Phương pháp tính MAT1099

Lê Phê Đô dolp@vnu.edu.vn

07-09-2020

Mục lục

1	Giải	i tích sai số	7
	1.1	Giới thiệu về phép tính gần đúng	7
		1.1.1 Một số ví dụ về tính toán khoa học và phương pháp tính	7
	1.2	Số gần đúng, sai số tuyệt đối và tương đối	8
		1.2.1 Sai số tuyệt đối	8
		1.2.2 Sai số tương đối	9
		1.2.3 Các loại sai số khác	9
	1.3		10
			10
		1.3.2 Sai số qua các phép toán số học	11
		1.3.3 Sai số hàm nhiều biến	12
	1.4		14
		1.4.1 Chữ số có nghĩa	14
			14
		1.4.3 Số thu gọn	15
		2	16
2	Giải	i gần đúng phương trình 1	7
	2.1		17
	2.2		18
	2.3		20

Danh sách hình vẽ

2.1 Điểm bất động của $y = x^2 - 2$	
-------------------------------------	--

Chương 1

Giải tích sai số

1.1 Giới thiệu về phép tính gần đúng

1.1.1 Một số ví dụ về tính toán khoa học và phương pháp tính

Lý do nghiên cứu Phương pháp tính

- Làm việc với các số gần đúng.
- Giải gần đúng các phương trình và hệ phương trình.
- Xấp xỉ hàm số: Phương pháp nội suy, phương pháp xấp xỉ hàm số, chuỗi Taylor hoặc chuỗi Maclaurin.
- Số học IEEE.

Các nhiệm vụ

- Tìm hiểu và ứng dụng các thuật toán.
- Thể hiện các thuật toán bằng các chương trình.
- Tìm các bài toán thực tiễn.

Trong thực tế chúng ta thường phải xử lý, tính toán với các đại lượng gần đúng như các số đo vật lý, các dữ liệu ban đầu, các số làm tròn...với sai số nào đó, tức là các số gần đúng. Việc ước lượng sai số hợp lý cho phép ta đánh giá được chất lượng của quá trình tính toán, quyết định số chữ số giữ lại trong các phép tính trung gian và trong kết quả. Vì vậy, trước tiên ta cần nghiên cứu về các phép tính gần đúng và sai số.

1.2 Số gần đúng, sai số tuyệt đối và tương đối

1.2.1 Sai số tuyệt đối

Nếu số gần đúng a có giá trị đúng là a_0 thì ta nói a xấp xỉ a_0 hay a là số gần đúng của a_0 . Khi đó sai số của a là:

$$E_a = a - a_0 \tag{1.1}$$

Nhưng giá trị này nói chúng ta không biết được mà chỉ ước lượng được cận trên của trị tuyệt đối của nó.

 \mathbf{Dinh} nghĩa 1. Giá trị ước lượng Δa sao cho

$$|a - a_0| \le \Delta a \tag{1.2}$$

được gọi là sai số tuyệt đối của số gần đúng a.

Sai số tuyệt đối nhỏ nhất có thể biết được gọi là sai số tuyệt đối giới hạn của a. Thông thường ước lượng sai số tuyệt đối giới hạn là khó và nhiều khi không cần thiết nên người ta chỉ cần ước lượng sai số tuyệt đối đủ nhỏ và dùng từ 1 đến 3 chữ số có nghĩa (là số chữ số bắt đầu từ chữ số khác không đầu tiên từ trái sang phải - xem mục 2.1) để biểu diễn sai số tuyệt đối của số gần đúng.

Thay cho 1.2 người ta còn dùng cách biểu diễn sau để chỉ sai số tuyệt đối của a:

$$a_0 = a \pm \Delta a \tag{1.3}$$

Trong thực tế thì sai số E_a không thể biết được nên khi không có sự hiểu lầm người ta còn dùng từ sai số để chỉ sai số tuyệt đối E_a .

Ví dụ 1.1. Căn phòng có chiều dài $d=5,45\,\mathrm{m}$ và chiều rộng $r=3,94\,\mathrm{m}$ với sai số $1\,\mathrm{cm}$.

Khi đó ta hiểu là:

$$\Delta d = 0.01 \, \mathrm{m} \ hay \ d = (5.45 \pm 0.01) \, \mathrm{m}$$

$$\Delta r = 0.01 \, \mathrm{m} \ hay \ r = (3.97 \pm 0.01) \, \mathrm{m}$$

Như vây diên tích của phòng được ước lượng bởi:

$$S = d \cdot r = 5.45 \cdot 3.94 = 21.473 \,\mathrm{m}^2$$

với cân trên và cân dưới của S là:

$$(5,45-0,01)(3,94-0,01) = 21,3792 \le S \le (5,45+0,01)(3,94+0,01) = 21,567$$

Vây ta có ước lượng sai số tuyệt đối của S là:

$$|S - S_0| < 0.094 \,\mathrm{m}^2$$

1.2.2 Sai số tương đối

Hai số gần đúng có cùng sai số tuyệt đối sẽ có "mức độ chính xác" khác nhau nếu độ lớn của chúng khác nhau: số bé hơn sẽ có độ chính xác kém hơn. Để biểu diễn độ chính xác này, người ta dùng sai số tương đối.

