

Test Three

Semester One 2016 Year 12 Mathematics Methods Calculator Free

<u>Teacher:</u>
Mr Staffe
Mrs. Carter
Mr Bertram
Mr Roohi
Ms Cheng

Name:

- Complete all questions
- Show all necessary working
- Total Marks = 27
- 27 minutes

1. [6 marks]

Differentiate each of the following functions with respect to *x*. **Do not simplify** your answers.

(a)
$$g(x) = -\cos\left(\frac{x}{2}\right)$$
 [2]

$$y = \frac{\sin x}{5x - 1}$$
 [2]

(c)
$$y = \sin^2(4x)$$
 [2]

2. [4 marks]

Show, using the quotient rule, that $\frac{d}{dx}\tan(x) = 1 + \tan^2 x$.

3. [9 marks]

Simplify or Evaluate the following integrals as appropriate

(a)
$$\int -\sin 2u \ du$$

[3]

(b)
$$\int \cos\left(\frac{x}{3}\right) + \frac{\sqrt[3]{6x}}{2} dx$$

[3]

(c) Evaluate
$$-2 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin 3x \ dx$$

[3]

4. [8 marks]

(a) Simplify
$$\int \cos\left(\frac{t}{3}\right) dt$$

[2]

(b) Use your answer to part (a) to evaluate
$$\int_{\pi}^{2x+1} \cos\left(\frac{t}{3}\right) dt$$
, in terms of x

[2]

(c) Use your answer to part (b) to evaluate
$$\frac{d}{dx} \left(\int_{\pi}^{2x+1} \cos\left(\frac{t}{3}\right) dt \right)$$
 [2]

(d) Hence evaluate
$$\frac{d}{dx} \left(\int_{\pi}^{f(x)} \cos\left(\frac{t}{3}\right) dt \right)$$
 [2]

Test Three

Semester One 2016 Year 12 Mathematics Methods Calculator Assumed

Name:			

- Complete all questions
- Show all necessary working
- *Total Marks* = 23
- 23 minutes

1. [6 marks]

Determine, with reasoning, whether each of the following represent a discrete random variable.

(a)	Х	0	1	2	3	4
	P(X=x)	0.3	0.1	0.4	0.05	0.15

(b)	Х	-2	-1	1	3	5
	P(X=x)	0.2	0	-0.3	0.6	0.5

Teacher:

____Mr Staffe

____Mrs. Carter

____Mr Bertram

____Mr Roohi

____Ms Cheng

4

(c)
$$P(X = x) = \left(\frac{1}{2}\right)^x$$
; $x = 1, 2, 3, 4...$

2. [8 marks]

Each of the following represent discrete probability functions. Determine the value of k for each.

(a)	Х	0	1	2	3	4
	P(X=x)	0.2	k	0.3	0.1	0.15

[2]

(b)
$$P(x) = \frac{x}{2k-1}$$
; $x = 1, 2, 3, 4, 5, 6$ [3]

(c)	X	1	2	3	5	7
	P(X=x)	2k	k	k	5k	6k

[3]

3. [9 marks]

Studies in Britain have recorded that 1 in 100 eight year-old children need at least one tooth removed caused by sugary drinks and severe tooth decay.

A typical primary school class of 24 eight year-olds are investigated for the need to remove at least one tooth.

Determine the probability of:

- (a) 2 students needing at least one tooth removed. [1]
- (b) No students requiring the removal of any teeth. [1]
- (c) At least one student requiring the removal of at least one tooth. [2]
- (d) Less than 4 students requiring the removal of at least one tooth given that at least one student required tooth removal. [2]

Of the thirteen year-olds in Britain requiring tooth removal, the probability of them requiring any one tooth out of their 32 permanent teeth removed, independent of the others is 5%.

(e) Calculate the probability of a permanent tooth in a thirteen year - old needing removal.

[3]

Test Three

Semester One 2016 **Year 12 Mathematics Methods** Calculator Free

Name: Mark King-Gyde

- Total Marks = 27
- 27 minutes

1. [6 marks]

Differentiate each of the following functions with respect to *x*. Do not simplify your answers.

