

拡散モデルを用いたLiDAR点群ベースの歩容映像復元 LiDAR-based Gait Video Restoration using Diffusion Priors

アン・ジョンホ 1 , 中嶋 一斗 1 , 吉野 弘毅 1 , 岩下 友美 2 , 倉爪 亮 1 (九州大学 1 , NASA/JPL 2)

背景

近年3D LiDARセンサを使用した歩容

認証の研究が盛んでいる

問題:①遠距離での計測や②低解像度 のLiDARセンサによって歩行者点群が スパースになる→識別モデルの汎化性

能が極めて低下

遠距離

LiDARセンサ

歩行者点群を絶対座標系に対して平行投 影をすると、欠落した点群ノイズを線形 逆問題として解くことが可能

(Inpainting: y = Hx)

• 本研究では、<u>ノイズパターンの変化に依</u> 存しない学習済み拡散モデルを用いた復 元手法を提案し、識別モデルの汎化性能 を向上

- ・ Video Diffusion Models[1]の逆過程のパラメータを学習させ、problem-agnosticアプローチであるΠGDM[2]へ拡張
- Z-buffer法によって歩行者点群を平行投影し、センサから観察された綺麗な歩容深度映像に変化し学習に利用
- 歩行者点群の中心座標から歩行角度θ_{gait}を計算
- 歩容深度映像サイズを基準として深度値を正規化
- 劣化作用素(マスク) Hの背景の影響を減らすためバッチBに 対する分散値を計算
- 閾値を基準として分散の高い画素をフィルタリング

- $\mathbf{P}_t \in \{\mathbf{p}_{t,1}, \mathbf{p}_{t,2}, ..., \mathbf{p}_{t,N}\}$:時刻tに対する歩行者点群
- $\mathbf{c}_t = \frac{1}{N} \sum_{n=1}^{N} \mathbf{p}_{t,n}$ • $\theta_{\text{gait}} = \arctan(c_{T,y} - c_{0,y}, c_{T,x} - c_{0,x})$
- 疑似逆行列を介して観測yと推定x_tの一致度を定義
- サンプリング時、上の誘導スコアgをDDIM法に追加

評価実験1

- SUSTeck1Kの訓練データ(250人)を用いてベースライン (LidarGait) と提案手法を学習(学習時、10フレームと設定)
- 評価時、人工的に欠落したテストデータの歩行者点群を使用

提案手法の復元結果 フレーム2 フレーム3

識別精度評価(%)

Gallery	Probe	提案手法	平均値↑					
			Rank1	Rank5				
欠損なし	欠損比率 1/2		34.24	70.61				
		✓	44.09	87.69				
	欠損比率 2/3		23.52	38.05				
		✓	50.49	80.28				

GAEの有効性評価

歩行角度 θ_{gait} **あり**の生成例 **歩行角度** θ_{gait} **なし**の生成例

歩容角度を揃えることで、<mark>極めてスパースな点群データ</mark>で の生成品質を向上

評価実験2

- SUSTeck1Kの訓練データを用いてベースラインと提案手法を学習
 - 所属研究室のデータセット(KUGait30)で提案手法の有効性を検 証(2種の計測距離と8種の撮影角度と30人の被験者の組み合わせ から構成)

データセットの比較

	データセット	使用センサ	Beam数	垂直/水平解像度	計測距離
 訓練データ	SUSTeck1K	VLS-128	128	0.11/0.1	7.5 m
テストデータ	KUGait30	VLP-32C	32	1.33/0.1	10, 20 m

KUGait30のデータ取得 元映像 復元結果 復元結果 元映像

識別精度評価(%) 提案手法 平均值 2 点群投影 Rank1 Rank5 Gallery Probe Gallery Probe 球面 5.51 25.98 10m 20 m 平行 7.07 30.80 10m 20 m 44.79 13.84 10m 20 m 平行 10m 17.41 53.42 20 m

BVFの有効性評価 Overall@R5 Batches for Variance Filtering

今後の予定

- 点群ベースの分類モデル(PointNet++, PointMLP)への応用
- 背景差分を考慮した劣化作用素の更新アプローチの開発
- [1] J. Ho et al., Video diffusion models. arXiv preprint arXiv: 2204.03458, 2022 [2] J. Song et al. Pseudoinverse-guided diffusion models for inverse problems. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2023.