AN 3 - SÉRIES ENTIÈRES

Dans ce chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

Convergence d'une série entière 1

1.1 Rayon de convergence

Définition 1

Soit (a_n) une suite d'éléments de \mathbb{K} . On appelle série entière de la variable $z \in \mathbb{K}$ à coefficients a_n la série $\sum a_n z^n$.

Si $\mathbb{K} = \mathbb{R}$ (resp. \mathbb{C}), on dit série entière réelle (resp. complexe).

Proposition 1

Soit $\sum a_n z^n$ une série entière. L'ensemble $I = \{r \in \mathbb{R}^+ / \text{ la suite } (|a_n|r^n) \text{ est bornée} \}$ est un intervalle non vide de \mathbb{R}^+ .

Définition 2

On appelle **rayon de convergence** de la série entière $\sum a_n z^n$ le nombre R_a de $\overline{\mathbb{R}}$ défini par : $R_a = \sup I$.

Remarque 1

- On ne change pas le rayon de convergence d'une série entière en modifiant un nombre fini de coeffi-
- les séries entières $\sum a_n z^n$, $\sum \lambda a_n z^n$ avec $\lambda \in \mathbb{R}^*$, et $\sum |a_n| z^n$ ont le même rayon de convergence.

Théorème 1

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons respectifs R_a et R_b . Alors : \bullet $(\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow |a_n| \leq |b_n|) \Rightarrow (R_a \geq R_b)$.

- $(|a_n| \sim |b_n|) \Rightarrow (R_a = R_b)$.

1.2Disque de convergence

Définition 3

Soit $\sum a_n z^n$ une série entière complexe de rayon de convergence $R_a > 0$. On appelle disque ouvert de convergence le disque ouvert de centre O et de rayon $R_a: \mathcal{D}(O, R_a) = \{z \in \mathbb{C}/|z| < R_a\}$. Si la série est réelle, on appelle intervalle ouvert de convergence l'intervalle $]-R_a,R_a[$.

Théorème 2 Lemme d'Abel

Si pour $z_0 \in \mathbb{C}^*$ la suite $(a_n z_0^n)_n$ est bornée, alors pour tout $z \in \mathbb{C}$ tel que $|z| < |z_0|$ la série $\sum a_n z^n$ est absolument convergente.

Théorème 3

Soit $\sum a_n z^n$ une série entière de rayon de convergence R_a . Alors :

- $|z| < R_a \Rightarrow \sum a_n z^n$ converge absolument.
- $|z| > R_a \Rightarrow \sum_{n=0}^{\infty} a_n z^n$ diverge grossièrement.

Remarque 2

• Si $|z| = R_a$, on ne peut pas conclure.

Proposition 2 Règle de d'Alembert

Soit $\sum a_n z^n$ une série entière de rayon de convergence R_a , telle que $\lim_{n\to+\infty} \left| \frac{a_{n+1}}{a_n} \right|$ existe et vaut $L \in \mathbb{R}$

$$\hookrightarrow$$
 si $L=0$, alors $R_a=+\infty$;

$$\hookrightarrow$$
 si $L = +\infty$, alors $R_a = 0$;

$$\hookrightarrow$$
 si $L \neq 0$ et $L \neq +\infty$, alors $R_a = \frac{1}{L}$

1.3 Opérations sur les séries entières

Dans ce paragraphe on considère $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence respectifs R_a et R_b .

Théorème 4

Le rayon de convergence R_s de la série entière somme $\sum (a_n + b_n)z^n$ vérifie $R_s \ge \min(R_a, R_b)$, avec égalité si $R_a \ne R_b$.

De plus, si
$$|z| < \min(R_a, R_b)$$
, alors $\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n$.

Théorème 5

- Le produit de Cauchy des séries $\sum a_n z^n$ et $\sum b_n z^n$ est une série entière, de la forme $\sum c_n z^n$ où $c_n = \sum_{k=0}^n a_k b_{n-k}$
- Le rayon de convergence R_p de cette série entière vérifie $R_p \ge \min(R_a, R_b)$.

De plus, si
$$|z| < \min(R_a, R_b)$$
, alors $\sum_{n=0}^{+\infty} c_n z^n = \left(\sum_{n=0}^{+\infty} a_n z^n\right) \times \left(\sum_{n=0}^{+\infty} b_n z^n\right)$.

2 Propriétés de la somme d'une série entière d'une variable réelle

2.1 Continuité

Définition 4

On appelle somme de la série entière $\sum a_n z^n$ de rayon de convergence R_a la fonction définie sur le disque ouvert de convergence $D(O, R_a)$ par :

$$z \mapsto \sum_{n=0}^{+\infty} a_n z^n$$

Proposition 3

La somme d'une série entière est continue sur le disque ouvert de convergence.

Remarque 3

• La continuité sur le cercle de centre O de rayon R_a n'est pas acquise (il peut y avoir continuité en tous points du cercle, en certains points du cercle ou en aucun).

