Université de Versailles

Projet d'étude

Master d'algèbre appliquée à la cryptographie

Algorithme de comptage de points de Schoof

Réalisé par: Abdourahman Saleh Ibrahim Abdessamad Fazzat

Supervis'e~par: Prof. Luca DE FEO

February 13, 2019

Contents

1	Courbes elliptiques	2
	1.1 Définitions	2
	1.2 Loi de groupe	
	1.3 Points de n -torsion	
2	Courbles elliptiques sur un corps fini	4
	2.1 Endomorphisme de Frobenius	4
	2.2 Trace et théorème de Hasse	4
	2.3 Polynômes de division	
3	Algorithme de Schoof	6
	3.1 Principes de l'algorithme	6
	3.2 Pseudo-code	
4	Implémentation de l'algorithme de Schoof	11
	4.1 Architecture du programme	11
	4.2 Complexité	
5	Cryptographie sur les courbes elliptiques	11
	5.1 Problème du logarithme discret	11

Résumé du projet

1 Courbes elliptiques

1.1 Définitions

Définition 1 (Silverman)

Une courbe elliptique \mathcal{E} est une variété projective lisse de genre 1.

C'est un ensemble de de couples (x, y) vérifiant une certaine équation, auquel on ajoute un point \mathcal{O} , ce point est considéré comme point à l'infini dans le plan projectif.

Définition 2 (Blake, Seroussi)

Une courbe elliptique \mathcal{E} sur un corps \mathbb{K} est définie par une équation de la forme:

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

où les $a_i \in \mathbb{K}$ sont des constantes.

Cette équation, dite de Weierstrass, peut être réduite selon la caractéristique du corps commutatif \mathbb{K} dans lequel elle est définie.

Lemme 1 (Washington) En caractéristique différente de 2 et 3, à l'aide d'un changement de variables, on peut se ramener à une équation de la forme:

$$y^2 = x^3 + ax + b.$$

Définition 3 Soit K un corps de caractéristique différente de 2 et 3. Une courbe elliptique est l'ensemble:

$$\mathcal{E} = \{(x, y) \in \bar{\mathbb{K}} \times \bar{\mathbb{K}} | y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

Avec $\Delta = 4a^3 + 27b^2 \neq 0$. son discriminant.

La condition $\Delta \neq 0$ signifie que le polynôme $x^3 + ax + b$ n'a pas de racine double et donc que la courbe est lisse.

Dans toute la suite, nous considérant le corps \mathbb{K} de caractéristique differente de 2 et 3, pour pouvoir représenter une courbe elliptique avec une équation de *Weierstrass* réduite.

1.2 Loi de groupe

Proposition 1 Soit \mathcal{E} définie sur \mathbb{K} , P et Q deux points de \mathcal{E} , la droite (PQ) (ou la tangente à \mathcal{E} si P = Q) et R le troisième point d'intersection de (PQ) avec la courbe. Le point $P + Q \in \mathcal{E}(\mathbb{K})$ est défini comme étant le deuxième point d'intersection de \mathcal{E} avec la droite verticale passant par R.

 $\mathcal{E}(\mathbb{K})$ muni de cette loi de composition est un groupe commutatif, d'élément neutre \mathcal{O} .

On considère la courbe elliptique $\mathcal{E}: y^2 = x^3 + ax + b$ et Soient $P = (x_P, y_P), Q = (x_Q, y_Q)$ et $R = (x_R, y_R)$ des point de \mathcal{E} tels que $P, Q \neq \mathcal{O}$ et P + Q = R. On distingue trois cas possibles:

- 1. Si $x_P = x_Q$ et $y_P \neq y_Q$: P et Q sont sur la même droite d'équation x = c et $R = \mathcal{O}$;
- 2. Si $x_P = x_Q$ et $y_P = y_Q$: Si $y_P = 0$ alors $R = \mathcal{O}$, sinon $x_R = m^2 2x_P$, $y_R = m(x_P x_R) y_P$ où $m = (3x_P^2 + a)/2y_P$;
- 3. Si $x_P \neq x_Q$: $x_R = m^2 x_P x_Q$, $y_R = m(x_P x_R) y_P$ où $m = (y_Q y_P)/(x_Q x_P)$.

Remarque 1 Si $P = (x_P, y_P) \in \mathcal{E}(\mathbb{K})$, -P est le point d'intersection de la droite $x = x_P$ et \mathcal{E} .

