

TMA4183 Opt. II Spring 2017

Exercise set 3

Norwegian University of Science and Technology Department of Mathematical Sciences

Reading material: Sections 2.5–2.7 from [Tröltsch].

1 Exercise 2.11 [Tr]:

jection.

- a) Show that $f(u) = \sin(u(1))$ is continuously Frechet differentiable in C[0, 1] (i.e., it is Frechet differentiable and the derivative is a continuous function).
- **b)** Show that $f(u) = ||u||_H^2$ is continuously Frechet differentiable in H, where H is an arbitrary Hilbert space.
- c) C[0,1] is everywhere dense in $L^2(0,1)$. Does this imply that f(u) in a) is continuously Frechet differentiable on $L^2(0,1)$?
- Let H be a Hilbert space, $a: H \times H \to \mathbb{R}$ be a symmetric, bounded and coercive bilinear form, and $L \in H'$ be a bounded linear functional. Let us define $f: H \to \mathbb{R}$ by f(u) = a(u, u)/2 L(u). Show that f is continuously Frechet differentiable on H. Express the condition f' = 0 as a variational problem.
- [3] * Let H be a Hilbert space, $C \subset H$ be a non-empty closed convex subset of H, and finally $x \in H \setminus C$. Show that x and C can be separated: that is, there is $f \in H'$, $\alpha \in \mathbb{R}$, such that $\forall y \in C$ we have $f(y) \leq \alpha$ and $f(x) > \alpha$.

 Hint: let \hat{x} be the unique projection of x onto C. Define $f(y) = (x \hat{x}, y)$. The separation follows from the first order necessary optimality conditions for the pro-
- Let Ω be a bounded Lipschitz domain and consider the "identity" operator $i: W^{1,2}(\Omega) \to L^2(\Omega)$, defined as i(u) = u. Describe its Hilbert space adjoint i^* , that is, for a given $v \in L^2(\Omega)$ state the variational problem solved by $i^*(v)$. Find the PDE/boundary value problem, whose weak solution is given by $i^*(v)$.
- Exercise 2.10 [Tr]: Suppose that Y and U are Hilbert spaces, and let $y_d \in U$, $\lambda \geq 0$, and operator $S \in \mathcal{L}(U,Y)$ be given. Show that the functional

$$f(u) = ||Su - y_d||_Y^2 + \hat{\lambda}||u||_U^2$$

is strictly convex if $\hat{\lambda}>0$ or S is injective.

Hint: show "midpoint strict convexity": $f((u_1 + u_2)/2) < [f(u_1) + f(u_2)]/2$. This combied with (non-strict) convexity of f can be used to show strict convexity.