Linear Algebra

Chapter 6: Positive Definite Matrices
Solution of highlighted problems

2. Decide for or against the positive definiteness of these matrices, and write out the corresponding $f = x^{T}Ax$:

(a)
$$\begin{bmatrix} 1 & 3 \\ 3 & 5 \end{bmatrix}$$
. (b) $\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. (c) $\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$. (d) $\begin{bmatrix} -1 & 2 \\ 2 & -8 \end{bmatrix}$.

The determinant in (b) is zero; along what line is f(x,y) = 0?

(2) Checking Positive definiteness

a)
$$\begin{bmatrix} 1 & 3 \\ 3 & 5 \end{bmatrix} \rightarrow \det(A - \lambda I) = 0 \rightarrow \begin{bmatrix} 1 - \lambda & 3 \\ 3 & 5 - \lambda \end{bmatrix} = (1 - \lambda)(5 - \lambda) - 9 = 5 - 6\lambda + \lambda^2 - 9$$

$$= \lambda^{2} - 6\lambda - 4 = 0 \qquad \lambda = \frac{6 \mp \sqrt{36 - 4(1)(4)}}{2(1)} = \frac{6 \mp \sqrt{52}}{2} = 3 \mp \sqrt{13}$$

* As all the eigenvalues are not positive, we can conclude that the matrix is not a positive definite matrix.

$$-(8-\lambda+8\lambda-\lambda^2)-4=0 \longrightarrow -8+\lambda-8\lambda+\lambda^2-4=0 \longrightarrow -8-7\lambda+\lambda^2-4=0$$

$$\rightarrow \lambda^2-7\lambda-12=0 \longrightarrow \lambda=\frac{7\mp\sqrt{97}}{2}$$
 not positive definite

$$\begin{bmatrix} -1 & 2 \\ 2 & 8 \end{bmatrix} \longrightarrow de+(\begin{bmatrix} -1 \\ 2 & 8 \end{bmatrix}) = -8-4 = -12$$

As the Z sub determinants are not positive, the matrix is not Positive definite.

b)
$$f_{(x_1, x_1)} = x^T B X = [x_1 \ x_2] \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = [x_1 \ x_1] \begin{bmatrix} x_1 - x_2 \\ -x_1 + x_2 \end{bmatrix} = x_1 (x_1 - x_2) + x_2 (-x_1 + x_2)$$

$$= x_1^2 - x_1 x_2 - x_2 x_1 + x_2^2 = x_1^2 - 2x_1 x_2 + x_2^2 = (x_1 - x_2)^2 = 0 \longrightarrow x_1 = x_2$$

This means that the quadratic form & (xx, x2) is zero along the line where x1=x2

4. Decide between a minimum, maximum, or saddle point for the following functions.

(a)
$$F = -1 + 4(e^x - x) - 5x \sin y + 6y^2$$
 at the point $x = y = 0$.

(b)
$$F = (x^2 - 2x)\cos y$$
, with stationary point at $x = 1$, $y = \pi$.

4

a)
$$F = -1 + 4(e^{x} - x) - 5x \sin y + by^{2}$$
 $(x,y) = (0,0)$

$$\frac{\partial F}{\partial x} = 4e^{x} - 4 - 5\sin y \rightarrow \frac{\partial F}{\partial x}(0,0) = 0$$

$$\frac{\partial F}{\partial y} = -5 \times G \cdot y + 12 y \rightarrow \frac{\partial F}{\partial y} (0,0) = 0$$

In both first-order partial derivatives, we have the values of zero at the point (0,0), so it's the critical point.

$$\frac{\partial F}{\partial x^2} = 4e^{x} \qquad \frac{\partial F}{\partial y^2} = 12 + 5x \sin y \qquad \frac{\partial F}{\partial x \partial y} = -5 \cos y$$

At point (0,0), there second-order partial derivatives are equal to:

$$\frac{\partial F}{\partial x^2}(0,0) = 4 \qquad \frac{\partial F}{\partial y^2}(0,0) = 12 \qquad \frac{\partial F}{\partial x \partial y}(0,0) = -5$$

at (0,0)

$$- \frac{1}{2} \int_{-\infty}^{\infty} f_{xx} f_{yy} = 4x \cdot 12 = 48$$

$$- \frac{1}{2} \int_{-\infty}^{\infty} f_{xx} f_{yy} - (f_{xy})^{2} = 48 - 25 = 23 \quad (4)$$

$$- \frac{1}{2} \int_{-\infty}^{\infty} f_{xx} f_{yy} - (f_{xy})^{2} = 48 - 25 = 23 \quad (4)$$

by considering (#), (##), we can conclude that F(n,y) has a minimum at (0,0).

