ADF & TransApp: A Transformer-Based Framework for Appliance Detection

Using Smart Meter Consumption Series

Adrien Petralia, Philippe Charpentier, Themis Palpanas

September 24, 2025

Overview

- Problem Formulation
- 2 ADF Framework
- TransApp Architecture
- Two-Step Training Process
- 6 Results and Conclusions

Mathematical Setup

Time Series Definition:

- Electrical consumption time series: $X = (x_1, x_2, \dots, x_T)$
- Each element $x_j \in \mathbb{R}^1_+$ represents consumption at timestamp i_j
- Very low frequency: sampled every 15-60 minutes

Appliance Detection Problem:

Binary Classification Task

Given: Collection of consumption time series $\mathcal{X} = \{X_1, X_2, \dots, X_N\}$ of variable lengths

Goal: Predict presence/absence of appliance a in time series X_i

Challenge: Long series (10k-20k points), variable lengths, low sampling frequency

Dummy Example

Input: Smart meter data from household over 30 days

- $X = (x_1, x_2, \dots, x_{1440})$ where T = 1440 (30 days \times 48 readings/day)
- x_j = electricity consumption in kWh at 30-minute intervals
- Example values: $x_1 = 0.5$, $x_2 = 0.8$, $x_3 = 1.2$, ...

Output: Binary label for appliance presence

- y = 1: Dishwasher present in household
- y = 0: No dishwasher in household

Key Challenge: At low sampling rates, individual appliance signatures are smoothed out and difficult to detect directly.

Framework Overview

Core Idea: Fragment long consumption series into manageable subsequences

Algorithm 1 ADF Framework

- 1: **Input:** Consumption series *X* of length *I*
- 2: **Step 1:** Extract series from database
- 3: **Step 2:** Slice into n = |I/w| subsequences of length w
- 4: **Step 3:** Add temporal encoding features
- 5: **Step 4:** Apply TransApp classifier to each subsequence
- 6: **Step 5:** Merge predictions using quantile-based aggregation
- 7: Output: Final binary prediction

Detailed Mathematical Process

Step 2 - Subsequence Creation:

$$n = \left| \frac{I}{w} \right| \tag{1}$$

$$\mathbf{x}_i = X_{(i-1)w+1:(i-1)w+w}$$
 for $i = 1, 2, ..., n$ (2)

Step 3 - Temporal Encoding:

$$Te_{sin}(i_t) = \sin\left(\frac{2\pi i_t}{p}\right)$$
 (3)

$$Te_{cos}(i_t) = \cos\left(\frac{2\pi i_t}{p}\right)$$
 (4)

Where p = 24 for hours, p = 7 for days

Result: Each subsequence \mathbf{x}_i becomes $\mathbf{x}_{w \times m}$ where m is number of channels (consumption + temporal features)

Prediction Merging Strategy

Step 4 - Individual Predictions:

- TransApp predicts probability $p(\mathbf{x}_i)$ for each subsequence
- Results in probability vector: $P_X = (p(\mathbf{x}_1), p(\mathbf{x}_2), \dots, p(\mathbf{x}_n))$

Step 5 - Quantile Aggregation:

$$\alpha_a^* = \arg\max_{\alpha \in \{0,0.5,\dots,0.95,1\}} S(y_{true}, y_\alpha^{pred})$$
 (5)

Final Prediction = round(
$$Q_{P_X}(\alpha_a^*)$$
) (6)

Where $Q_{P_X}(\alpha_a^*)$ is the α_a^* -th quantile of P_X

Intuition: Instead of simple majority voting, use quantile that maximizes validation performance

Concrete Example

Input Series: X with length I = 2048 points (21 days of 30-min data) **Subsequence Creation:** Choose w = 256 (2.67 days)

- $n = \lfloor 2048/256 \rfloor = 8$ subsequences
- $\mathbf{x}_1 = (x_1, x_2, \dots, x_{256})$
- $\mathbf{x}_2 = (x_{257}, x_{258}, \dots, x_{512})$
- ... and so on

