Материалы для подготовки к коллоквиуму по дискретной математике Теоремы

ПМИ 2016

Орлов Никита, Рубачев Иван, Ткачев Андрей, Евсеев Борис 12 декабря 2016 г.

1. Вывод принципа полной математической индукции из принципа математической индукции

Принцип математической индукции. Если для утверждения зависящего от положительного натурального п выполняются следущие условия:

- 1. Утвержедение истинно при n = 1
- 2. Когда утверждение истинно при n = k, оно истинно и при n = k + 1

Тогда утверждение истинно при всех положительных п.

Принцип полной математической индукции. Если для утверждения зависящего от положительного натурального п выполняются следущие условия:

- 1. Утверждение истинно для n=1
- 2. Если утверждение истинно для всех $n \le k$, оно также истинно и для n = k + 1

Тогда утверждение истинно при всех положительных п.

Утверждение. Если уместна математическая индукция, то уместна и сильная индукция.

Доказательство. В дальныей ших рассуждениях будем считать, что n - натуральное, большее или равное 1, а также обозначим утверждение зависящее от n за $\varphi(n)$.

Предположим, что для $\varphi(n)$ выполняются условия (1) и (2) для сильной индукции.

Пусть $\psi(k) \Leftrightarrow \varphi(n)$ истинно для всех $n \leqslant k$ ».

Попытаемся доказать, что утверждение $\psi(n)$ истинно для всех положительных натуральных n по индукции. Как следствие, мы получим, что и $\varphi(n)$ верно для всех положительных n, т.е. тот же вывод, который должен дать принцип сильной индукции.

 $\mathit{Baзa}$. В силу нашего предположения $\varphi(1)$ истинно (гипотеза (1) сильной индукции верна), но тогда истинно и $\psi(1)$, по опеределению $\psi(n)$.

Предположение. Пусть верно $\psi(k)$.

Шаг. Мы предположили, что для $\varphi(n)$ выполняются гипотезы сильной индукции, а значит, если « $\varphi(n)$ верно для всех $n\leqslant k$ », то и $\varphi(k+1)$ - верно. По предположению индукции - $\psi(k)\Rightarrow \varphi(k+1)$ (см. определение $\psi(n)$ и гипотезу (2) сильной индукции). Получаем, что $\psi(k+1)$ - истинно, т.к. $\varphi(n)$ истинно для всех $n\leqslant k+1\Rightarrow \psi(k+1)$.

Согласно принципу мат. индукции $\psi(k)$ - верно для всех положительных k, занчит утверждение « $\varphi(n)$ истинно для всех $n\leqslant k$ » верно при всех k, а значит $\varphi(n)$ - верно для всех n.

Таким образом, из принципа мат. индукции следует принцип полной мат. индукциию.

2. Бином Ньютона. Формула для биномиальных коэффициентов

Число сочетаний из n по k равно:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Доказательство. На первое место можно поставить любой из n элементов, на второе любой из n-1 оставшихся, . . ., на k-е любой из n-k+1. Тогда по правилу произведения существует $n(n-1)(n-2)\cdots(n-k+1)$ упорядоченных наборов. Но порядок нам не важен, поэтому существует $\frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$ неупорядоченных наборов.

Формула бинома Ньютона имеет вид:

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{k}a^{n-k}b^{k} + \dots + \binom{n}{n}b^{n} = \sum_{k=0}^{n} \binom{n}{k}a^{n-k}b^{k}$$

Доказательство. Раскрытие скобок даст все возможные комбинации a и b длины n. Так как умножение коммутативно, то элементы с одинаковым количеством b можно сгрупировать. Тогда перед $a^{n-k}b^k$ будет стоять коэффициент c. Количество слогаемых, в которых b встречается ровно k раз равно $\binom{n}{k}$. Тогда $c=\binom{n}{k}$, а значит:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

5. Доказательство формулы включений и исключений

Определение (Формула включений и исключений.). Формула включений-исключений — комбинаторная формула, позволяющая определить мощность объединения конечного числа конечных множеств, которые в общем случае могут пересекаться друг с другом.

