18MAB204T - Probability & Queueing Theory

UNIT I - Random Variables and Statistical Averages

MULTIPLE CHOICE QUESTIONS

4	CC1 1 1 1 .	C	•			C .1 .
1	The height	of nersons	in a country	is a random	variable c	it the tyne
1.	The height	or persons	in a country	is a random	variable (n the type

- (a) Continuous
- (b) Discrete
- (c) Neither discrete nor continuous
- (d) Continuous as well as discrete

2.
$$Lt F(x) =$$

- (a) 0
- (b) 2
- (c) 1
- (d) 1

3. A random variable X has the following probability function:

X	0	1	2	3	4
P(x)	k	2k	5k	7k	9k

The value of k =

- (a) $\frac{2}{24}$
- 21 (b)
 - (c) ₁₂
- (d)

- 4. The probability density function of a continuous random variable is $f(x) = ce^{-|x|}; -\infty < x < \infty$ then the value of $c = \underline{\hspace{1cm}}$
 - (b) $\frac{1}{4}$
- (c) $\frac{3}{4}$

5. If X is a random variable which can take only non – negative values, then

- (a) $E(X^2) = [E(X)]^2$
- (b) $E(X^2) \ge [E(X)]^2$
- (c) $E(X^2) \leq [E(X)]^2$
- (d) None of the above
- 6. If c is a constant (non random variable), then E(c) is
 - (a) 0
- (b) 1
- (c) cf(c)

7. If $f(x) = \frac{1}{10}$; x = 10 then E(x) is

- (a) 0
- (b) 2
- (c) 1
- (d) 1

8. var(4x + 8) is

- (a) 12.var(x)
- (b) 4.var(x) + 8
- (c) 16.var(x)
- (d) 16.var(x) + 8

9. Family size can be represented by the random variable x. determine the average family size

X	2	3	4	5	
P(x)	0.17	0.47	0.26	0.10	

(a) 2.94

(b) 3.00

(c) 3.29

(d) 3.86

10. If X is a random variable and r is an integer, then $E(X^r)$ represents

(a) r^{th} central moment

(b) r^{th} factorial moment

(c) r^{th} raw moment

(d) none of the above

11. If random variable x has the p.d.f $f(x) = \begin{cases} 3x; \ 0 < x < 1 \\ 0; \ otherwise \end{cases}$, then the p.d.f of $y = 4x + 3$ is
(a) $\frac{3}{4}(y-3)$ (b) $\frac{3}{16}(y-3)$ (c) $\frac{1}{4}(y-3)$ (d) $\frac{3}{2}(y-3)$
12. If the exponential distribution is given as $f(x) = e^{-x}$; $0 \le x \le \infty$, then the mean of the distribution is
(a) 1 (b) 0 (c) 2 (d) - 1
13. The expectation of the number on a die when thrown
(a) 1 (b) $\frac{7}{2}$ (c) 3 (d) 2
14. A coin is tossed until a head appears. What is the expectation of the number of tosses required?
(a) 2 (b) 1 (c) 4 (d) 5
15. A random variable x has the p.d.f given by $f(x) = \begin{cases} 2e^{-2x}; & x \ge 0 \\ 0; & x < 0 \end{cases}$, then the m.g.f is
(a) $\frac{2}{2-t}$ (c) — $2(2-t)^{-3}$ (d) $3(3-t)^{-2}$ (b) $3(3-t)^{-2}$
16. If a random variable x has the p.d.f $f(x) = \frac{1}{4}$; $-2 < x < 2$, then $P(x < 1)$ is
(a) $\frac{2}{3}$ (b) $\frac{3}{4}$ (c) $\frac{1}{4}$ (d) $\frac{1}{2}$
17. If $E[x^2] = 8$ and $E[x] = 2$, then $var(x)$ is
(a) 3 (b) 2 (c) 1 (d) 4
18. A random variable x has mean $\mu = 12$ and variance $\sigma^2 = 9$ and an unknown probability
distribution, then $P(6 < x < 18)$ is
(a) $\frac{1}{2}$ (b) $\frac{3}{4}$ (c) $\frac{1}{4}$ (d) $\frac{1}{8}$
19. The C.D.F of a continuous random variable is given by $F(x) = \begin{cases} 0; & x < 0 \\ 1 - e^{-x/5}; & 0 \le x \le \infty \end{cases}$
(a) $\frac{1}{5}e^{\frac{-1}{5}x}$ (b) $\frac{1}{10}e^{\frac{-1}{5}x}$ (c) $e^{\frac{-1}{5}x}$
20. A continuous random variable x has a p.d.f $f(x) = 3x^2; 0 \le x \le 1$, find the value of b such
that $P(x > b) = 0.05$
(a) $\left(\frac{16}{20}\right)^{1/3}$ (b) $\left(\frac{19}{20}\right)^{1/3}$ (c) $\left(\frac{13}{20}\right)^{1/3}$ (d) $\left(\frac{15}{19}\right)^{1/4}$
21. If $\mu_1 = 0, \mu_2 = \frac{1}{5}, \mu_3 = 0$ and $\mu_4 = \frac{3}{35}$, then $\beta_2 = \frac{1}{35}$
(a) $\frac{13}{7}$ (b) $\frac{17}{9}$ (c) $\frac{15}{7}$ (d) $\frac{13}{5}$

- 22. If the random variable x has the p.d.f $f(x) = \begin{cases} ax^3; & 0 < x < 1 \\ 0; & otherwise \end{cases}$ then the value of a is
- (b) 4 (c) $\frac{1}{2}$ (d) $\frac{3}{4}$
- 23. Let x be a continuous random variable with p.d.f $f(x) = \frac{x}{2}$; 1 < x < 5, then the p.d.f of
 - y = 2x 3 is

- (a) $\frac{y+3}{8}$ (b) $\frac{y+2}{8}$ (c) $\frac{y-3}{8}$ (d) $\frac{y+4}{8}$ 24. If $P(X = x) = \frac{x}{15}$; x = 1, 2, 3, 4, 5 then $P\left(\frac{1}{2} < X < \frac{5}{2} / X > 1\right)$ is.
- (a) $\frac{2}{15}$ (c) $\frac{2}{7}$ (d) $\frac{1}{7}$
- (b) 1/5

MULTIPLE CHOICE QUESTIONS- ANSWERS

- 1. (a)
- 2. (c)
- 3. (d)
- 4. (a)
- 5. (c)
- 6. (d)
- 7. (c)
- 8. (c)
- 9. (c)
- 10. (c)
- 11. (b)
- 12. (a)
- 13. (b)

- 14. (a)
- 15. (a)
- 16. (b)
- 17. (d)
- 18. (b)
- 19. (a)
- 20. (b)
- 21. (c)
- 22. (b)
- 23. (a)
- 24. (d)

