STD80N3LL

N-channel 30 V, 4 m Ω typ., 80 A Power MOSFET in a DPAK package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	_{6(on)} max. I _D	
STD80N3LL	30 V	5.2 mΩ	80 A	75 W

- Very low on-resistance
- Very low gate charge
- High avalanche ruggedness
- Low gate drive power loss

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET with very low $R_{\text{DS(on)}}$ in all packages.

Table 1: Device summary

Order code	Marking	Package	Packaging
STD80N3LL	80N3LL	DPAK	Tape and reel

Contents STD80N3LL

Contents

1	Electric	al ratings	3
		cal characteristics	
	2.1	Electrical characteristics (curves)	5
3	Test cir	cuits	7
4	Packag	e information	8
	4.1	DPAK package information	9
	4.2	DPAK (TO-252) packing information	12
5	Revisio	n history	14

STD80N3LL Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	30	V	
V_{GS}	Gate-source voltage	±20	V	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	80	Α	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	60	Α	
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	320	Α	
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25 °C	75	W	
Tj	Operating junction temperature range		°C	
T _{stg}	Storage temperature range	-55 to 175 °		

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max.	50	°C/W
R _{thj-case}	Thermal resistance junction-case max.	2	°C/W

Notes:

⁽¹⁾This value is limited by package

⁽²⁾Pulse width limited by safe operating area

 $^{^{(1)}}$ When mounted on FR-4 board of 1 inch², 2oz Cu

Electrical characteristics STD80N3LL

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	30			V
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V V _{DS} = 30 V			1	μΑ
I _{GSS}	Gate-body leakage current	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1		2.5	V
D	Static drain-source	V _{GS} = 10 V, I _D = 40 A		4	5.2	mΩ
R _{DS(on)}	on-resistance	V _{GS} = 4.5 V, I _D = 40 A		5.5	6.5	mΩ

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance	V 05 V 6 4 MH-	-	1640	1	
Coss	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0 V		207	ı	pF
C _{rss}	Reverse transfer capacitance	VGS = 0 V	-	160	1	
Qg	Total gate charge	$V_{DD} = 15 \text{ V}, I_{D} = 80 \text{ A},$	-	18	ı	
Q_{gs}	Gate-source charge	V _{GS} = 4.5 V (see <i>Figure</i>	-	5.3	ı	nC
Q_{gd}	Gate-drain charge	14: "Test circuit for gate charge behavior")	-	8.8	1	

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 15 \text{ V}, I_D = 40 \text{ A},$	-	6.4	-	ns
t _r	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	8	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13: "Test circuit for resistive load	-	36	-	ns
t _f	Fall time	switching times")	-	12	-	ns

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	$I_{SD} = 80 \text{ A}, V_{GS} = 0 \text{ V}$	-		1.2	V
t _{rr}	Reverse recovery time	I _D = 80 A, di/dt = 100 A/μs	-	21		ns
Qrr	Reverse recovery charge	V _{DD} = 24 V (see Figure 15: "Test circuit for inductive	-	14		nC
I _{RRM}	Reverse recovery current	load switching and diode recovery times")	-	1.3		Α

Notes:

 $^{^{(1)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

10¹

 $\overline{V}_{DS}(V)$

Figure 2: Safe operating area $\begin{array}{c|c} I_D \\ \hline (A) \\ \hline \\ 10^2 \\ \hline \\ 10^2 \\ \hline \\ 10^1 \\ \hline \\ 10^0 \\ \hline \\ T_j \le 175~^{\circ}C \\ \hline \\ T_c = 25~^{\circ}C \\ \hline \\ single pulse \\ \hline \\ 10^{-1} \\ \hline \end{array}$

10°

10-1

Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GADG061220161526VTH 1.2 $I_D = 250 \, \mu A$ 0.8 0.6 0.4 0.2 0 -75 -25 25 125 175 T_i (°C) 75

Figure 10: Normalized on-resistance vs temperature $R_{DS(on)}$ (norm.) $V_{GS} = 10 \text{ V}$ $I_D = 40 \text{ A}$ 0.4 0.4 0.4 0.75 -25 25 75 125 175 T_j (°C)

STD80N3LL Test circuits

3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior

12 V 47 KΩ 100 Ω D.U.T.

12 V 47 KΩ VG

14 KΩ VG

AM01468v1

Figure 15: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STD80N3LL Package information

4.1 DPAK package information

Figure 19: DPAK (TO-252) type A2 package outline

Table 8: DPAK (TO-252) type A2 mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
Е	6.40		6.60
E1	5.10	5.20	5.30
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

Figure 20: DPAK (TO-252) type A2 recommended footprint (dimensions are in mm)

FP_0068772_21

4.2 DPAK (TO-252) packing information

Figure 21: DPAK (TO-252) tape outline

A 40mm min. access hole at slot location

Tape slot in core for tape start 2.5mm min.width

AM06038v1

Figure 22: DPAK (TO-252) reel outline

Table 9: DPAK (TO-252) tape and reel mechanical data

Таре				Reel	
Dim	n	ım	Dim	1	nm
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	А		330
В0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Bas	e qty.	2500
P1	7.9	8.1	Bul	k qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

Revision history STD80N3LL

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
26-Jul-2016	1	First release.
06-Dec-2016	2	Document status promoted from preliminary to production data. Updated Section 2: "Electrical characteristics" and added Section 2.1: "Electrical characteristics (curves)". Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

