Problem Set 6

Parvesh Adi Lachman

November 2023

1 Problem 1

Claim: For any integer $n \geq 1$,

$$\sum_{i=1}^{n} i(i+3) = \frac{n(n+1)(n+5)}{3}.$$
 (1)

Step 0: For all $n \ge 1$, we want to show $\sum_{i=1}^{n} i(i+3) = \frac{n(n+1)(n+5)}{3}$.

Step 1: For all $n \ge 1$, let P(n) be the property that

$$4 + 10 + 18 + 28 + \dots + (n-1)((n-1)+3) + n(n+3) = \frac{n(n+1)(n+5)}{3}.$$

We want to show that P(n) is true for all $n \ge 1$.

Step 2: As a base case, consider n=1. We will show that P(1) is true: that is, that $1(1+3)=\frac{1(1+1)(1+5)}{3}$. Fortunately, this is true since LHS = 1(1+3)=4 and RHS = $\frac{1(1+1)(1+5)}{3}=4$ thus LHS = RHS.

Step 3: For the induction hypothesis, suppose (hypothetically) that P(k) were true for some fixed $k \ge 1$. That is suppose that $\sum_{i=1}^k i(i+3) = \frac{k(k+1)(k+5)}{3}$, which is $[4+10+18+28+\cdots+(k-1)((k-1)+3)+k(k+3)] = \frac{k(k+1)(k+5)}{3}$.

Step 4: Now we prove that P(k+1) is true, using the (hypothetical) induction assumption that P(k) is true. That is, we prove that $\sum_{i=1}^{k+1} i(i+3) = \frac{(k+1)(k+2)(k+6)}{3}$ which is $[4+10+18+28+\cdots+k(k+3)+(k+1)((k+1)+3)]$.

Step 5: The proof that P(k+1) is true (given that P(k) is true) is a follows:

Left hand side of
$$P(k+1)$$
 = $4+10+18+28+\cdots+k(k+3)$
+ $(k+1)((k+1)+3)$
= $(4+10+18+28+\cdots+k(k+3))$
+ $(k+1)((k+1)+3)$
= $\frac{k(k+1)(k+5)}{3}+(k+1)((k+1)+3)$ By IH
= $\frac{k(k+1)(k+5)}{3}+\frac{3(k+1)(k+4)}{3}$ By algebra
= $\frac{k(k+1)(k+5)+3(k+1)(k+4)}{3}$ By algebra
= $\frac{(k+1)(k^2+5k)+(k+1)(3k+12)}{3}$ By algebra
= $\frac{(k+1)(k^2+8k+12)}{3}$ By factoring $(k+1)$ and algebra
= $\frac{(k+1)(k+2)(k+6)}{3}$ By factoring
= Right hand side of $P(k+1)$

Therefore we have shown that if P(k) is true, then P(k+1) is also true for any $k \ge 1$.

Step 6: The steps above have shown that for any $k \geq 1$, if P(k) is true, then P(k+1) is also true. Combined with the base case, which shows that P(1) is true, we have shown that for all $n \geq 1$, P(n) is true, as desired.

2 Problem 2

Claim: Let $n \geq 2$, and let $A_1, A_2, ..., A_n$ be sets from some universal set U. For all $n \geq 2$,

$$\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{j=1}^{n} \overline{A_j} \tag{2}$$

Step 0: For all $n \geq 2$, we want to show that $\overline{\bigcup_{i=1}^n A_i} = \bigcap_{j=1}^n \overline{A_j}$

Step 1: For any $n \geq 2$, let P(n) be the property that,

$$\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{j=1}^{n} \overline{A_j}$$

We want to show that P(n) is true for all $n \geq 2$.

Step 2: As a base case, consider when n=2. We will show that P(2) is true: that is, that $\overline{A_1 \cup A_2} = \overline{A_1} \cap \overline{A_2}$. Fortunately, this is true by definition of De Morgan's law, since De Morgan's law states that $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Step 3: For the induction hypothesis, suppose (hypothetically) that P(k) is true for some fixed $k \geq 2$. That is, suppose that $\bigcup_{i=1}^k \overline{A_i} = \bigcap_{j=1}^k \overline{A_j}$.

