INTERACT: Achieving Low Sample and Communication Complexities in Decentralized Bilevel Learning over Networks

Zhuqing Liu¹, Xin Zhang², Prashant Khanduri^{3,1}, Songtao Lu⁴, and Jia Liu¹

Department of Electrical and Computer Engineering, The Ohio State University

Department of Statistics, Iowa State University

Department of Electrical and Computer Engineering, University of Minnesota

HBM Research AI, IBM Thomas J. Watson Research Center

ABSTRACT

In recent years, decentralized bilevel optimization problems have received increasing attention in the networking and machine learning communities thanks to their versatility in modeling decentralized learning problems over peer-to-peer networks (e.g., multi-agent meta-learning, multi-agent reinforcement learning, personalized training, and Byzantine-resilient learning). However, for decentralized bilevel optimization over peer-to-peer networks with limited computation and communication capabilities, how to achieve low sample and communication complexities are two fundamental challenges that remain under-explored so far. In this paper, we make the first attempt to investigate the class of decentralized bilevel optimization problems with nonconvex and strongly-convex structure corresponding to the outer and inner subproblems, respectively. Our main contributions in this paper are two-fold: i) We first propose a deterministic algorithm called INTERACT (innergradient-descent-outer-tracked-gradient) that requires the sample complexity of $O(n\epsilon^{-1})$ and communication complexity of $O(\epsilon^{-1})$ to solve the bilevel optimization problem, where *n* and $\epsilon > 0$ are the number of samples at each agent and the desired stationarity gap, respectively. ii) To relax the need for full gradient evaluations in each iteration, we propose a stochastic variance-reduced version of INTERACT (SVR-INTERACT), which improves the sample complexity to $O(\sqrt{n}\epsilon^{-1})$ while achieving the same communication complexity as the deterministic algorithm. To our knowledge, this work is the first that achieves both low sample and communication complexities for solving decentralized bilevel optimization problems over networks. Our numerical experiments also corroborate our theoretical findings.

ACM Reference Format:

Zhuqing Liu¹, Xin Zhang², Prashant Khanduri^{3,1}, Songtao Lu⁴, and Jia Liu¹. 2018. INTERACT: Achieving Low Sample and Communication Complexities in Decentralized Bilevel Learning over Networks. In *Proceedings of Make sure to enter the correct conference title from your rights confirmation emai (MobiHoc '22)*. ACM, New York, NY, USA, 19 pages. https://doi.org/XXXXXXXXXXXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

MobiHoc '22, October 17–22, 2022, Seoul, South Korea © 2018 Association for Computing Machinery. ACM ISBN 978-1-4503-XXXX-X/18/06...\$15.00 https://doi.org/XXXXXXXXXXXXXX

1 INTRODUCTION

In recent years, fueled by the rise of machine learning and artificial intelligence in edge networks, decentralized bilevel optimization problems have received increasing attention in the networking and machine learning communities. This is due to the versatility of decentralized bilevel optimization in supporting many decentralized learning paradigms over peer-to-peer networks, such as the multi-agent versions of meta learning [23, 35, 35], hyperparameter optimization problem[25][30], area under curve (AUC) problems [20, 34], and reinforcement learning[10][44]. To date, however, there remain many challenges and open problems in decentralized bilevel learning over peer-to-peer networks. Two of the most fundamental challenges in decentralized bilevel optimization are how to achieve low sample and communication complexities. The need for decentralized bilevel optimization with low sampleand communication-complexities is particularly compelling in peerto-peer edge networks, where the nodes (mobile devices, sensors, UAVS, etc.) are typically limited in their computation and communication capabilities.

Mathematically, decentralized bilevel optimization problems share the same structure as their single-agent counterpart in that such problems contain an outer objective function that is in turn dependent on the optimal parameter values of an inner objective. Interestingly, the single-agent version of bilevel optimization is a class of challenging optimization problems in its own right due to the inherent non-convexity in these problems, and thus having received a significant amount of attention recently. To date, many algorithmic ideas have been proposed for single-agent bilevel optimization problems, such as double-loop iterative methods [6, 7, 11], single-level approach for reformulated bilevel problems [18, 28], and simultaneous upper-lower-level updates [4, 5, 9, 14, 15] (see Section 2 for more detailed discussions).

Compared to conventional single-agent bilevel optimization problems, designing effective and efficient algorithms for solving decentralized bilevel stochastic optimization problems remains underexplored. This is in large part due to the fact that using techniques designed for single-agent bilevel optimization faces several technical challenges when utilized for decentralized bilevel optimization. In fact, most of aforementioned algorithmic ideas for single-agent bilevel optimization are not applicable in decentralized multi-agent version of bilevel optimization. One of the fundamental reasons is that, instead of having only one optimization task in the inner subproblem, there are *multiple* inner tasks that need to be handled in the decentralized multi-agent setting, which renders techniques for single-agent bilevel optimization infeasible and often implies the challenges of efficiency and scalability.

To address the efficiency and scalability for solving bilevel optimization problem with multiple inner subproblems, a natural idea is to leverage the decentralized network-consensus optimization approach [43, 45], where multiple agents distributively and collaboratively solve a global learning task. However, in developing network-consensus approaches for decentralized bilevel optimization, two fundamental challenges arise: First, the tightly coupled inner-outer mathematical structure, together with the decentralized nature and the non-convexity of the outer problem, makes the design and theoretical analysis of the algorithms far more challenging compared to solving conventional single-level minimization problems. Second, due to the potential low-speed network connections and the large variability of stochastic gradient-type information in geographically-dispersed edge networks, network-consensus approaches for decentralized bilevel optimization are very sensitive to communication and sample complexities. These challenges motivate us to design effective and efficient network-consensus-based algorithms for decentralized bilevel learning, which strike a good balance between sample and communication complexities.

The major contribution of this paper is that we propose a series of new algorithmic techniques to overcome the aforementioned challenges and achieve both low sample and communication complexities for decentralized bilevel optimization. Our main technical contributions are summarized below:

- We propose a decentralized bilevel optimization algorithm called INTERACT (inner-gradient-descent-outer-tracked-gradient). We show that, INTERACT enjoys a convergence rate of O(1/T) to achieve an ϵ -stationary point, where T is the maximum number of iterations. As a consequence, INTERACT achieves $[O(n\epsilon^{-1}), O(\epsilon^{-1})]$ sample-communication complexity per agent, where n is the total data size at each agent and ϵ is the desired accuracy. To our knowledge, INTERACT is the first algorithm for decentralized bilevel optimization with such low sample and communication complexities (please see Table 1).
- To lower the sample complexity of INTERACT, we propose another enhanced version called SVR-INTERACT using stochastic valence reduction techniques, which further reduces the sample complexity of INTERACT while retaining the same communication complexity order. Specifically, we show that SVR-INTERACT retains the same $O(\epsilon^{-1})$ communication complexity as of INTERACT while achieving lower sample complexity of $O(\sqrt{n}\epsilon^{-1})$.
- To examine the performance of algorithm INTERACT and SVR-INTERACT and verify our theoretical results, we conduct experiments on meta-learning tasks with the miniImageNet [36] and FC100 datasets [31]. Our results show that the proposed INTERACT and SVR-INTERACT algorithms outperform other baseline algorithms. Also, we numerically show that SVR-INTERACT enjoys low sample and communication complexities.

The rest of the paper is organized as follows. In Section 2, we review related literature. In Section 3, we provide the preliminaries of the decentralized bilevel optimization problems. In Section 4 and Section 5, we propose two algorithms, namely INTERACT and SVR-INTERACT. Also, the convergence rate, communication complexity, and sample complexity of these two algorithms are provided. Section 6 provides numerical results to verify our theoretical findings, and Section 7 concludes this paper.

Table 1: Comparisons among algorithms for bilevel optimization problems, where ϵ denotes the ϵ -stationary point defined in (2) and n is the size of dataset at each agent. Fos BSA, we denote sample complexities as (Outer, Inner) as to achieve the ϵ -stationary point the algorithm requires different number of outer and inner samples. Note that the rest of the algorithms require the same number of outer and inner samples to achieve ϵ -stationary point.

Algorithms	Sample Complex.	Decentralized	Multi LL tasks
BSA [7]	$(O(\epsilon^{-2}),O(\epsilon^{-3}))$	Х	×
TTSA [10]	$O(\epsilon^{-5/2})$	Х	Х
stocBiO [11]	$O(\epsilon^{-2})$	Х	Х
MSTSA [14]	$O(\epsilon^{-2})$	Х	Х
STABLE [4]	$O(\epsilon^{-2})$	Х	Х
ALSET [5]	$O(\epsilon^{-2})$	Х	Х
SUSTAIN [15]	$O(\epsilon^{-1.5})$	Х	Х
VRBO [42]	$O(\epsilon^{-1.5})$	Х	Х
RSVRB [9]	$O(\epsilon^{-1.5})$	Х	1
INTERACT (Ours)	$O(n\epsilon^{-1})$	✓	✓
SVR-INTERACT (Ours)	$O(\sqrt{n}\epsilon^{-1})$	✓	✓

2 RELATED WORK

1) Bilevel Optimization Approaches: Classical approaches to solve bilevel optimization problems include: i) reformulating the bilevel problem to a single-level problem and replacing the inner-level problem by its KKT conditions [38], or ii) utilizing penalty based approaches [27]. Motivated by various machine learning applications, gradient-based techniques have recently become the most popular strategies for solving bilevel optimization problems. A variety of explicit gradient-based methods have been investigated (e.g., AID-based methods [35] and ITD-based methods [32]). Due to large memory requirements and high sample complexities, these methods face challenges when implemented for machine learning applications, especially if the training data sizes are large.

To overcome this challenge, a stochastic gradient descent (SGD) based double-loop algorithm called BSA [7] was recently proposed for bilevel optimization. BSA provided the first finite-time convergence guarantees for solving non-convex-strongly-convex bilevel optimization problem. The convergence performance of BSA was improved by stocBiO [11], however at the cost of evaluating very large batch-size gradients in each iteration for both outer and inner subproblems (see Table 1 for a detailed comparison). Recently, motivated by sequential games, many single-loop algorithms have been proposed for solving the bilevel problems, where the outer and inner level problem's iterates are updated simultaneously [4, 5, 9, 10, 14, 15, 42]. Initially, it was shown in [10] that TTSA, a vanilla SGD-based algorithm that updates inner and outer level problem's iterates simultaneously, requires $O(\epsilon^{-5/2})$ samples of both inner and outer-level functions to achieve ϵ -stationarity. Later, this rate was improved by MSTSA [14] and STABLE [4] to $O(\epsilon^{-2})$ by utilizing momentum-based gradient estimators for the outer objective. Recently, [5] improved the analysis of TTSA and showed that vanilla SGD-based updates for outer- and inner subproblems can in fact achieve $O(\epsilon^{-2})$ rate. This performance was

further improved by SUSTAIN [15] and RSVRB [9] by utilizing momentum-based gradient estimators for both outer- and inner-level updates. It was shown that SUSTAIN and RSVRB match the best complexity bounds of $O(\epsilon^{-1.5})$ as the optimal SGD algorithm for solving single-level optimization problems. Another approach to accelerate traditional SGD based methods is the family of "variance-reduced" (VR) methods, which are referred to as VRBO [42]. VRBO adopts recursive gradient estimators to achieve the best known sample complexity of $O(\epsilon^{-1.5})$.

Orthogonal to the aforementioned approaches, which focus developing bilevel optimization algorithms only for a single agent (centralized), in this paper, we focus on a multi-agent (decentralized) setting to solve a bilevel optimization problem over a network of agents. To this end, we propose two novel decentralized bilevel algorithms named INTERACT and SVR-INTERACT using gradient descent and variance reduction techniques. We show that INTERACT achieves the sample complexity of $O(n\epsilon^{-1})$, while SVR-INTERACT achieves the sample complexity of $O(\sqrt{n}\epsilon^{-1})$. We summarize and compare the complexity results of the above state-of-the-art algorithms in Table 1.

2) Decentralized Learning over Networks: From a mathematical point of view, conducting decentralized learning over a network amounts to a group of agents collectively solving an optimization problem. Most of the existing literature of decentralized learning are focused on the standard loss minimization formulation[43, 45], i.e., $\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$, where $f(\cdot)$ is the objective loss function and \mathbf{x} denotes the global model parameters to be learned, and d is the model dimension. In the literature, a wide range of machine learning applications can be modeled by the standard decentralized loss minimization formulation (e.g., robotic network [16, 33], network resource allocation [13, 37], power networks [3, 8]). Some recent works, [21, 22, 26, 41, 46] studied decentralized min-max optimization problems, i.e., $\min_{\mathbf{x}\in\mathbb{R}^{d_1}}\max_{\mathbf{y}\in\mathbb{R}^{d_2}}f(\mathbf{x},\mathbf{y}),$ which are a special case (with same outer and inner level objective) of bilevel optimization problems. Unfortunately, studies on solving general decentralized bilevel optimization problems are still limited. Existing works in [2, 40] applied the fuzzy goal programming method for linearization of functions based on Jacobian matrix for solving multiobjective bi-level problem. However, none of these work tackles the decentralized bilevel optimization problem via the network consensus approach.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will describe the system model and the problem formulation first. Then, we will provide several application examples to further motivate the decentralized nonconvex-stronglyconvex bilevel optimization problems studied in this paper.

1) Network Consensus Formulation: We represent the underlying peer-to-peer communication network with m agents by a graph $\mathcal{G} = (\mathcal{N}, \mathcal{L})$, where \mathcal{N} and \mathcal{L} are the set of agents and edges, respectively, with $|\mathcal{N}| = m$. Each agent can share information with its neighbors. For agent $i \in [m]$, we denote its set of neighbors by \mathcal{N}_i , i.e., $\mathcal{N}_i \triangleq \{j \in \mathcal{N}, : (i, j) \in \mathcal{L}\}$. The decentralized bilevel

optimization (DBO) problem can be written as:

$$\min_{\mathbf{x}_i \in \mathbb{R}^d} \ell(\mathbf{x}) = \frac{1}{m} \sum_{i=1}^m \ell_i(\mathbf{x}_i) = \frac{1}{m} \sum_{i=1}^m f_i\left(\mathbf{x}_i, \mathbf{y}_i^*(\mathbf{x}_i)\right)$$
$$= \frac{1}{mn} \sum_{i=1}^m \sum_{i=1}^n f_i\left(\mathbf{x}_i, \mathbf{y}_i^*(\mathbf{x}_i); \xi_{ij}\right),$$

s.t.
$$\mathbf{y}_{i}^{*}(\mathbf{x}_{i}) = \arg\min g_{i}(\mathbf{x}_{i}, \mathbf{y}_{i}) = \arg\min \frac{1}{n} \sum_{j=1}^{n} g_{i}(\mathbf{x}_{i}, \mathbf{y}_{i}; \xi_{ij}),$$

 $\mathbf{x}_{i} = \mathbf{x}_{i}, \text{ if } i, j \in \mathcal{L},$ (1)

where \mathbf{x}_i and \mathbf{y}_i are the local copies of the outer and inner-level variables at agent $i \in [m]$. Each agent has access to a local dataset of size n. The local loss is defined as: $f_i(\mathbf{x}_i, \mathbf{y}_i^*(\mathbf{x}_i)) \coloneqq \frac{1}{n} \sum_{j=1}^n f_i(\mathbf{x}_i, \mathbf{y}_i; \xi_{ij})$. The equality constraint in (1) ensures a "consensus" among the outer level variables of each individual agents. Our goal is to solve Problem (1) in a *decentralized* manner, where $\ell(x)$ is non-convex while the inner-level funtions $g_i(\mathbf{x}, \mathbf{y})$ are strongly-convex with respect to \mathbf{y} for all $i \in [m]$. In the rest of this paper, we will refer to (1) as a decentralized nonconvex-strong-convex bilevel problem.

Next, we define the notion of ϵ -stationary point. We define $\{\mathbf{x}_i, \mathbf{y}_i, \forall i \in [m]\}$ as an ϵ -stationary point if it satisfies:

$$\underbrace{\frac{1}{m} \sum_{i=1}^{m} \|\mathbf{x}_{i} - \overline{\mathbf{x}}\|^{2}}_{\text{Consensus Error}} + \underbrace{\|\mathbf{y}^{*} - \mathbf{y}\|^{2}}_{\text{Lower-Level Error}} + \underbrace{\|\nabla \ell(\bar{\mathbf{x}})\|^{2}}_{\text{Error}} \le \epsilon, \tag{2}$$

where $\bar{\mathbf{x}} \triangleq \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i, \mathbf{y} \triangleq [\mathbf{y}_1^\top, ... \mathbf{y}_m^\top]^\top$, and $\mathbf{y}^* \triangleq [\mathbf{y}_1^{*\top}, ... \mathbf{y}_m^{*\top}]^\top$. Next, we define the notions of sample and communication complexities [39] of a decentralized algorithm to achieve an ϵ -stationary point defined in (2).

DEFINITION 1 (SAMPLE COMPLEXITY). The sample complexity is defined as the total number of incremental first-order oracle (IFO) calls required per node for an algorithm to reach an ϵ -stationary point. Note that we define one IFO call as the evaluation of the (stochastic) gradient of upper and lower level problems at node $i \in [m]$.

DEFINITION 2 (COMMUNICATION COMPLEXITY). We define a communication round as the sharing and receiving of local parameters by each node from all its neighboring nodes. Then, the communication complexity is defined as the total rounds of communications required by an algorithm to achieve an ϵ -stationary point.

- 2) Motivating Application Examples: Problem (1) can be applied to a number of interesting real-world decentralized machine learning problems. Here, we provide two examples to further motivate its practical relevance:
- Multi-agent meta-learning [35]: Consider a meta-learning task
 with m lower level problems. There are m agents who collectively
 solve this meta-learning problem over a network. This problem
 can be formulated as:

$$\min_{\mathbf{x} \in \mathbb{R}^{d_1}} \sum_{i=1}^{m} f_i \left(\mathbf{x}, \mathbf{y}_i^*(\mathbf{x}) \right)
\mathbf{y}_i^*(\mathbf{x}) \in \arg\min_{\mathbf{y}_i} g_i \left(\mathbf{x}, \mathbf{y}_i \right), i = 1, \dots, m,$$
(3)

where agent $i \in [m]$ has a local dataset with n samples, and f_i corresponds to the loss function for the task of agent i. Parameter

 $\mathbf{x} \in \mathbb{R}^{d_1}$ is the model parameters shared among all agents, and $\mathbf{y}_i \in \mathbb{R}^{d_2}$ denotes task specific parameters allocated to each agent.

