UNCLASSIFIED

AD NUMBER AD370635 CLASSIFICATION CHANGES TO: UNCLASSIFIED FROM: CONFIDENTIAL LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors;
Administrative/Operational Use; 17 MAR 1966.
Other requests shall be referred to Army

Missile Command, Redstone Arsenal, AL 35809.

AUTHORITY

USAMICOM ltr dtd 1 Feb 1974 USAMICOM ltr dtd 1 Feb 1974

GENERAL DECLASSIFICATION SCHEDULE

IN ACCORDANCE WITH
DOD 5200.1-R & EXECUTIVE ORDER 17852

THIS DOCUMENT IS:

Subject to General Declassification Schedule of Executive Order 11652-Automatically Downgraded at 2 Years Intervals- DECLASSIFIED ON DECEMBER 31,1972

BY

Defense Documentation Center Defense Supply Agency Cameron Statica Alexandria, Virginia 22314

SECURITY MARKING

The classified or limited status of this report applies to each page, unless otherwise marked.

Separate page printouts MUST be marked accordingly.

THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 AND 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

COPY NUMBER

REPORT NO. S-94

BALLISTIC SCALE-UP OF NF PROPELLANTS

I. 80-1bm Motor Demonstration Firing (U)

U. S. ARMY MISSILE COMMAND

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794. The transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.

DOWNGRADED AT 3 YEAR INTERVALS: DECLASSIFIED AFTER 12 YEARS. DOD DIR 5200.10

ROHM HAAS

O D C

MAR 24 1960

TISHA D

REOSTONE RESEARCH LABORATORIES
HUNTSVILLE, ALABAMA 35807

ROHM AND HAAS COMPANY

REDSTONE RESEARCH LABORATORIES HUNTSVILLE, ALABAMA 35807

Report No. S-94

BALLISTIC SCALE-UP OF NF PROPELLANTS

I. 80 lbm Motor Demonstration Firing (U)

by

S. E. Anderson

Approved by:

Louis Brown, Head Ballistics Section

Hoyelle

O. H. Loeffler General Manager Contributing Staff:

B. E. Sturgis

B. L. Thompson

W. A. Wood

March 17, 1966

Ontract Nos. DA-01-021 AMC-11,536 and DA-01-021 AMC-11,636

ROHM AND HAAS COMPANY

REDSTONE RESEARCH LABORATORIES HUNTSVILLE, ALABAMA 35807

BALLISTIC SCALE-UP OF NF PROPELLANTS

I. 80-1bm Motor Demonstration Firing

ABSTRACT

Production of an NFPA/TVOFA propellant having a new prepolymer binder system was scaled up from gram to multipound batches in six months. Ballistic scaling data on RH-SE-103cf were obtained in motors ranging in size from 10 grams to 80-lbm during this time. The burning rate was 0.97 in/sec at 1000 psia and the pressure exponent was 0.6. A specific impulse (I_sps) of 261.3 lbf-sec/lbm (97% of theoretical) was obtained from the 80-lbm motor firing.

The radar attenuation properties of RH-SE-103 (NF) and RH-P-112 (PNC) exhaust plumes were compared by measurements made about 1-foot and 5-feet from the nozzle exit planes. The X-band attenuation at the 1-foot measurement station was about 1.23 db for the high-energy NF propellant compared with 5.84 db for the PNC propellant.

In a preliminary study of techniques for evaluating possible toxicity hazards, samples of exhaust gases from the 80-lbm motor were obtained for HF analysis using evacuated stainless-steel bottles.

A polyester-based liner material which had been used with previous NF propellants was also satisfactory for the new system. Propellant would not bond well to fully-cured liner, but excellent bonds were obtained when the propellant was cast on partially-cured lin

ACKNOWLEDGEMENTS

The cooperation of the following persons and groups is gratefully acknowledged:

Laboratory batches of propellant were provided by Mr. Paul Gehlhaus of the Propellant Research Group.

Larger-scale batches were processed under the supervision of Messers J. L. Chaille, M. L. Essick, and R. T. Smith of the Propellant Processing Group.

Mechanical Property data were provided by Dr. A. J. Ignatowski of the Applied Mechanics Group.

