Course Overview

Computer Organization

The Computer Revolution

- Progress in computer technology
 - Reinforced by Moore's Law
- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project
 - World Wide Web
 - Search Engines
- Computers are pervasive

Classes of Computers

Desktop

 single user, general purpose, with a typical set up of display, keyboard, and mouse

Critical: cost, performance

Desktop Computer

Classes of Computers

- Desktop
 - single user, general purpose, with a typical set up of display, keyboard, and mouse

Critical: cost, performance

- Personal Mobile Device (PMD)
 - single user, general purpose, small-size touchscreen

Critical: power, cost

The Post-PC Era

Classes of Computers

Desktop

 single user, general purpose, with a typical set up of display, keyboard, and mouse

Critical: cost, performance

- Personal Mobile Device (PMD)
 - single user, general purpose, small-size touchscreen
 Critical: power, cost

Servers

run larger programs in parallel for multiple users, typically accessed remotely

Critical: performance, capacity, security, reliability

Server

Server

Rack

Classes of Computers

Desktop

 single user, general purpose, with a typical set up of display, keyboard, and mouse

Critical: cost, performance

- Personal Mobile Device (PMD)
 - single user, general purpose, small-size touchscreen

Critical: power, cost

Servers

run larger programs in parallel for multiple users, typically accessed remotely

Critical: performance, capacity, security, reliability

Supercomputers

 clusters with hundreds to thousands of processors, terabytes of memory and petabytes of storage

Critical: performance, capacity, expandability

Supercomputer

Frontier,

Oak Ridge National Laboratory and the USA Department of Energy @ Tennessee, United States

Currently the world's most powerful supercomputer with 606,208 cores 9,472 AMD Epyc 7A53s each with 64 core @ 2 GHz and 37,888 Radeon GPUs with a peak performance of 1.685 exaFLOPS power consumption of 21 MW the current lowest power supercomputer with 62.68 gigaflops/watt

Classes of Computers

Desktop

 single user, general purpose, with a typical set up of display, keyboard, and mouse

Critical: cost, performance

- Personal Mobile Device (PMD)
 - single user, general purpose, small-size touchscreen
 Critical: power, cost

Servers

run larger programs in parallel for multiple users, typically accessed remotely

Critical: performance, capacity, security, reliability

Supercomputers

 clusters with hundreds to thousands of processors, terabytes of memory and petabytes of storage

Critical: performance, capacity, expandability

Embedded

hidden component of a system, running a predefined program
 Critical: cost, power, performance

Embedded Computers

Over 99% of processor sales are for embedded systems!

Issues in Embedded Systems

Specific issues when programming embedded systems:

- Real-time requirements
 - Often worst-case is more important than average-case
- Resource constraints
 - Power and memory
- Reliability
 - Safety critical systems
 - Difficult access
- Diversity
 - Heterogeneity of computing architectures
 - Diverse set of input/output devices

Classes of Computers

Desktop

 single user, general purpose, with a typical set up of display, keyboard, and mouse

Critical: cost, performance

- Personal Mobile Device (PMD)
 - single user, general purpose, small-size touchscreen
 Critical: power, cost

Servers

run larger programs in parallel for multiple users, typically accessed remotely

Critical: performance, capacity, security, reliability

Supercomputers

 clusters with hundreds to thousands of processors, terabytes of memory and petabytes of storage

Critical: performance, capacity, expandability

Embedded

hidden component of a system, running a predefined program
 Critical: cost, power, performance

Technology Trends

- The transistor density increases about 35% per year.
- The circuits area increases about 10% to 20% per year.
- The number of transistors per circuit increases about 55% per year.

Moore's Law (1965):

"The number of transistors per square-centimeter of integrated circuit doubles every 18 months."

 In practice, the density increased about 1,000,000x in the last 45 years!

Moore's Law in Practice

Inside the Processor

Intel Core i7:

4 processor cores, 1.3x10⁹ transistors

Technology Trends

Power Trends

In CMOS IC technology

Multiprocessors

The power wall:

- can't reduce voltage further
- can't remove more heat

How else can we improve performance?

- **→** Multicore microprocessors
 - More than one processor per chip

New paradigm!

