Christian B. Mendl, Irene López Gutiérrez, Keefe Huang

## **Tutorial 13** (Experimentally resolving the quantum measurement process<sup>1</sup>)

Recall from the lecture that a projective measurement is described by a Hermitian operator M. Writing its spectral decomposition as  $M = \sum_m \lambda_m P_m$ , where  $P_m$  is the projector onto the eigenspace of eigenvalue  $\lambda_m$ , the  $P_m$ 's take the role of the measurement operators. If the measurement outcome is not recorded, then the overall process is represented by the quantum channel

$$\mathcal{E}_{\mathsf{proj}}(
ho) = \sum_{m} P_{m} 
ho P_{m}.$$

In the history of quantum mechanics, the interpretation as mathematical projection onto subspaces traces back to an article by G. Lüders<sup>2</sup>. He concluded that the quantum superposition within an eigenspace of dimension 2 or larger "survives" the measurement process, and that two commuting observables M,  $\tilde{M}$ ,  $[M,\tilde{M}]=0$ , are "compatible" with each other, i.e., measuring M does not affect the outcome statistics of  $\tilde{M}$ . In this tutorial, we discuss an experimental realization [1] of such a "Lüders process" retaining the superposition. (The term "Lüders process" and "ideal measurement" refer to a projective measurement here.)

The principal quantum system is formed by three electronic states  $|0\rangle$ ,  $|1\rangle$  and  $|2\rangle$  of a  $^{88}\mathrm{Sr^{+}}$  ion, as indicated in Fig. 1(a). Such a "qutrit" is a generalization of qubits to statevectors from  $\mathbb{C}^{3}$ . The ion has an additional short-lived excited state  $|e\rangle$ . In the experiment, a laser with variable power drives

$$|0\rangle \rightarrow g_0 |0\rangle + g_1 |e\rangle$$
.

 $|e\rangle$  quickly decays to  $|0\rangle$ , emitting a photon in the process:  $|e\rangle\,|n=0\rangle \rightarrow |0\rangle\,|n=1\rangle$ , where  $|n\rangle$  is the quantum state of the photon environment. The (indirect) measurement process consists of the detection of the emitted photon, which indicates the occupancy of  $|0\rangle$ , but leaves a superposition between  $|1\rangle$  and  $|2\rangle$  intact. The coefficients  $g_0$  and  $g_1$  satisfy  $|g_0|^2+|g_1|^2=1$  and are used to demonstrate a transition from "no measurement"  $(g_0=1)$  to an ideal measurement  $(g_0=0)$ . (In the experiment, fluorescence detection is actually only employed at the end for state tomography, but not during the measurement, i.e., one ignores the outcome.)



Figure 1: (a) Electronic states of the ion  $^{88}\mathrm{Sr}^+$ . (b) Experimental sequence to characterize the process.

(a) The system is initialized to

$$|\psi\rangle = (\alpha_0 |0\rangle + \alpha_1 |1\rangle + \alpha_2 |2\rangle) |n = 0\rangle.$$

What is the state of the system,  $|\psi'\rangle$ , after the excitation by the laser and  $|e\rangle$  has decayed back into  $|0\rangle$ ?

The Kraus operators which model this whole operation (i.e., the drive into  $|e\rangle$  and the subsequent decay) are

$$E_0 = g_1 |0\rangle \langle 0|$$
 and  $E_1 = g_0 |0\rangle \langle 0| + |1\rangle \langle 1| + |2\rangle \langle 2|$ .

- (b) Compute the reduced density matrix of the ion at the beginning of the experiment,  $\rho_{\text{ion}} = \operatorname{tr}_{\text{env}}[|\psi\rangle\langle\psi|]$ , and apply the quantum operation to  $\rho_{\text{ion}}$ .
- (c) Verify that your result for (b) matches

$$\rho'_{\rm ion} = \operatorname{tr}_{\rm env}[|\psi'\rangle \langle \psi'|].$$

(d) Which measurement process corresponds to the case when  $q_1 = 1$ ?

The experiment uses process tomography for characterization. A detailed explanation is beyond the scope of this tutorial; as brief summary: an additional laser (shown in red in Fig. 1) performs the initial state preparation, formally by applying a unitary matrix to  $|0\rangle$ . In the experiment, nine specific initial states  $|\psi_i\rangle = U_i\,|0\rangle$  are used in different runs, corresponding to the unitaries  $\{U_i\}$ . Before the final fluorescence detection, the red laser realizes the action of one of the adjoint unitaries  $U_i^{\dagger}$ .

<sup>&</sup>lt;sup>1</sup>F. Pokorny et al.: Tracking the dynamics of an ideal quantum measurement. Phys. Rev. Lett. 124, 080401 (2020)

<sup>&</sup>lt;sup>2</sup>G. Lüders: Über die Zustandsänderung durch den Meßprozeß. Ann. Phys. 443, 322–328 (1950)

(e) Show that, in general, for a projective measurement with operators  $P_m$ , applying a unitary  $U^{\dagger}$  beforehand changes the outcome probabilities as if using the operators  $UP_mU^{\dagger}$ .

The experiment represents the process in terms of the so-called Choi matrix, as shown in Fig. 2. As  $g_0 \to 0$ , the process becomes an ideal (projective) measurement.



Figure 2: Choi matrices reconstructed from experimental data for different values of  $g_0$ , from [1].

(f) Which feature of the Choi matrix indicates that the superposition between  $|1\rangle$  and  $|2\rangle$  is preserved?

