MACPET

Ioannis Vardaxis*

*ioannis.vardaxis@ntnu.no

1 August 2018

Abstract

This vignette gives an introduction to the MACPET package which can be used for the analysis of paired-end DNA data like ChIA-PET. Throughout the vignette an introduction of MACPET classes, methods and functions will be given.

Package

MACPET 1.1.2 Rversion >=3.5.0

Contents

1	Introd	luction					
2	MACPET Classes						
	2.1	PSelf Class					
	2.2	PSFit Class					
	2.3	PInter Class					
	2.4	PIntra Class					
	2.5	GenomeMap Class					
3	MACI	PET Methods					
	3.1	summary-method					
	3.2	plot-method					
	3.3	exportPeaks methods					
	3.4	PeaksToGRanges methods					
	3.5	TagsToGInteractions methods					
	3.6	PeaksToNarrowPeak methods					
	3.7	ConvertToPSelf methods					
	3.8	GetSignInteractions methods					
4	MACPET Supplementary functions						
	4.1	AnalysisStatistics function					
	4.2	ConvertToPE_BAM function					

MACPET

5 Peak Calling Workflow

1 Introduction

The *MACPET* package can be used for general analysis of paired-end (PET) data like ChIA-PET. *MACPET* currently implements the following five stages:

- Stage 0 (Linker filtering): Identifies linkers A and B in the fastq files and classifies
 the reads as usable (A/A,B/B), chimeric (A/B,B/A) and ambiguous (non/A, non/B,
 A/non, B/non).
- Stage 1 (Mapping to the reference genome): Maps the usable reads separately into the reference genome using *Rbowtie* package, and keeps only uniquely mapped reads with zero mismatch per read. It then maps the unmapped reads to the reference genome with at most one mismatch and keeps the uniquely mapped reads. Uniquely mapped reads with zero or one mismatch are then merged and paired, their duplicates are marked and a paired-end bam file is created which is used in State 2.
- Stage 2 (PET classification): Classifies the PETs as self-ligated (short genomic distance, same chromosome), intra-chromosomal (long genomic distance, same chromosome) by finding the self-ligated cut-off using the elbow method, and inter-chromosomal (different chromosomes). Furthermore, it removes identically mapped PETs for reducing noise created by amplification procedures. Moreover, it can remove black-listed regions based on the genome of the data. Note that loading the data into R might take a while depending on the size of the data.
- Stage 3 (Peak-calling): Uses the self-ligated PETs found in Stage 2 and segments the genome into non-overlapping regions. It then uses both reads of each PET and applies 2D mixture models for identifying two-dimensional clusters which represent candidate binding sites using the skewed generalized students-t distributions (SGT). Finally, it uses a local Poisson model for finding significant binding sites.
- Stage 4 (Interaction-calling): This stage uses the intra- and inter-chromosomal PETs found in State 2, as well as the significant Peaks found in Stage 3 for calling for significant interactions. NOTE: currently inter-chromosomal PETs are not supported.

MACPET identifies binding site locations more accurately than other algorithms which use only one end (like MACS) (Vardaxis et al.). The output from Stage 3 in *MACPET* can be used for interaction analysis using either MANGO or MICC, or the user can run State 4 in *MACPET* for interaction analysis. Note that in the case of using the output from *MACPET* in MANGO or MICC for interaction analysis, the user should use the self-ligated cut-off found by *MACPET*, and not the one found in MANGO or MICC. Both of those algorithms allow the user to specify the self-ligated cut-off. MACPET is mainly written in C++, and it supports the *BiocParallel* package.

Before starting with examples of how to use *MACPET*, create a test folder to save all the output files of the examples presented in this vignette:

```
#Create a temporary test folder, or anywhere you want:
SA_AnalysisDir=file.path(tempdir(),"MACPETtest")
dir.create(SA_AnalysisDir)#where you will save the results.
```

Load the package:

```
library(MACPET)
## Loading required package: InteractionSet
## Loading required package: GenomicRanges
## Loading required package: stats4
## Loading required package: BiocGenerics
```

```
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
       clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##
       clusterExport, clusterMap, parApply, parCapply, parLapply,
       parLapplyLB, parRapply, parSapplyLB
## The following objects are masked from 'package:stats':
##
       IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
       anyDuplicated, append, as.data.frame, basename, cbind, colMeans,
##
       colnames, colSums, dirname, do.call, duplicated, eval, evalg,
       Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply,
##
       lengths, Map, mapply, match, mget, order, paste, pmax, pmax.int,
       pmin, pmin.int, Position, rank, rbind, Reduce, rowMeans,
##
       rownames, rowSums, sapply, setdiff, sort, table, tapply, union,
       unique, unsplit, which, which.max, which.min
## Loading required package: S4Vectors
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
##
##
       expand.grid
## Loading required package: IRanges
## Loading required package: GenomeInfoDb
## Loading required package: SummarizedExperiment
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
##
       'browseVignettes()'. To cite Bioconductor, see
       'citation("Biobase")', and for packages 'citation("pkgname")'.
## Loading required package: DelayedArray
## Loading required package: matrixStats
## Attaching package: 'matrixStats'
## The following objects are masked from 'package:Biobase':
##
       anyMissing, rowMedians
## Loading required package: BiocParallel
## Attaching package: 'DelayedArray'
## The following objects are masked from 'package:matrixStats':
##
       colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges
##
## The following objects are masked from 'package:base':
##
       aperm, apply
```

```
## Loading required package: bigmemory
## Loading required package: BH
## Loading required package: Rcpp
## Setting options('download.file.method.GEOquery'='auto')
## Setting options('GEOquery.inmemory.gpl'=FALSE)
```

2 MACPET Classes

MACPET provides five different classes which all inherit from the *GInteractions* class in the *InteractionSet* package. Therefore, every method associated with the *GInteractions* class is also applicable to the *MACPET* classes. Every *MACPET* class contains information of the PETs associated with the corresponding class, their start/end coordinates on the genome as well as which chromosome they belong to. This section provides an overview of the *MACPET* classes, while methods associated with each class are presented in latter sections. The classes provided by *MACPET* are the following:

- PSelf class contains information about the self-ligated PETs in the data. This class is created using either the MACPETULT function at stage 2 or the ConvertToPSelf function.
- PSFit class is an update of the PSelf class, which contains information about which binding site each PET belongs to, as well as significant peaks found by the peak-calling algorithm. This class is created using the MACPETULt function at stage 3.
- *PInter* class contains information about Inter-chromosomal PETs in the data. This class is created using the MACPETULT function at stage 2.
- *Plntra* class contains information about Intra-chromosomal PETs in the data. This class is created using the MACPETULT function at stage 2.
- GenomeMap class contains information about the interactions in the genome. This
 class is created using the MACPETULT function at stage 4. Then the user can use the
 GetSignInteractions function for subseting the significant interactions from the object
 and return a GInteractions class object.

2.1 *PSelf* Class

The *PSelf* class contains pair-end tag information of self-ligated PETs which is used for binding site analysis.

```
load(system.file("extdata", "MACPET_pselfData.rda", package = "MACPET"))
class(MACPET_pselfData) #example name
## [1] "PSelf"
MACPET_pselfData #print method
## PSelf object with 4520 interactions and 0 metadata columns:
##
            seqnames1
                             ranges1
                                         seqnames2
                                                          ranges2
##
                <Rle>
                          <IRanges>
                                             <Rle>
                                                       <IRanges>
##
                 chr1 128071-128090 ---
                                              chr1 127738-127757
        [1]
##
        [2]
                 chr1 128071-128090 ---
                                              chr1 127738-127757
##
        [3]
                 chr1 128071-128090 ---
                                              chr1 127738-127757
##
        [4]
                 chr1 134267-134286 ---
                                              chr1 134548-134567
##
        [5]
                 chr1 134282-134301 ---
                                              chr1 134461-134480
##
```

```
[4516]
                 chrX
                         16419-16438 ---
                                              chrX
                                                      16099-16118
##
     [4517]
                 chrX
                         16422-16441 ---
                                              chrX
                                                      15920 - 15939
##
     [4518]
                 chrX
                         16423-16442 ---
                                              chrX
                                                      16067-16086
##
     [4519]
                 chrX
                         16478-16497 ---
                                              chrX
                                                      16112-16131
     [4520]
                 chrX
                        16485-16504 ---
                                                      16126-16145
##
                                              chrX
##
     regions: 7548 ranges and 0 metadata columns
     seqinfo: 18 sequences from hg19 genome
```

