Deep Imbalanced Regression

Yuzhe Yang¹ Kaiwen Zha¹ Ying-Cong Chen¹ Hao Wang² Dina Katabi¹

¹MIT Computer Science & Artificial Intelligence Laboratory ²Department of Computer Science, Rutgers University ICML 2021

Presenter: Gianmarco Midena

26 November 2024

Overview

Problem Settings

ullet $\mathcal{Y}\subset\mathbb{R}$: continuous label space

Problem Settings

- $\mathcal{Y} \subset \mathbb{R}$: continuous label space
- $\mathcal{B} = \{1, \dots, M\} \subset \mathbb{Z}^+$: index space
 - lacktriangle divides ${\cal Y}$ into M groups (bins) with equal intervals $[y_j,y_{j+1})$
 - $\{[y_0, y_1), \dots, [y_{M-1}, y_M)\}$: discrete label space
 - $y_k \in \mathcal{Y}$
 - minimum resolution
 - ★ e.g., $\delta y \triangleq y_{j+1} y_j = 1$ in age estimation

Evaluation

Evaluation

- Divide target space into disjoint regions (bins)
 - ► *Many-shot*: > 100 training examples
 - ► *Medium-shot*: 20-100 training examples
 - ► Few-shot: < 20 training examples
 - ► *Zero-shot*: 0 training examples
 - Inspired by Liu et al. 2019

Evaluation

- Divide target space into disjoint regions (bins)
 - ► *Many-shot*: > 100 training examples
 - ▶ *Medium-shot*: 20-100 training examples
 - ► Few-shot: < 20 training examples
 - Zero-shot: 0 training examples
 - Inspired by Liu et al. 2019
- (main) Metrics
 - Mean Absolute Error (MAE)
 - Mean Squared Error (MSE)
 - Pearson Correlation (PCC)
 - ► Geometric Mean Error (GM)

$$GM = \sqrt[n]{\prod_{i=1}^{n} |y_i - \hat{y}_i|}$$

★ Pros: + fairness (uniformity) in prediction

Datasets - Overview

Dataset	Input type	Target type	Target range	Bir	ı size	Max bin de	nsity	Min bin density
IMDB-WIKI-DIR	Face image	Age	0 - 186		1	7,149		1
AgeDB-DIR	Face image	Age	0 - 101		1	353		1
STS-B-DIR	Sentence pairs	Text similarity score	0 - 5	(0.1	428		1
NYUD2-DIR	Indoor scene image	Depth map	0.7 - 10 [m]	(0.1	1.46×10)8	1.13×10^6
SHHS-DIR	PSG signals	Health condition score	0 - 100		1	275		0

Dataset	# Training set	17	# Val. set		# Test set
IMDB-WIKI-DIR	191,509	T	11,022		11,022
AgeDB-DIR	12,208	Τ	2,140		2,140
STS-B-DIR	5,249	T	1,000	Π	1,000
NYUD2-DIR	$50,688 (3.51 \times 10^9)$)	-	65	54 (8.70 × 10 ⁵)
SHHS-DIR	1,892	ī	369		369

Table credit: Yang et al. (2021)

Datasets - Overview

Dataset	Input type	Target type	Target range	Bin size	M	ax bin density	1 v	Min bin density
IMDB-WIKI-DIR	Face image	Age	0 - 186	1		7,149		1
AgeDB-DIR	Face image	Age	0 - 101	1	Τ	353	T	1
STS-B-DIR	Sentence pairs	Text similarity score	0 - 5	0.1	Τ	428	Τ	1
NYUD2-DIR	Indoor scene image	Depth map	0.7 - 10 [m]	0.1		1.46×10^8		1.13×10^6
SHHS-DIR	PSG signals	Health condition score	0 - 100	1	1	275		0

Dataset	# Training set	# Val. set	# Test set
IMDB-WIKI-DIR	191,509	11,022	11,022
AgeDB-DIR	12,208	2,140	2,140
STS-B-DIR	5,249	1,000	1,000
NYUD2-DIR	50,688 (3.51 × 10 ⁹)	-	654 (8.70 × 10 ⁵)
SHHS-DIR	1,892	369	369

Table credit: Yang et al. (2021)

- Full-night Polysomnography (PSG) signals: Electroencephalography (EEG), Electrocardiography (ECG), and breathing signals (airflow, abdomen, and thorax).
- An indoor scene image (left) and its depth map (right):

Image credit: https://cs.nyu.edu/~fergus/datasets/nyu_depth_v2.html

Label Distributions

• Typically for training only

Imbalanced Categorical vs. Continuous Label Space (1/3)

data souce: CIFAR-100

- task: person's picture — person's age
- age subrange: 0-99
- data souce: IMDB-WIKI
- Simulated label imbalance
- Label density distributions forced to be equal
 - Balanced test sets

Image credit: Yang et al. (2021)

Imbalanced Categorical vs. Continuous Label Space (2/3)

- error distribution correlates with label density distribution
- error distribution DOES NOT correlate well with label density distribution

Imbalanced Categorical vs. Continuous Label Space (2/3)

- error distribution correlates with label density distribution
- majority classes with more examples are better learned than minority classes
- error distribution DOES NOT correlate well with label density distribution
- smoother error distribution

Image credit: Yang et al. (2021)

Imbalanced Categorical vs. Continuous Label Space (3/3)

- Compensating for imbalance in empirical label density distribution is INACCURATE.
- Empirical density does not accurately reflect imbalance as seen by model.

Imbalanced Categorical vs. Continuous Label Space (3/3)

- Compensating for imbalance in empirical label density distribution WORKS WELL.
- Compensating for imbalance in empirical label density distribution is INACCURATE.
- Empirical density does not accurately reflect imbalance as seen by model.
- Intuition: dependence between features at nearby labels.
- Proposed solution: Label Distribution Smoothing (LDS)

Image credit: Yang et al. (2021)

Label Distribution Smoothing (LDS) - Overview

- Starting points
 - Dependence between features at nearby continuous labels.
 - Expected density estimation
 - ★ Significant literature in statistics (Parzen 1962)
 - * Kernel density estimation

- Starting points
 - Dependence between features at nearby continuous labels.
 - Expected density estimation
 - ★ Significant literature in statistics (Parzen 1962)
 - * Kernel density estimation
- Functioning
 - ▶ Convolves symmetric kernel with empirical label density distribution.
 - Extracts kernel-smoothed label density accounting for feature overlap of neighbouring labels.

