ОСНОВЫ ПРОГРАММИРОВАНИЯ СИСТЕМ УПРАВЛЕНИЯ

Устройство УРТК

Состав УРТК:

- Манипуляционый робот.
- Рабочий орган.
- Блок управления.
- ПК

Манипуляционный робот с РО

УРТK

Блок управления

Кинематические схемы УРТК.

Кинематическая схема— это схема, на которой показана последовательность передачи движения от двигателя через передаточный механизм к рабочим органам машины

Прямоугольная система координат.

Цилиндрическая система координат.

Мехатронные модули УРТК

Мехатронные модули УРТК:

- Модуль линейного перемещения.
- Модуль вращения.
- Модуль смены рабочего органа.

Модуль вращения.

Модуль с рабочим органом.

Модули линейного перемещения.

Устройство схвата.

Конструкция схвата:

- Электромагнит
 - Обмотка электромагнита.
 - Шток электромагнита
- Пружина
- Губки схвата

Конструкция захватного устройства.

Общий вид захватного устройства.

Соленоид.

Соленоид – это катушка индуктивности в виде намотанного на цилиндрическую поверхность изолированного проводника, по которому течёт электрический ток. Электрический ток в обмотке создает в окружающем пространстве магнитное поле соленоида.

Схематическое изображение.

Компьютерная модель.

Электромагнит.

Электромагнит — это устройство, состоящее из токопроводящей обмотки и ферромагнитного сердечника, который намагничивается при прохождении по обмотке электрического тока.

Мехатронный модуль.

Состав мехатронного модуля:

- Двигатель.
- Датчики начального и конечного положения.
- Инкрементный датчик (датчик положения).
- Передача.
- Подвижная платформа.

Длина L пути платформы – 290/390мм (в зависимости от ММ)

Мехатронный модуль линейного перемещения.

Прямая ременная передача.

Концевые датчики.

Герко́н (акроним от «герметизированный контакт») — электромеханическое коммутационное устройство, изменяющее состояние подключённой электрической цепи при воздействии магнитного поля от постоянного или внешнего электромагнита.

Нормально разомкнутый геркон

Переключающий геркон

Геркон

Геркон, принцип действия.

Геркон, внешний вид.

Инкрементный датчик (датчик положения).

Мехатронный модуль с инкрементным датчиком.

Устройство инкрементного датчика.

Усовершенствованный инкрементный датчик.

Инкрементный датчик. Временная диаграмма.

Временная диаграмма работы датчиков положения (изменения скорости вращения).

Временная диаграмма работы датчиков положения (изменения направления вращения).

Частота импульсов:

Скорость вращения вала двигателя 120 об/мин. Количество прорезей в диске датчика 6шт.

Частота импульсов=?

Уровни системы управления УРТК.

Верхний

•ПЭВМ с программным обеспечением.

Нижний

•Блок управления.

Блок управления.

Порт Centronics.

IEEE 1284, LPT (*Line Print Terminαl*) — международный стандарт параллельного интерфейса для подключения периферийных устройств персонального компьютера.

25-контактный разъём DB-25, используемый как LPTпорт на персональных компьютерах (IEEE 1284-A)

Режимы обмена данными.

- Compatibility Mode однонаправленный вывод по протоколу Centronics, который полностью соответствует стандартному порту SPP (Standard Parallel Port).
- EPP (Enhanced Parallel Port) Mode двунаправленный обмен данными, при котором управляющие сигналы интерфейса генерируются аппаратно во время цикла обращения к порту (чтения или записи в порт).
- ECP (Extended Capability Port) Mode двунаправленный обмен с возможностью аппаратного сжатия данных по методу RLE (Run Length Encoding), использования FIFO-буферов и режима прямого доступа в память DMA.

Характеристики стандартного LPT порта.

• Шина данных.

8 бит

• Шина сигналов состояния.

5 бит

• Шина управляющих сигналов.

4 бит

• Скорость передачи данных.

1.2 мбит/с

Упрощенная таблица сигналов интерфейса Centronics.

Контакты DB-25 IEEE 1284-A	Контакты Centronics IEEE 1284-B	Обозначение	Примечание	Функция
1	1	Strobe	Маркер цикла передачи (выход)	Управление
2	2	Data o	Сигнал о (выход)	Данные
3	3	Data 1	Сигнал 1 (выход)	Данные
4	4	Data 2	Сигнал 2 (выход)	Данные
5	5	Data 3	Сигнал 3 (выход)	Данные
6	6	Data 4	Сигнал 4 (выход)	Данные
7	7	Data 5	Сигнал 5 (выход)	Данные
8	8	Data 6	Сигнал 6 (выход)	Данные
9	9	Data 7	Сигнал 7 (выход)	Данные
10	10	Acknowledge	Готовность принять (вход)	Состояние
11	11	Busy	Занят (вход)	Состояние
12	12	Paper End	Нет бумаги (вход)	Состояние
13	13	Select	Выбор (вход)	Состояние
14	14	Auto Feed	Автоподача (выход)	Управление
15	32	Error	Ошибка (вход)	Состояние
16	31	Init	Инициализация (выход)	Управление
17	36	Select In	Управление печатью (выход)	Управление
18-25	16-17, 19-30	GND	Общий	Земля

Логическая структура интерфейса Centronics.

