Chapter-15 सांख्यिकी

प्रश्नावली 15.1

प्रश्न 1 व 2 में दिए गए आँकड़ों के लिए माध्य के सापेक्ष विचलन ज्ञात कीजिए:

प्रश्न 1.

4, 7, 8, 9, 10, 12, 13, 17.

हल : समांतर माध्य
$$\overline{x} = \frac{4+7+8+9+10+12+13+17}{8} = \frac{80}{8} = 10$$

$$\Sigma |x_i - \overline{x}| = |4-10| + |7-10| + |8-10| + |9-10| + |10-10| + |12-10| + |13-10| + |17-10|$$

$$= 6+3+2+1+0+2+3+7=24$$

 \therefore माध्य के सापेक्ष माध्य विचलन MD $(\bar{x}) = \frac{\Sigma |x_i - \bar{x}|}{n} = \frac{24}{8} = 3.$

प्रश्न 2.

38, 70, 48, 40, 42, 55, 63, 46, 54, 44.

हल : समांतर माध्य,
$$\bar{x} = \frac{38 + 70 + 48 + 40 + 42 + 55 + 63 + 46 + 54 + 44}{10}$$

$$=\frac{500}{10}=50$$

$$\therefore \quad MD(\bar{x}) = \frac{\sum |x_i - \bar{x}|}{n} = \frac{84}{10} = 8.4.$$

प्रश्न 3 व 4 के आँकड़ों के लिए माध्यिका के सापेक्ष माध्य विचलन ज्ञात कीजिए: प्रश्न 3.

13, 17, 16, 14, 11, 13, 10, 16, 11, 18, 12, 17.

आँकड़ों को आरोही क्रम में लिखने पर

$$\frac{12}{2} = 6$$
वाँ पद = 13 और 7वाँ पद = 14

माध्यिका =
$$\frac{13+14}{2}$$
 = $\frac{27}{2}$ = 13.5

$$\begin{split} \Sigma|\,x_i - M\,| &= |10 - 13.5| + |11 - 13.5| + |11 - 13.5| + |12 - 13.5| \\ &+ |13 - 13.5| + |13 - 13.5| + |14 - 13.5| + |16 - 13.5| \\ &+ |16 - 13.5| + |17 - 13.5| + |17 - 13.5| + |18 - 13.5| \\ &= 3.5 + 2.5 + 2.5 + 1.5 + 0.5 + 0.5 + 0.5 + 2.5 + 2.5 + 3.5 + 3.5 + 4.5 \\ &= 28 \end{split}$$

$$\therefore$$
 माध्य विचलन $(M) = \frac{\sum |x_i - M|}{n} = \frac{28}{12} = 2.33.$

प्रश्न 4.

36, 72, 46, 42, 60, 45, 53, 46, 51, 49.

हल: दिए हुए आँकड़ों को आरोही क्रम में लिखने पर

$$n = 10$$

∴ माध्यिका =
$$\frac{46+49}{2}$$

$$= \frac{95}{2} = 47.5$$

$$\Sigma |x_i - M| = |36 - 47.5| + |42 - 47.5| + |45 - 47.5| + |46 - 47.5| + |49 - 47.5| + |51 - 47.5| + |53 - 47.5| + |60 - 47.5| + |72 - 47.5| = 11.5 + 5.5 + 2.5 + 1.5 + 1.5 + 1.5 + 3.5 + 5.5 + 12.5 + 24.5 = 70$$

माध्य विचलन
$$(M) = \frac{\sum |x_i - M|}{n}$$
$$= \frac{70}{10}$$
$$= 7$$

प्रश्न 5 व 6 के आँकड़ों के लिए माध्य के सापेक्ष माध्य विचलन ज्ञात कीजिए: प्रश्न 5.

x_i	5	10	15	20	25
f_i	7	4	6	3	5

x_i	<i>.</i> ∗ <i>f</i> _i	$f_i x_i$	$ x_i - \overline{x} $	$f_i x_i - \bar{x} $
5	7	35	9	63
10	4	40	4	16
15	6	90	1	6,
20	3	60	6	18
25	5	125	11	55
योग	25	350		158

$$rac{158}{z} = rac{\Sigma f_i x_i}{\Sigma f_i}$$

$$= rac{350}{25} = 14$$
माध्य विचलन = $rac{\Sigma f_i \, |x_i - \overline{x}|}{N}$

प्रश्न 6.

x_i	10	30	50	70	90
f_i	4	24	28	16	8

हल:

x_i	f_i	$f_i x_i$	$ x_i - \overline{x} $	$f_i x_i - \overline{x} $
10	4	40	40	160
30	24	720	20	480
50	28	1400	0	0
70	16	1120	20	320
· 90	8	720	40	320
योग	80	4000		1280

$$egin{aligned} ar{x} &= rac{\Sigma f_i x_i}{\Sigma f_i} \ &= rac{4000}{80} = 50 \ \end{aligned}$$
माध्य विचलन $= rac{\Sigma f_i \mid x_i - ar{x} \mid}{N} \ &= rac{1280}{80} \ &= 16. \end{aligned}$

प्रश्न 7 व 8 के आँकड़ों के लिए माध्यिका के सापेक्ष माध्यै विचलन ज्ञात कीजिए:

प्रश्न 7.

x_i	5	7	9	10	12	15
f_i	8	6	2	2	2 .	6

x_i	f_i	c.f	$ x_i - M $	$f_i x_i - M $
5	8	. 8	2	16
7	6	14	0	0
9	2	16	2	4
10	2	18	3	6
12	2	20	5	10
15	6	26	8	48
योग	26			84

बारंबारता का योग = 26

$$\frac{26}{2} = 13$$
 ar $= 7$ और $= 7$

माध्यिका =
$$\frac{7+7}{2} = 7$$

∴ माध्यिका कें√सापेक्ष विचलन

$$(M) = \frac{\sum f_i |x_i - M|}{N} = \frac{84}{26} = 3.23.$$

प्रश्न 8.

x_i	15	21	27	30	35
$f_{\mathbf{i}}$	3	5	6	7	8

x_i	f_i	c.f	$ x_i - 30 $	$ f_i x_i-30 $
15	3	3	15	45
21 .	5	8	9	45
27	6	14	3	18
30	7	21	0	0
35	8	29	5	40
योग	29			148

माध्यिका =
$$\frac{29+1}{2}$$
 = 15वाँ पद = 30
M.D. (M) = $\frac{\Sigma f_i \mid x_i - M \mid}{N}$
= $\frac{148}{29}$ = 5.1.

