物理学院《大学物理 AII》期末考试题 A 卷

2019年1月16日 9:30-11:30

班级_	学号									总分			
任课教	如师	姓名											
					模	块三	三 电磁	学	(63分)				
	均	填空题		择题 计		1	计算 2	,	计算3	计算 4	合计	复核人	
得分													
					模均	央四	近代物	勿到	里(37分)				
		填空题		选择题		计算 1		计算 2		合计 复核人		亥人	
得	分												
可能用到的物理常数 真空介电常量 $\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{C^2 \cdot N^{-1} \cdot m^{-2}},$ 普朗克常量 $h = 6.63 \times 10^{-34} \mathrm{J \cdot s},$ 电子质量 $m_{\rm e} = 9.11 \times 10^{-31} \mathrm{kg},$ 模块三 电磁 :								学	真空磁导率 $\mu_0 = 4\pi \times 10^{-7} \text{ N· A}^{-2}$,基本电荷 $e = 1.60 \times 10^{-19} \text{ C}$,质子质量 $m_p = 1.67 \times 10^{-27} \text{ kg}$.				
一、填空题(共 21 分,每题 3 分,将答案写在试卷指定的横线""上)													
										为 <i>E</i> ₁ 和 <i>E</i>			
面向下。则从地面到 h 高度的大气中电荷的平均体密度为													
上的电荷全部均匀分布在表面,则地面上的电荷面密度为。 2. (3 分)用你自己的语言对重力势能、弹性势能和静电势能作一个统一的势能定义,													
		述三种'	情况都	邻适用	,定义	义为_				分形7下一个			
3. (3	分)									为 <i>q</i> ,沿矢			
为 <i>L</i> 、	电征	苛线密度	度为 /	的均	匀带电	组组组	栈, 球心	О	到细线近	端的	R		
									线组成的	系统 (o	2R -	→ L →	
电势能为。(设无穷远电势为零)													

4. (3分)两个相同的空气电容器,电容都是900uF,分别充电到	900V 电压后切断电源,
若把一个电容器浸入介电常数为 2.0 的煤油中,再将两电容并取	长。则并联过程中损失的
能量为J; 损失的能量转化为	o
5. $(3 分)$ 一个带电量为 $q>0$ 的粒子以速度 v 平行于一均匀带电	的无限长直导线运动,
该导线的电荷线密度为 $\lambda>0$,并载有传导电流 I ,如图所示。则料	立子要
以 <i>v</i> =	I运动 $\lambda \stackrel{d}{\longleftarrow} I$
才能使之保持在一条与导线垂直距离为 d 的平行直线上。 6. (3分)如图所示,两个共面的平面带电圆环,其内外半径分	别
为 R_1 、 R_2 和 R_3 、 R_4 ,外圆环以每秒钟 n_2 转顺时针转动,内圆环	U P
每秒钟 n_1 转逆时针转动,若两圆环电荷面密度均为 σ ,则 n_1/n_2	为 (4)
时,圆心O处的磁感应强度为零。	
7. $(3 分)$ 一长螺线管单位长度密绕 n 匝线圈,在其内部轴线上	有一面积为 S 的单匝小
平面线圈,小线圈平面法向与螺线管轴向夹角 30°,它们之间的互	[感系数为;
如果螺线管和小线圈均通过电流 I, 则小线圈受到的磁力矩大小	为。
二、选择题(共 9 分,单选,每题 3 分,将答案写在试卷上指数 1.(3 分)如图所示,三块平行的薄导体板,相互之间的距离 d_1 d_2 比导体板面积线度小得多,外面二导体板用导线连接。中间导板带电,设左右两面上电荷面密度分别为 σ_1 和 σ_2 。则 σ_1/σ_2 为 (A) d_1/d_2 ; (B) d_2/d_1 ; (C) 1; (D) d_2^2/d_1^2 。	和 [] g [g]]
2. (3分)图(a)、(b)、(c)中除导体棒可动外,其余部分均固导轨和直流电源的电阻均可略,各装置都在水平面内,匀强磁场 <i>B</i> 的方向垂直纸面向里。设导体棒的初始速度为 vo。有可能在一直向右运动过程中最终达到匀速(不包括静止)状态的是(A)图(a); (B)图(b); (C)图(c); (D)都不可能。	定,不计摩擦,导体棒、 v_0 ε \times ε \times ε v_0 ε
3. (3 分) 一球形电容器中间充有均匀介质,该介质缓慢漏电,流产生的磁场为 B_c ,位移电流产生的磁场为 B_d ,则 (A) $B_c \neq 0$, $B_d = 0$; (B) $B_c = 0$, $B_d \neq 0$;	仕
(C) $\mathbf{B}_{c} = \mathbf{B}_{d} = 0$; (D) $\mathbf{B}_{c} = \mathbf{B}_{d} \neq 0$.	[]

