2/2

2/2

2/2

2/2

2/2

0/2

2/2

-1/2

2/2

0/2

2/2

THLR Contrôle (35 questions), Septembre 2016

	et prénom, lisibles :	Identifiant (de haut en bas):		
DELAIRE				
Candice				
1				
		□0 □1 □2 □3 □4 ■5 □6 □7 □8 □9		
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.				
Q.2	Que ne traite pas la théorie des langages?			
	☐ HTML ☐ Java ☐ 1	l'ADN 👺 la voix 🔲 l'écrit		
Q.3	Si L est un langage récursif alors L est un langa	age récursivement énumérable.		
	wrai vrai	☐ faux		
Q.4	Que vaut $L \cdot \emptyset$?			
	□ L @ Ø	□ ε □ {ε}		
Q.5	Que vaut Fact({ab, c}) (l'ensemble des facteurs)	:		
		$\{a,b,c\}$ $[ab,a,b,c,\varepsilon\}$ $[ab,a,b,c]$		
Q.6	Que vaut $Fact(\{a\}\{b\}^*)$ (l'ensemble des facteurs)		
Q.7	Pour toutes expressions rationnelles e, f, g , on a	$a e(f+g) \equiv ef + eg et (e+f)g \equiv eg + fg.$		
	☐ faux	vrai vrai		
Q.8	Pour toutes expressions rationnelles e, f , on a ($(e+f)^* \equiv (e^*f)^*e^*.$		
	faux	⊠ vrai		
Q.9	L'expression Perl '[a-zA-Z][a-zA-Z0-9_]*' n'	'engendre pas :		
	<pre>'STDC'</pre>	☐ 'eval_expr' ☐ 'exit_42'		
Q.10	Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma$	$L^*, n > 1$, on a $L_1^n = L_2^n \implies L_1 = L_2$.		
		□ vrai		
Q.11	L'expression Perl '[-+]?[0-9A-F]+([-+/*][-	-+]?[0-9A-F]+)*' n'engendre pas :		
	✓ 42+(42*42)′	-		
	■ 42+(42 42) ☐ -42-	40 □ 40140 □ -40		

Q.12 Combien d'états compte l'automate de Thompson d'une expression rationnelle composée de n opérations autres que la concaténation :

2/2

-1/2

Q.13 🕏

L'état 3 est

accessible
fini

co-accessible

☐ Aucune de ces réponses n'est correcte.

Q.14 Quel automate reconnaît le langage décrit par l'expression $((ba)^*b)^*$

-1/2

Q.15 $\xrightarrow{a} \xrightarrow{\varepsilon} \xrightarrow{b} \xrightarrow{\varepsilon} \xrightarrow{c}$

Quel est le résultat d'une élimination arrière des transitions spontanées?

Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents?

-1/2

0/2

☐ Aucune de ces réponses n'est correcte.

Q.17 Le langage $\{ \mathbf{\Delta}^n \mathbf{\Delta}^n \mid \forall n \in \mathbb{N} \}$ est

2/2

- non reconnaissable par automate
- □ vide
- rationnel
- ☐ fini

2/2	 Q.18 Un langage quelconque n'est pas nécessairement dénombrable est toujours inclus (⊆) dans un langage rationnel peut n'être inclus dans aucun langage dénoté par une expression rationnelle peut avoir une intersection non vide avec son complémentaire Q.19 Si L₁ ⊆ L ⊆ L₂, alors L est rationnel si : 			
2/2	\square L_2 est rationnel \square L_1 est rationnel \square L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \square L_1, L_2 sont rationnels			
	Q.20 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d, d,$			
2/2	\square Il n'existe pas. \square $\frac{n(n+1)(n+2)(n+3)}{4}$ \square \square \square \square \square 2^n			
	Q.21 Déterminiser cet automate.			
2/2	$\Box \longrightarrow b$ b b c d			
	Q.22 Soit <i>Rec</i> l'ensemble des langages reconnaissables par DFA, et <i>Rat</i> l'ensemble des langages définissables par expressions rationnelles.			
2/2	\square $Rec \subseteq Rat$ \square $Rec \supseteq Rat$ \square $Rec \supseteq Rat$ \square $Rec \not\supseteq Rat$			
	Q.23 Duelle(s) opération(s) préserve(nt) la rationnalité?			
1.2/2	Pref Suff			
	Q.24			
0.8/2	 Intersection Complémentaire Union Différence symétrique Aucune de ces réponses n'est correcte. 			
	Q.25 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il			
0/2	 ☑ accepte le mot vide ☐ a des transitions spontanées ☐ est déterministe ☐ accepte un langage infini 			
	Q.26 On peut tester si un automate déterministe reconnaît un langage non vide.			
0/2	☐ Non ☑ Oui ☐ Seulement si le langage n'est pas rationnel ☐ Cette question n'a pas de sens			

Q.27 Si L_1, L_2 sont rationnels, alors:

2/2

$\overline{L_1 \cap L_2}$	$=\overline{L_1}$	$\cap \overline{L_2}$
-12		

$(L_1 \cap L_2) \cup (L_1 \cap L_2)$ auss		$(L_1 \cap \overline{L_2}) \cup (\overline{L_1})$	$\cap L_2$) auss
---	--	---	-------------------

2/2

Quel mot reconnait le produit de ces automates?

☐ (bab)⁶⁶⁶⁶⁶⁶ \Box $(bab)^{22}$

- (bab)³³³ (bab)4444
- Q.29 Combien d'états a l'automate minimal qui accepte le langage $\{a, b\}^+$?

2/2

- □ Il en existe plusieurs!

- Q.30 Combien d'états a l'automate minimal qui accepte le langage {a, ab, abc}?

0/2

 \Box 7

 \square Il existe un DFA qui reconnaisse $\mathcal P$

- **X** 4
- □ 6
- ☐ Il n'existe pas.
- O.31 & Quels états peuvent être fusionnés sans changer le langage reconnu.

0/2

- ☐ 2 avec 4
- 1 avec 2
- ☐ 0 avec 1 et avec 2
- 3 avec 4
- ☐ 1 avec 3
- ☐ Aucune de ces réponses n'est correcte.
- Considérons \mathcal{P} l'ensemble des palindromes (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}.$

0/2

	\boxtimes	${\cal P}$ ne vérifie pas le lemme de pompage
O.33		

- \square Il existe un NFA qui reconnaisse $\mathcal P$
- \square Il existe un ε -NFA qui reconnaisse \mathcal{P}

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression

rationnelle équivalente à :

-1/2

 \Box $a^* + b^* + c^*$

(a + b + c)*

 \boxtimes a*b*c*

Q.34

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

- $\Box (ab^* + (a+b)^*)(a+b)^+$
- $\boxtimes (ab^+ + a + b^+)(a(a + b^+))^*$
- $\Box (ab^* + (a+b)^*)a(a+b)^*$

O.35 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de _

$$\Box \longrightarrow \bigcirc \stackrel{b}{\longrightarrow} \bigcirc \stackrel{a,b}{\longrightarrow} \bigcirc$$

2/2

Q.36 Sur $\{a, b\}$, quel est le complémentaire de

-1/2

Fin de l'épreuve.

