### DS AND AI

### Calculus and Optimization

GATE DPP 1

**DPP** 

**GATE** 

## Functions AND Limit, Continuity & Differentiability

- domain Q1 The the function  $f\left(x\right)=sin^{-1}\left(\frac{x^{2}-3x+2}{x^{2}+2x+7}\right)$  is :
  - (A)  $[1,\infty]$
  - (B) [-1, 2]
  - (C)  $[-1,\infty)$
  - (D)  $(-\infty, 2]$
- **Q2** What is the range of  $f(x) = \cos 2x \sin 2x$ ?
  - (A) [2, 4]
  - (B) [-1, 1]
  - (C)  $\left[-\sqrt{2},\sqrt{2}\right]$
  - (D)  $(-\sqrt{2},\sqrt{2})$
- Q3 A function f (x) is linear and has a value of 29 at x = -2 and 39 at x = 3. Find its value at x = 5.
- **Q4** Which of the following function is odd?
  - (A)  $x^2 2x + 3$
- (B) Sin x
- (C) Sin x + tan x
- (D) Cos x
- Q5 Which of the following functions is periodic?
  - (A) Sin x + cos x
  - (B)  $e^x + log x$
  - $(C) \{n\}$
  - (D)[n]
- **Q6** Evaluate.
  - (i)  $\lim_{x\to 0} \frac{\sqrt{4+x}-2}{x}$
- Q7 Evaluate:

$$\lim_{x\to -1} \frac{(x+2)(3x-1)}{x^2+3x-2}$$

**Q8** At x = 1, the function

$$f(x) = \begin{cases} x^3 - 1, 1 < x < \infty \\ x - 1, -\infty < x \le 1 \end{cases}$$

- (A) continous and differentiable
- (B) continuous and non-differentiable

- (C) discontinuous and differentiable
- (D) discontinuous and non-differentiable
- **Q9** If  $f(x) = x(\sqrt{x} \sqrt{x+1})$ , then -
  - (A) f(x) is continuous but not differentiable at x
  - (B) f(x) is differentiable at x = 0
  - (C) f(x) is not differentiable at x = 0
  - (D) None of these
- **Q10** If  $\lim_{x \to \infty} \left( \sqrt{x^2 x + 1} ax \right) = b$ , then the ordered pair (a,b) is:
  - (A)  $\left(-1, \frac{1}{2}\right)$
  - (B)  $\left(-1, -\frac{1}{2}\right)$ (C)  $\left(1, -\frac{1}{2}\right)$ (D)  $\left(1, \frac{1}{2}\right)$
- Q11 The value the function  $f(x) = \lim_{x \to 0} \frac{x^3 + x^2}{2x^2 - 7x^2} \text{is.....}$ (A) 0 (B)  $\frac{-1}{7}$ (C)  $\frac{1}{7}$  (D) -1/5

- Q12  $\lim_{x\to 0} \frac{x-\sin x}{1-\cos x}$  is
- **Q13**  $\underset{x \to 0}{\operatorname{Lt}} \left( \frac{\mathrm{e}^{2x} 1}{\sin(4x)} \right)$  is equal to
- Q14 Which of the following values are correct

  - $\begin{array}{l} \text{(A)} \ \frac{\sin \, x}{x} < 1 \\ \text{(B)} \lim_{x \to 0} \ \frac{\sin \, x}{x} = 1 \end{array}$
  - (C)  $\lim_{x \to 0} \frac{\sin x}{x} = 0$
  - (D)  $\lim_{x\to 0} \frac{\sin x}{x} = -1$
- **Q15** For the given function

**GATE** 

which of the following is (are) correct.

