R (ADP)

5/18/23

Table of contents

Preface	3
1 Introduction	4
I ADP :	5
2 27 ADP	7
1.	8
2.	12
3.	15
4.	19
	22
3 Summary	23
References	24

Preface

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1 + 1

[1] 2

1 Introduction

This is a book created from markdown and executable code.

See Knuth (1984) for additional discussion of literate programming.

1.0.0.1

```
yardstick::metric_set()
```

Part I

ADP:

R ADP

2 27 ADP

1.

1.1. (EDA) .

Table 2.1: Data summary

Name	Piped data
Number of rows	1193
Number of columns	20
Key	NULL
Column type frequency:	
numeric	20
Group variables	None

Variable type: numeric

$skim_{\underline{}}$	_variahle_missingomplete_	_r ane an	sd	p0	p25	p50	p75	p100	hist
Time	0 1	91514.	.4947896.086	60.00	50265.00	81797.00	136995.0	0 72676.	00

skim_	_varia h le_missin g on	nplete_	_r ane an	sd	p0	p25	p50	p75	p100	hist
V1	0	1	-0.76	3.62	-	-1.30	-0.30	1.25	2.32	
					30.55					
V2	0	1	0.54	2.66	-	-0.44	0.23	1.11	19.17	
170	0	1	1 1 5	0.01	33.64	1 01	0.00	0.01	0.00	
V3	0	1	-1.15	3.91	31.10	-1.61	-0.23	0.81	3.32	
V4	0	1	0.78	2.35	31.10	-0.61	0.33	1.34	12.11	
V 1	O		0.10	2.00	4.29	0.01	0.00	1.01	12.11	
V5	0	1	-0.41	2.70	-	-0.84	-0.07	0.68	15.28	
					22.11					
V6	0	1	-0.28	1.51	-	-1.02	-0.38	0.30	6.27	
					10.89					
V7	0	1	-0.85	3.40	-	-0.81	-0.08	0.46	8.12	
170	0	1	0.15	0.47	37.06	0.00	0.07	0.45	90.01	
V8	0	1	0.15	2.47	- 37.35	-0.22	0.07	0.45	20.01	
V9	0	1	-0.45	1.66	- -	-1.04	-0.21	0.45	5.92	
• •	Ü		0.19	1.00	11.13	1.01	0.21	0.10	0.02	
V10	0	1	-0.90	2.90	_	-0.88	-0.23	0.29	7.14	
					23.23					
V11	0	1	0.66	1.96	-	-0.60	0.28	1.21	11.67	
					2.65					
V12	0	1	-1.01	3.00	-	-0.97	-0.01	0.51	3.11	
V13	0	1	0.01	1.01	17.23	-0.69	0.02	0.70	3.07	
V 13	U	1	0.01	1.01	2.80	-0.09	0.02	0.70	3.07	
V14	0	1	-1.17	3.23	2. 00	-0.95	-0.10	0.42	3.89	
	-				18.49					
V15	0	1	0.02	0.91	-	-0.55	0.05	0.66	2.87	
					4.50					
V16	0	1	-0.63	2.27	-	-0.70	-0.06	0.46	3.14	
T 7.1 =			1.0=	2.01	14.13	0.00	0.15	0.05	a = 1	
V17	0	1	-1.07	3.81	- 95 16	-0.68	-0.15	0.37	6.74	
Amou	unt 0	1	88.89	220.14	25.16 0.00	3.54	20.99	77.49	3335.73	
Class		1	0.17	0.37	0.00	0.00	0.00	0.00	1.00	
CIGOS	U	1	0.11	0.01	0.00	0.00	0.00	0.00	1.00	

:

• (numeric) , Class (factor)

• Class 1 16.7%

```
db_1a %>%
    # id
    mutate(id = row_number()) %>%
    # Wide-to-long
    pivot_longer(cols = !c(id, Class)) %>%
    ggplot(aes(x = as.factor(Class), y = value)) +
    geom_boxplot() +
    facet_wrap(name ~ ., scales = "free") +
    labs(x = "", y = "") +
    scale_y_continuous(labels = comma)
```


1.2.

db_1a %>% select(-c("Time", "Class")) %>%
 cor() %>% ggcorrplot(type = "lower", lab = TRUE, lab_size = 2)

V1-V3, V14-V17 0.75 .

2.

```
2.1.
           2
     PCA
             , MDS , t-SNE .
                                                                      t-SEN
               PCA
PCA
                 scree
  db_1b <- db_1a %>% select(-c("Time", "Class"))
  # PCA
           recipe
  rec <- recipe(~., data = db_1b) %>%
    step_center(all_predictors()) %>%
    step_scale(all_predictors()) %>%
    step_pca(all_predictors())
  # recipe ( )
  prep_rec <- prep(rec)</pre>
  # Scree
  sdev <- prep_rec$steps[[3]]$res$sdev</pre>
  percent_variation <- sdev^2 / sum(sdev^2)</pre>
  data.frame(PC=paste0("PC",1:length(sdev)),
                       var_explained=percent_variation,
                        stringsAsFactors = FALSE) %>%
    mutate(PC = fct_inorder(PC)) %>%
    ggplot(aes(x=PC,y=var_explained))+geom_col()
```


 $2 \qquad \qquad 1 \qquad \qquad . \qquad \qquad 2 \qquad .$

2 PCA

```
db_1b \leftarrow db_1a \%\% select(-c("Time", "Class"))
        recipe
# PCA
rec <- recipe(~., data = db_1b) %>%
  step_center(all_predictors()) %>%
  step_scale(all_predictors()) %>%
  step_pca(all_predictors(), num_comp = 2) #
prep_rec <- prep(rec)</pre>
tidy_rec <- tidy(prep_rec, number = 3)</pre>
tidy_rec %>%
  filter(component %in% paste0("PC", 1:2)) %>%
  mutate(component = fct_inorder(component)) %>%
  ggplot(aes(value, terms, fill = terms)) +
  geom_col(show.legend = FALSE) +
  facet_wrap(~component, nrow = 1) +
  labs(y = NULL, x = NULL) +
```

theme_bw()

3.

