An Introduction to IoT Operating Systems

IoT Lab @ AUT: OS Team Amirkabir University of Technology

elahejalalpoor@gmail.com parham.alvani@gmail.com

August 2, 2015

► Part I: IoT OS

► Part II: IoT Protocol Stack

► Part III: IoT Development

Conclusion

- ► Part I: IoT OS
 - Introduction
 - IoT Requirements & Challenges
 - IoT OS
 - Existing OSs
- ► Part II: IoT Protocol Stack

► Part III: IoT Development

Conclusion

- ► Part I: IoT OS
 - Introduction
 - IoT Requirements & Challenges
 - IoT OS
 - Existing OSs
- ► Part II: IoT Protocol Stack
 - Traditional Stack
 - IoT Requirements
 - IoT Stack
 - Comparison
- ► Part III: IoT Development

Conclusion

- ► Part I: IoT OS
 - Introduction
 - IoT Requirements & Challenges
 - IoT OS
 - Existing OSs
- ► Part II: IoT Protocol Stack
 - Traditional Stack
 - IoT Requirements
 - IoT Stack
 - Comparison
- ► Part III: IoT Development
 - IoT Lab test
 - RIOT environment
 - Compilers
 - Development environment
- Conclusion

- ► Part I: IoT OS
 - Introduction
 - IoT Requirements & Challenges
 - IoT OS
 - Existing OSs
- ► Part II: IoT Protocol Stack
- ► Part III: IoT Development
- ► Conclusion

IoT?!!

What is IoT...

[Wikipedia]: The network of physical objects or "things" embedded with electronics, software, sensors, and connectivity to enable objects to exchange data with the manufacturer, operator and/or other connected devices based on the infrastructure of ITU's Global Standards Initiative

What is IoT...

[ITU]: A global infrastructure for the information society, enabling advanced services by interconnecting (physical and virtual) things based on existing and evolving interoperable information and communication technologies

What is IoT...

[WhatIs]: A scenario in which objects, animals or people are provided with unique identifiers and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction.

What is the IoT?

- ► A thing in IoT can be any natural or man-made object can be assigned IP(v6) address.
- ► So far, the Internet of Things has been most closely associated with machine-to-machine (M2M) communication.
- ► Although the concept wasn't named until 1999, the Internet of Things has been in development for decades.

IoT's Applications

- ► Environmental monitoring
- ► Infrastructure management
- Manufacturing
- Energy management
- Medical and healthcare systems
- Building and home automation
- ► Transportation
- **.** . . .

- ► Part I: IoT OS
 - Introduction
 - IoT Requirements & Challenges
 - R1: Heterogeneous Hardware Constraints
 - R2: Autonomy
 - R3: Programmability
 - Effect of the requirements on OS
 - IoT OS
 - Existing OSs
- ► Part II: IoT Protocol Stack
- ► Part III: IoT Development
- Conclusion

R1: Heterogeneous Hardware Constraints

- ► Memory Requirements
- ► CPU Requirements
- ► Limited Features
- ► Platform Support

Memory Requirements

- Many of typical IoT devices have very little memory (typically between 5kB and some hundreds of megabytes)
- ► This concerns RAM as well as persistent program storage.

- Kernel image should be very small
- ► The RAM footprint should be very low
- ► The OS should be modular!

CPU Requirements

- ► Some of the IoT systems are MCU based (instead of CPU)
- ► Some of the MCUs/CPUs in a IoT system will work at a very low clock cycle.

- ▶ The complexity of OS must be kept very low
- ► Should be scalable, to accommodate a wide range of different classes of devices

Limited Features

▶ IoT's hardware may have not advanced components like a Memory Management Unit (MMU) or a Floating-Point Unit (FPU).