Extra information of this class is stored as list in the metadata entries with the following elements:

- Self_info: a two-column data.frame with information about the chromosomes in the data (chrom) and the total PET counts of each chromosome (PET.counts).
- SLmean: which is the mean size of the self-ligated PETs.
- MaxSize: The maximum self-ligated PET size in the data.
- MinSize: The minimum self-ligated PET size in the data.

```
metadata(MACPET_pselfData)
## $Self_info
##
      Chrom PET.counts
## 1
       chr1
                   469
## 2
       chr2
                   235
## 3
                   247
       chr3
## 4
       chr7
                   451
## 5
       chr8
                   130
## 6
       chr9
                   215
                   133
## 7 chr10
## 8 chr11
                    41
## 9 chr12
                   174
## 10 chr15
                   268
## 11 chr16
                   169
## 12 chr17
                   267
## 13 chr18
                   258
## 14 chr19
                   189
## 15 chr20
                   528
## 16 chr21
                   100
## 17 chr22
                   203
## 18 chrX
                   443
##
## $SLmean
## [1] 294
##
## $MaxSize
## [1] 799
## $MinSize
## [1] 21
```

One can also access information about chromosome lengths etc.

```
seqinfo(MACPET_pselfData)
## Seqinfo object with 18 sequences from hg19 genome:
     segnames seglengths isCircular genome
##
     chr1
                249250621
                                 <NA>
                                         hq19
##
     chr2
                243199373
                                 <NA>
                                         hq19
##
     chr3
                198022430
                                 <NA>
                                         hg19
##
     chr7
                159138663
                                 <NA>
                                         hq19
##
     chr8
                146364022
                                 <NA>
                                         hq19
##
     . . .
                                  . . .
                                          . . .
##
     chr19
                 59128983
                                 <NA>
                                         hq19
##
     chr20
                 63025520
                                 <NA>
                                         hq19
##
     chr21
                 48129895
                                 <NA>
                                         hq19
                 51304566
##
     chr22
                                 <NA>
                                         hg19
     chrX
                155270560
                                 <NA>
                                         hq19
```

2.2 *PSFit* Class

The *PSFit* class adds information to the *PSelf* class about the peak each PET belongs to, as well as the total number of peaks in each chromosome in the data, p-values and FDR for each peak.

```
load(system.file("extdata", "MACPET_psfitData.rda", package = "MACPET"))
class(MACPET_psfitData) #example name
## [1] "PSFit"
MACPET_psfitData #print method
## PSFit object with 4520 interactions and 0 metadata columns:
##
            segnames1
                             ranges1
                                          segnames2
                                                           ranges2
##
                 <Rle>
                           <IRanges>
                                              <Rle>
                                                         <IRanges>
##
                  chr1 128071-128090 ---
                                               chr1 127738-127757
        [1]
                 chr1 128071-128090 ---
                                               chr1 127738-127757
        [2]
                 chr1 128071-128090 ---
                                               chr1 127738-127757
##
        [3]
                  chr1 134267-134286 ---
                                               chr1 134548-134567
##
        [4]
##
        [5]
                  chr1 134282-134301 ---
                                               chr1 134461-134480
##
                                                . . .
        . . .
                  . . .
                                 . . . . . .
##
                         16419-16438 ---
                                               chrX
     [4516]
                  chrX
                                                       16099-16118
##
     [4517]
                  chrX
                         16422-16441 ---
                                               chrX
                                                       15920-15939
##
     [4518]
                  chrX
                         16423-16442 ---
                                               chrX
                                                       16067 - 16086
##
     [4519]
                  chrX
                         16478-16497 ---
                                               chrX
                                                       16112-16131
##
     [4520]
                  chrX
                         16485-16504 ---
                                               chrX
                                                       16126 - 16145
##
##
     regions: 7548 ranges and 0 metadata columns
##
     seqinfo: 18 sequences from hg19 genome
```

This class updates the Self_info data frame of the *PSelf* class with two extra columns: the total regions each chromosome is segmented into (Region.counts) and the total candidate peaks of each chromosome (Peak.counts). Moreover, this class contains a metadata entry which is a matrix containing region and peak IDs for each PET in the data (Classification.Info). Finally, it also contains a metadata entry with information about each peak found (Peaks.Info). Peaks.Info is a data.frame with the following entries:

- Chrom: The name of the chromosome
- Pets: Total PETs in the peak.
- Peak.Summit: Summit of the peak.
- Up.Summit: Summit of the left-stream PETs.
- Down.Summit: Summit of the right-stream PETs.
- CIQ.Up.start: Start of 95 Quantile confidence interval for the left-stream PETs.
- CIQ.Up.end: End of 95 Quantile confidence interval for the left-stream PETs.
- CIQ.Up.size: Size of 95 Quantile confidence interval for the left-stream PETs.
- CIQ.Down.start: Start of 95 Quantile confidence interval for the right-stream PETs.
- CIQ.Down.end: End of 95 Quantile confidence interval for the right-stream PETs.
- CIQ.Down.size: Size of 95 Quantile confidence interval for the right-stream PETs.
- CIQ.Peak.size: Size of the Peak based on the interval (CIQ.Up.start,CIQ.Down.end).
- sdx: The standard deviation of the upstream PETs.
- lambdax: The skewness of the upstream PETs.
- sdy: The standard deviation of the downstream PETs.
- lambday: The skewness of the downstream PETs.
- lambdaUp: The expected number of PETs in the left-stream Peak region by random chance.
- FoldEnrichUp: Fold enrichment for the left-stream Peak region.
- p.valueUp: p-value for the left-stream Peak region.
- lambdaDown: The expected number of PETs in the right-stream Peak region by random chance.
- FoldEnrichDown: Fold enrichment for the right-stream Peak region.
- p.valueDown: p-value for the right-stream Peak region.
- p.value: p-value for the Peak (p.valueUp*p.valueDown).
- FDRUp: FDR correction for the left-stream Peak region.
- FDRDown: FDR correction for the right-stream Peak region.
- FDR: FDR correction for the Peak.

```
head(metadata(MACPET_psfitData)$Peaks.Info)
     Chrom Region Peak Pets Peak.Summit Up.Summit Down.Summit CIQ.Up.start
## 1
                           4
                                  134529 134454.5
                                                       134602.5
                                                                     134258.6
## 2
     chr1
                3
                          21
                      1
                                  136275
                                          136223.5
                                                       136326.6
                                                                     135925.9
## 3
     chr1
                4
                      1
                           2
                                                       138757.5
                                  138672
                                           138586.5
                                                                     138468.7
## 4
                5
                      1
     chr1
                           4
                                  153168
                                          153048.5
                                                       153287.5
                                                                     152903.6
## 5
     chr1
                6
                      1
                           3
                                  158256
                                          158182.5
                                                       158330.5
                                                                     158172.4
## 6
     chr1
                6
                      2
                          11
                                  158623
                                          158533.5
                                                       158713.5
                                                                     158073.4
##
     CIQ.Up.end CIQ.Up.size CIQ.Down.start CIQ.Down.end CIQ.Down.size
## 1
       134452.0
                         194
                                   134604.6
                                                 134763.6
                                                                     160
## 2
       136219.5
                         295
                                                                     461
                                   136332.8
                                                 136792.8
## 3
       138585.0
                         117
                                   138761.0
                                                 139036.0
                                                                     276
## 4
       153046.6
                         144
                                   153289.0
                                                 153408.2
                                                                     120
## 5
       158182.4
                          11
                                   158330.5
                                                 158332.3
                                                                       2
## 6
       158527.5
                         455
                                                 158802.7
                                                                      89
                                   158714.7
##
     CIQ.Peak.size
                          sdx
                                 lambdax
                                                 sdy
                                                       lambday lambdaUp
## 1
               506 32.786997 -0.9761421 26.9709052 0.9760635 2.000000
## 2
               868 49.667461 -0.9798426 77.8374868 0.9794046 3.398848
## 3
               568 19.722558 -0.9755519 46.6467757 0.9755518 2.000000
               505 24.248986 -0.9761427 20.2136087 0.9761358 2.000000
## 4
## 5
               161 1.698188 -0.9757212 0.3076363 0.9757213 2.000000
               731 76.906514 -0.9779880 14.9170727 0.9779329 2.199517
## 6
##
     FoldEnrichUp
                      p.valueUp lambdaDown FoldEnrichDown p.valueDown
```

```
2.000000 5.265302e-02
                                                 2.000000 5.265302e-02
## 1
                                 2.000000
## 2
        6.178564 1.703525e-11
                                                 5.001085 8.349971e-10
                                 4.199089
## 3
        1.000000 3.233236e-01
                                 2.000000
                                                 1.000000 3.233236e-01
## 4
        2.000000 5.265302e-02
                                 2.000000
                                                 2.000000 5.265302e-02
## 5
         1.500000 1.428765e-01
                                 2.000000
                                                 1.500000 1.428765e-01
## 6
         5.001099 3.561537e-06
                                 2.097643
                                                 5.243981 2.211986e-06
##
          p.value
                         FDRUp
                                    FDRDown
                                                      FDR
## 1 2.772340e-03 1.001149e-01 1.001149e-01 5.271351e-03
## 2 1.422439e-20 1.210399e-10 5.636230e-09 9.601460e-20
## 3 1.045381e-01 3.357591e-01 3.419012e-01 1.102551e-01
## 4 2.772340e-03 1.001149e-01 1.001149e-01 5.271351e-03
## 5 2.041371e-02 2.269216e-01 2.296230e-01 3.242177e-02
## 6 7.878071e-12 1.602692e-05 1.066493e-05 3.667378e-11
```