2.2 Dérivabilité

Théorème 6

Soit $\sum a_n x^n$ une série entière **réelle**, de rayon de convergence R et de somme f.

Alors
$$f$$
 est dérivable sur $]-R,R[$, et pour tout x de $]-R,R[$, $f'(x)=\sum_{n=1}^{+\infty}na_nx^{n-1}.$

Cette série dérivée a le même rayon de convergence R.

Corollaire

La somme d'une série entière réelle est de classe \mathcal{C}^{∞} sur son intervalle ouvert de convergence.

Remarque 4

- La série dérivée p-ème vérifie : $\forall x \in]-R; R[, f^p(x) = \sum_{n=0}^{+\infty} \frac{(n+p)!}{n!} a_{n+p} x^n$
- On a en particulier : $\forall p \in \mathbb{N}, a_p = \frac{f^p(0)}{p!}$.

2.3 Intégration

Théorème 7

On considère la série entière **réelle** $\sum a_k x^k$ de rayon de convergence R et de somme f.

La série
$$\sum \frac{a_n}{n+1} x^{n+1}$$
 a le même rayon de convergence R et a pour somme $\int_0^x f(t) dt$.

3 Fonction développable en série entière

3.1 Généralités

Définition 5

Une fonction $f: \mathbb{R} \to \mathbb{C}$ est dite développable en série entière en 0 s'il existe une série entière $\sum a_n x^n + \infty$

de rayon de convergence
$$R$$
 non nul, et $r \in]0, R]$ tels que : $\forall x \in]-r, r[, f(x) = \sum_{n=0}^{+\infty} a_n x^n]$.

On dit que $\sum_{n=0}^{+\infty} a_n x^n$ est le développement en série entière de f au voisinage de θ (que l'on notera DSE).

Théorème 8

Soient f et g deux fonctions de la variable réelle admettant respectivement sur] -r,r[les DSE

$$\sum_{n=0}^{+\infty} a_n x^n \text{ et } \sum_{n=0}^{+\infty} b_n x^n. \text{ Si } \forall x \in]-r, r[, f(x) = g(x), \text{ alors } \forall n \in \mathbb{N}, a_n = b_n.$$

Remarque 5

- On déduit du théorème précédent l'unicité du développement en série entière : Si une fonction f définie sur \mathbb{R} admet un DSE au voisinage de 0, celui-ci est unique, c'est-à-dire qu'il existe une unique série entière dont la somme coïncide avec f au voisinage de 0.
- Soient f et g deux fonctions de la variable réelle développables en série entière au voisinage de 0, admettant respectivement les DSE : $\sum_{n=0}^{+\infty} a_n x^n$ et $\sum_{n=0}^{+\infty} b_n x^n$; alors $\forall \lambda \in \mathbb{R}, f + \lambda g$ est développable en

série entière au voisinage de 0, et admet pour DSE : $\sum_{n=0}^{+\infty} (a_n + \lambda b_n) x^n.$

Corollaire

La somme f d'une série entière définie par $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ est paire (resp. impaire) si, et seulement si $\forall n \in \mathbb{N}, a_{2n+1} = 0$ (resp. $a_{2n} = 0$).

Définition 6

Soient I un intervalle contenant 0, et $f: I \to \mathbb{C}$ une fonction de la variable réelle de classe \mathcal{C}^{∞} sur I. La série de Taylor de f est la série entière $\sum \frac{f^{(n)}(0)}{n!} x^n$.

Proposition 4

Soient r > 0 et f une fonction admettant sur]-r,r[le DSE $\sum_{n=0}^{+\infty} a_n x^n$. Alors la fonction f est de classe \mathcal{C}^{∞} sur]-r,r[et elle coïncide avec la somme de sa série de Taylor, c'est-à-dire que $\forall x \in]-r,r[$ on a :

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Remarque 6

• On rappelle le théorème de Taylor avec reste intégral : Si f est de classe \mathcal{C}^{n+1} sur un voisinage I de 0, alors :

$$\forall n \in \mathbb{N}, \forall x \in I, \qquad f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + R_n(x)$$

où $R_n(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$ est le reste intégral de Taylor d'ordre n.

Ainsi, une fonction f de classe C^{∞} sur un intervalle I contenant 0 admet un DSE sur $]-r,r[\ (r>0),$ si, et seulement si $\lim_{n\to+\infty}R_n(x)=0$, et alors f coïncide avec la somme de sa série de Taylor.

