

Politechnika Białostocka Wydział Informatyki

Systemy Wbudowane

Sprawozdanie nr 7 Timer0

Konrad Kotelczuk Karol Kamil Kowalski Dawid Kozak Dariusz Mikołajczuk

Pracownia specjalistyczna nr 7 Prowadzący: prof. dr hab. inż. Valery Salauyou

25 kwietnia 2013

1. Rejestry konfiguracyjne TMR0

1.1. Rejestr INTCON

7	6	5	4	3	2	1	0
GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF
R/W-0	R/W - 0	R/W - x					

Legenda: R – bit może być odczytywany, W – zapisywany, – n – wartość po włączeniu zasilania (POR)

Nr.	Nazwa	Znaczenie	Przyjmowane wartości	uwagi
7	GIE	Zezwolenie na wszystkie niezamaskowane aktualnie przerwania	= 0 – przerwania wyłączone = 1 – przerwania włączone	_
6	EEIE	Maska przerwania generowanego po zakończonym zapisie bajtu w pamięci EEPROM	= 0 – przerwanie zablokowane = 1 – przerwanie odblokowane	_
5	TOIE	Maska przerwania generowanego w momencie przepełnienia licznika TMR0	= 0 – przerwanie zablokowane = 1 – przerwanie odblokowane	_
4	INTE	Maska przerwania zewnętrznego z linii INT	= 0 – przerwanie zablokowane = 1 – przerwanie odblokowane	_
3	RBIE	Maska przerwania zewnętrznego zgłaszanego przy zmianach sygnału na liniach RB4RB7 portu PORTB	= 0 – przerwanie zablokowane = 1 – przerwanie odblokowane	_
2	TOIF	Znacznik zgłoszenia przerwania po przepełnieniu licznika TMR0	= 0 – licznik TMR0 nie przepełnił się = 1 – nastąpiło przepełnienie licznika TMR0, czyli zmiana stanu licznika z FFh na 00h	Znacznik musi być zerowany programowo
1	INTF	Znacznik zgłoszenia przerwania zewnętrznego na linii RB0/INT	= 0 – przerwanie INT nie wystąpiło = 1 – wystąpiło przerwanie zewnętrzne INT, czyli zmiana stanu na wejściu RB0	Znacznik musi być zerowany programowo
0	RBIF	Znacznik zgłoszenia przerwania od zmiany stanu na liniach RB4RB7 portu PORTB	= 0 – brak zmiany stanu na liniach RB4RB7 = 1 – nastąpiła zmiana stanu na liniach RB4RB7 portu PORTB	W procedurze obsługi przerwania należy odczytać stan linii RB4RB7 aby umożliwić wykrywanie kolejncyh zmian. Znacznik RBIF musi być zerowany programowo.

1.2. Rejestr OPTION_REG

7	6	5	4	3	2	1	0
!RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0
R/W-1	R/W - 1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W - 1

Legenda: R – bit może być odczytywany, W – zapisywany, – n – wartość po włączeniu zasilania (POR)

Leger	idu. IX OII	t moze być odczytywany,	*	Lapisy	wany	, ii waitose po w	Tączemu zusmama (1 OTC)
Nr.	Nazwa	Znaczenie	Przyjmowane wartości			vartości	uwagi
7	!RBPU	Bit dołączający /odłączający wbudowane rezystory podciągające do napięcia zasilającego linii portu PORTB	= 0 – rezystory podciągające dołączone = 1 – rezystory podciągające odłączone				Rezystory podciągające domyślnie są odłączone. Ponadto zostają one odłączane gdy linia portu zostanie skonfigurowana jako wyjście.
6	INTEDG	Bit wyboru zbocza, przy którym przerwanie zewnętrzne INT ma zostać zgłoszone	= 0 – przerwanie zgłaszane przy opadającym zboczu sygnału na wyprowadzeniu RB0/INT = 1 – przerwanie zgłaszane przy narastającym zboczu sygnału na wyprowadzeniu RB0/INT			ezu sygnału na RB0/INT zgłaszane przy oczu sygnału na	
5	TOCS	Bit wyboru źródła zliczanych impulsów dla timera TMR0	= 0 – TMR0 ma zliczać impulsy sygnału o częstotliwości sygnału zegarowego podzielonego przez 4 = 1 – TMR0 ma zliczać impulsy sygnału z wyprowadzenia RA4/T0CKI				_
4	TOSE	Bit wyboru zbocza, przy którym następuje zwiększenie wartości timera TMR0	= 0 – zwiększenie wartości TMR0 ma następować przy narastającym zboczu na wyprowadzeniu RA4/T0CKI = 1 – zwiększenie wartości TMR0 ma następować przy opadającym zboczu na wyprowadzeniu RA4/T0CKI			orzy narastającym wadzeniu e wartości TMR0 orzy opadającym	
3	PSA	Bit przyporządkowania preskalera do timera TMR0 lub licznika WDT	= 0 – preskaler przyporządkowany do timera TMR0 = 1 – preskaler przyporządkowany do licznika WDT			orzyporządkowany	_
20	PS2PS0	Bity wyboru wartości	PS2	PS1	PS0	Podział dla TMR0	Podział dla WDT
		współczynnika podziału preskalera	0	0	0	1:2	1:1
			0	0	1	1:4	1:2
			0	1	0	1:8	1:4
			0	1	1	1:16	1:8
			1	0	0	1:32	1:16
			1	0	1	1:64	1:32
			1	1	0	1:128	1:64
			1	1	1	1:256	1:128