TABLE OF CONTENTS

			Page
1.	INTRODU	JCTION	1
2.	COMPAR	ISON OF SA, SB, AND SE PROPELLANTS	2
3.	LINER S	TUDIES	4
4.	MOTOR	SCALE-UP	6
	4.1 Micro	o-Motor Firings of RH-SE-103cf	6
	4.2 Resul	ts of 2-inch Motor Firings	7
	4.3 Resul	ts of 6-inch Motor Firings	9
5.	RESULTS	OF 80-1bm MOTOR FIRING	10
	5.1 Motor	Description	10
	5.2 Resul	ts from Checkout Rounds	12
	5.2.1	Lining Procedure	12
	5.2.2	Casting Technique	14
	5.2.3	Ballistic Results from Checkout Rounds	14
	5.3 Prod	uction History of 80-1bm NF Motor	15
	5.3.1	Processing Conditions	15
	5.3.2	Quality Control	15
		5.3.2.1 Liner Bond Check	15
		5.3.2.2 Grain Quality Determinations	16
		5.3.2.3 Propellant Ballistics Check	16
		5.3.2.4 Propellant Mechanical Properties Check	17
	5.3.3	Firing Results	17
	5.3.4	Results of Exhaust Sampling Tests	18
	5.3.5	Results of Microwave Attenuation	21
6.	RESULTS	S AND CONCLUSIONS:	22
RE.	FERENCE	S	23
A To	DENDIV A	Classan	

ROHM AND HAAS COMPANY

REDSTONE RESEARCH LABORATORIES HUNTSVILLE, ALABAMA 35807

BALLISTIC SCALE-UP OF NF PROPELLANTS

I. 80-1bm Motor Demonstration Firing

1. INTRODUCTION

A previous report (1)¹ discussed the ballistic characteristics of NF propellants whose binders were prepolymers of NFPA² and HPMA² crosslinked with HMDI². The ballistics and processing of propellants based on this binder (designated RH-SB) were extensively investigated, and the maximum-impulse formulation, RH-SB-103, was scaled-up to a nominal 20-lbm motor. Although grains or cubes of this propellant were known to fissure in a relatively short time at elevated temperatures, the investigation was completed since modification to the binder involving only the copolymer and/or crosslinker would not be expected to affect processing or ballistics significantly.

Contractual agreements required the firing of a motor containing a nominal 80-lbm propellant grain by November 1965. The marginal properties of the SB system together with promising results of laboratory prepolymer studies prompted a decision in June 1965 to change binders before the 80-lbm motor was cast. The new binder (designated RH-SE) was a copolymer of NFPA and acrylic acid crosslinked with an epoxide. The technology was brought along as rapidly as possible with the first pilot plant batch being produced late in June, and the first micro-motors containing RH-SE-103 (a propellant formulation similar to RH-SB-103) being fired in August. Larger pilot batches were made,

Parentheses indicate references listed at end of report.

²These and other acronyms are identified in the Glossary (Appendix A).

materials stockpiling began, and in October the first 2-inch diameter motors were fired. Scale-up to 6-inch diameter hardware was accomplished in November, and the effort culminated in the successful firing of the 80-lbm motor containing RH-SE-103cf on November 19, 1965.

This report presents the ballistic data obtained in a six-month program during which processes for making raw materials and propellant were scaled from gram to multipound batches.

2. COMPARISON OF SA, SB, AND SE PROPELLANTS

The binder for the first NF propellants made at these Laboratories was NFPA which was completely polymerized after casting by free radical initiation.(2). This propellant was designated RH-SA-. The SA formulations specified concentrations of all components except the curing agent, since the amount of curing agent was always very small and could vary slightly, depending upon the polymerization characteristics of a given lot of NFPA. As the prepolymers were substituted for NFPA monomer in the SB and SE propellants, their recipes were kept similar to their SA analog (Table I) (3). This designation procedure is convenient but might imply that SA, SB, and SE propellants should give equivalent performances; however, the binders are significantly different from each other (Table II). SE-103 currently contains much more inactive ingredients (comonomer and curing agents) than either SA-103 or SB-103, and the specific impulse suffers accordingly (Table III).

Table I
Comparison of RH-SA, SB, and SE Pecipes

	SA-103 Wt. %	SB-103 Wt. %	SE-103 Wt. %
NFPA Monomer	13		
NFPA/HPMA Prepolymer		13	
NFPA/AA Prepolymer		-	13
Ammonium Perchlorate ^a	46	46	46
Aluminum ^b	15	15	15
TVOPA	26	26	26
Curing Agent (added) Free Radical Initiator	~0.1		
Isocyanate Crosslinker		~0.4	
Epoxide Crosslinker			~2.1

^aThe ammonium perchlorate particle size is denoted by a two-letter suffix; for example, cf is 55μ and cd is 35μ . ^bAlcoa 140.

