ABSTRACT ALGEBRA II AUTOMORPHISMS & GALOIS THEORY

MARIO L. GUTIERREZ ABED

Automorphisms of Fields

Definition. Let E be an algebraic extension of a field F. Two elements $\alpha, \beta \in E$ are **conjugate** over F if $irr(\alpha, F) = irr(\beta, F)$, that is, if α and β are zeroes of the same irreducible polynomial over F.

<u>Remark</u>: The concept of conjugate elements just defined conforms with the classic idea of <u>conjugate</u> complex numbers if we understand that by conjugate complex numbers we mean numbers that are conjugate over \mathbb{R} . If $a, b \in \mathbb{R}$ and $b \neq 0$, then the conjugate complex numbers a + bi and a - bi are both zeroes of $x^2 - 2ax + a^2 + b^2$, which is irreducible in $\mathbb{R}[x]$.

Theorem (The Conjugation Isomorphisms). Let F be a field, and let α and β be algebraic over F with $\deg(\alpha, F) = n$. Then the map $\psi_{\alpha,\beta} \colon F(\alpha) \to F(\beta)$ defined by

$$\psi_{\alpha,\beta}(c_0 + c_1\alpha + \dots + c_{n-1}\alpha^{n-1}) = c_0 + c_1\beta + \dots + c_{n-1}\beta^{n-1}$$
 for $c_i \in F$

is an isomorphism of $F(\alpha)$ onto $F(\beta)$ if and only if α and β are conjugate over F.

Proof. See page 416 - 417, Fraleigh's.

Corollary 1. Let α be algebraic over a field F. Every isomorphism ψ mapping $F(\alpha)$ onto a subfield of \bar{F} such that $\psi(a) = a$ for $a \in F$ maps α onto a conjugate β of α over F. Conversely, for each conjugate β of α over F, there exists exactly one isomorphism $\psi_{\alpha,\beta}$ of $F(\alpha)$ onto a subfield of \bar{F} mapping α onto β and mapping each $a \in F$ onto itself.

Corollary 2. Let $f(x) \in \mathbb{R}[x]$. If f(a+bi) = 0 for $(a+bi) \in \mathbb{C}$, where $a, b \in \mathbb{R}$, then f(a-bi) = 0 as well. (Loosely speaking, complex zeroes of polynomials with real coefficients occur in conjugate pairs.)

Example 1: Consider $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} . The zeroes of $\operatorname{irr}(\sqrt{2},\mathbb{Q}) = x^2 - 2$ are $\sqrt{2}$ and $-\sqrt{2}$; hence $\sqrt{2}$ and $-\sqrt{2}$ are conjugate over \mathbb{Q} . According to the above theorem, the map $\psi_{\sqrt{2},-\sqrt{2}} \colon \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ defined by

$$\psi_{\sqrt{2},-\sqrt{2}}(a+b\sqrt{2}) = a - b\sqrt{2}$$

is an isomorphism of $\mathbb{Q}(\sqrt{2})$ onto itself.

<u>Remark</u>: As illustrated in the preceding example, a field may have a nontrivial isomorphism onto itself. Such maps, known as **automorphisms**, will be of utmost importance in the work that follows.

Example: Let $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. The map $\sigma: E \to E$ defined by

$$\sigma(a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}) = a + b\sqrt{2} - c\sqrt{3} - d\sqrt{6}$$

for $a,b,c,d\in\mathbb{Q}$, is an automorphism of E; it is the conjugation isomorphism $\psi_{\sqrt{3},-\sqrt{3}}$ of E onto itself if we view E as $(\mathbb{Q}(\sqrt{2}))(\sqrt{3})$. We see that σ leaves $\mathbb{Q}(\sqrt{2})$ fixed.

If $\{\sigma_i \mid i \in I\}$ is a collection of automorphisms of a field E, the elements of E about which $\{\sigma_i \mid i \in I\}$ gives the least information are those $a \in E$ left fixed by every σ_i for $i \in I$. The following theorem contains almost all that can be said about these fixed elements of E:

Theorem 1. Let $\{\sigma_i \mid i \in I\}$ be a collection of automorphisms of a field E. Then the set

$$E_{\{\sigma_i\}} = \{ a \in E \mid \sigma_i(a) = a \ \forall i \in I \}$$

forms a subfield of E.

