Using Big Data to Evaluate Equitable Access to Community Resources

Transportation Research Board Annual Meeting Dr. Gregory Macfarlane, Ph.D., PE

Outline

- Access and Equity
- Methodology
 - utility-based access from location-based services data
- Some findings:
 - Correlation of access and health
 - Heterogeneity in attitudes
 - Benefits of shifting streets

Access to Community Resources

- Lack of consistency in spatial impact findings
 - Parks access and physical / mental health
 - Nutrition access and physical health
 - Libraries and community membership / educational attainment
- Frustrating inconsistency in spatial definitions
 - Percent of green space within 5 miles / any park within 10 minute walk, etc.
 - A "high-quality" grocery store within 1 mile

Utility-based Access

A destination choice model logsum gives a measure of access at zone *i*

$$A_i = \ln \sum_{j \in J} \exp(u_{ij})$$

Where u_{ij} is the *utility* of destination j,

$$u_{ij} = \beta_t t t_{ijk} + X_j \boldsymbol{\beta}$$

Problem: how to get plausible estimates of β ?

Data Methodology

- Multimodal paths from Open Trip Planner
- Resource attributes from field observations / web resources

BYU Civil & Construction Engineering

Location-based Services Data

- Resource polygons
- Number of devices in p'gon by home block group

LBS Data

Flow Shares

 What percent of devices in a block group go to each resource?

- 10,000 draws
- One observed choice
- 10 random choices

Synthetic Choice Data

Buffers vs Utility-based Access

ParkScore

10-minute network walk

Utility Logsums

Correlation w/ utility-based access, not with walk buffer

Macfarlane, G.S., Boyd, N., Taylor, J.E., & Watkins, K. (2021). Modeling the impacts of park access on health outcomes: A utility-based accessibility approach. *Environment and Planning B: Urban Analytics and City Science*, 48(8), 2289–2306.

Table 3. Estimated Effect of Accessibility on Physical Activity Rates

	Size and Distance	Amenities	10-Minute Walk
Accessibility	$0.2306^* \ [0.0907; 0.3705]$	$0.1923^* \ [0.0498; 0.3347]$	$0.5865 \ [-0.1778; 1.3508]$
Num. obs. Parameters	2099 28	2099 28	2099 28
Log Likelihood	-4433.0965	-4434.7087	-4436.9264

^{*} Null hypothesis value outside the confidence interval. 95% confidence interval in brackets. y = tract-level physical activity rate.

Table 4. Estimated Effect of Accessibility on Obesity Rates

	Size and Distance	Amenities	10-Minute Walk
Physical Activity	-0.4798^*	-0.4800^*	-0.4803^*
	[-0.5039; -0.4556]	[-0.5041; -0.4558]	[-0.5044; -0.4562]
γ : Physical Activity	0.0207	0.0204	0.0173
	[-0.0371; 0.0785]	[-0.0375; 0.0782]	[-0.0404; 0.0750]
Accessibility	-0.0495	-0.0471	-0.2630
	[-0.1260; 0.0270]	[-0.1259; 0.0316]	[-0.6491; 0.1232]
Num. obs.	2099	2099	2099
Parameters	30	30	30
Log Likelihood	-3113.5891	-3113.7048	-3113.5028

^{*} Null hypothesis value outside the confidence interval. 95% confidence interval in brackets. y = tract-level obesity rate.

Heterogeneity in Park Preferences

Macfarlane, G.S., Turley Voulgaris, C., & Tapia, T. (2021). If you build it who will come? Equity analysis of park system changes during COVID-19 using passive origin-destination data. Under second-round review.

Benefit of Converting Streets to "Parks"

ibid.

Utah County

Travel time is correlated with utility-based logsum, but there is large variance

Equity implications

All Households

Low-income (<\$35k) Households

Considerations of Method

Strengths

Availability / Convenience

Limitations

- Block-group correlation, not individual
 - Can segment
- Cannot guarantee activity was accomplished
- May uncover spatial availability more than real preferences

Thank You

gregmacfarlane.github.io

BYU Civil & Construction Engineering IRA A. FULTON COLLEGE OF ENGINEERING