Table II

Comparison of Binders for SA, SB, and SE Propellants

(Percentages Based on Total Propellant)

	SA-103 Wt. %	SB-103 Wt. %	SE-103 Wt. %
TVOPA	26.0	25.9	25.5
NFPA	13.0	11.7	12.0
НРМА		1.3	
Acrylic Acid			0.7
Curing Agent	~0.1	0.4	2.1
Total Inerts	~0.1	1.7	2.8

Table III

Comparison of Theoretical Specific Impulse of
SA, SB, and SE Propellants

	SA-103	SB-103	SE-103
Total Inerts (wt. %)	~0.1	1.7	2.8
$I_{\rm sps}^0$ (lbf-sec/lbm)	270.9	269.5	268.8

3. LINER STUDIES

Liners had been successfully developed for both the SA (vinyl/free-radical cure) and SB (hydroxyl/isocyanate cure) binder systems. The SE propellant presented still another type of curing chemistry (carboxyl/epoxide cure) for which a liner was needed. Screening tests showed that LR6-73 (Table IV) provided good bonding for the SE propellants as well as for SB and SA.

Table IV

LR6-73 Liner Formulation

Component	Wt. %
Paraplex® P-13	35
Paraplex® P-43 ^a	35
7TF-1 Asbestos ^b	30
Lupersol DDM ^{® C} (curing agent)	1 (added)

aRohm and Haas Company, Philadelphia, Pennsylvania. bJohns-Manville, New York, New York. Wallace and Tiernan Corp., Newark, New Jersey.

Bond strengths exceeding the tensile strength of the propollant were obtained with all three binders, but with SB and SE the liner could not be completely cured before casting of propellant (Table V). A cure time of less than 6 hours at +140°F provided good results for the SE binder (Table VI).

Table V

Comparison of Bond of SE, SB, and SA Propellant

Completely-Cured LR6-73

Propellant	Cure Time (hr)	Cure Temp, (°F)	Bond Strength (psi)	Remarks
RH-SA-103	24	140	30	Good propellant bond
RH-SB-103	24	140	0	No propellant bond
RH-SE-103	24	140	0	No propellant bond

Table VI

Effect of Liner Cure Time on Bond of SE-103 to LR6-73

Cure Time (hr.)	Cure Temp,	Bond Strength (psi)	Type Failure
>100	+140	0	Propellant bond
24	+14:0	0	Propellant bond
6	+140	46	Cohesive propellant
4	+140	48	Cohesive propellant
2	+140	38	Cohesive propellant
0	N/A	40	Cohesive propellant

The necessity of using a partially cured liner presented a problem in casting the 80-lbm motor because it was cast from two different propellant batches and held at +100°F between castings. Tests were run to simulate the incremental casting with an expected holding time of 6 to 8 hours. The results indicated that no problem in bonding should occur (Table VII). As yet there is no completely satisfactory explanation for the effects of liner cure time on the bond of SE-propellant to LR6-73.

Table VII

Results of Tests to Evaluate Effect of Holding at 100°F on Bond of Propellant to Liner

Assembly No.	Liner and Propellant Cure History	Bond Results
l (Simulates first half of motor)	Liner: Overnight at ambient; two hrs. at +100°F prior to casting. Propellant: Cast, held at +100°F six hrs. prior to normal cure at +140°F	Good bond on all samples. Average pull strength of 74 psig.
2 (Simulates last half of motor)	Liner: Overnight at ambient; Eight hrs. at +100°F prior to casting. Propellant: Cast, placed at +140°F immediately for normal cure.	Good bond on all samples. Average pull strength of 77 psig.

4. MOTOR SCALE-UP

4.1 Micro-Motor Firings of RH-SE-103cf

Early evaluation of limited quantities of propellant ingredients was accomplished with the 10-gram .75C.50-1.5¹ test motor using previously established techniques (4). The ballistic properties of RH-SE-103cf were close to those of RH-SB-103cf, except that the additional inert ingredients reduced the burning rate slightly. RH-SB-103cf burned at 1.15 in/sec at 1000 psia, while RH-SE-103cf burned at 0.97 in/sec at the same pressure. A summary of all micro-motor data obtained in this program is presented in Table VIII and Fig. 1.

This system of designating motor sizes indicates a 0.75-inch O.D., a 0.50-inch I.D., and a length of 1.5 inches.