15MA207 - Probability & Queueing Theory

UNIT II – Theoretical Distributions

MULTIPLE CHOICE QUESTIONS

1.	The mean and variance of a binomial distribution is						
	(a) $\mu = np, \sigma^2 = npq$ (b) $\mu = npq, \sigma^2 = np$ (c) $\mu = nq, \sigma^2 = npq$						
	(d) $\mu = np$, $\sigma^2 = pq$						
2.	The MGF of binomial distribution is						
	(a) $(p+qe^t)^n$ (b) $(pe^t+q)^n$ (c) $(p+qe^{-t})^n$ (d) $(pe^{-t}+q)^n$						
3.	If on an average, 9 ships out of 10 arrive safely to a port, then mean and S.D of the no.						
	Of ships returning safely out of 150 ships are						
	(a) mean = 135 , S.D = 2.674 (b) mean = 125 , S.D = 3.674						
1	(c) mean = 135, S.D = 3.674 (d) mean = 125, S.D = 2.674 A radar system has probability of 0.1 of detecting a certain target during a single scan						
4.	then the probability that the target will be detected at least once in twenty scans is						
	(a) 0.8784 (b) 0.7884 (c) 0.8748 (d) 0.8478						
5.	The mean and variance of a binomial distribution are 4 & 4/3 respectively. Find						
	$P(X \ge 1)$ of $n = 6$.						
	(a) $\frac{725}{729}$ (b) $\frac{726}{729}$ (c) $\frac{727}{729}$ (d) $\frac{728}{729}$						
	125 125 125						
6.	Mean of the Poisson distribution is						
	(a) λ (b) $\lambda + 1$ (c) λ^2 (d) $\lambda - 1$						
7.	If the random variable X follows a Poisson distribution with mean 3, then P(X=0) is						
	(a) e^{-3} (b) e^{3} (c) e^{2} (d) e^{-3}						
8.	Poisson distribution is limiting case of						
	(a) Geometric distribution (b) Normal distribution						
	(c) Binomial distribution (d) Exponential distribution						
9.	If X is a Poisson variate such that $E(X^2) = 6$ then $E(X)$ is						
1.0	(a) 3 (b) 2 (c) 1 (d) 0						
10.	If X is a Poisson variate such that $P(X=0)=0.5$, then $var(X)$ is						
11	(a) e^2 (b) $\log 2$ (c) 0.5 (d) $\log 4$						
11.	The mean of a geometric distribution whose pdf is pq^{r-1} , $r = 1, 2,$						
	(a) $\frac{1}{p}$ (b) $\frac{p}{q}$ (c) $\frac{q}{p}$						
12.	If the probability of success on each trial is $\frac{1}{2}$. What is the expected no. of trials						
	associated for the first expense?						
	required for the first success?						
	(a) 2 (b) 3 (c) 4 (d) 5						
13.	A candidate applying for driving license has the probability of 0.8 in passing the road test in a given trial. The probability that he will pass the test on the fourth trial is						

(d) 0.0406

(c) 0.0604

(a) 0.0046 (b) 0.0064

(a) $\frac{3}{4}$ (b) $\frac{9}{2}$ (c) 4 (d) $\frac{3}{2}$
18. A random variable X has a uniform distribution over (-3, 3). The value of k for which $P(X > k) = \frac{1}{3}$ is
(a) 3 (b) 2 (c) 1 (d) -2
19. If X has uniform distribution in $(-1, 3)$, then $P(X > 0)$ is
(a) $\frac{1}{2}$ (b) $\frac{3}{4}$ (c) $\frac{1}{3}$ (d) $\frac{1}{4}$
20. If X is uniform distributed in (0, 10), then $P(X > 8)$ is
(a) $\frac{1}{5}$ (c) $\frac{3}{5}$ (d) $\frac{1}{3}$ (b) $\frac{1}{0}$ — — —
21. The mean of uniform distribution $u(a,b)$ is
(a) $a+b$ (b) $\frac{a+b}{2}$ (c) $\frac{a+b}{3}$ (d) $\frac{a+b}{4}$
22. The variance (x) of uniform distribution $U(a,b)$ is
(a) $\frac{1}{12}(b-a)^2$ (b) $\frac{(b-a)^2}{8}$ (c) $\frac{(b-a)^2}{6}$ (d) $\frac{(b-a)^2}{3}$
23. The mean of the exponential distribution with pdf $\lambda . e^{-\lambda x}, x > 0$ is (a) λ (b) $\frac{1}{\lambda}$ (c) $\frac{1}{\lambda}$ (d) 1
24. If the random variable X has the P.D.F $Ce^{-x/5}$, $x > 0$ then the value of C is (a) 5 (b) $-\frac{1}{5}$ (c) $\frac{1}{5}$ (d) -5
25. If X is exponentially distributed with mean 10 then the pdf is
(a) $10e^{-10x}, x \ge 0$ (b) $\frac{1}{10}e^{-10x}, x \ge 0$ (c) $\frac{1}{10}e^{x/10}, x \ge 0$ (d) $\frac{1}{10}e^{-x/10}, x \ge 0$
26. If a random variable X has the P.D.F $f(x) = \frac{1}{2}e^{-x/2}$, $x > 0$, then $P(X > 2)$ is
2

14. The MGF of geometrical distribution is

(a) $(0.5)^4$

(a) $\frac{1}{1-qe^t}$ (b) $\frac{1}{1-pe^t}$ (c) $\frac{q}{1-pe^t}$ (d) $\frac{pe^t}{1-qe^t}$

probability that it would be destroyed on 6th attempt?

(b) $(0.5)^5$

(a) $\frac{1}{2}$ (b) $\frac{1}{4}$ (c) $\frac{1}{3}$ (d) $-\frac{1}{2}$

16. If X is random variable in (-2, 2), P(X < 0) is

15. If the probability of a target to the destroyed on any one shot is 0.5. What is the

17. If the MGF of a uniform distribution for a random variable is $\frac{1}{t}(e^{5t} - e^{4t})$ then E(X) is

(d) $(0.5)^7$

(c) $(0.5)^6$

(a) e (b) $\frac{1}{e}$ (c) $e^{1/2}$ (d) $e^{-1/2}$

27. If the random variable X has the p.d.f $f(x) = \frac{1}{5}e^{-x/5}$, $x > 0$ then the variance of X is
(a) 25 (b) 5 (c) 15 (d) 1
28. For a standard normal variable the mean and variance are respectively
(a) $1 \& 0$ (b) $\mu \& \sigma^2$ (c) $0 \& 1$ (d) $\mu \& \sigma$
29. The MGF of normal distribution is
(a) $e^{\mu + \frac{\sigma^2 t^2}{2}}$ (b) $e^{\frac{\mu + \sigma^2 t^2}{2}}$ (c) $e^{\mu + \frac{\sigma t}{2}}$ (d) $e^{\mu + \frac{\sigma t^2}{2}}$
30. In a normal distribution about 99% of the observation lie between
(a) $\mu \pm 2\sigma$ (b) $\mu \pm \sigma$ (c) $\mu \pm 3\sigma$ (d) $\mu \pm \sigma^2$
31. The MGF of standard normal distribution
(a) $e^{\frac{t^2}{2}}$ (b) $e^{\frac{\mu t^2}{2}}$ (c) $e^{\frac{t}{2}}$
32. Normal distribution is the limiting form ofdistribution under suitable
statistical conditions
(a) Binomial (b) Poisson (c) Geometric (d) Uniform
MULTIPLE CHOICE QUESTIONS- ANSWERS
1. (a) 18. (c)
2. (b) 19. (b)
3. (c) 20. (a)
4. (a) 21. (b)
5. (d) 22. (a)
6. (a) 23. (b)
7. (a) 24. (c)
8. (c) 25. (d)
9. (b) 26. (b)
10. (b) 27. (a)
11. (a) 28. (c)
12. (a) 29. (a)
13. (b) 30. (c)
14. (d) 31. (a)
15. (c) 32. (a)
16. (a)

