

Model with **no** steady state approximations venous_ss = 0, arterial_ss = 0, GE_ss = 0, exist_lung = 1

$$dt(A_lu) = R_inh - R_exh + Q_cardiac*Free*C_ven - Q_cardiac*Free*C_lu/P_lu - R_met_lu \\ = Q_p*F_inh*C_inh - Q_p*(C_lu/P_lu)/P_B + Q_cardiac*Free*(C_ven - C_lu/P_lu) - R_met_lu$$

At steady state with no metabolism,

Model with steady state approximation in gas exchange region, With explicit lung tissue compartment venous ss = 0, arterial ss = 0, GE ss = 1, exist lung = 1

R_loss = k_ven_ust*C_ven*V_ven + k_loss*C_ven R_artfil = Free*k_GFR*C_art

$$dt(A_lu) = Q_cardiac*Free*C_pulv - Q_cardiac*Free*C_lu/P_lu - R_met_lu$$

Model with steady state approximation in gas exchange region, **No** explicit lung tissue compartment venous ss = 0, arterial ss = 0, GE ss = 1, exist lung = 0

```
R_loss = k_ven_ust*C_ven*V_ven + k_loss*C_ven
R_artfil = Free*k_GFR*C_art
```

```
Dt(A_pulv) = Q_cardiac*Free*C_ven + R_inh - Q_cardiac*Free*C_pulv - R_exh

**set equal to zero and solve for C_pulv**

C_pulv = (Q_cardiac*Free*C_ven + Q_p*F_inh*C_inh) / (Q_cardiac*Free + Q_p/P_B)
```

$$dt(A_art) = Q_cardiac*Free*C_pulv + Q_cardiac*(1-Free)*C_ven - R_Qtis_in - Q_cardiac*(1-Free)*C_art - R_artfil \\ = Q_cardiac*Free*C_lu/P_lu + Q_cardiac*(1-Free)*C_ven - Q_cardiac*C_art - R_artfil \\$$

Implementing the steady state approximations for blood compartments (venous_ss = 1, arterial_ss = 1)...

```
dt(A_ven) = R_Qtis_out + R_IV + Q_cardiac*(1-Free)*C_art - Q_cardiac*C_ven - R_loss = R_Qtis_out + R_IV + Q_cardiac*(1-Free)*C_art - Q_cardiac*C_ven - k_ven_ust*V_ven*C_ven - k_loss*C_ven
```

Steady state approx.:

```
C_ven = (R_Qtis_out + Q_cardiac*(1-Free)*C_art +R_IV)/(Q_cardiac + k_ven_ust*V_ven + k_loss)
```

```
C_pulv = (Q_cardiac*Free*C_ven + Q_p*F_inh*C_inh) / (Q_cardiac*Free + Q_p/P_B)
```

With explicit lung tissue:

```
dt(A_art) = Q_cardiac*Free*C_lu/P_lu + Q_cardiac*(1-Free)*C_ven – Q_cardiac*C_art – R_artfil = Q_cardiac*Free*C_lu/P_lu + Q_cardiac*(1-Free)*C_ven – Q_cardiac*C_art – Free*k_GFR*C_art Steady state approx.:
```

C_art = (Q_cardiac*Free*C_lu/P_lu + Q_cardiac*(1-Free)*C_ven)/(Q_cardiac + Free*k_GFR)

With no explicit lung tissue:

```
dt(A_art) = Q_cardiac*Free*C_pulv + Q_cardiac*(1-Free)*C_ven – Q_cardiac*C_art – R_artfil = Q_cardiac*Free*C_pulv + Q_cardiac*(1-Free)*C_ven – Q_cardiac*C_art – Free*k_GFR*C_art
```

Steady state approx.:

```
C_art = (Q_cardiac*Free*C_pulv + Q_cardiac*(1-Free)*C_ven)/(Q_cardiac + Free*k_GFR)
```

Implementing the steady state approximations for blood compartments (venous_ss = 1, arterial_ss = 1)...

