Algebra review

1. Trigonometry

1.1 Angles

$$heta=rac{a}{r}$$

$$a= heta r$$

1.2 The Trigonometric functions

$$\sin heta = rac{y}{r}, \quad \csc heta = rac{r}{y},$$

$$\cos heta = rac{x}{r}, \quad \sec heta = rac{r}{x},$$

$$\tan \theta = \frac{y}{x}, \quad \cot \theta = \frac{x}{y}$$

1.3 Trigonometric identities

Function	Identity
$\csc \theta$	$\frac{1}{\sin \theta}$
$\sec heta$	$\frac{1}{\cos \theta}$
$\cot heta$	1
an heta	$ an heta \ rac{\sin heta}{ heta}$
$\cot heta$	$\cos heta \ \cos heta$
	$\overline{\sin \theta}$

Identity	Equation
Pythagorean Identity 1	$\sin^2 heta + \cos^2 heta = 1$
Pythagorean Identity 2	$ an^2 heta+1=\sec^2 heta$
Pythagorean Identity 3	$1+\cot^2 heta=\csc^2 heta$

Sum and Difference Formulas

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x-y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x-y) = \cos x \cos y + \sin x \sin y$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Double-Angle Identities

$$\sin(2 heta) = 2\sin\theta\cos\theta \ \cos(2 heta) = \cos^2\theta - \sin^2\theta \ = 2\cos^2\theta - 1 \ = 1 - 2\sin^2\theta \ \tan(2 heta) = rac{2\tan\theta}{1 - an^2 heta}$$

Half-Angle Identities

$$\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{2}}$$

$$\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1+\cos\theta}{2}}$$

$$\tan\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}$$

$$= \frac{\sin\theta}{1+\cos\theta}$$

$$= \frac{1-\cos\theta}{\sin\theta}$$

product formulas

$$\sin x \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)]$$
 $\cos x \cos y = \frac{1}{2} [\cos(x-y) + \cos(x+y)]$
 $\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$
 $\cos x \sin y = \frac{1}{2} [\sin(x+y) - \sin(x-y)]$

$$\sin x + \sin y = 2 \sin \left(\frac{x+y}{2} \right) \cos \left(\frac{x-y}{2} \right)$$
 $\sin x - \sin y = 2 \cos \left(\frac{x+y}{2} \right) \sin \left(\frac{x-y}{2} \right)$
 $\cos x + \cos y = 2 \cos \left(\frac{x+y}{2} \right) \cos \left(\frac{x-y}{2} \right)$
 $\cos x - \cos y = -2 \sin \left(\frac{x+y}{2} \right) \sin \left(\frac{x-y}{2} \right)$

*Hint:

$$\sin x = \sin \left(rac{x+y}{2} + rac{x-y}{2}
ight), \quad \sin y = \sin \left(rac{x+y}{2} - rac{x-y}{2}
ight)$$

2. Sigma Notations

(c) $y = \csc x$

Theorem: Properties of Summation

Let c be a constant. Then:

$$\sum_{i=m}^n ca_i = c\sum_{i=m}^n a_i \ \sum_{i=m}^n (a_i+b_i) = \sum_{i=m}^n a_i + \sum_{i=m}^n b_i$$

(d) $y = \sec x$

$$\sum_{i=m}^n (a_i-b_i) = \sum_{i=m}^n a_i - \sum_{i=m}^n b_i$$

Theorem: Common Summation Formulas

Let c be a constant and n a positive integer. Then:

$$1.\sum_{i=1}^n 1 = n$$

$$2.\sum_{i=1}^n c=nc$$

$$3.\sum_{i=1}^n i=\frac{n(n+1)}{2}$$

$$4.\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$$

5.
$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

5. Proof by Mathematical Induction

We want to prove: $\sum_{i=1}^n i^3 = \left(rac{n(n+1)}{2}
ight)^2$

Step 1: Base Case (n = 1)

Left-hand side (LHS): $\sum_{i=1}^{1} i^3 = 1^3 = 1$

Right-hand side (RHS): $\left(\frac{1(1+1)}{2}\right)^2 = \left(\frac{2}{2}\right)^2 = 1$

✓ LHS = RHS, so the base case holds.

