Apuntes de Ecuaciones en Derivadas Parciales Guillermo Gallego Sánchez

Índice general

1.	Derivada débil y espacios de Sobolev	5
	1.1. Repaso de espacios L^p	6

4 ÍNDICE GENERAL

Capítulo 1

Derivada débil y espacios de Sobolev

Ejemplo 1.0.1. Supongamos que se nos da un problema de contorno, como por ejemplo

$$\begin{cases}
-y'' + 2y = e^x + \cos x \\
y(0) = 1, y(1) = 2.
\end{cases}$$
(1.1)

Es fácil definir lo que entendemos como una solución del problema (1.1): una función $y \in C^2([0,1])$ que cumpla la ecuación y los datos. Sin embargo, podemos cambiar la función a la derecha de la ecuación por otra con una forma más complicada, por ejemplo, que no sea continua, como

$$f(x) = \begin{cases} 1, & x \in [0, 1/2) \\ 0, & x \in [1/2, 1). \end{cases}$$

De modo que ahora queremos resolver el problema de contorno

$$\begin{cases}
-y'' + 2y = f(x) \\
y(0) = 1, y(1) = 2.
\end{cases}$$
(1.2)

En este caso ya no podemos pedir que la solución sea C^2 , en esta sección vamos a tratar de ver en qué espacios pueden vivir estas funciones que podemos entender como "soluciones" de problemas como el (1.2).

En primer lugar, vamos a cambiar ligeramente el aspecto de nuestra ecuación. Para ello consideramos una función φ en [0,1], con $\varphi(0) = \varphi(1) = 0$ tan buena como queramos, por ejemplo $\varphi \in C^{\infty}([0,1])$ y la multiplicamos por la ecuación

$$-y''\varphi + 2y\varphi = f\varphi.$$

Integramos a ambos lados y obtenemos

$$-\int_0^1 y''\varphi + \int_0^1 2y\varphi = \int_0^1 f\varphi.$$

Integrando por partes

$$\int_0^1 y'\varphi' + 2 \int_0^1 y\varphi = \int_0^1 f\varphi.$$

Buscaremos entonces qué funciones y pueden hacer que estas integrales tengan sentido. Los espacios en los que viven estas y serán los que llamaremos espacios de Sobolev.

1.1. Repaso de espacios L^p

A partir de ahora, $\Omega \subset \mathbb{R}^n$ será un conjunto abierto.

Definición 1.1.1. Dado $p \ge 1$, se llama espacio L^p en Ω al conjunto

$$L^p(\Omega) = \left\{ f : U \to \mathbb{R} \text{ medibles} : \int_{\Omega} |f|^2 < \infty \right\}.$$

Se define la norma-p de una función $f \in L^p(\Omega)$ como el número

$$||f||_p = \left(\int_{\Omega} |f|^p\right)^{1/p}.$$

Proposición 1.1.2 (Desigualdad de Hölder). Sean p, q tales que

$$\frac{1}{p} + \frac{1}{q} = 1$$

y sean $f \in L^p(\Omega)$ y $g \in L^p(\Omega)$. Entonces se verifica la siguiente designaldad

$$\int_{\Omega} |f||g| \le ||f||_p ||g||_q.$$

Demostración. Para probar la desigualdad de Hölder haremos uso del siguiente lema:

Lema 1. Sean $a \ge b \ge 0$, $y \ \lambda \in (0,1)$. Se verifica la siguiente designaldad

$$a^{\lambda}b^{1-\lambda} \le \lambda a + (1-\lambda)b.$$

Demostración. (del Lema 1) Si a=0 ó b=0, entonces el resultado es trivial. Supongamos entonces que a,b>0. En tal caso, podemos considerar x=a/b y queremos probar la desigualdad

$$x^{\lambda} \le \lambda x + (1 - \lambda).$$

Para verlo, consideremos la función

$$g(x) = x^{\lambda} - \lambda x - (1 - \lambda).$$

Si tomamos su derivada, tenemos

$$g'(x) = \lambda(x^{\lambda - 1} - 1).$$

Ahora, si $a \ge b$, tenemos que $x \ge 1$ y, como $\lambda \in (0,1)$, $\lambda - 1 \le 0$ y $x^{\lambda - 1} \le 1$. Por tanto, g'(x) < 0, y, como g(1) = 0; para todo $x \ge 1$, $g(x) \le 0$.

