Additional Reproducibility Efforts

Importing necessary library for data analysis for .csv and .tsv files; pandas & DataFrame All the supplementary tables (STable*) dowloaded from the Zenedo repository [1] of the original article [2].

[1] A. Gavriilidou, "Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes". Zenodo, Apr. 15, 2022. (https://doi.org/10.5281/zenodo.5159210).

[2] Gavriilidou, A., Kautsar, S.A., Zaburannyi, N. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat Microbiol 7, 726–735 (2022).

(https://doi.org/10.1038/s41564-022-01110-2)

```
In [1]: import pandas as pd
    from pandas import DataFrame

In [2]: STable1: DataFrame = pd.read_csv("STable1_all_genomes_info.tsv", sep="|")
        STable2: DataFrame = pd.read_csv("STable2_BiG-SLICE_t0.4_GCF_assignment.csv"
        STable3: DataFrame = pd.read_csv("STable3_BiG-SLICE_t0.5_GCF_assignment.csv"
        STable4: DataFrame = pd.read_csv("STable4_BiG-SLICE_t0.6_GCF_assignment.csv"
        STable5: DataFrame = pd.read_csv("STable5_BiG-SLICE_t0.7_GCF_assignment.csv"

In [3]: STable1 = STable1.rename(columns={"bgc_ids":"bgc_id"})
        STable1["bgc_id"] = STable1.bgc_id.str.split(",")
        STable1 = STable1.explode(column="bgc_id").reset_index(drop=True)
        STable1["bgc_id"] = STable1.bgc_id.astype("int64")
```

For every threshhold <code>pd.merge</code> applied. Taxonomy information is selected from taxonomy column of each dataframe. The streptomyces genus level is displayed as an output, the following question is asked;

• From the figure 1_A the streptomyces value counts are known (see Figure_1.ipynb), if the following filtering algorithm utilized do we get the same results?

Figure 1_A data;

	Genus	Number of GCFs	Threshold (T)
0	Streptomyces	7294	t=0.4
9	Streptomyces	5720	t=0.5

```
        Genus
        Number of GCFs
        Threshold (T)

        18 Streptomyces
        4360
        t=0.6

        27 Streptomyces
        2889
        t=0.7
```

```
In [4]: thresholds 4 gcfs = pd.merge(STable1, STable2, on='bgc id')
        taxonomy 4 = thresholds 4 qcfs.taxonomy.str.split(",",expand=True).fillna(""
        taxonomy 4.name = 'taxonomy 4'
        streptomyces_index_4 = taxonomy_4[taxonomy_4[5] == "Streptomyces"].index
        thresholds_4_gcf_count = thresholds_4_gcfs.loc[streptomyces_index_4].gcf_id.
In [5]: thresholds_5_gcfs = pd.merge(STable1, STable3, on='bgc_id')
        taxonomy 5 = thresholds 5 qcfs.taxonomy.str.split(",",expand=True).fillna(""
        taxonomy 5.name = 'taxonomy 5'
        streptomyces index 5 = taxonomy 5[taxonomy 5[5] == "Streptomyces"].index
        thresholds_5_gcf_count = thresholds_5_gcfs.loc[streptomyces_index_5].gcf_id.
In [6]: thresholds 6 qcfs = pd.merge(STable1, STable4, on='bqc id')
        taxonomy_6 = thresholds_6_gcfs.taxonomy.str.split(",",expand=True).fillna(""
        taxonomy_6.name = 'taxonomy_6'
        streptomyces index 6 = taxonomy 6[taxonomy 6[5] == "Streptomyces"].index
        thresholds_6_gcf_count = thresholds_6_gcfs.loc[streptomyces_index_6].gcf_id.
In [7]: thresholds 7 qcfs = pd.merge(STable1, STable5, on='bqc id')
        taxonomy_7 = thresholds_7_gcfs.taxonomy.str.split(",",expand=True).fillna(""
        taxonomy_7.name = 'taxonomy_7'
        streptomyces_index_7 = taxonomy_7[taxonomy_7[5] == "Streptomyces"].index
        thresholds_7_gcf_count = thresholds_7_gcfs.loc[streptomyces_index_7].gcf_id.
In [8]: len(thresholds_4_gcf_count), len(thresholds_5_gcf_count), len(thresholds_6_gcf
Out[8]: (8703, 6798, 5136, 3363)
```

Figure 1_A data from the applied algorithm;

When inspected;

