Exploritory Analysis I

Exploritory Analysis of the Datasets to be used for Machine Learning Predictions of Exoplanet candidates

The analyis will look briefly at:

- The Confirmed Planets datset being used.
- The main features of the dataset
- If any of the features will be needed for the Classification Machine Learning

```
In [1]:
    #imports
    import pandas as pd
    import numpy as np
    import lightkurve as lk
    import matplotlib.pyplot as plt
    import seaborn as sn
```

Kepler Confirmed Exoplanets

Kepler confirmed exoplanets are downloaded from through the MAST API and give details on the exoplanet such as the star name it orbits, the star mass, brightness, and the orbital period of the confirmed exoplanet

The dataframe contains 4,884 rows and 373 columns

```
In [4]:  # print first 5 rows of dataset
    confirmed_df.head()
```

Out[4]:		pl_name	pl_letter	hostname	hd_name	hip_name	tic_id	disc_pubdate	disc_year	di
	0	OGLE-2016- BLG-1227L b	b	OGLE-2016- BLG-1227L	NaN	NaN	NaN	2020-03	2020	
	1	GJ 480 b	b	GJ 480	NaN	HIP 61706	TIC 399119319	2020-08	2020	

```
pl_name pl_letter
                          hostname hd_name hip_name
                                                                tic_id disc_pubdate disc_year di
    Kepler-276
                                                                  TIC
                                                                             2014-02
                          Kepler-276
                                                                                          2013
                                          NaN
                      C
                                                      NaN
                                                            138213510
    Kepler-829
                                                                   TIC
3
                      b
                          Kepler-829
                                           NaN
                                                                             2016-05
                                                                                          2016
                                                      NaN
                                                            123451768
                                                                  TIC
    1/2 202 L
                                                      N I = N I
                              1/2 202
                                          N I = N I
                                                                             2010 12
                                                                                          2010
```

In [5]:

basic details on the dataframe
confirmed_df.info(verbose=True)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 4884 entries, 0 to 4883 Data columns (total 373 columns): Column Dtype ___ 0 pl name object pl letter 1 object hostname 2 object 3 hd name object 4 hip name object 5 tic id object 6 disc pubdate object 7 disc year int64 object 8 discoverymethod 9 disc locale object disc facility 10 object 11 disc instrument object 12 disc_telescope object 13 object disc refname 14 float64 ra 15 rastr object 16 dec float64 17 decstr object 18 glon float64 19 glat float64 20 elon float64 21 float64 elat ra_reflink object 22 pl_orbper 23 float64 24 pl orbpererr1 float64 25 pl orbpererr2 float64 pl_orbperlim pl_orbperstr float64 26 27 object pl_orbper_reflink object 28 29 pl orblpererr1 float64 30 pl orblper float64 31 pl orblpererr2 float64 pl_orblperlim pl_orblperstr 32 float64 33 object pl orblper reflink object 34 35 pl orbsmax float64 pl_orbsmaxerr1 float64 36 pl_orbsmaxerr2 37 float64 pl_orbsmaxlim pl_orbsmaxstr float64 38 object 39 pl_orbsmax_reflink object 40 pl_orbincl float64 41 float64 pl_orbinclerr1 42 pl_orbinclerr2 float64 float64 43 pl_orbincllim pl_orbinclstr 44 45 object pl orbincl reflink 46 object

47	pl orbtper	float64
48	pl orbtpererr1	float64
49	pi_orbtporcrii	float64
	pl_orbtpererr2	
50	pl_orbtperlim	float64
51	pl_orbtperstr	object
52	pl orbtper reflink	object
53	pl orbeccen	float64
54	pl orbeccenerr1	float64
	pi_orbeccenerri	
55	pl_orbeccenerr2	float64
56	pl_orbeccenlim	float64
57	pl_orbeccenstr	object
58	pl orbeccen reflink	object
59	pl eqt	float64
60		
	pl_eqterr1	float64
61	pl_eqterr2	float64
62	pl_eqtlim	float64
63	pl_eqtstr	object
64	pl_eqt_reflink	object
65	pl occdep	float64
66	pl_occdeperr1	float64
67	pl_occdeperr2	float64
68	pl_occdeplim	float64
69	pl_occdepstr	object
70	pl occdep reflink	object
71		
	pl_insol	float64
72	pl_insolerr1	float64
73	pl_insolerr2	float64
74	pl_insollim	float64
75	pl insolstr	object
76	pl insol reflink	object
77	pl_dens	float64
78	pl_denserr1	float64
79	pl_denserr2	float64
80	pl_denslim	float64
81	pl_densstr	object
82	pl dens reflink	object
83	pl_trandep	float64
84	pl_trandeperr1	float64
85	pl_trandeperr2	float64
86	pl_trandeplim	float64
87	pl_trandepstr	object
88	pl trandep reflink	object
	pl tranmid	
89		float64
90	pl_tranmiderr1	float64
91	pl_tranmiderr2	float64
92	pl_tranmidlim	float64
93	pl_tranmidstr	object
94	sy pmdec	float64
95	sy_pmdecerr1	float64
96	sy_pmdecerr2	float64
97	sy_pmdecstr	object
98	sy_plx	float64
99	sy_plxerr1	float64
100	sy plxerr2	float64
101	sy_plxstr	object
102	sy_plx_reflink	object
103	sy_dist	float64
104	sy_disterr1	float64
105	sy_disterr2	float64
106	sy diststr	object
107	sy_dist_reflink	object
108	sy_bmag	float64
109	sy_bmagerr1	float64
110	sy_bmagerr2	float64
111	sy_bmagstr	object
112	sy bmag reflink	object
	sy_bmay_rerrink	_
113	sy_vmag	float64
114	sy_vmagerr1	float64
115	sy_vmagerr2	float64
116	sy_vmagstr	object
	_	

