Université du Québec à Montréal INF5130 : Algorithmique Devoir 2

Automne 2021

Vous devez remettre vos solutions sur Moodle avant le vendredi 17 décembre 2021 à 23h55 sous la forme d'un unique fichier pdf. Un retard de 24 heures au maximum sera accepté : pénalité de $\frac{m}{144}$ points, où m est le nombre de minutes de retard. La note 0 sera attribuée au-delà d'un retard de 24 heures. Le nombre total de points pour ce devoir est 100. Le devoir peut être fait en équipes de deux étudiant-e-s au maximum. Il doit être intégralement rédigé avec LATEX.

Exercice 1 (25 points)

Un fichier est constitué de lettres dont les fréquences (multipliées par 100) sont données dans le tableau suivant.

Lettre	a	b	c	d	е	f	g	h	i	j
Fréquence	27	20	17	11	10	5	4	3	2	1

- I. Construisez un code de longueur fixe minimale pour ces lettres et donnez sa longueur moyenne.
- II. Construisez un code de Huffman pour ces lettres et donnez sa longueur moyenne. Vous devez représenter un arbre semblable à celui de la page 26 du chapitre sur les algorithmes gloutons.

Exercice 2 (25 points)

On considère des séquences d'ADN : 4 caractères possibles : A, T, C et G. On suppose un coût de 2 pour une insertion ou une délétion et la matrice de coût suivante.

	A	Т	С	G
A	0	1	3	4
\mathbf{T}	1	0	5	4
С	3	5	0	2
G	4	4	2	0

Trouvez un alignement optimal ainsi que son son coût entre la séquence X = CTTGACGC et la séquence Y = ATGATGCT. Vous devez déterminer les matrices D (des coûts) et V (des flèches) définies dans le chapitre sur la programmation dynamique (Distance de Levenshtein, pages 52 à 60).

Exercice 3 (25 points)

Utilisez l'algorithme présenté dans le chapitre sur la programmation dynamique pour déterminer le parenthésage optimal pour le produit matriciel $A_{1(12\times5)}A_{2(5\times7)}A_{3(7\times20)}A_{4(20\times50)}$. Vous devez expliciter tous les détails de vos calculs.

Exercice 4 (25 points)

Convertissez l'instance suivante du problème SAT en une instance du problème 3-FNC-SAT :

$$\neg (x_1 \lor x_2) \to (x_3 \land x_1)$$
.

Utilisez la méthode présentée dans le chapitre sur la NP-complétude. Ne simplifiez pas l'expression initiale. Vous devez donner tous les détails des trois étapes de votre transformation.

Exercice 1 (25 points)

Lettre	Fréquence	Code de longueur fixe	Code de Huffmann
a	27	0000	01
b	20	0001	10
С	17	0010	000
d	11	0011	110
e	10	0100	111
f	5	0101	00100
g	4	0110	00101
h	3	0111	00111
i	2	1000	001100
j	1	1001	001101
Longue	ur movenne	4	2.86

<u>Barème</u>

- 5 points pour un code de longueur fixe (n'importe lequel de longueur 4)
- 2 points pour sa moyenne
- 10 points pour l'arbre
- 6 points pour un code de Huffmann
- 2 points pour sa moyenne

Toutes les solutions obtenues en échangeant deux branches voisines et en inversant les 0 et les 1 sont acceptées.

$\underline{\text{Exercice } 4}$ (25 points)

 $\neg (x_1 \lor x_2) \rightarrow (x_3 \land x_1)$.

 $\begin{array}{c} \text{Première \'etape (10 points)} \\ \text{5 points pour l'arbre} \\ \text{1 point pour chaque } \phi_i' \end{array}$

 $\phi_1' = y_1$ $\phi_2' = y_1 \leftrightarrow (y_2 \rightarrow y_3)$

 $\phi'_2 = y_2 \leftrightarrow \neg y$

 $\phi_4'=y_3\leftrightarrow (x_3\wedge x_1)$

 $\phi_5' = y_4 \leftrightarrow (x_1 \lor x_2)$

Deuxième étape (12 points) 1 point pour chaque table de vérité 1 point pour chaque $\neg \phi_i''$ 1 point pour chaque ϕ_i''

y_1	y_2	y_3	$y_1 \leftrightarrow (y_2 \rightarrow y_3)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

 $\phi_2' = y_1 \leftrightarrow (y_2 \rightarrow y_3)$

 $\begin{array}{l} -\phi_2'' = (\neg y_1 \wedge \neg y_2 \wedge \neg y_3) \vee (\neg y_1 \wedge \neg y_2 \wedge y_3) \vee (\neg y_1 \wedge y_2 \wedge y_3) \vee (y_1 \wedge y_2 \wedge \neg y_3) \\ \phi_2'' = (y_1 \vee y_2 \vee y_3) \wedge (y_1 \vee y_2 \vee \neg y_3) \wedge (y_1 \vee \neg y_2 \vee \neg y_3) \wedge (\neg y_1 \vee \neg y_2 \vee y_3) \end{array}$

Exercice 2 (25 points)

X		С	T	T	G	A	С	G	С
Y									
	0	2	4	6	8	10	12	14	16
A	2	3	3	5	7	8	10	12	14
T	4	5	3	3	5	7	9	11	13
G	6	6	5	5	3	5	7	9	11
A	8	8	7	6	5	3	5	7	9
T	10	10	8	7	7	5	7	9	11
G	12	12	10	9	7	7	7	7	9
C	14	12	12	11	9	9	7	9	7
T	16	14	12	12	11	10	9	11	9

