Axiome der Newtonschen Mechanik:

- 1. Fragheitsgesetz: Jedear kraftefreie Körper verhant in folge Seiner Tragheit ("trage Musse") im Enstand gerad Linig-gleich förmiger Bewegung (mit Ruhe als Sperial fall)
- 2. Bewegungsgeset: Die reitliche Anderung der Impulser eines Körpers ist gleich der auf ihm einwirkenden Kraft Impuls = m $\vec{\sigma}$ = m $\frac{d\vec{v}}{dt}$ = \vec{p} träge Masse

also $\ddot{F} = \ddot{p} = m\ddot{v} = m\ddot{\tau} = m\ddot{a}$

3. Achio-Reachio-Geselz: Jede Wirhung ruft eine gleich große Gegen unthung herror den Ginem Körper 1 auf einem Körper 2 aufgeübte Kraft F21 ist gleich dem Negahium der von Körper 2 auf körper 1 auf genibten Kraft F22:

Beachte: Assion I folgt eigentlich aus Axiom 2 Davuberhinaus hat man

4. Superpositionsgeselt: Krafte addieron sich vertoniell

In Newton's Mechanik sind Raum und Zeit absolut und bilden eine unveränderliche "Bühne" auf der sich alle Prozeßte abspielen.

Der Raum ist Eutlichseh und Axiom2 gilt im Sogenannten un beschleunisten oder Inertial systemen, die sich relativ Zu einander mit konstanter Geschwindisteit bewegen. In der Tat ist Mom 2 invoviant unter Transformationen zurischen Inerbigl Systemen; auch als baldlei-Transformation behannt;

$$= 1 \quad \ddot{U} = \frac{d\ddot{\gamma}}{dt} = \frac{d\ddot{\gamma}}{dt} + \ddot{V}_0 = \ddot{V} + \ddot{V}_0$$

$$\ddot{\alpha}' = \frac{d^2\ddot{\gamma}}{dt^2} = \ddot{\alpha}$$

Dalileisches Relativitätsprimmp: Die Newtonische Bewegungsgleichung ist form in variant unter Galilei-Transformationen

übrigens ist bis heute nicht vollstähdig verstanden was Inerhialsystene aus teichnet. Es schenint eine Rosmologische Frage zu sein, da die Mihrowellen hintergrund - Strahlung ein bevorzugtes System etabliert. Nach dem <u>Machlischen Prinzip</u> ist die Existent von Raum, Zeit und Inerhial systemen an der hosmische Massen verteilung gebunden.

Beachte: Anf der Erde sind wir in einem rohierenden System, und damit nicht in einem Inerhal system

=) "Schein hrafte", Z.B. Zentnifugal Izraft, Coviolis Izraft

Ansbirt: In de Relativitats theorie weden Raum und Zeit relativ und Galileiste Transformationen werden deurch (etwas tramplizierke) Larent-Transformationen erselzt Kocidenaten transformationen - knummlinige Kocidenaten

In n-dimensionalen:

$$X_{i} = X_{i}(y_{11}, y_{n}) = X_{i}(y_{j})$$

$$= \int_{j=1}^{N} \frac{\partial x_{i}}{\partial y_{j}} dy_{j}$$

$$= \int_{j=1}^{N} \frac{\partial x_{i}}{\partial y_{j}} dy_{j}$$

2.B. in 3D n=3 und oft subreitst man $(x_i) = (x_i y_i t)$; $(y_i) = (u_i v_i w)$ also

$$X = x |u_1 v_1 w) \qquad dx = \frac{\partial x}{\partial u} du + \frac{\partial x}{\partial v} dv + \frac{\partial t}{\partial w} dw$$

$$y = y |u_1 v_1 w| =) \qquad dy = \frac{\partial y}{\partial u} du + \frac{\partial y}{\partial v} dv + \frac{\partial t}{\partial w} dw$$

$$t = t |u_1 v_1 w| \qquad dt = \frac{\partial t}{\partial u} du + \frac{\partial t}{\partial v} dv + \frac{\partial t}{\partial w} dw$$

$$dt = \frac{\partial t}{\partial u} du + \frac{\partial t}{\partial v} dv + \frac{\partial t}{\partial w} dw$$

