

# Réduction d'endomorphismes

## 1. Qu'est-ce que réduire un endomorphisme?

Soient E un espace vectoriel de dimension finie sur un corps  $\mathbb{K}$  et f un endomorphisme de E. Si on se place dans une base de E, on peut représenter f par une matrice. Le but de ce chapitre est de trouver une base de E telle que la matrice représentant f dans cette base soit la plus "simple" possible (on prend la même base pour E ensemble départ que pour E ensemble d'arrivée).

#### Définition 1 -

- on dit que f est diagonalisable, s'il existe une base  $\{e_i\}$  de E telle que

$$M(f)_{e_i} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}$$

- on dit que f est triangularisable (ou trigonalisable), s'il existe une base  $\{e_i\}$  de E telle que

$$M(f)_{e_i} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \ddots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix} \text{ ou } M(f)_{e_i} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & a_{nn-1} & a_{nn} \end{pmatrix}$$

Dans toute la suite, on suppose que E est un espace vectoriel de dimension **finie** sur un corps  $\mathbb{K}$ .

## 2. Vecteurs propres - Valeurs propres

#### 2.1. Vecteurs propres

**Définition 2** – Soit  $f \in \mathcal{L}(E)$ . Un vecteur  $u \in E$  est un vecteur propre de f si

- 1) u est non nul
- 2) il existe  $\lambda \in \mathbb{K}$ ,  $f(u) = \lambda u$

Le scalaire  $\lambda$  est appelé valeur propre associée à u.

**Remarque** - Si u est vecteur propre de f, alors, par linéarité de f,  $\alpha u$  est vecteur propre de f pour tout  $\alpha \neq 0$ .

**Théorème** 3 – L'endomorphisme f de E est diagonalisable si et seulement il existe une base de E formée de vecteurs propres de f.

Démonstration : si f est diagonalisable, alors il existe une base  $\{e_1, \ldots, e_n\}$  telle que

$$M(f)_{e_i} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix}$$

On en déduit que, pour tout vecteur  $e_i$  de cette base  $f(e_i) = a_{ii}e_i$  avec  $e_i \neq 0$  donc cette base est formée de vecteurs propres. Réciproquement, si E admet une base de vecteurs propres de f, il est clair que la matrice de f dans cette base sera diagonale.

**Remarque** - Si f est diagonalisable, les termes qui apparaissent sur la diagonale de la matrice représentant f dans une base de vecteurs propres sont les valeurs propres associées.

#### 2.2. Polynôme caractéristique

Soit  $\lambda$  une valeur propre de f. L'endomorphisme  $f-\lambda Id$  n'est alors pas injectif puisqu'il existe  $u\neq 0$  tel que  $f(u)=\lambda\,u$ . Comme on est en dimension finie, c'est équivalent à sa non-bijectivité, donc à ce que le déterminant de  $f-\lambda Id$  soit nul.

**Proposition 4** – Les valeurs propres de f sont les racines du polynôme  $P_f(\lambda) = \text{D\'et}(f - \lambda Id)$ .  $P_f(\lambda)$  est un polynôme de degré n, appelé polynôme caractéristique de f.

**Remarque** - Si A et B sont deux matrices représentant un même endomorphisme f dans deux bases distinctes, alors elles sont semblables donc  $\mathrm{D\acute{e}t}(A-\lambda I)=\mathrm{D\acute{e}t}(B-\lambda I)$ . On appelle également polynôme caractéristique de la matrice A le polynôme  $\mathrm{D\acute{e}t}(A-\lambda I_n)$ .

**Définition 5** — On dit qu'une valeur propre de f est de multiplicité  $\alpha$  si elle est racine d'ordre  $\alpha$  du polynôme caractéristique de f.

Une fois déterminées les valeurs propres, on détermine l'espace des vecteurs propres associés à chacune de ces valeurs en résolvant le système linéaire  $(A-\lambda Id)(u)=0$  où A est la matrice de f dans une certaine base.

**Définition 6** – L'ensemble des valeurs propres d'un endomorphisme f est appelé le spectre de f.

**Proposition 7** – Soit  $A \in \mathscr{M}_n(\mathbb{K})$ . Le polynôme caractéristique de A est de degré n et, plus précisément, on a :

$$\mathsf{D\acute{e}t}(A - \lambda I_n) = (-1)^n \lambda^n + \sum_{i=0}^{n-1} a_i \, \lambda^i \text{ avec } a_0 = \mathsf{D\acute{e}t} \, A, \, a_{n-1} = (-1)^{n-1} \mathsf{tr} A$$

## 3. Caractérisation des endomorphismes diagonalisables

Proposition 8 – Soit  $\lambda \in \mathbb{K}$ . On note  $E_{\lambda} = \operatorname{Ker}(f - \lambda Id) = \{x \in E \; ; \; f(x) = \lambda \, x\}$ .  $E_{\lambda}$  est un sous-espace vectoriel de E, appelé espace propre associé à  $\lambda$ . L'espace  $E_{\lambda}$  est stable par f.

Démonstration :  $E_{\lambda}$  est le noyau d'un endomorphisme donc c'est un sous-espace vectoriel de l'ensemble de départ de cet endomorphisme.

Montrons qu'il est stable par f. Soit  $x \in E_{\lambda}$ , alors  $f(x) = \lambda x$ . Donc  $f(f(x)) = f(\lambda x) = \lambda f(x)$ . On a montré que  $f(x) \in E_{\lambda}$ , ce qui prouve que  $E_{\lambda}$  est stable par f.

Remarque -

- si  $\lambda$  n'est pas valeur propre,  $E_{\lambda}=\{0\}.$
- si  $\lambda$  est valeur propre, dim  $E_{\lambda} \geq 1$ .

**Proposition 9** – Soient  $\lambda_1,\ldots,\lambda_p$  des scalaires distincts deux à deux. Alors les sousespaces propres  $E_{\lambda_1},\ldots,E_{\lambda_p}$  sont en somme directe.

Démonstration : on prouve le résultat par récurrence sur p. Si p=1, il n'y a rien à montrer. Supposons que les espaces  $E_{\lambda_1},\dots,E_{\lambda_p}$  soient en somme directe et montrons que les espaces  $E_{\lambda_1},\dots,E_{\lambda_p},E_{\lambda_{p+1}}$  sont aussi en somme directe.

Pour cela, il suffit de montrer que  $(E_{\lambda_1} + \cdots + E_{\lambda_p}) \cap E_{\lambda_{p+1}} = \{0\}.$ 

Soit  $x \in (E_{\lambda_1} + \dots + E_{\lambda_p}) \cap E_{\lambda_{p+1}}$ . On a  $f(x) = \lambda_{p+1}x$  car  $x \in E_{\lambda_{p+1}}$ .

Comme  $x \in E_{\lambda_1} + \dots + E_{\lambda_p}$ , il existe  $x_1 \in E_{\lambda_1}, \dots, x_p \in E_{\lambda_p}$  tel que  $x = x_1 + \dots + x_p$ . On a donc également  $f(x) = \lambda_1 x_1 + \dots + \lambda_p x_p$ . On déduit de ces deux calculs que

$$0 = (\lambda_1 - \lambda_{p+1})x_1 + \dots + (\lambda_p - \lambda_{p+1})x_p.$$

Les espaces  $E_{\lambda_1}, \dots, E_{\lambda_n}$  sont en somme directe donc

pour 
$$k \in \{1, ..., p\}, (\lambda_k - \lambda_{p+1})x_k = 0.$$

Comme les  $\lambda_i$  sont deux à deux distincts, on en déduit que x = 0.

**Corollaire 10** – L'endomorphisme f est diagonalisable si et seulement si E est somme directe de ses sous-espaces propres.

Si on note  $\lambda_1, \ldots, \lambda_p$  les valeurs propres deux à deux distinctes de f, on a

**Corollaire 11** – L'endomorphisme f est diagonalisable si et seulement si  $\dim E = \dim E_{\lambda_1} + \cdots + \dim E_{\lambda_p}$ .

**Proposition 12** – Soit  $f \in \mathcal{L}(E)$  et  $\lambda$  une valeur propre de multiplicité  $\alpha$ . Alors  $\dim E_{\lambda} \leq \alpha$ .

Démonstration : supposons dim  $E_{\lambda} \geq \alpha + 1$ . Soient  $u_1, \ldots, u_{\alpha+1}$  des vecteurs propres linéairement indépendants de  $E_{\lambda}$ . Complétons cette famille en une base  $\mathscr B$  de E. On a

$$M(f)_{\mathscr{B}} = \begin{pmatrix} \lambda & & 0 & \\ & \ddots & & A \\ 0 & & \lambda & \\ \hline & 0 & & B \end{pmatrix}$$

d'où  $P_f(X) = D\acute{e}t[(\lambda - X)I_{\alpha+1}]$   $D\acute{e}t(B - XI_{n-\alpha-1}) = (\lambda - X)^{\alpha+1}$   $D\acute{e}t(B - XI_{n-\alpha-1})$ .  $\lambda$  serait donc valeur propre de multiplicité strictement supérieure à  $\alpha$ . Absurde

Des propositions précédentes, on déduit le

**Théorème** 13 – Soit f un endomorphisme d'un espace vectoriel E de dimension finie. L'endomorphisme f est diagonalisable si et seulement si les deux propositions suivantes sont vérifiées :

1)  $P_f(X)$  est scindé dans  $\mathbb{K}$ , ce qui veut dire que

$$P_f(X) = (-1)^n (X - \lambda_1)^{\alpha_1} \dots (X - \lambda_n)^{\alpha_p}$$

avec  $\lambda_1, \ldots, \lambda_p$  scalaires et  $\alpha_1 + \cdots + \alpha_p = n$ .

2) Pour chaque valeur propre  $\lambda$  de multiplicité  $\alpha$ , on a dim  $E_{\lambda} = \alpha$ .

**Corollaire 14** – Soit f un endomorphisme d'un espace vectoriel de dimension n. Si f admet n valeurs propres distinctes deux à deux, alors f est diagonalisable.

## 4. Applications de la diagonalisation

#### 4.1. Calcul de la puissance d'une matrice

Si A est diagonalisable, il existe  $P \in GL_n(\mathbb{K})$  telle que  $P^{-1}AP = D$  soit diagonale. Alors  $A = PDP^{-1}$  et

$$A^k = PD^kP^{-1} \text{ pour tout } k \in \mathbb{N}.$$

La matrice A est alors inversible si, et seulement si, D est inversible et  $A^{-1}=PD^{-1}P^{-1}$ . La formule précédente se généralise alors à  $k\in\mathbb{Z}$ .

Remarque - Si A est la matrice d'un endomorphisme f dans la base  $\mathcal{B}_0$ , alors P est la matrice de passage de la base  $\mathcal{B}_0$  à une base  $\mathcal{B}$  de vecteurs propres de A. La matrice P est obtenue en mettant les coordonnées dans la base  $\mathcal{B}_0$  des vecteurs propres de A en colonnes. (De l'ordre des vecteurs propres dans la base  $\mathcal{B}$  dépend l'ordre des valeurs de la diagonale de D, et réciproquement.)

## 4.2. Suites récurrentes linéaires

Soient a et b deux réels donnés non simultanément nuls. Une suite récurrente linéaire d'ordre 2 vérifie la relation

$$u_n = au_{n-1} + bu_{n-2}$$
,  $u_0$  et  $u_1$  donnés.

Matriciellement, ceci peut s'écrire :

$$\begin{pmatrix} u_n \\ u_{n-1} \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_{n-1} \\ u_{n-2} \end{pmatrix} = \begin{pmatrix} a & b \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}$$

On est donc ramené à un calcul de puissance de matrice.

Soit  $(a_0, a_1, \dots, a_{k-1})$  k réels donnés non tous nuls. Une suite récurrente linéaire d'ordre k vérifie la relation

$$u_{n+k} = \sum_{i=0}^{k-1} a_i u_{n+i}, \quad \{u_0, \dots, u_{k-1}\}$$
 donnés.

On écrit cette égalité sous forme matricielle et on est encore ramené à un calcul de puissance de matrice d'ordre k.

#### 4.3. Systèmes de suites récurrentes

Illustrons cela par un exemple :

déterminer les trois suites  $(u_n)$ ,  $(v_n)$  et  $(w_n)$  définies par  $u_0 = 1$ ,  $v_0 = w_0 = 0$  et

$$\begin{cases} u_{n+1} = 2u_n + 4w_n \\ v_{n+1} = 3u_n - 4v_n + 12w_n \\ w_{n+1} = u_n - 2v_n + 5w_n \end{cases}$$

Posons  $X_n = {}^t(u_n, v_n, w_n)$ , alors  $X_0 = {}^t(1, 0, 0)$ . On pose

$$A = \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix}$$

Le système s'écrit alors  $X_{n+1}=AX_n$ , d'où, par récurrence,  $X_n=A^nX_0$ . On est ainsi ramené au calcul de  $A^n$ .

#### 4.4. Systèmes différentiels à coefficients constants

On veut résoudre le système différentiel

$$\begin{cases} \frac{dx_1}{dt} = a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ \frac{dx_n}{dt} = a_{n1}x_1 + \dots + a_{nn}x_n \end{cases}$$

avec  $a_{ij} \in \mathbb{R}$  et  $x_i : \mathbb{R} \to \mathbb{R}$  dérivables. On pose  $A = (a_{ij})_{1 \leq i,j \leq n}$  et  $X = {}^t(x_1, \dots, x_n)$ , alors le système s'écrit sous forme matricielle

$$\frac{dX}{dt} = AX.$$

Supposons A diagonalisable. Il existe alors une matrice D diagonale et une matrice P inversible telle que  $A=PDP^{-1}$ . Si on pose  $X'=P^{-1}X$ , le système devient  $\frac{dX'}{dt}=DX$ , système qui s'intégre facilement car D est diagonale.

## 5. Trigonalisation

**Définition 15** – Une matrice A de  $\mathscr{M}_n(\mathbb{K})$  est dite triangulaire supérieure (respectivement inférieure) si elle est de la forme

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix} \quad \text{(resp. } A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & a_{nn-1} & a_{nn} \end{pmatrix} )$$

**Remarque** - Toute matrice triangulaire supérieure est semblable à une matrice triangulaire supérieure. En effet, soit A une matrice triangulaire supérieure et f l'endomorphisme de  $\mathbb{K}^n$  représenté par A dans la base canonique  $(e_1, \ldots, e_n)$  de  $\mathbb{K}^n$ . f est représenté par une matrice triangulaire inférieure dans la base  $(e_n, \ldots, e_1)$ .

**Théorème** 16 – Un endomorphisme est triangularisable dans  $\mathbb{K}$  si et seulement si son polynôme caractéristique est scindé dans  $\mathbb{K}$ .

Démonstration : si l'endomorphisme f est triangularisable, alors il existe une base telle que la matrice de f dans cette base soit triangulaire supérieure. On a alors

$$P_f(\lambda) = D\acute{e}t \begin{pmatrix} a_{11} - \lambda & & a_{1n} \\ 0 & \ddots & a_{2n} \\ \ddots & \ddots & \vdots \\ 0 & \cdots & a_{nn} - \lambda \end{pmatrix} = \prod_{i=1}^n (a_{ii} - \lambda)$$

ш

donc  $P_f(X)$  est scindé. De plus, les éléments diagonaux de la matrice triangulaire sont les valeurs propres de f.

Réciproquement, supposons que le polynôme caractéristique de f soit scindé et montrons par récurrence que f est triangularisable. Pour n=1, il n'y a rien à montrer. Supposons le résultat vrai à l'ordre n-1. Puisque  $P_f(\lambda)$  est scindé, il admet au moins une racine  $\lambda \in \mathbb{K}$ . Soit  $u_1$  un vecteur propre associé. On complète  $\{u_1\}$  en une base  $\{u_1,\ldots,u_n\}$  de E. On a alors

$$M(f)_{u_i} = \begin{pmatrix} a & b_2 & \cdots & b_n \\ \hline 0 & & & \\ \vdots & & B & \\ 0 & & & \end{pmatrix}$$

On a  $P_f(\lambda)=(a-\lambda)$   $D\acute{e}t(B-\lambda I_{n-1})=(a-\lambda)P_g(\lambda)$  où g est l'endomorphisme représenté par la matrice B dans la base  $(u_2,\ldots,u_n)$ . Comme  $P_f(\lambda)$  est scindé,  $P_g(\lambda)$  l'est aussi et, d'après l'hypothèse de récurrence, la matrice B est triangularisable. Il existe donc une base  $(v_2,\ldots,v_n)$  de  $\mathrm{Vect}\{u_2,\ldots,u_n\}$  telle que la matrice de g dans cette base soit triangulaire supérieure.

Ainsi, dans la base  $\{u_1, v_2, \dots, v_n\}$ , la matrice de f est triangulaire supérieure.  $\Box$ 

**Corollaire 17** – Toute matrice de  $\mathcal{M}_n(\mathbb{C})$  est semblable à une matrice triangulaire supérieure de  $\mathcal{M}_n(\mathbb{C})$ .

Démonstration : un polynôme de  $\mathbb{C}_n[X]$  est scindé dans  $\mathbb{C}$ .

**Remarque** - Si la matrice A est triangularisable, les éléments diagonaux de la matrice triangulaire semblable à A sont les valeurs propres de A.

## 6. Le théorème de Cayley-Hamilton

Soit E un espace vectoriel sur  $\mathbb{K}$  et  $P \in \mathbb{K}[X]$ :

$$P(X) = a_m X^m + a_{m-1} X^{m-1} + \dots + a_1 X + a_0.$$

Si  $f \in \mathcal{L}(E)$ , on note P(f) l'endomorphisme de E défini par :

$$P(f) = a_m f^m + a_{m-1} f^{m-1} + \dots + a_1 f + a_0 Id$$

où 
$$f^k = \underbrace{f \circ \cdots \circ f}_{k \text{ fois}}$$
.

**Définition 18** – Soit  $f \in \mathcal{L}(E)$ . Un polynôme P(x) de  $\mathbb{K}[X]$  est dit annulateur de f si P(f) = 0.

**Proposition 19** – Soit P(X) un polynôme annulateur de f. Alors les valeurs propres de f sont des racines de P.

Démonstration : si  $\lambda$  est valeur propre de f, il existe un vecteur u non nul tel que  $f(u) = \lambda u$ . On a alors  $f^k(u) = \lambda^k u$  pour tout entier k. On en déduit que  $[P(f)]u = 0 = P(\lambda)u$  donc  $P(\lambda) = 0$  car  $u \neq 0$ .

**Remarque** - Un endomorphisme qui vérifie P(f) = 0 ne peut avoir pour valeur propre que des racines de P; par contre, toutes les racines de P ne sont pas forcément des valeurs propres de f.

## Théorème 20 - Théorème de Cayley-Hamilton

Soient  $f \in \mathcal{L}(E)$  et  $P_f(X)$  son polynôme caractéristique. On a

$$P_f(f) = 0$$

Démonstration : on se place dans la clôture algébrique de  $\mathbb{K}$  (ici, il s'agit de  $\mathbb{C}$  car  $\mathbb{K}$  est supposé être un sous-corps de  $\mathbb{C}$ ). Dans ce cas, l'endomorphisme f est triangularisable donc son polynôme caractéristique est scindé :

$$P_f(X) = (\lambda_1 - X)(\lambda_2 - X) \dots (\lambda_n - X).$$

Si on note  $\{e_1,\ldots,e_n\}$  la base de E dans laquelle la matrice représentant f est triangulaire, on a  $(\lambda_1 Id - f)(e_1) = 0$ . On montre alors par récurrence que, pour tout  $i \in \{1,\ldots,n\}$ , pour tout  $j \in \{1,\ldots,i\}$ ,  $(\lambda_1 Id - f) \circ \cdots \circ (\lambda_i Id - f)(e_j) = 0$  car les  $(\lambda_k Id - f)$  commutent entre eux. On en déduit que  $P_f(f) = 0$ .

## 7. Théorème de décomposition des noyaux

Soient E un espace vectoriel de dimension finie sur un corps  $\mathbb{K}$  et f un endomorphisme de E.

**Théorème 21** – Soient  $P_1, \ldots, P_q$  des polynômes de  $\mathbb{K}[X]$  premiers entre eux deux à deux. On pose  $P = P_1 \times \ldots \times P_q$ . Alors on a

$$\mathsf{Ker}\, P(f) = \mathsf{Ker}\, P_1(f) \oplus \cdots \oplus \mathsf{Ker}\, P_q(f)$$

Démonstration : par récurrence sur q.

Si  $q=2:P_1$  et  $P_2$  sont premiers entre eux donc, d'après le théorème de Bezout, il existe deux polynômes U et V de  $\mathbb{K}[X]$  tels que  $UP_1+VP_2=1$ , d'où  $UP_1(f)+VP_2(f)=Id$ . Soit  $x\in \operatorname{Ker} f$ , on a  $x=UP_1(f)(x)+VP_2(f)(x)$ . Posons  $y=UP_1(f)(x)$  et  $z=VP_2(x)$ . On a  $P_2(f)y=P_2UP_1(f)(x)=UP_1P_2(f)(x)=0$  car  $x\in \operatorname{Ker} P$  et les endomorphismes  $P_1(f)$  et U(f) commutent. On en déduit que  $y\in \operatorname{Ker} P_1$ . On montre de même que  $z\in \operatorname{Ker} P_2$ , d'où  $\operatorname{Ker} P=\operatorname{Ker} P_1+\operatorname{Ker} P_2$ .

Soit maintenant  $x \in \operatorname{Ker} P_1 \cap \operatorname{Ker} P_2$ . Comme  $x = UP_1(f)(x) + VP_2(f)(x)$ , on a trivialement x = 0. On a donc montré que  $\operatorname{Ker} P = \operatorname{Ker} P_1 \oplus \operatorname{Ker} P_2$ .

Supposons le résultat vrai à l'ordre q-1 et soient  $P_1,\ldots,P_q$  des polynômes premiers entre eux deux à deux. Le polynôme  $P_1$  est alors premier avec le produit  $P_2\times\ldots\times P_q$  donc, d'après ce qui précéde,  $\operatorname{Ker} P=\operatorname{Ker} P_1\oplus\operatorname{Ker}(P_2\times\ldots\times P_q)$ . On applique alors l'hypothèse de récurrence à  $P_2\times\ldots\times P_q$ , ce qui prouve le résultat.

**Remarque** - Si P(f)=0 et si  $P=P_1\times\ldots\times P_q$  où les polynômes  $P_1,\ldots,P_q$  sont premiers entre eux deux à deux, alors  $E=\operatorname{Ker} P_1(f)\oplus\cdots\oplus\operatorname{Ker} P_q(f)$ .

**Théorème** 22 – Soit E un espace vectoriel de dimension finie sur un corps  $\mathbb{K}$ . Un endomorphisme f de E est diagonalisable si et seulement si il existe un polynôme scindé sur  $\mathbb{K}$ , n'ayant que des racines simples et annulant f.

Démonstration : la condition est suffisante d'après le théorème précédent.

Supposons f diagonalisable, alors il existe une base  $\{e_1,\ldots,e_n\}$  de E de vecteurs propres de f. Si  $\lambda_1,\ldots,\lambda_p$  sont les valeurs propres deux à deux distinctes, il est clair que le polynôme  $P(X)=(X-\lambda_1)\times\cdots\times(X-\lambda_p)$  vérifie  $P(f)(e_i)=0$  pour tout  $i\in\{1,\ldots,n\}$ . Comme les  $e_i$  forment une base de E, on en déduit que P(f)=0.

## 8. Polynôme minimal

Soit f un endomorphisme d'un espace vectoriel E de dimension finie sur un corps  $\mathbb{K}$ . L'ensemble  $I_f$  des polynômes P de  $\mathbb{K}[X]$  tels que P(f)=0 est un idéal de  $\mathbb{K}[X]$ .  $\mathbb{K}[X]$  étant un anneau principal, il existe un polynôme  $\mu$  engendrant  $I_f$ . De plus, ce polynôme est unique si on le suppose unitaire (c'est-à-dire de coefficient dominant égal à 1).

**Définition 23** – On appelle polynôme minimal de f l'unique polynôme  $\mu$  unitaire qui engendre  $I_f$ .

**Remarque** - Comme  $\mathscr{L}(E)$  est de dimension finie, la famille  $(Id,f,\ldots,f^{n^2})$  où dim E=n est liée . Il existe donc une combinaison linéaire non triviale de ses éléments qui est nulle. On en déduit que  $I_f \neq \{0\}$  et donc  $1 \leq \deg \mu$ .

**Corollaire 24** – Le polynôme minimal de f est un diviseur du polynôme caractéristique de f.

**Proposition 25** – Les racines du polynôme caractéristique d'un endomorphisme f sont exactement les racines de son polynôme minimal.

Démonstration : il est clair que les racines du polynôme minimal sont racines du polynôme caractéristique. Réciproquement, soit  $\lambda$  une racine de  $P_f$ . Il existe alors  $v \neq 0$  tel que  $(f - \lambda Id)(v) = 0$ .

Posons  $\mu_f(X)=X^p+a_{p-1}X^{p-1}+\cdots+a_1X+a_0$ . Puisque  $\mu_f(f)=0$ , on a  $f^p(v)+a_{p-1}f^{p-1}(v)+\cdots+a_1f(v)+a_0v=0$ . En utilisant que  $f^r(v)=\lambda^r v$ , on obtient que  $\mu_f(\lambda)=0$  car  $v\neq 0$ .

**Théorème 26** – Un endomorphisme est diagonalisable si et seulement si son polynôme minimal est scindé et a toutes ses racines simples.

Démonstration : la condition est suffisante car  $\mu_f(f)=0$ . Réciproquement, supposons que f soit diagonalisable et soit  $\mathscr{B}=(e_1,\ldots,e_n)$  une base de vecteurs propres correspondant à des valeurs propres  $\lambda_1,\ldots,\lambda_n$ . Supposons, au besoin en changeant la numérotation, que  $\lambda_1,\ldots,\lambda_p$  soient distinctes deux à deux et représentent toutes les valeurs propres de f. Si  $v\in\mathscr{B}$ , alors

$$(f - \lambda_1 Id) \circ \cdots \circ (v - \lambda_p Id)v = 0$$

donc le polynôme  $P(X) = (X - \lambda_1) \times \ldots \times (X - \lambda_p)$  est un polynôme annulateur de f. Comme  $\mu_f(X)$  divise P(X) et que P(X) n'a que des racines simples, on en déduit que  $\mu_f$  n'a que des racines simples.  $\Box$ 

# 9. Sous-espaces caractéristiques

Soit f un endomorphisme d'un espace vectoriel E de dimension finie n. On note  $P_f(X)$  le polynôme caractéristique de f.

On suppose que  $P_f(X)$  est scindé et s'écrit

$$P_f(X) = (-1)^n (X - \lambda_1)^{\alpha_1} \cdots (X - \lambda_p)^{\alpha_p}$$

où les  $\lambda_i$  sont distincts deux à deux.

**Définition 27** — On appelle sous-espace caractéristique associé à la valeur propre  $\lambda_i$  le sous-espace vectoriel

$$N_{\lambda_i} = \operatorname{Ker}(f - \lambda_i Id)^{\alpha_i}.$$

**Proposition 28** –  $N_{\lambda_i}$  est stable par f.

Démonstration : soit  $x \in N_{\lambda_i}$ . Montrons que  $f(x) \in N_{\lambda_i}$ . On a  $(f - \lambda_i Id)^{\alpha_i}(x) = 0$ . Les endomorphismes f et  $(f - \lambda_i Id)^{\alpha_i}$  commutent donc  $(f - \lambda_i Id)^{\alpha_i}(f(x)) = f \circ (f - \lambda_i Id)^{\alpha_i}(x) = 0$  et on a prouvé que  $f(x) \in \operatorname{Ker}(f - \lambda_i Id)^{\alpha_i}$ 

**Remarque** - On a toujours  $E=N_{\lambda_1}\oplus\cdots\oplus N_{\lambda_p}$  que f soit diagonalisable ou pas.

Théorème 29 – Réduction selon les sous-espaces caractéristiques

Soit  $f\in \mathscr{L}(E)$  telle que son polynôme caractéristique soit scindé sur  $\mathbb{K}$ . Alors il existe une base  $\mathscr{B}=\{\mathscr{B}_1,\ldots,\mathscr{B}_p\}$  où  $\mathscr{B}_i$  est une base de  $N_{\lambda_i}$  telle que

où 
$$\begin{pmatrix} \lambda_1 & \star \\ & \ddots & \\ 0 & \lambda_1 \end{pmatrix}$$
 est la matrice (triangulaire supérieure) de la restriction de  $f$  à  $N_{\lambda_i}$  dans la base  $\mathcal{B}_i$ . C'est une matrice de  $\mathcal{M}_{\alpha_i}(\mathbb{K})$ .

Démonstration : elle se fait en plusieurs étapes. Remarquons d'abord que les espaces  $N_{\lambda_i}$  sont stables par f donc il existe une base  $\mathscr{B}' = \{\mathscr{B}'_1, \ldots, \mathscr{B}'_p\}$  de E où  $\mathscr{B}'_i$  est une base de  $N_{\lambda_i}$  telle que la matrice de f soit diagonale par blocs, chaque bloc représentant la restriction  $f_i$  de f à  $N_{\lambda_i}$ . Notons  $M_{\lambda_i}$  un de ces blocs non nuls. Il reste à montrer que  $M_{\lambda_i}$  est triangularisable et que la diagonale de la matrice triangulaire obtenue ne contient que des  $\lambda_i$ .

Comme  $N_{\lambda_i} = \text{Ker}(f - \lambda_i Id)^{\alpha_i}$ , le polynôme  $Q(X) = (X - \lambda_i)^{\alpha_i}$  est annulateur de  $f_i$ . Par conséquent le polynôme minimal de  $f_i$  est du type

$$\mu_{f_i} = (X - \lambda_i)^{\beta_i}$$
 avec  $1 \le \beta_i \le \alpha_i$ .

Comme les racines de  $P_{f_i}$  sont exactement les racines de  $\mu_{f_i}$ , on en déduit que le polynôme caractéristique de  $f_i$  est scindé, que  $M_{\lambda_i}$  est triangularisable et que sa diagonale est formée de termes tous égaux à  $\lambda_i$ 

## 10. Diagonalisation simultanée

Soit E un espace vectoriel de dimension finie n sur un corps  $\mathbb{K}$ . On considère deux endomorphismes f et g de E tels que

- 1) f et g soient diagonalisables
- 2)  $f \circ g = g \circ f$

**Proposition 30** – Il existe une base de E telle que les matrices représentatives dans cette base de f et g respectivement soient diagonales. On dit que f et g sont simultanément diagonalisables.

Démonstration : raisonnons par récurrence sur n.

Si n = 1, le résultat est trivialement vrai.

Supposons qu'il soit vrai sur tout espace de dimension inférieure ou égale à n-1. Soit E un espace vectoriel de dimension n et soit  $\lambda_1,\ldots,\lambda_p$  les valeurs propres de f distinctes deux à deux. Si f est une homothétie, le résultat est vrai car toute base qui diagonalise g diagonalise g. Si g n'est pas une homothétie, g est somme directe de ses sous-espaces propres qui sont tous de dimensions strictement inférieures à g (car g n'est pas une homothétie). Soit g un sous-espace propre de g. Montrons qu'il est stable par g. Soit g est g on a g commutent. Donc g est g est g commutent. Donc g est g est

car  $(f - \lambda Id)(x) = 0$ . D'où  $g(x) \in E_{\lambda}$ . Il suffit alors d'appliquer l'hypothèse de récurrence à chacun des sous-espaces propres de f pour obtenir le résultat.

## 11. Décomposition de Dunford

#### 11.1. Endomorphismes nilpotents

**Définition 31** – Un endomorphisme f de E est dit nilpotent s'il existe un entier p non nul tel que  $f^p=0$ . On pose alors  $n_0=\min\{p\in\mathbb{N}^*\,;\, f^p=0\}$ . L'entier naturel  $n_0$  est appelé indice de u.

**Proposition 32** – Soient deux endomorphismes nilpotents qui commutent alors leur somme est nilpotente.

Démonstration : soient f et g deux endomorphismes nilpotents d'indices respectifs p et q. Comme f et g commutent, on peut utiliser la formule de Newton :

$$(f+g)^{p+q} = \sum_{i=0}^{p+q} C_{p+q}^i f^i g^{p+q-i}.$$

Dans chaque terme de la somme, on a soit  $i \ge p$ , soit  $n+p-i \ge q$  donc soit  $f^i=0$ , soit  $q^{p+q-i}=0$ . On en déduit que f+g est nilpotent.

Soit E un espace vectoriel de dimension finie n sur un corps  $\mathbb{K}$ .

#### 11.2. Décomposition de Dunford

**Théorème** 33 – Soit  $f \in \mathcal{L}(E)$ . On suppose que son polynôme caractéristique  $P_f(X)$  est scindé

Alors f s'écrit de manière unique f=d+n où d est un endomorphisme diagonalisable de E et n un endomorphisme nilpotent de E tels que  $d\circ n=n\circ d$ . De plus d et n sont des polynômes en u à coefficients dans  $\mathbb{K}$ .

Démonstration : notons  $\lambda_1,\ldots,\lambda_p$  les racines de  $P_f(X)$  distinctes deux à deux et  $\alpha_k$  leurs multiplicités respectives. Soit  $N_k=\operatorname{Ker}(f-\lambda_k Id)^{\alpha_k}$  et  $f_k$  la restriction de f à  $N_k$ .  $F_k$  est bien définie car  $N_k$  est stable par f. On note également  $g_k$  la restriction de  $f-\lambda_k$  à  $N_k$ . On a  $f_k=\lambda_k Id+g_k$ ; or  $\lambda_k Id$  est diagonalisable et  $g_k$  est nilpotente et ces deux endomorphismes commutent entre eux. On a donc montré l'existence de la décomposition. Montrons maintenant que les endomorphismes d et n sont des polynômes en u.

On pose  $P_i(X) = \prod_{j \neq i} (X - \lambda_j)^{\alpha_j}$  pour  $1 \leq i \leq p$ . Les polynômes  $P_i(X)$  sont premiers entre

eux dans leur ensemble. D'après le théorème de Bezout, il existe des polynômes  $Q_i(X)$  tels que  $P_1Q_1 + \cdots + P_pQ_p = 1$ . On a donc

$$P_1(f)Q_1(f) + \dots + P_p(f)Q_p(f) = Id_E.$$

Posons  $R_k(f) = P_k(f)Q_k(f)$ . Pour tout  $x \in E$ , on a  $x = R_1(f)(x) + \cdots + R_p(f)(x)$ . Comme  $R_k(f)(x) \in M_k$ , cette somme est en fait la décomposition de x dans la somme directe  $E = N_1 \oplus + \cdots \oplus N_p$ . L'application  $R_k(f)$  est donc la projection sur  $N_k$  parallèlement

à la somme directe des autres espaces. On pose alors  $d=\sum_{i=1}^p \lambda_k R_k(f)$  et n=u-d. Ce

sont bien des polynômes en u. L'endomorphisme d est bien diagonalisable car les  $R_k(f)$  commutent entre eux deux à deux et sont diagonalisables. L'endomorphisme n est nilpotent car le polynôme caractéristique de f est scindé donc il existe une base de E dans laquelle

#### RÉDUCTION D'ENDOMORPHISMES

la matrice représentative de f est triangulaire supérieure; or, dans cette base, la matrice de n est triangulaire supérieure avec une diagonale nulle.

Montrons enfin l'unicité de cette décomposition. Supposons qu'il existe D et N tels que f=D+N, D et N vérifiant les mêmes hypothèses que d et n. Comme D et N commutent, ils commutent avec f, donc ils commutent avec d et n car ce sont des polynômes en f. Posons h=D-d=n-N. n-N est nilpotent car n et N le sont. De plus D et d commutent et sont diagonalisables donc ils sont simultanément diagonalisables et D-d est diagonalisable. L'endomorphisme h est donc nilpotent et diagonalisable ; on en déduit qu'il est nul.

# RÉDUCTION DES ENDOMORPHISMES

| 1. Qu'est-ce que réduire un endomorphisme?            | 1  |
|-------------------------------------------------------|----|
| 2. Vecteurs propres - Valeurs propres                 | 1  |
| 2.1. Vecteurs propres                                 | 1  |
| 2.2. Polynôme caractéristique                         | 2  |
| 3. Caractérisation des endomorphismes diagonalisables | 2  |
| 4. Applications de la diagonalisation                 | 3  |
| 4.1. Calcul de la puissance d'une matrice             | 4  |
| 4.2. Suites récurrentes linéaires                     | 4  |
| 4.3. Systèmes de suites récurrentes                   | 4  |
| 4.4. Systèmes différentiels à coefficients constants  | 5  |
| 5. Trigonalisation                                    | 5  |
| 6. Le théorème de Cayley-Hamilton                     | 6  |
| 7. Théorème de décomposition des noyaux               | 7  |
| 8. Polynôme minimal                                   | 7  |
| 9. Sous-espaces caractéristiques                      | 8  |
| 10. Diagonalisation simultanée                        | 9  |
| 11. Décomposition de Dunford                          | 10 |
| 11.1. Endomorphismes nilpotents                       | 10 |
| 11.2 Décomposition de Dunford                         | 10 |