

ESIAL 2A - RS -Réseaux 2013-2014 TD n°3 Adressage IPv4 et Routage

1 Adressage IPv4

Exercice 1

- a) Convertir en binaire
 - 152.81.50.31
 - 88.34.5.15
 - 192.168.19.6
- b) Convertir en "dotted" notation
 - 11011001 10010010 11001100 11011101
 - 00101001 10000100 00110101 01010001
 - 01001101 00110011 10101101 10001001

Exercice 2 Donner pour les adresses ci-dessous, le numéro de réseau à laquelle elles appartiennent ainsi que l'adresse de broadcast correspondante.

- 152.81.5.4/20
- 152.81.5.4 et netmask 255.255.192.0
- 152.81.165.4/17

Exercice 3 Compléter le tableau ci dessous :

Nbre machines	Nbre total	Bloc d'adresses	Nbre de bits	Longueur préfixe	Masque du
(nbre adresses	d'adresses	à demander	requis	réseau	réseau
nécessaires)	utilisées	.754	78.21 (1994, 1995)		lastical reco
2					
5					e all anine
7					
10					10
18	ethil edille	Contractor St.	is the Court of	the residence of the leave	Harmon dans
31					
80					
140					Splinter II
502					
1000		1 oretist			7000 - 1 NC
1500					3,33
2200					

Exercice 4 Donner le préfixe le plus long qui permet d'agréger les adresses suivantes :

- a) 192.164.95.5 192.164.92.10 192.164.83.1
- b) 128.15.5.2 192.15.5.2 160.15.5.2

Exercice 5 Combien d'adresses IP valides pourraient être assignées dans chaque sous-réseau du réseau 10.0.0.0/8 en supposant l'emploi d'un masque 255.255.255.192 ? Si le même masque est utilisé pour tous les sous-réseaux, combien y a-t-il de sous-réseaux possibles ?

Exercice 6 Trouvez l'adresse IP et le masque de sous-réseau du 4ème hôte dans le 8ème sous-réseau pour l'adresse réseau IP 192.1.7.0/24. Le nombre maximum de machines à adresser dans chaque sous-réseau est de

Exercice 7 Trouver l'adresse IP et le masque de sous-réseau du 3ème hôte dans le 4ème sous-réseau pour l'adresse réseau IP 152.16.0.0/16. Le nombre maximum de sous-réseaux à adresser est de 315.

Exercice 8 PC1 et PC2 sont sur deux réseaux Ethernet différents qui sont séparés par un routeur IP. L'adresse IP de PC1 est 10.1.1.1/16. Donner les adresses qui pourraient être attribuées à PC2?

- a) 10.1.1.3
- b) 10.2.2.2
- c) 10.1.200.1
- d) 152.1.1.1
- e) 256.6.6.6

Plan adressage simple

Exercice 9

Une entreprise a reçu le numéro de réseau suivant 195.10.21.0.

- a) Déterminer la classe à laquelle appartient cette adresse.
- b) En déduire le masque par défaut.
- c) On vous demande de diviser votre réseau physique en 4 sous-réseaux interconnectés par des routeurs et de prévoir un sous-réseau en réserve pour une future extension du réseau. Vous aurez besoin de connecter au moins 25 machines (routeurs inclus) par sous-réseau.
 - Déterminer alors le masque de sous-réseau.
 - Donner l'ensemble des identifiants de sous-réseaux possibles avec la notation CIDR.
 - Préciser les adresses de broadcast pour ces sous-réseaux.

3 Principe du routage

Exercice 10

Écrire l'algorithme qui permet le routage d'un datagramme IP à partir d'une machine hôte disposant d'une table de routage.

Exercice 11 Voici la table de routage d'une machine linux.

Destination	Gateway	Genmask	Flags	Interface
127.0.0.0	0.0.0.0	255.0.0.0	U	100
152.16.2.0	0.0.0.0	255.255.255.0	U	eth0
152.16.3.0	0.0.0.0	255.255.255.0	U	fxp0
152.16.1.0	0.0.0.0	255.255.255.0	U	fxp1
128.121.0.0	152.16.2.253	255.255.0.0	UG	eth0
0.0.0.0	152.16.3.253	0.0.0.0	UG	fxp0

- a) Combien de cartes réseaux y a-t-il sur cette machine? Combien d'adresses IP?
- b) Dessiner la carte du réseau que vous pouvez déduire de cette table de routage?

Exercice 12 Reprenez les résultats de l'exercice 10, Chaque sous-réseau est affecté à un service et les 4 sous-réseaux sont interconnectés selon le schéma de la Figure b

FIG. 1 – Réseau exercice 2

- a) Définir les numéros IP que vous attribuez aux différents sous-réseaux.
- b) Donner la table de routage du routeur R1 et R2. Le format de la table de routage est le suivant :

Destination Gateway Genmask Flags Interface

On fait l'hypothèse que les interfaces se nomment ethi (avec i=0,1,2,...). Flags U (route utilisable), G (gateways à utiliser), H (entrée hôte).