

Bases de données

Chapitre 3b - Algèbre relationnelle

Source : Céline Rouveirol

CM3c du 05/10/2022

Algèbre relationnelle: introduction

- proposée par E. Codd en 1969
- collection d'opérations formelles dont les opérandes et les résultats sont des relations
- utilisée en général à l'intérieur de tout SGBD relationnel. Expressions algébriques procédurales donc faciles à optimiser par des transformations syntaxiques
- ▶ fondée sur 8 opérateurs: 4 ensemblistes (UNION, INTERSECTION, DIFFERENCE, PRODUIT) et 4 spécifiques (SELECTION, PROJECTION, JOINTURE, DIVISION)
- les opérateurs de base (primitifs) permettent de déduire d'autres opérations, dites opérations dérivées

Projection

Définition

La projection est utilisée pour extraire d'une instance de relation r de schéma R un sous-ensemble d'attributs. Soit X un ensemble d'attributs tels que $X\subseteq att(r)=R$, l'instance $\prod_X(r)=\{t[X]\mid t\in r\}$. Si $X=\emptyset$, alors $\prod_X(r)=\emptyset$.

- $ightharpoonup 0 \le card(\prod_X(r) \le card(r)$
- ightharpoonup arite $(\prod_X (R)) \le arite(R)$

Projection, exemple

Vehicule	NV	Marque	Couleur	Puissance
	1234 GH 75	Renault	verte	7
	678 AZ 23	Citroen	blanche	6
	345 AZ 34	Renault	rouge	5

$\prod_{NV,Couleur}(Vehicule)$	NV	Couleur
	1234 GH 75	verte
	678 AZ 23	blanche
	345 AZ 34	rouge

$\prod_{Marque}(Vehicule)$	Marque
	Renault
	Citroen

Sélection

Définition

Etant donné une instance de relation r de schéma R, et ϕ une condition de sélection, i.e. une expression booléenne portant sur un ou plusieurs attributs de R, la sélection renvoie une l'instance notée $\sigma_{\phi}(r)$ telle que $\sigma_{\phi}(r) = \{t \mid t \in r \text{ et } \phi(t) = T\}$

- condition de sélection de la forme atti comp atti ou atti comp val
- ► comp: >, <, =, \neq , ≥, ≤
- combinaison de condition par *OU*, *ET* et *NON*

- ightharpoonup arite($\sigma_{\phi}(R)$) = arite(R)
- $ightharpoonup 0 \le card(\sigma_{\phi}(r)) \le card(r)$

Sélection, exemple

Vehicule	NV	Marque	Couleur	Puissance
	1234 GH 75	Renault	verte	7
	678 AZ 23	Citroen	blanche	6
	345 AZ 34	Renault	rouge	5

σ_{Puissa}	$_{ance>6}(Vehicule)$	NV	Marque	Couleur	Puissance	
		1234 GH 75	Renault	verte	7]
<i>σ.,</i>	a. (Vehicule) NV	Margue	Couleur	Puissance	ı

$\sigma_{Marque = Citroen}(\mathit{Vehicule})$	icule) NV		Couleur	Puissance
	678 AZ 23	Citroen	blanche	6

 $\sigma_{Marque=Citroen\ ET\ Puissance>6}(Vehicule)$?

Renommage

Définition

Soit une instance de relation r, un ensemble d'attributs $X \subseteq att(r)$ et un ensemble d'attributs Z de même cardinalité que X; le renommage du schéma de R étant donné Z est une bijection ρ de X dans Z notée $\rho_{X \to Z}(R)$, tel que X est remplacé par Z dans le schéma de R.

NB: Cette opération est purement syntaxique et n'a aucune incidence sur les instances de la relation; elle sert à changer le nom (renommer) des attributs d'une relation.

Renommage, exemple

Vehicule	NV	Marque	Couleur	Puissance
	1234 GH 75	Renault	verte	7
	678 AZ 23	Citroen	blanche	6
	345 AZ 34	Renault	rouge	5

ρ Marque \rightarrow Constructeur (Vehicule)	NV	Constructeur	Couleur	Puissance
	1234 GH 75	Renault	verte	7
	678 AZ 23	Citroen	blanche	6
	345 AZ 34	Renault	rouge	5

$\prod_{{\it Constructeur}}(ho_{{\it Marque} ightarrow{\it Constructeur}}({\it Vehicule}))$	Constructeur
	Citroen
	Renault

Jointure

Définition

Soient r et s deux instances de relation; la jointure de r et s renvoie une relation notée : $r \bowtie s = \{t \mid t[att(r)] \in r \text{ et } t[att(s)] \in s\}$ sur le schéma $att(r) \cup att(s)$

Les tuples de la relation résultat sont obtenus en concaténant chaque tuple de r avec ceux de s ayant mêmes valeurs pour les attributs de même nom.

