UNIVERSIDAD DE MENDOZA - FACULTAD DE INGENIERÍA

CARRERA INGENIERÍA EN INFORMÁTICA	ASIGNATURA MATEMÁTICA DISCRETA Y DISEÑO LÓGICO	CÓDIGO 2022	
CURSO SEGUNDO AÑO	ÁREA TECNOLOGÍAS BÁSICAS	ULTIMA REVISIÓN diciembre de 2017	
MATERIAS CORRELATIVAS:		AÑO LECTIVO 20169	

Profesor Titular: Osvaldo Marianetti
Profesor Asociado:
Profesor Adjunto: María de los Ángeles Olguín
Jefes de trabajos prácticos:

Carga Horaria Semanal: 4
Carga Horaria Total: 60

OBJETIVOS:

Conocer las aplicaciones de los circuitos combinacionales y secuenciales Identificar los componentes funcionales de los circuitos lógicos Representar, operar e implementar funciones lógicas

PROGRAMA ANALÍTICO:

Capítulo I:

Tema 1: Sistemas numéricos: 1.1.1-Notación posicional. 1.1.2-Sistemas numéricos de uso común. 1.1.3 Aritmética binaria, octal y decimal-1.1.4Conversiones de bases. 1.1.5- Representación de números con signos. Sistemas numéricos complementarios.

Tema 2: Códigos: 1.2.1- Códigos numéricos1.2.2.- Códigos de caracteres 1.2.3.- Códigos para detección y corrección de errores. **Capítulo 2:**

Tema 1: Funciones lógicas: 2.1.1- Teorema fundamentales del álgebra booleana.

2.1.2- Funciones lógicas: tablas de verdad, formas algebraicas, formas canónicas. 2.1.3.- Compuertas lógicas electrónicas. 2.1.4 - Simplificación de funciones lógicas.

2.1.3.- Compuertas logicas electronicas.
 2.1.4 - Simplificación de funciones logicas.
 2.1.5 - Algoritmos de minimización.

Tema 2: Circuitos de compuertas: 2.2.1.- Compuertas lógicas básicas. 2.2.2.Funciones lógicas con compuertas lógicas. 2.2.3 –Diseño de circuitos combinacionales. 2.2.3- Aplicaciones prácticas.

Tema 3: Familias lógicas: 2.3.1- Familias lógicas. Tecnologías. 2.3.2.Especificaciones. 2.3.3. Relaciones.

Capítulo 3:

Tema 1: Lógica combinatoria modular: 3.1.1.- Decodificadores. Multiplexores. Codificadores. Demultiplexores. 3.1.2- Aplicaciones. 3.1.3. Elementos de aritmética binaria. Comparadores.

Capítulo 4:

Tema 1: Elementos de memoria: 4.1.1- Elementos de memoria. Biestables. **Tema 2: Registros y contadores:** 4.2.1- Latches. 4.2.2- Registros. 4.2.3 Contadores sincrónicos y asisncrónicos. 4.2.4.- Diagramas de tiempo.

Capítulo 5:

Tema 1: Lógica secuencial: 5.1.1. - Análisis y síntesis de circuitos secuenciales 5.1.2.- Diagramas de estados. 5.1.3- . Procedimientos de síntesis. 5.1.4.- Tablas. 5.1.5. Ejemplos.

Tema 2: Máquina algorítmica de estados: 5.2.1.- Diagramas de estado. 5.2.2.- Método del multiplexor. Método uno en alto. 5.2.3.- Ejemplos y aplicaciones.

Formación Práctica	Horas
Resolución de Problemas Rutinarios:	15
Laboratorio, Trabajo de Campo:	
Resolución de Problemas Abiertos:	7
Proyecto y Diseño:	8

PROGRAMA DE TRABAJOS PRÁCTICOS:

PRACTICO 1: Sistemas de numeración.

PRACTICO 2: Códigos.

PRACTICO 3: Minimización de funciones lógicas

PRACTICO 4: Diseño de circuitos combinacionales

PRACTICO 5: Diseño de circuitos secuenciales

PRACTICO 6: Máquina algorítmica de estado

ARTICULACIÓN HORIZONTAL Y VERTICAL DE CONTENIDOS:

Los contenidos abordados en esta materia se basan en conceptos de las siguientes cátedras:

Asignatura	Curso
INFORMATICA I	1
ALGEBRA Y GEOMETRIA	1
ANALITICA	

Comparte e integra elementos horizontalmente con las siguientes cátedras:

Asignatura	Curso
COMPUTACIÓN	2
ARQUITECTURA DE	2
COMPUTADORAS	

Los contenidos abordados en esta materia aportan conceptos a las siguientes cátedras:

Asignatura	Curso
SISTEMAS OPERATIVOS	2
COMPUTACION	2
TEORIA DE COMPILADORES	3
COMUNICACIÓN DE DATOS	3

CONDICIONES PARA REGULARIZAR LA MATERIA Y RÉGIMEN DE EVALUACIÓN:

La asignatura es promocional. Para alcanzar la promoción el alumno deberá:

Cumplir con el 80 % de asistencia.

Completar y aprobar el 100% de los trabajos prácticos Cronograma de entrega de trabajos prácticos:

Los trabajos prácticos se deben presentar una semana después de la indicada.

Aprobar los exámenes parciales

Se tomarán tres exámenes parciales

El primero al finalizar los capítulos 1 y 2

El segundo al finalizar los capítulos 3 y 4

El tercero al finalizar el capítulos 5

Los parciales se aprueban con el 70%

Se rinde un examen final teórico práctico según el programa de examen.

Cronograma

Instancia de evaluación		Revisión	Recuperación
Primer Examen Parcial	09/04/16	16/04/16	Examen Global
			Recuperatorio

Segundo Examen Parcial	30/04/16	07/05/16	Examen Global Recuperatorio
Tercer Examen Parcial	30/05/16	04/06/16	Examen Global Recuperatorio
Examen Global Recuperatorio	06/06/16		

Criterios de evaluación:

Aplicar conceptos desarrollados en clase en la resolución de ejercicios y problemas con un grado de complejidad similar a los resueltos en la práctica de gabinete.

BIBLIOGRAFÍA:

Principal:

Autor	Título	Editorial	Año Ed.	Disp.
Winkel D.	THE ART OF THE	Prentice	1987	1
	DIGITAL DESI GN	Hall		
Nelson-	ANÁLISIS Y DISEÑO DE	Prentice	2000	2
NagleCarroll-	CIRCUITOS LÓGICOS	Hall		
Irwin	DIGITALES			

De Consulta:

Autor	Título	Editorial	Año Ed.	Disp.
Gil Padilla-	ELECTRÓNICA DIGITAL	McGrawHill	2002	1
Remiro-	Υ			
Cuesta	MICROPROGRAMABLE			
Floyd Thomas	FUNDAMENTOS DE	Pearson	2006	1
L.	SISTEMAS DIGITALES	Education		

ESTRATEGIAS DIDÁCTICAS UTILIZADAS:

Clases expositivas

Trabajos teórico - prácticos grupales e individuales

Resolución de problemas

Desarrollar simulaciones del comportamiento de circuitos lógicos.

RECURSOS DIDÁCTICOS UTILIZADOS:

Textos
Pizarrón y tiza
Transparencias
Guías de trabajos prácticos
Apuntes elaborados para consulta de los alumnos Software de simulación

PROGRAMA DE EXAMEN:

Programa analítico y programa de trabajos prácticos