प्रश्न 9 व 10 के आँकड़ों के लिए मध्य के सापेक्ष माध्य विचलन ज्ञात कीजिए। प्रश्न 9.

आय प्रतिदि	1 (0 – 100	100 – 200	200 – 300	300 – 400	400 – 500	500 – 600	600 – 700	700 – 800
व्यक्ति की संख		4	8	9	10	7	5	4	3

हल : माना
$$a = 350$$
, $h = 100$, $d_i = \frac{x_i - 350}{100}$

वर्ग	मध्य मूल <i>x_i</i>	d_i	बारंबारता f_i	$f_i d_i$	$ x_i - \overline{x} $	$f_i \mid x_i - \overline{x} \mid$
0-100	50	-3	4	-12	308	1232
100 – 200	150	. –2	8	-16	208	1664
200 – 300	250	≥1	9	_9	108	972
300 – 400	350	0	10	0	8	80
400 – 500	450	1	7	7	92	644
500 - 600	550	2	5.	10	192	960
600 - 700	650	. 3	4	12	292	1168
700 - 800	750	4	3 -	12	392	1176
्योग			50	4	1	7896

$$\frac{1}{x} = a + \frac{\sum f_i d_i}{N} \times h$$
$$= 350 + \frac{4}{50} \times 100$$
$$= 358$$

माध्य विचलन =
$$\frac{\Sigma f_i \mid x_i - \overline{x} \mid}{N}$$

$$= \frac{7856}{50}$$
= 157.92.

प्रश्न 10.

ऊंचाई (सेमी में)	95 – 105	105 – 115	115-125	12,5 – 135	135 – 145	145 155
लड़कों की संख्या	9	13	26	30	12	. 10

वर्ग	मध्य मूल <i>x_i</i>	$\frac{d_i}{x_i - 130}$	बारंबारता $f_{m{i}}$	$f_i d_i$	$ x_i - \overline{x} $	$f_i x_i - \overline{x} $
95-105	100	-3	9 .	-27	25.3	227.7
105 – 115	110	-2	13	-26	15.3	198.9
115 – 125	120	-1	26	-26	5.3	137.8
125 – 135	130	.0	30	0	4.7	141.0
135 – 145	140	1	12	12	14.7	176.4
145 – 155	150	2	10	20	24.7	247.0
योग			100	-47		1128.8

माध्य
$$\overline{x} = a + \left(\frac{\sum f_i d_i}{\sum f_i}\right) \times h$$

$$= 130 + \left(\frac{-47}{100}\right) \times 10$$

$$= 130 - 4.7 = 125.3$$

माध्य विचलन =
$$\frac{\Sigma f_i \mid x_i - \overline{x} \mid}{N}$$
 = $\frac{1128.8}{100}$ = 11.288.

प्रश्न 11.

निम्नलिखित आँकड़ों के लिए माध्यिका के सापेक्ष माध्य विचलन ज्ञात कीजिए:

अंक	0-10	10 – 20	20-30	30 – 40	40 – 50	50 - 60
लड़िकयों	6		14	16	4	2
की संख्या	0	0	14	10	-	2

वर्ग	मध्य मूल	f_i	c.f.	$ x_i - M $	$f_i x_i - M $
010	- 5	6	6	22.86	137.16
10-20	15	8	14	12.86	102.88
20-30	25	14	28	2.86	40.04
30-40	35	16	44	7.14	114.24
40 – 50	45	4	48	17.14	68.56
50 - 60	55	2	50	27.14	54.28
				योग	517.16

माध्यका =
$$l+\frac{N}{2}-C$$

$$=20+\frac{25-14}{14}\times 10=20+\frac{110}{14}$$

$$=20+7.86\stackrel{'}{=}27.86$$
माध्य विचलन (M) = $\frac{\Sigma f_i \mid x_i-M\mid}{\Sigma f_i}$

$$=\frac{517.16}{50}=10.34$$

प्रश्न 12.

नीचे दिए गए 100 व्यक्तियों की आयु के बंटन की माध्यिका आयु के सापेक्ष माध्य विचलन की गणना कीजिए:

आयु	16 – 20	21-25	26-30	31 – 35	36 – 40	41 – 45	46 – 50	5155
संख्या	5	6	12	14	26	12	16	9

हल : दिए गए आँकड़ों की सतत बारंबारता बंटन में बदलते हुए :

वर्ग	मध्य मूल	f_i	c.f.	$ x_i - M $	$f_i \mid x_i - M \mid$
15.5 – 20.5	18	5	5	20	100
20.5 – 25.5	23	6	11	15	90
25.5 – 30.5	28	12	23	10	120
30.5 – 35.5	33	14	37	5	70
35.5 – 40.5	38	26	63	0	. 0
40.5 – 45.5	43	12	75	5	60
45.5 – 50.5	48	16	91	10	160
50.5 - 55.5	53	. 9	100	15	135
	योग	100		योग	735

माध्यिका वर्ग : 35.5 - 40.5, l = 35.5, h = 5, C = 37, f = 26

$$\therefore$$
 माध्यिका = $l+\frac{N}{2}-C$

$$= 35.5+\left(\frac{50-37}{26}\right)\times 5$$

$$= 35.5+\frac{13}{26}\times 5=35.5+2.5=38$$
माध्य विचलन (M) = $\frac{\Sigma f_i \mid x_i-M\mid}{N}$

$$= \frac{735}{100}=7.35$$

प्रश्नावली 15.2

प्रश्न 1 से 5 तक के लिए आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए। प्रश्न 1.

