APXH 1ΗΣ ΣΕΛΙΔΑΣ – Γ΄ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ΄ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 13 ΙΟΥΝΙΟΥ 2018

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΟΚΤΩ (8)

<u>ΘΕΜΑ Α</u>

Στις ερωτήσεις **Α1-Α4** να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία συμπληρώνει σωστά την ημιτελή πρόταση.

- **Α1.** Δύο μικρά σώματα με μάζες m και 4m, που κινούνται στην ίδια ευθεία με αντίθετες κατευθύνσεις και ταχύτητες v_1 και v_2 αντίστοιχα, συγκρούονται μετωπικά και πλαστικά. Αν η χρονική διάρκεια της κρούσης είναι αμελητέα και το συσσωμάτωμα ακινητοποιείται, τότε τα δύο σώματα πριν την κρούση είχαν
 - α) αντίθετες ταχύτητες
 - β) ίσες ορμές
 - γ) αντίθετες ορμές
 - δ) ίσες κινητικές ενέργειες.

Μονάδες 5

- **Α2.** Ταλαντωτής εκτελεί εξαναγκασμένη ταλάντωση με τη συχνότητα f του διεγέρτη να είναι λίγο μεγαλύτερη από την ιδιοσυχνότητα f₀ του ταλαντωτή. Αν ελαττώσουμε την περίοδο του διεγέρτη, το πλάτος της ταλάντωσης του ταλαντωτή
 - α) παραμένει σταθερό
 - β) αυξάνεται αρχικά και μετά ελαττώνεται
 - γ) ελαττώνεται αρχικά και μετά αυξάνεται
 - δ) ελαττώνεται.

Μονάδες 5

- Α3. Μεταξύ δύο σημείων Α και Β ενός στάσιμου κύματος που έχει δημιουργηθεί σε ένα γραμμικό ελαστικό μέσο παρεμβάλλονται συνολικά δύο δεσμοί. Τα σημεία Α και Β έχουν μεταξύ τους
 - α) διαφορά φάσης ίση με 0
 - β) διαφορά φάσης ίση με π
 - γ) διαφορά φάσης ίση με π/4
 - δ) διαφορά φάσης ίση με π/2.

Μονάδες 5

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Α4. Το ανοιχτό κυλινδρικό δοχείο του σχήματος βρίσκεται εντός πεδίου βαρύτητας με επιτάχυνση βαρύτητας g και περιέχει νερό πυκνότητας ρ. Το ύψος του νερού στο δοχείο είναι Η. Στο σημείο Α, που απέχει απόσταση h από τον πυθμένα του δοχείου, η υδροστατική πίεση είναι ίση με

- α) Pατμ + ρgh
- β) Pατμ + ρg(H-h)
- γ) pgh
- δ) ρg(H-h).

Μονάδες 5

- **Α5.** Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη **Σωστό**, αν η πρόταση είναι σωστή, ή τη λέξη **Λάθος**, αν η πρόταση είναι λανθασμένη.
 - α) Περίοδος T_{δ} ενός διακροτήματος ονομάζεται ο χρόνος ανάμεσα σε δύο διαδοχικούς μηδενισμούς της απομάκρυνσης.
 - β) Κατά την εκδήλωση σεισμικής δόνησης το έδαφος λειτουργεί ως διεγέρτης για τα κτίρια. Όταν η συχνότητα του σεισμικού κύματος γίνει ίση με την ιδιοσυχνότητα ενός κτιρίου, το πλάτος της ταλάντωσης του κτιρίου μεγιστοποιείται.
 - γ) Σε μια φθίνουσα ταλάντωση, με μικρή σταθερά απόσβεσης b, όταν η σταθερά απόσβεσης αυξηθεί λίγο, ο ρυθμός μείωσης του πλάτους της ταλάντωσης ελαττώνεται.
 - δ) Κατά τη ροή ιδανικού ρευστού σε οριζόντιο σωλήνα, όταν οι ρευματικές γραμμές παρουσιάζουν την ίδια πυκνότητα, η ταχύτητα ροής δεν μεταβάλλεται.
 - ε) Σε ένα ρολόι με δείκτες η γωνιακή επιτάχυνση του λεπτοδείκτη είναι σταθερή και διάφορη του μηδενός.

