Rules for Finding Derivatives

Constant and Power Rules

Theorem A Constant Function Rule

If f(x) = k, where k is a constant, then for any x, f'(x) = 0; that is,

$$D_{r}(k) = 0$$

Theorem B Identity Function Rule

If f(x) = x, then f'(x) = 1; that is,

$$D_x(x) = 1$$

Theorem C Power Rule

If $f(x) = x^n$, where n is a positive integer, then $f'(x) = nx^{n-1}$; that is,

$$D_{x}(x^{n}) = nx^{n-1}$$

Theorem D Constant Multiple Rule

If k is a constant and f is a differentiable function, then $(kf)'(x) = k \cdot f'(x)$; that is,

$$D_{x}[k \cdot f(x)] = k \cdot D_{x}f(x)$$

In words, a constant multiplier k can be passed across the operator D_x .

Theorem E Sum Rule

If f and g are differentiable functions, then (f + g)'(x) = f'(x) + g'(x); that is,

$$D_x[f(x) + g(x)] = D_x f(x) + D_x g(x)$$

In words, the derivative of a sum is the sum of the derivatives.

Theorem F Difference Rule

If f and g are differentiable functions, then (f - g)'(x) = f'(x) - g'(x); that is,

$$D_x[f(x) - g(x)] = D_x f(x) - D_x g(x)$$

The proof of Theorem F is left as an exercise (Problem 54).

Theorem G Product Rule

If f and g are differentiable functions, then

$$(f \cdot g)'(x) = f(x)g'(x) + g(x)f'(x)$$

That is,

$$D_x[f(x)g(x)] = f(x)D_xg(x) + g(x)D_xf(x)$$

Theorem H Quotient Rule

Let f and g be differentiable functions with $g(x) \neq 0$. Then

$$\left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}$$

That is,

$$D_x\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)D_xf(x) - f(x)D_xg(x)}{g^2(x)}$$

The Derivative Formulas

Theorem A

The functions $f(x) = \sin x$ and $g(x) = \cos x$ are both differentiable and,

$$D_x(\sin x) = \cos x$$
 $D_x(\cos x) = -\sin x$

Theorem B

For all points x in the function's domain,

$$D_x \tan x = \sec^2 x$$
 $D_x \cot x = -\csc^2 x$
 $D_x \sec x = \sec x \tan x$ $D_x \csc x = -\csc x \cot x$

Chain Rule

Theorem A Chain Rule

Let y = f(u) and u = g(x). If g is differentiable at x and f is differentiable at u = g(x), then the composite function $f \circ g$, defined by $(f \circ g)(x) = f(g(x))$, is differentiable at x and

$$(f \circ g)'(x) = f'(g(x))g'(x)$$

That is,

$$D_x(f(g(x)) = f'(g(x))g'(x)$$

or

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

EXAMPLE 1 If $y = (2x^2 - 4x + 1)^{60}$, find $D_x y$.

EXAMPLE 4 If $y = \sin 2x$, find $\frac{dy}{dx}$.

EXAMPLE 7 Find $\frac{d}{dx} \frac{1}{(2x-1)^3}$.

Notations f	or Derivatives	of $y = f(x)$		
Derivative	f' Notation	y' Notation	D Notation	Leibniz Notation
First	f'(x)	y'	$D_x y$	$\frac{dy}{dx}$
Second	f''(x)	y"	$D_x^2 y$	$\frac{d^2y}{dx^2}$
Third	f'''(x)	y'''	$D_x^3 y$	$\frac{d^3y}{dx^3}$
Fourth	$f^{(4)}(x)$	y ⁽⁴⁾	$D_{z}^{4}y$	$\frac{d^4y}{dx^4}$
}	‡	1	:	÷
nth	$f^{(n)}(x)$	$y^{(n)}$	$D_x^n y$	$\frac{d^n y}{dx^n}$

Implicit Differentiation

• The method for finding dy/dx without first solving the given equation for y explicitly in terms of x is called implicit differentiation.

EXAMPLE 1 Find dy/dx if $4x^2y - 3y = x^3 - 1$.

Dua cara, explicit dan implicit

Aturan pangkat (power rule)

Let r be any nonzero rational number. Then, for x > 0,

$$D_{x}(x') = rx'^{-1}$$

If r can be written in lowest terms as r = p/q, where q is odd, then $D_x(x') = rx^{r-1}$ for all x.

EXAMPLE 4 If
$$y = 2x^{5/3} + \sqrt{x^2 + 1}$$
, find $D_x y$.

Memakai teorema A dan Chain Rule (aturan rantai)