# Confidence Intervals & Hypothesis Testing

Module 4d Conducting a Hypothesis Test

## Learning Objectives

- How to conduct two-tailed and one-tailed hypothesis tests
- Understand why different calculations are required to conduct a hypothesis test about p than  $\mu$
- Using ISLE to conduct a hypothesis test

## The Concept of $\alpha$ in Hypothesis Testing

- The Null Hypothesis,  $H_0$ , is the favored hypothesis and the test is conducted under the assumption that it is true.
- Only reject  $H_0$  in favor of the Alternative Hypothesis,  $H_1$ , if the sample strongly favors it.
- $\bullet$   $\alpha$  called the significance level is the probability standard for making that determination.
- The most commonly used standard is  $\alpha = 0.05$
- By this standard we only reject  $H_0$  if there is only 5% chance or less that the sample mean could have been drawn if  $H_0$  is true.
- The 5% standard was suggested by Sir Ronald Fisher in his 1935 book

## Two-Sided Hypothesis Tests

We want to test  $H_1$ :  $\mu \neq \mu_0$  against  $H_0$ :  $\mu = \mu_0$ .

<u>Solution</u>: reject the null hypothesis if  $\bar{x}$  is sufficiently far from  $\mu_0$ .

Assume  $\mu = \mu_0$ . According to the CLT,  $\bar{x}$  is normally distributed with mean  $\mu_0$  and standard deviation  $\sigma/\sqrt{N} \approx s/\sqrt{N}$ . Thus the t-score of  $\bar{x}$  is  $t = (\bar{x} - \mu_0) / s/\sqrt{N}$ 



## Two-Sided Hypothesis Tests

Based on historical data, our team of programmers produces an average of 1000 lines of production-quality code per day. In the last 100 days, our team has used a new integrated development environment, producing a mean of 1070 lines of production-quality code and standard deviation of 300 lines. Can we conclude that the new environment affects programmer productivity?

 $H_0: \mu = 1000$  $H_1: \mu \neq 1000$  If  $H_0$  was true,  $\bar{x}$  would be normally distributed with mean 1000 and standard deviation 300/sqrt(100) = 30.

The t-score corresponding to  $\bar{x} = 1070$  is t= (1070-1000) / 30 = 2.33.

Assuming a significance level of  $\alpha = 0.05$  and the corresponding threshold  $t_{.05/2}^{df=99} = \pm 1.98$  for a two-sided test, we can reject the null hypothesis and conclude that m  $\neq$  1000. The new environment does affect productivity!

Suppose  $\alpha = 0.01 \rightarrow t_{.005}^{df=99} = \pm 2.63$ ; Do we reject?

We want to test  $H_1$ :  $\mu < \mu_0$  against  $H_0$ :  $\mu \ge \mu_0$ .

<u>Solution</u>: reject the null hypothesis if  $\bar{x}$  is sufficiently smaller than  $\mu_0$ .

Assume  $\mu = \mu_0$ . According to the CLT,  $\bar{x}$  is normally distributed with mean  $\mu_0$  and standard deviation  $\sigma/\sqrt{N} \approx s/\sqrt{N}$ . Thus the t-score of  $\bar{x}$  is  $t = (\bar{x} - \mu_0) / s/\sqrt{N}$ 



Average days unemployed per year for 36 participants in a job training program was 10 days compared to a national average of 13 days for equivalent untrained individuals. Suppose s=6. Is this sufficient evidence that the program reduces day unemployed? Test for  $\alpha=0.05$ .

$$H_0: \mu \ge 13$$
  
 $H_1: \mu < 13$ 

If H<sub>0</sub> was true with  $\mu = 13$ ,  $\bar{x}$  would be normally distributed with mean 13 and standard deviation  $6/\sqrt{36} = 1$ .

The z-score corresponding to x = 10 is t = (10 - 13 / 1) = -3.00

We can reject 
$$H_0$$
 since  $t_{.05}^{.35} < -1.69$ .

We do have sufficient evidence to conclude that that program participants spend less time unemployed than nonparticipants

Why we conducted the hypothesis test for  $\mu = 13$ . If we can reject  $H_0$  for  $\mu = 13$ , we can always reject  $H_0$  for any value of  $\mu > 13$ .

We want to test  $H_1$ :  $\mu > \mu_0$  against  $H_0$ :  $\mu \le \mu_0$ .

<u>Solution</u>: reject the null hypothesis if  $\bar{x}$  is sufficiently larger than  $\mu_0$ .

Assume  $\mu = \mu_0$ . According to the CLT,  $\bar{x}$  is normally distributed with mean  $\mu_0$  and standard deviation  $\sigma/\sqrt{N} \approx s/\sqrt{N}$ . Thus the t-score of  $\bar{x}$  is  $t = (\bar{x} - \mu_0) / s/\sqrt{N}$ 



A computer supplies retail chain has a policy of only opening stores in communities where households spend more than \$40 per year on computing supplies and equipment. A survey of 100 households in Monroeville finds that average expenditures in the sample are \$40.50 with a standard deviation of \$10. Is this strong evidence that the community spends more than \$40?

 $H_0: \mu \le 40$  $H_1: \mu > 40$  If H<sub>0</sub> was true with  $\mu = 40$ ,  $\bar{x}$  would be normally distributed with mean 40 and standard deviation  $10/\sqrt{100} = 1$ .

The z-score corresponding to  $\bar{x} = 40.50$  is t= (40.50 - 40) / 1 = 0.5.

We cannot reject  $H_0$  since  $t \le 1.66$ .

Assuming a significance level of  $\alpha = 0.05$  and the corresponding threshold  $t_{.05}^{99} = 1.66$  for a one-sided test, we cannot reject the null hypothesis. We do not have sufficient evidence to conclude that the average household in this community spends more than \$40 each year.

### T-statistics versus Z-Score

- Because we always substitute s for  $\sigma$  for hypothesis tests about  $\mu$ , we should always in principal use t-score cut-off with df=n-1 for these tests.
- T-scores are not used in hypothesis tests about population proportions—the topic of the next slide

## Hypothesis Tests About Population Proportions (p)

A survey of 400 customers shows that 43% prefer the new online bill payment system to the old pay-by-mail system. Is this sufficient evidence to show that a minority of customers prefer the new system?

$$H_0: p \ge 0.5$$
  
 $H_1: p < 0.5$ 

If H<sub>0</sub> was true with p = 0.5, 
$$\widehat{p}$$
 would be normally distributed with mean 0.5 and standard deviation  $\sqrt{(p)(1-p)/n} = \sqrt{(0.5)(0.5)/400} = 0.025$ .

Z-scores, not t-scores, are used because there is no substitution of s for  $\sigma$ . The z-score corresponding to  $\widehat{p} = 0.43$  is z = (0.43 - 0.5) / 0.025 = -2.8. We can reject H<sub>0</sub> since z < -1.645.

Assuming a significance level of  $\alpha$  = 0.05 and the corresponding threshold  $z_{\alpha}$  = 1.645 for a one-sided test, we can reject the null hypothesis and conclude that p < 0.5. A majority of customers do not prefer the new system!

## Test of Understanding

• The marketing manager of a financially strapped theatre company wants to increase the average donation of existing donors. Historically, the average gift of existing donors was \$200. To increase this average, he proposes to offer a gift valued at \$20 for all such donors who again donate. To test the effectiveness of gift giving, he makes this offer to 144 donors. He finds that their average gift is \$230 with a standard deviation of \$150. Test the hypothesis that the gift is effective in increasing average giving. Clearly state the null and alternative hypotheses and test for  $\alpha$ =.01.