Multi-agent AUPRC optimization [9]: Another application of (1) is the multi-agent optimization of area under precision-recall curve (AUPRC) [34]. Multi-agent AUPRC optimization problem can be formulated as a bilevel optimization problem with many lower-level problems as:

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^{d_1}} \sum_{i=1}^{m} f_i\left(\mathbf{y}_i^*(\mathbf{x})\right) \\ & \mathbf{y}_i^*(\mathbf{x}) = \arg\min_{\mathbf{y}_i} -\mathbf{y}_i^{\top} g_i\left(\mathbf{x}\right) + \frac{1}{2} \|\mathbf{y}_i\|^2, i = 1, \dots, m, \end{aligned}$$

where each $i \in [n]$ corresponds to a binary classification task and **x** denotes the model parameter.

With the system model and the problem formulation in (1), we are in a position to present our algorithm design in the next section.

4 THE INTERACT ALGORITHM

In this section, we present our INTERACT algorithm for solving the decentralized bilevel optimization problems and provide its theoretical convergence guarantees.

4.1 Algorithm Description

To solve Problem (1), we adopt the network consensus approach [29]. In each iteration, every agent shares and receives information from its neighboring nodes. Each agent aggregates the infromation received from its neighbours through a consensus weight matrix $\mathbf{M} \in \mathbb{R}^{m \times m}$. We denote by $[\mathbf{M}]_{ij}$ the element in the i-th row and the j-th column in \mathbf{M} . We assume that \mathbf{M} satisfies the following:

- (a) Doubly stochastic: $\sum_{i=1}^{m} [\mathbf{M}]_{ij} = \sum_{j=1}^{m} [\mathbf{M}]_{ij} = 1$;
- (b) Symmetric: $[\mathbf{M}]_{ij} = [\mathbf{M}]_{ji}, \forall i, j \in \mathcal{N};$
- (c) Network-Defined Sparsity: $[\mathbf{M}]_{ij} > 0$ if $(i, j) \in \mathcal{L}$; otherwise $[\mathbf{M}]_{ij} = 0, \forall i, j \in \mathcal{N}$.

The above properties imply that the eigenvalues of **M** are real and lie in the interval (-1,1]. We sort the eigen values of **M** as: $-1 < \lambda_m(\mathbf{M}) \le \cdots \le \lambda_2(\mathbf{M}) < \lambda_1(\mathbf{M}) = 1$. We denote the second-largest eigenvalue in magnitude of **M** as $\lambda \triangleq \max\{|\lambda_2(\mathbf{M})|, |\lambda_m(\mathbf{M})|\}$. We note that λ plays an important role in the step-size selection for our proposed algorithms (cf. Theorems 1 and 3). Next, using the implicit function theorem, we evaluate the hyper-gradient of $l_i(\mathbf{x}_i) := f_i(\mathbf{x}_i, \mathbf{y}_i^*(\mathbf{x}_i))$ at $\mathbf{x}_{i,t}$ and $\mathbf{y}_i^*(\mathbf{x}_{i,t})$ as:

$$\nabla \ell_i(\mathbf{x}_{i,t}) = \nabla_{\mathbf{x}} f_i(\mathbf{x}_{i,t}, \mathbf{y}_i^*(\mathbf{x}_{i,t})) - \nabla_{\mathbf{x}\mathbf{y}}^2 g_i(\mathbf{x}_{i,t}, \mathbf{y}_i^*(\mathbf{x}_{i,t})) \times \left[\nabla_{\mathbf{v}\mathbf{y}}^2 g_i(\mathbf{x}_{i,t}, \mathbf{y}_i^*(\mathbf{x}_{i,t}))\right]^{-1} \nabla_{\mathbf{y}} f_i(\mathbf{x}_{i,t}, \mathbf{y}_i^*(\mathbf{x}_{i,t})).$$
(4)

Note that computing the local gradient $\nabla l_i(\mathbf{x}_{i,t})$, $i \in [m]$ requires knowledge of the lower level problem's optimal solution, $\mathbf{y}_i^*(\mathbf{x}_i)$. However, obtaining $\mathbf{y}_i^*(\mathbf{x}_i)$ in closed form is usually not feasible. Therefore, we replace $\mathbf{y}_i^*(\mathbf{x}_i)$ by an approximate solution $\mathbf{y}_{i,t}$, thereby, defining the following approximate gradient estimate [7]:

$$\bar{\nabla}f_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) = \nabla_{\mathbf{x}}f_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \nabla_{\mathbf{x}\mathbf{y}}^2g_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) \times [\nabla_{\mathbf{y}\mathbf{y}}^2g_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})]^{-1}\nabla_{\mathbf{y}}f_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}).$$
(5)

The proposed INTERACT algorithm for each agent $i \in [m]$ is illustrated in Algorithm 1. Note that, to achieve state-of-the-art

Algorithm 1 The INTERACT Algorithm.

Set parameter pair $\forall i \in [m], (\mathbf{x}_{i,0}, \mathbf{y}_{i,0}) = (\mathbf{x}^0, \mathbf{y}^0).$ At each agent $i \in [m]$, compute the local gradients:

$$\mathbf{u}_{i,0} = \bar{\nabla} f_i(\mathbf{x}_{i,0}, \mathbf{y}_{i,0}); \ \mathbf{v}_{i,0} = \nabla_{\mathbf{v}} g_i(\mathbf{x}_{i,0}, \mathbf{y}_{i,0});$$

for $t = 1, \dots, T$ do

Update local parameters using (6) and (7); Compute local gradients using (8) and (9);

Track the gradients using (10);

end for

convergence guarantees, INTERACT relies on consensus updates along with gradient tracking for solving Problem (1) as follows:

• Step 1 (Consensus update with gradient descent): The local parameters of each agent *i* ∈ [*m*] are updated using (6). Note that the consensus is established by only sharing the information of the outer model parameters **x**_i, while the inner-model parameters **y**_i are updated only locally and the local gradient is computed by just evaluating the local gradient of the lower level objective:

$$\mathbf{x}_{i,t} = \sum_{j \in \mathcal{N}_i} [\mathbf{M}]_{ij} \mathbf{x}_{j,t-1} - \alpha \mathbf{u}_{i,t-1}, \tag{6}$$

$$\mathbf{y}_{i,t} = \mathbf{y}_{i,t-1} - \beta \mathbf{v}_{i,t-1},$$
 (7)

where α and β are the step-sizes for updating **x**- and **y**-variables, respectively, and $\mathbf{u}_{i,t}$ is a auxiliary vector for gradient tracking purposes and will be defined shortly.

• Step 2 (Local gradient estimate): Each agent $i \in [m]$ evaluates its (full) local gradient $\mathbf{p}_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t})$ and $\mathbf{d}_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t})$ using as:

$$\mathbf{p}_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) = \bar{\nabla} f_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}), \tag{8}$$

$$\mathbf{v}_{i,t} = \mathbf{d}_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) = \nabla_{\mathbf{v}} g_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}). \tag{9}$$

 Step 3 (Local gradient tracking): Each agent i ∈ [m] updates the global gradient estimate u_{i,t} by averaging over its neighboring global gradient estimates:

$$\mathbf{u}_{i,t} = \sum_{j \in \mathcal{N}_i} [\mathbf{M}]_{ij} \mathbf{u}_{j,t-1} + \mathbf{p}_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbf{p}_i(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1}), \quad (10)$$

4.2 Convergence Results of INTERACT

In this subsection, we focus on the theoretical guarantees associated with INTERACT (Algorithm 1). Providing convergence guarantees of INTERACT for solving the decentralized bilevel optimization problem in (1) presents two major challenges: a) Inner-loop error: Recall that, in constructing the true gradient estimate (4), we utilize a crude approximation $\mathbf{y}_{i,t} \neq \mathbf{y}_{i,t}^*(\mathbf{x}_{i,t})$. This approximation induces an error in the estimated gradient of (cf. (4)) that presents a major challenge in the analysis of INTERACT; b) Decentralized topology: Since INTERACT applies decentralized consensus in outer-loop iterations, the analysis needs to capture the effect of the errors induced by the decentralized topology. These two issues make the convergence analysis of INTERACT difficult. In spite of these challenges, we will show that INTERACT provides state-of-the-art convergence guarantees for solving Problem (1).

1) Convergence metric: We propose the following *new* metric for decentralized bilevel problems, which is the key in determining all convergence results in the following sections:

$$\mathfrak{M}_{t} \triangleq \mathbb{E}[\|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} + \|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} + \|\mathbf{y}_{t}^{*} - \mathbf{y}_{t}\|^{2}], \quad (11)$$

where \mathbf{y}_t^* is defined in (2). Note that the first term in (11) quantifies the convergence of the $\bar{\mathbf{x}}_t$ to a stationary point of the global objective. The second term in (11) measures the consensus error among local copies of the outer variable, while the third term in (11) quantifies the (aggregated) error in the inner problem's iterates across all agents. Thus, if the iterates generated by an algorithm that achieve $\mathfrak{M}_t \to 0$, it implies that the algorithm achieves three goals simultaneously: 1) consensus of outer variables, 2) stationary point of Problem (1), and 3) solution to the inner problem.

2) Technical Assumptions: Next, before presenting the main convergence result of INTERACT, we first state the technical assumptions on the outer and inner objective functions in Problem (1):

Assumption 1. The inner function q satisfies:

- a) For any $i \in [m]$, and $\mathbf{x}_i \in \mathbb{R}^{d_1}$, $g_i(\mathbf{x}_i, \mathbf{y}_i)$ is μ_g -strongly convex with respect to the variable \mathbf{y}_i , i.e., $\mu_q I \leq \nabla_{u}^2 g(\mathbf{x}_i, \mathbf{y}_i)$.
- b) For any $i \in [m]$, $\mathbf{x}_i \in \mathbb{R}^{d_1}$, $\mathbf{y}_i \in \mathbb{R}^{d_2}$, $\nabla g_i(\mathbf{x}_i, \mathbf{y}_i)$ is L_g -Lipschitz continuous with $L_g > 0$.
- c) For any $i \in [m]$, $\mathbf{x}_i \in \mathbb{R}^{d_1}$, $\mathbf{y}_i \in \mathbb{R}^{d_2}$, we have $\left\| \nabla^2_{xy} g_i(\mathbf{x}, \mathbf{y}) \right\|^2 \le C_{q_{xy}}$ for some $C_{q_{xy}} > 0$.
- d) For any $i \in [m]$, $\mathbf{x}_i \in \mathbb{R}^{d_1}$, $\mathbf{y}_i \in \mathbb{R}^{d_2}$, we have $\nabla^2_{x,y}g_i(\mathbf{x}_i,\mathbf{y}_i)$ and $\nabla^2_{yy}g_i(\mathbf{x}_i,\mathbf{y}_i)$ are Lipschitz continuous with constants $L_{g_{xy}} > 0$ and $L_{g_{yy}} > 0$, respectively.

Assumption 2. The outer function f and $\ell(\mathbf{x})$ satisfy:

- a) For any $i \in [m]$, $\mathbf{x}_i \in \mathbb{R}^{d_1}$, $\nabla_{\mathbf{x}} f_i(\mathbf{x}_i, \mathbf{y}_i)$, $\nabla_{\mathbf{y}} f_i(\mathbf{x}_i, \mathbf{y}_i)$ are Lipschitz smooth continuous with constant $L_{f_x} \geq 0$, $L_{f_u} \geq 0$.
- b) For $i \in [m]$, $\mathbf{x}_i \in \mathbb{R}^{d_1}$, $\mathbf{y}_i \in \mathbb{R}^{d_2}$, we have $\|\nabla_y f(\mathbf{x}_i, \mathbf{y}_i)\| \le C_{f_y}$ for some $C_{f_y} \ge 0$.
- c) There exists a finite lower bound $\ell^* = \inf_{\mathbf{x}} \ell(\mathbf{x}) > -\infty$.

Assumptions 1 and 2 are standard in the literature of bilevel optimization (e.g., [15][7]). Many problems of practical interest in metalearning [35][23] and optimization of area under precision-recall curve(AUPRC) [34] can be shown to satisfy these assumptions.

3) Supporting Lemmas: Next, we present several lemmas that characterizes the Lipschitz properties of the hypergradient in (4), the approximate gradient in (5), and the optimal solution of the inner problem under Assumptions 1 and 2. These lemmas will be useful in proving our main convergence result (proofs directly follow from [7] due to structural similarities).

LEMMA 1. Under Assumptions 1-2, we have

$$\begin{split} &\|\bar{\nabla}f_{i}(\mathbf{x}, \mathbf{y}) - \nabla\ell_{i}(\mathbf{x})\|^{2} \leq L_{f} \|\mathbf{y}^{*}(\mathbf{x}) - \mathbf{y}\|^{2}, \\ &\|\mathbf{y}_{i}^{*}(\mathbf{x}_{1}) - \mathbf{y}_{i}^{*}(\mathbf{x}_{2})\|^{2} \leq L_{y} \|\mathbf{x}_{1} - \mathbf{x}_{2}\|^{2}, \\ &\|\nabla\ell_{i}(\mathbf{x}_{1}) - \nabla\ell_{i}(\mathbf{x}_{2})\|^{2} \leq L_{\ell} \|\mathbf{x}_{1} - \mathbf{x}_{2}\|^{2}, \end{split}$$

for all $i \in [m]$ and $\mathbf{x}, \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^{d_1}$ and $\mathbf{y} \in \mathbb{R}^{d_2}$. The above Lipschitz constants are defined as:

$$L_{f} = (L_{f_{x}} + \frac{L_{f_{y}}C_{g_{xy}}}{\mu_{g}} + C_{f_{y}} \left(\frac{L_{g_{xy}}}{\mu_{g}} + \frac{L_{g_{yy}}C_{g_{xy}}}{\mu_{g}^{2}} \right))^{2},$$

$$L_{\ell} = (L_{f} + \frac{L_{f}C_{g_{xy}}}{\mu_{g}})^{2}, \quad L_{y} = (\frac{C_{g_{xy}}}{\mu_{g}})^{2}.$$
(12)

LEMMA 2. Under Assumptions 1–2, $\forall i \in [m], (x, y) \in \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$, the stochatic gradient estimator in (22) satisfies:

$$\left\|\bar{\nabla} f_i(x,y) - \mathbb{E}_{\bar{\xi}_i}[\bar{\nabla} f(x,y;\bar{\xi}_i)]\right\| \leq \frac{C_{g_{xy}}C_{f_y}}{\mu_a} \left(1 - \frac{\mu_g}{L_a}\right)^K.$$

4) Convergence Results of INTERACT: We state the main convergence rate result of INTERACT in the following theorem:

Theorem 1. (Convergence of Interact) Under Assumptions 1-2, if the step-sizes satisfy $\beta \leq \frac{1}{\mu_g + L_g}$, $\alpha \leq \min\{\frac{1}{4L_K}\sqrt{\frac{1-\lambda}{2}}, \frac{1}{4L_\ell}, \frac{1}{m_g}, \frac{r}{16mL_y^2(r+1)}, \frac{(1-\lambda)^2}{32L_K^2}, \frac{m(1-\lambda)}{4L_\ell}, \frac{rm}{L_f^2}(\frac{\beta\mu_gL_g}{\mu_g + L_g}), \frac{(1+r)(1-\lambda)}{(\mu_g + L_g)L_K^2\beta}, \frac{1-\lambda}{2L_K}\sqrt{\frac{1}{3}}, \frac{(1-\lambda)^2}{3}, \frac{1-\lambda}{6(1+\frac{1}{r})L_u^2}\}, r = \beta\frac{\mu_gL_g}{\mu_g + L_g}$, then $\{\mathbf{x}_t, \mathbf{y}_t\}$ generated by Interact satisfy

$$\frac{1}{T+1}\sum_{t=0}^{T}\mathfrak{M}_{t} \leq \frac{\mathfrak{B}_{0}-\ell^{*}}{(T+1)\min\{\frac{1-\lambda}{2},\beta\frac{\mu_{g}L_{g}}{\mu_{u}+L_{u}},\frac{\alpha}{2}\}} = O\left(\frac{1}{T}\right),$$

where
$$\mathfrak{B}_t = \ell(\bar{\mathbf{x}}_t) + \|\mathbf{y}_t - \mathbf{y}_t^*\|^2 + \|\mathbf{x}_t - \mathbf{1} \otimes \bar{\mathbf{x}}_t\|^2 + \alpha \|\mathbf{u}_t - \mathbf{1} \otimes \bar{\mathbf{u}}_t\|^2$$
.

Remark 1. Note from the statement of Theorem 1 that INTERACT requires constant step-sizes α and β that depend on the network topology, Lipschitz constants, and the number of agents. In particular, different network topology leads to different network consensus matrix \mathbf{M} . Recall that $\lambda < 1$ is the second-largest eigenvalue in magnitude of \mathbf{M} . For a dense network, λ is close to 0, which allows larger step-size α , and then leads to faster convergence.

Theorem 1 immediately implies the following sample and communication complexity results of INTERACT:

COROLLARY 2. Under the conditions of Theorem 1, to achieve an ϵ -stationary solution, INTERACT requires: 1) Communication complexity of $O(\epsilon^{-1})$, and 2) Sample complexity of $O(n\epsilon^{-1})$.

