

PCT/PTO 17 MAR 2005

PCT/GB 2003 / 0 0 3 9 9 8

REC'D 17 CCT 2003

WIPO PCT

The Patent Office

Concept House

Cardiff Road

Newport

South Wales

NP10 8QQ

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed Stephen Hurchey

Dated 28 August 2003

BEST AVAILABLE COPY

Patents Act 1977 (Rule 16)

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help ••• All in this form)

2 0 SEP 2002

Cardiff Road Newport Owent NPO 1RH

The Patent Office

1. Your reference 100839

2. Patent application number (The Patent Office will fill in this part)

0221828.7

3. Full name, address and postcode of the or of each applicant (underline all surnames)

AstraZeneca AB S-151 85 Sodertalje Sweden

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

Sweden

7822448003

4. Title of the invention

NOVEL COMPOUND

5. Name of your agent (If you bave one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Neil Godfrey Alasdair Phillips

AstraZeneca UK Limited Global Intellectual Property Mereside, Alderley Park Macclesfield Cheshire SK10 4TG

Patents ADP number (if you know tt)

8468977001

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number (If you know it)

Date of filing (day / month / year)

 If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / month / year)

- 8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer Yes' if:
 - a) any applicant named in part 3 is not an inventor, or
 - b) there is an inventor who is not named as an applicant, or
 - c) any named applicant is a corporate body.
 See note (d))

ents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document

Continuation sheets of this form

Description

Claim(s)

Abstract

Drawing(s)

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

> Any other documents (please specify)

11.

I/We request the grant of a patent on the basis of this application.

Signatur

19/09/2002

12. Name and daytime telephone number of person to contact in the United Kingdom Jennifer C Bennett - 01625 230148

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be probibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to probibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

- a) If you need belp to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

NOVEL COMPOUND

The present invention relates to a thiazolopyrimidinone compound, processes and intermediates used in its preparation, pharmaceutical compositions containing it and its use in therapy.

Chemokines play an important role in immune and inflammatory responses in various diseases and disorders, including asthma and allergic diseases, as well as autoimmune pathologies such as rheumatoid arthritis and atherosclerosis. These small secreted molecules are a growing superfamily of 8-14 kDa proteins characterised by a conserved four cysteine motif. At the present time, the chemokine superfamily comprises three groups exhibiting characteristic structural motifs, the Cys-X-Cys (C-X-C), Cys-Cys (C-C) and Cys-X₃-Cys (C-X₃-C) families. The C-X-C and C-C families have sequence similarity and are distinguished from one another on the basis of a single amino acid insertion between the NH-proximal pair of cysteine residues. The C-X₃-C family is distinguished from the other two families on the basis of having a triple amino acid insertion between the NH-proximal pair of cysteine residues.

The C-X-C chemokines include several potent chemoattractants and activators of neutrophils such as interleukin-8 (IL-8) and neutrophil-activating peptide 2 (NAP-2).

The C-C chemokines include potent chemoattractants of monocytes and lymphocytes but not neutrophils. Examples include human monocyte chemotactic proteins 1-3 (MCP-1, MCP-2 and MCP-3), RANTES (Regulated on Activation, Normal T Expressed and Secreted), eotaxin and the macrophage inflammatory proteins 1α and 1β (MIP-1α and MIP-1β).

The C-X₃-C chemokine (also known as fractalkine) is a potent chemo attractant and activator of microglia in the central nervous system (CNS) as well as of monocytes, T cells, NK cells and mast cells.

Studies have demonstrated that the actions of the chemokines are mediated by subfamilies of G protein-coupled receptors, among which are the receptors designated CCR1, CCR2, CCR2A, CCR2B, CCR3, CCR4, CCR5, CCR6, CCR7, CCR8, CCR9, CCR10 and CCR11 (for the C-C family); CXCR1, CXCR2, CXCR3, CXCR4 and CXCR5 (for the C-X-

30 C family) and CX₃CR1 for the C-X₃-C family. These receptors represent good targets for drug development since agents which modulate these receptors would be useful in the treatment of disorders and diseases such as those mentioned above.