Định nghĩa 2. Sai số tương đối của số gần đúng a là tỷ số giữa sai số tuyệt đối và giá trị tuyệt đối của nó, được ký hiệu là δa .

$$\delta a = \frac{\delta a}{|a|} \tag{1.4}$$

Thường sai số tương đối được biểu diễn dưới dạng phần trăm với 2 hoặc 3 chữ số.

Từ 1.4 ta thấy nếu biết δa thì:

$$\Delta a = |a| \, \delta a \tag{1.5}$$

nên ta chỉ cần biết một trong hai loại sai số của nó là được.

Ví dụ 1.2. Nếu a = 57 và $\Delta a = 0.5$ thì $\delta a = 0.0087719$ hoặc 0.88% (gọn hơn là 0.9%).

1.2.3 Các loại sai số khác

Để hình dung các loại sai số khác ta xét ví dụ sau:

Ví dụ 1.3. Một vật thể rơi từ độ cao H_0 với vận tốc ban đầu v_0 (được đo nhờ thiết bị nào đó). Tính độ cao H(t) của vật thể sau thời gian t. Bài toán có thể giải như sau:

Nếu gọi ngoại lực tác động vào vật thể là F(t) (gồm lực hút trọng trường và lực cản), khối lượng vật thể là m thì H(t) là nghiệm của phương trình vi phân cấp hai

$$H''(x) = \frac{-F(t)}{m} \tag{1.6}$$

 $v \acute{\sigma} i \ di \grave{e} u \ ki \acute{e} n \ ban \ d \grave{a} u \ H(0) = H_0 \ v \grave{a} \ H'(0) = -v_0.$

Ta chọn một phương pháp gần đúng để giải phương trình này, chẳng hạn nếu giả thiết $\frac{F(t)}{m}$ không đổi thì

$$H(t) = H_0 - g\frac{t^2}{2} - v_0 t$$

Qua ví du trên ta thấy sai số của kết quả nhân được chiu ảnh hưởng của:

- các số đo H_0 , v_0
- cách lập luận để xác định F(t)
- phương pháp giải phương trình 1.6

• và các yếu tố ngẫu nhiên khác

Theo các yếu tố ảnh hưởng tới kết quả tính toán ta phân ra các loại sai số sau:

- Sai số dữ liệu: Còn gọi là sai số của số liệu ban đầu. Trong thí dụ trên là sai số khi đo H_0 và v_0 .
- Sai số giả thiết: Sai số này gặp phải khi ta đơn giản hoá bài toán thực tiễn để thiết lập mô hình toán học có thể giải được. Trong thí dụ trên có thể giả thiết ngoại lực chỉ là trọng lực.
- Sai số phương pháp: Là sai số của phương pháp giải gần đúng bài toán theo mô hình được lập. Trong thí dụ trên là phương pháp giải phương trình vi phân 1.6.
- Sai số tính toán: Là sai số tích luỹ trong quá trình tính toán theo phương pháp được chọn.
- Sai số làm tròn: Khi tính toán ta thường phải làm tròn các số nên ảnh hưởng tới kết quả nhiều khi rất đáng kể.
- Sai số ngẫu nhiên: Là sai số chịu các quy luật chi phối ngẫu nhiên không tránh được.

Về sau ta quan tâm tới sai số tính toán và sai số phương pháp.

1.3 Sai số tích lũy và các bài toán sai số

1.3.1 Sai số hàm một biến

Cho hàm số y = f(x) và x là số gần đúng của x_0 . Ký hiệu Δx và Δy là sai số tuyệt đối tương ứng của đối số và hàm số. Ta sẽ xét các bài toán ước lượng sai số của hàm hoặc của đối số khi biết một trong hai sai số.

Bài toán thuận

Bài toán này ta ước lượng Δy khi biết x và Δx .

Theo công thức số gia hữu hạn ta có:

$$|y - y_0| = |f'(c)||x - x_0||$$

ở đây y_0 là giá trị đúng của y và c là điểm thuộc miền (x,x_0) nếu $x < x_0$ và thuộc (x_0,x) nếu $x_0 < x$.

Khi Δx bé, x gần x_0 ta có ước lượng:

$$\Delta y \approx |f'(x)||x - x_0|$$
hay $\Delta y \le |f'(x)| \Delta x$ (1.7)

Ví dụ 1.4. Cho $y = \ln x$ ta có ước lượng:

$$\Delta(\ln x) = \frac{1}{x}\Delta x = \delta x$$

Bài toán ngược

Trong bài toán này, ta biết giá trị gần đúng x, ta cần xác định phải tính x với Δx là bao nhiêu để đảm bảo $\Delta y \leq \Delta$. Với giá trị Δ cho trước, từ công thức 1.7 ta thấy nếu

$$\Delta x \le \frac{\Delta}{|f'(x)|} \tag{1.8}$$

thì đủ để $\Delta y \leq \Delta$.