Step 2: Inductive Hypothesis

Assume that the formula holds for (n = k), i.e.,

$$\sum_{i=1}^k i^3 = \left(\frac{k(k+1)}{2}\right)^2$$

We need to prove that it also holds for (n = k + 1), i.e.,

$$\sum_{i=1}^{k+1} i^3 = \left(rac{(k+1)(k+2)}{2}
ight)^2$$

Step 3: Inductive Step

Start with the left-hand side for n=k+1 : $\sum_{i=1}^{k+1}i^3=\left(\sum_{i=1}^ki^3
ight)+(k+1)^3$

Use the inductive hypothesis:

$$=\left(rac{k(k+1)}{2}
ight)^2+(k+1)^3=(k+1)^2\left\lceil\left(rac{k}{2}
ight)^2+(k+1)
ight
ceil$$

Simplify inside the brackets:

$$=(k+1)^2\left[rac{k^2}{4}+(k+1)
ight]=(k+1)^2\left[rac{k^2+4k+4}{4}
ight]=(k+1)^2\cdotrac{(k+2)^2}{4}$$

So we have:

$$\sum_{i=1}^{k+1} i^3 = \left(rac{(k+1)(k+2)}{2}
ight)^2$$

ightharpoonup This matches the desired formula for (n = k + 1).

By the principle of mathematical induction, the identity

$$\sum_{i=1}^n i^3 = \left(rac{n(n+1)}{2}
ight)^2$$

holds for all positive integers n.

3. Equations, Inequalities, and Polynomials

3.1 Key Topics

3.1.1 Polynomial Equations

- Forms:
 - Linear: ax + b = 0
 - Quadratic: $ax^2 + bx + c = 0$
 - Higher-degree: $ax^n + \cdots + k = 0$
- Solving Methods:
 - Factoring (common factors, difference of squares, trinomial patterns)
 - Quadratic Formula:

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

- Completing the Square
- Polynomial Division (Long Division or Synthetic Division)
- Rational Root Theorem: test rational values $\pm \frac{p}{q}$
- Descartes' Rule of Signs: estimate number of positive/negative real roots
- Graphical methods

Rational Root Theorem (Rational Zero Test)

Let the polynomial be:

$$P(x) = a_n x^n + \dots + a_1 x + a_0$$

O Theorem:

If a rational number $\frac{p}{q}$ (in lowest terms) is a root of the polynomial, then:

- p must divide the constant term a₀
- q must divide the leading coefficient a_n

Steps to Use the Rational Root Theorem:

1. List all possible rational root candidates:

$$ext{Candidates} = \pm rac{ ext{factors of } a_0}{ ext{factors of } a_n}$$

2. Test each candidate

Example:

Let:

$$P(x) = 2x^3 - 3x^2 - 11x + 6$$

- Constant term: $a_0 = 6 \rightarrow$ factors: $\pm 1, \pm 2, \pm 3, \pm 6$
- Leading coefficient: $a_n=2 \rightarrow$ factors: $\pm 1, \pm 2$
- Possible rational roots:

$$\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}$$

Test roots:

Assume we find (x = 2) is a root.

Then use **polynomial division** to factor:

$$P(x) = (x-2)(2x^2 + x - 3)$$

Descartes' Rule of Signs — Explanation

Descartes' Rule of Signs is a method to estimate the number of **positive** and **negative** real roots of a polynomial equation by examining the signs of its coefficients.

Consider a polynomial:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

i. Positive Real Roots

- 1. Count the number of **sign changes** in the coefficients of P(x) (A sign change occurs when consecutive coefficients have opposite signs, e.g., from + to or to +.)
- 2. The number of positive real roots is equal to the number of sign changes or less than that by an even number (i.e., number of sign changes 2k, where $k \ge 0$).

ii. Negative Real Roots

- 1. Substitute x o -x to get P(-x)
- 2. Count the number of **sign changes** in the coefficients of P(-x)
- 3. The number of **negative real roots** is equal to the number of sign changes in P(-x) or less by an even number.

Example

Let:

$$P(x) = x^3 - 4x^2 + 5x - 2$$

- Coefficients of P(x) are [+1, -4, +5, -2]
 - Number of sign changes: 3
 - Possible positive roots: 3 or 1 (3 minus an even number)

Compute

$$P(-x) = -x^3 - 4x^2 - 5x - 2$$

• Coefficients of P(-x) are [-1, -4, -5, -2]

Number of sign changes: 0

Possible negative roots: 0

Summary

- Sign changes in P(x) give possible positive roots.
- Sign changes in P(-x) give possible negative roots.
- The actual number of roots is the count or less by an even number.

3.1.2 Fundamental Theorem of Algebra

- Every non-zero single-variable polynomial of degree n has exactly n complex roots (counting multiplicity).
- **Corollary**: A real polynomial can be factored into linear and/or irreducible quadratic factors over the reals.