1.3 Points de *n*-torsion

Définition 4 Soit \mathcal{E} une courbe elliptique définie sur \mathbb{K} et $n \in \mathbb{Z}$. Le groupe de n-torsion de \mathcal{E} est l'ensemble:

$$\mathcal{E}[n] = \{ P \in \mathcal{E}(\bar{\mathbb{K}}) | nP = \mathcal{O} \}$$

C'est le noyau de l'isogénie de multiplication par n. Comme le noyau d'une isogénie est toujours fini, $\mathcal{E}[n]$ contient un nombre fini de points pour tout n.

Exemple 1 • $\mathcal{E}[1]$ est le sous-groupe réduit à \mathcal{O} ;

• $\mathcal{E}[2]$ est constitué des points d'ordre 2, i.e. les points spéciaux de la courbe.

$$\mathcal{E}[2] = \{P_{\alpha_1}, P_{\alpha_2}, P_{\alpha_3}, \mathcal{O}\}$$

$$o\dot{u} P_{\alpha_i} = (\alpha_i, 0).$$

Soit \mathbb{K} un corps de caractéristique p.

Théorème 1 Pour tout entier n non multiple de p,

$$Card(\mathcal{E}[n]) = n^2$$

Proposition 2 Pour tout entier n non multiple de p, le groupe $\mathcal{E}[n]$ est isomorphe au produit direct $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

En particulier, $\mathcal{E}[p]$ est soit isomorphe à $\mathbb{Z}/p\mathbb{Z}$, soit égale à \mathcal{O} . Si $\mathcal{E}[p] = \mathcal{O}$, on dit que la courbe est supersingulière.

2 Courbles elliptiques sur un corps fini

Soit \mathbb{F}_q le corps à $q=p^d$ éléments et $\overline{\mathbb{F}_q}$ sa clôture algébrique.

Théorème 2 (Cassel)

Soit \mathcal{E} une courbe elliptique sur \mathbb{F}_q . Alors:

- soit $\mathcal{E}(\mathbb{F}_q)$ est un groupe cyclique;
- soit il est isomotphe à $\mathbb{Z}/d_1\mathbb{Z} \times \mathbb{Z}/d_2\mathbb{Z}$ avec $d_1|d_2$.

2.1 Endomorphisme de Frobenius

Soit $\mathcal{E}: y^2 = x^3 + ax + b$ une courbe elliptique sur \mathbb{F}_q .

Définition 5 Pour un point $P = (x_P, y_P)$ de \mathcal{E} , le point $(x_P^q, y_P^q) \in \mathcal{E}$, donc l'application $\phi_q : (x, y) \mapsto (x^q, y^q)$ et $\mathcal{O} \mapsto \mathcal{O}$ est un morphisme de \mathcal{E} dans \mathcal{E} .

L'ensemble des points de $\mathcal{E}(\mathbb{F}_q)$ fixés par ϕ_q est exactement $\mathcal{E}(\mathbb{F}_q)$, formellement:

$$\ker(\phi_q - [1]) = \mathcal{E}(\mathbb{F}_q)$$

Remarque 2 Comme $y^2 = x^3 + ax + b$, on a $y^q = y^{q-1} = y(x^3 + ax + b)^{(q-1)/2}$, on peut donc exprimer $\phi_q(x, y)$ sous sa forme réduite:

$$\phi_q(x, y) = (x^q, y(x^3 + ax + b)^{(q-1)/2})$$

Propriétés 1 • ϕ_q est une isogénie inséparable;

- $\phi_q(x, y) = (x, y) \iff (x, y) \in \mathcal{E}(\mathbb{F}_q);$
- $\phi_q^n(x, y) = (x, y) \Longleftrightarrow (x, y) \in \mathcal{E}(\mathbb{F}_{q^n}) \text{ où } \phi_q^n(x, y) = (x^{q^n}, y^{q^n});$
- $\# \ker(\phi_q [1]) = deg(\phi_q [1]).$

 $\phi_q - [1]$ est une isogénie séparable de \mathcal{E} , de degré égale à l'ordre du groupe $\mathcal{E}(\mathbb{F}_q)$

2.2 Trace et théorème de Hasse

La trace t d'une courbe elliptique \mathcal{E} est un paramètre lié à l'ordre du groupe $\mathcal{E}(\mathbb{F}_q)$.

