Convolutional Neural Networks

Neural networks inspired by the **visual cortex**

Faculty of Mathematics and Computer Science, University of Bucharest and Sparktech Software

- In a *Multilayer Perceptron*, completely different neurons get activated if the same pattern appears in different parts of the input image (even if the MLP correctly identifies the pattern).
- In the *human visual cortex*, the same neurons tend to get activate, regardless of where a certain pattern appears in the visual field.

- In a *Multilayer Perceptron*, completely different neurons get activated if the same pattern appears in different parts of the input image (even if the MLP correctly identifies the pattern).
- In the *human visual cortex*, the same neurons tend to get activate, regardless of where a certain pattern appears in the visual field.

• In a *Multilayer Perceptron*, completely different neurons get activated if the same pattern appears in different parts of the input image (even if the MLP correctly identifies the pattern).

• In the *human visual cortex*, the same neurons tend to get activate, regardless of where a certain pattern appears in the visual field.

• In a *Multilayer Perceptron*, completely different neurons get activated if the same pattern appears in different parts of the input image (even if the MLP correctly identifies the pattern).

In the *human visual cortex*, the same neurons tend to get activate, regardless of where a certain pattern appears in the visual field.

- In a *Multilayer Perceptron*, completely different neurons get activated if the same pattern appears in different parts of the input image (even if the MLP correctly identifies the pattern).
- In the *human visual cortex*, the same neurons tend to get activate, regardless of where a certain pattern appears in the visual field.

$$(f \circledast g)(x) = \int_{-\infty}^{\infty} f(t)g(x - t)dt$$

$$(f \circledast g)(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt$$

$$(f \circledast g)(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt$$

$$(f \circledast g)(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt$$

$$(f \circledast g)(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt$$

$$(f \circledast g)(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt$$

$$(f \circledast g)(x) = \int_{-\infty}^{\infty} f(t)g(x-t)dt$$

1D:
$$(f \circledast g)(x) = \sum_{i=-\infty}^{\infty} f(i)g(x-i)$$

1D:
$$(f \circledast g)(x) = \sum_{i=-\infty}^{\infty} f(i)g(x-i)$$

1D:
$$(f \circledast g)(x) = \sum_{i=-\infty}^{\infty} f(i)g(x-i)$$

1D:
$$(f \circledast g)(x) = \sum_{i=-\infty}^{\infty} f(i)g(x-i)$$

1D:
$$(f \circledast g)(x) = \sum_{i=-\infty}^{\infty} f(i)g(x-i)$$

1D:
$$(f \circledast g)(x) = \sum_{i=-\infty}^{\infty} f(i)g(x-i)$$

6	2	1
0	-2	3
2	-1	-4

4	1	0	2	5			
1	-1	6	-2	4			
-3	4	1	3	2			
0	-3	0	5	-1			

2D:
$$(f \circledast g)(x_1, x_2) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f(i, j)g(x_1 - i, x_2 - j)$$

1D:
$$(f \circledast g)(x) = \sum_{i=-\infty}^{\infty} f(i)g(x-i)$$

2D:
$$(f \circledast g)(x_1, x_2) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f(i,j)g(x_1 - i, x_2 - j)$$

2D:
$$(f \circledast g)(x_1, x_2) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f(i, j)g(x_1 - i, x_2 - j)$$

1D:
$$(f \circledast g)(x) = \sum_{i=-\infty}^{\infty} f(i)g(x-i)$$

-16	-8	7		

2D:
$$(f \circledast g)(x_1, x_2) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f(i,j)g(x_1 - i, x_2 - j)$$

1D:
$$(f \circledast g)(x) = \sum_{i=-\infty}^{\infty} f(i)g(x-i)$$

ı							
l	-16	-8	7	-6	-22	-1	10
	8	-2	-23	6	9	-18	8
	19	-9	32	-15			
I							
I							

2D:
$$(f \circledast g)(x_1, x_2) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f(i, j)g(x_1 - i, x_2 - j)$$

	- 1	
	Ĩ	Ę
•		
-16	5	
	Т	

1	-1	6 0	-2 ₋₂	4 3	3	
-3	4	1 2	3 ₋₁	2_4	ı	
0	-3	0	5	-1		

-16	-8	7	-6	-22	-1	10
8	-2	-23	6	9	-18	8
19	-9	32	-15	16		

1D:
$$(f \circledast g)(x) = \sum_{i=-\infty}^{\infty} f(i)g(x-i)$$

2D:
$$(f \circledast g)(x_1, x_2) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f(i, j)g(x_1 - i, x_2 - j)$$

1D:
$$(f \circledast g)(x) = \sum_{i=-\infty}^{\infty} f(i)g(x-i)$$

2D:
$$(f \circledast g)(x_1, x_2) = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f(i, j)g(x_1 - i, x_2 - j)$$

The sums are *infinite*, but most of the elements are 0 and we are only interested in the *non-zero part of the result*.