Temporal Encoding: Each subsequence becomes 256×5 matrix

- Channel 1: Original consumption values
- Channels 2-3: Hour encoding (sin, cos)
- Channels 4-5: Day encoding (sin, cos)

Predictions: $P_X = (0.2, 0.8, 0.9, 0.1, 0.7, 0.3, 0.85, 0.6)$ **Final Result:** If optimal $\alpha^* = 0.7$, then $Q_{P_X}(0.7) = 0.8 \rightarrow \text{Label} = 1$

Hybrid CNN-Transformer Design

Core Components:

- **1 Embedding Block:** Convolutional feature extraction
- Transformer Block: Long-range dependency modeling
- Task-specific Heads: Classification or reconstruction

Input/Output Flow:

$$\mathbf{z}_{w \times m} \xrightarrow{\mathsf{Embedding}} \mathbf{z}_{w \times d_{model}} \xrightarrow{\mathsf{Transformer}} \mathbf{z}_{w \times d_{model}} \xrightarrow{\mathsf{Head}} \mathsf{Output}$$
 (7)

Where $d_{model} = 96$ is the latent dimension

9/19

Convolutional Feature Extraction

Architecture: 4 stacked Residual Units (ResUnits) **Each ResUnit contains:**

- 1D Convolutional layer
- GeLU activation function
- BatchNormalization layer
- Residual connection

Dilation Pattern:

ResUnit_i:
$$d = 2^i$$
 for $i = 1, 2, 3, 4$ (8)

Purpose:

- Exponentially increasing receptive fields
- Preserves time dimension (stride = 1)
- Provides inductive bias for local patterns

Modified Attention Mechanism

Architecture: N stacked Transformer layers (N = 3 or 5) **Each layer contains:**

- Layer Normalization
- Multi-Head Diagonally Masked Self-Attention (DMSA)
- Layer Normalization
- Position-wise Feed-Forward Network (PFFN)
- Residual connections after DMSA and PFFN

Key Innovation - DMSA:

- Masks diagonal elements of attention matrix
- Attention scores: $A_{ii} = 0$ after softmax
- Emphasizes inter-token relationships
- Reduces overfitting on small datasets

No Positional Encoding: Temporal features already encoded in input

Detailed Mathematical Operations

Input: Subsequence $\mathbf{x}_{w \times m}$ where w = 256, m = 5 **Embedding Block:**

$$\mathbf{h}_1 = \mathsf{ResUnit}_1(\mathbf{x}_{256 \times 5}) \to \mathbf{h}_1^{256 \times 32} \tag{9}$$

$$\mathbf{h}_2 = \mathsf{ResUnit}_2(\mathbf{h}_1) \to \mathbf{h}_2^{256 \times 64} \tag{10}$$

$$\mathbf{h}_3 = \mathsf{ResUnit}_3(\mathbf{h}_2) \to \mathbf{h}_3^{256 \times 96} \tag{11}$$

$$\mathbf{z} = \mathsf{ResUnit}_4(\mathbf{h}_3) \to \mathbf{z}^{256 \times 96}$$
 (12)

Transformer Block:

$$\mathbf{z}' = \mathsf{DMSA}(\mathsf{LayerNorm}(\mathbf{z})) + \mathbf{z}$$
 (13)

$$\mathbf{z}'' = \mathsf{PFFN}(\mathsf{LayerNorm}(\mathbf{z}')) + \mathbf{z}'$$
 (14)

Output: Final representation $\mathbf{z}_{256\times96}$

Self-Supervised Pretraining + Supervised Fine-tuning

Motivation:

- Large amounts of unlabeled smart meter data available
- Limited labeled appliance data
- Transformer architectures benefit from pretraining

Training Pipeline:

- **Step 1:** Self-supervised pretraining on unlabeled consumption data
- 2 Step 2: Supervised fine-tuning on labeled appliance data

