Mid Semester Exam. PHY657. 22/2/2025 Time: 120 Minutes.

Consider a two dimensional metric given by

$$ds^{2} = \frac{9t}{4}dx^{2} - \frac{9t}{2}dxdt + \frac{3}{4}(2+3t)dt^{2}$$

- a) Compute the non-zero Christoffel symbols. The formula is $\Gamma^{\alpha}_{\beta\gamma} = \frac{1}{2} g^{\alpha\mu} (g_{\mu\beta,\gamma} + g_{\mu\gamma,\beta} g_{\beta\gamma,\mu})$.
- b) Notice that x is cyclic. Hence the Euler-Lagrange equation for x from an appropriate Lagrangian will be of first order. Write this equation.
- c) Define the tangent vector u^{μ} . Use $u^{\mu}u_{\mu}=1$. Solve the normalization condition in conjunction with the equation obtained in part (b) to obtain \dot{x} and \dot{t} .
- d) Compute $u^{\alpha}_{:\beta}$. The formula is $A^{\alpha}_{:\beta} = A^{\alpha}_{:\beta} + \Gamma^{\alpha}_{\mu\beta}A^{\mu}$.
- e) Set the arbitrary constant in the expressions for \dot{x} and \dot{t} to zero. Hence compute the expansion scalar.