Archivos CSV y el formato JSON

En Python y en cualquier otro lenguaje, los datos de entrada pueden proceder de distintas fuentes: lo más sencillo es introducir datos desde la consola, también es posible hacer que el programa los descargue de una página web de Internet, o que extraiga la infomración contenida en un archivo almacenado en el disco.

En este último caso, un archivo puede venir en texto plano, o codificado en un formato especial, como es el caso de los archivos cvs o los archivos json. En esta pequeña sesión atendemos a estos dos casos.

Archivos CSV y el formato JSON

He aquí un fragmento de un archivo csv, abierto con excel:

El manejo de archivos csv es sencillo en Python. Como referencia básica, puede verse la siguiente, entre otras muchas:

https://docs.python.org/3/library/csv.html

```
In [1]:
                                                                                                           H
import csv
csvFile = csv.reader(open("nombres_por_edad_media.csv", "r"), delimiter=";")
for row in csvFile:
    print(row)
['Orden', 'Nombre', 'Frecuencia', 'Edad media']
['1', 'MARIA CARMEN', '656.276 ', '57,0']
['2', 'MARIA', '606.048 ', '48,6']
['3', 'CARMEN', '391.563 ', '60,4<sup>'</sup>]
['4', 'JOSEFA', '276.682 ', '68,0']
['5', 'ANA MARIA', '273.319 ', '51,2']
['6', 'ISABEL', '266.967 ', '57,4']
['7', 'MARIA PILAR', '263.141 ', '57,0']
['8', 'MARIA DOLORES', '259.216 ', '56,6']
['9', 'LAURA', '256.381 ', '28,4']
['10', 'MARIA TERESA', '251.492 ', '57,1']
['11', 'ANA', '250.124 ', '43,9']
['12', 'CRISTINA', '228.428 ', '33,7']
['13', 'MARIA ANGELES', '226.047',
['14',
        'MARTA', '225.323 ', '29,3']
['15',
        'FRANCISCA', '213.820 ', '64,9']
       'ANTONIA', '207.597 ', '64,7']
['16',
['17', 'MARIA ISABEL', '204.354', '52,8']
['18', 'MARIA JOSE', '203.283 ', '46.1']
In [2]:
# De otro modo:
import csv
with open('nombres_por_edad_media.csv', 'r') as csvFile:
    reader = csv.reader(csvFile, delimiter=';')
    for row in reader:
         print(row)
['Orden', 'Nombre', 'Frecuencia', 'Edad media']
['1', 'MARIA CARMEN', '656.276 ', '57,0']
['2', 'MARIA', '606.048 ', '48,6']
['3', 'CARMEN', '391.563', '60,4']
['4', 'JOSEFA', '276.682', '68,0']
['5', 'ANA MARIA', '273.319 ', '51,2']
['6', 'ISABEL', '266.967 ', '57,4']
['7', 'MARIA PILAR', '263.141 ', '57,0']
['8', 'MARIA DOLORES', '259.216', '56,6']
['9', 'LAURA', '256.381', '28,4']
['10', 'MARIA TERESA', '251.492', '57,1']
['11', 'ANA', '250.124', '43,9']
['12', 'CRISTINA', '228.428 ', '33,7']
       'MARIA ANGELES', '226.047 ', '55,4']
['13',
['14', 'MARTA', '225.323 ', '29,3']
['15', 'FRANCISCA', '213.820 ', '64,9']
['16', 'ANTONIA', '207.597', '64,7']
       'MARIA ISABEL', '204.354 ', '52,8']
['17', 'MARIA ISABEL', '204.354 ', '52,8 ['18'. 'MARIA JOSE'. '203.283 '. '46.1']
```

In [3]: ▶

Hecho

Transformación de datos

Los datos de un csv son siempre cadenas de caracteres, pero se pueden convertir en los formatos necesarios con las funciones (y librerías) adecuadas:

```
#Enteros:
print(int("7"),int("123.000".replace('.','')))

#Reales:
print(float("4.5"), float("4,5".replace(",", ".")))
print(float("123.000,75".replace('.','').replace(',','.')))

from datetime import datetime
fecha_str = '10-24-2019'

fecha_objeto = datetime.strptime(fecha_str, '%m-%d-%Y').date()
print(type(fecha_objeto))
print(fecha_objeto)
```

```
7 123000
4.5 4.5
123000.75
<class 'datetime.date'>
2019-10-24
```

El formato JSON

El formato json es una notación sencilla para especificar datos y facilitar su intercambio. En la wikipedia puede leerse que se trata de un subconjunto de la notación literal de objetos de JavaScript, aunque, debido a su amplia adopción como alternativa a XML, actualmente se considera (año 2019) un formato independiente del lenguaje.

La idea subyacente a este formato es explotar la codificación mediante el emparejamiento de clave-valor, y la utilización de listas. Los siguientes ejemplos se han tomado de la direccióin siguiente:

https://support.oneskyapp.com/hc/en-us/articles/208047697-JSON-sample-files

```
Ejemplo 1:
```

```
{
    "fruit": "Apple",
    "size": "Large",
    "color": "Red"
}
```

Ejemplo 2:

```
{
    "quiz": {
        "sport": {
             "q1": {
                 "question": "Which one is correct team name in NBA?",
                 "options": [
                     "New York Bulls",
                     "Los Angeles Kings",
                     "Golden State Warriros",
                     "Huston Rocket"
                 ],
                 "answer": "Huston Rocket"
            }
        },
        "maths": {
             "q1": {
                 "question": "5 + 7 = ?",
                 "options": [
                     "10",
                     "11",
                     "12",
                     "13"
                 ],
                 "answer": "12"
            },
             "q2": {
                 "question": "12 - 8 = ?",
                 "options": [
                     "1",
                     "2",
                      "3",
                      "4"
                 ],
                 "answer": "4"
            }
        }
    }
}
```

El emparejamiento de clave-valor nos recuerda los diccionarios; las listas, las listas.

