Math 327 Homework 5

We did not cover the Integral Test (Corollary 9.11 and Corollary 9.13) so do not use it below.

- 1. Determine if the following series converge. Explain.
 - (a) $\sum_{n=1}^{\infty} \frac{1}{5n-2}$
 - (b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$
 - (c) $\sum_{n=1}^{\infty} \left(\frac{n+1}{n^2+1} \right)^3$
 - (d) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$. Here you need $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e > 1$.
 - $\text{(e)} \ \ 1 + \frac{1 \cdot 2}{1 \cdot 3} + \frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5} + \frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5 \cdot 7} + \dots$
 - (f) $\sum_{n=1}^{\infty} \frac{n}{2^n}$
- 2. Redo your exam questions. Even if you got full points on a question, you can improve your presentation of your proof, maybe taking off unnecessary details or filling in some steps, words or explanations.
 - (a) Find the infimum and supremum of $S = \left\{ \frac{2n+5}{3n-1} : n \in \mathbb{N} \right\}$ and prove your claims.
 - (b) Determine if the following are true of false. If true, briefly explain why. If false, give a counter-example.
 - 1. An increasing bounded sequence converges.
 - 2. The set \mathbf{Q} of rational numbers is closed.
 - 3. A sequence (a_n) converges if and only if $(|a_n|)$ converges.
 - 4. Every bounded set in **R** has a least upper bound.
 - 5. If $a_n > 0$ for all n and $a_n \to a$, then a > 0.
 - (c) Define a sequence (a_n) recursively by $a_1 = 1$ $a_{n+1} = \frac{1+a_n}{2+a_n} = 1 \frac{1}{2+a_n}$.
 - 1. Prove by induction on n that $\frac{-1+\sqrt{5}}{2} < a_n$ for all n.
 - 2. Prove that (a_n) is monotone.
 - 3. What is the limit of (a_n) ?
 - (d) Let $S = \{s_1, s_2, ..., s_k\}$ be a finite set of real numbers. Prove that S is closed.

1