With explicit lung tissue and no approx. in gas exchange region (GE_ss = 0, exist_lung = 1):

C_ven = (R_Qtis_out + Q_cardiac*(1-Free)*C_art +R_IV)/(Q_cardiac + k_ven_ust*V_ven + k_loss)
C pulv = 0

C_art = (Q_cardiac*Free*C_lu/P_lu + Q_cardiac*(1-Free)*C_ven)/(Q_cardiac + Free*k_GFR)

Matrix form:

$$\begin{bmatrix} Q_cardiac + k_ven_ust * V_ven + k_loss & -Q_cardiac(1 - Free) \\ -Q_cardiac(1 - Free) & Q_cardiac + Free * k_GFR \end{bmatrix} \begin{bmatrix} C_ven \\ C_art \end{bmatrix} = \begin{bmatrix} R_IV + R_Qtis_out \\ Q_cardiac * Free * C_lu/P_lu \end{bmatrix}$$

With explicit lung tissue and steady state approx. in gas exchange region (GE_ss = 1, exist_lung = 1):

C_ven = (R_Qtis_out + Q_cardiac*(1-Free)*C_art +R_IV)/(Q_cardiac + k_ven_ust*V_ven + k_loss)

C_pulv = (Q_cardiac*Free*C_ven + Q_p*F_inh*C_inh) / (Q_cardiac*Free + Q_p/P_B)

C_art = (Q_cardiac*Free*C_lu/P_lu + Q_cardiac*(1-Free)*C_ven)/(Q_cardiac + Free*k_GFR)

Matrix form:

$$\begin{bmatrix} Q_cardiac + k_ven_ust * V_ven + k_loss & 0 & -Q_cardiac(1 - Free) \\ -Q_cardiac * Free & Q_cardiac * Free + Q_p/P_B & 0 \\ -Q_cardiac(1 - Free) & 0 & Q_cardiac + Free * k_GFR \end{bmatrix} \begin{bmatrix} C_ven \\ C_pulv \\ C_art \end{bmatrix}$$

$$= \begin{bmatrix} R_IV + R_Qtis_out \\ Q_p * F_inh * C_inh \\ Q_cardiac * Free * C_lu/P_lu \end{bmatrix}$$

Implementing the steady state approximations for blood compartments (venous_ss = 1, arterial_ss = 1)...

Without explicit lung tissue and with steady state approx. in gas exchange region (GE_ss = 1, exist_lung = 0):

Matrix form:

$$\begin{bmatrix} Q_cardiac + k_ven_ust * V_ven + k_loss & 0 & -Q_cardiac(1 - Free) \\ -Q_cardiac * Free & Q_cardiac * Free + Q_p/P_B & 0 \\ -Q_cardiac(1 - Free) & -Q_cardiac * Free & Q_cardiac + Free * k_GFR \end{bmatrix} \begin{bmatrix} C_ven \\ C_pulv \\ C_art \end{bmatrix}$$

$$= \begin{bmatrix} R_IV + R_Qtis_out \\ Q_p * F_inh * C_inh \\ 0 \end{bmatrix}$$

To solve the matrix equations describing each case, we used YACAS (a symbolic algebra tool) online: https://www.yacas.org/yacas online/yacas online.html

Relevant Documentation:

SolveMatrix function used to solve the matrix equation

https://yacas.readthedocs.io/en/latest/reference manual/linear-algebra.html#SolveMatrix

CForm function used to convert to solution to C code

https://yacas.readthedocs.io/en/latest/reference manual/io.html#CForm

Parameter names were simplified for use with YACAS as follows:

Name in Template Code	Name Used as Input to YACAS
Q_cardiac	Qc
Free	F
k_GFR	kG
C_lu	Clu
P_lu	Plu

Name in Template Code	Name Used as Input to YACAS
Q_p	Qp
P_B	РВ
R_IV + R_Qtis_out	R
k_ven_ust*V_ven + k_loss	L
Q_p*F_inh*C_inh	Qin

Implementing the steady state approximations for blood compartments,

with explicit lung tissue and no approx. in the gas exchange region

Using YACAS (symbolic algebra tool) online: https://www.yacas.org/yacas online/yacas online.html Relevant Documentation:

https://yacas.readthedocs.io/en/latest/reference manual/linear-algebra.html#SolveMatrix https://yacas.readthedocs.io/en/latest/reference manual/io.html#CForm

```
M:=\{\{Qc+L,-Qc^*(1-F)\},\{-Qc^*(1-F),Qc+F^*kG\}\}
                                                                               R = R IV + R Qtis out
x := \{\{Cv\}, \{Ca\}\}
                                                                               L = k_ven_ust*V_ven + k_loss
b:={{R},{Qc*F*Clu/Plu}}
x := SolveMatrix(M, b)
CForm(x[1])
        C_ven = ((Qc+F*kG)*R+(Qc*(1-F)*Qc*F*Clu)/Plu)/((Qc+L)*(Qc+F*kG)-pow(Qc*(1-F),2))
CForm(x[2])
        C_{art} = ((Qc+L)*Qc*F*Clu)/Plu+Qc*(1-F)*R)/((Qc+L)*(Qc+F*kG)-pow(Qc*(1-F),2))
If F=1, kG=0, L=0:
C_{ven} = ((Qc+1*0)*R+(Qc*(1-1)*Qc*1*Clu)/Plu)/((Qc+0)*(Qc+1*0)-pow(Qc*(1-1),2))
     = ((Qc)*R)/((Qc)*(Qc)) = R/Qc
C_{art} = ((Qc+0)*Qc*1*Clu)/Plu+Qc*(1-1)*R)/((Qc+0)*(Qc+1*0)-pow(Qc*(1-1),2))
     = (((Qc)*Qc*Clu)/Plu) / ((Qc)*(Qc)) = Clu/Plu
```

Implementing the steady state approximations for blood compartments,

with explicit lung tissue and steady state approx. in the gas exchange region

Using YACAS (symbolic algebra tool) online: https://www.yacas.org/yacas online/yacas online.html Relevant Documentation:

https://yacas.readthedocs.io/en/latest/reference manual/linear-algebra.html#SolveMatrix https://yacas.readthedocs.io/en/latest/reference manual/io.html#CForm

```
M:=\{\{Qc+L,0,-Qc*(1-F)\},\{-Qc*F,Qc*F+Qp/PB,0\},\{-Qc*(1-F),0,Qc+F*kG\}\}\}
                                                                                R = R_IV + R_Qtis_out
x := \{\{Cv\}, \{Cp\}, \{Ca\}\}\}
                                                                                 Qin = Q p*F inh*C inh
b:={{R},{Qin},{Qc*F*Clu/Plu}}
                                                                                 L = k \text{ ven ust}*V \text{ ven } + k \text{ loss}
x := SolveMatrix(M, b)
CForm(x[1])
((Qc+F*kG)*(Qc*F+Qp/PB)*R+(Qc*(1-F)*(Qc*F+Qp/PB)*Qc*F*Clu)/Plu)/
         ((Qc+L)*(Qc*F+Qp/PB)*(Qc+F*kG)-(Qc*F+Qp/PB)*pow(Qc*(1-F),2))
CForm(x[2])
((Qc+F*kG)*(Qc+L)*Qin+(Qc*(1-F)*Qc*F*Qc*F*Clu)/Plu+(Qc+F*kG)*Qc*F*R-Qin*pow(Qc*(1-F),2))/
         ((Qc+L)*(Qc*F+Qp/PB)*(Qc+F*kG)-(Qc*F+Qp/PB)*pow(Qc*(1-F),2))
CForm(x[3])
(((Qc+L)*(Qc*F+Qp/PB)*Qc*F*Clu)/Plu+Qc*(1-F)*(Qc*F+Qp/PB)*R)/
         ((Qc+L)*(Qc*F+Qp/PB)*(Qc+F*kG)-(Qc*F+Qp/PB)*pow(Qc*(1-F),2))
```