4.3 Proof Sketches of the Convergence Results

Due to space limitation, we provide a proof sketch of Theorem 1. The proof details are provided in the full online technical report of this paper [1]. In this section, we organize the proof into several key steps. Our first step is to show the descent property of our algorithms, which is stated as follows:

Step 1) Descending Inequality for the outer function: Under Assumptions 1-2, the following descending inequality holds for Algorithm 1:

$$\begin{split} \ell(\bar{\mathbf{x}}_{t+1}) - \ell(\bar{\mathbf{x}}_t) &\leq -\frac{\alpha}{2} \|\nabla \ell(\bar{\mathbf{x}}_t)\|^2 - (\frac{\alpha}{2} - \frac{L_{\ell}\alpha^2}{2}) \|\bar{\mathbf{u}}_t\|^2 \\ &+ \frac{\alpha}{m} \sum_{i=1}^m L_{\ell} \|\bar{\mathbf{x}}_t - \mathbf{x}_{i,t}\|^2 + \frac{2\alpha}{m} \sum_{i=1}^m L_f^2 \|\mathbf{y}_{i,t}^* - \mathbf{y}_{i,t}\|^2 \end{split}$$

$$+2\alpha \left\| \frac{1}{m} \sum_{i=1}^{m} \bar{\nabla} f_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \bar{\mathbf{u}}_t \right\|^2, \tag{13}$$

where $\mathbf{y}_{i,t}^* = \arg\min_{\mathbf{y}} g_i(\mathbf{x}_{i,t}, \mathbf{y})$.

Eqs. (13) focuses on the descending upper bound for adjacent iterations of outer-level model parameters. Unlike traditional decentralized minimization optimization problems, decentralized bilevel optimization problems tackle a composition of an inner problem and an outer problem. This tightly coupled inner-outer mathematical structure in the bilevel optimization problem, coupled with the decentralized nature and the non-convexity of the outer problem, imposes significant challenges in the theoretical algorithm analysis. As a result, Eq. (13) contains the consensus error of the outer-level model parameters $\|\bar{\mathbf{x}}_t - \mathbf{x}_{i,t}\|^2$ and the convergence metric of inner model parameter $\|\mathbf{y}_{i,t}^* - \mathbf{y}_{i,t}\|^2$.

Step 2) Error Bound on $y^*(x)$: Under Assumptions 1 and 2, the following inequality holds for Algorithm 1:

$$\|\mathbf{y}_{i,t+1} - \mathbf{y}_{i,t+1}^*\|^2 \le (1+r)\left(1 - 2\beta \frac{\mu_g L_g}{\mu_g + L_g}\right) \|\mathbf{y}_{i,t} - \mathbf{y}_{i,t}^*\|^2$$

$$- (1+r)\left(2\beta \frac{1}{\mu_g + L_g} - \beta^2\right) \|\mathbf{v}_{i,t}\|^2$$

$$+ 2\left(1 + \frac{1}{r}\right) L_y^2 \alpha^2 (\|\mathbf{u}_{i,t} - \bar{\mathbf{u}}_t\|^2 + \|\bar{\mathbf{u}}_t\|^2). \tag{14}$$

In Step 2, we continue evaluating the fourth element in Eq. (13). From the result of Step 2, we can see that $\|\mathbf{y}_{i,t} - \mathbf{y}_{i,t}^*\|^2$ shrinks if $(1+r)(1-2\beta\frac{\mu_g L_g}{\mu_s + L_g}) \leq 0$.

Step 3) Iterates Contraction: The following contraction properties of the iterates hold:

$$\|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} \leq (1 + c_{1})\lambda^{2} \|\mathbf{x}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t-1}\|^{2} + \left(1 + \frac{1}{c_{1}}\right)\alpha^{2} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2},$$

$$\|\mathbf{u}_{t} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t}\|^{2} \leq (1 + c_{2})\lambda^{2} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2} + \left(1 + \frac{1}{c_{1}}\right) \|\mathbf{p}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbf{p}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1})\|^{2},$$

$$(15)$$

where c_1 and c_2 are some positive constants.

Step 3 is important in analyzing the convergence performance of the our proposed INTERACT . The key step is to define $\widetilde{\mathbf{M}} = \mathbf{M} \otimes \mathbf{I}_m$. Then we have $\|\widetilde{\mathbf{M}}\mathbf{x}_t - \mathbf{1} \otimes \bar{\mathbf{x}}_t\|^2 = \|\widetilde{\mathbf{M}}(\mathbf{x}_t - \mathbf{1} \otimes \bar{\mathbf{x}}_t)\|^2 \leq \lambda^2 \|\mathbf{x}_t - \mathbf{1} \otimes \bar{\mathbf{x}}_t\|^2$. This is because $\mathbf{x}_t - \mathbf{1} \otimes \mathbf{x}_t$ is orthogonal to 1, which is the eigenvector corresponding to the largest eigenvalue of $\widetilde{\mathbf{M}}$, and $\lambda = \max\{|\lambda_2|, |\lambda_m|\}$.

Step 4) Potential Function: With results from Steps 1-3, we have:

$$\begin{split} &\ell(\bar{\mathbf{x}}_{T+1}) - \ell(\bar{\mathbf{x}}_{0}) + \left[\|\bar{\mathbf{y}}_{T+1} - \mathbf{y}_{T+1}^{*}\|^{2} - \|\mathbf{y}_{0}^{*} - \bar{\mathbf{y}}_{0}\|^{2} \right] \\ &\leq -\frac{\alpha}{2} \sum_{t=0}^{T} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - \left(\frac{\alpha}{2} - \frac{L_{\ell}\alpha^{2}}{2} - 2\left(1 + \frac{1}{r}\right)L_{y}^{2}\alpha^{2}m\right) \sum_{t=0}^{T} \|\bar{\mathbf{u}}_{t}\|^{2} \\ &+ \frac{\alpha L_{\ell}}{m} \sum_{t=0}^{T} \|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} + \left[\frac{2\alpha}{m}L_{f}^{2} + r - (1 + r)\left(2\beta \frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}}\right)\right] \\ &\cdot \sum_{t=0}^{T} \|\mathbf{y}_{t} - \mathbf{y}_{t}^{*}\|^{2} + 2\alpha \sum_{t=0}^{T} \left\|\frac{1}{m} \sum_{t=0}^{m} \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t}\right\|^{2} \end{split}$$

$$-(1+r)\left(2\beta \frac{1}{\mu_g + L_g} - \beta^2\right) \sum_{t=0}^{T} \|\mathbf{v}_t\|^2 + 2(1+\frac{1}{r})L_y^2 \alpha^2 \left(\sum_{t=0}^{T} \|\mathbf{u}_t - \mathbf{1} \otimes \bar{\mathbf{u}}_t\|^2\right).$$
 (17)

Note that the coefficients of $\|\bar{\mathbf{u}}_t\|^2$ and $\|\mathbf{v}_t\|^2$ can be made negative when step-sizes are chosen properly and $\|\frac{1}{m}\sum_{i=1}^m \bar{\nabla} f_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t}) - \bar{\mathbf{u}}_t\|^2$ can be decomposed later, we define our potential function as:

$$\mathfrak{B}_{t} = \ell(\bar{\mathbf{x}}_{t}) + \|\mathbf{y}_{t} - \mathbf{y}_{t}^{*}\|^{2} + \|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} + \alpha \|\mathbf{u}_{t} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t}\|^{2}.$$
(18)

Step 5) Main proof of Theorem 1: Note that we use the full gradient estimator in INTERACT, thus we have $\|\frac{1}{m}\sum_{i=1}^{m} \bar{\nabla} f_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t}) - \bar{\mathbf{u}}_t\|^2 = 0$. Also, we have

$$\|\mathbf{p}_{t} - \mathbf{p}_{t-1}\|^{2} \le L_{K}^{2} m(\|\mathbf{x}_{t} - \mathbf{x}_{t-1}\|^{2} + \beta^{2} \|\mathbf{v}_{t-1}\|^{2}),$$
 (19)

where $\mathbf{p}_t = \left[\mathbf{p}_1(\mathbf{x}_{1,t}, \mathbf{y}_{1,t})^\top, \cdots, \mathbf{p}_m(\mathbf{x}_{m,t}, \mathbf{y}_{m,t})^\top\right]^\top$.

Combing the above results and choosing $c_1 = c_2 = \frac{1}{\lambda} - 1$, we have

$$\ell(\bar{\mathbf{x}}_{T+1}) - \ell(\bar{\mathbf{x}}_{0}) + \left[\|\bar{\mathbf{y}}_{T+1} - \mathbf{y}_{T+1}^{*}\|^{2} - \|\mathbf{y}_{0}^{*} - \bar{\mathbf{y}}_{0}\|^{2} \right]$$

$$+ \left[\|\mathbf{x}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{T+1}\|^{2} - \|\mathbf{x}_{0} - \mathbf{1} \otimes \bar{\mathbf{x}}_{0}\|^{2} \right]$$

$$+ \alpha \left[\|\mathbf{u}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{T+1}\|^{2} - \|\mathbf{u}_{0} - \mathbf{1} \otimes \bar{\mathbf{u}}_{0}\|^{2} \right]$$

$$\leq -\frac{\alpha}{2} \sum_{t=0}^{T} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} + C_{1} \sum_{t=0}^{T} \|\bar{\mathbf{u}}_{t}\|^{2} + C_{2} \sum_{t=0}^{T} \|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2}$$

$$+ C_{3} \sum_{t=0}^{T} \|\mathbf{y}_{t} - \mathbf{y}_{t}^{*}\|^{2} + C_{4} \sum_{t=0}^{T} \|\mathbf{v}_{t}\|^{2} + C_{5} \sum_{t=0}^{T} \|\mathbf{u}_{t} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t}\|^{2}, \quad (20)$$

where the constants are relegated to our technical report[1]. With appropriately chosen parameters to ensure $C_1, C_4, C_5 \le 0, C_2 \le -\frac{1-\lambda}{2}, C_3 \le -\beta \frac{\mu_g L_g}{\mu_g + L_g}$, we have the following convergence results:

$$\frac{1}{T+1} \sum_{t=0}^{T} \mathfrak{M}_{t} \leq \frac{\mathfrak{B}_{0} - \ell^{*}}{(T+1) \min\{\frac{1-\lambda}{2}, \beta \frac{\mu_{g} L_{g}}{\mu_{g} + L_{g}}, \frac{\alpha}{2}\}}, \tag{21}$$

This completes the proof of Theorem 1.

5 THE SVR-INTERACT ALGORITHM

Note that, in the INTERACT algorithm (Algorithm 1), each agent needs to evaluate the full local gradient in each iteration, which might not be feasible for many large-scale problems. This motivates us to develop a stochastic version of INTERACT that circumvents the need to compute full local gradients in each iteration. To this end, we leverage the variance reduce methods to design SVR-INTERACT, a stochastic version of INTERACT that achieves low sample complexity for solving decentralized bilevel optimization problem. In this section, we first present the SVR-INTERACT method, and then provide its convergence guarantees.

5.1 Algorithm Description

In SVR-INTERACT, we use the same network consensus approach as in INTERACT. In particular, we define an (approximate) stochastic gradient estimate of the local gradient in (5). We define the

Algorithm 2 The SVR-INTERACT Algorithm.

Set parameter pair $\forall i \in [m], (\mathbf{x}_{i,0}, \mathbf{y}_{i,0}) = (\mathbf{x}^0, \mathbf{y}^0)$. At each agent $i \in [m]$, compute the local gradients:

$$\mathbf{u}_{i,0} = \bar{\nabla} f_i(\mathbf{x}_{i,0}, \mathbf{y}_{i,0}); \mathbf{v}_{i,0} = \nabla_{\mathbf{y}} g_i(\mathbf{x}_{i,0}, \mathbf{y}_{i,0}); \tag{26}$$

for $t = 1, \dots, T$ do

Update local parameters using (6) and (7);

if mod(t, q) = 0 **then**

Compute local gradients using (8) and (9);

else

Compute local gradients using (23) and (24);

end if

Track the gradient using (10);

end for

stochastic gradient of $\bar{\nabla} f_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})$ by $\bar{\nabla} f_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}; \bar{\xi})$ as

$$\bar{\nabla} f_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}; \bar{\xi}_i) = \nabla_{\mathbf{x}} f_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}; \xi_i^0) - \frac{K}{L_g} \nabla_{\mathbf{x}\mathbf{y}}^2 g_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}; \zeta_i^0)$$

$$\cdot \prod_{i=1}^{k(K)} \left(I - \frac{\nabla_{\mathbf{y}\mathbf{y}}^2 g_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}; \zeta_i^j)}{L_g}\right) \nabla_{\mathbf{y}} f_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}; \xi_i^0), \tag{22}$$

where $k(K) \sim \mathcal{U}\{0,\ldots,K-1\}$ denotes a random variable uniformly chosen from $\{0,\ldots,K-1\}$. Note that the stochastic gradient estimator collects $K+2 \in \mathbb{N}$ independent samples $\bar{\xi}_i := \{\xi_i',\xi_i^0,\ldots,\xi_i^K,k(K)\}$, where $\xi_i' \sim \mu,\zeta_i^j \sim \pi,j=0,\ldots,K$ denote the samples of the outer and inner objectives. Next, we define the convergence metric that we will utilize for solving the decentralized bilevel learning problem.

The proposed SVR-INTERACT algorithm is illustrated in Algorithm 2. In each iteration, every agent $i \in [m]$ estimates its full gradients every q steps. For other iterations, when $mod(t,q) \neq 0$, SVR-INTERACT estimates local gradients $\mathbf{p}_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t})$ and $\mathbf{d}_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t})$ using the following gradient estimators:

$$\mathbf{p}_{t} = \mathbf{p}_{t-1} + \frac{1}{S} \sum_{i=1}^{S} \left[\bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}; \bar{\xi}_{i}) - \bar{\nabla} f_{i}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1}; \bar{\xi}_{i}) \right]; (23)$$

$$\mathbf{d}_{t} = \mathbf{d}_{t-1} + \frac{1}{S} \sum_{i=1}^{S} \left[\nabla g_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}; \bar{\xi}'_{i}) - \nabla g_{i}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1}; \bar{\xi}'_{i}) \right], (24)$$

where

$$\mathbf{p}_{t} = \left[\mathbf{p}_{1}(\mathbf{x}_{1,t}, \mathbf{y}_{1,t})^{\top}, \cdots, \mathbf{p}_{m}(\mathbf{x}_{m,t}, \mathbf{y}_{m,t})^{\top} \right]^{\top};$$

$$\mathbf{d}_{t} = \left[\mathbf{d}_{1}(\mathbf{x}_{1,t}, \mathbf{y}_{1,t})^{\top}, \cdots, \mathbf{d}_{m}(\mathbf{x}_{m,t}, \mathbf{y}_{m,t})^{\top} \right]^{\top}.$$
(25)

Note that in contrast to INTERACT, SVR-INTERACT utilizes a variance-reduced gradient estimator. Moreover, SVR-INTERACT makes use of gradient tracking and consensus updates similar to the INTERACT algorithm. Next, we will present the convergence rate results of SVR-INTERACT.

5.2 Convergence Results of SVR-INTERACT

To establish the convergence of SVR-INTERACT, we use the same convergence metric as that of INTERACT as shown in (11).

1) Technical Assumptions: For SVR-INTERACT, we need an extra assumption on the outer and inner objective functions in Problem (1) due to the stochastic gradient estimator we use.

Assumption 3 (Stochastic Functions). Assumptions 1 and 2 hold for $f_i(\mathbf{x}_i, \mathbf{y}_i; \xi)$ and $g_i(x_i, y_i; \xi)$, for all $\xi \in \text{supp}(\pi)$, where $\text{supp}(\pi)$ represents the support of π .

2) Supporting Lemmas: For SVR-INTERACT, we need an extra lemma. This additional lemma characterizes the bias of the stochastic estimator (proof directly follows from [15]).

Lemma 3. Under Assumption 3, we have

$$\mathbb{E}_{\tilde{\xi}} \| \nabla f_i \left(\mathbf{x}_1, \mathbf{y}_1; \tilde{\xi} \right) - \nabla f_i \left(\mathbf{x}_2, \mathbf{y}_2; \tilde{\xi} \right) \|^2 \le L_K^2 [\| \mathbf{x}_1 - \mathbf{x}_2 \|^2 + \| \mathbf{y}_1 - \mathbf{y}_2 \|^2], \forall \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^{d_1}, \mathbf{y}_1, \mathbf{y}_2 \in \mathbb{R}^{d_2}.$$
 (27)

In the above expressions, $L_K > 0$ is defined as:

$$\begin{split} L_K^2 &= 2L_{f_x}^2 + 6C_{g_{xy}}^2 L_{f_y}^2 \left(\frac{K}{2\mu_g L_g - \mu_g^2} \right) + 6C_{f_y}^2 L_{g_{xy}}^2 \left(\frac{K}{2\mu_g L_g - \mu_g^2} \right) \\ &\quad + 6C_{g_{xy}}^2 C_{f_y}^2 \left(L_g - \mu_g \right)^2 \left(2\mu_g L_g - \mu_g^2 \right)^2. \end{split} \tag{28}$$

4) Main Theorem of SVR-INTERACT: We state the main convergence rate result of SVR-INTERACT in the following theorem:

Theorem 3. (Convergence of SVR-INTERACT) Under Assumptions 1-3, if the step-sizes satisfy $\beta \leq \frac{1}{\mu_g + L_g}$, $\alpha \leq \min\{\frac{1}{8L_K}\sqrt{\frac{1-\lambda}{2m}}, \frac{1}{4L_\ell}, \frac{1}{2m}, \frac{1}{4L_\ell}, \frac{r}{16mL_y^2(r+1)}, \frac{1}{8L_K}\sqrt{m}, \frac{(1-\lambda)^2}{128L_K^2}, \frac{(1-\lambda)}{4}(\frac{m}{L_\ell + 16L_K^2}), \frac{rm}{L_f^2}(\beta\frac{\mu_g L_g}{\mu_g + L_g}), \sqrt{\frac{(1+r)}{4(\mu_g + L_g)L_K^2\beta}}, \frac{(1+r)\beta(1-\lambda)}{2(\mu_g + L_g)(4L_K^2\beta^2 + 1)}, (1+r)\beta\frac{1}{2(\mu_g + L_g)}, \frac{1-\lambda}{8L_K}, \frac{(1-\lambda)^2}{4}, \frac{1-\lambda}{8(1+\frac{1}{r})L_y^2}, \sqrt{\frac{1-\lambda}{32L_K^2}}\}, r = \beta\frac{\mu_g L_g}{\mu_g + L_g}, \text{ then the iterates } \{\mathbf{x}_t, \mathbf{y}_t\} \text{ generated by SVR-INTERACT satisfy}$

$$\begin{split} \frac{1}{T+1} \sum_{t=0}^{T} \mathfrak{M}_{t} &\leq \frac{\mathfrak{B}_{0} - \ell^{*}}{(T+1) \min\{\frac{1-\lambda}{2}, \beta \frac{\mu_{g} L_{g}}{\mu_{g} + L_{g}}, \frac{\alpha}{2}\}} + C_{\text{bias}} \\ &= O(\frac{1}{T+1}) + C_{\text{bias}}, \end{split} \tag{29} \\ where \ C_{\text{bias}} &\triangleq \frac{2\alpha (\frac{C_{g_{xy}} C_{fy}}{\mu_{g}} \left(1 - \frac{\mu_{g}}{L_{g}}\right)^{K})^{2}}{\min\{\frac{1-\lambda}{2}, \beta \frac{\mu_{g} L_{g}}{\mu_{g} + L_{g}}, \frac{\alpha}{2}\}}. \end{split}$$

Remark 2. From the statement of Theorem 3, it can be seen that the step-sizes α and β for SVR-INTERACT depend on the network topology, the Lipschitz constants, and the number of agents. Additionally, the convergence performance of SVR-INTERACT is affected by the constant C_{bias} , which is the bias term affected by the stochastic gradient estimator.

