Statistics: Hypothesis Testing

- Bayesian Decision Theory
- Likelihood Ratio Test
- Neyman-Pearson Theorem
- Composite Hypotheses and GLRT
- Test for $\mu_1 \stackrel{?}{=} \mu_2$ (T-Test)
- Test for $\sigma_1^2 \stackrel{?}{=} \sigma_2^2$ (F-Test)
- Test for $\sigma^2 \stackrel{?}{=} \sigma_0^2 \ (\chi^2 \text{Test})$
- Goodness of Fit Test (Pearson/ χ^2 Test)
- Test for $P[E_1] \stackrel{?}{=} P[E_2]$ (Pearson/ χ^2 Test)
- Run Test for $F_X \stackrel{?}{=} F_Y$
- Ranking Test for $F_X \stackrel{?}{=} F_Y$

Bayesian Decision Theory

- Underlying State: ζ_i with $P[\zeta = \zeta_i] = P_i$. e.g., $\zeta_1 = \text{cancer}$, $\zeta_2 = \text{benign}$
- Based on observation RV X, make decision of ζ denoted by $\hat{\zeta}$. e.g., X= ratio of square of the boundary length of the nodule to the area of the nodule.
- Actions: a_i if $\hat{\zeta} = \zeta_i$. e.g., $a_1 = \text{surgical operation}$, $a_2 = \text{no operation}$
- Loss associated with a_i when the state is ζ_j : $I(a_i, \zeta_j)$. e.g., loss = # of years lost from a normal life span

$$f_{X|\zeta_{2}}(x)$$
 $f_{X|\zeta_{1}}(x)$ f_{X

The more irregular the edges of the nodule (the larger X), the more likely the nodule is a cancerous lesion.

If $X \in [c, \infty)$, $\hat{\zeta} = \zeta_1$ and take action a_1 . Otherwise, a_2 .

There is a value of c (to be determined) that minimizes the expected risk.

Dr. Minn EESC 6349, UT-Dallas 2

- Consider ζ_1 and ζ_2 with $X|\zeta_1 > X|\zeta_2$ most of the time.
- Decision function d: if $X \in [c, \infty)$, then $\hat{\zeta} = \zeta_1$, and a_1 is performed. Otherwise, $\hat{\zeta} = \zeta_2$, and a_2 is performed.
- Risk $R(d; \zeta)$: Conditional expectation of the loss when the underlying state is ζ and the decision rule is d.

$$R(d;\zeta_{i}) = I(a_{1};\zeta_{i})P[a_{1}|\zeta_{i}] + I(a_{2};\zeta_{i})P[a_{2}|\zeta_{i}],$$
where $P[a_{1}|\zeta_{2}] = \int_{c}^{\infty} f_{X|\zeta_{2}}(x)dx$ and $P[a_{2}|\zeta_{1}] = \int_{-\infty}^{c} f_{X|\zeta_{1}}(x)dx$

- Expected Risk: $B(d) = R(d; \zeta_1)P[\zeta = \zeta_1] + R(d; \zeta_2)P[\zeta = \zeta_2]$
- Bayes Strategy: $B(d^*) = \min_d \{B(d)\}$, i.e., choose c to minimize B(d)
- Using $P[a_2|\zeta_1] = 1 P[a_1|\zeta_1]$ and $P[a_2|\zeta_2] = 1 P[a_1|\zeta_2]$, $B(d) = P_1 \ I(a_2;\zeta_1) + P_2 \ I(a_2;\zeta_2) + \int_{-\infty}^{\infty} \left\{ P_2 f_{X|\zeta_2}(x) [I(a_1;\zeta_2) I(a_2;\zeta_2)] P_1 f_{X|\zeta_1}(x) [I(a_2;\zeta_1) I(a_1;\zeta_1)] \right\} dx$

• Minimum of B(d) is achieved when the integral yields a negative number with largest magnitude, i.e., when $c = c^*$ so that (c^*, ∞) includes all negative points and leaves out all positive points.

For
$$X \in (c^*, \infty)$$
,
 $P_2 f_{X|\zeta_2}(x)[I(a_1; \zeta_2) - I(a_2; \zeta_2)] < P_1 f_{X|\zeta_1}(x)[I(a_2; \zeta_1) - I(a_1; \zeta_1)]$, or
$$\frac{f_{X|\zeta_1}(x)}{f_{X|\zeta_2}(x)} > \frac{[I(a_1; \zeta_2) - I(a_2; \zeta_2)]P_2}{[I(a_2; \zeta_1) - I(a_1; \zeta_1)]P_1} \triangleq k_b \text{ (Bayes threshold)}$$

- At $X = c^*$, $\frac{f_{X|\zeta_1}(c^*)}{f_{X|\zeta_2}(c^*)} = k_b$.
- Bayes Decision Rule: If $\frac{f_{X|\zeta_1}(x)}{f_{X|\zeta_2}(x)} > k_b$ (i.e., when $X \in (c^*, \infty)$), then $\hat{\zeta} = \zeta_1$ and take action a_1 . Otherwise, $\hat{\zeta} = \zeta_2$ and take action a_2 .

• For the case with n i.i.d observation RVs $\{X_1, \dots, X_n\}$, the Bayes decision rule is

if
$$\frac{\prod_{i=1}^{n} f_{X_{i}|\zeta_{1}}(x_{i})}{\prod_{i=1}^{n} f_{X_{i}|\zeta_{2}}(x_{i})} > \frac{[I(a_{1};\zeta_{2}) - I(a_{2};\zeta_{2})]P_{2}}{[I(a_{2};\zeta_{1}) - I(a_{1};\zeta_{1})]P_{1}} \triangleq k_{b},$$
then $\hat{\zeta} = \zeta_{1}$, take action a_{1}
else $\hat{\zeta} = \zeta_{2}$, take action a_{2} .

- Problems with Bayes approach:
 - i) a priori probabilities P_1 and P_2 are often unknown.
 - ii) assigning a reasonable loss to an action is difficult.

Likelihood Ratio Test

Not requiring a priori probabilities and loss functions,

if
$$\frac{\prod_{i=1}^{n} f_{X_{i}|\zeta_{1}}(x_{i})}{\prod_{i=1}^{n} f_{X_{i}|\zeta_{2}}(x_{i})} > k, \quad \text{then } \hat{\zeta} = \zeta_{1}$$
else $\hat{\zeta} = \zeta_{2}$.

- ζ_1 versus ζ_2 \rightarrow Hypothesis H_1 versus H_2
- The threshold k is based on some criteria, e.g., $\text{P[rejecting a claim when the claim is true]} = \alpha \text{ or }$ $\text{P[accepting the counter claim when the counterclaim is true]} = 1 \beta.$
- Notation: $L(\zeta_1) \triangleq \prod_{i=1}^n f_{X_i|\zeta_1}(x_i)$, $L(\zeta_2) \triangleq \prod_{i=1}^n f_{X_i|\zeta_2}(x_i)$, and $\Lambda \triangleq L(\zeta_1)/L(\zeta_2)$
- Note: Every Bayes strategy leads to an LRT but not every LRT is the result of Bayes strategy

Terminologies for Hypothesis H_1 versus H_2 :

- $\alpha \triangleq P[based on our test we decide <math>H_2$ is true $| H_1$ is true] $\alpha = P[type \ l \ error] = significance \ level \ of \ the \ test = size \ of \ the \ test$
- $\beta \triangleq P[based on our test we decide <math>H_1$ is true $\mid H_2$ is true $\mid \beta = P[type \ II \ error]$
 - $1-\beta=$ the power of the test

