Доказательство теоремы Фробениуса - Перрона

Мария Школьник

Определение 1. Матрица называется положительной (неотрицательной), если все ее элементы положительны (неотрицательны). Обозначение: $M>0\ (M\geq 0)$

Определение 2. Спектральным радиусом матрицы называется наибольший из модулей ее собственных значений.

Определение 3. Пусть $A=(a_{ij})$ и $B=(b_{ij})$ - две матрицы $n\times r$. Тогда $A\geq B$ (A>B), если $a_{ij}\geq b_{ij}$ $(a_{ij}>b_{ij})$ $\forall i,j$.

Обозначение. Пусть - матрица с комплексными элементами. Тогда C^+ - матрица, у которой $(C^+)_{ij} = |C_{ij}|$.

Графы и неприводимость.

Каждой неотрицательной $n \times n$ матрице A соответствует граф G_A с множеством вершин (1, ..., n), где ребро (i, j) существует, если $A_{ij} > 0$.

Неотрицательная матрица A называется неприводимой, если G_A сильно связан. То есть для любых $i, j \in (1, ..., n)$ существует k такое ,что $(A^k)_{ij} > 0$. Если матрица не является неприводимой, то ее называют приводимой.

Пусть π - произвольная перестановка 1, ..., п. Тогда $\pi(A)$ - матрица, элементы которой определяются равенством $A_{ij} = (\pi(A))_{(\pi(i))(\pi(j))}$. Другими словами, можно написать $\pi(A) = P^{-1}AP$, где P - матрица перестановки π . Тогда можем получить фурмулу:

$$(\pi(A))_{\pi(i),\pi(j)} = (P^{-1})_{\pi(i),i} \cdot A_{ij} \cdot P_{j,\pi(j)}$$

Таким образом, $\pi(A)$ обозначает тот же линейный опрератор, что и матрица A, только в другом базисе. (Что касается графа, такая перестановка просто переименовывает вершины.)

Замечание 1

Матрица A является приводимой, если для какой-либо перестановки π матрица $\pi(A)$ имеет вид $\pi(A) = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}$, где B и D - квадратные матрицы. Простой способ увидеть это - взглянуть на соответствующий граф: граф не является сильно связанным, если его вершины могут быть разбиты на два множества таким образом, что из одного в другое не идет ни одно ребро. Соответствующая нумерация вершин дает матрицу смежности вида $\begin{bmatrix} B & C \\ 0 & D \end{bmatrix}$.

Теорема Фробениуса - Перрона

Пусть A - неприводимая квадратная матрица с неотрицательными вещественными элементами и $r \in R_{>0}$ - ее спектральный радиус. Тогда справедливы следующие утверждения:

- (1) г собственное значение матрицы А.
- (2) соответствующий г собственный вектор имеет строго положительные координаты
- (3) г как собственное значение матрицы имеет (геометрическую и алгебраическую) кратность, равную 1
- (4) не существует другого (отличного от х) положительного собственного вектора матрицы А.
- (5) г увеличивается, если какой-либо элемент матрицы увеличивается
- (6) все собственные значения матрицы A с абсолютным значением r имеют кратность 1. Если их h, то они являются (комплексными) корнями уравнения $\lambda^h = r^h$.
- (7) спектр матрицы A, рассматриваемый как мультимножество, переходит сам в себя при вращении комплексной плоскости на угол $\frac{2\pi}{h}$

Доказательство

Лемма 1. Пусть $\mathbf{A} \in M_n$, $\mathbf{A} \geq \mathbf{0}$ - неприводимая матрица. Тогда $(E+A)^{n-1} > 0$. Доказательство.