Définition 6 La trace de $\mathcal{E}(\mathbb{F}_q)$ est l'unique entier

$$t = q + 1 - \#\mathcal{E}(\mathbb{F}_q)$$

Proposition 3 Soit t la trace de \mathcal{E} . Pour tout entier n non multiple de p, la restriction de

$$\phi_q^2 - [t] \circ \phi_q + [q]$$

au groupe $\mathcal{E}[n]$ est l'isogénie nulle $P \mapsto \mathcal{O}$.

Appliqué à un point $P = (x, y) \in \mathcal{E}(\mathbb{F}_q)$, on a $(x^{q^2}, y^{q^2}) - t(x^q, y^q) + q(x, y) = \mathcal{O}$. On définit le polynôme caractéristique de Frobinius par $X^2 - tX + q$ en écrivant la matrice associée à ϕ_q dans une base de $\mathcal{E}[n]$,

$$\Phi_q = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

de polynôme caractéristique $X^2-(a+d)X+\det(\Phi_q)$ avec a+d=t modulo n et $\det(\Phi_q)=q$ modulo n

Théorème 3 (Hasse)

La trace t de $\mathcal{E}(\mathbb{F}_q)$ est telle que:

$$-2\sqrt{q} \le t \le 2\sqrt{q}$$

Autrement dit, le nombre de points de la courbe vérifie:

$$q+1-2\sqrt{q} \le \#\mathcal{E}(\mathbb{F}_q) \le q+1+2\sqrt{q}$$

2.3 Polynômes de division

Définition 7 Pour tout entier n non nul, le polynôme de division $\psi_n \in \mathbb{F}_q(\mathcal{E})$ est défini par son coefficient dominant n et diviseur $\operatorname{div}(\psi_n) = (\mathcal{E}[n] - n^2(\mathcal{O}).$

D'après ce qui précède, $\#\mathcal{E}[n] = n^2$ et comme $(\mathcal{E}[n] - n^2(\mathcal{O}))$ est principal, on peu affirmer que c'est le diviseur d'une fonction sans pôles(autres que \mathcal{O}), cette fonction est donc un polynôme.

On définie les premiers polynômes de division comme suit:

- $\psi_0 = 0 \operatorname{car} \mathcal{E}[0] = \mathcal{E};$
- $\psi_1 = 1 \operatorname{car} \mathcal{E}[1] = \mathcal{O};$
- $\psi_2 = 2y$ (c.f. Exemple 1);
- $\psi_3 = 3x^4 + 6ax^2 + 12bx a^2$;
- $\psi_4 = 4y(x^6 + 5ax^4 + 20bx^3 5ax^2 4abx 8b^2 a^3$.

Le reste est construit par récurrence sur n.

- $\psi_{2n+1} = \psi_{n+2}\psi_n^3 \psi_{n-1}\psi_{n+1}^3$ Pour $n \ge 2$;
- $\psi_{2n} = \frac{\psi_n}{2y} (\psi_{n+2} \psi_{n-1}^2 \psi_{n-2} \psi_{n+1}^2)$ Pour $n \ge 3$

Avec la convention $\psi_{-n} = -\psi_n$ pour tout n. Si n est impair:

$$\psi_n(x, y) = n \prod_{P \in \mathcal{E}} (x - x_P)$$

 $\psi_n(x, y)$ peut être réduit sous la forme d'un polynôme $f_n(x) \in \mathbb{F}_q[x]$, de degré $(n^2 - 1)/2$ Si n est pair: impair:

$$\psi_n(x, y) = ny \prod_{P \in \mathcal{E}} (x - x_P)$$

et on peut écrire $\psi_n(x, y) = y f_n(x)$ avec f_n de degré $(n^2 - 4)/2$

En reprenant les deux relations de récurrence et en distinguant les cas n pair et impair, on obtient:

- Cas n pair: $f_{2n+1} = y^4 f_{n+2} f_n^3 f_{n-1} f_{n+1}^3$. De même, en divisant par y: $f_{2n} = \frac{f_n}{2} (f_{n+2} f_{n-1}^2 - f_{n-2} f_{n+1}^2)$
- Cas n impair: $f_{2n+1} = f_{n+2}f_n^3 y^4f_{n-1}f_{n+1}^3$. Et $f_{2n} = \frac{f_n}{2}(f_{n+2}f_{n-1}^2 - f_{n-2}f_{n+1}^2)$

Puis on remplace y^2 par $x^3 + ax + b$.

