

FCC TEST REPORT

For

ZHONGSHAN BOYING ELECTRONICS CO., Ltd.

Wireless doorbell

Model No.: A101, A101-2, A102, A103, A106, A107, A108, A109, A201, A202, A203, A206, A207, A208, A209, A301, A302, A303, A306, A307, A308, A309, A501, A502, A503, A506, A507, A507-2, A508, A509, A601, A602, A603, A606, A607, A608, A609, A701, A702, A703, A706, A707, A708, A709, A801, A802, A803, A806, A807, A808, A809, A901, A902, A903, A906, A907, A908, A909, A909-2, 9809, 9809-2, 9803

Prepared For : ZHONGSHAN BOYING ELECTRONICS CO., Ltd.

Address : 5/F, Building F, No. 9, Mincheng Road, Xiaolan Town, Zhongshan,

Guangdong, China 528415

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180623003-01

Date of Test : Jun. 23~Jul. 05, 2018

Date of Report : Jul. 05, 2018

Contents

1. General Information		Per		Whofe.	Ani			10K
1.1. Client Information	hotek	Anbo			X.	upote.	Ant	
1.1. Client Information	otel	د کم	pore	P.r.		hote		100.
1.3. Auxiliary Equipment Used Durin	g Test.		Anhotek	Ant			*ek	Pupote.
1.4. Description of Test Modes	Vup.			le _K	rupore	An		Mpotek
1.5. List of channels	4	upore	bn.	Yay	⁹ odny	P	Upo.	
1.6. Description Of Test Setup 1.7. Test Equipment List 1.8. Measurement Uncertainty	e ^k	Moter	A.	100		otek	Anbore	Am
1.7. Test Equipment List		امى,ا	ek	Anbore	bir.		odna	er Ar
1.8. Measurement Uncertainty	00,		-Jak	bote	P	Woo		ote ^K
1.9. Description of Test Facility	Appote,	An	······ ·······//		otek	Anbor	P2,	
1.9. Description of Test Facility 2. Summary of Test Results		tek.	Anbor		yek	20,00	Ker.	Anb
3. Conducted Emission Test 3.1. Test Standard and Limit 3.2. Test Setup		Morek	<u>kopo</u>	1	'Un		patek	Aupor
3.1. Test Standard and Limit	Þ.			ootek	Aupor			today
3.2. Test Setup	3/4	Anbo.		Hotek	day	,	Amb	<u>2</u>
3.3. Test Procedure	101014	- palbol		Vun		100fek	Anbo,	
3.4. Test Data			otek	Anbo			اميرا	oote.
4. Radiation Spurious Emission and Band 4.1. Test Standard and Limit	Edge		Hotek	dose	2,600	Anv		botek 1
4.1. Test Standard and Limit	4.0po		VII.	Ν	NaOtek	Anbo		
4.2. Test Setup		boten	Anbo		uotek	p.;	pote.	An .
4.3. Test Procedure	· · · · · · · · ·	otek	أغم	0010	An		Motek	Anbo
4.4. Test Data		V11.	<i>Y</i>	Moter	Aribe			¹ / ₂
5. 20DB Occupy Bandwidth Test	oten	Anbe		- Jotel	p3	Posc	An	
4.2. Test Setup	.botek	177.4	,010	P.L.	,eX	Kipotek	Ant	
5.2. Test Setup	······································	eγ	Kupofer	Anbi			ek.	Mpore 1
5.3. Test Procedure	Anbo	V		k	uporc	b _{tr} .	Ne)Y	Kupoten.
5.4. Test Data	na.	00,00	P211.	Yay	, nboten	An	·····	
6. Dwell Time Test	<i>K</i> -	popoter.	Ani		'می,ا	ek.	Anboro	2
6.1. Test Standard and Limit		νουν		Yupor	<i>b</i> 10.	-otek	, nbote	Au Pul
6.2. Test Setup		b.z	^{Yat} o	upoter.	A.T.			otek
6.3. Test Procedure	upote.	Ans	/97	0	re _K	Anbor	br.,	
6.4. Test Data	,,,,o ^t	3.K	upor	bro	49,000	nbot	, I	^{npo} 2
7. Antenna Requirement	b.,	otek	Mobole	P.	in.		otek	Anbore
7.1. Test Standard and Requirement	An			otek	Anbor	Y. V	4840	pote
7.2. Antenna Connected Construction		Aupo.	bo.	Wolek	pobot	S	Ann-	
APPENDIX I TEST SETUP PHOTOGR		Aupole		'Un		ootek	Anbore	
APPENDIX II EXTERNAL PHOTOGR		 کوئی	otek.	Anbor		worek-	das	o ^{ter}
APPENDIX III INTERNAL PHOTOGE	RAPH							"Ofek

TEST REPORT

Applicant : ZHONGSHAN BOYING ELECTRONICS CO., Ltd.

Manufacturer : ZHONGSHAN BOYING ELECTRONICS CO., Ltd.

Product Name : Wireless doorbell

Model No. : A101, A101-2, A102, A103, A106, A107, A108, A109, A201, A202, A203, A206,

A207, A208, A209, A301, A302, A303, A306, A307, A308, A309, A501, A502, A503, A506, A507, A507-2, A508, A509, A601, A602, A603, A606, A607, A608, A609, A701, A702, A703, A706, A707, A708, A709, A801, A802, A803, A806, A807, A808, A809, A901, A902, A903, A906, A907, A908, A909, A909-2, 9809,

9809-2, 9803

Trade Mark : N.A.

Rating(s) : Input: DC 12V, 30mA "23A"

Test Standard(s) : FCC Part15 Subpart C 2017, Section 15.231

Test Method(s) : ANSI C63.10: 2013

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Prepared by

(Engineer / Oliay Yang)

Reviewer

(Supervisor / Calvin Liu)

Approved & Authorized Signer

Shenzhen Anbotek Compliance Laboratory Limited Tel:(86)755-26066440 Fax:(86)755-26014772 www.anbotek.com

(Manager / Tom Chen)

1. General Information

1.1. Client Information

Applicant	:	ZHONGSHAN BOYING ELECTRONICS CO., Ltd.
Address	:	5/F, Building F, No. 9, Mincheng Road, Xiaolan Town, Zhongshan, Guangdong, China 528415
Manufacturer	:	ZHONGSHAN BOYING ELECTRONICS CO., Ltd.
Address	:	5/F, Building F, No. 9, Mincheng Road, Xiaolan Town, Zhongshan, Guangdong, China 528415

1.2. Description of Device (EUT)

Product Name	: Wirel	ess doorbell				
Model No.	A207 A503 A609 A807 9809-	, A101-2, A102, A103 , A208, A209, A301, A , A506, A507, A507-2 , A701, A702, A703, A , A808, A809, A901, A 2, 9803 : All samples are the s	A302, A303, A306, , A508, A509, A60 A706, A707, A708, A902, A903, A906,	A307, A308 1, A602, A60 A709, A801 A907, A908	, A309, A50 03, A606, A6 , A802, A80 , A909, A90	1, A502, 607, A608, 3, A806, 9-2, 9809,
	"A10	l" for test only.)	tok Anbotek	Anbote	V. Vo	tek Pupo
Test Sample No.	: S1, S2	2 Anboten Anb	botek Anbotel	Anbor	tek Vur	botek A
Trade Mark	: N.A.	ik Anbore A	Anbotek Anb	otek Ant	potek k	Anbotek
Test Power Supply	: DC 12	2V Anbotek	Anbotek A	nbosotek	Anbotek	Anboten
	Opera	ntion Frequency:	433.92MHz			ek Anbo
	Numb	per of Channel:	1 Channels	Anbote	KEK Anbo	botek Ar
Product Description	: Modu	lation Type:	ASK	tek Yup	abotek A.	Anbotek v
_1	Anten	nna Type:	PCB Antenn	a botek	Anbotek	Anboten
	Δnten	ına Gain(Peak):	1.5 dBi	All Otek	anbotek	Anbo

Remark: 1)For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

	N/A	Anbo	la.	notek	Anbole	And	tek	nbotek	Aupor
- 1									

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description				
Mode 1	Keeping TX Mode				

			For Radia	ted Emission				
Final Test Mode					ription			
tek	Mode 1	ek .	nbotek	Keeping	TX Mode	ant.	oter	Aupo

Note: During the test, the EUT was keeping continuous transmission.

1.5. List of channels

	, POL VO.	17. 17. 17. 17.	AV NO		
Channel		Freq.	Note		
	Chamiei	(MHz)	(Modulation Type)		
	01	433.92	ASK		

1.6. Description Of Test Setup

RE

1.7. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
itek 1. nbotek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 17, 2017	1 Year
2.00	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 17, 2017	1 Year
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 17, 2017	1 Year
5.	Spectrum Analysis	Agilent	N9038A	MY53227295	Nov. 17, 2017	1 Year
6.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 17, 2017	1 Year
7.00	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Nov. 17, 2017	1 Year
8.20	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2017	1 Year
9.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 20, 2017	1 Year
10.	Loop Antenna	Schwarzbeck	HFH2-Z2	100047	Nov. 17, 2017	1 Year
11.00	Horn Antenna	Schewarzbeck	BBHA9170	9170-375	Nov. 17, 2017	1 Year
12.	Pre-amplifier	SONOMA	310N	186860	Nov. 17, 2017	1 Year
13.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
14.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 18, 2017	1 Year
15.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 17, 2017	1 Year
16.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 17, 2017	1 Year
17.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 18, 2017	1 Year
18.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 18, 2017	1 Year
19.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 18, 2017	1 Year
20.	DC Power Supply	LW	TPR-6410D	349315	Nov. 01, 2017	1 Year
21.	Constant Temperature Humidity Chamber	Sertep	ZJ-HWHS80B	ZJ-17042804	Nov. 01, 2017	1 Year

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizontal)	Anbotes And botek Anb
d		Ur = 3.8 dB (Vertical)	ek Anbore An-
		Anbote And hotek An	botek Anbor An abotek
Conduction Uncertainty	:	Uc = 3.4dB	Anbotek Anbotek

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

All Emissions tests were performed at Shenzhen Anbotek Compliance Laboratory Limited. at 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Standard Section	Test Item	Result
15.203	Antenna Requirement	PASS
15.207	Conducted Emission	N/A
15.205/15.209/15.231(b)	Spurious Emission	PASS
15.231(c)	20dB Occupied Bandwidth	PASS
15.231(a)	Dwell time	PASS
Remark: "N/A" is an abbrev	viation for Not Applicable.	otek Anbotek

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.20	07 Anbore America	Anbotek Anbo tek					
Test Limit	Γ	Maximum RF Line Voltage (dBuV)						
	Frequency	Quasi-peak Level	Average Level					
	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *					
	500kHz~5MHz	56 box	46					
	5MHz~30MHz	60	botek 50 bote Ar					

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

There is DC 12V Battery inside, So there is no need to test

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.20	09, 15.205 and 15.231(b) hotek	Anbotek	anbo stek
	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	nbotek - Anbo	to Yun	300
	0.490MHz-1.705MHz	24000/F(kHz)	Anbotek A	Ipor VII	notel 30
	1.705MHz-30MHz	30	Anbotek	Anbore P	30
Гest Limit	30MHz~88MHz	100	40.0	Quasi-peak	3
	88MHz~216MHz	150	43.5	Quasi-peak	3,000
	216MHz~960MHz	200	46.0	Quasi-peak	3 mote
	960MHz~1000MHz	500	54.0	Quasi-peak	3
	Above 1000MII-	500	54.0	Average	3
	Above 1000MHz	Ipotek - Aupot	74.0	Peak	3

Remark:

- (1)The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 260-470 MHz, $\mu V/m$ at 3 meters = 41.6667(F) - 7083.3333.

The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level

Emission Level (dBuV/m)=20log Emission Level(uV/m)

The field strength of emission limits have been calculated in below table:

Fundamental Frequency	Field Strength of Fundamental				
(MHz)	(dBuV/m)@3m				
433.92	80.82 (AVG)				
433.92 dek	100.82 (Peak)				

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW = 300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis is the worst case.

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Test Results (Fundamental 433.92MHz)

Frequency	Antenna	Reading	Cable Loss	Ant Factor	Amplifier	Duty cycle Factor	Results	Limits	Det.
(MHz)	Pol.	(dBuV/m)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	Mode
433.92	Anbold	94.52	1.52	12.64	31.45	h.	77.23	100.82	PK
433.92	Hoter	94.52	1.52	12.64	31.45	-9.02	68.21	80.82	AV
433.92	V	97.23	1.52	12.64	31.45	- Ant	79.94	100.82	PK
433.92	V	97.23	1.52	12.64	31.45	-9.02	70.92	80.82	AV

Remark:

- 1. Result = Reading + Cable Loss + Ant Factor Amplifier + Duty cycle Factor
- 2. Pulse Desensitization Correction Factor

Pulse Width (PW)=0.328ms

2/PW=2/0.328=0.164 kHz

RBW(1000kHz)> 2/PW (0.164 kHz)

Therefore PDCF is not needed.

3. Duty Cycle Factor

Calculate Formula:

AV=PEAK +Duty Cycle Factor

Duty Cycle Factor=20log(Duty Cycle)

Duty Cycle= on time/ period

Test Data:

T on time=0.328ms*14+1.04ms*11=16.032ms

T period=45.30ms

Duty Cycle=35.39%

Duty Cycle Factor =20log(Duty Cycle)= -9.02

T on time slot-1

T on time slot-2

T period

Test Results (Harmonics Emissions)

Frequency	Antenna	Reading	Cable Loss	Ant Factor	Amplifier	Duty cycle Factor	Results	Limits	Det
(MHz)	Pol.	(dBuV/m)	(dB)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	Mode
867.84	Anbole	74.36	1.92	12.71	31.72	Andatel	57.27	80.82	PK
867.84	Hotek	74.36	1.92	12.71	31.72	-9.02	48.25	60.82	AV
867.84	V	76.23	1.92	12.71	31.72	sk - Aupe	59.14	80.82	PK
867.84	V	76.23	1.92	12.71	31.72	-9.02	50.12	60.82	AV
1301.76	H Mul	63.75	2.38	21.43	32.45	Not.	55.11	74	PK
1301.76	o ^{tek} H	63.75	2.38	21.43	32.45	-9.02	46.09	54	AV
1301.76	V	65.01	2.38	18.56	32.45	Anboro	53.50	74 000	PK
1301.76	Amb V tek	65.01	2.38	18.56	32.45	-9.02	44.48	54	AV

Remark:

- 1. Result = Reading + Cable Loss +Ant Factor –Amplifier + Duty cycle Factor
- 2. Pulse Desensitization Correction Factor

Pulse Width (PW)= 0.328ms

2/PW=2/0.328=0.164 kHz

RBW(1000kHz) > 2/PW (0.16 kHz)

Therefore PDCF is not needed.

3. Duty Cycle Factor=-9.02

Test Results (Radiated Emission)

Frequency	Antenna	Reading	Cable Loss	Ant Factor	Amplifier	Results	Limits	Margin	Det.
(MHz)	Pol.	(dBuV/m)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Mode
54.01	nbotH	56.09	1.03	11.15	40.74	27.53	40	-12.47	QP
127.06	Hick	59.03	1.24	12.24	40.48	32.03	43.5	-11.47	QP
732.90	H	61.29	1.67	13.75	41.27	35.44	46	-10.56	QP
54.01	V	55.10	1.03	11.15	40.74	26.54	100tes 40 AT	-13.46	QP
127.06	V And	60.01	1.24	12.24	40.48	33.01	43.5	-10.49	QP
732.90	otek V p	62.35	1.67	13.75	41.27	36.50	46	-9.50	QP

Remark:

1. Results = Reading + Cable Loss +Ant Factor –Amplifier

5. 20DB Occupy Bandwidth Test

5.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.231 (c)
Test Limit	According to FCC Part 15.231(c), The bandwidth of the emission shall be no wider the 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. For devices operating above 900MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20dB down from the modulated carrier. So the emission bandwidth limits have been calculated in below table:
	Fundamental Frequency Limit of 20dB Bandwidth
	433.92 MHz 433920x0.0025=1084.80 kHz
	ek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek

5.2. Test Setup

5.3. Test Procedure

- 1. Place the EUT on the table and set it in the continuously transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as:

 $RBW = 30kHz, VBW \ge 3*RBW = 100kHz,$

Span=3MHz

Detector= Peak

Trace mode= Max hold.

Sweep- auto couple.

- 4. Mark the peak frequency and –20dB (upper and lower) frequency.
- 5. Repeat until all the rest channels are investigated.

5.4. Test Data

Shenzhen Anbotek Compliance Laboratory Limited Page 19 of 31 Report No.: SZAWW180623003-01

Test Item : 20dB Bandwidth Test Mode : Continuously transmitting

Test Voltage : DC 12V Temperature : 24° C Humidity : 55%RH

Freq. (MHz)	Modulation Type	lation Type Bandwidth (kHz)		Results
433.92	ASK	159.0	<1084.80	PASS

433.92MHz

6. Dwell Time Test

6.1. Test Standard and Limit

Test Standard	FCC Part 15.231(a)(1)
Test Limit	According to FCC Part 15.231(a)(1), A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of
	being released

6.2. Test Setup

6.3. Test Procedure

- 1. Place the EUT on the table and set it in continuously transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2. Set the spectrum analyzer as RBW=1000kHz, VBW=1000kHz, Span= 0Hz, Sweep Time= 10 Seconds.
- 3. Record the Delta mark time.

6.4. Test Data

Test Item	:	Dwell Time		Test Mode	:	Continuously transmitting
Test Voltage	:	DC 12V		Temperature	:	24°C
Test Result	:	PASS		Humidity	:	55%RH

Test Mode	Transmitting time(s)	Limit(s)	Result
ASK mode	0.140	≤5	PASS

Please refer the following plot.

Dwell Time

7. Antenna Requirement

7.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15,203
Requirement	 1) 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. Antenna requirement must meet at least one of the following: 1) Antenna must be permanently attached to device. 2) The antenna must use a unique type of connector to attach to the device. 3) Device must be professionally installed. The installer shall be responsible for ensuring that the correct antenna is employed by the device.

7.2. Antenna Connected Construction

The RF antenna is a PCB Antenna which permanently attached, and the best case gain of the antenna is 1.5 dbi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

-- End of Report ---