Lista 5: Cálculo I

A. Ramos *

April 16, 2018

Abstract

Lista em constante atualização.

- 1. Derivação implicita;
- 2. Derivadas da funções inversas e derivadas de funções hiperbólicas;
- 3. Aplicações da derivada.

1 Exercícios

Faça do livro texto, os exercícios correspondentes aos temas desenvolvidos em aula.

2 Exercícios adicionais

2.1 Derivada paramétricas

- 1. Encontre a equação da reta tangente da curva $x=t^2+1$, e $y=2t+t^3$ no ponto t=-2. Rpta: reta tangente: 7y+84=2x-10.
- 2. Considere o movimento de uma partícula sobre a curva $y^2=x^3$, com y>0. Se a abscissa da partícula aumenta em 5 cm por segundo quando x=4. Qual a taxa de variação da ordenada da partícula nesse instante? Rpta: $\frac{dy}{dt}=15$ unidades por segundo.
- 3. Verifique que a função dada por $x(t) = \frac{1+t}{t^3}$, e $y(t) = \frac{2}{t} + \frac{3}{2t^2}$ satisfaz a relação $x(\frac{dy}{dx})^3 = 1 + \frac{dy}{dx}$.

2.2 Funções Hiperbólicas

- 1. Mostre que sinh x tem inversa e a inversa é arcsinh $x = \ln(x + \sqrt{x^2 + 1}), x \in \mathbb{R}$. Faça o mesmo para as outras funções hiperbólicas.
- 2. Verifique que para todo $x,y \in \mathbb{R}$ que (a) $cosh(x\pm y) = cosh(x)cosh(y) \pm senh(x)senh(y)$ e (b) $senh(x\pm y) = senh(x)cosh(y) \pm cosh(x)senh(y)$.
- 3. Mostre que

$$\tanh(x \pm y) = \frac{\tanh(x) \pm \tanh(y)}{1 \pm \tanh(x)\tanh(y)}.$$

4. Mostre que (a) $\lim_{x\to 0} \frac{\sinh x}{x} = 1$; (b) $\lim_{x\to 0} \frac{1-\sinh x}{x} = 0$ e (c) $\lim_{x\to 0} \frac{\tanh x}{x} = 1$.

2.3 Derivada de função inversa

- 1. Considere $f(x) = e^x + 2x$. Mostre que a inversa f^{-1} é derivável e se g é a inversa de f, temos que $g'(x) = \frac{1}{2 + \exp(g(x))}$
- 2. Se $f(x) = x^3 + x$. Mostre que (a) f tem admite função inversa e (b) calcule $(f^{-1})'(0)$.

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

2.4 Máximos, mínimos e pontos críticos

- 1. Qual é o ponto da curva yx = 2, x > 0, que está mais próximo ao origem.
- 2. Considere duas partículas A e B que se movem sobre os eixos x e eixo y respetivamente. Se a posição de A é $(\sqrt{t},0)$ e a posição de B é $(0,t^2-\frac{1}{4})$, para $t\geq 0$. Encontre o instante onde a distância entre A e B seja o menor possível.
- 3. Considere a curva $y = 1 x^2$, $x \in [0, 1]$. Qual a reta tangente à curva tal que a área do triângulo que ela forma com os eixos coordenados seja mínima?
- 4. Seja $L(x) = -x^3 + 12x^2 + 60x 4$ o lucro de uma empresa ao vender certo determinado produto, onde x representa a quantidade do produto produzida. Determine o lucro máximo e a produção que máximiza o lucro. Rpta: x = 10, Lucro máximo L(10)

2.5 Teorema de Rolle e Teorema de Valor Médio

- 1. Mostre que a equação $f(x) = x^7 + 5x^3 + x 7$ tem uma única solução.
- 2. Considere a função $f(x) = e^x \frac{1}{x} \frac{x}{2}$, com x > 0. Então:
 - (a) Dado $y \in \mathbb{R}$. Mostre que existe uma única solução de $e^x x^{-1} x/2 = y$. Conclua que f tem inversa.
 - (b) Verifique que $|f^{-1}(x) f^{-1}(y)| \le 2|x y|$, para todo $x, y \in \mathbb{R}$.
- 3. Seja $f(x) = 3x + \cos x$. Mostre que (a) f é bijetora e (b) calcule $f^{-1}(1)$.
- 4. Use o teorema de valor médio para mostrar as seguintes desigualdades:
 - (a) $\ln(1+x) < x$, para todo $x \neq -1$.
 - (b) $\left| \ln \frac{x}{y} \right| \le |x y|$, para todo $a, b \in \mathbb{R}$, com a $\ge 1, b \ge 1$.
 - (c) $x y \le e^x e^y$, para todo $y, x \text{ com } x \ge y \ge 0$.
 - (d) $a^{a}(b-a) < b^{b} a^{a}$, para $a, b \text{ com } 1 \le a < b$.
- 5. Podemos usar o teorema do valor médio na função $f(x) = \frac{2x-1}{3x-4}$ no intervalo [1, 2]? Caso afirmativo, encontre os valores que verifiquem. *Rpta:* Não se cumple as condições do teorema do valor médio.
- 6. Mostre as identidades
 - (a) $\arcsin(1 2y^2) = 2\arcsin(y)$, para $y \in (-1, 1)$.
 - (b) $\arcsin \frac{x-1}{x+1} + \frac{\pi}{2} = 2 \arctan \sqrt{x}$, para todo $x \in \mathbb{R}$.