提示

题号	知识点
5.1	举出特例,基础概念的积累
5.2	非齐次线性方程组的解,系数矩阵的秩,列数和增广矩阵的秩的关系
5.3	非齐次线性方程组的解,系数矩阵的秩与列数的关系
5.4	线性相关的定义的理解;
5.5	判断系数矩阵的秩是否不为零;或者是凑系数看和是否为零向量
5.6	系数矩阵的列秩与列数的关系;整体线性无关⇒任何部分线性无关
5.7	以少表多,则多相关
5.8	要证明线性无关,可以假设线性相关,然后利用题中条件证明 $k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m=0$,与线性相关矛盾,故线性无关得证
5.9	要证明线性无关,可以假设线性相关,然后利用题中条件证明 $k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m=0$,与线性相关矛盾,故线性无关得证
5.10	1)要证明线性无关,可以假设线性相关,然后利用题中条件证明 $k_1\alpha_1+k_2\alpha_2+\cdots+k_m\alpha_m=0$,与线性相关矛盾,故线性无关得证; 2)有关秩的等式和不等式
5.11	详解
5.12	定理2的扩展
5.13	极大线性无关组的概念
5.14- 5.15	计算求极大线性无关组 理解求极大线性无关组有助于后面的求解方程组的自由未知量
5.16- 5.17	对于向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 和 $\beta_1,\beta_2,\cdots,\beta_t$,若任 β_i ($i=1,2,\cdots,t$)均由可 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表出,则 $r(\beta_1,\beta_2,\cdots,\beta_t)\leqslant r(\alpha_1,\alpha_2,\cdots,\alpha_s)$; 有关秩的等式和不等式
5.18- 5.21	有关秩的等式和不等式
5.22	向量组等价
5.23	向量组等价 矩阵等价 详解
5.24	向量组等价
5.25	正交向量 线性方程组
5.26	数学一

题号	知识点	
5.27	施密特标准正交化(正交规范化)	
5.28	第3讲的知识,主要是矩阵的转置	

详解

5.1

Α:

- 若 α_s 不能由 $\alpha_1,\alpha_2,\cdots,\alpha_{s-1}$ 线性表出,但是可能 $\alpha_1,\alpha_2,\cdots,\alpha_{s-1}$ 中其他向量可由其余向量线性表出
 - o 例如
 - α_1 能由 $\alpha_2, \alpha_3, \dots, \alpha_s$ 线性表出
 - 从而 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关

В

• 线性表示不唯一

$$\begin{array}{l} \circ \ \alpha_1 = [1,1], \alpha_2 = [2,2], \alpha_3 = [3,3] \\ \circ \ 2\alpha_1 - \alpha_2 + 0\alpha_3 = 0 \end{array}$$

$$\circ \ \alpha_3 = \alpha_1 + \alpha_2$$

α_s可能为零向量

C

• $\alpha_1 = [0,0], \alpha_2 = [1,0]$ 线性相关,但是 α_2 无法由 α_1 线性表出

D

• 反证法

5.3

化为行阶梯矩阵便于看出两个矩阵的线性关系,系数矩阵的秩与增广矩阵的秩不等,明显就不能线性表示,与已知 不符合

向量组 $\alpha_1, \alpha_2, \alpha_3$ 可由向量组 $\beta_1, \beta_2, \beta_3$ 线性表示,则三个方程组 $x_{i1}\beta_1 + x_{i2}\beta_2 + x_{i3}\beta_3 = \alpha_i (i = 1, 2, 3)$ 均有解 向量组 $\beta_1, \beta_2, \beta_3$ 不可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示,则三个方程组 $x_{i1}\alpha_1 + x_{i2}\alpha_2 + x_{i3}\alpha_3 = \beta_i (i = 1, 2, 3)$ 至少有一个解

5.4

设 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性相关, $\alpha_2, \alpha_3, \cdots, \alpha_s, \alpha_{s+1}$ 线性无关.问

- 证明: α_1 能否由 $\alpha_2, \alpha_3, \dots, \alpha_s$ 线性表出
- 证明: α_{s+1} 能否由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表出

解:

(1)

方法一:

- 整体线性无关⇒任何部分线性无关
- 若向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,而 $\alpha_1, \alpha_2, \cdots, \alpha_s, \beta$ 线性相关,则 β 可由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表出,且表出法唯一

方法二

- 已知 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性相关,表示存在一组不全为零的数 $k_1,k_2\cdots k_s$,使得 $k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s=0$
- 关键在于对k1的讨论
 - \circ 若 $k_1 \neq 0$
 - 贝川

$$lacksquare lpha_1=rac{1}{k_1}(k_2lpha_2+k_3lpha_3+\cdots+k_slpha_s)=l_2lpha_2+l_3lpha_3+\cdots+l_slpha_s$$