17. (b)

15 MA207 Unit –III HYPOTHESIS TESTING **MULTIPLE CHOICE QUESTIONS**

- 1. If a researcher takes a large enough sample, he/she will almost always obtain:
 - a. virtually significant results
 - b. practically significant results
 - c. consequentially significant results
 - d. statistically significant results

ANSWER: d

- 2. The null and alternative hypotheses divide all possibilities into:
 - a. two sets that overlap
 - b. two non-overlapping sets
 - c. two sets that may or may not overlap
 - d. as many sets as necessary to cover all possibilities

ANSWER:

- 3. Which of the following is true of the null and alternative hypotheses?
 - a. Exactly one hypothesis must be true
 - b. both hypotheses must be true
 - c. It is possible for both hypotheses to be true
 - d. It is possible for neither hypothesis to be true

ANSWER: a

- 4. The chi-square goodness-of-fit test can be used to test for:
 - a. significance of sample statistics
 - b. difference between population means
 - c. normality
 - d. probability

ANSWER: c

- 5. A type II error occurs when:
 - a. the null hypothesis is incorrectly accepted when it is false
 - b. the null hypothesis is incorrectly rejected when it is true
 - c. the sample mean differs from the population mean
 - d. the test is biased

ANSWER: a

- The form of the alternative hypothesis can be: 6.
 - a. one-tailed
 - b. two-tailed
 - c. neither one nor two-tailed
 - d. one or two-tailed

ANSWER: d

- 7. A two-tailed test is one where:
 - a. results in only one direction can lead to rejection of the null hypothesis
 - b. negative sample means lead to rejection of the null hypothesis
 - c. results in either of two directions can lead to rejection of the null hypothesis
 - d. no results lead to the rejection of the null hypothesis

ANSWER: c

- 8. The value set for α is known as:
 - a. the rejection level
 - b. the acceptance level
 - c. the significance level
 - d. the error in the hypothesis test

ANSWER: 0

- 9. Which of the following values is *not* typically used for α ?
 - a. 0.01
 - b. 0.05
 - c. 0.10
 - d. 0.25

ANSWER: d

- 10. The hypothesis that an analyst is trying to prove is called the:
 - a. elective hypothesis
 - b. alternative hypothesis
 - c. optional hypothesis
 - d. null hypothesis

ANSWER: b

- 11. The chi-square test is not very effective if the sample is:
 - a. small
 - b. large
 - c. irregular
 - d. heterogeneous

ANSWER: a

- 12. A type I error occurs when:
 - a. the null hypothesis is incorrectly accepted when it is false
 - b. the null hypothesis is incorrectly rejected when it is true
 - c. the sample mean differs from the population mean
 - d. the test is biased

ANSWER: b

13.	What is the standard deviation of a sampling distribution called? a. Sampling error b. Sample error c. Standard error d. Simple error ANSWER: c
14.	Ais a subset of a a. Sample, population b. Population, sample c. Statistic, parameter d. Parameter, statistic ANSWER: a
15.	A is a numerical characteristic of a sample and a is a numerica
char	acteristic of a population.
	a. Sample, population
	b. Population, sample
	c. Statistic, parameter
	d. Parameter, statistic
	ANSWER: c
	is the values that mark the boundaries of the confidence interval. a. Confidence intervals b. Confidence limits c. Levels of confidence d. Margin of error ANSWER: b
	results if you fail to reject the null hypothesis when the null hypothesis is ally false.
	. Type I error
b	. Type II error
C	. Type III error
d	. Type IV error
A	NSWER: b
a. b. c. d.	When the researcher rejects a true null hypothesis, aerror occurs. Type I Type A Type II Type B ANSWER: a

Dr.N.BALAJI, Asst.Professor SG, Department of Mathematics, SRM University

19	is the failure to reject a false null hypothesis.
a. Ty	rpe I error
•	pe II error
•	rpe A error
•	pe B error
•	WER: a
	ch of the following statements is/are <u>true</u> according to the logic of hypothesis
testing?	on or one round may some me in the interest of the round to give or hijp of the six
_	hen the null hypothesis is true, it should be rejected
	hen the null hypothesis is true, it should not be rejected
	hen the null hypothesis is false, it should be rejected
	hen the null hypothesis is false, it should not be rejected
	oth b and c are true
	WER: e
21. A fa	iling student is passed by an examiner, it is an example of
	e I error (b) Type II error (c) Unbiased decision (d) Difficult to tell
	SWER: b
22. A pa	assing student is failed by an examiner, it is an example of
	e I error (b) Type II error (c) Best decision (d) All of the above
	SWER: a
23. Area	a of the rejection region depends on
	α of α (b) Size of β (c) Test-statistic (d) Number of values
. ,	SWER: a
24. Wh	ich hypothesis is always in an inequality form?
	Null hypothesis (b) Alternative hypothesis (c)Simplehypothesis
(b) ((d) Composite hypothesis
AN	ISWER: b
25. The	degree of freedom for t-test based on n observations is
(a) 2	2n -1 (b) n -2 (c) 2(n -1) (d) n -1
	NSWER: d
26. Stud	lent's t-distribution has (n-1) d.f. when all the n observations in the sample are
(a) D	Dependent (b) Independent (c) Maximum (d) Minimum
AN	SWER: b
27. The	number of independent values in a set of values is called
	est-statistic (b) Degree of freedom (c) Level of significance (d)Levelofconfidence
AN	ISWER: b

MA1014 – Probability & Queueing Theory UNIT IV – Queueing Theory MULTIPLE CHOICE QUESTIONS

