

UMinho

Mestrado em Engenharia Informática Interligação de Redes IP (2022/2023)

Grupo 4

TP4: Encaminhamento de Tráfego [Protocolo BGP e outros]

Simão Cunha (a93262) Gonçalo Pereira (a93168) Rui Alves (pg50745)

Braga, 16 de maio de 2023

Conteúdo

1	Topole	ogia criada
2	Config	gurações
	2.1	Sistema autónomo 65 000
		2.1.1 Configurações OSPF
		2.1.2 Configurações BGP
	2.2	Sistema autónomo 65 100
		2.2.1 Configurações RIP e OSPF
		2.2.2 Configurações BGP
	2.3	Sistema autónomo 65 200
		2.3.1 Configurações RIP
		2.3.2 Configurações BGP
	2.4	Sistemas autónomos 65 300 65 400 65 500
		2.4.1 Configurações BGP
3	Tabela	as de encaminhamento
	3.1	Tabela de encaminhamento AS 65 400
	3.2	Tabela de encaminhamento AS 65 200 e AS 65 100
4	Testes	de conectividade
	4.1	Sistema autónomo 65 000
	4.2	Sistema autónomo 65 100
	4.3	Sistema autónomo 65 200
	4.4	Sistema autónomo 65 300
	4.5	Sistema autónomo 65 400
	4.6	Sistema autónomo 65 500

1 Topologia criada

Para este trabalho prático, teremos a seguinte topologia de acordo com as restrições do enunciado:

Figura 1: Topologia criada

2 Configurações

2.1 Sistema autónomo 65 000

Figura 2: Sistema autónomo 65 000

2.1.1 Configurações OSPF

Foram configuradas 3 áreas OSPF diferentes dentro do sistema autónomo 6500, todos os ips contidos nestas áreas são da gama 10.0.0.0. Uma vez que todas as configurações, para as diferentes áreas, são parecidas e não sendo este o foco do TP atual vamos apenas apresentar a configuração OSPF da área 0:

```
router ospf
router-id 10.40.0.2
network 10.40.0.2/24 area 0
network 10.0.1.1/24 area 0
network 10.0.2.1/24 area 0
network 10.30.0.2/24 area 0
```

2.1.2 Configurações BGP

Relativamente à configuração do BGP, este deve manter conetividade com os seus AS vizinhos, contudo não deve ser um sistema autónomo de transito, para tal foi removida a seguinte linha da configuração BGP de forma a desativar a propagação de rotas.

```
redistribute connected
```

Configuração BGP:

```
router bgp 65000
bgp router-id 10.40.0.2
network 10.0.0.0/16
neighbor 10.40.0.1 remote-as 65400
neighbor 10.30.0.1 remote-as 65300
```

2.2 Sistema autónomo 65 100

Figura 3: Sistema autónomo 65 100

2.2.1 Configurações RIP e OSPF

Uma vez que neste sistema autónomo são utilizados, internamente, 2 diferentes protocolos de encaminhamento, OSPF e RIP, é necessario que um router efetue o processo de redistribuição de rotas, no nosso caso é o router n16 da topologia através dos seguintes comandos:

```
redistribute rip
redistribute ospf

Configuração completa:

router ospf
router-id 10.1.3.2
network 10.1.3.2/24 area 0
network 10.1.4.1/24 area 0
redistribute rip
!

router rip
redistribute static
redistribute connected
redistribute ospf
network 0.0.0.0/0
!
```

Relativamente às rotas por defeito para que routers e hosts internos sejam capazes de comunicar com outros ASs utilizamos os seguintes comandos. O primeiro comando serve para redirecionar todo o tráfego por uma interface especifica, e o segundo para evitar o envio de tráfego para a rede 10.2.0.0 do AS65200.

```
ip route 0.0.0.0/0 10.13.0.1 ip route 10.2.0.0/16 10.13.0.1 reject
```

2.2.2 Configurações BGP

O AS65100 deve mantar conetividade com todos os outros AS com exceção do AS65200, para tal foi aplicada uma acess-list que nega qualquer tráfego originado por endereços da gama 10.2.0.0.

```
router bgp 65100
bgp router-id 10.13.0.2
redistribute connected
network 10.1.0.0/16
neighbor 10.13.0.1 remote-as 65300
neighbor 10.13.0.1 distribute-list 1 in
access-list 1 deny 10.2.0.0 0.0.255.255
access-list 1 permit 0.0.0.0 any
```

