Chapter 1 :Classification	4
1.1 Gaussian-Mixture-Models	4
1.2 Hyperboxes	4
1.3 Neural-Nets	5
1.4 Support-Vector-Machines	6
Chapter 2 Control	7
Chapter 3 :Develop	8
Chapter 4 :File	10
4.1 Images	10
4.2 Misc	10
4.3 Region	10
4.4 Text	10
4.5 Tuple	11
Chapter 5:Filter	12
5.1 Arithmetic	12
5.2 Bit	12
5.3 Color	13
5.4 Edges	13
5.5 Enhancement	14
5.6 FFT	15
5.7 Geometric-Transformations	16
5.8 Inpainting	17
5.9 Lines	17
5.10 Match	18
5.11 Misc	18
5.12 Noise	18
5.13 Optical-Flow	19
5.14 Points	19
5.15 Smoothing	19
5.16 Texture	20
5.17 Wiener-Filter	20
Chapter 6 : Graphics	21
6.1 Drawing	21
6.2 Gnuplot	22
6.3 LUT	22
6.4 Mouse	23
6.5 Output	23
6.6 Parameters	
6.7 Text	26
6.8 Window	
Chapter 7 :Image	
7.1 Access	
7.2 Acquisition	
7.3 Channel	

7.4 Creation	30
7.5 Domain	31
7.6 Features	31
7.7 Format	32
7.8 Manipulation	33
7.9 Type-Conversion	33
Chapter 8 :Lines	33
8.1 Access	33
8.2 Features	34
Chapter 9 :Matching	34
9.1 Component-Based	34
9.2 Correlation-Based	35
9.3 Gray-Value-Based	36
9.4 Shape-Based	36
Chapter 10 :Matching-3D	37
Chapter 11 :Morphology	38
11.1 Gray-Values	38
11.2 Region	39
Chapter 12:OCR(光字符识别)	42
12.1 Hyperboxes	42
12.2 Lexica	42
12.3 Neural-Nets(神经网络)	43
12.4 Support-Vector-Machines (支持矢量机)	44
12.5 Tools	44
12.6 Training-Files	45
Chapter 13:Object	45
13.1 Information	45
13.2 Manipulation	45
Chapter 14:Regions	46
14.1 Access	46
14.2 Creation	46
14.3 Features	47
14.4 Geometric-Transformations	49
14.5 Sets	50
14.6 Tests	50
14.7 Transformation	50
Chapter 15:Segmentation	51
15.1 Classification	51
15.2 Edges	52
15.3 Regiongrowing	52
15.4 Threshold	53
15.5 Topography	53
Chapter 16:System	54
16.1 Database	54

	16.2 Error-Handling	54
	16.3 Information	55
	16.4 Operating-System	55
	16.5 Parallelization	56
	16.6 Parameters	56
	16.7 Serial	56
	16.8 Sockets	56
Cha	apter 17:Tools	57
	17.1 2D-Transformations	57
	17.2 3D-Transformations	59
	17.3 Background-Estimator	60
	17.4 Barcode	60
	17.5 Calibration	61
	17.6 Datacode	62
	17.7 Fourier-Descriptor	63
	17.8 Function	63
	17.9 Geometry	64
	17.10 Grid-Rectification.	65
	17.11 Hough	66
	17.12 Image-Comparison	66
	17.13 Kalman-Filter	67
	17.14 Measure	67
	17.15 OCV(Open Circuit Voltage 光学字符校验)	68
	17.16 Shape-from	68
	17.17 Stereo	69
	17.18 Tools-Legacy	70
Cha	apter 18:Tuple	71
	18.1 Arithmetic	71
	18.2 Bit-Operations	72
	18.3 Comparison	73
	18.4 Conversion	73
	18.5 Creation	74
	18.6 Element-Order	74
	18.7 Features	74
	18.8 Logical-Operations	74
	18.9 Selection	75
	18.10 String-Operators	75
Cha	apter 19:XLD	76
	19.1 Access	76
	19.2 Creation	76
	19.3 Features	77
	19.4 Geometric-Transformations	79
	19.5 Sets	79
	19.6 Transformation	80

Chapter 1: Classification

1.1 Gaussian-Mixture-Models

1.add_sample_class_gmm

功能:把一个训练样本添加到一个高斯混合模型的训练数据上。

2.classify_class_gmm

功能:通过一个高斯混合模型来计算一个特征向量的类。

3. clear_all_class_gmm

功能:清除所有高斯混合模型。

4. clear_class_gmm

功能:清除一个高斯混合模型。

5. clear_samples_class_gmm

功能:清除一个高斯混合模型的训练数据。

6. create_class_gmm

功能: 为分类创建一个高斯混合模型。

7.evaluate_class_gmm

功能: 通过一个高斯混合模型评价一个特征向量。

8. get_params_class_gmm

功能:返回一个高斯混合模型的参数。

9. get_prep_info_class_gmm

功能: 计算一个高斯混合模型的预处理特征向量的信息内容。

10. get_sample_class_gmm

功能:从一个高斯混合模型的训练数据返回训练样本。

11. get_sample_num_class_gmm

功能: 返回存储在一个高斯混合模型的训练数据中的训练样本的数量。

12. read_class_gmm

功能:从一个文件中读取一个高斯混合模型。

13. read samples class gmm

功能:从一个文件中读取一个高斯混合模型的训练数据。

14. train_class_gmm

功能:训练一个高斯混合模型。

15. write_class_gmm

功能: 向文件中写入一个高斯混合模型。

16. write_samples_class_gmm

功能: 向文件中写入一个高斯混合模型的训练数据。

1.2 Hyperboxes

1. clear_sampset

功能:释放一个数据集的内存。

2. close all class box

功能:清除所有分类器。

3. close_class_box

功能:清除分类器。

4. create_class_box

功能: 创建一个新的分类器。

5. descript_class_box

功能:分类器的描述。

6. enquire_class_box

功能: 为一组属性分类。

7. enquire_reject_class_box

功能: 为一组带抑制类的属性分类。

8. get_class_box_param

功能: 获取关于现在参数的信息。

9. learn_class_box

功能:训练分类器。

10. learn_sampset_box

功能: 用数据组训练分类器。

11. read_class_box

功能:从一个文件中读取分类器。

12.read_sampset

功能:从一个文件中读取一个训练数据组。

13. set_class_box_param

功能: 为分类器设计系统参数。

14. test_sampset_box

功能: 为一组数组分类。

15. write_class_box

功能: 在一个文件中保存分类器。

1.3 Neural-Nets

1. add_sample_class_mlp

功能:把一个训练样本添加到一个多层感知器的训练数据中。

2. classify_class_mlp

功能:通过一个多层感知器计算一个特征向量的类。

3. clear_all_class_mlp

功能:清除所有多层感知器。

4. clear_class_mlp

功能:清除一个多层感知器。

5. clear_samples_class_mlp

功能:清除一个多层感知器的训练数据。

6. create_class_mlp

功能: 为分类或者回归创建一个多层感知器。

7. evaluate class mlp

功能:通过一个多层感知器计算一个特征向量的评估。

8. get_params_class_mlp

功能:返回一个多层感知器的参数。

9. get_prep_info_class_mlp

功能: 计算一个多层感知器的预处理特征向量的信息内容。

10. get_sample_class_mlp

功能:从一个多层感知器的训练数据返回一个训练样本。

11. get_sample_num_class_mlp

功能:返回存储在一个多层感知器的训练数据中的训练样本的数量。

12. read_class_mlp

功能:从一个文件中读取一个多层感知器。

13. read samples class mlp

功能:从一个文件中读取一个多层感知器的训练数据。

14. train_class_mlp_

功能:训练一个多层感知器。

15. write_class_mlp

功能: 向一个文件中写入一个多层感知器。

16. write_samples_class_mlp

功能: 向一个文件中写入一个多层感知器的训练数据。

1.4 Support-Vector-Machines

1. add_sample_class_svm

功能: 把一个训练样本添加到一个支持向量机的训练数据上。

2. classify_class_svm

功能:通过一个支持向量机为一个特征向量分类。

3. clear_all_class_svm

功能:清除所有支持向量机。

4. clear_class_svm

功能:清除一个支持向量机。

5. clear_samples_class_svm

功能:清除一个支持向量机的训练数据。

6. create_class_svm

功能: 为模式分类创建一个支持向量机。

7. get_params_class_svm

功能:返回一个支持向量机的参数。

8. get_prep_info_class_svm

功能: 计算一个支持向量机的预处理特征向量的信息内容。

9. get_sample_class_svm

功能:从一个支持向量机的训练数据返回一个训练样本。

10. get_sample_num_class_svm

功能: 返回存储在一个支持向量机训练数据中的训练样本的数量。

11. get_support_vector_class_svm

功能:从一个训练过的支持向量机返回一个支持向量的索引。

12. get_support_vector_num_class_svm

功能: 返回一个支持向量机的支持向量的数量。

13. read_class_svm

功能:从一个文件中读取一个支持向量机。

14. read_samples_class_svm

功能:从一个文件中读取一个支持向量机的训练数据。

15. reduce_class_svm

功能: 为了更快分类,用一个降低的支持向量机近似一个训练过的支持向量机。

16. train_class_svm

功能:训练一个支持向量机。

17. write class svm

功能: 向一个文件中写入一个支持向量机。

18.write_samples_class_svm

功能: 向一个文件中写入一个支持向量机的训练数据。

Chapter 2 Control

1.assign

功能: 为一个控制变量分配一个新值。

2.break

功能:终止循环执行。

3. comment

功能: 向程序添加一行注释。

4. continue

功能: 跳过现在的循环执行。

5. else

功能:条件语句的替换。

6. elseif

功能:可选择的条件语句。

7. endfor

功能: for 循环的终止。

8. endif

功能: if 命令的终止。

9. endwhile

功能: while 循环的终止。

10. exit

功能:终止 HDevelop。

11. for

功能: 执行一定数量的主体。

12. if

功能:条件语句。

13.ifelse

功能:有选择的条件语句。

14. insert

功能: 向一个元组分配一个量。

15.repeat

功能: repeat..until 循环的开始。

16. return

功能:终止程序调用。

17. stop

功能:停止程序执行。

18.until

功能:继续执行主体,只要条件是不真实的。

19. while

功能:继续执行主体,只要条件是真实的。

Chapter 3 : Develop

1.dev_clear_obj

功能:从 HALCON 数据库中删除一个图标。

2. dev_clear_window

功能:清除活动图形窗口。

3. dev_close_inspect_ctrl 功能:关闭一个控制变量的监视窗口。

4. dev_close_window 功能:关闭活动图形窗口。

5. dev_display

功能: 在现有图形窗口中显示图像目标。

6. dev_error_var

功能: 定义或者不定义一个错误变量。

7. dev_get_preferences

功能: 通过设计查询 HDevelop 的参数选择。

8. dev_inspect_ctrl

功能: 打开一个窗口来检查一个控制变量。

9. dev_map_par

功能: 打开一个对话框来指定显示参数。

10. dev_map_prog

功能: 使 HDevelop 的主窗口可视化。

11. dev_map_var

功能: 在屏幕上绘制可视化窗口。

12. dev_open_window

功能: 打开一个图形窗口。

13. dev_set_check

功能: 指定错误处理。

14. dev_set_color

功能:设置一个或更多输出颜色。

15. dev_set_colored

功能:设置混合输出颜色。

16. dev_set_draw

功能: 定义区域填充模式。

17. dev_set_line_width

功能: 定义区域轮廓输出的线宽。

18. dev_set_lut

功能:设置查询表 (lut).