Summary of LRT for μ_1 versus μ_2

- $H_1: \{X_i\} \sim \text{i.i.d. } \mathcal{N}(\mu_1, \sigma^2)$ versus $H_2: \{X_i\} \sim \text{i.i.d. } \mathcal{N}(\mu_2, \sigma^2)$
- $\Lambda = \exp\{\frac{1}{2\sigma^2} \sum_{i=1}^n [(x_i \mu_2)^2 (x_i \mu_1)^2]\}$ $\ln(\Lambda) = \frac{1}{2\sigma^2} \sum_{i=1}^n (2x_i - \mu_1 - \mu_2)(\mu_1 - \mu_2) \ln(\Lambda) = \frac{n(\mu_1 - \mu_2)}{\sigma^2} [\hat{\mu} - \frac{1}{2}(\mu_1 + \mu_2)],$ where $\hat{\mu} \triangleq \frac{1}{n} \sum_{i=1}^n x_i.$ LRT: Accept H_1 if $\ln(\Lambda) > \tau$, and Reject otherwise.
- Equivalently, if $\mu_1 > \mu_2$, accept H_1 if $\hat{\mu} > c$, and reject otherwise, where $c = \frac{\tau \sigma^2}{n(\mu_1 \mu_2)} + \frac{1}{2}(\mu_1 + \mu_2)$.
- If $\mu_1 < \mu_2$, accept H_1 if $\hat{\mu} < c$, and reject otherwise.
- PDF of $\hat{\mu}$ given H_i is true is $f_{\hat{\mu}|H_i} = N(\mu_i, \sigma^2/n)$
- If $\mu_1 > \mu_2$, we have $\alpha = P[\hat{\mu} < c|H_1] = P[Z < \frac{c-\mu_1}{\sigma/\sqrt{n}}]$ where $Z \sim N(0,1)$, and $\frac{c-\mu_1}{\sigma/\sqrt{n}} = z_{[\alpha]}$. So, $c = \mu_1 + (\sigma/\sqrt{n})z_{[\alpha]}$. Power of the test $= P[\hat{\mu} < c|H_2] = P[Z < \frac{c-\mu_2}{\sigma/\sqrt{n}}]$.
- If $\mu_1 < \mu_2$, we have $\alpha = P[\hat{\mu} > c | H_1] = 1 P[Z \le \frac{c \mu_1}{\sigma/\sqrt{n}}]$ and $\frac{c \mu_1}{\sigma/\sqrt{n}} = z_{[1-\alpha]}$. So, $c = \mu_1 + (\sigma/\sqrt{n})z_{[1-\alpha]}$. Power of the test $= P[\hat{\mu} > c | H_2] = 1 P[Z \le \frac{c \mu_2}{\sigma/\sqrt{n}}]$.

• Example 7.2-1 A food manufacturer claims its snack bar can reduce childhood obesity. To test this claim, a group of n children take the weight-controlling snack bar, while the second group of n children do not. After a month, the average weight for the first (second) group are 98 lbs (102 lbs) with a standard deviation of 5 lbs (5 lbs). We denote hypothesis H₁ to be the weight-controlling snack bar has no effect, and alternative H₂ to be the weight-controlling snack is helpful. How to decide if H₁ is true (with X_i, i = 1,..., n being i.i.d. RVs denoting the weights of the n children)?

Solution: Assuming the weights are Normally distributed,

$$f(x_i|H_1) = \frac{1}{5\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x_i-\mu_1}{5}\right)^2\right], \quad f(x_i|H_2) = \frac{1}{5\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x_i-\mu_2}{5}\right)^2\right].$$

$$\Lambda = \prod_{i=1}^{n} \frac{f(x_i, H_1)}{f(x_i, H_2)} = \exp\left(\frac{1}{2} \sum_{i=1}^{n} \left[\left(\frac{x_i - \mu_2}{5}\right)^2 - \left(\frac{x_i - \mu_1}{5}\right)^2 \right] \right)$$
$$= K_n \exp\left(\frac{4n}{25} \hat{\mu}_X(n)\right), \text{ where } K_n = \text{constant}$$

and
$$\hat{\mu}(n) = (1/n) \sum_{i=1}^{n} x_i$$
.

The decision function is

if
$$K_n \exp\left(\frac{4n}{25} \hat{\mu}_X(n)\right) > k_n$$
, accept H_1 . Otherwise, accept H_2 .

Simplifying the decision function by using logs, we have

if
$$\hat{\mu}_X(n) > c_n$$
, accept H_1 . Otherwise, accept H_2 .

 c_n is the decision threshold to be decided.

$$f(x_i|H_1) = N(102, 25)$$

 $f(x_i|H_2) = N(98, 25)$
 $f(\hat{\mu}|H_1) = N(102, 25/n)$
 $f(\hat{\mu}|H_2) = N(98, 25/n)$

Significance =
$$\alpha = P[\text{accepting } H_2|H_1] = F_{SN}\left(\frac{c_n-102}{5/\sqrt{n}}\right) = F_{SN}(z_{[\alpha]})$$

$$c_n = 102 + \left(5/\sqrt{n}\right) z_{[\alpha]}$$

For $\alpha = 0.025$, we have $c_n = 102 - (9.8/\sqrt{n})$.

Power of the test = $P[\text{accepting } H_2|H_2] = P[\hat{\mu} < c_n|H_2]$

$$= F_{SN}(\frac{c_n - 98}{\sqrt{25/n}}) = F_{SN}(0.8\sqrt{n} - 1.96)$$

Neyman-Pearson Theorem (NPT)

• Theorem:

Denote the set of points in the critical region by R_k (i.e., the region of outcomes where we reject the hypothesis H_1).

Denote the significance of the test as α , meaning $P[\text{accept } H_2|H_1 \text{ is true}] \leq \alpha$.

Then, R_k maximizes the power of the test $P \triangleq 1 - \beta$ if it satisfies

$$\Lambda \triangleq \frac{\prod_{i=1}^n f_{X_i|\zeta_1}(x_i)}{\prod_{i=1}^n f_{X_i|\zeta_2}(x_i)} < k$$

for some fixed number k, which determines R_k .

• NPT says that LRT subject to the constraint of being at significance α is the most powerful test.

(Relationship between R_k , k, and α is not explicitly stated by NPT.)

• Example 7.2-3: It is claimed that feeding chicken with a new product 'Eggrow' will cause larger laid eggs. With ordinary feed, the average weight of the laid eggs is $\mu_2 = 60$ g, with a standard deviation of 4g. 25 chickens fed on 'Eggrow' produce eggs whose average weight is $\mu_1 = 62$ g, with a standard deviation of 4g. Let hypothesis be H_1 : $\mu = \mu_1$ and the alternative be H_2 : $\mu = \mu_2$. The significance level is 0.05. Find the decision threshold c_n and the critical region R_k .

Solution: According to NPT, we have

$$\Lambda = \frac{\prod_{i=1}^{n} (2\pi 16)^{-1/2} \exp\left(-\frac{1}{2} \left[\frac{X_i - 62}{4}\right]^2\right)}{\prod_{i=1}^{n} (2\pi 16)^{-1/2} \exp\left(-\frac{1}{2} \left[\frac{X_i - 60}{4}\right]^2\right)} = \exp\left(\frac{n\hat{\mu}}{8} + \frac{n}{32} (60^2 - 62^2)\right)$$

where $\hat{\mu} = (1/n) \sum_{i=1}^{n} X_i$ and n = 25.

Taking logs and simplifying yields the test

if
$$\hat{\mu} > c_n$$
, accept H_1 ; Otherwise, accept H_2 ;

where c_n is determined by solving $\alpha = 0.05 = P[\text{accept } H_2|H_1]$.

Since
$$f_{\hat{\mu}|H_1} = N(62, 16/25)$$
, $0.05 = P[\hat{\mu} \le c_n|H_1] = F_{SN}(\frac{c_n - 62}{0.8})$.

We find
$$c_n = 0.8z_{[0.05]} + 62 = 60.7$$
 and $R_k = (0, 60.7)$.

The test is most powerful and Power = $P[\hat{\mu} \le c_n | H_2] = F_{SN}(\frac{60.7-60}{0.8}) \approx 0.81$.

Composite Hypotheses

- Example of composite hypotheses: Suppose the parameter of interest is the mean μ , and consider $H_1: \mu = \mu_0$ versus $H_2: \mu \neq \mu_0$. While H_1 is a simple hypothesis, H_2 is a composite hypothesis since the likelihood function associated with H_2 is not well defined (and a search for the optimum value of μ may be needed).
- Example 7.3-1 (Testing $H_1: \mu = \mu_1$ versus $H_2: \mu < \mu_1$ without needing the search for optimum μ for H_2). We assume a Normal population with mean μ and variance σ^2 . How to make the test with significant level $\alpha = 0.01$?

