特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07C 237/22, 255/60, 275/28, 311/06, 311/19, 327/42, 327/48, 335/26, C07D 205/04, 207/14, 207/16, 207/48, 209/08, 209/30, 289/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64, 309/38, 333/34, 333/38, 333/70, 335/02, A61K 31/165, 31/275, 31/34, 31/35, 31/38, 31/395, 31/40, 31/44, 31/47

A1

(11) 国際公開番号

WO98/22432

(43) 国際公開日

1998年5月28日(28.05.98)

(21) 国際出願番号

PCT/JP97/04174

(22) 国際出願日

1997年11月17日(17.11.97)

(30) 優先権データ

特顧平8/306192

1996年11月18日(18.11.96)

神徳 宏(KOUTOKU, Hiroshi)[JP/JP]

〒305 茨城県つくば市松代五丁目6番14号 Ibaraki, (JP)

山之内製薬株式会社 特許情報部内 Tokyo, (JP)

(71) 出願人(米国を除くすべての指定国について) 山之内製薬株式会社

(YAMANOUCHI PHARMACEUTICAL CO., LTD.)[JP/JP] 〒103 東京都中央区日本橋本町2丁目3番11号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

谷口伸明(TANIGUCHI, Nobuaki)[JP/JP]

〒305 茨城県つくば市桜三丁目28番4号 Ibaraki, (JP)

岡田 稔(OKADA, Minoru)[JP/JP]

〒302 茨城県取手市本郷五丁目6番29号 Ibaraki, (JP)

加来英貴(KAKU, Hidetaka)[JP/JP]

〒305 茨城県つくば市松代四丁目6番7-403 Ibaraki, (JP)

島田逸郎(SHIMADA, Itsuro)[JP/JP]

〒305 茨城県つくば市高野台二丁目12番1-B201 Ibaraki, (JP)

野澤栄典(NOZAWA, Eisuke)[JP/JP]

〒305 茨城県つくば市二の宮三丁目13番1-402 Ibaraki, (JP)

(74) 代理人 弁理士 長井省三,外(NAGAI, Shozo et al.)

〒174-8612 東京都板橋区建根三丁目17番1号

(81) 指定国 AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN. CU, CZ, EE, GE, GH, HU, ID, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SL, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO特許 (GH, KE, LS, MW, SD, SZ, UG, ZW), ユーラシ ア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)、欧州特許 (AT, BE, CH, DE, DK, ES, FL, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

NOVEL ACYLAMINO-SUBSTITUTED ACYLANILIDE DERIVATIVES OR PHARMACEUTICAL (54)Title: COMPOSITION COMPRISING THE SAME

(54)発明の名称 新規アシルアミノ置換アシルアニリド誘導体又はその医薬組成物

(57) Abstract

Acvlamino-substituted acylanilide derivatives represented by general formula (I) or salts thereof, and a pharmaceutical composition comprising the same. They have an antiandrogenic activity and are useful as a prophylactic or therapeutic agent for prostatic cancer, prostatic hypertrophy, defemination, hypertrichosis, bald head, acne, seborrhea and the like in which androgen is involved as an exacerbating factor.

(57) 要約

下記一般式(I)で示されるアシルアミノ置換アシルアニリド誘導体又はその塩及び,これらを含有する医薬組成物。

抗アンドロゲン作用を有し、アンドロゲンが増悪因子として関与する前立腺癌、前立腺肥大症、男性化症、多毛症、禿頭症、ざ瘡、脂漏等の予防又は治療剤として有用。

明細書

新規アシルアミノ置換アシルアニリド誘導体又はその医薬組成物

技術分野

本発明は、抗アンドロゲン薬として有用な、新規アシルアミノ世換アシルアニリド誘導体及びその塩並びに医薬組成物に関する。

背景技術

ステロイドホルモンの一種であるアンドロゲンは精巣や副腎皮質から分泌され、男性ホルモン作用を引き起こす。アンドロゲンは、標的細胞内に取り込まれて核内のアンドロゲン受容体に結合し、アンドロゲンが結合した該受容体は二量体を形成する。この二量体はDNA上のアンドロゲンーレスポンスーエレメントに結合してm-RNAの合成を促進し、アンドロゲン作用を司る蛋白を誘導することにより、生体内で種々の作用を発現させる(Prostate Suppl.45-51(1996))。アンドロゲンが増悪因子となる疾患には、前立腺癌、前立腺肥大症、男性化症、多毛症、禿頭症、ざ瘡、脂漏等が挙げられる。抗アンドロゲン剤は、アンドロゲンの転写活性化を抑制し、アンドロゲンの作用を遮断することから、これらのアンドロゲンが増悪因子となる疾患の治療剤として有用である。

抗アンドロゲン剤は、基質類似のステロイド骨格を有する化合物(ステロイト・系抗アンドロゲン剤)と、非ステロイド骨格を有する化合物(非ステロイド系抗アンドロゲン剤)に分類されている。

非ステロイド系抗アンドロゲン剤としては、アシルアニリド誘導体であるフルタミド(特開昭49-81332)が知られている。フルタミド自体には抗アンドロゲン作用はなく、代謝によってカルボニル基に直結する炭素原子(α炭素原子)に水酸基が置換することによりハイドロキシフルタミドとなり、活性発現することが知られており、この水酸基が抗アンドロゲン作用の発現に不可欠なものであると考えられている(J. Med. Chem 31, 954-959 (1988))。また、ビカルタミド(GB 8, 221, 421)も既に諸外国にて上市されており、GB 8, 221, 421にはアシルアニリド誘導体のアシル部分がアリール(又はヘテロアリール)スルホニル(又はスルフィニル若しくはチオ)やアリール(又はヘテロアリール)アミノで置換されたアルカノイル等であるアシルアニリド誘導体がクレームされている。しかしながら、実質的に開示された化合物は、ハイドロキシフルタミドと同様に、全てα炭素原子に水酸基を有する化合物である。

ー 方、カルボニルアミノアセトアニリド誘導体としては、US 4、532、251に、ビラジニルカルボニル基又は置換イミダゾリルカルボニル基で置換された2、6ージハロゲノフェニルグリシンアミドが殺菌剤として開示されている。しかしながら、これらの化合物が抗アンドロゲン作用を有することは開示も示唆もされていない。

非ステロイド系抗アンドロゲン剤としては、上記の化合物がよく知られているが、これらの抗アンドロゲン剤の効果は十分とはいえず、また副作用の面でいくつかの問題が指摘されている。即ち、薬物の中枢への作用によると考えられる女性化乳房、乳房痛(Semin. Oncol. 18 (5 Suppl 6) 13-18 (1991), J. Med. Chem. 31 954-959 (1988))や長期使用によるアゴニスト作用の発現(J. Urol. 153 (3 part 2) 1070-1072 (1995))等である。特に、前立腺癌の治療においては、アンドロゲン作用を完全に遮断する必要がある為、アゴニスト作用の発現は治療上大きな問題となる。

本発明の目的は、強力な抗アンドロゲン作用を有し、これらの副作用が少ない、新規アシルアミノ置換アシルアニリド誘導体及びその塩を提供すること、更にはこれらを含有する医薬を提供することである。

発明の開示

本発明者らは、既存の抗アンドロゲン剤に付随するこれらの問題点を解決するべく鋭意研究を行ったところ、意外にも、アシルアミノ基が置換したアシルアニリド誘導体が、従来、活性発現に必要であると考えられていた α 炭素原子の水酸基を有さなくとも、強い抗アンドロゲン作用を示し、更に副作用が少なく、良好な経口活性を有する化合物である事を見出し本発明を完成させるに至った。

即ち, 本発明は, 下記一般式(I)で示されるアシルアミノ置換アシルアニリド誘導体又は その塩に関する。

(式中の記号は以下の意味を有する。

R:及びR::同一又は異なってハロゲン原子,シアノ,ハロゲノ低級アルキル,ニトロ,カルボキシル,低級アルカノイル又は低級アルコキシカルボニル基

R3:水素原子又は低級アルキル基

n:0又は1

R⁴, R⁵, R⁶及びR⁻:同一又は異なって水素原子, 置換基を有していても良い低級アルキル 又はアラルキル基

或いは、R⁴とR⁵が一体となってヘテロ原子を含んでいても良いシクロアルキル基を形成してもよく、又は、nが1のときR⁵とR⁵が一体となって、シクロアルキレン基を形成してもよい A,及びA。:同一又は異なって結合又は低級アルキレン基

R⁸:水素原子,水酸基,低級アルコキシ,低級アルキル,アラルキル又はアラルキルオキシ 基

或いはR⁸とR⁵が一体となって含窒素シクロアルキレン基を形成してもよく,又はnが1のときR⁷とR⁸が一体となって含窒素シクロアルキレン基を形成してもよい。

Z:アシル基

X1:酸素原子又は硫黄原子

但し、Zがヘテロアリールカルボニル基の場合は、R⁴とR⁵の少なくとも一方は水素原子以外の基を示す。)

好ましくは、ZがY-R⁹(式中の記号は以下の意味を有する。

R°: 低級アルキル, シクロアルキル, 又は置換基を有していてもよいアリール, アラルケニル, アラルキル、若しくはアリールオキシ低級アルキル, 或いは, ベンゼン環と縮合してもよいヘテロアリール基

R10:水素原子又は低級アルキル基

X。:酸素原子又は硫黄原子

m:0又は1,2

但し、Yがカルボニル基であり、R⁹がヘテロアリール基の場合は、R⁴とR⁵の少なくとも一方は水素原子以外の基を示す。)であるアシルアミノ置換アシルアニリド誘導体又はその塩:

更に好ましくは、R*又はR*, R*及びR*の低級アルキル基若しくはアラルキル基の置換基が、1以上の同一又は異なった、ハロゲン原子、水酸基、低級アルコキシ、低級アルカノイルオキシ、ハロゲノ低級アルキル基からなる群より選択される置換基であり、R*:のアリール、アラルケニル、アラルキル若しくはアリールオキシ低級アルキル基、若しくは、ベンゼン

環と縮合してもよいヘテロアリール基の置換基が、1又はそれ以上の同一又は異なった、ハロゲン原子、水酸基、ハロゲノ低級アルキル、低級アルキル、低級アルコキシ、ハロゲノ低級アルカノイルオキシ、フェニル、モノ若しくはジ低級アルキルアミノ基、カルボキシル基、低級アルコキシカルボニル基、モノ若しくはジ低級アルキルアミノカルボニル、低級アルカノイルアミノ及びオキソ基からなる群より選択される置換基であるアシルアミノ置換アシルアニリド誘導体又はその塩;

より好ましくは、nが0であり、R⁴又はR⁵が同一又は異なって水素原子、又は1以上の同一又は異なった置換基が、水酸基、低級アルコキシ、低級アルカノイルオキシ、ハロゲノ低級アルキル基からなる群より選択される置換基を有していても良い低級アルキル若しくはアラルキル基であるアシルアミノ置換アシルアニリド誘導体又はその塩:

最も好ましくは、以下よりなる群の化合物又はその塩から選択される化合物:

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}-4-フルオロベンズアミド:

N-{1-[(3, 4-ジシアノフェニル)カルバモイル]-1-メチルエチル}-4-フルオロベンズアミド;

N-(1-[(3-クロロー4-シアノフェニル)カルバモイル]-1-メチルエチル)-4-フルオロベンズアミド:

 $N-\{1-[(4-\nu T)-3-\nu T)-1-\nu T)$ カルバモイル $[-1-\nu T]$ カルバエー $[-1-\nu T]$ カルバエー

4-クロローN-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}ベンズアミド:

である。

また、本発明は、アシルアミノ置換アシルアニリド誘導体又はその製薬学的に許容される 塩を有効成分とする医薬組成物、殊に抗アンドロゲン剤である医薬組成物に関し、なかでも、 前立腺癌、前立腺肥大症、男性化症、多毛症、禿頭症、ざ瘡、脂漏の予防又は治療剤であ る医薬組成物に関する。

一般式(I)で示される化合物について更に説明すると、次の通りである。

本明細書の一般式の定義において、特に断らない限り「低級」なる用語は炭素数が1万至 6個の直鎖又は分枝状の炭素鎖を意味する。 置換基を有していても良いアリール基,アラルケニル基,アラルキル基,ベンゼン環と縮合しても良いヘテロアリール基、若しくはアリールオキシ低級アルキル基は、環上に1乃至3個の置換基を有していてもよく、好ましくは、ハロゲン原子、ハロゲノ低級アルキル基,低級アルキル基,低級アルコキシ基,シアノ基、ニトロ基,低級アルカノイルオキシ基,水酸基,フェニル基、モノ若しくはジ低級アルキルアミノ基、モノ若しくはジ低級アルキルアミノ基、モノ若しくはジ低級アルキルアミノカルボニル基,低級アルカノイルアミノ基又はオキソ基である。

R⁴, R⁵, R⁶及びR⁷において「置換基を有していても良い低級アルキル基又はアラルキル 基」の置換基は、1以上の同一又は異なった置換基が、水酸基、低級アルコキシ基、低級ア ルカノイルオキシ基、ハロゲノ低級アルキル基からなる群より選択される。

「低級アルキル基」は直鎖状又は分枝状の炭素数1~6の低級アルキル基を示し、例えばメチル、エチル、nープロピル、イソプロピル、nーブチル、イソブチル、secーブチル、tertーブチル、nーペンチル、nーヘキシルなどが挙げられ、炭素数1~3の低級アルキル基が好ましい。

「低級アルキレン基」は直鎖状又は分枝状の炭素数1~6の低級アルキレン基を示し、例えばメチレン、エチレン、プロピレン、イソプロピレン、ブチレン、ペンタメチレン、ヘキサメチレンなどが挙げられ、炭素数1~3の低級アルキレン基が好ましく、更に好ましくはメチレンである。

「アリール基」は炭素数6~12の芳香族炭素水素基が好ましく、例えばフェニル、 α ーナフチル、 β ーナフチルなどがあげられる。更には、炭素数6~10のものが好ましい。

「アラルキル基」は「アリールー低級アルキレンー」を意味する。

「アラルキルオキシ基」は「アリールー低級アルキレンー〇一」を意味する。

「アラルケニル基」は「アリールー低級アルケニレンー」を意味し、好ましくは C_{6-10} アリールー C_{2-6} アルケニル基であり、フェニルエテニル、フェニルプロペニル、ナフチルエテニル、ナフチルプロペニルなどが挙げられる。

「アリールオキシ低級アルキル基」は「アリールーOー低級アルキレンー」を意味する。 「低級アルコキシ基」は「低級アルキルーOー」を意味する。

「低級アルコキシカルボニル基」は「低級アルキル-O-C(=O)-」を意味する。

「低級アルカノイル基」は「低級アルキルーC(=O)-」を意味する。

「低級アルカノイルオキシ基」は「低級アルキルーC(=O)ーOー」を意味する。

「低級アルカノイルアミノ基」は「低級アルキルーC(=O)-NR"-」を意味し、R"は水素原子又は低級アルキル基を示す。

「ハロゲン原子」としては例えば、フッ素、塩素、臭素又はヨウ素原子などが挙げられる「ハロゲノ低級アルキル基」の低級アルキル基は上記のC₁₋₆アルキル基に上記ハロゲン原子が1-3個置換したものであり、トリフルオロメチルが好ましい。

「ハロゲノ低級アルコキシ基」は「ハロゲノ低級アルキルー〇一」を意味する。

「アシル基」は、広義のアシル基を意味し、カルボニル誘導体及びスルホニル誘導体を意味する。

「シクロアルキル基」は3~8員飽和炭化水素環を意味し、好ましくは3~6員のシクロアルキルである。

「シクロアルキレン基」は上記のシクロアルキルの結合手が2つのものである。

「モノ若しくはジ低級アルキルアミノ基」とは、上記低級アルキル基が1又は2置換したアミノ基を意味する。

「モノ若しくはジ低級アルキルアミノカルボニル基」とは、「モノ若しくはジ低級アルキルアミノーC(=O)-」を意味する。

「R⁴とR⁵が一体となってヘテロ原子を含んでいてもよいシクロアルキル基」を形成するとは、環原子としてR⁴とR⁵及びそれらと結合している炭素原子を含む上記シクロアルキル基であり、環上に窒素原子、酸素原子、硫黄原子から選択されるヘテロ原子1つを含んでいてもよく、また、該ヘテロ原子、例えば、硫黄原子は1又は2個のオキソ基で置換されていてもよく、窒素原子は低級アルキル基で置換されていてもよい。ヘテロ原子は酸素原子が好ましく、具体的にはオキサニルが挙げられる。

「nが1のときR⁵とR⁶が一体となって、シクロアルキレン基を形成する」とは、R⁵とR⁶及びそれらと結合している炭素原子とA₁を環原子として含む上記シクロアルキレンを形成することを意味する。

「ベンゼン環と縮合していても良いヘテロアリール基」とは、窒素原子、酸素原子又は硫 黄原子から選択されるヘテロ原子1乃至3個を含む5又は6員ヘテロアリール基、又はベン ゼン環と縮合した2環系ヘテロアリール基を意味し、該ヘテロアリールとしては、ピロール、イ ミダゾール、ピラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアゾール、チオフェン、 チオピラン、フラン、ピラン、ジオキソラン、チアゾール、イソチアゾール、チアジアゾール、チ

アジン、オキサゾール、イソキサゾール、オキサジアゾール、フラザン、ジオキサゾール、オキサジン、オキサジアジン、ジオキサジン等が挙げられ、ベンゼン環と縮合した含窒素へテロアリールとしてはインドール、イソインドール、キノリン、イソキノリン、ベンゾチオフェン、ベンゾチアゾール、ベンゾフラン、ベンゾフラザン等が挙げられる。好ましくは、ピリジン、ピリミジン、インドール、キノリン、チオフェン、フラン等である。

「ヘテロアリールカルボニル基」とは、「ヘテロアリールーC(=O)ー」を意味し、ヘテロアリールとは、上記の5又は6員ヘテロアリールを意味する。

「R*とR*が一体となって含窒素シクロアルキレン基を形成する」又は「nが1のときR*とR*が一体となって含窒素シクロアルキレン基を形成する」とは、環原子としてR*が置換している窒素原子とR*が置換している炭素原子を含む5~7員含窒素シクロアルカン、又は環原子としてR*が置換している窒素原子とR*が置換している炭素原子及びA。を含む4~7員含窒素シクロアルカンを形成することを意味し、具体的にはピロール、ピペリジン、2~~キサビドロアゼピン等が挙げられ、ピロール又はピペリジンが好ましい。

本発明化合物において三級アミンを有する化合物は当該アミンがオキシド化されていて もよく、それらのオキシド化誘導体をすべて包含するものである。

本発明化合物(I)は、アミド結合に基づく互変異性体が存在する。置換基の種類によっては、1個乃至複数個の不斉炭素原子を有する場合もあり、これに基づく(R)体、(S)体等の光学異性体、ラセミ体、ジアステレオマー等が存在する。また、置換基の種類によっては、二重結合を有する場合もあり、(Z)体、(E)体等の幾何異性体が存在する。更に環を有する化合物ではシスートランスが存在することがある。本発明は、これらの異性体の分離されたものあるいは混合物を全て包含する。

本発明化合物は塩を形成する。具体的には、無機酸若しくは有機酸との酸付加塩、あるいは無機若しくは有機塩基との塩であり、製薬学的に許容しうる塩が好ましい。これらの塩としては、具体的には塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸若しくは燐酸等の鉱酸、又はギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、乳酸、リンゴ酸、酒石酸、クエン酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸若しくは、トルエンスルホン酸等の有機酸、又はアスパラギン酸若しくはグルタミン酸などの酸性アミノ酸との付加塩、ナトリウム、カリウム、マグネシウム、カルシウム、アルミニウム、リチウムなど無機塩基、メチルアミン、エチルアミン、エタノールアミンなどの有機塩基、リジン、オル

ニチンなどの塩基性アミノ酸との塩等を挙げることが出来る。更に4級アンモニウム塩であることもできる。4級アンモニウム塩は、具体的には低級アルキルハライド、低級アルキルトリフラート、低級アルキルトシラート又はベンジルハライド等と反応させて得られるアンモニウム塩であり、好ましくはメチルヨージド又はベンジルクロリド等との塩である。

更に、本発明化合物は水和物、エタノール等との溶媒和物や結晶多形を形成することができる。本発明は、これらの水和物、溶媒和物又は結晶多形の分離されたものあるいは混合化合物を全て包含する。

(製造法)

本発明化合物(I)は、種々の製造法を適用して製造することができる。以下にその代表的な製造法について説明する。

第一製法

$$\begin{array}{c} R^{1} \\ R^{2} \\ R^{2} \\ \end{array} \begin{array}{c} R^{3} \\ R^{4} \\ R^{5} \\ \end{array} \begin{array}{c} R^{6} \\ R^{7} \\ A_{1} \\ A_{2} \\ \end{array} \begin{array}{c} R^{8} \\ A_{2} \\ \end{array} \begin{array}{c} R^{8} \\ A_{2} \\ \end{array} \begin{array}{c} R^{3} \\ R^{4} \\ \end{array} \begin{array}{c} R^{5} \\ R^{6} \\ R^{7} \\ \end{array} \begin{array}{c} R^{8} \\ A_{2} \\ \end{array} \begin{array}{c} R^{8} \\ R^{2} \\ \end{array} \begin{array}{c} R^{1} \\ R^{2} \\ \end{array} \begin{array}{c} R^{3} \\ R^{4} \\ \end{array} \begin{array}{c} R^{5} \\ R^{6} \\ \end{array} \begin{array}{c} R^{7} \\ R^{2} \\ \end{array} \begin{array}{c} R^{8} \\ R^{2} \\ \end{array} \begin{array}{c} R^{1} \\ R^{2} \\ \end{array} \begin{array}{c} R^{3} \\ R^{4} \\ \end{array} \begin{array}{c} R^{5} \\ R^{6} \\ \end{array} \begin{array}{c} R^{7} \\ R^{2} \\ \end{array} \begin{array}{c} R^{8} \\ R^{2} \\ \end{array} \begin{array}{c} R^{1} \\ R^{2} \\ \end{array} \begin{array}{c} R^{3} \\ R^{4} \\ \end{array} \begin{array}{c} R^{5} \\ R^{6} \\ \end{array} \begin{array}{c} R^{7} \\ R^{2} \\ \end{array} \begin{array}{c} R^{8} \\ R^{2} \\ \end{array} \begin{array}{c} R^{1} \\ R^{2} \\ \end{array} \begin{array}{c$$

(式中の記号は、前述と同様である。)

本製造法は、一般式(II)で示される置換アニリン又はその塩と、一般式(III)で示されるカルボン酸又はその反応性誘導体又はチオカルボン酸、又はその反応性誘導体とをアミド化し、保護基を有するときは保護基を除去する事により本発明化合物(I)を製造する方法である。

化合物(III)の反応性誘導体としては、カルボン酸のメチルエステル、エチルエステル、イソブチルエステル、tertーブチルエステルなどの通常のエステル、酸クロリド、酸ブロミドの如き酸ハライド、酸アジド、2、4ージニトロフェノールなどのフェノール系化合物や1ーヒドロキシスクシンイミド、1ーヒドロキシベンゾトリアゾールなどのNーヒドロキシアミン系化合物等と反応させて得られる活性エステル、対称型酸無水物、アルキル炭酸ハライドなどのハロカルボン酸アルキルエステルやヒバロイルハライドなどと反応させて得られる有機酸系混合酸無水物や塩化ジフェニルホスホリル、Nーメチルチルホリンとを反応させ、又はトリフェニルホスフィンなどの有機燐化合物とNーブロモスクシンイミド等の活性化剤の組み合わせで得られ

る有機燐系の活性エステルが挙げられる

またカルボン酸を遊離酸で反応させるとき、又は活性エステルを単離せずに反応させる時など、ジシクロヘキシルカルボジイミド、カルボニルジイミダゾール、ジフェニルホスホリルアジド、ジエチルホスホリルシアニドや1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド塩酸塩、チオニルクロリド、オキザリルクロリド、五塩化燐、三塩化燐、オキシ塩化燐、ベンゾトリアゾールー1ーイルオキシトリス(ジメチルアミノ)フォスフォニウムヘキサフルオロフォスフェート、無水トリフルオロ酢酸、無水酢酸、ピバロイルクロリド、メタンスルホニルクロリドやトシルクロリド等の縮合剤を使用するのが好適である。特に本発明においては酸クロリド又は、燐酸系の混合酸無水物を用いる方法が有利である。

反応は使用する反応性誘導体や縮合剤などによっても異なるが、通常ジクロロメタン、ジクロロエタン、クロロホルムなどのハロゲン化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、エーテル、テトラヒドロフラン等のエーテル類、酢酸エチルエステル等のエステル類、アセトニトリル、N、Nージメチルホルムアミド、N、Nージメチルアセトアミド、Nーメチルー2ーピロリドンやジメチルスルホキシド等の反応に不活性な有機溶媒中、冷却下、冷却下乃至室温下、又は室温乃至加熱下に行われる。

尚, 反応に際して、置換アニリン(II)を過剰に用いたり、Nーメチルモルホリン, トリメチルアミン, トリエチルアミン, N, Nージメチルアニリン, ピリジン, 4ー(N, Nージメチルアニリン, ピリジン, ピコリン, ルチジンなどの塩基の存在下に反応させるのが、反応を円滑に進行させる上で有利な場合がある。ピリジンなどは溶媒とすることもできる

この際分子内に存在する酸素原子、硫黄原子、窒素原子等は保護基と結合していることが望ましい場合があり、このような保護基としてはGreene及びWuts著、「Protective Groups in Organic Synthesis」第2版に記載の保護基等を挙げることができ、これらを反応条件に応じて適宜使い分けることができる。

第二製法

$$R^3$$
 R^4 R^5 R^6 R^7 R^8 Z -OH Z またはその反応性誘導体 R^2 X_1 X_2 X_3 X_4 X_4 X_4 X_5 X_5 X_5 X_5 X_6 X_7 X_8 X_8

(式中の記号は、前述と同様である。)

本製造法は、本発明化合物(IV)で示される置換アミン又はその塩と、一般式(V)で示される力ルボン酸、又はその反応性誘導体、スルホン酸、又はその反応性誘導体、チオカルボン酸、又はその反応性誘導体とをアミド化し、本発明化合物(I)を製造する方法であり、第一製法と同様の反応条件が使用可能である。

