CS101 Algorithms and Data Structures

Stack
Textbook Ch 10.1

Outline

- Stack ADT
- Implementation
- Example applications

Normally, mathematics is written using what we call *in-fix* notation:

$$(3+4) \times 5 - 6$$

The operator is placed between two operands

One weakness: parentheses are required

$$(3+4) \times 5-6 = 29$$

$$3 + 4 \times 5 - 6 = 17$$

$$3+4 \times (5-6) = -1$$

$$(3+4) \times (5-6) = -7$$

Alternatively, we can place the operands first, followed by the operator:

$$(3+4) \times 5-6$$

3 4 + 5 × 6 -

Parsing reads left-to-right and performs any operation on the last two operands:

Other examples:

$$3 \ 4 \ 5 \times + 6 3 \ 20 \ + 6 3 + 4 \times 5 - 6 = 17$$
 $23 \ 6 17$

$$3 \ 4 \ 5 \ 6 - \times +$$
 $3 \ 4 \ -1 \times +$
 $3 + 4 \times (5 - 6) = -1$
 -1

杨刚OPT 3松松柳杨毅

问:链壳和数组哪个快(反应历)

> \$6 (2) Cache

FILL AND Cache

Reverse-Polish Notation

This is called *reverse-Polish* notation after the mathematician Jan Łukasiewicz

http://www.audiovis.nac.gov.pl/

REVERSE POLISH SAUSAGE http://xkcd.com/645/

Benefits:

- No ambiguity and no brackets are required
- It is the same process used by a computer to perform computations:
 - operands must be loaded into registers before operations can be performed on them

The easiest way to parse reverse-Polish notation is to use an operand stack:

- operands are processed by pushing them onto the stack
- when processing an operator:
 - pop the last two items off the operand stack,
 - · perform the operation, and
 - push the result back onto the stack

Stack ADT

Also called a *last-in-first-out* (LIFO) behaviour

- Graphically, we may view these operations as follows:

Applications

Numerous applications:

- Parsing code:
 - Matching parenthesis
 - XML (e.g., XHTML)
- Tracking function calls
- Dealing with undo/redo operations
- Reverse-Polish calculators
- Assembly language

Evaluate the following reverse-Polish expression using a stack:

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Push 1 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \times - 7 \times + - 8 \ 9 \times +$$

Push 1 onto the stack

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Push 3 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \ x - 7 \ x + - 8 \ 9 \ x +$$

Pop 3 and 2 and push 2 + 3 = 5

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Push 4 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \times - 7 \times + - 8 \ 9 \times +$$

Push 5 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \ x - 7 \ x + - 8 \ 9 \ x +$$

Push 6 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \times - 7 \times + - 8 \ 9 \times +$$

Pop 6 and 5 and push $5 \times 6 = 30$

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Pop 30 and 4 and push 4 - 30 = -26

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \times - 7 \times + - 8 \ 9 \times +$$

Push 7 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \ x - 7 \ x + - 8 \ 9 \ x +$$

7
-26
5
1

Pop 7 and -26 and push $-26 \times 7 = -182$

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \ x - 7 \ x + - 8 \ 9 \ x +$$

Pop -182 and 5 and push -182 + 5 = -177

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Pop -177 and 1 and push 1 - (-177) = 178

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \times - 7 \times + - 8 \ 9 \times +$$

Push 8 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \times - 7 \times + - 8 \ 9 \times +$$

Push 1 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \times - 7 \times + - 8 \ 9 \times +$$

Pop 9 and 8 and push $8 \times 9 = 72$

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \ x - 7 \ x + - 8 \ 9 \ x +$$

Pop 72 and 178 and push 178 + 72 = 250

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Thus

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

evaluates to the value on the top: 250

The equivalent in-fix notation is

$$((1-((2+3)+((4-(5\times6))\times7)))+(8\times9))$$

We reduce the parentheses using order-of-operations:

$$1 - (2 + 3 + (4 - 5 \times 6) \times 7) + 8 \times 9$$

Stack ADT

- Uses an explicit linear ordering
- Two principal operations
 - Push: insert an object onto the top of the stack
 - Pop: erase the object on the top of the stack
 - CreateStack: generate an empty stack
 - IsEmpty: determine if stack is empty
 - IsFull: determine if stack is full

