TOWER OF BRAHAMA

```
THE PROBLEM
 - MOVE ALL DISKS FROM COLUMN A 70 B
 - ONE DISK AT A TIME
 - NO CARGER DISKS ON SMALLER DISKS
IMPLEMENTATION 1 = RECURSION (STANDARD)
IMPLEMENTATION 2 = STACK:
   - EACH PEG IS 175 OWN STACK
   - 74KES Xn = 2xn-1+1 -> Xn = 2n-1 movEs
 - Stack.h HEADER FILE GIVEN - IMPLEMENT FUNCTION
TASKS
 - PARSE COMMAND LINE OPERATIONS
   -"n x" : SETS # OF DISKS TO X DEFAULT S
   -"s" : PRINT OUT MOVES PERFORMED WI STACK
   -"1": PPINT OUT MOVES PERFORMED WI RECUESION
- PRINT # OF MOVES USED
- MULTIPLE COMMAND LINE ARBUMENTS CAN
  BE CALLED
- tower. C CONTAINS MAIN CODE
```

- STACK . C CONTAINS STACK FUNCTIONS USED

in tower.c

STACK/ITERATIVE NOTES

- DISK ONE MOVES EVERY OTHER MOVE
- O APTER 17 MAKE LEGAL MOVE W/ SMALLETT DISM POSS (BLE
- (IF YOU JUST MOVED AN EVEN DISK)
 - IF CHOOSING BETWEEN DISK + EMPTY
 - CHOOSE DISK! -OR DISK JUST

 MOVED

 PEEK RETURNS

 O FOR EMPTY

 O FOR EMPTY

 O CAPOFIT DISM

 A STACKS/PEGS

 (IF YOU JUST MOVED AN ODD PISK)
 - CHOOSE EMPTY -OR PEG THAT

MASNIT TVST MOVED

FIRST MOVE:

0

- ODD # DISKS FIRST MOVE = DESTINATION
 EVEN A DISKS FIRST MOVE = OTHER /AVX DISK

DO FIRST MOVE (EVEN OR ODD DISMS):

WHILE (PEG A != EMPTY : PEG C != EMPTY) }

LE 2MATCEST DISK 4022 IRCE

PRINT MOVE

20/2b) MOVE DISK (C KEEP TRACK IF LAST DISK WAS EVER OR ODD)
PRINT MOVE

(3) CHECK IF GAME OVER - A/C EMPTY

Stack " move - smallest - disk (maybe pass per caso moved to) { - LOOK ON TWO PEGS THAT WERE NOT JUST MOVED 70 - USE STACK - PEEK + COMPARE VALVES - LOCATE SMALLER TOP PISK - IP ONE PEG IS O USE OTHER ONE - MOVE SMALLER TOP DISK TO OTHER ELLIFIBLE PEG POP FROM ORIGINAL PEG -> STORE IN VARIABLE - PUSH TO NEW PEG - RETURN REPERENCE/ COPT OF LAST PEG MOVED TO 3 PETURN Stack move - diski (m+ last - disk#, stack is) { LOCATE DISK 1 - STACK PEER + CHECK+ STORE IN VAR SWITCH (1951 - disk # 1/2): case o: - MOVE PISK I TO PEG JUST ADDED 70 - POP PROM PEG DISM , IS @ - PUSH DISK 1 TO PEG LAST MOVED TO case (: - MOVE DISK 1 TO PEG NOT JUST ADDED TO -AND OBY. MOT YOUR OWN PED -POP FROM PEG DISK 1 15 @ - PUSH DISKI TO PEG LAST MOVED TO - PETURN REFERENCE TO/COPY OF LAST PEG moved 70

RECURSIVE IMPLEMENTATION

BROAD REC	URSIVE STRAT	EGY: CREA	HING SUBTASKS
I) BASE	CASE (ASSUME	FUNCTION NAW	ne is h)
_ _ P	n(1) = 1 disk	- MOVE DISM	
	POINT TO DESTI	14710N V	
2) ASSUME	h(n-1) work	2	
	n(n) works usin		
PSUEDO	CODE:		
la C Name		> S	
ne disks	start, end, oth	ier j Z	
	case: if (disk!		
3	move disk from sta		
			po7 vSED
h (disks-1, start,		
	peq: resulti		the intermediate
	, , , , ,		
	# -> _	<u> </u>	
			D NOT USED
	- disk (disk,		
	moves largest Jestination peg		STOIT PEG 10

h (disks-1, other, end, spart) Protused - finally moves disks-1 disks from intermediate peg to the destination peg on top of the largest disk. - THESE THREE STEPS IN CONTUNCTION WITH THE BASE CASE BREAK UP THE PROBLEM INTO SUB-PROBLEMS WITH N-1 DISKS, THEN N-2, AND SO OF UNTIL THERE IS ONLY ONE DISK LEFT TO MOVE.