WO-01/25242 discloses a series of thiazolopyrimidinone compounds useful as CXCR2 antagonists. A compound within the scope of WO-01/25242, but not specifically disclosed therein, has now surprisingly been found to have an improved pharmacological profile when compared with the structurally most similar compounds from WO-01/25242 i.e. Examples 4 and 7.

The present invention therefore provides a compound of formula (I) and pharmaceutically acceptable salts or solvates thereof:

The compound of formula (I) is capable of existing in tautomeric form. Tautomers and mixtures thereof also form an aspect of the present invention.

According to the invention there is also provided a process for the preparation of compound (I) which comprises reaction of a compound of formula (II):

15

where R is C₁₋₆ alkyl with an acid,

and optionally thereafter: forming a pharmaceutically acceptable salt.

Preferably R is ethyl or methyl, more preferably methyl. Preferably the reaction is carried out using dioxan and HCl. Preferably the compounds of the invention are prepared according to the procedures exemplified herein.

The compound (II) can be prepared from the corresponding compound of formula

(III):

10

(III)

where R² is halogen by treating with a compound ROH in the presence of a base.

Preferably the compound of formula (III) is treated with sodium methoxide. Preferably R² is chloro.

Compounds of formula (III) can be prepared using the sequence below:

Suitable reagents for steps a to f will be known to those skilled in the art. Preferably steps a to f are carried out as exemplified herein.

The compound of formula (II) is itself believed to be novel and forms a further aspect of the invention.

It will be appreciated by those skilled in the art that in the processes of the present invention certain functional groups such as hydroxyl or amino groups in the starting reagents

or intermediate compound may need to be protected by protecting groups. Thus, the preparation of the compound of formula (I) may involve, at an appropriate stage, the removal of one or more protecting groups. The protection and deprotection of functional groups is fully described in 'Protective Groups in Organic Chemistry', edited by J. W. F. McOmie,

5 Plenum Press (1973), and 'Protective Groups in Organic Synthesis', 2nd edition, T. W. Greene & P. G. M. Wuts, Wiley-Interscience (1991).

The compound of formula (I) above may be converted to a pharmaceutically acceptable salt or solvate thereof, preferably a basic addition salt such as sodium, potassium calcium, aluminium, lithium, magnesium, zinc, benzathine, chloroprocaine, choline, diethanolamine, ethanolamine, ethyldiamine, meglumine, tromethamine or procaine, or an acid addition salt such as a hydrochloride, hydrobromide, phosphate, acetate, fumarate, maleate, tartrate, citrate, oxalate, methanesulphonate or p-toluenesulphonate.

The compound of formula (I) has activity as a pharmaceutical, in particular as a modulator of chemokine receptor (especially CXCR2) activity, and may be used in the treatment (therapeutic or prophylactic) of conditions/diseases in human and non-human animals which are exacerbated or caused by excessive or unregulated production of chemokines. Examples of such conditions/diseases include:

- (1) (the respiratory tract) obstructive airways diseases including chronic obstructive pulmonary disease (COPD); asthma, such as bronchial, allergic, intrinsic, extrinsic and dust asthma, particularly chronic or inveterate asthma (e.g. late asthma and airways hyper-responsiveness); bronchitis; acute, allergic, atrophic rhinitis and chronic rhinitis including rhinitis caseosa, hypertrophic rhinitis, rhinitis purulenta, rhinitis sicca and rhinitis medicamentosa; membranous rhinitis including croupous, fibrinous and pseudomembranous rhinitis and scrofoulous rhinitis; seasonal rhinitis including rhinitis nervosa (hay fever) and vasomotor rhinitis; sarcoidosis, farmer's lung and related diseases, fibroid lung and idiopathic interstitial pneumonia;
 - (2) (bone and joints) rheumatoid arthritis, seronegative spondyloarthropathies (including ankylosing spondylitis, psoriatic arthritis and Reiter's disease), Behcet's disease, Sjogren's syndrome and systemic sclerosis;
 - (3) (skin) psoriasis, atopical dermatitis, contact dermatitis and other eczmatous dermitides, seborrhoetic dermatitis, Lichen planus, Pemphigus, bullous Pemphigus, Epidermolysis bullosa, urticaria, angiodermas, vasculitides,

20

25

erythemas, cutaneous eosinophilias, uveitis, Alopecia areata and vernal conjunctivitis;

