Abstract Algebra Proof — Group

kingno

Properties of Groups

- 1. If *G* is a group and $a \in G$ satisfies a * a = a, then a = e
- 2. a*a'=e for all $a\in G$
- 3. a * e = a for all $a \in G$
- 4. If $e' \in G$ satisfies e' * a = a for all $a \in G$, then e' = e.
- 5. a' that satisfies a'*a=e is unique, called reverse of a,a^{-1}
- 6. for all $n \geq 2$, $(a_1 * a_2 * ... * a_n)^{-1} = a_n^{-1} * ... * a_1^{-1}$

2

$$(a*a')*(a*a') = a*(a'*a)*a = a*a' = e$$

3

$$a * e = a * (a' * a) = (a * a') * a = e * a = a$$

Exponent of Groups

- 1. If there's a $k \ge 1$ that makes $a^k = 1(e)$, then the smallest such k is the order of a. Otherwise a has infinite order.
- 2. Any nonnegative integer n that makes $a^n = 1$ satisfies n = mk, where k is the order of a, m is some nonnegative integer.

2

let
$$n = mk + r, 0 \le r < k$$

$$a^n = a^{mk+r} = (a^k)^m * a^r = 1 \quad \Rightarrow a^r = 1$$

if 0 < r < k, then r is smaller than the order of a

$$\therefore r = 0, n = mk$$

Subgroups

Definition: A subset *H* of a group *G* is a subgroup if

- 1. $1 \in H$
- 2. closed: if $x, y \in H$, then $x * y \in H$
- 3. if $x \in H$, then $x^{-1} \in H$
- 1. A subset H of a group G is a subgroup iff H is nonempty and, whenever $x, y \in H, xy^{-1} \in H$
- 2. A nonempty subset H of a finite group G is a subgroup iff H is closed under the operation of G.

1

Proof \Leftarrow .

First, let y = x, then $xx^{-1} \in H$

Secondly, let x = 1, then $\forall y \in H, 1y^{-1} \in H$

Fianlly, $\forall x, y, x * (y^{-1})^{-1} = xy \in H$

 $H \subseteq G$, associativity is already there

Therefore, H is a subgroup.

2

There is some element $a \in H$, because H is nonempty, and $a^n \in H$ for all $n \ge 1$. (closed under *)

There must exist some $i, j, 1 \le i < j$ make $a^i = a^j$ (otherwise H is infinite)

$$a^{i} = a^{j}, a^{j-i} * a^{i} = a^{j} = a^{i}$$
, then $a^{j-i} = a^{i-i} = 1$ (identity)

Since
$$j - i - 1 \ge 0$$
, $a^{j-i-1} = a^{i-i-1} = a^{-1} \in H$ (inverse)

Therefore, H is a subgroup.

Cyclic Groups

Definition: If G is a group and $a \in G$, write

$$\langle a \rangle = \{a^n : n \in Z\} = \{\text{all powers of } a\};$$

< a > is called the cyclic subgroup of G generated by a.

A group *G* is called cyclic if there is some $a \in G$ with $G = \langle a \rangle$;

1. if a > has order n ($a^n = 1$), a^k is a generator iff gcd(k, n) = 1

$$a^{tn} = 1$$

- If a^k is a generator, $\exists s \in Z^+, a^{sk}=a$, which means $a^{sk}=a^{tn+1}, sk=tn+1$ $sk-tn=1 \quad \Rightarrow \gcd(k,n)=1$
- If gcd(k, n) = 1, sk + tn = 1. k, n > 0, then st < 0.

$$\begin{cases} \text{if } s>0, \ (a^k)^s=a^{-tn+1}=a & a^k \text{ is a generator} \\ \text{if } s<0, \ (a^k)^{-s}=a^{tn+1}=a \\ \text{if } s=0, \ tn=1, n=1 & \text{which means } a^k=1 \quad trivial\{1\} \end{cases}$$

Cyclic Subgroups

- 1. A subgroup of a cyclic group is cyclic.
- 2. The order of a cyclic group G is the number of the elements |G| in the group.

1

If *H* is a subgroup of $\langle a \rangle$, and if $a^m, a^n \in H$.

In the light of closeness, $a^{sm+tn} \in H$, then $a^{\gcd(m,n)} \in H$. It can generate all $\{a^{sm+tn}\}$

If there is other element l not in $\{a^{sm+tn}\}$, then $a^{\gcd(l,\gcd(m,n))} \in H$, It can generate

Repeat the above operation

Thus $H = \langle a^{\text{gcd in the exponent}} \rangle$

2

The order of *G* is the smallest number *k* that $a^k = 1$.

