- Welche der folgenden Eigenschaften erfüllt die Funktion $f(x) = x^2 x$? Kreuzen Sie die richtige 1.1 Antwort an. (1,5 Punkte) Raten lohnt sich nicht; Punkte werden abgezogen bei falscher Antwort.
 - O Die Funktion ist monoton steigend für $x \in (0, \infty)$.
 - O Die Funktion ist ungerade.

Streng monoton fallend für $x \in (-\infty, 1/2)$.

O Die Funktion ist gerade.

$$f(x) = x(x-1)$$
 $f(0)$? $x_1 = 0$
 $x_2 = 1$

$$\int_{1}^{2} (x) = \frac{1}{2}x - 1$$

$$\int_{1}^{2} (x) = \frac{1}{2}x - 1$$

$$\int_{1}^{2} (\frac{1}{2}) = \left(\frac{1}{2}\right)^{2} - \frac{1}{2} = -\frac{1}{2}$$

2.1 Welches ist die korrekte gemischte partielle Ableitung
$$\frac{\partial^2 f}{\partial x \partial y}$$
 der Funktion

$$f(x,y) = \tan x \cdot e^{-xy}$$
?

Kreuzen Sie die richtige Antwort an. (**1,5 Punkte**) Raten lohnt sich nicht; Punkte werden abgezogen bei falscher Antwort.

$$O \frac{\partial^2 f}{\partial x \partial y} = e^{-xy} \left(-xy \tan x - \frac{x}{\cos^2 x} + \tan x \right)$$

$$O_{\frac{\partial^2 f}{\partial x \partial y}} = e^{-xy} \left(xy \tan x - \frac{1}{\sin^2 x} - \tan x \right)$$

$$\sqrt{\frac{\partial^2 f}{\partial x \partial y}} = e^{-xy} \left(xy \tan x - \frac{x}{\cos^2 x} - \tan x \right)$$

$$O \frac{\partial^2 f}{\partial x \partial y} = -xy \operatorname{atan} x \cdot e^{-xy}$$

$$\frac{\partial}{\partial x}\left(tonx \cdot x^{-xy}\right) = \frac{1}{\omega^2} \cdot x^{-xy} + tonx \cdot x^{-xy} \cdot (-y)$$

$$\frac{\partial^{2}}{\partial x \partial y} \int (x_{1}y) = \frac{1}{\cos^{2}y} \cdot e^{-xy} (-x) + \tan x \cdot e^{-xy} (-x) \cdot (-y) + \tan x \cdot e^{-xy} (-1)$$

$$= e^{-xy} \left(x_{1}y + \tan x - \frac{x}{\cos^{2}y} - \tan x \right)$$

Stellen Sie die Geradengleichung der Tangente an der Stelle $x_0 = 4$ an der Funktion $f(x) = \sqrt{x} + 2x$ auf. An welcher Stelle schneidet sich die Gerade mit der x-Achse? Welcher Algorithmus wendet so eine Rechnung wiederholt an? (2 Punkte)

3.1 Gegeben ist das folgende Anfangswertproblem:

• Differentialgleichung:
$$y'(t) = 1 + t \cdot \sqrt{y(t)}$$

• Anfangswertbedingung:
$$y(0) = 4$$

• Schrittweite:
$$h = 0.5$$

Bestimmen Sie die numerische Näherung von y(0,5) über das explizite Euler-Verfahren

(Startzeit ist t = 0). Notieren Sie alle Zwischenschritte und Berechnungen. (**1,5 Punkte**)

$$\gamma(t+h) = \gamma(t) + h \gamma'(t)$$

$$\gamma(0,5) = \gamma(0) + 0,5 \gamma'(0)$$

$$= 4 + 0,5 (1 + 0,14) = 4,5$$

4.1 Ermitteln Sie das unbestimmte Doppel-Integral der Funktion:

$$f(x,y) = (\sin^2 y + \cos^2 y) \cdot \ln(x), \quad \text{mit} \quad \iint f(x,y) \, dx \, dy.$$

Hinweis: Führen Sie zuerst eine partielle Integration bezüglich x als Nebenrechnung durch.

Integrieren Sie dann nach y. (2 Punkte)

frieren sie dann nach y. (2 Punkte)
$$\begin{cases}
f(x_1y) = 1 \cdot \ln(x) \\
f(x_1y) = 1 \cdot \ln(x)
\end{cases}$$

$$\begin{cases}
f(x_1y) = 1 \cdot$$

Gegeben sei der Vektor $\mathbf{n} = [0,41 \quad 0,41 \quad -0.82]^{\mathrm{T}}$ und die Gleichung

$$f(x,y,z) = n \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} + 1 = 0$$
 . Wie wird diese Funktionsform genannt und was stellt sie

Geometrisch dar? Was können Sie über den Punkt $p = [2 \ 1 \ 1]^T$ bezüglich f aussagen?

(1,5 Punkte)

$$\begin{cases} (2,1,1) = \begin{pmatrix} 0,41 \\ 0,41 \\ -0,82 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + 1 = 0,82 + 0,41 - 0,82 + 1 = 1,41 > 0 \\ \text{position} \end{cases}$$

p liegt nicht æuf d. Ebene in Richty von n.

