Cool, but How?

Advance Deep Learning Approach

Hybrid Model to Capture Local & Global Information:

- Sparse Submanifold Convolutional Network (Local Info):
 - A convolution that operates only on active voxels.
 - Efficiently learns local 3D features (shower shapes, track segments).
 - Efficiency SCNN: (16 times faster than a CNN on a GPU) [Link]
- Hierarchical Transformer (Global Info):
 - Intra-Module Attention: Summarizes patterns within each detector module.
 - Inter-Module Attention: given the created module summaries, combines them to learn the *entire event topology*.

Our Training Strategy

A Two-Stage Approach

Stage 1: Pre-Training

- **Goal**: Force the model to learn a rich, physical representation of events.
- How: A dual-objective Masked Autoencoder (MAE).
 - Self-Supervised Reconstruction Task: Reconstruct masked (hidden) parts of the event.
 - Supervised <u>Contrastive Task</u>: Machine learning framework for grouping hits that share the same voxel ID.

Stage 2: Supervised Fine-Tuning

- Goal: Adapt the "smart" pre-trained encoder to specific physics tasks.
- How: Use the pre-trained weights as a starting point and <u>fine-tune</u> on the labeled dataset for classification and regression.
 - Classification Task:
 - NuE CC, NuMu CC, NuTau CC, NC
 - Regression Task:
 - Vis Momentum (E_vis, Pt_miss), Jet Momentum, Lepton Momentum