$12a_{0878} \ (K12a_{0878})$

Ideals for irreducible components 2 of X_{par}

$$\begin{split} I_1^u &= \langle 5u^{35} + 7u^{34} + \dots + b - 4, \ -2u^{35} - u^{34} + \dots + 2a + 13, \ u^{36} + 3u^{35} + \dots + 6u - 1 \rangle \\ I_2^u &= \langle b, \ a - u + 2, \ u^2 - u - 1 \rangle \\ I_3^u &= \langle b - 1, \ -u^3 + a + 2u + 1, \ u^4 - u^3 - 2u^2 + 2u - 1 \rangle \\ I_4^u &= \langle b - 1, \ a, \ u + 1 \rangle \\ I_5^u &= \langle b, \ a - 1, \ u^2 - u - 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 45 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle 5u^{35} + 7u^{34} + \dots + b - 4, -2u^{35} - u^{34} + \dots + 2a + 13, u^{36} + 3u^{35} + \dots + 6u - 1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{35} + \frac{1}{2}u^{34} + \dots + \frac{27}{2}u - \frac{13}{2} \\ -5u^{35} - 7u^{34} + \dots - 23u + 4 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -4u^{35} - \frac{13}{2}u^{34} + \dots - \frac{19}{2}u - \frac{5}{2} \\ -5u^{35} - 7u^{34} + \dots - 23u + 4 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{34} - u^{33} + \dots + \frac{11}{2}u + \frac{3}{2} \\ -u^{9} + 5u^{7} - 7u^{5} + 2u^{3} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{7} - 4u^{5} + 4u^{3} \\ u^{9} - 5u^{7} + 7u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{7} - 4u^{5} + 4u^{3} \\ u^{9} - 5u^{7} + 7u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{35} - u^{34} + \dots + \frac{21}{2}u - 6 \\ -\frac{1}{2}u^{35} - \frac{1}{2}u^{34} + \dots - u + \frac{1}{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.500000u^{35} + 10.5000u^{33} + \dots - 16.5000u^{2} - 9.50000u \\ -\frac{1}{2}u^{35} - \frac{1}{2}u^{34} + \dots - u + \frac{1}{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{15}{2}u^{35} + 13u^{34} + \dots + \frac{137}{2}u + 4$

