Definition 33.4. A tensor product of $n \geq 2$ vector spaces E_1, \ldots, E_n is a vector space T together with a multilinear map $\varphi \colon E_1 \times \cdots \times E_n \to T$, such that for every vector space F and for every multilinear map $f \colon E_1 \times \cdots \times E_n \to F$, there is a unique linear map $f \colon T \to F$ with

$$f(u_1,\ldots,u_n)=f_{\otimes}(\varphi(u_1,\ldots,u_n)),$$

for all $u_1 \in E_1, \ldots, u_n \in E_n$, or for short

$$f = f_{\otimes} \circ \varphi$$
.

Equivalently, there is a unique linear map f_{\otimes} such that the following diagram commutes.

$$E_1 \times \cdots \times E_n \xrightarrow{\varphi} T$$

$$\downarrow_{f_{\otimes}}$$

$$\downarrow_{f}$$

$$\downarrow_{f}$$

The above property is called the universal mapping property of the tensor product (T, φ) .

We show that any two tensor products (T_1, φ_1) and (T_2, φ_2) for E_1, \ldots, E_n , are isomorphic.

Proposition 33.5. Given any two tensor products (T_1, φ_1) and (T_2, φ_2) for E_1, \ldots, E_n , there is an isomorphism $h: T_1 \to T_2$ such that

$$\varphi_2 = h \circ \varphi_1.$$

Proof. Focusing on (T_1, φ_1) , we have a multilinear map $\varphi_2 \colon E_1 \times \cdots \times E_n \to T_2$, and thus there is a unique linear map $(\varphi_2)_{\otimes} \colon T_1 \to T_2$ with

$$\varphi_2 = (\varphi_2)_{\otimes} \circ \varphi_1$$

as illustrated by the following commutative diagram.

$$E_1 \times \cdots \times E_n \xrightarrow{\varphi_1} T_1$$

$$\downarrow^{(\varphi_2)_{\otimes}}$$

$$T_2$$

Similarly, focusing now on (T_2, φ_2) , we have a multilinear map $\varphi_1 : E_1 \times \cdots \times E_n \to T_1$, and thus there is a unique linear map $(\varphi_1)_{\otimes} : T_2 \to T_1$ with

$$\varphi_1 = (\varphi_1)_{\otimes} \circ \varphi_2$$