Syntaktická analýza s kondenzovaným poučením převzatým z [JP].

[**JP**] 4.1.1. až 4.1.3 včetně [**PJ**] 3.1. až 3.4. včetně

Syntaktická analýza

Vstup

Řetězec terminálních symbolů gramatiky G, Rozkladová tabulka M gramatiky G

Výstup

Posloupnost čísel pravidel v levé derivaci vstupního slova nebo hlášení chyby.

Dokud nenastane *Přijetí* nebo *Chyba* prováděj příslušnou *Akci Expanze* nebo *Srovnání*, ve schématu níže, podle toho, jaká je aktuální *Situace*.

Expanze	Situace	První nepřečtený symbol je <i>a</i> .			
		Na vrcholu zásobníku je neterminál A.			
		V rozkladové tabulce M platí $M[A][a] == \beta$, <i>i</i> .			
	Akce	$pop(A), push(\beta),$			
		print(i).			
		Symbol <i>a</i> ponecháme na vstupu, "nečteme jej".			
Srovnání	Situace	První nepřečtený symbol je <i>a</i> .			
		Na vrcholu zásobníku je také <i>a</i> .			
	Akce	pop(a),			
		Symbol <i>a</i> "přečteme", tj. posuneme se na vstupu na další symbol.			
Přijetí	Situace	Vstup je celý přečten.			
		Zásobník je prázdný.			
	Akce	Úspěšný konec analýzy,			
		na výstupu je posloupnost čísel pravidel v levé derivaci vstupního slova.			
Chyba	Situace	1. Při pokusu o expanzi není definováno M[A][a].			
		2. Při pokusu o srovnání se neterminál <i>a</i> na vrcholu zásobníku neshoduje s			
		prvním nepřečtený symbolem <i>b</i> .			
		3. Vstup ještě není celý přečten a zásobník je už prázdný.			
		4. (jen u jednoduché LL(1) gramatiky) Vstup je celý přečten a zásobník je			
		neprázdný.			
	Akce	Neúspěšný konec analýzy, hlášení chyby ve vstupu.			

Konfigurace algoritmu syntaktické analýzy je trojice (nepřečtená část vstupního řetězce, obsah zásobníku, posloupnost čísel pravidel na výstupu).

Jednoduchá LL(1) gramatika splňuje:

- 1. Pravá strana každého pravidla začíná neterminálním symbolem.
- 2. Pravé strany každých dvou různých pravidel se stejnou levou stranou začínají různými terminálními symboly.

Rozkladová tabulka M jednoduché LL(1) gramatiky:

Řádky jsou indexovány všemi neterminály, sloupce jsou indexovány všemi terminály dané gramatiky. $M[A][a] == \alpha$, i, pokud i-té pravidlo má tvar $A \to \alpha$ ($A \in N$, $\alpha \in (N \cup T)^+$), jinak M[A][a] zůstává nedefinováno (odpovídá chybě v analyzovaném řetězci).

Příklad

Jednoduchá LL(1) gramatika G obsahující právě pravidla 1. – 4. a její rozkladová tabulka.

1.
$$S \rightarrow aASc$$

2. $S \rightarrow b$
3. $A \rightarrow a$
4. $A \rightarrow cSAb$

M	a	b	c
S	aASc, 1	b, 2	
A	a, 3		cSAb, 4

Posloupnost konfigurací při syntaktické analýze řetězce *acbabbc* v gramatice G:

```
(acbabbc,
                 S, \varepsilon
(acbabbc,
              aASc. 1
                           )
( cbabbc,
               ASc, 1
                           )
( cbabbc, cSAbASc, 14
   babbc, SAbASc, 14
              bAbSc, 142
   babbc,
    abbc.
              AbSc, 142
               abSc, 1423 )
    abbc,
               bSc, 1423 )
     bbc,
                 Sc, 1423 )
      bc.
                 bc, 14232)
      bc,
                 c, 14232)
       С,
                  \varepsilon, 14232)
        €,
```

Cvičení

Napište rozkladovou tabulku uvedené gramatiky a proveďte syntaktickou analýzu řetězce *aaabbcd*.

