*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica	Aplicada 2
Nombre del práctico	Ing. Federico Linares	Curso	Hoja
Respuesta en Frecuencia		4R	1

Tema: Respuesta en Frecuencia

Introducción: En un circuito transistorizado el comportamiento en bajas frecuencias está determinado por sus condensadores externos que son los utilizados para acoplar y desacoplar el emisor, mientras que el límite superior de la respuesta en frecuencia está limitado por las capacidades internas del transitor.

Capacitancias internas del transistor.

Modelo Hibrido PI equivalente: Es un refinamiento del modelo PI de emisor común visto anteriormente.

Modelo PI de un transistor.

Donde,

- rbb': resistencia ohmica de base con un margen de 10 a 50 Ω .
- rb'e : resistencia unión base-emisor ($\cong 0.025 h fe/I_{EQ}$ a temperatura ambiente). Nótese que rb'e es el equivalente al hie utilizado en modelos anteriormente vistos como resistencia base-emisor.

Es decir que un modelo mas exacto para hie será.

• La impedancia de salida 1/hoe suele ser desperecida en modelos de altas frecuencias porque generalmente es mucho mayor que la impedancia de carga RL.

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica Aplicada 2	
Nombre del práctico	Ing. Federico Linares	Curso	Hoja
Respuesta en Frecuencia		4R	2

Frecuencia de Corte: La frecuencia de corte f_{β} se define planteando que $v_{ce}=0$, es decir cuando la carga RL es un cortocircuito, en este caso la ganancia de corriente de cortocircuito $\left(i_{c}/i_{i}\right)\Big|_{v_{ce}=0}$ Así pues se define a f_{β} como la frecuencia de 3dB de cortocircuito en la configuración emisor-común.

$$f_{\beta} = \frac{1}{2\pi r_{b'e} \left(C_{b'e} + C_{b'c}\right)} \cong \frac{1}{2\pi r_{b'e} C_{b'e}}$$

$$\stackrel{\text{Bb'}}{\longrightarrow} \stackrel{\text{Cb'c}}{\longrightarrow} \stackrel{\text{ib'}}{\longrightarrow} \stackrel{\text{Cb'c}}{\longrightarrow} \stackrel{\text{ic}}{\longrightarrow} \stackrel{\text{ic$$

El límite de frecuencia superior de un transistor se define algunas veces como frecuencia de transición f_T en que la ganancia de corriente de emisor común es la unidad, es decir $\left|h_{fe}=1\right|$.

Frecuencias de corte y transición.

<u>Modelo Hibrido PI equivalente con fuente controlada por tensión:</u> En esta configuración resulta mas fácil calcular la tensión $v_{b'e}$ que la corriente $i_{b'}$, y la fuente de salida $h_{fe}i_{b'}$ puede ser transformada en una fuente de corriente controlada por tensión $g_{m}v_{b'e}$.

WINIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA Nombre del práctico Respuesta en Frecuencia UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA Ing. Federico Linares Curso 4R 3

Modelo PI equivalente con fuente controlada por tensión.

En donde a temperatura ambiente,

$$g_m = \frac{h_{fe}}{r_{b'e}} \cong \frac{I_{EQ}}{0.025} = 40I_{EQ}$$

Resumen de los elementos del circuito PI equivalente:

•
$$r_{b'b} = 10 \ a \ 50\Omega$$

•
$$g_m = \frac{I_{EQ}}{0.025} = 40I_{EQ}$$

•
$$h_{oe} \propto I_{EQ}$$

$$\quad C_{b'e} \cong \frac{h_{fe}}{\omega_T r_{b'e}} = \frac{40I_{EQ}}{\omega_T} = \frac{g_m}{\omega_T}$$

•
$$C_{b'c} \propto v_{cb}^{-p}$$
 donde p está entre $\frac{1}{2}$ y $\frac{1}{3}$

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica	Aplicada 2
Nombre del práctico	Ing. Federico Linares	Curso	Hoja
Respuesta en Frecuencia		4R	4

<u>Capacidad de Miller:</u> Un amplificador en configuración Emisor Común es la más utilizada para hacer análisis de alta frecuencia, esta respuesta está determinada por un solo polo debido al circuito de entrada.