Ví dụ 1.5. $y = e^x$ với $x \approx 3$ để có $\Delta y \leq 0.01$ ta tính x với $\Delta x \leq \frac{0.01}{e^3}$ là đủ.

1.3.2 Sai số qua các phép toán số học

Khi tính toán với các số gần đúng thì sai số sẽ tích luỹ qua các phép toán cơ bản. Sau đây ta ước lượng sai số khi cộng trừ, nhân chia các số gần đúng.

Sai số của tổng hoặc hiệu

Mệnh đề. Sai số tuyệt đối của một tổng hoặc hiệu bằng tổng các sai số tuyệt đối thành phần.

Chứng minh. Để đơn giản ta xét $u=a\pm b$ với các số a,b có giá trị đúng a_0,b_0 và sai số tuyệt đối $\Delta a,\Delta b$ tương ứng. Trường hợp có nhiều số hạng được xét tương tư.

Khi đó ta có:

$$\begin{cases} a_0 - \Delta a \le a \le a_0 + \Delta a \\ b_0 - \Delta b \le b \le b_0 + \Delta b \end{cases}$$

Do đó ta có:

$$\begin{cases} a_0 + b_0 - (\Delta a + \Delta b) \le a + b \le a_0 + b_0 + (\Delta a + \Delta b) \\ a_0 - b_0 - (\Delta a + \Delta b) \le a - b \le a_0 - b_0 + (\Delta a + \Delta b) \end{cases}$$

Nên

$$a_0 \pm b_0 - (\Delta a + \Delta b) < a \pm b < a_0 \pm b_0 + (\Delta a + \Delta b)$$

đpcm.

Ví dụ 1.6. Cho
$$a=50.5,\ b=50.9\ với\ \Delta a=\Delta b=0.05\ và\ u=a-b.$$
 Ta có $u=0.4\ với\ \Delta u=0.05+0.05=0.1.$ $V\hat{a}y\ \delta u=\frac{0.1}{0.4}=25\,\%.$

Sai số của tích hoặc thương

Mệnh đề. Sai số tương đối của tích hoặc thương bằng tổng các sai số tương đối thành phần.

Chứng minh. Xét

$$u = \frac{x_1 \dots x_m}{y_1 \dots y_n}$$

Ta có thể giả thiết các x_i và y_j đều dương. Khi đó ta có:

$$\ln u = \sum_{i=1}^{m} \ln x_i + \sum_{j=1}^{n} \ln y_j$$

Theo mệnh đề 1.3.2 ở trên, ta suy ra:

$$\delta u = \sum_{i=1}^{m} \delta x_i + \sum_{j=1}^{n} \delta y_j$$

đpcm.

Ví dụ 1.7. Xét $S=d\cdot r$ như ở ví dụ 1.1 $d=5,45,\ r=3,94,\ \Delta d=\Delta r=0,01.$ Ta có:

$$\delta d = 0,001\,835$$
 $\delta r = 0,002\,538$ $\delta S = 0,004\,373\,\,n\hat{e}n\,\,\Delta S = 0,094$

1.3.3 Sai số hàm nhiều biến

Ta xét hàm nhiều biến $u = f(x_1, ..., x_n)$ với giá trị gần đúng $x_1, ..., x_n$ và y đã biết.

Bài toán thuận

Trong bài toán này, ta cần ước lượng sai số Δy khi biết $\delta x_i \forall i \leq n$. Tương tự hàm một biến, sử dụng công thức số gia hữu hạn ta có ước lượng:

$$\Delta u = \sum_{i=1}^{n} |f_i'(x_1, \dots, x_n)| \Delta x_i$$
 (1.9)

với f'_i là đạo hàm riêng của u theo biến x_i .

Ví dụ 1.8. Xét $u=a^2b$ với $a=2,0,\ b=25,0,\ \Delta a=\Delta b=0,1.$ Ta có:

$$u = 100$$

$$\Delta u = 2ab\Delta a + a^2\Delta b$$

$$= 2 \cdot 2.0 \cdot 25.0 \cdot 0.1 + 2.0^2 \cdot 0.1$$

$$= 10.4$$

13

Bài toán ngược

Bây giờ ta đã biết các số gần đúng x_i , ta phải tính chúng với sai số tuyệt đối như thế nào để có $\Delta y \leq \Delta$; ở đây Δ là số cho trước.

Các phương pháp xử lý bài toán này đều dựa trên công thức 1.9 một cách linh hoạt. Sau đây ta xét hai phương pháp thông dụng.

1. Sai số của đối số như nhau. Ta xét khi:

$$\Delta x_k = \Delta x \, \forall k \le n$$

Từ 1.8 ta có:

$$\Delta u = \sum_{i=1}^{n} |f_i'(x_1, \dots, x_n)| \Delta x$$

Vậy để cho $\Delta u \leq \Delta$ thì chỉ cần:

$$\Delta x \le \frac{\Delta}{\sum_{i=1}^{n} |f_i'(x_1, \dots, x_n)|} \tag{1.10}$$

là đủ.

