

System-Time entanglement in a discrete time model

A. Boette, R. Rossignoli, N. Gigena, M. Cerezo Dto. Física IFLP, FCE, Universidad Nacional de La Plata

Conection QM-Relativity Time

external continuos classical parameter

Quantum description of time

Quantum Information description of evolution

Formalism:

Orthonormal basis of THistory State: $|\Psi\rangle = \frac{1}{\sqrt{N}} \sum_{t=0}^{N-1} |\psi_t\rangle |t\rangle$ $\{|t\rangle,\ t=0,\ldots,N-1\}$ Arbitrary pure states of S $|\psi_t\rangle = U_t |\psi_0\rangle, \quad t = 0, \dots, N-1$ $\{|\psi_t\rangle,\ t=0,\ldots,N-1\}$ Can be generated with the circuit:

"Static" eigenstate of the cyclic conditions super-operator: $|\mathcal{U}|\Psi
angle = |\Psi
angle$ $\mathcal{U} = \sum_{t=1}^{N} U_{t,t-1} \otimes |t\rangle\langle t-1|$ (for any $|\Psi_0\rangle$)

invariant under global translations S + T

Remaining eigenstates of $\,\mathcal{U}\,$

 $|\Psi_k\rangle = \frac{1}{\sqrt{N}} \sum_{t=0}^{N-1} e^{i2\pi kt/N} |\psi_t\rangle |t\rangle$ k integer

 $\mathcal{U}|\Psi_k\rangle = e^{-i2\pi k/N}|\Psi_k\rangle, \quad k = 0,\dots,N-1$

Represent the evolution associated with operators $U_t^k = e^{i2\pi kt/N}U_t$

for general U_t $\mathcal{U} = \exp[-i\mathcal{J}]$

Discrete Wheeler-DeWitt equation: $\mathcal{J}|\Psi\rangle = 0$

 ${\cal J}$ hermitian and satisfying $\mathcal{J}|\Psi_k\rangle = 2\pi \frac{k}{N}|\Psi_k\rangle$ $k = 0, \dots, N - 1.$

Constant Evolution Operator

$$U_{t,t-1} = U \ \forall \ t \implies U_t = (U)^t = \exp[-iHt] \quad N = 2^n$$

$$t = 0, \dots, N-1$$

The history state can be generated with the circuit:

n Control gates $|U^t|\psi_0\rangle = \prod_{j=1}^n U^{t_j 2^{j-1}} |\psi_0\rangle$

n Hadamard gates

 $|0\rangle_T \equiv \bigotimes_{j=1}^n |0_j\rangle \rightarrow \bigotimes_{j=1}^n \frac{|0_j\rangle + |1_j\rangle}{\sqrt{2}} = \frac{1}{\sqrt{N}} \sum_{t=0}^{N-1} |t\rangle$

A measurement of the time qubits with result t $|\psi_t\rangle = e^{-iHt}|\psi_0\rangle$ makes S collapse to the state:

Relation with energy spread

In the constant case evolution: $|\psi_0\rangle=\sum_k c_k|k\rangle$ con $H|k\rangle=E_k|k\rangle$

$$|\psi_t\rangle = \sum_k c_k e^{-iE_k t} |k\rangle \implies |\Psi\rangle = \frac{1}{\sqrt{N}} \sum_{k,t} c_k e^{-iE_k t} |k\rangle |t\rangle$$

 $=\sum_{k} c_{k} |k\rangle |\tilde{k}\rangle_{T}$

In the cyclic case $\,U^N=I\,$ is the Schmidt decomposition $\,p_k=|c_k|^2\,$ $E_k = 2\pi k/N, k = 0, \dots, N-1$

In general $E(S,T) \leq -\sum_k |c_k|^2 \log_2 |c_k|^2$ $\{|c_k|^2\} \prec \{p_k\}$

For any entropic form

 $E_f(S,T) = \sum_k f(p_k) \le \sum_k f(|c_k|^2)$

system-time generated by any Hamiltonianian diagonal in $|k\rangle$ is bounded by the entropy of the spread over eigenstates of H

The **highest** for a given distribution

cyclic evolution equally spaced spectrum $E_k = 2\pi k/N \in [0, 2\pi]$

The qubit clock $|\Psi\rangle = (|\psi_0\rangle|0\rangle + |\psi_1\rangle|1\rangle)/\sqrt{2}$ $=\sqrt{p_{+}}|++\rangle+\sqrt{p_{-}}|--$