Theorem 3 immediately implies the following sample and communication complexity results of SVR-INTERACT:

COROLLARY 4. Under the conditions of Theorem 3, to achieve an ϵ -stationary solution (cf. definition in Eq. (2)), with the number of samples for the gradient estimator in (22) chosen as $K = O(\log(1/\epsilon))$, SVR-INTERACT requires: 1) communication complexity: $O(\epsilon^{-1})$; and 2) sample complexity: $O(\sqrt{n}\epsilon^{-1})$).

REMARK 3. Corollary 4 indicates that SVR-INTERACT has the same communication complexity as that of INTERACT, but improves the sample complexity of INTERACT.

5.3 Proof Sketch of the Convergence Results

The proof of Theorem 3 follows the same structure as that of Theorem 1, with Step 1)–Step 4) being identical. Thus, we omit the first four steps for brevity and only focus on the last step in this paper. In Algorithm 2, we can show the following relations: $\|\frac{1}{m}\sum_{i=1}^{m}\bar{\nabla}f_{i}(\mathbf{x}_{i,t},\mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t}\|^{2} = 0 \text{ every } q \text{ iterations. Let } n_{t} \text{ denotes the largest positive integer that satisfies } (n_{t}-1) q \leq t. \text{ With } t \in ((n_{t}-1)q,n_{t}q-1] \cap \mathbb{Z}, \text{ we have}$

$$\left\| \frac{1}{m} \sum_{i=1}^{m} \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t} \right\|^{2}$$

$$\leq \frac{1}{m} \sum_{i=1}^{m} \|\bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})\|^{2}. \quad (30)$$

We note that the next step is one of the most crucial steps in our proofs. The bias term has to be eliminated from the $\|\bar{\nabla} f_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t}) - \mathbf{p}_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t})\|^2$ in advance; otherwise, we will not be able to use the mean variance theorem later. From the algorithm update of SVR-INTERACT, we have

$$\begin{split} & \mathbb{E}_{t} \| \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) \|^{2} \\ = & \mathbb{E}_{t} \| \mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbb{E}_{\bar{\xi}_{i}} [\mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})] \|^{2} \\ & + \mathbb{E}_{t} \| \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbb{E}_{\bar{\xi}_{i}} [\mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})] \|^{2} \\ \leq & \mathbb{E}_{t} \| \mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbb{E}_{\bar{\xi}_{i}} [\mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})] \|^{2} + \left(\frac{C_{g_{xy}} C_{f_{y}}}{\mu_{g}} \left(1 - \frac{\mu_{g}}{L_{g}} \right)^{K} \right)^{2}. \end{split}$$

Next, yelescoping over t from $((n_t - 1)q + 1$ to t and noting that |S| = q implies

$$\mathbb{E}_{t} \| \mathbf{p}_{i}(\mathbf{x}_{i,(n_{t}-1)q}, \mathbf{y}_{i,(n_{t}-1)q}) - \mathbb{E}_{\tilde{\xi}_{i}} [\mathbf{p}_{i}(\mathbf{x}_{i,(n_{t}-1)q}, \mathbf{y}_{i,(n_{t}-1)q})] \|^{2} = 0,$$
we have

$$\begin{split} & \sum_{t=0}^{T} \|\frac{1}{m} \sum_{i=1}^{m} \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t}\|^{2} \leq \\ & L_{K}^{2} \sum_{t=0}^{T} \mathbb{E}_{t}(\|\mathbf{x}_{t} - \mathbf{x}_{t-1}\|^{2} + \|\mathbf{y}_{t} - \mathbf{y}_{t-1}\|^{2}) + \left[\frac{C_{g_{xy}}C_{f_{y}}}{\mu_{g}} \left(1 - \frac{\mu_{g}}{L_{g}}\right)^{K}\right]^{2} T. \end{split}$$

Combing the above inequality and results in Steps 1)–4) and choosing $c_1 = c_2 = \frac{1}{2} - 1$, we have:

$$\begin{split} &\ell(\bar{\mathbf{x}}_{T+1}) - \ell(\bar{\mathbf{x}}_{0}) + \left[\|\bar{\mathbf{y}}_{T+1} - \mathbf{y}_{T+1}^{*}\|^{2} - \|\mathbf{y}_{0}^{*} - \bar{\mathbf{y}}_{0}\|^{2} \right] \\ &+ \left[\|\mathbf{x}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{T+1}\|^{2} - \|\mathbf{x}_{0} - \mathbf{1} \otimes \bar{\mathbf{x}}_{0}\|^{2} \right] \\ &+ \alpha \left[\|\mathbf{u}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{T+1}\|^{2} - \|\mathbf{u}_{0} - \mathbf{1} \otimes \bar{\mathbf{u}}_{0}\|^{2} \right] \\ &\leq -\frac{\alpha}{2} \sum_{t=0}^{T} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} + C_{1}' \sum_{t=0}^{T} \|\bar{\mathbf{u}}_{t}\|^{2} + C_{2}' \sum_{t=0}^{T} \|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} \\ &+ C_{3}' \sum_{t=0}^{T} \|\mathbf{y}_{t} - \mathbf{y}_{t}^{*}\|^{2} + C_{4}' \sum_{t=0}^{T} \|\mathbf{v}_{t}\|^{2} \\ &+ C_{5}' \sum_{t=0}^{T} \|\mathbf{u}_{t} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t}\|^{2} + 2\alpha \left[\frac{C_{g_{xy}} C_{f_{y}}}{\mu_{g}} \left(1 - \frac{\mu_{g}}{L_{g}} \right)^{K} \right]^{2} (T+1), \quad (31) \end{split}$$

Figure 1: Different network topology.

where the definitions of the constants can be found in our technical report [1]. With appropriately chosen parameters to ensure $C_1', C_4', C_5' \leq 0, C_2' \leq -\frac{1-\lambda}{2}, C_3' \leq -\beta \frac{\mu_g L_g}{\mu_g + L_g}$, we have the following convergence results:

$$\frac{1}{T+1} \sum_{t=0}^{T} \mathfrak{M}_{t} \leq \frac{\mathfrak{B}_{0} - \ell^{*}}{(T+1) \min\{\frac{1-\lambda}{2}, \beta \frac{\mu_{g} L_{g}}{\mu_{g} + L_{g}}, \frac{\alpha}{2}\}} + C_{\text{bias}},$$
 (32)

where $C_{\text{bias}} \triangleq \frac{2\alpha (\frac{C_{g_{xy}}C_{fy}}{\mu_g} \left(1 - \frac{\mu_g}{L_g}\right)^K)^2}{\min\{\frac{1-\lambda}{\mu_g}, \beta \frac{\mu_g L_g}{\mu_g + L_g}, \frac{\alpha}{2}\}}$. This completes the proof.

6 EXPERIMENTAL EVALUATION

In this section, we conduct numerical experiments to demonstrate the performance of our INTERACT and SVR-INTERACT algorithms on a meta-learning problem. In particular, we evaluate and compare the performance of the proposed algorithms against two stochastic algorithms discussed below as the baselines:

- Decentralized Gradient-Tracking Stochastic Gradient Descent (GT-DSGD): This algorithm can be viewed as a "stripped-down" version of INTERACT utilizing stochastic gradients instead of full gradients. It is motivated by the GT-SGD algorithm [24]. The algorithm performs local updates using gradients $\mathbf{p}_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t})$ and $\mathbf{d}_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t})$ evaluated using the following stochastic gradient estimators at each agent: $\mathbf{p}_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t}) = \frac{1}{S} \sum_{i=1}^{S} \left[\nabla f_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t};\bar{\xi}_i) \right]$, and $\mathbf{d}_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t}) = \frac{1}{S} \sum_{i=1}^{S} \left[\nabla g_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t};\bar{\xi}_i) \right]$.
- Decentralized Stochastic Gradient Descent (D-SGD): This algorithm can be viewed as a simplified version of GT-SGD without utilizing gradient tracking [12]. For D-SGD, each agent updates its local parameters as: $\mathbf{x}_{i,t} = \sum_{j \in \mathcal{N}_i} [\mathbf{M}]_{ij} \mathbf{x}_{j,t-1} \alpha \frac{1}{S} \sum_{i=1}^{S} \left[\bar{\nabla} f_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}; \bar{\xi}_i) \right]$ and $\mathbf{y}_{i,t} = \mathbf{y}_{i,t-1} \beta \frac{1}{S} \sum_{i=1}^{S} \left[\nabla g_i(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}; \bar{\xi}_i) \right]$.
- 1) Meta-learning Model and Datasets: We evaluate the performance of INTERACT and SVR-INTERACT across m agents that collectively aim to solve the meta-learning problem with m tasks $\{\mathcal{T}_i, i \in [m]\}$. We allocate each agent one task with f_i defining the loss function of the i-th agent. For the loss function $f_i(\mathbf{x}, \mathbf{y}_i)$ corresponding to task \mathcal{T}_i , the parameter x defines the model parameters shared among all agents, while y_i denotes task specific parameters. The meta-learning problem aims at finding common parameters \mathbf{x} for all tasks, and each task then adapts its own parameters \mathbf{y}_i by minimizing local lower level losses. The objective function is $\min \frac{1}{m} \sum_{i=1}^m f_i(\mathbf{x}, \mathbf{y}_i^*)$, subject to $\mathbf{y}_i^* = \arg\min_{\mathbf{y}_i} g_i(\mathbf{x}, \mathbf{y}_i)$. In practice, \mathbf{y}_i denotes the parameters of the linear layer of a neural network, while \mathbf{x} are the parameters of the remaining layers of the

Figure 2: Convergence performance comparisons on the five-agent network.

Figure 3: Convergence performance comparisons on the 10-agent network.

Figure 4: Convergence performance with different edge connectivity probability.

Figure 5: Convergence performance with different learning rate on the MNIST dataset.

neural network. The inner problem includes a strongly convex regularizer ensuring that the inner function $g_i(\mathbf{x},\mathbf{y}_i)$ is strongly-convex with respect to \mathbf{y}_i and the outer function $f_i(\mathbf{x},\mathbf{y}_i^*)$ is nonconvex with respect to \mathbf{x} .

We evaluate the proposed algorithms on the MNIST [19] and CIFAR-10 [17] datasets using a two-hidden-layer neural network with 20 hidden units. The network topology $\mathcal G$ is generated by the Erdös-Rènyi random graph approach. The consensus matrix is chosen as $\mathbf W = \mathbf I - \frac{2\mathbf L}{3\lambda_{\max}(\mathbf L)}$, where $\mathbf L$ is the Laplacian matrix of $\mathcal G$ and $\lambda_{\max}(\mathbf L)$ denotes the largest eigenvalue of $\mathbf L$.

2) **Performance Comparison:** We set the constant learning rates $\alpha=\beta=0.5$, edge connectivity probability $p_c=0.5$, number of agents m=5, each agent has n=1000 data samples and mini-batch size $q=\lceil \sqrt{n}\rceil$. The network topology is shown in Fig. 1(a). In Fig. 2, we compare the performance of INTERACT and SVR-INTERACT with the GT-SGD and SGD algorithms using the convergence metric $\mathfrak M$ on the MNIST and CIFAR-10 datasets. We note that both INTERACT and SVR-INTERACT outperform the baseline algorithms GT-SGD and SGD. In Fig. 3, we notice a similar behavior when the number of tasks (and agents) are increased to 10. More importantly,

we note that in all experiment settings, the SVR-INTERACT algorithm has the lowest sample complexity, which corroborates our theoretical findings.

3) Impact of the Edge Connectivity: We conduct experiments using five-node network systems and compare the performance of the algorithms on three different network topologies. For the three settings, we choose the value of the edge connectivity probability from the discrete set $\{0.3, 0.5, 0.7\}$, while the rest of the settings stay the same as previous experiments. As shown in Fig. 4, we can observe that the convergence metric \mathfrak{M} is relatively insensitive to the change of network topologies. Fig. 4 shows that the convergence metric \mathfrak{M} slightly increases as the edge connectivity probability p_c decreases (i.e., the network becomes sparser).

4) Impact of the Learning Rate: In this experiment, we choose the learning rates α and β from the discrete set $\{0.5, 0.1, 0.01, 0.001\}$. We fix the number of agents to five and set $p_c = 0.5$. The rest of the experiment settings stay the same as in previous experiments. As shown in Fig. 5, larger values of learning rates α or β lead to faster convergence rates for both INTERACT and SVR-INTERACTalgorithms.

7 CONCLUSION

In this paper, we developed two algorithms called INTERACT and SVR-INTERACT for solving decentralized non-convex-strongly-convex bilevel optimization problems. We showed that, to achieve an ϵ -stationary point, INTERACT and SVR-INTERACT have the communication complexity of $O(\epsilon^{-1})$ and sample complexities of $O(n\epsilon^{-1})$ and $O(\sqrt{n}\epsilon^{-1})$, respectively. Our numerical studies corroborate the theoretical performance of our proposed algorithms. We note that our paper is the first to explore decentralized bilevel learning, which opens up several interesting directions for future research. For instance, it would be of interest to develop differentially-private algorithms for decentralized bilevel learning over networks. Also, one can adopt compression techniques to further reduce communication costs, especially for large-scale deep learning models.

REFERENCES

- Full version of the proofs of this paper. https://kevinliu-osu.github.io/ publications/INTERACT TR.pdf.
- [2] İbrahim A Baky. Fuzzy goal programming algorithm for solving decentralized bi-level multi-objective programming problems. Fuzzy sets and systems, 160(18):2701–2713, 2009.
- [3] Duncan S Callaway and Ian A Hiskens. Achieving controllability of electric loads. Proceedings of the IEEE, 99(1):184–199, 2010.
- [4] Tianyi Chen, Yuejiao Sun, and Wotao Yin. A single-timescale stochastic bilevel optimization method. arXiv preprint arXiv:2102.04671, 2021.
- [5] Tianyi Chen, Yuejiao Sun, and Wotao Yin. Tighter analysis of alternating stochastic gradient method for stochastic nested problems. arXiv preprint arXiv:2106.13781, 2021.
- [6] Saeed Ghadimi, Andrzej Ruszczynski, and Mengdi Wang. A single timescale stochastic approximation method for nested stochastic optimization. SIAM Tournal on Optimization, 30(1):960–979, 2020.
- [7] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint arXiv:1802.02246, 2018.
- [8] Mevludin Glavic, Raphaël Fonteneau, and Damien Ernst. Reinforcement learning for electric power system decision and control: Past considerations and perspectives. IFAC-PapersOnLine, 50(1):6918–6927, 2017.
- [9] Zhishuai Guo and Tianbao Yang. Randomized stochastic variance-reduced methods for stochastic bilevel optimization. arXiv e-prints, pages arXiv-2105, 2021.
- [10] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework for bilevel optimization: Complexity analysis and application to actorcritic. arXiv preprint arXiv:2007.05170, 2020.
- [11] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced design. In *International Conference on Machine Learning*, pages 4882–4892. PMLR, 2021.
- [12] Zhanhong Jiang, Aditya Balu, Chinmay Hegde, and Soumik Sarkar. Collaborative deep learning in fixed topology networks. Advances in Neural Information Processing Systems, 30, 2017.
- [13] Zhanhong Jiang, Kushal Mukherjee, and Soumik Sarkar. On consensusdisagreement tradeoff in distributed optimization. In 2018 Annual American Control Conference (ACC), pages 571–576. IEEE, 2018.
- [14] Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A near-optimal algorithm for stochastic bilevel optimization via double-momentum, 2021.
- [15] Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A near-optimal algorithm for stochastic bilevel optimization via double-momentum. Advances in Neural Information Processing Systems, 34, 2021.
- [16] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, 32(11):1238–1274, 2013.
- [17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
- [18] Gautam Kunapuli, Kristin P Bennett, Jing Hu, and Jong-Shi Pang. Classification model selection via bilevel programming. Optimization Methods & Software, 23(4):475-489, 2008
- [19] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. Available: http://yann. lecun. com/exdb/mnist, 1998.
- [20] Mingrui Liu, Zhuoning Yuan, Yiming Ying, and Tianbao Yang. Stochastic auc maximization with deep neural networks. arXiv preprint arXiv:1908.10831, 2019.
- [21] Mingrui Liu, Wei Zhang, Youssef Mroueh, Xiaodong Cui, Jarret Ross, Tianbao Yang, and Payel Das. A decentralized parallel algorithm for training generative adversarial nets. In *Proceedings of Advances in Neural Information Processing* Systems, volume 33, 2020.