2. Phân bố đều sai số. Bây giờ ta xét khi:

$$|f_i'(x_1,\ldots,x_n)| \Delta x_i = |f_k'(x_1,\ldots,x_n)| \Delta x_k \,\forall i,k \leq n$$

Khi đó $\forall j \leq n$, từ 1.9 ta có:

$$\Delta u = n |f_i'(x_1, \dots, x_n)| \Delta x_j$$

Vậy để cho $\Delta u \leq \Delta$ thì chỉ cần tính:

$$\Delta x_j \le \frac{\Delta}{n|f_i'(x_1, \dots, x_n)|} \,\forall j = 1, \dots, n \tag{1.11}$$

Ví dụ 1.9. Mảnh vườn có cạnh $d \approx 45,0 \,\mathrm{m}$ và $r \approx 20,0 \,\mathrm{m}$. Cần tính d và r với Δd , Δr như thế nào để $\Delta S \leq 0,1 \,\mathrm{m}^2$.

Cách 1. $X\acute{e}t \ \Delta d = \Delta r = \Delta x$, ta áp dụng 1.10:

$$\Delta x \le \frac{0.1}{45 + 20} = 0.0015 \,\mathrm{m}$$

Cách 2. Khi đo chiều dài thường có sai số lớn hơn chiều rộng nên ta có thể dùng 1.11.

$$\Delta d \le \frac{0.1}{2.20} = 0.0025 \,\mathrm{m}$$
 $\Delta r \le \frac{0.1}{2.45} = 0.0010 \,\mathrm{m}$

 $l\hat{a} \ d\vec{u} \ d\hat{e} \ \Delta S \leq 0.1 \,\mathrm{m}^2$

1.4 Sai số qui tròn, quan hệ giữa sai số và số chữ số đáng tin

Trong mục này ta xét các số được biểu diễn dưới dạng thập phân. Khi các số là gần đúng, vấn đề đặt ra là nên biểu diễn chúng với bao nhiều chữ số? Thu gọn chúng như thế nào?

1.4.1 Chữ số có nghĩa

Định nghĩa 3. Trong biểu diễn theo cơ số b (trường hợp riêng là biểu diễn thập phân):

- các chữ số kể từ chữ số khác 0 đầu tiên tính từ trái sang phải gọi là các chữ số có nghĩa,
- các chữ số 0 bên trái là không có nghĩa

Nếu a được viết dưới dạng

$$a = \sum_{k=p}^{n} a_k 10^k \tag{1.12}$$

thì các chữ số 0 bên trái không có ở biểu diễn này, ý nghĩa của các chữ số 0 bên phải liên quan tới cách biểu diễn số gần đúng sẽ xét dưới đây.

Ví dụ 1.10. Số a = 03.4050 thì chữ số 0 đầu không có nghĩa (người ta có thể điền để tránh viết thêm) còn các chữ số 3, 4, 0, 5, 0 là có nghĩa.

 $S\delta b = 0.034$ thì các chữ số 3, 4 là có nghĩa, hai chữ số 0 bên trái không có nghĩa vì nếu biểu diễn theo dang 1.12 thì các chữ số này không cần đến.

1.4.2 Chữ số chắc

Định nghĩa 4. Xét a có biểu diễn 1.12 với sai số Δa .

- $N\acute{e}u \ \Delta a \le 0.5 \cdot 10^m \ thì \ a_k \ l\grave{a}$ chữ số chắc (đáng tin) $\forall k \ge m$ (theo nghĩa hẹp dùng trong tính toán).
- $N\acute{e}u~0,5\cdot 10^m \leq \Delta a \leq 10^m~thì~a_m~l\grave{a}$ chắc theo nghĩa rộng.

Ví dụ 1.11. a = 21,473 và $\Delta a = 0,094 = 0,94 \cdot 10^{-1}$ thì:

- Các chữ số 2, 1 là chắc theo nghĩa hẹp.
- Chữ số 4 là chắc theo nghĩa rộng.
- Các chữ số 7, 3 là không đáng tin hay không chắc.

Khi cho số gần đúng ta có thể cho theo hai cách:

• Cách 1: Viết kèm với sai số tuyết đối.

 Cách 2: Chỉ viết các chữ số chắc. Nếu ta có số gần đúng mà không cho sai số thì luôn ngầm hiểu các chữ số có nghĩa là các chữ số chắc. Như vậy các chữ số 0 ở bên phải cho ta biết nó là chữ số chắc.

Trong quá trình tính toán, người ta thường để lại vài chữ số không chắc và trong kết quả thì giữ lại các chữ số chắc theo nghĩa rộng.