117	sy vmag reflink	object
118	sy jmag	float64
119	sy_jmagerr1	float64
120	sy_jmagerr2	float64
121	sy_jmagstr	object
122	sy_jmag_reflink	object
123	sy hmag	float64
124	sy hmagerr1	float64
125	sy hmagerr2	float64
126	sy hmagstr	
127		object object
	sy_hmag_reflink	
128	sy_kmag	float64
129	<pre>sy_kmagerr1 sy kmagerr2</pre>	float64
130	sy_kmagerr2	float64
131	sy_kmagstr	object
132	sy_kmag_reflink	object
133	sy_umag	float64
134	sy_umagerr1	float64
135	sy_umagerr2	float64
136	sy_umagstr	object
137	sy_umag_reflink	object
138	sy_rmag	float64
139	sy_rmagerr1	float64
140	sy_rmagerr2	float64
141	sy rmagstr	object
142	sy_rmagstr sy rmag reflink	object
143	sy_imag	float64
144	sy imagerr1	float64
145	sy_imagerr2	float64
146	sy_imagstr	object
147	sy imag reflink	object
148	sy_imag_reflink sy_zmag	float64
149	sy zmagerr1	float64
150	sy zmagerr2	float64
151	sy_zmagetr sy_zmagstr	
152	sy_zmagscr	object
	sy_zmag_reflink	object
153	sy_w1mag	float64
154	sy_w1magerr1	float64
155	sy_w1magerr2	float64
156	sy_w1magstr	object
157	sy_w1mag_reflink	object
158	sy_w2mag	float64
159	sy_w2magerr1	float64
160	sy_w2magerr2	float64
161	sy_w2magstr	object
162	sy_w2mag_reflink	object
163	sy_w3mag	float64
164	sy_w3magerr1	float64
165	sy w3magerr2	float64
166	sy_w3magstr	object
167	sy_w3mag_reflink	object
168	sy w4mag	float64
169	sy w4magerr1	float64
170	sy_w4magerr2	float64
171	sy w4magstr	object
172	sy w4mag reflink	object
173	sy gmag	float64
174	sy gmagerr1	float64
175	sy_gmagerr2	float64
176	sy_gmagstr	object
177	sy_gmag_reflink	object
178	sy gaiamag	float64
179	sy gaiamagerr1	float64
180	sy_galamagerr2	float64
181	sy_gaiamagetrz sy_gaiamagstr	object
182	sy_gaiamag_reflink	object
183	SY_Garamag_rerring	float64
184	sy_tmag sy_tmagerr1	float64
185	sy_tmagerr1 sy tmagerr2	float64
186		object
T 0 0	sy_tmagstr	object

187	sy_tmag_reflink	object
188	pl controv flag	int64
189	pl orbtper systemref	object
	pi_orpreei_systemier	
190	pl_tranmid_systemref	object
191	st_metratio	object
192	st_spectype	object
193	st_spectype_reflink	object
194	sy kepmag	float64
195	sy kepmagerr1	float64
196	sy_kepmagerr2	float64
197	sy_kepmagstr	float64
198	sy_kepmag_reflink	object
199	sy_kepmag_rerrink	float64
	st_rotp	
200	st_rotperr1	float64
201	st_rotperr2	float64
202	st_rotplim	float64
203	st_rotpstr	object
204	st rotp reflink	object
205	pl_projobliq	float64
206	pl projobliqerr1	float64
207	pl projobliqerr2	float64
208	pl_projobliqlim	float64
	pi_projobitqtim	
209	pl_projobliqstr	object
210	pl_projobliq_reflink	object
211	gaia_id	object
212	cb_flag	int64
213	pl_tranmid_reflink	object
214	pl_trandur	float64
215	pl_trandurerr1	float64
216	pl_trandurerr2	float64
217	pl trandurlim	float64
218	pl trandurstr	object
219	pl trandur reflink	object
220	pl_crandur_rerrink pl rvamp	float64
221	pi_ivamp	float64
	pl_rvamperr1	
222	pl_rvamperr2	float64
223	pl_rvamplim pl_rvampstr	float64
224	pl_rvampstr	object
225	pl_rvamp_reflink	object
226	pl_radj	float64
227	pl_radjerr1	float64
228	pl_radjerr2	float64
229	pl_radjlim pl radjstr	float64
230	pl radjstr	object
231	pl radj reflink	object
232	pl rade	float64
233	pl_radeerr1	float64
234	pl_radeerr2	float64
235	pl_radelim	float64
236	pl_radestr	object
237	pl_rade_reflink	object
238	pl_ratror	float64
239	pl_ratrorerr1	float64
240	pl_ratrorerr2	float64
241	pl ratrorlim	float64
242	pl ratrorstr	object
243	pl ratror reflink	object
244	pl ratdor	float64
245	pl_trueobliq	float64
	pi_crueobiiq	
246	pl_trueobligerr1	float64
247	<pre>pl_trueobliqerr2 pl_trueobliqlim</pre>	float64
248	pr_trueopliqiim	float64
249	pl_trueobliqstr	object
250	pl_trueobliq_reflink	object
251	sy_icmag	float64
252	sy_icmagerr1	float64
253	sy_icmagerr2	float64
254	<pre>sy_icmagerr2 sy_icmagstr</pre>	object
255	sy_icmag_reflink	object
256	dkin flag	int64