4. Decide between a minimum, maximum, or saddle point for the following functions.

(a)
$$F = -1 + 4(e^x - x) - 5x \sin y + 6y^2$$
 at the point $x = y = 0$.

(b)
$$F = (x^2 - 2x)\cos y$$
, with stationary point at $x = 1$, $y = \pi$.

b)

$$F = (x^{2}-2x) Gy$$

$$\frac{\partial F}{\partial x} = \frac{\partial}{\partial x} (x^{2} Gy - 2x Gy) = 2x Gy - 2 Gy = 2(x-1) Gy$$

$$\frac{\partial F}{\partial y} = (-5 iny) (x^{2}-2x) = (2x-x^{2}) 5 iny$$

$$\frac{\partial F}{\partial y} = (-1 iny) (x^{2}-2x) = (2x-x^{2}) 5 iny$$

$$\frac{\partial F}{\partial y} = (-1 iny) (x^{2}-2x) = (2x-x^{2}) 5 iny$$

$$\frac{\partial F}{\partial y} = (-1 iny) (x^{2}-2x) = (2x-x^{2}) 6 iny$$
is stationary or critical point.
$$\frac{\partial^{2} F}{\partial x^{2}} = 2 Gy$$

$$\frac{\partial^{2} F}{\partial y^{2}} = (2x-x^{2}) Gy$$

$$\frac{\partial^{2} F}{\partial x^{2}} = 2 Gy$$

$$\frac{\partial^{2} F}{\partial y^{2}} = (2x-x^{2}) Gy$$

$$\frac{\partial^{2} F}{\partial x^{2}} = 2 Gy$$

$$\frac{\partial^{2} F}{\partial y^{2}} = (2x-x^{2}) Gy$$

$$\frac{\partial^{2} F}{\partial x^{2}} = 2 Gy$$

Alternatively, we can consider another approach to figure out whether the critical point is minum, maximum or saddle point.

20. For
$$F_1(x,y) = \frac{1}{4}x^4 + x^2y + y^2$$
 and $F_2(x,y) = x^3 + xy - x$, find the second derivative matrices A_1 and A_2 :

$$A = \begin{bmatrix} \frac{\partial^2 F}{\partial x^2} & \frac{\partial^2 F}{\partial x \partial y} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y^2} \end{bmatrix}.$$

 A_1 is positive definite, so F_1 is concave up (= convex). Find the minimum point of F_1 and the saddle point of F_2 (look where first derivatives are zero).

y=-x2

so the critical point is $(x_1 - \frac{x^2}{2})$

by considering the critical point, we have positive semi-definite matrix.

$$\frac{y = -x^{2}}{2x} \quad H = \begin{bmatrix} 2x^{2} & 2x \\ 2x & 2 \end{bmatrix} \xrightarrow{\text{Odet (H)}} \frac{2(2x^{2}) - 4x^{2} = 0}{2x^{2}}$$

As the matrix's all principal minors are non-negative our Hessian matrix is positive semi-definite.

being a positive semi definite indicates that the quadratic function has a minimum or a plateau at the critical point.

the quadratic function has plateau on the critical points.

20. For
$$F_1(x,y) = \frac{1}{4}x^4 + x^2y + y^2$$
 and $F_2(x,y) = x^3 + xy - x$, find the second derivative matrices A_1 and A_2 :

$$A = \begin{bmatrix} \frac{\partial^2 F}{\partial x^2} & \frac{\partial^2 F}{\partial x \partial y} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y^2} \end{bmatrix}.$$

 A_1 is positive definite, so F_1 is concave up (= convex). Find the minimum point of F_1 and the saddle point of F_2 (look where first derivatives are zero).

$$F_2(x,y) = x^3 + xy - x$$

$$\frac{\partial F_2}{\partial x} = 3x + y - 1 = 0 \xrightarrow{(*)} y = 1$$

$$\frac{\partial F_2}{\partial y} = x = 0 \quad (*)$$

so the critical point is (0,1)

$$\frac{\partial^2 F_2}{\partial x^2} = 6x \qquad \frac{\partial^2 F_2}{\partial x \partial y} = \frac{\partial}{\partial x} (x) = 1 \qquad \frac{\partial^2 F_2}{\partial y^2} = \frac{\partial}{\partial y} (x) = 0$$

$$H = \begin{bmatrix} 6x & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Principal minors

eigen values

$$\begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 - 1 = 0 - \gamma \lambda : \{-1, 1\}$$

our function has a saddle point, as the eigen values take both signs at the Critical point, and our matrix is indefinite.

