Advanced Marine Hydrodynamics NA61202 3-1-0

S De Chowdhury 1

¹Assistant Professor

Department of Ocean Engineering and Naval Architecture IIT Kharagpur

Lecture 7: Velocity Potential and Stream Functions

sdip@naval.iitkgp.ac.in

Spring 2023

Overview

A conservative Field

2 The Velocity Potential

The Stream Function

Idea of a conservative field

From Lecture 4, we have $\oint_C \mathbf{V} \cdot d\mathbf{r} = \int_S (\nabla \times \mathbf{V}) \, dA$. and for an irrotational flow, $\oint_C \mathbf{V} \cdot d\mathbf{r} = 0$. Here C may be a closed curve as in abcd.

Figure: A closed contour.

• Suppose, $V = \nabla \phi$, therefore, $\int_{a}^{c} \nabla \phi dr = \int_{a}^{c} \left(\frac{\partial \phi}{\partial x} \hat{\mathbf{i}} + \frac{\partial \phi}{\partial y} \hat{\mathbf{j}} + \frac{\partial \phi}{\partial z} \hat{\mathbf{k}} \right) \cdot \left(dx \hat{\mathbf{i}} + dy \hat{\mathbf{j}} + dz \hat{\mathbf{k}} \right) =$ $\int_{a}^{c} \left(\frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz \right) = \int_{a}^{c} d\phi = \phi_{c} - \phi_{a}.$

- the scalar function ϕ does not change at all for $\oint_C \nabla \phi dr$. It is conserved as we start from a; travel across abcd and comes back to a.
- Therefore, we say there exists a conservative field for ϕ ; corresponding to a velocity field V which satisfies $\oint_C \mathsf{V} \cdot \mathsf{d} r = 0$, i.e., an irrotational field.

The velocity potential

- ullet Conventionally, the scalar ϕ is known as the velocity potential.
- Substitution of relation V = $\nabla \phi$ into continuity equation gives $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = \nabla^2 \phi = 0$.
- This is the Laplace equation for ϕ .

The stream function

- Let us consider velocity components $u=u\left(x,z,t\right)$ and $w=w\left(x,z,t\right)$ for an incompressible flow in 2D. From continuity equation we get $\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}=0$.
- Suppose, there exists a scalar called stream function ψ such that $u=\frac{\partial \psi}{\partial z}$ and $w=-\frac{\partial \psi}{\partial x}$. In this case, the continuity equation is satisfied.
- The condition of irrotationality, i.e., $\nabla \times V = 0$ for 2D gives $\frac{\partial w}{\partial x} \frac{\partial u}{\partial z} = 0$. Substitution for ψ gives $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial z^2} = \nabla^2 \psi = 0$. This is the Laplace equation for ψ .

Physical picture for stream function

Figure: Various paths between point A and P.

- Consider two points A and P in a flow field. For an incompressible steady flow, the flow rate into the region ABPCA through ABP should be same as through ACP.
- There may any arbitrary paths ADP and AEP, for all these the volume flow rates are all same.

 The volume flow rate does not depend on the path joining A and P but only depends on the relative position of P with respect to A. We say that there is a *point* function named stream function for the flow rate.

Figure: Stream function and the stream line.

- The flow rate is same through AP and AP', if PP' is steam line. Therefore, ψ is constant across stream line.
- We may use different stream lines at some intervals to imagine the flow.

Figure: Stream function and the velocity.

• For the volume flow rate dq; $dq = d\psi$.

From continuity,
 dq = udz - wdx.

- $d\psi = \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial z} dz$.
- By comparison, we get $u = \frac{\partial \psi}{\partial z}$ and $w = -\frac{\partial \psi}{\partial x}$.

The relation between stream function and the velocity potential

- Since both velocity potential and the stream functions are continuously differentiable functions of (x, z), we can choose any arbitrary point P where both velocity potential and stream function exist.
- Imagine two contours passing through a common point P. In one contour ϕ is constant (i.e., the equipotential line) and in another, ψ is constant (i.e., the stream line).
- Since both ϕ and ψ are scalar; $\nabla \phi$ and $\nabla \psi$ represents two vectors which we can get at point P.
- $\bullet \ \nabla \phi \cdot \nabla \psi = \left(u \hat{\mathbf{i}} + w \hat{\mathbf{k}} \right) \cdot \left(\frac{\partial \psi}{\partial x} \hat{\mathbf{i}} + \frac{\partial \psi}{\partial z} \hat{\mathbf{k}} \right) = u \frac{\partial \psi}{\partial x} + w \frac{\partial \psi}{\partial z} = -u w + u w = 0.$
- The equipotential and the stream lines are mutually orthogonal.

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト 9 Q (C)

Some facts I

Question

Is there a stream function in 3D?

Answer

- A stream line has to be a plane in 3D. Thus at any flow field, there
 may be many directions (all of which are in a plane tangential to the
 hypothetical stream plane) for the flow velocities at a single point.
 This violates a fundamental property of the flow.
- If the flow is axisymmetric; we can imagine the flow to be in the plane of symmetry as 2D. The selection of the plane of symmetry conform to a selection of coordinate frame.
- The stream function defined in a plane of symmetry is known as the stokes stream function.

Some Facts II

Assignment L6A1

Figure: Schematic of the problem

For the variation of density over time as measured in a test as shown above, is it possible to determine if the flow is nondivergent or not from this information alone ?

Assignment L6A2

The velocity components in a 2D flow of an inviscid fluid are $u = \frac{Kx}{x^2 + z^2}$ and $w = \frac{Kz}{x^2 + z^2}$. Assume K to be a constant.

- Is the flow nondivergent ?
- Is the flow irrotational?
- plot the two streamlines passing through points A(1,1) and B(1,2).

Bernoullis equation: Form generic to irrotational, inviscid and unsteady flow

- Owing to irrotationality, there exists a velocity potential ϕ . Substitution of ϕ into the Euler's equation gives $\frac{\partial}{\partial t} \frac{\partial \phi}{\partial x_i} + \frac{\partial \phi}{\partial x_i} \frac{\partial}{\partial x_i} \frac{\partial \phi}{\partial x_i} = -\frac{1}{\rho} \frac{\partial}{\partial x_i} \left(p + \rho g x_3 \right).$
- again, $\frac{\partial \phi}{\partial x_i} \frac{\partial}{\partial x_i} \frac{\partial \phi}{\partial x_i} = \frac{1}{2} \frac{\partial}{\partial x_i} \frac{\partial \phi}{\partial x_i} \frac{\partial \phi}{\partial x_i}$ by rule of differentiation.
- This gives $\frac{\partial}{\partial x_i} \left(\frac{\partial \phi}{\partial t} + \frac{1}{2} \frac{\partial \phi}{\partial x_j} \frac{\partial \phi}{\partial x_j} \right) = -\frac{1}{\rho} \frac{\partial}{\partial x_i} \left(p + \rho g x_3 \right)$.
- This after integration gives, $\frac{\partial \phi}{\partial t} + \frac{1}{2} \frac{\partial \phi}{\partial x_j} \frac{\partial \phi}{\partial x_j} = -\frac{1}{\rho} \left(p + \rho g x_3 \right) + C \left(t \right)$.
- By adopting a new potential $\phi' = \phi \int_0^t C(t) dt$, the constant C(t) is left to be taken as arbitrary. Thus we may omit it.