Proof. See page 419, Fraleigh's.

Definition. The field $E_{\{\sigma_i\}}$ defined on the preceding theorem is called the **fixed field** of $\{\sigma_i \mid i \in I\}$. (Obviously, for a single automorphism σ , we shall refer to $E_{\{\sigma\}}$ as the fixed field of σ .)

<u>Example</u>: Consider the automorphism $\psi_{\sqrt{2},-\sqrt{2}}$ given on Example 1 above. For $a,b\in\mathbb{Q}$, we have

$$\psi_{\sqrt{2},-\sqrt{2}}(a+b\sqrt{2}) = a - b\sqrt{2},$$

and $a + b\sqrt{2} = a - b\sqrt{2}$ if and only if b = 0. Thus the fixed field of $\psi_{\sqrt{2},-\sqrt{2}}$ is \mathbb{Q} .

<u>Remark</u>: Note that an automorphism of a field E is in particular an injective mapping of E onto E, that is, a permutation of E. If σ and τ are automorphisms of E, then the permutation $\sigma\tau$ is again an automorphism of E, since, in general, compositions of homomorphisms again yield homomorphisms. This is how group theory comes into play on our present work:

Theorem 2. The set of all automorphisms of a field E is a group under function composition. (This group is denoted as Aut(E).)

Theorem 3. Let E be a field and let F be a subfield of E. Then the set

$$G(E/F) = \{ \sigma \in \operatorname{Aut}(E) \mid \sigma(a) = a \ \forall a \in F \}$$

forms a subgroup of Aut(E). Furthermore, $F \leq E_{G(E/F)}$, where

$$E_{G(E/F)} = \{ a \in E \mid \sigma(a) = a \ \forall \, \sigma \in G(E/F) \}.$$

<u>Remark 1</u>: The group G(E/F) is called the group of automorphisms of E leaving F fixed, or, more briefly, the **group of** E **over** F.

<u>Remark 2</u>: Do not think of E/F in the notation of G(E/F) as denoting a quotient space of some sort, but rather as meaning that E is an extension field of the field F. This notation is unfortunately quite inconvenient but it's pretty standard. (so deal with it! \odot)

The ideas contained in theorems 1-3 above are illustrated in the following example. We urge you to study this example carefully:

Example 2: Consider the field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Example 1 from our notes on Extension Fields shows that $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 4$. If we view $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ as $(\mathbb{Q}(\sqrt{3}))(\sqrt{2})$, then the conjugation isomorphism $\psi_{\sqrt{2}, -\sqrt{2}}$ defined by

$$\psi_{\sqrt{2},-\sqrt{2}}(a+b\sqrt{2}) = a - b\sqrt{2}$$

for $a,b\in\mathbb{Q}(\sqrt{3})$ is an automorphism of $\mathbb{Q}(\sqrt{2},\sqrt{3})$ having $\mathbb{Q}(\sqrt{3})$ as a fixed field. Similarly, we have the automorphism $\psi_{\sqrt{3},-\sqrt{3}}$ of $\mathbb{Q}(\sqrt{2},\sqrt{3})$, having $\mathbb{Q}(\sqrt{2})$ as the fixed field.

Since the product of two automorphisms is itself an automorphism, we can consider $\psi_{\sqrt{2},-\sqrt{2}} \psi_{\sqrt{3},-\sqrt{3}}$, which moves both $\sqrt{2}$ and $\sqrt{3}$, that is, leaves neither number fixed.

Now let

$$\begin{split} \iota &= \text{The identity automorphism,} \\ \sigma_1 &= \psi_{\sqrt{2}, -\sqrt{2}}, \\ \sigma_2 &= \psi_{\sqrt{3}, -\sqrt{3}}, \\ \sigma_3 &= \psi_{\sqrt{2}, -\sqrt{2}} \, \psi_{\sqrt{3}, -\sqrt{-3}}. \end{split}$$

