

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 1 of 63

FCC TEST REPORT

Client Name : Autel Intelligent Tech. Corp., Ltd.

Address 7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili,

Nanshan Shenzhen China

Product Name : Digital Inspection Videoscope

Date : Dec. 17, 2019

Shenzhen Anbotek Compliance Laboratory Limited

Contents

1. General mornation	
1.1. Client Information	9
1.2. Description of Device (EUT)	5
1.3 Auxiliary Equipment Used During Test	
1.4. Description of Test Modes	noter 6
1.5. List of channels	7
1.6. Description Of Test Setup	
1.7. Test Equipment List	
1.8. Measurement Uncertainty	10
1.9. Description of Test Facility	10
2. Summary of Test Results	11
3. Conducted Emission Test.	12
3.1. Test Standard and Limit	12
3.2. Test Setup	12
3.2. Test Setup	12
4. Radiation Spurious Emission and Band Edge 4.1. Test Standard and Limit	15
4.1. Test Standard and Limit	15
4.2. Test Setup	
4.3. Test Procedure	16
4.4 Test Data	17
5. Maximum Peak Output Power Test	26
5.1. Test Standard and Limit	26
5.2. Test Setup	26
5.3. Toot Procedure	26
5.4. Test Data5.4.	26
5.4. Test Data	30
6.1. Test Standard and Limit	30
6.2. Test Setup	30
6.3. Test Procedure	30
6.4. Test Data	30
7. Power Spectral Density Test	37
7.1. Test Standard and Limit	37
7.2. Test Setup	37
7.1. Test Standard and Emili. 7.2. Test Setup. 7.3. Test Procedure	37
7.4. Test Data	37
8. 100kHz Bandwidth of Frequency Band Edge Requirement	43
8.1. Test Standard and Limit	43
8.2. Test Setup	43
der vup	No

Report No.: SZAWW190910006-01	FCC ID: WQ8MAXIVIDEOMV161	Page 3 of 63
8.3. Test Procedure	httpo. https://www.https://www.	43
8.4. Test Data	abolek Anbo	43
9. Antenna Requirement	And Andrew	52
9.1. Test Standard and Requirement	Mup.	52
9.2. Antenna Connected Construction	Potes Villa M. Wolek	52
APPENDIX I TEST SETUP PHOTOGRAP	H	53
APPENDIX II EXTERNAL PHOTOGRAPH	Market Ma	55
APPENDIX III INTERNAL PHOTOGRAPH		All Sell Se

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 4 of 63

TEST REPORT

Applicant : Autel Intelligent Tech. Corp., Ltd.

Manufacturer : Autel Intelligent Tech. Corp., Ltd.

Product Name : Digital Inspection Videoscope

Model No. : MV160

Trade Mark : AUTEL

Rating(s) : Input: DC 5V, 2A (with DC 3.7V, 2600 mAh Battery inside)

Test Standard(s) : FCC Part15 Subpart C 2018, Section 15.247

Test Method(s) : ANSI C63.10: 2013, KDB558074 D01 DTS Meas Guidance v05

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt
Date of Test

Sept. 10, 2019
Sept. 10~Oct. 14, 2019

Prepared by

(Engineer / Dolly Mo)

Reviewer

(Supervisor / Bibo Zhang)

Approved & Authorized Signer

(Manager / Sally Zhang)

Email: service@anbotek.com

Shenzhen Anbotek Compliance Laboratory Limited

Tel:(86) 755-26066440

Code: AB-RF-05-a

Fax: (86) 755-26014772

1. General Information

1.1. Client Information

Applicant	: Autel Intelligent Tech. Corp., Ltd.
Address	7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili, Nanshan Shenzhen China
Manufacturer	: Autel Intelligent Tech. Corp., Ltd.
Address	7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd., Xili, Nanshan Shenzhen China
Factory 1	: Autel Intelligent Technology Corp.,Ltd.
Address 1	6th Floor,Building 1,Yanxiang Zhigu,NO.11 Gaoxin West Rd,Guangming New District, Shenzhen City, Guangdong Province,China.
Factory 2	: AUTEL VIETNAM COMPANY LIMITED
Address 2	4th Floor, Factory#6, Land#CN1, An Duong Industrial Zone, Hong Phong Township, An Duong County, Hai Phong, Viet Nam

1.2. Description of Device (EUT)

·		NO. DV.	46, M.				
Product Name	:	Digital Inspection Videosc	cope				
Model No.	:	MV160	Anbotek Anbotek Anbotek Anbotek				
Trade Mark		AUTEL hotek	Anbotek Anbotek Anbotek Anbotek				
Test Power Supply	:	AC 120V, 60Hz for adapte	er / DC 3.7V Battery inside				
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)					
		Operation Frequency:	WiFi: 802.11b/ g/ n(HT20) 2412-2462MHz				
		Number of Channel:	WiFi: 11 Channels for 802.11b/ g/ n(HT20)				
Product Description	:	Modulation Type:	WiFi: 802.11b CCK; 802.11g/n OFDM				
·		Antenna Type:	FPCB Antenna				
		Antenna Gain(Peak):	1.4 dBi				

Remark: 1)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 6 of 63

1.3. Auxiliary Equipment Used During Test

Adapter : M/N: GME10C-050200FUu Input: 100-240V~ 50/60Hz, 0.28A Output: DC 5V, 2A

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

RADIATED EMISSION TEST (BELOW 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

	Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)
1/93	802.11b	1 to 11	botek 1 Anbr	CCK	DBPSK	1.0

For the test results, only the worst case was shown in test report.

