GALOIS THEORY 2019: HW 2

For assessment: Problems 1, 2, 3 Due by noon Tuesday, week 5 of the term

- 1. Suppose that L: K is a field extension with $K \subseteq L$, and that $\tau: L \to L$ is a K-homomorphism. Also suppose that $f \in K[t]$ with $\deg f \geq 1$, and that $\alpha \in L$. Show that $f(\alpha) = 0$ if and only if $f(\tau(\alpha)) = 0$.
- 2. Let M be a field. Show that the following are equivalent:
 - (i) M is algebraically closed.
 - (ii) Every nonconstant polynomial $f \in M[t]$ factors in M[t] as a product of linear factors.
 - (iii) Every irreducible polynomial in M[t] has degree 1.
 - (iv) The only algebraic extension of M is M itself.
- 3. Suppose that L and M are fields with an associated homomorphism $\psi:L\to M$. Show that whenever L is algebraically closed, then $\psi(L)$ is also algebraically closed.
- 4. [This is a HW problem from years ago; it demonstrates a type of result one can prove with ruler and compass constructions.] Set $f(t) = t^7 7t^5 + 14t^3 7t 2 \in \mathbb{Q}[t]$. With $g_1 = t 2$ and $g_3 = t^3 + t^2 2t 1$, one can check that $f = g_1 g_3^2$.
 - (a) Show that g_3 is irreducible in $\mathbb{Q}[t]$.
 - (b) Using the identity

$$\cos 7\theta = 64\cos^7 \theta - 112\cos^5 \theta + 56\cos^3 \theta - 7\cos \theta.$$

together with the conclusion of part (a), show that the angle $2\pi/7$ is not constructible by ruler and compass. Hence deduce that the regular heptagon is not constructible by ruler and compass.

- 5. Let L:K be a field extension. Show that Gal(L:K) is a subgroup of Aut(L).
- 6. Suppose K_1, K_2 are fields and $\sigma: K_1 \to K_2$ is an isomorphism. We extend σ to the isomorphism $\sigma: K_1[t] \to K_2[t]$ by setting $\sigma(t) = t$. Suppose that f is an irreducible element of $K_1[t]$.
 - (a) Show that $\sigma(f)$ is an irreducible element of $K_2[t]$.
 - (b) Define $\varphi: K_1[t] \to K_2[t]/(\sigma(f))$ by $\varphi(g) = \sigma(g) + (\sigma(f))$. Show that $\ker \varphi = (f)$.