DOSAR

Grids on Campus Workshop October 2, 2005 Joel Snow Langston University

Outline

- What is DOSAR?
- History of DOSAR
- Goals of DOSAR
- Strategy of DOSAR
- DOSAR Achievements
- Perspectives
- Conclusions

What is DOSAR?

- Distributed Organization for Scientific and Academic Research
 - It is a community and campus based grid organization
 - DOSAR in Korean is a Grand Master of Martial Arts or more broadly an entity with a much higher level of mind power
- Initially organized for distributed production and analyses in DØ experiment
- DOSAR is built upon a DØ Remote Analysis Model
 - Utilizes resource hubs, Regional Analysis Centers (RACs) equivalent to LHC Tier 2 Centers
- Playing leadership roles in realization of computing grids in corresponding campuses and states

DOSAR History

DØ Remote Computing Era

- SAM, DØ data management system, in place: pre-2001
- DØRACE and DØGrid teams formed: Sept. 2001
- DØ Remote Analysis Model Proposed: Nov. 2001
- Proposal for RAC accepted and endorsed by DØ: Aug. 2002
- UTA awarded MRI for RAC: June 2002
- Prototype RAC established at Karlsruhe: Aug. Nov. 2002
- Formation of DØ Southern Analysis Region: Apr. 2003
 - DOSAR DØ MC Production begins (McFarm/SAM)
- Activation of 1st US RAC at UTA: Nov. 2003
- Formation and activation of DØSAR Grid for MC: Apr. 2004
 - SAMGrid/McFarm → pure SAMGrid

DØ Remote Analysis Model (DØRAM)

DOSAR History

- Beyond the DØ experiment boundary era
 - Transition to Distributed Organization for Scientific and Academic Research, DOSAR: Apr. 2005
 - Active engagements with LHC experiments begun
 - Three DOSAR sites start participate in DØ data reprocessing: May 2005
 - DOSAR VOMS installed at UTA: May 2005
 - DOSAR registered as a VO in OSG: July 2005
 - ATLAS distributed analysis system, DIAL, interfaced to PBS and implemented at UTA: Aug. 2005
 - US ATLAS production system, PanDA, under development at UTA and OU

DOSAR Consortium

- First Generation IAC's
 - ✓ University of Texas at Arlington
 - ✓ Louisiana Tech University
 - ✓ Langston University
 - ✓ University of Oklahoma
 - ✓ Tata Institute (India)

- Second Generation IAC's
 - Cinvestav, Mexico
 - √ Universidade Estadual Paulista (Brazil)
 - √ University of Kansas
 - √ Kansas State University

- Third Generation IAC's
 - **➤** Ole Miss, MS
 - Rice University, TX
 - University of Arizona, Tucson, AZ

Primary Goals of DOSAR

- Harness for common grid use a diverse set of <u>human and</u> <u>computing resources previously unavailable</u>
- Empower offsite remote users with desktop data analysis capability as if they are at the experiment
- Prepare all involved institutions to perform data analysis using grid technology on DØ and future HEP experiments such as the LHC experiments, CMS and ATLAS
- Collaborate to use cutting edge <u>grid technology to promote</u> <u>a wide range of interdisciplinary and educational</u> <u>activities</u> within the member regions

Primary Goals of DOSAR

- Communicate and disseminate accumulated experiences with real large-data analyses to the grid community for the benefits of future HEP experiments and society as a whole.
- Strongly participate in global grid efforts such as OSG or EGEE to contribute to the development of grid resources and technology, utilizing a mixture of dedicated and desktop resources.
- Exploit grid projects and international research collaborations to <u>develop a highly trained</u> <u>technical workforce</u> within the member regions.

DOSAR Strategy

- Maximally exploit existing software and utilities to enable as many sites to contribute to the DØ and LHC experiments
 - Install SAMGrid and OSG infrastructures
 - Submit MC production and reprocessing jobs through SAMGrid
 - Implement OSG to move into the new, global grid framework
 - Participate in the Data Challenges of the LHC experiments
 - OSG production sites and integration test bed sites
 - Engage and contribute significantly in grid application development for LHC and DØ
 - Utilize existing distributed analysis framework for LHC and DØ data analyses at individual's desk
- Engage in realization of computing grid beyond HEP to Society
- Want to make everyday lives better

