

5.1 Neural Networks

Machine Learning 1: Foundations

Marius Kloft (TUK)

Recap

Previous lectures: **linear** and/or **kernel** learning methods.

- ▶ learn a linear classifier $f(\mathbf{x}) = \text{sign}(\mathbf{w}^{\top}\mathbf{x} + b)$.
- ▶ learn a kernel classifier $f(\mathbf{x}) = \text{sign}(\sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{x}) + b)$.

Quiz: What are the advantages of these classifiers? What can be improved?

- + linear classifiers are easy to understand and interpret
- + linear classifiers are fast (→ big data)
- kernel learning works well even for non-linearly separable data
- + both work well in surprisingly many applications ("swiss knife")
- Need to have already a good feature representation

Neural networks can **learn** a feature representation.

Contents of this Class

Neural Networks

- The Core Idea in a Nutshell
- Natural Neural Networks
- 3 Artificial Neural Networks
- Convolutional Neural Networks

- 1 The Core Idea in a Nutshell
- Natural Neural Networks
- Artificial Neural Networks
- 4 Convolutional Neural Networks

Example: State of the Art in Image Classification

Before 2012: two steps

- 1 design some hand-crafted features
- 2 train an SVM on these features

After 2012: train a deep convolutional neural network

- learns the features and the classifier together in one go
 - this means the classifier—not a human expert—guides the design of the features

Problem of Learning Good Feature Representations

- ► Say we are given images $\mathbf{x}_1, \dots, \mathbf{x}_n$
- ▶ Want to learn a map ϕ that assigns any image \mathbf{x} with a vector representation $\phi(\mathbf{x})$

How can we learn a good feature representation ϕ ?

Marius Kloft: 5.1 Neural Networks 6/24

Core Idea to Learn a Good Feature Representation ϕ

Let the learning machine figure it out!

Recall logistic regression:

$$\min_{b \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d, \boldsymbol{\phi}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \ln \left(1 + \exp \left(-y_i(\mathbf{w}^\top \boldsymbol{\phi}(\mathbf{x}_i) + b) \right) \right)$$

- ightharpoonup Want to learn ϕ
- Idea: Optimize also over φ!
- ightharpoonup Problem: the search space of all mappings ϕ is too large... which restrictions to make?

Idea: our brain also performs classification, for which it learns good feature representations ... how does it do that?

- 1 The Core Idea in a Nutshel
- Natural Neural Networks
- Artificial Neural Networks
- Convolutional Neural Networks

Marius Kloft: 5.1 Neural Networks 8/24

How Does the Brain Work?

Think of it as a graph!

Brain As Graph

- ► The nodes are called **neurons**
- ► The edges are called synapses

Another word for graph is **network** and our network consists of neurons. Therefore we have a **neural network**.

Marius Kloft: 5.1 Neural Networks 10/24

Spikes and Potential

Whenever there is some action ongoing in our brain (e.g., we spotted a yummy box of chocolate)

 short pulses of electrical current (Spikes) shoot through our brain

- ► Each neuron *i* receives spikes from a other neurons *j*
 - ▶ the stronger the synapse W_{ij} , the higher the total current (called **potential** u_i) that arrives at neuron i

Potential

Only if a neuron's potential u exceeds a threshold,

(we say the neuron is activated)

it fires an impulse v (spike) to its neighbors in the neural network

Impulse can propagate from neuron to neuron through the entire brain

- 1 The Core Idea in a Nutshel
- Natural Neural Networks
- Artificial Neural Networks
- 4 Convolutional Neural Networks

Marius Kloft: 5.1 Neural Networks 13/24

Artificial Neurons

A classic neuron model is by McCulloch and Pitts (1950s):

McCulloch and Pitts model

Denote by u the neuron's potential and by v the emitted spike ("activation"). Then:

$$V = \sigma(u)$$

where σ is the **sigmoid** function: $\sigma(u) = \frac{1}{1+e^{-u}}$

Instead of the sigmoid function, today's ANNs usually use the **ReLU** activation function: $\sigma(u) := max(0, u)$

Artificial Neural Networks (ANNs)

Let us propagate the activation from neuron to neuron:

- ► The *j*th neuron
 - ▶ is connected to other neurons with connection strength w_{ii}
 - thus it has potential

$$u_j = \sum_i w_{ij} v_i$$

and activation

$$\mathbf{v}_j = \sigma(\mathbf{u}_j) = \sigma\left(\sum_i \mathbf{w}_{ij} \mathbf{v}_i\right)$$

- ► All neurons together have
 - ▶ potential $\mathbf{u} = W^{\top}\mathbf{v}$
 - ▶ and activation $\mathbf{v} = \sigma(\mathbf{u}) = \sigma(\mathbf{W}^{\top}\mathbf{v}).$

Problem: \mathbf{v} is both on the left and right hand side of the equation (recursion) \Rightarrow mathematical nightmare! :)

Notation: for a vector $\mathbf{u} = (u_1, \dots, u_d)^{\top}$, we define $\sigma(\mathbf{u}) := (\sigma(u_1), \dots, \sigma(u_d))^{\top}$. The potential is also called pre-activation.

We Therefore Want to Avoid Cycles

Although more difficult to deal with, there exist also cyclic ANNs, for instance, infinite impulse recurrent networks.

Feed-forward ANNs

The resulting architecture is called **feed-forward** ANN or multi-layer perceptron (MLP).

Example

Shown to the right is a network with

- an input layer (5 nodes)
- two hidden layers (8 and 6 neurons, respectively)
- an output layer (one node)

We index the four layers as follows:

- ▶ 1: input
- 2,3: hidden layers
- 4: output layer

Mathematics of Feed-forward ANNs

Recall from Slide 15:

$$\mathbf{v} = \sigma(\mathbf{W}^{\top}\mathbf{v}),$$

where:

- v is the vector of activations of all neurons in the network
- $W = (w_{ij})$ are the weights of the connections of the neurons.

For a feed-forward ANN this simplifies:

$$\mathbf{v}_{l} = \sigma(\underbrace{W_{l}^{\top} \mathbf{v}_{l-1}}_{=:\mathbf{u}_{l}}),$$

where:

- v_I is the vector of activations of the neurons in the Ith layer
- ▶ $W_l = (w_{lij})$ are the strengths of the connections between neurons i in the lth layer and neurons j in the (l+1)th layer.

Mathematics of Feed-forward ANNs

The computation in a feed-forward ANN can be thus be summarized as a nested function:

Remarks:

- We use a data point v₀ := x as the network's initial activation.
- L denotes the number of hidden layers (example: L = 2).
- ▶ For a network with one output node, $\mathbf{w} := W_{l+1}$ is a vector.

Aim

In order to use *f* for prediction, we need to:

- ▶ find weights $\mathbf{w}, W_1, \dots, W_L$
- ▶ such that $f(\mathbf{x}_i) \approx y_i$ on the training points.

How?

Neural Network Learning

We wrap a learning machine around the network and let it figure out good network weights!

We do so as follows:

- As learning machine we take logistic regression (LR)
- ▶ In LR, we replace all occurrences of the inputs \mathbf{x}_i by $\phi_W(\mathbf{x}_i)$
- ▶ We optimize over the weights $W_1, ..., W_L$ of the network!

Thus We Obtain:

Feed-forward ANN

$$\min_{\mathbf{w},W} \frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{2} \sum_{l=1}^{L} \|W_l\|_{\text{Fro}}^2 + C \sum_{i=1}^{n} \ln(1 + \exp(-y_i \mathbf{w}^{\top} \phi_W(\mathbf{x}_i)))$$

where

- $ightharpoonup W := (W_1, \ldots, W_L)$

Given a matrix $M=(m_{ij})\in\mathbb{R}^{m\times n}$, the Frobenius norm is defined as $\|M\|_{\mathrm{Fro}}^2=\sum_{ij}m_{ij}^2$

Conclusion

Artificial neural networks (ANN)

- motivated by how the brain works
- consisting of neurons organized in multiple layers with (feed-forward) connections
- learning feature representation (network weights) and classifier at the same time

Next video: ANNs on images (CNNs)

References I

W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, *The bulletin of mathematical biophysics*, vol. 5, no. 4, pp. 115–133, 1943.