- (4) (gastrointestinal tract) Coeliac disease, proctitis, eosinopilic gastro-enteritis, mastocytosis, Crohn's disease, ulcerative colitis, food-related allergies which have effects remote from the gut, e.g., migraine, rhinitis and eczema;
- (5) (central and peripheral neryous system) Neurodegenerative diseases and dementia disorders, e.g. Alzheimer's disease, amyotrophic lateral sclerosis and other motor neuron diseases, Creutzfeldt-Jacob's disease and other prion diseases. HIV encephalopathy (AIDS dementia complex), Huntington's disease, frontotemporal dementia, Lewy body dementia and vascular dementia; polyneuropathies, e.g. Guillain-Barré syndrome, chronic inflammatory demyelinating polyradiculoneuropathy, multifocal motor neuropathy, plexopathies; CNS demyelination, e.g. multiple sclerosis, acute disseminated/haemorrhagic encephalomyelitis, and subacute sclerosing panencephalitis; neuromuscular disorders, e.g. myasthenia gravis and Lambert-Eaton syndrome; spinal disorders, e.g. tropical spastic paraparesis, and stiff-man syndrome: paraneoplastic syndromes, e.g. cerebellar degeneration and encephalomyelitis; CNS trauma; migraine; and stroke.
- (6) (other tissues and systemic disease) Atherosclerosis, Acquired Immunodeficiency Syndrome (AIDS), lupus erythematosus, systemic lupus, erythematosus, Hashimoto's thyroiditis, type I diabetes, nephrotic syndrome, eosinophilia fascitis, hyper IgE syndrome, lepromatous leprosy, and idiopathic thrombocytopenia pupura; post-operative adhesions, and sepsis.
- (7) Stroke, subarachnoid haemorrage, re-perfusion injury in the heart, brain, peripheral limbs and other organs.
- (8) (allograft rejection) acute and chronic following, for example, transplantation of kidney, heart, liver, lung, bone marrow, skin and cornea; and chronic graft versus host disease;
- (9) Cancers, especially non-small cell lung cancer (NSCLC), malignant melanoma, prostate cancer and squamous sarcoma, and tumour metastasis;
- (10) Diseases in which angiogenesis is associated with raised CXCR2 chemokine levels (e.g. NSCLC, diabetic retinopathy).
- (11) Cystic fibrosis

5

10

15

20

25

- (12) Burn wounds & chronic skin ulcers
- (13) Reproductive Diseases (e.g. Disorders of ovulation, menstruation and implantation, Pre-term labour, Endometriosis)

Thus, the present invention provides a compound of formula (I), or a pharmaceutically-acceptable salt or solvate thereof, as hereinbefore defined for use in therapy

Preferably the compound of the invention is used to treat diseases in which the chemokine receptor belongs to the CXC chemokine receptor subfamily, more preferably the target chemokine receptor is the CXCR2 receptor,

Particular conditions which can be treated with the compound of the invention are rheumatoid arthritis, diseases in which angiogenesis is associated with raised CXCR2 chemokine levels, and COPD. It is preferred that the compound of the invention is used to treat rheumatoid arthritis and respiratory disease.

As a further aspect of the present invention, the compound of formula (I) may have utility as an antagonist of the CX3CR1 receptor. Such a compound is expected to be particularly useful in the treatment of disorders within the central and peripheral nervous system and other conditions characterized by an activation of microglia and/or infiltration of leukocytes (e.g. stroke/ischemia and head trauma).

In a further aspect, the present invention provides the use of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as hereinbefore defined in the 20 manufacture of a medicament for use in therapy.

In a still further aspect, the present invention provides the use of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as hereinbefore defined in the manufacture of a medicament for the treatment of human diseases or conditions in which modulation of chemokine receptor activity is beneficial.

In the context of the present specification, the term "therapy" also includes "prophylaxis" unless there are specific indications to the contrary. The terms "therapeutic" and "therapeutically" should be construed accordingly.

The invention still further provides a method of treating a chemokine mediated disease wherein the chemokine binds to a chemokine (especially CXCR2) receptor, which comprises administering to a patient a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as hereinbefore defined.

