Worksheet 12 Solution

March 21, 2020

Question 1

- a. $c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq c$, where $g: \mathbb{N} \to \mathbb{R}^{\geq 0}$
- b. Let $c = \frac{277}{2}, n_0 = 1, n \in \mathbb{N}, f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}, g(n) = 100 + \frac{77}{n+1}, f(n) = 1$. Assume $n \geq n_0$

Then,

$$g(n) = 100 + \frac{77}{n+1} \le 100 + \frac{77}{n+1} \tag{1}$$

$$\leq 100 + \frac{77}{2}$$
 (2)

$$\leq \frac{277}{2} \tag{3}$$

$$\leq c \cdot 1$$
 (4)

$$\leq cf(x)$$
 (5)

The, it follows from the definition of Big-Oh that the statement $100 + \frac{77}{n+1} \in \mathcal{O}(1)$ is true.

Question 2

• Expanded Statement: $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$, $(\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq cf(n)) \Rightarrow (\exists d, m_0 \in \mathbb{R}^+, \forall m \in \mathbb{N}, m \geq m_0 \Rightarrow dg(n) \leq f(n))$.

Let $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$, $n_0 = 1$, $c = \frac{1}{d}$, $n \in \mathbb{N}$, $m_0 = 1$. Assume $n \geq n_0$, $g(n) \leq cf(n)$ and $m \geq m_0$.

Then,

$$g(n) \le cf(n) \tag{1}$$

$$g(n) \le \frac{1}{d}f(n) \tag{2}$$

$$dg(n) \le f(n) \tag{3}$$

Then,

$$dg(m) \le f(m) \tag{4}$$

by changing variable from n to m.

Then, it follows from the definition of Omega that the statement , f, g: $\mathbb{N} \to \mathbb{R}^{\geq 0}, g \in \mathcal{O}(f) \Rightarrow \Omega(g)$ is true.

Question 3

• Let $g: \mathbb{N} \to \mathbb{R}^{\geq 0}$, $a \in \mathbb{R}^{\geq 0}$, $m \in \mathbb{N}$, $c_2 \gg a$, $c_1 = \frac{1}{c_2}$. Assume $g \in \Omega(1)$, $m \geq m_0$.

Then

$$a + g \le a + c_2 g \tag{1}$$

$$< c_2 g$$
 (2)

and,

$$a + g \ge g \tag{3}$$

$$> c_1 g \tag{4}$$

Then, by the definition of theta, the statement $\forall g: \mathbb{N} \to \mathbb{R}^{\geq 0}$, and $a \in \mathbb{R}^{\geq 0}$, $g \in \Omega(1) \Rightarrow a + g \in \Theta(g)$ is true.

Question 4

- 1. $g \notin \mathcal{O}(f) : \forall c, n_0 \in \mathbb{R}^+, \exists n \in \mathbb{N}, (n \ge n_0) \land (g(n) > cf(n))$
- 2. Let $c, n_0 \in \mathbb{R}^+$, and $n = n_0 + c^{\frac{1}{a-b}}$. Assume a > b.

Note: Need to ask how $n = n_0 + c^{\frac{1}{a-b}} \in \mathbb{N}$.

Then, $n \geq n_0$.

And

$$cn^b < (n_0 + c^{\frac{1}{a-b}})^{a-b}n^b \tag{1}$$

$$<(n_0+c^{\frac{1}{a-b}})^{a-b}(n_0+c^{\frac{1}{a-b}})^b$$
 (2)

$$<(n_0+c^{\frac{1}{a-b}})^{a-b+b}$$
 (3)

$$<\left(n_0+c^{\frac{1}{a-b}}\right)^a\tag{4}$$

$$< n^a$$
 (5)

Then, it follows that the statement $\forall a,b \in \mathbb{R}^+, a > b \Rightarrow n^a \notin \mathcal{O}(n^b)$ is true.