6.1 Überprüfen Sie die folgende Reihe auf Konvergenz mit dem *Quotientenkriterium*.

(1,5 Punkte)

$$S = \sum_{n=1}^{\infty} \frac{4^{n-1}}{n!} \qquad \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|^{\frac{2}{n}}$$

$$\frac{4^n}{(n+1)!} = \frac{4^n}{(n+1)!} \cdot \frac{n!}{4^{n-1}} = \frac{4 \cdot 4^n}{(n+1)!} \cdot \frac{n!}{4^{n-1}}$$

$$\lim_{n \to \infty} \frac{4}{n+1} = 0 \quad \text{if}$$

Berechnen Sie das Integral im Intervall [0, 4] einer diskret gegeben Funktion mit Hilfe der Trapezregel. (**1,5 Punkte**). Hinweis: Veranschaulichen Sie bei Bedarf die diskrete Funktion und das Integral mit einer Skizze.

$f(x_k)$	1	6	18	38	66
\boldsymbol{x}_k	0	2	4	6	8

7.1

$$Q[J] = \frac{b-a}{n} \sum_{k=0}^{n-1} \frac{f(x_{k+1}) + f(x_k)}{2}$$

$$= \frac{4-0}{2} \left(\frac{6+1}{2} + \frac{18+6}{2} \right) = 7$$

Bestimmen Sie eine LU-Zerlegung der Matrix
$$A = \begin{pmatrix} 4 & 6 & 0 \\ 4 & 8 & 3 \\ 8 & 18 & 10 \end{pmatrix}$$
. (2,5 Punkte)
$$L_{1} = \begin{pmatrix} 1 & 0 & 0 \\ -7 & 7 & 0 \\ -1 & 0 & 1 \end{pmatrix} \qquad L_{1} \cdot A = A_{1} = \begin{pmatrix} 7 & 0 & 0 \\ -1 & 7 & 0 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 14 & 6 & 0 \\ 4 & 3 & 3 \\ 5 & 13 & 10 \end{pmatrix} = \begin{pmatrix} 4 & 6 & 0 \\ 0 & 2 & 3 \\ 0 & 6 & 10 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 7 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 7 & 1 \end{pmatrix} =$$

8.1 Bestimmen Sie eine LU-Zerlegung der Matrix $\mathbf{A} = \begin{pmatrix} 4 & 6 & 0 \\ 4 & 8 & 3 \\ 8 & 18 & 10 \end{pmatrix}$. (**2,5 Punkte**)

Gegeben sei ein Dreieck mit den Punkten in 2D: $p_0 = \begin{bmatrix} 2.6 & 3.6 \end{bmatrix}^T$, $p_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$, $p_2 = \begin{bmatrix} 6 & 0 \end{bmatrix}^T$ mit zugehörigen Temperaturen: $T_0 = 12$, $T_1 = 6$, $T_2 = 10$. Berechnen Sie die Temperatur T_q an der Stelle $q = \begin{bmatrix} 1.9 & 1.1 \end{bmatrix}^T$ mit Hilfe Baryzentrischer Koordinaten. Weiters sind die folgender Längen gegeben (siehe Skizze): $d_0 = 2.6$, $d_1 = 2.2$, $d_2 = 4.2$. (2,5 Punkte) Hinweis: Runden Sie Zwischenergebnisse auf eine Kommastelle.

$$p_0$$
 p_0
 p_1
 p_1
 p_2
 p_2
 p_1
 p_2
 p_2
 p_1
 p_2
 p_2
 p_3

9.1

Rommastelle.

$$T_{A} = \lambda_{0} T_{0} + \lambda_{1} T_{1} + \lambda_{2} T_{2}$$

$$\lambda_{0} + \lambda_{1} + \lambda_{2} = 1$$

$$\lambda_{0} = \frac{A_{0}}{A}$$

$$\lambda_{1} = \frac{A_{1}}{A}$$

$$A = a \cdot h \cdot \frac{1}{2} = 6 \cdot 3_{1} \dot{b} \cdot \frac{1}{2} = 3_{1} 3$$

$$A_{1} = d_{2} \cdot d_{0} \cdot \frac{1}{2} = 4_{1} 2 \cdot 2_{1} \dot{b} \cdot \frac{1}{2} = 4_{1} 2 \cdot 7_{1} 3$$

$$\frac{1}{12} = 4_{1} \cdot 2_{1} \cdot d_{0} \cdot \frac{1}{2} = 4_{1} \cdot 2_{1} \cdot 2_{1} \cdot d_{0}$$

10.1 Berechnen Sie die ersten 4 Terme der Halton34 Sequenz (n = 1, 2, 3, 4). Berechnen Sie dazu die zugehörigen Terme der van-der-Corput Sequenzen zur Basis 3 und 4. Vervollständigen Sie die folgende Tabelle. (2,0 Punkte)

n	1	2	3	4
Basis 3	0 01	002	010	011
[h V	0,100	0.200	0,010	0,110
Dez	1/3	2/3	1/9	1 + 1 - 4/9
Basis 4	001	002	003	010
lnv	0,100	0,200	0.300	0,010
DYS	1/4	1/2	3/4	1/16
Halton 34	(3,14)	(3, 2)	(3,3/4)	(4/9, 1/16)