

圣马尔科斯国立大学 (秘鲁大学,美洲的创始大学) 系统与信息工程学院 软件工程专业

教学大纲

1. 基本信息

1.1 课程名称 : 智能软件——2018年计划

1.2 课程代码: 202W09081.3 课程类型: 强制的1.4 学科领域: 具体的1.5 周数: 16

1.6 每周课时 : 理论: 2, 实践: 0, 实验: 2

 1.7 学期
 : 2025-1

 1.8 学年
 : IX

 1.9 学分
 : 3

 1.10 授课方式
 : 亲自

 1.11 先修课程
 : —

 1.12 教师
 : —

2. 课程简介

本课程属于补充研究领域,理论性和实践性兼具。其目标是基于人工智能知识和数据挖掘算法开发智能系统:"以符合伦理道德和社会责任的态度,运用国际质量和数据科学方法与标准,构建、开发和管理用于管理决策的软件解决方案。"主要内容包括:使用算法进行数据收集和探索;运用统计技术进行算法数据分析;机器学习算法、深度学习算法、通用KADS算法以及遗传算法。

3. 本课程有助于培养的毕业能力

代码	描述	类型	水平
CG3.3	运用分析和批判性思维能力开展与未来职业生涯相关的活动	通用 的	Avanzado
CT11.3	以道德、批判和创新的态度实施基于新兴开发流程的智能软件。	专业	Avanzado
CE12.3	以道德态度和社会责任为导向,采用国际质量和数据科学方法和标准实施管理决策的 软件解决方案。	专业	Avanzado
	_	_	

4. 学习成果

CG3.3

分析并将算法作为人类生活的模型,其应用可以解决现实生活中的问题。

CT11.3

以道德、批判和创新的态度,在多学科团队中使用人工智能方法、技术和方法论开发和实施智能软件。

1

CE12.3

开发并实施用于管理决策的智能软件解决方案,采用国际质量和数据科学方法与标准,并秉持道德态度和社会责任。

5. 能力

• 单元 1: 仿生软件和算法简介

描述: 他熟悉遗传算法,并有能力根据环境需求实施解决方案。

• 单元 2: 神经网络

描述: 它能够根据组织和/或环境的要求设计神经网络架构。

• 单元 3: 图像处理

描述: 熟悉图像分类模型和算法, 能够基于图像处理实现人工智能引擎的智能软件。

• 单元 4: 自然语言处理

描述: 他熟悉自然语言处理模型, 并可以根据环境要求实施解决方案。

6. 内容安排

单元1: 仿生软件和算法简介

单元成果:使用遗传算法理解和建模解决方案,并基于生物启发算法设计智能软件。

周	内容	活动	资源	策略
1	• 智能软件开发基础知识、MLops 通用 KADS 方法论。	• 入学评估 • 课程大纲分享 • 课程项目小组组 建 • 内容展示与讨论 • 实验室工具识别	 关于该主题的 PowerPoint 演示文稿 文本和书籍 数据集 编程语言 Python 	• 主动学习 • 案例分析 • 团队合作
2	• 多代理系统基础知识 • 代理和环境的类型 • 代理架构	• 内容展示与讨论 • 需要多智能体系 统的案例展示 • 多智能体系统实 验室	 关于该主题的 PowerPoint 演示文稿 文本和书籍 数据集 编程语言 Python 	• 主动学习 • 案例分析 • 团队合作
3	• 仿生算法: 遗传算法、群体算法	• 评估先前知识 • 内容展示和讨论 • 需要使用仿生算 法的案例展示 • 遗传算法实验室	 关于该主题的 PowerPoint 演示文稿 文本和书籍 数据集 编程语言 Python 	• 主动学习 • 案例分析 • 团队合作
4	• 使用算法进行数据收集和探索	• 先前知识评估 • 内容展示和讨论 • 需要数据收集的 案例展示 • 使用算法进行数 据收集实验	 关于该主题的 PowerPoint 演示文稿 文本和书籍 数据集 编程语言 Python 	• 主动学习 • 案例分析 • 团队合作

单元 2: 神经网络

单元成果: 达斯达斯达斯

周	内容	活动	资源	策略
5	• 使用统计技术进行推理,在智能软件中进行机器学习		 关于该主题的 PowerPoint 演示文稿 文本和书籍 数据集 编程语言 Python 	• 主动学习 • 案例 分析 • 团队合作
6	• 多层神经网络	• 评估先前知识 • 内容展示和讨论 • 需要使用多层神经网络 的案例展示 • MLP 实验	 关于该主题的 PowerPoint 演示文稿 文本和书籍 数据集 编程语言 Python 	• 主动学习 • 案例 分析 • 团队合作
7	• 循环神经网络,LSTM	• 评估先前知识 • 内容展示和讨论 • 需要使用循环神经网络 算法的案例展示 • LSTM 网络实验	 关于该主题的 PowerPoint 演示文稿 文本和书籍 数据集 编程语言 Python 	• 主动学习 • 案例 分析 • 团队合作
8	部分考试	_	_	_

