EF_SPI

SPI master controller with receive and transmit FIFOs.

The wrapped IP

APB, AHBL, and Wishbone wrappers are provided. All wrappers provide the same programmer's interface as outlined in the following sections.

Wrapped IP System Integration

Based on your use case, use one of the provided wrappers or create a wrapper for your system bus type. For an example of how to integrate the wishbone wrapper:

```
EF_SPI_WB INST (
        .clk_i(clk_i),
        .rst_i(rst_i),
        .adr_i(adr_i),
        .dat_i(dat_i),
        .dat_o(dat_o),
        .sel_i(sel_i),
        .cyc_i(cyc_i),
        .stb_i(stb_i),
        .ack_o(ack_o),
        .we_i(we_i),
        .IRQ(irq),
        .miso(miso),
        .mosi(mosi),
        .csb(csb),
        .sclk(sclk)
);
```

Wrappers with DFT support

Wrappers in the directory /hdl/rtl/bus_wrappers/DFT have an extra input port sc_testmode to disable the clock gate whenever the scan chain testmode is enabled.

External IO interfaces

IO name	Direction	Width	Description
miso	input	1	Master In Slave Out; this line carries data from the slave device to the master.
mosi	output	1	Master Out Slave In; this line carries data from the master device to the slave.
csb	output	1	Chip Select Bar; this signal selects the slave device to communicate with, typically active low.
sclk	output	1	Serial Clock; this provides the clock signal that synchronizes data transfer between master and slave devices.

Interrupt Request Line (irq)

This IP generates interrupts on specific events, which are described in the Interrupt Flags section bellow. The IRQ port should be connected to the system interrupt controller.

Implementation example

The following table is the result for implementing the EF_SPI IP with different wrappers using Sky130 HD library and OpenLane2 flow.

Module	Number of cells	Max. freq			
EF_SPI	TBD	TBD			
EF_SPI_APB	TBD	TBD			
EF_SPI_AHBL	TBD	TBD			
EF_SPI_WB	TBD	TBD			

The Programmer's Interface

Registers

Name	Offset	Reset Value	Access Mode	Description
RXDATA	0000	0x00000000	r	RX Data register; the interface to the Receive FIFO.
TXDATA	0004	0x00000000	W	TX Data register; ; the interface to the Receive FIFO.
CFG	8000	0x00000000	W	Configuration Register.
CTRL	000c	0x00000000	W	Control Register.
PR	0010	0x00000002	w	SPI clock Prescaler; should have a value >= 2. SPI Clock Frequency = System Clock / PR.
STATUS	0014	0x00000000	r	Status resgister
RX_FIFO_LEVEL	fe00	0x00000000	r	RX_FIFO Level Register
RX_FIFO_THRESHOLD	fe04	0x00000000	W	RX_FIFO Level Threshold Register
RX_FIFO_FLUSH	fe08	0x00000000	W	RX_FIFO Flush Register
TX_FIFO_LEVEL	fe10	0x00000000	r	TX_FIFO Level Register
TX_FIFO_THRESHOLD	fe14	0x00000000	W	TX_FIFO Level Threshold Register
TX_FIFO_FLUSH	fe18	0x00000000	W	TX_FIFO Flush Register
IM	ff00	0x00000000	w	Interrupt Mask Register; write 1/0 to enable/disable interrupts; check the interrupt flags table for more details
RIS	ff08	0x00000000	w	Raw Interrupt Status; reflects the current interrupts status; check the interrupt flags table for more details
MIS	ff04	0x00000000	w	Masked Interrupt Status; On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect; check the interrupt flags table for more details

Name	Offset	Reset Value	Access Mode	Description
IC	ff0c	0x00000000	w	Interrupt Clear Register; On a write of 1, the corresponding interrupt (both raw interrupt and masked interrupt, if enabled) is cleared; check the interrupt flags table for more details
GCLK	ff10	0x00000000	w	Gated clock enable; 1: enable clock, 0: disable clock

RXDATA Register [Offset: 0x0, mode: r]

RX Data register; the interface to the Receive FIFO.

