8. Structural Equation Modeling 5: Latent Growth Curve Models

References:

- Beaujean (2014). Chapter 5.
- Ducan, Ducan, & Strycker (2006). Chapter 2.

8.1. Introduction

- The latent growth curve modeling (LGM) is a special modeling technique based on mean and covariance structure analysis. Its purpose is to examine individual developmental trajectory (change) over time in a longitudinal study.
- Also known as latent growth modeling, growth curve modeling, or latent curve modeling (LCM).

8.2. The Two-factor LGM

• Theoretical model with 3 time points:

- The intercept factor (f_1) describes individuals' initial status at the onset of the study.
- The growth or slope factor (f_2) describes individuals' changes from one time point to another.

- Methodologically, LGM is a CFA model with a mean structure.
- Model equations:

time1 =
$$V_1 = \mu_1 + 1.0*f_1 + 0*f_2 + e_1$$

time2 = $V_2 = \mu_2 + 1.0*f_1 + 1.0*f_2 + e_2$
time3 = $V_3 = \mu_3 + 1.0*f_1 + \lambda_{32}*f_2 + e_3$

• In matrix form,

$$v = \mu + \Lambda f + e \tag{1}$$

• Taking expectations of the observed variables,

$$E(v) = \mu + \Lambda \alpha$$

where $\alpha = E(f)$ is the mean vector of the latent factors

• With 3 time points,

$$E(f_1) = \alpha_1$$

$$E(f_2) = \alpha_2$$

$$E(V_1) = \mu_1 + 1.0 * \alpha_1 + 0 * \alpha_2 = \mu_1 + \alpha_1$$

$$E(V_2) = \mu_2 + 1.0 * \alpha_1 + 1.0 * \alpha_2 = \mu_2 + \alpha_1 + \alpha_2$$

$$E(V_3) = \mu_3 + 1.0 * \alpha_1 + \lambda_{32} * \alpha_2 = \mu_3 + \alpha_1 + \lambda_{32} \alpha_2$$

• In a two-factor LGM, the variables are:

Name	Type	Cause/Effect	dimension
ν	observed	DV	$p \times 1$
f	latent	IV	$k \times 1$
e	latent	IV	$p \times 1$

• And the parameter matrices are:

Parameter matrix	Symbol	Name	dimension
1) factor loading	Λ	lambda	$p \times k$
2) variance-covariance	Ψ	psi	$k \times k$
matrix of the factors			
3) variance-covariance	Θ	theta	$p \times p$
matrix of errors			
4)intercept of observed	μ	mu	$p \times 1$
variables			
5) latent means	lpha	alpha	$k \times 1$

8.2.1. Interpreting the model parameters

- μ_1 , μ_2 , μ_3 are the intercepts, which will be the means of the observed variables if the latent means are zeros
- α_1 is the mean of f_1 , which measures the average initial status across individuals
- α_2 is the mean of f_2 , which measures the average growth across individuals
- λ_{32} is the factor loading, which characterizes the growth pattern over time, e.g., whether the pattern is linear or nonlinear
- ψ_{11} is the variance of f_1 , which measures how individuals are different in terms of their initial status
- ψ_{22} is the variance of f_2 , which measures how individuals are different in terms of their growth
- ψ_{21} is the covariance of f_1 and f_2 , which measures the relationship between initial status and growth

- θ_{11} , θ_{22} , θ_{33} are the error variances
- To fit a linear growth model, λ_{32} will become a fixed parameter with a known value.
- For example, $\lambda_{32}=2$ and $\lambda_{42}=3$ if four time points are selected with equal intervals.

• Different growth trajectories (Duncan et al., 2006; p.35)

8.3. Identification

• With 3 time points, the model cannot be identified because there are too many parameters for (1) mean structure and (2) covariance structure:

Structure	No. of information	No. of parametersNo. of	of constraints
Mean	3	3+2=5	3
Covariance	$(3 \times 4)/2 = 6$	1 + 3 + 3 = 7	2

- To overcome this, we typically (1) fix the intercepts of the observed variables at 0, that is, $\mu = (\mu_1, \mu_2, \mu_3)' = 0$, and (2) equate the error variances, that is, $\theta_{11} = \theta_{22} = \theta_{33}$
- For models with 4 or more time points, we may not need the equality of error variances constraints for identifying the covariance structure:

Structure	No. of information	No. of parametersNo.	of constraints
Mean	4	4 + 2 = 6	4
Covariance	$(3 \times 4)/2 = 6$	2 + 3 + 4 = 9	0

8.4. Example 1: Alcohol Consumption

• In a longitudinal study of alcohol use, 343 participants were recruited. Each participant's level of alcohol consumption for the past 6 months was measured at three approximately equal time intervals over a 2-year period (Biglan et al., 1995):

• Data: (N = 343, filename = biglan.dat)

time1	1.000	0.486	0.399
time2	0.486	1.000	0.533
time3	0.399	0.533	1.000
SD	7.390	7.990	8.080
MEAN	8.310	10.000	10.810

 Questions

- 1. What is the average initial alcohol consumption?
- 2. Are people different in their initial consumption?
- 3. What is the average growth in alcohol consumption?
- 4. Are people different in their growth?
- 5. Is there any relationship between initial consumption and growth?
- 6. What is the growth pattern? Is it linear?

• Summary of findings:

Question Parameter of Interest Results

• Example 1 (continued):

```
filename: biglan1.R (R script)
# Example 1: Alcohol Consumption
# set work directory and load the packages
setwd("c:/users/wchan/google drive/stat6108/data")
library(lavaan)
library(semPlot)
# data preparation
alc.corr <- matrix(</pre>
c(1.000, 0.486, 0.399,
  0.486, 1.000, 0.533,
  0.399, 0.533,
                    1.000),
nrow=3, ncol=3)
alc.sd <- c(7.390, 7.990, 8.080)
alc.mean \leftarrow c(8.310, 10.000, 10.810)
varname <- c("time1", "time2", "time3")</pre>
alc.cov <- cor2cov(alc.corr, alc.sd, names=varname)</pre>
names(alc.mean) <- varname</pre>
# specify Model 1 (Evaluating linear growth using Wald test)
model1 <- "
# measurement model
int =~ 1*time1 + 1*time2 + 1*time3
growth =~ 0*time1 + 1*time2 + la32*time3
# factor variance and covariance
int ~~ int + growth
growth ~~ growth
# error variance (constrained)
time1 ~~ c1*time1
time2 ~~ c1*time2
```

```
time3 ~~ c1*time3
# intercepts
time1 + time2 + time3 ~ 0*1
int + growth ~ 1
# evaluating linear growth
linear := la32-2"
# Fit Model 1 to data
fit1 <-lavaan(model1, sample.cov=alc.cov, sample.mean=alc.mean, sample.nobs=343)
# specify Model 2 (Evaluating linear growth using LR test)
model2 <- "
# measurement model
int =~ 1*time1 + 1*time2 + 1*time3
growth =~ 0*time1 + 1*time2 + 2*time3
# error variance (constrained)
time1 ~~ c1*time1
time2 ~~ c1*time2
time3 ~~ c1*time3"
# Fit Model 2 to data
fit2 <-lavaan(model2, sample.cov=alc.cov, sample.mean=alc.mean, sample.nobs=343, auto.var=TRUE,
              auto.cov.lv.x=TRUE, meanstructure=TRUE, int.ov.free=FALSE, int.lv.free=TRUE)
# save the output
sink("biglan1.out", split=TRUE)
writeLines("\n Example 1: Alcohol Consumption\n")
writeLines("\n Output for Model 1 (Evaluating linear growth using Wald test)\n")
inspect(fit1)
summary(fit1, fit.measures=TRUE, standardized=TRUE)
writeLines("\n Output for Model 2 (Evaluating linear growth using LR test)\n")
summary(fit2, fit.measures=TRUE, standardized=TRUE)
writeLines("\n Model Comparisons\n")
lavTestLRT(fit1, fit2)
sink()
# create path diagram
semPaths(fit1, "path", "est", nCharNodes=5)
```

