The Theoretical Minimum Quantum Mechanics - Solutions

L01E01

 $Last\ version:\ tales.mbivert.com/on-the-theoretical-minimum-solutions/\ or\ github.com/mbivert/ttm$

M. Bivert

May 10, 2023

Exercise 1. a) Using the axioms for inner products, prove

$$(\langle A| + \langle B|)|C\rangle = \langle A|C\rangle + \langle B|C\rangle$$

- b) Prove $\langle A|A\rangle$ is a real number.
- a) Let us recall the two axioms in question:

Axiom 1.

$$\langle C|\Big(|A\rangle + |B\rangle\Big) = \langle C|A\rangle + \langle C|B\rangle$$

Axiom 2.

$$\langle B|A\rangle = \langle A|B\rangle^*$$

Where z^* is the complex conjugate of $z \in \mathbb{C}$

Let us recall also that if

- $\langle A |$ is the bra of $|A \rangle$
- $\langle B|$ is the bra of $|B\rangle$

Then $\langle A| + \langle B|$ is the bra of $|A\rangle + |B\rangle$.

Let us also observe that for $(a,b) = (x_a + iy_a, x_b + iy_b) \in \mathbb{C}^2$:

$$(a+b)^* = (x_a + iy_a + x_b + iy_b)^*$$

= $x_a - iy_a + x_b - iy_b$
= $a^* + b^*$

We thus have:

$$\begin{split} \Big(\langle A| + \langle B| \Big) |C\rangle &= \langle C| \Big(|A\rangle + |B\rangle \Big)^* \\ &= \Big(\langle C|A\rangle + \langle C|B\rangle \Big)^* \\ &= \langle C|A\rangle^* + \langle C|B\rangle^* \\ &= \langle A|C\rangle + \langle B|C\rangle \quad \Box \end{split}$$

b) Mainly from the second axiom:

$$\begin{aligned} x+iy &= \langle A|A\rangle \\ &= \langle A|A\rangle^* \\ &= x-iy \\ &\Rightarrow 2iy = 0 \\ &\Rightarrow y = 0 \\ &\Rightarrow \langle A|A\rangle = x \in \mathbb{R} \quad \Box \end{aligned}$$