Homework 3

Kaushik Manivannan (km6329@nyu.edu)

Question 7:

A. Exercise 3.1.1

- (a) $27 \in A$: **True.** Since 27 is an integer multiple of 3, it is an element of A.
- (b) $27 \in B$: **False.** Since 27 is not a perfect square, it is not an element of B.
- (c) $100 \in B$: **True.** Since 100 is a perfect square, it is an element of B.
- (d) $E \subseteq C$ or $C \subseteq E$: **False.** E is not a subset of C and C is not a subset of E.
- (e) $E \subseteq A$: **True.** The set $\{3, 6, 9\}$ is a subset of A.
- (f) $A \subset E$: **False.** A is not a proper subset of E.
- (g) $E \in A$: **False.** The set $\{3, 6, 9\}$ is not an element of A.

B. Exercise 3.1.2

- (a) $15 \subset A$: **False.** The element 15 is not a proper subset of A.
- (b) $\{15\} \subset A$: **True.** The set $\{15\}$ is a proper subset of A.
- (c) $\emptyset \subset A$: **True.** The empty set \emptyset is a proper subset of A.
- (d) $A \subseteq A$: **True.** The set A is a subset of itself.
- (e) $\emptyset \in B$: **False.** The empty set \emptyset is not an element of B.

C. Exercise 3.1.5

- (b) $\{3, 6, 9, 12,\}$ Let $A = \{3, 6, 9, 12,\}$ $A = \{x \in \mathbb{Z}^+ : x \text{ is an integer multiple of } 3\}$ Here, A is an infinite set.
- (d) { 0, 10, 20, 30,, 1000 } Let B = { 0, 10, 20, 30,, 1000 } $B = \{ x \in \mathbb{N} : x \text{ is an integer multiple of } 10 \text{ and } x \leq 1000 \}$ Here, B is a finite set and |B| = 101.

D. Exercise 3.2.1

- (a) $2 \in X$: **True.** 2 is an element of X.
- (b) $\{2\} \subseteq X$: **True.** $2 \in X$, so the set $\{2\}$ is a subset of X.
- (c) $\{2\} \in X$: **False.** The set $\{2\}$ is not an element of X.
- (d) $3 \in X$: **False.** 3 is not an element of X.
- (e) $\{1, 2\} \in X$: **True.** The set $\{1, 2\}$ is an element of *X*.
- (f) $\{1, 2\} \subseteq X$: **True.** $\{1, 2\} \in X$, so the set $\{1, 2\}$ is a subset of X.
- (g) $\{2, 4\} \subseteq X :$ **True.** $2 \in X$ and $4 \in X$, so the set $\{2, 4\}$ is a subset of X.
- (h) $\{2, 4\} \in X$: **False.** The set $\{2, 4\}$ is not an element of X.
- (i) $\{2, 3\} \subseteq X$: **False.** $2 \in X$ and $3 \notin X$, so the set $\{2, 3\}$ is not a subset of X.
- (j) $\{2, 3\} \in X$: **False.** The set $\{2, 3\}$ is not an element of X.
- (k) |X| = 7: **False.** Since *X* contains 6 distinct elements, |X| = 6.

Question 8:

Exercise 3.2.4

(b) Let $A = \{1, 2, 3\}$. What is $\{X \in P(A): 2 \in X\}$?

Let B = {
$$X \in P(A)$$
: $2 \in X$ }

The power set of A, denoted by P(A), is the set of all the subsets of A.

Moreover, P(A) contains $2^3 = 8$ elements. From the given set A,

$$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{3, 1\}, \{1, 2, 3\}\}$$

From the set builder notation, the condition provided is $2 \in X$. Hence, the subsets that contain element 2 are retained within the set B.