Μονάδες 5

<u>OEMA B</u>

Β1. Στην ελεύθερη επιφάνεια νερού που ηρεμεί, στις θέσεις K και Λ βρίσκονται δύο όμοιες και σύγχρονες κυματικές πηγές απλών αρμονικών κυμάτων Π_1

και Π_2 , που απέχουν μεταξύ τους απόσταση $d=\frac{3\lambda_1}{2}$. Οι πηγές ταλαντώνονται χωρίς αρχική φάση, με συχνότητα f_1 , πλάτος ταλάντωσης Α και παράγουν κύματα μήκους κύματος λ_1 , που διαδίδονται στην επιφάνεια του νερού με σταθερή ταχύτητα υ .

ΑΡΧΗ 3ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Ένα σημείο Σ της επιφάνειας του νερού απέχει από την πηγή Π_1 απόσταση $d_1 = 2\lambda_1$ και από την πηγή Π2 απόσταση d2, όπως στο σχήμα. Το ευθύγραμμο τμήμα ΣΚ είναι κάθετο στο ΚΛ.

Διπλασιάζουμε τη συχνότητα ταλάντωσης των δύο πηγών διατηρώντας σταθερό το πλάτος Α της ταλάντωσής τους.

Το Σ μετά τον διπλασιασμό της συχνότητας ταλάντωσης των πηγών θα είναι:

- i. σημείο ενίσχυσης
- ii. σημείο απόσβεσης
- iii. σημείο που ταλαντώνεται με πλάτος Α.
- α) Να επιλέξετε τη σωστή απάντηση.

Μονάδες 2

 d_2

 $d_1 = 2\lambda$

β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 6

Σε όλη τη διάρκεια της μεταβολής της ακτίνας της κυκλικής τροχιάς, θεωρούμε

ότι το σφαιρίδιο κινείται εκτελώντας κυκλική κίνηση στο οριζόντιο επίπεδο χωρίς τριβές.

Το έργο της δύναμης F για τη μετακίνηση του σφαιριδίου μάζας m θα είναι ίσο με:

i.
$$\frac{1}{2}$$
m ω^2 R²

i.
$$\frac{1}{2}m\omega^2R^2$$
 ii. $\frac{2}{3}m\omega^2R^2$ iii. $\frac{3}{2}m\omega^2R^2$

iii.
$$\frac{3}{2}$$
m ω^2 R²

α) Να επιλέξετε τη σωστή απάντηση.

Μονάδες 2

β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 6

ΑΡΧΗ 4ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Β3. Ο κυλινδρικός σωλήνας ΓΔ του σχήματος αποτελεί τμήμα ενός μεγάλου σωλήνα μεταβλητής διατομής και βρίσκεται σε κατακόρυφο επίπεδο. Στον σωλήνα ρέει με σταθερή παροχή ιδανικό υγρό πυκνότητας ρ με φορά από το Γ προς το Δ. Η σχέση των εμβαδών των εγκαρσίων διατομών του σωλήνα στα σημεία Γ και Δ είναι $A_{\Gamma} = 2 \ A_{\Delta}$. Το μέτρο της ταχύτητας με την οποία κινείται το υγρό στο σημείο Γ είναι $\ \mathcal{V}_{\Gamma}$. Τα σημεία Γ και Δ απέχουν υψομετρικά κατά h, όπως φαίνεται στο σχήμα. Η φλέβα του υγρού που εξέρχεται από το στόμιο Δ πέφτει σε σημείο Κ στην προέκταση της οριζόντιας ευθείας που διέρχεται από το σημείο Γ.

Η απόσταση ΖΚ (βεληνεκές) είναι ίση με 4h.

Η διαφορά πίεσης ΔΡ μεταξύ των σημείων Γ και Δ ισούται με

i.
$$2\rho v_{\Gamma}^2$$
 ii. ρv_{Γ}^2 iii. $\frac{\rho v_{\Gamma}^2}{2}$.

α) Να επιλέξετε τη σωστή απάντηση.

Μονάδες 2

β) Να δικαιολογήσετε την επιλογή σας.

Μονάδες 7

ΘΕΜΑ Γ

ΑΡΧΗ 5ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Τα ιδανικά ελατήρια του σχήματος με σταθερές k_1 και k_2 ($k_1=k_2=k=50$ N/m) έχουν το ένα άκρο τους στερεωμένο σε ακλόνητο σημείο (Γ και Z, αντίστοιχα). Στα ελεύθερα άκρα των ελατηρίων συνδέονται τα σώματα m_1 και m_2 με $m_1=m_2=2$ kg.

