Machine Learning End Term Exam

Ahmad Shayaan IMT2014004 H Vijaya Sharvani IMT2014022 Indu Ilanchezian IMT2014024

December 15, 2017

Question 2

To derive the solution to the modified linear regression and to show that it leads to the generalized form of ridge regression.

Solution:-

Given the attribute $x_i = \hat{x_i} + \epsilon_i$, where the $\hat{x_i}$ is the true measurement and ϵ_i is the zero mean vector with covariance matrix $\sigma^2 I$. Modified loss function

$$W^* = argmin_W E_{\epsilon} \sum_{i=1}^{n} (y_i - W^T(\hat{x}_i + \epsilon_i))^2$$

Where W is the transformation vector.

$$W^* = argmin_W E_{\epsilon} ||Y - (X + \epsilon)W||_2^2$$
(1)

Where

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$X = \begin{bmatrix} \hat{x}_1^T \\ \hat{x}_2^T \\ \vdots \\ \hat{x}_n^T \end{bmatrix}$$

$$\epsilon = \begin{bmatrix} \epsilon_1^T \\ \epsilon_2^T \\ \vdots \\ \epsilon_n^T \end{bmatrix}$$

Expanding right hand side of equation (1).

$$E_{\epsilon}||Y - (X + \epsilon)W||_{2}^{2} = E_{\epsilon} \left[(Y - (X + \epsilon)W)^{T} (Y - (X + \epsilon)W) \right]$$

$$= E_{\epsilon} \left[Y^{T}Y + W^{T} (X + \epsilon)^{T} (X + E) - 2W^{T} (X + E)^{T} Y \right]$$
(2)

To minimize the equation we will differentiate equation (2) with respect to W.

$$\frac{\partial E_{\epsilon} \left[Y^{T}Y + W^{T}(X + \epsilon)^{T}(X + \epsilon)W - 2W^{T}(X + E)^{T}Y \right]}{\partial W} = 0$$

We know that $\frac{\partial E(f(x))}{\partial x} = E \frac{\partial f(x)}{\partial x}$.

$$E_{\epsilon} \left[\frac{\partial Y^T Y}{\partial W} + \frac{\partial W^T (X + \epsilon)^T (X + \epsilon) W}{\partial W} - 2 \frac{\partial W^T (X + E)^T Y}{\partial W} \right] = 0$$

$$E_{\epsilon} \left[2(X + \epsilon)^T (X + \epsilon) W - 2(X + \epsilon)^T Y \right] = 0$$

$$2E_{\epsilon} \left[(X + \epsilon)^T (X + \epsilon) W \right] - 2E_{\epsilon} \left[(X + \epsilon)^T Y \right] = 0$$

$$E_{\epsilon} \left[(X^T X + \epsilon^T \epsilon + 2\epsilon^T X) W \right] = E_{\epsilon} \left[(X + \epsilon)^T Y \right]$$

$$E_{\epsilon} (X^T X W) + E_{\epsilon} (\epsilon^T \epsilon W) + 2E_{\epsilon} (\epsilon^T X W) = E_{\epsilon} (X^T Y) + E_{\epsilon} (\epsilon^T Y)$$

We know that E(AB) = E(A)E(B) if A and B are independent variables and $E_f(h(x)) = \int_{-\infty}^{\infty} h(x)f(x)dx$.

$$\sum_{i=1}^{n} X^{T} X W P(\epsilon_{i}) + E_{\epsilon}(\epsilon \epsilon^{T}) E_{\epsilon}(W) + 2E_{\epsilon}(X) E_{\epsilon}(\epsilon) = \sum_{i=1}^{n} X^{T} Y P(\epsilon_{i}) + E_{\epsilon}(Y) E_{\epsilon}(\epsilon)$$

We know that the noise is a zero mean Gaussian noise therefore $E_{\epsilon}(\epsilon) = 0$

$$(X^T X + \sigma^2 I)W = X^T Y$$
$$W = (X^T X + \sigma^2 I)^{-1} X^T Y$$

Therefore the solution of the minimization is

$$W^* = (X^T X + \sigma^2 I)^{-1} X^T Y$$

This solution is same as the solution for Ridge regression.

$$W^* = (X^T X + \lambda I)^{-1} X^T Y$$

Question 3

 $VC(\mathcal{H})$ is the maximum cardinality of any set of instances that can be shattered by \mathcal{H} . We say that \mathcal{H} shatters a set of points if and only if it can assign any possible labeling to those points.