$$\frac{\partial^3 F_s}{\partial x^2} = \frac{\partial y}{\partial y}(x) = 0$$

1. For what range of numbers a and b are the matrices A and B positive definite?

$$A = \begin{bmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 4 \\ 2 & b & 8 \\ 4 & 8 & 7 \end{bmatrix}.$$

(1)
$$A = \begin{bmatrix} a & 2 & 2^{-1} \\ 2 & a & 2 \\ 2 & 2 & a \end{bmatrix}$$

a) $A = \begin{bmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{bmatrix}$ A is a positive definite matrix if all of its subdeterminants are greater than zero.

$$(Y+Y)\begin{vmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{vmatrix} = (a)\begin{vmatrix} a & 2 \\ 2 & a \end{vmatrix} + (2)\begin{vmatrix} 2 & 2 \\ 2 & a \end{vmatrix} + 2\begin{vmatrix} 2 & a \\ 2 & 2 \end{vmatrix}$$

$$= a(a^2-4) - 2(2a-4) + 2(4-2a)$$

$$= \alpha(a+2)(a-2) - 4(a-2) - 4(a-2) = \alpha(a+2)(a-2) - 8(a-2)$$

=
$$(a-2)(a^2+2a-8) = (a-2)(a-2)(a+4) = (a-2)^2(a+4) > 0$$

3. Construct an indefinite matrix with its largest entries on the main diagonal:

$$A = \begin{bmatrix} 1 & b & -b \\ b & 1 & b \\ -b & b & 1 \end{bmatrix} \quad \text{with } |b| < 1 \text{ can have } \det A < 0.$$

3
$$A = \begin{bmatrix} 1 & b - b \\ b & 1 & b \\ -b & b & 1 \end{bmatrix}$$
 (bK) det A <0

Principal minors

(A11 = 1 > 0)

(A31 < 0)

$$\begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix} - b \begin{bmatrix} b & b \\ -b & 1 \end{bmatrix} - b \begin{bmatrix} b & 1 \\ -b & b \end{bmatrix}$$

$$= (1 - b^2) - b (b + b^2) - b (b^2 + b) = 0$$

$$= (1 - b) (1 + b) - b^2 (1 + b) - b^2 (b + 1) = 0$$

$$= (1 + b) (1 - b - 2b^2) = 0 \longrightarrow b = \begin{cases} -1, \frac{1 + \sqrt{3}}{4} \end{cases}$$

$$b = \begin{cases} -1, -\frac{1}{2}, 1 \end{cases}$$

$$\frac{-1}{(1 + b - 2b^2) - \frac{1}{2}} + \frac{1}{1 + \frac{1}{2}}$$

$$\frac{-1}{(1 + b - 2b^2) - \frac{1}{2}} + \frac{1}{1 + \frac{1}{2}}$$

$$\frac{-1}{(1 + b - 2b^2) - \frac{1}{2}} + \frac{1}{1 + \frac{1}{2}}$$

14. Decide whether the following matrices are positive definite, negative definite, semidefinite, or indefinite:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 9 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 6 & -2 & 0 \\ 0 & -2 & 5 & -2 \\ 0 & 0 & -2 & 3 \end{bmatrix}, \qquad C = -B, \qquad D = A^{-1}.$$

Is there a real solution to $-x^2 - 5y^2 - 9z^2 - 4xy - 6xz - 8yz = 1$?

(4

Since the principal minors didn't change the sign in order, the matrix isn't Negative definite and Negative semi-definite a Regarding det (A) is equal to -4 it isn't Positive definite and Positive semi-definite. it's indefinite.

