

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

TITLE :

ASIC/FPGA Technical Manual

PEV-1100 HW/SW Interface Cassidian MAS Technical Reference

KEY WORD:
ISO9000, Quality System, IOxOS Quality System, FPGA, ASIC
CONFIDENTIAL

SUMMARY:

This document provides the PEV_1100 "PCI_Express to VME64X Bridge Hardware-Software Interface" and the "Hardware Technical Reference"

IOxOS Technologies SA universal property

The content of this document is the property of IOxOS Technologies SA It is supplied in confidence and commercial security on its contents must be maintained. It must not be used for any purpose other than that for which it is supplied nor may information contained in it be disclosed to un-authorized persons. It must not be reproduced in whole or part without permission in writing from IOxOS Technologies SA.

IOxOS Technologies SA 4, Chemin des Fontenailles CH-1196 Gland SWITZERLAND

PROJECT REFERENCES

Internal project, External contact, ...

DOCUMENT REFERENCE No:		INTERNAL_1:	INTERNAL_2:	
		Execution		Date
AUTHOR	[JB] J. Bovier		25 December 2008	
CHECKED	CHECKED [JFG] J. F. Gilot			25 December 2008
APPROVED				
AUTHORIZED				

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

REVISION	DATE	CHAPTER AND SECTION MODIFICATIONS	APPROVED	AUTHORIZED
1.0	01/09/11	Add CASSIDIAN specific requirements	J. Bovier	

Author references

INITIAL	NAME	COMPANY	COMMENTS
[JB]	Joel BOVIER	IOxOS Technologies SA	
[JFG]	Jean-François GILOT	IOxOS Technologies SA	

5

10

15

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

20

Table of Contents

1 Introduction	7
1.1 PEV_1100 Project Overview	7
1.2 Acronyms and Abbreviation	8
1.3 Related and Referenced Document	9
1.4 Environmental	10
2 PEV_1100 Hardware Description	11
2.1 PEV_1100 Configuration	
2.1.1 Static Options	
2.1.2 Front panel LED Indicators	
2.1.3 On-board LED Indicators	
2.2 PEV_1100 Configuration process	
2.3 Board Power Supply	
2.4 PCI Express Infrastructure	
2.4.1 PLX Technologies PCI_Express Switch	
2.4.2 PCI Express External Cabling	
2.4.3 PCI Express FPGA	
2.4.4 VITA41 XMC Extension	
2.4.5 IEEE 1386 PMC Extension	
2.5 FPGA Support & Infrastructure	
2.5.1 External CPLD	
2.5.2 Serial Flash PROM	
2.5.3 FPGA System Monitor	27
2.6 Others General Functions	
2.6.1 I2C Controller	
2.6.2 XILINX Programming Port P6	28
2.6.3 SPI Serial Flash programming JTAG TAP J7	
2.6.4 Supervisor and Watchdog Timer	
2.7 TOSCA Central Switch	
2.7.1 WRITE_Posting & Read_Request	31
2.7.2 Read_Response (RDRS)	
2.8 PCI Express TLP	
2.9 SMEM Shared Memory	34
2.10 IDMA Embedded Controller	35
2.10.1 READ_Engine Operation	
2.10.2 WRITE Engine Operation	37
2.10.3 Some IDMA Special Capabilities	38
2.10.3.1 DIRECT Mode	
2.10.3.2 PIPELINE Mode	39
2.10.4 IDMA Features Description	40
2.10.4.1 Independent READ/WRITE Engines	40
2.10.4.2 DMA Address Control	40
2.10.4.3 PCI Express support	41
2.10.4.4 Central_SW Addressing	41
2.10.4.5 Global Time Stamping	41
2.10.4.6 Trigger facilities	
2.10.4.7 DMA_Descriptor Location	
2.10.4.8 IDMA Error Signalling	
2.11 VME64X Interface	44
2.11.1 VMF Slot 1 functions	44

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

2.11.2 VME Slave Port	44
2.11.3 VME Master Port	45
2.11.4 VME Location Monitor	46
2.11.5 VME LOCK Support	46
2.11.6 VME Error Support	47
2.11.7 VME Interrupts	
2.11.8 VME Global Timer	
2.11.8.1 IDMA and USER Block Global Time	
2.11.8.2 IRIG B and GPS Synchronization	
2.11.9 VME P2 IO Port	
2.11.10 VME64X Auto ID	
2.11.11 VME64X RMW Transactions	
2.11.12 VME64X CRS Completion	
2.11.13 VME64X Remote RETRY Logic	
2.12 USER Block	
2.12.1 TOSCA FPGA Design Kit	
2.12.2 GPIO Programmable control	
2.12.3 IO_Bus Bridge	
2.12.4 Message Passing FIFO	
2.13 Interrupt Infrastructure	
2.13.1 ITC16 Interrupt Controller.	62
2.14 Environmental	
3 IO_Bus Control & Status Register	
3.1 IO Bus Infrastructure	
3.1.1 IO Bus Master	
3.1.2 IO Bus Slave	
3.1.3 PONFSM Controller	
3.1.4 PCIe MEMORY Bridge	
3.2 Local CSR Resources	
3.2.1 ILOC_Static Register	
3.2.2 ILOC_Cable_1 [P4] Register	60
3.2.3 ILOC Cable 0 [P3] Register	
3.2.4 ILOC PONFSM Register	
3.2.5 ILOC SPI Register	
3.2.6 ILOC_PCIE_Switch Register	
3.2.7 ILOC SIGN Register	
3.2.8 ILOC_GENCTL Register	
3.2.9 PCIE MMUADD Register Address Pointer Register	
3.2.10 PCIE MMUDAT Register	
3.2.11 ILOC PCIe EP Status Register	
3.2.12 V5 SMON ADDPT	
3.2.13 V5_SMON_DAT Register	
3.2.14 V5_SMON_STA Register	
3.2.15 V5_PCIEP_ADDPT Register	
3.2.16 V5_PCIEP_DAT Register	
3.2.17 V5 PCIEP SEL Register	
3.2.18 V5_PCIEP_RSLT Register	
3.2.19 PMC_XMC CSR Register	
3.2.20 I2C CTL_X Registers	
3.2.21 Private LOCAL ITC Controller	
3.2.22 Local Signature_ROM	
3.3 VME64X CSR Resources	
3.3.1 Private VME Slot_1 Register	
3.3.2 Private VME Master Register	
O.O.Z 1 TIVATO VINE_INACTOR TOGISTES	

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.3.3 Private VME_Slave Register	
3.3.4 Private VME_INTG Register	94
3.3.5 Private VME_MMU Address Pointer Register	94
3.3.6 Private VME_MMU Data Register	95
3.3.7 Private VME_Address Error Register	97
3.3.8 Private VME_Status Error Register	
3.3.9 Private VME_LOCMON Register	
3.3.10 Private VME LOCK Register	
3.3.11 Private VME_RMW Registers	100
3.3.12 Private VME_ELBDIR Register	102
3.3.13 Private VME GLOBTIM Register	104
3.3.14 Private VME_ITC Controller	107
3.3.15 VME64x CR/CSR ADER_0 Register	107
3.3.16 VME64x CR/CSR BSR & BCR Registers	
3.3.17 VME64x CR/CSR BAR Register	
3.3.18 VME64x CR Configuration ROM	109
3.4 Shared Memory & IDMAC CSR Resources	
3.4.1 SMEM_DDR2 Register	110
3.4.2 SMEM_DDR2_ERR_Register	111
3.5 PEV Intelligent DMA Controller	112
3.5.1 IDMA_GCSR Register	
3.5.2 IDMA_XX_N_PCSR Register	113
3.5.3 IDMA_XX_N_CSR Register	114
3.5.4 IDMA_XX_N_NDES Register	115
3.5.5 IDMA_XX_N_CDES Register	115
3.5.6 IDMA_XX_N_DCNT Register	116
3.5.7 SMEMIDMA Block Interrupt Allocation	
3.5.8 DMA_Descriptor Element	
3.6 USER CSR Resources	
3.6.1 User GPIO_A Output Register	
3.6.2 User GPIO_A Enable Register	124
3.6.3 User GPIO_A Input Register	124
3.6.4 User GPIO_A INT POLARITY Register	124
3.6.5 User GPIO_B Output Register	
3.6.6 User GPIO_B Enable Register	125
3.6.7 User GPIO_B Input Register	
3.6.8 User GPIO_B INT POLARITY Register	126
3.6.9 Message FIFO#N Control Registers	126
3.6.10 Message FIFO IO Port	
3.6.11 USER Block Interrupt Allocation	127
3.6.12 User Signature_ROM	128
3.7 ITC Interrupt Controller	
3.7.1 ITC IACK Register	
3.7.2 ITC CSR Register	
3.7.3 ITC IMC Register	
3.7.4 ITC IMS Register	
ANNEXES	
4.1 Compressed 256 Bytes IO Space	132

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

Index of Tables

Table 1.1 : List of Acronyms and Abbreviation	9
Table 1.2 : Related and Referenced Documents	
Table 1.3.: PEV 1100 Environmental	
Table 2.1.: PEV 1100 jumpers	
Table 2.2.: Micro-switch PEV_1100 static options	
Table 2.3.: Front panel LED indicators	
Table 2.4.: On-board (PCB) LED indicators	
Table 2.5.: PCI Express Switch model	
Table 2.6.: FPGA PCI Express link-up LED indicator	23
Table 2.7.: IEEE 1386.1 User's IO	
Table 2.8.: XILINX Virtex-5 FPGA Configuration size	
Table 2.9.: FPGA bit-stream mapping (Small devices)	27
Table 2.10.: FPGA bit-stream mapping (Big devices)	27
Table 2.11.: FPGA System Monitor analog inputs	27
Table 2.12.: XILINX programming Port P6	
Table 2.13.: Agent_SW Transaction Interfaces	
Table 2.14.: TLI Transactions Dispatching	
Table 2.15.: SMEM Central SW TYPE transactions	
Table 2.16.: VME Master Central_SW TYPE transactions	
Table 2.17.: VME P2 A&C User IO assignment	
Table 2.18.: VME P2 D&Z VXI IO assignment	
Table 2.19.: VME RMW Data alignment	
Table 2.20.: USER Block GPIO - IEEE 1386.1 Jn14/Jn24	
Table 2.21.: IO_Bus Bridge MEMORY Mapping	
Table 2.22.: PEV 1100 ITC16 INT sources	
Table 2.23.: PEV 1100 Frommental	
Table 3.1.: PONFSM Instruction Format	
Table 3.2.: MMU page Descriptor	
Table 3.3.: Address Space Type Encoding	
Table 3.4. : LOCAL (PCIe EP) Block ITC Interrupt Sources	
Table 3.5. : Private VME MMU Page Descriptor	
Table 3.6 : Address Type Encoding	
Table 3.7. : Private VME ITC Interrupt Sources	
Table 3.8.: SMEM – IDMA IO Bus resource	
Table 3.9. : IDMA Registers mapping	
Table 3.10. : IDMA ITC Interrupt Sources	
Table 3.10: IDMA Tre Interrupt Sources	
Table 3.12. : USER Register Description (Cassidian MAS specific)	
Table 3.13. : USER Block ITC Interrupt Sources	123
Table 3.14.: ITC Register IO_Bus mapping	· · · · · · · · · · · · · · · · · · ·
Table 3.14 TO Register 10_bus mapping	129
Index of Drawings	
_	
Drawing 1: PEV_1100 Block Diagram	
Drawing 2: PEV_1100 Component side	
Drawing 3: PEV_1100 PCI Express LED indicators location	
Drawing 4: PEV_1100 Power supplies Block Diagram	20

35

40

45

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

1 Introduction

The PEV_1100 is designed following the rules and documentation procedures defined by the "IOxOS Technology SA Quality System".

1.1 PEV_1100 Project Overview

The PEV_1100 is built on the latest PCISIG "PCI Express External Cabling Specification 1.0" allowing to extend the PCI Express Bus infrastructure over medium distance (up to 7 meters) with high speed external cabling. It is defined to support PCI Express from x1 up to x16 lanes. The connectors and the cables are fully specified by the PCISIG and widely available on the market.

In a first stage, the PCI Express x4 Host Adapter Card, widely available by 2nd third party supplier can be used for the server/workstation connection. In a second step, PCI Express External Cabling connectors will be directly available on the PC ATX/ATXE mother-board. For laptop connectivity, ExpressCard plug-in provides the PCI Express x1/x4 cable connection.

Drawing 1: PEV_1100 Block Diagram

The PEV_1100 supports multi-chassis expansion through its 2nd PCI Express x4 connector when configured as DOWN_stream. This 2nd connector can also be configured as UP_stream enabling Dual-Host / Dual-Fabric system configurations.

For industrial applications, 19" rack mount equipment linked with the PEV_1100 delivers a cost-effective and reliable solution. All major IT suppliers (IBM, Sun, Dell and HP among others) provide high performance 19" rack mount equipment for servers/workstations in 1U / 2U form factors at a very

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

competitive price (a fraction of the cost of VME SBC).

A PEV_1100 based system can be extended up to 16 chassis when using a PCI Express Switch (available in 1U form factor).

- VME64x 6U Board with two XMC/PMC sites
 - x VME64x with 3 / 5 rows connectors
 - x 5[V] only power supply
- ◆ Transparent PCI Express to VME64x Interface
 - x Multi-chassis capability (IN-OUT chaining)
 - x Dual-Host Support
 - x Full Interrupt Dispatching
- ◆ PCI Express External Cabling Specification Rev 1.0
 - x Two PCIe x4 External Connectors
 - x PCIe x4 copper cable (up to 7 meters)
 - x Optional SFP Optical Adapter (up to 100 meters)
- ◆ On-board 256/512/1024 MBytes DDR2 Memory
 - x Multi-port shared access
 - x High bandwidth R/W (2 GBytes/s)
- ◆ Embedded 4-channel Intelligent DMA Controller (IDMAC)
 - x Optimized for PCI Express architecture
 - x Any Source/Destination port (VME64x, both PMC/XMC sites, PCI Express and Shared Memory)
 - x Chaining support
- ◆ Two PMC IEEE 1386.1 / XMC VITA 42.3 sites
 - x PCI 3.0 32-bit @ 33/66 MHz
 - x Direct bridge from PCI Express
 - x XMC VITA 42.3
- VME64 Master

50

x CR/CSR, A16, A24, A32 and user defined

- x SBT, BLT32, MBLT64, 2eVME & 2eSST (VME320)
- x Full VME Slot-1 Function
- VME64 Slave
 - x Local Shared Memory
 - x Direct Bridge to PCI Express & PMC/XMC
 - x Direct Bridge to PCI Express UP stream
 - SBT, BLT32, MBLT64, 2eVME & 2eSST (VME320)
- Standard (0°C to 70°C) and Extended (-40°C to 85°C)
- Built on the latest FPGA technology with PCI Express embedded support
 - x Full control on VHDL source code
 - x Obsolescence management
 - x User area available for custom applications
 - x FPGA Design Kit
- ◆ API & Libraries available for Window XP and Linux

Applications

- Enhanced & High performance VME64x Single Board Computers (SBC) and IO control
- Aerospace integration rig systems, flight simulators & test equipment

1.2 Acronyms and Abbreviation.

Following table sums up specific abbreviations and acronyms used in this document.

ABBREVIATION	MEANING
CFG	Constant Frequency Clocking. PCI Express clocking mode.
CPLD	Complex programmable Logic Device
ITC16	Interrupt Controller
ITP	Interrupt pending
PCI Express	Serial based PCI Interfacing defined by PCISIG Organization.
VME64X	VME 64-bit, defined by ANSI standard and VITA organization

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	8/135	P_PCIE-VME_AF_HSID_B0
--	-------	-----------------------

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

ABBREVIATION	MEANING
FPGA	Field Programmable Gate Array
PMC (IEEE1386.1)	PCI Mezzanine Card, referenced as PMC, normalized under IEEE1386.1
SSC	Spread Spectrum Clocking. PCI Express clocking mode.
XMC	Extended Mezzanine Card, VITA 42 specification
PrPMC	Processor PMC Mezzanine, VITA32
XILINX	FPGA Manufacturer

Table 1.1: List of Acronyms and Abbreviation

1.3 Related and Referenced Document.

Following table sums up the main document references. (IOxOS proprietary, Specifications, Technical documents, customer related, ...)

Additional informations are also available to the related manufacturer.

REF	TITLE	DOC IDENTIFICATION	SOURCE
{1}	ASIC/FPGA Design Process STD	Q_PROC_AFD_0001_An	IOxOS Quality System
{2}	VME64 Standard	VITA 1-1994 (R2002)	VITA
{3}	VME64 Extension VME64X 2eSST Protocol	VITA 1.1-1997(R2005) VITA 1.5-1997(R2005)	VITA
{4}	PCI Express Specification 1.1A PCI Express Specification 2.0	PCISIG	PCISIG
{5}	PCI Express External Cabling Specification 1.0	PCISIG	PCISIG
{6}	Conduction Cooled PMC	VITA 20-2001(R2005)	VITA
{7}	Processor PMC (PrPMC)	VITA 32-2003	VITA
{8}	PMC-P4 Pin Out Mapping To VME-P2	VITA 35-2000	VITA
{9}	Status Indicator Standard	VITA 40-2003	VITA
{10}	VXS VME Switched Serial Standard	VITA 41.0-2006, 41.2-2006,	
{11}	XMC Switched Mezzanine Card (PCI Express)	VITA 42.0-200x, 42.3-2006	VITA
{12}	PCI Local Bus Specification 3.0	PCISIG	PCISIG
{13}	Xilinx Virtex-5 family data sheet	DS100.pdf	XILINX
{14}	Xilinx Virtex-5 FPGA User Guide	UG190.pDF	XILINX
{15}	Xilinx Virtex-5 FPGA System monitor User Guide	UG192.pdf	XILINX
{16}	Xilinx Virtex-5 FPGA Integrated PCI Express End Point.	UG197.pdf	XILINX
{17}	Xilinx Virtex-5 LogiCORE Endpoint Block for PCI Express Designs	UG350.pdf	XILINX
{18}	PLX Technology PEX-8624-AA	Express Lane PEX-8624-AA 24-lane/6- port PCI Express Gen 2 Switch Data Book	PLX Technology
{19}	PLX Technology PEX-8112-AA	PEX_8112-AA_Data Book PCI Express x1 to PCI Bridge	PLX Technology
{20}	SPI Serial Flash M25P128	Data-sheet M25P128	Numonix

Table 1.2: Related and Referenced Documents

2011-12-21 - PEV_1100 PCI	9/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

1.4 Environmental

The PEV_1100 is designed for commercial and industrial temperature grade. The above table sums up the environmental.

	PEV_1100 Commercial	PEV_1100 Industrial	Comments
Operational Temperature	0 to 60 [°C]	- 40 to 75 [°C]	With 400 LFM forced air cooling.
Storage Temperature	- 55 to 105 [°C]	- 55 to 105 [°C]	
Relative Humidity	5% to 95%	5% to 95%	Non condensing
Vibration	To Be Defined	To Be Defined	
Shocks	To Be Defined	To Be Defined	
Altitude	0 – 5000 meters	0 – 5000 meters	
EMI / RFI	EN50022-Class A EN50082	EN50022-Class A EN50082	
Security	EN60950	EN60950	

Table 1.3.: PEV_1100 Environmental

Due to the difficulties to get precise informations on the air cooling efficiency and the installed PMC/XMC, the PEV_1100 provides on-board thermal sensors.

- Internal XILINX Virtex-5T die temperature monitor. Refer to chapter 2.5.3
- · External LM86 temperature sensor.

These two thermal informations allow to characterize the thermal envelope for a PEV_1100 specific integration.

60

75

80

85

90

95

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

2 PEV_1100 Hardware Description

The following chapter provides a technical description of the hardware implementation. This covers following aspects :

- PEV_1100 physical implementation
- · Hardware implementation of key sections
- FPGA internal architecture description

2.1 PEV_1100 Configuration

The above chapters provides the PEV 1100 static options and IO connectors description.

Drawing 2: PEV_1100 Component side

2.1.1 Static Options

Following tables sums up the PEV_1100 static options (Jumpers, Mini DIP switches and Hex-Rotary).

2011-12-21 - PEV_1100 PCI	11/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

Jumper group	Valid p	osition		
J[6-4-5]	J[4-6]	J[4-5]	J[6-4] = PCle P4 DOWN_stream J[5-4] = PCle P4 UP_stream	PCI Express External.
J[1-2-3]	J[2-1]	J[2-3]	J[2-3] = PCIe P4 SBRTN J[2-1] = OPEN	PCI Express External.
J[700-1-2]	J[700-1] (Top)	J[701-2] (Bottom)		PMC 3V3 power supply selection
J703	Installed	Open	No on-board power	IOxOS Reserved
J300	Installed	Open	PMC JTAG by-pass. Used only when the PEV_1100 is under test.	IOxOS Reserved
J500	Installed	Open	Push Button RESET. Allow to control the on-board RESET.	IOxOS Reserved
J502	Installed	Open	JTAG 1149.1 Boundary chain Enable	IOxOS Reserved
J504	Installed	Open	JTAG 1149.1 P7 TAP OUT Enable. Used only when the PEV_1100 is under test.	IOxOS Reserved

Table 2.1.: PEV_1100 jumpers

Three mini-DIP switches implement the PEV_1100 configuration options :

- SW_500 implements the VME64X related options
- SW_501 implements the PCI Express External cabling options and the FPGA configuration options
- SW_502 implements the PCI Express mapping options and the Power-ON FSM sequencing control.

Switch	Default	Function	Comment
SW500-1	ON	VME SYSRST Enable	Enable VME SYSRESET generation
SW500-2	ON	VME SLOT1 Enable	Force VME Slot-1 active
SW500-3	OFF	VME64X Mode	VME64X CRCSR Mode
SW500-4	OFF	VME A24 A[19]	512 KB CRCSR window assigned statically
SW500-5	ON	VME A24 A[20]	while VME64X mode is disabled. In this case the CRCSR is mapped on the VME
SW500-6	OFF	VME A24 A[21]	A24 Address Space.
SW500-7	ON	VME A24 A[22]	While VME64X mode is enabled and VME A24[23:19] = B"10101" the VME
SW500-8	OFF	VME A24 A[23]	Auto_ID Mode is selected. While VME64X mode is enabled and VME A24[23:19] = B"10100" the VME Semi Automatic _ID Mode is selected. Refer to chapter 2.11.10
SW501-1	OFF	ON = SPI Prog Enable	Enable SPI Programming from P7 (Xilinx

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	12/135	P_PCIE-VME_AF_HSID_B0
--	--------	-----------------------

100

105

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

Switch	Default	Function	Comment	
			TAP Tool) Used for on-board FPGA bit-stream stored in the 128Mbit SPI FlashEPROM reprogramming	
SW501-2	ON	FPGA Config B-STR LSB	Selection of Bit-stream #1 (Bit-stream #0 is	
SW501-3	OFF	FPGA Config B-STR MSB	the back-up)	
SW501-4	OFF	PCIe_RSTMOD	PCI Express remote RESET Mode = OFF: Disabled = ON: Enabled	
SW501-5	OFF	P4 Cable Connector PCIe as Non-Transparent	When "ON" P4 is defined as UP_stream NT (Refer to 8624AA technical documentation)	
SW501-6	OFF	This 3-bit field (SW501-8 is MSB	PEV_1100 on-board PCI Express	
SW501-7	OFF	and SW501-6) defines the PCI Express Infrastructure (OFF= '0',	implementation is defined through these three switched.	
SW501-8	OFF = "000"	ON = '1') 000 : P3 UP_stream (external clock) 001 : P3 UP_stream (local clock) 010 : XMC#1 UP_stream 011 : XMC#2 UP_stream 100 : FPGA UP_stream 101 : P4 UP_stream (local Clock) 110 : Reserved 111 : PCIe Disabled	Default Mode. (Required when SSC) Use local 100 MHz. (OK with CCG) PEV_1100 used as XMC carrier with installed CPU with PCI Express RC To be defined Back-up External cabling. Test Factory reserved for bring-up and testing.	
SW502-1	OFF	FPGA Configuration with Xilinx iMPACT tool.	Disable the CPLD FSM handling the PON FPGA configuration. When "ON" the FPGA shall be configured by the XILINX iMPACT tool.	
SW502-2	ON	Enable Compressed 256 Bytes IO Space.	While enabled a 256 Bytes IO is used in place of the standard 4 KBytes	
SW502-3	ON	NoPF_BAR2_Size(0)	This 2-bit code define the A32 Non-	
SW502-4	ON	NoPF_BAR2_Size(1)	Prefetchable Memory size associated with BAR_2.	
			00 64 MBytes	
			01 128 MBytes	
			10 256 MBytes	
			11 4 MBytes	
SW502-5	OFF	PF_BAR0_Size(0)		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

Switch	Default	Function		Comment	
SW502-6	OFF	PF_BAR0_Size(1)			e define the A32/A64
SW502-7	ON	PF_BAR0_Size(2)		Prefetchable Memory size associated with BAR_0.	
				000	Disabled PF_ BAR0 and NoPF_ BAR2 selection.
				001 Disabled PF_BAR0 only. 010 128 MBytes 011 256 MBytes	
				100	512 MBytes
				101	1024 MBytes
				110	2048 MBytes
				111	4096 MBytes
SW502-8	OFF	PF_PCI_Express_A64		While "ON" Force the use of PCI Express 64_bit on BAR0 (A64 Capable)	

Table 2.2.: Micro-switch PEV_1100 static options

115

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

2.1.2 Front panel LED Indicators

The PEV_1100 implements front panel LED indicators, providing visual information on main internal status.

				LED	Col.	Meaning	
	Top of VME board			LD502	G	VME Slot_1 Enable	
				LD500	G	ОК	
	'				R	ERROR. Internal activity Optional flashing FAST/SLOW	
LD502					Α	WARNING Internal activity	
LD500 LD504	0	Sxpress		LD504	R	FPGA INIT Error. Light on when the FPGA configuration failed. Bad or corrupted bit-stream.	
LD505		P3 PCI Express Ext. cabling			G	VME Activity. 0.3[s] Stretched light on VME Master activity. (Master/Slave)	
LD503				LD505	G	PCI Express configured, MSI issued Optional flashing FAST/SLOW	
LD106	•			LD501	G	PCI Express Activity. 0.3[s] Stretched light while PCI Express Optional flashing FAST/SLOW	
LD105		SS		L D400		DEVO400AA Fetal Farer	Defeate DLV
LD103		P4 PCI Express Ext. cabling		LD106	R	PEX8426AA Fatal Error	Refer to PLX 8624AA user's
LD104		I Ey cab		LD105	G	PEX8426AA Port_PG0	guide.
		4 PC Ext.		LD104	G	PEX8426AA Port_PG1	
LD506	0	ď		LD506	G	Light_on : PEV_1100 Ready Fast flashing : Wait for IO&MEM	FPGA controlled LED
LD700	•					Enable Slow flashing: Wait for 1st CONFIG	
			1		R	Light_on : Wait for PLL lock-up Fast flashing : Wait for PCI Express LINKUP Slow flashing : TBD	
					Α	Reserved debugging	
				LD700	R	TPS 2310 LI Controller / Circuit breaker. Light on while on-board CC detected.	

Table 2.3.: Front panel LED indicators

Note Colour code is: G = Green, R = Red, A = Amber

2.1.3 On-board LED Indicators

To support system integration, green SMD LED indicators are populated on the component side of the PEV_1100 PCB. Those provide PCI Express link-up status.

2011-12-21 - PEV_1100 PCI	15/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

125

130

135

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

	Color	PLX Assignation	Meaning	Comments
LD101	G	PEX8624 Port_PG8	Provides PCI Express link status information on XMC Top	Refer to PEX8624AA user's manual for complete
LD100	G	PEX8624 Port_PG9	Provides PCI Express link status information on XMC Bottom	description. - OFF = PCI Express Link
LD102	G	PEX8624 Port_PG6	Provides PCI Express link status information on PCI Express to PCI Bridge	is down ON = PCI Express Link is up at 5GT/s
LD103	G	PEX8624 Port_PG5	Provides PCI Express link status information on Xilinx FPGA EP	Blinking schema refer to following section
LD300	G	PEX8112	Indicates PCI Express "Link_UP". (on solder side)	PEX8112 PCI Express to PCI Bridge is ready.

Table 2.4.: On-board (PCB) LED indicators

- Blinking 0.5s ON 0.5s OFF, reduced Lanes are up at 5GT/s
- Blinking 1.5s ON 0.5s OFF, all Lanes are up at 2.5 GT/s
- Blinking 0.5s ON 1.5s OFF, reduced Lanes are up at 2.5GT/s

Drawing 3: PEV_1100 PCI Express LED indicators location

2011-12-21 - PEV_1100 PCI	16/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

145

150

155

160

165

170

175

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

2.2 PEV_1100 Configuration process

Before installation, the PEV_1100 shall be configured (static option) in accordance with its field of utilisation.

The basic process is described in following steps:

- (a) The PEV_1100 can be installed in legacy 3-row VME without backplane supplied 3.3[V]. While power hungry PMC/XMC are installed on the sites, the 3.3[V] power-supply of the XMC/PMC sites can be directly connected to the VME64X backplane power by configuring [J700-J701]. In other case leave the default setting [J701-J702]
- (b) J703 is reserved for IOxOS debugging. While installed, the over-current logic is permanently activated. This jumper shall never be installed in normal operation..
- (c) The PEV_1100 can be used in legacy VME64 (3-row connector) or in latest generation VME64X (5-row connector). The VME64X backplane provides extra signalling as geographical address and 3.3[V] power supply (..., not true in all implementation). The availability of geographic address allows to enable automatically the VME Slot_1 function (Central Arbitration and BTO). The mini-witch SW500-3 selected the mode of operation
 - SW500-3 = "ON", VME64X mode is selected.
 - SW500-3 = "OFF", VME64 mode is selected.
- (d) In case of VME64 mode selected, the VME Slot_1 function shall be enabled/disabled with the specific mini-witch SW500-2.
 - SW500-2 = "ON", the on-board VME Slot_1 function is activated
 - SW500-2 = "ON", the on-board VME Slot_1 function is inactive. In this case the VME system needs an alternate unit acting as VME Slot_1 (? CPU). The PEV_1100 shall therefore be installed within the VME daisy-chain
- (e) In case of VME64 mode selected, The 512KBytes VME Configuration Space, currently named CR/CSR is relocated to the standard A24 address space. The A24 base address is than determined with the mini-switch SW500-8 to SW500-4.
- (f) The PEV_1100 is able to generate VME System RESET, during the power-up sequence and also under control of remote PCI Express command. The VME SYSRESET is enabled/masked with the mini-switch SW500-1
 - SW500-1 = "ON", PEV_1100 authorized to issue VME SYSRESET.
 - SW500-1 = "OFF", PEV_1100 not authorized to issue VME SYSRESET.
- (g) The PEV_1100 is based on PCI Express External Cabling and implements two x4 connectors available on the VME front panel. These two connectors, P3 and P4 are configurable to act as
 - · PCI Express UP stream port
 - PCI Express DOWN stream port

2011-12	2-21 - PEV_1100 PCI	17/135	P_PCIE-VME_AF_HSID_B0
Expre	ss to VME64 Bridge		

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

180

185

190

195

- (h) P3 is a PCI Express UP stream port and can only be dedicated to the Host connection.
- (i) P4 can be configured to act as an DOWN_stream port for multi-chassis implementation (1st PEV_1100 P4 is controlling 2nd PEV_1100 P3 in a daisy chained manner) or also as a UP stream port for a connection to a 2nd Host acting in Non Transparent Mode (NT)
- (j) The SW1, 4-bit HEX rotary switch is directly attached to the front-end PCI Express switch device PLX PEX8624AA through its GPIO pins. This 4-bit static information is directly available to the software device driver for multi-chassis implementation. The HEX rotary ID is also available in the "ILOC_PCIE_SW" register
 - SW1 Select a unique ID (from 0x1 to 0xF)
- (k) The PEV_1100 implements a front-end PCI Express switch PLX PEX-8624AA. The assigned UP_stream port as well as the NT port are selectable with mini-switch SW501-5.
- (I) Due to different PCI Express addressing capabilities, (AMD/INTEL, laptop/server/desktop) the default PCI Express BAR assignation can be modified through mini-switch SW502-8 to SW502-2. The PEV_1100 map two MEMORY windows (Prefetchable and Non-Prefetchable) with selectable size.

200

205

210

215

- SW502-4 and SW502-3 allows to select the size of the Non_Prefetchable BAR_2.
 - SW501-4 and SW501-3 = "OFF"-"OFF": 64 MBytes.(Default)
 - SW501-4 and SW501-3 = "OFF"-"ON" : 128 MBytes.
 - SW501-4 and SW501-3 = "ON"-"OFF" : 256 MBytes.
 - SW501-4 and SW501-3 = "ON"-"ON" : 4 MBytes.
- SW502-7, SW502-6 and SW502-5 allows to select the size of the Prefetchable BAR_0.
 - SW501-7 to SW501-5 = "OFF"-"OFF"-"OFF": Both disabled
 - SW501-7 to SW501-5 = "OFF"-"OFF": Prefetchable BAR_0 disabled
 - SW501-7 to SW501-5 = "OFF"-"ON"-"ON" : 128 MBytes.(Default)
 - SW501-7 to SW501-5 = "OFF"-"ON"-"ON" : 256 MBytes.
 - SW501-7 to SW501-5 = "ON"-"OFF"-"OFF" : 512 MBytes.
 - SW501-7 to SW501-5 = "ON"-"OFF"-"ON" : 1024 MBytes.
 - SW501-7 to SW501-5 = "ON"-"ON"-"OFF" : 2048 MBytes.
 - SW501-7 to SW501-5 = "ON"-"ON"-"ON" : 4096 MBytes.
- SW502-8 select the 64-bit addressing on BAR_0. Not all PC chip-set support the 64-bit mapping.
 - SW501-8 = "OFF": BAR0 is 32-bit capable.(Default)
 - SW501-8 = "ON" : BAR0 is 64-bit capable.

2011-12-21 - PEV_1100 PCI	18/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

220

225

- (m) The n-board SRAM based FPGA is configured at power-up with a specific bit-stream. The on-board SPI Flash memory stores up to 4 bit streams. Two mini-switch SW501-3 and SW501-2 allow to select which one is used for the power-up configuration. Specific tools are provided to load and manage the SPI Flash Memory with the FPGA bit-stream.
 - SW501-3 and SW501-2 = "OFF"-"OFF" = Bit-stream #0.
 - SW501-3 and SW501-2 = "OFF"-"ON" = Bit-stream #1.
 - SW501-3 and SW501-2 = "ON"-"OFF" = Bit-stream #2.
 - SW501-3 and SW501-2 = "ON"-"ON" = Bit-stream #3.

230

- (n) Others static options, are reserved for services or debugging. In normal operation they shall be left to their inactive state "OFF".
 - SW501-1 = SPI Programming Enable. While "ON", allows to use the XILINX iMPACT tool to re-program the SPI Flash Memory with a default bit-stream.
 - SW502-1 = XILINX iMPACT. While "ON", the FPGA configuration process is no more handled automatically but require external specific XILINX tool. Used during FPGA debugging.

235

All mini-switch position status are available as read-only information in the register "ILOC_STATIC" register. Refer to chapter 3.2.1

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

2.3 Board Power Supply

The PEV 1100 board takes its power from the +5[V] VME backplane.

An electronic short-circuit breaker controller TPS 2310 protects the PEV_1100 against internal short-circuit, and monitors the power supplies. It controls two external DMOS for internal +5[V] and +3.3[V]. In case of power supply error detection (short circuit or power-up over-current), the front panel LED LD700 is light-on RED and the internal power are shut down.

The current limiter is calibrated to supply up to 10[A]on the internal +5[V] and 3.3[V] assigned to the PMC/XMC.

Drawing 4: PEV_1100 Power supplies Block Diagram

The on-board low voltage power-supplies 1.0[V], 1.8[V] and 3.3[V] are built with integrated DC-DC TI PT08T241W devices, able to supply up to 10[A] each. The DC-DC are dimensioned to support the complete family of XILINX Virtex-5 FF665 pins devices.

Others low-voltage/low-current power supplies are built with LDO LTC3026.

