```
Linear Regression "y=wx+c" or "X_aug-w=y"
                                                                                                                                                                                                     e.g. f(x, x2) = Wo. /+ W1x1 + W2x2
  Available data: X-train, y-train, X-test 7 y= (12)(2)
                                                                                                                                                                                                                        whec f(.) predicts y
     what to do?
                                                                                                                                                                                                                  using x_1 \downarrow x_2.
        (i) Augment X: X_a <- (! X_train)

(ii) Find (2).

(iii) M = no. of rows (samples)

(iii) determine shape of X_a; d= no. of coln. (feature)
                                                                                                                                                                                                                                                                      constant coeff
        (2B) Apply Left/Right Incore to get linear weights for the linear model
                                   mrd (primal): \hat{\omega} \subset (X_0^T X_0^{-1} X_0^T \cdot y - train (Left inverse)

mrd (dual): \hat{\omega} \subset X_0^T (X_0 X_0^T)^{-1} \cdot y - train (Right inverse)
       Apply linear model to X-test to product y-ped we X:= X-ang
                                                                                                                                                                                                                                                           W_{i} is the velocity for X_{i} for X = (x_{1}, ..., x_{n})
                                       ! need to augment X-toof first!
                                 (compare y-pred with a hidden y-test: MSE (y-pro), y-test) } test enor.
       Ridge Regression
           What happens if XTX (resp. XXT) is not invertible?
            -> use XTX + \( 1 ( 100p. XXT+\( \) instead with \( \) 70 small. e.g. \( \) = 0.0001
 This is called regularisation.

This is called regularisation.

The purposes:

The purposes:

The purposes:

The cost fine in primal form

The cost fine in
 regularizal cost: min || Xw-y||2+ 2 || w||2 = min (Xw-y)7(Xw-y) + 2 win
cast for in dual form (extra)
 original cast: \min \| || \times w - y ||^2 = \min \sum_{i=1}^{m} (y_i - x^{(i)}w)^2 where X = \begin{pmatrix} x^{(i)} \\ x^{(2)} \end{pmatrix} y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} regularized cust: \min \| || \times w - y ||^2 + \lambda ||w||^2 = \min \sum_{i=1}^{m} (y_i - x^{(i)}w)^2 + \lambda \sum_{j=1}^{m} w_j^2, where w = \begin{pmatrix} w_1 \\ \vdots \\ w_d \end{pmatrix} that to get (extrn) with minimizer and to apply Lagrangian duality. See KK7 theory. This is why this is extrn.
                                  rough iden: get dual problem some dual problem.
```

Ridge Regrossion	(what to do? SAME as Linear regression but charge the Left/Right Involve)
(i) Augment X: X-oung	c (X_train)
2 determine Shape of	X - aug : m = 10. of rows d = 10. of colo.
Apply Left / Right I	nurse to get linear weights for the linear model constant coeff
mad (primal)	· W C (XTX+XI) XT. y from (Left invoce) Wife ()
m < d (dual)	
	el to X-test to product y-ped use X:= X-ong for Xi
	$X = \{x_1, \dots, x_n\}$
(b) y_prod (-	X-test_aug - D
Police of Possessia	a (examples)
Polynomial Regresslor	(de)
-> non-linear model	$+ \omega_1 \times + \omega_2 \times^2 + \cdots + \omega_{1k} \times c^{k}$. This is a kth order polynomial in one variable ∞ .
given oc	train, we want to
estimate	neights too, w,, w/c, which are the linear neights
$\rightarrow eg. p(x_1,x_2) =$	each monomial $x^i \sim U_i$. When $u_{1,0} = u_{1,1} = u$
	X frin = (x, xx)
ODDIE THY I	$(1/2) = (1/2) \times (1/2$
so we	INFARLY with respect to nonomials VIII
	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Model : P-train i	$e \circ f X_{-toin}, e.g. (x_1,x_2)=(2,5)$
Where the seek so the	2) I arrive that P train is already
he report with 1/2 trave	$=(1, x_1, x_2, x_1^2, x_1x_2, x_3)$ or original the "\" correspond $=(1, 2, 5, 4, 10, 25)$ to constant coeff wo,0.
	= $(1, 2, 5, 4, 10, 25)$ to constant coeff wo, o. 2 $x_i^i x_i^j$ correspond to $w_{i,j}$.