filename: biglan1.out (output file) Example 1: Alcohol Consumption Output for Model 1 (Evaluating linear growth using Wald test) Note: model contains equality constraints: lhs op rhs 5 == 5 == 7 \$lambda int growth time1 0 time2 time3 0 \$theta time1 time2 time3 time1 5 time2 0 time3 0 7 \$psi int growth int 2 growth 3 4 \$nu intrcp time1 0 time2

time3

0

\$alpha introp int 8 growth 9 lavaan 0.6-3 6 Optimization Number of fr

Akaike (AIC)

lavaan (0.6-3	ended	normally	after	67	iterations

Optimization method	NLMINB
Number of free parameters	9
Number of equality constraints	2
Number of observations	343
Estimator	MT.
Model Fit Test Statistic	иц 2.468
Degrees of freedom	2
P-value (Chi-square)	0.291
Model test baseline model:	
Minimum Function Test Statistic	219.563
Degrees of freedom	3
P-value	0.000
User model versus baseline model:	
Comparative Fit Index (CFI)	0.998
Tucker-Lewis Index (TLI)	0.997
Idenci lewip index (Ili)	0.337
Loglikelihood and Information Criteria:	
Loglikelihood user model (H0)	-3465.563
Loglikelihood unrestricted model (H1)	
Number of free parameters	7

6945.125

Bayesian	(BIC)				6971.990		
Sample-si	ample-size adjusted Bayesian (BIC) 6949.784						
Root Mean S	quare E	rror of Ap	proximati	on:			
RMSEA					0.026		
90 Percen	t Confid	dence Inte	rval	0.00	0 0.114		
P-value R	MSEA <=	0.05			0.550		
Standardize	d Root 1	Mean Squar	e Residua	1:			
SRMR					0.029		
Ditin					0.025		
Parameter E	stimate	s:					
Informati	on				Expected		
Information saturated (h1) model Structured							
Standard Errors Standard							
Standard		,			Standard		
	Errors	,			Standard		
Standard Latent Vari	Errors		Std.Err			Std.lv	Std.all
	Errors		Std.Err		Standard P(> z)	Std.lv	Std.all
Latent Vari	Errors		Std.Err			Std.lv 5.262	Std.all 0.702
Latent Vari	Errors	Estimate	Std.Err				0.702
Latent Vari int =~ time1	Errors	Estimate	Std.Err			5.262	0.702
Latent Vari int =~ time1 time2	Errors ables:	Estimate 1.000 1.000	Std.Err			5.262 5.262	0.702 0.678
Latent Vari int =~ time1 time2 time3	Errors ables:	Estimate 1.000 1.000	Std.Err			5.262 5.262	0.702 0.678 0.644
<pre>int =~ time1 time2 time3 growth =~ time1 time2</pre>	Errors ables:	1.000 1.000 1.000	Std.Err		P(> z)	5.262 5.262 5.262	0.702 0.678 0.644
<pre>int =~ time1 time2 time3 growth =~ time1 time2</pre>	Errors ables:	1.000 1.000 1.000	Std.Err	z-value		5.262 5.262 5.262 0.000	0.702 0.678 0.644
<pre>int =~ time1 time2 time3 growth =~ time1 time2</pre>	Errors ables: (la32)	1.000 1.000 1.000 0.000		z-value	P(> z)	5.262 5.262 5.262 0.000 2.505	0.702 0.678 0.644 0.000 0.323
<pre>int =~ time1 time3 growth =~ time1 time2 time3</pre>	Errors ables: (la32)	1.000 1.000 1.000 0.000	0.258	z-value 5.794	P(> z)	5.262 5.262 5.262 0.000 2.505 3.748	0.702 0.678 0.644 0.000 0.323

2.971 -0.389

0.697

-0.088 -0.088

-1.156

growth

Intercepts:							
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.time1		0.000				0.000	0.000
.time2		0.000				0.000	0.000
.time3		0.000				0.000	0.000
int		8.314	0.402	20.669	0.000	1.580	1.580
growth		1.674	0.389	4.307	0.000	0.668	0.668
Variances:							
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
int		27.687	4.608	6.008	0.000	1.000	1.000
growth		6.276	3.535	1.775	0.076	1.000	1.000
.time1	(psi)	28.530	2.179	13.096	0.000	28.530	0.507
.time2	(psi)	28.530	2.179	13.096	0.000	28.530	0.474
.time3	(psi)	28.530	2.179	13.096	0.000	28.530	0.427
Defined Para	meters	:					
		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
linear		-0.504	0.258	-1.950	0.051	1.748	-1.541

Output for Model 2 (Evaluating linear growth using LR test)

lavaan 0.6-3 ended normally after 55 iterations

Optimization method Number of free parameters Number of equality constraints	NLMINB 8 2
Number of observations	343
Estimator Model Fit Test Statistic Degrees of freedom P-value (Chi-square)	ML 4.614 3 0.202
Model test baseline model:	
Minimum Function Test Statistic Degrees of freedom P-value	219.563 3 0.000
User model versus baseline model:	
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.993 0.993
Loglikelihood and Information Criteria:	
Loglikelihood user model (H0) Loglikelihood unrestricted model (H1)	-3466.636 -3464.329
Number of free parameters Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	6 6945.271 6968.298 6949.264

Root Mean Square Error of Approximation:

RMSEA		0.040
90 Percent Confidence Interval	0.000	0.107
P-value RMSEA <= 0.05		0.508

Standardized Root Mean Square Residual:

SRMR	0.041
SRMR	0.04

Parameter Estimates:

Information	Expected
Information saturated (h1) model	Structured
Standard Errors	Standard

0.000

Latent Variables:

.time2

	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
int =~						
time1	1.000				5.335	0.707
time2	1.000				5.335	0.697
time3	1.000				5.335	0.648
growth =~						
time1	0.000				0.000	0.000
time2	1.000				1.944	0.254
time3	2.000				3.888	0.472
Covariances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
int ~~						
growth	-1.056	2.145	-0.492	0.622	-0.102	-0.102
Intercepts:						
	Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
.time1	0.000				0.000	0.000