RADIATED EMISSION TEST (ABOVE 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1, 6, 11	CCK	DBPSK	1.0
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0
802.11n HT20	1 to 11	1, 6, 11	OFDM	BPSK	6.5

POWER LINE CONDUCTED EMISSION TEST:

The EUT was tested with the following mode

Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1, 6, 11	CCK	DBPSK	1.0
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0
802.11n HT20	1 to 11	1, 6, 11	OFDM	BPSK	6.5

BANDEDGE MEASUREMENT:

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: WQ8MAXIVIDEOMV161

Page 7 of 63

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	nbote 1, 11 Anbc	CCK	DBPSK	1.0
802.11g	1 to 11	1, 11	OFDM	BPSK	6.0
802.11n HT20	1 to 11	1, 11	OFDM	BPSK	6.5

ANTENNA PORT CONDUCTED MEASUREMENT:

This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Test Channel	Modulation Tech.	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1, 6, 11	CCK	DBPSK	1.0
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0
802.11n HT20	1 to 11	1, 6, 11	OFDM	BPSK	6.5

1.5. List of channels

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
01 And	2412	04	2427	and O7	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

FCC ID: WQ8MAXIVIDEOMV161

Page 8 of 63

1.6. Description Of Test Setup

RE

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: WQ8MAXIVIDEOMV161

Page 9 of 63

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.Anb	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 26, 2018	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year
ootek 3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year
5. _p	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30 D	KD17503	Nov. 05, 2018	1 Year
Ani 7 .tek	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2018	1 Year
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year
9.	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 20, 2018	1 Year
10.	Horn Antenna	A-INFO	LB-180400- KF	J211060628	Nov. 20, 2018	1 Year
n'11.	Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
13.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year
16.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year
17.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year
19.	DC Power Supply	LW	TPR-6420D	374470	Oct. 31, 2018	1 Year
20.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80 B	N/A	Nov. 01, 2018	1 Year

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 10 of 63

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizonta	al) Anbor	- Anborek	Aupote.
		Ur = 3.8 dB (Vertical)	otek Anbu	tek anbotek	Anbore
		tek pintek p	inpoter K Aup	Lotek Anbotek	Anbor
Conduction Uncertainty	:	Uc = 3.4 dB	Anbote. A	hotek Anbot	ek Aupo

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, September 27, 2019.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A, March 07, 2019.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

Code:AB-RF-05-a

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(3)	Conducted Peak Output Power	PASS
15.247(a)(2)	6dB Occupied Bandwidth	PASS
15.247(e)	Power Spectral Density	PASS
15.247(d)	Band Edge	PASS

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 12 of 63

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.20	07 tek snbotek Anbo	re Ans botek Anbotek		
	Fraguenav	Maximum RF Lir	ne Voltage (dBuV)		
	Frequency	Quasi-peak Level	Average Level		
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *		
	500kHz~5MHz	56	46		
	5MHz~30MHz	60	50 botek		

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted **Emission Measurement.**

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

During the test, pre-scan all modes, and found the 802.11b CH01 which is the worst case, only the worst case is recorded in the report.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 13 of 63

Conducted Emission Test Data

Test Site: 1# Shielded Room Operating Condition: 802.11b CH01

Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

Tem.: 22.8℃ Hum.: 53%

	No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Over Limit (dB)	Detector	Remark
	1	0.1660	35.33	19.90	55.23	65.15	-9.92	QP	
3	2	0.1660	21.80	19.90	41.70	55.15	-13.45	AVG	
` ;	3	0.2740	23.59	19.89	43.48	60.99	-17.51	QP	
3	1	0.2779	9.79	19.89	29.68	50.88	-21.20	AVG	
1	5	0.3740	19.75	19.92	39.67	58.41	-18.74	QP	
	3	0.3820	6.17	19.93	26.10	48.23	-22.13	AVG	
	7	0.5220	17.67	19.99	37.66	56.00	-18.34	QP	
8	3	0.5500	5.07	19.99	25.06	46.00	-20.94	AVG	
,	9	1.0540	13.65	20.12	33.77	56.00	-22.23	QP	
ě.	10	1.0740	0.68	20.12	20.80	46.00	-25.20	AVG	
	11	1.4020	11.41	20.13	31.54	56.00	-24.46	QP	
9	12	1.4420	-0.47	20.13	19.66	46.00	-26.34	AVG	