三、计算题(共33分,将答案写在试卷空白处)

1. (9分) 如图所示,有一半径为 R 的金属球,外面包有一层相对介电常数 $\varepsilon=2$ 的均匀电介质壳,壳内、外半径分别为 R 和 2R,介质内均匀分布着电量为 q_0 的自由电荷,金属球接地。试求:

- (1) 金属球所带电量?
- (2) 介质壳外表面的电势? (设无穷远电势为零)

2.(9分)如图所示,两根相互绝缘的无限长直导线 1 和 2 绞接与 O 点,两根相互绝缘导线间的夹角为 θ ,并通有相同电流 I,方向如图。试求,单位长度的导线所受磁力对 O 点的 O

lsino e.

3. (9 分) 伴径为 R 的圆柱形中空长直螺线管垂直于纸面放置,该螺线管单位长度上密绕了 n 匝线圈,线圈中通有 i=kt 的电流(k 为正的常量,

t 为时间),电流流向如图所示。已知磁场所激发的电场只在平行于纸面且沿任一径向 r 的垂直方向上不等于零。在螺线管外有一无限长直导线平行于纸面放置,试求:

- (1) 螺线管内、外空间的感生电场强度 \vec{E}_{gap} 和 \vec{E}_{gsp} 。
- (2) 长直导线中的感应电动势 ε 的大小,并指明其方向。

(1)
$$\sqrt{\frac{1}{2}} = \frac{1}{2} = \frac{1}{2}$$

4. (6 分) 电磁波在传播时,其能流密度矢量 $\vec{S} = \vec{E} \times \vec{H}$,其中 \vec{E} 和 \vec{H} 分别为电场强度 矢量和磁场强度矢量。一电容器由相距为 r 的两个半径为 a 的圆形导体板所构成(忽略边缘效应)。求证:对电容器充电时,设 t 时刻电容器带电量为 q,流入电容器的能量速率等于其电场能量增加的速率。

三、计算题(共 16 分,将答案写在试卷空白处)

- 1. $(8 \, \mathcal{G})$ S'系相对于 S 系沿 xx'轴正向以 0.8c (c) 为真空中的光速)的速度运动,一质 点在 ox'y'平面内以 c/2 的速度匀速直线运动,轨迹与 x'轴的 夹角为60°,过 o'点,如图所示。试求:

点在
$$ox'y'$$
 半面内以 $c/2$ 的速度匀速直线运动,轨迹与 x' 轴的夹角为 60° ,过 o' 点,如图所示。试求:
 (1) 该质点在 S 系中的运动方程;
 (2)在 S 系中观察质点 P 的运动速度大小和运动轨迹如何?
 (洛伦兹变换: $x' = \frac{x - ut}{\sqrt{1 - u^2/c^2}}$, $y' = y$, $z' = z$, $t' = \frac{t - ux/c^2}{\sqrt{1 - u^2/c^2}}$) z z'

