毛台

整齐胜于凌乱,简单胜于复杂. 果断胜于凌乱,依赖胜于独立,强大胜于彷徨,自信胜于惶恐.

博客园

首而

订阅

随笔 - 393 文章 - 4 评论 - 16

管理

公告

昵称: _毛台 园龄: 3年11个月

粉丝: 33 关注: 4 +加关注

搜索

找找看

常用链接

我的随笔

我的评论

我的参与

最新评论

我的标签

友链

惨绿少年

52devops

yangrong

七夜的故事(Python爬虫开发与项目实战

作者)

卑鄙的我

陈明乾

陈思齐

youku

[na]完全理解icmp协议

目录(?) [+]

1.ICMP出现的原因

在IP通信中,经常有数据包到达不了对方的情况。原因是,在通信途中的某处的一个路由器由于不能处理所有的数据包,就将数据包一个一个丢弃了。或者,虽然到达了对方,但是由于搞错了端口号,服务器软件可能不能接受它。这时,在错误发生的现场,为了联络而飞过来的信鸽就是ICMP 报文。在IP 网络上,由于数据包被丢弃等原因,为了控制将必要的信息传递给发信方。ICMP 协议是为了辅助IP 协议,交换各种各样的控制信息而被制造出来的。

制定万维网规格的IETF 在1981 年将RFC7922作为ICMP 的基本规格整理出来了。那个RFC792 的开头部分里写着"ICMP 是IP 的不可缺少的部分,所有的IP 软件必须实现ICMP协议。也是,ICMP 是为了分担IP 一部分功能而被制定出来的。

骏马金龙(总结的文档很全面)

51cto

2.ICMP的用途

在RFC,将ICMP大致分成两种功能:差错通知和信息查询。

[1]给送信者的错误通知;[2]送信者的信息查询。

[1]是到IP 数据包被对方的计算机处理的过程中,发生了什么错误时被使用。不仅传送发生了错误这个事实,也传送错误原因等消息。

[2]的信息询问是在送信方的计算机向对方计算机询问信息时被使用。被询问内容的种类非常丰富,他们有目标IP 地址的机器是否存在这种基本确认,调查自己网络的子网掩码,取得对方机器的时间信息等。

3.ICMP作为IP的上层协议在工作

ICMP 的内容是放在IP 数据包的数据部分里来互相交流的。也就是,从ICMP的报文格式来

说,ICMP 是IP 的上层协议。但是,正如RFC 所记载的,ICMP 是分担了IP 的一部分功能。所以,被认为是与IP 同层的协议。看一下RFC 规定的数据包格式和报文内容吧。

更加详细地看一下数据包的格式吧。用来传送ICMP 报文的IP 数据包上实际上有不少字段。但是实际上与ICMP 协议相关的只有7个子段。

- 1) 协议;2) 源IP 地址;3) 目的IP 地址;4) 生存时间;这四个包含在IP 首部的字段。
- 5)类型;6)代码;7)选项数据;这三个包含在ICMP数据部分的字段。

这里面,1)协议字段值是1。2)和3)是用来交流ICMP 报文的地址信息,没有特殊意义。对于理解ICMP 本身,重要的是5),6),7)三个字段。这里面的可以称为核心的重要字段是5)类型,6)代码这两个字段。所有ICMP 用来交流错误通知和信息询问的报文,都是由类型和代码的组合来表示的。RFC 定义了15种类型。"报文不可到达"这样的错误通知和"回送请求"这样的信息查询是由类型字段来区分的。ICMP报文由类型来表达它的大概意义,需要传递细小的信息时由代码来分类。进一步,需要向对方传送数据的时候,用7)选项数据字段来放置。

可能的消息列表:

类型	代码	说明	种类
0	0	回送回答。与回送请求成对被 ping 命令使用	信息查询
3		终点不可达	错误通知
	0	网络不可达	
	1	主机不可达	
	2	协议不可达	
	3	端口不可达	
	4	需要分片,但该数据包的 DF (不要分片) 已设置	
	5	源点路由选择不能完成	
	6	目的网络未知	
	7	目的主机未知	1
	8	源主机是孤立的	1
	9	从管理上禁止与目的网络通信	1
	10	从管理上禁止与目的主机通信	1
	11	对指定的服务类型, 网络不可达	1
	12	对指定的服务类型,主机不可达	1
	13	主机不可达,因为管理机构已经在该主机上放置了过滤器(由RFC1812追加)	1
	14	主机不可达,因为主机的优先级被违背了(由 RFC1812 追加)	1
	15	主机不可达,因为主机的优先级被删除了(由 RFC1812 追加)	1
4	0	源点抑制。通知送信方抑制发送数据包	错误通知
5		改变路由	错误通知
	0	对特定网络路由的改变	
	1	对特定主机路由的改变	
	2	基于指明的服务类型对特定网络路由的改变	1
	3	基于指明的服务类型对特定主机路由的改变	
6	0	回送请求。与回送回答成对被 ping 命令使用	信息查询
9	n	路由器通告(由 RFC1256 追加)	信息查询
	0	一般路由器通告(路由器向自己身边通告自己的存在)。	
	1	不能转发一般流量(由 RFC2002 追加)	
10	0	路由器询问(由 RFC1256 追加)	信息查询
11		超时	错误通知
	0	传送中生存时间变为了 0。被 traceroute 命令利用	
	1	规定时间内没有收到所有的分片	
12	î.	参数问题	错误通知
	0	在 IP 首部的某个字段中有差错或两义性	
	1	缺少所需的选项部分(由 RFC1108 追加)	1
	2	长度不对	
13	0	时间戳请求	信息查询
14	0	时间戳回答	信息查询

4.ICMP实现之MTU探索

所谓路径MTU 探索,是探索与通信对方之间不用分片IP 数据包,就能交流的MTU 大小的功能。MTU大小是指计算机一次能够送出去的数据的最大长度,基本上由网路的种类来决定。例如,以太网的话通常是1500字节,使用PPPoE 的ADSL 通常是1492字节。为了实现这个路径MTU 探索,ICMP 被使用着。沿着流程,具体看一下Windows 的MTU 探索的样子吧。

路径MTU 探索的原理本身是非常简单的。首先, Windows 向通信对方送IP 数据包时, 先设置 IP 首部的分片禁止标志然后再送。这是路径MTU 探索的基本。假如, Windows 将大于1000字节的数据包送了出去,通信路径上有MTU 从1500字节变成1000字节的地方。因此,那个

路由器将不允许超过1000字节的数据包通过,而进入MTU是1000字节的网路。路由器尝试着将IP数据包分片。但是因为数据包的分片禁止标志是有效的,所以不能分片。该路由器就将该IP数据包丢弃,并用ICMP通知送信方"想分片,但不能分片"。这时路由器发送的ICMP的类型字段是3,代码字段为4。这是"需要分片但不能分片,不能送至终点"的意思。而且,大多数路由器将在数据选项部里填入不分片就能通过的MTU大小。Windows收到该ICMP报文后就知道了不分片就能够传送的数据大小,并暂时将MTU大小更换掉,然后继续通信。

5.ICMP实现之改变路由

改变路由是指路由器向送信方计算机指示路径改变这个功能。计算机根据自己的路由信息(路由表)来决定传送目标。不知道发给谁好的时候,就将数据包发给设为默认网关的路由器。被指定为默认网关的路由器接收到数据包,发现将数据包发给局域网内的其它路由器会比较快的时候,将这一信息通过ICMP 通知发送方。这时使用的是,类型是5,代码是1的ICMP 改变路由报文。在选项数据部分里写着应该发送给的路由器IP 地址。Windows 收到这个报文后,重写自己的路由表,与对方的通信将在一段时间里经由被指定的路由器来实行。