257	pl ratdorerr1	float64
258	pl ratdorerr2	float64
259	pl_ratdorlim	float64
	pi_racdoriim	
260	pl_ratdorstr	object
261	pl_ratdor_reflink pl_imppar	object
262	pl_imppar	float64
263	pl impparerr1	float64
264	pl impparerr2	float64
265	pl_impparlim	float64
266		object
	pl_impparstr	
267	pl_imppar_reflink	object
268	pi bmassj	float64
269	pl_bmassjerr1	float64
270	pl bmassjerr2	float64
271	pl_bmassjlim	float64
272	pl_bmassjstr	object
273	nl hmassi reflink	object
274	<pre>pl_bmassj_reflink pl_bmasse</pre>	float64
	pi_bmasse	
275	pl_bmasseerr1	float64
276	pl_bmasseerr2	float64
277	pl_bmasselim	float64
278	pl_bmassestr	object
279	pl bmasse reflink	object
280	pl_bmasse_reflink pl_bmassprov	object
281	st teff	float64
282	st_tefferr1	float64
283	st_tefferr2	float64
284	st_tefflim	float64
285	st teffstr	object
286	st_teffstr st_teff_reflink	object
287	st met	float64
288	_	float64
	st_meterr1	
289	st_meterr2	float64
290	st_metlim	float64
291	st_metstr	object
292	st met reflink	object
293	st radv	float64
294	st radverr1	float64
295	st radverr2	float64
296	st_radvlim	float64
297	st_radvstr	object
298	st_radv_reflink	object
299	st vsin	float64
300	st vsinerr1	float64
301	st_vsinerr2	float64
302	st_vsinlim	float64
303	st vsinstr	object
304	st_vsin_reflink	object
305	st_lum	float64
306	st_lumerr1	float64
307	st_lumerr2	float64
308	st_lumlim	float64
309	et limetr	object
310	st_lum_reflink	object
311	st logg	float64
312	st_loggerr1	float64
313	st_loggerr2	float64
314	st_logglim	float64
315	st_loggstr	object
316	st logg reflink	object
317	st age	float64
318	st ageerr1	float64
319	st_ageerr2	float64
	st_ayeerrz	
320	st_agelim	float64
321	st_agestr	object
322	st_age_reflink	object
323	st_mass	float64
324	st masserr1	float64
325	st_masserr2	float64
326	st masslim	float64
J 2 J	20	00001

```
327 st_massstr object
328 st_mass_reflink object
329 st_dens float64
330 st_denserr1 float64
331 st_denserr2 float64
332 st_denslim float64
333 st_densstr object
334 st_dens_reflink object
335 st_rad
336 st_raderr1 float64
337 st_raderr2 float64
338 st_radlim float64
339 st_radstr object
340 st_rad_reflink object
341 ttv_flag int64
342 ptv_flag int64
343 tran_flag int64
344 rv_flag int64
345 ast_flag int64
346 obm_flag int64
347 micro_flag int64
348 etv_flag int64
350 pul_flag int64
351 sy_snum int64
352 sy_pnum int64
353 sy_mnum int64
354 st_nphot int64
355 st_nrvc int64
356 st_nspec int64
357 pl_nespec int64
358 pl_ntranspec int64
360 sy_pm float64
361 sy_pmerr1 float64
362 sy_pmerr2 float64
363 sy_pmstr object
364 sy_pm_reflink object
365 sy_pmraerr1 float64
366 sy_pmraerr1 float64
367 sy_pmraerr2 float64
368 sy_pmraerr2 float64
369 x
370 y float64
371 z
372 htm20 int64
      ..∪ Y
371 z
                                                                                                                                                                                                                                                        float64
dtypes: float64(216), int64(23), object(134)
```

Columns from the dataset that are of use to this project

From the documentation at: https://exoplanetarchive.ipac.caltech.edu/TAP/tables and https://exoplanetarchive.ipac.caltech.edu/docs/API_kepcandidate_columns.html are:

pl_name : Char
The planet name

pl_letter : Char

The planet lettering system (single aplphabetical digit)

hostname: Char

The host(Star) name for the planet discovered

tic_id : Char

The target identification number, for use downloading the specific Pixel Image data

disc_pubdate: Char

When the discovered planet was published

disc_year: int

The year the planet was discovered

discoverymethod: Char

The method used to discover the planet, Transit Microlensing etc,,

disc_locale : Char

From where the discovery was made, from the ground or from space

disc_facility: Char

The facility that was incharge of the instrument that made the discovery

disc_instrument : Char

The type of instrument used, For Kepler it is the Kepler CCD Array

disc_telescope: Char

The name of the telescope, or camera that made the discovery

pl_orbper: double

Is the orbital period of the planet discovered

pl_eqt: double

The equilibrium temperature (Kelvin) of the planet discovered

pl_dens : double

The density (g/cm3) of the planet discovered

pl_trandur: double

The tranist duration in days

pl_radj : double

The discovered planets Juptier Radius

pl_rade : double

The discovered planets Earth Radius

pl_bmasse: double

The discovered planets Earth mass (Planet Mass.sin(i)/sin(i))

st_age : double

The stellar age in Gyr

st_mass : double

The Stellar Mass (Solar Mass)

tran_flag : int

Detected by Transits

sy_dist : double

The system distance in (pc) Parsec approx 3.26 light-years

From the 373 initial columns the above columns will give some additional insights into the discovery of exoplanets by during the Kepler mission.

Although another data set containing the Kepler ID (KIC) will be used to download the pixel images

needed for the flux readings, this dataset will be used to lable and verify the positive confirmations.

```
In [6]:
```

Out	[6]	
Out	[0]	

	pl_name	pl_letter	hostname	tic_id	disc_pubdate	disc_year	discoverymethod	d
0	OGLE-2016- BLG-1227L b	b	OGLE-2016- BLG-1227L	NaN	2020-03	2020	Microlensing	
1	GJ 480 b	b	GJ 480	TIC 399119319	2020-08	2020	Radial Velocity	
2	Kepler-276 c	С	Kepler-276	TIC 138213510	2014-02	2013	Transit	
3	Kepler-829 b	b	Kepler-829	TIC 123451768	2016-05	2016	Transit	
4	K2-283 b	b	K2-283	TIC 266017624	2018-12	2018	Transit	
•••								
4879	2M0437 b	b	2M0437	TIC 125843782	2021-10	2021	Imaging	
4880	HATS-74 A b	b	HATS-74 A	TIC 219189765	2021-12	2021	Transit	
4881	HATS-75 b	b	HATS-75	TIC 44737596	2021-12	2021	Transit	
4882	HATS-76 b	b	HATS-76	TIC 170849515	2021-12	2021	Transit	

4883 HATS-77 b b HATS-77 TIC 2021-12 2021 Transit

In [7]:

simple desciptive statistics of the new dataframe
confirmed_df.describe()

Out[7]:

	disc_year	pl_orbper	pl_eqt	pl_dens	pl_trandur	pl_radj	pl_rad
count	4884.000000	4.726000e+03	3710.000000	4779.000000	3638.000000	4868.000000	4870.00000
mean	2015.251229	8.863196e+04	909.615374	4.278715	3.929477	0.492018	5.51216
std	4.114448	5.849702e+06	456.408995	22.959142	2.647875	0.472840	5.29870
min	1989.000000	9.070629e-02	50.000000	0.030000	0.112700	0.026000	0.29600
25%	2014.000000	4.488917e+00	571.250000	1.460000	2.292250	0.155000	1.73100
50%	2016.000000	1.161783e+01	817.500000	2.590000	3.270500	0.241000	2.70000
75%	2018.000000	3.978237e+01	1141.750000	4.570000	4.797750	0.995750	11.14750
max	2021.000000	4.020000e+08	4050.000000	1290.000000	53.600000	6.900000	77.34200

Out[8]: pl_name object object pl letter hostname object tic_id object disc_pubdate object disc_year int64 object object discoverymethod disc_locale object disc_facility pl_orbper pl_eqt pl_dens float64 float64 float64 float64 pl trandur pl_radj float64 pl_rade float64 pl bmasse float64 st_age float64 st_mass float64 tran_flag int64 sy dist float64 dtype: object

Tn [9]

 $\mbox{\# simple desciptive statistics of the new dataframe confirmed_df.info()}$