Step 4: Now we prove that P(k+1) is true using the (hypothetical) induction assumption that P(k) is true. That is, we prove that

$$\overline{\bigcup_{i=1}^{k+1} A_i} = \bigcap_{j=1}^{k+1} \overline{A_j}$$

Step 5: The proof that P(k+1) is true (given that P(k) is true) is as follows:

ws: Left hand side of
$$P(k+1) = \underbrace{\overline{\bigcup_{i=1}^{k+1} A_i}}_{i=1} = \underbrace{\left(\bigcup_{i=1}^k A_i\right) \cup A_{k+1}}_{0} = \underbrace{\left(\bigcup_{i=1}^k A_i\right) \cup A_{k+1}}_{0} = \underbrace{\left(\bigcup_{i=1}^k A_i \cap \overline{A_{k+1}}\right)}_{0} = \underbrace{\left(\bigcup_{i=1}^k A_i \cap \overline{A_{k+1}}\right)}_{0} = \underbrace{\left(\bigcup_{j=1}^k \overline{A_j} \cap \overline{A_{k+1}}\right)}_{0} = \underbrace{\left(\bigcup_{j=1}^k \overline{A_j} \cap \overline{A_{k+1}}\right)}_{0} = \underbrace{\left(\bigcup_{j=1}^k A_j \cap \overline$$

Therefore we have shown that if P(k) is true, then P(k+1) is also true for any $k \geq 2$.

Step 6: The steps above have shown that for any $k \geq 2$, if P(k) is true, then P(k+1) is also true. Combined with the base case, which shows that P(2) is true, we have shown that for all $n \geq 2$, P(n) is true, as desired.

3 Problem 3

Claim: For all $n \ge 1$,

$$\sum_{i=1}^{n} s_i = s_{n+2} - 4 \tag{3}$$

Step 0: For all $n \ge 1$, we want to show that $\sum_{i=1}^{n} s_i = s_{n+2} - 4$.

Step 1: For any $n \ge 1$, let P(n) be the property that

$$\sum_{i=1}^{n} s_i = s_{n+2} - 4$$

We want to show that P(n) is true for all $n \ge 1$.

Step 2: As a base case, consider when n=1. We will show that P(1) is true: that is, that $\sum_{i=1}^{1} s_i = s_{1+2} - 4$. Fortunately, this is true, using the sharp number sequence, $s_1 = 2$ and $s_{1+2} - 4 = s_3 - 4 = 6 - 4 = 2$, thus LHS = RHS.

Step 3: For the induction hypothesis, suppose (hypothetically) that P(k) were true for some fixed $k \geq 1$. That is suppose that

$$\sum_{i=1}^{k} s_i = s_{k+2} - 4$$

Step 4: Now we prove P(k+1) is true, using the (hypothetical) induction assumption that P(k) is true. That is, we prove that

$$\sum_{i=1}^{k+1} s_i = s_{(k+1)+2} - 4 = \sum_{i=1}^{k+1} s_i = s_{k+3} - 4$$

Step 5: The proof that P(k+1) is true (given that P(k) is true) is as follows:

Left hand side of
$$P(k+1)$$
 = $\sum_{i=1}^{k+1} s_i$
= $\sum_{i=1}^{k} s_i + s_{k+1}$ By pulling out The $(k+1)$ st term out the summation By IH
= $s_{k+2} - 4 + s_{k+1}$ By rewriting By def of our sequence $s_{k+3} - 4$ By def of our sequence English hand side of $P(k+1)$

Therefore we have shown that if P(k) is true, then P(k+1) is also true for any $k \ge 1$.

Step 6: The steps above have shown that for any $k \geq 1$, if P(k) is true, then P(k+1) is also true. Combined with the base case, which shows that P(1) is true, we have shown that for all $n \geq 1$, P(n) is true, as desired.