CAMS/EiR/CPR 2022/2023

Analysis and Control of Multi-Robot Systems

Introduction to the Course

Andrea Cristofaro

(Part of the slides by Paolo Robuffo Giordano)

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Organization

Lecturer:

Prof. Andrea Cristofaro

DIAG, Sapienza University of Rome cristofaro@diag.uniroma1.it http://www.diag.uniroma1.it/users/andrea%20cristofaro

Course Website:

https://classroom.google.com/c/NjAxOTkxMTlwODI3?cjc=csrnfum

Codice classroom: csrnfum

Schedule:

18/04/2022-25/05/2022, Tuesday 14:00-16:00 (A7), Thursday 09:00-13:00 (A4)

Exam:

group project (3 people) or individual report on a research article

Organization

- Goals of the course:
 - Provide some theoretical tools for analyzing and synthetizing cooperative behaviors in multi-robot systems
- Topics of the course:
 - Algebraic Graph theory
 - Decentralized Control and Estimation
 - Consensus-like protocols
 - Graph Connectivity and Graph Rigidity
 - Multi-consensus behaviours
 - Passivity Theory
 - Port-Hamiltonian modeling
 - Formation Control

Multi-Robot Systems

Multi-Robot Systems are systems composed of multiple interacting dynamic units.

biologically inspired...

shimmering of giant honeybees
Kastberger G, Schmelzer E, Kranner I (2008)
Social Waves in Giant Honeybees Repel
Hornets. PLoS ONE 3(9): e3141.

synchronizing fireflies
Buck, J and Buck, E
(1968) Mechanism of Rhythmic Synchronous Flashing of Fireflies.
Science 22 159(3821):1319-1327.

Multi-Robot Systems

Multi-Robot Systems are systems composed of multiple interacting dynamic units.

Synchronization

An agreement by multiple systems on a common state

Aldebaran Robotics, Shanghai Expo 2010 https://www.youtube.com/watch?v=uluRcIr N34

Coordination

Managing of multiple interacting systems to achieve a team objective

Multi-Robot Systems

Multi-Robot Systems are systems composed of multiple interacting dynamic units.

Semi-Autonomous Haptic Teleoperation Control Architecture of Multiple Unmanned Aerial Vehicles

D. J. Lee**, A. Franchi*, H. II Son*, H. H. Bülthoff*, P. Robuffo Giordano*

"Experiments with 4 quadrotor UAVs"

- Modeling of multi-robot systems
 - Dynamics
 - Interconnections
- Analysis of multi-robot systems
 - Stability and performance
 - Convergence
- Applications of multi-robot systems
 - Formation Control
 - Localization

- Graph Theory
 - Algebraic graph theory
- Consensus and Agreement Protocols
 - Undirected/directed communication
- Networks as Systems
 - Graph theory ⇔ System theory

- Exploit energy-based techniques:
 - passivity
 - port-Hamiltonian modeling
- Passivity:
 - general and powerful framework
 - linear/nonlinear setting
 - related to I/O stability
- Port-Hamiltonian modeling
 - approach to model interconnected systems
 - based on the "energy flows"
 - strong link with passivity
- Applications
 - formation control of UAVs
 - connectivity maintenance
 - navigation and exploration

Networked Dynamic Systems

Networked Dynamic Systems

Networked Dynamic Systems

- <u>Decentralization</u>: <u>limited</u> sensing/communication and/or computing power
- Every agent must elaborate the gathered information to run its local controller
- The controller complexity is related to the amount of needed information
- If the whole state is needed, the complexity (~ computing power) increases with the number of agents
 - May easily become infeasible

- In this example, no central unit is present
- Every agent has "its own brain"
- Relative communication and sensing depends on the current state
 - within some range
 - in visibility (no occlusions)

- The complexity of each agent controller doesn't depend on the number of agents
- Of course:
 - harder to design
 - harder to analyze
 - but closer to how nature works!

Passivity

- Passivity: intuitively, something that does not produce internal energy
- $\begin{array}{ll} \bullet & \text{A generic nonlinear system} \left\{ \begin{array}{l} \dot{x} & = & f(x) + g(x)u \\ y & = & h(x) \end{array} \right. \\ \text{is said to be passive if there exists a storage function} \end{array}$

$$V(x) \in \mathcal{C}^1 : \mathbb{R}^n \to \mathbb{R}^+$$

such that $\dot{V} \leq y^T u$ or equivalently

$$V(x(t)) \le V(x(t_0)) + \int_{t_0}^t y^T(s)u(s)ds$$

Current energy is at most equal to the initial energy + supplied energy from outside

This condition can be interpreted as "no internal generation of energy"

Passivity: Internal Structure

• An intuition: proper interconnections of passive systems are passive

- Is this a general fact?
- Can we reduce a passive system into the "proper interconnection" of atomic passive sub-systems?
- Is there a network structure behind passivity?
 - •... network structure -> multi-robot
 - •... network structure + passivity -> port-Hamiltonian Modeling