Calibrations Based On A Laser Air Motion Sensing System

Al Cooper

January 17 2012

Steps:

D+

- p_t=total pressure, p=static,
 q =dynamic
- pitot tube insensitive to flow angle (<0.1%)
- orientation removes normal offset
- redundant measurements ⇒consistency
- still, an assumption

Steps:

- 2 Errors in *p* and *q* arise from error at static sources

Calibrating q then calibrates p

Steps:

- 2 Errors in *p* and *q* arise from error at static sources
- Find Δq required to match LAMS; hence Δp

What *q* is required to match LAMS?

- TAS: depends on q, p, T
- relatively insensitive to T (iterate...)
- find Δq s.th. $q_m + \Delta q$, $p_m \Delta q$, T gives v_{LAMS}

Steps:

- $\mathbf{0} p_t = p + q$ is accurate
- Errors in p and q arise from error at static sources
- Find Δq required to match LAMS; hence Δp
- Refinements for accuracy

Adjustments

- correct because p enters the prediction of Δp
- calculate humidity influences on R_a , C_p , C_v , $\gamma = c_p/c_v$
- correct for offset angle of LAMS
- recalculate T using corrected pressures

Steps:

- Errors in p and q arise from error at static sources
- **3** Find Δq required to match LAMS; hence Δp
- Refinements for accuracy
- **3** Δp is a function of measured quantities like p_m , q_m , α_m

Fit Correction to p and q given by LAMS:

- use second-by-second prediction of Δq from LAMS
- try fits like $(\Delta p/p) = a_0 + a_1 q + a_2 (ADIFR/QCR)$
- find $\Delta p(measurements)$

Steps:

- $\mathbf{0} p_t = p + q$ is accurate
- 2 Errors in *p* and *q* arise from error at static sources
- Find Δq required to match LAMS; hence Δp
- Refinements for accuracy
- **5** Δp is a function of measured quantities like p_m , q_m , α_m
- Flight maneuvers: checks and to calibrate T

Maneuvers for testing results

- reverse-heading maneuvers
- climbs and descents to calibrate temperature via integration of the hydrostatic equation

Steps:

- $\mathbf{0} p_t = p + q$ is accurate
- Errors in p and q arise from error at static sources
- Find Δq required to match LAMS; hence Δp
- Refinements for accuracy
- **5** Δp is a function of measured quantities like p_m , q_m , α_m
- Flight maneuvers: checks and to calibrate T
- Use LAMS with the above results to measure T directly.

LAMS-based measurement of temperature

- LAMS provides TAS=v
- p and q determine Mach number $M = v/v_s$
- $v_s = \sqrt{\gamma R_a T}$ so measured M and $v \Rightarrow T$ without reference to a temperature sensor

Steps:

- 2 Errors in *p* and *q* arise from error at static sources
- Find Δq required to match LAMS; hence Δp
- Refinements for accuracy
- **5** Δp is a function of measured quantities like p_m , q_m , α_m
- Flight maneuvers: checks and to calibrate T
- Use LAMS with the above results to measure T directly.

Results:

 Calibration of dynamic pressure, hence true airspeed, hence longitudinal component of wind

Steps:

- $\mathbf{0} p_t = p + q$ is accurate
- 2 Errors in *p* and *q* arise from error at static sources
- Find Δq required to match LAMS; hence Δp
- Refinements for accuracy
- **5** Δp is a function of measured quantities like p_m , q_m , α_m
- Flight maneuvers: checks and to calibrate T
- Use LAMS with the above results to measure T directly.

Results:

- Calibration of dynamic pressure, hence true airspeed, hence longitudinal component of wind
- Calibration of pressure

Steps:

- $\mathbf{0} p_t = p + q$ is accurate
- 2 Errors in *p* and *q* arise from error at static sources
- Find Δq required to match LAMS; hence Δp
- Refinements for accuracy
- **5** Δp is a function of measured quantities like p_m , q_m , α_m
- Flight maneuvers: checks and to calibrate T
- Use LAMS with the above results to measure T directly.

Results:

- Calibration of dynamic pressure, hence true airspeed, hence longitudinal component of wind
- Calibration of pressure
- Calibration of temperature via accurate measurements of pressure + GPS

Steps:

- $\mathbf{0} p_t = p + q$ is accurate
- Errors in p and q arise from error at static sources
- Find Δq required to match LAMS; hence Δp
- Refinements for accuracy
- **5** Δp is a function of measured quantities like p_m , q_m , α_m
- Flight maneuvers: checks and to calibrate T
- Use LAMS with the above results to measure T directly.

