1 Data is generated from the exponetial distribution with density

$$f(y) = \lambda \exp(-\lambda y)$$
, where $\lambda, y > 0$.

(a) Show that it belongs to the exponential family distributions be indentifyting θ , $b(\theta)$, ϕ , $a(\phi)$ and $c(y;\phi)$.

An exponential family distribution can be written in the form

$$\exp\left\{\frac{y\theta-b(\theta)}{a(\phi)}+c(y;\phi)\right\}.$$

We write:

$$f(y|\lambda) = \exp(-\lambda y + \log \lambda)$$

and equate $\theta = -\lambda$, $b(\theta) = -\log \lambda = -\log(-\theta)$, (note that $\lambda > 0$, so $\theta < 0$), $\phi = 1$, $a(\phi) = 1$, $c(y;\phi) = 1$.

(b) What is the canonical link and variance functions for a GLM with the response following the exponential distribution?

The link function connects the linear predictor μ to the parameter θ in the exponential family distribution definition above. To find the canonical link, we want $\mu = E(Y) = b'(\theta)$. we find the first moment of y:

$$EY = \int_0^\infty \lambda y e^{-y} dy = \frac{1}{\lambda}$$

Note
$$b'(\theta) = \frac{-1}{\theta} = \frac{1}{\lambda} = \mu$$
 and $b''(\theta) = \frac{1}{\theta^2} = \frac{1}{\lambda^2} = \mu^2$

We write θ as a function of μ

$$\theta(\mu) = -\frac{1}{\mu}$$

 $b'^{-1}(\cdot)$ = negative inverse function.

Since $var(Y) = b''(\theta)a(\phi)$, and $a(\phi) = 1$, $var(Y) = b''(\theta) = \mu^2$.

(c) Is there any practical difficulty for using the canonical link in practice?

Especially in small samples, canoncial links have desirable properties. However, they may not be the best fit for a model (McCullagh and Nelder pg 32).

Note in this case that the exponential mean is restricted to positive values. However our μ is a linear combination of predictors. This does not guarantee a positive restriction on our estimates of the mean.

(d) Express the deviance as a function of y_i and fitted mean μ_i (i = 1, ..., n).

2 Data is generated from the exponetial distribution with density

$$f(y) = \lambda \exp(-\lambda y)$$
, where $\lambda, y > 0$.

Dabbish Methods HW 9 2

(a) Show that it belongs to the exponential family distributions be indentifyting θ , $\mathbf{b}(\theta)$, ϕ , $\mathbf{a}(\phi)$ and $\mathbf{c}(\mathbf{y};\phi)$.

An exponential family distribution can be written in the form

$$\exp\left\{\frac{y\theta-b(\theta)}{a(\phi)}+c(y;\phi)\right\}.$$

We write:

$$f(y|\lambda) = \exp(-\lambda y + \log \lambda)$$

and equate $\theta = -\lambda$, $b(\theta) = -\log \lambda = -\log(-\theta)$, (note that $\lambda > 0$, so $\theta < 0$), $\phi = 1$, $a(\phi) = 1$, $c(y;\phi) = 1$.

(b) What is the canonical link and variance functions for a GLM with the response following the exponential distribution?

The link function connects the linear predictor μ to the parameter θ in the exponential family distribution definition above. To find the canonical link, we want $\mu = E(Y) = b'(\theta)$. we find the first moment of y:

$$EY = \int_0^\infty \lambda y e^{-y} dy = \frac{1}{\lambda}$$
 Note $b'(\theta) = \frac{-1}{\theta} = \frac{1}{\lambda} = \mu$ and $b''(\theta) = \frac{1}{\theta^2} = \frac{1}{\lambda^2} = \mu^2$

We write θ as a function of μ

$$\theta(\mu) = -\frac{1}{\mu}$$

 $b'^{-1}(\cdot)$ = negative inverse function.

Since $var(Y) = b''(\theta)a(\phi)$, and $a(\phi) = 1$, $var(Y) = b''(\theta) = \mu^2$.

(c) Is there any practical difficulty for using the canonical link in practice?

Especially in small samples, canoncial links have desirable properties. However, they may not be the best fit for a model (McCullagh and Nelder pg 32).

Note in this case that the exponential mean is restricted to positive values. However our μ is a linear combination of predictors. This does not guarantee a positive restriction on our estimates of the mean.

- (d) Express the deviance as a function of y_i and fitted mean μ_i (i = 1, ..., n).
- 3 Data is generated from the exponetial distribution with density

$$f(y) = \lambda \exp(-\lambda y)$$
, where $\lambda, y > 0$.

(a) Show that it belongs to the exponential family distributions be indentifyting θ , $b(\theta)$, ϕ , $a(\phi)$ and $c(y;\phi)$.

An exponential family distribution can be written in the form

$$\exp\left\{\frac{y\theta-b(\theta)}{a(\phi)}+c(y;\phi)\right\}.$$

We write:

$$f(y|\lambda) = \exp(-\lambda y + \log \lambda)$$

and equate $\theta = -\lambda$, $b(\theta) = -\log \lambda = -\log(-\theta)$, (note that $\lambda > 0$, so $\theta < 0$), $\phi = 1$, $a(\phi) = 1$, $c(y;\phi) = 1$.

