University of Calgary Department of Electrical and Computer Engineering

ENGG 225 - Fundamentals of Electrical Circuits and Machines Winter, 2018

Problem Assignment #8

1. [2 marks.] Use the mesh-current method to determine I_1 and I_2 in the following circuit, then choose the phasor diagram that correctly displays their values.

(e) None of the above.

- 2. [2 marks.] Use the mesh-current method to find the current $i_0(t)$ in the circuit shown at right. Give just the peak current in *Amperes*.
- 3. [1 mark.] For Question #2 above, give the phase angle θ of $i_0(t)$ in degrees such that $-180^{\circ} \leq \theta < 180^{\circ}$.

- 4. [2 marks.] Use the node-voltage method to find the phasor voltage \mathbf{V}_{O} in the circuit at right. Give just the peak voltage of \mathbf{V}_{O} in Volts.
- 5. [1 mark.] For Question #4 above, give the phase angle θ of \mathbf{V}_{O} in degrees such that $-180^{\circ} \leq \theta < 180^{\circ}$.

6. [2 marks.] Use the node-voltage method to find the current i(t) in the following circuit. Give just the peak amplitude of i(t) in Amperes.

- 7. [2 marks.] Determine the Thévenin equivalent circuit at terminals \mathbf{a} and \mathbf{b} . Give just the peak voltage $V_t = V_{ab}$ in Volts.
- 8. [1 mark.] For Question #7 above, give the magnitude of the Thévenin impedance Z_t in Ohms.

