On donne le diagramme (P, h) de l'air entre 0, 1 et 200 bar (cf annexe). La masse molaire de l'air vaut environ $M=29 \text{ g.mol}^{-1}$. On convient de définir les conditions ambiantes par les valeurs $T_a = 20$ °C, $P_a = 1$ bar (point A sur le diagramme). Questions

a) L'air vérifie-t-il l'équation d'état d'un gaz parfait dans les conditions ambiantes?

b) Sur le diagramme (P, h), les isenthalpes sont-elles conformes aux propriétés d'un gaz parfait? Qu'en est-il au voisinage du point A?

déduire le coefficient γ en adoptant le modèle du gaz parfait. d) En considérant l'isentropique $s=4 \text{ kJ.K}^{-1}.\text{kg}^{-1}$, valider ou invalider la loi de Laplace à

c) Mesurer la capacité thermique massique à pression constante c_p au voisinage du point A. En

l'aide d'une représentation graphique adaptée. $s (kJ.K^{-1}.kg^{-1})$ 4,00 4,00 4,00 4,00 T (°C) -100 200 0 100 P (bar) 0.1210,603 1,82 4,23

 $v \, ({\rm m}^3.{\rm kg}^{-1})$

e)	Conclure sur	l'intérêt	du modèle d	le gaz	parfait	pour l'	air dans	les con	ditions a	ambiantes.

4,06

1,30

0,322

0,589