1.4.3 Số thu gọn

Khi số a có nhiều chữ số không chắc hoặc có quá nhiều chữ số có nghĩa thì người ta thường thu gọn thành số \overline{a} có ít chữ số có nghĩa hơn. Nếu a có biểu diễn 1.12 và số thu gọn được giữ lại đến a_m (m>p) thì \overline{a} có biểu diễn

$$\overline{a} = \sum_{k=m}^{n} b_k 10^k \tag{1.13}$$

nhờ bỏ đi các chữ số a_k (k < m) theo quy tắc sau:

Quy tắc. Quy tắc chữ số chẵn: Giả sử a > 0 và phần bỏ đi là μ .

• $N\acute{e}u \ \mu < 0.5 \cdot 10^m \ thi$

$$\overline{a} = \sum_{k=m}^{n} a_k 10^k \tag{1.14}$$

nghĩa là ta giữ nguyên các chữ số đến hàng m tính từ trái sang phải.

• $N\hat{e}u \ \mu > 0.5 \cdot 10^m \ thi$

$$\overline{a} = \sum_{k=m}^{n} a_k 10^k + 10^m \tag{1.15}$$

- $N\acute{e}u \ \mu = 0.5 \cdot 10^m$, ta xét tiếp:
 - $-N\acute{e}u \ a_m \ ch \ddot{a}n$, làm theo 1.14.
 - $-N\acute{e}u\ a_m\ l\acute{e},\ l\grave{a}m\ theo\ 1.15.$

Khi a < 0 ta thu gọn giá trị tuyết đối và giữ nguyên dấu.

Khi thu gọn a thành \overline{a} ta có sai số thu gọn $\Gamma_a \leq 0.5 \cdot 10^m$. Để nó ít ảnh hưởng tới sai số tuyệt đối, ta thu gọn số và giữ lại một hoặc hai chữ số không chắc

Nếu a có biểu diễn 1.12 và a_k chắc với $k \ge m$ thì $\Delta a \le 10^m$ nên

$$\delta_a = \frac{\Delta a}{|a|} \le \frac{10^m}{\sum_{k=m}^n a_k 10^k} = \frac{1}{\sum_{k=0}^n a_{k+m} 10^k}$$

Như vậy sai số tương đối của số gần đúng có thể ước lượng bởi nghịch đảo của số gồm các chữ số chắc của a không có dấu phẩy.

1.4.4 Dấu phẩy động

Chúng ta biết rằng trong biểu diễn thập phân, mọi số thực được biểu diễn bởi một hữu han hoặc một dãy vô han các chữ số thập phân.

Bây giờ hầu hết các máy tính có hai cách biểu diễn số, được gọi là dấu phẩy tĩnh và dấu phẩy động.

Trong một biểu diễn $d ilde{a}u$ $ph ilde{a}y$ $t ilde{n}h$ tất cả các số được được đưa ra với một số cố định các số thập phân sau dấu thập phân; ví dụ, số được đưa ra với 3 số thập phân là 62,358, 0,014, 1,000. Trong một văn bản chúng ta sẽ viết, nói, biểu diễn 3 số thập phân là biểu diễn 3D.

Biểu diễn dấu phẩy tĩnh có ưu thế:

- Thuận tiện trong tính toán hàng ngày,
- và trong tính toán với các số gần đơn vị

Trong hệ thống dấu phẩy động, chúng sẽ ta viết, ví dụ,

$$0.6247 \cdot 10^3 : 0.1735 \cdot 10^{-13} : -0.2000 \cdot 10^{-1}$$

hay đôi khi ta biểu diễn:

$$6,247 \cdot 10^2; 1,735 \cdot 10^{-14}; -2,000 \cdot 10^{-2}$$

Chúng ta thấy rằng trong biểu diễn này số các chữ số có nghĩa được giữ cố định, trong khi dấu phẩy là "động". Ở đây, một chữ số có nghĩa của một số c là chữ số bất kỳ của c, ngoại trừ chữ số 0 nằm ở bên trái chữ số khác 0 đầu tiên; các chữ số 0 này chỉ để xác định vị trí của dấu phẩy (như vậy, bất kỳ chữ 0 khác đều là chữ số có nghĩa của c).

Ví dụ 1.12.

tất cả đều có 5 chữ số có nghĩa.

Trong văn bản chúng ta nói rút gon một số đến 5 chữ số có nghĩa là 5S.

Việc sử dụng số mũ cho phép chúng ta biểu diễn số rất lớn và rất nhỏ. Thật vây, về mặt lý thuyết số khác 0 bất kỳ a có thể được viết như sau:

$$a = \pm m10^n \mid 0.1 < |m| < 1, n \in \mathbb{Z}$$

Quy tắc. Để làm tròn số x đến k chữ số sau dấu phẩy, ta cộng vào x lượng $0.5 \cdot 10^{-(k+1)}$ và bỏ đi từ chữ số thứ k+1 sau dấu phẩy trở đi.