19. dev set paint

功能: 定义灰度值输出模式。

20. dev_set_part

功能:修改显示图像部分。

21. dev_set_preferences

功能:通过设计设置 HDevelop 的参数选择。

22. dev_set_shape

功能: 定义区域输出形状。

23. dev_set_window

功能:激活一个图形窗口。

24. dev_set_window_extents

功能: 改变一个图形窗口的位置和大小。

25. dev_unmap_par

功能: 为图形参数隐藏窗口。

26. dev_unmap_prog

功能: 隐藏主窗口。

27. dev_unmap_var

功能: 隐藏变量窗口。

28. dev_update_pc

功能: 在程序执行中指定 PC 的行为。

29. dev_update_time

功能: 为操作符打开或关闭切换时间测量。

30. dev_update_var

功能: 在程序执行中指定活动窗口的行为。

31. dev_update_window

功能: 在程序执行中指定输出行为。

Chapter 4:File

4.1 Images

1. read_image

功能: 读取有不同文件格式的图像。

2. read_sequence

功能: 读取图像。

3. write_image

功能:用图形格式写图像。

4.2 Misc

1. delete_file

功能: 删除一个文件。

2. file_exists

功能:检查文件是否存在。

3. list_files

功能:列出目录中的所有文件。

4. read_world_file

功能:从一个ARC/INFO世界文件中读取地理编码。

4.3 Region

1. read_region

功能:读取二值图像或者 HALCON 区域。

2. write_region

功能: 在文件中写入地域。

4.4 Text

1. close_all_files

功能:关闭所有打开的文件。

 $2.close_file$

功能: 关闭一个文本文件。

3. fnew_line

功能: 创建一个换行符。

4. fread_char

功能:从一个文本文件中读取一个字符。

5. fread_line

功能:从一个文本文件中读取一行。

6. fread_string

功能:从一个文本文件中读取字符串。

7. fwrite_string

功能: 向一个文本文件中写入值。

8. open_file

功能: 打开文本文件。

4.5 Tuple

1. read_tuple

功能:从一个文件中读取一个数组。

2. write_tuple

功能: 向一个文件中写入一个数组。

4.6 XLD

1. read_contour_xld_arc_info

功能:从用 ARC/INFO 生成格式表示的文件读取 XLD 轮廓。

2. read_contour_xld_dxf

功能:从一个DXF文件中读取 XLD轮廓。

3. read_polygon_xld_arc_info

功能:从用 ARC/INFO 生成格式表示的文件读取 XLD 多边形。

4. read_polygon_xld_dxf

功能:从一个DXF文件中读取 XLD 多边形。

5. write_contour_xld_arc_info

功能:向用 ARC/INFO 生成格式表示的文件写入 XLD 轮廓。

6. write_contour_xld_dxf

功能:向一个DXF格式的文件中写入 XLD轮廓。

7. write_polygon_xld_arc_info

功能:向用 ARC/INFO 生成格式表示的文件写入 XLD 多边形。

8. write_polygon_xld_dxf

功能:向一个DXF格式的文件中写入XLD多边形。

Chapter 5:Filter

5.1 Arithmetic

1. abs_image

功能: 计算一个图像的绝对值(模数)。

2. add_image

功能: 使两个图像相加。

3. div_image

功能: 使两个图像相除。

4. invert_image

功能: 使一个图像反像。

5. max_image

功能: 按像素计算两个图像的最大值。

6. min_image

功能: 按像素计算两个图像的最大小值。

7. mult_image

功能: 使两个图像相乘。

8. scale_image

功能: 为一个图像的灰度值分级。

9. sqrt_image

功能: 计算一个图像的平方根。

10. sub_image

功能: 使两个图像相减。

5.2 Bit

1. bit_and

功能:输入图像的所有像素的逐位与。

2. bit_lshift

功能: 图像的所有像素的左移。

3. bit mask

功能: 使用位掩码的每个像素的逻辑与。

4. bit_not

功能:对像素的所有位求补。

5. bit or

功能:输入图像的所有像素的逐位或。

6. bit_rshift

功能:图像的所有像素的右移。

7. bit_slice

功能:从像素中提取一位。

8. bit xor

功能:输入图像的所有像素的逐位异或。

5.3 Color

1. cfa_to_rgb

功能: 把一个单通道颜色滤波阵列图像变成 RGB 图像。

2. gen_principal_comp_trans

功能: 计算多通道图像的主要部分分析的转换矩阵。

3. linear_trans_color

功能: 计算多通道图像的颜色值的一个仿射转换。

4. principal_comp

功能: 计算多通道图像的主要部分。

5. rgb1_to_gray

功能:把一个RGB图像转变成一个灰度图像。

6. rgb3_to_gray

功能:把一个RGB图像转变成一个灰度图像。

7. trans_from_rgb

功能:把一个图像从RGB颜色空间转变成任意颜色空间。

8. trans_to_rgb

功能:把一个图像从任意颜色空间转变成 RGB 颜色空间。

5.4 Edges

1.close_edges

功能: 使用边缘幅值图像消除边缘缺陷。

2. close_edges_length

功能: 使用边缘幅值图像消除边缘缺陷。

3. derivate_gauss

功能:用高斯派生物对一个图像卷积。

4. diff_of_gauss

功能: 近似高斯的拉普拉斯算子。

5. edges_color

功能: 使用 Canny、Deriche 或者 Shen 滤波器提取颜色边缘。

6. edges_color_sub_pix

功能: 使用 Canny、Deriche 或者 Shen 滤波器提取子像素精确颜色边缘。

7. edges_image

功能: 使用 Deriche、 Lanser、Shen 或者 Canny 滤波器提取边缘。

8. edges_sub_pix

功能: 使用 Deriche、 Lanser、Shen 或者 Canny 滤波器提取子像素精确边缘。

9. frei_amp

功能: 使用 Frei-Chen 算子检测边缘 (幅值)。

10. frei_dir

功能:使用 Frei-Chen 算子检测边缘 (幅值和相位)。

11. highpass_image

功能:从一个图像提取高频成分。

12. info_edges

功能:在 edges_image 估计滤波器的宽度。

13. kirsch_amp

功能: 使用 Kirsch 算子检测边缘 (幅值)。

14. kirsch dir

功能:使用 Kirsch 算子检测边缘(幅值和相位)。

15. laplace

功能: 使用有限差计算拉普拉斯算子。

16. laplace_of_gauss

功能: 高斯的拉普拉斯算子。

17. prewitt_amp

功能: 使用 Prewitt 算子检测边缘 (幅值)。

18. prewitt_dir

功能:使用 Prewitt 算子检测边缘(幅值和相位)。

19. roberts

功能:使用 Roberts 滤波器检测边缘。

20. robinson_amp

功能: 使用 Robinson 算子检测边缘 (幅值)。

21. robinson dir

功能:使用 Robinson 算子检测边缘(幅值和相位)。

22. sobel_amp

功能:使用 Sobel 算子检测边缘 (幅值)。

23. sobel_dir

功能:使用 Sobel 算子检测边缘(幅值和相位)。

5.5 Enhancement

1. adjust_mosaic_images

功能:全景图像的自动颜色更改。

2. coherence_enhancing_diff

功能: 执行一个图像的一个一致性增强扩散。

3. emphasize

功能:增强图像对比度。

4. equ_histo_image

功能:图像的柱状图线性化。

5. illuminate

功能:增强图像对比度。

6. mean_curvature_flow

功能: 把平均曲率应用在一个图像中。

7. scale_image_max

功能:最大灰度值在0到255范围内。

8. shock_filter

功能: 把一个冲击滤波器应用到一个图像中。

5.6 FFT

1. convol_fft

功能:用在频域内的滤波器使一个图像卷积。

2. convol_gabor

功能:用在频域内的一个Gabor滤波器使一个图像卷积。

3. correlation_fft

功能: 计算在频域内的两个图像的相互关系。

4. energy_gabor

功能: 计算一个两通道图像的能量。

5. fft_generic

功能: 计算一个图像的快速傅里叶变换。

6. fft_image

功能: 计算一个图像的快速傅里叶变换。

7. fft_image_inv

功能: 计算一个图像的快速傅里叶逆变换。

8. gen_bandfilter

功能: 生成一个理想带通滤波器。

9. gen_bandpass

功能: 生成一个理想带通滤波器。

10. gen_derivative_filter

功能: 在频域内生成一个倒数滤波器。

11. gen_filter_mask

功能: 在空域内存储一个滤波器掩码作为实时图像。

12. gen_gabor

功能: 生成一个 Gabor 滤波器。

13. gen_gauss_filter

功能: 在频域内生成一个高斯滤波器。

14. gen_highpass

功能: 生成一个理想高通滤波器。

15. gen_lowpass

功能: 生成一个理想低通滤波器。

16. gen_sin_bandpass

功能:用正弦形状生成一个带通滤波器。

17. gen_std_bandpass

功能:用高斯或者正弦形状生成一个带通滤波器。

18. optimize_fft_speed

功能: 使 FFT 的运行时间最优化。

19. optimize_rft_speed

功能: 使实值的 FFT 的运行时间最优化。

20. phase_deg

功能: 返回用角度表示的一个复杂图像的相位。

21. phase_rad

功能: 返回用弧度表示的一个复杂图像的相位。

22. power_byte

功能:返回一个复杂图像的功率谱。

23. power_ln

功能:返回一个复杂图像的功率谱。

24. power_real

功能:返回一个复杂图像的功率谱。

25. read_fft_optimization_data

功能:从一个文件中下载 FFT 速度最优数据。

26. rft_generic

功能: 计算一个图像的实值快速傅里叶变换。

27. write_fft_optimization_data

功能:把 FFT 速度最优数据存储在一个文件中。

5.7 Geometric-Transformations

1. affine_trans_image

功能: 把任意仿射 2D 变换应用在图像中。

2. affine_trans_image_size

功能: 把任意仿射 2D 变换应用在图像中并且指定输出图像大小。

3. gen_bundle_adjusted_mosaic

功能: 把多重图像合成一个马赛克图像。

4. gen_cube_map_mosaic

功能: 创建球形马赛克的6方位图像。

5. gen_projective_mosaic

功能: 把多重图像合成一个马赛克图像。

6. gen_spherical_mosaic

功能: 创建一个球形马赛克图像。

7. map_image

功能:把一个一般变换应用于一个图像中。

8. mirror_image

功能:镜像一个图像。

9. polar_trans_image

功能: 把一个图像转换成极坐标。

10. polar_trans_image_ext

功能: 把一个图像中的环形弧转变成极坐标。

11. polar_trans_image_inv

功能: 把极坐标中的图像转变成直角坐标。

12. projective_trans_image

功能: 把投影变换应用于一个图像中。

13. projective_trans_image_size

功能: 把投影变换应用于一个图像中并且指定输出图像的大小。

14. rotate_image

功能: 以一个图像的中心为圆心旋转。

15. zoom_image_factor

功能:把一个图像缩放规定因子倍。

16. zoom_image_size

功能: 把一个图像缩放到规定大小。

5.8 Inpainting

1. harmonic_interpolation

功能:对一个图像区域执行谐波插值。

2. inpainting_aniso

功能:通过各向异性扩散执行图像修复。

3. inpainting_ced

功能:通过一致性增强扩散执行图像修复。

4. inpainting_ct

功能: 通过连贯传送执行图像修复。

5. inpainting_mcf

功能:通过水平线平滑执行图像修复。

6. inpainting_texture

功能: 通过结构传导执行图像修复。

5.9 Lines

1. bandpass_image

功能: 使用带通滤波器提取边缘。

2. lines_color

功能: 检测色线和它们的宽度。

3. lines facet

功能:使用面模型检测线。

4. lines_gauss

功能: 检测线和它们的宽度。

5.10 Match

1. exhaustive_match

功能: 模板和图像的匹配。

2. exhaustive_match_mg

功能: 在一个分辨率塔式结构中匹配模板和图像。

3. gen_gauss_pyramid

功能: 计算一个高斯金字塔。

4. monotony

功能: 计算单一操作。

5.11 Misc

1. convol_image

功能:用一个任意滤波掩码对一个图像卷积。

2. expand_domain_gray

功能:扩大图像区域并且在扩大的区域中设置灰度值。

3. gray_inside

功能:对图像中的每一点在图像边界的任意路径计算尽可能低的灰度值。

4. gray_skeleton

功能:灰度值图像的细化。

5. lut_trans

功能: 使用灰度值查询表转换一个图像。

6. symmetry

功能:沿一行的灰度值的对称性。

7. topographic_sketch

功能: 计算一个图像的地理原始草图。

5.12 Noise

1. add_noise_distribution

功能: 向一个图像添加噪声。

2. add_noise_white

功能: 向一个图像添加噪声。

3. gauss_distribution

功能:产生一个高斯噪声分布。

4. noise_distribution_mean

功能:测定一个图像的噪声分布。

5. sp_distribution

功能:产生一个椒盐噪声分布。

5.13 Optical-Flow

1. optical_flow_mg

功能: 计算两个图像之间的光流。

2. unwarp_image_vector_field

功能: 使用一个矢量场来展开一个图像。

3. vector_field_length

功能: 计算一个矢量场的矢量长度。

5.14 Points

1. corner_response

功能: 在图像中寻找角点。

2. dots_image

功能: 在一个图像中增强圆形点。

3. points_foerstner

功能: 使用 Förstner 算子检测关注点。

4. points_harris

功能:使用 Harris 算子检测关注点。

5. points_sojka

功能:使用 Sojka 算子找出角点。

5.15 Smoothing

1. anisotrope_diff

功能: 通过保边各向异性扩散平滑一个图像。

2. anisotropic_diffusion

功能:对一个图像执行各向异性扩散。

3. binomial_filter

功能: 使用 binomial 滤波器平滑一个图像。

4. eliminate_min_max

功能: 在空域内平滑一个图像来抑制噪声。

5. eliminate_sp

功能:用中值替代阀值外的值。

6. fill_interlace

功能:插补两个半个视频图像。

9. gauss_image

功能: 使用离散高斯函数平滑图像。

10. info_smooth

功能: 平滑滤波器 smooth image 的信息。

11. isotropic_diffusion

功能:对一个图像执行各向同性扩散。

12. mean_image

功能:通过平均平滑一个图像。

13. mean n

功能:几个通道的平均灰度值。

14. mean_sp

功能:抑制椒盐噪声。

15. median_image

功能:使用不同级别掩码的中值滤波。

16. median_separate

功能: 使用矩形掩码的离散中值滤波。

17. median_weighted

功能: 使用不同级别掩码的加权中值滤波。

18. midrange_image

功能: 计算掩码内最大和最小值的平均。

19. rank_image

功能:通过一个任意等级掩码平滑一个图像。

20. sigma_image

功能: 使用 sigma 滤波器的非线性平滑。

21. smooth_image

功能: 使用递归滤波器平滑一个图像。

22. trimmed mean

功能: 使用任意等级掩码平滑一个图像。

5.16 Texture

1. deviation_image

功能: 计算矩形窗口内的灰度值的标准偏差。

2. entropy_image

功能: 计算矩形窗口内的灰度值的熵。

3. texture laws

功能:使用一个Laws文本滤波器过滤一个图像。

5.17 Wiener-Filter

1. gen_psf_defocus

功能:产生一个均匀散焦模糊的脉冲相应。

2. gen_psf_motion

功能:产生一个(线性)运动模糊的脉冲相应。

3. simulate defocus

功能:对一个图像的均匀散焦模糊进行仿真。

4. simulate_motion

功能: (线性)运动模糊的仿真。

5. wiener_filter

功能: 通过 Wiener 滤波进行图像恢复。

6. wiener_filter_ni

功能: 通过 Wiener 滤波进行图像恢复。

Chapter 6 : Graphics

6.1 Drawing

1. drag_region1

功能:一个区域的交互运动。

2. drag_region2

功能:一个带有定点规格区域的交互运动。

3. drag_region3

功能:一个带有限制位置区域的交互运动。

4. draw circle

