School of Mathematics and Physics, UQ

MATH2001, Assignment 1, Summer Semester, 2024-2025

Due at 2:00pm 19 December. Each question marked out of 10 then homogeneously rescaled up to a total marks of 13. **Total marks:** $\frac{13}{60}(Q1 + Q2 + Q3 + Q4 + Q5 + Q6)$. Submit your assignment online via the Assignment 1 submission link in Blackboard.

(1) Consider the equation

$$\frac{\sin y}{y} - 2e^{-x}\sin x + \left(\frac{\cos y + 2e^{-x}\cos x}{y}\right)y' = 0.$$

- (a) Show that it is not exact, but it becomes exact when multiplying by the integrating factor $\mu = ye^x$.
- (b) Solve the exact equation subject to the initial condition $y(\pi) = \frac{\pi}{2}$. Present your solution as a relation defining y implicitly as a function of x. (Do not solve the equation; only obtain the correct implicit equation that solves the given IVP).

Show all working.

(2) Consider the non-homogeneous ODE

$$x^2y'' - 3xy' + 4y = \ln x, \quad x > 0.$$

- (a) Show that $y_1 = x^2$ and $y_2 = x^2 \ln x$ are solutions to the corresponding homogeneous ODE $x^2y'' 3xy' + 4y = 0$.
- (b) Find the general solution of the non-homogeneous ODE.

Show all working.

(3) Consider the inner product space $P_2(\mathbb{R})$ with inner product

$$\langle p_0 + p_1 x + p_2 x^2, q_0 + q_1 x + q_2 x^2 \rangle = p_0 q_0 + p_1 q_1 + p_2 q_2, \quad p_0, p_1, p_2, q_0, q_1, q_2 \in \mathbb{R}.$$

Let $U = \{1 + 2x + x^2\}.$

- (a) Find U^{\perp} .
- (b) Determine an orthogonal basis for U^{\perp} .

Show all working.

(4) Consider the vector space \mathbb{R}^4 endowed with the inner product

$$\langle (u_1, u_2, u_3, u_4), (v_1, v_2, v_3, v_4) \rangle = u_1 v_1 + 3u_2 v_2 + u_3 v_3 + 2u_4 v_4.$$

Let $U = \text{span}\{\mathbf{u}_1 = (-2, 1, 0, 1), \mathbf{u}_2 = (0, 1, 2, 3)\}$ be a subspace of \mathbb{R}^4 .

- (a) Use Gram-Schmidt procedure to construct an orthonormal basis for U.
- (b) Find the orthogonal projection of $\mathbf{v} = (-1, 2, 5, 1)$ in U and U^{\perp} .

Show all working.

(5) Consider the vector space of 2×2 Matrices over the real numbers $M_{2,2}(\mathbb{R})$. The sets of matrices S and A such that $S^T = S$ and $A^T = -A$ define vector subspaces in $M_{2,2}(\mathbb{R})$. Call these subspaces respectively as $M_{2,2}^S(\mathbb{R}) = \{S \in M_{2,2}(\mathbb{R}) | S^T = S\}$ and $M_{2,2}^A(\mathbb{R}) = \{A \in M_{2,2}(\mathbb{R}) | A^T = -A\}$. Take the inner product over $M_{2,2}(\mathbb{R})$ defined by:

$$\langle \mathbf{v}, \mathbf{u} \rangle = \text{Tr}(\mathbf{v}^{\mathrm{T}}\mathbf{u})$$
,

 $\forall \mathbf{v}, \mathbf{u} \in M_{2,2}(\mathbb{R})$. Are the subspaces $M_{2,2}^S(\mathbb{R})$ and $M_{2,2}^A(\mathbb{R})$ orthogonal according to the inner product defined above? Explain your answer.

(6) Let $P_2(\mathbb{R})$ have the inner product,

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_0^1 p(x) q(x) dx, \quad \forall \mathbf{p}, \mathbf{q} \in P_2(\mathbb{R}).$$

Find the best approximation of $f(x) = x^2 + x^3$ by polynomials in $P_2(\mathbb{R})$. Show all working.

Hint: to simplify calculations, use the method of Solution 2 of section 12.1 of the workbook.