6, 7, 10, 12, 13, 4, 8, 12.

माध्य
$$\overline{x} = \frac{\sum x_i}{n}$$

$$= \frac{6+7+10+12+13+4+8+12}{8}$$

$$= \frac{72}{8} = 9.$$

x_i	$x_i - \overline{x}$	$\left(x_i - \overline{x}\right)^2$
6	-3	. 9
7	-2	4
10	1	1
12	3	9
13	4	16
4	-5	25
8	-1	. 1
12	3	9
_		74

प्रसरण =
$$\frac{\Sigma (x_i - \overline{x})^2}{n}$$
$$= \frac{74}{8} = 9.25.$$

प्रश्न 2.

प्रथम n प्राकृत संख्याएँ।

हल : पहली n प्राकृत संख्याएँ : 1, 2, 3,...., n

माध्य
$$\overline{x} = \frac{1+2+3+....+n}{n} = \frac{1}{n} \cdot \frac{n(n+1)}{2}$$

$$= \frac{n+1}{2}. \qquad \qquad [\text{पहली } n \text{ प्राकृत संख्याओं का योग } \frac{n(n+1)}{2}]$$

$$\Sigma x_i^2 = 1^2 + 2^2 + 3^2 + + n^2$$

$$= \frac{n(n+1)(2n+1)}{6}$$
प्रसरण = $\frac{\Sigma(x_i - \overline{x})^2}{n} = \frac{1}{n^2} [n\Sigma x_i^2 - (\Sigma x_i)^2]$

$$= \frac{1}{n^2} \left[n \frac{n(n+1)(n+2)}{6} \cdot \frac{n^2 (n+1)^2}{4} \right]$$

$$= \frac{1}{12} \left[2(n+1)(2n+1) - 3(n+1)^2 \right]$$

$$= \frac{n+1}{12} \left[2(2n+1) - 3(n+1) \right]$$

$$= \frac{n+1}{12} \left[4n + 2 - 3n - 3 \right]$$

$$= \frac{(n+1)(n-1)}{12} = \frac{n^2 - 1}{12}.$$

प्रश्न 3.

3 के प्रथम 10 गुणज।

हल:

प्रथम दस 3 के गुणज : 3, 6, 9, 12, 15, 18, 21, 24, 27, 30

x_i	$y_i = \frac{x_i - 15}{3}$	y_i^2
3	4	16
6	-3	9
9	-2	4
12	-1	1
15	0	0
18	1	1
21	2	4
24	3	9
27	4	16
30	5	25
योग	5	85

माध्य
$$\overline{x} = A + \frac{\sum y_i}{n} \times h$$

$$= 15 + \frac{5}{10} \times 3$$

$$= 15 + 1.5 = 16.5.$$
प्रसरण, $\sigma^2 = \frac{h^2}{n^2} [n \sum y_i^2 - (\sum y_i)^2]$

$$= \frac{9}{100} [10 \times 85 - 25]$$

$$= \frac{9}{100} [850 - 25]$$

$$= \frac{9 \times 825}{100}$$

$$= \frac{7425}{100} = 74.25$$

अत: माध्य = 16.5, प्रसरण = 74.25.

प्रश्न 4.

x_i	6	10	14	18	24	28	30	
f_i	2	4	7	12	8	4	3	

x_i	f_i	$f_i x_i$	$x_i - \overline{x}$	$\left(x_i - \overline{x}\right)^2$	$f_i\left(x_i-\overline{x}\right)^2$
6	2	12	-13	169	338
10	4	40	-9	81	324
14	7	98	-5	25	175
18	12	216	-1	1	12
24	. 8 .	198	5	25	200
. 28	4	115	9	81	324
30	3	90	- 11	121	363
योग	40	760			1736

माध्य
$$\bar{x} = \frac{760}{40} = 19$$

प्रसरण $\sigma^2 = \frac{\sum f_i (x_i - \bar{x})^2}{N}$
 $= \frac{1736}{40} = 43.4$

माध्य = 19, प्रसरण = 43.4.

अत:

प्रश्न 5.

x_i	92	93	97	98	102	104	109
f_i	3	2	3	2	6	3	3

हुल : मान लीजिए कल्पित माध्य A = 98, $\therefore y_i = x_i - 98$

x_i	f_i	y_i	fy_i	y_i^2	$\int y_i^2$
92	3	-6	-18	36	108
93	2	-5	-10	25	50
97	3	1	-3	1 .	3
98	. 2	0	0	0	0
102	6	4	24	16	96
104	3	6	18	, 36	108
109	3	11	33	121	363
योग	22		44		728

माध्य =
$$A + \frac{\Sigma f_i y_i}{N} = 98 + \frac{44}{22}$$

= $98 + 2 = 100$.
प्रसरण $\sigma^2 = \frac{1}{N^2} \left[N\Sigma f_i y_i - (\Sigma f_i y_i)^2 \right]$
= $\frac{1}{(22)^2} \left[22 \times 728 - 44 \times 44 \right]$
= $\frac{1}{22} \left[728 - 88 \right]$
= $\frac{640}{22} = \frac{320}{11} = 29.09$.