- Virtex-5 MGT Tx Rx PLL
- Local 2.5[V]

240

245

250

255

260

275

280

285

290

295

300

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

2.4 PCI Express Infrastructure

The PEV_1100 is based on a PCI Express infrastructure built around a PLX technologies PCI Express GEN2 Switch. This PCI Express centric is also deported to the FPGA internal architecture based on IOxOS Technologies TOSCA Network On Chip.

The on-board PEV_1100 PCI Express channels is distributed as:

- P3 & P4 PCI Express External Cabling
- XMC#1 & XMC#2 VITA 42.3 Mezzanine extensions
- PCI Express PCI 3.0 Bridge
- FPGA Xilinx Virtex-5T FPGA

2.4.1 PLX Technologies PCI Express Switch

The PLX PCI Express Switch requires some static assignations used for the system configuration. These assignation are made through the micro-switch SW501 (Refer to chapter 2.1.1)

UP_stream Port : SW501- 8,7,6

■ NT Enable : SW501 - 5

The UP_stream port can be assigned on any of the connected PCI Express device as long as it acts as a PCI Express RC. (Root Complex) This can be a Processor PMC or a XMC Mezzanine. In normal operation, The UP_stream Port is assigned to Port_0 (SW501- 8,7,6 = "000" or eventually "001")

The PCI Express clocking schema requires specific care for correct operation. Two mode of operation are currently defined as :

- SSC "Spread Spectrum Clocking", introducing a +0 /- 5000 ppm / 30 KHz modulated
- CFC "Constant Frequency Clocking" introducing a +/- 100 ppm

For better EMI figure, the majority of PC chip set implements fixed SSC mode. (Some provide

2011-12-21 - PEV_1100 PCI	21/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge	<u> </u>	

310

315

320

325

330

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

selection capability ...) The on-board PCI Express Switch does not support mixed PCI Express clock as **SSC** and **CFC**. If **SSC** is used on the UP_stream, all PCI Express ports shall use the same clock reference and therefore the UP_Stream selection switch shall be set with SW501- [8,7,6] = "000".

The PLX PCI Express Switch footprint can be populated with three different devices, providing thee, four or six PCI Express Port. Lower ports count devices could be installed in specific low-cost version.

PLX Device	PCIe Ports	Support	Comments
PEX8624X X	6	Complete implementation with PCI External Cabling P3 & P3, XMC 1 & 2, Legacy PCI Bridge and FPGA	Default implementation
PEX8616X X	4	PCI External Cabling P3 & P4, Legacy PCI Bridge and FPGA.	XMC VITA 42.3 ports removed
PEX8612X X	3	PCI External Cabling P3 & P4 and FPGA.	XMC & PMC ports removed

Table 2.5.: PCI Express Switch model

The PLX Technologies Switch version populated can be checked in the "ILOC_PCIE_SWITCH" register (Chapter 3.2.6)

Others PCI Express Switch status are also available in this register. This include the UP_stream port selection, the Non Transparent port selection and enable, and others related status.

To facilitate the PCI Express integration, LED indicator are provided to reflect the PCI Express linkup status on the six ports. The LED indicators status (light-ON, light-OFF or toggling) reflect the current PCI Express link

- Front panel LED LD105 and LD104 (Refer chapter 2.1.2)
- PCB internal LED LD100, LD101, LD102, LD103 (Refer chapter 2.1.3)

For complete technical information about the PCI Express Switch to "PLX Technologies PEX8624-AA_AB_BA Data book"

2.4.2 PCI Express External Cabling

The PEV_1100 is based on the "PCI External Cabling Specification" released by the PCISIG association. This standard is actually used in several high performance PCI Express applications. Cable in different length as well as legacy PCI Express card adapter are widely available.

The PEV_1100 implements two PCI Express x4 connectors (P3 & P4) located on the top of the VME board.

- P3, upper one default UP_stream port.
- **P4**, configurable as a regular DOWN_stream port, which can be used to cascade a 2nd PEV_1100 or as a Non-Transparent port, connected to a 2nd UP stream port.

PCI Express External Cabling Connectors status are reflected in the "ILOC_Cable_1" and "ILOC_Cable_0" registers. (Refer to chapters 3.2.2 & 3.2.3)

2011-12-21 - PEV_1100 PCI	22/135	P_PCIE-VME_AF_HSID_B0	
Express to VME64 Bridge	<u> </u>		

340

345

350

355

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

2.4.3 PCI Express FPGA

The PEV_1100 implements a Xilinx Virtex-5T FPGA with embedded PCI Express EP. The FPGA is connected to the PLX PCI Express Switch Port #2 with a PCI Express x4 GEN1 interface.

The PCI Express EP status are reported in the "ILOC_PCIe_EP_STA" (Refer chapter 3.2.11) and "V5 PCIEP RSLT" register. (Refer chapter 3.2.18)

The FPGA PCI Express link status is reflected by front panel LED LD506. Providing five (5) informations

LD506 Effect	Status informations
RED flashing fast (0.2[s])	Wait for link-up status from the PCI Express End point.
RED light-on	Wait for internal FPGA 100 MHz PLL is locked.
GREEN flashing slow (0.6[s])	Wait for 1 ^t PCI Express Configuration cycle. This is handled by the BIOS running the PCI enumeration.
GREEN flashing fast (0.2[s])	Wait for PCI Express IO and MEMORY Space enabled. This initialization can be handled by the BIOS or by the PEV_1100 device driver.
GREEN light-on	The PCI Express is fully initialized and ready to be used in all Spaces.

Table 2.6.: FPGA PCI Express link-up LED indicator

2.4.4 VITA41 XMC Extension

The PEV_1100 provides two XMC VITA42.3. Mezzanines. These two PCI Express x4 extensions are directly connected to the PCI Express Switch PEX8624 device.

Only XMC Jn15/Jn25 connectors , integrating the PCI Express ports , are implemented. For complete XMC specification refer to ANSI/VITA 42.3 – 2006.

XMC related status and control are provided in the "PMC_XMC_CSR" register (Refer to chapter 3.2.19)

2.4.5 IEEE 1386 PMC Extension

The PEV_1100 provides two PMC IEEE 1386 with PCI 32-bit 33/66 MHz.

The local PCI Bus is built with a PCI Express x1 to PCI bridge PLX PEX8112. This bridge device can be configured to a act as FORWARD or REVERSE mode. Others status and controls related to the PEX 8112 Bridge are located in the "PMC XMC CSR" register (Refer to chapter 3.2.19)

The PMC related user's IO connector Jn14/24 provides direct connection to/from

Connection to FPGA Virtex-5 Bank_12 and Bank_8

2011-12-21 - PEV_1100 PCI	23/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

• Direct connection to VME65X P2 (rows A and C)

Above table sums up the IO assignation.

PMC Signa	PMC Signal allocation		n#	PMC Signa	l allocation
Jn24 (Top)	Jn14 (Bottom)			Jn14 (Bottom)	Jn24 (Top)
fpga_GPIO_1	fpga_GPIO_33	1	2	fpga_GPIO_35	fpga_GPIO_3
fpga_GPIO_2	fpga_GPIO_34	3	4	fpga_GPIO_36	fpga_GPIO_4
fpga_GPIO_5	fpga_GPIO_37	5	6	fpga_GPIO_ 39	fpga_GPIO_7
fpga_GPIO_6	fpga_GPIO_38	7	8	fpga_GPIO_40	fpga_GPIO_8
fpga_GPIO_9	fpga_GPIO_41	9	10	fpga_GPIO_ 43	fpga_GPIO_11
fpga_GPIO_10	fpga_GPIO_42	11	12	fpga_GPIO_44	fpga_GPIO_12
fpga_GPIO_13	fpga_GPIO_45	13	14	fpga_GPIO_47	fpga_GPIO_15
fpga_GPIO_14	fpga_GPIO_46	15	16	fpga_GPIO_48	fpga_GPIO_16
fpga_GPIO_17	fpga_GPIO_49	17	18	fpga_GPIO_51	fpga_GPIO_19
fpga_GPIO_18	fpga_GPIO_50	19	20	fpga_GPIO_52	fpga_GPIO_20
fpga_GPIO_21	fpga_GPIO_53	21	22	fpga_GPIO_55	fpga_GPIO_23
fpga_GPIO_22	fpga_GPIO_54	23	24	fpga_GPIO_56	fpga_GPIO_24
fpga_GPIO_25	fpga_GPIO_57	25	26	fpga_GPIO_59	fpga_GPIO_27
fpga_GPIO_26	fpga_GPIO_58	27	28	fpga_GPIO_60	fpga_GPIO_28
fpga_GPIO_29	fpga_GPIO_61	29	30	fpga_GPIO_63	fpga_GPIO_31
fpga_GPIO_30	fpga_GPIO_62	31	32	fpga_GPIO_564	fpga_GPIO_32
VME_P2_A1	VME_P2_A17	33	34	VME_P2_C17	VME_P2_C1
VME_P2_A2	VME_P2_A18	35	36	VME_P2_C18	VME_P2_C 2
VME_P2_A3	VME_P2_A19	37	38	VME_P2_C19	VME_P2_C 3
VME_P2_A4	VME_P2_A20	39	40	VME_P2_C20	VME_P2_C 4
VME_P2_A5	VME_P2_A21	41	42	VME_P2_C21	VME_P2_C 5
VME_P2_A6	VME_P2_A22	43	44	VME_P2_C22	VME_P2_C 6
VME_P2_A7	VME_P2_A23	45	46	VME_P2_C23	VME_P2_C 7
VME_P2_A8	VME_P2_A24	47	48	VME_P2_C24	VME_P2_C 8
VME_P2_A9	VME_P2_A25	49	50	VME_P2_C25	VME_P2_C 9
VME_P2_A10	VME_P2_A26	51	52	VME_P2_C26	VME_P2_C 10
VME_P2_A11	VME_P2_A27	53	54	VME_P2_C27	VME_P2_C 11
VME_P2_A12	VME_P2_A28	55	56	VME_P2_C28	VME_P2_C 12
VME_P2_A13	VME_P2_A29	57	58	VME_P2_C29	VME_P2_C 13
VME_P2_A14	VME_P2_A30	59	60	VME_P2_C30	VME_P2_C 14
VME_P2_A15	VME_P2_A31	61	62	VME_P2_C31	VME_P2_C 15
VME_P2_A16	VME_P2_A32	63	64	VME_P2_C32	VME_P2_C 16

Table 2.7.: IEEE 1386.1 User's IO

2011-12-21 - PEV_1100 PCI	24/135	P_PCIE-VME_AF_HSID_B0
Express to VMF64 Bridge		

370

375

380

385

390

395

400

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

2.5 FPGA Support & Infrastructure

The PEV_1100 main functionalities are implemented in a XILINX Virtex-5 FPGA. This **F**ield **P**rogrammable **G**ate **A**rray device provides a very efficient and versatile vehicle to support high performance digital logic. The complete PEV_1100 design is implemented in VHDL and fully simulated in adequate environment.

Thanks to the complete ownership of the embedded IP cores, and the re-programmability of the FPGA , IOxOS Technologies SA is able to upgrade or customize the PEV_1100 implementation when this becomes necessary.

Moreover some PEV_1100 FPGA sections are reserved for User specific implementation. A complete "FPGA Design Kit" is available to support this design effort.

- XILINX Virtex-5T FFG665 package.
 - LX30T, LX50T, SX30T, SX50T
 - FX30T, FX70T
 - Local Configuration stream non-volatile memory storage. Refer to chapter 2.5.2
 - · SPI Serial Flash 128 Mbit.
 - In-situ upgrade capability.
 - · Up to 4 bit-stream stored in the SPI Serial Flash
 - Complete FPGA design environment
 - · VHDL source data base
 - Simulation environment with BFM

Each FPGA owns a 32-bit signature. This information used for FPGA tracing is implemented in hardware and built during the FPGA generation This information is available in "ILOC_SIGN" register. Refer to chapter 3.2.7

Because several FPGA implementations can be generated with different or selected functionalities, a 16-bit field is also provided in "ILOC GENCTL" register. Refer to chapter 3.2.8

2.5.1 External CPLD

The PEV_1100 incorporates a non-volatile CPLD (Xilinx Coolrunner_II XC2C256), immediately operational after power-up. This device is also programmable in-situ with the Xilinx iMPACT tool. The CPLD handle following PEV 1100 functions:

- PEV_1100 board RESET management. (Voltage surveyor, watchdog, PCI Express external Cabling PERST, ...)
- FPGA Configuration with bit-stream stored in the Serial Flash EPROM
- Multiplexer scanning logic with the FPGA. This integrated function allows to reduce the required pin count in the FPGA device.

2011-12-21 - PEV_1100 PCI	25/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

410

415

420

425

430

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

The FPGA Configuration FSM is fully integrated in the CPLD device. After a power-up RESET or a local Cold_RRESET, the FPGA is configured. The FSM read-out the defined bit-stream from the SPI Serial Flash device and push it in the FPGA device. The bit-stream number (#0 to #3) is determined with the static option SW501-[3:2].

The configuration bit-stream incorporates CRC and therefore incorporate error detection support. The FPGA Configuration FSM monitors continuously any error detected by the FPGA device. In case or error detected, the configuration process is restarted with bit-stream #0. (... which is the backup bit-stream)

A front panel LED indicator LD504 is light-on RED in case of FPGA configuration failure. This is a catastrophic error because the FPGA can not be configured. In this case, bit-stream #0 shall be loaded in the SPI Serial Flash trough its SPI programming port. Refer to chapter 2.6.3.

After configuration, status information are provided in the "ILOC_GENCTL" register. Refer to chapter 3.2.8 The selected bit-stream defined with SW501-[3:2] is also available in "ILOC_STATIC" register .

The FPGA configuration time is directly related to the size of the FPGA bit-stream. The process is handled at 50 Mbit/s. Following table sum-up the configuration time required.

FPGA Type	Configuration Size	Configuration Time
LX30T	9'371'136	~ 187 [ms]
LX50T	14'052'352	~ 281 [ms]
SX35T	13'349'120	~ 267 [ms]
SX50T	20'019'328	~ 400 [ms]
FX30T	13'517'120	~ 270 [ms]
FX70T	27'025'408	~ 540 [ms]

Table 2.8.: XILINX Virtex-5 FPGA Configuration size.

It is also possible to trigger remotely a new FPGA bit-stream reload through the "ILOC_SPI" register. Refer to chapter 3.2.5. During the reconfiguration, the FPGA becomes inactive and therefore the PCI Express connection is lost.

2.5.2 Serial Flash PROM

The PEV_1100 incorporates a 128 MBit Serial Flash EPROM (Numonix M25P128) used to store in non-volatile device the FPGA bit-stream and its associated PON_FSM micro-code. The device can be access from three different ports.

- 1. P7 programming port. Refer to chapter 2.6.3.
- 2. CPLD handling the power-up FPGA configuration.
- 3. SPI specific control register "ILOC SPI" chapter 3.2.5

The SPI Serial Flash Device is fully accessible in run time and can than be reprogrammed from the Host controller with specific utilities. XprsMon command are provided to support new FPGA bit-stream programming (update).

The SPI Serial Flash is organized in two different mapping, fixed with option related to the bit-

2011-12-21 - PEV_1100 PCI	26/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

440

445

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

stream size of the on-board populated FPGA type. A status information "fpga_BIG" is provided in the register "iloc_GENCTL" Refer to chapter 3.2.8

For Virtex LX30T, LX50T, SX30T, FX30T:

FPGA bit-stream	Size	Offset area	Comments
Bit_Stream #0	16_MBit	0x00'0000 – 0x1F'FFFF	Default (Back-up) FPGA bit-stream
Bit_Stream #1	16_MBit	0x20'0000 – 0x3F'FFFF	Selected with SW501-[3:2] = "01"
Bit_Stream #2	16_MBit	0x40'0000 – 0x5F'FFFF	Selected with SW501-[3:2] = "10"
Bit_Stream #3	16_MBit	0x60'0000 – 0x7F'FFFF	Selected with SW501-[3:2] = "11"
Reserved	64 MBit	0x80'0000 – 0xFF'FFFF	Reserved for private storage

Table 2.9.: FPGA bit-stream mapping (Small devices)

For Virtex SX50T, FX70T:

FPGA bit-stream	Size	Offset area	Comments
Bit_Stream #0	32_MBit	0x00'0000 – 0x3F'FFFF	Default (Back-up) FPGA bit-stream
Bit_Stream #1	32_MBit	0x40'0000 – 0x7F'FFFF	Selected with SW501-[3:2] = "01"
Bit_Stream #2	32_MBit	0x80'0000 – 0xBF'FFFF	Selected with SW501-[3:2] = "10"
Bit_Stream #3	32_MBit	0xC0'0000 - 0xFF'FFFF	Selected with SW501-[3:2] = "11"

Table 2.10.: FPGA bit-stream mapping (Big devices)

The SPI non-volatile memory device can be programmed in-situ with the XILINX iMPACT tool. This programming procedure is used in case of all FPGA bit-streams are erroneous (... especially back-up bit-stream #0) Refer to chapter 2.6.2

2.5.3 FPGA System Monitor

The XILINX Virtex-5 FPGA incorporates a ADC section, allowing to implement monitoring on specific parameters. By default, internal parameters as VCC_{CORE} and die temperature are continuously evaluated. The XILINX System Monitor technical description is provided in UG192 document "Virtex-5 System Monitor User's guide".

The PEV 1100 also provides external power supplies signals to the FPGA System Monitor.

System Monitor IN channel	Divide ratio	Monitored signals
IN_12	1:5.25	VME backplane +5[V]
IN_13	1:5.25	VME backplane +3.3[V]
IN_11	1:5.25	On-board DCDC +3.3[V]

Table 2.11.: FPGA System Monitor analog inputs

2011-12-21 - PEV_1100 PCI	27/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

460

465

470

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

An external electronic reference, Burr-Brown REF3025, provides a precise 0.2% 1.0[V] voltage reference to the System Monitor.

The System Monitor is controlled trough "V5_SMON_ADDPT", "V5_SMON_DAT" and "V5_SMON_STA" registers. Refer to chapters 3.2.14 to 3.2.16

2.6 Others General Functions

Following chapter provide technical description of miscellaneous functions.

2.6.1 I2C Controller.

The PEV 1100 integrates a I2C Controller allowing to interface directly following four devices:

- The PCI Express PLX PEX 8624 owns a I2C Slave port allowing to access internal registers.
 This I2C port can be used by the PON_FSM controller logic to initialize the PEX8624AA before the PCI Express RC starts its initialization process.
- The on-board temperature monitor LM86
- The two XMC IPMI SMB Bus (One per XMC VITA 46.3 slot)

The I2C Master controller is interfaced with four control registers "I2C_CTL", "I2C_CMD", "I2C_DATW" and "I2C_DATR" Refer to chapter 3.2.20

2.6.2 XILINX Programming Port P6

The PEV_1100 implements a 2[mm] 14-pin connector dedicated to the XILINX programming/ debugging tool Platform USB II. For full description of this tool refer to XILINX DS593 document. This connector is used for :

- FPGA Virtex-5 ChipScope PR
- FPGA Virtex-5 Configuration with Xilinx iMPACT tool
- · CPLD a programming with Xilinx iMPACT tool

Signal allocation	TAF	P P6	Signal allocation
VREF	1	2	GND
SS/TMS	3	4	GND
SCK/TCK	5	6	GND
MISO/TDO	7	8	GND
MOSI/TDI	9	10	GND
NC1	11	12	GND
NC2 (TRSTn)	13	14	GND

Table 2.12.: XILINX programming Port P6

2011-12-21 - PEV_1100 PCI	28/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

480

485

490

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

To use the P6 connector with the XILINX programming tool Platform USB II in the way to download the FPGA form the iMPACT utility, the mini-switch SW502-1 shall be "ON".

While SW502-1 is "ON" the FPGA in not configured automatically at power-up with a bit-stream stored in the SPI Serial Flash but wait for a configuration bit-stream supplied through the P6 connection

2.6.3 SPI Serial Flash programming JTAG TAP J7

The PEV_1100 implements a second 2[mm] 14-pin connector dedicated to the JTAG 1149.1 and for the SPI Flash_EPROM programming Pins allocation is the same as P6.

The 1st (default) FPGA bit-stream, stored in the SPI Serial Flash_EPROM can be programmed with the XILINX iMPACT tool associated with the programming tool Platform USB II connected to P7. To support the SPI Flash EPROM programming the SW501-1 shall be positioned "ON".

While SW501-1 is "ON", the SPI access to the Serial Flash_EPROM is reserved for the programming and therefore the FPGA Configuration with the CPLD is disabled.

2.6.4 Supervisor and Watchdog Timer

The PEV_1100 integrates a TPS3305, dual supervisor circuitry and watchdog timer. It provides following functions :

- 1.8[V] monitoring
- 3.3[V] monitoring
- Power-On RESET generation
- 1.6 [s] watchdog timer
- The watchdog timer issues a new RESET every 1.6[s] in case of the FPGA is not configured.

505

510

515

520

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P PCIE-VME AF HSID BO

DOCUMENT STATUS

2.0

TOSCA Central Switch

The TOSCA Central SW (Central Switch) provides full mesh independent data flows. Each flow is scheduled independently from the others and therefore implements simultaneous transactions on all of them. By providing up to 8*1.6 = 12.8 GBytes/s, the 4-ports Central SW is ready to support full speed PCI Express x8, Revision 1.1 or PCI Express x4, Revision 2.0.

The two independent full mesh interconnection support following transaction type as:

- The WRITE Posting & READ Request, 64-bit 200 MHz, N independent path.
- The READ Response, 64-bit 200 MHz, N independent path.

The PV-1100 TOSCA Central SW is composed of four independent back-end ports, each supporting Master/Slave + Read/Write independent channel access. By default, the TOSCA Central SW supports data packets transactions up to 512 Bytes. The four ports are assigned as follow:

- 1. PCI Express, directly attached to the Virtex-5 PCI Express EP
- 2. VME64x
- 3. IDMAC SMEM Shared Memory
- 4. USER Block

The Central_SW implements two full mesh interconnection between the four ports. Packet buffering is implemented at Source and at Destination sections, this independently for each type of transaction. The above diagram represents the four data flow for a transaction type (i.e WRITE Posting & Read_Request). A 2nd full mesh interconnect, (not represented) supports the READ Response data flow...

Each Agent_SW port, integrates four interfaces types with specific buffering. The following table sums up the interface implementation.

Interface (.vhd)	Description	Buffering	Comments
WPOST_RDRQ_MAS	Write_Posting and Read_Request. The back-		Two independent buffer queue segregating the Write_Posting and the Read_Request.

2011-12-21 - PEV_1100 PCI	30/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

530

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

Interface (.vhd)	Description	Buffering	Comments
	end Master controller generates the packets	6* [64] Bytes	Specific control logic for the Write-Read ordering.
WPOST_RDRQ_SLV	Write_Posting and Read_Request. The back- end Slave controller consumes the packets and executes them.	3*4* [512+64] Bytes + 3*4* [64] Bytes	Independent buffer queue assigned for each sources
RDRS_MAS	Read Response with Data. The back-end Master controller, (initiator of the Read-Request) consumes the received data packet.	6* [512+64] Bytes	Provision made for "Write Status Response" in case of the Central-SW shall supports others protocol (i.e Rapid-IO or Specific)
RDRS_SLV	Read Response with Data The The back-end Slave controller load the response data packet.	6* [512+64] Bytes	Common buffering for the three Read Responder sources.

Table 2.13.: Agent SW Transaction Interfaces

The PEV_1100 current implementation of the TOSCA Central_SW (4-ports, 512 Bytes data packet) consumes twenty (4* 5) 36K Block RAM.

2.7.1 WRITE_Posting & Read_Request

The WRITE_Posting and the Read_Request transactions are sharing the same internal path and are supported through two independent interface blocks as :

- WPOST_RDRQ_MAS
- WPOST_RDRQ_SLV

These two blocks provides back-end interfaces and switching infrastructure connection. Both interfaces are implemented in their own time-domain. Typically the switching infrastructure is running at 200 MHz and the back-end interface at its natural frequency.

The interconnections between the blocks are implemented with independent 64-bit, 200 MHz path. (full mesh schema)

545

550

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

Each WPOST_RDRQ_MAS block can move packet to three Destination WPOST_RDRQ_SLV blocks. TLP packets are moved at maximum speed (up to 1.6 GBytes/s) between two DPRAM buffer (Source DPRAM to Destination DPRAM).

Each WPOST_RDRQ_SLV controls the flow from the (N_Port -1) Source WPOST_RDRQ_MAS, by implementing an arbiter. This arbiter supports independent GRANT for the Read_Request and the Write Posting.

2.7.2 Read_Response (RDRS)

The Read_Response transactions are implemented through an independent full mesh infrastructure. It is supported through two independent interface blocks as :

- RDRS_MAS
- · RDRS SLV

These two blocks provides back-end interfaces and switching infrastructure connections. Both interfaces are implemented in their own time-domain.

The interconnections between the blocks are implemented with independent 64-bit, 200 MHz path. (full mesh schema)

Each RDRS_SLV block can move packet to three Destination RDRS_MAS block. TLP packets are moved at maximum speed (up to 1.6 GBytes/s) between two DPRAM buffer (Source DPRAM to Destination DPRAM).

2.8 PCI Express TLP

The TOSCA infrastructure is fully derived from the PCI Express architecture. All TOSCA transaction packets implements the PCI Express TLP format. For information, following block diagram represents the PEV_1100 PCI Express EP interface.

PCI Express TLI Rx				
Transaction Type	PCIe Flow Control	BLK	Description	TC Policy
Target IO_Read Request	NPH	В	IO transactions, 4 KBytes window bridged to the	
Target IO_Write	NPH+NPD	В	internal IO_Bus. Single cycle compelled, no pipeline support.	
Target Memory_Write	PH + n*PD	Е		
Target Memory_Read Request	PH	E	MEM transactions ,	
Initiator Memory Read Completion	CPLH + n*CPLD	F		
Unsupported Transaction Target_CONF_Write/Read Target Message	Not used	А		
		P	CI Express TLI Tx	
Initiator Memory Write	PH + n*PD	С		
Initiator Memory Read Request	NPH	С		
Target IO_Read Completion	CPLH +CPLD	В	IO transactions Completion. IO Read & Write require Completion. (3 or 4 DW)	

2011-12-21 - PEV_1100 PCI	32/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

565

570

575

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

PCI Express TLI Rx				
Target IO_Write Completion	CPLH	В		
Target Memory_Read Completion	CPLH + n*CPLD	D		

Table 2.14.: TLI Transactions Dispatching

The XILINX Virtex-5(T) family integrates a HW IP_core, providing the primary layer of the PCI Express interface. This IP core is interfaced through a bidirectional private TLI (Transaction Layer Interface)

- TLI Tx Interface, 64-bit 250 MHz.
- TLI Rx Interface, 64-bit 250 MHz.

Each TLI Interface, (Tx - Rx) is handled with specific controllers assuring the dispatching, the arbitration, and the decoding of the in-going and out-going TLP. The two controllers are fully independent and able to process concurrently in-going and out-going TL

The Configuration **CfgRD0**, **CfgRD1**, TLP are decoded and handled by the PCI Express EP HW IP core, and therefore not handled by the local TLI controllers. Due to its "PCI Express End Point" characteristic, no Configuration TLP support is required.

A dedicated (mandatory) block handle the unsupported (or corrupted) in-going TLB. Proper error signalling is implemented in case of incoherent TLB.

IORd and **IOWr** TLP are handled by a dedicated block implementing a IO_Bus Master bridge function. The Completion **CpI** or **CpID** TLP are issued for every IO TLP transaction.

The incoming (DOWN_stream) **MRd** and **MWr** TLP are routed to the TOSCA Central_SW through the Write_Posting and Read_Request buffers. Completions **Cpl** and **CplD** TLB are also routed back to the TLI Tx Interface.

585

590

595

600

605

610

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

2.9 SMEM Shared Memory

The DDR2 memory controller controls 4 devices, organized in x8. The PEV_1100 can provide 256, 512 or 1024 MBytes on-board DDR2 memory. The two bit field "ddr2_SIZE" located in the "SMEM_DDR2_CTL" register provides information on populated devices. Refer to chapter 3.4.1

ddr2_SIZE = "01" 512MBit = 256 MBytes (default)

"10" 1024MBit = 512 MBytes "11" 2048MBit = 1024 MBytes

The DDR2 refresh strategy rate 3.9[us] or 7.8[us] and policy as single at the time or grouped in burst of eight are both selectable in the "SMEM_DDR2_CTL" register. Refer to chapter 3.4.1

The DDR2 memory controller implements four independent ports (labelled A, B, C, D) with segregated Read and Write access.

Port_A: Central_SW Slave access.

Port_B: IDMA Descriptor fetch and update.

Port_C : IDMA data operation.

Port_D: USER Block private access.

Each ports can be dynamically masked individually with ddr2_MASK[3:0]"control bits allowing to remove specific ports from the real-time operation. Refer to chapter 3.4.1

The four ports are arbitrated all together with selectable policy, allowing to tune for optimal application specific algorithm. For maximal performance, the Read and the Write are implemented through different channels. The arbitration algorithms are selectable in the "SMEM_DDR2_CTL" register. Refer to chapter 3.4.1

To support efficient READ, a dedicated read-ahead cache logic is implemented. When enabled, a full page (4 KBytes) is read-out from the DDR2 device and stored in a fast DPRAM. Two read-ahead 4 KBytes cache set/entry is implemented, selected with the LSM of the "Address Space Type". This dual entry allows to sustain two full speed read-out process

A cache coherency protocol surveys and update the read-ahead buffer validity. Any WRITE to the tagged read-ahead address will invalidate the read-ahead buffer copy

The read-ahead caching mechanism support is conditioned by the "Address Space Type" field integrated in the Read_ Request transaction header. The "Address Space Type"is defined in the INgress MMU descriptors (PCI Express and VME64x)

Address Type	READ Mode of operation	Comments
0x0	Read-ahead cache disabled	Only the requested size is extracted from the DDR2 Memory
0x4	Read-ahead entry #0	A full 4 KBytes page is extracted from the DDR2 and copied in the read-ahead cache #0.
0x5	Read-ahead entry #1	Idem in read-ahead cache #0.
Others	Reserved	

Table 2.15.: SMEM Central SW TYPE transactions

Addressing error (out of range access) are monitored and error status flags are provided in the "SMEM_DDR2_ERR" register. Refer to chapter 3.4.2

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	34/135	P_PCIE-VME_AF_HSID_B0

635

640

645

650

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

2.10 IDMA Embedded Controller

The PEV_1100 implements a multi-channel (4) DMA controller, especially designed to support high efficient data movement between the Host PCI Express, the DDR2 shared memory and others local Bus interface.

The above drawing represents a simplified functional diagram of the IDMAC implementation. The IDMAC is directly attached to the SMEM block and therefore optimized to get maximum performance from the DDR2 devices. (burst size, page management, local DPRAM caches, ...)

- The PEV_1100 IDMAC system, is implemented with independent READ and WRITE IDMA Engine. Each of the four engines can process its own chain of DMA Descriptor.
- The DMA_Descriptor chaining shall be located in the local DDR2 SMEM. The DMA_Descriptor shall be first built by the application before any DMA process. To provide maximum performance, a cache memory (DPRAM) stores 64 consecutive DMA_Descriptor per channel.
- The IDMA SMEM DDR2 access (Read and Write) are optimized for block/burst transactions, supporting maximal bandwidth (up to 1.6 GBytes/s @ 200 MHz -DDR400)
- The IDMA WRITE_Engine(s) are dedicated for DMA transfer to the SMEM (This for a DDR2 write ...). Data source comes from any of the central_SW Agent (PCIe, VME64x or USER) or from the DIRECT Port_IN.
- The READ_Engine(s) are dedicated for DMA transfer from the SMEM (This for a DDR2 read ...). to any of the central_SW Agent (PCIe, VME64x or USER) or to the DIRECT Port OUT.
- All IDMA Engines can be programmed with selectable "Start_of_Operation" trigger facilities as End of operation of another IDMA Engine, User's specific event, Global Time, ... Each DMA Engine can issue local Trigger on Start or End of a DMA_Descriptor

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

execution.

- Each IDMA Engine can issue INTERRUPT on the Start/End of a DMA_Descriptor execution. Reported Error can also issue specific interruption.
- DIRECT Port_IN/OUT are provided for on-chip DMA facilities to dedicated user's hardware as DAQ queues, autonomous communication engine, data servers, ...

2.10.1 READ_Engine Operation

The READ_Engine(s) are assigned to SMEM DDR2 Read operation, and therefore attached to the DDR2 controller through its dedicated READ channel. The two engines share the same physical interfaces to the SMEM, the Central_SW and the DIRECT Port_OUT. The 4 KBytes FIFO buffers are implemented in a single DPRAM block with simultaneous read/write access on the two ports.

Dedicated FSM manage concurrently the DMA Read transactions, (importing data to the FIFO_Buffer) and the Write transactions, (exporting data from the FIFO_Buffer). The Read_FSM masters the DMA execution (by filling the FIFO Buffer) while the Write_FSM is slave attached to the first one.

The 4 KBytes FIFO_Buffer has been dimensioned to provide optimal performance, by minimizing the dead-time on the interfaces. (Central_SW packets are 1 KBytes and DDR2 Page are 2 KBytes)

- The SMEM DDR2 Read Interface (on the left side) is under control of the Read_FSM and mainly conditioned by space availability in the FIFO_Buffer. The DDR2 access transaction are fully predictable for data availability. Data read from the DDR2 memory are immediately transferred to the FIFO_Buffer at maximal transfer rate (1 64-bit QW per clock cycle)
- 2. The Write_FSM controls the Central_SW Write_Posting operation. Optimal transactions are applied when possible, with packet size up to 512 Bytes. PCI Express Target transaction are today limited by the INTEL/AMD Bridge to 128 or 256 Bytes maximal size.
- 3. The Write_FSM can also issue write to the DIRECT Port_OUT interface. This optionally provide a direct pathway to user's specific hardware.

Each channel can select independently its source and destination port (SMEM and Central_SW / DIRECT Port-OUT) for each DMA Descriptor.

655

660

665

670

675

680

690

695

700

705

710

715

720

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

2.10.2 WRITE_Engine Operation

The WRITE_Engine(s) are assigned to SMEM DDR2 Write operation, and therefore attached to the DDR2 controller through its dedicated WRITE channel. The two engines share the same physical interfaces to the SMEM, the Central_SW, and the DIRECT Port_IN. The 4 KBytes FIFO buffers are implemented in a single DPRAM block with simultaneous read/write access on the two ports.

Dedicated FSM manage concurrently the DMA Read transactions, (importing data to the FIFO_Buffer) and the Write transactions, (exporting data from the FIFO_Buffer). The Read_FSM masters the DMA execution (by filling the FIFO Buffer) while the Write_FSM is slave attached to the first one.

The 4 KBytes FIFO_Buffer has been dimensioned to provide optimal performance, by minimizing the dead-time on the interfaces. (Central_SW packets are 1 KBytes and DDR2 Page are 2 KBytes)

The 4 KBytes FIFO_Buffer has been dimensioned to provide optimal performance, by minimizing the dead-time on the interfaces. (Central_SW packets are 1 KBytes and DDR2 Page are 2 KBytes)

- The Central_SW Read Interface (on the right side) is under control of the Read_FSM and mainly conditioned by space availability in the FIFO_Buffer. The Central_SW Read is supported through Read_Request TLB and Read_Response. two dedicated FSM are handling the process completely decoupled. Data received with the Read_Response TLB are immediately transferred to the FIFO_Buffer at maximal transfer rate (1 64-bit QW per clock cycle)
- 2. Because the IDMA Central_SW Read are implemented with Read_request/Read-response, the performance is directly related to the number of outstanding Read_Request pipelined. Current implementation supports 1, 2, 3 or 4 outstanding Read Request.
- 3. The Read_FSM can also controls the Read operation on the DIRECT Port_IN. In this case the split operation is disabled and replaced with a simple Bus based protocol.
- 4. The Write_FSM controls the SMEM Write operation. Optimal transactions are applied when possible, with packet size up to 1 KBytes.

Each channel can select independently its source and destination port (SMEM and Central_SW / DIRECT Port-OUT) for each DMA Descriptor.

