UFR de Mathématiques

Feuille d'exercices No 2

M41 - année 2020-2021

M.Mbekhta

Exercice 1. (1) Etudier la convergence (simple, normale, uniforme) des séries $(\sum_n u_n)$:

(1)
$$u_n(x) = \exp(-x^2\sqrt{n}), \ n \ge 0, \ x \in \mathbb{R}^*;$$
 (2) $u_n(x) = \frac{\sin(nx)}{n^3}, \ n \ge 1, \ x \in \mathbb{R};$

(3)
$$u_n(x) = \frac{(-1)^n}{n+x^2}, \ n \ge 1, \ x \in \mathbb{R}; \quad (4) \ u_n(x) = \frac{\arctan(nx)}{n^2}, \ n \ge 1, \ x \in \mathbb{R}.$$

(2) Etudier la continuité et la dérivabilité de $f(x) = \sum_{n} u_n(x)$.

Exercice 2. Soit $u_n(x) = \frac{\sin(2^n x)}{n^n}$, $n \ge 1$, et $f(x) = \sum_{n \ge 1} u_n(x)$, $x \in \mathbb{R}$.

- (1) Montrer que la série est normalement convergente sur \mathbb{R} .
- (2) Montrer que f est dérivable sur \mathbb{R} .

Exercice 3. Soit $u_n(x) = \frac{1}{n^2 x + n^3}$, $n \ge 1$, et $f(x) = \sum_{n \ge 1} u_n(x)$, $x \in \mathbb{R}^+$.

(1) Montrer que

$$u_n^{(k)} = \frac{(-1)^k k!}{n^2 (x+n)^{k+1}}, \quad k \ge 1.$$

(2) En déduire que f est indéfiniment dérivable sur \mathbb{R}^+ .

Exercice 4. Soit $u_n(x) = \frac{x \exp(-nx)}{\ln(n)}$, $n \ge 2$, et $f(x) = \sum_{n \ge 1} u_n(x)$. (1) Montrer que la série $(\sum_n u_n)$ converge simplement sur \mathbb{R}^+ .

- (2) Montrer pour tout $x \geq 0$,

$$0 \le R_n(x) = \sum_{k=n+1}^{+\infty} u_k(x) \le \frac{1}{\ln(n+1)}.$$

(On remarquera que $\exp(x) - 1 \ge x$ pour tout $x \ge 0$).

En déduire que f est continue sur \mathbb{R}^+

(3) Montrer que la série $(\sum_n u_n)$ ne converge pas normalement sur \mathbb{R}^+ .

(On montrera que $\sup_{x\geq 0} |u_n(x)| = \frac{e-1}{n \ln(n)}$).

Exercice 5. Soit $u_n(x) = \frac{x}{n^2 + x^2}$, $n \ge 1$, et $f(x) = \sum_{n \ge 1} u_n(x)$.

- (1) Montrer que f est continue sur \mathbb{R} .
- (2) Soit x > 0 et $n \ge 1$. Montrer que

$$\int_{n}^{n+1} \frac{x}{t^2 + x^2} dt \le \frac{x}{n^2 + x^2} \le \int_{n-1}^{n} \frac{x}{t^2 + x^2} dt.$$

En déduire que $\lim_{x\to+\infty} f(x) = \frac{\pi}{2}$.

Exercice 6. Soit $u_n(x) = \frac{1}{\sqrt{n}}(x^{2n} - x^{2n+1}), n \ge 1, \text{ et } f(x) = \sum_{n \ge 1} u_n(x).$

- (1) Etudier la convergence simple et uniforme de la série $(\sum_n u_n)$ sur [0,1].
- (On pourra calculer le maximum de u_n).
- (2) Etudier la continuité de f.

Exercice 7. Soit $u_n(x) = x(1-x)^n$, $x \in [0,2]$ et $f(x) = \sum_{n \ge 0} u_n(x)$.

- (1) Etudier la convergence simple de la série $(\sum_n u_n)$.
- (2) la convergence de la série $(\sum_n u_n)$ est-elle uniforme?
- (3) Calculer

$$\int_0^1 (\sum_{n\geq 0} u_n(x)) dx \quad et \quad \sum_{n\geq 0} \int_0^1 u_n(x) dx.$$

Exercice 8. Soit $u_n(x) = \frac{\exp(-nx)}{1+n^2}, \ n \ge 1, \ et \ f(x) = \sum_{n \ge 0} u_n(x).$

- (1) Montrer que les séries f(x) converge normalement sur \mathbb{R}^+ .
- (2) Montrer que les séries f'(x) et f''(x) convergent normalement sur $[a, +\infty[$, $\forall a > 0$.
- (3) En déduire que f est solution de l'equation

$$y'' + y = \frac{1}{1 - \exp(-x)}$$