BIN504 - Lecture XI

Bayesian Inference & Markov Chains

References:

Lee, Chp. 11 & Sec. 10.11 Ewens-Grant, Chps. 4, 7, 11

© 2012 Aybar C. Acar © 0 5 Including slides by Tolga Can Rev. 1.2 (Build 20130528191100)

Outline

- Bayesian Inference
 - Bayes' Chain Rule
 - Bayesian Belief Networks
 - Markov Blanket and Conditional Independence
- Markov Chains
 - Irreducibility, Periodicity, and Recurrence
 - Stationary Distribution
 - Random Walks

Refresh: Bayes' Rule

Theorem

Bayes' Theorem states that:

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

Likewise:

$$P(B|A) = \frac{P(A,B)}{P(A)}$$

Therefore:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

The Bayes Chain Rule

Corollary

The chain rule follows directly from Bayes' Theorem:

$$P(X_{1},...,X_{N}) = P(X_{1}|X_{2},...,X_{N})P(X_{2},...,X_{N})$$

$$= P(X_{1}|X_{2},...,X_{N})P(X_{2}|X_{3},...,X_{N})P(X_{3},...,X_{N})$$

$$\vdots$$

$$P(\cap_{k=1}^{n}X_{k}) = \prod_{k=1}^{n} P(X_{k} \mid \cap_{j=1}^{k-1}X_{j})$$

Notice that since intersection (joint probability) is associative/commutative:

$$P(X, Y, Z) = P(X|Y, Z)P(Y|Z)P(Z)$$

$$= P(X|Y, Z)P(Z|Y)P(Y)$$

$$= P(Y|X, Z)P(Z|X)P(X)$$

$$\vdots$$

Refresh: Law of Total Probability

Definition

Let $B_1, B_2 \dots B_k$ be possible values of r.v. B.

$$P(A) = \sum_{j=1}^{k} P(A|B = B_j)P(B = B_j)$$

This is called marginalization: calculating the marginal probability using conditional probability)

Conditional Independence

Definition

If given the value of some r.v. Z, also knowing Y does not change our belief about X:

$$X \perp Y \mid Z$$

we say that X is conditionally independent of Y given Z.

Example

Red⊥Blue | Yellow

Bayesian Belief Networks

- A Bayesian (Belief) Network is a directed acyclic graph where:
 - Nodes represent random variables
 - Edges represent influence (dependence)
- Each node has a conditional probability table based on its parents.
 - P(node|parents)
- This graph represents dependence among variables in a concise fashion
 - Allows us to reason about our belief in certain causes.
 - Using conditional probabilities of symptoms given causes.
 - We can calculate different probabilities using the chain rule and marginalization:
 - joint probabilities of causes and symptoms.
 - posterior probabilities of causes given symptoms.

Sample Bayesian Network

Example: Joint Probability

What is the probability that it is raining, that the sprinkler is off, and the grass is wet?

$$P(G, S, R) = P(G|S, R)P(S|R)P(R)$$
 (chain rule)

For the required configuration:

$$P(Wet, Off, Yes) = 0.8 \times 0.99 \times 0.2 = 0.1584$$

Example: Posterior Probability

What is the probability that it is raining, **given** that the sprinkler is off, and the grass is dry?

$$P(R|G,S) = \frac{P(G,S,R)}{P(G,S)}$$

$$= \frac{P(G|S,R)P(S|R)P(R)}{P(G|S)P(S)}$$

$$= \frac{P(G|S,R)P(S|R)P(R)}{\sum_{R} P(G|S,R_i)P(R_i)\sum_{R} P(S|R_i)P(R_i)} \xrightarrow{\text{(marginalize)}}$$

$$P(Yes|Dry,Off) = \frac{0.2 \times 0.99 \times 0.2}{(0.2 \times 0.2 + 1.0 \times 0.8)(0.99 \times 0.2 + 0.6 \times 0.8)}$$

$$= 0.0695$$

Influence

Assume you are at work, have a house alarm and two neighbors (John and Mary):

Influence

Conditional Independence

- In the previous example, there is a certain conditional independency:
 - Given the alarm state, JohnCalls is independent of MaryCalls, Earthquake or Burglary.

$$P(J|M, A, Q, B) = P(J|A)$$

- Does this mean that an earthquake or burglary does not affect whether John calls?
 - No. John is still affected by burglary or earthquake, but not directly.
 - John calling is conditionally independent of everything else, given the alarm.
 - But John is not absolutely independent of burglary or earthquake.

The Markov Blanket

Definition

The set of nodes ∂A composed of A's parents, children and children's parents is called the Markov Blanket of A

 Given its Markov blanket, a node is conditionally independent of any other nodes in the network.

 $A \perp B | \partial A \ \forall B$

Plate Notation

For networks with replicated subgraphs we use plate notation, which wraps replicate parts into frames, with number of replicates indicated.