Therefore, $B = \{\{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}.$

Question 9:

A. Exercise 3.3.1

(c) $A \cap C$

$$A \cap C = \{-3, 1, 17\}$$

(d) $A \cup (B \cap C)$

$$B \cap C = \{-5, 1\}$$

 $A \cup (B \cap C) = \{-5, -3, 0, 1, 4, 17\}$

(e) $A \cap B \cap C$

$$A \cap B = \{ 1, 4 \}$$

 $(A \cap B) \cap C = \{ 1 \}$

B. Exercise 3.3.3

(a) $\bigcap_{i=2}^{5} A_i$

$$A_2 = \{ 1, 2, 4 \}$$

$$A_3 = \{ 1, 3, 9 \}$$

$$A_4 = \{ 1, 4, 16 \}$$

$$A_5 = \{ 1, 5, 25 \}$$

5 $\bigcap_{i=2} A_i = A_2 \cap A_3 \cap A_4 \cap A_5 = \{1, 2, 4\} \cap \{1, 3, 9\} \cap \{1, 4, 16\} \cap \{1, 5, 25\}$ i=2

Therefore,
$$\bigcap_{i=2}^{5} A_i = \{1\}$$

(b) $\bigcup_{i=2}^{5} A_i$

$$A_2 = \{ 1, 2, 4 \}$$

 $A_3 = \{ 1, 3, 9 \}$
 $A_4 = \{ 1, 4, 16 \}$
 $A_5 = \{ 1, 5, 25 \}$

5 $\bigcup A_i = A_2 \cup A_3 \cup A_4 \cup A_5 = \{1, 2, 4\} \cup \{1, 3, 9\} \cup \{1, 4, 16\} \cup \{1, 5, 25\}$ i=2

Therefore,
$$\bigcup_{i=2}^{5} A_i = \{1, 2, 3, 4, 5, 9, 16, 25\}$$

100

(e) $\bigcap_{i=1}^{n} C_i$

$$\bigcap_{i=1}^{100} C_i = C_1 \cap C_2 \cap C_3 \cap \dots \cap C_{100}$$

$$C_1 = \{ x \in \mathbb{R} : -1 \le x \le 1 \}$$

$$C_2 = \{ x \in \mathbb{R} : -1/2 \le x \le 1/2 \}$$

$$C_3 = \{ x \in \mathbb{R} : -1/3 \le x \le 1/3 \}$$

$$\vdots$$

$$C_{100} = \{ x \in \mathbb{R} : -1/100 \le x \le 1/100 \}$$

Since the x values between $\frac{-1}{100}$ and $\frac{1}{100}$ are present in all the possible sets of C i.e. C_1 , C_2 , C_3 ,, C_{100} ,

$$C_1 \cap C_2 \cap C_3 \cap \cap C_{100} = \{ x \in \mathbb{R} : -1/100 \le x \le 1/100 \}$$

100

(f) $\bigcup_{i=1}^{\infty} C_i$

Since the x values between -1 and 1 contain all the possible values represented by the sets C_1 , C_2 , C_3 ,, C_{100} ,

$$C_1 \cup C_2 \cup C_3 \cup \cup C_{100} = \{ x \in \mathbb{R} : -1 \le x \le 1 \}$$

C. Exercise 3.3.4

(b) $P(A \cup B)$

$$A \cup B = \{a, b, c\}$$

Here $A \cup B$ contains 3 elements. Therefore, $P(A \cup B)$ contains $2^3 = 8$ elements.

∴
$$P(A \cup B) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, \{a, b, c\}\}$$

(d) $P(A) \cup P(B)$

$$P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$

$$P(B) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}\$$

∴
$$P(A)$$
 ∪ $P(B) = {\emptyset, {a}, {b}, {c}, {a, b}, {b, c}}$

Question 10:

A. Exercise 3.5.1

- (b) $B \times A \times C = (foam, tall, non-fat)$
- (c) $B \times C = \{(foam, non-fat), (foam, whole), (no-foam, non-fat), (no-foam, whole)\}$

B. Exercise 3.5.3

(b)
$$\mathbb{Z}^2 \subseteq \mathbb{R}^2$$

True. Since the set of pairs of integers is a subset of a set of pairs of real numbers, \mathbb{Z}^2 is a subset of \mathbb{R}^2 .

(c)
$$\mathbb{Z}^2 \cap \mathbb{Z}^3 = \emptyset$$

True. Since the elements of \mathbb{Z}^3 is $\{(a, b, c) : a, b, c \in \mathbb{Z}\}$ and the elements of \mathbb{Z}^2 is $\{(a, b) : a, b \in \mathbb{Z}\}$, the elements of \mathbb{Z}^2 are not members in \mathbb{Z}^3 .

(e) For any three sets, A, B, and C, if $A \subseteq B$, then $A \times C \subseteq B \times C$.