X	C	T	T	G	A	C	G	C
Y								
A	1	1	←,	←	1	←	←	←
T	1	_	_	←	←	←	←	←
G	_	1	1	_	←	←	←,	\leftarrow
A	1	↑,	_	1	_	←	←	\leftarrow
T	1	_	_	1	1	,↑	←,↑,	←,↑
G	1,5	1	1	_	1	_	_	\leftarrow
C	_	1	1	1	1	_	←,↑,	_
T	1 1	_	_	1	_	1	←,↑,	1

Alignement

Coût: 9

Barème

- 9 points pour la matrice de coût (1 point en moins par erreur)
- 9 points pour la matrice des flèches (1 point en moins par erreur, une seule flèche suffit pour les cases pouvant contenir plusieurs flèches)
- 5 points pour l'alignement
- 2 points pour son coût

Les matrices transposées (échange de X et Y) sont acceptées. Le C (sixième caractère de X) et le T (cinquième cacactère de Y) peuvent être permutés

Ne pas pénaliser plusieurs fois pour une erreur qui se propage.

2

 $\begin{aligned} \phi_3' &= y_2 \leftrightarrow \neg y_4 \\ \neg \phi_3'' &= (\neg y_2 \land \neg y_4) \lor (y_2 \land y_4) \\ \phi_3'' &= (y_2 \lor y_4) \land (\neg y_2 \lor \neg y_4) \end{aligned}$

y_3	x_3	x_1	$y_3 \leftrightarrow (x_3 \land x_1)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

 $\phi_4' = y_3 \leftrightarrow (x_3 \land x_1)$

 $\begin{array}{l} -\phi_4'' = (\neg y_3 \wedge x_3 \wedge x_1) \vee (y_3 \wedge \neg x_3 \wedge \neg x_1) \vee (y_3 \wedge \neg x_3 \wedge x_1) \vee (y_3 \wedge x_3 \wedge \neg x_1) \\ \phi_4'' = (y_3 \vee \neg x_3 \vee \neg x_1) \wedge (\neg y_3 \vee x_3 \vee x_1) \wedge (\neg y_3 \vee x_3 \vee \neg x_1) \wedge (\neg y_3 \vee x_3 \vee x_1) \end{array}$

y_4	x_1	x_2	$y_4 \leftrightarrow (x_1 \lor x_2)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 $\phi_5' = y_4 \leftrightarrow (x_1 \lor x_2)$

 $\begin{aligned} -\phi_5'' &= (\neg y_4 \wedge \neg x_1 \wedge x_2) \vee (\neg y_4 \wedge x_1 \wedge \neg x_2) \vee (\neg y_4 \wedge x_1 \wedge x_2) \vee (y_4 \wedge \neg x_1 \wedge \neg x_2) \\ \phi_5'' &= (y_4 \vee x_1 \vee \neg x_2) \wedge (y_4 \vee \neg x_1 \vee x_2) \wedge (y_4 \vee \neg x_1 \vee \neg x_2) \wedge (\neg y_4 \vee x_1 \vee x_2) \end{aligned}$

Exercice 3 (25 points)

 $A_{1(12\times5)}A_{2(5\times7)}A_{3(7\times20)}A_{4(20\times50)}$

 $m[1;2] = 12 \times 5 \times 7 = 420, \, m[2;3] = 5 \times 7 \times 20 = 700, \, m[3;4] = 7 \times 20 \times 50 = 7000$

 $m[1; 3] = \min(700 + 12 \times 5 \times 20, 420 + 12 \times 7 \times 20) = 1900$

 $m[2;4] = \min\left(7000 + 5 \times 7 \times 50, 700 + 5 \times 20 \times 50\right) = 5700$

 $m[1;4] = \min\left(5700 + 12 \times 5 \times 50, 420 + 7000 + 12 \times 7 \times 50, 1900 + 12 \times 20 \times 50\right) = 8700$

$$m = \begin{pmatrix} 0 & 420 & 1900 & 8700 \\ 0 & 700 & 5700 \\ 0 & 7000 \\ 0 & 0 \end{pmatrix} \quad frontiere = \begin{pmatrix} 1 & 1 & 11 \\ 2 & 3 \\ 3 & 3 \\ 3 & 3 \end{pmatrix}$$

Parenthésage optimal

$$A_1((A_2A_3)A_4)$$

Barème :

- 6 points pour la matrice m (1 point en moins par erreur)
- 6 points pour la matrice frontiere (1 point en moins par erreur)
- ullet 8 points pour le détail des calculs des coefficients de la matrice m.
- $\bullet~5$ points pour le parenthésage optimal

Ne pas pénaliser plusieurs fois pour une erreur qui se propage.

3

Troisième étape (3 points) $\begin{array}{c} 1 \text{ point pour } \phi_1''' \\ 1 \text{ point pour } \phi_3''' \\ 1 \text{ point pour les autres } \phi_i''' \end{array}$

Pas de points en moins si z_1 et/ou z_2 sont réutilisés pour ϕ_3''' à la place de z_3 et z_4

 $\phi_1''' = \big(y_1 \vee z_1 \vee z_2\big) \wedge \big(y_1 \vee \neg z_1 \vee z_2\big) \wedge \big(y_1 \vee z_1 \vee \neg z_2\big) \wedge \big(y_1 \vee \neg z_1 \vee \neg z_2\big)$

$$\begin{array}{l} \phi_3''' = (y_2 \vee y_4 \vee z_3) \wedge (y_2 \vee y_4 \vee -z_3) \wedge (\neg y_2 \vee \neg y_4 \vee z_4) \wedge (\neg y_2 \vee \neg y_4 \vee \neg z_4) \\ \phi_2''' = \phi_2'' \\ \phi_0''' = \phi_1'' \end{array}$$