CTL Counterexamples and CTL* Model Checking

Lecture #21 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 14, 2009

Overview Lecture #21

- ⇒ CTL Counterexamples
 - CTL* model checking

Counterexamples

- Model checking is an effective and efficient "bug hunting" technique
- Counterexamples are of utmost importance:
 - diagnostic feedback, the key to abstraction-refinement, schedule synthesis . . .
- LTL: counterexamples are finite paths
 - $\bigcirc \Phi$: a path on which the next state refutes Φ
 - \Box Φ: a path leading to a \neg Φ-state
 - $\Diamond \Phi$: a ¬ Φ -path leading to a ¬ Φ cycle
- Counterexample generation for LTL:
 - use stack contents of nested DFS on encountering an accept cycle
 - use a variant of BFS top find shortest counterexamples

Counterexamples in CTL

- $TS \not\models \forall \varphi$ where $\forall \varphi$ is also on LTL
 - counterexample = a sufficiently long prefix of a path refuting φ (as in LTL)
 - this is a subset of the so-called universal fragment of CTL
- $TS \not\models \exists \varphi$ where φ is arbitrary CTL formula
 - all paths satisfy $\varphi!$ \Rightarrow no clear notion of counterexample
 - witness = a sufficiently long prefix of a path satisfying φ
- So:
 - for $\forall \varphi$, a prefix of π with $\pi \not\models \varphi$ acts as counterexample
 - for $\exists \varphi$, a prefix of π with $\pi \models \varphi$ acts as witness

The wolf-goat-cabbage problem

- A goat (g), a cabbage (c) and a wolf (w) and two riverbanks (0 and 1)
 - A boat with ferryman (f) that can carry at most two occupants
 - Only the ferryman can steer the boat
 - Goat and cabbage, goat and wolf should neither travel nor left together
- Is there a schedule such that brings c, g, and w to the other side?
- ... Model this as a CTL model-checking problem
 - transition system TS = (wolf ||| goat ||| cabbage) || ferryman
 - check whether $TS \models \exists \varphi$ with

$$arphi \ = \ \left(igwedge_{i=0,1} \left(w_i \wedge g_i
ightarrow f_i
ight) \ \wedge \ \left(c_i \wedge g_i
ightarrow f_i
ight)
ight) \ \mathsf{U} \ \left(c_1 \wedge f_1 \wedge g_1 \wedge w_1
ight)$$

The wolf-goat-cabbage problem

TS = (wolf ||| goat ||| cabbage) || ferryman

Wolf-goat-cabbage problem

A witness of $\exists \varphi$ with:

$$\varphi = \left(\bigwedge_{i=0,1} \left(w_i \wedge g_i \to f_i \right) \wedge \left(c_i \wedge g_i \to f_i \right) \right) \cup \left(c_1 \wedge f_1 \wedge g_1 \wedge w_1 \right)$$

is a path fragment from initial state $\langle c_0, f_0, g_0, w_0 \rangle$ to target state $\langle c_1, f_1, g_1, w_1 \rangle$ such that g, c and g, w are not left on a single riverbank. Such as:

 $\langle c_0, f_0, g_0, w_0 \rangle$ goat to riverbank 1 $\langle c_0, f_1, g_1, w_0 \rangle$ ferryman comes back to riverbank 0 $\langle c_0, f_0, g_1, w_0 \rangle$ cabbage to riverbank 1 $\langle c_1, f_1, g_1, w_0 \rangle$ goat back to riverbank 0 $\langle c_1, f_0, g_0, w_0 \rangle$ wolf to riverbank 1 $\langle c_1, f_1, g_0, w_1 \rangle$ ferryman comes back to riverbank 0 $\langle c_1, f_0, g_0, w_1 \rangle$ goat to riverbank 1 $\langle c_1, f_1, g_1, w_1 \rangle$

Counterexamples for $\bigcirc \Phi$

- A counterexample of $\bigcirc \Phi$ is a path fragment s s' with
 - $s \in I$ and $s' \in Post(s)$ with $s' \not\models \Phi$
- A witness of $\bigcirc \Phi$ is a is a path fragment s s' with
 - $s \in I$ and $s' \in \textit{Post}(s)$ with $s' \models \Phi$
- Algorithm: inspection of direct successors of initial states

