ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ»

КАФЕДРА ПМиК

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2

«Нахождение всех базисных решений системы линейных уравнений» по дисциплине «Алгоритмы и вычислительные методы оптимизации»

Выполнил: студент гр. ИП-814

Краснов И.В.

Проверил: ассистент кафедры ПМиК

Новожилов Д. И.

Содержание

Задание	3
Текст программы	4
Результат работы программы	14

Задание

Написать программу, находящую все базисные решения системы линейных уравнений методом Жордана-Гаусса. Программа должна выводить промежуточные матрицы после каждого шага исключений и все найденные базисные решения. Должна иметься возможность быстро ввести входные данные для различного количества переменных и уравнений. Начальную работу программу необходимо продемонстрировать на предложенной ниже системе (система выбирается по номеру бригады). Для получения максимальной оценки необходимо, чтобы все вычисления выполнялись в простых дробях. Для этого использовать класс простых дробей, реализованный в лабораторной 1.

Текст программы

```
import sys
import copy
import itertools
def gcd(m, n):
  while m % n != 0:
    oldm = m
    oldn = n
    m = oldn
    n = oldm % oldn
  return n
def DeleteLine(matrix, rows, cols, line):
  if line == rows:
    rows -= 1
  else:
    for i in range(line + 1, rows):
       for j in range(cols):
         matrix[i][j], matrix[i - 1][j] = matrix[i - 1][j], matrix[i][j]
    rows -= 1
  return rows
def PrintMatrix(matrix, rows, cols):
  print()
  for i in range(rows):
    for j in range(cols):
       if j == (cols - 1):
         print("|%20s" %matrix[i][j], end=")
```

```
print("%20s" %matrix[i][j], end=")
    print()
def NextSet(a, n, m):
  "while True:
    i = m - 1
    while i \ge 0 and a[i] + m - i + 1 > n:
       i -= 1
    if i < 0:
       return
    print(a[i])
    a[i] += 1
    for j in range(i + 1, m):
       a[j] = a[j - 1] + 1
    #Print(a, m)"
  k = m
  for i in range(k - 1, -1, -1):
    if a[i] < (n - k + i + 1):
       a[i] += 1
       for j in range(i + 1, k):
         a[j] = a[j - 1] + 1
       return True
  return False
def Print(a, m):
  for i in range(m):
    print("x", a[i], end = ' ')
  print()
"def comb(n, k):
```