One can also access information about chromosome lengths etc, using seqinfo(MACPET_psfitData).

2.3 PInter Class

The *PInter* class contains pair-end tag information of Inter-chromosomal PETs:

```
load(system.file("extdata", "MACPET_pinterData.rda", package = "MACPET"))
class(MACPET_pinterData) #example name
## [1] "PInter"
MACPET_pinterData #print method
## PInter object with 94 interactions and 0 metadata columns:
##
          segnames1
                           ranges1
                                       seqnames2
                                                        ranges2
##
              <Rle>
                         <IRanges>
                                           <Rle>
                                                     <IRanges>
               chr1 419128-419147 ---
##
                                                   89807-89826
      [1]
                                           chr15
##
      [2]
               chr1 450489-450508 ---
                                           chr19 328877-328896
                                           chr15 554025-554044
##
      [3]
               chr1 720534-720553 ---
##
      [4]
               chr1 778824-778843 ---
                                         chr17 433884-433903
##
      [5]
               chr2 208915-208934 ---
                                            chr8 142996-143015
##
                                            . . .
      . . .
                . . .
                               . . . . . . .
##
     [90]
               chrX
                         5467-5486 ---
                                           chr15
                                                  14508 - 14527
##
     [91]
               chrX
                        7866-7885 ---
                                           chr18 174143-174162
##
     [92]
               chrX
                         8461-8480 ---
                                           chr20 351317-351336
##
     [93]
               chrX
                      10072-10091 ---
                                           chr19 302795-302814
                      16501-16520 ---
                                            chr2 844134-844153
     [94]
               chrX
##
     regions: 172 ranges and 0 metadata columns
     seqinfo: 18 sequences from hg19 genome
```

One can also access information about chromosome lengths etc, using seqinfo(MACPET_pinterData).

It also contains a two-element metadata list with the following elements:

 InteractionCounts: a table with the total number of Inter-chromosomal PETs between chromosomes. Where the rows represent the "from" anchor and the columns the "to" anchor.

```
metadata(MACPET_pinterData)
## $InteractionCounts
         chr1 chr2 chr3 chr7 chr8 chr9 chr10 chr11 chr12 chr15 chr16 chr17
##
## chr1
            0
                 0
                      0
                           0
                                 0
                                     0
                                                        0
## chr2
            0
                 0
                      0
                           0
                                 1
                                     1
                                            0
                                                  0
                                                        0
                                                                    1
                                                                          1
## chr3
            0
                 1
                      0
                           1
                                 0
                                     1
                                            0
                                                  0
                                                        0
                                                              0
                                                                    1
                                                                          1
## chr7
            0
                 1
                      1
                           0
                                0
                                     0
                                            0
                                                  0
                                                        2
                                                              0
                                                                    1
                                                                          0
## chr8
            0
                 0
                      0
                           0
                                     1
                                            0
                                                  0
                                                        0
                                                              0
                                 0
                                                                          0
## chr9
            1
                 0
                      0
                           0
                                     0
                                            0
                                                  0
                                                        0
                                                              0
                                                                    0
                                                                          1
                                1
## chr10
            0
                 1
                      0
                           0
                                2
                                     1
                                            0
                                                  0
                                                        0
                                                              0
                                                                    0
                                                                          0
## chr11
            0
                 0
                      0
                           0
                                0
                                     0
                                           0
                                                  0
                                                        0
                                                              0
                                                                    0
                                                                          0
## chr12
            0
                 0
                      0
                                            0
## chr15
                 0
                      0
                           0
                                     0
                                            0
                                                  0
                                                        0
                                                                    2
            0
                                0
                                                              0
                                                                          1
## chr16
            2
                 5
                      0
                           0
                                0
                                     0
                                            0
                                                  0
                                                        0
                                                              0
                                                                          0
                         1
## chr17
            0 0
                      1
                                0
                                     1
                                           0
                                                  0
                                                        0
                                                              0
                                                                    1
                                                                          0
## chr18
            0 1
                      0
                         1
                                0
                                   1
                                           1
                                                  0
                                                              3
                                                                          1
## chr19
                                     0
                                           0
                                                        0
                                                                    0
                                                                          3
            0
                 0
                      0
                           0
                                0
                                                  0
                                                              0
## chr20
            2
                 0
                      0
                           0
                                1
                                     1
                                           1
                                                  0
                                                        1
                                                              0
                                                                    0
                                                                          0
                 0
                                            0
                                                  0
                                                       0
                                                              0
                                                                    0
## chr21
            0
                      0
                           0
                                0
                                                                          0
                                                     0
## chr22
            0
                 0
                      0
                                0
                                            0
                                                  0
                                                              0
                                                                    0
                                                                          0
            0
                      0
                                     0
                                            0
                                                  0
                                                        0
                                                              1
                                                                    0
                                                                          0
## chrX
                 1
                           0
                                 0
         chr18 chr19 chr20 chr21 chr22 chrX
##
## chr1
                   1
                         0
## chr2
             0
                   0
                         0
                               0
                                     0
                                           0
## chr3
             2
                   0
                         0
                               1
                                     1
                                           1
## chr7
             0
                   0
                         1
                               0
                                     0
                                           0
## chr8
                         0
                                           0
## chr9
                   1
                         2
                               0
                                           0
             1
                                     1
## chr10
                   0
                         1
                               0
                                           0
## chr11
                   0
                               0
                                           2
             0
                         0
                                     0
## chr12
                   0
                         1
                                           2
## chr15
             0
                   1
                         0
                               0
                                     0
                                           0
## chr16
                   0
                         2
                               0
                                     2
                                           0
## chr17
                   0
                         0
                               1
                                           0
             1
                                     1
## chr18
                   0
                         0
                                           0
## chr19
             0
                   0
                         0
                               0
                                     0
                                           0
## chr20
             0
                   0
                         0
                               0
                                     2
                                           0
## chr21
             0
                   0
                         0
                               0
                                           0
## chr22
             0
                   0
                         0
                               0
                                     0
                                           1
## chrX
                                           0
```

2.4 PIntra Class

The *Plntra* class contains pair-end tag information of Intra-chromosomal PETs.

```
load(system.file("extdata", "MACPET_pintraData.rda", package = "MACPET"))
class(MACPET_pintraData)#example name
## [1] "PIntra"
MACPET_pintraData#print method
```

```
## PIntra object with 744 interactions and 0 metadata columns:
##
           seqnames1
                           ranges1 seqnames2
                                                        ranges2
               <Rle>
##
                         <IRanges>
                                         <Rle>
                                                      <IRanges>
##
       [1]
                chr1 131180-131199 ---
                                           chr1 152956-152975
##
       [2]
                chr1 134496-134515 ---
                                            chr1 136252-136271
                chr1 134612-134631 ---
chr1 134656-134675 ---
##
       [3]
                                            chr1 158684-158703
##
       [4]
                                            chr1 136152-136171
     [5]
               chr1 134712-134731 ---
                                            chr1 136350-136369
##
##
      . . .
                . . .
                              . . . . . . .
                                             . . .
           chrX 16501-16520 ---
chrX 16501-16520 ---
                                         chrX
chrX
##
     [740]
                                                        151-170
##
     [741]
                                                        151-170
##
    [742]
               chrX 16511-16530 ---
                                            chrX
                                                        225-244
##
     [743]
               chrX 16512-16531 ---
                                                        145 - 164
                                             chrX
##
     [744]
                chrX
                      16532-16551 ---
                                             chrX
                                                        181-200
##
     regions: 1245 ranges and 0 metadata columns
     seqinfo: 18 sequences from hg19 genome
```

One can also access information about chromosome lengths etc, using seqinfo(MACPET_pintraData).

