22.6115, 6.6515,8.6137

Practice problem Set Solution (#8) 1) The collision operator in Landau form is: 2) C(t, ts) = 2Te 4las Vs. [div (g2 I- gg) ・(からなしむちゃーかまでいま)」 and so has the form $C(f,f_0) = \sqrt{\nabla v} \cdot \left[\int_{\overline{g}^2}^{2} \frac{1}{g^2} \right]$ where $\overline{g} = \overline{v} - \overline{v}$; See the last page for roughelpful vector a) Particle conservation: $\frac{2}{2}$ tensor identifies! the lassest way to do this is to vecagize that since forms)=0

Solv To (anythings) = 0 always! Since the flux (i.e. Tv; divergence theorem) at -00 and 00 has to be zero by definition! hence, Sdir C(ff) = 0 (for both like)
ie. swa 2a) b) Momentum Conservation: F= Jolov mor C(f, f,) where fx=fx(2) & f=fx(2)

16) Court

F= Sdirmo [Va. [---]

Integrating by Parts,

mr.fdovilo---]

 $+m \int_{\mathbb{R}} \int d^3v \left[--- \right] \cdot \nabla_v \vec{v} = m \int_{\mathbb{R}} \int d^3v \nabla_v \cdot \vec{v} \left[-- \right]$

msplowor Vv. [---] = -msplow [---]· Vv.

SO,

 $\vec{F} = -m \int d v \left[\int \frac{d v}{g^3} (g^2 \vec{J} - \vec{g} \vec{g}) \cdot (m_0 f_0 \vec{v}_0 \cdot f_0 - m_0 f_0 \vec{v}_0 \cdot f_0) \right]$

 $\vec{F}_{ab} - m \int \int \frac{d^3v d^3v' (g^2 \vec{I} - \vec{g}\vec{g}) \cdot (m_{p} f_{p} \vec{\nabla} v' f_{p})}{g^3} - \int \frac{d^3v d^3v' (g^2 \vec{I} - \vec{g}\vec{g}) \cdot (m_{p} f_{p} \vec{\nabla} v' f_{p})}{g^3} \cdot (m_{p} f_{p} \vec{\nabla} v' f_{p}) \right\}$

 $f_{\alpha}(v) = f_{\beta}(v)$ b) Cont -> For like Collinsions (one spieces) ma = mb, interchange U and U' in the 1st term in F (since fx & fb are the same f except one depends on to & the other on T') (ie. T & T' are dunny) Fix (| do do (g2 I-gg). (mata To fa) then, we've - fdo do (g2 I-gg). (ma fa Vor f(v)) conservation of momentum. for one spices. → For Two spices/ un-like collusions We need FXB + FBX = 0 Fup = - ma [up) [div div (g2]- gg) · (mpf Du fa - ma fa Tu fs)} Here, f(U) & fo(U) are two different distributions; Hence, we can't just swith U & U' like we did above. (i.e. $f(v) \neq f_{\beta}(v)$) $F_{\beta\alpha} = -m_{\beta}/\beta_{\alpha} \left\{ \int \frac{dv}{g^{3}} dv \left(g^{2} \bar{I} - \bar{g}\bar{g}\right) \right\}$ · (mafatos for moto Testa)} Fig + Fox = 0 Conservation of mimentume for 2-spices!

C) Every Consentation

$$W_{d\beta} = \int d^{3}v \int_{2} m_{\alpha} v^{2} C_{\alpha\beta}$$

$$= \int d^{3}v \frac{m_{\alpha}}{2} v^{2} \Gamma_{\alpha\beta} \vec{\nabla}_{v} \cdot \begin{bmatrix} -\cdots \end{bmatrix}$$

$$V_{n} \text{tegrating by parts},$$

$$\int \frac{m_{\alpha}v^{2}}{2} \Gamma_{\alpha\beta} \vec{\nabla}_{v} \cdot \begin{bmatrix} -\cdots \end{bmatrix} + \int \frac{m_{\alpha}}{2} \begin{bmatrix} -\cdots \end{bmatrix} \Gamma_{\alpha\beta} \vec{\nabla}_{v} v^{2}$$

