Rényi Divergence Variational Inference

Kseniia Petrushina

MIPT, 2023

October 17, 2023

Motivation & Background

2 Theory

3 Empirical results

Motivation

Main idea

Approximate inference is a crucial component of modern probabilistic machine learning, as it involves approximating posterior distributions and likelihood functions.

The authors suggest combining existing methods into a unified framework.

Background

Variational inference

Posterior distribution

$$p(\boldsymbol{\theta}|\mathcal{D},\varphi) = \frac{p(\boldsymbol{\theta},\mathcal{D}|\varphi)}{p(\mathcal{D}|\varphi)}$$
(1)

Variational lower-bound of $p(\mathcal{D}|\varphi)$

$$\mathcal{L}_{VI}(q; \mathcal{D}, \varphi) = \log p(\mathcal{D}|\varphi) - KL[q||p] = \mathbb{E}_q \left[\log \frac{p(\theta, \mathcal{D}|\varphi)}{q(\theta)} \right]$$
 (2)

Rényi's α – divergence

$$D_{\alpha}[p||q] = \frac{1}{\alpha - 1} \log \int p(\theta)^{\alpha} q(\theta)^{1 - \alpha} d\theta$$
 (3)

- **①** continuous and non-decreasing on $\alpha \in \{\alpha : |D_{\alpha}| < +\infty\}$

Variational Rényi bound

Definition

$$\mathcal{L}_{\alpha}(q; \mathcal{D}, \varphi) = \log p(\mathcal{D}|\varphi) - D_{\alpha}[q||p] = \frac{1}{1 - \alpha} \mathbb{E}_{q} \left[\log \left(\frac{p(\theta, \mathcal{D}|\varphi)}{q(\theta)} \right)^{1 - \alpha} \right]$$
(4)

Theorem 1

For all $\alpha_+ \in (0,1)$ and $\alpha_- < 0$

$$\mathcal{L}_{\alpha}(q;\mathcal{D}) = \lim_{\alpha \to 1} \mathcal{L}_{\alpha}(q;\mathcal{D}) \le \mathcal{L}_{\alpha_{+}}(q;\mathcal{D}) \le \mathcal{L}_{0}(q;\mathcal{D}) \le \mathcal{L}_{\alpha_{-}}(q;\mathcal{D}) \quad (5)$$

$$\mathcal{L}_0(q; \mathcal{D}) = \log p(\mathcal{D}) \Leftrightarrow \operatorname{supp}(p(\theta|\mathcal{D})) \subseteq \operatorname{supp}(q(\theta)) \tag{6}$$

Variational Rényi bound

Figure: Mean-Field approximation for Bayesian linear regression.

Monte Carlo approximation

Approximation formula

$$\hat{\mathcal{L}}_{\alpha,K}(q; \mathbf{x}) = \frac{1}{1-\alpha} \log \frac{1}{K} \sum_{k=1}^{K} \left[\left(\frac{p(\theta_k, \mathbf{x})}{q(\theta_k | \mathbf{x})} \right)^{1-\alpha} \right], \theta_k \sim q(\theta | \mathbf{x})$$
 (7)

Figure: Monte Carlo approximation to the VR bound.

Bayesian neural network

Figure: Test LL and RMSE results for Bayesian neural network regression.

Variational auto-encoder

Dataset	K	VAE	IWAE	VR-max
Frey Face	5	1322.96	1380.30	1377.40
$(\pm$ std. err. $)$		± 10.03	± 4.60	± 4.59
Caltech 101	5	-119.69	-117.89	-118.01
Silhouettes	50	-119.61	-117.21	-117.10
MNIST	5	-86.47	-85.41	-118.01
	50	-86.35	-84.80	-117.10
OMNIGLOT	5	-107.62	-106.30	-106.33
	50	-107.80	-104.68	-105.05

Table: Average Test log-likelihood.

Literature

Main article Rényi Divergence Variational Inference.