It also contains a two-element metadata list with the following elements:

• InteractionCounts: a data.frame with the total number of Intra-chromosomal PETs for each chromosome (Counts).

```
metadata(MACPET_pintraData)
## $InteractionCounts
##
     Chrom Counts
## 1
      chr1
               78
## 2 chr2
               37
## 3 chr3
              48
## 4
      chr7
              107
## 5 chr8
              13
## 6
     chr9
              21
## 7 chr10
              14
## 8 chr11
               10
## 9 chr12
               31
## 10 chr15
## 11 chr16
               25
## 12 chr17
               43
## 13 chr18
               37
## 14 chr19
              26
## 15 chr20
              102
## 16 chr21
               16
## 17 chr22
               30
## 18 chrX
               50
```

2.5 GenomeMap Class

The *GenomeMap* class contains all potential interactions between pairs of peaks, as well as the peaks' anchors.

```
load(system.file("extdata", "MACPET_GenomeMapData.rda", package = "MACPET"))
class(MACPET_GenomeMapData) #example name
## [1] "GenomeMap"
MACPET_GenomeMapData #print method
## GenomeMap object with 21 interactions and 2 metadata columns:
##
            seqnames1
                               ranges1
                                            segnames2
                                                                ranges2 | Anchor1Summit
                                                 <Rle>
##
                <Rle>
                            <IRanges>
                                                             <IRanges> |
                                                                                <numeric>
##
                chr20 563447-565026 ---
                                                 chr20 905525-908110 |
                                                                                    564247
       [1]
                            -499-4606 ---
       [2]
                 chrX
                                                  chrX
                                                           11382 - 17547
                                                                                        361
##
       [3]
                 chr2 282319-283671 ---
                                                  chr2 355304-356676 |
                                                                                    282890
##
       [4]
                 chr3 632669-634651 ---
                                                  chr3 680567-682065 |
                                                                                    633509
##
       [5]
                 chr7 637535-638947 ---
                                                chr7 690783-692499 |
                                                                                    638268
##
##
      [17]
                chr15 566320-568128 ---
                                                 chr15 578749-580144 |
                                                                                    567173
                                             chr17 990745-992798 |
##
      [18]
                chr17 985885-987476 ---
                                                                                    986528

      chr7 363524-368143 ---
      chr7 373783-375135 |

      chr7 363524-368143 ---
      chr7 376355-378400 |

      chr7 373783-375135 ---
      chr7 376355-378400 |

##
     [19]
                                                                                    366948
##
     [20]
                                                                                    366948
##
                                                                                    374495
##
            Anchor2Summit
##
                <numeric>
##
       [1]
                    907011
##
                     15855
       [2]
                    355921
##
       [3]
       [4]
                    681202
##
       [5]
                    691724
      . . .
                        . . .
##
                    579414
      [17]
##
     [18]
                    991796
                    374495
##
      [19]
##
     [20]
                    377298
##
     [21]
                    377298
##
##
      regions: 32 ranges and 0 metadata columns
      seqinfo: 18 sequences from hg19 genome
```

Extra information of this class is stored as list in the metadata entries with the following elements:

- pvalue: The p-value of the interaction.
- FDR: The FDR of the interaction.
- Order: The order the interaction was entered into the model.
- TotalInterPETs: The total interaction PETs between every two interacting peaks.

Each row in the metadata entry corresponds to the same row in the main object.

```
metadata(MACPET_GenomeMapData)
## $InteractionInfo
## DataFrame with 21 rows and 4 columns
```

##		pvalue	FDR	0rder	TotalInterPETs
##		<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
##	1	9.26058005318194e-09	6.01937703456826e-07	1	9
##	2	0.000127327838847454	0.00814898168623704	2	32
##	3	0.0319658097028795	0.671282003760469	3	3
##	4	0.0269894695978567	0.671282003760469	3	4
##	5	0.0154904671976064	0.671282003760469	3	4
##					
##	17	0.758560331886533	1	5	3
##	18	0.450415834308879	1	5	5
##	19	0.992157972205279	1	5	4
##	20	0.104457939309804	1	5	15
##	21	0.891787260692922	1	5	7

3 MACPET Methods

This section describes methods associated with the classes in the *MACPET* package.

3.1 summary-method

All *MACPET* classes are associated with a summary method which sums up the information stored in each class:

3.1.1 *PSelf* Class

summary for PSelf class prints information about the total number of self-ligated PETs for each chromosome, as well as the total number of self-ligated PETs in the data, their min/max length and genome information of the data:

```
class(MACPET_pselfData)
## [1] "PSelf"
summary(MACPET_pselfData)
## |-Self-ligatead PETs|
## |-----|
##
## | Chrom | Self-lig. |
## |:----:|
## | chr1 |
               469
               235
## | chr2
## | chr3
               247
## | chr7
               451
## | chr8
               130
## | chr9
               215
## | chr10 |
               133
## | chr11 |
               41
## | chr12 |
               174
               268
## | chr15 |
```

```
## | chr16 |
       169
## | chr17 |
       267
## | chr18 |
       258
## | chr19 |
      189
## | chr20 |
       528
## | chr21 |
       100
## | chr22 |
       203
## | chrX |
       443
##
##
## Tot. Self-lig. Self-lig. mean size Genome
4520
            294
                   hq19
##
##
## Sortest Self-PET Longest Self-PET
21 bp
       799 bp
```

3.1.2 PSFit Class

summary for *PSFit* class adds information to the summary of *PSelf* class. The new information is the total regions found and analysed for each chromosome and the total number of candidate binding sites found on each chromosome:

```
class(MACPET_psfitData)
## [1] "PSFit"
summary(MACPET_psfitData)
## |-----Self-ligated PETs Summary-----|
##
## | Chrom | Self-lig. | Regions | Peaks |
## |:----:|:----:|
                        | 23
                | 49
## | chr1 | 469
## | chr2 | 235
                | 32
                        | 10
## | chr3 | 247
                | 27
                        | 8
## | chr7 | 451
                | 50
                        | 16
## | chr8 | 130
                | 15
                        | 4
                | 21
## | chr9 | 215
                 | 20
## | chr10 | 133
                        | 5
## | chr11 | 41
                    7
                | 23
## | chr12 | 174
                        | 8
## | chr15 | 268
                | 23
                | 11
## | chr16 | 169
                            1
## | chr17 |
            267
                    29
                            6
## | chr18 |
            258
                | 38
                            9
## | chr19 |
          189
                 | 26
```

```
## | chr20 |
       528
            37
               | 13
                 2
## | chr21 |
       100
            12
## | chr22 |
       203
            24
               4
## | chrX |
       443
             7
               | 10
##
##
## Tot. Self-lig. Regions Peaks Self-lig. mean size
451
   4520
             135
                    294
##
##
## Genome Sortest Self-PET Longest Self-PET class
## hg19
       21 bp
               799 bp
                     PSFit
```

3.1.3 PIntra Class

summary for *Plntra* class prints information about the total number of intra-ligated PETs for each chromosome, as well as information about the genome. The user can choose to plot a heat-map for the total number of intra-ligated PETs on each chromosome:

```
class(MACPET_pintraData)
## [1] "PIntra"
requireNamespace("ggplot2")
## Loading required namespace: ggplot2
requireNamespace("reshape2")
## Loading required namespace: reshape2
summary(MACPET_pintraData,heatmap=TRUE)
## |--Intra-chrom. PETs--|
## |-----|
## |Chrom | Intra-chrom. |
## |:----:|
## |chr1 |
                78
## |chr2
                37
## |chr3
               48
               107
## |chr7
               13
## |chr8 |
## |chr9 |
                21
## |chr10 |
                14
## |chr11 |
                10
## |chr12 |
                31
## |chr15 |
                56
## |chr16 |
                25
## |chr17 |
                43
## |chr18 |
```

```
## |chr19 |
                26
## |chr20 |
               102
## |chr21 |
                16
## |chr22 |
                30
##
  |chrX |
                50
##
##
##
## Tot. Intra-chrom.
                     Genome
                            class
  _____
##
         744
                      hg19
                            PIntra
```


