Abstract Algebra II

Ji, Yong-hyeon

May 7, 2025

We cover the following topics in this note.

- Group Action
- Cayley Theorem
- Normal Subgroups
- Normality of the Kernel

Group Action

Definition. Let (G, *) be a group and let $X \neq \emptyset$. A (left) group action of G on X is a function

$$\cdot: G \times X \to X, \quad (g, x) \mapsto g \cdot x$$

satisfying the followings: for all $g, h \in G$ and all $x \in X$,

- (i) (Identity) $e \cdot x = x$, where $e \in G$ is the identity element of G;
- (ii) (Compatibility) $(g * h) \cdot x = g \cdot (h \cdot x)$.

The pair (X, \cdot) (or simply X) is then called a G-set.

Note (Notation). If a group G acts on a set X, one commonly writes: $G \curvearrowright X$.

Remark. A right group action of *G* on *X* is a function $\cdot : X \times G \to X$, $(x, g) \mapsto x \cdot g$ satisfying:

- (i) $x \cdot e = x$ for all $x \in X$;
- (ii) $(x \cdot g) \cdot h = x \cdot (gh)$ for all $g, h \in G, x \in X$.

Example (Scalar Multiplication on a Vector Space). Let \mathbb{F} be a field, and let $X = \mathbb{F}^n$ be the *n*-dimensional vector space over \mathbb{F} . Consider the multiplicative group of nonzero scalars in \mathbb{F} :

$$G = (\mathbb{F}^{\times}, \times), \text{ where } \mathbb{F}^{\times} = \mathbb{F} \setminus \{0\}.$$

We define an action $G \curvearrowright X$ by scalar multiplication:

$$\begin{array}{cccc} \cdot & : & \mathbb{F}^{\times} \times \mathbb{F}^{n} & \longrightarrow & \mathbb{F}^{n} \\ & & (\lambda, \mathbf{v}) & \longmapsto & \lambda \cdot \mathbf{v} \end{array}$$

where the product $\lambda \cdot \mathbf{v}$ is defined componentwise. Then

- (i) $1 \cdot \mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in \mathbb{F}^n$.
- (ii) $(\lambda \mu) \cdot \mathbf{v} = \lambda \cdot (\mu \cdot \mathbf{v})$ for all $\lambda, \mu \in \mathbb{F}^{\times}$, $\mathbf{v} \in \mathbb{F}^{n}$.

Example (Conjugation Action on the Group Itself). Let G be any group, and consider X = G. Define an action of G on itself by conjugation:

$$G \curvearrowright G$$
, $(g, x) \mapsto g \cdot x := g * x * g^{-1}$.

Then

- (i) $e \cdot x = e * x * e^{-1} = x$ for all $x \in G$.
- (ii) Note that

$$(g * h) \cdot x = (g * h) * x * (g * h)^{-1}$$

$$= (g * h) * x * (h^{-1} * g^{-1})$$

$$= g * (h * x * h^{-1}) * g^{-1}$$

$$= g * (h \cdot x) * g^{-1}$$

$$= g \cdot (h \cdot x).$$

Thus, this is a left group action.

Example (Trivial *G*-Set). Let *G* be any group and define the set $X = \{x\}$, a singleton. Define the action

$$G \curvearrowright X$$
, $(g, x) \mapsto g \cdot x := x$ for all $g \in G$.

This is the **trivial action**, where every group element acts as the identity on *X*:

- (i) $e \cdot x = x$.
- (ii) $(g * h) \cdot x = x = g \cdot (h \cdot x)$.

Example (Action on Coset Space G/H). Let (G,*) be a group, and let $H \le G$. Let X = G/H be the set of left cosets of H in G, i.e.,

$$X = G/H = \{gH \mid g \in G\}.$$

Define an action

$$G \curvearrowright G/H$$
, $(g, aH) \mapsto (ga)H$.

This is well-defined because if $a_1H = a_2H$, then $a_1^{-1}a_2 \in H$, so: $ga_1H = ga_2H$.. Since

- (i) $e \cdot aH = aH$;
- (ii) $(gh) \cdot aH = g \cdot (h \cdot aH)$.

