

FCIS – Ain Shams University

Subject: Discrete Mathematics & Linear Algebra

Exam date: 10/1/2015

Year: (1st term) 2st undergraduate

Instructor: Mohammed Marey
Offering Dept.: Bioinformatics Dept.

Academic year: 2014-2015

Duration: 3 hours Total mark: 50

Part 1: Discrete Mathematics - Solve (**DM1** \land (**DM2** \lor **DM3**)) (Part 1total marks:25)

1st Question: DM1 marks: 15

- **A.** Show that the argument $u \to q$, $(\neg q) \lor t$, $r \lor s$, $\neg s \to \neg p$, $((\neg p) \land r) \to u$, $\neg s$, \therefore t is valid by deducing the conclusion from the premises step by step through the use of the basic rules of inference or lows of logic.
- **B.** Give a proof by contradiction of the theorem "If 3n+2 is odd, then n is odd".
- C. Prove that the sum of the first n positive odd integers is n^2 , i.e.

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$

D. Find the value of $\sum_{k=99}^{200} (k-3)^2$, where $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$ and $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$

2nd Question: DM 2 marks: 10

- **A.** Given a directed graph G=(V,E) in (Fig: D-Graph),
 - i- State the two sets V and E.
 - ii- Show that $\sum_{v \in V} deg^-(v) = \sum_{v \in V} deg^+(v) = |E|$
 - iii- Determine whether G is strongly connected and if not, whether it is weakly connected.
 - iv- Using adjacency matrix of G, determine the number of paths of length 4 from any vertex to any other vertex in G.
 - v- Represent the graph using the incidence matrix.

Fig: D-graph

B. Given $A = \{a_1, a_2, a_3, ..., a_n\}$, deduce the formulas representing the (number of all relation, number of all reflexive relations, number of all symmetric relations, number of all (symmetric Λ reflexive) relations) which can be defined on set Λ .

3nd Question: DM 3 marks: 10

- **A.** Find x, y, z, and w if you know that :
 - i- $x = \gcd(92928, 123552)$.
 - ii- y = lcm (92928, 123552).
 - iii- $z \equiv -11 \pmod{21}$ where $(90 \le x \le 110)$.
 - iv- $w = ((-133 \mod 23 + 261 \mod 23) \mod 23)$.
- **B.** Given $A = \{1,2,3,4\}$, if R and S are two relations on A such that $R = \{(x,y), x \mid y\}$ and $S = \{(x,y), x \equiv y \mod 2\}$
 - i- Write the corresponding matrix representation for each of R and S.
 - ii- Determine whether R is reflexive, symmetric, anti-symmetric or transitive.
 - iii- Find the symmetric, reflexive and transitive closures of R.
 - iv- Prove that S is an equivalence relation and find its equivalence classes.
 - v- Find \overline{R} , S⁻¹, R \cap S, R \circ S.

4st Question: LA1

marks: 15

A. Let
$$v_1 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, $v_3 = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix}$ and $H=\text{span}\{v_1, v_2, v_3\}$.

- i- Write the linearly dependence relation of v_1 , v_2 , and v_3 .
- ii- Show that span $\{v_1, v_2, v_3\}$ =span $\{v_2, v_3\}$.
- iii- Find the base and dimension of the subspace H.
- **B.** Using the augmented matrix [A I], find the inverse of $A = \begin{bmatrix} 0 & 5 & 1 \\ 1 & 4 & 0 \\ 3 & 6 & 2 \end{bmatrix}$, if it exists.
- C. Let $H = \{ \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} : a, b, c \in R \}$ be the set of diagonal 3x3 matrices and let V be the
 - i- Show that H is a subspace of V.

vector space V of all 3×3 matrices.

- ii- Write the set of bases of the subspace H.
- iii- If G has a definition as H after setting (b=1), show that G is not a subspace of V

$$\frac{5^{\text{st}} \text{ Question : LA 2}}{[-2 \ -5 \ 8 \ 0 \ -17]}$$
 marks: 10

A. Given A =
$$\begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix}$$
:

- i- Find base for the row space of A
- ii- Find base of the column space of A
- iii- Find a spanning set for the null space of the matrix A
- iv- What is the dimension of Row A, Col A, and Nul A.
- **B.** Let $M_{2\times 2}$ be the vector space of all 2×2 matrices, and define $T: M_{2\times 2} \to M_{2\times 2}$ by $T(A) = A + A^T$, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.
 - i- Show that T is a linear transformation.
 - ii- Show that the range of T is the set of B in $M_{2\times 2}$ with the property that $B^T = B$.
 - iii- Describe the kernel of T.

Good Luck (f)

Dr. Mohammed Abdel-Rahman Marey