Số học IEEE

Trong máy tính hiện đại người ta dùng các số nhị phân, ở đây m được giới hạn bởi k chữ số nhị phân (ví dụ, k=8) và n cũng được giới hạn, ta có biểu diễn sau (chỉ biểu diễn được một số hữu han số):

$$\overline{a} = \overline{m} \cdot 2^n \mid \overline{m} = 0, d_1 d_2 \dots d_k, d_1 > 0 \tag{1.16}$$

Các số \overline{a} ở đây được gọi là số máy nhị phân k chữ số. Phần sau dấu phẩy m (được gọi là mantissa), biểu diễn các chữ số có nghĩa của \overline{a} , n được gọi là lũy thừa của \overline{a} .

Chương 2

Giải gần đúng phương trình

2.1 Mở đầu

Sự tăng trưởng của dân số thường có thể được mô hình hóa trong khoảng thời gian ngắn bằng cách giả định rằng dân số tăng liên tục theo thời gian tỷ lệ thuận với con số hiện tại vào thời điểm đó. Giả sử N(t) biểu thị số lượng trong dân số tại thời điểm t và λ biểu thị tỷ lệ sinh không 2 đổi của dân số. Khi đó dân số thỏa mãn phương trình vi phân:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \lambda N(t)$$

Nghiệm của phương trình là $N(t)=N_0e^{\lambda t}$, ở đây N_0 là dân số ban đầu. Mô hình hàm mũ này chỉ có giá trị khi dân số bị cô lập, không có người nhập cư. Nếu nhập cư được phép ở tốc độ không đổi v thì phương trình vi phân trở thành:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \lambda N(t) + v$$

Nghiệm của nó là:

$$N(t) = N_0 e^{\lambda t} + \frac{v}{\lambda} (e^{\lambda t} - 1)$$

Giả sử ban đầu có $N(0)=1\,000\,000$ người, và có tới 435 000 người nhập cư vào cộng đồng trong năm đầu tiên, vậy $N(1)=1\,564\,000$ người có mặt vào cuối năm đầu tiên. Để xác định tỷ lệ sinh của cộng đồng dân số này, chúng ta cần tìm λ trong phương trình:

$$1\,564\,000 = 1\,000\,000e^{\lambda} + \frac{435\,000}{\lambda}(e^{\lambda} - 1)$$

Không thể giải một cách chính xác giá trị λ trong phương trình này, nhưng các phương pháp tính được thảo luận trong chương này có thể được sử dụng để

tính gần đúng nghiệm của các phương trình loại này với độ chính xác cao tùy ý. Giải pháp cho vấn đề cụ thể này được xem xét trong Bài tập 24 của Mục 3.3.

2.2 Phương pháp chia đôi

Giả sử f là hàm số xác định và liên tục trên khoảng [a,b], với f(a) và f(b) trái dấu. Định lý giá trị trung gian nói rằng tồn tại một số p trong (a,b) với f(p)=0.

Định lí 2.1. Định lý giá trị trung gian (Intermediate Value Theorem).

Nếu f liên tục trên [a,b] và K nằm giữa f(a) và f(b), tồn tại $c \in (a,b)$ sao cho f(c) = K.

Cụ thể hơn, do f(a) và f(b) trái dấu, do đó 0 nằm giữa f(a) và f(b), do đó tồn tại nghiệm $p \in (a,b)$. Trường hợp đặc biệt này được gọi là định lý Bolzano.

Mặc dù có thể tồn tại nhiều hơn một nghiệm trong khoảng (a,b), nhưng để thuận lợi, chúng ta giả thiết chỉ có duy nhất một nghiệm trong khoảng này. Khi đó, ta có thể dùng phương pháp sau:

Phương pháp. Phương pháp chia đôi (Bisection method)

Phương pháp này cho phép tìm nghiệm p của f(p) = 0 trong khoảng [a, b], với f(a) và f(b) trái dấu.

 $D\vec{e}$ bắt đầu, ta đặt $a_1 = a$ và $b_1 = b$, và đặt p_1 là điểm giữa của [a,b]; nghĩa là:

$$p_1 = a_1 + \frac{b_1 - a_1}{2} = \frac{a_1 + b_1}{2}$$

- $N\acute{e}u \ f(p_1) = 0 \ thi \ p = p_1.$
- $N\hat{e}u \ f(p_1) \neq 0 \ thì \ f(p_1) \ cùng dấu với \ f(a_1) \ hoặc \ f(b_1)$.
 - $-N\acute{e}u\ f(p_1)\ cùng\ d\acute{a}u\ với\ f(a_1)\ thì\ p\in[p_1,b_1].\ Dặt\ a_2=p_1,\ b_2=b_1.$
 - $-N\hat{e}u\ f(p_1)\ cùng\ d\hat{a}u\ với\ f(b_1)\ thì\ p\in [a_1,p_1].\ Dăt\ a_2=a_1,\ b_2=p_1.$

sau đó làm tiếp phương pháp trên với khoảng $[a_2, b_2]$.