2011-12-21 - PEV_1100 PCI	37/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

730

735

740

745

750

755

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

2.10.3 Some IDMA Special Capabilities

The PEV_1100 is optimized for autonomous data transport from and to the Shared memory SMEM DDR2. To provide extra facilities, two additional mode of operation have been implemented.

- DIRECT Mode
- PIPELINE Mode

2.10.3.1 **DIRECT Mode**

The DIRECT Mode provides a mapped bus interface between the IDMA engines and the USER Agent_SW. While enabled, (per channel) the operation usually assigned across the Central_SW are routed to a dedicated Interface of the user's FPGA area.. Only channel 0 supports DIRECT Port

Support of the IDMA infrastructure is simpler through the DIRECT Ports then across the complete Central_SW, requiring PCI_Express TLP implementation. Complete addressing informations allows to support multi FIFO or multi DPRAM with minimal FPGA resources and simple bus protocol. (Examples are provided in VHDL source code) Moreover, full bandwidth is supported thanks to direct interface with embedded FPGA SRAM.

- 1. The DIRECT Port_OUT implements Write Bus protocol with complete Address + Data and associated synchronization. DIRECT Port_OUT is optimized for maximum throughput, no throttle is supported. Complete addressing information is supplied to the USER's Agent_SW block, including 64-bit Address and 16-bit Extended Address. This provides the end-user advanced addressing capabilities to support multi-channel queuing (FIFO) or buffering(DPRAM). The DIRECT Port_OUT is attached to the IDMA Read_Engine. (Reading data from the SMEM and send them to the DIRECT Port_OUT)
- The The DIRECT Port_IN implements Read Bus protocol with complete Address + Data and associated synchronization. DIRECT Port_IN is optimized for maximum throughput, no data throttle is supported. Complete addressing information is supplied to the USER Agent_SW block, including 64-bit Address and 16-bit Extended Address. The DIRECT Port_IN is attached to the IDMA Write _Engine. (Reading data from the DIRECT Port_IN and send them to the SMEM)

The DIRECT Port IN/OUT usage is supported through

- VHDL examples supplied with the TOSCA FPGA Design kit
- User's Block Agent_SW implementation with ad'hoc software example exercising the IDMA on the DIRECT Port_IN/OUT

765

770

775

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

2.10.3.2 PIPELINE Mode

The PIPELINE mode allows to cascade a WR_Engine with a RD_Engine with embedded ring buffer management facilities. The two engines use and manage a data buffer located in the DDR2 memory. Each engines integrates a 6-bit counter ("Trigger_PIPE_CNT" → PCNT) whose are used for the DMA Descriptor execution control.

The WR_Engine reads the data source (VME64X, PCI_Express, others, ...) and store it to the DDR2 Memory. Start of its DMA Descriptors are enabled while the PCNT current value is smaller than 33. (ring buffer not full) At the end of the current DMA Descriptor execution, its PCNT is incremented and the corresponding RD Engine PCNT is also incremented.

The RD_Engine reads the data source from the DDR2 Memory and store it to the destination (VME64X, PCI_Express, others, ...). Start of its DMA Descriptors are enabled while the PCNT current value is not equal to 0. (ring-buffer not empty) At the end of the current DMA Descriptor execution, its PCNT is decremented and the corresponding WR Engine PCNT is decremented.

This mode of operation provides seupport for user's transparent source to destination DMA operation. The DDR2 intermediate copy can be completely hidden. Thanks to the embedded facilities, DMA pipelined operation allows optimal performance on source and destination with minimal overhead time.

The PIPELINE mode is unabled and supported through dedicated registers (Refer to chapter 3.5.2 IDMA_XX_N_PCSR) and specific DMA Descriptor field **Start_Mode[2:0]**

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

2.10.4 IDMA Features Description

2.10.4.1 Independent READ/WRITE Engines.

The PEV_1100 implements 4 independent DMA controllers, as two READ engines and two WRITE engines. They are tightly coupled to the Shared Memory (DDR2 256 – 1024 MBytes) and therefore optimized to provide best performance matching with the DDR2 memories. The segregation between the READ and the WRITE engines provides several advantages as:

785

790

795

800

805

810

815

780

- The DDR2 interfaces are optimal for the on-going transaction type. The DDR2 Read out is optimized with local DPRAM used as Read-ahead Cache. The DDR2 Write is also supported through a front-end Write buffer.
- The DMA READ Engine Read-ahead Cache is supported with a 4 KBytes DPRAM allocated as 2* 2 KBytes per engine.
- The DMA WRITE Engine write buffer is supported with a KBytes DPRAM allocated as 2* 2 KBytes per engine.
- The same DMA_Descriptor chains can be executed by READ or WRITE engine, with full symmetry.
- Synchronization mechanism is provided, allowing to trigger (start) a WRITE Engine on end of execution of a WRITE Engine. (...or any others type of synchronization)

DMA controller supporting complete Source/Destination capabilities need to implement intermediate data buffer, with mismatch performance on the READ and WRITE section. By implementation is is always difficult to match the specific requirements on the READ and on the WRITE side at the same time.

2.10.4.2 DMA Address Control.

The PEV_1100 DMA controller provides optional DMA Address management. As for any DMA processor, the DMA Engines provide a source address reference (READ side) and a destination address reference (WRITE side). usually the source and the destination address are incremented independently related to the data operand handled. (Byte, half-word ...)

The PEV_1100 DMA Engines provide additional Address management support, allowing to support optimal data collection.

- The local Address (Shared memory) can be optionally not updated with the value of a new DMA Descriptor. The previous current value can be kept, allowing to support contiguous data across several DMA Descriptors.
- The local Address (Shared memory) can be optionally not updated with the value of a new DMA Descriptor but added with. This allow to built DMA_Descriptor chain with address relative.
- The external Address (Central_SW) can also be configured for no-update.
- The external Address (Central_SW) can be kept as fixed., useful for interfacing with FIFO based data interface.

2011-12-21 - PEV_1100 PC	I
Express to VME64 Bridge	

825

830

835

840

845

850

855

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

2.10.4.3 PCI Express support.

The PEV_1100 DMA controller are designed to access the PCI Express infrastructure. PCI Express operation require specific conditioning.

- The PCI_Express TLP optional control bits SNOOP, RELAX and AT, can be defined in the DMA_Descriptor DW_0. By default keep these option deserted. Refer to PCI Express specification before setting one of them.
- The PCI Express TLP size are conditioned by system parameters, usually defined by the Host BIOS. The two following parameters are used by the IDMA addresing the PCI Express Agent SW.
 - x MAX_PAYLOAD_SIZE determining the maximal length of any TLB with data. (Write Request and Read Completion with data)
 - x MAX_READ_REQUEST_SIZE
- The number of maximal outstanding Read_Request can be defined in the DMA_Descriptor DW_0. This 2-bit field allows to set-up for 1,2,3 or 4 outstanding Read_Request. Maximum performance will be achieved with 4 outstanding Read Request.

2.10.4.4 Central_SW Addressing .

The PEV_1100 DMA_Descriptors DW_1 implements the Central_SW routing with 4-bit field. Only the two LSB are actually used.

0000 = PCI Express Agent_SW

00**01** = VME64X Agent_SW

0010 = SMEM-IDMA Agent_SW (Not usable for IDMA operation)

0011 = USER Agent SW

2.10.4.5 Global Time Stamping.

The PEV_1100 DMA implements a dedicated mechanism allowing to tag (time-tagging) the IDMA DMA_Descriptor operation. At the end of execution of a DMA_descriptor, the executed DMA_Descriptor DW_6 and DW_7 are updated with the Global_Time current value. (Write over the current DMA_Descriptor in the SMEM) This optional mode of operation allows to tag the IDMA operation for performance monitoring or for execution profiling.

The PEV_1100 Global time is located in the the VME64X Agent_SW block, Refer to chapter 2.11.7

2.10.4.6 Trigger facilities.

The PEV_1100 DMA Controller implements external trigger capability. While a DMA_Descriptor is fetched in the corresponding Engine, its execution can be delayed until a pre-defined trigger condition happens. This Start on Trigger condition is defined in the DMA_descriptor DW_3.

000 = Immediate execution. (No external trigger condition expected)

001 = Start execution at Global_Time Synchronization.

010 = Start execution at GPIO Event#1 (USER Central SW block)

2011-12-21 - PEV_1100 PCI
Express to VME64 Bridge

865

870

875

880

885

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

011 = Start execution at GPIO Event#2

100 = Start execution at IDMA on Trigger #0 event (READ_Engine #0) or if Pipeline mode is enabled in the PCSR Register (Trig_PIPE_Enable = '1')

- Start execution RD_Engine while Trigger_PIPE_CNT < "100000"
- Start execution WR Engine while Trigger PIPE CNT /= "000000"

Start execution at IDMA while Trigger Pipe CNT /= X"00".

101 = Start execution at IDMA Trigger #1 (READ_Engine #1)

110 = Start execution at IDMA Trigger #2 (WRITE Engine #0)

111 = Start execution at IDMA Trigger #3 (WRITE_Engine #1)

Every IDMA Engine can also issue a Trigger event, selectable in the DMA_Descriptor DW_0:

- DMA_Descriptor End of execution
- DMA_Descriptor Start of execution

These four trigger conditions can be used as Start Trigger condition for any pending DMA_Descriptor, allowing to built IDMA chaining with synchronization mechanism between the IDMA Engine.

i.e : IDMA READ_Engine #0 can executes a multiple DMA_Descriptor chain [Data collection from several VME64X module] and at the end ,trigger the start of WRITE_Engine #0 [Copy of the acquired data to the Host System Memory across PCI_Express]

2.10.4.7 DMA_Descriptor Location.

The PEV_1100 DMA Controller requires that the DMA_Descriptor chain shall be located in the SMEM Memory. Chain of DMA_Descriptor can not be located across the Central_SW interconnect. (i.e residing in the Host System Memory. This way of doing has been selected to have a deterministic access to the DMA descriptor storage resources.

The IDMA controller is built to own a private access path to the SMEM DDR2 Memory. To improve further DMA_Descriptor fetch latency, a DPRAM Cache is implemented for each of the IDMA Engine. These DPRAM cache (4 entries) allow to reduce the dead-time of the DMA_Descriptor fetch sequence under 50 [ns].

- 2* 1KBytes (32 DMA_Descriptor) for WRITE_Engine channels
- 2* 1KBytes (32 DMA Descriptor) for READ Engine channels

If end user application requires DMA_Descriptor chain built in the Host System Memory, a READ_Engine can be set-up to copy the DMA_Descriptor chain located in the Host System Memory to the PEV_1100 SMEM and at the end of the copy automatically start the execution of the concerned IDMA chain. Several scenario can be set-up in advance, and ready to be executed on demand.

2.10.4.8 IDMA Error Signalling.

The IDMA engines issue Read and Write transaction on three attached slave devices. the above description sums up the potential error condition.

The SMEM DDR2 occupies a fixed size, (256, 412 or 1012 MBytes) over a 32-bit (4 GBytes) addressing. IDMA transactions outside the decoded area are immediately terminated with an error condition. This error is detected while the DMA_Descriptor is analysed before its execution. IDMA operation terminated with this error condition is signalled with status information

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge 42/135

P_PCIE-VME_AF_HSID_B0

895

905

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

"idma_STATUS[2:0] = 110"

The IDMA Write_Posting transactions to the Central_SW does not support any error signalling. Due to its nature, the transaction initiator does not get any information from the target about error condition. Error status informations are usually provided by the target interface (i.e PCI Express EP or VME64X Master)

The IDMA WRITE_Engine Read_Request / Read_Response transactions issued to the Central_SW implements several status error. To its split transaction implementation, any Read_Request requires specific Read_Completion (s). Any abnormal operation will be detected and signalled appropriately in the IDMA_GCSR register. The current DMA_Descriptor is aborted immediately on error detection.

- Unexpected Read_Response TLB received.
- Malformed Read Response TLB received.
- Out of sequence Read_Response TLB received.

Moreover, signalled error (with Completion Status = b"100") are also handled appropriately. In case of the control-bit option "ext_DMAERR" is set, the DMA chaining is not stopped, current DMA_Descriptor is aborted and next DMA_Descriptor execution is started. With the DMA_Descriptor Update capability, the abort DMA_Descriptor word counter can be saved.

920

925

930

935

940

945

950

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

2.11 VME64X Interface

The PEV_1100 provides a complete VME64X Master/Slave Interface with Slot_1 function. The following sections provide an overview of the implemented VME sub-functions. For complete VME Bus understanding please refer to the VITA specification with their related addendum.

The PEV_1100 is ready to operate in VME64X 5-rows backplane as well in legacy VME64 3-row backplane. Static option SW500-3 determines the mode of operation.

The PEV_1100 VME Interface is ready to support VXI related protocol.

2.11.1 VME Slot_1 functions

Any VME system requires a centralized function, commonly named Slot_1 and usually located on the left most slot of the backplane. While the VME Slot_1 in enabled, the LED indicator LD502 is light on GEEEN.

The VME64X geographic address, as well as others related static options are available in the "PVME SLOT" register .

The VME Slot-1 function is enabled manually with static option while the VME64X mode is disabled. Refer to chapter 2.1.1 for static option selection or while the PEV_1100 is plugged in VME Slot No "1" defined by the VME64X 5-rows backplane GA+GAP Geographic addressing.

While enabled the PEV_1100 provides a VME Central Arbiter. Mode of operation as PRI, RRS are selectable in the "PVME_SLOT" register. A 4 [us] arbitration time-out is specifically assigned to the BGOUT assertion.

While enabled the PEV_1100 provides the BTO / 2eBTO sub-function. Any VME on-going cycles are monitored and in case of non-responding after a specified time generates a VME BERR#. The time-out value (from 16 to 128 [us]) and the associated flags can also be selected in the "PVME_SLOT1" register. Refer to chapter 3.3.1

The VME SYSRESET# signal can be controlled by the on-board PEV_1100 logic. A specific static option SW500-1 enables this capability. The VME SYSRESET# generator is automatically activated at power-up or can also be issued remotely through the "ILOC_SPI" register. Refer to chapter 3.2.5

2.11.2 VME Slave Port

The PEV_1100 can be set-up to act as a VME Slave agent. Two selectable window can be mapped respectively in the CONFIG/A24 and A32 address space. The VME A64 mode is not supported.

- CR/CSR or A24 512 MBytes window.
- Programmable A32 16 to 2048 MBytes window.

A 512 KBytes window, following the VME64X CR/CSR specification is mapped over the CR/CSR Space (AM = 0x2F) while the PEV_1100 is set-up to operate in 64X Mode with SW500-2. When the 64X mode is disabled, the same CR/CSR window is mapped on the VME Standard A24 Address Space A24. The base offset is then defined by the static option SW500[8:4] in place of the geographical addressing.

The 512 KBytes CR/CSR Space (Configuration ROM and Control & Status Register) is fully defined by the ANSI VITA 1.1 "VME64 Extensions" The CR/CSR 512KBytes window implements as defined by the VITA specification. CSR_BAR, CSR_BSR/BCR and CSR_ADER registers are described in

2011-12-21 - PEV_1100 PCI	44/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

965

970

975

980

985

990

995

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

955 chapter 3.3.13, 3.3.14, 3.3.15.

The power-up value of these concerned registers can also be set-up by the PON_FSM unit. Refer to chapter

In addition to the VME64X related registers, a IO_Bus Bridge unit allows to remap transparently all PEV 1100 IO Bus mapped resources on the VME Bus.

The 2nd window is mapped on the VME Extended address Space A32. Its size is programmable from 16 MBytes up to 2 GBytes. This window is divided in pages and associated to an VME INgress MMU. Each page is associated to a Page Descriptor providing missing addressing information (Agent_SW and 64-bit Address extension) an some additional selectable options.

The A32 Window size is defined in the "PVME_MASCSR" register (selectable from 16 to 2048 MBytes) as well as other key operational option. The VME Slave Interface can also be globally disabled/enable. Following the VME64X specification, the base offset of the A32 window is defined by the CSR ADER and enabled in the CSR BSR/BCR register. Refer to chapter 3.3.3

The PEV_1100 integrates a MMU type address remapping function, named INgress MMU. The A32 decoded window is divided in N* pages of 1/2/4 MBytes and each page is directly associated to a 64-bit Page_Descriptor described in chapter 3.3.6. The INgress MMU is implemented with a local DPRAM storing the complete entries. This DPRAM look-up table can be initialized by the Host controller through specific registers "PVME_MMUDAT" and "PVME_MMUADD". Through the INgress MMU, protection mechanism as well as complete remapping as well as hardware based swapping is supported .

The PEV_1100 slave interface supports all VME data transfer SLT, BLT, MBLT, 2eVME and 2eSST(all rates) across the VME A32 Addressing space. Access to the CR/CSR is limited to the SLT.

The PEV_1100 also integrates 4 Location Monitor registers. These resources can be mapped separately anywhere in the VME A16, A24 or A32 through "PVME_LOCMON" registers. Access over them can be programmed to issue interrupt to the Host controller. Refer to chapter 3.3.9

The Local VME64X Interrupt Generator controlled by the PVME_INTG register can be used to issue local VME Interrupt. Refer to chapter .

2.11.3 VME Master Port

The VME64X integrates a full VME Master Interface implemented as a bridge function. The local Central_SW transactions are converted to VME Bus cycle(s). Any of the on-chip Agent_SW (PCI Express EP, IDMA, USER) can than drive the VME Master Interface.

The VME Master interface is controlled through the "PVME_MASCSR" register. Refer to chapter 3.3.2. The VME arbitration level, the arbitration release mode and other directly related options are made available to the user's application through the "PVME_MASCSR" register.

The VME Master is acting as a bridge function, therefore the complete cycle parametrization is built by the transaction source agent. The VME addressing mode id defined by the TYPE 4-bit field which is generated by the INgress MMU (for PCI Express EP) or directly by the IDMA Descriptor.

The User/Supervisor can be optionally selected in the "PVME_MASCSR" register. Following table sums-up the VME TYPE[3:0] remapping

1005

1010

1015

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

Space_Type	VME64x Master	VME AM code
0x0	Configuration Space	AM = 0x2D
0x1	A16 : D08-D16-D32	AM = 0x29 / 0x2D
0x2	A24 : D08-D16-D32	AM = 0x39 / 0x3D
0x3	A32: D08-D16-D32	AM = 0x09 / 0x0D
0x4	A32: BLT	AM = 0x0B / 0x0F
0x5	A32: MBLT	AM = 0x08 / 0x0C
0x6	A32: 2eVME	AM = 0x20 XAM = 0x01
0x7	A32: 2eVME Fast	AM = 0x20 XAM = 0x01
0x8	A32: 2eSST_160	AM = 0x20 XAM = 0x11
0x9	A32: 2eSST_233	AM = 0x20 XAM = 0x11
0xa	A32: 2eSST_320	AM = 0x20 XAM = 0x11
0xb	A32: 2eSST_400	AM = 0x20 XAM = 0x11
0xc	Reserved	
0xd	A24: Address Only	AM = 0x39 / 0x3D (ADOH AM = 0x35)
0xe	A32: Address Only	AM = 0x09 / 0x0D (ADOH AM = 0x05)
0xf	IACK Cycle	AM = 0x3F

Table 2.16.: VME Master Central_SW TYPE transactions

The PEV_1100 supports all VME data transfer SLT, BLT, MBLT, 2eVME and 2eSST(all rates) across the VME A32 Addressing space. Optimal data transfer mode is selected in real time by hardware logic.

2.11.4 VME Location Monitor

The PEV_1100 implements 4 Location Monitors. A base register PVME_LOCMON holds a 32-bit address field A[31:5] and two control bit for the mode of operation. When a VME cycle match the specified Address (A[31:5] for A32, A[23:5] for A24 or A[15:5] for A16) a local interrupt is issued, selected by Address[4:3] field.

The four Location_Monitor interrupts are wired to the local ITC16 VME Interrupt controller. The PEV_1100 can issue VME cycles for location monitors with ADO or self addressed regular VME SLT cycles.

2.11.5 VME LOCK Support

The PEV_1100 supports VME64X ADOH transactions used to implement the VME LOCK. This specific mode of operation is dedicated to support VME atomic sequence with VME Slave reservation. (Refer to VME64X specification. This mechanism is based on following sequence:

- 1. An Address Only with Handshake ADOH cycle, issued by a VME Master, triggering the LOCK process. This transaction is normally issued by a native Read transaction. (CPU reads from ADOH location)
- 2. Access to the VME Master is first controlled by an arbitration phase. The triggered ADOH transaction is issued on the VME Bus only while the mastership arbitration is granted.

2011-12-21 - PEV_1100 PCI	46/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1025

1030

1035

1040

1045

1050

1055

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

- 3. The VME Slave decoding the ADOH shall respond to the VME transaction. Three types of handshake can be generated as :
 - DTACK#, signalling acceptance of the LOCK process. While happens, the VME
 mastership is kept (BBSY# remains asserted) until a specific action (described in
 following section) will force the VME mastership to be released.
 - BERR#, signalling an error condition. Impact on the LOCK process is left open by the VME specification. A control bit "vmas_BACKOFF" located in the PVME_MASCSR Register allows to force PCI Express Completion without error.
 - RETRY#, signalling failure of the LOCK process. While happens, the VME mastership
 is released and the ADOH transaction is reissued. A control bit "vmas_MAXRETRY"
 located in the PVME MASCSR Register allows to limit the number of retries.
- 4. While LOCK is won, the VME mastership is kept by the VME Master who granted the LOCK. This is supported by keeping BBSY# asserted. As long as the LOCK is active, the VME Master can issue any number of Read / Write transactions to the VME Bus. In practice the LOCK mechanism is used to emulate atomic transactions as Read Modify Write or Compare and Swap.
 - In case of BERR# handshake detected during the LOCK process activated, BBSY# is deactivated and therefore LOCK is immediately deactivated.
- 5. The LOCK is deactivated with two selectable mode of operation.
 - Set the control bit "LOCK_CLEAR_Cmd" located in the PMAS_LOCK Register. (PCI Express IO Space)

Executes a ADOH (or ADO) with a Write operation. This transaction will not be executed on the VME backplane, but will be used to clear the LOCK flag.

2.11.6 VME Error Support

The PEV_1100 integrates an error monitoring logic. A couple of Error registers "PVME_STAERR" and "PVME_ADDERR" provide basic VME debugging support.

In case of VME Error detected, while the PEV_1100 is acting as VME master the main VME cycle informations are stored in these two registers . These informations can be read-out by the Host controller for further analysis. Refer to chapter 3.3.7 and 3.3.8

2.11.7 VME Interrupts

The PEV_1100 fully integrate the VME Interrupt infrastructure as Interrupt generator and Interrupt Handler.

The Local VME64X Interrupt Generator controlled by the "PVME_INTG" register . Refer to chapter 3.3.4

The PEV_1100 integrates a complete VME INTH function. To support efficient Interrupt handling, autonomous IACK generation is supported by hardware. The VME INTH is associated to the VME dedicated ITC16 Interrupt controller, described in chapter 3.7.

2.11.8 VME Global Timer

PEV 1100 VME Interface integrates a centralized time base, used for data time-stamping and

2011-12-21 - PEV_1100 PCI	47/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

others time related support. Four registers mapped on the IO_Bus are made available to support the Global Timer service. These registers can be access from the PCI Express IO Space or from the VME CRCSR/A24 decoded area. Refer to chapter 3.3.10

The PEV_1100 Central_Timer is built with two independent counter-timers :

- CNT_1: 32-bit [ms] counter This counter timer is incremented at every external TOP synchronization reception. (1 KHz). It size allows to built up to ~ 1200 hours without roll-over.
 - Two mode of operation 1000[ms] or 1024[ms] for upward compatibility with TUNDRA Tsi 148 implementation
- CNT_2: max. 17-bit counter, providing high speed time between the 1[ms] synchronization. This counter can be selected to run at different rate. (1 MHz, 10 MHz, 125 MHz). This counter timer is clear at every external TOP synchronization reception. (1 KHz) Native precision is derived from the on-board oscillator 50 [ppm] (in 1[ms] maximal drift of +/-50[ns])
- The two counter-timers are mapped in the IO_Bus Space area and can be read from the PCI_Express infrastructure or from the VME64X CRCSR port. To support coherent read-out, a stag register stores the CNT_2 value on primary CNT_1 read-out. CNT_1 can also be loaded at pre-determined value for initialization purpose. (i.e IRIG_B encoded time)

The two counter-timers CNT_1 and CNT_2 are controlled with a 1 KHz TOP synchronization. This synchronization can be selected from following sources :

- Locally built, derived from on-board oscillator (100 MHz 50[ppm]) The 1000 [ms] and 1024[ms] mode is software selectable.
- From VME64x signals (SYSFAIL#, SERCLK# or INT1#/INT2#)
- From external reference (through User's IO on PMC Jn14/Jn24) IRIG_B or GPS or PMC front panel .
- From dedicated user's logic implementing a high stability oscillator (TCXO /VCXO).
 This could be required if only an external 1PPS information is provided from a GPS equipment. To implement this function a regulation logic (digital PID) shall be designed in the FPGA user's area to control an external VCXO. This kind of logic has been already implemented on IENA system and was providing a 0.05 ppm precision. (less than 50[ns] derating over 1 second)

synchronization, (selectable from above described sources) can be broadcast outside the PEV_1100 through following channels

1060

1065

1070

1075

1080

1085

1090

1105

1110

1115

1120

1125

1130

1135

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

- Over VME signals (SYSFAIL# or SERCLK# or INT1#/INT2#)
- · PCI Express
- TBD PCI Express Message

A synchronization monitoring is implemented to survey the CNT_1 and CNT_2 operation. A programmable window (+/- error) is defined to accept/reject the TOP synchronization. Status flags are provided in case of error detection.

The PEV_1100 Global Timer can issues local interrupts derived from the 1.000[ms] synchronization.

The external synchronization on the VME Bus is supported on SYSFAIL# or with IRQ#1 / IRQ#2. The PEV_1100 can be programmed as Synchronization Master or as Synchronization Slave. Provision is made to support external synchronization (IRIG-B and/or GPS). FPGA user's area can be assigned to implement such mechanism.

2.11.8.1 IDMA and USER Block Global Time

The VME Global Time is also forwarded to the IDMA and to the USER block.

- The IDMA uses the Global Time information to time-tag the IDMA Descriptor execution (start and end of ...), allowing to trace IDMA execution. It is also used, with specific option to trigger a IDMA channel execution.
- The USER block also receives the Global Time information for user's specific implementation.

2.11.8.2 IRIG_B and GPS Synchronization

The 'true' time is usually distributed through two methods:

- IRIG_B, 1 KHz Amplitude modulated. The 1KHz provides the 1[ms] re-synchronization and the modulation provides 1000 bits informations encoding in BCD the true time (Day, hour, minutes, second). The IRIG-B decoding usually need some analog front-end
- GPS, 1 Hz information 1pps and through a RS232 port the true time information. (Day, hour, minutes, second). Because a synchronization is provided every second, a local high precision oscillator shall be implemented (VCXO + PID + external 1pps)

To support the external Global Time synchronisation, directly by the PEV_1100, an external hardware block (very simple) shall provide following facilities:

- Connection for local TOP synchronization OUTPUT (Multi chassis support). Could be coax SMA/SMB standard connector(s).
- Connection for local TOP synchronization INPUT (Multi chassis support). Could be coax SMA/SMB standard connector(s).
- Connection to IRIG-B. Usually RG58 coaxial connector. An analog front-end (Automatic Gain Amplifier need to be implemented) The IRIG_B frame decoding can be handled locally with FPGA hardware or with firmware running on the local embedded PowerPC440 (If FPGA is FX30T or FX70T). It can also be supported by the HOST
- Connection to GPS Interface, composed of a TBD connector (i.e uDB9) The true time over serial interface (RS232) and the 1PPS synchronization are usually provided over the same cable. Additionally the regulation support (VCXO + DAC) is provided to the PEV_1100 FPGA.

2011-12-21 - PEV_1100 PC	I
Express to VME64 Bridge	

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

2.11.9 VME P2 IO Port

The PEV_1100 VME P2 user IO (rows A & C) are all wired to the PMC user's IO Jn14 and Jn24.

Signal allocation	VME P2		Signal allocation
PMC #2 Jn24 pin 33	A-1	C-1	PMC #2 Jn24 pin 34
PMC #2 Jn24 pin 35	A-2	C-2	PMC #2 Jn24 pin 36
PMC #2 Jn24 pin 37	A-3	C-3	PMC #2 Jn24 pin 38
PMC #2 Jn24 pin 39	A-4	C-4	PMC #2 Jn24 pin 40
PMC #2 Jn24 pin 41	A-5	C-5	PMC #2 Jn24 pin 42
PMC #2 Jn24 pin 43	A-6	C-6	PMC #2 Jn24 pin 44
PMC #2 Jn24 pin 45	A-7	C-7	PMC #2 Jn24 pin 46
PMC #2 Jn24 pin 47	A-8	C-6	PMC #2 Jn24 pin 48
PMC #2 Jn24 pin 49	A-9	C-9	PMC #2 Jn24 pin 50
PMC #2 Jn24 pin 51	A-10	C-10	PMC #2 Jn24 pin 52
PMC #2 Jn24 pin 53	A-11	C-11	PMC #2 Jn24 pin 54
PMC #2 Jn24 pin 55	A-12	C-12	PMC #2 Jn24 pin 56
PMC #2 Jn24 pin 57	A-13	C-13	PMC #2 Jn24 pin 58
PMC #2 Jn24 pin 59	A-14	C-14	PMC #2 Jn24 pin 60
PMC #2 Jn24 pin 61	A-15	C-15	PMC #2 Jn24 pin 62
PMC #2 Jn24 pin 63	A-16	C-16	PMC #2 Jn24 pin 64
PMC #1 Jn14 pin 33	A-17	C-17	PMC #1 Jn14 pin 34
PMC #1 Jn14 pin 35	A-18	C-18	PMC #1 Jn14 pin 36
PMC #1 Jn14 pin 37	A-19	C-19	PMC #1 Jn14 pin 38
PMC #1 Jn14 pin 39	A-20	C-20	PMC #1 Jn14 pin 40
PMC #1 Jn14 pin 41	A-21	C-21	PMC #1 Jn14 pin 42
PMC #1 Jn14 pin 43	A-22	C-22	PMC #1 Jn14 pin 44
PMC #1 Jn14 pin 45	A-23	C-23	PMC #1 Jn14 pin 46
PMC #1 Jn14 pin 47	A-24	C-24	PMC #1 Jn14 pin 48
PMC #1 Jn14 pin 49	A-25	C-25	PMC #1 Jn14 pin 50
PMC #1 Jn14 pin 51	A-26	C-26	PMC #1 Jn14 pin 523
PMC #1 Jn14 pin 53	A-27	C-27	PMC #1 Jn14 pin 54
PMC #1 Jn14 pin 55	A-28	C-28	PMC #1 Jn14 pin 56
PMC #1 Jn14 pin 57	A-29	C-29	PMC #1 Jn14 pin 58
PMC #1 Jn14 pin 59	A-30	C-30	PMC #1 Jn14 pin 60
PMC #1 Jn14 pin 61	A-31	C-31	PMC #1 Jn14 pin 62
PMC #1 Jn14 pin 63	A-32	C-32	PMC #1 Jn14 pin 64

Table 2.17.: VME P2 A&C User IO assignment

Additionally, on PEV_1100 version equipped with 5-rows connectors, rows D & Z are used to

2011-12-21 - PEV_1100 PCI	50/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1150

1155

1160

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

support extra VXI signalling. These side-band signals are connected to PMC #1 Jn13, when populated for VXI extension.

Signal allocation	VME P2		Signal allocation
vxi_LBUS_C11 → (PMC #1 Jn13 pin 16)	D-16	Z-16	GND
vxi_LBUS_C10 → (PMC #1 Jn13 pin 18)	D-17	Z-17	
vxi_LBUS_C9 → (PMC #1 Jn13 pin 22)	D-18	Z-18	GND
vxi_LBUS_C8 → (PMC #1 Jn13 pin 24)	D-19	Z-19	
vxi_LBUS_C7 → (PMC #1 Jn13 pin 28)	D-20	Z-20	GND
vxi_LBUS_C6 → (PMC #1 Jn13 pin 30)	D-21	Z-21	
vxi_LBUS_C5 → (PMC #1 Jn13 pin 34)	D-22	Z-22	GND
vxi_LBUS_C4 → (PMC #1 Jn13 pin 36)	D-23	Z-23	
vxi_LBUS_C3 → (PMC #1 Jn13 pin 40)	D-24	Z-24	GND
vxi_LBUS_C2 → (PMC #1 Jn13 pin 42)	D-25	Z-25	
vxi_LBUS_C1 → (PMC #1 Jn13 pin 46)	D-26	Z-26	GND
vxi_LBUS_C0 → (PMC #1 Jn13 pin 48)	D-27	Z-27	
	D-28	Z-28	GND
vxi_CLK10p → (PMC #1 Jn13 pin 59)	D-29	Z-29	vxiVCC_2Vn → (PMC #1 Jn13 pin 60)
vxi_CLK10n → (PMC #1 Jn13 pin 61)	(PMC #1 Jn13 pin 61) D-30 Z		GND
	D-31	Z-31	vxiVCC_5V2n → (PMC #1 Jn13 pin 64)
	D-32	Z-32	GND

Table 2.18.: VME P2 D&Z VXI IO assignment

2.11.10 VME64X Auto_ID

The PEV_1100 implements the Auto_ID mode to assign the VME64X CR/CSR Base Address. While VME 5-rows connectors are used, the backplane provides a geographic address GA[4:0] + GAP, used to assign the VME64X CR/CSR Base Address. In case of VME 3-rows is used, the Auto_ID method can be an alternative to assign dynamically the VME64X CR/CSR Base Address. While Auto_ID mode is selected, a "Monarch" shall run a specific algorithm, to assign the CR/CSR Base Address of each unit implementing the Auto_ID.

For complete description of the Auto ID method, refer to VME Specifications Chapter 5.7

To support the Auto_ID mode following hardware support is integrated in the PEV_1100 hardware :

- VME IRQ#2 generation after a VME SYSRESET# deassertion
- Participate on VME IACK level 2
- CR/CSR Base Address writeable from VME Slave interface

To enable the Auto_ID mode, the static switch shall be configured as :

- SW500-3 = "ON" → VME64X CRCSR Mode Enabled
- SW500-[8:3] = ["ON" "OFF" "ON" "OFF" "ON"] \rightarrow Magic pattern B"10101" selecting the Auto_ID Mode.
- SW500-[8:3] = ["ON" "OFF" "OFF" "OFF" "OFF"] → Magic pattern B"10100" selecting the Auto ID Semi-Automatic Mode.

2011-12-21 - PEV_1100 PCI	51/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

To monitor the Auto_ID configuration process, specific status bits are provided in the "PVME_SLOT1" Register.

[27]	vme64x_Auto_ID	R	-	I	Auto_ID Mode enabled. Set while W_64X = OFF" and SW500-[8:3] = K"	
[30]	vme64x_RxSYSFAIL	R	-	VME64X		
				0 VME64x SYSFAIL not asserted		
				1 VME64x SYSFAIL asserted		

[31]	vme64x_Auto_ID_GO	W	0	Command to start Auto_ID Semi-automatic process → IRQ2# assertion + SYSFAIL# de-assertion	
	vme64x_Auto_ID_Semi	R	0	VME64X Auto_ID Semi-Automatic Mode	

The Auto_ID Semi-automatic mode allows to control by SW the Auto_ID process. While enabled, the PEV_1100 asserts VME SYSFAIL# and wait until the "vme64x_Auto_ID_GO" control bit is positioned to '1' to continue the Auto_ID sequence (→ asserts VME IRQ#2 and de-asserts VME SYSFAIL#)

2.11.11 VME64X RMW Transactions

The PEV_1100 is able to issue VME atomic Read Modify Write transactions with CAS (Compare and Swap) logical operation. An independent VME cycle generator, controlled with dedicated registers is instantiated in the VME Master block.

The CAS operation, executed with an atomic RMW cycle is handled with following dedicated registers :

- PVME_RMW_MODE storing general VME informations (AM and OP_Size) used for subsequent RMW operation and the Trigger (start) control.
- PVME_RMW_ADD storing the VME Address used for subsequent RMW operation
- PVME_RMW_CMP storing the compare value. If the VME data read during the RMW match the value, then the VME Write is executed with data stored in the PVME_RMW_UPT register.
- PVME_RMW_UPT storing the update Data.