- ► Software for IoT must be able to run on constrained HW
- ► Should be scalable, to accommodate a wide range of different classes of devices

Platform Support

- ▶ IoT platforms may have very limitted resources; e.g., battery, IO, storage, ...
- ▶ IoT platforms may composed of widly different components

- Must be able to leverage the capabilities of less constrained platforms
- ► Should be scalable, to accommodate a wide range of different classes of devices

R2: Autonomy

- ► Energy efficiency
- ► Adaptive Network Stack
- ► Reliability

Energy efficiency

- Some IoT nodes are battery powered
- ► Energy efficiency is one the goals of IoT

Effects on OS

Must exploit the power saving features of the hardware and allow for large sleep cycles as much as possible

Adaptive Network Stack

- Connectivity is an ingredients part of IoT
- ▶ IoT is a part of Inernet, TCP/IP based network
- ▶ IoT can also use its own special protocols

- Should provide full-fledged TCP/IP implementations as well as a 6LoWPAN stack aiming for more constrained devices.
- ▶ It should also be modular in a way that the protocols at each layer can be easily replaced.

Reliability

- ► IoT systems are often deployed in critical applications in which physical access is difficult and related to high costs
- ► Timely response is critical in some applications

- System must be robust and thus that the operating system should run very reliably
- ► Real-Time OS in some applications

R3: Programmability

- Standard API
- ► Standard Programming Languages

Standard API & Programming Languages

- ► Need for SW development for IoT systems
- Porting of existing software on IoT systems

- Standard programming interface such as POSIX or STL should be provided
- ► Support for standard high level programming languages, e.g., C & C++, is vital.

- ► Part I: IoT OS
 - Introduction
 - IoT Requirements & Challenges
 - IoT OS
 - General OS vs IoT OS
 - What are the main requirements in IoT OS
 - What are the main components in IoT OS
 - Existing OSs
- ► Part II: IoT Protocol Stack
- ► Part III: IoT Development
- Conclusion

General OS

IoT OS

Multi-Tasking, Thread Model (IoT OS)

- Most RTOS products on the market are thread model.
- ► Tasks are now called threads.
- ► All the tasks code and data occupy the same address space, along with that of the RTOS itself.
- Or every tasks can run in its own thread and has its own memory stack.

What are the main requirements in IoT OS

- ► IoT Protocol Stack Support
- Efficient Memory Managing
- ► Real-Time Task Scheduling

What are the main components in IoT OS

- Networking
- ▶ Memory Manager
- ► Task Scheduler

- ► Part I: IoT OS
 - Introduction
 - IoT Requirements & Challenges
 - IoT OS
 - Existing OSs
 - OS Classification
 - Overview of Open Source OSs
 - Overview of Closed Source OSs
 - Why Not Linux?
- ► Part II: IoT Protocol Stack
- ► Part III: IoT Development
- Conclusion

OS Classification

- ► Design Aspects for an IoT OS
 - Monolithic fashion
 - Layered approach
 - Microkernel architecture

OS Classification

- Programming Model for an IoT OS
 - All tasks are executed within the same context and have no segmentation of the memory address space.
 - Every process can run in its own thread and has its own memory stack.

Overview of Open Source OSs

- ► FreeRTOS
- ► RIOT
- ▶ Contiki
- ► TinyOS
- ▶ Embedded Linux
- ► OpenWSN

FreeRTOS

- ► FreeRTOS is designed to be small and simple.
- ▶ The kernel itself consists of only three or four C files.
- ▶ It provides methods for multiple threads or tasks, mutexes, semaphores and software timers.
- ► Key features are very small memory footprint, low overhead, and very fast execution.

RIOT

- ► RIOT is a real-time multi-threading operating system.
- RIOT implements a microkernel architecture
- RIOT is based on design objectives including:
 - Energy-Efficiency
 - Reliability
 - Real-Time Capabilities
 - Small Memory Footprint
 - Modularity
 - Uniform API Access independent of the underlying hardware (this API offers partial POSIX compliance)

Contiki

- Contiki is an open source operating system for networked, memory-constrained systems
- ► Contiki provides three network mechanisms:
 - · The uIP stack, which provides IPv4 networking,
 - The uIPv6 stack, which provides IPv6 networking,
 - The Rime stack, which is a set of custom lightweight networking protocols designed specifically for low-power wireless networks.

