Data Structure: Hashing

hashing

hashing

hashing

- hashing is a technique used for performing insertion, deletion, and finding in constant time
- tree operations such as FindMin, FindMax, and the printing all elements in sorted order are not supported
- hash table is an array of fixed size, containing the keys
- hash function maps each key to some cell in the hash table
 - should be easy to compute
 - should minimize the number of collision
 - \blacksquare uniform hash function, the probability of h(k) = i is I/b for all i (b is bucket size)
- collision occurs when different keys are mapped to the same cell

Hashing

Hash functions

- adding all characters (alphabets) in the key
 - for example, h(abc) = h(bca) = 1+2+3 = 6 (a=1, b=2, c=3)
 - all ordering information is lost
 - the number of hash function value is too small, considering the number of possible keys
 - for example, length(key) = 8
 - the number of hash function value H(key) = 26 * 8 = 208
 - the number of possible keys = 26^8
- polynomial function (using horner's rule)
 - $h(k) = k_1 + 27k_2 + 27^2k_3 = ((k_3) * 27 + k_2) * 27 + k_1$
 - number gets easily too big
- division
 - \blacksquare h(k) = k mod m, where m is the size of hash table
 - good choice for m is a prime number

resolving collision

```
separate chaining:
put keys that collide in a list associated with index
```

open addressing: when a new key collides, find next empty slot and put it there

resolving collision: separate chaining (open hashing)

- keep a list of all elements that hash to the same value
- operations
 - Find: use hash function to determine which list to traverse
 - Insert: traverse down the list to check whether the element is in the list if not, it is inserted at the front (or at the end)

resolving collision: separate chaining (open hashing)

resolving collision: separate chaining (open hashing)


```
typedef struct ListNode* Position;
typedef Position List;

struct ListNode {
        ElementType Element;
        Position Next;
}

struct HashTbl{
        int TableSize;
        List* TheLists;
}
```

Position Find (ElementType Key, HashTable H){

```
Position P;
List L;
L = H -> TheLists [ Hash(key, H->TableSize)];
P = L -> Next;
while (P != NULL && P->Element != Key)
     P = P -> Next;
                               0
return P;
                                                                    81
                               2
                               3
                               4
                                                       44
                               5
                                                       36
                                                                    26
                               6
                               8
                               9
```

```
void Insert (ElementType Key, HashTable H){
     Position Pos, newCell;
     List L;
     Pos = Find(Key, H);
     if (Pos == NULL){
          NewCell = malloc(sizeof (struct ListNode));
          NewCell ->Element = Key;
          L = H->TheLists[Hash(Key, H->TableSize)];
          NewCell ->Next = L->Next;
          L->Next = NewCell;
```

- load factor: the ratio of the number of elements in the hash table to the table size
 - $\lambda = n / m$

n is the number of keys in the table, m is the size of the table

- successful search (i.e. no clustering): I (hash function) + $(\lambda/2) = O(1)$
- unsuccessful search: $I + \lambda = O(I)$
- needs extra space and operation for pointers and new nodes

resolving collision: open addressing (closed hashing)

- all the keys are stored in the table without pointers
- if a collision occurs, alternative cells are tried until an empty cell is found
- \blacksquare try $h_0(\text{key}), h_1(\text{key}), h_2(\text{key}), \dots$
 - where $h_i(key) = (Hash(key) + F(i)) \mod m$
 - F(i) is the collision resolution strategy
 - linear probing: F(i) is a linear function, F(i) = i

```
for example, h_1(key) = (Hash(key) + I), h_2(key) = (Hash(key) + 2), ...
```

• quadratic probing: F(i) is a quadratic function, $F(i) = i^2$

for example,
$$h_1(key) = (Hash(key) + I)$$
, $h_2(key) = (Hash(key) + 4)$, ...

resolving collision: linear probing

 \blacksquare F(i) is a linear function. for example, F(i) = i

inserting keys: 89, 18, 49, 58, 69

0		0	49	0	49	0	49
ı		1		I	58	1	58
2		2		2		2	69
3		3		3		3	
4		4		4		4	
5		5		5		5	
6		6		6		6	
7		7		7		7	
8	18	8	18	8	18	8	18
9	89	9	89	9	89	9	89

resolving collision: linear probing

- primary clustering: any key that hashes into the cluster will require several attempts to resolve the collision and then it will add to the cluster
- expected number of probes
 - successful search

$$S = \frac{1}{2}(1 + \frac{1}{1 - \lambda})$$

unsuccessful search

$$U = \frac{1}{2} \left(1 + \left(\frac{1}{1 - \lambda} \right)^2 \right)$$

- \blacksquare as λ approaches to I, the search time grows to infinity
- linear probing does well if the table is less than 75% full

resolving collision: linear probing

number of probes

 $.10 \ .15 \ .20 \ .25 \ .30 \ .35 \ .40 \ .45 \ .50 \ .55 \ .60 \ .65 \ .70 \ .75 \ .80 \ .85 \ .90 \ .95$

load factor

---- linear probing

____ random strategy

U: unsuccessful search

I: insertion

S: successful search

resolving collision: quadratic probing

- a collision resolution method that eliminates the primary clustering problem of linear probing
- collision function $F(i) = i^{2}$, $h_i(key) = (Hash(key) + F(i)) mod m$

inserting keys: 89, 18, 49, 58, 69

0		0	49	0	49	0	49
I		I		ı		1	
2		2		2	58	2	58
3		3		3		3	69
4		4		4		4	
5		5		5		5	
6		6		6		6	
7		7		7		7	
8	18	8	18	8	18	8	18
9	89	9	89	9	89	9	89

resolving collision: double hashing

- use other hash function for random probing
- for example, $(h_i(key) = (Hash(key) + F(i)) \mod m)$

 $Hash(key) = key \mod m$

 $F(i) = i*Hash_2(key)$, $Hash_2(key) = R - (key mod R)$

R=7 inserting keys: 89, 18, 49, 58, 69

0		0		0		0	69
I		I		I		I	
2		2		2		2	
3		3		3	58	3	58
4		4		4		4	
5		5		5		5	
6		6	49	6	49	6	49
7		7		7		7	
8	18	8	18	8	18	8	18
9	89	9	89	9	89	9	89

49: Hash₂(49) = 7 - 0 = 7 58: Hash₂(58) = 7 - 2 = 5 69: Hash₂(69) = 7 - 6 = I

rehashing

- if the table gets too full, the running time for the operations start taking too long
- build another table that is about twice as big

- what if the hash table is too large to fit in main memory?
 - locality is important for large data structure since disk access is costly but memory access is cheap
 - efficient probing is the lack of locality
 - need a method to reduce the number of disk access

- The hash table is broken into a number of smaller hash tables, each is called a bucket.
- The maximum size of each bucket is the size of a disk page.
- To find which bucket to search for, we store a data structure called *directory* in main memory, and each entry in the directory holds a disk address of the corresponding bucket.
- Each bucket can hold as many records that can be fit in one page, and we will try to keep each bucket at least half full.

D: the number of bits used by the root D = 2 d_L : the number of leading bits that all elements of some leaf L have in common $d_L = 2$

insert 101110

101110

001011

insert 100100

