Lecture 9 - Self Attention and Transformers

▼ From recurrence (RNN) to attention-based NLP models

문제 1 Linear interaction distance

멀리 떨어져 있는 단어들간의 상호작용이 어렵다.

RNN → left to right으로 왼쪽부터 오른쪽으로 순차적으로 연산

• 위 그림처럼 tasty와 pizza는 단어끼리 가깝게 있기 때문에 상호작용이 용이 (워드 임베딩에도 잘 적용된다.)

- 하지만 위 그림에서 chef와 was는 관계대명사 절에 의해 거리가 매우 멀리 떨어져 있음
- RNN은 멀리 떨어져 있는 단어 쌍이 interaction하기 위해서는 O(sequence length)만큼 소요되고, Gradient 문제로 멀리 떨어진 dependency는 학습하기가 어려움

문제 2 Lack of parallelizability - 병렬 연산 불가

Future hidden state를 처리하려면 반드시 그 직전의 hidden state 의 계산이 완료되어야 한다.

순서대로 처리되는 RNN의 연산 특성상 GPU를 활용해 시간 차원에 대한 병렬 불가능하다. → 모델이 복잡해질수록 불리한 부분

• 마지막 hidden state에는 O(sequence length)만큼 연산이 이뤄져야 처리 가능하다.

How about word windows?

word window model: local context를 aggregate

- 위 그림에서 볼 수 있듯 sequence length가 증가해도, 병렬처리가 불가능한 연산 증가하지 않는다.
 - 。 (필수 연산 수는 독립적으로 각각 1씩만 증가하게된다.)

구조적으로 Long-distance dependency 장기 의존성 문제 발생

- Local contexts를 통합하는 word window의 특성상 멀리 떨어져 있는 dependency 반영 → window layer 깊게 쌓아야 한다.
- (size = 5) 인코터 출력 h_k 에 대해서 h_1 은 반영되지 않는다.

How about Attention?

Attention operates on queries, keys and values.

▼ Q, K, V

Query : 현재 보고 있는 단어의 representation으로 다른 단어를 평가하는 기준

Key: 쿼리와 관련 있는 단어를 찾기 위해서 label처럼 활용되는 벡터

Value : Query와 Key를 통해 탐색하여 실제로 사용하는 값

attention score와 weight, output(가중합)에 대한 계산 과정

- attention 구조에 맞게 모든 state 화살표로 연결되어 있다.
- attention layer에서 이전 layer 연산이 완료된다 모든 segeunce state가 연산 가능
- attention layer에서는 가로 sequence에 대해 병렬연산 가능
- sequence length 증가시, 독립적으로 연산의 수 증가해서 병렬처리 가능
- 모든 단어 연결되어 어떤 단어 사이에도 O(1) 연산만으로 상호작용 가능

Self-Attention만을 쌓아 NLP 모델 만들기에는 아직 문제점 존재

1. Doesn't have an inherent notion of order(문제 : 순서에 대한 내재적 개념 없음) → Seqeunce order(솔루션)

Sequence 순서에 대해서 표현해야 한다. (위치 정보를 포함하는 새로운 Query, Key, Value 값 재정의

포지션 벡터 사용!

Position Vectors
$$p_i \in \mathbb{R}^d$$
, for $i \in \{1,2,...,T\}$
$$v_i = \tilde{v}_i + p_i$$

$$q_i = \tilde{q}_i + p_i$$

$$k_i = \tilde{k}_i + p_i$$

• 위치 벡터를 통해 인덱스에 따라서 순차적으로 계산된다.

식(왼쪽) 각기 다른 주기를 가진 사인 함수들을 연결(concatenate)하여 위치를 나타내는 방법, 그래프 (오른쪽) 차원 축과 sequence index에 대한 축으로 그래프 표현

핵심 \rightarrow 다른 index일 때 다른 값을 가지는 벡터이다.

장점 : 절대적 위치 비교가 아닌 상대적인 비교가 중요하기 때문에 함수주기 < sequence 길이 일 때에도 정보를 잃지 않는다.

단점 : 학습이 불가능하다. (학습 가능한 매개변수 x) ightarrow 학습가능한 파라미터 p_i 설정!!!