3.1.4 PInter Class

summary for *PInter* class prints information about the total number of inter-ligated PETs for each chromosome, as well as information about the genome. The user can choose to plot a heat-map for the total number of inter-ligated PETs connecting the chromosomes:

```
class(MACPET_pinterData)
## [1] "PInter"
requireNamespace("ggplot2")
requireNamespace("reshape2")
summary(MACPET_pinterData, heatmap=TRUE)
## |--Inter-chrom. PETs--|
## |-----|
##
## |Chrom | Inter-chrom. |
## |:----:|
## |chr1 |
               4
               4
## |chr2
## |chr3
               10
```

```
## |chr7
                 6
                 3
##
   |chr8
                 8
##
   |chr9
                 5
  |chr10
##
  |chr11
                 2
   |chr12
                 3
##
   |chr15
                 4
  |chr16
                 11
                 7
##
   |chr17
   |chr18
                 9
##
   |chr19
                 3
   |chr20
                 8
                 0
##
   |chr21 |
##
   chr22
                 1
   |chrX
                 6
##
##
##
  Tot. Inter-chrom. PETs
                            Genome
                                    class
##
             94
                             hg19
                                    PInter
## ==========
                            =====
```


3.1.5 GenomeMap Class

summary for *GenomeMap* class prints information about the total number of interactions in the data. The user can provide a threshold for the FDR cut-off of the significant interactions to make the summary from. Alternatively if threshold=NULL all the interactions will be used for the summary.

3.2 plot-method

All *MACPET* classes are associated with a plot method which can be used to visualize counts, PETs in a region, as well as binding sites. Here we give some examples for the usage of the plot methods, however more arguments can be provided to the plot methods, see *MACPET::plot*.

3.2.1 *PSelf* Class

plot for *PSelf* Class will create a bar-plot showing the total number of self-ligated PETs on each chromosome. The x-axis are the chromosomes and the y-axis are the corresponding frequencies.

```
requireNamespace("ggplot2")
class(MACPET_pselfData)
## [1] "PSelf"
# PET counts plot
plot(MACPET_pselfData)
```


3.2.2 PSFit Class

plot for *PSFit* Class will create a bar-plot (if kind="PeakCounts") showing the total number of candidate binding sites found on each chromosome. The x-axis are the chromosomes and the y-axis are the corresponding frequencies.

```
class(MACPET_psfitData)
## [1] "PSFit"
#binding site couts:
plot(MACPET_psfitData,kind="PeakCounts")
```


Other kind of plots are also supported for this class. For example if kind="PeakPETs", then a visual representation of a region will be plotted (RegIndex chooses which region to plot with 1 meaning the one with the highest total of PETs in it). The x-axis are the genomic coordinates of the region and the y-axis if the sizes of the PETs. Each segment represents a PET from its start to its end coordinate. Different colors of colors represent which binding site each PET belongs to, with red (PeakID=0) representing the noise cluster. Vertical lines represent the exact binding location of the binding site.

```
# region example with binding sites:
plot(MACPET_psfitData,kind="PeakPETs",RegIndex=1)
```


3.2.3 PIntra Class

plot for *Plntra* Class will create a bar-plot showing the total number of intra-ligated PETs on each chromosome. The x-axis are the chromosomes and the y-axis are the corresponding frequencies.

```
class(MACPET_pintraData)
## [1] "PIntra"
#plot counts:
plot(MACPET_pintraData)
```


3.2.4 PInter Class

plot for *PInter* Class. Each node represents a chromosome where the size of the node is proportional to the total number of Inter-chromosomal PETs leaving from this chromosome. Edges connect interacting chromosomes where the thickness of each edge is proportional to the total number of Inter-chromosomal PETs connecting the two chromosomes.

```
class(MACPET_pinterData)
## [1] "PInter"
requireNamespace("igraph")
## Loading required namespace: igraph
#network plot:
plot(MACPET_pinterData)
```

Inter Interaction Network Plot

NULL

3.2.5 GenomeMap Class

plot for *GenomeMap* Class. Different kind of plot can be created using the Type parameter. The user can also specify a threshold for the significant interactions to make the plots from. In the following example, each node represents a chromosome and the edges show which chromosomes have significant interactions between them.

```
class(MACPET_GenomeMapData)
## [1] "GenomeMap"
requireNamespace("igraph")
#network plot:
plot(MACPET_GenomeMapData,Type='network-circle')
## No threshold given, all the interactions are returned.
```


3.3 exportPeaks methods

PSFit class has a method which exports the binding site information stored in meta data(object)[['Peaks.Info']] into csv files in a given directory if one wishes to have the binding sites in an excel file. The user can also specify a threshold for the FDR. If no threshold is specified all the binding sites found by the algorithm are exported.

```
class(MACPET_psfitData)#PSFit class
## [1] "PSFit"
exportPeaks(object=MACPET_psfitData,file.out="Peaks",threshold=1e-5,savedir=SA_AnalysisDir)
## [1] "The output is saved at savedir"
```

3.4 PeaksToGRanges methods

PSFit class has also a method which converts the binding sites found by the peak-calling algorithm into a *GRanges* object with start and end coordinates the binding site's confidence interval (CIQ.Up.start,CIQ.Down.end). It furthermore contains information about the total number of PETs in the peak (TotPETs), the p-value of the peak (p.value) and its FDR (FDR). The user can also specify an FDR threshold for returning significant peaks. If threshold=NULL, all the found peaks are returned.

```
class(MACPET_psfitData)#PSFit class
## [1] "PSFit"
object=PeaksToGRanges(object=MACPET_psfitData,threshold=1e-5)
object
## GRanges object with 39 ranges and 3 metadata columns:
##
          seqnames
                          ranges strand |
                                            TotPETs
                                                                  p.value
                       <IRanges> <Rle> | <numeric>
                                                                <numeric>
##
      [1]
              chr1 135926-136793
                                      * |
                                                  21 1.42243850010315e-20
      [2]
              chr1 158073-158803
                                      * |
                                                  11 7.87807089180069e-12
```

```
[3]
              chr1 172673-173381
                                                   13 8.46824468042962e-15
##
      [4]
              chr1 384574-385448
                                       * |
                                                   23 3.50189198029452e-29
##
      [5]
              chr1 406654-408186
                                       * |
                                                  36 3.06170663244554e-41
##
      . . .
               . . .
##
     [35]
              chr9 499110-500298
                                                  32 6.19853263060922e-41
##
     [36]
              chrX
                           1-676
                                                  26 3.03823903879465e-25
##
     [37]
              chrX
                       2906-4106
                                                  30 6.03886673404633e-13
##
     [38]
              chrX
                    14498-17047
                                                  98 9.44033555038663e-46
##
     [39]
                     16042 - 16702
                                                  28 1.78549928196275e-10
              chrX
##
                            FDR
##
                     <numeric>
##
      [1] 9.60145987569626e-20
      [2] 3.6673778289417e-11
##
      [3] 4.97049144286086e-14
##
##
      [4] 3.15170278226507e-28
      [5] 5.9047199340021e-40
##
##
     [35] 1.04600238141531e-39
##
     [36] 2.56351418898299e-24
##
     [37] 3.01943336702316e-12
##
     [38] 2.54889059860439e-44
##
     [39] 7.53257509578036e-10
##
     seqinfo: 15 sequences from hg19 genome
```

3.5 TagsToGInteractions methods

PSFit class has also a method which returns only PETs belonging to peaks (removing noisy or insignificant PETs) as a *GInteractions* object. This might be useful if one wishes to visualize the tags belonging to PETs of binding sites on the genome-browser. The user can also specify an FDR threshold for returning significant peaks. If threshold=NULL, all the found peaks are returned.

```
class(MACPET_psfitData)#PSFit class
## [1] "PSFit"
TagsToGInteractions(object=MACPET_psfitData,threshold=1e-5)
## GInteractions object with 1180 interactions and 0 metadata columns:
##
            segnames1
                            ranges1
                                         segnames2
                                                          ranges2
##
                <Rle>
                          <IRanges>
                                             <Rle>
                                                       <IRanges>
##
                 chr1 135973-135992 ---
                                              chr1 136594-136613
        [1]
                 chr1 136081-136100 ---
                                              chr1 136487-136506
        [2]
                 chr1 136108-136127 ---
##
        [3]
                                              chr1 136317-136336
##
        [4]
                 chr1 136121-136140 ---
                                              chr1 136405-136424
                 chrl 136121-136140 ---
                                              chr1 136405-136424
##
        [5]
##
        . . .
                                . . . . . .
                                               . . .
                        16419-16438 ---
##
     [1176]
                 chrX
                                              chrX
                                                     16099-16118
##
     [1177]
                 chrX
                        16422-16441 ---
                                              chrX
                                                     15920 - 15939
##
     [1178]
                 chrX
                       16423-16442 ---
                                              chrX
                                                     16067 - 16086
                 chrX
                       16478-16497 ---
                                              chrX
                                                     16112-16131
     [1179]
```

```
## [1180] chrX 16485-16504 --- chrX 16126-16145
## ------
## regions: 7548 ranges and 0 metadata columns
## seqinfo: 18 sequences from hg19 genome
```

3.6 PeaksToNarrowPeak methods

PSFit class has a method which converts peaks of an object of *PSFit* class to narrowPeak object. The object is saved in a user specified directory and can be used in the MANGO or MICC algorithms for interaction analysis. Alternatively, the user can use stage 4 in MACPETULT for running the interaction analysis stage.

