

Projektionen

COMPUTERGRAPHIK

Inhaltsverzeichnis

6 Projektionen

- 6.1 Einleitung
- 6.2 Perspektivische Projektionen
- 6.3 Parallele Projektionen
- 6.4 Perspektivische Projektion -- Berechnung
- 6.5 Unmögliche Strukturen

- Eine Projektion ist eine Abbildung
 - aus einem Raum der Dimension n
 - in einen Raum der Dimension m < n
- Objekte werden im n=3 dimensionalen Raum dargestellt
- Bildschirm ist m=2 dimensionaler Raum.

- Ein Raumpunkt wird entlang eines Projektionsstrahls auf eine vorgegebene Projektionsebene abgebildet.
 - Projektionsstrahl:
 - Projektionszentrum
 - Raumpunkt
 - Projizierter Raumpunkt:
 Schnittpunkt des Projektionsstrahls mit der Projektionsebene

- Geometrisch planare Projektionen:
 - Perspektivische Projektion (Zentralprojektion)
 - Parallelprojektion
 - Projektionszentrum liegt in einem unendlich fernen Punkt

- Im Rahmen der projektiven
 Geometrie stellt die
 Parallelprojektion einen Spezialfall der Zentralprojektion dar.
- Dies lässt sich bei der praktischen Umsetzung der Projektionen als Matrizen gewinnbringend anwenden.

Klassifikation der gängigen Projektionsarten

UNIVERSITAT Computergraphik

- Alle Projektionsstrahlen laufen durch das Projektionszentrum.
- Projektionszentrum fällt mit dem Auge des Beobachters zusammen.
- Das Verfahren erzeugt eine optische Tiefenwirkung.
- Geht in seinen Anfängen bis in die Malerei der Antike zurück.

Raffael Schule von Athen

UNIVERSITÄT LEIPZIG Computergraphik

Eigenschaften

- Je zwei parallele Geraden, die nicht parallel zur Projektionsebene sind, treffen sich in einem Punkt, dem Fluchtpunkt.
- Es gibt unendlich viele
 Fluchtpunkte, je einen pro Richtung nicht parallel zur Projektionsebene.

- Hervorgehoben werden die Fluchtpunkte der Hauptachsen
 - Geraden, die parallel zur x-Achse verlaufen, treffen sich im x-Fluchtpunkt.
 - Für die anderen Hauptachsen wird dies ähnlich definiert.

Klassifikation

- Nach der Anzahl der Hauptachsen, die von der Projektionsebene geschnitten werden:
 - 1-Punkt-Perspektiven
 - 2-Punkt-Perspektiven
 - 3-Punkt-Perspektiven

Beispiel

1-Punkt-Perspektive

Beispiel

2-Punkt-Perspektive

12

Beispiel

Beispiel

Klassifikation der gängigen Projektionsarten

UNIVERSITÄT Computergraphik 15

- Bei der Parallelprojektion ist das Projektionszentrum im Unendlichen.
- Alle Projektionsstrahlen verlaufen parallel in einer Richtung.
- Die Parallelprojektion ist
 - ... weniger realistisch als die perspektivische Projektion.
 - ... besser, um exakte Maße aus dem projizierten Bild zu bestimmen.

- Orthographische Projektion:
 - Die Projektionsstrahlen stehen senkrecht gegen die Projektionsebene.
 - Projektionsrichtung fällt mit der Ebenennormalen zusammen.

- Schiefe Projektion:
 - Die Projektionsstrahlen stehen schief gegen die Projektionsebene.

Orthographische Projektion: Hauptrisse

- Grundriss (Top View)
- Aufriss (Front View)
- Kreuzriss (Side View)
- Die Projektionsebene schneidet nur eine Hauptachse
- Die Normale der Projektionsebene ist parallel zu einer der Hauptachsen

Orthographische Projektion: Axonometrie

- Die Projektionsebene ist nicht orthogonal zu einer der Koordinatenachsen.
- Parallele Linien werden auf parallele Linien abgebildet.
- Winkel bleiben nicht erhalten.
- Abstände können längs der Hauptachsen gemessen werden (i.A. in jeweils einem anderen Maßstab).

