Logical Equivalence Example

The logical equivalence $((\mathbf{not}\ Q) \Rightarrow (\mathbf{not}\ P)) \equiv (P \Rightarrow Q)$ went a little too quickly for some people. So let's slow it down somewhat. Firstly it may help to write implication using two other simple propositions. Let's use R and S:

R	S	$R \Rightarrow S$
Т	Τ	Т
Т	F	F
F	Т	Т
F	F	Т

Now try to build the truth table for (not Q) \Rightarrow (not P). The first part is as it was for other examples in lecture.

Р	Q	not P	not Q	$((\mathbf{not} \ \mathbf{Q}) \Rightarrow (\mathbf{not} \ \mathbf{P}))$
Т	Т	F	F	
Τ	F	F	Τ	
F	Т	${ m T}$	F	
\mathbf{F}	F	${ m T}$	Т	

To complete the last column we are doing an $R \Rightarrow S$ construction, where R is column 4 and S is column 3. For row 1, R has value F and S has value F so $R \Rightarrow S$ should have value T from the $R \Rightarrow S$ truth table.

Р	Q	not P	not Q	$\big ((\mathbf{not} \ \mathbf{Q}) \Rightarrow (\mathbf{not} \ \mathbf{P})) \big $
Τ	Т	F	F	Т
Τ	F	F	T	
\mathbf{F}	Т	Τ	F	
$_{\rm F}$	F	Τ	Т	

For row 2, R has value T and S has value F so $R \Rightarrow S$ should have value F from the $R \Rightarrow S$ truth table.

Р	Q	not P	not Q	$\big ((\mathbf{not} \ \mathbf{Q}) \Rightarrow (\mathbf{not} \ \mathbf{P})) \ \big $
Т	Т	F	F	T
Τ	F	F	Τ	F
F	Т	Τ	F	
F	F	Τ	Τ	

For row 3, R has value F and S has value T so R \Rightarrow S should have value T from the R \Rightarrow S truth table.

Р	Q	not P	not Q	$((\mathbf{not} \ \mathbf{Q}) \Rightarrow (\mathbf{not} \ \mathbf{P}))$
Т	Т	F	F	T
\mathbf{T}	F	F	Τ	F
\mathbf{F}	Т	Τ	F	T
\mathbf{F}	F	Т	Τ	

For row 4, R has value T and S has value T so R \Rightarrow S should have value T from the R \Rightarrow S truth table.

Р	Q	not P	not Q	$((\mathbf{not}\ \mathbf{Q})\Rightarrow(\mathbf{not}\ \mathbf{P}))$
Т	Т	F	F	T
Τ	F	\mathbf{F}	Τ	${ m F}$
F	Τ	${ m T}$	F	T
F	F	${ m T}$	Т	T

Now the last column has value F only when P has value T and Q has value F. Thus the compound statement in the last column is logically equivalent to $P\Rightarrow Q$.