Please PRINT your name

1. 2.

Please Circle your Recitation:

3.

	r1	T	10	36-156	Russell Hewett
	r2	Τ	11	36 - 153	Russell Hewett
	r3	Τ	11	24 - 407	John Lesieutre
	r4	Τ	12	36 - 153	Stephen Curran
	r5	Τ	12	24 - 407	John Lesieutre
	r6	Τ	1	36 - 153	Stephen Curran
	r7	Τ	1	36 - 144	Vinoth Nandakumar
	r8	Τ	1	24 - 307	Aaron Potechin
	r9	Τ	2	24 - 307	Aaron Potechin
	r10	Τ	2	36-144	Vinoth Nandakumar
	r11	Τ	3	36-144	Jennifer Park
1					

- (1.) (30 pts.) For a 3 by 3 matrix A, suppose all three multipliers are $l_{21} = l_{31} = l_{32} = 3$. Each l_{ij} multiplies pivot row j when it is subtracted from row i.
 - (a) Assuming no row exchanges, what is A, if elimination reaches

$$U = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & g \end{array} \right] ?$$

- (b) In case g = 0, the three columns of A must be dependent. Find the nullspace (a vector space) of A.
- In case $g \neq 0$, what is the column space of U? What is the column space of the original matrix A? How do you know?

				8
			*	
	Tr.			

(2.) (40 pts.) A is a 2 by 4 matrix with exactly two special solutions to Ax = 0:

$$x = s_1 = \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad x = s_2 = \begin{bmatrix} 6 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$

- (a) Find the reduced row echelon form R of A.
- (b) What is the column space of A?
- (c) What is the complete solution to $Rx = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$?
- Find a combination of columns 2, 3, 4 that equals the zero vector. (Not OK to use 0 (col 2) + 0 (col 3) + 0 (col 4) = 0. The problem is to show that these 3 columns are dependent.)

				8
			*	
	Tr.			

(3.) (30 pts.) Suppose A is the 2 by 3 matrix

$$A = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 3 & 1 \end{array} \right].$$

Find all 3 by 2 matrices X with

$$AX = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right].$$

What is a basis for that space of matrices?

(b) Find one 3 by 2 matrix X with

$$AX = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right].$$

(c) Find the complete solution of this matrix equation: all 3 by 2 matrices X with

$$AX = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right].$$

				8
			*	
	Tr.			