0.000

0.000

.time3		0.000				0.000	0.000
int		8.457	0.390	21.682	0.000	1.585	1.585
growth		1.250	0.229	5.455	0.000	0.643	0.643
Variances:							
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.time1	(psi)	28.460	2.173	13.096	0.000	28.460	0.500
.time2	(psi)	28.460	2.173	13.096	0.000	28.460	0.486
.time3	(psi)	28.460	2.173	13.096	0.000	28.460	0.420
int		28.464	4.377	6.503	0.000	1.000	1.000
growth		3.780	1.753	2.156	0.031	1.000	1.000

Model Comparisons

Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
fit1 2 6945.1 6972.0 2.4680
fit2 3 6945.3 6968.3 4.6137 2.1456 1 0.143

- > library(semPlot)
- > semPaths(fit1,"path","est",nCharNodes=5)

8.5. Multisample LGM

• To determine whether a common developmental model exists, or whether there are different growth patterns across groups (Duncan et al., 2006; Ch. 5)

8.5.1. Identification

- For the covariance structure, since the factor loading matrix has a specific pattern with some fixed values, we can estimate the variances of the latent factors
- For the mean structure, we are interested in estimating α , the latent means of the intercept and growth factors. This is achieved by setting the intercept $\mu=0$ in each group

8.6. Example 2: Comparing Alcohol Use Between Females and Males

• In a longitudinal study of adolescent alcohol use, 196 females and 95 males were recruited. Each participant's level of alcohol consumption for the past 6 months was measured at three approximately equal time intervals over a 2-year period (Biglan et al., 1995).

• Data:

$\frac{\text{Female}}{\text{(filename} = female.dat)}$				$N_2 = 95$) $me = male$	e.dat)		
time1	1.0000	0.4641	0.4200		1.0000	0.4708	0.3915
time2	0.4641	1.0000	0.5614		0.4708	1.0000	0.6679
time3	0.4200	0.5614	1.0000		0.3915	0.6679	1.0000
SD	1.3282	1.5136	1.5346		1.3932	1.4910	1.6520
MEAN	1.4430	1.7230	1.8310		1.5540	1.8640	2.2800

	\circ	, •
•	()114	actione.
_	Qui	estions:

- 1. Do they have equal growth pattern?
- 2. Are females (males) different in their initial alcohol use and growth?
- 3. Are such differences identical between female and male drinkers?
- 4. Do the two groups have equal average initial status?
- 5. Do they have equal average growth?

• Summary of findings:

Parameter of Interest

Question Females Males Results

• Example 2 (continued):

```
filename: biglan2.R (R script)
# Example 2: Comparing Alcohol Use Between Females and Males
# set work directory and load lavaan packages
setwd("c:/users/wchan/google drive/stat6108/data")
library(lavaan)
# data preparation
# group 1: Females
female.corr <- matrix(</pre>
c(1.0000, 0.4641,
                      0.4200,
  0.4641, 1.0000,
                      0.5614,
  0.4200, 0.5614,
                      1.0000),
nrow=3, ncol=3)
female.sd <- c(1.3282, 1.5136, 1.5346)
female.mean <- c(1.4430, 1.7230, 1.8310)
# group 2: Males
male.corr <- matrix(</pre>
c(1.0000, 0.4708,
                      0.3915,
  0.4708, 1.0000,
                      0.6679,
  0.3915, 0.6679,
                      1.0000),
nrow=3, ncol=3)
male.sd <- c(1.3932, 1.4910, 1.6520)
male.mean <- c(1.5540, 1.8640, 2.2800)
varname <- c("time1", "time2", "time3")</pre>
female.cov <- cor2cov(female.corr, female.sd, names=varname)</pre>
male.cov <- cor2cov(male.corr, male.sd, names=varname)</pre>
names(female.mean) <- names(male.mean) <- varname</pre>
```

```
# specify Model 1 (Using Wald test to compare the groups)
model1 <- "
# measurement model
int =~ 1*time1 + 1*time2 + 1*time3
growth = \sim 0*time1 + 1*time2 + c(la1,la2)*time3
# factor variance and covariance
int ~~ c(ps11,ps12)*int
growth ~~ c(ps21,ps22)*growth
int ~~ c(ps31,ps32)*growth
# error variance (constrained)
time1 ~~ c(theta1,theta2)*time1
time2 ~~ c(theta1,theta2)*time2
time3 ~~ c(theta1,theta2)*time3
# intercepts and factor means
time1 + time2 + time3 ~ 0*1
int ~ c(al11,al12)*1
growth ~ c(al21,al22)*1
# comparing females and males
la d := la1-la2
ps1_d := ps11-ps12
ps2 d := ps21-ps22
ps3_d := ps31-ps32
al1 d := al11-al12
al2 d := al21-al22
# Fit Model 1 to data
fit1 <-lavaan(model1, sample.cov=list(Females=female.cov, Males=male.cov),</pre>
sample.mean=list(Females=female.mean, Males=male.mean),
              sample.nobs=c(196, 95))
```

```
# specify Model 2 (Using LRT test to compare the groups)
model2 <- "
# measurement model
int =~ 1*time1 + 1*time2 + 1*time3
growth =~ 0*time1 + 1*time2 + time3
# error variance (constrained)
time1 ~~ c(theta1,theta2)*time1
time2 ~~ c(theta1,theta2)*time2
time3 ~~ c(theta1,theta2)*time3
# Fit Model 2 to data
fit2 <-lavaan(model2, sample.cov=list(Females=female.cov, Males=male.cov),</pre>
sample.mean=list(Females=female.mean, Males=male.mean),
              sample.nobs=c(196, 95), auto.var=TRUE, auto.cov.lv.x=TRUE, meanstructure=TRUE,
int.ov.free=FALSE, int.lv.free=TRUE,
              group.equal=c("loadings","lv.variances","lv.covariances","means"))
# save the output
sink("biglan2.out", split=TRUE)
writeLines("\n Example 2: Comparing Alcohol Use Between Females and Males\n")
writeLines("\n Output for Model 1 (Using Wald test to compare the groups)\n")
summary(fit1, fit.measures=TRUE, standardized=TRUE)
writeLines("\n Output for Model 2 (Using LRT test to compare the groups)\n")
summary(fit2, fit.measures=TRUE, standardized=TRUE)
lavTestLRT(fit1,fit2)
sink()
```

filename: biglan2.out (output file)

Example 2: Comparing Alcohol Use Between Females and Males

Output for Model 1 (Using Wald test to compare the groups)

lavaan 0.6-3 ended normally after 50 iterations

Optimization method Number of free parameters Number of equality constraints	NLMINB 18 4
Number of observations per group Females Males	196 95
Estimator Model Fit Test Statistic Degrees of freedom P-value (Chi-square)	ML 2.553 4 0.635
Chi-square for each group:	
Females Males	0.712 1.841
Model test baseline model:	
Minimum Function Test Statistic Degrees of freedom P-value	212.491 6 0.000
User model versus baseline model:	
Comparative Fit Index (CFI)	1.000