Counterexamples for $\Phi \cup \Psi$

- A witness is an initial path fragment $s_0 s_1 \dots s_n$ with
 - $s_n \models \Psi$ and $s_i \models \Phi$ for $0 \leqslant i < n$
- Algorithm: backward search starting in the set of Ψ -states
- A counterexample is an initial path fragment that indicates a path π :
 - for which either $\pi \models \Box(\Phi \land \neg \Psi)$ or $\pi \models (\Phi \land \neg \Psi) \cup (\neg \Phi \land \neg \Psi)$
- Counterexample is initial path fragment of either form:
 - $\underbrace{s_0 \dots s_{n-1}}_{\text{cycle}} \underbrace{s_n \, s_1' \dots s_r'}_{\text{cycle}} \quad \text{with } s_n \!=\! s_r' \text{ or } \underbrace{s_0 \dots s_{n-1}}_{\text{satisfy } \Phi \, \wedge \, \neg \Psi} s_n \quad \text{with } s_n \models \neg \Phi \, \wedge \, \neg \Psi$

Counterexample generation

Determine the SCCs by of the digraph G = (S, E) where

$$E = \{ (s, s') \in S \times S \mid s' \in \textit{Post}(s) \land s \models \Phi \land \neg \Psi \}$$

Each path in G that starts in an initial state $s_0 \in S$ and leads to a non-trivial SCC C in G provides a counterexample of the form:

$$s_0 s_1 \dots s_n \underbrace{s'_1 \dots s'_r}_{\in C}$$
 with $s_n = s'_r$

Each path in G that leads from an initial state s_0 to a trivial terminal SCC

$$C = \{ s' \}$$
 with $s' \not\models \Psi$

provides a counterexample of the form $s_0 s_1 \dots s_n$ with $s_n \models \neg \Phi \wedge \neg \Psi$

Counterexamples for $\Box \Phi$

- Counterexample is initial path fragment $s_0 s_1 \dots s_n$ such that:
 - $s_0, \ldots, s_{n-1} \models \Phi$ and $s_n \not\models \Phi$
- Algorithm: backward search starting in $\neg \Phi$ -states
- A witness of $\varphi = \Box \Phi$ consists of an initial path fragment of the form:

-
$$\underbrace{s_0\,s_1\ldots s_n\,s_1'\ldots s_r'}_{ extsf{satisfy}\,\Phi}$$
 with $s_n=s_r'$

- Algorithm: cycle search in the digraph G=(S,E) where the set of edges E:
 - $-E = \{ (s, s') \mid s' \in Post(s) \land s \models \Phi \}$

Example

SCC graph

Time complexity

Let TS be a transition system TS with N states and K transitions and φ a CTL- path formula

If $TS \not\models \forall \varphi$ then a counterexample for φ in TS can be determined in time $\mathcal{O}(N+K)$.

The same holds for a witness for φ , provided that $TS \models \exists \varphi$.

Overview Lecture #21

- CTL Counterexamples
- ⇒ CTL* model checking

Syntax of CTL*

CTL* state-formulas are formed according to:

$$\Phi ::= \mathsf{true} \; \middle| \; a \; \middle| \; \Phi_1 \wedge \Phi_2 \; \middle| \; \neg \Phi \; \middle| \; \exists \varphi$$

where $a \in AP$ and φ is a path-formula

CTL* path-formulas are formed according to the grammar:

$$\varphi ::= \Phi \quad \middle| \quad \varphi_1 \land \varphi_2 \quad \middle| \quad \neg \varphi \quad \middle| \quad \bigcirc \varphi \quad \middle| \quad \varphi_1 \lor \varphi_2$$

where Φ is a state-formula, and φ , φ_1 and φ_2 are path-formulas

in CTL*: $\forall \varphi = \neg \exists \neg \varphi$. This does not hold in CTL!