3.7 ConvertToPSelf methods

This method if for the *GInteractions* class. It converts a *GInteractions* object to *PSelf* object. This method could be used in case the user already has the self-ligated PETs separated from the rest of the data and wishes to run a binding site analysis on those only using stage 3 in MACPETULT. The output object will be saved in the user-specified directory.

```
#--remove information and convert to GInteractions:
object=MACPET_pselfData
#--remove information and convert to GInteractions:
S4Vectors::metadata(object)=list(NULL)
class(object)='GInteractions'
#---input parameters
S2_BlackList=TRUE
SA_prefix="MACPET"
S2_AnalysisDir=SA_AnalysisDir
ConvertToPSelf(object=object,
               S2_BlackList=S2_BlackList,
               SA_prefix=SA_prefix,
               S2_AnalysisDir=S2_AnalysisDir)
## Separating Self-ligated data...Done
## INFO [2018-08-01 11:25:28] Self-ligated mean length: 294
## The PSelf object is saved in:
## /var/folders/6n/6y8cjthx4sb0hk5k5w8q3lw40000gn/T//Rtmp1RnlPK/MACPETtest
#load object:
rm(MACPET_pselfData)#old object
load(file.path(S2_AnalysisDir, "MACPET_pselfData"))
class(MACPET_pselfData)
## [1] "PSelf"
```

3.8 GetSignInteractions methods

GenomeMap class has a method which subsets the significant interactions given a user-specified FDR threshold and returns either a *GInteractions* class object for the interactions (each row corresponds to one interaction), or it saves the significant interactions into an excel file in a user specified directory. Metadata columns are also provided which given further information about each interaction.

```
class(MACPET_GenomeMapData)#GenomeMap class
## [1] "GenomeMap"
GetSignInteractions(object=MACPET_GenomeMapData,
                      threshold = NULL.
                      ReturnedAs='GInteractions')
## No threshold given, all the interactions are returned.
   GInteractions object with 21 interactions and 6 metadata columns:
##
          segnames1
                            ranges1
                                        segnames2
                                                         ranges2 | Anchor1Summit
                                             <Rle>
##
               <Rle>
                         <IRanges>
                                                       <IRanges> |
                                                                        <numeric>
##
      [1]
               chr20 563447-565026 ---
                                             chr20 905525-908110 |
                                                                           564247
##
      [2]
                chrX
                         -499-4606 ---
                                             chrX 11382-17547 |
                                                                               361
##
      [3]
                chr2 282319-283671 ---
                                             chr2 355304-356676 |
                                                                           282890
##
      [4]
                chr3 632669-634651 ---
                                             chr3 680567-682065 |
                                                                           633509
##
      [5]
                chr7 637535-638947 ---
                                             chr7 690783-692499 |
                                                                           638268
##
                                . . . . . . .
                                              . . .
                                                                               . . .
                                            chr15 578749-580144 |
##
               chr15 566320-568128 ---
     [17]
                                                                           567173
##
     [18]
               chr17 985885-987476 ---
                                            chr17 990745-992798 |
                                                                           986528
##
     [19]
                chr7 363524-368143 ---
                                             chr7 373783-375135 |
                                                                           366948
     [20]
                chr7 363524-368143 ---
                                             chr7 376355-378400
                                                                           366948
##
                chr7 373783-375135 ---
                                             chr7 376355-378400 |
                                                                           374495
##
     [21]
          Anchor2Summit
                                        pvalue
##
                                                                  FDR
                                                                          0rder
##
               <numeric>
                                     <numeric>
                                                           <numeric> <numeric>
##
      [1]
                  907011 9.26058005318194e-09 6.01937703456826e-07
##
      [2]
                  15855 0.000127327838847454 0.00814898168623704
                                                                               2
##
      [3]
                  355921
                           0.0319658097028795
                                                   0.671282003760469
                                                                               3
      [4]
                  681202
                           0.0269894695978567
                                                   0.671282003760469
                                                                               3
##
##
      [5]
                  691724
                           0.0154904671976064
                                                   0.671282003760469
                                                                               3
##
      . . .
##
     [17]
                  579414
                            0.758560331886533
                                                                    1
                                                                               5
##
     [18]
                  991796
                            0.450415834308879
                                                                    1
                                                                               5
##
                  374495
                            0.992157972205279
                                                                    1
                                                                               5
     [19]
                                                                    1
                                                                               5
##
     [20]
                  377298
                            0.104457939309804
                            0.891787260692922
                                                                    1
                                                                               5
##
     [21]
                  377298
##
          TotalInterPETs
##
                <numeric>
##
      [1]
                        9
##
                       32
      [2]
                        3
##
      [3]
##
      [4]
                        4
      [5]
                        4
##
##
     [17]
                        3
                        5
     [18]
```

```
## [19] 4
## [20] 15
## [21] 7
## -----
## regions: 32 ranges and 0 metadata columns
## seqinfo: 18 sequences from hg19 genome
```

4 MACPET Supplementary functions

4.1 AnalysisStatistics function

AnalysisStatistics function can be used for all the classes of the *MACPET* package for printing and/or saving statistics of the classes in csv file in a given working directory. Input for Self-ligated PETs of one of the classes (*PSelf*, *PSFit*) is mandatory, while input for the Intra- and Inter-chromosomal PETs is not.

If the input for the Self-ligated PETs is of *PSFit* class, a threshold can be given for the FDR cut-off.

Here is an example:

```
AnalysisStatistics(x.self=MACPET_psfitData,
                  x.intra=MACPET_pintraData,
                  x.inter=MACPET_pinterData,
                  file.out='AnalysisStats',
                  savedir=SA_AnalysisDir,
                  threshold=1e-5)
## PETs Counts Summary
## -----
## | Chrom | Self | Regions | Peaks | Sign. Peaks | Intra | Inter |
## |:----:|:-----:|:-----
                                         9
                     49
## | chr1 | 469 |
                           | 23
                                                   78
## | chr2
          | 235 |
                     32
                             10
                                         3
                                                   37
                                                           10
    chr3
          | 247
                     27
                              8
                                         2
                                                   48
                                                            2
                                         7
                                                   107
                                                            3
    chr7
          | 451
                     50
                          | 16
## | chr8
          | 130
                     15
                          | 4
                                         1
                                                   13
## | chr9
          | 215
                     21
                              3
                                         1
                                                   21
## | chr10 | 133
                     20
                                                            2
                               5
                                         1
                                                   14
## | chr11 | 41
                     7
                                         0
                                                   10
                              1
## | chr12 | 174
                     23
                                         2
## | chr15 | 268
                     23
                               6
                                                   56
## | chr16
          | 169
                     11
                               1
                                         0
                                                   25
                                                            7
                     29
                                         2
                                                   43
                                                            9
## | chr17 | 267
                              6
## | chr18 | 258
                     38
                              9
                                         2
                                                   37
## | chr19 | 189
                     26
                              6
                                         1
                                                   26
                                                            4
## | chr20 | 528
                     37
                             13
                                         2
                                                   102
                                                            9
## | chr21 | 100
                     12
                              2
                                                   16
```

```
## | chr22 | 203 | 24 | 4 |
                                    | 30
## | chrX | 443 | 7
                    | 10
                                    | 50
##
## ======= ===== ===== ===== ======
## Self-lig. mean size Genome Self Borders Tot. Self
294
                hg19
                      21/799 bp
                                  4520
## ======= ===== ===== ====== ======
##
##
## Regions Peaks Sign. Peaks Tot. Intra Tot. Inter
   451
         135
                39
                         744
## [1] "The output has been saved at the savedir"
```

4.2 ConvertToPE BAM function

ConvertToPE_BAM in case the user has two separate BAM files from read 1 and 2 of the paired data, and needs to pair them in one paired-end BAM file for further analysis in stage 2-3 on the MACPETULT function. The output paired-end BAM file will be saved in the user-specified directory.

