Optimisation

Chapitre 2

Master IASD

Tarik AMTOUT tarik.amtout@gmail.com

Formulation d'un problème d'optimisation

La forme standard d'un problème d'optimisation continue est la suivante.

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \text{ sous } \begin{cases} c_{E}(\mathbf{x}) = 0 \\ c_{I}(\mathbf{x}) \le 0 \end{cases}$$
(1.1)

Le vecteur $x \in \mathbb{R}^n$ représente les n variables ou paramètres du problème.

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{pmatrix} \in \mathbb{R}^n$$

La fonction à minimiser $f : \mathbb{R}^n \to \mathbb{R}$ est appelée coût ou objectif ou encore critère.

La fonction $c_E : \mathbb{R}^n \to \mathbb{R}^p$ représente un vecteur de p contraintes d'égalité.

$$c_{E}(x) = \begin{pmatrix} c_{E1}(x) \\ \vdots \\ c_{Ep}(x) \end{pmatrix} \quad \text{avec} \quad c_{Ej} : \mathbb{R}^{n} \to \mathbb{R}$$

La fonction $c_I : \mathbb{R}^n \to \mathbb{R}^q$ représente un vecteur de q contraintes d'inégalité.

$$c_{I}(x) = \begin{pmatrix} c_{I1}(x) \\ \vdots \\ c_{Iq}(x) \end{pmatrix} \quad \text{avec} \quad c_{Ij}: \mathbb{R}^{n} \to \mathbb{R}$$

Les contraintes c_E et c_I sont regroupées dans le vecteur c de dimension m = p + q.

$$c(\mathbf{x}) = \begin{pmatrix} c_{\mathbf{E}}(\mathbf{x}) \\ c_{\mathbf{I}}(\mathbf{x}) \end{pmatrix} \in \mathbb{R}^{\mathbf{m}}$$

Tout problème d'optimisation peut se mettre sous la forme standard (1.1) en utilisant les transformations suivantes.

 $\begin{array}{lll} \text{Maximisation/minimisation}: & \max_{x} f(x) & \Leftrightarrow & \min_{x} - f(x) \\ \text{Contrainte supérieur / inférieur}: & c(x) \geq 0 & \Leftrightarrow & -c(x) \leq 0 \end{array}$

Continuité : Fonctions continues de variables réelles

→ Optimisation continue

≠ Optimisation combinatoire, Programmation en nombres entiers

Différentiabilité : Fonctions différentiables

→ Méthodes à base de gradient

≠ Méthodes sans dérivées

Déterminisme : Les données du problème sont parfaitement connues

≠ Optimisation stochastique

Norme vectorielle sur Rn

• Fonction
$$\| \cdot \| : \mathbb{R}^n \to \mathbb{R}$$
 vérifiant

• Norme p:
$$\|\mathbf{x}\|_{p} = \sqrt[p]{\sum_{i=1}^{n} |\mathbf{x}_{i}|^{p}}$$

• Norme
$$\infty$$
: $\|\mathbf{x}\|_{\infty} = \max_{i=1, n} |\mathbf{x}_i|$

• Norme 2 = norme euclidienne

$$\begin{cases} \|x\| \ge 0 \\ \|x\| = 0 \iff x = 0 \\ \|x + y\| \le \|x\| + \|y\| \\ \|\alpha x\| = |\alpha| \|x\| \end{cases}$$

Norme matricielle

- Norme induite sur R^{m×n} par la norme vectorielle | . |
- Fonction $\|\cdot\|_{m\times n}: \mathbb{R}^{m\times n} \to \mathbb{R}$ définie par $\|A\|_{m\times n} = \max_{x\in\mathbb{R}^n, x\neq 0} \frac{\|Ax\|}{\|x\|}$

Suite

Suite dans Rn

• Suite:
$$\{x_k, k=0,1,2,...\} = \{x_0, x_1, x_2,..., x_n, ...\}$$

• Limite:
$$\lim_{k \to \infty} x_k = x^* \iff \lim_{k \to \infty} ||x_k - x^*||$$

Vitesse de convergence

• Convergence superlinéaire :
$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\| \le \mathbf{c}_k \|\mathbf{x}_k - \mathbf{x}^*\|$$
 avec $\lim_{k \to \infty} \mathbf{c}_k = 0$ à partir d'un certain rang \mathbf{k}_0

Convergence d'ordre p :
$$\|x_{k+1} - x^*\| \le c \|x_k - x^*\|^p \quad \text{avec} \quad 0 \le c < 1$$
 à partir d'un certain rang k_0