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4884 entries, 0 to 4883
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	pl_name	4884 non-null	object
1	pl letter	4884 non-null	object

```
2 hostname 4884 non-null object
3 tic_id 4751 non-null object
4 disc_pubdate 4884 non-null object
5 disc_year 4884 non-null int64
6 discoverymethod 4884 non-null object
7 disc_locale 4884 non-null object
8 disc_facility 4884 non-null object
9 disc_instrument 4884 non-null object
10 disc_telescope 4884 non-null object
11 pl_orbper 4726 non-null float64
12 pl_eqt 3710 non-null float64
13 pl_dens 4779 non-null float64
14 pl_trandur 3638 non-null float64
15 pl_radj 4868 non-null float64
16 pl_rade 4870 non-null float64
17 pl_bmasse 4862 non-null float64
18 st_age 3971 non-null float64
19 st_mass 4880 non-null float64
20 tran_flag 4884 non-null int64
21 sy_dist 4869 non-null float64
dtypes: float64(10), int64(2), object(10)
```

Discovery Methods & Discovery Telescopes

Checking the discovery methods for expolanets. The Machine learning aspect of the project will focus on the Transit method discovered by the Kepler Telescope.

```
In [10]: # group and counting planets by discovery method
    disc_method = confirmed_df.copy()
    disc_method = disc_method.groupby(['discoverymethod'])['pl_name'].count()
    disc_method = disc_method.to_frame()
    disc_method.reset_index(inplace=True)
    disc_method.rename(columns={'pl_name':'count'}, inplace=True)
    disc_method['%'] = (disc_method['count'] / disc_method['count'].sum())*100
    disc_method
```

at[10]:		discoverymethod	count	%
at[10]:	0	Astrometry	1	0.020475
	1	Disk Kinematics	1	0.020475
	2	Eclipse Timing Variations	16	0.327600
	3	Imaging	55	1.126126
	4	Microlensing	120	2.457002
	5	Orbital Brightness Modulation	9	0.184275
	6	Pulsar Timing	7	0.143325
	7	Pulsation Timing Variations	2	0.040950
	8	Radial Velocity	899	18.407043
	9	Transit	3752	76.822277
	10	Transit Timing Variations	22	0.450450

Checking to see which instruments have discovered how many exoplanets

```
In [11]:
# group and counting planets by discovery instrument
disc_telescope = confirmed_df.copy()
disc_telescope = disc_telescope.groupby(['disc_telescope'])['pl_name'].cour
disc_telescope = disc_telescope.to_frame()
disc_telescope.reset_index(inplace=True)
disc_telescope.rename(columns={'pl_name':'count'}, inplace=True)
disc_telescope['%'] = (disc_telescope['count'] / disc_telescope['count'].su
disc_telescope = disc_telescope.sort_values(by='%', ascending=False)
disc_telescope.reset_index(drop= True, inplace=True)
disc_telescope
```

% disc_telescope count 0 0.95 m Kepler Telescope 3180 65.110565 1 Canon 200mm f/1.8L 222 4.545455 2 217 4.443079 Multiple Telescopes 3 3.6 m ESO Telescope 200 4.095004 0.1 m TESS Telescope 175 3.583129 4 70 6.5 m Magellan I Baade Telescope 1 0.020475 71 1.55 m Wyeth Telescope 0.020475 **72** 4.20 m William Herschel Telescope 0.020475 73 4 m ESO Vista Telescope 0.020475 74 2.7m Harlan J. Smith Telescope 1 0.020475

75 rows × 3 columns

```
table 1 = disc telescope.copy()
table 1 = table 1.iloc[:5]
# plot a table
fig, ax = plt.subplots()
# hide the axis
fig.patch.set_visible(False)
ax.axis('off')
ax.axis('tight')
#create the table
table = ax.table(cellText=table 1.values, colLabels = table 1.columns, loc-
# disply and save the table
name = "telescope %"
plt.title(name, y=1.0, pad=-80)
fig.tight layout()
plt.savefig('./graphs/disc telescope percent.jpg', bbox inches="tight", dpi
plt.show()
```

telescope %

disc_telescope	count	%	
0.95 m Kepler Telescope	3180	65.1105651105651	
Canon 200mm f/1.8L	222	4.343434343434346	
Multiple Telescopes	217	4.443079443079443	
3.6 m ESO Telescope	200	4.095004095004095	
0.1 m TESS Telescope	175	3.583128583128583	

Checking the combination of instrurment and detection types

```
In [13]:
# group and counting planets by discovery instrument and method
    disc_combination = confirmed_df.copy()
    disc_combination = disc_combination.groupby(['disc_telescope', 'discoveryme disc_combination = disc_combination.to_frame()
    disc_combination.reset_index(inplace=True)
    disc_combination.rename(columns={'pl_name':'count'}, inplace=True)
    disc_combination['%'] = (disc_combination['count'] / disc_combination['cour disc_combination = disc_combination.sort_values(by='%', ascending=False)
    disc_combination.reset_index(drop= True, inplace=True)
    disc_combination
```

L3]:		disc_telescope	discoverymethod	count	%
_	0	0.95 m Kepler Telescope	Transit	3150	64.496314
	1	Canon 200mm f/1.8L	Transit	220	4.504505
	2	3.6 m ESO Telescope	Radial Velocity	200	4.095004
	3	Multiple Telescopes	Radial Velocity	174	3.562654
	4	0.1 m TESS Telescope	Transit	172	3.521704
	•••				
	98	3.9 m Anglo-Australian Telescope	Transit	1	0.020475
	99	4 m ESO Vista Telescope	Imaging	1	0.020475
	100	4.20 m William Herschel Telescope	Imaging	1	0.020475
	101	6.5 m Magellan I Baade Telescope	Imaging	1	0.020475
	102	2.7m Harlan J. Smith Telescope	Radial Velocity	1	0.020475

103 rows × 4 columns

```
In [14]:
          table 2 = disc combination.copy()
          table 2 = table 2.iloc[:5]
          # plot a table of the stances count and percentages
          fig, ax = plt.subplots()
          # hide the axis
          fig.patch.set visible(False)
          ax.axis('off')
          ax.axis('tight')
          #create the table
          table = ax.table(cellText=table 2.values, colLabels = table 2.columns, loc-
          # disply and save the table
          name = "telescope & method %"
          plt.title(name, y=1.0, pad=-80)
          fig.tight layout()
          plt.savefig('./graphs/disc telescope method percent.jpg', bbox inches="tight"
          plt.show()
```

telescope & method %

duc_telescope	decoverymethod	count	%	
0.95 m Kepler Telescope	Tanait	3.50	64.4963144963145	
Canon 200mm f/3.8L	Tanait	220	4504504504504505	
3.6 m ESO Telescope	Radial Valority	200	4095004095004095	
Multiple Telescopes	Radial Velocity	174	3562653562653563	
0.1 m TESS Telescope	Tanuit	172	35217035217035217	