Plate Notation (2)

Naïve Bayes Model

- Normally, some symptom (evidence) variables are dependent on each other as well as being dependent on the causes.
- However, as the graph gets deeper, the conditional probability tables become intractably large.
- The Naïve Bayes Model assumes independence of symptoms given the cause:

• Naïve Bayes is a special case of Bayesian Network that is very easy to do inference on.

Naïve Bayes Model (2)

$$P(C, S_1, ..., S_n) = P(S_1|C)P(S_2|C, S_1)...P(S_n|C, S_1, ..., S_{n-1})$$

 Since all symptoms (S) are conditionally independent given the cause (C), the joint probability reduces to:

$$P(C, S_1, \ldots, S_n) = P(C) \prod_{i=1}^n P(S_i|C)$$

• Likewise, the posterior is reduced to:

$$P(C|S_1,...,S_n) = \frac{P(C,S_1,...,S_n)}{\prod_{i=1}^n P(S_i)} = \frac{P(C,S_1,...,S_n)}{\prod_{i=1}^n \sum_C P(S_i|C)}$$

Naïve Bayes Example

Flu	Fever	Sinus	Ache	Swell	Head
Υ	L	Υ	Υ	Υ	N
N	M	Ν	Ν	Ν	Ν
Υ	Н	Υ	N	Υ	Υ
Y	М	Υ	N	Ν	Υ
?	М	Υ	N	N	N

Naïve Bayes Example

Flu	Fever	Sinus	Ache	Swell	Head
Y	L	Υ	Υ	Υ	N
N	М	Ν	Ν	Ν	Ν
Y	Н	Υ	Ν	Υ	Υ
Υ	М	Υ	Ν	Ν	Υ
?	М	Y	N	N	N

$$P(Flu = Y, F = M, S = Y, A = N, Sw = N, H = N) = 0.75 \times 0.33 \times 1 \times 0.66 \times 0.33 \times 0.33 = 0.0178$$

$$P(Flu = Y | F = M, S = Y, A = N, Sw = N, H = N) = \frac{0.0178}{P(F = M, S = Y, A = N, Sw = N, H = N)}$$

$$= \frac{0.0178}{0.5 \times 0.75 \times 0.75 \times 0.5 \times 0.5} = 0.253$$

Markov Chains

- A stochastic process X
 - is a sequence of r.v.'s $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(i)}, \dots\}$ which represent the state of the process at different points i
 - typically i's represent different time points
 - each $x^{(i)}$ can have one of a finite set of values
 - $\mathbf{s} = \{s_1, s_2, \dots s_m\}$
 - Called states of the process
- A stochastic process X is called a Markov Chain if the state of $x^{(i+1)}$ is conditionally independent of all other points given the state of $x^{(i)}$:

$$P(x^{(i+1)}|x^{(i)},x^{(i-1)},\ldots,x^{(1)}) = P(x^{(i+1)}|x^{(i)})$$

- The probability distribution of the next state depends only on the state before it.
- Called a homogenous Markov chain if $P(x^{(i+1)}|x^{(i)})$ does not depend on i

Transition Matrix

 When the Markov chain is homogenous, the probability distribution of the next state can be represented with a transition matrix T s.t.:

$$T_{jk} = P(x^{(i+1)} = s_k | x^{(i)} = s_j)$$

• For example:

Multiple Step Transitions

• The probability of transitioning from state *i* to state *j* in two steps would be:

$$T_{ij}^{(2)} = \sum_{k} T_{ik} T_{kj}$$

so $T^{(2)}$ would be:

$$\mathbf{T}^{(2)} = \mathbf{T} \times \mathbf{T} = \mathbf{T}^2$$

the multiplication of the transition matrix with itself.

• This can be generalized for any number of steps:

$$\mathbf{T}^{(n)} = \mathbf{T}^n$$

is the n-step transition matrix.

Accessibility and Irreducibility

- A state j is "accessible" from a state i ($s_i \rightarrow s_j$) if a system started in state i has a non-zero probability of transitioning into state j at some point.
- $s_i \rightarrow s_j$ if for some $n \ge 0$:

$$T_{ij}^{(n)}>0$$

- States i and j "communicate" if both $s_i \rightarrow s_j$ and $s_j \rightarrow s_i$
- s_i is "essential" if all states j that are accessible from s_i also communicate with s_i
- A Markov chain is called irreducible if all of its states are essential.
 - In other words, all states are accessible from all other states.

Periodicity

 Some states can be periodic. If a point 0, we are at s_i, the period is the minimum number of steps required to get back to s_i:

$$period(s_i) = \gcd\{n : T_{ii}^{(n)} > 0\}$$

- If the period is 1, the state is called aperiodic.
- If all states in a Markov chain are aperiodic, the chain itself is aperiodic.

Example

$$\mathbf{T} = \left(\begin{array}{cccc} 0 & 0 & 0.6 & 0.4 \\ 0 & 0 & 0.3 & 0.7 \\ 0.5 & 0.5 & 0 & 0 \\ 0.2 & 0.8 & 0 & 0 \end{array}\right)$$

is periodic. All states have period = 2

Absorbing and Transient States

• A state, s_i , is called an absorbing state if

$$T_{ii} = 1$$
 and $T_{ij} = 0$ for $i \neq j$

In other words, once transitioned, and absorbing state will never be left.