Implementing the steady state approximations for blood compartments,

with explicit lung tissue and steady state approx. in the gas exchange region

From previous:

```
R = R_IV + R_Qtis_out
Qin = Q_p*F_inh*C_inh
L = k_ven_ust*V_ven + k_loss
```

```
From previous:
Cven = ((Qc+F*kG)*(Qc*F+Qp/PB)*R+(Qc*(1-F)*(Qc*F+Qp/PB)*Qc*F*Clu)/Plu)/
                                    ((Qc+L)*(Qc*F+Qp/PB)*(Qc+F*kG)-(Qc*F+Qp/PB)*pow(Qc*(1-F),2))
Cpulv = ((Qc+F*kG)*(Qc+L)*Qin+(Qc*(1-F)*Qc*F*Qc*F*Clu)/Plu+(Qc+F*kG)*Qc*F*R-Qin*pow(Qc*(1-F),2))/(Qc+L)*Qin+(Qc*(1-F)*Qc*F*Qc*F*Clu)/Plu+(Qc+F*kG)*Qc*F*R-Qin*pow(Qc*(1-F),2))/(Qc+L)*Qin+(Qc*(1-F)*Qc*F*Qc*F*Clu)/Plu+(Qc+F*kG)*Qc*F*R-Qin*pow(Qc*(1-F),2))/(Qc+L)*Qin+(Qc*(1-F)*Qc*F*Qc*F*Clu)/Plu+(Qc+F*kG)*Qc*F*R-Qin*pow(Qc*(1-F),2))/(Qc+L)*Qin+(Qc*(1-F)*Qc*F*Qc*F*Clu)/Plu+(Qc+F*kG)*Qc*F*R-Qin*pow(Qc*(1-F),2))/(Qc+L)*Qin+(Qc*(1-F)*Qc*F*Qc*F*Clu)/Plu+(Qc+F*kG)*Qc*F*R-Qin*pow(Qc*(1-F),2))/(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)*Qin+(Qc+L)
                                    ((Qc+L)*(Qc*F+Qp/PB)*(Qc+F*kG)-(Qc*F+Qp/PB)*pow(Qc*(1-F),2))
Cart = ((Qc+L)*(Qc*F+Qp/PB)*Qc*F*Clu)/Plu+Qc*(1-F)*(Qc*F+Qp/PB)*R)/
                                    ((Qc+L)*(Qc*F+Qp/PB)*(Qc+F*kG)-(Qc*F+Qp/PB)*pow(Qc*(1-F),2))
If F=1, kG=0, L=0:
Cven = ((Qc+1*0)*(Qc*1+Qp/PB)*R+(Qc*(1-1)*(Qc*1+Qp/PB)*Qc*1*Clu)/Plu)/
                                    ((Qc+0)*(Qc*1+Qp/PB)*(Qc+1*0)-(Qc*1+Qp/PB)*pow(Qc*(1-1),2))
                         = (Qc*(Qc+Qp/PB)*R)/((Qc)*(Qc+Qp/PB)*(Qc)) = R/Qc
Cpulv = ((Qc+1*0)*(Qc+0)*Qin+(Qc*(1-1)*Qc*1*Qc*1*Clu)/Plu+(Qc+1*0)*Qc*1*R-Qin*pow(Qc*(1-1),2))/(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Qc+1)*Qin+(Q
                                    ((Qc+0)*(Qc*1+Qp/PB)*(Qc+1*0)-(Qc*1+Qp/PB)*pow(Qc*(1-1),2))
                        = ((Qc)*(Qc)*Qin+(Qc)*Qc*R) / ((Qc)*(Qc+Qp/PB)*(Qc)) = (Qin+R) / (Qc+Qp/PB)
                         = (Qin + Qc*Cven) / ((Qc+Qp/PB))
Cart = (((Qc+0)*(Qc*1+Qp/PB)*Qc*1*Clu)/Plu+Qc*(1-1)*(Qc*1+Qp/PB)*R)/
                                    ((Qc+0)*(Qc*1+Qp/PB)*(Qc+1*0)-(Qc*1+Qp/PB)*pow(Qc*(1-1),2))
                    = (((Qc)*(Qc+Qp/PB)*Qc*Clu)/Plu)/((Qc)*(Qc+Qp/PB)*(Qc)) = Clu/Plu
```

Implementing the steady state approximations for blood compartments,

without explicit lung tissue

Using YACAS (symbolic algebra tool) online: https://www.yacas.org/yacas online/yacas online.html Relevant Documentation:

https://yacas.readthedocs.io/en/latest/reference manual/linear-algebra.html#SolveMatrix https://yacas.readthedocs.io/en/latest/reference manual/io.html#CForm

```
M:=\{\{Qc+L,0,-Qc*(1-F)\},\{-Qc*F,Qc*F+Qp/PB,0\},\{-Qc*(1-F),-Qc*F,Qc+F*kG\}\}\}
                                                                                  R = R IV + R Qtis out
                                                                                  Qin = Q p*F inh*C inh
x := \{\{Cv\}, \{Cp\}, \{Ca\}\}\}
                                                                                  L = k_ven_ust*V_ven + k_loss
b:=\{\{R\},\{Qin\},\{0\}\}\}
x := SolveMatrix(M, b)
CForm(x[1])
((Qc+F*kG)*(Qc*F+Qp/PB)*R+Qc*F*Qc*(1-F)*Qin)/
        ((Qc+L)*(Qc*F+Qp/PB)*(Qc+F*kG)-Qc*(1-F)*pow(Qc*F,2)-(Qc*F+Qp/PB)*pow(Qc*(1-F),2))
CForm(x[2])
((Qc+F*kG)*(Qc+L)*Qin+(Qc+F*kG)*Qc*F*R-Qin*pow(Qc*(1-F),2))/
        ((Qc+L)*(Qc*F+Qp/PB)*(Qc+F*kG)-Qc*(1-F)*pow(Qc*F,2)-(Qc*F+Qp/PB)*pow(Qc*(1-F),2))
CForm(x[3])
(Qc*F*(Qc+L)*Qin+R*pow(Qc*F,2)+Qc*(1-F)*(Qc*F+Qp/PB)*R)/
        ((Qc+L)*(Qc*F+Qp/PB)*(Qc+F*kG)-Qc*(1-F)*pow(Qc*F,2)-(Qc*F+Qp/PB)*pow(Qc*(1-F),2))
```

Implementing the steady state approximations for blood compartments, without explicit lung tissue

R = R_IV + R_Qtis_out Qin = Q_p*F_inh*C_inh L = k_ven_ust*V_ven + k_loss

```
From previous:
```

```
Cven = ((Qc+F*kG)*(Qc*F+Qp/PB)*R+Qc*F*Qc*(1-F)*Qin) /
       ((Qc+L)*(Qc*F+Qp/PB)*(Qc+F*kG)-Qc*(1-F)*pow(Qc*F,2)-(Qc*F+Qp/PB)*pow(Qc*(1-F),2))
Cpulv = ((Qc+F*kG)*(Qc+L)*Qin+(Qc+F*kG)*Qc*F*R-Qin*pow(Qc*(1-F),2))/
       ((Qc+L)*(Qc*F+Qp/PB)*(Qc+F*kG)-Qc*(1-F)*pow(Qc*F,2)-(Qc*F+Qp/PB)*pow(Qc*(1-F),2))
Cart = (Qc*F*(Qc+L)*Qin+R*pow(Qc*F,2)+Qc*(1-F)*(Qc*F+Qp/PB)*R)
       ((Qc+L)*(Qc*F+Qp/PB)*(Qc+F*kG)-Qc*(1-F)*pow(Qc*F,2)-(Qc*F+Qp/PB)*pow(Qc*(1-F),2))
If F=1, kG=0, L=0:
Cven = ((Qc+1*0)*(Qc*1+Qp/PB)*R+Qc*1*Qc*(1-1)*Qin)/
       ((Qc+0)*(Qc*1+Qp/PB)*(Qc+1*0)-Qc*(1-1)*pow(Qc*1,2)-(Qc*1+Qp/PB)*pow(Qc*(1-1),2))
     = ((Qc)*(Qc+Qp/PB)*R)/((Qc)*(Qc+Qp/PB)*(Qc)) = R/Qc
Cpulv = ((Qc+1*0)*(Qc+0)*Qin+(Qc+1*0)*Qc*1*R-Qin*pow(Qc*(1-1),2))
       ((Qc+0)*(Qc*1+Qp/PB)*(Qc+1*0)-Qc*(1-1)*pow(Qc*1,2)-(Qc*1+Qp/PB)*pow(Qc*(1-1),2))
     = ((Qc)*(Qc)*Qin+(Qc)*Qc*R)/(Qc)*(Qc+Qp/PB)*(Qc)) = (Qin + R)/((Qc+Qp/PB))
     = (Qin + Qc*Cven) / ((Qc+Qp/PB))
Cart = (Qc*1*(Qc+0)*Qin+R*pow(Qc*1,2)+Qc*(1-1)*(Qc*1+Qp/PB)*R)/
       ((Qc+0)*(Qc*1+Qp/PB)*(Qc+1*0)-Qc*(1-1)*pow(Qc*1,2)-(Qc*1+Qp/PB)*pow(Qc*(1-1),2))
   = (Qc*(Qc)*Qin+R*pow(Qc,2))/(Qc)*(Qc+Qp/PB)*(Qc)) = (Qin+R)/(Qc+Qp/PB) = Cpulv
```


Kidney Subfigure

Liver and GI Subfigure