Dr. Minn EESC 6349, UT-Dallas 14

Solution: We reduce the problem of testing H_1 versus H_2 to a slightly modified problem, that is testing H_1 versus H_2' : $\mu = \mu_2 < \mu_1$. Then

$$\Lambda = \frac{\prod_{i=1}^{n} (2\pi\sigma^{2})^{-1/2} \exp\left(-\frac{1}{2\sigma^{2}} (X_{i} - \mu_{1})^{2}\right)}{\prod_{i=1}^{n} (2\pi\sigma^{2})^{-1/2} \exp\left(-\frac{1}{2\sigma^{2}} (X_{i} - \mu_{2})^{2}\right)}$$

$$= \exp\left(-\frac{1}{2\sigma^{2}} \left(\sum_{i=1}^{n} (X_{i} - \mu_{1})^{2} - \sum_{i=1}^{n} (X_{i} - \mu_{2})^{2}\right)\right) < k$$

is the LRT for the critical region for H_1 .

Next, taking logs and simplifying, we obtain the test: if $\hat{\mu} < c_n$, reject H_1 .

To find c_n with significant level $\alpha=0.01$ and the pdf $f_{\hat{\mu}|H_1}(w)=N(\mu_1;\sigma^2/n)$, we solve $P[\hat{\mu}< c_n|H_1]=0.01 \ \Rightarrow \ P[Z<\frac{c_n-\mu_1}{\sigma/\sqrt{n}}]=0.01$ where $Z=\frac{\hat{\mu}-\mu_1}{\sigma/\sqrt{n}}$ is with pdf N(0,1).

Then, we obtain
$$\frac{c_n - \mu_1}{\sigma / \sqrt{n}} = z_{[0.01]} = -2.32$$
 and $c_n = \mu_1 - 2.32\sigma / \sqrt{n}$.

Thus, the test is:

Reject
$$H_1$$
 if $\hat{\mu} < \mu_1 - 2.32\sigma/\sqrt{n}$.

(Note that we never had to specify an actual value for μ_2 .)

Generalized Likelihood Ratio Test (GLRT)

- Useful for solving composite hypotheses problems
- For $\theta = (\theta_1, \theta_2, \dots, \theta_k)$ and the global k-dimensional parameter space Θ , consider $H_1 : \theta \in \Theta_1$ versus $H_2 : \theta \notin \Theta_1$ where Θ_1 is a subset of Θ .
- GLR is

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

GLRT is

Reject H_1 if $\Lambda < c$.

• Example 7.3-2, 7.3-3

Testing H_1 : $\mu = \mu_1$ versus H_2 : $\mu \neq \mu_1$ when X is Normal and σ^2 is known, with n observations. What will be the critical region ?

Solution: The likelihood function is

$$L(\mu) = (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right).$$

Then $L_{LM}(\mu^*) = L(\mu_1)$.

To get $L_{GM}(\mu^{\dagger})$, solving $\frac{dL(\mu)}{d\mu}=0$ yields $\mu^{\dagger}=\hat{\mu}$. Thus, $L_{GM}(\mu^{\dagger})=L(\hat{\mu})$.

Then the GLR (after simplification) is

$$\Lambda = \frac{L(\mu_1)}{L(\hat{\mu})} = \exp\left(-\frac{n}{2\sigma^2}(\hat{\mu} - \mu_1)^2\right).$$

The critical region is defined by $0 < \Lambda < c$.

Taking log and simplifying gives the critical region for $\hat{\mu}$ as

$$\hat{\mu} > \mu_1 + (2\sigma^2 \ln(1/c)/n)^{1/2}, \qquad \qquad \hat{\mu} < \mu_1 - (2\sigma^2 \ln(1/c)/n)^{1/2},$$

where c is determined by the significance level α . (see next)

Assume that $\mu_1 = 5$, $\sigma^2 = 4$, n = 15, $\alpha = 0.05$.

Define
$$W \triangleq -2 \ln \Lambda = \left(\frac{\hat{\mu} - \mu_1}{\sigma / \sqrt{n}}\right)^2$$
.

Then, given H_1 is true, W is χ^2 with one degree of freedom, i.e., with pdf $f_{\chi^2}(w;1)$. The critical region $0 < \Lambda < c$ in terms of the test statistic W is $-2 \ln c < W < \infty$.

For a significance level α , we have $P[W > -2 \ln c] = \alpha = 1 - F_{\chi^2}(-2 \ln c; 1)$.

So, from the CDF of χ^2 , we obtain $-2 \ln c = x_{[1-\alpha]}$.

For $\alpha = 0.05$, we have $-2 \ln c = x_{[1-\alpha]} = x_{[0.95]} = 3.84$.

Therefore, the critical region for $\hat{\mu}$ is

$$(-\infty, \ \mu_1 - (2\sigma^2 \ln(1/c)/n)^{1/2}) \cup (\mu_1 + (2\sigma^2 \ln(1/c)/n)^{1/2}, \ \infty)$$
$$= (-\infty, 3.99) \cup (6.01, \infty).$$

• Example 7.3-2, 7.3-3 (Alternative Approach) Testing H_1 : $\mu = \mu_1$ versus H_2 : $\mu \neq \mu_1$ when X is Normal and σ^2 is known, with n observations. What will be the critical region ?

Solution: The GLR (after simplification) is $\Lambda = \frac{L(\mu_1)}{L(\hat{\mu})} = \exp\left(-\frac{n}{2\sigma^2}(\hat{\mu} - \mu_1)^2\right).$

The critical region is defined by $0 < \Lambda < c$, or $(\hat{\mu} - \mu_1)^2 > \tau^2$ where $\tau > 0$.

The critical region for the test statistic $\hat{\mu}$ is

$$\{\hat{\mu} < \mu_1 - \tau\} \cup \{\hat{\mu} > \mu_1 + \tau\}.$$

As the pdf of $\hat{\mu}$ given H_1 is true is $N(\mu_1, \sigma^2/n)$, for a significance level α , τ is obtained as follows:

$$P[\hat{\mu} > \mu_1 + \tau | H_1] = 0.5\alpha$$
 $\tau/(\sigma/\sqrt{n}) = z_{[1-0.5\alpha]} \Rightarrow \tau = z_{[1-0.5\alpha]}(\sigma/\sqrt{n}).$ Assume that $\mu_1 = 5, \ \sigma^2 = 4, \ n = 15, \ \alpha = 0.05.$ Then, $\tau = z_{[1-0.5\alpha]}(\sigma/\sqrt{n}) = z_{[0.975]} \cdot (2/\sqrt{15}) \approx 1.01,$ which yields $\mu_1 - \tau = 3.99$ and $\mu_1 + \tau = 6.01.$

Thus, the critical region for the test statistic $\hat{\mu}$ is $(-\infty, 3.99) \cup (6.01, \infty)$.

Testing Equality of Means of Two Normal Populations (T-Test)

Problem Statement

- m i.i.d. samples $\{X_{1i}, i=1,\cdots,m\}$ from population P1 with $X_1:N(\mu_1,\sigma_1^2)$
- n i.i.d. samples $\{X_{2i}, i=1,\cdots,n\}$ from population P2 with $X_2: N(\mu_2,\sigma_2^2)$
- $\sigma_1^2 = \sigma_2^2 = \sigma^2$ and $E[(X_{1i} \mu_1)(X_{2j} \mu_2)] = 0$ for all i, j
- $H_1: \mu_1 = \mu_2$ versus $H_2: \mu_1 \neq \mu_2$, (σ^2, μ_i) : unknown)

Dr. Minn EESC 6349, UT-Dallas 20

Testing Equality of Means of Two Normal Populations (T-Test)

Test Procedure

- $\hat{\mu}_1 \triangleq (1/m) \sum_{i=1}^m X_{1i}$ and $\hat{\mu}_2 \triangleq (1/n) \sum_{j=1}^n X_{2j}$
- $T_{m+n-2}^2 \triangleq \frac{(m+n-2)mn}{m+n} \frac{(\hat{\mu}_1 \hat{\mu}_2)^2}{\sum_{i=1}^m (X_{1i} \hat{\mu}_1)^2 + \sum_{j=1}^n (X_{2j} \hat{\mu}_2)^2}$
- GLR is $\Lambda = \left[1 + \frac{T_{m+n-2}^2}{m+n-2}\right]^{-(m+n)/2}$ (monotonically decreasing function of T_{m+n-2}^2)
- GLRT: Reject H_1 if $T_{m+n-2}^2 > t_c^2$ (i.e., $0 < \Lambda < \lambda_c$). Note: $\{T_{m+n-2}^2 > t_c^2\} = \{T_{m+n-2} < -t_c\} \cup \{T_{m+n-2} > t_c\}$
- Under the constraint of type I error probability α , with equal probability for the two events, $P[T_{m+n-2} > t_c] = 0.5\alpha \Rightarrow F_T(t_c; m+n-2) = 1-0.5\alpha$. Thus, $t_c = t_{[1-0.5\alpha]}$.

