FM250 - Finance

Lecture 3. Stocks

Thummim Cho, PhD, CFA London School of Economics

LSE Summer School

Course Outline

- Introduction to stocks
- Stock valuations
 - Dividend discount model
 - A special case: Gordon growth model
 - Extensions
- Implications of the stock valuation model
 - Factors that can move stock prices
 - Factors that can affect stock returns

What is a Stock?

- Stock represents an ownership in a company.
 - Stock holders (shareholders) own the firm, and they hire managers (e.g., CEO) to make decisions that maximize the firm value.
- The company distributes part of its earnings as dividends to shareholders if it is deemed in the best interest of the shareholders.
- Stocks are valuable because of future dividends.

What is the Cash Flow of a Stock?

 The stream of uncertain dividends is the cash flow from holding a stock.

 Alternatively, you can think of your cash flows as the stream of dividends and the price at which you will sell the stock.

Types of Stocks

- Common stock
 - Carries voting rights
 - Low priority in receiving dividend payments (preferred stock holders paid first).
- Preferred stock
 - Does not carry voting rights
 - High priority in receiving dividend payments.

How Are Stocks Traded?

- Initial public offerings (IPO)
 - Initial sale of shares by the company to the public (institutional + retail investors)
 - Also known as "going public"
 - "Underwritten" by investment banks
- Seasoned equity offerings (SEO)
 - New issuance of equity shares of a company that has done an IPO in the past.
- Secondary market (what people usually mean when they say "stock market" or "equity market")
 - Buying & selling existing shares

IPOs in 2022

And many others:

https://www.marketwatch.com/tools/ipo-calendar

Course Outline

Introduction to stocks

Stock valuations

- Dividend discount model
- A special case: Gordon growth model
- Extensions
- Implications of the stock valuation model
 - Factors that can move stock prices
 - Factors that can affect stock returns

Stock Valuation: Dividend Discount Model

 Dividend Discount Model ("DDM") (also called a "discounted cash flow" or "DCF" model): Today's stock price equals the present value of all expected future dividends.

$$P_0 = \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \frac{D_3}{(1+r)^3} + \dots + \frac{D_T}{(1+r)^T} + \dots$$

$$=\sum_{t=1}^{\infty}\frac{D_t}{(1+r)^t}$$

Stock Valuation: Dividend Discount Model

- Question: If you plan to sell the stock after a few years, you won't get all the dividends. Is the DDM still valid? Yes.
- Suppose you hold a stock for 1 year and sell it for P₁. Then, the
 present value logic says,

$$P_0 = \frac{D_1 + P_1}{1 + r}$$

But what is P₁? Can think of it as holding the stock from year 1 to year 2 and selling it for P₂:

$$P_1 = \frac{D_2 + P_2}{1 + r}$$

• So then,

$$P_0 = \frac{D_1 + P_1}{1 + r} = \frac{D_1 + (D_2 + P_2)/(1 + r)}{1 + r} = \frac{D_1}{1 + r} + \frac{D_2 + P_2}{(1 + r)^2}$$

Stock Valuation: Dividend Discount Model

· Continuing this logic, we find

$$P_0 = \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \frac{D_3}{(1+r)^3} + \dots + \frac{D_T}{(1+r)^T} + \dots$$

So to find the current price, you can either use

$$P_0 = \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \frac{D_3}{(1+r)^3} + \dots + \frac{D_T + P_T}{(1+r)^T}$$

or

$$P_0 = \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \frac{D_3}{(1+r)^3} + \dots + \frac{D_T}{(1+r)^T} + \dots$$

Stock Valuation: DDM

Example

Current forecasts are for Coca-Cola (KO) to pay dividends of £50, £52, and £55 over the next three years. At the end of three years you anticipate selling your stock at a market price of £1,100. What is the current price of the stock given a 6% discount rate?

Course Outline

- Introduction to stocks
- Stock valuations
 - Dividend discount model
 - A special case: Gordon growth model
 - Extensions
- Implications of the stock valuation model
 - Factors that can move stock prices
 - Factors that can affect stock returns

Stock Valuation: Gordon Growth Model

• Gordon growth model ("GGM"): A special case of the DDM where dividend grows at a constant rate g. If $D_{t+1} = (1+g)D_t$,

$$P_0 = \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \frac{D_3}{(1+r)^3} + \dots + \frac{D_T}{(1+r)^T} + \dots$$

$$P_0 = \frac{D_1}{1+r} + \frac{D_1(1+g)}{(1+r)^2} + \frac{D_1(1+g)^2}{(1+r)^3} + \dots + \frac{D_1(1+g)^{T-1}}{(1+r)^T} + \dots$$

$$=\frac{D_1}{r-g}$$

Stock Valuation: GGM

Example

If a stock with a discount rate 12% is selling for \$100 in the stock market and dividend will be \$3 next year, what is the growth rate of dividends that the market is assuming?