1. We should show that the VC dimension $d_{\mathcal{H}}$ of any finite hypothesis space \mathcal{H} is at most $log_2\mathcal{H}$.

Proof:

For any set of distinct points S of size m, there are 2^m distinct ways of labeling those points. This means that for \mathcal{H} to shatter S it must contain at least 2^m distinct hypotheses. This tells us that if the VC dimension of \mathcal{H} is m then we must have 2^m hypotheses, i.e. $2^m \leq |\mathcal{H}|$ or equivalently that $m = VC(\mathcal{H}) \leq log_2|\mathcal{H}|$.

2. We should show that the bound for VC dimension is tight and for any d > 1, there exists a hypothesis class \mathcal{H} such that $d = d_{\mathcal{H}}$.

Proof:

Consider a domain with n binary features and binary class labels. Let \mathcal{H} be the hypothesis space that contains all decision trees over those features that have depth no greater than d_e . (The depth of a decision tree is the depth of the deepest leaf node.)

First note that any tree in \mathcal{H} can be represented by a tree of exactly depth d_e in \mathcal{H} . So we will restrict our attention to trees of exactly depth d_e . All of these trees have 2^{d_e} leaf nodes. Also note that there are a total of 2^n examples in our instance space, which gives us an immediate upper bound on the VC-dimension of \mathcal{H} , i.e. $VC(\mathcal{H}) \leq 2^n$.

To get a lower bound let S contain the set of all possible 2^n instances. Since we have that $d_e \geq n$ it is straightforward to create a tree of depth n with a leaf node for each example and furthermore we can label the leaf nodes in all possible ways. This shows that we can shatter the set S with \mathcal{H} , which implies that $VC(\mathcal{H}) \geq 2^n$. Combining the upper and lower bound tell us that $VC(\mathcal{H}) = 2^n$, i.e. $d_{\mathcal{H}} = 2^n$. Hence, we have showed a tight bound on the VC dimension of hypothesis space \mathcal{H} .

Now we will show that for any d > 1, there exists a hypothesis class \mathcal{H} such that $d = d_{\mathcal{H}}$.

Take a set of size d, $C = \{e_1, e_2, ..., e_d\}$ such that $\{e_i; i \in [d]\}$ is the standard basis in \mathbb{R}^d . To prove that C shatters \mathcal{H} , it suffices to show that $|\mathcal{H}_C| = 2^d$. The hypothesis on the set C is given as,

$$\mathcal{H}_C = \{h(c), h \in HS_d\} = \{h(e_1, h(e_2), ..., h(e_d), h \in HS_d\}$$

For a particular $\omega^T = (\omega_1, \omega_2, ..., \omega_d)$,

$$h(c) = (\langle \omega, c \rangle, c \in C)$$

$$= (\langle \omega_1, e_1 \rangle, \langle \omega_2, e_2 \rangle, ..., \langle \omega_d, e_d \rangle)$$

$$= (\omega_1, \omega_2, ..., \omega_d)$$

$$= \omega$$

Since all possible combinations 2^d be chosen on ω .

$$\implies |\mathcal{H}_C| = 2^d$$

$$\implies VCdim(HS_d) > d$$

Let us take a arbitrary set C of size d + 1.

$$C = \{x_1, x_2, ..., x_{d+1}\}, x_i \in \mathbb{R}^d$$

Since, $x_i's$ are coming from d dimensional space, $\{x_i, i \in [d+1]\}$ are linearly dependent,

$$\implies \exists a_1, a_2, ..., a_{d+1} \text{ s.t. } \sum_{i=1}^{d+1} a_i x_i = 0$$

Let $I = \{i, a_i > 0\}$ and $J = j, a_j > 0$

$$\implies \sum_{i \in I} a_i x_i = -\sum_{j \in J} a_j x_j = \sum_{j \in J} |a_j| x_j$$

Suppose C is shattered by \mathcal{H} .

