Linear Algebra

- Matrices and Systems of Equations -

Jinsun Park

Visual Intelligence and Perception Lab., CSE, PNU

Matrices and Systems of Linear Equations

- One of the most important problems in mathematics is that of solving a system of linear equations
- Over 75% of all mathematical problems encountered in scientific or industrial applications involve solving a linear system at some stage
- It is often possible to take a sophisticated problem and reduce it to a single system of linear equations
- Linear systems arise in applications to such areas as business, economics, sociology, ecology, demography, genetics, electronics, engineering, and physics

Matrices and Systems of Linear Equations

Systems of Linear Equations

Linear System

A linear equation in n unknowns is an equation of the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where $a_1, a_2, ..., a_n$ and b are real numbers and $x_1, x_2, ..., x_n$ are variables

■ A *linear system* of *m* equations is a system of the form

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

where the a_{ij} 's and the b_i 's are all real numbers

• A system of this form is called an $m \times n$ linear system

Linear System

Examples of linear systems

$$x_1 + 2x_2 = 5$$
 $x_1 - x_2 + x_3 = 2$ $x_1 - x_2 = 1$ $x_2 - x_3 = 4$

• A solution of an $m \times n$ system is an ordered n-tuple of numbers (x_1, x_2, \dots, x_n) that satisfies all the equations of the system

$$(2,0,0) \\ (2,1,1) \\ (2,3,3) \\ \vdots$$

Systems of Linear Equations

- A linear system is:
 - inconsistent if the system has no solution
 - consistent if the system has at least one solution
- The set of all solutions of a linear system is called the solution set of the system.

Linear System

• Geometric interpretation of 2×2 systems

$$egin{aligned} a_{11}x_1 + a_{12}x_2 &= b_1 \ a_{21}x_1 + a_{22}x_2 &= b_2 \end{aligned}$$

$$egin{aligned} x_1 + x_2 &= 2 \ x_1 - x_2 &= 2 \end{aligned}$$

(i) Unique Solution: Intersecting Lines Intersecting Point (2, 0)

(ii) No Solution: Parallel Lines

$$egin{array}{ll} x_1+x_2 &=& 2 \ -x_1-x_2 &=& -2 \end{array}$$

(iii) Infinite Solutions: Same Line

Equivalent System

 Two systems of equations involving the same variables are said to be equivalent if they have the same solution set

$$3x_1 + 2x_2 - x_3 = -2$$
 $3x_1 + 2x_2 - x_3 = -2$ $-3x_1 - x_2 + x_3 = 5$ $3x_1 + 2x_2 + x_3 = 2$ $3x_1 + 2x_2 + x_3 = 2$ $3x_1 + 2x_2 - x_3 = -2$ $3x_1 + 2x_2 + x_3 = 5$ $3x_1 + 2x_2 + x_3 = 5$ $3x_1 + 2x_2 + x_3 = 5$ $3x_1 + 2x_2 + x_3 = 2$ $3x_1 + 2x_2 + x_3 = 2$ $3x_1 + 2x_2 + x_3 = 2$ $3x_1 + 2x_2 - x_3 = -2$ $3x_$

Solution set = $\{(-2,3,2)\}$

Equivalent System

- Three operations that can be used on a system to obtain an equivalent system
 - I. The order in which any two equations are written may be interchanged
 - II. Both sides of an equation may be multiplied by the same nonzero real number
 - III. A multiple of one equation may be added to (or subtracted from) another

$$x_1+2x_2=4 \qquad \qquad 4x_1+\ x_2=6 \ 3x_1-\ x_2=2 \qquad ext{and} \qquad 3x_1-\ x_2=2 \ 4x_1+\ x_2=6 \qquad \qquad x_1+2x_2=4$$

III.
$$a_{i1}x_1+\cdots+a_{in}x_n=b_i \ a_{j1}x_1+\cdots+a_{jn}x_n=b_j$$

$$a_{i1}x_1+\cdots+a_{in}x_n=b_i \ (a_{j1}+lpha a_{i1})x_1+\cdots+(a_{jn}+lpha a_{in})x_n=b_j+lpha b_i$$

Back Substitution

- A system is said to be in *strict triangular form* if, in the k-th equation:
 - the coefficients of the first k-1 variables are all zero
 - the coefficient of x_k is nonzero $(k = 1, \dots, n)$
- Any $n \times n$ strictly triangular system can be solved as follows:
 - The *n*-th equation is solved for the value of x_n
 - This value is used in the (n-1)-th equation to solve for x_{n-1} , and so on
- This method is called back substitution

Example

$$egin{aligned} 2x_1-x_2+3x_3-2x_4&=1\ x_2-2x_3+3x_4&=2\ 4x_3+3x_4&=3\ 4x_4&=4 \end{aligned}$$

Solution = (1, -1, 0, 1)

Back Substitution

Coefficient Matrix

- Augmented Matrix
 - A system can be solved by performing operations on the augmented matrix

$$\begin{pmatrix} 1 & 2 & 1 \\ 3 & -1 & -3 \\ 2 & 3 & 1 \end{pmatrix} \qquad \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 2 & 1 \\ 3 & -1 & -3 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}$$

$$A_{m \times n} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

$$B_{m \times r} = \begin{pmatrix} b_{11} & \cdots & b_{1r} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mr} \end{pmatrix}$$

$$(A|B) = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & \cdots & b_{1r} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mr} \end{pmatrix}$$

Back Substitution

Pivotal Row and Pivot

(pivot
$$a_{11} = 1$$
)
entries to be eliminated $a_{21} = 3$ and $a_{31} = 2$ \rightarrow
$$\begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{3} \\ 3 & -1 & -3 & -1 \\ 2 & 3 & 1 & 4 \end{bmatrix} \leftarrow \text{pivotal row}$$

$$\begin{bmatrix} 1 & 2 & 1 & 3 \\ \mathbf{0} & -7 & -6 & -10 \\ 0 & -1 & -1 & -2 \end{bmatrix} \leftarrow \text{pivotal row}$$