1D:
$$(f \circledast g)(x) = \sum_{i=-\infty}^{\infty} f(i)g(x-i)$$

Convolutions in Image Processing

- Even though convolution is *commutative* ($f \otimes g = g \otimes f$), in practice we usually have a larger "input" matrix (typically an *image*) and a smaller matrix, called a **kernel**, which we "*convolve*" over the image.
- In the field of image processing, the **kernel** is also known as a **filter** or **mask** and it is used for *blurring*, sharpening, edge detection and other transformations of the input image.

	0	-2	0
*)	-2	9	-2
)	0	-2	0

Blur

Edge Detection

Convolution Parameters

Padding

Kernel matrix can be non-square, but it rarely happens in practice.

Given an image $X \in \mathbb{R}^{n \times m}$ and a kernel $K \in \mathbb{R}^{k \times k}$, the mathematical definition of convolution will produce a result which is larger in size than X (it will be $(n + k - 1) \times (m + k - 1)$)

Padding

Kernel matrix can be non-square, but it rarely happens in practice.

- Given an image $X \in \mathbb{R}^{n \times m}$ and a kernel $K \in \mathbb{R}^{k \times k}$, the mathematical definition of convolution will produce a result which is larger in size than X (it will be $(n + k 1) \times (m + k 1)$)
- The *convolution* used in image processing is only applied to the area in which the two matrices **overlap completely**.
 - O This will result in a matrix $R \in \mathbb{R}^{(n-k+1)\times(m-k+1)}$.

Padding

Kernel matrix can be non-square, but it rarely happens in practice.

- Given an image $X \in \mathbb{R}^{n \times m}$ and a kernel $K \in \mathbb{R}^{k \times k}$, the mathematical definition of convolution will produce a result which is larger in size than X (it will be $(n + k 1) \times (m + k 1)$)
- The *convolution* used in image processing is only applied to the area in which the two matrices **overlap completely**.
 - O This will result in a matrix $R \in \mathbb{R}^{(n-k+1)\times(m-k+1)}$.

"Valid" Padding

- Basically, "no" padding.
- Sometimes used in practice.

Padding

Kernel matrix can be non-square, but it rarely happens in practice.

- Given an image $X \in \mathbb{R}^{n \times m}$ and a kernel $K \in \mathbb{R}^{k \times k}$, the mathematical definition of convolution will produce a result which is larger in size than X (it will be $(n + k 1) \times (m + k 1)$)
- The *convolution* used in image processing is only applied to the area in which the two matrices **overlap completely**.
 - O This will result in a matrix $R \in \mathbb{R}^{(n-k+1)\times(m-k+1)}$.
- In practice, we sometimes want the output size to the be same as the input size $(R \in \mathbb{R}^{n \times m})$.
 - O This means we need to **pad** the original image with a k-1/2 border of zeros.

"Valid" Padding

- Basically, "no" padding.
- Sometimes used in practice.

0	0	0	0	0	0	0
0	4	1	0	2	5	0
0	1	-1	6	-2	4	0
0	-3	4	1	3 6	2 2	0 1
0	0	-3	0	5 0	-1 ₋₂	0 3
0	0	0	0	0 2	0_1	0_4

$R \atop n \times m$						
-2	-23	6	9	-18		
-9	32	-15	16	18		
31	8	-15	35	3		
-11	-3	44	1	24		

"Same" Padding

- Pad such that the output is the "same" size as the input
- Very common in practice.

Padding

Kernel matrix can be non-square, but it rarely happens in practice.