The group of all automorphisms of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ has a fixed field, by *Theorem 1*. This fixed field must contain \mathbb{Q} , since every automorphism of a field leaves 1 and hence the prime subfield fixed. A basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over \mathbb{Q} is $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$. Since

$$\sigma_1(\sqrt{2}) = -\sqrt{2}, \quad \sigma_1(\sqrt{6}) = -\sqrt{6}, \quad \text{and} \quad \sigma_2(\sqrt{3}) = -\sqrt{3},$$

we see that \mathbb{Q} is exactly the fixed field of $G = \{\iota, \sigma_1, \sigma_2, \sigma_3\}$. It is readily checked that G is a group under automorphism multiplication (function composition). For instance, we have

$$\sigma_1 \sigma_3 = \psi_{\sqrt{2}, -\sqrt{2}} (\psi_{\sqrt{2}, -\sqrt{2}} \psi_{\sqrt{3}, -\sqrt{3}}) = \psi_{\sqrt{3}, -\sqrt{3}} = \sigma_2.$$

The group table for G is given below:

	ι	σ_1	σ_2	σ_3
ι	ι	σ_1	σ_2	σ_3
σ_1	σ_1	ι	σ_3	σ_2
σ_2	σ_2	σ_3	ι	σ_1
σ_3	σ_3	σ_2	σ_1	ι

The group G is isomorphic to the Klein-4 group. We can show that G is the full group $G(\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q})$, because every automorphism τ of $\mathbb{Q}(\sqrt{2},\sqrt{3})$ maps $\sqrt{2}$ onto either $\pm\sqrt{2}$, by Corollary 1. Similarly, τ maps $\sqrt{3}$ onto either $\pm\sqrt{3}$. But since $\{1,\sqrt{2},\sqrt{3},\sqrt{2}\sqrt{3}\}$ is a basis for $\mathbb{Q}(\sqrt{2},\sqrt{3})$ over \mathbb{Q} , an automorphism of $\mathbb{Q}(\sqrt{2},\sqrt{3})$ leaving \mathbb{Q} fixed is determined by its values on $\sqrt{2}$ and $\sqrt{3}$. Now ι , σ_1 , σ_2 , and σ_3 give all possible combinations of values on $\sqrt{2}$ and $\sqrt{3}$, and hence they are all possible automorphisms of $\mathbb{Q}(\sqrt{2},\sqrt{3})$.

Note that $G(\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q})$ has order 4, and $[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = 4$. This is no accident, but rather an instance of a general situation, as we shall see later.

 \star

Theorem (The Frobenius Automorphism). Let F be a finite field of characteristic p. Then the map $\sigma_p \colon F \to F$ defined by $\sigma_p(a) = a^p$ for $a \in F$ is an automorphism, known as the **Frobenius** automorphism, of F. Also, $F_{\{\sigma_p\}} \simeq \mathbb{Z}_p$.

<u>Remark</u>: Freshmen in college sometimes make the error of saying that $(a + b)^n = a^n + b^n$. This theorem shows us that this *freshman's dream* $(a + b)^p = a^p + b^p$ is actually valid in a field F of characteristic p.

Definition. Let E be a finite extension of a field F. Then the number of isomorphisms of E onto a subfield of \overline{F} leaving F fixed is known as the **index** of E over F, denoted as $\{E:F\}$.

<u>Remark 1</u>: A result that can be easily proven is that if $F \le E \le K$, where K is a finite extension field of the field F, then we have that $\{K : F\} = \{K : E\}\{E : F\}$.

Remark 2: Another result is that $\{F(\alpha): F\}$ = the number of distinct zeroes of $irr(\alpha, F)$.

Splitting Fields

Definition. Let F be a field with algebraic closure \bar{F} . Let $\{f_i(x) \mid i \in I\}$ be a collection of polynomials in F[x]. Then a field $E \leq \bar{F}$ is said to be the **splitting field** of $\{f_i(x) \mid i \in I\}$ over F if E is the smallest subfield of \bar{F} containing F and all zeroes in \bar{F} of each of the $f_i(x)$. Generally we say that a field $K \leq \bar{F}$ is a **splitting field** over F if it is the splitting field of some set of polynomials in F[x].

A more concise definition of a splitting field (which will become more apparent once you read some of the results below) is given as follows:

Definition. Let F be a field and $p(x) = a_0 + a_1x + \cdots + a_nx^n$ be a nonconstant polynomial in F[x]. Then an extension field E of F is said to be the **splitting field** of p(x) if there exists elements $\alpha_1, \ldots, \alpha_n$ in E such that

$$E = F(\alpha_1, \dots, \alpha_n)$$

and

$$p(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n).$$

Example: We see that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a splitting field of $\{x^2 - 2, x^2 - 3\}$ and also of $\{x^4 - 5x^2 + 6\}$.

