UFF – Depto. de Análise GAN 04139 – Álgebra Linear P1 – Prof. Ana Isabel – 04/10/2005 - 14h

As respostas devem ser bem justificadas e expostas com clareza. Duas horas de prova, sem consulta.

- 1. (0,5 pontos) Seja A uma matriz $m \times n$. Se o sistema linear homogêneo $A\mathbf{x} = \mathbf{0}$ tem uma única solução, o sistema $A\mathbf{x} = \mathbf{b}$ com $\mathbf{b} \neq \mathbf{0}$ tem quantas soluções? Justifique.
- 2. (1,0 ponto) Sejam U e V subespaços vetoriais de \mathbb{R}^n . Prove que $U \cap V$ é um subespaço de \mathbb{R}^n .
- 3. (1,5 pontos) Considere os subespaços de \mathbb{R}^4 abaixo. Encontre $V \cap W$ e uma base para $V \cap W$.

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 / x + y - 2z + w = 0 \text{ e } 2x - 4z + 2w = 0 \right\}$$

$$W = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \in \mathbb{R}^4 / -2x + y + z + w = 0 \text{ e } y + z - w = 0 \right\}$$

4. **(2,0 pontos)** Verifique se o operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definido abaixo é invertível. Em caso afirmativo, determine $T^{-1}\begin{pmatrix} x \\ y \\ z \end{pmatrix}$

$$T\begin{pmatrix} 1\\0\\0\end{pmatrix} = \begin{pmatrix} 2\\-1\\0\end{pmatrix} , T\begin{pmatrix} 0\\-1\\0\end{pmatrix} = \begin{pmatrix} -1\\-1\\-1\end{pmatrix} , T\begin{pmatrix} 0\\3\\-1\end{pmatrix} = \begin{pmatrix} 0\\1\\1\end{pmatrix}$$

5. **(2,0 pontos)** Seja
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 tal que $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+2y+z \\ y+z \\ x+z \end{pmatrix}$. Encontre $T^{-1} \circ T^{-1}$.

- 6. (1,0 ponto) Mostre que a inversa de uma rotação em \mathbb{R}^2 no sentido anti-horário de um ângulo θ é a rotação em \mathbb{R}^2 no sentido horário de ângulo θ .
- 7. **(2,0 pontos)** (Sendo 0,2 para cada item correto, 0 para cada item sem resposta e -0,2 para cada item errado)

Diga se é verdadeira(V) ou falsa(F) cada uma das afirmações abaixo:

- (a) A soma de matrizes invertíveis é sempre uma matriz invertível. ()
- (b) A união de conjuntos LI é um conjunto LI. ()
- (c) O operador linear de reflexão em torno da origem em \mathbb{R}^2 é invertível. ()
- (d) As colunas de uma matriz $A, 5 \times 7,$ são vetores LD. ()
- (e) O produto de matrizes triangulares superiores é sempre uma matriz triangular superior. ()
- (f) Se { $\mathbf{u}, \mathbf{v}, \mathbf{w}$ } é LI então { $\mathbf{u} \mathbf{v}, \mathbf{v} \mathbf{w}, \mathbf{u} \mathbf{w}$ } é LI. ()
- (g) Toda matriz elementar é invertível. ()
- (h) $\{(x,y,z)\in\mathbb{R}^3/\;x+y\leq 0\}$ é um subespaço de \mathbb{R}^3 . ()
- (i) Dada uma matriz arbitrária, ela possui uma única matriz escalonada reduzida por linhas. ()
- (j) Se \mathbf{u} e \mathbf{v} são soluções do sistema linear $A\mathbf{x} = \mathbf{b}$ então \mathbf{u} - \mathbf{v} é solução do sistema homogêneo $A\mathbf{x} = \mathbf{0}$. ()
- (k) O produto de duas matrizes elementares é necessariamente uma matriz elementar. ()
- (l) A matriz $A=(a_{ij})$ 40×40 tal que $a_{77}=4,~a_{ii}=1$ se $i\neq 7$ e $a_{ij}=0$ se $i\neq j$ é invertível. ()