- Given an image $X \in \mathbb{R}^{n \times m}$ and a kernel $K \in \mathbb{R}^{k \times k}$, the mathematical definition of convolution will produce a result which is larger in size than X (it will be $(n + k 1) \times (m + k 1)$)
- The *convolution* used in image processing is only applied to the area in which the two matrices **overlap completely**.
 - O This will result in a matrix $R \in \mathbb{R}^{(n-k+1)\times(m-k+1)}$.
- In practice, we sometimes want the output size to the be same as the input size $(R \in \mathbb{R}^{n \times m})$.
 - O This means we need to **pad** the original image with a k-1/2 border of zeros.

0	0	0	0	0	0	0
0	4	1	0	2	5	0
0	1	-1	6	-2	4	0
0	-3	4	1	3 6	2 2	0 1
0	0	-3	0	5 0	-1 ₋₂	0 3
0	0	0	0	0 2	0_1	0_4

"Valid" Padding

- Basically, "no" padding.
- Sometimes used in practice.

Kernel size k is usually odd. Otherwise we need unsymmetrical padding.

"Same" Padding

- Pad such that the output is the "same" size as the input
- Very common in practice.

• Stride is the amount by which the filter moves when it is convolved over the input image.

0 6	0 2	0 1	0	0	0	0
0 0	4_2	13	0	2	5	0
0 2	1_1	-1 ₋₄	6	-2	4	0
0	-3	4	1	3	2	0
0	0	-3	0	5	-1	0
0	5	2	-2	1	0	0
0	0	0	0	0	0	0

• Stride is the amount by which the filter moves when it is convolved over the input image.

←	\rightarrow					
0	0	0 6	0 2	0 1	0	0
0	4	10	0_2	2 3	5	0
0	1	-12	6_1	-2 ₄	4	0
0	-3	4	1	3	2	0
0	0	-3	0	5	-1	0
0	5	2	-2	1	0	0
0	0	0	0	0	0	0

-2	6	

• Stride is the amount by which the filter moves when it is convolved over the input image.

		•	-			
0	0	0	0	0 6	0 2	0 1
0	4	1	0	2 0	5_2	Ø 3
0	1	-1	6	-22		Ø ₋₄
0	-3	4	1	3	2	0
0	0	-3	0	5	-1	0
0	5	2	-2	1	0	0
0	0	0	0	0	0	0

-2	6	-18

• Stride is the amount by which the filter moves when it is convolved over the input image.

\uparrow	0	0	0	0	0	0	0
\downarrow	0	4	1	0	2	5	0
	0 6	1 2	-1 ₁	6	-2	4	0
	0 0	-32	4 3	1	3	2	0
	0 2	0_1	-3 ₄	0	5	-1	0
	0	5	2	-2	1	0	0
	0	0	0	0	0	0	0

-2	6	-18
31		

• Stride is the amount by which the filter moves when it is convolved over the input image.

0	0	0	0	0	0	0
0	4	1	0	2	5	0
0	1	-1	6	-2	4	0
0	-3	4	1	3	2	0
0	0	-3	0	5 6	-12	0 1
0	5	2	-2	1 0	0_2	0 3
0	0	0	0	0 2	Ø ₋₁	Ø ₋₄

-2	6	-18
31	-15	3
-7	-14	28

Stride s = 2

• If we have an image of size $n \times m$, a kernel of size $k \times k$ and we have padding p and stride s, the output will have size:

$$o = \left(\left\lfloor \frac{n - k + 2p}{s} \right\rfloor + 1 \right) \times \left(\left\lfloor \frac{m - k + 2p}{s} \right\rfloor + 1 \right)$$

- Pooling is an operation which down-samples an input image and it is typically applied after a filter convolution.
 - The reasoning is that a filter usually tries to capture a specific aspect of the input image (e.g. edge detection) and it does not take as many pixels (features) to "describe" this particular aspect as for the original image.
 - Similarly to a convolution operation, pooling has size, padding and stride.

size =
$$3x3$$
, stride = 1

- Pooling is an operation which down-samples an input image and it is typically applied after a filter convolution.
 - The reasoning is that a filter usually tries to capture a specific aspect of the input image (e.g. edge detection) and it does not take as many pixels (features) to "describe" this particular aspect as for the original image.
 - Similarly to a convolution operation, pooling has size, padding and stride.