Análisis del Modelo

• Circuito Equivalente para Frecuencias Bajas

• Circuito equivalente para Frecuencias Medias

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica	Aplicada 2
Nombre del práctico	Ing. Federico Linares	Curso	Hoja
Respuesta en Frecuencia		4R	5

Circuito equivalente para Frecuencias Altas

Aplicando el Teorema de Millar, el circuito equivalente queda,

donde,

$$C_{M} = C_{b'c} \left(1 + g_{m} R'_{L} \right)$$
$$R'_{L} = R_{C} / R_{L}$$

Este teorema se utiliza para simplificar el análisis de los amplificadores inversores en altas frecuencias en donde las capacitancias internas del transistor son importantes.

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica	Aplicada 2
Nombre del práctico	Ing. Federico Linares	Curso	Hoja
Respuesta en Frecuencia		4R	6

Circuitos Prácticos:

1) Dado el siguiente circuito, se pide calcular las frecuencias de corte superior y la ganancia a frecuencias medias para dos cargas diferentes.

Datos:

$$h_{fe} = 80$$
 $r_{b'b} = r_x = 30\Omega$
 $C_{b'c} = C_u = 2.5 pF$ $R_E = 0.2 K\Omega$
 $f_T = 750 Mhz$ $R_S = 500 \Omega$

Calcular:

$$\left. f_{H_1} \right|_{RL=100\Omega} \qquad \qquad \left. f_{H_2} \right|_{RL=200\Omega}$$
 $\left. A_{Vm_1} \right|_{RL=100\Omega} \qquad \qquad \left. A_{Vm_2} \right|_{RL=200\Omega}$

Resolución:

$$\begin{split} V_{bb} &= \frac{I_{CQ}}{\beta} R_b + V_{be} + I_{CQ} R_E \Rightarrow I_{CQ} = \frac{V_{bb} - V_{be}}{\left(\frac{R_b}{\beta} + R_E\right)} \\ R_b &= R_{b_1} / / R_{b_2} = \frac{7,5 \times 2,7}{7,5 + 2,7} = 1,975 K \Omega \\ V_{bb} &= \frac{V_{CC}}{R_{b_1} + R_{b_2}} R_{b_1} = \frac{15}{7,5 + 2,7} \times 2,7 = 3,97 V \\ I_{CQ} &= \frac{V_{bb} - V_{be}}{\left(\frac{R_b}{\beta} + R_E\right)} = \frac{3,97 - 0,7}{1,985} = 14,54 mA \end{split}$$

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica	Aplicada 2
Nombre del práctico	Ing. Federico Linares	Curso	Hoja
Respuesta en Frecuencia		l 4R	

Circuito equivalente en Altas Frecuencias.

$$R_{b'e} = r_{b'e} / \left[r_{bb'} + \left(R_S / / R_b \right) \right]$$

$$R_{b'e} = 138 / \left[30 + \left(500 / / 1985 \right) \right] = 104\Omega$$

$$C_{T_1} = C_M \Big|_{R_L = 100} + C_{b'e} = 270 \, pF$$

$$C_{T_2} = C_M \Big|_{R_L = 200} + C_{b'e} = 416 \, pF$$

$$f_{H_1} = \frac{1}{2\pi R_{b'e} C_{T_1}} = 5,66 Mhz$$

$$f_{H_2} = \frac{1}{2\pi R_{b'e} C_{T_2}} = 3,67 Mhz$$

WINIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA Nombre del práctico Respuesta en Frecuencia UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA Universidad 2 Electrónica Aplicada 2 Curso Hoja 4R 8

Circuito equivalente en Frecuencias Medias.

