Table 13.1 z-Transforms

Table 13.1 Z-Transforms		
x(t)	X(s)	<i>X</i> (<i>z</i>)
$\delta(t) = \begin{cases} \frac{1}{\epsilon}, & t < \epsilon, \epsilon \to 0\\ 0 & \text{otherwise} \end{cases}$	1	_
$\delta(t - a) = \begin{cases} \frac{1}{\epsilon}, & a < t < a + \epsilon, \epsilon \to 0\\ 0 & \text{otherwise} \end{cases}$	e^{-as}	_
$\delta_{o}(t) = \begin{cases} 1 & t = 0, \\ 0 & t = kT, k \neq 0 \end{cases}$	_	1
$\delta_{o}(t - kT) = \begin{cases} 1 & t = kT, \\ 0 & t \neq kT \end{cases}$	_	z^{-k}
u(t), unit step	1/s	$\frac{z}{z-1}$
t	$1/s^2$	$\frac{Tz}{(z-1)^2}$
e^{-at}	$\frac{1}{s+a}$	$\frac{z}{z - e^{-aT}}$
$1 - e^{-at}$	$\frac{1}{s(s+a)}$	$\frac{(1 - e^{-aT})z}{(z - 1)(z - e^{-aT})}$
$\sin(\omega t)$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z\sin(\omega T)}{z^2 - 2z\cos(\omega T) + 1}$
$\cos(\omega t)$	$\frac{s}{s^2+\omega^2}$	$\frac{z(z-\cos(\omega T))}{z^2-2z\cos(\omega T)+1}$
$e^{-at}\sin(\omega t)$	$\frac{\omega}{(s+a)^2+\omega^2}$	$\frac{(ze^{-aT}\sin(\omega T))}{z^2 - 2ze^{-aT}\cos(\omega T) + e^{-2aT}}$
$e^{-at}\cos(\omega t)$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\frac{z^2 - ze^{-aT}\cos(\omega T)}{z^2 - 2ze^{-aT}\cos(\omega T) + e^{-2aT}}$

Expanding into partial fractions, we have

$$G(s) = (1 - e^{-sT}) \left(\frac{1}{s^2} - \frac{1}{s} + \frac{1}{s+1} \right), \tag{13.14}$$

and the *z*-transform is

$$G(z) = Z\{G(s)\} = (1 - z^{-1})Z\left(\frac{1}{s^2} - \frac{1}{s} + \frac{1}{s+1}\right).$$
 (13.15)