size =
$$3x3$$
, stride = 1

- Pooling is an operation which down-samples an input image and it is typically applied after a filter convolution.
 - The reasoning is that a filter usually tries to capture a specific aspect of the input image (e.g. edge detection) and it does not take as many pixels (features) to "describe" this particular aspect as for the original image.
 - Similarly to a convolution operation, pooling has size, padding and stride.

size =
$$3x3$$
, stride = 1

- Pooling is an operation which down-samples an input image and it is typically applied after a filter convolution.
 - The reasoning is that a filter usually tries to capture a specific aspect of the input image (e.g. edge detection) and it does not take as many pixels (features) to "describe" this particular aspect as for the original image.
 - Similarly to a convolution operation, pooling has size, padding and stride.

size =
$$3x3$$
, stride = 1

Average Pooling

- Pooling is an operation which down-samples an input image and it is typically applied after a filter convolution.
 - The reasoning is that a filter usually tries to capture a specific aspect of the input image (e.g. edge detection) and it does not take as many pixels (features) to "describe" this particular aspect as for the original image.
 - Similarly to a convolution operation, pooling has size, padding and stride.

size =
$$3x3$$
, stride = 1

-2 -23 6 9 -18
-9 32 -15 16 18
31 8 -15 35 3
-11 -3 44 1 24

Average Pooling

Max Pooling

Most common in practice

- Pooling is an operation which down-samples an input image and it is typically applied after a filter convolution.
 - The reasoning is that a filter usually tries to capture a specific aspect of the input image (e.g. edge detection) and it does not take as many pixels (features) to "describe" this particular aspect as for the original image.
 - Similarly to a convolution operation, pooling has size, padding and stride.

size =
$$3x3$$
, stride = 1

-2 -23 6 9 -18
-9 32 -15 16 18
31 8 -15 35 3
-11 -3 44 1 24

Max Pooling

Most common in practice

- Pooling is an operation which down-samples an input image and it is typically applied after a filter convolution.
 - The reasoning is that a filter usually tries to capture a specific aspect of the input image (e.g. edge detection) and it does not take as many pixels (features) to "describe" this particular aspect as for the original image.
 - Similarly to a convolution operation, pooling has size, padding and stride.

size =
$$3x3$$
, stride = 1

-2 -23 6 9 -18
-9 32 -15 16 18

31 8 -15 35 3
-11 -3 44 1 24

Average Pooling

Max Pooling

Most common in practice

- Pooling is an operation which down-samples an input image and it is typically applied after a filter convolution.
 - The reasoning is that a filter usually tries to capture a specific aspect of the input image (e.g. edge detection) and it does not take as many pixels (features) to "describe" this particular aspect as for the original image.
 - Similarly to a convolution operation, pooling has size, padding and stride.

size =
$$3x3$$
, stride = 1

-2 -23 6 9 -18
-9 32 -15 16 18
31 8 -15 35 3
-11 -3 44 1 24

Average Pooling

Max Pooling

Most common in practice

- Pooling is an operation which down-samples an input image and it is typically applied after a filter convolution.
 - The reasoning is that a filter usually tries to capture a specific aspect of the input image (e.g. edge detection) and it does not take as many pixels (features) to "describe" this particular aspect as for the original image.
 - Similarly to a convolution operation, pooling has size, padding and stride.

size =
$$3x3$$
, stride = 1

-2 -23 6 9 -18
-9 32 -15 16 18
31 8 -15 35 3
-11 -3 44 1 24

Average Pooling

Max Pooling

Most common in practice

Neural Networks with Convolution

Convolutions as Features

Convolving a kernel over an input image transforms it into a new image with new characteristics
which were not present in the original image (a different "representation" of the input).

Convolutions as Features

Convolving a kernel over an input image transforms it into a new image with new characteristics which were not present in the original image (a different "representation" of the input).

- These *newly obtained features* might contain *better discriminative information* about the labels we are trying to predict.
 - Passing them to a classifier instead of the original pixels could improve performance.

Convolutions as Features

Convolving a kernel over an input image transforms it into a new image with new characteristics which were not present in the original image (a different "representation" of the input).

- These *newly obtained features* might contain *better discriminative information* about the labels we are trying to predict.
 - O Passing them to a classifier instead of the original pixels could improve performance.
- Better still, we could take a couple of different kernels and feed all their outputs to the classifier.

