3.0.1:

- (i) Let $f: \tilde{X} \to Y$ be a map, and $g: X \to \tilde{X}$ be a quotient map.
- If f is continuous then $f \circ q$ is continuous as the composition of continuous maps.

If conversely $f \circ q$ is continuous, let $V \subset Y$ be open. Then $(f \circ q)^{-1}(V) = q^{-1} \circ f^{-1}(V)$ is open, and by definition $q^{-1}(f^{-1}(V))$ is open if and only if $f^{-1}(V)$ is open in X, so $f^{-1}(V)$ is open, hence f is continuous.

(ii) Choose arbitrary $x \neq y$ of X and let f be the corresponding continuous function satisfying $f(x) \neq f(y)$.

Since f is continuous, $U = f^{-1}\left((-\infty, \frac{x+y}{2})\right)$ and $V = f^{-1}\left(\left(\frac{x+y}{2}, \infty\right)\right)$ are open, disjoint and U contains $\min\{x,y\}$ while V contains $\max\{x,y\}$. Hence X is Hausdorff as x,y were arbitrary.

(iii) Define $\rho_w(P) = d(P, w) = \min \{d(w, p) \mid p \in P\}$ where d denotes standard metric inherited from \mathbb{R}^n .

This is continuous and gives the euclidean distance from w to P - it is in particular well defined as a minimum since there exists some closed ball D^n containing w and points from P - the intersection of D^n and P is closed hence compact, and thus by the extreme value theorem, the distance function attains a maximum on the compact subspace - which is clearly smaller than any distance outside the ball.

By (i) we have that ρ_w is continuous if and only if $\rho_w \circ q$ is continuous where $q: V_k^O(\mathbb{R}^n) \to Gr_k(\mathbb{R}^n)$ is the quotient map.

Now, for any interval $(a, b) \subset R$, we have $(\rho_w \circ q)^{-1}(a, b)$ is precisely all k-tuples of northonormal vectors in \mathbb{R}^n such that their span contains a point whose distance to w is in (a, b).

 ρ_w is naturally equal to the orthogonal projection P_U sending a vector v = u + w with $u \in U$ and $w \in U^{\perp}$ with U as subspace of V to u, i.e. $P_U(v) = u$.

By 6.55 in LADR, we have that if we pick an orthonormal basis (v_1, \ldots, v_k) representing the k-plane, we have $\rho_w(P) = P_P(w) = \langle w, v_1 \rangle v_1 + \ldots + \langle w, v_k \rangle v_k$ which is continuous as it is linear (6.55.(i) and (a)).

- (iv): Let $P_1, P_2 \in Gr_k(\mathbb{R}^n)$ be distinct. Choose any point $w \in P_1 P_2$. Then $\rho_w(P_1) = 0 < \rho_w(P_2)$ where we can conclude strict inequality since we have min in our definition for ρ_w .
- (i) For a 1-plane in $Gr_1(\mathbb{R}^2)$, we have $P \in U_X$ if it has trivial intersection with X^{\perp} which is the orthogonal line of X through 0. Any line that is not X^{\perp} will trivial intersection with X^{\perp} , so any 1-dimensional subspace of \mathbb{R}^2 that is not X^{\perp} will be in U_X .
- (ii) Any set in $\{P \in Gr_k(\mathbb{R}^n) : P \cap X^{\perp} = \{0\}\}$ is of the form $\Gamma(A) = \{Ax + x \text{ with } x \in X\}$ where $A \colon X \to X^{\perp}$ is a linear map. Defining $\varphi(A) = \Gamma(A)$, we find this is a bijection, so since the dimension of $\mathcal{L}(X, X^{\perp})$ is $(n-k) \cdot k$ by identifying it with its matrix representation getting $M((n-k) \times k, \mathbb{R})$, we find that $U_X \cong \mathbb{R}^{(n-k)k}$.