# ECEN 5743 Deep Learning

# Final Project Convolutional Neural Networks for Emotion Classification

Dr. Martin Hagan

Claudia Pauyac

Hridi Prova Debnath

# \* Outline

- I. Introduction
- II. Dataset Overview
- III. Methodology
  - 3.1. Data Preparation & Augmentation
  - 3.2. Hybrid Architecture Design
  - 3.3. Progressive Training Strategy
  - 3.4. Comparative Analysis of 4 Models
- IV. Results & Analysis
- V. Key Challenges & Solutions
- VI. Real-Time Demo
- VII. Summary & Conclusions
- VIII. Future Work
- IX. References

### I. Introduction

### \* Problem statement

Why emotion recognition?

- Critical for applications like human-computer interaction (HCI), mental health monitoring, and customer experience analysis.
- Challenges: Variability in facial expressions, lightning, pose, and dataset limitations (e.g., dataset's class imbalance, low-resolution images).

# \* Objective

<u>Goal</u>: Develop a robust model for emotion recognition by:

- 1. Leveraging pre-trained model for feature extraction
- 2. Integrating transformer layers to capture spatial attention
- 3. Enhancing generalization with data augmentation
- 4. Adding custom CNN/dense layers to refine predictions

<u>Target outcome</u>: Improve accuracy over baseline models and address dataset challenges.



### **II. Dataset Overview**

### \* Dataset Source:

FER2013: Public benchmark dataset for facial emotion recognition, introduced in ICML, 2013

# \* Key Statistics:

- <u>Total images</u>: 35 887 grayscale faces (48x48 pixels)
- <u>Emotion classes</u>: 7 (angry, disgust, fear, happy, sad, surprise, neutral)
- <u>Resolution</u>: 48x48 pixels (low resolution)
- Split:

**Training:** 22 967 images **Validation:** 5 742 images

**Test:** 7 178 images

# \* Preprocessing:

- Resizing for desired pre trained model compatibility
- If required, Grayscale → RGB conversion via channel duplication

# \* Sample Images:





Angry (4953 images)





Disgust (547 images)





Fear (5121 images)





Happy (8989 images)





Sad (6077 images)





Surprise (4002 images)



Neutral (6198 images)

# \* Challenges:

- Class imbalance (Disgust <5% only 547 images)
- Low resolution (e.g., upscaled to 224x224 for ResNet50 compatibility)
- Generalization (Variability in poses, lighting, and occlusions)

FER2013 Class Distribution



# III. Methodology

# 3.1. Data Preparation & Augmentation

Augmentation techniques:

# • Rotation $(\pm 35^{\circ})$

<u>Purpose</u>: Simulates head tilts and camera angle variations

Why 35°: Large enough to capture natural head movements without distorting facial landmarks

# • Weight and height shift range (0.25)

<u>Purpose</u>: Account for imperfect face alignment in the dataset

Why 25%: Matches typical face detection errors (e.g., off-center cropping) and Prevents excessive shifts that would crop out critical facial regions

# Brightness range ([0.5, 1.5])

<u>Purpose</u>: Simulates varying lighting conditions (dim to bright environments)

Why 0.5 - 1.5: Covers natural lighting extremes without over-saturating grayscale pixels

# • Shear range (0.4)

<u>Purpose</u>: Mimics perspective changes (e.g., head leaning forward/backward)

Why 0.4 (~23°): Represents moderate head tilts without warping key emotion features

# • **Zoom range** (0.4)

<u>Purpose</u>: Handles varying face sizes (e.g., distance from the camera)

Why 40%: Avoids over-zooming (faces become pixelated) or under-zooming (irrelevant background)

# • Horizontal flip (*True*)

<u>Purpose</u>: Increases dataset diversity using facial symmetry

Why: Most emotions are symmetric (e.g., happiness, surprise)

# Fill mode (constant)

Handles <u>Purpose</u>: pixels after empty transformations (e.g., rotation/shifts)

Why constant: Simulates occlusions or out-offrame faces realistically and avoids artificial patterns

# Original







# Augmented

















# Class weighting:

### • Problem:

- o In FER2013, emotion "disgust" has ∼400 samples, while "happy" has ∼7000
- Without weighting, the model prioritizes majority classes, leading to poor performance on rare emotions

### • Solution:

- o Assign higher weights to underrepresented classes during training
- o Forces the model to "pay attention" to minority classes by amplifying their impact on the loss function (the loss for each sample is multiplied by its class weight)

