

Apa itu Metode Numerik?

- ► Numerik: berhubungan dengan angka.
- ► **Metode:** cara yang <u>sistematis</u> untuk menyelesaikan persoalan guna mencapai tujuan yang ditentukan.
- ► Metode Numerik: cara sistematis untuk menyelesaikan persoalan matematika dengan operasi angka (+, -, *, /).

Contoh persoalan matematika

1. Tentukan akar-akar persamaan polinom:

$$23.4x^7 - 1.25x^6 + 120x^4 + 15x^3 - 120x^2 - x + 100 = 0$$

2. Tentukan nilai x yang memenuhi persamaan:

$$\sqrt{27.8e^{5x} - \frac{1}{x}} = \cos^{-1}\frac{(120x^2 + \sqrt{2x})}{17x - 65}$$

3. Hitung nilai integral-tentu berikut:

$$\int_{1.2}^{2.5} \left(\sqrt{\left(45.3e^{7x} + \frac{100}{x}\right)^4} + \frac{4}{(x^2 + 1)} \right) dx$$

4. Diberikan persamaan differensial biasa (PDB) dengan sebuah nilai awal:

$$150y'' + 2y't = \frac{\sqrt{\ln(21t + 40)y}}{t^2} + 120; \ \underline{y(0)} = 1$$

Hitung nilai y pada saat t = 1.8

5. Selesaikan sistem persamaaan linear:

Cara penyelesaian persoalan matematika

- ► Cara penyelesaian persoalan matematika ada 2:
 - 1. Secara analitik: menggunakan rumus dan teoremayang sudah baku di dalam matematika \rightarrow metode analitik.
 - Secara numerik: menggunakan pendekatan aproksimasi untuk mencari solusi hanya dengan operasi aritmatika biasa → metode numerik.

$$x^2 - 6x + 8 = 0 \rightarrow Carilah akar-akarnya!$$

1. Metode analitik: faktorkan menjadi

2. Metode Numerik: Diketahui sebuah akar terletak di dalam selang $[3, 6] \rightarrow$ mengapa?

Pendekatan sederhana mencari akar adalah secara iteratif dengan **metode titik tengah** (bisection method)

- 1. bagi selang $\begin{bmatrix} a \\ b \end{bmatrix}$ menjadi dua dengan titik tengah, c = (a + b)/2
- 2. ada dua sub-selang: [a, c] dan [c, b]. Pilih selang iterasi yang baru dengan syarat nilai fungsi di ujung selang berbeda tanda.
- 3. ulangi langkah 1 dan 2 sampai ukuran selang $< \varepsilon$ (epsilon adalah nilai yang sangat kecil yang menyatakan toleransi kesalahan akar yang diinginkan, misalnya $\varepsilon = 0.001$, 000001, dsb

Mencari akar $f(x) = x^2 - 6x + 8 = 0$ di dalam selang [3,6] dengan $\varepsilon = 0.0005$

Iterasi	a	С	b	f(a)	f(c)	f(b)	Selang Baru	Lebar	
1	c 3	(4,5)	6	-1	1,25	8	[a, c]	1,5	
2	3	3,75	4,5	-1	-0,4375	1,25	[c, b]	0,75	
3	3,75	4,125	4,5	-0,4375	0,265625	1,25	[a, c]	0,375	
4	3,75	3,9375	4,125	-0,4375	-0,121094	0,265625	[c, b]	0,1875	
5	3,9375	4,03125	4,125	-0,121094	0,063477	0,265625	[a, c]	0,09375	55
6	3,9375	3,984375	4,03125	-0,121094	-0,031006	0,063477	[c, b]	0,046875	
7	3,984375	4,007813	4,031250	-0,031006	0,015686	0,063477	[a, c]	0,023438	
8	3,984375	3,996094	4,007813	-0,031006	-0,007797	0,015686	[c, b]	0.011719	1
9	3,996094	4,001953	4,007813	-0,007797	0,003910	0,015686	[a, c]	0,005859	
10	3,996094	3,999023	4,001953	-0,007797	-0,001952	0,003910	[c, b]	0,002930	
11	3,999023	4,000488	4,001953	-0,001952	0,000977	0,003910	[a, c]	0,001465	
12	3,999023	3,999756	4,000488	-0,001952	-0,000488	0,000977	[c, b]	0,000732	K
13	3,999756	4,000122	4,000488	-0,000488	0,000244	0,000977	[a, c]	0,000366	S

