Familles et problèmes classiques de graphes

GRE

8 - Famille de Graphes

Abstract

Definition

Table des matières

1. Types de Graphes et Couplages	1
1.1. Graphes complets	2
1.2. Graphes complémentaires	2
1.3. Tournois	
1.4. Graphes bipartis	2
1.4.1. Graphes bipartis complets	
1.5. Couplages	
1.6. Recouvrements et transversaux	3
1.7. Chaînes alternées et augmentantes	3
2. Graphes planaires	3
2.1. Définition	4
2.1. Définition	4
2.2.1. Conséquences pour graphes simples connexes	
2.2.2. Démonstrations	
2.3. Théorème de Kuratowski	4

Guillaume T. 05-2025

1. Types de Graphes et Couplages

1.1. Graphes complets

Définition : Graphe simple non orienté où toute paire de sommets distincts est reliée.

• **Notation** : K_n (graphe complet sur n sommets)

• **Propriété** : K_n possède $\binom{n}{2} = \frac{n(n-1)}{2}$ arêtes

1.2. Graphes complémentaires

Définition: Le complémentaire \overline{G} de G=(V,E) a les mêmes sommets et pour arêtes toutes celles qui ne sont pas dans E:

$$\overline{E} = \{\{u,v\} \mid \{u,v\} \not\in E, u \neq v \text{ et } u,v \in V\}$$

1.3. Tournois

Définition : Graphe orienté simple où chaque paire de sommets est reliée par exactement un arc.

- Propriétés :
 - Graphe sous-jacent = graphe complet
 - Au plus 1 sommet sans prédécesseurs, au plus 1 sans successeurs
 - ► Sans circuits ⇔ matrice d'adjacence définit un ordre strict total

1.4. Graphes bipartis

Définition: Graphe G = (V, E) où $V = A \cup B$ (disjoints) tel que chaque arête relie un sommet de A à un de B.

- Notation : G = (A, B, E)
- Caractérisation : Graphe biparti ⇔ aucun cycle de longueur impaire

Guillaume T. 05-2025

1.4.1. Graphes bipartis complets

Définition: Graphe biparti avec nombre maximal d'arêtes (chaque sommet de A adjacent à tous ceux de B).

• Notation : $K_{r,s}$ (r sommets dans un ensemble, s dans l'autre)

1.5. Couplages

Couplage : Sous-ensemble $M \subseteq E$ d'arêtes sans extrémités communes.

• Couplage parfait : sature tous les sommets

• Couplage maximum: cardinal maximal

1.6. Recouvrements et transversaux

Recouvrement : $R \subseteq E$ tel que chaque sommet est extrémité d'au moins une arête de R.

Transversal: $T \subseteq V$ tel que chaque arête est incidente à au moins un sommet de T.

Complexité: Recouvrement minimum = polynomial, Transversal minimum = NP-difficile.

1.7. Chaînes alternées et augmentantes

Soit M un couplage:

• Chaîne alternée : arêtes alternent entre M et \overline{M}

• Chaîne augmentante : chaîne alternée avec extrémités non saturées par M

Théorème de Berge (1957) : M est maximum \iff aucune chaîne augmentante relativement à M.

Guillaume T. 05-2025

2. Graphes planaires

2.1. Définition

Graphe planaire : admet une représentation sur le plan où les arêtes ne se coupent pas (sauf aux extrémités).

Graphe planaire topologique : représentation planaire concrète d'un graphe planaire.

Quatre représentations du graphe complet K_4 . Seules les trois dernières sont des graphes planaires topologiques.

2.2. Formule d'Euler

Pour tout graphe planaire topologique connexe :

$$n-m+f=2$$

où n = sommets, m = arêtes, f = faces.

2.2.1. Conséquences pour graphes simples connexes

Cas général $(n \ge 3)$:

$$m < 3n - 6$$

Corollaire: K_5 n'est pas planaire (car $10 - \le 3 \cdot 5 - 6 = 9$).

Cas biparti $(n \ge 4)$:

$$m \leq 2n - 4$$

Corollaire: $K_{3,3}$ n'est pas planaire (car $9\neg \le 2 \cdot 6 - 4 = 8$).

2.2.2. Démonstrations

Cas général : Chaque face $a \ge 3$ arêtes sur sa frontière $\Longrightarrow 3f \le 2m$.

Cas biparti : Chaque face a ≥ 4 arêtes sur sa frontière $\Longrightarrow 4f \leq 2m$.

2.3. Théorème de Kuratowski

Subdivision : graphe obtenu en insérant des sommets au milieu de certaines arêtes.

Théorème (Kuratowski, 1930): Un graphe est planaire \iff il ne contient aucun sous-graphe partiel qui est une subdivision de K_5 ou $K_{3,3}$.