TinyOS

- ► TinyOS is a component-based operating system and platform targeting wireless sensor networks.
- ► TinyOS is an embedded operating system written in the nesC programming language as a set of cooperating tasks and processes.

Embedded Linux

- ► Embedded Linux is created using OpenEmbedded, the build framework for embedded Linux.
- ► OpenEmbedded offers a best-in-class cross-compile environment.

OpenWSN

► The goal of the OpenWSN project is to provide open-source implementations of a complete protocol stack based on Internet of Things standards, on a variety of software and hardware platforms.

Comparison

OS	Min RAM	Min ROM	C Support	C++ Support	
Contiki	< 2 <i>kB</i>	< 30 <i>kB</i>	Partial support	No support	
Tiny OS	< 1kB	< 4 <i>kB</i>	No support	No support	
Linux	$\sim 1 MB$	$\sim 1 MB$	Full support	Full support	
RIOT	~ 1.5 kB	$\sim 5kB$	Full support	Full support	

Comparison

OS	Multi-Threading	Modularity	Real-Time
Contiki	Partial support	Partial support	Partial support
Tiny OS	Partial support	No support	No support
Linux	Full support	Partial support	Partial support
RIOT	Full support	Full support	Full support

Operating Systems Availability

OS	Wsn430 Node	M3 Node	A8 Node
Contiki	Full support	Full support	No support
Tiny OS	Full support	No support	No support
Linux	No support	No support	Full support
RIOT	Full support	Full support	No support

Overview of Closed Source OSs

- ► ARM mbed
- ▶ Huawei LiteOS
- ► Google Brillo

ARM mbed

- ► Automation of power management
- Software asset protection and secure firmware updates for device security & management
- Connectivity protocol stack support for Bluetooth low energy,
 Cellular, Ethernet, Wi-fi, Zigbee IP, Zigbee NAN, 6LoWPAN

Huawei LiteOS

► The company says that its LiteOS is the lightest software of its kind and can be used to power a range of smart devices

Google Brillo

- ▶ Brillo is derived from Android but polished to just the lower levels.
- It supports Wi-Fi, Bluetooth Low Energy, and other Android things.

Why Not Linux?

Real-Time Linux

Controlling a laser with Linux is crazy, but everyone in this room is crazy in his own way. So if you want to use Linux to control an industrial welding laser, I have no problem with your using PREEMPT_RT.

- Linux Torvalds

Why Not Linux?

- ► Linux certainly is a robust, developer-friendly OS
- ▶ Linux has a disadvantage when compared to a real-time operating system:
 - Memory footprint
 - It simply will not run on 8 or 16-bit MCUs
- Linux will certainly have many uses in embedded devices, particularly ones that provide graphically rich user interfaces.
- ▶ There are thousands of applications for which Linux is ill suited.

Outline

- ► Part I: IoT OS
- ► Part II: IoT Protocol Stack
 - Traditional Stack
 - IoT Requirements
 - IoT Stack
 - Comparison
- ► Part III: IoT Development
- ► Conclusion

Protocol stack

► Can you build an IoT system with familiar Web technologies?

Protocol stack

- ▶ Can you build an IoT system with familiar Web technologies?
- ► Yes you can, although the result would not be as efficient as with the newer protocols.

Traditional Stack

- ► Existing Internet protocols such as HTTP and TCP are not optimized for very low-power communication.
- ► Energy is wasted by transmission of unneeded data, protocol overhead, and non-optimized communication patterns.

IoT Requirements

- ► A Low Power Communication Stack.
- ► A Highly Reliable Communication Stack.
- ► An Internet-Enabled Communication Stack.