The CAS operation status (Error, Match_OK or Match_NotOK) is provided in the PVME RMW CTL register.

The VME RMW cycle operation uses standard VME arbitration Requester logic, conditioned in the PVME_SLOT1 register. In case of VME RETRY# received during RMW operation, the VME arbitration mastership is released before retrying the RMW operation.

The VME RMW Data register (PVME_RMW_CMP and PVME_RMW_UPT) are implemented with natural VME Data alignment, matching directly the VME Bus DATA lines. For CAS operation, the considered VME Bytes shall be located as defined in the above table.

Size Mode RMW ADD[1:0]	PVME RMW CMP/PVME RMW UPT
Size_ivioue Kivivv_ADD[1.0]	PVINE_RIVIVY_CINE / PVINIE_RIVIVY_CP I

2011-12-21 - PEV_1100 PCI	52/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge	<u> </u>	

1165

1175

1170

1180

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

		[31:24]	[23:16]	[15:8]	[7:0]
D08	00			VME Byte_0	
	01				VME Byte_1
	10			VME Byte_2	
	11				VME Byte_3
D16	0x			VME Byte_0	VME Byte_1
	1x			VME Byte_2	VME Byte_3
D32	00	VME Byte_0	VME Byte_1	VME Byte_2	VME Byte_3

Table 2.19.: VME RMW Data alignment

2.11.12 VME64X CRS Completion

The VME64x specification has defined three transaction acknowledge mechanisms as :

- DTACK → Successful transaction completion.
- BERR → Transaction with Error or Bus time out.
- RETRY → Transaction required to be retried.

In PCI Express environment, only Memory Read transactions, implemented with Read_Request and Read_Completion TLP provide an acknowledge mechanism. Write transactions are allays posted.

The PCI Express Memory Read can be acknowledge with four completion type as:

- Successful Completion (SC)
- Unsupported Request (UR)
- Configuration Request Retry Status (CRS)
- Completer Abort (CA)

In Bridge function, the RETRY acknowledge type can not be reported directly. In PCI Express Specification, Completion TLB with "Compl Status = 010 (CRS)" is only authorized for Configuration Read/Write during the PCI Express enumeration process.

In TOSCA implementation, the VME Master shall be able to issue a RETRY acknowledge with Read_Completion. The RETRY can be implemented with PCI Express field "Compl Status = 010 (CRS)". This acknowledge mode shall be used only for TOSCA Agent_SW ↔ TOSCA Agent_SW operation. In topology incorporating a PCI Express Switch (as PEV_1100) the Compl Status = 010 (CRS)" can also be used by example for VME -VME Interface built with two PEV_1100.

This mode of operation can be enabled/controlled by setting the control bit field "vmas_CMPL_CRS[1:0]" located in the "PVME_MASCSR" register.

CMPL_CRS	Mode of operation			
00	No Completion with Compl. Status = CRS			
01	Completion with Compl. Status = CRS on maximum VME RETRY (256) VME RETRY# acknowledge.			
10	Completion with Compl. Status = CRS on 1st VME RETRY# acknowledge.			

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	53/135	P_PCIE-VME_AF_HSID_B0	
--	--------	-----------------------	--

1190

1195

1200

1205

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

11

Completion with Compl. Status = CRS on fourth VME RETRY# acknowledge.

Additionally for optimal support, the control bit field "vmas_MAXRTCNT[1:0]" located in the "PVME_MASCSR" register provides selectable number of RETRY. (32, 64, 128, or time based)

2.11.13 VME64X Remote RETRY Logic

In system where the PEV_1100 / IPV_1102 are used to interconnect two VME chassis and the remote VME Slave unit exhibit very long access time (> 100[us]), VME Read_Request can be lost due to a Bus Time-out happening is the VME#1 chassis. Following diagram represents the system implementation with system parameters.

- CPU#1 is the Master issuing the VME transaction targeting the CPU#2 (Slave).
 VME#1 BTO is fixed to 128[us]. (vmeBTO#1)
- CPU#2 is the Slave unit exhibiting very long access time (> 100[us]. VME#1 BTO is fixed to XXX[us]. (vmeBTO#2)
- PEV#1 is acting as VME_Slave to PCle Initiator Bridge
- PEV#2 is acting as PCle Target to VME Master Bridge
- PEV units implement segregation on Write_Request Buffer (WB) and Read_Request Buffer (RB). PCI Express interface (EP in PEV and PCIe Switch) implement unified Read_Request/Write_Request Buffer)
- PCI Express guarantee the Write_Request /Read_Request ordering and the PEV's VME Master/Slave interfaces also.

CPU#1

VME Master

VME BTO 128[us]

VME#1

VME Slave

RB

PEV#1

PCI Express x4

CPU#2

VME#2

VME Master

VME Master

While CPU#1 (VME Master) is writing to CPU#2 (VME Slave) the write transactions are posted. This write posting is implemented across several level of Write Buffer. The reported write transaction in the remote VME#2 is executed uncorrelated from VME#1 operation. In case of very long access time of CPU#2, the posted Write operations are executed continuously until success completion (DTACK# or BERR#) In case of RETRY# received the current posted WRITE is retried indefinitely.

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge 54/135

P_PCIE-VME_AF_HSID_B0

1230

1225

1215

1220

1235

1240

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

1250

1255

While CPU#1 (VME Master) is reading from CPU#2 (VME Slave) the read transaction is implemented with split transaction. (Read_Request + Read_Completion) The Read_Request is implemented across several level of Read Buffer. The reported read transaction in the remote VME#2 is executed interlocked with VME#1 operation. In case of very long access time of CPU#2, CPU#1 can receive a vmeBTO and terminates its pending Read transaction with a BERR#. → System Error.

This erroneous system behaviour, resulting from a very long VME Slave (CPU#2) access time need to be resolved in critical system. Following workaround is supported by the PEV 1100.

1260

1265

1270

1275

1280

1285

- 1. A specific logic is incorporated in the VME Slave Controller of PEV#1. It shall be enabled with the control bit "vslv_READ_SPMOD" located in the PVME_SLVCSR register.
- 2. This logic implement a counter-timer (VSRR_Timer) monitoring the current VME Read transaction. The VSRR_Timer shall be set-up to issue a time-out before the VME#1 BTO. This value can be easily defined as VME#1 BTO value 1[us]
- 3. While a VSRR_Timer time-out occurs, the current pending VME Read transaction (issued by CPU#1) is terminated with RETRY# and the PEV#1 VME Slave interface is switched to a BUSY state (... issuing RETRY# on all further decoded VME Read transaction)
 - \rightarrow The VSRC_Timer can be programmed in the PVME_SLVCSR register with control field "vslv_RDRQ_TO[7:0]".
- 4. The address information of the VME Read transaction triggering the Read_Request is captured for further match logic support.
- 5. While the expected Read_Completion is received from the PEV#2, the VME#1 Slave waits for a VME Read transaction matching the previously captured address information. (Refer to item #4) While decoded, the VME Read is acknowledged with the Read_Completion information (Data read + Completion type) The PEV#1 VME Slave interface is released from BUSY state.
- 6. On VSRR_Timer time-out occurrence → a 2nd counter-timer (VSRC_Timer) is started. The VSRC_Timer time-out value shall be defined to cover maximum response time of any issued Read_Request. This value can be normed and defined as a system parameter (i.e 256 to 2048[us])
 - \rightarrow The VSRC_Timer can be programmed in the PVME_SLVCSR register with control field "vslv RDRS TO[1:0]".
- 7. While the VSRC_Timer time-out occurs we can consider the issued Read_Request TLP is definitely lost and the Read_Completion will be not received anymore.
 - \rightarrow The VSRC_Timer time-out flag information is provided in the PVME_SLVCSR register with status bit "vslv_RDRS_TOFL".
- 8. The VME Master Controller, active in PEV#2 implement a programmable time based RETRY window in such way that it is not dependent on the number of RETRY received back from the addressed VME Slave. This mode of operation is selectable through control field located in the "PVME_MASCSR" register.
 - → The RETRY window time-out mode is enabled with control bit "vmas_MAXRETRY = '0'" and the time value is provided with control field "vmas_MRTY_TIM[7:0]", both located in the PVME_MASCSR register.

1320

1325

1330

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

2.12 USER Block

The USER Block is reserved for user specific hardware (VHDL) resource fully embedded in the PEV_1100 infrastructure. PEV_1100 USER block controls 64 GPIO wired to the PMC Jn14/Jn24 user's IO.

The above diagram provides a basic description of the block interfaces.

The USER Block controls 64 GPIO (General Purpose IO), wired to the IEEE1386.1PMC Jn14and Jn24 connectors. Each connectors Jn14 / Jn24 owns 32 signals. User VHDL code can control directly the GPIO signalling and therefore implement the desired function. Next chapter 2.12.2 provides a table with the GPIO pin assignment.

The IO_Bus Slave interfaces the USER Block to the PEV_1100 IO Space infrastructure. A 1 KBytes area is reserved for it. Refer to chapter 3.1.1 for IO_Bus Slave description. The interrupt generation to the Host controller is also supported through IO_Bus Slave side band signalling.

The IO_Bus Master interface allow local intelligence embedded in the USER Block to get full access to the IO_Bus resources. Local intelligence can be embedded processor as PowerPC440 or soft IPcore as MicroBlaze. Refer to chapter 3.1.2 for IO_Bus Slave description.

The GEN support provide side band signalling as CLOCK reference, RESET control, Global Time, ...

The Central_SW Slave port allows to map the USER Block resources directly to the MEMORY Space. The TOSCA Central_SW infrastructure implements PCI Express TLP READ and WRITE with burst capability support up to 512 Bytes. The interface supports up to 2* 1.6 GBytes/s (simultaneous write and read) Following three transactions type are supported:

Write_Posting (PCI Express Write Memory Request)

2011-12-21 - PEV_1100 PCI	56/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1340

1345

1350

1355

1360

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

- Read Request (PCI Express Read Memory Request)
- Read Response (PCI Express Read Completion)

The Central_SW Master port allows local intelligence (processor or dedicated DMA controller) to have direct access to the TOSCA Central_SW infrastructure. The Master shall be able to manage PCI Express TLP with the adequate format. (Write_Posting, Read_Request, Read_Response) The interface supports up to 2* 1.6 GBytes/s (simultaneous write and read).

The IDMA Direct IN/OUT ports are directly attached to the PEV_1100 IDMA controller. Refer to chapter 2.10. The IDMA engines can interface directly IO channels through these private and simple interfaces without using the Central_SW infrastructure. This mode of operation is described in chapter 2.10.3. The Direct IN port is associated with the WRITE_Engine #0 and the Direct OUT port is associated with the READ_Engine #0

The SMEM Direct access port provides direct path to the SMEM DDR2 multi-port controller. Two independent interfaces are supplied for independent Read and Write. This SMEM Direct access port have simpler protocol and better latency control then access across the TOSCA Central SW.

In current implementation, the USER block integrates following function:

- · GPIO Programmable control
- MEMORY space to IO_Bus Bridge
- Four(4) Message Passing FIFO (255x32)

2.12.1 TOSCA FPGA Design Kit

The TOSCA "FPGA Design Kit" provides a complete design environment to support the USER Block implementation.

On current implementation the TOSCA "FPGA Design Kit" is not supported

2.12.2 GPIO Programmable control

The PEV_1100 implements a default USER block providing direct control of the 64 available GPIO signals connected to the PMC Jn14/Jn24 User IO. Two set of 32 GPIO are defined as "GPIO_A" and "GPIO B".

Each GPIO can be programmed to act as OUTPUT or INPUT only with "GPIO_A_ENA / GPIO_B_ENA", "GPIO_A_OUT / GPIO_B_OUT and "GPIO_A_IN / GPIO_B_IN" registers .

Above table sums up the IO assignation.

PMC Signal allocation			n#	PMC Signal allocation	
Jn24 (Top)	Jn14 (Bottom)			Jn14 (Bottom)	Jn24 (Top)
fpga_GPIO_1	fpga_GPIO_33	1	2	fpga_GPIO_35	fpga_GPIO_3
fpga_GPIO_2	fpga_GPIO_34	3	4	fpga_GPIO_36	fpga_GPIO_4
fpga_GPIO_5	fpga_GPIO_37	5	6	fpga_GPIO_ 39	fpga_GPIO_7
fpga_GPIO_6	fpga_GPIO_38	7	8	fpga_GPIO_40	fpga_GPIO_8
fpga_GPIO_9	fpga_GPIO_41	9	10	fpga_GPIO_ 43	fpga_GPIO_11

2011-12-21 - PEV_1100 PCI	57/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1370

1375

1380

1385

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

fpga_GPIO_10	fpga_GPIO_42	11	12	fpga_GPIO_44	fpga_GPIO_12
fpga_GPIO_13	fpga_GPIO_45	13	14	fpga_GPIO_47	fpga_GPIO_15
fpga_GPIO_14	fpga_GPIO_46	15	16	fpga_GPIO_48	fpga_GPIO_16
fpga_GPIO_17	fpga_GPIO_49	17	18	fpga_GPIO_51	fpga_GPIO_19
fpga_GPIO_18	fpga_GPIO_50	19	20	fpga_GPIO_52	fpga_GPIO_20
fpga_GPIO_21	fpga_GPIO_53	21	22	fpga_GPIO_55	fpga_GPIO_23
fpga_GPIO_22	fpga_GPIO_54	23	24	fpga_GPIO_56	fpga_GPIO_24
fpga_GPIO_25	fpga_GPIO_57	25	26	fpga_GPIO_59	fpga_GPIO_27
fpga_GPIO_26	fpga_GPIO_58	27	28	fpga_GPIO_60	fpga_GPIO_28
fpga_GPIO_29	fpga_GPIO_61	29	30	fpga_GPIO_63	fpga_GPIO_31
fpga_GPIO_30	fpga_GPIO_62	31	32	fpga_GPIO_564	fpga_GPIO_32

Table 2.20.: USER Block GPIO - IEEE 1386.1 Jn14/Jn24

The signals GPIO_A_IN[1:0] and GPIO_B_IN[3:0] are directly connected to the USER Agent_SW ITC16. The interrupt polarity can be chosen through control registers "GPIO_A_POL" and "GPIO_B_POL".

2.12.3 IO_Bus Bridge

The IO_Bus Bridge function is implemented in the USER block, with on the fly protocol translation. It can be accessed from any of the Tosca Agent_SW Master (PCIe_EP, VME64x or IDMA) This function is particularly useful while the IO_Bus resources shall be accessible from PCI Express MEMORY Space. (I.e access from PCI Express Non Transparent Bridge)

The NoPF INgress MMU Page #3 (NoPF Base + 3 MBytes is pre-initialized to map diretcly the USER Agent_SW implementing the IO_Bus Bridge)

The IO Bus Bridge function is implemented with two main blocks as:

- Tosca MEMORY Slave Interface, directly connected to the Central Switch handling following TLP packet
 - · Write Posted TLP
 - Read_Request and Read_Completion TLP
- IO_Bus Master Interface, running at 125 MHz, and generating IO_Bus Read and IO_Bus Write transactions. The IO_Bus owns a central arbiter managing the multiple access sharing.

The IO_Bus Bridge supports only single D32 word transaction. D64 or Block transfer transaction are not supported.

The IO_Bus Bridge function is located in the high section of the first 1 MBytes addressing area. Provision is made to support Tosca II implementation with up to eight(8) Agent SW.

Following table sums up the USER Space address decoding.

Local USER AgentSW ADD[31:0]	Implementation	
0x0010'0000 - 0xFFFF'FFFF	Reserved Not supported	
0x000F'F000 - 0x000F'FFFF	Reserved for extended IO_Bus (Tosca II Implementation)	

2011-12-21 - PEV_1100 PCI	58/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1395

1400

1405

1410

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

0x000F'E000 - 0x000F'EFFF	IO_Bus Bridge function		
	000F'E000 - 000F'E3FF PCIe_EP/LOCAL Agent_SW		
	000F'E400 - 000F'E7FF VME64X Agent_SW		
	000F'E800 - 000F'EBFF SMEM_IDMA Agent_SW		
	000F'EC00 - 000F'EFFF USER Agent_SW		
0x0000'0010 - 0x000E'FFFF	Not used Access to this area cause transaction Error		
0x0000'0000 - 0x0000'000F	Four (4) Message Passing FIFO addressing area (Refer to chapter 2.5)		

Table 2.21.: IO Bus Bridge MEMORY Mapping

Because the IO_Bus Bridge function in mapped over PCI Express MEMORY space, the Write transactions are posted and therefore can not report directly error cases. A IO_Bus Bridge write-posting error Interrupt is issued on the ITC16 INT#15 Refer to chapter 2.5

The Read transaction can report error through appropriate Read Completion TLP format.

2.12.4 Message Passing FIFO

The four Message Passing FIFO are implemented in the USER block. They are implemented with a RAM storage organized in 4x256x32 and a dedicated control logic handling FIFO sequence running at 125 MHz.

- FIFO size = 255 x 32 bit. (All four implemented in a single 36K BlockRAM)
- Flags FULL and NotEMPTY connected to dedicated ITC16
- Embedded control logic handling the FIFO management

The flags FULL and NotEMPTY of each FIFO are updated in real-time and supplied to the USER Agent_SW Interrupt Controller ITC16. Each individual flag can be programmed to issue a PCI Express MSI interrupt.

The Message Passing FIFO Read/Write Ports are mapped through two independent access space. Both can be used at same time thanks to an embedded arbitration controlling sharing the access from the two ports.

- 1. IO Bus. Access through the IO Bus locations a
- 2. TOSCA MEMORY switched path. Access through this path allows to map the Message Passing FIFO on the VME A32 Slave. To achieve it, a dedicated 1 MBytes page shall be programmed in VME INgress MMU table. Access through the MEMORY switched path can be protected in Write and Read for each FIFO with two control bits:
 - "MSG_FIFO_TMEM_REA" \rightarrow Read FIFO#n Enable
 - "MSG FIFO TMEM WEA" → Write FIFO#n Enable
- Only D32 transactions are supported for the Message Passing FIFO. D64 and block transfer are rejected.

2011-12-21 - PEV_1100 PCI	59/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

Each Message Passing FIFO is controlled with a dedicated control & status register. These four registers control and monitor the Message Passing FIFO These registers are only mapped over the IO_Bus path. Refer to chapter 3.6.9 and 3.6.10

1425

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

2.13 Interrupt Infrastructure

The PEV_1100 implements a complete Interrupt infrastructure dispatched to the PCI Express Host Controller. The PCI Express MSI generator, manages the MSI generation, on request from the attached ITC16.

The PEV_1100 instantiates four ITC16 blocks providing management for up to 64 local interrupts. The four ITC16 issues a unique PCI Express MSI. The PCI Express MSI parameters are defined through the PCI Express System Configuration. (Refer to PCI Express specification)

Due to LINUX limitation, only single vector MSI is supported. To work-around this system integration issue, a dedicated hardware FSM has been implemented to support the four on chip ITC serviced to a single MSI message.

The four MSI Request, issued by the ITC16 are handled sequentially in a round robin arbitration mode. The PCI Express MSI generator block acts as :

- Generate the PCI Express MSI Message on detection of one of the local MSI Request (#0, #1, #2, #3). At the MSI message generation, the MSI Request source is memorized for expected Interrupt Acknowledge sequence.
- 2. The dedicated logic wait for a "ITC#0 IACK_REG" read access Refer to chapter 3.7.1. This read cycle will provide a 16-bit vector signifying the interrupt source. The dedicated logic routes automatically the read access to the serviced MSI Request.
- 3. The dedicated logic wait for a "ITC#0 IACK_REG" write access. Refer to chapter 3.7.1 This write access will clear the ITP in the currently serviced ITC and re-enable the corresponding ITC. The logic route the write access to the serviced MSI Request.

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge 61/135

P_PCIE-VME_AF_HSID_B0

1435

1455

1460

1465

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

2.13.1 ITC16 Interrupt Controller

The PEV_1100 interrupt is based on a normalized 16 IRQ Interrupt Controller block. This block in instantiated in each Agent_SW block. The ITC16 integrates following features:

- · Edge or Level hardware selectable
- Individual Mask programmable with independent SET & CLEAR command register
- Interrupt Acknowledge Register with autonomous clear of Interrupt Pending
- VME automatic IACK pre-fetching

The 16 interrupt sources are primary handled by the "ITP Detector Cell", generating Interrupt Pending signal. (ITP) The Mode of operation Edge/Level is fixed by hardware for each of the source. While an ITP is handled by the Host, the ITC FSM automatically clears it.

The ITP can be masked individually with specific control bit located in the Mask register. This function is controlled with the "ITC_IMC" and "ITC_IMS" register, providing independent Bit SET and Bit CLEAR operation. Refer to chapter 3.7.3 and 3.7.4.

A 16-bit multiplexer associated with a 4-bit counter implements the "ITP Scanner" function. This scan logic is completely under control of the ITC FSM. The "ITP Detector Cell" are continuously monitored until an ITP is detected.

When an ITP is detected active, the scan is stopped and a MSI_Request is send to the PCI Express MSI logic. While the MSI is effectively send to the Host, with specific PCI Express TLP, a MSI Acknowledge is send back to the ITC FSM.

After a MSI_Request/MSI_Acknowledge sequence, the ITC_FSM is expecting an ITC_IACK read cycle. Refer to chapter 3.7.1 This IO_Bus read provides a 16-bit identifier to the Host Interrupt Handler, allowing to identify the ITP source.

The Host Interrupt Handler has the responsibility to clear the ITP (Interrupt Pending) and to restart the scan. This action is made by writing to the "ITC_IACK" Register with selected IP marked to be cleared. Refer to chapter 3.7.1

The following table sums up the four PEV1100 ITC16 interrupt sources

INT#	ITC16 Local	ITC16 VME64x	ITC16 SMEMIDMA	ITC16 USER
#0	V5_SMON_ALM[0]	VME SYSRESET# ass.	IDMA RDengine#0 END	MSG_FIFO#0_NotEMPTY
#1	V5_SMON_ALM[1]	VME IRQ_1	IDMA RDengine#0 ERR	MSG_FIFO#1_NotEMPTY
#2	V5_SMON_ALM[2]	VME IRQ_2	IDMA RDengine#1 END	MSG_FIFO#2_NotEMPTY
#3	V5_SMON_OT System	VME IRQ_3	IDMA RDengine#1 ERR	MSG_FIFO#3_NotEMPTY
#4	LM86 CRIT	VME IRQ_4	IDMA WRengine#0 END	MSG_FIFO#0_FULL

2011-12-21 - PEV_1100 PCI	62/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1475

1480

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

#5	LM86 THERM Alarm	VME IRQ_5	IDMA WRengine#0 ERR	MSG_FIFO#1_FULL
#6	Not used	VME IRQ_6	IDMA WRengine#1 END	MSG_FIFO#2_FULL
#7	Not used	VME IRQ_7	IDMA WRengine#1 ERR	MSG_FIFO#3_FULL
#8	Not used	VME ACFAIL#	Not used	GPIO_A_0
#9	Not used	VME_Error (Master)	Not used	GPIO_A_1
#10	Not used	VME Central Time #1	Not used	GPIO_B_0
#11	Not used	VME Central Time #2	Not used	GPIO_B_1
#12	Not used	Location Monitor #0	Not used	GPIO_B_2
#13	Not used	Location Monitor #1	Not used	GPIO_B_3
#14	Not used	Location Monitor #2	Not used	MSG FIFO WP Error
#15	Not used	Location Monitor #3	Not used	IO_Bus Bridge WP Error

Table 2.22.: PEV_1100 ITC16 INT sources

Before using the Interrupt logic, the four ITC shall be enabled and selected IT sources shall be unmasked. Refer to chapters 3.7.3 and 3.7.4.

2.14 Environmental

The PEV_1100 is designed for commercial temperature grade . The above table sums up the environmental.

	Commercial Grade	Comments
Operational Temperature	0 to 50 [°C]	With 400 LFM forced air cooling.
Storage Temperature	- 55 to 105 [°C]	
Relative Humidity	5% to 95%	Non condensing
Vibration	To Be Defined	
Shocks	To Be Defined	
Altitude	0 – 5000 meters	
EMI / RFI	EN50022-Class A EN50082	
Security	EN60950	

Table 2.23.: PEV_1100 Environmental

Due to the difficulties to get precise informations on the air cooling efficiency and the installed PMC/XMC, the PEV_1100 provides on-board thermal sensors.

- Internal XILINX Virtex-5T die temperature monitor. Refer to chapter 2.5.3
- External LM86 temperature sensor.

These two thermal informations allow to characterize the thermal envelope for the specific integration.

2011-12-21 - PEV_1100 PCI	63/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

3 IO_Bus Control & Status Register

The following chapter provides complete PEV_1100 IO Space description.

1485

3.1 IO Bus Infrastructure

The IO_Bus Infrastructure allows to interface the PEV_1100 internal registers and resources with the potential on-board controller. This multi Master shared media is implemented with a 8-bit Address/Data arbitrated multiplexed Bus running at 125 MHz.

1490

1495

1500

1505

1510

1515

SPI **PCI Express** VME64x **USER's Block** FlashEPROM Target IO Space Slave CR/CSR IO Bus Bridge Master 2 Master 1 Master 3 Master 3 PON FSM **PCIe** VME64x USER's Block IO Bus Slave 3 Slave 1 Slave 2 Slave 4 SMEM & **ILOC** VME64x USER's **IDMAC** Block VME64X USER's Block CR/CSR Slave **TBD Slave**

The above diagram represents the PEV_1100 IO_Bus infrastructure, interconnecting the four potential Master with four addressed Slaves. The IO_Bus support only single beat Read and Write transactions.

3.1.1 IO_Bus Master

The PV-1100 IO Bus Infrastructure supports four potential IO Bus Master:

- PON_FSM, Autonomous FSM Sequencer started at power-up, allowing to issues IO_Bus Write, directly fetched from the on-board SPI Flash EPROM. Up to 65K instruction can be stored in the SPI Flash EPROM and executed sequentially before releasing the internal RESET. The PON_FSM allows to initialize completely the PEV_1100 without any external software boot process. Refer to chapter 3.1.3
- 2. PCI_Express port. The IO_Bus is fully mapped in the PCI_Express IO Space. This occupies a total of 4 KBytes or 256 Bytes (compressed mode) area in the PCI Express IO Space,

2011-12-21 - PEV_1100 PCI	64/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1525

1530

1535

1540

1545

1550

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

set-up by the appropriate BAR(x) configuration register.

- 3. VME64x port. The IO_Space is fully mapped in the VME64x CR/CSR area. The PEV_1100's internal resources can be fully addressable from the VME64x Bus.
- 4. USER port. This section incorporates a MEMORY to IO_Bus Bridge function providing IO_Bus mapped resources over the MEMORY space.

3.1.2 IO_Bus Slave

The PEV-1100 IO_Bus infrastructure maps four IO_Bus Slave. Each IO_Bus Slave occupies a fixed 1 KBytes space (256* D32 registers). Some of the IO_Bus Slave also incorporates a 2nd local Bus access. This 2nd port access is arbitrated internally with the IO_Bus access.

- 1. ILOC, PCI Express EP and Local CSR Resources. This IO_Bus Slave owns all PEV_1100 general registers resources. Refer to Chapter 2.2.
- 2. VME64X. This IO_Bus Slave owns the VME64x CR/CSR Configuration resources. The concerned resources are also directly mapped with the VME Slave CR/CSR controller, providing a low latency path without potential dead-lock.
- 3. Shared Memory & IDMAC. This IO_Bus Slave owns all related registers controlling the DDR2 Shared Memory and IDMAC.
- 4. USER Block. This IO_Bus Slave owns related registers and resources for the GPIO control and the Message Passing FIFO

3.1.3 PONFSM Controller

The PON_FSM is an autonomous sequencer involved at power up. If not disable by SW502-2, This IO_Master controller executes a start-up microcode stored in the SPI Serial FlashEPROM.

The PON_FSM microcode is stored on the latest 128 KBytes area (1 Mbit) of concerned bit-stream, supporting execution of up to 16 K contiguous microcode instructions. All microcode instructions are executed in a fixed 1.2[us].

Each PON_FSM Instruction is built within a 64-bit word, occupying eight consecutive Bytes in the SPI Serial FlashEPROM.

Three basic PON FSM Instructions are implemented as:

- 1. IOBUS_WRITE, allowing to initiate IO_Bus Write transactions and therefore initialize all PEV_1100 internal resources mapped over the IO_Bus.
- 2. WAIT, allowing to implements a fixed wait
- 3. STOP, terminating the FSM PON execution .

Following table provides the PON FSM instruction format:

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

DWORD_1 Instruction Coding				
[31:24]	Instruction Code	8-bit field encoding the Instruction Code. 0x45 = IOBUS_WRITE 0x34 = WAIT 0x22 = STOP Others = ILLEGAL	Only code 0x45, 0x34 and 0x22 are interpreted as valid PON_FSM Instructions. Any other code stops immediately the FSM_PON execution with illegal case.	
[23:16]	Instruction Reserved	Not used		
[15:0]	Instruction Extension	16-bit field specifying the Instruction Extension. IO_Bus Address or Wait time in 1[us] step. (up to 65[ms])	The IO_Bus Address is encoded as follow: [1:0] : Not used. [9:2] : IO_Bus Slave resource selection in LWORD. [13:12] : IO_Bus number selection. (0,1,2,3) [15:14] : Reserved	
DWORD_2 Associated Data				
[31:0]	Instruction Data	32-bit field used to IOBUS_WRITE	Natural 32-bit LWORD format. Not used for WAIT Instruction.	

Table 3.1.: PONFSM Instruction Format

A specific design environment is provided to built the PON_FSM microcode and to load it in the SPI Serial Flash EPROM with concerned FPGA bit-stream. Refer to chapter 2.5.2

The PON_FSM execution at power-up can be disabled by setting SW502-2 "ON".

The PON_FSM execution provides status informations in the "ILOC_PONFSM" register. Refer chapter 3.2.4

3.1.4 PCIe MEMORY Bridge

The PEV_1100 integrates in the USER Agent_SW a transparent PCIe MEMORY to IO_Bus Bridge function. This function is particularly useful while the IO_Bus resources shall be accessible from PCI Express MEMORY Space. (I.e access from PCI Express Non Transparent Bridge)

The NoPF INgress MMU Page #3 (NoPF Base + 3 MBytes is pre-initialized to map diretcly the USER Agent_SW implementing the IO_Bus Bridge)

Refer to Chapter 2.12.13

1555

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.2 Local CSR Resources

The LOCAL CSR Resources are mapped on a single-port interface

IO_Bus 1 KBytes Device#1 (0x000-0x3FF)

The LOCAL registers provide the facilities to control the PCI Express Endpoint Interface. The following table sums-up the LOCAL register mapping.

Offset IBUS	Size	Register_Name	Description	Comments
0x000 - 0x003	0x4		External Static Information (micro-switch &	Comments
0x000 - 0x003	UX4	ILOC_STATIC	strapping)	
0x004 - 0x007	0x4	ILOC_CABLE_1	External PCI Express Connector #1	
0x008 - 0x00B	0x4	ILOC_CABLE_2	External PCI Express Connector #2	
0x00C - 0x00F	0x4	ILOC_PONFSM	Power_ON FSM Sequencer Status	
0x010 - 0x013	0x4	ILOC_SPI	SPI Flash EPROM Bit programming	
0x014 - 0x017	0x4	ILOC_PCIE_SW	PCI Express Switch PEX8624 Control & Status	
0x018 - 0x01B	0x4	ILOC_SIGN	Signature FPGA date of Creation 32-bit field	
0x01C - 0x01F	0x4	ILOC_GENCTL	General Control Register	
0x020 - 0x023	0x4	PCIE_MMUADD	PCI Express INgress MMU Address pointer.	
0x024 - 0x027	0x4	PCIE_MMUDAT	PCI Express INgress MMU Data Register	
0x028 - 0x02B	0x4	PCIE_EPSTA	PCI Express EP Status	
0x02C - 0x03F	0x14	ILOC_Reserved	Not used	
0x040 - 0x43	0x4	V5_SMON_ADDPT	VIRTEX-5 System Monitor Address Pointer	
0x044 - 0x47	0x4	V5_SMON_DAT	VIRTEX-5 System Monitor Data Register	
0x048 - 0x4B	0x4	V5_SMON_STA	VIRTEX-5 System Monitor Status	
0x04C - 0x5F	0x14	V5_SMON_Reserve d		
0x060 - 0x63	0x4	V5_PCIEP_ADDPT	VIRTEX-5 PCI Express EP Address Pointer	
0x064 - 0x67	0x4	V5_PCIEP_DAT	VIRTEX-5 PCI Express EP Data Register	
0x68 - 0x6B	0x4	V5_PCIEP_SEL	VIRTEX-5 PCI Express EP Status Selection	
0x6C - 0x6F	0x4	V5_PCIEP_RSLT	VIRTEX-5 PCI Express EP Selection Result	
0x070 - 0x7F	x0F	V5_PCIEP_Reserve d	ve	
0x080 - 0x083	0x4	PCIE_BE_ITC_IP	PCIE_BE ITC Interrupt Pending	
0x084 - 0x087	0x4	PCIE_BE_ITC_IACK	PCIE_BE Local ITC Interrupt Acknowledge	
0x088 - 0x08B	0x4	PCIE_BE_ITC_IMC	PCIE_BE ITC Mask CLEAR Control Register	
0x08C - 0x08F	0x4	PCIE_BE_ITC_IMS	PCIE_BE ITC Mask SET Control Register	
0x0C0 - 0x0C3	0x04	PMCXMC	PMC & XMC Side-band Signalling	

2011-12-21 - PEV	1100 PCI
Express to VME6	4 Bridge

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

Offset IBUS	Size	Register_Name	Description	Comments
0x0C4 - 0x0FF	0x3C	Reserved		
0x0100 - 0x0103	0x4	I2C_CTL	I2C Controller Control Register	
0x0104 - 0x0107	0x4	I2C_CMD	I2C Controller Command Register	
0x0108 - 0x010B	0x4	I2C_DATW	I2C Controller Data Write Register	
0x010C - 0x010F	0x4	I2C_DATR	I2C Controller Data Read Register	
0x380 - 0x3FF	0x80	Signature_ROM	Defined ROM area for software signature	

3.2.1 ILOC_Static Register

This register provides status informations related to on-board static options. These status are provided from the PYRAME CPLD over a serial stream.

	DC_STATIC is: 0x000 - 0x003				
Bit[]	Function	R/W	Res et	Description	Comments
[0]	SW500-1	R		VME SYSRESET Enable	
[1]	SW500-2	R		VME Slot_1 Enable (Force anyway)	
[2]	SW500-3	R		VME64X Mode Enable	
[3]	SW500-4	R		VME A24 Mode A[19]	
[4]	SW500-5	R		VME A24 Mode A[20]	
[5]	SW500-6	R		VME A24 Mode A[21]	
[6]	SW500-7	R		VME A24 Mode A[22]	
[7]	SW500-8	R		VME A24 Mode A[23]	
[8]	SW501-1	R		SPI Flash Programming Enable	
[9]	SW501-2	R		FPGA Bit-stream #N LSB	
[10]	SW501-3	R		FPGA Bit-stream #N MSB	
[11]	SW501-4	R		Reserved_1	
[12]	SW501-5	R		PCI Express Front panel P4 Non Transparent	
[13]	SW501-6	R		PCI Express Mode [2:0] LSB	
[14]	SW501-7	R		PCI Express Mode [2:0]	
[15]	SW501-8	R		PCI Express Mode [2:0] MSB	
[16]	SW502-1	R		FPGA Configuration made with XILINX iMPACT JTAG tool.	
[17]	SW502-2	R		Compressed 256 Bytes IO Space	
[18]	SW502-3	R		PCI Express BAR_2 Size (from 64 to 256 MBytes	
[19]	SW502-4	R		+ 4 Mbytes) (Non Prefetchable)	
[20]	SW502-5	R		PCI Express BAR_0 Size (from 64 to 4096	
[21]	SW502-6	R		MBytes) (Prefetchable)	
[22]	SW502-7	R			

68/135

1585

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

ILOC_STATIC IO_Bus: 0x000 - 0x003					
[23]	SW502-8	R		PCI Express BAR_0 64-bit	
[25:24]	Dyn_IOSEL[1:0]	RW	b00	256 bytes Compress IO Space Dynamic section selector (Refer to annexe X.X)	
[30:26]	Reserved	R		Not used	
[31]	Compressed_IO	R		This status information is set while the Compressed 256 bytes IO_Space is enabled.	Idem as SW502-2

Note Switch numbering SW50X.**K** corresponds to the mini-DIP switch number printed label (1 to 8)

Note The HEX rotary switch is connected on pex_GPIO[3:0]. Refer to register ILOC_PCIE_SW.

3.2.2 ILOC_Cable_1 [P4] Register

This register provides control & status informations related to the PCI Express External Cabling Port_1 Connector P4. Connected to PEX-8624-AA Port 1.

IL(PCI Express External Cabling P4					
Bit[]	Function	R/W	R/W Res Description		Comments	
[2:0]	Reserved	R		Not implemented		
[3]	Port1_Non Transparent	R		Port_1 as NT (Non Transparent)	Not supported in normal operation	
[4]	Port1_CPERST_I	R		Platform RESET Detection		
[5]	Port1_CPWRON_I	R		Cable Power_ON Detection		
[6]	Port1_CWAKE_O	RW	0	Signalling Wake-Up over the PCI Express Cable		
[31:7]	Reserved	R		Not implemented		

3.2.3 ILOC_Cable_0 [P3] Register

This register provides control & status informations related to the PCI Express External Cabling Port_2 Connector P3. Connected to PEX-8624-AA Port 0.

ILOC_Cable_0 IO_Bus : 0x008 - 0x00B		PCI Express External Cabling P3					
Bit[]	Function	R/W	Res et	Description	Comments		
[3:0]	Reserved	R		Not implemented			
[4]	Port2_CPERST_I	R		Platform RESET Detection			
[5]	Port2_CPWRON_I	R		Cable Power_ON Detection			
[6]	Port2_CWAKE_O	RW	0	Signalling Wake-Up over the PCI Express Cable			
[31:7]							

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	69/135	P_PCIE-VME_AF_HSID_B0
--	--------	-----------------------

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.2.4 ILOC_PONFSM Register

This register provides status informations related to Power-ON Sequencer. The PON_FSM Controller executes a autonomously at power-up a predefined sequence stored in the SPI Flash EPROM.

ILOC_PONFSM IO_Bus: 0x00C - 0x00F		PCI PONFSM Sequencer				
Bit[]	Function	R/W	Reset	Description	Comments	
[15:0]	PONFSM_INSTR[15:0]	R	0x0000	Number of PON_FSM Instruction executed		
[17:16]	PONFSM_STA[1:0]	R	0b00	PON_FSM Execution End Status 00 = Not Started. 01 = Running. 10 = End OK. 11 = End with ERROR. (Aborted)		
[18]	Reserved	R	0	Not used		
[19]	PONFSM_Enable	R	0	PON FSM is not by-passed)		
[31:20]	PONFSM_SIGNREV	RW	0x000	12-bit Register reserved for PON_FSM signature execution. Write only authorized by the PON_FSM providing PON_FSM microcode tracing		

3.2.5 ILOC_SPI Register

This register provides control &status information to support on-board SPI Flash EPROM programming. The SPI interface protocol shall be completely controlled under software.

ILOC_SPI IO_Bus : 0x010 - 0x013		SPI	Flash		
Bit[]	Function	R/W	Reset	Description	Comments
[0]	pgm_SPICLK	W	'0'	SPI Clock calibrated pulse. While set a calibrated 32 [ns] pulse is automatically generated, with controlled set-up /hold time related to pgm_SPIDO	Need time accurate sequencing.
[1]	pgm_SPIDO	RW	'0'	SPI Data OUT direct pin control	
[2]	pgm_SPIDI	R	'0'	SPI Data IN direct pin status	
[3]	pgm_SPICS[0]	RW	'0'	SPI Chip Select direct pin control. '1' for CS active.	
[4]	pgm_REMCMD	RW	'0'	Remote RESET/FPGA bit-stream reload commands. While activated, to '1', the FPGA is re-configured with bit-stream number selected with [pgm_SPIDO: pgm_SPICLK]	0Can also be used to validate new FPGA bit-stream.
				If (pgm_REMCMD= '1' and pgm_SPICS[0]= '1') pgm_SPIDO, pgm_SPICLK]: = 00: No action = 01: Remote RESET = 10: No action = 11: VME SYSRESET If (pgm_REMCMD= '1' and pgm_SPICS[0]= '0')	Remote RESET CMD
				\rightarrow	FPGA Reload

2011-12-21 - PEV_1100 PCI	70/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

ILOC_SPI IO_Bus : 0x010 - 0x013		SPI	Flash		
				[pgm_SPIDO , pgm_SPICLK] : = 00 : FPGA reload Bit-stream 0 = 01 : FPGA reload Bit-stream 1 = 10 : FPGA reload Bit-stream 2 = 11 : FPGA reload Bit-stream 3	
[5]	pgm_REMFPGA	RW	'0'	Enable remote FPGA Configuration reload	
[31:6]	Reserved	R		Not implemented	

Note Remote RESET with FPGA reload will break the PCI Express communication. A complete re-initialisation process shall be executed on the Host and /or on the PCI Express switch PEX 8624-AB.

3.2.6 ILOC_PCIE_Switch Register

This register provides status informations dedicated to the external PCI Express Switch PEX 8624-AA. For complete technical information refer to the PLX PEX8624 Technical Documentation.

	ILOC_PCIE_SW IO_Bus : 0x014 - 0x017		PCI Express Switch PEX8624					
Bit[]	Function	R/W	Reset	Description	Comments			
[3:0]	pex_UP_Select	R	0x0	PCI Express Switch Port defined as UP_stream	Read-only condition			
[5:4]	pex_NT_Select	R	0x0	Micro switch PCI Express Switch "NT"	Read-only condition			
[6]	pex_NT_Enable	R	0x0	conditioning. Refer to static option chapter	Read-only condition			
[7]	pex_PERST	R	0b1	PCI Express RESET command	Read-only condition			
[8]	pex_FATAL_ERR	R		Direct PEX8624 status information	Refer to PLX PEX8624AB technical manual.			
[9]	pex_INTA	R		Direct PEX8624 status information				
[10]	pex_NTRESET	R		Direct PEX8624 status information				
[11]	Reserved	R		Not implemented				
[13:12]	pex_TYPE			Strap status providing information on PLX Switch type populated [00] = PEX8612 : 3 PCIEx4 ports [01] = PEX8616 : 4 PCIEx4 ports [10] = PEX8624 : 6 PCIEx4 ports [11] = Reserved	Defined with external 0_ohms resistor strap. R528 & R529			
[15:14]	Reserved	R		Not implemented				
[18:16]	lik_RDRQOUT_MOD	RW	0x4	This 3-bit field defined the number of DOWN_stream Read_Request issued by the local PCI Express controller. This field is used for PCI Express tuning. (Bandwidth / latency)	FPGA EP control management. Used to control the down- stream Read_Request queue			

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

	C_PCIE_SW us: 0x014 - 0x017	PCI	Expr	ess Sv	witch PEX8624	
				000	No limitation Read Request	
				001	1 max outstanding Read_Request	
				010	2 max	
				011	4 max	
				100	8 max	
				101	16 max	
				110	32 max	
				Others	Reserved, invalid value	
[23:19]	Reserved	R		Not imple	emented	
[24]	pex_GPIO_0	R		PEX862	4 GPIO #12 (pin B15)	Hex Rotary switch
[25]	pex_GPIO_1	R		PEX862	4 GPIO #13 (pin B17)	status.
[26]	pex_GPIO_2	R		PEX862	4 GPIO #14 pin B18)	
[27]	pex_GPIO_3	R		PEX862	4 GPIO #15 (pin R16)	
[28]	pex_GPIO_4	R		PEX862	4 GPIO #16 (pin V1)	
[29]	pex_GPIO_5	R		PEX862	4 GPIO #17 (pin T1)	
[30]	pex_GPIO_6	R		PEX8624 GPIO #18 (pin U1)		
[31]	pex_GPIO_7	R		PEX862	4 GPIO #19 (pin P1)	

Note The field <code>llk_RDRQOUT_MOD</code> is an important PCI Express related parameter. The remote Host READ performance will be directly related to this configuration mode control.

3.2.7 ILOC_SIGN Register

This register provides a 32-bit status information directly provided by the FPGA build date.

ILOC_SIGN IO_Bus : 0x018 - 0x01B		FPGA Signature			
Bit[]	Function	R/W	Reset	Description	Comments
[31:0]	FPGA_Signature[31:0]	R		FPGA Signature . Consult IOxOS Technologies SA. FPGA_Signature[31:24] = Day FPGA_Signature[23.16] = Month FPGA_Signature[15:8] = Year FPGA_Signature[7:0] = Reserved(Sub version)	

Note This 32-bit field is assigned in [tosca_glb_pkg.vhd] before the XILINX ISE implementation process.

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge

72/135

P_PCIE-VME_AF_HSID_B0

1610

1625

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

1615 3.2.8 ILOC_GENCTL Register

This register provides general Control & Status informations.

	ILOC_GENCTL IO_Bus: 0x01C - 0x01F		PCIE General Control				
Bit[]	Function	R/W	Reset	Description	Comments		
[1:0]	fpga_BITSTR	R	FPGA bit-stream can be loaded by the external		Static Switch determine which one shall be loaded.		
[3:2]	Reserved	R		Not used, reserved for extra bit-stream			
[4]	fpga_CONF_ERR	R	Initial FPGA Configuration process detected an error and FPGA is configured with the backup bit-stream.				
[5]	fpga_BIG	R	(SX50T & FX70T). Refer to chapter 2.5.1 and 2.5.2		Only positioned in hardware implementing large FPGA		
[7:6]	Reserved	R		Not used			
[10:8]	ddr_STRAP[2:0]	R		On-board DDR2 installed Memory device [1xx] = x16 organisation (2 devices) [0xx] = x8 organisation (4 devices) [x00] = 256 Mbit [x01] = 512 Mbit [x10] = 1024 Mbit [x11] = 2048 Mbit	Default =001 DDR2 512 Mbit (SMEM = 256 MBytes)		
[15:11]	Reserved	R	R Not used				
[31:16]	FPGA Implementation	R		Fixed field determined at Synthesis & Place&Route process. Provide FPGA options selected	IOxOS Reserved		

3.2.9 PCIE_MMUADD Register Address Pointer Register

This register provides the address pointer used to initialize the two INgress PCI Express MMU lookup tables. The look-up tables are composed of N page entries of 10 4 MBytes. Each page entries owns a 36-bit page descriptor which shall be initialized with two sub-word of 18-bit.

- Non-Prefetchable Ingress is up to 512* 1 MBytes pages (64-128-256-512) mapped with A32 BAR_2.
- Prefetchable INgress is up 1024* 4 MBytes pages (128-256-512-1024-2048-4096) mapped with A32/A64 BAR_0+(1)

The PCI_Express MEMORY window size allocated for the Non-Prefetchable and the Prefetchable are user selectable with static option SW501-(8:3).

PCIE_MMUADD IO_Bus: 0x020-0x023			PCIE MMU Address Pointer			
Bit[]	Function	R/W	Res et	Comments		
[0]	Reserved	R	0	Fixed to 00	LWORD aligned	
[11:1]	pcie_MMUADD[10:0]	RW	0	11-bit Address pointer supporting the MMU Table	Auto incremented	

2011-12-21 - PEV_1100 PCI	73/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

	E_MMUADD us: 0x020-0x023	PCI	E M	MU Ad	dress Pointer	
				every ac	ion. This pointer is incremented after cess (Read or Write) through the MUDAT register.	address pointer.
[15:12]	Reserved	R	0	Not Imple	emented	
[16]	INgress SELECT	RW	0	INgress	DPRAM Select	
					0 = Prefetchable INgress (512*D36) 1 = Non-Prefetchable INgress (1024*D36)	
[17]	Reserved	R	0	Not used	I	
[20:18]	No_PFMEM_Size	R	0	Non-Pre	fetchable Memory Size (BAR_2)	
				000	Not used	
				001	64 MBytes	
				010	128 MBytes	
				011	256 MBytes	
				100	512 MBytes	
				101	Not used	
				110	Not used	
				111	Not used	
[21]	Reserved	R	0	Not used	I	
[22]	No_PFMEM_A64	R	0	Memory addressi	Non-Prefetchable is only 32-bit ng.	
[23]	No_PFMEM_INgress	R		PF_INgr	Non-Prefetchable BAR_2 with ess MMU. Active (Enabled) Not implemented	
[25:24]	Reserved	R	0	Not used	I	
[28:26]	PFMEM_Size	R		Prefetch BAR_1)	able Memory Size (BAR_0 + optionally	
				000	Not used	
				001	Not used	
				010	128 MBytes	
				011	256 MBytes	
				100	512 MBytes	
				101	1024 MBytes	
				110	2048 MBytes	
				111	4096 MBytes	\bot
[29]	Reserved	R	0	Not used	l	
[30]	PFMEM_A64	R		64-bit Ac	Idressing Memory Prefetchable	
[31]	PFMEM_INgress	R		PF_INgr	Prefetchable BAR_0 + (BAR1-1) with ess MMU. Active (Enabled) Not implemented	

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.2.10 PCIE_MMUDAT Register

This register provides the data access used to initialize the INgress PCI_Express MMU look-up table. The data access shall be handled with two 18-bit transaction.

PCI IO_B	PCI	ЕМІ	MU Data Register			
Bit[]	Function	R/W	Res et	Description	Comments	
[17:0]	pcie_MMUDAT[17:0]	RW	RW 0 18-bit Data register, with previous register PCIE_MMUADD used to access the selected INgress MMU DPRAM			
[31:18]	Reserved	R	0	Not used		

The MMU Page Descriptor is composed of a single 36-bit word. The initialization is handled with dual 18-bit access through the PCIE_MMUDAT Register. Each n* MBytes page entry address its own DW Page Descriptor.

The following table sums up the Page Descriptor format:

Bit[]	Field	Description	Comments
)	
[0]	Page_Enable	Enable the Page entry. If not set, the incoming transaction is rejected, even if the PCI Express BAR_1 address window is decoded.	Write Posting is not executed and Read_Request will not be completed.
[1]	Write_Enable	Enable Write access across this page entry. If not set, the Write Posting are rejected.	Allows to support write-protect area per page entry
[5:2]	Reserved	Not used	
[7:6]	Byte Swapping Policy	BYTE Swapping Policy. This 2-bit field specifies the Byte Swapping policy.(Little – Big Endian conversion)	Used only while targeting the VME64x Interface.1
		00 No Swapping	
		01 LITTLE to BIG Endian Automatic Swapping BYTE: No Swapping WORD: D16 word swapping DW: BYTE & WORD Swapping	
		10 DW BYTE & WORD Swapping	
		11 DW swapping in QW access	
[11:8]	Space_Type[3:0]	This 4-bit field encodes the Address Space targeted in destination. Refer to next table "Space_Type Address Encoding"	
[15:12]	SW_Destination	Destination Address Space Type. 4-bit field	Only two LSB bits used in the PEV_1100 implementation. Future implementation with larger central_SW with be encoded on 3 or 4-bit

2011-12-21 - PEV_1100 PCI	75/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1640

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

Bit[]	Field	Descripti	on	Comments
		0000	PCI Express	
		0010	Shared Memory	
		0001	VME64X	
		0011	User	
		Others	Reserved, Invalid value	
[17:16]	Reserved	Not used	(
		Low WOR	D Page Descriptor (pcie_MMUADD[0] = '0')
[19:18]	Reserved	Not used		
[35:20]	int_ADD[35:20]		igh Address remapping used to form a 36- I_SW Address	Can be fixed to 0x0000'0000 while targeting Central_SW resources.

Table 3.2.: MMU page Descriptor

Note Future implementation could extend the MMU Page Descriptor up to 64-bit (2 times 32-bit) to support 64-bit Central_SW Address and extra conditioning information.

The following table sums-up the destination Address Space Type .

Space_Type	VME64x Master	Shared Memory / USER		
0x0	Configuration Space	Memory standard		
0x1	A16 : D08-D16-D32 Memory standard			
0x2	A24 : D08-D16-D32	Reserved		
0x3	A32: D08-D16-D32	Reserved		
0x4	A32: BLT	Memory READ Cache entry #0		
0x5	A32: MBLT	Memory READ Cache entry #1		
0x6	A32: 2eVME	Memory		
0x7	A32: 2eVME Fast	Reserved		
0x8	A32: 2eSST_160 Reserved			
0x9	A32: 2eSST_233	Reserved		
0xa	A32: 2eSST_320	Reserved		
0xb	A32: 2eSST_400 (Reserved)			
0xc	Reserved	Reserved		
0xd	A24: Address Only	Reserved		
0xe	A32: Address Only	Reserved		
0xf	IACK Cycle	Reserved		

Table 3.3.: Address Space Type Encoding

Note In first release, advanced VME addressing mode are not supported. Provision is made for A64 addressing (A64:BLT, A64:MBLT and A64:2eSST) and for 2eSST Broadcast capabilities.

2011-12-21 - PEV_1100 PCI	76/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.2.11 ILOC_PCIe EP Status Register

This register provides control & status informations related to the XILINX embedded PCI Express EP. For complete description refer to XILINX technical documentation UG197 and UG350.

ILOC_PCIe_EP_STA IO_Bus: 0x028 - 0x02B		PCI	Ехр	ress I	EP Control & Status	
Bit[]	Function	R/W	Res et	Descript	ion	Comments
[0]	PCIe_EP_Status	R		IO_SPAC	CE_ENABLE	Refer to Xilinx UG197
[1]	PCIe_EP_Status	R		MEM_SF	PACE_ENABLE	
[2]	PCIe_EP_Status	R		BUS_MA	STER_ENABLE	
[3]	PCle_EP_Status	R		FIRST_C	FG_WRITE_OCCURRED	
[4]	PCIe_EP_Status	R		RX_MAC	_LINK_ERROR(0)	
[5]	PCIe_EP_Status	R		RX_MAC	_LINK_ERROR(1)	
[6]	PCIe_EP_Status	R		MAC_LIN	IK_UP	
[7]	PCIe_EP_Status	R		MAC_LIN	IK_TRAINING	
[11:8]	PCIe_EP_Status	R		MAC_NE	GOTIATED_LINK_WIDTH	
[12]	PCIe_EP_Status	R		DL_UP_I	DOWN(0)	
[13]	PCIe_EP_Status	R		DL_UP_I	DOWN(1)	
[15:14]	PCle_EP_Status	R		Reserved	1	
[19:16]	PCle_EP_Status	R		LTSSM_	STATE	
[22:20]	PCIe_UPSEL	R		PCI Express UP_stream Port selection :		PEX_8624AA Static Selection. Defined
				000	External Cabling Port P3 (Cable 100 MHz)	by SW501-[8:6]
				001	External Cabling Port P3 (Local 100 MHz)	
				010	XMC #1	
				011	XMC #2	
				100	Xilinx Virtex-5 FPGA	
				101	External Cabling Port P4	
				110	PEX_8112A in Reverse Mode. UP_stream on local PrPMC .	
				111	No UP_stream enabled. The PEX8624AA is disabled.	
[23]	PCIe_Port1_NT	R		External Cabling Port P4 defined as Non- Transparent		PEX_8624AA Static Selection. SW501-5
[27:24]	Reserved	R		Not used		
[28]	TLI_FULLDUPLEX	RW	0	Xilinx PCI Express EP back-end interface = 0 : Full duplex disabled = 1 : Full duplex enabled (simultaneous Tx & Rx)		IOxOS debug support
[29]	8112AA_PG_RST	RW	1	PLX 8112AA EP (PCI Express to PCI Bridge) RESET Programmable. Set at Power-up , shall be clear by the PON_FSM microcode		
[30]	XILINX EP_PG_RST	RW	0		X30T EP RESET Programmable. Set at o , shall be clear by the PON_FSM	IOxOS debug support

2011-12-21 - PEV_1100 PCI	77/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

_	PCIe_EP_STA is: 0x028 - 0x02B	PCI	Ехр	ress EP Control & Status	
				microcode. In case of PON_FSM disabled with SW502-2, it is kept inactive.	
[31]	GLOBAL EP_PG_RST	RW	0	GLOBAL RESET Programmable	IOxOS debug support

Note The RESET control of the on-chip PCI Express is conditioned by the PON_FSM microcode execution. In normal operation mode, with PON_FSM not disabled, it is under the responsibility of the microcode to control the RESET sequencing.

3.2.12 **V5_SMON_ADDPT**

This register provides address pointer to access the internal register of the System Monitor function embedded in the Virtex-5 FPGA. The Virtex-5 System Monitor integrates 128 16-bit registers access through the DRP "Dynamic Reconfiguration Port"

For complete description of internal resources refer directly to XILINX UG192 Virtex-5 FPGA System Monitor User's Guide.

V5_SMON_ADDPT IO_Bus: 0x040 - 0x043		Virtex_5 System Monitor Address Pointer				
Bit[]	Function	R/W	Reset	Description	Comments	
[6:0]	V5SMON_ADDPT[6:0]	RW	0x00	System Monitor Register Address Pointer. Used with subsequent access Read/Write through next register.		
[30:7]	Reserved	R		Not Used		
[31]	V5SMON_AUTOINC	RW	0b0	While set, auto incremented V5SMON_ADDPT on every V5SMON_DATREG access is supported		

3.2.13 V5_SMON_DAT Register

This register provides the direct access to the Virtex-5 System Monitor resources. Refer to XILINX UG192 Virtex-5 FPGA System Monitor User's Guide.

V5_ IO_Bu	Virtex_5 System Monitor Data Register					
Bit[]	Function	R/W Reset Description Comments				
[15:0]	V5SMON_DAT[15:0]	RW	0x00	Virtex-5 System Monitor Data Register. Used with previous address pointer.		
[31:16]	Reserved	R		Not Used		

3.2.14 V5_SMON_STA Register

This register provides status informations issued by the Virtex-5 System Monitor. Refer to XILINX

2011-12-21 - PEV_1100 PCI	78/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1660

1650

1675

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

UG192 Virtex-5 FPGA System Monitor User's Guide.

V5_SMON_STA IO_Bus: 0x048 - 0x04B		Virtex_5 System Monitor Status Register			
Bit[]	Function	R/W	Reset	Description	Comments
[2:0]	V5_SMON_ALM[2:0]	R	0b000	System Monitor Alarm Status	
[3]	V5_SMON_OT	R	0b0	System Monitor Over Temperature Status	
[8:0]	V5_SMON_Channel[4: 0]	R		System Monitor ADC Channel Multiplexer	
[9]	V5_SMON_EOC	R		System Monitor End of Conversion	
[10]	V5_SMON_EOS	R		System Monitor End of Signal	
[11]	V5_SMON_BUSY	R		System Monitor ADB Busy	
[12]	V5_SMON_JTAGLOC K	R		System Monitor JTAG Port Locked	
[31:13]	Reserved	R		Not Used	

3.2.15 V5_PCIEP_ADDPT Register

This register provides address pointer to access the internal register of the PCI Express Endpoint function embedded in the Virtex-5 FPGA. The Virtex-5 PCI Express End point integrates 2048 32-bit registers, addressed with a 11-bit address bus. The internal resource access is handle through a dedicated "Management Interface".

For complete description of internal resources refer directly to XILINX UG197 Virtex-5 FPGA PCI Express Integrated Endpoint User's Guide.

V5_PCIEP_ADDPT IO_Bus: 0x060 - 0x063		Virtex_5 PCI Express Endpoint Address Pointer				
Bit[]	Function	R/W	Reset	Description	Comments	
[10:0]	V5PCIEP_ADDPT[10: 0]	RW	0x00	Virtex-5 PCI Express Endpoint Address Pointer. Used with subsequent access Read/Write through next register.		
[30:11]	Reserved	R		Not Used		
[31]	V5PCIEP_AUTOINC	RW	0b0	While set, auto incremented V5PCIEP_ADDPT on every V5PCIEP_DATREG access is supported		

3.2.16 V5_PCIEP_DAT Register

This register provides the direct access to the Virtex-5 PCI Express Endpoint resources.

V5_ IO_Bu	Virtex_5 PCI Express Endpoint Data Register				
Bit[]	Function	R/W	Reset	Description	Comments
[31:0]	V5SMON_DAT[15:0]	RW	0x00	Virtex-5 PCI Express Endpoint Data Register. Used with previous address pointer.	

2011-12-21 - PEV_1100 PCI	79/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1685

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.2.17 V5_PCIEP_SEL Register

This register provides direct control to the Channel Credit selection of Virtex-5 PCI Express Endpoint resources. Refer to XILINX UG197 Virtex-5 FPGA PCI Express Integrated Endpoint User's Guide.

V5_ IO_Bu	Virtex_5 PCI Express Endpoint Credit Select					
Bit[]	Function	R/W	R/W Reset Description Comments			
[6:0]	V5SMON_CRSEL[6:0]	RW	0x00	Virtex-5 PCI Express Endpoint Credit Selection Register.		
[31:7]	Reserved	R		Not Used.		

3.2.18 V5_PCIEP_RSLT Register

This register provides direct status information directly related to the Channel Credit Selection. Refer to XILINX UG197 Virtex-5 FPGA PCI Express Integrated Endpoint User's Guide.

V5_PCIEP_RSLT IO_Bus: 0x06C - 0x06F		Virtex_5 PCI Express Endpoint Credit Results			
Bit[]	Function	R/W	Reset	Description	Comments
[5:0]	MGMTPSO[5:0]	R		Not Used.	
[6]	MGMTPSO[6]	R		Transaction pending	
[7]	MGMTPSO[7]	R		Unsupported Request detected.	
[8]	MGMTPSO[8]	R		Fatal Error Detected	
[9]	MGMTPSO[9]	R		Non Fatal Error Detected	
[10]	MGMTPSO[10]	R		Correctable Error Detected	
[11]	MGMTPSO[11]	R		Detected parity Error (poisoned TLP)	
[12]	MGMTPSO[12]	R		Signalled System Error	
[13]	MGMTPSO[13]	R		Received Master Abort	
[14]	MGMTPSO[14]	R		Received Target Abort	
[15]	MGMTPSO[15]	R		Signalled Target Abort	
[16]	MGMTPSO[16]	R		Master Data parity Error	
[19:17]	Reserved	R		Not Used.	
[31:20]	V5SMON_CREDIT[11:0]	RW	0x000	Virtex-5 PCI Express Endpoint Updated Credit information.	

3.2.19 PMC_XMC CSR Register

This register provides control & status information related to the IEEE 1386.1 PMC and XMC VITA42 mezzanine

2011-12-21 - PEV_1100 PCI	80/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

PMC_XMC IO_Bus : 0x0C0 - 0x0C3		PMC & XMC Control & Status					
Bit[]	Function	R/W	Reset	Description	Comments		
[0]	pmc_INTA_1	R	0b0	PMC#1 INTA Status			
[1]	pmc_INTA_2	R	0b0	PMC#2 INTA Status			
[7:2]	Reserved	R		Not Used.			
[9:8]	pmc_PCICLKSEL[1:0]	RW	0b00	PCI Clock Frequency selection. [00] = 33 MHz [01] = 40 MHz (Not supported) [10] = 55 MHz (Not supported) [11] = 66 MHz (Not supported)	Fixed to "00"		
[10]	plx_M66EN	R		Local PCI 66 MHz Enable. Status only, value derived from pmc_PCICLKSEL[1:0]			
[11]	plx_FORWARD	R	0b0	PEX8112 Bridge Control. Status information only. The control of the signal is defined by the SW-500			
[12]	pmc_PCIRESET	R	0b0	Local PCI RESET. Status information only.			
[13]	plx_CWAKEINn	RW	0b0	PEX8112 Bridge, direct control signal			
[14]	plx_BAR0ENB	RW	0b0	PEX8112 Bridge, direct control signal			
[15]	plx_PERST	R	0b1	PEX8112 Bridge. Status information only.			
[16]	xmc_1_PRESENT	R		VITA-42 XMC Status Information			
[17]	xmc_1_RSTIN	RW	0b1	VITA-42 XMC RESET Command			
[18]	xmc_1_ROOT	RW	0b0	VITA-42.3 XMC ROOT			
[23:19]	Reserved	R		Not Used.			
[24]	xmc_2_PRESENT	R		VITA-42 XMC Status Information			
[25]	xmc_2_RSTIN	RW	0b1	VITA-42 XMC RESET Command			
[26]	xmc_2_ROOT	RW	0b0	VITA-42.3 XMC ROOT			
[31:27]	Reserved	R	-	Not Used.			

Note PMC Interrupt are at this point only monitored. Local PCI Interrupt generation could be easily implemented on future release.

3.2.20 I2C CTL_X Registers

These following control & status registers provides interface support for the five on-board I2C Serial Bus listed in following items :

- a) I2C PLX PEX8624 PCI Express Initialization Bus. Need 4 Bytes Command and Data.
- b) Two I2C Buses for on-board Temperature Monitor LM86. Need single Byte Command and Data.
- c) Two XMC IPMI SMB_Bus. (One per XMC site)

The I2C is implemented through a register based interface with limited functionality to support PEV_1100 on-board device.

Address + Command

2011-12-21 - PEV_1100 PCI	81/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1690

1695

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

- Address + K*Command + N*Data_Write (N = 1 to 4, K = 1 to 4)
- Address + N*Data_Read (N = 1 to 4)

The Control register provides all control and status related to the I2C cycle generation.

I2C_CTL IO_Bus: 0x0100 - 0x0103		I2C	Cont	rol	
Bit[]	Function	R/W	Reset	Description	Comments
[6:0]	I2C_ADD[6:0]	RW	0x00	I2C 7-bit Address field	
[7]	Reserved	R		Not Used	
[10:8]	I2C_ADD[9:7]	R	0x0	I2C 10-bit Address extension field	
[15:11]	Reserved	R		Not Used	
[17:16]	I2C_CMDSIZ[1:0]	RW	0b00	I2C Byte Count for CMD field (1 to 4)	
[19:18]	I2C_DATSIZ[1:0]	RW	0b00	I2C Byte Count for DATW field (1 to 4)	
[21:20]	I2C_EXECSTA[1:0]	R	0b00	I2C Interface Cycle Execution Status 00 : I2C Idle 01 : I2C Cycle Running 10 : I2C Cycle Executed without Error 11 : I2C Cycle Executed with Error (Aborted)	
[23:22]	I2C_TRIG[1:0]	W	0b00	I2C Bus Trigger Command. 01 : I2C Cycle ADD + n* CMD 10 : I2C Cycle ADD + n* CMD +n*DATW 11 : I2C Cycle ADD + n* DATR	
[25:24]	I2C_SPEED[1:0]	RW	0b00	I2C Bus Speed Selection 00: Standard-mode Sm (100 Kbit/s) 01: Fast-mode Fm (400 Kbit/s) 10: Fast-mode Plus Fm+ (1 Mbit/s) 11: High-speed mode Plus Hs (3.4 Mbit/s)	Only mode Sm and Fm need to be supported.
[26]	SMB_SPEED	RW	0b0	SMB Bus Speed Selection 0 : Slow-mode Sm (10 kbit/s) 1 : Fast-mode Fm (100 kbit/s)	
[27]	THERM_CRITn	R	0b0	LM86 SMB Bus T_CRIT active low output (both temperature sensors)	
[28]	THERM_ALERTn	R	0b0	LM86 SMB Bus interrupt active low output (both temperature sensors)	
[31:29]	I2C_Port_SEL[2;1]	RW	0x0	On-board I2C Port Selection. 000: PEX8624 PCI Express Switch 010: LM86 Temperature Monitor #1 011: LM86 Temperature Monitor #2 100: IPMI XMC#1 101: IPMI XMC#2	Providion for three additional port

The Command register holds up to four (4) Command Bytes, whose be used in the subsequent I2C transaction. The number of Command Bytes is defined in the field I2C_CMDSIZ[1:0] of the I2C_CTL register.

	I2C_CMD IO_Bus: 0x0104 - 0x0107			mand	
Bit[]	Function	R/W	Reset	Description	Comments
[7:0]	I2CCMD_BYTE_0	RW	0x00	I2C Bus Command Byte #0	1 st Byte

2011-12-21 - PEV_1100 PCI	82/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1710

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

I2C_CMD IO_Bus: 0x0104 - 0x0107		I2C	Comi	mand	
[15:8]	I2CCMD_BYTE_1	RW	0x00	I2C Bus Command Byte #1	2 nd Byte
[23;16]	I2CCMD_BYTE_2	RW	0x00	I2C Bus Command Byte #2	3 rd Byte
[31:24]	I2CCMD_BYTE_3	RW	0x00	I2C Bus Command Byte #3	4 th Byte

The Data Write register holds up to four (4) Data Bytes, whose be used in the subsequent I2C Write transaction. The number of Data Bytes is defined in the field I2C_DATSIZ[1:0] of the I2C_CTL register.

I2C_DATW IO_Bus: 0x0108 - 0x010B		I2C	Data	Write	
Bit[]	Function	R/W	Reset	Description	Comments
[7:0]	I2C_DATW_BYTE_0	RW	0x00	I2C Bus Data Write Byte #0	1 st Byte
[15:8]	I2C_DATW_BYTE_1	RW	0x00	I2C Bus Data Write Byte #1	2 nd Byte
[23;16]	I2C_DATW_BYTE_2	RW	0x00	I2C Bus Data Write Byte #2	3 rd Byte
[31:24]	I2C_DATW_BYTE_3	RW	0x00	I2C Bus Data Write Byte #3	4 th Byte

The Data Read register stores four (4) Data Bytes received from subsequent I2C Read transaction.

	I2C_DATR IO_Bus: 0x0110 - 0x013B			Read	
Bit[]	Function	R/W	Reset	Description	Comments
[7:0]	I2C_DATR_BYTE_0	R	0x00	I2C Bus Data Read Byte #0	1 st Byte
[15:8]	I2C_DATR_BYTE_1	R	0x00	I2C Bus Data Read Byte #1	2 nd Byte
[23;16]	I2C_DATR_BYTE_2	R	0x00	I2C Bus Data Read Byte #2	3 rd Byte
[31:24]	I2C_DATR_BYTE_3	R	0x00	I2C Bus Data Read Byte #3	4 th Byte

1720

1715

1740

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

1730 3.2.21 Private LOCAL_ITC Controller

A dedicated Interrupt controller ITC is embedded in the LOCAL section. Only 6 Interrupt Source are connected to the ITC.

Following table sums up the ILOC (PCIe_EP) Block Interrupt source allocation

ITC INT#	Mode	Assignation	Comments
#0	LEVEL	V5_SMON_ALM[0] System Monitor Alarm	XILINX Virtex-5 System Monitor
#1	LEVEL	V5_SMON_ALM[1] System Monitor Alarm	
#2	LEVEL	V5_SMON_ALM[2] System Monitor Alarm	
#3	LEVEL	V5_SMON_OT System Monitor Over Temp	XILINX Virtex-5 System Monitor
#4	LEVEL	LM86 CRIT	On board LM86 Thermal Monitor.
#5	LEVEL	LM86 THERM Alarm	
#6	LEVEL	Not used	Ready for instantiation at top level
#7	LEVEL	Not used	
#8	LEVEL	Not used	
#9	LEVEL	Not used	
#10	LEVEL	Not used	
#11	LEVEL	Not used	
#12	LEVEL	Not used	
#13	LEVEL	Not used	
#14	EDGE	Not used	
#15	EDGE	Not used	

Table 3.4.: LOCAL (PCIe EP) Block ITC Interrupt Sources

3.2.22 Local Signature_ROM

This area provides a non-volatile information related to the LOCAL's block. Refer to chapter X.X for format description.

- Device_ID and Revision_ID.
- · Any valuable TBD implementation informations.

Signature_ROM Standard ROM area IO Bus: 0x380 - 0x3FF Location **Function** R/W Res Description Comments et 0x0:[7:0] R Implementation Revision 0x1F:[31:24] Not used Not used ...

Express to VME64 Bridge	2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	84/135	P_PCIE-VME_AF_HSID_B0
-------------------------	--	--------	-----------------------

1750

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.3 VME64X CSR Resources

The VM64X CSR Resources are mapped through a dual-port interface as:

- IO_Bus Device#2 (0x400-0x7FF) 1 KBytes
- VME64X CR-CSR Space (512 KBytes), offset determined by VME64x Geographic address (GA[4:0] & GAP) or with static option SW500-[8:4] if the VME64X mode is disabled.

The VME64X Private registers provides the facilities to configure the VME64X Master/Slave Interface. The following tables sums up the VME64X Private Register Mapping.

Offset IO_Bus	Size	Register_Name	Description	Comments
0x400 - 0x403	0x4	PVME_SLOT1	VME64X Slot-1 related functions as Arbiter, BTO and Static option switches status.	
0x404 - 0x407	0x4	PVME_MASCSR	VME64X Master Port related control and status	
0x408 - 0x40B	0x4	PVME_SLVCSR	VME64X Slave Port related control and status	
0x40C - 0x40F	0x4	PVME_INTG	VME64X Interrupt Generator	
0x410 - 0x413	0x4	PVME_MMUADD	VME64x INgress MMU Address pointer.	
0x414 - 0x417	0x4	PVME_MMUDAT	VME64x INgress MMU Data Register	
0x418 - 0x41B	0x4	PVME_ADDERR	VME64x Address Error Register	These two registers provide common status info in case of VME Error detected
0x41C - 0x41F	0x4	PVME_ADDERR	VME64x Status Error Register	
0x420 - 0x423	0x4	PVME_LOCMON	VME64x Location Monitor Address	
0x424 - 0x427	0x4	PVME_LOCK	VME64x ADOH/LOCK support	VME64x ADOH & LOCK support
0x428 - 0x42B	0x4	PVME_RMW_MODE	VME64x RMW Operation control	VME RMW Compare and
0x42C - 0x42F	0x4	PVME_RMW_ADD	VME64x RMW Address Pointer	Swap (CAS)
0x430 - 0x433	0x4	PVME_RMW_DATCMP	VME64x RMW Data Compare	
0x434 - 0x437	0x4	PVME_RMW_DATUPT	VME64x RMW Data Update	
0x440 - 0x443	0x4	PVME_GLTIM_CSR	Global Timer Control & Status Register	
0x444 - 0x447	0x4	PVME_GLTIM_DBG	Global Timer Debugging support	
0x448 - 0x44B	0x4	PVME_GLTIM_CNT2	Global Timer Pre-scaler 17-bit	
0x44C - 0x44F	0x4	PVME_GLTIM_CNT1	Global Timer Main 32-bit counter (1 [ms]	
0x480 - 0x48F	0x10	PVME_ITC	VME64x ITC Interrupt Pending	Refer to ITC chapter
0x490 - 0x55F		Reserved	Reserved for additional facilities	
		Following registers are a	lso mapped on VME64X CR/CSR Space	
0x560	0x1	VMECSR_ADER0_3	Address Space Relocation Register VME A32 MSB	VME64x A32 Base Address Definition. Refer to VME64x Specification.

2011-12-21 - PEV_1100 PCI	85/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

Offset IO_Bus	Size	Register_Name	Description	Comments
0x564	0x1	VMECSR_ADER0_2	Address Space Relocation Register VME A32	
0x568	0x1	VMECSR_ADER0_1	Address Space Relocation Register VME A32	
0x56C	0x1	VMECSR_ADER0_0	Address Space Relocation Register VME A32 LSB	
0x570 - 0x5F0		Reserved		PEV_1100 does not incorporate any CRAM resources.
0x5F4	0x1	VMECSR_BCR	VME64x CR/CSR Bit Clear Register	VME64x main Control &
0x5F8	0x1	VMECSR_BSR	VME64x CR/CSR Bit Set Register	Status Control
0x5FC	0x1	VMECSR_BAR	VME64x CR/CSR Base Address Register	
0x780 - 0x7FF	0x80	Signature_ROM	Defined ROM area for software signature	

The VME64X CR/CSR resources are accessible from two different path (IO_Bus Slave and VME64X Slave) The resource mapping is slightly different when addressed from the internal IO_Bus or from the VME64X CR/CSR Slave interface.

The VME64X CR/CSR is defined by the ANSI/VITA 1.0-1994 [2002] and complemented with ANSI/VITA 1.1-1997 [2003] specification.

The following tables sums up the VME64X CR/CSR Register Mapping (512 KBytes area). The register mapping is described in big-endian (VME64X natural endian)

Offset CR/CSR	Size	Register_Name	Description	Comments
0x0'0000 - 0x0'0FFF	0x1000	VME_CR	VME64 0x80 Bytes, PROM Signature	Fixed read only ROM space. Refer to ANSI/VITA 1-1994(R2000) Table 2-32
0x01000 - 0x7'0FFF		Reserved		
0x7'1000 - 7'1FFF		IO_Bus Bridge	4 KBytes directly mapped to the internal IO_Bus infrastructure. Base + 0x000-0x3FF = Local TCSR 0x400-0x7FF = VME64x TCSR 0x800-0xBFF = SMEM-IDMA TCSR 0xC00-0xFFF = USER TCSR	IO_Bus arbitrated access. Provide full IO_Bus mapping over the VME_Bus
0x7'2000 - 7'2FFF		IO_Bus Extension	Reserved for IO_Bus addressing range area	
0x7'F000 - 7'F3FF		Direct VME CTL		
0x7'FF63	0x1	VMECSR_ADER0_3	Function_0 Address Mapping Registers	Only VME A32 Slave window is supported.
0x7'FF67	0x1	VMECSR_ADER0_2	Idem	window is supported.
0x7'FF6B	0x1	VMECSR_ADER0_1	Idem	
0x7'FF6F	0x1	VMECSR_ADER0_0	Idem	
0x7'FF70 - 0x7'FFF6		Reserved	Not implemented	The CRAM resources is not supported.

2011-12-21 - PEV_1100 PCI	86/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

Offset CR/CSR	Size	Register_Name	Description	Comments
0x7'FFF7	0x1	VMECSR_BCR	VME BIT Clear Register	
0x7'FFFB	0x1	VMECSR_BSR	VME BIT Set Register	
0x7'FFFF	0x1	VMECSR_BAR	VME Geographic Base Address Register. Read only register reflecting the VME64X GA[4:0] pins.	

3.3.1 Private VME Slot_1 Register

This register provides control and status related to the VME64X slot_1 function.

IO_B	/ME_SLOT1 us: 0x400-0x403 CSR: 0x7F003- 0x7F000	Slot	t_1 8			
Bit[]	Function	R/W	Res et	Descriptio	on	Comments
[1:0]	vmeSLOT1_CARB[1:0]	RW	00	VME Centr	ral Arbiter Mode of operation :	
				00	Not pipelined PRI Mode.	
				01	Not pipelined RRS Mode.	
				10 F	Pipelined PRI Mode.	
				11 F	Pipelined RRS Mode.	
				Arbiter issu	elined" mode is enabled, the VME ued VME BGn[x] while the current VME II active. This mode of operation can tter Bus utilisation is some situation.	
				Note Som arbitration	ne VME Master does not support the pipeline.	
[2]	vmeARBTO_FL	RW	0	a BGOUT[3 confirmation Flag is clear This condit	al Arbiter time-out flag. Status set while (x) was issued without Bus Mastership on. (Arbitration time-out fixed to 4[us]). ar by writing '1' over the it. tion should never occurs. If detected, a laisy chain problem can be present.	
[3]	vmeSLOT1_Enable	R	0	control is d	1 Enabled status flag. The VME Slot_1 letermined by the VME Geographical with external SW500-2 switch option.	
[4]	vmeRTO_MOD	RW	0	VME Arbitration Requester time-out mode. A dedicated time-out logic monitors the VME Arbitration Request phase. This time-out logic can be disabled by setting vmeRTO_MOD.		
				0 5	512 [us]	
				1 [Disable. No time-out protection	
				system imp	time-out value shall cover standard olementation. VME arbitration o latency over 512[us] is abnormal.	
[5]	vmeRTO_FL	RW	0	VME Arbitr	ration Request time-out flag. Status set	

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

IO_B	/ME_SLOT1 us: 0x400-0x403 CSR: 0x7F003- 0x7F000	Slot	:_1	& Gene	ral Control & Status	
					TO time out occurs. ear by writing '1' over the it.	
[7:6]	Reserved	R	0	Not imple	emented, Read at 0b0000	
[9:8]	vmeBTOMOD[1:0]	RW	00	VME BTO	O /2eBTO Slot-1 value :	Cassidian specific
				00	16 [us]	
				01	64 [us]	
				10	128 [us]	
				11	256[us]	
				phase. A	is time-out covers only the VME cycle dedicated time-out is assigned to the itration Request phase	
[10]	vmeCYBTO_FL	RWc	0	BTO/2eB	D/2eBTO time-out flag. Status set while a TO time out. ear by writing '1' over the it.	
[14:11]	Reserved	R	0	Not imple	emented, Read at 0b0000	
[15]	vmePEVRST_Ena	RW	0		rol bit enable VME RESET assertion Cle RESET is received.	Cassidian specific
				0	VME64x SYSRESET# Disabled	
				1	VME64x SYSRESET# Enabled	
[20:16]	vme64x_GEO[4:0]	R	0		eld VME64X Geographic Address or itch field while VME64X is not enabled.	
[23:21]	Reserved	R	0	Not imple	emented, Read at 0b000	
[24]	static_SW_64X	R	-	Static sw	itch Enable VME64X Mode	
[25]	static_SW_SLOT1	R	-	Static sw	vitch enabling VME Slot_1 Function	
[26]	static_SW_SYSRST	R	-	SW500-1 Generation	status , enabling VME SYSRESET# on from on-board logic.	
[27]	vme64x_Auto_ID	R	-		Auto_ID Mode enabled. Set while W_64X = OFF" and	
[29:28]	vme64x_Auto_STA	R	00	VME64X	Auto_ID FSM status	
				00	Idle or Auto_ID mode disabled	
				01	VME IRQ2# pending. Waiting for IACK	
				10	Waiting for CRCSR Base Register update (write) from VME Slave	
				11	Auto_ID completed. CRCSR Base Register updated with new programmed value	
[30]	vme64x_RxSYSFAIL	R	-	VME64X	SYSFAIL status	

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

IO_B	/ME_SLOT1 us: 0x400-0x403 CSR: 0x7F003- 0x7F000	Slot	t_1 8			
				0 1	VME64x SYSFAIL not asserted VME64x SYSFAIL asserted	
[31]	vme64x_Auto_ID_GO	W	0	process	d to start Auto_ID Semi-automatic assertion + SYSFAIL# deassertion	
	vme64x_Auto_ID_Sem i	R	0	VME64X	Auto_ID Semi-Automatic Mode	

3.3.2 Private VME_Master Register

This register provides control and status associated with the VME64X Master function.

IO_B	ME_MASCSR sus: 0x404-0x407 /CSR: 0x7F007- 0x7F004	VMI	E Ma	ster C	SR Register	
Bit[]	Function	R/W	Res et	Descrip	tion	Comments
[1:0]	vmas_ARBMOD[1:0]	RW	00	be chan	oitration Requester Mode. This field can ged dynamically, allowing to control the ease " operation.	Complete VME64X Arbitration Requester
				00	RWD Release When Done.	
				01	ROR Release On Request.	
				10	FAIR & Release When Done	
				11	No Release.	
[3:2]	vmas_ARBLEV[1:0]	RW	00	VME Art	oitration Requester Level.	
				00	BREQ Level 0	
				01	BREQ Level 1	
				10	BREQ Level 2	
				11	BREQ Level 3	
					Master transactions (READ, WRITE and se the same BREQ Level. (No possible lation)	
[4]	vmas_BACKOFF	RW	0	acknowl sequence Note The recover	et, any VME cycle ended with a RETRY* edge will force a new VME Arbitration e.(Forced Release) his mode of operation shall be set to some dead-lock situation in addressed	
				recover VME Sla		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

IO_Bu	IE_MASCSR	AIAIL	= IVIA	ster CSR	Register			
	s: 0x404-0x407 CSR: 0x7F007- 0x7F004				g			
[5]	vmas_SUPER	RW	0	Supervisory Mo When clear, us	While set, use the VME AM code assigned by Supervisory Mode. (0x2F, 0x2D, 0x3D, 0xD, 0xC). When clear, use User VME AM code.			
					ary, information will be assigned in er-gather page descriptor.			
[6]	vmas_MAXRETRY	RW	0	transaction is li 256) defined by	VME RETRY on same back-end mited to a pgm value (32, 64, 128, "vmas_MAXRTCNT[1:0]" control on is than terminated with an Error n as BERR)	Cassidian specific Updated to support selectable maximum RETRY		
				transaction is li	e VME RETRY on same back-end mited by a time based value mas_MRTY_TIM[7:0"] control field.			
[7]	vmas_READERR_BP	RW	0	normally status to disable the "	While set, VME BERR Read are terminated normally status over the PCI_Express EP. Allows to disable the "Machine Check Exception"on the Host controller.			
				READ Error wi	Note PCI Express chips-set usually support READ Error without generating catastrophic "Machine Check Exception"			
[8]	vmas_REJ_FL	RW	0	vmas_ENABLE	VME pending cycle rejected flag, due to vmas_ENABLE = '0'. Flag is clear by writing '1' over the it.			
[9]	vmas_HW16_SW	RW	0	mode. Used or	MVME Master D16 Access special swapping mode. Used only while the Swapping_Mode defined by the INgress MMU is selected to "10"			
				While set, D16	access is only BYTE swapped.	compatibility.		
[10]	vmas_IACK_DW	RW	0	for DW Status_ = 0 : Local	laster (programmed_IO) enabled _ID ADD[3:1] → VME IACK A[3:1] ADD[4:2] → VME IACK A[3:1]			
[11]	Reserved	R	0	Not Implement	ed			
[13.12]	vmas_READ_SMP[1:0]	RW	0		allows to select the VME Data point, related to the received VME	New Cassidian		
				READ_SMP	Sampling point (timing)			
				00	+ 12[ns] (default)			
				01 + 18[ns]				
				10 + 24[ns]				
				11	+ 0[ns]			
[15:14] V	vmas_MAXRTCNT[1:0]	RW	00	VME Maximum RETRY accepted. Used with control bit "vmas_MAXRETRY"		Cassidian specific		
				MAXRTCNT	Number of maximum RETRY			
				00	256 Retries			

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

IO_B	ME_MASCSR sus: 0x404-0x407 CSR: 0x7F007- 0x7F004	VMI	E Ma	ster CSR	Register	
				01	128 Retries	
				10	64 Retries	
				11	32 Retries	
[17:16]	vmas_CMPLCRS[1:0]	RW	00		P mode of operation for VME transaction with RETRY#.	Cassidian specific
				CMPL_CRS	Mode of operation	
				00	No Completion	
				01	Completion with Compl. Status = CRS on maximum VME RETRY (256) VME RETRY# acknowledge.	
				10	Completion with Compl. Status = CRS on 1st VME RETRY# acknowledge.	
				11	Completion with Compl. Status = CRS on fourth VME RETRY# acknowledge.	
[19:17]	Reserved	R	0	Not Implement	ed	
[27:20]	vmas_MRTY_TIM[7:0]	RW	0x00	VME transaction	Id defines a time value when the on is retried automatically. Used "vmas_MAXRETRY = '0"	Cassidian specific
				MRTY_TIM	Number of maximum RETRY	
				0x00	Infinite time	
				0x01	= 9 [us]	
				0x02	= 17 [us]	
					= (N* 8) + 1) [us]	
				0xFF	= 2041 [us]	
[30:28]	Reserved	R	0	Not Implement	ed	
[31]	vmas_ENABLE	RW	1	VME64X VME	Master Enable	Global VME Enable

3.3.3 Private VME_Slave Register

This register provides control and status associated with the VME64X Slave function.

P PCIE-VME_AF_HSID_B0

DOCUMENT STATUS 2.0

PVME_SLVCSR IO_Bus: 0x408-0x40B CR/CSR: 0x7F00B-

VME	Slave	CSR	Reg	gister
------------	-------	------------	-----	--------

	0x7F008					
Bit[]	Function	R/W	Res et	Descript	ion	Comments
[3:0]	vslv_WSIZ[2:0]	RW	0		2 Slave window size. This 3-bit field es the VME A32 Slave window occupied iit.	
				0000	16 MBytes as 16 Pages of 1 MBytes	
				0001	32 MBytes	
				0010	64 MBytes	
				0011	128 MBytes	
				0100	256 MBytes	
				0101	512 MBytes as 512 Pages of 1 MBytes	
				0110	1024 MBytes as 512 Pages of 2 MBytes.	
				0111	2048 MBytes as 512 Pages of 4 MBytes.	
				1000	1 MBytes as 1 Page of 1 Mbytes	
				1001	2 MBytes	
				1010	4 MBytes	
				1011	8 MBytes	
				1100	16 MBytes	
				1101	32 MBytes	
				1110	64 MBytes	
				1111	128 MBytes	
					E Slave A32 window is divided in pages of MBytes, conditioned by vslv_WSIZ[3:0]	
					v_WSIZ[3] = '0' the VME A32 base shall be aligned on window size /.	
					v_WSIZ[3] = '1' the VME A32 base shall be aligned on 1 MBytes boundary.	
[4]	vslv_RETRY_Legacy	RW	0	RETRY i transfers	ve RETRY Acknowledge. While set, VME s never used for SLT and BLT data . Shall be set while interaction with 1st on of VME board.	
[5]	Reserved	R	0	Not Imple	emented	
[7:6]	WP_Max_BURST	RW	00	to limit th packet si targeting	esting burst size. This two bit field allows e maximum Central_SW write-posting ze. This control field in not used while the PCI Express EP. (PCI Express has urst size limitation mechanism)	

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

IO_B	PVME_SLVCSR IO_Bus: 0x408-0x40B CR/CSR: 0x7F00B- 0x7F008		E Sla	ive CS	R Register	
				00	Max 1 KBytes	
				01	512 Bytes	
				10	256 Bytes	
				11	128 Bytes	
				Note On	ly used for system latency tuning.	
[8]	RRSP_Invalid	RWc	0		sponse Error flag status. nt/Invalid Response	Status flag cleared while '1' written over
[9]	RRSP_Unexpected	RWc	0		sponse Error flag status. ted Response	Status flag cleared while '1' written over
[10]	RRSP_Wrong_ACK	RWc	0		sponse Error flag status. cknowledge	Status flag cleared while '1' written over
[11]	RRSP_ Out_of_Date	RWc	0		sponse Error flag status. Date Response	Status flag cleared while '1' written over
[12]	INTHVME_Enable	RW	0	Slave Inte	n-board Interrupt Handler across VME erface . While set ('1') the PCI Express K can be handled through the VME Slave	
[13]	vslv_RDRS_TOFL	RWc	0	RESPON	sponse time-out flag. Set in case of Read ISE time-out occurred. ear by writing '1' over it.	Cassidian specific
[15:14]	vslv_RDRS_TO	RW	00		bit field define the Read_response time- ad Response shall be received within value	Cassidian specific
				00	256[us]	
				01	512[us]	
				10	1024 [us]	
				11	2048 [us]	
				Note On	nly used with vslv_READ_SPMOD = '1'	
[23:16]	vslv_RDRQ_TO[7:0]	RW	0x00	the curre	t bit field define in microsecond, when nt VME Read transaction is suspended g VME RETRY#	Cassidian specific
				Note On	ly used with vslv_READ_SPMOD = '1'	
[24]	vslv_READ_SPMOD	RW	0	While set suspende Time-out vslv_RDF	ad SUSPEND Mode. i, the current VME READ transaction is ed with retry after the Read_Request (defined with control field RQ_TO[7:0]) has elapsed. ar, the current VME READ transaction spended.	Cassidian specific
[30:25]	Reserved	R	0	Not Imple	emented	
[31]	vslv_ENABLE	RW	0	VME64X	VME Slave Enable.	Global VME Enable

• Status flags RRSP_Unexpected, RRSP_Wrong_ACK, RRSP_ Out_of_Date are directly derived

2011-12-21 - PEV_1100 PCI	93/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

from the PCI_Express implementation.

3.3.4 Private VME_INTG Register

This register provides the control & status related to the VME Interruption control.

IO_B	VME_INTG us: 0x40C-0x40F CSR: 0x7F00F- 0x7F00C	VME Interrupt Generator Register				
Bit[]	Function	R/W	Res et	Description	Comments	
[7:0]	vme_INTG_STATUS	RW	0x00	VME Interrupt Generator Status ID LSB. This 8-bit field is supplied during the related IACK cycle, acknowledging the Interrupt.		
[10:8]	vme_INTG_LEVEL	RW	0x0	VME Interrupt Generator Level, 3-bit encoded value	Value "000" Not used	
[11]	vme_INTG_IP	R	0	VME Interrupt Pending status flag	Default = "000"	
[15:12]	vme_INTG_CMD	RW	0x0	VME Interrupt Generator Command [0x0]: No Action [0x1]: Set VME Interrupt [0x2]: Clear VME Interrupt [0x9]: Pgm/Init Status-ID[15:8] [0xA]: Pgm/Init Status-ID[23:16] [0xB]: Pgm/Init Status-ID[31:24] Others: Undefined		
[19:16]	vme_INTG_FIFOCNT	R	0x0	INTG FIFO List word counter. Reserved for future improvement		
[22:20]	Reserved	R	0	Not implemented		
[23]	vme_INTG_MOD	RW	0	VME64 Interrupt Generation Mode [0] Direct Register Programmed [1] FIFO List Enable. (Not supported) Note Provision is made to support a front end FIFO allowing to post up to 16 VME Interrupt.		
[24]	Reserved	R	0	Not implemented		
[31:25]	vme_INTPD[7:1]	R	0x00	VME Interrupt pending. Direct status information from the VME64x backplane.		

3.3.5 Private VME MMU Address Pointer Register

This register provides the address pointer used to initialize the INgress VME MMU look-up table. The INgress VME MMU is implemented with a dual-port SRAM (512 * D64), supporting up to 512 page entries. The page size is dependant of the VME A32 Window size selected.

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

IO_B	ME_MMUADD us: 0x410-0x413 CSR: 0x7F013- 0x7F010	VME MMU Address Pointer			
Bit[]	Function	R/W	Res et	Description	Comments
[0]	Reserved	R	0	Fixed to 0	WORD aligned
[11:1]	vme_MMUADD[9:0]	RW	0	10-bit Address pointer supporting the MMU Table initialization. This pointer is incremented after every access (Read or Write) through the PVME_MMUDAT register. MMUADD[1:0] = 00 : Page_DESC[15:0]	Auto incremented address pointer.
[31:12]	Reserved	R	0	Not Implemented	

3.3.6 Private VME_MMU Data Register

This register provides the address pointer used to initialize the Ingress VME MMU look-up table.

IO_B	ME_MMUDAT us: 0x414-0x417 CSR: 0x7F017- 0x7F014	VME MMU Data Register			
Bit[]	Function	R/W	Res et	Description	Comments
[15:0]	vme_MMUDAT[15:0]	RW	0	16-bit Data register, associated with previous register PVME_MMUADD used to access the MMU DPRAM	
[31:16]	Reserved	R	0	Fixed to 00	

The MMU Page Descriptor is composed of two consecutive DW, forming a 64-bit QW. The initialization is handled with two access through the PVME_MMUDAT Register. Each 4 MBytes page entry address owns its QW Page Descriptor. (DPRAM: 512*D64 - 2048*D16)

The following table sums up the Page Descriptor format:

Page Descriptor High DW (vme_MMUADD[1:0] = "11" - "10")						
Bit[] Field Description Comments						
[63:32]	int_ADD[63:32]	Internal High Address remapping over 64-bit field. 64-bit addressing is mandatory for PCI Express addressing	PCI_Express recommendation to be able to support 64-bit addressing			
	Page Descriptor Low DW (vme_MMUADD[1:0] = "01" - "00")					
Bit[] Field Description Comments						

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	95/135	P_PCIE-VME_AF_HSID_B0
Express to vivies + Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

				,	
-	Pa	ge Descrip	tor High DW (vme_M	MUADD[1:0] = "11" - "	'10")
[0]	Page_Enable		e Page entry. If not set even if the VME addres		This facility allows to built selective addressing
[1]	Write_Enable		rite access across this E are rejected. (BERR≉		Allows to support selected write- protect area
		area in the	s control allows to built e PEV_1100 resources emote resources)		
[4:2]	Traffic_Class[2:0]	PCI Expre	ess TC field. 2.2.6.6		
		Note Onlaccess.	ly meaningful with remo	ote PCI Express	
[5]	Supervisory	While set	only transactions with a	AM code Supervisory	
[7:6]	Byte Swapping		apping Policy. This 2-b pping policy.(Little – Bi		The Byte swapper is located in the VME Interface. Following control applies to the VME
		00	No Swapping		Slave data path
		01	LITTLE to BIG Endian Swapping BYTE: No Swap WORD: D16 wor DW: BYTE &		
		10	DW BYTE & WORD S	Swapping	
		11	Reserved		
[11:8] [15:12]	Space_Typ[3:0] SW_Destination	destinatio	field encodes the Addr n. Refer to table "Addr on Address Space Type	Only two LSB bits used in the	
		0000	PCI Express		PEV_1100 implementation.
		0000	Reserved, Not allowe	d)	
		0010	Shared Memory	u)	
		0011	User		
		Others	Reserved, Invalid valu PEV_1100	ue on actual	
[17:16]	READ_Prefetch	Determine Destination prefetch size in case of VME64X BLT and MBLT. No used for 2eVME and 2eSST.		Only for VME64X addressing without information on data read size expected.	
			VME BLT	VME MBLT	
		00	32 Bytes	64 Bytes	
		01	64 Bytes	128 Bytes	
		10	128 Bytes		
		11	256 Bytes	512 Bytes	
[18]	No_Snoop	Refer to F	PCI Express specification	on.	Only while targeting PCIe EP
[19]	Relaxed Ordering	Refer to F	PCI Express specification	Only while targeting PCIe EP	

Memory)

1780

1785

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

Page Descriptor High DW (vme_MMUADD[1:0] = "11" - "10")					
[31:20]	int_ADD[31:20]				

Table 3.5.: Private VME MMU Page Descriptor

The following table sums-up the destination Address Space Type . (PCI Express, USER or Shared

Space_Type	PCI Express	Shared Memory / USER
0x0-0x2	Reserved	Reserved
0x3-0x7	Reserved	Reserved
0x8	MEM A64	OK
0x9-0xF	Reserved	Reserved

Table 3.6: Address Type Encoding

3.3.7 Private VME_Address Error Register

This register provides the catches VME Address stored while the VME Master interface received a BERR#.

IO_B	ME_ADDERR us: 0x418-0x41B CSR: 0x7F018- 0x7F01B	VME Address Error Register			
Bit[]	Function	R/W	Res et	Description	Comments
[1:0]	SWAP	R	0	Swapping Control bit.	
[31:2]	vme_ADD[31:2]	R	0	Current VME Address used while the VME BERR# acknowledge was received.	

3.3.8 Private VME_Status Error Register

This register provides the catched STATUS informations stored while the VME Master interface received a BERR#.

Reading the PVME_STAERR Register automatically rearms the VME Error catching logic.

IO_Bu	ME_STAERR us: 0x41C-0x41F CSR: 0x7F01C- 0x7F01F	VME Status Error Register			
Bit[]	Function	R/W	Res et	Description	Comments
[3:0]	TYPE	R	0x0	4-bit field encoding the VME AM. 0000 = Configuration	

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	97/135	P_PCIE-VME_AF_HSID_B0
1		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

PVME_STAERR IO_Bus: 0x41C-0x41F CR/CSR: 0x7F01C- 0x7F01F		VME Status Error Register				
				0001 = A16 0010 = A24 0011 = A32 : SLT 0100 = A32 : BLT 0101 = A32 : MBLT 0110 = A32 : 2eVME 0111 = A32 : 2eSST 1111 = IACK Others = Reserved		
[8:4]	Length_DW	R	0x0	Block length in DW. Initial value issued by the PCI Express TLP		
[25:9]	Requester_ID	R	0x0	PCI Express Requester Identifier. Only Top section catched.		
[27:26]	Source_ID	R	0x0	Central Switch Port transaction source 00 = PCI Express EP Agent. 10 = IDMAC Agent. 11= USER Agent.		
[28]	вто	R	0	VME Bus Time OUT Error. (Only while on-board BTO logic is active Slot_1 enabled)		
[29]	Write	R	0	VME transaction direction		
[30]	VME_Error_Over	R	0	Set while a 2 nd error was detected while VME_Error_FL was already set.		
[31]	VME_Error_Flag	R	0	Error detected. While set, a VME BERR (Read or Write) was detected. Catcher parameter are related to the 1st error occurrence. This status flag is also connected to the VME ITC, allowing to issued an Interrupt.		

3.3.9 Private VME_LOCMON Register

The PEV_1100 implements 4 Location Monitors. A base register PVME_LOCMON holds a 32-bit address field A[31:5] and two control bit for the mode of operation. When a VME cycle match the specified Address (A[31:5] for A32, A[23:5] for A24 or A[15:5] for A16) a local interrupt is issued, selected by Address[4:3] field.

PVME_LOCMON Register

1795

1800

- [31:5] = Address
- [4:3] = Location Monitor selection (1 to 4)
- [2] = Reserved
- [1:0] = VME Address Space as : Disable, A16, A24, A32

The four Location_Monitor interrupts are wired to the local ITC16 VME Interrupt controller. The PEV_1100 can issue VME cycles for location monitors with ADO or self addressed regular VME SLT cycles.

2011-12-21 - PEV_1100 PCI 98/135 P_PCIE-VME_AF_HSID_B Express to VME64 Bridge	1-12-21 - PEV_1100 PCI press to VME64 Bridge		00/100	P_PCIE-VME_AF_HSID_B0
--	---	--	--------	-----------------------

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

PVN IO_Bi CR/0	VMI	E Lo	cation Monitor Register		
Bit[]	Function	R/W	Res et	Description	Comments
[1:0]	LocMON_ENA	RW	00	Location Monitor Enable. This 2-bit field enable the location Monitor in selected Address space. = 00 : Disable = 01 : VME A16 = 10 : VME A24 = 11 : VME A32	
[4:2]	Reserved	R	000	Read only field. Note The 4 Locations Monitors are mapped with VME Address [4:3]	
[31:5]	vme_ADD[31:5]	RW	0	VME 32-bit Location monitor Address LocMON_ENA = 01 : vme_ADD[15:5] 10 : vme_ADD[23:5] 11 : vme_ADD[31:5]	VME Address mapping of the 4 Location Monitor

3.3.10 Private VME_LOCK Register

The PEV_1100 implements a dedicated register to support the VME AHOH + LOCK function.

IO_B CR/	VMI	E AD	OH & LOC	K Registe	er		
Bit[]	Function	R/W	Res et	Description			Comments
[0]	ADO_Mode	WR	0	When set, the s Type 0xD and 0 place of ADO)		New capability to generate ADOH VME AM code, required to control LOCK process.	
				ADO_Mode	= '0'	= '1'	
				Space_Type = 0xD	ADO:A24 (AM =0x35)	ADOH:A24 (AM =0x35)	
				Space_Type = 0xE	ADO:A32 (AM =0x05)	ADOH:A32 (AM =0x05)	
[1]	LOCK_Enable	WR	0	When set, VME enabled	Master LOCK	Enable the FSM LOCK support.	
[2]	LOCK_CLEAR_Mode	WR	0	This control bit allows to select the LOCK Clear operation mode: = 0 : LOCK Cleared with LOCK_CLEAR_Cmd = '1'. (IO_Space path) = 1 : LOCK Cleared with ADOH/ADO Write or with LOCK_CLEAR_Cmd = '1'. (IO_Space path)			Support for LOCK clear command.

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	99/135	P_PCIE-VME_AF_HSID_B0
,		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

PVME_LOCK IO_Bus: 0x424-0x427 CR/CSR: 0x7F040- 0x7F027		VMI	E AD	OH & LO	OCK Register	
[3]	LOCK_COMP_Mode	WR	0	WRITE# sig = 0 : VME VME proc = 1 : VME	bit allows to select the VME nal polarity driving WRITE# is de-asserted while LOCK ADOH transaction is ess. WRITE# is asserted while VME K ADOH transaction is process	
[4]	LOCK BTO_Ena	WR	0	1[ms] = 0 LOC	K remains active for maximum	
[6:5]	Reserved	R	0	Not used		
[7]	LOCK_CLEAR_Cmd	W	0	LOCK flag C	Clear Command.	
[10:8]	LOCK_Status[2:0]	WR	000	LOCK Statu	S	Directly attached to the LOCK FSM
				LOCK Status		
				"000"	LOCK Cleared	
				"100"	LOCK WON (ADOH with DTACK#)	
				"101"	LOCK In progress (ADOH with RETRY#)	
				"001"	LOCK ERROR (ADOH with BERR#)	
				"010"	LOCK ERROR (Error detected during DATA phase)	
				"011"	LOCK ERROR (Time out 1 [ms]) only when "LOCK BTO_Ena" = '1'	
[11]	LOCK_DATA_Error	WC	0	VME LOCK	Error detected	

3.3.11 Private VME_RMW Registers

The PEV_1100 implements four dedicated registers to support the VME RMW atomic transactions. Refer to chapter 2.11.11 for RMW support.

IO_B	E_RMW_MODE us: 0x428-0x42B CSR: 0x7F028- 0x7F02B	VMI	E RM	t	
Bit[]	Function	R/W	Res et	Description	Comments
[1:0]	RMW_Size_Mode[1:0]	RW	00	VME RMW Cycle OP Size	

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

IO_B	E_RMW_MODE us: 0x428-0x42B CSR: 0x7F028- 0x7F02B	VMI	E RN	IW Mo	ode + Cycle Managemen	t
				00 01 10	Reserved (Not suported) VME RMW D08 VME RMW D16	
[4:0]	RMW_ADD_Mode[2:0]	RW	000	VME RN	VME RMW D32 //W Cycle Address Space	
				000 001 010	VME A16 DATA USER VME A16 DATA SUP VME A24 DATA USER	
				011 100 101 other	VME A24 DATA SUP VME A32 DATA USER VME A32 DATA SUP Reserved	
[27:6]	Reserved	R	0	Not used	-	
[30:28]	RMW_Status	R	000		tus field provide real-time execution f current/previous RMW cycle. VME cycle is ended	
				100	RMW Cycle executed with BERR RMW Cycle executed with Compare Not_OK	
				other s	RMW Cycle executed with Compare OK Reserved	
[31]	RMW_Trigger	W	0	This cor transact	ntrol bit allows to start the VME RMW ion	
	RMW_Cycle_RUN	R	0	This star execution	vME cycle is ended VME RMW cycle in execution	

IO_Bu	E_RMW_ADD us: 0x42C-0x42F CSR: 0x7F02C- 0x7F02F	VMI	E RIV	IW Address	
Bit[]	Function	R/W	Res et	Description	Comments

2011-12-21 - PEV_1100 PCI	101/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

IO_Bu	E_RMW_ADD us: 0x42C-0x42F CSR: 0x7F02C- 0x7F02F	VMI	E RN	IW Address	
[31:0]	RMW_Address31:0]	RW	00	VME RMW Address	

IO_B	E_RMW_CMP us: 0x430-0x433 CSR: 0x7F030- 0x7F033	VME RMW Data Compare			
Bit[]	Function	R/W	Res et	Description	Comments
[31:0]	RMW_CMPDAT[31:0]	RW	00	VME RMW Data Compare . This data field is used by the Read cycle of the RMW.	

IO_B	IE_RMW_UPT us: 0x434-0x437 CSR: 0x7F034- 0x7F037	VME RMW Data Update			
Bit[]	Function	R/W	Res et	Description	Comments
[31:0]	RMW_UPTDATC[31:0]	RW	00	VME RMW Data Update. This data field is used by the Write cycle of the RMW.	

3.3.12 Private VME_ELBDIR Register

Reserved register for compatibility with IPV_1102. It is dedicated to the P2020 ELB \rightarrow VME Master low latency bridge

IO_Bu CR/C	ME_ELBDIR s:0x43C-0x43F SR:0x7F03C- 0x7F03F	VME P2020 ELB - VME Master Direct					
Bit[]	Function	R/W Reset Description Comments			Comments		
[2:0]	VDIR_AMMODE[2:0]	RW	0		This data field determine the VME AM code used during the VME Master Direct access from the P2020 ELB.		
				AMMODE	AM	Description	
				000 0x29 A16 Data User			
				001	0x2D	A16 Data Supervisor	

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	102/135	P_PCIE-VME_AF_HSID_B0
--	---------	-----------------------

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

PVME_ELBDIR IO_Bus: 0x43C-0x43F CR/CSR: 0x7F03C- 0x7F03F		VME P2020 ELB - VME Master Direct					
				010	0x39	A24 Data User]
				011	0x3D	A24 Data Supervisor	
				100	0x09	A32 Data User	
				101	0x0D	A32 Data Supervisor	
				110	0x3F	IACK Cycle	
				111	0x3F	Reserved	
							1
[3]	VDIR_D32MODE	RW	0	This control bit enable the VME64x D32 access. While set, the two ELB transactions forming the D32 operand access are concatenated to issue a single VME D32 access. = '0': ELB transactions are handled individually = '1': ELB transactions are handled in 32-bit Operand			
[5:4]	VDIR_ELBSIZ[1:0]	RW	0	This field define the ELB GPCM window size allocated for the VME Master Direct Access.			
				ELBSIZ		Description]
				00	16 MBy	tes	
				01	32 MBy	tes	1
				10 64 MBytes			
				11 256 MBytes			
[23:6]	Reserved	R	0	Not used			
[31:24]	VDIR_ADDH[31:24]	RW	0x00	VME High Address. The field provides VME MSB Address required while VME A32 is used.			
						be reduced in case of the ELB ended over 16 MBytes.	

1825

1830

1835

1840

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.3.13 Private VME_GLOBTIM Register

Many simulation require a centralized time base, used for data time-stamping. The PEV_1100 Central_Timer is implemented around two counter-timers and a Master/Slave synchronization mechanisms.

- CNT_1 as a 32-bit 1.000[ms] counter (or optionally 1.024 [ms])
- CNT_2 as a 17-bit pre-counter selectable 1, 5, 25 or 125 MHz, providing precise time inside the [ms] quantum of CNT 1.

The PEV_1100 Global Timer can issues local interrupts derived from the the 1.000[ms] synchronization

Four registers mapped on the IO_Bus are made available to support the Global Timer service. These registers can be access from the PCI Express IO Space or from the VME CRCSR/A24 decoded area.

The external synchronization on the VME Bus is supported on SYSFAIL# or with IRQ#1 / IRQ#2. The PEV_1100 can be programmed as Synchronization Master or as Synchronization Slave. Provision is made to support external synchronization (IRIG-B and/or GPS) . FPGA user's area can be assigned to implement such mechanism.

The PVME_GLTIM_CSR holds main control and status information.

IO_B	VMI	E Glo	obal Timer CSR		
Bit[]	Function	R/W	Res et	Description	Comments
[1:0]	gtim_PRE	RW	00	Global Timer CNT_2 counter precision. This 2-bit filed select statically the prescaling to support: 00 = 1 MHz (1 [us]) 01 = 5 MHz (200 [ns]) 10 = 25 MHz (40 [ns]) 11 = 100 MHz (10 [ns])	CNT_2 is 17-bit. 1025*125 = 128'000 = 0x1F400 Max CNT_2 count = 0x1FFFF = 1310 [us]
[2]	Reserved	R	0	Not used	
[3]	gtim_1024	RW	0	Global Timer CNT_1 time base mode. 0 = 1000 [us]	The 1024 [us] mode is provided for legacy

2011-12-21 - PEV_1100 PCI	104/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

PVME IO_BI CR/0	VMI	E Glo	obal Timer CSR		
				1 = 1024 [us]	compatibility with TSI 148
[6:4]	gtim_SYNC_SRC	RW	000	Global Timer Synchronisation Source. This 3-bit field select the source of the local synchronization.	
				000 = Local time reference. Based on local 100[ppm] 125 MHz oscillator. 001 = User Source #1 010 = User Source #2 100 = VME SYSFAIL# high to low front edge. 101 = VME IRQ#1 high to low front edge. 110 = VME IRQ#2 high to low front edge. Others = Reserved.	
				Note User Source are reserved for dedicated logic based on external synchronisation as GPS or IRIG-B.	
				Note Synchronization based on VME IRQ#1 or IRQ#2 introduce an additional 250[ns] jitter.	
[7]	gtim_LOC_ENA	RW	0	Local Time base reference Enable. When set, the on-chip local timer 1000/1024 [us] is activated. While enabled it can provide the local Top Synchronisation reference.	
[9:8]	gtim_OUT_SEL	RW	000	Global Timer Master Synchronization Selection. This 2-bit field allows to select VME signals used as Master Synchronization. While activated, a normalized 8 [us] pulse is issued every 1000/1024 [us] on selected VME line. 00 = No VME Master Synchronisation 01 = VME SYSFAIL# 10 = VME IRQ1# 11 = VME IRQ2#	Due to VME TTL Open collector signalling, the synchronization is related to the front edge HIGH to LOW transition.
[15:10]	Reserved	R	000	Not implemented	
[16]	gtim_SYNC_ERR_FL	WC	0	Global Timer Synchronization Error. Flag. While set an error was detected. Refer to CNT_2 register. Error Flag Clear Command. Writing '1' clear the error flags located in the CNT_2	
[19:17]	gtim_FSM	R	000	Reserved for IOxOS Verification	
[30:20]	Reserved	R	000	Not implemented	
[31]	gtim_ENABLE	RW	0	Global Timer Enable. When '0', the complete Global Timer function is deactivated.	

The PVME_GLTIM_CNT2 holds the low part of the global timer with associated synchronization monitoring.

2011-12-21 - PEV_1100 PCI	105/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

PVME_GLTIM_CNT2 IO_Bus: 0x448-0x44B CR/CSR: 0x7F048- 0x7F04B		VME Global Timer LOW Counter			
Bit[]	Function	R/W	Res et	Description	Comments
[16:0]	gtim_CNT_2	RW	00	Global Timer CNT_2. Max 17-bit with counting rate determined by gtim_PRE[1:0]. (1, 5, 25 or 100 MHz)	Whatever frequency selected, the intrinsic precision remains unchanged (50 [ppm])
[19:17]	Reserved	R	0	Not Implemented	
[27:20]	Synchro_DELTA	R	0	This 8-bit field provides the synchronization derived time, at latest TOP synchronization (in 8[ns]quantum increment) Value provided is from -124 to +125: 0b1000'0111 = - 928[ns] error (early) 0b1111'1111 = - 8[ns] error (early) 0b0000'0000 = perfect synchronization 0b0000'0001 = + 8[ns] error (late) 0b0111'1101 = + 928[ns] error (late)	This field allows to qualify the external synchronization related to the internal clock.
[28]	Synchro_PRE_ERR	R	0	Error status flag. The TOP synchronisation has arrived before the qualified window (T0 - 928[ns]).	The qualified window is fixed as +/- 926[ns], corresponding of ~
[29]	Synchro_POST_ERR	R	0	Error status flag. The TOP synchronisation has arrived after the qualified window. (T0 + 928[ns]).	1000[ppm] precision.
[30]	Synchro_ROLLOVER	R	0	Error status flag. No TOP synchronisation arrived before the 17-bit counter roll-over. When it is occurring the Global Timer function is disabled.	
[31]	Synchro_ERROR	R	0	OR of the three previous Error status flags.	

The PVME_GLTIM_CNT1 holds the 32-bit main counter. This support ~ 1200 hours without roll over.

IO_B	_GLTIM_CNT1 us:0x44C-0x44F CSR:0x7F04C- 0x7F04F	VME Global Timer Main Counter			
Bit[]	Function	R/W	Res et	Description	Comments
[31:0]	gtim_CNT_1	RW	00	Global Timer CNT_1. 32-bit timer-counter attached to the TOP Synchronization. (1[ms])	gtim_CNT_1 can be initialized at specific value.

To support coherent CNT_2 + CNT_1 read-out, CNT-1 shall be read first. A dedicated logic copy in a stag register the CNT_2 value during the CNT-1 read-out.

2011-12-21 - PEV_1100 PCI	106/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1860

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.3.14 Private VME_ITC Controller

A dedicated Interrupt controller ITC is embedded in the VME64x section. 16 Interrupt Source are connected to the ITC16.

The following table sums up the VME64x Interrupt sources allocation.

ITC INT#	Mode	Assignation	Comments		
#0	LEVEL	VME SYSRESET# assertion	Cassidian specific		
#1	LEVEL	VME IRQ_1	Legacy VME Interrupt. Auto vectorization		
#2	LEVEL	VME IRQ_2	enabled		
#3	LEVEL	VME IRQ_3			
#4	LEVEL	VME IRQ_4			
#5	LEVEL	VME IRQ_5			
#6	LEVEL	VME IRQ_6			
#7	LEVEL	VME IRQ_7			
#8	LEVEL	VME ACFAIL#			
#9	LEVEL	VME_Error (Master)	VME64x Cycle Error		
#10	LEVEL	VME Central Time #1	Global Time 1000/1024[ms] tic		
#11	LEVEL	VME Central Time #2	Global Time Error flag		
#12	LEVEL	Location Monitor #0			
#13	LEVEL	Location Monitor #1			
#14	EDGE	Location Monitor #2			
#15	EDGE	Location Monitor #3			

Table 3.7.: Private VME ITC Interrupt Sources

3.3.15 VME64x CR/CSR ADER_0 Register

This register, formed by four consecutive BYTE Registers, defines the VME A32 Base Address for subsequent PEV_1100 Slave mapping. The window size is defined with **vslv_WSIZ[2:0]**, located in **PVME_SLVCSR** Register.

The PEV_1100 can only be mapped in the A32 Address Space. VME A64 addressing is not supported.

VMECSR_ADER_0_3 IO_Bus: 0x560 CR/CSR: 0xF'FF63		CR/CSR ADER_0 MSB Address Decoder Compare				
Bit[]	Function	R/W	Reset	Description	Comments	
[7:0]	A32_MAP[31:24]	R	0	Address offset, mapping the VME Slave. The window is programmable from 1 to 2048 MBytes. Only valid bit are significant.		

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	107/135	P_PCIE-VME_AF_HSID_B0
--	---------	-----------------------

1870

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

VMECSR_ADER_0_2 IO_Bus: 0x564 CR/CSR: 0xF'FF67		CR/CSR ADER_2 Address Decoder Compare			
Bit[]	Function	R/W	Res et	Description	Comments
[3:0]	Reserved	R	0	Not used	Refer to ANSI/VITA 1.1 VME64 Extensions specification
[7:4]	A32_MAP[23:20]	R	0	Address offset, mapping the VME Slave. The window is programmable from 1 to 2048 MBytes. Only valid bit are significant.	

VMEC IO CR/0	CR/CSR ADER_1 Address Decoder Compare				
Bit[]	Function	R/W	Res et	Description	Comments
[7:0]	Reserved	R	0	Not used	Refer to ANSI/VITA 1.1 VME64 Extensions specification

VMECSR_ADER_0_0 IO_Bus: 0x56C CR/CSR: 0xF'FF6F		CR/CSR ADER_1 LSB Address Decoder Compare			
Bit[]	Function	R/W	Res et	Description	Comments
[5:0]	AM[5:0]	R	0	Not implemented	
[6]	DFSR	R	0	Dynamic Function Size Read. While set, the window size defined by vslv_WSIZ[2:0] is provided in the "A32_MAP[31:20]" field.	This function allows to determine the VME A32 Slave window size required by the PEV-1100
[7]	XAM Mode	R	0	Not implemented	

Note The complete ADER register is built with four Byte section allocate in consecutive DWORD Register.

Note The VME Slave interface shall also be enabled with specific control bit located in the **PVME_SLVCSR** Register.

3.3.16 VME64x CR/CSR BSR & BCR Registers

These two Registers, allows to SET or CLEAR control bits individually. A '1' written to the selected Control bit will set the function in the BSR Register and Clear it the BCR Register.

- BSR = Bit Set Register
- BCR = Bit Clear Register

Express to VME64 Bridge	2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	108/135	P_PCIE-VME_AF_HSID_B0
-------------------------	--	---------	-----------------------

1880

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

VMEC IO_Bu CR/CSI			BSR BIT Set Register BSR BIT Clear Register		
Bit[]	Function	R/W	Res et	Description	Comments
[7]	PV_RESET	RW	0b0	PEV_1100 RESET Mode. While SET, the PEV_1100 is forced in RESET Mode	
[6]	PV_SYSFAIL_Driver	RW	0b0	PEV_1100 VME SYSFAIL Driver Enable	
[5]	PV_SYSFAIL	RW	0b0	PEV_1100 VME SYSFAIL Direct Control	
[4]	PV_ENABLE	RW	0b0	PEV_1100 VME Slave Enable.	
[3]	PV_BERR_Flag	RW	0b0	PEV_1100 VME BERR condition generated.	Flag information related for exception handling.
[2]	CRAM_OWNER	R	0	Not implemented.	
[1:0]	Reserved	R	0	Not used.	

3.3.17 VME64x CR/CSR BAR Register

This register provides status information of PEV_1100 CR/CSR Base Address .

IO.	IECSR_BAR _Bus : 0x5FC CSR : 0xF'FFFF				
Bit[]	Function	R/W	Res et	Description	Comments
[7:3]	CR/CSR_Base[23:19]	R	0	VME CR/CSR Base Address. Dependant on the VME 64x Mode SwitchON- = GA Geographic Address -OFF- = Switch Group_A[5:1]	Refer to VME64 Specification
[2:0]	Reserved	R	0	Not used	Refer to VME64 Specification

3.3.18 VME64x CR Configuration ROM

The PEV_1100 implements the Configuration ROM. A 2 KBytes ROM stores the VME64X parameters and is made available through the CR space.

2011-12-21 - PEV_1100 PCI	109/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.4 Shared_Memory & IDMAC CSR Resources

The SMEM-IDMA CSR Resources mapping is provided in following table.

Offset IBUS	Size	Register_Name	Description	Comments
0x800 - 0x803	0x4	SMEM_DDR2_CSR	Four port DDR2 Controller Control & Status	
0x804 - 0x807	0x4	SMEM_DDR2_ERR	DDR2 Addressing Error status	
0x840 - 0x843	0x4	IDMA_GCSR	IDMA Global CSR	
0x850 - 0x843	0X4	IDMA_RD_0_PCSR	Pipeline Register	
0x880 - 0x88F	0x10	IDMA_ITC	Intelligent DMA & Shared Memory Interrupt Controller	
0x900 - 0x903	0x4	IDMA_RD_0_CSR	IDMA Read Engine #0 Control&Status	
0x904 - 0x907	0x4	IDMA_RD_0_NDES	IDMA Read Engine #0 Next DMA_Descriptor Pointer	
0x908 - 0x90b	0x4	IDMA_RD_0_CDES	IDMA Read Engine #0 Current DMA_Descriptor Pointer	
0x90c - 0x90F	0x4	IDMA_RD_0_WCNT	IDMA Read Engine #0 WCNT and DMA Operation Status	
0x940 - 0x94F	0x10	IDMA_RD_1_XXX	IDMA Read Engine #1 Registers	
0xA00 - 0xA0F	0x10	IDMA_WR_0_XXX	IDMA Write Engine #0Registers	
0xA40 - 0xA4F	0x10	IDMA_WR_1_XXX	IDMA Write Engine #1 Registers	

Table 3.8.: SMEM – IDMA IO_Bus resource

3.4.1 SMEM_DDR2 Register

This register provides control and status informations related to the local Shared Memory DDR2 Controller.

1	M_DDR2_CSR is: 0x800 - 0x803	DDI	R2 S	MEM Control & Status	
Bit[]	Function	R/W	Rese t	Description	Comments
[0]	ddr2_REFRATE	RW	0	DDR2 Refresh Rate control. = 0 : 7.8[us]. For commercial temperature up to 70 °C = 1 : 3.9[us]. Required in extended temperature range up to 85 °C	
[1]	ddr2_REFMODE	RW	0	DDR2 Refresh Mode control. = 0 : DDR2 Refresh executed one at the time = 1 : DDR2 Refresh executed in burst of eight consecutive.	
[3:2]	ddr2_SIZE[1:0]	R		PEV implemented DDR2 Size. = 01 : 256 MBytes = 10 : 512 MBytes = 11 : 1 GBytes.	

2011-12-21 - PEV_1100 PCI	110/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

	SMEM_DDR2_CSR IO_Bus: 0x800 - 0x803		R2 S	MEM Control & Status	
[7:4]	ddr2_ARBMODE[1:0]	RW	00	DDR2 Multi port access policy. The arbitration policy sharing the DDR2 memory array is determined by :	
				= 0000 : Round Robin with READ priority over WRITE. = 0001 : Round Robin with READ and WRITE. as same priority level. = 0010 : High priority on Port_A (Shared Memory mapped on the Central Switch). Others : Reserved for application specific RT policy.	
[11:8]	ddr2_MASK[3:0]	RW	0x0	Individual Port masking. Allows to dynamically Enable/Disable the READ and WRITE pending request to the DDR2 Memory Controller.	
[12]	RD_Cache_ENA	RW	0	READ Ahead cache Global Enable. While set, the 4 KBytes READ ahead logic is activated.	
[13]	DDR2_Ctr_ENA	RW	1	DDR2 Controller Global Enable. While set, the DDR2 controller is activated. This control bit can be RESET to force the DDR2 inactive.	Reserved for DDR2 debugging.
[15:14]	Reserved				
[16]	MREADY	R	0	DDR2 Controller Ready. The DDR2 initialization process is ended and is ready to accept READ or WRITE transaction.	
[17]	DLL_Locked	R	0	DDR2 associated DCM (DLL) is locked. OK	Status information on
[18]	DLY_Ready	R	0	DDR2 IO Delay controller is ready OK	FPGA macro function
[23:19]	Reserved	RW	0	Not implemented	
[31:24]	Reserved	RW			

3.4.2 SMEM_DDR2_ERR Register

This register provides flag status informations related to reported Error in Shared Memory DDR2 Controller.

SMEI IO_Bu	DDR2 SMEM Error				
Bit[]	Function	R/W	Rese t	Description	Comments
[0]	WR_Address_Error	RWc	'0'	Addressing Error on Write access	
[1]	RD_Address_Error	RWc	'0'	Addressing Error on Read access	
[31:02]	Reserved	R	'0'	Not used	

1890

1900

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.5 PEV Intelligent DMA Controller

A single global IDMA register provides general control and status. Each IDMA Engine owns four control & status registers, mapped on the IO_Bus infrastructure. following table sums up the current implementation.

Register	Register description	Read_0	Read_1	Write_0	Write_1
GCSR	Global IDMA CSR		3x0	340	
PCSR	Trigger Pipeline	0x850	0x854	0x858	0x85C
CSR	General Control & Status Information	0x900	0x940	0xA00	0xA40
NDES	NEXT DMA_Descriptor pointer. 32-bit Address to local DDR2 SMEM	0x904	0x944	0xA04	0xA44
CDES	CURRENT DMA_Descriptor pointer.	0x908	0x948	0xA08	0xA48
DCNT	DMA DW counter and runtime status	0x90c	0x94c	0xA0c	0xA4c

Table 3.9.: IDMA Registers mapping

Provision is made to extend the DMAC subsystem to eight engines. Future implementation could need additional DMA channels.

3.5.1 IDMA_GCSR Register

This register provides general control and status informations, related to the complete DMA function. (READ_Engines and WRITE_Engines)

IO_I	IDMA Global GCSR				
Bit[]	Function	R/W	Reset	Description	Comments
[0]	Read_Response_ERRF F	RWc	0	Read_Response error detected. This flag remains set until clear with write '1' over it. Corrupted Completion TLB (Read_response Bad Completion TLB sequence Unexpected Completion TLB	
[1]	Read_Timeout_ERRFF	RWc	0	Read_Response time-out detected. This flag remains set until clear with write '1' over it. No Read_Response after 500[us]. Current TLP is aborted.	
[2]	Reserved	R	0	Not used	Reserved
[3]	Read_Response_STA[3]	RWc	0	TLP Header Invalid.	
[4]	Read_Response_STA[4]	RWc	0	TLP Tag Signature Invalid.	
[5]	Read_Response_STA[5]	RWc	0	TLP Acknowledge Type unsupported.	
[6]	Read_Response_STA[6]	RWc	0	DMA Channel not active.	
[7]	Read_Response_STA[7]	RWc	0	DMA Channel No Read Request pending.	
[29:8]	Reserved	R	0	Not used	
[30]	Read_Timeout_ENA	RW	1	Read-Request – Read-Response 5000[us] time-	

2011-12-21 - PEV_1100 PCI	112/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

IO_	IDMA Global GCSR				
				out enable. The time-out logic can be disabled	
[31]	Global_IDMA	RW	1	When '1', enable the four IDMA Engines	

3.5.2 IDMA_XX_N_PCSR Register

These registers provide general control and status informations related to the DMA Pipeline operation. Each RD_Engine or WR_Engine own a dedicated PCSR Register.

IO_E IO_E	A_XX_N_PCSR Bus: 0x850 RD_0 Bus: 0x854 RD_1 Bus: 0x858 WR_0 Bus: 0x85C WR_1	IDM	A En	gine Pipeline Trigger TCSR	
Bit[]	Function	R/W	Reset	Description	Comments
[5:0]	Trigger_PIPE_CNT[5:0]	R	0x00	6-bit Trigger IN Pipeline counter. Each Engine owns this event counter, but are managed differently for RD_Engine and WR_Engine. For RD_Engine T rigger_PIPE_CNT INC on Trigger_IN condition DEC on DMA_Descriptor execution For WR_Engine T rigger_PIPE_CNT INC on DMA_Descriptor execution DEC on Trigger_IN condition	New IDMA mode of operation allowing to pipeline WR_Engine RD_Engine with embedded ring-buffer management.
[7:6]	Trigger_PIPE_MAX[1:0]	RW	0b00	Define WR_Engine maximal ring-buffer entries. Condition the DMA_Descriptor start execution. 00	Not used for RD_Engine
[9:8]	Trigger_INSEL[1:0]	RW	00	Trigger_IN Counter increment selection : 00 RD_Engine #0 Trigger_OUT 01 RD_Engine #1 Trigger_OUT 10 WR_Engine #0 Trigger_OUT 11 WR_Engine #1 Trigger_OUT	
[15]	Trig_PIPE_Enable	RW	0	Trigger_PIPE Enable = 0 : Disable IDMA Trigger_IN Pipeline (CNT) = 1 : Enable IDMA Trigger_IN Pipeline (CNT) While enabled, the IDMA Start_Mode is conditioned by the value of the	

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

IO_E IO_E IO_E	A_XX_N_PCSR Bus: 0x850 RD_0 Bus: 0x854 RD_1 Bus: 0x858 WR_0 Bus: 0x85C WR_1	IDM	IA En	gine Pipeline Trigger TCSR	
				Trigger_PIPE_CNT	
[31:16]	Reserved	R	0x000 0	Not used	

3.5.3 IDMA_XX_N_CSR Register

This register provides general control and status informations related to the DMA Execution

	A_RD_0_CSR is: 0x900 - 0x903	IDM	DMA RD_Engine #N Control & Status			
Bit[]	Function	R/W	Rese t	Description	1	Comments
[0]	des_ext_PORT	R	0	DMA Descri	ptor DW0 status information	
[2:1]	ext_ADD_Mode[1:0]	R	00	DMA Descri	ptor DW0 status information	
[3]	ext_RDERR	R	0	DMA Descri	ptor DW0 status information	
[4]	ext_SNOOP	R	0	DMA Descri	ptor DW0 status information	
[5]	ext_RELAX	R	0	DMA Descri	ptor DW0 status information	
[7:6]	ext_AT	R	00	DMA Descri	ptor DW0 status information	
[9:8]	smem_ADD_Mode[1:0	R	00	DMA Descriptor DW0 status information		
[11:10]	trig_OUTGEN	R	00	DMA Descriptor DW0 status information		
[13:12]	Update_MOD[1:0]	R	00	DMA Descriptor DW0 status information		
[15:14]	Reserved	R	00	Not used		
[17:16]	ext_ADDBND	R	00	DMA Descriptor DW0 status information (Address boundary)		
[19:18]	ext_PSIZ	R	00	DMA Descriptor DW0 status information (Packet size)		
[21.20]	idma_CH_NB	R	TBC	DMA Chann	el Number (0 to 3)	IDMA Channel
[22]	idma_RDENG	R	TBC	DMA READ	Engine	Signature information
[23]	idma_WRENG	R	TBC	DMA WRITE	E Engine	
[26:24]	idma_FSM_DESMGT	R	000		eld provides current state information "EXEC" State Machine.	
				000	Idle	
				001	DMA Descriptor fetch Request	
				010	Update DMA Descriptor fetched	
				011	Wait for trigger to start the DMA Descriptor execution.	
				100	DMA Descriptor execution in progress.	
				101	Next DMA Descriptor evaluation (Continue, Stop or Abort)	
				110	Current DMA Descriptor Update in	

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

IDMA_RD_0_CSR IO_Bus: 0x900 - 0x903		IDMA RD_Engine #N Control & Status				
				progress. (Write back GTIOM and Status)		
				111 Reserved		
[27]	idma_CACHE	RW	0	DMA Cache Enable. When set, the local DPRAM cache DMA_Descriptor is enabled		
[28]	idma_SUSPEND	RW 0 DMA Channel SUSPEND, while set the DMA activity is stopped and resumed while the control bit is reset		activity is stopped and resumed while the control		
[29]	idma_ABORT	RW	0	The current DMA Channel activity is aborted. The Read process is immediately stopped but data already in the DPRAM buffer are written to the destination. WARNING This control shall be SET-RESET under software control.		
[30]	idma_KILL	RW	0	The current DMA Channel activity is immediately stopped and data in the local DPRAM buffer are flushed. WARNING This control shall be SET-RESET under software control.		
[31	idma_ENABLE	RW	0	The DMA channel is enabled and ready to receive a 1st load in the IDMA_XX_N_NDES Register (Start of chain). This global control also enable the chaining of following DMA_descriptor		

3.5.4 IDMA_XX_N_NDES Register

This register provides the address pointer of the next DMA_Descriptor. At the end of execution of the current IDMA process, this pointer will be used to fetch next DMA_Descriptor.

	RD_0_NDES is: 0x904 - 0x907	IDMA RD_Engine #n Next DMA_Descriptor Pointer					
Bit[]	Function	R/W	Rese t	Description	Comments		
[2:0]	N_START	RW		Next DMA Descriptor START Option. Determine how the DMA_Descriptor will begin its execution.			
[3]	Reserved	RW		Not used			
[4]	C_LAST	RW		Current DMA Descriptor LAST Indicator			
[31:5]	N_DMA_Desc[31:5]	RW		Next DMA Descriptor SMEM address pointer			

3.5.5 IDMA_XX_N_CDES Register

1910

This register provides the address pointer of the current (in progress) DMA_Descriptor. This register is a copy of previous one "IDMA_XX_N_NDES" while a new DMA_Descriptor is loaded.

Express to VME64 Bridge	2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	115/135	P_PCIE-VME_AF_HSID_B0
-------------------------	--	---------	-----------------------

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

	RD_0_CDES s: 0x908 - 0x90B	IDMA RD_Engine #n Current DMA_Descriptor Pointer				
Bit[]	Function	R/W	Rese t	Description	Comments	
[2:0]	C_START	R		Current DMA Descriptor START Option. Determine how the DMA_Descriptor has begun its execution.		
[3]	Reserved	R		Not used		
[4]	C_LAST	R		Useless		
[31:5]	C_DMA_Desc[31:5]	R		Current DMA Descriptor SMEM address pointer		

3.5.6 IDMA_XX_N_DCNT Register

This register provides information on current DMA process. This includes the current DW word counter and complementary real-time status.

	RD_0_DCNT s: 0x90C - 0x90F	IDM	IDMA RD_Engine #n DMA DW Counter				
Bit[]	Function	R/W	Res et	Description	Comments		
[0]	idma_Error_WRITE	R	0	Status flag information			
[1]	idma_Error_READ	R	0	Status flag information			
[23:2]	dma_WCNT[23:2]	R		Current DMA DW word counter.			
[25:24]	idma_FSM_RDCTL	R	00	This 2-bit field provides current state information of the IDMA READ controller State Machine.			
				00 Idle			
				01 READ Evaluate best OP			
				10 READ transaction running			
				11 READ process is terminated, Wait for end of WRITE process. Need to empty FIFO buffer.			
[27:26]	idma_FSM_WRCTL	R	00	This 2-bit field provides current state information of the IDMA READ controller State Machine.			
				00 Idle			
				01 WRITE Evaluate best OP			
				10 WRITE transaction running			
				11 WRITE process is terminated.			
[28]	Reserved	R		Not used			
[31:29]	idma_STATUS[2:0]	R	000	Real-time DMA operation status			
				-			
				000 Idle			
				001 1st DMA_Descriptor on wait			
				010 DMA In Progress (Running even			

2011-12-21 - PEV_1100 PCI
Express to VME64 Bridge

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

IDMA_RD_0_DCNT IO_Bus: 0x90C - 0x90F	IDMA R	D_Engin	ne #n DMA DW Counter	
			Descriptor)	
		011	DMA In Progress (Running odd Descriptor)	
		100	DMA Ended OK.	
		101	DMA Ended KILL/ABORT.	
		110	DMA Ended ERROR_Read/Write.	
		111	DMA Ended ERROR with out of range SMEM addressing	

3.5.7 SMEMIDMA Block Interrupt Allocation

This SMEM IDMA Block ITC16 controller manage following interrupt sources

- IDMA Write Engine Normal END / ERROR
- IDMA Read Engine Normal END / ERROR

Following table sums up the USER Block Interrupt source allocation

ITC INT#	Mode	Assignation	Comments
#0	LEVEL	IDMA Read Engine #0 Normal END	
#1	LEVEL	IDMA Read Engine #0 ERROR	
#2	LEVEL	IDMA Read Engine #1 Normal END	
#3	LEVEL	IDMA Read Engine #1 ERROR	
#4	LEVEL	IDMA Write Engine #0 Normal END	
#5	LEVEL	IDMA Write Engine #0 ERROR	
#6	LEVEL	IDMA Write Engine #1 Normal END	
#7	LEVEL	IDMA Write Engine #1 ERROR	
#8	LEVEL	Not used	
#9	LEVEL	Not used	
#10	LEVEL	Not used	
#11	LEVEL	Not used	
#12	LEVEL	Not used	
#13	LEVEL	Not used	
#14	EDGE	Not used	
#15	EDGE	Not used	

Table 3.10. : IDMA ITC Interrupt Sources

2011-12-21 - PEV_1100 PC	I
Express to VME64 Bridge	

1935

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.5.8 DMA_Descriptor Element

The DMA Engines (READ and WRITE) executes chained list of DMA_Descriptor. Each DMA_Descriptor owns a complete sub DMA operation description. Same chained list of DMA_Descriptor can be executed by the Read and Write Engine. The DMA Engines fetch and executes only DMA_Descriptor located in the Shared Memory (256 to 1024 MBytes)

Each DMA_Descriptor is composed of eight consecutive 32-bit words (32 Bytes) aligned on 32 Bytes boundary. The first six DW are only read by the DMA engines and the 7th and 8th DW can also be write back with update to the SMEM Memory.

1930 DW_0 : Main Control

DW_1 : Word Counter and Address Management

DW_2 : Shared Memory Address pointer.

DW_3 : Next Descriptor Address pointer.

DW_4 : External Address Low pointer.

DW_5 : External Address High pointer.

DW_6 : Signature and Time Stamping UPDATE

DW_7 : 32-bit Time stamping from Global Timer UPDATE (c.f VME64X Interface)

Following table provides complete DMA_Descriptor description.

Ass.	Name	Description	Comments	Note
DW_0 Mai	n Engine Control			
0 : <0>	ext_Port	Select the DMA DIRECT Port	Only available for IDMA Channel #0	
		0 Normal, Central SWITCH port		
		1 DIRECT Port		
0 : <2:1> ext_ADD_Mode[1:0]		External Address (64-bit) Address Control. This 2-bit field support :	The No_Increment Mode supports FIFO based interface read-out.	
		00 Normal Update.		
		01 No Update. Previous ext_ADD[63:2] is used as the new address pointer		
		10 No_Increment. (with normal Update)		
		1x Reserved		
0 : <3>	ext_DMAERR	External DMA Error Bypass		
		O Abort current Operation, Finish current write data and stop the DMA chaining		
		+ Continue with next DMA_Descriptor		
0 : <4>	ext_SNOOP	PCI Express Target Memory Snooping Enabl		
		/ Disable. Defined by the PCI Express	coherency policy	

P_PCIE-VME_AF_HSID_B0

Ass.	Name		Description	Comments	Note
		specifi	cation.		
0 : <5>	ext_RELAX	transac	press Relax ordering. READ ction tagged with ext_RELAX are zed to pass pending WRITE. Defined PCI Express specification.	Refer to PCI Express 2.0 Specification.	
0 : <7:6>	ext_AT[1:0]		press Address Translation Mode. d by the PCI Express specification.	Refer to PCI Express 2.0 Specification.	
0 : <9:8>	smem_ADD_Mod[1:0]	field se	Memory Address Mode. This 2-bit elect the Shared Memory Address update operation.	The No_Update mode allows to built/consume continuous data structure in the Shared Memory, with	
	00	Normal Update. smem_ADD[31:2] is used as the new pointer	external non-continuous data.		
		01	No_Update. The smem_ADD[31:2] is not used. Current value, usually defined by previous DMA_Descriptor	The Add_Update mode allows to implement generic DMA_Descriptor	
		10	Add_Update. The smem_ADD[31:2] is added to the current value.	for data collection. 1 st element can define the	
		1x	Reserved	start of data structure and subsequent with relative offset.	
0 : <11:10> trig_ (trig_OUTGEN		-bit field selects the FRIG_OUT[n] generation.	Each Engine own its idma_TRIG_OUT[n] field encoding :	
		00	No generation		
		01	Reserved		
		10	TRIG_OUT generated at Start of DMA_Descriptor execution .		
		11	TRIG_OUT generated at End of DMA_Descriptor execution .		
0 : <13:12>	Update_Mode[1:0]		Descriptor Update Policy. This 2-bit etermines the related policy.	At the end of a DMA Descriptor execution, the two last DW of currently	
		00	No Update DMA Descriptor DW6&7	executed DMA Descriptor	
		10	Update with :	can be updated (write- back) with specific informations as : • Global Time	
		11	Update with : DW6 = DMA_Error[3:0] + Signature_ID[7:0] + WCNT[23:2] + DMA_Error[1:0] DW7 = GTIM High (1KHz)	Current WNCT value DMA Error Status flag	
		01	Reserved		
0 : <15:14>	Interrupt_mode[1:0]		ption generation control. This 2-bit field interrupt is	Interrupt can be programmed for each DMA_Descriptor.	