Τα δύο σώματα αρχικά εφάπτονται μεταξύ τους και είναι ακίνητα. Τα ελατήρια βρίσκονται στο φυσικό τους μήκος και οι άξονές τους βρίσκονται στην ίδια ευθεία.

Στο άκρο Γ του ελατηρίου k_1 υπάρχει ακίνητη ηχητική πηγή S που εκπέμπει συνεχώς ήχο συχνότητας f_s . Στο σώμα m_1 έχει τοποθετηθεί αβαρής σημειακός δέκτης ηχητικών κυμάτων Δ .

Εκτρέπουμε το σώμα m_1 από τη θέση ισορροπίας, συμπιέζοντας το ελατήριο k_1 κατά $\Delta \ell = 0,4$ m και το αφήνουμε ελεύθερο. Τη στιγμή που το σώμα m_1 διέρχεται από τη θέση ισορροπίας του συγκρούεται πλαστικά με το σώμα m_2 .

Γ1. Να υπολογίσετε το λόγο της συχνότητας f_1 του ήχου που καταγράφει ο δέκτης λίγο πριν την κρούση προς την αντίστοιχη συχνότητα f_2 που καταγράφει αμέσως μετά την κρούση.

Μονάδες 7

Γ2. Να δείξετε ότι το συσσωμάτωμα εκτελεί απλή αρμονική ταλάντωση με σταθερά επαναφοράς D=2k και να υπολογίσετε το πλάτος της ταλάντωσης.

Μονάδες 6

Γ3. Να υπολογίσετε σε πόσο χρόνο μετά την κρούση ο δέκτης καταγράφει για πρώτη φορά συχνότητα ίση με τη συχνότητα f_s που εκπέμπει η ηχητική πηγή.

Μονάδες 6

Γ4. Να υπολογίσετε το μέτρο του μέγιστου ρυθμού μεταβολής της ορμής του συσσωματώματος κατά τη διάρκεια της ταλάντωσής του.

Μονάδες 6

Να θεωρήσετε:

- ότι κατά την κρούση τα δύο σώματα δεν παραμορφώνονται
- θετική κατεύθυνση την κατεύθυνση κίνησης του συσσωματώματος αμέσως μετά την κρούση
- αμελητέες τις τριβές, την αντίσταση του αέρα και το χρόνο κρούσης.
- ότι ο ηχητικός δέκτης δεν καταστρέφεται κατά την κρούση.
- Δίνεται η ταχύτητα του ήχου στον αέρα: $\upsilon_{\eta\chi}$ = 340 m/s.

ΑΡΧΗ 6ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Δ

Λεπτή ομογενής ράβδος ΟΑ μήκους $\ell=3$ m και μάζας M=8kg είναι σταθερά συγκολλημένη με το ένα άκρο της Ο στο κέντρο ομογενούς δίσκου Δ

μάζας m_{Δ} = 4kg και ακτίνας R_{Δ} = $\frac{\sqrt{2}}{2}$ m. Το σύστημα των δύο αυτών σωμάτων

(ράβδου-δίσκου) μπορεί να περιστρέφεται χωρίς τριβές ως ένα σώμα γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το κέντρο Ο και είναι κάθετος στο επίπεδο του δίσκου.

Το μέσον Γ της ράβδου ΟΑ έχει δεθεί με τη βοήθεια λεπτού οριζόντιου αβαρούς και μη εκτατού νήματος ΖΓ (νήμα (1)) με διπλή τροχαλία Σ_1 και η ράβδος σχηματίζει γωνία φ με την προέκταση του οριζόντιου νήματος ΖΓ. Η διπλή τροχαλία αποτελείται από δύο ομογενείς συγκολλημένους ομοαξονικούς δίσκους με ακτίνες R και 2R, όπου R = 0,2 m και η ροπή αδράνειάς της ως προς άξονα που διέρχεται από το κέντρο της και είναι κάθετος στο επίπεδό της είναι ίση με $I_{\text{cm}(\text{τροχαλίας})} = 1,95 \text{ kg m}^2.$

Ένα δεύτερο λεπτό, αβαρές και μη εκτατό νήμα (2), που είναι παράλληλο σε κεκλιμένο επίπεδο γωνίας κλίσης φ, είναι τυλιγμένο πολλές φορές σε ένα λεπτό αυλάκι του εσωτερικού δίσκου ακτίνας R της τροχαλίας Σ_1 και το άλλο του άκρο είναι τυλιγμένο στην περιφέρεια ενός ομογενούς κυλίνδρου Σ_2 μάζας m=30~kg και ακτίνας R, όπως φαίνεται στο σχήμα.