Différentiabilité

Différentiabilité ordre 1

f fonction continue de Rⁿ dans R

Dérivée partielle

Dérivée partielle de f en x par rapport à x_i : si la limite existe

$$f_{x_i}(x) \!=\! \frac{\partial f(x)}{\partial x_i} \!=\! \lim_{s \to 0} \! \frac{f(x_1, ..., x_i + s, ..., x_n) - f(x_1, ..., x_i, ..., x_n)}{s}$$

Gradient

Gradient

Gradient de f en x :
$$g(x) = \nabla f(x)$$

 $g(x) : R^n \to R^n$

si toutes les dérivées partielles existent

$$\mathbf{g}(\mathbf{x}) = \nabla \mathbf{f} = \begin{bmatrix} \frac{\partial \mathbf{I}}{\partial \mathbf{x}_1} \\ \vdots \\ \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \end{bmatrix}$$

Dérivée directionnelle

Dérivée directionnelle de f en x dans la direction d∈Rⁿ :

si la limite existe

(dérivée directionnelle = produit scalaire avec le gradient)

$$f_{d}(x) = \lim_{s \to 0} \frac{f(x + sd) - f(x)}{s}$$

$$\Rightarrow f_{d}(x) = g(x)^{T} d$$

Fonction différentiable

f différentiable en x ⇔ f admet une dérivée directionnelle pour tout d∈Rⁿ

Différentiabilité ordre 2

f fonction deux fois différentiable de Rⁿ dans R

Hessien

Hessien de f en x :
$$H(x) = \nabla^2 f(x)$$

$$H(x): R^n \rightarrow R^{n \times n}$$

$$H(x) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right)_{i,j=1,\dots,n} = \left(\begin{array}{ccc} \frac{\partial^2 f(x)}{\partial^2 x_1} & \dots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \dots & \frac{\partial^2 f(x)}{\partial x_n \partial x_n} \end{array}\right)$$

Jacobien

Matrice gradient

c fonction continue de Rn dans Rm

Gradient de c en x : $\nabla c(x)$: $R^n \to R^{n \times m}$

$$\nabla \mathbf{c}(\mathbf{x}) = \left(\nabla \mathbf{c}_{1}(\mathbf{x}), \dots, \nabla \mathbf{c}_{m}(\mathbf{x})\right) = \left(\frac{\partial \mathbf{c}_{j}(\mathbf{x})}{\partial \mathbf{x}_{i}}\right)_{\substack{i=1,\dots,n\\j=1,\dots,m}} = \begin{pmatrix} \frac{\partial \mathbf{c}_{1}(\mathbf{x})}{\partial \mathbf{x}_{1}} & \dots & \frac{\partial \mathbf{c}_{m}(\mathbf{x})}{\partial \mathbf{x}_{1}} \\ \dots & \dots & \dots \\ \frac{\partial \mathbf{c}_{1}(\mathbf{x})}{\partial \mathbf{x}_{n}} & \dots & \frac{\partial \mathbf{c}_{m}(\mathbf{x})}{\partial \mathbf{x}_{n}} \end{pmatrix}$$

Matrice jacobienne (« jacobien » = déterminant de J_c)

$$\mathbf{J}_{\mathbf{c}}(\mathbf{x}) = \nabla \mathbf{c}(\mathbf{x})^{\mathsf{T}} = \begin{pmatrix} \nabla \mathbf{c}_{1}(\mathbf{x})^{\mathsf{T}} \\ \dots \\ \nabla \mathbf{c}_{\mathbf{m}}(\mathbf{x})^{\mathsf{T}} \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathbf{c}_{i}(\mathbf{x})}{\partial \mathbf{x}_{j}} \end{pmatrix}_{\substack{i=1,\dots,n \\ j=1,\dots,m}} = \begin{pmatrix} \frac{\partial \mathbf{c}_{1}(\mathbf{x})}{\partial \mathbf{x}_{1}} & \dots & \frac{\partial \mathbf{c}_{1}(\mathbf{x})}{\partial \mathbf{x}_{n}} \\ \dots & \dots & \dots \\ \frac{\partial \mathbf{c}_{\mathbf{m}}(\mathbf{x})}{\partial \mathbf{x}_{1}} & \dots & \frac{\partial \mathbf{c}_{\mathbf{m}}(\mathbf{x})}{\partial \mathbf{x}_{n}} \end{pmatrix}$$

N.

Méthodes de Newton

La méthode de Newton sert à résoudre numériquement un système d'équations non linéaires. Elle est à la base de la majorité des algorithmes d'optimisation.

