ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКО	ΟЙ		
ПРЕПОДАВАТЕЛЬ			
доц., канд. техн. нау			О.О. Жаринов
должность, уч. степень,	звание	подпись, дата	инициалы, фамилия
		БОРАТОРНОЙ РАБ	OTE M.
(ЛЧЕТ О ЛАБ	оораторной раб	OTE Nº6
РАЗРАБОТКА	МОДУЛЯ СЧ	ІЕТНОГО УСТРОЙ	СТВА С ЗАДАННЫМ
		РАБОТЫ В СРЕДЕ	. ,
		C.V.E.V. (C.E.E.V. V.	
	по кур	су: СХЕМОТЕХНИКА	
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ гр. №	4141		Р.А. Лысенко
	7171	подпись, дата	инициалы, фамилия

Вариант №12

1. Цель работы: разработать проект модуля счётного устройства, работающего по заданному алгоритму, в среде программирования Quartus.

2. Вариант задания.

Согласно варианту, нужно разработать счётчик с основанием, равным числу $\mathbf{M}=5$.

Таблица (окончание) - Последовательность выходных кодов устройства

.№	порядковый номер входного импульса счетного модуля																		
варианта	0	1	2		M-2	M-1	M	M+1	M+2	M+3	M+4	M+5	M+6	M+7	M+8	M+9	M+10	M+11	M+12
12	0	1	2		M-2	M-1	0	0	0	1	2				-				

3. Краткое описание концепции разработки схемы.

По варианту М = 5. Согласно 12 варианту, выходной сигнал должен иметь следующий вид: начиная с нуля до 4 (включительно) выходной сигнал повторяет значение номера такта, то есть на каждом такте возрастает от 0 до 4; затем выходной сигнал равен нулю на протяжении 3 тактов. Данная последовательной выхода реализована при помощи схемы с использованием одного счётчика и одного компаратора. Счётчик по модулю 7 (т.к. полный период последовательности равен 6 тактам) отсчитывает номера тактов, а компаратор сравнивает текущее значение счётчика с константой 5 (т.к. по варианту в выходной последовательности нули начинаются с 5 такта). Если номер такта меньше 5, компаратор выдает единицу, иначе – ноль. Затем через логическое умножение разрядов тактов и значения с выхода компаратора формируется выходная последовательность, которая от 0 до 4 повторяет номер такта, а при номере такта больше 4 — выводит ноль.

4. Схема устройства в Quartus.

Рисунок 1 – Схема устройства в среде Quartus

На рисунке 2 показан результат симуляции схемы.

Рисунок 2 — Временная диаграмма

5. Схема подключения ПЛИС

На рисунке 3 представлено размещение входов и выходов логической схемы на ПЛИС MAX II EPM240M100C5.

Top View MAX II - EPM240M100C5

Рисунок 3 – ПЛИС

На рисунке 4 представлена таблица с информацией о подключении к пинам ПЛИС.

		Node Name	Direction	Location	I/O Bank	VREF Group	I/O Standard	Reserved
1	•	С	Unknown	PIN_L1	1		3.3-V LVTTL (default)	
2	•	K0	Unknown	PIN_K3	1		3.3-V LVTTL (default)	
3	•	K1	Unknown	PIN_K4	1		3.3-V LVTTL (default)	
4	•	K2	Unknown	PIN_K5	1		3.3-V LVTTL (default)	
5	••	Q[2]	Output	PIN_L5	1		3.3-V LVTTL (default)	
6	••	Q[1]	Output	PIN_L4	1		3.3-V LVTTL (default)	
7	••	Q[0]	Output	PIN_L3	1		3.3-V LVTTL (default)	
8		< <new node="">></new>						

Рисунок 4 — Информация о подключениях пинов

На рисунке 5 представлен результат компиляции схемы при использовании ПЛИС.

Flow Status Successful - Mon Nov 20 03:36:00 2023

Quartus II Version 9.1 Build 222 10/21/2009 SJ Web Edition

 Revision Name
 Lr6

 Top-level Entity Name
 Lr6

 Family
 MAX II

Device EPM240M100C5

Timing Models Final Met timing requirements Yes

Total logic elements 9 / 240 (4 %) Total pins 7 / 80 (9 %)

Total virtual pins 0

UFM blocks 0 / 1 (0 %)

Рисунок 5 – Информация о компиляции

6. Выволы

Я разработал проект модуля счётного устройства, работающего по заданному алгоритму, в среде программирования Quartus. Также я настроил логическую схему на ПЛИС МАХ II EPM240M100C5, в которой использовал 7 точек подключения. Счётчик считает верно, чисел больше 4 в диаграмме не наблюдается. Так же мне удалось реализовать требуемую в задании задержку счётчика в 2 такта.

7. Список используемых источников

- 1. Проектирование встраиваемых систем на ПЛИС. / З.Наваби; перев. с англ. В.В. Соловьева. М.: ДМК Пресс, 2016.- 464 с.
- 2. О.О. Жаринов Учебно-методические материалы к выполнению лабораторной работы №1 по дисциплине "Схемотехника" (1-й Семестр изучения дисциплины). ГУАП, 2023. 3 с.