- 1. $S \rightarrow aAB$
- 2. $A \rightarrow ab$
- 3. $A \rightarrow aAb$
- 4. B \rightarrow cBd
- 4. B \rightarrow cd

Bezkontextová q-gramatika splňuje:

- 1. Pravá strana každého pravidla je buď ε nebo začíná neterminálním symbolem.
- 2. Neprázdné (= neobsahující ε) pravé strany každých dvou různých pravidel se stejnou levou stranou začínají různými terminálními symboly.
- 3. Pro každé pravidlo $A \to \varepsilon$ platí, že FOLLOW(A) neobsahuje žádné neterminály, kterými začínají pravá strany pravidel s neterminálem A na levé straně.

FOLLOW(A) je množina všech terminálů, které se v procesu generování nějakého slova mohou vyskytnout za těsně neterminálem A.

Rozkladová tabulka M q-gramatiky:

Řádky jsou indexovány všemi neterminály, sloupce jsou indexovány všemi terminály dané gramatiky a navíc symbolem ε .

$$M[A][a] == \alpha, i$$
, pokud i-té pravidlo má tvar $A \to \alpha$ $(A \in N, \alpha \in (N \cup T)^+)$, $M[A][b] == \varepsilon, i$, pokud i-té pravidlo má tvar $A \to \varepsilon$ a zároveň $b \in FOLLOW(A)$.

Jinak M[A][a] zůstává nedefinováno (odpovídá chybě v analyzovaném řetězci).

Příklad

Bezkontextová q-gramatika obsahující právě pravidla 1. – 4. a její rozkladová tabulka.

1.
$$S \rightarrow aAS$$

2. $S \rightarrow b$

$$3. A \rightarrow cAS$$

$$4. A \rightarrow \varepsilon$$

	M	a	b	c	\mathcal{E}
1	S	aAS, 1	b, 2		
	Ā	ε, 4	ε, 4	cAS, 3	

Některé možné případy generování

$$S \rightarrow aAS \rightarrow acASS \rightarrow acAbS \rightarrow ...$$

$$S \rightarrow aAS \rightarrow acASS \rightarrow acAaAS \rightarrow ...$$

V obou případech lze zvýrazněný neterminál A expandovat na prázdný řetězec pravidlem 4., tedy FOLLOW(A) = $\{a, b\}$.

Příklad

Bezkontextová q-gramatika obsahující právě pravidla 1. – 4. a její rozkladová tabulka

1.
$$S \rightarrow aA$$

$$2. S \rightarrow b$$

3. A
$$\rightarrow$$
 cSa

$$4. A \rightarrow \varepsilon$$

M	a	b	c	ε
S	aA, 1	b, 2		
Α	ε, 4		cSa, 3	ε, 4

Některé možné případy generování

$$S \rightarrow aA \rightarrow a$$

$$S \rightarrow aA \rightarrow acSa \rightarrow acaAa \rightarrow ...$$

V prvním případě je zvýrazněný neterminál A expandován na prázdný řetězec pravidlem 4. a dále už v generovaném slově nic není, tedy $\varepsilon \in \text{FOLLOW}(A)$. V druhém případě vidíme $a \in \text{FOLLOW}(A)$.

Posloupnost konfigurací při syntaktické analýze řetězce acaa v dané gramatice:

```
( acaa, S, ε )
( acaa, aA, 1 )
( caa, A, 1 )
( caa, cSa, 13 )
( aa, Sa, 13 )
( aa, aAa, 131 )
( a, Aa, 131 )
( a, a, 1314 )
( ε, ε, 1314 )
```

Cvičení

Napište rozkladovou tabulku uvedené gramatiky a proveďte syntaktickou analýzu řetězců *accb, babb, bccbdb*.

```
1. S \rightarrow aAB

2. S \rightarrow bABC

3. A \rightarrow ccC

4. A \rightarrow \varepsilon

5. B \rightarrow dC

6. B \rightarrow \varepsilon

7. C \rightarrow aCb

8. C \rightarrow b
```

LL(1) gramatika splňuje:

Pro každý neterminál A a pro každá dvě pravidla $A \rightarrow \alpha$, $A \rightarrow \beta$ platí

- 1. FIRST(α) \cap FIRST(β) = \emptyset .
- 2. Pokud z α lze generovat ε a z β nelze generovat ε , pak FOLLOW(A) \cap FIRST(β) = \emptyset .

 $FIRST(\alpha)$ je množina všech terminálů, kterými mohou začínat řetězce vygenerované z α . Pokud z α lze generovat ε , pak $\varepsilon \in FIRST(A)$.

