Exam 1 Study Guide

csci2200, Laura Toma, Bowdoin College

The exam will focus on understanding of basic concepts and critical thinking. It will have a combination of multiple-choice, short-answers and longer-answers problems. Any problem from Labs 1-5 and Assignments 1-4 is fair game.

- 1. Worst case, best case running times.
 - e.g. Binary search runs in $\Theta(\lg n)$ worst case and $\theta(1)$ best case.
- 2. Asymptotic growth of functions (O, Ω, Θ) . Used to express efficiency (running time, space).
 - Insertion sort runs in $O(n^2)$ time and $\Omega(n)$ time.
 - Mergesort runs in $\Theta(n \lg n)$ and uses $\Theta(n)$ additional space.
- 3. Summations (arithmetic, geometric)
- 4. Recurrences: using recurrences to analyze algorithms, solving recurrences by iteration.
- 5. Comparison-based sorting
 - Quadratic sorts: Insertion sort, Bubble sort, Selection sort
 - Mergesort, Heapsort, Quicksort, Randomized quicksort
 - Comparison-based sorting lower bound: Any sorting algorithm that uses only comparisons to order the elements must take $\Omega(n \lg n)$ in the worst case.
- 6. Sorting without comparisons
 - For limited inputs (usually the keys to be sorted are integers in a small range).
 - Counting sort, Bucket sort run in O(n+N) time and use O(n+N) space, where N is the range
- 7. The binary heap
 - Implements the priority queue ADT
 - Operations on heaps: FindMin in O(1) time; DeleteMin, Insert, Buildheap in O(n) time.
 - A max-heap is defined symmetrically

Resources:

- lecture notes on the class github page
- lab 1-5 and assignment 1-4
- quizzes on canvas
- (add here anything that you found useful)