Các cách dừng khác (còn gọi là $ti\hat{e}u$ chí dừng) có thể được áp dụng trong phương pháp trên hoặc trong bất kỳ các kỹ thuật lặp lại trong chương này. Ví dụ, chúng ta có thể chọn một dung sai $\varepsilon > 0$ và tạo dãy $p_1, ..., p_N$ cho đến khi đáp ứng một trong các điều kiên sau:

$$|p_N - p_{N-1}| < \varepsilon, \tag{2.1}$$

$$\frac{|p_N - p_{N-1}|}{|p_N|} < \varepsilon, \, p_N \neq 0 \text{ hoặc}$$
 (2.2)

$$|f(p_N)| < \varepsilon \tag{2.3}$$

Không may, khó khăn có thể phát sinh với bất kỳ tiêu chí dừng nào. Ví dụ, có các chuỗi $\{p_n\}_{n=1}^{\infty}$ mà hiệu $p_n - p_{n-1}$ hội tụ về 0 trong khi dãy đó lại phân kỳ. Cũng có thể có $f(p_n)$ gần bằng 0 trong khi p_n khác đáng kể so với p. Nếu không có kiến thức bổ sung về f hoặc p, bất đẳng thức 2.2 là tiêu chuẩn dừng tốt nhất để áp dụng vì nó sát nhất với sai số tương đối.

Khi dùng máy tính để tính xấp xỉ, nên thiết lập một giới hạn trên về số lần lặp lại. Điều này giúp tránh vòng lặp vô hạn, một tình huống có thể phát sinh khi chuỗi $\{p_N\}_{n=0}^{\infty}$ phân kỳ (và cả khi chương trình sai).

Ta có nhân xét:

Ví dụ 2.1. Chứng minh rằng $f(x) = x^3 + 4x^2 - 10 = 0$ có nghiệm trong khoảng [1,2], và dùng phương pháp chia đôi để xác định nghiệm đúng đến 10^{-4} .

 $Vi\ f(1) = -5\ va\ f(2) = 14,\ f(x) = 0\ chắc\ chắn\ có\ nghiệm\ trong\ khoảng\ [1,2].$

Ta có bảng sau:

n	a_n	b_n	p_n	$f(p_n)$
1	1,0	2,0	1,5	2,375
2	1,0	1,5	1,25	-1,79687
3	1,25	1,5	1,375	$0,\!16211$
4	1,25	1,375	1,3125	-0,84839
5	1,3125	1,375	1,34375	$-0,\!35098$
6	1,34375	1,375	1,359375	-0,09641
γ	1,359375	1,375	1,3671875	0,03236
8	1,359375	1,3671875	1,36328125	-0,03215
g	1,36328125	1,3671875	1,365234375	0,000072
10	1,36328125	1,365234375	1,364257813	-0,01605
11	1,364257813	1,365234375	1,364746094	-0,00799
12	$1,\!364746094$	1,365234375	1,364990234	-0,00396
13	$1{,}364990234$	$1,\!365234375$	$1{,}365112305$	$-0,\!00194$

Sau 13 lần lặp, $p_{13} = 1{,}365\,112\,305$ xấp xỉ nghiệm p với sai số:

$$|p - p_{13}| < |b_{14} - a_{14}| = |1,365234375 - 1,365112305| = 0,000122070$$

 $Do |a_{14}| < |p|$ (khoảng đang xét dương), ta có:

$$\frac{|p - p_{13}|}{|p|} < \frac{|b_{14} - a_{14}|}{|a_{14}|} \le 9 \times 10^{-5}$$

Cần chú ý rằng, p_9 thực sự gần với p hơn kết quả cuối cùng p_{13} , tuy nhiên khi thực hiện thuật toán ta không thể biết đều này. Hơn nữa, $|f(p_9)| < |f(p_{13})|$ cũng không liên quan đến việc p_9 sát với p hơn.

Phương pháp chia đôi có hai điểm yếu lớn:

• Cần số vòng lặp N lớn

• Vô tình bỏ qua các xấp xỉ tốt

Dù vậy, phương pháp này lại có một ưu điểm lớn là đảm bảo dãy $\{p_N\}_{n=0}^{\infty}$ hội tụ đến một nghiệm. Do ưu điểm này, phương pháp chia đôi thường được dùng để tìm điểm bắt đầu cho các phương pháp khác hiệu quả hơn mà sẽ được giới thiêu sau.

Định lí 2.2. Cho hàm $f \in [a,b]$ và $f(a)\dot{f}(b) < 0$. Phương pháp chia đôi tạo ra một chuỗi $\{p_N\}_{n=0}^{\infty}$ xấp xỉ nghiệm p của f với sai số như sau:

$$|p_n - p| \le \frac{b - a}{2^n}, \ n \ge 1$$

Chứng minh. Với mọi $n \ge 1$, ta có:

$$b_n - a_n = \frac{1}{2^{n-1}}(b-a) \text{ và } p \in (a_n, b_n)$$

Do

$$p_n = \frac{1}{2}(a_n + b_n)$$

ta suy ra được

$$\frac{1}{2}(a_n + b_n) - b_n \le p_n - p \le \frac{1}{2}(a_n + b_n) - a_n$$

$$\Leftrightarrow \qquad \frac{1}{2}(a_n - b_n) \le p_n - p \le \frac{1}{2}(b_n - a_n)$$

$$\Leftrightarrow \qquad |p_n - p| \le \frac{1}{2}(b_n - a_n) = \frac{b - a}{2^n}$$

đpcm.

