8.17. PROBLEMS 317

and check that

$$MA_5 = U_5 = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ 0 & 3/2 & -1 & 0 & 0 \\ 0 & 0 & 4/3 & -1 & 0 \\ 0 & 0 & 0 & 5/4 & -1 \\ 0 & 0 & 0 & 0 & 6/5 \end{pmatrix}.$$

(3) Write a Matlab program defining the function $\operatorname{Ematrix}(n,i,j,b)$ which is the $n\times n$ matrix that adds b times row j to row i. Also write some Matlab code that produces an $n\times n$ matrix A_n generalizing the matrices A_4 and A_5 .

Use your program to figure out which five matrices $E_{i,j;\beta}$ reduce A_6 to the upper triangular matrix

$$U_6 = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 3/2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 4/3 & -1 & 0 & 0 \\ 0 & 0 & 0 & 5/4 & -1 & 0 \\ 0 & 0 & 0 & 0 & 6/5 & -1 \\ 0 & 0 & 0 & 0 & 0 & 7/6 \end{pmatrix}.$$

Also use your program to figure out which six matrices $E_{i,j;\beta}$ reduce A_7 to the upper triangular matrix

$$U_7 = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3/2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4/3 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5/4 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6/5 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 7/6 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 8/7 \end{pmatrix}.$$

(4) Find the lower triangular matrices L_6 and L_7 such that

$$L_6U_6 = A_6$$

and

$$L_7U_7 = A_7.$$

(5) It is natural to conjecture that there are n-1 matrices of the form $E_{i,j;\beta}$ that reduce A_n to the upper triangular matrix

$$U_n = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3/2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4/3 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5/4 & -1 & 0 & 0 \\ 0 & 0 & 0 & 6/5 & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & -1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & (n+1)/n \end{pmatrix},$$