Theorem. A field E, where $F \leq E \leq \bar{F}$, is a splitting field over F if and only if every automorphism of \bar{F} leaving F fixed maps E onto itself and thus induces an automorphism of E leaving F fixed.

Proof. See page 432 - 433, Fraleigh's.

Definition. Let E be an extension field of a field F. A polynomial $f(x) \in F[x]$ splits in E if it factors into a product of linear factors in E[x].

▲

Example: The polynomial $x^4 - 5x^2 + 6$ in $\mathbb{Q}[x]$ splits in the field $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ into $(x - \sqrt{2})(x + \sqrt{2})(x - \sqrt{3})(x + \sqrt{3})$.

<u>Example</u>: Let $p(x) = x^4 + 2x^2 - 8$ in $\mathbb{Q}[x]$. Then p(x) has irreducible factors $x^2 - 2$ and $x^2 + 4$ in $\mathbb{Q}[x]$. Therefore, the field $\mathbb{Q}(\sqrt{2}, i)$ is the splitting field for p(x):

$$p(x) = (x^2 - 2)(x^2 + 4)$$

= $(x + \sqrt{2})(x - \sqrt{2})(x + 2i)(x - 2i)$.

Example: Let $p(x) = x^2 + 3$ in $\mathbb{Q}[x]$. Then p(x) factors as $x^2 + 3 = (x - \sqrt{3}i)(x + \sqrt{3}i)$. Thus we have that $\mathbb{Q}(\sqrt{3}i)$ is the splitting field for p(x) over \mathbb{Q} , which is of degree 2 over \mathbb{Q} , i.e. $[\mathbb{Q}(\sqrt{3}i):\mathbb{Q}] = 2$.

Example: Let $p(x) = x^4 - 1$ in $\mathbb{Q}[x]$. Then p(x) factors as $x^4 - 1 = (x^2 + 1)(x^2 - 1) = (x - i)(x + i)(x - 1)(x + 1)$. Thus we have that $\mathbb{Q}(i)$ is the splitting field for p(x) over \mathbb{Q} , which is of degree 2 over \mathbb{Q} , i.e. $[\mathbb{Q}(i):\mathbb{Q}] = 2$.

Example: Let $p(x) = (x^2 - 2)(x^2 - 3)$ in $\mathbb{Q}[x]$. Then p(x) factors as $(x^2 - 2)(x^2 - 3) = (x - \sqrt{2})(x + \sqrt{2})(x - \sqrt{3})(x + \sqrt{3})$. Thus we have that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is the splitting field for p(x) over \mathbb{Q} , which is of degree 4 over \mathbb{Q} , i.e.

$$\underbrace{[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]}_{4} = \underbrace{[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{3})]}_{2}\underbrace{[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]}_{2}.$$

Corollary. If $E \leq \bar{F}$ is a splitting field over F, then every irreducible polynomial in F[x] having a zero in E splits in E.

Corollary 3. If $E \leq \bar{F}$ is a splitting field over F, then every isomorphic mapping of E onto a subfield of \bar{F} leaving F fixed is actually an automorphism of E. In particular, if E is a splitting field of finite degree over F, then

$${E:F} = |G(E/F)|.$$

<u>Example</u>: Observe that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is the splitting field of $\{x^2 - 2, x^2 - 3\}$ over \mathbb{Q} . On <u>Example</u> \mathbb{Q} we showed that the mappings ι , σ_1 , σ_2 , and σ_3 are all automorphisms of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ leaving \mathbb{Q} fixed. (Actually, since every automorphism of a field must leave the prime subfield fixed, we see that these are the only automorphisms of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.)

$$\{\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}\} = |G(\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q})| = 4,$$

illustrating Corollary 3.

Note: We wish to determine conditions under which

$$|G(E/F)| = \{E : F\} = [E : F]$$

for finite extensions E of F. We will show later on that this equation always holds when E is a splitting field over a field F of characteristic 0 or when F is a finite field. This equation however need not be true when F is an infinite field of characteristic $p \neq 0$.

