02_04_Einsendesaufgabe01_FormaleSprache_E ndlicheAutomaten YanboZhu

1

1. $L_1 = \{0^i \mid i \in N_0\}$ und $L_2 = \{1^i \mid i \in N_0\}$ seien formale Sprachen über dem Alphabet $\Sigma = \{0, 1\}$.

Berechnen Sie:

- (a) $L_1 \cup L_2$
- (b) $L_1 \cap L_2$
- (c) $L_1 \setminus L_2$
- (d) $L_1 \cap \Sigma^*$
- (e) $(L_1 \cup L_2) \cap \Sigma^3$

(1 ± 1 ± 1 ± 1 ± 1 Dowlet

L1 =
$$\{\epsilon, 0, 00, 000, \ldots\}$$

L2 = $\{\epsilon, 1, 11, 111, \ldots\}$

(a)
$$L_1 igcup L_2$$
 = { ϵ , 0, 00, \ldots , 1, 11, \ldots } = { $w|w=0^i, w=1^i \ mit \ i \in N_0$ }

(b) L1
$$\cap$$
 L2 = $\{\epsilon\}$

(c) L1 \ L2 = {0, 00, 000,
$$\ldots$$
} = $\{0^i|i\in N\}$

(d)
$$L1 \cap \Sigma^* = L1$$

(e) (L1
$$\bigcup$$
 L2) & Σ^3 = {000, 111}

2

- 2. Definieren Sie für die folgenden Sprachen DEA's, die diese Sprachen über dem Alphabet $\Sigma = \{0,1\}$ akzeptieren. Stellen Sie dabei die DEA's durch den Zustandsgraph dar.
 - (a) L1 = {w | w enthält nur Nullen, wenigstens eine}
 - (b) L2 = {w | w ist das leere Wort oder enthält nur Nullen}
 - (c) L3 = {w | w enthält eine durch 3 teilbare Anzahl von Einsen}
 - (d) L4 = {w | w enthält irgendwo 000}
 - (e) L5 = {w | w enthält eine gerade Anzahl von Nullen und eine gerade Anzahl von Einsen}

DeUinieren Sie für die folgenden Sprachen DEA's, die diese Sprachen über dem Alphabet $\Sigma = \{0,1\}$ akzeptieren. Stellen Sie dabei die DEA's durch den Zustandsgraph dar.

(a) L1 = {w | w enthält nur Nullen, wenigstens eine}

(b) L2 = {w | w ist das leere Wort oder enthält nur Nullen}

(c) L3 = {w | w enthält eine durch 3 teilbare Anzahl von Einsen}

(d) L4 = {w | w enthä It irgendwo 000}

(e) L5 = {w | w enthält eine gerade Anzahl von Nullen und eine gerade Anzahl von Einsen}

3

Ein NEA kann **nichtdeterministisch raten**, welche Ziffer im Wort die "erste Vorkommensstelle" der späteren letzten Ziffer ist.

- Beim Einlesen des Wortes bleibt der Automat zunächst im Startzustand q0.
- Wenn ein Zeichen a ∈ {0,1,2,3} gelesen wird, kann der Automat (nichtdeterministisch) in einen speziellen Zustand s_a übergehen, der bedeutet: "Wir haben ein früheres a gesehen und merken uns dieses Symbol."
- In s_a liest der Automat alle weiteren Zeichen und wartet auf ein weiteres a.
 Sobald erneut a gelesen wird, kann der Automat in den akzeptierenden Zustand q_acc übergehen.

Wenn dieses a zugleich das letzte Zeichen des Wortes ist, wird das Wort akzeptiert.

• Gibt es kein solches a , das doppelt vorkommt (also die letzte Ziffer ist neu), gibt es keine akzeptierende Pfadführung.

3.1 Formale Beschreibung

• **Alphabet:** Σ={0,1,2,3}

Zustandsmenge:

 $Q=\{q0,s0,s1,s2,s3,q_end\}$

- Startzustand: q0
- Akzeptierende Zustände: {q_end}
- Übergänge:
 - 1. $q0 \rightarrow q0$ mit 0,1,2,3 (normales Weiterlesen)
 - 2. $q0 \rightarrow s0$ mit 0; $q0 \rightarrow s1$ mit 1; $q0 \rightarrow s2$ mit 2; $q0 \rightarrow s3$ mit 3 (nichtdeterministisch kann der Automat "merken", welches Symbol er gesehen hat)
 - 3. Für jedes s_a:
 - $s_a \rightarrow s_a$ mit 0,1,2,3 (beliebige Zeichen weiterlesen)
 - $s_a \rightarrow q_end$ mit a (zweites Vorkommen des gemerkten Zeichens)

Der akzeptierende Zustand q_end hat keine ausgehenden Kanten – Akzeptanz gilt nur, wenn das Wort an dieser Stelle endet.

3.2 Zustandsgraph

4. Konstruieren Sie zum folgenden NEA mit Hilfe des Verfahrens der Teilmengenkonstruktion äquivalenten DEA. Bestimmen Sie zuerst zu jeder Zustandsmenge R ihre E(R) – "Menge aller über ε-Übergänge erreichbaren Zustände".

NEA

4.1 Zustandmenge R

4.2 Ohne Berücksichtigung von ϵ -Überführungen: Übergangstabelle

K	a	Ь	<i>C</i>
ϕ	0	ø	Ø
{9a}	[9a]	ϕ	φ
99,7	[9c]	φ	d
996}	Þ	ϕ	q le ?
99a,963	[22]	{169	ϕ
990,903	2203	Φ	[80]
96,903	Ø	{ 9 a }	{2c}
{9a,26,9c}	\	8967	f2c3

4.3 Unter Berücksichtigung von ϵ -Überführungen

Die Zustandsmengen E(R) und die Überführungsfunktion $\delta(R,x)$ sind für jedes $R\in Q'$ und $x\in\{a,b,c\}$ zu construieren

 $E(R) := \{q \mid q \text{ ist von } R \text{ über keine oder mehrere } \epsilon \text{-} Überführungen erreichbar } \}$

R	IZ (R)
ϕ	Ø
[9a]	Sea, 963
92,7	596,9c4
996}	{ Qc}
99a,963	{"2a,25,2c}
990,903	5 2a,96,90)
96,903	992,86909
{9a,96,9c}	4 9a, 96, 9c3

4.4 $\delta'(R,x)$

K	\ a	E()	(Ь	G() 1	C	6()
$\overline{\phi}$	ϕ	529,96}	-	Ø	\mathcal{O}	B	ø
{9a}	[{9a]	,	(Ø		φ	φ «
99,}	[9c]	{ 2c }		ф	ϕ	9 9 2c }	9 {2c }
996}	Y	1	,	('		ds.
19a,963	[22]	{29,26)		(ถเว้	126,2c3	\$	Ψ
990,903	\ 22a }	{ 2a, 26)		Φ	ϕ ([sc]	{20}
96,903	Ø	\$	1	{ 9 a }	92a,96}	{2c}	99e7
{9a,96,9c}	\ \end{a}	5 2n (26)		8967	926,907	fre?	990}
			\				

4.5 Zustandsgraph

Startzustand von NEA: {qa} => Startzustand von Äquivalenten DEA : {qa,qb} Endzustand von NEA: {qa}, {qb}, {qc} => Startzustand von Äquivalenten DEA : {qa}, {qb}, {qc}, {qa, qb}, {qb, qc}, {qa, qb, qc}