2. Obsługa TMR0

Obsługa TMR0 może być opisana następująco:

- 1. Inicjalizacja:
 - i. wyczyszczenie bitów T0CS, T0SE, PSA rejestru OPTION REG (bank 1)
 - ii. ustawienie odpowiedniej wartości preskalera poprzez modyfikację bitów PS2, PS1, PS0 rejestru OPTION REG
 - iii. umieszczenie odpowiedniej wartości w rejestrze TMR0 (bank 0)
- 2. Oczekiwanie w pętli dopóki bit T0IF rejestru INTCON (bank 0) nie zostanie ustawiony
- 3. Wyczyszczenie bitu T0IF rejestru INTCON

3. Obliczania odmierzanych opóźnień

Po zainicjalizowaniu timera i ustawieniu odpowiedniej wartości preskalera, czas odmierzany przez TMR0 może być obliczony przy pomocy następującego wzoru:

$$T = \frac{4 \cdot P_{resc}}{f_{osc}} (256 - TMR0)$$

$$T - \text{czas odmierzany przez timer [cykle] (dla ZL4PIC: 1 cykl = 1 \mu s)}$$

$$f_{osc} - \text{częstotliwość zegara [MHz] (4 MHz dla ZL4PIC)}$$

$$P_{resc} - \text{wartość preskalera: } \{2, 4, 8, 16, 32, 64, 128, 256\}$$

$$TMR0 - \text{początkowa wartość rejestru TMR0: } \{0...255\}$$

4. Testowanie TMR0

4.1. Inicjalizacja preskalera

Zostało utworzone **8 procedur** inicjalizujących TMR0 i preskaler. Przykładowa procedura inicjalizująca preskaler na 1/16 (pozostałe procedury mają trzy ostatnie bity w stałej w linii 5)

```
;; Inicjalizacja preskalera TMRO na 1/16
   ;; Czas wykonania procedury: 12 cykli
   init_presc_16:
1
2
     bsf
             STATUS, RPO
                                ; wybór banku 1 – OPTION_REG
3
             OPTION_REG, 0
     movf
     andlw b'10000000'
4
                                ; wyczyść wszystkie bity poza (7)
5
     iorlw b'01000011'
                                ; INTEDG=1, TOCS=0, TOSE=0, PSA=0, PS= 1/16
6
     movwf OPTION_REG
7
                                ; wybór banku O
     bof
             STATUS, RPO
8
     return
```

4.2. Procedura opóźniająca

```
;; Wykonanie opóźnienia TMRO
  ;; Parametr: W – początkowa wartość rejestru TMRO
  ;; Timer i preskaler muszą być zainicjalizowane wcześniej
 |delay_tmr0:
1
2
    movwf TMRO
                            ; TMRO = W (parametr procedury)
3
    nop
4
    btfss INTCON, TMROIF
                          ; czekaj na przepełnienie licznika
5
                            ; czekaj dopóki INTCON<TMROIF> jest wyzerowana
       goto $-1
6
            INTCON, TMROIF
                          ; wyczyszczenie flagi przepełnienia
    bcf
7
    return
```