Detailed Development of T-Test

- Parameter space for H_1 is $\Theta_1 = (\mu, \sigma^2)$
- ullet Global parameter space is $\Theta=(\mu_1,\mu_2,\sigma^2)$
- Likelihood function is

$$L(\mu_1, \mu_2, \sigma) = f_{\mathbf{X}_1 \mathbf{X}_2}(\{X_{1i}\}, \{X_{2j}\})$$

$$= \left(\frac{1}{2\pi\sigma^2}\right)^{(m+n)/2} \exp\left(-\frac{\sum_{i=1}^m (X_{1i} - \mu_1)^2 + \sum_{j=1}^n (X_{2j} - \mu_2)^2}{2\sigma^2}\right)$$

• To compute $L_{\rm GM}$, we first find $\hat{\mu}_1^{\dagger}$, $\hat{\mu}_2^{\dagger}$ and $\hat{\sigma}^{2\dagger}$ as follows:

$$\frac{\partial L(\mu_{1}, \mu_{2}, \sigma^{2})}{\partial \mu_{1}} = 0 \quad \Rightarrow \quad \hat{\mu}_{1}^{\dagger} = \frac{1}{m} \sum_{i=1}^{m} X_{1i} = \hat{\mu}_{1}$$

$$\frac{\partial L(\mu_{1}, \mu_{2}, \sigma^{2})}{\partial \mu_{2}} = 0 \quad \Rightarrow \quad \hat{\mu}_{2}^{\dagger} = \frac{1}{n} \sum_{j=1}^{m} X_{2j} = \hat{\mu}_{2}$$

$$\frac{\partial L(\mu_{1}, \mu_{2}, \sigma^{2})}{\partial \sigma^{2}} = 0 \quad \Rightarrow \quad \hat{\sigma}^{2\dagger} = \left(\sum_{i=1}^{m} (X_{1i} - \hat{\mu}_{1})^{2} + \sum_{j=1}^{n} (X_{2j} - \hat{\mu}_{2})^{2}\right) / (m+n) = \hat{\sigma}^{2}$$

• $L_{\mathrm{GM}} = L(\hat{\mu}_1, \hat{\mu}_2, \hat{\sigma}^2)$

$$L_{\text{GM}} = \left(\frac{m+n}{2\pi(\sum_{i=1}^{m}(X_{1i}-\hat{\mu}_1)^2 + \sum_{j=1}^{n}(X_{2j}-\hat{\mu}_2)^2)}\right)^{(m+n)/2} \exp\left(-\frac{m+n}{2}\right)$$

• To compute $L_{\rm LM}$ with parameter space Θ_1 , we first find $\hat{\mu}^*$ and $\hat{\sigma}^{2*}$ as

$$\frac{\partial L(\mu, \mu, \sigma^{2})}{\partial \mu} = 0 \quad \Rightarrow \quad \hat{\mu}^{*} = \frac{1}{m+n} \left(\sum_{i=1}^{m} X_{1i} + \sum_{j=1}^{m} X_{2j} \right) = \frac{m}{m+n} \hat{\mu}_{1} + \frac{n}{m+n} \hat{\mu}_{2}$$

$$\frac{\partial L(\mu, \mu, \sigma^{2})}{\partial \sigma^{2}} = 0 \quad \Rightarrow \quad \hat{\sigma}^{2*} = \frac{\sum_{i=1}^{m} (X_{1i} - \hat{\mu}_{1})^{2} + \sum_{j=1}^{n} (X_{2j} - \hat{\mu}_{2})^{2} + \frac{mn}{m+n} (\hat{\mu}_{1} - \hat{\mu}_{2})^{2}}{m+n}$$

• $L_{\rm LM} = L(\hat{\mu}^*, \hat{\mu}^*, \hat{\sigma}^{2*})$

$$L_{\text{LM}} = \left[\frac{(m+n)}{2\pi \left(\sum_{i=1}^{m} (X_{1i} - \hat{\mu}_1)^2 + \sum_{j=1}^{n} (X_{2j} - \hat{\mu}_2)^2 + \frac{mn}{m+n} (\hat{\mu}_1 - \hat{\mu}_2)^2 \right)} \right]^{(m+n)/2} e^{-\frac{m+n}{2}}$$

GLR is

$$\Lambda = rac{L_{ ext{LM}}}{L_{ ext{GM}}} = \left[1 + rac{rac{mn}{m+n}(\hat{\mu}_1 - \hat{\mu}_2)^2}{\sum_{i=1}^m (X_{1i} - \hat{\mu}_1)^2 + \sum_{j=1}^n (X_{2j} - \hat{\mu}_2)^2}
ight]^{-(m+n)/2}$$

- $Z \triangleq \frac{\hat{\mu}_1 \hat{\mu}_2}{\sigma \sqrt{(m+n)/(mn)}}$ which is N(0,1).
- $W_{m+n-2} \triangleq \sum_{i=1}^{m} \frac{(X_{1i} \hat{\mu}_1)^2}{\sigma^2} + \sum_{j=1}^{n} \frac{(X_{2j} \hat{\mu}_2)^2}{\sigma^2}$ which is Chi-square with DOF m + n 2.
- $T_{m+n-2} \triangleq \frac{Z\sqrt{m+n-2}}{\sqrt{W_{m+n-2}}}$ which is *t*-distributed with DOF m+n-2.
- GLR is $\Lambda = \left[1 + \frac{T_{m+n-2}^2}{m+n-2}\right]^{-(m+n)/2}$

• Example 7.3-8. 15 samples are generated from a N(0,2) population (P1), $S_1 = \{2.21, 0.83, 0.393, 0.975, 0.195, 0.069, 1.91, 1.44, 3.98, 0.98, 2.84, 1.56, 0.4, 1.08, 0.116\},$ $\hat{\mu}'_1 = -0.258, \ m = 15, \ \sum_{i=1}^{15} = (X'_{1i} - \hat{\mu}'_1)^2 = 40.48.$ 15 samples are generated from a N(2,2) population (P2), $S_2 = \{1.28, 0.258, 0.947, 5.85, 1.56, 1.48, 1.95, 3.22, 1.41, 1.84, 2.69, 3.94, 2.04, 2.08, 1.44\},$ $\hat{\mu}'_2 = 1.801, \ n = 15, \ \sum_{i=1}^{15} = (X'_{2i} - \hat{\mu}'_2)^2 = 45.66.$ Denote $H_1: \mu_1 = \mu_2$. With $\alpha = P(\text{reject } H_1 | H_1 \text{ true}) = 0.01$, should we accept the hypothesis H_1 ?

Solution:

We have

$$T^{2} \triangleq (m+n-2) \frac{mn(m+n)^{-1}(\hat{\mu}_{1}-\hat{\mu}_{2})^{2}}{\sum_{i=1}^{m}(X'_{1i}-\hat{\mu}'_{1})^{2}+\sum_{i=1}^{n}(X'_{2i}-\hat{\mu}'_{2})^{2}} = 10.34.$$

We find
$$F_T(t_{[1-0.5\alpha]}; 28) = 0.995$$
 (DOF = $15 + 15 - 2 = 28$).

From the t-distribution table, we find $t_{[1-0.5\alpha]} = 2.763$.

Since $T^2 > t_{[1-0.5\alpha]}^2$, we reject the hypothesis.