IoT Stack

- ► Low-Power Physical Layer IEEE 802.15.4
- ► POWER-SAVING LINK LAYER | IEEE 802.15.4E
- ► CONNECTING TO THE INTERNET IETF 6LoWPAN
- ► ROUTING IETF ROLL
- ► TRANSPORT LAYER AND ABOVE IETF COAP

IoT Stack

Protocol	Transport	Messaging	2G,3G,4G (1000's)	LowPower and Lossy (1000's)	Compute Resources	Security	Success Stories	Arch
CoAP	UDP	Rqst/Rspnse	Excellent	Excellent	10Ks/RAM Flash	Medium - Optional	Utility field area ntwks	Tree
Continua HDP	UDP	Pub/Subsrb Rqst/Rspnse	Fair	Fair	10Ks/RAM Flash	None	Medical	Star
DDS	UDP	Pub/Subsrb Rqst/Rspnse	Fair	Poor	100Ks/RAM Flash +++	High- Optional	Military	Bus
DPWS	TCP		Good	Fair	100Ks/RAM Flash ++	High- Optional	Web Servers	Client Server
HITP/ REST	TCP	Rqst/Rspnse	Excellent	Fair	10Ks/RAM Flash	Low- Optional	Smart Energy Phase 2	Client Server
MQTT	TCP	Pub/Subsrb Rqst/Rspnse	Excellent	Good	10Ks/RAM Flash	Medium - Optional	IoT Msging	Tree
SNMP	UDP	Rqst/Response	Excellent	Fair	10Ks/RAM Flash	High- Optional	Network Monitoring	Client- Server
UPnP		Pub/Subscrb Rqst/Rspnse	Excellent	Good	10Ks/RAM Flash	None	Consumer	P2P Client Server
XMPP	TCP	Pub/Subsrb Rqst/Rspnse	Excellent	Fair	10Ks/RAM Flash	High- Manditory	Rmt Mgmt White Gds	Client Server
ZeroMQ	UDP	Pub/Subscrb Rqst/Rspnse	Fair	Fair	10Ks/RAM Flash	High- Optional	CERN	P2P

Comparison

- · Inefficient content encoding
- Huge overhead, difficult parsing
- · Requires full Internet devices

Internet of Things Tens of bytes

- · Efficient objects
- Efficient Web
- Optimized IP access

Comparison

Outline

- ► Part I: IoT OS
- ► Part II: IoT Protocol Stack
- ► Part III: IoT Development
 - IoT Lab test
 - RIOT environment
 - Compilers
 - Development environment
- ► Conclusion

IoT Lab test

- A scientific testbed
- ▶ Different topologies and environments
- ▶ Different nodes
- ► A part of FIT

FIT I@T-lab

A scientific testbed

IoT-LAB provides full control of network nodes and direct access to the gateways to which nodes are connected, allowing researchers to monitor nodes energy consumption and network-related metrics.

Different topologies and environments

▶ IoT-LAB testbeds are located at six different sites across France which gives forward access to 2728 wireless sensors nodes.

Different nodes

- ► The IoT-LAB hardware infrastructure consists of a set of IoT-LAB nodes.
- ► A global networking backbone provides power and connectivity to all IoT-LAB nodes and guaranties the out of band signal network needed for command purposes and monitoring feedback.

A part of FIT

- ▶ IoT-LAB is a part of the FIT (Future Internet of the Things) platform.
- ► FIT is a set of complementary components that enable experimentation on innovative services for academic and industrial users.

RIOT environment

- ▶ RIOT features the native port with networking support.
- ► This allows you to run any RIOT application on your Linux or Mac computer and setup a virtual connection between these processes.

Compilers

- ► Family: ARM
 - · gcc-arm-embedded toolchain
 - CodeBench toolchain
 - Linaro toolchain
- ► Family: ATmega
 - Atmel AVR Toolchain
- ► Family: MSP430
 - MSPGCC toolchain

Development environment

Most of the IoT OS developed on Linux and use traditional make as build system.

Outline

- ► Part I: IoT OS
- ► Part II: IoT Protocol Stack
- ► Part III: IoT Development
- Conclusion
 - · Open problems
 - Event-Driven, Non-Blocking I/O Model

Open problems

- Ideally, the capabilities of a full-fledged OS should be available on all IoT devices.
- ► Native Multi-Threading
- ► Hardware Abstraction
- ► Dynamic Memory Management
- ► Fulfill Strict Energy Efficiency

Event-Driven, Non-Blocking I/O Model

- Networking Event-Driven
- ► Non-Blocking I/O

Questions?