- (A) f(x) is continuous  $\forall x \in [0, 2]$
- (B) f'(x) is continuous  $\forall x \in [0, 2]$
- (C) f''(x) is discontinuous at x=1
- (D) f''(x) is discontinuous  $\forall x \in [0, 2]$
- Let  $\alpha, \beta, \in \mathbb{R}$  be such that  $\lim_{x \to 0} \frac{\mathrm{x}^2 \sin(\beta \mathrm{x})}{\alpha \mathrm{x} \sin \mathrm{x}} = 1$ . Then 6  $(\alpha + \beta)$  equals.
- **Q17** A function  $f(x) = 1 x^2 + x^3$  is defined in the closed interval [-1, 1]. The value of x, in the open interval (-1, 1) for

which the mean value theorem is satisfied, is

- (A)  $-\frac{1}{2}$  (C)  $\frac{1}{3}$

- Q18 The value of c in the lagrange's mean value theorem of the function

$$f\left(x\right)=x^{3}-4x^{2}+8x+11$$
 when  $x\in\left[0,1\right]$  is

- (A)  $\frac{4-\sqrt{5}}{3}$  (B)  $\frac{\sqrt{7}-2}{3}$  (C)  $\frac{2}{3}$  (D)  $\frac{4-\sqrt{7}}{3}$
- **Q19**  $f(x) = \frac{\sin(x)}{x}$  , How many points exist such that f'(c) =0 in the interval  $[0,18\pi]$ 
  - (A) 18

(B) 17

(C) 8

- (D)9
- **Q20** Find a point on the parabola  $y = (x + 2)^2$ , where the tangent is parallel to the chord joining (-2,0) and (0, 4).
- **Q21** Consider the function  $f(x) = (x-2) \log x$  for  $x \in [1, \infty]$ 2] show that the equation  $x \log + x = 2$  has at least one solution lying between 1 and 2.
- **Q22** If  $f(x) = e^{x} e^{-x}$  and  $g(x) = |\cos x \sin x|$ , then on the integral  $\left[0,\frac{\pi}{2}\right]$  Cauchy's mean value theorem is -
  - (A) applicable
  - (B) not applicable as g(0) =  $g\left(\frac{\pi}{2}\right)$
  - (C) not applicable as g'  $\left(\frac{\pi}{4}\right)=0$
  - (D) not applicable as g(x) contains || (i.e., mod) function

- Q23 Verify Cauchy's mean value theorem for the functions  $f(x) = \sqrt{x}$  and  $g(x) = \frac{1}{\sqrt{x}}$  in the interval [a, b], where a > 0.
- **Q24** If  $f(x) = e^x$  and  $g(x) = e^{-x}$ , then the value of c by cauchy mean value theorem in [a, b] is given by
  - (A) a + b
- (B)  $\frac{1}{2}(a+b)$
- (C) a·b
- (D) None of these
- Q25 Cauchy's mean value theorem is applicable
  - (A) for only one function
  - (B) for two functions
  - (C) for one or two functions both
  - (D) None of these
- Q26 Use the intermediate value theorem to prove that the equation  $e^x = 4 - x^3$  is solvable on the interval [-2, -1].
- Check whether there is a solution to the equation  $x^5 - 2x^3 - 2 = 0$  between the interval [0,2].
- Q28 The Value of c in the lagrange's mean value theorem of the function  $f(x) = x^3 - 4x^2 + 8x + 11$ , when  $x \in [0,1]$  is:

- (A)  $\frac{4-\sqrt{5}}{3}$  (B)  $\frac{\sqrt{7}-2}{3}$  (C)  $\frac{2}{3}$  (D)  $\frac{4-\sqrt{7}}{3}$
- Q29 The expansion of  $f(x) = e^x \cos x$  at x = 0.
- $\begin{array}{ll} \text{(A) } 1+x-\frac{2x^3}{3!}+\dots & \text{(B) } 1+x-\frac{x^3}{3!}+\dots \\ \text{(C) } 1+x-\frac{x^2}{2!}+\dots & \text{(D) } 1+x-\frac{2x^2}{2!}+\dots \end{array}$
- **Q30** The third term in the expansion of  $\frac{x-1}{x+1}$  about the point x = 1 using Taylor's series is:
  - (A)  $\frac{(x-1)^2}{2}$

- **Q31** Find the taylor series expansion of the function  $\cosh(x)$  centered at x = 0.

