Introduction to Bioinformatics

Chris Miller, Ph.D. Washington University in St Louis

Bioinformatics Workshop 2024-2025

Supported by – ICTS Precision Health

 We aim to catalyze genomic research by providing grant review, development services, guidance and resources for genomic researchers and genomics education in the community.

Cite the **NIH CTSA Grant #UL1 TR002345** when research is supported by ICTS/CTSA funding or any ICTS Core Services

BFX Workshop – contact Jenny if you haven't received the following

Slack access, welcome email, Outlook bfx-workshop-2024 group invite

Register for BFX

https://redcap.link/BFX2024

j.mckenzie@wustl.edu

ICTS Precision Health

Support Transdisciplinary Research

- Match clinicians and investigators
- Review grants
- Fund Precision Health Innovation awards

Develop Common Workflows

- Genomic consent and return of results
- Enable access to large genomic data sets
- Develop infrastructure to speed discovery translation

Educate the Community

- Expand access to educational research programs
- Educate scientific and clinical community in precision health
- Engage broader STL community in genomic research

Leadership Team

Megan Cooper, MD, PhD

Chris Gurnett, MD. PhD

Precision Health Led Projects

icts-precisionhealth.wustl.edu

j.mckenzie@wustl.edu

- Pilot funding & Research reviews
 - Precision Health Innovation Awards; ICTS Research Development Program
 - Return of Results (ROR) for Research Participants
 - Genetic counseling, process for returning ACMG secondary results
 - Genomic Database Access and Submission
 - UK Biobank, All of Us Research Program, dbGaP, AnVIL, SRA
 - Assistance to submit human genomic data to shared repository
 - Institutional Genomic Consent
 - One Protocol One Consent, BJC-Webb electronic biobank
 - Community Education & Engagement
 - Precision Health for the Ages Workshop Series

Providing Support For

- Core Services
 - WU Biological Therapy Core Facility (BTCF), McDonnell Genome Institute (MGI)
- Informatics Tools for Precision Health
 - Bioinformatics Workshop (BFX), pVAC, CIViC,
- Communications and Outreach
 - Women in Innovation and Technologies (WIT) program, EQUALIZE program through OTM
- Educational Opportunities
 - Precision medicine pathway, Bioinformatics Workshop (BFX), Genomics in Medicine

Why learn bioinformatics?

- Biology is now a quantitative discipline - especially genomics

Cost per Genome

Why learn bioinformatics?

- Biology is now a quantitative discipline especially genomics
- Skills in programming, statistics, and visualization help you get the most out of your data

People who need complex data analysis

People who know how to do complex data analysis

Why learn bioinformatics?

- Biology is now a quantitative discipline especially genomics
- Skills in programming, statistics, and visualization help you get the most out of your data
- This course aims to teach you the theory and practice of computational biology, with a focus on genomics but lessons that apply broadly

What is bioinformatics?

What is bioinformatics?

More Computational More biological

Algorithm design Building Pipelines Developing Assays Analysis of my

experiment

What is bioinformatics?

- Application of computational techniques to biological data
- Covers a lot of ground!
 - Population genetics
 - Cancer genomics
 - Microbial genomics
 - Proteomics
 - Ecology/Evolution
 - Medical informatics/EHR mining
 - computational behavioral biology

- Epidemiology
- Protein folding
- CryoEM or tomography
- Drug design/molecular dynamics
- Algorithmic design/optimization
- Metabolomics
- Mathematical Biology

Common skills

- Statistics
- Programming
- Visualization

"Data science"

Deep understanding of the biological system and experiments

Goals:

- To empower you to improve and expedite your research
- To expose you to new ideas and techniques that may advance your research program

Who we are, and why you should trust us

Chris Miller, Ph.D.

Course Director
Assistant Professor
Division of Oncology

~20 years of experience in Bioinformatics and Computational Biology

Other Lecturers/Organizers include:

Jason Walker Susanna Kiwala Kartik Singhal Malachi Griffith Juan Macias My Hoang Jennifer Foltz Brigida Rusconi Mariam Khanfar

Who we are, and why you should trust us

Chris Miller, Ph.D.