In Earlibrishen Kockhafen (x1)

$$\vec{r} = (x_i, y_i = (x_i), d\vec{r} = (dx_i, y_i dx_i) = (dx_i) = \vec{z} dx_i \vec{e}_i$$

$$mi + \vec{e}_i \cdot \vec{e}_j = Sij$$

In allgemeinen kommen himigen Koardelnaten (yi) wird des dani't

$$d\vec{\gamma} = \frac{2}{i} \frac{\partial \vec{\gamma}}{\partial y_i} dy_i$$

Z. B- in 3D

$$d\vec{r} = (dx_1 dy_1 dz) = e_1 dx + e_2 dy + e_3 dz$$

$$= \frac{\partial \vec{r}}{\partial u} du + \frac{\partial \vec{r}}{\partial v} dv + \frac{\partial \vec{r}}{\partial w} dw \quad m' + \frac{\partial \vec{r}}{\partial u} = (\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}) etc.$$

Man ham neve Basis- Einhait velytorn

$$\overline{U}_{k} := \frac{1}{b_{k}} \frac{\partial \overline{v}}{\partial y_{k}}$$
 unit $b_{k} := \left| \frac{\partial \overline{v}}{\partial y_{k}} \right|$

definien, so days

Manmennt (yi) ein orthogonales Koadinalusgoten wenn

PJ- [3)

Ui · Ui = 0 für i ti und damit and Ui · ui = Sij an jedem Raum punt piet

Dann ist des Flachen Mement, des von zwei seiten de Laings olsi, ols; autgespannt wird, gegeben durch

Und dow Volumenelement

$$dV = \frac{n}{11} ds_i = \frac{n}{11} b_i dy_i$$

Eben Polar hoardinate

20, n=2

$$x = x \cos \theta$$
 $y = x \sin \theta$
 $x = (x \cos \theta, x \sin \theta)$

Umhchmy:
$$r = \sqrt{x^2 + y^2}$$
, $\varphi = \pm \arctan \frac{y}{x}$ für $y \ge 0$

$$\frac{\partial \vec{n}}{\partial x} = (\cos \theta, \sin \theta) \quad |\frac{\partial \vec{n}}{\partial x}| = 1 \quad =) \quad \vec{u}_x = \vec{e}_x = (\cos \theta, \sin \theta)$$

$$\frac{\partial \vec{n}}{\partial y} = (-r \sin \theta, r \cos \theta) \quad |\frac{\partial \vec{n}}{\partial y}| = r \quad =) \quad \vec{u}_y = \vec{e}_y = (-r \cos \theta, \cos \theta)$$

Bahn how

$$\dot{\vec{r}}(t) = \gamma(t) \, \vec{e}_{\gamma}(t) = \dot{\vec{r}}(t) = \dot{\vec{r}}(t) \, \vec{e}_{\gamma}(t) + \gamma(t) \, \vec{e}_{\gamma}(t)$$

$$\dot{\vec{e}}_{\gamma}(t) = \frac{d\vec{e}_{\gamma}}{d\psi} \, \frac{d\psi}{dt} = (-s_{\gamma\gamma}, c_{\gamma}\psi) \, \dot{\psi} = \dot{\psi} \, \dot{\psi} \, \dot{\psi}$$

=) Wenn
$$\vec{v} = \vec{v}_r \vec{e}_r + \vec{v}_{\phi} \vec{e}_{\phi}$$
 dann ist $\vec{v}_r = \vec{v}_r$ ist die wilhulgestwilhdighen't

Beschlenmigung
$$\vec{\alpha} = \vec{r} = \vec{b} = \frac{d}{dt}(v_r e_r + v_e e_e) = \frac{d}{dt}(\tilde{r}e_r + ree_e) = \frac{d}{dt}(\tilde{r}e_r +$$

$$= \mathring{v} \, \mathring{e}_{r} + \mathring{v} \, \mathring{e}_{r} + \mathring{v} \, \mathring{e}_{q} + \mathring{v} \, \mathring{e}_{q} + \mathring{v} \, \mathring{e}_{q} = 1$$

$$= (\mathring{v} - \mathring{v}^{2}) \mathring{e}_{r} + (\mathring{v} \mathring{e} + 2\mathring{v} \mathring{e}) \mathring{e}_{q} \qquad \mathring{e}_{r} = \mathring{\psi} \, \mathring{e}_{q}$$

$$\mathring{e}_{q} = \mathring{\psi} (-c_{s} \mathring{q}, -s_{m} \mathscr{e}) = 1$$

$$= - \mathring{\psi} \, \mathring{e}_{r}$$

$$a_{\gamma} = \gamma - \gamma \varphi^2$$

Radial beschennigung

Wonted beschennigung

Livien - and Fläcke elemente:

Eylindehocidhaten

-) Chem Polarhoodhaten + darn fenhrechte 7-Abst

8= Vx2+y27; 9=tardan y y > 0 7=t Man findet die orthusonalen Einherholden

胜-(20)

$$\tilde{\mathcal{E}}_{g} = \{cs, \varphi, sm, \varphi, \varphi\} \quad \tilde{\mathcal{E}}_{\varphi} = \{-sm, cs, \varphi, \varphi\} \quad \tilde{\mathcal{E}}_{z} = \{0, 0, 1\}$$
Tene
$$dV = ds_{g}ds_{\varphi}ds_{z} = gdgd\varphidt$$

Fir bush windigheit und Berchleumjung erheit man

$$\ddot{v} = \ddot{g} + \ddot{g} + \ddot{g} + \ddot{g} + \ddot{g} + \ddot{g} = \ddot{g} + \ddot{g} + \ddot{g} = \ddot{g} + \ddot{g} + \ddot{g} = \ddot{g} + \ddot{g} = \ddot{g} + \ddot{g} = \ddot{g} = \ddot{g} + \ddot{g} = \ddot{$$

Kuyelhordhaten - Sphärische Polarhordinaten 30 - n=3

$$X = \gamma Sih \Theta \cos \varphi$$

 $Y = \gamma Sih \Theta Sih \varphi$
 $Z = \gamma \cos \Theta$

J= WXX

Für je den Verter b filt:
$$\vec{b} = \vec{Z} \ bi \ \vec{e}_i = \vec{Z} \ bi \ \vec{e}_i'$$

=) $\frac{d\vec{b}}{dt} = \vec{Z} \frac{d\vec{b}_i}{dt} \ \vec{e}_i = \vec{Z} \frac{d\vec{b}_i'}{dt} \ \vec{e}_i' + \vec{Z} \frac{d\vec{e}_i'}{dt}$

= $\frac{d\vec{b}}{dt} + \vec{\omega} \times \vec{b}$

Ableitung im \vec{Z} - System

Ferne:

$$\vec{r}(t) = \vec{r}_0(t) + \vec{r}'(t) = \vec{r}_0 + \vec{r}$$

wobei ä = (do') die Beschlungung gemessen ihn 2'- System ist Einselm in F = mä gibt resliepsuid:

Betyptel: rotiende temesistes Berngssystem: Anfeinen Luftstrom der sich auf de Nordhalbhugel von Nord nach Sid bewegt witht lime Consolis braft die nach Westen zeigt. Deshalt drehm Sich Luftmassen auf der Nordhalthugel ihm Gegen-Uhrzeigersinn um Tiefdnut ogebiete. Auf de süd halthugel ist es genan anders herum

Galilei - Transformationen in der Wewtonisten Medranite führen zuer Vehrtraddition von Gerdundigheiten:

insbesender heingt Licht geschuch dijheit van Berugssyrken (Inchialsystem) ab. I bevaragtes Inerhal syrken in welchem Lichtgach windij heit = Co

-) Äther o Fürden Schall ist de Äthe die Lift

Midelson - Versud:

Lichtlanfred in Arm
$$1 = \frac{l_1}{G-U} + \frac{l_1}{G+U} = l_1 = \frac{2l_1}{G_0} \frac{1}{1-\frac{U^2}{G_0^2}}$$

$$1 \quad 1 \quad 1 \quad 2 \quad \frac{l_1}{G-U} + \frac{l_2}{G_0^2} = \frac{2l_2}{G_0} \frac{1}{V_1 - \frac{U^2}{G_0^2}}$$

=)
$$\Delta t = \frac{2}{c_0} \left(\frac{\ell_1}{1 - \frac{v^2}{c_0^2}} - \frac{\ell_2}{\sqrt{1 - v^2/c_0^2}} \right)$$

Drehung um 90° entsprich Austansch von I, und lz:

$$\Delta t' = \frac{2}{\zeta_0} \left(\frac{\ell_1}{\sqrt{1 - v^2/\zeta_0^2}} - \frac{\ell_2}{1 - v^2/\zeta_0^2} \right)$$

Die Different der Lichtlanfraiken andert sich damit un

$$\int t = \Delta t - \Delta t' = \frac{2(\ell_1 + \ell_2)}{C_6} \left(\frac{1}{1 - v^2/c_6^2} - \frac{1}{\sqrt{1 - v^2/c_6^2}} \right)$$

Was die Inter fermenuster um die Phase

andert.