## Solution

(a) Right after the excitation has happened, the state of the system is

$$(\alpha_0 g_0 | 0\rangle + \alpha_0 g_1 | e\rangle + \alpha_1 | 1\rangle + \alpha_2 | 2\rangle) | n = 0\rangle.$$

After the decay, this becomes

$$|\psi'\rangle = (\alpha_0 g_0 |0\rangle + \alpha_1 |1\rangle + \alpha_2 |2\rangle) |n = 0\rangle + \alpha_0 g_1 |0\rangle |n = 1\rangle.$$

(b) Initially the ion and the environment are unentangled, so we can directly read off the density matrix

$$\rho_{\mathsf{ion}} = (\alpha_0 \left| 0 \right\rangle + \alpha_1 \left| 1 \right\rangle + \alpha_2 \left| 2 \right\rangle) (\alpha_0^* \left\langle 0 \right| + \alpha_1^* \left\langle 1 \right| + \alpha_2^* \left\langle 2 \right|) = \begin{pmatrix} \left| \alpha_0 \right|^2 & \alpha_0 \alpha_1^* & \alpha_0 \alpha_2^* \\ \alpha_1 \alpha_0^* & \left| \alpha_1 \right|^2 & \alpha_1 \alpha_2^* \\ \alpha_2 \alpha_0^* & \alpha_2 \alpha_1^* & \left| \alpha_2 \right|^2 \end{pmatrix}.$$

The overall quantum operation is

$$\mathcal{E}(\rho_{\mathsf{ion}}) = \sum_{k} E_{k} \rho_{\mathsf{ion}} E_{k}^{\dagger}.$$

Here

$$E_0\rho_{\mathsf{ion}}E_0^\dagger = \begin{pmatrix} g_1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} |\alpha_0|^2 & \alpha_0\alpha_1^* & \alpha_0\alpha_2^* \\ \alpha_1\alpha_0^* & |\alpha_1|^2 & \alpha_1\alpha_2^* \\ \alpha_2\alpha_0^* & \alpha_2\alpha_1^* & |\alpha_2|^2 \end{pmatrix} \begin{pmatrix} g_1^* & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} |g_1|^2|\alpha_0|^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

and

$$\begin{split} E_1 \rho_{\mathsf{ion}} E_1^{\dagger} &= \begin{pmatrix} g_0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} |\alpha_0|^2 & \alpha_0 \alpha_1^* & \alpha_0 \alpha_2^* \\ \alpha_1 \alpha_0^* & |\alpha_1|^2 & \alpha_1 \alpha_2^* \\ \alpha_2 \alpha_0^* & \alpha_2 \alpha_1^* & |\alpha_2|^2 \end{pmatrix} \begin{pmatrix} g_0^* & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} |g_0|^2 |\alpha_0|^2 & g_0 \alpha_0 \alpha_1^* & g_0 \alpha_0 \alpha_2^* \\ g_0^* \alpha_1 \alpha_0^* & |\alpha_1|^2 & \alpha_1 \alpha_2^* \\ g_0^* \alpha_2 \alpha_0^* & \alpha_2 \alpha_1^* & |\alpha_2|^2 \end{pmatrix}. \end{split}$$

Adding both of these matrices, and using the fact that  $|g_0|^2 + |g_1|^2 = 1$ , we obtain

$$\mathcal{E}(\rho_{\mathrm{ion}}) = \begin{pmatrix} |\alpha_0|^2 & g_0\alpha_0\alpha_1^* & g_0\alpha_0\alpha_2^* \\ g_0^*\alpha_1\alpha_0^* & |\alpha_1|^2 & \alpha_1\alpha_2^* \\ g_0^*\alpha_2\alpha_0^* & \alpha_2\alpha_1^* & |\alpha_2|^2 \end{pmatrix}.$$

(c) We trace out the environment by

$$\rho'_{\text{ion}} = \sum_{i=0}^{1} \langle n = i | \psi' \rangle \langle \psi' | n = i \rangle.$$

Note that

$$\langle n = 0 | \psi' \rangle = (\alpha_0 g_0 | 0 \rangle + \alpha_1 | 1 \rangle + \alpha_2 | 2 \rangle)$$

and

$$\langle n=1|\psi'\rangle=\alpha_0g_1|0\rangle$$
.

This leads us to

$$\rho_{\mathrm{ion}}' = \begin{pmatrix} |\alpha_0|^2 & g_0\alpha_0\alpha_1^* & g_0\alpha_0\alpha_2^* \\ g_0^*\alpha_1\alpha_0^* & |\alpha_1|^2 & \alpha_1\alpha_2^* \\ g_0^*\alpha_2\alpha_0^* & \alpha_2\alpha_1^* & |\alpha_2|^2 \end{pmatrix}$$

as in the previous section.

- (d) When  $g_1=1$ ,  $g_0=0$  and therefore the Kraus operators are  $E_0=|0\rangle \langle 0|$  and  $E_1=I-|0\rangle \langle 0|=|1\rangle \langle 1|+|2\rangle \langle 2|$ , i.e., this process is a projective measurement into the space spanned by  $|0\rangle$  and its orthogonal complement.
- (e) Denoting the quantum state before the measurement by  $|\psi\rangle$ , outcome m occurs with probability

$$p(m) = \langle \psi | P_m | \psi \rangle.$$

(Note that  $P_m^2=P_m$  by definition of a projection operator.) Applying  $U^\dagger$  beforehand changes the probability to

$$\tilde{p}(m) = \langle \psi | U P_m U^{\dagger} | \psi \rangle = \langle \psi | \tilde{P}_m | \psi \rangle$$

with  $\tilde{P}_m = U P_m U^{\dagger}$ .

(f) These are the four columns corresponding to  $(|11\rangle + |22\rangle)(\langle 11| + \langle 22|)$ .