单元 3: 图像处理

单元成果:卡斯达斯达达斯

周	内容	活动	资源	策略
9	• 深度学习	先前知识评估内容展示与讨论需要运用深度学习的案例展示深度学习架构实验室	 关于该主题的 PowerPoint 演示文稿 文本和书籍 数据集 编程语言 Python 	• 主动学习 • 案例分析 • 团队合作
10	• 美国有线电视新闻网	先前知识评估内容展示和讨论图像分类案例展示图像分类实验室	 关于该主题的 PowerPoint 演示文稿 文本和书籍 数据集 编程语言 Python 	• 主动学习 • 案例分析 • 团队合作
11	• 图像分类	• 先前知识评估 • 内容展示和讨论 • 图像分类案例展示 • 图像分类实验室	 关于该主题的 PowerPoint 演示文稿 文本和书籍 数据集 编程语言 Python 	• 主动学习 • 案例分析 • 团队合作
12	• 图像分类中的高级算法	评估先前知识内容展示和讨论需要使用高级图像分类算法的案例展示图像分类实验室	 关于该主题的 PowerPoint 演示文稿 文本和书籍 数据集 编程语言 Python 	• 主动学习• 案例分析• 团队合作

单元 4: 自然语言处理

单元成果: 己删除

周	内容	活动	资源	策略
13	•迁移学习、预训练模型	• 先前知识评估 • 内容展示与讨论 • 需要迁移学习的案例展示 • 预训练模型实验室	 关于该主题的 PowerPoint 演示文稿 文本和书籍 数据集 编程语言 Python 	• 主动学习 • 案例分析 • 团队合作
14	• 自然语言处理	•评估先前知识 •内容演示和讨论 •需要自然语言处理技术	关于该主题的 PowerPoint 演示文稿文本和书籍数据集	• 主动学习•案例分析• 团队合作

周	内容	活动	资源	策略
		的案例演示 • 自然语言处理实验室	• 编程语言 Python	
15	• 语言模型: GPT Chat、 生成式 AI	• 先前知识评估 • 内容展示与讨论 • 需要生成式人工智能的 案例展示 • 语言模型实验室	 关于该主题的 PowerPoint 演示文稿 文本和书籍 数据集 编程语言 Python 	• 主动学习 • 案例分析 • 团队合作
16	期末考试	_	_	_

7. 教学策略

教师鼓励学生在理论和实验环节积极参与,运用基于问题的学习方法、案例教学法、基于项目的学习方法以及团队合作和协作小组。为此,教师将在虚拟教室中发布课程材料、待开发的问题和案例以及基本的团队项目指南。

8. 学习评估

评估 以下工具将被考虑: •部分考试 (PE) • 期末考试 (FE) • 部分作业报告 1 (TP) • 期末作业报告 2 (TF) GPA 计算方法: N1 = PE*0.30 N2 = 平均分 (TP, TF)*0.40 N3 = EF*0.30

评分公式: PF = (N1 + N2 + N3)

• 不提供替代考试。

单元	评估标准	表现	成果	评估工具
仿生软件和算法 简介	理解仿生算法	仿生算法的基础和知 识	交付报告(PE1)	评分标准清 单
神经网络	理解神经网络	理解并了解神经网络	可交付成果报告(PE12 期中考 试)	评分标准清 单
图像处理	了解图像处理的基础 知识	理解并了解图像处理 技术	可交付成果报告(PE12 期中考 试)	评分标准清 单
自然语言处理	NLP的理解与基础	理解并了解 NLP 技术	可交付成果报告(PE12 期中考 试)	评分标准清 单

9. 参考书目

- Geron, A. (2017). 使用 Scikit-Learn 和 TensorFlow 进行机器学习实践:构建智能系统的概念、工具和技术(第二版)。O'Reilly Media, Inc.
- Gestal, M.、Rivero, D.、Rabuñal, J. R.、Dorado, J. 和 Pazos, A. (2010)。遗传算法和遗传编程简介。达科鲁尼亚大学,出版服务处。
- Hastie, T.、Tibshirani, R. 和 Friedman, J. (2008). 《统计学习要素》(第二版)。Springer。
- 《人工智能:基础、实践与应用》(第一版),Alberto García, 2012 年
- Marsland, S. (2015). 机器学习: 算法视角(第二版)。Chapman and Hall/CRC。https://doi.org/10.1201/b17476
- Python 机器学习(首次出版), Sebastian Raschka, 2016年
- Python 数据分析。Wes McKinney。O'Reilly Media, Inc. 2013
- Sidorov, G. (2018). 人工智能(第一版)。 Alfaomega 出版集团
- Simmon, R. 和 Mark, G. (2012)。《机器学习入门课程》(第一版)。Taylor & Francis 集团。
- Stuart, R. 和 Peter, N. (2010)。《人工智能: 一种现代方法》(Era 版)。培生教育集团。
- 数据仓库工具包(第 3 版),Ralph Kimball、MARGY ROSS,Wiley Computer Publishing,2013 年