## ÁLGEBRA LINEAL

**MATRICES** 

# ¿Qué es una matriz?

## ¿Qué es una matriz?

Matriz. Dado un cuerpo  $\mathbb{K}$ , una matriz de orden  $m \times n$  con coeficientes en  $\mathbb{K}$  es una 'tabla' formada por elementos de  $\mathbb{K}$  distribuidos en m filas y n columnas de la forma

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

donde  $a_{ij} \in \mathbb{K}$ ;  $i = 1, 2, \dots, m$ ;  $j = 1, 2, \dots, n$ 

## ¿Qué es una matriz?

#### Ejemplo

$$A = \begin{pmatrix} 1 & 2 & 9 \\ 2 & 7 & 5 \end{pmatrix}$$

A es una matriz de orden  $2 \times 3$  (esto es: tiene 2 filas y 3 columnas) y  $a_{12}$  es el elemento que se encuentra en la primera fila, segunda columna, es decir  $a_{12} = 2$ .

## Conjunto de todas las matrices

Conjunto de matrices.  $\mathcal{M}_{m \times n}(\mathbb{K})$  es el conjunto de todas las matrices de orden  $m \times n$  sobre el cuerpo  $\mathbb{K}$ .

Para el caso m=n escribiremos simplemente  $\mathcal{M}_n(\mathbb{K})$  y las matrices pertenecientes a este conjunto se dice que son de orden n en vez de  $n \times n$ .

## ¿Cuándo dos matrices son iguales?

Igualdad de matrices. Dos matrices son iguales si tienen el mismo orden e iguales elementos en cada una de las posiciones.

#### **Ejemplo**

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 1 & 3 \end{pmatrix} \quad B = \begin{pmatrix} 3 & 1 \\ 2 & 1 \\ 1 & 3 \end{pmatrix} \quad C = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 1 & 3 \end{pmatrix} \quad D = \begin{pmatrix} 2 & 2 \\ 1 & 2 \end{pmatrix}$$

A y C son las únicas matrices que son iguales

Matriz fila. Se denomina matriz fila a toda matriz que consta de una única fila

$$A=\left(a_{11}\ a_{12}\ a_{13}\ \cdots\ a_{1n}\right)\in\mathcal{M}_{1\times n}(\mathbb{K})$$

$$A = egin{pmatrix} -1 & 2 & 3 & 0 & 1 \end{pmatrix} \in \mathcal{M}_{1 imes 5}(\mathbb{R})$$

Matriz columna. Se denomina matriz columna a toda matriz que consta de una única columna

$$A = egin{pmatrix} a_{11} \ a_{21} \ dots \ a_{m1} \end{pmatrix} \in \mathcal{M}_{m imes 1}(\mathbb{K})$$

$$A = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} \in \mathcal{M}_{4 \times 1}(\mathbb{R})$$

Matriz cuadrada. Se denomina matriz cuadrada de orden n a toda matriz que consta de n filas y n columnas

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

$$A = \begin{pmatrix} 4 & 2 \\ 0 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$

Diagonal principal. Dada una matriz cuadrada A, los elementos  $a_{ii}$  con i = 1, ..., n constituyen su diagonal principal:

$$A = \begin{pmatrix} \mathbf{a_{11}} & a_{12} & \cdots & a_{1n} \\ a_{21} & \mathbf{a_{22}} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \mathbf{a_{nn}} \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

Matriz diagonal. Dada una matriz cuadrada A, se dice que es una matriz diagonal si todos los elementos fuera de su diagonal principal son 0, es decir,  $a_{ij} = 0$  siempre que  $i \neq j$ .

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

$$A = egin{pmatrix} 7 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$$

Matriz identidad. Se denomina matriz identidad de orden n, y se denota como  $I_n$ , la matriz diagonal en la que tiene todos los elementos de la diagonal son 1.

$$A = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Matriz triangular superior. A es triangular superior si  $a_{ij}=0, \ \forall i>j$ , es decir, si todos los elementos por debajo de la diagonal principal son 0.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

Matriz triangular inferior. A es triangular inferior si  $a_{ij} = 0, \ \forall i < j$ , es decir, si todos los elementos por encima de la diagonal principal son 0

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

#### **Ejemplo**

Matriz triangular superior de orden 4:

$$A = \begin{pmatrix} 1 & 4 & 3 & 2 \\ 0 & 3 & -2 & 5 \\ 0 & 0 & 8 & -1 \\ 0 & 0 & 0 & 7 \end{pmatrix}$$

Matriz triangular inferior de orden 3:

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 7 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$

## Matrices de cualquier orden

En general, se mantiene la denominación de matriz triangular superior cuando  $a_{ij}=0, \forall i>j$ .