Crossings	u-Polynomials at each crossing
c_1	$u^{36} - 7u^{35} + \dots - 204u - 7$
$c_2, c_3, c_5 \ c_6$	$u^{36} + 3u^{35} + \dots + 6u - 1$
c_4, c_{10}	$u^{36} + 4u^{35} + \dots + 80u + 16$
$c_7, c_8, c_9 \\ c_{11}, c_{12}$	$u^{36} - 3u^{35} + \dots - 12u^2 - 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{36} + 19y^{35} + \dots - 24116y + 49$
$c_2, c_3, c_5 \ c_6$	$y^{36} - 41y^{35} + \dots - 56y + 1$
c_4, c_{10}	$y^{36} - 20y^{35} + \dots - 3200y + 256$
c_7, c_8, c_9 c_{11}, c_{12}	$y^{36} - 49y^{35} + \dots + 24y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.680450 + 0.624888I		
a = 1.58464 + 1.12498I	15.3018 - 8.1184I	7.62644 + 5.89402I
b = -1.37928 + 0.58427I		
u = 0.680450 - 0.624888I		
a = 1.58464 - 1.12498I	15.3018 + 8.1184I	7.62644 - 5.89402I
b = -1.37928 - 0.58427I		
u = 0.634805 + 0.572486I		
a = -1.68198 - 1.14140I	5.35265 - 6.44473I	7.06333 + 7.49999I
b = 1.250780 - 0.467984I		
u = 0.634805 - 0.572486I		
a = -1.68198 + 1.14140I	5.35265 + 6.44473I	7.06333 - 7.49999I
b = 1.250780 + 0.467984I		
u = 0.286743 + 0.718481I		
a = -1.61383 - 0.66499I	16.4706 + 3.6258I	9.89093 - 0.70806I
b = 1.41214 + 0.42853I		
u = 0.286743 - 0.718481I		
a = -1.61383 + 0.66499I	16.4706 - 3.6258I	9.89093 + 0.70806I
b = 1.41214 - 0.42853I		
u = -1.216880 + 0.225154I		
a = 0.176584 - 0.371182I	11.69880 - 0.20082I	6.33515 + 0.I
b = -1.374430 + 0.160487I		
u = -1.216880 - 0.225154I		
a = 0.176584 + 0.371182I	11.69880 + 0.20082I	6.33515 + 0.I
b = -1.374430 - 0.160487I		
u = 0.556839 + 0.497955I		
a = 1.87783 + 1.11937I	1.19518 - 3.43864I	3.32627 + 7.55199I
b = -1.079090 + 0.293810I		
u = 0.556839 - 0.497955I		
a = 1.87783 - 1.11937I	1.19518 + 3.43864I	3.32627 - 7.55199I
b = -1.079090 - 0.293810I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.488097 + 0.539433I		
a = -0.755389 - 0.156628I	11.32400 + 1.86563I	6.84113 - 3.39356I
b = -0.139231 + 1.154510I		
u = -0.488097 - 0.539433I		
a = -0.755389 + 0.156628I	11.32400 - 1.86563I	6.84113 + 3.39356I
b = -0.139231 - 1.154510I		
u = 0.302987 + 0.626688I		
a = 1.73596 + 0.65197I	6.32076 + 2.37657I	9.77017 - 1.34852I
b = -1.228520 - 0.302969I		
u = 0.302987 - 0.626688I		
a = 1.73596 - 0.65197I	6.32076 - 2.37657I	9.77017 + 1.34852I
b = -1.228520 + 0.302969I		
u = -0.482616 + 0.407041I		
a = 0.667048 - 0.013183I	1.87081 + 1.46712I	6.30394 - 4.92073I
b = 0.156607 - 0.892042I		
u = -0.482616 - 0.407041I		
a = 0.667048 + 0.013183I	1.87081 - 1.46712I	6.30394 + 4.92073I
b = 0.156607 + 0.892042I		_
u = -0.603920 + 0.151230I		
a = -0.257154 + 0.105987I	-1.107760 + 0.363241I	-6.95847 - 1.67967I
b = -0.288863 + 0.427112I		
u = -0.603920 - 0.151230I		
a = -0.257154 - 0.105987I	-1.107760 - 0.363241I	-6.95847 + 1.67967I
b = -0.288863 - 0.427112I		
u = -1.38180		
a = -0.715291	1.39348	6.13670
b = 1.22298		
u = -1.52012 + 0.10884I		
a = 1.040470 - 0.777211I	-4.81513 + 1.90456I	0
b = -1.121760 - 0.323243I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.52012 - 0.10884I		
a = 1.040470 + 0.777211I	-4.81513 - 1.90456I	0
b = -1.121760 + 0.323243I		
u = 1.52376 + 0.14580I		
a = 0.388481 + 0.623220I	4.64948 - 4.27120I	0
b = 0.395969 + 1.220420I		
u = 1.52376 - 0.14580I		
a = 0.388481 - 0.623220I	4.64948 + 4.27120I	0
b = 0.395969 - 1.220420I		
u = 1.54036 + 0.09785I		
a = -0.291616 - 0.548274I	-4.96649 - 3.17823I	0
b = -0.355163 - 1.046370I		
u = 1.54036 - 0.09785I		
a = -0.291616 + 0.548274I	-4.96649 + 3.17823I	0
b = -0.355163 + 1.046370I		
u = -1.55388 + 0.14251I		
a = -0.903024 + 1.018170I	-5.88929 + 5.74406I	0
b = 1.164680 + 0.488851I		
u = -1.55388 - 0.14251I		
a = -0.903024 - 1.018170I	-5.88929 - 5.74406I	0
b = 1.164680 - 0.488851I		
u = 0.439340		
a = 3.99822	8.22478	19.8310
b = -0.448670		
u = 1.57896 + 0.04089I		
a = 0.168039 + 0.376790I	-8.61991 - 1.07838I	0
b = 0.269429 + 0.728694I		
u = 1.57896 - 0.04089I		
a = 0.168039 - 0.376790I	-8.61991 + 1.07838I	0
b = 0.269429 - 0.728694I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.57622 + 0.17454I		
a = 0.742839 - 1.118400I	-2.04882 + 9.20350I	0
b = -1.254650 - 0.614758I		
u = -1.57622 - 0.17454I		
a = 0.742839 + 1.118400I	-2.04882 - 9.20350I	0
b = -1.254650 + 0.614758I		
u = -1.59552 + 0.19703I		
a = -0.638410 + 1.172730I	7.68400 + 11.19530I	0
b = 1.32886 + 0.71326I		
u = -1.59552 - 0.19703I		
a = -0.638410 - 1.172730I	7.68400 - 11.19530I	0
b = 1.32886 - 0.71326I		
u = 1.65310		
a = -0.316454	-7.37086	0
b = -0.667605		
u = 0.154049		
a = -3.44747	0.766693	13.5400
b = 0.378377		

II.
$$I_2^u = \langle b, \ a - u + 2, \ u^2 - u - 1 \rangle$$

a) Arc colorings
$$a_2 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u \\ -u-1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u-2 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u-2 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -3u+3 \\ -u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u-3 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2u+4 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -5