更にウレア又はチオウレア誘導体を合成する際には、上記の他にイソシアン酸エステル、 又はインチオシアン酸エステル誘導体との縮合反応を用いるのが好適である。

反応は使用する反応性誘導体や縮合剤などによっても異なるが、通常ジクロロメタン、ジクロロエタン、クロロホルムなどのハロゲン化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、エーテル、テトラヒドロフラン等のエーテル類、酢酸エチルエステル等のエステル類、N、NージメチルホルムアミドやN、Nージメチルアセトアミドやジメチルスルホキシド等の反応に不活性な有機溶媒中、冷却下、冷却下乃至室温下、又は室温乃至加熱下に行われる。

尚, 反応に際して, 本発明化合物(IV)を過剰に用いたり, Nーメチルモルホリン, トリメチルアミン, トリエチルアミン, N, Nージメチルアニリン, ピリジン, 4ー(N, Nージメチルアミノ) ピリジン, ピコリン, ルチジンなどの塩基の存在下に反応させるのが, 反応を円滑に進行させる上で有利な場合がある。ピリジンなどは溶媒とすることもできる。

第三製法

(式中の記号は、前述と同様である。)

本製造法は、本発明化合物(Ia)で示されるアミド基をチオアミド基へと変換し、本発明化合物(Ib)を製造する方法である。

本反応は五硫化二燐、Lawesson試薬等アミド誘導体からチオアミド誘導体を合成する 公知である任意の化学的方法により製造可能である。

反応は通常ジクロロメタン、ジクロロエタン、クロロホルムなどのハロゲン化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、エーテル、テトラヒドロフラン等のエーテル類、酢酸エチルエステル等のエステル類、ピリジン等の反応に不活性な有機溶媒中、冷

却下、冷却下乃至室温下、又は室温乃至加熱下に行われる。

また分子内に複数個のアミド基又はウレアが存在する場合、反応条件等の調節により任意の部位又は複数個のアミド基をチオアミド基に、ウレアをチオウレアに変換する事が可能である。

その他、加水分解、水素化、ウレイド化等も常法により行われる。

このようにして製造された本発明化合物は、遊離のまま、その塩、その水和物、その溶媒和物、あるいは結晶多形の物質として単離精製される。本発明化合物(I)の塩は、常法の造塩反応に付すことにより製造することもできる。

上記製法の原料化合物中には、新規な物質も含まれているが、参考例記載の製法やその製法に準ずる方法、或いは当業者が任意に実施可能な変法を適用して製造できる。

単離精製は、抽出、濃縮、留去、結晶化、濾過、再結晶、各種クロマトグラフィー等の通常の化学操作を適用して行われる。

各種の異性体は、適当な原料化合物を選択することにより、あるいは異性体間の物理化学的性質の差を利用して分離することができる。例えば、光学異性体は適当な原料を選択することにより、あるいはラセミ化合物のラセミ分割法により、立体化学的に純粋な異性体に導くことができる。

産業上の利用可能性

本発明化合物はアンドロゲンによる転写活性化を抑制することにより、強力な抗アンドロゲン作用を有し、中枢作用、アゴニスト作用等の副作用の少ない化合物である。

従って、本発明化合物はアンドロゲンが増悪因子として関与する疾患、例えば、前立腺 癌、前立腺肥大症、男性化症、多毛症、禿頭症、ざ瘡、脂漏等の治療又は予防剤として有 用である。

本発明化合物の有用性は、下記の試験方法により確認されている。

1. ヒトアンドロゲン受容体に対する転写活性化作用

ヒト アンドロゲン受容体発現遺伝子, MMTV レホーター遺伝子安定形質転換体および SV40 レホーター遺伝子安定形質転換体の取得

CHO 細胞を, 直径 100 mm の細胞培養用ディッシュに 1×10⁶ 個播き, 12~18 時間後に, リン酸カルシウムと共沈殿させたヒト アンドロゲン受容体発現プラスミト', MMTV-LTR

ルシフェラーゼレボータープラスミド (ネオマイシン耐性遺伝子も含む) を加えトランスフェクションを行った。 15時間後に培地を除き、細胞を数段階に希釈し播き直し、培地に GENETICIN®(ネオマイシン)を終濃度 500 μ g/ml となるように加えた。約1週間後、ネオマイシンによって選択された細胞を剥がし、限界希釈法によりヒト アンドロゲン受容体発 現遺伝子、MMTV-ルシフェラーゼレホーター遺伝子を恒常的に発現する細胞を単雕取得した(CHO/MMTV 安定形質転換体)。

上記と同様にして SV40 レポーター遺伝子安定形質転換体を取得した。ただし, SV40 レポータープラスミドとネオマイシン耐性遺伝子発現プラスミドを同時にトランスフェクトした (CHO/SV40 安定形質転換体)。

a)とトアンドロゲン受容体に対する転写活性化作用の評価(agonist 作用)

CHO/MMTV 安定形質転換体細胞および CHO/SV40 安定形質転換体細胞を、それぞれ 96well 細胞培養用ルミノブレートに 1×10⁴ 個播き、6~8 時間後に本発明化合物を添加した。化合物添加 18 間後に 1% トリトン-X および 10% グリセロールを含む溶液 20 μ 1を加え細胞を溶かし、0.47mM ルシフェリンを含むルシフェラーゼ基質液 100 μ 1を加え、ルミノメーターを用いて発光量を測定し、これらをヒト アンドロゲン受容体による MMTV-LTR 転写活性化および、非特異的な SV40 プロモーター転写活性化により得られるルシフェラーゼの活性とした。

本発明化合物による転写活性化作用を InM DHT により誘導される転写活性に対する 比率として以下の式により算出した。

誘導率(%)=100(X-B)/(I-B)

I: InM DHT を添加した場合の(MMTVルンフェラーセ活性)/(SV40ルンフェラーセ活性)

B:無処置での(MMTV/ハシフェラーセ活性)/(SV40ハシフェラーセ活性)

X:本発明化合物を添加した場合の(MMTVルシフェラーセ、活性)/(SV40ルシフェラーセ、活性) b)とト アンドロゲン受容体に対する転写活性化抑制作用の評価(antagonist 作用)

CHO/MMTV 安定形質転換体細胞および CHO/SV40 安定形質転換体細胞を, それぞれ 96well 細胞培養用ルミノブレートに 1×10^4 個播き, $6 \sim 8$ 時間後に DHT(最終濃度 0.3nM)と同時に本発明化合物を添加した。 化合物添加 18 間後に 1% トリトン-X および 10% グリセロールを含む溶液 $20~\mu$ 1を加え細胞を溶かし, 0.47mM ルシフェリンを含む ルシフェラーゼ基質液 $100~\mu$ 1を加え、ルミノメーターを用いて発光量を測定し、これらを

ヒト アンドロゲン受容体による MMTV-LTR 転写活性化および, 非特異的な SV40 フロモーター転写活性化により得られるルシフェラーゼの活性とした。

本発明化合物による転写活性化抑制作用を 0.3nM DHT により誘導される転写活性に対する阻害率として以下の式により算出した。

阻害率(%)=100(I'-X')/(I'-B)

- 1':0.3nM DHT のみ添加した場合の(MMTVルシフェラーセ、活性)/(SV40ルシフェラーセ、活性)
- B:無処置での(MMTVルシフェラーセ、活性)/(SV40ルシフェラーセ、活性)
- X':本発明化合物と 0.3nM DHT を同時に添加した場合の(MMTVルシフェラーセ活性)/(SV40ルシフェラーセ活性)

上記の方法で算出した阻害率が 50%となる本発明化合物の濃度から IC30を求めた。 上記a)及びb)により求められた本発明化合物の活性を以下に示す。

#	7
茲	1

試験化合物	b) antagonist 作用 IC ₅₀ (nM)	a) agonist 作用 10 μ M添加時の誘導率(%)
実施例25	0.87	1.9
実施例17	0.56	0.5
実施例42	0.75	1.4
実施例72	0.71	0.4
実施例69	1.9	0.3
Bicalutamide	0.88	18.9

- 2. 幼若去勢ラットのテストステロン誘導前立腺重量増加に対する抑制作用
- 3 週令の雄性 Wistar ラットを去勢後 72 時間よりプロピオン酸テストステロンおよび本発明 化合物を同時に1日1回5日間連続投与した。最終投与6時間後, 腹側前立腺の湿重量を 測定し, プロピオン酸テストステロンによる前立腺重量増加に対する本発明化合物の抑制 作用を検討した。

プロピオン酸テストステロンは 5% エタノールを含む綿実油に溶解しラット体重 1Kg あたり 0.5mg を皮下投与した。本発明化合物は 0.5% メチルセルロース溶液に懸濁し経口投与した。

本発明化合物の前立腺重量増加抑制作用はプロピオン酸テストステロンおよび本発明化合物をともに投与した群を試験群、プロピオン酸テストステロンのみを投与した群を対照群、プロピオン酸テストステロンおよび本発明化合物ともに投与しない群を無処置群として、以下の計算式により算出した。

抑制率(%)=100(B-A)/(B-C)

- A 試験群の腹側前立腺湿重量
- B:対照群の腹側前立腺湿重量
- C:無処置群の腹側前立腺湿重量

上記の試験法により求められた本発明化合物の活性を以下に示す。

表2

_		
	試験化合物	前立腺重量增加抑制率(%)
		(10mg/kg p.o.)
	実施例42	79
	実施例30	79

これらの試験により、本発明化合物は純粋な抗アンドロゲン作用を有し、アンドロゲンの作用を強く抑制することが確認された。また、中枢移行性が低いことも確認されており、副作用が少なく、アンドロゲンが増悪因子として関与する疾患の予防・治療薬として有用な化合物である。

本発明化合物又はその塩の1種又は2種以上を有効成分として含有する製剤は、通常製剤化に用いられる担体や賦形剤、その他の添加剤を用いて調製される。

投与は錠剤, 丸剤, カプセル剤, 顆粒剤, 散剤, 液剤等による経口投与, あるいは静注, 筋注等の注射剤, 坐剤, 経皮等による非経口投与のいずれの形態であっても良い。投与量は症状, 投与対象の年令, 性別等を考慮して個々の場合に応じて適宜決定されるが, 通常経口投与の場合成人1日当り0.01~1000mg程度, 好ましくは0.1~100mg, 非経口投与の場合成人1日当り0.1~100mg, 好ましくは0.001~50mg程度であり, これを1回で, あるいは2~4回に分けて投与する。

本発明による経口投与のための固体組成物としては、錠剤、散剤、顆粒剤等が用いられる。このような固体組成物においては、一つ又はそれ以上の活性物質が、少なくとも一つの不活性な希釈剤、例えば乳糖、マンニトール、ブドウ糖、ヒドロキシプロピルセルロース、微結晶セルロース、デンプン、ポリビニルピロリドン、メタケイ酸、アルミン酸マグネシウムと混合される。組成物は、常法に従って、不活性な希釈剤以外の添加剤、例えばステアリン酸マグネシウムのような潤滑剤や繊維素グルコール酸カルシウムのような崩壊剤、ラクトースのような変定化剤、グルダミン酸又はアスパラギン酸のような溶解補助剤を含有していても良い。錠剤又は丸剤は必要によりショ糖、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロ

ピルメチルセルロースフタレート等の糖衣又は胃溶性あるいは腸溶性物質のフィルムで被膜しても良い。

経口投与のための液体組成物は、薬剤的に許容される乳濁剤、溶液剤、懸濁剤、シロップ剤、エリキシル剤等を含み、一般的に用いられる不活性な希釈剤、例えば精製水、エタノールを含む。この組成物は不活性な希釈剤以外に湿潤剤、懸濁剤のような補助剤、甘味剤、風味剤、芳香剤、防腐剤を含有していても良い。

非経口投与のための注射剤としては、無菌の水性又は非水性の溶液剤、懸濁剤、乳濁剤を包含する。水性の溶液剤、懸濁剤としては、例えば注射用蒸留水及び生理食塩水が含まれる。非水溶性の溶液剤、懸濁剤としては、例えばプロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油、エタノールのようなアルコール類、ポリソルベート8()等がある。このような組成物はさらに防腐剤、湿潤剤、乳化剤、分散剤、安定化剤(例えば、ラクトース)、溶解補助剤(例えば、グルタミン酸、アスパラギン酸)のような補助剤を含んでいても良い。これらは例えばバクテリア保留フィルターを通す濾過、殺菌剤の配合又は照射によって無菌化される。また、これらは無菌の固体組成物を製造し、使用前に無菌水又は無菌の注射用溶媒に溶解して使用することもできる。

発明を実施するための最良の形態

以下に実施例を掲記し、本発明を更に詳細に説明する。本発明は、これらの実施例に何 ら制限されるものではない。尚、実施例で用いられる原料化合物の製造方法を参考例とし て説明する。

参考例1-1

2-(4-フルオロフェニルスルホニルアミノ)ブタン酸メチル

2ーアミノ ブタン酸メチル塩酸塩1.54gをクロロホルム15mlに溶解し、氷冷下、トリエチルアミン2.23g、pーフルオロフェニルスルホニルクロリド1.95gを順次滴下した後、アルゴン雰囲気下、室温で4時間攪拌した。反応液をクロロホルム35mlで希釈し、1N塩酸50ml、飽和重曹水50mlで洗浄後、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残渣にジイソプロピルエーテル10mlを加え、析出した結晶を酢酸エチルより再結晶し、無色結晶の表題化合物2.73gを得た。

参考例1-1と同様に以下の参考例を合成した。

参考例	化合物名
参考例1-2	2-(4-フルオロバンソイルアミノ)・2-メチルプロパン酸メチル
参考例1-3	2-(2-メトキシベンゾイルアミノ)-2-メチルプロパン酸メチル
参考例1-4	2-(4-シアノベンゾイルアミノ)-2-メチルプロパン酸メチル
参考例1-5	2-(4-トリフルオロメチルベンゾイルアミノ)-2-メチルプロパン酸メチル
参考例1-6	2-(4-フルオロフェニルスルホニルアミノ)-2-メチルプロパン酸メチル
参考例1-7	2-(4-ニトロフェニルスルホニルアミノ)-2-メチルプロパン酸メチル
参考例1-8	2-(4-メトキシフェニルスルホニルアミノ)-2-メチルプロパン酸メチル
参考例1-9	3-(4-フルオロフェニルスルホニルアミノ)プロパン酸メチル
参考例1-10	3-(4-フルオロフェニルスルホニルアミノ)ブタン酸メチル
参考例1-11	1-(4-フルオロフェニルスルホニルアミノ)シクロプロピルカルボン酸メチル
参考例1-12	1 (4-フルオロベンゾイルアミノ)シクロプロピルカルボン酸メチル
参考例1-13	1-(4-フルオロフェニルスルホニルアミノ)シクロペンチルカルボン酸メチル
参考例1-14	1-(4-フルオロベンゾイルアミノ)シクロペンチルカルポン酸メチル
参考例1-15	1-(4-フルオロフェニルスルホニルアミノ)シクロヘキシルカルボン酸メチル
参考例1-16	1-(4-フルオロベンゾイルアミノ)シクロヘキシルカルボン酸メチル
参考例1-17	4-(4-フルオロベンゾイルアミノ)テトラヒドロピラン-4-カルボン酸メチル
参考例1-18	3-(4-フルオロベンゾイルアミノ)-2,2,3-トリメチルブタン酸エチル

参考例2-1

2-(4-フルオロフェニルスルホニルアミノ)ブタン酸

2-(4-フルオロフェニルスルホニルアミノ)ブタン酸メチル2.73gをメタノール40mlに溶解し、氷冷下、1N水酸化ナトリウム水溶液20mlを滴下後、室温で8時間攪拌した。減圧下にメタノールを留去した後、氷冷下、1N塩酸20mlを滴下してpH2とし、酢酸エチル50mlで4回抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、残渣にジイソフロビルエーテル20mlを加え、折出した結晶を酢酸エチルより再結晶し、無色結晶の表題化合物1.53gを得た。

参考例2-1と同様に、以下の参考例を合成した。

参考例	化合物名
参考例2-·2	2-[(4-フルオロフェニルスルホニル)メチルアミノ]プロパン酸
参考例2-3	2-(4-フルオロベンゾイルアミノ)-2-メチルプロパン酸
参考例2-4	2-(2-メトキシベンソイルアミノ)-2-メチルプロパン酸
参考例2-5	2-(4-シアノベンゾイルアミノ)-2-メチルプロパン酸
参考例2-6	2-(4-トリフルオロメチルベンゾイルアミノ)-2-メチルプロパン酸
参考例2-7	2-(4-フルオロフェニルスルホニルアミノ)-2-メチルプロバン酸
参考例2-8	2-(4-ニトロフェニルスルホニルアミノ)-2-メチルプロパン酸
参考例2-9	2-(4-メトキシフェニルスルホニルアミノ)-2-メチルプロパン酸
参考例2-10	2-(N-ベンジルオキシ-4-フルオロベンズアミド)-2-メチルプロパン酸
参考例2-11	3-(4-フルオロフェニルスルホニルアミノ)プロパン酸
参考例2-12	3-(4-フルオロフェニルスルホニルアミノ)ブタン酸
参考例2-13	1 (4フルオロフェニルスルホニルアミノ)シクロプロピルカルボン酸

参考例2-14	1-(4-フルオロベンゾイルアミノ)シクロプロピルカルボン酸
参考例2-15	1-(4-フルオロフュニルスルホニルアミノ)シクロペンチルカルボン酸
参考例2-16	1-(4-フルオロベンゾイルアミノ)シクロベンチルカルボン酸
参考例217	1-(4-フルオロフュニルスルホニルアミノ)シクロヘキシルカルボン酸
参考例2-18	1-(4-フルオロベンゾイルアミノ)シクロペキシルカルボン酸
参考例219	4 (4ーフルオロベンソイルアミノ)テトラヒドロピランー4ーカルボン酸
参考例2-20	3-(4-フルオロベンゾイルアミノ) -2.2.3トリメチルブタン酸

参考例3

2-[(4-フルオロフェニルスルホニル)メチルアミノ]プロパン酸メチル

2-(4-フルオロフェニルスルホニルアミノ)プロバン酸メチル500mgをN, Nージメチルホルムアミド5mlに溶解した後、炭酸カリウム320mgを加え、室温で10分間攪拌した。反応液を氷冷し、ヨウ化メチル330mgを加え、アルゴン雰囲気下、室温で12時間攪拌した。反応液を酢酸エチル50mlで希釈し、蒸留水50mlで洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、得られた粗結晶を酢酸エチルから再結晶し、無色結晶の表題化合物470mgを得た。

参考例4-1

2ーベンジルオキシカルボニルアミノーNー(4ーシアノー3ートリフルオロメチルフェニル) プロハンアミド

2ーベンジルオキシカルボニルアミノプロパン酸6. 69gとN, Nージメチルアセトアミド70 mlの混合液を、一20℃に冷却した後、チオニルクロリド3. 93gを滴下した。アルゴン雰囲気下、同温度で1時間攪拌した後、4ーアミノー2ートリフルオロメチルベンゾニトリル5. 58gを少量ずつ加え、更に3時間攪拌した。反応液を酢酸エチル200mlで希釈後、飽和重曹水200mlで洗浄し、更に蒸留水200mlで2回洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルーヘキサン(7:3)溶出部より粗結晶を得た。この粗結晶を酢酸エチルから再結晶し、無色結晶の表題化合物8. 17gを得た。

参考例4-1と同様に以下の参考例を合成した。

参考例	化合物名
参考例4-2	2ーベンジルオキシカルボニルアミノーN - (4-シアノ・3トリフルオロメチルフェニル) メチルプロパンアニリド
参考例4-3	2ーベンジルオキシカルボニルアミノーN-(4-シアノ-3-トリフルオロメチルフェニル)-3-メトキシプロパンアミド

参考例44	3- ベンジルオキシカルボエルアミノーN (4ーシアノ- 3ートリフルオロメチルフェニル) 2, 2ージメチルプロバンアミド
参考例4-5	2ーアリルオキシカルボニルアミノーN-(3,4-ジシアノフェニル)-3-メチル ブタンアミド
参考例4-6	1- ベンジルオキシカルボニルアミノ-N-(4-シアノ-3-トリフルオロメチルフェニル)シクロブチルカルボキサミド

参考例5

2-(N-ベンジルオキシカルボニルアミノ)-2-メチルプロパン酸

1N水酸化ナトリウム水溶液56mlに、氷冷下、2-アミノー2ーメチルプロバン酸5.79gを加え、続いて、ベンジルオキシカルボニルクロリド12.45gと1N水酸化ナトリウム水溶液75mlをそれぞれ4回に分けて滴下し、室温で3時間攪拌した。反応溶液を100mlのエーテルで3回洗った後、pH2になるまで1N塩酸を加え、300mlの酢酸エチルで3回抽出した。有機層を蒸留水で洗い、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、残渣を酢酸エチルーへキサン混合溶媒により再結晶し、無色結晶の表題化合物6.95gを得た。参考例6

4'ーシアノー3'ートリフルオロメチルトリフルオロアセトアニリド

4ーアミノー2ートリフルオロメチルベンゾニトリル5. (O)gをクロロホルム2()mlに溶解し、無水トリフルオロ酢酸5. 31mlを加え室温にて30分攪拌した。析出した結晶を濾取し、クロロホルムで洗浄し表題化合物3. 93gを得た。

参考例7

4ーメチルアミノー2ートリフルオロメチルベンゾニトリル

水素化ナトリウム0. 22gをN, Nージメチルホルムアミド10mlに懸濁し, 上記4'ーシアノー3'ートリフルオロメチルトリフルオロアセトアニリド1. 41gを加え氷冷下30分攪拌した。反応溶液にヨウ化メチル0. 62mlを加え4時間60℃で攪拌後, 反応溶液に氷冷下飽和炭酸カリウム水溶液10mlを加え同温度で1時間攪拌した。反応液を酢酸エチル50mlで希釈後,蒸留水50mlで2回洗浄し,無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後,残渣をシリカゲルカラムクロマトグラフィーに付し,酢酸エチルーヘキサン(3:7)溶出部より表題化合物0. 63gを得た。

参考例8

2-(ベンジルオキシアミノ)-2-メチルプロパン酸エチル

α ブロモイソ酪酸エチル1.95gおよび〇ーベンジルビドロキシルアミン塩酸塩1.6gのN、Nージメチルホルムアミド溶液20mlに無水炭酸カリウム3.3gを加え、120°Cで10時間提拌した。反応溶液を減圧下濃縮し、残渣に水を加え、酢酸エチルで抽出した。有機層を0.5N塩酸、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗滌した後、無水硫酸ナトリウムで乾燥した。溶媒を減圧下に留去し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、ヘキサン一酢酸エチル(10:1)溶出部より油状物として表題化合物0.33gを得た。参考例9

2-(N-ベンジルオキシー4-フルオロベンズアミド)-2-メチルプロバン酸エチル 2-(ベンジルオキシアミノ)-2-メチルプロパン酸エチル 0.85 g のピリジン溶液 10 ml に 4-フルオロベンゾイルクロリド 0.68 g を加え, 10 時間加熱還流した。反応溶液を減圧下濃 縮し、残渣に1N塩酸を加え、酢酸エチルで抽出した。有機層を水洗後、無水硫酸マグネシ ウムで乾燥した。溶媒を減圧下留去じ、得られた結晶を石油エーテルで洗滌し、表題化合 物 0.95 g を得た。

参考例10-1

2ーアミノーNー(4ーシアノー3ートリフルオロメチルフェニル)プロパンアミド

参考例4-1で合成した2ーベンジルオキシカルボニルアミノーN-(4ーシアノー3ート)フルオロメチルフェニル)プロパンアミド500mgを1,2ージクロロエタン5mlに溶解し,氷冷下,ジメチルスルフィド790mg,三フッ化ホウ素ジエチルエーテル錯体600mgを順次加え,アルゴン雰囲気下,室温で13時間攪拌した後,飽和塩化アンモニウム水溶液10mlを加えた。更に室温で30分攪拌した後,氷冷下,pH10になるまで1N水酸化ナトリウム水溶液を加え,酢酸エチル50mlで3回抽出し,有機層を無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後,残渣にメタノールを加え,析出した結晶をメタノールより再結晶し,無色結晶の表題化合物189mgを得た。

(別法)

2-アミノー2-メチルプロピオン酸277mgをN, N-ジメチルアセトアミド3mlに懸濁し、 -10°CにてチオニルクロリドO. 206mlを加え同温にて1時間攪拌した。次いで4-アミノー 2-トリフルオロメチルベンズニトリルを加え、室温まで徐々に昇温しながら2時間攪拌した 反応溶液に水を加え、酢酸エチルで洗浄後、1規定水酸化ナトリウム水溶液でアルカリ性に した。遊離した油状物を酢酸エチルで抽出し、無水硫酸ナトリウムにて乾燥した。溶媒を減

圧下濃縮し、得られた残留物をシリカゲルカラムクロマトグラフィーにて精製し、クロロホルムーメタノール(97:3)溶出部より表題化合物400mgを無色油状物として得た。更に酢酸エチルーへキサンより再結晶を行い表題化合物を得た。本化合物の諸物性値は上記で得られた化合物と完全に一致した。

参考例10-1と同様に以下の参考例を合成した。

参考例10-2

2-アミノ-N-(4-シアノ-3-トリフルオロメチルフェニル)-2-メチルプロハンアミド 参考例10-3

N-(4-シアノ-3-トリフルオロメチルフェニル)-2-メチルプロリンアミド塩酸塩 参考例11-1

2ーアミノーNー(3,4ージシアノフェニル)ー2ーメチルプロバンアミド

- (1)2ーベンジルオキシカルボニルアミノー2ーメチルプロパン酸30gとN, Nージメチルアセトアミド130mlの混合液を, −20℃に冷却した後, チオニルクロリド10. 2mlを滴下した。アルゴン雰囲気下, 同温度で1時間攪拌した後, 4−アミノフタロニトリル18. 2gとN, Nージメチルアセトアミド70mlの混合液を滴下し, 同温度で7時間, 更に0℃で18時間攪拌した。反応液を酢酸エチルで希釈後, 飽和重曹水で洗浄した。更に, 1N塩酸, 飽和塩化ナトリウム水溶液で洗浄した後, 無水硫酸マグネシウムで乾燥した。 減圧下に溶媒を留去し, 粗結晶を得た。
- (2)得られた粗結晶をジクロロメタン100mlに溶解し、氷冷下ジメチルスルフィド25ml、三フッ化ホウ素ジエチルエーテル錯体15mlを順次加え、室温で3日間攪拌した後、更に、ジメチルスルフィド25ml、三フッ化ホウ素ジエチルエーテル錯体15mlを加え、室温で1日間攪拌した。反応液に1N塩酸を加え、攪拌した後分液し、水層をクロロホルムで洗浄した。水層がpH10になるまで1N水酸化ナトリウムを加えた後、酢酸エチルにより抽出した。減圧下に溶媒を留去し、得られた粗結晶を酢酸エチルとヘキサンの混合溶媒より再結晶し、表題化合物4.7gを得た。