Group Elements Act as Permutations

Proposition. Let G be a group action on a set X via a left action $G \curvearrowright X$, given by $(g, x) \mapsto g \cdot x$. Then for each $g \in G$, the map

$$\sigma_g: X \to X, \quad x \mapsto g \cdot x$$

is one-to-one and onto. That is, $\sigma_g \in Sym(X)$, the group of all permutations of X.

Proof. TBA

Group Actions Induce Permutation Representations

Theorem. Let G be a group action on a set X via a left group action $G \curvearrowright X$, $(g, x) \mapsto g \cdot x$. For each $g \in G$, define the bijection $\sigma_g : X \to X$ by $\sigma_g(x) := g \cdot x$. Then the map

$$\phi: G \to \operatorname{Sym}(X), \quad g \mapsto \sigma_g,$$

is a **group homomorphism** from G to the symmetric group Sym(X). In other words, for all $g, h \in G$,

$$\phi(g * h) = \sigma_{g * h} = \sigma_g \circ \sigma_h = \phi(g) \circ \phi(h).$$

Remark. A group action $G \curvearrowright X$ is equivalent to a group homomorphism $G \to \operatorname{Sym}(X)$, i.e., a **permutation representation** of G.

Proof. TBA

Cayley Theorem

Theorem. Let G be a group. Consider the action of G on itself by left multiplication. For each $g \in G$, define

$$\sigma_g: G \longrightarrow G, \quad x \mapsto g \cdot x.$$

Then the map

$$\phi: G \longrightarrow \operatorname{Sym}(G), \quad g \mapsto \sigma_g$$

is an injective group homomorphism (group monomorphism). In particular,

$$\phi(G) \simeq G$$
 and $\varphi(G) \leq \operatorname{Sym}(G)$.

Proof. TBA

Normal Subgroups

Observation. Consider $4\mathbb{Z} \leq \mathbb{Z}$. Then

$$\mathbb{Z}/4\mathbb{Z} = \{0 + 4\mathbb{Z}, 1 + 4\mathbb{Z}, 2 + 4\mathbb{Z}, 3 + 4\mathbb{Z}\} = \{[0], [1], [2], [3]\}.$$

- $[0] + [1] = (0 + 4\mathbb{Z}) + (1 + 4\mathbb{Z}) \stackrel{\text{def.}}{=} (0 + 1) + 4\mathbb{Z} = 1 + 4\mathbb{Z} = [1].$
- $[1] + [2] = (1 + 4\mathbb{Z}) + (2 + 4\mathbb{Z}) \stackrel{\text{def.}}{=} (1 + 2) + 4\mathbb{Z} = 3 + 4\mathbb{Z} = [3].$
- $[1] + [3] = (2 + 4\mathbb{Z}) + (3 + 4\mathbb{Z}) \stackrel{\text{def.}}{=} (1 + 3) + 4\mathbb{Z} = 4 + 4\mathbb{Z} = 0 + 4\mathbb{Z} = [0].$

Existence of the Quotient Group

Proposition. Let (G, *) be a group and let $H \leq G$ be a subgroup. Define a binary operation \boxtimes on the set of left cosets G/H by

$$(g * H) \boxtimes (g' * H) = (g * g') * H$$

where $g, g' \in G$. Then this operation is well-defined if and only if

$$g*h*g^{-1}\in H.$$

for all $g \in G$, $h \in H$.

Proof. TBA

Normal Subgroup

Definition. Let (G, *) be a group and let $H \le G$. We say that H is **normal** in G, written

$$H \leq G$$
,

if $g * h * g^{-1} \in H$ for any $g \in G$ and $h \in H$.

Remark. The set of (left) cosets G/H be a well-defined group structure via

$$(g * H) \boxtimes (k * H) = (g * k) * H,$$

making G/H the quotient group of G by H.

