

Advanced Control Engineering I

99. Exercise

Autor: Phillip Kronthaler Last change: November 14, 2024

Task 1

Calculate the state-space model in controllable canonical form of the system represented by the transfer function

$$G(s) = \frac{2}{s^2 + 3s + 5} \,.$$

Task 2

Calculate the state-space model in controllable canonical form of the system represented by the transfer function

$$G(s) = \frac{2s^2}{s^2 + 3s + 5}.$$

Task 3

Calculate the state-space model in observable canonical form of the system represented by the transfer function

$$G(s) = \frac{2s}{s^2 + 3s + 5}.$$

Task 4

Calculate the state-space model in observable canonical form of the system represented by the transfer function

$$G(s) = \frac{s^2}{s^2 + 2s + 1}.$$

Task 5

Calculate the transfer function of the state-space model

$$\dot{\boldsymbol{x}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -5 & -3 & -1 \end{pmatrix} \boldsymbol{x} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 2 & 3 & 4 \end{pmatrix} \boldsymbol{x}.$$

Task 6

Name the order of the system and calculate the relative degree of

$$G(s) = \frac{2 \, s}{s^2 + 3 \, s + 5} \, .$$

Note: Explain why

Task 7

Name the order of the system and calculate the relative degree of

$$\dot{\boldsymbol{x}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -5 & -3 & -1 \end{pmatrix} \boldsymbol{x} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$\boldsymbol{y} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \boldsymbol{x}.$$

Note: Explain why

Task 8

Name the order of the system and calculate the relative degree of

$$\dot{\boldsymbol{x}} = \begin{pmatrix} -a\sqrt{x_1} \\ a\sqrt{x_1} - a\sqrt{x_2} \end{pmatrix} + \begin{pmatrix} bu \\ 0 \end{pmatrix}$$
$$y = x_2,$$

with a and b are constants.

Note: Explain why

Task 9

Create a prefilter to smooth a input step as reference trajectory for the system

$$G(s) = \frac{2}{s^2 + s} \,.$$

The eigenvalues of the filter should all be at $s_i = -2$. Select the lowest order which is needed.

Task 10

Create a feed-forward for the system

$$G(s) = \frac{2}{s^2 + s} \,.$$

Assume, that the auxiliary trajectory $\eta(t)$ is smooth enough. How can you compute the reference trajectory y_{ref} and the reference input trajectory u_{ref} ? Write down the equations.

Task 11

The watertank system from the lab-exercise is given by the following mathematical system

$$\dot{\boldsymbol{x}} = \begin{pmatrix} -a\sqrt{x_1} \\ a\sqrt{x_1} - a\sqrt{x_2} \end{pmatrix} + \begin{pmatrix} bu \\ 0 \end{pmatrix}$$
$$y = x_2,$$

with a and b are constants. Explain, why x_2 is a flat output $y_f(t)$ of the system. Calculate the state and input variables by means of the flat output and its derivatives.

Task 12

A system is given by its transfer function

$$G(s) = \frac{2s}{s^2 + 3s + 5}.$$

Use the property of flatness to design an appropriate feed-forward. Use the auxiliary variable $y_f(t)$ to compute the reference trajectory $y_{ref}(t)$ and the reference input signal $u_{ref}(t)$. You do not need to calculate a polynomial transition, just compute the reference signals by means of the auxiliary variable and its derivatives.

Task 13

Is the following system controllable?

$$\dot{\boldsymbol{x}} = \begin{pmatrix} 4 & -1 \\ -2 & 3 \end{pmatrix} \boldsymbol{x} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} \boldsymbol{u}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 \end{pmatrix} \boldsymbol{x},$$

If yes, use a state feedback control with the desired eigenvalues of the closed loop system at $s_1 = s_2 = -10$. Name the feedback gain k.

Note: If the system is not in controllable canonical form, the Ackermann formula can also be used.

Task 14

Is the following system controllable?

$$\dot{\boldsymbol{x}} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \boldsymbol{x} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} \boldsymbol{u}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 \end{pmatrix} \boldsymbol{x},$$

If yes, use a state feedback control with the desired eigenvalues of the closed loop system at $s_1 = s_2 = -10$. Name the feedback gain k.

Note: If the system is not in controllable canonical form, the Ackermann formula can also be used.

Task 15

Is the following system observable?

$$\dot{\boldsymbol{x}} = \begin{pmatrix} 4 & 0 \\ -2 & 3 \end{pmatrix} \boldsymbol{x} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} \boldsymbol{u}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 \end{pmatrix} \boldsymbol{x},$$

If yes, use a Luenberger observer with the desired eigenvalues at $s_1 = s_2 = -10$. Name the observer gain ℓ .

Note: If the system is not in observable canonical form, the Ackermann formula can also be used.