$$\begin{array}{c|c}
S & S' & P & 0.8c \\
\hline
Z & Z' & X & X'
\end{array}$$

(1)
$$x^{1} = \frac{c}{2} t' cnb^{0}$$
 $y' = \frac{c}{2} t' smb^{0}$ $t' = \frac{t - \frac{a s cn}{c^{2}}}{1 - \frac{(0.8c)^{2}}{c^{2}}}$

$$\frac{x_{-1}t}{f_{-}} = \frac{c}{z}, \frac{t_{-}}{f_{-}} = \frac{dx}{dx}$$

$$x = 0.875 \text{ or } 100 \text{ fg} \text{ y} = 0.27 \text{ or } 100 \text{ fg} \text{ y$$

(2).
$$\frac{dx}{dt} = 0.875c$$
 $\frac{dy}{dt} = 0.217c$... $v = [6.875c]^2 + [6.217c]^2$ = 0.9c

2. (8分)在一次康普顿散射中,入射光子传递给静止电子的最大能量为 E_{k} ,电子的静 止质量为 m₀, 试求入射光子的能量。

$$Shv_{o} = hv_{1} + E_{K} = hv_{0} - \frac{t_{k}}{2} + \frac{cp_{e}}{2}$$

$$\frac{hv_{0}}{c} = \frac{hv_{1}}{c} + p_{e}$$

$$2 c^{2}p_{e}^{2} = E^{2} - m^{2}c^{4} = (mc^{2}+E_{K})^{2} = E_{K}^{2} + 2m_{o}c^{2}E_{K}$$

$$hv_{0} = \frac{t_{k}}{2}(1+\sqrt{1+2m_{o}c^{2}/E_{K}}).$$

2018-2019-1 大学物理 AII 期末试题 A 卷参考答案和评分标准 考试日期 2019.1.16

模块三 电磁学 (63分)

一、填空题(每题3分,共21分)

1.
$$\frac{\varepsilon_0(E_1 - E_2)}{h}$$
; $-\varepsilon_0 E_1$

- 2. 质点(物体)在空间某点的势能等于它从该点移到势能零点处保守力(如重力、弹力 或静电力)做的功。
- 3. $\frac{q\lambda}{4\pi\varepsilon_0}\ln\frac{2R+L}{2R}$
- 4. 60.8J; 介质的动能,最后通过摩擦转化为热能(内能)
- 5. $\frac{\lambda}{\varepsilon_0 \mu_0 I}$; 电流
- 6. $\frac{n_1}{n_2} = \frac{R_4 R_3}{R_2 R_1}$ 7. $\frac{\sqrt{3}}{2} \mu_0 nS$, $\frac{1}{2} \mu_0 nSI^2$

二、选择题(每题3分,共9分)

В A C

三、计算题(共33分)

 $1.(9 \, \mathcal{G})$ 解: (1)设金属球上带电量为 q, r 为场点到 O 的距离,由高斯定理可求得

介质壳内电场强度为
$$E_{1} = \frac{q + \frac{r^{3} - R^{3}}{(2R)^{3} - R^{3}}q_{0}}{4\pi\varepsilon_{0}\varepsilon_{r}r^{2}} = \frac{1}{8\pi\varepsilon_{0}}(\frac{q}{r^{2}} + \frac{q_{0}r}{7R^{3}} - \frac{q_{0}}{7r^{2}})$$
 (3分)

介质外的电场强度为
$$E_2 = \frac{q + q_0}{4\pi\varepsilon_0 r^2}$$
 (1分)

金属球接地,即表示金属球与无限远等电势,于是有

$$\int_{2R}^{R} E_{1} dr = \int_{2R}^{\infty} E_{2} dr \qquad (2 \%)$$

$$\frac{1}{8\pi\varepsilon_0} \int_{2R}^{R} \left(\frac{q}{r^2} + \frac{q_0 r}{7R^3} - \frac{q_0}{7R^2}\right) dr = \frac{q + q_0}{4\pi\varepsilon_0} \int_{2R}^{\infty} \frac{dr}{r^2}$$