Table VIII
Summary of Ballistic Data for RH-SE-103 Obtained in 0,75C,5-1.5 Micro-Motors

Round No.	Batch No.	K _n	Peq (psia)	P _b (psia)	rb (in/sec)	P _{max} /P _b	∫Pbdt/∫Ptotdt	I spd (lbf-sec/lbm)	J sps (lbf-sec/lbm)
4853	08ª	66.3	404	404	0.58	1.18	0.96		
4854		82.7	680	671	0.75	1.21	0.97		
4855		110.7	1337	1280	1.15	1.09	0.90		
485 ú		127.1	1830	1766	1.32	1.10	0.94		
4993	1004b	78.7	840	790	0.93	1.19	0.96		
49 94		64.4	521	514	0.76	1.13	0.95		
4995		89.8	964	933	1.04	1.17	0.93		
1995		109.7	1716	1543	1,33	1.16	0.97		
4798		72.5	693	665	0.83	1.14	0.97		
4989		87.3	1015	964	1.02	1.15	0.97	246.0	250.8
4990		91.8	1065	1044	1.09	1.11	0.97	250.6	254.9
4991		91.6	1062	1041	1.13	1.09	0.94	249.6	254.4
1992		90.2	1053	1025	1.12	1.22	0.95	249.8	255.0
4997		90.8	1:03	1058	1.13	1.11	0.96	249.5 Average	253.8 253.8
5103	1016ª	83.0	733	725	0.79	1.14	0.98		
5104		116.4	: 752	1703	1.34	1.12	0.96		
5105		94.5	973	950	0.99	1.09	0.95	249.6	256.4
5106		94.5	1 002	978	0.99	1.13	0.97	249.2	255.0
5197		75.0	1009	986	0.98	1.13	0.97	251.5 Average	256.8
								Average	250.1
5192	1620	67.4	466	463	0.61	1.10	0.98		
5101		80.9	781	765	0.81	1.14	0.97		
5:30		95.7	1037	1060	0.99	1.11	0.96		
5193		108.8	1451	1391	1.25	1.14	0.89		
5194		114.6	1577	1515	1.21	1.07	0.97		

bol grind APC

4.2 Results of 2-inch Motor Firings

As more propellant became available, 2C1.5-4.0 test motors containing 150-gm. of propellant were fired to give information on ballistic scale-up effects in motors and also on process scale-up. As expected, there was no increase in burning rate (Table IX, Fig. 2).

Using the 255.6 lbf-sec/lbm value of I sps from the 2C1.5-4.0 motor, specific impulse values of 258.6 and 261.7 lbf-sec/lbm were predicted for the 6C5-11.4 and 80-lbm motors, respectively, using well-established techniques.(4).

FIG. 1 P-K-r DATA FROM MICRO-MOTORS FOR RH-SE-103cf.

FIG. 2 COMPARISON OF P-K-r DATA FROM 2 × 4 MOTORS WITH LINES DRAWN FROM MICRO-MOTOR DATA.

Table IX
Summary of Ballistic Data for RH-SE-103cf Obtained in 2C1.5-4.0 Motors

Round No.	Batch No.	K	Pb (psia)	rb (in/sec)	$P_{\text{max}} \sqrt{P_{\text{b}}}$	Pbdt/ Ptotdt	I spd (lbf-sec/lbm)	l sps (lbf-sec/lbm)
5108	1016	96.4	1009	0.97	1.06	0.98	251.8	256.7
5109		95.7	1048	0.99	1.05	0.98	452.5	256.6
5110		97.4	1124	1,10	1.04	0.96	254.9	258.5
							Average	257,2
5195	1020	92.8	942	0.94	1.04	0.98	248.9	254.8
5196		92.5	943	0.94	1.04	0.97	249.3	255.3
5197		90.9	938	0.94	1.42	0.98	250.4	256.7
							Average	255.6
5209	1021	95.8	990	0.97	1.04	0.98	250.8	258.0
5208		96.9	1057	1.01	1.05	0.98	250.6	255.1
5206		96.3	978	0.94	1.20	0.98	249.0	254.7
5207		95.7	971	0.94	1.14	0.97	250.7	256.2
							Average	255.5
5267	1025	93.9	943	0.92	1.24	0.97	251.1	257.4
5268		93.9	931	0.91	1.24	0.97	250.3	257.0
5169		94.2	938	0.95	1.20	0.95	248.2	255.4
5270		94.1	941	0.91	1.13	0.98	259.9	259.9
							Average	257.4

4.3 Results of 6-inch Motor Firings

Two 6C5-11.4 test motors were fired to check the specific impulse predictions and the propellant ballistics before casting the 80-lbm motor. Burning rates agreed well with previous data and the measured value of I sps (258.6 lbf-sec/lbm) agreed precisely with the predicted value (Table X, Fig. 3). Microwave attenuation data are reported in Section 5.4.3.3.

FIG. 3 COMPARISON OF P-K-r DATA FROM 6 X 11.4 MOTORS WITH LINES DRAWN FROM MICRO-MOTOR DATA.

