Summary of DAS data preprocessing

by Xin Xing

April 3 2019

Input structure 'dsi': (matlab version)

- dt = dsi.fh{8}.
- dat = dsi.dat{1} (single DSI record), each column of dat is the recorded trace by one channel.

Processing Steps: (consider one trace $x_0 = dat(:, j)$)

1. Remove trend of the trace

Apply detrend to trace x_0 from dat,

$$x_1 = \det \operatorname{rend}(x_0) \tag{1}$$

which removes the best straight-line fit linear of x_0 and returns the residual x_1 .

2. Decimation

Substep 1: Antialiasing low-pass for each trace

Parameter:

- Input parameter: dt_new = 0.008.
- Nyquist Frequency of dt and dt_new as

$$fNyquist_new = 0.5 / dt_new$$

 $fNyquist_old = 0.5 / dt$

and their ratio Wn = fNyquist_new/fNyquist_old.

• Butterworth lowpass IRR order order = 3

Calculation:

a. get the filter design (two short vectors) using matlab function 'butter'

$$[B, A] = \text{butter}(\text{order, Wn, 'low'})$$

where B and A are small vectors and this operation can be done in each processor.

b. apply matlab function 'filtfilt' with 'B' and 'A' over x_1 as

$$x_2 = \text{filtfilt}(B, A, x_1) \tag{2}$$

where x_2 is an vector of the same length as x_1 .

Substep 2: Resample each trace

Calculate the new relative samping rate R=round(dt_new/dt). The "relative" here means regarding the original sampling rate as 1. Then, resample x_2 as

$$x_3 = \text{resample}(x_2, 1, R), \tag{3}$$

which first fits vector x_2 using a 'smooth curve' and then samples the obtained curve at a new rate R to get x_3 . The vector x_3 can be either longer or shorter than the old x_2 depending on R.

Some auxiliary info setting:

- $dsi.fh{7} = length(x3)$
- dsi.fh{8} = dt_new. (now dt =dt_new)
- $dsi.fh{9} = 0$
- $dsi.fh{10} = (length(x3)-1)*dt_new$

3. Apply time-domain moving mean (or root-mean-square(rms)) normalization

Parameters:

- Input parameter: moving window size (sec.): winLen_sec = 0.5
- # of trace points per window:

• half # of trace points per window:

• midpoint of the time window:

Apply moving mean (or rms) to x_3 and get a vector x_4 of the same length.

Case 1: indices $(i - nPoint_halfWin)$ and $(i + nPoint_halfWin)$ are not out of range.

$$x_4(i) = x_3(i) / \text{mean}(\text{abs}(x_3((i - \text{nPoint_halfWin}) : (i + \text{nPoint_halfWin})))))$$
 (4)

or

$$x_4(i) = x_3(i) / \text{rms}(x_3((i - \text{nPoint_halfWin}) : (i + \text{nPoint_halfWin})))$$
 (5)

Case 2: index $(i - nPoint_halfWin)$ is less than 1

$$x_4(i) = x_3(i) / \text{mean}(\text{abs}(x_3(1:i)))$$
 (6)

or

$$x_4(i) = x_3(i) / \text{rms}(x_3(1:i))$$
 (7)

Case 3: $(i + nPoint_halfWin)$ is larger than length (x_3) .

$$x_4(i) = x_3(i) / \text{mean}(\text{ abs}(x_3(i: \text{length}(x_3))))$$
 (8)

or

$$x_4(i) = x_3(i) / \text{rms}(x_3(i: \text{length}(x_3)))$$
 (9)

4. Spectral whitening

Input Parameters:

- F1 a scalar; low end cut (Hz).
 - Matlab value F1 = 0.002
- F2 a scalar; min pass band (Hz).

Matlab value F2 = 0.006

• F3 - a scalar; max pass band (Hz).

Matlab value F3 = 14.5

• F4 - a scalar; high stop (Hz).

