

2023-2024

Classe: **Bac Maths**

Série 12 : Exemple 1 : (Devoir de contrôle n° 1)

Nom du Prof : Lahbib Ghaleb

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Q 30 min

4 pts

Pour tout entier $n \ge 2$, on définit la fonction f_n sur IR par :

$$\begin{cases} f_n(x) = 2 + (x - 2)sin\left(\frac{1}{x - 2}\right) & \text{si } x > 2\\ f_n(x) = \frac{1}{4}(x^3 + nx - 2n) & \text{si } x \leqslant 2 \end{cases}$$

On désigne par C_n la courbe de f_n dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$.

- - Montrer que $\lim_{x\to +\infty} f_n(x) = 3$. Interpréter graphiquement le résultat.

- - \bigcirc Etudier la continuité de f_n en 2.

-]1,2[une unique solution u_n .
 - $\text{ V\'erifier que } f_{n+1}(u_n) = \frac{1}{4}(u_n-2).$
 - \bigcirc Montrer que la suite (u_n) est croissante puis qu'elle est convergente.

- Montrer que pour tout entier $n \ge 2$; on a : $u_n = \frac{2n}{n + u^2}$.
 - \bigcirc En déduire que $\lim_{n\to+\infty} u_n = 2$.

 $_{f g}$ La courbe C_{g} ci-contre est la représentation graphique d'une fonction g définie sur $\mathbb{R} \setminus \{2\}$.

- Déterminer: $\lim_{x \to -\infty} g(x)$; $\lim_{x \to +\infty} g(x)$ et $\lim_{x \to +\infty} (g(x) x)$.

Déterminer: $\lim_{x \to -\infty} g \circ f_n(x)$; $\lim_{x \to -\infty} \left[g(-f_n(x)) + f_n(x) \right]$ et $\lim_{x \to -\infty} \frac{g(-f_n(x))}{r}$.

Exercice 2

5 pts

I) Pour tout nombre complexe m, on considère dans \mathbb{C} l'équation

$$(E_m): z^2 - (2m-1)z + 2m^2 - (1+i)m = 0$$

- \uparrow Calculer le discriminant Δ de (E_m) et vérifier que $\Delta = (2im + 1)^2$.
- II) Le plan est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

Pour tout nombre complexe m, on donne les points A, B, M, M_1 et M_2 d'affixes respectives :

$$z_A = \frac{-1+i}{2}$$
, $z_B = \frac{1+i}{2}$, $z_M = m$, $z_1 = (1-i)m-1$ et $z_2 = (1+i)m$.

- - En déduire que si $m \neq \frac{i}{2}$ alors le triangle AM_1M_2 est rectangle et isocèle de sens direct.
- Soit C le cercle de centre O et de rayon 2 $\sqrt{2}$ et Γ le cercle de centre B et de rayon 2.

Montrer que : M_1 appartient à C si et seulement si M appartient à Γ .

- Soit $m \neq \frac{1+i}{2}$. Vérifier que $z_1 = (1-i)(m-z_B)$ et en déduire que $\left(\overrightarrow{BM}, \overrightarrow{OM_1}\right) \equiv -\frac{\pi}{4}[2\pi]$.
- Dans la page annexe on a placé un point M du cercle Γ. Construire les points M_1 et M_2 .
- On pose $m = \frac{1}{2}e^{i\theta}$ avec $\theta \in \left] -\frac{3\pi}{2}, \frac{\pi}{2} \right[$.
 - Vérifier que $z_1-z_A=\left(\frac{1-i}{2}\right)(e^{i\theta}-i)$. En déduire la forme exponentielle de z_1-z_A .
 - $oldsymbol{\triangle}$ Déterminer la valeur de $oldsymbol{\theta}$ pour laquelle l'aire du triangle AM_1M_2 est maximale.

Exercice 3

45 min

5 pts

Soit u la suite définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = 1 + u_n + \frac{2}{u_n} \; ; \; n \in \mathbb{N} \end{cases}$

- \uparrow Montrer par récurrence que pour tout $n \in \mathbb{N}$; $u_n \geqslant 1$.
- $\stackrel{\text{\tiny (a)}}{}$ Établir que pour tout $n \in \mathbb{N}$, on a : $1 \leqslant u_{n+1} u_n \leqslant 3$.
 - \triangle En déduire que pour tout $n \in \mathbb{N}$, on a : $n + 1 \le u_n \le 3n + 1$.
 - \bigcirc Calculer la limite de la suite (u_n) .
- On pose pour tout $n \in \mathbb{N}$, $v_n = \sum_{k=0}^{2n} \frac{(-1)^k}{u_k} = \frac{(-1)^0}{u_0} + \frac{(-1)^1}{u_1} + \dots + \frac{(-1)^{2n}}{u_{2n}}$ et $w_n = v_n \frac{1}{u_{2n+1}}$.
 - $\text{ V\'erifier que } v_{n+1} v_n = \frac{1}{u_{2n+2}} \frac{1}{u_{2n+1}} \text{ et que } w_{n+1} w_n = \frac{1}{u_{2n+2}} \frac{1}{u_{2n+3}}.$
 - En déduire que la suite (v_n) est décroissante et que la suite (w_n) est croissante.
 - \bigcirc Montrer que les suites (v_n) et (w_n) sont adjacentes.
 - On pose $\ell = \lim_{n \to +\infty} v_n$.

Montrer que $\frac{3}{4} \leqslant \ell \leqslant 1$.