OHO 作业9 2024 孙廷力 3=1 表 10 Res [7(b), e 7-3), ∞ まいること 3 11 (-(8-21) $(3), 27 = (-1)^{99} = -1$

= 0

f(3), 00

Date.

	11 151 15
かろ人三方とうるこの オール	
1. 3=0	
+(2)= 3" 50 (-1)". ()n(1)!	32001 1. 26.
$= \sum_{n=0}^{+\infty} (-1)^n \frac{1}{(2n+1)!}$	3011
n=027 C-(=1	
89: Res[f(8), 0]=1	7
20, 四: 宝男(1)=女子(女)	
	(: 1 00 (6) = 7
$= \frac{1}{2^2} \cdot \frac{1}{2^n} \sin 2$	5
. .	一年一年一年
= -1 519 8	
tio In	
$\frac{1}{2} \sum_{i=1}^{n} (-1) \cdot \frac{1}{2}$	*1), 9 "
N ,0	= 10(EB) mi) =:
n=01. C-1=1	(1.8) 108
29: ROS[f(8),100] =-1	
· · · · · · · · · · · · · · · · · · ·	
cle.	

: (617 5)

Date

$$\frac{3}{3-33k} \frac{3}{1+3k} \frac{3}{1+3k} \frac{3}{1+3k} = 0$$

$$=\lim_{N\to 0}\frac{3^{n-1}}{N3^{n-1}_{K}}=\frac{1}{n}3^{n-1}_{K}=-\frac{3k}{n}$$

$$z^{\circ}$$
. ∞ $\frac{1}{5}(318) = \frac{1}{3}(1) = \frac{3^{n+3}(3^{n+1})}{3^{n+3}(3^{n+1})}$

$$=\frac{1}{3^{n+2}}\sum_{n=0}^{+\infty}(-1)^n(3^n)^n$$

$$= \sum_{n=0}^{\infty} (-1)^n 3^{n^2-n-2} \qquad C_{-1} = 0$$

Dale

Res[f(0),
$$\frac{\pi}{4}$$
] = $\lim_{3 \to \frac{\pi}{4}} \frac{3}{\cos 3} (3 - \frac{\pi}{4}) = -\frac{\pi}{8}$

4). $C: (\chi-1)^2 + (y-1)^2 = 2$

网:这样的上湖成为以(1,1)为图公约图

曲は(内有とりる=1かる=(

Res[f(8), 1] = lim d (-1)

$$-\frac{\int_{-\infty}^{\infty} \left(-\frac{2\delta}{(\delta^2+1)^3}\right) = -\frac{1}{2}$$

Res[f(0), i] = lim 1/(3-1)2(0+i) = 1/2ici-1)2 = 4

$$5x + (1) = tanh 2 = \frac{e^{2x}-1}{e^{2x}+1}$$

(内奇学为型 为一阶极片

Dale.

$$=\frac{1}{3^{4}}\cdot\frac{\sum_{i=0}^{+\infty}n_{i}^{i}}{\sum_{i=0}^{n_{i}}\frac{\sum_{k=0}^{+\infty}(-1)^{k}}{\sum_{k=0}^{+\infty}(-1)^{k}}\frac{3^{k}}{3^{k}}}$$
 $|3|<|$

$$C_{-1} = -\frac{1}{3} \qquad Res \left[f(3), \infty\right] = 3$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} (3-1)^{n}$$

$$= \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} = \frac{3}{2} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{-1}$$

$$= \frac{1}{2} \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{3}{2} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{-1}$$

$$= \frac{3}{2} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{-1} = \frac{3}{2} \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)^{-1} = \frac{3}{2} \frac{1}{2} \frac{1}{$$

$$\frac{1}{5} = \frac{1}{5+3\frac{2^{2+1}}{2^{2+1}}} \cdot \frac{1}{1^{\frac{1}{3}}} d1$$

$$=-2i\oint_{C}\frac{1}{3\delta^{2}+10\delta+3}d\delta$$

Res
$$(f(d), -\frac{1}{3}) = \lim_{d \to -\frac{1}{3}} \frac{1}{d+3} = \frac{3}{8}$$

$$Q_1 \cdot \sqrt{3} = \int_0^{\frac{\pi}{2}} \frac{2}{3 - Cos 2x} dx$$

Date.

「「大=-i・分
$$= -i \cdot \oint_{C} = -i$$

$$Res[f(3), 3-2/5] = lim \frac{1}{3-3-215} ds$$

$$T = \oint_{C} g(P) dP - \oint_{C} \frac{3^{3}}{1 - 2a \cdot \frac{1}{2}!} + \alpha^{2} \frac{1}{1^{3}} dS - \frac{1}{1^{3}} dS$$

$$= i \oint_{c} \frac{3^{3}}{\alpha 3^{2} - (\alpha^{2} + 1) 3 + \alpha} d3$$

$$= i \oint_{c} \frac{3^{3}}{(\alpha 3 - 1)(3 - \alpha)} d3 \cdot (|\alpha| > 1)$$

$$\int_{-1}^{\infty} = \int_{-1}^{\infty} \times \int_{-1}^{\infty} \int_{-1}^{\infty} \frac{1}{\alpha^{2}(1-\alpha^{2})} = -2\pi \frac{1}{\alpha^{2}(1-\alpha^{2})}$$

Date.

$$\sqrt{1-2060046^2}$$

$$\int_{0}^{2\pi} \frac{\cos 3\theta}{1 - 2a \cos \theta + a} d\theta = -2\pi \frac{1}{a + 1 - a}$$