Теория и реализация языков программирования.

Задание 4: Замкнутость регулярных языков, теорема Майхилла-Нероуда и минимальные автоматы

Сергей Володин, 272 гр. задано 2013.09.25

Упражнение 1

Задача 1

Задача 2

Задача 3

Задача 4

1. $\Sigma = \{0, 1\}$. Докажем, что L(A) = L, $L = \{w \mid |w|_1 = 2t, t \in \mathbb{Z}\}$, ДКА A:

Докажем утверждение $P(n) = [\forall w \in \Sigma^* : |w| = n \hookrightarrow (q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2)].$

- (a) Докажем P(0). Поскольку $|w|=0 \Rightarrow w=\varepsilon$, $P(0)=\left[q_0 \stackrel{\varepsilon}{\longrightarrow} q_i \Rightarrow i=|\varepsilon|_1 \mod 2\right]$. Поскольку $\delta(q_0,\varepsilon)=q_{\underline{0}}$, и $\underline{0}=|\varepsilon|_1$, получаем P(0)
- (b) Пусть доказано P(n), докажем P(n+1). $P(n) = \left[\forall w \in \Sigma^* \colon |w| = n \hookrightarrow \left(q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2 \right) \right]$. Фиксируем $w \in \Sigma^*, |w| = n+1, w = w_0 \sigma, |w_0| = n, |\sigma| = 1$. \mathcal{A} полный $\Rightarrow (q_0, w) \equiv (q_0, w_0 \sigma) \vdash^* (q_i, \sigma) \vdash (q_j, \varepsilon)$. $|w_0| = n \overset{P(n)}{\Rightarrow} i = |w_0|_1 \mod 2$. $i \in \{0, 1\}, \sigma \in \{0, 1\}$ \Rightarrow рассмотрим четыре случая:
 - a. $(i = 0, \sigma = 0)$. $(q_0, w_0 0) \vdash^* (q_0, 0) \vdash (q_0, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_0 \Rightarrow j = 0$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |0|_1 \mod 2 = 0 + 0 = 0 \Rightarrow 0 = j = |w|_1 \mod 2 = 0$.
 - b. $(i = 0, \sigma = 1)$. $(q_0, w_0 1) \vdash^* (q_0, 1) \vdash (q_1, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_1 \Rightarrow j = 1$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |1|_1 \mod 2 = 0 + 1 = 1 \Rightarrow 1 = j = |w|_1 \mod 2 = 1$.
 - c. $(i = 1, \sigma = 0)$. $(q_0, w_0 0) \vdash^* (q_1, 0) \vdash (q_1, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_1 \Rightarrow j = 1$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |0|_1 \mod 2 = 1 + 0 = 1 \Rightarrow 1 = j = |w|_1 \mod 2 = 1$.
 - d. $(i = 1, \sigma = 1)$. $(q_0, w_0 1) \vdash^* (q_1, 1) \vdash (q_0, \varepsilon) \Rightarrow q_0 \xrightarrow{w} q_0 \Rightarrow j = 0$. $|w|_1 \mod 2 = |w_0|_1 \mod 2 + |1|_1 \mod 2 = (1+1) \mod 2 = 0$.

Таким образом, $\forall n \in \mathbb{N} \cup \{0\} \hookrightarrow P(n) \Rightarrow \forall n \in \mathbb{N} \cup \{0\} \hookrightarrow \left[\forall w \in \Sigma^* : |w| = n \hookrightarrow \left(q_0 \xrightarrow{w} q_i \Rightarrow i = |w|_1 \mod 2\right)\right] \Rightarrow \forall w \in \Sigma^* \hookrightarrow q_0 \xrightarrow{w} q_{|w|_1 \mod 2}.$ Пусть $w \in L \Leftrightarrow |w|_1 \mod 2 = 0 \Leftrightarrow q_0 \xrightarrow{w} q_0 \Leftrightarrow w \in L(\mathcal{A})$

Задача 5

Задача 6