6.ICMP实现之源点抑制

数据包集中到达某一路由器后,数据包因为来不及被处理,有可能被丢弃的情况。这时候,向送信方发送的是ICMP源点抑制报文,用来使送行方减慢发送速度。

7.ICMP实现之ping命令

ping 命令用来在IP 层次上调查与指定机器是否连通,调查数据包往复需要多少时间。为了实现这个功能,ping 命令使用了两个ICMP 报文。

1.向目标服务器发送回送请求。

首先,向目标服务器发出回送请求(类型是8,代码是0)报文(同2)。在这个回送请求报文里,除了类型和代码字段,还被追加了标识符和序号字段。标识符和序号字段分别是16位的字

段。ping 命令在发送回送请求报文时,在这两个字段里填入任意的值。对于标识符,应用程序执行期间送出的所有报文里填入相同的值。对于序号,每送出一个报文数值就增加1。而且,回送请求的选项数据部分用来装任意数据。这个任意数据用来调整ping 的交流数据包的大小。

2.鹦鹉学舌一样返回回送回答。

计算机送出的回送请求到达目标服务器后,服务器回答这一请求,向送信方发送回送请求(类型是0,代码是0)(同3)。这个ICMP回送回答报文在IP层来看,与被送来的回送请求报文基本上一样。不同的只是,源和目标IP地址字段被交换了,类型字段里填入了表示回送回答的0。也就是,从送信方来看,自己送出的ICMP报文从目标服务器那里象鹦鹉学舌那样原样返回了。

送信方的计算机可以通过收到回送回答报文,来确认目标服务器在工作着。进一步,记住发送回送请求报文的时间,与接收到回送回答报文的时间一比较,就能计算出报文一去一回往复所需要的时间(同4)。但是,收到的回送回答报文里写的只是类型和代码的话,发送方计算机将无法判断它是否是自己发出去请求的回答。因此,前面说到的标识符和序号字段就有它的意义了。将这两个值与回送回答报文中的相同字段值一比较,送行方计算机就能够简单地检测回送回答是否正确了。执行ping命令而调查的结果没什么问题的话,就将目标服务器的IP地址,数据大小,往复花费的时间打印到屏幕上。

- 3.用ping 命令不能确定与对方连通的原因大致有三个。
- 1)目标服务器不存在;2)花在数据包交流上的时间太长ping 命令认为超时;3)目标服务器不回答ping 命令。如果是原因2),通过ping 命令的选项来延长到超时的等待时间,就能正确显示结果了。如果原因是1)或3)的话,仅凭ping 命令的结果就不能判断是哪方了。正如这样,ping 命令不一定一定能判断对方是否存在。

8.ICMP实现之traceroute命令

为了调查到通信对方的路径现在是怎么样了,使用的是traceroute 命令。它与ping 并列,是代表网络命令。这个traceroute 也是ICMP 的典型实现之一。

1.执行tracert命令。

在Windows 上执行tracert 命令后,首先计算机向目的服务器发送IP 数据包。Windows 上使用的是与ping 同样的ICMP 回送请求报文。但是,有一点和通常的回送请求不一样。那是,最初将IP 首部的TTL(生存时间)字段设为1 这一点。

路由器每转送一次数据包就将TTL的值减1。当TTL变为0的时候,按规定将丢弃这个数据包。正如这样,与其说TTL是时间,还不如说TTL是经过路由器的个数。对于计算机发送出去

的数据包,只要它与目标服务器不在同一局域网内,一定会被哪儿的路由器中继。这时如果 TTL的值是1,由于路由器的处理会变为0,则该数据包将会被丢弃(同2)。

2.用超时报文来通知送信方。

路由器丢弃数据包的同时,用ICMP 报文来通知错误。这时使用的ICMP 报文是,类型为11,代码为0的ICMP 超时报文。而且在选项数据字段里,将填入原先数据包的IP 首部和ICMP 的开始8字节。正如ping 命令的时候看到的,ICMP 回送请求的先头8字节里包含了标识符和序号字段。因此,送信方的计算机看了超时报文后,就知道是针对自己发出的回送请求的错误通知。