प्रश्न 6. लघु विधि द्वारा माध्ये वे मानक विचलन ज्ञात कीजिए:

x_{i}	60	61	- 62	63	64	65	66	67	68
$f_{\mathbf{i}}$	2	1	12	29	25	12	10	4	5

हल : मान लीजिए कल्पित माध्य A=64

तथा

$$y^* = x_i - 64$$

x	f_i	y_i	$f_i y_i$	y_i^2	$f_i y_i^2$
60	2	4	-8	16	32
61	1	-3	-3	9	9
62	12	-2	-24	4	48
63	29	-1	-29	1	29
64	25	0	0	0	. 0
65	12	1	12	1	12
66	10	2 ·	20	4	40
67	4	3	12	9	36
- 68	5	4	20	16.	80
	100		0	. 60	- 286

माध्य,
$$\overline{x} = A + \frac{\Sigma f_i y_i}{N}$$

$$= 64 + 0 = 64.$$
प्रसरण, $\sigma^2 = \frac{1}{N^2} \left[N \Sigma f_i y_i - (\Sigma f_i y_i)^2 \right]$

$$= \frac{1}{(100)^2} \left[100 \times 286 - 0 \right]$$

$$= \frac{286}{100} = 2.86$$

मानक विचलन, $\sigma = \sqrt{2.86} = 1.69$.

प्रश्न 7 व 8 में दिए गए बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए:

प्रश्न 7.

वर्ग :	0-30	30 – 60	60 – 90	90 – 120	120 – 150	150 - 180	180 – 210
बारंबारता :	2	3	5	10	3	5	2

हल : माना कल्पित माध्य A = 105, वर्ग अंतराल h = 30

$$y_i = \frac{x_i - A}{h} = \frac{x_i - 105}{30}$$

वर्ग	मध्य मूल्य (x_i)	बारंबारता (f_i)	y_i	$f_i y_i$	y_i^2	$f_i y_i^2$
0-30	15	2	-3	-6	9	18
30 – 60,	45	3	-2	-6	4	12
60 – 90	,75	5	-1	-5	1.	5
90-120	105	10	Ö	0	0	0
120-150	135	3	1 -	3	1	3
150 – 180	165	5	2	10	4	20
180 – 210	195	2	. 3	6	9	18
योग		30		2		76

माध्य
$$\frac{-}{x} = A + \left(\frac{\Sigma f_i y_i}{N}\right) \times h$$

$$= 105 + \frac{2}{30} \times 30 = 107.$$
प्रसरण $\sigma^2 = \frac{h^2}{N^2} \left[N\Sigma f_i y_i^2 - (\Sigma f_i y_i)^2\right]$

$$= \frac{30 \times 30}{30 \times 30} \left[30 \times 76 - 2^2\right]$$

$$= 2280 - 4 = 2276.$$

प्रश्न 8.

वर्ग :	0-10	10-20	20-30	30-40	40 – 50
बारंबारता :	5	8	15	16	6 -

हल : माना कल्पित माध्य A=25, वर्ग अंतराल = 10

$$y_i = \frac{x_i - A}{h} = \frac{x_i - 25}{10}$$

वर्ग	मध्य मूल्य	बारंबीरता	y_i	$f_i y_i$	y_i^2	$f_i y_i^2$
	(x_i)	(f_i)				
0-10	5	5	-2	-10	4	20
10-20	15	8	-1	8	1	8 -
20 – 30	25	15	. 0	0	0	0
30 40	35	16	1	16	1	16
40 – 50	45	6	2	12	4	24
योग		50		10		68

माध्य,
$$\frac{1}{x} = A + \left(\frac{\Sigma f_i y_i}{N}\right) \times h$$

$$= 25 + \left(\frac{10}{50}\right) \times 10 = 25 + 2 = 27.$$
प्रसरण, $\sigma^2 = \frac{h^2}{N^2} \left[N\Sigma f_i y_i^2 - (\Sigma f_i y_i)^2\right]$

$$= \frac{100}{2500} \left[50 \times 68 - 100\right]$$

$$= \frac{50}{25} \left[68 - 2\right] = 2 \times 66 = 132.$$

प्रश्न 9.

लघु विधि द्वारा माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए।

ऊँचाई (सेमी में)	70 – 75	75 – 80	80 – 85	85 – 90	90 – 95	95 – 100	100 – 105	105-110	110 – 115
बच्चों की संख्या	3	4	7.	7	15	9	6	6	3

हल :
$$A = 92.5$$
, $h = 5$, $y_i = \frac{x_i - A}{h} = \frac{x_i - 92.5}{5}$

वर्ग अंतराल	माध्य मूल्य x_i	बारंबारता f_i	y_i	$f_i y_i$	y_i^2	$f_i y_i^2$
70 – 75	72.5	3	-4	-12	16	48
· 75 – 80	77.5	4	-3	−12 ·	9	36
80 - 85	82.5	7	-2	-14	4	28
85 – 90	87.5	7	-1	7	1	7
90 – 95	92.5	15	0	0	0	0
95-100	97.5	9	1	9	1	9
100 – 105	102.5	6	. 2	12	4	24
105 – 110	107.5	. 6	; 355°	. 18	9	54
110-115	112.5	3	4	12′	16	48
योग		60		6	_	254

माध्य,
$$\frac{1}{x} = A + \left(\frac{\Sigma f_i y_i}{N}\right) \times h$$

$$= 92.5 + \frac{6}{60} \times 5$$

$$= 92.5 + 0.5 = 93.$$
प्रसरण, $\sigma^2 = \frac{h^2}{N^2} \left[N\Sigma f_i y_i^2 - (\Sigma f_i y_i)^2\right]$

$$= \frac{25}{3600} \left[60 \times 254 - 36\right]$$

$$= \frac{12}{144} \left[5 \times 254 - 3\right]$$

$$= \frac{1}{12} \left[1270 - 3\right]$$

$$= \frac{1267}{12} = 105.58.$$

मानक विचलन, $σ = \sqrt{105.58} = 10.28$.