CTL* semantics

$$\begin{array}{lll} s \models a & \text{iff} & a \in L(s) \\ s \models \neg \, \Phi & \text{iff} & \text{not} \, s \models \Phi \\ s \models \Phi \wedge \Psi & \text{iff} & (s \models \Phi) \, \text{and} \, (s \models \Psi) \\ s \models \exists \varphi & \text{iff} & \pi \models \varphi \, \text{for some} \, \pi \in \textit{Paths}(s) \end{array}$$

$$\begin{array}{lll} \pi \models \Phi & \text{iff} & \pi[0] \models \Phi \\ \\ \pi \models \varphi_1 \wedge \varphi_2 & \text{iff} & \pi \models \varphi_1 \text{ and } \pi \models \varphi_2 \\ \\ \pi \models \neg \varphi & \text{iff} & \pi \not\models \varphi \\ \\ \pi \models \bigcirc \varphi & \text{iff} & \pi[1..] \models \varphi \\ \\ \pi \models \varphi_1 \cup \varphi_2 & \text{iff} & \exists j \geqslant 0. \ (\pi[j..] \models \varphi_2 \ \wedge \ (\forall \, 0 \leqslant k < j. \, \pi[k..] \models \varphi_1)) \end{array}$$

Transition system semantics

• For CTL*-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

• TS satisfies CTL*-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi$$
 if and only if $\forall s_0 \in I. s_0 \models \Phi$

this is exactly as for CTL

Embedding of LTL in CTL*

For LTL formula φ and TS without terminal states (both over AP) and for each $s \in S$:

$$\underline{s} \models \varphi$$
 if and only if $\underline{s} \models \forall \varphi$
LTL semantics CTL* semantics

In particular:

$$TS \models_{LTL} \varphi$$
 if and only if $TS \models_{CTL*} \forall \varphi$

Expressivity of CTL*

CTL* model checking

[Emerson & Lei, 1985]

- Adopt the same bottom-up procedure as for CTL
- Replace maximal proper state sub-formula Ψ by new proposition a_{Ψ}
 - adjust labeling such that $a_{\Psi} \in L(s)$ if and only if $s \in Sat(\Psi)$
- In the end, this yields an LTL formula!
- Most interesting case: formulas of the form $\exists \varphi$

$$s \models \exists \varphi \text{ iff } \underbrace{s \not\models \forall \neg \varphi}_{\text{CTL}^* \text{ semantics}} \text{ iff } \underbrace{s \not\models \neg \varphi}_{\text{LTL semantics}}$$

- $Sat_{CTL*}(\exists \varphi) = S \setminus Sat_{LTL}(\neg \varphi) = S \setminus \{ s \in S \mid s \models_{LTL} \neg \varphi \}$

Abstract example

CTL* model-checking algorithm

```
for all i \leq |\Phi| do
  for all \Psi \in Sub(\Phi) with |\Psi| = i do
     switch(\Psi):
                       true : Sat(\Psi) := S;
                       a : Sat(\Psi) := \{ s \in S \mid a \in L(s) \};
                       a_1 \wedge a_2 : Sat(\Psi) := Sat(a_1) \cap Sat(a_2);
                       \neg a : Sat(\Psi) := S \setminus Sat(a);
                       \exists \varphi : determine Sat_{LTL}(\neg \varphi);
                                   : Sat(\Psi) := S \setminus Sat_{LTL}(\neg \varphi)
     end switch
     AP := AP \cup \{a_{\Psi}\};
                                                    (* introduce fresh atomic proposition *)
     replace \Psi with a_{\Psi};
     forall s \in Sat(\Psi) do L(s) := L(s) \cup \{a_{\Psi}\}; od
  od
od
return I \subset Sat(\Phi)
```

Example

Time complexity

For transition system TS with N states and M transitions, CTL^* formula Φ , the CTL^* model-checking problem $\mathit{TS} \models \Phi$ can be determined in time $\mathcal{O}((N+M) \cdot 2^{|\Phi|})$.

The CTL* model-checking problem is PSPACE-complete

Complexity overview

	CTL	LTL	CTL*
model checking without fairness	PTIME $size(\mathit{TS})\cdot \Phi $	PSPACE-complete $size(TS) \cdot \exp(\Phi)$	PSPACE-complete $size(TS) \cdot \exp(\Phi)$
satisfiability check best known technique	EXPTIME $\exp(\Phi)$	PSPACE-complete $\exp(\Phi)$	2EXPTIME $\exp(\exp(\Phi))$