Checking the combination of instrument, facility and method

```
# group and counting planets by discovery instrument and method
disc_combination_1 = confirmed_df.copy()
disc_combination_1 = disc_combination_1.groupby(['disc_facility','disc_tele
disc_combination_1 = disc_combination_1.to_frame()
disc_combination_1.reset_index(inplace=True)
disc_combination_1.rename(columns={'pl_name':'count'}, inplace=True)
disc_combination_1['%'] = (disc_combination_1['count'] / disc_combination_1
disc_combination_1 = disc_combination_1.sort_values(by='%', ascending=False
disc_combination_1.reset_index(drop= True, inplace=True)
disc_combination_1
```

[15]:		disc_facility	disc_telescope	discoverymethod	count	%
	0	Kepler	0.95 m Kepler Telescope	Transit	2673	54.729730
	1	K2	0.95 m Kepler Telescope	Transit	477	9.766585
	2	La Silla Observatory	3.6 m ESO Telescope	Radial Velocity	200	4.095004
	3	Transiting Exoplanet Survey Satellite (TESS)	0.1 m TESS Telescope	Transit	172	3.521704

	disc_facility	disc_telescope	discoverymethod	count	%
4	W. M. Keck Observatory	10 m Keck I Telescope	Radial Velocity	171	3.501229
•••				•••	
116	Infrared Survey Facility	1.4 m IRSF Telescope	Imaging	1	0.020475
117	Las Campanas Observatory	6.5 m Magellan I Baade Telescope	Imaging	1	0.020475
118	Paranal Observatory	8.2 m ESO VLT UT1 Antu Telescope	Astrometry	1	0.020475
119	Paranal Observatory	8.2 m ESO VLT UT1 Antu Telescope	Transit	1	0.020475
120	Acton Sky Portal Observatory	279mm RASA-11 wide- field telescope	Transit	1	0.020475

```
In [16]:
```

```
table 3 = disc combination.copy()
table 3 = table 3.iloc[:5]
# plot a table
fig, ax = plt.subplots()
# hide the axis
fig.patch.set_visible(False)
ax.axis('off')
ax.axis('tight')
#create the table
table = ax.table(cellText=table 3.values, colLabels = table 3.columns, loc=
# disply and save the table
name = "facility, telescope & method %"
plt.title(name, y=1.0, pad=-80)
fig.tight layout()
plt.savefig('./graphs/disc_facil_telescope_method_percent.jpg', bbox_inches
plt.show()
```

facility, telescope & method %

duc_telescope	discoverymethod count		%
0.95 m Kepler Telescope	Panait	3.50	64.4963144963145
Canon 200mm f/1.8L	Tansit	220	4504504504504505
3.6 m ESO Telescope	Radial Valority	200	4095004095004095
Multiple Telescopes	Radial Valority	174	3562653562653563
0.1 m TESS Telescope	Tansit	172	35217035217035217

The Kepler Mission and Telescope combination has discovered 54.73% of all exoplanets in the MAST archives

and will be the focus of the rest of the exploritory analysis

out[17]:		pl_name	pl_letter	hostname	tic_id	disc_pubdate	disc_year	discoverymethod	d
	2	Kepler-276 c	С	Kepler-276	TIC 138213510	2014-02	2013	Transit	
	3	Kepler-829 b	b	Kepler-829	TIC 123451768	2016-05	2016	Transit	
	5	Kepler-477 b	b	Kepler-477	TIC 158633329	2016-05	2016	Transit	
	20	Kepler-1390 b	b	Kepler-1390	TIC 264508835	2016-05	2016	Transit	
	21	Kepler-393 c	С	Kepler-393	TIC 159580535	2014-03	2014	Transit	
	•••								
	4872	Kepler-1896 b	b	Kepler-1896	TIC 394175334	2021-11	2021	Transit	
	4873	Kepler-1897 b	b	Kepler-1897	TIC 138645719	2021-11	2021	Transit	
	4874	Kepler-1899 b	b	Kepler-1899	TIC 137348756	2021-11	2021	Transit	
	4875	Kepler-1904 b	b	Kepler-1904	TIC 299089587	2021-11	2021	Transit	
	4876	Kepler-1905 b	b	Kepler-1905	TIC 63362238	2021-11	2021	Transit	

2673 rows × 22 columns

Discovery Years

Plotting the years of discovered planets by Kepler Mission, Kepler launched on March 7, 2009 and ran until October 30, 2018

```
plt.subplot()
plt.hist(kep_df['disc_year'])
plt.title('Kepler Planet Discoveries by Year')

plt.savefig('./graphs/kep_disc_by_year.jpg', bbox_inches="tight", dpi=450)
plt.show()
```


Exoplanet Orbital Period

Plotting the distributions of Orbital Periods

```
plt.subplot()
  plt.hist(kep_df['pl_orbper'])
  plt.title('Planet Orbital Period (days)')

plt.savefig('./graphs/planet_orbital_period.jpg', bbox_inches="tight", dpi=plt.show()
```



```
orbital_period_stats = kep_df['pl_orbper'].describe()
orbital_period_stats = orbital_period_stats.to_frame()
orbital_period_stats.reset_index(inplace=True)
orbital_period_stats.rename(columns={'index':'Stat', 'pl_orbper':'Value'},
orbital_period_stats
```

Out[20]:		Stat	Value
	0	count	2673.000000
	1	mean	30.753326
	2	std	75.882054
	3	min	0.355007

```
        Stat
        Value

        4
        25%
        5.194922

        5
        50%
        11.555300

        6
        75%
        27.082511
```

```
In [21]:  # plot a table
    fig, ax = plt.subplots()

# hide the axis
    fig.patch.set_visible(False)
    ax.axis('off')
    ax.axis('tight')

#create the table
    table = ax.table(cellText=orbital_period_stats.values, colLabels = orbital_

# disply and save the table
    name = "Orbital Period Stats"
    plt.title(name, y=1.0, pad=-60)
    fig.tight_layout()
    plt.savefig('./graphs/orbital_period_stats.jpg', bbox_inches="tight", dpi=3 plt.show()
```

