

# **Description**

The VSM20N06 uses advanced trench technology and design to provide excellent  $R_{DS(ON)}$  with low gate charge. It can be used in a wide variety of applications.

#### **General Features**

#### N channel

V<sub>DS</sub> =60V,I<sub>D</sub> =20A

 $R_{DS(ON)}$  <35m $\Omega$  @  $V_{GS}$ =10V

 $R_{DS(ON)}$  <40m $\Omega$  @  $V_{GS}$ =4.5V

### p channel

● V<sub>DS</sub> =-60V,I<sub>D</sub> =-12A

 $R_{DS(ON)}$  <100m $\Omega$  @  $V_{GS}$ =-10V

 $R_{DS(ON)}$  <125m $\Omega$  @  $V_{GS}$ =-4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E<sub>AS</sub>
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

# **Application**

- H-bridge
- Inverters



## **Package Marking and Ordering Information**

| Device Marking | Device   | Device Package | Reel Size | Tape width | Quantity |
|----------------|----------|----------------|-----------|------------|----------|
| VSM20N06-T2-4  | VSM20N06 | TO-252-4L      | -         | -          | -        |

### Absolute Maximum Ratings (T<sub>c</sub>=25℃unless otherwise noted)

|                                                  | ,                    |                     |           |            |      |  |  |
|--------------------------------------------------|----------------------|---------------------|-----------|------------|------|--|--|
| Parameter                                        |                      | Symbol              | N-Channel | P-Channel  | Unit |  |  |
| Drain-Source Voltage                             |                      | V <sub>DS</sub>     | 60        | -60        | V    |  |  |
| Gate-Source Voltage                              |                      | V <sub>GS</sub>     | ±20       | ±20        | V    |  |  |
| 0 11 0 1                                         | T <sub>C</sub> =25℃  |                     | 20        | -12        | ^    |  |  |
| Continuous Drain Current                         | T <sub>C</sub> =100℃ | I <sub>D</sub>      | 14        | -8.5       | Α    |  |  |
| Pulsed Drain Current (Note 1)                    |                      | I <sub>DM</sub>     | 60        | -30        | Α    |  |  |
| Maximum Power Dissipation                        | T <sub>C</sub> =25℃  | P <sub>D</sub>      | 50        |            | W    |  |  |
| Operating Junction and Storage Temperature Range |                      | $T_{J}$ , $T_{STG}$ | -55 To    | $^{\circ}$ |      |  |  |

#### **Thermal Characteristic**

| Thermal Resistance,Junction-to-Case <sup>(Note 2)</sup> | Rejc | 3 | °C/W |
|---------------------------------------------------------|------|---|------|

Shenzhen VSEEI Semiconductor Co., Ltd

# N-Channel Electrical Characteristics (T<sub>C</sub>=25 °C unless otherwise noted)

| Parameter                          | Symbol              | Condition                                                            | Min | Тур  | Max  | Unit |  |
|------------------------------------|---------------------|----------------------------------------------------------------------|-----|------|------|------|--|
| Off Characteristics                |                     |                                                                      | •   | •    |      |      |  |
| Drain-Source Breakdown Voltage     | BV <sub>DSS</sub>   | V <sub>GS</sub> =0V I <sub>D</sub> =250μA                            |     | -    | -    | V    |  |
| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>    | V <sub>DS</sub> =60V,V <sub>GS</sub> =0V                             | -   | -    | 1    | μA   |  |
| Gate-Body Leakage Current          | I <sub>GSS</sub>    | V <sub>GS</sub> =±20V,V <sub>DS</sub> =0V                            | -   | -    | ±100 | nA   |  |
| On Characteristics (Note 3)        |                     |                                                                      | •   | •    |      |      |  |
| Gate Threshold Voltage             | V <sub>GS(th)</sub> | $V_{DS}=V_{GS}$ , $I_{D}=250\mu A$                                   | 1.2 | 1.6  | 2.5  | V    |  |
| Drain-Source On-State Resistance   | D                   | V <sub>GS</sub> =10V, I <sub>D</sub> =20A                            | -   | 24   | 35   | mΩ   |  |
|                                    | R <sub>DS(ON)</sub> | V <sub>GS</sub> =4.5V, I <sub>D</sub> =20A                           |     | 30   | 40   |      |  |
| Forward Transconductance           | <b>g</b> FS         | V <sub>DS</sub> =5V,I <sub>D</sub> =5A                               | 11  | -    | -    | S    |  |
| Dynamic Characteristics (Note4)    |                     |                                                                      |     |      |      |      |  |
| Input Capacitance                  | C <sub>lss</sub>    | V <sub>DS</sub> =30V,V <sub>GS</sub> =0V,                            | -   | 900  | -    | PF   |  |
| Output Capacitance                 | Coss                | F=1.0MHz                                                             | -   | 60   | -    | PF   |  |
| Reverse Transfer Capacitance       | C <sub>rss</sub>    | F = 1.0IVII 12                                                       | -   | 25   | -    | PF   |  |
| Switching Characteristics (Note 4) | ·                   |                                                                      |     |      |      |      |  |
| Turn-on Delay Time                 | t <sub>d(on)</sub>  |                                                                      | -   | 5    | -    | nS   |  |
| Turn-on Rise Time                  | t <sub>r</sub>      | $V_{DD}$ =30V, $I_{D}$ =2A, $R_{L}$ =6.7 $\Omega$                    | -   | 2.6  | -    | nS   |  |
| Turn-Off Delay Time                | $t_{d(off)}$        | $V_{GS}$ =10 $V$ , $R_{G}$ =3 $\Omega$                               | -   | 16.1 | -    | nS   |  |
| Turn-Off Fall Time                 | t <sub>f</sub>      |                                                                      | -   | 2.3  | -    | nS   |  |
| Total Gate Charge                  | Qg                  | \/ -20\/   -4.54                                                     | -   | 25   | -    | nC   |  |
| Gate-Source Charge                 | Q <sub>gs</sub>     | $V_{DS}=30V,I_{D}=4.5A,$ $V_{GS}=10V$                                | -   | 4.5  | -    | nC   |  |
| Gate-Drain Charge                  | $Q_{gd}$            | V <sub>GS</sub> -10V                                                 | -   | 6.5  | -    | nC   |  |
| Drain-Source Diode Characteristics | ·                   |                                                                      |     |      |      |      |  |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>     | V <sub>GS</sub> =0V,I <sub>S</sub> =20A                              | -   |      | 1.2  | V    |  |
| Diode Forward Current (Note 2)     | Is                  |                                                                      | -   | -    | 20   | Α    |  |
| Reverse Recovery Time              | t <sub>rr</sub>     | TJ = 25°C, IF =20A                                                   | -   | 29   | -    | nS   |  |
| Reverse Recovery Charge            | Qrr                 | di/dt = 100A/µs <sup>(Note3)</sup>                                   | -   | 49   | -    | nC   |  |
| Forward Turn-On Time               | t <sub>on</sub>     | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) |     |      |      |      |  |
|                                    |                     |                                                                      |     |      |      |      |  |

#### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition:Tj=25 $^{\circ}$ C,VDD=30V,VG=10V,L=0.5mH,Rg=25 $\Omega$



# N-Channel Typical Electrical and Thermal Characteristics (Curves)



**Figure 1 Output Characteristics** 



**Figure 2 Transfer Characteristics** 



Figure 3 Rdson- Drain Current



**Figure 4 Rdson-Junction Temperature** 



Figure 5 Gate Charge



Figure 6 Source- Drain Diode Forward







**Figure 11 Normalized Maximum Transient Thermal Impedance** 



# P-Channel Electrical Characteristics (T<sub>c</sub>=25 °C unless otherwise noted)

| Parameter                          | Symbol              | Condition                                                            | Min | Тур    | Max  | Unit |  |
|------------------------------------|---------------------|----------------------------------------------------------------------|-----|--------|------|------|--|
| Off Characteristics                | •                   |                                                                      | •   |        |      |      |  |
| Drain-Source Breakdown Voltage     | BV <sub>DSS</sub>   | V <sub>GS</sub> =0V I <sub>D</sub> =-250μA                           | -60 | -      | -    | V    |  |
| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>    | V <sub>DS</sub> =-60V,V <sub>GS</sub> =0V                            | -   | -      | -1   | μA   |  |
| Gate-Body Leakage Current          | I <sub>GSS</sub>    | V <sub>GS</sub> =±20V,V <sub>DS</sub> =0V                            | -   | -      | ±100 | nA   |  |
| On Characteristics (Note 3)        |                     |                                                                      |     |        |      |      |  |
| Gate Threshold Voltage             | $V_{GS(th)}$        | $V_{DS}=V_{GS}$ , $I_{D}=-250\mu A$                                  | -1  | -1.5   | -2.2 | V    |  |
| Drain-Source On-State Resistance   | В                   | V <sub>GS</sub> =-10V, I <sub>D</sub> =-12A                          | -   | 84     | 100  | mΩ   |  |
| Dialii-Source Off-State Resistance | R <sub>DS(ON)</sub> | $V_{GS}$ =-4.5V, $I_D$ =-8A                                          | -   | 100    | 125  | mΩ   |  |
| Forward Transconductance           | <b>g</b> FS         | V <sub>DS</sub> =-5V,I <sub>D</sub> =-12A                            | -   | 10     | -    | S    |  |
| Dynamic Characteristics (Note4)    |                     |                                                                      |     |        |      |      |  |
| Input Capacitance                  | C <sub>lss</sub>    | V 20V/V 0V                                                           | -   | 1630.7 | -    | PF   |  |
| Output Capacitance                 | C <sub>oss</sub>    | $V_{DS}$ =-30V, $V_{GS}$ =0V,<br>F=1.0MHz                            | -   | 90.6   | -    | PF   |  |
| Reverse Transfer Capacitance       | C <sub>rss</sub>    | r-1.0lvinz                                                           | -   | 77.3   | -    | PF   |  |
| Switching Characteristics (Note 4) |                     |                                                                      | •   |        |      |      |  |
| Turn-on Delay Time                 | t <sub>d(on)</sub>  |                                                                      | -   | 11     | -    | nS   |  |
| Turn-on Rise Time                  | t <sub>r</sub>      | $V_{DD}$ =-30V, $R_L$ =1.5 $\Omega$ ,                                | -   | 14     | -    | nS   |  |
| Turn-Off Delay Time                | t <sub>d(off)</sub> | $V_{GS}$ =-10V, $R_{G}$ =3 $\Omega$                                  | -   | 33     | -    | nS   |  |
| Turn-Off Fall Time                 | t <sub>f</sub>      |                                                                      | -   | 13     | -    | nS   |  |
| Total Gate Charge                  | Qg                  | V 00 L 40A                                                           | -   | 37.6   |      | nC   |  |
| Gate-Source Charge                 | Q <sub>gs</sub>     | V <sub>DS</sub> =-30,I <sub>D</sub> =-12A,                           | -   | 4.3    |      | nC   |  |
| Gate-Drain Charge                  | $Q_{gd}$            | V <sub>GS</sub> =-10V                                                | -   | 7.2    |      | nC   |  |
| Drain-Source Diode Characteristics |                     |                                                                      | •   |        |      |      |  |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>     | V <sub>GS</sub> =0V,I <sub>S</sub> =-12A                             | -   |        | -1.2 | V    |  |
| Diode Forward Current (Note 2)     | Is                  |                                                                      | -   | -      | -12  | Α    |  |
| Reverse Recovery Time              | t <sub>rr</sub>     | TJ = 25°C, IF =- 12A                                                 | -   | 35     |      | nS   |  |
| Reverse Recovery Charge            | Qrr                 | $di/dt = -100A/\mu s^{(Note3)}$                                      | -   | 38     |      | nC   |  |
| Forward Turn-On Time               | t <sub>on</sub>     | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) |     |        |      |      |  |



## P-Channel Typical Electrical and Thermal Characteristics (Curves)













Figure 6 Source- Drain Diode Forward



0.1



100

Vds Drain-Source Voltage (V)
Figure 8 Safe Operation Area

10

T<sub>J</sub>-Junction Temperature(°C)

Figure 10 ID Current De-rating

100

125

150

175

75



0

25

50

Figure 11 Normalized Maximum Transient Thermal Impedance