$$= \int d^{3}v \frac{m_{\alpha}}{2} \Gamma_{\alpha\beta} \vec{\nabla}_{v} \cdot (v^{2} \begin{bmatrix} -\cdots \end{bmatrix})$$

$$V_{o} \text{ since } \int d^{3}v \vec{\nabla}_{v} \cdot (v^{2} d^{3}v) \vec{\nabla}_{v} \cdot (v^{2} d^{3}v$$

then Wap = - I Ma [---] Tap. Vo 52 do

Was = - (mx(v.[---]) [as div

 $W_{\alpha\beta} = -\Gamma_{\alpha\beta} m_{\alpha} \int \frac{\vec{v}}{g^{2}} (g^{2}\vec{I} - \vec{g}\vec{g}) \cdot (m_{\beta} f_{\beta} \vec{v}_{v} f_{\alpha} - m_{\alpha} f_{\alpha} \vec{v}_{v} f_{\beta})$ $d^{3} \vec{v} d^{3} \vec{v} d^{3} \vec{v}$

7 like collisions (i.e. one spices, facu)=facu) MB= MX Interchange v & 20 in both terms in Was take 1 sum of original & interchange Was and use (2-5.). (g2 I-gg)=0

Was=- Tap Ma / 15'. (g2 I-gg). (m2 fa Vor fa-msta Vor fa) (Interchange U & v', okay since fx = fo)

Again,
$$W_{AB} = W_{AB} = W_{$$

→ 2 spieces; un-like collisions We want Waß + WBz = 0

 $\begin{aligned}
\omega_{\alpha\beta} &= -\Gamma_{\alpha\beta} m_{\alpha} \int \frac{\vec{v}}{g^{3}} (g^{3}\vec{L} - g\vec{g}) \cdot (m_{\alpha} f_{\alpha} \vec{v}_{\alpha} f_{\alpha} - m_{\alpha} f_{\alpha} \vec{v}_{\alpha} f_{\beta}) \\
\omega_{\beta\alpha} &= -\Gamma_{\beta\alpha} m_{\beta} \int \frac{\vec{v}}{g^{3}} \cdot (g^{3}\vec{L} - g\vec{g}) \cdot (m_{\alpha} f_{\alpha} \vec{v}_{\alpha} f_{\beta} - m_{\beta} f_{\beta} \vec{v}_{\alpha} f_{\alpha}) \\
&- m_{\beta} f_{\beta} \vec{v}_{\alpha} f_{\alpha}
\end{aligned}$

Hence, since $M_{\nu} \Gamma_{\alpha\beta} = \Gamma_{\beta\alpha} M_{\beta}$ $W_{\alpha\beta} + W_{\beta\alpha} \propto \int (\vec{v} - \vec{v}') \cdot (q^2 \vec{I} - \vec{q} \vec{q}') \cdot (---)$

Was + WBX = 0, and Energy is Conseved for 2 spices!

3) From the kinetic equation,

$$\frac{\partial f_e}{\partial t} + \vec{v} \cdot \frac{\partial}{\partial t} f_e - \frac{e}{m} (\vec{E} + f\vec{v} \times \vec{B}) \cdot \frac{\partial}{\partial t} f_e = Ce(f_e)$$