Достаточно доказать, что $(E+A)^{n-1}\cdot x>0 \ \forall \ x\geq 0, \ x\neq 0$. Сравним количество ненулевых координат произвольного ненулевого вектора x и вектора y=(A+E)x. Если $x_i>0$, то $y_i=(Ax)_i+x_i>0$. Таким образом, множество ненулевых координат y является подмножеством такого множества вектора x. Предположим, что два эти набора совпадают. Выберем при помощи перестановки π такой базис, чтобы координаты векторов x и y в данном базисе имели вид: $\begin{bmatrix} u \\ 0 \end{bmatrix}$ и $\begin{bmatrix} v \\ 0 \end{bmatrix}$ соответственно, где

и и v - векторы одинакового размера; u, v > 0. Предствавим $\pi(A)$ в виде блочной матрицы $\begin{bmatrix} B & C \\ D & F \end{bmatrix}$, где B и F - квадратные матрицы, и размер B равен размеру вектора u. Теперь равенство

$$\begin{bmatrix} B & C \\ D & F \end{bmatrix} \begin{bmatrix} u \\ 0 \end{bmatrix} = \begin{bmatrix} v \\ 0 \end{bmatrix}$$

подразумевает D = 0, поскольку u > 0. Тогда матрица A приводима по замечанию 1, что противоречит условию леммы. Следовательно, у имеет строго меньше нулевых координат, чем х. Применяя этот факт для векторов x, (A + E)x, ..., $(A + E)^{n-2}$ x и учитывая что число нулевых координат x не превосходит n - 1, получаем: $(A + E)^{n-1} > 0$.

Шаг 1.

Введем функцию $r: R^n \to R$ такую, что:

$$r(x) = \min(\frac{(Ax)_i}{x_i}) (1)$$

Заметим, что r(x) непрерывна в любой точке x>0, но может иметь точки разрыва на границе множества $X=(x\in R^n\mid x\geq 0,\, x\neq 0)$. Очевидным свойством r(x) является то, что $r(x)x\leq Ax$ и, более того:

$$r(x) = \max(p \mid px \ge Ax) (2)$$

Мы собираемся доказать существование такого вектора z, что

$$r(z) = \sup(r(x) \mid x \in X) (3)$$

По теореме Вейерштрасса непрерывная функция из компакта в подмножество R достигает своего минимума (и максимума) на этом компакте. Множество X не является ни ограниченным, ни замкнутым. Однако $\mathbf{r}(\mathbf{x}) = \mathbf{r}(\alpha \mathbf{x}) \ \forall \ \alpha > 0$ и, поэтому, $\sup(\mathbf{r}(\mathbf{x}) \mid \mathbf{x} \in \mathbf{X}) = \sup(\mathbf{r}(\mathbf{x}) \mid \mathbf{x} \in X^1)$, где $X^1 = (\mathbf{x} \in \mathbf{X} \mid |\mathbf{x}| = 1)$. Заметим, что множество X^1 является компактом, но $\mathbf{r}(\mathbf{x})$ может иметь разрыв в некоторых точках данного множества, которые не являются положительными векторами. Тогда вместо X^1 рассмотрим множество

$$Y = (y \mid y = (A + E)^{n-1}x,$$
где $x \in X^1)$

Данное множество компактно. Более того, все векторы множества Y положительны по Лемме 1. Следовательно, функция r непрерывна на Y и по теореме Вейерштрасса достигает своего минимума и максимума на данном множестве. Пусть z - такой вектор, что $r(z) = \max(r(y) \mid y \in Y)$. Также $y = (A + E)^{n-1}x$ для какого-то x и $px \leq Ax$, а, следовательно, $py \leq Ay$. Применяя (2) это означает, что r(x) < r(y). Тогда мы нашли вектор необходимый для (3):

$$\sup(\mathbf{r}(\mathbf{x})\mid\mathbf{x}\in\mathbf{X})=\sup(\mathbf{r}(\mathbf{x})\mid\mathbf{x}\in\mathbf{X}^1)\leq\sup(\mathbf{r}(\mathbf{y})\mid\mathbf{y}\in\mathbf{Y})=\max(\mathbf{r}(\mathbf{y})\mid\mathbf{y}\in\mathbf{Y})=\mathbf{r}(\mathbf{z}).$$

Шаг 2 Пусть t = r(z) и u - вектор из X, удовлетворяющий равенству r(u) = t. Опишем некоторые свойства r и u:

- (1') Если x > 0, тогда Ax > 0 и, следовательно, r(x) > 0 и t > 0.
- (2') Пусть $y=(A+E)^{n-1}$ и. Используя (2), $ru\leq Au$. Если это не равенство, то $(A+E)^{n-1}$ (Au tu) > 0 по Лемме 1, подразумевая ry< Au. Тогда существует $\varepsilon>0$ такой, что $(r+\varepsilon)y< Ay$. Следовательно, $r(y)\leq t+\varepsilon$ что противоречит условию (3) Следовательно, tu=Au. Получаем, что t собственное значение матрицы A с собственным вектором u.