Matlab value F4 = 15

• eCoeff - whitening coefficient (between 0 and 1). The closer eCoeff is to 1, the more severe the flattening

Matlab value eCoeff = 1

Other parameters:

- fNyquist = 0.5 / dt_new
- fSampling = 2 * fNyquist
- nPoint = length(x4)
- nfft = the smallest integer that is a power of 2 and also greater than (2*nPoint-1)
- df = fSampling / nfft
- f_LHS = (df, 2*df, ..., fNyquist)

Substep 1: Construct the filter 'shapingFilt' (a small vector, can be done in each processor)

- a. Let z = [0, 0.5, 1, 1, 0.5, 0] and zf = [0, F1, F2, F3, F4, fNyquist].
- b. obtain 'shapingFilt LHS' via

which piecewise-linearly interpolates the function F that satisfies F(zf) = z to obtain the values at f LHS, i.e., shapingFilt_LHS = $F(f_LHS)$.

c. flip the vector shapingFilt_LHS, i.e., head to tail and tail to head, to obtain shapingFilt_RHS and concatenate the two vectors together as

Substep 2: Spectral whitening process

- a. Concatenate (nfft-nPoint) zeros at the end of x_4 to make its length to be nfft.
- b. Apply FFT to the modified x_4 to get a nfft-dimensional vector

$$gatherSpec = fft(x4)$$
.

c. Entrywise whitening of the spectral vector gatherSpec as

$${\rm gatherSpec_whitened}(i) = \frac{{\rm gatherSpec}(i) + 0.001}{|{\rm gatherSpec}(i)|^{\rm eCoeff} + 0.001}. \tag{10}$$

where 0.001 is added for numerical stability to avoid the case when 0 is divided by 0.

d. Entrywise product between gatherSpec_whitened with shapingFilt to get

e. Inverse FFT and subsampling to obtain nPoint-dimensional vector x_5 .

5. Frequency domain cross-correlation

Input parameters:

- dx = 2.0
- direction = 'left' or 'right' used to decide the master trace

Other paramters:

- nPoint = length(x5)
- nTrace = number of traces
- nfft = the smallest integer that is a power of 2 and also greater than (2*nPoint-1)

Substep 1: Frequency domain cross-correlation

a. Apply FFT to each trace x_5 to get a nfft-dimensional vector X and calculate the conjugate of the obtained vector Xc.

$$X = fft(x5)$$

 $Xc = conj(X)$

- b. Select the master trace x_master to be the 'X' from the first ('left') or the last ('right') trace.
- c. Define variable offset according to the direction

```
if direction == 'left', offset = [0, dx, 2*dx, ..., (nTrace-1)*dx];
if direction == 'right', offset = [(nTrace-1)*dx, (nTrace-2)*dx, ..., dx, 0]
```

d. Calculate cross correlation vector specXcorr of length nfft as

Substep 2: Return to time domain

a. Apply inverse FFT to specXcorr and get real part of the obtained vector as gatherXcorr_temp

where this vector is still of length nfft

b. Reorder and subsample gatherXcorr_temp as

$$gatherXcorr = \begin{pmatrix} gatherXcorr_temp((nfft - nPoint + 2): nfft) \\ gatherXcorr_temp(1: nPoint) \end{pmatrix}$$
 (11)

where this vector is of length (2*nPoint-1).

c. For each original trace x_0 , the final processed vector x_6 is

$$x_6 = \text{gatherXcorr}$$
 (12)

which is stored in the dsi_xcorr.dat $\{1\}(:,j) = x_6$, assuming that x_0 is the jth trace.

Auxilliary Info Assignment.

```
dt_new = dsi.fh{8}; (dsi is the result from the Step 4 -- spectral whitening)
nPoint_new = 2*nPoint - 1;
tmax = dt_new * (nPoint - 1);

% file headers
dsi_xcorr.fh = cell(1, 13)
dsi_xcorr.fh{1} = nTrace
dsi_xcorr.fh{7} = nPoint_new
dsi_xcorr.fh{12} = 1
dsi_xcorr.fh{13} = 1
dsi_xcorr.fh{3:6} = dsi.fh{3:6}
dsi_xcorr.fh{8} = dsi.fh{8} = dt_new
dsi_xcorr.fh{9} = -tmax
dsi_xcorr.fh{10} = tmax
```

% trace headers

```
dsi_xcorr.th{1} = zeros(84, nTrace)
dsi_xcorr.th{1}(1, :) = 1 : nTrace
dsi_xcorr.th{1}(12, :) = [nTraces, nTraces, ..., nTraces] (of length nTraces)
dsi_xcorr.th{1}(13, :) = [1, 2, ..., nTrace];
dsi_xcorr.th{1}(53, :) = offset
dsi_xcorr.th{1}(62:64, :) = dsi_th{1}(62:64, :);

% data
dsi_xcorr.dat{1}(:, i) = gatherXcorr.
```