MAD 6607: Coding Theory

Edoardo Persichetti

Test 3

Exercise 1 Write at least one of the MacWilliams identities.

Exercise 2 Let q = 3 and n = 8.

- a) Write all the cyclotomic cosets mod n over \mathbb{F}_q .
- b) Therefore determine the multiplicative order of $q \mod n$.
- c) Factor completely¹ the polynomial $x^n 1$ over \mathbb{F}_q , then use one of the irreducible factors just found (of the proper degree) to define \mathbb{F}_{q^m} .
- d) Using the field arithmetic corresponding to this choice, find the minimal polynomials corresponding to each coset.
- e) Finally, find all the primitive idempotents of R_n .

Exercise 3 Let $q = 8 = 2^3$ and n = 9. Consider \mathbb{F}_q as defined usually by $x^3 + x + 1$ and primitive element α .

- a) Write all the cyclotomic cosets mod n over \mathbb{F}_q .
- b) Therefore determine the multiplicative order of $q \mod n$.
- c) Let m be the order determined in part b), and call β an element of \mathbb{F}_{q^m} of order n. What are the conjugates of β ?
- d) Verify that $p(x) = x^m + \alpha x + \alpha$ is irreducible over \mathbb{F}_q . Consequently, use p(x) to define³ \mathbb{F}_{q^m} and compute⁴ $Tr_{\mathbb{F}_q}(\beta)$.
- e) Write a parity-check matrix H for the Hamming code H_m over \mathbb{F}_{q^m} .
- f) Project H over \mathbb{F}_q . What is the dimension of the Hamming code over \mathbb{F}_q ?
- g) Calculate the minimal polynomial of the element β .
- h) Finally, determine the generator polynomial of the Hamming code over \mathbb{F}_q and build the associated generator matrix.

Exercise 4 Let g(x) be the generator polynomial of a binary cyclic code of length n.

- a) Show that, if $(x+1) \mid g(x)$, then the code contains only codewords of even weight.
- b) On the other hand, prove that, if x + 1 is **not** a factor, then it must contain the all-1s codeword 111...1.

¹Down to polynomials of degree 1 and 2.

²It might be a good idea to write out the index table for faster computations.

³You don't need to write out the whole field, the first few elements will be enough for your computations.

⁴Remember that this is an element of \mathbb{F}_q !