2. No nonlinearities for deep learning! It's all just weigthed averages(문제점) → Adding nonliearities in self-attention(솔루션)

self-attention → 단순한 가중합 형태의 선형 결합, 따라서 비선형 함수 필요

- 각각의 attention output 벡터에 feedforward network 추가 (m_i) , 비선형 함수 ReLU 사용!!!
- 3. Need to ensure we don't "look at the future" when predicting a sequence(문제점) → Masking the future in self-attention(솔루션)

Decoder에서 language modeling 수행 시, 미래 sequence 정보

를 볼 수 없어야 한다. 순차적 \rightarrow 미래 sequence 연산에 활용 xself-attention \rightarrow 병렬 연산 가능한 구조, 미래 단어를 연산에 활용 할 수 있음 (말이 안 됨 !!)

- key index < query index의 경우에만 값 계산
- 아닌 경우 무한대 적용
- masking한 행렬 형태 얻을 수 있다.

Self-Attention, NLP 빌딩블록으로써 역할을 할 수 있따. 그럼 Transformer 로 넘어가자!

▼ Introducing the Transformer model

The Transformer Encoder: Key-Query-Value Attetion

Transformer의 Encoder-Decoder 구조

기존 Seg2Seg의 encoder decoder 구조 유지

Let $x_1, ..., x_T$ be input vectors to the Transformer encoder; $x_i \in \mathbb{R}^d$

 $k_i = Kx_i$, where $K \in \mathbb{R}^{d \times d}$ is the key matrix.

 $q_i = Qx_i$, where $\mathbf{Q} \in \mathbb{R}^{d \times d}$ is the query matrix.

 $v_i = Vx_i$, where $\mathbf{V} \in \mathbb{R}^{d \times d}$ is the value matrix.

• x_i \rightarrow input vector, k_i, q_i, v_i 각각 K,Q,V에 input vector를 곱한 형태이다.

• 행렬 Q,K,V는 우리가 찾아야 하는 미지수이다.

ATtention score를 계산하기 위해 query와 key에 대해서 dot product를 진행하고, 이 결과를 softmax를 이용해 가중치를 얻고 이를 가중합하여 output tensor 구할 수 있다.

The Transformer Encoder: Multi-headed attention

한번에 여러 부분에 집중하는 것을 가능하게 해주는 Multi-headed attention!

· 한번에 여러 부분에 집중하기 위해 여러 개의 attention head구성

single head(좌) multi head(우)

• 우측의 경우 각각 단어에서 다른 attention을 산출해 낸다. 이를 결합해 최종적인 self-attention representation 보여준다.

 $Q_{\ell}, K_{\ell}, V_{\ell} \in \mathbb{R}^{d \times \frac{d}{p}}$ $h \vdash \text{head의 개수, } \ell = 1, 2, \cdots, h$ output $\ell = \text{softmax}(XQ_{\ell}K_{\ell}^{\top}X^{\top}) * XV_{\ell}$, where $\text{output}_{\ell} \in \mathbb{R}^{d/h}$ output $\ell = Y[\text{output}_1; \dots; \text{output}_h]$, where $Y \in \mathbb{R}^{d \times d}$

- Q,K,V의 행렬들이 $d imes rac{d}{h}$ 차원을 가진다.
- 각 head의 결과 이어붙이면 input과 같은 d imes d 차원 output으로 산출할 수 있다.
- 동일한 양의 연산을 효율적으로 할 수 있다. (아래 그림에서 같은 연산량, 같은 차원임을 확인할 수 있따)

The Transformer Encoder : Residual connections (Training Tricks)

ResNet에서도 나왔던 것 처럼 Residual connection → 자기 자신을 더해주는 것이다.

$$X^{(i)} = \text{Layer}(X^{(i-1)})$$

 $X^{(i)} = X^{(i-1)} + \text{Layer}(X^{(i-1)})$

- 위 그림처럼 Layer에 $X^{(i-1)}$ 를 더해주는 형태로, 이를 다시 해석해본다면, 이전 state보다 얼마나 변화했는지를 학습한다고도 볼 수 있다.
- gradient vanishing에 대해서도 New $f(x) = old \ f(X) + x$ 라고 할때, 미분할 경우 +1이 생기기 때문에 기울기가 매우 작더라도 1만큼 추가되는 효과가 있다.
- ++ 기울기 스무딩 효과 존재 → 지역해에 빠지는 문제점 보완 (아래 그림 참고)

Li et al., 2018, on a ResNet]