计算机接到针对第一个数据包的ICMP 超时报文后,接下来将TTL 加1(TTL=2)并同样地送出(同3)。这次通过第一个路由器,TTL 变为1,到达第二个路由器。但是第二个路由器象前面一样,由于TTL变为0,将不能转发该包。因此,同第一个路由器一样,将该包丢弃,并返回ICMP 超时报文。以后,收到错误的发送方计算机将TTL 加1,重复同样的工作(同4)。

3.只有目标服务器的反应不同。

如此一个一个增加TTL,某个时候ICMP回送请求报文将到达最终的目标服务器。这时,只有目标服务器与途中的路由器不同,不返回ICMP超时报文。为什么呢?因为即使目标服务器收到TTL为1的数据包也不会发生错误。

作为代替处理,服务器针对送信方计算机发出的ICMP 回送请求报文,返回ICMP 回送回答报文。也就是,送信方计算机与服务器之间,与ping 命令的执行一样了(同5)。得到了ICMP 回送回答报文的送信方知道了路经调查已经到了目标服务器,就结束了tracert 命令的执行(同6)。像这样,通过列出中途路由器返回的错误,就能知道构成到目标服务器路径的所有路由器的信息了。

4.操作系统不同则实现方法略微不同。

到这里,以Windows 上的tracert 命令为例看了原理,有些别的操作系统的traceroute 命令的原理略微不同。

具体来说,也有用向目标发送UDP数据包代替ICMP回送请求报文来实现的。虽说是用UDP,但途中的路由器的处理与图8完全相同。只是UDP数据包到达目标后的处理不同。目标计算机

突然收到与通信无关的数据包,就返回ICMP 错误,因此根据返回数据包的内容来判断命令的中止。

9.ICMP实现之端口扫描

所谓的端口扫描就是检查服务器不需要的端口是否开着。服务器管理者用来检查有没有安全上有问题的漏洞开着。不是象ping 和traceroute 那样是操作系统自带的工具,需要利用网络工具才行。

端口扫描大致分为"UDP的端口扫描"和"TCP的端口扫描"两种。这里面,与ICMP相关的是UDP一边。使用TCP的通信,通信之前必定要先遵循三向握手的程序。因此,只要边错开端口号边尝试TCP连接就能调查端口的开闭。不特别需要ICMP。与此相对,UDP没有这样的连接程序。因此,调查端口是否打开需要想点办法。这样,被使用的是ICMP。根据ICMP规格,UDP数据包到达不存在的端口时,服务器需要返回ICMP的"终点不可达"之一的"端口不可达"报文。

具体来说,向希望调查的服务器发送端口号被适当指定了的UDP数据包。这样,目标端口没开着的话,服务器就返回ICMP端口不可达报文。返回的ICMP数据包的选项数据字段里放入着,送信方送出的UDP数据包的IP首部与UDP首部的头8个字节。送信方通过这个信息来辨别该错误通知是针对哪个UDP数据包的,并判断端口是否打开着。

UDP 端口扫描一边一个一个错开端口号,一边持续着这个通信。这样,就知道了哪个端口是"好象开着的"了。但是,UDP 端口扫描与TCP 端口扫描有很大区别的地方。那就是,即使ICMP 端口不可达报文没有返回,也不能断定端口开着。端口扫描除了被管理员用来检查服务器上是否有开着的漏洞,作为黑客非法访问的事先调查,对服务器实施的情况也是很多的。需要非常小心地来使用。

10.ICMP和安全的关系

10.1 为什么停止方便的ICMP?