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 14 of 63

Conducted Emission Test Data

Test Site: 1# Shielded Room Operating Condition: 802.11b CH01

Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 22.8℃ Hum.: 53%

	No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBuV)	Limit dBuV	Over Limit (dB)	Detector	Remark
İ	1	0.1500	34.41	19.90	54.31	65.99	-11.68	QP	
	2	0.1660	19.86	19.90	39.76	55.15	-15.39	AVG	
	3	0.1819	31.41	19.90	51.31	64.39	-13.08	QP	
į	4	0.3540	21.12	19.91	41.03	58.87	-17.84	QP	
	5	0.3580	5.76	19.92	25.68	48.77	-23.09	AVG	
>	6	0.5460	5.08	19.99	25.07	46.00	-20.93	AVG	
	7	0.5500	17.39	19.99	37.38	56.00	-18.62	QP	
	8	1.0339	2.50	20.12	22.62	46.00	-23.38	AVG	
	9	1.2380	13.48	20.12	33.60	56.00	-22.40	QP	
ê	10	1.5060	0.42	20.13	20.55	46.00	-25.45	AVG	
	11	1.5940	10.93	20.13	31.06	56.00	-24.94	QP	
9	12	2.6900	-0.83	20.15	19.32	46.00	-26.68	AVG	
	1.553	437	177	2.7		136			1000

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 15 of 63

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15	5.209 and 15.205	potek Anbor	-r PU.,	iek Anboter
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	Aupo.	A. Obotek	300
	0.490MHz-1.705MHz	24000/F(kHz)	Aupo ate	k -nbotek	30
	1.705MHz-30MHz	30	otek _ Anbo	otek - upot	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	otek 3 Anbo
	88MHz~216MHz	150	43.5	Quasi-peak	anbotek 3
	216MHz~960MHz	200	46.0	Quasi-peak	3
	960MHz~1000MHz	500	54.0	Quasi-peak	3
	Ab 4000MH-	500	54.0	Average	4 3nbotel
	Above 1000MHz	Anbo - tek	74.0	Peak	otek 3 Anbot

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 16 of 63

Ant. feed point 1 - 4 m

Metal Full Soldered Ground Plane

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

System Simulator

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

Spectrum Analyzer / Receiver

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 17 of 63

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

During the test, pre-scan all modes, and found the 802.11b CH01 which is the worst case, only the worst case is recorded in the report.

Hotline 400-003-0500 www.anbotek.com

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 18 of 63

Test Results (30~1000MHz)

Job No.: SZAWW190910006-01 Temp.(°C)/Hum.(%RH): 23.1°C/50%RH

Standard: FCC PART 15C Power Source: DC 3.7V Battery inside

Test Mode: 802.11b CH01 Polarization: Horizontal

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 19 of 63

Test Results (30~1000MHz)

Job No.: SZAWW190910006-01 Temp.(℃)/Hum.(%RH): 23.1℃/50%RH

Standard: FCC PART 15C Power Source: DC 3.7V Battery inside

Test Mode: 802.11b CH01 Polarization: Vertical

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 20 of 63

Test Results (Above 1000MHz)

Test Mode:	802.11b Mo	de		Test	channel: Lov	west		
			F	Peak Value	!			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4824.00	40.54	34.13	6.61	34.09	47.19	74.00	-26.81	V
7236.00	34.38	37.14	7.74	34.51	44.75	74.00	-29.25	V
9648.00	32.83	39.35	9.26	34.80	46.64	74.00	-27.36	V
12060.00	Anbatek	Aupor	ek who's	ek Ant	ore. Ans	74.00	potek p	V
14472.00	*hbotek	Anbo	otek vo	potek	inpose b	74.00	Anbotek	V
16884.00	ok * Aupor	er An	-otek	anborek	Aupor	74.00	Anboter	V
4824.00	39.17	34.13	6.61	34.09	45.82	74.00	-28.18	H
7236.00	34.10	37.14	7.74	34.51	44.47	74.00	-29.53	H
9648.00	32.40	39.35	9.26	34.80	46.21	74.00	-27.79	H
12060.00	*hotek	Vupo.	tek vok	otek P	Upoten V	74.00	Anborek	Vupo.
14472.00	K * Anbore	Ant Ant	o tek	nbotek	Anbore	74.00	Anbotek	H
16884.00	otek * Ant	oter	inbo	Anbotek	Aupor	74.00	Anbores	HP
77.			Av	verage Valu	ie	833		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4824.00	29.61	34.13	6.61	34.09	36.26	54.00	-17.74	V
7236.00	23.24	37.14	7.74	34.51	33.61	54.00	-20.39	V
9648.00	23.17	39.35	9.26	34.80	36.98	54.00	-17.02	V
12060.00	WOJEK	Anborek	Aupo	, who,	isk Aupor	54.00	otek An	ootek
14472.00	And * potek	Anbore	Anbo	rek or	potek An	54.00	botek	Anb Ven
16884.00	* abotel	Anbo	New Yup	-otek	Anbotek	54.00	- abotek	V
4824.00	28.70	34.13	6.61	34.09	35.35	54.00	-18.65	HAR
7236.00	22.68	37.14	7.74	34.51	33.05	54.00	-20.95	Н
9648.00	22.14	39.35	9.26	34.80	35.95	54.00	-18.05	otek H
12060.00	Amb *otek	Anbotek	Aupon	lek vul	otek Ant	54.00	botek	upotek
14472.00	Ann * shotek	Anbo	Aupo	-otek	hupotek .	54.00	abotek	ATHO?
16884.00	* * * * * * * * * * * * * * * * * * *	lek M	pote. Ar	in siek	anbotek	54.00	hotek	Hal