Las matrices triangulares superiores, si no son cuadradas, se corresponden con los siguientes casos, dependiendo de si tenemos más filas que columnas o mas columnas que filas: n < m o m < n.

$$A = \begin{pmatrix} 1 & 4 & 3 & 2 & 2 & 1 \\ 0 & 3 & 2 & 5 & 2 & 1 \\ 0 & 0 & 8 & 1 & 2 & -2 \\ 0 & 0 & 0 & -7 & 1 & 3 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 9 & -1 \\ 0 & 6 & 5 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

## Matrices escalonadas por filas

## Matrices escalonadas por filas

Matriz escalonada por filas. Una matriz  $A \in \mathcal{M}_{m \times n}(\mathbb{K})$  es escalonada por filas si verifica las siguientes condiciones:

- ► El primer elemento no nulo de cada fila, denominado pivote, está a la derecha del pivote de la fila superior
- Si contiene filas nulas, éstas están en la parte inferior de la matriz.

## Matrices escalonadas por filas

$$\begin{pmatrix} 2 & 1 & -1 & 2 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 3 & 2 & 2 & 5 & 8 \\ 0 & 2 & -1 & 9 & -3 \\ 0 & 0 & 4 & 3 & 2 \end{pmatrix}$$

## Matrices escalonadas reducidas por filas

Matriz escalonada reducida por filas. Una matriz  $A \in \mathcal{M}_{m \times n}(\mathbb{K})$  es escalonada reducida por filas si es escalonada y además cumple los siguientes requisitos:

- Los pivotes son todos 1-s.
- Todos los elementos que están en la misma columna del pivote son nulos.

$$\begin{pmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 & 5 & 8 \\ 0 & 1 & 0 & 7 & 3 \\ 0 & 0 & 1 & 10 & 2 \end{pmatrix}$$

Suma/resta de matrices. La suma/resta de dos matrices A y B solo es posible si ambas son del mismo orden  $m \times n$ . Cuando el orden es el mismo la suma/resta se hace elemento a elemento.

$$A = \begin{pmatrix} 3 & 5 & -2 & 0 \\ 0 & 1 & 2 & -1 \\ 3 & 2 & 7 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -4 & 5 & 2 \\ 3 & 2 & -4 & 6 \\ 1 & -3 & -5 & 0 \end{pmatrix}$$
$$A + B = \begin{pmatrix} 4 & 1 & 3 & 2 \\ 3 & 3 & -2 & 5 \\ 4 & -1 & 2 & 4 \end{pmatrix}$$

$$A = \begin{pmatrix} 3 & 5 & -2 & 0 \\ 0 & 1 & 2 & -1 \\ 3 & 2 & 7 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -4 & 5 & 2 \\ 3 & 2 & -4 & 6 \\ 1 & -3 & -5 & 0 \end{pmatrix}$$
$$A - B = \begin{pmatrix} 2 & 9 & -7 & -2 \\ -3 & -1 & 6 & -7 \\ 2 & 5 & 12 & 4 \end{pmatrix}$$

Producto por un escalar. El producto de un escalar  $\lambda \in \mathbb{K}$  y una matriz  $A = (a_{ij})_{m \times n} \in \mathcal{M}_{m \times n}(\mathbb{K})$ , es otra matriz de orden  $m \times n$  y se obtiene multiplicando cada elemento de la matriz por el escalar.

Dados 
$$\lambda=2$$
 y  $A=\begin{pmatrix}1&0&3\\4&0&6\end{pmatrix}$ , entonces 
$$\lambda A=2A=\begin{pmatrix}2&0&6\\8&0&12\end{pmatrix}$$

Producto de matrices. Para poder realizar el producto entre dos matrices, A y B, el número de columnas de A(1.matriz) y el número de filas de B(2.matriz) tienen que ser iguales. Cada elemento ij de la matriz resultante se obtiene multiplicando la fila i de A por la columna j de B y sumando los números resultantes. La matriz resultante tendrá el mismo número de filas que A y el mismo número de columnas que B.

#### Ejemplo

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 \\ 0 & 2 \\ -1 & 3 \end{pmatrix}$$

Entonces, el producto de A por B es

$$AB = \begin{pmatrix} 1 \cdot 2 + 2 \cdot 0 + 3 \cdot (-1) & 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 3 \\ 2 \cdot 2 + 1 \cdot 0 + 0 \cdot (-1) & 2 \cdot 1 + 1 \cdot 2 + 0 \cdot 3 \end{pmatrix} = \begin{pmatrix} -1 & 14 \\ 4 & 4 \end{pmatrix}$$



## Propiedades

Traza. La traza de una matriz es la suma de los elementos de la diagonal principal, es decir, siendo

$$A = \begin{pmatrix} \mathbf{a_{11}} & a_{12} & \cdots & a_{1n} \\ a_{21} & \mathbf{a_{22}} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \mathbf{a_{nn}} \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

la traza de A es

$$\operatorname{tr}(A) = a_{11} + \cdots + a_{nn} = \sum_{i=1}^{n} a_{ii}.$$

## Propiedades

Elemento neutro del producto.