- Starting points
 - Dependence between features at nearby continuous labels.
 - Expected density estimation
 - ★ Significant literature in statistics (Parzen 1962)
 - * Kernel density estimation
- Functioning
 - ► Convolves symmetric kernel with empirical label density distribution.
 - Extracts kernel-smoothed label density accounting for feature overlap of neighbouring labels.
- Symmetric kernel
 - E.g., Gaussian, Laplacian, triangular kernel.
 - ▶ Similarity between target values w.r.t. their distance in target space.

- Starting points
 - Dependence between features at nearby continuous labels.
 - Expected density estimation
 - * Significant literature in statistics (Parzen 1962)
 - * Kernel density estimation
- Functioning
 - ► Convolves symmetric kernel with empirical label density distribution.
 - Extracts kernel-smoothed label density accounting for feature overlap of neighbouring labels.
- Symmetric kernel
 - E.g., Gaussian, Laplacian, triangular kernel.
 - ▶ Similarity between target values w.r.t. their distance in target space.
- Effective label density distribution

$$\tilde{p}(y') \triangleq \int_{\mathcal{V}} k(y, y') p(y) dy$$

where

 \triangleright p(y): nr. occurrences of label y in training data.

- Starting points
 - Dependence between features at nearby continuous labels.
 - Expected density estimation
 - * Significant literature in statistics (Parzen 1962)
 - * Kernel density estimation
- Functioning
 - ▶ Convolves symmetric kernel with empirical label density distribution.
 - Extracts kernel-smoothed label density accounting for feature overlap of neighbouring labels.
- Symmetric kernel
 - E.g., Gaussian, Laplacian, triangular kernel.
 - ▶ Similarity between target values w.r.t. their distance in target space.
- Effective label density distribution

$$\tilde{p}(y') \triangleq \int_{\mathcal{V}} k(y, y') p(y) dy$$

where

- p(y): nr. occurrences of label y in training data.
- Usage
 - ▶ Possible direct adaptation of class imbalance techniques.
 - E.g., loss weighted by inverse effective label density.

Feature Distribution Smoothing (FDS) - Preliminaries

- Starting points

 - 2 Data balance \implies close feature statistics of nearby targets

Feature Distribution Smoothing (FDS) - Preliminaries

- Starting points
 - Ontinuity in target space ← Continuity in feature space
 - ② Data balance \Longrightarrow close feature statistics of nearby targets
- Feature statistics: mean and variance (or covariance) w.r.t. each bin

$$\{\boldsymbol{\mu}_b, \boldsymbol{\sigma}_b\}_{b=1}^B$$

Feature Distribution Smoothing (FDS) - Preliminaries

- Starting points
 - Ontinuity in target space ←→ Continuity in feature space
 - $oldsymbol{0}$ Data balance \Longrightarrow close feature statistics of nearby targets
- Feature statistics: mean and variance (or covariance) w.r.t. each bin

$$\{\boldsymbol{\mu}_b, \boldsymbol{\sigma}_b\}_{b=1}^B$$

- (next slides) Feature statistics similarity: cosine similarity of feature statistics between one anchor bin b_0 and all other bins
 - $b_0 = 0, 30, 60, 90$ (age): chosen anchor bins
 - ▶ different target densities: many (>100), medium (20-100), few (<20) examples</p>
 - ▶ task: person's picture → person's age
 - data source: IMDB-WIKI

Feature statistics similarity (1/4)

- High similarity in neighbourhood
- High similarities with further regions
- Lower similarities with some closer regions

- Improved feature statistics calibration:
 - High similarity only in neighbourhood
 - "The further the region the lower the similarity"
 - More gradual similarity change

Feature statistics similarity (2/4)

- High similarity in neighbourhood
- High similarities with further regions
- Lower similarities with some closer regions

- Improved feature statistics calibration:
 - High similarity only in neighbourhood
 - "The further the region the lower the similarity"
 - More gradual similarity change

Feature statistics similarity (3/4)

- High similarity in neighbourhood for mean
- High similarities with further regions
- Lower similarities with some closer regions, e.g., variance neighbourhood

- Improved feature statistics calibration:
 - High similarity only in neighbourhood
 - "The further the region the lower the similarity"
 - More gradual similarity change

Feature statistics similarity (4/4)

- High similarity in neighbourhood, esp. for mean
- High similarities with further regions
- Lower similarities with some closer regions

- Improved feature statistics calibration:
 - High similarity only in neighbourhood
 - "The further the region the lower the similarity"
 - More gradual similarity change

Change of feature statistics w.r.t. epoch

- ullet μ, Σ : Running mean and covariance
- $oldsymbol{ ilde{\mu}}, ilde{oldsymbol{\Sigma}}$: Smoothed mean and covariance

Feature Distribution Smoothing (FDS) - Overview

Image credit: Yang et al. (2021)

- Transfers feature statistics between nearby bins.
- Aims to calibrate potentially biased estimates of feature distribution, esp. for underrepresented target values in training data.