5. RESULTS OF 80-1bm MOTOR FIRING

5.1 Motor Description

The motor case of the 5KS4500 Jato¹ with a casebonded, cylindrically perforated grain 5.5-inches in diameter has been used as a standard large-scale specific impulse comparison motor in several propellant evaluation programs (5). This motor has a nominal charge weight of 100 lbm. and has a surface progressivity ratio of 1.54. In order to reduce both the progressivity ratio and the amount of propellant required, a cylindrical grain 6.5-inches in diameter was designed for use with RH-SE-103cf. The dimensional characteristics of the 80-lbm motor grain are recorded in Table XI and Fig. 4 is a drawing of the firing assembly. The 80-lbm motor is also designated 9.1C6.5-41.

Unit No. 211 in the SPIA M-1 Rocket-Motor Manual.

FIG. 4 9C6.5-40 STATIC TEST MOTOR (80-1bm MOTOR) FIRING ASSEMBLY. CONFIDENTIAL

Table XI

Characteristics of 80-lbm Motor (9.1C6.5-41)

Grain Dimensions	
Initial length (in)	41.5
Final length (in)	38.7
Average length (in)	40.2
Outside diameter (in)	9.1
Inside diameter (in)	6.5
Initial surface area (in ²)	884
Final surface area (in ²)	1096
Ratio of final to initial surface	1.24
Grain volume (in ³)	1261

5.2 Results From Checkout Rounds

Two 9.1C6.5-41 motors were cast with RH-P-112cf, a well-characterized propellant, to check out lining, processing, handling, firing, and data acquisition before the NF round was made.

5.2.1 Lining Procedure

The liners for plastisol and NF propellants were mixed manually in a disposable carton with a spatula. The resins and curing agents were blended thoroughly before the fillers were added. Mixing continued until the material was smooth and uniform.

The liners were applied to the interior of the case through the use of a manually-operated sweep blade (Fig. 5). The motor and sweep assembly was clamped vertically, and the liner was applied to the case wall with a spatula at the aft end of the motor. As the sweep blade rotated, the liner rolled ahead of the blade and spiralled down to the head end of the motor. This technique worked equally well with the liners for plastisol and NF propellants.

FIG. 5 LINER SPREADER ASSEMBLY FOR 80-1bm MOTOR.

5.2.2 Casting Technique

Plastisol propellants were mixed in a 10 gallon turbine mixer and NF propellants were mixed in a 5-gallon Baker-Perkins vertical planetary-action mixer. Mixing and casting were both done remotely, with the casting progress being monitored by a digital readout of propellant weight and also by closed-circuit television. When the necessary amount of propellant had been cast, the mandrel was inserted remotely. Casting operations are similar whether the motor contains 10 grams or 100 pounds; no processing problems were encountered,

5.2.3 Ballistic Results from Checkout Rounds

The motors performed as predicted (Table XII). Microwave attenuation measurements made for comparison with the results from the NF round are reported in Section 5.3.3.3.

Table XII

Ballistic Summary From 9.1C6.5-41 System Check Rounds

Containing RH-P-112cf

		Results	
	Round 5218	Round 5274	Prediction
Grain weight (1bm)	73.9	74.1	74
Burning time (sec)	2.16	2.04	2.2
Burning pressure (psia)	1013	1006	1000
Burning rate (in/sec)	0.61	0.61	0.63
Action time (sec)	2.16	2.19	
Action pressure (psia)	986	9 72	
Maximum pressure (psia)	1200	1169	1200
Initial pressure (psia)	824	833	734
$P_{\rm f}/P_{ m i}$	1.46	1.40	1.5
Average thrust (lbf)	8088	8052	8300
Maximum thrust (lbf)	10,211	10,035	
Discharge coefficient			
(lbm/lbf-sec)	0.0063	0.0063	0.0063
I _{tot} (lbf-sec)	17,906	17,982	
I _{spd} (lbf-sec/lbm)	242.3	242.3	
I_{sps} (lbf-sec/lbm)	246.3	247.5	

5.3 Production History of 80-1bm NF Motor

5.3.1 Processing Conditions

The 9.1C6.5-41 motor was lined with LR6-73 and kept at +80°F overnight before being sent to the pilot plant for casting. The motor was set up and placed at +100°F at 9:00 a.m. The first batch of propellant was cast at 1:00° p.m. and the motor was maintained at +100°F while the next batch was mixed. The second batch was cast at 8:00 p.m. and the motor was cured for 40 hours at +140°F.