The invention also provides a method of treating an inflammatory disease, especially rheumatoid arthritis, COPD, respiratory disease and psoriasis, in a patient suffering from, or

15

30

at risk of, said disease, which comprises administering to the patient a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as hereinbefore defined.

For the above-mentioned therapeutic uses the dosage administered will, of course, vary with the compound employed, the mode of administration, the treatment desired and the disorder indicated.

The compound of formula (I) and pharmaceutically acceptable salts and solvates thereof may be used on their own but will generally be administered in the form of a pharmaceutical composition in which the formula (I) compound/salt/solvate (active ingredient) is in association with a pharmaceutically acceptable adjuvant, diluent or carrier. Depending on the mode of administration, the pharmaceutical composition will preferably comprise from 0.05 to 99 %w (per cent by weight), more preferably from 0.05 to 80 %w, still more preferably from 0.10 to 70 %w, and even more preferably from 0.10 to 50 %w, of active ingredient, all percentages by weight being based on total composition.

The present invention also provides a pharmaceutical composition comprising a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as hereinbefore defined, in association with a pharmaceutically acceptable adjuvant, diluent or carrier.

The invention further provides a process for the preparation of a pharmaceutical composition of the invention which comprises mixing a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as hereinbefore defined, with a pharmaceutically acceptable adjuvant, diluent or carrier.

The pharmaceutical compositions may be administered topically (e.g. to the lung and/or airways or to the skin) in the form of solutions, suspensions, heptafluoroalkane

25 aerosols and dry powder formulations; or systemically, e.g. by oral administration in the form of tablets, capsules, syrups, powders or granules, or by parenteral administration in the form of solutions or suspensions, or by subcutaneous administration or by rectal administration in the form of suppositories or transdermally. Preferably the compound of the invention is administered orally.

The invention will now be further illustrated by reference to the following example.

Nuclear Magnetic Resonance (NMR) spectra were measured on a Varian Unity Inova 300 or

400 MHz spectrometer and the Mass Spectrometry (MS) spectra measured on a Finnigan Mat

SSQ7000 or Micromass Platform spectrometer. Where necessary, the reactions were

performed under an inert atmosphere of either nitrogen or argon. Chromatography was generally performed using Matrex Silica 60° (35-70 micron) or Prolabo Silica gel 60° (35-70 micron) suitable for flash silica gel chromatography. High pressure liquid chromatography purification was performed using either a Waters Micromass LCZ with a Waters 600 pump controller. Waters 2487 detector and Gilson FC024 fraction collector or a Waters Delta Prep 4000. The abbreviations m.p. and DMSO used in the examples stand for melting point and dimethyl sulphoxide respectively.

Example 1

5-[[(2,3-Difluorophenyl)methyl]thio]-7-[[2-hydroxy-1-(hydroxymethyl) 1

10 methylethyl]amino]-thiazolo[4,5-d]pyrimidin-2(3H)-one

- a) 6-Amino-2-[[(2,3-difluorophenyl)methyl]thio]- 4(3H)-pyrimidinone
- 4-Amino-6-hydroxy-2-mercaptopyrimidine monohydrate (7.1g) was added portion wise to a stirred suspension of 60% sodium hydride (2.4g) in dry N,N-dimethylformamide (70ml).

After 1 hour a solution of 2,3-Difluorobenzyl bromide (10g) in dry N,N-dimethylformamide

15 (10ml) was added. Stirred over weekend at room temperature. Poured on to ice/water and the precipitate was collected by filtration to give 9.6g of product. 81% yield.

MS (APCI) (+ve) 270 (M+H, 94%)

- b) 6-Amino-2-[[(2,3-difluorophenyl)methyl]thio]-1,6-dihydro-6-oxo-5-pyrimidinyl ester thiocyanic acid
- The product from step (a) (28g) and potassium thiocyanate (40.5g) in N,N-dimethylformamide (583ml) were heated together at 65°C. Pyridine (14.5ml) was added and the solution cooled to 5°C. Bromine (5.0ml) was added slowly and the reaction mixture stirred for 2 hours at 5-10°C. The reaction mixture was poured onto ice water (4200ml), stirred for 1 hour and the solid was collected by filtration, washed with water and ether, to give 24g of product. 70% yield.