El elemento neutro del producto es la matriz identidad. Sea  $A \in \mathcal{M}_{m \times n}(\mathbb{K})$  una matriz de m filas y n columnas,entonces, se verifica que

$$AI_n = A$$
 y  $I_m A = A$ .

## Propiedades

**Ejemplo** Si tenemos la siguiente matriz,

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 0 \\ 1 & 1 \end{pmatrix}$$

multiplicaremos por la derecha la identidad de orden 2, es decir:

$$AI_2 = \begin{pmatrix} 1 & 2 \\ 3 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$AI_2 = \begin{pmatrix} 1 \cdot 1 + 2 \cdot 0 & 1 \cdot 0 + 2 \cdot 1 \\ 3 \cdot 1 + 0 \cdot 0 & 3 \cdot 0 + 0 \cdot 1 \\ 1 \cdot 1 + 1 \cdot 0 & 1 \cdot 0 + 1 \cdot 1 \end{pmatrix} = A$$

## Excepciones

La multiplicación de matrices no es conmutativa.

#### **Ejemplo**

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$
 
$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = BA$$

No se cumple la igualdad.



## Matriz traspuesta

Traspuesta de una matriz. Sea A una matriz con m filas y n columnas,  $A=(a_{ij})_{m\times n}\in\mathcal{M}_{m\times n}(\mathbb{K})$ . La matriz traspuesta de la matriz A se denota como  $A^t$  y se obtiene intercambiando filas por columnas:

$$A^t = (a_{ji})_{n \times m} \in \mathcal{M}_{n \times m}(\mathbb{K}).$$

#### Ejemplo

Si 
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 entonces,

$$A^t = \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ 1 & 3 \end{pmatrix}$$

# Propiedades matriz traspuesta

Propiedad involutiva. Para toda matriz A,  $(A^t)^t = A$ .

#### **Ejemplo**

Si 
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
 entonces,  $A^t = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$ . Y volviendo a hacer

la traspuesta de  $A^t$ , obtenemos

$$(A^t)^t = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} = A$$

#### Matrices cuadradas

Matriz invertible/regular A es invertible o regular si existe otra matriz cuadrada  $A^{-1} \in \mathcal{M}_n(\mathbb{K})$  tal que  $AA^{-1} = A^{-1}A = I_n$ . En caso de la existencia de esta matriz  $A^{-1}$  es siempre única y se llama matriz inversa de A.

Observación. La matriz inversa cumple las siguientes dos condiciones:

$$AA^{-1} = I_n$$
$$A^{-1}A = I_n$$

#### Transformaciones elementales

Transformaciones elementales por filas.

- Multiplicar una fila por un escalar no nulo, es decir,  $\lambda \in \mathbb{K}, \ \lambda \neq 0$ .
- Intercambiar la posicion de dos filas.
- Sumar a una fila otra multiplicada por un escalar.

De manera análoga se pueden definir las transformaciones elementales por columnas.

#### Transformaciones elementales

Ejemplo transformación elemental.

Multiplicar la primera fila por un escalar no nulo:  $\lambda=2$ 

$$A = \begin{pmatrix} 3 & 5 & -2 & 0 \\ 0 & 1 & 2 & -1 \\ 3 & 2 & 7 & 4 \end{pmatrix}$$
$$A = \begin{pmatrix} 6 & 10 & -4 & 0 \\ 0 & 1 & 2 & -1 \\ 3 & 2 & 7 & 4 \end{pmatrix}$$

#### Transformaciones elementales

Ejemplo transformación elemental.

Sumar a la 2.fila la 3.fila multiplicada por un escalar  $\lambda = 3$ :

$$A = \begin{pmatrix} 6 & 10 & -4 & 0 \\ 0 & 1 & 2 & -1 \\ 3 & 2 & 7 & 4 \end{pmatrix}$$

$$A = \begin{pmatrix} 6 & 10 & -4 & 0 \\ 0+3\cdot3 & 1+2\cdot3 & 2+7\cdot3 & -1+4\cdot3 \\ 3 & 2 & 7 & 4 \end{pmatrix}$$

## Matrices equivalentes

Matrices equivalentes por filas. Dos matrices  $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$  son equivalentes por filas si se puede pasar de una a otra mediante una sucesion de transformaciones elementales por filas.

Teorema Cada matriz es equivalente por filas a una única matriz escalonada reducida por filas.

# Rango de una matriz

## Rango de una matriz

Rango. Dada una matriz  $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ , llamaremos rango de A y lo denotaremos como rg(A), al número de filas no nulas que tiene su equivalente y única matriz escalonada reducida por filas.