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 21 of 63

Test Results (Above 1000MHz)

Test Mode:	802.11b Mo	de		Test	channel: Mid	ddle		
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4874.00	39.56	34.35	6.67	34.09	46.49	74.00	-27.51	V
7311.00	34.42	37.21	7.77	34.53	44.87	74.00	-29.13	V
9748.00	33.83	39.45	9.33	34.80	47.81	74.00	-26.19	V.
12185.00	Anbetek	Anbo	ek nboi	ek Anb	ole, bur	74.00	potek	V
14622.00	Anbotek	Anbe	otek po	potek I	upose b	74.00	Anborek	V
17059.00	ek * Anbot	Er Au	potek.	anborek	Vupore rek	74.00	Anboren	V
4874.00	40.00	34.35	6.67	34.09	46.93	74.00	-27.07	Н
7311.00	33.04	37.21	7.77	34.53	43.49	74.00	-30.51	H
9748.00	33.71	39.45	9.33	34.80	47.69	74.00	-26.31	H
12185.00	Anbotek	Aupon	rek ou	otek p	Poles N	74.00	Anbotek	Anbox.
14622.00	k * Whole	No.	o, tek	nbotek	Anboten	74.00	Anbotek	H
17059.00	otek * Ant	otek	inbo	Anbotek	Aupor	74.00	Anbotek	, H
			A۱	verage Valu	ie		'	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol
4874.00	30.39	34.35	6.67	34.09	37.32	54.00	-16.68	V
7311.00	22.73	37.21	7.77	34.53	33.18	54.00	-20.82	V
9748.00	23.07	39.45	9.33	34.80	37.05	54.00	-16.95	V
12185.00	hotek	Anbotek	Anbo.	, vupo,	ek Aupon	54.00	otek bu	oteV
14622.00	Apolek *	Anbore	Ambo	rek on	ootek Anl	54.00	botek	Anb
17059.00	* abotel	Anbr	See Aug.	notek	Anbotek	54.00	abotek	V
4874.00	30.10	34.35	6.67	34.09	37.03	54.00	-16.97	H
7311.00	22.13	37.21	7.77	34.53	32.58	54.00	-21.42	Н
9748.00	23.42	39.45	9.33	34.80	37.40	54.00	-16.60	otek H
12185.00	Anbe *orek	Anbotek	Anboro	iek - ul	otek Anb	54.00	notek .	hotek
14622.00	* potek	Anbo	Park Aupo	Tek VII.	nbotek l	54.00	hotek	p./H°
17059.00	* * **	iek ar	potek bu	ipo,	abotek	54.00	Motek	H _s

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 22 of 63

Test Results (Above 1000MHz)

est ivesuit	S (ADOVE 10	(OUNIT 12)	Anbo	nek.	abore	bree.	10 more	No.
Test Mode:	802.11b Mo	de		Test	channel: Hig	hest		
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4924.00	45.23	34.57	6.74	34.09	52.45	74.00	-21.55	$\Lambda_{i_{i_{j_{i}}}}$
7386.00	35.19	37.29	7.80	34.55	45.73	74.00	-28.27	V
9848.00	37.19	39.55	9.41	34.81	51.34	74.00	-22.66	o ^{tek} V
12310.00	Anbo *	Projek	Anbore	Nun	siek anbi	74.00	-ok	V
14772.00	*	by,	ek Anboi	Ant	tek	74.00	upo,	V
17234.00	*hbore	V Ann	otek an	potek	Jupo. Pok	74.00	Vupose.	V
4924.00	44.48	34.57	6.74	34.09	51.70	74.00	-22.30	And
7386.00	34.06	37.29	7.80	34.55	44.60	74.00	-29.40	Н
9848.00	33.35	39.55	9.41	34.81	47.50	74.00	-26.50	H
12310.00	YUDO *	abotek	Aupore	k ku	rek Anbo	74.00	*ek	Hrody
14772.00	Vup.*	-100 ¹⁶	K Aupor	b'un	otek or	74.00	100. b	- Afre
17234.00	A*/por	K PU	otek Ant	oter b	No.	74.00	Aupore	H
			Av	verage Valu	ie	15.5	.0.1	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4924.00	36.12	34.57	6.74	34.09	43.34	54.00	-10.66	boy A
7386.00	25.10	37.29	7.80	34.55	35.64	54.00	-18.36	AnbVer
9848.00	25.68	39.55	9.41	34.81	39.83	54.00	-14.17	V
12310.00	* \(\tag{1}\)	rek .	spojek p	'upolo	VII.	54.00	Aupo	V
14772.00	Her * Anb	o	bojek	Anbore	Ann	54.00	Anbo.	V
17234.00	botek*	upor	Dir.	Anboten	Anbo	54.00	Anbo	V
4924.00	34.83	34.57	6.74	34.09	42.05	54.00	-11.95	PoreH
7386.00	23.44	37.29	7.80	34.55	33.98	54.00	-20.02	AnbHerr
9848.00	22.60	39.55	9.41	34.81	36.75	54.00	-17.25	N/Po,
12310.00	*1000	rek .	doolek b	upo,	potek.	54.00	Vunn Jek	H
14772.00	ISK * AND	.ek	abotek	Anbore	An	54.00	Anba	ж Н
17234.00	botek * A	upo,	hotek.	Anboren	VUD.	54.00	V. Voos	Н

Remark:

- 1. During the test, pre-scan the 802.11b,g,n(HT20N) mode, and found the 802.11b mode is worse case the report only record this mode.
- 2. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*", means this data is the too weak instrument of signal is unable to test.