Volviendo a la demostración de la desigualdad de Hölder, llamemos $a = |f|^p / ||f||_p^p$ y $b = |g|^q / ||g||_q^q$. Supongamos sin pérdida de generalidad que $a \ge b$ y llamemos $\lambda = 1/p$, de modo que $1 - \lambda = 1/q$. Tenemos entonces, aplicando el lema

$$\left(\frac{|f|^p}{\|f\|_p^p}\right)^{1/p} \left(\frac{|g|^q}{\|g\|_q^q}\right)^{1/q} \le \frac{1}{p} \frac{|f|^p}{\|f\|_p^p} + \frac{1}{q} \frac{|f|^q}{\|f\|_q^q}.$$

Integrando todo en Ω , queda

$$\int_{\Omega} \frac{|f||g|}{\|f\|_p \|g\|_q} \le \frac{1}{p} \int_{\Omega} \frac{|f|^p}{\|f\|_p^p} + \frac{1}{q} \int_{\Omega} \frac{|f|^q}{\|f\|_q^q} = \frac{1}{p} + \frac{1}{q} = 1.$$

Por tanto

$$\int_{\Omega} |f||g| \le ||f||_p ||g||_q,$$

tal y como queríamos probar.

Proposición 1.1.3. El espacio $L^p(\Omega)$ equipado con la norma-p es un espacio normado.

Demostración. Lo único no trivial que hay que demostrar es la desigualdad triangular, esto es

$$||f + g||_p \le ||f||_p + ||g||_p.$$

Veámosla

$$\begin{aligned} \|f+g\|_p^p &= \int_{\Omega} |f+g|^p = \int_{\Omega} |f+g||f+g|^{p-1} \le \int_{\Omega} (|f|+|g|)|f+g|^{p-1} \\ &= \int_{\Omega} |f||f+g|^{p-1} + \int_{\Omega} |g||f+g|^{p-1} \le \|f\|_p \||f+g|^{p-1}\|_q + \|g\|_p \||f+g|^{p-1}\|_q \end{aligned}$$

Donde q es el necesario para que se cumpla la desigualdad de Hölder, es decir,

$$\frac{1}{q} + \frac{1}{p} = 1.$$

Despejando q, tenemos que vale precisamente q = p/(p-1).

Pero entonces

$$\||f+g|^{p-1}\|_q = \left(\int_{\Omega} (|f+g|^{p-1})^q\right)^{1/q} = \left(\int_{\Omega} (|f+g|^p)\right)^{(p-1)/p} = \|f+g\|_p^{p-1}.$$

Por tanto,

$$||f + g||_p^p \le ||f + g||_p^{p-1} (||f||_p + ||g||_p).$$

Dividiendo a ambos lados por $||f + g||_p^{p-1}$ tenemos lo que se quería probar.

Que los espacios L^p sean normados me va a permitir hablar de convergencia de funciones en L^p . Así, si (f_n) es una sucesión en L^p y $f \in L^p$, diremos que la sucesión (f_n) converge a f en L^p y se denota

$$f_n \to f L^p$$

si y sólo si lím $_{n\to\infty}\|f_n-f\|_p=0.$

Nos interesará ahora recordar ciertos resultados de teoría de la medida que nos relacionen integrales y convergencias y que nos serán útiles más adelante. Pasamos a enunciarlos a continuación, sin demostración.

Teorema 1.1.4 (Teorema de la convergencia monótona). Sea una sucesión (f_n) de funciones $f_n \in L^1$ tales que

$$f_1 \leq f_2 \leq \cdots f_n \leq f_{n+1} \leq \cdots$$

Entonces

$$\int_{\Omega} \lim_{n \to \infty} |f_n| = \lim_{n \to \infty} \int_{\Omega} |f_n|.$$

Teorema 1.1.5 (Teorema de la convergencia dominada). Sea una sucesión (f_n) de funciones $f_n \in L^1$ tales que existe una función $g \in L^1$ tal que $|f_n| \leq g$ para cada $n \in \mathbb{N}$ y existe una función f tal que $f_n \to f$ en casi todo punto. Entonces

$$\lim_{n\to\infty} \int_{\Omega} |f_n| = \int_{\Omega} |f|.$$

Teorema 1.1.6 (Lema de Fatou). Sea una sucesión (f_n) de funciones $f_n \in L^1$ tales que $f_n \geq 0$ para cada $n \in \mathbb{N}$. Entonces

$$\int_{\Omega} \liminf_{n \to \infty} |f_n| \le \liminf_{n \to \infty} \int_{\Omega} |f_n|.$$

Haciendo uso de alguno de estos resultados, vamos a ver que los espacios L^p , con sus respectivas normas-p, son completos.

Proposición 1.1.7. El espacio $L^p(\Omega)$ es de Banach. Además, si p=2, podemos definir el producto

$$\langle u, v \rangle = \int_{\Omega} uv,$$

que dota a $L^2(\Omega)$ de la estructura de espacio de Hilbert.

Demostración. Supongamos que (f_n) es una sucesión de Cauchy en L^p . Sin pérdida de generalidad, podemos tomar una subsucesión tal que $||f_{n+1} - f_n||_p \le 2^{-n}$.