Experimentall i'll AS = AJ = 0 =)

Die Vahuum licht geschumdigheit ist univerall und in jedeem Inchial system identist

Dami't rind alle Inerhial systeme gler & besidning und neur Relation

gestuch dignerien sind phys. halisch pellvant. Dier in mich de Fall in de Athertheme, wie folgendes Beispiel leigt (Geschundistrenten relativ zum Äther)

Wenn v=0 und d= Distant Beobachi- anela dannin to = d ; wenn v >0 dann d = Cot + v t

=)
$$t = \frac{t_0}{1 + v/c_0}$$
 =) Frequent $f = \frac{1}{t} = f_0(1 + \frac{v}{c_0})$

$$t = t_0 - \frac{v t_0}{c_0} + \frac{d}{c_0} = f = \frac{f_0}{f_0}$$
 $f_0 = \frac{1}{t_0}$

=) die beiden DopphereMerre warm in zweite Ordner, in t U4stheden

Eine Majlickert, de L'ungenhum dijheit unabhängig vom In Mulsystem zu halfen ist

In setten, denn dann ist for Bewegung mit lidthash win dighter't (0At2-AV)2=0 in alle Fresholsgrunen

Clouded it also give Transformation (done Einschränkung mit nur eine Roum hocidinate):

$$x' = ax + bt$$

$$t' = cx + dt$$

$$\frac{1}{2} \int_{x}^{2} \sqrt{z'} dz$$

so das

$$(c_0t^1)^2 - x^{12} = (c_0t)^2 - x^2$$

Definiere a:= 8. For Per Pelinihim bewift sit ein Punt In Ruhe in Z, Ax = D, mit Gudwindigheit v in Z, v= Ax

$$0 = \Delta x' = X\Delta x + b\Delta t = b = -b\frac{\Delta x}{\Delta t} = -bv$$

$$x^1 = Y(x - vt)$$

Wei'ter

$$(c_0t')^2 - x'^2 = c_0^2(cx+dt)^2 - \delta^2(x-vt)^2$$

$$= c_0^2(d^2 - t^2\frac{v^2}{G^2})t^2 + (c_0^2c^2 - t^2)x^2 + 2(c_0^2cd + t^2\sigma)xt$$

$$=) (1) d^{2} = 1 + \delta^{2} \frac{\sigma^{2}}{G^{2}}; (2) (6^{2} C^{2} = 7^{2} - 1); (3) C_{0}^{2} C d = -5^{2} \sigma$$

$$=) (1) d^{2} = 1 + \delta^{2} \frac{\sigma^{2}}{G^{2}}; (2) (6^{2} C^{2} = 7^{2} - 1); (3) C_{0}^{2} C d = -5^{2} \sigma$$

$$=) (3) C_{0}^{2} C d^{2} = 5^{4} \frac{\sigma^{2}}{G^{2}}$$

$$=) C_{0}^{2} C^{2} d^{2} = -1 + \delta^{2} (1 - \frac{\sigma^{2}}{G^{2}}) + 7^{4} \frac{\sigma^{2}}{G^{2}}$$

$$=) (3) C_{0}^{2} C d = -5^{2} \sigma$$

$$=) C_{0}^{2} C^{2} d^{2} = -1 + \delta^{2} (1 - \frac{\sigma^{2}}{G^{2}}) + 7^{4} \frac{\sigma^{2}}{G^{2}}$$

$$= 1 C_{0}^{2} C^{2} d^{2} = -1 + \delta^{2} (1 - \frac{\sigma^{2}}{G^{2}}) + 7^{4} \frac{\sigma^{2}}{G^{2}}$$

$$= 1 C_{0}^{2} C^{2} d^{2} = -1 + \delta^{2} (1 - \frac{\sigma^{2}}{G^{2}}) + 7^{4} \frac{\sigma^{2}}{G^{2}}$$

$$= 1 C_{0}^{2} C^{2} d^{2} = -1 + \delta^{2} (1 - \frac{\sigma^{2}}{G^{2}}) + 7^{4} \frac{\sigma^{2}}{G^{2}}$$

$$= 1 C_{0}^{2} C^{2} d^{2} = -1 + \delta^{2} (1 - \frac{\sigma^{2}}{G^{2}}) + 7^{4} \frac{\sigma^{2}}{G^{2}}$$