Tucker-Lewis Index (TLI)	1.011
Loglikelihood and Information Criteria:	
Loglikelihood user model (H0) Loglikelihood unrestricted model (H1)	-1468.702 -1467.425
Number of free parameters Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	14 2965.404 3016.830 2972.433
Root Mean Square Error of Approximation:	
RMSEA 90 Percent Confidence Interval P-value RMSEA <= 0.05	0.000 0.000 0.102 0.770
Standardized Root Mean Square Residual:	
SRMR	0.023
Parameter Estimates:	
Information Information saturated (h1) model Standard Errors	Expected Structured Standard
Group 1 [Females]:	
Latent Variables:	

1.000

1.000

int =~
 time1

time2

Estimate Std.Err z-value P(>|z|) Std.lv Std.all

0.885

0.885

0.663

0.596

time3		1.000				0.885	0.572
growth =~							
time1		0.000				0.000	0.000
time2		1.000				0.482	0.324
time3	(la1)	1.270	0.286	4.437	0.000	0.611	0.395
Covariances	:						
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
int ~~							
growth	(ps31)	0.095	0.149	0.640	0.522	0.224	0.224
Intercepts:							
		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
.time1		0.000				0.000	0.000
.time2		0.000				0.000	0.000
.time3		0.000				0.000	0.000
int	(al11)	1.440	0.095	15.163	0.000	1.627	1.627
growth	(al21)	0.299	0.096	3.103	0.002	0.620	0.620
Variances:							
		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
int	(ps11)	0.783	0.202	3.870	0.000	1.000	1.000
growth	(ps21)	0.232	0.192	1.207	0.227	1.000	1.000
.time1	(tht1)	0.996	0.101	9.899	0.000	0.996	0.560
.time2	(tht1)	0.996	0.101	9.899	0.000	0.996	0.452
.time3	(tht1)	0.996	0.101	9.899	0.000	0.996	0.416
Group 2 [Mai	les]:						
Latent Varia	ables:						
		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
int =~							
time1		1.000				1.057	0.766
time2		1.000				1.057	0.727
time3		1.000				1.057	0.631

time1	growth =~							
Covariances: Estimate Std.Err z-value P(> z) Std.lv Std.all int ~~ growth (ps32) -0.115 0.170 -0.680 0.497 -0.165 -0.165 Intercepts: Estimate Std.Err z-value P(> z) Std.lv Std.all 0.000 0	time1		0.000				0.000	0.000
Covariances: Estimate Std.Err z-value P(> z) Std.lv Std.all int ~~ growth (ps32) -0.115 0.170 -0.680 0.497 -0.165 -0.165 Intercepts: Estimate Std.Err z-value P(> z) Std.lv Std.all 0.0000 0.000	time2		1.000				0.663	0.456
Std.lemate Std.Err z-value P(> z) Std.lemate Std.all	time3	(la2)	1.717	0.308	5.567	0.000	1.139	0.680
Estimate Std.Err z-value P(> z) Std.lv Std.all								
<pre>int ~~ growth (ps32) -0.115</pre>	Covariances	:						
State			Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
Intercepts: Estimate	_							
Estimate Std.Err z-value P(> z) Std.lv Std.all	growth	(ps32)	-0.115	0.170	-0.680	0.497	-0.165	-0.165
Estimate Std.Err z-value P(> z) Std.lv Std.all								
.time1 0.000 .000 0.000 1.440 1.440 growth 1.440 <t< td=""><td>Intercepts:</td><td></td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td></t<>	Intercepts:		_	_	_			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Std.Err	z-value	P(> z)		
.time3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.440 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Variances:	int	(al12)	1.523	0.140	10.897	0.000	1.440	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	growth	(al22)	0.416	0.123	3.382	0.001	0.626	0.626
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77							
int (ps12) 1.118 0.282 3.960 0.000 1.000 1.000 growth (ps22) 0.440 0.218 2.016 0.044 1.000 1.000 .time1 (tht2) 0.788 0.114 6.892 0.000 0.788 0.413 .time2 (tht2) 0.788 0.114 6.892 0.000 0.788 0.373 .time3 (tht2) 0.788 0.114 6.892 0.000 0.788 0.281 Defined Parameters: Estimate Std.Err z-value P(> z) Std.lv Std.all la_d -0.447 0.421 -1.063 0.288 -0.528 -0.285 ps1_d -0.335 0.347 -0.964 0.335 0.000 0.000 ps2_d -0.208 0.291 -0.716 0.474 0.000 0.000 ps3_d 0.211 0.226 0.933 0.351 0.388 0.388	variances:			G + 3		D(-1-1)	a-1 1	a+1 -11
growth (ps22) 0.440 0.218 2.016 0.044 1.000 1.000 .time1 (tht2) 0.788 0.114 6.892 0.000 0.788 0.413 .time2 (tht2) 0.788 0.114 6.892 0.000 0.788 0.373 .time3 (tht2) 0.788 0.114 6.892 0.000 0.788 0.281 Defined Parameters: Estimate Std.Err z-value P(> z) Std.lv Std.all la_d -0.447 0.421 -1.063 0.288 -0.528 -0.285 ps1_d -0.335 0.347 -0.964 0.335 0.000 0.000 ps2_d -0.208 0.291 -0.716 0.474 0.000 0.000 ps3_d 0.211 0.226 0.933 0.351 0.388 0.388		(10)						
.time1 (tht2) 0.788 0.114 6.892 0.000 0.788 0.413 .time2 (tht2) 0.788 0.114 6.892 0.000 0.788 0.373 .time3 (tht2) 0.788 0.114 6.892 0.000 0.788 0.281 Defined Parameters: Estimate Std.Err z-value P(> z) Std.lv Std.all la_d -0.447 0.421 -1.063 0.288 -0.528 -0.285 ps1_d -0.335 0.347 -0.964 0.335 0.000 0.000 ps2_d -0.208 0.291 -0.716 0.474 0.000 0.000 ps3_d 0.211 0.226 0.933 0.351 0.388 0.388		_						
.time2 (tht2) 0.788 0.114 6.892 0.000 0.788 0.373 .time3 (tht2) 0.788 0.114 6.892 0.000 0.788 0.281 Defined Parameters: Estimate Std.Err z-value P(> z) Std.lv Std.all 1a_d -0.447 0.421 -1.063 0.288 -0.528 -0.285 ps1_d -0.335 0.347 -0.964 0.335 0.000 0.000 ps2_d -0.208 0.291 -0.716 0.474 0.000 0.000 ps3_d 0.211 0.226 0.933 0.351 0.388 0.388	-	_						
time3 (tht2) 0.788 0.114 6.892 0.000 0.788 0.281 Defined Parameters: Estimate Std.Err z-value P(> z) Std.lv Std.all la_d -0.447 0.421 -1.063 0.288 -0.528 -0.285 ps1_d -0.335 0.347 -0.964 0.335 0.000 0.000 ps2_d -0.208 0.291 -0.716 0.474 0.000 0.000 ps3_d 0.211 0.226 0.933 0.351 0.388 0.388								
Defined Parameters: Estimate Std.Err z-value P(> z) Std.lv Std.all la_d -0.447 0.421 -1.063 0.288 -0.528 -0.285 ps1_d -0.335 0.347 -0.964 0.335 0.000 0.000 ps2_d -0.208 0.291 -0.716 0.474 0.000 0.000 ps3_d 0.211 0.226 0.933 0.351 0.388								
Estimate Std.Err z-value P(> z) Std.lv Std.all la_d -0.447 0.421 -1.063 0.288 -0.528 -0.285 ps1_d -0.335 0.347 -0.964 0.335 0.000 0.000 ps2_d -0.208 0.291 -0.716 0.474 0.000 0.000 ps3_d 0.211 0.226 0.933 0.351 0.388 0.388	.time3	(tht2)	0.788	0.114	6.892	0.000	0.788	0.281
Estimate Std.Err z-value P(> z) Std.lv Std.all la_d -0.447 0.421 -1.063 0.288 -0.528 -0.285 ps1_d -0.335 0.347 -0.964 0.335 0.000 0.000 ps2_d -0.208 0.291 -0.716 0.474 0.000 0.000 ps3_d 0.211 0.226 0.933 0.351 0.388 0.388	Defined Par	ameters	•					
la_d -0.447 0.421 -1.063 0.288 -0.528 -0.285 ps1_d -0.335 0.347 -0.964 0.335 0.000 0.000 ps2_d -0.208 0.291 -0.716 0.474 0.000 0.000 ps3_d 0.211 0.226 0.933 0.351 0.388 0.388				Std.Err	z-value	P(> z)	Std.lv	Std.all
ps1_d -0.335 0.347 -0.964 0.335 0.000 0.000 ps2_d -0.208 0.291 -0.716 0.474 0.000 0.000 ps3_d 0.211 0.226 0.933 0.351 0.388 0.388	la d							
ps2_d -0.208 0.291 -0.716 0.474 0.000 0.000 ps3_d 0.211 0.226 0.933 0.351 0.388 0.388								
ps3_d 0.211 0.226 0.933 0.351 0.388 0.388								
al2 d -0.117 0.156 -0.750 0.453 -0.006 -0.006								

