Labora	torium Po	dstaw Elekt	roniki	
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.	
Informatyka	_	I	nie r	namy
Temat Laboratorium			·	Numer lab.
Ćwiczenia wprowadzające			1	
Skład grupy ćwiczeniowej oraz numery indeksów				
Piotr Więtczak(132339), Robert Ciemny(136693), Kamil Basiukajc(136681)				
Uwagi			Ocena	

1 Ćwiczenia wprowadające

1.1 Rezystory

W tym ćwiczeniu należy odczytać wartość rezystancji na podstawie kodu paskowego rezystorów lub oznaczeń oraz dokonać pomiaru wartości rezystancji przy pomocy multimetru RIGOL DM3051, pamiętając przy tym o poprawnym zapisaniu jednostek podczas wypełniania tabeli 1

Tablica 1: Wartości odczytów i pomiarów rezystancji

R	Barwa/oznaczenia	Odczyt	Pomiar
R_1	żółty - fioletowy - czewony - złoty	$4.7k\Omega$	$4.634k\Omega$
R_2	czerwony - czarny - zielony - złoty	$2M\Omega$	$2.009M\Omega$
R_3	czerwony - czerwony - czerwony - złoty	$2.2k\Omega$	$2.132k\Omega$
R_4	czerwony - czerwony - brązowy - złoty	220Ω	219.320Ω
R_5	brązowy - czarny - czerwony - złoty	$1k\Omega$	0.976Ω
R_6	10R	10Ω	10.71Ω

1.2 Kondensatory

W tym ćwiczeniu należy odczytać wartość pojemności kondensatorów na podstawie ich oznaczeń oraz dokonać pomiaru wartości pojemności przy pomocy mostka pomiarowego, pamiętając przy tym o poprawnym zapisaniu jednostek podczas wypełniania tabeli 2.

Tablica 2: Wartości odczytów i pomiarów pojemności

C	Oznaczenia	Odczyt	Pomiar
C_1	$47\mu F$ $35V$	47μF	44.31μF
C_2	$100\mu F$ 63V	100μF	99.14μF
C_3	$2.2\mu F$ 50V	2.2μF	2.131μF
C_4	22μF 25V	22μF	22.081μF
C ₅	103 10nF	10 <i>nF</i>	9.22 <i>nF</i>
C_6	102 1nF	1nF	0.912 <i>nF</i>

1.3 Cewki

W tym ćwiczeniu należy dokonać pomiaru indukcyjności wybranej cewki przy pomocy mostka pomiarowego, pamiętając przy tym o poprawnym zapisaniu jednostek podczas wypełniania tabeli 3.

Tablica 3: Wartości odczytów i pomiarów indukcyjności

L	Pomiar		
L_1	30.8	μΗ	

2 Obwody

2.1 Obliczanie rezystancji zastępczej

2.1.1 Cel

W tym ćwiczeniu należy obliczyć rezystancję zastępczą od strony zacisków AB dla schematu przedstawionego na rys. 1 oraz zapisać pełne wyprowadzenie wzoru rezystancji zastępczej

Rysunek 1: Obwód rezystancyjny

2.1.2 Wyprowadzenie wzoru i obliczenie rezystancji zastępczej

2.2 Budowanie obwodów rezystancyjnych

2.2.1 Cel

Celem tego ćwiczenia jest:

- Przy pomocy stykowej płytki prototypowej zbudować wszystkie obwody pokazane na rysunkach 2, 4, 6, 8, 10, 12.
- Przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji dokonać pomiaru rezystancji zastępczej od strony zacisków AB.
- Wyprowadzić wzory na poszczególne rezystancje zastępcze od strony zacisków AB.
- Napisać z czego wynikają różnice między pomiarem, a obliczeniami.

2.2.2 Obwód (a)

Rysunek 2: (a)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 3.