► Aproksimasi akar = 4.000122

0,000001

0,01

Hitung integral $\int_{-1}^{1} (4 - x^2) dx$

1. Metode analitik.

Persamaan:

$$\int ax^n dx = \frac{1}{n+1} ax^{n+1} + C$$

$$\int_{-1}^{1} (4 - x^2) dx = \left[4x - \frac{1}{3}x^3 \right]_{x = -1}^{x = 1}$$

$$= \left[4(1) - \frac{1}{3}(1) \right] - \left[4(-1) - \frac{1}{3}(-1) \right]$$

$$= \frac{22}{3} = \boxed{7.33}$$

2. Metode numerik.

Nilai integral = luas daerah di bawah kurva

Luas trapesium = (jumlah sisi sejajar \times tinggi) / 2

Nilai integral ≈ Total luas trapesium

$$\int_{-1}^{1} (4-x^{2}) dx \approx A + B + C + D$$

$$\approx \{([f(-1) + f(-0.5)] \times 0.5)/2\}$$

$$+ \{([f(-0.5) + f(0)] \times 0.5)/2\} \}$$

$$+ \{([f(0) + f(0.5)] \times 0.5)/2\} \}$$

$$+ \{([f(0.5) + f(1)] \times 0.5)/2\} \}$$

$$\approx 0.5/2\{f(-1) + 2f(-0.5) + 2f(0) + 2f(0.5) + f(1)\}$$

$$\approx 0.5/2\{3 + 7.5 + 8 + 7.5 + 3\}$$

$$\approx 7.25$$

Perbedaan analitik dan numerik

- Perbedaan solusi antara metode analitik dengan metode numerik:
 - Solusi dengan metode analitik: eksak (tepat tanpa ada kesalahan)
 - Solusi dengan metode numerik: hampiran atau aproksimasi (tidak tepat sama dengan solusi eksak, selalu ada kesalahan)
- Kesalahan dalam solusi numerik disebut galat (error)
- ▶ Galat dapat diperkecil dengan mengubah parameter di dalam metode numerik (misalnya ε , lebar trapesium, dsb)

Kelebihan metode numerik

- ► Metode numerik dapat menyelesaikan persoalan matematika yang tidak dapat diselesaikan dengan metode analitik.
- Apakah metode analitik mampu mencari akar persamaan di bawah ini?

$$\sqrt{27.8e^{5x} - \frac{1}{x}} = \cos^{-1}\frac{(120x^2 + \sqrt{2x})}{17x - 65}$$

► Apakah metode analitik mampu mencari nilai integral berikut ini?

$$\int_{1.2}^{2.5} \left(\sqrt{\left(45.3e^{7x} + \frac{100}{x}\right)^4} + \frac{4}{(x^2 + 1)} \right) dx$$

► Metode numerik mampu menyelesaikan persoalan di atas!

- Metode numerik membutuhkan banyak operasi aritmetika yang berulang.
- ▶ Oleh karena itu, komputer berguna untuk membantu perhitungan. Komputer menjadi kebutuhan yang penting dalam metode numerik.
- Metode numerik pada dasarnya adalah suatu algoritma sehingga dapat diprogram.
- ▶ Bahasa pemrograman yang akan digunakan dalam perkuliahan ini adalah <u>Python</u> dengan IDE (*integrated development* environtments) <u>Spyder</u> atau <u>Google Colab</u> (jika selalu memiliki akses internet)
 - ► Spyder: Link → offline
 - ► Google colab: ► Link →

- ► Tahapan penyelesaian persoalan secara numerik:

 - 1. Pemodelan
 2. Penyederhanaan model → htbylan paraneler
 - 3. Formulasi numerik: menentukan metode numerik yang dipakai dan membuat algoritma penyelesaian
 - 4. Pemrograman: coding

 - 5. Pengujian: tes dengan data uji 6. Evaluasi: menganalisis hasil numerik
- ► Tahap 1 dan 2 adalah pekerjaan ahli yang sesuai dengan bidangnya.
- ► Tahap 3 dan 4 adalah tugas *electrical engineering*;
- ► Tahap 5 dan 6 melibatkan *electrical engineering* dan ahli yang sesuai dengan bidangnya

Bahan kajian

Apa yang dipelajari di dalam metode numerik?

- 1. Solusi persamaan non-linear
- 2. Solusi sistem persamaan linear
- 3. Interpolasi polinom

 negress.
- 4. Turunan numerik
- 5. Integrasi numerik
- 6. Solusi persamaan diferensial biasa dengan nilai awal

Penilaian kuliah

1. Kehadiran 10 %

- 2. Tugas 10 % -> dibostran & althur sesi -> mingar depan
- 3. Kuis 20 % \$ KoTS 1 : Mg. 4
- 4. UTS 30 % → Mg. 8
- 5. UAS 30 % → Mq. 16

Assolution -> Video materi, stide, bahan baca laing

Sinkron -> evaluati: bagian kg talk sipahami &

silahkan no ad Ms.

▶ Utama

- Kharab, A. & Guenther, R.B. (2019). An Introduction to Numerical Methods: A Matlab Approach 4th Edition. Florida: CRC Press.
- 2. Rinaldi, M. (2005). Metode Numerik. Bandung: Informatika Bandung

▶ Pendamping

1. Kiusalaas, J. (2013). Numerical Methods in Engineering With Python 3. New York: Cambridge University Press.