Rozkladová tabulka M LL(1) gramatiky:

Řádky jsou indexovány všemi neterminály, sloupce jsou indexovány všemi terminály dané gramatiky a navíc symbolem ε .

```
M[A][a] == \alpha, i, pokud i-té pravidlo má tvar A \to \alpha a zároveň a \in (FIRST(\alpha) - \{\varepsilon\}), M[A][b] == \varepsilon, i, pokud i-té pravidlo má tvar A \to \alpha a zároveň b \in FOLLOW(A) & \varepsilon \in FIRST(\alpha).
```

Jinak M[A][a] zůstává nedefinováno (odpovídá chybě v analyzovaném řetězci).

Příklad

LL(1) gramatika obsahující právě pravidla 1. – 8., její rozkladová tabulka a množiny FIRST/FOLLOW využité v její konstrukci.

1. $E \rightarrow T E'$
2. E' \rightarrow +T E'
3. E' $\rightarrow \varepsilon$
4. $T \rightarrow F T$
5. T' \rightarrow *F T'
6. T' $\rightarrow \varepsilon$
7. $F \rightarrow [E]$
8. $F \rightarrow a$

M	а	+	*	[]	\mathcal{E}
Е	TE', 1			T E', 1		
E'		+T E', 2			ε, 3	ε, 3
T	<i>FT</i> ', 4			F T', 4		
T'		ε, 6	*F T', 5		ε, 6	ε, 6
F	a, 8			[E], 7		

```
FIRST(TE') = {a, [}

FIRST(+TE') = {+}

FIRST(FT') = {a, [}

FIRST(*FT') = {*}

FOLLOW(E') = {\varepsilon, ]}

FIRST(E) = {[}

FOLLOW(T') = {\varepsilon, ], +}

FIRST(a) = {a}
```

Posloupnost konfigurací při syntaktické analýze řetězce a+a v dané gramatice:

```
(a+a,
          E, \varepsilon
        T'E', 1
(a+a,
( a+a, FT'E', 14
( a+a, aT'E', 148
  +a,
        T'E', 148
          Ε',
              1486
  +a
  +a, +TE',
              14862
        TE',
              14862
   a
   a, FT'E', 148624
   a, aT'E', 1486248
       T'E', 1486248
   ε,
          E', 14862486
   €,
                          )
          ε, 148624863
                          )
   €,
```

Výpočet funkce FIRST(α), kde $\alpha = X_1 X_2 ... X_n \in (N \cup T)^*$

- (a) $F := \{.X_1X_2...X_n\}$
- (b) Pro prvek F, v němž za tečkou bezprostředně následuje neterminál, přidáme do F všechna pravidla s tímto neterminálem vlevo a před jejich pravou stranu vložíme tečku.
- (c) Označme B levou stranu takového pravidla v F, kde je tečka zapsána na konci. Vezmeme všechny prvky F, v nichž je tečka před B, vytvoříme nové prvky tak, že tečku v každém posuneme za B a nové prvky vložíme do F.
- (d) Opakujeme (b) a (c) dokud lze do F přidávat další prvky.

$FIRST(\alpha)$ potom obsahuje

- 1. Všechny terminální symboly, které se vyskytnou bezprostředně za nějakou tečkou v F.
- 2. Prázdný řetězec ε , pokud je v F obsažena posloupnost α s tečkou na konci.

Výpočet funkce FOLLOW(A), kde A je neterminál.

- (o) Vytvoříme množinu N ε všech neterminálů, z nichž lze generovat ε .
- (a) Vytvořme fiktivní pravidlo $A \rightarrow A$ a položme $F := \{A \rightarrow A.\}$
- (b) Pro prvek F s levou stranou B a s tečkou na koci pravé strany vezmeme všechna pravidla gramatiky, v nichž se B vyskytuje napravo, a vložíme je do F s tečkou zapsanou bezprostředně za B.
- (c) Pro prvek F obsahující bezprostředně za tečkou neterminál B vezmeme všechna pravidla gramatiky, v nichž se B vyskytuje nalevo, a vložíme je do F s tečkou zapsanou před pravou stranou.
- (d) Pro prvek F obsahující bezprostředně za tečkou neterminál B z množiny N ε přidáme do F další prvek vzniklý posunutím tečky za B
- (e) Opakujeme (b) a (c) a (d) dokud lze do F přidávat další prvky.

FOLLOW(A) potom obsahuje

- 1. Všechny terminální symboly, které se vyskytnou bezprostředně za nějakou tečkou v F.
- 2. Prázdný řetězec ε , pokud je v F obsaženo pravidlo S $\rightarrow \alpha$ s tečkou na konci (S je startovní symbol).