Task 16

Is the following system controllable?

$$\dot{\boldsymbol{x}} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \boldsymbol{x} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} \boldsymbol{u}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 \end{pmatrix} \boldsymbol{x},$$

If yes, use a Luenberger observer with the desired eigenvalues at $s_1 = s_2 = -10$. Name the observer gain ℓ .

Note: If the system is not in observable canonical form, the Ackermann formula can also be used.

Task 17

Define a mathematical model for a constant disturbance on the output y(t). Extend the model below by the disturbance and observe the unknown disturbance by a Luenberger observer.

$$\dot{\boldsymbol{x}} = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \boldsymbol{x} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \boldsymbol{u}$$
$$\boldsymbol{y} = \begin{pmatrix} 1 & 0 \end{pmatrix} \boldsymbol{x},$$

Note: You do not have to calculate the observer gain or anything, the task is just to extend the mathematical model and show the observer design to estimate the disturbance.

Theory

Task 18

Explain the idea behind zero-vibration input-shaping.

Task 19

Explain the system property "flatness".

Task 20

Explain the definition of the relative degree?

Task 21

Why is a double-s velocity profile a time-optimal solution for rigid systems?

Task 22

Name the minimum order of a polynomial to calculate a transition for a system of order n. Explain why.

Task 23

How to scale a prototyping function for a transition from $y_0 = 1 \,\text{m}$ to $y_E = 10 \,\text{m}$ within $T = 10 \,\text{s}$, if the prototyping function is given by

$$\varphi(\tau) = 10\,\tau^3 - 15\,\tau^4 + 6\,\tau^5.$$

Write down the reference trajectory for the flat output $\eta(t)$ and its first derivative $\dot{\eta}(t)$. Note: The flat output should be defined for all t.

Task 24

Define a differential equation to model a constant disturbance.

$$G(5) = \frac{2}{5^{2}+5}$$
 System order of 2

$$G_{\epsilon}(s) = \frac{\lambda}{(s-2)^{2}}$$
 $G(o) = \frac{\lambda}{4} = 1 \Rightarrow \lambda = 4$

Task 10:

$$G(5) = \frac{2}{8^2 + 5}$$
 $N = 2$

degree of polynom- $2 \cdot n + 1 = 5$

Yherinal = $a_5 \cdot t^5 + a_1 \cdot t^1 + a_3 \cdot t^1 \cdot a_2 \cdot t^2 \cdot a_1 \cdot t_1 \cdot a_n$

Yher $(0) = 0$

Mref = 60. +3-90+2, 30+ Unef = Vod + a. Mod + a. Mod

Unef = 60.t3-90t2+55t+15.t4-30.t3+15t2

= 15.t1+30t3-75t2+30+

-> contina Simuliale

Task 11:

y = X2

$$\dot{x}_{2} = \alpha \cdot \sqrt{x_{1}} - \alpha \sqrt{x_{1}} + \delta u - \alpha \frac{1}{2\sqrt{x_{2}}} \cdot (\alpha \sqrt{x_{1}} - \alpha \sqrt{x_{2}})$$

$$\dot{x}_{1} = \alpha \cdot \frac{1}{2\sqrt{x_{1}}} \left(-\alpha \sqrt{x_{1}} + \delta u \right) - \alpha \frac{1}{2\sqrt{x_{2}}} \cdot \left(\alpha \sqrt{x_{1}} - \alpha \sqrt{x_{2}} \right)$$

$$\dot{x}_{2} = \alpha \cdot \frac{1}{2\sqrt{x_{1}}} \cdot \left(-\alpha \sqrt{x_{1}} + \delta u \right) - \alpha \frac{1}{2\sqrt{x_{2}}} \cdot \left(\alpha \sqrt{x_{1}} - \alpha \sqrt{x_{2}} \right)$$

$$\dot{x}_{3} = \alpha \cdot \frac{1}{2\sqrt{x_{1}}} \cdot \left(-\alpha \sqrt{x_{1}} + \delta u \right) - \alpha \frac{1}{2\sqrt{x_{2}}} \cdot \left(\alpha \sqrt{x_{1}} - \alpha \sqrt{x_{2}} \right)$$

$$\dot{x}_{4} = \alpha \cdot \frac{1}{2\sqrt{x_{1}}} \cdot \left(-\alpha \sqrt{x_{1}} + \delta u \right) - \alpha \frac{1}{2\sqrt{x_{2}}} \cdot \left(\alpha \sqrt{x_{1}} - \alpha \sqrt{x_{2}} \right)$$

$$\dot{x}_{5} = \alpha \cdot \frac{1}{2\sqrt{x_{1}}} \cdot \left(-\alpha \sqrt{x_{1}} + \delta u \right) - \alpha \frac{1}{2\sqrt{x_{2}}} \cdot \left(\alpha \sqrt{x_{1}} - \alpha \sqrt{x_{2}} \right)$$

$$X_1 = \left(\frac{\dot{X}_2}{a} + v_{X_2}\right)^2 = \left(\frac{\dot{X}_2}{a}\right)^2 + 2 \cdot \frac{\dot{X}_2}{a} \cdot v_{X_2} + x_2$$

With substitution a is only depending on x2.