4.3. Procedura testowa

Do przetestowania TMR0 zostało utworzone **8 procedur testowych** (dla każdej z ośmiu wartości preskalera). Przykładowa procedura dla preskalera 16 wygląda następująco (pozostałe procedury odwołują się do innych procedur inicjalizujących w linii 5 oraz zawierają inne nazwy etykiet):

```
;; Procedura testowa opóźnienia TMRO z użyciem preskalera 1/16
   test_delay_16:
1
2
                             ; testowane opóźnienia od tej wartości TMRO do zera
     mov1w
               .255
3
     movwf
               TMROVAL
4
             init_presc_16  ; 10 cykli - inicjalizacja preskalera
     call
5
   loop_test_16:
                              ; W = kolejna wartość TMRO do testów
6
     movf
             TMROVAL, 0
7
             delay_tmr0
     call
8
     decfsz TMROVAL, 1
9
     goto
             loop_test_16
     clru.
                              ; test dla TMRO = 0
10
11
     call
             delay_tmr0
12
     return
```

4.4. Testowanie

Każda z ośmiu procedur testowych została uruchomiona wielokrotnie w symulatorze MPLAB IDE, aby potwierdzić i zmodyfikować teoretyczny wzór na wartość opóźnienia.

Po uruchomieniu co najmniej kilkunastu testów dla każdej z procedur i różnych wartości początkowych rejestru TMR0, **opóźnienia realizowane przez procedurę delay_tmr0** przedstawiają się następująco:

4.4.1. Wartości poprawki dla opóźnienia procedury delay tmr0

Wartość preskalera	Wartość poprawki [cykle] (zapis w C)				
2	10 + ((TMR0 % 3 == 0) ? 0 : (3 - TMR0 % 3))				
4	10 + ((TMR0 + 1) % 3)				
8	10 + ((TMR0 % 3 == 0) ? 0 : (3 - TMR0 % 3))				
16	10 + ((TMR0 % 3 == 2) ? 0 : (1 + TMR0 % 3))				
32	10 + ((TMR0 % 3 == 0) ? 0 : (3 - TMR0 % 3))				
64	10 + ((TMR0 % 3 == 2) ? 0 : (1 + TMR0 % 3))				
128	10 + ((TMR0 % 3 == 0) ? 0 : (3 - TMR0 % 3))				
256	10 + ((TMR0 % 3 == 2) ? 0 : (1 + TMR0 % 3))				

4.4.2. Zakresy czasów odmierzanych przez procedurę delay_tmr0

- czas minimalny dla TMR0 = 255
- czas maksymalny dla TMR0 = 0

Wartość preskalera P_{resc}	czas minimalny [cykle]	czas maksymalny [cykle]
2	12	522 (dla TMR0={0,1})
4	15	1035
8	18	2058
16	27	4107
32	42	8202
64	75	16395
128	138	32778
256	267	65547

5. Odmierzanie dowolnego czasu

Ze względu na dość skomplikowany wzór na opóźnienie oraz niełatwy sposób odmierzenia czasów dłuższych niż 65547 cykli (μs) został utworzony dodatkowy program, który te wartości wyznacza.

5.1. Szkielet procedury delay1_Xcykli (mniejsze wartości opóźnień)

```
delay1_Xcykli:
                                         ; 2 cykle call delay1_
2
               init_presc__<mark>c_presc</mark>
                                         ; 10 cykli: inicjalizacja preskalera
       call
3
       mov1w
               c_tmr0
                                         ; 1 cykl: początkowa wartość rej. TMRO
4
               delay_tmr0
                                         ; zależy od c_tmr0 i c_presc
       call
5
       < dodatkowe opóźnienie >
                                         ; opcjonalnie
6
                                         ; 2 cykle
       return
```

