Unit 4: Issues in Data Link Layer Design

Contents

- Services provided to the Network Layer
- Framing
- Error Control (error detection and correction code)
- Flow Control
- Data Link Layer in the Internet (SLIP, PPP)
- MAC sub layer: CSMA/CD/CA
- IEEE standards (IEEE802.3 Ethernet IEEE 802.4 Token Bus, IEEE 802.5 Token Ring)

Services Provided to the Network Layer

Packets & Frames

Services provided to the Network Layer

• (a) Virtual communication (b) Actual Communication

Services provided to the Network Layer

- Possible services
 - Unacknowledged connectionless service.
 - Acknowledged connectionless service.
 - Acknowledged connection-oriented service.

Contents

- Services provided to the Network Layer
- Framing
- Error Control (error detection and correction code)
- Flow Control
- Data Link Layer in the Internet (SLIP, PPP)
- MAC sub layer: CSMA/CD/CA
- IEEE standards (IEEE802.3 Ethernet IEEE 802.4 Token Bus, IEEE 802.5 Token Ring)

- Byte Count
- Flag bytes with byte stuffing
- Flag bits with bit stuffing
- Physical layer coding violations

• A byte stream (a) without error (b) with error

- (a) A frame delimited by flag bytes
- (b) Four examples of byte sequences before and after byte stuffing.

Bit stuffing.

- (a) The original data.
- (b) The data as they appear on the line.
- (c) The data as they are stored in the receiver's memory after destuffing.

Contents

- Services provided to the Network Layer
- Framing
- Error Control (error detection and correction code)
- Flow Control
- Data Link Layer in the Internet (SLIP, PPP)
- MAC sub layer: CSMA/CD/CA
- IEEE standards (IEEE802.3 Ethernet IEEE 802.4 Token Bus, IEEE 802.5 Token Ring)

- 1. Hamming codes.
- 2.Binary convolutional codes.
- 3.Reed-Solomon codes.
- 4.Low-Density Parity Check codes.

 Example of an (11, 7) Hamming code correcting a singlebit error.

- Linear, systematic block codes
 - Parity.
 - Checksums.
 - Cyclic Redundancy Checks (CRCs).

Interleaving of parity bits to detect a burst error.

 Example calculation of the CRC

Transmitted frame: minus remainder

Contents

- Services provided to the Network Layer
- Framing
- Error Control (error detection and correction code)
- Flow Control
- Data Link Layer in the Internet (SLIP, PPP)
- MAC sub layer: CSMA/CD/CA
- IEEE standards (IEEE802.3 Ethernet IEEE 802.4 Token Bus, IEEE 802.5 Token Ring)

Flow Control

- Two types of flow control:
 - Feedback based flow control
 - Rate based flow control

Contents

- Services provided to the Network Layer
- Framing
- Error Control (error detection and correction code)
- Flow Control
- Data Link Layer in the Internet (SLIP, PPP)
- MAC sub layer: CSMA/CD/CA
- IEEE standards (IEEE802.3 Ethernet IEEE 802.4 Token Bus, IEEE 802.5 Token Ring)

Data Link Layer in the Internet (SLIP, PPP)

Packet over SONET. (a) A protocol stack. (b) Frame relationships

Data Link Layer in the Internet (SLIP, PPP)

- PPP Feature
 - Separate packets, error detection
 - Link Control Protocol
 - Network Control Protocol

Data Link Layer in the Internet (SLIP, PPP)

• The PPP full frame format for unnumbered mode operation

Contents

- Services provided to the Network Layer
- Framing
- Error Control (error detection and correction code)
- Flow Control
- Data Link Layer in the Internet (SLIP, PPP)
- MAC sub layer: CSMA/CD/CA
- IEEE standards (IEEE802.3 Ethernet IEEE 802.4 Token Bus, IEEE 802.5 Token Ring)

Data link layer

Data link control

Multiple-access resolution

- Carrier sense Multiple Access (CSMA)
- To minimize chance of collision.
- Based on principle "sense before transmit" or "listen before talk".
- CSMA can reduce the possibility of collision, but it cannot eliminate it.

• The solution

a. 1-persistent

b. Nonpersistent

c. p-persistent

a. 1-persistent

b. Nonpersistent

c. p-persistent

- CSMA method does not specify the procedure following collision.
- CSMA/CD Collision Detection augments the algorithm to handle the collision.
- In this method, a station monitors the medium after it sends a frame to see if the transmission was successful.
- If so, the station is finished.
- If, however, there is a collision, the frame is sent again.

- CSMA CA collision avoidance was invented for wireless networks.
- Collisions are avoided through the use of CSMA/CA's three strategies:
 - The interframe space (IFS)
 - Contestation window
 - Acknowledgement

MAC sub lay

Start

Interframe Space

- When an ideal channel is found, the station does not send immediately.
- It waits for a period of time called the interframe space/IFS.
- Even though the channel may appear ideal when it is sensed, a distant station may have already started transmitting.
- The distant station's signal has not yet reached this station.
- IFS time allows the front of the transmitted signal by the distant station to reach this station.
- After waiting an IFS time, if the channel is idle, the station can send, but it still needs to wait a time equal the contention window.

- Contention Window
 - An amount of time divided into slots.
 - A station that is ready to send choose a random of slots as its wait time.

Acknowledgement

- With all these precautions, there still may be collision resulting in destroyed data.
- In addition, the data may be corrupted during the transmission.
- The positive acknowledgement and the time-out time can help guarantee the receiver has received the frame.

Contents

- Services provided to the Network Layer
- Framing
- Error Control (error detection and correction code)
- Flow Control
- Data Link Layer in the Internet (SLIP, PPP)
- MAC sub layer: CSMA/CD/CA
- IEEE standards (IEEE802.3 Ethernet IEEE 802.4 Token Bus, IEEE 802.5 Token Ring)

IEEE standards (IEEE802.3 Ethernet IEEE 802.4 Token Bus, IEEE 802.5 Token Ring)

LLC: Logical link control

• IEEE 802.3 Ethernet

• In 1985, the computer society of IEEE started a project, called project 802, to set standards to enable intercommunication among equipment from a variety

of manufacturers.

MAC: Media access control Upper layers Upper layers LLC Data link layer Ethernet Token Rina Token Bus MAC MAC MAC Ethernet Token Ring Token Bus physical layers Physical layer . . . physical layer physical layer (several) Fransmission medium Transmission medium OSI or Internet model **IEEE Standard**

IEEE standards (IEEE802.3 Ethernet IEEE 802.4 Token Bus, IEEE 802.5 Token Ring)

- IEEE 802.3 Ethernet
- The original Ethernet was created in 1976 at Xerox's Palo Alto Research Center (PARC). Since then, it has gone through four generations.