else:

```
\#d = list(range(0, k))
  d = [i + 1 \text{ for } i \text{ in range}(k - 1)]
  yield d
  while True:
    i = k - 1
    while i \ge 0 and d[i] + k - i + 1 > n:
       i -= 1
    if i < 0:
       return
    d[i] += 1
    for j in range(i + 1, k):
       d[j] = d[j - 1] + 1
    yield d'''
def perm(new_matrix, k, line, rows, cols):
  prov = True
  for i in range(k + 1, rows):
    for j in range(cols):
       if new_matrix[i][line] != 0:
          prov = False
          new_matrix[i][j], new_matrix[i - 1][j] = new_matrix[i - 1][j], new_matrix[i][j]
    if prov == False:
       break
"'def combinations(elements, size):
  if len(elements) == size or size == 1:
    return elements
  ret = []
  for i, item in enumerate(elements):
```

```
for j in combinations(elements[i + 1:], size - 1):
       ret.append(item + j)
  return ret
111
def find_basis(new_matrix, matrix, a, rows, cols):
  new_matrix = copy.deepcopy(matrix)
  answer = [Fraction(0, 1) for i in range(cols)]
  sign = Fraction(-1, 1)
  for i in range(rows):
    if new_matrix[i][a[i] - 1].num == 0:
      j = i + 1
      while j < rows:
         if new_matrix[j][a[i] - 1].num != 0:
           for k in range(cols + 1):
             new_matrix[i][k], new_matrix[j][k] = new_matrix[j][k], new_matrix[i][k]
           break
         else:
           j += 1
      if j == rows:
         print("Не могут быть вместе в базисе")
         new_matrix = []
         return
  PrintMatrix(new_matrix, rows, cols + 1)
  for i in range(rows):
    temp = Fraction(new_matrix[i][a[i] - 1].num, new_matrix[i][a[i] - 1].den)
    for j in range(cols + 1):
      new_matrix[i][j] /= temp
  PrintMatrix(new_matrix, rows, cols + 1)
```

```
for i in range(rows):
    temp = Fraction(new_matrix[i][a[i] - 1].num, new_matrix[i][a[i] - 1].den)
    for j in range(cols + 1):
      new_matrix[i][j] /= temp
    for j in range(rows):
      if i == j:
         continue
      else:
         if new_matrix[j][a[i] - 1].num != 0:
           temp = Fraction(new_matrix[j][a[i] - 1].num, new_matrix[j][a[i] - 1].den)
           #temp1 = Fraction(new_matrix[i][a[i] - 1].num, new_matrix[i][a[i] - 1].den)
           for k in range(cols + 1):
             temp1 = Fraction(new_matrix[i][k].num, new_matrix[i][k].den)
             new_matrix[j][k] += temp * temp1 * sign
           #PrintMatrix(new_matrix, rows, cols + 1)
  PrintMatrix(new_matrix, rows, cols + 1)
  for i in range(rows):
    answer[a[i] - 1] = Fraction(new_matrix[i][cols].num, new_matrix[i][cols].den)
  #answer[j] = Fraction(new_matrix[k][cols - 1].num, new_matrix[k][cols - 1].den)
  #Print(a, rows)
  print("Ответ (", end="")
  for i in range(cols):
    print(answer[i], end=" ")
    answer[i] = Fraction(0, 1)
  print(")")
def basis(matrix, rows, cols):
  new_matrix = copy.deepcopy(matrix)
  a = [i + 1 \text{ for } i \text{ in range(cols - 1)}]
  Print(a, rows)
  find_basis(new_matrix, matrix, a, rows, cols - 1)
```

```
if cols - 1 >= rows:
    while NextSet(a, cols - 1, rows):
       Print(a, rows)
       find_basis(new_matrix, matrix, a, rows, cols - 1)
def gauss(matrix, rows, cols):
  k = 0
  for t in range(rows):
    if matrix[k][k].num == 0:
       k += 1
       continue
    for i in range(rows):
       if k == i:
         continue
       for j in range(k + 1, cols):
         matrix[i][j] = ((matrix[k][k] * matrix[i][j]) - (matrix[i][k] * matrix[k][j])) / matrix[k][k]
    for i in range(rows):
       if k == i:
         continue
       matrix[i][k] = Fraction()
    k += 1
    print(t, ") ")
    PrintMatrix(matrix, rows, cols)
    print()
  k = 0
  for i in range(rows):
    if matrix[k][k].num == 0:
       k += 1
       continue
    for j in range(cols - 1, k - 1, -1):
```

```
matrix[i][j] /= matrix[k][k]
    k += 1
  i = 0
  while i < rows:
    zero_line = True
    for k in range(cols - 1):
      if matrix[i][k].num != 0:
         zero_line = False
         break
    if zero_line and matrix[i][cols - 1].num != 0:
      PrintMatrix(matrix, rows, cols)
      print("Нет решения!")
      sys.exit()
    elif zero_line == True and matrix[i][cols - 1].num == 0:
      rows = DeleteLine(matrix, rows, cols, i)
    i += 1
    "'if (zero_line):
      continue'''
  PrintMatrix(matrix, rows, cols)
  return rows
class Fraction:
  def __init__(self, top=0, bottom=1):
    if bottom != 0:
      self.num = top
      self.den = bottom
      if self.den < 0:
         self.num *= -1
         self.den *= -1
      tmp = gcd(self.num, self.den)
      self.num = self.num // tmp
```

```
self.den = self.den // tmp
    else:
      print("Denominator == 0")
      sys.exit()
  def __str__(self):
    if self.den == 1:
      return str(self.num)
    else:
      return str(self.num) + "/" + str(self.den)
  def show(self):
    if self.den == 1:
      print(self.num)
    else:
      print(self.num, "/", self.den)
  def __add__(self, otherfraction):
    return Fraction(self.num * otherfraction.den + self.den * otherfraction.num, self.den *
otherfraction.den)
  def __iadd__(self, other):
    tmp = Fraction(self.num * other.den + self.den * other.num, self.den * other.den)
    self = tmp
    return tmp
  def __isub__(self, other):
    tmp = Fraction(self.num * other.den - self.den * other.num, self.den * other.den)
    self = tmp
    return tmp
  def __imul__(self, other):
```

```
tmp = Fraction(self.num * other.num, self.den * other.den)
    self = tmp
    return tmp
  def __itruediv__(self, other):
    tmp = Fraction(self.num * other.den, self.den * other.num)
    self = tmp
    return tmp
  def __sub__(self, otherfraction):
    return Fraction(self.num * otherfraction.den - self.den * otherfraction.num, self.den *
otherfraction.den)
  def __mul__(self, otherfraction):
    return Fraction(self.num * otherfraction.num, self.den * otherfraction.den)
  def __truediv__(self, otherfraction):
    return Fraction(self.num * otherfraction.den, self.den * otherfraction.num)
  ""def __mul__(self, other):
    return Fraction(self.num * other, self.den)"
  def __eq__(self, other):
    firstnum = self.num * other.den
    secondnum = other.num * self.den
    return firstnum == secondnum
  def __ne__(self, other):
    firstnum = self.num * other.den
    secondnum = other.num * self.den
    return firstnum != secondnum
```

```
number_of_rows = int(input())
number_of_cols = int(input())
matrixCin = [[0] * number_of_cols for i in range(number_of_rows)]
matrix = [[Fraction(0, 1)] * number_of_cols for i in range(number_of_rows)]
for i in range(number_of_rows):
  stri = input()
  matrixCin[i] = stri.strip().split(" ")
  for j in range(number_of_cols):
    matrix[i][j] = Fraction(int(matrixCin[i][j]), 1)
PrintMatrix(matrix, number_of_rows, number_of_cols)
number_of_rows = gauss(matrix, number_of_rows, number_of_cols)
sign = Fraction(-1, 1)
for i in range(number_of_rows):
  print('x', i + 1, " = ", matrix[i][number_of_cols - 1], end=" ")
  for j in range(number_of_cols - 1):
    if j != i and matrix[i][j].num != 0:
      if matrix[i][j].num > 0:
         print(" - ", matrix[i][j], 'x', j + 1, end=" ")
      else:
         print(" + ", matrix[i][j] * sign, 'x', j + 1, end=" ")
  print()
basis(matrix, number_of_rows, number_of_cols)
```

