Chapitre 5 : Le symbole Σ

I Généralités

A) Définition

Définition:

Soit $(a_1, a_2, ...a_n) \in \mathbb{C}^n$

On note $\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n$ Noté aussi $\sum_{i \in \{1,2,\dots n\}} a_i \text{ ou } \sum_{1 \le i \le n} a_i .$

Si $(a_i)_{i \in I}$ est une famille de complexes indexée par un ensemble fini I quelconque, $\sum_{i \in I} a_i$ désigne la « somme des a_i , i décrivant I »

(Se donner une famille $(a_i)_{i \in I}$ indexée par I, c'est se donner pour chaque $i \in I$ un complexe a_i ; cela correspond à une application de I dans $\mathbb C$. Cela peut servir pour le repérage)

Cette définition est possible parce que + est associative et commutative. Par exemple, on peut définir aussi $\prod_{i \in I} a_i$ (produit des a_i), mais on ne peut pas définir $\underset{i \in I}{\Delta} a_i$ comme étant la différence des a_i (dans quel ordre les prendre ?)

On convient que
$$\sum_{i \in \emptyset} a_i = 0$$
, et $\prod_{i \in \emptyset} a_i = 1$.

B) Premières propriétés

• Si $(a_i)_{i \in I}$ et $(b_i)_{i \in I}$ sont deux familles indexées par un même ensemble fini I:

$$\sum_{i \in I} a_i + b_i = \sum_{i \in I} a_i + \sum_{i \in I} b_i$$

• Si J et J sont deux ensembles finis disjoints, et si $(a_i)_{i \in I \cup J}$ est une famille de complexes indexée par $I \cup J$: $\sum_{i \in I \cup J} a_i = \sum_{i \in I} a_i + \sum_{i \in J} a_i$

$$\sum_{i \in I \cup J} a_i = \sum_{i \in I} a_i + \sum_{i \in J} a_i$$

• Si $(a_i)_{i \in I}$ est une famille de complexes indexée par un ensemble fini I, et pour $\lambda \in \mathbb{C}$:

$$\sum_{i \in I} \lambda a_i = \lambda \sum_{i \in I} a_i$$

C) Exemples

• On a vu :
$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

•
$$\sum_{i=0}^{n} 2i + 3 = 2\sum_{i=0}^{n} i + \sum_{i=0}^{n} 3 = n(n+1) + 3n = n(n+4)$$

•
$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Démonstration par récurrence :

- Vrai pour n = 0
- Si c'est vrai pour n :

$$\sum_{i=0}^{n+1} i^2 = \sum_{i=0}^{n} i^2 + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{2n^2 + 7n + 6}{6}(n+1)$$
$$= \frac{(n+1)(n+2)(2n+3)}{6}$$

Ce qui achève la récurrence.

•
$$\sum_{i=0}^{n} (3i^{2} + 2i - 1) = 3\sum_{i=0}^{n} i^{2} + 2\sum_{i=0}^{n} i - (n+1) = \frac{n(n+1)(2n+1)}{2} + n(n+1) - (n+1)$$
$$= \frac{n+1}{2} (n(2n+1) + 2n - 2) = \frac{(n+1)(n+2)(2n-1)}{2}$$

II Sommes « doubles »

On s'intéresse ici au cas $\sum_{k \in K} a_k$ lorsque la famille $(a_k)_{k \in K}$ est indexée par une partie finie K de $\mathbb{N} \times \mathbb{N}$.

Autrement dit, les indices dans la somme sont des couples d'entiers.

Pour $k = (i, j) \in K$, $a_k = a_{(i,j)}$ est noté $a_{i,j}$ ou même a_{ij} .

On s'intéresse donc à une somme du type $\sum_{(i,j)\in K} a_{i,j}$ où K est une partie finie de \mathbb{N}^2 .

A) Un cas particulier simple

$$K = [1, n] \times [1, p]$$
. On note alors :

$$\sum_{(i,j)\in K} a_{i,j} = \sum_{\substack{i\in [1,n]\\j\in [1,p]}} a_{i,j} = \text{« somme des } a_{i,j} \text{ pour } i \text{ entre } 1 \text{ et } n \text{ et } j \text{ entre } 1 \text{ et } p \text{ »}.$$

Alors:

$$\begin{split} \sum_{(i,j)\in K} a_{i,j} &= (a_{1,1} + a_{1,2} + \ldots + a_{1,p}) + (a_{2,1} + a_{2,2} + \ldots + a_{2,p}) + \ldots + (a_{n,1} + a_{n,2} + \ldots + a_{n,p}) \\ &= \sum_{i=1}^{n} \left(\sum_{j=1}^{p} a_{i,j}\right) = \sum_{j=1}^{p} \left(\sum_{i=1}^{n} a_{i,j}\right) \end{split}$$

Visualisation:

$i \setminus j$	1	2	3	
1	$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	
2	$a_{2,1}$	$a_{2,2}$	$a_{2,3}$	
3	$a_{3,1}$	$a_{3,2}$	$a_{3,3}$	

Convention habituelle:

Dans un tableau, $a_{x,y}$ est sur la ligne n°x, la colonne n°y.