$$A_{Vm} = \frac{E_o}{E_i} = \frac{E_o}{v_{b'e}} \frac{v_{b'e}}{E_i}$$

$$E_o = R_L \times g_m V_{b'e} \Rightarrow \frac{E_o}{V_{b'e}} = R_L \times g_m$$

$$v_{b'e} = \frac{E_i}{R_S + \left[R_b / / (r_{bb'} + r_{b'e})\right]} \frac{\left[R_b / / (r_{bb'} + r_{b'e})\right]}{(r_{bb'} + r_{b'e})} \times r_{b'e} \Rightarrow$$

$$\frac{v_{b'e}}{E_i} = \frac{\left[R_b / / (r_{bb'} + r_{b'e})\right]}{R_S + \left[R_b / / (r_{bb'} + r_{b'e})\right]} \times r_{b'e}$$

$$\frac{v_{b'e}}{E_i} = \frac{\left[138 / / 168\right]}{500 + \left[1985 / / 168\right](168)} \times 138 = 0,79\Omega$$

$$A_{Vm_1}\Big|_{R_L = 100} = 100 \times 0,581 \times 0,79 = 45,9$$

$$A_{Vm_2}\Big|_{R_L = 200} = 200 \times 0,581 \times 0,79 = 91,8$$

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica	Aplicada 2
Nombre del práctico	Ing. Federico Linares	Curso	Hoja /
Respuesta en Frecuencia		4R	9

2) Dado el siguiente circuito, se pide hallar la ganancia de corriente en frecuencias medias y la frecuencia de corte superior (f_h).

Considerar $R_{\scriptscriptstyle C} >> R_{\scriptscriptstyle L}$

Datos:

$$r_i = 10K\Omega$$
 $R_b = 2K\Omega$ $r_{bb'} = 20\Omega$ $r_{b'e} = 150\Omega$ $C_{b'c} = 2pF$ $C_{b'e} = 200pF$ $g_m = 0.5S$ $R_L = 20\Omega$

Resolución:

o Ganancia de corriente en frecuencias medias

$$A_{i} = \frac{i_{L}}{i_{i}} = \frac{i_{L}}{v_{b'e}} \frac{v_{b'e}}{i_{i}}$$

$$i_{L} = g_{m}v_{b'e} \Rightarrow g_{m} = \frac{i_{L}}{v_{b'e}}$$

WNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA Nombre del práctico Respuesta en Frecuencia UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA Universidad 12 Electrónica Aplicada 2 Curso Hoja 4R 10

Aplicando Miller

$$R_{b'e} = r_{b'e} / [r_{bb'} + (r_i / / R_b)]$$

$$= 150 / [20 / (10000 / /2000)] \Rightarrow R_{b'e} = 138\Omega$$

$$C_M = C_{b'c} (1 + g_m R_L)$$

$$= 2pF (1 + 0.5 \times 20) \Rightarrow C_M = 22pF$$

$$C_T = C_M + C_{b'e} = 22pF + 200pF = 222pF$$

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica	Aplicada 2
Nombre del práctico	Ing. Federico Linares	Curso	Hoja
Respuesta en Frecuencia		4R	11

$$f_h = \frac{1}{2\pi R_{b'e} C_T} = 5,2Mhz$$

Aproximación de $f_{\scriptscriptstyle h}$ con $f_{\scriptscriptstyle eta}$. Condiciones $C_{\scriptscriptstyle b'e} >> C_{\scriptscriptstyle M}$ y $R_{\scriptscriptstyle b'e} \cong r_{\scriptscriptstyle b'e}$

$$f_{\beta} = \frac{1}{2\pi r_{b'e} \left(C_{b'e} + C_{b'c} \right)} = \frac{1}{2\pi \times 138 \left(200 pF + 2 pF \right)} = 5,7 Mhz$$

3) Dado el siguiente circuito, se pide calcular los capacitores para una frecuencia de corte inferior $\left(f_L\right)$.