Outline

- Stack ADT
- Implementation
- Example applications

Implementations

We will look at two implementations of stacks:

- Singly linked lists
- One-ended arrays

The optimal asymptotic run time of any algorithm is $\Theta(1)$

 The run time of the algorithm is independent of the number of objects being stored in the container

Linked-List Implementation

Operations at the front of a singly linked list are all $\Theta(1)$

The desired behavior of an Abstract Stack may be reproduced by performing all operations at the front

void push_front(int)

We could, however, note that when the list is empty, list_head == 0, thus we could shorten this to:

```
void List::push_front( int n ) {
    list_head = new Node( n, list_head );
}
```

If it is empty, we start with:

and, if we try to add 81, we should end up with:

void push_front(int)

We could, however, note that when the list is empty, list head == 0, thus we could shorten this to:

```
void List::push_front( int n ) {
    list_head = new Node( n, list_head );
}
```

If it is not empty, we start with:

and, if we try to add 70, we should end up with:

int pop_front()

The correct implementation assigns a temporary pointer to point to the node being deleted:

```
int List::pop front() {
    if ( empty() ) {
        throw underflow();
    }
    int e = front();
    Node *ptr = list head;
                                                     int front() const
    list head = list head->next();
                                                  int List::front() const {
    delete ptr;
                                                      if ( empty() ) {
    return e;
                                                          throw underflow();
}
                                                      return head()->retrieve();
                                                   }
```

```
int List::pop front() {
    if ( empty() ) {
        throw underflow();
    }
                          list head
                          e = 70
    int e = front();
    Node *ptr = list head;
                                                    int front() const
    list_head = list_head->next();
                                                 int List::front() const {
    delete ptr;
                                                     if ( empty() ) {
    return e;
                                                        throw underflow();
}
                                                     return head()->retrieve();
                                                 }
```

```
int List::pop_front() {
    if ( empty() ) {
        throw underflow();
    }

    int e = front();
    Node *ptr = list_head;
    list_head = list_head->next();
    delete ptr;
    return e;
}
```

```
int List::pop_front() {
    if ( empty() ) {
        throw underflow();
    }
        list_head

    int e = front();
    Node *ptr = list_head;
    list_head = list_head->next();
    delete ptr;
    return e;
}
```

```
int List::pop_front() {
    if ( empty() ) {
        throw underflow();
    }
    list_head

int e = front();
    Node *ptr = list_head;
    list_head = list_head->next();
    delete ptr;
    return e;
}
```

```
int List::pop_front() {
    if ( empty() ) {
        throw underflow();
    }
        list_head

    int e = front();
    Node *ptr = list_head;
    list_head = list_head->next();
    delete ptr;
    return e;
}
```

```
int List::pop_front() {
    if ( empty() ) {
        throw underflow();
    }

    int e = front();
    Node *ptr = list_head;
    list_head = list_head->next();
    delete ptr;
    return e;
}

list_head = 1 ist_head ->next();
    delete ptr;
    return e;
}
```

Array Implementation

For one-ended arrays, all operations at the back are $\Theta(1)$

Front/ 1^{st} Back/ n^{th}

Find

Insert

Erase

Top

If there are n objects in the stack, the last is located at index n-1

```
template <typename Type>
Type Stack<Type>::top() const {
   if ( empty() ) {
       throw underflow();
   return array[stack_size - 1];
}
                      タ1.尾
2. 1あ近出
```

Pop

Removing an object simply involves reducing the size

 By decreasing the size, the previous top of the stack is now at the location stack_size

```
template <typename Type>
Type Stack<Type>::pop() {
    if ( empty() ) {
        throw underflow();
    }
    --stack_size;
    return array[stack_size];
}
```

Push

Pushing an object onto the stack can only be performed if the array is not full

```
template <typename Type>
void Stack<Type>::push( Type const &obj ) {
    if ( stack_size == array_capacity ) {
        throw overflow();
    }

    array[stack_size] = obj;
    ++stack_size;
}
```

The best option is to increase the array capacity

If we increase the array capacity, the question is:

```
- How much?
```

```
– By a constant? array_capacity += c;
```

– By a multiple? array_capacity *= c;

First, let us visualize what must occur to allocate new memory


```
The implementation: void double_capacity() {
```