- Transfers feature statistics between nearby bins.
- Aims to calibrate potentially biased estimates of feature distribution, esp. for underrepresented target values in training data.
- General functioning
 - **E**stimates mean μ_b and covariance Σ_b feature statistics by each target bin.
 - Smooths feature statistics over target bins \mathcal{B} by symmetric kernel $k(y_b, y_b')$. Obtains smoothed mean $\tilde{\mu}_b$ and covariance $\tilde{\Sigma}_b$ feature statistics.
 - lacksquare Whitens features (Sun et al. 2016): $oldsymbol{z}^w = oldsymbol{\Sigma}_b^{-\frac{1}{2}}(oldsymbol{z} oldsymbol{\mu}_b)$
 - lacktriangle Re-colors whitened features (Sun et al. 2016): $m{z}^r = \tilde{m{\Sigma}}_b m{z}^w + \tilde{\mu}_b$

- Transfers feature statistics between nearby bins.
- Aims to calibrate potentially biased estimates of feature distribution, esp. for underrepresented target values in training data.
- General functioning
 - **E**stimates mean μ_b and covariance Σ_b feature statistics by each target bin.
 - Smooths feature statistics over target bins \mathcal{B} by symmetric kernel $k(y_b, y_b')$. Obtains smoothed mean $\tilde{\mu}_b$ and covariance $\tilde{\Sigma}_b$ feature statistics.
 - Whitens features (Sun et al. 2016): $z^w = \Sigma_b^{-\frac{1}{2}}(z-\mu_b)$
 - lacktriangle Re-colors whitened features (Sun et al. 2016): $m{z}^r = \tilde{m{\Sigma}}_b m{z}^w + \tilde{m{\mu}}_b$
- Integration into deep learning
 - ▶ Feature calibration layer after final feature map.
 - lacktriangle Momentum update running statistics $\{\mu_b, \Sigma_b\}$ across each epoch.
 - ★ Exponential Moving Average (EMA)
 - Smoothed statistics $\{\tilde{\Sigma}_b, \tilde{\mu}_b\}$ updated across different but fixed within each training epoch.

1 Vanilla: neglects data imbalance

- 1 Vanilla: neglects data imbalance
 - + LDS: loss re-weighting by inverse density

- Vanilla: neglects data imbalance
 - + LDS: loss re-weighting by inverse density
- Synthetic samples
 - ► SMOTER (Torgo et al. 2013)
 - Opening beginning to the property of the pr
 - Oreates synthetic samples for pre-defined rare regions by linearly interpolating both inputs and labels.
 - ▶ SMOGN (Branco et al. 2017): augments SMOTER with Gaussian noise

- Vanilla: neglects data imbalance
 - + LDS: loss re-weighting by inverse density
- Synthetic samples
 - ► SMOTER (Torgo et al. 2013)
 - Opening beginning to the property of the pr
 - + LDS: density estimation
 - Creates synthetic samples for pre-defined rare regions by linearly interpolating both inputs and labels.
 - ▶ SMOGN (Branco et al. 2017): augments SMOTER with Gaussian noise

- 1 Vanilla: neglects data imbalance
 - + LDS: loss re-weighting by inverse density
- Synthetic samples
 - ► SMOTER (Torgo et al. 2013)
 - Defines frequent and rare regions using label density.
 - + LDS: density estimation
 - Creates synthetic samples for pre-defined rare regions by linearly interpolating both inputs and labels.
 - ► SMOGN (Branco et al. 2017): augments SMOTER with Gaussian noise
- Focal-R

$$\frac{1}{n}\sum_{i=1}^{n}\sigma(|\beta e_i|)^{\gamma}e_i$$

- Error-aware loss
- ▶ Maps absolute error into [0, 1].
- e_i : L_1 error for i-th sample
- $\triangleright \beta$, γ : hyper-parameters
- ▶ Inspired by Focal Loss (Lin 2017) for classification

- Vanilla: neglects data imbalance
 - + LDS: loss re-weighting by inverse density
- Synthetic samples
 - ► SMOTER (Torgo et al. 2013)
 - Defines frequent and rare regions using label density.
 - + LDS: density estimation
 - Creates synthetic samples for pre-defined rare regions by linearly interpolating both inputs and labels.
 - ► SMOGN (Branco et al. 2017): augments SMOTER with Gaussian noise
- Focal-R

$$\frac{1}{n}\sum_{i=1}^{n}\sigma(|\beta e_i|)^{\gamma}e_i$$

- Error-aware loss
- Maps absolute error into [0, 1].
- e_i : L_1 error for i-th sample
- \triangleright β , γ : hyper-parameters
- ▶ Inspired by Focal Loss (Lin 2017) for classification
- + LDS: loss re-weighting by inverse density

- Regressor re-training (RRT)
 - Two-stage training
 - Train encoder
 - Re-train regressor with inverse re-weighting and frozen encoder.
 - ► Inspired by Kang et al. 2019

- Regressor re-training (RRT)
 - Two-stage training
 - Train encoder
 - Re-train regressor with inverse re-weighting and frozen encoder.
 - + LDS: loss re-weighting by inverse density
 - ► Inspired by Kang et al. 2019

- Regressor re-training (RRT)
 - Two-stage training
 - Train encoder
 - Re-train regressor with inverse re-weighting and frozen encoder.
 - + LDS: loss re-weighting by inverse density
 - ▶ Inspired by Kang et al. 2019
- Cost-sensitive re-weighting: re-weighting schemes based on label distribution
 - Inverse-frequency weighting (INV)
 - Square-root weighting variant (SQINV)

- Regressor re-training (RRT)
 - Two-stage training
 - Train encoder
 - Re-train regressor with inverse re-weighting and frozen encoder.
 - + LDS: loss re-weighting by inverse density
 - ► Inspired by Kang et al. 2019
- Cost-sensitive re-weighting: re-weighting schemes based on label distribution
 - Inverse-frequency weighting (INV)
 - Square-root weighting variant (SQINV)
 - + LDS: density estimation

Network Architectures

Architecture	Data
ResNet-50 (He et al. 2016)	IMDB-WIKI, AgeDB
BiLSTM + GloVe word embeddings (A. Wang et al. 2018)	STS-B
ResNet-50-based Encoder-Decoder (Hu et al. 2019)	NYUD2
CNN-RNN + ResNet (H. Wang et al. 2019)	SHHS