You can also combine the more typical DDM with GGM. For instance, suppose that a stock with a 12% discount rate will pay \$3 next year, after which the dividend grows by 5% every year until year 4, when the dividend growth slows down to be around 2%. What's the price today?

Course Outline

- Introduction to stocks
- Stock valuations
 - Dividend discount model
 - A special case: Gordon growth model
 - Extensions
- Implications of the stock valuation model
 - Factors that can move stock prices
 - Factors that can affect stock returns

- Ultimately dividends come from earnings, so we can relate the value of a stock to its earnings.
- A quick overview of accounting quantities
 - Assets: Value of the plant and machinery, inventories of materials, cash in bank
 - Liabilities: Money owed to banks and bond holders, taxes to be paid, etc
 - Book value of equity = assets liabilities
 - Book value per share (BVPS) = book value of equity / number of shares outstanding
 - Earnings: Profits over a year
 - Earnings per share (EPS) = earnings / number of shares outstanding
 - Return on equity (ROE) = earnings / book equity = EPS / BVPS
 - **Plowback ratio**: Share of earnings retained & reinvested into book equity. Plowback ratio b = (EPS Dividend) / EPS

Example: Fill in the shaded blanks.

	<u>Year -1</u>	Year 0	Year 1
(1) ROE		10%	10%
(2) Plowback ratio b		80%	80%
(3) Earnings = $(6)_{last} \times (1)_{this}$			
(4) Dividend = $[1-(2)] \times (3)$			
(5) Retained earnings = $(2) \times (3)$			
(6) BVPS = $(6)_{last}$ + $(5)_{this}$	100		
(7) Earnings growth rate = (3) / $(3)_{last}$ – 1			
(8) Dividend growth rate = $(4) / (4)_{last} - 1$			

	<u>Year -1</u>	Year 0	<u>Year 1</u>
(1) ROE		10%	10%
(2) Plowback ratio b		80%	80%
(3) Earnings = $(6)_{last} \times (1)_{this}$		10	10.8
(4) Dividend = $[1-(2)] \times (3)$		2	2.16
(5) Retained earnings = (2) × (3)		8	8.64
(6) BVPS = $(6)_{last}$ + $(5)_{this}$	100	108	116.64
(7) Earnings growth rate = (3) / $(3)_{last}$ – 1			8%
(8) Dividend growth rate = $(4) / (4)_{last} - 1$			8%

From the example, you see that

dividend growth rate (g) = earnings growth rate = plowback ratio x ROE

• Why?
$$\frac{D_t}{D_{t-1}} - 1 = \frac{(1-b) \times EPS_t}{(1-b) \times EPS_{t-1}} - 1 = \frac{EPS_t}{EPS_{t-1}} - 1 = \frac{ROE \times BVPS_t}{ROE \times BVPS_{t-1}} - 1$$

$$= \frac{BVPS_t}{BVPS_{t-1}} - 1 = \frac{(1+b \times ROE)BVPS_{t-1}}{BVPS_{t-1}} - 1 = b \times ROE$$

 Here, it may seem like a higher plowback ratio is always good for the stock. This is not case; a higher plowback ratio reduces today's dividend.

<u>Example:</u> Suppose PEP is expected to have an EPS next year of \$5 and ROE is 20%. If the discount rate is 8% and plowback ratio is 0.2, what is the fair price of PEP today? (Assume that the ROE and plowback ratio are constant over time.)

<u>Example:</u> Suppose PEP is expected to have an EPS next year of \$5 and ROE is 20%. If the discount rate is 8% and plowback ratio is 0.2, what is the fair price of PEP today? (Assume that the ROE and plowback ratio are constant over time.)

Gordon growth model:
$$P_0 = \frac{D_1}{r - g} = \frac{(1 - b) \times EPS_1}{r - b \times ROE}$$

(where b is the plowback ratio). Hence,

$$P_0 = \frac{0.8 \times 5}{0.08 - 0.2 \times 0.2} = \frac{4}{0.04} = \$100$$

Extension 2: Varying Growth Rates

Example: Everything is the same except the earnings will growth at 10% from next year for two years, after which the earnings growth rate stabilizes to plowback ratio times ROE. What is the fair price of PEP today?

