Electronic Circuits

Prof. Nizamettin AYDIN
naydin@yildiz.edu.tr
http://www.yildiz.edu.tr/~naydin

Dr. Gökhan Bilgin gokhanb@ce.yildiz.edu.tr

Operational amplifiers

- Introduction
- · An ideal operational amplifier
- Basic operational amplifier circuits
- · Other useful circuits
- · Real operational amplifiers
- · Selecting component values
- · Effects of feedback on op-amp circuits

Introduction

 Operational amplifiers (op-amps) are among th most widely used building blocks in electronics

- they are integrated circuits (ICs)
 - often DIL or SMT

* 4

DII. puckage (b) An SMT puck

Introduction (contd.)

· A single package will often contain several op-amps

An ideal operational amplifier

• An *ideal* op-amp would be an ideal voltage amplifier and would have: $A_v = \infty$, $R_i = \infty$ and $R_o = 0$

Basic operational amplifier circuits

• Inverting and non-inverting amplifiers

Basic operational amplifier circuits (contd.)

- When looking at feedback we derived the circuit of an amplifier from 'first principles'
- Normally we use standard 'cookbook' circuits and select component values to suit our needs
- In analysing these we normally assume the use of ideal opamps
 - in demanding applications we may need to investigate the appropriateness of this assumption
 - the use of ideal components makes the analysis of these circuits very straightforward

Basic operational amplifier circuits (contd.)

• A non-inverting amplifier

Analysis

Since the gain is assumed infinite, if V_o is finite then the input voltage must be zero. Hence

Since the input resistance of the op-amp is $\propto V = V_2 - \frac{R_2}{R_2}$

d hence, since $V_{-} = V_{+} = V_{i}$

$$V_i = V_o \frac{R_2}{R_1 + R_2}$$

$$G = \frac{V_0}{V_0} = \frac{R_1 + R_2}{R_2}$$

Basic operational amplifier circuits (contd.)

• Example

Design a non-inverting amplifier with a gain of 25

From above

$$G = \frac{V_o}{V_i} = \frac{R_1 + R_2}{R_2}$$

 $R_1 + R_2 = 25R_2$

 $R_1 = 24R_2$

 $R_1 + R_2$

Therefore choose $R_2 = 1 \text{ k}\Omega$ and $R_1 = 24 \text{ k}\Omega$ (choice of values will be discussed later)

Basic operational amplifier circuits (contd.)

• An inverting amplifier

Analysis

Since the gain is assumed infinite, if V_o is finite the input voltage must be zero. Hence

$$V_{-} = V_{+} = 0$$

Since the input resistance of the op-amp is ∞ its input current must be zero, and hence

$$I_1 = -I_2$$

$$I_1 = \frac{V_o - V_-}{R_1} = \frac{V_o - 0}{R_1} = \frac{V_o}{R_1}$$

$$I_2 = \frac{V_i - V_-}{R_2} = \frac{V_i - 0}{R_2} = \frac{V_i}{R_2}$$

Basic operational amplifier circuits (contd.)

• Analysis (continued)

Therefore, since
$$I_I = -I_2$$

$$\frac{V_o}{R_1} = -\frac{I_2}{I_1}$$

or, rearranging

$$\frac{-V_i}{R_2}$$

$$G = \frac{V_o}{V_i} = -\frac{R_1}{R_2}$$

 Here V_ is held at zero volts by the operation of the circuit, hence the circuit is known as a virtual earth circuit

Basic operational amplifier circuits (contd.)

Example

Design an inverting amplifier with a gain of -25

From above

Therefore choose $R_2 = 1 \text{ k}\Omega$ and $R_1 = 25 \text{ k}\Omega$ (we will consider the choice of values later)

Other useful circuits

- In addition to simple amplifiers, op-amps can also be used in a range of other circuit
- The next few slides show a few examples of op-amp circuits for a range of purposes
- The analysis of these circuits is similar to that of the noninverting and inverting amplifiers but (in most cases) this is not included here
- For more details of these circuits see the relevant section of the course text (as shown on the slides)

Other useful circuits (contd.)

• A unity gain buffer amplifier

Analysis

This is a special case of the non-inverting amplifier with $R_1 = 0$ and $R_2 = \infty$

Hence $R_1 + R_2 = R$

Thus the circuit has a gain of unity

At first sight this might not seem like a very useful circuit, however, it has a high input resistance and a low output resistance and is therefore useful as a **buffer amplifier**

Other useful circuits (contd.)

· A current to voltage converter

Other useful circuits (contd.)

A differential amplifier (or subtractor)

Other useful circuits (contd.)

• An inverting summing amplifier

Other useful circuits (contd.)

• An integrator

Other useful circuits (contd.)

· A differentiator

Real operational amplifiers

- So far we have assumed the use of ideal op-amps
 - these have $A_v = \infty$, $R_i = \infty$ and $R_o = 0$
- Real components do not have these ideal characteristics (though in many cases they approximate to them)
- In this section we will look at the characteristics of typical devices
 - perhaps the most widely used general purpose op-amp is the 741

Real operational amplifiers (contd.)

· Voltage gain

- typical gain of an operational amplifier might be $100-140~\mathrm{dB}$ (voltage gain of 10^5-10^6)
- -741 has a *typical* gain of 106 dB (2×10^5)
- high gain devices might have a gain of 160 dB (108)
- while not infinite, the gain of most op-amps is 'high-enough'
- however, gain varies between devices and with temperature

Real operational amplifiers (contd.)

