

Machine Learning CS60050

Computational Learning Theory (Theory of Generalization)

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 6: Theory of Generalization

Outline

ullet Proof that $m_{\mathcal{H}}(N)$ is polynomial

ullet Proof that $m_{\mathcal{H}}(N)$ can replace M

© M Creator: Yaser Abu-Mostafa - LFD Lecture 6

Bounding $m_{\mathcal{H}}(N)$

To show: $m_{\mathcal{H}}(N)$ is polynomial

We show: $m_{\mathcal{H}}(N) \leq \cdots \leq n$ a polynomial

Key quantity:

B(N,k): Maximum number of dichotomies on N points, with break point k

Recursive bound on B(N, k)

Consider the following table:

$$B(N,k) = \alpha + 2\beta$$

		# of rows	\mathbf{x}_1	\mathbf{x}_2		V	v
		# 01 10005			• • •	\mathbf{x}_{N-1}	\mathbf{x}_N
			+1	+1	• • •	+1	+1
			-1	+1		+1	-1
	S_1	α	:	:	:	:	:
			+1	-1		-1	-1
			-1	+1		-1	+1
			+1	-1		+1	+1
			-1	-1		+1	+1
	S_2^+	β		•	•	:	:
	_		+1	-1		+1	+1
S_2			-1	-1		-1	+1
\mathcal{D}_2			+1	-1		+1	-1
	S_2^-	eta	-1	-1		+1	-1
							:
	_		+1	-1		+1	-1
			-1	-1		-1	-1

Estimating α and β

Focus on $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{N-1}$ columns:

$$\alpha + \beta \le B(N-1,k)$$

		# of rows	\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{N-1}	$ \mathbf{x}_N $
			+1	+1		+1	+1
			-1	+1		+1	-1
	S_1	α	:	:	:	:	
			+1	-1		-1	-1
			-1	+1		-1	+1
			+1	-1		+1	+1
			-1	-1		+1	+1
	S_2^+	eta		ŧ	ŧ	:	
			+1	-1		+1	+1
S_2			-1	-1		-1	+1
			+1	-1		+1	-1
			-1	-1		+1	-1
	S_2^-						
			+1	-1		+1	-1
			-1	-1		-1	-1

Estimating β by itself

Now, focus on the $S_2 = S_2^+ \cup S_2^-$ rows:

$$\beta \leq B(N-1,k-1)$$

		# of rows	X1	X 2		\mathbf{x}_{N-1}	$ \mathbf{x}_N $
		11	+1	+1			+1
			-1	+1		+1	-1
	S_1						
			+1	-1		-1	-1
			-1	+1		-1	+1
			+1	-1		+1	+1
			-1	-1		+1	+1
	S_2^+	β		:	:	:	1
			+1	-1		+1	+1
S_2			-1	-1		-1	+1
			+1	-1		+1	-1
			-1	-1		+1	-1
	S_2^-						1
			+1	-1		+1	-1
			-1	-1		-1	-1

Putting it together

$$B(N,k) = \alpha + 2\beta$$

$$\alpha + \beta \le B(N-1,k)$$

$$\beta \le B(N-1,k-1)$$

B(N,k)	\leq
	B(N-1,k) + B(N-1,k-1)

	i	l	1				ı
		# of rows	\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{N-1}	\mathbf{x}_N
			+1	+1		+1	+1
			-1	+1		+1	-1
	S_1	α	:	:	:	:	:
			+1	-1		-1	-1
			-1	+1		-1	+1
	S_2^+		+1	-1		+1	+1
		eta	-1	-1		+1	+1
			:	:	:	:	:
			+1	-1		+1	+1
S_2 .			-1	-1		-1	+1
<i>D</i> 2 .	S_2^-		+1	-1		+1	-1
		eta	-1	-1		+1	-1
			:	ŧ	ŧ	<u>:</u>	÷
			+1	-1		+1	-1
			-1	-1		-1	-1

Numerical computation of B(N, k) bound

© M Creator: Yaser Abu-Mostafa - LFD Lecture 6

Analytic solution for B(N, k) bound

$$B(N,k) \le B(N-1,k) + B(N-1,k-1)$$

Theorem:

$$B(N,k) \ \leq \ \sum_{i=0}^{k-1} inom{N}{i}$$

1. Boundary conditions: easy

		k						
		1	2	3	4	5	6	• •
	1	1	2	2	2	2	2	
	2	1						
	3	1						
N	4	1						
	5	1				A		
	6	1				O		
	•	:						

2. The induction step

$$\sum_{i=0}^{k-1} \binom{N}{i} = \sum_{i=0}^{k-1} \binom{N-1}{i} + \sum_{i=0}^{k-2} \binom{N-1}{i}?$$

$$= 1 + \sum_{i=1}^{k-1} \binom{N-1}{i} + \sum_{i=1}^{k-1} \binom{N-1}{i-1}$$

$$= 1 + \sum_{i=1}^{k-1} \left[\binom{N-1}{i} + \binom{N-1}{i-1} \right]$$

$$= 1 + \sum_{i=1}^{k-1} \binom{N}{i} = \sum_{i=0}^{k-1} \binom{N}{i} \checkmark$$

It is polynomial!

For a given \mathcal{H} , the break point k is fixed

$$\begin{array}{ccc} m_{\mathcal{H}}(N) & \leq & \displaystyle\sum_{i=0}^{k-1} \binom{N}{i} \\ & & \\ &$$

Three examples

$$\sum_{i=0}^{k-1} \binom{N}{i}$$

• \mathcal{H} is **positive rays**: (break point k=2)

$$m_{\mathcal{H}}(N) = N + 1 \leq N + 1$$

• \mathcal{H} is positive intervals: (break point k=3)

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 \le \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

• \mathcal{H} is 2D perceptrons: (break point k=4)

$$m_{\mathcal{H}}(N) = ? \le \frac{1}{6}N^3 + \frac{5}{6}N + 1$$

Outline

ullet Proof that $m_{\mathcal{H}}(N)$ is polynomial

ullet Proof that $m_{\mathcal{H}}(N)$ can replace M

What we want

Instead of:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 2 \qquad \mathbf{M} \qquad e^{-2\epsilon^2 N}$$

We want:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 2 \, m_{\mathcal{H}}(N) \, e^{-2\epsilon^2 N}$$

Pictorial proof \odot

• How does $m_{\mathcal{H}}(N)$ relate to overlaps?

ullet What to do about $E_{
m out}$?

• Putting it together

What to do about E_{out}

Putting it together

Not quite:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \leq 2 m_{\mathcal{H}}(N) e^{-2\epsilon^2 N}$$

but rather:

$$\mathbb{P}[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \le 4 m_{\mathcal{H}}(2N) e^{-\frac{1}{8}\epsilon^2 N}$$

The Vapnik-Chervonenkis Inequality

Thank You!

