## Relatório

## Trabalho de Sistemas Digitais

## Comparador Binário



Miguel Casco 28966

Ricardo Fusco 29263

O trabalho tem um funcionamento simples. Nós começamos por fazer uma tabela de verdade com 4 variáveis, A1,A0,B1,B0. A1 é o bit de peso 1 e A0 o bit de peso 0 da primeira palavra e B1 e B0 são respetivamente, o bit de peso 1 e peso 0 da segunda palavra. Elabora-mos depois a seguinte tabela de verdade:

| A1 | A0 | B1 | В0 | а | b | С | d | е | f | g |
|----|----|----|----|---|---|---|---|---|---|---|
| 0  | 0  | 0  | 0  | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
| 0  | 0  | 0  | 1  | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0  | 0  | 1  | 0  | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0  | 0  | 1  | 1  | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0  | 1  | 0  | 0  | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0  | 1  | 0  | 1  | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0  | 1  | 1  | 0  | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 0  | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 1  | 0  | 0  | 0  | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1  | 0  | 0  | 1  | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1  | 0  | 1  | 0  | 1 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1  | 0  | 1  | 1  | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 1  | 1  | 0  | 0  | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 1  | 1  | 0  | 1  | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 1  | 1  | 1  | 0  | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 1  | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 0 | 0 | 1 |

A tabela de verdade desta forma permite-nos ver a primeira palavra(A1,A0) e a segunda(B1,B0), e instantaneamente conseguimos perceber qual é a maior. Por exemplo no caso da palavra 01 e 00, dados estes bits, devemos imprimir o número 1 no display. Então no A1=0;A0=1;B1=0;B0=0 devemos preencher (a,b,c,d,e,f,g) de modo a que nos display aparece um 1. Depois foi só preencher as colunas (a,b,c,d,e,f,g) utilizando a mesma lógica. Após a tabela preenchida, fizemos um mapa de Karnaugh para cada uma das colunas (a,b,c,d,f,e,g):

a)

|          | $B_1B_0$ |   |   |   |
|----------|----------|---|---|---|
| $A_1A_0$ | 1        | 0 | 1 | 1 |
|          | 0        | 0 | 1 | 1 |
|          | 1        | 1 | 1 | 1 |
|          | 1        | 1 | 1 | 1 |

b)

|          | $B_1B_0$ |   |   |   |
|----------|----------|---|---|---|
| $A_1A_0$ | 1        | 1 | 1 | 1 |
|          | 1        | 1 | 1 | 1 |
|          | 1        | 1 | 1 | 1 |
|          | 1        | 1 | 1 | 1 |

c)

|          | $B_1B_0$ |   |   |   |
|----------|----------|---|---|---|
| $A_1A_0$ | 1        | 1 | 1 | 0 |
|          | 1        | 1 | 1 | 0 |
|          | 1        | 1 | 1 | 1 |
|          | 0        | 0 | 1 | 0 |

d)

|          | $B_1B_0$ |   |   |   |
|----------|----------|---|---|---|
| $A_1A_0$ | 1        | 0 | 1 | 1 |
|          | 0        | 0 | 1 | 1 |
|          | 1        | 1 | 1 | 1 |
|          | 1        | 1 | 1 | 1 |

e)

|          | $B_1B_0$ |   |   |   |
|----------|----------|---|---|---|
| $A_1A_0$ | 1        | 0 | 0 | 1 |
|          | 0        | 0 | 0 | 1 |
|          | 0        | 0 | 0 | 0 |
|          | 1        | 1 | 0 | 1 |

f)

|          | $B_1B_0$ |   |   |   |
|----------|----------|---|---|---|
| $A_1A_0$ | 1        | 0 | 0 | 0 |
|          | 0        | 0 | 0 | 0 |
|          | 0        | 0 | 0 | 0 |
|          | 0        | 0 | 0 | 0 |

g)

|          | $B_1B_0$ |   |   |   |
|----------|----------|---|---|---|
| $A_1A_0$ | 0        | 0 | 1 | 1 |
|          | 0        | 0 | 1 | 1 |
|          | 1        | 1 | 1 | 1 |
|          | 1        | 1 | 1 | 1 |

Depois dos mapas de Karnaugh simplificamos cada uma das entradas, obtendo as expressões:

- a) A1+B1+A0B0
- b) 1
- c) B1.B0+B1.A1+A1.A0
- d) A1+B1+ $\overline{A}0.\overline{B}0$
- e)  $\overline{B}0.\overline{A}0+A1.\overline{A}0.\overline{B}1+B1.\overline{B}0.\overline{A}1$
- f)  $\overline{A}1.\overline{A}0.\overline{B}1.\overline{B}0$
- g) A1+B1

Depois foi só montar o circuito no logisim e verificar a sua funcionalidade.