Output for Model 2 (Using LRT test to compare the groups)

lavaan 0.6-3 ended normally after 32 iterations

Optimization method Number of free parameters Number of equality constraints	NLMINB 18 10
Number of observations per group Females Males	196 95
Estimator Model Fit Test Statistic Degrees of freedom P-value (Chi-square)	ML 10.518 10 0.396
Chi-square for each group:	
Females Males	3.811 6.707
Model test baseline model:	
Minimum Function Test Statistic Degrees of freedom P-value	212.491 6 0.000
User model versus baseline model:	
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.997 0.998
Loglikelihood and Information Criteria:	
Loglikelihood user model (H0)	-1472.684

Loglikelihood	unrestricted	model	(H1)	-1467.425

Number of free parameters	8
Akaike (AIC)	2961.368
Bayesian (BIC)	2990.755
Sample-size adjusted Bayesian (BIC)	2965.385

Root Mean Square Error of Approximation:

RMSEA		0.019
90 Percent Confidence Interval	0.000	0.093
P-value RMSEA <= 0.05		0.667

Standardized Root Mean Square Residual:

SRMR 0.065

Parameter Estimates:

Information Expected
Information saturated (h1) model Structured
Standard Errors Standard

Group 1 [Females]:

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
int =~							
time1		1.000				0.959	0.704
time2		1.000				0.959	0.651
time3		1.000				0.959	0.596
growth =~							
time1		0.000				0.000	0.000
time2		1.000				0.563	0.382
time3	(.p6.)	1.522	0.226	6.734	0.000	0.857	0.532

Covariances:									
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		
int ~~									
growth	(.12.)	-0.000	0.105	-0.002	0.998	-0.000	-0.000		
Intercepts:			_ _	_					
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		
.time1		0.000				0.000	0.000		
.time2		0.000				0.000	0.000		
.time3		0.000				0.000	0.000		
int	(.16.)	1.470	0.079	18.668	0.000	1.533	1.533		
growth	(.17.)	0.324	0.074	4.374	0.000	0.575	0.575		
Variances:									
, all lancop ,		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		
.time1	(tht1)	0.937	0.088	10.623	0.000	0.937	0.505		
.time2	(tht1)	0.937	0.088	10.623	0.000	0.937	0.431		
.time3	(tht1)	0.937	0.088	10.623	0.000	0.937	0.362		
int	(.10.)	0.920	0.163	5.642	0.000	1.000	1.000		
		0.320	0.103	2.307	0.000	1.000	1.000		
growth	(.11.)	0.317	0.137	2.307	0.021	1.000	1.000		
Group 2 [Ma	les]:								
Latent Vari	ahleg•								
Lacciic vari	abics.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all		
int =~		<u> </u>	DCG. LLI	2 varac	- (> - /	bearry	DCG.GII		
time1		1.000				0.959	0.712		
time2		1.000				0.959	0.657		
time3		1.000				0.959	0.601		
growth =~		1.000				0.555	0.001		
time1		0.000				0.000	0.000		
time2		1.000				0.563	0.386		
time3	(56)	1.522	0.226	6.734	0.000		0.537		
cimes	(.p6.)	1.544	0.220	0./34	0.000	0.857	0.53/		

Covariances:

00.00	•						
		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
int ~~							
growth	(.12.)	-0.000	0.105	-0.002	0.998	-0.000	-0.000
5							
Intercepts:							
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.time1		0.000				0.000	0.000
.time2		0.000				0.000	0.000
.time3		0.000				0.000	0.000
int	(.16.)	1.470	0.079	18.668	0.000	1.533	1.533
growth	(.17.)	0.324	0.074	4.374	0.000	0.575	0.575
Variances:							
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.time1	(tht2)	0.894	0.113	7.942	0.000	0.894	0.493
.time2	(tht2)	0.894	0.113	7.942	0.000	0.894	0.420
.time3	(tht2)	0.894	0.113	7.942	0.000	0.894	0.351
int	(.10.)	0.920	0.163	5.642	0.000	1.000	1.000
growth	(.11.)	0.317	0.137	2.307	0.021	1.000	1.000

Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq) fit1 4 2965.4 3016.8 2.5531 fit2 10 2961.4 2990.8 10.5177 7.9646 6 0.2407

8.7. LGM with Multiple Indicators

- To determine a growth model of a set of related measures (e.g., language ability, logical reasoning, memory) simultaneously (Duncan et al., 2006; Ch. 4)
- Curve-of-factors LGM (McArdle, 1988)