- opération commutative $(r \bowtie s = s \bowtie r)$, associative $(r \bowtie (s \bowtie t)) = (r \bowtie (t \bowtie s))$
- $ightharpoonup r(A,B) \bowtie s(B,C) = \prod_{A,B,C} (\sigma_{B=B'}((r \times \rho_{B\to B'}(s))))$

Jointure

Propriétés (suite):

- ▶ si $att(r) \cap att(s) = \emptyset$ alors $r \bowtie s$ est un produit cartésien
- ▶ si $att(r) \subseteq att(s)$ alors $r \bowtie s$ est une sélection de "s par r"
- ightharpoonup si att(r) = att(s) alors $r \bowtie s$ est l'intersection de r et s

Jointure, exemple

r	Λ	В	С	S	Α	D	E
	A .		_	-	2	1	1
	1	3	5		1	2	2
	2	4	6		1	_	2 3
	3	5	7		1	3	3
	1	6	8		3	3	4
	4	0	0	-	4	4	3

$r \bowtie s$	Α	В	С	D	E
	1	3	5	2	2
	1	3	5	3	3
	2	4	6	1	1
	3	5	7	3	4
	4	6	8	4	3

Union - Différence

Définition: Union

Prend en argument 2 instances de relations r et s de même schéma, et renvoie une instance de même schéma définie par : $r \cup s = \{t | t \in r \text{ ou } t \in s\}$

Définition: Différence

Prend en argument 2 instances de relations r et s de même schéma, et renvoie une instance de même schéma définie par:

$$r \setminus s = \{t | t \in r \text{ et } t \notin s\}$$

opération non commutative

pérations ensemblistes, exemples

Soient les deux instances de relation Etudiant_MI1(IdEtudiant, Nom, Prenom, UE) et Etudiant_MMI1(IdEtudiant, Nom, Prenom, UE)

- on veut savoir les étudiants inscrits à l'UE BD: $\sigma_{UE='BD'}(Etudiant_MI1) \cup \sigma_{UE='BD'}(Etudiant_MMI1)$
- les UE propres à MI1:

```
\prod (Etudiants_MI1) \ \prod (Etudiants_MMI1)
UE
```


Produit Cartésien

Définition

Prend en argument 2 instances de relations r et s telles que $att(r) \cap att(s) = \emptyset$, et renvoie une instance définie sur $att(r) \cup att(s)$ par : $r \times s = \{t | t[att(r)] \in r \text{ et } t[att(s)] \in s\}$

- opération commutative
- ightharpoonup si $arite(R) = k_1$ et $arite(S) = k_2$ alors $arite(R \times S) = k_1 + k_2$
- ightharpoonup card $(r \times s) = card(r) \times card(s)$

Produit cartésien, exemple

r	Α	В	C	s	D	Ε
	1	3	5		1	1
	2	4	6		2	2
	3	5	7		3	3

$r \bowtie s$	Α	В	С	D	E
	1	3	5	1	1
	1 2 3	4	6	1	1
	3	5	7	1	1
	1	3	5	2	2
	1 2 3	4	5 6	1 2 2 2 3	2
	3	5 3	7	2	2
	1	3	5	3	3
	1 2 3	4	6	3	2 2 2 3 3
	3	5	7	3 3	3

Intersection

Définition

Prend en argument 2 instances de relations r et s de même schéma, et renvoie une instance de même schéma définie par:

$$r \cap s = \{t | t \in r \text{ et } t \in s\}$$

Cette opération peut s'exprimer à partir d'opérations de base:

- $ightharpoonup r \cap s = r \setminus (r \setminus s) = s \setminus (s \setminus r)$
- $ightharpoonup r \cap s = (r \cup s) \setminus [(r \setminus s) \cup (s \setminus r)]$

Jointure conditionnelle

Définition

Prend en argument 2 instances de relations r et s et une condition de sélection θ et renvoie une instance de relation définie sur $att(r) \cup att(s)$ par: $r \bowtie_{\theta} s = \sigma_{\theta}(r \times s)$. On a $0 \leq card(r \bowtie_{\Theta} s) \leq card(r) \times card(s)$

r	Α	В	C	S	Α	
'	^				2	Г
	1	3	5		1	
	2	4	6		1	
	2	5	7		1	
	3		'		3	
	4	6	8		4	
					4	

$r \bowtie_{r.A < s.A} s$	r.A	В	C	s.A	D	E
	1	3	5	2	1	1
	1	3	5	3	3	4
	1	3	5	4	4	3
	2	4	6	3	3	4
	2	4	6	4	4	3
	3	5	7	4	4	3

Division

Définition

Prend en argument 2 instances de relations r et s telles que $att(s) \subseteq att(r)$ et renvoie une instance de relation définie sur $att(r) \setminus att(s)$ par: $r \div s = \{t | t \in \prod_X (r) \text{ et } \{t\} \times s \subseteq r\}$ avec $X = att(r) \setminus att(s)$.

- ightharpoonup si $att(r) = \emptyset$ ou att(s) = att(r), alors $r \div s = \emptyset$
- ► Cette opération permet de rechercher dans une relation les sous-tuples qui sont complétés par tous ceux d'une autre relation afin de répondre aux questions de la forme "pour tout x, trouver y"

Division, exemple

Soient l'instance FILM(Titre, M - e - S, Acteur), et soit l'instance CINE(NomCine, TitreFilm, Horaire, Salle). Quel cinéma passe tous les films de m_1 ?

FILM	Titre	M-e-S	Acteur	
	t_1	m ₁	^a 1	
	t_1	m ₁	a3	
	t ₂	m ₁	a ₂	
	t ₂ t ₃	m ₁	a ₃	
	t ₃	m ₂	^a 1	
	t ₃	m ₂	a ₃	

CINE	NomCine	Titre	Horaire	Salle
	Cine ₁	t ₁	14h	001
	Cine ₂	t ₁	14h	001
	Cine ₂	t ₂	16h	001
	Cine ₂	t ₃	14h	002
	Cine ₃	t ₁	14h	001
	Cine ₃	t ₃	14h	002

$$\prod_{NomCine, Titre} (CINE) \div \prod_{Titre} (\sigma_{M-e-S=m_1}(FILM))$$