DOSAR Accomplishments

- The only established US analysis region within DØ
- Constructed and activated a Regional Analysis Center
- Formed and activated six new MC production farms
- Data access capability implemented in 70% of the sites
 - These sites are doing data analysis
- Employed, developed and implemented many useful monitoring tools
 - Ganglia, MonaLISA, ACDC, GridCat
 - McFarmGraph, McPerM, McQue, and McFarmDB
- Demonstrated OSG and SAMGrid interoperability

Monitored through MonALisa as an OSG VO

MONitoring Agents using a Large Integrated Services Architecture

DOSAR DØ Reprocessing

- Three DOSAR sites participated in DØ Reprocessing
 - 1 billion events, 250 TB data, done using SAMGrid on 3 continents
- UTA DPCC started in May 2005
 - The first site to transfer 6TB of data
- OSCER started late May 2005, shortly after UTA
 - A great accomplishment since OSCER is a general purpose cluster; Opens vast resources for use in HEP
- SPRACE certified and started in late July 2005
 - High utilization of the upgraded network of 622Mbits/sec

P17 Reprocessing Status

Internet

e

DOSAR DØMC and Reprocessing Stat.

Institution	Inception	N _{MC} (TMB) x10 ⁶	N _{Repro} . x10 ⁶
LTU	6/2003	0.9	0
LU	7/2003	2.1	0
OU	4/2003	2.6	12.6
Tata	6/2003	3.5	0
SPRACE	4/2004	4.3	9.1
UTA-HEP	1/2003	4.2	0
UTA-RAC	12/2003	11.0	30.8
Total	As of 9/30/05	28.6	52.5

DOSAR Computing Resources and Users

Institutions	CPU(GHz) [future]	Storage (TB)	Analysis Users
Cinvestav	13	1.1	1
Langston	22+[60]	2.5	1
LTU	33+[192]	0.8	3
KU	12	2.5	2
KSU	40	3.5	0
OU	570+[3277]	5.4 + 120(tape)	6
São Paulo	315+[230]	14.8	4
Tata Institute	64+[28]	3.8	3
Ole Miss	163	10	2
UTA	510	74	5
Total	1742 + [3787]	120 + 120 (tape)	25

DOSAR Resource Trends (9/2004 – 9/2005)

What did we accomplish in DØ?

- ✓ Construct end-to-end service environment in a smaller, manageable scale
- ✓ Train and accumulate local expertise and share them
- ✓ Form a smaller group to work coherently and closely
- ✓ Draw additional resources from variety of funding sources
 - ✓ Promote interdisciplinary collaboration HEP & CS
- ✓ Increase intellectual resources for the experiment
 - ✓ Enable remote participants to more actively contribute to the collaboration
- ✓ Form a grid and use it for DØ and LHC experiments
 - ✓ MC production
 - ✓ Re-processing
 - Analysis
- ✓ Promote and improve IAC's group stature

Some Successes in Funding at DOSAR

- Funds from NSF MRI for UTA RAC: 2002
 - Construction of the first U.S. university based RAC
- EPSCoR + University funds for LTU IAC: 2003
 - Increase IAC computing resources
- São Paulo state funds for SPRACE: 2003 & 2005
 - Construction of an extensive RAC for Brazil
 - Greater international networking bandwidth
- EPSCoR funds for OU & LU: 2004
 - Compute resources for IAC
 - Human resource for further development
- LTU as part of LONI wins support from State of LA: 2005
- OU, LU and UTA, together with UNM, won a joint ATLAS Tier 2 site: 2005

Network Bandwidth Upgrade

- Large current and anticipated bandwidth needs identified
 - UTA, OU and SPRACE participated in DØ reprocessing
 - LHC data transfer demands significant upgrades
 - The ATLAS SW Tier 2 will draw a constant background bandwidth usage of 2GBits/sec
 - The minimum bandwidth gets determined by the number of CPU's at a local site
 - Good for the states since large bandwidths are needed to improve communication for helping everyday lives (video calls via ethernet)
- University and states to keep up with the needs
 - UTA, Rice: 45MB/sec → 1GB/Sec → 10GB/sec (via Texas LEARN project)
 - A talk was given to LEARN organization for anticipated network usage of an LHC Tier 2
 - OU, LU: 1GB/sec → 10GB/sec (NLR)
 - SPRACE: 45MB/sec → 622MB/sec → 2.5GB/sec (international)
 - LONI: A connection to NLR at 10GB/sec
 - Ole Miss: 155MB/sec → 10GB/sec university network

National LambdaRail™ Infrastructure

<u>Transitioning</u> now to optical, multiwavelength Community owned or leased "dark fiber" networks for R&E

National Lambda Rail (NLR)

