

week 1

- members selection
- work distribution
- initial presentation work

- deciding on sensors and electronic parts
- consulting, connecting to an MCU

week 3-6

- programming the sensors to process the measurements
- testing the output

week 6-9

- working on a 3D model for the meteo device in Fusion360
- finishing the model, consulting

week 9-10

- printing and assembling all parts
- consulting and correcting the printed parts

week 10-12

- integration of VESNA meteo device using API
- setting up the device on an loT cloud services
- programming the MCU to send measurements to the cloud service

week 12-13

- finishing up
- working on documentation
- working on the final presentation

Team Members

- Filip Hlubík: 3D modelling, testing outputs
- Ivana Dukayová: data exchange, cloud service
- Marek Horecký: programming of a microprocessor, testing outputs, team leader
- Richard Bielovič: choosing appropriate sensors, assembling all parts
- Viliam Vrba: 3D modeling, testing outputs

Devices used

• MCU ESP32-S3

Multiplexer TCA9584A

Sensors

• FS400-SHTXX - temperature, humidity

• SHT30 soil sensor - temperature, humidity

Sensors

• SHT45 - temperature, humidity

 LPS35HW - temperature, pressure

Sensors

 analog photoresistor light intensity

 DS18B20 sensors temperature

Software Tools

- Arduino IDE Programming environment for the ESP32-S3
- Fusion360 3D modeling software
- PrusaSlicer 3D printing slicer software

temperature_sht31 [°C]	humidity_sht31[%RH]	temperature_sht30 [°C]	humidity_sht30 [%RH]
27.43	43.82	28.24	37.02
temperature_sht45 [°C]	humidity_sht45 [%RH]	temperature_lps35 [°C]	pressure_lps35 [hPa]
26.85	40.69	25.28	996.718
photoresistor [kOhm]	Temp [°C]	Temp2 [°C]	
1896	29.00	27.00	

Extras

- 2 new sensors
- tiny GPS

• 3D-models-attempts

3D-model-photoresistor-task

3D-model-photoresistor-prototype

3D-model-photoresistor-body

3D-model-photoresistor-holder

3D-model-photoresistor-lid

3D-model-waterproof-case

3D-model-waterproof-case

3D-model-waterproof-case

3D-model-pedestal

3D-model-holder

3D-model-hexagon-holder

3D-model-plate

3D-results

3D-results

Future improvements

- implement the tiny GPS device and share the location with other parties
- place the meteo station on the roof and test in real-world conditions
- visualize the data