Dennis Kuzminer CSCI-UA 310-001 PS6

3. E[k] = E[X], $X = X_1 + ... + X_k \rightarrow \text{Each X}$ has the same distribution, so for any X, the probability that a head will appear is p = .5. So, the *expected* number of coin tosses you make to get the ith head after you have already gotten i-1 heads is $\frac{1}{p} = 2$. $E[X] = E[X_1] + ... + E[X_k] \rightarrow E[X] = \frac{1}{p} + ... + \frac{1}{p}$, k times. Meaning that $E[k] = \frac{k}{p}$. In this case, p = .5, $E[k] = \frac{k}{p} = 2k$.