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 23 of 63

Radiated Band Edge:

	210.	VUIN	1/0.	-100°	De-	170	· ·
802.11b Mo	de		Test	channel: Lov	west		
		F	Peak Value	<u> </u>			
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
52.57	29.15	3.41	34.01	51.12	74.00	-22.88	H
61.89	29.16	3.43	34.01	60.47	74.00	-13.53	Н
54.31	29.15	3.41	34.01	52.86	74.00	-21.14	V
63.93	29.16	3.43	34.01	62.51	74.00	-11.49	nbo'V
		Av	erage Valu	ıe			
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
39.06	29.15	3.41	34.01	37.61	54.00	-16.39	H H
47.46	29.16	3.43	34.01	46.04	54.00	-7.96	hotek H
40.96	29.15	3.41	34.01	39.51	54.00	-14.49	PU/ALG
48.65	29.16	3.43	34.01	47.23	54.00	-6.77	V
	Read Level (dBuV) 52.57 61.89 54.31 63.93 Read Level (dBuV) 39.06 47.46 40.96	Read Level (dBuV) 52.57 29.15 61.89 29.16 54.31 29.15 63.93 29.16 Read Level (dBuV) Antenna Factor (dB/m) 39.06 29.15 47.46 29.16 40.96 29.15	Read Level (dBuV) 52.57 29.15 61.89 29.16 3.41 63.93 29.16 3.43 Av Read Level (dBuV) Read Level (dBuV) 39.06 29.15 3.41 47.46 29.16 3.43 40.96 29.15 3.41 Antenna Factor (dB/m) 3.43 Av Cable Loss (dB) 3.43 Av Av Av Av Av Av Av Av Av A	Peak Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) 52.57 29.15 3.41 34.01 61.89 29.16 3.43 34.01 54.31 29.15 3.41 34.01 63.93 29.16 3.43 34.01 Average Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) 39.06 29.15 3.41 34.01 47.46 29.16 3.43 34.01 40.96 29.15 3.41 34.01	Read Level (dBuV)	Peak Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit (dBuV/m) 52.57 29.15 3.41 34.01 51.12 74.00 61.89 29.16 3.43 34.01 60.47 74.00 54.31 29.15 3.41 34.01 52.86 74.00 63.93 29.16 3.43 34.01 62.51 74.00 Average Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) Limit (dBuV/m) 39.06 29.15 3.41 34.01 37.61 54.00 47.46 29.16 3.43 34.01 46.04 54.00 40.96 29.15 3.41 34.01 39.51 54.00	Peak Value Read Level (dBuV) Cable Loss (dB) Factor (dB) Cable Loss

Test Mode:	802.11b Mo	de		Test	Test channel: Highest					
			F	Peak Value	-					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2483.50	53.62	29.28	3.53	34.03	52.40	74.00	-21.60	H		
2500.00	49.15	29.30	3.56	34.03	47.98	74.00	-26.02	_≥ ⊬ H		
2483.50	56.06	29.28	3.53	34.03	54.84	74.00	-19.16	otelV		
2500.00	51.83	29.30	3.56	34.03	50.66	74.00	-23.34	V		
1,55			Av	erage Valu	ie			- 110		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.		
2483.50	39.57	29.28	3.53	34.03	38.35	54.00	-15.65	H		
2500.00	35.49	29.30	3.56	34.03	34.32	54.00	-19.68	H		
2483.50	41.60	29.28	3.53	34.03	40.38	54.00	-13.62	Iupoh A		
2500.00	37.41	29.30	3.56	34.03	36.24	54.00	-17.76	V		

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 24 of 63

Radiated Band Edge:

	760.	VU5	20-	-20.	po-	77	2"
802.11g Mo	de		Tes	t channel: Lov	west		
		F	Peak Value				
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
51.43	27.53	5.47	33.92	50.51	74.00	-23.49	H
60.36	27.55	5.49	29.93	63.47	74.00	-10.53	Н
53.09	27.53	5.47	33.92	52.17	74.00	-21.83	V
62.10	27.55	5.49	29.93	65.21	74.00	-8.79	V
		Av	erage Val	ue			
Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
38.25	27.53	5.47	33.92	37.33	54.00	-16.67	tek H
46.52	27.55	5.49	29.93	49.63	54.00	-4.37	hotek
40.05	27.53	5.47	33.92	39.13	54.00	-14.87	AnViet
47.63	27.55	5.49	29.93	50.74	54.00	-3.26	V
	Read Level (dBuV) 51.43 60.36 53.09 62.10 Read Level (dBuV) 38.25 46.52 40.05	Read Level (dBuV) Factor (dB/m) 51.43 27.53 60.36 27.55 53.09 27.53 62.10 27.55 Read Level (dBuV) Antenna Factor (dB/m) 38.25 27.53 46.52 27.55 40.05 27.53	Read Level (dBuV) 51.43 27.53 5.47 60.36 27.55 5.49 53.09 27.55 5.49 Av Read Level (dBuV) Read Level (dBuV) 38.25 27.53 5.47 Cable Loss (dB) Av Av Antenna Factor (dB/m) 38.25 27.53 5.47 46.52 27.55 5.49 40.05 27.53 5.47	Peak Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) 51.43 27.53 5.47 33.92 60.36 27.55 5.49 29.93 53.09 27.53 5.47 33.92 62.10 27.55 5.49 29.93 Average Val Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dB) 38.25 27.53 5.47 33.92 46.52 27.55 5.49 29.93 40.05 27.53 5.47 33.92	Peak Value Read Level (dBuV) Antenna Factor (dB/m) Cable Loss (dB) Preamp Factor (dBuV/m) Level (dBuV/m) 51.43 27.53 5.47 33.92 50.51 60.36 27.55 5.49 29.93 63.47 53.09 27.53 5.47 33.92 52.17 62.10 27.55 5.49 29.93 65.21 Average Value Read Level (dBuV) Cable Loss (dB) Preamp Factor (dB) Level (dBuV/m) 38.25 27.53 5.47 33.92 37.33 46.52 27.55 5.49 29.93 49.63 40.05 27.53 5.47 33.92 39.13	Read Level (dBuV)	Peak Value Peak Value Read Level (dBuV)

Test Mode:	802.11g Mod	е		Test	channel: Higl	hest		
			ſ	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	51.99	29.28	3.53	34.03	50.77	74.00	-23.23	H
2500.00	47.89	29.30	3.56	34.03	46.72	74.00	-27.28	ek H
2483.50	54.20	29.28	3.53	34.03	52.98	74.00	-21.02	V
2500.00	50.35	29.30	3.56	34.03	49.18	74.00	-24.82	Vek
			A۱	verage Valu	е			140
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	38.58	29.28	3.53	34.03	37.36	54.00	-16.64	H P
2500.00	34.73	29.30	3.56	34.03	33.56	54.00	-20.44	H
2483.50	40.51	29.28	3.53	34.03	39.29	54.00	-14.71	Tupofe,
2500.00	36.60	29.30	3.56	34.03	35.43	54.00	-18.57	MOTO

Remark:

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: WQ8MAXIVIDEOMV161

Page 25 of 63

Radiated	Band	Edge:
----------	------	-------

Test Mode: 802.11n20 Mode Test channel: Lowest								
			F	Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	51.14	27.53	5.47	33.92	50.22	74.00	-23.78	H
2400.00	59.98	27.55	5.49	29.93	63.09	74.00	-10.91	Н
2390.00	52.79	27.53	5.47	33.92	51.87	74.00	-22.13	V
2400.00	61.64	27.55	5.49	29.93	64.75	74.00	-9.25	, V
			Av	erage Val	ue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2390.00	38.05	27.53	5.47	33.92	37.13	54.00	-16.87	H
2400.00	46.29	27.55	5.49	29.93	49.40	54.00	-4.60	hotek
2390.00	39.83	27.53	5.47	33.92	38.91	54.00	-15.09	AnViet
2400.00	47.37	27.55	5.49	29.93	50.48	54.00	-3.52	V

Test Mode:	802.11n20 M	ode	Test channel: Highest					
			F	Peak Value	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	51.58	29.28	3.53	34.03	50.36	74.00	-23.64	H
2500.00	47.57	29.30	3.56	34.03	46.40	74.00	-27.60	K H
2483.50	53.73	29.28	3.53	34.03	52.51	74.00	-21.49	V
2500.00	49.98	29.30	3.56	34.03	48.81	74.00	-25.19	V
		1213	Av	erage Val	ue			1
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
2483.50	38.34	29.28	3.53	34.03	37.12	54.00	-16.88	H P
2500.00	34.53	29.30	3.56	34.03	33.36	54.00	-20.64	H
2483.50	40.24	29.28	3.53	34.03	39.02	54.00	-14.98	Vupoles
2500.00	36.40	29.30	3.56	34.03	35.23	54.00	-18.77	AVVOICE

1. Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 26 of 63

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (b)(3)	Anbotek	Anbo	upotek
Test Limit	30dBm	Anborek	Anbountek	anbo

5.2. Test Setup

5.3. Test Procedure

- 1. The Transmitter output (antenna port) was connected to the power meter.
- 2. Turn on the EUT and power meter and then record the power value.
- 3. Repeat above procedures on all channels needed to be tested.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.4. Test Data

Test Item	:	Max. peak output power	Test Mode	:	CH Low ~ CH High
Test Voltage	:	DC 3.7V Battery inside	Temperature	:	24 ℃
Test Result	:	PASS	Humidity	:	55%RH