可求得金属球上带电量为
$$q = -\frac{16q_0}{21}$$
 (1分)

(2) 介质壳外表面的电势为
$$\varphi = \int_{2R}^{\infty} E_2 dr = \frac{5q_0}{168\pi\varepsilon_0 R}$$
 (2分)

2. $(9 \, \beta)$ 解: 在任一根导线上(如导线 2)取一线元 dl,该线元距 O 点为 l,导线 1 在该处的磁感应强度为

$$\vec{F} = Id\vec{l} \times \vec{B}$$
 (1 $\%$)

$$dF = IB \cdot dl = \frac{\mu_0 I^2 \cdot dl}{2\pi l \cdot \sin \theta}$$
 方向: 垂直于导线 2 向上 (2 分)

该力对 O 点的力矩为 $\vec{M} = \vec{l} \times d\vec{F}$ (1分)

任一段单位长度的导线所受磁力对 O 点的力矩为

$$M = \int dM = \int_{l}^{l+1} \frac{\mu_0 I^2 dl}{2\pi \cdot \sin \theta} = \frac{\mu_0 I^2}{2\pi \cdot \sin \theta} \qquad \qquad \dot{\mathcal{T}} \, \dot{\square} : \, \odot$$
 (3 $\dot{\mathcal{T}}$)

4.(6分)证:设t时刻电容器带电量为<math>q,

平行板电容器内电场强度为
$$E = \frac{q}{\varepsilon_0 \pi a^2}$$
 (1分)

磁场强度为
$$H = \frac{I_d}{2\pi a}, I_d = \frac{dq}{dt}$$
 (1分)

能流密度矢量
$$S = EH = \frac{q}{2\pi^2 a^3 \varepsilon_0} \frac{\mathrm{d}q}{\mathrm{d}t}$$
 (1分)

流入电容器的能量速率: $P_s = 2\pi a r S = \frac{q r}{\pi a^2 \varepsilon_0} \frac{\mathrm{d}q}{\mathrm{d}t} = \frac{q}{C} \frac{\mathrm{d}q}{\mathrm{d}t}$, C为电容器的电容 (1分)

因电容器的电场能为
$$W_e = \frac{q^2}{2C}$$
 (1分)

故电场能量增加的速率:
$$P_e = \frac{\partial W_e}{\partial t} = \frac{1}{2C} \frac{\mathrm{d}q^2}{\mathrm{d}t} = \frac{q}{C} \frac{\mathrm{d}q}{\mathrm{d}t}$$
; $\therefore P_S = P_e$ 证毕 (1分)

3. (9分) 解: (1) 由题意可知 $\vec{E}_{\bar{e}} = E_{\bar{e}}(r) \cdot \vec{e}_{\varphi}$; \vec{e}_{φ} 为任一径向r的垂直方向上的单位矢量

选半径为r(可大于R、可小于R)的环路L,有

$$\oint_{I} \vec{E}_{\vec{\otimes}} \cdot d\vec{l} = E_{\vec{\otimes}} \cdot 2\pi r = -\frac{d\Phi}{dt}$$
(2 \(\frac{\partial}{r}\))

$$B = \mu_0 n i = \mu_0 n k t \tag{1 \%}$$

$$r < R$$
:
$$E_{\text{in}} \cdot 2\pi r = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -\pi r^2 \cdot \mu_0 nk$$

得
$$E_{\text{seh}} = -\frac{r}{2} \cdot \mu_0 nk$$
 $\vec{E}_{\text{seh}} = -\frac{r}{2} \cdot \mu_0 nk\vec{e}_{\varphi}$ (沿圆周切向与电流流向相反) (1分)

$$r > R$$
:
$$E_{\text{\tiny BM}} \cdot 2\pi r = -\frac{\mathrm{d}\,\Phi}{\mathrm{d}\,t} = -\pi\,R^2 \cdot \mu_0 n k$$