Glid When =)
$$y^2 = \frac{1}{1 - \sigma^2/c_0^2}$$
 =1 $t = \frac{1}{V_1 - \sigma^2/c_0^{-2}}$ well $\alpha = \delta > 0$.

(1)=)
$$d^2 = \frac{1}{3} 2 \left(\frac{1}{3^2} + \frac{v^2}{co^2} \right) = \frac{1}{3^2}$$
 =) $d = 1$ well $d > 0$
(3) =) $c = -\frac{1}{3} \frac{v}{co^2} = -\frac{1}{3} \frac{v}{co^2}$

=)
$$\chi' = \delta(x - v + t)$$

 $t' = \delta(t - \frac{vx}{co^{2}})$ mit $\delta = \frac{1}{V_{1} - v^{2}/6v^{2}}$

Heinweis: Oft Lorden "hattiliste Embeiten" verwendet for die 6=1

Die Koordinaten I & bleisen emberandert, d.h.

$$y' = y$$

$$z' = z$$

Beacht: Fir 7/co -> 0 ist 8=1+0(c-2) => In erster Ordnung in v erhalt man Galilei-Transformation:

$$x' = x - vt + O(v^2)$$

 $t' = t - \frac{vx}{G^2} + O(v^2)$

Anwendingen

In Sylum Z bewege sich ein Toilden mit beschwindigheit $u = \frac{\Delta x}{\Delta t}$ = In Z'ist Gerdundigheit

$$u' = \frac{\Delta x'}{\Delta t} = \frac{\Delta x - v \Delta t}{\Delta t - v \Delta x/c_0^2} = \frac{u - v}{1 - \frac{v u}{c_0 z}}$$

custen durch At und verwende u=AX/At

Fix 4, v << Co giet Galilie-Transformation Disconf Terme twenter Ordnurg: u'= u-v + O(v2,u2) 2.) reit dilabation

Behachte einen Prozes, der in Z in Rute statt findel und ane leit At douest, 2 B. radioathir tefall

=1 At = rat 21t

View verter - Farmylymus

Varwende hathliche Filheiken 6 = 1 de Einfachteit halbe

 $= 1 \quad t = \gamma(t - \sigma x) \qquad y' = y$

 $x' = y(x - vt) \qquad z' = z$

(t,x) bilder "View vehter" dessur "Norm" t2-x2 exhalfer st Analog hildel (F, p) "Emple-Impuls-View verter"

=) E=8 (E-UPX)

Px = 8 (Px - vE)

Py = Py

Spezial fell: Tailchen in Ruhe in Z, and p=0, E= mo= = Ruhemarce

=) E = JE = Jm

Pr = - YUE = - YUM

Py = Py = 0

 $= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{$

ersche Luch = 2 mo = E2 ungshidane

Größen in "all teyhiden" Kos dinatas:

E2 = Cop+ mo co

[E] = [mv2], [p] = [mor]

Beache:	E hat position and negative Werrel
	ECO entroion Anni feichen
AMERICAN AND AND AND AND AND AND AND AND AND A	;
allia Rating Conference and Conferen	-) in de Relativitats theorie hab jedes Teilchen ein
	Anti-Teilden
N.OA - rel	ahinishishes Limiti
	$E = \sqrt{m_0^2 + p^2} = m_0 \sqrt{1 + \frac{p^2}{m_0^2}} = m_0 \left(1 + \frac{1}{2} \frac{p^2}{m_0^2} + O(p^4)\right)$
	$= - \sum_{i=0}^{m_0} - \frac{m_0}{\sqrt{1-v^2}} - \frac{m_0(1+\frac{1}{2}v^2+O(v^2))}{\sqrt{1-v^2}}$
4	= mot Imo Up
	hiltorishiste hihebithe Engre
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	:
and an account of the account of the act of	