Утверждение. Пусть A_1, A_2, \dots, A_n — конечные множества. Формула включений-исключений утверждает:

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i} |A_i| - \sum_{i < j} |A_i \cap A_j| + \sum_{i < j < k} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n-1} |A_1 \cap A_2 \cap \dots \cap A_n|.$$

Доказательство. Рассмотрим произвольный элемент $x \in \left|\bigcup_{i=1}^n A_i\right|$, входящий в ровно S множеств $A_{q_1}, ... A_{q_S}$ и подсчитаем, сколько раз он учитывается в правой части формулы включений исключений (вернее покажем, что учитывается ровно 1 раз):

- В первой сумме $\sum_i |A_i|$ элемент x посчитан ровно $\binom{S}{1} = S$ раз (В слагаемых $A_{q_1}, ... A_{q_S}$).
- Во второй сумме $\sum_{i < j} |A_i \cap A_j|$ элемент x посчитан ровно $\binom{S}{2}$ раз (количесво попарных пересечений $A_i \cap A_j$, таких, что $A_i, A_j \in A_{q_1}, ... A_{q_S}$).
- В третьей сумме $\sum_{i < j < k} |A_i \cap A_j \cap A_k| \ x$ будет посчитан $\binom{S}{3}$ раза (количество пересечений $A_i \cap A_j \cap A_k$ для которых $i,j \in q_1,\dots q_S$).
- В S-ой сумме $\sum_{i_1 < i_2 < \ldots < i_S} |A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_S}| \ x$ будет посчитан $\binom{S}{S} = 1$ раз (x войдет только в слагаемое $|A_1 \cap A_2 \cap \ldots \cap A_n|$).
- ullet суммы, содержащие S+1 и более пересечений, не учитывают элемент x, поскольку x не входит в пересечение более чем S множеств.

Таким образом x оказывается посчитанным ровно $S - \binom{S}{2} + \binom{S}{3} - \ldots + (-1)^{S+1} \binom{S}{S}$ раз. Покажем, что эта сумма в точности равна 1. Воспользуемся биномом Ньютона:

$$0 = (1-1)^{S} = \sum_{k=0}^{S} {S \choose k} \cdot 1^{S-k} \cdot (-1)^{k} = 1 - \sum_{k=1}^{S} {S \choose k} \cdot 1^{S-k} \cdot (-1)^{k+1}$$

$$\updownarrow$$

$$(S) \qquad (S)$$

$$1 = \sum_{k=1}^{S} {S \choose k} \cdot (-1)^{k+1} = S - {S \choose 2} + {S \choose 3} - \dots + (-1)^{S+1} {S \choose S}$$

Таким образом, каждый $x\in \left|\bigcup_{i=1}^n A_i\right|$ учитывается и левой и правой частью формулы ровно 1 раз, и очевидно, что все прочие $y\notin \left|\bigcup_{i=1}^n A_i\right|$ не учитываются ни правой, ни левой частями.

6. Формулы для суммы степеней вершин в неориентированном и в ориентированном графе

Определение. Сумма степеней всех вершин в неориентированном графе равна удвоенному числу ребер. $\sum_{v \in V(G)} \deg(v) = 2 \cdot |E(G)|$

Доказательство. Пусть в графе степень каждой вершины равна 0 (в графе нет ребер). При добавлении ребра, связывающего любые две вершины, сумма всех степеней увеличивается на 2 единицы. Таким образом, сумма всех степеней вершин четна и равна удвоенному числу ребер. □

Определение. Число исходящих степеней вершин равно числу входящих, равно числу ребер.

Доказательство. Первая часть утверждения очевидна. Каждое ребро выходит из одной вершины и входит в другую, поэтому каждое ребро дает одинаковый вклад в суммы исходящих и входящих степеней вершин. Для доказательства второй части утверждения докажем что число ребер равно числу исходящих степеней вершин. Исходящая степень вершины равна числу ребер, которые из нее выходят. Ребро не может выходить более чем из одной вершины, поэтому сумма исходящих степеней вершин равна числу ребер. По транзитивности отношения «=» число ребер равно также и сумме исходящих вершин. □

10. Деревья – это в точности минимально связные графы

Доказательство.