2.3 Sistema autónomo 65 200

Figura 4: Sistema autónomo 65 200

2.3.1 Configurações RIP

As configurações do protocolo RIP são as mesmas já aplicadas anteriormente em outros AS e são, também, as mesmas em todos os routers do sistema autonomo 65200.

```
router rip
redistribute static
redistribute connected
redistribute ospf
network 0.0.0.0/0
```

Relativamente às rotas por defeito para que routers e hosts internos sejam capazes de comunicar com outros ASs utilizamos os seguintes comandos. O primeiro comando serve para redirecionar todo o tráfego por uma interface especifica, e o segundo para evitar o envio de tráfego para a rede 10.1.0.0 do AS65100.

```
ip route 0.0.0.0/0 10.24.0.1 ip route 10.1.0.0/16 10.24.0.1 reject
```

2.3.2 Configurações BGP

As configurações relativas ao BGP são também as mesmas aplicadas previamente ao AS65100, uma vez que estes 2 sistemas autonomos (AS65100 e AS65200) não devem ter conetividade um com o outro.

```
router bgp 65200
bgp router-id 10.24.0.2
redistribute connected
network 10.2.0.0/16
neighbor 10.24.0.1 remote-as 65400
neighbor 10.24.0.1 distribute-list 1 in
access-list 1 deny 10.1.0.0 0.0.255.255
access-list 1 permit 0.0.0.0 any
```

2.4 Sistemas autónomos 65 300 | 65 400 | 65 500

Figura 5: Sistema autónomo 65 300

2.4.1 Configurações BGP

Relativamente aos sistemas autonomos 65300, 65400 e 65500, todos eles têm uma configuração BGP parecida, vamos então apresentar a configuração do router relativo ao AS65400.

```
router bgp 65400
bgp router-id 10.45.0.2
redistribute connected
network 10.4.0.0/16
neighbor 10.45.0.1 remote-as 65500
neighbor 10.24.0.2 remote-as 65200
neighbor 10.40.0.2 remote-as 65000
```

3 Tabelas de encaminhamento

3.1 Tabela de encaminhamento AS 65 400

Iremos, de seguida, apresentar a tabela de encaminhamento do router relativo ao AS65400, uma vez que, é apenas este AS e no AS65300 que se pretende remover rotas que utilizem o AS6500 como sistema de transito.

```
Codes: K - kernel route, C - connected, S - static, R - RIP, 0 - OSPF, o - OSPF6, I - IS-IS, B - BGP, A - Babel, > - selected route, * - FIB route

B>* 10.0.0.0/16 [20/0] via 10.40.0.2, eth1, 00:17:18
B>* 10.1.0.0/16 [20/0] via 10.45.0.1, eth0, 00:16:49
B>* 10.1.1.0/24 [20/0] via 10.45.0.1, eth0, 00:16:49
B>* 10.1.2.0/24 [20/0] via 10.45.0.1, eth0, 00:16:49
B>* 10.2.0.0/16 [20/0] via 10.24.0.2, eth2, 00:17:19
B>* 10.2.1.0/24 [20/1] via 10.24.0.2, eth2, 00:17:19
B>* 10.2.2.0/24 [20/1] via 10.24.0.2, eth2, 00:17:19
B>* 10.3.0.0/16 [20/0] via 10.45.0.1, eth0, 00:17:19
B>* 10.3.1.0/24 [20/0] via 10.45.0.1, eth0, 00:17:19
C>* 10.4.1.0/24 is directly connected, eth3
B>* 10.5.0.0/16 [20/0] via 10.45.0.1, eth0, 00:17:19
B>* 10.13.0.0/24 [20/1] via 10.45.0.1, eth0, 00:17:19
B>* 10.13.0.0/24 [20/0] via 10.45.0.1, eth0, 00:17:19
B>* 10.30.0.0/24 [20/0] via 10.45.0.1, eth0, 00:17:19
C>* 10.24.0.0/24 is directly connected, eth2
B>* 10.35.0.0/24 [20/1] via 10.45.0.1, eth0, 00:17:19
C>* 10.40.0.0/24 is directly connected, eth2
C>* 10.40.0.0/24 is directly connected, eth1
C>* 10.45.0.0/24 is directly connected, eth1
C>* 10.45.0.0/24 is directly connected, eth0
C>* 127.0.0.0/8 is directly connected, eth0
C>* 127.0.0.0/8 is directly connected, lo
```

Figura 6: Routing Table AS 65 400

Como podemos observar na figura em cima, o AS65400 não utiliza o AS6500 como sistema de transito (Interface 10.40.0.2).