Testing Equality of Variances of Two Normal Populations (F-Test)

Problem Statement

- m i.i.d. samples $\{X_{1i}, i=1,\cdots,m\}$ from population P1 with $X_1:N(\mu_1,\sigma_1^2)$
- n i.i.d. samples $\{X_{2i}, i=1,\cdots,n\}$ from population P2 with $X_2: N(\mu_2,\sigma_2^2)$
- $E[(X_{1i} \mu_1)(X_{2i} \mu_2)] = 0$ for all i, j
- $H_1: \sigma_1^2 = \sigma_2^2 = \sigma^2$ versus $H_2: \sigma_1^2 \neq \sigma_2^2$, $(\mu_i, \sigma_i^2$: unknown)

Testing Equality of Variances of Two Normal Populations (F-Test)

Test Procedure

- $\hat{\mu}_1 \triangleq (1/m) \sum_{i=1}^m X_{1i}$ and $\hat{\mu}_2 \triangleq (1/n) \sum_{i=1}^n X_{2i}$
- Unbiased variance estimate ratio $V_R \triangleq \frac{\hat{\sigma}_1^2}{\hat{\sigma}_2^2} = \frac{(n-1)\sum_{i=1}^m (X_{1i} \hat{\mu}_1)^2}{(m-1)\sum_{i=1}^n (X_{2i} \hat{\mu}_2)^2}$
- GLR $\Lambda \triangleq \frac{L_{\text{LM}}}{L_{\text{GM}}} = \frac{(m+n)^{(m+n)/2}}{m^{m/2}n^{n/2}} \frac{[V_R(m-1)/(n-1)]^{m/2}}{[1+V_R(m-1)/(n-1)]^{(m+n)/2}}$
- When H_1 is true, $V_R = F_{m-1,n-1}$ where $F_{m-1,n-1}$ is an RV with F-distribution with m-1 and n-1 DOFs.
- Rejection/critical region of H_1 : $\{0 < \Lambda < c\}$, equivalently $\{0 < V_R < t_I\} \cup \{t_u < V_R\}$. (See Fig.)
- Given a significance level α , find t_l and t_u such that $P[0 < V_R < t_l] + P[t_u < V_R] = \alpha$. Or for simplicity without much loss of accuracy, find t_l' and t_u' such that $P[0 < V_R < t_l'] = P[t_u' < V_R] = \alpha/2$ (see Fig.), i.e., $t_l' = x_{[0.5\alpha]}$ and $t_u' = x_{[1-0.5\alpha]}$ obtained from the 100a percentile point of $F_{m-1,n-1}$, namely $F_F(x_a; m-1; n-1) = a$.
- Reject H_1 if $\{0 < V_R < t_I\}$ or $\{t_u < V_R < \infty\}$; or if $\{0 < V_R < x_{[0.5\alpha]}\}$ or $\{x_{[1-0.5\alpha]} < V_R\}$.

Detailed Development of F-Test

- Parameter space for H_1 is $\Theta_1 = \{\mu_1, \mu_2, \sigma^2\}$
- Parameter space for H_2 is $\Theta = \{\mu_1, \mu_2, \sigma_1^2, \sigma_2^2\}$
- Likelihood function is

$$L(\Theta) = \left(\frac{1}{2\pi\sigma_1^2}\right)^{m/2} \exp\left(-\frac{\sum_{i=1}^m (X_{1i} - \mu_1)^2}{2\sigma_1^2}\right) \left(\frac{1}{2\pi\sigma_2^2}\right)^{n/2} \exp\left(-\frac{\sum_{i=1}^n (X_{2i} - \mu_2)^2}{2\sigma_2^2}\right)$$

• For H_1 ,

$$L(\Theta_1) = \left(\frac{1}{2\pi\sigma^2}\right)^{(m+n)/2} \exp\left(-\frac{\sum_{i=1}^m (X_{1i} - \mu_1)^2 + \sum_{j=1}^n (X_{2j} - \mu_2)^2}{2\sigma^2}\right)$$

and solving
$$\frac{\partial \ln L(\Theta_1)}{\partial \mu_1} = 0$$
, $\frac{\partial \ln L(\Theta_1)}{\partial \mu_2} = 0$, $\frac{\partial \ln L(\Theta_1)}{\partial \sigma^2} = 0$ yield

$$\hat{\mu}_1^* = \frac{1}{m} \sum_{i=1}^m X_{1i} = \hat{\mu}_1, \quad \hat{\mu}_2^* = \frac{1}{n} \sum_{j=1}^m X_{2j} = \hat{\mu}_2$$

$$\hat{\sigma}^{2*} = \left(\sum_{i=1}^{m} (X_{1i} - \hat{\mu}_1)^2 + \sum_{j=1}^{n} (X_{2j} - \hat{\mu}_2)^2\right) / (m+n)$$

• Substituting μ_1^* , μ_2^* , σ^{2*} into $L(\Theta_1)$ gives

$$L_{\mathrm{LM}} = \left(\frac{m+n}{2\pi \left[\sum_{i=1}^{m} (X_{1i} - \hat{\mu}_1)^2 + \sum_{j=1}^{n} (X_{2j} - \hat{\mu}_2)^2 \right]} \right)^{(m+n)/2} \exp\left(-\frac{m+n}{2} \right)$$

• To compute $L_{\rm GM}$, solve $\frac{\partial \ln L(\Theta)}{\partial \mu_1} = 0$, $\frac{\partial \ln L(\Theta)}{\partial \mu_2} = 0$, $\frac{\partial \ln L(\Theta)}{\partial \sigma_1^2} = 0$, $\frac{\partial \ln L(\Theta)}{\partial \sigma_2^2} = 0$ to obtain

$$\hat{\mu}_{1}^{\dagger} = \frac{1}{m} \sum_{i=1}^{m} X_{1i} = \hat{\mu}_{1}, \qquad \hat{\mu}_{2}^{\dagger} = \frac{1}{n} \sum_{j=1}^{m} X_{2j} = \hat{\mu}_{2}$$

$$\hat{\sigma}_1^{2\dagger} = rac{1}{m} \sum_{i=1}^m (X_{1i} - \hat{\mu}_1)^2 = \hat{\sigma}_{1,\mathrm{ML}}^2, \quad \hat{\sigma}_2^{2\dagger} = rac{1}{n} \sum_{i=1}^n (X_{2i} - \hat{\mu}_2)^2 = \hat{\sigma}_{2,\mathrm{ML}}^2$$

• Substituting μ_1^{\dagger} , μ_2^{\dagger} , $\sigma_1^{2\dagger}$, $\sigma_2^{2\dagger}$ into $L(\Theta)$ gives

$$L_{\mathrm{GM}} = rac{1}{(2\pi)^{(m+n)/2}} \left[rac{1}{m} \sum_{i=1}^{m} (X_{1i} - \hat{\mu}_1)^2
ight]^{-m/2} \left[rac{1}{n} \sum_{i=1}^{n} (X_{2i} - \hat{\mu}_2)^2
ight]^{-n/2} \exp(-rac{m+n}{2}).$$

•
$$\Lambda = \frac{L_{\rm LM}}{L_{\rm GM}}$$

$$\Lambda = \frac{\left(\frac{m+n}{\sum_{i=1}^{m}(X_{1i}-\hat{\mu}_{1})^{2}+\sum_{i=1}^{n}(X_{2i}-\hat{\mu}_{2})^{2}}\right)^{(m+n)/2}}{\left(\frac{m}{\sum_{i=1}^{m}(X_{1i}-\hat{\mu}_{1})^{2}}\right)^{m/2}\left(\frac{n}{\sum_{i=1}^{n}(X_{2i}-\hat{\mu}_{2})^{2}}\right)^{n/2}}$$

• Using unbiased variance estimates $\hat{\sigma}_1^2 = \sum_{i=1}^m (X_{1i} - \hat{\mu}_1)^2/(m-1)$, $\hat{\sigma}_2^2 = \sum_{i=1}^n (X_{2i} - \hat{\mu}_2)^2/(n-1)$ and defining $V_R \triangleq \hat{\sigma}_1^2/\hat{\sigma}_2^2$, and after some simplification we obtain

$$\Lambda = \frac{(m+n)^{(m+n)/2}}{m^{m/2}n^{n/2}} \ \frac{\left[V_R \ (m-1)/(n-1)\right]^{m/2}}{\left[1+V_R \ (m-1)/(n-1)\right]^{(m+n)/2}}$$

• Note that $F_F(x_{[a]}; n_1, n_2) = a$ and $F_F(x_{[1-a]}; n_2, n_1) = 1 - a$ are related by $x_{[a]} = \frac{1}{x_{[1-a]}}$.

• Example 7.3-9

Test the hypothesis that the variances of two populations are the same at the significance level of $\alpha = 0.05$. The two sets of samples are:

N(0,1): { 0.436, -1 .06, -1 .11, 0.46, 0.491, -1 .05, 0.502, 0.598, 1.61, -0 .981, -0 .021, 0.253, -1 .24, 0.059, 2.12 }, with
$$\hat{\mu}_1 = 0.074$$
, $\hat{\sigma}_1^2 = 1.02$. $N(0,4)$: {0.634, 0.0818, -1.32, 2.96, 3.11, 3.13, 2.62, -1.96, 0.85, -6.51, -3.39, 4.25, -1.08, 3.42, 2.72}, with $\hat{\mu}_2 = 0.54$, $\hat{\sigma}_2^2 = 9.25$.