 $[\Rightarrow]$ Докажем индукцией по числу вершин. База: для n=2 существует лишь одно дерево, для которого утверждение очевидно. Предположим это для некоторого дерева G_n на n вершинах, в котором n-1 ребро. Шаг для n+1: добавляя одну вершину u, нужно связать её с графом G_n , то есть соединить с некоторыми вершинами. Если бы мы соединили её с двумя вершинами v_1 и v_2 , то у нас в графе G_{n+1} получился бы цикл, так как в G_n уже существовал путь $v_1, a_1, a_2, \ldots, a_k, v_2$, а значит в G_{n+1} существует цикл $v_1, a_1, a_2, \ldots, a_k, v_2, u, v_1$, а значит G_{n+1} не дерево. Значит, при добавлении вершины мы можем добавить не более одного ребра (а для сохранения связности ещё и более 0), значит G_{n+1} должен содержать n-1+1=n рёбер, что означает, что предположение индукции выполнено и для n+1.

 \Leftarrow Для начала докажем что в связном графе не может меньше чем n-1 ребро по индукции. База: для n=2 граф на 2-ух вершинах, все очевидно. Шаг для n+1: если для n вершин утверждение верно, то для n+1 вершины оно тоже будет верно, так как нужно связать добавленную вершину как минимум с одним ребром (то есть ребер станет не менее чем n-1+1=n). Пусть у нас есть связный граф на n вершинах, с n-1 ребрами и в этом графе есть циклы. Из некоторого цикла удалим ребро соединявшее вершины u и v, при этом граф останется связным, но в нем будет уже n-2 ребра — получили противоречие. Значит в таком минимально связном графе нет циклов, то есть этот граф — дерево.

13. Существование остовного дерева

Определение. Частичный граф исходного графа $G = (V, E) - \operatorname{граф} G' = (V, E'), E' \subseteq E.$

Определение. Остовное дерево связного графа G = (V, E) — всякий его частичный граф, являющийся деревом.

Лемма. Если граф связен, то у него есть остовное дерево.

Доказательство. Для начала докажем вспомогательную лемму:

Пемма. Если граф связен и содержит хотябы один цикл, то из него можно удалить ребро не нарушая связности.

Доказательство леммы. Пусть G = (V, E) и цикл в нем: $u_0 \to u_1 \to ...u_n \to u_0$, $u_i \in V$. Поймем, что если удалить любое ребро принадлежащее цикул, связность не нарушится. Покажем в частности, что можно удалит ребро (u_0, u_1) . Действительно, если есть какой-нибудь путь из $v \in V$ в $w \in V$, проходящий через ребро (u_0, u_1) , то существует путь проходящий через прочие ребра цикла, ведь в цикле до каждой вершины можно дойти хотя бы двумя разными путями, значит удаление ребра не изменит того факта, что v соединено путем с w. Если пути из v к w не содержат ребра (u_0, u_1) , то очевидно, что его удаление на их связи не отразится v0 граф без этого ребра останется связанным. Тогда удалим его и получим связный граф.

Пусть тепереь G=(V,E) - связный граф, для которого нужно доказать существование остовног дерева. Возможны два сценария:

- 1. Граф G связный граф без циклов.
- 2. В графе G есть хотя бы один цикл.

В первом случае G - дерево по определению, а значит сам является своим остовным деревом.

Во втором случае, по доказанной лемме, мы можем удалить из G ребро не нарушая связности. Так сделаем же это. Если полученный граф - цикличен, то снова удалим ребро не нарушая связности, иначе остановимся и порадуемся; индуктивно будем повторять описанные операции, на каждой иттерации имея связный граф; число ребер в графе - конечно, значит процесс не может продолжаться вечно \Rightarrow в какой-то момент мы не сможем удалить ребро не нарушая связности, что было бы не возможно, если бы в графе остался цикл. В ходе описанных операций мы не добавляли новых ребер и не удаляли вершин \Rightarrow если G' = (V', E') - итоговый граф, то V' = V, $E' \subseteq E \Rightarrow G'$ - частичный граф графа G, связный и без цилов, т.е. дерево $\Rightarrow G'$ по определению - остовное дерево графа G.

