一、(12 本题得分 分)填空和选择(每空 1分) (1)进 制为一千的计数器至少应使用
(2)集 电极开路门使用时应注意在输出端接。
(3)32选1数据选择器有
(4)函数式 Y= AB+ BCD ,写出其对偶式 Y'=。
(5)相同供电电源的 CMOS 门电路与 TTL 门电路相比 ,门的噪声容限更大 ;
门的静态功耗更低。
(6)模数转换时,要求能分辨 ADC 输入满量程 0.1%的变化,则至少需要使用位的 ADC。
若信号频率为 20kHz ,则要求该 ADC 采样频率至少为kHz。
(7)由与非门构成的基本 RS 触发器,其约束条件是。
(8)下列器件的信号一定不能和其他输出信号接在一起的是。
(a) RAM 的数据信号; (b) ROM 的数据信号; (c) 74LS138 的输出信号。 (9) 下列说法正确的是。
(a)输入悬空时, TTL 门电路的输入端相当于接低电平; (b)输入悬空时, CMOS 门电路的输入端相当于接低电平; (c)输入悬空时, CMOS 门电路的输入端相当于接高电平; (d)实际应用中,门电路的输入端应尽量避免悬空。 (10)用万用表测量一个标准 TTL 门电路的输出信号,发现其值为 1.5V,可能的情况有(多选):
(a)输出端处于高阻态; (b)两输出信号短接; (c)输出为脉冲信号; (d)驱动门过载。
(1) 10;(2) 上拉电阻;(3) 5;(A+B)B+C+D;(5) CMOS;(6) 10 位,40kHz;(7)
R+S=1;(8)c;(9)d;(10)bcd _o
二、(8 分)简答题。 (1)画出函数 F ₁ 和 F ₂ 的卡诺图,并求出 F ₁ 和 F ₂ 的最简与或式。
$F_1(A,B,C,D) = A BD + AB + AB + ABC$ $F_1(A,B,C,D) = \sum_{i=1}^{n} m(0.12.7.11.14.15) \sum_{i=1}^{n} d(9.0.10)$
F_2 (A,B,C,D) = $\sum m(0,1,2,7,11,14,15) + \sum d(8,9,10)$
(2)图 2中门电路 G_1 和 G_2 为 TTL 门电路,并假设传输门导通电阻可忽略,分别填写 C_1 和 C_2 不同

电平下电压表 V₁和 V₂电压值(TTL 门电路输出高电平 3.6V,输出低电平 0.3V):

- C_1 为高电平 , C_2 为低电平时 , V_1 = ______ V , V_2 = ______ V ;
- C_1 为低电平 , C_2 为高电平时 , $V_1 =$ _______ V , $V_2 =$ _______ V 。

(1)
$$F1 = \overline{AB} + \overline{AB} + \overline{AD}$$
 (或BD) + AC (或BC) $\overline{F_2} = \overline{AB} + \overline{AB} + \overline{AB} + \overline{BD} + \overline{BC}$

$$\overline{F_2} = \overline{ABCD} + \overline{ABD} + \overline{BC}$$

AB\CD	00	01	11	10_
00		1	1	
01	1	1	1	1
11			1	1
10	1	1	1	1
(2)			

AB\CD	00	01	_11	_10
00	1	1	0	1
01	0	0	1	0
11	0	0	1	1
10	X	Х	1	Х

- C_1 为高电平 , C_2 为低电平时 , $V_1 = ___1.4 ____V$, $V_2 = ____1.4 ____V$; C_1 为低电平 , C_2 为高电平时 , $V_1 =$ _____3.6_______ V , $V_2 =$ _____1.4_______ V 。
- 三、(8分)设计一个故障显示电路。要求为:

当只有电机 A 发生故障时,故障指示灯 F 以 4Hz 的频率闪烁;当只有电机 B 发生故障时,故障指示 灯 F 以 2Hz 的频率闪烁;当电机 A、B 同时发生故障时,故障指示灯 F 常亮;当电机 A、B 均无故障 时,故障指示灯 F 灭。

已知时钟信号为 8Hz;用变量 A、B表示电机状态, "1"表示电机发生故障;用变量 F表示指示 灯状态,"1"表示灯亮。试求:

- (1)在图 3中利用 8Hz 时钟和 2个 D 触发器得到 4Hz 和 2Hz 的时钟信号;
- (2)继续在图 3中将上述故障显示电路设计实现。

图 3

三、

四、(8分)简答题

```
(1)要实现异步清零的
                                                verilog 程序的错误。
                       12 进制计数器,更正下列
module Cnt0 ( clk, rst, Q );
             input clk, rst;
             output [2:0] Q;
             reg [2:0] Q;
             always@(posedge clk)
               begin
                  if (!rst)
                      Q = 0;
                  else
                      Q = Q + 1'b1;
                  if (Q >= 12)
                      Q = 0;
               end
             endmodule
```

(2)根据下列程序画出完整的状态转换图(要求按照 Q[2]、Q[1]、Q[0]的顺序表示输出状态)

```
module Cnt1 (clk, rst, Q); input clk, rst; output [2:0] Q; reg [2:0] Q; always@( posedge clk ) if( !rst ) Q <= 3'b000; else \\ begin \\ Q[0] <= \sim Q[0]; \\ Q[1] <= Q[0]^{Q[1]}; \\ Q[2] <= Q[0]^{Q[1]}; end \\ endmodule
```

四、 (1)

- 1) 增加异步清零功能,改成 always@(posedge clk or negedge rst)
- 2) Q 改成 output [3:0] Q; reg [3:0] Q;

(2)

五、(8 分) 由 16 进制同步加法计数器 74LS161 和存储器构成的电路如图 5 所示。 (1)将 D_0 、 D_3 用 A_3 、 A_2 、 A_1 、 A_0 的最小项表示(按 $A_3A_2A_1A_0$ 的顺序确定最小项编号) ; (2) 画出 Q_D 、 Q_C 、 Q_B 、 Q_A 完整的状态转换图;

(3)在正常计数循环内, D_1 、 D_2 平时输出低电平,当计数器输出为最小值时, D_1 输出高电平;当计数达到最大值时, D_2 输出高电平,为实现该功能,请直接在图上画出 D_1 、 D_2 的阵列。

五、

 $D0 = \Sigma$ (m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,m14)= Σ (m13,m15) $D3 = \Sigma$ (m0,m3,m4,m5,m6,m7,m8,m9,m10,m11,m12,m13,m14,m15)= Σ (m1,m2) 状态转换图:

六、(8分) 由 2-8 分频异步加法计数器 74LS93 和 555 定时器构成电路如图 6(a)所示:

(1)写出虚线框内电路的名称;

(2) CP 时钟信号频率为 20kHz,假设计数器初态为 0,在图 6(b)中画出 u_l 、 u_O 的波形。

图 6(a)

图 6(b)

六、 单稳触发器

tw=1.1RC=0.22ms

- 七、(10分)由触发器、74LS138及DAC芯片构成的电路如图 7所示。
- (1)写出图 7(a)中各触发器的状态方程;
- (2)按 $Q_2Q_1Q_0$ 的顺序画出完整的状态转换图,指出其计数进制和计数方向;
- (3)在图 7(b)中,已知当 DAC 的输入只有最低有效位为 1时,输出模拟电压为 10mV,试画出计数器一个计数循环内 D/A 转换器的输出电压波形,必须标注电压值。

七、
$$Q_0^{n+1} = \overline{Q_0^n}$$

 $Q_1^{n+1} = Q_0^n \cdot Q_1^n$
 $Q_2^{n+1} = \overline{Q_0^n Q_1^n} \cdot \overline{Q_2^n} + Q_1^n Q_2^n = \overline{Q_0^n} \cdot \overline{Q_2^n} + Q_1^n \cdot Q_2^n$

四进制减计数。

DAC 输出最大值为 255*10mV=2.55V

Q=0 时, uo=2.55-0.01 =2.54V

Q=7 时, uo=2.55-1.28 = 1.27V

Q=6 时, uo=2.55-0.64 = 1.91V

Q=5 时, uo=2.55-0.32 = 2.23V

八、(8分)某移位寄存器型计数器如图 8(a)所示。已知该计数器的计数循环中并不包含所有的 8个输出状态,如果上电后计数器的初始状态位于计数循环之外,该计数器能够实现自启动。该计数器在某 3次不同的上电启动过程(用 A、B、C标记)的初始阶段,恰好观测到 Q2输出如下序列:

- A) 0001110011100111001110011
- B) 010011100111001110011100111001
- C) 1011100111001110011100111
- (1)请指出该计数器的进制数是多少;
- (2)在表 A、B、C中将上述三次上电启动过程最初 10个周期的计数器状态转换表补充完整;
- (3) 画出计数器输出 $Q_2Q_1Q_0$ 的完整状态转换图;
- (4)在图 8(b)所示的电路的基础上,用必要的逻辑门实现图 8(a)中的反馈逻辑电路,使计数器实现上述功能。(注意不能改变其移位寄存器型计数器的属性,即不能改动图 8(b)中的已有连接)

表 A 过程 A 状态转换表				
态序	Q_0	Q ₁	Q ₂	
0			0	
1			0	
2			0	
3			1	
4			1	
5			1	
6			0	
7			0	
8			1	
9			1	

表 B 过程 B 状态转换表				
态序	Q_0	Q ₁	Q ₂	
0			0	
1			1	
2			0	
3			0	
4			1	
5			1	
6			1	
7			0	
8			0	
9			1	

表 C 过程 C 状态转换表				
态序	Q_0	Q ₁	Q_2	
0			1	
1			0	
2			1	
3			1	
4			1	
5			0	
6			0	
7			1	
8			1	
9			1	

图 8(b)

八、

表 A 过程 A 状态转换表				
态序	Q_0	Q ₁	Q ₂	
0	0	0	0	
1	1	0	0	
2	1	1	0	
3	1	1	1	
4	0	1	1	
5	0	0	1	
6	1	0	0	
7	1	1	0	
8	1	1	1	
9	0	1	1	

表 B 过程 B 状态转换表				
态序	Q_0	Q ₁	Q ₂	
0	0	1	0	
1	0	0	1	
2	1	0	0	
3	1	1	0	
4	1	1	1	
5	0	1	1	
6	0	0	1	
7	1	0	0	
8	1	1	0	
9	1	1	1	

Q0\Q1Q2	00	01	11	10_
0	1	1	0	0
1	1	1	0	1

$$d=Q_0\overline{Q_2}+\overline{Q_1}$$

表 C 过程 C 状态转换表				
态序	Q_0	Q ₁	Q ₂	
0	1	0	1	
1	1	1	0	
2	1	1	1	
3	0	1	1	
4	0	0	1	
5	1	0	0	
6	1	1	0	
7	1	1	1	
8	0	1	1	
9	0	0	1	