为什么有停止ICMP 使用的设定项目呢?理由只有一个,那就是确保安全。虽然ICMP 是非常便利的协议,但黑客在尝试非法访问的时候会被恶意利用。由于ICMP 被恶意使用而遭受损害的用户正在不断增加之中,因此有了限制ICMP 使用的意见。

10.2 ICMP数据包攻击

那么实际上,ICMP 被怎样恶意使用的呢?想考虑安全相关问题,不知道这个就开不了头。看两个典型的恶意使用例子吧。

作为恶意使用ICMP 的最有代表性的例子,也就是所谓的 "ping 洪水"的攻击。它利用ping 的原理,向目标服务器发送大量的ICMP 回送请求。这是黑客向特定的机器连续发送大量的ICMP 回送请求报文。目标机器回答到达的ICMP 回送请求已经用尽全力了,原来的通信处理就变得很不稳定了。进一步,目标机器连接的网络也可能由于大量的ICMP 数据包而陷入不可使用的状态。

与ping 洪水相似,以更加恶劣的使用方法而闻名的是称为"smurf"的攻击手法。smurf 同样,黑客恶意的使用ICMP 回送请求报文。这一点同ping 洪水是相同的。不过在smurf,对ICMP 回送请求实施了一些加工。源IP 地址被伪装成攻击对象服务器的地址,目标地址也不是攻击对象服务器的地址,而是成为中转台的网络的广播地址。

来具体看一下smurf 攻击的流程吧!

黑客发送伪装了的ICMP 回送请求后,到达在作为踏板的网络的入口处的路由器。这样,路由器将回送请求转发给网内所有的计算机(同2)。假如有100台计算机,回送请求将到达100台所有的计算机。收到回送请求的计算机对此作出反应,送出回送回答报文(同3)。这样,黑客送出的一个ICMP回送请求报文,一下子增加到了100倍。

这样增加的ICMP 回送回答报文面向的不是黑客的计算机,而是伪装成回送请求的源IP 地址的 攻击对象服务器。变成到达了,从几百台计算机发出的巨大数量的ICMP 回送回答。smurf 与 ping 洪水攻击不同,因为到达服务器的是ICMP 回送回答,服务器不用返回回答。但是为了处 理大量的ICMP,服务器承受了大量的负载。网路被撑爆了也是一样的(同4)。

除此之外,还有很多各种各样ICMP被恶意使用的例子。例如,通知错误或询问信息本身,也有被黑客用来传递谎言的可能性。同用信鸽来扩展谎言的传播,通过传递与事实不同的信息来使人判断错误是一样的。而且,反过来也有传递错误信息而变成问题的例子。例如,在实现篇里看到的端口扫描,黑客就可以利用它来进行攻击对象的调查。进一步,推翻了"ICMP是用来控制IP的"这一常识的恶意使用方法也登场了。就是将ICMP的选项数据部分作为信息搬运工的手法。黑客将这种工具隐藏在服务器里,从外部控制服务器,将用户的个人信息和重要的情报偷盗出来。如上,仅从安全的方面来说,ICMP是有百害而无一利的。

10.3 阻止ICMP后将陷入困境

"那阻止所有的ICMP 不就行了吗!"可能有读者会这样认为。不过那就太轻率了。ICMP 作为支持IP的协议是需要的,所以被制作了。即使没有,也不是说IP 通信本身就完全不行了,实际上会出现几个难办的情况。

它的典型例子就是称为"黑洞路由器"的问题。所谓黑洞路由器,就是通信路径上的IP 数据包不留痕迹的消失了的现象。原因是,实现篇里说明的路径MTU 探索功能不起作用了。

假设通信路径上有因为MTU 大小不同而需要分片的路由器。而且,计算机和路由器之间,为了安全上的原因,设置了阻止ICMP 报文通过的防火墙。这种情况下,计算机实行路径MTU 探索将会怎么样呢?