14. Равносильность совойств ориентированных графов...

Формулировка. Следующие свойства ориентированных графов равносильны:

- 1. Каждая компонента сильной связности состоит из одной вершины.
- 2. Вершины графа можно занумеровать так, чтобы каждое ребро вело из вершины с меньшим номером в вершину с большим номером.
- 3. В графе нет циклов длины больше 1.

Доказательство. Рассмотрим вершины занумерованные таким образом. Из того, что номера все время возрастают следует отсутствие циклов в графе, так как в вершину с меньшим номером нельзя попасть из вершины с большим номером □

17. Сравнение $ax \equiv 1 \pmod{N}$ имеет решение тогда и только тогда, когда (a,N)=1

Замечание. Здесь и далее условимся обозначать HOД(a, N), как (a, N).

Утверждение. Сравнение $ax \equiv 1 \pmod{N}$ имеет решение $(1) \Leftrightarrow (a, N) = 1 \pmod{2}$.

Доказательство. Докажем следствие $(1) \Rightarrow (2)$

$$ax - 1 \equiv 0 \pmod{N}$$

$$\downarrow \qquad \qquad \qquad N | (ax - 1) \qquad \qquad \downarrow$$

$$(ax - 1) = Nk, k \in \mathbb{Z}.$$

Пусть $(a,\,N)=b$ $(1\leqslant b,\,$ т.к. 1 - всегда делитель). Тогда $a=a'\cdot b,\,N=N'\cdot b\Rightarrow$

$$a'bx - 1 = N'bk$$

$$\downarrow \downarrow$$

$$1 = b(a'x - N'k)$$

По определению b|1, но тогда $|b| \leq 1$, но тогда $b=1 \Rightarrow (a, N)=1$.

Докажем следствие (2) \Rightarrow (1): (2) \Rightarrow (a, N) = 1, тогда по соотношению Безу $\exists m, k : am+Nk=1 \Rightarrow am=1-Nk \Rightarrow am\equiv 1 \ (mod\ N)$, и x=m - решение сравния $ax\equiv 1 \ (mod\ N)$. \square

18. Признаки делимости на 3, 9 и 11

Число x делистся на 3 (на 9) тогда и только тогда, когда сумма его цифр делится на 3 (на 9)

Доказательство. Пусть $x = \overline{a_n a_{n-1} \dots a_1 a_0} = 10^n a_n + 10^{n-1} a_{n-1} + \dots + 10 a_1 + a_0$. Так как $10 \equiv 1 \pmod{3}$, то:

$$x \equiv \sum_{i=0}^{n} a_i \pmod{3}$$

Для делимости на 9 доказательство аналогично.

Число x делится на 11, тогда и только тогда, когда:

$$11|\left(\sum_{2|i}^{n} a_i - \sum_{2\nmid i}^{n} a_i\right)$$

Доказательство. $10 \equiv -1 \pmod{11}$, значит $10^n \equiv (-1)^n \pmod{11}$. Тогда:

$$x \equiv (-1)^n a_n + (-1)^{n-1} a_{n-1} + \dots + (-1)a_1 + a_0 \equiv \sum_{2|i}^n a_i - \sum_{2\nmid i}^n a_i \pmod{11}$$

21. Корректность алгоритма Евклида и расширенного алгоритма Евклида.