In which basis the service is provided in queueing theory (a) LCFO (b) LIFO (c) FCFS (d) FCLS (d) What stands for 'd' in the queue model (a/b/c: d/e) (a) queue discipline (b) system capacity (c) service time (d) number servers 3. The symbolic notation of queueing model is represented by (a) Kendall (b) Euler (c) Fisher (d) Neumann 4. The interval between two consecutive arrivals of a Poisson process follows distribution (a) Binomial (b) Uniform (c) Normal (d) Exponential 5. The average number of customers in the system in (M/M/1: ∞ /FIFO) model is (a) $\frac{\lambda}{\mu - \lambda}$ (b) $\frac{\mu}{\lambda - \mu}$ (c) $\frac{\lambda}{\mu + \lambda}$ (d) $\frac{\mu}{\lambda + \mu}$ 5. In queueing theory, generally the service rate is denoted by (a) λ (b) μ (c) $\lambda\mu$ (d) λ/μ 7. If the behaviour of the system is independent of time, then the system is said to be (a) steady state (b) transient state (c) unsteady state (d) all of the above 8. What stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time 9. The probability of no customers in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ (c) $1 - \frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ (1) 10. The probability of 'n' customers in the system $P_n = \frac{(a) \frac{\lambda}{\mu} P_0}{(a) \frac{\lambda}{\mu} P_0}$ (b) $\frac{\lambda}{\mu}$ (c) $\frac{\mu}{\mu}$ (c) $\frac{\mu}{\mu}$ (d) $\frac{\lambda}{\mu}$ (d) $\frac{\mu}{\mu}$ (e) $\frac{\mu}{\lambda}$ (f) $\frac{\lambda}{\mu}$ (f) $\frac{\lambda}{\mu}$ (f) $\frac{\lambda}{\mu}$ (f) $\frac{\lambda}{\mu}$ (g) $\frac{\lambda}{\mu}$ (h) $\frac{\lambda}{\mu}$ (h) $\frac{\lambda}{\mu}$ (c) $\frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ (e) $\frac{\lambda}{\mu}$ (f) $\frac{\lambda}{\mu}$ (f) $\frac{\lambda}{\mu}$ (f) $\frac{\lambda}{\mu}$ (g) $\frac{\lambda}{\mu}$ (h)		
What stands for 'd' in the queue model (a/b/c: d/e) (a) queue discipline (b) system capacity (c) service time (d) number servers The symbolic notation of queueing model is represented by (a) Kendall (b) Euler (c) Fisher (d) Neumann The interval between two consecutive arrivals of a Poisson process follows distribution (a) Binomial (b) Uniform (c) Normal (d) Exponential The average number of customers in the system in (M/M/1: ∞ /FIFO) model is (a) $\frac{\lambda}{\mu - \lambda}$ (b) $\frac{\mu}{\lambda - \mu}$ (c) $\frac{\lambda}{\mu + \lambda}$ (d) $\frac{\mu}{\lambda + \mu}$ In queueing theory, generally the service rate is denoted by (a) λ (b) μ (c) $\lambda \mu$ (d) λ / μ If the behaviour of the system is independent of time, then the system is said to be (a) steady state (b) transient state (c) unsteady state (d) all of the above What stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time The probability of no customers in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ 1 (c) $1 - \frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ 1 The overall effective arrival rate is $\lambda' = (a) \frac{\lambda}{\mu} P_0$ (b) $\lambda(1 - P_0)$ (c) μP_0 (d) λP_0 The probability that the number of customers in the system exceeds k, in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ (c) $\frac{\lambda}{\mu}$ (d) None 13. The average waiting time of a customer in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ (c) $\frac{\lambda}{\mu}$ (d) None		In which basis the service is provided in queueing theory
What stands for 'd' in the queue model (a/b/c: d/e) (a) queue discipline (b) system capacity (c) service time (d) number servers The symbolic notation of queueing model is represented by (a) Kendall (b) Euler (c) Fisher (d) Neumann The interval between two consecutive arrivals of a Poisson process follows distribution (a) Binomial (b) Uniform (c) Normal (d) Exponential The average number of customers in the system in (M/M/1: ∞ /FIFO) model is (a) $\frac{\lambda}{\mu - \lambda}$ (b) $\frac{\mu}{\lambda - \mu}$ (c) $\frac{\lambda}{\mu + \lambda}$ (d) $\frac{\mu}{\lambda + \mu}$ In queueing theory, generally the service rate is denoted by (a) λ (b) μ (c) $\lambda \mu$ (d) λ / μ If the behaviour of the system is independent of time, then the system is said to be (a) steady state (b) transient state (c) unsteady state (d) all of the above What stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time The probability of no customers in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ 1 (c) $1 - \frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ 1 The overall effective arrival rate is $\lambda' = (a) \frac{\lambda}{\mu} P_0$ (b) $\lambda(1 - P_0)$ (c) μP_0 (d) λP_0 The probability that the number of customers in the system exceeds k, in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ (c) $\frac{\lambda}{\mu}$ (d) None 13. The average waiting time of a customer in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ (c) $\frac{\lambda}{\mu}$ (d) None		
servers 3. The symbolic notation of queueing model is represented by (a) Kendall (b) Euler (c) Fisher (d) Neumann 4. The interval between two consecutive arrivals of a Poisson process follows distribution (a) Binomial (b) Uniform (c) Normal (d) Exponential 5. The average number of customers in the system in (M/M/1: ∞ /FIFO) model is (a) $\frac{\lambda}{\mu - \lambda}$ (b) $\frac{\mu}{\lambda - \mu}$ (c) $\frac{\lambda}{\mu + \lambda}$ (d) $\frac{\mu}{\lambda + \mu}$ 5. In queueing theory, generally the service rate is denoted by (a) λ (b) μ (c) $\lambda\mu$ (d) λ / μ 7. If the behaviour of the system is independent of time, then the system is said to be (a) steady state (b) transient state (c) unsteady state (d) all of the above 8. What stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time 9. The probability of no customers in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ (c) $1 - \frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ (1) 10. The probability of 'n' customers in the system $P_n = \frac{\lambda}{\mu}$ (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ (c) $\frac{\lambda}{\mu}$ (c) $\frac{\mu}{\mu}$ (d) $\frac{\lambda}{\mu}$ (e) $\frac{\mu}{\mu}$ (f) $\frac{\lambda}{\mu}$ (f) $\frac{\lambda}{\mu}$ (f) $\frac{\lambda}{\mu}$ (g) λ		What stands for 'd' in the queue model (a/b/c : d/e)