# Example:

If "disgust" has 400 samples and total samples = 28000:

Weight =  $\frac{28\,000}{7\times400}$  = 10: This means each "disgust" sample counts as 10 samples in the loss function

| Class      | Samples | Weight |
|------------|---------|--------|
| "angry"    | 4953    | 0.81   |
| "disgust"  | 547     | 7.31   |
| "fear"     | 5121    | 0.78   |
| "happy"    | 8989    | 0.44   |
| "sad"      | 6077    | 0.66   |
| "surprise" | 4002    | 0.99   |
| "neutral"  | 6198    | 0.65   |

# 3.2. Hybrid Architecture Design

### ResNet50 Backbone:

- Pretrained on ImageNet to leverage strong lowlevel feature extractors
- Initial layers frozen during early training phases to retain general image features
- Later layers gradually unfrozen during fine-tuning to adapt to facial emotion nuances in grayscale FER2013 images

# **Key Architectural Additions:**

# 1. Spatial-Channel Attention (SCA)

- o Channel Attention: Learns which features (e.g., textures, edges) are most important per class
- o Spatial Attention: Learns where to look on the face
- O Suppresses irrelevant background noise and emphasizes subtle facial cues (focus on discriminative facial regions like eyes, mouth, and eyebrows)

### 2. Efficient Transformer Block

- O Uses multi-head self-attention to detect relationships between distant facial landmarks
- o Enhances understanding of global emotion context, especially useful in complex expressions like fear or surprise

# 3. Class-Specific Branches

- o Combat class imbalance and improve performance on underrepresented or confused classes (e.g., angry, disgust, fear, sad)
- Each branch processes ResNet + Transformer output separately
- o Encourages the model to learn unique features for challenging classes, boosting their recall and F1 scores

# 3.3. Progressive Training Strategy

### FEATURE EXTRACTION (FROZEN BASE)



# Phase 1: Feature extraction (Frozen base)

- **Objective:** Learn task-specific patterns without altering pre-trained ResNet50 features
- Why?
  - ResNet50's pre-trained features (trained on ImageNet) already detect edges, textures, and basic shapes
  - o Prevents "noisy" gradients from destabilizing the base early in training



# <u>Phase 2</u>: Fine-tuning (Gradual layer unfreezing)

• **Objective:** Gradually adapt ResNet50 to emotion-specific features

# • Implementation:

- <u>Layers unfreezing</u>: Unfreeze ResNet50 layers in stages (deep → shallow)
  - 1. Stage 1: Layers 160-175 (final ResNet50 blocks, closest to head)
  - 2. Stage 2: Layers 140-160 (mid-level blocks)
  - 3. Stage 3: Layers 100-140 (earlier blocks)
- $\circ$  Why deep  $\rightarrow$  shallow?
  - 1. Deeper layers encode high-level features (facial structures) critical for emotions
  - 2. Earlier layers detect generic patterns (edges) that need minimal adjustment



### PROGRESSIVE FINE-TUNING (50 epochs) Stage 1 Stage 2 Stage 3 ResNet50 Layers ResNet50 Layers ResNet50 Layers **Pre-trained weights Pre-trained weights Pre-trained weights** (Frozen) (Frozen) (Frozen) Layers Layers Layers 100-175 140-175 160-175 (unfreezed) (unfreezed) (unfreezed) **Custom Head Custom Head Custom Head** Spatial-Channel Attention Spatial-Channel Attention Spatial-Channel Attention Transformer block Transformer block Transformer block Class-Specific Dense Layers Class-Specific Dense Layers Class-Specific Dense Layers Fusion Layer Fusion Layer Fusion Layer Optimizer/LR Optimizer/LR Optimizer/LR Adam LR: $5e^{-6}$ Adam LR: $1e^{-6}$ Adam LR: $1e^{-5}$ 15 epochs 15 epochs 20 epochs



• **Objective:** Final polish of the custom architecture

# • Implementation:

- o <u>Freeze ResNet50</u>: Base model weights locked again
- Unfreeze head: Attention layers, dense layers, and class-specific branches

# ResNet50 Layers Pre-trained weights (Frozen) Custom Head Spatial-Channel Attention Transformer block Class-Specific Dense Layers Fusion Layer 20 epochs

**HEAD TUNING** 

Optimizer/LR

Adam LR:

 $1e^{-7}$ 

# • Why?

- After adapting ResNet50, focus shifts to refining decision boundaries
- o Prevents overfitting by isolating head training

