

Department of Mathematical Sciences

Examination paper for MA2501 Numerical Methods

Academic contact during examination: Markus Grasmair

Phone: 73 59 35 36

Examination date: 07th June 2014

Examination time (from-to): 09:00-13:00 Permitted examination support material:

- The textbook: Cheney & Kincaid, Numerical Mathematics and Computing, 6. or 7. edition, including the list of errata.
- Rottmann, Mathematical formulae.
- Handouts on Fixed point iterations and On the existence of a Cholesky factorization.
- Approved basic calculator.

Other information:

- All answers should be justified and include enough details to make it clear which methods or results have been used.
- Some of the (sub-)problems will earn you more points than others the total is 100 points.

Language: English
Number of pages: 2

Number pages enclosed: 0

_____ Date Signature

Checked by:

Problem 1 Consider the linear system

$$\begin{pmatrix} 4 & 2 & 6 \\ 2 & 1 & 1 \\ -2 & 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 1 \\ 5 \end{pmatrix}.$$

- a) Compute the solution of this system using Gaussian elimination with scaled partial pivoting.
 (10 points)
- b) Is it possible to solve this equation using Gaussian elimination without pivoting? Is it possible to apply Cholesky decomposition?

 (5 points)

Problem 2 Consider the function

$$f(x) := 2x - \sin(x) + 2.$$

In order to solve the equation f(x) = 0, it is possible to apply a fixed point iteration of the form

$$x_{k+1} = x_k - \frac{1}{2}f(x_k).$$

- a) Show that the equation f(x) = 0 has a unique solution \hat{x} , and that the iteration converges for every starting value $x_0 \in \mathbb{R}$ to \hat{x} .

 (10 points)
- b) Compute one step of the fixed point iteration with a starting value $x_0 = 0$. Use your result to estimate, after how many steps we have $|x_k - \hat{x}| \leq 2^{-20}$. (5 points)

Problem 3 Denote by f_n , $n \in \mathbb{N}$, the polynomial of degree n that interpolates the function $f(x) = e^x + e^{-x}$ in equidistant interpolation points in the interval [0,1].

- a) Show that $f_n(x) \to f(x)$ for every $x \in \mathbb{R}$. (10 points)
- **b)** Provide an estimate for

$$\sup_{0 \le x \le 1} |f_5(x) - f(x)|.$$

(10 points)

Problem 4 We are given a function $f: \mathbb{R} \to \mathbb{R}$ at the following points:

Compute from these values the best possible approximation of f'(0) using central finite differences and Richardson extrapolation.

(10 points)

Problem 5 Consider a quadrature rule of the form

$$Q(f,-1,1) := 2(c_0f(-1) + c_1f(-2/3) + c_2f(0) + c_3f(2/3) + c_4f(1))$$

for the approximation of a definite integral $\int_{-1}^{1} f(x) dx$.

a) Find weights $c_0, \ldots, c_4 \in \mathbb{R}$ such that all polynomials of degree 4 are integrated exactly, that is,

$$Q(P, -1, 1) = \int_{-1}^{1} P(x) dx$$

whenever P is a polynomial of degree 4. (15 points)

b) Using the weights computed in the first part of the exercise, find the smallest integer $k \in \mathbb{N}$ for which $Q(x^k, -1, 1) \neq \int_{-1}^1 x^k dx$. (5 points)

Problem 6 Consider the initial value problem

$$y' = \cos(y) - 2y,$$

$$y(0) = 0.$$

- a) Apply two steps of the explicit Euler method¹ with a step size of h = 1 for the solution of this equation.

 (5 points)
- b) Apply two steps of the implicit Euler method² with a step size of h=1 for the solution of this equation. In each step, use two steps of Newton's method (with a resonable starting value of your choice) for the solution of the non-linear equation you have to solve.

 (15 points)

¹This method is simply called *Euler's method* in Cheney & Kincaid.

²Recall that this method is defined by the iteration $y_{n+1} = y_n + hf(t_{n+1}, y_{n+1})$.