Results:

- Calibration of dynamic pressure, hence true airspeed, hence longitudinal component of wind
- Calibration of pressure
- Calibration of temperature via accurate measurements of pressure + GPS
- Provide new independent temperature measurement that should work in cloud

THE MEASUREMENT OF TOTAL PRESSURE, C-130

Basic Measurements, C-130

static pressure PSFD, PSFRD

- absolute sensors
- ± 0.1 mb (Parascientific Model 1000)

dynamic pressure QCF, QCRF

- differential sensors, total vs static
- $\pm 0.05 \text{ mb}$

THE MEASUREMENT OF TOTAL PRESSURE, C-130

Basic Measurements, C-130

static pressure PSFD, PSFRD

- absolute sensors
- ±0.1 mb (Parascientific Model 1000)

dynamic pressure QCF, QCRF

- differential sensors, total vs static
- ± 0.05 mb

pitot tube performance

- typical sensitivity <1% at angles up to 10°, 0.2% up to 5°.
- mean orientation chosen along expected flow direction, not centerline

THE MEASUREMENT OF TOTAL PRESSURE, C-130

Basic Measurements, C-130

static pressure PSFD, PSFRD

- absolute sensors
- ±0.1 mb (Parascientific Model 1000)

dynamic pressure QCF, QCRF

- differential sensors, total vs static
- ± 0.05 mb

→ Skip Equations

PSFRD+QCFR= a_1 (PSFD+QCF)+ a_2 a_1 =1.0000, a_2 =0.10 mb

THE EQUATIONS

Energy conservation in compressible flow: $\frac{v^2}{2} + c_p T = \text{constant}$ For adiabatic compression to stagnation (v = 0),

$$M^{2} = \frac{v^{2}}{\gamma R_{a} T} = \left\{ \left(\frac{2c_{v}}{R_{d}} \right) \left[\left(\frac{p+q}{p} \right)^{R_{a}/c_{p}} - 1 \right] \right\}$$
$$q = p \left\{ \left(\frac{v^{2}}{2c_{p} T} + 1 \right)^{c_{p}/R_{a}} - 1 \right\} = p\chi$$

where the last equality defines $\chi(v,T)$. Write in terms of measured quantities $p_m=p-\Delta p$ and $q_m=q-\Delta q$ and unknown

$$\Delta p = -\Delta q$$
:

$$\Delta p = \frac{q_m - p_m \chi}{1 + \chi}$$

HOW TO ADDRESS NEED FOR TEMPERATURE

Need Temperature:

Have v from LAMS

$$\chi(\mathbf{v}, T) = \left\{ \left(\frac{\mathbf{v}^2}{2c_p T} + 1 \right)^{c_p/R_a} - 1 \right\}$$

- Not very sensitive: Fractional error in T is small
- Use available-processed T as the first approximation
- Then, iterate both in calculation and in calibration

Determining "PCORR" Function

$$\Delta p = \frac{q_m - p_m \chi}{1 + \chi}$$

- Airspeed from LAMS gives second-by-second estimates of Δp
- Can fit those values to get Δp as function of other measurements

REFINEMENTS FOR ACCURACY

Moist Air Corrections

- humidity matters at this level of precision
- Use R_a , c_p , γ adjusted for humidity

Pointing Angle Corrections

- $v_I = v \cos(\theta)$ where v_I is the speed measured by LAMS
- $\cos \theta \simeq \cos(\theta_1 + \alpha)\cos(\theta_2 \beta)$
 - θ_1 is the pointing angle above the longitudinal axis=0.1°
 - θ_2 is the pointing angle to starboard of the longitudinal axis=-0.2°
 - if $\alpha = -4^{\circ}$, $\cos\theta \simeq 0.9976$ and at 130 m/s $\delta v = 0.3$ m/s.
- Therefore, use $v = v_l/\cos(\theta)$ in the preceding equation

FITS TO Δp

Candidate Fit Parameters

- p: Effects on Δp probably scale with pressure, so fitting functions of the form $\frac{\Delta p}{p} = f(...)$ seems appropriate and provided improved fits
- q or q/p
- \odot α or ADIFR/QCR
- $oldsymbol{\circ}$ or BDIFR/QCR no significant dependence found, either $oldsymbol{\beta}$ or $|oldsymbol{\beta}|$
- 6 M

PREFERRED FIT, C-130

Best Option?

$$\frac{\Delta p}{\text{PSFD}} = a_0 + a_1 \frac{\text{ADIFR}}{\text{QCR}} + a_2 \frac{\text{QCF}}{\text{PSFD}}$$

Fit procedure:

- **1** Determine a_1 by fit to pitch maneuvers
- 2 Keep a_1 constant and fit for a_0 and a_2 using data from all times when LAMS provides a measurement of v.
- Obtain coefficients by separate fits for {PSFD, QCF} and {PSFRD, QCFR}

RMS error vs LAMS measurements: 0.3 mb (1-Hz)

- (Different sample volumes)
- Mean correction: uncertainty < 0.01 mb (>10,000 measurements)

Representation in terms of Mach number:

$$\frac{\Delta p}{p} = a_0 + a_1 \frac{q}{p} + a_2 M + a_3 M^2 + a_4 M^3 \tag{1}$$

- no significant dependence on angle of attack, sideslip, or abs(sideslip)
- all three terms in M were significant
- resulting RMS of fit to LAMS values: corresponds to RMS in TAS of about 0.3 m/s (but some contribution arises from resolution of LAMS measurement and different locations sensed by LAMS vs the pitot tube)