 By choosing proper convolution kernels, we could substantially improve the performance of the predictive algorithm.

- By choosing proper convolution kernels, we could substantially improve the performance of the predictive algorithm.
 - O But in **Deep Learning**, "choosing the proper convolutions" should be the task of the learning algorithm itself.

- By choosing proper convolution kernels, we could substantially improve the performance of the predictive algorithm.
 - But in **Deep Learning**, "choosing the proper convolutions" should be the task of the learning algorithm itself.
- A convolutional layer is a filter (or a set of filters) whose weights are learned through gradient descent in the optimization process.

- By choosing proper convolution kernels, we could substantially improve the performance of the predictive algorithm.
 - O But in **Deep Learning**, "choosing the proper convolutions" should be the task of the learning algorithm itself.
- A **convolutional layer** is a filter (or a set of filters) whose *weights are lear*ned through *gradient descent* in the *optimization process*.

- By choosing proper convolution kernels, we could substantially improve the performance of the predictive algorithm.
 - O But in **Deep Learning**, "choosing the proper convolutions" should be the task of the learning algorithm itself.
- A convolutional layer is a filter (or a set of filters) whose weights are learned through gradient descent in the optimization process.

- By choosing proper convolution kernels, we could substantially improve the performance of the predictive algorithm.
 - O But in **Deep Learning**, "choosing the proper convolutions" should be the task of the learning algorithm itself.
- A convolutional layer is a filter (or a set of filters) whose weights are learned through gradient descent in the optimization process.

- By choosing proper convolution kernels, we could substantially improve the performance of the predictive algorithm.
 - O But in **Deep Learning**, "choosing the proper convolutions" should be the task of the learning algorithm itself.
- A convolutional layer is a filter (or a set of filters) whose weights are learned through gradient descent in the optimization process.

- A color image has 3 channels (each pixel has 3 different values for red, green and blue).
- A filter on a "multi-channel" image needs weights for each channel.

- A color image has 3 channels (each pixel has 3 different values for red, green and blue).
- A filter on a "multi-channel" image needs weights for each channel.

- A color image has 3 channels (each pixel has 3 different values for red, green and blue).
- A filter on a "multi-channel" image needs weights for each channel.

- A color image has 3 channels (each pixel has 3 different values for red, green and blue).
- A filter on a "multi-channel" image needs weights for each channel.

- A color image has 3 channels (each pixel has 3 different values for red, green and blue).
- A filter on a "multi-channel" image needs weights for each channel.

$\begin{aligned} w_0 + r_{11} w_{11}^{[1]} + g_{11} w_{11}^{[2]} \\ + b_{11} w_{11}^{[3]} + r_{12} w_{12}^{[1]} \\ + g_{12} w_{12}^{[2]} + \cdots \end{aligned}$	$w_0 + r_{12}w_{11}^{[1]} + g_{12}w_{11}^{[2]} \\ + b_{12}w_{11}^{[3]} + r_{13}w_{12}^{[1]} \\ + g_{13}w_{12}^{[2]} + \cdots$	•••
•••	:	•••

- One filter usually captures one feature of the input image, but we want to obtain a representation with many features.
 - A **convolutional layer** is usually made up of **multiple filters**.

its own bias.

Each filter has the *depth* (number of channels) of the input image and the output has as many channels as the number of filters f.

Typical CNN Architecture

Keywords

Recurrent Neural Networks

Handling **sequences** with neural networks

Faculty of Mathematics and Computer Science, University of Bucharest and Sparktech Software

Motivation

- The problems we have seen so far are "one-to-one" (i.e. one input mapped to one output).
 - Better said, all inputs and all outputs always have the same fixed size.
 - e.g. In the digit recognition problem, all inputs had 28x28 = 724 pixels and all outputs had 10 values (one hot encoding of a digit).

Motivation

- The problems we have seen so far are "one-to-one" (i.e. one input mapped to one output).
 - o Better said, all inputs and all outputs always have the same fixed size.
 - e.g. In the digit recognition problem, all inputs had 28x28 = 724 pixels and all outputs had 10 values (one hot encoding of a digit).
- Many real problems involve sequences of data:

Speech Recognition

"What is the weather going to be like tomorrow?"

Image Captioning

"Black and white dog jumps over bar." **Machine Translation**

"I am going to the cinema."

"Ich gehe ins Kino."