  - (A)  $1 \frac{x^2}{2!} + \frac{x^4}{4!} + \dots \infty$ (B)  $\frac{x}{1!} + \frac{x^3}{3!} + \frac{x^5}{5!} \dots \infty$ (C)  $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots \infty$

$$1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots \infty$$

- **Q32** Let Maclaurin series of some f(x) be given recursively, where  $a_n$  denotes the coefficient of  $x^n$  in the expansion. Also given  $a_n = a_{n-1}/n$  and  $a_0 = 1$ , which of the following functions could be f(x)?
  - $(A) e^{x}$
  - (B) e<sup>2x</sup>
  - (C)  $c + e^{x}$
  - (D) No closed form exists



**GATE** 

# **Answer Key**

| Q1 | (C) |
|----|-----|
|----|-----|

(C) Q2

Q3 43

Q4 (B, C)

Q5 (A, C)

 $\frac{1}{4}$ Q6

Q7 1

(B) Q8

Q9 (B)

Q10 (C)

(D) Q11

Q12 0

Q13 0.5~0.5

Q14 (A, B)

(A, B, C) Q15

5 Q16

Q17 (B)

Q18 (D)

(A) Q19

Q20 (-1, 1)

Q21 Hence the proof is complete.

Q22 (C)

Q23 Thus, Cauchy's means value theorem is verified

for the given functions.

**Q24** (B)

Q25 (B)

Q26 Hence prooved

**Q27** Yes, using IMVT we can proove.

Q28 (D)

Q29 (A)

(C) Q30

(C) Q31

(A) Q32



## **Hints & Solutions**

#### Q1 Text Solution:

Since the domain of  $\sin x = [-1, 1]$ 

$$\begin{aligned} &-1 \leq \frac{x^2 - 3x + 2}{x^2 + 2x + 7} \leq 1 \\ &\Rightarrow 0 \leq \frac{2x^2 - x + 9}{x^2 + 2x + 7} \ \& \ \frac{-5x - 5}{x^2 + 2x + 7} \leq 0 \\ &\Rightarrow x \in R\& - 1 \leq x < \infty. \end{aligned}$$

#### Thus , $-1 \leq \mathrm{x} < \infty$

#### Q2 Text Solution:

Since, 
$$f(x) = \cos 2x - \sin 2x$$
 [Since,  $f(x) = a\cos x + b\sin x$ , 
$$-\sqrt{a^2 + b^2} \le f(x) \le \sqrt{a^2 + b^2}$$
] 
$$-\sqrt{1+1} \le \cos 2x - \sin 2x \le \sqrt{1+1}$$
 
$$-\sqrt{2} \le \cos 2x - \sin 2x \le \sqrt{2}$$
 So, Range of  $f(x)$  is  $\left[-\sqrt{2}, \sqrt{2}\right]$ .

#### Q3 Text Solution:

$$f\left(x\right)=\mathrm{a}\;x+\mathrm{b}$$
 Given-  $x=-2$   $-2\mathrm{a}+\mathrm{b}=29$   $3\mathrm{a}+\mathrm{b}=39$ 

$$-5a = -10$$

$$a = 2$$

$$-2 \times 2 + b = 29$$

$$b = 29 + 4 = 33$$

$$x = 5$$

$$5 \times 2 + 33$$

$$10 + 33 = 43$$

#### Q4 Text Solution:

(B) & (C) are odd functions

$$f(x) = \sin x$$

$$f(-x) = \sin(-x) = -\sin x$$

$$f(x) = -f(-x)$$

Similarly

$$f(x) = \sin x + \tan x$$

$$= g(-x) = -g(x)$$

#### Q5 Text Solution:

(A), (C) are periodic functions

as sinx and cosx are periodic thus their sum is periodic.

Similarly fractional part are periodic.

