Lecture 16: Domain Specific Language and IR

CSE599G1: Spring 2017

Where are we

User API

High level Packages

Programming API

Gradient Calculation (Differentiation API)

System Components

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

Architecture

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Where are we

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling / Networks

Gap between computation graph and hardware

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Question

Operator Fusion

Computation

assign sub mul h learning_rate

Sequential Kernel Execution

```
for (int i = 0; i < n; ++i) {
    temp1[i] = lr * grad[i]
}
for (int i = 0; i < n; ++i) {
    temp2[i] = w[i] - temp1[i]
}
for (int i = 0; i < n; ++i) {
    w[i] = temp2[i]
}</pre>
```

Fused Kernel Execution

```
for (int i = 0; i < n; ++i) {
   w[i] = w[i] - lr * grad[i]
}</pre>
```

More Backends


```
kernel void update(__global float *w,
                      __global float* grad,
                      int n) {
   int gid = get global id(0)
   if (gid < n) {
     w[gid] = w[gid] - lr * grad[gid];
kernel void update(float *w [[buffer(0)],
                   float* grad [[buffer(1)]],
                   uint gid [[thread position in grid]]
                   int n) {
   if (gid < n) {
    w[gid] = w[gid] - lr * grad[gid];
```

Computation and Data Layout

matmul W.T

Vanilla Matrix Multiplication

```
float A[n][h], W[n][h], C[n][m];

for (int i = 0; i < n; ++i)
  for (int j = 0; j < m; ++j) {
    C[i][j] = 0;
    for (int k = 0; k < h; ++k) {
        C[i][j] += A[i][k] * W[j][k];
    }
}</pre>
```

Challenge: Computation and Data Layout

Data Packing A[i][j] -> A[i/4][j/4][i%4][j%4]


```
Code
```

```
float A[n/4][h/4][4][4];
float W[n/4][h/4][4][4];
float C[n/4][m/4][4][4];
for (int i = 0; i < n/4; ++i)
  for (int j = 0; j < m/4; ++j) {
    C[i][i] = 0
    for (int k = 0; k < h/4; ++k) {
     C[i][j] += dot(A[i][k], W[j][k]);
```


Bridge Layer for Code Generation

Expression Template: Linear Algebra AST in C++

Expression Template:

- Expression returns AST
- Lazy evaluate the expression at assignment
- Generate one kernel per evaluation during compilation

```
float data_a[n] = {1, 2, 3};
float data_b[n] = {2, 3, 4};
float data_c[n] = {3, 4, 5};
float lr = 0.1;
Vec A(sa, n), B(sb, n), C(sc, n);
```


Device Invariant Code via Templatization

Expression Template in DL Frameworks

- Eigen: http://eigen.tuxfamily.org/
 - Used in TensorFlow
- mshadow: https://github.com/dmlc/mshadow
 - Used in MXNet
- Tutorial on how it works
 - https://github.com/dmlc/mshadow/tree/master/guide/exp-template
- Discussion: what are the drawbacks of expression template

Computational Graph level IR

Computation Graph as IR

- Benefit from high level view
- Need code generation/interpretation rule for each op

Codegen Rule for Elementwise Op

Nvdia TensorRT: Rule based Fusion

XLA: Tensorflow Compiler Stack

- Constant shape dimension
- Data layout is specific
- Operations are low level tensor primitives
 - Map
 - Broadcast
 - Reduce
 - Convolution
 - ReduceWindow
 - 0 ...

Array Index based DSL

Index based Computation Description

Description of C = A + B

```
n = t.var('n')
m = t.var('m')
A = t.placeholder((m, n), name='A')
B = t.placeholder((m, n), name='B')
C = t.compute((m, n), lambda i, j: A[i, j] + B[i, j])
```

Computation Rule for index i, j

Computation Description for Matrix Multiplication

lambda i, j: t.sum(A[k, j] * B[k, i], axis=k));

Description of C = dot(A, B.T)

A = t.placeholder((1, n), name='A')

B = t.placeholder((1, m), name='B')

k = t.reduce_axis((0, 1), name='k')

C = t.compute((m, n),

Loop Transformation Rule

```
C = t.compute((m, n), lambda i, j: A[i, j] + B[i, j])
s = t.create_schedule(C.op)

for (int i = 0; i < n; ++i) {
   C[i] = A[i] + B[i];
}</pre>
```


Loop Transformation Rule

```
C = t \cdot compute((m, n), lambda i, j: A[i, j] + B[i, j])
s = t.create schedule(C.op)
bx, tx = s[C].split(C.op.axis[0], factor=64)
for (int bx = 0; bx < ceil(n / 64); ++bx) {
  for (int tx = 0; tx < 64; ++tx) {
    int i = bx * 64 + tx;
    if (i < n) {
      C[i] = A[i] + B[i];
```


Loop Transformation Rule

```
C = t.compute((m, n), lambda i, j: A[i, j] + B[i, j])
s = t.create schedule(C.op)
bx, tx = s[C].split(C.op.axis[0], factor=64)
s[C].bind(bx, tvm.thread_axis("blockIdx.x"))
s[C].bind(tx, tvm.thread axis("threadIdx.x"))
 int i = blockIdx.x * 64 + threadIdx.x;
 if (i < n) {
   C[i] = A[i] + B[i];
```


Key Characteristics of Array Index based DSLs

Index based description

Loop transformation rules to generate different programs

Summary: Challenges for IR

- Simple description language for computation
- Rich transformation for computation patterns
- Keep up with emerging hardware
- It is still an open question!