

STH140N8F7-2

N-channel 80 V, 3.3 mΩ typ., 90 A STripFET™ F7 Power MOSFET in a H2PAK-2 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD	Ртот
STH140N8F7-2 80 V		4 mΩ	90 A	200 W

- Among the lowest R_{DS(on)} on the market
- Excellent figure of merit (FoM)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packaging
STH140N8F7-2	140N8F7	H ² PAK-2	Tape and reel

Contents STH140N8F7-2

Contents

1	Electrical ratings			
2	Electric	cal characteristics	4	
	2.1	Electrical characteristics (curves)	5	
3	Test cir	·cuit	7	
4	Packag	e mechanical data	8	
	4.1	H2PAK-2 mechanical data	9	
5	Packag	ing mechanical data	12	
6	Revisio	n history	14	

STH140N8F7-2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	80	V	
V _G s	Gate-source voltage	± 20	V	
ID	Drain current (continuous) at T _C = 25 ° C	90 (1)	Α	
I _D	Drain current (continuous) at T _C = 100 ° C	90	Α	
I _{DM} ⁽²⁾	Drain current (pulsed)	360	Α	
Ртот	Total dissipation at $T_C = 25 ^{\circ}$ C 200			
Eas ⁽³⁾	Single pulse avalanche energy 515			
Tj	Operating junction temperature			
T _{stg}	Storage temperature - 55 to 175			

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} (1)	Thermal resistance junction-pcb	35	° C/W
R _{thj-case}	Thermal resistance junction-case	0.75	° C/W

Notes:

⁽¹⁾Limited by package

⁽²⁾Pulse width is limited by safe operating area

 $^{^{(3)}}$ Starting Tj =25 ° C, Id = 18.5 A, Vdd = 50 V

 $^{^{(1)}}$ When mounted on FR-4 board of 1inch² , 2oz Cu

Electrical characteristics STH140N8F7-2

2 Electrical characteristics

(T_{CASE} = 25 ° C unless otherwise specified)

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0$, $I_D = 250 \mu A$	80			V
	Zero gate voltage	$V_{GS} = 0, V_{DS} = 80 \text{ V}$			1	μΑ
IDSS	Drain current	V _{GS} = 0, V _{DS} = 80 V, T _J =125 ° C			10	μΑ
Igss	Gate-source leakage current	$V_{DS} = 0$, $V_{GS} = \pm 20 \text{ V}$			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.5		4.5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} =10 V, I _D = 45 A		3.3	4	mΩ

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	6340	-	pF
Coss	Output capacitance $V_{GS} = 0$, $V_{DS} = 40 \text{ V}$, $f = 1 \text{ MHz}$		-	1195	ı	pF
C_{rss}	Reverse transfer capacitance			105		pF
Qg	Total gate charge	10 1/ 04 4	-	96	-	nC
Q_{gs}	Gate-source charge	$V_{DD} = 40 \text{ V}, I_{D} = 64 \text{ A},$ $V_{GS} = 10 \text{ V}$	-	30	-	nC
Q _{gd}	Gate-drain charge	VGS = 10 V	-	26	-	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	26	ı	ns
t _r	Rise time	$V_{DD} = 40 \text{ V}, I_D = 45 \text{ A R}_G = 4.7 \Omega,$	-	51	ı	ns
t _{d(off)}	Turn-off-delay time	V _{GS} = 10 V	-	82	ı	ns
t _f	Fall time		-	44	-	ns

Table 7: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		1		90	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				360	Α
V _{SD} ⁽²⁾	Forward on voltage	$V_{GS} = 0$, $I_{SD} = 90$ A	-		1.2	V
t _{rr}	Reverse recovery time		-	58		ns
Qrr	Reverse recovery charge $I_{SD} = 64 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}, V_{DD} = 60 \text{ V}, T_i = 150 ^{\circ}\text{ C}$		1	92		nC
I _{RRM}	Reverse recovery current	טט אין – טט אי, זון – זטט י	-	3.2		Α

Notes:

⁽¹⁾Pulse width is limited by safe operating area

 $^{^{(2)}\}text{Pulse}$ test: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 4: Output characteristics GIPD130920130919MT (A) VGS= 10V 300 250 6V 200 150 5V 100 50 4V 0 0 2 VDS(V)

Figure 10: Normalized gate threshold voltage vs. temperature

VGS(th)
(norm)

1.2

1

0.8

0.6

0.4

-75

-25

0

25

75

125

175

TJ(°C)

STH140N8F7-2 Test circuit

AM01468v1

3 Test circuit

Figure 13: Switching times test circuit for resistive load

RL 2200 3.3 µF VDD

VBS RG D.U.T.

Figure 14: Gate charge test circuit

VDD

VI = 20V = V GMAX

AM01469v1

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

8/15 DocID026821 Rev 2

4.1 H2PAK-2 mechanical data

Figure 19: H²PAK-2 leads drawing

Table 8: H²PAK-2 leads mechanical data

Dim	Table 6.111 AR 2 loa	mm	
Dim.	Min.	Тур.	Max.
А	4.30		4.80
A1	0.03		0.20
С	1.17		1.37
е	4.98		5.18
Е	0.50		0.90
F	0.78		0.85
Н	10.00		10.40
H1	7.40		7.80
L	15.30	-	15.80
L1	1.27		1.40
L2	4.93		5.23
L3	6.85		7.25
L4	1.5		1.7
M	2.6		2.9
R	0.20		0.60
V	0°		8°

12.20 12.30 2.54 2.54 1.60

5 Packaging mechanical data

Figure 21: Tape

Figure 22: Reel

Table 9: Tape and reel mechanical data

	Tape	bie 9. Tape and I		Reel	
Di	n	nm	D:	r	nm
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	10.5	10.7	Α		330
B0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base qty 100		1000
P2	1.9	2.1	Bulk	qty	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Revision history STH140N8F7-2

6 Revision history

14/15

Table 10: Document revision history

Date	Revision	Changes
25-Aug-2014	1	First release. Part numbers STF140N8F7 and STP140N8F7 previously included in the datasheet DocID023888.
10-Oct-2014	2	Updated Figure 3: "Thermal impedance"

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved