实验 11 弯扭组合变形的主应力和内力测试

姓名: 邹佳驹

学号: 12012127

同组人: 刘鸿磊

1. 实验目的

- 1) 用电测法测定平面应力状态下主应力的大小和方向,并与理论值进行比较。
- 2) 测定薄壁圆筒在弯扭组合变形作用下的弯矩。
- 3) 进一步掌握电测法

2. 实验仪器设备和工具

- 1) 组合实验台中弯扭组合试验装置
- 2) 力&应变综合参数测试仪
- 3) 游标卡尺、钢板尺

3. 实验原理和方法

1) 测定主应力大小和方向

薄壁圆筒受弯扭组合作用,使圆筒发生组合变形,圆筒的 m 点处于平面应力状态。在 m 点单元体上作用有由弯矩引起的正应力 σ_x ,由扭矩引起的剪应力 τ_n ,主应力是一对拉应力 σ_1 和一对压应力 σ_3 ,单元体上的正应力 σ_x 和剪应力 τ_n 可按下式计算

$$\sigma_{x} = \frac{M}{W_{z}}, M = PL, W_{z} = \frac{\pi D^{3}}{32} (1 - (\frac{d}{D})^{4})$$

$$\tau_{n} = \frac{M_{n}}{W_{T}}, M_{n} = Pa, W_{T} = \frac{\pi D^{3}}{16} (1 - (\frac{d}{D})^{4})$$

由二向应力状态分析可得到主应力及其方向

$$\sigma_1 = \sigma_X/2 \pm \sqrt{(\sigma_X/2)^2 + \tau_n^2}$$

本实验装置采用的是 45°直角应变花,在 m、m′点各贴一组应变花(如图所示),应变花上三个应变片的 α 角分别为-45°、0°、45°,该点主应力和主方向

$$\frac{\sigma_1}{\sigma_2} = \frac{E(\varepsilon_{45} + \varepsilon_{-45})}{2(1 - \mu)} \pm \frac{\sqrt{2}E}{2(1 + \mu)} \sqrt{(\varepsilon_{45} - \varepsilon_{0'})^2 + (\varepsilon_{-45} - \varepsilon_{0'})^2}$$

$$tg_2\sigma_0 = (\varepsilon_{45} + \varepsilon_{-45}) / (2\varepsilon_0 - \varepsilon_{45} - \varepsilon_{-45})$$

$$\varepsilon_{15} \cdot c \cdot (a')$$

$$\frac{\varepsilon_{0}}{x} \cdot \frac{b \cdot (b')}{x}$$

4. 实验步骤

- 1) 设计好本实验所需的各类数据表格
- 2) 测量试件尺寸、加力臂长度和测点距力臂的距离,确定试件有关参数。
- 3) 将薄壁圆筒上的应变片按不同测试要求接到仪器上,组成不同的测量桥路。 调整好仪器,检查整个测试系统是否处于正常工作状态。
 - a) 主应力大小、方向测定:将 m 点的所有应变片按半桥单臂、公共温度补偿法组成测量线路进行测量。
 - b) 测定弯矩:将 m 和 m'两点的 b 和 b'两只应变片按半桥双臂组成测量线路进行测量($\varepsilon = \varepsilon_d / 2$)。
 - c) 测定扭矩: 使用全桥测量电路, 测得切应变。
- 4) 拟定加载方案。先选取适当的初载荷 P0 估算 Pmax < 400N), 分 4~6 级加载。
- 5) 根据加载方案,调整好实验加载装置。
- 6) 加载。均匀缓慢加载至初载荷 P0,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值,直到最终载荷。
- 7) 作完试验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场, 将所用仪器设备复原,实验资料交指导教师检查签字。
- 8) 实验装置中,圆筒的管壁很薄,为避免损坏装置,注意切勿超载,不能用力 扳动圆筒的自由端和力臂。

5. 实验数据记录与处理

1.试件测量

圆筒的尺寸和有关参数						
计算长度L=235mm	弹性模量 E=71GPa					
扇臂长度 a=230mm	泊松比 μ=0.33					
外径 D=40mm						
内径 d=34mm						

2.实验数据(100N逐级加载,最大载荷400N)

a)测定主应力大小和方向

载荷	P(N)	51	100	200	300	400
	45°(με)	61	124	239	357	476
应变	0°(με)	59	119	229	346	463
	-45°(με)	-22	-43	-82	-124	-166

b) 测定弯矩

载荷	P(N)	50	100	200	300	400
应变		-113	-231	-461	-691	-922

c) 测定扭矩

载荷	P(N)	50	100	200	300	400
应变		162	325	644	965	1287

3.数据处理

m 点实测值主应力及方向计算:

$$\frac{\sigma_1}{\sigma_3} = \frac{E(\overline{\epsilon_{45}} + \overline{\epsilon_{-45}})}{2(1-\mu)} \pm \frac{\sqrt{2}E}{2(1+\mu)} \sqrt{(\overline{\epsilon_{45}} - \overline{\epsilon_{0}})^2 + (\overline{\epsilon_{-45}} - \overline{\epsilon_{0}})^2}$$

$$tg_2a_0 = (\overline{\epsilon_{45}} + \overline{\epsilon_{-45}})/(2\overline{\epsilon_0} - \overline{\epsilon_{45}} - \overline{\epsilon_{-45}})$$

P(N)	σ_1(MPa)	σ_3(MPa)	tg2α	α(°)
50	5.12	-0.99	0.49	13.05
100	10.41	-1.83	0.52	13.74
200	20.06	-3.43	0.52	13.74
300	30.09	-5.40	0.51	13.51
400	40.17	-7.32	0.50	13.29

m 点实测值弯矩与扭矩计算:

$$\sigma_x = \frac{M}{W_z} = E\varepsilon$$

$$M = \sigma_x W_z = E\varepsilon W_z$$

P(N)	με_弯应变*2	E	σ_x(MPa)	W_z	M(Nm)
50	-113	7.1E+10	-4.01	3.003E-06	-12.05
100	-231	7.1E+10	-8.20	3.003E-06	-24.63
200	-461	7.1E+10	-16.37	3.003E-06	-49.15
300	-691	7.1E+10	-24.53	3.003E-06	-73.67
400	-922	7.1E+10	-32.73	3.003E-06	-98.30

$$\tau_n = \frac{M_n}{W_T} = G\gamma$$

$$G = \frac{E}{2(1 + \mu)}$$

$$M_n = \tau_n W_T = G\gamma W_T$$

P(N)	μγ_扭应变*4	G	τ_n(MPa)	W_t	M_n(Nm)
50	162	2.669E+10	1.08	6.007E-06	6.49
100	325	2.669E+10	2.17	6.007E-06	13.03
200	644	2.669E+10	4.30	6.007E-06	25.81
300	965	2.669E+10	6.44	6.007E-06	38.68
400	1287	2.669E+10	8.59	6.007E-06	51.59

m 点理论值主应力及方向计算:

$$\sigma_{03} = \sigma_{X}/2 \pm \sqrt{(\sigma_{X}/2)^{2} + \tau_{n}^{2}}$$

$$tg_{2}\sigma_{0} = -2\tau_{n}/\sigma_{X}$$

公式推导:

力平衡方程:

(From Mechanics of Materials, 6th edition, Ferdinand P. Beer et.al)

$$\sum F_{x'} = 0$$

$$\sigma_{x'} \Delta A - \sigma_x (\Delta A \cos \theta) \cos \theta - \tau_{xy} (\Delta A \cos \theta) \sin \theta - \sigma_y (\Delta A \sin \theta) \sin \theta - \tau_{xy} (\Delta A \sin \theta) \cos \theta = 0$$

$$\sum F_{y'} = 0$$

$$\tau_{x'y} \Delta A + \sigma_x (\Delta A \cos \theta) \sin \theta - \tau_{xy} (\Delta A \cos \theta) \cos \theta - \sigma_y (\Delta A \sin \theta) \cos \theta + \tau_{xy} (\Delta A \sin \theta) \sin \theta = 0$$
整理得:

$$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
$$\tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$$