Ainsi, faire
$$\sum_{i=1}^{n} \left(\sum_{j=1}^{p} a_{i,j} \right)$$
, c'est sommer par ligne (et $\sum_{j=1}^{p} \left(\sum_{i=1}^{n} a_{i,j} \right)$ par colonne)

B) Deuxième cas particulier

$$\begin{split} K &= \big\{ (i,j) \in \mathbb{N} \times \mathbb{N}, 1 \leq i \leq j \leq n \big\} \\ \sum_{(i,j) \in K} a_{i,j} &= \sum_{\substack{(i,j) \text{ tels que} \\ 1 \leq i \leq j \leq n}} a_{i,j} = (a_{1,1} + a_{1,2} + \ldots + a_{1,n}) + (a_{2,2} + \ldots + a_{2,n}) + \ldots + (a_{n-1,n-1} + a_{n-1,n}) + a_{n,n} \\ &= \sum_{i=1}^n \left(\sum_{j=i}^p a_{i,j} \right) = \sum_{j=1}^n \left(\sum_{i=1}^j a_{i,j} \right) \end{split}$$

i∖j	1	2	3	
1				
2				
3				

C) Cas général

Remarquons que K est une partie finie de $\mathbb{N} \times \mathbb{N}$. Il existe donc $N \in \mathbb{N}$ tel que $K \subset [0, N] \times [0, N]$.

(L'ensemble des points représente K)

$$\sum_{(i,j)\in K} a_{i,j} = \sum_{i=0}^{N} \left(\sum_{j\in A_i} a_{i,j} \right) \text{ où } A_i = \left\{ j \in \mathbb{N}, (i,j) \in K \right\}$$

Ici,
$$A_0 = \emptyset$$
, $A_1 = \{2,4\}$
De même, $\sum_{(i,j) \in K} a_{i,j} = \sum_{j=0}^{N} \left(\sum_{i \in B_j} a_{i,j}\right)$ où $B_j = \{i \in \mathbb{N}, (i,j) \in K\}$

III Changement de variable

Proposition

Soit $(a_i)_{i \in I}$ une famille de complexes indexée par un ensemble fini I. On suppose que J est un autre ensemble fini, et que φ est une bijection de J sur I.

Alors
$$\sum_{i \in I} a_i = \sum_{j \in J} a_{\varphi(j)}$$
. On dit qu'on fait le changement de variables « $i = \varphi(j)$ ».

Justification:

Les $\varphi(j)$ pour j décrivant J donnent tout les i de I (car φ est surjective) et chacun une seule fois (car φ est injective). Les termes des deux sommes sont donc les mêmes à l'ordre près.

Exemple:

$$\sum_{k=0}^{n} (k+1)^2 = \sum_{i=1}^{n+1} i^2$$

IV Exemples classiques

$$\sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} \min(i, j) = \sum_{1 \le i \le n} \left(\sum_{1 \le j \le n} \min(i, j) \right)$$

$$= \sum_{1 \le i \le n} \left(\sum_{1 \le j \le i} \min(i, j) + \sum_{1 + i \le j \le n} \min(i, j) \right) \left(\sum_{1 + i \le j \le n} \min(i, j) = 0 \text{ pour } i = n \right)$$

$$= \sum_{1 \le i \le n} \left(\sum_{1 \le j \le i} j + \sum_{1 + i \le j \le n} i \right) = \sum_{1 \le i \le n} \left(\frac{i(i+1)}{2} + i \times (n-i) \right) = \sum_{1 \le i \le n} \left(\frac{i^2}{2} + i \times (n+\frac{1}{2}) \right)$$

$$= -\frac{n(n+1)(2n+1)}{12} + \frac{(n+\frac{1}{2})n(n+1)}{2} = n(n+1)(2n+1)(-\frac{1}{12} + \frac{1}{4})$$

$$= \frac{n(n+1)(2n+1)}{6}$$

• Calcul des sommes $S_p = \sum_{k=1}^n k^p$; on sait déjà que :

$$S_0 = n$$

 $S_1 = \frac{n(n+1)}{2}$
 $S_2 = \frac{n(n+1)(2n+1)}{6}$

On a:

$$\sum_{k=0}^{n} (k+1)^{2} = \begin{cases} \sum_{k=0}^{n} k^{2} + 2\sum_{k=0}^{n} k + \sum_{k=0}^{n} 1 = S_{2} + 2S_{1} + (n+1) \\ \sum_{k=0}^{n+1} i^{2} = S_{2} + (n+1)^{2} \end{cases}$$

D'où
$$S_2 + 2S_1 + (n+1) = S_2 + (n+1)^2$$
, et ainsi, $S_1 = \frac{n(n+1)}{2}$.

