Week1 Quiz3

Quiz 3

;	3. Let β_j be the parameter associated with predictor x_j in a binomial regression model. For a reasonably large sample size n , a standard normal "z-test" can be used to test $H_0: \beta_j = 0 \ vs. \ H_1: \beta \neq 0$,	3 / 3 points
	True	
	○ False	
	⊘ Correct	
4.	Let $X_1,,X_n$ be a random sample from a distribution with pdf $f(x;\theta)$, and let $\hat{\theta}$ be the maximum likelihood estimator of θ . Then	3 / 3 points
	$\left(\hat{ heta}_{ML} - rac{1.96}{\sqrt{nI(heta)}} , \hat{ heta}_{ML} + rac{1.96}{\sqrt{nI(heta)}} ight)$	
	is an approximate 95% confidence interval for θ .	
	True	
	○ False	
	○ Correct	
5.	Goodness of fit metrics - such as the residual deviance - are only useful for the binomial regression with a relatively large number of trials (e.g., $n>5$).	3/3 points
	True	
	○ False	
	○ Correct	
_		
э.	Goodness of fit metrics - such as the residual deviance - are not useful for the binomial regression with a Bernoulli (0/1) response.	3 / 3 points
	True	
	○ False	
	○ Correct	

$$\eta_i = \beta_0 + \beta_1 x_i.$$

Test $H_0: \beta_1=0 \ \ vs \ \ H_1: \beta_1\neq 0$ by computing the appropriate p-value, rounded to the hundredths place.

Coefficients:

Estimate Std. Error (Intercept) -1.2467 0.6347 x 1.4224 1.1541

- 0 1
- 0.22
- 0.11
- \bigcirc 0.05
 - ✓ Correct

You can estimate the t-test (t-stat) as:

t_stat = Estimate/SD.Error

Computing p-value when t_stat or z-score is given:

p_value = 2 * (1 - pnorm(abs(t_stat)))

7. Cconsider a logistic regression fit an independent response $Y_i \sim Binomial(1,p)$ and a single predictor variable x. The linear predictor is:

4/4 points

$$\eta_i = \beta_0 + \beta_1 x_i.$$

Use maximum likelihood theory to construct an approximate 95% confidence interval for β_0 . Round all values to the hundredths place.

Coefficients:

Estimate Std. Error (Intercept) -1.2467 0.6347 x 1.4224 1.1541

(-2.48, -0.02)

- (-2.28, -0.22)
- (-0.47, 3.31)

Detailed Explanation

题目 1

The maximum likelihood estimator is asymptotically unbiased.

解释

英文: The maximum likelihood estimator (MLE) is a method used to estimate the parameters of a statistical model. The statement here is true because as the sample size increases to infinity, the bias of the MLE approaches zero, making it asymptotically unbiased.

中文: 最大似然估计 (MLE) 是一种用于估计统计模型参数的方法。此题为真,因为随着样本量趋近于无穷大,MLE的偏差趋近于零,这意味着它是渐进无偏的。

题目 2

As the sample size n tends to infinity, the distribution of the maximum likelihood estimator becomes $\hat{\theta}_{ML} \sim N(\theta, I^{-1}(\theta))$.

解释

英文: As the sample size increases, the distribution of the MLE approaches a normal distribution centered at the true parameter value θ , with variance equal to the inverse of the Fisher information. This is a consequence of the Central Limit Theorem applied to MLEs.

中文: 随着样本量增加,MLE的分布趋向于以真实参数值 θ 为中心的正态分布,其方差等于Fisher信息的逆。这是将中心极限定理应用于MLE的结果。

题目 3

Let β_j be the parameter associated with predictor x_j in a binomial regression model. For a reasonably large sample size n, a standard normal "z-test" can be used to test $H_0: \beta_j = 0$ vs. $H_1: \beta_j \neq 0$.

解释

英文: In a binomial regression model, when the sample size is sufficiently large, the estimated coefficients β_j follow an approximately normal distribution due to the Central Limit Theorem. Therefore, a standard normal "z-test" can be used to test the null hypothesis $H_0:\beta_j=0$ against the alternative hypothesis $H_1:\beta_j\neq 0$. This test determines whether the predictor x_j has a statistically significant effect on the response variable.

中文: 在二项回归模型中,当样本量足够大时,由于中心极限定理,估计的系数 β_j 近似服从正态分布。因此,可以使用标准正态 "z 检验" 来检验原假设 $H_0:\beta_j=0$ 与备择假设 $H_1:\beta_j\neq0$ 。此检验用于判断预测变量 x_j 是否对响应变量有统计显著性的影响。

题目 3.5

Let β_j be the parameter associated with predictor x_j in a binomial regression model. For a reasonably large sample size n, a standard normal "z-test" can be used to test whether x_j should be in the model.

解释

英文: This question extends the idea of using the z-test to determine whether a predictor x_j should be included in the model. If the z-test indicates that β_j is significantly different from zero, it suggests that x_j is important and should be part of the model.

中文: 该问题扩展了使用z检验来决定预测变量 x_j 是否应该包含在模型中的想法。如果z检验表明 β_j 显著不同于零,则表明 x_j 具有重要性,应该包含在模型中。

题目 4

Let X_1, \ldots, X_n be a random sample from a distribution with pdf $f(x; \theta)$, and let $\hat{\theta}$ be the maximum likelihood estimator of θ . Then

$$\left(\hat{ heta}_{ML} - rac{1.96}{\sqrt{nI(heta)}}, \hat{ heta}_{ML} + rac{1.96}{\sqrt{nI(heta)}}
ight)$$

is an approximate 95% confidence interval for θ .

解释

英文: This statement is true and reflects a method for constructing a 95% confidence interval for a parameter θ using the MLE $\hat{\theta}_{ML}$ and the Fisher information $I(\theta)$. The interval gives an estimate of where the true parameter is likely to be with 95% confidence.

中文: 这个说法是正确的,它反映了使用MLE $\hat{\theta}_{ML}$ 和Fisher信息 $I(\theta)$ 构建参数 θ 的95%置信区间的方法。该区间提供了一个估计,说明在95%的置信水平下,真实参数可能所在的范围。

qnorm(0.975) = 1.96

题目 5

Goodness of fit metrics - such as the residual deviance - are not useful for the binomial regression with a Bernoulli (0/1) response.

解释

英文: This statement is true. In binomial regression models with a Bernoulli response, traditional goodness-of-fit metrics like residual deviance may not be informative due to the binary nature of the response variable. These metrics are more useful in models with a larger number of trials per observation.

中文: 这个说法是正确的。在二项回归模型中,响应变量为Bernoulli (0/1)时,传统的拟合优度度量(如 残差偏差)可能不具备信息性,因为响应变量是二元的。这些度量在每次观察有更多试验次数的模型中 更有用。

题目 5.5

Goodness of fit metrics - such as the residual deviance - are only useful for the binomial regression with a relatively large number of trials (e.g. n > 5).

解释

英文: This statement elaborates on the previous one, highlighting that goodness-of-fit metrics like residual deviance are meaningful only when there are a sufficient number of trials in a binomial regression. For small numbers of trials (like in a Bernoulli response), these metrics lose their interpretative power.

中文: 这个说法补充了前一个问题,强调拟合优度度量(如残差偏差)只有在二项回归中试验次数足够多时才有意义。对于试验次数较少的情况(如Bernoulli响应),这些度量失去了解释力。

题目 6

Consider a logistic regression fit with an independent response $Y_i \sim \operatorname{Binomial}(1,p)$ and a single predictor variable x. The linear predictor is:

$$\eta_i = eta_0 + eta_1 x_i$$

Test $H_0: \beta_1=0$ vs $H_1: \beta_1 \neq 0$ by computing the appropriate p-value, rounded to the hundredths place.

Coefficients:

Coefficient	Estimate	Std. Error
(Intercept)	-1.2467	0.6347
х	1.4224	1.1541

$$p$$
-value = 0.22

解释

英文: To test the null hypothesis that the coefficient β_1 is zero, we compute the z-statistic by dividing the estimated coefficient by its standard error, then find the p-value using the standard normal distribution. In this case, the p-value is 0.22, which suggests that β_1 is not statistically significant at common significance levels (e.g., 0.05).

中文: 为了检验系数 β_1 为零的原假设,我们通过将估计系数除以其标准误差来计算z统计量,然后使用标准正态分布找到p值。在本例中,p值为0.22,这表明 β_1 在常见的显著性水平(如0.05)下没有统计显著性。

题目 7

Consider a logistic regression fit with an independent response $Y_i \sim \operatorname{Binomial}(1,p)$ and a single predictor variable x. The linear predictor is:

$$\eta_i = eta_0 + eta_1 x_i$$

Use maximum likelihood theory to construct an approximate 95% confidence interval for β_0 . Round all values to the hundredths place.

Coefficients:

Coefficient	Estimate	Std. Error
(Intercept)	-1.2467	0.6347
х	1.4224	1.1541

Confidence interval =
$$(-2.48, -0.02)$$

解释

英文: To construct a 95% confidence interval for β_0 , we use the estimate of β_0 and its standard error. The interval is computed as the estimate plus and minus 1.96 times the standard error. Here, the

resulting interval is (-2.48, -0.02), indicating where the true value of β_0 is likely to lie with 95% confidence.

中文: 为了构建 β_0 的95%置信区

间,我们使用 β_0 的估计值及其标准误差。区间通过估计值加减1.96倍的标准误差计算得出。在此例中,得到的区间为 (-2.48, -0.02),这表明在95%的置信水平下, β_0 的真实值可能位于该区间内。