Requires explicitly parallel programming:

- Compare with instruction level parallelism
 - Hardware executes multiple instructions at once
 - Hidden from the programmer
- Hard to do
 - Programming for performance
 - Load balancing
 - Optimizing communication and synchronization

Processor Performance

Check@home: Trends in Technology

- Integrated circuit technology
 - Transistor density: 35%/year
 - Die size: 10-20%/year
 - Integration overall: 40-55%/year
- DRAM capacity: 25-40%/year (slowing)
- Flash capacity: 50-60%/year
 - 15-20X cheaper/bit than DRAM
- Magnetic disk technology: 40%/year
 - 15-25X cheaper/bit then Flash
 - 300-500X cheaper/bit than DRAM

Check@home: Bandwidth and Latency

- Bandwidth or throughput
 - Total work done in a given time
 - 10,000-25,000X improvement for processors
 - 300-1200X improvement for memory and disks
- Latency or response time
 - Time between start and completion of an event
 - 30-80X improvement for processors
 - 6-8X improvement for memory and disks

What You Will Learn

- Architecture of current processors
 - Performance metrics
- Integrated view of the computer system
 - Memory hierarchy
 - Input/Output system
- How to improve program performance
- Features related to embedded systems
- What is parallel processing
- Future trends

Teaching Staff

Senior Lecturers:

Alameda -> Ricardo Chaves @INESC-ID

Taguspark → Alberto Cunha

All relevant information published on **Fénix**. Check it frequently.

Couse email:

```
Alameda → oc-a-leic@tecnico.ulisboa.pt Sub:[OC] ...
```

Taguspark → oc-t-leic@tecnico.ulisboa.pt Sub:[OC] ...

Teaching Staff

Teaching assistants:

- Diogo Cardoso
- Afonso Fernandes
- Inês Pissarra
- Catarina Bento
- David Valente
- Diogo Dinis
- Hugo Mantinhas
- Vasco Correia
- Guilherme Baracho

Couse email:

Alameda → oc-a-leic@tecnico.ulisboa.pt Sub:[OC] ...

Taguspark → oc-t-leic@tecnico.ulisboa.pt Sub:[OC] ...

Class Schedule

Grade assessment

Final grade = 70%.max{[max (MAP45_a, Ex_a)]/2, EE} + 30%.L

- MAP1+2 or Recov. Exam
 , Min. grade = 7.5
- Labs = (L1 + L2 + L3) , Min. grade = 8

MAP (45 min test):

- mini-Test: October 6 @ 18:00
- mini-Test: October 25 @ 18:00

Recov. Exam:

- Recov. Exam: November 9 @ 15:30
 - Two part recovery (MAP_a and/or MAP_b)

Grade assessment

Labs (30%)

- 2 + 1 labs, 15% + 15%
- groups of 3 elements, from the same registration slot
- lab grade defined individually at the oral discussions
- can be reused grade from labs <u>submitted</u> in the last 2 years (2021/2022)
- Report / Code to be submitted at the beginning on the second practical class of the respective week.

Important dates (weeks):

Publication Lab1 : Sep 11 week

Publication Lab2 : Sep 18 week

Delivery & Demo of Lab 1 : Sep 25 week

Publication Lab3 : Sep 25 week

Delivery of Lab 2 : Oct 9 week

Delivery of Lab 3 : Oct 16 week

Oral evaluation : Oct 23 and Oct 30 Weeks

Grade assessment

Labs 1 and 3 (15%)

- Guided work
 - PAPI
 - WinMIPS
- To submit:
 - Report pages with results

Labs 2 (15%)

- Cache simulator to be written in C code
- Basic simulator and tests are provided
- To submit:
 - 2 page report describing what you did
 - Code (with comments)
 - Results (given the provided Memory times)

Bibliography

Main book:

Computer Organization and Design: The Hardware/Software Interface D. Patterson, J. Hennessy Morgan Kaufmann, 5th Edition, 2014, ISBN: 978-0-12-407726-3

Secondary Bibliography:

- Structured Computer Organization
 A. Tanenbaum, T. Austin
 Prentice-Hall, 6th Edition, 2013, ISBN: 978-0273769248
- Embedded Computing: A VLIW Approach to Architecture, Compilers and Tools
 J. Fisher, P. Faraboschi, C. Young
 Morgan Kaufmann, 4th Edition, 2005, ISBN: 978-1558607668
- Computer Architecture: A Quantitative Approach
 J. Hennessy, D. Patterson
 Morgan Kaufmann, 5th Edition, 2011, ISBN: 978-0123838728

Next Class

Review of basic concepts on computer architecture

Performance metrics

Course Overview

Computer Organization