NLR

- **◆Coming Up Now**
- ◆Initially 4 10G Wavelengths
- ◆Phase 2 completed by 4Q05
- ◆Internet2 HOPI Initiative (w/HEP)
- ◆To 40 10G
 Waves in Future
- nl, ca, pl, cz, uk, ko, jp
- ♦20 US States

Contributions to OSG/LCG

- Expertise in monitoring solutions such as Ganglia and MonALISA.
- Testing of framework, middleware, and user interfaces.
- Experience with interoperability issues, as faced between OSG and SAMGrid.
- Active participation in OSG integration and deployment activities.
- Partnering with high-speed optical network initiatives.
- Help implement and utilize grid computing technology for educational use.
- Participate in development and test grid-based HEP data analysis and disseminate the experience to OSG.

State Grid Activities

Current Activities

- HiPCAT: State of Texas: UTA and Rice
- LONI: State of LA, LTU
- OneNet: State of Oklahoma: OU, LU, OCHEP
- State of São Paulo (Brazil) Grid: SPRACE

Future Activities

- Indian Grid: Tata
- Mississippi Grid: Ole Miss
- Kansas Grid: KU and KSU
- Arizona Grid: UAZ

Condor Pool Project at OU

- Harness the power of student lab PC's
 - 750 PC's; about 100 are currently deployed
 - 2 head nodes; 1 currently deployed
 - PC's run RHEL3 and Condor 6.6.10
 - VMware5 and WinXP on top of that
 - PC's behind firewall on private campus network
 - Head nodes outside firewall; ssh accessible
 - VDT will be installed on head node to accept grid jobs
- Long term will flock with other university pools in region

Diverse Activities at UTA's DPCC

- DPCC has supported or currently supports
 - CSE: DB research using Oracle, Datamining, Biological simulations, Grid Scheduling, network simulations, Parallel Algorithim development
 - UT Southwestern Medical: Skin imaging for medical research
 - Biology: Retropseudogene discovery using BLAST/FASTA,
 Morphological Bayesian analyses using MrBayes
 - Geology: In the process of developing applications
- HEP Grid production for ATLAS (OSG), D∅; OSG-ITB
 - Grid application development DIAL, PanDA

LTU Collaborations

HEP & CSE

On going research for fault tolerant grid enabled clusters

LTU & LSU

 Adapt LSU's general purpose Super Mike cluster for SAMGrid operation

iGrid 2005 Advanced Networking Activities at SPRACE

iGrid 2005 is a coordinated effort to:

- accelerate the use of multi-10Gb international and national networks;
- advance scientific research;
- educate decision makers, academicians and industry researchers on the benefits of these hybrid networks.
- iGrid showcases more than four-dozen real-time application demonstrations from 20 countries
- Caltech, CERN, SLAC, FNAL and Brazil demonstration used national and international networks to demonstrate the next generation of globally distributed physics analysis tools for Particle Physics and eScience research
- The technologies being developed most notably in the UltraLight, FAST, PPDG, GriphyN, iVDGL and ESLEA projects were used to show components of the socalled "Grid Analysis Environment", a grid infrastructure for physics analysis.
- Sophisticated monitoring framework (MonALISA) was used to illustrate the progress of the analysis tasks, data flows in the network, and the effects on the global system.

DOSAR Future

- Actively engaged in LHC experiments
 - UTA, OU and LU participating actively in ATLAS distributed production and analysis
 - LTU and Ole Miss in the process of working with CMS
 - SPRACE is working with CMS
- Actively participate in OSG as a community based, grass-root VO
 - Participate in OSG activities
 - Install the respective grid software framework
 - Add our VO to all possible monitoring programs
 - Actively participate in OSG software development in the context of LHC
 - Fully utilize the LHC and LC connections
- Continue promoting interdisciplinary collaboration and grid interoperability
- Actively participate and lead grid computing efforts in the respective states
- Start getting engaged in employing grid computing technology not just for research but also for education and clinical applications

Conclusions

- DOSAR contributed to DØ significantly
 - Produced significant fraction (>50%) of MC events and still is producing for the foreseeable future
 - Reprocessed over 52.5M events
- Network infrastructures for members significantly improved
- Became a VO in OSG
- Actively participating in LHC experiments
- Use DOSAR for DØ and LHC data analyses
 - Producing presentable results from DØ data analyses in the regional grid is a goal for the next year
- Fully utilize DOSAR beyond HEP
- Play larger leadership role in state-wide grid initiatives
- Promote grid technologies on campus and in our regions
- Participate in global grid efforts as a VO