Datos:

$$V_{CC} = 20V$$
 $R_E = 1K\Omega$ $R_S = 1K\Omega$ $R_b = 8K\Omega$ $r_{bb'} = 50\Omega$ $r_{b'e} = 150\Omega$ $R_C = 1K$ $h_{fe} = 40$ $C_{b'c} = 2pF$ $C_{b'e} = 200pF$ $g_m = 0,5S$

Calcular:

$$C_E$$
 y C_C para $f_L = 20Hz$

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica	Aplicada 2
Nombre del práctico	Ing. Federico Linares	Curso	Hoja
Respuesta en Frecuencia		4R	12

Resolución:

Cálculo de $C_{\scriptscriptstyle E}$

$$C_E = \frac{1}{R_T \omega_L} = \frac{1}{25,86 \times 2\pi \times 20} \Rightarrow C_E = 307 \mu F$$

Cálculo de $C_{\scriptscriptstyle C}$

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica	Aplicada 2
Nombre del práctico	Ing. Federico Linares	Curso	Hoja
Respuesta en Frecuencia		4R	13

$$R_{T_2} = 1000 + [8000 / / (50 + 150)]$$

 $R_{T_2} = 1195,12\Omega$

$$C_C = \frac{10}{R_{T_2}\omega_L} = \frac{10}{1195,12 \times 2\pi \times 20} \Rightarrow C_C = 66,58 \mu F$$

4) Dado el siguiente circuito, se pide análisis de los capacitares que fijan los polos de frecuencia inferior.

Datos:

$$\begin{split} V_{CC} = &15V & R_{E_1} = &33\Omega & R_S = &600\Omega & R_{b_1} = &22K\Omega & C_{C_1} = &100nF \\ R_C = &3.9K & R_{E_2} = &1500\Omega & C_E = &100\mu F & R_{b_2} = &68K\Omega & C_{C_2} = &330nF \\ R_L = &5.6K\Omega & h_{ie} = &1920\Omega & h_{fe} = &200 \end{split}$$

Calcular:

- Frecuencia de corte inferior debida $\,C_{\scriptscriptstyle E}\,$

$$R_{T_1} = R_{E_2} / / \left[\left(R_{E_1} + \frac{h_{ie}}{\left(h_{fe} + 1 \right)} \right) + \frac{R_S / / R_b}{\left(h_{fe} + 1 \right)} \right]$$

$$= 1500 / / \left[\left(33 + \frac{1920}{(201)} \right) + \frac{600 / / 16622}{(201)} \right] \Rightarrow R_{T_1} = 44,09\Omega$$

$$f_{L_1} = \frac{1}{2\pi R_T C_F} \Rightarrow f_{L_1} \cong 36,09 Hz$$

• Frecuencia de corte inferior debida al circuito *RC* de entrada.

$$R_{T_2} = R_S + \left\{ R_b / / \left[h_{ie} + R_{E_1} \left(h_{fe} + 1 \right) \right] \right\}$$

$$= 600 + \left\{ 16622 / / \left[1920 + 33(201) \right] \right\} \Rightarrow R_{T_2} = 6232,43\Omega$$

$$f_{L_2} = \frac{1}{2\pi R_{T_2} C_{C_1}} \Rightarrow f_{L_2} \cong 255,38Hz$$

• Frecuencia de corte inferior debida al circuito *RC* de salida.

$$R_{T_3} = R_C + R_L$$

=3900+5600 $\Rightarrow R_{T_3} = 9500\Omega$

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica	Aplicada 2
Nombre del práctico	Ing. Federico Linares	Curso	Hoja
Respuesta en Frecuencia		4R	15

$$f_{L_3} = \frac{1}{2\pi R_{T_3} C_{C_2}} \Rightarrow f_{L_3} \cong 50,8Hz$$

 Determinar ganancia a frecuencias medias y realizar traza de Bode mostrando frecuencias críticas inferiores.

$$A_{Vm} = \frac{E_o}{E_i} = \frac{E_o}{v_{be}} \frac{v_{be}}{E_i}$$

$$E_o = g_m v_{be} \times (R_C / / R_L) \Rightarrow \frac{E_o}{v_{be}} = R_C / / R_L = 2298,94 \times g_m$$

Es necesario calcular g_m

$$\begin{split} R_b &= R_{b_2} / / R_{b_1} = 68000 / / 22000 = 16622\Omega \\ V_{bb} &= \frac{V_{CC}}{R_{b_2} + R_{b_1}} R_{b_1} = \frac{15}{68000 + 22000} 22000 = 3,6V \\ I_{CQ} &= 25mV \frac{h_{fe}}{h_{ie}} = 25mV \frac{200}{1920\Omega} = 2,6mA \\ g_m &\cong 40I_{CQ} = 0,104 \frac{1}{\Omega} \end{split}$$