Results

Inferring Age from Images

Metrics		MA	Ε↓			GN	Л↓	
Shot	All	Many	Med.	Few	All	Many	Med.	Few
VANILLA	8.06	7.23	15.12	26.33	4.57	4.17	10.59	20.46
SMOTER (Torgo et al. 2013)	8.14	7.42	14.15	25.28	4.64	4.30	9.05	19.46
SMOGN (Branco et al. 2017)	8.03	7.30	14.02	25.93	4.63	4.30	8.74	20.12
SMOGN + LDS	8.02	7.39	13.71	23.22	4.63	4.39	8.71	15.80
SMOGN + FDS	8.03	7.35	14.06	23.44	4.65	4.33	8.87	16.00
${ m SMOGN} + { m LDS} + { m FDS}$	7.97	7.38	13.22	22.95	4.59	4.39	7.84	14.94
Focal-R	7.97	7.12	15.14	26.96	4.49	4.10	10.37	21.20
Focal-R $+$ LDS	7.90	7.10	14.72	25.84	4.47	4.09	10.11	19.14
Focal-R $+$ FDS	7.96	7.14	14.71	26.06	4.51	4.12	10.16	19.56
Focal-R $+$ LDS $+$ FDS	7.88	7.10	14.08	25.75	4.47	4.11	9.32	18.67
RRT	7.81	7.07	14.06	25.13	4.35	4.03	8.91	16.96
RRT + LDS	7.79	7.08	13.76	24.64	4.34	4.02	8.72	16.92
RRT + FDS	7.65	7.02	12.68	23.85	4.31	4.03	7.58	16.28
RRT + LDS + FDS	7.65	7.06	12.41	23.51	4.31	4.07	7.17	15.44
SQInv	7.87	7.24	12.44	22.76	4.47	4.22	7.25	15.10
SQInv + LDS	7.83	7.31	12.43	22.51	4.42	4.19	7.00	13.94
SQInv + FDS	7.83	7.23	12.60	22.37	4.42	4.20	6.93	13.48
$\mathrm{SQInv} + \mathrm{LDS} + \mathrm{FDS}$	7.78	7.20	12.61	22.19	4.37	4.12	7.39	12.61
Ours (best) VS. VANILLA	+0.41	+0.21	+2.71	+4.14	+0.26	+0.15	+3.66	+7.85

- Either LDS, FDS, or both leads to performance gains.
- LDS + FDS often achieves best results:
 - maintains or improves performance overall and on many-shot regions,
 - boosts performance for medium-shot and few-shot regions.

Inferring Age from Images

AgeDB

Metrics		MA	λE ↓			GI	M ↓	
Shot	All	Many	Med.	Few	All	Many	Med.	Few
Vanilla	7.77	6.62	9.55	13.67	5.05	4.23	7.01	10.75
SMOTER (Torgo et al. 2013)	8.16	7.39	8.65	12.28	5.21	4.65	5.69	8.49
SMOGN (Branco et al. 2017)	8.26	7.64	9.01	12.09	5.36	4.90	6.19	8.44
SMOGN + LDS	7.96	7.44	8.64	11.77	5.03	4.68	5.69	7.98
SMOGN + FDS	8.06	7.52	8.75	11.89	5.02	4.66	5.63	8.02
SMOGN + LDS + FDS	7.90	7.32	8.51	11.19	4.98	4.64	5.41	7.35
Focal-R	7.64	6.68	9.22	13.00	4.90	4.26	6.39	9.52
Focal-R + LDS	7.56	6.67	8.82	12.40	4.82	4.27	5.87	8.83
Focal- $R + FDS$	7.65	6.89	8.70	11.92	4.83	4.32	5.89	8.04
Focal-R + LDS + FDS	7.47	6.69	8.30	12.55	4.71	4.25	5.36	8.59
RRT	7.74	6.98	8.79	11.99	5.00	4.50	5.88	8.63
RRT + LDS	7.72	7.00	8.75	11.62	4.98	4.54	5.71	8.27
RRT + FDS	7.70	6.95	8.76	11.86	4.82	4.32	5.83	8.08
RRT + LDS + FDS	7.66	6.99	8.60	11.32	4.80	4.42	5.53	6.99
SQInv	7.81	7.16	8.80	11.20	4.99	4.57	5.73	7.77
SQInv + LDS	7.67	6.98	8.86	10.89	4.85	4.39	5.80	7.45
SQInv + FDS	7.69	7.10	8.86	9.98	4.83	4.41	5.97	6.29
$\mathrm{SQInv} + \mathrm{LDS} + \mathrm{FDS}$	7.55	7.01	8.24	10.79	4.72	4.36	5.45	6.79
Ours (best) VS. VANILLA	+0.30	-0.05	+1.31	+3.69	+0.34	-0.02	+1.65	+4.46

- Either LDS, FDS, or both leads to performance gains.
- LDS + FDS often achieves best results:
 - maintains or improves performance overall and on many-shot regions,
 - boosts performance for medium-shot and few-shot regions.

Inferring Text Similarity Score STS-B

Metrics		MS	E↓		Pearso	on corre	elation	(%) ↑
Shot	All	Many	Med.	Few	All	Many	Med.	Few
VANILLA	0.974	0.851	1.520	0.984	74.2	72.0	62.7	75.2
SMOTER (Torgo et al. 2013)	1.046	0.924	1.542	1.154	72.6	69.3	65.3	70.6
SMOGN (Branco et al. 2017)	0.990	0.896	1.327	1.175	73.2	70.4	65.5	69.2
SMOGN + LDS	0.962	0.880	1.242	1.155	74.0	71.5	65.2	69.8
SMOGN + FDS	0.987	0.945	1.101	1.153	73.0	69.6	68.5	69.9
SMOGN + LDS + FDS	0.950	0.851	1.327	1.095	74.6	72.1	65.9	71.7
Focal-R	0.951	0.843	1.425	0.957	74.6	72.3	61.8	76.4
Focal-R $+$ LDS	0.930	0.807	1.449	0.993	75.7	73.9	62.4	75.4
Focal-R $+$ FDS	0.920	0.855	1.169	1.008	75.1	72.6	66.4	74.7
Focal-R + LDS + FDS	0.940	0.849	1.358	0.916	74.9	72.2	66.3	77.3
RRT	0.964	0.842	1.503	0.978	74.5	72.4	62.3	75.4
RRT + LDS	0.916	0.817	1.344	0.945	75.7	73.5	64.1	76.6
RRT + FDS	0.929	0.857	1.209	1.025	74.9	72.1	67.2	74.0
RRT + LDS + FDS	0.903	0.806	1.323	0.936	76.0	73.8	65.2	76.7
Inv	1.005	0.894	1.482	1.046	72.8	70.3	62.5	73.2
Inv + LDS	0.914	0.819	1.319	0.955	75.6	73.4	63.8	76.2
Inv + FDS	0.927	0.851	1.225	1.012	75.0	72.4	66.6	74.2
INV + LDS + FDS	0.907	0.802	1.363	0.942	76.0	74.0	65.2	76.6
Ours (best) VS. VANILLA	+.071	+.049	+.419	+.068	+1.8	+2.0	+5.8	+2.1

• Both LDS and FDS improve results for various methods, esp. medium- and few-shot regions.

