

Theory of Automata

Welcome

Class: BS(VI)

Sukkur IBA University, Kandhkot Campus

Week - 01

Lecture – 02

Your Facilitator, Muhammad Haris

Recap Lecture-1

- Introduction to the course title,
 - Formal and In-formal languages,
 - Alphabets,
 - Strings, Null string,
 - Words, Valid and In-valid alphabets,
 - length of a string,
 - Reverse of a string,
 - Defining languages,
 - Descriptive definition of languages,
 - EQUAL, EVEN-EVEN, INTEGER, EVEN, { aⁿ bⁿ}, { aⁿ bⁿ aⁿ},
 - FACTORIAL, DOUBLEFACTORIAL, SQUARE, DOUBLESQUARE, PRIME, PALINDROME.

Kleene Star Closure

Kleene Star Closure

- Given Σ , then the Kleene Star Closure of the alphabet Σ , denoted by $\Sigma^{*'}$ is the collection of all strings defined over Σ , including Λ .
- It is to be noted that Kleene Star Closure can be defined over any set of strings.
 - Simply all possible concatenations of given alphabets including Λ .

Examples

```
• If \Sigma = \{x\}
Then \Sigma^* = \{\Lambda, x, xx, xxx, xxxx, ....\}
```


Examples

```
• If \Sigma = \{0,1\}
Then \Sigma^* = \{\Lambda, 0, 1, 00, 01, 10, 11, ....\}
```

- First letter is Λ that is not in alphabets Σ
- Write second and third as it is
- All other members are in concatenation form
- First concatenate for 2 letter words only then 3 and so on
- Possible no of strings of 2 letters are $2^2 = 4$
- Possible no of strings of 3 letters are 2³ = 8
- Strings will be infinite
- But length of strings is finite

Examples

```
• If \Sigma = {aaB, c}
Then \Sigma^* = {\Lambda, aaB, c, aaBaaB, aaBc, caaB, cc, ....}
```


Note

• Languages generated by Kleene Star Closure of set of strings, are infinite languages. (By infinite language, it is supposed that the language contains infinite many words, each of finite length).

Task

Questions)

- 1) Let $S=\{ab, bb\}$ and $T=\{ab, bb, bbbb\}$ Show that $S^*=T^*$ [Hint $S^*\subseteq T^*$ and $T^*\subseteq S^*$]
- 2) Let S={ab, bb} and T={ab, bb, bbb} Show that $S^* \neq T^*$ But $S^* \subseteq T^*$
- 3) Let S={a, bb, bab, abaab} be a set of strings. Are abbabaabab and baabbbaabbaabb in S*? Does any word in S* have odd number of b's?

PLUS Operation (*)

• Plus Operation is same as Kleene Star Closure except that it does not generate Λ (null string), automatically.

Example:

```
    If Σ = {0,1}
    Then Σ<sup>+</sup> = {0, 1, 00, 01, 10, 11, ....}
    If Σ = {aab, c}
    Then Σ<sup>+</sup> = {aab, c, aabaab, aabc, caab, cc, ....}
```


TASK

Q1)Is there any case when S^+ contains Λ ? If yes then justify your answer.

Q2) Prove that for any set of strings S

i.
$$(S^+)^* = (S^*)^*$$

ii.
$$(S^+)^+=S^+$$

iii. Is
$$(S^*)^+=(S^+)^*$$

Remark

It is to be noted that Kleene Star can also be operated on any string i.e. a* can be considered to be all possible strings defined over {a}, which shows that a* generates

Λ, a, aa, aaa, ...

It may also be noted that a⁺ can be considered to be all possible non empty strings defined over {a}, which shows that a⁺ generates

a, aa, aaa, aaaa, ...

Recursive definitions

Defining Languages Continued...

- Recursive definition of languages
 - The following three steps are used in recursive definition
- 1. Some basic words are specified in the language.
- 2. Rules for constructing more words are defined in the language.
- 3. No strings except those constructed in above, are allowed to be in the language.

Example

Defining language of INTEGER

<u>Step 1:</u>

1 is in **INTEGER**.

<u>Step 2:</u>

If x is in INTEGER then x+1 and x-1 are also in INTEGER.

<u>Step 3:</u>

Example

Defining language of EVEN

Step 1:

2 is in **EVEN**.

<u>Step 2:</u>

If x is in **EVEN** then x+2 and x-2 are also in **EVEN**.

<u>Step 3:</u>

Example

Defining the language FACTORIAL

Step 1:

As 0!=1, so 1 is in **factorial**.

<u>Step 2:</u>

n!=n*(n-1)! is in factorial.

Step 3:

• Defining the language PALINDROME, defined over $\Sigma = \{a,b\}$

<u>Step 1:</u>

a and b are in **PALINDROME**

<u>Step 2:</u>

if x is palindrome, then s(x)|Rev(s) and sometimes xx will also be palindrome, where s belongs to Σ^*

Step 3:

• Defining the language $\{a^nb^n\}$, n=1,2,3,..., of strings defined over $\Sigma=\{a,b\}$

Step 1:

ab is in {aⁿbⁿ}

<u>Step 2:</u>

if x is in $\{a^nb^n\}$, then axb is in $\{a^nb^n\}$

• String axb means first a's then any other sequence of a's or b's then last letter will be letter b.

<u>Step 3:</u>

• Defining the language L, of strings ending in a , defined over $\Sigma = \{a,b\}$

<u>Step 1:</u>

a is in L

<u>Step 2:</u>

if a is in L then s(a) is also in L, where s belongs to Σ^*

<u>Step 3:</u>

• Defining the language L, of strings beginning and ending in same letters , defined over $\Sigma = \{a, b\}$

<u>Step 1:</u>

a and b are in L

<u>Step 2:</u>

(a)s(a) and (b)s(b) are also in **L**, where s belongs to Σ^*

<u>Step 3:</u>

- The language <u>consisting</u> of *aa* and *bb* means it has only two words at all i.e aa and bb not others.
- The language <u>containing</u> aa and bb means it has these two words including all other possible words like aab, bba, aabaa n etc.

• Defining the language L, of strings containing aa or bb , defined over $\Sigma=\{a,b\}$

<u>Step 1:</u>

aa and bb are in L

<u>Step 2:</u>

s(aa)s and s(bb)s are also in **L**, where s belongs to Σ^*

Step 3:

Defining the language L, of strings containing exactly aa, defined over Σ={a, b}

<u>Step 1:</u>

aa is in L

Step 2:

s(aa)s is also in **L**, where s belongs to b*

Step 3:

Summing Up

- Kleene Star Closure,
- Plus operation,
- recursive definition of languages,
- INTEGER, EVEN, factorial, PALINDROME, {anbn},
- languages of strings (i) ending in a, (ii) beginning and ending in same letters, (iii) containing aa or bb (iv)containing exactly aa,

Thank you!

Any Questions???