3.2 Tabela de encaminhamento AS 65 200 e AS 65 100

Vamos agora apresentar as tabelas de encaminhamento dos routers BGP relativos aos sistemas autónomos AS65100 e AS65200.

```
> - selected route, * - FIB route

S>* 0.0.0.0/0 [1/0] via 10.13.0.1, eth0

B>* 10.0.0.0/16 [20/0] via 10.13.0.1, eth0, 00;01;43

0 10.1.1.0/24 [110/10] is directly connected, eth1, 00;02;17

C>* 10.1.1.0/24 is directly connected, eth1

0 10.1.2.0/24 [110/30] via 10.1.1.2, eth1, 00;02;04

C>* 10.1.3.0/24 [110/30] via 10.1.1.2, eth1, 00;02;04

C>* 10.1.3.0/24 [110/20] via 10.1.1.2, eth1, 00;02;14

D>* 10.1.3.0/24 [110/20] via 10.1.1.2, eth1, 00;02;14

D>* 10.1.5.0/24 [110/20] via 10.1.1.2, eth1, 00;02;03

D>* 10.1.7.0/24 [110/20] via 10.1.1.2, eth1, 00;02;13

S>* 10.2.0.0/16 [1/0] via 10.13.0.1, eth0, rej

B>* 10.3.0.0/16 [20/0] via 10.13.0.1, eth0, 00;02;13

B>* 10.3.1.0/24 [20/0] via 10.13.0.1, eth0, 00;02;13

B>* 10.4.0.0/16 [20/0] via 10.13.0.1, eth0, 00;01;43

B>* 10.5.0.0/16 [20/0] via 10.13.0.1, eth0, 00;01;43

B>* 10.5.0.0/16 [20/0] via 10.13.0.1, eth0, 00;01;43

B>* 10.5.0.0/24 [20/0] via 10.13.0.1, eth0, 00;01;43

B>* 10.5.0.0/24 [20/0] via 10.13.0.1, eth0, 00;01;43

B>* 10.30.0.0/24 [20/0] via 10.13.0.1, eth0, 00;01;43

B>* 10.35.0.0/24 [20/0] via 10.13.0.1, eth0, 00;01;43

B>* 10.30.0.0/24 [20/0] via 10.13.0.1, eth0, 00;01;43

B>* 10.35.0.0/24 [20/0] via 10.13.0.1, eth0, 00;01;43

B>* 10.40.0.0/24 [20/0] via 10.13.0.1, eth0, 00;01;43

B>* 10.40.0.0/24 [20/0] via 10.13.0.1, eth0, 00;01;43

B>* 10.40.0.0/24 [20/0] via 10.13.0.1, eth0, 00;01;43

B>* 10.45.0.0.0/24 [20/0] via 10.13.0.1, eth0, 00;01;43
```

Figura 7: Routing Table AS 65 100

Podemos observar que a rota dirigida ao AS65200 é rejeitada ("rej").

Figura 8: Routing Table AS 65 200

O mesmo acontece na tabela relativa ao AS65200, onde a rota dirigida ao AS65100 é também rejeitada ("rej").

4 Testes de conectividade

Nesta secção iremos efetuar testes de conectividade de cada sistema autónomo para os outros sistemas, provando a existência de conectividade (ou não), consoante o pedido no enunciado.

4.1 Sistema autónomo 65 000

Tal como podemos observar abaixo, existe conectividade de AS65000 para os outros AS.

```
root@n4:/tmp/pycore.39287/n4.conf# ping 10.13.0.2
PING 10.13.0.2 (10.13.0.2) 56(84) bytes of data.
64 bytes from 10.13.0.2: icmp_seq=1 ttl=63 time=0.042 ms
64 bytes from 10.13.0.2: icmp_seq=2 ttl=63 time=0.043 ms
64 bytes from 10.13.0.2: icmp_seq=3 ttl=63 time=0.125 ms
^C
--- 10.13.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2027ms
rtt min/avg/max/mdev = 0.042/0.070/0.125/0.038 ms
root@n4:/tmp/pycore.39287/n4.conf#
```