功能:一个圆的交互绘图。

5. draw_circle_mod

功能:一个圆的交互绘图。

6. draw_ellipse

功能:一个椭圆的交互绘图。

7. draw_ellipse_mod

功能:一个椭圆的交互绘图。

8. draw_line

功能: 画一根线。

9. draw_line_mod

功能: 画一根线。

10. draw_nurbs

功能:一个 NURBS 曲线的交互绘图。

11. draw_nurbs_interp

功能:使用插值的一个 NURBS 曲线的交互绘图。

12. draw_nurbs_interp_mod

功能:使用插值的一个 NURBS 曲线的交互修正。

13. draw_nurbs_mod

功能:一个 NURBS 曲线的交互修正。

14. draw_point

功能: 画一个点。

15. draw_point_mod

功能: 画一个点。

16.draw_polygon

功能:一个多边形的交互绘图。

17. draw_rectangle1

功能: 画一个与坐标轴平行的矩形。

18. draw_rectangle1_mod

功能: 画一个与坐标轴平行的矩形。

19. draw_rectangle2

功能:任意定向矩形的交互绘图。

20. draw_rectangle2_mod

功能:任意定向矩形的交互绘图。

21. draw_region

功能:一个闭区域的交互绘图。

22. draw_xld

功能:一个轮廓的交互绘图。

23. draw_xld_mod

功能:一个轮廓的交互修正。

6.2 Gnuplot

1. gnuplot_close

功能: 关闭所有打开的 gnuplot 文件或者终止一个活动的 gnuplot 子流程。

2. gnuplot_open_file

功能: 为图像和控制量的可视化打开一个 gnuplot 文件。

3. gnuplot_open_pipe

功能: 为图像和控制量的可视化打开一个通道的 gnuplot 流程。

4. gnuplot_plot_ctrl

功能:使用 gnuplot 显示控制量。

5. gnuplot_plot_funct_1d

功能:使用 gnuplot 显示控制量的功能。

6. gnuplot_plot_image

功能: 使用 gnuplot 使一个图像可视化。

6.3 LUT

1. disp_lut

功能:查询表的图解。

2. draw lut

功能:交互利用查询表。

3. get_fixed_lut

功能: 为实际彩色图像获取固定查询表。

4. get_lut

功能: 获取现在的查询表。

5. get_lut_style

功能: 获取查询表的修正参数。

6. query_lut

功能: 查询所有可得到的查询表。

7. set fixed lut

功能: 为实际彩色图像固定查询表。

8. set lut

功能:设置查询表。

9. set_lut_style

功能:改变查询表。

10. write_lut

功能: 把查询表作为文件写入。

6.4 Mouse

1. get_mbutton

功能: 等待直到一个鼠标键被按下。

2. get_mposition

功能: 查询鼠标位置。

3. get_mshape

功能:查询现在鼠标指针形状。

4. query_mshape

功能:查询所有可得到的鼠标指针形状。

5. set mshape

功能:设置现在鼠标指针形状。

6.5 Output

1. disp_arc

功能: 在一个窗口中显示圆形弧。

2. disp arrow

功能: 在一个窗口中显示箭头。

3. disp_channel

功能: 用几个通道显示图像。

4. disp_circle

功能: 在一个窗口中显示圆。

5. disp_color

功能:显示一个彩色(RGB)图像。

6. disp_cross

功能: 在一个窗口中显示交叉。

7. disp_distribution

功能:显示一个噪声分布。

8. disp_ellipse

功能:显示椭圆。

9. disp_image

功能:显示灰度值图像。

10. disp_line

功能:在窗口中画一条线。

11. disp_obj

功能:显示图像目标(图像,区域,XLD)。

12. disp_polygon

功能:显示一个多叉线。

13. disp_rectangle1

功能:显示和坐标轴对齐的矩形。

14. disp_rectangle2

功能:显示任意方向的矩形。

15. disp_region

功能: 在一个窗口中显示区域。

16. disp_xld

功能:显示一个 XLD 物体。

6.6 Parameters

1. get_comprise

功能: 获取一个图像矩阵的输出处理。

2. get_draw

功能: 获取现在区域填充模式。

3. get_fix

功能: 获取现在查询表的固定模式。

4. get_hsi

功能: 获取现在颜色的 HSI 编码。

5. get_icon

功能: 查询区域输出的图标。

6. get_insert

功能: 获取现在显示模式。

7. get_line_approx

功能: 获取轮廓显示的现在近似误差。

8. get_line_style

功能: 获取轮廓的现在图解模式。

9. get_line_width

功能: 获取轮廓显示的现在线宽。

10. get_paint

功能: 获取灰度值的现在显示模式。

11. get_part

功能: 获取图像部分。

12. get_part_style

功能: 获取灰度值显示的现在插值模式。

13. get_pixel

功能: 获取查询表索引的现在颜色。

14. get_rgb

功能: 获取 RGB 编码中的现在颜色。

15. get_shape

功能: 获取现在区域输出形状。

16. query_all_colors

功能: 查询所有颜色名称。

17. query_color

功能: 查询窗口中显示的所有颜色名称。

18. query_colored

功能:查询颜色输出的颜色数目。

19. query_gray

功能:查询显示的灰度值。

20. query_insert

功能: 查询可能的图解模式。

21. query_line_width

功能:查询可能的线宽。

22. query_paint

功能: 查询灰度值显示模式。

23. query_shape

功能:查询区域显示模式。

24. set color

功能:设置输出颜色。

25. set_colored

功能:设置多输出颜色。

26. set_comprise

功能: 定义图像矩阵输出剪辑。

27. set_draw

功能: 定义区域填充模式。

28. set_fix

功能:设置固定的查询表。

29. set_gray

功能: 定义区域输出的灰度值。

30. set_hsi

功能: 定义输出颜色 (HSI 编码)。

31. set icon

功能:区域输出的图标定义。

32. set insert

功能: 定义图像输出功能。

33. set_line_approx

功能: 定义输出显示的近似误差。

34. set_line_style

功能: 定义一个轮廓输出模式。

35. set_line_width

功能: 定义区域轮廓输出的线宽。

36. set_paint

功能: 定义灰度值输出模式。

37. set_part

功能:修正显示图像部分。

38. set_part_style

功能: 为灰度值输出定义一个插值方法。

39. set_pixel

功能: 定义一个颜色查询表索引。

40. set_rgb

功能:通过RGB值设置颜色定义。

41. set_shape

功能: 定义区域输出轮廓。

6.7 Text

1. get_font

功能: 获取现在字体。

2. get_string_extents

功能: 获取一个字符串的空间大小。

3. get_tposition

功能: 获取光标位置。

4. get_tshape

功能: 获取文本光标的形状。

5. new_line

功能:设置下一行的开始文本光标的位置。

6. query_font

功能:查询可得到的字体。

7. query_tshape

功能: 查询文本光标的所有可得到的形状。

8. read_char

功能:从一个文本窗口读取一个字符。

9. read_string

功能:从一个文本窗口读取一个字符串。

10. set_font

功能:设置文本输出的字体。

11. set_tposition

功能:设置文本光标的位置。

12. set_tshape

功能:设置文本光标的形状。

13. write_string

功能: 在一个窗口中打印文本。

6.8 Window

1. clear_rectangle

功能: 在输出窗口中删除一个矩形。

2. clear_window

功能: 删除一个输出窗口。

3. close_window

功能: 关闭一个输出窗口。

4. copy_rectangle

功能: 在输出窗口间复制矩形内所有像素。

5. dump_window

功能:把窗口内容写入一个文件。

6. dump_window_image

功能: 在一个图像目标中写窗口内容。

7. get_os_window_handle

功能: 获取操作系统图像处理。

8. get_window_attr

功能: 获取窗口特征。

9. get_window_extents

功能:一个窗口大小和位置的信息。

10. get_window_pointer3

功能:一个窗口像素数据的通道。

11. get_window_type

功能: 获取窗口类型。

12. move_rectangle

功能: 在一个输出窗口内部复制。

13. new_extern_window

功能:在 Windows NT 下创建一个虚拟图形窗口。

14. open_textwindow

功能: 打开一个文本窗口。

15. open_window

功能: 打开一个图形窗口。

16. query_window_type

功能: 查询所有可得到的窗口类型。

17. set_window_attr

功能:设置窗口特征。

18. set_window_dc

功能:设置一个虚拟图形窗口(Windows NT)的设计背景。

19. set_window_extents

功能:修正一个窗口的位置和大小。

20. set_window_type

功能: 指定一个窗口类型。

21. slide_image

功能:两个窗口缓冲区的交互输出。

Chapter 7: Image

7.1 Access

1. get_grayval

功能: 获取一个图像目标的灰度值。

2. get_image_pointer1

功能: 获取一个通道的指针。

3. get_image_pointer1_rect

功能: 获取图像数据指针和输入图像区域内最小矩形内部的图像数据。

4. get_image_pointer3

功能: 获取一个彩色图像的指针。

5. get_image_time

功能: 查找图像被创建的时间。

7.2 Acquisition

1. close_all_framegrabbers

功能:关闭所有图像获取设备。

2. close_framegrabber

功能: 关闭指定的图像获取设备。

3. get_framegrabber_lut

功能: 查找图像获取设备的查询表。

4. get_framegrabber_param

功能: 查找一个图像获取设备的指定参数。

5. grab_data

功能: 从指定的图像获取设备获取图像和预处理图像数据。

6. grab_data_async

功能: 从指定的图像获取设备获取图像和预处理图像数据并且开始下一个异步获取。

7. grab_image

功能: 从指定的图像获取设备获取一个图像。

8. grab_image_async

功能: 从指定的图像获取设备获取一个图像并且开始下一个异步获取。

9. grab_image_start

功能: 从指定的图像获取设备开始下一个异步获取。

10. info_framegrabber

功能: 从指定的图像获取设备查找信息。

11. open_framegrabber

功能: 打开并配置一个图像获取设备。

12. set_framegrabber_lut

功能:设置图像获取设备查询表。

13. set_framegrabber_param

功能:设置一个图像获取设备的指定参数。

7.3 Channel

1. access_channel

功能: 获取一个多通道图像的一个通道。

2. append_channel

功能:把附加模型(通道)添加到图像上。

3. channels_to_image

功能: 把单通道图像转变为一个多通道图像。

4. compose2

功能: 把两个图像转变为一个两通道图像。

5. compose3

功能: 把三个图像转变为一个三通道图像。

6. compose4

功能: 把四个图像转变为一个四通道图像。

7. compose5

功能: 把五个图像转变为一个五通道图像。

8. compose6

功能: 把六个图像转变为一个六通道图像。

9. compose7

功能: 把七个图像转变为一个七通道图像。

10. count_channels

功能: 计算图像的通道。

11. decompose2

功能:把一个两通道图像转变为两个图像。

12. decompose3

功能: 把一个三通道图像转变为三个图像。

13. decompose4

功能: 把一个四通道图像转变为四个图像。

14. decompose5

功能: 把一个五通道图像转变为五个图像。

15. decompose6

功能:把一个六通道图像转变为六个图像。

16. decompose7

功能: 把一个七通道图像转变为七个图像。

17. image_to_channels

功能:把一个多通道图像转变为一个通道图像。

7.4 Creation

1. copy_image

功能: 复制一个图像并为它分配新内存。

2. gen_image1

功能:从像素的一个指针创建一个图像。

3. gen_image1_extern

功能:从带存储管理的像素的一个指针创建一个图像。

4. gen_image1_rect

功能:从像素(带存储管理)的指针创建一个矩形区域的图像。

5. gen_image3

功能:从像素(红、绿、蓝)的三个指针创建一个图像。

6. gen_image_const

功能: 创建一个固定灰度值的图像。

7. gen_image_gray_ramp

功能: 创建一个灰度值阶梯。

8. gen_image_interleaved

功能:从交叉像素的一个指针创建一个三通道图像。

9. gen_image_proto

功能: 创建一个指定的固定灰度值的图像。

10. gen_image_surface_first_order

功能: 创建一阶多项式的一个弯曲灰度表面。

11. gen_image_surface_second_order

功能: 创建二阶多项式的一个弯曲灰度表面。

12. region_to_bin

功能: 把一个区域转变为一个二进制字节图像。

13. region_to_label

功能: 把区域转变为一个标签图像。

14. region_to_mean

功能:用它们的平均灰度值绘制区域。

7.5 Domain

1. add_channels

功能: 把两个灰度值添加到区域中。

2. change_domain

功能: 改变一个图像的定义区间。

3. full_domain

功能: 把一个图像的区域扩大到最大值。

4. get_domain

功能: 获取一个图像的区域。

5. rectangle1 domain

功能:把一个图像的区域缩小到一个矩形。

6. reduce domain

功能:缩小一个图像的区域。

7.6 Features

1. area_center_gray

功能: 计算一个灰度值图像的区域面积和重心。

2. cooc_feature_image

功能: 计算一个同时出现的矩阵并得出相关灰度值特征。

3. cooc_feature_matrix

功能:从一个同时出现的矩阵计算灰度值特征。

4. elliptic_axis_gray

功能: 在一个灰度值图像中计算一个区域的方位和主轴。

5. entropy_gray

功能:确定一个图像的熵和各向异性。

6. estimate_noise

功能:从一个单一图像估计图像噪声。

7. fit_surface_first_order

功能:通过一个一阶表面(平面)计算灰度值力矩和近似值。

8. fit_surface_second_order

功能:通过一个二阶表面(平面)计算灰度值力矩和近似值。

9. fuzzy_entropy

功能:确定区域的模糊熵。

10. fuzzy_perimeter

功能: 计算一个区域的模糊周长。

11. gen_cooc_matrix

功能: 在一个图像中计算一个区域中同时出现的矩阵。

12. gray_histo

功能: 计算灰度值分布。

13. gray_histo_abs

功能: 计算灰度值分布。

14. gray_projections

功能: 计算水平和垂直灰度值预测。

15. histo_2dim

功能: 计算两通道灰度值图像的直方图。

16. intensity

功能: 计算灰度值的平均值和偏差。

17. min_max_gray

功能: 计算区域内的最大和最小灰度值。

18. moments_gray_plane

功能: 通过一个平面计算灰度值力矩和近似值。

19. plane_deviation

功能: 从近似像平面计算灰度值的偏差。

20. select_gray

功能: 选择基于灰度值特征的区域。

21. shape_histo_all

功能: 用极限值确定特征的一个直方图。

22. shape_histo_point

功能: 用极限值确定特征的一个直方图。

7.7 Format

1. change_format

功能:改变图像大小。

2. crop_domain

功能: 去掉确定的灰度值。

3. crop_domain_rel

功能: 去掉和定义域有关的图像区域。

4. crop_part

功能: 去掉一个矩形图像区域。

5. crop_rectangle1

功能: 去掉一个矩形图像区域。

6. tile_channels

功能: 把多重图像拼成一个大图像。

7. tile_images

功能: 把多重图像目标拼成一个大图像。

8. tile_images_offset

功能: 把多重图像目标拼成一个有确定的位置信息的大图像。

7.8 Manipulation

1. overpaint_gray

功能: 重新绘制一个图像的灰度值。

2. overpaint_region

功能: 重新绘制一个图像的区域。

3. paint_gray

功能:把一个图像的灰度值画在另一个图像上。

4. paint_region

功能: 把区域画在一个图像中。

5. paint_xld

功能:把 XLD 目标画在一个图像中。

6. set_grayval

功能: 在一个图像中设置单灰度值。

7.9 Type-Conversion

1. complex_to_real

功能: 把一个复杂图像转变为两个实际图像。

2. convert_image_type

功能:转变一个图像的类型。

3. real_to_complex

功能: 把两个实际图像转变为一个复杂图像。