Алгорим Евклида. Пусть а u b - целые числа одноверемненно не равные нулю, u последовательность чисел $x_0 > x_1 > x_2 > x_3 \cdots > x_n > 0$ определена тем, что $x_0 = a$, $x_1 = b$, кажедое x_k , k > 1 — это остаток от деления предпредыдущего числа на предыдущее, а предпоследнее делится на последнее нацело, то есть:

$$a = x_0 q_1 + x_1,$$

$$b = x_1 q_2 + x_2,$$

$$x_2 = x_3 q_3 + x_4,$$

$$\dots$$

$$x_{k-2} = x_{k-1} q_{k-1} + x_k,$$

$$\dots$$

$$x_{n-2} = x_{n-1} q_{n-1} + x_n,$$

$$x_{n-1} = x_n q_n.$$

 $Torda\ (a,b)\ paвен\ x_n,\ nocned нему ненулевому члену этой последовательности.$

Доказательство. Поймем, что такие $x_1, x_2, x_3, x_4, \cdots x_n$ - существуют, причем единственно: всегда можно найти остаток m (причем единственным образом) при делении x_k на x_{k+1} , если $x_{k+1} \neq 0$, причем $a > b > r_k > x_{k+1} > m$, т.е. каждый следующий член последовательности строго меньше предыдущего, но т.к. числа ее составляющие - целые, то убывать бесконечно она не может, а значит $\exists x_{n+1} = 0$ - последний член последовательности.

Докажем тогда, что если x_n - последний не нулевой член последовательности, то $(a,b) = (x_n,0) = x_n \neq 0$. Для этого заметим две вещи:

- 1. $r \neq 0 \Rightarrow (r, 0) = |r|$ так как 0 делится на любое целое число, кроме нуля.
- 2. Пусть a=bq+r, тогда $(a,\ b)=(b,\ r)$. Пусть k любой общий делитель чисел a и b, не обязательно наибольший, тогда $a=t_1k$ и $b=t_2k$, где t_1 и t_2 целые числа из определения.

Тогда k является также общим делителем чисел b и r, так как b делится на k по определению, а $r = a - b \cdot q = (t_1 - t_2 \cdot q) \cdot k$ (выражение в скобках есть целое число, следовательно, k делит r без остатка).

Обратное также верно. Любой делитель k чисел b и r так же является делителем a и b: $a = b \cdot q + r = k \cdot (b'q + r') \Rightarrow k|a$.

Следовательно, все общие делители пар чисел a, b и b, rсовпадают. Другими словами, нет общего делителя у чисел a, b, который не был бы также делителем b, r, и наоборот.

В частности, наибольший общий делитель остается тем же самым. Что и требовалось доказать.

Тогда по построению последовательности
$$\{x_i\}$$
: $(x_0, x_1) = (x_1, x_2) = (x_2, x_3) = \dots = (x_n, 0) = x_n$.

Алгорим Евклида (Расширенный алгоритм Евклида). Формулы для x_i могут быть переписаны следующим образом:

$$x_0 = aq_0 + bp_0,$$

$$x_1 = aq_1 + bp_1,$$

$$x_2 = aq_2 + bp_2,$$

$$x_3 = aq_3 + bp_3,$$

$$\vdots$$

$$(a, b) = x_n = as + bt$$

 $T.e.\ HOД(a,b)$ можно представить в виде ax + by, где x, y - какие-то целые числа.

Доказательство. Докажем по индукции по n.

Basa. $x_0 = a + b \cdot 0$, $x_1 = a \cdot 0 + b$. T.e. $q_0 = P_1 = 1$, $p_0 = q_1 = 0$

Предположение. Пусть $x_{k-2} = aq_{k-2} + bp_{k-2}$ и $x_{k-1} = aq_{k-1} + bp_{k-1}$.

Шаг. Докажем, что $x_k=aq_k+bp_k$, где q_k , p_k - целые. Мы помним, что x_k - остаток от деления x_{k-2} на x_{k-1} , значит по определнию: $m\cdot x_{k-1}+x_k=x_{k-2}$, где m - какое-то целое число. Тогда $x_k=x_{k-2}-m\cdot x_{k-1}$, по п.и., $x_k=aq_{k-2}+bp_{k-2}-m(aq_{k-1}+bp_{k-1})=a(q_{k-2}-mq_{k-1})+b(p_{k-2}-mp_{k-1})=aq_k+bp_k$.

Таким образом каждое из чисел x_i представимо в виде линейной комбинации a и b (В частности, если (a, b) = 1, то $\exists x, y : ax + by = 1$).