Figura 9: Ping $AS65000 \rightarrow AS65100$

```
root@n4:/tmp/pycore.39287/n4.conf# ping 10.24.0.2

PING 10.24.0.2 (10.24.0.2) 56(84) bytes of data.

64 bytes from 10.24.0.2: icmp_seq=1 ttl=63 time=0.036 ms

64 bytes from 10.24.0.2: icmp_seq=2 ttl=63 time=0.101 ms

64 bytes from 10.24.0.2: icmp_seq=3 ttl=63 time=0.080 ms

^C

--- 10.24.0.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2038ms

rtt min/avg/max/mdev = 0.036/0.072/0.101/0.027 ms

root@n4:/tmp/pycore.39287/n4.conf#
```

Figura 10: Ping $AS65000 \rightarrow AS65200$

```
root@n4:/tmp/pycore.39287/n4.conf# ping 10.30.0.1

PING 10.30.0.1 (10.30.0.1) 56(84) bytes of data.

64 bytes from 10.30.0.1: icmp_seq=1 ttl=64 time=0.115 ms

64 bytes from 10.30.0.1: icmp_seq=2 ttl=64 time=0.071 ms

64 bytes from 10.30.0.1: icmp_seq=3 ttl=64 time=0.037 ms

^C

--- 10.30.0.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2034ms

rtt min/avg/max/mdev = 0.037/0.074/0.115/0.031 ms

root@n4:/tmp/pycore.39287/n4.conf#
```

Figura 11: Ping $AS65000 \rightarrow AS65300$

```
root@n4:/tmp/pycore.39287/n4.conf# ping 10.40.0.1
PING 10.40.0.1 (10.40.0.1) 56(84) bytes of data.
64 bytes from 10.40.0.1: icmp_seq=1 ttl=64 time=0.074 ms
64 bytes from 10.40.0.1: icmp_seq=2 ttl=64 time=0.037 ms
64 bytes from 10.40.0.1: icmp_seq=3 ttl=64 time=0.042 ms
^C
--- 10.40.0.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2045ms
rtt min/avg/max/mdev = 0.037/0.051/0.074/0.016 ms
root@n4:/tmp/pycore.39287/n4.conf#
```

Figura 12: Ping $AS65000 \rightarrow AS65400$

```
root@n4:/tmp/pycore.39287/n4.conf# ping 10.35.0.2
PING 10.35.0.2 (10.35.0.2) 56(84) bytes of data.
64 bytes from 10.35.0.2: icmp_seq=1 ttl=63 time=0.066 ms
64 bytes from 10.35.0.2: icmp_seq=2 ttl=63 time=0.049 ms
64 bytes from 10.35.0.2: icmp_seq=3 ttl=63 time=0.058 ms
64 bytes from 10.35.0.2: icmp_seq=4 ttl=63 time=0.048 ms
^C
--- 10.35.0.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3056ms
rtt min/avg/max/mdev = 0.048/0.055/0.066/0.007 ms
```

Figura 13: Ping $AS65000 \rightarrow AS65500$

4.2 Sistema autónomo 65 100

Tal como podemos observar nas figuras abaixo, existe conectividade deste AS para todos os outros, exceto para AS65200.

```
root@n5:/tmp/pycore.39287/n5.conf# ping 10.30.0.2

PING 10.30.0.2 (10.30.0.2) 56(84) bytes of data.

64 bytes from 10.30.0.2: icmp_seq=1 ttl=63 time=0.097 ms

64 bytes from 10.30.0.2: icmp_seq=2 ttl=63 time=0.087 ms

64 bytes from 10.30.0.2: icmp_seq=3 ttl=63 time=0.047 ms

^C

--- 10.30.0.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2041ms

rtt min/avg/max/mdev = 0.047/0.077/0.097/0.021 ms

root@n5:/tmp/pycore.39287/n5.conf# ■
```

Figura 14: Ping AS65100 \rightarrow AS65000

```
root@n5:/tmp/pycore.42499/n5.conf# ping 10.24.0.2

PING 10.24.0.2 (10.24.0.2) 56(84) bytes of data.

From 10.13.0.1 icmp_seq=1 Destination Net Unreachable

From 10.13.0.1 icmp_seq=2 Destination Net Unreachable

From 10.13.0.1 icmp_seq=3 Destination Net Unreachable

From 10.13.0.1 icmp_seq=4 Destination Net Unreachable

^C
--- 10.24.0.2 ping statistics ---
6 packets transmitted, 0 received, +4 errors, 100% packet loss, time 5122ms

root@n5:/tmp/pycore.42499/n5.conf# ■
```

