CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 14 DICEMBRE 2015

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia. Buone feste.

Esercizio 1.

- (i) Scrivere gli elementi invertibili ed i divisori dello zero (diversi dallo zero) dell'anello \mathbb{Z}_{10} .
- (ii) Esiste un intero positivo m tale che in \mathbb{Z}_m esistano esattamente 7 elementi invertibili e 3 divisori dello zero (diversi dallo zero)?
- (iii) Sia A un anello unitario con $1_A \neq 0_A$. È possibile che tutti gli elementi di $A \setminus \{0_A\}$ siano divisori dello zero?

Esercizio 2. Sia $\overline{\mathbb{N}} = \mathbb{N} \setminus 10\mathbb{N}$. Per ogni $x \in \overline{\mathbb{N}}$ indichiamo con $\alpha(x)$ il numero ottenuto da x invertendo l'ordine delle sue cifre (nella rappresentazione in base 10; ad esempio $\alpha(1273) = 3721$). Si consideri l'applicazione

$$\alpha \colon x \in \overline{\mathbb{N}} \longmapsto \alpha(x) \in \mathbb{N}.$$

- (i) α è iniettiva? α è suriettiva?
- (ii) Quanti sono gli $x \in \overline{\mathbb{N}}$ di tre cifre fissati da α (cioè tali che $\alpha(x) = x$)?

Si definisca in $\overline{\mathbb{N}}$ la relazione d'ordine σ ponendo, per ogni $x, y \in \overline{\mathbb{N}}$,

$$x \sigma y \iff (x < y \land \alpha(x) < \alpha(y)).$$

- (iii) σ è totale?
- (iv) Si determinino rispetto a σ , se esistono, min $\overline{\mathbb{N}}$, max $\overline{\mathbb{N}}$, gli elementi minimali, gli elementi massimali.
- (v) Provare che, per ogni $x, y \in \overline{\mathbb{N}}$:
 - (a) se il numero delle cifre di x è minore di quello di y, allora $x \sigma y$;
 - (b) se $x-1 \in \overline{\mathbb{N}}$, allora $(x-1) \sigma x$.
- (vi) Calcolare in $(\overline{\mathbb{N}}, \sigma)$ i minoranti e l'estremo inferiore di $\{14, 22\}$.
- (vii) Posto $X = \{11, 16, 23, 27, 35, 37\}$, disegnare il diagramma di Hasse di (X, σ) . Trovare, se possibile un $h \in \mathbb{N}$ tale che $(X \cup \{h\}, \sigma)$ sia un reticolo.

Esercizio 3. In $R = \mathbb{Z}_5 \times \mathbb{Z}_5$ si definiscano le operazioni binarie \oplus e * ponendo, per ogni $a, b, x, y \in \mathbb{Z}_5$,

$$(a,b) \oplus (x,y) = (a+x,b+y);$$
 $(a,b)*(x,y) = (ax-by,ay+bx).$

- (i) Tenendo presente che \oplus e * sono associative e commutative (queste proprietà non vanno verificate), provare che $(R, \oplus, *)$ è un anello commutativo.
- (ii) Trovare tutti gli $s \in R$ tali che $(\bar{0}, \bar{1}) * s = (\bar{0}, \bar{1})$.
- (iii) $(R, \oplus, *)$ è unitario?
- (iv) Per ciascuno degli elementi $(\bar{0}, \bar{1})$ e $(\bar{1}, \bar{2})$ di R dire se si tratta di un divisore dello zero e se è invertibile (nel caso, specificando l'inverso).
- (v) $(R, \oplus, *)$ è un dominio di integrità? È un campo?
- (vi) $A := \mathbb{Z}_5 \times \{\bar{0}\}$ è una parte chiusa di R rispetto a \oplus ? E rispetto a *? Nel caso entrambe le risposte siano positive: $(A, \oplus, *)$ è un campo?

Esercizio 4. Per ogni primo (positivo) p ed ogni $\lambda \in \mathbb{Z}_p$, sia $f_{p,\lambda}$ il polinomio

$$\overline{10}\lambda(x^3+\lambda+\overline{29})^{1000}\in\mathbb{Z}_p[x].$$

Per ciascuno dei primi p in $\{2, 3, 5, 7, 97\}$, trovare, se possibile, $\lambda \in \mathbb{Z}_p$ tale che $f_{p,\lambda}$ sia monico (eseguire l'algoritmo euclideo solo per il caso p = 97) e, se un tale λ è stato trovato, scrivere $f_{p,\lambda}$ come prodotto di polinomi monici irriducibili in $\mathbb{Z}_p[x]$.