie : Afficher n ;
·
Question [algorithme] L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes
de cet algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$.
Ouestion [ummed] Montron que le quite (u.) est une quite géométrique dont en présisere le
Question [ungeo] Montrer que la suite (u_n) est une suite géométrique dont on précisera le
premier terme et la raison.
1

Question [unexplicite]	Exprimer u_n en fonction de n .	☐f ☐p ■ j
		1990 5900 757
Question [anexplicite]	En déduire que pour tout entier naturel n, a_n	$= 1320 - 520 \times 0, 75^{\circ}$ $\qquad \qquad $
	On cherche à savoir si, un jour donné, les deux b ume d'eau. Proposer une méthode pour répond	
Question [bonus] BONU	$\text{VS}: \text{Montrer que } 1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots$	$= \frac{11}{10} \boxed{\text{f } \boxed{\text{p } \blacksquare \text{j}}}$

Evaluation Mathématiques	
TES4	TOUTOU toto
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

On a donc $a_0 = 800$ et $b_0 = 1400$.

On a done	a ₀ = 000 ct 0 ₀	- 1400.						
Question [co	nservation]	Par quelle	relation	entre a_n e	et b_n	traduit-on	la co	onservation du
volume total d	'eau du circuit	?						_f _p _j
${f Question}$ [an]	Justifier que	e, pour tout e	entier natu	$\operatorname{irel} n, a_{n+1}$	= 0,	$75 \times a_n + 33$	0.	☐f ☐p ☐ j

Variables: n est un nombre entier naturel
Variables: a est un nombre réèl
1 n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
n prend la valeur;
6 Fin
Sortie : Afficher n;
Question [algorithme] L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes
de cet algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$. Question [ungeo] Montrer que la suite (u_n) est une suite géométrique dont on précisera le
premier terme et la raison.

Question [unexplicite]	Exprimer u_n en fonction de n .	fp j
		1200 5000 757
Question [anexplicite]	En déduire que pour tout entier naturel n , a_n	$= 1320 - 520 \times 0, 75^{\circ}$ $\qquad \qquad $
	On cherche à savoir si, un jour donné, les deux ba ume d'eau. Proposer une méthode pour répondr	
Question [bonus] BONU	TS: Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots$	$=\frac{11}{10} \boxed{\mathbf{f}} \mathbf{p} \mathbf{m} \mathbf{j}$
	11 11 11	

Evaluation Mathématiques	
TES4	TANTAN tata
Vendredi 20.12.2019	

Un volume constant de $2200m^3$ d'eau est réparti entre deux bassins A et B. Le bassin A refroidit une machine. Pour des raisons d'équilibre thermique on crée un courant d'eau entre les deux bassins à l'aide de pompes.

On modélise les échanges entre les deux bassins de la facon suivante :

- au départ, le bassin A contient $800m^3$ d'eau et le bassin B contient $1400m^3$ d'eau;
- tous les jours, 15% du volume d'eau présent dans le bassin B au début de la journée est transferé vers le bassin A;
- tous les jours, 10% du volume d'eau présent dans le bassin A au début de la journée est transféré vers le bassin B.

Pour tout entier naturel n, on note :

- a_n le volume d'eau, exprimé en m^3 , contenu dans le bassin A à la fin du n-ième jour de fonctionnement;
- b_n le volume d'eau, exprimé en m^3 , contenu dans le bassin B à la fin du n-ième jour de fonctionnement.

On a donc a_0	$= 800 \text{ et } b_0 =$	= 1400.			
Question [cons	ervation]	Par quelle relation	on entre a_n et b_r	traduit-on la	conservation du
volume total d'ea	u du circuit?				☐f ☐p ☐ j
Question [an]	Justifier que	pour tout entier na	aturel $n, a_{n+1} = 0$	$0,75 \times a_n + 330.$	☐f ☐p ■ j

Variables: n est un nombre entier naturel
Variables: a est un nombre réèl
1 n prend la valeur 0;
2 a prend la valeur 800;
3 Tant que $a < 1100$ faire
4 a prend la valeur;
n prend la valeur;
6 Fin
Sortie : Afficher n;
Question [algorithme] L'algorithme ci-dessus permet de déterminer la plus petite valeur de n à partir de laquelle a_n est supérieur ou égal à 1100. Recopier et compléter les parties manquantes
de cet algorithme.
Pour tout entier naturel n , on note $u_n = a_n - 1320$. Question [ungeo] Montrer que la suite (u_n) est une suite géométrique dont on précisera le
premier terme et la raison.

Question [unexplicite]	Exprimer u_n en fonction de n .	fp j
		1200 5000 757
Question [anexplicite]	En déduire que pour tout entier naturel n , a_n	$= 1320 - 520 \times 0, 75^{\circ}$ $\qquad \qquad $
	On cherche à savoir si, un jour donné, les deux ba ume d'eau. Proposer une méthode pour répondr	
Question [bonus] BONU	TS: Montrer que $1 + \frac{1}{11} + \frac{1}{11^2} + \frac{1}{11^3} + \frac{1}{11^4} + \dots$	$=\frac{11}{10} \boxed{\mathbf{f}} \mathbf{p} \mathbf{m} \mathbf{j}$
	11 11 11	