ALEKS: Jeremiah Gaertner 12/4/12 8:16 AM

Search

Go

DICTIONARY | CLOSE WINDOW

Expectation

Noun. (Probability.)

The *expectation* (or *mean* , or *expected value*) of a <u>random variable</u> is the mean of the <u>probability distribution</u> of the random variable.

So, for a discrete random variable, the expectation is a <u>weighted mean</u> of the values that the variable may take on, with the weights being the probabilities.

Just as the mean of a probability distribution is a measure of central tendency for the distribution, the expectation of a random variable is a measure of the central tendency of the values that the random variable takes on.

The expectation of the random variable X is usually denoted by E(X).

Example 1:

Let D be the random variable giving the number obtained when a fair die is rolled. We specify the probability distribution of D in the table below, which contains the possible values of D and the probabilities that D takes on those values:

Value of D	1	2	Э	4	5	60
Probability	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

So

$$E(D) = (1)\left(\frac{1}{6}\right) + (2)\left(\frac{1}{6}\right) + (3)\left(\frac{1}{6}\right) + (4)\left(\frac{1}{6}\right) + (5)\left(\frac{1}{6}\right) + (6)\left(\frac{1}{6}\right) = 3.5.$$

Note a couple of things about this particular expectation. First, it is not a possible value of D. (It is impossible to obtain a 3.5 in a roll of a die.) This is not a problem, and in fact it motivates the idea of using the term *expectation* rather than *expected value*, since the expectation may not be a value that the random variable takes on. Second, the expectation in this case is equal to the <u>arithmetic mean</u> of the possible values of D, that is, the arithmetic mean of 0, 1, 2, 3, 4, 5, and 6. This is because D takes each of these values with equal probability.

ALEKS: Jeremiah Gaertner 12/4/12 8:16 AM

Example 2:

Let S be the random variable giving the sum of the numbers when two, fair dice are rolled. The probability distribution of S is given in the table below, which contains the possible values of S and the probabilities that S takes on those values:

Value of S	2	3	4	5	6	7	8	9	10	11	12
Probability	$\frac{1}{36}$	$\frac{2}{36}$	36	$\frac{4}{36}$	5 36	6 36	5 36	$\frac{4}{36}$	36	2 36	1 36

So

$$E(S) = (2)\left(\frac{1}{36}\right) + (3)\left(\frac{2}{36}\right) + (4)\left(\frac{3}{36}\right) + (5)\left(\frac{4}{36}\right) + (6)\left(\frac{5}{36}\right) + (7)\left(\frac{6}{36}\right) + (8)\left(\frac{5}{36}\right) + (9)\left(\frac{4}{36}\right) + (10)\left(\frac{3}{36}\right) + (11)\left(\frac{2}{36}\right) + (12)\left(\frac{1}{36}\right) = 7.$$

Note that the expectation of the sum of the numbers on the dice is equal to the sum of the expectations of the numbers on the individual dice, that is,

$$7 = E(S) = E(D+D) = E(D) + E(D) = 3.5 + 3.5.$$

We have the following general definition.

Definition of expectation of a discrete random variable:

Suppose that the probability distribution of the discrete random variable X is given by the following table:

Value of X	\boldsymbol{x}_1	\boldsymbol{x}_2	x ₃		\mathbf{x}_{j}	:	x_{k}
Probability	$p_1^{}$	p_2	p_3	:	p_{j}	:	p_{k}

Then the *expectation* of X is given by

$$E(X) = x_1 p_1 + x_2 p_2 + x_3 p_3 + ... + x_k p_k = \sum_{i=1}^k x_i p_i$$

Properties of the expectation:

ALEKS: Jeremiah Gaertner 12/4/12 8:16 AM

• If *a* is a constant and *X* a random variable, then

$$E(a) = a$$

and

$$E(aX) = aE(X).$$

ullet If X and Y are two random variables (independent or not), then

$$E(X+Y) = E(X) + E(Y).$$

As a special case, for any constant a,

$$E(X+a) = E(X) + a.$$

ullet If X and Y are two independent random variables, then

$$E(XY) = E(X)E(Y).$$

See also:

Population mean