Kohomologie de Rhama zostały przypomniane. I struktura różniczkowa na rozmaitości. I metryka Riemanna. I

Definicja 1 (gwiazdka Hodge'a). $*: \Omega^k(M) \to \Omega^{n-k}(M), ** = (-1)^{k(n-k)}, \alpha \land (*\alpha) = |\alpha^2| \text{Vol}$

Definicja 2 (iloczyn skalarny na $\Omega^p(M)).$ $(\alpha,\beta)=\int_M \alpha \wedge (*\beta)$

Definicja 3. \tilde{X} niezwarta rozmaitość Riemanna, Γ grupa działająca kozwarcie na \tilde{X} przez izometrie zachowujące orientację.

Niech $A^{0,p}=A^{0,p}(\tilde{X})$ przestrzeń L^2 -p-form na $\tilde{X},\ A^{0,p}=\overline{A_0^p}^{\|\cdot\|_0}$, gdzie A_0^p przestrzeń C^∞ p-form na \tilde{X} o zwartym nośniku, $\|\omega\|_0^2=(\omega,\omega)_0=\int_{\tilde{X}}\omega\wedge(*\omega)$

Stwierdzenie 4. $A^{0,p}$ jest przestrzenią Hilberta z iloczynem skalarnym $(\cdot, \cdot)_0$ i ma rozkład Hodge'a:

$$A^{0,p} = \overline{dA_0^{p-1}} \oplus \mathcal{H}^p \oplus \overline{d^*A_0^{p+1}},$$

gdzie $\mathcal{H}^p = \{\omega : d\omega = d^*\omega = 0\}$ to przestrzeń form harmonicznych.

Definicja 5 (L^2 -kohomologie de Rhama). $H_{dR(2)}^p(\tilde{X}) = \ker d/\overline{\operatorname{im} d}$

Twierdzenie 6 (Dodziuk 1977). Całkowanie form różniczkowych po sympleksach indukuje Γ -izomorfizm $\int : \mathcal{H}^p(\tilde{X} \to \bar{H}^p_{(2)}(\tilde{X}).$

Definicja 7. $A^{k,p} = \{\omega \in A^{0,p} : (\mathrm{Id} + \Delta)^k \omega \in A^{0,p}\}, \text{ gdzie } \Delta = dd^* + d^*d - \text{odpowiednik przestrzeni Soboleva.}$

Stwierdzenie 8 (Atiyah). Dla każdego $k \ge 0$, $0 \le p \le \dim X$, przestrzeń $A^{k,p}$ jest uzupełnieniem A_0^p względem normy $\|\omega\|_k^2 = \|(\operatorname{Id} + \Delta)^k \omega\|_0^2$, $\omega \in A_0^p$, oraz $(\operatorname{Id} + \Delta)^k$ jest samosprzężonym operatorem na $A^{0,p}$ z dziedziną $A^{k,p}$.

Lemat 9. Operator $(\mathrm{Id} + \Delta)^k$ jest izomorfizmem przestrzeni Hilberta $A^{k,p}$ i $A^{0,p}$.

Lemat 10. L^2 -formy harmoniczne na \tilde{X} są zamknięte i kozamknięte,

$$\mathcal{H}^p(\tilde{X}) = \{\omega \in A^{0,p} : \Delta\omega = 0\} = \{\omega \in A^{0,p} : d\omega = d^*\omega = 0\}.$$

Ponadto $Z^p(\tilde{X}) = \ker d$ może być zapisane jako

$$Z^p(\tilde{X}) = \mathcal{H}^p(\tilde{X}) \oplus \overline{B^p(\tilde{X})},$$

dlatego $\mathcal{H}^p(\tilde{X})$ jest Γ -izomorficzne z $\bar{H}^p(\tilde{X}) = Z^p/\overline{B^p}$.