- *G* has most *k* elements, since any $a^n = a^{n\%k}$
- G has least k elements, since $a^i \neq a^j$ for all $1 \leq i < j \leq k$

Otherwise $a^{j-i} = 1$, contradicts that k is the smallest number makes $a^k = 1$

Cosets

Let *H* be a subgroup of a group *G*, and let $a, b \in G$

- 1. left cosets aH = bH iff $b^{-1}a \in H$. aH = H iff $a \in H$
- 2. if $aH \cap bH \neq \emptyset$, then aH = bH
- 3. |aH| = |H| for all $a \in G$

- if aH=bH, then $\forall h_1 \in H, \exists h_2 \in H$, that $ah_1=bh_2 \Rightarrow b^{-1}a=h_2h_1^{-1} \in H$
- if $b^{-1}a=h_2\in H$, then $\forall h_1\in H$, $a=bh_2, ah_1=bh_1h_2$, H is a group, so it's closed under *, so $ah_1=bh_1h_2\in H$, $aH\subseteq bH$ $b=ah_2^{-1}, bh_1=ah_2^{-1}h_1\in aH, bH\subseteq aH$ therefore, aH=bH

if $aH \cap bH \neq \varnothing$, then there exists $h_1, h_2 \in H$, $ah_1 = bh_2 \Rightarrow b^{-1}a = h_2h_1^{-1} \in H$

3

 $ah_1
eq ah_2$

Lagrange's Theorem

1. If *H* is a subgroup of a finite group *G*, then |H| is a divisor of |G|.

Proof. Let $\{a_1H, a_2H, \dots, a_tH\}$ be the family of all the distinct cosets of H in G. Then

$$G = a_1 H \cup a_2 H \cup \cdots \cup a_t H$$

because each $g \in G$ lies in the coset gH, and $gH = a_iH$ for some i. Moreover, distinct coset a_iH and a_iH are disjoint. It follows that

$$|G|=|a_1H|+|a_2H|+\ldots+|a_tH|$$

But $|a_iH| = |H|$ for all i. So |G| = t|H|

Homomorphism

If (G,*) and (H,\circ) are groups, then a function $f:G\to H$ is a homomorphism if

$$f(x * y) = f(x) \circ f(y)$$

Let $f: G \to H$ be a homomorphism.

- 1. f(1) = 1
- 2. $f(x^{-1}) = f(x)^{-1}$
- 3. $f(x^n) = f(x)^n$ for all $n \in Z$

1

Proof, $f(1_G) = 1_H$

$$f(1_G) = f(1_G * 1_G) = f(1_G) \circ f(1_G) = 1_H$$

In a group, if aa = a, then a = 1, thus $f(1_G) = 1_H$

2

$$f(x) \circ f(x)^{-1} = 1 = f(1) = f(x * x^{-1}) = f(x) \circ f(x^{-1})$$

But the inverse element is unique, therefore, $f(x^{-1}) = f(x)^{-1}$

for
$$n = 0, f(1_G) = 1_H$$

for
$$n \in \mathbb{Z}^+$$
, if $f(x^{n-1}) = f(x)^{n-1}$, then

$$f(x^n) = f(x^{n-1} * x) = f(x^{n-1}) \circ f(x) = f(x)^{n-1} f(x) = f(x)^n$$

for $-n \in \mathbb{Z}^-$, $f(x^{-n}) = f((x^n)^{-1}) = f(x^n)^{-1} = (f(x)^n)^{-1} = f(x)^{-n}$

Kernels & Images

If $f: G \rightarrow H$ is a homomorphism, define

$$\ker f = \{ x \in G : f(x) = 1 \}$$

the kernel of the funciton and

$$\mathrm{im}\ f=\{h\in H: h=f(x)\ \mathrm{for}\ x\in G\}$$

the image of the function.

- 1. ker f is a subgroup of G and im f is a subgroup of H.
- 2. if $x \in \ker f$ and if $a \in G$, then $axa^{-1} \in \ker f$
- 3. f is an injection iff ker $f = \{1\}$

1

f(1) = 1.

- If $x, y \in \ker f$, then f(x) = 1 = f(y); hence, f(xy) = f(x)f(y) = 1, and so $xy \in \ker f$. Finally, if $x \in \ker f$, then f(x) = 1 and so $f(x^{-1}) = f(x)^{-1} = 1$; thus, $x^{-1} \in \ker f$, and $\ker f$ is a subgroup of G.
- First, $1 = f(1) \in \text{im } f$. Next, if $h = f(x) \in \text{im } f$, then $h^{-1} = f(x)^{-1} = f(x^{-1}) \in \text{im } f$. Finally, if $k = f(y) \in \text{im } f$, then $hk = f(x)f(y) = f(xy) \in \text{im } f$. Hence, im f is a subgroup of H.

2

$$f(axa^{-1}) = f(a)f(x)f(a)^{-1} = 1$$

If f is an injection, then $x \neq 1$ implies $f(x) \neq f(1) = 1$, and so $x \notin \ker f$. Conversely, assume that $\ker f = \{1\}$ and that f(x) = f(y). Then $1 = f(x)f(y)^{-1} = f(xy^{-1})$, so that $xy^{-1} \in \ker f = 1$; therefore, $xy^{-1} = 1, x = y$, and f is an injection.