Figura 15: Ping AS65100 \rightarrow AS65200

```
root@n5:/tmp/pycore.39287/n5.conf# ping 10.13.0.1
PING 10.13.0.1 (10.13.0.1) 56(84) bytes of data.
64 bytes from 10.13.0.1: icmp_seq=1 ttl=64 time=0.033 ms
64 bytes from 10.13.0.1: icmp_seq=2 ttl=64 time=0.061 ms
64 bytes from 10.13.0.1: icmp_seq=3 ttl=64 time=0.049 ms
^C
--- 10.13.0.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2045ms
rtt min/avg/max/mdev = 0.033/0.047/0.061/0.011 ms
root@n5:/tmp/pycore.39287/n5.conf#
```

Figura 16: Ping AS65100 \rightarrow AS65300

```
root@n5:/tmp/pycore.39287/n5.conf# ping 10.40.0.1

PING 10.40.0.1 (10.40.0.1) 56(84) bytes of data.

64 bytes from 10.40.0.1: icmp_seq=1 ttl=62 time=0.047 ms

64 bytes from 10.40.0.1: icmp_seq=2 ttl=62 time=0.058 ms

64 bytes from 10.40.0.1: icmp_seq=3 ttl=62 time=0.051 ms

^C

--- 10.40.0.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2044ms

rtt min/avg/max/mdev = 0.047/0.052/0.058/0.004 ms

root@n5:/tmp/pycore.39287/n5.conf#
```

Figura 17: Ping $AS65100 \rightarrow AS65400$

```
root@n5:/tmp/pycore.39287/n5.conf# ping 10.35.0.2
PING 10.35.0.2 (10.35.0.2) 56(84) bytes of data.
64 bytes from 10.35.0.2: icmp_seq=1 ttl=63 time=0.042 ms
64 bytes from 10.35.0.2: icmp_seq=2 ttl=63 time=0.176 ms
64 bytes from 10.35.0.2: icmp_seq=3 ttl=63 time=0.075 ms
^C
--- 10.35.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2061ms
rtt min/avg/max/mdev = 0.042/0.097/0.176/0.057 ms
root@n5:/tmp/pycore.39287/n5.conf#
```

Figura 18: Ping AS65100 \rightarrow AS65500

4.3 Sistema autónomo 65 200

Tal como podemos observar nas figuras abaixo, existe conectividade deste AS para todos os outros, exceto para AS65100.

```
root@n6:/tmp/pycore.39287/n6.conf# ping 10.40.0.2

PING 10.40.0.2 (10.40.0.2) 56(84) bytes of data.

64 bytes from 10.40.0.2: icmp_seq=1 ttl=63 time=0.038 ms

64 bytes from 10.40.0.2: icmp_seq=2 ttl=63 time=0.047 ms

64 bytes from 10.40.0.2: icmp_seq=3 ttl=63 time=0.050 ms

^C

--- 10.40.0.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2036ms

rtt min/avg/max/mdev = 0.038/0.045/0.050/0.005 ms

root@n6:/tmp/pycore.39287/n6.conf#
```

Figura 19: Ping $AS65200 \rightarrow AS65000$

```
root@n6:/tmp/pycore.42499/n6.conf# ping 10.13.0.2

PING 10.13.0.2 (10.13.0.2) 56(84) bytes of data.

From 10.24.0.1 icmp_seq=1 Destination Net Unreachable

From 10.24.0.1 icmp_seq=2 Destination Net Unreachable

From 10.24.0.1 icmp_seq=3 Destination Net Unreachable

From 10.24.0.1 icmp_seq=4 Destination Net Unreachable

^C
--- 10.13.0.2 ping statistics ---

5 packets transmitted, 0 received, +4 errors, 100% packet loss, time 4100ms

root@n6:/tmp/pycore.42499/n6.conf#
```

Figura 20: Ping $AS65200 \rightarrow AS65100$

```
root@n6:/tmp/pycore.39287/n6.conf# ping 10.30.0.1

PING 10.30.0.1 (10.30.0.1) 56(84) bytes of data.

64 bytes from 10.30.0.1: icmp_seq=1 ttl=62 time=0.082 ms

64 bytes from 10.30.0.1: icmp_seq=2 ttl=62 time=0.061 ms

64 bytes from 10.30.0.1: icmp_seq=3 ttl=62 time=0.105 ms

^C

--- 10.30.0.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2056ms

rtt min/avg/max/mdev = 0.061/0.082/0.105/0.017 ms

root@n6:/tmp/pycore.39287/n6.conf#
```