Orbital Period Stats

Stat	Value
count	2673.0
mean	30.753326332424272
std	75.88205397827873
min	0.35500744
25%	5.19492202
50%	11.55530021
75%	27.082511
max	1322.3

Exoplanet Equilibrium Temperatures

Plotting the distribution of temperatures in Kelvin

```
plt.subplot()
plt.hist(kep_df['pl_eqt'])
plt.title('Planet EQT[K]')

plt.savefig('./graphs/planet_temps.jpg', bbox_inches="tight", dpi=450)
plt.show()
```



```
In [23]: # scatter plot of orbital period and temp
x = kep_df['pl_orbper']
y = kep_df['pl_eqt']

plt.scatter(x, y)
plt.title('Planet Temp v Orbital Period')
plt.savefig('./graphs/planet_temp_orbital_period_scatter.jpg', bbox_inches=
plt.show()
```


Exoplanet Density

Plotting the density of exoplanets in (g/cm**3)

```
In [24]: # hostogram of planet desnities
  plt.subplot()
  data = kep_df['pl_dens']
  plt.hist(data, bins=np.arange(min(data), max(data) + 100, 100))
  plt.title('Planet Density[g/cm**3]')

plt.savefig('./graphs/planet_density.jpg', bbox_inches="tight", dpi=450)
  plt.show()
```



```
max density = kep df['pl dens'].max()
          max density
Out[25]: 1290.0
          min_density = kep_df['pl_dens'].min()
          min_density
Out[26]: 0.03
          mode_density = kep_df['pl_dens'].mode()
          mode density
            4.99
Out[27]: 0
              5.71
         dtype: float64
          median_density = kep_df['pl_dens'].median()
          median_density
Out[28]: 3.065
          # scatter plot of density and temp
          x = kep df['pl dens']
          y = kep df['pl eqt']
          plt.scatter(x, y)
          plt.title('Planet Density v EQTemp')
          plt.savefig('./graphs/planet_density_scatter.jpg', bbox_inches="tight", dpi
          plt.show()
```



```
In [30]: # scatter plot of density and orbital period
x = kep_df['pl_dens']
y = kep_df['pl_orbper']

plt.scatter(x, y)
plt.title('Planet Density v Orbital Period')
plt.savefig('./graphs/planet_density_orb_period_scatter.jpg', bbox_inches='plt.show()
```

Planet Density v Orbital Period 1200 - 1000 - 800 - 6

```
earth_density_stats = kep_df['pl_dens'].describe()
earth_density_stats = earth_density_stats.to_frame()
earth_density_stats.reset_index(inplace=True)
earth_density_stats.rename(columns={'index':'Stat', 'pl_dens':'Value'}, inplearth_density_stats
```

Out[31]:		Stat	Value
	0	count	2606.000000
	1	mean	5.092675
	2	std	29.954707
	3	min	0.030000
	4	25%	2.050000
	5	50%	3.065000

```
75%
          4.770000
1000 000000
# plot a table
 fig, ax = plt.subplots()
 # hide the axis
 fig.patch.set visible(False)
 ax.axis('off')
 ax.axis('tight')
 #create the table
 table = ax.table(cellText=earth_density_stats.values, colLabels = earth_der
 # disply and save the table
 name = "Planet Density Stats"
 plt.title(name, y=1.0, pad=-60)
 fig.tight_layout()
 plt.savefig('./graphs/planet density stats.jpg', bbox inches="tight", dpi=3
 plt.show()
```

Planet Density Stats

Stat	Value
count	2606.0
mean	5.0926749808134995
std	29.954707152509364
min	0.03
25%	2.05
50%	3.065
75%	4.77
max	1290.0

Exoplanet Transit Durations

Stat

Value

Transit duration is set in days and is the duration for the transit across the star.

```
plt.subplot()
  data = kep_df['pl_trandur']
  plt.hist(data, bins=np.arange(min(data), max(data) + 1, 1))
  plt.title('Planet Transit Duration')

plt.savefig('./graphs/kep_transit_durations.jpg', bbox_inches="tight", dpi= plt.show()
```



```
In [34]: # checking for any relationship between the duration and the temperature
    x = kep_df['pl_trandur']
    y = kep_df['pl_eqt']

plt.scatter(x, y)
    plt.title('Planet Transit Duration vs Temp')
    plt.savefig('./graphs/planet_trans_and_temp_scatter.jpg', bbox_inches="tight")
    plt.show()
```



```
# checking for any relationship between the duration and the period
x = kep_df['pl_trandur']
y = kep_df['pl_orbper']

plt.scatter(x, y)
plt.title('Planet Transit Duration vs Total Orbital Period')
plt.savefig('./graphs/planet_trans_and_orbper_scatter.jpg', bbox_inches="tiplt.show()
```


Exoplanet Earth Mass

The Earth Mass equivalent of the exoplanet found

```
plt.subplot()
data = kep_df['pl_bmasse']
plt.hist(data)
plt.title('Planet Earth Mass')

plt.savefig('./graphs/kep_earth_mass.jpg', bbox_inches="tight", dpi=450)
plt.show()
```

2500 - 2000 - 1500 - 1000 2000 3000 4000

```
In [37]: # scatter plot of earth mass and orbital period
x = kep_df['pl_bmasse']
y = kep_df['pl_orbper']

plt.scatter(x, y)
plt.title('Planet Mass v Orbital Period')
plt.savefig('./graphs/planet_mass_orbper_scatter.jpg', bbox_inches="tight",
plt.show()
```

```
earth mass mode = kep df['pl bmasse'].mode()
          earth mass mode
              3.33
Out[38]: 0
         dtype: float64
          earth_mass_min = kep_df['pl_bmasse'].min()
          earth_mass_min
Out[39]: 0.0374
In [40]:
          earth_mass_max = kep_df['pl_bmasse'].max()
          earth mass max
Out[40]: 43000.0
In [41]:
          earth mass mean = kep df['pl bmasse'].mean()
          earth mass mean
Out[41]: 156.51208530673722
In [42]:
          earth mass median = kep df['pl bmasse'].median()
          earth mass median
Out[42]: 5.39
In [43]:
          earth mass stats = kep df['pl bmasse'].describe()
          earth mass stats = earth mass stats.to frame()
          earth mass stats.reset index(inplace=True)
          earth mass stats.rename(columns={'index':'Stat', 'pl bmasse':'Value'}, inpl
          earth mass stats
```

```
Out [43]: Stat Value

0 count 2657.000000

1 mean 156.512085

2 std 2204.692704
```

```
      Stat
      Value

      3 min
      0.037400

      4 25%
      2.890000

      5 50%
      5.390000

      6 75%
      9.010000

      -
      -
```

```
In [44]: # plot a table
    fig, ax = plt.subplots()

# hide the axis
    fig.patch.set_visible(False)
    ax.axis('off')
    ax.axis('tight')

# create the table
    table = ax.table(cellText=earth_mass_stats.values, colLabels = earth_mass_s
# disply and save the table
```