प्रश्न 10. एक डिजाइन में बनाए गए वृत्तों के व्यास (मिमी में) नीचे दिए गए हैं।

व्यास	33 – 36	37 – 40	41 – 44	45 – 48	49 – 52
वृत्तों की संख्या	15	17	21	22	25

वृत्तों के व्यासों का मानक विचलन के माध्य व्यास ज्ञात कीजिए।

हल:

दिए हुए असतत आँकड़ों को सतत बारंबारता बंटन में बदलने के लिए अंतराल इस प्रकार हैं। 32.5 – 36.5, 36.5 – 40.5, 40.50 – 44.5, 44.5 – 48.5, 48.5 – 52.5

माना
$$A = 42.5$$
, $h = 4$, $\therefore y_i = \frac{x_i - 42.5}{4}$

वर्ग अंतराल	माध्य मूल्य <i>x_i</i>	बारंबारता f_i	y_i	$f_i y_i$	y_i^2	$f_i y_i^2$
32.5 – 36.5	34.5	15	-2	-30	4	60
36.5 – 40.5	38.5	17	-1	-17	1	17
40.5 – 44.5	42.5	21	0	0	0	0
44.5 – 48.5	42.5	22	1	22	1	22
48.5 – 52.5	50.5	25	. 2	50	4	100
योग		100		25		199

माध्य,
$$\bar{x} = A + \left(\frac{\Sigma f_i y_i}{N}\right) \times h$$

$$= 42.5 + \frac{25}{100} \times 4$$

$$= 42.5 + 1 = 43.5.$$
प्रसरण $\sigma^2 = \frac{h^2}{N^2} \left[N\Sigma f_i y_i^2 - (\Sigma f_i y_i)^2\right]$

$$= \frac{16}{(100)^2} \left[100 \times 199 - (25)^2\right]$$

$$= \frac{16 \times 25}{100 \times 100} \left[4 \times 199 - 25\right]$$

$$= \frac{1}{25} \left[796 - 25\right]$$

$$= \frac{771}{25} = 30.84$$

मानक विचलन $\sigma = \sqrt{30.84} = 5.56$.

प्रश्नावली 15.3

प्रश्न 1. निम्नलिखित आँकड़ों से बताइए कि A या B में से किसमें अधिक बिखराव है।

अंव	5	10 - 20	20 – 30	30-40	40 – 50	50 - 60	60 – 70	70 – 80
समू	ξ A	9	17	32	33	40	10	9
समू	ह <i>B</i>	10	20	30	25	43	15	7

माना कल्पित माध्य A = 45, h = 10.

$$y_i = \frac{x_i - 45}{h}$$

			1					
- वर्ग	मध्य मूल्य	y_i	समू	समूह 🗛 के लिए			रूह A के ि	लए
अंतराल	x_i		f_i	$f_{i}y_{i}$	$f_i y_i^2$	f_i	$f_i y_i$	$f_{i}y_{i}^{2}$
10 – 20	15	- 3	9	- 27	81	10	- 30	90
20 - 30	25	-2	17	- 34	68	20	-40	80
30 – 40	35	- 1	32	- 32	32	30	- 30	30
40 – 50	45	. 0	33	0	0	25	. 0	0
50 - 60	55	1	40	40	40	43	43	43
60 - 70	65	2	10	20	40	15	30	60
70 – 80	75	3	9	27	81 ′	7	21	63
			150	-6	342	150	-6	366

सूमह 🛭 के लिए :

$$\overline{x} = A + \left(\frac{\Sigma f_i y_i}{N}\right) \times h$$

$$= 45 + \frac{-6}{150} \times 10 = 45 - \frac{2}{5}$$

$$= 45 - 0.4 = 44.6$$

$$\sigma^2 = \frac{h^2}{N^2} \left[N\Sigma f_i y_i^2 - (\Sigma f_i y_i)^2\right]$$

$$= \frac{100}{22500} [150 \times 342 - 36]$$

$$= \frac{36}{225} [25 \times 57 - 1]$$

$$= \frac{4}{25} [1425 - 1]$$

$$= \frac{4 \times 1224}{25} = 227.84$$

$$\sigma = 15.09$$
विचरण गुणांक, C.V. = $\frac{\sigma}{x} \times 100$

$$= \frac{15.09}{44.6} \times 100 = 33.83.$$

समूह B के लिए:

$$\overline{x} = A + \left(\frac{\Sigma f_i y_i}{N}\right) \times h$$

$$= 45 + \frac{-6}{150} \times 10 = 45 - \frac{2}{5}$$

$$= 45 - 0.4 = 44.6$$

$$\sigma^2 = \frac{h^2}{N^2} \left[N\Sigma f_i y_i^2 - (\Sigma f_i y_i)^2 \right]$$

$$= \frac{100}{22500} \left[150 \times 366 - 36 \right]$$

$$= \frac{36}{225} \left[25 \times 61 - 1 \right]$$

$$= \frac{4}{25} \times 1524 = \frac{6096}{25} = 243.84$$

$$\sigma^2 = 15.62$$
विचरण गुणांक, C.V. = $\frac{\sigma}{x} \times 100$

 $=rac{1562}{44.6}=35.02$ समूह B का विचरण गुणांक समूह A के विचरण गुणांक से अधिक है।

समूह B का विचरण गुणांक समूह A के विचरण गुणांक से अधिक है। अत: समूह B में अंकों का बिखराव सूमह A के अंकों से अधिक है।

प्रश्न 2. शेयरों X और Y के नीचे दिए गए मूल्यों से बताइए कि किसके मूल्यों में अधिक स्थिरता है ?