- Häufigstes Fall: isometrische Axonometrie
- Die Projektionsebene bildet mit allen Hauptachsen den gleichen Winkel.
 - Gleichmäßige Verkürzung aller Koordinatenachsen
 - Es gibt nur acht mögliche isometrische Projektionen.

Beispiel Isometrische Darstellung

Age of Empires II

Orthographische Projektion

- Dimetrische Projektion
 - Projektionsebene hat mit zwei
 Hauptachsen den gleichen Winkel.
 - Skalierung ist in zwei
 Achsenrichtungen gleich.

- Trimetrische Projektion
 - Projektionsebene hat mit jeder Achse einen anderen Winkel.
 - Skalierungen sind in allen drei Achsenrichtungen verschieden.

Beispiel Dimetrische Darstellung

Sim City 2000

Klassifikation der gängigen Projektionsarten

UNIVERSITÄT Computergraphik 23

Schiefe Parallelprojektion

 Projektionsrichtung unterscheidet sich von der Normale der Projektionsebene.

Schiefe Parallelprojektion: Kavalierprojektion

- Der Winkel zwischen
 Projektionsrichtung und Bildebene beträgt 45°.
- Die Länge der Projektion einer Linie, die senkrecht zur Bildebene steht, bleibt unverändert.
- Es gibt unendlich viele Kavalierprojektionen, eine für jede Richtung in der Bildebene.

projizierte Einheitsvektoren

Schiefe Parallelprojektion: Kabinettprojektion

 Länge der Projektion einer zur Projektionsebene senkrechten Linie soll die Hälfte ihrer Originallänge werden.

projizierte Einheitsvektoren

Beispiel schiefwinklige Projektion

Sim City

Beispiele

isometrisch: 1:1:1

6.3 Ikea

BILLY

BILLY

- Die Berechnung der perspektivischen Projektion erfolgt je nach Anwendung in unterschiedlichsten Konfigurationen.
- Diese k\u00f6nnen mittels geeigneter Transformationen des Koordinatensystems erreicht werden.

- Beispiel:
 - Projektionszentrum Z und der Augpunkt fallen zusammen.
 - Beide liegen
 - auf der positiven z-Achse
 - mit Abstand d > 0 zum Ursprung

$$\rightarrow Z = (0,0,d).$$

- Blickrichtung ist die negative z-Achse.
- Bildebene liegt in der (x, y)-Ebene.

– Aus dem Strahlensatz folgt:

$$\frac{x'}{d} = \frac{x}{d-z} \implies x' = \frac{x \cdot d}{d-z}$$

$$\frac{y'}{d} = \frac{y}{d-z} \implies y' = \frac{y \cdot d}{d-z}$$

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} \frac{x \cdot d}{d - z} \\ \frac{y \cdot d}{d - z} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x \cdot d \\ y \cdot d \\ 0 \\ d - z \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & d \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{d} & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}^{T} = M \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}^{T}$$

Zerlegung der perspektivischen Projektion

- Perspektivische Transformation M_T ($\mathbb{R}^3 \Rightarrow \mathbb{R}^3$)
- Parallele Projektion M_P auf die Ebene $z=0 \ (\mathbb{R}^3 \Rightarrow \mathbb{R}^2)$

$$M = M_P \cdot M_T \Rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{d} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{d} & 1 \end{pmatrix}$$

Erweiterung

- In der Bildebene wird ein Sichtfenster (View Window) spezifiziert:
 - Breite b
 - Höhe h
 - Verhältnis Breite zu Höhe: aspect ratio
 - Das Sichtfenster ist symmetrisch um den Ursprung angeordnet

- Die Projektoren durch die Ecken der Bildebene definieren das so genannte Sichtvolumen (Viewing-Frustum)
- Zusätzlich begrenzen zwei zur Bildebene parallele Ebenen das Sichtvolumen in z-Richtung
 - Nahclipebene mit znah
 - Fernclipebene mit zfern

Erweiterung

- Das Sichtvolumen begrenzt den Teil des Raums, der dargestellt werden soll
 - ⇒ Clipping

6.5 Unmögliche Strukturen