- [22] Weijie Liu, Aryan Mokhtari, Asuman Ozdaglar, Sarath Pattathil, Zebang Shen, and Nenggan Zheng. A decentralized proximal point-type method for saddle point problems. arXiv preprint arXiv:1910.14380, 2019.
- [23] Yaohua Liu and Risheng Liu. Boml: A modularized bilevel optimization library in python for meta learning. In 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pages 1–2. IEEE, 2021.
- [24] Songtao Lu, Xinwei Zhang, Haoran Sun, and Mingyi Hong. Gnsd: A gradient-tracking based nonconvex stochastic algorithm for decentralized optimization. In 2019 IEEE Data Science Workshop (DSW), pages 315–321. IEEE, 2019.
- [25] Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, and Roger Grosse. Self-tuning networks: Bilevel optimization of hyperparameters using structured best-response functions. arXiv preprint arXiv:1903.03088, 2019.
- [26] David Mateos-Núnez and Jorge Cortés. Distributed subgradient methods for saddle-point problems. In 2015 54th IEEE Conference on Decision and Control (CDC), pages 5462-5467. IEEE, 2015.
- [27] Akshay Mehra and Jihun Hamm. Penalty method for inversion-free deep bilevel optimization. In Asian Conference on Machine Learning, pages 347–362. PMLR, 2021.
- [28] Gregory M Moore. Bilevel programming algorithms for machine learning model selection. Rensselaer Polytechnic Institute, 2010.
- [29] Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization. IEEE Transactions on Automatic Control, 54(1):48-61, 2009.
- [30] Takayuki Okuno, Akiko Takeda, Akihiro Kawana, and Motokazu Watanabe. On lp-hyperparameter learning via bilevel nonsmooth optimization. *Journal of Machine Learning Research*, 22(245):1–47, 2021.
- [31] Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent adaptive metric for improved few-shot learning. Advances in neural information processing systems, 31, 2018.
- [32] Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International conference on machine learning, pages 737–746. PMLR, 2016.
- [33] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforcement learning: Applications on robotics. Journal of Intelligent & Robotic Systems, 86(2):153–173, 2017.
- [34] Qi Qi, Youzhi Luo, Zhao Xu, Shuiwang Ji, and Tianbao Yang. Stochastic optimization of areas under precision-recall curves with provable convergence. Advances in Neural Information Processing Systems, 34, 2021.
- [35] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Metalearning with implicit gradients. Advances in neural information processing systems, 32, 2019.
- [36] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.
- [37] Seung Hyong Rhee, Hwa-Sung Kim, and Seung-Won Sohn. The effect of decentralized resource allocation in network-centric warfare. In *The International Conference on Information Network 2012*, pages 478–481. IEEE, 2012.
- [38] Chenggen Shi, Jie Lu, and Guangquan Zhang. An extended kuhn-tucker approach for linear bilevel programming. Applied Mathematics and Computation, 162(1):51– 63, 2005.
- [39] Haoran Sun, Songtao Lu, and Mingyi Hong. Improving the sample and communication complexity for decentralized non-convex optimization: Joint gradient estimation and tracking. In Proceedings of International Conference on Machine Learning, pages 9217–9228. PMLR, 2020.
- [40] M Duran Toksarı and Yasemin Bilim. Interactive fuzzy goal programming based on jacobian matrix to solve decentralized bi-level multi-objective fractional programming problems. *International Journal of Fuzzy Systems*, 17(4):499–508, 2015.
- [41] Ioannis Tsaknakis, Mingyi Hong, and Sijia Liu. Decentralized min-max optimization: Formulations, algorithms and applications in network poisoning attack. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5755–5759. IEEE, 2020.
- [42] Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization. Advances in Neural Information Processing Systems, 34, 2021.
- [43] Chung-Yiu Yau and Hoi-To Wai. Docom-sgt: Doubly compressed momentumassisted stochastic gradient tracking algorithm for communication efficient decentralized learning. arXiv preprint arXiv:2202.00255, 2022.
- [44] Haifeng Zhang, Weizhe Chen, Zeren Huang, Minne Li, Yaodong Yang, Weinan Zhang, and Jun Wang. Bi-level actor-critic for multi-agent coordination. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 7325–7332, 2020.
- [45] Xin Zhang, Jia Liu, Zhengyuan Zhu, and Elizabeth Serena Bentley. Gt-storm: taming sample, communication, and memory complexities in decentralized nonconvex learning. In Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, pages 271–280, 2021.
- [46] Xin Zhang, Zhuqing Liu, Jia Liu, Zhengyuan Zhu, and Songtao Lu. Taming communication and sample complexities in decentralized policy evaluation for cooperative multi-agent reinforcement learning. Advances in Neural Information Processing Systems, 34, 2021.

A PROOF

We note that

$$\bar{\mathbf{x}}_{t} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i,t},$$

$$\mathbf{x}_{t} = \begin{bmatrix} \mathbf{x}_{1,t}^{\top}, \cdots, \mathbf{x}_{m,t}^{\top} \end{bmatrix}^{\top},$$

$$\mathbf{p}_{t} = \begin{bmatrix} \mathbf{p}_{1}(\mathbf{x}_{1,t}, \mathbf{y}_{1,t})^{\top}, \cdots, \mathbf{p}_{m}(\mathbf{x}_{m,t}, \mathbf{y}_{m,t})^{\top} \end{bmatrix}^{\top},$$

$$\mathbf{d}_{t} = \begin{bmatrix} \mathbf{d}_{1}(\mathbf{x}_{1,t}, \mathbf{y}_{1,t})^{\top}, \cdots, \mathbf{d}_{m}(\mathbf{x}_{m,t}, \mathbf{y}_{m,t})^{\top} \end{bmatrix}^{\top},$$

$$\bar{\mathbf{p}}_{t} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}),$$

$$\bar{\mathbf{d}}_{t} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{d}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}),$$
(33)

Step 1:

Lemma 4 (Descending Inequality for upper function). Under assumptions 1-2, the following descending inequality holds for both with Algorithm 1 and Algorithm 2:

$$\ell(\bar{\mathbf{x}}_{t+1}) - \ell(\bar{\mathbf{x}}_{t}) \leq -\frac{\alpha}{2} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - (\frac{\alpha}{2} - \frac{L_{\ell}\alpha^{2}}{2}) \|\bar{\mathbf{u}}_{t}\|^{2} + \frac{\alpha}{m} \sum_{i=1}^{m} L_{\ell} \|\bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t}\|^{2} + \frac{2\alpha}{m} \sum_{i=1}^{m} L_{f}^{2} \|\mathbf{y}_{i,t}^{*} - \mathbf{y}_{i,t}\|^{2} + 2\alpha \|\frac{1}{m} \sum_{i=1}^{m} \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t}\|^{2},$$
(34)

where $\mathbf{y}_{i,t}^* = \arg\max_{\mathbf{y}} \ell(\mathbf{x}_{i,t}, \mathbf{y})$.

PROOF

$$\begin{split} &\ell(\bar{\mathbf{x}}_{t+1}) - \ell(\bar{\mathbf{x}}_{t}) \overset{(a)}{\leq} \langle \nabla \ell(\bar{\mathbf{x}}_{t}), \bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t} \rangle + \frac{L_{\ell}}{2} \|\bar{\mathbf{x}}_{t+1} - \bar{\mathbf{x}}_{t}\|^{2} \\ &= -\alpha \langle \nabla \ell(\bar{\mathbf{x}}_{t}), \bar{\mathbf{u}}_{t} \rangle + \frac{L_{\ell}\alpha^{2}}{2} \|\bar{\mathbf{u}}_{t}\|^{2} \\ &= -\frac{\alpha}{2} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - (\frac{\alpha}{2} - \frac{L_{\ell}\alpha^{2}}{2}) \|\bar{\mathbf{u}}_{t}\|^{2} + \frac{\alpha}{2} \|\nabla \ell(\bar{\mathbf{x}}_{t}) - \bar{\mathbf{u}}_{t}\|^{2} \\ &= -\frac{\alpha}{2} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - (\frac{\alpha}{2} - \frac{L_{\ell}\alpha^{2}}{2}) \|\bar{\mathbf{u}}_{t}\|^{2} + \frac{\alpha}{2} \|\nabla \ell(\bar{\mathbf{x}}_{t}) - \frac{1}{m} \sum_{i=1}^{m} \nabla l_{i}(\mathbf{x}_{i,t}) + \frac{1}{m} \sum_{i=1}^{m} \nabla l_{i}(\mathbf{x}_{i,t}) - \bar{\mathbf{u}}_{t}\|^{2} \\ &\leq -\frac{\alpha}{2} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - (\frac{\alpha}{2} - \frac{L_{\ell}\alpha^{2}}{2}) \|\bar{\mathbf{u}}_{t}\|^{2} + \frac{\alpha}{m} \sum_{i=1}^{m} \|\nabla l_{i}(\bar{\mathbf{x}}_{t}) - \nabla l_{i}(\mathbf{x}_{i,t})\|^{2} + \alpha \|\frac{1}{m} \sum_{i=1}^{m} \nabla l_{i}(\mathbf{x}_{i,t}) - \bar{\mathbf{u}}_{t}\|^{2} \\ &= -\frac{\alpha}{2} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - (\frac{\alpha}{2} - \frac{L_{\ell}\alpha^{2}}{2}) \|\bar{\mathbf{u}}_{t}\|^{2} + \frac{\alpha}{m} \sum_{i=1}^{m} L_{\ell} \|\bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t}\|^{2} + \alpha \|\frac{1}{m} \sum_{i=1}^{m} \nabla f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}^{*}) - \frac{1}{m} \sum_{i=1}^{m} \nabla f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) + \frac{1}{m} \sum_{i=1}^{m} \nabla f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t}\|^{2} \\ &\leq -\frac{\alpha}{2} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - (\frac{\alpha}{2} - \frac{L_{\ell}\alpha^{2}}{2}) \|\bar{\mathbf{u}}_{t}\|^{2} + \frac{\alpha}{m} \sum_{i=1}^{m} L_{\ell} \|\bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t}\|^{2} + \frac{2\alpha}{m} \sum_{i=1}^{m} \|\nabla f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}^{*}) - \nabla f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) \|^{2} + 2\alpha \|\frac{1}{m} \sum_{i=1}^{m} \nabla f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t}\|^{2} \\ &\leq -\frac{\alpha}{2} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - (\frac{\alpha}{2} - \frac{L_{\ell}\alpha^{2}}{2}) \|\bar{\mathbf{u}}_{t}\|^{2} + \frac{\alpha}{m} \sum_{i=1}^{m} L_{\ell} \|\bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t}\|^{2} + \frac{2\alpha}{m} \sum_{i=1}^{m} L_{\ell}^{2} \|\bar{\mathbf{y}}_{i,t}^{*} - \mathbf{y}_{i,t}\|^{2} + 2\alpha \|\frac{1}{m} \sum_{i=1}^{m} \nabla f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t}\|^{2}, \end{split}$$

where (a) is because of Lipschitz continuous gradients of ℓ , see Lemma 1. (b) is because of the updating rules. (c), (d) is from the triangle inequality. (e) is from Lemma 1.

Step 2:

Lemma 5 (Error Bound on $y^*(x)$). Under assumptions 1-2, the following inequality holds for both with Algorithm 1 and Algorithm 2:

$$\|\mathbf{y}_{i,t+1} - \mathbf{y}_{i,t+1}^*\|^2 \le (1+r)(1-2\beta\frac{\mu_g L_g}{\mu_g + L_g})\|\mathbf{y}_{i,t} - \mathbf{y}_{i,t}^*\|^2$$

$$- (1+r)(2\beta\frac{1}{\mu_g + L_g} - \beta^2)\|\mathbf{v}_{i,t}\|^2 + 2(1+\frac{1}{r})L_y^2\alpha^2(\|\mathbf{u}_{i,t} - \bar{\mathbf{u}}_t\|^2 + \|\bar{\mathbf{u}}_t\|^2)$$
(36)

Proof.

$$\begin{aligned} \|\mathbf{y}_{i,t+1} - \mathbf{y}_{i,t+1}^*\|^2 &= \|\mathbf{y}_{i,t+1} - \mathbf{y}_{i,t}^* + \mathbf{y}_{i,t}^* - \mathbf{y}_{i,t+1}^*\|^2 \\ &\stackrel{(a)}{\leq} (1+r) \|\mathbf{y}_{i,t+1} - \mathbf{y}_{i,t}^*\|^2 + (1+\frac{1}{r}) \|\mathbf{y}_{i,t}^* - \mathbf{y}_{i,t+1}^*\|^2 \\ &\stackrel{(b)}{=} (1+r) \|\mathbf{y}_{i,t} - \beta \mathbf{v}_{i,t} - \mathbf{y}_{i,t}^*\|^2 + (1+\frac{1}{r}) \|\mathbf{y}_{i,t}^* - \mathbf{y}_{i,t+1}^*\|^2 \\ &\stackrel{(c)}{\leq} (1+r) (1-2\beta \frac{\mu_g L_g}{\mu_g + L_g}) \|\mathbf{y}_{i,t} - \mathbf{y}_{i,t}^*\|^2 - (1+r) (2\beta \frac{1}{\mu_g + L_g} - \beta^2) \|\mathbf{v}_{i,t}\|^2 + (1+\frac{1}{r}) \|\mathbf{y}_{i,t}^* - \mathbf{y}_{i,t+1}^*\|^2 \\ &\stackrel{(d)}{\leq} (1+r) (1-2\beta \frac{\mu_g L_g}{\mu_g + L_g}) \|\mathbf{y}_{i,t} - \mathbf{y}_{i,t}^*\|^2 - (1+r) (2\beta \frac{1}{\mu_g + L_g} - \beta^2) \|\mathbf{v}_{i,t}\|^2 + (1+\frac{1}{r}) L_y^2 \|\mathbf{x}_{i,t+1} - \mathbf{x}_{i,t}\|^2 \\ &\stackrel{(e)}{=} (1+r) (1-2\beta \frac{\mu_g L_g}{\mu_g + L_g}) \|\mathbf{y}_{i,t} - \mathbf{y}_{i,t}^*\|^2 - (1+r) (2\beta \frac{1}{\mu_g + L_g} - \beta^2) \|\mathbf{v}_{i,t}\|^2 + (1+\frac{1}{r}) L_y^2 \alpha^2 \|\mathbf{u}_{i,t}\|^2 \\ &\stackrel{(f)}{\leq} (1+r) (1-2\beta \frac{\mu_g L_g}{\mu_g + L_g}) \|\mathbf{y}_{i,t} - \mathbf{y}_{i,t}^*\|^2 - (1+r) (2\beta \frac{1}{\mu_g + L_g} - \beta^2) \|\mathbf{v}_{i,t}\|^2 + 2(1+\frac{1}{r}) L_y^2 \alpha^2 (\|\mathbf{u}_{i,t} - \bar{\mathbf{u}}_t\|^2 + \|\bar{\mathbf{u}}_t\|^2), \end{aligned} \tag{37}$$

where (a) is because of Young's inequality. (b) and (e) are because of the updating rules of $y_{i,t}$ and $x_{i,t}$. (c) is due to the coercive property of lower level function $g_i(\mathbf{x}_i, \mathbf{y}_i^*)$ and $g_i(\mathbf{x}_i, \mathbf{y}_i^*) = 0$. (d) is from Lemma 1. (f) is because of the triangle inequality.

Step 3:

LEMMA 6 (ITERATES CONTRACTION). The following contraction properties of the iterates hold:

$$\|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} \le (1 + c_{1})\lambda^{2} \|\mathbf{x}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t-1}\|^{2} + (1 + \frac{1}{c_{1}})\alpha^{2} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2}, \tag{38}$$

$$\|\mathbf{u}_{t} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t}\|^{2} \le (1 + c_{2})\lambda^{2} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2} + (1 + \frac{1}{c_{2}}) \|\mathbf{p}_{t} - \mathbf{p}_{t-1}\|^{2}, \tag{39}$$

where c₁ and c₂ are arbitrary positive constants. Additionally, we have

$$\|\mathbf{x}_{t} - \mathbf{x}_{t-1}\|^{2} \leq 8\|(\mathbf{x}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t-1})\|^{2} + 4\alpha^{2}\|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2} + 4\alpha^{2}m\|\bar{\mathbf{u}}_{t-1}\|^{2}.$$

$$\|\mathbf{y}_{t} - \mathbf{y}_{t-1}\|^{2} \leq \beta^{2}\|\mathbf{v}_{t-1}\|^{2},$$
(40)

PROOF. Define $\widetilde{\mathbf{M}} = \mathbf{M} \otimes \mathbf{I}_m$. First for the iterates \mathbf{x}_t , we have the following contraction:

$$\|\widetilde{\mathbf{M}}\mathbf{x}_t - \mathbf{1} \otimes \bar{\mathbf{x}}_t\|^2 = \|\widetilde{\mathbf{M}}(\mathbf{x}_t - \mathbf{1} \otimes \bar{\mathbf{x}}_t)\|^2 \le \lambda^2 \|\mathbf{x}_t - \mathbf{1} \otimes \bar{\mathbf{x}}_t\|^2. \tag{41}$$

This is because $\mathbf{x}_t - \mathbf{1} \otimes \mathbf{x}_t$ is orthogonal 1, which is the eigenvector corresponding to the largest eigenvalue of $\overline{\mathbf{M}}$, and $\lambda = \max\{|\lambda_2|, |\lambda_m|\}$. Recall that $\overline{\mathbf{x}}_t = \overline{\mathbf{x}}_{t-1} - \alpha \overline{\mathbf{u}}_{t-1}$, hence,

$$\|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} = \|\widetilde{\mathbf{M}}\mathbf{x}_{t-1} - \alpha \mathbf{u}_{t-1} - \mathbf{1} \otimes (\bar{\mathbf{x}}_{t-1} - \alpha \bar{\mathbf{u}}_{t-1})\|^{2}$$

$$\stackrel{(a)}{\leq} (1 + c_{1}) \|\widetilde{\mathbf{M}}\mathbf{x}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t-1}\|^{2} + (1 + \frac{1}{c_{1}})\alpha^{2} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2}$$

$$\stackrel{(b)}{\leq} (1 + c_{1})\lambda^{2} \|\mathbf{x}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t-1}\|^{2} + (1 + \frac{1}{c_{1}})\alpha^{2} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2}, \tag{42}$$

where (a) is becase of triangle inequality and (b) is from eqs.(41).