V1, V2, V3 = Time 1 indicators (e.g., language, logic, memory test score) measuring Time 1 Factor (e.g., intelligence) V4, V5, V6 = Time 2 indicators (e.g., language, logic, memory test score) measuring Time 2 Factor (e.g., intelligence)

V7, V8, V9 = Time 3 indicators (e.g., language, logic, memory test score) measuring Time 3 Factor (e.g., intelligence)

- For metric invariance, factor loadings of the same variable are constrained to be equal across time (i.e., $\lambda_{21} = \lambda_{52} = \lambda_{83}$; $\lambda_{31} = \lambda_{62} = \lambda_{93}$)
- In order to estimate the mean of the intercept and growth factor, α_1 and α_2 , we need to fix (1) the intercept of the time factors at zeros (i.e., $\alpha_3 = \alpha_4 = \alpha_5 = 0$), and (2) the intercepts of the reference variables (V1, V4, V7) at zeros (i.e., $\mu_1 = \mu_4 = \mu_7 = 0$)
- Errors of the same variable are allowed to covary to improve model fit

8.8. Example 3: Drug Use

• In a longitudinal study of drug use, 3 indicators were used to measure the factor: alcohol use, tobacco use, and marijuana use. 357 participants were recruited and each participant's level of substances consumption for the past 6 months was measured at four approximately equal time intervals (Duncan et al., 2006, Ch. 4)

• Data (N = 357, filename=drug.dat)

Table 4.1

Descriptive Statistics for Adolescent Alcohol, Tobacco, and Marijuana Use

Descriptive statistics for Adolescent Alcohol, Tobacco, and Manjuana Use												
		Alcohol Use				Tobaco	co Use		Marijuana Use			
	T1	T2	T3	T4	T1	T2	T3	T4	T1	T2	Т3	T4
	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12
V1	1.000											
V2	.725	1.000										
V3	.595	.705	1.000									
V4	.566	.624	.706	1.000								
V5	.419	.281	.303	.283	1.000							
V6	.344	.362	.350	.367	.671	1.000						
V7	.224	.281	.353	.360	.548	.783	1.000					
V8	.183	.234	.300	.384.	.458	.696	.823	1.000				
V9	.579	.482	.410	.303	.455	.333	.244	.179	1.000			
V10	.532	.571	.501	.440	.347	.444	.352	.272	.663	1.000		
V11	.439	.507	.648	.496	.378	.419	.430	.345	.551	.709	1.000	
V12	.431	.469	.527	.571	.345	.424	.427	.412	.499	.682	.736	1.000
M	1.338	1.591	2.019	2.364	.862	1.218	1.445	1.756	.554	.890	1.033	1.123
SD	1.260	1.334	1.440	1.376	1.709	1.948	2.117	2.265	1.199	1.432	1.496	1.503

Note. Correlation matrix is in the triangle; means and standard deviations are presented in the bottom rows of the matrix.

- Summary of findings:
- 1. Average initial status
- 2. Average growth
- 3. Variability of people's initial status
- 4. Variability of people's growth
- 5. Relationship between initial status and growth
- 6. Pattern of growth

filename: drug.R (R script file)

```
# Example 3: Drug Use
# set work directory and load lavaan package
setwd("c:/users/wchan/google drive/stat6108/data")
library(lavaan)
# data preparation
data <- read.table("drug.dat")</pre>
data <- as.matrix(data)</pre>
corr <- data[1:12,]</pre>
sd <- data[13,]</pre>
mean <- data[14,]
cov <- cor2cov(corr, sd)</pre>
rownames(cov) <- colnames(cov)</pre>
# specify Model 1 (Curve-of-factors LGM)
model1 <- "
# measurement model
Time1 = ~ la1*V1 + 1*V5 + la2*V9
Int =~ 1*Time1 +1*Time2 + 1*Time3 + 1*Time4
Growth =~ 0*Time1 +1*Time2 + la3*Time3 + la4*Time4
# error variance
V1 \sim V1 + V2 + V3 + V4
V2 \sim V2 + V3 + V4
V3 \sim V3 + V4
V4 ~~ V4
V5 \sim V5 + V6 + V7 + V8
V6 ~~ V6 + V7 + V8
```

```
V7 ~~ V7 + V8
V8 ~~ V8
V9 ~~ V9 + V10 + V11 + V12
V10 ~~ V10 + V11 + V12
V11 ~~ V11 + V12
V12 ~~ V12
# intercepts
Time1 + Time2 + Time3 + Time4 ~ 0*1
Int + Growth ~ 1
V1 + V2 + V3 + V4 \sim 0*1
V5 + V6 + V7 + V8 + V9 + V10 + V11 + V12 ~ 1
# evaluating linear growth
linear1 := la3-2
linear2 := la4-3
# Fit Model 1 to data
fit1 <-lavaan(model1, sample.cov=cov, sample.mean=mean, sample.nobs=357, auto.var=TRUE,
auto.cov.lv.x=TRUE)
# specify Model 2 (Testing Linear Growth using LR test)
model2 <- "
# measurement model
Time1 = ~ la*V1 + 1*V5 + lb*V9
Time3 =~ la*V3 + 1*V7 + lb*V11
Time4 = ~ la*V4 + 1*V8 + lb*V12
Int =~ 1*Time1 +1*Time2 + 1*Time3 + 1*Time4
Growth =~ 0*Time1 +1*Time2 + 2*Time3 + 3*Time4
# error variance
V1 \sim V1 + V2 + V3 + V4
V2 \sim V2 + V3 + V4
V3 ~~ V3 + V4
```

```
V4 ~~ V4
V5 ~~ V5 + V6 + V7 + V8
V6 ~~ V6 + V7 + V8
V7 ~~ V7 + V8
V8 ~~ V8
V9 ~~ V9 + V10 + V11 + V12
V10 ~~ V10 + V11 + V12
V11 ~~ V11 + V12
V12 ~~ V12
# intercepts
Time1 + Time2 + Time3 + Time4 ~ 0*1
Int + Growth ~ 1
V1 + V2 + V3 + V4 \sim 0*1
V5 + V6 + V7 + V8 + V9 + V10 + V11 + V12 ~ 1
# Fit Model 2 to data
fit2 <-lavaan(model2, sample.cov=cov, sample.mean=mean, sample.nobs=357, auto.var=TRUE,
auto.cov.lv.x=TRUE)
# save the output
sink("drug.out", split=TRUE)
writeLines("\n Example 3: Drug Use\n")
writeLines("\n Output for Model 1 (Curve-of-factors LGM)\n")
summary(fit1, fit.measures=TRUE, standardized=TRUE)
writeLines("\n Output for Model 2 (Testing Linear Growth using LRT)\n")
summary(fit2, fit.measures=TRUE, standardized=TRUE)
writeLines("\n Model Comparisons\n")
lavTestLRT(fit1, fit2)
sink()
```

filename: drug.out (output file)

Example 3: Drug Use

Output for Model 1 (Curve-of-factors LGM)