Rysunek 3: obwód (a)

Pomiar rezystancji

Dla obwodu z rysunku 2 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik $0.808k\Omega$.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 2

$$R_{23} = R_2 + R_3$$

$$R_z = \frac{1}{\frac{1}{R_{23}} + \frac{1}{R_1}} = \frac{(R_2 + R_3)R_1}{R_1 + R_2 + R_3}$$

$$R_z = \frac{(2200\Omega + 2200\Omega)1000\Omega}{1000\Omega + 2200\Omega + 2200\Omega} = \frac{4400000\Omega}{5400\Omega} \approx 814.8148\Omega$$

2.2.3 Obwód (b)

Rysunek 4: (b)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 5.

Rysunek 5: obwód (b)

Pomiar rezystancji

Dla obwodu z rysunku 4 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik $95.5k\Omega$.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 4

$$R_{12} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{1235} = R_{12} + R_3 + R_5$$

$$R_z = \frac{1}{\frac{1}{R_4} + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} + R_3 + R_5}$$

$$R_z = \frac{1}{\frac{1}{1000}} + \frac{1}{\frac{1}{10000} + \frac{1}{22000}} + 10000 + 10000 = \frac{14300}{151} \approx 94.70$$

2.2.4 Obwód (c)

Rysunek 6: (c)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 7.

Pomiar rezystancji

Dla obwodu z rysunku 6 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 2161.56Ω.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 6

$$R_z = R_1$$

$$R_z = 2200\Omega$$

fritzing

Rysunek 7: obwód (c)

2.2.5 Obwód (d)

Rysunek 8: (d)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 9.

fritzing

Rysunek 9: obwód (d)

Pomiar rezystancji

Dla obwodu z rysunku 8 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 739.36Ω.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 8

$$R_{51} = R_5 + R_1$$

$$R_{152} = \frac{1}{\frac{1}{R_2} + \frac{1}{R_{51}}}$$

$$R_{3152} = R_3 + R_{152}$$

$$R_z = \frac{1}{\frac{1}{R_4} + \frac{1}{R_{3152}}}$$

$$R_z = \frac{1}{\frac{1}{R_4} + \frac{1}{R_3 + \frac{1}{R_5 + R_1}}}$$

$$R_z = \frac{1}{\frac{1}{1000\Omega} + \frac{1}{2200\Omega + \frac{1}{100\Omega + 1000\Omega}}} \approx 745.76\Omega$$

2.2.6 Obwód (e)

Rysunek 10: (e)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 11.

Rysunek 11: obwód (e)

Pomiar rezystancji

Dla obwodu z rysunku 10 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 69Ω.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 10

$$R_{34} = \frac{1}{\frac{1}{R_3} + \frac{1}{R_4}}$$

$$R_{234} = R_2 + R_{34}$$

$$R_z = \frac{1}{\frac{1}{R_1} + \frac{1}{R_{234}}}$$

$$R_z = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2 + \frac{1}{1}}}$$

$$R_z = \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}}$$

$$R_z = \frac{1}{\frac{1}{2200\Omega} + \frac{1}{2200\Omega} + \frac{1}{1000\Omega}} \approx 1248.6486\Omega$$

2.2.7 Obwód (f)

Rysunek 12: (f)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 13.

Rysunek 13: obwód (e)

Pomiar rezystancji

Dla obwodu z rysunku 12 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 69Ω .

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 12

$$R_{12} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{125} = R_{12} + R_5$$

$$R_{1245} = \frac{1}{\frac{1}{R_4} + \frac{1}{R_{125}}}$$

$$R_z = R_3 + R_{1245}$$

$$R_z = R_3 + \frac{1}{\frac{1}{R_4} + \frac{1}{\frac{1}{R_2}} + R_5}$$

$$R_z = 1000\Omega + \frac{1}{\frac{1}{2200\Omega} + \frac{1}{\frac{1}{100\Omega} + \frac{1}{12200\Omega}}} \approx 1731.39841$$

2.2.8 Wnioski na temat różnic miedzy pomiarami, a obliczeniami

3 Pomiary napięcia

3.1 Pomiar wartosci napięć wyjściowych z zasilacza

3.1.1 Cel

W ćwiczeniu należy dokonać pomiaru napięcia z sekcji DC POWER SUPPLY zestawu laboratoryjnego DF 6911, oraz odpowiedzieć na pytanie, z czego mogą wynikać ewentualne różnice między wartościami odczytanymi, a zmierzonymi.