15	_			8	7					0
							RXD	ATA		
31	•									16

TXDATA Register [Offset: 0x4, mode: w]

TX Data register; ; the interface to the Receive FIFO.

15	_				8	7						 0
									TXD	ATA		
31												16
	'		•	'			'	•			'	

CFG Register [Offset: 0x8, mode: w]

Configuration Register.

	15		3							2	1	0
											cpha	cpol
_	31	•										16
		•	'	'	'		'	,			,	

bit	field name	width	description
0	cpol	1	SPI Clock Polarity.
1	cpha	1	SPI Clock Phase.

CTRL Register [Offset: 0xc, mode: w]

Control Register.

15								3	2	1	0
									rx_en	enable	SS
31	•					•					16
					'	'					
	1	1		1							

bit	field name	width	description
0	SS	1	Slave Select (Active High).
1	enable	1	enable spi master pulse generation
2	rx_en	1	enable storing bytes recieved from slave

PR Register [Offset: 0x10, mode: w]

SPI clock Prescaler; should have a value >= 2. SPI Clock Frequency = System Clock / PR.

15						8	7						0
	,				'				Р	R			
31													16
	,	•	1	•	•						l	,	

STATUS Register [Offset: 0x14, mode: r]

Status resgister

bit	field name	width	description
0	TX_E	1	Transmit FIFO is Empty.
1	TX_F	1	Transmit FIFO is Full.
2	RX_E	1	Receive FIFO is Empty.
3	RX_F	1	Receive FIFO is Full.
4	TX_B	1	Transmit FIFO level is Below Threshold.
5	RX_A	1	Receive FIFO level is Above Threshold.
6	busy	1	spi busy flag.
7	done	1	spi done flag.

RX_FIFO_LEVEL Register [Offset: 0xfe00, mode: r]

RX_FIFO Level Register

bit	field name	width	description
0	level	4	FIFO data level

RX_FIFO_THRESHOLD Register [Offset: 0xfe04, mode: w]

RX_FIFO Level Threshold Register

bit	field name	width	description
0	threshold	4	FIFO level threshold value

RX_FIFO_FLUSH Register [Offset: 0xfe08, mode: w]

RX_FIFO Flush Register

15										1	0
											flush
31							•	•			16
	•		,	'			'			'	

bit	field name	width	description
0	flush	1	FIFO flush

TX_FIFO_LEVEL Register [Offset: 0xfe10, mode: r]

TX_FIFO Level Register

15					 		 4	3			0
			,	'					lev	/el	<u>'</u>
31	'										16

bit	field name	width	description
0	level	4	FIFO data level

TX_FIFO_THRESHOLD Register [Offset: 0xfe14, mode: w]

TX_FIFO Level Threshold Register

15						4	3			0
								thres	shold	.
31										16
				·						

bit	field name	width	description
0	threshold	4	FIFO level threshold value

TX_FIFO_FLUSH Register [Offset: 0xfe18, mode: w]

TX_FIFO Flush Register

15								1	0
									flush
31				•	•				16
	'							'	

bit	field name	width	description
0	flush	1	FIFO flush

GCLK Register [Offset: 0xff10, mode: w]

Gated clock enable register

bit	field name	width	description
0	gclk_enable	1	Gated clock enable; 1: enable clock, 0: disable clock

Interrupt Flags

The wrapped IP provides four registers to deal with interrupts: IM, RIS, MIS and IC. These registers exist for all wrapper types.

Each register has a group of bits for the interrupt sources/flags.

- IM [offset: 0xff00]: is used to enable/disable interrupt sources.
- RIS [offset: 0xff08]: has the current interrupt status (interrupt flags) whether they are enabled or disabled.
- MIS [offset: 0xff04]: is the result of masking (ANDing) RIS by IM.
- IC [offset: 0xff0c]: is used to clear an interrupt flag.