- (3') Вектор и строого положительный, поскольку $y = (A + E)^{n-1}u = (r+1)^{n-1}u$ и y > 0 по Лемме 1.
- (4') Пусть α комплексное собственное значение матрицы A с собственным вектором v. Равенство $Av = \alpha v$ означает $(Av)^+ = (\alpha v)^+$. Тогда для любого i:

$$((\alpha v)^{+})_{j} = |\alpha v_{j}| = |\alpha| |v_{j}| = (|\alpha|v^{+})_{j} (4)$$

$$((Av)^{+})_{j} = |A_{j1}v_{1} + \dots + A_{jn}v_{n}| \le A_{j1}|v_{1}| + \dots + A_{jn}|v_{n}| = (Av^{+})_{j} (5)$$

и тогда $|\alpha|v^+ \leq Av^+$. Поскольку $v^+ \geq 0$, получаем $|\alpha| \leq r(v^+) \leq t$. Следовательно, t - такое собственное значение, которое \geq любого другого собственного значения матрицы A. Следовательно, t = r - спектральный радиус матрицы A.

(5') Имеем $\mathbf{r}(v^+) = \mathbf{r}$, тогда v^+ - положительный собственный вектор матрицы А соответствующий г. Но $Av^+ = rv^+$ подразумевает равенство в (5). Поэтому, комплексные числа $v_1,...,v_n$ должны иметь один и тот же аргумент φ . Тогда $\mathbf{v} = e^{i\varphi}v^+$. Таким образом, любой собственный вектор, соответствующий г является коллинеарным положительному вектору. Остается заметить, что г не могут соответствовать два линейно независимых собственных вектора, так как два таких вектора будут иметь ненулевую линейную комбинацию u, что u - неотрицательный вектор с хотя бы одной нулевой координатой, что невозможно по (3). То есть г соответствует единственный положительный собственный вектор.

Таким образом мы доказали, что геометрическая кратность t как собственного значения матрицы A равна 1. Докажем, что алгебраическая кратность t также равна 1. Для этого достаточно показать, что жорданова форма матрицы A имеет клетку размера 1 с числом t. Рассмотрим матрицу A^T : она неотрицательна, неприводима и имеет тот же самый характеристический многочлен, что и матрица A. Следовательно, существует такой вектор у, что $A^T y = ry$.

Рассмотрим A как матрицу линейного оператора в некотором базисе. Ортогональное дополнение вектора у: $y' = (x|y^Tx = 0)$ инвариантно относительно A. Заметим, что z не принадлежит у' поскольку у и z - положительные векторы. Таким образом, R^n раскладывается в прямую сумму двух инвариантных подпространств: у' и $\langle z \rangle$. Тогда матрица A в базисе $(z, y_1, ..., y_{n-1})$ имеет блочнодиагональный вид $A' = \begin{bmatrix} r & 0 \\ 0 & Y \end{bmatrix}$ с матрицей Y размера n-1. Приводя матрицу Y к жордановой форме некоторой заменой базиса, мы также приводим матрицу A' к этой же самой форме. (Поскольку, матрицы A и A', будучи подобными, имеют одинаковую жорданову форму). В верхнем углу у этой матрицы есть клетка размера 1 с номером r. Таким образом, мы доказали пункт (3) теоремы.

Лемма 2. Пусть $A \geq 0$ - неприводимая n*n матрица и C - такая комплексная матрица, что $C^+ \leq A$. Пусть α - какое-то собственное значение матрицы C. Тогда $|\alpha| \leq r$, и равенство достигается, если $C = e^{i\varphi}DAD^{-1}$, где $\alpha = re^{i\varphi}$ и D - такая диагональная матрица, что $P^+ = E$.