#### **Q6** Text Solution:

GATE DPP 1

$$\begin{aligned} &\lim_{x \to 0} \frac{\sqrt{4+x}-2}{x} \\ &= \lim_{x \to 0} \frac{\sqrt{4+x}-2}{x} \cdot \frac{\sqrt{4+x}+2}{\sqrt{4+x}+2} \\ &= \lim_{x \to 0} \frac{1}{\sqrt{4+x}+2} = \frac{1}{4}.\end{aligned}$$

#### Q7 Text Solution:

$$\begin{array}{l} \lim_{x \to -1} \frac{(x+2)(3x-1)}{x^2 + 3x - 2} \\ = \frac{\lim_{x \to -1} (x+2) \lim_{x \to -1} (3x-1)}{\lim_{x \to -1} (x^2 + 3x - 2)} = \frac{1 \cdot (-4)}{-4} = 1 \end{array}$$

### **Q8** Text Solution:

$$\begin{split} &\lim_{\mathbf{x}\to\mathbf{1}^{+}}\mathbf{f}\left(\mathbf{x}\right)=\lim_{\mathbf{x}\to\mathbf{1}}\left(\mathbf{x}^{3}-\mathbf{1}\right)=0\\ &\lim_{\mathbf{x}\to\mathbf{1}^{-}}\mathbf{f}\left(\mathbf{x}\right)=\lim_{\mathbf{x}\to\mathbf{1}}\left(\mathbf{x}-\mathbf{1}\right)=0\\ &\text{Also, f (1) = 0}\Rightarrow &\text{f is continous.}\\ &\mathbf{f'}\left(\mathbf{x}\right)=\begin{cases} 3\mathbf{x}^{2},1<\mathbf{x}<\infty\\ 1,-\infty<\mathbf{x}\leqslant\mathbf{1}\\ \mathbf{f'}\left(\mathbf{1}^{+}\right)=3,\mathbf{f'}\left(\mathbf{1}^{-}\right)=\mathbf{1}\\ \Rightarrow &\text{f is not differentiable.} \end{split}$$

#### Q9 Text Solution:

We have 
$$f(x) = x \left(\sqrt{x} - \sqrt{x+1}\right)$$
  
Let us check differentiablity of  $f(x)$  at  $x = 0$ .  
Lf'(0) =  $\lim_{h \to 0} \frac{(0-h)[\sqrt{0-h} - \sqrt{0-h+1}] - 0}{-h}$   
=  $\lim_{h \to 0} \frac{[\sqrt{-h} - \sqrt{-h+1}]}{1}$   
Rf'(0) =  $\lim_{h \to 0} \frac{(0+h)[\sqrt{0+h} - \sqrt{0+h+1}] - 0}{h}$   
=  $\lim_{h \to 0} \sqrt{h} - \sqrt{h+1} = -1$   
Since Lf'(0) = Rf'(0)  
 $\therefore$  f(x) is differentiable at  $x = 0$ 

#### Q10 Text Solution:

$$egin{aligned} \lim_{x o\infty}\left(\sqrt{x^2-x+1}-ax
ight) &= b \ (\infty-\infty ext{ form}) \ &\Rightarrow a>0 \ \lim_{x o\infty}\left(rac{x^2-x+1-a^2x^2}{\sqrt{x^2-x+1}+ax}
ight) &= b \ \lim_{x o\infty}rac{x^2(1-a^2)-x+1}{\sqrt{x^2-x+1}+ax} &= b \end{aligned}$$

For existence of limit,  $1-a^2 = 0$  i.e. a = 1 only

$$egin{aligned} \left[\because a>0
ight] &\lim_{x o\infty}rac{1-x}{\sqrt{x^2-x+1}+x}=b \ \lim_{x o\infty}rac{rac{1}{x}-1}{\sqrt{1-rac{1}{x}+rac{1}{x^2}}+1}=b \ \Rightarrow b=rac{-1}{2} \end{aligned}$$

So,
$$(a,b)=\left(1,-rac{1}{2}
ight)$$

#### Q11 Text Solution:

$$\lim_{x \to 0} \frac{x^3 + x^2}{2x^2 - 7x^2}$$

$$\lim_{x \to 0} \frac{x^2(x+1)}{x^2(2-7)}$$

$$= \frac{1}{2-7} = \frac{1}{-5} = -\frac{1}{5}$$

#### Q12 Text Solution:

$$\underset{x \to 0}{Lt} \frac{x - \sin x}{1 - \cos x}$$

using L - Hospital Rule

If 
$$x o 0 \left\{ \frac{1-\cos x}{\sin x} \right\}$$

again using L- Hospital Rule

$$\lim_{x \to 0} \frac{\sin x}{\cos x} = 0$$

#### Q13 Text Solution:

$$\operatorname*{Lt}_{x o 0} \left\{ rac{\mathrm{e}^{2x} - 1}{\sin(4x)} 
ight\}$$