Crossings	u-Polynomials at each crossing		
$c_1, c_2, c_3 \\ c_{11}, c_{12}$	$u^2 + u - 1$		
c_4, c_{10}	u^2		
c_5, c_6, c_7 c_8, c_9	$u^2 - u - 1$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_5, c_6, c_7 c_8, c_9, c_{11} c_{12}	$y^2 - 3y + 1$		
c_4, c_{10}	y^2		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = -2.61803	7.89568	-5.00000
b = 0		
u = 1.61803		
a = -0.381966	-7.89568	-5.00000
b = 0		

III.
$$I_3^u = \langle b-1, -u^3+a+2u+1, u^4-u^3-2u^2+2u-1 \rangle$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ -u^{3} + 2u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} - 2u - 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} - 2u \\ 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} - u^{2} + 2u \\ -u^{3} + u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - 2u \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + u - 1 \\ u^{3} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + u - 1 \\ -u^{3} - u^{2} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} - u - 1 \\ -u^{3} - u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1	$u^4 - 3u^3 + 2u^2 - 2u + 1$
c_2, c_3, c_5 c_6, c_7, c_8 c_9, c_{11}, c_{12}	$u^4 - u^3 - 2u^2 + 2u - 1$
c_4, c_{10}	$(u-1)^4$

Crossings	Riley Polynomials at each crossing		
c_1	$y^4 - 5y^3 - 6y^2 + 1$		
c_2, c_3, c_5 c_6, c_7, c_8 c_9, c_{11}, c_{12}	$y^4 - 5y^3 + 6y^2 + 1$		
c_4, c_{10}	$(y-1)^4$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.407392 + 0.476565I		
a = -2.02474 - 0.82408I	1.64493	6.00000
b = 1.00000		
u = 0.407392 - 0.476565I		
a = -2.02474 + 0.82408I	1.64493	6.00000
b = 1.00000		
u = -1.50507		
a = -1.39919	1.64493	6.00000
b = 1.00000		
u = 1.69028		
a = 0.448678	1.64493	6.00000
b = 1.00000		

IV.
$$I_4^u = \langle b-1, a, u+1 \rangle$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_5, c_6, c_7 c_8, c_9, c_{11} c_{12}	u+1
c_4, c_{10}	u-1

Crossings		Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0	1.64493	6.00000
b = 1.00000		

V.
$$I_5^u = \langle b, a - 1, u^2 - u - 1 \rangle$$

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u-1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2u \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u+2 \\ u+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_3 \\ c_{11}, c_{12}$	$u^2 + u - 1$
c_4, c_{10}	u^2
c_5, c_6, c_7 c_8, c_9	$u^2 - u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5, c_6, c_7 c_8, c_9, c_{11} c_{12}	$y^2 - 3y + 1$
c_4, c_{10}	y^2

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = 1.00000	0	0
b = 0		
u = 1.61803		
a = 1.00000	0	0
b = 0		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u+1)(u^{2}+u-1)^{2}(u^{4}-3u^{3}+2u^{2}-2u+1)$ $\cdot (u^{36}-7u^{35}+\cdots-204u-7)$
c_2, c_3	$(u+1)(u^2+u-1)^2(u^4-u^3+\cdots+2u-1)(u^{36}+3u^{35}+\cdots+6u-1)$
c_4, c_{10}	$u^4(u-1)^5(u^{36}+4u^{35}+\cdots+80u+16)$
c_5, c_6	$(u+1)(u^2-u-1)^2(u^4-u^3+\cdots+2u-1)(u^{36}+3u^{35}+\cdots+6u-1)$
c_7, c_8, c_9	$(u+1)(u^2-u-1)^2(u^4-u^3+\cdots+2u-1)(u^{36}-3u^{35}+\cdots-12u^2-1)$
c_{11}, c_{12}	$(u+1)(u^2+u-1)^2(u^4-u^3+\cdots+2u-1)(u^{36}-3u^{35}+\cdots-12u^2-1)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)(y^2 - 3y + 1)^2(y^4 - 5y^3 - 6y^2 + 1)$ $\cdot (y^{36} + 19y^{35} + \dots - 24116y + 49)$
$c_2, c_3, c_5 \ c_6$	$(y-1)(y^2-3y+1)^2(y^4-5y^3+6y^2+1)(y^{36}-41y^{35}+\cdots-56y+1)$
c_4, c_{10}	$y^4(y-1)^5(y^{36}-20y^{35}+\cdots-3200y+256)$
c_7, c_8, c_9 c_{11}, c_{12}	$(y-1)(y^2-3y+1)^2(y^4-5y^3+6y^2+1)(y^{36}-49y^{35}+\cdots+24y+1)$