Functional and logic programming - written exam -

Important:

- 1. Subjects are graded as follows: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- **A.** Given the following PROLOG predicate definition **f(integer, integer)**, with the flow model (i, o):

```
f(20, -1):-!.

f(I,Y):-J is I+1, \underline{f(J,V)}, V>0, !, K is J, Y is K.

f(I,Y):-J is I+1, \underline{f(J,V)}, Y is V-1.
```

Rewrite the definition in order to avoid the recursive call $\underline{\mathbf{f(J,V)}}$ in both clauses. Do NOT redefine the predicate. Justify your answer.

C. Write a PROLOG program that generates the list of all subsets with values between the [a, b] interval such that the sum of elements from each subset is an odd value. Write the mathematical models and flow models for the predicates used. For example, for $\mathbf{a}=2$ and $\mathbf{b}=4 \Rightarrow [[2,3],[3,4],[2,3,4]]$ (not necessarily in this order).

D. Write a Lisp function to substitute all numerical values at any level of a given nonlinear list with a given value **e**. **A MAP function shall be used. Example**, for the list (1 d (2 f (3))), **e**=0 the result is (0 d (0 f (0))).