- 显然 α_1 能由 $\alpha_2, \alpha_3, \dots, \alpha_s$ 线性表出
- o 若 $k_1 = 0$
 - 由于 $k_1, k_2 \cdots k_s$ 不全为零,故 $\alpha_2, \alpha_3, \cdots, \alpha_s$ 线性相关,则
 - $\alpha_2, \alpha_3, \dots, \alpha_s, \alpha_{s+1}$ 线性相关,与已知条件不符
 - α_{s+1} 的系数 k_{s+1} 可以取0
 - 故 $k_1 \neq 0$

(2)

证明 α_{s+1} 不能由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表出,无从下手,使用反证法假设 α_{s+1} 能由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表出

- $\alpha_{s+1} = \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \cdots + \lambda_s \alpha_s$
- 由(1) $\alpha_1 = l_2\alpha_2 + l_3\alpha_3 + \cdots + l_s\alpha_s$ 替换 α_1
- 得
 - $\circ \ \alpha_{s+1} = (\lambda_1 l_2 + \lambda_2)\alpha_2 + (\lambda_1 l_3 + \lambda_3)\alpha_3 + \dots + (\lambda_1 l_s + \lambda_s)\alpha_s$
 - 即 $(\lambda_1 l_2 + \lambda_2)\alpha_2 + (\lambda_1 l_3 + \lambda_3)\alpha_3 + \cdots + (\lambda_1 l_s + \lambda_s)\alpha_s \alpha_{s+1} = 0$
 - \circ 即 $\alpha_2, \alpha_3, \dots, \alpha_s, \alpha_{s+1}$ 线性相关
- 与已知 $\alpha_2, \alpha_3, \dots, \alpha_s, \alpha_{s+1}$ 无关矛盾
- $\mbox{td} \alpha_{s+1}$ 不能由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表出

5.8

设A是n阶方阵,若存在正整数k,使线性方程组 $A^kx=0$ 有解向量 α ,且 $A^{k-1}\alpha\neq 0$ 证明 $\alpha,A\alpha,\cdots,A^{k-1}\alpha$ 线性无关解

假设 α , $A\alpha$, \cdots , $A^{k-1}\alpha$ 线性相关

- $\lambda_1 \alpha + \lambda_2 A \alpha + \cdots + \lambda_k A^{k-1} \alpha = 0$
 - 。 左乘 $A^{k-1}\alpha$

$$\lambda_1 A^{k-1} \alpha + \lambda_2 A^k \alpha + \dots + \lambda_k A^{2k-2} \alpha = 0$$

- \circ 由已知 $A^k\alpha=0$
- \circ 从而 $\lambda_1 A^{k-1} \alpha$.且 $A^{k-1} \alpha \neq 0$
- \circ 进而 $\lambda_1=0$

- 最终 $\lambda_2 A^k \alpha + \cdots + \lambda_k A^{2k-2} \alpha = 0$
- 左乘 $A^{k-2}\alpha$,可证 $\lambda_2=0$
- 。 继续下去
- 得证 $\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0$
- 与假设矛盾
- 故 α , $A\alpha$, \cdots , $A^{k-1}\alpha$ 线性无关

5.10

$$A = [\alpha_1, \alpha_2, \cdots, \alpha_n] \ k_1\alpha_1 + k_2\alpha_2 + \cdots + k_n\alpha_n = [k_1, k_2, \cdots, k_n][\alpha_1, \alpha_2, \cdots, \alpha_n]^T = [k_1, k_2, \cdots, k_n]A$$

5.11

A是B充分必要条件:

- 必要性是已知В证明А
- 充分性:已知A证明B

证明: $\alpha_1, \alpha_2, \alpha_3$ 线性无关的充分必要条件是 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性无关

方法一

必要性 已知 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,证明 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性无关 证明:

- 欲证 $k_1(\alpha_1 + \alpha_2) + k_2(\alpha_2 + \alpha_3) + k_3(\alpha_3 + \alpha_1) = 0$
 - 即证明 $k_1 = k_2 = k_3 = 0$
- 已知 $\alpha_1, \alpha_2, \alpha_3$ 线性无关
- $\mathbb{P}(k_1+k_3)\alpha_1+(k_1+k_2)\alpha_2+(k_2+k_3)\alpha_3=0$
 - 。 此处有个疑问:
 - 怎么区分线性无关的两个条件(可能还是我没有理解)
 - 就是证明线性无关为什么只能证明系数全为零,而不能证明不存在这一组数字
- 即系数方程组为
 - $k_1 + k_3 = 0$
 - $k_1 + k_2 = 0$
 - $k_2 + k_3 = 0$
- 系数行列式为

$$egin{bmatrix} 1 & 0 & 1 \ 1 & 1 & 0 \ 0 & 1 & 1 \ \end{bmatrix} = 2
eq 0$$

• 系数方程组有唯一零解

•
$$\mathbb{P}k_1 = k_2 = k_3 = 0$$

- 从而 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性无关
- 必要性得证

充分性 已知 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性无关,证明 $\alpha_1, \alpha_2, \alpha_3$ 线性无关 证明