Figura 21: Ping $AS65200 \rightarrow AS65300$

```
root@n6:/tmp/pycore.39287/n6.conf# ping 10.24.0.1
PING 10.24.0.1 (10.24.0.1) 56(84) bytes of data.
64 bytes from 10.24.0.1: icmp_seq=1 ttl=64 time=0.030 ms
64 bytes from 10.24.0.1: icmp_seq=2 ttl=64 time=0.076 ms
64 bytes from 10.24.0.1: icmp_seq=3 ttl=64 time=0.042 ms
^C
--- 10.24.0.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2035ms
rtt min/avg/max/mdev = 0.030/0.049/0.076/0.019 ms
root@n6:/tmp/pycore.39287/n6.conf# ■
```

Figura 22: Ping $AS65200 \rightarrow AS65400$

```
root@n6:/tmp/pycore.39287/n6.conf# ping 10.45.0.1

PING 10.45.0.1 (10.45.0.1) 56(84) bytes of data.

64 bytes from 10.45.0.1: icmp_seq=1 ttl=63 time=0.037 ms

64 bytes from 10.45.0.1: icmp_seq=2 ttl=63 time=0.047 ms

64 bytes from 10.45.0.1: icmp_seq=3 ttl=63 time=0.048 ms

^C

--- 10.45.0.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2029ms

rtt min/avg/max/mdev = 0.037/0.044/0.048/0.005 ms

root@n6:/tmp/pycore.39287/n6.conf#
```

Figura 23: Ping AS65200 \rightarrow AS65500

4.4 Sistema autónomo 65 300

Tal como podemos observar abaixo, existe conectividade de AS65300 para os outros AS.

```
root@n2:/tmp/pycore.39287/n2.conf# ping 10.13.0.2
PING 10.13.0.2 (10.13.0.2) 56(84) bytes of data.
64 bytes from 10.13.0.2: icmp_seq=1 ttl=64 time=0.029 ms
64 bytes from 10.13.0.2: icmp_seq=2 ttl=64 time=0.038 ms
64 bytes from 10.13.0.2: icmp_seq=3 ttl=64 time=0.038 ms
^C
--- 10.13.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2049ms
rtt min/avg/max/mdev = 0.029/0.035/0.038/0.004 ms
root@n2:/tmp/pycore.39287/n2.conf#
```

Figura 24: Ping $AS65300 \rightarrow AS65000$

```
root@n2:/tmp/pycore.39287/n2.conf# ping 10.13.0.2
PING 10.13.0.2 (10.13.0.2) 56(84) bytes of data.
64 bytes from 10.13.0.2: icmp_seq=1 ttl=64 time=0.029 ms
64 bytes from 10.13.0.2: icmp_seq=2 ttl=64 time=0.038 ms
64 bytes from 10.13.0.2: icmp_seq=3 ttl=64 time=0.038 ms
^C
--- 10.13.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2049ms
rtt min/avg/max/mdev = 0.029/0.035/0.038/0.004 ms
root@n2:/tmp/pycore.39287/n2.conf#
```

Figura 25: Ping AS65300 \rightarrow AS65100

```
root@n2:/tmp/pycore.39287/n2.conf# ping 10.24.0.2

PING 10.24.0.2 (10.24.0.2) 56(84) bytes of data.

64 bytes from 10.24.0.2: icmp_seq=1 ttl=62 time=0.048 ms

64 bytes from 10.24.0.2: icmp_seq=2 ttl=62 time=0.042 ms

64 bytes from 10.24.0.2: icmp_seq=3 ttl=62 time=0.056 ms

^C

--- 10.24.0.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2044ms

rtt min/avg/max/mdev = 0.042/0.048/0.056/0.005 ms

root@n2:/tmp/pycore.39287/n2.conf# ■
```

Figura 26: Ping $AS65300 \rightarrow AS65200$

```
root@n2:/tmp/pycore.39287/n2.conf# ping 10.40.0.1
PING 10.40.0.1 (10.40.0.1) 56(84) bytes of data.
64 bytes from 10.40.0.1: icmp_seq=1 ttl=63 time=0.036 ms
64 bytes from 10.40.0.1: icmp_seq=2 ttl=63 time=0.048 ms
64 bytes from 10.40.0.1: icmp_seq=3 ttl=63 time=0.046 ms
^C
--- 10.40.0.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2038ms
rtt min/avg/max/mdev = 0.036/0.043/0.048/0.005 ms
root@n2:/tmp/pycore.39287/n2.conf#
```