Motivation

Types of problems which involve sequences:

Andrej Karpathy http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Layers

- One training example is now a sequence of values: $\vec{x} \in \mathbb{R}^{m \times n \times T}$
 - \circ $\vec{x}_i^{(i)(t)}$ component *j* of training sample *i* at timestep *t*

- One training example is now a **sequence of values**: $\vec{x} \in \mathbb{R}^{m \times n \times T}$
 - \circ $\vec{x}_j^{(i)(t)}$ component j of training sample i at timestep t

 $\vec{x}^{\langle t \rangle} \in \mathbb{R}^n$ input at "timestep" t

 $\hat{y}^{\langle t \rangle} \in \mathbb{R}^o$ output at timestep t

- One training example is now a **sequence of values**: $\vec{x} \in \mathbb{R}^{m \times n \times T}$
 - \circ $\vec{x}_j^{(i)(t)}$ component j of training sample i at timestep t

- One training example is now a **sequence of values**: $\vec{x} \in \mathbb{R}^{m \times n \times T}$
 - \circ $\vec{x}_j^{(i)(t)}$ component *j* of training sample *i* at timestep *t*

Three weight matrices:

- $U \in \mathbb{R}^{h \times n}$
- $W \in \mathbb{R}^{h \times h}$
- $V \in \mathbb{R}^{o \times h}$

- One training example is now a **sequence of values**: $\vec{x} \in \mathbb{R}^{m \times n \times T}$
 - \circ $\vec{x}_i^{(i)(t)}$ component *j* of training sample *i* at timestep *t*

 $\hat{y}^{\langle t \rangle} \in \mathbb{R}^o$ output at timestep t

 $\vec{s}^{\langle t \rangle} \in \mathbb{R}^h$ hidden state at "timestep" t

Three weight matrices:

- $U \in \mathbb{R}^{h \times n}$
- $W \in \mathbb{R}^{h \times h}$
- $V \in \mathbb{R}^{o \times h}$

$$\vec{s}^{\langle t \rangle} = \phi_1 (W \vec{s}^{\langle t-1 \rangle} + U \vec{x}^{\langle t \rangle})$$
$$\hat{y}^{\langle t \rangle} = \phi_2 (V \vec{s}^{\langle t \rangle})$$

 ϕ_1 and ϕ_2 are different activation functions. Usually ϕ_1 is a tanh and ϕ_2 is a sigmoid (or softmax)

$$\vec{s}^{\langle 0 \rangle} = \vec{0}$$

$$s^{\langle t \rangle} = \phi_1 (W \vec{s}^{\langle t-1 \rangle} + U \vec{x}^{\langle t \rangle})$$

$$\hat{y}^{\langle t \rangle} = \phi_2 (V \vec{s}^{\langle t \rangle})$$

$$\vec{s}^{\langle 0 \rangle} = \vec{0}$$

$$s^{\langle t \rangle} = \phi_1 (W \vec{s}^{\langle t-1 \rangle} + U \vec{x}^{\langle t \rangle})$$

$$\hat{y}^{\langle t \rangle} = \phi_2 (V \vec{s}^{\langle t \rangle})$$

An RNN is a network, not just a neuron, even though it is sometimes called a "cell".

Like before, weights are updated through backpropagation:

$$\Delta V = -\eta \frac{\partial E}{\partial V}$$
 $\Delta W = -\eta \frac{\partial E}{\partial W}$ $\Delta U = -\eta \frac{\partial E}{\partial U}$

This is a simpler "many-to-one" case but it can be generalized to "many-to-many".

 $E = \mathcal{L}(y, \hat{y})$

Like before, weights are updated through backpropagation:

$$\Delta V = -\eta \frac{\partial E}{\partial V}$$
 $\Delta W = -\eta \frac{\partial E}{\partial W}$ $\Delta U = -\eta \frac{\partial E}{\partial U}$

This is a simpler "many-to-one" case but it can be generalized to "many-to-many".

• Like before, weights are updated through **backpropagation**:

$$\Delta V = -\eta \frac{\partial E}{\partial V}$$
 $\Delta W = -\eta \frac{\partial E}{\partial W}$ $\Delta U = -\eta \frac{\partial E}{\partial U}$

- $\partial E/\partial W$ depends on $\partial \vec{s}^{(T)}/\partial W$, but $\vec{s}^{(T)}$ depends on $\vec{s}^{(T-1)}$, which itself depends on W, an so on.
 - Same for $\partial E/\partial U$.