Inferring Depth

Metrics		RM	SE ↓			δ_1	ı ↑	
Shot	All	Many	Med.	Few	All	Many	Med.	Few
VANILLA	1.477	0.591	0.952	2.123	0.677	0.777	0.693	0.570
Vanilla + LDS				1.954				
Vanilla + FDS	1.442	0.615	0.940	2.059	0.681	0.760	0.695	0.596
Vanilla + LDS + FDS	1.338	0.670	0.851	1.880	0.705	0.730	0.764	0.655
Ours (best) VS. VANILLA	+.139	024	+.101	+.243	+.028	017	+.071	+.085

FDS and LDS

- alleviates overfitting on many-shot regions,
- generalizes better to all regions,
- slightly degrades many-shot region,
- boosts other regions.

Inferring Health Score SHHS-DIR

Metrics		MA	Ε↓			GN	1 ↓	
Shot	All	Many	Med.	Few	All	Many	Med.	Few
Vanilla	15.36	12.47	13.98	16.94	10.63	8.04	9.59	12.20
Focal-R	14.67	11.70	13.69	17.06	9.98	7.93	8.85	11.95
Focal-R $+$ LDS	14.49	12.01	12.43	16.57	9.98	7.89	8.59	11.40
Focal-R $+$ FDS	14.18	11.06	13.56	15.99	9.45	6.95	8.81	11.13
$\overline{\mathrm{Focal-R} + \mathrm{LDS} + \mathrm{FDS}}$	14.02	11.08	12.24	15.49	9.32	7.18	8.10	10.39
RRT	14.78	12.43	14.01	16.48	10.12	8.05	9.71	11.96
RRT + LDS	14.56	12.08	13.44	16.45	9.89	7.85	9.18	11.82
RRT + FDS	14.36	11.97	13.33	16.08	9.74	7.54	9.20	11.31
RRT + LDS + FDS	14.33	11.96	12.47	15.92	9.63	7.35	8.74	11.17
Inv	14.39	11.84	13.12	16.02	9.34	7.73	8.49	11.20
Inv + LDS	14.14	11.66	12.77	16.05	9.26	7.64	8.18	11.32
Inv + FDS	13.91	11.12	12.29	15.53	8.94	6.91	7.79	10.65
Inv + LDS + FDS	13.76	11.12	12.18	15.07	8.70	6.94	7.60	10.18
Ours (best) VS. VANILLA	+1.60	+1.41	+1.80	+1.87	+1.93	+1.13	+1.99	+2.02

- Both FDS and LDS are effective.
- FDS + LDS often get highest gains over all tested regions.
- Note: SMOTER and SMOGN not directly applicable.

Could LDS + FDS help when label distribution is skewed with one or more Gaussian peaks?

- Experimental setup
 - Curated skewed label distributions with 1-4 Gaussian peaks on IMDB-WIKI-DIR
 - Compared to vanilla model

Skewed label distribution with one Gaussian peak

Figure: MAE gains of LDS + FDS over vanilla model.

• Performance gains, esp. for extrapolation & interpolation

Skewed label distribution with two Gaussian peaks

Figure: MAE gains of LDS + FDS over vanilla model.

• Performance gains, esp. for extrapolation & interpolation

Skewed label distribution with three Gaussian peaks IMDB-WIKI

Figure: MAE gains of LDS + FDS over vanilla model.

• Performance gains, esp. for extrapolation & interpolation

Skewed label distribution with four Gaussian peaks IMDB-WIKI

Figure: MAE gains of LDS + FDS over vanilla model.

Performance gains, esp. for extrapolation & interpolation

Could LDS + FDS help when label distribution is skewed with one or more Gaussian peaks?

- Experimental setup
 - Curated skewed label distributions with 1-4 Gaussian peaks on IMDB-WIKI-DIR
 - ► Compared to vanilla model
- Findings
 - Robustness to distribution change
 - Brings improvement

