T.D. VI - Calculs de sommes Séries numériques

I - Calculs de sommes

Exercice 1. (Sommes à étendre, 🗱) Calculer les sommes suivantes :

1.
$$\sum_{k=0}^{5} 3$$
.

2.
$$\sum_{n=3}^{5} 10$$
.

3.
$$\sum_{\ell=1}^{7} \ell$$
.

Exercice 2. (Sommes géométriques, 🗱) Calculer les sommes suivantes :

1.
$$\sum_{k=5}^{12} 2^k$$
.

2.
$$\sum_{n=3}^{10} (-1)^n$$
.

3.
$$\sum_{n=1}^{5} \frac{1}{2^{2n}}$$
.

4.
$$\sum_{n=1}^{4} \frac{3^{2n+1}}{2^{2n}}$$
.

5.
$$\sum_{\ell=1}^{5} (3^{\ell} - 2).$$
6. $\sum_{k=0}^{n} \left(\frac{2^{k}}{5^{k}} + \frac{1}{4^{k}}\right).$

7.
$$\sum_{k=0}^{n} \frac{3^k + 4^k}{5^k}$$
.

Exercice 3. ($\mathbf{a}_{\bullet}^{\bullet}$) Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme $u_0 = 1$ et de raison 4. Soit $n \in \mathbb{N}$.

1. Exprimer u_n en fonction de n.

2. Calculer $\sum_{k=0}^{10} u_k$.

Exercice 4. ($\mathbf{c}_{\bullet}^{\bullet}$) Soit $(w_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $w_0 = 4$ et de raison $\frac{1}{5}$. Soit $n \in \mathbb{N}$.

1. Exprimer w_n en fonction de n.

2. Calculer $\sum_{k=1}^{21} w_k$.

II - Sommes télescopiques

Exercice 5. (\mathbf{v}_n^*) Pour tout n entier naturel, on pose $w_n = \frac{1}{2^n}$. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$u_0 = 0 \text{ et } \forall n \in \mathbb{N}, u_{n+1} - u_n = \frac{1}{2}w_n.$$

Donner l'expression de u_n en fonction de n.

Exercice 6. (\mathfrak{S}_n^*) Pour tout n entier naturel, on pose $w_n = \left(\frac{2}{5}\right)^n$. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$u_0 = 1 \text{ et } \forall n \in \mathbb{N}, u_{n+1} - u_n = \frac{1}{4}w_n.$$

Donner l'expression de u_n en fonction de n.

Exercice 7. ($\mathbf{v}_{\bullet}^{\bullet}$) Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels telle que $u_0=1$ et

$$\forall n \in \mathbb{N}, u_{n+1} - u_n = \left(\frac{1}{2}\right)^n.$$

Pour tout n entier naturel, exprimer u_n en fonction de n.

Exercice 8. ($\mathbf{c}_{\mathbf{s}}^{\bullet}$) Soit $(v_n)_{n\in\mathbb{N}}$ la suite de réels telle que $v_0=0$ et

$$\forall n \in \mathbb{N}, v_{n+1} - v_n = (-8)^n.$$

Pour tout n entier naturel, exprimer v_n en fonction de n.

Exercice 9. (\mathscr{D}) Soit $(b_n)_{n\in\mathbb{N}}$ la suite définie pour tout entier naturel npar $b_n = n3^{n-1}$. Soit $n \in \mathbb{N}$.

1. Montrer que $2b_n = b_{n+1} - b_n - 3^n$.

2. Calculer $\sum_{k=0}^{n} 3^k$.

- 3. Montrer que $\sum_{k=0}^{n} (b_{k+1} b_k) = b_{n+1}$.
- **4.** En déduire que

$$\sum_{k=0}^{n} k3^{k-1} = \frac{(n+1)3^n}{2} + \frac{1}{4} - \frac{3^{n+1}}{4}.$$

Exercice 10. Pour tout $k \ge 1$, on pose $u_k = \ln\left(\frac{k+1}{k}\right)$.