For \mathbf{u}_t , we have

$$\begin{aligned} &\|\mathbf{u}_{t} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t}\|^{2} \\ &= \|\widetilde{\mathbf{M}}\mathbf{u}_{t-1} + \mathbf{p}_{t} - \mathbf{p}_{t-1} - \mathbf{1} \otimes \left(\bar{\mathbf{u}}_{t-1} + \bar{\mathbf{p}}_{t} - \bar{\mathbf{p}}_{t-1}\right)\|^{2} \\ &\leq (1 + c_{2})\lambda^{2} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \mathbf{u}_{t-1}\|^{2} + (1 + \frac{1}{c_{2}}) \|\mathbf{p}_{t} - \mathbf{p}_{t-1} - \mathbf{1} \otimes \left(\bar{\mathbf{p}}_{t} - \bar{\mathbf{p}}_{t-1}\right)\|^{2} \\ &\leq (1 + c_{2})\lambda^{2} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2} + (1 + \frac{1}{c_{2}}) \|\left(\mathbf{I} - \frac{1}{n}(\mathbf{1}\mathbf{1}^{\top}) \otimes \mathbf{I}\right)\left(\mathbf{p}_{t} - \mathbf{p}_{t-1}\right)\|^{2} \\ &\leq (1 + c_{2})\lambda^{2} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2} + (1 + \frac{1}{c_{2}}) \|\mathbf{p}_{t} - \mathbf{p}_{t-1}\|^{2} \end{aligned} \tag{43}$$

where (a) is due to $\|\mathbf{I} - \frac{1}{m}(\mathbf{1}\mathbf{1}^{\top}) \otimes \mathbf{I}\| \leq 1$.

According to the updating

$$\|\mathbf{x}_{t} - \mathbf{x}_{t-1}\|^{2} = \|\widetilde{\mathbf{M}}\mathbf{x}_{t-1} - \alpha\mathbf{u}_{t-1} - \mathbf{x}_{t-1}\|^{2}$$

$$= \|(\widetilde{\mathbf{M}} - \mathbf{I})\mathbf{x}_{t-1} - \alpha\mathbf{u}_{t-1}\|^{2} \le 2\|(\widetilde{\mathbf{M}} - \mathbf{I})\mathbf{x}_{t-1}\|^{2} + 2\alpha^{2}\|\mathbf{u}_{t-1}\|^{2}$$

$$= 2\|(\widetilde{\mathbf{M}} - \mathbf{I})(\mathbf{x}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t-1})\|^{2} + 2\alpha^{2}\|\mathbf{u}_{t-1}\|^{2}$$

$$\le 8\|(\mathbf{x}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t-1})\|^{2} + 4\alpha^{2}\|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2} + 4\alpha^{2}m\|\bar{\mathbf{u}}_{t-1}\|^{2}$$
(44)

And also,

$$\|\mathbf{y}_{t} - \mathbf{y}_{t-1}\|^{2} \le \beta^{2} \|\mathbf{v}_{t-1}\|^{2}. \tag{45}$$

Step 4: With the results from Step 1, we have

$$\ell(\bar{\mathbf{x}}_{t+1}) - \ell(\bar{\mathbf{x}}_{t}) \leq -\frac{\alpha}{2} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - (\frac{\alpha}{2} - \frac{L_{\ell}\alpha^{2}}{2}) \|\bar{\mathbf{u}}_{t}\|^{2}$$

$$+ \frac{\alpha}{m} \sum_{i=1}^{m} L_{\ell} \|\bar{\mathbf{x}}_{t} - \mathbf{x}_{i,t}\|^{2} + \frac{2\alpha}{m} \sum_{i=1}^{m} L_{f}^{2} \|\mathbf{y}_{i,t}^{*} - \mathbf{y}_{i,t}\|^{2} + 2\alpha \|\frac{1}{m} \sum_{i=1}^{m} \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t}\|^{2}$$

$$\leq -\frac{\alpha}{2} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - (\frac{\alpha}{2} - \frac{L_{\ell}\alpha^{2}}{2}) \|\bar{\mathbf{u}}_{t}\|^{2}$$

$$+ \frac{\alpha L_{\ell}}{m} \|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} + \frac{2\alpha}{m} L_{f}^{2} \|\mathbf{y}_{t}^{*} - \mathbf{y}_{t}\|^{2} + 2\alpha \|\frac{1}{m} \sum_{i=1}^{m} \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t}\|^{2}$$

$$(46)$$

With the results from Step 2, we have

$$\|\mathbf{y}_{t+1} - \mathbf{y}_{t+1}^*\|^2 - \|\mathbf{y}_t - \mathbf{y}_t^*\|^2 \le -\left[1 - (1+r)(1 - 2\beta \frac{\mu_g L_g}{\mu_g + L_g})\right] \|\mathbf{y}_t - \mathbf{y}_t^*\|^2 - (1+r)(2\beta \frac{1}{\mu_g + L_g} - \beta^2) \|\mathbf{v}_t\|^2 + 2(1+\frac{1}{r})L_y^2 \alpha^2 (\|\mathbf{u}_t - \mathbf{1} \otimes \bar{\mathbf{u}}_t\|^2 + m\|\bar{\mathbf{u}}_t\|^2)$$

$$(47)$$

Combing 46 and 47 and telescoping the inequality, we have

$$\begin{split} &\ell(\bar{\mathbf{x}}_{T+1}) - \ell(\bar{\mathbf{x}}_{0}) + \left[\|\mathbf{y}_{T+1} - \mathbf{y}_{T+1}^{*}\|^{2} - \|\mathbf{y}_{0}^{*} - \mathbf{y}_{0}\|^{2} \right] \\ &\leq -\frac{\alpha}{2} \sum_{t=0}^{T} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - (\frac{\alpha}{2} - \frac{L_{\ell}\alpha^{2}}{2}) \sum_{t=0}^{T} \|\bar{\mathbf{u}}_{t}\|^{2} + \frac{\alpha L_{\ell}}{m} \sum_{t=0}^{T} \|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} + 2\alpha \sum_{t=0}^{T} \|\frac{1}{m} \sum_{i=1}^{m} \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t}\|^{2} \\ &+ \frac{2\alpha}{m} L_{f}^{2} \sum_{t=0}^{T} \|\mathbf{y}_{t}^{*} - \mathbf{y}_{t}\|^{2} - [1 - (1+r)(1-2\beta \frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}})] \sum_{t=0}^{T} \|\mathbf{y}_{t} - \mathbf{y}_{t}^{*}\|^{2} \\ &- (1+r)(2\beta \frac{1}{\mu_{g} + L_{g}} - \beta^{2}) \sum_{t=0}^{T} \|\mathbf{v}_{t}\|^{2} + 2(1+\frac{1}{r})L_{g}^{2}\alpha^{2} (\sum_{t=0}^{T} \|\mathbf{u}_{t} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t}\|^{2} + \sum_{t=0}^{T} m\|\bar{\mathbf{u}}_{t}\|^{2}) \\ &= -\frac{\alpha}{2} \sum_{t=0}^{T} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - (\frac{\alpha}{2} - \frac{L_{\ell}\alpha^{2}}{2} - 2(1+\frac{1}{r})L_{g}^{2}\alpha^{2}m) \sum_{t=0}^{T} \|\bar{\mathbf{u}}_{t}\|^{2} + \frac{\alpha L_{\ell}}{m} \sum_{t=0}^{T} \|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} \\ &+ \left[\frac{2\alpha}{m} L_{f}^{2} + r - (1+r)(2\beta \frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}}) \right] \sum_{t=0}^{T} \|\mathbf{y}_{t} - \mathbf{y}_{t}^{*}\|^{2} + 2\alpha \sum_{t=0}^{T} \|\frac{1}{m} \sum_{i=1}^{m} \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t}\|^{2} \\ &- (1+r)(2\beta \frac{1}{\mu_{g} + L_{g}} - \beta^{2}) \sum_{t=0}^{T} \|\mathbf{v}_{t}\|^{2} + 2(1+\frac{1}{r})L_{g}^{2}\alpha^{2} (\sum_{t=0}^{T} \|\mathbf{u}_{t} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t}\|^{2}) \end{split}$$

Proof of Theorem 1: For Algorithm 1, we have $\|\frac{1}{m}\sum_{i=1}^{m} \bar{\nabla} f_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t}) - \bar{\mathbf{u}}_t\|^2 = 0$ and

$$\|\mathbf{p}_{t} - \mathbf{p}_{t-1}\|^{2} \le L_{V}^{2} (\|\mathbf{x}_{t} - \mathbf{x}_{t-1}\|^{2} + \beta^{2} \|\mathbf{v}_{t-1}\|^{2}). \tag{49}$$

With the results from Step 3, we have

$$\|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} \leq (1 + c_{1})\lambda^{2} \|\mathbf{x}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t-1}\|^{2} + (1 + \frac{1}{c_{1}})\alpha^{2} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2},$$

$$\|\mathbf{u}_{t} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t}\|^{2} \leq ((1 + c_{2})\lambda^{2}) \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2}$$

$$+ (1 + \frac{1}{c_2})L_K^2(\|\mathbf{x}_t - \mathbf{x}_{t-1}\|^2 + \beta^2 \|\mathbf{v}_{t-1}\|^2).$$
 (50)

Then, we have

$$\|\mathbf{x}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{T+1}\|^{2} - \|\mathbf{x}_{0} - \mathbf{1} \otimes \bar{\mathbf{x}}_{0}\|^{2}$$

$$\leq ((1+c_{1})\lambda^{2} - 1) \sum_{t=1}^{T+1} \|\mathbf{x}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t-1}\|^{2} + (1+\frac{1}{c_{1}})\alpha^{2} \sum_{t=1}^{T+1} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2}.$$
(51)

$$\|\mathbf{u}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{T+1}\|^2 - \|\mathbf{u}_0 - \mathbf{1} \otimes \bar{\mathbf{u}}_0\|^2$$

$$\leq ((1+c_2)\lambda^2 - 1)\sum_{t=1}^{T+1} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^2 + (1+\frac{1}{c_2})L_K^2 \sum_{t=1}^{T+1} (\|\mathbf{x}_t - \mathbf{x}_{t-1}\|^2 + \beta^2 \|\mathbf{v}_{t-1}\|^2). \tag{52}$$

Combing 51,52 and48, we have

$$\begin{split} &\ell(\bar{\mathbf{x}}_{T+1}) - \ell(\bar{\mathbf{x}}_0) + \left[\|\mathbf{y}_{T+1} - \mathbf{y}_{T+1}^* \|^2 - \|\mathbf{y}_0^* - \mathbf{y}_0\|^2 \right] \\ &+ \left[\|\mathbf{x}_{T+1} - 1 \otimes \bar{\mathbf{x}}_{T+1} \|^2 - \|\mathbf{x}_0 - 1 \otimes \bar{\mathbf{x}}_0\|^2 \right] + \alpha \left[\|\mathbf{u}_{T+1} - 1 \otimes \bar{\mathbf{u}}_{T+1} \|^2 - \|\mathbf{u}_0 - 1 \otimes \bar{\mathbf{u}}_0\|^2 \right] \\ &\leq -\frac{\alpha}{2} \sum_{t=0}^{T} \|\nabla \ell(\bar{\mathbf{x}}_t) \|^2 - \left(\frac{\alpha}{2} - \frac{L_t \alpha^2}{2} - 2(1 + \frac{1}{r}) L_y^2 \alpha^2 m \right) \sum_{t=0}^{T} \|\bar{\mathbf{u}}_t \|^2 \\ &+ (1 + \frac{1}{c_2}) L_K^2 \alpha \sum_{t=1}^{T+1} \|\mathbf{x}_t - \mathbf{x}_{t-1} \|^2 + \left[(1 + c_1) \lambda^2 - 1 + \frac{\alpha L_\ell}{m} \right] \sum_{t=0}^{T} \|\mathbf{x}_t - 1 \otimes \bar{\mathbf{x}}_t \|^2 \\ &+ \left[\frac{2\alpha}{m} L_f^2 + r - (1 + r) (2\beta \frac{\mu_g L_g}{\mu_g + L_g}) \right] \sum_{t=0}^{T} \|\mathbf{y}_t - \mathbf{y}_t^* \|^2 \\ &+ \left[(1 + \frac{1}{c_2}) L_K^2 \alpha \beta^2 - (1 + r) (2\beta \frac{1}{\mu_g + L_g} - \beta^2) \right] \sum_{t=0}^{T} \|\mathbf{v}_t \|^2 \\ &\left[(1 + \frac{1}{c_1}) \alpha^2 + 2(1 + \frac{1}{r}) L_y^2 \alpha^2 + \alpha ((1 + c_2) \lambda^2 - 1) \right] \sum_{t=0}^{T} \|\mathbf{u}_t - 1 \otimes \bar{\mathbf{u}}_t \|^2 \\ &\leq -\frac{\alpha}{2} \sum_{t=0}^{T} \|\nabla \ell(\bar{\mathbf{x}}_t) \|^2 - \left(\frac{\alpha}{2} - 4\alpha^2 m (1 + \frac{1}{c_2}) L_K^2 \alpha - \frac{L_t \alpha^2}{2} - 2(1 + \frac{1}{r}) L_y^2 \alpha^2 m \right) \sum_{t=0}^{T} \|\bar{\mathbf{u}}_t \|^2 \\ &+ \left[8(1 + \frac{1}{c_2}) L_K^2 \alpha m + (1 + c_1) \lambda^2 - 1 + \frac{\alpha L_\ell}{m} \right] \sum_{t=0}^{T} \|\mathbf{x}_t - 1 \otimes \bar{\mathbf{x}}_t \|^2 \\ &+ \left[\frac{2\alpha}{m} L_f^2 + r - (1 + r) (2\beta \frac{\mu_g L_g}{\mu_g + L_g}) \right] \sum_{t=0}^{T} \|\mathbf{y}_t - \mathbf{y}_t^* \|^2 \\ &+ \left[(1 + \frac{1}{c_2}) L_K^2 \alpha \beta^2 - (1 + r) (2\beta \frac{1}{\mu_g + L_g} - \beta^2) \right] \sum_{t=0}^{T} \|\mathbf{v}_t \|^2 + \left[4\alpha^2 (1 + \frac{1}{c_2}) L_K^2 \alpha \right. \\ &+ \left. (1 + \frac{1}{c_1}) \alpha^2 + 2(1 + \frac{1}{r}) L_g^2 \alpha^2 + \alpha ((1 + c_2) \lambda^2 - 1) \right] \sum_{t=0}^{T} \|\mathbf{v}_t \|^2 + \left[4\alpha^2 (1 + \frac{1}{c_2}) L_K^2 \alpha \right. \\ &+ \left. (1 + \frac{1}{c_1}) \alpha^2 + 2(1 + \frac{1}{r}) L_g^2 \alpha^2 + \alpha ((1 + c_2) \lambda^2 - 1) \right] \sum_{t=0}^{T} \|\mathbf{v}_t \|^2 + \left[4\alpha^2 (1 + \frac{1}{c_2}) L_K^2 \alpha \right. \\ &+ \left. (1 + \frac{1}{c_1}) \alpha^2 + 2(1 + \frac{1}{r}) L_g^2 \alpha^2 + \alpha ((1 + c_2) \lambda^2 - 1) \right] \sum_{t=0}^{T} \|\mathbf{v}_t \|^2 + \left[4\alpha^2 (1 + \frac{1}{c_2}) L_K^2 \alpha \right]$$

where (b) is from eqs.(40). Next, choosing $c_1 = c_2 = \frac{1}{\lambda} - 1$, we have

$$\ell(\bar{\mathbf{x}}_{T+1}) - \ell(\bar{\mathbf{x}}_{0}) + \left[\|\mathbf{y}_{T+1} - \mathbf{y}_{T+1}^{*}\|^{2} - \|\mathbf{y}_{0}^{*} - \mathbf{y}_{0}\|^{2} \right]
+ \left[\|\mathbf{x}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{T+1}\|^{2} - \|\mathbf{x}_{0} - \mathbf{1} \otimes \bar{\mathbf{x}}_{0}\|^{2} \right] + \alpha \left[\|\mathbf{u}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{T+1}\|^{2} - \|\mathbf{u}_{0} - \mathbf{1} \otimes \bar{\mathbf{u}}_{0}\|^{2} \right]
\leq -\frac{\alpha}{2} \sum_{t=0}^{T} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} + C_{1} \sum_{t=0}^{T} \|\bar{\mathbf{u}}_{t}\|^{2} + C_{2} \sum_{t=0}^{T} \|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} + C_{3} \sum_{t=0}^{T} \|\mathbf{y}_{t} - \mathbf{y}_{t}^{*}\|^{2}
+ C_{4} \sum_{t=0}^{T} \|\mathbf{v}_{t}\|^{2} + C_{5} \sum_{t=0}^{T} \|\mathbf{u}_{t} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t}\|^{2},$$
(54)

where the constants are

$$C_1 = -\left(\frac{\alpha}{2} - 4\alpha^2 m \frac{1}{1 - \lambda} L_K^2 \alpha - \frac{L_\ell \alpha^2}{2} - 2(1 + \frac{1}{r}) L_y^2 \alpha^2 m\right),\tag{55}$$

$$C_2 = \left[8\frac{1}{1-\lambda}L_K^2\alpha + \lambda - 1 + \frac{\alpha L_\ell}{m}\right],\tag{56}$$

$$C_3 = \left[\frac{2\alpha}{m}L_f^2 + r - (1+r)(2\beta \frac{\mu_g L_g}{\mu_g + L_g})\right],\tag{57}$$

$$C_4 = \left[\frac{1}{1 - \lambda} L_K^2 \alpha \beta^2 - (1 + r)(2\beta \frac{1}{\mu_q + L_q} - \beta^2) \right], \tag{58}$$

$$C_5 = \left[4\alpha^2 \frac{1}{1-\lambda} L_K^2 \alpha + \frac{1}{1-\lambda} \alpha^2 + 2(1+\frac{1}{r}) L_y^2 \alpha^2 + \alpha(\lambda - 1)\right]. \tag{59}$$

To ensure $C_1 \leq 0$, we have

$$C_{1} = -\left(\frac{\alpha}{2} - 4\alpha^{2} \frac{1}{1 - \lambda} L_{K}^{2} \alpha - \frac{L_{\ell} \alpha^{2}}{2} - 2\left(1 + \frac{1}{r}\right) L_{y}^{2} \alpha^{2} m\right)$$

$$\stackrel{(a)}{\leq} -\frac{\alpha}{2} + \frac{\alpha}{8} + \frac{\alpha}{8} + \frac{\alpha}{8} < 0,$$
(60)

where (a) follows from $\alpha \leq \min\{\frac{1}{4L_K}\sqrt{\frac{1-\lambda}{2}}, \frac{1}{4L_\ell}, \frac{r}{16mL_{cr}^2(r+1)}\}$.