L-Hospital Rule

#### Q14 Text Solution:

(B) 
$$\lim_{x \to 0} \frac{\sin x}{x}$$

Using L-Hospital Rule

$$\lim_{x o 0} rac{\cos x}{1} = 1$$
 (A)  $rac{\sin x}{x} < 1$ 

With the help of graph u can easily see that sinx<x.

#### Q15 Text Solution:

Continuity of f(x)

For x = 1, f(x) is a polynomial and hence is continuous.

At 
$$x = 1$$
.

$$\begin{aligned} & \text{LHL} = \lim_{x \to 1^{^{-}}} f\left(x\right) = \lim_{x \to 1^{^{-}}} \frac{x^{2}}{2} = \frac{1}{2} \\ & \text{RHL} = \lim_{x \to 1^{^{+}}} f\left(x\right) = \lim_{x \to 1^{^{+}}} \left(2x^{2} - 3x + \frac{3}{2}\right) \end{aligned}$$

$$= 2 - 3 + \frac{3}{2} = \frac{1}{2}$$

$$f(1) = 2(1)^{2} - 3(1) + \frac{3}{2} = \frac{1}{2}$$

$$\Rightarrow \text{L.H.L} = \text{R.H.L} = \textbf{\textit{f}}(1)$$

Therefore, f(x) is continuous at x = 1.

Continuity of  $f'(\mathbf{x})$ 

Let g(x) = f'(x)

$$egin{aligned} \Rightarrow g\left(x
ight) \ &= \left\{egin{array}{ccc} x & & ; & 0 \leq x < 1 \ 4x - 3 & & ; & 1 \leq x < 2 \end{array}
ight. \end{aligned}$$

For x = 1, g (x) is linear polynomial and hence continuous.

$$\begin{array}{l} \text{At x = 1,} \\ \text{LHL = } \lim_{x \to 1^{-}} g\left(x\right) = \lim_{x \to 1^{-}} x = 1 \\ \text{RHL = } \lim_{x \to 1^{+}} g\left(x\right) = \lim_{x \to 1^{+}} \left(4x - 3\right) = 1 \\ \boldsymbol{g}\left(1\right) = 4 - 3 = 1 \\ \Rightarrow \text{LHL = RHL = } \boldsymbol{g}\left(1\right) \end{array}$$

g(x) = f'(x) is continuous at x = 1.

Continuity of f''(x)

Let 
$$hig(xig)=f''(x)$$
 
$$= \left\{ egin{array}{ccc} 1 & ; & 0 \leq x < 1 \\ 4 & ; & 1 \leq x \leq 2 \end{array} \right.$$

For  $x \neq 1$ , **h** (**x**) is continuous because it is a constant function.

At x = 1, 
$$\text{LHL} = \lim_{x \to 1^-} h\left(x\right) = 1 \\ \text{RHL} = \lim_{x \to 1^+} h\left(x\right) = 4 \\ \text{Thus LHL} = \text{RHL}$$

h(x) is discontinuos at x = 1.

Hence f(x) and f'(x) are continuous on [0.2] but f''(x) is discontinuous at x = 1.

Note: Continuity of f'(x) is same as differentiablity of f(x).

#### Q16 Text Solution:

$$\lim_{x \to 0} \frac{x^2 \sin(\beta x)}{\alpha x - \sin x} = 1$$

Apply L Hospital Rule and solving we get-

Denominator needs to be zero lpha=1

Apply L Hospital rule again to the

Apply again them

 $2\beta + 2\beta + 2\beta = -1$ 

[only writing terms not containing x and sin  $(\beta x)$ ]  $\beta = -1/6$ 

 $6(a+\beta)=6\times5/6=5$ 

A is correct

#### Q17 Text Solution:

Given  $f(x) = 1 - x^2 + x^3$ ; [-1, 1]

By mean value theorem of f(x) in the interval [a, b]

$$\begin{array}{l} f'(c) = \frac{f(b) - f(a)}{b - a} \\ \text{for f(x) = } 1 - x^2 + x^3 \end{array}$$

for f(x) = 
$$1 - x^2 + x^3$$

$$\Rightarrow$$
 f'(x) = 3x<sup>2</sup> - 2x

 $\Rightarrow$  By mean value theorem

$$egin{aligned} ext{f'}( ext{c}) &= rac{ ext{f(1)-f(-1)}}{1-(-1)} \ &\Rightarrow 3 ext{c}^2 - 2 ext{c} &= rac{1-(-1)}{1-(-1)} \end{aligned}$$

$$\Rightarrow 3c^2 - 2c = \frac{1 - (-1)^2}{1 - (-1)^2}$$

$$\Rightarrow$$
 3c<sup>2</sup> - 2c - 1 = 0

$$\Rightarrow 3c^2 - 3c + c - 1 = 0$$

$$\Rightarrow 3c(c-1) + 1(c-1) = 0 \Rightarrow c = \frac{-1}{3}$$
 and

Since  $C \in (-1,1)$ , the mean value 'c' is equal to  $\frac{-1}{3}$ .

#### Q18 Text Solution:

As f(x) is polynomial so it will be continuous and differentiable in [0, 1]

$$f(x) = x^3 - 4x^2 + 8x + 11$$

$$f(0) = 11, f(1) = 1 - 4 + 8 + 11 = 16$$

$$f'(x) = 3x^2 - 8x + 8$$

if  $c \in (0,1)$ 

then 
$$f'(c) = 3c^2 - 8c + 8$$
 .....(i)

Apply L.M.V.T

$$\mathrm{f'}\left(\mathrm{c}
ight)=rac{\mathrm{f}\left(1
ight)-\mathrm{f}\left(0
ight)}{1-0}=\mathrm{f}\left(1
ight)-\mathrm{f}\left(0
ight)$$

$$=16-11=5$$
..... (ii)

From equations (i) & (ii)

$$3c^2 - 8c + 8 = 5$$

$$3c^2 - 8c + 3 = 0$$

$$\Rightarrow$$
 c =  $\frac{4-\sqrt{7}}{3} \leftarrow (0,1)$  verified.

#### Q19 Text Solution:

We have the sine function that takes the value of zero at integral multiples of  $\pi$ .

But for  $\frac{\sin(x)}{x}$  we have the exceptional value of  $\lim_{x\to 0} \frac{\sin(x)}{x}$  reaching one.

So, leaving the first interval  $[0,\pi]$  , for every other interval of the form  $[n\pi,(n+1)\pi]$  we must have  $f(n\pi) = f((n+1)\pi)$  by rolles theorem we have f'(c) = 0 for every interval of the from  $[n\pi,(n+1)\pi]$ .There are 17 such intervals.

#### Q20 **Text Solution:**

Let 
$$y = f(x) = (x+2)^2$$

Here, f is a polynomial function. Hence, f is continuous in [-2, 0].

Also differentiable in (-2,0) and f'(x) = 2(x+2).

So, by Lagrange's mean value theorem, we get a,  $c \in (-2,0)$  such that

$$f'(c) = \frac{f(0) - f(-2)}{0 - (-2)}$$

$$f'(c) = rac{f(0) - f(-2)}{0 - (-2)}$$
 $or\ 2\ (c+2) = rac{4-0}{2} = 2 \Rightarrow c = -1.$ 

and at 
$$C = -1$$
,  $f(c) = 1$ 

Hence, required point = (c, f(c)) = (-1, 1)

#### Q21 Text Solution:

Thus can be proved by using Rolles theorem, considering a=1,b=2.

#### Q22 Text Solution:

It want be applicable as the derivative of q(x)at x=pi/4 is coming out to be 0.