Here is an example:

```
requireNamespace('ggplot2')
#Create a temporary forder, or anywhere you want:
S1_AnalysisDir=SA_AnalysisDir
#directories of the BAM files:
BAM_file_1=system.file('extdata', 'SampleChIAPETDataRead_1.bam', package = 'MACPET')
BAM_file_2=system.file('extdata', 'SampleChIAPETDataRead_2.bam', package = 'MACPET')
SA_prefix="MACPET"
#convert to paired-end BAM:
ConvertToPE_BAM(S1_AnalysisDir=S1_AnalysisDir,
             SA_prefix=SA_prefix,
             S1_BAMStream=2000000,S1_image=TRUE,
             S1_genome="hg19",BAM_file_1=BAM_file_1,
             BAM_file_2=BAM_file_2)
## Checking inputs...OK
## Sorting SampleChIAPETDataRead_1.bam for index creation...Done
## Creating BAM index...Done
## Sorting SampleChIAPETDataRead_2.bam for index creation...Done
## Creating BAM index...Done
## Filtering MACPET_BAM_1_sorted.bam ...Done
## Filtering MACPET_BAM_2_sorted.bam ...Done
```

```
## Merging MACPET_usable_1_filt.bam, MACPET_usable_2_filt.bam files...Done
## Sorting MACPET_usable_merged.bam file by Qname...Done
## Pairing reads in MACPET_usable_merged.bam file...
## ||Total lines scanned: 10754(100%)|| ||Total Pairs registered: 5377(100% of the scanned lines)||
=====>Pairing statistics<======
## Total reads processed: 10754 ( 100 %)
## Total pairs registered: 5377 ( 100 \% of the scanned lines)
## Saving 16 x 10 in image
## Merging bam files in MACPET_Paired_end.bam ...Done
## Deleting unnecessary files. The paired-end BAM is in:
## /var/folders/6n/6y8cjthx4sb0hk5k5w8q3lw40000gn/T//Rtmp1RnlPK/MACPETtest/MACPET_Paired_end.bam
#test if the resulted BAM is paired-end:
PairedBAM=file.path(S1_AnalysisDir,paste(SA_prefix,"_Paired_end.bam",sep=""))
Rsamtools::testPairedEndBam(file = PairedBAM, index = PairedBAM)
## [1] TRUE
bamfile = Rsamtools::BamFile(file = PairedBAM,asMates = TRUE)
GenomicAlignments::readGAlignmentPairs(file = bamfile,use.names = FALSE,
                               with.which_label = FALSE,
                               strandMode = 1)
## GAlignmentPairs object with 4920 pairs, strandMode=1, and 0 metadata columns:
           segnames strand :
                                      ranges --
                                                        ranges
##
              <Rle> <Rle> :
                                   <IRanges> --
                                                     <IRanges>
                       * : 128071-128090 -- 127738-127757
##
        [1]
               chr1
##
        [2]
               chr1
                        * : 128071-128090 -- 127738-127757
        [3]
                       * : 128071-128090 -- 127738-127757
                       * : 134267-134286 -- 134548-134567
##
        [4]
               chr1
        [5]
               chr1
                        * : 134282-134301 -- 134461-134480
##
    [4916]
               chrX
                                 16501-16520 --
                                                       151-170
##
    [4917]
                             : 16501-16520 -- 844134-844153
               <NA>
     [4918]
               chrX
                             : 16511-16530 --
                                                       225-244
##
    [4919]
               chrX
                        * : 16512-16531 --
                                                       145 - 164
##
    [4920]
               chrX
                       * : 16532-16551 --
                                                       181-200
##
    seqinfo: 25 sequences from an unspecified genome
```

5 Peak Calling Workflow

The main function which the user can use for running a paired-end data analysis is called MACPETULT. It consists of the five stages described in the introduction section. The user may run the whole pipeline/analysis at once using Stages=c(0:4) or step by step using a single stage at a time. The function supports the *BiocParallel* package.

For the following example we run stages 2 and 4 of the MACPETULT only. The reason is that for running state 1, the bowtie index is needed which is too big for downloading it here.

```
#give directory of the BAM file:
S2_PairedEndBAMpath=system.file('extdata', 'SampleChIAPETData.bam', package = 'MACPET')
#give prefix name:
SA_prefix="MACPET"
#parallel backhead can be created using the BiocParallel package
#parallel backhead can be created using the BiocParallel package
#requireNamespace('BiocParallel')
#snow <- BiocParallel::SnowParam(workers = 4, type = 'SOCK', progressbar=FALSE)
#BiocParallel::register(snow, default=TRUE)
# packages for plotting:
requireNamespace('ggplot2')
#-run for the whole binding site analysis:
MACPETUlt(SA_AnalysisDir=SA_AnalysisDir,
      SA_stages=c(2:4),
      SA_prefix=SA_prefix,
      S2_PairedEndBAMpath=S2_PairedEndBAMpath,
      S2_image=TRUE,
      S2_BlackList=TRUE,
      S3_image=TRUE,
      S4_image=TRUE,
      S4_FDR_peak=1)# the data is small so use all the peaks found.
## |------MACPET analysis input checking------
## Common stage inputs...OK
## Stages to run: 2-3-4
## |---- Checking Stage 2 inputs ----|
## Creating BAM index...
## S2_PairedEndBAMpath bam file is paired-end file.
## Checking the bam file header for the genome....OK
## Loading PET data...
## ======>PET statistics<======
## Total PETs in data: 5377 ( 100 %)
## Total PCR replicates: 0 ( 0 %)
## Total Black-listed PETs: 19 ( 0.353356890459364 %)
## Total valid PETs left: 5358 ( 99.6466431095406 %)
## Saving 16 \times 10 in image
## Correct Stage 2 inputs given.
## |---- Checking Stage 3 inputs ----|
## Correct Stage 3 inputs given.
## |---- Checking Stage 4 inputs ----|
## Correct Stage 4 inputs given.
## All inputs correct! Starting MACPET analysis...
## |-----PET Classification Analysis-----|
## |-----Stage 2-----|
```

```
## ==============
## Separating Inter-chromosomal data...Done
## Finding Self-Intra cut-off...Done
## Self-ligated cut-off at: 799 bp
## Saving 16 x 10 in image
## Separating Intra-chromosomal data...Done
## Separating Self-ligated data...Done
## Self-ligated mean length: 294
## ======>PET statistics<======
## Total Self-ligated PETs: 4520
## Total Intra-chromosomal PETs: 744
## Total Inter-chromosomal PETs: 94
## Saving 16 x 10 in image
## ============
## Stage 2 is done!
## Analysis results for stage 2 are in:
## /var/folders/6n/6y8cjthx4sb0hk5k5w8q3lw40000gn/T//Rtmp1RnlPK/MACPETtest/S2_results
## Total stage 2 time: 3.99537587165833 secs
## |-----Binding Site Analysis-----|
## |------|
## Converting data for analysis...Done
## Segmenting into regions...Done
## Total Regions found: 451
## Running peak calling process...Done
## Total 135 candidate peaks found in data
## Splitting data by chromosome for inference...
## Computing p-values...
## FDR adjusting p-values...
## Saving 16 x 10 in image
## ========
## Stage 3 is done!
## Analysis results for stage 3 are in:
## /var/folders/6n/6y8cjthx4sb0hk5k5w8q3lw40000gn/T//Rtmp1RnlPK/MACPETtest/S3_results
## Total stage 3 time: 11.5461549758911 secs
## |------Interactions Analysis-----|
## |------|
## Minimum number of allowed interaction PETs is set to: 2
## FDR cut-off of peaks to be used in the analysis: 1
## Preparing interactions data...
## Total peaks passing the FDR cut-off: 135 ( 100 \% of the total peaks )
## Extending peak intervals by 500 bp on either side.
## Merging overlapping peaks...Done
## Total peaks after merging: 121
```

