An Introduction to Marine Composites

Paul H. Miller
Department of Naval
Architecture and
Ocean Engineering
U. S. Naval Academy

Presentation Overview

- Why use composites in the marine environment
- What are they
- How to analyze
 them

- Design Examples
 - IACC rudder
 - 78' performance cruiser
- A marine composites dissertation project

Why Marine Composites?

- Approximately 1/3 of marine applications are now made of composites
- Low maintenance requirements (low life-cycle costs)

- High specific material properties
- High geometric flexibility
- Good moisture stability

Why not?

- High Initial Cost
- Tight tolerances required
- Fire/smoke toxicity
- Environmental

A "Composite"

- A combination of more than one material with resulting properties different from the components
- Examples:
 - Reinforced concrete
 - Wood
 - Polymer composites (1000+ resins, 25+ fibers, 20+ cores)
- S CONTRACTOR OF STREET
 - Note: a "composite ship" is not a composite material

Material Properties

- Isotropic
 Materials (ie metals)
- E

$$\forall \mathbf{v}$$

$$\forall \sigma_t, \sigma_c, \tau$$

- Transversely
 Isotropic
 Materials (ie one fiber in resin)
- E_x (fiber direction), E_y,
 G_{xy}

$$\forall \mathbf{v}_{\mathsf{x}\mathsf{y}}$$

$$\forall \sigma_{xt}, \sigma_{xc}, \sigma_{yt}, \sigma_{yc}, \tau_{xy}$$

Analysis Methods

- Classical Lamination Theory -Timoshenko's layered stiffness/stress approach. Uses matrix algebra.
- "Blended Isotropic" ABS Method

Empirical - Gerr

Methods Compared

- CLT
 - Analytically difficult
 - Accurate to within 1% if base properties are known.
 - Possible unconservative inaccuracy to 15%

- "Blended Isotropic"
 - Analytically easy
 - Accuracy to within 1% if all properties are known.
 - Possible unconservative inaccuracy to a factor of 4!

Suggestions

 Use "blended isotropic" for preliminary design (or to check for ABS compliance) only!

Use CLT for all final design!

Typical Material Properties Mostly linear stress/strain

- Brittle (0.8-2.7% ultimate strain) resins or fibers
- Stiffness and St tests - Wet/Dry
 - Tensile
 - Compressive
 - Shear
 - Flex
 - **Fatigue**

Moisture Absorption

Recults

1.8% weight gain for submerged

1.3% for 100% relative humidity

Equilibrium in 4

Example Design Problem - IACC Rudder

- Goal: As light as possible without breaking!
- Construction: Carbon fiber and epoxy
- Loads from Lift equations and CFD

Approach

- Geometry
- Loads
 - Fwd speed
 - Backing speed
 - Angle of Attacks
- Preliminary analysis from beam
 equations/CLT
 / lift equation

- FEA model
 - Laminate tailoring
 - CFD loads
 - Tsai-Wu and Hashin failure criteria

2 May

Webb Institute of

14

2 May

Webb Institute of

77 foot Performance Cruiser

- Carl Schumacher design
- Building at Timeless Marine, Seattle
- To ABS Offshore Yacht Guide

Approach

- Preliminary design using CLT ("Laminator"), MathCad (for ABS equivalent) and Excel (ABS Guide)
- Final design using FEA
- Nine load cases

My Dissertation

- Extend the standard fatigue methods used for metal vessels to composite vessels
- Verify the new method by testing coupons, panels and full-size vessels.

Simplified <u>Metal</u> Ship Fatigue Design

- 1. Predict wave encounter ship "history"
- 2. Find hull pressures and accelerations using CFD for each condition
- 3. Find hull stresses using FEA
 - Wave pressure and surface elevation
 - Accelerations
- 4. Use Miner's Rule and S/N data to get fatigue life

Project Overview

- Material and Application Selection
- Testing (Dry, Wet/Dry, Wet)
 - ASTM Coupons, Panels, Full Size
 - Static and Fatigue
- Analysis

- Local/Global FEA
- Statistical and Probabilistic

Material & Application Selection Ideally they should represent a large fraction of current applications!

- applications!Polyester Resin (65%)
- E-glass (73%)
- Balsa Core (30%)
- J/24 Class Sailboat
 - 5000+ built
 - Many available locally
 - Builder support
 - Small crews

Another day of research...

Finite Element Analysis

- Coupon, panel, global
- Element selection
 - Linear/nonlinear
 - Static/dynamic/quasi-static
 - CLT shell
 - Various shear deformation theories used (Mindlin and DiScuiva)
- COSMOS/M software
- Material property inputs from coupon tests

Fatigue Testing

Fatigue Results - S/N Data

Moisture decreased initial and final stiffness but the rate of loss was the same.

Specimens failed when stiffness dropped 15-25%
No stiffness loss for 12.5% of static failure load specimer
25% load specimens showed gradual stiffness loss

Panel Analysis

- Responds to USCG/SNAME studies
- Solves edgeeffect problems
- Hydromat test system
- More expensive
- Correlated with

Panel FEA Results

Impact Testing

• The newest boat had the lowest stiffness.

 Did the collisis microcracking

Yes, there
was
significant
microcrackin

Global FEA

- Created from plans and boat checks
- Accurately models vessel
 - 8424 quad shell elements
 - 7940 nodes
 - 46728 DOF
- Load balance with accelerations

On-The-Water Testing- Set Up

Instrument Locations for Boat Tests

Instrument Location

Strain Gage #1 Portside shroud chainplate

Strain Gage #2 Forestay chainplate

Strain Gage #3 Inside hull on centerline

Strain Gage #4 Inside hull off centerline

Strain Gage #5 Outside hull on centerline

Strain Gage #6 Outside hull off centerline

Accelerometer Bulkhead aft of strain gages

Data Records