Optimizer: AdamW with cosine learning rate decay

- Adam Optimizer: Ensures robust parameter updates with effective regularization (preserving ResNet50's pre-trained knowledge)
- Cosine Decay: Enables smooth transitions between training phases

# 3.4. Comparative Analysis of 4 Models

| Model            | Strengths                                                                                                                                                  | Weaknesses                                                                                                     | Highlights                                                                 |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| ResNet50         | <ul> <li>Best balanced accuracy (58.30%),<br/>Top macro F1 (58.29%)</li> <li>Excellent per-class recall (e.g.,<br/>Happy 83.2%, Surprise 77.5%)</li> </ul> | <ul> <li>High computational cost (77.4M params)</li> <li>Slower inference</li> </ul>                           | High-accuracy applications in production and scientific research           |
| EfficientNetB3   | <ul> <li>Good recall for Sad (73%) and<br/>Surprise (65%)</li> <li>Moderate Cohen's Kappa<br/>(42.81%)</li> </ul>                                          | <ul> <li>Fails on Fear (12%) and<br/>Disgust (28%)</li> <li>Performance unstable without<br/>tuning</li> </ul> | Resource-aware deployments that can afford tuning and moderate performance |
| Xception         | <ul> <li>Moderate recall for Happy (64.83%)</li> <li>Lightweight with 74.6M parameters</li> </ul>                                                          | <ul> <li>Low balanced accuracy (24.6%)</li> <li>Very poor on Surprise (2.49%) and Sad (5.68%)</li> </ul>       | Only with class balancing or additional training data                      |
| MobileNetV3Small | <ul> <li>Compact model</li> <li>Decent recall on Happy (59.92%)</li> <li>Very low parameter count (~2.5M)</li> </ul>                                       | <ul> <li>Extremely low recall on Disgust (6.31%) and Fear (2.05%)</li> <li>Lowest macro F1 (17.69%)</li> </ul> | Edge devices, mobile apps, rapid prototyping where speed > accuracy        |

# IV. Results & Analysis

### Model Evaluation Metrics Comparison



# Why ResNet50?

### 1. Best Overall Performance

ResNet50 consistently outperformed all other tested models across all key evaluation metrics:

- **Highest balanced accuracy** (58.87%)—indicating better handling of class imbalance.
- Strong macro F1 score (57.37%)—demonstrating reliable predictions across all emotion classes.
- Lowest log loss (1.056)—showing well-calibrated confidence in predictions.
- **Highest per-class recall** (83.09% for *Happy*)—capturing even subtle expressions better than others.

### 2. Powerful Yet Proven Architecture

ResNet50 uses residual connections to allow training of deep networks without vanishing gradients. This enables it to:

- Learn complex patterns in facial expressions.
- Generalize better to unseen faces.
- Avoid performance collapse that occurs in very deep or very shallow models.

# 3. Ideal for Transfer Learning

• Pretrained on ImageNet, ResNet50 effectively transfers low-level features to FER2013, making it perfect for small, real-world emotion datasets.



### 4. Balance Between Accuracy and Efficiency

While heavier than MobileNet, ResNet50 is much smaller than newer transformer-based models and runs efficiently on standard GPUs, making it suitable for real-time applications like social robotics and assistive technologies.

# V. Key Challenges & Solutions

### 1. Class Imbalance & Confidence Issues

<u>Challenge</u>: The model struggled with underrepresented classes like <u>Disgust</u> (111 samples) and <u>Fear</u> (1,024), while overpredicting dominant ones like <u>Happy</u> (1,774). Predictions were often overconfident and poorly calibrated.

### Solution:

- Apply class-aware augmentations and synthetic oversampling (GANs).
- Incorporate heavy class weighting (e.g., Disgust ×15, Fear ×8).
- Use temperature scaling and MC Dropout to improve prediction confidence and uncertainty handling.

### 2. Input Mismatch & Feature Loss

<u>Challenge</u>: FER2013 grayscale images (48×48) were mismatched with ResNet50's 224×224 RGB input, leading to degraded feature quality with naive channel repetition.

### Solution:

- Introduce a learnable grayscale-to-RGB adapter using CNN layers.
- Employ multi-scale image fusion to preserve both local and global expression cues.

### 3. Overfitting & Optimization

<u>Challenge</u>: With  $\sim$ 77 million parameters, ResNet50 risked overfitting the small FER2013 dataset.