Claim:
$$\exists \omega \ s.t \ \langle \omega, x_i \rangle > 0 \ \forall i \in I \ \& \ \langle \omega, x_j \rangle < 0, \forall j \in J$$

$$\implies 0 < \sum_{i \in I} a_i \langle \omega, x_i \rangle$$

$$= \sum_{i \in I} \langle \omega, a_i x_i \rangle$$

$$= \sum_{j \in J} \langle \omega, |a_j| x_j \rangle$$

$$= \sum_{j \in J} |a_j| \langle \omega, x_j \rangle < 0, which is a contradiction$$

Therefore $|\mathcal{H}_C| < 2^{d+1}$ for any arbitrary set of size d + 1. So, the VC-dimension of the class of homogeneous halfspace in \mathbb{R}^d is d.

Question 4

gain = 0

gain = Target_Entropy - Attribute_Entropy

return Attribute with max information Gain

35:

36:

Algorithm 1 Building Decision tree 1: **procedure** BuildDecisionTree(Dataset D, Target_Attributes, Attributes) 2: ▶ Initializing a tree if All Target attributes of one type then 3: return a node with single label 4: else if Attributes = ϕ then 5: **return** single node tree i.e. root with label = most common value of 6: the target attribute in the dataset 7: else 8: $Attributes^* = GETCHISQUARESCORE(Attributes)$ 9: A = GETINFOGAIN(Attributes*, Target_Attributes) 10: for all possible values of A do 11: if A has missing values then 12: n = Total number of data points in A13: $n^* = \text{Number of non-missing values}$ 14: $\mu_i = \frac{n_1^*}{n^*} \dots \frac{n_{m_i}^*}{n^*}$ $M = \text{GENMISSINGVALUE}(\mu_i(n - n^*))$ 15: ▶ Function generate 16: missing values with certain probabilities ▶ Adding missing values of attribute A 17: D[A].append(M)missing_probab.append(μ_i) ▷ Store the missing value 18: probabilities subset = The set of data points with value v_i for A 19: $T. add Node \\ \begin{tabular}{l} Build Decision Tree (subset, Target_Attributes, Attributes, Attributes) \\ \end{tabular}$ 20: A) return (T,missing_probab) 21: 22: function GETCHISQUARESCORE(Attributes) ▷ Empty list initialization 23: for A in Attributes do 24: $\triangleright n_i$: number of data points with i^{th} label 25: n_{ij} = number of points with label i in partition j 26: $e_{ij} = \mu_i \sum_i n_{ij}$ $\text{score} = \sum_i \frac{(n_{ij} - e_{ij})^2}{e_{ij}}$ **if** $\text{score} \ge \text{threshold then}$ 27: 28: ▷ Correlation for partition j 29: l.append(A) 30: return 1 > list containing attributes with score greater than threshold function GETINFOGAIN(Attributes*, Target_Attributes) Target_Entropy = $-\sum_{i} P(y=i) \log(P(y=i))$ \triangleright Entropy of the target 32: variable for all i in Attributes* do 33: $\triangleright P(y = k | x_i = v_{ij}) = \frac{\theta_{ijk}P(y=k)}{P(x_i = v_{ij})}$ Attributes_Entropy = $-\sum_{ijk} \frac{\theta_{ijk}P(y=k)}{P(x_i = V_{ij})} \log \left[\frac{\theta_{ijk}P(y=k)}{P(x_i = V_{ij})} \right]$ 34:

Algorithm 2 Prediction using decision tree

```
1: procedure TESTTREE(Tree T, Datpoint D, missing_probab)
                                    ▷ Node is a list that stores all the leaf nodes
 2:
 3:
       if T.node == Leaf or D == \phi then
          return T.node
 4:
       for all attributes A in D do
                                                         \triangleright A is an attribute of D
 5:
          if A is not in T.node then
 6:
              continue
 7:
          else
 8:
              if value(A) != \phi then
 9:
                  d = T.checknode(value(A))
10:
                                           ▷ d is the decision taken at that node
11:
                  Node.append TESTTREE(T.takepath(d),
12:
   ing_probab)
                        ▶ Take path along branch taken according to decision d
13:
              else if value(A) == \phi then
14:
                  for All probabilities p in missing_probab do
15:
                        > probabilities stored for missing values of attributes at
16:
    the time of testing
                      Push decision tree in each branch of the node with proba-
17:
   bility \mu_i
                     Node.append(all the returned leaf nodes)
18:
          if Node.size == 1 then
19:
              return Probability 1 for that class and zero for other
20:
          else
21:
              S = Sum of probabilities for each class
22:
                       \triangleright S is a list that contains class membership probabilities
23:
24:
              return S
```

Question 5

Let $\vec{x_1}, \vec{x_2}...\vec{x_n}$ be the feature vectors of n data points in the original feature space. Let ϕ be the feature transformation function. Then, $\phi(\vec{x_1}), \phi(\vec{x_2})..., \phi(\vec{x_n})$ are the feature vectors in the transformed feature space.

Let K be the kernel function such that:

$$K(i,j) = \phi(x_i)^T \phi(x_j)$$

The center of mass, $\vec{\mu}$, in the feature space can be defined as the average of the vectors in the transformed feature space.

$$\vec{\mu} = \frac{1}{n} \sum_{i=1}^{n} \phi(\vec{x_i})$$

Consider:

$$\begin{split} ||\mu||^2 &= \mu^T \mu \\ &= \mu^T \frac{1}{n} \sum_{i=1}^n \phi(\vec{x_i}) \\ &= \frac{1}{n} \sum_{j=1}^n \phi(\vec{x_j})^T \frac{1}{n} \sum_{i=1}^n \phi(\vec{x_i}) \\ &= \frac{1}{n^2} \sum_{i,j} \phi(\vec{x_j})^T \phi(\vec{x_i}) \\ &= \frac{1}{n^2} \sum_{i,j} K(i,j) \end{split}$$

Average of the squared Euclidean distances from μ to each $\phi(x)$

The squared euclidean distance of a single feature vector in the transformed space from the center of mass $\vec{\mu}$ can be expressed as follows:

$$\begin{split} ||\phi(\vec{x_i}) - \vec{\mu}||^2 &= (\phi(\vec{x_i}) - \vec{\mu})^T (\phi(\vec{x_i}) - \vec{\mu}) \\ &= \phi(\vec{x_i})^T \phi(\vec{x_i}) - 2\phi(\vec{x_i})^T \vec{\mu} + ||\vec{\mu}||^2 \\ &= K(i, i) - \frac{2}{n} \phi(\vec{x_i})^T \sum_{j=1}^n \phi(\vec{x_j}) + ||\vec{\mu}||^2 \\ &= K(i, i) - \frac{2}{n} \sum_{j=1}^n \phi(\vec{x_i})^T \phi(\vec{x_j}) + ||\vec{\mu}||^2 \\ &= K(i, i) - \frac{2}{n} \sum_{j=1}^n K(i, j) + \frac{1}{n^2} \sum_{r, s} K(r, s) \end{split}$$

The average of the euclidean distances of all the points from the center of mass can be written as:

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} ||\phi(\vec{x_i}) - \vec{\mu}||^2 &= \frac{1}{n} \left(\sum_{i=1}^{n} \left(K(i, i) - \frac{2}{n} \sum_{j=1}^{n} K(i, j) + \frac{1}{n^2} \sum_{r, s} K(r, s) \right) \right) \\ &= \frac{1}{n} \left(\sum_{i=1}^{n} K(i, i) - \frac{2}{n} \sum_{i, j} K(i, j) + \frac{n}{n^2} \sum_{r, s} K(r, s) \right) \\ &= \frac{1}{n} \left(\sum_{i=1}^{n} K(i, i) - \frac{1}{n} \sum_{i, j} K(i, j) \right) \end{split}$$

Thus, the average of euclidean distances from the center of mass $\vec{\mu}$ to each $\phi(x)$ can be expressed in terms of the kernel function K.