4. real_to_vector_field

功能: 把两个实值图像转变为一个矢量域图像。

5. vector_field_to_real

功能: 把一个矢量域图像转变为两个实值图像。

Chapter 8: Lines

8.1 Access

1. approx_chain

功能:通过弧和线近似一个轮廓。

2. approx_chain_simple

功能:通过弧和线近似一个轮廓。

8.2 Features

1. line_orientation

功能: 计算线的方位。

2. line_position

功能: 计算一条线的重心、长度和方位。

3. partition_lines

功能:通过各种标准区分线。

4. select lines

功能:通过各种标准选择线。

5. select lines longest

功能: 选择最长输入线。

Chapter 9: Matching

9.1 Component-Based

1. clear_all_component_models

功能:释放所有组件模型的内存。

2. clear_all_training_components 功能:释放所有组件训练结果的内存。

3. clear_component_model

功能:释放一个组件模型的内存。

4. clear_training_components

功能:释放一个组件训练结果的内存。

5. cluster_model_components

功能: 把用于创建模型组件的新参数用于训练结果。

6. create_component_model

功能:基于确定的指定组件和关系准备一个匹配的组件模型。

7. create_trained_component_model

功能:基于训练过的组件准备一个匹配的组件模型。

8. find_component_model

功能: 在一个图像中找出一个组件模型的最佳匹配。

9. gen_initial_components

功能: 提取一个组件模型的最初组件。

10. get_component_model_params

功能:返回一个组件模型的参数。

11. get_component_model_tree

功能:返回一个组件模型的查找树。

12. get_component_relations

功能:返回包含在训练结果内的模型组件间的关系。

13. get_found_component_model

功能:返回一个组件模型的一个创建例子的组件。

14. get_training_components

功能: 在一个特定的图像中返回初始值或者模型组件。

15. inspect_clustered_components

功能: 检查从训练获取的刚性的模型组件。

16. modify_component_relations

功能:修改一个训练结果中的关系。

17. read_component_model

功能:从一个文件中读取组件模型。

18. read_training_components

功能:从一个文件中读取组件训练结果。

19. train_model_components

功能: 为基于组件的匹配训练组件和关系。

20. write_component_model

功能: 把一个组件模型写入一个文件中。

21. write_training_components

功能: 把一个组件训练结果写入一个文件中。

9.2 Correlation-Based

1. clear_all_ncc_models

功能:释放 NCC 模型的内存。

2. clear_ncc_model

功能:释放 NCC 模型的内存。

3. create_ncc_model

功能:为匹配准备一个 NCC 模型。

4. find_ncc_model

功能:找出一个图像中的一个 NCC 模型的最佳匹配。

5. get_ncc_model_origin

功能:返回一个 NCC 模型的原点(参考点)。

6. get_ncc_model_params

功能:返回一个NCC模型的参数。

7. read_ncc_model

功能:从一个文件中读取一个 NCC 模型。

8. set_ncc_model_origin

功能:设置一个 NCC 模型的原点(参考点)。

9. write_ncc_model

功能:向一个文件中写入 NCC 模型。

9.3 Gray-Value-Based

1. adapt_template

功能:把一个模板用于一个图像的大小。

2. best_match

功能: 寻找一个模板和一个图像的最佳匹配。

3. best_match_mg

功能: 在金字塔中寻找最佳灰度值匹配。

4. best_match_pre_mg

功能: 在预生成的金字塔中寻找最佳灰度值匹配。

5. best match rot

功能: 寻找一个模板和一个旋转图像的最佳匹配。

6. best_match_rot_mg

功能: 寻找一个模板和一个旋转金字塔的最佳匹配。

7. clear_all_templates

功能: 所有模板的内存分配。

9. clear_template

功能:一个模板的内存分配。

10. create_template

功能:为模板匹配准备一个格式。

11. create_template_rot

功能: 为旋转模板匹配准备一个格式。

12. fast_match

功能: 寻找一个模板和一个图像的所有好的匹配。

13. fast_match_mg

功能: 在金字塔中寻找所有好的灰度值匹配。

14. read_template

功能:从一个文件中读取一个模板。

15. set_offset_template

功能:模板的灰度值偏差。

16. set_reference_template

功能: 为一个匹配模板定义参考位置。

17. write_template

功能: 向一个文件中写入模板。

9.4 Shape-Based

1. clear_all_shape_models

功能:释放所有轮廓模型的内存。

2. clear_shape_model

功能:释放一个轮廓模型的内存。

3. create_aniso_shape_model

功能: 为各向异性尺度不变匹配准备一个轮廓模型。

4. create_scaled_shape_model

功能: 为尺度不变匹配准备一个轮廓模型。

5. create shape model

功能: 为匹配准备一个轮廓模型。

6. determine_shape_model_params

功能:确定一个轮廓模型的参数。

7. find_aniso_shape_model

功能: 在一个图像中找出一个各向异性尺度不变轮廓的最佳匹配。

8. find_aniso_shape_models

功能:找出多重各向异性尺度不变轮廓模型的最佳匹配。

9. find_scaled_shape_model

功能: 在一个图像中找出一个尺度不变轮廓模型的最佳匹配。

 $10.\ find_scaled_shape_models$

功能: 找出多重尺度不变轮廓模型的最佳匹配。

11. find_shape_model

功能: 在一个图像中找出一个轮廓模型的最佳匹配。

12. find_shape_models

功能:找出多重轮廓模型的最佳匹配。

13. get_shape_model_contours

功能:返回一个轮廓模型的轮廓表示。

14. get_shape_model_origin

功能:返回一个轮廓模型的原点(参考点)。

15. get_shape_model_params

功能:返回一个轮廓模型的参数。

16. inspect_shape_model

功能: 创建一个轮廓模型的表示。

17. read_shape_model

功能:从一个文件中读取一个轮廓模型。

18. set_shape_model_origin

功能:设置一个轮廓模型的原点(参考点)。

19. write_shape_model

功能: 向一个文件中写入一个轮廓模型。

Chapter 10: Matching-3D

1. affine_trans_object_model_3d

功能: 把一个任意有限 3D 变换用于一个 3D 目标模型。

2. clear_all_object_model_3d

功能:释放所有 3D 目标模型的内存。

3. clear_all_shape_model_3d

功能:释放所有 3D 轮廓模型的内存。

4. clear_object_model_3d

功能:释放一个3D目标模型的内存。

5. clear_shape_model_3d

功能:释放一个 3D 轮廓模型的内存。

6. convert_point_3d_cart_to_spher

功能:把直角坐标系中的一个 3D 点转变为极坐标。

7. convert_point_3d_spher_to_cart

功能: 把极坐标中的一个 3D 点转变为直角坐标。

8. create_cam_pose_look_at_point

功能:从摄像机中心和观察方向创建一个 3D 摄像机位置。

9. create_shape_model_3d

功能: 为匹配准备一个 3D 目标模型。

10. find_shape_model_3d

功能:在一个图像中找出一个 3D 模型的最佳匹配。

11. get_object_model_3d_params

功能:返回一个3D目标模型的参数。

12. get_shape_model_3d_contours

功能:返回一个3D轮廓模型视图的轮廓表示。

13. get_shape_model_3d_params

功能:返回一个3D轮廓模型的参数。

14. project_object_model_3d

功能: 把一个 3D 目标模型的边缘投影到图像坐标中。

15. project_shape_model_3d

功能: 把一个 3D 轮廓模型的边缘投影到图像坐标中。

16. read object model 3d dxf

功能:从一个DXF文件中读取一个3D目标模型。

17. read_shape_model_3d

功能:从一个文件中读取一个 3D 轮廓模型。

18. trans_pose_shape_model_3d

功能: 把一个 3D 目标模型的坐标系中的位置转变为一个 3D 轮廓模型的参考坐标系中的位置,反之亦然。

19. write_shape_model_3d

功能: 向一个文件写入一个 3D 轮廓模型。

Chapter 11: Morphology

11.1 Gray-Values

1. dual_rank

功能: 打开、取中值和关闭圆和矩形掩码。

2. gen_disc_se

功能: 为灰度形态学生成椭圆结构基础。

3. gray_bothat

功能: 执行一个图像的一个灰度值 bottom hat 变换(原图像和它的闭之间的差)。

4. gray_closing

功能:关闭一个图像的一个灰度值。

5. gray_closing_rect

功能:关闭带矩形掩码的灰度值。

6. gray_cl osing_shape

功能:关闭带选择掩码的灰度值。

7. gray_dilation

功能:扩大一个图像上的灰度值。

8. gray_dilation_rect

功能:确定一个矩形的最小灰度值。

9. gray_dilation_shape

功能:确定一个选择的掩码的最大灰度值。

10. gray_erosion

功能:腐蚀一个图像的灰度值。

11. gray_erosion_rect

功能:确定一个矩形的最小灰度值。

12. gray_erosion_shape

功能:确定一个选择的掩码的最小灰度值。

13. gray_opening

功能: 打开一个图像的灰度值。

14. gray_opening_rect

功能: 打开一个矩形掩码的灰度值。

15. gray_openin g_shape

功能: 打开一个选择的掩码的灰度值。

16. gray_range_rect

功能:确定一个矩形的灰度值范围。

17. gray_tophat

功能: 执行一个图像的一个灰度值 top hat 变换(原图像和它的开之间的差)。

18. read_gray_se

功能: 为灰度形态学下载一个结构基础。

11.2 Region

1. bottom_hat

功能: 计算区域的 bottom hat (原图像和它的闭之间的差)。

2. boundary

功能:把一个区域减小到它的边界。

3. closing

功能:关闭一个区域。

4. closing_circle

功能: 关闭一个圆形结构基础的一个区域。

5. closing_golay

功能: 关闭格雷字母表中的元素的一个区域。

6. closing_rectangle1

功能:关闭一个矩形结构基础的一个区域。

7. dilation1

功能:扩大一个区域。

8. dilation2

功能: 扩大一个区域(使用一个参考点)。

9. dilation_circle

功能: 扩大一个圆形结构基础的一个区域。

10. dilation_golay

功能: 扩大格雷字母表的元素的一个区域。

11. dilation_rectangle1

功能: 扩大一个矩形结构基础的一个区域。

12. dilation_seq

功能:顺序地扩大一个区域。

13. erosion1

功能:腐蚀一个区域。

14. erosion2

功能:腐蚀一个区域(使用参考点)。

15. erosion_circle

功能: 腐蚀一个圆形结构基础的一个区域。

16. erosion_golay

功能:腐蚀格雷字母表的一个元素的一个区域。

17. erosion_rectangle1

功能: 腐蚀一个矩形结构基础的一个区域。

18. erosion_seq

功能:按顺序腐蚀一个区域。

19. fitting

功能: 执行多重结构基础的打开后关闭。

20. gen_struct_elements

功能: 生成一个标准结构基础。

21. golay_elements

功能: 生成格雷字母表的结构基础。

22. hit_or_miss

功能:区域的 Hit-or-miss 运行。

23. hit_or_miss_golay

功能:使用格雷字母表的区域的 Hit-or-miss 运行。

24. hit_or_miss_seq

功能: 使用格雷字母表的区域的 Hit-or-miss 运行 (按顺序)。

25. minkowski_add1

功能: 执行一个区域的 Minkowski 添加。

26. minkowski_add2

功能: 扩大一个区域(使用参考点)。

27. minkowski sub1

功能: 腐蚀一个区域。

28. minkowski_sub2

功能:腐蚀一个区域(使用参考点)。

29. morph_hat

功能: 计算 bottom_hat 和 top_hat 的联合。

30. morph_skeleton

功能: 计算一个区域的形态学框架。

31. morph_skiz

功能:缩小一个区域。

32. opening

功能: 打开一个区域。

33. opening_circle

功能: 打开一个圆形结构基础的一个区域。

34. opening_golay

功能: 打开格雷字母表的一个元素的一个区域。

35. opening_rectangle1

功能: 打开一个矩形结构基础的一个区域。

36. opening_seg

功能:分离重叠区域。

37. pruning

功能: 去掉一个区域的分支。

38. thickening

功能:把一个Hit-or-miss运行的结果添加到一个区域。

39. thickening_golay

功能:把一个Hit-or-miss运行的结果添加到一个区域中(使用一个Golay结构基础)。

40. thickening_seq

功能:把一个 Hit-or-miss 运行的结果添加到一个区域中(按顺序)。

41. thinning

功能:从一个区域移去一个 Hit-or-miss 运行的结果。

42. thinning_golay

功能:从一个区域移去一个 Hit-or-miss 运行的结果(使用一个 Golay 结构基础)。

43. thinning_seq

功能:从一个区域移去一个 Hit-or-miss 运行的结果 (按顺序)。

44. top_hat

功能: 计算区域的 top hat (原图像和它的开之间的差)。

Chapter 12:OCR (光字符识别)

12.1 Hyperboxes

1. close _ all _ ocrs

功能: 删除所有光字符,释放存储空间,但会丢失所有的测试数据。

2. close _ ocr

功能: 重新分配拥有 OcrHandle 数目的分级器的存储,但所有相应的数据会丢失,不过这些数据可由 write _ ocr 事先保存。

3. create _ ocr _ class _ box 功能: 创建新的 OCR 分级器。

4. do _ ocr _ multi

功能:给每一个Character(字符)分配一个类。

5. do _ ocr _ single

功能:给一些Character(字符)分配一些类。

6. info _ ocr _ class _ box 功能:反馈 ocr 的有关信息。

7. ocr _ change _ char

功能: 为字符建立新的查阅表。

8. ocr _ get _ features

功能: 计算给定 Character (字符) 的特征参数。

9. read _ ocr

功能:从文件的 FileName (文件名)读取 OCR 分级器。

10. testd _ ocr _ class _ box

功能: 测试给定类中字符的置信度。

11. traind _ ocr _ class _ box

功能:通过一幅图像的特定区域直接测试分级器。

12. trainf _ ocr _ class _ box

功能:根据指定测试文件测试分级器的 OCRHandle。

13. write _ ocr

功能:将 OCR 分级器的 OCRHandle 写入文件的 FileName (文件名)。

12.2 Lexica

1.clear_all_lexica

功能:清除所有的词汇(词典),释放它们的资源。

2. clear _ lexicon

功能:清除一个词汇(词典),释放相应的资源。

3. create _ lexicon

功能:根据一些 Words(单词)的元组创建一个新的词汇(词典)。

4. Import _ lexicon

功能:通过 FileName(文件名)选定的文件中的一系列单词创建一个新的词典。

5. inspect _ lexicon

功能:返回 Words 参数的词典中所有单词的元组。

6. lookup _ lexicon

功能:检查 Word (单词)是否在词典的 LexiconHandle 中,若在返回 1 否则返回 0。

7. suggest lexicon

功能:将 Word(单词)与词典中所有词汇相比较,计算出将 Word 从词典中导入单词中所需的足校的编辑操作符 NUMcorrections。

12.3 Neural-Nets (神经网络)

1. clear _ all _ ocr _ class _ mlp

功能:清除所有的 create _ ocr _ class _ mlp 创建的 OCR 分级器,释放分级器占据的存储空间。

2. clear _ ocr _ class _ mlp

功能:清除所有的由 OCRHandle 给定的且由 create _ ocr _ class _ mlp 创建的 OCR 分级器,释放所有的分级器占据的存储空间。

