Mathematical Equivalence in T0-Theory

Unified Description of Energy Loss, Redshift, and Light Deflection

Based on the work of Johann Pascher Department of Communications Engineering, Höhere Technische Bundeslehranstalt (HTL), Leonding, Austria

July 16, 2025

Contents

1	Introduction
2	Basic Formulas
	2.1 Energy Loss of Photons
	2.2 Redshift Formulation
	2.3 Gravitational Light Deflection
3	Unifying Geodesic Equation
4	Experimental Signatures and Tests
	4.1 Wavelength-Dependent Redshift
	4.2 Energy-Dependent Light Deflection
	4.3 Correlation Between Redshift and Light Deflection
5	Conclusion

1 Introduction

This document presents the mathematical equivalence of three phenomena that are treated as separate effects in standard physics but are unified in the T0-model:

- 1. Energy loss of photons during propagation
- 2. Cosmological redshift
- 3. Gravitational light deflection

The central insight of T0-Theory is that these phenomena are different manifestations of the same underlying field equation, not separate physical processes. This unification is achieved through a single geometric parameter $\xi = \frac{4}{3} \times 10^{-4}$ that determines the coupling between the energy field and spacetime geometry.

2 Basic Formulas

2.1 Energy Loss of Photons

Key Formula

Energy loss rate:

$$\frac{dE_{\gamma}}{dr} = -\xi \frac{E_{\gamma}^2}{E_{\text{field}} \cdot r} \tag{1}$$

where $\xi = \frac{4}{3} \times 10^{-4}$ is the universal geometric parameter.

Dimensional Analysis:

Since $E_{\gamma} = \frac{hc}{\lambda}$ (or $E_{\gamma} = \frac{1}{\lambda}$ in natural units), this can be expressed in terms of wavelength:

$$\frac{d(1/\lambda)}{dr} = -\xi \frac{(1/\lambda)^2}{E_{\text{field}} \cdot r} \tag{2}$$

Rearranging:

$$\frac{d\lambda}{dr} = \xi \frac{\lambda^2 \cdot E_{\text{field}}}{r} \tag{3}$$

Integrating the wavelength-dependent energy loss equation:

$$\int_{\lambda_0}^{\lambda(r)} \frac{d\lambda'}{\lambda'^2} = \xi E_{\text{field}} \int_0^r \frac{dr'}{r'}$$
 (4)

This yields:

$$\frac{1}{\lambda_0} - \frac{1}{\lambda(r)} = \xi E_{\text{field}} \ln \left(\frac{r}{r_0} \right) \tag{5}$$

For small corrections:

$$\lambda(r) \approx \lambda_0 \left(1 + \xi E_{\text{field}} \lambda_0 \ln \left(\frac{r}{r_0} \right) \right)$$
 (6)

2.2 Redshift Formulation

The redshift is defined as:

$$z = \frac{\lambda_{\text{observed}} - \lambda_{\text{emitted}}}{\lambda_{\text{emitted}}} = \frac{\lambda(r) - \lambda_0}{\lambda_0}$$
 (7)

Using the previously derived expression:

$$z \approx \xi E_{\text{field}} \lambda_0 \ln \left(\frac{r}{r_0}\right)$$
 (8)

Since $\lambda_0 \propto \frac{1}{E_{\gamma,0}}$, we can write:

Key Formula

Wavelength-dependent redshift:

$$z(\lambda) = z_0 \left(1 - \alpha \ln \frac{\lambda}{\lambda_0} \right)$$
 (9)

where z_0 is the reference redshift and α is a dimensionless parameter related to ξ .

Dimensional Analysis:

$$\begin{aligned} &[z(\lambda)] = [1] \\ &[z_0] = [1] \\ &[\alpha] = [1] \\ &\left[\ln \frac{\lambda}{\lambda_0}\right] = \ln \left(\frac{[L]}{[L]}\right) = \ln([1]) = [1] \\ &\left[z_0 \left(1 - \alpha \ln \frac{\lambda}{\lambda_0}\right)\right] = [1] \cdot ([1] - [1] \cdot [1]) = [1] \checkmark \end{aligned}$$

A distinctive feature of this redshift formula is its wavelength dependence, which provides a testable prediction:

$$\frac{dz}{d\ln\lambda} = -\alpha z_0\tag{10}$$

This distinguishes the T0 model from standard cosmological models that predict no wavelength dependence $(\frac{dz}{d\ln\lambda}=0)$.

2.3 Gravitational Light Deflection

Key Formula

Modified gravitational deflection:

$$\theta = \frac{4GM}{bc^2} \left(1 + \xi \frac{E_{\gamma}}{E_0} \right) \tag{11}$$

where θ is the deflection angle, M is the mass of the deflecting object, b is the impact parameter, E_{γ} is the photon energy, and E_0 is a reference energy.