Original Data

Reproduced Data

	Genus	Number of GCFs	Threshold (T)		Genus	Number of GCFs	Threshold (T)
0	Streptomyces	7294	t=0.4	0	Streptomyces	<i>87</i> 03	t=0.4
9	Streptomyces	<i>5720</i>	t=0.5	9	Streptomyces	6 7 98	t=0.5

	Genus	Number of GCFs	Threshold (T)		Genus	Number of GCFs	Threshold (T)
18	Streptomyces	4360	t=0.6	18	Streptomyces	5136	t=0.6
27	Streptomyces	2889	t=0.7	27	Streptomyces	3363	t=0.7

```
In [9]: len(thresholds_4_gcf_count)-7294,len(thresholds_5_gcf_count)-5720,len(thresh
```

Out[9]: (1409, 1078, 776, 474)

In [10]: len(thresholds_4_gcf_count)-len(thresholds_5_gcf_count),len(thresholds_5_gcf

Out[10]: (1905, 1662, 1773)

In [11]: 1409-1078, 1078-776, 776-474

Out[11]: (331, 302, 302)

In [12]: len(STable2)-len(thresholds_4_gcfs),len(STable3)-len(thresholds_5_gcfs),len(

Out[12]: (764, 37, 37, 37)

When inspected;

Figure 1_A data from the applied algorithm;

Original Data vs Reproduced Data

Extra Operations

	Genus	Number of GCFs	Threshold	Operation	Valu of ti outp
	Genus	Differ	<i>(T)</i>	$t_{0.4}-t_{0.5}, t_{0.5}-t_{0.6}, t_{0.6}-t_{0.7}$	(190 166
$diff_1$	Streptomyces	1409	t=0.4	00.4 00.5, 00.5 00.6, 00.6 00.7	
$diff_2$	Streptomyces	1078		$diff_1-diff_2, diff_2-diff_3, diff_3$	(33 302
$diff_3$	Streptomyces	<i>77</i> 6		$-diff_4$	302
$diff_4$	Streptomyces	474	t=0.7	Data Lost From INNER MERGE OPERATION {t=0.4,0.5,0.6,0.7}	(76 37, 3 37

Taxonomy resolution

```
= taxonomy_file[2].value_counts()
             class taxa
                          = taxonomy_file[3].value_counts()
             order_taxa
             family taxa = taxonomy file[4].value counts()
             genus_taxa = taxonomy_file[5].value_counts()
             species_taxa = taxonomy_file[6].value_counts()
             max_list_number = min(len(phylum_taxa), len(class_taxa), len(order_taxa)
             phylum taxa = phylum taxa[:max list number]
             class_taxa
                          = class taxa[:max list number]
             order_taxa
                          = order_taxa[:max_list_number]
             family_taxa = family_taxa[:max_list_number]
             genus taxa = genus taxa[:max list number]
             species_taxa = species_taxa[:max_list_number]
             taxonomy_resolution = DataFrame({"phylum_taxa_name":list(phylum_taxa.ind
                                  "phylum_taxa_count":list(phylum_taxa.values),
                                  "class_taxa_name":list(class_taxa.index),
                                  "class_taxa_count":list(class_taxa.values),
                                  "order_taxa_name":list(order_taxa.index),
                                  "order_taxa_count":list(order_taxa.values),
                                  "family_taxa_name":list(family_taxa.index),
                                  "family_taxa_count":list(family_taxa.values),
                                  "genus_taxa_name":list(genus_taxa.index),
                                  "genus_taxa_count":list(genus_taxa.values),
                                  "species_taxa_name":list(species_taxa.index),
                                  "species_taxa_count":list(species_taxa.values),
             taxonomy_resolution.to_csv(f"taxonomy_resolution_{taxonomy_file.name}.cs
             return taxonomy resolution
In [28]: | taxonomy_resolution_4 = taxonomy_resolution(taxonomy_file=taxonomy_4)
         taxonomy resolution 5 = taxonomy resolution(taxonomy file=taxonomy 5)
         taxonomy_resolution_6 = taxonomy_resolution(taxonomy_file=taxonomy_6)
         taxonomy resolution 7 = taxonomy resolution(taxonomy file=taxonomy 7)
In [29]: taxonomy_resolution_4.head()
```