Hotline

Code: AB-RF-05-a

400-003-0500 www.anbotek.com

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 27 of 63

Test Channe	ı	Frequency (MHz)	,	Maximum Peak C Output Power (dBm)		Limit dBm		Results	
Anborek	Anbotel	ak Anbo	ootek	TX 802.11b M	ode	anbotek	Anbotek	Anbo.	otek
CH01	Anb	2412	Anbotek	15.39	Anbotek	30	Anbo	PASS	Anbo
CH06	9.K	2437	Anbo	15.20	Anbotek	30	itek bi	PASS	PL
CH11	otek	2462	Ar Ar	14.75	k Aupon	30	hbotek	PASS	K
Anbotek	Anborek	rek Yupo.	otek	TX 802.11g M	ode	Anbotek	Anborek	ek Pupor	otek
CH01	Anbo	2412	Anbolek	14.62	Anbotek	30	Anbo	PASS	nbot
CH06)r br	2437	A.nbot	16.63	Anbotek	30	lek by	PASS	An
CH11	otek	2462	k Vu	15.77	Anbore	30	botek	PASS	_
Anbotek A	upotek	ek Aupo	otek	TX 802.11n(20)	Mode	inbotek	Anbotek	ak Anbo	rek
CH01	Vupo	2412	inbotek.	14.52	anbotek	30	Aupor	PASS	nbote
CH06	ę.	2437	Anbore	16.50	Anbotek	30	ek bu	PASS	Anto
CH11	rek	2462	V.	15.79	Aupor	30	potek	PASS	

Note: For power test the duty cycle is 100% in continuous transmitting mode.

Please see the plot of next page

FCC ID: WQ8MAXIVIDEOMV161 **Duty Cycle**

Page 28 of 63

802.11b mode

802.11g mode

FCC ID: WQ8MAXIVIDEOMV161

Page 29 of 63

802.11n(HT20) mode

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 30 of 63

6. 6DB Occupy Bandwidth Test

6.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (a)(2)	Anboten	Anbu	Anbotek
Test Limit	>500kHz	Anbore	Anu	Anbole

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

RBW= 100kHz, VBW≥3*RBW =300kHz

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and -6dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

6.4. Test Data

Test Item : 6dB Bandwidth Test Mode : CH Low ~ CH High

Test Voltage : DC 3.7V Battery inside Temperature : 24℃

Test Result : PASS Humidity : 55%RH

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: WQ8MAXIVIDEOMV161

Page 31 of 63

Mode	Channel	Frequency (MHz)	Bandwidth (MHz)	Limit (kHz)	Results
Anbotek A	Low	2412	9.590	Anbotek Ant	PASS
802.11b	Middle	2437	9.571	>500	PASS
rek Antotek	High	2462	9.137	kek Anbotek	PASS
botek Anbo	Low	2412	15.33	nbotek Anbote	PASS
802.11g	Middle	2437	15.24	>500	PASS
Anborek	High	2462	15.34	Anborek	PASS
ek Anbotek	Low	2412	15.10 hbon	rek Anbotek	PASS
802.11n20	Middle	2437	16.07	>500	PASS
Anbotek An	High	2462	15.08	Anbotek Anbo	PASS

FCC ID: WQ8MAXIVIDEOMV161

Page 32 of 63

802.11b mode: Lowest

802.11b mode: Middle

FCC ID: WQ8MAXIVIDEOMV161

Page 33 of 63

802.11b mode: Highest

802.11g mode: Lowest

FCC ID: WQ8MAXIVIDEOMV161

Page 34 of 63

802.11g mode: Middle

802.11g mode: Highest

FCC ID: WQ8MAXIVIDEOMV161

Page 35 of 63

802.11n20 mode : Lowest

802.11n20 mode : Middle

Shenzhen Anbotek Compliance Laboratory Limited

FCC ID: WQ8MAXIVIDEOMV161

Page 36 of 63

802.11n20 mode: Highest

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 37 of 63

7. Power Spectral Density Test

7.1. Test Standard and Limit

Test Standard	FCC Part15 C Section	pri abotek	Anboren	Anto	Anbotek
Test Limit	8dBm/3KHz	A. nbořek	Anbote	Ann	Anbo

7.2. Test Setup

7.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 1.5xDTS BW
- 3. Record the max. reading.
- 4. Repeat the above procedure until the measurements for all frequencies are completed.

7.4. Test Data

Test Item : Power Spectral Density Test Mode : CH Low \sim CH High Test Voltage : DC 3.7V Battery inside Temperature : 24 $^{\circ}$ C Test Result : PASS Humidity : 55 $^{\circ}$ RH

Mode	Channel	Frequency (MHz)	PSD (dBm/3KHz)	Limit (dBm/3KHz)	Results
tek anbot	Low	2412	-12.155	8.00	PASS
802.11b	Middle	2437	-11.638	8.00	PASS
upo, sek	High	2462	-11.683	8.00	PASS
Aupon	Low	2412	-16.587	8.00	PASS
802.11g	Middle	2437	-15.135	8.00	PASS
Aupo	High	2462	-15.489	8.00	PASS
Jek Pupo.	Low	2412	-17.703	8.00	PASS
802.11n20	Middle	2437	-14.644	8.00	PASS
Anbotek	High	2462	-15.847	8.00	PASS