The Transformer Encoder: Layer normalization (Training Tricks)

Layer 내에서 하나의 input sample x에 대해서 a모든 feature에 대한 평균과 분산을 구해서 normalization 수행하는 것

https://mlexplained.com/2018/01/13/weight-normalization-and-layer-normalization-explained-normalization-in-deep-learning-part-2/ 43

The Transformer Encoder: Scaled Dot Product

차원이 커질수록, vector 내적값도 커진다 모든 sequence간의 gradient 전파가 잘 유지하기 위해서는 dot product 결과가 너무 커지지 않게 해야 한다!

$$\mathrm{output}_{\ell} = \mathrm{softmax} \left(X Q_{\ell} K_{\ell}^{\mathsf{T}} X^{\mathsf{T}} \right) * X V_{\ell} \longrightarrow \mathrm{output}_{\ell} = \mathrm{softmax} \left(\frac{X Q_{\ell} K_{\ell}^{\mathsf{T}} X^{\mathsf{T}}}{\sqrt{d/h}} \right) * X V_{\ell}$$

Encoder & Decoder Detail

- Encoder part
 - o word embeddings + position vector → Multi-Head Attention 수행
 - o Residual Connection(자기 자신과 연결)과 Layer Normalization을 수행

∘ Feed Forward 수행

하나의 인코더 수행과정이고 마지막 인코더까지 모두 다 수행된 다면, 디코더로 넘어간다.

Decoder part

- 초반부분은 Encoder와 동일하다. 하지만 미래의 sequence 결과에 대해서 반영하지 못하게끔 Masked Multi-Head Self-Attention을 수행한다.
- Residual Connection과 Layer Normalization 수행
- Multi-Head Cross-Attention 수행
 - Cross → 인코더와 디코더를 오가는 Attention 의미 (Cross-Attention = Encoder Decoder Attention)
 - Decoder에서 현재 처리하는 단어의 Query를 가져오고, Encoder의 Key로 탐 색한 결과를 Encoder의 Value로 가중 합하는 것이다.

▼ 참고

• Feed Forward 수행

Transformer 총정리

- Seq2Seq 모델
- Self-Attention :
 - 단어 처리시 문장 내의 다른 단어들로부터 힌트를 받아 현재 단어를 인코딩
- Positional Encoding
 - \circ 단어들을 set으로 취급하기 때문에 한 번에 행렬로 input한다 따라서 위치정보 <math>x
 - ∘ 추가적인 position representation을 더해 positional encoding을 수행
- Encoder-Decoder 구조
 - ∘ 각 Encoder, Decoder 동일한 개수 사용
 - o Multi-head self-attention
 - Position-wise feed-forward network
 - Residual connection
 - Layer Normalization
- ▼ Great results with Transformers

Machine Translation

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3\cdot 10^{19}$	

• 기존의 SOTA로 여겨졌던 모델들 보다 높은 성능 보여줌

Document generation

Model	Test perplexity	ROUGE-L	
	5.04052	12.7	
seq2seq-attention, $L = 500$	5.04952	12.7	
Transformer-ED, $L = 500$	2.46645	34.2	
Transformer-D, $L = 4000$	2.22216	33.6	
Transformer-DMCA, no MoE-layer, $L = 11000$	2.05159	36.2	
Transformer-DMCA, MoE-128, $L = 11000$	1.92871	37.9	
Transformer-DMCA, MoE-256, $L = 7500$	1.90325	38.8	

• 기준으로 여겨지는 seq2seq 모델보다 훨씬 낮은 perlexity를 보여주며 훨씬 더 좋은 성능 보여줌

Aggregate Benchmark

- 벤치마크 점수 transformer 기반 모델들이 순위권을 차지함. (2021년 기준)
- ▼ Drawbacks and variants of Transformers

단점 1 : sequence length가 증가함에 따라 계산량이 2차식으로 증가 $O(T^2d)$

• Improve

Linformer [Wang et al., 2020]

Key idea: projection을 통해 value와 key의 sequence length dimension을 낮춘다.

projection을 통해 value와 key의 sequence length dimension을 낮춘다!

BigBird [Zaheer et al., 2021]

모든 pair 사이의 attention을 계산하지 않고, window, Global, Random을 적절히 조합한 만큼만 계산한다!

단점 2 : Position representations에 대한 개선의 여지가 존재!