莫尔圆:

$$\left(\sigma_{x'}-rac{\sigma_x+\sigma_y}{2}
ight)^2+ au_{x'y'}^2=\left(rac{\sigma_x-\sigma_y}{2}
ight)^2+ au_{xy}^2 \ \left(\sigma_{x'}-\sigma_{avg}
ight)^2+ au_{x'y'}^2=R^2 \ R^2=\left(rac{\sigma_x-\sigma_y}{2}
ight)^2+ au_{xy}^2 \ \sigma_{avg}=rac{\sigma_x+\sigma_y}{2} \ \sigma_{avg}=rac{\sigma_x+\sigma_y}{2}$$

(From Mechanics of Materials, 6th edition, Ferdinand P. Beer et.al)

主应力:

$$\sigma_{ ext{max}\,,\, ext{min}} \, = rac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(rac{\sigma_x - \sigma_y}{2}
ight)^2 + au_{xy}^2}$$

方向(由剪切应力为0得到):

$$egin{aligned} au_{x'y'} &= -rac{\sigma_x - \sigma_y}{2} \sin 2 heta + au_{xy} \cos 2 heta \ au_{x'y'} &= 0 \quad an 2 heta_p = rac{2 au_{xy}}{\sigma_x - \sigma_y} \end{aligned}$$

在本实验中, $\sigma_y = 0$, 所以:

$$\sigma_{1,3} = \frac{\sigma_x}{2} \pm \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + (\tau_n)^2}$$

$$tan2\alpha_0 = \frac{-2\tau_n}{\sigma_x}$$

注:此处 α_0 定义的方向与上述推导过程中的 θ_p 的方向相反,故前有负号

理论主应力及方向计算:

P(N)	σ_x(MPa)	τ_n(MPa)	σ_1(MPa)	σ_3(MPa)	tg2α	α
50	3.91	1.91	4.69	-0.78	-0.98	-22.21
100	7.82	3.83	9.39	-1.56	-0.98	-22.21
200	15.65	7.66	18.77	-3.12	-0.98	-22.21
300	23.47	11.49	28.16	-4.69	-0.98	-22.21
400	31.30	15.32	37.55	-6.25	-0.98	-22.21

理论弯矩与扭矩计算

P(N)	L(m)	a(m)	M(Nm)	M_n
50	0.235	0.23	11.75	11.5
100	0.235	0.23	23.5	23
200	0.235	0.23	47	46
300	0.235	0.23	70.5	69
400	0.235	0.23	94	92

理论值与实验值对比:

主应力:

	理论	沦值	实验	佥 值	误	.差
P(N)	σ_1(MPa)	σ_3(MPa)	σ_1(MPa)	σ_3(MPa)	Error σ_1	Error σ_3
50	4.69	-0.78	5.12	-0.99	8.42%	21.28%
100	9.39	-1.56	10.41	-1.83	9.83%	14.47%
200	18.77	-3.12	20.06	-3.43	6.43%	8.84%
300	28.16	-4.69	30.09	-5.40	6.42%	13.23%
400	37.55	-6.25	40.17	-7.32	6.54%	14.68%

主应力 σ_1 的误差随载荷增加而逐渐减小,但主应力 σ_3 的误差变化似乎无规律,理论值与实验值的方向相差较大。

弯矩:

弯矩	理论值	实验值	误差
P(N)	M(Nm)	M(Nm)	Error(%)
50	11.75	12.05	2.47%
100	23.50	24.63	4.58%
200	47.00	49.15	4.38%
300	70.50	73.67	4.31%
400	94.00	98.30	4.38%

误差均小于5%,在可接受范围内

扭矩:

扭矩	理论值	实验值	误差
P(N)	M_n	M_n(Nm)	Error(%)
50	11.50	6.49	-77.11%
100	23.00	13.03	-76.56%
200	46.00	25.81	-78.21%
300	69.00	38.68	-78.39%
400	92.00	51.59	-78.35%

扭矩计算偏差太大,分析原因可能在于 G 值有误,实验数据未给出 G 值,理论计算中的 G 值使用 $G = \frac{E}{2(1+\mu)}$ 进行计算得到,该结果可能与实际材料的 G 值相差较大,进而导致扭矩理论值与实验值的巨大误差。