

Agenda

- Accessing Entries
- Filtering Records
- Joining Tables

Logistics

- Homework
 - Homework 5
 - Homework 4
 - Project

A comma separated value (csv) format can store tabular data

- We separate rows with different lines
- We separate columns with commas
- The first row indicates the headings of the columns

```
year, month, returns
2010,1,-0.5964769750070603
2010,2,0.323102811722204
2010,3,0.5936238389378875
2010,4,0.4837228609905558
2010,5,-0.12064664554679042
2010,6,-0.11388800636514022
2010,7,0.09647915933528232
```


We can load the contents of a file in comma separated value (csv) format with read_csv

```
aapl = pd.read_csv("AAPL.csv")
aapl
```

```
year, month, returns
2010,1,-0.5964769750070603
2010,2,0.323102811722204
2010,3,0.5936238389378875
2010,4,0.4837228609905558
2010,5,-0.12064664554679042
2010,6,-0.11388800636514022
2010,7,0.09647915933528232
```


Data Frame

	Candidate	Party	%	Year	Result
0	Obama	Democratic	52.9	2008	win
1	McCain	Republican	45.7	2008	loss
2	Obama	Democratic	51.1	2012	win
3	Romney	Republican	47.2	2012	loss
4	Clinton	Democratic	48.2	2016	loss
5	Trump	Republican	46.1	2016	win

Series

```
Obama

McCain

Obama

Romney

Clinton

Trump

Name: Candidate, dtype: object
```

Index

Candidate Series Party Series % Series Year Series Result Series

Candidate Party		Party	%	Year	Result
0	Obama	Democratic	52.9	2008	win
1	McCain	Republican	45.7	2008	loss
2	Obama	Democratic	51.1	2012	win
3	Romney	Republican	47.2	2012	loss
4	Clinton	Democratic	48.2	2016	loss
5	Trump	Republican	46.1	2016	win

Candidate Series Party Series % Series Year Series

Result Series

Column headers are unique

_	Candidate	Party	%	Year	Result
0	Obama	Democratic	52.9	2008	win
1	McCain	Republican	45.7	2008	loss
2	Obama	Democratic	51.1	2012	win
3	Romney	Republican	47.2	2012	loss
4	Clinton	Democratic	48.2	2016	loss
5	Trump	Republican	46.1	2016	win

Use one pair of brackets to access a column from a table as a Series

elections["Candidate"]

```
Andrew Jackson
       John Quincy Adams
          Andrew Jackson
       John Quincy Adams
          Andrew Jackson
            Donald Trump
173
           Evan McMullin
174
175
            Gary Johnson
         Hillary Clinton
176
              Jill Stein
177
Name: Candidate, Length: 178, dtype: object
```


Use two pairs of nested brackets to access two or more columns from a table

elections[["Candidate", "Party"]]

	Candidate	Party
0	Andrew Jackson	Democratic-Republican
1	John Quincy Adams	Democratic-Republican
2	Andrew Jackson	Democratic
3	John Quincy Adams	National Republican
4	Andrew Jackson	Democratic
173	Donald Trump	Republican
174	Evan McMullin	Independent
175	Gary Johnson	Libertarian
176	Hillary Clinton	Democratic
177	Jill Stein	Green

Use two pairs of nested brackets to access a column from a table as a DataFrame

elections[["Candidate"]]

Candidate

_	
0	Andrew Jackson
•	Allulew Jacksoll

1 John Quincy Adams

2 Andrew Jackson

3 John Quincy Adams

4 Andrew Jackson

...

173 Donald Trump

174 Evan McMullin

175 Gary Johnson

176 Hillary Clinton

177 Jill Stein

Note that you must indicate adjacent rows with a numeric range such as 0:3 for 0,1,2

electi	ons[0:3]			
	Candidate	Party	%	Result
Year				
1980	Reagan	Republican	50.7	win
1980	Carter	Democratic	41.0	loss
1980	Anderson	Independent	6.6	loss

Note that you must indicate adjacent rows with a numeric range such as 0:3 for 0,1,2

erect	ions[0] Candid	Party	%	Result
Year				
1980	Reagan	Republican	50.7	win
1980	Carter	Democratic	41.0	loss
1980	Anderson	Independent	6.6	loss

Link the following definitions to their corresponding Pandas container

- 1. A sequence of row labels
- 2. Two-dimensional (tabular data)
- 3. One-dimensional (column data)
- □ Data Frame: 1, Series: 2, Index: 3
- □ Data Frame: 2, Series: 1, Index: 3
- □ Data Frame: 2, Series: 3, Index: 1
- □ Data Frame: 3, Series: 2, Index: 1

