pós-graduação em ciências da saúde do iamspe

Genômica Computacional

Analise de variantes

Professor: Ricardo A. Vialle

CS31 - Genômica Computacional

Cronograma

Data	Tema
11-0ct	Introdução a Genômica, Sequenciamento (teórica)
18-Oct	Bioinformática - Linux - Processamento de dados de sequenciamento (teórico-prática)
1-Nov	Montagem de genomas (teórico-prática)
8-Nov	Anotação de genomas (teórico-prática)
22-Nov	Analise de variabilidade genética (teórico-prática)

Read mapping

Read mapping

```
221
         231
                 241
                          251
                                                                                       321
                                   261
                                           271
                                                    281
                                                            291
                                                                     301
                                                                              311
TCGAGC*GCCATCTGCGGGCCC
                               tcagccgccgactcggacatcagatccacctcggggtccgc*atcgctccgccggcgtccgacgaagccgacga
TCGAGC*GCCATCTG
                                   ccgccgactcggacatcagatccaactcggggtccgc*atcgctccgccggcgaccgacgaagccgacga
TCGAGC*GCCAT
                                          cggacatcagatccaactcggggtccgc*atcgctccgtcggcgaccgacgaagccgacga
                                          cggacatcagatccaactcggggtccgc*atcgctccgccggcgaccgacgaagccgacga
TCGAGC*GCCATCTGCGGGC
tca
          tcgagc*gccatctgcgggccc
                                            GACATCAGATCCAACTCGGGGTCCGC*ATCGCTCCGCCGGCGACCGACGAAGCCGACGA
tcgagc*gccatctgcgggccccgattaccgacgctctcag
                                              CATCAGATCCAACTCGGGGTCCGC*ATCGCTCCGCCGGCGACCGACGAAGCCGACGA
                                               tcagatccaactcggggtccgc*atcgctccgccggcgaccgacgaagccgacga
TCGAGC*GCCATCTGCGGGCCCCGATTACCGACGCTCTCAGCCGCCGACTCGG
                                                      AACTCGGGGTCTGC*ATCGCTCTGCCGGCGACCGACGAAGCCGACGA
TCGAGC*GCCATCTGCGGGCCCCGATTACCGACGCTCTCAGCCGCCGAC
                                          CGG
TCGAGC*GCCATCTGCGGGCCCCGATTACCGAAGCTCTCAGCCGCCGACTCGGA
                                                          cqqqqqccqc*atcqcqccqtcqqcqaccqacqaaqccqacac
TCGAGC*GCCATCTGCGGGCCCCGATTACCGACGCTCTCAGCCGCCGAC
                                                                        CCGCCGGCGACGACGACGACGAC
                                          CGGACAT
TCGAGC*GCCATCTGCGGGCCCCGATTACCGACGCTCTCAGCCGCCGACTCGGACATCAG
                                                                          cccggcgaccgacaaagccgacga
TCGAGC*GCCATCTGCGGGCCCCGATTACCGACGCTCTCAGCCGCCGACTCGGACATCAG
                                                                                       GCCGACGA
tcgagc*gccatctgcgggccccgattaccgacgctctcagccgccgactcggacatcaga
                                                                                       gccgacga
tcgagc*gccatctgcgggccccgattaccgacgctctcagccgccgactcggacatcaga
                                                                                        ccgacga
TCGAGC*GCCATCTGCGGGCCCCGATTACCGACGCTCTCAGCCGCCGACTCGGACATCAGATCCA
                                                                                           acga
TCGAGC*GCCATCTGCGGGCC
                                                                                            CGA
tcgagc*gccatctgcgggcc
tcgagc*gccatctgcgggccccgattaccgacgctctcagccgccgactcggacatcagatc
TCGAGC*GCCATCTGCGCGCCCCGATTACCGACCC
TCGAGC*GCCATCTGCGGGCCCCGATTACCGACGCTCTCAGCCGCCGACTCGGACATCAGATCCAACTCGGGGTCCGC*AT
TCGAGC*GCCATCTGCGGGCCCCGATTACCGACGCTCTCAGCCGCCGACTCGGACATCAGATCCAACTCGGGGTCCGC*ATCGCTCCGCCGGCGACCGA
TCGAGC*GCCATCTGCGGGCCCCGATTACCGACGCTCTCAGCCGCCGACTCGGACATCAGATCCAACTCGGGGTCCGC*A
```

IGV browser

Types of genetic variation

- 99% of DNA is shared between two individuals
- Variation in the remainder explains all our predisposition differences
- Remaining phenotypic variation: environmental/stochastic differences

Name	Example	Frequency in one genome
Single nucleotide polymorphisms (SNPs)	GAGGAGAACG[C/G]AACTCCGCCG	1 per 1,000 bp
Insertions/deletions (indels)	CACTATTC[C/CTATGG]TGTCTAA	1 per 10,000 bp
Short tandem repeats (STRs)	ACGGCAGTCGTCGTCACCGTAT	1 per 10,000 bp
Structural variants (SVs) / Copy Number Variants (CNVs)	Large (median 5,000 bp) deletions, duplications, inversions	1 per 1,000,000 bp