MS (APCI) (+ve) 327 (M+H)

- c) 2-Amino-5-[[(2,3-difluorophenyl)methyl]thio]-thiazolo[4,5-d]pyrimidin-7(6H)-one A mixture of the product from step (b) (12.1g), N,N-dimethylformamide (70ml) and water (20ml) was heated to 120°C for 24 hours. A colourless solid precipitated from the solution,
- 30 which was allowed to cool, and the solid collected by filtration to give 8.3g of product. 70% yield.

MS (APCI) (+ve) 327 (M+H)

d) 7-Chloro-5-[[(2,3-difluorophenyl)methyl]thio]-thiazolo[4,5-d]pyrimidin-2-amine
The product of step (c) (10.0g) was suspended in phosphoryl chloride (55ml). N,Ndimethylaniline (5.5ml) added slowly and reaction mixture heated at reflux for 2 hours.

Allowed to cool, then poured on to ice with vigorous stirring; temperature was not allowed to
go above 45°C (ice added). After approximately 20 minutes the temperature stabilized at
30°C. The solid that formed was collected by filtration and washed with water. Purified by
column chromatography (EtOAc to 5% MeOH in EtOAc) to give 3.34g of product. 31%
yield.

MS: APCI (+ve) 345 (M+H)

e) 2-[[2-Amino-5-[[(2,3-difluorophenyl)methyl]thio]thiazolo[4,5-d]pyrimidin-7-yl]amino]-2-methyl-1,3-propanediol

The product from step (d) (1.5g) was suspended in NMP (10ml), then Hunigs base (1.5ml) and 2-Amino-2-methylpropanediol (1.37g) added. Reaction mixture heated to 110°C under N₂ for 4 hrs. A further aliquot of 2-Amino-2-methylpropanediol (0.685g) was added and mixture heated at 110°C for 5 hrs. Mixture poured in to water (400ml) and solid was collected by filtration. Purified by column chromatography (EtOAc: Methanol (95:5)) to give 0.756g of product. 42% yield.

MS: APCI (+ve) 414 (M+H)

 $f) \ \ 2\hbox{-}[[2\hbox{-}Chloro-5\hbox{-}[[(2,3\hbox{-}difluor ophenyl)methyl]thio]thiazolo[4,5\hbox{-}d]pyrimidin-7\hbox{-}indin-$

20 yl]amino]-2-methyl-1,3-propanediol

The product from step (e) (0.485g) was suspended in conc.HCl (18ml) which was then cooled to 15°C. A mixture of water (15ml) and acetonitrile (25ml) added to give a solution. Cooled to 5°C and a solution of sodium nitrite (0.162g) in water (1ml) added drop-wise. Stirred at 5°C for several hours then allowed to warm overnight. Solution cooled to -10°C and

- 25 neutralized with ammonia, then concentrated in vacuo. The yellow precipitate was collected by filtration and washed with water. Dried in vacuo to give 0.339g of product. 67% yield.
 MS: APCI (+ve) 433 (M+H)
 - g) 2-[[5-[[(2,3-Difluorophenyl)methyl]thio]-2-methoxythiazolo[4,5-d]pyrimidin-7-yl]amino]-2-methyl-1,3-propanediol
- 30 The product from step (f) (0.339g) was suspended in methanol (32ml). Potassium hydroxide (0.088g) added and mixture stirred at 50°C for 20 minutes. Neutralised with 2N HCl and solvents removed in vacuo to give an orange residue. Water added to remove inorganics and the yellow solid was collected by filtration to give 0.3g of desired product. 90% yield.

MS: APCI (+ve) 429 (M+H)

- h) 5-[[(2,3-Difluorophenyl)methyl]thio]-7-[[2-hydroxy-1-(hydroxymethyl)-1-methylethyl]amino]-thiazolo[4,5-d]pyrimidin-2(3H)-one
- The product from step (g) (0.3g) was suspended in a mixture of dioxan (50ml) and conc.HCl (1ml). Water (1ml) was added and the resultant solution heated at 60°C for 12 hours.

 Allowed to stand over weekend. Solvents removed in vacuo and residue taken up in water. Yellow precipitate collected by filtration and washed with water. Purified using prep. Hplc Acetonitrile:0.1%ammonium acetate (90:10 to 95:5) over 25 minutes to give 0.063g of the 0 desired product. 22% yield.