Proposition 4 (Caractérisation des points de n-torsion)

Soit P = (x, y) un point ordinaire $(y \neq 0)$ de $\mathcal{E}(\mathbb{F}_q)$, on dit que P est un point de n-torsion si et seulement si $\psi_n(P) = 0$. Autrement dit, si et seulement si $f_n(x) = 0$.

Remarque 3 Les points spéciaux $(\alpha, 0)$ sont des points de n-torsion dans le cas n pair.

3 Algorithme de Schoof

3.1 Principes de l'algorithme

Le théorème de Hasse nous donne que la trace t dont dépend le cardinal de la courbe est inférieure en valeur absolue à $2\sqrt{q}$. C'est donc un élément de $\mathbb{Z}/M\mathbb{Z}$ où M est un entier supérieur à $4\sqrt{q}$ et premier à la caractéristique.

Pour le calculer éfficacement, on commence par déterminer sa valeur modulo les premiers l divisant M, puis on le reconstitue modulo M à l'aide du théorème des restes chinois. Tavailler modulo l revient à se restreindre aux points de l-torsion car dans ce cas on a (l+1)P = P c'est à dire $lP = \mathcal{O}$.

La trace est l'entier t unique modulo M vérifiant

$$\forall P \in \mathcal{E}(\mathbb{F}_q), \ \phi_q^2(P) + qP = t\phi_q(P).$$

Dans le cas particulier $\mathbf{l} = \mathbf{2}$, on a $\#\mathcal{E}(\mathbb{F}_q) = q + 1 - t = t \mod 2$ car q est impair.

Donc t = 0 modulo 2 est équivalent à $\#\mathcal{E}(\mathbb{F}_q) = 0$ mod 2 c'est à dire que $\mathcal{E}(\mathbb{F}_q)$ possède un point d'ordre 2 (donc) de la forme (x, 0). Du coup t = 0 modulo 2 si et seulement si $x^3 + ax + b$ s'annule sur \mathbb{F}_q . Ce qui se teste en calculant le $pgcd(x^3 + ax + b, x^q - x)$. S'il est différent de 1,

t = 0 modulo 2 sinon, t = 1 modulo 2.

On note k le représentant de q modulo l et on remarque que $\psi_l(x,y) = f_l(x)$. Pour un point P = (x, y) de l-torsion sur $\mathcal{E}(\mathbb{F}_q)$, $\phi^2(P) = (x^{q^2}, y^{q^2})$ et

$$kP = \left(x - \frac{\psi_{k-1}\psi_{k+1}}{\psi_k^2}, \frac{\psi_{k+2}\psi_{k-1}^2 - \psi_{k-2}\psi_{k+1}^2}{4y\psi_k^3}\right)$$

1er cas: il existe un point P tel que $\phi^2(P) = \pm kP$

Cela est vrai si les deux points ont le même abscisse c'est à dire

$$x^{q^2} = x - \frac{\psi_{k-1}\psi_{k+1}}{\psi_k^2} \mod f_l \Leftrightarrow (x^{q^2} - x)\psi_k^2 + \psi_{k-1}\psi_{k+1} = 0 \mod f_l$$

Si k est pair, on a $\psi_k = yf_k$, alors:

$$(x^{q^2} - x)\psi_k^2 + \psi_{k-1}\psi_{k+1} = (x^{q^2} - x)y^2f_k^2 + f_{k-1}f_{k+1} = (x^{q^2} - x)(x^3 + ax + b)f_k^2 + f_{k-1}f_{k+1}$$
(1)

Et si k est impair, on a:

$$(x^{q^2} - x)\psi_k^2 + \psi_{k-1}\psi_{k+1} = (x^{q^2} - x)f_k^2 + y^2 f_{k-1}f_{k+1} = (x^{q^2} - x)f_k^2 + (x^3 + ax + b)f_{k-1}f_{k+1}$$
(2)

Si le pgcd de ce polynôme avec f_l n'est pas 1, on est dans le cas présent sinon on passe au 2ème cas.

Si $\phi^2(P) = -kP$, alors $\phi^2(P) + kP = \mathcal{O}$ donc t=0 mod l et réciproquement.

