MAD 6607: Coding Theory

Edoardo Persichetti

Test 2

Exercise 1 Consider the finite field \mathbb{F}_2 .

- a) Build the quotient ring $\mathbb{F}_2[x]/(x^4+1)$.
- b) Is this ring a field? Explain why.
- c) Describe the principal ideal (x + 1).

Hint: remember that a principal ideal is entirely generated by its defining element.

Exercise 2 Let $p(x) = x^2 + x - 4$. In which of the following fields is p(x) irreducible and why?

- a) Q
- b) ℝ
- c) \mathbb{F}_5

Exercise 3 Using the result from above, indicate whether $\mathcal{R} = \mathbb{F}_5[x]/(x^2+x-4)$ is a field or not. If not, why? If so, what would be the field that we obtain?

Exercise 4 Consider the ring \mathcal{R} as above and let α be a root of $x^2 + x - 4$.

- a) What is the general form of an element in this ring?
- b) Is α a primitive element? Explain.

If the answer to part b) was yes, describe the ring using powers of α . If not, find an irreducible quadratic polynomial whose root, say β , is a primitive element, then describe the ring (in this case a field) using powers of β .

Exercise 5 Consider the field F you just built.

- a) What is the prime subfield of F? Are there any other subfields, and why?
- b) Let γ be the primitive element used to define the field¹. List all of the conjugates of γ^7 .
- c) List all the automorphisms of F over its prime field. What structure do they form?
- d) Compute the trace and norm of γ^7 over its prime field.
- e) Write a polynomial basis and a normal basis for F over its prime field.

¹This is either α or β , depending on your answer to question 4.