Earth Mass Stats

plt.savefig('./graphs/earth_mass_stats.jpg', bbox_inches="tight", dpi=300)

Stat	Value
count	2657.0
mean	156.51208530673722
std	2204.6927036880425
min	0.0374
25%	2.89
50%	5.39
75%	9.01
max	43000.0

Exoplanet in Jupiter Radius

name = "Earth Mass Stats"

fig.tight_layout()

plt.show()

plt.title(name, y=1.0, pad=-60)

Plot the Jupiter radius distributions between the exoplanets discovered

```
plt.subplot()
data = kep_df['pl_radj']
plt.hist(data, bins=np.arange(min(data), max(data) + 0.01, 0.01))
plt.title('Planet Juptier Radius')

plt.savefig('./graphs/kep_jupiter_radius.jpg', bbox_inches="tight", dpi=450
plt.show()
```



```
in [46]:
    jupiter_radius_stats = kep_df['pl_radj'].describe()
    jupiter_radius_stats = jupiter_radius_stats.to_frame()
    jupiter_radius_stats.reset_index(inplace=True)
    jupiter_radius_stats.rename(columns={'index':'Stat', 'pl_radj':'Value'}, in jupiter_radius_stats
```

Out[46]:		Stat	Value
	0	count	2673.000000
	1	mean	0.238951
	2	std	0.206891
	3	min	0.026000
	4	25%	0.133000
	5	50%	0.192000
	6	75%	0.256000
	7	max	1.990000

```
In [47]:
# plot a table
fig, ax = plt.subplots()

# hide the axis
fig.patch.set_visible(False)
ax.axis('off')
ax.axis('tight')

#create the table
table = ax.table(cellText=jupiter_radius_stats.values, colLabels = jupiter_

# disply and save the table
name = "Juptier Radius Stats"
plt.title(name, y=1.0, pad=-60)
fig.tight_layout()
plt.savefig('./graphs/jupiter_radius_stats.jpg', bbox_inches="tight", dpi=3
plt.show()
```

Juptier Radius Stats

Stat	Value
count	2673.0
mean	0.23895099139543613
std	0.20689140294422023
min	0.026
25%	0.133
50%	0.192
75%	0.256
max	1.99

Exoplanet in Earth Radius

Plot the Earth radius distributions between the exoplanets discovered

```
In [48]:
    plt.subplot()
    data = kep_df['pl_rade']
    plt.hist(data, bins=np.arange(min(data), max(data) + 1, 1))
    plt.title('Planet in Earth Radius')

    plt.savefig('./graphs/kep_earth_radius.jpg', bbox_inches="tight", dpi=450)
    plt.show()
```



```
earth_radius_stats = kep_df['pl_rade'].describe()
earth_radius_stats = earth_radius_stats.to_frame()
earth_radius_stats.reset_index(inplace=True)
earth_radius_stats.rename(columns={'index':'Stat', 'pl_rade':'Value'}, inpl
earth_radius_stats
```

```
Out [49]: Stat Value

0 count 2673.000000

1 mean 2.678313

2 std 2.319057
```

	Stat	Value
3	min	0.296000
4	25%	1.490000
5	50%	2.150000
6	75%	2.870000

```
In [50]: # plot a table
    fig, ax = plt.subplots()

# hide the axis
    fig.patch.set_visible(False)
    ax.axis('off')
    ax.axis('tight')

#create the table
    table = ax.table(cellText=earth_radius_stats.values, colLabels = earth_radi

# disply and save the table
    name = "Earth Radius Stats"
    plt.title(name, y=1.0, pad=-60)
    fig.tight_layout()
    plt.savefig('./graphs/earth_radius_stats.jpg', bbox_inches="tight", dpi=300
    plt.show()
```

Earth Radius Stats

Stat	Value
count	2673.0
mean	2.6783127572016494
std	2.3190566893338156
min	0.296
25%	1.49
50%	2.15
75%	2.87
max	22.31

Stellar Age

The stellar ages of stars hosting known exoplanets

```
In [51]: # plot a histogram to visualise distribution
   plt.subplot()
   data = kep_df['st_age']
   plt.hist(data)
   plt.title('Stellar Age [Gyr]')

plt.savefig('./graphs/stellar_age.jpg', bbox_inches="tight", dpi=450)
   plt.show()
```



```
In [52]: # scatter plot of stellar age and orbital period
x = kep_df['st_age']
y = kep_df['pl_orbper']

plt.scatter(x, y)
plt.title('Stellar Age v Orbital Period')
plt.savefig('./graphs/stellar_age_orbper_scatter.jpg', bbox_inches="tight",
plt.show()
```

Stellar Age v Orbital Period 1000 - 800 - 400 - 400 - 200 - 0 2 4 6 8 10 12 14

```
In [53]:
# scatter plot of stellar age and temp
x = kep_df['st_age']
y = kep_df['pl_eqt']

plt.scatter(x, y)
plt.title('Stellar Age[Gyr] v EQTemp[K]')
plt.savefig('./graphs/stellar_age_temp_scatter.jpg', bbox_inches="tight", c
plt.show()
```



```
In [54]:
# scatter plot of stellar age and transit duration
x = kep_df['st_age']
y = kep_df['pl_trandur']

plt.scatter(x, y)
plt.title('Stellar Age[Gyr] v Transit [days]')
plt.savefig('./graphs/stellar_age_transit_scatter.jpg', bbox_inches="tight'
plt.show()
```



```
In [55]: # scatter plot of stellar age and transit duration
    x = kep_df['st_age']
    y = kep_df['pl_bmasse']

plt.scatter(x, y)
    plt.title('Stellar Age[Gyr] v Earth Mass')
    plt.savefig('./graphs/stellar_age_earthMass_scatter.jpg', bbox_inches="tightplt.show()
```



```
stellar_age_stats = kep_df['st_age'].describe()
stellar_age_stats = stellar_age_stats.to_frame()
stellar_age_stats.reset_index(inplace=True)
stellar_age_stats.rename(columns={'index':'Stat', 'st_age':'Value'}, inplacestellar_age_stats
```

