

FIG. 1

FIG. 2A

FIG. 2B

FIG. 3B

FIG. 4A

FIG. 4B

FIG. 4C

FIG. 5A

FIG. 5B

PCT/CA2003/000897

FIG. 6

FIG. 7A

FIG. 7B

10/15

FIG. 9

WO 2004/000993

PCT/CA2003/000897

13/15

Human oxytocin DNA and polypeptide sequences (Genbank accession NM_000915)

Human OT DNA (SEQ ID NO:3):

```
1 accagteacy gaccetggae ceagegeace egeacetgg ceggeecaa cetegettge 61 tytetgeteg geeteetgge getgacetee geetgetaca tecagaacty ecceetggga 121 ggeaagaggg eegeegga eetegacgty egeaagtgee teecetgeg eeeeggggge 181 aaaggeeget gettegggee caatatetge tgegeggaag agetgggety ettegtggge 241 accgeegaag egetgegetg eeaggaggag aactacetge egtegeetg eeagteegge 301 cagaaggegt gegggagegg gggeegetge geggtettgg geetetgetg eageeeggac 361 ggetgeeacg eegaceetge etgegaegg gaageeacet teteceageg etgaaacttg 421 atggeteega acaceetega agegggeeac tegetteee catageeace eeagaaatgg 481 tgaaaataaa ataaageagg ttttteeet et
```

Encoded polypeptide (SEQ ID NO:4):

MAGPSLACCLLGLLALTSACYIQNCPLGGKRAAPDLDVRKCLPCGPGGKGRCFGPNICCAEELGCFVGTAEALRCOEENYLPSPCQSGQKACGSGGRCAVLGLCCSPDGCHADPACDAEATFSQR

```
human OT-encoding region (SEQ ID NO:5):
tgctaca tccagaactg cccctggga
```

human OT peptide sequence (SEQ ID NO:6):
CYIONCPLG

FIG. 11

Human oxytocin receptor DNA and polypeptide sequences (Genbank accession NM_000916)

DNA sequence (SEQ ID NO:7):

```
1 tqttaaqqct ctqqqaccaa cqctqqqcqa accaqctccq ctccqqaqqq gtctqcqcqq
  61 ctggcctcgc ccgcccccta gcggacccgt gcgatagtgc agcctcagcc ccaggcacag
 121 egeogeatee agacgeogte egeogegea geotgggagg egeteetege tegeoteetg
181 tacccateca gegaccagee aggetgegge gaggggatte caaccgagge tecagtgaga
241 gacctcaget tagcatcaca ttaggtgcag ceggcaggec atcccaacte gggccgggag
301 cgcacgcgtc actggggccg tcagtcgccg tgcaacttcc ccggggggag tcaactttag
361 gttcgcctgc ggactcggtg cagtggaagc cgctgaacat cccgaggaac tggcacgctg
421 ggggctctgg gcttgtggcc ggtagaggat tcccgctcat ttgcagtggc tcagaggagg
481 qtqqacccaq caqatccqtc cgtggagtct ccaggagtgg agccccgggc gcccctacac
541 cctccgacac gccggatccg gcccagccgc gccaagccgt aaagggctcg aaggccgggg
601 cgcaccgctg ccgccagggt catggagggc gcgctcgcag ccaactggag cgccgaggca
 661 gecaacgeca gegeegege geegggggee gagggeaace geacegeegg acceeegegg
721 cgcaacgagg ccctggcgcg cgtggaggtg gcggtgctgt gtctcatcct gctcctggcg
781 ctgagcggga acgcgtgtgt gctgctggcg ctgcgcacca cacgccagaa gcactcgcgc
841 ctcttcttct tcatgaagca cctaagcatc gccgacctgg tggtggcagt gtttcaggtg
 901 ctgccgcagt tgctgtggga catcaccttc cgcttctacg ggcccgacct gctgtgccgc
 961 ctggtcaagt acttgcaggt ggtgggcatg ttcgcctcca cctacctgct gctgctcatg
1021 tecetggace getgeetgge catetgeeag cegetgeget egetgegeeg cegeacegae
1081 cgcctggcag tgctcgccac gtggctcggc tgcctggtgg ccagcgcgcc gcaggtgcac
1141 atottotot tgegegaggt ggotgaegge gtettegact getgggeegt etteateeag
1201 ccctggggac ccaaggccta catcacatgg atcacgctag ctgtctacat cgtgccggtc
1261 atogtgctcg ctacctgcta cggccttatc agcttcaaga tctggcagaa cttgcggctc
1321 aagaccgctg cagcggcggc ggccgaggcg ccagagggcg cggcggctgg cgatggggg
1381 egegtggeee tggegegtgt eageagegte aageteatet eeaaggeeaa gateegeaeg
1441 gtcaagatga ctttcatcat cgtgctggcc ttcatcgtgt gctggacgcc tttcttcttc
1501 gtgcagatgt ggagcgtctg ggatgccaac gcgcccaagg aagcctcggc cttcatcatc
1561 qtcatqctcc tqqccagcct caacagctgc tgcaacccct ggatctacat gctgttcacg
1621 ggccacctct tccacgaact cgtgcagcgc ttcctgtgct gctccgccag ctacctgaag
1681 ggcagacgcc tgggagagac gagtgccagc aaaaagagca actcgtcctc ctttgtcctg
1741 agccategea getecageea gaggagetge teecageeat ceaeggegtg acceaeeage
1801 cagggccagg getgcageet gaggetcagg etgtgetgge ataagtgete tgeteetagg
1861 tgatggcgta tgtttgtgta taaggtacet ateagtttgt ateceteece teettggggt
1921 ggcttcagtg gggtggagag tggcctccat gatggaagat gataggggac tcagccatca
1981 gacaacaccc tggcctccta cacgtacttc taccaccctg aacccactgc tgccctgggc
2041 agtgagtggc ttgttttttc teetggactt gtaatttcac teeagtatat ttttacttet
2101 tcattctggg atattgtgaa aagcggtaaa tataggattg gtgaccaatt gggtcaggaa
2161 gtccagtgtt ctggacttgg ggtaagcagt ggggttggga cctcagatgg gaagggtggt
2221 gctaagatcc tcctgacctc aaagtgtatt tgcctttaag cgaacaaatg ctggggtcct
2281 tggggaccag cttgtcagag ggtagcccta agagaagggg attaccttgt aagaccatct
2341 ggcgcagtgg acctattaga acttgggtta aaaatgttta agaagctaat gtttaagaag
2401 catttgggaa agaaaaagaa ataaatgtat ccagatagga aaagaagaag taaaactatt
2461 tgcagatgac acagttttgt atatagaaaa tcctaaggaa ctcacacaca cacacacaca
2521 cacacacgca cacagctatt agaactaata agcaagttcc gcaaggtttc aagatacaag
2581 atcaatatac aaaaatgaat tgtatttctt tatactagca acaaacaata tgaaaacgaa
2641 gttaaataat tecatttata ataccateag aaagaataaa ataggaatea aettaacaaa
2701 acaagtgcaa gactgaaaac tacaaaattg gaaagaaatt aaagaaggct taaataaatg
2761 gaaagacatc ctgtgttcat ggatcagact tagtattgtt aagatggcaa tactatccta
2821 actgacatgc agattcagtg caatccttat gaaaatcata gctggctttt ttacagaaat
2881 tgataagcta gtcccaaaat tcataaagaa atgcaaggga cccagatatc caaataagcc
2941 ttgaaaaaga acaaagttgg tggattcaca cttcctgatt tcataattta cgataaaggt 3001 aatcagctca gtgtgttact ggtttaagga tagacatacg gagcagaata aagagtacag
```