No spectial Mo fields

Variation

Now, assume
$$f_e = f_e^{max}$$
 & $f_i = f_i^{max}$ (but defferent)

$$\int d^3v \frac{1}{2} mev^2 \frac{\partial fe^m}{\partial t} \int d^3v \frac{1}{2} mev^2 Ce(fe^m)$$

$$= \frac{\partial}{\partial t} \frac{3}{2} n_e Te = \int d^3v \frac{1}{2} mev^2 Ce(fe^m)$$

$$C_{e}(f_{e}) \stackrel{\sim}{=} C_{e}(f_{e}) + C_{e}^{=}(f_{e}) = 1_{e} \frac{M_{e}}{2m_{i}} v_{e}^{3} \left[\frac{1}{v^{2}} \frac{\partial}{\partial v} + \frac{1}{m_{e}v^{2}} \frac{\partial}{\partial v} \left(\frac{1}{v} \left(\frac{\partial v}{\partial v} \right) \right] f_{e}^{m}$$
since isotropia
$$+ \frac{T_{i}}{m_{e}v^{2}} \frac{\partial}{\partial v} \left(\frac{1}{v} \left(\frac{\partial v}{\partial v} \right) \right] f_{e}^{m}$$
drifts

$$\frac{\partial f_e^m}{\partial v} = -\frac{2v}{v_e^2} A e^{-\frac{v^2}{v_{e^2}}} = -\frac{2v}{v_e^2} f_{em}$$

$$\frac{\partial}{\partial v} \left(\frac{1}{v} \left(\frac{\partial f_e^m}{\partial v} \right) \right) = \frac{1}{v} \left(-\frac{2}{v^2} A e^{\frac{v^2}{v^2}} \right) = \frac{4v}{v^2} A e^{\frac{v^2}{v^2}}$$

then,

=
$$\int dv \frac{1}{2} mev^2 \frac{1}{2mi} \left[\frac{4T_i}{mevve} - \frac{2ve}{v} \right] fe^m$$

=
$$\int dv \int \frac{me^2 Vei}{4 m_i} \left[\frac{4 T_i v}{me ve} - 2 ve v \right] fe^{m}$$

$$= A \frac{me^2 lei}{m_i} \left[\frac{T_i}{meve} - \frac{ve}{2} \right] 4\pi \frac{\Gamma(2)}{2(\sqrt{ve^2})}$$

=
$$\frac{21}{(2\pi)^{3/2}} \frac{\text{Me}^2}{\text{m}_i} \frac{\text{De}i}{\text{me}} \left[\frac{\text{Ti}}{\text{me}} - \frac{\text{De}i}{2} \right] \frac{4\pi}{2}$$

3) Cont
Henre,
Henre,

$$\frac{2}{2}$$
 3 Ne Te = $\frac{n}{(2\pi)^{3/2}}$ Me Ibi $[T_i - \frac{\text{Mele}^2}{2}] 2\frac{4\pi}{2}$

temperature equilebration!

Relative rate of angle scattering vs.

Course 22.616

Vector Manipulations Sept. 6, 2001

P. J. Catto

If you keep track of the \cdot 's, \times 's, and what the ∇ 's operate on then you normally only have to remember the "bac-cab" identity:

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} \vec{a} \cdot \vec{c} - \vec{c} \vec{a} \cdot \vec{b}$$

Sheet Sheet !

Examples:

- $\nabla \cdot (S\vec{V}) = \vec{V} \cdot \nabla S + S\nabla \cdot \vec{V}$ (1)(∇ operates on both S and \vec{V} , and ∇ and \vec{V} dot)
- $\nabla(\vec{a}\cdot\vec{b}) = \nabla\vec{a}\cdot\vec{b} + \nabla\vec{b}\cdot\vec{a}$ (2) $(\nabla \text{ operates on both } \vec{a} \text{ and } \vec{b}, \text{ and } \vec{a} \text{ and } \vec{b} \text{ dot})$
- $\vec{a} \times (\nabla \times \vec{c}) = (\nabla \vec{c}) \cdot \vec{a} \vec{a} \cdot \nabla \vec{c} = \nabla \vec{c} \cdot \vec{a} \vec{a} \cdot \nabla \vec{c}$ (3) $(\nabla \text{ only operates on } \vec{c}, \text{ first term must be in the } \nabla \text{ "direction" with}$ dot between \vec{a} and \vec{c} , and the second must be in the \vec{c} direction with dot between \vec{a} and ∇)
- $\nabla \times (\vec{b} \times \vec{c}) = \nabla \cdot (\vec{c} \vec{b}) \nabla \cdot (\vec{b} \vec{c}) = \vec{b} \nabla \cdot \vec{c} + \vec{c} \cdot \nabla \vec{b} \vec{c} \nabla \cdot \vec{b} \vec{b} \cdot \nabla \vec{c}$ (4) $(\nabla \text{ operates on both } \vec{b} \text{ and } \vec{c}, \text{ first term must be in the } \vec{b} \text{ "direction"}$ with dot between ∇ and \vec{c} , and the second must be in the \vec{c} direction with dot between ∇ and \vec{b})