Solution:

We compute

$$V_R = \frac{(15-1)\sum_{i=1}^{15}(X_{1i}-0.54)^2}{(15-1)\sum_{i=1}^{15}(X_{2i}-0.074)^2} = \frac{9.25}{1.02} = 9.06.$$

For $\alpha = 0.05$, using 'equal area' approach, we seek $x_{[0.025]}$ and $x_{[0.975]}$ such that $F_F(x_{[0.025]}; 14; 14) = 0.025$ and $F_F(x_{[0.975]}; 14; 14) = 0.975$.

We obtain $x_{[0.025]} = 0.34$ and $x_{[0.975]} = 2.98$, which give the acceptance region (0.34, 2.98).

Since $V_R \notin (0.34, 2.98)$, the hypothesis is rejected.

F-Test for Testing If Multiple Groups Are Statistically Alike

- k groups; group i has n_i i.i.d. samples with variance σ_i^2 ; $\sum_{i=1}^k n_i = n$
- H_1 : Statistics (e.g., mean and variance) of k groups are the same
- $Y_{ij} = j$ th sample of group i
- $Z_i \triangleq \sum_{j=1}^{n_i} Y_{ij}/n_i$ and $\hat{\mu}_Z \triangleq \sum_{i=1}^k Z_i/k$. Then $\sigma_{Z_i}^2 = \sigma_{Y_i}^2/n_i$.
- If $n_i \gg 1$ and $\{Z_i\}$ are i.i.d. (i.e., under H_1), then $V \triangleq \sum_{i=1}^k \left(\frac{Z_i \hat{\mu}_Z}{\sigma_{Z_i}}\right)^2$ is χ_{k-1}^2 . Note $\sum_{i=1}^k (Z_i - \hat{\mu}_Z)^2$ is sometimes called inter-group variability.
- If $n_i \gg 1$ and $\{Z_i\}$ are independent, $W \triangleq \sum_{i=1}^k \sum_{j=1}^{n_i} \left(\frac{Y_{ij} Z_i}{\sigma_{Y_i}}\right)^2$ is χ^2_{n-k} .
- Under H_1 , $\frac{V/(k-1)}{W/(n-k)}$ is distributed as $F_{k-1,n-k}$: $\frac{V/(k-1)}{W/(n-k)} = \frac{(n-k)\sum_{i=1}^k n_i (Z_i \hat{\mu}_Z)^2}{(k-1)\sum_{i=1}^k \sum_{i=1}^{n_i} (Y_{ij} Z_i)^2}$
- The F test: Accept H_1 if $\frac{V/(k-1)}{W/(n-k)} < c$. Reject H_1 otherwise.
- For a significance level α , $c = f_{[1-\alpha]}$ such that $F_F(f_{[1-\alpha]}; k-1, n-k) = 1-\alpha$.

Dr. Minn EESC 6349, UT-Dallas 33

Testing Whether $\sigma^2 = \sigma_0^2$ for a Normal Population

- m i.i.d. samples $\{X_i, i =, \dots, m\}$ from $N(\mu, \sigma^2)$
- $H_1: \sigma^2 = \sigma_0^2$ versus $H_2: \sigma^2 \neq \sigma_0^2$
- $\Theta_1 = \{\mu, \sigma_0^2\}$ and $\Theta = \{\mu, \sigma^2\}$
- $L(\Theta_1) = (2\pi\sigma_0^2)^{-m/2} \exp\left(-\frac{1}{2}\sum_{i=1}^m (\frac{X_i-\mu}{\sigma_0})^2\right)$ which is maximized when $\hat{\mu}^* = \hat{\mu} \triangleq \frac{1}{m}\sum_{i=1}^m X_i$. Thus,

$$L_{\text{LM}} = \frac{1}{(2\pi\sigma_0^2)^{m/2}} \exp\left(-\frac{1}{2} \sum_{i=1}^m \left(\frac{X_i - \hat{\mu}}{\sigma_0}\right)^2\right)$$

• $L(\Theta) = (2\pi\sigma^2)^{-m/2} \exp\left(-\frac{1}{2}\sum_{i=1}^m (\frac{X_i - \mu}{\sigma})^2\right)$ which is maximized when $\hat{\mu}^{\dagger} = \hat{\mu}$ and $\hat{\sigma}^{2\dagger} = \hat{\sigma}_{\mathrm{ML}}^2 \triangleq \frac{1}{m}\sum_{i=1}^m (X_i - \hat{\mu})^2$. Thus,

$$L_{\text{GM}} = \frac{1}{(2\pi\hat{\sigma}_{\text{ML}}^2)^{m/2}} \exp\left(-\frac{1}{2} \sum_{i=1}^{m} \left(\frac{X_i - \hat{\mu}}{\hat{\sigma}_{\text{ML}}}\right)^2\right) = \frac{\exp(-m/2)}{(2\pi\hat{\sigma}_{\text{ML}}^2)^{m/2}}$$

• $\Lambda = L_{\rm LM}/L_{\rm GM}$ is

$$\Lambda = \left(\frac{1}{m} \sum_{i=1}^{m} \left(\frac{X_i - \hat{\mu}}{\sigma_0}\right)^2\right)^{m/2} \exp\left(\frac{1}{2} \left[m - \sum_{i=1}^{m} \left(\frac{X_i - \hat{\mu}}{\sigma_0}\right)^2\right]\right)$$

• Note that $W \triangleq \sum_{i=1}^{m} \left(\frac{X_i - \hat{\mu}}{\sigma_0}\right)^2$ is χ^2_{m-1} . Then

$$\Lambda = \left(\frac{W}{m}\right)^{m/2} \exp\left(-0.5(W-m)\right)$$

- The critical event $\{0 < \Lambda < c\}$ is equivalent to $\{0 < W < t_l\} \cup \{t_u < W\}$ where $\Lambda(t_l) = \Lambda(t_u)$ and $t_l < t_u$. (See Fig.)
- For $P[\text{reject } H_1|H_1 \text{ true}] = \alpha$, using equal area rule for simplicity, we can use $t_l' = x_{[0.5\alpha]}$ and $t_u' = x_{[1-0.5\alpha]}$ where $F_{\chi^2}(x_{[0.5\alpha]}; m-1) = 0.5\alpha$ and $F_{\chi^2}(x_{[1-0.5\alpha]}; m-1) = 1 0.5\alpha$.
- Reject H_1 if $0 < W < t'_I$ or $W > t'_u$.

• Example 7.3-10 Two sets of samples, P1 and P2 are drawn from N(1,1) and N(1,4), respectively. Test the hypothesis $H_1: \sigma^2 = \sigma_0^2 = 1$ versus $H_2: \sigma^2 \neq \sigma_0^2$ for each set using $\alpha = 0.05$ and $\alpha = 0.2$. N(1,1) [P1] -0.0644 2.91 -0.323 1.21 2.66 0.45 1.26 0.923 1.96 1.62 N(1,4) [P2] 0.705 0.685 0.718 1.03 2.52 1.96 0.417 2.69 -1.52 2.98

Solution: From P1 and P2, we compute $W_1 = 10.3$ and $W_2 = 16.5$, according to $W \triangleq \sum_{i=1}^{10} \left(\frac{X_i - \hat{\mu}}{\sigma_0}\right)^2$. Note $W \sim \chi_9^2$.

For $\alpha = 0.05$, from χ^2 CDF table, we have $t'_l = x_{[0.5\alpha]} = 2.7$ and $t'_u = x_{[1-0.5\alpha]} = 19$.

Thus, the critical region is $(0,2.7) \cup (19,\infty)$.

Since $W_1, W_2 \notin (0, 2.7) \cup (19, \infty)$, we accept H_1 for both P1 and P2.

For $\alpha = 0.2$, the critical region is $(0, 4.17) \cup (14.7, \infty)$.

Since $W_1 \notin (0, 4.17) \cup (14.7, \infty)$ but $W_2 \in (0, 4.17) \cup (14.7, \infty)$, H_1 is rejected for P2 but accepted for P1.

Note: (1) Small sample sizes lead to errors; (2) Small α leads to small critical region.

