QUESTIONS BRÈVES - A

Si $n \in \mathbb{N}^*$, on note n! l'entier $1 \times \times n$ (le symbole n! se lit « n factorielle »). Par convention 0! = 1.

A1	$\frac{21}{20} + \frac{4}{5} = 1$	
A2	$\frac{1}{2} + \frac{3}{4} + \frac{5}{6} + \frac{7}{8} > 3$	
A3	$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} = 1$	*
A4	$\frac{26}{25} < \frac{52}{50}$	
A5	$\frac{3}{4} < \frac{31}{39}$	
A6	$\frac{7}{5} < \frac{69}{51}$	
A7	$\frac{3}{2} < \frac{31}{21}$	
A8	$\frac{3}{4} < \frac{3+7}{4+5} < \frac{7}{5}$	*
A9	$\frac{123}{321}$ est irréductible	
A10	$\frac{35}{91}$ est irréductible	
A11	$\frac{12345}{54321}$ est simplifiable	
A12	2345 est multiple de 7 et $7 \times 776 = 5342$	
A13	$\frac{2345}{5432}$ est irréductible	
A14	$\frac{2^5+1}{66}$ est simplifiable	
A15	$\frac{2^5-1}{512}$ est irréductible	
A16	$\frac{10!+7^7+1}{10!+7^7}$ est simplifiable	*

On désigne par n, d, n', d' des entiers naturels ($d \neq 0$ et $d' \neq 0$).

A17	Si n est multiple de d , alors $\frac{n}{d} \in \mathbb{N}$	
A18	Si $\frac{n}{d} \in \mathbb{N}$, alors n est multiple de d	
A19	Si n et d sont pairs, alors $\frac{n}{d}$ est simplifiable	
A20	Si n et d sont impairs, alors $\frac{n}{d}$ est irréductible	
A21	Si $\frac{n}{d}$ est irréductible, alors n ou d est impair	
A22	Si $\frac{n}{d}$ et $\frac{n'}{d'}$ sont irréductibles, alors $\frac{nd'+n'd}{dd'}$ aussi	
A23	Si $\frac{n}{d}$ et $\frac{n'}{d'}$ sont irréductibles, alors $\frac{nn'}{dd'}$ aussi	
A24	Si n, d sont premiers, alors $\frac{n}{d}$ est irréductible	

k désigne un entier naturel quelconque (les dénominateurs sont toutefois supposés non nuls!).

A25	$\frac{1}{k} - \frac{1}{k+1} = \frac{1}{k^2 + k}$	
A26	$\frac{1}{k+\frac{1}{2}} + \frac{1}{k-\frac{1}{2}} = \frac{2k}{k^2 - \frac{1}{4}}$	
A27	$\frac{k-1}{k+2} - \frac{k-2}{k+1} = \frac{3}{k^2 + 3k + 2}$	
A28	$\frac{1}{k} + \frac{2}{k+1} = \frac{3}{k(k+1)}$	
A29	$\frac{1}{k+1} < \frac{k+2}{k^2+3k}$	
A30	$\left(1+\frac{1}{k}\right)^2 > 1+\frac{2}{k}$	*
A31	$\left(1+\frac{1}{k}\right)^2 > 1+\frac{3}{k+1}$	
A32	$\frac{k(k+3)}{2} \in \mathbb{N}$	
A33	$\frac{k(k+1)(k+2)}{6} \in \mathbb{N}$	*
A34	$\frac{4^k-1}{3} \in \mathbb{N}$	