Kokpit / Moje kursy / Sterowniki i regulatory E04-43a / _ / Test zaliczeniowy

Rozpoczęto	wtorek, 2 lutego 2021, 21:02
Stan	ukończone
Ukończono	wtorek, 2 lutego 2021, 21:24
Wykorzystany	21 min. 54 sek.
czas	
	6,00 pkt. na 10,00 pkt. możliwych do uzyskania (60 %)
Ocena	6,00 pkt. na 10,00 pkt. możliwych do uzyskania (60%) dostateczny plus
Ocena	

Pytanie **1**Zakończone

Ocena: 0,00 z 1,00

Rysunek pokazuje przebieg wartości wielkości regulowanej obiektu inercyjnego pierwszego rzędu w układzie regulacji z regulatorem dwustawnym o szerokości pętli histerezy H. Jak wyglądałby ten przebieg, gdyby zwiększono szerokość pętli histerezy.

- a. b) zwiększyłaby się jego amplituda i częstotliwość też by się zwiększyła
- ob. d) zmniejszyłaby się jego amplituda i częstotliwość by się zmniejszyła
- oc. a) zwiększyłaby się jego amplituda a częstotliwość by się zmniejszyła
- od. c) zwiększyłaby się jego amplituda a częstotliwość pozostałaby bez zmian
- e. e) zmniejszyłaby się jego amplituda a częstotliwość by się zwiększyła

Pytanie **2**Zakończone
Ocena: 0,00 z 1,00

Kiedy wartość zmiennej %M5 będzie po raz pierwszy równa 1 (proszę podać w zaokrągleniu do pełnych sekund), jeśli stan 1 zmiennych wejściowych zaznaczono na wykresie kolorem szarym?

Wybierz jedną odpowiedź:

- a. od końca trzeciej do końca dziewiątej sekundy
- o b. od końca pierwszej do końca siódmej sekundy
- o c. od końca trzeciej do końca siódmej sekundy
- od. od końca pierwszej do końca dziewiątej sekundy

Pytanie **3 Zakończone**

Ocena: 0,00 z 1,00

Na rysunku zaznaczono kolorem czarnym przebieg uchybu regulacji e(t) na wejściu regulatora PID-ISA, niepracującego w układzie regulacji . Kolorem czerwonym oznaczono przybliżony przebieg wielkości sterującej u (t) na wyjściu regulatora o nastawach:

Wybierz jedną odpowiedź:

- $^{\circ}$ a. $_{\bullet}$ o wzmocnieniu k_p =0,5, czasie zdwojenia T_i = 0,5sek i czasie wyprzedzenia T_d = 0,5,
- \odot b. \bullet o wzmocnieniu k_p =0,5, czasie zdwojenia T_i = 1 sek i czasie wyprzedzenia T_d = 0,
- $^{\circ}$ c. $_{ullet}$ o wzmocnieniu k $_p$ =0,5, czasie zdwojenia T_i = ∞ i czasie wyprzedzenia T_d = 1,
- \bigcirc d. $_{ullet}$ o wzmocnieniu k $_p$ =0,5, czasie zdwojenia T_i = ∞ i czasie wyprzedzenia T_d = 0,

Pytanie **4**Zakończone

Ocena: 0,00 z 1,00

Na rysunku pokazano odpowiedź regulatorów PID-ISA na skokową zmianę wartości uchybu w otwartej pętli regulacji. Regulatory te różnią się jedynie czasem zdwojenia. Który przebieg pokazuje wyjście regulatora o największym czasie zdwojenia?

- a. C
- b. B
- c. A

Pytanie **5**

Zakończone

Ocena: 1,00 z 1,00

Jakie równanie logiczne realizuje szczebel programu pokazany na rysunku?

Wybierz jedną odpowiedź:

- a. ((NOT %I1.1) OR %I1.3) AND (NOT %I1.7) AND %I1.2 = %M7
- b. ((NOT %I1.1) OR %I1.3) AND %I1.7 AND %I1.2 = %M7
- o. ((NOT %I1.1) AND %I1.3) OR (NOT %I1.7) OR %I1.2 = %M7
- d. NOT (%I1.1 OR %I1.3) AND NOT (%I1.7 AND %I1.2) = %M7

rest zaliczeniowy. Attempt review
Pytanie 6 Zakończone Ocena: 1,00 z 1,00
Oct. 1,00 2 1,00
Jak należy dobrać nastawy decydujące o działaniu całkującym i różniczkującym regulatora PID - ISA, by działał on w sposób maksymalnie zbliżony do regulatora typu P?
T _i - czas zdwojenia
T _d - czas wyprzedzenia
Wybierz jedną odpowiedź: <a>a . $T_i = \infty$, $T_d = 0$
\bigcirc b. $T_d = 1$, $T_i = 1$
\bigcirc c. $T_d = 0$, $T_i = 0$
\bigcirc d. $T_i = 0$, $T_d = \infty$
Pytanie 7
Zakończone
Ocena: 1,00 z 1,00
Moduły wejść binarnych (dyskretnych) sterowników PLC mają wejścia izolowane galwanicznie. Izolacja względem obiektu sterowania realizowana jest najczęściej z użyciem: a. mikroprzekaźnika
b. tranzystora bipolarnego
○ c. mikrotransformatora
d. transoptora
Pytanie 8
Zakończone
Ocena: 1,00 z 1,00
Dlaczego korzystne jest ustawienie strefy martwej regulatora trójstawnego w układzie regulacji stopnia otwarcia zaworu na wartość większą od zera?
a. powoduje zmniejszenie uchybu regulacji
b. pozwala na szybsze przestawianie zaworu
c. nozwala uniknać czestego załaczania siłownika w wyniku zakłóceń, wartości mierzonych

Test zaliczeniowy: Attempt review
Pytanie 9
Zakończone
Ocena: 1,00 z 1,00
Niepożądane zjawisko magazynowania się błędu (wind-up) w układzie regulacji z regulatorem PID związane jest z magazynowaniem błędu przez:
Wybierz jedną odpowiedź:
a. element wykonawczy
b. człon całkujący regulatora
o c. element pomiarowy
O d. człon różniczkujący regulatora

Pytanie 10 Zakończone **▼ FOOTLEM**a: 1,00 z 1,00

Przejdź do...

Proszę określić (z dokładnością do 1 sek) jak długo będzie trwał pierwszy impuls na wyjściu %Q2.0, jeśli sygnały na wejściach będą miały przebiegi pokazane na rysunku. Kolor szary oznacza stan 1 na wejściu binarnym.

t[s]

- o a. od końca trzeciej sekundy do końca dziesiątej sekundy
- ob. od końca drugiej sekundy do końca trzynastej sekundy
- oc. od końca pierwszej sekundy do końca czternastej sekundy
- od. od końca pierwszej sekundy do końca szóstej sekundy