<u>Example</u>: Consider the real cube root of 2, $\sqrt[3]{2}$. Now $x^3 - 2$ does not split in $\mathbb{Q}(\sqrt[3]{2})$, for $\mathbb{Q}(\sqrt[3]{2}) < \mathbb{R}$ and only one zero of $x^3 - 2$ is real. Thus $x^3 - 2$ factors in $(\mathbb{Q}(\sqrt[3]{2}))[x]$ into a linear factor of $x - \sqrt[3]{2}$ and an irreducible quadratic factor. The splitting field E of $x^3 - 2$ over \mathbb{Q} is therefore of degree 2 over $\mathbb{Q}(\sqrt[3]{2})$. Then

$$[E:\mathbb{Q}] = [E:\mathbb{Q}(\sqrt[3]{2})] [\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = (2)(3) = 6.$$

We have shown that the splitting field over \mathbb{Q} of $x^3 - 2$ is of degree 6 over \mathbb{Q} .

We can verify by cubing that

$$\sqrt[3]{2} \frac{-1 + i\sqrt{3}}{2}$$
 and $\sqrt[3]{2} \frac{-1 - i\sqrt{3}}{2}$

are the other zeroes of x^3-2 in $\mathbb C$. Thus the splitting field E of x^3-2 over $\mathbb Q$ is $\mathbb Q(\sqrt[3]{2},i\sqrt{3})$. (Note that this is NOT the same field as $\mathbb Q(\sqrt[3]{2},i,\sqrt{3})$, which is of degree 12 over $\mathbb Q$.)

SEPARABLE EXTENSIONS

Definition. Let $f(x) \in F[x]$. An element $\alpha \in \bar{F}$ such that $f(\alpha) = 0$ is a zero of f(x) of multiplicity ν if ν is the greatest integer such that $(x - \alpha)^{\nu}$ is a factor of f(x) in $\bar{F}[x]$.

Theorem. Let f(x) be irreducible in F[x]. Then all zeroes of f(x) in \overline{F} have the same multiplicity.

Theorem. If E is a finite extension of F, then $\{E : F\}$ divides [E : F].

Definition. A finite extension E of F is said to be a **separable extension** of F if $\{E:F\}=[E:F]$. An element $\alpha \in \bar{F}$ is **separable** over F if $F(\alpha)$ is a separable extension of F. An irreducible polynomial $f(x) \in F[x]$ is **separable** over F if every zero of f(x) in \bar{F} is separable over F.

Here's an alternate definition:

Definition. Let F be a field. A polynomial $f(x) \in F[x]$ of degree n is said to be **separable** if it has n distinct roots in the splitting field of f(x). That is, f(x) is separable when it factors into distinct linear factors over the splitting field of f(x). An extension E of F is said to be a **separable** extension of F if every element in E is a root of a separable polynomial in F[x].

Example: The field $E = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ is separable over \mathbb{Q} since, as we saw on a previous example, $\overline{\{E:\mathbb{Q}\}} = 4 = [E:\mathbb{Q}].$

<u>Example</u>: The polynomial $x^2 - 2$ is separable over \mathbb{Q} , since it factors as $(x - \sqrt{2})(x + \sqrt{2})$. In fact, $\mathbb{Q}(\sqrt{2})$ is a separable extension of \mathbb{Q} :

Let $\alpha = a + b\sqrt{2}$ be an element of $\mathbb{Q}(\sqrt{2})$. If b = 0, then α is a root of the separable polynomial

$$x^{2} - 2ax + a^{2} - 2b^{2} = (x - (a + b\sqrt{2}))(x - (a - b\sqrt{2}))$$

 \star

Fortunately, we have an easy way to determine separability of polynomials, as stated on the following theorem:

Theorem. Let F be a field and $f(x) \in F[x]$. Then f(x) is separable if and only if f(x) and f'(x) are relatively prime, i.e. if and only if gcd(f(x), f'(x)) = 1.

<u>Note</u>: We know that $\{F(\alpha): F\}$ is the number of distinct zeroes of $\operatorname{irr}(\alpha, F)$. Also the multiplicity of α in $\operatorname{irr}(\alpha, F)$ is the same as the multiplicity of each conjugate of α over F. Thus, α is separable over F if and only if $\operatorname{irr}(\alpha, F)$ has all the zeroes of multiplicity 1. This tells us that an irreducible polynomial $f(x) \in F[x]$ is separable over F if and only if f(x) has all zeroes of multiplicity 1.