Considérons un système de n équations non linéaires à n inconnues.

$$g(x) = 0$$
 avec $g: x \in \mathbb{R}^n \mapsto g(x) \in \mathbb{R}^n$

La fonction g est supposée différentiable. Écrivons son développement de Taylor à l'ordre 1 en un point x_0 .

$$g(x) = g(x_0) + \nabla g(x_0)^{T} (x - x_0) + o(||x - x_0||)$$

En approximant au voisinage de x_0 la fonction g par la fonction linéaire \hat{g}_0 :

$$\hat{g}_0(x) = g(x_0) + G_0(x - x_0)$$
 avec $G_0 = \nabla g(x_0)^T$

et en résolvant le système linéaire :

$$\hat{g}_0(x) = 0$$

on obtient le point x_1 :

$$X_1 = X_0 - G_0^{-1}g(X_0)$$

La méthode de Newton consiste à itérer le processus jusqu'à obtenir une solution satisfaisante.

Les itérations de Newton sont définies par :

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{G}_k^{-1} \mathbf{g}(\mathbf{x}_k)$$
 avec $\mathbf{G}_k = \nabla \mathbf{g}(\mathbf{x}_k)^T$

Principe de la méthode de Newton

En dimension 1, la méthode de Newton est aussi appelée méthode de la tangente et est donnée par :

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \frac{\mathbf{g}(\mathbf{x}_k)}{\mathbf{g}'(\mathbf{x}_k)}$$

Exemples

<u>Équation 1</u>: Résoudre $g(x) = x^2 - 1 = 0$.

Le Tableau 3-1 montre les itérations de Newton à partir de $x_0 = 4$.

La méthode converge vers la solution $x^* = 1$

Itération	Xk	$g(x_k)$	$g'(x_k)$
0	4,00000000	1,5E+01	8,0000
1	2,12500000	3,5E+00	4,2500
2	1,29779412	6,8E-01	2,5956
3	1,03416618	6,9E-02	2,0683
4	1,00056438	1,1E-03	2,0011
5	1,00000016	3,2E-07	2,0000
6	1,00000000	2,5E-14	2,0000

<u>Équation 2</u>: Résoudre $g(x) = (x-1)^2 = 0$.

Le Tableau montre les itérations de Newton à partir de $x_0 = 4$.

La méthode converge vers la solution $x^* = 1$

Itération	Xk	$g(x_k)$	$g'(x_k)$
0	4,00000000	9,0E+00	6,0000
1	2,50000000	2,3E+00	3,0000
2	1,75000000	5,6E-01	1,5000
3	1,37500000	1,4E-01	0,7500
4	1,18750000	3,5E-02	0,3750
5	1,09375000	8,8E-03	0,1875
6	1,04687500	2,2E-03	0,0938
7	1,02343750	5,5E-04	0,0469
8	1,01171875	1,4E-04	0,0234
9	1,00585938	3,4E-05	0,0117
10	1,00292969	8,6E-06	0,0059
15	1,00009155	8,4E-09	0,0002
20	1,00000286	8,2E-12	0,0000

<u>Équation 3</u>: Résoudre g(x) = Arc tan x = 0.

Les deux tableaux montre les itérations de Newton à partir de $x_0 = 1,3$ ou $_{\circ}x_0 = 1,5$.

Itération	Xk	$g(x_k)$	$g'(x_k)$
0	1,300	0,915	0,372
1	-1,162	-0,860	0,426
2	0,859	0,710	0,575
3	-0,374	-0,358	0,877
4	0,034	0,034	0,999
5	0,000	0,000	1,000
6	0,000	0,000	1,000

Itération	Xk	$g(x_k)$	$g'(x_k)$
0	1,500	0,983	0,308
1	-1,694	-1,038	0,258
2	2,321	1,164	0,157
3	-5,114	-1,378	0,037
4	32,296	1,540	0,001
5	-1575,317	-1,570	0,000
6	3894976,008	1,571	0,000

Converge $x_0 = 1,3$

Diverge pour $x_0 = 1.5$

Ces exemples en dimension 1 montrent que la convergence de la méthode de Newton n'est pas garantie

Problème de minimisation

Considérons à présent un problème de minimisation sans contraintes.