Extension 2: Varying Growth Rates

Example: Everything is the same except the earnings will grow at 10% from next year for two years, after which the earnings growth rate stabilizes to 4%. What is the fair price of PEP today?

$$P_0 = \frac{D_1}{1+r} + \frac{D_2}{(1+r)^2} + \frac{D_3 + P_3}{(1+r)^3}$$

$$= \frac{(1-0.2)5}{1.08} + \frac{(1-0.2)\times1.1\times5}{(1.08)^2}$$

$$+ \frac{(1-0.2)(1.1)^25(1+1.04/(0.08-0.04))}{(1.08)^3}$$

$$= 111.2$$

Course Outline

- Introduction to stocks
- Stock valuations
 - Dividend discount model
 - A special case: Gordon growth model
 - Extensions
- Implications of the stock valuation model
 - Factors that can move stock prices
 - Factors that can affect stock returns

Factors that Can Move Stock Prices

Gordon growth model implies:

$$\frac{P_0}{D_0} = \frac{1+g}{r-g}$$

where g is expected growth of earnings and

r = risk-free rate + risk premium

= risk-free rate + (amount of risk)(risk aversion)

- So, 4 reasons stock price can change (under rationality assumption):
 - (1) changes in forecasted earnings
 - (2) changes in forecasted future risk-free rate
 - (3) changes in forecasted future risk
 - (4) changes in investor risk aversion

LSE

Factors that Can Move Stock Prices

- Shiller (1981): Most of the variation in the aggregate stock market price is due to changes in investor risk aversion.
 - (1) changes in forecasted earnings
 - * To be precise, (1) does occur (Campbell, 1991) but it's small compared to (4)
 - (2) changes in forecasted future risk-free rate
 - (3) changes in forecasted future risk
 - (4) changes in investor risk aversion

Return on a stock:

$$R = \frac{D_1 + P_1 - P_0}{P_0}$$

D is dividend and P is price.

• Example: Apple (AAPL) is selling for \$150 today and expected to sell for \$160 one year from now. What is the expected return if the dividend one year from now is forecasted to be \$5?

Candidate 1: Expected earnings growth

- Consider two companies with the same riskiness but different earnings growth rate
 - Company A: r = 10%, g = 5%
 - Company B: r = 10%, g = 8%
- Does the company with a higher earnings growth generate a higher return?

- Consider two companies with the same riskiness but different earnings growth rate
 - Company A: r = 10%, g = 5%
 - Company B: r = 10%, g = 8%
- Does the company with a higher earnings growth generate a higher return? No, both companies will generate a return of 10%.

$$R = \frac{D_1 + P_1}{P_0} - 1 = \frac{(1+g)D_0 + (1+g)^2 D_0 / (r-g)}{D_1 / (r-g)} - 1 = r$$

• The reason is that the higher earnings growth has already been taken into account in P_0 . So in an efficient market, expected return depends only on the stock's riskiness.

Candidate 2: Unexpected change in future earnings growth

 Consider a company whose expected future earnings growth changes from g in year 0 to g_{new} > g in year 1. How does the return compare to the discount rate r?

Candidate 2: Unexpected change in future earnings growth

- Consider a company whose expected future earnings growth changes from g in year 0 to g_{new} > g in year 1. How does the return compare to the discount rate r?
- Stock return from year 0 to year 1 is higher than the discount rate.

$$R = \frac{D_1 + P_1}{P_0} - 1 = \frac{(1+g)D_0 + (1+g)(1+g_{new})D_0/(r-g_{new})}{(1+g)D_0/(r-g)} - 1$$

$$= (1+r)\frac{r-g}{r-g_{new}} - 1 > r$$

Candidate 3: Unexpected change in the discount rate

Consider a company whose discount rate changes from r
in year 0 to r_{new} > r in year 1. How does the return
compare to the discount rate r?

Candidate 3: Unexpected change in the discount rate

- Consider a company whose discount rate changes from r
 in year 0 to r_{new} > r in year 1. How does the return
 compare to the discount rate r?
- Stock return from year 0 to year 1 is lower than the discount rate.

$$R = \frac{D_1 + P_1}{P_0} - 1 = \frac{(1+g)D_0 + (1+g)^2 D_0 / (r_{new} - g)}{(1+g)D_0 / (r - g)} - 1$$

$$= r + \left(\frac{r-g}{r_{new}-g} - 1\right) \left(1+g\right) < r$$