1st SEMESTER EXAMINATION, 2022 – 23

1st Year, M. Tech

CSE, Electrical Eng, Structural Eng, Structural Eng & Construction, Manufacturing Science & Eng, Power System Eng, Thermal Eng, Production Eng Advanced Mathematics

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1.	Answer any two parts of the following. a) Apply Gauss – Seidel iteration method to solve the equations $20x + y - y$	10x2=20
	ay rippiy cause series recruited method to serve the equations zero i	
	2z = 17, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$.	
	b) Apply Gauss – Jordan's method to solve the equations $x + 2y + z = 8$,	
	2x + 3y + 4z = 20, $4x + 3y + 2z = 16$.	
	c) Using Relaxation method solve the equations $10x - 2y - 3z = 205$, $-2x + 10y - 2z = 154$, $-2x - y + 10z = 120$.	
Q 2.	Answer any two parts of the following.	10x2 = 20
	a) A rectangular plate with insulated surface is 8 cm wide and so long compared to its width that it may be considered infinite in length. If the temperature along one short edge $y = 0$ is given by $u(x, 0) = 100 \sin \frac{\pi x}{8}$, $0 < x < 8$ while two long edges are kept at $0^{\circ}C$. Find the steady state temperature.	
	b) Solve non-linear partial differential equation $z(p^2 - q^2) = x - y$.	
	c) (i) Eliminate arbitrary function f from the relation $f(x^2 + y^2, z - xy) = 0$	
	0.	
	(ii) Form the partial differential equation from the relation	
	$z = f_1(y + 2x) + f_2(y - 3x).$	
Q 3.	Answer any two parts of the following.	10x2 = 20
	a) Solve the initial value problem $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = sint$, $y(0) = \frac{1}{2} \frac{dy}{dt} + \frac{1}{2} \frac{dy}{dt} - 3y = sint$	
	0 and y'(0) = 0 using Laplace transform.	
	b) Find the Fourier transform of the Gauss function f defined for $a > 0$ by	
	$f(t) = e^{-at^2}.$	
	c) Making use of Fourier sine transform, solve the integral equation	
	$\int_{0}^{\infty} f(t) \sin t dt = \begin{cases} 1 & \text{for } 0 \le t \le 1 \\ 2 & \text{for } 1 \le t \end{cases}$	
	$\int_0^\infty f(t)sin\omega t dt = \begin{cases} 1 & for & 0 \le t \le 1 \\ 2 & for & 1 \le t, 2 \\ 0 & for & t \ge 0 \end{cases}$	
Q 4.	Answer any two parts of the following.	10x2 = 20
	a) Find inverse Z –transform of $Z(z) = \frac{z^4 + z^3 - z^2 - z + 1}{z^2 + 2z + 1}$.	
	b) Using Z-transform to solve the difference equation $u_{n+2} - 2u_{n+1} + u_n = 2^n$ with the conditions $u_0 = 2$ and $u_1 = 1$.	
	c) Find the Z – transform of sinusoidal function $S(n) = \begin{cases} sin\omega nT & n \ge 0\\ 0 & n < 0 \end{cases}$	

Q 5. Answer any two parts of the following.

10x2 = 20

- a) (i) If X is uniformly distributed with mean 1 and variance $\frac{4}{3}$ find P(X, 0).
 - (ii) Determine first moment about origin for a Weibull distribution whose probability density function is given by $p(x) = c \cdot x^{c-1} \cdot \exp(-x^c)$.
- b) (i) Subway trains on a certain line run every half hour between midnight and six in the morning. What is the probability that a man entering the station at a random time during this period will have to wait at least twenty minutes?
 - (ii) Show that for rectangular distribution $f(x) = \frac{1}{2a}$, -a < x < a, moment generating function about origin is $\frac{sinhat}{at}$.
- c) Find the moment generating function of the continuous normal distribution given $(x-y)^2$

by
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
, $-\infty < x < \infty$ and find its mean and variance.