5.3.2 Quality Control

5.3.2.1 Liner Bond Check

As a check on the propellant bonding, case-bond specimens were prepared from the same liner batch used in the motor and were kept with the motor until propellant cure was completed. Half of the case-bond specimens were cast with the first batch and the other half were cast with the second batch. These specimens were a final check of the effect of extended liner cure at elevated temperature as well as a specimen check of the liner batch. The results showed a substantial decrease in bond strength between the first and second castings (Table XIII). These results did not contradict those of the earlier tests since the total time at +100°F was 3 hours longer than had been tested previously; however, the results did emphasize the need for additional liner research for the NF propellant system. The bond was sufficient for the simple, thin-webbed cylindrical geometry, so the tests did not influence the decision to fire the 80-lbm motor.

Table XIII

Results from Case Bond Specimens Cast Concurrently with 80-lbm Motor

Assembly No.	Avg. Bond Strength (psi)	Bond Results
1 (Cast with propellant from the first batch)	39	The breaks occurred partially in the propellant and partially in the propellant bond.
2 (Cast with propellant	17	All breaks occurred in the propellant bond.
from the last batch)	CONFIDENTIA	L

5.3.2.2 Grain Quality Determinations

Both visual and x-ray inspections showed the grain quality and the case bond to be good. Only one $\frac{1}{16}$ -inch diameter void was found in the entire grain. Most important, the liner-propellant bond was checked manually and the aft end of the grain was bonded firmly to the case.

5.3.2.3 Propellant Ballistics Check

Four 2C1.5-4.0 motors were obtained from the first batch and fourteen 2C1.5-4.0 motors were cast from the second batch of propellant cast in the 80-lbm motor for a final propellant quality check. Four rounds from each batch were fired before the 80-lbm motor was prepared for firing. The results were typical of results obtained from similar tests of other batches. The reproducibility was excellent (Table XIV). Ten motors were placed in storage at ambient temperatures to obtain surveillance data.

Table XIV

Ballistic Results from 2C1.5-4.0 Batch Check Motors

Round	Batch	.Հ _n	P b (psia)	r b (in/sec)	\(\bar{P}_{\text{tot}} \)	I sps (lbf-sec/lbm)
5315	1026	92.4	910	0.892	0.98	256.3
5316	1026	97.0	1006	0.973	0.96	256.1
5317	1026	96:1	959	0:924	0:98	256:0
5318	1026	94.5	933	0.915	0.98	255.4
					Average	256.0
5319	1027	94.1	964	0.942	0.97	256.8
5320	1027	95.1	970	0.942	0.98	255.4
5321	1027	96.4	1012	0.958	0.98	256.1
5322	1027	94.3	927	0.955	0.94 ^a	254.5 ^a
					Average .	256.1
				Overa	ll Average	256.0

a Left out of average.

5.3.2.4 Propellant Mechanical Properties Check

Quality control specimens from each batch were tested, and again results were typical of previous tests (Table XV).

Table XV

Mechanical Properties for RH-SE-103cf, Batches 1026 and 1027

	Max. Stress (psia)/Strain	n at Max. Stress (%)	
Batch	-40°F	+77°F	Specific Gravity
1026	680/12	82.4/24	1.804
1027	672/12	83.4/22	1.804

5.3.3 Firing Results

The 80-1bm motor was successfully static tested at Rohm and Haas F Range on November 19, 1965. Instrumentation included two pressure channels, two thrust channels and three channels of microwave attenuation data. Photographic records were obtained with two high-speed motion analysis cameras and one normal speed camera. Five vacuum bottles for sampling exhaust products were also used. All equipment functioned properly.

The specific impulse obtained from the 80-lbm motor firing was 261.2 lbf-sec/lbm which agreed well with the predicted value (Table XVI). The pressure-time history was smooth (Fig. 6) and the burning rate agreed with the previous pressure-burning rate correlation (Fig. 7). The pressure was lower than anticipated because the nozzle throat size was based on early P-K-r data from micro-motors and an allowance for some scaling (reduction) of discharge coefficient with motor size increase was made. No such scaling was found (Table XVII).

Table XVI

Ballistic Summary from 9.1C6.5-41 80-lbm Motor Containing SE-103cf

	Results				
	Actual	Predicted			
Grain wt. (lbm)	80.82	82 ± 1			
Burning Time (sec)	1.423	1.28			
Burning Pressure (psi)	815	1000			
Burning Rate (in/sec)	0.89	0.97			
Action Time (sec)	1.527				
Action Pressure (psia)	790				
Maximum Pressure (psia)	926	1200			
Initial Pressure (psia)	678	700			
P_f/P_i	1.37	1.71			
Average Thrust (lbf)	12,971	15,000			
Maximum Thrust (lbf)	15,847	19,000			
Discharge Coefficient	0.0060	0.0057			
Itot (lbf-sec)	20,309				
I _{spd} (lbf-sec/lbm)	251.4				
I _{spd} (lbf-sec/lbm) I _{sps} (lbf-sec/lbm)	261.2	261.7			