Different skewed label distributions

IMDB-WIKI

Metrics				MAE	1						GM			
Shot	All	Many	Med.	Few	Zero	Interp.	Extrap.	All	Many	Med.	Few	Zero	Interp.	Extrap
1 peak:														
Vanilla	11.20	6.05	11.43	14.76	22.67	-	22.67	7.02	3.84	8.67	12.26	21.07	-	21.07
Vanilla + LDS	10.09	6.26	9.91	12.12	19.37	-	19.37	6.14	3.92	6.50	8.30	16.35	-	16.35
Vanilla + FDS	11.04	5.97	11.19	14.54	22.35	-	22.35	6.96	3.84	8.54	12.08	20.71	-	20.71
$\mathrm{Vanilla} + \mathbf{LDS} + \mathbf{FDS}$	10.00	6.28	9.66	11.83	19.21	-	19.21	6.09	3.96	6.26	8.14	15.89	-	15.89
2 peaks:														
Vanilla	11.72	6.83	11.78	15.35	16.86	16.13	18.19	7.44	3.61	8.06	12.94	15.21	14.41	16.74
Vanilla + LDS	10.54	6.72	9.65	12.60	15.30	14.14	17.38	6.50	3.65	5.65	9.30	13.20	12.13	15.36
Vanilla + FDS	11.40	6.69	11.02	14.85	16.61	15.83	18.01	7.18	3.50	7.49	12.73	14.86	14.02	16.48
$\mathrm{Vanilla} + \textbf{LDS} + \textbf{FDS}$	10.27	6.61	9.46	11.96	14.89	13.71	17.02	6.33	3.54	5.68	8.80	12.83	11.71	15.13
3 peaks:														
Vanilla	9.83	7.01	9.81	11.93	20.11	_	20.11	6.04	3.93	6.94	9.84	17.77	_	17.77
Vanilla + LDS	9.08	6.77	8.82	10.48	18.43	-	18.43	5.35	3.78	5.63	7.49	15.46	-	15.46
Vanilla + FDS	9.65	6.88	9.58	11.75	19.80	-	19.80	5.86	3.83	6.68	9.48	17.43	-	17.43
$\mathrm{Vanilla} + \mathbf{LDS} + \mathbf{FDS}$	8.96	6.88	8.62	10.08	17.76	-	17.76	5.38	3.90	5.61	7.36	14.65	-	14.65
4 peaks:														
Vanilla	9.49	7.23	9.73	10.85	12.16	8.23	18.78	5.68	3.45	6.95	8.20	9.43	6.89	16.02
Vanilla + LDS	8.80	6.98	8.26	10.07	11.26	8.31	16.22	5.10	3.33	5.07	7.08	8.47	6.66	12.74
Vanilla + FDS	9.28	7.11	9.16	10.88	11.95	8.30	18.11	5.49	3.36	6.35	8.15	9.21	6.82	15.30
$\mathrm{Vanilla} + \mathbf{LDS} + \mathbf{FDS}$	8.76	7.07	8.23	9.54	11.13	8.05	16.32	5.05	3.36	5.07	6.56	8.30	6.34	13.10

Typically best overall results by LDS + FDS

■ LDS + FDS can degrade many-shot region

Typically best many-shot results by LDS

Balanced vs. Imbalanced Test Label Distribution

Metrics		MS	SE ↓			M	AE ↓			GI	VI ↓	
Shot	All	Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few
Balanced:												
	138.06 129.35	108.70 106.52	366.09 311.49	964.92 811.82	8.06 7.78	7.23 7.20	15.12 12.61		4.57 4.37	4.17 4.12	10.59 7.39	20.46 12.61
Same as training set:												
	68.44 69.86	62.10 63.43	320.52 161.97	1350.01 1067.89	5.84 5.90	5.72 5.77	15.11 9.94	30.54 25.17	3.44 3.48	3.40 3.44	11.76 7.03	24.06 15.95

- Skewed label distribution for training set
- Case: balanced label distribution for test set.
 - ▶ LDS and FDS can improve performance of all regions.
- Case: skewed label distribution for test set, same label distribution for training set.
 - Minor degradation in many-shot region.
 - Boosts in medium-shot and few-shot regions.
 - Note: overall performance dominated by many-shot region, potentially biased and undesired evaluation.

Ablation: loss function

STS-B

Metrics		MS	E↓			MA	Ε↓		Pears	son corre	lation ((%)↑	Spear	rman co	rrelation	(%)↑
Shot	All	Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few
LDS:																
MAE (L1)	0.893	0.808	1.241	0.964	0.765	0.727	0.938	0.758	76.3	73.9	66.0	75.9	76.7	71.1	54.5	75.6
MSE (L2)	0.914	0.819	1.319	0.955	0.773	0.729	0.970	0.772	75.6	73.4	63.8	76.2	76.1	70.4	55.6	74.3
Huber Loss (sL1)	0.902	0.811	1.276	0.978	0.761	0.718	0.954	0.751	76.1	74.2	64.7	75.5	76.5	71.6	52.9	74.3
FDS:																
MAE (L1)	0.918	0.860	1.105	1.082	0.762	0.733	0.859	0.833	75.5	73.7	65.3	72.3	75.6	70.9	52.1	71.5
MSE (L2)	0.916	0.875	1.027	1.086	0.767	0.746	0.840	0.811	75.5	73.0	67.0	72.8	75.8	69.9	54.4	72.0
Huber Loss (sL1)	0.920	0.867	1.097	1.052	0.765	0.741	0.858	0.800	75.3	72.9	66.6	73.6	75.3	69.7	52.3	73.6

- Similar results for all losses
- Robust to different losses

Table credit: Yang et al. (2021), Image credit: https://medium.com/artificialis/loss-functions-361b2ad439a

Ablation: kernel type

Metrics		MS	E↓			MA	λE ↓			GI	√ ↓	
Shot	All	Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few
VANILLA	138.06	108.70	366.09	964.92	8.06	7.23	15.12	26.33	4.57	4.17	10.59	20.46
LDS:												
Gaussian Kernel	131.65	109.04	298.98	834.08	7.83	7.31	12.43	22.51	4.42	4.19	7.00	13.94
Triangular Kernel	133.77	110.24	309.70	850.74	7.89	7.30	12.72	22.80	4.50	4.24	7.75	14.91
Laplacian Kernel	132.87	109.27	312.10	829.83	7.87	7.29	12.68	22.38	4.50	4.26	7.29	13.71
FDS:												
Gaussian Kernel	133.81	107.51	332.90	916.18	7.85	7.18	13.35	24.12	4.47	4.18	8.18	15.18
Triangular Kernel	134.09	110.49	301.18	927.99	7.97	7.41	12.20	23.99	4.64	4.41	7.06	14.28
Laplacian Kernel	133.00	104.26	352.95	968.62	8.05	7.25	14.78	26.16	4.71	4.33	10.19	19.09

