알파고1 논문 리뷰

Mastering the game of Go with deep neural networks and tree search

(D. Silver, A. Huang et al. 네이쳐, 2016)

Monte Carlo Tree Search

Policy network

Value network

1. SL Policy

- Classification
- 13 레이어의 CNN 학습
- 인풋은 19*19*48
- 데이터 : 3천만수 (KGS 바둑 서버)
- 57% 정확도 달성 (바둑판 정 보만 인풋으로 쓸 때는 55.7% 정확도)
- GPU 50개로 3주간 학습
- 3억 4천만 step

2. Rollout Policy

- 빠른 시뮬레이션을 위한 작은 네트워크
- 인풋은 Hand-crafted features
- 네트워크는 linear softmax
- 정확도는 24.2%
- · 대신 action을 한번 선택하는 데 필요한 시간은 2μs (SL Policy는 3 ms)

3. RL Policy

- SL Policy 와 동일한 형태의 네트워크
- 먼저 SL Policy의 weight로 초 기화
- 리워드는 게임이 끝나는 시점 에서만 주워지며, 이기면 +1, 지면 -1
- 알고리즘은 REINFORCE 알고 리즘 사용

$$\Delta
ho \propto rac{\partial \log p_{
ho}(a_t|s_t)}{\partial
ho} z_t$$

- RL vs SL ? RL 80% win
- GPU 50개로 1일간 학습

4. Value Network

RL policy를 따랐을 때에 누가 이길지 예측하는 네트워크

$$v^p(s) = \mathbb{E}[z_t|s_t = s, a_{t...T} \sim p]$$

- 아랫단은 SL 네트워크와 동일 하나 윗단이 single output.
 3천만 개의 상황으로부터 학
- 3천만 개의 상황으로부터 힉 습 (각각 다른 게임)
- GPU 50개로 1주일간 학습
- 5천만 mini-batch

● RL polic를 이용한 rollout 보다 1만5천배 빠른데, 비슷한 정확도를 보임

· value returned 对各川型电主M FOR PORTO PORTO TO FISCH 的数 所数 分别.

For each Edge...

Q(S,A): Action Value

N(S,A): Visit Count

P(S,A): Prior probability

$$a_t = \underset{a}{\operatorname{argmax}} \left(Q(s_t, a) + \underline{u(s_t, a)} \right)$$

$$Q(s,a) = \frac{1}{N(s,a)} \sum_{i=1}^{n} \mathbf{1}(s,a,i) \frac{V(s_L^i)}{V(s_L^i)} \qquad u(s,a) \propto \frac{P(s,a)}{1+N(s,a)}$$

$$V(s_L) = (1 - \lambda)\underline{v_{\theta}(s_L)} + \lambda\underline{z_L}$$

Value Network 롤아웃으로 게임을 끝까지 플레이 했을 때의 결과