To ensure $C_2 \leq -\frac{1-\lambda}{2}$, we have

$$C_2 = \left[8 \frac{1}{1 - \lambda} L_K^2 \alpha m + \lambda - 1 + \frac{\alpha L_\ell}{m} \right] \stackrel{(a)}{\leq} \frac{1 - \lambda}{4} - (1 - \lambda) + \frac{1 - \lambda}{4} \leq -\frac{1 - \lambda}{2}, \tag{61}$$

where (a) follows from $\alpha \le \min\{\frac{(1-\lambda)^2}{32L_k^2}, \frac{m(1-\lambda)}{4L_\ell}\}$.

To ensure $C_3 \leq -\beta \frac{\mu_g L_g}{\mu_a + L_a}$, we have

$$C_{3} = \left[\frac{2\alpha}{m}L_{f}^{2} + r - (1+r)(2\beta\frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}})\right]$$

$$\stackrel{(a)}{\leq} r(2\beta\frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}}) + (\beta\frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}}) - (1+r)(2\beta\frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}}) \leq -\beta\frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}},$$
(62)

where (a) follows from $\alpha \leq \frac{rm}{L_f^2}(\beta \frac{\mu_g L_g}{\mu_g + L_g}), r = \beta \frac{\mu_g L_g}{\mu_g + L_g}$ To ensure $C_4 \leq 0$, we have

$$C_4 = \left[\frac{1}{1 - \lambda} L_K^2 \alpha \beta^2 - (1 + r) (2\beta \frac{1}{\mu_g + L_g} - \beta^2) \right]$$

$$\stackrel{(a)}{\leq} (1 + r) \beta \frac{1}{\mu_g + L_g} - (1 + r) 2\beta \frac{1}{\mu_g + L_g} + (1 + r) \beta \frac{1}{\mu_g + L_g} = 0,$$
(63)

where (a) follows from $\alpha \leq \frac{(1+r)(1-\lambda)}{(\mu_g + L_g)L_K^2\beta}, \beta \leq \frac{1}{\mu_g + L_g}$. To ensure $C_5 \leq 0$, we have

$$C_{5} = \left[4\alpha^{2} \frac{1}{1-\lambda} L_{K}^{2} \alpha + \frac{1}{1-\lambda} \alpha^{2} + 2(1+\frac{1}{r}) L_{y}^{2} \alpha^{2} + \alpha(\lambda-1)\right]$$

$$\stackrel{(a)}{\leq} \frac{\alpha(1-\lambda)}{3} + \frac{\alpha(1-\lambda)}{3} + \frac{\alpha(1-\lambda)}{3} - \alpha(1-\lambda) = 0$$
(64)

where (a) follows from $\alpha \leq \min\{\frac{1-\lambda}{2L_K}\sqrt{\frac{1}{3}}, \frac{(1-\lambda)^2}{3}, \frac{1-\lambda}{6(1+\frac{1}{\nu})L_u^2}\}$

With the above conditions, we have

$$\ell(\bar{\mathbf{x}}_{T+1}) - \ell(\bar{\mathbf{x}}_{0}) + \left[\|\mathbf{y}_{T+1} - \mathbf{y}_{T+1}^{*}\|^{2} - \|\mathbf{y}_{0}^{*} - \mathbf{y}_{0}\|^{2} \right]$$

$$+ \left[\|\mathbf{x}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{T+1}\|^{2} - \|\mathbf{x}_{0} - \mathbf{1} \otimes \bar{\mathbf{x}}_{0}\|^{2} \right] + \alpha \left[\|\mathbf{u}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{T+1}\|^{2} - \|\mathbf{u}_{0} - \mathbf{1} \otimes \bar{\mathbf{u}}_{0}\|^{2} \right]$$

$$\leq -\frac{\alpha}{2} \sum_{t=0}^{T} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - \frac{1-\lambda}{2} \sum_{t=0}^{T} \|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} - \beta \frac{\mu_{g} L_{g}}{\mu_{g} + L_{g}} \sum_{t=0}^{T} \|\mathbf{y}_{t} - \mathbf{y}_{t}^{*}\|^{2}.$$

$$(65)$$

Thus, we have the following convergence results:

$$\frac{1}{T+1} \sum_{t=0}^{T} \|\mathfrak{M}_{t}\|^{2} \leq \frac{1}{(T+1) \min\{\frac{1-\lambda}{2}, \beta \frac{\mu_{g}L_{g}}{\mu_{g}+L_{g}}, \frac{\alpha}{2}\}} [\mathfrak{B}_{0} - \mathfrak{B}_{T+1}]
\leq \frac{1}{(T+1) \min\{\frac{1-\lambda}{2}, \beta \frac{\mu_{g}L_{g}}{\mu_{g}+L_{g}}, \frac{\alpha}{2}\}} [\mathfrak{B}_{0} - \ell^{*}],$$
(66)

where $\mathfrak{B}_t = \ell(\bar{\mathbf{x}}_t) + \|\bar{\mathbf{y}}_t - \mathbf{y}_t^*\|^2 + \|\mathbf{x}_t - \mathbf{1} \otimes \bar{\mathbf{x}}_t\|^2 + \alpha \|\mathbf{u}_t - \mathbf{1} \otimes \bar{\mathbf{u}}_t\|^2$.

Proof of Theorem 3: For Algorithm 2, we have

$$\left\|\frac{1}{m}\sum_{i=1}^{m}\bar{\nabla}f_{i}(\mathbf{x}_{i,t},\mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t}\right\|^{2} = \left\|\frac{1}{m}\sum_{i=1}^{m}\bar{\nabla}f_{i}(\mathbf{x}_{i,t},\mathbf{y}_{i,t}) - \bar{\mathbf{p}}(\mathbf{x}_{i,t},\mathbf{y}_{i,t})\right\|^{2} \le \frac{1}{m}\sum_{i=1}^{m}\left\|\bar{\nabla}f_{i}(\mathbf{x}_{i,t},\mathbf{y}_{i,t}) - \mathbf{p}_{i}(\mathbf{x}_{i,t},\mathbf{y}_{i,t})\right\|^{2}$$
(67)

From the algortihm update, we have

$$\mathbb{E}_{t} \| \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) \|^{2} \\
= \mathbb{E}_{t} \| \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) + \mathbb{E}_{\bar{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})] - \mathbb{E}_{\bar{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})] \|^{2} \\
= \mathbb{E}_{t} \| \mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbb{E}_{\bar{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})] \|^{2} + \mathbb{E}_{t} \| \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbb{E}_{\bar{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})] \|^{2} \\
\leq \mathbb{E}_{t} \| \mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbb{E}_{\bar{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})] \|^{2} + (\frac{C_{g_{xy}} C_{f_{y}}}{\mu_{q}} \left(1 - \frac{\mu_{g}}{L_{q}}\right)^{K})^{2}, \tag{68}$$

where the last in equality os Moreover, with $t \in ((n_t - 1) q, n_t q - 1] \cap \mathbb{Z}$, we have

$$\mathbb{E}_{t} \| \mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbb{E}_{\bar{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})] \|^{2} \\
= \mathbb{E}_{t} \| \mathbf{p}_{i}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1}) + \frac{1}{|\mathcal{S}|} \sum_{i=1}^{\mathcal{S}} [\bar{\nabla} f_{i}(\mathbf{x}_{i,k}, \mathbf{y}_{i,k}; \bar{\xi}_{i,t}) - \bar{\nabla} f_{i}(\mathbf{x}_{i,k-1}, \mathbf{y}_{i,k-1}; \bar{\xi}_{i,t})] - \mathbb{E}_{\bar{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})] \\
+ \mathbb{E}_{\bar{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1})] - \mathbb{E}_{\bar{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1})] \|^{2} \\
= \mathbb{E}_{t} \| \mathbf{p}_{i}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1}) - \mathbb{E}_{\bar{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1})] \|^{2} + \| \frac{1}{|\mathcal{S}|} \sum_{i=1}^{\mathcal{S}} [\bar{\nabla} f_{i}(\mathbf{x}_{i,k}, \mathbf{y}_{i,k}; \bar{\xi}_{i,t}) - \bar{\nabla} f_{i}(\mathbf{x}_{i,k-1}, \mathbf{y}_{i,k-1}; \bar{\xi}_{i,t})] \\
- \mathbb{E}_{\bar{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})] + \mathbb{E}_{\bar{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1})] \|^{2} \\
\leq \mathbb{E}_{t} \| \mathbf{p}_{i}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1}) - \mathbb{E}_{\bar{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1})] \|^{2} + \frac{1}{|\mathcal{S}|} L_{K}^{2} \mathbb{E}_{t} (\|\mathbf{x}_{i,t} - \mathbf{x}_{i,t-1}\|^{2} + \|\mathbf{y}_{i,t} - \mathbf{y}_{i,t-1}\|^{2}), \tag{69}$$

where the last inequality use the mean variance theorem.

Telescoping over t from $((n_t - 1)q + 1 \text{ to } t$, where $t \le n_t q - 1$, we obtain that

$$\mathbb{E}_t \| \mathbf{p}_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t}) - \mathbb{E}_{\bar{\xi}_{i,t}} \left[\mathbf{p}_i(\mathbf{x}_{i,t},\mathbf{y}_{i,t}) \right] \|^2$$

$$\leq \mathbb{E}_{t} \|\mathbf{p}_{i}(\mathbf{x}_{i,(n_{t}-1)q},\mathbf{y}_{i,(n_{t}-1)q}) - \mathbb{E}_{\tilde{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,(n_{t}-1)q},\mathbf{y}_{i,(n_{t}-1)q})] \|^{2} + \frac{1}{|\mathcal{S}|} L_{K}^{2} \sum_{t=(n_{t}-1)q}^{t-1} \mathbb{E}_{t} (\|\mathbf{x}_{i,t} - \mathbf{x}_{i,t-1}\|^{2} + \|\mathbf{y}_{i,t} - \mathbf{y}_{i,t-1}\|^{2})$$

$$(70)$$

Since $\mathbb{E}_{t} \| \mathbf{p}_{i}(\mathbf{x}_{i,(n_{t}-1)q}, \mathbf{y}_{i,(n_{t}-1)q}) - \mathbb{E}_{\tilde{\xi}_{i,t}} [\mathbf{p}_{i}(\mathbf{x}_{i,(n_{t}-1)q}, \mathbf{y}_{i,(n_{t}-1)q})] \|^{2} = 0, |\mathcal{S}| = q$, we can conclude that

$$\sum_{t=0}^{I} \left\| \frac{1}{m} \sum_{i=1}^{m} \bar{\nabla} f_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \bar{\mathbf{u}}_{t} \right\|^{2} \\
\leq L_{K}^{2} \sum_{t=0}^{T} \mathbb{E}_{t} (\|\mathbf{x}_{t} - \mathbf{x}_{t-1}\|^{2} + \|\mathbf{y}_{t} - \mathbf{y}_{t-1}\|^{2}) + (\frac{C_{g_{xy}} C_{f_{y}}}{\mu_{g}} \left(1 - \frac{\mu_{g}}{L_{g}} \right)^{K})^{2} \cdot T \tag{71}$$

Next, for $\|\mathbf{p}_t - \mathbf{p}_{t-1}\|^2$, we have Case 1: $t \in ((n_t - 1) \, q, n_t q - 1] \cap \mathbb{Z}$:

$$\mathbb{E}\|\mathbf{p}_{t} - \mathbf{p}_{t-1}\|^{2} = \sum_{i=1}^{m} \mathbb{E}\left\|\frac{1}{|S_{i,t}|} \sum_{j \in S_{i,t}} \nabla_{\mathbf{x}} f_{i}\left(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}; \bar{\xi}_{j,t}\right) - \nabla_{\mathbf{x}} f_{i}\left(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1}; \bar{\xi}_{j,t}\right)\right\|^{2}$$
(72)

$$\leq \frac{1}{\left|\mathcal{S}_{i,t}\right|^{2}} \sum_{i=1}^{m} \sum_{j \in \mathcal{S}_{i,t}} \mathbb{E} \left\| \nabla_{\mathbf{x}} f_{i} \left(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}; \bar{\xi}_{j,t} \right) - \nabla_{\mathbf{x}} f_{i} \left(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1}; \bar{\xi}_{j,t} \right) \right\|^{2}$$

$$(73)$$

$$\leq L_K^2 \sum_{i=1}^m \mathbb{E} \left\| \mathbf{x}_{i,t-1} - \mathbf{x}_{i,t} \right\|^2 + L_K^2 \sum_{i=1}^m \mathbb{E} \left\| \mathbf{y}_{i,t-1} - \mathbf{y}_{i,t} \right\|^2$$

$$\leq L_K^2 (\left\| \mathbf{x}_t - \mathbf{x}_{t-1} \right\|^2 + \beta^2 \left\| \mathbf{v}_{t-1} \right\|^2). \tag{74}$$

Case 2: $t = n_t q$:

$$\mathbb{E}\|\mathbf{p}_{t} - \mathbf{p}_{t-1}\|^{2} \\
= \mathbb{E}\|\mathbf{p}_{t} - \mathbf{p}_{t-1} - \mathbb{E}_{\bar{\xi}_{i,t}} \mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) + \mathbb{E}_{\bar{\xi}_{i,t}} \mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t}) - \mathbb{E}_{\bar{\xi}_{i,t}} \left[\mathbf{p}_{i}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1}) + \mathbb{E}_{\bar{\xi}_{i,t}} \mathbf{p}_{i}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1})\right]^{2} \\
\leq 3\mathbb{E}\|\mathbf{p}_{t} - \mathbb{E}_{\bar{\xi}_{i,t}} \left[\mathbf{p}_{i}(\mathbf{x}_{i,t}, \mathbf{y}_{i,t})\right]^{2} + 3\mathbb{E}\|\mathbf{p}_{t-1} - \mathbb{E}_{\bar{\xi}_{i,t}} \left[\mathbf{p}_{i}(\mathbf{x}_{i,t-1}, \mathbf{y}_{i,t-1})\right]^{2} + 3L_{K}^{2} \mathbb{E}(\|\mathbf{x}_{t} - \mathbf{x}_{t-1}\|^{2} + \beta^{2}\|\mathbf{v}_{t-1}\|^{2}) \\
\stackrel{(a)}{\leq} 3\mathbb{E}\left\|\mathbf{p}_{n_{t}q} - \mathbb{E}_{\bar{\xi}_{i,t}} \mathbf{p}_{i}(\mathbf{x}_{i,n_{t}q}, \mathbf{y}_{i,n_{t}q})\right\|^{2} + 3\mathbb{E}\left\|\mathbf{p}(\mathbf{x}_{i,(n_{t}-1)q}, \mathbf{y}_{i,(n_{t}-1)q} - \mathbb{E}_{\bar{\xi}_{i,t}} \mathbf{p}_{i}(\mathbf{x}_{i,(n_{t}-1)q}, \mathbf{y}_{i,(n_{t}-1)q})\right\|^{2} \\
+ \sum_{\mathbf{r}'=(\mathbf{r}-1)}^{n_{t}q-1} \frac{3L_{K}^{2}}{|S|} \mathbb{E}\left(\|\mathbf{x}_{\mathbf{r}'} - \mathbf{x}_{\mathbf{r}'-1}\|^{2} + \|\mathbf{y}_{\mathbf{r}'} - \mathbf{y}_{\mathbf{r}'-1}\|^{2}\right) + 3L_{K}^{2} \mathbb{E}\left\|\mathbf{x}_{n_{t}q-1} - \mathbf{x}_{n_{t}q}\right\|^{2} + 3L_{K}^{2} \beta^{2} \mathbb{E}\left\|\mathbf{v}_{n_{t}q-1}\right\|^{2}, \tag{75}$$

where (a) is from (70) and set $t = n_t q$.