Loglikelihood user model (H0)

Loglikelihood unrestricted model (H1)

lavaan 0.6-3 ended normally after 87 iterations

Optimization method Number of free parameters Number of equality constraints	NLMINB 57 6
Number of observations	357
Estimator Model Fit Test Statistic Degrees of freedom P-value (Chi-square) Model test baseline model:	ML 76.481 39 0.000
Minimum Function Test Statistic Degrees of freedom P-value	3173.220 66 0.000
User model versus baseline model:	0.000
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.988 0.980
Loglikelihood and Information Criteria:	

-6425.102

-6386.861

Number of free parameters	51
Akaike (AIC)	12952.204
Bayesian (BIC)	13149.969
Sample-size adjusted Bayesian (BIC)	12988.173

Root Mean Square Error of Approximation:

RMSEA		0.052
90 Percent Confidence Interval	0.034	0.069
P-value RMSEA <= 0.05		0.406

Standardized Root Mean Square Residual:

SRMR 0.051

Parameter Estimates:

Information Expected
Information saturated (h1) model Structured
Standard Errors Standard

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
Time1 =~							
V1	(la1)	0.977	0.080	12.258	0.000	0.928	0.729
V5		1.000				0.950	0.557
V9	(la2)	1.108	0.095	11.670	0.000	1.053	0.844
Time2 =~							
V2	(la1)	0.977	0.080	12.258	0.000	0.915	0.697
V6		1.000				0.937	0.494
V10	(la2)	1.108	0.095	11.670	0.000	1.038	0.758
Time3 =~							
V3	(la1)	0.977	0.080	12.258	0.000	1.014	0.726
V 7		1.000				1.038	0.495
V11	(la2)	1.108	0.095	11.670	0.000	1.150	0.807

Time4 =~							
V4	(la1)	0.977	0.080	12.258	0.000	1.033	0.735
v8		1.000				1.058	0.474
V12	(la2)	1.108	0.095	11.670	0.000	1.172	0.789
Int =~							
Time1		1.000				0.940	0.940
Time2		1.000				0.954	0.954
Time3		1.000				0.860	0.860
Time4		1.000				0.844	0.844
Growth =~							
Time1		0.000				0.000	0.000
Time2		1.000				0.230	0.230
Time3	(la3)	2.430	0.328	7.399	0.000	0.505	0.505
Time4	(la4)	3.568	0.530	6.739	0.000	0.728	0.728
Covariances:							
		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
.V1 ~~							
.V2		0.475	0.077	6.135	0.000	0.475	0.579
.v3		0.400	0.075	5.327	0.000	0.400	0.478
.V4		0.426	0.075	5.708	0.000	0.426	0.512
.V2 ~~							
.v3		0.514	0.085	6.063	0.000	0.514	0.570
.V4		0.412	0.084	4.922	0.000	0.412	0.459
.V3 ~~							
.V4		0.492	0.094	5.213	0.000	0.492	0.537
.V5 ~~							
.V6		1.452	0.161	9.011	0.000	1.452	0.621
.V7		1.263	0.167	7.572	0.000	1.263	0.489
.v8		1.154	0.174	6.629	0.000	1.154	0.415
.V6 ~~							
.V7		2.247	0.215	10.474	0.000	2.247	0.747
.v8		2.133	0.222	9.621	0.000	2.133	0.658
.V7 ~~							
.v8		2.844	0.260	10.934	0.000	2.844	0.795
.V9 ~~							

.V10	0.191	0.083	2.316	0.021	0.191	0.319
.V11	0.118	0.078	1.526	0.127	0.118	
.V12	0.117	0.078	1.507	0.132	0.117	0.192
.V10 ~~						
.V11	0.371	0.095	3.928	0.000	0.371	0.494
.V12	0.391	0.098	3.978	0.000	0.391	0.479
.V11 ~~						
.V12	0.358	0.108	3.306	0.001	0.358	0.467
Int ~~						
Growth	-0.041	0.022	-1.840	0.066	-0.213	-0.213
Intercepts:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
Time1	0.000				0.000	0.000
Time2	0.000				0.000	0.000
Time3	0.000				0.000	0.000
Time4	0.000				0.000	0.000
Int	1.358	0.130	10.424	0.000	1.520	1.520
Growth	0.296	0.055	5.389	0.000	1.370	1.370
.V1	0.000				0.000	0.000
.V2	0.000				0.000	0.000
.v3	0.000				0.000	0.000
.V4	0.000				0.000	0.000
.V5	-0.499	0.142	-3.520	0.000	-0.499	-0.292
.V6	-0.430	0.168	-2.555	0.011	-0.430	-0.227
.V7	-0.629	0.202	-3.123	0.002	-0.629	-0.300
.v8	-0.656	0.228	-2.874	0.004	-0.656	-0.294
.v9	-0.954	0.135	-7.075	0.000	-0.954	-0.764
.V10	-0.936	0.163	-5.749	0.000	-0.936	-0.683
.V11	-1.265	0.196	-6.452	0.000	-1.265	-0.888
.V12	-1.550	0.225	-6.897	0.000	-1.550	-1.044
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.V1	0.761	0.089	8.581	0.000	0.761	0.469
.V2	0.884	0.099	8.893	0.000	0.884	0.514

.v3	0.921	0.111	8.314	0.000	0.921	0.472
.V4	0.911	0.115	7.923	0.000	0.911	0.460
.V5	2.008	0.169	11.904	0.000	2.008	0.690
.V6	2.723	0.223	12.200	0.000	2.723	0.756
.V7	3.320	0.270	12.299	0.000	3.320	0.755
.v8	3.857	0.311	12.388	0.000	3.857	0.775
.v9	0.449	0.093	4.819	0.000	0.449	0.288
.V10	0.800	0.114	6.988	0.000	0.800	0.426
.V11	0.707	0.123	5.732	0.000	0.707	0.348
.V12	0.832	0.135	6.143	0.000	0.832	0.377
Time1	0.105	0.048	2.208	0.027	0.116	0.116
Time2	0.115	0.034	3.421	0.001	0.131	0.131
Time3	0.205	0.044	4.608	0.000	0.190	0.190
Time4	0.022	0.058	0.377	0.706	0.019	0.019
Int	0.798	0.135	5.906	0.000	1.000	1.000
Growth	0.047	0.018	2.583	0.010	1.000	1.000
Defined Parameters:						
	Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
linear1	0.430	0.328	1.310	0.190	-1.495	-1.495
linear2	0.568	0.530	1.074	0.283	-2.272	-2.272

Output for Model 2 (Testing Linear Growth using LRT)

lavaan 0.6-3 ended normally after 77 iterations

Optimization method Number of free parameters Number of equality constraints	NLMINB 55 6
Number of observations	357
Estimator Model Fit Test Statistic Degrees of freedom P-value (Chi-square) Model test baseline model:	ML 79.062 41 0.000
Minimum Function Test Statistic Degrees of freedom P-value	3173.220 66 0.000
User model versus baseline model:	
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	0.988 0.980
Loglikelihood and Information Criteria:	
Loglikelihood user model (H0) Loglikelihood unrestricted model (H1)	-6426.393 -6386.861
Number of free parameters Akaike (AIC) Bayesian (BIC) Sample-size adjusted Bayesian (BIC)	49 12950.785 13140.794 12985.343

