Luke Davidson ME 5659 HW1

Table of Contents

Problem 1	1-2
Problem 2	
Problem 3	7-10
Problem 4	11
Problem 5	12-15

What aspect of the Since noise is often	the limited by applying a controller to system, however note is inevitable. associated with higher Gequences ages out to zero, a higher compliasis controlling the disturbance factor with liter (PID, etc.)
U=t	2
$\dot{O} = W$ $\dot{w} = \frac{NKm}{Je} i - \frac{1}{Je} T_{L}$ $\dot{i} = -\frac{Nkm}{L} w - \frac{R}{L} i + V$	$y_1 = 0 \qquad y_2 = 0$ $y_2 = 0 \qquad y_3 = 0$ $(\frac{1}{2}) \qquad y_3 = 0$
	$ \dot{y}_{1} = y_{2} $ $ \dot{y}_{2} = 4.438 y_{3} $ $ \dot{y}_{3} = -12y_{2} - 24y_{3} + \left[\frac{1}{2}\right] $ $ \sum_{L} $
C) equiv inertia quen at Jen = Jm + T2	motor? Jez=J+N2Jm
These will be diff in opposite direct	Perent due to the gearratio acting ions.

```
2a.)
%Luke Davidson
%ME 5659
%HW1 Q2a
clc;
clear all;
close all;
%initialize params
N = 12;
Jm = 8e-4;
J = .02;
Je = (N.^2)*Jm + J;
K = 0.05;
R = 1.2;
L = 0.05;
%build state matrices
A = [0 \ 1 \ 0; \ 0 \ 0 \ N*K/Je; \ 0 \ -N*K/L \ -R/L];
B = [0 \ 0; \ 0 \ -1/Je; \ 1/L \ 0];
C = [1 \ 0 \ 0; \ 0 \ 1 \ 0];
D = [0 \ 0; 0 \ 0];
[By,Bx] = size(B);
%Isim matrices
t = 0:0.1:4;
[ty,tx] = size(t);
U = zeros(Bx,tx);
U(1,1:22) = 3;
U(1,21:end) = -3;
%lsim
sys = ss(A,B,C,D);
[Y_data,T,X_data] = Isim(sys,U,t);
plot(T,Y_data,T,X_data)
title('Luke Davidson - HW1 Q2a');
legend('Theta (rad)','Omega (rad/s)','Current (A)');
grid on;
grid minor;
```


2b.)

%Luke Davidson %ME 5659 %HW1 Q2b

clc;

clear all;

close all;

%ode45

tspan1 = 0:0.1:2;

tspan2 = 2:0.1:4;

[t1,x1] = ode45(@func1,tspan1,[0 0 0]);

[t2,x2] = ode45(@func2,tspan2,[0 0 0]);

 $\% start\ second\ plots\ from\ end\ of\ first$

[x1zero,z1one]=size(x1);

```
start2 = x1(x1zero,:);
%plot
plot(tspan1,x1(:,1),-r',tspan1,x1(:,2),-g',tspan1,x1(:,3),-b',tspan2,x2(:,1)+start2(1),-r',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,1)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(:,2)+start2(2),-g',tspan2,x2(
3)+start2(3),'-b')
title('Luke Davidson - HW1 Q2b');
legend('Theta (rad)','Omega (rad/s)','Current (A)');
grid on;
grid minor;
%define functions
function ydot=func1(t,y)
ydot(1) = y(2);
ydot(2) = 4.438*y(3);
ydot(3) = -12*y(2)-24*y(3)+60;
ydot = ydot';
end
function ydot=func2(t,y)
ydot(1) = y(2);
ydot(2) = 4.438*y(3);
ydot(3) = -12*y(2)-24*y(3)-60;
ydot = ydot';
```