Out[29]:		phylum_taxa_name	phylum_taxa_count	class_taxa_name	class_taxa_count	or
	0	Proteobacteria	565024	Gammaproteobacteria	507067	E
	1	Actinobacteriota	264466	Actinobacteria	262184	
	2	Firmicutes	229209	Bacilli	228404	P٤
	3	Bacteroidota	32879	Alphaproteobacteria	57906	
	4	Firmicutes_A	28999	Bacteroidia	30909	
In [30]:	tax	conomy_resolution_	5.head()			
Out[30]:		phylum_taxa_name	phylum_taxa_count	class_taxa_name	class_taxa_count	or
	0	Proteobacteria	521947	Gammaproteobacteria	474642	E
	1	Actinobacteriota	256165	Actinobacteria	255633	
	2	Firmicutes	224467	Bacilli	224467	P٤
	3	Bacteroidota	13018	Alphaproteobacteria	47278	
	4	Firmicutes_A	11780	Bacteroidia	12755	
In [31]:	tax	conomy_resolution_	6.head()			
Out[31]:		phylum_taxa_name	phylum_taxa_count	class_taxa_name	class_taxa_count	or
	0	Proteobacteria	521947	Gammaproteobacteria	474642	E
	1	Actinobacteriota	256165	Actinobacteria	255633	
	2	Firmicutes	224467	Bacilli	224467	P٤
	3	Bacteroidota	13018	Alphaproteobacteria	47278	
	4	Firmicutes_A	11780	Bacteroidia	12755	
In [32]:	tax	conomy_resolution_	7.head()			

Out[32]:		phylum_taxa_name	phylum_taxa_count	class_taxa_name	class_taxa_count	or
	0	Proteobacteria	521947	Gammaproteobacteria	474642	E
	1	Actinobacteriota	256165	Actinobacteria	255633	
	2	Firmicutes	224467	Bacilli	224467	P٤
	3	Bacteroidota	13018	Alphaproteobacteria	47278	
	4	Firmicutes_A	11780	Bacteroidia	12755	

As it can be seen in the above outputs when dealing with MAG 's it is likely to get low taxonomic resolution resolution.

The first dataset has RefSeq + MAG datasets, others have just RefSeq sequences. This influences the taxonomic resolution.

In species level resolution merged dataset has 115,269.00 missing information in the other dataset it is just 52,225.00.

```
In [16]: def get_unique_gcf_count(taxonomy_file: DataFrame, gcfs: DataFrame) -> DataF
             genus_resolution = taxonomy_file[5].value_counts().index
             results = {}
             for genus in genus_resolution:
                 genus_gcfs = gcfs.loc[taxonomy_file[taxonomy_file[5] == genus].index
                 results[f"{genus}"] = [len(genus_gcfs), genus_gcfs.index, genus_gcfs
             df: DataFrame = pd.DataFrame.from dict(results)
             df t = df.transpose()
             df_t = df_t.rename({0:"gcf_count_unique", 1:"gcf_index", 2:"gcf_count"},
             df_t.to_csv(f"reproducibility_results_{taxonomy_file.name}.csv", index_l
             df_t_sorted = df_t.sort_values("gcf_count_unique", ascending=False)
             df_t_sorted.to_csv(f"reproducibility_results_{taxonomy_file.name}_sorted
             return df_t_sorted
In [17]: taxonomy_4_results = get_unique_gcf_count(taxonomy_file=taxonomy_4, gcfs=thr
         taxonomy_5_results = get_unique_gcf_count(taxonomy_file=taxonomy_5, gcfs=thr
         taxonomy_6_results = get_unique_gcf_count(taxonomy_file=taxonomy_6, gcfs=thr
         taxonomy_7_results = get_unique_gcf_count(taxonomy_file=taxonomy_7, gcfs=thr
```

In [18]: taxonomy_4_results.head()

Out[18]:		gcf_count_unique	gcf_index	gcf_count
		10820	Index([0, 9257, 17269, 49394, 53101, 1575	[1254, 662, 249, 215, 211, 209, 202, 201, 182,
	Streptomyces	8703	Index([57228, 49265, 45969, 42802, 883, 925	[1061, 766, 682, 654, 591, 534, 507, 491, 443,
	Pseudomonas_E	1517	Index([25095, 22671, 37850, 58987, 9257, 2787	[4282, 2073, 2048, 1498, 1445, 1395, 1330, 120
	Nocardia	1421	Index([51953, 9257, 32744, 17269, 57228, 5000	[173, 128, 76, 62, 60, 55, 54, 53, 48, 47, 46,
	Micromonospora	1089	Index([49696, 57228, 40767, 12206, 20197, 2830	[215, 182, 152, 108, 88, 87, 86, 85, 81, 77, 7
In [19]:	taxonomy_5_resu	ults.head()		
Out[19]:		gcf_count_unique	gcf_index	gcf_count
	Streptomyces	6798	Index([40575, 32610, 2288, 584, 12007, 1522	[2218, 1359, 658, 595, 586, 582, 498, 432, 378
		3971	Index([12007, 40575, 3610, 2139, 10008, 1365	[214, 171, 151, 125, 98, 82, 80, 73, 71, 66, 5
	Nocardia	1146	Index([33239, 39769, 40575, 3610, 38810,	[145, 134, 123, 106, 98, 93, 89, 85, 80, 78, 7
			2403	, , , , ,
	Pseudomonas_E	1101	Index([13655, 39771, 16179, 25911, 20231, 4248	[4129, 3239, 2077, 2057, 1503, 1327, 1235, 112