Table XVII

Effect of Motor Size on Discharge Coefficient

	$^{\mathrm{D}}$
Motor Size	(lbm/lbf-sec)
0.75×1.5	. 0.00606
2 × 4	0.00601
6 × 11.4	0.00602
9.1 × 41	0.00604

5.3.4 Results of Exhaust Sampling Tests

During the 80-lbm motor firing, samples of gas in the exhaust area were obtained in stainless steel vacuum bottles. The bottles were installed at the locations shown in Fig. 8 at approximately the same elevation as the motor. Electric valves were used in conjunction with the range timer to open the bottles 200 msec after motor ignition. The valves stayed open 2.50 sec. (motor action time was 1.42 sec.) during which time the pressure in the bottles increased

FIG. 6 PRESSURE- AND THRUST-REPLOTS FROM 80-lbm MOTOR CONTAINING RH-SE-103cf PROPELLANT.

FIG. 7 COMPARISON OF P-K-r DATA FROM 80-1bm MOTOR WITH LINES DRAWN FROM MICRO-MOTOR DATA.

SAMPLE LOCATION	P PM HF	Mg /M ³
	983	834
2	435	369
3	274	232
4	73	62
5	40	34

FIG. 8 PLAN VIEW OF SAMPLE LOCATIONS FOR 80-1bm NF MOTOR TOXICITY TEST.

from 1 mm mercury to 602 mm mercury. The results of the sample analyses were converted to parts per million of HF and to milligrams of HF per standard cubic meter. The measured HF concentrations are shown by location in Fig. 8. A similar analysis performed on test bottles charged with a known HF concentration indicated that the technique used yielded only 33% recovery of HF; therefore the concentrations shown in Fig. 8 may be only one third as high as actually existed. Thermochemical calculations of the exhaust gas composition give a concentration of 180, 900 ppm HF at the nozzle exit.

These tests were primarily to determine the feasibility of using the sampling technique in future studies of the toxicity problems associated with rocket exhausts. Several problems were revealed in these preliminary tests; for example, the low recovery of HF was mentioned above. A second difficulty was that the amount of air dilution occurring because of improper valve sequencing cannot be

separated from the normal mixing of the exhaust gases with air.

Multiple sample bottles at each sampling point sequenced to open at different times would be a means by which this problem could be eliminated.

5.3.5 Results of Microwave Attenuation Tests

Radar attenuation measurements were made on plastisol nitrocellulose and NF type propellants in both 6C5-11.4 and 9.1C6.5-41 static test motors using previously established techniques (6). Round identification and pertinent physical measurements including radar antennae locations are given in Table XVIII.

Table XVIII

Test Data for Attenuation Measurements

						Distar	nce from	
	- "		$\overline{\mathbf{P}}_{\mathbf{b}}$		D		zle Exit	
Round	Propellant	Motor			e ,		nches)	
Number	Composition	Designation	(psia)	XR	<u>(in.)</u>	Upstream	Downstream	
5271	RH-P-112	6C5-11.4	906	7.29	3.19	10.25	67.8	
5272	RH-P-112	6C5-11.4	880	7.89	3.32	10.25	67.8	
5273	RH-SE-103	6C5-11.4	896	8.99	4.83	7.50	67.5	
5274	RH-P-112	9C6.5-43	1003	7.43	7.22	10.0	67.5	
5323	RH-SE-103	9C6.5-43	819	9.00	11.25	11.25	56.0	

The test results (Table XIX) show that the RH-SE-103 (NF composition) nozzle exit attenuation is a factor of three or more less than for plastisol nitrocellulose composition RH-P-112. The lower attenuation of RH-SE-103 at the upstream station was significant since RH-SE-103 has a higher exhaust temperature than does RH-P-112. The lower attenuation probably results from a higher collision frequency between free electrons and other species in the NF exhaust. The higher collision frequency is evidenced by the small differences between the attenuation levels at the X and K_Q frequencies.

Table XIX Radar Attenuation Measurements for RH-P-112 and RH-SE-103 Propellants

		Ignition Burning	Burning	Measurement	Attenuation in Decibels		
Round No.	Propellant Composition	Time (sec)	Time (sec)	Time (sec)	K_a Band a (Upstream)	X Band ^b (Upstream)	X Bandb (Downstream)
5271	P-112	0.040	0.940	0.548	3.20	4.35	7.34
5172	P-112	0.024	0.930	0.548	2.55	4.34	7.00
5273	SE-103	0.030	0.596	0.356	0.73	0.69	4.99
5274	P-112	0.830 ^c	3.000	2.004	4.73	5.84	8.03
5323	SE-103	0.828 ^c	2.300	1.604	1.17	1.23	5.85

aFrequency 33 GHz

At the downstream station, the attenuation level for the NF system was only 20-30% lower than that for the plastisol system (Table XIX). This is probably a result of a combination of two effects: (1) air entrainment and afterburning tend to decrease the difference in collision frequencies in the mixing and afterburning regions of the plumes and (2) kinetic energy recovery tends to decrease the difference in electron concentrations in the unmixed region of the plume.