Allgemeine Form des Newton'schen Bewegungsleitrung;

$$m\chi_{i} = F_{i}(\chi_{i}, \chi_{i}, \chi_{3}, t)$$
 $i = 1, 2, 3$

Mehrfaildensysteine für NTeilchen

m;
$$\vec{r}_{j} = F_{j}(\vec{r}_{11}, \vec{r}_{N1}t)$$
 $j = 1, ..., N$

-> 3N Differn Walplushungen 2the Ordnung -> 3N "Freiheits grade"

Phasin rawin

Firs n Freiherbynde hat man den h-dimensionalen Orbocktor $\vec{\tau} = (y_1, \dots y_n)$; Der von $\vec{u} = (\vec{\tau}_1, \vec{\tau}_1)$ autgrpunnte 2n dimensionale Vertoraum heißt Phaymraum, Deliniere

$$U_{j} = y_{j}$$
 $j = 1,..., n$
 $U_{j+n} = y_{j}$ $j = 1,..., n$

=)
$$u_{j} = y_{j} = u_{n+j}$$

 $u_{j+n} = y_{j} = f_{j}(u_{j+1}u_{2n}t)$ $j=l_{j-1}n$

I trafe hann and van bestavindigheisen abhängen, z.B. Reibung, Lorentz-Kraft

hat die Form

Symmetrien dieser Geerschungen fichsten i.a. zu Erhaltunggwißen 2. B. fich leit-unabhänsisheit i.a. un Energie erhaltung F weißt hankroahive oder Gradienten-Kraft wenn

$$\widetilde{F}(\widetilde{x}) = -\widetilde{\sigma} V(\widetilde{x})$$

mit V(x) eine Shalar frankvan genannt "Potential" Dann ist

erhalten:

$$\frac{dF}{dt} = m\vec{\gamma} \cdot \vec{\gamma} + \vec{\gamma} \cdot \vec{\nabla} V = \vec{\gamma} \cdot (m\vec{\gamma} + \vec{\nabla} V)$$

$$= \vec{\gamma} \cdot (m\vec{\gamma} - F(\vec{\gamma})) = 0$$

Beimiele

Schriger Wurf -) siehe experimentelle Teil mathematisches Pendel:

$$F = -mg e_z$$

$$= -\nabla F_{pot}$$

$$m'' = mgh = mgl(1-cop)$$

when l= cant. Ist Fy = may in Polarhoardination

=)
$$ml\ddot{p} = -mg \sin \varphi$$
 $v der \ddot{\varphi} + \frac{9}{e} \sin \varphi = 0$

Energie-Erhaltus:

 $E = E_{min} + E_{pry} = \frac{m}{2} \ell^2 \dot{\varphi}^2 + mg \ell (1 - c_9 \ell) = cont. = mg \ell (1 - c_9 \ell)$ $\ell_0 = maximale Auxlenhung; Falls <math>\ell_0 \leq 41$

=)
$$\varphi = \sqrt{\frac{2g}{4}(cs \varphi - cs \varphi_0)}$$

domit hann man die Schwingungs prenide berechnen:

$$=) T = 4\sqrt{\frac{9}{9}} K(\sin^2 \frac{9}{2})$$

Taglar Entwickling van K(h) um h=0:

Fit $h \to 0$ ist $T \to 2\pi \sqrt{\frac{1}{g}}$. Das enterprish der harmonischen Nühenz sin $\varphi \simeq \varphi$:

Lösump sind

unit
$$w_0 = \sqrt{\frac{9}{e}}$$
, and $T = \frac{2\pi}{w_0} = 2\pi\sqrt{\frac{e}{3}}$

Dies entsprich dem Fede pendel

$$mx^{\circ} + hx = 0$$
 mit $F_{put} = \frac{h}{2}x^{2}$ $F = -\frac{dF_{put}}{dx} = -hx$

Impublines Teilchens :=
$$p = m v = m v$$

12 nremaire in Newton's tre Physik

ansanskin kn -) m t

"bewegte Masse"

=)
$$\dot{p} = F(\ddot{a}, t)$$

=)
$$\vec{L} = m\vec{x}x\vec{x} + m\vec{x}x\vec{x} = \vec{x}x\vec{p} = \vec{x}x\vec{F} = "Drehmoment"$$

