Probability Distributions

Dr. Paige Rutner
Associate Professor of Practice
Information Systems and Quantitative Sciences
Selected Topics from Westfall & Henning, Ch 2 - 4

Probability Distribution Function

Shows

- the set of possible values a random variable can take, and
- the likelihood that those values will occur.

Discrete and Continuous Variables

- All observed data are actually discrete
- However, we will frequently treat those data as though they were continuous
- Why?
 - Statistics computed from discrete data are often continuous
 - A continuous model may be a "good" model even for discrete data
 - DATA* produced by a continuous model can be categorized into discrete groups

Discrete pdf

- Sometimes called a probability mass function
- Requirements
 - $p(y) \ge 0$, $for y \in S$
 - $\sum_{y \in S} p(y) = 1$

Number of heads in two coin tosses (y _i)	p(y _i)
0	.25
1	.50
2	.25

Multinomial distribution

- Shows number of successes from n independent trials with a discrete number of possible outcomes.
- Each outcome has a constant probability of success across trials.
- For example, drawing an even card, odd card, or face card from a full deck.

•
$$p(y|\theta) = \pi_1^{I(y=Even)} \pi_2^{I(y=Odd)} \pi_3^{I(y=Face)}$$
, $for \ y \in \{Even, Odd, Face\}$ where $\theta = (\pi_1, \pi_2, \pi_3)$, and $I(condition)$ is 1 if the condition is true, and 0 otherwise.

Outcome (y)	p(y θ)
Even (2,4,6,8,10)	0.3846
Odd (A,3,5,7,9)	0.3846
Face (J,Q,K)	0.2308

Bernoulli Distribution

- Discrete pdf with two possible outcomes
- π defined as probability of "success"

•
$$p(y|\pi) = \begin{cases} 1-\pi, & for y=0 \\ \pi, & for y=1 \end{cases}$$

•
$$p(y|\pi) = \pi^y (1-\pi)^{1-y}$$
, for $y \in \{0,1\}$

- Basis for other discrete pdfs
 - Binomial number of successes in *n* trials
 - Geometric number of failures before first success from n trials
 - Negative Binomial number of failures before the xth success from n trials

Poisson Distribution

- Describes the number of independent events that occur in some area of opportunity
- λ is the theoretical average number of events per area of opportunity

•
$$p(y|\lambda) = \frac{\lambda^y e^{-\lambda}}{y!}$$
, for $y = 0, 1, 2, ...$
where $e = 2.71828...$

Discrete pdf probabilities

Probability of an Event A for a Discrete RV

$$\Pr(Y \in A) = \sum_{y \in A} p(y)$$

 The probability that the discrete variable Y is in the set A is equal to the sum of the probabilities of the individual outcomes that are in the set A

- For example, suppose that the distribution of fatal auto accidents per day in a city follows a Poisson distribution with $\lambda = .3$.
 - What is the probability of having 0 accidents during a day?
 - What is the probability of having 1 accident during a day?
 - What is the probability of having 1 or more accidents during a day?

Probability simulation

Data from surveys are often recorded on a scale with levels from 1 to
 Here are some responses from n=10 people surveyed by an automobile retailer about their level of satisfaction:

- Create a summary table and a needle plot of the data
- Using list form, show a discrete pdf that could have produced these data. It is possible to have dissatisfied customers (satisfaction of 1 or 2), so none of the probabilities should be 0.
- Use R to simulate *n*=10 values from this distribution
- Is this a good model?

Some R functions for discrete pdfs

- Random number generators
 - rpois()
 - rbinom()
 - sample()
- Summarizing data
 - table()
- Visualizing data
 - barplot()
 - plot()

Continuous pdf

- Sometimes called probability density function
- Given that the random variable y is a function of x.

$$y = f(x)$$

- Requirements for continuous pdf:
 - The value of y is greater than or equal to 0 for all values of x. $p(y) \ge 0$, for all $y \in S$.
 - The total area under the curve of the function is equal to 1.

$$\int_{y \in S} p(y) \, dy = 1.$$

Continuous pdf probability

Probability of an Event A for a Continuous RV

$$\Pr(Y \in A) = \int_{y \in A} p(y) dy$$

Expressed another way

$$P(c < Y < d) = \int_{c}^{d} f(y)dy$$

Example problem

- Given $f(y) = \frac{2}{y^2}$, for the interval [1, 2]
- Is this a continuous pdf?
- If so, compute p(1.5 < y < 2.0)
- Graph the pdf using R

Uniform distribution

- The U(0,1) distribution has the function form p(y) = 1.0, for 0 < y < 1; p(y) = 0, otherwise.
- Express the following as an integral and compute its value:
 - the probability that a U(0,1) RV is between 0.2 and 0.5
- Using simulation with R, estimate the probability that a U(0,1) RV is between 0.2 and 0.5
- How do the simulated results compare to the calculated results?

Evaluating against the normal distribution

- Summarize the data and examine its statistics
 - summary(), skewness(), kurtosis()
- Histogram
 - hist()
 - a histogram created with hist() has modifiable attributes
 - breaks
 - counts
 - density
 - histograms are often shown with a normal distribution superimposed
- QQ plots
 - qqnorm()
 - qqline()