Link the following definitions to their corresponding Pandas | container

- 1. A sequence of row labels
- 2. Two-dimensional (tabular data)
- 3. One-dimensional (column data)
- □ Data Frame: 1, Series: 2, Index: 3
- □ Data Frame: 2, Series: 1, Index: 3
- Data Frame: 2, Series: 3, Index: 1
- □ Data Frame: 3, Series: 2, Index: 1

elections.loc[[0, 1, 2, 3, 4], ['Candidate', 'Party', 'Year']]

Candidate	Party	Year
Reagan	Republican	1980
Carter	Democratic	1980
Anderson	Independent	1980
Reagan	Republican	1984
Mondale	Democratic	1984
	Reagan Carter Anderson Reagan	Reagan Republican Carter Democratic Anderson Independent Reagan Republican

elections.iloc[0:3, 0:3]

	Candidate	Party	%
0	Reagan	Republican	50.7
1	Carter	Democratic	41.0
2	Anderson	Independent	6.6

.iloc selections - position based selection

data.iloc[<row selection], <column selection>]

Integer list of rows: [0,1,2] Slice of rows: [4:7]

Single values: 1

Integer list of columns: [0,1,2] Slice of columns: [4:7]

Single column selections: 1

loc selections - position based selection

data.loc[<row selection], <column selection>]

Index/Label value: 'john'

List of labels: ['john', 'sarah']

Logical/Boolean index: data['age'] == 10

Named column: 'first_name'

List of column names: ['first_name', 'age']

Slice of columns: 'first_name':'address'

Which of the following statements regarding iloc are true?
\Box It is harder to make mistakes with iloc than with loc
\Box It is easier to read iloc code than loc code
\Box iloc doesn't use labels
\Box iloc is vulnerable to changes in the ordering of rows and columns in a Data Frame

Which of the following statements regarding iloc are true?

- ☐ It is harder to make mistakes with iloc than with loc
- ☐ It is easier to read iloc code than loc code
- iloc doesn't use labels
- loc is vulnerable to changes in the ordering of rows and columns in a Data Frame

elections[[False, False, False, False, False, False, True, False, False, True, False, True]]

	Candidate	Party	%	Year	Result
7	Clinton	Democratic	43.0	1992	win
10	Clinton	Democratic	49.2	1996	win
14	Bush	Republican	47.9	2000	win
22	Trump	Republican	46.1	2016	win

elections[elections['Party'] == 'Independent']

	Candidate	Party	%	Year	Result
7	Clinton	Democratic	43.0	1992	win
10	Clinton	Democratic	49.2	1996	win
14	Bush	Republican	47.9	2000	win
22	Trump	Republican	46.1	2016	win


```
elections[(elections['Result'] == 'win')
& (elections['%'] < 50)]</pre>
```

	Candidate	Party	%	Year	Result
7	Clinton	Democratic	43.0	1992	win
10	Clinton	Democratic	49.2	1996	win
14	Bush	Republican	47.9	2000	win
22	Trump	Republican	46.1	2016	win

elections.loc[(elections['Result'] == 'win') & (elections['%'] < 50), 'Candidate':'%']</pre>

	Candidate	Party	%
7	Clinton	Democratic	43.0
10	Clinton	Democratic	49.2
14	Bush	Republican	47.9
22	Trump	Republican	46.1


```
df[df["Party"].isin(["Republican", "Democratic"])]
elections.loc[(election)
                                    \ & (elections['%'] < 50), 'Candidate':'%']</pre>
```

			- OCP
7	Clinton	Democratic	43.0
10	Clinton	Democratic	49.2
14	Bush	Republican	47.9
22	Trump	Republican	46.1

Which of the following statements about Pandas Indices are false?		
\square Indices must integers		
\square Indices may be non-numeric, and are always unique		
\square Indices need not be unique, but must be numeric		
\square Indices need not be unique, and can be non-numeric		

Which of the following statements about Pandas Indices are false?

- Indices must integers
- Indices may be non-numeric, and are always unique
- Indices need not be unique, but must be numeric
- ☐ Indices need not be unique, and can be non-numeric

Х

X

Х

Compare to numpy.vstack

INNER JOIN

RIGHT JOIN

Tables

- Accessing Entries
- Filtering Records
- Joining Datasets

References

McKinney, Python for Data Analysis

(Chapter 11.1-11.4 + 7.1-7.2 + 8.2)

Questions

- Describe the learning objectives.
- Summarize the relevant take-aways.
- Ask about unclear information.