Dabbish Methods HW 9 3

(b) What is the canonical link and variance functions for a GLM with the response following the exponential distribution?

The link function connects the linear predictor μ to the parameter θ in the exponential family distribution definition above. To find the canonical link, we want $\mu = E(Y) = b'(\theta)$. we find the first moment of y:

$$EY = \int_0^\infty \lambda y e^{-y} dy = \frac{1}{\lambda}$$
Note $b'(\theta) = \frac{-1}{\theta} = \frac{1}{\lambda} = \mu$ and $b''(\theta) = \frac{1}{\theta^2} = \frac{1}{\lambda^2} = \mu^2$

We write θ as a funcion of μ

$$\theta(\mu) = -\frac{1}{\mu}$$

 $b'^{-1}(\cdot)$ = negative inverse function.

Since $var(Y) = b''(\theta)a(\phi)$, and $a(\phi) = 1$, $var(Y) = b''(\theta) = \mu^2$.

(c) Is there any practical difficulty for using the canonical link in practice?

Especially in small samples, canoncial links have desirable properties. However, they may not be the best fit for a model (McCullagh and Nelder pg 32).

Note in this case that the exponential mean is restricted to positive values. However our μ is a linear combination of predictors. This does not guarantee a positive restriction on our estimates of the mean.

- (d) Express the deviance as a function of y_i and fitted mean μ_i (i = 1, ..., n).
- 4 Data is generated from the exponetial distribution with density

$$f(y) = \lambda \exp(-\lambda y)$$
, where $\lambda, y > 0$.

(a) Show that it belongs to the exponential family distributions be indentifyting θ , $b(\theta)$, ϕ , $a(\phi)$ and $c(y;\phi)$.

An exponential family distribution can be written in the form

$$\exp\left\{\frac{y\theta-b(\theta)}{a(\phi)}+c(y;\phi)\right\}.$$

We write:

$$f(y|\lambda) = \exp(-\lambda y + \log \lambda)$$

and equate $\theta = -\lambda$, $b(\theta) = -\log \lambda = -\log(-\theta)$, (note that $\lambda > 0$, so $\theta < 0$), $\phi = 1$, $a(\phi) = 1$, $c(y;\phi) = 1$.

(b) What is the canonical link and variance functions for a GLM with the response following the exponential distribution?

The link function connects the linear predictor μ to the parameter θ in the exponential family distribution definition above. To find the canonical link, we want $\mu = E(Y) = b'(\theta)$. we find the first moment of y:

$$EY = \int_0^\infty \lambda y e^{-y} dy = \frac{1}{\lambda}$$
 Note $b'(\theta) = \frac{-1}{\theta} = \frac{1}{\lambda} = \mu$ and $b''(\theta) = \frac{1}{\theta^2} = \frac{1}{\lambda^2} = \mu^2$

Dabbish Methods HW 9 4

We write θ as a funcion of μ

$$\theta(\mu) = -\frac{1}{\mu}$$

 $b'^{-1}(\cdot)$ = negative inverse function.

Since $var(Y) = b''(\theta)a(\phi)$, and $a(\phi) = 1$, $var(Y) = b''(\theta) = \mu^2$.

(c) Is there any practical difficulty for using the canonical link in practice?

Especially in small samples, canoncial links have desirable properties. However, they may not be the best fit for a model (McCullagh and Nelder pg 32).

Note in this case that the exponential mean is restricted to positive values. However our μ is a linear combination of predictors. This does not guarantee a positive restriction on our estimates of the mean.

(d) Express the deviance as a function of y_i and fitted mean μ_i (i = 1, ..., n).

We have scaled deviance given by

$$\frac{D(y;\hat{\mu})}{\phi} = 2\sum \frac{w_i}{\phi} \{ y_i(\widetilde{\theta_i} - \hat{\theta_i}) - b(\widetilde{\theta_i}) + b(\hat{\theta_i}) \}$$

with $a(\phi) = \phi/w$, $\tilde{\theta} = \theta(y)$ denoting the full model (n parameter) estimate of θ , and $\hat{\theta} = \theta(\hat{\mu})$ denoting the null model (one parameter) estimate of θ .

Evaluating for $b(\theta) = -\log(-\theta)$ and $\phi = 1$, $w_i = 1$ gives

$$D(y; \hat{\mu}) = 2\sum \left(y_i(\widetilde{\theta}_i - \hat{\theta}_i) + \log \left(\frac{\widetilde{\theta}_i}{\widehat{\theta}_i} \right) \right)$$

From above, we have that $\theta(\mu) = -\frac{1}{\mu}$. Evaluating for $\hat{\theta_i} = 1/\hat{mu_i}$ and $\tilde{\theta_i} = y_i$ gives

$$D(y; \hat{\mu}) = 2\sum \left(y_i(y_i - \hat{\mu}_i) + \log\left(\frac{\hat{\mu}_i}{v_i}\right)\right)$$