Το σύστημα όλων των σωμάτων του σχήματος ισορροπεί στο ίδιο κατακόρυφο επίπεδο.

ΑΡΧΗ 7ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Δ1. Να υπολογίσετε τη ροπή αδράνειας του συστήματος των δύο σωμάτων ράβδου-δίσκου ως προς τον άξονα περιστροφής Ο.

Μονάδες 4

Τη χρονική στιγμή t=0 το νήμα ΖΓ που συνδέει τη ράβδο με την τροχαλία κόβεται και ο κύλινδρος αρχίζει να εκτελεί κύλιση χωρίς ολίσθηση.

Δ2. Να υπολογίσετε το μέτρο του ρυθμού μεταβολής της στροφορμής του συστήματος των δύο σωμάτων ράβδου-δίσκου ως προς τον άξονα περιστροφής Ο τη χρονική στιγμή t = 0.

Μονάδες 5

Δ3. Να υπολογίσετε την κινητική ενέργεια του συστήματος των δύο σωμάτων ράβδου-δίσκου τη χρονική στιγμή που η ράβδος γίνεται κατακόρυφη για πρώτη φορά μετά το κόψιμο του νήματος.

Μονάδες 5

Δ4. Να υπολογίσετε την επιτάχυνση του κέντρου μάζας Κ του ομογενούς κυλίνδρου (μονάδες 8) καθώς και την ταχύτητα του κέντρου μάζας του κυλίνδρου όταν έχει διανύσει διάστημα s = 2m στο κεκλιμένο επίπεδο (μονάδες 3).

Μονάδες 11

Δίνονται:

- η επιτάχυνση της βαρύτητας g = 10 m/s²
- η ροπή αδράνειας του δίσκου Δ ως προς τον άξονα που διέρχεται από το κέντρο μάζας του είναι ίση με $I_{\text{cm}(\Delta)}=\frac{1}{2}\text{m}_{\Delta}\text{R}_{\Delta}^{2}$
- η ροπή αδράνειας της ράβδου ως προς άξονα που διέρχεται από το κέντρο μάζας της είναι ίση με $I_{\mathsf{cm}(\rho)} = \frac{1}{12} \mathsf{M} \ell^2$
- η ροπή αδράνειας του ομογενούς κυλίνδρου Σ_2 ως προς άξονα που διέρχεται από το κέντρο μάζας του είναι ίση με $I_{\text{cm}(\text{κυλίνδρου})} = \frac{1}{2}\text{mR}^2$
- $\eta\mu\phi = 0.8$, $\sigma\nu\phi = 0.6$
- ο άξονας περιστροφής του ομογενούς κυλίνδρου Σ_2 παραμένει συνεχώς οριζόντιος σε όλη τη διάρκεια της κίνησής του
- το κεκλιμένο επίπεδο είναι μεγάλου μήκους
- η τροχαλία περιστρέφεται χωρίς τριβές
- το νήμα δεν ολισθαίνει στον κύλινδρο και στην τροχαλία
- η αντίσταση του αέρα θεωρείται αμελητέα για όλα τα σώματα

ΑΡΧΗ 8ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

ΟΔΗΓΙΕΣ (για τους εξεταζομένους)

- 1. Στο εξώφυλλο του τετραδίου να γράψετε το εξεταζόμενο μάθημα. Στο εσώφυλλο πάνω-πάνω να συμπληρώσετε τα ατομικά στοιχεία μαθητή. Στην αρχή των απαντήσεών σας να γράψετε πάνω-πάνω την ημερομηνία και το εξεταζόμενο μάθημα. Να μην αντιγράψετε τα θέματα στο τετράδιο και να μη γράψετε πουθενά στις απαντήσεις σας το όνομά σας.
- 2. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Τυχόν σημειώσεις σας πάνω στα θέματα δεν θα βαθμολογηθούν σε καμία περίπτωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.
- 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα μόνο με μπλε ή μόνο με μαύρο στυλό με μελάνι που δεν σβήνει. Μολύβι επιτρέπεται, μόνο αν το ζητάει η εκφώνηση, και μόνο για πίνακες, διαγράμματα κλπ.
- 4. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή.
- 5. Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων.
- 6. Ώρα δυνατής αποχώρησης: 10.00 π.μ.

ΣΑΣ ΕΥΧΟΜΑΣΤΕ ΚΑΛΗ ΕΠΙΤΥΧΙΑ

ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