MACPET

```
## Including only Intra-ligated PETs in the analysis (Inter-ligated are empty)...Done
## Intersecting the PETs with the peaks...Done
## Counting PETs in the peaks...Done
## Total 21 candidate interactions will be processed
## Total 32 peaks are involved in potential interactions ( 26.4462809917355 % of the total FDR peaks )
## Total 133 PETs are involved in potential interactions ( 17.8763440860215 % of the total interaction PETs
## Summarizing interaction information...Done
## Saving 16 \times 10 in image
## |====== Network Initialization is finished ============
## |========= Running interactions analysis =================
## |---- Total interactions processed: 1 ( 4.761905 %) ----|
|---- Total interactions processed: 2 ( 9.52381 %) ----|
|---- Total interactions processed: 3 ( 14.28571 %) ----|
|---- Total interactions processed: 4 ( 19.04762 %) ----|
|---- Total interactions processed: 5 ( 23.80952 %) ----|
|---- Total interactions processed: 6 ( 28.57143 %) ----|
|---- Total interactions processed: 7 ( 33.33333 %) ----|
|---- Total interactions processed: 8 ( 38.09524 %) ----|
|---- Total interactions processed: 9 ( 42.85714 %) ----|
|---- Total interactions processed: 10 ( 47.61905 %) ----|
|---- Total interactions processed: 11 ( 52.38095 %) ----|
|---- Total interactions processed: 12 ( 57.14286 %) ----|
|---- Total interactions processed: 13 ( 61.90476 %) ----|
|---- Total interactions processed: 14 ( 66.66667 %) ----|
|---- Total interactions processed: 15 ( 71.42857 %) ----|
|---- Total interactions processed: 16 ( 76.19048 %) ----|
|---- Total interactions processed: 17 ( 80.95238 %) ----|
|---- Total interactions processed: 18 ( 85.71429 %) ----|
|---- Total interactions processed: 19 ( 90.47619 %) ----|
|---- Total interactions processed: 20 ( 95.2381 %) ----
---- Total interactions processed: 21 ( 100 %) ----
## Interaction analysis completed!
## Total interactions processed: 21
## Total bi-products removed: 0
## Creating the GenomeMap Object...Done
## The Genome map is successfully built!
## =============
## Stage 4 is done!
## Analysis results for stage 4 are in:
## /var/folders/6n/6y8cjthx4sb0hk5k5w8q3lw40000gn/T//Rtmp1RnlPK/MACPETtest/S4_results
## Total stage 4 time: 2.43005704879761 secs
## Global analysis is done!
## Global analysis time: 19.2340819835663 secs
#load results:
SelfObject=paste(SA_prefix,"_pselfData",sep="")
load(file.path(SA_AnalysisDir, "S2_results", SelfObject))
SelfObject=get(SelfObject)
class(SelfObject) # see methods for this class
```

```
## [1] "PSelf"
IntraObject=paste(SA_prefix,"_pintraData",sep="")
load(file.path(SA_AnalysisDir, "S2_results", IntraObject))
IntraObject=get(IntraObject)
class(IntraObject) # see methods for this class
## [1] "PIntra"
InterObject=paste(SA_prefix,"_pinterData",sep="")
load(file.path(SA_AnalysisDir, "S2_results", InterObject))
InterObject=get(InterObject)
class(InterObject) # see methods for this class
## [1] "PInter"
SelfFitObject=paste(SA_prefix,"_psfitData",sep="")
load(file.path(SA_AnalysisDir, "S3_results", SelfFitObject))
SelfFitObject=get(SelfFitObject)
class(SelfFitObject) # see methods for this class
## [1] "PSFit"
GenomeMapObject=paste(SA_prefix,"_GenomeMapData",sep="")
load(file.path(SA_AnalysisDir, "S4_results", GenomeMapObject))
GenomeMapObject=get(GenomeMapObject)
class(GenomeMapObject) # see methods for this class
## [1] "GenomeMap"
#----delete test directory:
unlink(SA_AnalysisDir, recursive=TRUE)
```

MACPETULT saves its outputs in SA_AnalysisDir in the folders S0_results, S1_results, S2_results, S3_results and S4_results based on the stages run. The output of MACPETULT in those folders is the following:

Stage 0: (output saved in a folder named S0_results in SA_AnalysisDir)

- SA_prefix_usable_1.fastq.gz: fastq.gz files with the usable 5-end tags. To be used in Stage 1.
- SA_prefix_usable_2.fastq.gz: fastq.gz files with the usable 3-end tags. To be used in Stage 1.
- SA_prefix_chimeric_1.fastq.gz: fastq.gz files with the chimeric 5-end tags.
- SA_prefix_chimeric_2.fastq.gz: fastq.gz files with the chimeric 3-end tags.
- SA_prefix_ambiguous_1.fastq.gz: fastq.gz files with the ambiguous 5-end tags.
- SA_prefix_ambiguous_2.fastq.gz: fastq.gz files with the ambiguous 3-end tags.
- SA_prefix_stage_0_image.jpg: Pie chart image with the split of two fastq files used as input (if S0_image==TRUE)

Stage 1: (output saved in a folder named S1_results in SA_AnalysisDir)

- SA_prefix_usable_1.sam: sam file with the mapped 5-end reads (if S1_rmSam==FALSE).
- SA_prefix_usable_2.sam: sam file with the mapped 3-end reads (if S1_rmSam==FALSE).
- SA_prefix_Paired_end.bam: paired-end bam file with the mapped PETs. To be used in Stage 2

- SA_prefix_Paired_end.bam.bai: .bai paired-end bam file with the mapped PETs. To be used in Stage 2
- SA_prefix_stage_1_p1_image.jpg: Pie-chart for the mapped/unmapped reads from SA_prefix_usable_1.sam and SA_prefix_usable_2.sam (if S1_image==TRUE).
- SA_prefix_stage_1_p2_image.jpg: Pie-chart for the paired/unpaired reads of SA_prefix_Paired_end.bam (if S1_image==TRUE).

Stage 2: (output saved in a folder named S2_results in SA_AnalysisDir)

- SA_prefix_pselfData: An object of PSelf class, containing the self-ligated PETs. To be used in Stage 3.
- SA_prefix_pintraData: An object of PIntra class, containing the intra-chromosomal PETs.
- SA_prefix_pinterData: An object of *Plnter* class, containing the inter-chromosomal PETs.
- SA_prefix_stage_2_p1_image.jpg: Pie-chart reliable/duplicated/black-listed PETs of SA_prefix_Paired_end.bam (if S2_image==TRUE).
- SA_prefix_stage_2_p2_image.jpg: Histogram with the self-ligated/intra-chromosomal cut-off of SA_prefix_Paired_end.bam (if S2_image==TRUE).
- SA_prefix_stage_2_p3_image.jpg: Pie-chart for the self-ligated/intra-chromosomal/inter-chromosomal PETs of SA_prefix_Paired_end.bam (if S2_image==TRUE).

Stage 3: (output saved in a folder named S3_results in SA_AnalysisDir)

- SA_prefix_psfitData: An object of PSFit class. This object contains peaks found by the peak-calling algorithm along with their p-values and FDR.
- SA_prefix_stage_3_p1_image.jpg: Sizes of the upstream vs downstream peaks of each binding site given the binding site's FDR (if S3_image==TRUE).
- SA_prefix_stage_3_p2_image.jpg: FDR of the binding sites. The horizontal red line is at FDR=0.05 (if S3_image==TRUE).
- SA_prefix_stage_3_p3_image.jpg: Comparison of binding site sizes given their FDR (if S3_image==TRUE).
- SA_prefix_stage_3_p4_image.jpg: FDR for the upstream/donwstream peaks of the binding sites given the binding sites FDR (if S3_image==TRUE).

Stage 4: (output saved in a folder named S4_results in SA_AnalysisDir)

- SA_prefix_GenomeMapData: An object of GenomeMap class. This object contains all the interactions found in the data.
- SA_prefix_stage_4_p1_image.jpg: Pie charts for the total number of peaks used in the interaction analysis as well as the total number of interaction PETs used (if S4_image==TRUE).

Stages 0:4:

All the above outputs in separate folders.

Furthermore a log-file named SA_prefix_analysis.log with the progress of the analysis is also saved in the SA_AnalysisDir.

Vardaxis, Ioannis, Finn Drabløs, Morten Rye, and Bo Henry Lindqvist. "MACPET Model-Based Analysis for ChIA-PET." *To Be Published*.