In [20]: taxonomy_6_results.head()

Out[20]:		gcf_count_unique	gcf_index	gcf_count
	Streptomyces	5136	Index([31953, 22441, 2101, 18765, 1488, 422	[1975, 1908, 1468, 1455, 1338, 759, 648, 605,
		3110	Index([1816, 22441, 22488, 10420, 1472, 2638	[273, 262, 174, 169, 146, 145, 113, 112, 95, 8
	Nocardia	890	Index([26384, 22441, 9415, 2101, 31953, 2461	[233, 171, 168, 168, 159, 157, 148, 142, 127,
	Pseudomonas_E	881	Index([4697, 30608, 11409, 19537, 1816, 1434	[4131, 3428, 2095, 2054, 1828, 1370, 1327, 114
	Amycolatopsis	700	Index([22441, 31953, 2101, 30456, 9415, 2052	[146, 117, 98, 92, 70, 55, 54, 53, 46, 44, 35,
In [21]:	taxonomy_7_res	ults.head()		
Out[21]:		gcf_count_unique	gcf_index	gcf_count
	Streptomyces	3363	Index([9710, 3703, 15483, 1951, 12708, 88	[3939, 2396, 1600, 1481, 1455, 1370, 1364, 115
		2253	Index([1128, 9710, 3703, 710, 15483, 1519	[506, 394, 312, 236, 236, 191, 190, 184, 176,
	Pseudomonas_E	694	Index([5326, 21034, 1128, 12881, 17004, 151	[4129, 3434, 2899, 2045, 1874, 1517, 1483, 146
	Nocardia	669	Index([9710, 15483, 3703, 1128, 5284, 1121	[602, 297, 267, 244, 175, 163, 158, 154, 133,
	Amycolatopsis	487	Index([9710, 19820, 15483, 3703, 1951, 651	[232, 163, 135, 129, 100, 90, 70, 65, 63, 54,

END OF ADDITIONAL EFFORTS

```
In [22]: # thresholds_4_gcfs: np.ndarray = np.array(STable2.gcf_id.unique())
    # thresholds_5_gcfs: np.ndarray = np.array(STable3.gcf_id.unique())
    # thresholds_6_gcfs: np.ndarray = np.array(STable4.gcf_id.unique())
    # thresholds_7_gcfs: np.ndarray = np.array(STable5.gcf_id.unique())
    # bgc_ids: DataFrame = STable1.bgc_ids.str.split(",", expand=True)
    # bgc_ids = (bgc_ids.apply(pd.to_numeric, downcast="unsigned"))
    # bgc_ids[["dataset_name", "AccNo", "taxonomy"]] = STable1[["dataset_name",
```

```
# STable2["bgc_id"] = STable2["bgc_id"].astype(np.int64)
# STable2.index = STable2["bgc_id"]
# STable2["taxonomy"] = ""
# from pandarallel import pandarallel
# import os
# pandarallel.initialize(nb_workers=os.cpu_count())
# def add_taxonomy_to_table(gcfs_array: np.ndarray, stable: DataFrame) -> No
      # print(type(gcfs_array))
      # print(gcfs array[5])
      for gcf in gcfs_array:
#
          # print(f"gcf{gcf}\n")
#
          bgc_ids_of_gcf: np.ndarray = np.array(STable2[STable2.gcf_id == gc
          for bgc_id in bgc_ids_of_gcf:
#
              # print(f"bgc_id{bgc_id}\n")
              # print(f"type(bgc_id{type(bgc_id)}\n")
#
#
              bgc_tax = bgc_ids[bgc_ids.eq(bgc_id).any(axis="columns")]["tax
              stable.loc[bgc_id, "taxonomy"] = bgc_tax
#add_taxonomy_to_table = np.vectorize(add_taxonomy_to_table)
#add_taxonomy_to_table(gcfs_array = thresholds_4_gcfs[-10:], stable = STable
```