Доказательство.

Пусть $Cy = \alpha y$. Ранее показали, что: $|\alpha|y^+ \leq C^+y^+ \leq Ay^+$.

Следовательно, $|\alpha| \le C^+ y^+ \le A y^+$ по (2) и (3). Теперь пусть $|\alpha| = r$, тогда $r(y^+) = r$, и поэтому у - положительный собственный вектор A, соответствующий r. Получаем равенство:

$$ry^+ = C^+y^+ = Ay^+$$

Тогда $(A-C^+)y^+=0,\,A-C^+\geq 0,\,y^+>0,$ значит, $C^+=A.$ Пусть

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} = \begin{bmatrix} |y_1|e^{i\varphi_1} \\ |y_2|e^{i\varphi_2} \\ \dots \\ |y_n|e^{i\varphi_n} \end{bmatrix},$$

$$\mathbf{D} = \begin{bmatrix} e^{i\varphi_1} & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & e^{i\varphi_n} \end{bmatrix}$$

Тогда $y=Dy^+$. Подставляя $\alpha=re^{i\varphi}$, получим:

$$Cy=CDy^+=re^{i\varphi}Dy^+$$
 и $e^{-i\varphi}D^{-1}CDy^+=ry^+.$

Пусть $e^{-i\varphi}D^{-1}CD = F$. $Fy^+ = Ay^+$ и $F^+ = C^+$ (= A), подразумевая $Fy^+ = F^+y^+$. Поскольку у > 0 и действительный части элементов матрицы $(F^+ - F)$ неотрицательны, значит, они должны быть равны нулю, а это возможно только в том случае, когда $F^+ = F$. Следовательно, F = A и $C = e^{i\varphi}PAP^{-1}$.

Шаг 3.

Предположим, что мы увеличили некоторые элементы A, получив при этом новую неприводимую матрицу B такую, что B ≥ A, B ≠ A. Применив Лемму 2, получим, что модуль любого собственного значения A не превосходит спектральный радиус матрицы B. Отсюда следует пункт (5) теоремы.

Шаг 4.

Пусть $\lambda_0 = r$, $\lambda_1 = re^{i\varphi}$, ..., $\lambda_{h-1} = re^{i\varphi_{h-1}}$ - все собственный значения матрицы A с абсолютным значением r и $0 = \varphi_0 \le \varphi_1 \le ... \le \varphi_{h-1} < 2\pi$. Применим Лемму 2 для C = A, $\alpha = \lambda_k$, получим равенство:

 $A = e^{i\varphi_k D_k A(D_k)^{-1}}$ (k = 0, ..., h-1, $(D_k)^+ = E$). Значит, матрица $e^{-i\varphi_k} A = D_k A(D_k)^{-1}$ подобна матрице A и имеет тот же самый спектр. С другой стороны, умножая матрицу на скаляр, мы умножаем все ее собственные значения на этот скаляр. Таким образом, спектр матрицы A сохраняется при вращении комплексной плоскости на угол φ_k . Поскольку поворот на угол φ_k отображает r в λ_k , их кратности совпадают, значит, каждое λ_k имеет кратность 1. Далее, спектр сохраняется для любых k, $l \in 1, ..., h-1$ при вращении на $\varphi_k + \varphi_l$, $-\varphi_k$, и конечно на 0. Каждый из этих поворотов переводит r в некоторое λ_j , значит, суммы и разности, взятые по модулю 2π углов из $\Phi = (\varphi_0, ..., \varphi_{h-1})$ также принадлежат этому множеству. Значит, Φ - группа по сложению по модулю 2π .

Заметим, что $\varphi_1 + \varphi_1 = \varphi_2$, $\varphi_1 + \varphi_2 = \varphi_3$, ..., $\varphi_1 + \varphi_{h-1} = 0 \pmod{2\pi}$. Получаем $\varphi_k = \mathbf{k}\varphi_1$. Следовательно, $\varphi_k = \frac{2\pi k}{h}$. Таким образом, доказали утверждения (6) и (7) теоремы.