- 反证法
 - 已知 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性无关,假设 $\alpha_1, \alpha_2, \alpha_3$ 线性相关
- α₁, α₂, α₃线性相关
 - $\mathbb{P} k_1 \alpha_1 + k_2 \alpha_2 + k_3 \alpha_3 = 0$
- �
 - $\circ \ \alpha_1 + \alpha_2 = \beta_1$
 - $\circ \ \alpha_2 + \alpha_3 = \beta_2$
 - $\circ \ \alpha_3 + \alpha_1 = \beta_3$
- 可得

$$\circ \ \alpha_1 = \frac{1}{2}(\beta_1 - \beta_2 + \beta_3)$$

$$\alpha_2 = \frac{1}{2}(\beta_1 + \beta_2 - \beta_3)$$

$$\alpha_3 = \frac{1}{2}(-\beta_1 + \beta_2 + \beta_3)$$

- 整理得 $(k_1 + k_2 k_3)\beta_1 + (-k_1 + k_2 + k_3)\beta_2 + (k_1 k_2 + k_3)\beta_3 = 0$
- 已知 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性无关
- 故系数方程组

$$k_1 + k_2 - k_3 = 0$$

$$-k_1 + k_2 + k_3 = 0$$

$$k_1 - k_2 + k_3 = 0$$

• 齐次系数方程组的系数行列式不为0

$$\begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} = 4 \neq 0$$

- $\mathbb{P}k_1 = k_2 = k_3 = 0$
- 则与 $\alpha_1, \alpha_2, \alpha_3$ 线性相关矛盾
- 故α₁, α₂, α₃线性无关
- 充分性得证

方法二:

利用等价向量组等秩

• �

$$\circ \ \alpha_1 + \alpha_2 = \beta_1$$

$$\circ \ \alpha_2 + \alpha_3 = \beta_2$$

- $\circ \ \alpha_3 + \alpha_1 = \beta_3$
- 可得

$$\circ \ \alpha_1 = \frac{1}{2}(\beta_1 - \beta_2 + \beta_3)$$

$$\alpha_2 = \frac{1}{2}(\beta_1 + \beta_2 - \beta_3)$$

$$\circ \ \alpha_3 = \frac{1}{2}(-\beta_1 + \beta_2 + \beta_3)$$

- 因为: $\alpha_1, \alpha_2, \alpha_3$ 向量组与 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 与向量组可以相互表出,是等价向量组,等价向量组等秩
- 若 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $r(\alpha_1, \alpha_2, \alpha_3) = 3$,即列秩等于列数

$$\circ \ \mathbb{N}r(\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+\alpha_1)=3$$

• 则
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$$
线性无关

反之亦然

方法三

 $\alpha_1, \alpha_2, \alpha_3$ 线性无关

- $\Leftrightarrow [\alpha_1, \alpha_2, \alpha_3]x = 0$ 有唯一零解
- ⇔

$$[lpha_1+lpha_2,lpha_2+lpha_3,lpha_3+lpha_1]x=egin{bmatrix} 1 & 0 & 1 \ 1 & 1 & 0 \ 0 & 1 & 1 \end{bmatrix}x=0$$

有唯一零解

方法四 利用初等变换不改变秩 $\alpha_1, \alpha_2, \alpha_3$ 线性无关

- $\Leftrightarrow r(\alpha_1, \alpha_2, \alpha_3) = 3$
- 👄

$$r(lpha_1+lpha_2,lpha_2+lpha_3,lpha_3+lpha_1)=r([lpha_1,lpha_2,lpha_3]egin{bmatrix} 1 & 0 & 1 \ 1 & 1 & 0 \ 0 & 1 & 1 \end{bmatrix})=3$$

其中

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

是若干个初等矩阵的乘积(等价于对 $\alpha_1, \alpha_2, \alpha_3$ 做了若干次初等变换得到 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$)可逆

5.12

定理2的扩展

- n个n维列向量 $lpha_1,lpha_2,\cdots,lpha_n$ 线性相关 $\Leftrightarrow |A|=|lpha_1,lpha_2,\cdots,lpha_n|=0 \Leftrightarrow Ax=0$ 有非零解
- $n \uparrow n$ 维列向量 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关 $\Leftrightarrow |A| \neq 0 \Leftrightarrow Ax = 0$ 只有零解

5.23

注意

•
$$a = -1$$

$$\circ$$
 $r(lpha_1,lpha_2,lpha_3)=2$

$$\circ$$
 $r(\alpha_1, \alpha_2, \alpha_3, \beta_3) = 3$

- \circ β_3 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出
- a = 0

$$\circ$$
 $r(\alpha_1, \alpha_2, \alpha_3) = 3$

•
$$\alpha_1, \alpha_2, \alpha_3$$
均不能由 $\beta_1, \beta_2, \beta_3$ 线性表出