• Input resistance

- typical input resistance of a 741 is 2 $M\Omega$
- very variable, for a 741 it can be as low as 300 $k\Omega$
- the above value is typical for devices based on bipolar transistors
- op-amps based on **field-effect transistors** generally have a much higher input resistance perhaps $10^{12}\,\Omega$
- we will discuss bipolar and field-effect transistors later

Real operational amplifiers (contd.)

• Output resistance

- typical output resistance of a 741 is 75 Ω
- again very variable
- often of more importance, is the maximum output current
- the 741 will supply 20 mA
- high-power devices may supply an amp or more

Real operational amplifiers (contd.)

• Supply voltage range

- $-\,$ a typical arrangement would use supply voltages of +15 V and $-\,$ 15 V, but a wide range of supply voltages is usually possible
- the 741 can use voltages in the range ± 5 to ± 18 V
- some devices allow voltages up to ±30 V or more
- others, designed for low voltages, may use $\pm 1.5 \text{ V}$
- $-\,$ many op-amps permit single voltage supply operation, typically in the range 4 to 30 V

Real operational amplifiers (contd.)

- Common-mode rejection ratio
 - an ideal op-amp would not respond to common-mode signals.
 - real amplifiers do respond to some extent
 - the common-mode rejection ratio (CMRR) is the ratio of the response produced by a differential-mode signal to that produced by a common-mode signal
 - typical values for CMRR might be in the range 80 to 120 dB
 - 741 has a CMRR of about 90 dB

Real operational amplifiers (contd.)

- Frequency response
 - typical 741 frequency response is shown here
 - upper cut-off frequency is a few hertz
 - frequency range generally described by the unity-gain bandwidth
 - high-speed devices may operate up to several gigahertz

Selecting component values

- · Our analysis assumed the use of an ideal op-amp
- When using real components we need to ensure that our assumptions are valid
- · In general this will be true if we:
 - limit the gain of our circuit to much less than the open-loop gain of our op-amp
 - choose external resistors that are *small* compared with the input resistance of the op-amp
 - choose external resistors that are *large* compared with the output resistance of the op-amp.
- Generally we use resistors in the range 1 to $100 \text{ k}\Omega$

Effects of feedback on op-amp circuits

- Effects of feedback on the Gain
 - negative feedback *reduces* gain from A to A/(1 + AB)
 - in return for this loss of gain we get consistency, provided that the open-loop gain is much greater than the closed-loop gain (that is, A>>1/B)
 - using negative feedback, standard cookbook circuits can be
 used greatly simplifying the design
 - these can be analysed without a detailed knowledge of the op-amp itself

Effects of feedback on op-amp circuits (contd.)

• Effects of feedback on frequency response

as the gain is reduced the bandwidth is increased

- gain × bandwidth ≈ constant

- since gain is *reduced* by (1 + AB) bandwidth is *increased* by (1 + AB)

 for a 741
- gain × bandwidth $\approx 10^6$ • if gain = 1000 BW ≈ 1000 Hz
- if gain = 100 BW $\approx 10,000 \text{ Hz}$

Effects of feedback on op-amp circuits (contd.)

• Effects of feedback on input and output resistance

- input/output resistance can be increased or decreased depending on how feedback is used.
 - · we looked at this in an earlier lecture
 - in each case the resistance is changed by a factor of (1 + AB)

Example

– if an op-amp with a gain of 2×10^5 is used to produce an amplifier with a gain of 100 then:

 $A = 2 \times 10^{5}$ B = 1/G = 0.01 $(1 + AB) = (1 + 2000) \approx 2000$

Effects of feedback on op-amp circuits (contd.)

• Example

 determine the input and output resistance of the following circuit assuming op-amp is a 741

Open-loop gain (A) of a 741 is 2×10^5 Closed-loop gain (1/B) is 20, B=1/20=0.05 $(1+AB)=(1+2\times 10^5\times 0.05)=10^4$ Closedback senses output $\emph{voltage}$ therefore it $\emph{reduces}$ output resistance of op-amp (75 Ω) by 10^4 to give 7.5 m Ω

Feedback subtracts a *voltage* from the input, therefore it *increases* the input resistance of the op-amp (2 M Ω) by 10⁴ to give 20 G Ω

Effects of feedback on op-amp circuits (contd.)

• Example

 determine the input and output resistance of the following circuit assuming op-amp is a 741

Open-loop gain (A) of a 741 is 2×10^5 Closed-loop gain (1/B) is 20, B=1/20=0.05 $(1+AB)=(1+2\times10^5\times0.05)=10^4$ Feedback senses output $\emph{voltage}$ therefore, it $\emph{reduces}$ output resistance of op-amp (75 Ω) by 10^4 to give 7.5 m Ω

Feedback subtracts a *current* from the input, therefore it *decreases* the input resistance. In this case the input sees R_2 to a virtual earth, therefore the input resistance is 1 k Ω

Key points

- Operational amplifiers are among the most widely used building blocks in electronic circuits
- An ideal operational amplifier would have infinite voltage gain, infinite input resistance and zero output resistance
- Designers often make use of cookbook circuits
- Real op-amps have several non-ideal characteristics However, if we choose components appropriately this should not affect the operation of our circuits
- Feedback allows us to increase bandwidth by trading gain against bandwidth
- · Feedback also allows us to alter other circuit characteristics

Op-Amp Applications

Constant-gain multiplier Voltage summing Voltage buffer Controlled sources Instrumentation circuits Active filters

34

Active Filters Adding capacitors to op-amp circuits provides external control of the cutoff frequencies. The op-amp active filter provides controllable cutoff frequencies and controllable gain. • Low-pass filter • High-pass filter • Bandpass filter