参考例11-1と同様に以下の参考例を合成した。

参考例11-2

2-アミノ-2-(3,4-ジシアノフェニルカルバモイル)エチル アセテート

参考例12-1

2-アミノーNー(4-シアノー3ートリフルオロメチルフェニル)ー3ーメトキシフロハンアミド 2ーベンジルオキシカルボニルアミノーNー(4ーシアノー3ートリフルオロメチルフェニル)ー3ーメトキシプロハンアミド2. Ogをアセトニトリル30mlに溶解し、氷冷下、ヨウ化トリメチルシラン1. 4mlを加え、同温で1時間攪拌した。反応液にメタノール1ml、水30mlを順次加え、ジエチルエーテルで洗浄した。水層がpH9になるまで飽和重曹水を加えた後、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去し、得られた粗結晶を酢酸エチルとヘキサンの混合溶媒により再結晶し、表題化合物1. Ogを得た。

参考例12-1と同様に以下の参考例を合成した。

参考例12-2

1-アミノーN-(4-シアノ-3-トリフルオロメチルフェニル)シクロブチルカルボキサミド 参考例12-3

3ーアミノーNー(4ーシアノー3ートリフルオロメチルフェニル)ー2, 2ージメチルプロパンアミド

参考例13

2ーアミノー(3,4ージシアノフェニル)-3ーメチルブタンアミド

参考例10で合成した2ーアリルオキシカルボニルアミノーNー(3,4ージシアノフェニル) ー3ーメチルブタンアミド1.88g及びぎ酸530mgのテトラヒドロフラン溶液にテトラキストリフ エニルフォスフィンパラジウム1.66gを加えアルゴン気流下10時間加熱還流した。反応混 合物を減圧下濃縮し得られた残留物を1規定塩酸及び酢酸エチルに溶解し水層を分離し た。この水層を1規定水酸化ナトリウム水溶液にて塩基性にし、遊離した油状物を酢酸エチ ルで抽出後、無水硫酸ナトリウムにて乾燥した。溶媒を減圧下濃縮し、得られた残留物をシ リカゲルカラムクロマトグラフィーにて精製し、クロロホルムーメタノール(95:5, V/V)溶出 部より表題化合物435mgを無色油状物として得た。

参考例14

1ーベンジルオキシカルボニルーN-(4-シアノ-3-トリフルオロメチルフェニル)-2 ーメチルプロリンアミド

1 ベンジルオキシカルボニル - 2ーメチループロリン3. 2gを1, 2ージクロロエタン10ml に溶解し、氷冷下、オキサリルクロリド470mgを滴下した後、触媒量のN、Nージメチルホル

ムアミドを加え、同温で1時間攪拌した。減圧下に溶媒を留去した後、1、2-ジクロロエタン20mlを加え再度留去した。得られた残渣をN、N-ジメチルアセトアミド5mlに溶解し、水冷下、4-アミノー2ートリフルオロメチルベンゾニトリル3.2gを少量ずつ加えた後、室温で6時間攪拌した。反応液を酢酸エチル50mlで希釈した後、1N塩酸50ml、飽和重曹水50ml、蒸留水50mlでそれぞれ洗浄し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、クロロホルムーへキサンから再結晶し、表題化合物5.64gを得た。

参考例15-1

[4-(4-フルオロベンゾイル)アミド]シクロヘキシルカルボン酸

4ーアミノシクロヘキシルカルボン酸(cis 及び trans の混合物) 1. 43gを1規定水酸化ナトリウム水溶液10mlに溶解し、トリエチルアミン1. ()1gを加えた。次いで4ーフルオロベンゾイルクロリド1. 59gのテトラヒドロフラン溶液(5ml)を氷冷下滴下し、室温にて2時間攪拌した。反応溶液を減圧にて濃縮し、エーテルで洗浄後、濃塩酸を用いて酸性にし、酢酸エチルで抽出し、乾燥後濃縮し表題化合物2. 41gを得た。

参考例15-1と同様にして以下の参考例を合成した。

参考例15-2

1-(4-フルオロベンゾイル)アゼチジン-3-カルボン酸 これらの参考例の物性値を表に示す。

なお、表中の記号は以下の意味を有する。

Ref.Ex.:参考例番号 AcOEt:酢酸エチル

DATA :物理化学的性状Hex : ヘキサン

NMR:核磁気共鳴スペクトル EtOH:エタノール

(特に明記しない限り, DMSO-d₆, (Et)₂O:ジエチルエーテル

TMS 内部標準で測定) 1.2-diCl-Et: 1, 2 - ジクロロエタン

mp :融点

表3

Ref.Ex	DATA
1-1	NMR: δ:0.77(3H,t,J=7.3Hz),1.40-1.66(2H,m),3.40-3.64(1H,m),3.68(3H,s), 7.28-7.47 (2H,m),7.77-7.92(2H,m),8.15(1H,d,J=8.8Hz)
1-2	NMR(CDCl ₃ ,TMS internal standard) \(\lambda : 1.68(6H,c), 2.79(3H,c), 6.77(1H,br), 7.00-7.10(2H,m), 7.71-7.07(2H,m)
1-3	NMR(CDCl ₃ ,TMS internal standard) δ:1.65(6H,s),3.62(3H,s),4.00(3H,s),6.95-7.45(3H,m),8.20-8.49(2H,m)

Ref.Ex	DATA
	ANAD. S. 4. 40(6U.e.) 7. 59(9U.e.) 7. 60. 9. 60(4U.e.) 9. 70(4U.e.)
1-4	NMR: δ :1.46(6H,s),3.58(3H,s),7.90-8.03(4H,m),8.72(1H,s)
1-5	NMR: δ :1.48(6H,s),3.60(3H,s),7.73-8.10(4H,m),8.85(1H,s)
1-6	NMR(CDCl ₃ ,TMS internal standard) δ:1.39(6H,s),3.58(3H,s),5.43(1H,s),7.08-7.16(2H,m),7.85-8.85(2H,m)
1-7	NMR(CDCl ₃ ,TMS internal standard)
	δ:1.48(6H,s),3.71(3H,s),5.63(1H,br),8.02-8.12(2H,m),8.31-8.40(2H,m)
1-8	NMR(CDCl ₃ ,TMS internal standard)
	δ:1.44(6H,s),3.66(3H,s),3.86(3H,s),5.27(1H,br),6.90-7.00(2H,m),7.56-7.86 (2H,m)
1-9	NMR(CDCl ₃ ,TMS internal standard)
	δ:2.55-2.64(2H,m),3.12-3.34(2H,m),3.69(3H,s),7.18-7.31(3H,m),7.81-7.85 (2H,m)
1-10	NMR(CDCl ₃ ,TMS internal standard)
}	δ:1.19(3H,d,J=6.8Hz),2.53(2H,d,J=5.5Hz),3.62-3.90(4H,m),5.37-5.45(1H,m), 7.11-
1-11	7.21(2H,m),7.79-7.95(2H,m)
	NMR: δ:1.15-1.32(4H,m),3.31(3H,s),7.32-7.52(2H,m),7.73-7.89(2H,m), 8.78(1H,s)
1-12	NMR: δ :1.07-1.28(2H,m),1.35-1.55(2H,m),3.60(3H,s),7.20-7.40(2H,m),7.85-8.01 (2H,m),9.08(1H,br)
1-13	NMR: δ:1.40-1.57(4H,m),1.80-2.02(4H,m),3.45(3H,s),7.31-7.51(2H,m),7.40-7.90
1-13	(2H,m),8.25(1H,s)
1-14	NMR: δ:1.55-2.25(8H,m),3.58(3H,s),7.19-7.39(2H,m),7.85-8.01(2H,m), 8.66(1H,s)
1-15	NMR: δ:1.15-1.40(6H,m),1.65-1.88(4H,m),3.39(3H,s),7.30-7.51(2H,m),7.74-7.90
, , , ,	(2H,m),8.08(1H,s)
1-16	NMR: δ:1.38-2.30(10H,m),3.58(3H,s),7.18-7.39(2H,m),7.83-7.98(2H,m), 8.38(1H,s)
1-17	NMR: δ:1.97-2.10(4H,m),3.58-3.76(7H,m),7.27-7.35(2H,m),7.90-7.98(2H,m),
	8.64(1H,br)
1-18	NMR(CDCl ₃ ,TMS internal standard)
	δ:1.29(3H,t,J=7.5Hz),1.30(6H,s),1.54(6H,s),4.21(2H,q,J=7.5Hz),7.10(2H,t,J=8.6Hz).
	7.71(1H,br),7.81(2H,dd, J=5.4,8.6Hz)
2-1	NMR: δ :0.77(3H,t,J=7.3Hz),1.40-1.66(2H,m),3.42-3.66(1H,m),7.29-7.49 (2H,m),
0.0	7.77-7.92(2H,m),8.15(1H,d,J=8.8Hz)
2-2	NMR(CDCl₃,TMS internal standard) δ :1.39(3H,d,J=7.3Hz),2.84(3H,s),4.65-4.89(1H,m),7.07-7.27(2H,m),7.76-7.92
	(2H,m)
2-3	NMR(CDCl _a ,TMS internal standard)
	δ :1.68(6H,s),7.00-7.33(3H,m),7.73-7.89(2H,m)
2-4	NMR(CDCl _a ,TMS internal standard)
	δ:1.69(6H,s),4.01(3H,s),6.95-7.52(3H,m),8.20-8.51(2H,m)
2-5	NMR: δ :1.46(6H,s),7.92-8.05(4H,m),8.70(1H,s),12.25(1H,br)
2-6	NMR: δ :1.48(6H,s),7.79-8.11(4H,m),8.87(1H,s),12.23(1H,br)
2-7	δ:1.68(6H,s),5.05(1H,s),7.05-7.14(2H,m),7.66-7.77(2H,m)
2-8	NMR(CDCl _s ,TMS internal standard)
	δ :1.53(6H,s),5.44(1H,s),8.03-8.12(2H,m),8.31-8.41(2H,m)
2-9	NMR(CDCl ₃ ,TMS internal standard)
	δ :1.43(6H,s),3.74(3H,s),5.30(1H,br),6.89-7.01(2H,m),7.57-7.80(2H,m)
2-10	NMR(CDCl ₃ ,TMS internal standard)
	δ:1.76(6H,s),4.74(2H,br),6.95(2H,dd,J=1.8Hz,7.7Hz),7.08(2H,t,J=8.7Hz),7.24-7.35
	(3H,m),7.78-7.84(2H,m)
2-11	NMR(CDCl ₃ ,TMS internal standard)
242	δ:2.58-2.69(2H,m),3.12-3.33(2H,m),7.20-7.29(3H,m),7.81-7.87(2H,m)
2-12	NMR(CDCl₃,TMS internal standard) δ :1.19(3H,d,J=6.8Hz),2.53(2H,d,J=5.5Hz),3.59-3.88(1H,m),5.37-5.46(1H,m), 7.09-
	7.27(2H,m),7.83-7.99(2H,m)
	- in the distribution is not be the distribution of the distributi

r=	D. 4.7.4
Ref.Ex	DATA
2-13	NMR: δ :1.10-1.42(4H,m),7.32-7.52(2H,m),7.73-7.89(2H,m),8.61(1H,s), 12.28(1H,br)
2-14	NMR: δ:1.01-1.20(2H,m),1.27-1.49(2H,m),7.15-7.45(2H,m),7.85-8.08(2H,m),
	8.98(1H,br), 12.37(1H,br)
2-15	NMR: δ:1.20-2.05(8H,m),7.29-7.50(2H,m),7.75-7.90(2H,m),8.05(1H,s), 12.42(1H,br)
2-16	NMR: 6:1.55-2.25(8H,m),7.18-7.40(2H,m),7.84-8.01(2H,m),8.51(1H,s), 12.12(1H,br)
2-17	NMR: δ:0.95-1.95(10H,m),7.27-7.50(2H,m),7.81-7.92(3H,m),12.38(1H,br)
2-18	NMR: δ:1.25-2.35(10H,m),7.15-7.42(2H,m),7.80-8.00(2H,m),8.24(1H,s)
2-19	NMR: δ:1.90-2.12(4H,m),3.57-3.77(4H,m),7.27-7.35(2H,m),7.90-7.98(2H,m), 8.52
	(1H,br),12.37(1H,br)
2-20	NMR(CDCl ₃ ,TMS internal standard)
<u> </u>	6:1.33(6H,s),1.58(6H,s),7.07(2H,t,J=8.6Hz),7.40(1H,br),7.81(2H,dd, J=5.1,8.6Hz)
3	NMR(CDCl₃,TMS internal standard) ∂:1.38(3H,d,J=7.3Hz),2.84(3H,s),3.56(3H,s),4.65-4.89(1H,m),7.08-7.29 (2H,m),
1	7.76-7.91(2H,m)
4-1	NMR(CDCI _s ,TMS internal standard)
7 '	δ:1.47(3H,d,J=7.0Hz),4.32-4.48(1H,m),5.17(2H,s),5.25(1H,d,J=7.0Hz),7.35 (5H,s),
	7.75-7.77(2H,m),7.92(1H,br),9.06(1H,br)
4-2	NMR: δ:1.41(6H,s),5.01(2H,s),7.28-7.35(5H,m),7.69(1H,s), 8.07(1H,d,
	J=8.8Hz),8.20(1H,d,J=8.8Hz),8.33(1H,s),10.34(1H,s)
4-3	NMR: δ:3.27(3H,s),3.34-3.64(2H,m),4.35-4.46(1H,m),5.00-5.10(2H,m),7.30-
	7.39(5H,m),7.76-7.82(1H,m),8.01-8.14(2H,m),8.28-8.32(1H,m),10.91(1H,br)
4-4	NMR: δ:1.19(6H,s),3.27-3.32(2H,m),4.98(2H,s),7.25-7.38(6H,m),8.03-8.17(2H,m),
	8.30-8.35(1H,m)
4-5	NMR: δ:0.85-0.95(6H,m),1.99-2.09(1H,m),3.99(1H,t,J=7.8Hz),4.47-4.51 (2H,m),5.16-
	5.22(1H,m),5.27-5.35(1H,m),5.86-5.97(1H,m),7.64(1H,d,
	J=7.8Hz),7.99(1H,dd,J=1.4,6.3Hz),8.07(1H,d,J=6.3Hz),8.31(1H,d,J=1.4Hz),10.86(1H,d,br)
4-6	NMR: δ :1.60-2.90(6H,m),5.02(2H,s),7.10-7.50(5H,m),7.95-8.40 (4H,m), 10.24(1H,br)
5	NMR(CDCl ₃ ,TMS internal standard)
	δ:1.57(6H,s),5.10(2H,s),5.50(1H,br),7.34(5H,s),10.42(1H,br)
6	NMR(CDCl ₃ ,TMS internal standard)
	δ:7.28(1H,d,J=7.8Hz),7.87(1H,dd,J=1.5,7.8Hz),8.46(1H,d,J=1.5Hz)
7	NMR(CDCl ₃ ,TMS internal standard)
	δ:2.93(3H,d,J=5.2Hz),4.68(1H,br),6.68(1H,dd,J=2.4,8.6Hz),6.84(1H,d,J=2.4Hz),7.41
	(1H,d,J=8.6Hz)
8	NMR(CDCl ₃ ,TMS internal standard)
	δ:1.26(3H,t,J=7.3Hz),1.30(6H,s),4.18(2H,q,J=7.3Hz),4.72(2H,s),6.04(1H,s),7.25-
9	7.36(5H,m) NMR(CDCl ₃ ,TMS internal standard)
9	δ :1.29(3H,t,J=7.0Hz),1.72(6H,s),4.24(2H,q,J=7.0Hz),4.66(2H,br),6.95(2H,d,J=7.7Hz)
),7.07(2H,t,J=8.7Hz),7.26-7.34(3H,m),7.73-7.77(2H,m)
10-1	mp: 79-80℃
10-2	mp: 116-117°C(AcOEt-Hex)
10-3	mp: 234-238°C (EtOH-(Et) ₂ O)
11-1	NMR: δ:1.32(6H,s),5.34(2H,br),8.06(1H,d,J=8.4Hz),8.21(1H,dd, J=2.1,8.4Hz),8.44
	(1H,d,J=2.1Hz)
11-2	NMR: 6:1.99(3H,s),3.67(1H,t,J=5.5Hz),4.18 (2H,d,J=5.5Hz) 5.05(2H,br), 7.95-8.20
	(2H,m), 8.30-8.45(1H,m)
12-1	NMR: δ:3.26(3H,s),3.32-3.62(3H,m),4.97(2H,br),8.07-8.15(2H,m),8.38-8.41(1H,m)
12-2	NMR: δ:1.55-2.70(6H,m),5.31(3H,br),8.00-8.55(3H,m)
12-3	NMR: 6:1.14(6H,s),2.75(2H,s),3.31 (1H,br), 5.34(2H,br),7.96-8.10(2H,m),8.27-8.30

Ref.Ex	DATA
·	(1H,m)
13	NMR(CDCl ₃ ,TMS internal standard): ∂ :0.86(3H,d,J=6.6Hz), 1.07(3H,d, J=7.0Hz),2.41-2.53(1H,m),3.43(1H,d,J=3.3Hz),7.73(1H,d,J=8.8Hz),7.94 (1H,dd,J=2.2,8.8Hz), 8.21(1H,d,J=2.2Hz),10.18(1H,br)
14	NMR: δ :1.51(1.5H,s),1.53(1.5H,s),1.86-2.04(3H,m),2.13-2.23(1H,m),3.51-3.62 (1H,m),3.67-3.80(1H,m),4.88(0.5H,d,J=12.6Hz),5.07(1H,s),5.13 (0.5H,d,J=12.6Hz),7.02-7.18(2.5H,m),7.27-7.40(2.5H,m),8.03-8.30(3H,m),10.01(1H,s)
15-1	NMR: δ:1.30-2.50(9H, m), 3.10-3.50(1H, m), 7.21-7.36(2H, m), 7.87-8.40(2H, m), 8.14-8.28(1H, m), 12.24(1H, br)
15-2	NMR(CDCl ₃ ,TMS internal standard): δ : 3.46-6.60(1H, m), 4.30-4.60(4H, m), 7.06-7.18(2H, m), 7.61-7.70(2H, m)

実施例1

N-(4-シアノ-3-トリフルオロメチルフェニル)-2-[(メチルスルホニル)アミノ]フロパンアミド

参考例10-1で合成した2-アミノ-N-(4-シアノ-3-トリフルオロメチルフェニル) プロパンアミド250mgをクロロホルム5mlに溶解し、氷冷下、トリエチルアミン110mg、メタンスルホニルクロリド120mgを加え、アルゴン雰囲気下、室温で3時間攪拌した。反応液をクロロホルム50mlで希釈後、1N塩酸50ml、飽和食塩水50mlで洗浄し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去したのち、残渣を酢酸エチルより再結晶し、無色結晶の表題化合物114mgを得た。

実施例1と同様にして実施例2-16を合成した。

実施例17

N-(4-シアノ-3-トリフルオロメチルフェニル)-2-{[(4-フルオロフェニル)スルホニル]アミノ}ブチルアミド

2-(4-フルオロフェニルスルホニルアミノ)ブタン酸500mgをテトラヒドロフラン5mlに溶解し、氷冷下、オキザリルクロリド470mgを滴下した後、触媒量のN、Nージメチルホルムアミドを加え、同温度で1時間攪拌した。減圧下に溶媒を留去した後、テトラヒドロフラン20mlを加え再度留去した。得られた残渣をN、Nージメチルホルムアミド5mlに溶解し、氷冷下、4-アミノー2ートリフルオロメチルベンゾニトリル580mgを少量ずつ加えた後、室温で6時間攪拌した。反応液を酢酸エチル・50mlで希釈した後、1N塩酸50ml、飽和重曹水50ml、蒸留水50mlでそれぞれ洗浄し、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルーへキサン(17:3)溶

出部より粗結晶を得た。この粗結晶を酢酸エチルから再結晶し、無色結晶の表題化合物3 81mgを得た。

実施例17と同様にして実施例18-21を合成した。

実施例22

N-(4-シアノ-3-トリフルオロメチルフェニル)-2-{[(4-フルオロフェニル)スルホニル]アミノープロパンチオアミド

Nー(4ーシアノー3ートリフルオロメチルフェニル)ー2ー{[(4ーフルオロフェニル)スルホニル]アミノ}プロパンアミド600mgをトルエン10mlに溶解し、Lawesson試薬290mgを加えた。アルゴン雰囲気下、3日間加熱還流した後、反応液を室温まで冷却し、減圧トに溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルーへキサン(4:1)溶出部より粗結晶を得た。この粗結晶を酢酸エチルから再結晶し、無色結晶の表題化合物339mgを得た。

実施例1と同様にして実施例23,24を合成した。

実施例25

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}-4-フルオロベンズアミド

2-(4-フルオロベンゾイルアミノ)-2-メチルフロバン酸500mgをジクロロメタン30ml に溶解し、氷冷下、トリフェニルホスフィン933mg、Nーブロモスクシンイミド633mgを順次 少量ずつ加えた後、アルゴン雰囲気下、同温度で2時間攪拌した。更に4-アミノー2ートリフルオロメチルベンゾニトリル872mgを少量ずつ加え、室温で3時間攪拌した。減圧下に溶媒を留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルーへキサン (17:3)溶出部より粗結晶を得た。この粗結晶を酢酸エチルから再結晶し、無色結晶の表題化合物156mgを得た。

実施例25と同様にして実施例26-33を合成した。

実施例1と同様にして実施例34-64を合成した。

実施例65

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}-2-シアノベンズアミド

(1) フタルアミド酸5.0gのジクロロメタン溶液80mlに、氷冷下、トリエチルアミン8.27ml

及びクロロギ酸エチル6.37mlを加え1時間攪拌した後,室温で更に6時間攪拌した 減圧下,溶媒を留去し、ベンゼンーヘキサン混合溶媒を加え析出した結晶を濾別した。濾液を留去して、2ーシアノ安息香酸無水物658mgを得た。

(2)参考例10-2で合成した2-アミノーN-(4-シアノー3ートリフルオロメチルフェニル) -2ーメチルプロバンアミド200mgのジクロロメタン溶液10mlに上記2-シアノ安息香酸無水物323mgを加え、室温で9時間攪拌した。反応溶液に飽和重動水を加え攪拌した後、酢酸エチルにより抽出した。有機層を無水硫酸マグネシウムにより乾燥し、減圧下、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーにて精製し、酢酸エチルーヘキサン(1:1)溶出部より粗結晶を得た。この粗結晶をメタノールー酢酸エチル混合溶媒により再結晶し、表題化合物190mgを得た。

実施例66

N-(4-シアノ-3-トリフルオロメチルフェニル)-2-[2-(4-フルオロフェニル)ア セチルアミノ]-2-メチルプロパンアミド

- (1)4ーフルオロフェニル酢酸102mgのジクロロメタン溶液5mlに、氷冷下、オキザリルクロリド(). 057ml及び触媒量のN、Nージメチルホルムアミドを加え、室温で2時間攪拌した後、減圧下、溶媒を濃縮乾固して、4ーフルオロフェニルアセチルクロリドを得た
- (2)参考例10-2で合成した2-アミノ-N-(4-シアノ-3-トリフルオロメチルフェニル)-2-メチルプロパンアミド150mgのジクロロメタン溶液5mlにビリジン2mlを加えた後、 氷冷下上記4-フルオロフェニルアセチルクロリドのジクロロメタン溶液5mlを加え、同温で1. 5時間攪拌した後、室温で1.5時間攪拌した。反応溶液に酢酸エチルを加え、これを飽和 重曹水、続いて、飽和食塩水で洗浄後、無水硫酸マグネシウムで有機層を乾燥し、減圧下、 溶媒を留去して粗結晶を得た。この粗結晶を酢酸エチルから再結晶し、表題化合物98mg を得た。

実施例67

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチルー2-ヒドロキシベンズアミド

実施例44で合成した2-({1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}カルバモイル)フェニルアセテート150mgをメタノール1mlに溶解し、1N水酸化ナトリウム水溶液3mlを加えた後、室温で2時間攪拌した。減圧下にメタノ

ールを留去した後、1N塩酸を加えることにより粗結晶を得た。この粗結晶を酢酸エチルと ヘキサンの混合溶媒により再結晶し、表題化合物102mgを得た。

実施例68

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}-8-キノリンカルボキサミド

- (1)8ーキノリンカルボン酸230mgのジクロロメタン溶液5mlに、氷冷下、オキザリルクロリドの. 114ml及び触媒量のN、Nージメチルホルムアミドを加え、氷冷下、30分攪拌した後、減圧下、溶媒を濃縮乾固して、8ーキノリンカルボニルクロリド塩酸塩を得た。
- (2)参考例10-2で合成した2-アミノーN-(4-シアノー3ートリフルオロメチルフェニル)-2-メチルプロパンアミド300mgのジクロロメタン溶液5mlに、氷冷下、上記8-キノリンカルボニルクロリド塩酸塩のジクロロメタン溶液5ml及びトリエチルアミン().364mlを加え、室温で2時間攪拌した。反応溶液に酢酸エチルを加え、これを飽和重曹水、続いて、水で洗浄後、無水硫酸マグネシウムで有機層を乾燥し、減圧下、溶媒を留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エチルーへキサン(1:1)溶出部より粗結晶を得た。この粗結晶を酢酸エチルとヘキサンとの混合溶媒より再結晶し、表題化合物155mgを得た。

実施例68と同様にして実施例69-78を合成した。

実施例79

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}-4-ピリジンカルボキサミド

イソニコチン酸0. 15gとジクロロメタン10mlの混合液に、氷冷下、Nーヒドロキシベンゾトリアゾール0. 18g, 1ー(3ージメチルアミノブロビル)ー3ーエチルカルボジイミド塩酸塩(). 2 5gを順次加えた。同温で、2時間攪拌した後、2ーアミノーNー(4ーシアノー3ートリフルオロメチルフェニル)ー2ーメチルプロパンアミドの. 30gを加え、室温で6時間、更にテトラヒドロフラン5mlを加え同温で65時間攪拌した。反応液に飽和重曹水を加え、酢酸エチルで抽出し、飽和塩化ナトリウム水溶液で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去し、得られた粗結晶を酢酸エチルとヘキサンの混合溶媒より再結晶し、表題化合物0. 26gを得た。

