3.3 성능 예측

3.3.2 오차행렬

		예측값	
		0	1
실제값	0	TN	FP
	1	FN	TP

정밀도(precision) = $\frac{TP}{TP+FP}$: 양성이라고 판단한 것들 중에 진짜 양성의 비율

재현율(recall) = $\frac{TP}{TP+FN}$: 실제 양성인 것들 중에 진짜 양성이라고 판단한 비율

3.3.3 정밀도와 재현율

		예측값			
			0	1	
실제값	0		75	5	
	1		15	5	

정확도 =
$$\frac{TN+TP}{TN+FP+FN+TP}$$
 = $\frac{75+5}{75+5+15+5}$ = 0.8

정밀도(precision) =
$$\frac{TP}{TP+FP}$$
 = $\frac{5}{5+5}$ = 0.5

재현율(recall) =
$$\frac{TP}{TP+FN} = \frac{5}{5+15} = 0.25$$

3.3.3 정밀도와 재현율

		예측값	
		0	1
실제값	0	75	5
	1	15	5

$$F_1 = \frac{2}{\frac{1}{\text{정밀도}} + \frac{1}{\text{재현율}}} = \frac{2}{\frac{1}{0.5} + \frac{1}{0.25}} = 0.33$$

○ 조화평균

조화평균 =
$$\frac{2}{\frac{1}{a} + \frac{1}{b}} = \frac{a+b}{2ab}$$

3.3.4 정밀도/재현율 트레이드오프

정밀도 ↑ → 재현율 ↓ 트레이드오프 현상 : 정밀도 ↓ → 재현율 ↑

정밀도가 재현율보다 중요한 경우	재현율이 정밀도보다 중요한 경우
- 양성을 음성으로 분류(FN)하면 손실이	- 양성을 음성으로 분류(FN)하면 손실이
적을 경우	클 경우
- 음성을 양성으로 분류(FP)하면 손실이	- 음성을 양성으로 분류(FP)하면 손실이
클 경우	적을 경우
- PR곡선 사용	- ROC곡선 사용

3.3.5 ROC곡선

$$FNR(특이도) = \frac{TN}{TN+FP}$$

실제 음성인 것들 중에 진짜 음성이라고 판단한 비율 * 카파 통계량

$$K = \frac{Pr(a) - Pr(e)}{1 - Pr(e)}$$

Pr(a): observed accuracy

Pr(e): expected accuracy

		예=	합계	
		0	1	업계
실제값	0	75	5	80
	1	15	5	20
합계		90	10	

예측) 양성 확률 = 0.1/ 음성 확률 = 0.9

실제) 양성 확률 = 0.2/ 음성 확률 = 0.8

실제와 예측 모두 양성일 확률 = 0.1×0.2 = 0.02

실제와 예측 모두 음성일 확률 = 0.9×0.8 = 0.72

확률적으로 우연히 일치할 확률 = 0.02+0.72=0.74

* 카파 통계량

$$K = \frac{Pr(a) - Pr(e)}{1 - Pr(e)}$$

Pr(a): observed accuracy

Pr(e): expected accuracy

$$K = \frac{0.8 - 0.74}{1 - 0.74} = 0.23$$