

Introduction to Data Science

Erick Gomez Nieto, PhD emgomez@ucsp.edu.pe

ACM/IEEE Computing Curricula 2020

- Computer Engineering
- Computer Science
- Cybersecurity
- Information Technology
- Software Engineering
- Information Systems
- Data Science (under development)

DIKW Pyramid

Rowley, Jennifer (2007). "The wisdom hierarchy: representations of the DIKW hierarchy". Journal of Information and Communication
Science. 33 (2): 163–180.

Applied

I better stop the car!

Knowledge

Context

 The traffic light I am driving towards has turned red

Information

Meaning

 South facing traffic light on corner of Pitt and George Streets has turned red

Data

Raw

Red, 192.234.235.245.678,
 v2.0

Estructurados

No Estructurados

Overview

MODERN DATA SCIENTIST

Data Scientist, the sexiest job of 21th century requires a mixture of multidisciplinary skills ranging from an intersection of mathematics, statistics, computer science, communication and business. Finding a data scientist is hard. Finding people who understand who a data scientist is, is equally hard. So here is a little cheat sheet on who the modern data scientist really is.

MATH & STATISTICS

- ☆ Machine learning
- ☆ Statistical modelii
- ☆ Experiment design
- Supervised learning: decision trees, random forests, logistic regression
- Unsupervised learning: clustering, dimensionality reduction
- Optimization: gradient descent and variants

& DATA Comput

- PROGRAMMING & DATABASE
- ☆ Computer science fundamentals
- ☆ Scripting language e.g. Python
- ☆ Databases SOL and NoSOL
- ☆ Relational algebra
- Parallel databases and parallel query processing
- ☆ MapReduce concepts
- ☆ Hadoop and Hive/Pig
- ☆ Custom reducers
- ☆ Experience with xaaS like AWS

DOMAIN KNOWLEDGE & SOFT SKILLS

- ☆ Passionate about the business
- ☆ Curious about data
- ☆ Influence without authority
- ☆ Hacker mindset
- ☆ Problem solver
- Strategic, proactive, creative, innovative and collaborative

COMMUNICATION & VISUALIZATION

- ☆ Able to engage with senior management
- ☆ Story telling skills
- ☆ Translate data-driven insights into decisions and actions
- ☆ Visual art desig
- A R packages like ggplot or lattice
- ☆ Knowledge of any of visualization

DATA

BGDATA

Big Data is a phrase used to mean a massive volume of both **structured** and unstructured **data** that is so large it is difficult to process using traditional **database** and **software** techniques.

The FOUR V's of Big Data

break big data into four dimensions: Volume, Velocity, Variety and Veracity

4.4 MILLION IT JOBS

As of 2011, the global size of data in healthcare was estimated to be

[161 BILLION GIGABYTES]

30 BILLION PIECES OF CONTENT are shared on Facebook every month

Variety DIFFERENT

FORMS OF DATA

there will be 120 MILLION WEARABLE, WIRELESS **HEALTH MONITORS**

By 2014, it's anticipated

HOURS OF VIDEO are watched on YouTube each month

4 BILLION+

are sent per day by about 200 million monthly active users

1 IN 3 BUSINESS

don't trust the information they use to make decisions

7 8 8 B

in one survey were unsure of how much of their data was inaccurate

Poor data quality costs the US economy around

\$3.1 TRILLION A YEAR

Veracity UNCERTAINTY

OF DATA

The fifth "V"?

Big data = the ability to achieve greater Value through insights from superior analytics

Case study: A US-based aircraft engine manufacturer now uses analytics to predict engine events that lead to costly airline disruptions, with 97% accuracy. If this prediction capability had been available in the previous year, it would have saved \$63 million.

Volume-based value: The more comprehensive your 360-degree view of customers and the more historical data you have on them, the more insight you can extract from it all and, all things considered, the better decisions you can make in the process of acquiring, retaining, growing and managing those customer relationships.

Velocity-based value: The more customer data you can ingest rapidly into your big-data platform and the more questions that a user can pose more rapidly against that data (via queries, reports, dashboards, etc.) within a given time period prior, the more likely you are to make the right decision at the right time to achieve your customer relationship management objectives.

Variety-based value: The more varied customer data you have – from the CRM system, social media, call-center logs, etc. – the more nuanced portrait you have on customer profiles, desires and so on, hence the better-informed decisions you can make in engaging with them.

Veracity-based value: The more consolidated, conformed, cleansed, consistent current the data you have on customers, the more likely you are to make the right decisions based on the most accurate data.

Vulnerability

Big data brings new security concerns. After all, a data breach with big data is a big breach. Does anyone remember the infamous <u>AshleyMadison hack in 2015</u>?

Visualization

Another characteristic of big data is how challenging it is to visualize.

Volatility

How old does your data need to be before it is considered irrelevant, historic, or not useful any longer? How long does data need to be kept for?

The 42 V's of Big Data and Data Science

https://www.elderresearch.com/blog/42-v-of-big-data

Open Data

Open data is **data** that **anyone** can **access**, **use** and **share**. Governments, businesses and individuals can use open data to bring about social, economic and environmental benefits.

Open data becomes usable when made available in a **common, machine-readable format.**

Open data must be licensed. Its licence must permit people to use the data in any way they want, including transforming, combining and sharing it with others, even commercially.

Open Repositories

OPEN DATA HANDBOOK

https://opendatahandbook.org/

DATA

DATA SCIENCE

Data science is a multidisciplinary approach to extracting actionable insights from the large and ever-increasing volumes of data collected and created by today's organizations. Data science encompasses preparing data for analysis and processing, performing advanced data analysis, and presenting the results to reveal patterns and enable stakeholders to draw informed conclusions.

How it works?

A high-level pipeline to address any data science problem

- 1. Getting your data.
- 2. Preparing/cleaning your data.
- 3. Exploration/visualization of data which allows you to find patterns in the numbers.
- 4. Modeling the data.
- 5. Interpreting the findings.
- 6. Re-visiting/updating your model.

1. Getting your data

Skills Required:

- Distributed Storage: Hadoops, Apache Spark/Flink.
- Database Management: MySQL, PostgresSQL, MongoDB, SQLite.
- Querying Relational Databases.
- Retrieving Unstructured Data: text, videos, audio files, documents.

2. Preparing/cleaning your data.

Skills Required:

Coding language: Python, R.

Data Modifying Tools: Python libs, Numpy, Pandas, R. Distributed Processing: Hadoop, Map Reduce/Spark.

3. Exploration/Visualization of Data

Skills Required:

- •Python: NumPy, Matplotlib, Pandas, SciPy.
- •R: GGplot2, Dplyr.
- •Statistics: Random sampling, Inferential.
- •Data Visualization: Tableau.

4. Modeling the Data (Machine Learning)

Skills Required:

- Machine Learning: Supervised/Unsupervised algorithms.
- Evaluation methods.
- Machine Learning Libraries: Python (Sci-kit Learn, NumPy).
- Linear algebra and Multivariate Calculus.

5. Interpreting the Data

Interpreting the data is more like communicating your findings to the interested parties. If you can't explain your findings to someone believe me, whatever you have done is of no use. Hence, this step becomes very crucial.

The objective of this step is to first identify the business insight and then correlate it to your data findings. You might need to involve domain experts in correlating the findings with business problems. Domain experts can help you in visualizing your findings according to the business dimensions which will also aid in communicating facts to a non-technical audience.

Skills required:

- Business domain knowledge.
- Data visualization tools: Tableau, D3.js, Matplotlib, ggplot2, Seaborn.
- Communication: Presenting/speaking and reporting/writing.

Data Types

Data/set types+semantics Tasks

- Data abstraction
 - Data types
 - · categorical, ordinal, quantitative
 - Dataset types
 - Tables
 - Networks/graph (trees)
 - Text / logs
 - Fields
 - Static file vs. dynamic stream
 - Attribute + dataset semantics
 - Spatial vs. non-spatial
 - Temporal vs. non-temporal
 - Keys vs. values
 - · Continuous vs. discrete
 - Topology vs. geometry
 - Derived attributes / spaces
- Task abstraction

- Numeric, symbolic (or mix)
- Scalar, vector, or complex structure
- Various units
- Discrete or continuous
- Spatial, quantity, category, temporal, relational, structural
- Dense or sparse
- Ordered or non-ordered
- Disjoint or overlapping
- Binary, enumerated, multilevel
- Independent or dependent
- Multidimensional
- ..

Introduction - Types of data

Numeric data

- Discrete (integers)
- Continuous (real)

Categorical data

- Ranked: Low, medium, high
- Unordered: Grass, leaves, paths, urban, waste, woods

Multidimensional Data

Data which related to more than two dimensions.

[1D]

[2D]

	Weight	Age
S1	80	35
S2	40	25
S3	45	22
S4	65	30
S 5	70	18

Ī	3	D	1
•			

	Weight	Age	Money
S1	80	35	300
S2	40	25	5
S3	45	22	100
S4	65	30	30
S5	70	18	25

[4D]<= ?

Visualization Course Material

https://sites.google.com/site/erickgomeznieto/tea ching/tcg2017

Introduction - Types of data

Most techniques are designed to handle only **numeric** data.

Some other handle just **categorical** data.

Real data can contain mixed multidimensional features.

Type1	Type2	HP	Attack	Defense	SpAtk	SpDef	Speed	isLegendary	Color	EggGroup1	EggGroup2	Height_m	Weight_kg	Body_Style
Psychic	Psychic	100	100	100	100	100	100	False	Pink	Undiscovere	Undiscovere	0.41	4	bipedaltaile
Normal	Normal	30	56	35	25	35	72	False	Purple	Field	Field	0.3	3.5	quadruped
Electric	Steel	50	60	95	120	70	70	False	Grey	Mineral	Mineral	0.99	60	multiplebod
Fire	Fire	90	110	80	100	80	95	False	Brown	Field	Field	1.91	155	quadruped
Fire	Fire	65	100	70	80	80	105	False	Yellow	Field	Field	1.7	95	quadruped
Normal	Normal	105	95	80	40	80	90	False	Brown	Monster	Monster	2.21	80	bipedaltaile
Normal	Normal	250	5	5	35	105	50	False	Pink	Fairy	Fairy	1.09	34.6	bipedaltaile
Rock	Water	35	40	100	90	55	35	False	Blue	Water1	₩ater3	0.41	7.5	severallimbs
Poison	Ground	90	92	87	75	85	76	False	Blue	Undiscovere	Undiscovere	1.3	60	bipe daltaile
Fighting	Fighting	80	100	70	50	60	45	False	Grey	HumanLike	HumanLike	1.5	70.5	bipedaltaille
Normal	Normal	90	55	75	60	75	30	False	Pink	Monster	Monster	1.19	65.5	bipe daltaile
Water	Ice	130	85	80	85	95	60	False	Blue	Monster	Water1	2.49	220	withfins
Grass	Poison	80	82	83	100	100	80	False	Green	Monster	Grass	2.01	100	quadruped
Normal	Flying	40	45	40	35	35	56	False	Brown	Flying	Flying	0.3	1.8	twowings
Normal	Flying	60	110	70	60	60	100	False	Brown	Flying	Flying	1.8	85.2	headlegs

Distances (similarity)

|Union(A,B)| = 7

Intersection (A,B)|=2

Jaccard Similarity J (A,B) = | Intersection (A,B) | / | Union (A,B) |
= 2 / 7
= 0.286

Distance Matrix

	a	b	С	d	е	f
a	0	184	222	177	216	231
b	184	0	45	123	128	200
С	222	45	0	129	121	203
d	177	123	129	0	46	83
е	216	128	121	46	0	83
f	231	200	203	83	83	0

	a	b	C	d	е	f
a	0	184	222	177	216	231
b	184	0	45	123	128	200
С	222	45	0	129	121	203
d	177	123	129	0	46	83
е	216	128	121	46	0	83
f	231	200	203	83	83	0