(a)
$$g(x) = -\cos\left(\frac{x}{2}\right) g'(x) = \frac{1}{2}\sin\left(\frac{x}{2}\right)$$

(b)
$$y = \frac{\sin x}{5x - 1}$$

 $\frac{dy}{dx} = \frac{(5x - 1)(\cos x) - (5\sin x)}{(5x - 1)^2}$

(c)
$$y = \sin^2(4x)$$

$$y = (\sin(4x))^2$$

$$\frac{dy}{dx} = 2(\sin(4x))(4\cos(4x))$$

2. [4 marks]

Show, using the quotient rule, that $\frac{d}{dx}\tan(x) = 1 + \tan^2 x$.

$$y = \tan x = \frac{\sin x}{\cos x}$$

$$\frac{dy}{dx} = \frac{\cos(x)\cos(x) - \sin(x)(-\sin(x))}{\cos^2 x}$$

$$\frac{dy}{dx} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$

$$\frac{dy}{dx} = \frac{\cos^2 x}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x}$$

$$\frac{dy}{dx} = 1 + \tan^2 x$$

3. [9 marks]

Simplify or Evaluate the following integrals as appropriate

(a)
$$\int -\sin 2u \sqrt{\frac{1}{2}} = \frac{\cos 2u}{2} + c$$
(b)
$$\int \cos \left(\frac{x}{3}\right) + \frac{\sqrt[3]{6x}}{2} dx = 3\sin \left(\frac{x}{3}\right) + \frac{3(6x)^{\frac{4}{3}}}{8} + c$$

(c)
$$-2\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sin 3x \, dx$$

$$=-2\left[\frac{-\cos 3x}{3}\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} \checkmark$$

$$=-2\left[\frac{-\cos \pi}{3} - \frac{-\cos \frac{\pi}{2}}{3}\right] \checkmark$$

$$=-2\left(\frac{1}{3} + 0\right)$$

4. [8 marks]

(a) Calculate
$$\int \cos\left(\frac{t}{3}\right) dt$$

$$=3\sin\frac{t}{3}+c$$

(b) Use your answer to part (a) to evaluate $\int_{-\pi}^{2x+1} \cos\left(\frac{t}{3}\right) dt$, in terms of x

$$= \left[3\sin\frac{t}{3} + c\right]_{\pi}^{2x+1}$$

$$= \left(3\sin\frac{2x+1}{3} + c\right) - \left(3\sin\frac{\pi}{3} + c\right)$$

$$= 3\sin\frac{2x+1}{3} \checkmark \frac{3\sqrt{3}}{2} \checkmark$$

(c) Use your answer to part (b) to evaluate $\frac{d}{dx} \left(\int_{\pi}^{2x+1} \cos\left(\frac{t}{3}\right) dt \right)$

$$\frac{d}{dx} \left(3\sin\frac{2x+1}{3} - \frac{3\sqrt{3}}{2} \right)$$

$$= 3\cos\frac{2x+1}{3} \times 2$$

$$= 6\cos\frac{2x+1}{3}$$

(d) Hence evaluate $\frac{d}{dx} \left(\int_{\pi}^{f(x)} \cos\left(\frac{t}{3}\right) dt \right)$ = $\cos\left(\frac{f(x)}{3}\right) \times f'(x)$

Test Three

Semester One 2016 Year 12 Mathematics Methods Calculator Assumed

Name:	Marl	k Ki	ing-	Gyd	e
				_	

- Complete all questions
- Show all necessary working
- Total Marks = 36
- 36 minutes

1. [6 marks]

Determine, with reasoning, whether each of the following represent a discrete random variable.

Teacher:
Mr Staffe
Mrs. Carter
Mr Bertram
Mr Roohi
Ms Cheng

Yes this table does represent a DRV, all probabilities add to 1 and there are no negative $\frac{1}{2}$

(b)	X	-2	-1	1	3	5
	P(X=x)	0.2	0	-0.3	0.6	0.5

No, this table does not represent a DRV. Despite all the probability values adding to 1, as one is negative, this cannot represent a DRV. \checkmark

(c)
$$P(X = x) = \left(\frac{1}{2}\right)^x$$
; $x = 1, 2, 3, 4...$

The sequence of probabilities is:
$$\frac{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \dots \checkmark}{S_{\infty} = \frac{0.5}{1 - 0.5} = 1}$$

Therefore all probabilities will add to 1, and none are negative.

