KOSHA GUIDE

H - 164 - 2021

파라디메틸아미노아조벤젠의 생물학적 노출지표 물질 분석에 관한 기술지침

2021. 10.

한국산업안전보건공단

안전보건기술지침의 개요

- ㅇ 제정자: 한국산업안전보건공단 산업안전보건연구원 강영중
- ㅇ 제정 경과
 - 2015년 9월 산업의학분야 제정위원회 심의(제정)
 - 2021년 8월 산업의학분야 표준제정위원회 심의(법령 및 규격 최신화)
- ㅇ 관련규격 및 자료
 - 한국산업안전보건공단 산업안전보건연구원. 근로자 건강진단 실무지침: 제1권 특수건강진단 개요. 2020-산업안전보건연구원-349
 - 한국산업안전보건공단 산업안전보건연구원. 생물학적 노출평가 기준 및 분석방법 연구 I 크실렌 등 유기용제 16종. 보건분야-연구자료 연구원 2010-64-880. 2010
- o 관련법규·규칙·고시 등
 - 산업안전보건법 시행규칙 [별표 24] 특수건강진단·배치전건강진단·수시건강진단 의 검사항목(제206조 관련)
 - 고용노동부고시 제2020-61호(특수건강진단기관의 정도관리에 관한 고시)
 - 고용노동부고시 제2020-60호(근로자 건강진단 실시기준)
 - 한국산업안전보건공단 산업안전보건연구원. 「근로자건강진단 실무지침」제1권 특수 건강진단 개요. 2020-산업안전보건연구원-349
- ㅇ 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지(www. kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자: 2021년 10월

제 정 자: 한국산업안전보건공단 이사장

파라디메틸아미노아조벤젠의 생물학적 노출지표 물질 분석에 관한 기술지침

1. 목 적

이 지침은 산업안전보건법(이하 "법"이라고 한다) 제130조(특수건강진단) 및 같은 법 시행규칙(이하 "시행규칙"이라고 한다) 제206조(특수건강진단 등의 검사항목 및 실시방법 등) 별표 24, 고용노동부고시 제2020-61호(특수건강진단기관의 정도관리에 관한 고시) 및 고용노동부고시 제2020-60호(근로자 건강진단 실시기준)에 따라 파라디메틸아미노아조벤젠에 노출된 근로자의 생물학적 노출평가와 관련된 생물학적 노출지표 물질의 분석 방법을 제시함을 목적으로 한다.

2. 적용범위

이 지침은 법, 시행규칙 및 고용노동부고시에 따라 실시하는 근로자 건강진단 중 파라디메틸아미노아조벤젠에 노출되는 근로자의 생물학적 노출평가에 적용한다.

3. 정 의

- (1) 이 지침에서 사용하는 용어의 뜻은 다음과 같다.
 - (가) "생물학적 노출평가"란 혈액, 소변 등 생체시료로부터 유해물질 자체 또는 유해물질의 대사산물이나 생화학적 변화산물 등을 분석하여 유해물질 노출에 의한 체내 흡수정도나 건강영향 가능성 등을 평가하는 것을 말한다.
 - (나) "생물학적 노출지표 물질"이란 생물학적 노출평가를 실시함에 있어 체내 흡수 정도를 반영하는 물질로서 유해물질 자체나 그 대사산물, 생화학적 변화물 등 을 말한다.
- (2) 그밖에 용어의 뜻은 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안 전보건법, 같은 법 시행령, 같은 법 시행규칙 및 「산업안전보건기준에 관한 규칙」에서 정하는 바에 따른다.

KOSHA GUIDE H -164 - 2021

4. 분석장비

분석 장비는 자외가시부 분광광도계 (Ultraviolet/visible spectrophotometer; UV/VIS Spectrophotometer)를 사용한다.

5. 분석방법

(1) 분석 원리

파라디메틸아미노아조벤젠의 아조기로 인해 메트헤모글로빈 혈증이 발생할 수 있으므로 혈액 중 메트헤모글로빈을 자외가시부 분광광도계로 분석한다.

- (2) 시료의 채취
 - (가) 시료채취 시기혈액 시료 채취는 하루 중 어느 때나 가능하다.
 - (나) 시료채취 요령
 - ① 근로자의 정맥혈을 EDTA(Ethylenediaminetetraacetic acid) 또는 헤파린이 미리 처리된 튜브와 1 회용 주사기 또는 진공 채혈관을 이용하여 2 mL 이상 채취한다.
 - ② 채취한 시료는 시료 채취 용기에 밀봉하여 채취 후 1시간 이내에 분석하며 분석 전까지 4 $^{\circ}$ $^{\circ}$
- (3) 기구 및 시약
 - (가) 기구
 - ① 용량플라스크 500, 100, 10 mL
 - ② 마이크로피펫 1~5 mL
 - ③ 유리 시험관 10 mL
 - ④ 석영 cell

KOSHA GUIDE H -164 - 2021

- ⑤ 롤러 믹서
- ⑥ 화학 저울

(나) 시약

- ① 제1인산칼륨(KH₂PO₄)
- ② 제2인산칼륨(K₂HPO₄)
- ③ 페리시안화칼륨[K₃Fe(CN)₆]
- ④ 시안화칼륨(KCN)
- ⑤ 탈이온수(18 MΩ/cm 이상)

(다) 주의 사항

- ① 채취한 시료는 채취 후 1시간 이내에 분석한다.
- ② 시안화칼륨은 맹독성 물질이므로 취급에 주의하고, 취급할 때는 보호안경, 장갑, 마스크를 착용한 후 후드에서 작업한다.

(4) 시약 조제

(가) 인산 완충용액

50 mL 용량플라스크에 제1인산칼륨 652 mg, 제2인산칼륨 475 mg을 넣고 탈이온수로 표선을 맞추어 인산 완충용액을 조제한다.

(나) 페리시안화칼륨 용액

10 mL 용량플라스크에 페리시안화칼륨 2 g을 넣고 탈이온수로 표선을 맞추어 20% 페리시안화칼륨 용액을 조제한다.

(다) 시안화칼륨 용액

10 mL 용량플라스크에 시안화칼륨 0.5 g을 넣고 탈이온수로 표선을 맞추어 5% 시안화칼륨 용액을 조제한다.

(5) 시료 전처리

(가) 모든 시료는 거품이 발생하지 않도록 40분간 롤러 믹서로 균질화시킨다.

KOSHA GUIDE H -164 - 2021

- (나) 10 mL 시험관에 혈액 0.1 mL와 증류수 3.9 mL를 넣고 혼합하여 용혈시킨후 인산 완충용액 4.0 mL를 가하여 혼합한다.
- (다) 10분간 방치 후 2,000 rpm에서 원심분리한다.
- (라) 상층액을 두 개의 석영 cell에 3 mL씩 넣고 이 중 한 cell에만 페리시안화칼륨 용액 0.1 mL를 가하여 혼합한다. 혼합하여 2분 후 630 nm에서 증류수를 공시료로 측정한 흡광도를 Aa와 Ba로 기록한다.
- (마) 측정한 후의 석영 cell에 시안화칼륨 용액을 0.1 mL씩 첨가한 후 혼합하여 5분 후 다시 측정한다. 이 때의 흡광도를 Ab와 Bb로 기록한다.

(6) 농도 계산

측정한 값으로부터 다음과 같이 메트헤모글로빈의 농도를 계산한다.

metHb(%) = 100 x (Aa-Ba/Ab-Bb)

(7) 생물학적 노출평가 기준

혈액 중 메트헤모글로빈 1.5%