Evolving Robot Swarms and Groups

Karthik Krishnamoorthy Siddharth Prince Helena O'Sullivan Pratik Verma

Table of Contents

Challenges

01 Introduction

03

05

Applications 04

02

06 Conclusion

Current Research

Simulation / Results

Introduction

Introduction - General

Swarm Robotics: Field of robotics where a multitude of relatively simple physical robots operate in a coordinated manner

Key Concept: Focus is not on individual capabilities but on the collective behavior that emerges from the interactions among the robots and between the robots and the environment

Figure 1: Colias - Low-cost Autonomous Robot that Replicates the Behavior of Swarming Honeybees [2]

Introduction - Brief History

Origin: The concept is inspired by the social behavior of biological organisms (i.e, insects like ants and bees or birds) [3][4]

Flocks of Birds:
Detect motions spreading
through the flock

Bee Swarms:
Collectively make
decisions and adapt to
new environments.

Ant Colonies:
Find the shortest path to resources through pheromone trails

Scientific Interest: Researchers observed these natural systems and theorized about applying similar principles to robotic systems

Introduction - Key Characteristics

Group Size

Minimum number of individual entities must be three or more [5]

Robustness

Allows the robots to continue functioning despite individual failures or environmental changes [6]

Decentralization

Absence of a central control structure dictating the behavior of individual robots. So, no single point of failure

Cooperation

Cooperation between robots based on a simple set of rules [5]

Introduction - Local Communication

- Mechanism: Individual robots communicate with one another within a local environment, rather than relying on a global communication system
- **Purpose**: Allows for propagation of information within the swarm (i.e., relay of information from one robot to another)
- **Benefit**: Supports redundancy and resilience; failure of a single robot does not significantly disrupt network of communication

Introduction - Components of a Swarm Robot

Getting signals/readings
from environment or other
robots to navigate, avoid
obstacles, and position
detection

Convert energy into movement; enable robot to move and manipulate objects

Ensures efficient use of the robot's power source for longevity and reliability

Anatomy

Sensors

Communication Device

Actuators

Onboard Communication

Power Management

Physical structure, designed to be robust & modular with a power source (i.e., batteries)

Share information, increase coordination; crucial for swarm behavior

making, and sends commands
(actuators). Also stores software
and algorithms that dictate the
robot's behavior

Interpret sensor data, decision

Figure 2: A team of iRobot Create robots at the Georgia Institute of Technology [x]

02

Current Research

Programmable Self-Assembly in a Thousand-Robot Swarm

- Purpose: System that demonstrates self-assembly of complex two-dimensional shapes with a thousand-robot swarm [7]
- Autonomous robots designed to operate in large groups and to cooperate via:
 - Local interactions large-scale decentralized system
 - Highly robust collective algorithm for shape formation

Figure 3: Diagrams Describing the Swarm Robots (Kilobots) [7]

Programmable Self-Assembly in a Thousand-Robot Swarm

- Self-Assembly Algorithm composes of three primitive collective behaviors:
 - Edge-Following: a robot can move along the edge of a group by measuring distances from robots on the edge
 - **Gradient Formation**: source robot can generate a gradient value message that increments as it propagates through the swarm, giving each robot a geodesic distance from the source
 - Localization: robots can form a local coordinate system using communication with, and measured distances to, neighbors

Programmable Self-Assembly in a Thousand-Robot Swarm

Figure 4: Self-Assembly Process - Group of robots form the user-defined shape [7]

Swarm Robotic Behaviors and Current Applications

- **Purpose**: Collect and categorize basic swarm behaviors (algorithms) into spatial organization, navigation, decision making, and miscellaneous. [6]
- Apply to projects in industry where principal idea of swarm robotics is neglected
 - Swarm behavior via local interactions is hard to predict proof of eligibility for applications can be difficult to provide
 - Current communication architectures may not match requirements for swarm communication - leads systems with centralized communication
 - Testing swarms is an issue deployment in a productive environment can be risky and simulations may not be sufficiently accurate

Current Research - Examples

Flocking of Birds:

Current Research - Examples

Ant colonies:

Applications

Applications

Agricultural Tasks

Industrial Automation

Space Exploration

Search & Rescue
Operations

Environmental Monitoring

Future Applications

- Environmental Monitoring and Restoration: Large-scale operations in oceans or forests for pollution control and wildlife protection
- Space Exploration: Using swarms to explore celestial bodies, conduct repairs, or build structures
- Healthcare: Micro or nano-robots for diagnosis, drug delivery, or surgical assistance

04

Simulation / Results

Simulation

Figure 5: Recording of our attempt at Swarm Simulation in its Early Stages

Challenges

Challenges

- **Complex Algorithms**: Designing algorithms that ensure efficient and effective communication and coordination among numerous robots is complex
- **Real-time Processing**: Necessity for real-time data processing and decision-making can be technically demanding
- **Scalability Issues**: Ensuring control system remain effective as the number of robots in the swarm increases
- **Energy and Resource Constraints**: Limited battery life, recharging infrastructure, and resource allocation

Swarm robots interact and coordinate locally to solve cooperative problems:

There are two main types of emergent communication:

- Abstract Communication: type of communication in which only the message content carries information, no environmental context message is processed.
- Situated Communication: scenarios in which both the message content and its corresponding environmental context carry information within the communication.

Continuous-Time Recurrent Neural Networks

- Continuous-Time Recurrent Neural Network (CTRNN) as the model to control the robot actions.
- CTRNNs are artificial neural networks with feedback connections that operate in continuous time.

Genetic Algorithm in Emergence of Communication

- A Genetic Algorithm (GA) is used to evolve the parameters of the CTRNN models that define the behavior of the agents.
- GA is a biologically inspired population based optimization algorithm that mimics how natural selection and survival of the fittest processes work in nature.

Figure 6: Frames of a simulation of the orientation consensus experiment. Blue dots depict the robots in the swarm and red arrows show the orientations of the agents.

Conclusion

Conclusion

- Research, simulations, and the discussion of swarm applications provide a way to transform swarm robotics solutions from theory to real applications
- Variety of future applications where swarm robotics can prove to be useful

References

- [1] R. Sendra-Arranz and Álvaro Gutiérrez, "Emergence of Communication Through Artificial Evolution in an Orientation Consensus Task in Swarm Robotics," IFIP advances in information and communication technology, pp. 515–526, Jan. 2023, doi: https://doi.org/10.1007/978-3-031-34107-6 41.
- [2] R. Moss, Low-cost autonomous robots replicate swarming behavior. 2014. [University of Lincoln]. Available: https://newatlas.com/colias-swarm-robot/33897/
- [3] Harvard University, "Robot Swarms Communicate with Artificial Pheromones," Science in the News, Aug. 13, 2020. https://sitn.hms.harvard.edu/flash/2020/robot-swarms-communicate-with-artificial-pheromones/#:~:text=Swarm%20robotics%20draws%20inspiration% 20from (accessed Nov. 28, 2023).
- [4] T. McClean, "Council Post: The Collective Power Of Swarm Intelligence In Al And Robotics," Forbes, May 13, 2021. https://www.forbes.com/sites/forbestechcouncil/2021/05/13/the-collective-power-of-swarm-intelligence-in-ai-and-robotics/ (accessed Nov. 26, 2023).
- [5] M. M. Shahzad, et. al., "A Review of Swarm Robotics in a NutShell," Research Gate, Apr. 2023. https://www.researchgate.net/publication/370042735_A_Review_of_Swarm_Robotics_in_a_NutShell (accessed Nov. 26, 2023).
- [6] M. Schranz, M. Umlauft, M. Sende, and W. Elmenreich, "Swarm Robotic Behaviors and Current Applications," Frontiers in Robotics and Al, vol. 7, Apr. 2020, doi: https://doi.org/10.3389/frobt.2020.00036.
- [7] J. Kos et al., "Pseudo-three-dimensional maps of the diffuse interstellar band at 862 nm," Science, vol. 345, no. 6198, pp. 791–795, Aug. 2014, doi: https://doi.org/10.1126/science.1253171.
- [8] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, "Swarm robotics: a review from the swarm engineering perspective," Swarm Intelligence, vol. 7, no. 1, pp. 1–41, Jan. 2013, doi: https://doi.org/10.1007/s11721-012-0075-2.

No Questions?

Thank You!