servers 3. The symbolic notation of queueing model is represented by (a) Kendall (b) Euler (c) Fisher (d) Neumann 4. The interval between two consecutive arrivals of a Poisson process follows distribution (a) Binomial (b) Uniform (c) Normal (d) Exponential 5. The average number of customers in the system in (M/M/1: ∞ /FIFO) model is (a) $\frac{\lambda}{\mu - \lambda}$ (b) $\frac{\mu}{\lambda - \mu}$ (c) $\frac{\lambda}{\mu + \lambda}$ (d) $\frac{\mu}{\lambda + \mu}$ 5. In queueing theory, generally the service rate is denoted by (a) λ (b) μ (c) $\lambda\mu$ (d) λ / μ 7. If the behaviour of the system is independent of time, then the system is said to be (a) steady state (b) transient state (c) unsteady state (d) all of the above 8. What stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time 9. The probability of no customers in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ (c) $1 - \frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ (1) 10. The probability of 'n' customers in the system $P_n = \frac{\lambda}{\mu}$ (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ (c) $\frac{\lambda}{\mu}$ (c) $\frac{\mu}{\mu}$ (d) $\frac{\lambda}{\mu}$ (e) $\frac{\mu}{\mu}$ (f) $\frac{\lambda}{\mu}$ (f) $\frac{\lambda}{\mu}$ (f) $\frac{\lambda}{\mu}$ (g) λ		(a) queue discipline (b) system capacity (c) service time (d) number of
(a) Kendall (b) Euler (c) Fisher (d) Neumann II. The interval between two consecutive arrivals of a Poisson process follows distribution (a) Binomial (b) Uniform (c) Normal (d) Exponential II. The average number of customers in the system in (M/M/1: ∞ /FIFO) model is (a) $\frac{\lambda}{\mu - \lambda}$ (b) $\frac{\mu}{\lambda - \mu}$ (c) $\frac{\lambda}{\mu + \lambda}$ (d) $\frac{\mu}{\lambda + \mu}$ (5. In queueing theory, generally the service rate is denoted by (a) λ (b) μ (c) $\lambda\mu$ (d) λ / μ (f) λ / μ (f) λ / μ (g) λ / μ (h) λ / μ (h) λ / μ (c) λ / μ (d) λ / μ (e) λ / μ (e) λ / μ (f) λ / μ (f) λ / μ (h) λ / μ (h) λ / μ (h) λ / μ / μ (h) λ / μ / μ (h) λ / μ		servers
idistribution (a) Binomial (b) Uniform (c) Normal (d) Exponential The average number of customers in the system in (M/M/1: ∞ /FIFO) model is (a) $\frac{\lambda}{\mu - \lambda}$ (b) $\frac{\mu}{\lambda - \mu}$ (c) $\frac{\lambda}{\mu + \lambda}$ (d) $\frac{\mu}{\lambda + \mu}$ In queueing theory, generally the service rate is denoted by (a) λ (b) μ (c) $\lambda\mu$ (d) λ/μ If the behaviour of the system is independent of time, then the system is said to be (a) steady state (b) transient state (c) unsteady state (d) all of the above 8. What stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time 9. The probability of no customers in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ 1 (c) $1 - \frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ 1 10. The probability of 'n' customers in the system P_n = (a) $\frac{\lambda}{\mu} P_n$ (b) $\frac{\lambda}{\mu} P_0$ (c) $\frac{\mu}{\mu} P_0$ (d) $\frac{\lambda}{\mu} P_0$ 11. The overall effective arrival rate is λ ' = (a) $\mu(1-P_n)$ (b) $\lambda(1-P_n)$ (c) μP_0 (d) λP_0 12. The probability that the number of customers in the system exceeds k, in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu} P_0$ (b) $\frac{\lambda}{\mu} P_0$ (c) $\frac{\lambda}{\mu} P_0$ (d) $\frac{\lambda}{\mu} P_0$ 13. The average waiting time of a customer in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu - \lambda}$ (b) $\frac{1}{\lambda - \mu}$ (c) $\frac{1}{\lambda + \mu}$ (d) None 14. What is the mean of the Poisson process?	·	The symbolic notation of queueing model is represented by
distribution (a) Binomial (b) Uniform (c) Normal (d) Exponential 5. The average number of customers in the system in $(M/M/1: \infty/FIFO)$ model is (a) $\frac{\lambda}{\mu - \lambda}$ (b) $\frac{\mu}{\lambda - \mu}$ (c) $\frac{\lambda}{\mu + \lambda}$ (d) $\frac{\mu}{\lambda + \mu}$ 5. In queueing theory, generally the service rate is denoted by		(a) Kendall (b) Euler (c) Fisher (d) Neumann
(a) Binomial (b) Uniform (c) Normal (d) Exponential The average number of customers in the system in $(MM/1: \infty/FIFO)$ model is (a) $\frac{\lambda}{\mu-\lambda}$ (b) $\frac{\mu}{\lambda-\mu}$ (c) $\frac{\lambda}{\mu+\lambda}$ (d) $\frac{\mu}{\lambda+\mu}$ (5. In queueing theory, generally the service rate is denoted by (a) λ (b) μ (c) $\lambda\mu$ (d) λ/μ (7. If the behaviour of the system is independent of time, then the system is said to be (a) steady state (b) transient state (c) unsteady state (d) all of the above (e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time (e) maximum queue size (d) service time (e) The probability of no customers in the system in $(M/M/1: \infty/FIFO)$ model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ (c) $\frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ (1) The probability of 'n' customers in the system $P_n = (a) \frac{\lambda}{\mu} P_n$ (b) $\frac{\lambda}{\mu} P_n$ (c) $\frac{\mu}{\mu} P_n$ (d) $\frac{\mu}{\lambda} P_n$ (d) $\frac{\mu}{\lambda} P_n$ (e) $\frac{\mu}{\lambda} P_n$ (f) $\frac{\mu}{\lambda} P_n$ (g) $\frac{\mu}{\lambda} P_n$ (e) $\frac{\mu}{\lambda} P_n$ (f) $\frac{\mu}{\lambda} P_n$ (g) $\frac{\mu}{\lambda} P_n$ (e) $\frac{\mu}{\lambda} P_n$ (f) $\frac{\mu}{\lambda} $	1.	The interval between two consecutive arrivals of a Poisson process follows
5. The average number of customers in the system in (M/M/1: ∞ /FIFO) model is (a) $\frac{\lambda}{\mu - \lambda}$ (b) $\frac{\mu}{\lambda - \mu}$ (c) $\frac{\lambda}{\mu + \lambda}$ (d) $\frac{\mu}{\lambda + \mu}$ 5. In queueing theory, generally the service rate is denoted by		distribution
(a) $\frac{\lambda}{\mu - \lambda}$ (b) $\frac{\mu}{\lambda - \mu}$ (c) $\frac{\lambda}{\mu + \lambda}$ (d) $\frac{\mu}{\lambda + \mu}$ 5. In queueing theory, generally the service rate is denoted by		(a) Binomial (b) Uniform (c) Normal (d) Exponential
6. In queueing theory, generally the service rate is denoted by (a) λ (b) μ (c) $\lambda\mu$ (d) λ/μ 7. If the behaviour of the system is independent of time, then the system is said to be (a) steady state (b) transient state (c) unsteady state (d) all of the above 8. What stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time 9. The probability of no customers in the system in (M/M/1: ∞ /FIFO) model	5.	The average number of customers in the system in $(M/M/1 : \infty/FIFO)$ model is
6. In queueing theory, generally the service rate is denoted by (a) λ (b) μ (c) $\lambda\mu$ (d) λ/μ 7. If the behaviour of the system is independent of time, then the system is said to be (a) steady state (b) transient state (c) unsteady state (d) all of the above 8. What stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time 9. The probability of no customers in the system in (M/M/1: ∞ /FIFO) model		(a) $\frac{\lambda}{\mu}$ (b) $\frac{\mu}{\mu}$ (c) $\frac{\lambda}{\mu}$