22. Основная теорема арифметики

Формулировка. Каждое натуральное число n>1 представляется в виде $n=p_1\cdot\ldots\cdot p_k$, где p_1,\ldots,p_k – простые числа, причём такое представление единственно с точностью до порядка следования сомножителей.

 \square оказательство.

25. Доказательство корректности определения классов эквивалентности

Теорема. Для любого отношения эквивалентности на множестве A множество классов эквивалентности образует разбиение множества A. Обратно, любое разбиение множества A задает на нем отношение эквивалентности, для которого классы эквивалентности совпадают с элементами разбиения.

Доказательство. Докажем прямое следствие.

Каждому $x \in A$ сопоставим $[x] = \{y | x \sim y\}$ - пожмножетсво множество всех элементов с которыми x вступает в отношение \sim .

Утверждается, что система подмножеств [x] образует разбиение A. Действительно, вопервых, каждое подмножество $[x] \neq \emptyset$, так как в силу рефлексивности отношения $\sim x \in [x]$.

Во-вторых, два различных подмножества [x] и [y] не имеют общих элементов. Рассуждая от противного, допустим существование элемента z такого, что $z \in [x]$ и $z \in [y]$. Тогда $z \sim x$ и $z \sim y$. Поэтому для любого элемента $t \in [x]$ из $t \sim x$, $z \sim x$ и $z \sim y$ в силу симметричности и транзитивности отношения а вытекает aPy ($t \sim x$ и $x \sim z \Rightarrow tPz$, но $z \sim y \Rightarrow t \sim y$), то есть $a \in [y]$. Следовательно, $[x] \subseteq [y]$. Аналогично получаем, что $[y] \subseteq [x]$. Полученные

два включения влекут равенство [x] = [y], противоречащее предположению о несовпадении подмножеств [x] и [y]. Таким образом, $[x] \cap [y] = \emptyset$.

В-третьих, объединение всех подмножеств [x] (классов эквивалентности) совпадает со множеством A, ибо для любого элемента $x \in A$ выполняется условие $x \in [x]$.

Итак, система подмножеств эквивалентности [x], образует разбиение множества A. Обратное следтвие.

Пусть есть разбиение A на непересекающиеся множества M_0, \ldots, M_1 . Тогда отношение эквивалентности на A задается так:

$$a \sim b \leftrightarrow (a \in M_i \land b \in M_i)$$

Свойства транзитивности, рефлексивности и симметричности очевидны (Например для транзитивности: $a \sim b$ и $b \sim c$, значит $(a \in M_i \land b \in M_i) \land (b \in M_i \land c \in M_i) \Leftrightarrow (a \in M_i \land c \in M_i) \Leftrightarrow a \sim c$). Тогда, два элемента принадлежат одному классу тогда и только тогда, когда они лежат в одном подмножестве M_i , т.е. классы задаются разбиением.

26. Критерий того, что бинарное отношение записывается с помощью функции полезности

Формулировка. Пусть множество А конечно, тогда соотношение:

$$xPy \iff u(x) > u(y)$$

Выполняется для некоторой функции u(x) в том и только в том случае, когда P – отношение слабого порядка.

Доказательство.

 $[\Rightarrow]$ Докажем это утверждение в одну сторону. Пусть выполняется данное соотношение. Для того чтобы доказать, что P – отношение слабого порядка, необходимо проверить его антирефлексивность, транзитивность и транзитивность его дополнения.

Антирефлексивность. Пусть $x \in A$. Тогда u(x) не больше u(x), то есть $x\overline{P}x$. Значит отношение P антирефлексивно.

Транзитивность. Пусть $x,y,z\in A$, таковы, что xPy и yPz. Это значит, что u(x)>u(y) и u(y)>u(z). Следовательно, u(x)>u(z), или xPz, значит P транзитивно.

Транзитивность дополнения. Пусть $x,y,z \in A$ таковы, что $x\overline{P}y$ и $y\overline{P}z$. В силу соотношения из формулировки $u(x) \le u(y)$ и $u(y) \le u(z)$, отсюда $x\overline{P}z$, то есть \overline{P} транзитивно.

