Лабораторная работа №1 по курсу ПГП: 8 факультет, 4 курс, 8 семестр 2015/16 уч. года Работа с матрицам. Метод Гаусса.

Цель работы. Ознакомление и установка программного обеспечения для работы с программноаппаратной архитектурой параллельных вычислений(CUDA). Реализация метода Гаусса с выбором главного элемента по столбцу.

В качестве вещественного типа данных необходимо использовать тип данных double. В вариантах(1,5,6,7), где необходимо сравнение по модулю с нулем, в качестве нулевого значения использовать 10^{-7} .

Вариант 1. Вычисление детерминанта матрицы.

Входные данные. На первой строке задано число n -- размер матрицы. В следующих n строках, записано по n вещественных чисел -- элементы матрицы. $n < 10^4$.

Выходные данные. Необходимо вывести одно число -- детерминант матрицы.

Пример:

Входной файл	Выходной файл
3 1 2 3 4 5 6 7 8 7	6.00000000e+00

Вариант 2. Вычисление обратной матрицы.

Входные данные. На первой строке задано число n -- размер матрицы. В следующих n строках, записано по n вещественных чисел -- элементы матрицы. $n < 10^4$.

Выходные данные. Необходимо вывести на n строках, по n чисел -- элементы обратной матрицы.

Пример:

Входной файл	Выходной файл
2 1 2	-2.000000000e+00 1.000000000e+00 1.500000000e+00 -5.000000000e-01
3 4	

Вариант 3. Решение квадратной СЛАУ.

Необходимо решить систему уравнений Ax = b, где A -- квадратная матрица n x n, b --

вектор-столбец свободных коэффициентов длинной n, x -- вектор неизвестных.

Входные данные. На первой строке задано число n -- размер матрицы. В следующих n строках, записано по n вещественных чисел -- элементы матрицы. Далее записываются n элементов вектора свободных коэффициентов. $n \le 10^4$.

Выходные данные. Необходимо вывести n значений, являющиеся элементами вектора неизвестных x.

Пример:

Входной файл	Выходной файл
2	-4.000000000e+00 4.500000000e+00
1 2 3 4	
5 6	

Вариант 4. LU-разложение матрицы.

Необходимо вычислить LU-разложение квадратной матрицы: A = LU, где A -- матрица n x n, L -- нижняя треугольная матрица, с единичными элементами на диагонали, U -- верхняя треугольная матрица. Так же нужно получить вектор перестановок строк p, где p[i] содержит номер строки которой будет i-ая.

Входные данные. На первой строке задано число n -- размер матрицы. В следующих n строках, записано по n вещественных чисел -- элементы матрицы. $n < 8*10^3$.

Выходные данные. Необходимо вывести на n строках, по n чисел -- элементы матриц L и U объединенные в одну матрицу. Далее записываются n элементов вектора перестановок p.

Пример:

Входной файл	Выходной файл
2 1 2 3 4	3.000000000e+00 4.000000000e+00 3.3333333333e-01 6.666666667e-01 1 0
3 1 2 3 4 5 6 7 8 7	7.0000000000e+00 8.000000000e+00 7.0000000000e+00 1.4285714286e-01 8.5714285714e-01 2.0000000000e+00 5.7142857143e-01 5.0000000000e-01 1.0000000000e+00 1 2 0

Вариант 5. Решение произвольной СЛАУ.

Необходимо найти *любое* решение системы уравнений Ax = b, где A -- матрица n x m, b -- вектор-столбец свободных коэффициентов длинной n, x -- вектор неизвестных длиной m.

Входные данные. На первой строке заданы числа n и m -- размеры матрицы.

В следующих n строках, записано по m вещественных чисел -- элементы матрицы. Далее записываются n элементов вектора свободных коэффициентов. $n * m \le 10^8$.

Выходные данные. Необходимо вывести m значений, являющиеся элементами вектора неизвестных x.

Пример:

Входной файл	Выходной файл
2 3 1 2 3 4 5 6 5 14	1.000000000e+00 2.000000000e+00 0.000000000e+00
3 2 1 2 3 4 5 6 7 8 9	-6.000000000e+00 6.500000000e+00

Вариант 6. Нахождение ранга матрицы.

Входные данные. На первой строке заданы числа n и m -- размеры матрицы. В следующих n строках, записано по m вещественных чисел -- элементы матрицы. n * m $\leq 10^8$.

Выходные данные. Необходимо вывести одно число -- ранг матрицы.

Пример:

Входной файл	Выходной файл
2 3 1 2 3 2 4 6	1
3 3 1 2 3 4 5 6 7 8 9	2

Вариант 7. Решение матричного уравнения.

Необходимо найти *пюбое* решение матричного уравнения AX = B, где A - M матрица A = M

Входные данные. На первой строке заданы числа n, m и k -- размеры матриц. В следующих n строках, записано по m вещественных чисел -- элементы матрицы A. Далее записываются m строк, по k чисел -- элементы матрицы B.

 $n * m + m * k + n * k \le 1.2 * 10^8$.

Выходные данные. Необходимо вывести на m строках, по k чисел -- элементы неизвестной матрицы X.

Пример:

Входной файл	Выходной файл
1 2 1 1 2 5	5.000000000e+00 0.00000000e+00
2 2 2 1 2 3 4 1 0 0 1	-2.000000000e+00 1.000000000e+00 1.500000000e+00 -5.000000000e-01
2 3 2 1 2 3 4 8 6 3 4 7 1	5.000000000e-01 -3.500000000e+00 0.000000000e+00 0.000000000e+00 8.3333333333e-01 2.500000000e+00