MS: APCI (+ve) 415 (M+H)

¹H NMR: δ (DMSO) 1.25 (3H, s), 3.54-3.66 (4H, m), 4.39 (2H, s), 4.65-4.69 (2H, t), 6.34 (1H, s), 7.12-7.20 (1H, m), 7.29-7.41 (2H, m), 12.43 (1H, s). mp 230-233 °C

15 Example 2

5-[[(2,3-Difluorophenyl)methyl]thio]-7-[[2-hydroxy-1-(hydroxymethyl)-1-methylethyl]amino]-thiazolo[4,5-d]pyrimidin-2(3H)-one, monosodium salt.

The product from Example 1, step (h) (0.87g) was suspended in water (80ml), 1.0M sodium hydroxide (3.0ml) added, then methanol (15ml), and the mixture heated on a steam

20 bath. When dissolution was almost complete, the mixture was filtered hot and the filtrate chilled overnight to give a fluffy white precipitate after filtration.

This was dried in a vacuum oven overnight at 50°C. (0.60g).

MS: APCI (+ve) 415 (M+H)

 1 H NMR: δ (DMSO) 1.23 (3H, s), 3.47-3.58 (4H, m), 4.37 (2H, s), 4.94 (2H, t), 5.29 (1H, s),

25 7.14 (1H, m), 7.31 (1H, m), 7.35 (1H,m).

mp 238 °C (dec.)

Pharmacological Data

Ligand Binding Assay

30 [125]]IL-8 (human, recombinant) was purchased from Amersham, U.K. with a specific activity of 2,000Ci/mmol. All other chemicals were of analytical grade. High levels of hrCXCR2 were expressed in HEK 293 cells (human embryo kidney 293 cells ECACC No. 85120602) (Lee et al. (1992) J. Biol. Chem. 267 pp16283-16291). hrCXCR2 cDNA was amplified and

cloned from human neutrophil mRNA. The DNA was cloned into PCRScript (Stratagene) and clones were identified using DNA. The coding sequence was sub-cloned into the eukaryotic expression vector RcCMV (Invitrogen). Plasmid DNA was prepared using Quiagen Megaprep 2500 and transfected into HEK 293 cells using Lipofectamine reagent (Gibco BRL). Cells of the highest expressing clone were harvested in phosphate-buffered saline containing 0.2%(w/v) ethylenediaminetetraacetic acid (EDTA) and centrifuged (200g, 5min.). The cell pellet was resuspended in ice cold homogenisation buffer [10mM HEPES (pH 7.4), 1mM dithiothreitol, 1mM EDTA and a panel of protease inhibitors (1mM phenyl methyl sulphonyl fluoride, 2μg/ml soybean trypsin inhibitor, 3mM benzamidine, 0.5μg/ml leupeptin and 100μg/ml bacitracin)] and the cells left to swell for 10 minutes. The cell preparation was disrupted using a hand held glass mortar/PTFE pestle homogeniser and cell membranes harvested by centrifugation (45 minutes, 100,000g, 4°C). The membrane preparation was stored at -70°C in homogenisation buffer supplemented with Tyrode's salt solution (137mM NaCl, 2.7mM KCl, 0.4mM NaH₂PO₄), 0.1%(w/v) gelatin and 10%(v/v) glycerol.

15 All assays were performed in a 96-well MultiScreen 0.45μm filtration plates (Millipore, U.K.). Each assay contained ~50pM [¹²⁵I]IL-8 and membranes (equivalent to ~200,000 cells) in assay buffer [Tyrode's salt solution supplemented with 10mM HEPES (pH 7.4), 1.8mM CaCl₂, 1mM MgCl₂, 0.125mg/ml bacitracin and 0.1%(w/v) gelatin]. In addition, a compound of formula (I) according to the Examples was pre-dissolved in DMSO and added to reach a

20 final concentration of 1%(v/v) DMSO. The assay was initiated with the addition of membranes and after 1.5 hours at room temperature the membranes were harvested by filtration using a Millipore MultiScreen vacuum manifold and washed twice with assay buffer (without bacitracin). The backing plate was removed from the MultiScreen plate assembly, the filters dried at room temperature, punched out and then counted on a Cobra γ-counter.