[29 -6 -7] [-29/4 6/4 7/4]

$$(*) \left| \frac{-29}{4} \right| = -\frac{29}{4} \left\langle 0 \right| (**) \left| \frac{-29}{4} \right| \left| \frac{6}{4} \right| = -\frac{36}{16} \left\langle 0 \right|$$

$$(x+2) |D| = -\frac{6}{4} \begin{vmatrix} \frac{6}{4} & \frac{7}{4} \\ -\frac{2}{4} & -\frac{14}{4} \end{vmatrix} + \frac{2}{4} \begin{vmatrix} -\frac{29}{4} & \frac{6}{4} \\ \frac{7}{4} & -\frac{2}{4} \end{vmatrix}$$

$$= -\frac{6}{4} \left(-\frac{6}{16} + \frac{19}{16} \right) + \frac{2}{4} \left(\frac{58}{16} - \frac{42}{16} \right) = -\frac{6}{4} \cdot \frac{8}{16} + \frac{2}{4} \left(\frac{16}{16} \right)$$

$$= -\frac{3}{2} \cdot \frac{1}{2} + \frac{1}{2} = -\frac{3}{4} + \frac{2}{4} = -\frac{1}{4} \cdot 49$$

As the principal minors are all negative, they don't satisfy the conditions of being positive definite, positive semi-definite, vegative definite, and negative semi-definite. therefore, our matrix is indefinite.

14. Decide whether the following matrices are positive definite, negative definite, semidefinite, or indefinite:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 9 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 6 & -2 & 0 \\ 0 & -2 & 5 & -2 \\ 0 & 0 & -2 & 3 \end{bmatrix}, \qquad C = -B, \qquad D = A^{-1}.$$

Is there a real solution to $-x^2 - 5y^2 - 9z^2 - 4xy - 6xz - 8yz = 1$?

(*)
$$|11\rangle > 0$$
 $(**) \begin{vmatrix} 1 & 2 \\ 2 & 6 \end{vmatrix} = 6 - 4 = 2 > 0$
(***) $\begin{vmatrix} 1 & 2 & 0 \\ 2 & 6 & -2 \\ 0 & -1 & 5 \end{vmatrix} = (1) \begin{vmatrix} 6 & -2 \\ -2 & 5 \end{vmatrix} = 2 \begin{vmatrix} 2 & -2 \\ 0 & 5 \end{vmatrix} = (1)(30 - 4) + (-2)(10) = 26 - 20 = 6 > 0$

$$(***)$$
 $|\beta| = (1) \begin{vmatrix} 6 & -2 & 0 \\ -2 & 5 & -2 \\ 0 & -2 & 3 \end{vmatrix} + (2) \begin{vmatrix} 2 & -2 & 0 \\ 0 & 5 & -2 \\ 0 & -2 & 3 \end{vmatrix}$

definite. are greater than zero, so B is positive

$$C = -B = \begin{bmatrix} -1 & -2 & 0 & 0 \\ -2 & -6 & 2 & 0 \\ 0 & 2 & -5 & 2 \\ 0 & 0 & 2 & -3 \end{bmatrix}$$

$$(****)$$
 $C = |-B| = (-1)^4 |B| = (-1)^4 (98) = 98 > 0$

Its principal minors are alternating in sign and start with negative value, so we can conclude that our matrix is negative definite.

14. Decide whether the following matrices are positive definite, negative definite, semidefinite, or indefinite:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 9 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 6 & -2 & 0 \\ 0 & -2 & 5 & -2 \\ 0 & 0 & -2 & 3 \end{bmatrix}, \qquad C = -B, \qquad D = A^{-1}.$$

Is there a real solution to $-x^2 - 5y^2 - 9z^2 - 4xy - 6xz - 8yz = 1$?

$$F(x,y,z) = -x^{2} - 5y^{2} - 9z^{2} - 4xy - 6xz - 8yz$$

$$\frac{\partial^{2}F}{\partial x^{2}} = -1 \quad \frac{\partial^{2}F}{\partial z^{2}} = -18 \quad \frac{\partial^{2}F}{\partial y^{2}} = -10$$

$$\frac{\partial^{2}F}{\partial x \partial y} = -4 \quad \frac{\partial^{2}F}{\partial x \partial z} = -6 \quad \frac{\partial^{2}F}{\partial z \partial y} = -8$$

$$H = \begin{bmatrix} -2 & -4 & -6 \\ -4 & -i0 & -8 \\ -6 & -8 & -18 \end{bmatrix} \quad (**) \quad |-2| < 0$$

$$(***) \quad |-2| < 4 | = 20 - 16 = 4 > 0$$

$$(****) \quad |-4| < -10 | = 20 - 16 = 4 > 0$$

$$(****) \quad |-4| < -10 | = -8 < -18 | + (-6) | -4| < -10 | = -6| < -18 | + (-6) | -6| < -18 | =$$

As the subdeterminants have both signs, the hessian matrix is indefinite.

Hence we can say that F(x,y,z) = 1 has a real solution.

