# Diving into Pommerman: A Multi-agent Playground

**DIYA MARL team** 

## Index

#### 1. Environment

#### 2. RL

- a. Value-based
- b. Policy-based
- c. Results

#### 3. MARL

- a. COMA
- b. QMIX
- c. Results

#### 4. Future work

## **Pommerman**

Pommerman: A Multi-Agent Playground

Cinjon Resnick\* Wes Eldridge Rebellious Labs Google Brain Denny Britz Jakob Foerster University of Oxford

Julian Togelius NYU Kyunghyun Cho and Joan Bruna NYU, FAIR

#### six actions

0: stop

1: up

2: down

3: left

4: right

5: bomb



three items:

extra bomb, can kick, and extra blast

## **Reinforcement Learning**

#### **Sequential** Decision Making through **Trial and Error**



Episode

State  $\rightarrow$  Action  $\rightarrow$  Reward, Next State

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$$

## **Value Function**

**Value Function** 

$$v_{\pi}(s) = \mathbf{E}_{\pi}[G_t|S_t = s]$$

Bellman Equation  $v_{\pi}(s) = \mathbf{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$ 

TD Update 
$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha\left(R_{t+1} + \gamma V\left(S_{t+1}\right) - V\left(S_{t}\right)\right)$$

### **TD Update for Maximum Return**

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha\left(R_{t+1} + \gamma maxV\left(S_{t+1}\right) - V\left(S_{t}\right)\right)$$

$$Q(s_t,a_t) = Q(s_t,a_t) + \eta*\left(\overline{R_{t+1} + \gamma \max_a Q(s_{t+1},a)} - Q(s_t,a_t)
ight)$$

## Value-based RL

#### **Q** function

$$oldsymbol{q}_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t|S_t=s,A_t=a]$$

$$Q(s_t,a_t) = Q(s_t,a_t) + \eta*\left(R_{t+1} + \gamma \max_a Q(s_{t+1},a) - Q(s_t,a_t)
ight)$$

#### **Q** Network



$$E(s_t,a_t) = \left(R_{t+1} + \gamma \max_a Q(s_{t+1},a) - Q(s_t,a_t)
ight)^2$$

backprop (Gradient Descent)

## Policy-based RL

**Policy** 

$$\pi(a|s) = \Pr(A_{\mathrm{t}} = a|S_{\mathrm{t}} = s)$$

### **Policy Network**





Objective Function:  $J(\theta)$ 

**Gradient Ascent** 

$$\theta' = \theta + \nabla_{\theta} J(\theta)$$

$$= \mathbb{E}[\nabla_{\theta} \log \pi_{\theta} \times X]$$

## **Actor-Critic**

### Actor

Policy Update 
$$\theta \leftarrow \theta + \alpha_{\theta} Q_{w}(s, a) \nabla_{\theta} \ln \pi_{\theta}(a|s)$$
;

**Gradient of Policy** evaluation

### Critic

$$\delta_t = r_t + \gamma Q_w(s', a') - Q_w(s, a)$$

Value Function 
$$w \leftarrow w + \alpha_w \delta_t \nabla_w Q_w(s, a)$$

## **Soft Actor-Critic**

### **Actor**

**Policy Update** 

Maximize Entropy along with Expected Return

$$J(\theta) = \sum_{t=1}^{T} \mathbb{E}_{(s_t, a_t) \sim \rho_{\pi_{\theta}}} [r(s_t, a_t) + \alpha \mathcal{H}(\pi_{\theta}(. | s_t))]$$

### Critic

Soft Q-value

#### Target Q-network

$$Q(s_t, a_t) = r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \rho_{\pi}(s)}[V(s_{t+1})]$$
  
where  $V(s_t) = \mathbb{E}_{a_t \sim \pi}[Q(s_t, a_t) - \alpha \log \pi(a_t|s_t)]$ 

; according to Bellman equation. ; soft state value function.

$$J_V(\psi) = \mathbb{E}_{s_t \sim \mathcal{D}}\left[\frac{1}{2}\left(V_{\psi}(s_t) - \mathbb{E}[Q_w(s_t, a_t) - \log \pi_{\theta}(a_t|s_t)]\right)^2\right]$$

## **PPO**

### **Policy Ratio**

$$r(\theta) = \frac{\pi_{\theta}(a|s)}{\pi_{\theta_{\text{old}}}(a|s)}$$

### **Surrogate objective**

$$J^{\text{CLIP}}(\theta) = \mathbb{E}[\min(r(\theta)\hat{A_{\theta_{\text{old}}}}(s, a), \text{clip}(r(\theta), 1 - \epsilon, 1 + \epsilon)\hat{A_{\theta_{\text{old}}}}(s, a))]$$



