

UNIVERSIDAD DE CALDAS

FORMATO PARA CREACIÓN – MODIFICACIÓN DE ACTIVIDADES ACADÉMICAS

CÓDIGO: R-1202-P-DC-503 VERSIÓN: 3

PLAN INSTITUCIONAL DE ACTIVIDAD ACADÉMICA

I.IDENTIFICACIÓN

Facultad que ofrece la Actividad Académica:			CIENCIAS EXACTAS Y NATURALES	
Departamento que ofrece la Actividad Académica:			FÍSICA	
Nombre de la Actividad Académica:			SISTEMAS DE CONTROL AVANZADO EN PROCESOS AUTOMATIZADOS	
Código de la Actividad Académica:				
Versión del Programa Institucional de la Actividad Académica (PIAA):			1	
Acta y fecha del Consejo de Facultad para: aprobación modificación			Acta No Fecha:	
Programas a los que se le ofrece la Actividad Académica (incluye el componente de formación al cual pertenece):				
Actividad Académica abierta a la comunidad:			Si _X_ No	
Tipo de actividad: Teórica Teórico - Práct X_ Práctica			ica	
Horas teóricas:	24	Horas prácticas:		24
Horas presenciales:	48	Horas no presenciales:		64
Horas presenciales del docente:	48	Relación Presencial/No presencial:		1:2
Horas inasistencia con las que se reprueba:	5	Cupo máximo de estudiantes:		40
Habilitable (Si o No):	SI	Nota aprobatoria:		3
Créditos que otorga:	3	Duración en semanas:		3

Requisitos (escribir los códigos y el nombre de las actividades académicas que son requisitos, diferenciados por programas para el caso de una actividad académica polivalente):

I. **JUSTIFICACIÓN**: describe las razones por las cuales es importante la actividad académica desde la perspectiva del conocimiento, el objeto de formación del programa, el perfil profesional del egresado(s), y su lugar en el currículo.

Los sistemas de control avanzado juegan un papel esencial en la automatización de procesos industriales, permitiendo que las operaciones se realicen de manera precisa, eficiente y segura. La Industria 5.0 requiere un alto nivel de integración y coordinación entre los sistemas de control, la robótica colaborativa y las tecnologías de fabricación inteligente. Esta asignatura aborda el diseño, implementación y gestión de sistemas de control avanzados, como PLC (Controladores Lógicos Programables), SCADA (Supervisión, Control y Adquisición de Datos) y DCS (Sistemas de Control Distribuido), todos los cuales son cruciales para la optimización y automatización de procesos en la producción moderna. El conocimiento en estas áreas permitirá a los profesionales gestionar y optimizar los procesos productivos de manera eficiente, minimizando errores, reduciendo costos y garantizando la sostenibilidad en las operaciones.

I. **OBJETIVOS**: describe en forma clara lo que se pretende con el desarrollo de la actividad académica.

Desarrollar las competencias necesarias para diseñar, implementar y gestionar **sistemas de control avanzado** en entornos industriales automatizados, mejorando la precisión, eficiencia y seguridad en los procesos productivos.

- 2. Específicos:
 - 1. Comprender los fundamentos de los sistemas de control avanzado, incluyendo PLC, SCADA y DCS, y su aplicación en procesos industriales automatizados.
 - 2. Diseñar e implementar sistemas de control avanzado para optimizar la eficiencia y productividad en procesos de manufactura y producción.
 - 3. Configurar y programar controladores lógicos programables (PLC) para el control y supervisión de procesos industriales.
 - 4. Integrar sistemas SCADA y DCS para la supervisión, control y adquisición de datos en entornos productivos complejos.
 - 5. Aplicar estrategias de mantenimiento predictivo y diagnóstico de fallos en sistemas de control avanzados.

NOTA: en el caso que el Programa Institucional de la Actividad Académica (PIAA) se desarrolle por competencias, es necesario completar los siguientes aspectos, en lugar de objetivos:

I. **COMPETENCIAS:** describe actuaciones integrales desde saber ser, el saber hacer y el saber conocer, para identificar, interpretar, argumentar y resolver problemas del contexto con idoneidad y ética.

1. Genéricas

- Capacidad para resolver problemas complejos: Habilidad para diseñar y gestionar sistemas de control avanzado en procesos industriales automatizados.
- Trabajo en equipo: Colaborar en equipos multidisciplinarios para implementar y mantener sistemas de control automatizados.
- Adaptabilidad a nuevas tecnologías: Capacidad para adaptarse e integrar nuevas tecnologías de control y automatización en procesos productivos.
- 2. Específicas
- Programación de PLCs y SCADA: Habilidad para programar, configurar y supervisar controladores lógicos programables y sistemas SCADA en entornos industriales.
- Diseño y optimización de sistemas de control: Competencia para diseñar e implementar sistemas de control automatizado avanzados que optimicen los procesos productivos.
- Diagnóstico y mantenimiento predictivo: Habilidad para implementar estrategias de mantenimiento predictivo y detección de fallos en sistemas de control.
- Integración de sistemas de control: Capacidad para integrar distintos sistemas de control en un entorno de producción automatizado, mejorando la coordinación y la eficiencia operativa.