3. create _ ocr _ class _ mlp

功能:利用 MLP (多层感知器) 创建一个新的 OCR 分级器。

4. do _ ocr _ multi _ class _ mlp

功能: 为根据给定区域字符和 OCR 分级器 OCRHandle 的灰度图像值而给定的每个字符计算出最好的类,将类返回到 Class 中,且将类的置信度返回到 Confidence 中。

5. do _ ocr _ single _ class _ mlp

功能:为根据给定区域字符和 OCR 分级器 OCRHandle 的灰度图像值而给定的字符计算出最好的 Num 类,将类返回到 Class 中,且将类的置信度返回到 Confidence 中。

6. do ocr word mlp

功能:功能与 do _ ocr _ multi _ class _ mlp 相同,只是 do _ ocr _ word _ mlp 将字符组作为一个实体。

7.get_features_ocr_class_mlp

功能: 为根据 OCR 分级器 OCRHandle 确定的字符计算其特征参数,并将它们返回到 Features。

8. get _ params _ ocr _ class _ mlp

功能:返回一个 OCR 分级器的参数只有当分级器由 do _ ocr _ multi _ class _ mlp 创建时。

9. get _ prep _ info _ ocr _ class _ mlp

功能: 计算 OCR 分级器预设定矢量特性的信息。

10. read _ ocr _ class _ mlp

功能:从一个文件中读取 OCR 分级器。

11. trainf ocr class mlp

功能:测试 OCR 分级器的 OCRHandle,根据存储在 OCR 文件中的测试特性。

12. write _ ocr _ class _ mlp

功能:将 OCR 分级器的 OCRHandle 写入由文件名确定的文件中。

12.4 Support-Vector-Machines (支持矢量机)

1. clear _all _ ocr _ class _ svm

功能:清除所有的基于 OCR 分级器的 SVM,释放相应的存储空间。

2. clear _ ocr _ class _ svm

功能:清除基于OCR分级器的一个SVM,释放相应的存储空间。

3. create _ ocr _ class _ svm

功能:利用支持向量机创建一个 OCR 分级器。

4. do _ ocr _ multi _ class _ svm

功能:根据基于 OCR 分级器的 SVM 将大量字符分类。

5. do _ ocr _ single _ class _ svm

功能:根据基于 OCR 分级器的 SVM 将单个字符分类。

6. do _ ocr _ word _ svm

功能:利用 OCR 分级器将一系列相关字符分类。

7. get $_$ features $_$ ocr $_$ class $_$ svm

功能: 计算一个字符的特征。

8. get _ params _ ocr _ class _ svm

功能:返回一个OCR 分级器的参数。

9. get _ prep _ info _ ocr _ class _ svm

功能: 计算基于 OCR 分级器的 SVM 的预定义特征矢量的信息内容。

10. get _ support _ vector _ num _ ocr _ class _ svm

功能:返回OCR分级器支持的矢量的数目。

11. get _ support _ vector _ ocr _ class _ svm

功能:返回基于支持向量机的已测试 OCR 分级器中支持向量的索引。

12. read ocr class svm

功能:从文件中读取基于 OCR 分级器的 SVM。

13. reduce _ ocr _ class _ svm

功能:根据一个减小的 SVM 来接近一个基于 OCR 分级器的 SVM。

14. Trainf _ ocr _ class _ svm

功能:测试一个OCR分级器。

15. write _ ocr _ class _ svm

功能:将一个OCR分级器写入文件。

12.5 Tools

1. Segment characters

功能:将一副图像给定区域的字符分割。

2. select _ characters

功能:从一个给定区域中选择字符。

3. text _ line _ orientation

功能:决定一个文本行或段落的定向(定位)。

4. text _line _ slant

12.6 Training-Files

1. append _ ocr _ trainf

功能:将字符添加到一个测试文件中。

2. concat _ ocr _ trainf

功能: 合并测试文件。

3. read _ocr _ trainf

功能:从文件中读取字符,将其转换到图像中。

4. read _ ocr _ trainf _ names

功能: 查询哪些字符存储在测试文件中。

5. read _ ocr _ trainf _select

功能:从文件中读取测试特定字符,将其转换到图像中。

6. write _ ocr _ trainf

功能: 将已测试的字符存储到文件中。

7. write _ ocr _ trainf _ image

功能:将字符写入正在测试的文件中。

Chapter 13:Object

13.1 Information

1. count _ obj

功能:统计一个元组中的对象。

2. get _ channel _info

功能:一幅目标图像组成部分的信息。

3. get _ obj _ class

功能:一副目标图像类的名称。

4. test_equal_obj

功能:比较目标图像的平等性。

5. test _ obj _ def

功能:测试目标是否被删除。

13.2 Manipulation

1. clear_obj

功能:将一个对象的图标从 HALCON 数据库中删除。

2. concat_obj

功能:连接两个目标元组的图标。

3. copy_obj

功能: 复制一个 HALCON 数据库中对象的图标。

4. gen_ empty_ obj

功能: 创建一个空的目标元组。

5. integer_to_obj

功能:将一个整型数转换为一个图标。

6. obj_ to_ integer

功能:将一个图标转换为一个整型数。

7. select_obj

功能:从一个目标元组中选择目标。

Chapter 14:Regions

14.1 Access

1. get _region _chain

功能:一个对象的轮廓(contour)作为链式码。

2. get _region _contour

功能:查询一个目标的轮廓(contour)。

3. get _region_convex

功能: 查询突起的外表作为轮廓(contour)。

4. get _region _points

功能:查询一个区域的像素数。

5. get_region_polygon

功能:用一个多边形近似获取区域。

6. get_ region_ runs

功能: 查询一个区域的扫描宽度编码。

14.2 Creation

1. gen _checker _region

功能: 创建一个方格式区域。

2. gen_circle

功能: 创建一个圆周。

3. gen_ ellipse

功能: 创建一个椭圆。

4. gen _empty _region

功能: 创建一个空的区域。

5. gen _grid _region

功能:根据行或像素数创建一个区域。

6. gen _random _region 功能:创建一个随机区域。

7. gen_random_regions

功能: 创建随机区域如圆周,矩形和椭圆。

8. gen_rectangle1

功能: 创建一个与坐标轴平行的长方形。

9. gen_rectangle2

功能: 创建任意方向的矩形。

10. gen_ region _contour _xld

功能:从 XLD 元组中创建一个区域。

11. gen_ region_ histo

功能:将一个直方图转换为一个区域。

12. gen_region_hline

功能:将 Hesse 正规形状中描述的输入线存储为区域。

13. gen_ region _line

功能:将输入线以区域形式存储。

14. gen _region _points

功能:将个别的像素存储为图像区域。

15. gen_ region_ polygon

功能:将一个多边形存储为一个目标图像。

16. gen_ region _polygon _filled

功能:将一个多边形存储为一个已填充区域。

17. gen_ region _polygon _xld

功能: 创建一个 XLD 多边形中的区域。

18. gen _region _runs

功能: 创建一个扫描宽度编码中的图像区域。

19. label _to _region

功能: 提取一幅图像中灰度值相同的区域。

14.3 Features

1. area _ center

功能:一个区域的面积(大小)和中心。

2. circularity

功能: 影响一个区域与圆的相似度的形状系数。

3. compactness

功能:影响一个区域致密度的形状系数。

4. connect _ and_ holes

功能:连接部分和中断的数目。

5. contlength

功能:描述一个区域轮廓(contour)的长度。

6. convexity

功能:影响一个区域凸性的形状系数。

7. diameter _ region

功能:一个区域两个边界点的最大距离。

8. eccentricity

功能:来源于椭圆参数的形状系数。

9. elliptic _ axis

功能:相似椭圆的参数。

10. euler _ number

功能: 计算 Euler 数目。

11. find _ neighbors

功能:搜寻直接邻域。

12. get _ region_ index

功能:包括给定像素在内的所有的区域的索引。

13. get _ region_ thickness

功能: 查询主轴附近区域的宽度(厚度)。

14. hamming _ distance

功能:两个区域间的汉明距离。

15. hamming _distance _norm

功能:两个区域间的归一化汉明距离。

16. inner _ circle

功能:一个区域内部最大的圆周。

17. inner_ rectangle1

功能:一个区域内部最大的矩形。

18. moments _region _2nd

功能: 区域的某时刻几何特性,。

19. moments _region _2nd _ invar

功能:区域的某时刻几何特性。

20. moments _region _2nd _ rel _invar 功能: 计算相关时刻参数。

21. moments _region _ 3rd

功能:区域的某时刻几何特性。

22. moments _region _3rd _ invar

功能: 区域的某时刻几何特性。

23. moments _region _central

功能:区域的某时刻几何特性。

24. moments _region _central _invar

功能: 区域的某时刻几何特性。

25. orientation_region

功能:一个区域的定向。

26. rectangularity

功能: 影响一个区域矩形相似度的形状系数。

27. roundness

功能:轮廓中获取的形状系数。

28.runlength_distribution

功能:一个区域扫描宽度编码所需的顺串的分配。

29. runlength_ features

功能:区域扫描宽度编码的特征值。

30. select _region_ point

功能:选择包括给定像素在内的所有区域。

31. select_ region_ spatial

功能:讨论区域的关联性。

32. select_ shape

功能:根据图形特征选择区域。

33. select _shape _proto

功能: 选择彼此有某种关系的区域。

34. select _shape _std

功能:选择给定形状的区域。

35. smallest_circle

功能:一个区域的最小周长。

36. smallest _rectangle1

功能: 平行于坐标轴的包围某区域的矩形。

37. smallest_rectangle2

功能: 任意方向包围某区域的最小矩形。

38. spatial_relation

功能:根据坐标轴方向左、右、上、下排列相关区域。

14.4 Geometric-Transformations

1. affine _trans _region

功能:对区域进行任意的二维变换。

2. mirror _region

功能: 反馈一个平行于 X 或 Y 坐标轴的区域。

3. move _region

功能:对区域进行变换。

4. polar _trans _region

功能:将一个环状弧内的区域转换为极坐标。

5. polar _trans _region _inv

功能:将极坐标中的区域转换为笛卡尔坐标中的区域。

6. projective _trans _region

功能:对一个区域进行射影变换。

7. transpose _region

功能:翻译关于一个点的一个区域。

8. zoom _region

功能:缩放一个区域。

14.5 Sets

1. complement

功能:返回一个区域的补码。

2. difference

功能: 计算两个区域的差距(不同)。

3. intersection

功能: 计算两个区域的交集。

4. symm_ difference

功能: 计算两个区域对称差异。

5. union1

功能:返回所有输入区域的并集。

6. union2

功能:返回两个区域的并集。

14.6 Tests

1. test _equal _region

功能: 检测两个目标区域是否相同。

2. test _subset _region

功能:检测一个区域是否包含在另一个区域中。

14.7 Transformation

1. background _seg

功能:决定给定区域背景相连的部分。

2. clip _region

功能:将一个区域修改为矩形。

3. clip _region _ rel

功能:根据大小修改一个区域。

4. connection

功能: 计算一个区域相连接的部分。

5. distance _ transform

功能: 计算一个区域的距离变换。

6. eliminate _ runs

功能:消除一个给定宽度的顺串。

7. expand _ region

功能:填充区域间的间隙或分离互相重叠的区域。

8. fill_up

功能:填充区域中的中断(裂缝等)。

9. fill _up _shape

功能:填充拥有给定图形特征区域的中断。

10. hamming _change _region

功能: 创建一个有给定汉明距离的区域。

11. interjacent

功能:利用给定区域分割图像。

12. junctions _skeleton

功能:找到框架中的结点和终点。

13. merge _regions _line _scan

功能:从行扫描图像合并区域。

14. partition _ dynamic

功能: 在较小垂直范围的位置水平分割一个区域。

15. partition _dynamic

功能:将一个区域分割为等大的矩形。

16. rank _region

功能:给对区域的操作归类。

17. remove _ noise _ region

功能: 去除一个区域内的噪声。

18. shape_ trans

功能:改变一个区域的形状。

19. skeleton

功能: 计算一个区域的框架。

20. sort _ region

功能:根据相邻位置归类区域。

21. split skeleton lines

功能:用一个像素宽,没有分支的线来分离线。

22. split _skeleton _region

功能:用一个像素宽,没有分支的区域来分离线。

Chapter 15:Segmentation

15.1 Classification

1. add _samples _image _class _gmm

功能:将从图像中获取的测试样本添加到高斯混合模型的测试数据库中。

2. add _ samples _image _class _mlp

功能:将从图像中获取的测试样本添加到多层视感控器的测试数据库中。

3. add_ samples_ image_ class_ svm

功能:将从图像中获取的测试样本添加到一个支持向量机的测试数据库中。

4. class_ 2dim_ sup

功能:采用二维空间像素分类分割图像。

5. class _ 2dim _ unsup

功能:将两幅图像以聚类分割。

6.class _ ndim _box

功能:利用立方体将像素分类。

7. class_ ndim_ norm

功能:利用球体或立方体将像素分类。

8. classify_image_class_gmm

功能:根据高斯混合模式分类图像。

9. classify_image_class_mlp

功能:根据多层视感控器分类图像。

10. classify_ image_ class_ svm

功能:根据支持向量机分类图像。

11. learn_ndim_box

功能:利用多通道图像测试一个分级器。

12. learn_ ndim_ norm

功能:为 class_ndim_norm 构建类。

15.2 Edges

1. detect _edge _segments

功能:检测直线边缘分割。

2. hysteresis_threshold

功能:对一副图像采取磁滞门限操作。

3. nonmax_ suppression_ amp

功能: 抑制一幅图像上的非最大值点。

4. nonmax_ suppression_ dir

功能:利用指定图像抑制一幅图像上的非最大值点。

15.3 Regiongrowing

1. expand_ gray

功能: 依据灰度值或颜色填充两个区域的间隙或分割重叠区域。

2. expand_ gray_ ref

功能:依据灰度值或颜色填充两个区域的间隙或分割重叠区域。

3. expand line

功能: 从给定线开始扩充区域。

4. regiongrowing

功能:利用区域增长分割图像。

5. regiongrowing_mean

功能:利用平均灰度值执行区域增长。

6. regiongrowing_n

