LSD: a Line Segment Detector

Tapacoв Михаил Николаевич tarasov.mn@phystech.edu

Московский физико-технический институт

23 апреля 2023 г.

Содержание

- Параборитм
- 2 Принцип Гельмгольца
- 3 contrario approach
- 4 Теорема 1
 - Формулировка
 - Доказательство
- Преимущества и недостатки алгоритма
- 6 Примеры работы алгоритма

Алгоритм

- Масштабирование изображения
- Вычисление градиента
- Псевдосортировка градиентов
- Порог градиента
- Разрастание региона
- Прямоугольное приближение
- Pacyer NFA
- Плотность выровненных точек
- 9 Улучшение прямоугольника
- Вычислительная сложность

Масштабирование изображения

Обнаружения без масштабирования.

Обнаружения с использованием масштабирования.

Вычисление градиента

Градиент вычисляется для каждого пикселя с помощью маски 2х2:

i(x,y)	i(x+1,y)
i(x,y+1)	i(x+1,y+1)

где i(x,y) – значение серого на пикселе (x,y), градиент пикселя вычисляется как

$$g_x(x,y) = \frac{i(x+1,y) + i(x+1,y+1) - i(x,y) - i(x,y+1)}{2},$$

$$g_y(x,y) = \frac{i(x,y+1) + i(x+1,y+1) - i(x,y) - i(x+1,y)}{2}.$$

Угол линии уровня вычисляется как

$$\arctan\left(\frac{g_x(x,y)}{-g_y(x,y)}\right)$$

и величина градиента как

$$G(x,y) = \sqrt{g_x^2(x,y) + g_y^2(x,y)}$$

Псевдосортировка градиентов

Возможна псевдосортировка пикселей за линейное время. Пиксели классифицируются в 1024 контейнера в соответствии со значением их градиента. Сначала LSD использует пиксели из контейнера с наибольшим значением градиента; затем берет пиксели из второго контейнера и так далее. 1024 контейнеров достаточно для почти полной сортировки значений градиента, когда значения серого являются целыми числами из отрезка [0, 255].

Порог градиента

В LSD рассматриваются только пиксели с величиной градиента больше ρ . Предполагая шум квантования n и идеальное изображение i, получаем: $\tilde{i} = i + n$ $\nabla \tilde{i} = \nabla i + \nabla n$.

Оценка угловой ошибки из-за шума квантования.

Имеем | angle error $|\leq \arcsin\left(\frac{q}{|\nabla i|}\right)$, где q – граница $|\nabla n|$. Критерий состоит в том, чтобы отбрасывать пиксели, в которых угловая ошибка больше, чем угол допуска τ . То есть накладываем |angle error| $\leq \tau$ и получаем

$$\rho = \frac{q}{\sin \tau}$$

<ロ > ← □

Разрастание региона

Примеры роста области, начиная со среднего верхнего пикселя для трех значений допуска угла.

Слева направо: изображение; $\tau = 11.25; \, \tau = 22.5; \, \tau = 45.$

Прямоугольное приближение

Центр прямоугольника (c_x, c_y) :

$$c_x = \frac{\sum_{j \in \text{ Region }} G(j) \cdot x(j)}{\sum_{j \in \text{ Region }} G(j)}$$
$$c_y = \frac{\sum_{j \in \text{ Region }} G(j) \cdot y(j)}{\sum_{j \in \text{ Region }} G(j)}$$

где G(j) – величина градиента пикселя j. Угол прямоугольника устанавливается равным углу собственного вектора, связанного с наименьшим собственным значением матрицы $M=\begin{pmatrix} m^{xx} & m^{xy} \\ m^{xy} & m^{yy} \end{pmatrix}$.

$$m^{xx} = \frac{\sum_{j \in \text{ Region}} G(j) \cdot (x(j) - c_x)^2}{\sum_{j \in \text{ Region}} G(j)}$$
$$m^{xy} = \frac{\sum_{j \in \text{ Region}} G(j) \cdot (x(j) - c_x) (y(j) - c_y)}{\sum_{j \in \text{ Region}} G(j)}.$$

Pacyer NFA

Количество ложных срабатываний (NFA), связанных с прямоугольником r:

$$NFA(r) = (NM)^{5/2} \gamma \cdot B(n, k, p)$$

где N и M – количество столбцов и строк изображения,

$$B(n,k,p) = \sum_{j=k}^{n} \binom{n}{j} p^{j} (1-p)^{n-j}$$

Для каждого прямоугольника с заданной точностью pподсчитываются k и n, а затем вычисляется NFA

NFA(r) =
$$(NM)^{5/2} \gamma \cdot \sum_{i=k}^{n} \binom{n}{j} p^{i} (1-p)^{n-j}$$
.