COMPETENCIAS GENÉRICAS: describen el conjunto de conocimientos, habilidades, destrezas y actitudes que le permiten al egresado del programa interactuar en diversos contextos de la vida profesional.

COMPETENCIAS ESPECÍFICAS: describen los comportamientos observables que se relacionan directamente con la utilización de conceptos, teorías o habilidades, logrados con el desarrollo del contenido de la Actividad Académica.

/. CONTENIDO: describe los temas y subtemas que se desarrollarán en la actividad académica. Estos deben estar en perfecta coherencia con los objetivos, método y evaluación de la asignatura y con los perfiles de formación de los programas a los que se ofrece la actividad académica.

Módulo 1: Introducción a los Sistemas de Control Avanzado (10 horas)

- Introducción a los sistemas de control automático
- Controladores Lógicos Programables (PLC): arquitectura y funcionamiento
- Sistemas SCADA y DCS: supervisión y control en tiempo real
- Aplicaciones de los sistemas de control en la Industria 5.0

Módulo 2: Programación y Configuración de PLC (14 horas)

- Lenguajes de programación de PLC: Diagrama Ladder y bloques de función
- Configuración y programación de PLCs para control de procesos
- Integración de PLCs con sensores, actuadores y redes industriales
- Solución de problemas y diagnóstico en sistemas PLC

Módulo 3: Sistemas SCADA y DCS (12 horas)

- Arquitectura de sistemas SCADA: componentes, funciones y aplicaciones
- Diseño y configuración de interfaces SCADA para la supervisión de procesos
- Integración de DCS y SCADA para control distribuido de procesos industriales
- Monitoreo en tiempo real y gestión de datos en sistemas SCADA

Módulo 4: Mantenimiento Predictivo y Diagnóstico de Fallos en Sistemas de Control (12 horas)

- Estrategias de mantenimiento predictivo y mantenimiento basado en condición
- Técnicas de diagnóstico y solución de fallos en sistemas de control automatizado
- Monitoreo remoto y análisis de datos para la detección de fallos
- Estudio de casos: implementación de mantenimiento predictivo en procesos industriales
- /. METODOLOGÍA: describe las estrategias educativas, métodos, técnicas, herramientas y medios utilizados para el desarrollo del contenido, en coherencia con los objetivos o competencias.
 - Clases teóricas participativas: Explicación de los conceptos fundamentales de los sistemas de control avanzado, complementados con ejemplos de aplicaciones reales en la industria.
 - Talleres prácticos: Programación y configuración de controladores PLC, SCADA y DCS en un entorno de simulación, donde los estudiantes podrán aplicar lo aprendido a situaciones reales.
 - **Estudio de casos:** Análisis de casos reales donde se han implementado sistemas de control avanzado, con énfasis en los beneficios obtenidos en términos de eficiencia y productividad.
 - **Proyectos grupales:** Los estudiantes trabajarán en equipo para diseñar e implementar sistemas de control automatizado para un proceso productivo específico, integrando PLC, SCADA y DCS.
- I. CRITERIOS GENERALES DE EVALUACIÓN: describe las diferentes estrategias evaluativas, con valoraciones cuantitativas y reportes cualitativos, si son del caso, que se utilizarán para determinar si el estudiante ha cumplido con lo propuesto como objetivos o como competencias de la Actividad Académica. Ver reglamento estudiantil y política curricular.

Participación en clase y talleres: 20%

Evaluación de la participación en las clases y los talleres de programación y configuración de sistemas de control.

Talleres prácticos: 25%

Evaluación del desempeño en los talleres de programación y configuración de sistemas de control avanzado (PLC y SCADA).

Estudio de casos: 25%

Análisis crítico de los casos de implementación de sistemas de control avanzado en diferentes sectores industriales.

Proyecto final grupal: 30%

Desarrollo de un proyecto grupal donde los estudiantes diseñarán y programarán un sistema de control automatizado para un proceso industrial, integrando PLC, SCADA y DCS.

- I. **REFERENCIAS BIBLIOGRÁFICAS:** describe los textos guía, manuales, fuentes primarias, páginas de Internet, entre otras, que serán utilizadas para el desarrollo de la Actividad Académica.
 - Bolton, W. (2015). Programmable Logic Controllers. Elsevier.
 - Bailey, D., & Wright, E. (2003). Practical SCADA for Industry. Newnes.
 - Stouffer, K., Falco, J., & Scarfone, K. (2011). Guide to Industrial Control Systems (ICS) Security. NIST Special Publication.
 - Frank, P. M. (2012). Fault Diagnosis in Dynamic Systems: Theory and Application. Springer.
 - Groover, M. P. (2020). Automation, Production Systems, and Computer-Integrated Manufacturing. Pearson.