Mathematics Stack Exchange is a question and answer site for people studying math at any level and professionals in related fields. Join them; it only takes a minute:

Here's how it works:

Anybody can ask a question

Anybody can answer

The best answers are voted up and rise to the top

Big O notation sum rule

I understand that when adding functions, the behavior is dominated by the highest power. But what I am having trouble is understanding the proof. Could anyone help me step by step in explaining the proof behind $T_1(n) + T_2(n) = O(\max(f(n), g(n)))$? Thank you very much

(asymptotics) (proof-writing)

Do you mean $f(n) + g(n) = O(\max(f(n), g(n)))? - MJD$ Mar 8 '13 at 1:58

I guess but doesn't it not matter? If T(n) is in O(f(n)) it doesnt necessarily have to mean that O(f(n)) is the same function does it? — user65674. Mar 8 13 at 3:04

Well, you didn't state any relation between T_1 and T_2 on the one hand, and f and g on the other hand, and without that there's no way to say anything about them. Did you mean to say that $T_1(n) = O(f(n))$ and that $T_2(n) = O(g(n))$? – MJD Mar 8 '13 at 3:15 \mathscr{I}

Yes sorry I guess I shouldve specified. I was assuming formal definition of Big O for both T(n) and T2(n) – user65674 Mar 8 '13 at 18:50

1 Answer

Given $T_1(n) = O(f(n))$ and $T_2(n) = O(g(n))$, we are to prove

$$T_1(n) + T_2(n) = O(\max(f(n), g(n)))$$
 (0)

• Write down exactly what the first assumption says: there exists a constant C_1 and an index N_1 such that

$$|T_1(n)| \le C_1 f(n) \quad \text{when } n \ge N_1 \tag{1}$$

• Write down exactly what the second assumption says: there exists a constant C_2 and an index N_2 such that

$$|T_2(n)| \le C_2 g(n)$$
 when $n \ge N_2$ (2)

- Prepare to combine (1) and (2) by introducing $N=\max(N_1,N_2)$ and $C=\max(C_1,C_2)$.
- Add (1) and (2):

$$|T_1(n)| + |T_2(n)| \le C_1 f(n) + C_2 g(n) \le C(f(n) + g(n))$$
 when $n \ge N$ (3)

• Check that for any two real numbers a, b we have

$$a + b \le 2 \max(a, b) \tag{4}$$

• Use (4) in (3) to obtain

$$|T_1(n)| + |T_2(n)| \le 2C \max(f(n), g(n)) \quad \text{when } n \ge N$$
 (5)

• Conclude that (o) holds.

Canonical job. +1. - Rick Decker Jul 24 '13 at 0:26