Code:AB-RF-05-a

FCC ID: WQ8MAXIVIDEOMV161

Page 38 of 63

802.11b mode: Lowest

802.11b mode: Middle

FCC ID: WQ8MAXIVIDEOMV161

Page 39 of 63

802.11b mode: Highest

802.11g mode: Lowest

FCC ID: WQ8MAXIVIDEOMV161

Page 40 of 63

802.11g mode: Middle

802.11g mode: Highest

FCC ID: WQ8MAXIVIDEOMV161

Page 41 of 63

802.11n20 mode : Lowest

802.11n20 mode: Middle

FCC ID: WQ8MAXIVIDEOMV161

Page 42 of 63

802.11n20 mode: Highest

Code: AB-RF-05-a

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 43 of 63

8. 100kHz Bandwidth of Frequency Band Edge Requirement

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
re	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is
	produced by the intentional radiator shall be at least 20dB below that in the
Test Limit	100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission
	limits specified in15.209(a).

8.2. Test Setup

8.3. Test Procedure

Using the following spectrum analyzer setting:

- 1. Set the RBW = 100KHz.
- 2. Set the VBW = 300KHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

8.4. Test Data

Test Item	:	Band edge	Test Mode	:	CH Low ~ CH I	ligh
Test Voltage	:	DC 3.7V Battery inside	Temperature	:	24℃	
Test Result		PASS	Humidity		55%RH	

Mada	Frequency Band	Delta Peak to Band Emission	Limit	Daguita	
Mode	(MHz)	(dBc)	(dBc)	Results	
000 11h	2412	48.234	>20	PASS	
802.11b	2462	59.457	>20	PASS	
902 11 a	2412	38.358	>20	PASS	
802.11g	2462	40.766	>20	PASS	
002 11=20	2412	38.908	>20 M	PASS	
802.11n20	2462	38.084	>20	PASS	

Shenzhen Anbotek Compliance Laboratory Limited

Code:AB-RF-05-a

Hotline 400-003-0500 www.anbotek.com

FCC ID: WQ8MAXIVIDEOMV161

Page 44 of 63

802.11b mode: Lowest

802.11b mode: Highest

802.11g mode: Lowest

802.11g mode: Highest

FCC ID: WQ8MAXIVIDEOMV161

Page 46 of 63

802.11n20 mode: Lowest

802.11n20 mode: Highest

FCC ID: WQ8MAXIVIDEOMV161

Page 47 of 63

Conducted Emission Method

802.11b mode: Lowest

802.11b mode: Middle

FCC ID: WQ8MAXIVIDEOMV161

Page 48 of 63

802.11b mode: Highest

802.11g mode: Lowest

FCC ID: WQ8MAXIVIDEOMV161

Page 49 of 63

802.11g mode: Middle

802.11g mode: Highest

FCC ID: WQ8MAXIVIDEOMV161

Page 50 of 63

802.11n20 mode : Lowest

802.11n20 mode : Middle

FCC ID: WQ8MAXIVIDEOMV161

Page 51 of 63

802.11n20 mode: Highest

Code: AB-RF-05-a

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161

9. Antenna Requirement

9.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
	1) 15.203 requirement:
	An intentional radiator shall be designed to ensure that no antenna other than that
	furnished by the responsible party shall be used with the device. The use of a
	permanently attached antenna or of an antenna that uses a unique coupling to the
	intentional radiator, the manufacturer may design the unit so that a broken antenna
	can be replaced by the user, but the use of a standard antenna jack or electrical
Requirement	connector is prohibited.
	2) 15.247(c) (1)(i) requirement:
	Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed.
	Point-to-point operations may employ transmitting antennas with directional gain
	greater than 6dBi provided the maximum conducted output power of the intentional
	radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna
	exceeds 6 dBi.

9.2. Antenna Connected Construction

The antenna is a FPCB Antenna which permanently attached, and the best case gain of the antenna is 1.4 dBi It complies with the standard requirement.

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

400-003-0500 www.anbotek.com

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 53 of 63

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Power Line Conducted Emission Test

Photo of Radiation Emission Test

FCC ID: WQ8MAXIVIDEOMV161

Page 54 of 63

Code: AB-RF-05-a

FCC ID: WQ8MAXIVIDEOMV161

Page 55 of 63

APPENDIX II -- EXTERNAL PHOTOGRAPH

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

FCC ID: WQ8MAXIVIDEOMV161

Page 56 of 63

FCC ID: WQ8MAXIVIDEOMV161

Page 57 of 63

FCC ID: WQ8MAXIVIDEOMV161

Page 58 of 63

Report No.: SZAWW190910006-01 FCC ID: WQ8MAXIVIDEOMV161 Page 59 of 63

APPENDIX III -- INTERNAL PHOTOGRAPH

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-RF-05-a

FCC ID: WQ8MAXIVIDEOMV161

Page 60 of 63

FCC ID: WQ8MAXIVIDEOMV161

Page 61 of 63

FCC ID: WQ8MAXIVIDEOMV161

Page 62 of 63

FCC ID: WQ8MAXIVIDEOMV161

Page 63 of 63

-- End of Report ----