5.2. Szkielet procedury delay2_Xcykli (większe wartości opóźnienia)

```
1
   delay2_Xcykli:
                                      ; 2 cykle call delay2_
2
                                      ; 1 cykl: liczba wywołań delay_tmr0
       movlw
               c_iter
3
       movwf
               TMRCNT
                                      ; 1 cykl
4
                                      ; 10 cykli: inicjalizacja preskalera
       call
              init_presc__<mark>c_presc</mark>
5
   loop_delay2_X:
                                      ; pętla wykonująca się TMRCNT razy
6
       movlw c_tmr0
                                      ; 1 cykl
7
                                     ; zależy od c_tmr0 i c_presc
       call
               delay_tmr0
8
       decfsz TMRCNT, f
                                     ; 1 / 2 cykle
               loop_delay2_X
9
                                    ; 2 / 0 cykli
       goto
10
       mov1w
               c_dde1
                                    ; opcjonalnie – odmierzenie
                                     ; dodatkowego opóźnienia TMRO
11
       call
               delay_tmr0
12
        < dodatkowe opóźnienie >
                                    ; opcjonalnie
13
                                      ; 2 cykle
```

5.3. Program obliczający parametry procedur delay1_Xcykli i delay2_Xcykli

Do wyznaczenia wartości parametrów:

```
c_tmr0, c_presc, c_iter, c_ddel, oraz < dodatkowe opóznienie >
```

Wykorzystany został program napisany w C, program przyjmuje parametry:

- <exp cycle> oczekiwana liczba cykli opóźnienia procedury delay1 lub delay2
- <exp delta> dopuszczalna liczba cykli jakie należy umieścić w polu

```
< dodatkowe opóznienie >
```

• <max iter> – maksymalna dopuszczalna liczba iteracji c iter w procedurze delay2

Użycie:

```
$ ./tmr_delay <exp_cycle> <exp_delta> <max_iter>
$ ./tmr_delay --help
```

Program oraz wszystkie obliczenia dostępne są pod adresem: https://github.com/radomik/TimerCycleCount

Przykłady użycia:

Przykład 1: 30µs

```
$ ./tmr delay 30 10 255
                             # wymagane opóźnienie 30 cykli = 30 μs,
                                dopuszczalne dodatkowe opóźnienie: 10 cykli,
                              # maksymalnie 255 iteracji w delay2
### Obliczanie dla procedury delay1_:
  exp cycle: 30
  exp_cycle_min: 20
TMR0: 255, PRES:
                 2, CYCLE:
                                   27, DELTA: 3
TMR0: 254, PRES:
                  2, CYCLE:
                                   30, DELTA: 0
TMR0: 255, PRES:
                 4, CYCLE:
                                   30. DELTA: 0
```

Procedura opóźniająca o 30 μs może wyglądać następująco (przedostatni wiersz powyższego wyniku wywołania)

```
delay1_30us:
                                     ; 2 cykle call delay1_
                                     ; 10 cykli: inicjalizacja preskalera
2
       call
               init_presc_2
3
                .254
                                     ; 1 cykl: początkowa wartości rejestru TMRO
       movlw
4
       call
               delay_tmr0
5
                                     ; 2 cykle
       return
```

Przykład 2: 1 s

Procedura opóźniająca o 1 sekundę może wyglądać następująco:

```
1
                                          ; 2 cykle call delay2
   delay2_1s:
2
                                          ; 1 cykl: liczba wywołań delay_tmr0
                 .30
        mov1w
3
                                          ; 1 cykl
        movwf
                 TMRCNT
4
        call
                 init_presc_<mark>128</mark>
                                         ; 10 cykli: inicjalizacja preskalera
5
   loop_delay2_1s:
                                         ; petla wykonująca się TMRCNT razy
                                          ; 1 cykl
6
        mov1w
                 .0
7
        call
                 delay_tmr0
8
        decfsz
                 TMRCNT, f
                                         ; 1 / 2 cykle
9
                 loop_delay2_1s
                                         ; 2 / 0 cykli
        goto
                                         ; odmierzenie
10
        mov1w
                 .127
                 delay_tmr0
                                         ; dodatkowego opóźnienia TMRO
11
        call
12
        return
                                         ; 2 cykle
```