- All kernel types lead to gains
- Often best results with Gaussian kernel

Ablation: kernel type STS-B

Metrics		MS	Ε↓			MA	E↓		Pears	on corr	elation	(%) ↑ Spea	rman co	rrelatio	n (%) ↑
Shot	All	Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few All	Many	Med.	Few
VANILLA	0.974	0.851	1.520	0.984	0.794	0.740	1.043	0.771	74.2	72.0	62.7	75.2 74.4	68.8	50.5	75.0
LDS:															
Gaussian Kernel	0.914	0.819	1.319	0.955	0.773	0.729	0.970	0.772	75.6	73.4	63.8	76.2 76.1	70.4	55.6	74.3
Triangular Kernel	0.938	0.870	1.193	1.039	0.786	0.754	0.929	0.784	74.8	72.4	64.1	74.0 75.2	69.3	54.1	73.9
Laplacian Kernel	0.938	0.829	1.413	0.962	0.782	0.731	1.014	0.773	75.7	73.0	65.8	76.5 76.0	70.0	52.3	75.2
FDS:															
Gaussian Kernel	0.916	0.875	1.027	1.086	0.767	0.746	0.840	0.811	75.5	73.0	67.0	72.8 75.8	69.9	54.4	72.0
Triangular Kernel	0.935	0.863	1.239	0.966	0.762	0.725	0.912	0.788	74.6	72.4	64.8	75.9 74.4	69.1	48.4	75.4
Laplacian Kernel	0.925	0.843	1.247	1.020	0.771	0.733	0.929	0.800	75.0	72.6	64.7	74.2 75.4	70.1	53.5	73.5

- All kernel types lead to gains
- Often best results with Gaussian kernel

Ablation: Gaussian kernel hyper-parameters

IMDB-WIKI

						<i>-</i> .							
Met	rics		MS	Ε↓			MA	λE↓			GI	VI ↓	
Shot	:	All	Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few
Van	ILLA	138.06	108.70	366.09	964.92	8.06	7.23	15.12	26.33	4.57	4.17	10.59	20.46
l	σ	l											
LDS	i:												
5	1	132.08	108.53	309.03	843.53	7.80	7.22	12.61	22.33	4.42	4.19	7.16	12.54
9	1	135.04	112.32	307.90	803.15	7.97	7.39	12.74	22.19	4.55	4.30	7.53	14.11
15	1	134.06	110.49	308.83	864.30	7.84	7.28	12.35	22.81	4.44	4.22	6.95	14.22
5	2	131.65	109.04	298.98	834.08	7.83	7.31	12.43	22.51	4.42	4.19	7.00	13.94
9	2	136.78	112.41	322.65	850.47	8.02	7.41	13.00	23.23	4.55	4.29	7.55	15.65
15	2	135.66	111.68	319.20	833.02	7.98	7.40	12.74	22.27	4.60	4.37	7.30	12.92
5	3	137.56	113.50	322.47	831.38	8.07	7.47	13.06	22.85	4.63	4.36	7.87	15.11
9	3	138.91	114.89	319.40	863.16	8.18	7.57	13.19	23.33	4.71	4.44	8.09	15.17
15	3	138.86	114.25	326.97	856.27	8.18	7.54	13.53	23.17	4.77	4.47	8.52	15.25
FDS	i:												
5	1	133.63	104.80	354.24	972.54	7.87	7.06	14.71	25.96	4.42	4.04	9.95	18.47
9	1	134.34	105.97	356.54	919.16	7.95	7.18	14.58	24.80	4.54	4.20	9.56	15.13
15	1	136.32	107.47	355.84	948.71	7.97	7.23	14.81	25.59	4.60	4.23	9.99	17.60
5	2	133.81	107.51	332.90	916.18	7.85	7.18	13.35	24.12	4.47	4.18	8.18	15.18
9	2	133.99	105.01	357.31	963.79	7.94	7.11	14.95	25.97	4.48	4.09	10.49	18.19
15	2	136.61	107.93	361.08	973.56	7.98	7.23	14.68	25.21	4.61	4.24	10.14	17.91
5	3	136.81	107.76	359.08	953.16	7.98	7.18	14.85	24.94	4.53	4.15	10.27	17.33
9	3	133.48	104.14	359.80	972.29	7.94	7.09	15.04	25.87	4.48	4.09	10.40	16.85
15	3	132.55	103.08	360.39	970.43	8.03	7.22	14.86	25.40	4.67	4.33	10.04	13.86

- lacktriangle Gaussian kernel size $l \in \{5,9,15\}$ and standard deviation $\sigma \in \{1,2,3\}$
- LDS Smaller σ usually leads to slightly better results over all regions.
 - Larger gains w.r.t. performance in medium-shot and few-shot regions.
 - Minor degradation in many-shot regions.
- FDS Smaller *l* often obtains slightly higher improvements over all regions.
 - Equally boosts all regions, with slightly smaller improvements in medium-shot and few-shot regions.
- 3.3-6.2% overall MSE gain
- Best results with l=5 and $\sigma=2$
- Robust to different hyper-parameters

Ablation: Gaussian kernel hyper-parameters

STS-B

Metrics		MSE ↓				MAE ↓				Pearson correlation (%) ↑				Spearman correlation (%) ↑			
Shot		All	Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few
Vanilla		0.974	0.851	1.520	0.984	0.794	0.740	1.043	0.771	74.2	72.0	62.7	75.2	74.4	68.8	50.5	75.0
l	σ																
LDS	LDS:																
5	1	0.942	0.825	1.431	1.023	0.781	0.726	1.016	0.809	75.1	73.2	61.8	74.5	75.3	70.2	52.2	72.5
9	1	0.931	0.840	1.323	0.962	0.785	0.744	0.972	0.773	75.0	72.7	63.3	75.8	75.6	70.1	53.6	74.8
15	1	0.941	0.833	1.413	0.953	0.781	0.728	1.014	0.776	75.0	72.8	62.6	76.3	75.5	70.2	52.0	74.6
5	2	0.914	0.819	1.319	0.955	0.773	0.729	0.970	0.772	75.6	73.4	63.8	76.2	76.1	70.4	55.6	74.3
9	2	0.926	0.823	1.379	0.944	0.782	0.733	1.003	0.764	75.5	73.4	63.6	76.8	76.0	70.5	53.5	76.2
15	2	0.949	0.831	1.452	1.005	0.788	0.735	1.023	0.782	74.9	72.9	63.0	74.7	75.4	70.1	52.5	73.6
5	3	0.928	0.845	1.250	1.041	0.775	0.733	0.951	0.798	75.1	73.3	63.2	73.8	75.3	70.4	51.4	72.6
9	3	0.939	0.816	1.462	1.000	0.786	0.732	1.030	0.783	75.3	73.5	62.6	74.7	75.9	70.9	53.0	73.7
15	3	0.927	0.824	1.348	1.010	0.774	0.726	0.982	0.780	75.2	73.4	62.2	74.6	75.7	70.7	53.0	72.3
FDS:																	
5	1	0.943	0.869	1.217	1.066	0.776	0.742	0.914	0.799	74.4	71.7	65.6	72.5	74.2	68.4	51.1	71.2
9	1	0.927	0.851	1.193	1.096	0.770	0.736	0.896	0.822	74.9	72.8	65.8	71.6	74.8	69.7	52.3	68.3
15	1	0.926	0.854	1.202	1.029	0.776	0.743	0.914	0.800	74.9	72.6	66.1	74.0	75.1	69.8	49.5	73.6
5	2	0.916	0.875	1.027	1.086	0.767	0.746	0.840	0.811	75.5	73.0	67.0	72.8	75.8	69.9	54.4	72.0
9	2	0.933	0.888	1.068	1.081	0.776	0.752	0.855	0.839	74.8	72.0	67.9	72.2	74.9	68.9	53.3	72.0
15	2	0.944	0.890	1.125	1.078	0.783	0.761	0.864	0.822	74.4	71.8	65.8	72.2	74.5	68.9	53.1	70.9
5	3	0.924	0.860	1.190	0.964	0.771	0.740	0.897	0.790	75.0	72.7	64.4	76.1	75.1	69.4	53.8	76.5
9	3	0.932	0.878	1.149	0.982	0.770	0.746	0.876	0.780	74.8	72.5	63.8	75.3	74.8	69.3	50.2	75.6
15	3	0.956	0.915	1.110	1.016	0.784	0.767	0.855	0.803	74.4	72.1	63.7	75.5	74.3	68.7	50.0	74.6