功能:利用区域增长为多通道图像分割图像。

15.4 Threshold

1. auto_threshold

功能:根据直方图决定的阀值分割图像。

2. bin_ threshold

功能:根据自动产生的阀值分割图像。

3. char_threshold

功能: 为提取的字符产生一个分割阀值。

4. check_ difference

功能:一个像素一个像素的比较两幅图像。

5. dual_threshold

功能:对标记的图像做门限操作。

6. dyn threshold

功能:利用局域阀值分割图像。

7. fast threshold

功能:利用全局阀值快速将图像二值化。

8. histo_to_thresh

功能:根据直方图决定灰度值门限。

9. threshold

功能:利用全局阀值分割图像。

10. threshold_sub_pix

功能:根据子像素的准确性从一副图像中提取水平(平坦)交叉口。

11. var_threshold

功能:根据局域平均标准偏差分析将图像二值化。

12. zero_crossing

功能:从一幅图像中提取零相交。

13. zero_ crossing_ sub_ pix

功能:根据子像素准确性从一幅图像中提取零相交。

15.5 Topography

1. critical_points_sub_pix

功能:一幅图像中主要点的子像素精确度检测。

2. local_max

功能: 检测一幅图像中所有的最大数。

3. local_max_sub_pix

功能:一幅图像中局域最大数的子像素精确度检测。

4 .local min

功能: 检测一幅图像中所有的最小数。

5. local_min_sub_pix

功能:一幅图像中局域最小数的子像素精确度检测。

6. lowlands

功能:检测凹地所有灰度值。

7. lowlands_ center

功能: 检测凹地所有灰度值的中心。

8. plateaus

功能: 检测所有平稳状态灰度值。

9. plateaus_center

功能: 检测所有平稳状态灰度值的中心。

10. pouring

功能:根据大于"pouring water"分割图像。

11. saddle_points_sub_pix

功能:一幅图像中底部点的子像素精确度检测。

12. watersheds

功能:从一副图像中提取分界线和"盆地"。

13. watersheds _threshold

功能:利用阀值从一幅图像中提取"分水岭盆地"。

Chapter 16:System

16.1 Database

1. count_ relation

功能:在 HALCON 数据库中实体的数目。

2. get_ modules

功能: 查询已使用模块和模块关键码。

3. reset_ obj_ db

功能: HALCON 系统的初始化。

16.2 Error-Handling

1. get_check

功能: HALCON 控制模式的说明。

2. get_error_text

功能:查询 HALCON 错误测试后错误数目。

3. get_spy

功能: HALCON 调试工具当前配置。

4. query_ spy

功能:查询 HALCON 调试工具可能的设置。

5. set_check

功能:激活和钝化 HALCON 控制模式。

6. set spy

功能: HALCON 调试工具的控制。

16.3 Information

1. get_chapter_info

功能: 获取程序有关章节的信息。

2. get_ keywords

功能: 获取指定给程序的关键字。

3. get_ operator_ info

功能: 获取关于 HALCON 程序的信息。

4. get_ operator_ name

功能: 获取由给定字符串作为它们的名字的程序。

5. get_param_info

功能: 获取关于程序参数的信息。

6. get_param_names

功能: 获取一个 HALCON 程序参数的名字。

7. get_param_num

功能:获取一个 HALCON 程序不同参数类的数目。

8. get_param_types

功能: 获取一个 HALCON 程序控制参数的缺省数据类型。

9. query_ operator_ info

功能: 联合操作 get_operator_info 查询空档相关信息。

10. query_param_info

功能: 查询关于操作 get_param_info 的空档的在线信息。

11. search _operator

功能: 寻找一个关键字所有进程的名字。

16.4 Operating-System

1. count_ seconds

功能: 衡量时间。

2. system_ call

功能: 执行系统请求。

3. wait_ seconds

功能: 延迟操作的执行。

16.5 Parallelization

1. check_ par_ hw_ potential

功能: 检测硬件进行并行处理的潜力。

2. load_par_knowledge

功能:从文件中导入自动平行化信息。

3. store_par_knowledge

功能: 在文件中存储关于自动平行化的信息。

16.6 Parameters

1. get_system

功能:根据 HALCON 系统参数获取关于当前的信息。

2. set_system

功能: HALCON 系统参数的设置。

16.7 Serial

1. clear_ serial

功能:清除一个串行连接的缓冲。

2. close_all_serials

功能: 关闭所有的串行设备。

3. close serial

功能:关闭一个串行设备。

4. get_ serial_ param

功能: 获取一个串行设备的参数。

5. open_ serial

功能: 打开一个串行设备。

6. read_ serial

功能: 读取一个串行设备。

7. set_serial_param

功能:设置一个串行设备的参数。

8. write_serial

功能: 写入一个串行设备。

16.8 Sockets

1. close_socket

功能:关闭一个插口(接口)。

2. get_next_socket_data_type

功能:决定下一个插口(接口)数据的 HALCON 数据类型。

3. get_ socket_ timeout

功能: 获取一个插口(接口)的超时。

4. open_ socket_ accept

功能: 打开一个接受连接请求的插口(接口)。

5. open_ socket_ connect

功能: 打开一个插口到一个已存在的插口。

6. receive_image

功能:通过插口连接接收一副图像。

7. receive_region

功能:通过插口连接接收区域。

8. receive tuple

功能:通过插口连接接收一个元组。

9. receive_xld

功能:通过插口连接接收一个 XLD 对象。

10. send_image

功能:通过插口连接发送一副图像。

11. send_region

功能:通过插口连接发送区域。

12. send_tuple

功能:通过插口连接发送一个元组。

13. send_xld

功能:通过插口连接发送一个 XLD 对象。

14. set_ socket_ timeout

功能:设置一个插口的超时。

15. socket_accept_connect

功能:接受一个监听插口的连接请求。

Chapter 17:Tools

17.1 2D-Transformations

1. affine_ trans_ pixel

功能:对像素坐标轴进行任意的仿射二维变换。

2. affine_trans_point_2d

功能:对点进行任意的最简二维变换

3. bundle_adjust_mosaic

功能:对一幅图像的嵌合体采取一系列调整。

4. hom_ mat2d_ compose

功能:将两种相同类型二维变换矩阵相乘。

5. hom mat2d determinant

功能: 计算一个同质的二维变换矩阵的行列式。

6. hom_ mat2d_ identity

功能:构建二维变换同样的同质变换矩阵。

7. hom_ mat2d_ invert

功能:插入一个同质二维变换矩阵。

8. hom_mat2d_rotate

功能: 为一个同质二维变换矩阵添加一个循环。

9. hom_ mat2d_ rotate_ local

功能: 为一个同质二维变换矩阵添加一个循环。

10. hom_ mat2d_ scale

功能: 为一个同质二维变换矩阵添加一个缩放。

11. hom_ mat2d_ scale_ local

功能: 为一个同质二维变换矩阵添加一个缩放。

12. hom_ mat2d_ slant

功能: 为一个同质二维变换矩阵添加一个斜面。

13. hom_ mat2d_ slant_ local

功能: 为一个同质二维变换矩阵添加一个斜面。

14. hom_ mat2d_ to_ affine_ par

功能: 计算一个来自一个同质二维变换矩阵的仿射变换参数。

15. hom_ mat2d_ translate

功能: 为一个同质二维变换矩阵添加一个旋转。

16. hom_ mat2d_ translate_ local

功能: 为一个同质二维变换矩阵添加一个旋转。

17. hom_ mat2d_ transpose

功能:将一个同质二维变换矩阵转置。

18. hom_ mat3d_ project

功能:给一个二维投影变换矩阵投影一个仿射三维变换矩阵。

19. hom_vector_to_proj_hom_mat2d

功能: 根据给定点的映射计算一个同质变换矩阵。

20. proj_ match_ points_ ransack

功能:通过找到两副图像中点与点之间的映射计算一个投影变换矩阵。

21. projective_trans_pixel

功能:利用一个同质投影变换矩阵表示像素坐标轴。

22. projective_trans_point_2d

功能:利用一个投影变换矩阵表示一个同质二维点。

23. vector_angle_to_rigid

功能:从点和角度方面计算一个严格的仿射变换。

24. vector_field_to_hom_mat2d

功能:根据位移矢量字段获取一个最接近的近似图。

25. vector_ to_ hom_ mat2d

功能:根据点与点间的映射获取一个最接近的近似图

26. vector_ to_ proj_ hom_ mat2d

功能:利用给定点的映射计算一个映射变换矩阵。

27. vector to rigid

功能:根据点的映射获取一个近似严格的仿射变换。

28. vector_to_similarity

功能:根据点的映射获取一个近似的相似变换。

17.2 3D-Transformations

1. affine_trans_point_3d

功能:对点运用一个随即仿射三维变换。

2. convert_ pose_ type

功能: 改变一个三维模式的表示类型。

3. create_pose

功能: 创建一个三维模式。

4. get_pose_type

功能: 获取一个三维模式的表示类型。

5. hom_ mat3d_ compose

功能:将两个同质三维变换矩阵相乘。

6. hom_ mat3d_ identity

功能:构建三维变换同样的同质变换矩阵。

7. hom_mat3d_invert

功能:插入一个同质三维变换矩阵。

8. hom_ mat3d_ rotate

功能: 为一个同质三维变换矩阵添加一个循环。

9. hom_ mat3d_ rotate_ local

功能: 为一个同质三维变换矩阵添加一个循环。

10. hom_ mat3d_ scale

功能: 为一个同质三维变换矩阵添加一个缩放。

11. hom_ mat3d_ scale_ local

功能: 为一个同质三维变换矩阵添加一个缩放。

12. hom_ mat3d_ to_ pose

功能:将一个同质变换矩阵转换为一个三维模式。

13. hom_ mat3d_ translate

功能: 为一个同质三维变换矩阵添加一个旋转。

14. hom_ mat3d_ translate_ local

功能: 为一个同质三维变换矩阵添加一个旋转。

15 .pose_ to_ hom_ mat3d

功能:将一个三位模式转换为一个同质变换矩阵。

16. read_pose

功能:从一个文本文件中读取一个三维模式。

17. set_origin_pose

功能:转换一个三位模式的原点。

18. write_pose

17.3 Background-Estimator

1. close_ all_ bg_ esti

功能:清除所有的背景评估数据集。

2. close_bg_esti

功能:清除背景估测数据集。

3. create_bg_esti

功能: 为背景评估创建和初始化一个数据集。

4. get_bg_esti_params

功能:返回数据集的参数。

5. give_bg_esti

功能:返回估测背景图像。

6. run_ bg_ esti

功能:评估背景并返回前景区域。

7. set_bg_esti_params

功能: 改变数据集的参数。

8. update_bg_esti

功能: 改变估测背景图像。

17.4 Barcode

1. clear_ all_ bar_ code_ models

功能:清除所有条形码模型,释放其分配的存储空间。

2. clear_bar_code_model

功能:清除一个条形码模型,释放相应的存储空间。

3. create_bar_code_model

功能: 创建一个条形码阅读器模型。

4. find_bar_code

功能: 检测和读取一幅图像中条形码符号。

5. get_bar_code_object

功能:访问创建在搜寻或条形码符号解码过程中的对象图标。

6. get_bar_code_param

功能: 获取一个或多个描述条形码模式的参数。

7. get_bar_code_result

功能: 获取字母数字混合编码的结果, 其是在条形码符号解码过程中累计的。

8. set_bar_code_param

功能:设置条形码模型的选定参数。

17.5 Calibration

1. caltab_points

功能:从校准板说明文件中读取标志中心点。

2. cam_ mat_ to_ cam_ par

功能: 计算从一个相机矩阵获取的内部相机参数。

3. cam_par_to_cam_mat

功能: 从相机内部参数计算一个相机矩阵。

4. camera calibration

功能:决定同时发生的最小化程序的所有相机参数。

5. change radial distortion cam par

功能:根据与特殊放射失真相一致决定新的相机参数。

6. change_radial_distortion_contours_xld

功能:改变了轮廓(contour)的放射失真。

7. change_radial_distortion_image

功能:改变一幅图像的放射失真。

8. contour_ to_ world_ plane_ xld

功能:将一个XLD轮廓(contour)转换为一个坐标系统中平面Z为零。

9. create_caltab

功能: 创建一个描述文件和附文件的校准板。

10. disp_caltab

功能: 投射和视觉化图像中校准板的三维模型。

11. find_ caltab

功能:分割和标准化图像中的校准板区域。

12. find marks and pose

功能: 从图像中提取二维校准标志和为外部计算机参数计算内部数值。

13. gen caltab

功能: 创建一个校准板说明文件和相应的附文件。

14. gen_ image_ to_ world_ plane_ map

功能: 创建一个投射图, 其描述图像平面与坐标轴系统中平面 Z 为零之间的映射。

15. gen_radial_distortion_map

功能: 创建一个投射图, 其描述图像与其相应正在改变的放射失真间的映射。

16. get_circle_pose

功能:从一个圆周相应的二维投射中决定它的三维模式。

17. get_ line_ of_ sight

功能: 计算相应于图像中一个点的视线。

18. get_rectangle_pose

功能:从一个矩形相应的二维投射中决定它的三维模式。

19. hand_ eye_ calibration

功能: 执行一个手---眼校准。

20. image points to world plane

功能:将图像中的点转换到坐标轴平面 Z 为零上。

21. image_ to_ world_ plane

功能:通过将一副图像转换为坐标轴系统中平面 Z 为零而矫正图像。

22. project_3d_point

功能:将三维点投射到子像素图像坐标。

23. radiometric_self_calibration

功能: 执行一个相机的辐射测量的自校准。

24. read_ cam_ par

功能:从文本文件中读取内部相机参数。

25. sim_ caltab

功能:根据校准板模拟一幅图像。

26. stationary_camera_self_calibration

功能: 投射一个静止投射相机的自校准。

27. write_cam_par

功能:将内部相机参数写入文本文件中。

17.6 Datacode

1. clear_all_data_code_2d_models

功能:清除所有的二维数据模型并释放它们分配的存储空间。

2. clear_ data_ code_ 2d_ model

功能:清除一个二维数据模型并释放它分配的存储空间。

3. create data code 2d model

功能: 创建一个二维数据编码类的模式。

4. find_ data_ code_ 2d

功能: 检测和读取一副图像或测试的二维数据编码模式中的二维数据编码符号。

5. get_data_code_2d_objects

功能: 查询搜索二维数据编码符号过程中创建的对象的图标。

6. get_data_code_2d_param

功能: 获取一个或多个描述二维数据编码模型的参数。

7. get_data_code_2d_results

功能: 获取字母数字混合编码的结果, 其是在搜索二维数据编码符号过程中累计的。

8. query_data_code_2d_params

功能:为一个给定二维数据编码模型获取通用参数或对象的名字,其也可用于其他的二维数据编码模型中。

9. read_ data_ code_ 2d_ model