Trabajemos con dos archivos cuyos contenidos son los mostrados en los ejemplos anteriores:

```
In [5]:
                                                                                            H
import json
archivo = open("example_1.json")
datos = json.loads(archivo.read())
archivo.close()
print(datos)
{'fruit': 'Apple', 'size': 'Large', 'color': 'Red'}
In [6]:
                                                                                            H
with open("example_2.json") as archivo:
            = json.loads(archivo.read())
datos
Out[6]:
{'quiz': {'sport': {'q1': {'question': 'Which one is correct team name in NB
Α?',
    'options': ['New York Bulls',
     'Los Angeles Kings',
     'Golden State Warriros',
     'Huston Rocket'],
    'answer': 'Huston Rocket'}},
  'maths': {'q1': {'question': '5 + 7 = ?',
    'options': ['10', '11', '12', '13'],
    'answer': '12'},
   'q2': {'question': '12 - 8 = ?',
    'options': ['1', '2', '3', '4'],
    'answer': '4'}}}
In [7]:
                                                                                            H
# Escritura:
with open("example 3.json", "w") as archivo:
    archivo.write(json.dumps(datos))
# Obviamente, los archivos example_2.json y example_3.json son iguales
Se puede cargar un archivo json directamente en un dataframe de pandas:
In [8]:
                                                                                            H
import pandas
datos pandas = pandas.read json("example 2.json")
print(datos pandas)
maths {'q1': {'question': '5 + 7 = ?', 'options': ['...
sport {'q1': {'question': 'Which one is correct team...
```

```
In [9]:
                                                                                  H
print(datos_pandas["quiz"])
print("----")
print(datos_pandas["quiz"]["maths"])
print("----")
print(datos_pandas["quiz"]["maths"]["q1"])
print("----")
print(datos_pandas["quiz"]["maths"]["q1"]["options"])
print("-----")
print(datos_pandas["quiz"]["maths"]["q1"]["options"][3])
        {'q1': {'question': '5 + 7 = ?', 'options': ['...
maths
        {'q1': {'question': 'Which one is correct team...
sport
Name: quiz, dtype: object
{'q1': {'question': '5 + 7 = ?', 'options': ['10', '11', '12', '13'], 'answe
r': '12'}, 'q2': {'question': '12 - 8 = ?', 'options': ['1', '2', '3', '4'],
'answer': '4'}}
{'question': '5 + 7 = ?', 'options': ['10', '11', '12', '13'], 'answer': '1
['10', '11', '12', '13']
13
In [10]:
                                                                                  H
import json
f = open("estaciones.json")
estaciones dicc = json.load(f)
estaciones dicc
Out[10]:
[{'latitud': '431825N',
  'provincia': 'A CORUÑA',
  'altitud': '98',
  'indicativo': '1387E',
  'nombre': 'A CORUÑA AEROPUERTO',
  'indsinop': '08002',
  'longitud': '082219W'},
 {'latitud': '432157N',
  'provincia': 'A CORUÑA',
  'altitud': '58',
  'indicativo': '1387',
  'nombre': 'A CORUÑA'
  'indsinop': '08001',
  'longitud': '082517W'},
 {'latitud': '430938N',
  provincia': 'A CORUÑA',
  'altitud': '50',
```

In [11]: ▶

```
estaciones = pandas.DataFrame(estaciones_dicc)
estaciones
```

Out[11]:

	latitud	provincia	altitud	indicativo	nombre	indsinop	longitud
0	431825N	A CORUÑA	98	1387E	A CORUÑA AEROPUERTO	08002	082219W
1	432157N	A CORUÑA	58	1387	A CORUÑA	08001	082517W
2	430938N	A CORUÑA	50	1393	CABO VILAN	08006	091239W
3	434710N	A CORUÑA	80	1351	ESTACA DE BARES	08004	074105W
4	425529N	A CORUÑA	230	1400	FISTERRA	08040	091729W
286	411952N	ZARAGOZA	600	9394X	CALATAYUD	08156	013843W
287	410652N	ZARAGOZA	779	9390	DAROCA	08157	012436W
288	422927N	ZARAGOZA	626	9244X	SOS DEL REY CATÓLICO	08090	011249W
289	413938N	ZARAGOZA	249	9434	ZARAGOZA AEROPUERTO	08160	010015W
290	413715N	ZARAGOZA	254	9434P	ZARAGOZA, VALDESPARTERA	08159	005606W

291 rows × 7 columns

In [12]:

estaciones.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 291 entries, 0 to 290
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	latitud	291 non-null	object
1	provincia	291 non-null	object
2	altitud	291 non-null	object
3	indicativo	291 non-null	object
4	nombre	291 non-null	object
5	indsinop	291 non-null	object
6	longitud	291 non-null	object

dtypes: object(7)
memory usage: 16.0+ KB