25 The compound of formula (I) has an IC50 value of less than (<) $10\mu M$.

Intracellular Calcium Mobilisation Assay

Human neutrophils were prepared from EDTA-treated peripheral blood, as previously described (Baly et al. (1997) Methods in Enzymology 287 pp70-72), in storage buffer [Tyrode's salt solution (137mM NaCl, 2.7mM KCl, 0.4mM NaH₂PO₄) supplemented with 5.7mM glucose and 10mM HEPES (pH 7.4)].

The chemokine GROα (human, recombinant) was purchased from R&D Systems (Abingdon, U.K.). All other chemicals were of analytical grade. Changes in intracellular free calcium were measured fluorometrically by loading neutrophils with the calcium sensitive fluorescent dye, fluo-3, as described previously (Merritt et al. (1990) Biochem. J. 269, pp513-519). Cells were loaded for 1 hour at 37°C in loading buffer (storage buffer with 0.1%(w/v) gelatin) containing 5μM fluo-3 AM ester, washed with loading buffer and then resuspended in Tyrode's salt solution supplemented with 5.7mM glucose, 0.1%(w/v) bovine serum albumin (BSA), 1.8mM CaCl₂ and 1mM MgCl₂. The cells were pipetted into black walled, clear bottom, 96 well micro plates (Costar, Boston, U.S.A.) and centrifuged (200g, 5 minutes, room temperature).

A compound of formula (I) according to the Examples was pre-dissolved in DMSO and added to a final concentration of 0.1%(v/v) DMSO. Assays were initiated by the addition of an A_{50} concentration of GRO α and the transient increase in fluo-3 fluorescence (λ_{Ex} =490nm and λ_{Em} = 520nm) monitored using a FLIPR (Fluorometric Imaging Plate Reader, Molecular Devices, Sunnyvale, U.S.A.).

The compound of formula (I) was tested and found to be an antagonist of the CXCR2 receptor in human neutrophils.

CLAIMS

1. A compound of formula (I) and pharmaceutically acceptable salts or solvates thereof:

(I)

- A pharmaceutical composition comprising a compound of formula (I), or a
 pharmaceutically acceptable salt or solvate thereof, as claimed in claim 1 in association with a
 pharmaceutically acceptable adjuvant, diluent or carrier.
- 3. A process for the preparation of a pharmaceutical composition as claimed in claim 2 which comprises mixing a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as claimed in claim 1 with a pharmaceutically acceptable adjuvant, diluent or carrier.
 - 4. A compound of formula (I), or a pharmaceutically-acceptable salt or solvate thereof, as claimed in claim 1 for use in therapy.
- 20 5. Use of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as claimed in claim 1 in the manufacture of a medicament for use in therapy.
 - 6. A method of treating a chemokine mediated disease wherein the chemokine binds to one or more chemokine receptors, which comprises administering to a patient a
- 25 therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as claimed in claim 1.

15

- 7. A method according to claim 6 in which the chemokine receptor belongs to the CXC chemokine receptor subfamily.
- 8. A method according to claim 6 or 7 in which the chemokine receptor is the CXCR2 5 receptor.
- 9 A method of treating an inflammatory disease in a patient suffering from, or at risk of said disease, which comprises administering to the patient a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as 10 claimed in claim 1.
 - 10. A method according to claim 9, wherein the disease is psoriasis.
 - 11. A method according to claim 9, wherein the disease is rheumatoid arthritis.
 - 12. A method of treating a disease in which angiogenesis is associated with raised CXCR2 chemokine levels, or at risk of, said disease, which comprises administering to the patient a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as claimed in claim 1.
 - 13. A method according to claim 9, wherein the disease is severe asthma.
 - 14. A method according to claim 9, wherein the disease is inflammatory bowel disease.
- 25 15. A method according to claim 9, wherein the disease is COPD.
 - 16. A process for the preparation of a compound of formula (I) which comprises reaction of a compound of formula (II):

5 where R is C_{1-6} alkyl with an acid, and optionally thereafter:forming a pharmaceutically acceptable salt.

ABSTRACT Title: Novel Compound

The invention provides a thiazolone compound for use in therapy.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

6
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.