Режимы передачи данных.

- Симплекс (Simplex) режим передачи данных, при котором передача ведется только в одном направлении по общему каналу связи. Передача в обратном направлении физически невозможна.
- Полудуплекс (Half Duplex) режим передачи данных, при котором передача между устройствами ведется по общему каналу связи в любом направлении, но с разделением по времени.
- Полный дуплекс (Full Duplex) режим передачи данных, при котором передача данных может вестись одновременно в двух направлениях по разным подканалам связи.

Интерфейс.

Интерфейс — это совокупность унифицированных аппаратных, программных и конструктивных средств, необходимых для реализации взаимодействия различных функциональных элементов в системах при условиях, предписанных стандартом и направленных на обеспечение информационной, электрической и конструктивной совместимости указанных элементов.

Функции и адреса портов Centronics.

Адреса параллельного порта:

Базовый адрес	Регистр данных
Базовый адрес +1	Регистр состояния
Базовый адрес +2	Регистр управления

Адреса портов параллельного интерфейса:

Регистр	Порт LPTo	Порт LPT1
данных	378h	278h
управления	₃₇ Ah	27Ah

Блок управления.

Устройство сопряжения — это комплекс аппаратно-программных средств, реализующий взаимодействие ЭВМ с периферийными устройствами.

Модуль процессора позволяет управлять:

- Шестью реверсивными мехатронными модулями (степени продольного, поперечного или вертикального перемещения робота);
- Тремя нереверсивными мехатронными модулями (захватное или фрезерное устройство).

Структурная схема системы управления.

БОД – блок обработки датчиков.

БУИУ – блок управления исполнительными устройствами.

Функции модулей блока управления.

- Модуль процессора микроконтроллера выполняет обмен данными с ПЭВМ, модулем управления, модулем индикации; обрабатывает сигналы с пульта управления и с клавиатуры; посылает управляющие команды модулю индикации и модулю управления.
- Модуль управления производит первичную обработку состояния датчиков и обеспечивает подачу напряжения на двигатели робота.
- Модуль индикации выполняет обработку элементов управления, расположенных на передней панели блока управления: светодиодной панели, кнопок сброса СУ и управления цепями высокого напряжения питания.
- Блок питания является источником питания для слаботочных схем всех модулей (логических схем) и для сильноточных схем исполнительных устройств робота (двигатели и электромагнитные реле).

Исполнительные устройства УРТК.

Двигатели, перемещающие степени робота;

Обмотки возбуждения двигателей;

Захватное и фрезерное устройства;

Резервный канал СУ.

Структурная схема блока управления ИИ в БУ УРТК.

УМДо-УМД5 – усилители мощности двигателей o-5.

УМОВ – усилитель мощности обмоток возбуждения двигателей.

УМЗ – усилитель мощности захватного устройства.

УМФ – усилитель мощности устройства фрезеровки.

Функции узла управления двигателями.

- Принимает команды от модуля процессора и сигналы состояния концевых датчиков положения.
- Проверяет состояние концевых датчиков положения данной степени.
- Подает сигнал на соответствующий усилитель мощности.
- Выключает двигатель при поступлении сигнала о достижении одного из концевых датчиков.
- Подает напряжение на обмотки возбуждения двигателей.
- Осуществляет включение захватного устройства и устройства фрезеровки.

Гальваническая развязка.

Гальваническая развязка — передача энергии или информационного сигнала между электрическими цепями, не имеющими непосредственного электрического контакта между ними.

Виды гальванических развязок:

- Трансформаторные.
- Оптоэлектронные.
- Акустические.
- Радиоканалы.
- Звуковые.
- Емкостные.
- Механические.

Трансформаторная развязка:

Оптрон:

Узел управления двигателями.

Число линий шины сопряжения УУД и УГР - 16 разрядов.

На каждый УМД приходит 2 разряда управления.

Высокий уровень напряжения (логическая единица) на каждом из разрядов обеспечивает вращение двигателя в соответствующем направлении.

Низкий уровень напряжения (логический ноль) на обоих разрядах при отсутствии напряжения на обмотке — двигатель останавливается.

Высокий уровень напряжения на обоих разрядах — двигатель неподвижен.

Передняя панель блока управления.

Задняя панель блока управления.