This is a simpler "many-to-one" case but it can be generalized to "many-to-many".

• Like before, weights are updated through **backpropagation**:

$$\Delta V = -\eta \frac{\partial E}{\partial V}$$
 $\Delta W = -\eta \frac{\partial E}{\partial W}$ $\Delta U = -\eta \frac{\partial E}{\partial U}$

- $\partial E/\partial W$ depends on $\partial \vec{s}^{(T)}/\partial W$, but $\vec{s}^{(T)}$ depends on $\vec{s}^{(T-1)}$, which itself depends on W, an so on.
 - \circ Same for $\partial E/\partial U$.
 - We need to **backpropagate (through time)** to the end of the sequence.

 $\vec{S}^{\langle 0 \rangle} = W \qquad \vec{S}^{\langle 1 \rangle} = W \qquad \vec{S}^{\langle 2 \rangle} = \vec{S}^{\langle 1 \rangle$

This is a simpler "many-to-one" case but it can be generalized to "many-to-many".

 $E = \mathcal{L}(\mathbf{v}, \hat{\mathbf{v}})$

• Like before, weights are updated through **backpropagation**:

$$\Delta V = -\eta \frac{\partial E}{\partial V}$$
 $\Delta W = -\eta \frac{\partial E}{\partial W}$ $\Delta U = -\eta \frac{\partial E}{\partial U}$

- $\partial E/\partial W$ depends on $\partial \vec{s}^{(T)}/\partial W$, but $\vec{s}^{(T)}$ depends on $\vec{s}^{(T-1)}$, which itself depends on W, an so on.
 - \circ Same for $\partial E/\partial U$.
 - We need to backpropagate (through time) to the end of the sequence.

 $\frac{\partial E}{\partial W}$ $\vec{S}^{(0)}$ W $\frac{\partial \vec{S}^{(2)}}{\partial \vec{S}^{(1)}}$ W $\frac{\partial \vec{S}^{(2)}}{\partial \vec{S}^{(2)}}$ $\frac{\partial \vec{S}^{(1)}}{\partial \vec{S}^{(2)}}$ $\frac{\partial E}{\partial \vec{S}^{(1)}}$ $\frac{\partial E}{\partial \vec{S}^{(1)}}$ $\frac{\partial E}{\partial \vec{S}^{(1)}}$

This is a simpler "many-to-one" case but it can be generalized to "many-to-many".

 $E = \mathcal{L}(y, \hat{y})$

Like before, weights are updated through **backpropagation**:

$$\Delta V = -\eta \frac{\partial E}{\partial V}$$
 $\Delta W = -\eta \frac{\partial E}{\partial W}$ $\Delta U = -\eta \frac{\partial E}{\partial U}$

- $\partial E/\partial W$ depends on $\partial \vec{s}^{(T)}/\partial W$, but $\vec{s}^{(T)}$ depends on $\vec{s}^{(T-1)}$, which itself depends on W, an so on.
 - Same for $\partial E/\partial u$.
 - We need to **backpropagate** (through time) to the end of the sequence.
 - Usually, the backprop sequence is **truncated** to a number of steps.

 ∂E $\partial \vec{s}^{\langle T \rangle}$ $\vec{\chi}^{\langle T \rangle}$

 $E = \mathcal{L}(y, \hat{y})$

This is a simpler "many-to-one" case but it can be generalized to "many-to-many".

Because of repeated application of the tanh activation, RNNs suffer from the vanishing gradient problem.

- Because of repeated application of the tanh activation, RNNs suffer from the vanishing gradient problem.
- ReLUs can be used to ameliorate this, but a much better way is to use a different inner structure, called an LSTM cell.

- Because of repeated application of the tanh activation, RNNs suffer from the vanishing gradient problem.
- ReLUs can be used to ameliorate this, but a much better way is to use a different inner structure, called an LSTM cell.

Concatenate

Operation

Layer

Transfer

Copy

- Because of repeated application of the tanh activation, RNNs suffer from the vanishing gradient problem.
- ReLUs can be used to ameliorate this, but a much better way is to use a different inner structure, called an

Keywords