MAGNITUDE OF THE CORRECTION

mean difference, corrected-measured: -3.0±1.7 mb

MAGNITUDE OF THE CORRECTION

mean difference, corrected-avionics: -0.13±0.15 mb

RVSM requirement: ca. 25 m or typically 1 mb

REVERSE-HEADING FLIGHT LEGS

GV Flight Legs from PREDICT:

longitudinal wind: Should reverse sign for reverse-track leg. For $\theta = \text{heading}$,

$$V_{Long} = V_{GPS} \cos(\theta_G - \theta) - V_{LAMS}$$

- 18 reverse-heading legs used, at various altitudes
- result: $\Delta = +0.4 \pm 0.2$ m m/s, indicating a measurement +0.2 m/s too high
- However, temperature enters this and the evaluation of the values of Δp and Δq , so this should be re-visited after the temperature calibration is considered.

CALIBRATING TEMPERATURE USING LAMS

Integrating the Hydrostatic Equation

- Assume that the absolute pressure is accurate as calibrated
- GPS provides acurate measurement of geometric altitude
- Consider Integration of the hydrostatic equation between two pressure levels:
 - Predicted altitude change depends on the "mean" temperature.
 - Comparison to a similar "mean" of the measurements checks the accuracy of the temperature measurement.

▶ Skip Equations

EQUATIONS USED

Three Sums Are Needed: S_1 , S_2 , S_3 :

$$\delta p_{i} = -\frac{g p_{i}}{R_{a} T_{a,i}} \delta z_{i} \quad \text{(too noisy, second - by - second)}$$

$$S_{1} = \sum_{i} \frac{R_{a,i}}{g_{i}} \ln \left(\frac{p_{i}}{p_{i-1}} \right)$$

$$S_{2} = \sum_{i} (z_{i} - z_{i-1})$$

$$S_{3} = \sum_{i} \frac{z_{i} - z_{i-1}}{T_{m,i}}$$

Then compare prediction (T_p) to observed (T_m)

 $T_p = -S_2/S_1$ and $\overline{T}_m = S_2/S_3$, weighted appropriately

RESULTS FOR MEAN TEMPERATURES BETWEEN LAYERS

Flight Segment	T_p	\overline{T}_m	ΔΤ
RF05, 205800-211100	-10.98	-10.37	-0.5
RF07, 212510-213300	-6.36	-5.89	-0.47
RF07, 212510-212900	2.27	2.42	-0.15
RF07, 212900-213300	-12.85	-12.15	-0.70
RF08, 214500-215300	-0.9	-0.5	-0.4
RF08, 233700-234130	-6.5	-6.3	-0.4
RF08, 234500-235000	-9.4	-8.8	-0.6
RF08, 235600-240100	-9.5	-8.4	-1.1
mean offset ^a , $T_p - \overline{T}_m$			-0.55

 $^{^{}a}$ excluding the first listed value for RF07 because the next two break this climb segment into two segments

APPROACH TO TEMPERATURE CALIBRATION/CHECK:

"HIPPO" Dataset: Numerous climbs and descents, "pole-to-pole"

• Assume a polynomial correction to T_t expressed in Celsius::

$$T_t = f(T_m) = T_m + a_0 + a_1 T_m + a_2 T_m^2$$

 $\chi^2 = (\Delta h - \Delta z_{GPS})^2$

where Δh is the height difference predicted from the hydrostatic equation:

$$\Delta h = -\frac{R_a}{g} \ln \frac{p_i}{p_{i-1}} (f(T_m) + T_0)$$

• Find the coefficients that minimize this χ^2 over the 25 flights and >300 climbs or descents from HIPPO circuits 4 and 5.

RESULT FOR TEMPERATURE:

DETERMINING THE MACH NUMBER

$$M^{2} = \left\{ \left(\frac{2c_{v}}{R_{a}} \right) \left[\left(\frac{p+q}{p} \right)^{R_{a}/c_{p}} - 1 \right] \right\}$$

- LAMS provides a correction Δp to be added to p and subtracted from q (affecting only the denominator).
- Measured temperature is not needed (except indirectly as it enters fitting to find Δp).
- Once calibrated, the above equation for M^2 can be used to find the temperature, independent of a temperature probe, using only pressure measurements and v determined by LAMS:

$$T_{LAMS} = v^2/(\gamma R_a M^2)$$

AN EXAMPLE OF T FROM LAMS

AN EXAMPLE OF T FROM LAMS

CONCLUSIONS (GV)

Key Results:

- LAMS provides a direct calibration of airspeed.
 - → Longitudinal wind after correction:accuracy <0.2 m/s
- 2 This calibrates dynamic pressure:
 - \rightarrow q should be increased by about 3.0 mb on average.
- If total pressure is accurately measured, this calibrates pressure:
 - \rightarrow p should be decreased by about 3.0 mb on average.
- Accurate pressure supports integration of the hydrostatic equation to calibrate temperature:
 - \rightarrow Results indicate that temperature is accurate to within about 1°C for T<0°C.
- **5** It is possible to obtain a new temperature measurement solely from p, q, and v_{LAMS} .