Problème sans contrainte

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{f}(\mathbf{x}) \longrightarrow \text{gradient} : \mathbf{g}(\mathbf{x}) = \nabla \mathbf{f}(\mathbf{x})$$

$$\text{hessien} : \mathbf{H}(\mathbf{x}) = \nabla^{2} \mathbf{f}(\mathbf{x})$$

Condition nécessaire de minimum local

$$x^* \text{ minimum local } \Rightarrow \begin{cases} g(x^*) = 0 \\ H(x^*) \geq 0 \end{cases} \text{ (hessien semi-défini positif)}$$

Recherche des points stationnaires

Application de la méthode de Newton au système d'équations non linéaires : g(x) = 0

$$\begin{aligned} \text{Modèle linéaire de g en } x_k: \quad \hat{g}_k(x) = g(x_k) + G_k(x - x_k) \quad \text{avec} \quad \begin{cases} g(x_k) = \nabla f(x_k) \\ G_k = \nabla g(x_k)^T = \nabla^2 f(x_k) = H_k \end{cases} \end{aligned}$$

Méthode de Newton : $G = H \rightarrow \text{calcul explicite du hessien à chaque itération}$

Méthode de **quasi-Newton** : G = approximation de H

construite à partir des itérations précédentes

sans calcul explicite du hessien

Méthode de Newton

Modèle linéaire de $g=\nabla f$ en x_k

$$\hat{\mathbf{g}}_{\mathbf{k}}(\mathbf{x}) = \mathbf{g}(\mathbf{x}_{\mathbf{k}}) + \mathbf{G}_{\mathbf{k}}(\mathbf{x} - \mathbf{x}_{\mathbf{k}}) \qquad \text{avec} \quad \begin{cases} \mathbf{g}(\mathbf{x}_{\mathbf{k}}) = \nabla \mathbf{f}(\mathbf{x}_{\mathbf{k}}) \\ \mathbf{G}_{\mathbf{k}} = \nabla \mathbf{g}(\mathbf{x}_{\mathbf{k}})^{\mathsf{T}} = \nabla^{2} \mathbf{f}(\mathbf{x}_{\mathbf{k}}) = \mathbf{H}_{\mathbf{k}} \end{cases}$$

- Itération : $x_{k+1} = x_k \nabla^2 f(x_k)^{-1} \nabla f(x_k) \rightarrow \text{équations de Newton}$
- Condition d'arrêt : $\nabla f(x_k) \le \epsilon$

Difficultés

- Calcul explicite et inversion du hessien $\nabla^2 f(x_k)$ à chaque itération \rightarrow coûteux
- Convergence non garantie même près de la solution
 - → mêmes difficultés que pour la résolution d'équations
- 1ère condition nécessaire de minimum : $\nabla f(x^*)=0$
 - \rightarrow point stationnaire $x^* = minimum local$, maximum local ou point selle
 - \rightarrow 2^{ème} condition nécessaire de minimum à vérifier : $\nabla^2 f(x^*) \ge 0$

Modèle quadratique de f en xk

Développement de Taylor à l'ordre 2 de f en x_k

$$f(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k) + o(||x - x_k||^2)$$

Modèle quadratique en x_k

$$\hat{f}_k(x) = f_k(x_k) + g_k^T(x - x_k) + \frac{1}{2}(x - x_k)^T H_k(x - x_k)$$

Lien entre le modèle de f et le modèle de g =∇f

$$\nabla \hat{\mathbf{f}}_{\mathbf{k}}(\mathbf{x}) = \mathbf{g}_{\mathbf{k}} + \mathbf{H}_{\mathbf{k}}(\mathbf{x} - \mathbf{x}_{\mathbf{k}}) = \hat{\mathbf{g}}_{\mathbf{k}}(\mathbf{x})$$

Minimisation du modèle de f en x_k

- Conditions suffisantes de minimum local : $\min_{\mathbf{x} \in \mathbb{R}^n} \hat{\mathbf{f}}_{\mathbf{k}}(\mathbf{x}) \Leftarrow \begin{cases} \nabla \hat{\mathbf{f}}_{\mathbf{k}}(\mathbf{x}^*) = \hat{\mathbf{g}}_{\mathbf{k}}(\mathbf{x}^*) = 0 \\ \nabla^2 \hat{\mathbf{f}}_{\mathbf{k}}(\mathbf{x}^*) = \mathbf{H}_{\mathbf{k}} > 0 \end{cases}$
- Si le hessien de f en x_k est défini positif : $\nabla^2 f(x_k) > 0$ Minimisation du modèle quadratique de f en x_k
 - \Leftrightarrow Méthode de Newton en x_k pour résoudre $\nabla f(x)=0$
- Sinon la méthode de Newton n'est pas directement applicable pour une minimisation