#### **Q23 Text Solution:**

Here, f and g are both continuous in [a, b]. Now,  $f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$  and  $g'(x) = -\frac{1}{2}x^{-\frac{3}{2}}$  exist for all x> 0. Hence, f and g are both differentiable on (a, b) and also  $g'(x) \neq 0$  for  $x \in (a, b)$ . Therefore, Cauchy's means value theorem is applicable for both the given functions in [a, b].

Now, 
$$\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}$$

given, 
$$\frac{\sqrt{b}-\sqrt{a}}{\frac{1}{\sqrt{b}}-\frac{1}{\sqrt{a}}}=\frac{\frac{\frac{1}{2}c^{-\frac{1}{2}}}{-\frac{1}{2}c^{-\frac{3}{2}}}$$

i.e., 
$$-\sqrt{ab}=-c~i.~e.~,~c=\sqrt{ab}.$$

Here, c > a and c < b.

Thus, Cauchy's means value theorem is verified for the given functions.

#### **Q24** Text Solution:

According to CMVT,

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$$

$$\frac{e^b - e^a}{e^{-b} - e^{-a}} = -\frac{e^c}{e^{-c}}$$

thus 
$$c=rac{a+b}{2}$$

#### Q25 Text Solution:

Cauchy's mean value theorem is applicable only for two functions, lets say f(x) and g(x) defined on the interval [a,b].

#### Q26 Text Solution:

#### Statement 1:

If k is a value between f(a) and f(b), i.e.

either f(a) < k < f(b) or f(a) > k > f(b)

then there exists at least a number c within a to b i.e.  $c \in (a, b)$  in such a way that f(c) = k

#### Statement 2:

The set of images of function in interval [a, b], containing [f(a), f(b)] or [f(b), f(a)], i.e.

either  $f([a, b]) \supseteq [f(a), f(b)]$  or  $f([a, b]) \supseteq [f(b), f(a)]$ 

#### Q27 Text Solution:

Let us find the values of the given function at the x = 0 and x = 2.

$$f(x) = x^5 - 2x^3 - 2 = 0$$

Substitute x = 0 in the given function

$$f(0) = (0)^5 - 2(0)^3 - 2$$

$$f(0) = -2$$

Substitute x = 2 in the given function

$$f(2) = (2)^5 - 2(2)^3 - 2$$

$$f(2) = 36 - 16 - 2$$

$$f(2) = 14$$

Therefore, we conclude that at x = 0, then curve is below zero; while at x = 2 it is above zero.

Since the given equation is a polynomial, its graph will be continuous.

Thus, applying the intermediate value theorem, we can say that the graph must cross at same point between (0,2).

Hence, there exists a solution to the equation  $x^5 - 2x^3 - 2 = 0$  between the interval [0,2].

#### **Q28** Text Solution:

As f(x) is polynomial so it will be continuous and differentiable in [0,1]

$$f(x) = x^3 - 4x^2 + 8x + 11$$

$$f(0) = 11, f(1) = 1 - 4 + 8 + 11 = 16$$

$$f'(x) = 3x^2 - 8x + 8$$

if 
$$c \in (0,1)$$

then 
$$f'(c) = 3c^2 - 8c + 8 \dots (i)$$

Apply L.M.V.T

$$f^{\prime}\left( c
ight) =rac{f\left( 1
ight) -f\left( 0
ight) }{1-0}=f\left( 1
ight) -f\left( 0
ight)$$

$$= 16 - 11 = 5 \dots (ii)$$

from equation (i) & (ii)

