# Background

Deep reinforcement learning (RL) is a **powerful control paradigm** which has proven to be a promising alternative to traditional algorithms. For complex environments, deep RL relies on **simulated environments** for training since it can take millions of interactions to learn an optimal policy. However, simulations are **imperfect representations** of real-world systems, so a gap between performance in simulation and performance in the real-world is formed. This performance disparity is known as the **simulation-to-real gap**, and solving it is the focus of this research.







# Methods

The current state of the art algorithms, like **Soft Actor-Critic (SAC)** [1] and **Proximal Policy Optimization** (**PPO)** [2], are model-free meaning they do not learn the dynamics of the system, but rather the actions that are most likely to maximize the reward. This work investigates how using the model-based **Short Horizon Actor-Critic (SHAC)** [3] algorithm with a differentiable simulator compares to these model-free algorithms. To emulate a real-world environment, models were tested for their **robustness to observation noise and system parameter tweaks**. All experiments were averaged over **five different seeds** on the classical **pendulum control** problem.

# Acknowledgements

Thanks to Prajwal Koirala for his helpful feedback and ideas, Cody Fleming for his guidance and support, and to the TrAC REU for making this research possible.

# Auxiliary Information



All graphs created from the data, hyperparameters used for the experiments, and references used for this research.

# Bridging the Simulation-to-Real Gap in Deep Reinforcement Learning

Nathan Van Utrecht, Prajwal Koirala, Cody Fleming Ph.D.

Department of Mechanical Engineering | Iowa State University

### Results

Across every test, **SAC** outperformed both **PPO** and **SHAC**. It converged to expert level performance with **5x** less timesteps, and its policies were **more robust** to **observation noise and system parameter tweaks** across the board. However, its sample efficiency comes at the cost of **increased training time** relative to PPO and SHAC (as shown in the auxiliary information).

# Conclusions

#### Why does this matter?

- These results go against the findings in the SHAC paper, but this is likely due to optimizations in their simulator that were not used for this environment
- SHAC can obtain expert performance, but fails with certain seeds likely due to getting stuck in local minima
- Model-free algorithms are likely more robust and efficient than model-based algorithms

# Future Work

These findings are **preliminary results** for later experiments which will use the more complex **double pendulum environment**. Similar methods will be used to test the algorithms in simulation, and a **physical system of the environment** will be developed to test the **transferability of each algorithm's policy**. This will give a better representation of how well each model is able to **bridge the simulation-to-real gap**.

#### Timestep Learning Comparison



#### Wallclock Learning Comparison



#### Noise Robustness Comparison