Conjugate

- A normal subgroup(正规子群) $K \triangleleft G$: for every $k \in K, g \in G, gkg^{-1} \in K$
- A **conjugate** of an element *a* is of the form:

$$b=gag^{-1},g\in G$$

■ Conjugation $\gamma_g: G \to G$

$$\gamma_g(a) = gag^{-1}$$

- 1. conjugation is **isomorphism**
- 2. conjuage elements have the same order

1

- ullet Conjugation $\gamma_g:G o G$ is a **homomorphism**, because $orall x,y\in G,gxyg^{-1}=gxg^{-1}gyg^{-1}$
- γ_g is a **serjuection**, because $\forall x \in G, \exists y = g^{-1}xg \in G, x = gyg^{-1}$
- γ_g is a **injection**, because $g^{-1}xg=1 \Rightarrow x=1, \ker \gamma_g=\{1\}$

Thus γ_g is an isomophism, and a permutation on G.

Congruence with multiplications

- Function $\mu([a],[b]) = [ab]$ is the multiplication operation on I_m . It is associative and commutative, and [1] is an identity element.
 - 1. If (a, m) = 1, [a][x] = [b] can be solved for [x] in I_m
 - 2. If p is a prime, then I_p^{\times} , the set of nonzero elements in I_p , is a multiplicative abelian group of order p-1.

1

$$\exists s,t \in \mathbb{Z}, sa+tm=1$$

Let
$$x = sb, ax = sab = -tbm + b$$

$$[a][x] = [ax] = [-tbm + b] = [b]$$

[x] = [sb] is the solution

2

• Closeness: Since p is a prime, [s][t] = 0 implies [s] = [0] or [t] = [0].

Thus, $\forall s,t \in I_p^{\times}, [s][t] \neq 0, [st]$ is still in I_p^{\times}

• The identity element is [1]: [1][a] = [a]

Fermat's Theorem

• If p is a prime and $a \in Z$, then

$$a^p \equiv a \mod p$$
 $a^{p-1} \equiv 1 \mod p \text{ if } a \neq 0 \mod p$

- If $[a] = 0 \mod p$, it's correct
- Otherwise $[a] \in I_p^{\times} . \langle a \rangle = \{[a], [a^2], [a^3], \dots\}$ is a cyclic subgroup of $I_p^{\times} .$

Let
$$d = | \langle a \rangle |, a^d = [1]$$
. Note $|I_p^{\times}| = p - 1$

According to Lagrange's Subgroup Theorem,

$$d|(p-1), p-1 = kd, k \in \mathbb{Z}^+$$
. Thus $a^{p-1} = a^{kd} = [1]$

Then $a^p \equiv a \mod p$

Quotient groups

- 1. If $K \triangleleft G$, then for all $b \in G$, bK = Kb.
- 2. Let G/K denote the family of all cosets of a subgroup K of G. If K is a normal subgroup, then for all $a,b \in G$, (aK)(bK) = (ab)K.

And G/K is a group, called **quotient group**, under this operation.

1

$$\forall bk \in bK, \exists k' \in K, k' = bkb^{-1}, bk = k'b \in Kb, bK \subseteq Kb$$

$$\forall kb \in Kb, \exists k' \in K, k' = b^{-1}kb, kb = bk' \in bK, Kb \subseteq bK$$

2

If
$$K \triangleleft G$$
, the operation $(aK)(bK) = a(Kb)K = abKK = (ab)K$

Let G/K be the family of all the left cosets.

It is closed under the operation.

- identity: K. Since (aK)K = aK
- inverse of aK is $a^{-1}K$, $(aK)(a^{-1}K) = K$
- the associativity is already there

First Isomorphism Theorem

If $f: G \rightarrow H$ is a homomorphism, then

$$\ker f \lhd G \quad \wedge \quad G/\ker f \cong \operatorname{im} f$$

Let $K = \ker f$, and let's consider left cosets:

$$G/K = \{K, aK, bK, \dots\}$$
 where $(aK)(bK) = abK$

The function between G/K and im f is simply f on a set, a valid function:

$$f(K) = 1_H, f(aK) = f(a), f(bK) = f(b), \dots$$

It is a homomorphism:

$$f(aKbK) = f(abK) = f(aK)f(bK)$$

By definition of im f, it is a surjection;

If
$$f(aK) = f(bK)$$
, then

$$f(a) = f(b), f(ab^{-1}) = f(a)f(b^{-1}) = 1_H,$$

$$\exists k \in K, ab^{-1} = k, aK = bkK \subseteq bK, bK = ak^{-1}K \subseteq aK$$

Thus aK = bK, the f on set is an injection

The proof on right cosets is the same.

