Reto F3001C

Max Eduardo Garcia Esquivel - A01236070.

Waveguide selector:

Selected waveguide:

Size: 1000x325

Mode: 14

Waveguide Summary:

Waveguide: 1000x1000, mode: 15

Fundamental Mode Data (1596nm):

Ranges:

Lambda Ranges: 1.53-1.596

Omega Ranges: 1181049869.7706-1231997119.0548

Neff vs ω/λ

Function $neff(\lambda)$:

Function $neff(\omega)$

Subfunctions (k, dw, Vg, d2w, D)

Function $k(\omega)$:

 $-(\text{w.}^2/(2*\text{pi}*3*10^8)).*((1.257200516898534797702455388523e-271*\text{w.}^22*(930)-5.939522598070244281054868243553e-262*\text{w.}^22*(2*\text{pi}*3*10^8)).$

Superior Mode Data (530nm):

Ranges:

Lambda Ranges: 0.51-0.532

Omega Ranges: 3543149609.3118-3695991357.1645

Neff vs ω/λ

Function $neff(\lambda)$:

Subfunctions (k, dw, Vg, d2w, D)

Function $k(\omega)$:

 $\text{w.*} (4.393310814495142809142406236547e-282*w.^30-2.360636067323359288727349250688e-272*w.^29-8.3682097377615896009789 }$ Function $dk(\omega)/d\omega$:

 $(3*10^8)./(4.393310814495142809142406236547e-282*w.^30*(31)-2.360636067323359288727349250688e-272*w.^29*(30)-8.36826$ Function d2k(ω)/d ω 2:

 $(4.393310814495142809142406236547e-282*w.^29*(930)-2.360636067323359288727349250688e-272*w.^28*(870)-8.3682097377618$ Function $D(\omega)$:

 $-(\text{w.}^2/(2\text{*pi*}3\text{*}10\text{^}8)).\text{*}((4.393310814495142809142406236547e-282\text{*w.}^22\text{*}(930)-2.360636067323359288727349250688e-272\text{*w.}^22\text{*w.}^22\text{*}(930)-2.360636067323359288727349250688e-272\text{*w.}^22\text$

Load Waveguide Simple:

K's comparing

Find degenerate photon that allow momentum and energy conservation

Modos con dK=0: Modo 14, Modo 15

Phase Matching

Pump wavelength: 0.51-0.532

Photon wavelength: 1.53-1.596

Waveguide 1000x325 with $\lambda_{\rm i}$ = 1.53