1	l .	54			l				l .	
Y	108	107	105	105	106	107	104	103	104	101

हल: माना शेयर X के आँकड़ों में कल्पित माध्य = 52 और शेयर Y के आँकड़ों में कल्पित मा

7	शेयर X के लिए	ξ		शेयर Y के लिए	
x_i	$y_i = x_i - 52$	y_i^2	x_i	$y_i = x_i - 105$	y_i^2
35	- 17	289	108	3	9
54	2	4	107	. 2	4
52	0	0	105	0	0
52 53	1	1	105	0	0
56	4	16	106	1	1
58	6	36	107	2	4
52	0	. 0	104	-1	1
50	-2	4	103	-2	4
51	-1	1	104	- 1	1.
49	-3	9	101	-4	16
योग	- 10	360		0	40

ध्य = 105

शेयर X के लिए :

$$\overline{x} = A + \frac{\sum y_i}{n}$$

$$= 52 + \frac{-10}{10}$$

$$= 52 - 1 = 51$$

$$\sigma^2 = \frac{1}{n^2} [n\sum y_i^2 - (\sum y_i)^2]$$

$$= \frac{1}{100} [10 \times 360 - 100]$$
$$= 36 - 1 = 35$$
$$\sigma = 5.916$$

विचरण गुणांक, C.V. =
$$\frac{\sigma}{x} \times 100$$

= $\frac{5.916}{51} \times 100 = \frac{591.6}{51} = 11.6$

शेयर ४ के लिए:

∴

$$\bar{x} = A + \frac{\sum y_i}{n}$$

$$= 105 + \frac{0}{10} = 105$$

$$\sigma^2 = \frac{1}{n^2} [n\sum y_i^2 - (\sum y_i)^2]$$

$$= \frac{1}{100} [10 \times 40 - 0]$$

$$= \frac{400}{100} = 4$$

$$\sigma = 2$$

विचरण गुणांक C.V. =
$$\frac{\sigma}{x} \times 100$$

= $\frac{2}{105} \times 100 = \frac{200}{105} = 1.9$

विचरण गुणांक Y शेयर में X शेयर की तुलना में कम है। अस: शेयर Y में, शेयर X की तुलना में अधिक स्थिरता है।

प्रश्न 3.

एक कारखाने की दो फर्मों A और B के कर्मचारियों को दिए मासिक वेतन के विश्लेषण का निम्नलिखित परिणाम है:

	फर्म ${f A}$	फर्म B
वेतन पाने वाले कर्मचारियों की संख्या	586	648
मासिक वेतनों का माध्य	5253 ₹	5253 ₹₹
वेतनों के बंटनों का प्रसरण	100	121

- (i) A और B में से कौन सी फर्म अपने कर्मचारियों को वेतन के रूप में अधिक राशि देती है?
- (ii) व्यक्तिगत वेतनों में किस फर्म A या B में अधिक विचरण है ?

हल:

फर्म A के लिए:

वेतन पाने वाले कर्मचारियों की संख्या = 586

मासिक वेतन की माध्य = 5253 रू

फर्म A द्वारा दिया गया कुल वेतन = 5253 x 586 = 3078258 रू

वेतन बंटन का प्रसरण = 100

मानक विचलन = 10

विचरण गुणांक = [latex s=2]\frac { \sigma }{ \overline { x } }[/latex] x 100

= [latex s=2]\frac { 10 }{ 5253 }[/latex] x 100

= [latex s=2]\frac { 1000 }{ 5253 }[/latex]

= 0.19

फर्म B के लिए:

वेतन पाने वाले कर्मचारियों की संख्या = 648

मासिक वेतन का संख्या = 5253 रू

फर्म B द्वारा गया कुल वेतन = 5253 x 648 रू = 3403944 रू

वेतन बंटन का प्रसरण = 121

मानक विचलन = 11

विचरण गुणांक = [latex s=2]\frac { \sigma }{ \overline { x } }[/latex] x 100

= [latex s=2]\frac { 11 }{ 5253 }[/latex] x 100 = 0.21

(i) फर्म A दवारा दिया गया क्ल मासिक वेतन = 3078258 रू

फर्म B द्वारा दिया गया क्ल मासिक वेतन = 3403944 रू

अत: फर्म B फर्म A की तुलना में अधिक मासिक वेतन देती है।
(ii) फर्म A के वेतन बंटन की विचरण गुणांक = 0.19 और
फर्म A के वेतन बंटन का विचरण गुणांक = 0.21
अत: फर्म B के वेतन बंटन में अधिक बिखराव है।

प्रश्न 4. टीम A द्वारा एक सत्र में खेले गए फुटबॉल मैचों के ऑकड़े नीचे दिए गए हैं:

किए गए गोलों की संख्या	0	1	2	3	4
मैचों की संख्या	1	9	7	5	3

टीम B द्वारा खेले गए मैचों में बनाए गए गोलोंकमाथ्य 2 प्रति मैच और गोलों का मानक विचलन 1.25 था।

किस टीम को अधिक संगत (consistent) समझा जाना चाहिए ?