- **1.** Exprimer u_k en fonction de $\ln(k+1)$ et $\ln(k)$.
- **2.** À l'aide d'une somme télescopique, calculer $\sum_{k=1}^{n} u_k$.
- 3. En déduire la nature (et éventuellement la somme) de la série $\sum u_k$.

Exercice 11. (\mathscr{D}) Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et, pour tout n entier naturel, $u_{n+1} = u_n e^{-1/u_n}$. Montrer que, pour tout n entier naturel, $-\ln(u_{n+1}) = \sum_{k=0}^{n} \frac{1}{u_k}$.

III - Séries géométriques...et plus

Exercice 12. (\$\oldsymbol{a}\oldsymbol{b}\oldsymbol{b}\oldsymbol{e}\oldsymbol{b}\oldsymbol{e}\oldsymbol{b}\oldsymbol{e}\oldsymbol{o}\oldsymbol{b}\oldsymbol{e}\oldsymbol{o}\oldsymbol{e}\oldsymbol{e}\oldsymbol{o}\oldsymbol{e}\oldsymbol{o}\oldsymbol{e}\oldsymbol{o}\oldsymbol{e}\ol vantes:

1.
$$\sum_{k=0}^{+\infty} \frac{1}{5^k}$$
.

3.
$$\sum_{k=0}^{+\infty} \frac{1}{2^{2k}}$$

2.
$$\sum_{k=0}^{+\infty} \frac{3^k}{5^k}$$
.

3.
$$\sum_{k=0}^{+\infty} \frac{1}{2^{2k}}$$
.
4. $\sum_{\ell=0}^{+\infty} \frac{3^{2\ell+1}}{10^{\ell}}$.

Exercice 13. Pour tout n entier naturel, on pose $u_n = 5 \times \left(\frac{1}{7}\right)^n + \frac{2}{3}$.

- 1. Montrer qu'il existe un unique réel α tel que la série de terme général $\alpha - u_n$ converge. Donner la valeur de ce réel α_0 .
- **2.** En déduire la somme $\sum_{k=0}^{+\infty} (\alpha_0 u_n)$.

Exercice 14. Pour tout *n* entier naturel, on pose $u_n = \frac{1}{4} \left(1 - \frac{1}{3^n} \right) - \alpha$.

Montrer que la série de terme général u_n converge si et seulement si $\alpha = \frac{1}{4}$.

Exercice 15. Pour tout *n* entier naturel, on pose

$$p_n = \frac{4}{5} \left(\frac{3}{5}\right)^{n-1} - \frac{16}{25} \left(\frac{9}{25}\right)^{n-1}.$$

- **1.** Montrer que les séries $\sum_{n\geq 1} \left(\frac{3}{5}\right)^{n-1}$ et $\sum_{n\geq 1} \left(\frac{9}{25}\right)^{n-1}$ convergent.
- **2.** Vérifier que $\sum_{n=1}^{+\infty} p_n = 1$.

Exercice 16. (\Longrightarrow) Soit $n \in \mathbb{N}$.

- **1.** Montrer que $\sum_{k=0}^{n} k \frac{1}{4} \left(\frac{3}{4} \right)^{k-1} = \sum_{k=0}^{n} k \left(\frac{3}{4} \right)^{k-1} \sum_{k=0}^{n} k \left(\frac{3}{4} \right)^{k}$.
- 2. À l'aide d'un changement de variable, montrer que

$$\sum_{k=1}^{n} k \left(\frac{3}{4}\right)^{k-1} = \sum_{\ell=0}^{n-1} (\ell+1) \left(\frac{3}{4}\right)^{\ell}.$$

- **3.** En déduire que $\sum_{k=0}^{n} k_{\frac{1}{4}} \left(\frac{3}{4}\right)^{k-1} = \sum_{k=0}^{n-1} \left(\frac{3}{4}\right)^k n \left(\frac{3}{4}\right)^n$.
- **4.** En utilisant les questions précédentes, calculer $\sum_{k=0}^{+\infty} k^{\frac{1}{4}} \left(\frac{3}{4}\right)^{k-1}$.