実施例79と同様にして実施例80-87を合成した。

実施例88

2-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-2-(2-フルオロベンズアミド)エチル アセテート

- (1)3ーアセトキシー2ーベンジルオキシカルボニルアミノプロバン酸3.9gをN, Nージメチルアセトアミド30mlに溶解し、一20℃に冷却した後、チオニルクロリド1.1mlを滴下した。アルゴン雰囲気下、0℃で1時間攪拌した後、4ーアミノー3ートリフルオロメチルベンゾニトリル2.6gを少量ずつ加え、同温度で2時間攪拌した。反応液を酢酸エチルで希釈後、飽和重曹水で洗浄した。更に、0.1N塩酸、飽和塩化ナトリウム水溶液で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下に溶媒を留去し、粗結晶を得た。
- (2) 得られた粗結晶をジクロロメタン100mlに溶解し、氷冷下、ジメチルスルフィド10ml、 三フッ化ホウ素ジエチルエーテル錯体8mlを順次加え、室温で4時間攪拌した。反応液に 飽和重曹水を加え、酢酸エチルで抽出した後、飽和塩化ナトリウム水溶液で洗浄した。無 水硫酸マグネシウムで乾燥した後、減圧下に溶媒を留去し、粗結晶を得た。
- (3) 得られた粗結晶をジクロロメタン15mlに溶解し、氷冷下、2ーフルオロベンゾイルクロリドの、56ml、トリエチルアミンの、66mlを順次加え、室温で2時間攪拌した。反応液に飽和重曹水を加え、酢酸エチルで抽出した後、0.1N塩酸、飽和塩化ナトリウム水溶液で洗浄した。無水硫酸マグネシウムで乾燥した後、減圧下に溶媒を留去し、粗結晶を得た。得られた粗結晶を酢酸エチルとヘキサンの混合溶媒により再結晶し、表題化合物1、25gを得た。実施例89

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-2-ヒドロキシェチル}-2-フルオロベンズアミド

2-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-2-(2-フルオロベンズアミド)エチル アセテート0.50gをメタノール5mlに溶解し、氷冷下、飽和炭酸カリウム水溶液2mlを加え、同温で1時間、更に室温で1時間攪拌した。反応液に1N塩酸を加えpH2とし、析出した結晶を廬取した。得られた粗結晶を水で洗浄した後、酢酸エチルーへキサンから再結晶し、表題化合物0.26gを得た

実施例90

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル]-4-メトキシベンズアミド

2ーアミノーNー(4ーシアノー3ートリフルオロメチルフェニル)ー2ーメチルフロハンアミド430mgをテトラヒドコフラン5mlに溶解し、氷冷下、トリエチルアミン260μl、4ーメトキシベンソイルクロリド310mgを順次加え、氷冷下で40分間攪拌した後、氷を加えた。更に室温で5分攪拌した後、減圧下に溶媒を留去し、残渣を酢酸エチル30mlと1N塩酸水溶液とに分配し、有機層を飽和炭酸水素ナトリウム水溶液15ml、水15ml×2、飽和食塩水15mlで洗浄し、硫酸ナトリウムで乾燥した。減圧下に溶媒を留去した後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:1)にて精製し、得られた油状物質をジイソプロビルエーテルー酢酸エチルにより結晶化し、得られた結晶を酢酸エチルより再結晶し、無色結晶の表題化合物326mgを得た。

実施例90と同様にして実施例91,92を合成した。

実施例93

4ープロモー2ークロローNー{1ー[(4ーシアノー3ートリフルオロメチルフェニル)カルバモイル]ー1ーメチルエチル}ベンズアミド

4ープロモー2ークロロ安息香酸520mgをテトラヒドロフラン10mlに溶解し、氷冷下オキザリルクロリド230μl、N、Nージメチルホルムアミド1滴を順次加え、室温にて1時間攪拌した。反応液を減圧下に溶媒を留去し、残渣に1、2ージクロロエタンを加え再度留去した。残渣をテトラヒドロフラン4mlに溶解し、氷冷下2ーアミノーNー(4ーシアノー3ートリフルオロメチルフェニル)ー2ーメチルプロパンアミド540mg、トリエチルアミン310μlを順次加え、50分間攪拌した。反応液に氷を加え、2時間30分間攪拌し、減圧下に溶媒を留去した。残渣を酢酸エチル50mlと1N塩酸水溶液30mlとに分配し、有機層を飽和炭酸水素ナトリウム水溶液30ml、飽和食塩水30ml×2で洗浄し、硫酸ナトリウムで乾燥した。減圧下に溶媒を留去した後、残渣を酢酸エチルーエーテルより再結晶し、無色結晶の表題化合物572mgを得た。

実施例93と同様にして実施例94を合成した。

実施例95

N-11-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエテル
ル-4-ヒドロキシベンズアミド

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}-4-メトキシベンズアミド340mgをメチレンクロリド10mlに溶解し、-78℃にて1M三

奥化ホウ素塩化メチレン溶液3.5mlを加え、室温にて40時間攪拌した。反応液を氷冷し、水10mlを加え5分攪拌し、クロロホルム60mlで抽出した。有機層を飽和炭酸水素ナトリウム水溶液30ml、水30ml、2で洗浄し、硫酸ナトリウムで乾燥した、減圧下に溶媒を留去し、残渣をジイイソフロビルエーテルー酢酸エチルより結晶化し、酢酸エチルーエーテルージイイソプロビルエーテルーへキサンより再結晶し、無色結晶の表題化合物139mgを得た。

実施例96

NーベンジルオキシーNー{1ー[(4ーシアノー3ートリフルオロメチルフェニル)カルバモ イル]ー1ーメチルエチル}ー4ーフルオロベンズアミド

2-(4-フルオローNーベンジルオキシベンズアミド)-2-メチルプロバン酸0.7gにジクロロメタン20mlを加え、-10~-15℃で攪拌下、五塩化リン0.48gを少しずつ加えた。-10℃で1時間攪拌後、同温度で4-アミノー2ートリフルオロメチルベンゾニトリル0.59gを加え、さらに室温で1時間攪拌した。反応溶液をクロロホルムで希釈後、水洗し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下に留去し、残渣をシリカゲルカラムクロマトグラフィーにて精製した。ヘキサンー酢酸エチル(2:1)溶出部より得られた結晶をジイソプロビルエーテルで洗滌して表題化合物0.61gを得た

実施例97

N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル]-4-フルオロ-N-ヒドロキシベンズアミド

NーベンジルオキシーNー(1ー[(4ーシアノー3ートリフルオロメチルフェニル)カルバモイル]ー1ーメチルエチル)ー4ーフルオロベンズアミドO. 3gおよびぎ酸アンモニウムO. 15gのエタノール10mlの懸濁溶液に10%パラジウム炭素O. 05gを加え,室温で30分間攪拌した。パラジウム炭素を濾去後,水を加え,酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥後,溶媒を減圧下に留去し,残渣をシリカゲルカラムクロマトグラフィーにて精製した。ヘキサン一酢酸エチル(1:1)溶出部より得られた結晶を酢酸エチルおよびヘキサンの混合溶媒より再結晶し,表題化合物O. 18gを得た。

実施例98

N-(4-シアノ-3-トリフルオロメチルフェニル)-2-メチル-2-(3-フェニルウレイド)プロパンアミド

参考例10-2で合成した2-アミノ-N-(4-シアノ-3-トリフルオロメチルフェニル) -2-メチルプロバンアミド300mgのジクロロメタン溶液10mlに、氷冷下、フェニルイソシアナート659mgを加え、室温で4.5時間攪拌した。反応溶液に、飽和重曹水、続いて1N塩酸を加え、析出した粗結晶を濾取した。この粗結晶を酢酸エチルより再結晶し、表題化合物205mgを得た。

実施例99

N-(4-シアノ-3-トリフルオロメチルフェニル)-2-メチル-2-(チオベンズアミド) プロパンアミド

参考例10-2で合成した2-アミノーN-(4-シアノ-3-トリフルオロメチルフェニル) -2-メチルプロバンアミド400mgをピリジン5mlに溶解し、(チオベンゾイルチオ)酢酸34 4mg、トリエチルアミン226mgを加え、室温で110時間攪拌した。反応液を2N硫酸水溶液 に注ぎ、酢酸エチルで抽出した。有機層を飽和重曹水で洗浄後、無水硫酸マグネシウムで 乾燥した。減圧下に溶媒を留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、 酢酸エチルーへキサン(1:1)溶出部より粗結晶を得た。この粗結晶を酢酸エチルとヘキサンの混合溶媒により再結晶し、表題化合物60mgを得た。

実施例25と同様にして実施例100-104を合成した。

実施例1と同様にして実施例105-107を合成した

実施例25と同様にして実施例108を合成した。

実施例1と同様にして実施例109-111を合成した。

実施例25と同様にして実施例112-122を合成した。

実施例1と同様にして実施例123-129を合成した。

実施例130

N-(4-シアノ-3-トリフルオロメチルベンゾイル)-[4-(4-フルオロベンゾイル)アミド]シクロヘキシルカルボキサミド

参考例15-1で合成した[4-(4-フルオロベンゾイル)アミド]シクロヘキシルカルボン酸を用いて、参考例14と同様の手法を用いて反応及び後処理を行った。得られた粗抽出物をシリカゲルカラムクロマトグラフィーにより精製し、酢酸エチルーヘキサン(1:1)溶出部より単一の化合物(A)を得た。更に溶出を続け他の異性体(B)を得た。

実施例130と同様にして実施例131を合成した。

これらの実施例の構造及び物性値を表に示す

ここで, 表中のAは一般式(1)における

A₁ A₂

部分に相当する。

なお、表中の記号は参考例の表と同様の意味を有し、それ以外の記号については以下の 意味を有する。

Ex. : 実施例番号

MS :質量分析值

Me :メチル

(i-Pr)₂O:ジイソプロピルエーテル

Et :エチル

MeOH :メダノール

Ac :アセチル

i-PrOH:イソプロパノール

Benzyl -CH,

表4

			R	
Ex.	R¹	R²	R°	DATA
1	CF ₃	CZ	CH₃	mp: 164-165°C
				NMR: δ:1.37(3H,d,J=6.8Hz),2.94(3H,s),4.01-4.17
				(1H,m),7.68(1H,d,J=8.0Hz),8.06(1H,dd,J=1.8,8.8Hz),8
				.12(1H,d,J=8.8Hz),8.29(1H,d,J=1.8Hz),10.80(1H,s)
2	CF ₃	CN		mp: 189-190℃(AcOEt-Hex)
				NMR: δ:1.21(3H,d,J=6.8Hz),3.94-3.98(1H,m), 7.46-
				7.54(3H,m),7.74-7.84(3H,m),8.03-8.08 (2H,m), 8.32-
				8.33 (1H,m),10.71(1H,s)
3	CF ₃	CN		mp: 178-179℃(AcOEt-Hex)
				NMR: δ:1.24(3H,d,J=7.0Hz),3.94-4.00(1H,m),7.28-
				7.31(2H,m),7.80-7.84(3H,m),8.04-8.08(2H,m), 8.37
				(1H,d,J=8.0Hz),10.71(1H,s)
4	CF ₃	CN		mp: 179-180°C (AcOEt-Hex)
			()-cı	NMR: δ:1.24(3H,d,J=6.8Hz),3.94-3.99(1H,m),7.42-
				7.53(2H,m),7.73-7.80(3H,m),7.94-8.12(2H,m), 8.46
				(1H,d,J=8.4Hz),10.70(1H,s)
5	CF₃	CN	—⟨ ^ \Br	mp: 170-171°C (AcOEt-Hex)
			\/ Br	NMR: δ:1.24(3H,d,J=6.8Hz),3.93-4.04(1H,m),7.63-
		Ì		7.69(4H,m),7.78(1H,dd,J=1.6,8.4Hz),8.04-8.09(2H,m),
<u></u>	0=			8.07(1H,d,J=8.4Hz),8.46(1H,d,J=8.8Hz),10.69(1H,s)
6	CF₃	CN	——CN	mp: 183-184°C (AcOEt-Hex)
	1		\/ W	NMR: δ:1.25(3H,d,J=7.0Hz),3.98-4.05(1H,m),7.77
				(1H, dd,J=2.0,8.2Hz),7.88-7.97(4H,m),8.00(1H,d,
				J=2.0Hz),8.08(1H,d,J=8.8Hz),8.69(1H,d,J=8.2Hz),10.
لــــا				74(1H,s)

Ex. R¹ R³ DATA 7 CF3 CN mp: 134-135 °C (AcOEI-Hex) NMR: δ:1.27(3H,d,J=6.8Hz),3:99-4.07(1H (1H,dd,J=1.2,8.8Hz),7.79(2H,d,J=8.0Hz),7.79(2H,d,J=8.0Hz),7.79(2H,d,J=8.8Hz),10.73(1H,s) 8 CF3 CN mp: 111-112 °C (AcOEI-Hex) NMR: δ:1.26(3H,d,J=6.8Hz),3.98-4.05(1H (2H,d,J=8.6Hz),7.76(1H,d,J=8.6Hz),7.76(1H,d,J=8.6Hz),7.87-7 R 06(3H,d,J=8.6Hz),7.76(1H,d,J=8.6Hz),7.87-7 R 06(3H,d,J=8.6Hz),7.76(1H,d,J=8.6Hz),7.87-7	95-8.06 ,m),7.41 .89(2H,m),
NMR: δ:1.27(3H,d,J=6.8Hz),3:99-4.07(1H (1H,dd,J=1.2,8.8Hz),7.79(2H,d,J=8.0Hz),7: (4H,m),8.66(1H,d,J=8.8Hz),10.73(1H,s) 8 CF ₃ CN mp: 111-112°C(AcOEt-Hex) NMR: δ:1.26(3H,d,J=6.8Hz),3.98-4.05(1H (2H,d,J=8.6Hz),7.76(1H,d,J=8.6Hz), 7.87-7	95-8.06 ,m),7.41 .89(2H,m),
(1H,dd,J=1.2,8.8Hz),7.79(2H,d,J=8.0Hz),7. (4H,m),8.66(1H,d,J=8.8Hz),10.73(1H,s) 8 CF ₃ CN mp: 111-112°C(AcOEt-Hex) NMR: \delta: 1.26(3H,d,J=6.8Hz),3.98-4.05(1H (2H,d,J=8.6Hz),7.76(1H,d,J=8.6Hz), 7.87-7	95-8.06 ,m),7.41 .89(2H,m),
(4H,m),8.66(1H,d,J=8.8Hz),10.73(1H,s) 8 CF ₃ CN	,m),7.41 .89(2H,m),
8 CF ₃ CN mp: 111-112°C (AcOEt-Hex) NMR: δ:1.26(3H,d,J=6.8Hz),3.98-4.05(1H (2H,d,J=8.6Hz),7.76(1H,d,J=8.6Hz), 7.87-7	.89(2H,m),
(2H,d,J=8.6Hz),7.76(1H,d,J=8.6Hz), 7.87-7	.89(2H,m),
(2H,d,J=8.6Hz),7.76(1H,d,J=8.6Hz), 7.87-7	.89(2H,m),
0 0010H 4 1-0 0H-1 0 0014H 4 1 0 0H-1 40	75/14 6
8.06(2H,d,J=8.6Hz), 8.52(1H,d,J=8.6Hz), 10	/./a(1m,s)
9 CF ₃ CN F mp. 184-185 C(AcOEt-Hex)	
NMR: δ:1.32(3H,d,J=7.2Hz),4.01-4.14(1H	,m),7.07-
7.12(1H,m),7.41-7.47(1H,m),7.78-7.82(2H,r	m),8.03
(1H,d,J=1.6Hz),8.08(1H,d,J=8.6Hz),8.67(1H	H8.8=L,b,F
z),10.77(1H,s)	
10 CF ₃ CN mp: 159-160°C (AcOEt-Hex)	
NMR: δ:1.25(3H,d,J=7.6Hz),3.98-4.05(1H	
(1H,t,J=8.4Hz),7.54-7.56(1H,m),7.70-7.78(2	
(1H,dd,J=1.8,8.4Hz),8.03(1H,d,J=1.8Hz),8.0	07(1H,d,J=
8.4Hz),8.54(1H,d,J=8.4Hz),10.77(1H,s)	
11 CF ₃ CN mp: 189-190°C (AcOEt-Hex)	\ = 03
NMR: δ:1.27(3H,d,J=7.2Hz),4.00-4.08(1H,	
7.71(1H,m),7.78(1H,dd,J=1.6,8.6Hz),7.96(1	
Hz),8.00(1H,d,J=1.6Hz),8.04-8.11(3H,m), 8 J=8.6Hz),10.79(1H,s)	.04(117,0,
12 CF ₃ CN	
NMR: δ:1.28(3H,d,J=6.8Hz),4.03-4.10(1H,	m) 7.70.
7.74(2H,m),7.84(1H,d,J=8.0Hz),7.96(1H,d,J	
01(1H,s),8.04-8.07(2H,m),8.68(1H,d,J=8.8H	
10.77(1H,s)	/'
13 CF ₃ CN mp: 167-168°C (AcOEt-Hex)	
NMR: :1.24(3H,d,J=7.0Hz),4.00-4.04(1H,m)	,7.48-7.51
(1H,m),7.57-7.60(2H,m),7.76-7.78(2H,m),7.	85-7.90
(3H,m),7.98(1H,d,J=8.8Hz),8.34(1H,s),8.41	(1H,d,J=8.
0Hz),10.63(1H,s)	
14 CF ₃ CN mp: 193-194°C (AcOEt-Hex)	
NMR: δ:1.19(3H,d,J=6.8Hz),3.95-4.00(1H,	
(1H,t,J=7.6Hz),7.58-7.62(2H,m),7.67-7.71(1	
(1H,d,J=1.6Hz),7.93-8.06(3H,m), 8.13(1H,d,	,J=7.2Hz),
Mp: 199-200 C(ACOE1-Hex) NMR: δ:1.27(3H,d,J=7.2Hz),4.37-4.44(1H,	m\ 7 en
7.72(4H,m)7.83(1H,d,J=1.6Hz),8.00(1H,d,J=	
17(1H,dd,J=1.2,8.4Hz),8.31(1H,dd,J=4.6,7.2	
17(17,0d,3=1.2,8.4n2),8.31(17,0d,3=4.6,7.2 1H,dd,J=1.6,8.8Hz),9.02(1H,dd,J=1.6,4.0Hz	
H,s)	.,, 10.00(1
16 CF ₃ CN mp: 185-186°C (AcOEt-Hex)	
NMR: δ:1.34(3H,d,J=6.8Hz),3.97-4.06(1H,	m), 7,00-
7.04(1H,m),7.25-7.35(4H,m),7.48-7.50(2H,m	
(1H,dd,J=2.0,8.8Hz),7.96(1H,d,J=8.8Hz),8.0	
8.0Hz),8.10(1H,d,J=2.0Hz),10.80(1H,s)	

$$\begin{array}{c|c} R^1 & R^3 & R^4 \\ \hline R^2 & X & R^8 \end{array}$$

Ex.	R¹	R²	R ³	X	R ⁴	R ⁸	DATA
17	CF ₃	CN	I	. 0	CH₂CH₃	Н	mp: 170-171°C NMR: δ:0.83(3H,t,J=7.4Hz),1.52-1.72 (2H, m), 3.77-3.82(1H,m),7.24-7.28(2H,m), 7.75-7.82 (3H,m),8.01(1H,d,J=2.0Hz),8.07(1H,d,J=8.4Hz), 8.36(1H,d,J=8.8Hz),10.74(1H,s)
18	CF ₃	CN	Н	0	CH₃	CH₃	mp: 171-172℃(AcOEt-Hex) NMR: (CDCl ₃ ,TMS internal standard)
19	CF₃	CN	СНЗ	0	CH₃	H	mp: 157-158°C (AcOEt-Hex) NMR: δ:1.08(3H,d,J=6.8Hz),3.25(3H,br), 4.09 (1H,br),7.38(2H,t,J=8.0Hz),7.73-7.81 (4H,m), 8.22-8.34(2H,m)
20	CF₃	CN	Н	0	benzyl	Н	mp: 248-249 C (AcOEt-Hex) NMR: δ:2.77-2.99(2H,m),4.08-4.14(1H,m), 7.14 (2H,t,J=8.8Hz),7.19-7.26 (5H,m),7.61-7.64 (2H,m),7.72(1H,d,J=8.8Hz), 7.96(1H,s), 8.07 (1H,d,J=8.8Hz),8.61(1H,d,J=8.8Hz),10.77(1H,s)
21	CF ₃	CN	Н	0	H	H	mp: 179-180°C (AcOEt-Hex) NMR: δ:3.77(2H,d,J=6.1Hz),7.38-7.42 (2H, m), 7.86-7.90(3H,m),8.08-8.12(2H,m), 8.25-8.27 (1H,m),10.71(1H,s)
22	CF₃	CN	Н	S	CH₃	Н	mp: B6-87°C NMR: δ:1.32(3H,d,J=6.8Hz),4.39-4.46 (1H, m), 7.28-7.34(2H,m),7.78-7.84(2H,m), 8.18-8.24 (2H,m),8.31(1H,d,J=8.4Hz),8.42 (1H,s), 12.01(1H,s)

Ex.	R¹	R ²	Α	R ⁹	DATA
23	CF₃	CN	Me Me	s	mp: 166-167°C (AcOEt-Hex) NMR: δ:1.41(6H,s),7.06-7.10(1H,m), 7.57-7.61(1H,m),7.84-7.87(1H,m),8.07-8.14 (2H,m),8.23-8.30(2H,m),10.29(1H,s)
24	CF₃	CN	OMe	F.F.	mp: 90-95°C (AcOEt-(i-Pr) ₂ O-Hex) NMR: δ:3.19(3H,s),3.42-3.52(2H,m), 4.09-4.17(1H,m),7.23-7.28(2H,m),7.76-7.84 (3H,m),8.01-8.03(1H,m),8.07(1H,d,J=8.4Hz), 8.51(1H,d,J=9.2Hz),10.81 (1H,s)

Ex.	R ¹	R ²	Α	H _a	DATA
31	CF ₃	CN	Me Me	— Ç }-F	mp: 117-118℃(AcOEt-Hex) NMR(CDCl ₃ ,TMS internal standard) δ:1.47(6H,s),5.84(1H,s),7.22(2H,t,J=8.8Hz), 7.79(1H,d,J=8.8Hz),7.90-7.95(3H,m), 8.07 (1H,s),9.20(1H,br)
32	CF ₃	CN	Me Me	→NO ₂	mp: 109-110°C (AcOEt-Hex) NMR: δ:1.50(6H,s),7.89-7.92(2H,m),8.00- 8.15(4H,m),8.28(1H,d,J=2.0Hz),8.90(1H,s),1 0.33(1H,s)
33	CF ₃	CN	Me Me	→OCH ₃	mp: 124-125℃(AcOEt-Hex) NMR: δ:1.45(6H,s),3.76(3H,s),6.82(2H,d, J=8.8Hz),7.73-7.75(3H,m),7.89-7.92 (1H,m), 8.00(1H,d,J=2.0Hz),9.67 (1H,s), 10.83(1H,s)

Ex.	R¹	Α	₽³	DATA
25	CF ₃	Me Me		mp: 207-208℃
1			- 	NMR(CDCl ₃ ,TMS internal standard)
				δ :1.77(6H,s),6.29(1H,s),7.15-7.19(2H,m), 7.76 (1H,
Ì				d,J=8.3Hz),7.75-7.83(2H,m),7.87-7.90(1H,m), 8.07
				(1H,d,J=2.0Hz),10.67(1H,s)
26	CF ₃	Me Me	OCH ₃	mp: 124-125°C(AcOEt-Hex)
				NMR: δ:1.57(6H,s),3.97(3H,s),7.05(1H,t, J=7.2Hz),
1				7.20(1H,d,J=8.4Hz),7.49-7.54(1H,m), 7.79(1H,dd,
				J=2.0,8.4Hz),8.07(1H,d,J=8.4Hz),8.15(1H,dd,J=2.0,8
27	CF ₃	Me Me		(.4Hz),8.31 (1H,d,J=2.0Hz),8.55(1H,s),10.20(1H,s)
21	UF ₃	""×""	— ⟨	mp: 256-258 [°] C(MeOH-EtOH) NMR: .δ :1.54(6H,s),7.98(2H,m),8.03-8.15 (4H, m),
			_/	8.29(1H,d,J=2.0Hz),8.85(1H,s),10.22(1H,s)
28	CF ₃	Me Me	/	mp: 222-225°C(AcOEt-Hex)
	0, 3	X		NMR: δ:1.55(6H,s),7.87(2H,d,J=8.8Hz),8.06 (1H,d,
1			\ <u>_</u> / •	J=8.8Hz),8.13-8.15(3H,m),8.30(1H,d,J=2.0Hz), 8.83
l				(1H,s),10.23(1H,s)
29	CN	Mc Me		mp: 198-199℃(EtOH)
		× .	-('_)'-F	NMR: δ:1.52(6H,s),7.31(2H,t,J=8.8Hz),7.98-8.04
1		· į	_	(3H,m),8.10(1H,dd,J=2.0,8.6Hz),8.30(1H,d,J=2.0Hz),
				8.59(1H,s),10.15(1H,s)
30	CI	Me Me		mp: 227-230℃(AcOEt-Hex)
				NMR: δ:1.51(6H,s),7.31(2H,t,J=8.9Hz),7.75(1H, dd,
				J=2.6,8.7Hz),7.85(1H,d,J=8.7Hz),8.00(2H,dd,J=5.4,8
	05		-	.9Hz),8.06(1H,d,J=2.6Hz),8.55(1H,br),10.00(1H,br)
34	CF ₃	Me Me	*	mp: 168-169°C (AcOEt-Hex)
]]	/		NMR: δ:1.54(6H,s),7.27-7.32(2H,m),7.52-7.58
		j	/	(1H,m),/./2-/./6(1H,m),8.08 (1H,a, J=8.4Hz), 8.16
				(1H,dd,J=1.6,8.4Hz),8.33(1H,d,J=1.6Hz),8.52(1H,d,J =1.6Hz),10.22(1H,s)
L				-1.0112], 10.22(111,3)