हल :	किए गए गोलों की संख्या x_i	ैमेचों की संख्या f_i	x_i^2	$f_i x_i$	$f_i x_i^2$
	0	1	0	0	0
	1	9	1	9	. 9
	2	7	4	14	28
	3	5	9	15	45
	4	3	16	12	48
		25		50	130

टीम 🔏 के लिए:

किए गए गोलों का माध्य
$$\overline{x} = \frac{\Sigma f_i x_i}{N} = \frac{50}{25} = 2$$

मानक विचलन $= \frac{1}{N} \sqrt{N\Sigma f_i x_i^2 - (\Sigma f_i x_i)^2}$
 $= \frac{1}{25} \sqrt{25 \times 130 - 50 \times 50}$
 $= \frac{2}{25} \sqrt{130 - 100}$
 $= \frac{1}{5} \sqrt{30} = 1.095$

विचरण गुणांक $= \frac{\sigma}{x} \times 100$
 $= \frac{1.095}{2} \times 100$
 $= 54.75$

फर्म B के लिए :

माध्य
$$\frac{-}{x} = 2$$
मानक विचलन = 1.25
विचरण गुणांक = $\frac{\sigma}{x} \times 100$

$$= \frac{1.25}{2} \times 100 = 62.5$$

टीम A का टीम B की तुलना में विचरण गुणांक कम है। अत: टीम A में टीम B से अधिक स्थिरता है।

प्रश्न 5.

पचास वनस्पति उत्पादों की लंबाई x (सेमी में) और भार y (ग्राम में) के योग और वर्गों के योग नीचे दिए गए हैं।

$$\sum_{i=1}^{50} x_i = 212, \ \sum_{i=1}^{50} x_i^2 = 902.8, \ \sum_{i=1}^{50} y_i = 261, \ \sum_{i=1}^{50} y_i^2 = 1457.6$$

लंबाई या भार में किसमें अधिक विचरण है ?

हल:

लंबाई के लिए:

$$n = 50, \sum_{i=1}^{50} x_i = 212$$

$$\overline{x} = \frac{212}{50} = 4.24$$

$$\sigma = \frac{1}{n} \sqrt{n\Sigma x_i^2 - (\Sigma x_i)^2}$$

$$= \frac{1}{50} \sqrt{50 \times 902.8 - (212)^2}$$

$$= \frac{1}{50} \sqrt{45140 - 44944}$$

$$= \frac{\sqrt{196}}{50} = \frac{14}{50} = 0.28$$

विचरण गुणांक, C.V. =
$$\frac{\sigma}{x} \times 100$$

= $\frac{0.28}{4.24} \times 100 = 6.60$

भार के लिए:

$$n=50, \sum_{i=1}^{50} y_i = 261, \sum_{i=1}^{50} y_i^2 = 1457.6$$

$$\frac{1}{\pi} = \frac{\sum y_i}{n} = \frac{261}{50} = 5.22$$

$$\sigma = \frac{1}{n} \sqrt{n \sum y_i^2 - (\sum y_i)^2}$$

$$= \frac{1}{50} \sqrt{50 \times 1457.6 - (261)^2}$$

$$= \frac{1}{50} \sqrt{72880 - 68121}$$

$$= \frac{\sqrt{4759}}{50} = \frac{68.9855}{50} = 1.38$$
विचरण गुणांक, C.V. = $\frac{\sigma}{x} \times 100$

$$= \frac{1.38}{5.22} \times 100 = 26.44$$

भार का विचरण गुणांक, लंबाई के विचरण गुणांक से अधिक है। अत: भार के बंटन में अधिक विचरण है।

अध्याय 15 पर विविध प्रश्नावली

प्रश्न 1.

आठ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः 9 और 9.25 है। यदि इनमें से छः प्रेक्षण 6, 7, 10, 12, 13, 13 हैं, तो शेष दो प्रेक्षण ज्ञात कीजिए।

हल : मान लीजिए वे दो संख्याएँ x और y हैं।

ः
$$\overline{x} = 9 = \frac{6+7+10+12+12+13+x+y}{8}$$

$$72 = 60+x+y$$

$$x+y = 12$$
...(1)
$$\overline{y}$$

$$\overline{x} = 9$$

$$\frac{1}{n^2} [n\Sigma x_i^2 - (\Sigma x_i)^2]$$

$$\frac{\Sigma x_i}{8} = 9$$

$$9.25 = \frac{1}{64} [8 \times \Sigma x_i^2 - (\Sigma x_i)^2]$$

$$\Sigma x_i = 72$$

$$8 \times \Sigma x_i^2 = 9.25 \times 64 + 72 \times 72$$

$$= 592 + 5184 = 5776$$

$$\Sigma x_i^2 = \frac{5776}{8} = 722$$

$$\Sigma x_i^2 = 722$$

$$= 6^2 + 7^2 + 10^2 + 12^2 + 12^2 + 13^2 + x^2 + y^2$$

$$= 642 + x^2 + y^2$$

ः
$$x^2 + y^2 = 722 - 642 = 80$$
या $x^2 + y^2 = 80$...(2)
समीकरण (1) और (2) से
$$x^2 + (12 - x)^2 = 80$$
या $2x^2 - 24x + 144 = 80$
या $x^2 - 12x + 32 = 0$
या $(x - 4)(x - 8) = 0$

$$x = 4$$
 या $x = 4$ या $x = 4$

अत: वे दो संख्याएँ 4 और 8 हैं।

प्रश्न 2.

सात प्रेक्षणों का माध्य तथा प्रसरण क्रमशः 8 और 16 हैं। यदि इनमें से पाँच प्रेक्षण 2, 4, 10, 12, 14 हैं तो शेष दो प्रेक्षण ज्ञात कीजिए।

