# Cost-aware Bayesian Optimization via the Pandora's Box Gittins Indices

Qian Xie<sup>1</sup>, Raul Astudillo<sup>2</sup>, Peter Frazier<sup>1</sup>, Ziv Scully<sup>1</sup>, Alexander Terenin<sup>1</sup> <sup>1</sup> Cornell University, <sup>2</sup> California Institute of Technology

# **Introduction to Bayesian optimization**



**Objective:** find global optimum  $x^* = \operatorname{argmax}_{x \in \mathcal{X}} f(x)$ 

**Objective:** optimize best observed value at time T  $\max_{\text{policy}} \mathbb{E} \max_{t=1,2,\dots,T} f(x_t)$ 

**Decision:** evaluate a set of points

**Decision:** adaptively evaluate  $x_1, x_2, ..., x_T \in \mathcal{X}$  given time budget T

### Why is Bayesian optimization hard?





### **One-step heuristics: El vs PBGI**



EI policy: evaluate  $\operatorname{argmax}_{x} \operatorname{EI}_{f|D}(x; y_{\text{best}})$ 

D: observed data,  $y_{\text{best}}$ : current best observed value

# Other acquisition functions:

· 望 200 -

• Upper Confidence Bound (UCB) • Thompson Sampling (TS)



— KG — MSEI — PBGI

PBGI policy: evaluate  $argmax_x g(x)$ 

λ: cost-per-sample (Lagrange multiplier)

• Predictive Entropy Search unreliable

• Multi-step Lookahead EI (MSEI)

Knowledge Gradient (KG)

## PBGI is easy to compute using bisection method!



#### **Extension to heterogeneous costs**

**Baselines:** arbitrarily bad • Given cost function  $c: \mathcal{X} \to \mathbb{R}^+$  and budget B • EI Per Unit Cost (EIPC) • Replace  $\lambda$  with  $\lambda c(x)$  to compute g(x) as PBGI • Budgeted MSEI (BMSEI) slow



#### **Experiment: Bayesian regret**



# **Experiment: synthetic benchmark**



#### **Experiment: empirical**



#### **Future work**

Extension to complex BO (freeze-thaw, multi-fidelity, function network, etc.) via Gittins variants ("golf" Markovian MAB, optional inspection, etc.)