2.3 Phương pháp điểm bất động

Điểm bất động (fixed point) của một hàm là số mà tại đó giá trị của hàm số bằng đúng giá trị của đối số.

Định nghĩa 5. Số p được gọi là điểm bất động của hàm số g nếu g(p) = p.

Trong phần này, chúng ta xét việc đưa bài toán tìm nghiệm về bài toán tìm điểm bất đông và tìm sư liên hê giữa chúng.

Các bài toán tìm nghiệm và các bài toán tìm điểm cố định là các lớp tương đương theo nghĩa sau đây:

• Từ bài toán tìm nghiệm của phương trình f(p) = 0, ta có thể xác định hàm g với điểm bất động tại p theo một số cách, ví dụ,

$$q(x) = x - f(x)$$
, hoặc $q(x) = x + 3f(x)$

•

21

- Ngược lại, nếu hàm g có một điểm bất định tại p, thì hàm f xác định bởi

$$f(x) = x - g(x)$$

có nghiệm tại p.

Mặc dù các bài toán ta muốn giải quyết là dạng tìm nghiệm, nhưng dạng điểm bất động dễ thực hiện hơn và có một số lựa chọn điểm bất động dẫn tới kỹ thuật tìm nghiệm rất hiệu quả. Trước hết ta cần đi đến dạng bài toán mới này một cách thoải mái, và đưa ra quyết định khi nào hàm số có điểm bất động và điểm bất động được xấp xỉ với độ chính xác bao nhiêu.

Các điểm bất động xuất hiện trong nhiều lĩnh vực toán học khác nhau, và là công cụ chính của các nhà kinh tế dùng để chứng minh các kết quả liên quan đến tính cân bằng. Mặc dù ý tưởng đằng sau kỹ thuật là cũ, nhưng thuật ngữ được sử dụng lần đầu bởi nhà toán học Hà Lan L. E. J. Brouwer (1882 - 1962) trong đầu những năm 1900.

Ví dụ 2.2. Hãy xác định điểm bất động của hàm $g(x) = x^2 - 2$. Điểm bất động p của g có tính chất:

$$p = g(p) \iff p = p^2 - 2$$

Suy ra

$$p^2 - p - 2 = (p+1)(p-2) = 0$$

Điểm bất động xảy ra đúng khi khi đồ thị của hàm số y = g(x) cắt đồ thị hàm số y = x, vì vậy g có 2 điểm bất động là -1 và 2. Điều này được minh họa bởi hình 2.1.

Hình 2.1: Điểm bất động của $y = x^2 - 2$

Định lý sau cho điều kiện đủ để hàm số có ít nhất một và có duy nhất một điểm bất động.

Định lí 2.3.

- 1. Nếu $g \in [a,b]$, và $g(x) \in [a,b] \, \forall x \in [a,b]$, khi đó g có ít nhất một điểm bất động trên [a,b].
- 2. Hơn nữa, nếu g'(x) tồn tại trên (a,b) và $|g'(x)| < 1 \forall x \in [a,b]$, khi đó, tồn tai đúng một điểm bất động trên [a,b].

Trước khi chứng minh định lí trên, ta cần biết định lí giá trị trung bình.

Định lí 2.4. Định lí giá trị trung bình (Mean Value Theorem).

Nếu f liên tục trên [a,b] và khả vi trên (a,b), tồn tại một điểm $c \in (a,b)$ sao cho tiếp tuyến tại c song song với cát tuyến qua hai điểm mút (a,f(a)) và (b,f(b)), hay nói cách khác:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Chứng minh Định lí 2.3.

1. Nếu g(a)=a hoặc $g(b)=b,\,g$ có điểm bất động a hoặc b. Nếu không, g(a)>a và đồng thời g(b)< b; ta sẽ xét trường hợp này.

Hàm h(x) = g(x) - x liên tục trên [a, b] với

$$h(a) - a > 0$$
 và $h(b) - b > 0$

Định lý giá trị trung gian khẳng định rằng tồn tại $p \in (a, b)$ sao cho h(p) = 0. Điểm p này là điểm bất động của g vì

$$0 = h(p) = q(p) - p \iff q(p) = p$$

2. Giả sử g có hai điểm bất động p, q trên [a, b]. Không mất tính tổng quát, giả sử p < q. Theo định lí giá trị trung bình, tồn tại $\xi \in (p, q)$ sao cho:

$$g'(\xi) = \frac{g(p) - g(q)}{p - q}$$

Ta có:

$$|p-q|=\left|g(p)-g(q)\right|=\left|g'(\xi)\right||p-q|<|p-q|$$
 (vô lí)

Giả thuyết g có hai điểm bất động trên [a,b] sai. Vậy với điều kiện ban đầu, chỉ có duy nhất một điểm bất động trên [a,b].

đpcm.