Equivalent Definitions of Normal Subgroup

Proposition. *Let* (G, *) *be a group and let* $H \le G$. *The Following Are Equivalent:*

 $(1)^a \ H \ is \ normal \ in \ G, \ i.e., \ H \ \unlhd \ G;$

$$(2)^b g * h * g^{-1} \in H$$
 for all $g \in G$, $h \in H$;

$$(3)^c \ g * H * g^{-1} = H \ for \ all \ g \in G;$$

$$(4)^d \ g*H=H*g \ for \ all \ g\in G.$$

Proof. $((2)\Rightarrow(3))$ TBA

$$((3)\Rightarrow(4))$$
 TBA

((4)⇒(2)) TBA

^aTerminology and Notation

^b(Elementwise Conjugation)

^c(Conjugation Invariance)

^d(Coset Equality)

Normality of Kernel

Theorem. Let $\phi:(G,*) \longrightarrow (H,*')$ be a group homomorphism, and define its kernel by

$$\ker \phi = \{ g \in G : \varphi(g) = e_H \}$$
.

Then ker ϕ *is a normal subgroup of G; that is,* ker $\phi \leq G$.

Proof. Since ϕ is a homomorphism, for every $g \in G$ and every $k \in \ker \phi$ we have

$$\phi(g * k * g^{-1}) = \phi(g) *' \phi(k) *' \phi(g)^{-1} = \phi(g) *' e_H *' \phi(g)^{-1} = e_H$$

so $g * k * g^{-1} \in \ker \varphi$. Thus,

$$g * (\ker \varphi) * g^{-1} = \ker \varphi \quad \forall g \in G,$$

i.e. $\ker \varphi$ is invariant under conjugation and hence normal in *G*.

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 23. 추상대수학(d) 군 작용과 케일리-정리 group action and Cayley theorem" YouTube Video, 29:20. Published October 23, 2019. URL: https://www.youtube.com/watch?v=5SQfrH83HfA&t=1040s.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 24. 추상대수학 (e) 정규부 분군의 정의 def of normal subgroups" YouTube Video, 23:00. Published October 25, 2019. URL: https://www.youtube.com/watch?v=3UJILZr4CNo.

A Appendices

A.1 The Rotation Action of \mathbb{S}^1 on \mathbb{S}^2

Consider

$$\begin{split} \mathbb{S}^1 &= \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} = \{e^{i\theta} : \theta \in \mathbb{R}\}, \\ \mathbb{S}^2 &= \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}. \end{split}$$

Define the map

$$\Phi \colon \mathbb{S}^1 \times \mathbb{S}^2 \longrightarrow \mathbb{S}^2, \qquad (e^{i\theta}, P) \mapsto \mathsf{Rot}_{\theta}(P),$$

where, for each $e^{i\theta} \in S^1$, define the rotation

$$\operatorname{Rot}_{\theta} \colon \mathbb{S}^{2} \to \mathbb{S}^{2}, \qquad \operatorname{Rot}_{\theta}(x, y, z) = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \cos \theta + y \sin \theta \\ -x \sin \theta + y \cos \theta \\ z \end{pmatrix}.$$

Here, $\Phi(e^{i\theta}, P) = \mathsf{Rot}_{\theta}(P)$. Then

(i) (Identity) The identity in \mathbb{S}^1 is $1 = e^{i \cdot 0}$. Since $\cos 0 = 1$, $\sin 0 = 0$, we have

$$\Phi(1, P) = \text{Rot}_0(P) = (x, y, z) = P$$

for every $P \in \mathbb{S}^2$.

(ii) (Compatibility) For any $e^{i\theta}$, $e^{i\phi} \in \mathbb{S}^1$ and $P \in \mathbb{S}^2$,

$$\Phi\big(e^{i\theta}e^{i\phi},P\big)=\Phi\big(e^{i(\theta+\phi)},P\big)=\mathrm{Rot}_{\theta+\phi}(P)=\mathrm{Rot}_{\theta}\big(\mathrm{Rot}_{\phi}(P)\big)=\Phi\big(e^{i\theta}\;,\;\Phi(e^{i\phi},P)\big).$$

Hence Φ be a left group action. To be continue \cdots .