3.1.

: ,
: ,
: ,
: . Class 20 ,
table(db_1a\$Class)

0 1 993 200

3.2. 2

, 1) SMOTE 2) upsampling

```
db_1c <- db_1a[, -c("Time")]

# Recipe
rec <- recipe(Class ~ ., data = db_1c) %>%
    step_mutate(Class = as.factor(Class)) %>%
    step_center(all_predictors(), -all_outcomes()) %>%
    step_scale(all_predictors(), -all_outcomes()) %>%
    step_pca(all_predictors(), -all_outcomes(), num_comp = 2) # 2
```


, upsample SMOTE

3.3.

```
set.seed(2023)
  db_1c <- db_1a[, -c("Time")]</pre>
  # Recipe
  rec <- recipe(Class ~ ., data = db_1c) \%>%
    step_mutate(Class = as.factor(Class)) %>%
    step_center(all_predictors(), -all_outcomes()) %>%
    step_scale(all_predictors(), -all_outcomes()) %>%
    step_pca(all_predictors(), -all_outcomes(), num_comp = 2) #
  model_spec <- decision_tree() %>%
    set engine("rpart") %>%
    set_mode("classification")
  # SMOTE
  rec_smote <- rec %>% step_smote(Class) %>% prep(db_1c)
  wk_smote <- workflow() %>% add_recipe(rec_smote) %>% add_model(model_spec)
  cv <- vfold_cv(db_1c)</pre>
  result_smote <- fit_resamples(</pre>
    wk_smote,
    resamples = cv,
    control = control_resamples(save_pred = TRUE))
  predictions <- result_smote %>%
    collect predictions()
  collect_metrics(result_smote)
# A tibble: 2 x 6
                                n std_err .config
  .metric .estimator mean
 <chr>
          <chr>
                     <dbl> <int>
                                    <dbl> <chr>
                              10 0.00671 Preprocessor1_Model1
1 accuracy binary
                     0.960
                               10 0.0185 Preprocessor1_Model1
2 roc_auc binary
                     0.922
```

predictions %>%
 yardstick::roc_curve(Class, .pred_0) %>% autoplot()

95.9%, AUC 92.1%

4.

```
2.1 4.1. 2
```

• Isolation Forest: , , , ,

- : , - :

• Autoencoder: , , , Autoencoder , , ,

•

- :

2.2 4.2.

```
db_1c <- db_1a[, -c("Time")]

# Recipe
rec <- recipe(Class ~ ., data = db_1c) %>%
    step_mutate(Class = as.factor(Class)) %>%
    step_center(all_predictors(), -all_outcomes()) %>%
    step_scale(all_predictors(), -all_outcomes()) %>%
    step_pca(all_predictors(), -all_outcomes(), num_comp = 2) # 2

# SMOTE
rec_smote <- rec %>% step_smote(Class) %>% prep(db_1c)

wk_smote <- workflow() %>% add_recipe(rec_smote) %>% add_model(model_spec)
data_preprocessed <- juice(rec_smote)</pre>
```

```
model <- isolationForest$new()</pre>
  model$fit(data_preprocessed[, -which(names(data_preprocessed) == "Class")])
INFO
      [00:35:13.548] dataset has duplicated rows
INFO
      [00:35:13.581] Building Isolation Forest ...
INFO
      [00:35:13.616] done
INFO [00:35:13.618] Computing depth of terminal nodes ...
INFO [00:35:13.922] done
INFO [00:35:13.998] Completed growing isolation forest
  scores <- model$predict(data_preprocessed[, -which(names(data_preprocessed) == "Class")])</pre>
  data_preprocessed$anomaly_score <- scores
  quantile(data_preprocessed$anomaly_score$anomaly_score)
       0%
                25%
                          50%
                                     75%
                                              100%
0.5820092 0.5827973 0.5847722 0.5955529 0.7654805
  threshold <- 0.6
  data_preprocessed$anomaly <- ifelse(data_preprocessed$anomaly_score > threshold, 1, 0)
  ttt <- as.data.table(data_preprocessed$anomaly)</pre>
  data_preprocessed$anomaly <- as.factor(ttt$anomaly_score)</pre>
  table(data_preprocessed$Class, data_preprocessed$anomaly)
      0
          1
 0 929 64
  1 649 344
  tttt <- data_preprocessed %>%
    conf_mat(truth = Class, estimate = anomaly)
  class_metrics <- metric_set(accuracy, sens, spec)</pre>
```

- $\bullet \ \, \rm https://amaruak00.github.io/2022/12/17/adp27th.html$
- $\bullet \ \, \rm https://www.datamanim.com/dataset/ADPpb/00/27.html$
- $\bullet \ \ https://www.kaggle.com/code/johyunkang/adp-27/notebook$

3 Summary

In summary, this book has no content whatsoever.

1 + 1

[1] 2

References

Knuth, Donald E. 1984. "Literate Programming." Comput. J. 27 (2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.