3.1.2 Tabela z wartośiami odczytów i pomiarów

Tablica 4: Wartości odczytów i pomiarów

U[V]	Odczyt[V]	Pomiar[V]
1	1	1.107
3	3	3.172
4.5	4.5	4.635
11	11	11.226
13	13	13.183
25	25	25.344
28	28	28.306

3.1.3 Wnioski na temat różnic miedzy pomiarami, a odczytami

3.2 Dzielnik napięcia

3.2.1 Cel

W ćwiczeniu należy, przy pomocy praw Kirchhoffa, wyprowadzić wzory oraz zależności opisujące dzielnik napięcia pokazany na rusunku 3. Następnie należy zaprojektować dzielnik napięcia, dobierając odpowiednio rezystory i zbudować go na płycie prototypowej w taki sposób, aby na wyjściu V_{out} (spadek napięcia na rezystorze R_2) otrzymać kolejno napięcia: 2.5V, 3.22V, 1.66V, 4V, 4.54V. Przy realizacji każdego z dzielników należy dokonać pomiarów napięcia V_{out} i porównać z wartościami otrzymanymi z wyprowadzonego wzoru i dobranych rezystorów.

Rysunek 14: Rezystencjalny dzielnik napięcia

3.2.2 Wyprowadzenie wzoru na V_{out}

$$V_{in} - IR_1 - IR_2 = 0$$

$$IR_2 = V_{out}$$

$$I = \frac{V_{in}}{R_1 + R_2}$$

$$V_{out} = \frac{R_2 V_{in}}{R_1 + R_2}$$

3.2.3 Napięcie na wyjściu $V_{out} = 2.5V$

Projekt dzielnika napiecia w programie Fritzing

181121189

Rysunek 15: Rezystencjalny podzielnik napięcia

Wyznaczenie stosunku między R_1 i R_2 przy użyciu wyprowadzonego wzoru

$$2.5V = \frac{5VR_2}{R_1 + R_2}$$

$$\frac{2.5V}{5V} = \frac{R_2}{R_1 + R_2}$$

$$\frac{1}{2} = \frac{R_2}{R_1 + R_2}$$

$$\frac{1}{2}R_1 + \frac{1}{2}R_2 = R_2$$

$$R_1 = R_2$$

Obliczenie warości V_{out} dla rezystorów $R_1=2.2k\Omega, R_2=2.2k\Omega$ przy użyciu wyprowadzonego wzoru

$$V_{out} = \frac{2200\Omega \cdot 5V}{2200\Omega + 2200\Omega} = 2.5V$$

Pomiar napięcia V_{out}

Dla podzielnika napięcia dokonano pomiaru napięcia wyjściowego V_{out} przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru napięcia. Multimert wskazał wynik 2.563V.

3.2.4 Napięcie na wyjściu $V_{out} = 3.22V$

Projekt dzielnika napiecia w programie Fritzing

Rysunek 16: Rezystencjalny podzielnik napięcia

Wyznaczenie stosunku między R_1 i R_2 przy użyciu wyprowadzonego wzoru

$$\frac{3.22V}{5V} = \frac{R_2}{R_1 + R_2}$$
$$\frac{161}{250}R_1 + \frac{161}{250}R_2 = R_2$$
$$R_1 = \frac{89}{161}R_2$$

Obliczenie warości V_{out} dla rezystorów $R_1=1.22k\Omega, R_2=2.2k\Omega$ przy użyciu wyprowadzonego wzoru

$$V_{out} = \frac{2200\Omega \cdot 5V}{2200\Omega + 1220\Omega} \approx 3.216V$$

Pomiar napięcia V_{out}

Dla podzielnika napięcia dokonano pomiaru napięcia wyjściowego V_{out} przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru napięcia. Multimert wskazał wynik 3.351V.