De même :
$$\sum_{k=0}^{n} (k+1)^3 = \begin{cases} S_3 + 3S_2 + 3S_1 + (n+1) \\ S_3 + (n+1)^3 \end{cases}$$
, d'où $S_2 = \frac{n(n+1)(2n+1)}{6}$

Et:

$$\sum_{k=0}^{n} (k+1)^4 = \begin{cases} S_4 + 4S_3 + 6S_2 + 4S_1 + (n+1) \\ S_4 + (n+1)^4 \end{cases}$$

Donc:

$$S_4 + (n+1)^4 = S_4 + 4S_3 + 6S_2 + 4S_1 + (n+1)$$

$$4S_3 = (n+1)^4 - n(n+1)(2n+1) - 2n(n+1) - (n+1)$$

$$4S_3 = (n+1)((n+1)^3 - n(2n+1) - 2n - 1)$$

$$4S_3 = (n+1)^2((n+1)^2 - (2n+1)) = (n+1)^2 n^2$$

$$S_3 = \frac{(n+1)^2 n^2}{4}$$

Pour obtenir S_4 en connaissant les précédents, on fait de la même façon...

• Produit de sommes

$$\begin{split} \left(\sum_{1 \le i \le n} a_i\right) \times \left(\sum_{1 \le j \le p} b_j\right) &= (a_1 + a_2 + \dots + a_n)(b_1 + b_2 + \dots + b_p) \\ &= (a_1 b_1 + a_1 b_2 + \dots + a_1 b_p) + (a_2 b_1 + a_2 b_2 + \dots + a_2 b_p) \\ &+ \dots + (a_n b_1 + a_n b_2 + \dots + a_n b_p) \\ &= \sum_{i=1}^n \left(\sum_{j=1}^p a_i b_j\right) = \sum_{(i,j) \in [[1,n] \times [1,p]]} a_i b_j \end{split}$$

• Produit de deux expressions polynomiales :

Trouble the death expressions posynomiates:
$$\left(\sum_{1 \leq i \leq n} a_i x^i\right) \times \left(\sum_{1 \leq j \leq p} b_j x^j\right) = \sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} a_i b_j x^{i+j}$$

$$= \sum_{0 \leq k \leq n+p} \left(\sum_{\substack{(i,j) \in [[1,n] \mid k[[1,p]] \\ \text{tel que } i+j=k}}} a_i b_j x^{i+j}\right) \text{ regroupement selon les puissances de } x$$

$$= \sum_{0 \leq k \leq n+p} \left(\left(\sum_{\substack{(i,j) \in [[1,n] \mid k[[1,p]] \\ i+j=k}}} a_i b_j x^k\right) \cdot \text{On pose } C_k = \sum_{\substack{(i,j) \in [[1,n] \mid k[[1,p]] \\ i+j=k}}} a_i b_j$$

$$= \sum_{0 \leq k \leq n+p} \left(C_k x^k\right)$$

• Somme de termes en progression arithmétique :

On s'intéresse à $S_n = \sum_{k=0}^n a_k$ lorsqu'il existe r tel que $\forall k \in \{1,...n\}, a_k = a_{k-1} + r$.

A retenir : S_n = nombre de termes $\times \frac{1}{2} \times$ somme des extrêmes.

En effet :
$$\forall k \in \{0,...n\}, a_k = a_0 + kr$$

Et
$$\forall k \in \{0,...n\}, a_k + a_{n-k} = a_0 + kr + a_0 + (n-k)r = a_0 + a_0 + nr = a_0 + a_n$$

$$S_n = a_0 + a_1 + \dots + a_n$$

$$S_n = a_n + a_{n-1} + \dots + a_0$$

Donc
$$2S_n = (n+1) \times (a_0 + a_n)$$

Donc
$$S_n = \frac{(n+1)(a_0 + a_n)}{2}$$

• Somme de termes en progression géométrique :

On s'intéresse à $S_n = \sum_{k=0}^n a_k$ lorsqu'il existe q tel que $\forall k \in \{1,...n\}, a_k = qa_{k-1}$

A retenir:
$$S_{n} = \begin{cases} (n+1)a_{0} & \text{si } q = 1\\ \frac{a_{n+1} - a_{0}}{q - 1} & \text{si } q \neq 1 \end{cases}$$

Le cas où q = 1 est trivial :

$$S_n = \sum_{k=0}^n a_k = \sum_{k=0}^n a_0 = (n+1)a_0$$

Sinon, pour $q \neq 1$:

$$S_n = a_0 + qa_0 + q^2a_0 + \dots + q^n a_0$$

$$qS_n = qa_0 + q^2a_0 + q^3a_0 + \dots + \underbrace{q^{n+1}a_0}_{a_{n+1}} = S_n + a_{n+1} - a_0$$

Donc
$$(q-1)S_n = a_{n+1} - a_0$$

Donc
$$S_n = \frac{a_{n+1} - a_0}{q - 1}$$