Si $\phi^2(P) = kP$, alors par le polynôme caractéristique de ϕ : $2kP = t\phi(P)$.

$$\phi(P) = \frac{2k}{t}P \Rightarrow \phi^2(P) = kP = \frac{4k^2}{t^2} \Rightarrow (t^2 - 4k)P = \mathcal{O} \Rightarrow t^2 - 4k = 0 \mod l$$

Alors $k = (\frac{t}{2})^2 := w^2 \mod l$ et $\phi(P) = \pm wP$.

On teste l'abscisse:

$$(x^{q} - x)(x^{3} + ax + b)f_{w}^{2} + f_{w-1}f_{w+1}, \text{ si } w \text{ est pair } (3)$$
$$(x^{q} - x)f_{w}^{2} + (x^{3} + ax + b)f_{w-1}f_{w+1}, \text{ sinon } (4)$$

S'il est premier avec f_l alors t=0 mod l.

Sinon on passe l'ordonnée pour départager les deux racines carrées.

Si w est pair:

$$4y^{q+1}\psi_w^3 - \psi_{w+2}\psi_{w-1}^2 + \psi_{w-2}\psi_{w+1}^2 = 4y^{q+1}y^3f_w^3 - yf_{w+2}f_{w-1}^2 + yf_{w-2}f_{w+1}^2$$

$$= y(4y^{q+3}f_w^3 - f_{w+2}f_{w-1}^2 + f_{w-2}f_{w+1}^2)$$

= $y(4(x^3 + ax + b)^{(q+3)/2}f_w^3 - f_{w+2}f_{w-1}^2 + f_{w-2}f_{w+1}^2)$

Il suffit de tester $4(x^3 + ax + b)^{(q+3)/2} f_w^3 - f_{w+2} f_{w-1}^2 + f_{w-2} f_{w+1}^2$ (5), car l'ordonnée des points des l-torsion est non nulle (puisque l n'est pas 2). Si w est impair:

$$4y^{q+1}\psi_w^3 - \psi_{w+2}\psi_{w-1}^2 + \psi_{w-2}\psi_{w+1}^2 = 4y^{q+1}f_w^3 - y^2f_{w+2}f_{w-1}^2 + y^2f_{w-2}f_{w+1}^2$$

$$= y^2(4y^{q-1}f_w^3 - f_{w+2}f_{w-1}^2 + f_{w-2}f_{w+1}^2)$$

$$= y^2(4(x^3 + ax + b)^{(q-1)/2}f_w^3 - f_{w+2}f_{w-1}^2 + f_{w-2}f_{w+1}^2)$$

Il suffit de tester $4(x^3 + ax + b)^{(q-1)/2} f_w^3 - f_{w+2} f_{w-1}^2 + f_{w-2} f_{w+1}^2$ (6). Si le pgcd avec f_l est 1, alors $t = -2w \mod l$ sinon $t = 2w \mod l$.

2ème cas: Pour tout point P $\phi^2(P) \neq \pm kP$

On calcule $\phi^2(P) + kP$ avec la formule de la somme de deux points d'abscisses différentes.

$$\phi^{2}(P) + kP = \left(-x^{q^{2}} - x + \frac{\psi_{k-1}\psi_{k+1}}{\psi_{k}^{2}} + \mu^{2}, \left(2x^{q^{2}} + x - \frac{\psi_{k-1}\psi_{k+1}}{\psi_{k}^{2}} - \mu^{2}\right)\mu - y^{q^{2}}\right)$$

$$avec \ \mu = \frac{\psi_{k+2}\psi_{k-1}^{2} - \psi_{k-2}\psi_{k+1}^{2} - 4y^{q^{2}+1}\psi_{k}^{3}}{4y\psi_{k}((x - x^{q^{2}})\psi_{k}^{2} - \psi_{k-1}\psi_{k+1})} := \frac{\alpha}{\beta}$$

Pour tout $1 \le j \le \frac{l-1}{2}$, on calcule:

$$j\phi(P) = \phi(jP) = \left(\left(x - \frac{\psi_{j-1}\psi_{j+1}}{\psi_j^2} \right)^q, \left(\frac{\psi_{j+2}\psi_{j-1}^2 - \psi_{j-2}\psi_{j+1}^2}{4y\psi_j^3} \right)^q \right)$$

Comme la caractéristique divise q, on obtient

$$j\phi(P) = \left(x^q - \frac{(\psi_{j-1}\psi_{j+1})^q}{\psi_j^{2q}}, \frac{(\psi_{j+2}\psi_{j-1}^2 - \psi_{j-2}\psi_{j+1}^2)^q}{4y\psi_j^{3q}}\right)$$

 $\phi^2(P) + kP$ aura à fortiori la même abscisse qu'un des $j\phi(P)$. A ce moment-là, on compare les ordonnées si elles sont aussi les mêmes modulo f_l alors j est notre trace sinon c'est -j. Ainsi tous les j de $\mathbb{Z}/l\mathbb{Z}$ sont testés.