**Proposicion.** Si  $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ , entonces,  $rg(A) \leq minm,n$ 



#### Caracterización de las matrices invertibles

Teorema de caracterización. Sea A una matriz cuadrada  $A \in \mathcal{M}_n(\mathbb{K})$ . Entonces son equivalentes:

- ► A es invertible
- ightharpoonup rg(A) = n
- ► La matriz escalonada reducida por filas equivalente a A es la matriz identidad I<sub>n</sub>

#### Teorema de caracterización

La tercera equivalencia aporta un método para calcular la matriz inversa de una matriz invertible  $A \in \mathcal{M}_n(\mathbb{K})$ :

- -Escribimos la matriz identidad  $I_n$  a la derecha de la matriz,  $(A|I_n)$ .
- -Calculamos la matriz escalonada reducida que será de la forma  $(I_n|B)$ .
- -La matriz B resultante será la inversa de A.



#### Determinante de una matriz cuadrada

Determinante. Dada una matriz cuadrada  $A \in \mathcal{M}_n(\mathbb{K})$ , llamaremos determinante de la matriz A y lo denotaremos por  $\det(A)$  o |A| a un elemento del cuerpo  $\mathbb{K}$  que se define por inducción del siguiente modo:

- si n = 1,  $A = (a_{11})$  y entonces  $det(A) = a_{11}$
- ▶ si n > 1, det $(A) = a_{11}\alpha_{11} a_{12}\alpha_{12} + \cdots + (-1)^{n+1}a_{1n}\alpha_{1n}$

donde  $\alpha_{1i}$  es el determinante de la matriz de orden n-1 que se obtiene en suprimir la primera fila y la columna i-ésima de la matriz A.

#### Determinante de una matriz cuadrada.

Dada la matriz cuadrada de orden 2,

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

tenemos que

$$\alpha_{11} = \det(a_{22}) = a_{22}$$
 $\alpha_{12} = \det(a_{21}) = a_{21}$ 

Así pues, el determinante es

$$\det(A) = a_{11}\alpha_{11} - a_{12}\alpha_{12} = a_{11}a_{22} - a_{12}a_{21}$$

#### Determinante de una matriz cuadrada.

Dada la matriz cuadrada de orden 3,

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

El determinante de A es

$$\det(A) = a_{11}\alpha_{11} - a_{12}\alpha_{12} + a_{13}\alpha_{13}$$

#### Determinante de una matriz cuadrada.

Tenemos que calcular los valores de  $\alpha_{ij}$ :

$$\alpha_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} \qquad \alpha_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} \qquad \alpha_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Con lo cual,

$$\alpha_{11} = a_{22}a_{33} - a_{23}a_{32}; \quad \alpha_{12} = a_{21}a_{33} - a_{23}a_{31}; \quad \alpha_{13} = a_{21}a_{32} - a_{22}a_{31}$$

Dada la matriz cuadrada de orden 3,

$$A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 1 & 5 \\ 3 & 2 & 4 \end{pmatrix}$$

El determinante de A es

$$\det(A) = 1\alpha_{11} - 1\alpha_{12} + 3\alpha_{13}$$

$$A = \begin{pmatrix} 1 & 1 & 3 \\ 2 & 1 & 5 \\ 3 & 2 & 4 \end{pmatrix}$$

$$\alpha_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} \qquad \alpha_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} \qquad \alpha_{13} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$\alpha_{11} = \begin{vmatrix} 1 & 5 \\ 2 & 4 \end{vmatrix} \qquad \alpha_{12} = \begin{vmatrix} 2 & 5 \\ 3 & 4 \end{vmatrix} \qquad \alpha_{13} = \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix}$$

$$\alpha_{11} = \begin{vmatrix} 1 & 5 \\ 2 & 4 \end{vmatrix}$$
 $\alpha_{12} = \begin{vmatrix} 2 & 5 \\ 3 & 4 \end{vmatrix}$ 
 $\alpha_{13} = \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix}$ 

Con lo cual,

$$\alpha_{11} = 1 \cdot 4 - 5 \cdot 2; \quad \alpha_{12} = 2 \cdot 4 - 5 \cdot 3; \quad \alpha_{13} = 2 \cdot 2 - 1 \cdot 3$$

$$\alpha_{11} = -6; \quad \alpha_{12} = -7; \quad \alpha_{13} = 1$$

por tanto,

$$\det(A)=1lpha_{11}-1lpha_{12}+3lpha_{13}$$
  $lpha_{11}=-6;\quad lpha_{12}=-7;\quad lpha_{13}=1$   $\det(A)=1(-6)-1(-7)+3(1)=4$ 



En la práctica, para nosotros el determinante de una matriz será un número real.

### Determinante de una matriz cuadrada

Propiedad. Sea  $A \in \mathcal{M}_n(\mathbb{K})$  una matriz cuadrada.

A es invertible  $\iff det(A) \neq 0$ .