Dimensional Analysis:

$$\begin{split} [G] &= [E^{-2}] \\ [M] &= [E] \\ [b] &= [E^{-1}] \\ [c^2] &= [1] \text{ (in natural units)} \\ [\frac{4GM}{bc^2}] &= \frac{[E^{-2}][E]}{[E^{-1}][1]} = [1] \text{ (dimensionless)} \\ [\xi \frac{E_{\gamma}}{E_0}] &= [1] \cdot \frac{[E]}{[E]} = [1] \text{ (dimensionless)} \\ [\theta] &= [1] \cdot ([1] + [1]) = [1] \text{ (dimensionless)} \checkmark \end{split}$$

Unlike General Relativity, which predicts wavelength-independent light deflection, the T0-model introduces an explicit energy dependence. This energy-dependent gravitational lensing leads to a modified Einstein ring radius:

$$\theta_E(\lambda) = \theta_{E,0} \sqrt{1 + \xi \frac{hc}{\lambda E_0}} \tag{12}$$

For two different photon energies, the ratio of deflection angles is:

$$\frac{\theta(E_1)}{\theta(E_2)} = \frac{1 + \xi \frac{E_1}{E_0}}{1 + \xi \frac{E_2}{E_0}} \tag{13}$$

For cases where $\xi \frac{E}{E_0} \ll 1$ (typical for astrophysical observations), this can be approximated as:

$$\frac{\theta(E_1)}{\theta(E_2)} \approx 1 + \xi \frac{E_1 - E_2}{E_0}$$
 (14)

3 Unifying Geodesic Equation

The three phenomena described above (energy loss, redshift, and light deflection) are unified in the T0-model through a single geodesic equation with time field corrections:

Key Formula

Universal geodesic equation:

$$\frac{d^2x^{\mu}}{d\lambda^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\lambda} \frac{dx^{\beta}}{d\lambda} = \xi \cdot \partial^{\mu} \ln(E_{\text{field}})$$
(15)

where x^{μ} is the spacetime position, λ is an affine parameter along the photon path, $\Gamma^{\mu}_{\alpha\beta}$ are the Christoffel symbols, and E_{field} is the local energy field.

Dimensional Analysis:

$$\begin{split} & [\Gamma^{\mu}_{\alpha\beta}] = [E] \text{ (Christoffel symbols)} \\ & [\frac{dx^{\alpha}}{d\lambda}] = \frac{[E^{-1}]}{[E^{-1}]} = [1] \text{ (dimensionless)} \\ & [\partial^{\mu} \ln(E_{\text{field}})] = [E] \cdot [1] = [E] \\ & [\xi \cdot \partial^{\mu} \ln(E_{\text{field}})] = [1] \cdot [E] = [E] \checkmark \end{split}$$

The Christoffel symbols themselves acquire time field corrections:

$$\Gamma^{\lambda}_{\mu\nu} = \Gamma^{\lambda}_{\mu\nu|0} + \frac{\xi}{2} \left(\delta^{\lambda}_{\mu} \partial_{\nu} T_{\text{field}} + \delta^{\lambda}_{\nu} \partial_{\mu} T_{\text{field}} - g_{\mu\nu} \partial^{\lambda} T_{\text{field}} \right)$$
 (16)

where $\Gamma^{\lambda}_{\mu\nu|0}$ are the standard Christoffel symbols, T_{field} is the time field, δ^{λ}_{μ} is the Kronecker delta, and $g_{\mu\nu}$ is the metric tensor.

Important Note

The mathematical equivalence of these three phenomena means that T0-Theory explains with a single mechanism what the Standard Model explains through different physical processes. Specifically:

- 1. Cosmological redshift is not a consequence of spatial expansion, but of a gradual energy loss of photons
- 2. This energy loss follows the same field equation that also describes the gravitational deflection of light
- 3. Both phenomena are manifestations of the local variation of the energy field, described by the parameter ξ

This unification is a central conceptual advantage of the T0-model over the Standard Model.

4 Experimental Signatures and Tests

The mathematical equivalence of energy loss, redshift, and light deflection leads to specific experimental predictions that can distinguish the T0-model from standard physics:

4.1 Wavelength-Dependent Redshift

For a quasar at redshift $z_0 = 2$, with $\alpha = 0.1$:

$$z(\text{blue}) = 2.0 \times (1 - 0.1 \times \ln(0.5)) = 2.0 \times (1 + 0.069) = 2.14$$
 (17)

$$z(\text{red}) = 2.0 \times (1 - 0.1 \times \ln(2.0)) = 2.0 \times (1 - 0.069) = 1.86$$
 (18)

This predicts a systematic variation in redshift with wavelength, which could be tested by measuring the redshift of the same astronomical object at different wavelengths.

4.2 Energy-Dependent Light Deflection

For X-ray (10 keV) and optical (2 eV) photons in a deflection by the Sun:

$$\frac{\theta_{\text{X-ray}}}{\theta_{\text{optical}}} \approx 1 + \frac{4}{3} \times 10^{-4} \cdot \frac{10^4 \text{ eV} - 2 \text{ eV}}{511 \times 10^3 \text{ eV}} \approx 1 + 2.6 \times 10^{-6}$$
 (19)

This small but potentially measurable difference in deflection angle could be detected with future high-precision observations.

4.3 Correlation Between Redshift and Light Deflection

The correlation between redshift and gravitational deflection is described by:

$$\frac{\Delta z}{\Delta \theta} = \frac{\xi E_{\gamma,0}}{E_{\text{field}}} \cdot \frac{bc^2}{4GM} \cdot \frac{1}{\ln\left(\frac{r}{r_0}\right)} \cdot \frac{1}{\xi \frac{E_{\gamma}}{E_0}}$$
(20)

When observing gravitational lensing of distant objects, a specific correlation between the degree of light deflection and redshift should be detectable, which differs from the prediction of the Standard Model.

5 Conclusion

The T0-Theory unifies the phenomena of energy loss, redshift, and light deflection through a single geodesic equation with time field corrections. This unification is achieved through the universal geometric parameter $\xi = \frac{4}{3} \times 10^{-4}$, which determines the coupling between the energy field and spacetime geometry.

The mathematical equivalence of these phenomena leads to specific experimental predictions that could potentially be tested with high-precision astronomical observations, providing a way to distinguish between the T0-model and standard physics.

This unified approach represents a conceptual advance over the Standard Model, which treats these phenomena as distinct effects requiring separate theoretical frameworks.