Результат работы программы

Ð			-359/220	-61/44	-29/55
e e e	0		-145/44	-95/44	-35/11
220/1039				1145/1039	2396/1039
359/1039				428/1039	3362/1039
725/1039				1530/1039	4590/1039
220/1039 Этвет (0 3362/1039 459	20/1020 2206/1020 0 \			1145/1039	2396/1039
x 2 x 3 x 5	00/1039 2390/1039 0 /				
0	1 0	0 1	-359/220 -145/44	-61/44 -95/44	-29/55 -35/11
1	ő	ė	1039/220	229/44	599/55
0			-359/220	-61/44	-29/55
0 44/229	0	1 0	-145/44 1 0 39/1145	-95/44 1	-35/11 2396/1145
61/229			-428/1145	0	2718/1145
95/229 44/229	0	1 0	-306/229 1039/1145	0 0 1	306/229 2396/1145
Ответ (0 2718/1145 306	5/229 0 2396/1145)		1039/1143		2390/1143
x 2 x 4 x 5					
		0	-359/220	-61/44	-29/55
ĭ	e e	ë	1039/220	229/44	599/55
			-145/44	-95/44	-35/11
0		0	-359/220	-61/44	-29/55
220/1039	ô	ø	1	1145/1039	2396/1039
		-44/95	29/19		28/19
23/153		-214/765	ø	al	
-95/306	ė	-229/306		0 0 1	
145/306		1039/1530			
Ответ (020-13) х 3 х 4 х 5					
x 3 x 4 x 3					
Ø			-145/44	-95/44	-35/11
0	1 0	9	-359/220 1039/220	-61/44	-29/55 599/55
	U	v	1039/220	229/44	299/22
Ø			-145/44	-95/44	-35/11
0 44/229	-220/359	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	305/359	116/359
44/229			1039/1145		2396/1145
-115/214	-765/214			0	-765/107
-305/428	-1145/428	9	1 0	0	-1359/214
359/428 Ответ (0 0 -765/107 -1	1039/428 1359/214 1681/214)				1681/214
7.00. (0 0 703/10/ 1	ESSSIEL LOOKSELM J	,	·	,	,

Рис. 1 Решение системы из задания (вариант 1)

2 4 1 2 3 5 2 4 6 6				
0)	1	2	3	5
	2	4	6	6
	1	2	3	5
	0	0	0	-4
Нет решения!	1	2	3	5
	0	0	0	-4

Puc. 2 Система, не имеющая решений

Рис. 3 Система, в которой некоторые переменные не могут ю\быть вместе в базисе