功能:从一个文件中读取一个二维数据编码模型并新建一个模型。

10. set_data_code_2d_param

功能:设置二维数据编码模型的选定参数。

11. write_data_code_2d_model

功能: 将一个二维数据编码模型写入一个文件。

17.7 Fourier-Descriptor

1. abs_ invar_ fourier_ coeff 功能:根据起始点的位移标准化傅里叶系数。

2. fourier_1dim 功能: 计算一个参数化的元组的傅里叶系数。

fourier_1dim_inv
 功能:空间傅里叶变换(傅里叶逆变换)。

4. invar_fourier_coeff 功能: 傅里叶系数标准化。

5. match_ fourier_ coeff 功能:两个元组的相似性。

6. move_contour_orig 功能:将原点变换到引力的中心。

7. prep_ contour_ fourier 功能: 参数化传输的元组。

17.8 Function

1. abs_ funct_ 1d 功能: Y 值的绝对值。

2. compose_funct_1d 功能:组合两个函数。

3. create_funct_1d_array 功能:从Y值的序列中创建一个函数。

4. create_funct_1d_pairs
功能:从(X,Y)集合中创建一个函数。

5. derivate_funct_1d功能: 计算一个函数的派生物。

6. distance_funct_1d 功能:计算两个函数的间隔。

7. funct_ 1d_ to_ pairs 功能: 查询一个函数的(X, Y)值。

8. get_pair_funct_1d 功能:根据控制点的索引查询一个函数值。

9. get_y_value_funct_1d 功能:返回任意位置函数的值。

10. integrate_funct_1d 功能:计算一个函数的正区域和负区域。

11. invert_ funct_ 1d 功能: 计算一个函数的反转。

12. local_min_max_funct_1d

功能: 计算一个函数的局域最小和最大值点。

13. match_funct_1d_trans

功能: 计算两个函数传递参数。

14. negate_funct_1d

功能:对Y值取非(反)。

15. num_points_funct_1d

功能:函数控制点的数目。

16. read_funct_1d

功能:从文件中读取一个函数。

17. sample_funct_1d

功能: 再间隔区等距取样。

18. scale_ y_ funct_ 1d

功能:将Y值相乘和相加。

19. smooth_ funct_ 1d_ gauss

功能:采用高斯函数平滑一个等距一维函数。

20. smooth_ funct_ 1d_ mean

功能: 采用平均值将一个等距一维函数平滑化。

21. transform_funct_1d

功能:根据给定传递参数变换你一个函数。

22. write_funct_1d

功能:将一个函数写入一个文件。

23. x_range_funct_1d

功能:函数的最小和最大 X 值。

24. y_range_funct_1d

功能:函数的最小和最大 Y 值。

25. zero_ crossings_ funct_ 1d

功能: 计算一个函数的零点。

17.9 Geometry

1. angle_ll

功能: 计算两条线的夹角。

2. angle_lx

功能: 计算一条线与垂直轴之间的角度。

3. distance_cc

功能: 计算两个轮廓(contour)间的距离。

4. distance_cc_min

功能: 计算两个轮廓(contour)间的最小距离。

5. distance_lc

功能: 计算一条线和一个轮廓(contour)间的距离。

6. distance lr

功能: 计算一条线和一个区域间的距离。

7. distance_pc

功能: 计算一个点和一个轮廓(contour)间的距离。

8. distance pl

功能: 计算一个点和一条线间的距离。

9. distance_pp

功能: 计算两个点之间的距离。

10. distance_pr

功能: 计算一个点和一个区域间的距离。

11. distance_ps

功能: 计算一个点和一条分割线间的距离。

12. distance_rr_min

功能:两个相邻区域的相同像素间的最小距离。

13. distance_rr_min_dil

功能:膨胀时两个区域间的最小距离。

14. distance sc

功能: 计算一条分割线和一个轮廓(contour)间的距离。

15. distance sl

功能: 计算一条分割线和一条线间的距离。

16. distance_ sr

功能: 计算一条分割线和一个区域间的距离。

17. distance ss

功能: 计算两条分割线间的距离。

18. get_points_ellipse

功能: 计算椭圆上特定角度的一个点。

19. intersection_ ll

功能: 计算两条线的交集点(相交点)。

20. projection_pl

功能: 计算一条线上一个点的投影。

17.10 Grid-Rectification

1. connect_grid_points

功能:建立矫正网格的矫正点间的连接。

2. create_rectification_grid

功能:建立一个附文件,描述矫正网格。

3. find_rectification_grid

功能:分割图像中矫正网格区域。

4. gen_ arbitrary_ distortion_ map

功能:产生一个投射图,其描述随意扭曲图像与正确图像间的映射。

5. gen_ grid_ rectification_ map

功能: 计算扭曲图像与基于规律的网格的正确的图像的映射。

17.11 Hough

1. hough_circle_trans

功能:返回指定半径的圆周的 Hough 变换。

2. hough_circles

功能:特定半径的圆周的中心。

3. hough_line_trans

功能:对区域中的线进行 Hough 变换。

4. hough_line_trans_dir

功能:利用局部方向梯度对线进行 Hough 变换。

5. hough lines

功能:借助 Hough 变化查询图像中的线,并将其返回到 HNF中。

6. hough_lines_dir

功能:借助采用局部方向梯度的 Hough 变换查询图像中的线,并将它们以正常形式返回。

7. select_ matching_ lines

功能:选取 HNF 中线的集合中匹配区域最好的线。

17.12 Image-Comparison

1. clear_all_variation_models

功能:释放所有变化模型(variation model)的存储空间。

2. clear_train_data_variation_model

功能:释放变化模型(variation model)的测试数据的存储空间。

3. clear_variation_model

功能:释放一个变化模型(variation model)的存储空间。

4. compare_ext_variation_model

功能:将一副图像与一个变化模型(variation model)相比较。

5. compare_variation_model

功能:将一副图像与一个变化模型(variation model)相比较。

6. create_variation_model

功能: 为图像对比创建一个变化模型。

7. get_ thresh_ images_ variation_ model

功能:返回阀值图像用于图像对比。

8. get_variation_model

功能:返回图像用于图像对比。

9. prepare_direct_variation_model

功能: 为图像对比准备一个变化模型。

10. prepare_variation_model

功能: 为图像对比准备一个变化模型。

11. read_ variation_ model

功能:从一个文件中读取一个变化模型。

12. train_ variation_ model

功能:测试一个变化模型。

13. write_variation_model

功能:将一个变化模型写入文件。

17.13 Kalman-Filter

1. filter_ kalman

功能:借助 Kalman (卡尔曼)滤波器估测系统的当前状态。

2. read_ kalman

功能: 读取一个卡尔曼滤波器的说明文件。

3. sensor_ kalman

功能:卡尔曼滤波器测量值的交互式输入。

4. update_ kalman

功能: 读取一个卡尔曼滤波器的更新文件。

17.14 Measure

1. close_all_measures

功能:清除所有测试对象。

2. close_ measure

功能:清除一个测试对象。

3. fuzzy_ measure_ pairing

功能: 提取与矩形或环状弧垂直的直线边缘。

4. fuzzy_ measure_ pairs

功能: 提取与矩形或环状弧垂直的直线边缘。

5. fuzzy_ measure_ pos

功能: 提取与矩形或环状弧垂直的直线边缘。

6. gen_ measure_ arc

功能:垂直与环状弧的直线边缘的提取。

7. gen_ measure_rectangle2

功能:垂直与矩形的直线边缘的提取。

8. measure_pairs

功能: 提取与矩形或环状弧垂直的直线边缘。

9. measure_pos

功能: 提取与矩形或环状弧垂直的直线边缘。

10. measure_projection

功能: 提取垂直于一个矩形或环状弧的灰度值轮廓(contour)。

11. measure_thresh

功能: 提取沿着一个矩形或环状弧, 特殊灰度值的点。

12. reset_ fuzzy_ measure

功能: 重置一个模糊元函数。

13. set_fuzzy_measure

功能: 指定一个模糊元函数。

14. set_ fuzzy_ measure_ norm_ pair

功能: 为边缘匹配指定一个规范化模糊元函数。

15. translate_ measure

功能: 转化(解释)一个测试对象。

17.15 OCV (Open Circuit Voltage | 光学字符校验)

1. close_all_ocvs

功能:关闭所有 OCV 工具。

2. close_ocv

功能:关闭一个OCV工具。

3. create_ocv_proj

功能: 创建一个基于灰度值突出的新的 OCV 工具。

4. do_ ocv_ simple

功能:利用一个OCV工具查证一个模式。

5. read_ ocv

功能:从文件中读取一个OCV工具。

6. traind_ ocv_ proj

功能:测试一个OCV工具。

7. write_ocv

功能:将一个OCV工具保存到文件。

17.16 Shape-from

1. depth_ from_ focus

功能: 利用多倍聚焦灰度级提取高度(厚度)。

2. estimate_ al_ am

功能: 估测一个平面的反射率和反射光的数目。

3. estimate_sl_al_lr

功能: 估测一个光源的倾斜度和一个平面的反射率。

4. estimate_ sl_ al_ zc

功能: 估测一个光源的倾斜度和一个平面的反射率。

5. estimate tilt lr

功能: 估测一个光源的倾斜。

6. estimate_tilt_zc

功能: 估测一个光源的倾斜。

7. phot_ stereo

功能:根据至少三个灰度值的图像来重建一个平面。

8. select_grayvalues_from_channels

功能:利用索引图像选择一个多通道图像的灰度值。

9. sfs mod lr

功能:从一个灰度值图像重建一个平面。

10. sfs_orig_lr

功能:从一个灰度值图像重建一个平面。

11. sfs_pentland

功能:从一个灰度值图像重建一个平面。

12. shade_height_field

功能: 遮蔽一个突起的字段。

17.17 Stereo

1. binocular_ calibration

功能:决定一个双目视觉立体系统的所有相机参数。

2. binocular_disparity

功能: 计算一个矫正图像对的不均衡。

3. binocular_ distance

功能: 计算一个矫正立体图像对的间隔值。

4. disparity_ to_ distance

功能:将不均衡值转换为矫正双目视觉立体系统中的间隔值。

5. disparity to point 3d

功能:将一个图像点和它的不均衡值转换为一个矫正立体系统中的三维点。

6.distance_to_disparity

功能:将一个间隔值转换为一个矫正立体系统中的一个不均衡值。

7. essential_to_fundamental_matrix

功能: 计算一个从原始矩阵衍生而来的基本矩阵。

8. gen_binocular_proj_rectification

功能: 计算弱双目视觉立体系统图像的投射矫正值。

9. gen_ binocular_ rectification_ map

功能: 创建传输图, 其描述从一个双目相机到一个普通的矫正图像面的图像的映射。

10. gen_binocular_rectification_map

功能:从一个双目相机系统视觉中两条线的交点中获取一个三维点。

11. match_ essential_ matrix_ ransack

功能:通过自动发掘图像点间对应关系来计算立体图像对的原始(本质)矩阵。

12. match_fundamental_matrix_ransack

功能:通过自动发掘图像点间对应关系来计算立体图像对的基本矩阵。

13. match_rel_pose_ransack

功能:通过自动发掘图像点间对应关系来计算两个相机间的相对方位。

14. reconst3d from fundamental matrix

功能: 计算基于基本矩阵的点的投影的三维重建。

15. rel_ pose_ to_ fundamental_ matrix

功能: 计算两个相机相关方向中获取的基本矩阵。

16. vector_to_essential_matrix

功能: 计算给定图像点间映射和已知相机矩阵的原始矩阵, 重建三维点。

17. vector to fundamental matrix

功能: 计算给定图像点间映射的集合的基本矩阵, 重建三维点。

18. vector _to_ fundamental_ matrix

功能: 计算给定图像点间对应关系和已知相机参数的两个相机的相对方位, 重建三维点。

17.18 Tools-Legacy

1. decode_1d_bar_code

功能:一个条形码的顺序解码。

2. decode_2d_bar_code

功能:解码二维条形码数据。

3. discrete_ 1d_ bar_ code

功能:从元素宽度创建一个离散条形码。

4. find_ 1d_ bar_ code

功能:搜索一幅图像中的一个条形码。

5. find_ 1d_ bar_ code_ region

功能:搜索一幅图像中的多种条形码。

6. find_ 1d_ bar_ code_ scanline

功能:搜索一幅图像中的一个条形码。

7. find 2d bar code

功能: 搜索可能包括一个二维条形码的区域。

8. gen_ 1d_ bar_ code_ descry

功能: 创建一个一维条形码的说明。

9. gen_1d_bar_code_descr_gen

功能: 创建一个一维条形码的类属描述。

10. gen_ 2d_ bar_ code_ descry

功能: 创建一个二维条形码的类属描述。

11. get_ 1d_ bar_ code

功能: 提取一个条形码中元素的宽度。

12. get_1d_bar_code_scanline

功能: 提取一个条形码区域中元素的宽度。

13. get_ 2d_ bar_ code

功能:提取一个条形码区域("数据矩阵符号")中数据元素(在ECC200:"模块"中)的值。

14. get_ 2d_ bar_ code_ pos

功能:提取一个条形码区域("数据矩阵符号")中数据元素(在 ECC200:"模块"中)的数值和它们在图像中的位置。

Chapter 18:Tuple

18.1 Arithmetic

1. tuple_abs

功能: 计算一个元组的绝对值。

2. tuple_acos

功能: 计算一个元组的反余弦。

3. tuple_ add

功能:两个元组相加。

4. tuple_asin

功能: 计算一个元组的反余弦。

5. tuple atan

功能: 计算一个元组的反正切。

6. tuple_atan2

功能: 计算一个元组四个象限的反正切。

7. tuple_ceil

功能: 计算一个元组的上限函数。

8. tuple_cos

功能: 计算一个元组的余弦。

9. tuple_cosh

功能: 计算一个元组的双曲余弦。

10. tuple_cumul

功能: 计算一个元组的累计和。

11. tuple_deg

功能:将一个元组从弧度转换为角度。

12. tuple_ div

功能:将两个元组相除。

13. tuple exp

功能:元组的指数运算。

14. tuple_fabs

功能: 计算一个元组(例如浮点数)的绝对值。

15. tuple_floor

功能: 计算一个元组的"地板函数"。

16. tuple_fmod

功能: 计算两个元组浮点数相除的余数。

17. tuple_ldexp

功能: 计算两个元组的返回长双精度指数函数。

18. tuple_log

功能: 计算一个元组的自然对数。

19. tuple_ log10

功能: 计算一个元组底为 10 的对数。

20. tuple_ max2

功能: 计算两个元组的元素宽度的最大值。

21. tuple_min2

功能: 计算两个元组的元素宽度的最小值。

22. tuple_ mod

功能: 计算两个元组整型数相除的余数。

23. tuple_ mult

功能:两个元组相乘。

24. tuple_neg

功能:将一个元组取反。

25. tuple_pow

功能: 计算两个元组的冥函数。

26. tuple_rad

功能:将一个元组从角度转换为弧度。

27. tuple_sgn

功能: 计算一个元组的正负。

28. tuple_sin

功能: 计算一个元组的正弦。

29. tuple_sinh

功能: 计算一个元组的双曲正弦。

30. tuple_sqrt