Прямоугольники с NFA $(r) \le \varepsilon$ проверяются как обнаружения.

Плотность выравненных точек

Метод τ -угловой терпимости может дать неправильную интерпретацию изображения, особенно если две прямые грани образуют меньший угол, чем допустимая τ . В таких случаях в алгоритме LSD обнаруживают проблемные области и разделяют их на две меньшие области. При обнаружении проблемы плотность выровненных точек в прямоугольнике становится низкой, и если плотность меньше заданного порога, то прямоугольник отклоняется. Для решения проблемы используются два метода: уменьшение угловой терпимости и уменьшение радиуса региона. При этом плотность рассчитывается как отношение количества выровненных точек к площади прямоугольника, и если она меньше заданного порога, то прямоугольник отклоняется.

Улучшение прямоугольника

Процедура улучшения прямоугольника с помощью LSD состоит из следующих шагов:

- попробуйте более высокую точность
- 2 попробуйте уменьшить ширину
- попробуйте уменьшить одну сторону прямоугольника
- попробуйте уменьшить другую сторону прямоугольника
- попробуйте еще более высокую точность

Если найден значимый прямоугольник (NFA $\leq \varepsilon$), процедура улучшения остановится после шага, на котором он был найден.

Вычислительная сложность

Сначала выполняется субдискретизация Гаусса и вычисление градиента изображения, что также может быть выполнено за время, пропорциональное числу пикселей в изображении. Затем пиксели псевдо-упорядочиваются с помощью классификации в бины, что может быть сделано за линейное время. Время выполнения алгоритма нахождения региона-поддержки линейно зависит от числа посещенных пикселей, которое остается пропорциональным общему числу пикселей в изображении. Обработка разделяется на два типа задач: первый тип пропорционален общему числу пикселей во всех регионах, второй тип пропорционален числу регионов. В итоге LSD алгоритм имеет вычислительную сложность, пропорциональную числу пикселей в изображении.

Принцип Гельмгольца

Не должно быть обнаружений на изображении шума.

contrario approach

contrario approach (противоположный подход) – это метод, который заключается в определении объекта путем исключения фона, то есть выделения объекта как всего, что не является фоном.

$$E_{H_0}\left[\sum_{r\in\mathcal{R}}\mathbb{1}_{NFA(r,I)<\varepsilon}\right]\leq \varepsilon$$

где *E* – оператор ожидания, 1 – индикаторная функция, R – множество рассматриваемых прямоугольников, I – случайное изображение на H_0 .

Теорема утверждает, что среднее число ε -значащих прямоугольников в модели a contrario H_0 меньше ε . Таким образом, количество обнаружений на шуме контролируется ε , и его можно сделать сколь угодно малым. Другими словами, это показывает, что LSD удовлетворяет принципу Гельмгольца.

Теорема 1

Доказательство

Мы определяем $\hat{k}(r)$ как

$$\hat{k}(r) = \min \left\{ \kappa \in \mathbb{N}, P_{H_0}[k(r,I) \geq \kappa] \leq \frac{\varepsilon}{(NM)^{5/2}\gamma} \right\}$$

Тогда, NFA $(r,i) \le \varepsilon$ эквивалентно $k(r,i) \ge \hat{k}(r)$. Теперь,

$$E_{H_0}\left[\sum_{r\in\mathcal{R}}\mathbb{1}_{\mathrm{NFA}(r,I)\leq\varepsilon}\right] = \sum_{r\in\mathcal{R}}P_{H_0}[\mathrm{NFA}(r,I)\leq\varepsilon] = \sum_{r\in\mathcal{R}}P_{H_0}[k(r,I)\geq\hat{k}(r)].$$

Но, по определению $\hat{k}(r)$ мы знаем

$$P_{H_0}[k(r,I) \ge \hat{k}(r)] \le \frac{\varepsilon}{(NM)^{5/2}\gamma}$$

и используя $\#\mathcal{R} = (NM)^{5/2}\gamma$, мы получаем

$$E_{H_0} \left[\sum_{r \in \mathcal{R}} \mathbb{1}_{NFA(r,I) \le \varepsilon} \right] \le \sum_{r \in \mathcal{R}} \frac{\varepsilon}{(NM)^{5/2} \gamma} = \varepsilon$$

Преимущества и недостатки алгоритма

Преимущества:

- Высокая скорость
- Высокая точность
- Параметры настраиваются

Недостатки:

- Чувствительность к яркости
- Чувствительность к разрешению
- Неточность на некоторых типах линейных структур

Шум 220 х 165 пикселей

Цвета 518 х 517 пикселей

Небо 612 х 408 пикселей

Круги 578 х 578 пикселей

Квадраты 1620 х 1080 пикселей

Улица 935 х 701 пикселей

Спасибо за внимание!