S=A+B two qubit-system $\rho_{Bt} = p|\psi_t^0\rangle\langle\psi_t^0| + q|\psi_t^1\rangle\langle\psi_t^1|, \ t = 0, 1$

 $|\Psi_j\rangle = \frac{1}{\sqrt{2}}(|\psi_0^j\rangle|0\rangle + |\psi_1^j\rangle|1\rangle)$ For a pure state B+T

 $p_{\pm} = (1 \pm |\langle \psi_0 | \psi_1 \rangle|)/2$ $E_2(S,T) = 4p_+p_- = 1 - |\langle \psi_0 | \psi_1 \rangle|^2$ $E_2(B,T) = C^2(B,T) = 1 - F^2(\rho_{B0}, \rho_{B1})$ Fidelity —

 $E_2(S,T) = S_2(\rho_T) = S_2(\rho_S) = 2(1 - \operatorname{Tr} \rho_S^2)$

The continuos limit

S evolves

$$|\psi_0\rangle = |0\rangle \rightarrow |\psi_f\rangle = \cos\phi |0\rangle + \sin\phi |1\rangle$$
 in N-1 steps

$$E_2(S, T_N) = 1 - \frac{\sin^2(\frac{N\phi}{N-1})}{N^2 \sin^2(\frac{\phi}{N-1})}$$

$$|\psi_t\rangle = \cos(\frac{\phi t}{N-1})|0\rangle + \sin(\frac{\phi t}{N-1})|1\rangle$$

Decreases but remains finite $E_2(S, T_\infty) = 1 - \frac{\sin^2 \phi}{\phi^2}$

System-Time entanglement

Quantify distinguishable evolution of a pure state

minimum time
$$au_m = 2^{E(S,T)} - 1$$

Schmidt decomposition

recover state at time t:

 $|\psi_t\rangle \propto \langle t|\Psi\rangle$

$$|\Psi\rangle = \sum_{k} \sqrt{p_k} |k\rangle_S |k\rangle_T \quad \rho_{S(T)} = \text{Tr}_{T(S)} |\Psi\rangle \langle \Psi| = \sum_{k} p_k |k\rangle_{S(T)}$$
$$E(S,T) = S(\rho_S) = S(\rho_T) = -\sum_{k} p_k \log_2 p_k$$

Stationary history state $|\Psi\rangle = |\psi_0\rangle(\frac{1}{\sqrt{N}}\sum_t e^{i\gamma_t}|t\rangle)$

$$\Longrightarrow E(S,T) = 0 \Longrightarrow \tau_m = 0$$

N orthogonal states $|\psi_t\rangle$ $|\Psi\rangle$ is maximally entangled

Energy-time uncertainty relations

In the equally spaced spectrum, we expand the initial state in an orthogonal set

 $|\psi_0\rangle = \sum_{l=0}^N \tilde{c}_l |\tilde{l}\rangle_S, \quad |\tilde{l}\rangle_S = \frac{1}{\sqrt{N}} \sum_k e^{i2\pi kl/N} |k\rangle$

Fourier Transform $\tilde{c}_l = \frac{1}{\sqrt{N}} \sum_k e^{-i2\pi k/N} c_k$

 $|\Psi\rangle = \sum_{l,t} \tilde{c}_l |\widetilde{l-t}\rangle_S |t\rangle = \sum_l |\widetilde{l}\rangle_S (\sum_t \tilde{c}_t |t-l\rangle)$

determines the distribution of $|t\rangle$ assigned to each $|l\rangle_S$

 $E(S,T) + \tilde{E}(S,T) \ge \log_2 N$

Localized in energy

 $|c_k| = \delta_{kk'}$

E(S,T)=0

 $|\tilde{c}_l| = \frac{1}{\sqrt{N}},$ $\tilde{E}(S,T) = \log_2 N$

Maximum time

uncertainty

 $n(\{c_k\}) n(\{\tilde{c}_l\}) \ge N$

 $n(\{\alpha_k\})$ number of non-zero α_k 's

Discrete Wheeler-DeWitt equation:

Parallel-in-time discrete model quantum evolution

clock entangled with system qubit clock="building block"

Satisfy $\mathcal{J}|\Psi\rangle = 0$ implement 2^n times O(n) qubits and control gates Energy spread $|\psi_0\rangle$ Energy-time uncertainty \leftarrow Continuos limit $E_2(S, T_{\infty})$ Remains finite

Perspectives

Schmidt decomposition as proper time definition

Interaction between clocks

Simple model of discrete emergent espacio-tiempo

A. Boette, R. Rossignoli, N. Gigena, and M. Cerezo, Phys. Rev. A 93, 062127 (2016).