$paper=a4paper,\,top=3cm,\,bottom=3cm,\,left=3cm,\,right=3cm,\,headheight=14pt,\,footskip=1.4cm,\,headsep=10pt,$

Definition[section]

Remark

Theorem

Abstract Structures 333

March 3, 2019

1 Equivalence Relations

Definition 1.1 Equivalence Relation

An equivalence relation, denoted by the symbol \sim , on a set *S* is a set R^a of ordered pairs $(a, b) \in S \times S$ such that:

- 1. $(a, a) \in R \ \forall \ a \in S$
- 2. $(a, b) \in R$ implies $(b, a) \in R \ \forall \ a, b \in S$
- 3. $(a, b), (b, c) \in R$ implies $(a, c) \in R \ \forall \ a, b, c \in S$

We are concerned with what partition is R imposing on S

Example 1. Define \mathbb{Z} in the following way

Fix $n \in \mathbb{Z}+$

We say a is congruent \equiv to b (mod n) or $a \equiv$ b (mod n) iff n | (a-b) Show that the example above is an equivalence relation

Solution:

Proof. We must prove the following 3 properties

- 1. Reflexive [(i) in the def of ER]
 - Thought of as: An element a is always related (\sim) to itself. We are trying to prove that $a \equiv a \pmod n$. We can start by rewriting this congruence as $n \mid (a-a)$ by def of congruence. This leaves us with $n \mid (0)$ which is true for all n > 0. Since n be def is fixed in $\mathbb{Z}+$, this congruence will always hold.
- 2. Symmetric [(ii) in the def of ER]
 - Thought of as: Given (a,b) is valid, we can show (b,c) is valid. Since we are given (a,b) is valid, we can write $a \equiv b \pmod{n}$ or $n \mid (a-b)$. We must show that $b \equiv a \pmod{n}$ or $n \mid (b-a)$. We can rewrite $n \mid (b-a)$ as $-1*n \mid (a-b)$. Since we know $n \mid (a-b)$ from out given, we know that this division holds true and therefore $n \mid (b-a)$ as well.

^aNeed not be unique

- 3. Transitive [(iii) in the def of ER]
 - Thought of as: Given $a \bar{b}$ and $b \bar{c}$ we must show $a \bar{c}$.

We can write the congruence as 2 linear equation.

- nk = a b
- nl = a c

Rearranging we get: n(k+l) = a - c which can be rewritten as $n \mid (a-c)$

Now that we have proved that a congruence is an ER on $S = \mathbb{Z}$ we would like to see what affect it has on \mathbb{Z} . ie: What is $a\tilde{b}$ / what partition does it impose.

Example 2. Take n = 5, given the following values for a which values in \mathbb{Z} satisfy the congruence $a \equiv b \pmod{n}$ and is the resulting set equal to \mathbb{Z} ? **Solution:**

- a = 0
- *a* = 1
- *a* = 2

Solution:

- $\{\pm 0, \pm 5, \pm 10...\}$
- $\{\pm 1, \pm 6, \pm 5k + 1 \dots \}$
- $\{\pm 2, \pm 7, \pm 5k + 2 \dots \}$

No sets equal \mathbb{Z}

We can see that it appears that a congruence will always split the set \mathbb{Z} into n partitions.

Definition 1.2 Partition of a set

A partition of a set S is a collection of **non-empty, disjoint** subsets $\{s_0, s_1, ...\}$ such that (st) $\bigcup_{i=1}^{\infty} S_i = S$

Theorem 1.1 The equivalence classes of a set S under ~form a partition of S

Proof. We need to show that given ~, we are left with a collection of **disjoint** subsets who's union is S.

Let a \sim S. We know a is in its own set because a \sim a. So \forall a \in S the set containing a is **non-empty**. If we do this for all a \in S then the union of those sets is S. So we need only show that these sets are **disjoint**.

Example 3. Let $S = \mathbb{Z}x\mathbb{Z}$ [(a, b) a,b $\in \mathbb{Z}$] Define $\tilde{\ }$ on S by (a, b) $\tilde{\ }$ (c, d) iff ad = bc

- 1. Prove ~ is an ER
- 2. What partition of $\mathbb{R}x\mathbb{R}$ does this impose

Solution:

Proof. If ER, 3 properties must hold:

1. Reflexive: $(a, b) \sim (a, b) \Longrightarrow ab = ab$ which is true.

- 2. Symmetric: Given $(a, b) \sim (c, d)$ we can show $(c, d) \sim (a, b)$. $(a, b) \sim (c, d) \Longrightarrow$ ad = bc, $(c, d) \sim (a, b) \Longrightarrow cb = da$. Since we are in the realm of \mathbb{R} we can rearrange to bc = ad which is equal to ad = bc.
- 3. Transitive: We must show that if $(a, b)^{\sim}(c, d)$ and $(c, d)^{\sim}(e, f)$ then $(a, b)^{\sim}(e, f)$. We can write it as follows ad = bc and cf = de the af = be. We can write

$$adcf = bcde$$

 $ace = bce$
 $af = be$

To find the partition we may start by plugging in random values.

$$(1,1)$$

$$1d = 1c$$

$$d = c$$

$$= \{(1,1), (2,2), \dots, (n,n)\}$$

$$(1,2)$$

$$d = 2c$$

$$= \{(1,2), (2,4), \dots, (n,2n)\}$$

$$\vdots$$

This partition forms all rational numbers. The first set represents $\frac{1}{1}$ or 1, the second represents $\frac{1}{2}$... ∞

Example 4. Let $S = \mathbb{R} - \{0\}$

Define a $\tilde{\ }b\leftrightarrow ab>0$

What partition does that make on \mathbb{R}

Solution:

By plugging in we see we get 2 sets.

- 1. $\{1, 2, ..., n\}$ = All positive integers
- 2. $\{-n, -n-1, \ldots, -1\}$ = All negative integers

Theorem 1.2 Division Algorithm Let $D \in \mathbb{Z}+$, $a \in \mathbb{Z}$, $\exists !q$, r s.t. a = dq + r when $0 < r \le d$

Example 5. a = 100, d = 7

2 Groups v

Solution:

$$100 = 7q + r = 7(14) + 2$$
$$7 = 2q + r = 2(3) + 1$$
$$2 = 1q + r = 1(2) + 0$$

So, 1 would be the GCD.

2 Groups

Definition 2.1 Binary Operation We define a binary operation on set S is a function from $SxS \longrightarrow S$

ie: Takes a pair of elements in S and sends them to another element in S

Example 6. Let $S = \mathbb{Z}$, with bin-op (+)

$$a+b=c$$

$$3+5=8$$

$$3 \in \mathbb{Z}, 5 \in \mathbb{Z}, 8 \in \mathbb{Z}.$$

Definition 2.2 Let S be a set w/ bin-op $*^a$ If \forall a, b \in S, a + b \in S we say S is closed (under *)

a* denotes any bin-op

Example 7.

 (M_{22}, \cdot) is closed (\mathbb{R}, \div) is not closed

Definition 2.3 Let G be a set closed under bin-op * G is a group if the following hold:

Associative: \forall a, b, c \in G we have (a*b)*c = a*(b*c)

- **2.** \exists an Identity in G s.t. \forall a \in G we have (e*a) = (a*e) = a
- 3. $(\forall a \in G) \exists a^{-1} \text{ s.t. } a * a' = a^{-1} * a = e$

Example 8. \mathbb{Z}_n = the group $\{0, 1, 2, ..., n-1\}$ under addition mod n. What is addition mod n?

Solution:

For a, $b \in \mathbb{Z}_n$: if a+b < n, a+b=a+bif $a+b \ge n$, a+b=a+b-n

- 1. Associative: We are dealing with integers so associativity holds.
- 2. \exists an Identity: The identity is 0 (e = 0)
- 3. $(\forall a \in G) \exists a^{-1}$: The inverse is n a

Vİ

2.0.0.1 Common Groups

- $(\mathbb{Z}, +)$
- $(\mathbb{R}, +)$
- (ℂ, +)
- $(GL_{2R}, *)$

Proof. of $(GL_{2R}, *)$

We know from linear algebra that det(AB) = det(A)det(B)

We also know that the identity 2x2 matrix is

$$M_{2x2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Additionally, we are able to inherit associativity from general matrices. This leaves inverse.

We prove inverse as follows:

$$A^{-1} = \frac{1}{det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Definition 2.4 Order of a group

The order of a group, G, denoted |G| is the number of elements in G as a set If set G has a finite number of elements we say G is a finite group. If G has an infinite number of elements we say G is an infinite group.

Definition 2.5 Abelian Groups

If a group is commutative, we say it is Abelian. If not, we say its not-Abelian

Definition 2.6 Cayley Table

A cayley table is a way to describe the structure of a finite group.

Properties that may be derived from a cayley table are:

If the table is reflect-able, the group is Abelian

- Every element appears in each row/column
- Easily find the identity (The row/column which entries is equal to the input)

Example 9. Write the Cayley Table for \mathbb{Z}_3

Solution:

\mathbb{Z}_3	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

2 Groups vii

Example 10. Write the Cayley Table for |G| = 3

Solution:

$$|G| = 3$$
 e a b e a b a a b e b b e a

Notice that this the second table above was forced. Meaning, no other configuration of e, a, b could have been entered into the table and the table maintain all group properties.

We see from this that there is only 1 group with order 3. Even though we may label that group with different elements, the underlying groups are all the same.

Claim 2.1. \exists ! 2 groups of order 4 (|G| = 4)

\mathbb{Z}_4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

\mathbb{Z}_{2x2}	(0,0)	(0,1)	(1,0)	(1,1)
(0,0)	(0,0)	(0,1)	(1,0)	(1,1)
(0,1)	(0,1)	(0,0)	(1,1)	(1,0)
(1,0)	(1,0)	(1,1)	(0,0)	(0,1)
(1,1)	(1,1)	(1,0)	(0,1)	(0,0)

Any other groups of order 4 will have a bijection to either \mathbb{Z}_4 or \mathbb{Z}_{2x2} Here is an example of one of those:

Example 11. Let $G = \{1, -1, i, -i\}$ under *

\mathbb{G}_4	1	-1	i	-i
1	1	-1	i	-i 1
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

Claim 2.2. If groups are structurally identical, then, you can find a bijection $\phi(G_1) = G_2$

2 Groups viii

Definition 2.7 Order of an element

Let G be a group with $g \in G$. The order of g (referred to as the order of the element) is the smallest positive integer n s.t. $g^n = e$ where e is the identify element of G.

Definition 2.8 Cyclic Group

Let G be a group with order n. We say G is cyclic if $\exists g \in G$ s.t |g| = n

Theorem 2.1 Let
$$a \in \mathbb{Z}_n$$
, then $|a| = \frac{n}{(a,n)}$

Proof. |a| is the smallest positive integer k s.t. $ka \equiv 0(n)$

i.e ln - ka = 0

Solve for k using linear diophantine equation

Claim 2.3. Z_n is a cyclic group

Proof. We know \mathbb{Z}_n is cyclic if \exists some a s.t. |a| = n where n = |G| by the proof above (Them. 3), $|a| = \frac{n}{(a,n)}$. (a,n) = 1.

To prove that \mathbb{Z}_n is cyclic we must show that \exists an a such that (a,n) = 1 We will choose n-1 as our a giving us (n-1,n) = 1 which is always true

Definition 2.9 Group Generator

Let G be a cyclic group of order n.

If a has order n, we call a a generator of G and we write $\langle a \rangle = G$. We say "the group generated by a"

Claim 2.4. Every element $a \in \mathbb{Z}_n$ that is relatively prime to n (gcd(a,n) = 1) is a generator

Definition 2.10 \mathbb{U}_n

 \mathbb{U}_n is defined as all elements in \mathbb{Z}_n that are relatively prime to $n (\gcd(a,n) = 1)$

Theorem 2.2 All cyclic groups are Abelian

Proof. We must show that in cyclic group G, every 2 elements commute.

Since G is cyclic $\exists a \in G \text{ s.t } < a >= G$.

Take 2 *distinct* elements \in *G*, call them g_1 and g_2 .

$$g_1 = a^x$$
 for some x $g_2 = a^y$ for some y

We can write $g_1g_2 = g_2g_1 = a^x a^y = a^y a^x = a^{x+y} = a^{y+x}$

This final step $(a^{x+y} = a^{y+x})$ is valid because x and y are integers!