The Hitting Time of a state is

$$T_i = \inf\{n \ge 1 : x^{(n)} = i | x^{(0)} = i\}$$

the probability distribution of the first return time to s_i

- If $P(T_i < \infty) < 1$, or if there is a chance that we never return to s_i , the state is called Transient, otherwise it is called Recurrent.
- The Mean Recurrence Time: $M_i = E[T_i]$

Example

$$\mathbf{T} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0.2 & 0.3 & 0.25 & 0.25 \\ 0 & 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0 & 0.5 & 0.5 \end{pmatrix}$$

- State 1 is absorbing
- State 2 is transient
- State 3 is transient
- State 4 is neither absorbing nor transient
- State 5 likewise
- States 4 and 5 are called ergodic
 - Neither transient nor periodic.

Stationary Distribution

- Let π_i be the probability that a homogenous Markov chain is at s_i at some arbitrary time t
- In other words, the π_j is the probability that we will catch the process at s_i if we took a snapshot at a random time.
- The definition of π_i is recursive. The probability that the process will be at s_i at time t is a function of where it is likely to be at t-1

$$\pi_i = \sum_{s_i \in S} \pi_j T_{ji}$$

• The vector $\pi = \{\pi_1, \pi_2, \dots \pi_k\}$ is called the stationary distribution of the Markov Chain if all $\pi_i > 0$ and $\sum \pi_i = 1$

Finding the Stationary Distribution

Since

$$\pi_i = \sum_{s_i \in S} \pi_j T_{ji}$$

multiplying T with π should give π .

In other words,

$$\pi = \pi \mathbf{T}$$

- Again, we get the eigenproblem.
- π is the normalized left eigenvector of ${\bf T}$ which has an eigenvalue =1
 - Let the left eigenvector with eigenvalue 1 of **T** be **v**
 - $\pi = \frac{\mathbf{v}}{\sum v_i}$

An Easier Way

 Another way to look at the problem is: "Where will I end up if I transition infinite times?"

$$\lim_{n\to\infty} \mathbf{T}^n$$

• For many irreducible and aperiodic Markov chains:

$$\lim_{n\to\infty} \mathbf{T}^n = \begin{bmatrix} 1\\1\\1\\\vdots \end{bmatrix} \times \pi$$

• In other words, if you multiply ${\bf T}$ with itself many times, all of its rows will converge to π

Example

 Let's assume the DNA sequence of human chromosome 22 is a Markov Chain.

- So, the probability of the next nucleotide in the sequence depends only on the current one.
- The state space is $S = \{s_1 = A, s_2 = T, s_3 = C, s_4 = G\}$
- The transition matrix is:

$$\mathbf{T} = \left(\begin{array}{cccc} 0.6 & 0.1 & 0.2 & 0.1 \\ 0.1 & 0.7 & 0.1 & 0.1 \\ 0.2 & 0.2 & 0.5 & 0.1 \\ 0.1 & 0.3 & 0.1 & 0.5 \end{array}\right)$$

- It is obvious that the chain is irreducible, aperiodic, and recurrent.
- What are the proportions of A, T, C, and G in the chromosome?

$$\mathbf{T} = \left(egin{array}{cccc} 0.6 & 0.1 & 0.2 & 0.1 \\ 0.1 & 0.7 & 0.1 & 0.1 \\ 0.2 & 0.2 & 0.5 & 0.1 \\ 0.1 & 0.3 & 0.1 & 0.5 \end{array}
ight)$$

$$\mathbf{T}^4 = \left(\begin{array}{cccc} 0.2908 & 0.3182 & 0.2286 & 0.1624 \\ 0.2151 & 0.4326 & 0.1899 & 0.1624 \\ 0.2538 & 0.3569 & 0.2269 & 0.1624 \\ 0.2151 & 0.4070 & 0.1899 & 0.1880 \end{array}\right)$$

$$\mathbf{T}^8 = \left(\begin{array}{cccc} 0.24596 & 0.37787 & 0.20961 & 0.16656 \\ 0.23873 & 0.38946 & 0.20525 & 0.16656 \\ 0.24309 & 0.38223 & 0.20812 & 0.16656 \\ 0.23873 & 0.38880 & 0.20525 & 0.16721 \\ \end{array} \right)$$

$$\mathbf{T}^{16} = \begin{pmatrix} 0.24142 & 0.38494 & 0.20692 & 0.16667 \\ 0.24135 & 0.38510 & 0.20688 & 0.16667 \\ 0.24140 & 0.38503 & 0.20691 & 0.16667 \\ 0.24135 & 0.38510 & 0.20688 & 0.16667 \end{pmatrix}$$

A: 24.1% **T**: 38.5% **C**: 20.7% **G**: 16.7%