 $[\Leftarrow]$ Пусть P – слабый порядок. Определим значение u(x), как число элементов во множестве $\{y|xPy\}$, то есть число альтернатив, которые менее предпочтительны, чем x. Докажем, что при этом $xPy \iff u(x) > u(y)$.

Пусть xPy. Поскольку отношение P транзитивно, то для любого z, такого, что yPz, верно и xPz. Поэтому из x выходят дуги как минимум в те же вершины, что и из y, значит $u(x) \geqslant u(y)$. Кроме того P антирефлексивно, поэтому из y не ведет дуга в y, а из x в y ведет. Значит, u(x) > u(y).

Обратно, пусть u(x) > u(y), т.е. из x выходит больше дуг, чем из y. Значит, существует такой элемент z, что xPz, но $y\overline{P}z$. Если $x\overline{P}y$, то отношение \overline{P} не транзитивно, что противоречит условию, значит $(x,y) \in P$.

29. Критерий существования функции, обратной к данной. Критерий биекции в терминах обратной функции

Критерий существования функции, обратной к данной. Пусть f - функциональное соответствие $f: X \to Y$. Тогда обратное соответствие: $f^{-1} = (y, x) | (x, y) \in f \Leftrightarrow f(x) = y$.

Замечание. f^{-1} - функционально $\Leftrightarrow f$ - интетивно.

Доказательство. Докажем \rightarrow .

Из того, что f^{-1} - функционально $\Rightarrow \forall y \in Y : f^{-1}(y) = x$ и $f^{-1}(y) = x' \Leftrightarrow x = x' \Rightarrow$ если f(x) = f(x') = y, то $f^{-1}(y) = x = x'$, что и означает инъективность f.

Из инъективности $f \Rightarrow \forall y \in Y : f(x) = y$ и $f(x') = y \Leftrightarrow x = x' \Rightarrow$ если $(y, x) \in f^{-1}$ и $(y, x') \in f^{-1}$, то $x = x' \Rightarrow f^{-1}$ - функционально.

Критерий биекции в терминах обратной функции

Теорема. Критерией биективности:

- 1. Ecau f buerqual $A \leftrightarrow B$, mo $f \circ f^{-1} = id_B \ u \ f^{-1} \circ f = id_A$.
- 2. Если f функция $A \to B$ и существует $g: B \to A$, такая что $f \circ g = id_B$ и $g \circ f = id_A$, то $f^{-1} = g$ и f биекция.

Доказательство. Утверждение 1 проверяется непосредственно, по свойствам биекции: $\forall a \in A: f^{-1} \circ f(a) = a$ и $\forall b \in B: f \circ f^{-1}(b) = b$.

Докажем 2, проверив f на свойства биекции.

Bcwdy определенность Если f не всюду определена, то $g \circ f(x) = g(f(x))$ - не всюду определена, а значит не тождествена, что противоречит гипотизе. Значит f - тотальна.

Интективность. Пусть $f(x_1) = f(x_2) \Rightarrow g(f(x_1)) = g(f(x_2)) \Rightarrow x_1 = x_2$.

Сюръективность. Пусть f не принимает значение $b \in B$, тогда $f(g(\ldots))$ не принимает значение b, значит $f \circ g$ - не тождественна, что противоречит условию. Тогда $\forall b \in B: \exists a \in A: f(a) = b$.

Таким образом f - биекция. Тогда очевидно, что $g=f^{-1}$ (проверяется поэлементно из композиции $g\circ f=id_A,\ f\circ g=id_B\colon (a,\ b)\in f\Rightarrow (b,\ a)\in g$ и аналогично, если $(b,\ a)\in g$, то $(a,\ b)\in f$).

30. Биекция между двоичными словами, подмножествами конечного множества и зарактеристическими функциями

Определение. Характеристической функцией множества $X \subset U$ называют функцию χ_X , которая равна 1 на элементах X и 0 на остальных элементах U.

Составим двоичное слово следующим образом: если i элемент лежит в X, то на i-м месте ставим 1, иначе 0. Биекция между характеристической функцией и подмножеством очевидна – значения характеристической функции однозначно задают подмножество.