(a) λ (b) μ (c) $\lambda\mu$ (d) λ/μ 7. If the behaviour of the system is independent of time, then the system is said to be (a) steady state (b) transient state (c) unsteady state (d) all of the above 8. What stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time 9. The probability of no customers in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ 1 (c) $1 - \frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ +1 10. The probability of 'n' customers in the system $P_n = (a) \frac{\lambda}{\mu} P_0$ (b) $\frac{\lambda}{\mu} P_0$ (c) $\frac{\mu}{\mu} P_0$ (d) $\frac{\mu}{\lambda} P_0$ 11. The overall effective arrival rate is $\lambda' = (a) \mu(1 - P_0)$ (b) $\lambda(1 - P_0)$ (c) μP_0 (d) λP_0 12. The probability that the number of customers in the system exceeds k, in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu} P_0$ (b) $\frac{1}{\mu} P_0$ (c) $\frac{\lambda}{\mu} P_0$ (d) $\frac{\lambda}{\mu} P_0$ 13. The average waiting time of a customer in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{1}{\mu - \lambda}$ (b) $\frac{1}{\lambda - \mu}$ (c) $\frac{1}{\lambda + \mu}$ (d) None 14. What is the mean of the Poisson process?		
7. If the behaviour of the system is independent of time, then the system is said to be (a) steady state (b) transient state (c) unsteady state (d) all of the above 8. What stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time 9. The probability of no customers in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ 1 (c) $1 - \frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ +1 10. The probability of 'n' customers in the system $P_n = $ (a) $\frac{\lambda}{\mu} P_0$ (b) $\frac{\lambda}{\mu} P_0$ (c) $\frac{\mu}{\mu} P_0$ (d) $\frac{\mu}{\lambda} P_0$ 11. The overall effective arrival rate is $\lambda' = $ (a) $\mu(1-P_0)$ (b) $\lambda(1-P_0)$ (c) μP_0 (d) λP_0 12. The probability that the number of customers in the system exceeds k, in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu} P_0$ (b) $\frac{\lambda}{\mu} P_0$ (c) $\frac{\lambda}{\mu} P_0$ (d) $\frac{\lambda}{\mu} P_0$ 13. The average waiting time of a customer in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu} P_0$ (b) $\frac{\lambda}{\mu} P_0$ (c) $\frac{\lambda}{\mu} P_0$ (d) None	5.	
(a) steady state (b) transient state (c) unsteady state (d) all of the above (d) all of the above (e) what stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time (e) The probability of no customers in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ 1 (c) $1 - \frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ 1 (10. The probability of 'n' customers in the system $P_n = P_n $		(a) λ (b) μ (c) $\lambda\mu$ (d) λ/μ
(a) steady state (b) transient state (c) unsteady state (d) all of the above (d) all of the above (e) what stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time (e) The probability of no customers in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ 1 (c) $1 - \frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ 1 (10. The probability of 'n' customers in the system $P_n = P_n $	7.	If the behaviour of the system is independent of time, then the system is said to be
(d) all of the above 8. What stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time 9. The probability of no customers in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ -1 (c) $1 - \frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ +1 10. The probability of 'n' customers in the system $P_n = P_n = $		(a) steady state (b) transient state (c) unsteady state
8. What stands for 'e' in the queue model (a/b/c:d/e) (a) queue discipline (b) system capacity (c) maximum queue size (d) service time 9. The probability of no customers in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}$ -1 (c) $1 - \frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}$ +1 10. The probability of 'n' customers in the system $P_n =$ (a) $\frac{\lambda}{\mu} P_0$ (b) $\left(\frac{\lambda}{\mu}\right)^n P_0$ (c) $\left(\frac{\mu}{\lambda}\right)^n P_0$ (d) $\frac{\mu}{\lambda} P_0$ 11. The overall effective arrival rate is $\lambda' =$ (a) $\mu(1 - P_0)$ (b) $\lambda(1 - P_0)$ (c) μP_0 (d) λP_0 12. The probability that the number of customers in the system exceeds k, in (M/M/1: ∞ /FIFO) model (a) $\left(\frac{\lambda}{\mu}\right)^{k+1}$ (b) $\left(\frac{1}{\mu}\right)^{k+2}$ (c) $\left(\frac{\lambda}{\mu}\right)^{k+3}$ (d) $\left(\frac{\lambda}{\mu}\right)^k$ 13. The average waiting time of a customer in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{1}{\mu - \lambda}$ (b) $\frac{1}{\lambda - \mu}$ (c) $\frac{1}{\lambda + \mu}$ (d) None 14. What is the mean of the Poisson process?		(d) all of the above
(a) queue discipline (b) system capacity (c) maximum queue size (d) service time (e) The probability of no customers in the system in (M/M/1: ∞ /FIFO) model	8.	What stands for 'e' in the queue model (a/b/c:d/e)
9. The probability of no customers in the system in $(M/M/1:\infty/FIFO)$ model		(a) queue discipline (b) system capacity
(a) $\frac{\lambda}{\mu}$ (b) $\frac{\lambda}{\mu}-1$ (c) $1-\frac{\lambda}{\mu}$ (d) $\frac{\lambda}{\mu}+1$ 10. The probability of 'n' customers in the system $P_n =$ (a) $\frac{\lambda}{\mu}P_0$ (b) $\left(\frac{\lambda}{\mu}\right)^nP_0$ (c) $\left(\frac{\mu}{\lambda}\right)^nP_0$ (d) $\frac{\mu}{\lambda}P_0$ 11. The overall effective arrival rate is $\lambda' =$ (a) $\mu(1-P_0)$ (b) $\lambda(1-P_0)$ (c) μP_0 (d) λP_0 12. The probability that the number of customers in the system exceeds k, in $(M/M/1:\infty/FIFO)$ model (a) $\left(\frac{\lambda}{\mu}\right)^{k+1}$ (b) $\left(\frac{1}{\mu}\right)^{k+2}$ (c) $\left(\frac{\lambda}{\mu}\right)^{k+3}$ (d) $\left(\frac{\lambda}{\mu}\right)^k$ 13. The average waiting time of a customer in the system in $(M/M/1:\infty/FIFO)$ model (a) $\frac{1}{\mu-\lambda}$ (b) $\frac{1}{\lambda-\mu}$ (c) $\frac{1}{\lambda+\mu}$ (d) None 14. What is the mean of the Poisson process?		(c) maximum queue size (d) service time
10. The probability of 'n' customers in the system $P_n = (a) \frac{\lambda}{\mu} P_0$ (b) $\left(\frac{\lambda}{\mu}\right)^n P_0$ (c) $\left(\frac{\mu}{\lambda}\right)^n P_0$ (d) $\frac{\mu}{\lambda} P_0$ 11. The overall effective arrival rate is $\lambda' = (a) \mu(1-P_0)$ (b) $\lambda(1-P_0)$ (c) μP_0 (d) λP_0 12. The probability that the number of customers in the system exceeds k, in $(M/M/1:\infty/FIFO)$ model (a) $\left(\frac{\lambda}{\mu}\right)^{k+1}$ (b) $\left(\frac{1}{\mu}\right)^{k+2}$ (c) $\left(\frac{\lambda}{\mu}\right)^{k+3}$ (d) $\left(\frac{\lambda}{\mu}\right)^k$ 13. The average waiting time of a customer in the system in $(M/M/1:\infty/FIFO)$ model (a) $\frac{1}{\mu-\lambda}$ (b) $\frac{1}{\lambda-\mu}$ (c) $\frac{1}{\lambda+\mu}$ (d) None 14. What is the mean of the Poisson process?	9.	The probability of no customers in the system in (M/M/1:∞/FIFO) model