The content of the	Ex.	Η'	Α	R ⁹	DATA
NMR: 6:1.53(6H,s),7.38-7.43(1H,m),7.50-7.56 (1 m),7.75-7.76(H,m),8.04-8.15 (2H,m), 8.30(1H,s), 8.69(1H,s), 10.22(1H,s) S6(1H,s),10.22(1H,s) NmR: 6:1.54(6H,s),7.51-7.54(1H,m),8.05(1H,d,J=1.6Hz),8.72(1H,dd,J=1.6,5.2Hz),8.80(1H,s), 9.11(1H,d,J=1.6Hz),8.72(1H,dd,J=1.6,5.2Hz),8.80(1H,s), 9.11(1H,d,J=1.6Hz),10.22(1H,s) MmR: 6:1.54(6H,s),7.64-7.62(1H,m),8.00-8.01 (2 m),8.06(1H,d,J=9.2Hz),8.14-8.16 (1H,m),8.31 (1H,d,J=1.6Hz),8.7(2H,d,J=1.6Hz),8.33(1H,s),10.34(1H,d,J=1.6Hz),8.7(2H,d,J=1.6Hz),8.33(1H,s),10.34(1H,d,J=1.6Hz),8.32(1H,d,J=1.6Hz),8.56 (1H,d,J=1.6Hz),8.32(1H,d,J=1.6Hz),8.56 (1H,d,J=1.6Hz),8.32(1H,d,J=1.6Hz),8.56 (1H,d,J=8.9Hz),8.89(1H,m),7.96-8.00 (5 m),8.14-8.17(1H,m),8.32(1H,d,J=1.6Hz),8.56 (1H,m),7.98-8.00 (1H,m),7.81-7.83(2H,m),7.98-8.00 (1H,m),7.98-8.89(1H,m),8.38(1H,d,J=8.8Hz),8.89(1H,m),7.97(1H,d,J=8.9Hz),8.29(1H,d),9.8	_			F	
mp. 17.75-7.78(2H,m),8.04-8.15 (2H,m), 8.30(1H,s), 8.69(1H,s), 10.22(1H,s)	33	O 3	×		
B.69(1H.S.) 10.22(1H.S) B.69(1H.S.) 10.22(1H.S) B.69(1H.S.) 10.22(1H.S.) B.69(1H.S.) 1.54(6H.S.), 7.51-7.54(1H.M.), 8.05(1H.d.J.S.) B.81-8.16(1H.M.), 8.13-8.16(1H.M.), 8.24-8.27 (1H.M.), 8.30(1H.d.J.S.) B.81-8.16(1H.M.), 8.27(1H.d.J.S.) B.81-1.0.22(1H.S.) B.81(1H.S.) B.81-1.0.22(1H.S.) B.81(1H.S.) B.81-1.0.22(1H.S.) B.81(1H.S.) B.81-1.0.22(1H.S.) B.81(1H.S.) B.81-1.0.22(1H.S.) B.81(1H.S.) B.81-1.0.22(1H.S.) B.81-1.0.22(1H.S.) B.81-1.0.22(1H.S.) B.81-1.0.22(1H.S.) B.81-1.0.22(1H.S.) B.81-1.0.22(1H.S.) B.81-1.0.22(1H.S.) B.81-1.0.22(1H.S.) B.81-1.8.81(1H.S.) B.8	Ì				
Me		l .		1	
NMR: 6:1.54(6H,s),7.51-7.54(1H,m),8.05(1H,d,J. 8.8Hz), 8.13-8.16(1H,m),8.24-8.27 (1H,m),8.30(1H,d,J.=1.6Hz), 8.72(1H,d),J.=1.6,5.2Hz), 8.80(1H,s), 9.11(1H,d,J.=1.6Hz), 10.22(1H,s) mp: 129-130C(Ii-Ph ₂ O) NMR: 6:1.51(6H,s),7.64-7.82(1H,m),8.00-8.01 (2 m), 8.06(1H,d,J.=9.2Hz),8.14-8.16 (1H,m), 8.31 (1H,d,J.=1.6Hz),8.72(1H,d,J.=8.8Hz),8.83(1H,s),10.34(1H,d.). 38 CF ₃ Me Me The string of the s	36	CE	Me Me		
N B. 8Hz), 8.13-8.16(1H,m), 8.24-8.27 (1H,m), 8.30(1H d,J=1.6Hz), 8.72(1H,dd,J=1.6,5.2Hz), 8.80(1H,s). 9.11(H,d,J=1.6Hz), 10.22(1H,s) mp. 129-130°C ((i-Pr) ₂ O) NMR: δ.1.51(6H,s), 7.64-7.62(1H,m), 8.00-8.01 (2 m), 8.06(1H,d,J=9.2Hz), 8.14-8.16 (1H,m), 8.031 (1H,d. J=1.6Hz), 8.72(1H,d,J=8.8Hz), 8.83(1H,s), 10.34(1H mp. 173-174°C (AcOEt-C ₂ H ₂) NMR: δ.1.58(6H,s), 7.59-7.65(2H,m), 7.98-8.06 (5 m), 8.14-8.17(1H,m), 8.32(1H,d,J=1.6Hz), 8.56 (1H, 8.74(1H,s), 10.26(1H,s)) NMR(CDCL, TMS internal standard) δ.1.65(3H,s), 1.79-1.85(1H,m), 7.98-8.00 (1H,m) S.98-6.00(1H,m), 7.81-7.83(2H,m), 7.98-8.00 (1H,m) S.98-6.00(1H,m), 7.81-7.83(2H,m), 7.98-8.00 (1H,m) S.98-9.89(1H,m) mp. 206-207°C (AcOEt-Hex) NMR (CDCL ₃ -TMS internal standard) δ.1.61(3H,d, J=8.6Hz), 4.93-4.97(1H,m), 6.82-6.84(1H,m), 7.16-7.19(2H,m), 7.76(1H,d,J=8.5Hz), 8.96(1H,s), 9.86(1H,s) MR: δ.1.53(6H,s), 7.18-7.23(1H,m), 7.34-7.40 (11 m), 166-167°C (AcOEt-Hex) NMR: δ.1.53(6H,s), 7.18-7.23(1H,m), 7.48-7.56 (11 m), 8.10(1H,d,J=8.8Hz), 8.16 (1H dd,J=1.68.8Hz), 8.33(1H,d,J=1.68.1+z), 9.10 (1H,d,J=1.68.8Hz), 8.33(1H,d,J=1.69.2), 9.10 (1H,s) 42 CF ₃ Me Me F F F F F F F F F F F F F F F F F F F	30	UF3	×		, · · · · · · · · · · · · · · · · · · ·
d,J=1,6Hz),8.72(1H,d,J=1,65,2Hz),8.80(1H,s),9.11(1H,d,J=1,6Hz),10,22(1H,s) mp: 129-130C(i,Pr),O) NMR: 6:1.61(6H,s),7.64-7.82(1H,m),8.03-8.01 (2 m),8.06(1H,d,J=9,2Hz),8.14-8.16 (1H,m),8.31 (1H,d,J=1,6Hz),8.72(1H,d,J=8,8Hz),8.83(1H,s),10.34(1H mp: 173-174°C(ACOEt-CyHa) NMR: 6:1.58(6H,s),7.59-7.65(2H,m),7.98-8.06 (5 m),8.14-8.17(1H,m),8.32(1H,d,J=1,6Hz),8.56 (1H,B,74(1H,s),10.26(1H,s) mp: 220-221°C(ACOEt-Hex) NMR(CDCL,TMS internal standard) 6:1.26(3H,s),1.79-1.85(11H,m),4.68-4.72(1H,m),5.98-6.00(1H,m),7.81-7.83(2H,m),7.98-8.00 (1H,m),8.89.89(1H,m) mp: 206-207°C(ACOEt-Hex) NMR (CDCl,TMS internal standard) 6:1.61(3H,d,J=8,6Hz),4.93-4.97(1H,m),6.82-6.84(1H,m),7.16-7.19(2H,m),7.76(1H,d,J=8,5Hz),7.84-7.87 (2H,m),7.77(1H,d,J=8,5Hz),8.17(1H,d,J=8,5Hz),8.17(1H,d,J=8,5Hz),8.17(1H,d,J=8,5Hz),8.17(1H,d,J=8,5Hz),8.17(1H,d,J=8,5Hz),8.17(1H,d,J=1,6,8,5Hz),8.17(1H,d,J=1,6,8,5Hz),8.17(1H,d,J=1,6,8,5Hz),8.17(1H,d,J=1,6,8,5Hz),8.17(1H,d,J=1,6,6,7,34-7,38(1H,m),8.36(1H,d,J=8,8Hz),8.17(1H,d,J=1,6,8,5Hz),8.33(1H,d,J=1,6Hz),8.17(1H,d,J=1,6,8,5Hz),8.33(1H,d,J=1,6Hz),8.17(1H,d,J=1,6,8,5Hz),8.33(1H,d,J=1,6Hz),8.17(1H,d,J=1,6,8,5Hz),8.33(1H,d,J=1,6Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,s),8.38(1H,d,J=8,8Hz),8.17(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),1.67(1H,d),	1	1		l CN =	
9.11(1H,d,J=1.6Hz), 10.22(1H,s) mp. 129-130°C((i-Pr) ₂ O) NMR: δ:1.61(6H,s), 7.64-7.62(1H,m),8.00-8.01 (2 m), 8.06(1H,d,J=9.2Hz),8.14-8.16 (1H,m), 8.31 (1H,d, J=1.6Hz),8.72(1H,d,J=8.8Hz),8.83(1H,s),10.34(1H,d, J=1.6Hz),8.72(1H,d,J=8.8Hz),8.83(1H,s),10.34(1H,d, J=1.6Hz),8.72(1H,d,J=1.6Hz),8.56 (1H,d,J=1.6Hz),8.56 (1H,d,J=8.6Hz),4.93-4.97(1H,d,J=8.6Hz),7.94-7.87 (2H,m),7.97(1H,d,J=8.5Hz),7.94-7.87 (2H,m),7.97(1H,d,J=8.5Hz),8.98(1H,d,J=1.6Hz),8.55(1H,d,J=1.6Hz),8.16 (1H,d,J=1.6Hz),8.16 (1H,d,J=1.6Hz),8.1		1 1		' '	
Mp: 129-130°C((i-Pr) ₂ O) NMR: 5:1.61(6H,3),7.64-7.62(1H,m),8.00-8.01 (2 m), 8.06(1H,d,J=9.2Hz),8.14-8.16 (1H,m),8.31 (1H,d,J=8.8Hz),8.83(1H,s),10.34(1H mp: 173-174°C(AcOEt-C ₆ H ₆) NMR: 5:1.58(6H,S),7.59-7.65(2H,m),7.98-8.06 (5 m),8.14-8.17(1H,m),8.32(1H,d,J=1.6Hz),8.56 (1H, 8.74(1H,s),10.26(1H,s) MR(CDCl ₃ ,TMS internal standard) 5:1.26(3H,s),1.79-1.85(11H,m),4.68-4.72(1H,m), 5.98-6.00(1H,m),7.81-7.83(2H,m),7.98-8.00 (1H,m) 9.88-9.89(1H,m) mp: 206-207°C(AcOEt-Hex) NMR (CDCl ₃ ,TMS internal standard): 6:1.61(3H,d,J=8.6Hz),4.93-4.97(1H,m),6.82-6.84(1H,m),7.16-7.19(2H,m),7.76(1H,d,J=8.5Hz),7.94-7.87 (2H,m),7.97(1H,d,J=8.5Hz),8.02 (1H,s),9.88(1H,s) MR: 6:1.53(6H,s),7.18-7.23(1H,m),7.34-7.40 (11 m),7.79-7.85(1H,m),8.08(1H,d,J=8.8Hz),8.16 (1H d),1-6.88Hz),8.32(1H,d,J=1.6Hz),8.55(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.17(1H,dd,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.17(1H,dd,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.17(1H,d),1-8.8Hz),8.33(1H,d,J=1.6Hz),8.17(1H,d),1-8.8Hz),8.33(1H,d,J=1.6Hz),8.17(1H,d),1-8.8Hz),8.18-8.21 (11 m),8.35-8.36(1H,m),8.87(1H,s),10.28(1H,s) mp: 171-172°C(AcOEt-Hex) MR: 6:1.49(6H,s),2.01(3H,s),7.16-7.18(1H,m),7.34-7.38(1H,m),8.87(1H,s),10.17(1H,s) mp: 171-172°C(AcOEt-Hex) MR: 6:1.49(6H,s),2.01(3H,s),7.16-7.18(1H,m),7.34-7.38(1H,m),8.87(1H,s),10.17(1H,s) mp: 171-172°C(AcOEt-Hex) MR: 6:1.49(6H,s),2.01(3H,s),7.16-7.18(1H,m),7.34-7.38(1H,m),8.87(1H,m),7.85(1H,dd,J=1.6Hz),8.18(1H,dd,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.18(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.18(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.18(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.18(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.18(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.18(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.18(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.18(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.18(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.18(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.18(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.33(1H,d,J=1.6Hz),8.33(1	
NMR: δ:1.61(6H,s),7.64-7.62(1H,m),8.00-8.01 (2 m), 8.06(1H,d,J=9.2Hz),8.14-8.16 (1H,m), 8.31 (1H,d,J=1.6Hz),8.72(1H,d,J=8.8Hz),8.83(1H,s),10.34(1H mp: 173-174*C(AcOEt-C ₆ H ₆) NMR: δ:1.58(6H,s),7.59-7.65(2H,m),7.98-8.06 (5 m),8.14-8.17(1H,m),8.32(1H,d,J=1.6Hz), 8.56 (1H, 8.74(1H,s),10.26(1H,s)	37	CE	Me Me		· · · · · · · · · · · · · · · · · · ·
m), 8.06(1H,d,J=9.2Hz),8.14-8.16 (1H,m), 8.31 (1H,d, J=1.6Hz),8.72(1H,d,J=8.8Hz),8.83(1H,s),10.34(1H mp. 173-174°C(AcOEt-C ₂ H ₆) NMR: 6:1.58(6H,s),7.59-7.65(2H,m),7.98-8.06 (5 m),8.14-8.17(1H,m),8.32(1H,d,J=1.6Hz),8.56 (1H, B.74(1H,s),10.26(1H,s) np. 220-221°C(AcOEt-Hex) NMR(CDCl ₆ ,TMS internal standard) 6:1.26(3H,s),1.79-1.85(11H,m),4.68-4.72(1H,m), 5.98-6.00(1H,m),7.81-7.83(2H,m),7.98-8.00 (1H,m) 9.88-9.89(1H,m) 40 CF ₃ Me Me F NMR (CDCl ₃ ,TMS internal standard): 6:1.61(3H,d,J=8.6Hz),4.93-4.97(1H,m),6.82-6.84(1H,m),7.16-7.19(2H,m),7.76(1H,d,J=8.5Hz),7.84-7.87 (2H,m),7.97(1H,d,J=8.5Hz),8.02 (1H,s),9.88(1H,s) mp. 166-167 C(AcOEt-Hex) NMR: 6:1.53(6H,s),7.18-7.23(1H,m),7.34-7.40 (11 m),7.79-7.85(1H,m),8.08(1H,d,J=8.8Hz),8.55(1H,d,J=1.6Hz),8.13(1H,d,J=1.6Hz),8.17(1H,dd,J=1.6,8.8Hz),8.33(1H,d,J=1.6Hz),9.10 (1H,s),10.20(1H,s) NMR: 6:1.51(6H,s),7.55(1H,dd,J=1.6Hz,8.0Hz),7.66-7.69(2H,m),8.08(1H,d,J=8.8Hz),8.18(1H,dd,J=1.6,8.8Hz),8.35(1H,d,J=1.6Hz),8.10(1H,d),J=1.6,8.81(1H,d,J=1.6Hz),8.10(1H,d),J=1.6,8.81(1H,d,J=1.6Hz),8.10(1H,d),J=1.6,8.81(1H,d,J=1.6Hz),8.10(1H,d),J=1.6,8.81(1H,d,J=1.6,8.81),8.18(1H,d,J=1.6,8.81),8.18(1H,d,J=1.6,8.81),8.18(1H,d,J=1.6,8.81),8.18(1H,d,J=1.6,8.81),8.18(1H,d,J=1.6,8.81),8.18(1H,d,J=1.6,8.81),8.18(1H,d,J=1.6,8.81),8.18(1H,d,J=1.6,8.81),8.18(1H,d,J=1.6,8.81),10.17(1H,s) NMR: 6:1.51(6H,s),7.55-7.69(1H,m),7.85(1H,d),J=1.6,8.81(1H,d,J=1.6,8.81),10.17(1H,s) NMR: 6:1.51(6H,s),7.55-7.69(1H,m),7.76-7.80 (2Hm),7.87-7.89(1H,m),8.08.810(1H,m),8.18-8.20 (1Hm),8.38(1H,d),8.83(1H,d),9.10(1H,m),8.18-8.20 (1Hm),8.38(1H,d),9.10(1H,m),8.10(1H,m),7.85(1H,d,J=1.6,8.81),8.18(1H,d,J,J=1.6,8.81),8.18(1H,d,J,J=1.6,8.81),8.18(1H,d,J,J=1.6,8.81),8.18(1H,d,J,J=1.6,8.81),8.18(1H,d,J,J=1.6,8.81),8.18(1H,d,J,J=1.6,8.81),8.18(1H,d,J,J=1.6,8.81),10.30(1H,m),8.18-8.20 (1Hm),8.38(1H,d),9.10(1H,m),8.10(1H,m),8.18-8.20 (1Hm),8.38(1H,d),9.10(1H,m),8.10(1H,m),8.18-8.20 (1Hm),8.38(1H,d),9.10(1H,m),8.10(1H,m),8.10(1H,m),8.10(1H,m),8.10(1H,m),8.10(1H,m),8.10(1H,m),8.10(1H,m),8.10(1H,m),8.10(1H,m),8.10(1H,m),8.10(1H,m),8.10	3,	UF3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		The state of the s
(1H,d, J=1.6Hz),8.72(1H,d,J=8.8Hz),8.83(1H,s),10.34(1H mp: 173-174°C(AcOEt-C ₆ H ₆) NMR: 6:1.58(6H,s),7.59-7.65(2H,m),7.98-8.06 (5 m),8.14-8.17(1H,m),8.32(1H,d,J=1.6Hz), 8.56 (1H, 8.74(1H,s),10.26(1H,s) MR: 6:1.58(6H,s),1.79-1.65(11H,m),4.68-4.72(1H,m), 5.98-6.00(1H,m),7.81-7.83(2H,m),7.98-8.00 (1H,m), 7.81-7.83(2H,m), 7.98-8.00 (1H,m), 8.89-9.89(1H,m) mp: 206-207°C(AcOEt-Hex) NMR (CDCl ₃ -TMS internal standard); 6:1.61(3H,d,J=8.6Hz),4.93-4.97(1H,m),6.82-6.84(1H,m), 7.16-7.19(2H,m),7.76(1H,d,J=8.5Hz),7.84-7.87 (2H,m), 7.97(1H,d,J=8.5Hz),8.02 (1H,s),9.88(1H,s) mp: 166-167 C(AcOEt-Hex) NMR: 6:1.53(6H,s),7.18-7.23(1H,m),7.34-7.40 (11 m), 7.79-7.85(1H,m),8.08(1H,d,J=8.8Hz),8.17(1H,dd,J=1.6Hz),8.55(1H,d,J=1.6Hz),8.13(1H,d,J=1.6Hz),9.10 (1H,s),10.20(1H,s) mp: 182-183°C(AcOEt-Hex) NMR: 6:1.52(6H,s),7.14-7.20(2H,m),7.48-7.56 (11 m), 8.10(1H,d,J=8.8Hz),8.17(1H,dd,J=1.6Hz),8.13(1H,d,J=1.6Hz),9.10 (1H,s),10.20(1H,s) NMR: 6:1.51(6H,s),7.55(1H,dd,J=1.6Hz,8.0Hz),7.66-7.69(2H,m),8.08(1H,d,J=8.8Hz),8.18(1H,dd,J=1.6,7.2Hz),8.18(1H,d,J=8.8Hz),8.18(1H,d,J=1.6,7.2Hz),8.18(1H,d,J=1.6Hz),8.11(1H,d),J=1.6,7.2Hz),8.18(1H,d,J=1.6Hz),8.11(1H,d),J=1.6,7.2Hz),8.13(1H,d,J=1.6Hz),8.11(1H,m),7.51-7.57.67.80 (2Hm),7.34-7.38(1H,m),7.51-7.59(1H,m),7.76-7.80 (2Hm),7.38-7.89(1H,m),8.08-8.10(1H,m),8.18-8.20 (11 m),8.38(1H,s),8.39(1H,s),10.30(1H,s),8.18-8.20 (11 m),8.38(1H,s),8.39(1H,s),10.30(1H,s),8.18-8.20 (11 m),8.38(1H,s),8.39(1H,s),10.30(1H,s),8.18-8.20 (11 m),8.38(1H,s),8.39(1H,s),8.39(1H,s),10.30(1H,s),8.18-8.20 (11 m),8.38(1H,s),8.39(1H,s),10.30	1				
J=1.6Hz),8.72(1H,d,J=8.8Hz),8.83(1H,s),10.34(1H) J=1.6Hz),8.72(1H,d,J=8.8Hz),8.83(1H,s),10.34(1H) J=1.6Hz),8.72(1H,d,J=8.8Hz),8.83(1H,s),10.34(1H) J=1.6Hz),8.72(1H,d,J=8.8Hz),8.83(1H,s),10.34(1H) J=1.6Hz),8.72(1H,d,J=8.8Hz),8.83(1H,s),10.34(1H) J=1.6Hz),8.72(1H,d,J=8.8Hz),8.83(1H,s),10.34(1H) J=1.6Hz),8.72(1H,d,J=8.8Hz),8.92(1H,d,J=1.6Hz),8.56 (1H,d,J=8.6Hz),8.32(1H,d,J=8.6Hz),8.32(1H,d,J=8.6Hz),8.92(1H,m),7.98-8.00 (1H,m) J=1.6Hz),8.72(1H,d,J=8.8Hz),8.32(1H,d,J=1.6Hz),8.56 (1H,d,J=8.8Hz),8.93(1H,m),7.98-8.00 (1H,m) J=1.6Hz),8.72(1H,d,J=8.8Hz),8.93(1H,d,J=1.6Hz),8.56 (1H,d,J=1.6Hz),8.56 (1H,d,J=1.6Hz),8.98	İ]]		ì	
Me	1				
NMR: δ:1.58(6H,s),7.59-7.65(2H,m),7.98-8.06 (5 m),8.14-8.17(1H,m),8.32(1H,d,J=1.6Hz), 8.56 (1H, 8.74(1H,s),10.26(1H,s) Mp: 220-221°C(AcOEt-Hex) NMR(CDCJ ₃ -TMS internal standard) δ:1.26(3H,s),1.79-1.85(11H,m),4.68-4.72(1H,m), 5.98-6.00(1H,m),7.81-7.83(2H,m), 7.98-8.00 (1H,m)	30	CE	Me Me	1	
m),8.14-8.17(1H,m),8.32(1H,d,J=1.6Hz), 8.56 (1H, 8.74(1H,s),10.26(1H,s) mp: 220-221°C(ACOEI-Hex) NMR(CDCI ₃ ,TMS internal standard) 6:1.26(3H,s),1.79-1.85(11H,m),4.68-4.72(1H,m), 5.98-6.00(1H,m),7.81-7.83(2H,m), 7.98-8.00 (1H,m) 9.88-9.89(1H,m) mp: 206-207°C(ACOEI-Hex) NMR (CDCI ₃ ,TMS internal standard): 6:1.61(3H,d, J=8.6Hz),4.93-4.97(1H,m),6.82-6.84(1H,m), 7.16-7.19(2H,m),7.76(1H,d,J=8.5Hz),7.84-7.87 (2H,m), 7.97(1H,d, J=8.5Hz),8.02 (1H,s),9.88(1H,s) mp: 166-167°C(ACOEI-Hex) NMR: 6:1.53(6H,s),7.18-7.23(1H,m),7.34-7.40 (11 m), 7.79-7.85(1H,m),8.08(1H,d,J=8.8Hz),8.16 (1H dd,J=1.6,8.8Hz),8.32(1H,d,J=1.6Hz),8.55(1H,d,J=1.6,8.12),10.22(1H,s) mp: 182-183°C(ACOEI-Hex) NMR: 6:1.52(6H,s),7.14-7.20(2H,m),7.48-7.56 (11 m), 8.10(1H,d,J=8.8Hz),8.17(1H,dd,J=1.6,8.8Hz),8.33(1H,d,J=1.6Hz),9.10 (1H,s),10.20(1H,s) mp: 214-215°C(ACOEI-Hex) NMR: 6:1.51(6H,s),7.55(1H,dd,J=1.6Hz,8.0Hz),7.66-7.69(2H,m),8.08(1H,d,J=8.4Hz),8.18-8.21 (11 m),8.35-8.36(1H,m),8.87(1H,s),10.28(1H,s) mp: 171-172°C(ACOEI-Hex) NMR: 6:1.51(6H,s),7.55-7.56(1H,m),7.85(1H,dd,J=1.6,8.14z),8.33(1H,d,J=1.6Hz),8.61(1H,s),10.17(1H,s) mp: 207-208°C(ACOEI-Hex) NMR: 6:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2H,m),8.08-8.10(1H,m),8.18-8.20 (11 m),8.38(1H,s),8.93(1H,s),9.10.30(1H,s)	36	CF3	×		1
B.74(1H,s),10.26(1H,s) mp: 220-221°C(AcOEt-Hex) NMR(CDCl ₃ ,TMS internal standard)					
Me Me Me Me Me Me Me Me					
NMR(CDCl ₃ ,TMS internal standard)	30	CE	Me		
δ :1.26(3H,s),1.79-1.85(11H,m),4.68-4.72(1H,m), 5.98-6.00(1H,m),7.81-7.83(2H,m), 7.98-8.00 (1H,m) 9.88-9.89(1H,m) mp: 206-207°C(AcOEt-Hex) NMR (CDCl ₃ TMS internal standard): δ :1.61(3H,d, J=8.6Hz),4.93-4.97(1H,m),6.82-6.84(1H,m), 7.16- 7.19(2H,m),7.76(1H,d,J=8.5Hz),7.84-7.87 (2H,m), 7.97(1H,d, J=8.5Hz),8.02 (1H,s),9.88(1H,s) mp: 166-167°C(AcOEt-Hex) NMR: δ :1.53(6H,s),7.18-7.23(1H,m),7.34-7.40 (11 m), 7.79-7.85(1H,m),8.08(1H,d,J=1.6Hz),8.55(1H,d,J=1 Hz),10.22(1H,s) mp: 182-183°C(AcOEt-Hex) NMR: δ :1.52(6H,s),7.14-7.20(2H,m),7.48-7.56 (11 m), 8.10(1H,d,J=8.8Hz),8.17(1H,dd,J=1.6Hz,8.0Hz), 8.33(1H,d,J=1.6Hz),9.10 (1H,s),10.20(1H,s) mp: 214-215°C(AcOEt-Hex) NMR: δ :1.51(6H,s),7.55(1H,dd,J=1.6Hz,8.0Hz), 7.66-7.69(2H,m),8.08(1H,d,J=8.4Hz),8.18-8.21 (11 m), 8.35-8.36(1H,m),8.87(1H,s), 10.28(1H,s) mp: 171-172°C(AcOEt-Hex) NMR: δ :1.49(6H,s),2.01(3H,s),7.16-7.18(1H,m), 7.34-7.38(1H,m),7.51-7.55(1H,m),7.85(1H,dd,J=1.6,8, Hz),8.33(1H,d,J=1.6Hz),8.61(1H,s),10.17(1H,s) mp: 207-208°C(AcOEt-Hex) NMR: δ :1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2H,m),7.87-7.89(1H,m),8.08-8.10(1H,m),8.18-8.20 (1H,m),8.38(1H,s),8.93(1H,s),10.30(1H,s)	39		Ϊ	$ \rightarrow \rangle$	1
5.98-6.00(1H,m),7.81-7.83(2H,m), 7.98-8.00 (1H,m) 9.88-9.89(1H,m) mp: 206-207°C(AcOEt-Hex) NMR (CDCl ₃ ,TMS internal standard): δ:1.61(3H,d, J=8.6Hz),4.93-4.97(1H,m),6.82-6.84(1H,m), 7.16- 7.19(2H,m),7.76(1H,d,J=8.5Hz),7.84-7.87 (2H,m), 7.97(1H,d, J=8.5Hz),8.02 (1H,s),9.88(1H,s) mp: 166-167°C(AcOEt-Hex) NMR: δ:1.53(6H,s),7.18-7.23(1H,m),7.34-7.40 (11 m), 7.79-7.85(1H,m),8.08(1H,d,J=8.8Hz),8.16 (1H dd,J=1.6,8.8Hz),8.32(1H,d,J=1.6Hz),8.55(1H,d,J=1 Hz),10.22(1H,s) mp: 182-183°C(AcOEt-Hex) NMR: δ:1.52(6H,s),7.14-7.20(2H,m),7.48-7.56 (11 m), 8.10(1H,d,J=8.8Hz),8.17(1H,dd,J=1.6,8.8Hz), 8.33(1H,d,J=1.6Hz),9.10 (1H,s),10.20(1H,s) mp: 214-215°C(AcOEt-Hex) NMR: δ:1.51(6H,s),7.55(1H,dd,J=1.6Hz,8.0Hz), 7.66-7.69(2H,m),8.08(1H,d,J=1.6Hz,8.0Hz), 7.66-7.69(2H,m),8.08(1H,d,J=1.6Hz),8.18(1H,dd,J=1.6,8.8Hz), 1.6,7.2Hz),8.18(1H,d,J=8.8Hz),8.18(1H,dd,J=1.6,8.8Hz),8.33(1H,d,J=1.6Hz),8.61(1H,s),10.17(1H,s) mp: 207-208°C(AcOEt-Hex) NMR: δ:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2H m),7.87-7.89(1H,m),8.08-8.10(1H,m),7.76-7.80 (2H m),7.87-7.89(1H,m),8.08-8.10(1H,m),7.76-7.80 (2H m),7.87-7.89(1H,m),8.08-8.10(1H,m),7.76-7.80 (2H m),8.38(1H,s),8.93(1H,s),10.30(1H,s)					
9.88-9.89(1H,m) mp: 206-207°C(AcOEt-Hex) NMR (CDCl ₃ ,TMS internal standard): δ: 1.61 (3H,d, J=8.6Hz),4.93-4.97 (1H,m),6.82-6.84 (1H,m), 7.16- 7.19(2H,m),7.76 (1H,d,J=8.5Hz),7.84-7.87 (2H,m), 7.97 (1H,d, J=8.5Hz),8.02 (1H,s),9.88 (1H,s) 41 CF ₃ Me Me F mp: 166-167 C(AcOEt-Hex) NMR: δ:1.53 (6H,s),7.18-7.23 (1H,m),7.34-7.40 (11 m), 7.79-7.85 (1H,m),8.08 (1H,d,J=8.8Hz),8.16 (1H-dd,J=1.6,8.8Hz),8.32 (1H,d,J=1.6Hz),8.55 (1H,d,J=1-1.6,8.8Hz),8.33 (1H,d,J=1.8Hz),8.17 (1H,dd,J=1.6,8.8Hz),8.33 (1H,d,J=1.6Hz),9.10 (1H,s),10.20 (1H,s) 42 CF ₃ Me Me CI mp: 182-183°C (AcOEt-Hex) NMR: δ:1.52 (6H,s),7.14-7.20 (2H,m),7.48-7.56 (11 m), 8.10 (1H,d,J=8.8Hz),8.17 (1H,dd,J=1.6,8.8Hz),8.33 (1H,d,J=1.6Hz),9.10 (1H,s),10.20 (1H,s) 43 CF ₃ Me Me CI mp: 214-215°C (AcOEt-Hex) NMR: δ:1.51 (6H,s),7.55 (1H,dd,J=1.6Hz,8.0Hz),7.66-7.69 (2H,m),8.08 (1H,d,J=8.8Hz),8.18 (1H,dd,J=1.6,7.2Hz),8.18 (1H,m),7.51-7.55 (1H,m),7.85 (1H,dd,J=1.6,7.2Hz),8.18 (1H,d,J=8.8Hz),8.18 (1H,dd,J=1.6,8.8Hz),8.33 (1H,d,J=1.6Hz),8.61 (1H,s),10.17 (1H,s) 45 CF ₃ Me Me Me mp: 207-208°C (AcOEt-Hex) NMR: δ:1.51 (6H,s),7.65-7.69 (1H,m),7.76-7.80 (2Hm),7.87-7.89 (1H,m),8.08-8.10 (1H,m),8.08-8.10 (1H,m),8.08-8.10 (1H,m),8.08-8.10 (1H,m),8.08-8.10 (1H,m),8.08-8.10 (1H,m),8.08-8.10 (1H,m),8.08-8.10 (1H,m),8.08-8.10 (1H,m),8.08 (1H,s),8.09 (1H,s					
Me				•	
NMR (CDCl ₃ ,TMS internal standard): δ:1.61 (3H,d, J=8.6Hz),4.93-4.97 (1H,m),6.82-6.84 (1H,m), 7.16-7.19 (2H,m),7.76 (1H,d,J=8.5Hz),7.84-7.87 (2H,m), 7.97 (1H,d, J=8.5Hz),8.02 (1H,s),9.88 (1H,s)	40	CF.	Me		
J=8.6Hz),4.93-4.97(1H,m),6.82-6.84(1H,m), 7.16-7.19(2H,m),7.76(1H,d,J=8.5Hz),7.84-7.87 (2H,m),7.97(1H,d,J=8.5Hz),7.84-7.87 (2H,m),7.97(1H,d,J=8.5Hz),8.02 (1H,s),9.88(1H,s) 41 CF ₃ Me Me F mp: 166-167 C: (AcOEt-Hex) NMR: δ:1.53(6H,s),7.18-7.23(1H,m),7.34-7.40 (1H,d),J=1.68.8Hz),8.16 (1H,d),J=1.68.8Hz),8.16 (1H,d),J=1.64z),8.55(1H,d,J=1,d),10.22(1H,s) 42 CF ₃ Me Me F Nm: NMR: δ:1.52(6H,s),7.14-7.20(2H,m),7.48-7.56 (1H,d),J=1.6Hz),9.10 (1H,s),10.20(1H,s) NMR: δ:1.52(6H,s),7.15(1H,dd,J=1.6Hz,8.0Hz),7.66-7.69(2H,m),8.08(1H,d),J=8.4Hz),8.18-8.21 (1H,m),8.35-8.36(1H,m),8.87(1H,s),10.28(1H,s) 44 CF ₃ Me Me Me Nm: NMR: δ:1.49(6H,s),2.01(3H,s),7.16-7.18(1H,m),7.34-7.38(1H,m),7.51-7.55(1H,m),7.85(1H,dd,J=1.67,2Hz),8.18(1H,d,J=8.8Hz),8.18(1H,d,J=1.6,8.Hz),8.33(1H,d,J=1.6Hz),8.18(1H,d,J=1.6,8.Hz),8.33(1H,d,J=1.6Hz),8.61(1H,s),10.17(1H,s) 45 CF ₃ Me Me Me Me Nm: NMR: δ:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2H,s),7.87-7.89(1H,m),8.08-8.10(1H,m),8.18-8.20 (1H,s),8.38(1H,s),8.93(1H,s),10.30(1H,s)	1 40	01 3	人	(/′ '}—F	1 '
7.19(2H,m),7.76(1H,d,J=8.5Hz),7.84-7.87 (2H,m), 7.97(1H,d, J=8.5Hz),8.02 (1H,s),9.88(1H,s) mp: 166-167 C(AcOEt-Hex) NMR: \(\delta : 1.53(6H,s),7.18-7.23(1H,m),7.34-7.40 \) (11 m), 7.79-7.85(1H,m),8.08(1H,d,J=8.8Hz), 8.16 (1H,d,J=1.6,8.8Hz),8.32(1H,d,J=1.6Hz),8.55(1H,d,J=1.4z),10.22(1H,s) mp: 182-183 C(AcOEt-Hex) NMR: \(\delta : 1.52(6H,s),7.14-7.20(2H,m),7.48-7.56 \) (11 m), 8.10(1H,d,J=8.8Hz),8.17(1H,dd,J=1.6,8.8Hz), 8.33(1H,d,J=1.6Hz),9.10 (1H,s),10.20(1H,s) mp: 214-215 C(AcOEt-Hex) NMR: \(\delta : 1.51(6H,s),7.55(1H,dd,J=1.6Hz,8.0Hz), 7.66-7.69(2H,m),8.08(1H,d,J=8.4Hz), 8.18-8.21 (1H,m), 8.35-8.36(1H,m),8.87(1H,s), 10.28(1H,s) mp: 171-172 C(AcOEt-Hex) NMR: \(\delta : 1.49(6H,s),2.01(3H,s),7.16-7.18(1H,m), 7.34-7.38(1H,m),7.51-7.55(1H,m),7.85(1H,dd,J=1.6,8.4z), 1.6,7.2Hz),8.18(1H,d,J=8.8Hz),8.18(1H,dd,J=1.6,8.4z), 1.6,7.2Hz),8.18(1H,d,J=8.6Hz),8.61(1H,s),10.17(1H,s) mp: 207-208 C(AcOEt-Hex) NMR: \(\delta : 1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 \) (24 m),7.87-7.89(1H,m),8.08-8.10(1H,m),8.18-8.20 (1H,m),8.38(1H,s),8.93(1H,s),10.30(1H,s)		}	/	\ <u> </u>	
7.97(1H,d, J=8.5Hz),8.02 (1H,s),9.88(1H,s) Me Me F					
## CF3 Me Me ## Me Me ## Me Me ## CF3 Me Me ## Me Me ## CF3 Me Me ## Me Me ## Me Me ## CF3 Me Me ## CF3 Me Me ## Me Me ## Me Me ## Me Me Me ## Me					
MR: δ:1.53(6H,s),7.18-7.23(1H,m),7.34-7.40 (1Hm), 7.79-7.85(1H,m),8.08(1H,d, J=8.8Hz), 8.16 (1Hm), 7.79-7.85(1H,m),8.08(1H,d, J=8.8Hz), 8.16 (1Hm), 7.79-7.85(1H,m),8.08(1H,d, J=1.6Hz),8.55(1H,d,J=1.4z),10.22(1H,s) Me Me F F F F F F F F F F F F F F F F F	41	CF-	Me Me	F	
Me Me Me Cl Me Me Me Cl Me Me Me Cl Me Me Me Me Cl Me Me Me	''	0, 3	\times	·	
dd,J=1.6,8.8Hz),8.32(1H,d,J=1.6Hz),8.55(1H,d,J=1.4z),10.22(1H,s) 42 CF ₃ Me Me F F Me 182-183°C(AcOEt-Hex) NMR: δ:1.52(6H,s),7.14-7.20(2H,m),7.48-7.56 (1H,m), 8.10(1H,d,J=8.8Hz),8.17(1H,dd, J=1.6, 8.8Hz),8.33(1H,d,J=1.6Hz),9.10 (1H,s),10.20(1H,s) 43 CF ₃ Me Me CI Mp: 214-215°C(AcOEt-Hex) NMR: δ:1.51(6H,s),7.55(1H,dd,J=1.6Hz, 8.0Hz),7.66-7.69(2H,m),8.08(1H,d,J=8.4Hz),8.18-8.21 (1Hm),8.35-8.36(1H,m),8.87(1H,s),10.28(1H,s) 44 CF ₃ Me Me Me Me Mp: 171-172°C(AcOEt-Hex) NMR: δ:1.49(6H,s),2.01(3H,s),7.16-7.18(1H,m),7.34-7.38(1H,d,J=8.8Hz),8.18(1H,dd,J=1.6,8.4z),8.33(1H,d,J=1.6Hz),8.61(1H,s),10.17(1H,s) 45 CF ₃ Me Me Me Me Mp: 207-208°C(AcOEt-Hex) NMR: δ:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2Hm),7.87-7.89(1H,m),8.08-8.10(1H,m),8.18-8.20 (1Hm),8.38(1H,s),8.93(1H,s),10.30(1H,s)	Į			—// \\F	
Hz),10.22(1H,s) mp: 182-183°C(AcOEt-Hex) NMR: δ:1.52(6H,s),7.14-7.20(2H,m),7.48-7.56 (1Hm), 8.10(1H,d,J=8.8Hz), 8.17(1H,dd, J=1.6, 8.8Hz), 8.33(1H,d,J=1.6Hz),9.10 (1H,s),10.20(1H,s) 43 CF ₃ Me Me C! mp: 214-215°C(AcOEt-Hex) NMR: δ:1.51(6H,s),7.55(1H,dd,J=1.6Hz, 8.0Hz), 7.66-7.69(2H,m),8.08(1H,d,J=8.4Hz), 8.18-8.21 (1Hm), 8.35-8.36(1H,m),8.87(1H,s), 10.28(1H,s) 44 CF ₃ Me Me mp: 171-172°C(AcOEt-Hex) NMR: δ:1.49(6H,s),2.01(3H,s),7.16-7.18(1H,m), 7.34-7.38(1H,m),7.51-7.55(1H,m),7.85(1H,dd,J=1.6,8.4z), 8.18(1H,d,J=8.8Hz), 8.18(1H,dd,J=1.6,8.4z), 8.33(1H,d,J=1.6Hz), 8.61(1H,s),10.17(1H,s) 45 CF ₃ Me Me Me Me Me Me CI Mp: 214-215°C(AcOEt-Hex) NMR: δ:1.51(6H,s),7.55(1H,m),7.85(1H,dd,J=1.6,8.4z), 8.33(1H,d,J=1.64z), 8.18(1H,dd,J=1.6,8.4z), 8.33(1H,d,J=1.64z), 8.61(1H,s), 10.17(1H,s) Mp: 207-208°C(AcOEt-Hex) NMR: δ:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2Hm),7.87-7.89(1H,m),8.08-8.10(1H,m),8.18-8.20 (1Hm),8.38(1H,s),8.93(1H,s), 10.30(1H,s)				\ <u> </u>	
## Process of the pr					
MR: δ:1.52(6H,s),7.14-7.20(2H,m),7.48-7.56 (1Hm), 8.10(1H,d,J=8.8Hz),8.17(1H,dd,J=1.6, 8.8Hz), 8.33(1H,d,J=1.6Hz),9.10 (1H,s),10.20(1H,s) Me Me CI	42	CF ₂	Me Me	1	
m), 8.10(1H,d,J=8.8Hz), 8.17(1H,dd, J=1.6, 8.8Hz), 8.33(1H,d,J=1.6Hz), 9.10 (1H,s), 10.20(1H,s) mp: 214-215°C (AcOEt-Hex) NMR: δ:1.51(6H,s), 7.55(1H,dd,J=1.6Hz, 8.0Hz), 7.66-7.69(2H,m), 8.08(1H,d,J=8.4Hz), 8.18-8.21 (1Hm), 8.35-8.36(1H,m), 8.87(1H,s), 10.28(1H,s) mp: 171-172°C (AcOEt-Hex) NMR: δ:1.49(6H,s), 2.01(3H,s), 7.16-7.18(1H,m), 7.34-7.38(1H,m), 7.51-7.55(1H,m), 7.85(1H,dd,J=1.6,8.4z), 8.18(1H,d,J=1.6Hz), 8.18(1H,dd,J=1.6,8.4z), 8.18(1H,d,J=1.6Hz), 8.33(1H,d,J=1.6Hz), 8.61(1H,s), 10.17(1H,s) mp: 207-208°C (AcOEt-Hex) NMR: δ:1.51(6H,s), 7.65-7.69(1H,m), 7.76-7.80 (2Hm), 7.87-7.89(1H,m), 8.08-8.10(1H,m), 8.18-8.20 (1Hm), 8.38(1H,s), 8.93(1H,s), 10.30(1H,s)	'-	3	\times	F Y F	, , , , , , , , , , , , , , , , , , , ,
8.33(1H,d,J=1.6Hz),9.10 (1H,s),10.20(1H,s) Me Me CI mp: 214-215°C(AcOEt-Hex) NMR: δ:1.51(6H,s),7.55(1H,dd,J=1.6Hz, 8.0Hz), 7.66-7.69(2H,m),8.08(1H,d,J=8.4Hz), 8.18-8.21 (1Hm), 8.35-8.36(1H,m),8.87(1H,s), 10.28(1H,s) Me Me Me Me COCCH ₃ Me Me Me Me Me COCCH ₃ Me M	1	ĺ			
43 CF ₃ Me Me CI mp: 214-215°C (AcOEt-Hex) NMR: δ:1.51 (6H,s),7.55(1H,dd,J=1.6Hz, 8.0Hz), 7.66-7.69(2H,m),8.08(1H,d,J=8.4Hz), 8.18-8.21 (1Hm), 8.35-8.36(1H,m),8.87(1H,s), 10.28(1H,s) 44 CF ₃ Me Me Me OCOCH ₃ mp: 171-172°C (AcOEt-Hex) NMR: δ:1.49(6H,s),2.01(3H,s),7.16-7.18(1H,m), 7.34-7.38(1H,m),7.51-7.55(1H,m),7.85(1H,dd,J=1.6,8.4z),8.18(1H,d,J=1.6,8.4z),8.33(1H,d,J=1.6Hz),8.61(1H,s),10.17(1H,s) 45 CF ₃ Me Me Me Ne CF ₃ Me Me Me (CF ₃ Me Me Me (CF ₃ Me Me Me Me Me Me (CF ₃ Me Me Me Me Me Me (CF ₃ Me Me Me Me Me (CF ₃ Me Me Me Me Me Me (CF ₃ Me Me Me Me Me Me (CF ₃ Me Me Me Me Me Me Me (CF ₃ Me Me Me Me Me Me Me Me Me (CF ₃ Me				~	
NMR: δ:1.51(6H,s),7.55(1H,dd,J=1.6Hz, 8.0Hz), 7.66-7.69(2H,m),8.08(1H,d,J=8.4Hz), 8.18-8.21 (1Hm), 8.35-8.36(1H,m),8.87(1H,s), 10.28(1H,s) Me Me Me Me Me 171-172°C (AcOEt-Hex) NMR: δ:1.49(6H,s),2.01(3H,s),7.16-7.18(1H,m), 7.34-7.38(1H,m),7.51-7.55(1H,m),7.85(1H,dd,J=1.6,7.2Hz),8.18(1H,d,J=8.8Hz),8.18(1H,dd,J=1.6,8.14z),8.33(1H,d,J=1.6Hz),8.61(1H,s),10.17(1H,s) Mp: 207-208°C (AcOEt-Hex) NMR: δ:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2Hm),7.87-7.89(1H,m),8.08-8.10(1H,m),8.18-8.20 (1Hm),8.38(1H,s),8.93(1H,s), 10.30(1H,s)	43	CF ₂	Me Me	CI	
7.66-7.69(2H,m),8.08(1H,d,J=8.4Hz), 8.18-8.21 (1Hm), 8.35-8.36(1H,m),8.87(1H,s), 10.28(1H,s) 44 CF ₃ Me Me OCOCH ₃ mp: 171-172°C (AcOEt-Hex) NMR: \delta: 1.49(6H,s),2.01(3H,s),7.16-7.18(1H,m), 7.34-7.38(1H,m),7.51-7.55(1H,m),7.85(1H,dd,J= 1.6,7.2Hz),8.18(1H,d,J=8.8Hz),8.18(1H,dd,J=1.6,8. Hz),8.33(1H,d,J=1.6Hz),8.61(1H,s),10.17(1H,s) mp: 207-208°C (AcOEt-Hex) NMR: \delta: 1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2Hm),7.87-7.89(1H,m),8.08-8.10(1H,m),8.18-8.20 (1Hm),8.38(1H,s),8.93(1H,s), 10.30(1H,s)		3	\times	<i>}</i>	
m), 8.35-8.36(1H,m),8.87(1H,s), 10.28(1H,s) 44 CF ₃ Me Me OCOCH ₃ mp: 171-172°C(AcOEt-Hex) NMR: δ:1.49(6H,s),2.01(3H,s),7.16-7.18(1H,m), 7.34-7.38(1H,m),7.51-7.55(1H,m),7.85(1H,dd,J= 1.6,7.2Hz),8.18(1H,d,J=8.8Hz),8.18(1H,dd,J=1.6,8. Hz),8.33(1H,d,J=1.6Hz),8.61(1H,s),10.17(1H,s) mp: 207-208°C(AcOEt-Hex) NMR: δ:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2Hm),7.87-7.89(1H,m),8.08-8.10(1H,m),8.18-8.20 (1Hm),8.38(1H,s),8.93(1H,s), 10.30(1H,s)				()cı	
Me M				<u>_</u> /	
NMR: δ:1.49(6H,s),2.01(3H,s),7.16-7.18(1H,m), 7.34-7.38(1H,m),7.51-7.55(1H,m),7.85(1H,dd,J= 1.6,7.2Hz),8.18(1H,d,J=8.8Hz),8.18(1H,dd,J=1.6,8. Hz),8.33(1H,d,J=1.6Hz),8.61(1H,s),10.17(1H,s) mp: 207-208°C (AcOEi-Hex) NMR: δ:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2Hm),7.87-7.89(1H,m),8.08-8.10(1H,m),8.18-8.20 (1Hm),8.38(1H,s),8.93(1H,s), 10.30(1H,s)	44	CF ₂	Me Me		
7.34-7.38(1H,m),7.51-7.55(1H,m),7.85(1H,dd,J= 1.6,7.2Hz),8.18(1H,d,J=8.8Hz),8.18(1H,dd,J=1.6,8. Hz),8.33(1H,d,J=1.6Hz),8.61(1H,s),10.17(1H,s) mp: 207-208°C(AcOEI-Hex) NMR: \delta: 1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2Hm),7.87-7.89(1H,m),8.08-8.10(1H,m),8.18-8.20 (1Hm),8.38(1H,s),8.93(1H,s), 10.30(1H,s)	`	- 3	\times		MMD: 5:1 40(6H a) 2 01(2H a) 7 40 7 10(4H a)
1.5,7.2H2],6.16(1H,d,J=8.8H2),8.18(1H,dd,J=1.6,8.8H2),8.33(1H,d,J=1.6H2),8.61(1H,s),10.17(1H,s) Hz),8.33(1H,d,J=1.6Hz),8.61(1H,s),10.17(1H,s) mp: 207-208°C(AcOEi-Hex) NMR: δ:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2Hm),7.87-7.89(1H,m),8.08-8.10(1H,m),8.18-8.20 (1Hm),8.38(1H,s),8.93(1H,s), 10.30(1H,s)				(_)_OCOCH3	7.34-7.38(1H.m),7.51-7.55(1H m) 7.85/1H dd
Hz),8.33(1H,d,J=1.6Hz),8.61(1H,s),10.17(1H,s) 45 CF ₃ Me Me CF ₃ mp: 207-208°C(AcOEi-Hex) NMR: δ:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2Hm),7.87-7.89(1H,m),8.08-8.10(1H,m),8.18-8.20 (1Hm),8.38(1H,s),8.93(1H,s), 10.30(1H,s)					11.6.7.2Hz).8.18(1H.d.J=8.8Hz) 8 18(1H dd J=1.6.8.8
45 CF ₃ Me Me mp: 207-208°C(AcOEI-Hex) NMR: δ:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2Hm),7.87-7.89(1H,m),8.08-8.10(1H,m), 8.18-8.20 (1Hm),8.38(1H,s),8.93(1H,s), 10.30(1H,s)		1	İ		Hz).8.33(1H.d.J=1.6Hz).8.61(1H e) 10 17(1H e)
NMR: δ:1.51(6H,s),7.65-7.69(1H,m),7.76-7.80 (2Hm),7.87-7.89(1H,m),8.08-8.10(1H,m), 8.18-8.20 (1Hm),8.38(1H,s),8.93(1H,s), 10.30(1H,s)	45	CF ₂	Me Me		mp: 207-208°C(AcOEI-Hex)
m),7.87-7.89(1H,m),8.08-8.10(1H,m), 8.18-8.20 (1Hm),8.38(1H,s),8.93(1H,s), 10.30(1H,s)	.	3	\times	/ · · ·	
m),8.38(1H,s),8.93(1H,s), 10.30(1H,s)		ſ		('_ '>—CF ₃	m) 7.87-7.89(1H m) 8.08-8.10(1H m) 8.18-8.20 (1H
	j i	Ì	i		
46 CF ₃ Me Me mp: 215-216°C(AcOEt-Hex)	46	CF ₃	Ме Мс		
NMR: 6:1.58(6H,s),7.46-7.60(3H,m),7.85 (1H,d,	'`	J, 3	\times		
J=6.8Hz),7.97-8.13(4H,m),8.24-8.26 (1H,m),8.39					
0-0.012],7.37-0.13[4F1,111],0.24-0.20 (1H,M),8.39	Ll				