Out[56]:		Stat	Value
	0	count	2568.000000
	1	mean	4.233917
	2	std	2.932827
	3	min	0.000000
	4	25%	2.690000
	5	50%	3.890000
	6	75%	4.680000
	7	max	14.000000

```
In [57]: # plot a table
    fig, ax = plt.subplots()

# hide the axis
    fig.patch.set_visible(False)
    ax.axis('off')
    ax.axis('tight')

#create the table
    table = ax.table(cellText=stellar_age_stats.values, colLabels = stellar_age

# disply and save the table
    name = "Stellar Age[Gyr] Stats"
    plt.title(name, y=1.0, pad=-60)
    fig.tight_layout()
    plt.savefig('./graphs/stellar_age_stats.jpg', bbox_inches="tight", dpi=300)
    plt.show()
```

Stellar Age[Gyr] Stats

Stat	Value
count	2568.0
mean	4.233917445482864
std	2.9328274812653143
min	0.0
25%	2.69
50%	3.89
75%	4.68
max	14.0

Stellar Mass

The stellar mass (also known as Solar Mass) of stars hosting known exoplanets

```
In [59]: # plot a histogram to visualise distribution
   plt.subplot()
   data = kep_df['st_mass']
   plt.hist(data)
   plt.title('Stellar Mass [Solar Mass]')

plt.savefig('./graphs/stellar_mass.jpg', bbox_inches="tight", dpi=450)
   plt.show()
```



```
In [60]: # scatter plot of stellar age and stellar mass
    x = kep_df['st_age']
    y = kep_df['st_mass']

plt.scatter(x, y)
    plt.title('Stellar Age[Gyr] v Stellar Mass [Solar Mass]')
    plt.savefig('./graphs/stellar_age_stealler_mass_scatter.jpg', bbox_inches='
    plt.show()
```

Stellar Age[Gyr] v Stellar Mass [Solar Mass] 1.6 - 1.4 - 1.2 - 1.0 - 0.8 - 0.6 - 0.4 - 0.2 - 0 - 2 - 4 - 6 - 8 - 10 - 12 - 14

```
In [63]: # scatter plot of planet mass and stellar mass
x = kep_df['st_mass']
y = kep_df['pl_bmasse']

plt.scatter(x, y)
plt.title('Stellar Mass [Solar Mass] v Planet Mass')
plt.savefig('./graphs/stealler_mass_planet_mass_scatter.jpg', bbox_inches=
plt.show()
```



```
In [64]:
    stellar_mass_stats = kep_df['st_mass'].describe()
    stellar_mass_stats = stellar_mass_stats.to_frame()
    stellar_mass_stats.reset_index(inplace=True)
    stellar_mass_stats.rename(columns={'index':'Stat', 'st_mass':'Value'}, inpl
    stellar_mass_stats
```

Stat	Value
count	2673.000000
l mean	0.951104
2 std	0.196974
3 min	0.130000
25%	0.840000
50%	0.960000
֡	count mean std min 25%

```
75%
                                                  1.070000
           4 700000
# plot a table
fig, ax = plt.subplots()
 # hide the axis
fig.patch.set visible(False)
ax.axis('off')
ax.axis('tight')
#create the table
table = ax.table(cellText=stellar_mass_stats.values, colLabels = stellar_mass_stats.values, colL
# disply and save the table
name = "Stellar Mass [Solar Mass] Stats"
plt.title(name, y=1.0, pad=-60)
fig.tight_layout()
plt.savefig('./graphs/stellar mass stats.jpg', bbox inches="tight", dpi=300
plt.show()
```

Stellar Mass [Solar Mass] Stats

Stat	Value
count	2673.0
mean	0.9511036288814071
std	0.19697358813228316
min	0.13
25%	0.84
50%	0.96
75%	1.07
max	1.72

System Distance

Stat

Value

The Parsec distance to the host of the exoplanet

```
In [66]: # plot a histogram to visualise distribution
   plt.subplot()
   data = kep_df['sy_dist']
   plt.hist(data)
   plt.title('System Distance [Parsecs]')

plt.savefig('./graphs/system_distance.jpg', bbox_inches="tight", dpi=450)
   plt.show()
```



```
In [67]: # scatter plot of system distance and stellar mass
x = kep_df['sy_dist']
y = kep_df['st_mass']

plt.scatter(x, y)
plt.title('System Distance[Parsec] v Stellar Mass [Solar Mass]')
plt.savefig('./graphs/system_distance_steller_mass_scatter.jpg', bbox_inche plt.show()
```

System Distance[Parsec] v Stellar Mass [Solar Mass]


```
In [68]: # scatter plot of system distance and stellar age
    x = kep_df['sy_dist']
    y = kep_df['st_age']

plt.scatter(x, y)
    plt.title('System Distance[Parsec] v Stellar Age [Gyr]')
    plt.savefig('./graphs/system_distance_steller_age_scatter.jpg', bbox_inches plt.show()
```



```
stellar_distance_stats = kep_df['sy_dist'].describe()
stellar_distance_stats = stellar_distance_stats.to_frame()
stellar_distance_stats.reset_index(inplace=True)
stellar_distance_stats.rename(columns={'index':'Stat', 'sy_dist':'Value'},
stellar_distance_stats
```

Out[69]:		Stat	Value
	0	count	2663.000000
	1	mean	818.424865
	2	std	449.332459
	3	min	36.439600
	4	25%	486.360000
	5	50%	769.096000
	6	75%	1047.030000
	7	max	3460.510000

```
# plot a table
fig, ax = plt.subplots()

# hide the axis
fig.patch.set_visible(False)
ax.axis('off')
ax.axis('tight')

#create the table
table = ax.table(cellText=stellar_distance_stats.values, colLabels = stella

# disply and save the table
name = "System Distance [Parsecs] Stats"
plt.title(name, y=1.0, pad=-60)
fig.tight_layout()
plt.savefig('./graphs/system_distance_stats.jpg', bbox_inches="tight", dpi=plt.show()
```

System Distance [Parsecs] Stats

Stat	Value
count	2663.0
mean	818.4248652612065
std	449.332458762824
min	36.4396
25%	486.36
50%	769.096
75%	1047.03
max	3460.51

Tn [] •	
T11 [] •	