Problem 1: Indicate which of the following are unit balls of valid norms in \mathbb{R}^2 . Circle "Yes" or "No" for each. For the ones that are "No", indicate which of the three properties of a valid norm are violated (just write this below your choice).

Problem 2: Justify your	$= \ x\ _1 - \ x\ _{\infty}.$	True or False:	$\ x\ _{\text{combo}}$ is a	valid norm.
Answer:				

Problem 3: Consider the following inner product for \mathbb{R}^2 , which is valid:

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle_W = \boldsymbol{y}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{x}, \quad \text{where} \quad \boldsymbol{W} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

Find a vector \boldsymbol{y} that is orthogonal to $\boldsymbol{x} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$ (i.e. $\langle \boldsymbol{x}, \boldsymbol{y} \rangle_W = 0$).

Answer:			

Problem 4: Now suppose that we take

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle_W = \boldsymbol{y}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{x}, \quad \text{where} \quad \boldsymbol{W} = \begin{bmatrix} 3 & 1 \\ 2 & 3 \end{bmatrix}.$$

Is $\langle \boldsymbol{x}, \boldsymbol{y} \rangle_W$ a valid inner product for this choice of \boldsymbol{W} ? Justify your answer.

Answer:		

Problem 5: Let \mathcal{U} and \mathcal{V} be linear subspaces of a vector space \mathcal{S} . True or False: The union $\mathcal{U} \cup \mathcal{V}$ is also a linear subspace of \mathcal{S} . Justify your answer.					
answer:					

Problem 6: Set up the linear system of equations whose solution yields the answer to:

$$\underset{a,b,c \in \mathbb{R}}{\text{minimize}} \int_{-1}^{1} |t^3 - at^2 - bt - c|^2 dt$$

Problem 7: Let $f(t) = 13t^9 + 4t^8 - 3t^7 + 11t^6 + t^5 - 9t^4 + 2t^3 - t^2 + t + 7$. Take $\mathcal{E} = \text{Span}(\{1, t^2, t^4, t^6, t^8\})$. What is the solution 1 to

$$\underset{\boldsymbol{v} \in \mathcal{E}}{\text{minimize}} \int_{-1}^{1} |v(t) - f(t)|^2 dt ?$$

Justify your answer.

Answer:		

 $^{^1}$ Hint: You do not have to solve a 5×5 system of equations to solve this problem. Think about the orthogonality principle.