Ex.	R'	Α	R ⁹	DATA
				(1H,s),8.86(1H,s),10.42(1H,s)
47	CF ₃	Me Me		mp: 195-196°C(AcOEt-Hex)
1		\times		NMR: δ:1.52(6H,s),7.35-7.40(1H,m),7.45-7.49 (1H,
			- Br	m), 7.61-7.66(2H,m),8.08(1H,d, J=8.8Hz), 8.21(1H,
				dd,J=2.4,8.8Hz),8.38(1H,d,J=2.4Hz),8.81(1H,s),10.2
	!			7(1H,s)
48	CF₃	Me Me		mp: 180-182 C(AcOEt-Hex)
				NMR: δ:1.52(6H,s),7.40-7.51(3H,m),7.61-7.65 (1H,
			\ <u> </u>	m),8.05-8.24(2H,m),8.37(1H,br),8.83 (1H,br),10.28
				(1H,s)
49	CF ₃	Me Me		mp: 203-204°C(AcOEt-Hex)
				NMR: δ:1.54(6H,s),7.46-7.50(2H,m),7.53-7.57 (1H,
				m), 7.93-7.95(2H,m),8.05(1H,d, J=8.4Hz), 8.14
				(1H,dd,J=1.6,8.4Hz),8.31(1H,d,J=1.6Hz),8.86(1H,s),
				10.20(1H,s)
50	CF₃	Me Me		mp: 106-107°C (AcOEt-Hex)
				NMR: δ:1.51(6H,s),6.63-6.66(1H,m),7.18-7.20 (1H,
			"	m),7.86-7.88(1H,m),8.05 (1H,d, J=8.4Hz), 8.13-8.17
-	05	Me Me		(1H,m),8.30(1H,d,J=2.0Hz),8.38(1H,s), 10.25(1H,s)
51	CF ₃	Me Me		mp: 145-146°C (AcOEt-Hex)
	i i			NMR: δ:1.48(6H,s),3.72(3H,s),6.04(1H,dd,J=2.4;
	1		Me	4.0Hz),6.89-6.92(1H,m),6.98-7.01(1H,m),7.97 (1H,
İ			10	s),8.05(1H,d,J=8.8Hz),8.15-8.19(1H,m), 8.33(1H,d,
52	CN	_OAc		J=1.6Hz),10.17(1H,s) mp: 209-210°C(AcOEt-MeOH)
ا عد			(" \\F	NMR: δ :2.01(3H,s),4.34-4.46(2H,m),4.83-4.90 (1H,
}		\wedge	\ <u> </u>	(m),7.30-7.37(2H,m),7.96-8.06(3H,m), 8.09(1H,d,
				J=8.8Hz),8.30(1H,d,J=2.4Hz),8.97(1H,d,J=7.6Hz),10
				.98(1H,s)
53	CF ₃	Me Me		mp: 125-127°C(AcOEt-Hex)
	" "	\times		NMR: δ:1.52(6H,s),7.16-7.20(1H,m),7.76-7.79 (1H,
			/ `s´	m),7.95-7.98(1H,m),8.05(1H,d,J=8.8Hz), 8.13-8.18
				(1H,m),8.30(1H,d,J=2.0Hz),8.54(1H,s),10.23(1H,s)
54	CF ₃	Me Me		mp: 198-199°C (AcOEt-Hex)
		\times	_u_	NMR: δ:1.51(6H,s),2.27(3H,s),7.21-7.29(2H,m),
		•	Me	7.32-7.37(1H,m),7.54-7.58(1H,m),8.07(1H,d, J=8.8
				Hz),8.19(1H,dd,J=2.0,8.8Hz),8.38(1H,d,J=2.0Hz),8.5
<u> </u>		• • • • • • • • • • • • • • • • • • • •		3(1H,s),10.25(1H,s)
55	CN	Me Me		mp: 175-176°C (AcOEt-Hex)
			<i>(</i> ′, ′∕)—F	NMR: δ:1.52(6H,s),7.27-7.33(2H,m),7.52-7.58 (1H,
				m),7.72-7.77(1H,m),8.05(1H,d,J=8.4Hz), 8.13 (1H,
	[dd,J=2.0,8.4Hz),8.34(1H,d,J=2.0Hz),8.51-8.55 (1H,
		Me Me		m),10.20(1H,s)
56	CN	Me Me	F F	mp: 139-141°C (AcOEt-Hex)
	- 1	/ \		NMR: δ:1.51(6H,s),7.14-7.21(2H,m),7.48-7.57 (1H,
		,		m),8.07(1H,d,J=8.8Hz),8.12(1H,dd,J=2.0,8.8Hz),8.35
57	<u></u>	Мс Ме		(1H,d,J=2.0Hz),9.11(1H,s),10.16(1H,s)
3/	CF ₃	"\\\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\		mp: 221-223°C (AcOEt-Hex)
	j	/ \	人。人	NMR: δ:1.56(6H,s),7.43-7.50(2H,m),7.95-8.08 (3H,
	1]	5 ~	m),8.15-8.19(1H,m),8.30-8.34(2H,m),8.86 (1H,s),
	1			[10.29(1H,s)