WO 2004/000993 PCT/CA2003/000897

15/15

```
3061 atatgaacac ttatacttac ggtcaattga tttttgacaa ggttcccaag acaattcaat
3121 agagaaagga gagtetttte aacaaatgge acegagacaa tgatatgeaa gtgcaaaaga
3181 atgaggttgg acctttactc acactatgtg caaaaatcaa ctcaaaacgc atccaagatc
3241 taaatataag agctgaaact ataaaatctt agaaagaaac ataggcatag atctttgtaa
3301 ccttgaatta ggcagtggtt tcttagatat gataccaaag acacaagcaa ccaatggaaa
3361 aataggtaaa ttggacttaa tcaagatttg aagcttttgt gattgaaaag accctatcaa
3421 gaaggtgaaa agataacctg cagaatggga gaaaatattt gcgagtcata tatatgataa
3481 ggggcttgta tctggaatat ataaataact cttataacac aacaataagg agaaaaataa
3541 atcaatttaa aaaatqqqct aacqqtttqa ataqacattt ctccaaagaa gatatgcaaa
3601 tggctactaa gcacatgaaa aatactcaac attattattc attagggaaa tgcaagtcaa
3661 aatcacaatg agattccagt ttacaatcac taggatggct acaataaaaa gatggacaag
3721 aacgagtgtc ggtgaggatg tagagaaact ggtagaaatt taaattgttg gtgggaatgt
3781 aaatggtgca cctgctttga aaaacagttt ggcagtacct caaaaagtta aacgtagagt
3841 gaccatatga cccaggaatg ccactcctag gtatttaccc aagagaaatg aaaacgtaca
3901 tacacacaaa aacttgtaca ccaatgttca tagcaacatt atttgtaata gccaaaaagt
3961 ggaaacaacc caaatgtcta ccaactgatg aatgggaaat aaaatgtggt ctgtccacgc
4021 aatggaacat tattagactc taaaaagaaa tgaagtactc acacatgcca caacatggat
4081 gageettgaa aaettgetaa gtgaaagaag eeaggtgeaa aageeeacat attgtetgae
4141 tgcattgaaa tgcaatgtct aaaatggacg aatctatata gagtgaatat agattagcgt
4201 ttgccagggc ctggaggctg tgagagatga ggcatgacta ctaagggttt ggggtttctt
4261 tttcgggtga tgaaaatgtt cgaaattagt ggtgattgtg cacgattttg agaatgtact
4321 aaaaaccaat gaactttaaa aaataaaaat aaacaaa
```

Polypeptide sequence (SEQ ID NO:8):

MEGALAANWSAEAANASAAPPGAEGNRTAGPPRRNEALARVEVAVLCLILLLALSGNACVLLALRTTRQKHSRLFFF
MKHLSIADLVVAVFQVLPQLLWDITFRFYGPDLLCRLVKYLQVVGMFASTYLLLLMSLDRCLAICQPLRSLRRRTDR
LAVLATWLGCLVASAPQVHIFSLREVADGVFDCWAVFIQPWGPKAYITWITLAVYIVPVIVLATCYGLISFKIWQNL
RLKTAAAAAAEAPEGAAAGDGGRVALARVSSVKLISKAKIRTVKMTFIIVLAFIVCWTPFFFVQMWSVWDANAPKEA
SAFIIVMLLASLNSCCNPWIYMLFTGHLFHELVQRFLCCSASYLKGRRLGETSASKKSNSSSFVLSHRSSSQRSCSQ
PSTA

FIG. 12 (CONTINUED)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING

FADED TEXT OR DRAWING
Deblurred or illegible text or drawing
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.