Polynomial Regrossi	ion (Steps)	_				
Data: X_trai	n, y_tain, X	(_test				
what to do:						
(1): transform	X-train to P.	_train row 1	ey ow.			=P_troic
0.a. X	$f_{\text{nin}} = \begin{pmatrix} \chi_{1/1} \\ \chi_{2/1} \\ \chi_{3/1} \end{pmatrix}$	X1,2	ارب ا ح	X ₂₁ X		ζ _{1,2} χ _{1,2} .
	ا کری ر	22,2	7,1	X2,1 2		, X _{2,2} X _{2,2}
	ν3,1	J3,2	1 23,1	$\chi_{3,1}$	(3, ₁) y(2,	$x_{3,2}$ $x_{3,1}$
(ZA) Determine Shap	e of P-train		constant			, ,
m= ? 50	inc os X.	i count non-	X ₁	X2 :)(12	$\chi_1 \chi_2 \qquad \chi_2^2$
A= how m	any monomials? m	12: use formula	(d+K)	, whec we	have d	winder,
					70-17-10	, 2ds
A-al 1-64 / p: 1	16 Taness	linear majolets	for the polyno	mial model		
	of Increse to get				₩ 100	les like
m > d (prim.	al): $\hat{\omega} = (P)$ model to X-test to gettern X-test to gettern Similarly	(PPT+XL) - y	-train (Right	inverse)	. ú=	W0,0
4 Apply polyments	model to X test t	o prodict y-pred	. "Twe	P = P-train), ,	\ w
i need to	o transform X_tost	to P_test flost	Ni2	ne P_train alr augm	ented,	
@ P_test	gotten similarly	to Step (1)		do (rof augment	ag ain
b y prod	← P_teef. ŵ) This is	some as y	-pred = F	(x-tef)	
D:	tt 1	(VIA) =	san (4) "			
Binary Classifica	tion class =	sgn (xoo)	J.(J)	$\int \frac{f}{dt} \left(\right)$	(2 m
Data: X-train,	class_train, X	_test , whec	class_train) = (=)	€ 271	5
Birrary Classificar Data: X-train, what to do?						
(1) Apply Linear	or Polynomial	legesian to	X_train, cla	ss_troin, X_T	eıf	
to ge	f y_pred =	X_tast · ŵ	(or y-pred	= P_test .	(۾	
2) Apply sign-fun	thin to y-pred			1		200(2)
	class_pred =	sgn(y-jara	L).	(0-		egn(2)
ड्रम पु	as through.		_	0.	-1	<i>y</i>
	2 mount.			<u>'</u>		

(Binary Classification, Python)

Question 4:

Given the training data:

$$\{x = -1\} \rightarrow \{y = class1\}$$

 $\{x = 0\} \rightarrow \{y = class1\}$
 $\{x = 0.5\} \rightarrow \{y = class2\}$
 $\{x = 0.3\} \rightarrow \{y = class1\}$
 $\{x = 0.8\} \rightarrow \{y = class2\}$

Predict the class label for $\{x = -0.1\}$ and $\{x = 0.4\}$ using linear regression with signum discrimination.

$$y = \begin{pmatrix} +1 \\ -1 \end{pmatrix}$$

$$y = \begin{pmatrix} +1 \\$$

now (one-hot-encoding),
$$Y \sim (m,c)$$
 array where c is no. of classes

 (m,d) (m,c)

Given the training data:

- (a) Predict the class label for $\{x = -0.1\}$ and $\{x = 0.4\}$ based on linear regression towards a one-hot encoded
- target. M = 5 d = 1 + 1 = 2. M = 1 + 1 = 2 (b) Predict the class label for $\{x = -0.1\}$ and $\{x = 0.4\}$ using a polynomial model of 5th order and a one-hot encoded target.

(Multi-Category Classification, Python) Question 6 (continued from Q3 of Tutorial 2):

Get the data set "from sklearn.datasets import load_iris". Use Python to perform the following tasks.

- (a) Split the database into two sets: 74% of samples for training, and 26% of samples for testing. Hint: you might want to utilize from sklearn.model selection import train test split for the splitting.
- (b) Construct the target output using one-hot encoding.
- (c) Perform a linear regression for classification (without inclusion of ridge, utilizing one-hot encoding for the learning target) and compute the number of test samples that are classified correctly.
- (d) Using the same training and test sets as in above, perform a 2nd order polynomial regression for classification (again, without inclusion of ridge, utilizing one-hot encoding for the learning target) and compute the number of test samples that are classified correctly. Hint: you might want to use from sklearn.preprocessing import PolynomialFeatures for generation of the polynomial

Question 7

MCQ: there could be more than one answer. Given three samples of two-dimensional data points $\mathbf{X} = \begin{bmatrix} 0 & 1 \end{bmatrix}$ with

corresponding target vector $\mathbf{y} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. Suppose you want to use a full third-order polynomial model to fit these data.

Which of the following is/are true?

- a) The polynomials model has 10 parameters to learn
- b) The polynomial learning system is an under-determined one
- c) The learning of the polynomial model has infinite number of solutions 7.
 d) The input matrix **X** has linearly dependent samples
 - e) None of the above

m>d: "no whn". MSd: under constraint.

10. of promety =
$$\begin{pmatrix} d+k \\ k \end{pmatrix}$$

= $\begin{pmatrix} 3+2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$
= $\frac{5!}{3!(5-3)!} = \frac{5\times 4}{2}$

 $x_1^3, x_1^2, x_2, x_1, x_2^2, x_2^3$

Question 8

MCQ: there could be more than one answer. Which of the following is/are true?

- a) The polynomial model can be used to solve problems with nonlinear decision boundary.

 b) The ridge regression cannot be applied to multi-target regression.

 The polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with nonlinear decision boundary.

 Description of the polynomial model can be used to solve problems with the polynomial model can be used to solve problems.

 Description of the polynomial model can be used to solve pro
- c) The solution for learning feature **X** with target **y** based on linear ridge regression can be written as $\hat{\mathbf{w}} =$ $(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$ for $\lambda > 0$. As λ increases, $\mathbf{\hat{w}}^T\mathbf{\hat{w}}$ decreases. The full second-order polynomial model is an overcost = MSC(prot, tru) + 2/1/1/12
- determined system.

$$d = \begin{pmatrix} 2+2 \\ 2 \end{pmatrix} = \frac{4\cdot 3}{2} = 6.$$