Ex.	R¹	A	R ⁹	DATA
58	CF ₃		/	mp: 195-196 C (AcOE1-MeOH)
	3			NMR: δ:3.31(3H,s),3.73(2H,d,J=4.4Hz),4.78-4.85
		/ \	\	(1H,m),7.28-7.35(2H,m),7.54-7.61(1H,m),7.66-7.71
		ļ		(1H,m),8.02-8.06(1H,m),8.12(1H,d,J=8.8Hz), 8.31
Ì	1			(1H,d,J=2.4Hz),8.55-8.66(1H,m),11.01(1H,s)
59	CF₃	OMe		mp: 187-188°C (AcOEt-Hex)
	ĺ		- - - - - - - - - 	NMR: δ:3.32(3H,s),3.70-3.79(2H,m),4.77-4.84 (1H,
		- `		m),7.29-7.36(2H,m),7.97-8.14(4H,m), 8.32 (1H,d, J=
<u> </u>	<u> </u>			2.0Hz),8.83(1H,d,J=6.8Hz),10.99(1H,s)
60	CF ₃	Me Me	, .	mp: 164-165℃(AcOEt-Hex)
				NMR: δ:1.53(6H,s),7.28-7.34(1H,m),7.50-7.64 (2H,
ł	Ì		SV ₽	m),8.09(1H,d,J=8.4Hz),8.17(1H,dd,J=1.6,8.4Hz),8.34
	-	14 14 -		(1H,d,J=1.6Hz),8.74(1H,s),10.24(1H,s)
61	CF ₃	Me Me	T F	mp: 208-209°C (AcOEt-Hex)
l			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NMR: δ:1.53(6H,s),7.53-7.61(1H,m),7.78-7.84 (1H,
			r	m),8.01-8.08(2H,m),8.12-8.15(1H,m), 8.29 (1H,d,
60	CE	Me Me	F. ^	J=1.6 Hz), 8.70(1H,s),10.21(1H,s)
62	CF ₃	"` `` \""		mp: 161-162°C(AcOEt-Hex)
ł				NMR: δ :1.52(6H,s),7.33-7.45(2H,m),7.59-7.65 (1H, m),8.08(1H,d,J=8.8Hz),8.15(1H,dd,J=1.6,8.8Hz),8.33
ĺ				(1H,d,J=1.6Hz),8.71(1H,s),10.24(1H,s)
63	CF ₃	Me Me	Me	mp: 143-144°C((i-Pr) ₂ O)
~	O 3	X	——Me	NMR: δ:1.11(9H,s),1.42(6H,s),7.39(1H,s),8.04-8.11)
			Me	(2H,m),8.30-8.33(1H,m),9.00(1H,s)
64	CN	Me Me	1	MS FAB (m/z):383[(M+1)*]
0,	0.1	\uparrow	F F	NMR: δ:0.97(6H,d,J=6.6Hz),2.05-2.19(1H,m),4.51
			Ĺ J	(1H,t,J=8.3Hz),7.15(2H,t,J=7.9Hz),7.46-7.58(1H, m),
			~	8.01(1H,dd,J=1.9,8.5Hz),8.09(1H,d,J=8.5Hz),8.33(1
			·	H,d,J=1.9Hz),9.15(1H,d,J=8.3Hz),11.03(1H,br)
65	CF ₃	Me Me		mp: 204-205°C
			() au	NMR: δ:1.54(6H,s), 7.67-7.71(1H,m), 7.80-7.84
			\/ W	(1H, m), 7.92(1H,d,J=7.6Hz), 7.99(1H,d, J=7.6Hz),
		}		8.07 (1H,d,J=8.8Hz), 8.19(1H,dd, J=1.6,8.8Hz), 8.31
				(1H,d,J=1.6Hz), 8.95(1H,s), 10.27(1H,s)
66	CF₃	Me Me	r,∕≥Y ^F ∣	mp: 215-217°C
				NMR: δ:1.42(6H,s),5.02(2H,s),7.28-7.36 (4H,m),
		j	•	7.69(1H,s),8.07(1H,d,J=8.2Hz),8.20(1H,d,J=8.2Hz),
67	CF ₃	Me Me		8.33(1H,s),10.32(1H,s) mp: 205-206°C
٥/	O[3	~~``\\		MMR: δ:1.57(6H,s),6.91-6.94(2H,m),7.40-7.44(1H,
			(′_ У∕─0H	m), 7.99(1H,dd,J=1.6,8.0Hz),8.06 (1H,d, J=8.4Hz),
	ļ			8.15(1H,dd,J=2.0,8.4Hz), 8.30(1H,d, J=2.0Hz),
- 1	1	į		8.86(1H,s),10.27(1H,s), 11.88(1H,s)
68	CF ₃	Mc Me	1	mp: 188-189℃
	3	\times	_ N	NMR: δ:1.66(6H,s),7.73-7.77(2H,m),8.06 (1H,d,
	1			J=8.8Hz),8.17(1H,dd,J=2.0,8.4Hz),8.24(1H,dd,J=1.6,
		l		8.4Hz),8.31(1H,d,J=1.6Hz),8.49(1H,dd,J=1.6,7.2Hz),
ļ	j	İ	•	8.29(1H,dd,J=1.6,8.4Hz),9.15(1H,m),10.37(1H,s),11.
				46(1H,s)
69	CF ₃	Me Me	16 11	mp: 122-123 C (AcOEt-Hex)
				NMR: δ:1.49(6H,s),6.08-6.12(1H,m),6.85-6.88
	}		H	(1H,m),6.93-6.97(1H,m),8.01-8.06(2H,m),8.13-8,17
	1			(1H,m),8.30-8.34(1H,m),10.21(1H,s),11.40-11.46

Ex.	R¹	Α	Rª	DATA
۸.	+ 17		1	(1H,br)
70	CF ₃	Me Me		MS FAB (m/z):418[(M+H)*]
"	0, 3	X		NMR: δ:1.41(6H,s),1.47(6H,s),7.18-7.33(5H,m),
		- `	×`	7.45(1H,s),8.05-8.14(2H,m),8.24-8.26(1H,m), 9.89
			Me Me	(1H,s)
71	CF₃	Me Mc		mp: 194-195°C(AcOEt-Hex)
1			F C1	NMR: δ:1.52(6H,s),7.28-7.39(2H,m),7.45-7.52 (1H,
1				m),8.09(1H,d,J=8.4Hz),8.16-8.20(1H,m), 8.33 (1H,d,
				J=1.6Hz),9.13(1H,s),10.15(1H,s)
72	CF ₃	Me Me	FYCI	mp: 182-184°C(AcOEt-Hex)
			ー人!	NMR: δ:1.53(6H,s),7.42(1H,dd,J=2.4,8.0Hz), 7.54-
				7.58(1H,m),7.78(1H,t,J=8.0Hz),8.08(1H,d, J=8.4Hz),
				8.15-8.18(1H,m),8.33-8.35(1H,m),8.62-8.65(1H,m),
	 	Me Me	01 0	10.27(1H,s)
73	CF ₃	Me Me	CI	mp: 166-169°C(AcOEt-Hex)
			🌭 "	NMR: δ:1.51(6H,s),7.30-7.37(1H,m),7.52(1H,dd,
]				J=2.4,8.4Hz),7.72(1H,dd,J=6.4,8.4Hz),8.09(1H,d,J=8
				.8Hz),8.18-B.22(1H,m),8.34-8.37(1H,m),8.45 (1H,s),
74	CF ₃	Me Me		10.28(1H,s) mp: 187-188°C(AcOEt-Hex)
′¯	^{O(-3}			NMR: δ:1.53(6H,s),7.54(1H,t,J=9.2Hz),7.90-7.95
İ			CI	(1H,m),8.05(1H,d,J=8.4Hz),8.11-8.16(1H,m), 8.25
1		' i		(1H,dd,J=2.0,7.2Hz),8.28-8.30(1H,m),8.76 (1H,s),
				10.22(1H,s)
75	CF ₃	Me Me	。人。	mp: 197-199°C(AcOEt-Hex)
]	\times		NMR: δ:1.51(6H,s),7.27-7.34(2H,m),8.10(1H,d, J=
				8.4Hz),8.15-8.20(1H,m),8.31-8.33(1H,m),9.12(1H,s),
L			F	10.22(1H,s)
76	CF ₃	Me Me		mp: 222-223°C(AcOEt-Hex)
			() \ \ \ \ \ \ \	NMR: δ:1.42(6H,s),7.24-7.28(3H,m),7.35-7.40 (3H,
				m),7.44-7.56(2H,m),7.75-7.79(1H,m), 8.07 (1H,d,
		ļ		J=8.8Hz),8.13-8.16(1H,m),8.32-8.34 (1H,m), 8.65
	 	- M - M -		(1H,s),10.22(1H,s)
77	CF ₃	Me Me	_(_)_/	mp: 197-198°C (AcOEt-Hex)
				NMR: δ:1.55(6H,s),7.39-7.44(1H,m),7.47-7.53 (2H,
	1 1	ļ	<u>'</u>	m),7.72-7.81(4H,m),8.02-8.08(3H,m),8.14-8.18 (1H,
78	<u></u>	Me Me	F.	m),8.31-8.33(1H,m),8.63(1H,s),10.22 (1H,s)
10	CF₃		, }	MS FAB (m/z):400[(M+H)*] NMR: δ :1.56(6H,s),7.15(1H,d,J=5.6Hz),7.69-7.73
		/ \	<u> </u>	(1H,m),7.82(1H,dd,J=4.5,5.6Hz),8.07(1H,d,J=8.5Hz),
			/\s/	B.09(1H,br),8.13(1H,d,J=1.9,8.5Hz),8.28(1H,d,J=1.9)
		, i		Hz),10.24(1H,br)
79	CF ₃	Me Me		mp: 197-199°C(AcOEt-Hex)
_		\times		NMR: δ:1.54(6H,s),7.84-7.87(2H,m),8.06(1H,d,J=
		·		B.8 Hz),B.12-8.16(1H,m),B.30(1H,d,J=2.4Hz), B.73-
				8.76(2H,m),8.87(1H,s),10.29(1H,s)
80	CF ₃	Me Me		mp: 106-108°C(AcOEt-Hex)
]		\times		NMR: δ:1.61(6H,s),8.07(1H,d,J=8.4Hz),8.13-8.17
1	1	1	✓	(1H,m),8.30(1H,d,J=1.6Hz),8.79-8.82(1H,m), 8.90-
				8.93(ZH,m),9.15-9.17(1H,m),1U.32(1H,s)
81	CF ₃	Me Me		mp: 170-171°C (AcOEt-Hex)
1		\times		NMR: δ:1.65(6H,s),7.80-7.91(2H,m),8.06(1H,d, J=
}	1	1		8.8Hz),8.13-8.20(2H,m),8.26-8.32(2H,m), 8.53 (1H,
		<u> </u>		s),8.96(1H,s),9.45(1H,s),10.38(1H,s)
_				- 40 -

Ex.	R¹	A	R ⁹	DATA
82	CF ₃	Mc Me	 	
02	UF3	"X"		mp: 172-173°C (AcOEt-Hex)
1		/ \		NMR: δ:1.57(6H,s),6.75-6.78(1H,m),7.14-7.19 (1H,
	}	}		m),7.40-7.44(1H,m),7.57(1H,d,J=8.0Hz),7.64 (1H,d,
ŀ	1		H	J=8.0Hz),8.06(1H,d,J=8.8Hz),8.13-8.17 (1H,m),8.30-
83	CF ₃	Mc Me	 	8.33(2H,m),10.22(1H,s),11.28(1H,br) MS EI (m/z):423(M*)
03		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-cHp-(" ">-F	31
	1		' _	NMR: δ:1.47(6H,s),4.53(2H,s),6.94-7.00(2H,m),
	1	1	1	7.04-7.11(2H,m),8.08(1H,d,J=8.4Hz),8.17-8.22 (1H, m),8.27-8.20(1H,m),8.23(1H,d),10.21 (1H,d)
84	CF ₃	Me Me		m),8.27-8.30(1H,m),8.32(1H,s), 10.21 (1H,s) mp: 289-290°C(AcOEt-MeOH)
04	UF3	"×"		
				NMR: 6:1.72(6H,s),5.61(1H,d,J=9.2Hz),7.58 (1H,d,
				J=9.2Hz),8.13-8.20(2H,m),8.27-8.34(2H,m), 10.37- 10.44(1H,m),10.49(1H,br)
85	CF ₃	Me Me		mp: 147-149°C(AcOEt-Hex)
33	 ∪ □3	X		NMR: δ:1.56(6H,s),7.02-7.07(1H,m),7.16-7.21 (1H,
	1			m),7.32-7.36(1H,m),7.37-7.42(1H,m),7.82-7.66 (1H,
1	1	ĺ	į ii	m),8.05(1H,d,J=9.2Hz),8.14-8.19(1H,m), 8.30-8.33
1		l	1	(1H,m),8.53(1H,s),10.29 (1H,s), 11.55(1H,br)
86	CF ₃	Me Me		mp: 100-102 C(AcOEt-Hex)
55	3			NMR: δ:1.50(6H,s),2.45(3H,s),6.85-6.88(1H,m),
-			S Me	7.76(1H,d,J=4.0Hz),8.03-8.07(1H,m),8.13-8.17 (1H,
	1			m.8.29-8.32(1H,m),8.41(1H,s),10.22(1H,s)
87	CF ₃	Me Me	7.	mp: 231-232°C(AcOEt-Hex)
"	3			INMR: δ:1.55(6H,s),7.02-7.08(1H,m),7.32-7.34 (1H,
1			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	m),7.36-7.45(2H,m),8.05(1H,d,J=8.4Hz),8.16 (1H,dd,
			н	J=2.0,8.4Hz),8.31(1H,d,J=2.0Hz),8.59(1H,s),10.28(1
l				H,s),11.66(1H,s)
88	CF ₃	_OAc		MS FAB (m/z):438[(M+H)*]
	3]		NMR: δ:2.01(3H,s),4.34-4.48(2H,m),4.87-4.96 (1H,
	,		(<u>'_</u> <u>}</u>	m),7.27-7.37(2H,m),7.43-7.68(1H,m),7.65-7.79(1H,
Ì				m),8.05(1H,dd,J=2.1,9.0Hz), 8.14 (1H,d,J=9.0Hz),
				B.30(1H,d,J=2.1Hz),8.74-8.82(1H,m), 11.04(1H,br)
89	CF ₃	OH	/	mp: 181-182°C(AcOEt-MeOH)
		1	- / · · ·	NMR: δ:3.80-3.85(2H,m),4.63-4.68(1H,m),5.18-
			\ <u>_</u> /_	5.24(1H,m),7.29-7.37(2H,m),7.55-7.62(1H,m), 7.72-
				7.77(1H,m),8.02-8.06(1H,m),8.12(1H,d, J=8.8Hz),
				8.33-8.38(2H,m),10.92(1H,s)
90	CF₃	Me Me		mp: 179°C
		\times	—(′_ '}—OMe	NMR: δ:1.52(6H,s),3.81(3H,s),7.00(2H,d, J=8.7Hz),
			<u></u> /	7.91(2H,d,J=8.7Hz),8.04(1H,d,J=8.7Hz),8.02-8.05
				(1H,m),8.29-8.31 (1H,m),8.38(1H,br), 10.16(1H,br)
91	CF ₃	Me Me		mp: 182-183°C (AcOEt)
	1	<u> </u>		NMR: δ:1.52(6H,s),7.70(2H,d,J=8.4Hz),7.89(2H, d,
				J=8.4Hz),8.05(1H,d,J=8.4Hz),8.11-8.16(1H,m), 8.28-
	_ {			8.30(1H,m),8.65(1H,br),10.19(1H,br)
92	CF ₃	Me Me		mp: 173°C (AcOEt)
-]	3	\times 1		NMR: δ:1.52(6H,s),7.56(2H,d,J=8.4Hz),7.96(2H, d,
ļ		- \	\-/	J=8.4Hz),8.05(1H,d,J=8.7Hz),8.12-8.16(1H,m), 8.29-
j	1	1	l	8.31(1H,m), 8.65(1H,br), 10.19(1H,br)
93	CF ₃	Me Me		mp: 223°C
	3	\times		NMR: δ:1.50(6H,s),7.80(1H,d,J=8.1Hz),7.68(1H, d,
- 1	}	·	('_	J=1.8,8.1Hz),7.81(1H,d,J=1.8Hz),8.08(1H,d,J=9.0Hz)
	1	i),8.17-8.22(1H,m),8.35-8.36(1H,m),8.87 (1H,br),
1	- 1			10.28(1H,br)
				- 41

Ex.	R'	Α	₽ ₉	DATA
94	CF ₃	Me Mc		mp: 199°(: (AcOEI-(Et) ₂ O) NMR: δ:1.51(6H,s),7.35-7.41(1H,m),7.62-7.66 (1H, m),7.68-7.73(1H,m),8.08(1H,d,J=8.4Hz),8.18-8.22
95	CF₃	Me Me	// \\	(1H,m),8.37-8.39(1H,m),8.83(1H,br),10.28 (1H,br) MS FAB (m/z):392[(M+H)*] NMR: 0:1.50(6H,s),6.80(2H,d,J=8.7Hz),7.80(2H,d,J=8.7Hz),8.04(1H,d,J=9.0Hz),8.11-8.16(1H,m),8.26 (1H,br),8.30-8.32(1H,m),9.99(1H,br), 10.15(1H,br)

Ex.	R¹	Α	R ⁸	DATA
96	CF₃	Me Me	O-Benzyl	MS FAB (m/z):500[(M+H)*] NMR(CDCl ₃ ,TMS internal standard): δ :1.85 (6H,s), 4.60 (2H,br),6.78(2H,d,J=7.4Hz),6.88(2H,t,J=8.8Hz),7.08-7.33 (3H,m),7.74-7.81 (3H,m), 7.93(1H,dd,J= 2.2, 8.4 Hz), 8.09 (1H,d,J=2.2Hz),10.05(1H,s)
97	CF₃	Me Me		mp: 211-213℃ NMR(CDCl₃+DMSO-d₅,TMS internal standard) δ:1.67(6H,s),7.05-7.10(2H,m),7.74(1H,d, J=8.5Hz),7.84-7.89(2H,m),7.95(1H,d, J=1.8Hz),8.10(1H,dd, J=1.8,8.4Hz),9.17(1H,s),9.23(1H,s)

				11	
Ex.	R¹	R ²	Υ	R*	DATA
98	3-CF ₃	4-CN	O N H		mp: 144-146°C (AcOEt) NMR: δ:1.40(6H,s),6.69(2H,s),6.80-6.63 (1H, m),7.01(1H,d,J=2.4Hz),7.35-7.40(3H,m), 7.45-7.49(2H,m),7.65(1H,d,J=8.4Hz), 8.54(1H,br)
99	3-CF ₃	4-CN	C=S		mp: 194-196℃ NMR: δ:1.70(6H,s),7.40-7.52(3H,m),7.84- 7.87(2H,m), 8.06-8.08(2H,m),8.24(1H,s), 10.02(1H,s),10.20(1H,s)
100	3-CI	5-Cl	C=O	− √_F	mp: 229-230°C (AcOEt-Hex) NMR: δ:1.50(6H,s),7.23(1H,t,J=1.3Hz), 7.31 (2H,t,J=6.8Hz),7.73(1H,d,J=1.3Hz),7.98-8.04 (2H,m),8.51(1H,s),9.73(1H,s)
101	3-CF₃	5-CF ₃	C=O		mp: 240-241°C (AcOEt-Hex) NMR: δ:1.53(6H,s),7.32(2H,t,J=6.6Hz), 7.71 (1H,s),8.02(2H,dd,J=3.9,6.6Hz),8.37(2H,s),8.5 9(1H,s),10.10(1H,s)

Ex.	R¹	R²	Υ	R ⁸	DATA
102	. 2-CF ₃	4-CN	C=0	F	MS FAB (m/z):394[(M+H) $^{+}$] NMR: δ :1.52(6H,s),7.32(2H,t,J=9.0Hz),7.95-8.03(3H,m),8.13-8.19(1H,m),8.24-8.28(1H,m),8.74(1H,br),9.16(1H,br)