VCF and BCF file format

VCF

```
##fileformat=VCFv4.2
 ##contig=<ID=2,length=51304566>
 ##INFO=<ID=AC, Number=A, Type=Integer, Description="Allele count in genotypes">
 ##INFO=<ID=AN, Number=1, Type=Integer, Description="Total number of alleles in called genotypes">
 ##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
 ##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
 ##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
 #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT
                                                      SAMPLE1
                                                                  SAMPLE2
                                                                              SAMPLE3
                                                                                          SAMPLE4
                                                                                                      SAMPLE5
                                                                                                                  SAMPLE6
                                                                                                                              SAMPLE7
         . C T
 2 81170
                            AC=9; AN=7424
                                           GT:DP:GQ
                                                      0/0:4:12
                                                                  0/0:3:9
                                                                              0/1:1:3
                                                                                          0/1:9:24
                                                                                                      1/0:4:12
                                                                                                                  0/0:5:15
                                                                                                                              0/0:4:12
   81171 . G A
                                                                              0/0:1:3
                                                                                          0/0:9:24
                                                                                                      0/1:4:12
                                                                                                                  0/1:5:15
                                                                                                                              0/0:4:12
                            AC=6; AN=7446
                                           GT:DP:GQ
                                                      0/1:4:12
                                                                  0/0:3:9
                                                                              0/0:5:15
                                                                                          0/0:9:24
                                                                                                      0/0:4:12
                                                                                                                  0/0:4:12
                                                                                                                              0/0:4:12
   81182
           . A G
                            AC=5; AN=7506
                                           GT:DP:GQ
                                                      0/0:5:15
                                                                  0/0:4:12
                                                                                          0/0:15:39
 2 81204
                                                                                                                              0/1:14:42
           . T G
                            AC=2; AN=7542
                                           GT:DP:GQ
                                                      1/0:5:15
                                                                  0/0:9:27
                                                                              0/0:10:30
                                                                                                      0/0:9:27
                                                                                                                  1/0:13:39
BCF
                                                                             DP:4:3:1:9:4:5:4
                                                                                                       GO:12: 9: 3:24:12:15:12
           . C T
                                           GT:0/0:0/0:0/1:0/1:1/0:0/0:0/0
   81170
                            AC=9; AN=7424
   81171
          . G A
                                                                                                       GQ:12: 9: 3:24:12:15:12
                            AC=6; AN=7446
                                           GT:0/1:0/0:0/0:0/0:0/1:0/1:0/0
                                                                             DP:4:3:1:9:4:5:4
   81182
          . A G
                            AC=5; AN=7506
                                           GT:0/0:0/0:0/0:0/0:0/0:0/0:0/0
                                                                             DP:5:4:5:9:4:4:4
                                                                                                       GQ:15:12:15:24:12:12:12
 2 81204
                                                                                                       GQ:15:27:30:39:27:39:42
          . T G
                            AC=2; AN=7542
                                           GT:1/0:0/0:0/0:0/0:0/0:1/0:0/1
                                                                             DP:5:9:10:15:9:13:14
```


SAM and BAM file format (FLAG)

Bitwise Flags

Integer	Binary	Description (Paired Read Interpretation)	
1	000000000001	template having multiple templates in sequencing (read is paired)	
2	000000000010	each segment properly aligned according to the aligner (read mapped in proper pair)	
4	000000000100	segment unmapped (read1 unmapped)	
8	000000001000	next segment in the template unmapped (read2 unmapped)	
16	000000010000	SEQ being reverse complemented (read1 reverse complemented)	
32	000000100000	SEQ of the next segment in the template being reverse complemented (read2 reverse complemented)	
64	000001000000	the first segment in the template (is read1)	
128	000010000000	the last segment in the template (is read2)	
256	000100000000	not primary alignment	
512	001000000000	alignment fails quality checks	
1024	010000000000	PCR or optical duplicate	
2048	100000000000	supplementary alignment (e.g. aligner specific, could be a portion of a split read or a tied region)	

Use *samtools flagstat* to summarize these metrics

CIGAR

For example:

```
RefPos: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Reference: C C A T A C T G A A C T G A C T A A C
```

Read: ACTAGAATGGCT

Aligning these two:

```
RefPos: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Reference: C C A T A C T G A C T A A C Read: A C T A G A A T G G C T
```

With the alignment above, you get:

POS: 5

CIGAR: 3M1I3M1D5M

Tag +	Type +	Description [hid	le] ÷
AM	i	The smallest template-independent mapping quality in the template	
AS	i	Alignment score generated by aligner	
вс	Z	Barcode sequence identifying the sample	
BQ	Z	Offset to base alignment quality (BAQ)	
BZ	Z	Phred quality of the unique molecular barcode bases in the OX tag	
СВ	Z	Cell identifier	
CC	Z	Reference name of the next hit	
CG	B,I	BAM only: CIGAR in BAM's binary encoding if (and only if) it consists of >65535 operators	
СМ	i	Edit distance between the color sequence and the color reference (see also NM)	
СО	Z	Free-text comments	
CP	i	Leftmost coordinate of the next hit	
CQ	Z	Color read base qualities	

leftmost/rightmost read. E.g. compare first and last lines.

gnment of the NEXT read in the template. Set as 0 when the

information is unavailable. It corresponds to POS column.

RNEXT: reference sequence name of the primary alignment of the NEXT read. For paired-end sequencing, NEXT read is the paired read, corresponding to the RNAME column.

CIGAR: summary of alignment, e.g. insertion, deletion

MAPQ: mapping quality

POS: 1-based position

RNAME: reference sequence name, e.g. chromosome/transcript id

FLAG: indicates alignment information about the read, e.g. paired, aligned, etc.

PRE-PROCESSING

VARIANT DISCOVERY CALLSET REFINEMENT Raw SNPs + Indels VCF **CNNScoreVariants Analysis-Ready Reads BAM FilterVariantTranches Call Variants Per-Sample** Analysis-Ready **SNVs Indels Variants** HaplotypeCaller in single sample mode **Funcotator** Indels VCF **SNPs Functionally Annotated Variants Further Analysis**