CONTROL VIRTUAL 2 – MATE COMPUTACIONAL 2022-02

Pregunta 1

2,5 de 2,5 puntos

Un cierto producto se embarca en los puertos P1, P2, P3 y P4 hacia los puertos Q1, Q2 y Q3. En las siguientes tablas se dan las capacidades de las vías marítimas de transporte de puerto a puerto, además de las demandas en los puertos Q1, Q2 y Q3 y las ofertas en los puertos P1, P2, P3 y P4, todo en miles de toneladas.

	Q1	Q2	Q3
P1	3	0	2
P2	0	5	x
P3	3	0	1
P4	0	0	10

	Oferta
P1	2
P2	y
P3	3
P4	1

	Demanda
Q1	4
Q2	Z
Q3	5

El sistema se modela por la siguiente red:

Respuesta correcta:

- Determine los valores de x, y, z e indique el valor de x+y+z
- **2** 15
- La cantidad máxima (en miles de toneladas) que se puede enviar es

2 13

Pregunta 2

1,25 de 1,25 pts.

Determine la solución de la siguiente ecuación en diferencia, si $x_0 = \mathbf{0}$ y $x_1 = \mathbf{1}$

$$x_{n+2} - 2x_{n+1} - 3x_n = 0$$

Respuesta correcta: Sb.
$$x_n = \frac{1}{4}3^n - \frac{1}{4}(-1)^n$$
; $n \ge 0$

Pregunta 3

2,5 de 2,5 puntos

35

Un viajero tiene que visitar cinco ciudades $\{A, B, C, D, E\}$; la tabla siguiente representa las distancias entre estas ciudades:

	А	В	С	D	Ε
А	0	9	20	8	7
В	9	0	5	15	10
С	20	5	0	17	11
D	8	15	17	0	2
Е	7	10	11	2	0

Respuesta correcta:

- El ciclo hamiltoniano que resuelve el problema es: ♥ ADECBA
- La distancia mínima recorrida es:

Pregunta 4

3,75 de 3,75 puntos

Dada la siguiente tabla de frecuencias, aplique el algoritmo de Huffman y responda las siguientes preguntas:

Caracter	М	E	С	Т	N	О
Frecuencia	4	7	9	12	13	14

a) La secuencia binaria al codificar NEMO es: **©011111111010**

b) Al decodificar 11101001001111 obtenemos: **♥MONTE**

c) El número de bits utilizados se reduce a: **31,57**%