Goodness of Fit (Pearson's Test or Chi-Square Test)

- H_1 : a set of probabilities $\{p_i, i=1,\cdots,L\}$ satisfy $\{p_i=p_{0i}, i=1,\cdots,L\}$ for the predetermined values $\{p_{0i}\}$
- We can test whether data $\{X_i\}$ come from an assumed distribution (CDF), pdf, or PMF by defining $p_i = P[x_i < X \le x_{i+1}]$ where the range of X is divided into L bins defined by $(x_i, x_{i+1}]$, $i = 1, \dots, L$.
- Define an RV X_{ij} as $X_{ij} \triangleq 1$ if jth observation of X is in bin i and $X_{ij} \triangleq 0$ otherwise. Define $P[X_{ij} = 1] \triangleq p_i$. Note $\sum_{i=1}^{L} p_i = 1$.
- Number of outcomes in bin i from n trials is $Y_i = \sum_{j=1}^n X_{ij}$, $i = 1, \dots, L$. Note $\sum_{i=1}^L Y_i = n$.
- $\{Y_i\}$ have multinomial PMF, but for $n \gg 1$, Y_i is (approx) $N(np_i, np_i)$.
- Pearson's test statistics is defined as $V \triangleq \sum_{i=1}^{L} \left(\frac{Y_i np_{0i}}{\sqrt{np_{0i}}} \right)^2$. Under H_1 , V is (approx) χ^2 with L-1 DOF.
- Pearson's test or Chi-Square test: Reject H_1 if V > c.
- For significance α , $c = x_{[1-\alpha]}$ where $F_{\chi^2}(x_{[1-\alpha]}, L-1) = 1-\alpha$.

Dr. Minn EESC 6349, UT-Dallas 38

• Example 7.4-1

We flip a coin 100 times and observe 61 heads and 39 tails. Test the hypothesis H_1 : the coin is fair, i.e., $p_{01}=P[\text{head}]=0.5=p_{02}=P[\text{tail}]$. (Set significant level $\alpha=0.05$)

Solution:

We have

$$V = \sum_{i=1}^{2} \left(\frac{Y_i - np_{0i}}{\sqrt{np_{0i}}} \right)^2 = \frac{(61 - 50)^2}{100 \times 0.5} + \frac{(39 - 50)^2}{100 \times 0.5} = 4.84.$$

Computing the critical value from $0.95 = F_{\chi^2}(x_{[0.95]}; 1)$ yields $x_{[0.95]} = 3.84$.

Since V = 4.84 > 3.84, we reject the hypothesis that the coin is fair.

• Example 7.4-2

Test the hypothesis that a six-faced die is fair at $\alpha = 0.05$. Let $Y_i, i = 1, ..., 6$ denote the number of times face i shows up. Casting the die 1000 times, we observe

$$Y_1 = 152, Y_2 = 175, Y_3 = 165, Y_4 = 180, Y_5 = 159, Y_6 = 171.$$

Solution:

We have

$$V = \sum_{i=1}^{6} \left(\frac{Y_i - np_{0i}}{\sqrt{np_{0i}}} \right)^2 = \frac{6}{1000} \sum_{i=1}^{6} (Y_i - 1000/6)^2 = 3.25.$$

Computing the critical value from $0.95 = F_{\chi^2}(x_{[0.95]}; 5)$ yields $x_{[0.95]} = 11.1$.

Since V = 3.25 < 11.1, we accept the hypothesis.

• Example 7.4-3 (Test of Normality) Let H_1 be the hypothesis that X is distributed as N(0,1) and H_2 be the alternative. In 1000 observations, for the ten intervals defined as $R_1 \triangleq (-\infty, -2], \ R_2 \triangleq (-2, -1.5], \ R_3 \triangleq (-1.5, -1], \ R_4 \triangleq (-1, -0.5], \ R_5 \triangleq (-0.5, 0], \ R_6 \triangleq (0, 0.5], \ R_7 \triangleq (0.5, 1], \ R_8 \triangleq (1, 1.5], \ R_9 \triangleq (1.5, 2], \ \text{and} \ R_{10} \triangleq (2, \infty), \ \text{we observe that the number of outcomes in } R_i \ \text{denoted by } Y_i \ \text{for } i = 1, \cdots, 10, \ \text{are } Y_1 = 19, \ Y_2 = 42, \ Y_3 = 96, \ Y_4 = 135, \ Y_5 = 202, \ Y_6 = 193, \ Y_7 = 155, \ Y_8 = 72, \ Y_9 = 53, \ \text{and } Y_{10} = 33. \ \text{Test } H_1 \ \text{at } \alpha = 0.05.$

Solution: Define $p_{0i} = P[X_{SN} \in R_i]$. Then, we have $p_{01} = 0.023$, $p_{02} = 0.044$, $p_{03} = 0.092$, $p_{04} = 0.145$, $p_{05} = 0.1915$, $p_{06} = 0.1915$, $p_{07} = 0.15$, $p_{08} = 0.092$, $p_{09} = 0.044$, $p_{010} = 0.023$.

We have
$$V = \sum_{i=1}^{10} \left(\frac{Y_i - np_{0i}}{\sqrt{np_{0i}}} \right)^2 = 12.9.$$

Computing the critical value from $1 - \alpha = 0.95 = F_{\chi^2}(x_{[0.95]}; 9)$ yields $x_{[0.95]} = 16.92$.

Since $V < x_{[0.95]}$, we accept the hypothesis H_1 .

Testing If $P[E_1] = P[E_2]$ Using Pearson's Test

- Z_1 = number of times E_1 occurs in m i.i.d. trials
- Z_2 = number of times E_2 occurs in n i.i.d. trials
- Define $P[E_i] \triangleq p_i$, $q_i = 1 p_i$, i = 1, 2.
- Define $Y = (Z_1/m) (Z_2/n)$. Note for $m \gg 1, n \gg 1$, by CLT, we have $Z_1/m : N(p_1, p_1q_1/m)$ and $Z_2/n : N(p_2, p_2q_2/n)$.
- Under $H_1 \triangleq \{p_1 = p_2\}$, $Y : N(0, p_1q_1(m+n)/(mn))$, and the Pearson test statistics is $V = \left(\frac{Y}{\sigma_Y}\right)^2$ which is χ_1^2 (with 1 DoF).
- At significance α , find $x_{[1-\alpha]}$ which satisfies $F_{\chi^2}(x_{[1-\alpha]};1)=1-\alpha$. Then, the test is

Accept H_1 if $V < x_{[1-\alpha]}$. Reject H_1 otherwise.

• If σ_Y is unknown, replace it with its estimate $\hat{\sigma}_Y = \sqrt{\hat{p}\hat{q}(m+n)/(mn)}$ where $\hat{p} = (Z_1 + Z_2)/(m+n)$ and $\hat{q} = 1 - \hat{p}$. Recall that under H_1 , $p_1 = p_2 = p$ and $\sigma_Y^2 = pq(m+n)/(mn)$.

Dr. Minn EESC 6349, UT-Dallas 42

• Example 7.4-4 In a Governor's race, exit polls showed in a upstate county 167 out of 211 voters voted for the Republican, while in a downstate county 216 out of 499 voters voted Republican. Can we assume the probability, p_1 , that an upstate voter will vote for Republican is the same as, p_2 , that of a downstate voter? ($\alpha = 0.05$)

Solution: Denote $H_1 : p_1 = p_2 = p$ and $H_2 : p_1 \neq p_2$.

Under H_1 , we compute

$$\hat{p} = \frac{Z_1 + Z_2}{m + n} = \frac{167 + 216}{211 + 499} = 0.54, \quad \hat{q} = 0.46,$$

$$\hat{\sigma}_Y = \sqrt{\hat{p}\hat{q}(m+n)/(mn)} = 0.041,$$

$$Y = (Z_1/m) - (Z_2/n) = 0.36,$$

$$V = Y^2/\sigma_y^2 = (0.36/0.041)^2 \approx 77.$$

At $\alpha = 0.05$, we find that $x_{[0.95]} = 3.84$ from $F_{\chi^2}(x_{[0.95]}; 1) = 0.95$.

Since $x_{[0.95]} = 3.84 < V$, the hypothesis is rejected.