On note absc le polynôme numérateur de la différence des abscisses et ordo celui des ordonnées.

$$absc = \gamma_1 \psi_j^{2q} + \delta_1 (\psi_{j-1} \psi_{j+1})^q, \ avec$$

$$\gamma_1 = (\psi_{k-1} \psi_{k+1} - \psi_k^2 (x^{q^2} + x^q + x))\beta^2 + \psi_k^2 \alpha^2, \ et \ \delta_1 = \psi_k^2 \beta^2.$$

$$ordo = \gamma_2 \psi_j^{3q} - \delta_2 (\psi_{j+2} \psi_{j-1}^2 - \psi_{j-2} \psi_{j+1}^2)^q, \ avec$$

$$\gamma_2 = 4y^q (\alpha \beta^2 (\psi_k^2 (2x^{q^2} + x) - \psi_{k-1} \psi_{k+1}) - \psi_k^2 (\alpha^3 + \beta^3 y^{q^2})), \ et \ \delta_2 = \beta^3 \psi_k^2$$

Pour continuer à manipuler des polynômes univariés, on distingue des plusieurs cas selon la parité de k et j.

Si k est pair:

$$\alpha = \psi_{k+2}\psi_{k-1}^2 - \psi_{k-2}\psi_{k+1}^2 - 4y^{q^2+1}\psi_k^3 = yf_{k+2}f_{k-1}^2 - yf_{k-2}f_{k+1}^2 - 4y^{q^2+1}y^3f_k^3$$

$$= y(f_{k+2}f_{k-1}^2 - f_{k-2}f_{k+1}^2 - 4y^{q^2+3}f_k^3) = y(f_{k+2}f_{k-1}^2 - f_{k-2}f_{k+1}^2 - 4(x^3 + ax + b)^{(q^2+3)/2}f_k^3) = y\alpha_x$$

$$\beta = 4y\psi_k((x - x^{q^2})\psi_k^2 - \psi_{k-1}\psi_{k+1}) = 4yyf_k((x - x^{q^2})y^2f_k^2 - f_{k-1}f_{k+1})$$
$$= 4(x^3 + ax + b)f_k((x - x^{q^2})(x^3 + ax + b)f_k^2 - f_{k-1}f_{k+1}).$$

$$\gamma_1 = (\psi_{k-1}\psi_{k+1} - \psi_k^2(x^{q^2} + x^q + x))\beta^2 + \psi_k^2\alpha^2 = (f_{k-1}f_{k+1} - y^2f_k^2(x^{q^2} + x^q + x))\beta^2 + y^2f_k^2y^2\alpha_x^2$$
$$= (f_{k-1}f_{k+1} - (x^3 + ax + b)f_k^2(x^{q^2} + x^q + x))\beta^2 + (x^3 + ax + b)^2f_k^2\alpha_x^2$$

$$\delta_1 = \psi_k^2 \beta^2 = y^2 f_k^2 \beta^2 = (x^3 + ax + b) f_k^2 \beta^2.$$

$$\gamma_{2} = 4y^{q}(\alpha\beta^{2}(\psi_{k}^{2}(2x^{q^{2}} + x) - \psi_{k-1}\psi_{k+1}) - \psi_{k}^{2}(\alpha^{3} + \beta^{3}y^{q^{2}}))$$

$$= 4y^{q}(y\alpha_{x}\beta^{2}(y^{2}f_{k}^{2}(2x^{q^{2}} + x) - f_{k-1}f_{k+1}) - y^{2}f_{k}^{2}(y^{3}\alpha_{x}^{3} + \beta^{3}y^{q^{2}}))$$

$$= 4y^{q+1}(\alpha_{x}\beta^{2}(y^{2}f_{k}^{2}(2x^{q^{2}} + x) - f_{k-1}f_{k+1}) - y^{2}f_{k}^{2}(y^{2}\alpha_{x}^{3} + \beta^{3}y^{q^{2}-1}))$$

$$= 4(x^{3} + ax + b)^{(q+1)/2}(\alpha_{x}\beta^{2}((x^{3} + ax + b)f_{k}^{2}(2x^{q^{2}} + x) - f_{k-1}f_{k+1}) - (x^{3} + ax + b)f_{k}^{2}((x^{3} + ax + b)\alpha_{x}^{3} + ax + b)f_{k}^{2}(x^{3} + ax + b)f$$

$$\delta_2 = \beta^3 \psi_k^2 = \beta^3 y^2 f_k^2 = \beta^3 (x^3 + ax + b) f_k^2$$