得
$$\vec{E}_{\text{慮h}} = -\frac{R^2}{2r} \cdot \mu_0 n k \vec{e}_{\varphi} \qquad \qquad (沿圆周切向与电流流向相反) \qquad (1分)$$

(2) 如图所示,过 O 点画一条平行长直导线的长直线,它与长直导线在两端无限远处闭合,形成一个回路。该回路中的电动势就是长直导线中的电动势。

$$\mathcal{E} = -\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\pi R^2}{2} B \right) = -\frac{1}{2} \pi R^2 \mu_0 nk \qquad (3 \, \text{\frac{\beta}{2}})$$

$$\varepsilon$$
的指向如图所示。 (1分)

该题也可以由 \vec{E}_{gh} 的积分求得 \mathcal{E} :

$$\mathcal{E} = \int E_{\text{BH}} \cos \theta \cdot dl = \int_{-\pi/2}^{\pi/2} E_{\text{BH}} \cos \theta \cdot \frac{r d\theta}{\cos \theta}$$
$$= \int_{-\pi/2}^{\pi/2} \frac{R^2 \mu_0 nk}{2} d\theta = \frac{1}{2} \pi R^2 \mu_0 nk$$

模块四 近代物理(37分)

一、填空题(每题3分,共15分)

1. 沿静止等边三角形的一条高的方向; $\sqrt{2/3}c = 2.45 \times 10^8 \text{ m/s}$

2. 德布罗意波是几率波,波函数不表示某实在物理量在空间的波动,其振幅无实在的物 理意义。

 $3.6.6 \times 10^{-8}$; 1.85×10^{-5}

4.0.25

5. 2.00; 2.14

二、选择题(单选,每题3分,共6分)

В D

三、计算题(共16分)

1. (8 分)解: (1)设<math>t'=0时,质点位于S'系的o'点,则

质点在 S'系中 o'P =
$$\frac{c}{2}t'$$
, 即 $x' = \frac{c}{2}t'\cos 60^\circ$, $y' = \frac{c}{2}t'\sin 60^\circ$

由洛伦兹变换得

$$\gamma(x-ut) = \frac{c}{2}\gamma(t-\frac{ux}{c^2})\cos 60^\circ \text{ ftl } y = \frac{c}{2}\gamma(t-\frac{ux}{c^2})\sin 60^\circ \text{ , } \gamma = \frac{1}{\sqrt{1-u^2/c^2}} \text{ , } u=0.8c$$

该质点在 S 系中的运动方程为 x=0.875ct, y=0.217ct 。

(2分)

(2) 运动方程对时间求导得 $v_x = 0.875c$, $v_y = 0.217c$,

在 S 系中,质点 P 的运动速度大小为 $v = \sqrt{v_x^2 + v_y^2} \approx 0.9c$; (2分)

由运动方程消去时间 t 得 x=4.032y,运动轨迹为直线。

(1分)

速度沿入射光子的运动方向。

设 ν 为入射光子的频率, ν 为散射光子的频率, p_e 为反冲电子的动量。则由能量守恒有:

$$h\nu_0 = h\nu + E_{\rm k}$$

(1)

(2分)

由动量守恒有:

$$\frac{hv_0}{c} = -\frac{hv}{c} + p_e$$

(2分)

由①、②式得

$$hv_0 = \frac{E_k}{2} + \frac{cp_e}{2}$$

又由相对论能量与动量关系有:

$$c^{2}p_{e}^{2} = E^{2} - m_{0}^{2}c^{4} = (m_{0}c^{2} + E_{k})^{2} - m_{0}^{2}c^{4} = E_{k}^{2} + 2m_{0}c^{2}E_{k}$$
 (1 $\%$)

入射光子的能量为
$$h\nu_0 = \frac{E_k}{2} \left(1 + \sqrt{1 + 2m_0 c^2 / E_k} \right)$$
 (1分)