Problem 2 4% of total	Question	2.1	2.2	2.3	Bonus	Total
	Points	1	1	1	1	4

Problem 2: Bad Signals

By Jeremy Tinana (jerdan1980)

Understanding signal-to-noise and error propagation is important in labs where you need quantifiable data. In this lab, your team will be creating a calibration curve (line of best fit) to determine the concentration of an unknown. According to Beer's law, the higher the concentration, the higher the absorbance. After doing a trial round you have started analyzing data so you can see if you can improve its quality.

Table 1. Data collected

Sample	[Caffeine] (Mol \pm 0.0005	Abs at $\lambda = 270 nm$	$\sigma_{Noise}^{}$ (std dev)
BLANK	0.0000	0.0000	0.024
1	0.0025	0.275	0.021
2	0.0050	0.599	0.015
3	0.0075	0.855	0.017
UNKNOWN	??????	0.977	0.025

Even after taking a background, spectra will still have some level of noise. This is called random error. One way to remove the noise is by taking multiple data points (also known as trials).

$$(S/N) = \frac{Signal}{Noise}$$
$$(S/N)_n = \sqrt{n} \times (S/N)$$

Where

$$Signal = signal strength (Absorbance in this case)$$

$$Noise = std dev of the noise$$

$$(S/N) = signal - to - noise ratio$$

$$(S/N) = signal - to - noise ratio after n trials$$

$$n = number of trials$$

2.1) Calculate the number of trials needed to get a signal-to-noise ratio of 10 for the most and least concentrated samples. Multiply them together and submit the result.

No matter how many trials are done to improve S/N, there will still be error. In the lab report, you must include the error of your findings. We can calculate the error of absorbance from the beer's law formula:

$$Abs = \varepsilon \times l \times C$$

Where

$$\varepsilon = molar \ absorptivity$$

l = path length (width of the cuvette)

C = concentration of analyte

For all samples, $\epsilon=115~cm~mol^{-1}$, $l=1~cm\pm0.01~cm$, and table 1 can be used for the concentration of each sample. To calculate error, you use the propagation-of-error formulae, which can be neatly summarized by the following table:

Table 2. Error propagation formulae

Operation	Value	Error
Adding/Subtracting	$N_{tot} = N_1 + N_2 + \dots + N_n$	$Err_{tot} = \sqrt{\left(Err_1\right)^2 + \left(Err_2\right)^2 + \dots + \left(Err_n\right)^2}$
Multiplying/Dividin g	$N_{tot} = N_1 \times N_2 \times \times N_n$	$Err_{tot} = \left N_{tot} \right \times \sqrt{\left(\frac{Err_1}{N_1}\right)^2 + \left(\frac{Err_2}{N_2}\right)^2 + \dots + \left(\frac{Err_n}{N_n}\right)^2}$

2.2) You want to quickly test how good your error will be. Calculate the error for absorbance after taking 10 trials of sample 1. (Hint: you're averaging the absorbance)

Things go well until the group reaches the conclusion section of the lab report. Would you be able to successfully determine the concentration of the unknown?

- 2.3) Choose which of the following should be in the conclusion. Type the answer in alphabetical order with no space.
 - a. No problems were encountered (perfect lab!)
 - b. Sample 1's data had to be thrown out (Sample 1's error was 20-30% of the signal)
 - c. The unknown was under the limit of detection (the unknown's absorbance was less than 3 times the noise of the blank)
 - d. The unknown could not be accurately predicted by the calibration curve (the absorbance was outside the range of the samples).