8.8 Part 2, Computing the Index of L

D. Zack Garza

Monday 25th May, 2020

Contents

0.1	Main Results	2
0.2	8.8.5:	2

What we're trying to prove:

- 8.1.5: $(d\mathcal{F})_u$ is a Fredholm operator of index $\mu(x) \mu(y)$.
- Define

$$L: W^{1,p}\left(\mathbb{R} \times S^1; \mathbb{R}^{2n}\right) \longrightarrow L^p\left(\mathbb{R} \times S^1; \mathbb{R}^{2n}\right)$$
$$Y \longmapsto \frac{\partial Y}{\partial s} + J_0 \frac{\partial Y}{\partial t} + S(s,t)Y$$

where

$$S: \mathbb{R} \times S^1 \longrightarrow \operatorname{Mat}(2n; \mathbb{R})$$
$$S(s,t) \stackrel{s \longrightarrow \pm \infty}{\longrightarrow} S^{\pm}(t).$$

- 8.7: Shows L is Fredholm
- By the end of 8.8: replace L by L_1 with the same index
 - (not the same kernel/cokernel)
- Compute Ind L_1 : explicitly describe ker L_1 , coker L_1 .
- Replace in two steps:
 - $-L \rightsquigarrow L_0$, modified outside $B_{\sigma_0}(0)$ in s.
 - * Replace S(s,t) by a matrix

$$\tilde{S}(s,t) = \begin{cases} S^{-}(t) & s \le -\sigma_0 \\ S^{+}(t) & s \ge \sigma_0 \end{cases}.$$

- * Idea: approximate by cylinders at infinity.
- * Use invariance of index under small perturbations.
- $-L_0 \rightsquigarrow L_1$ by a homotopy, where $S_{\lambda}: S \rightsquigarrow S(s)$ a diagonal matrix that is a constant matrix outside $B_{\varepsilon}(0)$.
 - * Use invariance of index under homotopy.

0.1 Main Results

• Theorem 8.8.1:

$$Ind(L) = \mu (R^{-}(t)) - \mu (R^{+}(t)) = \mu(x) - \mu(y).$$

 \bullet Prop 8.8.2: Reducing L to L_1 Construct an operator

$$L_1: W^{1,p}\left(\mathbb{R} \times S^1; \mathbb{R}^{2n}\right) \longrightarrow L^p\left(\mathbb{R} \times S^1; \mathbb{R}^{2n}\right)$$

$$Y \longmapsto \frac{\partial Y}{\partial s} + J_0 \frac{\partial Y}{\partial t} + S(s)Y$$

where $S: \mathbb{R} \longrightarrow \operatorname{Mat}(2n; \mathbb{R})$ is a path of diagonal matrices depending on $\operatorname{Ind}(R^{\pm}(t))$; then

$$\operatorname{Ind}(L) = \operatorname{Ind}(L_1) = \operatorname{Ind}(R^-(t)) - \operatorname{Ind}(R^+(t)).$$

- Prop 8.8.3: Reducing L_1 to R^{\pm} . Let $k^{\pm} := \operatorname{Ind}(R^{\pm})$; then $\operatorname{Ind}(L_1) = k^- k^+$.
- Lemma 8.8.4: $\operatorname{Ind}(L_0) = \operatorname{Ind}(L)$.
- Han's Talk:
 - Prop 8.8.3, using Lemma 8.8.5
- Me
 - Proof of 8.8.5

0.2 8.8.5:

Contents 2