### Solution:

- Frozen early layers and fine-tuned only higher layers.
- Add strong regularization (dropout, L2 penalty).
- Use cosine learning rate decay with warmup for stable training dynamics.



# VI. Real-Time Demo









# VII. Summary

- Developed a ResNet50-based architecture tailored for FER2013 emotion recognition
- Incorporated attention modules and class-specific output branches
- Tackled key challenges: class imbalance, grayscale input, and small dataset size
- Used a progressive training strategy (freeze →fine-tune → optimize) to reduce overfitting
- Model was robust, scalable, and well-calibrated



### Take Home:

- ResNet50 proved to be a highperforming and adaptable backbone
- Ideal for real-time emotion recognition in assistive robotics, mental health monitoring, and affective computing

### VIII. Future Work

# 8.1. Improve Feature Discrimination

<u>Challenge</u>: Misclassification of similar emotions (e.g., "fear" vs. "sad", "angry" vs. "disgust", "sad" vs. "angry")

### Innovations:

- Cross-Domain Attention: Add 3D attention blocks to capture spatial-temporal features
- Multi-Modal Fusion: Combine facial, vocal, and textual cues for holistic emotion analysis

# 8.2. Expand Dataset Diversity

<u>Current Limitation</u>: Biases in FER2013 (limited demographics/lighting conditions)

# Steps:

- Use AffectNet or RAF-DB for richer variation
- Audit model performance across age, gender, and ethnicity subgroups

# 8.3. Explore Cutting-Edge Architectures

# **Research Directions:**

- Vision Transformers (ViTs)
- Self-Supervised Learning: Pre-train on unlabeled video data to improve feature learning

# 8.4. Real-World Applications

### Use Cases:

- Mental Health Monitoring: Integrate with apps to track emotional well-being
- Human-Computer Interaction: Enable emotion-aware chatbots or VR systems

<u>Deployment</u>: Develop a user-friendly API for easy integration

# IX. References

### ResNet50 Architecture

K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778. DOI: 10.1109/CVPR.2016.90.

### • Data Augmentation

F. Chollet et al., "Keras: Deep Learning for Humans," GitHub Repository, 2015. [Online]. Available: https://keras.io/api/preprocessing/image/. [Accessed: 10-Oct-2023].

### • Spatial-Channel Attention

J. Hu, L. Shen, and G. Sun, "Squeeze-and-Excitation Networks," in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 7132-7141. DOI: 10.1109/CVPR.2018.00745.

### • Transformer Blocks

A. Vaswani et al., "Attention Is All You Need," in Advances in Neural Information Processing Systems (NeurIPS), 2017, pp. 5998-6008. arXiv: 1706.03762.

### Class Weighting

F. Pedregosa et al., "Scikit-learn: Machine Learning in Python," Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011. [Online]. Available: https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html.

### • FER2013 Dataset

I. J. Goodfellow et al., "Challenges in Representation Learning: A Report on Three Machine Learning Contests," Neural Networks, vol. 64, pp. 59-63, 2015. DOI: 10.1016/j.neunet.2014.09.005.

### • Mixed Precision Training

P. Micikevicius et al., "Mixed Precision Training," in International Conference on Learning Representations (ICLR), 2018. arXiv: 1710.03740.

### AdamW Optimizer

I. Loshchilov and F. Hutter, "Decoupled Weight Decay Regularization," in International Conference on Learning Representations (ICLR), 2019. arXiv: 1711.05101.

### Model Architecture Inspiration

A. Mollahosseini, B. Hasani, and M. H. Mahoor, "AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild," IEEE Transactions on Affective Computing, vol. 10, no. 1, pp. 18-31, 2019. DOI: 10.1109/TAFFC.2017.2740923.

### • Cosine Learning Rate Decay

I. Loshchilov and F. Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts," in International Conference on Learning Representations (ICLR), 2017. arXiv: 1608.03983.

### Real-Time Deployment

H. Yang et al., "Efficient Facial Emotion Recognition Using Hierarchical Neural Networks," 2017. arXiv: 1710.07557v1.

Thank you!

# Appendix I

(Confusion Matrix)



ResNet50



EfficientNetB3



MobileNetV3Small



Xception

# Appendix I

(Recall Distribution)



ResNet50



MobileNetV3Small



Xception

# **Appendix I**

# (Training History)



Training and Validation Loss

Training and Validation Accuracy

ResNet50

MobileNetV3Small





EfficientNetB3

Xception