6. Rozwiązanie zadań

6.1. Zrealizować opóźnienie 50 µs

```
$ ./tmr delay 50 3 255
                               #
                                  wymagane opóźnienie 50 cykli = 50 μs,
                               #
                                  dopuszczalne dodatkowe opóźnienie: 3 cykli,
                               #
                                  maksymalnie 255 iteracji w delay2_
### Obliczanie dla procedury delay1_:
  exp_cycle: 50
  exp cycle min: 47
TMR0: 245, PRES:
                   2, CYCLE:
                                     48, DELTA: 2
                   2, C_ITER:
TMR0: 252, PRES:
                                                CYCLE:
                                                                   37, DELTA:
                                                                                  13
Add: movlw .255 ; call delay tmr0 on end
                                                NEW_CYCLE:
                                                                   50, NEW DELTA: 0
TMR0: 255, PRES:
                   4, C_ITER:
                                                CYCLE:
                                                                   34, DELTA:
                                                                                  16
                                  1,
Add: movlw .255 ; call delay_tmr0 on end
                                                NEW_CYCLE:
                                                                   50, NEW_DELTA: 0
```

Procedura opóźniająca:

```
delay_50us:
                                   ; 2 cykle call delay1_
                                   ; 10 cykli (inicjalizacja preskalera)
2
       call
                init_presc_2
3
                .245
                                     1 cykl: początkowa wartości rejestru TMRO
       mov1w
4
       call
                delay_tmr0
5
                                   ; dodatkowe 2 cykle opóźnienia
       goto
               $+1
6
       return
                                   ; 2 cykle
```

Wyniki symulacji:

Przed:

6.2. Zrealizować opóźnienie 51 ms

Procedura opóźniająca:

```
1
   delay_51ms:
                                    ; 2 cykle call delay2_
2
        mov1w
                 .50
                                     1 cykl: liczba wywołań delay_tmr0
3
        movwf
                 TMRCNT
                                      1 cykl
4
                                     10 cykli: inicjalizacja preskalera
        call
                 init_presc_4
5
   loop_51ms:
                                      pętla wykonująca się TMRCNT razy
6
        movlw
                 .10
                                      1 cykl
7
        call
                 delay_tmr0
8
                TMRCNT, f
                                     1 / 2 cykle
        decfsz
9
        goto
                 loop_51ms
                                    ; 2 / 0 cykli
10
        movlw
                 .13
                                      odmierzenie dodatkowego
                                     opóźnienia TMRO
        call
                 delay_tmr0
11
                                    ; 2 cykle
12
        return
```

Wyniki symulacji:

Przed:

6.3. Zrealizować opóźnienie 561 ms

Procedura opóźniająca:

```
delay_561ms:
1
                                     ; 2 cykle call delay2_
2
        movlw
                 .35
                                       1 cykl: liczba wywołań delay_tmr0
3
        movwf
                 TMRCNT
                                       1 cykl
4
        call
                 init_presc_<mark>64</mark>
                                     ; 10 cykli: inicjalizacja preskalera
5
   loop_561ms:
                                       pętla wykonująca się TMRCNT razy
6
        movlw
                 .12
                                       1 cykl
7
        call
                 delay_tmr0
8
        decfsz
                 TMRCNT, f
                                       1 / 2 cykle
9
                 loop_561ms
                                     ; 2 / 0 cykli
        goto
10
                  .39
                                       odmierzenie dodatkowego
        movlw
11
                                     ; opóźnienia TMRO
        call
                 delay_tmr0
12
        return
                                     ; 2 cykle
```

Wyniki symulacji:

Przed:

6.4. Zrealizować opóźnienie 2,20 s

Procedura opóźniająca:

```
delay_2200ms:
1
                                        ; 2 cykle call delay2_
2
        movlw
                  .45
                                          1 cykl: liczba wywołań delay_tmr0
3
        movwf
                 TMRCNT
                                          1 cykl
4
        call
                                        ; 10 cykli: inicjalizacja preskalera
                 init_presc_<mark>256</mark>
5
   loop_2200ms:
                                          pętla wykonująca się TMRCNT razy
6
        movlw
                 .69
                                          1 cykl
7
        call
                 delay_tmr0
8
        decfsz
                 TMRCNT, f
                                        ; 1 / 2 cykle
9
                 100p_2200ms
                                        ; 2 / 0 cykli
        goto
10
                 .80
                                        ; odmierzenie dodatkowego
        movlw
                                        ; opóźnienia TMRO
11
        call
                 delay_tmr0
12
        goto
                 $+1
                                          2 cykle dodatkowego opóźnienia
                                        ; 1 cykl dodatkowego opóźnienia
13
        nop
14
        return
                                          2 cykle
```

Wyniki symulacji:

Przed:

