Eclipse Apoapsis - Open Source based Software Composition Analysis at scale

Marcel Kurzmann, Robert Bosch GmbH FOSSNorth 2024

Reference Tooling Work Group

We are building an open source compliance toolchain ecosystem with open source tools as an open source project. To accomplish this we:

- Use existing independent tooling projects
- Provide reference workflows to allow their adoption
- Provide the concepts and glue to ensure easy interoperability and integration in existing environments
- Provide reference turnkey toolchains that can be used without fees by anybody

Join Us in Creating a New Era for Open Source Compliance

Mailing List: oss-based-compliance-tooling@groups.io

Subscription page: https://groups.io/g/oss-based-compliance-tooling

Online meetings: Bi-weekly - Invitations are sent to the mailing list

Website: https://oss-compliance-tooling.org/

And of course we are on GitHub:

https://github.com/Open-Source-Compliance/Sharing-creates-value

Our journey – the beginning

4

Mission: Open Source Management automation for JAVA/Maven projects.

Target Fact Sheet (simplified) - JAVA/Maven

Environment Parameters

Business context: Server-based applications, fat clients

Distribution context: hosted/distributed

Development context: explorative / deterministic

Development Mode: Agile / classic using agile methods

Build mode: CI/CD, Jenkins

Open Source Parameter

Open Source Use: only permissive licenses

Open Source snippets: forbidden

OSM Concept: binary identification via hashes, hash matching

Package identification: package manager

Component paradigm: 1 component ⇔ 1 source

Metadata Source: central (commercial) database

Mission completed?

https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html

Earth Fact Sheet

Bulk parameters

Mass (10 ²⁴ kg)	5.9722
Volume (10 ¹⁰ km ³)	108.321
Equatorial radius (km)	6378.137
Polar radius (km)	6356.752
Volumetric mean radius (km)	6371.000
Core radius (km)	3485
Ellipticity (Flattening)	0.003353
Mean density (kg/m³)	5513
Surface gravity (mean) (m/s ²)	9.820
Surface acceleration (eq) (m,	/s ²) 9.780
Surface acceleration (pole)	(m/s ²) 9.832
Escape velocity (km/s)	11.186
GM (x 10 ⁶ km ³ /s ²)	0.39860
Bond albedo	0.294
Geometric albedo	0.434
V-band magnitude V(1,0)	-3.99
Solar irradiance (W/m²)	1361.0
Black-body temperature (K)	254.0
Topographic range (km)	20.4
Moment of inertia (I/MR ²)	0.3308
J ₂ (x 10 ⁻⁶)	1082.63
Number of natural satellites	1
Planetary ring system	No

Orbital parameters

Semimajor axis (10 ⁶ km)	149.598
Sidereal orbit period (days)	365.256
Tropical orbit period (days)	365.242
Perihelion (10 ⁶ km)	147.095
Aphelion (10 ⁶ km)	152.100

Source: https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html

Background Our journey – orbit transfer

Our journey – the next mission

Open Source Management automation for JAVAscript/NPM projects.

Target Fact Sheet (simplified) - JAVAScript/NPM

Environment Parameters

Business context: Web applications

Distribution context: distributed

Development context: explorative / deterministic

Development Mode: Agile / classic using agile methods

Build mode: CI/CD, Jenkins

Open Source Parameter

Open Source Use: only permissive license

Open Source snippets: forbidden

OSM Concept: binary identification via hashes, hash matching => recursive dependency resolution

Package identification: package manager

■ Component paradigm: 1 component ⇔ 1 source => n:m; download sources and scan

Metadata Source: central (commercial) database => local database with scan results and curations

https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html

Mars Fact Sheet

Mars/Earth Comparison

Bulk parameter:

	Mars	Earth	Ratio (Mars/Earth)
Mass (10 ²⁴ kg)	0.64169	5.9722	0.107
Volume (10 ¹⁰ km ³)	16.312	108.321	0.151
Equatorial radius (km)	3396.2	6378.1	0.532
Polar radius (km)	3376.2	6356.8	0.531
Volumetric mean radius (km)	3389.5	6371.0	0.532
Core radius (km)	1830**	3485	0.525
Ellipticity (Flattening)	0.00589	0.00335	1.76
Mean density (kg/m ³)	3934	5513	0.714
Surface gravity (mean) (m/s²)	3.73	9.82	0.380
Surface acceleration (eq) (m/s ²)	3.69	9.78	0.377
Surface acceleration (pole) (m/s ²)	3.73	9.83	0.379
Escape velocity (km/s)	5.03	11.19	0.450
$GM (x 10^6 \text{ km}^3/\text{s}^2)$	0.042828	0.39860	0.107
Bond albedo	0.250	0.294	0.850
Geometric albedo	0.170	0.434	0.392
V-band magnitude V(1,0)	-1.60	-3.99	-
Solar irradiance (W/m²)	586.2	1361.0	0.431
Black-body temperature (K)	209.8	254.0	0.826
Topographic range (km)	30	20	1.500
Moment of inertia (I/MR ²)	0.366	0.3308	1.106
J ₂ (x 10 ⁻⁶)	1960.45	1082.63	1.811
Number of natural satellites	2	1	
Planetary ring system	No	No	

** Recent results indicate the radius of the core of Mars may only be 1650 - 1675 k

Orbital parameter

. . .

	Mars	Earth	Ratio (Mars/Ear
Semimajor axis (10 ⁶ km)	227.956	149.598	1.524
Sidereal orbit period (days)	686.980	365.256	1.881
Tropical orbit period (days)	686.973	365.242	1.881
Perihelion (106 km)	206.650	147.095	1.405
Aphelion (10 ⁶ km)	249.261	152.100	1.639

Source: https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html

BOSCH

Our journey – transfer of learnings

Our journey – utilizing the momentum

Open Source Management automation for Embedded systems.

Target Fact Sheet (simplified) – Embedded C / Conan

Environment Parameters

Embedded Software for devices Business context:

Distribution context: distributed

Development context: deterministic

Development Mode: scaled agile framework

regular incremental builds, Github action, limited scaling options => ORT-Server **Build mode:**

Source Office members and automation developers

Team consisting of Open

Open Source Parameter

permissive licenses, weak copyleft licenses Open Source Use:

Open Source snippets: forbidden, use with exception

project.spdx.yml-files combined with snippet and license and copyright scanning OSM Concept:

Package identification: manually maintained project spdx.yml-files

Component paradigm: 1 source ⇔ different binaries

Metadata Source: source code https://nssdc.qsfc.nasa.gov/planetary/factsheet/saturnfact.htm

Saturn Fact Sheet

Saturn/Earth Comparison

		Saturn	Earth	Ratio (Saturn/Earth)
ı	Mass (10 ²⁴ kg)	568.32	5.9722	95.16
ı	Volume (10 ¹⁰ km ³)	82,713	108.321	763.59
ı	Equatorial radius (1 bar level) (km)	60,268	6,378.1	9.449
ı	Polar radius (1 bar level) (km)	54,364	6,356.8	8.552
ı	Volumetric mean radius (km)	58,232	6,371.0	9.140
ı	Ellipticity (Flattening)	0.09796	0.00335	29.24
ı	Mean density (kg/m ³)	687	5,513	0.125
ı	Gravity (mean, 1 bar) (m/s ²)	11.19	9.82	1.140
ı	Acceleration (eq., 1 bar) (m/s2)	8.96	9.78	0.916
ı	Acceleration (pole, 1 bar) (m/s2)	12.14	9.83	1.235
ı	Escape velocity (km/s)	35.5	11.19	3.172
ı	GM (x $10^6 \text{ km}^3/\text{s}^2$)	37.931	0.39860	95.16
ı	Bond albedo	0.342	0.294	1.16
ı	Geometric albedo	0.499	0.434	1.15
	V-band magnitude V(1,0)	-8.91	-3.99	-
	Solar irradiance (W/m ²)	14.82	1,361.0	0.011
	Black-body temperature (K)	81.0	254.0	0.319
	Moment of inertia (I/MR ²)	0.210	0.3308	0.635
	J ₂ (x 10 ⁻⁶)	16,298.	1082.63	15.054
	Number of natural satellites	146	1	
	Planetary ring system	Yes	No	

	Saturn	Earth	Ratio (Saturn/Earth)
Semimajor axis (10 ⁶ km)	1,432.041	149.598	9.573
Sidereal orbit period (days)	10,759.22	365.256	29.457
Tropical orbit period (days)	10,746.94	365.242	29.424
Perihelion (10 ⁶ km)	1,357.554	147.095	9.229
Aphelion (10 ⁶ km)	1,506.527	152.100	9.905
~	272.00		

Source: https://nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html

Going back in time in: https://github.com/oss-review-toolkit/ort/

Supported package manager

Currently, the following package managers / dependencies:

- Gradle
- Maven
- SBT
- NPM

JAN 2018

Supported package managers

Currently, the following package managers / build sv dependencies:

- Bower (JavaScript)
- Bundler (Ruby)
- dep (Go)
- Glide (Go)
- Godep (Go)
- Gradle (Java)
- Maven (Java)
- NPM (Node.js)
- Composer (PHP)
- PIP (Python)
- SBT (Scala)
- Stack (Haskell)
- Yarn (Node.js)

JAN 2019

Currently, the following package managers are supported:

- Bower (JavaScript)
- Bundler (Rubv)
- Cargo (Rust)
- Conan (C / C++, experimental as the VCS locations oft
- DotNet (.NET, with currently some limitations)
- Glide (Go)
- Godep (Go)
- . GoMod (Go, experimental as only proxy-based source
- Gradle (Java)
- Maven (Java)
- NPM (Node.js)
- NuGet (.NET, with currently some limitations)
- Composer (PHP)
- PIP (Python)
- Pipenv (Python)
- Pub (Dart / Flutter)
- SBT (Scala)
- Stack (Haskell)
- Yarn (Node.js)

JAN 2020

Currently, the following package managers are supported:

- Bower (JavaScript)
- Bundler (Ruby)
- Cargo (Rust)
- · Carthage (iOS / Cocoa)
- Composer (PHP)
- Conan (C / C++, experimental as the VCS locations oft #2037)
- dep (Go)
- DotNet (.NET, with currently some limitations)
- Glide (Go)
- Godep (Go)
- GoMod (Go, experimental as only proxy-based source
- Gradle (Java)
- Maven (Java)
- NPM (Node.js)
- · NuGet (.NET, with currently some limitations)
- PIP (Python)
- Pipenv (Python)
- Pub (Dart / Flutter)
- SBT (Scala)
- SPDX (SPDX documents used to describe projects or p
- Stack (Haskell)
- Yarn (Node.js)

JAN 2021

Currently, the following package managers (grouped by the programming language with) are supported:

- C/C++
 - · Conan (limitations: receipe vs. source repository)
 - Also see: SPDX documents
- Dart / Flutter
- Go

- Godep
- · GoMod (limitations: no replace directive)
- Haskell

- Maven (limitations: default profile only)
- JavaScript / Node.js
- · NPM (limitations: no scope-specific registries, no peer dependencies)
- Yarn (limitations: no Yarn 2 / 3 support)
- · DotNet (limitations: no floating versions / ranges, no target framework)
- NuGet (limitations: no floating versions / ranges, no target framework)
- Objective-C / Swift
- · Carthage (limitation: no cartfile.private)
- CocoaPods (limitations: no custom source repositories)

- Pvthon
- PIP (limitations: Python 2.7 or 3.6 and PIP 18.1 only)
- Pipeny (limitations: Python 2.7 or 3.6 and PIP 18.1 only)
- · Bundler (limitations: restricted to the version available on the host)

- Scala

Today

Background "at scale" – commuter flight path JAVAScript Maven Experience from "Onboarding" Experience from "Onboarding"

"Fact sheets" helpful to quickly gain speed an put everybody in the picture

For new team members

For the "customer" development teams that needed support

Mandatory concept documentation based on standardized template accelerated evolution

Initial documentation => reuse => iterative improvement => standardization => automation Find reusable solutions faster by reducing search range with the help of "fact sheets"

https://nssdc.gsfc.nasa.gov/pl

Our journey – the next stop

Open Source Management automation for Embedded IoT Linux systems.

Target Fact Sheet (simplified) – Embedded IoT LINUX

Environment Parameters

Background

Business context: Internet of things

Distribution context: distributed

Development context: deterministic

Development Mode: classic using agile methods

Build mode: development builds/release builds

Open Source Parameter

Open Source Use: copyleft license

Open Source snippets: forbidden

OSM Concept: SBOM generated by build, component scanning or matching against database

Package identification: purl, hashes, ...

Component paradigm: source2binary-files, recipes, ...

Metadata Source: collaboratively maintained public database; upstream first

https://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.htm

Jupiter Fact Sheet

Jupiter/Earth Comparison

Bulk parameters

	Jupiter	Earth	Ratio (Jupiter/Earth)
Mass (10 ²⁴ kg)	1,898.13	5.9722	317.83
Volume (10 ¹⁰ km ³)	143,128	108.321	1321.33
Equatorial radius (1 bar level) (km)	71,492	6,378.1	11.209
Polar radius (km)	66,854	6,356.8	10.517
Volumetric mean radius (km)	69,911	6,371.0	10.973
Ellipticity	0.06487	0.00335	19.36
Mean density (kg/m ³)	1,326	5,513	0.241
Gravity (mean, 1 bar) (m/s2)	25.92	9.82	2.640
Acceleration (eq., 1 bar) (m/s2)	23.12	9.78	2.364
Acceleration (pole, 1 bar) (m/s2)	27.01	9.83	2.748
Escape velocity (km/s)	59.5	11.19	5.32
$GM (x 10^6 \text{ km}^3/\text{s}^2)$	126.687	0.39860	317.83
Bond albedo	0.343	0.294	1.17
Geometric albedo	0.538	0.434	1.24
V-band magnitude V(1,0)	-9.40	-3.99	-
Solar irradiance (W/m ²)	50.26	1361.0	0.037
Black-body temperature (K)	109.9	254.0	0.433
Moment of inertia (I/MR ²)	0.254	0.3308	0.768
J ₂ (x 10 ⁻⁶)	14,736	1082.63	13.611
Number of natural satellites	95	1	
Planetary ring system	Yes	No	

Orbital parameters

	Jupiter	Earth	Ratio (Jupiter/Earth)
Semimajor axis (10 ⁶ km)	778.479	149.598	5.204
Sidereal orbit period (days)	4,332.589	365.256	11.862
Tropical orbit period (days)	4,330.595	365.242	11.857
Perihelion (10 ⁶ km)	740.595	147.095	5.035
Aphelion (10 ⁶ km)	816.363	152.100	5.367

Background Goals and needs

Find match: Map your needs and

... find existing solutions

... find birds of a feather

Share and reuse

model

Standardizing while keeping flexibility

Example: Finding clothes online

1st limitation of search range

Women OR Men OR Kids

2nd limitation of search range

Clothing OR Shoes OR Sportswear OR ...

3rd limitation of search range

Jackets OR T-Shirts OR Pants OR ...

4th limitation of search range

Size ? Determine parameters

Source: https://commons.wikimedia.org/wiki/File:Body_measures_SVG.svg

Get overview of all clothes matching to your parameters

Eclipse Apoapsis

Eclipse Apoapsis New project proposal

apoapsis noun

apo·apsis ¦apō +

plural apoapses or apoapsides " +

: the apsis that is farthest from the center of attraction: the high point in an orbit

Source: https://www.merriam-webster.com/dictionary/apoapsis

Plural apoapsides (ăp'ō-ăp'sĭ-dēz')

The point at which an orbiting object is farthest away from the body it is orbiting.

Source: https://www.dictionary.com/browse/apoapsis

- Apoapsis is a good opportunity, if you want to transfer to another object's orbit.
- Details see
- https://projects.eclipse.org/proposals/eclipse-apoapsis

Eclipse Apoapsis

Overview and planned Outputs

Eclipse Apoapsis Dependencies

Process Level Outputs

Software Supply Chain Model (simplified)

Software supply chain

Software Supply Chain Model (simplified)

Supply Chain Simulation with Software Management Dummy Repositories?

Details see : Sharing OSM Test Dummies

(https://github.com/Open-Source-Compliance/Sharing-creates-value/tree/master/Meeting-Material/Meeting-20231206)

Software Supply Chain Model (simplified) - Management aspects

Software Supply Chain Model (simplified) - Generic process

Software Supply Chain Model (simplified)

Software Supply Chain Model (simplified) - Organizational Setup

Software Supply Chain Model (simplified)

Software Supply Chain Model (simplified) - Example

Software Supply Chain Model (simplified) - SPDX Operations

Software Supply Chain Model (simplified) - Stakeholders

Software Supply Chain Model (simplified) - Stakeholders

Software Supply Chain Model (simplified) - Further dimensions

Software Supply Chain Model (simplified) - Further dimensions

Software Supply Chain Model (simplified) - Example 1 - Need

Obligations

Distribution

context

Management aspects

Software Supply Chain Model (simplified) - Example 1 - Need

As a **Maintainer** for an **Open Source Project** | want to get fast feedback about vulnerabilities of my **project** so that I can fix them as quick as possible.

Consumer

Software supply chain

icense Texts **Disclaimer**

FOSS

Bundle

Software Supply Chain Model (simplified) - Example 1 - Need

Software Supply Chain Model (simplified) - Example 2- Solution

Software Supply Chain Model (simplified) - ORT-Server

The Open Compliance Reference Tooling setup needs to fit for the respective development context.

Otherwise: "If you have a hammer, every screw looks like a nail."

Technical Level Outputs – ORT Server

Open Compliance Reference Tooling recap Central pipeline - How does it work?

[1] https://freebiesupply.com/logos/git-logo/

Open Compliance Reference Tooling recap Central pipeline - How does it work?

[1] https://freebiesupply.com/logos/git-logo/

Vision ORT Server Goals

- API (REST)
- Scalable (cloud agnostic)
- Easy setup and integration
- Keep flexibility
- Web frontend => see Outlook
- Access management
- Inventory management

*Abstraction Layer for Software Composition Analysis

*Abstraction Layer for Software Composition Analysis

Project Hierarchy

- Organizations
 - Products
 - Repositories
- Access management
- User management
- User configuration
 - Credential management

REST API

- Manage project hierarchy
- Trigger runs
 - Flexible configuration
- Status updates
- Generate reports
- Query data

Components

- API
- Orchestrator
 - Manage jobs
 - Prevent duplicate work
- Workers (analyzer, scanner, ...)
 - Run individual tools
 - Separate Docker images

Integrations

Kubernetes

Github Action

OpenAPI

Test setup with test dummies

- Test-repositories for supported ORT-package managers
- 2. Schedulers by Github Actions using ORT-Server API to perform nightly scans
- 3. Results by Mail
- 4. Results via API stored in folder for postprocessing
 - 1. Uploading SBOM to dependency track
 - 2. Uploading SBOM to other SBOM-consumers
 - 3. Creating simple "self made" dashboards

Test setup with test dummies – 1/4

- Test-repositories for supported ORT-package managers
- 2. Schedulers by Github Actions using ORT-Server API to perform nightly scans
- 3. Results by Mail
- 4. Results via API stored in folder for postprocessing
 - 1. Uploading SBOM to dependency track
 - 2. Uploading SBOM to other SBOM-consumers
 - 3. Creating simple "self made" dashboards

☑ SWM_C-Dummy	This project holds source code for C based Example project
SWM_CSharp-Dummy	This project holds source code for CSharp based Example project
SWM_Go-Dummy	
SWM_Java-Dummy	This project holds source code for Java based Example project
SWM_Javascript-Dummy	This project holds source code for Javascript based Example project
⊙ SWM_Python-Dummy	
SWM_Rust-Dummy	
-¢ SWM_SPDX-Dummy	OCaaS-Example-Projects-C-with-SPDX

Test setup with test dummies – 2/4

- Test-repositories for supported ORT-package managers
- 2. Schedulers by Github Actions using ORT-Server API to perform nightly scans
- 3. Results by Mail
- 4. Results via API stored in folder for postprocessing
 - 1. Uploading SBOM to dependency track
 - 2. Uploading SBOM to other SBOM-consumers
 - 3. Creating simple "self made" dashboards

Test setup with test dummies – 3/4

- Test-repositories for supported ORT-package managers
- 2. Schedulers by Github Actions using ORT-Server API to perform nightly scans
- 3. Results by Mail
- 4. Results via API stored in folder for postprocessing
 - 1. Uploading SBOM to dependency track
 - 2. Uploading SBOM to other SBOM-consumers
 - 3. Creating simple "self made" dashboards

Test setup with test dummies – 4/4

- Test-repositories for supported ORT-package managers
- 2. Schedulers by Github Actions using ORT-Server API to perform nightly scans
- 3. Results by Mail
- Results via API stored in folder for postprocessing
 - 1. Uploading SBOM to dependency track
 - 2. Uploading SBOM to other SBOM-consumers
 - 3. Creating simple "self made" dashboards

Next steps

- ORT-Server
 - Update/Refine of ORT-server documentation for easy onboarding and adoption
- Process level documents
 - Provision of process level documentation in dedicated repository
 - Alignment with SPDX Operations Workgroup, OpenChain Automation Workgroup and ORT-Community about working modes
- Preparation of updates for events in autumn

Outlook:

Frontend

THANK YOU!

Join Us in Creating a New Era for Open Source Compliance

Mailing List: oss-based-compliance-tooling@groups.io

Subscription page: https://groups.io/g/oss-based-compliance-tooling

Online meetings: Bi-weekly - see OpenChain Global Calendar

https://www.openchainproject.org/participate

Website: https://oss-compliance-tooling.org,

And of course we are on GitHub:

https://github.com/Open-Source-Compliance/Sharing-creates-value