}

```
The implementation:
void double_capacity() {
    Type *tmp_array = new Type[2*array_capacity];
                                                     count == 4
                                                     array_capacity == 4
                                                                               tmp_array
                                                     array
```

```
The implementation:
void double_capacity() {
    Type *tmp_array = new Type[2*array_capacity];
    for ( int i = 0; i < array_capacity; ++i ) {</pre>
        tmp_array[i] = array[i];
                                                      count == 4
    }
                                                      array_capacity == 4
                                                                                tmp array
                                                      array
```

```
The implementation:
void double_capacity() {
    Type *tmp_array = new Type[2*array_capacity];
    for ( int i = 0; i < array_capacity; ++i ) {</pre>
        tmp_array[i] = array[i];
                                                      count == 4
    }
                                                      array_capacity == 4
                                                                               tmp array
                                                      array
    delete [] array;
```

```
The implementation:
void double_capacity() {
    Type *tmp_array = new Type[2*array_capacity];
    for ( int i = 0; i < array_capacity; ++i ) {</pre>
        tmp_array[i] = array[i];
    }
                                                     count == 4
                                                     array capacity == 8
                                                                              tmp
                                                     array
    delete [] array;
    array = tmp_array;
```

```
The implementation:
void double_capacity() {
    Type *tmp_array = new Type[2*array_capacity];
    for ( int i = 0; i < array_capacity; ++i ) {</pre>
        tmp_array[i] = array[i];
    }
                                                    count == 4
                                                    array capacity == 8
                                                                              tmp
                                                     array
    delete [] array;
    array = tmp_array;
    array capacity *= 2;
```

Back to the original question:

- How much do we change the capacity?
- Add a constant?
- Multiply by a constant?

First, we recognize that any time that we push onto a full stack, this requires n copies and the run time is $\Theta(n)$

Therefore, push is usually $\Theta(1)$ except when new memory is required

To state the average run time, we will introduce the concept of amortized time:

- If n operations requires $\Theta(f(n))$, we will say that an individual operation has an amortized run time of $\Theta(f(n)/n)$
- Therefore, if inserting *n* objects requires:
 - $\Theta(n^2)$ copies, the amortized time is $\Theta(n)$
 - $\Theta(n)$ copies, the amortized time is $\Theta(1)$

Let us consider the case of increasing the capacity by 1 each time the array is full

 With each insertion when the array is full, this requires all entries to be copied

Suppose we insert *k* objects

The pushing of the k^{th} object on the stack requires k-1 copies

The total number of copies is now given by:

$$\sum_{k=1}^{n} (k-1) = \left(\sum_{k=1}^{n} k\right) - n = \frac{n(n+1)}{2} - n = \frac{n(n-1)}{2} = \Theta(n^2)$$

Therefore, the amortized number of copies

is given by
$$\Theta\left(\frac{n^2}{n}\right) = \Theta(n)$$

Therefore each push must run in

 $\Theta(n)$ time

The wasted space, however is $\Theta(1)$

Suppose we double the number of entries each time the array is full

Now the number of copies appears to be significantly fewer

(1-2h)

Array Capacity

Suppose we double the array size each time it is full:

- Inserting n objects would require 1, 2, 4, 8, ..., all the way up to the largest $2^k < n$ or $k = \lfloor \lg(n) \rfloor$

$$\sum_{k=0}^{\lfloor \lg(n) \rfloor} 2^k = 2^{\lfloor \lg(n) \rfloor + 1} \underbrace{-1}$$

$$\leq 2^{\lg(n)+1} - 1 = 2^{\lg(n)} 2^1 - 1 = 2n - 1 = \Theta(n)$$

- Therefore the amortized number of copies per insertion is Θ(1)
- The wasted space,
 however is O(n)

Note the difference in worst-case amortized scenarios:

	Copies per Insertion	Unused Memory
Increase by 1	n-1	0
Increase by m	n/m	m-1
Increase by a factor of $\boldsymbol{2}$	1	n
Increase by a factor of $r > 1$	1/(r-1)	(r-1)n

Summary

- Stack ADT
 - Push, pop, LIFO
- Implementation
 - Linked list
 - Array
 - How to increase the array capacity
- Applications
 - Parsing XHTML
 - Function calls
 - Reverse-Polish Notation