True. Since $A \subseteq B$, it means that every element in A is also present in B. Hence, every element in $A \times C$ is also an element of $B \times C$.

C. Exercise 3.5.6

(d) {xy: where $x \in \{0\} \cup \{0\}^2$ and $y \in \{1\} \cup \{1\}^2$ }

$$\{0\} \cup \{0\}^2 = \{0,00\}$$

$$\{1\} \cup \{1\}^2 = \{1, 11\}$$

Let $A = \{xy : where \ x \in \{0\} \cup \{0\}^2 \ and \ y \in \{1\} \cup \{1\}^2\}$

$$: A = \{ 01, 011, 001, 0011 \}$$

(e) $\{xy: x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}^2\}$

$$x \in \{aa, ab\}$$

$$y \in \{a\} \cup \{a\}^2 = \{a, aa\}$$

Let B = $\{xy: x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}^2\}$

D. Exercise 3.5.7

(c) $(A \times B) \cup (A \times C)$

$$(A \times B) = \{ ab, ac \}$$

$$(A \times C) = \{ aa, ab, ad \}$$

$$: (A \times B) \cup (A \times C) = \{ aa, ab, ac, ad \}$$

(f) $P(A \times B)$

$$(A \times B) = \{ ab, ac \}$$

$$\therefore P(A \times B) = \{ \emptyset, \{ab\}, \{ac\}, \{ab, ac\} \}$$

(g)
$$P(A) \times P(B)$$

$$P(A) = \{ \emptyset, \{a\} \}$$

$$P(B) = \{ \emptyset, \{b\}, \{c\}, \{b, c\} \}$$

Question 11:

A. Exercise 3.6.2

(b)
$$(B \cup A) \cap (\overline{B} \cup A) = A$$

$(B \cup A) \cap (\overline{B} \cup A)$	
$(A \cup B) \cap (A \cup \overline{B})$	Commutative Law
$A \cup (B \cap \overline{B})$	Distributive Law
$A \cup \emptyset$	Complement Law
А	Identity Law

(c)
$$\overline{A \cap \overline{B}} = \overline{A} \cup B$$

$\overline{A \cap B}$	
$\overline{\overline{A}} \cup \overline{\overline{\overline{B}}}$	De Morgan's Law
$\overline{A} \cup B$	Double Complement Law

B. Exercise 3.6.3

(b)
$$A - (B \cap A) = A$$

Let
$$A = \{ 0, 1, 2, 3 \}$$
 and $B = \{ 0 \}$
 $B \cap A = \{ 0 \}$
 $A - (B \cap A) = \{ 1, 2, 3 \}$
In this case, $A - (B \cap A) = \{ 1, 2, 3 \}$ and $A = \{ 0, 1, 2, 3 \}$
 $A - (B \cap A) \neq A$

Hence, $A - (B \cap A) = A$ is not a set identity.

, ,

(d)
$$(B - A) \cup A = A$$

Let
$$A = \{ 1, 2, 3, 4 \}$$
 and $B = \{ 2, 3, 4, 5 \}$

$$B - A = \{ 5 \}$$

$$(B - A) \cup A = \{ 1, 2, 3, 4, 5 \}$$
In this case, $(B - A) \cup A = \{ 1, 2, 3, 4, 5 \}$ and $A = \{ 1, 2, 3, 4 \}$

$$: (B - A) \cup A \neq A$$

Hence, $(B - A) \cup A = A$ is not a set identity.

C. Exercise 3.6.4

(b)
$$A \cap (B - A) = \emptyset$$

$A \cap (B - A)$	
$A \cap (B \cap \overline{A})$	Set Subtraction Law
$A \cap (\overline{A} \cap B)$	Commutative Law
$(A \cap \overline{A}) \cap B)$	Associative Law
Ø ∩ <i>B</i>	Complement Law
$B \cap \emptyset$	Commutative Law
Ø	Domination Law

(c) $A \cup (B - A) = A \cup B$

$A \cup (B - A)$	
$A \cup (B \cap \overline{A})$	Set Subtraction Law
$(A \cup B) \cap (A \cup \overline{A})$	Distributive Law
$(A \cup B) \cap U$	Complement Law
$A \cup B$	Identity Law