Course Director
Assistant Professor
Division of Oncology

Jenny McKenzie, Ph.D.

Course Coordinator ICTS Precision Health Program Scientist

~20 years of experience in Bioinformatics and Computational Biology

Other Lecturers/Organizers include:

Jason Walker Susanna Kiwala Kartik Singhal Malachi Griffith Juan Macias My Hoang Jennifer Foltz Brigida Rusconi Mariam Khanfar

Who we are, and why you should trust us

Chris Miller, Ph.D.

Course Director Assistant Professor Division of Oncology

Jenny McKenzie, Ph.D.

Course Coordinator ICTS Precision Health Program Scientist

~20 years of experience in Bioinformatics and Computational Biology

TA: John Garza

Other Lecturers/Organizers include:

Jason Walker Susanna Kiwala Kartik Singhal Malachi Griffith Juan Macias My Hoang

Jennifer Foltz Brigida Rusconi Mariam Khanfar

Don't trust your data

Trusting your data

Property	Value	Accuracy
Mean of x	9	exact
Sample variance of x : σ^2	11	exact
Mean of y	7.50	to 2 decimal places
Sample variance of y : σ^2	4.125	±0.003
Correlation between x and y	0.816	to 3 decimal places
Linear regression line	y = 3.00 + 0.500x	to 2 and 3 decimal places, respectively
Coefficient of determination of the linear regression : \mathbb{R}^2	0.67	to 2 decimal places

Datasaurus Dozen

Summary statistics are dangerous

- Visualize your data!
- A picture is worth a thousand p-values

"If your experiment needs statistics, you ought to have done a better experiment"

- Ernest Rutherford

Can't quite co-sign, but he has a point: If you can't make a plot convincing you that an effect is real, how confident are you, really?

Dangerous situations:

- The bioinformatics core aligned the data and sent me a list of differentially expressed genes. I'm done, right?
- We ran Mutect to call somatic mutations in this tumor genome. Let's take it to the bank

Errors

- Will happen!
- Errors of commission vs omission
- Type 1 errors False positives
- Type 2 errors False negatives

Lessons to be learned

- Check and double check and triple check your data and your scripts
- Bioinformatic experiments need controls too!
- Sanity checks
- Visualize your data!
- Admit when mistakes are made

"Analyzing your data means inherently distrusting your data until you have exhausted yourself into giving up and trusting it."

-Aaron Quinlan

Course structure

- Pair an introduction to a biological or technical concept with some of the tools needed to analyze it

- This week
 - setting up your computer
- Next week:
 - Unix command line skills
- Following week:
 - Sequence data generation
 - How to read, manipulate, and run quality control on sequence data

Prerequisites

- You do not need to know all of these things on Day 1
 - Tutorials and documentation in today's notebook
- But you do need to get moving!
 - Hands-on learning is *essential*. If you can't follow along and do the assignments, you will not get the most out of this course

Homework

- Will not be turned in or graded unless you're taking the course for credit
- Will be useful for understanding subsequent lectures
- Posted on the course page

https://github.com/genome/bfx-workshop

Terminals

Read, Evaluate, Print, Loop

Graphical User Interfaces (GUIs)

Point and Click

GUIs are everywhere, but terminals aren't dead!

Terminals can do things that GUIs can't

- The big event had to be postponed due to COVID and now we have to change every instance of "Apr 2020" to "Oct 2024". Problem is, there's a huge nested set of directories containing over 10,000 files!
- Clicking around in Windows explorer is not going to get the job done
- On a Unix system, that's just one short line of code:

```
find . -name "*.txt" | xargs -n 1 sed -i.bak 's/Apr 2020/Oct 2024/g'
```

Seems cryptic at first, but once you learn a little, incredibly powerful!

Unix is the lingua franca of bioinformatics

- high-performance compute clusters run on Unix
- powerful tools for wrangling your data
- writing scripts allows you to do repetitive or error-prone manipulations in a robust and reproducible way
- algorithms for genomics run on the command line

Turning data into insight