功能: 计算一个元组的平方根(二次方根)。

31. tuple_sub

功能:两个元组相减。

32. tuple tan

功能: 计算一个元组的正切。

33. tuple_tanh

功能: 计算一个远足的双曲正切。

18.2 Bit-Operations

1. tuple_band

功能: 计算两个元组的按位运算。

2. tuple_bnot

功能:两个元组逐位取逻辑非。

3. tuple_bor

功能: 计算两个元组的按位运算。

4. tuple_bxor

功能:两个元组逐位进行互斥逻辑或运算。

5. tuple_lsh

功能:元组逐位左移。

6. tuple_rsh

功能:元组逐位右移。

18.3 Comparison

1. tuple_ equal

功能: 测试两个元组是否相同。

2. tuple_greater

功能:测试一个元组是否大于另一个元组。

3. tuple_greater_equal

功能:测试一个元组是否大于等于另一个。

4. tuple_less

功能: 测试一个元组是否小于另一个元组。

5. tuple_ less_ equal

功能: 测试一个元组是否小于等于另一个。

6. tuple_ not_ equal

功能: 测试两个元组是不是不等。

18.4 Conversion

1. tuple_chr

功能:根据 ASCII 码将整型元组转换为字符串。

2. tuple_chrt

功能:根据 ASCII 码将整型元组转换为字符串。

3. tuple_int

功能: 讲一个元组转换为一个整型元组。

4. tuple_ is_ number

功能: 检测一个字符串元组是否表示数字。

5. tuple_number

功能:将一个字符串元组转换为一个数字元组。

6. tuple_ ord

功能:将长度为1的字符串的元组转换为它们相应的 ASCII 码元组。

7. tuple_ ords

功能:将一个字符串的元组转换为它们 ASCII 码的元组。

8. tuple_real

功能:将一个元组转换为一个浮点数的元组。

9. tuple_round

功能:将一个元组转换为一个整型数的元组。

10. tuple_string

功能:将一个元组转换为一个字符串元组。

18.5 Creation

1. tuple_concat

功能: 合并两个元组为一个新的。

2. tuple_gen_const

功能: 创建一个特殊长度的元组和初始化它的元素。

3. tuple_rand

功能:返回任意值为0或1的元组。

18.6 Element-Order

1. tuple_inverse

功能:将一个元组反置(反转)。

2. tuple_sort

功能:按照升序分类(排列)元组的元素。

3. tuple_sort_index

功能:将元组的元素分类并返回分类元组的目录。

18.7 Features

1. tuple_deviation

功能:返回一个元组元素的标准差。

2. tuple_length

功能:返回一个元组元素数目。

3. tuple_ max

功能: 返回一个元组的最大元素。

4. tuple_ mean

功能:返回一定数量元组的平均值。

5. tuple_ median

功能: 返回一个元组元素的中值。

6. tuple_min

功能:返回一个元组的最小元素。

7. tuple_sum

功能:返回一个元组所有元素的和。

18.8 Logical-Operations

1. tuple_ and

功能:两个元组的逻辑与。

2. tuple not

功能:两个元组的逻辑非。

3. tuple_ or

功能:两个元组的逻辑或。

4. tuple_xor

功能:两个元组的逻辑互斥或。

18.9 Selection

1. tuple_find

功能: 返回一个元组所有出现的符号,同时位于另一个元组内。

 $2.\ tuple_\ first_\ n$

功能: 选取一个元组的第一个元素。

3. tuple_ last_ n

功能: 选择从符号"n"开始到元组末尾的所有元素。

4. tuple_remove

功能:从一个元组中移出元素。

5. tuple_ select

功能:选择一个元组中单一元素。

6. tuple_select_range

功能:选择一个元组中的一些元素。

7. tuple_select_rank

功能: 选择一个元组中序号为 n 的元素。

8. tuple_str_bit_select

功能:选择一个元组中单一符号或位。

9. tuple_uniq

功能: 丢弃元组中除成功归类的元素外的所有元素。

18.10 String-Operators

1. tuple_environment

功能: 读取一个或多个环境变量。

2. tuple_regexp_match

功能:利用公式提取子链。

3. tuple_regexp_replace

功能:用有规律的公式代替一个子链。

4. tuple_regexp_select

功能: 选择符合公式的元组元素。

5. tuple_regexp_test

功能: 测试一个字符串是否满足一个规则公式的要求。

6. tuple_split

功能: 在预定义的独立字符间将字符串分离为子链。

7. tuple_str_first_n

功能:分割从第一个字符直到字符串元组外的位置"n"处。

8. tuple_str_last_n

功能:从字符串元组外位置"n"处开始分割所有的字符。

9. tuple strchr

功能: 前向搜索一个位于字符串元组内的字符。

10. tuple_strlen

功能: 字符串元组中每个字符串的长度。

11. tuple_strrchr

功能:后向搜索一个位于字符串元组内的字符。

12. tuple_strrstr

功能: 后向搜索一个位于字符串元组内的字符串。

13. tuple_strstr

功能: 前向搜索一个位于字符串元组内的字符串。

Chapter 19:XLD

19.1 Access

1. get_contour_xld

功能:返回 XLD 轮廓(contour)的坐标。

2. get_lines_xld

功能:返回一个 XLD 多边形 (polygon) 数据。

3. get_parallels_xld

功能:返回一个 XLD 并行数据。

4. get_polygon_xld

功能:返回一个 XLD 多边形 (polygon) 数据。

19.2 Creation

1. gen_ contour_ nurbs_ xld

功能:将一个 NURBS 曲线转换为一个 XLD (密度?)轮廓(contour)。

2. gen_ contour_ polygon_ rounded_ xld

功能:根据一个多边形(polygon)(以元组形式给出)的圆形角点创建一个 XLD 轮廓 (contour)。

3. gen_contour_polygon_xld

功能:根据一个多边形(polygon)(以元组形式给出)创建一个 XLD 轮廓(contour)。

4. gen_ contour_ region_ xld

功能:根据区域创建 XLD 轮廓(contour)。

5. gen_ contours_ skeleton_ xld

功能:将框架转换为 XLD 轮廓(contour)。

6. gen_ cross_ contour_ xld

功能:根据每个输入点交叉的形状创键一个 XLD 轮廓(contour)。

7. gen_ ellipse_ contour_ xld

功能:根据相应的椭圆弧创建一个 XLD 轮廓(contour)。

8. gen_parallels_xld

功能: 提取并行 XLD 多边形 (polygon)。

9. gen_polygons_xld

功能:根据多边形近似创建 XLD 轮廓(contour)。

10. gen_rectangle2_contour_xld

功能: 创建一个矩形 XLD 轮廓(contour)。

11. mod_parallels_xld

功能: 提取一个包括同质区域的并行 XLD 多边形 (polygon)。

19.3 Features

1. area_center_points_xld

功能:被看做点云的轮廓(contour)和多边形(polygon)的面积和重心。

2. area_center_xld

功能:轮廓(contour)和多边形(polygon)的面积和重心。

3. circularity_xld

功能:影响轮廓(contour)或多边形(polygon)圆度(与圆相近的程度)的形状系数。

4. compactness_xld

功能:影响轮廓(contour)或多边形(polygon)致密性的形状系数。

5. contour_point_num_xld

功能: 返回一个 XLD 轮廓(contour)中点的数目。

6. convexity_xld

功能:影响轮廓(contour)或多边形(polygon)凹凸性的形状系数。

7. diameter xld

功能:两个轮廓(contour)或多边形(polygon)点间的最大距离。

8. dist_ellipse_contour_points_xld

功能: 计算所有轮廓(contour)内的点到一个椭圆的距离。

9. dist_ellipse_contour_xld

功能:轮廓到一个椭圆的距离。

10. dist_rectangle2_contour_points_xld

功能: 计算所有轮廓(contour)内的点到一个矩形的距离。

11. eccentricity_points_xld

功能:被看做点云的轮廓(contour)或多变形(polygon)的 Anisometry。

12. eccentricity_xld

功能:源自轮廓(contour)或多边形(polygon)的椭圆参数的形状系数。

13. elliptic_axis_points_xld

功能:被看做点云的轮廓(contour)或多边形(polygon)的等价椭圆参数。

14. elliptic_axis_xld

功能:轮廓(contour)或多变形(polygon)的等价椭圆参数。

15. fit_circle_contour_xld

功能:根据圆周近似获取 XLD 轮廓(contour)。

16. fit_ellipse_contour_xld

功能:根据椭圆或椭圆弧近似获取 XLD 轮廓(contour)。

17. fit line contour xld

功能:根据分割线近似获取 XLD 轮廓(contour)。

18. fit_rectangle2_contour_xld

功能: 用矩形来匹配 XLD 轮廓(contour)。

19. get_contour_angle_xld

功能: 为每个轮廓(contour)点计算一个 XLD 轮廓(contour)方向。

20. get_contour_attrib_xld

功能:返回一个 XLD 轮廓(contour)的点的特征值。

21. get_contour_global_attrib_xld

功能:返回一个 XLD 轮廓(contour)的全局特征值。

22. get_ regress_ params_ xld

功能:返回 XLD 轮廓(contour)参数。

23. info_parallels_xld

功能:返回被 XLD 多边形 (polygon)包围的区域的灰度值的信息。

24. length_xld

功能:轮廓(contour)或多边形(polygon)的长度。

25. local max contours xld

功能: 选择局域最大灰度值的 XLD 轮廓(contour)。

26. max_parallels_xld

功能:合并具有相同多边形 (polygon)的重建 XLD 并行。

27. moments_ any_ points_ xld

功能:被看做点云的轮廓(contour)或多变形(polygon)的任意几何时刻(moments)。

28. moments_ any_ xld

功能:轮廓(contour)或多变形(polygon)的任意集合时刻(moments)。

29. moments_points_xld

功能:被看做点云的轮廓(contour)或多变形(polygon)的几何时刻(moments) M20, M02,

和 M11。

30. moments_xld

功能:轮廓(contour)或多变形的几何时刻(moments) M20, M02, and M11。

31. orientation_points_xld

功能:被看做点云的轮廓(contour)或多变形(polygon)的方向。

32. orientation xld

功能:轮廓(contour)或多变形(polygon)的方向。

33. query_contour_attribs_xld

功能: 返回一个 XLD 轮廓(contour)定义的属性的名字。

34. query_contour_global_attribs_xld

功能:返回一个 XLD 轮廓(contour)定义的全局属性的名字。

35. select_contours_xld

功能:根据一些特征选择 XLD 轮廓(contour)。

36. select_ shape_ xld

功能:根据形状特征选择轮廓(contour)或多边形(polygon)。

37. select_xld_point

功能:选择包括给定点在内的所有的轮廓(contour)或多边形(polygon)。

38. smallest_circle_xld

功能:轮廓(contour)或多边形(polygon)的最小封闭圆。

39. smallest_rectangle1_xld

功能: 平行与轮廓(contour)或多边形(polygon)的坐标轴的封闭矩形。

40. smallest_rectangle2_xld

功能:轮廓(contour)或多边形(polygon)任意方向的最小封闭矩形。

41. test_self_intersection_xld

功能:测试轮廓(contour)或多边形(polygon)自身相交性。

42. test_ xld_ point

功能:测试一个或多个包括给定点在内的轮廓(contour)或多边形(polygon)。

19.4 Geometric-Transformations

1. affine_trans_contour_xld

功能:对 XLD 轮廓(contour)进行一个任意二维仿射变换。

2. affine_ trans_ polygon _xld

功能:对 XLD 多边形 (polygon)进行一个任意仿射变换。

3. gen_ parallel_ contour_ xld

功能: 计算一个 XLD 轮廓(contour)的平行轮廓(contour)。

4. polar_trans_contour_xld

功能:将一个环状弧中的轮廓(contour)转换为极坐标形式。

5. polar_trans_contour_xld_inv

功能:将极坐标下的轮廓(contour)转换为笛卡尔坐标下的形式。

6. projective_trans_ontour_xld

功能:对一个 XLD 轮廓(contour)进行射影变换。

19.5 **Sets**

1. difference_closed_contours_xld 功能:闭合轮廓(contour)的差异。

difference _closed _polygons _xld
 功能: 闭合多边形 (polygon) 的差异。

3. intersection_ closed_ contours_ xld 功能: 闭合轮廓(contour)的交集。

- 4. intersection_ closed_ polygons_ xld 功能: 闭合多边形(polygon)的交集。
- 5. symm_ difference_ closed_ contours_ xld 功能: 闭合轮廓(contour)的对称差异。
- 6. symm_ difference_ closed_ polygons_ xld 功能: 闭合多边形(polygon)的对称差异。
- 7. union2_closed_contours_xld 功能:闭合轮廓(contour)的并集。
- 8. union2_ closed_ polygons_ xld 功能: 闭合多边形(polygon)的并集。

19.6 Transformation

- 1. add_ noise_ white_ contour_ xld 功能: 向 XLD 轮廓(contour)中加入噪声。
- 2. clip_ contours_ xld 功能: 修剪一个 XLD 轮廓(contour)。
- 3. close_contours_xld 功能:关闭一个XLD轮廓(contour)。
- 4. combine_roads_xld 功能: 合并两个等级分辨率中的路(road)。
- 5. crop_ contours_ xld 功能:切割一个 XLD 轮廓(contour)。
- 6. merge_cont_line_scan_xld 功能:合并连续线扫描图像中的 XLD 轮廓(contour)。
- 7. regress_ contours_ xld 功能: 计算一个 XLD 轮廓(contour)回归线的参数。
- 8. segment_contours_xld 功能:将 XLD 轮廓(contour)分割为分割线和圆周或椭圆弧。
- 9. shape_trans_xld 功能: 改变轮廓(contour)或多边形(polygon)的形状。
- 10. smooth_ contours_ xld 功能: XLD 轮廓(contour)的平滑。
- 11. sort_contours_xld 功能:根据相关位置分类轮廓(contour)。
- 12. split_ contours _xld 功能:在主要点分割 XLD 轮廓(contour)。
- 13. union_ adjacent_ contours_ xld 功能: 合并终点连接在一起的轮廓(contour)。
- 14. union_ cocircular_ contours_ xld 功能: 合并属于同一个圆周的轮廓(contour)。
- 15. union_ collinear_ contours_ ext_ xld 功能: 合并位于同一条直线上的轮廓(contour)(由附加函数操作)。

16. union _collinear _contours _xld

功能:合并位于同一条直线上的轮廓(contour)。

17. union_straight_contours_histo_xld

功能: 合并到给定线有相似距离的相邻直线轮廓(contour)。

18. union_straight_contours_xld

功能: 合并具有相似方向的相邻直线轮廓(contour)。