10. The probability of 'n' customers in the system $P_n = (a) \frac{\lambda}{\mu} P_0$ (b) $\left(\frac{\lambda}{\mu}\right)^n P_0$ (c) $\left(\frac{\mu}{\lambda}\right)^n P_0$ (d) $\frac{\mu}{\lambda} P_0$ 11. The overall effective arrival rate is $\lambda' = (a) \mu(1-P_0)$ (b) $\lambda(1-P_0)$ (c) μP_0 (d) λP_0 12. The probability that the number of customers in the system exceeds k, in $(M/M/1:\infty/FIFO)$ model (a) $\left(\frac{\lambda}{\mu}\right)^{k+1}$ (b) $\left(\frac{1}{\mu}\right)^{k+2}$ (c) $\left(\frac{\lambda}{\mu}\right)^{k+3}$ (d) $\left(\frac{\lambda}{\mu}\right)^k$ 13. The average waiting time of a customer in the system in $(M/M/1:\infty/FIFO)$ model (a) $\frac{1}{\mu-\lambda}$ (b) $\frac{1}{\lambda-\mu}$ (c) $\frac{1}{\lambda+\mu}$ (d) None 14. What is the mean of the Poisson process?		(a) $\frac{\lambda}{2}$ (b) $\frac{\lambda}{2} - 1$ (c) $1 - \frac{\lambda}{2}$ (d) $\frac{\lambda}{2} + 1$
(a) $\frac{\lambda}{\mu}P_0$ (b) $\left(\frac{\lambda}{\mu}\right)^n P_0$ (c) $\left(\frac{\mu}{\lambda}\right)^n P_0$ (d) $\frac{\mu}{\lambda}P_0$ 11. The overall effective arrival rate is $\lambda' =$ (a) $\mu(1-P_0)$ (b) $\lambda(1-P_0)$ (c) μP_0 (d) λP_0 12. The probability that the number of customers in the system exceeds k, in $(M/M/1:\infty/FIFO)$ model (a) $\left(\frac{\lambda}{\mu}\right)^{k+1}$ (b) $\left(\frac{1}{\mu}\right)^{k+2}$ (c) $\left(\frac{\lambda}{\mu}\right)^{k+3}$ (d) $\left(\frac{\lambda}{\mu}\right)^k$ 13. The average waiting time of a customer in the system in $(M/M/1:\infty/FIFO)$ model (a) $\frac{1}{\mu-\lambda}$ (b) $\frac{1}{\lambda-\mu}$ (c) $\frac{1}{\lambda+\mu}$ (d) None 14. What is the mean of the Poisson process?		
11. The overall effective arrival rate is $\lambda' =$ (a) $\mu(1-P_0)$ (b) $\lambda(1-P_0)$ (c) μP_0 (d) λP_0 12. The probability that the number of customers in the system exceeds k, in $(M/M/1:\infty/FIFO)$ model (a) $\left(\frac{\lambda}{\mu}\right)^{k+1}$ (b) $\left(\frac{1}{\mu}\right)^{k+2}$ (c) $\left(\frac{\lambda}{\mu}\right)^{k+3}$ (d) $\left(\frac{\lambda}{\mu}\right)^{k}$ 13. The average waiting time of a customer in the system in $(M/M/1:\infty/FIFO)$ model (a) $\frac{1}{\mu - \lambda}$ (b) $\frac{1}{\lambda - \mu}$ (c) $\frac{1}{\lambda + \mu}$ (d) None 14. What is the mean of the Poisson process?	10	The probability of 'n' customers in the system $P_n =$
11. The overall effective arrival rate is $\lambda' =$ (a) $\mu(1-P_0)$ (b) $\lambda(1-P_0)$ (c) μP_0 (d) λP_0 12. The probability that the number of customers in the system exceeds k, in $(M/M/1:\infty/FIFO)$ model (a) $\left(\frac{\lambda}{\mu}\right)^{k+1}$ (b) $\left(\frac{1}{\mu}\right)^{k+2}$ (c) $\left(\frac{\lambda}{\mu}\right)^{k+3}$ (d) $\left(\frac{\lambda}{\mu}\right)^{k}$ 13. The average waiting time of a customer in the system in $(M/M/1:\infty/FIFO)$ model (a) $\frac{1}{\mu - \lambda}$ (b) $\frac{1}{\lambda - \mu}$ (c) $\frac{1}{\lambda + \mu}$ (d) None 14. What is the mean of the Poisson process?		$(\lambda)^n = (\lambda)^n = (\lambda)^{\mu}$
 (a) μ(1-P₀) (b) λ(1-P₀) (c) μP₀ (d) λP₀ 12. The probability that the number of customers in the system exceeds k, in (M/M/1:∞/FIFO) model (a) (λ/μ)^{k+1} (b) (1/μ)^{k+2} (c) (λ/μ)^{k+3} (d) (λ/μ)^k 13. The average waiting time of a customer in the system in (M/M/1:∞/FIFO) model (a) (1/μ-λ) (b) (1/λ-μ) (c) (1/λ+μ) (d) None 14. What is the mean of the Poisson process? 		(a) $\frac{\sim}{\mu} P_0$ (b) $\left(\frac{\sim}{\mu}\right) P_0$ (c) $\left(\frac{\sim}{\lambda}\right) P_0$ (d) $\frac{\sim}{\lambda} P_0$
 (a) μ(1-P₀) (b) λ(1-P₀) (c) μP₀ (d) λP₀ 12. The probability that the number of customers in the system exceeds k, in (M/M/1:∞/FIFO) model (a) (λ/μ)^{k+1} (b) (1/μ)^{k+2} (c) (λ/μ)^{k+3} (d) (λ/μ)^k 13. The average waiting time of a customer in the system in (M/M/1:∞/FIFO) model (a) (1/μ-λ) (b) (1/λ-μ) (c) (1/λ+μ) (d) None 14. What is the mean of the Poisson process? 	1.1	The overall effective arrival rate is $\lambda' =$
 12. The probability that the number of customers in the system exceeds k, in (M/M/1:∞/FIFO) model (a) (λ/μ) (b) (1/μ) (c) (λ/μ) (d) (λ/μ) (d) (λ/μ) (d) (λ/μ) 13. The average waiting time of a customer in the system in (M/M/1:∞/FIFO) model (a) (1/μ - λ) (b) (1/λ - μ) (c) (1/λ + μ) (d) None 14. What is the mean of the Poisson process? 	1 1	(a) $\mu(1-P)$ (b) $\lambda(1-P)$ (c) μP (d) λP
(M/M/1: ∞ /FIFO) model (a) $\left(\frac{\lambda}{\mu}\right)^{k+1}$ (b) $\left(\frac{1}{\mu}\right)^{k+2}$ (c) $\left(\frac{\lambda}{\mu}\right)^{k+3}$ (d) $\left(\frac{\lambda}{\mu}\right)^{k}$ 13. The average waiting time of a customer in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{1}{\mu - \lambda}$ (b) $\frac{1}{\lambda - \mu}$ (c) $\frac{1}{\lambda + \mu}$ (d) None 14. What is the mean of the Poisson process?		
(a) $\left(\frac{\lambda}{\mu}\right)^{k+1}$ (b) $\left(\frac{1}{\mu}\right)^{k+2}$ (c) $\left(\frac{\lambda}{\mu}\right)^{k+3}$ (d) $\left(\frac{\lambda}{\mu}\right)^{k}$ 13. The average waiting time of a customer in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{1}{\mu - \lambda}$ (b) $\frac{1}{\lambda - \mu}$ (c) $\frac{1}{\lambda + \mu}$ (d) None 14. What is the mean of the Poisson process?	12	
13. The average waiting time of a customer in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{1}{\mu - \lambda}$ (b) $\frac{1}{\lambda - \mu}$ (c) $\frac{1}{\lambda + \mu}$ (d) None 14. What is the mean of the Poisson process?		(M/M/1:∞/FIFO) model
13. The average waiting time of a customer in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{1}{\mu - \lambda}$ (b) $\frac{1}{\lambda - \mu}$ (c) $\frac{1}{\lambda + \mu}$ (d) None 14. What is the mean of the Poisson process?		$(1)^{k+2}$ $(1)^{k+2}$ $(\lambda)^{k+3}$
13. The average waiting time of a customer in the system in (M/M/1: ∞ /FIFO) model (a) $\frac{1}{\mu - \lambda}$ (b) $\frac{1}{\lambda - \mu}$ (c) $\frac{1}{\lambda + \mu}$ (d) None 14. What is the mean of the Poisson process?		(a) $\left \frac{x}{u}\right $ (b) $\left \frac{1}{u}\right $ (c) $\left \frac{x}{u}\right $
(a) $\frac{1}{\mu - \lambda}$ (b) $\frac{1}{\lambda - \mu}$ (c) $\frac{1}{\lambda + \mu}$ (d) None 14. What is the mean of the Poisson process?		
14. What is the mean of the Poisson process?	1	3. The average waiting time of a customer in the system in (M/M/1:∞/FIFO) model
14. What is the mean of the Poisson process?		$\frac{1}{2}$ $\frac{1}$
14. What is the mean of the Poisson process?		(a) $\frac{1}{\mu - \lambda}$ (b) $\frac{1}{\lambda - \mu}$ (c) $\frac{1}{\lambda + \mu}$ (d) Notice
(a) λ (b) λt (c) $\frac{\lambda}{t}$ (d) $\frac{t}{t}$	1	4. What is the mean of the Poisson process?
		(a) λ (b) λt (c) $\frac{\lambda}{t}$ (d) $\frac{t}{t}$

