Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 7 Martie 2009

CLASA a X-a SOLUŢII ŞI BAREMURI ORIENTTIVE

Problema 1. Fie $f, g : \mathbb{R} \to \mathbb{R}$ două funcții cu proprietatea

$$f(g(x)) = g(f(x)) = -x,$$

pentru orice $x \in \mathbb{R}$.

- a) Să se arate că f și g sunt funcții impare.
- b) Dați un exemplu de funcții cu proprietatea din enunț.

Din g(f(x)) = -x obţinem că g(f(g(x))) = -g(x) pentruorice $x \in \mathbb{R} ... 2$ puncte

Problema 2. Să se determine numerele complexe z_1, z_2, z_3 de același modul, cu proprietatea că $z_1+z_2+z_3=z_1z_2z_3=1$.

Soluție. Din condiția dată deducem $|z_1|=|z_2|=|z_3|=1.....1$ punct Prin conjugare, din $z_1+z_2+z_3=1$ deducem $z_1z_2+z_2z_3+z_3z_1=1=z_1z_2z_3$ 2 puncte

Din cele două egalități precedente

$$(1-z_1)(1-z_2)(1-z_3)=0$$

Problema 3. Fie mulțimile $A=\{x\in\mathbb{R}\mid 3^x=x+2\}$ și $B=\{x\in\mathbb{R}\mid \log_3(x+2)+\log_2(3^x-x)=3^x-1\}$. Să se arate că:

- a) $A \subseteq B$;
- b) $B \not\subset \mathbb{Q}$ si $B \not\subset \mathbb{R} \setminus \mathbb{Q}$.

Soluție. a) Fie $x \in A$. Atunci $3^x = x + 2$, de unde $x = \log_3(x + 2)$ și
$1 = \log_2(3^x - x)$. Prin adunare obţinem $\log_3(x+2) + \log_2(3^x - x) = 3^x - 1$, adică
$x \in B$. Deci $A \subseteq B$
b) $1 \in B \text{ deci } B \not\subset \mathbb{R} \setminus \mathbb{Q} \dots \dots$
Fie $a \neq 1$ astfel încât $3^a = a + 2$. Atunci $a \in B$ (din a)) și arătăm
că $a \in \mathbb{R} \setminus Q$, deci va rezulta $B \not\subset \mathbb{Q}$. Prin absurd, dacă $a = m/n$ fracție
ireductibilă, implică $3^{\frac{m}{n}} = \frac{m}{n} + 2 \in \mathbb{Q}$, deci $3^{\frac{m}{n}} \in \mathbb{Q}$, adică $n = 1$ și prin
urmare $3^m = m + 2$, implicând $m = 1$, absurd

- **Problema 4.** a) Fie z_1, z_2, z_3 numere complexe nenule de același modul astfel încât $z_1 + z_2 + z_3 = 0$. Să se arate că punctele $A_1(z_1), A_2(z_2), A_3(z_3)$ sunt vârfurile unui triunghi echilateral.
- b) Fie $n \geq 3$ un număr natural și fie $U_n = \{z \in \mathbb{C} \mid z^n = 1\}$ mulțimea rădăcinilor de ordin n ale unității. Să se determine numărul maxim de elemente ale unei mulțimi $A \subset U_n$ cu proprietatea că $z_1 + z_2 + z_3 \neq 0$ pentru orice $z_1, z_2, z_3 \in A$.

Timp de lucru 3 ore + 1/2 oră pentru întrebări lămuritoare asupra enunțurilor Fiecare problemă este punctată de la 0 la 7 puncte