3.1.3 Inequalities

- Linear/Quadratic Inequalities:
 - Solve like equations and test intervals (sign charts)
 - Use parabola shape and x-intercepts to determine sign regions
- Polynomial/Rational Inequalities:
 - Identify critical points (roots and undefined points)
 - Use sign charts or test points to determine solution intervals
 - Always consider open vs closed intervals based on inequality symbols
 - Write solution sets in interval notation

3.1.4 Special Polynomial Types

- Even and Odd degree: affects end behavior
- Symmetric Polynomials: e.g., palindromic or reciprocal polynomials
- Monic Polynomials: leading coefficient is 1
- Factored Form: Useful for analyzing roots and graphing

3.2 Connections to Calculus

• Graphing:

- Roots are x-intercepts
- Multiplicity affects whether graph crosses or touches x-axis
- End behavior determined by degree and leading coefficient

• Limits & Asymptotic Behavior:

Let P(x) and Q(x) be polynomials. As $x \to \infty$:

- If deg(P) < deg(Q): $\lim \frac{P(x)}{Q(x)} = 0$
- If deg(P) = deg(Q): limit is the ratio of leading coefficients
- If deg(P)>deg(Q): $\lim rac{P(x)}{Q(x)}=\infty$ or DNE (slant asymptote may exist)

4. Graphs of Second-Degree Equations

4.1 circles

Equation of a Circle:

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$

$$(x-1)^{2} + (y-1)^{2} = 2.25$$

$$(1,1)^{\bullet}$$

4.2 Parabolas

•
$$y = ax^2$$

• $x = ay^2$

"The larger the value of a, the narrower the opening."

4.3 Ellipses

Horizontal major axis:

$$rac{x^2}{a^2} + rac{y^2}{b^2} = 1 \quad (a > b)$$

Vertical major axis:

$$rac{x^2}{b^2} + rac{y^2}{a^2} = 1 \quad (a > b)$$

ullet centered at (h, k): $\boxed{rac{(x-h)^2}{a^2}+rac{(y-k)^2}{b^2}=1}$

5. Elementary Functions

5.1 Core Function Types

5.1.1 Exponential Functions

• **Definition**: $f(x) = a^x$ where a > 0 ($a \neq 1$)

• **Key Example**: e^x (natural exponential)

Properties:

• Domain: $\mathbb R$

• Range: $(0, +\infty)$

 $\bullet \ \ \hbox{Always increasing if} \ a>1 \\$

• Horizontal asymptote: y=0

Natural Exponential Function

Definition

The natural exponential function is defined as:

where:

- epprox 2.71828 (Euler's number)
- The function equals its own derivative: $rac{dy}{dx}=e^x$

Key Properties

- 1. Domain: $(-\infty, \infty)$
- 2. Range: $(0, \infty)$
- 3. y-intercept: (0,1)
- 4. Asymptote: y=0 (horizontal)
- 5. Always increasing
- 6. Concave up everywhere

Special Property at (0,1)

The tangent line at x=0 has:

- Slope = $e^0 = 1$
- Equation: y = x + 1

Graph Visualization

5.1.2 Logarithmic Functions

- **Definition**: $f(x) = \log_a x$ (inverse of a^x)
- **Key Example**: $\ln x$ (natural log, base e)
- Properties:
 - Domain: $(0, +\infty)$
 - $\bullet \ \ \text{Range: } \mathbb{R}$
 - Vertical asymptote: x = 0

5.1.3 Trigonometric Functions

- Key Examples:
 - $\sin x$: Periodic with period 2π , range [-1,1]
 - $\cos x$, $\tan x$ (similar analysis)
- Properties:
 - Amplitude (height): |A| in $A\sin(Bx)$
 - Period: $\frac{2\pi}{|B|}$

5.1.4 Power Functions

- Definition: $f(x) = x^n$ ($n \in \mathbb{R}$)
- Examples:
 - x^2 : Parabola, domain \mathbb{R} , range $[0, +\infty)$
 - $\sqrt{x}=x^{1/2}$: Domain $[0,+\infty)$
- (i) a = n, where n is a positive integer:

- (ii) $a = \frac{1}{n}$, where n is a positive integer:
 - The function $f(x)=x^{rac{1}{n}}=\sqrt[n]{x}$ is a root function

(b)
$$f(x) = \sqrt[3]{x}$$

(iii)
$$a=-1$$
:

• reciprocal function: $f(x) = x^{-1} = \frac{1}{x}$

5.2 Function Transformations

For any function y = f(x):