15. The probability that the system is idle is denoted by (a) P_0 (b) P_1 (c) P_2 (d) P_n
16. The probability that the system is busy is denoted by
(a) P_0 (b) P_1 (c) P_2 (d) P_n
17. The traffic intensity of a queueing system is
(a) λ (b) μ (c) $\frac{\lambda}{\mu}$ (d) $\frac{\mu}{\lambda}$
18. Which term refers to "A customer who leaves the queue because the queue is too long"
(a) Balking (b) Reneging (c) Jockeying (d) Leaving
19. In all the queueing models, what is the symbol 'M' stands for?

(a) Maths (b) Model (c) Markov (d) Multi

20. In (M/M/1: K /FIFO) model, if $\lambda = 3 / hour$, $\mu = 4 / hour$ and effective mean arrival rate of a customer is 2.88 / hour then what is P_0 ?

(a) 0.18 (b) 0.28 (c) 0.38 (d) 0.48

MULTIPLE CHOICE QUESTIONS- ANSWERS

1. (c) 12. (a) 2. (b) 13. (a) 3. (a) 14. (b) 4. (d) 15. (a) 5. (a) 16. (d) 6. (b) 17. (c) 7. (a) 18. (a) 8. (a) 19. (c) 9. (c) 20. (b) 10. (b)

11. (a)

Unit -V MARKOVCHAINS MULTIPLE CHOICE QUESTIONS

1.Markov process is one in which the future value is independent of values							values
a)	Present	b)	Past	c) Fu	ture	d) None	
2. Chapman-	Kolomog	gorov the	orem state	s that			
a) $[P_{ij}^{}]$	n)] = [Pij	j] ⁿ b) [$P_{(n)}$] = [P	$[ij]^n$ $[nP_{ij}] =$	[Pij] ⁿ	d)Pij [⁽ⁿ⁾] =	[Pij] ⁿ
3. Transition	matrix is	a	with su	m of the row as	s 1		
a) zero	matrix	b) Squar	re matrix	c) Rectangula	ar matrix	d) any order	
4Ergodic m	eans						
a) irredu	cible and	periodic	b) irred	ucible and aper	iodic c)	not irreducible	e d) regular
5. In a transiti	on probab	ility matr	ix, the sum	of all elements of	of any row	is	
a) 0	ŀ	o) 1		c)2	d)-1		
6. If the tpm o	f the mark	kov chain i	$P = \begin{pmatrix} 0 \\ 1/2 \end{pmatrix}$	1 the steady $1/2$	– state d	istribution of th	ne chain is
a)(1/2,	1/2)	b)(5 /6	, 1/6)	c) (1/6 , 1/6)	d)(1,0)		
7. The limiting	probability	y lim _{ñ∞}	p ⁽ⁿ⁾ =				
a) 0	b)1	c) π	d) P				
8. If P is a tpm	of the reg	gular Marl	kov chain, t	hen			
a) Pπ =	π b)) πΡ= π	c) $\pi P^2 = \pi$	d) $P^2\pi = \pi$			