Telescoping from $r = (n_t - 1) q + 1$ to $n_t q$ and set |S| = q, we have

$$\sum_{r=(n_{t}-1)q+1}^{n_{t}q} \mathbb{E}\|\mathbf{p}_{r} - \mathbf{p}_{r-1}\|^{2} \\
\leq 3(q+1)\mathbb{E}\left\|\mathbf{p}_{n_{t}q} - \mathbb{E}_{\bar{\xi}_{i,t}}\mathbf{p}_{i}(\mathbf{x}_{i,n_{t}q}, \mathbf{y}_{i,n_{t}q})\right\|^{2} + 3(q+1)\mathbb{E}\left\|\mathbf{p}_{(n_{t}-1)q} - \mathbb{E}_{\bar{\xi}_{i,t}}\mathbf{p}_{i}(\mathbf{x}_{i,(n_{t}-1)q}, \mathbf{y}_{i,(n_{t}-1)q})\right\|^{2} \\
+ \sum_{r=(n_{t}-1)q+1}^{n_{t}q} \frac{4L_{K}^{2}}{q} \mathbb{E}\left(\|\mathbf{x}_{r} - \mathbf{x}_{r-1}\|^{2} + \|\mathbf{y}_{r} - \mathbf{y}_{r-1}\|^{2}\right) \\
= \sum_{r=(n_{t}-1)q+1}^{n_{t}q} \frac{4L_{K}^{2}}{q} \mathbb{E}\left(\|\mathbf{x}_{r} - \mathbf{x}_{r-1}\|^{2} + \|\mathbf{y}_{r} - \mathbf{y}_{r-1}\|^{2}\right) \tag{76}$$

Since $\mathbb{E}\left\|\mathbf{p}_{n_tq} - \mathbb{E}_{\tilde{\xi}_{i,t}}\mathbf{p}_i(\mathbf{x}_{i,n_tq},\mathbf{y}_{i,n_tq})\right\|^2 = \mathbb{E}\left\|\mathbf{p}_{(n_t-1)q} - \mathbb{E}_{\tilde{\xi}_{i,t}}\mathbf{p}_i(\mathbf{x}_{i,(n_t-1)q},\mathbf{y}_{i,(n_t-1)q})\right\|^2 = 0$, and with eqs.(72),we have

$$\sum_{t=1}^{T} \|\mathbf{p}_{t} - \mathbf{p}_{t-1}\|^{2} \leq \sum_{t=1}^{T} \left[4L_{K}^{2} \mathbb{E} \|\mathbf{x}_{t} - \mathbf{x}_{t-1}\|^{2} + 4L_{K}^{2} \|\mathbf{y}_{t} - \mathbf{y}_{t-1}\|^{2} \right]$$
(77)

With the results from Step 3, we have

$$\|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} \leq (1 + c_{1})\lambda^{2} \|\mathbf{x}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t-1}\|^{2} + (1 + \frac{1}{c_{1}})\alpha^{2} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2},$$

$$\|\mathbf{u}_{t} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t}\|^{2} \leq \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2} + ((1 + c_{2})\lambda^{2} - 1)\|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2}$$

$$+ (1 + \frac{1}{c_{2}})4L_{K}^{2}(\|\mathbf{x}_{t} - \mathbf{x}_{t-1}\|^{2} + \beta^{2}\|\mathbf{v}_{t-1}\|^{2}).$$

$$(78)$$

Then, we have

$$\|\mathbf{x}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{T+1}\|^{2} - \|\mathbf{x}_{0} - \mathbf{1} \otimes \bar{\mathbf{x}}_{0}\|^{2}$$

$$\leq ((1+c_{1})\lambda^{2} - 1) \sum_{t=1}^{T+1} \|\mathbf{x}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t-1}\|^{2} + (1+\frac{1}{c_{1}})\alpha^{2} \sum_{t=1}^{T+1} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2}.$$
(79)

$$\|\mathbf{u}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{T+1}\|^{2} - \|\mathbf{u}_{0} - \mathbf{1} \otimes \bar{\mathbf{u}}_{0}\|^{2}$$

$$\leq ((1+c_{2})\lambda^{2} - 1) \sum_{t=1}^{T+1} \|\mathbf{u}_{t-1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t-1}\|^{2} + (1+\frac{1}{c_{2}})4L_{K}^{2} \sum_{t=1}^{T+1} (\|\mathbf{x}_{t} - \mathbf{x}_{t-1}\|^{2} + \beta^{2}\|\mathbf{v}_{t-1}\|^{2}). \tag{80}$$

Combing 48,77, 79 and 80, we have

$$\begin{split} &\ell(\tilde{\mathbf{x}}_{T+1}) - \ell(\tilde{\mathbf{x}}_{0}) + \left[\|\tilde{\mathbf{y}}_{T+1} - \mathbf{y}_{T+1}^{*}\|^{2} - \|\mathbf{y}_{0}^{*} - \tilde{\mathbf{y}}_{0}\|^{2} \right] \\ &+ \left[\|\mathbf{x}_{T+1} - 1 \otimes \tilde{\mathbf{x}}_{T+1}\|^{2} - \|\mathbf{x}_{0} - 1 \otimes \tilde{\mathbf{x}}_{0}\|^{2} \right] + \alpha \left[\|\mathbf{u}_{T+1} - 1 \otimes \tilde{\mathbf{u}}_{T+1}\|^{2} - \|\mathbf{u}_{0} - 1 \otimes \tilde{\mathbf{u}}_{0}\|^{2} \right] \\ &\leq -\frac{\alpha}{2} \sum_{t=0}^{T} \|\nabla \ell(\tilde{\mathbf{x}}_{t})\|^{2} - \left(\frac{\alpha}{2} - \frac{L_{t}\alpha^{2}}{2} - 2(1 + \frac{1}{t})L_{y}^{2}\alpha^{2}m\right) \sum_{t=0}^{T} \|\tilde{\mathbf{u}}_{t}\|^{2} \\ &+ \left((1 + \frac{1}{c_{2}})4L_{K}^{2})\alpha \sum_{t=1}^{T+1} \|\mathbf{x}_{t} - \mathbf{x}_{t-1}\|^{2} + \left[(1 + c_{1})\lambda^{2} - 1 + \frac{\alpha L_{\ell}}{m} \right] \sum_{t=0}^{T} \|\mathbf{x}_{t} - 1 \otimes \tilde{\mathbf{x}}_{t}\|^{2} \\ &+ \left[\frac{2\alpha}{m}L_{f}^{2} + r - (1 + r)(2\beta \frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}}) \right] \sum_{t=0}^{T} \|\mathbf{y}_{t} - \mathbf{y}_{t}^{*}\|^{2} \\ &+ \left[(1 + \frac{1}{c_{2}})4L_{K}^{2}\alpha\beta^{2} + \alpha - (1 + r)(2\beta \frac{1}{\mu_{g} + L_{g}} - \beta^{2}) \right] \sum_{t=0}^{T} \|\mathbf{v}_{t}\|^{2} \\ &+ \left[(1 + \frac{1}{c_{1}})\alpha^{2} + 2(1 + \frac{1}{r})L_{y}^{2}\alpha^{2} + \alpha((1 + c_{2})\lambda^{2} - 1) \right] \sum_{t=0}^{T} \|\mathbf{u}_{t} - 1 \otimes \tilde{\mathbf{u}}_{t}\|^{2} \\ &+ 2\alpha (L_{K}^{2}\sum_{t=0}^{T} \mathbb{E}_{t}(\|\mathbf{x}_{t} - \mathbf{x}_{t-1}\|^{2} + \|\mathbf{y}_{t} - \mathbf{y}_{t-1}\|^{2}) + \left(\frac{C_{g_{N}g}C_{f_{g}}}{\mu_{g}} \left(1 - \frac{\mu_{g}}{L_{g}} \right)^{K} \right)^{2} \cdot T) \\ &\leq -\frac{\alpha}{2}\sum_{t=0}^{T} \|\nabla \ell(\tilde{\mathbf{x}}_{t})\|^{2} - \left(\frac{\alpha}{2} - 8\alpha^{3}L_{K}^{2} - 4\alpha^{2}m(1 + \frac{1}{c_{2}})4L_{K}^{2}\alpha - \frac{L_{\ell}\alpha^{2}}{2} - 2(1 + \frac{1}{r})L_{y}^{2}\alpha^{2}m) \sum_{t=0}^{T} \|\tilde{\mathbf{u}}_{t}\|^{2} \\ &+ \left[16\alpha L_{K}^{2} + (1 + \frac{1}{c_{2}})32L_{K}^{2}\alpha + (1 + c_{1})\lambda^{2} - 1 + \frac{\alpha L_{\ell}}{m} \right] \sum_{t=0}^{T} \|\mathbf{x}_{t} - 1 \otimes \tilde{\mathbf{x}}_{t}\|^{2} \\ &+ \left[\frac{2\alpha}{m}L_{f}^{2} + r - (1 + r)(2\beta \frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}}) \right] \sum_{t=0}^{T} \|\mathbf{y}_{t} - \mathbf{y}_{t}^{*}\|^{2} \\ &+ \left[2aL_{K}^{2}\beta^{2} + (1 + \frac{1}{c_{2}})4L_{K}^{2}\alpha\beta^{2} + \alpha - (1 + r)(2\beta \frac{1}{\mu_{g} + L_{g}} - \beta^{2}) \right] \sum_{t=0}^{T} \|\mathbf{v}_{t}\|^{2} \\ &+ \left[1 + \frac{1}{c_{1}}\alpha^{2} + 2(1 + \frac{1}{r})L_{g}^{2}\alpha^{2} + \alpha((1 + c_{2})\lambda^{2} + 8\alpha^{2}L_{K}^{2} - 1) \right] \sum_{t=0}^{T} \|\mathbf{v}_{t}\|^{2} + 2\alpha \left(\frac{C_{g_{N}g}C_{f_{g}}}{\mu_{g}} \left(1 - \frac{\mu_{g}}{\mu_{g}} \right)^{K} \right)^{2} \cdot (T + 1). \end{split}$$

where the last inequality is from eqs.(40). Choosing $c_1 = c_2 = \frac{1}{\lambda} - 1$, we have

$$\ell(\bar{\mathbf{x}}_{T+1}) - \ell(\bar{\mathbf{x}}_{0}) + \left[\|\bar{\mathbf{y}}_{T+1} - \mathbf{y}_{T+1}^{*}\|^{2} - \|\mathbf{y}_{0}^{*} - \bar{\mathbf{y}}_{0}\|^{2} \right] \\
+ \left[\|\mathbf{x}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{T+1}\|^{2} - \|\mathbf{x}_{0} - \mathbf{1} \otimes \bar{\mathbf{x}}_{0}\|^{2} \right] + \alpha \left[\|\mathbf{u}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{T+1}\|^{2} - \|\mathbf{u}_{0} - \mathbf{1} \otimes \bar{\mathbf{u}}_{0}\|^{2} \right] \\
\leq - \frac{\alpha}{2} \sum_{t=0}^{T} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} + C_{1}' \sum_{t=0}^{T} \|\bar{\mathbf{u}}_{t}\|^{2} + C_{2}' \sum_{t=0}^{T} \|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} + C_{3}' \sum_{t=0}^{T} \|\mathbf{y}_{t} - \mathbf{y}_{t}^{*}\|^{2} \\
+ C_{4}' \sum_{t=0}^{T} \|\mathbf{v}_{t}\|^{2} + C_{5}' \sum_{t=0}^{T} \|\mathbf{u}_{t} - \mathbf{1} \otimes \bar{\mathbf{u}}_{t}\|^{2} + 2\alpha \left(\frac{C_{g_{xy}} C_{f_{y}}}{\mu_{g}} \left(1 - \frac{\mu_{g}}{L_{g}}\right)^{K}\right)^{2} \cdot (T+1), \tag{82}$$

where the constants are

$$C_1' = -\left(\frac{\alpha}{2} - 4\alpha^2 m \frac{1}{1-\lambda} 4L_K^2 \alpha - \frac{L_\ell \alpha^2}{2} - 2(1 + \frac{1}{r})L_y^2 \alpha^2 m - 8\alpha^3 L_K^2\right),\tag{83}$$

$$C_2' = \left[\frac{1}{1-\lambda} 32L_K^2 \alpha + 16\alpha L_K^2 + \lambda - 1 + \frac{\alpha L_\ell}{m} \right], \tag{84}$$

$$C_3' = \left[\frac{2\alpha}{m}L_f^2 + r - (1+r)(2\beta \frac{\mu_g L_g}{\mu_a + L_a})\right],\tag{85}$$

$$C_4' = \left[2\alpha^2 L_K^2 \beta^2 + (1 + \frac{1}{c_2})4L_K^2 \alpha \beta^2 + \alpha - (1 + r)(2\beta \frac{1}{\mu_g + L_g} - \beta^2)\right],\tag{86}$$

$$C_5' = \left[4\alpha^2 \frac{1}{1-\lambda} 4L_K^2 \alpha m + \frac{1}{1-\lambda} \alpha^2 + 2(1+\frac{1}{r})L_y^2 \alpha^2 + \alpha(\lambda + 8\alpha^2 L_K^2 - 1)\right]. \tag{87}$$

To ensure $C'_1 \leq 0$, we have

$$C_{1}' = -\left(\frac{\alpha}{2} - 4\alpha^{2} m \frac{1}{1 - \lambda} 4L_{K}^{2} \alpha - \frac{L_{\ell} \alpha^{2}}{2} - 2(1 + \frac{1}{r})L_{y}^{2} \alpha^{2} m - 8\alpha^{3} m L_{K}^{2}\right)$$

$$\stackrel{(a)}{\leq} -\frac{\alpha}{2} + \frac{\alpha}{8} + \frac{\alpha}{8} + \frac{\alpha}{8} + \frac{\alpha}{8} = 0,$$
(88)

where (a) follows from $\alpha \leq \min\{\frac{1}{8L_K}\sqrt{\frac{1-\lambda}{2m}}, \frac{1}{4L_\ell}, \frac{r}{16mL_u^2(r+1)}, \frac{1}{8L_K\sqrt{m}}\}$.

To ensure $C_2' \leq -\frac{1-\lambda}{2}$, we have

$$C_2' = \left[\frac{1}{1-\lambda} 32L_K^2 \alpha + 16\alpha L_K^2 + \lambda - 1 + \frac{\alpha L_\ell}{m} \right] \stackrel{(a)}{\leq} \frac{1-\lambda}{4} - (1-\lambda) + \frac{1-\lambda}{4} \leq -\frac{1-\lambda}{2}, \tag{89}$$

where (a) follows from $\alpha \leq \min\{\frac{(1-\lambda)^2}{128L_K^2}, \frac{(1-\lambda)}{4}(\frac{m}{L_{\ell+1}6L_K^2})\}.$

To ensure $C_3' \leq -\beta \frac{\mu_g L_g}{\mu_g + L_g}$, we have

$$C_{3}' = \left[\frac{2\alpha}{m}L_{f}^{2} + r - (1+r)(2\beta\frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}})\right]$$

$$\stackrel{(a)}{\leq} r(2\beta\frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}}) + (\beta\frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}}) - (1+r)(2\beta\frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}}) \leq -\beta\frac{\mu_{g}L_{g}}{\mu_{g} + L_{g}},$$
(90)

where (a) follows from $\alpha \leq \frac{rm}{L_f^2} (\beta \frac{\mu_g L_g}{\mu_g + L_g}), r = \beta \frac{\mu_g L_g}{\mu_g + L_g}$

To ensure $C_4' \leq 0$, we have

$$C_{4}' = \left[2\alpha^{2} L_{K}^{2} \beta^{2} + (1 + \frac{1}{c_{2}}) 4L_{K}^{2} \alpha \beta^{2} + \alpha - (1 + r)(2\beta \frac{1}{\mu_{g} + L_{g}} - \beta^{2}) \right]$$

$$\stackrel{(a)}{\leq} (1 + r) \beta \frac{1}{2(\mu_{g} + L_{g})} + (1 + r) \beta \frac{1}{2(\mu_{g} + L_{g})} - (1 + r) 2\beta \frac{1}{\mu_{g} + L_{g}} + (1 + r) \beta \frac{1}{\mu_{g} + L_{g}} = 0, \tag{91}$$

 $\text{where } (a) \text{ follows from } \alpha \leq \min \{ \sqrt{\frac{(1+r)}{4(\mu_g + L_g)L_K^2\beta}}, \frac{(1+r)\beta(1-\lambda)}{2(\mu_g + L_g)(4L_K^2\beta^2 + 1)}, (1+r)\beta\frac{1}{2(\mu_g + L_g)} \}, \beta \leq \frac{1}{\mu_g + L_g}.$

To ensure $C_5' \leq 0$, we have

$$C_{5}' = \left[4\alpha^{2} \frac{1}{1-\lambda} 4L_{K}^{2} \alpha + \frac{1}{1-\lambda} \alpha^{2} + 2(1+\frac{1}{r}) L_{y}^{2} \alpha^{2} + \alpha(\lambda - 1) + 8\alpha^{3} L_{K}^{2} \right]$$

$$\stackrel{(a)}{\leq} \frac{\alpha(1-\lambda)}{4} + \frac{\alpha(1-\lambda)}{4} + \frac{\alpha(1-\lambda)}{4} - \alpha(1-\lambda) + \frac{\alpha(1-\lambda)}{4} = 0$$
(92)

where (a) follows from $\alpha \leq \min\{\frac{1-\lambda}{8L_K}, \frac{(1-\lambda)^2}{4}, \frac{1-\lambda}{8(1+\frac{1}{r})L_y^2}, \sqrt{\frac{1-\lambda}{32L_K^2}}\}$

With the above conditions, we have

$$\ell(\bar{\mathbf{x}}_{T+1}) - \ell(\bar{\mathbf{x}}_{0}) + \left[\|\bar{\mathbf{y}}_{T+1} - \mathbf{y}_{T+1}^{*}\|^{2} - \|\mathbf{y}_{0}^{*} - \bar{\mathbf{y}}_{0}\|^{2} \right]$$

$$+ \left[\|\mathbf{x}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{x}}_{T+1}\|^{2} - \|\mathbf{x}_{0} - \mathbf{1} \otimes \bar{\mathbf{x}}_{0}\|^{2} \right] + \alpha \left[\|\mathbf{u}_{T+1} - \mathbf{1} \otimes \bar{\mathbf{u}}_{T+1}\|^{2} - \|\mathbf{u}_{0} - \mathbf{1} \otimes \bar{\mathbf{u}}_{0}\|^{2} \right]$$

$$\leq -\frac{\alpha}{2} \sum_{t=0}^{T} \|\nabla \ell(\bar{\mathbf{x}}_{t})\|^{2} - \frac{1-\lambda}{2} \sum_{t=0}^{T} \|\mathbf{x}_{t} - \mathbf{1} \otimes \bar{\mathbf{x}}_{t}\|^{2} - \beta \frac{\mu_{g} L_{g}}{\mu_{g} + L_{g}} \sum_{t=0}^{T} \|\mathbf{y}_{t} - \mathbf{y}_{t}^{*}\|^{2}.$$

$$(93)$$

Thus, we have the following convergence results:

$$\frac{1}{T+1} \sum_{t=0}^{T} \|\mathfrak{M}_{t}\|^{2} \leq \frac{1}{(T+1) \min\{\frac{1-\lambda}{2}, \beta \frac{\mu_{g} L_{g}}{\mu_{o} + L_{o}}, \frac{\alpha}{2}\}} [\mathfrak{B}_{0} - \ell^{*}] + C_{bias}, \tag{94}$$

where
$$\mathfrak{B}_t = \ell(\bar{\mathbf{x}}_t) + \|\bar{\mathbf{y}}_t - \mathbf{y}_t^*\|^2 + \|\mathbf{x}_t - \mathbf{1} \otimes \bar{\mathbf{x}}_t\|^2 + \alpha \|\mathbf{u}_t - \mathbf{1} \otimes \bar{\mathbf{u}}_t\|^2, C_{bias} = \frac{2\alpha (\frac{c_{gxy}^2 c_{fy}^2}{\mu g} \left(1 - \frac{\mu g}{Lg}\right)^k)^2}{\min\{\frac{1-\lambda}{2}, \beta \frac{\mu g Lg}{\mu g + Lg}, \frac{\alpha}{2}\}}.$$