- Gaussian kernel size $l \in \{5, 9, 15\}$ and standard deviation $\sigma \in \{1, 2, 3\}$
- 3.3-6.2% overall MSE gain
- Best results with l=5 and $\sigma=2$
- Robust to different hyper-parameters

Comparison to imbalanced classification methods

Dataset	IMDB	-WIKI-DI	R (subsar	npled)		STS-I	3-DIR		NYUD2-DIR				
Metric		MA	Æ↓			MS	E↓		RMSE ↓				
Shot	All	Many	Med.	Few	All	Many	Med.	Few	All	Many	Med.	Few	
Imbalanced Classification:													
CLS-VANILLA	15.94	15.64	18.95	30.21	1.926	1.906	2.022	1.907	1.576	0.596	1.011	2.275	
CB (Cui et al. 2019)	22.41	22.32	22.05	32.90	2.159	2.194	2.028	2.107	1.664	0.592	1.044	2.415	
cRT (Kang et al. 2019)	15.65	15.33	17.52	29.54	1.891	1.906	1.930	1.650	1.488	0.659	1.032	2.107	
Imbalanced Regression:													
Reg-vanilla	14.64	13.98	17.47	30.29	0.974	0.851	1.520	0.984	1.477	0.591	0.952	2.123	
LDS	14.03	13.72	15.93	26.71	0.914	0.819	1.319	0.955	1.387	0.671	0.913	1.954	
FDS	13.97	13.55	16.42	24.64	0.916	0.875	1.027	1.086	1.442	0.615	0.940	2.059	
LDS + FDS	13.32	13.14	15.06	23.87	0.907	0.802	1.363	0.942	1.338	0.670	0.851	1.880	

- Imbalanced regression methods outperform classification ones.
- Can reduce error up to 50-60% in few-shot regions
- Imbalanced classification methods can perform worse than vanilla regression.
- Main finding: imbalance regression requires something different than just imbalance classification methods, which
 - can ignore similarity between nearby targets,
 - can ignore similarity between features linked to nearby targets,
 - cannot interpolate & extrapolate in continuous label space, so cannot deal with zero-shot label regions.
 Table credit: Yang et al. (2021)

References I

- Branco, Paula, Luís Torgo, and Rita P Ribeiro (2017). "SMOGN: a pre-processing approach for imbalanced regression". In: First international workshop on learning with imbalanced domains: Theory and applications. PMLR, pp. 36–50.
- Cui, Yin et al. (2019). "Class-balanced loss based on effective number of samples". In: *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9268–9277.
- He, Kaiming et al. (2016). "Deep residual learning for image recognition". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778.
- Hu, Junjie et al. (2019). "Revisiting single image depth estimation: Toward higher resolution maps with accurate object boundaries". In: 2019 IEEE winter conference on applications of computer vision (WACV). IEEE, pp. 1043–1051.
- Kang, Bingyi et al. (2019). "Decoupling representation and classifier for long-tailed recognition". In: arXiv preprint arXiv:1910.09217.

References II

- Lin, T (2017). "Focal Loss for Dense Object Detection". In: arXiv preprint arXiv:1708.02002.
- Liu, Ziwei et al. (2019). "Large-scale long-tailed recognition in an open world". In: *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2537–2546.
- Parzen, Emanuel (1962). "On estimation of a probability density function and mode". In: *The annals of mathematical statistics* 33.3, pp. 1065–1076.
- Sun, Baochen, Jiashi Feng, and Kate Saenko (2016). "Return of frustratingly easy domain adaptation". In: *Proceedings of the AAAI conference on artificial intelligence*. Vol. 30. 1.
- Torgo, Luís et al. (2013). "Smote for regression". In: *Portuguese conference on artificial intelligence*. Springer, pp. 378–389.

References III

- Wang, Alex et al. (2018). "GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding". English (US). In: EMNLP 2018 2018 EMNLP Workshop BlackboxNLP. EMNLP 2018 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Proceedings of the 1st Workshop. 1st Workshop on BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, co-located with the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018; Conference date: 01-11-2018. Association for Computational Linguistics (ACL), pp. 353–355.
- Wang, Hao et al. (2019). "Bidirectional inference networks: A class of deep bayesian networks for health profiling". In: *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 33. 01, pp. 766–773.
- Yang, Yuzhe et al. (2021). "Delving into deep imbalanced regression". In: *International conference on machine learning*. PMLR, pp. 11842–11851.