$$3c^2 - 8c + 8 = 5$$

$$3c^2 - 8c + 3 = 0$$

$$\Rightarrow c = \frac{4-\sqrt{7}}{3} \leftarrow (0,1)$$
 verified

#### Q29 Text Solution:

$$\Rightarrow$$
 f'(x) = e<sup>x</sup> (-sinx) + cosx · e<sup>x</sup>

$$\Rightarrow$$
 f'(x) = f(x) - e<sup>x</sup> · sin x

$$\Rightarrow$$
 f " (x) = f'(x) - e<sup>x</sup> · x - e<sup>x</sup> sinx

$$\Rightarrow$$
 f" (x) = f'(x) - f(x) - e<sup>x</sup> sinx

$$\Rightarrow$$
 f "'(x) = f "(x) - f'(x) - e<sup>x</sup>cosx

$$-e^{x} \sin x$$

$$\Rightarrow$$
 f''' (x) = f " (x) - f'(x) - f(x) - e<sup>x</sup> sinx

Now,

$$f'(0) = 1 - 0 = 1$$

$$f''(0) = f'(0) - e^{0}(1) - 0 = 1 - 1 = 0$$

$$f'''(0) = f''(0)f'(0) - 1 - 0 = 1 - 1 - 1 = -2$$

Taylor series expansion at x = 0 is :

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f'(0) + \frac{x^3}{3!}f'(0)$$

$$f(x) = 1 + x - \frac{2x^3}{3!} + \dots$$

#### Q30 Text Solution:

Given complex function is (x-1)/(x+1);

To expand about the point x = 1, let us assume t = x - 1:

$$=x-1$$

Now the function will be

$$\mathrm{f}\left(x
ight)=rac{x-1}{x+1}=rac{\mathrm{t}}{t+2}=1-rac{\mathrm{t}}{rac{\mathrm{t}}{2}+1}=1$$

$$-(1+\frac{t}{2})^{-1}$$

Using standard Taylor's series expansion,

$$\mathrm{f}\left(x
ight)=1-\left[1-rac{\mathrm{t}}{2}+rac{\mathrm{t}^{2}}{2^{2}}-rac{\mathrm{t}^{3}}{2^{3}}.\,..
ight]$$

$$\mathrm{f}\left(x
ight) = rac{\mathrm{t}}{2} - rac{\mathrm{t}^{2}}{2^{2}} + rac{\mathrm{t}^{3}}{2^{3}} \ldots$$

**GATE** 

The third term in the expansion is  $\frac{t^3}{8} = \frac{(x-1)^3}{8}$ 

#### Q31 Text Solution:

We know the general expression for the expansion of the taylor series

$$au\left[f\left(x
ight)
ight]=f\left(a
ight)+rac{x\cdot f^{\left(1
ight)}\left(a
ight)}{1!}+rac{x^2\cdot f^{\left(2
ight)}\left(a
ight)}{2!}+...\infty$$

Given a = 0 we substitute in the equation to get

$$au\left[f\left(x
ight)
ight]=f\left(0
ight)+f^{\left(1
ight)}\left(0
ight) imesrac{x}{1!}+f^{\left(2
ight)}\left(0
ight)$$

$$\times \frac{x^2}{2!}...\infty$$

Now the n<sup>th</sup> derivatives can be calculated as

$$f^{(n)}\left(x
ight) = \left(rac{e^x + e^{-x}}{2}
ight)^{(n)} \ = rac{e^x + (-1)^n e^x}{2}$$

Substituting x = 0 yields the final expansion

$$f^{(n)}\left(x
ight)=rac{1+\left(-1
ight)^{n}}{2}$$

$$egin{aligned} au[f(x)] &= 1 + (0) imes rac{x}{1!} + (1) imes rac{x^2}{2!} + (0) \ imes rac{x^3}{3!} + .... \infty \end{aligned}$$

#### Q32 Text Solution:

Observing the recurrence relation we have

$$a_n = rac{a_{n-1}}{n} = rac{a_{n-2}}{n(n-1)}$$

$$a_n = rac{a_{n-1}}{n} = rac{a_{n-2}}{n(n-1)} \ a_n = rac{a_0}{n(n-1)(n-2)....3 imes 2 imes 1}$$

Thus, one could deduce that

$$a_n = \frac{1}{n!}$$

Putting this into the Mclaurin expansion we

$$f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \dots \infty$$

$$f(x) = 1 + rac{x}{1!} + rac{x^2}{2!} + rac{x^3}{3!} + ....\infty$$

Which is the well know expansion of e<sup>x</sup>.

