Lecture Notes for **Machine Learning in Python**

Professor Eric Larson Optimization Techniques for Logistic Regression

Demo Lecture

06. Optimization

Optimization: gradient descent

What we know thus far:

$$\underbrace{w_j}_{\text{new value}} \leftarrow \underbrace{w_j}_{\text{old value}} + \eta \underbrace{\left[\left(\sum_{i=1}^{M} (y^{(i)} - g(x^{(i)}))x_j^{(i)}\right) - C \cdot 2w_j\right]}_{\nabla l(w)}$$

$$w \leftarrow w + \eta \nabla l(w)$$

Line Search: a better method

Line search in direction of gradient:

$$w \leftarrow w + \eta \nabla l(w)$$

$$w \leftarrow w + \underbrace{\eta}_{\text{best step?}} \nabla l(w)$$

Stochastic Methods

How much computation is required (for gradient)?

$$\sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)}) x^{(i)} - 2C \cdot w$$

Per iteration:

(M+1)*N multiplications 2M + 1 add/subtract

i chosen at random

Per iteration:

N+1 multiplications 2 add/subtract

Can we do better than the gradient?

Assume function is quadratic:

function of one variable:

$$w \leftarrow w - \left[\frac{\partial^2}{\partial w}l(w)\right]^{-1} \underbrace{\frac{\partial}{\partial w}l(w)}_{\text{derivative}}$$

will solve in one step!

what is the second order derivative for a multivariate function?

$$\nabla^2 l(w) = \mathbf{H}[l(w)]$$

The Hessian

Assume function is quadratic:

function of one variable:

$$\mathbf{H}[l(w)] = \begin{bmatrix} \frac{\partial^2}{\partial w_1} l(w) & \frac{\partial}{\partial w_1} \frac{\partial}{\partial w_2} l(w) & \dots & \frac{\partial}{\partial w_1} \frac{\partial}{\partial w_N} l(w) \\ \frac{\partial}{\partial w_2} \frac{\partial}{\partial w_1} l(w) & \frac{\partial^2}{\partial w_2} l(w) & \dots & \frac{\partial}{\partial w_2} \frac{\partial}{\partial w_N} l(w) \\ \vdots & & & \vdots \\ \frac{\partial}{\partial w_N} \frac{\partial}{\partial w_1} l(w) & \frac{\partial}{\partial w_N} \frac{\partial}{\partial w_2} l(w) & \dots & \frac{\partial^2}{\partial w_N} l(w) \end{bmatrix}$$

$$\nabla^2 l(w) = \mathbf{H}[l(w)]$$

The Newton Update Method

Assume function is quadratic (in high dimensions):

$$w \leftarrow w - \left[\frac{\partial^2}{\partial w}l(w)\right]^{-1} \underbrace{\frac{\partial}{\partial w}l(w)}_{\text{derivative}}$$
inverse 2nd deriv

$$w \leftarrow w + \eta \cdot \underbrace{\mathbf{H}[l(w)]^{-1}}_{\text{inverse Hessian}} \cdot \underbrace{\nabla l(w)}_{\text{gradient}}$$

J. newlon'

The Hessian for Logistic Regression

The hessian is easy to calculate from the gradient for logistic regression

$$\mathbf{H}_{j,k}[l(w)] = -\sum_{i=1}^{M} g(x^{(i)})(1 - g(x^{(i)})x_k^{(i)}x_j^{(i)} \qquad \sum_{j=1}^{M} (y^{(i)} - \hat{y}^{(i)})x_j^{(i)}$$

$$\mathbf{H}[l(w)] = X^T \cdot \operatorname{diag}[g(x^{(i)})(1 - g(x^{(i)}))] \cdot X \qquad X * y_{diff}$$

$$w \leftarrow w + \eta[X^T \cdot \operatorname{diag}[g(x^{(i)})(1 - g(x^{(i)}))] \cdot X]^{-1} \cdot X * y_{diff}$$