## Single play

**DQN** 





FC

Convolution

action (dim=6)

**PPO** 



## Single play



## **Bug finding**

#### Adversarial attack





### **MARL**

#### **RL vs MARL**



(image source: Zhang et. al. 2021)

## Joint-action dependency of state transition Partially Observable Markov Decision Process (POMDP)

- Competitive / Cooperative Behavior
- Learning Curriculum; Appropriate opponent
- Emergence Behavior; Self-play → Auto Curricula

## Counterfactual Multi-Agent Policy Gradients

#### 1. Counterfactual

#### 명사

1. 논리

조건법적 서술: 어떤 문장의 첫절이 사실과 정반대인 것을 서술할 경우의 표현법; 예를 들면 「만약 내가 알고 있었다면」(if I had known) 따위.

(image source: https://en.dict.naver.com/#/entry/enko/238ce2832a61426eb59007f28788411e)

Causal Inference 분야에서 자주 등장하는 개념 e.g. 정책평가

#### 2. Independent RL v.s. Centralized Critic & Decentralized Actor













## **COMA** concept

#### Policy gradient

 $g = \mathbb{E}_{s_{0:\infty},u_{0:\infty}}\left[\sum_{t=0}^T \overline{R_t} 
abla_{ heta^\pi} \log \pi(u_t|s_t)
ight]$ 

#### **COMA** gradient

$$g = \mathbb{E}_{oldsymbol{\pi}} \left[ \sum_a 
abla_ heta \log \pi^a(u^a | au^a) A^a(s, \mathbf{u}) 
ight]$$

#### Counterfactual Advantage

 $A^{a}(s, \mathbf{u}) = Q(s, \mathbf{u}) - \sum_{u'^{a}} \pi^{a}(u'^{a}|\tau^{a})Q(s, (\mathbf{u}^{-a}, u'^{a})).$ 

다른 agent들의 action은 고정된 상태에서 내가 다른 action을 취했더라면...?

#### **COMA** diagram



(image source: Foerster et. al. 2018)

## **COMA** result



## **QMIX**

### **Cooperative team play**

- 팀 단위의 reward
- Decentralized agents

전체 value function은 알겠어 각 agent 별로 Q function을 어떻게 구하지?





내가 몇등인지 보다 팀이 이기는게 중요하다 각 플레이어가 팀의 모든 observation을 볼 수 없다

## **QMIX** concept

#### Monotonicity Q value among cooperative agents

$$\underset{\mathbf{u}}{\operatorname{argmax}} Q_{tot}(\boldsymbol{\tau}, \mathbf{u}) = \begin{pmatrix} \operatorname{argmax}_{u^1} Q_1(\tau^1, u^1) \\ \vdots \\ \operatorname{argmax}_{u^n} Q_n(\tau^n, u^n) \end{pmatrix}$$

#### Full diagram of QMIX



## **QMIX** concept



## **QMIX** concept



하도록 **Q** function 학습

Monotonicity Q value among cooperative agents

$$\underset{\mathbf{u}}{\operatorname{argmax}} Q_{tot}(\boldsymbol{\tau}, \mathbf{u}) = \begin{pmatrix} \operatorname{argmax}_{u^1} Q_1(\tau^1, u^1) \\ \vdots \\ \operatorname{argmax}_{u^n} Q_n(\tau^n, u^n) \end{pmatrix} \Longrightarrow$$

 $Q_a$ 가 증가할 따 $Q_{tot}$  도 증가한다 y=Ax+b, A>= 0



## **QMIX** result



Against peaceful agents



Against stopped agents



### **Future work**

#### 1. Reward scheme modification

Sparse, Noisy reward problem Aggressive agents training

#### 2. Observation modification

Partially observable Full observable

#### 3. Imitation learning

Exploration problem (10^2400 >> 바둑)

#### 4. COMA, QMIX Success...!!!!!!

### Reference

Zhang, K., Yang, Z., & Başar, T. (2021). Multi-agent reinforcement learning: A selective overview of theories and algorithms. Handbook of Reinforcement Learning and Control, 321-384.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., & Whiteson, S. (2018, April). Counterfactual multi-agent policy gradients. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 32, No. 1).

Rashid, Tabish, et al. "Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning." *International Conference on Machine Learning*. PMLR, 2018.