1.不能调整数据包长度

如果是传送路径上不需要分片大小的IP 数据包,它将会毫无问题地到达对方。另一方面,数据包的长度是需要分片的时候,发送就会有问题。

正如实现篇看到的,这样的数据包到达连接在不同大小MTU 的网络的路由器后,路由器将用 ICMP 终点不可达报文来通知发送方。本来的处理是,送信方接收到该ICMP 报文,根据路径 MTU 探索处理调整MTU 大小后继续通信。但是,这次的例子,ICMP 报文被路经中的防火墙 隔断了。路径MTU 探索功能不起作用,MTU 的大小也就不能调整了。

2.不知道原理就不可能理解

最近从局域网的计算机通过ADSL 服务访问万维网时,经常看到这个黑洞路由器现象。ADSL 线路的MTU 大小,宽带路由器的设定,Windows 的路径MTU 探索功之间互相关联引起了这个现象。糟糕的是,即使有黑洞路由器,也不是完全不能通信这一点。不管怎么样说,被吸进去的只是长度是需要分片的IP 数据包。也就是,考虑一下WEB 访问,连接WEB 服务器时是没有问题的,以文字为主体的页面也大都能被显示,但是含有比较大图像的页面不能被显示。黑洞路由器就由这种复杂奇怪的现象表现出来了。如果不知道路径MTU 探索和黑洞路由器的原理的话,碰到这种现象,可能连猜想原因都很困难了。

3.即使阻止了客户端也没问题

如最初所见,在现实的万维网上,如果事先使所有的ICMP 功能有效的话,就会给了黑客各种各样的机会,安全上就会有问题了。

另一方面,如果一个一个阻止了的话,不仅非常不方便,而且还会发生黑洞路由器等问题。那么,如何充分运用ICMP 才行呢?客户端,服务器,还有路由器,从各个方面来看一下。首先从客户端开始。最近的宽带路由器和个人防火墙,通过设置来阻止ICMP 的很多。但是,初期设置是干差万别的。阻止全部ICMP 的也有,反过来的也有。其中,只允许ping 命令等一部分ICMP 报文通过的也有。

原来,对于安全的考虑方法是根据环境的不同而变化巨大的,并不是一定要这样才行的。但是,最近的倾向是,使连在万维网上的个人计算机不应答没有必要的ICMP 报文。例如Windows XP 的情况下,使用操作系统自带的个人防火墙的话,默认是将外部来的所有ICMP报文隔断。

那么路由器怎么样呢?万维网中的路由器,不小心阻断了ICMP的话,会发生黑洞路由器等问题。还有,大量的数据包涌过来的时候,如果不发送ICMP源点抑制报文,处理速度就会跟不上。路由器的话,这样的情况以外,再加上考虑周围网络环境的基础上,再来判断是否阻断不需要的或者可能造成攻击的ICMP数据包比较好吧。

服务器就比较难判断了。例如,不让它回应ping 命令的话,连不上服务器的时候,就缺少了调查的有效手段。但是,有受到ping 洪水攻击的可能性也是事实。这些只能由管理者来判断了。

参考

注注我

3

+加关注

«上一篇:[svc]ext4文件删除&访问原理

» 下一篇: [na]计算机网络性能指标(延迟/吞吐量/RTT等)

posted @ 2018-03-06 12:44 _毛台 阅读(20992) 评论(2) 编辑 收藏

评论列表

#1楼 2019-03-13 12:38 超梦1989

你好,ICMP的类型6应该是"选择主机地址",8才是回应请求。

支持(0) 反对(0)

0

#2楼 2019-06-11 20:38 我在这儿

消息列表怎么少了类型 = 8的情况

支持(0) 反对(0)

刷新评论 刷新页面 返回顶部

注册用户登录后才能发表评论,请 登录 或 注册 ,访问 网站首页。

【推荐】超50万C++/C#源码: 大型实时仿真组态图形源码

【推荐】零基础轻松玩转云上产品,获壕礼加返百元大礼

【推荐】华为IoT平台开发者套餐9.9元起,购买即送免费课程

相关博文:

- · 第7章 网络层协议 (2)_ICMP协议
- ·ICMP协议
- ·网际报文控制协议ICMP

- ·ICMP协议
- ·ICMP协议