- 1. Vertical Shift: y = f(x) + k
 - Up if k > 0, down if k < 0

1. Horizontal Shift: y = f(x - h)

• Right if h > 0, left if h < 0

1. Scaling:

- Vertical: y = Af(x) (stretch if |A| > 1, shrink if 0 < |A| < 1)
- Horizontal: y = f(Bx) (compressed if |B| > 1, stretched if 0 < |B| < 1)

2. Reflection:

- y = -f(x) (flip vertically)
- y = f(-x) (flip horizontally)

5.3 inverse functions and Logarithms

Definition 1

A function f is called a **one-to-one function** if it never takes on the same value twice; that is:

$$f(x_1)
eq f(x_2) \quad whenever x_1
eq x_2$$

Horizontal Line Test A function is one-to-one if and only if no horizontal line intersects its graph more than once.

Definition 2

Let f be a one-to-one function with domain A and range B.

Then its *inverse function* f^{-1} has domain B and range A, and is defined by

$$f^{-1}(y) = x$$
 if and only if $f(x) = y$

for any $y \in B$.

Definition 3

$$ullet f^{-1}(x)=y\iff f(y)=x$$

Definition 4: cancellation equation

- $ullet f^{-1}(f(x))=x \quad ext{for every } x\in A$
- $ullet f(f^{-1}(x))=x \quad ext{for every } x\in B$

How to Find the Inverse Function of a One-to-One Function f

Step 1: Write the equation

$$y = f(x)$$

Step 2: Solve this equation for x in terms of y (if possible): f(y) = x

Step 3: Interchange x and y to express f^{-1} as a function of x:

$$y=f^{-1}(x)$$

Example

Find the inverse function of $f(x) = x^3 + 2$.

Solution

According to the inverse function process:

- 1. Write $y = x^3 + 2$
- 2. Solve for x in terms of y : $x^3 = y 2$, $x = \sqrt[3]{y 2}$
- 3. Interchange x and y : $y = \sqrt[3]{x-2}$

Therefore, the inverse function is:

$$f^{-1}(x)=\sqrt[3]{x-2}$$

Definition of Logarithm and its Inverse Relationship

- $\log_b x = y \iff b^y = x$
- $ullet \ \log_b(b^x) = x \quad ext{for every } x \in \mathbb{R}$

•
$$b^{\log_b x} = x$$
 for every $x > 0$

Laws of Logarithms

If x and y are **positive numbers**, and r is any **real number**, then:

1.
$$\log_b(xy) = \log_b x + \log_b y$$

$$2. \log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$3. \log_b(x^r) = r \log_b x$$

Natural Logarithm and Its Inverse

•
$$\log_e x = \ln x$$

•
$$\ln x = y \iff e^y = x$$

$$ullet \ \ln(e^x) = x \quad ext{for every } x \in \mathbb{R}$$

•
$$e^{\ln x} = x$$
 for every $x > 0$

•
$$\ln e = 1$$

inverse Trigonometric functions

1. $\arcsin x$

Definition:

$$y = \arcsin x \iff \sin y = x$$

• Domain:
$$[-1,1]$$

• Range:
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

2. $\arccos x$

Definition:

$$y = \arccos x \iff \cos y = x$$

• **Domain**:
$$[-1, 1]$$

• **Range**:
$$[0, \pi]$$

3. $\arctan x$

Definition:

$$y = \arctan x \iff \tan y = x$$

• Domain:
$$\mathbb R$$

• Range:
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

• The inverse cosecant function:

$$y=\csc^{-1}(x) \quad (|x|>1) \quad \Leftrightarrow \quad \csc(y)=x, \quad y\in \left[0,rac{\pi}{2}
ight)\cup \left(rac{\pi}{2},\pi
ight]$$

The inverse secant function:

$$y=\sec^{-1}(x) \quad (|x|>1) \quad \Leftrightarrow \quad \sec(y)=x, \quad y\in \left[0,rac{\pi}{2}
ight)\cup \left(rac{\pi}{2},\pi
ight]$$

• The inverse cotangent function:

$$y=\cot^{-1}(x) \quad (x\in \mathbb{R}) \quad \Leftrightarrow \quad \cot(y)=x, \quad y\in (0,\pi)$$

Key Connections to Calculus

- Derivatives:
 - $\frac{d}{dx}e^x = e^x$
 - $\frac{d}{dx} \ln x = \frac{1}{x}$
 - $\frac{d}{dx}\sin x = \cos x$
- Limits:
 - $ullet \lim_{x o -\infty} e^x = 0$
 - $ullet \lim_{x o 0^+} \ln x = -\infty$