6. RESULTS AND CONCLUSIONS:

The program demonstrated that large-scale production of NF propellants and ingredients is feasible. The smooth combustion, high energy, and good specific impulse efficiency of the NF propellants were demonstrated in an 80-lbm motor firing. The fact that a high-energy NF propellant has lower radar attenuation properties than many lower-energy systems was demonstrated. One possible method for sampling the atmosphere in the neighborhood of a rocket with toxic exhaust products was shown to be feasible.

bFrequency 10 GHz

Includes 0.805 sec. delay for camera starting.

REFERENCES

- 1. Anderson, S. E. and Thompson, B. L., "Ballistic Characteristics of NF Propellants," Rohm and Haas Company Special Report S-85, October 5, 1965.
- 2. Brown, L. M., et. al., "Experimental Difluoramino Propellants," Bulletin of the 20th Interagency Solid Propulsion Meeting, Vol. II p. 531, July 1964.
- 3. Baldwin, M. G. and Foster, J. S., "NFPA-TVOPA Propellants," Bulletin of the 21st Interagency Solid Propulsion Meeting, p. 283, July 1965.
- 4. Cockrell, B. L., "Ballistic Evaluation of Propellants in Micro-Motors," Rohm and Haas Company Special Report S-49, November 1964.
- 5. Brown, L. M. and Seaton, W. W., Jr., "The Comparative Evaluation of State-of-the Art Propellants," Bulletin of the Interagency Solid Propulsion Meeting, Vol. II, p. 245, July 1963.
- 6. Wood, W. A., "Radar Attenuation by Solid-Propellant Rocket Exhaust," Rohm and Haas Company Special Report S-78, September 1965.

APPENDIX A

Glossary

I.	Acronym	s and Abbreviations
	AA	Acrylic acid
	HF	Hydrogen fluoride
	HMDI	Hexamethylene diisocyanate
	HPMA	Hydroxypropyl methacrylate
	NFPA	2,3-bis(difluoramino)propyl acrylate
	PNC	Plastisol nitrocellulose composite
	TVOPA	1,2,3-tris[1,2-bis(difluoramino)ethoxy]propane
II.	Symbols	
	c^{D}	Mass discharge coefficient (lbm/lbf-sec)
	$D_{\mathbf{e}}$	Nozzle exit diameter(in.)
	I	Delivered specific impulse(lbf-sec/lbm)
	I sps	Standard deliverable specific impulse(lbf-sec/lbm)
	I ⁰ sps	Standard theoretical specific impulse(lbf-sec/lbm)
	I _{tot}	Total impulse (lbf-sec)
	K _n	Burning surface to throat area ratio
	P _b	Burning-time average chamber pressure (psia)
	Peq	Equilibrium pressure for micro-motor(psia) (used for P-K correlation)
	$\mathtt{P_i}$	Initial chamber pressure (psia)
	$\mathtt{P}_{\mathbf{f}}$	Final chamber pressure (psia)
	Pmax	Maximum chamber pressure (psia)
	T,	Average linear burning (regression) rate of propellant (in/sec)

XR

Nozzle expansion ratio

 $\int P_b dt / \int P_{tot} dt$ Ratio of burning pressure integral to total pressure integral

SUPPLEMENTARY

INFORMATION

ROHM AND HAAS COMPANY

REDSTONE RESEARCH LABORATORIES HUNTSVILLE, ALABAMA 35807

March 22, 1966

To:

AD 370 63

Recipients of Rohm and Haas Reports

Subject:

ERRATA for Report Number S-94

Table #10 of subject report was inadvertently omitted. All recipients of this report are requested to clip the table below and attach at bottom of page nine (9).

Table X

Ballistic Data for RH-SE-103cf Obtained in 6C5-11.4 Motors

Round No.	Batch No.	K	P _b (psia)	rb (in/sec)	$P_{max}/\overline{P_b}$	∫P _b dt/∫P _{tot} dt	l spd (lbf-sec/lbm)	lsps (lbf-sec/lbm)
5217	1021	89.0	851	0.91	1.03	0.94	241.4	258.3
5273	1025	94.0	897	0.92	1.14	0.96	251.4	258.9
							Average	258.6

