Aprendizaje por refuerzo con Open Al Gym

Ana Laura Diedrichs @anadiedrichs Link a esta presentación: https://tinyurl.com/pydatarl

Hola!

- Ph.D. candidate at UTN FRM
- Software engineer -
- IoT ML consultant
- Teacher assistant
 - ana.diedrichs@frm.utn.edu.ar
- Web https://anadiedrichs.github.io/
 Twitter @anadiedrichs

Motivación

"ilearn2" by Annitix1 is licensed under CC BY-NC-SA 2.0

Supervised learning Aprendizaje supervisado

https://commons.wikimedia.org/wiki/File:Supervised_machine_learning_in_a_nutshell.sv g

CLASSICAL MACHINE LEARNING

Reinforcement learning (RL) Aprendizaje por refuerzo

get reward R, new state s'

Reinforcement learning (RL) Aprendizaje por refuerzo

https://en.m.wikipedia.org/wiki/File:Learning to walk.png

Reinforcement learning (RL) Aprendizaje por refuerzo

Figure 3.1: The agent–environment interaction in a Markov decision process.

Source: Reinforcement Learning: An Introduction

(a) OBELIX robot

(c) Autonomous helicopter

(d) Sarcos humanoid DB

J. Kober, J. A. D. Bagnell, J. Peters. Reinforcement Learning in Robotics: A survey. Int. J. Robot. Res. Jul. 2013. https://www.ias.informatik.tu-darmstadt.de/uploads/Publications/Kober IJRR 2013.pdf

RL vs linear model vs Human. Click <u>here for the source https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf</u>

RL applications Alpha Go zero

RL applications Alpha Go zero

RL applications Alpha Go zero

Z. Zhou, X. Li, and R. N. Zare. Optimizing Chemical Reactions with Deep Reinforcement Learning. ACSCentral Science3, 2017.

https://github.com/lightingghost/chemopt

Figure 2: Deep Reinforcement Recommendation System

G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, Ni. J. Yuan, X. Xie, and Z. Li. DRN: A Deep Reinforcement Learning Frameworkfor News Recommendation. 2018.

- Polydoros, Athanasios S., and Lazaros Nalpantidis. "Survey of model-based reinforcement learning: Applications on robotics." Journal of Intelligent & Robotic Systems 86.2 (2017): 153-173.
- H.Mao, Alizadeh, M. Alizadeh, Menache, I.Menache, and S.Kandula.
 Resource Management With deep Reinforcement Learning. In ACM Workshop on Hot Topics in Networks, 2016.
- X. Bu, J. Rao, C. Z. Xu. A reinforcement learning approach to online web systems auto-configuration. In Distributed Computing Systems, 2009. ICDCS'09.29th IEEE International Conference on. IEEE, 2019.
- J. Jin, C.Song, H. Li, K. Gai, J.Wang amd W. Zhang. Real-Time Bidding with Multi-Agent Reinforcement Learning in Display Advertising. arXiv preprint arXiv:1802.09756, 2018.

Reproducibility issues Problemas de reproducibilidad

- How to compare?
- ¿Cómo comparamos? Criterios

Open Al Gym

Gym

Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Pinball.

View documentation > View on GitHub >

https://openai.com

Box2D Continuous control tasks in the Box2D simulator.

LunarLander-v2 Navigate a lander to its landing pad.

LunarLanderContinuous-v2 Navigate a lander to its landing pad.

Robotics

Simulated goal-based tasks for the Fetch and ShadowHand robots.

FetchPickAndPlace-v1 Lift a block into the air.

FetchPush-v1
Push a block to a goal position.

FetchReach-v1 Move Fetch to a goal position.

FetchSlide-v1 Slide a puck to a goal position.

HandManipulateBlock-v0
Orient a block using a robot hand.

HandManipulateEgg-v0
Orient an egg using a robot hand.

Classic control

Control theory problems from the classic RL literature.

AirRaid-ram-v0
Maximize score in the game
AirRaid, with RAM as input

AirRaid-v0 Maximize score in the game AirRaid, with screen images as input

Alien-ram-v0
Maximize score in the game
Alien, with RAM as input

https://gym.openai.com/

Open Al Gym

Open source interface to reinforcement learning tasks.

The gym library provides an easy-to-use suite of reinforcement learning tasks.

```
import gym
env = gym.make("CartPole-v1")
observation = env.reset()
for _ in range(1000):
    env.render()
    action = env.action_space.sample() # your agent here (this takes random actions)
    observation, reward, done, info = env.step(action)

if done:
    observation = env.reset()
env.close()
```

Demo: pacman aleatorio

 Source: <u>https://star-ai.github.io/Rendering-OpenAi-Gym-in-Colaboratory/</u>

 https://colab.research.google.com/drive/19cNaxTcw Q-UjAHmjoTDQVtbSSROGG616

Demo: taxi environment

- Taxi Q-learning
- https://colab.research.google.com/drive/1mNn9lj5u e0W66gjn4_fnK6BIPLKHg8wt
- Frozen lake iteración de valores
 - https://colab.research.google.com/drive/12LVBVI_C 4TrNDV2bMgW-fnuWPeoCrure

Q-learning

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

Initialize Q table

Choose an action a

Perform action

Measure reward

Update Q

At the end of the training

Deep RL

Action selection step

Training step

¿Aplicar RL en mi proyecto?

• May I use RL in my project?

Understand, study

your

problem!

¿Aplicar RL en mi proyecto?

RL requirements

- Que debo tener en cuenta antes de aplicar RL
 - MDP definition: definir acciones, estados, recompensa, etc
 - Simulated environment: simular el entorno del agente.

Recursos para aprender

- Implementation of Reinforcement Learning
 Algorithms.https://github.com/dennybritz/reinforcement-learning
- A curated list of resources dedicated to reinforcement learning.https://github.com/aikorea/awesome-rl
- Experimentos con RL: SLM lab <u>https://kengz.gitbooks.io/slm-lab/content/</u>
- Ejemplo en robótica con Arduino <u>https://www.michaelang.com/project/sisyphus</u>
- https://medium.com/@robertmoni_66330/reinforcement-learning-a Igorithms-an-intuitive-overview-of-existing-algorithms-c209590286
 7a
- Notebook RL Qlearning ejemplo curso https://colab.research.google.com/drive/1fl5bZtO4xhJNR34Zayyrp qq2vkeGug6y

¡Muchas gracias PyData!

- Give me feedback :-) en este formulario
- ¿Preguntas?
- Ana Laura Diedrichs @anadiedrichs
- Ana.diedrichs@frm.utn.edu.ar

