Physics 5150

Homework Set # 6

Due 5 pm Thursday 3/1/2018

Problem 1: Gradient and Curvature drifts.

The equation for a dipole magnetic field in spherical coordinates (r, θ, ϕ) is given by (in SI units)

$$\vec{B} = \frac{\mu_0 M}{4\pi} \frac{1}{r^3} \left(2\cos\theta \,\hat{r} + \sin\theta \,\hat{\theta} \right),$$

where M is the magnetic moment, and \hat{r} and $\hat{\theta}$ are the unit vectors in the r and θ directions, respectively.

- (a) Show that the equation for a magnetic field line is $r = R \sin^2 \theta$, where R is the radius of the magnetic field line at the equator $(\theta = \pi/2)$.
- (b) Show that the radius of curvature of a magnetic field line at the equator is $R_c = R/3$. [Hint: in general, the radius of curvature is given by $R_c = |(\hat{b} \cdot \nabla)\hat{b}|^{-1}$, where $\hat{b} \equiv \vec{B}/B$ is a unit vector in the direction of the magnetic field.]
- (c) Compute the curvature drift of a particle with a positive charge q and parallel velocity v_{\parallel} at a radial distance R at the equator.
- (d) Compute the ∇B drift of a particle with a positive charge q and perpendicular velocity v_{\perp} at a radial distance R at the equator.
- (e) Compare the directions and magnitudes of the curvature and ∇B drifts at the equator.

Problem 2:

A particle is trapped in a magnetic mirror field given by

$$B_z = B_0 \left[1 + \left(\frac{z}{L}\right)^2 \right]$$

and has a total kinetic energy $E = mv^2/2$ and pitch angle α_0 at z = 0. Find the oscillation (bounce) frequency in terms of L, E, and α_0 .

Problem 3:

Consider a one-dimensional gas of particles with a velocity distribution function that has a triangular shape:

$$f(v_x) = A \left(1 - \frac{|v_x|}{v_0}\right), \quad |v_x| \le v_0,$$
 (1)

and

$$f(v_x) = 0 \quad |v_x| > v_0.$$
 (2)

- (a) Express the constant parameter A in terms of the particle density n and v_0 .
- (b) Calculate the following quantities in terms of v_0 :
- (i) the average particle velocity, $\langle v_x \rangle$;
- (ii) the average magnitude of particle velocity, $\langle |v_x| \rangle$; (iii) the average particle kinetic energy, $\langle mv_x^2/2 \rangle$.