1. Compute $A^{T}A$ and its eigenvalues σ_{1}^{2} , 0 and unit eigenvectors v_{1} , v_{2} :

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix}.$$

(1)
$$A^{T}A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix} = \begin{bmatrix} 5 & 20 \\ 20 & 80 \end{bmatrix}$$

$$\Rightarrow \begin{vmatrix} 5 - \lambda & 20 \\ 20 & 80 - \lambda \end{vmatrix} = 0 \Rightarrow (5 - \lambda)(80 - \lambda) - 400 = 0$$

$$\Rightarrow 400 - 85\lambda + \lambda^{2} - 400 = 0 \Rightarrow \lambda (\lambda - 85) = 0 \Rightarrow \lambda_{1} = 0 \quad \lambda_{2} = 85$$

$$\star \begin{bmatrix} 5 & 20 \\ 20 & 80 \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \chi = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$$

$$\star \begin{bmatrix} -80 & 20 \\ 20 & -5 \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \chi = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$\star \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

$$\star \begin{bmatrix} -80 & 20 \\ 20 & -5 \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \chi = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

5. Compute $A^{T}A$ and AA^{T} , and their eigenvalues and unit eigenvectors, for

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

Multiply the three matrices $U\Sigma V^{\mathrm{T}}$ to recover A.

$$A^{T}A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{vmatrix} 1 - \lambda & 1 & 0 \\ 1 & 2 - \lambda & 1 \\ 0 & 1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)((2 - \lambda)(1 - \lambda) - 1) - 1((1 - \lambda))$$

$$= (1 - \lambda)(2 - 3\lambda + \lambda^{2} - 1) - 1((1 - \lambda)) = (1 - \lambda)(\lambda^{2} - 3\lambda) = (1 - \lambda)\lambda(\lambda - 3) = 0$$

$$\longrightarrow \lambda \in \{1, 0, 3\}$$

$$\frac{\lambda_{1}=1}{2}\begin{bmatrix}0&1&0\\1&1&1\\0&1&0\end{bmatrix}\begin{bmatrix}\chi_{1}\\\chi_{2}\\\chi_{3}\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}\longrightarrow\chi_{2}\begin{bmatrix}-1\\0\\1\end{bmatrix}\frac{make}{unit}\begin{bmatrix}-1/2\\0\\1/2\end{bmatrix}$$

$$\frac{\lambda_{3s}}{\lambda_{3s}} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{\text{Elimination}} \begin{bmatrix} -1 & 0.5 & 0 \\ 0 & -0.5 & 1 \\ 0 & 1 & -2 \end{bmatrix} \xrightarrow{\text{Total points}} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\xrightarrow{\text{Total points}} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\xrightarrow{\text{Total points}} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$V = \begin{bmatrix} \frac{1}{12} & -\frac{1}{12} & -\frac{1}{12} \\ \frac{1}{12} & 0 & \frac{1}{12} \\ \frac{1}{12} & 0 & \frac{1}{12} \end{bmatrix} \qquad \qquad \sum = \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$u_{1} = \frac{1}{\sqrt{3}} A V_{1} = \frac{1}{\sqrt{3}} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

$$A = U \sum V^{T} = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

$$A = U \sum V^{T} = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

10. Suppose A is a 2 by 2 symmetric matrix with unit eigenvectors u_1 and u_2 . If its eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = -2$, what are U, Σ , and V^T ?

10

1 A is Symmetric 2 Its eigenvalues are 3, 2.
$$u_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{3} \begin{bmatrix} 307 \end{bmatrix} \begin{bmatrix} 17 \\ 0 \end{bmatrix} = \begin{bmatrix} 17 \\ 0 \end{bmatrix} = u_1$$

$$A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix}$$

$$\det (AA - \lambda I) = 0 \longrightarrow \lambda = \{9, 4\} \longrightarrow \nabla = \sqrt{\lambda} = \{3, 2\}$$

$$\Delta = U \sum_{i=1}^{3} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\sum_{i=1}^{3} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$

$$(AA^{T}-9I)X=0 \longrightarrow \begin{bmatrix} 0 & 0 \\ 0 & -5 \end{bmatrix} X=0 \longrightarrow X=\begin{bmatrix} 1 \\ 0 \end{bmatrix}=V_{1}$$

$$(AA^{T}-4I)X=0 \longrightarrow \begin{bmatrix} 5 & 0 \\ 0 & 0 \end{bmatrix} X=0 \longrightarrow X=\begin{bmatrix} 0 \\ 0 \end{bmatrix}=V_{2}$$

Thanks for your attention