Clase 1: Inferencia Estadística

August 22, 2019

Primera definición: Sean X_1, \ldots, X_n variables aleatorias (definidas en el espacio muestral) a partir de las cuales se realizará la inferencia. Si estas variables son independientes y tienen la misma distribución de X, se dice que se tiene una muestra aleatoria simple de X. Segunda definición: El parámetro es una cantidad θ , que depende de la distirbución de la muestra disponible f_{X_1,\ldots,X_n} . θ es desconocido, pues sus valores posibles constituyen el conjunto Θ . Cabe resaltar que θ también puede ser un vector.

1. Ejemplo 1

Sea $Y_1 = \theta X_1 + \epsilon_1, \dots, Y_n = \theta X_n + \epsilon_n$ dónde X_1, \dots, X_n son cantidades conocidas. Asimismo $\theta \in R$ es una cantidad desconocia y $\epsilon_1, \dots, \epsilon_n$ son variables aleatorias independientes y cada una tiene una distribución $N(0, 1), Y_1, \dots, Y_n$ es una muestra aleatoria. Estas variables son independientes; sin embargo no tienen la misma distribución, Y_i $N(\theta X_i, 1)$.

2. Ejemplo 2: Inferencia sobre una población

Sea $X_i=1$, si la unidad de observación i satisface cierta característica; 0, caso contrario para $i=1,\ldots,n$. Sea $P(X_i=1)=\theta, i=1,\ldots,n$ y $P(X_i=0)=1-\theta, i=1,\ldots,n$ Entonces X_i $B(\theta)$. Si asumimos que X_1,\ldots,X_n son independientes, entonces X_1,\ldots,X_n es una muestra aleatoria simple de X en dónde X $B(\theta)$. Interpretación: $\theta=$ proporción de unidades, en una población, que satisface la característica. Tercera definición: La estadística es cualquier función de la muestra (disponible) $g(X_1,\ldots,X_n)$. Usualmente g es una función de valor real, pero también puede ser de valor vectorial. **Observación:** g no debe depender de parámetros desconocidos.

3. Ejemplos de la tercera definición

 $X_{(1)} = minimoX_1, \ldots, X_n \ X_{(1)} = maximoX_1, \ldots, X_n \ \sum_{j=1} = X_j \ \frac{\sum_{j=1} = X_j}{n}$ media muestral, también existe la varianza muestral y el segundo momento muestral. Cuarta definición: Si θ es un parámetro, un estimador de θ es una estadística $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ que se usa para aproximar el valor desconocido de θ . **Observación:** $\hat{\theta}$ es una variable aleatoria.

4. Propiedades de un estimador

4.1. Propiedad de insesgamiento

 $\hat{\theta}$ es un estimador insesgado de θ , si $E(\hat{\theta}) = \theta, \forall \theta \in \Theta$.

4.2. Ejemplo de insesgamiento

El Estimador usual de θ está dado por:

5. Ejemplo

Sea $E(\bar{X}^2) = V(\bar{X}) + E^2(\bar{X})$. Entonces se tiene que:

$$V(\frac{\sum_{j=1}^{n} X_j}{n}) + \mu^2.$$

$$\frac{1}{n^2} \sum_{j=1}^{n} V(X_j) + \mu^2.$$

Por independencia se tiene que $V(\sum) = \sum V()$.

$$\frac{\sigma^2}{n} + \mu^2$$
.

Luego, de (1), (2) y (3):

$$E(S^2) = \frac{n}{n-1} [E(X^2) - \dots].$$

$$\frac{n}{n-1}[\sigma^2 + \mu^2 - (\frac{\sigma^2}{n} + \mu^2)].$$

 σ^2

Definición: Si lím $_{ninfinito}\,E(\hat{\theta})=\theta, \forall \theta\in\Theta,$ se dice que $\hat{\theta}$ es asintóticamente insesgado.

6. Propiedad de eficiencia

Si $\hat{\theta_1}$ y $\hat{\theta_1}$ son estimadores insesgados de θ , se dice que $\hat{\theta_1}$ es más eficiente que $\hat{\theta_1}$ si $V(\hat{\theta_1}) < V(\hat{\theta_2})$. **Explicación:**