Les Theirfor all states and impts can be represented by enly $x_2 \rightarrow x_2$: [let output

Task 12

$$G(s) = \frac{2s}{s^2 + 3s + 5} = \frac{\gamma(s)}{\upsilon(s)} = \frac{2}{P}$$

$$\Rightarrow \gamma = \frac{2}{P} \cdot \upsilon = 2 \cdot \gamma_{\ell}$$

$$\gamma_{\ell} = \frac{\upsilon(s)}{P(s)}$$

$$\upsilon(s) = P(s) \cdot \gamma_{\ell}(s)$$

$$\dot{\vec{X}} = \begin{bmatrix} 4 & -1 \\ -2 & 3 \end{bmatrix} \vec{x} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} 0$$

$$\dot{\vec{Y}} = \begin{bmatrix} 1 & 0 \end{bmatrix} \vec{x}$$

To check if the system is controllable, it is necessary to compute the controllability matrix and check its rank.

$$Ab = \begin{bmatrix} 4 & 1 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

=> net controllable

Some states can not be influenced by the input. Therefore I can not use state feedback control ?

Tade 14

$$\dot{z} = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \dot{z} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} 0$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \dot{z} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} 0$$

$$\dot{z} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \quad det(n_c) = 1 \Rightarrow controllable$$

$$\dot{z} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \quad q^{T} = \begin{bmatrix} -2 & 1 \end{bmatrix}$$

$$\dot{z} = q^{T} \cdot \begin{bmatrix} \hat{a} \cdot \vec{1} + \hat{a} \cdot \vec{A} + A^{2} \end{bmatrix}$$

$$\dot{z} = q^{T} \cdot \begin{bmatrix} \hat{a} \cdot \vec{1} + \hat{a} \cdot \vec{A} + A^{2} \end{bmatrix}$$

$$\dot{z} = \dot{z} + 20 + 100 = 0$$

$$\dot{z} = \dot{z} + 20 + 100 = 0$$

$$\dot{z} = \dot{z} + 20 + 100 = 0$$

y=[10]x

Task 16

y = [10] x

 \vec{x} $\begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \vec{x} \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cup$

Λo=[2-1] → regular

 $\mathcal{T}_{o} = \frac{1}{-1} \cdot \begin{bmatrix} -1 & 0 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$

wish: $(5+10)^7 = 5^7 + 205 + 100$

 $\begin{bmatrix} = 4 \end{bmatrix} \cdot \begin{bmatrix} \begin{bmatrix} 1000 & 0 \\ 0 & 1000 \end{bmatrix} + \begin{bmatrix} 40 & -70 \\ 20 & 0 \end{bmatrix} + \begin{bmatrix} 3 & -7 \\ 7 & -1 \end{bmatrix}$

 $L = \begin{bmatrix} 143 & -22 \\ 22 & qq \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 22 \\ -qq \end{bmatrix}$

 $\begin{bmatrix} 2 & -i \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 2 & -1 \end{bmatrix}$

No= [cTA] = [10] = not regular

$$\frac{1}{2} \cdot \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \times 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} U$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \vec{x}$$

$$\vec{X}_{e_{x}} = \begin{bmatrix} \vec{x}_{1} & \vec{x}_{e_{x}} \\ \vec{x}_{1} & \vec{x}_{e_{x}} \\ \vec{x}_{e_{x}} \end{bmatrix}$$

$$\vec{X}_{e_{x}} = \begin{bmatrix} \vec{0} & 1 & \vec{0} \\ \vec{0} & -1 & \vec{0} \\ \vec{0} & 0 & \vec{0} \end{bmatrix} \vec{X}_{e_{x}} + \begin{bmatrix} \vec{0} \\ 1 \\ 6 \end{bmatrix} U$$

$$y = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \vec{x}_{ex}$$

$$x_{1} + x_{1}$$

Theory

- 18) They iden is to add a shifted output to the system output to get rid of the azillations. This function is also scaled
- 19) The flat output and its derivative can represent all slakes and inputs.
- 20) lowest derivative of the output y(H), which doponds directly on the input a(H).
- Because you got into the Linitations of both acceleration and jerk. > no forster novement possible
- 22) It is (2n+1) because has we have anough parameter as we have boundary conditions
- 23) In generall the prototyp fendion calculates the transition from 0 to 1 in the time t.

 Therifore we need to scale it from yo to (ye-yo).

Ydesiral = ((T).(YE-X) + Xo

Wrot= Hesiral assurtion 5=1

Red = Ydesired = 90.63-135+4-54.65+1

Mre(- 270 +2-540+3+ 270+9

24) , X= 0