Embedded Systems Lab Experiment 2

Digital Output through 7 segment LED with SRAM memory mapping

Program an ATMega 32 to control a 7-segment display

Jitbitan Baroi 1-11-2024

DATE

Exp2: Digital output through true LED. to ince, decr with SRAM marnory maying

SHEET NO. 1

Din: To program DTMega 32 to control a 7 segment LED display.

·) Components segd:

Name.	Spe is ficertion	Quantity
1. Stmega 32 pC	-	1.
2. DUR den board.	The second second	1.
3. USBarp.	- 1 186. 146	1.
4. 7-segment display.	common cathoole.	2.
5. to Divistors	100.2.	9.
6. LED.	green, red.	1, 1.
8. Breadboard	_	1.
9. Junger wire	female-male.	10

Schematic for Assignment 1, 2 An up counter $0 \rightarrow 9$

Schematic for Assignment 3 Road Traffic Signaling (a down counter $9 \rightarrow 0$)

Schematic for assignment 4 Road Traffic Signaling, down counter $30 \rightarrow 00$ using 2 displays

	INDIAN INSTITUTE OF TECHNOLOGY				
	DATE	SHEET NO. 2			
	· Assignment! (Code for incremen	ting in digray).			
1.	# include <arr io.h=""></arr>	including libraries on were	ny		
2.		defining synch pc clk.			
3.	1 1 41	including delay lib			
4		wit main fr.			
5	1	a array consisting of 7			
6	0 x 33, 0 x 5 B, 0 x 5 F, 0 x 70, 0 x 7 B); reg	ement codes. (a, b, e,d,e,f).	tuo (
7	DDRC = OxFF;	setting PORTC: as autgust.			
8	while (1) {	an infinite lags.			
9	for (inti=0; i<10; i++)	a for leap with in one aring	e z. le		
10	PORTC = a[i], _ delay_ms (1000);	for every cycle i is indo	ed.		
11		on a and sent to part C.			
12]				
	Arrignment 2: (Code for de crunente				
	everything will be same as the me	vious one except			
*9.	for (inti = 9; i>=0; into i).				
	needs to be my dated.				

DATE

SHEET NO. 3

· Englanation (182):

** Arngoment 3: (Crode. Is for traffic system).

include <arr / io. h > — including occuracy bites.

define F cpu 1000 000 UL — yeh. µ Calk.

include < ntil/delay. h > — include cleby lib

int main (void) { — main for.

inta[] = {0x7F, 0x30, 0x6D, 0x79, — an array that contain 7

0x33, 0x58, 0x5F, 0x70, — segment display and that

0x7F, 0x7B}; — regment i = a[i]

DATE

SHEET NO 4

DDRC = On FF;	* setting Cports as out.
	retting sports as out.
	inf loop.
PORATA = 0001;	* seturning red light on.
	- for count 9000 in display
PORTC = a[i] \$, -delay-ms (1000);	, ,
	turning green light on.
for (inti=9; i >0; i)	count 9 -> 0 in display with
	15 delay.
1	

·) Inplanation 3:

In the suf loop: first we are rending. I to part a thus Co is turned on => red led display 9 -0 in the 7 segment display ming a counter suprained before. But finally agains surding 8 -> PORTG. Thus C3 gets high and green led is tomed on . Again, a counter is called (9 -0). And this repeats in an inf loop.

	DATE		SHEET NO. 5
	Arm green 4: (Goulde	de digita	lisplay from 30 -00 and brafficlished
1	. INCLUDE "M32DEF. INC"		
2.	. ORG O.	20	ALOVMOV RT, R16
3.	LDI RIG, HIGH (RAMEND).	21	201 R16,027F
4	OUT SPA RIG.	22	MOV R8, R16.
5	LDI RIG, LOW (RAMEND).	23	ZD1 R16, Ox 7B
6	OUT SPL, RIG.	24	MOV R9, R16.
7	201 R16, 0x 7E	25	
8	MOV RO, RIG.	26	LPI RIG, OXFF
9	201 R16, 0230.	27	OUT DORC, RIG
10	MOV RI, RIG.	28	OUT DDRB, A6.
1	201 RIG, 026D.	29	DUT DDRA, RIG.
12	MOV R2, R16.	30	
13	201 R16, 0x79	3/	MAIN:
14	MOV R3, R16.	32	ZP1 R16,0x81
15	KD1, R16, 0x33	33	OUT PORTA, RIG
16	MOV R4, 216.	34	CALL MODXY
17	ZD1 R16, 0x5B.	35	XDI R16, 0x02.
18	MOV RS, Mb.	36	OUT PORTA, RH
19!	DI RIG, 0270.	37	CALL MODXY

P

INDIAN INSTITUTE OF TECHNOLOGY				
	DATE		SHEET NO. 6	
38	JUP MAIN	58	DISPLAY:	
39.		59		
40	MODXY:	60	OUT PORTB, RIG.	
41	2D1 YL, 0x0+3	61	LD R16, X.	
42	LDI XL, 02020	62	OUT PORB, R16.	
43	NI:	69	RET.	
44	CALL DISPLAY	64		
45	CALL DELAY	65	DELAY:	
46	DEC NL	66	XD1 R19, 090A	
47	CPI XL, DAFF	67	XDI RIS, DOFF	
48	BRNE NI.	88	2PI RIT, ON FF	
49	March and Line .	69	21:	
50	DEC YL.	70	DEC RIX	
51	CPI YZ, OaFF	71	CPI RIT, OxFF	
52	BRNE RXZ.	72	BRNEZI	
53	RET	73	DEC RIS	
54	RXZ:	74	CPJ RIS, ONFF	
55	ZD1 22, 8x09.	75	BRNE Z1	
56	JMP N1.	76	DEC R19	
57		77	CPI RIG, Oa OFF	

DATE

SHEET NO. 7

78

BRNE 11

RET.

· Inflamation 4 Line 7 -> 24: deals with storing the 7 regiment display codes binary codes in respective registers and that R2 will store (a, b, c, d, ef, g) codes for displaying a on a seven segment display. Line (26) -> 29): rets pro parts of A, B, C, as out put. In the main program firstly PORTA + 1 => AO ishigh => red light is on Then a = 30 down counter is called. Subsequently PORT + 0x02 => Sti high a green light is on and another 30 down counter is called. The counter routine (240- 56) loads up + R28-3, +R26+0. Then 126. is deer every time and checked if it has gen a carry. If no carry continue de or best once carry is gen => decr. 18 R28 and check if it has any carry It no carry. R26 - 9 and start allower again (643). It carry is generated => MSD is enhanted => leave enit the counter. Every time R26, R27 is updated a DISPLAY subsourting is called. (258 -> 63). It loads 816 with spea r [828] and sends to PORTB and in the next clk cycle, loads r16 with r [+28] and sends to PORTB.