More examples in velocity space: Consider $g \equiv |\vec{g}| \equiv (\vec{g} \cdot \vec{g})^{1/2}$ then

$$\begin{split} \nabla_{\mathbf{g}} \vec{\mathbf{g}} &= \vec{\mathbf{I}} \qquad \nabla_{\mathbf{g}} \cdot \vec{\mathbf{g}} = \nabla_{\mathbf{g}} \vec{\mathbf{g}} \colon \vec{\mathbf{I}} = \vec{\mathbf{I}} \colon \nabla_{\mathbf{g}} \vec{\mathbf{g}} = 3 \\ \nabla_{\mathbf{g}} \mathbf{g} &= \nabla_{\mathbf{g}} (\vec{\mathbf{g}} \cdot \vec{\mathbf{g}})^{1/2} = \vec{\mathbf{g}} / \mathbf{g} \qquad \nabla_{\mathbf{g}} (1/\mathbf{g}) = -\vec{\mathbf{g}} / \mathbf{g}^3 \\ \nabla_{\mathbf{g}} \cdot (\mathbf{g}^2 \vec{\mathbf{I}}) &= \nabla_{\mathbf{g}} \mathbf{g}^2 = 2 \vec{\mathbf{g}} \\ \nabla_{\mathbf{g}} \nabla_{\mathbf{g}} \mathbf{g} &= \nabla_{\mathbf{g}} (\vec{\mathbf{g}} / \mathbf{g}) = \mathbf{g}^{-1} \nabla_{\mathbf{g}} \vec{\mathbf{g}} - \mathbf{g}^{-2} (\nabla_{\mathbf{g}} \mathbf{g}) \vec{\mathbf{g}} = \mathbf{g}^{-3} (\mathbf{g}^2 \vec{\mathbf{I}} - \vec{\mathbf{g}} \vec{\mathbf{g}}) \\ \nabla_{\mathbf{g}} \cdot \nabla_{\mathbf{g}} \mathbf{g} &= \nabla_{\mathbf{g}}^2 \mathbf{g} = \mathbf{g}^{-1} \nabla_{\mathbf{g}} \cdot \vec{\mathbf{g}} - \mathbf{g}^{-2} \vec{\mathbf{g}} \cdot \nabla_{\mathbf{g}} \mathbf{g} = 2 / \mathbf{g} \\ \nabla_{\mathbf{g}} \cdot \nabla_{\mathbf{g}} \nabla_{\mathbf{g}} \mathbf{g} &= \nabla_{\mathbf{g}}^{-3} \nabla_{\mathbf{g}} \cdot (\mathbf{g}^2 \vec{\mathbf{I}} - \vec{\mathbf{g}} \vec{\mathbf{g}}) = \mathbf{g}^{-3} (2 \vec{\mathbf{g}} - 3 \vec{\mathbf{g}} - \vec{\mathbf{g}}) = -2 \vec{\mathbf{g}} / \mathbf{g}^3 \\ \text{note} \quad \vec{\mathbf{g}} \cdot (\mathbf{g}^2 \vec{\mathbf{I}} - \vec{\mathbf{g}} \vec{\mathbf{g}}) &= (\mathbf{g}^2 \vec{\mathbf{I}} - \vec{\mathbf{g}} \vec{\mathbf{g}}) \cdot \vec{\mathbf{g}} = 0 \end{split}$$