Theorem. If K is a finite extension of E and E is a finite extension of F, that is, if $F \le E \le K$, then K is separable over F if and only if K is separable over E and E is separable over F.

Corollary. If E is a finite extension of F, then E is separable over F if and only if each $\alpha \in E$ is separable over F.

Definition. A field is said to be **perfect** if every finite extension is a separable extension.

Theorem. Every field of characteristic 0 is perfect.

Theorem. Every finite field is perfect.

Theorem (The Primitive Element Theorem). Let E be a finite separable extension of a field F. Then there exists $\alpha \in E$ such that $E = F(\alpha)$. That is, a finite separable extension of a field is a simple extension.

Corollary. A finite extension of a field of characteristic 0 is a simple extension.

<u>Remark</u>: We see that the only "bad" case where a finite extension may not be simple is a finite extension of an infinite field of characteristic $p \neq 0$.

¹Such an element α is known as a **primitive element**.

Galois Theory

We start by recalling the main results we have developed and should have well in mind:

- 1. Let $F \leq E \leq \overline{F}$, $\alpha \in E$, and let β be a conjugate of α over F, that is, $\operatorname{irr}(\alpha, F)$ has β as a zero also. Then there is an isomorphism $\psi_{\alpha,\beta}$ mapping $F(\alpha)$ onto $F(\beta)$ that leaves F fixed and maps α onto β .
- 2. If $F \leq E \leq \overline{F}$ and $\alpha \in E$, then an automorphism σ of \overline{F} that leaves F fixed must map α onto some conjugate of α over F.
- 3. If $F \leq E$, the collection of all automorphisms of E leaving F fixed forms a group G(E/F). For any subset S of G(E/F), the set of all elements of E left fixed by all elements of E is a field E_S . Also, $F \leq E_{G(E/F)}$.
- **4.** A field $E, F \leq E \leq \overline{F}$, is a splitting field over F if and only if every isomorphism of E onto a subfield of \overline{F} leaving F fixed is an automorphism of E. If E is a finite extension and a splitting field over F, then $|G(E/F)| = \{E : F\}$.
- 5. If E is a finite extension of F, then $\{E : F\}$ divides [E : F]. If E is also separable over F, then $\{E : F\} = [E : F]$. Also, E is separable over F if and only if $irr(\alpha, F)$ has all zeros of multiplicity 1 for every $\alpha \in E$.
- **6.** If E is a finite extension of F and is a separable splitting field over F, then $|G(E/F)| = \{E : F\} = [E : F]$.

Definition. A finite extension K of F is said to be a **finite normal extension** of F if K is a separable splitting field over F.

Theorem. Let K be a finite normal extension of F, and let E be an extension of F, where $F \leq E \leq K \leq \bar{F}$. Then K is a finite normal extension of E, and G(K/E) is precisely the subgroup of G(K/F) consisting of all those automorphisms that leave E fixed. Moreover, two automorphisms $\sigma, \tau \in G(K/F)$ induce the same isomorphism of E onto a subfield of \bar{F} if and only if they are in the same left coset of G(K/E) in G(K/F).

Definition. If K is a finite normal extension of a field F, then G(K/F) is called the **Galois** group of K over F.

Theorem 4 (Main Theorem of Galois Theory). Let K be a finite normal extension of a field F, with Galois group G(K/F). For a field E, where $F \leq E \leq K$, let $\lambda(E)$ be the subgroup of G(K/F) leaving E fixed. Then λ is a one-to-one map of the set of all such intermediate fields E onto the set of all subgroups of G(K/F).

The following properties hold for λ :

- 1) $\lambda(E) = G(K/E)$.
- 2) $E = K_{G(K/E)} = K_{\lambda(E)}$.
- 3) For H < G(K/F), we have $\lambda(E_H) = H$.
- 4) $[K:E] = |\lambda(E)|$ and $[E:F] = (G(K/F):\lambda(E)),$ the number of left cosets of $\lambda(E)$ in G(K/F).

5) E is a normal extension of F if and only if $\lambda(E)$ is a normal subgroup of G(K/F). When $\lambda(E)$ is a normal subgroup of G(K/F), we have

$$G(E/F) \simeq G(K/F)/G(K/E)$$
.

6) The diagram of subgroups of G(K/F) is the inverted diagram of intermediate fields of K over F.