Cache principles a. Cache holds a much smaller subset of RAM's conte	nts
b. Terminology	

	b.	How to address the cache
	C.	Cache size
3.		address layout Going to use slightly different terminology than the book
	b.	 i. Same idea, but I find the book's variable names less than intuitive Terminology i. C
		1. C
		ii. LS
		iii. LIC
		iv. S
		v. W
	c.	Address layout (in bits)
		Tag Set Offset Address Bits =

- d. Problems of this type
 - i. Usually given some of the variables above
 - ii. Asked to calculate the rest
- 4. Cache mapping types
 - a. How does an address from main memory map to the cache?
 - b. Direct mapped (DM)

- i. Example
 - 1. 8-byte DM cache with line size of 2, and 4-bit address

Tag	Set	Offset	Address Bits
			=

- ii. Cache mapping example
 - 1. Memory values for addresses
 - a. 0110 = 0x1B
 - b. 0111 = 0x59
 - c. 1000 = 0xFE
 - d. 1001 = 0x3D
 - e. 1110 = 0x0C
 - f. 1111 = 0x3A
 - g. 1010 = 0x25
 - h. 1011 = 0x98
 - 2. Assume we pull in values from RAM in same order as above
 - a. What happens when we reach the last two accesses?

Set Number	Tag	Byte 1	Byte 2

c. Fully associative

- i. Example
 - 1. Same cache parameters as before, except now a FA cache
 - 2. 8-byte FA cache with line size of 2, and 4-bit address

Tag	Set	Offset	Address Bits
			=

- ii. Cache mapping example
 - 1. Same memory values for addresses
 - a. 0110 = 0x1B
 - b. 0111 = 0x59
 - c. 1000 = 0xFE
 - d. 1001 = 0x3D
 - e. 1110 = 0x0C
 - f. 1111 = 0x3A
 - g. 1010 = 0x25
 - h. 1011 = 0x98
 - 2. Assume we pull in values from RAM in same order as above

Line in Cache	Tag	Byte 1	Byte 2

d. Set associative

i. Example

- 1. Same cache parameters as before, except now a 2-way SA cache
- 2. 8-byte 2-way SA cache with line size of 2, and 4-bit address

Tag	Set	Offset	Address Bits
			=

- ii. Cache mapping example
 - 1. Same memory values for addresses
 - a. 0110 = 0x1B
 - b. 0111 = 0x59
 - c. 1000 = 0xFE
 - d. 1001 = 0x3D
 - e. 1110 = 0x0C
 - f. 1111 = 0x3A
 - g. 1010 = 0x25
 - h. 1011 = 0x98
 - 2. Assume we pull in values from RAM in same order as above

Set	Line Number	Tag	Byte 1	Byte 2
	0			
0	1			
	2			
1	2			
	3			