Entonces

$$\frac{E_o}{v_{be}} = 2298,94 \times 0,104 \Rightarrow \frac{E_o}{v_{be}} = 239,08$$

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica	Aplicada 2
Nombre del práctico	Ing. Federico Linares	Curso	Hoja
Respuesta en Frecuencia		4R	16

Para calcular \mathcal{V}_{be} conviene aplicar Thevenin al circuito de entrada.

Entonces

$$\frac{v_{be}}{E_i} = \frac{R_b}{R_S + R_b} \times \frac{1}{\left[\left(R_S / / R_b\right) + h_{ie} + R_{E_1}(h_{fe} + 1)\right]} \times h_{ie}$$

$$= \frac{16622}{600 + 16622} \times \frac{1}{\left[\left(600 / / 16622\right) + 1920 + 6633\right]} \times 1920 \Rightarrow \frac{v_{be}}{E_i} = 0,202$$

Finalmente

$$A_{Vm} = \frac{E_o}{v_{be}} \frac{v_{be}}{E_i} = 239,08 \times 0,202 \Rightarrow A_{Vm} = 48,29$$

Grafica de Bode en baja frecuencia

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica	Aplicada 2
Nombre del práctico	Ing. Federico Linares	Curso	Hoja
Respuesta en Frecuencia		4R	17

5) Dado el siguiente circuito, se pide análisis de los polos de frecuencia superior.

Datos:

$$r_{b'b} = 30\Omega$$
 $h_{fe} = 125$
 $R_E = 0,47K\Omega$
 $C_{b'c} = 2,4pF$
 $R_S = 600\Omega$
 $C_{b'e} = 20pF$
 $R_C = R_L = 2,2K\Omega$
 $R_{b_1} = 4700\Omega$
 $R_{b_2} = 22000\Omega$

Determinar:

• Calcular la frecuencia crítica superior producida por el circuito de entrada.

$$I_{CQ} = 25mV \frac{h_{fe}}{h_{ie}} = 25mV \frac{125}{1380\Omega} = 2,26mA$$

$$g_m \cong 40I_{CQ} = 0,09 \frac{1}{\Omega}$$

$$R'_L = R_C / / R_L = 1100\Omega$$

$$C_{M_{EN}} = C_{b'c} (1 + g_m R'_L)$$

$$= 2,4pF (1 + 0,09 \times 1100) \Rightarrow C_{M_{EN}} = 240pF$$

$$C_T = C_{b'e} + C_{M_{EN}}$$

$$= 20pF + 240pF \Rightarrow C_T = 260pF$$

*	UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CORDOBA	Electrónica	Aplicada 2
Nombre del práctico	Ing. Federico Linares	Curso	Hoja /
Respuesta en Frecuencia		4R	18

$$\begin{split} h_{ie} &= r_{bb'} + r_{b\acute{e}} \Rightarrow r_{b\acute{e}} = 1380 - 30 \Rightarrow r_{b'e} = 1350\Omega \\ R_{b'e} &= r_{b'e} / / \left[r_{bb'} + \left(R_S / / R_b \right) \right] \\ &= 1350 / / \left[30 + \left(519, 5 \right) \right] \Rightarrow R_{b'e} = 390,53\Omega \\ f_{h_{EN}} &= \frac{1}{2\pi R_{b'e} C_T} \Rightarrow f_{h_{EN}} = 1,56MHz \end{split}$$

• Calcular la frecuencia crítica superior producida por el circuito de salida.

Si la ganancia de voltaje es mucho mayor que 1, se puede decir que $C_{M_{S\!A\!L}}\cong C_{b'c}=2,4\,pF$

$$f_{h_{SAL}} = \frac{1}{2\pi \left(R_C / / R_L\right) C_{M_{SAL}}} \Rightarrow f_{h_{SAL}} = 60,28MHz$$

Grafica de Bode en alta frecuencia