			NC		
Ex.	R¹	Α	Υ	₽³	DATA
103	CF₃	\	SO ₂		mp: 145-146 C(AcOEt-Hex)
	l			\ <u>-</u> / '	NMR: δ:2.57(2H,1,J=6.8Hz),3.04-3.10
					(2H, m),7.40-7.45(2H,m),7.84-7.88 (3H,m),
1					7.92 (1H,dd,J=2.0,8.6Hz),8.09(1H,d,
104	<u> </u>	Me			J=8.6Hz),8.24(1H,d,J=2.0Hz),10.72(1H,s)
104	CF ₃	lvi e	SO₂	_/ \	mp: 163-164 C(AcOEt-Hex)
1 1		→		_/ '	NMR: δ:1.02(3H,d,J=6.4Hz),2.46(2H,d,
					J=6.8Hz),3.64-3.71(1H,m),7.29-7.33(2H,m),
					7.80-7.91(5H,m),8.16(1H,s), 10.60(1H,s)
105	CF₃	Me Me	C=O		mp: 180-181℃(AcOEt-Hex)
					NMR: δ:1.27(6H, s),4.03(2H,d,J=7.0Hz),
				1	7.24-7.31 (2H,m),7.82-7.88(2H,m), 8.09
					(1H,d,J=8.6Hz), 8.13-8.18(1H,m),8.32-
					8.35(1H,m),8.42-8.48 (1H,m),10.02(1H,s)
106	CF ₃	Me Me	SO ₂	·/_	mp: 161-162°C(AcOEt-Hex)
1 1					NMR: δ:1.19(6H, s),3.02(2H,d,J=6.7Hz),
		}			7.36-7.43(2H,m),7.76-7.88(3H,m),8.06-8.13
		<u></u>			(2H,m),8.28-8.31(1H,m),9.91(1H,s)
107	CF ₃	Me Me	C=O	- 人 r	mp: 191-192°C(AcOEt-Hex)
1 1					NMR: δ:1.27(6H,s),3.60(2H,d,J=6.4Hz),
1 1		:			7.10-7.16 (2H,m),7.44-7.53(1H,m),8.08
					(1H,d,J=8.8Hz), 8.15-8.19(1H,m),8.35-
					B.38(1H,m),8.72-8.77 (1H,m), 10.04(1H,s)
108	CF ₃	Me Me	C=O		MS FAB (m/z):436[(M+H)*]
	ļ				NMR(CDCl ₃ ,TMS internal standard):
		Me Me			δ :1.48 (6H,s), 1.61 (6H,s), 7.11(2H,t,J=
					8.7Hz),7.77-7.86(3H,m),7.93-8.05 (4H,m)

表11

Ex.	R¹	Α	Υ Υ	R ⁹	DATA
109	CF.	<u> </u>	C=O		mp: 236-238°C (AcOEt-Hex)
		\mathbf{X}			NMR: δ:1.80-2.02(2H,m),2.28-2.38 (2H,
1 1				_	m),2.60-2.74(2H,m),7.30-7.37 (2H,m),
1 1				· ·	8.01-8.08(3H,m),8.12-8.16 (1H,m),8.30-
					8.32(1H,m),9.02(1H,s), 10.18(1H,s)

Ex.	R'	Α	Υ	R ⁹	DATA
110	CF ₃		SO ₂		mp: 169-170°C (AcOEt-Hex)
	1		_	/_ 'F	NMR: δ:1.53-1.80(2H,m),2.04-2.16 (2H,
Į.	ŀ				m),2.37-2.46(2H,m),7.23-7.32 (2H,m),
				1	7.73-7.80(2H,m),7.98-8.15 (3H,m),8.41
				1	(1H,s),10.24(1H,s)
111	CF ₃		C=0		mp: 205-207 C(AcOEt-Hex)
	"		ļ	FY	NMR: δ:1.79-2.05(2H,m),2.22-2.31 (2H,
					(m),2.67-2.76(2H,m),7.16-7.23(2H, m),
Į	İ			1	7.50-7.59(1H,m),8.09-8.16(2H,m), 8.33-
ł			1		8.36(1H,m),9.46(1H,s),10.23 (1H,s)
112	CF ₃	$\overline{\nabla}$	SO ₂		mp: 211-213°C(AcOEt-Hex)
		X	•	 ('_ '}-F	NMR: δ:1.02-1.05(2H,m),1.30-1.33 (2H,
	1		į		m),7.30-7.35(2H,m),7.82-7.86(2H,m), 7.96
İ				:	(1H,dd,J=1.6,8.4Hz),8.07(1H,d,J=8.4Hz),8
1	İ		į		.12(1H,d,J=1.6Hz),8.45(1H,s),10.24(1H,s)
113	CF ₃		C=O		mp: 284-286°C (AcOEt-Hex)
	- ,	X	_	 (′_ '}-F	NMR: δ:1.19-1.22(2H,m),1.53-1.56 (2H,
					m),7.31-7.37(2H,m),8.00-8.05(2H,m), 8.08
1					(1H,d,J=8.8Hz),8.20(1H,dd,J=2.0,8.8Hz),8
					.32(1H,d,J=2.0Hz),9.03(1H,s),10.25(1H,s)
114	CF ₃		SO ₂		mp: 177-178 C(AcOEt-Hex)
' ' '				─ ⟨′	NMR: δ:1.49-1.63(4H,m),1.84-1.90 (2H,
		<i>></i> <		\/	m),2.06-2.12(2H,m),7.23-7.28(2H,m), 7.78
					-7.82(2H,m),7.97-8.09(4H,m), 10.11(1H,s)
115	CF ₃		C=0		mp: 235-236°C(AcOEt-Hex)
	- 3	()		 (′ '} F	NMR: δ:1.62-1.81(4H,m),1.99-2.05(2H,
		\rightarrow		-	m),2.26-2.33(2H,m),7.28-7.34(2H,m), 7.99
					-8.05(3H,m),8.12(1H,dd,J=1.6,8.8Hz),8.29
					(1H,d,J=1.6Hz),8.62(1H,s), 10.23 (1H,s)
116	CF ₃		SO ₂		mp: 188-189 C(AcOEt-Hex)
	3			 (′ '}F	NMR: δ:1.22-1.54(6H,s),1.84-1.88 (4H,
		\sim			m),7.19-7.24(2H,m), 7.72(1H,s),7.78-7.81
					(2H,m),7.95(1H,dd,J=1.6,8.8Hz),8.04-8.08
	i				(2H,m),9.91 (1H,s)
117	CF ₃		C=0		mp: 241-242 C(AcOEt-Hex)
`	3			 (″ '}F	NMR: δ:1.31-1.42(1H,m),1.45-1.68 (5H,
		\sim		<u> </u>	m),1.93-2.00(2H,m),2.04-2.11(2H,m), 7.28
					-7.33(2H,m),7.93-8.13(5H,m),8.29 (1H,d,
					J=2.0Hz),10.12(1H,s)
118	CN		C=O	()	mp: 294-295 C(AcOEt)
' '		У	J-0	─ (″ '}─F	NMR: δ:1.18-1.22(2H,m),1.52-1.55 (2H,
				\ <u> </u>	m),7.30-7.36(2H,m),8.00-8.06 (3H,m),
					8.16-8.19(1H,m),8.33(1H,d, J=1.6Hz),
					9.04(1H,s),10.21(1H,s)
119	CN		SO ₂		mp: 171-172°C(AcOEt-Hex)
' '	J. 1	\vee	202	(″ ' }−F	NMR: δ:0.98-1.02(2H,m),1.28-1.32 (2H,
	-			\ <u> </u>	m),7.33-7.39(2H,m),7.80-7.86 (2H,m),
	l				7.96(1H,dd,J=2.0,8.4Hz),8.04(1H,d,J=8.4
[Hz),8.17(1H,d,J=2.0Hz),8.48(1H,s),10.23(
1 1 1	!	ļ	. J		n2),6.17(1n,4,5=2.0n2),6.46(1n,5),10.23(1H,S)
120	CN	$\overline{}$	SO ₂		mp: 214-215°C(AcOEt-Hex)
''	511	()	302	(″ '}F	MMR: δ:1.47-1.63(4H,m),1.80-1.89 (2H,
		\times		\ <u>-</u> /	
					m),2.02-2.12(2H,m),7.28-7.34 (2H,m),
					7.78-7.84(2H,m),7.93-7.97 (1H,m),8.02-

Ex.	R'	Α	Υ	R ⁹	DATA
					8.06(2H,m),8.16(1H,d, J=2.0Hz), 10.12(1H,s)
121	CN	Q	C=0	− ←F	mp: 134-135°C (AcOEt-Hex) NMR: δ:1.60-1.81(4H,m),1.96-2.07 (2H, m),2.22-2.34(2H,m),7.28-7.34(2H, m), 7.98-8.05(3H,m),8.07-8.11(1H,m), 8.29 (1H,d,J=2.0Hz),8.62(1H,s),10.19(1H,s)
122	CF₃	$\langle \rangle$	C=O	F	mp: 246-247°C(AcOEt) NMR: δ:2.02-2.10(2H,m),2.15-2.24 (2H, m),3.70-3.77(4H,m),7.30-7.36 (2H,m),7.98-8.15(4H,m),8.28-8.30 (1H,m), 8.43 (1H,s),10.23(1H,s)
130	CF ₃		· C=0	——F	(A) MS FAB(m/z):432[(M-H)] NMR: δ:1.30-1.70(4H, m), 1.90-2.00 (4H, m), 2.25-2.50(1H, m), 3.70-3.85(1H, m), 7.25-7.38(2H, m), 7.88-7.96(2H, m), 7.97-8.02(1H, m), 8.09(1H, d, J=8.4Hz), 8.23-8.33(2H, m), 10.63(1H, br) (B) MS FAB(m/z):434[(M+H)*] NMR: δ:1.58-1.90(8H, m), 2.57-2.65 (1H, m), 3.90-4.02(1H, m), 7.23-7.31(2H, m), 7.88-7.96(2H, m), 7.97-8.03(1H, m), 8.08(1H, d, J=8.4Hz), 8.19-8.26(1H, m), 8.36(1H, br), 10.59(1H, br)

表12

				R Y	
Ex.	R¹	R ²	Υ	R ⁹	DATA
123	CF₃	CN	C=0	— <u></u> F	mp: 249-250°C (EtOH) NMR: δ:1.63(3H,s),1.94-2.03(3H,m),2.17- 2.28(1H,m),3.50-3.59(1H,m),3.73-3.82(1H,m), 7.29(2H,t,J=9.0Hz),7.65(2H,dd,J=5.6,9.0Hz),8
					.10(1H,d,J=8.8Hz),8.17(1H,dd,J=1.8,8.8Hz),8. 34(1H,d,J=1.8Hz),9.96(1H,s)
124	CF₃	CN	SO ₂		mp: 115-116°C ((Et) ₂ O-Hex) NMR: δ:1.50(3H,s),1.88-2.07(3H,m),2.22- 2.31(1H,m),3.36-3.46(1H,m),3.61-3.69(1H,m), 7.56-7.62(2H,m),7.66-7.71(1H,m),7.78-7.82 (2H,m),8.14(1H,d, J=8.4Hz), 8.23(1H,dd, J=2.0,8.4Hz),8.29(1H,d,J=2.0Hz),10.04(1H,s)
125	CF₃	CN	SO₂	— <u>(_</u>)—F	mp: 180-182°C (i-PrOH-CHCl ₃) NMR: \(\delta\): 1.52(3H,s),1.89-2.07(3H,m),2.22-2.31(1H,m),3.39-3.46(1H,m),3.61-3.68(1H,m),7.39-7.45(2H,m),7.84-7.90(2H,m),8.13(1H,d,J=8.8Hz),8.22(1H,dd,J=2.0,8.8Hz),8.27(1H,d,J=2.0Hz),10.03(1H,s)
126	CF ₃	CN	SO₂	———осн _з	mp: 149-150°C (EtOH-(Et) ₂ O) NMR: δ:1.49(3H,s),1.86-2.07(3H,m),2.20- 2.30(1H,m),3.28-3.42(1H,m),3.56-3.68(1H,m), 3.84(3H,s),7.03-7.13(2H,m), 7.70-7.75(2H,m),

	51	D2		7	
Ex.	R'	R ²	Y	R ⁹	DATA
1 1					8.13(1H,d,J=8.8Hz), 8.23(1H,dd,J=2.0,8.8Hz),
					8.29(1H,d,J=2.0Hz),10.02(1H,s)
127	CF ₃	CN	0		mp: 182-184°C (CH ₂ Cl ₂ -(Et) ₂ O)
	- · J		____\	 ⟨′ ⟩cı	NMR: δ:1.53(3H,s),1.86-1.95(1H,m),1.97-
j			H	()	2.20(3H,m),3.59-3.67(1H,m),3.75-3.83
1 :		·			
					(1H,m), 7.23-7.28(2H,m),7.52-7.57(2H,m),
1	ľ		ł		8.07(1H,d, J=8.4Hz),8.18(1H,dd,J=2.0,8.4Hz),
			<u></u>		8.33(1H,d,J=2.0Hz),8.35(1H,br),9.97(1H,s)
128	CF₃	CN	0	CH₂CH₃	mp: 173-175℃ (1,2-diCl-Et)
			H		NMR: δ:1.00(3H,t,J=7.2Hz),1.46(3H,s), 1.76-
			Н		1.84(1H,m),1.86-2.02(2H,m),2.10-2.19
]				•	(1H,m), 2.95-3.10(2H,m),3.29-3.37(1H,m),
		,			3.51-3.60 (1H,m), 6.24-6.30(1H,m), 8.07(1H,d,
					J=8.8Hz), 8.13(1H,dd,J=2.0,8.8Hz),8.31(1H,d,
1 1					J=2.0Hz), 10.15(1H,s)
129	CF ₃	CN	0	N _a	
129	UF ₃	CIV	人/	_ Me	mp: 167-168°C (AcOEt-Hex)
1			N H	_	NMR: δ:1.05(3H,t,J=6.4Hz),1.46(3H,s), 1.75-
			п	`Me	1.83(1H,m),1.86-2.02(2H,m),2.10-2.20(1H,m),
					3.31-3.38(1H,m),3.52-3.60 (1H,m),3.65-3.78
1					(1H,m),5.93(1H, d, J=B.6Hz),8.07(1H,d,
1			1		J=8.6Hz),8.12(1H,dd,J=1.8,8.6Hz),8.30(1H,d,
					J=1.8Hz),10.17(1H,s)

表13

Ex.	Structure	DATA
131	F ₃ C N N N N N N N N N N N N N N N N N N N	MS FAB(m/z):392[(M+H)*] NMR: δ: 3.60-3.75(1H, m), 4.20-4.30 (2H, m), 4.35-4.60 (2H, m), 7.25-7.34(2H, m), 7.68-7.76(2H, m), 7.95-8.20(1H, m), 8.08-8.14(1H, m), 8.30(1H, br), 10.83(1H, br)

前記の実施例以外に以下に本発明の別の化合物を表に示す。

これらの化合物は、上記の製造法及び実施例中に記載した合成経路と方法、及び通常の当業者にとって公知であるそれらの変法を用いて合成することができ、特別の実験を必要とするものではない。

ここで, 表中の記号は以下の意味を示す。

Com.:化合物番号

表14

Com	Structure	Com.	Structure
1	4	2	
	F ₃ C N N N N N N N N N N N N N N N N N N N		NC HO ₂ C NO ₂
3	NC H N H N H CI		MeO ₂ C N H N H
5	F NC CI	6	F ₃ C H N O F
7	CI HN O CI	8	F ₃ C H N N N N N N N N N N N N N N N N N N
9	O ₂ N H S O CO ₂ Me S S	10	F ₃ C H N H Br
11	F N N N N S O	12	NC NC NC NC
13	CI H CF ₃ CF ₃ O OCF ₃	14	F ₃ C H N N N N N N N N N N N N N N N N N N
	CI NC CI	16	F ₃ C H O F

Com	Structure	Com.	Ctrusturo
Com.	Structure		Structure
17.	NC H N S O F		F ₃ C H H H O NC
19	DE DE DE DE DE DE DE DE DE DE DE DE DE D	20	Br NC CI
21	NC H CHF ₂ O F CI	22	F ₃ C CI
23	F NC N H N AC	24	F ₃ C NC NH NH NH NH NH NH NH NH NH NH NH NH NH

請求の範囲

1. 下記一般式(1)で示されるアシルアミノ置換アシルアニリド誘導体又はその塩

(式中の記号は,以下の意味を有する。

R¹及びR²:同一又は異なってハロゲン原子,シアノ,ハロゲノ低級アルキル,ニトロ,カルボキシル,低級アルカノイル又は低級アルコキシカルボニル基

R3:水素原子又は低級アルキル基

n:0又は1

R⁴, R⁵, R⁶及びR⁷:同一又は異なって水素原子, 置換基を有していても良い低級アルキル 又はアラルキル基

或いは、R'とR'が一体となってヘテロ原子を含んでいても良いシクロアルキル基を形成してもよく、又は、n=1のときR'とR'が一体となって、シクロアルキレン基を形成してもよい

A、及びA。:同一又は異なって結合又は低級アルキレン基

R⁸: 水素原子, 水酸基, 低級アルコキシ, 低級アルキル, アラルキル又は低級アラルキルオキシ基

或いはR⁸とR⁵が一体となって含窒素シクロアルキレン基を形成してもよく、又はnが1のときR⁷とR⁸が一体となって含窒素シクロアルキレン基を形成してもよい。

・ Z:アシル基

X,:酸素原子又は硫黄原子

但し、Zがヘテロアリールカルボニル基の場合は、R⁴とR⁵の少なくとも一方は水素原子以外の基を示す。)

2. 下記一般式(1)で示されるアシルアミノ置換アシルアニリド誘導体又はその塩

WO 98/22432 PCT/JP97/04174

(式中の記号は、以下の意味を有する。

R¹及びR²: 同一又は異なってハロゲン原子, シアノ, ハロゲノ低級アルキル, ニトロ, カルボキシル, 低級アルカノイル又は低級アルコキシカルボニル基

n:0又は1

R⁴, R⁵, R⁶及びR⁷:同一又は異なって水素原子, 置換基を有していても良い低級アルキル 又はアラルキル基

或いは、R⁴とR⁵が一体となってヘテロ原子を含んでいても良いシクロアルキル基を形成してもよく、又は、nが1のときR⁵とR⁵が一体となって、シクロアルキレン基を形成してもよい

A,及びA。:同一又は異なって結合又は低級アルキレン基

R⁸: 水素原子, 水酸基, 低級アルコキシ, 低級アルキル, アラルキル又は低級アラルキルオキシ基

或いはR⁸とR⁵が一体となって含窒素シクロアルキレン基を形成してもよく、又はnが1のときR⁷とR⁸が一体となって含窒素シクロアルキレン基を形成してもよい。

 $Z:Y-R^9$

R⁹: 低級アルキル,シクロアルキル,又は置換基を有していてもよいアリール,アラルケニル、アラルキル、若しくはアリールオキシ低級アルキル,或いは,ベンゼン環と縮合してもよいヘテロアリール基

R*及びR10:水素原子又は低級アルキル基

X,及びX。:酸素原子又は硫黄原子

m:0又は1,2

但し、Yがカルボニル基であり、R⁹がヘテロアリール基の場合は、R⁴とR⁵の少なくとも一方は水素原子以外の基を示す。)

3. 下記一般式(I)で示されるアシルアミノ置換アシルアニリド誘導体又はその塩

(式中の記号は、以下の意味を有する。

WO 98/22432 PCT/JP97/04174

R¹及びR²: 同一又は異なってハロゲン原子, シアノ, ハロゲノ低級アルキル, ニトロ, カルボキシル, 低級アルカノイル又は低級アルコキシカルボニル基

A.及びA。:同一又は異なって結合又は低級アルキレン基

n:0又は1

R*又はR*, R*及びR*:同一又は異なって水素原子,又は1以上の同一又は異なった,ハロゲン原子,水酸基,低級アルコキシ,低級アルカノイルオキシ,ハロゲノ低級アルキル基からなる群より選択される置換基を有していても、良い低級アルキル若しくはアラルキル基

或いは、R⁴とR⁵が一体となってヘテロ原子を含んでいても良いシクロアルキル基を形成してもよく、又は、nが1のときR⁵とR⁶が一体となって、シクロアルキレン基を形成してもよい R⁶: 水素原子、水酸基、低級アルコキシ、低級アルキル、アラルキル又は低級アラルキルオキシ基

或いはR⁸とR⁵が一体となって含窒素シクロアルキレン基を形成してもよく、又はnが1のときR⁷とR⁸が一体となって含窒素シクロアルキレン基を形成してもよい。

 $Z:Y-R^9$

R⁹: 低級アルキル,シクロアルキル,1又はそれ以上の同一又は異なった,ハロゲン原子,水酸基,ハロゲノ低級アルキル,低級アルキル,低級アルコキシ,ハロゲノ低級アルコキシ,シアノ,ニトロ,低級アルカノイルオキシ,フェニル,モノ若しくはジ低級アルキルアミノ,カルボキシル,低級アルコキシカルボニル,モノ若しくはジ低級アルキルアミノカルボニル,低級アルカノイルアミノ及びオキソ基からなる群より選択される置換基を有していてもよいアリール,アラルケニル,アラルキル、若しくはアリールオキシ低級アルキル,或いは,ベンゼン環と縮合してもよいヘテロアリール基

R3及びR10:水素原子又は低級アルキル基

X₁及びX₂:酸素原子又は硫黄原子

m:0又は1,2

但し、Yがカルボニル基であり、R⁹がヘテロアリール基の場合は、R⁴とR⁵の少なくとも一方は水素原子以外の基を示す。)

WO 98/22432 PCT/JP97/04174

4. nが0であり、R*又はR*が同一又は異なって水素原子、又は1以上の同一又は異なった置換基が、水酸基、低級アルコキシ、低級アルカノイルオキシ、ハロゲノ低級アルキルからなる群より選択される置換基を有していても良い低級アルキル若しくはアラルキル基である請求の範囲6記載のアシルアミノ置換アシルアニリド誘導体又はその塩

- 5. 以下よりなる群の化合物又はその塩から選択される請求の範囲1記載の化合物: N-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}-4-フルオロベンズアミド;
- N-{1-[(3, 4-ジシアノフェニル)カルバモイル]-1-メチルエチル}-4-フルオロベンズアミド;
- N-{1-[(3-クロロー4-シアノフェニル)カルバモイル]-1-メチルエチル)-4-フルオロベンズアミド:
- $N-\{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル]-2, 4, 6-トリフルオロベンズアミド又;$
- 4-クロローN-{1-[(4-シアノ-3-トリフルオロメチルフェニル)カルバモイル]-1-メチルエチル}ベンズアミド
- 6. 請求の範囲1記載のアシルアミノ置換アシルアニリド誘導体又はその製薬学的に許容される塩を有効成分とする医薬組成物
- 7. 抗アンドロゲン剤である請求の範囲6記載の医薬組成物
- 8. 前立腺癌, 前立腺肥大症, 男性化症, 多毛症, 禿頭症, ざ瘡, 脂漏の予防又は治療 剤である請求の範囲7記載の医薬組成物

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP97/04174

Int.Cl6	CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ C07C237/22, 255/60, 275/28, 311/06, 311/19, 327/42, 327/48, 335/26, C07D205/04, 207/14, 207/16, 207/48, 209/08, 209/30, 209/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64, exording to International Patent Classification (IPC) or to both national classification and IPC					
	SEARCHED	national classification and IPC				
Int.Ci ⁶	Minimum documentation scarched (classification system followed by classification symbols) Int.Cl ⁶ C07C237/22, 255/60, 275/28, 311/06, 311/19, 327/42, 327/48, 335/26, C07D205/04, 207/14, 207/16, 207/48, 209/08, 209/30, 209/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64,					
	on searched other than minimum documentation to t					
I .	ta base consulted during the international search (na IN), REGISTRY (STN)	me of data base and, where practicable, se	earch terms used)			
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.			
A	Chem. abstr., Vol. 101, 1984, the abstraction of α -(arylsulfonylamino)- ω -p-4-amidinoanilides', Pharmazie, 1983, 38(1)	henylalkylcarboxylic acid 3- and	2, 3			
A	US, 4532251, A (Chevron Research Company), July 30, 1985 (30. 07. 85), Claims; column 9, 10 (Family: none)					
A	JP, 49-81332, A (Scherico Ltd.), August 6, 1974 (06. 08. 74), Claims & BE, 807588, A & DE, 2357757, A & NL, 7315903, A & FR, 2207712, & US, 3875229, A & HU, 11563, T & GB, 1446084, A		1 - 8			
Further documents are listed in the continuation of Box C. Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) of document referring to an oral disclosure, use, exhibition or other means P' document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search February 4, 1998 (04. 02. 98)		See patent family annex. "T" later document published after the interm date and not in conflict with the applicati the principle or theory underlying the involuence of particular relevance; the cla considered novel or cannot be considered when the document is taken alone. "Y" document of particular relevance; the cla considered to involve an inventive step we combined with one or more other such do being obvious to a person skilled in the air document member of the same patent fan February 17, 1998 (17, 02, 9)	on but cited to understand ention imed invention cannot be to involve an inventive step imed invention cannot be then the document is focuments, such combination it hilly			
	ling address of the ISA/ e Patent Office	Authorized officer Telephone No.				

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP97/04174

A. (Continuation) CLASSIFICATION OF SUBJECT MATTER

309/38, 333/34, 333/38, 333/70, 335/02, A61K31/165, 31/275, 31/34, 31/35, 31/38, 31/395, 31/40, 31/44, 31/47

B. (Continuation) FIELD SEARCHED

309/38, 333/34, 333/38, 333/70, 335/02, A61K31/165, 31/275, 31/34, 31/35, 31/38, 31/395, 31/40, 31/44, 31/47

Form PCT/ISA/210 (extra sheet) (July 1992)

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1. C07C237/22, 255/60, 275/28, 311/06, 311/19, 327/42, 327/48, 335/26, C07D205/04, 207/14, 207/16, 207/48, 209/08, 209/30, 209/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64, 309/38, 333/34, 333/38, 333/70, 335/02, A61K31/165, 31/275, 31/34, 31/35, 31/38, 31/395, 31/40, 31/44, 31/47

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl. CO7C237/22, 255/60, 275/28, 311/06, 311/19, 327/42, 327/48, 335/26, CO7D205/04, 207/14, 207/16, 207/48, 209/08, 209/30, 209/36, 213/81, 215/36, 217/22, 241/12, 241/14, 307/64, 309/38, 333/34, 333/38, 333/70, 335/02, A61K31/165, 31/275, 31/34, 31/35, 31/38, 31/395, 31/40, 31/44, 31/47

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CA (STN), REGISTRY (STN)

C.	関連す	-ると	認め	られる	猫文

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するとさは、その関連する箇所の表示	関連する 請求の範囲の	号
Α	Chem. abstr., Vol. 101, 1984, the abstract No. 6764, VIEWEG, H. 'Synthesis of α -(arylsulfonylamino)- ω -phenylalkylcarboxylic acid 3- and -4-amidinoanilides', Pharmazie, 1983, 38(12), 818-20	2, 3	
Α	US, 4532251, A (Chevron Research Company) 30. 7月. 1985 (30. 07. 85) クレーム, 第9-10欄 (ファミリーなし)	1-4	
;			

X C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」先行文献ではあるが、国際出顧日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出額と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

C(続き).	関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
A	JP, 49-81332, A (シエリコ・リミテツド) 6.8月、1974 (06.08.74) 特許請求の範囲 &BE, 807588, A &DE, 2357757, A1 &NL, 7315903, A &FR, 2207712, A1 &US, 3875229, A &HU, 11563, T &GB, 1446084, A	1-8		
-				
:				