2. [8 marks]

X	0	1	2	3	4
P(X=x)	0.2	k	0.3	0.1	0.15

$$k = 1 - 0.2 - 0.3 - 0.1 - 0.15$$

 $k = 0.25$

(b)
$$P(x) = \frac{x}{2k-1}$$
; $x = 1, 2, 3, 4, 5, 6$

$$1 = \frac{1+2+3+4+5+6}{2k-1}$$

$$1 = \frac{21}{2k-1}$$

$$k = 11$$

(c)

X	1	2	3	5	7
P(X=X)	2k	\boldsymbol{k}	k	5k	6k

$$2k + k + k + 5k + 6k = 1$$

$$k = \frac{1}{15}$$

3. [9 marks]

Studies in Britain have recorded that 1 in 100 eight year-old children need at least one tooth removed caused by sugary drinks and severe tooth decay.

A typical primary school class of 24 eight year-olds are investigated for the need to remove at least one tooth.

Determine the probability of:

(a) 2 students needing at least one tooth removed.

$$X \sim Bin(24, \frac{1}{100})$$

 $P(X = 2) = 0.02213$

(b) No students requiring the removal of any teeth.

$$P(X = 0) = 0.7857$$

(c) At least one student requiring the removal of at least one tooth.

$$P(X \ge 1) = 0.2143$$

(d) Less than 4 students requiring the removal of at least one tooth given that at least one student required tooth removal.

$$P(X < 4 \mid X \ge 1) = \frac{P(1 \le X \le 3)}{P(X \ge 1)} = \frac{0.2142}{0.2143} = 0.9995$$

Of the thirteen year-olds in Britain requiring tooth removal, the probability of them requiring just one tooth out of their 32 permanent teeth removed is 5%.

(e) Calculate the probability of a permanent tooth in a thirteen year - old needing removal.

$$Y \sim Bin(32, 0.05)$$
 \checkmark $P(Y = 1) = 0.3263$ \checkmark

4. [13 marks]

Phoebe and Katelyn are facing a multiple choice assessment for their least favourite subject.

Marks for this test will be awarded in the following way: 4 marks will be awarded for a correct answer, 0 marks will be awarded for not attempting a question and 2 marks will be deducted for an incorrect answer.

This assessment contains 20 questions, each with four alternative answers.

Katelyn starts reading the test and is certain she knows 6 of the answers.

(a) If Katelyn attempts all questions, what is the chance she'll answer 15 out of 20 correctly?

$$X \sim Bin(14, 0.25)$$
 \checkmark $P(X = 9) = 0.00181$ \checkmark

(b) If Katelyn attempts all questions, what is the most likely number of questions she'll answer correctly?

$$P(X = 3) = 0.2402$$

This is the highest probability in the above defined distribution.

Therefore Katelyn is most likely to guess three correctly. Hence she is likely to answer 9 questions correctly, with the 6 she already knows.

Phoebe starts reading the test and is certain she knows 10 of the answers.

She has two strategies to employ, detailed below.

Strategy A: Answer the 10 questions she knows for certain and guess the other 10.

Strategy B: Answer the 10 questions she knows for sure and guess 6 of the other 10 questions (thus not attempting 4 questions).

(c) Calculate the expected number of correct questions if Phoebe uses strategy A.

$$Y \sim Bin(10, 0.25)$$

 $E(Y) = 10 \times 0.25 = 2.5$

Phoebe is therefore expected to answer 12 or 13 answers correctly.

Calculate the expected number of correct questions if Phoebe uses strategy B. (d)

$$W \sim Bin(6, 0.25)$$

 $E(W) = 6 \times 0.25 = 1.5$

Phoebe is therefore expected to answer 11 or 12 answers correctly.

(e) Hence calculate the number of marks she can expect to be awarded with each strategy.

Strategy A:
$$12 \times 4 - 2 \times 8 = 48 - 16 = 32$$
 OR $13 \times 4 - 2 \times 7 = 52 - 14 = 38$
Strategy B: $12 \times 4 - 2 \times 4 = 48 - 8 = 40$ OR $11 \times 4 - 2 \times 5 = 44 - 10 = 34$

(f) Which strategy should Phoebe use?

Phoebe will earn more marks using Strategy B. \checkmark