P_PCIE-VME_AF_HSID_B0

Ass.	Name	Description	Comments	Note
		00 Interrupt disabled		
		01 Interrupt End generated at sexecution of current DMA_E		
		10 Interrupt End generated at execution of current DMA_E		
		11 Interrupt Error + End gener of execution of current DMA		
0 : <17:16>	ext_ADDBND[1:0]	External SWITCH Boundary size field shall specify address bound rule.		
		00 4 KBytes (PCI Express rule	parameter, the	
		01 2 KBytes VME64x 2eVME+	2eSST ext_ADDBND[1:0] field shall be set according.	
		10 1 KBytes VME MBLT/BLT64	4	
		11 256 Bytes VME BLT/BLT32		
0 : <19:18>	ext_PSIZ[1:0]	External SWITCH maximum Pac	cket size. On actual INTEL/AMD chip-set implementation,	
		00 128 Bytes	the PCI Express, MAXPAYLOADSIZE is	
		01 256 Bytes	limited to 128 or 256 Bytes.	
		10 512 Bytes	This can have a bad impact on the PCI Express	
		11 1 KBytes	bandwidth performance.	
0 : <22:20>	ext_TC[2:0]	External PCI Express Traffic Cla by the PCI Express specification		
0:<23>	Reserved	Not used		
0 : <25:24>	max_OUT_RR	Maximal Outstanding Read_Recapplicable for WR_Engine)	Allow to control, per DMA Descriptor, the Read_Request pipeline	
		00 1* Read_Request	depth.	
		01 2* Read_Request	Remote Host System memory read will require	
		10 3* Read_Request	pipeline on Read_Request (multiple issued) to	
		11 4* Read_Request (To be ve	optimize the PCI Express performance	
0 : <27:26>	dst_SWAP	Destination Swapping policy. The implements the 2-bit swapping coby the Destination Agent_SW		

P_PCIE-VME_AF_HSID_B0

Ass.	Name		Description	Comments	Not
		00	No Swapping		
		01	LITTLE to BIG Endian Automatic Swapping BYTE: No Swapping WORD: D16 word swapping DW: BYTE & WORD Swapping		
		10	DW BYTE & WORD Swapping		
		11	DW swapping in QW access		
0 : <31:28>	Reserved	Not use	ed		
DW_1 Wo	rd Counter				
1 : <1:0>	Reserved	Not use	ed, fixed to b"00"	Only DW DMA count	
1 : <23:2>	dma_WCNT	DMA S	ize. 22-bit DW counter allowing to built peration over 16 MBytes – 4.	-	
1 : <26:24>	SW_Agent	Agent_	SW Destination/Source Address	For READ_Engine, defines the Agent_SW Destination.	
		000	PCI Express EP	For WRITE_Engine,	
		001	VM64X	defines the Agent_SW	
		010	DDR2 Shared Memory	Source.	
		011	USER		
		1xx	Reserved		
1 : <27>	Reserved		red for larger Central_SW	PEV_1100 implement a 4-ports Central_SW.	
1 : <31:28>	Ext_Type[3:0]		SW Destination Address TYPE, used de specific addressing mode	i.e VME AM	
DW_2 Sha	ared Memory Addres	s Pointer			
2 : <1:0>	smem_RQoS[1:0]	Local S	MEM Read maximum burst size.	Capability to limit the READ bursting size.	
		00	2 KBytes		
		01	1 KBytes		
		10	512 Bytes		
		11	256 Bytes		
2 : <31:2>	smem_ADD[31:2]	Shared	Memory Address Pointer	This field can also be used	
DW_3 Nex	kt DMA_Descriptor P	ointer			
3: <2:0>	Start_Mode[2:0]	3-bit fie	t DMA Descriptor Execution Start. This eld defined the execution beginning of DMA Descriptor.	While the current DMA_Descriptor is fetched, its execution start is conditioned by following	
				field.	
		000	Immediate Execution.		
		000	Immediate Execution. Wait on next Global Time synchronization	The Start Trigger on Global Timer TIC allows to define	
			Wait on next Global Time	The Start Trigger on Global	

P_PCIE-VME_AF_HSID_B0

Ass.	Name	Description	Comments	Note
3: <3>	Reserved	000 Immediate Execution. 100 Wait on local DMA Trigger_IN #1 event or if Trigger_PIPE_Enable= '1', wait on • Trigger_PIPE_CNT /= "000000" for RD_Engine • Trigger_PIPE_CNT <= "100000" for WR_Engine 101 Wait on local DMA Trigger_IN #2 event 110 Wait on local DMA Trigger_IN #3 event 111 Wait on local DMA Trigger_IN #4 event	GPIO Events, #1, #2 are reserved for external trigger condition defined in the USER area. The local DMA Trigger #1,2,3,4 are controlled directly by the DMA Engine.	
3: <4>	Last_DESC	Last Descriptor Execution. While set, the current DMA_Descriptor chain is stopped. O Continue DMA Descriptor execution. Last DMA Descriptor, STOP after current execution		
3: <31:5>	Next_ADD	Shared Memory Next DMA_Descriptor pointer		
DW_4 Exte	ernal Low Address (A	ddress pointer to VME64x, PCI Express	and USER Central_SW A	gent)
4: <1:0>	Reserved			
4: <31:2>	Ext_ADD[31:2]	LSB External Address Pointer		
DW_5 Exte	ernal High Address (A	ddress pointer to VME64x, PCI Express	and USER Central_SW A	Agent)
5 : <31:0>	Ext_ADD[63:32]	MSB External Address pointer.	The high address section is not incremented on Low Address roll-over. Software shall handle the 4 GBytes roll-over	
DW_6 Glob	oal Time			'
6a: <16:0>	G_Time_CNT2[16:0]	High speed Global timer section, providing intra millisecond time information. Frequency/precision can be selected from 1, 5, 25 or 125 MHz.	The precision selection is determined with control bits located in the VME64x section.	(1)
6a: <23:17>	Reserved	Not used		
6a : <31:24>	Sequence_ID[7:0]	This 8-bit field is read with the DMA_Descriptor fetch and write back, incremented by 1, at the end of the current DMA_Descriptor execution.	Debugging facilities allowing to track the DMA_Descriptor execution.	
6b: <23:0>	Current_WCNT[23:0]	Current word counter WCNT		
6b : <31:24>	Sequence_ID[7:0]	Idem as 6a		
DW_7 Glob	oal Time 32-bit 1 [ms]	synchronized		
7 : <31:0>	G_Time_CNT1[31:0]	32-bit Global Timer millisecond counter timer. At the end of the current DMA_Descriptor execution, a copy of the Global Timer is write back to the Shared Memory, at location of the original	The write-back capability to SMEM can be enabled/disabled with control field in 1st DW	(1)

Table 3.11.: IDMA Descriptor Format

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.6 USER CSR Resources

The USER CSR Resources are mapped on the IO Bus interface as:

IO_Bus 1 KBytes Device#4 (0xC00-0xFFF)

The USER CSR Registers & Resources implements control and status registers for following functions

- GPIO programmable control
- · Message Passing FIFO

The following tables sums up the USER Private Register Mapping.

Offset IO_BUS	Size	Register_Name	Description	Comments
0xC00 - 0xC03	0x4	GPIO_A_OUT	GPIO Group_A OUTPUT Register	
0xC04 - 0xC07	0x4	GPIO_A_ENA	GPIO Group_A TRI-STATE Register	
0xC08 - 0xC0B	0x4	GPIO_A_IN	GPIO Group_A INPUT Register	
0xC0C - 0xC0F	0x4	GPIO_A_POL	GPIO Group_A POLARITY Interrupt Register	
0xC10 - 0xC13	0x4	GPIO_B_OUT	GPIO Group_B OUTPUT Register	
0xC14 - 0xC17	0x4	GPIO_B_ENA	GPIO Group_B TRI-STATE Register	
0xC18 - 0xC1B	0x4	GPIO_B_IN	GPIO Group_B INPUT Register	
0xC1C - 0xC1F	0x4	GPIO_B_POL	GPIO Group_A POLARITY Interrupt Register	
0xC20 - 0xC23	0x4	Msg_FIFO_CTL_0	Message FIFO#0 Control & Status	Cassidian specific
0xC24 - 0xC27	0x4	Msg_FIFO_CTL_1	Message FIFO#1 Control & Status	Cassidian specific
0xC28 - 0xC2B	0x4	Msg_FIFO_CTL_2	Message FIFO#2 Control & Status	Cassidian specific
0xC2C - 0xC2F	0x4	Msg_FIFO_CTL_3	Message FIFO#3 Control & Status	Cassidian specific
0xC30 - 0xC33	0x4	Msg_FIFO_Port_0	Message FIFO#0 Control & Status IO Port	Cassidian specific
0xC34 - 0xC37	0x4	Msg_FIFO_Port_1	Message FIFO#1 Control & Status IO Port	Cassidian specific
0xC38 - 0xC3B	0x4	Msg_FIFO_Port_2	Message FIFO#2 Control & Status IO Port	Cassidian specific
0xC3C - 0xC3F	0x4	Msg_FIFO_Port_3	Message FIFO#3 Control & Status IO Port	Cassidian specific
0xC40 - 0xC7F	0x30	Reserved	Not implemented	
0xC80-0xC8F	0x10	USER_ITC	USER ITC Interrupt Pending	Refer to ITC chapter
0xC90 - 0xF7F	0x30	Reserved	Not implemented	
0xF80 - 0xFFF	0x80	Signature_ROM	Defined ROM area for software signature	

Table 3.12.: USER Register Description (Cassidian MAS specific)

Note This default mapping could be replaced any time by custom specific implementation.

3.6.1 User GPIO_A Output Register

This register allows to define the Output level on GPIO[32:1] (Port_A)

2011-12-21 - PEV_1100 PCI	123/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

1	PIO_A_OUT s : 0xC00 - 0xC03	GPI	O G	roup_A OUTPUT Register	
Bit[]	Function	R/W	Res et	Description	Comments
[31:0]	GPIO_A_OUT[31:0]	RW	0	Define the OUTPUT level for each GPIO Group_A Control Bit <0>: GPIO[1] <31>: GPIO[32]	

3.6.2 User GPIO_A Enable Register

This register allows to define the direction (Input or Output) on GPIO[32:1] (Port_A)

GPIO_A_ENA IO_Bus: 0xC04 - 0xC07		GPIO Group_A ENABLE Register			
Bit[]	Function	R/W	Res et	Description	Comments
[31:0]	GPIO_A_ENA[31:0]	RW	0	Define the DIRECTION for each GPIO Group_A. While '1' defined as Output, '0' as Input. <0>: GPIO[1] <31>: GPIO[32]	

3.6.3 User GPIO_A Input Register

This register allows to read the level on GPIO[32:1] (Port_A)

	GPIO_A_IN IO_Bus: 0xC08 - 0xC0B		GPIO Group_A INPUT Register				
Bit[]	Function	R/W	Res et	Description	Comments		
[31:0]	GPIO_A_IN[31:0]	R	0	Direct status information <0> : GPIO[1] <31> : GPIO[32]			

1960 3.6.4 User GPIO_A INT POLARITY Register

This register allows to control the polarity of GPIO_A_IN[3:0] send to the ITC16 Interrupt controller.

	PIO_A_POL s : 0xC08 - 0xC0B	GPI	O Gı	roup_A INT POLARITY Register	
Bit[]	Function	R/W	Res et	Description	Comments

2011-12-21 - PEV_1100 PCI	124/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

1	GPIO_A_POL IO_Bus: 0xC08 - 0xC0B			Group_A INT POLARITY Register			
[3:0]	GPIO_A_POL[3:0]	RW	0	Direct status information <0> : GPIO_POL[1]	Cassidian specific		
				 <3> : GPIO_POL[3]			
[31:4]	Reserved	R	0	Not used			

3.6.5 User GPIO_B Output Register

This register allows to define the Output level on GPIO[64:33] (Port_B)

GF IO_Bus	GPIO Group_B OUTPUT Register				
Bit[]	Function	R/W	Res et	Description	Comments
[31:0]	GPIO_A_OUT[31:0]	RW	0	Define the OUTPUT level for each GPIO Group_B Control Bit <0>: GPIO[33] <31>: GPIO[64]	

3.6.6 User GPIO_B Enable Register

This register allows to define the direction (Input or Output) on GPIO[64:33] (Port_B)

GF IO_Bu	GPIO Group_B ENABLE Register				
Bit[]	Function	R/W	Res et	Description	Comments
[31:0]	GPIO_B_ENA[31:0]	RW	0	Define the DIRECTION for each GPIO Group_B. While '1' defined as Output, '0' as Input. <0>: GPIO[33] <31>: GPIO[64]	

3.6.7 User GPIO_B Input Register

This register allows to read the level on GPIO[64:33] (Port_B)

IO_Bu	GPIO Group_B ENABLE Register				
Bit[]	Function	R/W	Res et	Description	Comments
[31:0]	GPIO_A_IN[31:0]	R	0	Direct status information <0> : GPIO[33]	

2011-12-21 - PEV_1100 PCI	125/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

SPIO_B_IN s : 0xC18 - 0xC1B	GPI	O G	roup_B ENABLE Register	
			<31> : GPIO[64]	

3.6.8 User GPIO_B INT POLARITY Register

This register allows to control the polarity of GPIO_A_IN[3:0] send to the ITC16 Interrupt controller.

GF IO_Bus	GPIO Group_B INT POLARITY Register				
Bit[]	Function	R/W	Res et	Description	Comments
[3:0]	GPIO_A_POL[3:0]	RW	0	Direct status information <0> : GPIO_POL[1] <3> : GPIO_POL[3]	Cassidian specific
[31:4]	Reserved	R	0	Not used	

3.6.9 Message FIFO#N Control Registers

These four register provides control and status for the four Message Passing FIFO resources.

MSG_FIFO_CTL#N IO_Bus: 0xC30-0xC33 IO_Bus: 0xC34-0xC37 IO_Bus: 0xC38-0xC3B IO_Bus: 0xC3C-0xC3F		Message Passing FIFO#N Control Register Offset $+0x0 \rightarrow FIFO#0$ Offset $+0x4 \rightarrow FIFO#1$ Offset $+0x8 \rightarrow FIFO#2$ Offset $+0xC \rightarrow FIFO#3$				
Bit[]	Function	R/W	Reset	Description	Comments	
[7:0]	MSG_FIFO_WCNT[7:0]	R	0x00	Current Word counter. Provides the number of DW stored in the FIFO	Cassidian specific	
[15:8]	MSG_FIFO_WRPT[7:0]	R	0x00	Current SRAM Write Pointer	Cassidian specific	
[23:16]	MSG_FIFO_RDPT[7:0]	R	0x00	Current SRAM Read Pointer	Cassidian specific	
[24]	MSG_FIFO_NotEMPTY	R	0b0	FIFO Not_EMPTY flag. Set while WNCT /= 0x00	Cassidian specific	
[25]	MSG_FIFO_FULL	R	0b0	FIFO FULL flag. Set while WNCT = 0xFF	Cassidian specific	
[26]	Reserved	R	0b0	Not used		
[27]	MSG_FIFO_ERRF	RW	0b0	This flag status is positioned to '1' while a FIFO operation error is detected • WRITE to FIFO FULL. • Read from FIFO EMPTY This flag can be clear by writing '1' over it.	Cassidian specific	
[28]	MSG_FIFO_RESET	RW	0b0	Message Passing FIFO RESET. While written to '1' the FOFO control is reset. WCNT, WRPT and RDPT forced to 0x00.	Cassidian specific	
[29]	MSG_FIFO_TMEM_REA	RW	0b0	TOSCA MEMORY Access Message Passing FIFO read enabled.	Cassidian specific	

2011-12-21 - PEV_1100 PCI	126/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

1980

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

Ī	MSG_FIFO_CTL#N			Message Passing FIFO#N Control Register				
	IO_E	Bus: 0xC30-0xC33	(Offset $+0x0 \rightarrow FIFO\#0$				
	IO_E	Bus: 0xC34-0xC37	Offset +0x4 → FIFO#1					
	IO Bus: 0xC38-0xC3B			Offset +0x8 → FIFO#2				
	IO_Bus: 0xC3C-0xC3F			Offset +0xC → FIFO#3				
	[30]	MSG_FIFO_TMEM_WEA	RW	0b0	TOSCA MEMORY Access Message Passing FIFO write enabled.	Cassidian specific		
	[31]	MSG_FIFO_ENA	RW	0b0	Global Message Passing FIFO Enable. Applicable in both accessing pathway (IO_Bus and TMEM)	Cassidian specific		

3.6.10 Message FIFO IO Port

Each Message Passing FIFO own a single access port supporting Read and Write access. Erroneous access as Read FIFO Empty or Write FIFO Full

IO_E IO_E	Bus: 0xC20-0xC23 Bus: 0xC24-0xC27 Bus: 0xC28-0xC2B Bus: 0xC2C-0xC2B		Offset Offset Offset	Passing FIFO#N IO Port +0x0 → FIFO#0 +0x4 → FIFO#1 +0x8 → FIFO#2 +0xC → FIFO#3	
Bit[]	Function	R/W	Reset	Description	Comments
[31:0]	Message[31:0]	RW		Message port 32-bit WRITE → FIFO Load READ → FIFO Retrieve	Cassidian specific

3.6.11 USER Block Interrupt Allocation

This USER Block ITC16 controller manage following interrupt sources

- · Message passing FIFO flags FULL and NotEMPTY
- · GPIO inputs
- · Write Posting Error

Following table sums up the USER Block Interrupt source allocation

ITC INT#	Mode	Assignation	Comments
#0	LEVEL	MSG_FIFO#0_NotEMPTY	
#1	LEVEL	MSG_FIFO#1_NotEMPTY	
#2	LEVEL	MSG_FIFO#2_NotEMPTY	
#3	LEVEL	MSG_FIFO#3_NotEMPTY	
#4	LEVEL	MSG_FIFO#0_FULL	
#5	LEVEL	MSG_FIFO#1_FULL	
#6	LEVEL	MSG_FIFO#2_FULL	
#7	LEVEL	MSG_FIFO#3_FULL	

2011-12-21 - PEV_1100 PCI Express to VME64 Bridge	127/135	P_PCIE-VME_AF_HSID_B0

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

#8	LEVEL	GPIO_A_0 (PEV_1100 → Jn14_01)	
#9	LEVEL	GPIO_A_1 (PEV_1100 → Jn14_02)	
#10	LEVEL	GPIO_B_0 (PEV_1100 → Jn14_32)	
#11	LEVEL	GPIO_B_1 (PEV_1100 → Jn14_33)	
#12	LEVEL	GPIO_B_2 (PEV_1100 → Jn14_34)	
#13	LEVEL	GPIO_B_3 (PEV_1100 → Jn14_35)	
#14	EDGE	Message Passing FIFO Write Posted Error	
#15	EDGE	IO_Bus Bridge Write Posted Error	

Table 3.13. : USER Block ITC Interrupt Sources

3.6.12 User Signature_ROM

This area provides a non-volatile information related to the USER Block.

- Device_ID and Revision_ID.
- Any valuable software related information.

Signa IO_Bus	Sta	ndar	d ROM area		
Location	Function	R/W	Res et	Description	Comments
0x0:[31:0]		R		16-bit Function_ID 16-bit Revision_ID	
0x1:[31:0]				To Be defined	
0x1F:[31:0]		R		Checksum	

1985

2005

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.7 ITC Interrupt Controller

The ITC16 Interrupt controller owns four control registers. The PEV_1100 instantiates four ITC16 (one in each Agent SW)

Following table sums up the ITC16 resource mapping.

ITC Register	Local/PCIe	VME64x	SMEM/IDMAC	USER
IACK	0x080	0x480 (Reserved)	0x880 (Reserved)	0xc80 (Reserved)
CSR	0x084	0x484	0x884	0xC84
IMC	0x088	0x488	0x888	0xC88
IMS	0x08c	0x48c	0x88c	0xC8c

Table 3.14.: ITC Register IO_Bus mapping

In normal operation, only IACK#0 register is used. The "PCI Express MSI Generator" manages under hardware control the selection of the appropriate ITC IACK Register.

2000 3.7.1 ITC IACK Register

This register provides Interrupt vectorization on Read and selectable IP source clear on Write. Writing to the ITC_IACK register also restart the IP scanning, and therefore re-enable the Interrupt Controller.

ITC_IACK offset + 0x0		Inter	rupt A	Acknowledge Register	
Bit[]	Function	R/W	Reset	Description	Comments
[7:0]	Status_ID[7:0]	R	0x00	With AUTO_VEC = '0' : 0x00 With AUTO_VEC = '1' : VME Status_ID	AUTO_VEC only available on ITC VME.
[11:8]	IP_Src[3:0]	R	0x0	Encoded Interrupt Source. 0X0 is INT#0	
[13:12]	ITC_Src[1:0]	R	0b00	ITC Controller Source 00 : Local / PCI Express 01 : VME64X 10 : SMEM / IDMA 11 : USER	
[14]	Reserved	R	0b0	Not implemented	
[15]	vec_VALID	R		IACK Vector Valid	
[31:16]	IP_CLR[15:0]	W		Selective IP Clear	
[31:16]	IP[15:0]	R		Provide Interrupt Pending status information	

3.7.2 ITC CSR Register

This register provides general control & status informations.

2011-12-21 - PEV_1100 PCI	129/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

ITC_CSR offset + 0x4		Inter	rupt C	Control & Status Register	
Bit[]	Function	R/W	Reset	Description	Comments
[0]	GLENA	R/W	0b0	Global Enable 0 = ITC is disable, no MSI Request are issued 1 = ITC is enable. Unmasked IP issues	
[1]	GLCLR_IP	W	0b0	Command to clear all Interrupt pending IP	
[2]	AUTO_VEC	R/W	0b0	VME Automatic IACK. When set, on VME INT detection a VME IACK is automatically issued before. Only activated on VME ITC.	
[7:3]	Reserved	R		Not implemented	
[11:8]	Last_IPS[3:0]	R		Memorized last IP Served.	
[12]	Reserved	R		Not implemented	
[15:13]	IPC_State[2:0]	R		ITC FSM Status 000 Idle, 001 Scanning IP 010 MSI Request Pending, 011 MSI Request Acknowledge, 100 INT pending, wait for IACK 101 Wait on remote Clear IP 110 VME Auto-vector pending 111 VME Auto-vector executed	
[31:16]	IP_CLR[15:0]	W		Selective IP Clear	
[31:16]	IPM[15:0]	R		Provide Interrupt Pending Masked status information	IPM(i) = IP(i) and IM(i)

3.7.3 ITC IMC Register

This register provides direct Interrupt Mask CLEAR function.

	ITC_IMC offset + 0x8		rupt N	lask Clear	
Bit[]	Function	R/W	Reset	Description	Comments
[15:0]	IMC_[15:0]	R/WC	0xFFF F	Interrupt Mask Clear . Writing a bit '1', reset the selected Mask, Writing a bit '0' has no effect. Each bit is assigned to its relative location. Register READ provide Mask status = 0 : Interrupt Source is Enabled.(non masked) = 1 : Interrupt Source is Masked.	
[31:16]	IP[15:0]	R		Provide Interrupt Pending status information	

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

3.7.4 ITC IMS Register

This register provides direct Interrupt Mask SET function.

ITC_IMS offset + 0xC		Inter	rupt N	lask Set	
Bit[]	Function	R/W	Reset	Description	Comments
[15:0]	IMS_[15:0]	R/WS	0xFFF F	Interrupt Mask Set . Writing a bit '1', set the selected Mask, Writing a bit '0' has no effect. Each bit is assigned to its relative location. Register READ provide Mask status = 0 : Interrupt Source is Enabled.(non masked) = 1 : Interrupt Source is Masked.	
[31:16]	IPM[15:0]	R		Provide Interrupt Pending Masked status information	IPM(i) = IP(i) and $IM(i)$

2015

2020

2025

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME AF HSID B0

DOCUMENT STATUS
2.0

4 ANNEXES

4.1 Compressed 256 Bytes IO Space

To support PC BIOS with IO Space size limited to 256 bytes (as suggested by the PCI 3.0 Specification) a new PCI Express IO Space mapping has been defined.

This alternate IO Space mapping is enabled by positioning to '1' the mini-DIP switch SW502-2. (

Generic software can check the status of the switch SW502-2 in the "ILOC_STATIC" register to determine automatically the IO_Space mode activated.

The Compressed mode maps with following

- 1st region of thirty-two(32) key (most important) PEV_1100's registers
- 2nd region of Sixteen(16) registers supporting the four(4) ITC16 controllers
- 3rd egion of Sixteen(16) registers whose are r- allocable with a 2-bit selector field "Dyn_IOSEL[1:0]" located in the "ILOC_STATIC" register

Following tables provide the PCI Express IO_Space resource mapping while the "Compressed Mode" is enabled

- a) Fixed section mapping 48 registers. (32 +16)
- b) Dynamic section mapping four(4) times 16 registers

Offset IO_Space PCI	Size	Register_Name	Description	Comments			
	Key/Main Resources						
0x00 - 0x03	0x4	ILOC_STATIC	External Static Information (micro-switch & strapping)	Hold status information of static options			
0x04 - 0x07	0x4	ILOC_SIGN	Signature FPGA date of Creation 32-bit field				
0x08 - 0x0B	0x4	ILOC_GENCTL	General Control Register				
0x0C - 0x0F	0x4	PCIE_MMUADD	PCI Express INgress MMU Address pointer.				
0x10 - 0x13	0x4	PCIE_MMUDAT	PCI Express INgress MMU Data Register				
0x14 - 0x17	0x4	V5_SMON_ADDPT	VIRTEX-5 System Monitor Address Pointer				
0x18 - 0x1B	0x4	V5_SMON_DAT	VIRTEX-5 System Monitor Data Register				
0x1C - 0x1F	0x4	V5_SMON_STA	VIRTEX-5 System Monitor Status				
0x20 - 0x23	0x4	PVME_SLOT1	VME64X Slot-1 related functions as Arbiter, BTO and Static option switches status.				
0x24 - 0x27	0x4	PVME_MASCSR	VME64X Master Port related control and status				
0x28 - 0x2B	0x4	PVME_SLVCSR	VME64X Slave Port related control and status				
0x2C - 0x2F	0x4	PVME_INTG	VME64X Interrupt Generator				
0x30 - 0x33	0x4	PVME_MMUADD	VME64x INgress MMU Address pointer.				
0x34 - 0x37	0x4	PVME_MMUDAT	VME64x INgress MMU Data Register				

2011-12-21 - PEV_1100 PCI	132/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

P_PCIE-VME_AF_HSID_B0

Offset IO_Space PCI	Size	Register_Name	Description	Comments	
0x38 - 0x3B	0x4	PVME_LOCMON	VME64x Location Monitor Address		
0x3C - 0x3F	0x4	PVME_LOCK	VME64x ADOH & LOCK support	VME64x ADOH & LOCK support	
0x40 - 0x43	0x4	SMEM_DDR2_CSR	Four port DDR2 Controller Control & Status		
0x44 - 0x47	0x4	IDMA_GCSR	IDMA Global CSR		
0x48 - 0x4B	0x4	IDMA_RD_0_PCSR	IDMA Pipeline Control Register Read Engine #0		
0x4C - 0x4F	0x4	IDMA_WR_0_PCSR	IDMA Pipeline Control Register Write Engine #0		
0x50 - 0x53	0x4	IDMA_RD_0_CSR	IDMA Read Engine #0 Control&Status		
0x54 - 0x57	0x4	IDMA_RD_0_NDES	IDMA Read Engine #0 Next DMA_Descriptor Pointer		
0x58 - 0x5B	0x4	IDMA_RD_0_CDES	IDMA Read Engine #0 Current DMA_Descriptor Pointer		
0x5C - 0x5F	0x4	IDMA_RD_0_WCNT	IDMA Read Engine #0 WCNT and DMA Operation Status		
0x60 - 0x63	0x4	IDMA_WR_0_CSR	IDMA Write Engine #0 Control&Status		
0x64 - 0x67	0x4	IDMA_WR_0_NDES	IDMA Write Engine #0 Next DMA_Descriptor Pointer		
0x68 - 0x6B	0x4	IDMA_WR_0_CDES	IDMA Write Engine #0 Current DMA_Descriptor Pointer		
0x6C - 0x6F	0x4	IDMA_WR_0_WCNT	IDMA Write Engine #0 WCNT and DMA Operation Status		
0x70 - 0x73	0x4	PVME_GLTIM_CSR	Global Timer Control & Status Register		
0x74 - 0x77					
0x78 - 0x7B	0x4	PVME_GLTIM_CNT2	Global Timer Pre-scaler 17-bit		
0x7c - 0x7f	0x4	PVME_GLTIM_CNT1	Global Timer Main 32-bit counter (1 [ms]		
			0x4C - 0x4F		
0x80 - 0x83	0x4	PCIE_BE_ITC_IP	PCIE_BE ITC Interrupt Pending	ITC16 Controller PCIE Agent_SW	
0x84 - 0x87	0x4	PCIE_BE_ITC_IACK	PCIE_BE Local ITC Interrupt Acknowledge		
0x88 - 0x8B	0x4	PCIE_BE_ITC_IMC	PCIE_BE ITC Mask CLEAR Control Reg.		
0x8C - 0x8F	0x4	PCIE_BE_ITC_IMS	PCIE_BE ITC Mask SET Control Reg.		
0x90 - 0x9F	0x10	PVME_ITC	VME64x ITC Interrupt Controller	ITC16 Controller	
0xA0 - 0xAF	0x10	SMEMIDMA_ITC	SMEM-IDMA ITC Interrupt Controller	ITC16 Controller	
0xB0 - 0xBF	0x10	USER_ITC	USER ITC Interrupt Controller (optional)	ITC16 Controller	
Multiplexed Resources					
0xC0	0x4				
			REFER TO FOLLOWING TABLES		
0xFF	0x4				

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

2035 SEL_Multiplexed = $00 \rightarrow PCIE_EP Agent_SW$

0xC0 - 0xC3	0x4	ILOC_STATIC	External Static Information (micro-switch & strapping)	Hold status information of SW SW502-2
0xC4 - 0xC7	0x4	ILOC_CABLE_1	External PCI Express Connector #1	
0xC8 - 0xCC	0x4	ILOC_CABLE_2	External PCI Express Connector #2	
0xCC - 0xCF	0x4	ILOC_PONFSM	Power_ON FSM Sequencer Status	
0xD0 - 0xD3	0x4	ILOC_SPI	SPI Flash EPROM Bit programming	
0xD4 - 0xD7	0x4	ILOC_PCIE_SW	PCI Express Switch PEX8624 Control & Status	
0xD8 - 0xDC	0x4	PCIE_EPSTA	PCI Express EP Status	
0xDC - 0xDF	0x4	V5_PCIEP_ADDPT	VIRTEX-5 PCI Express EP Address Pointer	
0xE0 - 0xE3	0x4	V5_PCIEP_DAT	VIRTEX-5 PCI Express EP Data Register	
0xE4 - 0xE7	0x4	V5_PCIEP_SEL	VIRTEX-5 PCI Express EP Status Selection	
0xE8 - 0xEC	0x4	V5_PCIEP_RSLT	VIRTEX-5 PCI Express EP Selection Result	
0xEC - 0xEF	0x4	PMCXMC	PMC & XMC Side-band Signalling	
0xF0 - 0xF3	0x4	I2C_CTL	I2C Controller Control Register	
0xF4 - 0xF7	0x4	I2C_CMD	I2C Controller Command Register	
0xF8 - 0xFC	0x4	I2C_DATW	I2C Controller Data Write Register	
0xFC - 0xFF	0x4	I2C_DATR	I2C Controller Data Read Register	

SEL_Multiplexed = 01→ VME64X Agent_SW

0xC0 - 0xC3	0x4	VMECSR_ADER0_3	Address Space Relocation Register VME A32	MSB
0xC4 - 0xC7	0x4	VMECSR_ADER0_2	Address Space Relocation Register VME A32	
0xC8 - 0xCC	0x4	VMECSR_ADER0_1	Address Space Relocation Register VME A32	
0xCC - 0xCF	0x4	VMECSR_ADER0_0	Address Space Relocation Register VME A32	LSB
0xD0 - 0xD3	0x4	Reserved	Not used	
0xD4 - 0xD7	0x4	VMECSR_BCR	VME64x CR/CSR Bit Clear Register	VME64x main Control & Status Control
0xD8 - 0xDC	0x4	VMECSR_BSR	VME64x CR/CSR Bit Set Register	
0xDC - 0xDF	0x4	VMECSR_BAR	VME64x CR/CSR Base Address Register	
0xE0 - 0xE3	0x4	PVME_ADDERR	VME64x Address Error Register	
0xE4 - 0xE7	0x4	PVME_STAERR	VME64x Status Error Register	
0xE8 - 0xEB	0x4	PVME_RMW_MODE	VME RMW Mode and Trigger	Programmed RMW
0xEC - 0xEF	0x4	PVME_RMW_ADD	VME RMW Address Pointer	
0xF0 - 0xF3	0x4	PVME_RMW_DATCMP	VME RMW Data Compare	
0xF4 - 0xF7	0x4	PVME_RMW_DATUPT	VME RMW Data Update	
0xF8 - 0xFB	0x4	Reserved	Not used	(Only IPV_1102)
0xFC - 0xFF	0x4	Reserved	Not used	

2040

2011-12-21 - PEV_1100 PCI	134/135	P_PCIE-VME_AF_HSID_B0
Express to VME64 Bridge		

ASIC/FPGA Hardware/Software IF PCI Express -VME Bridge Cassidian MAS

P_PCIE-VME_AF_HSID_B0

DOCUMENT STATUS
2.0

SEL Multiplexed =10 \rightarrow DMA #1 (READ + WRITE Engines)

0xC0 - 0xC3	0x4	SMEM_DDR2_CSR	Four port DDR2 Controller Control & Status	
0xC4 - 0xC7	0x4	IDMA_GCSR	IDMA Global CSR	
0xC8 - 0xCC	0x4	IDMA_RD_1_PCSR	IDMA Pipeline Control Register Read Engine #0	
0xCC - 0xCF	0x4	IDMA_WR_1_PCSR	IDMA Pipeline Control Register Write Engine #0	
0xD0 - 0xD3	0x4	IDMA_RD_1_CSR	IDMA Read Engine #0 Control&Status	
0xD4 - 0xD7	0x4	IDMA_RD_1_NDES	IDMA Read Engine #0 Next DMA_Descriptor Pointer	
0xD8 - 0xDC	0x4	IDMA_RD_1_CDES	IDMA Read Engine #0 Current DMA_Descriptor Pointer	
0xDC - 0xDF	0x4	IDMA_RD_1_WCNT	IDMA Read Engine #0 WCNT and DMA Operation Status	
0xE0 - 0xE3	0x4	IDMA_WR_1_CSR	IDMA Write Engine #0 Control&Status	
0xE4 - 0xE7	0x4	IDMA_WR_1_NDES	IDMA Write Engine #0 Next DMA_Descriptor Pointer	
0xE8 - 0xEC	0x4	IDMA_WR_1_CDES	IDMA Write Engine #0 Current DMA_Descriptor Pointer	
0xEC - 0xEF	0x4	IDMA_WR_1_WCNT	IDMA Write Engine #0 WCNT and DMA Operation Status	
0xF0 - 0xFF	0x10	Reserved	Not used	

SEL Multiplexed = 11→ USER Agent_SW

0xC0 - 0xC3	0x4	GPIO_A_OUT	GPIO Group_A OUTPUT Register	
0xC4 - 0xC7	0x4	GPIO_A_ENA	GPIO Group_A TRI-STATE Register	
0xC8 - 0xCB	0x4	GPIO_A_IN	GPIO Group_A INPUT Register	
0xCC - 0xCF	0x4	GPIO_A_POL	GPIO Group_A POLARITY Register	Cassidian specific
0xD0 - 0xD3	0x4	GPIO_B_OUT	GPIO Group_B OUTPUT Register	
0xD4 - 0xD7	0x4	GPIO_B_ENA	GPIO Group_B TRI-STATE Register	
0xD8 - 0xDB	0x4	GPIO_B_IN	GPIO Group_B INPUT Register	
0xDC - 0xDF	0x4	GPIO_A_POL	GPIO Group_B POLARITY Register	Cassidian specific
0xE0 - 0xE3	0x4	Msg_FIFO_CTL_0	Message FIFO#0 Control & Status	Cassidian specific
0xE4 - 0xE7	0x4	Msg_FIFO_CTL_1	Message FIFO#1 Control & Status	Cassidian specific
0xE8 - 0xEB	0x4	Msg_FIFO_CTL_2	Message FIFO#2 Control & Status	Cassidian specific
0xEC - 0xEF	0x4	Msg_FIFO_CTL_3	Message FIFO#3 Control & Status	Cassidian specific
0xF0 - 0xF3	0x4	Msg_FIFO_Port_0	Message FIFO#0 Control & Status IO Port	Cassidian specific
0xF4 - 0xF7	0x4	Msg_FIFO_Port_1	Message FIFO#1 Control & Status IO Port	Cassidian specific
0xF8 - 0xFB	0x4	Msg_FIFO_Port_2	Message FIFO#2 Control & Status IO Port	Cassidian specific
0xFC - 0xFF	0x4	Msg_FIFO_Port_3	Message FIFO#3 Control & Status IO Port	Cassidian specific
0xF0 - 0xFF	0x10	Reserved	Not implemented	

2011-12-21 - PEV_1100 PC	ı
Express to VME64 Bridge	