हल : माना कि वे दो संख्याएँ x और y हैं।

या
$$\overline{x} = 8 = \frac{2+4+10+12+14+x+y}{7}$$

$$56 = 42+x+y \text{ या } x+y=56-42=14 \qquad ...(1)$$

$$\sigma^2 = \frac{1}{n^2} \left[n\Sigma x_i^2 - (\Sigma x_i)^2 \right]$$

$$\left[\overline{x} = \frac{\Sigma x_i}{n} \therefore \Sigma x_i = n \text{ } \overline{x} = 7 \times 8 = 56 \right]$$

$$\sigma^2 = 16 = \frac{1}{49} \left[7 \times \Sigma x_i^2 - (56)^2 \right]$$

$$\therefore \qquad 7\Sigma x_i^2 = 49 \times 16 + 56 \times 56$$

$$\Sigma x_i^2 = 7 \times 16 + 8 \times 56$$

$$= 560$$

$$2 \times 10^2 + 4^2 + 10^2 + 12^2 + 14^2 + x^2 + y^2 = 560$$

$$460 + x^2 + y^2 = 560$$

$$x^2 + y^2 = 560 - 460 = 100 \qquad ...(2)$$

समीकरण (1) और (2) से

$$x^{2} + (14 - x)^{2} = 100$$

या
$$2x^{2} - 28x + 196 - 100 = 0$$

या
$$x^{2} - 14x + 48 = 0$$

∴
$$(x - 6)(x - 8) = 0$$

∴
$$x = 6$$
 या 8
∴ $y = 8$ या 6

∴ वे दो संख्याएँ 6 और 8 हैं।

प्रश्न 3.

छः प्रेक्षणों को माध्य तथा मानक विचलन क्रमशः 8 तथा 4 हैं। यदि प्रत्येक प्रेक्षण को 3 से गुणा

कर दिया जाए तो परिणामी प्रेक्षणों का माध्य व मानक विचलन ज्ञात कीजिए।

हल :

$$\frac{1}{x} = \frac{\sum x_i}{n}$$

 x_i को $3x_i$ से बदलने पर

नया माध्य =
$$\frac{\Sigma 3x_i}{n}$$

= $\frac{3\Sigma x_i}{n}$ = $3\overline{x}$ = 3×8 = 24.

मानक विचलन
$$\sqrt{\frac{\Sigma(x_i - \overline{x})^2}{n}} = 4$$

नए बंटन में x_i को $3x_i$ और x को 3x से बदलने पर

नया मानक विचलन =
$$\sqrt{\frac{\Sigma \left(3x_i - 3\overline{x}\right)^2}{n}}$$
 = $\sqrt{\frac{\Sigma 9 \left(x_i - \overline{x}\right)^2}{n}}$ = $\sqrt{\frac{9\Sigma \left(x_i - \overline{x}\right)^2}{n}}$ = $3\sqrt{\frac{\Sigma \left(x_i - \overline{x}\right)^2}{n}}$ = $3 \times 4 = 12$.

प्रश्न 4. यदि n प्रेक्षणों का माध्य \overline{x} तथा प्रसरण σ^2 है तो सिद्ध कीजिए कि प्रेक्षणों $ax_1, ax_2, ax_3,$ ax_n का माध्य और प्रसरण क्रमशः $a\overline{x}$ तथा $a^2\sigma^2$ $(a\neq 0)$ है।

 x_i को ax_i से बदलने पर

नया बंटन माध्य =
$$\frac{\sum ax_i}{n}$$

$$= \frac{a\sum x_i}{n} = a\frac{\overline{x}}{x}.$$

$$\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$

इति सिद्धम्।

 x_i को ax_i और x को ax से बदलने पर

नया प्रसरण =
$$\frac{\sum (ax_i - ax_i)^2}{n}$$

$$= \frac{\sum a^2 \left(x_i - \overline{x}\right)^2}{n}$$
$$= \frac{a^2 \sum \left(x_i - \overline{x}\right)^2}{n} = a^2 \sigma^2.$$

(ii)

प्रश्न 5.

बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमशः 10 तथा 2 हैं। जांच करने पर यह पाया गया कि प्रेक्षण 8 गलत है। निम्न में से प्रत्येक का सही मध्य तथा मानक विचलन ज्ञात कीजिए यदि (i) गलत प्रेक्षण हटा दिया जाए।

(ii) उसे 12 से बदल दिया जाए।

(b)
$$\Sigma x_i^2 = \frac{(20)^2 \times 4 + (200)^2}{20}$$
$$= 80 + 10 \times 200$$
$$= 2080$$
$$\Sigma x_i^2 = 2080 - 8^2$$
$$= 2080 - 64 = 2016.$$

$$\therefore$$
 नया मानक विचलन = $\frac{1}{19}\sqrt{19\times2016-(192)^2}$ = $\frac{1}{19}\times\sqrt{38304-36864}$ = $\frac{1}{19}\times\sqrt{1440}=1.997$.

प्रश्न 6. एक कक्षा के पचास छात्रों द्वारा तीन विषयों गणित, भौतिक शास्त्र व रसायन शास्त्र में प्राप्तांकों का माध्य व मानक विचलन नीचे दिए गए हैं:

विषय	गणित	भौतिक शास्त्र	रसायन शास्त्र
माध्य	42	32	40.9
मानक विचलन	12	15	20

किस विषय में सबसे अधिक विचलन है तथा किसमें सबसे कम विचलन है?

हल : विचरण गुणांक =
$$\frac{\sigma}{x} \times 100$$
गणित विषय में विचरण गुणांक = $\frac{12}{42} \times 100 = 28.57$
भौतिक विषय में विचरण गुणांक = $\frac{15}{32} \times 100 = 46.875$
रसायन विषय में विचरण गुणांक = $\frac{20}{40.9} \times 100 = 48.9$

अत: रसायन विषय में सबसे अधिक विचलन है तथा गणित में सबसे कम विचलन है। प्रश्न 7.

100 प्रेक्षणों का माध्य और मानक विचलन क्रमशः 20 और 3 हैं। बाद में यह पाया गया कि तीन प्रेक्षण 21, 21 तथा 18 गलत थे। यदि गलत प्रेक्षणों को हटा दिया जाए तो माध्य व मानक विचलन ज्ञात कीजिए।

हल:

 $=\frac{1}{97}\times\sqrt{86718}=3.036.$