The following are the bit definitions for the interrupt registers:

Bit	Flag	Width	Description
0	TXE	1	Transmit FIFO is Empty.
1	TXF	1	Transmit FIFO is Full.
2	RXE	1	Receive FIFO is Empty.
3	RXF	1	Receive FIFO is Full.
4	TXB	1	Transmit FIFO level is Below Threshold.
5	RXA	1	Receive FIFO level is Above Threshold.

Clock Gating

The IP includes a clock gating feature that allows selective activation and deactivation of the clock using the GCLK register. This capability is implemented through the ef_util_gating_cell module, which is part of the common modules library, ef_util_lib.v. By default, the clock gating is disabled. To enable behavioral implmentation clock gating, only for simulation purposes, you should define the CLKG_GENERIC macro. Alternatively, define the CLKG_SKY130_HD macro if you wish to use the SKY130 HD library clock gating cell, sky130_fd_sc_hd_dlclkp_4.

Note: If you choose the OpenLane2 flow for implementation and would like to enable the clock gating feature, you need to add CLKG_SKY130_HD macro to the VERILOG_DEFINES configuration variable. Update OpenLane2 YAML configuration file as follows:

VERILOG_DEFINES:

- CLKG_SKY130_HD

Firmware Drivers:

Firmware drivers for EF_SPI can be found in the <u>Drivers</u> directory in the <u>EFIS</u> (Efabless Firmware Interface Standard) repo. EF_SPI driver documentation is available <u>here</u>. You can also find an example C application using the EF_SPI drivers here.

Installation:

You can install the IP either by cloning this repository or by using IPM.

1. Using IPM:

- [Optional] If you do not have IPM installed, follow the installation guide here
- After installing IPM, execute the following command ipm install EF_SPI.

Note: This method is recommended as it automatically installs EF_IP_UTIL as a dependency.

2. Cloning this repo:

- Clone <u>EF_IP_UTIL</u> repository, which includes the required modules from the common modules library, <u>ef_util_lib.v.</u> git clone https://github.com/efabless/EF_IP_UTIL.git
- Clone the IP repository git clone github.com/efabless/EF_SPI

The Wrapped IP Interface

NOTE: This section is intended for advanced users who wish to gain more information about the interface of the wrapped IP, in case they want to create their own wrappers.

Module Parameters

Parameter	Description	Default Value
CDW	The width of the clock divider used to generate the SPI clock.	8
FAW	Log2 of the FIFO depth.	4

Ports

Port	Direction	Width	Description
miso	input	1	Master In Slave Out; this line carries data from the slave device to the master.
mosi	output	1	Master Out Slave In; this line carries data from the master device to the slave.
csb	output	1	Chip Select Bar; this signal selects the slave device to communicate with, typically active low.
sclk	output	1	Serial Clock; this provides the clock signal that synchronizes data transfer between master and slave devices.
CPOL	input	1	SPI Clock Polarity.

Port	Direction	Width	Description
СРНА	input	1	SPI CLock Phase.
clk_divider	input	CDW	The SPI clock divider; SPI clock frequency = System Clock Frequency / clk_divider.
wr	input	1	Write to the TX FIFO.
rd	input	1	Read from the RX FIFO.
datai	input	8	Data to place into the TX FIFO.
datao	output	8	Data from the RX FIFO.
rx_en	input	1	Enable the RX FIFO.
rx_flush	input	1	Flush the RX FIFO.
rx_threshold	input	FAW	RX FIFO level threshold.
rx_empty	output	1	RX FIFO is empty.
rx_full	output	1	RX FIFO is full.
rx_level_above	output	1	RX FIFO level is above the threshold.
rx_level	output	FAW	RX FIFO data level.
tx_flush	input	1	Flush the TX FIFO.
tx_threshold	input	FAW	TX FIFO level threshold.
tx_empty	output	1	TX FIFO is empty.
tx_full	output	1	TX FIFO is full.
tx_level_below	output	1	TX FIFO level is below trhe threshold.
tx_level	output	FAW	TX FIFO data level.
SS	input	1	None
enable	input	1	enable for spi master pulse generation
done	output	1	spi done flag.
busy	output	1	spi busy flag.