3.2.5 Napięcie na wyjściu $V_{out} = 1.66V$

Projekt dzielnika napiecia w programie Fritzing

Rysunek 17: Rezystencjalny podzielnik napięcia

Wyznaczenie stosunku między R_1 i R_2 przy użyciu wyprowadzonego wzoru

$$\frac{1.66V}{5V} = \frac{R_2}{R_1 + R_2}$$
$$\frac{83}{250}R_1 + \frac{83}{250}R_2 = R_2$$
$$R_1 = \frac{167}{83}R_2$$

Obliczenie warości V_{out} dla rezystorów $R_1=4.4k\Omega, R_2=2.2k\Omega$ przy użyciu wyprowadzonego wzoru

$$V_{out} = \frac{2200\Omega \cdot 5V}{4400\Omega + 2200\Omega} \approx 1,66 \cdots V$$

Pomiar napięcia V_{out}

Dla podzielnika napięcia dokonano pomiaru napięcia wyjściowego V_{out} przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru napięcia. Multimert wskazał wynik 1695V.

- 3.2.6 Napięcie na wyjściu $V_{out} = 4V$
- 3.2.7 Napięcie na wyjściu $V_{out} = 4.54V$

4 Pomiary prądu stałego

4.1 Pomiary prądu w obwodzie

Przy użyciu stykowej płytki prototypowej należy zbudować obwód pokazany na rysunku 15 oraz dokonać pomiarów spadku napięcia na rezystorze R i natężenia prądu w obwodzie, pamiętając przy tym o zapisaniu jednostek.

Rysunek 18: Obwód do badania napięć i prądów

4.2 Pomiary prądów i napięć

Rysunek 19: Obwód (a) do badania prądów i napięć w obwodzie

Rysunek 20: Obwód (b) do badania prądów i napięć w obwodzie

Spis treści

1	Cwi	wprowadające	1	
	1.1	Rezyst	tory	1
	1.2	Konde	ensatory	1
	1.3	Cewki		2
2	Obv	vody		2
	2.1	Oblicz	anie rezystancji zastępczej	2
		2.1.1	Cel	2
		2.1.2	Wyprowadzenie wzoru i obliczenie rezystancji zastępczej	2
2.2 Budowanie obwodów rezystancyjnych			vanie obwodów rezystancyjnych	2
		2.2.1	Cel	2
		2.2.2	Obwód (a)	3
		2.2.3	Obwód (b)	4
		2.2.4	Obwód (c)	5
		2.2.5	Obwód (d)	6
		2.2.6	Obwód (e)	7
		2.2.7	Obwód (f)	9
		2.2.8	Wnioski na temat różnic miedzy pomiarami, a obliczeniami	10
3	Pom	niary na	pięcia	10
	3.1	Pomia	r wartosci napięć wyjściowych z zasilacza	10
		3.1.1	Cel	10
		3.1.2	Tabela z wartośiami odczytów i pomiarów	10
		3.1.3	Wnioski na temat różnic miedzy pomiarami, a odczytami	11
	3.2	Dzieln	ik napięcia	11
		3.2.1	Cel	11
		3.2.2	Wyprowadzenie wzoru na V_{out}	11
		3.2.3	Napięcie na wyjściu $V_{out} = 2.5V$	12
		3.2.4	Napięcie na wyjściu $V_{out} = 3.22V$	13
		3.2.5	Napięcie na wyjściu $V_{out} = 1.66V$	14
		3.2.6	Napięcie na wyjściu $V_{out} = 4V$	15
		3.2.7	Napięcie na wyjściu $V_{out} = 4.54V$	15
4	Pon	niary pr	adu stałego	15
	4.1	• •	ry prądu w obwodzie	15
	4.2		ry pradów i napieć	15