Masked Reconstruction Task

Objective: Learn consumption patterns without appliance labels **Masking Process:**

- Randomly mask 50% of consumption channel
- Average mask segment length: $I_m = 24$ time steps (12 hours)
- Keep temporal encoding channels untouched

Architecture: TransApp + Reconstruction Head

$$\mathbf{z}_{w \times d_{model}} \xrightarrow{\mathsf{Linear Layer}} \hat{\mathbf{x}}_{w \times 1}$$
 (15)

Loss Function: Mean Absolute Error on masked elements

$$\mathcal{L}_{MAE} = \frac{1}{\#M} \sum_{i \in M} |\hat{x}_i - x_i| \tag{16}$$

Where #M is the number of masked elements

Appliance Classification Task

Objective: Detect specific appliances using learned representations **Architecture:** TransApp + Classification Head

$$\mathbf{z}_{w \times d_{model}} \xrightarrow{\mathsf{Global} \ \mathsf{Avg} \ \mathsf{Pool}} \mathbf{z}_{d_{model}} \xrightarrow{\mathsf{Linear}} \mathsf{logits}_2$$
 (17)

Training Details:

- Freeze or fine-tune pretrained weights
- Binary classification for each appliance type
- All subsequences inherit label from full series

Loss Function: Cross-entropy loss

$$\mathcal{L}_{CE} = -\sum_{c=1}^{2} y_c \log(\sigma(\text{logits}_c))$$
 (18)

Performance Benefits Analysis

Representation Learning Benefits:

- Pattern Recognition: Learns general consumption patterns across households
- Temporal Dependencies: Captures daily/weekly consumption rhythms
- **Noise Robustness:** Develops robust features through reconstruction
- Data Efficiency: Leverages abundant unlabeled data

Experimental Evidence:

- TransAppPT (pretrained) vs TransApp (no pretraining)
- Average improvement: 1-2 percentage points in Macro F1-score
- Larger improvements with more pretraining data
- TransAppPT-I (pretrained on 200k series) achieves best results

Scaling Effect: Performance increases proportionally with pretraining data size

Concrete Training Scenario

Pretraining Phase:

- Dataset: 200,000 unlabeled consumption series
- Input: Masked subsequences x_{256×5}
- Target: Reconstruct original consumption values
- Duration: 100 epochs

Fine-tuning Phase:

- Dataset: 3,000 labeled series (dishwasher detection)
- Input: Complete subsequences x_{256×5}
- Target: Binary labels (dishwasher present/absent)
- Duration: 50 epochs

Result:

- TransApp (no pretraining): 0.564 Macro F1
- TransAppPT (pretrained): 0.594 Macro F1
- Improvement: +3.0 percentage points

Performance Summary

Datasets:

- CER: 3,470 Irish households, 9 appliance types
- EDF 1: 4,701 French households, 7 appliance types
- EDF 2: 200,000 unlabeled series for pretraining

Key Findings:

- **1** ADF improves all baseline classifiers by 2-5 percentage points
- TransAppPT achieves best overall performance (rank 1-2)
- Opening on large unlabeled data provides significant gains
- Framework scales efficiently to long time series

Best Results:

- Water Heater detection: 0.855 Macro F1
- Electric Vehicle detection: 0.825 Macro F1
- Average across all appliances: 0.746 Macro F1

Key Contributions and Impact

Technical Contributions:

- **4 ADF Framework:** Scalable approach for long, variable-length series
- TransApp Architecture: Hybrid CNN-Transformer with DMSA
- Two-step Training: Effective use of unlabeled data
- **Temporal Encoding:** Novel approach for time-aware features

Practical Impact:

- Enables real-world appliance detection for energy suppliers
- Supports personalized energy services and recommendations
- Contributes to energy transition goals
- Scalable to millions of smart meters

Future Directions:

- Multi-appliance detection
- Real-time inference
- Cross-domain adaptation