Figura 27: Ping $AS65300 \rightarrow AS65400$

```
root@n2:/tmp/pycore.39287/n2.conf# ping 10.35.0.2

PING 10.35.0.2 (10.35.0.2) 56(84) bytes of data.

64 bytes from 10.35.0.2: icmp_seq=1 ttl=64 time=0.029 ms

64 bytes from 10.35.0.2: icmp_seq=2 ttl=64 time=0.037 ms

64 bytes from 10.35.0.2: icmp_seq=3 ttl=64 time=0.043 ms

^C

--- 10.35.0.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2027ms

rtt min/avg/max/mdev = 0.029/0.036/0.043/0.005 ms

root@n2:/tmp/pycore.39287/n2.conf#
```

Figura 28: Ping AS65300 \rightarrow AS65500

4.5 Sistema autónomo 65 400

Tal como podemos observar abaixo, existe conectividade de AS65400 para os outros AS.

```
root@n3:/tmp/pycore.39287/n3.conf# ping 10.40.0.2

PING 10.40.0.2 (10.40.0.2) 56(84) bytes of data.

64 bytes from 10.40.0.2: icmp_seq=1 ttl=64 time=0.047 ms

64 bytes from 10.40.0.2: icmp_seq=2 ttl=64 time=0.099 ms

64 bytes from 10.40.0.2: icmp_seq=3 ttl=64 time=0.105 ms

^C

--- 10.40.0.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2043ms

rtt min/avg/max/mdev = 0.047/0.083/0.105/0.026 ms

root@n3:/tmp/pycore.39287/n3.conf#
```

Figura 29: Ping AS65400 \rightarrow AS60000

```
root@n3:/tmp/pycore.39287/n3.conf# ping 10.13.0.2

PING 10.13.0.2 (10.13.0.2) 56(84) bytes of data.

64 bytes from 10.13.0.2: icmp_seq=1 ttl=62 time=0.137 ms

64 bytes from 10.13.0.2: icmp_seq=2 ttl=62 time=0.070 ms

64 bytes from 10.13.0.2: icmp_seq=3 ttl=62 time=0.061 ms

64 bytes from 10.13.0.2: icmp_seq=4 ttl=62 time=0.050 ms

^C64 bytes from 10.13.0.2: icmp_seq=5 ttl=62 time=0.054 ms

^C
--- 10.13.0.2 ping statistics ---

6 packets transmitted, 6 received, 0% packet loss, time 5085ms

rtt min/avg/max/mdev = 0.050/0.070/0.137/0.030 ms

root@n3:/tmp/pycore.39287/n3.conf#
```

Figura 30: Ping AS65400 \rightarrow AS65100

```
root@n3:/tmp/pycore.39287/n3.conf# ping 10.24.0.2

PING 10.24.0.2 (10.24.0.2) 56(84) bytes of data.

64 bytes from 10.24.0.2: icmp_seq=1 ttl=64 time=0.048 ms

64 bytes from 10.24.0.2: icmp_seq=2 ttl=64 time=0.031 ms

64 bytes from 10.24.0.2: icmp_seq=3 ttl=64 time=0.039 ms

^C

--- 10.24.0.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2052ms

rtt min/avg/max/mdev = 0.031/0.039/0.048/0.007 ms

root@n3:/tmp/pycore.39287/n3.conf#
```

Figura 31: Ping $AS65400 \rightarrow AS65200$

```
root@n3:/tmp/pycore.39287/n3.conf# ping 10.35.0.1

PING 10.35.0.1 (10.35.0.1) 56(84) bytes of data.

64 bytes from 10.35.0.1: icmp_seq=1 ttl=63 time=0.058 ms

64 bytes from 10.35.0.1: icmp_seq=2 ttl=63 time=0.046 ms

64 bytes from 10.35.0.1: icmp_seq=3 ttl=63 time=0.114 ms

^C

--- 10.35.0.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2033ms

rtt min/avg/max/mdev = 0.046/0.072/0.114/0.029 ms

root@n3:/tmp/pycore.39287/n3.conf#
```