Root Mean Square Error of Approximation:

RMSEA		0.051
90 Percent Confidence Interval	0.034	0.068
P-value RMSEA <= 0.05		0.438

Standardized Root Mean Square Residual:

SRMR	0.050
SKMR	0.050

Parameter Estimates:

Information	Expected
Information saturated (h1) model	Structured
Standard Errors	Standard

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
Time1 = ~							
V1	(la)	0.973	0.080	12.229	0.000	0.916	0.723
V5		1.000				0.942	0.553
V9	(lb)	1.110	0.095	11.630	0.000	1.045	0.842
Time2 = ~							
V2	(la)	0.973	0.080	12.229	0.000	0.920	0.699
V6		1.000				0.946	0.498
V10	(lb)	1.110	0.095	11.630	0.000	1.049	0.762
Time3 = ~							
V3	(la)	0.973	0.080	12.229	0.000	1.010	0.724
V7		1.000				1.038	0.495
V11	(lb)	1.110	0.095	11.630	0.000	1.152	0.809
Time4 = ~							
V4	(la)	0.973	0.080	12.229	0.000	1.031	0.735
V8		1.000				1.060	0.475
V12	(lb)	1.110	0.095	11.630	0.000	1.177	0.791
Int =~							
Time1		1.000				0.954	0.954

Time2	1.000				0.951	0.951
Time3	1.000				0.866	0.866
Time4	1.000				0.848	0.848
Growth =~						
Time1	0.000				0.000	0.000
Time2	1.000				0.283	0.283
Time3	2.000				0.515	0.515
Time4	3.000				0.757	0.757
Covariances:						
	Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
.V1 ~~						
.V2	0.475	0.077	6.139	0.000	0.475	0.576
.v3	0.401	0.075	5.344	0.000	0.401	0.476
.V4	0.426	0.074	5.744	0.000	0.426	0.512
.V2 ~~						
.v3	0.513	0.085	6.031	0.000	0.513	0.568
.V4	0.406	0.084	4.827	0.000	0.406	0.453
.V3 ~~						
.V4	0.492	0.094	5.227	0.000	0.492	0.538
.V5 ~~						
.V6	1.453	0.161	9.020	0.000	1.453	0.622
.V7	1.265	0.167	7.577	0.000	1.265	0.490
.v8	1.159	0.174	6.655	0.000	1.159	0.416
.V6 ~~						
.V7	2.243	0.214	10.467	0.000	2.243	0.747
.v8	2.126	0.222	9.599	0.000	2.126	0.657
.V7 ~~						
.v8	2.842	0.260	10.931	0.000	2.842	0.794
.V9 ~~						
.V10	0.191	0.083	2.308	0.021	0.191	0.321
.V11	0.115	0.078	1.483	0.138	0.115	0.206
.V12	0.120	0.078	1.546	0.122	0.120	0.197
.V10 ~~						
.V11	0.366	0.095	3.841	0.000	0.366	0.491
.V12	0.383	0.099	3.853	0.000	0.383	0.472

.V11 ~~						
.V12	0.355	0.109	3.262	0.001	0.355	0.466
Int ~~						
Growth	-0.057	0.024	-2.321	0.020	-0.236	-0.236
Intercepts:		_	_			
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
Time1	0.000				0.000	0.000
Time2	0.000				0.000	0.000
Time3	0.000				0.000	0.000
Time4	0.000				0.000	0.000
Int	1.351	0.129	10.445	0.000	1.504	1.504
Growth	0.355	0.037	9.713	0.000	1.327	1.327
.V1	0.000				0.000	0.000
.V2	0.000				0.000	0.000
.v3	0.000				0.000	0.000
.V4	0.000				0.000	0.000
.V5	-0.495	0.141	-3.503	0.000	-0.495	-0.291
.V6	-0.472	0.170	-2.775	0.006	-0.472	-0.248
.V7	-0.624	0.199	-3.130	0.002	-0.624	-0.297
.v8	-0.660	0.229	-2.888	0.004	-0.660	-0.296
.v9	-0.952	0.135	-7.063	0.000	-0.952	-0.767
.V10	-0.986	0.165	-5.962	0.000	-0.986	-0.716
.V11	-1.263	0.194	-6.504	0.000	-1.263	-0.887
.V12	-1.558	0.226	-6.900	0.000	-1.558	-1.047
Variances:						
variances:	Estimate	Std.Err	1	D(> -)	CL4 1	Std.all
771			z-value	P(> z)	Std.lv	
.V1	0.766	0.088	8.677	0.000	0.766	0.477
.V2	0.886	0.100	8.865	0.000	0.886	0.511
.V3	0.923	0.111	8.347	0.000	0.923	0.475
.V4	0.907	0.115	7.895	0.000	0.907	0.460
.V5	2.011	0.169	11.913	0.000	2.011	0.694
.V6	2.715	0.223	12.182	0.000	2.715	0.752
.V7	3.321	0.270	12.298	0.000	3.321	0.755
.v8	3.853	0.311	12.383	0.000	3.853	0.774

.v9	0.447	0.093	4.809	0.000	0.447	0.290
.V10	0.793	0.115	6.868	0.000	0.793	0.419
.V11	0.702	0.124	5.663	0.000	0.702	0.346
.V12	0.830	0.136	6.084	0.000	0.830	0.375
Time1	0.079	0.045	1.749	0.080	0.089	0.089
Time2	0.128	0.034	3.814	0.000	0.143	0.143
Time3	0.211	0.043	4.848	0.000	0.196	0.196
Time4	0.014	0.049	0.276	0.783	0.012	0.012
Int	0.808	0.137	5.918	0.000	1.000	1.000
Growth	0.072	0.015	4.688	0.000	1.000	1.000

Model Comparisons

Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq) fit1 39 12952 13150 76.481 fit2 41 12951 13141 79.062 2.5812 2 0.2751

8.9. LGM with Covariates

8.9.1. Models with Time-Invariant Covariates

- Time-invariant covariates are stable measures over all the data collection time periods.
- Examples are number of siblings, socioeconomic status.

• The following is a 4-point LGM model with 2 time-invariant covariates, Predictor 1 and Predictor 2 (Beaujean, 2014; Figure 5.3a):

8.9.2 Models with Time-Dependent Covariates

- Time-dependent covariates vary with time.
- Examples are investment return, mood, blood pressure.
- The following is a 4-point LGM model one time-dependent covariate, *C* (Beaujean, 2014; Figure 5.3b):

8.10. Limitations

- Balanced-on-time design (Ware, 1985)
 - equal number of observations for all individuals
 - equal spacing of assessments for all individuals