API : Attention Gate based Model with Pyramid Pooling and Inception-like block for Image Dehazing

I. Abstract

It's hazardous that bad weather condition makes things less clear e.g., haze, fog, heavy rain and snow; to ensure safety in haze, the proposed model, a Deep Learning based method for image dehazing, contains the Inception-like block, Pyramid Pooling block, and Attention Gate mechanism to enlarge SSIM (Structural similarity) and PSNR (Peak signal-to-noise ratio) to get clear image.

II. Methodology

The Inception-like block and Pyramid Pooling block use varying kernel size in parallel to extract different scale features of images in order to enlarge receptive field. Attention Gate is a successful method of image segmentation in medical field. Therefore, I noticed that the haze image losing target structures needs to highlight salient features. Finally, I show the experimental result of image dehazing and compare other state-of-the-art method.

Inception-like block

III. Experimental Result

IV. Quantitative Analysis

TABLE I COMPARATIVE RESULTS OVER D-HAZY DATASET

		_
Method	SSIM	PSNR
CycleGAN	0.6490	13.69
CycleDehaze	0.6746	12.54
DCP	0.7060	11.59
C ² MSNet	0.7201	12.71
DehazeNet	0.7270	13.40
CAP	0.723	13.19
MSCNN	0.7231	12.82
DDN	0.7383	10.96
CDNet	0.7411	13.84
RI-GAN	0.8179	18.82
RYF-Net	0.8230	17.56
ReViewNet	0.8239	20.64
API	0.8607	19.32

TABLE II COMPARATIVE RESULTS OVER RESIDE-STANDARD SOTS INDOOR DATASET

Method	SSIM	PSNR	
CycleGAN	0.5738	14.16	
CycleDehaze	0.6923	15.86	
FVR	0.7483	15.72	
C ² MSNet	0.8152	20.12	
DCP	0.8179	16.62	
CAP	0.8364	19.05	
DehazeNet	0.8472	21.14	
RI-GAN	0.8500	19.83	
AOD-Net	0.8504	19.06	
RYF-Net	0.8230	17.56	
CDNet	0.8852	21.30	
ReViewNet	0.8716	21.44	
API	0.9337	22.73	

V. Reference

- [1] Gui, J., et al. A Comprehensive Survey on Image Dehazing Based on Deep Learning. 2021. arXiv:2106.03323.
- [2] K. He, J. Sun and X. Tang, "Single Image Haze Removal Using Dark Channel Prior," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 12, pp. 2341-2353, Dec. 2011, doi: 10.1109/TPAMI.2010.168.
- [3] M. Ju, C. Ding, W. Ren, Y. Yang, D. Zhang and Y. J. Guo, "IDE: Image Dehazing and Exposure Using an Enhanced Atmospheric Scattering Model," in IEEE Transactions on Image Processing, vol. 30, pp. 2180-2192, 2021, doi: 10.1109/TIP.2021.3050643.
- [4] B. Li, X. Pengand Z. Wang, and J. Xuand D. Feng. "Aod-net: All-in-one dehazing network," In IEEE International Conference on Computer Vision, pages 4780–4788, Los Alamitos, CA, USA, oct 2017. IEEE Computer Society
- [5] Liu, Z., et al. Generic Model-Agnostic Convolutional Neural Network for Single Image Dehazing. 2018. arXiv:1810.02862.
- [6] A. Mehra, M. Mandal, P. Narang and V. Chamola, "ReViewNet: A Fast and Resource Optimized Network for Enabling Safe Autonomous Driving in Hazy Weather Conditions," in IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 7, pp. 4256-4266, July 2021, doi: 10.1109/TITS.2020.3013099.
- [7] Oktay, O., et al. Attention U-Net: Learning Where to Look for the Pancreas. 2018. arXiv:1804.03999.
- [8] Lou, A., S. Guan, and M. Loew. DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation. 2021.