Variable Impedance Learning

Mike and Saif

August 26, 2018

1 Point-Mass object pulling a spring (pybullet)

Task: Learn the varying 3D Kp and Kd required to pull a spring to a desired height (with minimum effort)

• 100 time steps (Hence, 100 x (3 + 3) parameters to learn as single policy or 100 separate policies)

• Learner: CREPS

• Policy: Linear Gaussian

Other Info:

• Time steps = 100

• Spring stiffness = 3

• Episodes = 1000

• Kp scale = $0.25*(Kd scale^2)$

REPS params:

• Entropy bound = 2.0

• Context dim = 9 (3x pos, 3x delta_pos, 3x force)

• Context feature $\dim = 9$

• 1 policy per time step

Cost function

$$\sum_{t} \left(X_{t}^{T} Q_{1} X_{t} + \dot{X}_{t}^{T} Q_{2} \dot{X}_{t} + U_{t}^{T} R_{1} U_{t} + \dot{U}_{t}^{T} R_{2} \dot{U}_{t} + K_{t}^{T} R_{3} K_{t} + \dot{K_{t}}^{T} R_{4} \dot{K}_{t} \right)$$

1.1 Table of Hyperparameters

Goal pos weight	1.75
Goal vel weight	0.0
Control weight	0.0
Delta Ctrl weight	0.0
Kp-Kd weight	0.25
Delta Kp-Kd weight	0.25
Cumsum reward	False
Sigmoid reward	False
Gamma	1.0
Next force prediction	True
Time step	0.5
Kd Scale	2.0

(a) Param values

(b) Trajectory and Velocity

(b) Reward splits