Run Test for Equality of Two Populations

(Distribution-Free Hypothesis Testing)

- n_1 i.i.d. observations $\{X_i^{(1)}, i=1,\cdots,n_1\}$ from population P1
- n_2 i.i.d. observations $\{X_i^{(2)}, i=1,\cdots,n_2\}$ from population P2
- H_1 : P1 and P2 have the same distribution (or the two sets of samples come from the same population)
- H_2 : the two sets of samples come from different populations (or no enough evidence for H_1)
- $\{Y_i, i = 1, \dots, n_1\} \triangleq \text{ ordered samples of } \{X_i^{(1)}\} \text{ s.t. } Y_i < Y_{i+1}.$
- $\{Z_i, i = 1, \dots, n_2\} \triangleq \text{ ordered samples of } \{X_i^{(2)}\} \text{ s.t. } Z_i < Z_{i+1}.$
- Mix $\{Y_i\}$ and $\{Z_i\}$ and order them similarly. Then count the total number of runs of the ordered sequence, and denote it by D.
- For example, the following ordered sequence y_1 y_2 z_1 z_2 y_3 y_4 y_5 z_3 z_4 z_5 y_6 y_7 y_8 z_6 z_7 z_8 z_9 y_9 y_{10} z_{10} has D=8 runs. The first run is y_1y_2 , the second run is z_1z_2 , the third is $y_3y_4y_5$, etc.

• For $n_1 \ge 10$ and $n_2 \ge 10$, under H_1 , D can be approximated as Normal with mean and variance given by

$$\mu_D pprox rac{2n_1n_2}{n_1+n_2} \quad ext{and} \quad \sigma_D^2 pprox 4(n_1+n_2) \left(rac{n_1}{n_1+n_2}
ight)^2 \left(rac{n_2}{n_1+n_2}
ight)^2.$$

• For a significance level α , the test threshold d_0 can be computed from SN CDF as

$$\alpha = \sum_{\text{all } d \leq d_0} P_D(d) \approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z_{[\alpha]}} \exp(-0.5x^2) dx = \Phi(z_{[\alpha]}) = F_{SN}(z_{[\alpha]})$$

where
$$z_{[\alpha]} \triangleq \frac{d_0 - \mu_D}{\sigma_D}$$
 or $d_0 = \mu_D + \sigma_D z_{[\alpha]}$.

• If $D > d_0$, accept H_1 . Otherwise, reject H_1 .

• Example 7.5-8 (modified)

Consider the following three sets of 10 ordered samples:

$$N(1,1) \rightarrow \{y^{(1)}: -1.4, -0.33, 0.4, 0.44, 0.7, 0.74, 1.3, 1.3, 1.7, 2.4\}$$

 $N(1,1) \rightarrow \{y^{(2)}: -0.67, -0.21, 0.38, 0.38, 0.51, 0.71, 1.4, 1.5, 2, 2.9\}$
 $N(1,3) \rightarrow \{y^{(3)}: -3.8, -2.5, -0.13, 2.2, 2.8, 3, 3.8, 4.6, 5.5, 5.8\}$
where we know $\{y^{(1)}\}$ comes from $N(1,1)$ but don't know about $\{y^{(2)}\}$ ad $\{y^{(3)}\}$. At a significant level $\alpha=0.05$ and $\alpha=0.2$, (a) test the hypothesis H_a that $\{y^{(1)}\}$ and $\{y^{(2)}\}$ come from the same distribution of $N(1,1)$, (b) test the hypothesis H_b that $\{y^{(1)}\}$ and $\{y^{(3)}\}$ come from the same distribution of $N(1,1)$,

Solution:

$$\mu_D pprox rac{2n_1n_2}{n_1+n_2} = 10, \quad \sigma_D^2 pprox 4(n_1+n_2) \left(rac{n_1}{n_1+n_2}
ight)^2 \left(rac{n_2}{n_1+n_2}
ight)^2 = 5.$$
 For $lpha = 0.05$, $F_{\mathrm{SN}}(z_{[0.05]}) = 0.05$ yields $z_{[0.05]} = -1.65$ and $d_0 = \sigma_D z_{[0.05]} + \mu_D = 6.3.$ For $lpha = 0.2$, $F_{\mathrm{SN}}(z_{[0.2]}) = 0.2$ yields $z_{[0.2]} = -0.85$ (approx) and

For lpha=0.2, $F_{
m SN}(z_{[0.2]})=0.2$ yields $z_{[0.2]}=-0.85$ (approx) and $d_0=\sigma_D z_{[0.2]}+\mu_D=8.1$.

- (a) After interleaving $\{y^{(1)}\}$ and $\{y^{(2)}\}$ and counting the runs, we get D=14. Since $D>d_0$, we accept the hypothesis H_a for both cases of α .
- (b) After interleaving $\{y^{(1)}\}$ and $\{y^{(3)}\}$ and counting the runs, we get D=7. For $\alpha=0.05$, since $D>d_0$, we accept the hypothesis H_b .

For $\alpha = 0.2$, $D < d_0$, we reject the hypothesis H_b .

Ranking (Rank-Sum) Test for Equality of Two Populations

- $H_1: F_X = F_Y, H_2: F_X \neq F_Y$ for populations X and Y with CDF F_X and F_Y
- Obtain n_1 i.i.d. samples from population X and order them. Denote the ordered sequence by $\{X_i, i = 1, \dots, n_1\}$ where $X_i < X_{i+1}$.
- Obtain n_2 i.i.d. samples from population Y and order them. Denote the ordered sequence by $\{Y_i, i = 1, \dots, n_2\}$ where $Y_i < Y_{i+1}$.
- Mix $\{X_i\}$ and $\{Y_i\}$ and order them similarly. Then, assign the rank of the *i*th element of the ordered sequence to be *i*.
- For example, if $n_1 = 3$, $n_2 = 4$ and the ordered sequence is $X_1 \ Y_1 \ X_2 \ X_3 \ Y_2 \ Y_3 \ Y_4$, then the Y sequence has ranks 2, 5, 6, 7.
- A suitable test statistics is $T \triangleq \sum_{Y \text{ sequence}} \text{ranks}$.
- For $n_1 > 7$, $n_2 > 7$, under H_1 , T is approximately $N(\mu_T, \sigma_T^2)$ with $\mu_T = n_2(n_1 + n_2 + 1)/2$ and $\sigma_T^2 = n_1 n_2(n_1 + n_2 + 1)/12$.
- For a significance level α , the thresholds t_l and t_u can be found from CDF of Gaussian RV T as $F_T(t_l) = 0.5\alpha$ and $F_T(t_u) = 1 0.5\alpha$, i.e., $t_l = \mu_T + \sigma_T z_{[0.5\alpha]}$, $t_u = \mu_T + \sigma_T z_{[1-0.5\alpha]}$ where $F_{SN}(z_{[x]}) = x$.
- Accept H_1 if $t_l \leq T \leq t_u$. Reject H_1 otherwise.

Dr. Minn EESC 6349, UT-Dallas 47

• Example 7.5-9 (modified) Testing population sameness for $\{y^{(1)}\}$ and $\{y^{(3)}\}$ in Example 7.5-8 with ranking test for $\alpha=0.05$ and 0.2.

Solution:

Co-join $\{y^{(1)}\}$ and $\{y^{(3)}\}$ and assign ranks to the elements. Then, we have $y_1^{(3)} < y_2^{(3)} < y_1^{(1)} < y_2^{(1)} < y_3^{(3)} < y_3^{(1)} < y_4^{(1)} < y_5^{(1)} < y_6^{(1)} < y_7^{(1)} < y_8^{(1)} < y_9^{(1)} < y_1^{(3)} < y_2^{(3)} < y_1^{(3)} < y_1^$

Next, $\mu_T = n_2(n_1 + n_2 + 1)/2 = 105$ and $\sigma_T^2 = n_1 n_2(n_1 + n_2 + 1)/12 = 175$.

From SN CDF, we obtain $t_I = \mu_T + \sigma_T z_{[0.5\alpha]}$ and $t_u = \mu_T + \sigma_T z_{[1-0.5\alpha]}$ as follows:

At $\alpha = 0.05$, we have $z_{[0.025]} = -z_{[0.975]} = -1.96$ and $t_l = 79$, $t_u = 131$. Since rank-sum $T \in [t_l, t_u]$, we accept the hypothesis.

At $\alpha = 0.2$, we have $z_{[0.1]} = -z_{[0.9]} = -1.28$ and $t_l = 88$, $t_u = 122$. Since rank-sum $T \notin [t_l, t_u]$, we reject the hypothesis.