# Spruce Budworm

Eddie Koch

May 14th, 2008

#### Logistic Equation

#### Logistic Equation

$$\frac{dN}{dt} = r_B N \left( 1 - \frac{N}{K_B} \right)$$

#### Adding Predation

Logistic Equation with Predation

$$\frac{dN}{dt} = r_B N \left( 1 - \frac{N}{K_B} \right) - p(N)$$

#### Predation

Ludwig's Suggested Form for p(N)

$$p(N) = \frac{BN^2}{A^2 + N^2}$$

#### Predation

Graph of 
$$BN^2/(A^2 + N^2)$$



Figure 1: Behavior of predation as budworm population increases

#### **Budworm Population**

Budworm Population is Goverened by

$$\frac{dN}{dt} = r_B N \left( 1 - \frac{N}{K_B} \right) - \frac{BN^2}{A^2 + N^2}$$

#### Saturation

Differentiate p(N) to see where function is increasing

$$p(N) = \frac{BN^2}{A^2 + N^2}$$

$$p'(N) = \frac{(A^2 + N^2)(2BN) - (BN^2)(2N)}{(A^2 + N^2)^2}$$

$$p'(N) = \frac{2A^2BN}{(A^2 + N^2)^2}$$

#### Saturation

Differentiate p'(N) to check for concavity

$$p'(N) = \frac{2A^2BN}{(A^2 + N^2)^2}$$

$$p''(N) = \frac{(A^2 + N^2)^2(2A^2B) - (2A^2BN)[2(A^2 + N^2)2N]}{(A^2 + N^2)^4}$$

$$p''(N) = \frac{2A^2B(A^2 - 3N^2)}{(A^2 + N^2)^3}$$

## Roots of Equation

$$A^2 - 3N^2 = 0$$
 
$$N = \pm \sqrt{\frac{1}{3}A^2}$$
 
$$N_c = \sqrt{\frac{A}{3}}$$

#### Critical value

Threshold value is at  $N_c$ .



Figure 2: The population value  $N_c$  is an approximate threshold value. For  $N < N_c$  predation is small, while for  $N > N_c$  it is switched on.

#### Scaling

Convert to nondimensional terms.

$$\frac{dN}{dt} = r_B N \left( 1 - \frac{N}{K_B} \right) - \frac{BN^2}{A^2 + N^2}$$

#### Scaling

Introduction of nondimensional terms.

$$u = \frac{N}{A}, r = \frac{Ar_B}{B}, \ q = \frac{K_B}{A}, \ \tau = \frac{Bt}{A}$$

With these substitutions,

$$\frac{dN}{dt} = r_B N \left( 1 - \frac{N}{K_B} \right) - \frac{BN^2}{A^2 + N^2}$$

$$\frac{du}{d\tau} = ru\left(1 - \frac{u}{q}\right) - \frac{u^2}{1 + u^2}.$$



## Steady States

Finding equilibrium points

$$0 = u \left[ r \left( 1 - \frac{u}{q} \right) - \frac{u}{1 + u^2} \right]$$

Either u = 0 or

$$r\left(1-\frac{u}{q}\right)=\frac{u}{1+u^2}.$$



Figure 3: There is an asymptotically stable equilibrium point at  $u_1$ .



Figure 4: There is a additional semi-stable equilibrium point at  $u_2$ .



Figure 5: Three equilibrium points.



Figure 6: As r increases  $u_1$  and  $u_2$  move closer together.



Figure 7: Increasing r  $u_1$  and  $u_2$  coalesce into one semi stable equilibrium point.



Figure 8: Increasing r we are back to one stable equilibrium point at  $u_3$ .

#### Hysteresis



Figure 9: Path of r Along ABCD

## Hysteresis



Figure 10: Path of r Along ABCD