Si de plus j est pair:

$$absc = \gamma_1 \psi_j^{2q} + \delta_1 (\psi_{j-1} \psi_{j+1})^q = \gamma_{1y^{2q}} f_j^{2q} + \delta_1 (f_{j-1} f_{j+1})^q = \gamma_1 (x^3 + ax + b)^q f_j^{2q} + \delta_1 (f_{j-1} f_{j+1})^q$$

$$ordo = \gamma_2 \psi_j^{3q} - \delta_2 (\psi_{j+2} \psi_{j-1}^2 - \psi_{j-2} \psi_{j+1}^2)^q = \gamma_2 y^{3q} f_j^{3q} - \delta_2 y^q (f_{j+2} f_{j-1}^2 - f_{j-2} f_{j+1}^2)^q$$

$$= y (\gamma_2 y^{3q-1} f_j^{3q} - \delta_2 y^{q-1} (f_{j+2} f_{j-1}^2 - f_{j-2} f_{j+1}^2)^q)$$

$$= y (\gamma_2 (x^3 + ax + b)^{(3q-1)/2} f_j^{3q} - \delta_2 (x^3 + ax + b)^{(q-1)/2} (f_{j+2} f_{j-1}^2 - f_{j-2} f_{j+1}^2)^q)$$

et si j est impair:

$$absc = \gamma_1 \psi_j^{2q} + \delta_1 (\psi_{j-1} \psi_{j+1})^q = \gamma_1 f_j^{2q} + \delta_1 (x^3 + ax + b)^q (f_{j-1} f_{j+1})^q$$
$$ordo = \gamma_2 f_j^{3q} - \delta_2 (x^3 + ax + b)^q (f_{j+2} f_{j-1}^2 - f_{j-2} f_{j+1}^2)^q$$

Si k est impair:

$$\alpha = \psi_{k+2}\psi_{k-1}^2 - \psi_{k-2}\psi_{k+1}^2 - 4y^{q^2+1}\psi_k^3 = (x^3 + ax + b)(f_{k+2}f_{k-1}^2 - f_{k-2}f_{k+1}^2) - 4(x^3 + ax + b)^{(q^2+1)/2}f_k^3$$

$$\beta = 4y\psi_k((x - x^{q^2})\psi_k^2 - \psi_{k-1}\psi_{k+1}) = 4yf_k((x - x^{q^2})f_k^2 - (x^3 + ax + b)f_{k-1}f_{k+1}) = y\beta_x$$

$$\gamma_1 = (\psi_{k-1}\psi_{k+1} - \psi_k^2(x^{q^2} + x^q + x))\beta^2 + \psi_k^2\alpha^2$$
$$= ((x^3 + ax + b)f_{k-1}f_{k+1} - f_k^2(x^{q^2} + x^q + x))(x^3 + ax + b)\beta_x^2 + \psi_k^2\alpha^2$$

$$\delta_1 = \psi_k^2 \beta^2 = f_k^2 (x^3 + ax + b) \beta_x^2$$

$$\gamma_2 = 4y^q (\alpha \beta^2 (\psi_k^2 (2x^{q^2} + x) - \psi_{k-1} \psi_{k+1}) - \psi_k^2 (\alpha^3 + \beta^3 y^{q^2}))$$

$$= 4y(x^3 + ax + b)^{(q-1)/2} (\alpha (x^3 + ax + b)\beta_x^2 (f_k^2 (2x^{q^2} + x) - (x^3 + ax + b)f_{k-1} f_{k+1}) - f_k^2 (\alpha^3 + \beta_x^3 (x^3 + ax + b)^{(q^2 + 3)/2}))$$

$$= y\gamma_{2,x}$$

$$\delta_2 = \beta^3 \psi_k^2 = y(x^3 + ax + b)\beta_x^3 f_k^2 = y\delta_{2x}$$

Si de plus j est pair:

$$absc = \gamma_1(x^3 + ax + b)^q f_j^{2q} + \delta_1(f_{j-1}f_{j+1})^q$$

 $ordo = (x^3 + ax + b)(\gamma_{2,x}(x^3 + ax + b)^{(3q-1)/2}f_j^{3q} - \delta_{2,x}(x^3 + ax + b)^{(q-1)/2}(f_{j+2}f_{j-1}^2 - f_{j-2}f_{j+1}^2)^q)$ et si j est impair:

$$absc = \gamma_1 f_j^{2q} + \delta_1 (x^3 + ax + b)^q (f_{j-1} f_{j+1})^q$$
$$ordo = y(\gamma_{2,x} f_j^{3q} - \delta_{2,x} (x^3 + ax + b)^q (f_{j+2} f_{j-1}^2 - f_{j-2} f_{j+1}^2)^q)$$

Dans les cas où ordo possède un y en facteur(pair-pair, impair-impair), on l'identifie à $\frac{ordo}{y}$.

3.2 Pseudo-code

```
1. Si pqcd(x^3 + ax + b, x^q - x) = 1 alors t \leftarrow 1 \mod 2 sinon t \leftarrow 0 \mod 2
2. M \leftarrow 2 et l \leftarrow 3
3. Tant que M \leq 4\sqrt{q}
   a. Si pgcd((1) \ ou \ (2), f_l) \neq 1
     a'. Si q n'est pas un résidu quadratique alors t \leftarrow 0 \mod l
     b'. Sinon si pgcd((3) ou (4), f_l) \neq 1,
        a". Si pgcd((5) ou(6), f_l) \neq 1 alors t \leftarrow 2w \mod l
        b". Sinon t \leftarrow -2w \mod l
  b. Pour j allant de 1 à (l-1)/2
     a'. Si pgcd(absc, f_l) \neq 1,
        a". Si pgcd(ordo, f_l) \neq 1, alors t \leftarrow j \mod l
        b". Sinon t \leftarrow -i \mod l
  c. M \leftarrow M \times l
   d. l \leftarrow le premier suivant différent de p
4. Calcul de t avec le TRC
5. \#\mathcal{E}(\mathbb{F}_q) = q + 1 - t
```

Schoof's algorithm [1] Schoofa, $b, q \ pgcd(x^3 + ax + b, x^q - x) = 1 \ t = 1 \ mod \ l \ t = 0 \ mod \ l$ $M \leftarrow 2, \ l \leftarrow 3 \ M \leq 4\sqrt{q} \ pgcd(\ (1) \ ou \ (2), f_l) \neq 1 \ q \ n$ 'est pas un résidu quadratique $t \leftarrow 0 \ mod \ l \ pgcd(\ (3) \ ou \ (4), f_l) \neq 1 \ pgcd(\ (5) \ ou \ (6), f_l) \neq 1 \ t \leftarrow 2w \ mod \ l \ t \leftarrow -2w \ mod \ l$ $j \ allant \ de \ 1 \ a \ (l-1)/2 \ pgcd(absc, f_l) \neq 1 \ pgcd(ordo, f_l) \neq 1 \ t \leftarrow j \ mod \ l \ t \leftarrow -j \ mod \ l$ $j \leftarrow j+1 \ M \leftarrow M \times l \ l \leftarrow le$ premier suivant différent de p Calculer $t \ mod \ M$ avec le TRC $\#\mathcal{E}(\mathbb{F}_q) = q+1-t$ avec $|t| \leq 2\sqrt{q}$

4 Implémentation de l'algorithme de Schoof

- 4.1 Architecture du programme
- 4.2 Complexité
- 5 Cryptographie sur les courbes elliptiques
- 5.1 Problème du logarithme discret

References

- [1] R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Mathematics of computation 44.170 (1985):483-494.
- [2] R. Crandall, C. Pomerance. Prime numbers: a computational perspective. Vol. 182. Springer Science and Business Media, 2006. Côte 512.7 CRA. §7.5.2.
- [3] I. F. Blake, G. Seroussi, N. Smart. Elliptic curves in cryptography. Vol. 265. Cambridge university press, 1999. Côte 005.82 BLA. Chapitre VII.
- [4] P. Guillot: Introduction aux courbes elliptiques pour la cryptographie.