N-Teilden system: $J_{jh} := |v_{j} - v_{h}| = v_{hj}$ Angenommen nur Zentral braifte Fin wirten von Teilden kanf Teilden j

$$=) F_{jh} = F_{jh} \left(\gamma_{jh} \right) \frac{\gamma_{j} - \gamma_{h}}{\gamma_{jh}} \quad \text{also} \quad \vec{p}_{j} = \sum_{h=1}^{N} F_{jh} \\ h \neq j$$

$$\vec{P} = \vec{z} \vec{p}_{i}$$

$$\vec{L} = \vec{z} \vec{L}_{i} = \vec{z} \vec{v}_{i} \times \vec{p}_{i}$$

$$=) \qquad \ddot{p} = \sum_{j=1}^{\infty} \dot{p}_{j} = \sum_{j=1}^{\infty} \dot{p}_{j} = 0$$

=) Solverpunt
$$\tilde{R} = \frac{1}{M} \sum_{j=1}^{N} m_j r_j$$
 beautifult bush windight $\tilde{V} = \tilde{R} = \frac{1}{M} \sum_{j=1}^{N} m_j r_j = \frac{1}{M} \sum_{j=1}^{N} \tilde{P}_j = \frac{\tilde{P}}{M} = conft.$

$$\overset{\circ}{L} = \overset{\circ}{Z} \overset{\circ}{L_{j}} = \overset{\circ}{Z} \overset{\circ}{\pi_{j}} \times \overset{\circ}{Z} \overset{\circ}{F_{0h}} = \overset{\circ}{Z} \frac{F_{3h}(v_{jh})}{\gamma_{jh}} \overset{\circ}{\pi_{j}} \times (\overset{\circ}{\pi_{j}} - \overset{\circ}{\pi_{h}})$$

$$= -\overset{\circ}{J} \frac{F_{3h}(v_{jh})}{\gamma_{jh}} \overset{\circ}{\pi_{j}} \times \overset{\circ}{\pi_{h}} = 0 \quad \text{wail} \quad \overset{\circ}{\pi_{j}} \times \overset{\circ}{\pi_{h}} = -\overset{\circ}{\pi_{h}} \times \overset{\circ}{\pi_{j}}$$

$$= -\overset{\circ}{J} \frac{F_{3h}(v_{jh})}{\gamma_{jh}} \overset{\circ}{\pi_{j}} \times \overset{\circ}{\pi_{h}} = 0 \quad \text{wail} \quad \overset{\circ}{\pi_{j}} \times \overset{\circ}{\pi_{h}} = -\overset{\circ}{\pi_{h}} \times \overset{\circ}{\pi_{j}}$$

Depinier:

$$\vec{r} = \vec{r}_{12} = \vec{r}_1 - \vec{r}_2 = \text{Relahichoudinate}$$

$$M = m_1 + m_2 = Gesam + musse$$

$$M = \frac{m_1 m_2}{m_1 + m_2} = \frac{m_1 m_2}{m_2} = \frac{m_1 m_2}{m_1 + m_2}$$

Dann

$$F(\tilde{r})_{1} = F_{12} = F(r) \tilde{r}$$

Ventralbraft

Bewegning glaidungin

$$m_1 \ddot{n}_1 = F_{12}$$
 $m_2 \ddot{n}_2 = F_{21}$

=)
$$\tilde{R} = 0$$
 wie ihn N- Körpesystem

$$\vec{\gamma} = \vec{\gamma}_1 - \vec{\gamma}_2 = \frac{1}{m_1} F_{12} - \frac{1}{m_2} F_{21} = \left(\frac{1}{m_1} + \frac{1}{m_2}\right) \vec{F}(\vec{\gamma})$$

$$= \int_{-\infty}^{\infty} \vec{\gamma}_1 = \vec{F}(\vec{\gamma}_1)$$

Ferm

$$\mathcal{L}_{tot} = \mathcal{L}_{1} + \mathcal{L}_{2} = \mathcal{L}_{S} + \mathcal{L}$$

$$\mathcal{L}_{S} = M \mathcal{R} \times \mathcal{R} = \mathcal{R} \times \mathcal{P} = Drehinpuls de Schwerpungh bewyung$$

$$\mathcal{L} = \mathcal{A} \times \mathcal{P} = \mathcal{M} \times \mathcal{A} = \mathcal{R}elaho drehinpuls$$

denn: