Brief Introduction to the Beamer Class

A Primer on Making Awesome Presentations

Nicholas D. Kostin

03 April 2022

Table of Contents

1. First Section

2. Second Section

Table of Contents

1. First Section

Second Section

First Frame Title Subtitle pertaining to the first frame.

Frame contents.

Second Frame Title Subtitle pertaining to the second frame.

Some important text will be highlighted because it's important.

Block Box

The text contained inside this block serves some purpose.

Table of Contents

1. First Section

2. Second Section

Third Frame Title Subtitle pertaining to the third frame.

This frame contains a figure.

Figure 1: A funny picture.

Fourth Frame Title Subtitle pertaining to the fourth frame.

The Dirac delta can be loosely thought of a function on the real line which is zero everywhere except at the origin, where it is infinite:

$$\delta(x) = \begin{cases} +\infty, & x = 0 \\ 0, & x \neq 0, \end{cases}$$
 (2.1)

and which is also constrained to satisfy the identity

$$\int_{\mathbb{R}} \delta(x) \ dx = 1. \tag{2.2}$$

Figure 2: A cute picture.

Fifth Frame Title Subtitle pertaining to the fifth frame.

Here is some text in the first column. A famous equation is written below.

$$\frac{1}{c^2}\frac{\partial^2}{\partial t^2}\psi - \nabla^2\psi + \frac{m^2c^2}{\hbar^2}\psi = 0.$$

This text will be in the second column.

- First list item
- Second list item
- Third list item

Sixth Frame Title Subtitle pertaining to the sixth frame.

Consider some $A \in \mathbb{R}^{p \times q}$ and $B \in \mathbb{R}^{q \times p}$. We can represent these matrices as

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1q} \\ a_{21} & a_{22} & \cdots & a_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pq} \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & a_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{q1} & b_{q2} & \cdots & b_{qp} \end{pmatrix}$$

respectively. Then the product AB can be written

$$AB = \begin{pmatrix} a_{11}b_{11} + \cdots + a_{1q}b_{q1} & a_{11}b_{12} + \cdots + a_{1q}b_{q2} & \cdots & a_{11}b_{1p} + \cdots + a_{1q}b_{qp} \\ a_{21}b_{11} + \cdots + a_{2q}b_{q1} & a_{21}b_{12} + \cdots + a_{2q}b_{q2} & \cdots & a_{21}b_{1p} + \cdots + a_{2q}b_{qp} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1}b_{11} + \cdots + a_{pq}b_{q1} & a_{p1}b_{12} + \cdots + a_{pq}b_{q2} & \cdots & a_{p1}b_{1p} + \cdots + a_{pq}b_{qp} \end{pmatrix}.$$