Figura 32: Ping $AS65400 \rightarrow AS65300$

```
root@n3:/tmp/pycore.39287/n3.conf# ping 10.45.0.1

PING 10.45.0.1 (10.45.0.1) 56(84) bytes of data.

64 bytes from 10.45.0.1: icmp_seq=1 ttl=64 time=0.116 ms

64 bytes from 10.45.0.1: icmp_seq=2 ttl=64 time=0.040 ms

64 bytes from 10.45.0.1: icmp_seq=3 ttl=64 time=0.040 ms

^C

--- 10.45.0.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2029ms

rtt min/avg/max/mdev = 0.040/0.065/0.116/0.035 ms

root@n3:/tmp/pycore.39287/n3.conf#
```

Figura 33: Ping $AS65400 \rightarrow AS65500$

4.6 Sistema autónomo 65 500

Tal como podemos observar abaixo, existe conectividade de AS65500 para os outros AS.

```
root@n1:/tmp/pycore.39287/n1.conf# ping 10.30.0.2

PING 10.30.0.2 (10.30.0.2) 56(84) bytes of data.

64 bytes from 10.30.0.2: icmp_seq=1 ttl=63 time=0.094 ms

64 bytes from 10.30.0.2: icmp_seq=2 ttl=63 time=0.058 ms

64 bytes from 10.30.0.2: icmp_seq=3 ttl=63 time=0.073 ms

^C

--- 10.30.0.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2025ms

rtt min/avg/max/mdev = 0.058/0.075/0.094/0.014 ms

root@n1:/tmp/pycore.39287/n1.conf#
```

Figura 34: Ping $AS65500 \rightarrow AS65000$

```
root@n1:/tmp/pycore.39287/n1.conf# ping 10.13.0.2

PING 10.13.0.2 (10.13.0.2) 56(84) bytes of data.

64 bytes from 10.13.0.2: icmp_seq=1 ttl=63 time=0.135 ms

64 bytes from 10.13.0.2: icmp_seq=2 ttl=63 time=0.076 ms

64 bytes from 10.13.0.2: icmp_seq=3 ttl=63 time=0.048 ms

^C

--- 10.13.0.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2036ms

rtt min/avg/max/mdev = 0.048/0.086/0.135/0.036 ms

root@n1:/tmp/pycore.39287/n1.conf# ■
```

Figura 35: Ping AS65500 \rightarrow AS65100

```
root@n1:/tmp/pycore.39287/n1.conf# ping 10.24.0.2

PING 10.24.0.2 (10.24.0.2) 56(84) bytes of data.

64 bytes from 10.24.0.2: icmp_seq=1 ttl=63 time=0.111 ms

64 bytes from 10.24.0.2: icmp_seq=2 ttl=63 time=0.100 ms

64 bytes from 10.24.0.2: icmp_seq=3 ttl=63 time=0.141 ms

^C

--- 10.24.0.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2054ms

rtt min/avg/max/mdev = 0.100/0.117/0.141/0.017 ms

root@n1:/tmp/pycore.39287/n1.conf# ■
```

Figura 36: Ping $AS65500 \rightarrow AS65200$

```
root@n1:/tmp/pycore.39287/n1.conf# ping 10.35.0.1

PING 10.35.0.1 (10.35.0.1) 56(84) bytes of data.

64 bytes from 10.35.0.1: icmp_seq=1 ttl=64 time=0.088 ms

64 bytes from 10.35.0.1: icmp_seq=2 ttl=64 time=0.066 ms

64 bytes from 10.35.0.1: icmp_seq=3 ttl=64 time=0.037 ms

^C

--- 10.35.0.1 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2042ms

rtt min/avg/max/mdev = 0.037/0.063/0.088/0.020 ms

root@n1:/tmp/pycore.39287/n1.conf#
```

Figura 37: Ping $AS65500 \rightarrow AS65300$

```
root@n1:/tmp/pycore.39287/n1.conf# ping 10.45.0.2
PING 10.45.0.2 (10.45.0.2) 56(84) bytes of data.
64 bytes from 10.45.0.2: icmp_seq=1 ttl=64 time=0.073 ms
64 bytes from 10.45.0.2: icmp_seq=2 ttl=64 time=0.056 ms
64 bytes from 10.45.0.2: icmp_seq=3 ttl=64 time=0.048 ms
^C
--- 10.45.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2037ms
rtt min/avg/max/mdev = 0.048/0.059/0.073/0.010 ms
root@n1:/tmp/pycore.39287/n1.conf#
```

Figura 38: Ping $AS65500 \rightarrow AS65400$