2c.) ON PAGE 2

end

d.) motor torque = To N that leads to max are of load no load torque motor notor metha: Im load inertia: I
$(2.13) = Je \dot{\omega} = NT_0 - T_1$ $Je = J + N^2 J_m$
$\Rightarrow (J + N^2 J_m) \dot{\omega} = N J_0 - J_L$ $\dot{\omega} = N J_0 - J_L$ $\dot{\omega} = N J_0 - J_L$
String on line yields
$= \frac{T_0(J - J_m^2) + 2(T_0)(T_m)(N)}{(J + J_m N^2)^2} = 0$
solving For N* gives N*= [(J)(TL) + (TO)^2(J)(Jm) + (TL)(Jm)
A after realizing the problem has T_=0 (apps) A
$\frac{d}{dn}\left(\frac{NT_0}{J^+N^2J_m}\right)=0 \implies \frac{T_0\left(J^-J_mN^{2}\right)}{\left(J^+J_mN^{2}\right)^2}=0$
solving for N* yield N*: JJ M T M T T T M

	(
3.) damper blu m and ground, Pm	M		<u>^</u>
a) g=0	y } u	In	\x,
rist lengths = 0		T	
u=input	m		
yelf) = disturbance input	traditional agreement		
output: x,	V-18	中分。	X2
			1
$F_{\text{spring}} = K(x-x_0)$			
$F_{k_1} : K_1(x_1-x_2)$ $x_2 = 1$	J	stoks = x,	, X2, W1, V
	1		
$F_{D} = \mathcal{D}(\dot{x}_{1} - \dot{x}_{2}) \qquad \qquad \dot{V}_{2} = $			
Mdv, = - K, (x,-x2) - O(v,-v2)	+ 4		
- ot			
mdl K(X X) 1 O(11 = 1)	- v (v)	01.	
m d/2 = K, (x, -x2) + D(v, -v2)	- h (x2-y2)	- Dm (12-	ye)-4
		Bre h	om
This is not possible because	e with the do	imper Dr	n introduce
a variable ye, which is a o	derivative of	an exog.	input or
y= Ax+Bu.		· · · · · · · · · · · · · · · · · · ·	""

		,							
	stakes '	= X,)						
	(Xz X, mx2 - Dn ye	-						
		miz - Dn ye)						
9	X		1-K	K1 + K2	0+0m	6	X		
0	X ₂	-Dmye J	= D	N- 14	0	an	X2		1-1
	lmx,	-Drue	DrOm	D+Om		D+On		-	1
		J	K ₁ D ₁ D _m -K ₁ D	-K1-K2 0+Om K D	0	0	×,		11
			D	D			1 201		1,
			[KI	-K-K2	D	0]	[miz -D.	myr J	L'


```
5c.)
%Luke Davidson
%ME 5659
%HW1 Q5
clc;
clear all;
close all;
%initialize params
N = 12;
Jm = 8e-4;
J = .02;
Km = 0.05;
K = 500;
R = 1.2;
L = 0.05;
%build state matrices
A = [0\ 0\ 1\ 0\ 0;\ 0\ 0\ 1\ 0;\ 0\ K/J\ 0\ 0\ 0;\ 0\ -K/((N.^2)*Jm)-K/J\ 0\ 0\ Km/(Jm*N);\ 0\ 0\ -Km*N/L\ -Km*N/L\ -R/L]
B = [0; 0; 0; 0; 1/L]
C = [1 \ 0 \ 0 \ 0; 0 \ 0 \ 1 \ 0];
D = 0;
[By,Bx] = size(B);
%Isim matrices
t = 0:0.1:4;
[ty,tx] = size(t);
U = zeros(Bx,tx);
U(1,1:22) = 3;
U(1,21:end) = -3;
%lsim
sys = ss(A,B,C,D);
[Y_data,T,X_data] = Isim(sys,U,t);
% plot(T,Y_data,T,X_data)
plot(T,X_data)
title('Luke Davidson - HW1 Q5c');
legend('Theta (rad)', 'Delta (rad)', 'omega (rad/s)', 'Omega(rad/s^2)', 'Current (A)');
grid on;
```

grid minor;