3.2 Développements usuels

3.2.1 Par la formule de Taylor

Proposition 5

La fonction exponentielle admet un DSE sur \mathbb{R} et on a :

$$\forall x \in \mathbb{R}, \qquad e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

Corollaire

Les fonctions chet sh sont développables en série entière sur \mathbb{R} et on a :

$$\forall x \in \mathbb{R}, \quad \operatorname{ch}(x) = \sum_{k=0}^{+\infty} \frac{x^{2k}}{(2k)!} \quad \operatorname{et} \quad \operatorname{sh}(x) = \sum_{k=0}^{+\infty} \frac{x^{2k+1}}{(2k+1)!}$$

Proposition 6

Les fonctions cos et sin sont développables en série entière sur $\mathbb R$ et on a :

$$\forall x \in \mathbb{R}, \qquad \cos(x) = \sum_{k=0}^{+\infty} (-1)^k \frac{x^{2k}}{(2k)!} \qquad \text{et} \qquad \sin(x) = \sum_{k=0}^{+\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

3.2.2 Par intégration ou dérivation terme à terme

On rappelle le résultat fondamental suivant :

Proposition 7

La série entière de la variable réelle $\sum x^n$ a pour rayon de convergence 1, et sa somme est donnée par :

$$\forall x \in]-1,1[, \qquad \sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$$

Corollaire

Les séries entières de la variable réelle $\sum (-1)^n x^n$ et $\sum (-1)^n x^{2n}$ ont pour rayon de convergence 1, et leurs sommes sont données par :

$$\forall x \in]-1,1[, \qquad \sum_{n=0}^{+\infty} (-1)^n x^n = \frac{1}{1+x} \text{ et } \sum_{n=0}^{+\infty} (-1)^n x^{2n} = \frac{1}{1+x^2}$$

Proposition 8

La fonction $x \mapsto \ln(1+x)$ admet un DSE sur]-1,1[, et on a :

$$\forall x \in]-1,1[, \qquad \ln(1+x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} x^{n+1}$$

Proposition 9

La fonction $x \mapsto \operatorname{Arctan}(x)$ admet un DSE sur]-1,1[, et on a :

$$\forall x \in]-1,1[, \quad Arctan(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

3.2.3 Par une équation différentielle

Pour montrer qu'une fonction f de classe \mathcal{C}^{∞} est développable en série entière sur un intervalle I contenant 0, on peut raisonner par analyse/synthèse comme suit :

 \hookrightarrow On montre que f est solution sur un intervalle ouvert J contenant 0 d'une équation différentielle linéaire d'ordre $p \in \mathbb{N}^*$ de la forme :

(E):
$$P_p(t)y^{(p)}(t) + P_{p-1}(t)y^{(p-1)}(t) + \dots + P_1(t)y'(t) + P_0(t)y(t) = S(t)$$

où $\forall k \in [0, p], P_k$ est une fonction polynômiale et S est une fonction développable en série entière sur J, de développement connu.

 \hookrightarrow On suppose que f admet un DSE sur un intervalle] -r,r[centré en 0, inclus dans J, et on écrit :

$$\forall x \in]-r, r[, f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

 $\stackrel{n=0}{\hookrightarrow}$ On utilise alors le fait que f est de classe \mathcal{C}^{∞} et que $\forall x \in]-r,r[,\forall k \in \llbracket 0,p \rrbracket,$

$$f^{(k)}(x) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n x^{n-k}$$
; on reporte ces expressions dans (E) pour obtenir une unique somme de série entière, nulle.

- \hookrightarrow On invoque l'unicité du DSE, et on identifie chaque coefficient à 0. Généralement cela conduit à des relations de récurrence sur les coefficients a_n , puis à des études de suites...
- \hookrightarrow On synthétise les résultats, en vérifiant que la série entière $\sum a_n x^n$ ainsi déterminée a un rayon de convergence non nul.

Proposition 10

La fonction $x \mapsto (1+x)^{\alpha}$ admet un DSE sur $I = \mathbb{R}$ si $\alpha \in \mathbb{N}$, et sur I =]-1,1[sinon, et on a :

$$\forall x \in I, \qquad (1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^n$$

3.3 Série géométrique et série exponentielle d'une variable complexe

Définition 7

La série entière de la variable complexe $\sum z^n$ est appelée série géométrique de raison z; elle a pour rayon de convergence 1, et sa somme est donnée pour tout complexe z du disque ouvert de convergence par :

$$\sum_{n=0}^{+\infty} z^n = \frac{1}{1-z}$$

Rappel

On a défini en première année la fonction exponentielle complexe par :

$$\forall (x,y) \in \mathbb{R}^2, e^{x+iy} = e^x(\cos(y) + i.\sin(y))$$

Proposition 11

La série entière de la variable complexe $\sum \frac{z^n}{n!}$ a pour rayon de convergence $+\infty$, et sa somme est e^z :

$$e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

Remarque 7

- La fonction exponentielle complexe est le prolongement sur \mathbb{C} de la fonction exponentielle réelle, dont le développement en série entière coïncide avec la restriction de la série complexe à \mathbb{R} .
- La fonction exponentielle est continue sur \mathbb{C} .

Proposition 12

$$\forall (z, z') \in \mathbb{C}^2 \text{ on a : } e^z e^{z'} = e^{z+z'}.$$