Algorithms Assignment 2

Clare Minnerath

19. e

20. c

22. Factorial limits use fact $n! \leq n^n$

1. n^n and $n^n + ln(n)$ First 3 obvious

2. n!

3. $10^n + n^{20}$ $\lim_{n \to \infty} \frac{10^n + n^{20}}{4^n} = \lim_{n \to \infty} \frac{10}{4}^n + \frac{n^20}{4^n} = \infty + 0 = \infty$

4. 4^n $\lim_{n \to \infty} \frac{e^n}{4^n} = \lim_{n \to \infty} \frac{e}{4}^n = \infty$

5. e^n $\lim_{n \to \infty} \frac{e^n}{(lgn)!} \le \lim_{n \to \infty} \frac{e^n}{(lgn)^{lgn}} = \lim_{n \to \infty} \frac{nlge}{lgn \, lg(lgn)} = \lim_{n \to \infty} nlge - lgn \, lg(lgn) = \infty$

6. (lgn)!

7. $n^{\frac{5}{2}}$ $\lim_{n \to \infty} \frac{n^{\frac{5}{2}}}{5^{lgn}} = \lim_{n \to \infty} \frac{\frac{5}{2} lgn}{lg5 lgn} = \lim_{n \to \infty} (\frac{5}{2} - lg5) lgn = \infty$

8. 5^{lgn}

9. $5n^2 + 7n$

10. nlgn and log(n!) Hard to prove, just looked it up

11. 8n + 12 Last 3 obvious

12. $n^{\frac{1}{2}}$

13. lg^2n

27.

1.
$$\lim_{n \to \infty} \frac{\lg n}{n} = \lim_{n \to \infty} \frac{1}{n \ln 2} = 0$$

 $\implies \lg n \in O(n)$

2.
$$\lim_{n \to \infty} \frac{n}{n \lg n} = \lim_{n \to \infty} \frac{1}{\lg n} = 0$$
$$\implies n \in O(n \lg n)$$

3.
$$\lim_{n \to \infty} \frac{n \lg n}{n^2} = \lim_{n \to \infty} \frac{\lg n}{n} = \lim_{n \to \infty} \frac{1}{n \ln 2} = 0$$
$$\implies n \lg n \in O(n^2)$$

$$\begin{split} 4. & \lim_{n \to \infty} \frac{2^n}{5^{lgn}} = lg5 \lim_{n \to \infty} \frac{nlg2}{lgn} = lg5 \lim_{n \to \infty} n \ln 2 = \infty \\ & \Longrightarrow 2^n \in \Omega(5^{lgn}) \end{split}$$

5.
$$\lim_{n \to \infty} \frac{\lg^3 n}{\sqrt{n}} = 6 \lim_{n \to \infty} \frac{\lg(\lg n)}{\lg n} = 6 \ln 2 \lim_{n \to \infty} \frac{n \ln 2}{n \lg n \ln 2} = 6 \ln 2 \lim_{n \to \infty} \frac{1}{\ln n} = 0$$
$$\implies \lg^3 n \in \sqrt{n}$$

34.

Basic operation:
$$O(1) + j = 2j$$

 $T(n) = T(2^k)$

$$i=2^k \Longrightarrow \text{basic op: } 1$$
 $i=2^{k-1} \Longrightarrow \text{basic op: } 2$

$$i = 2^{k-2} \implies \text{basic op: } 3$$

$$i = 2^{k-3} \implies \text{basic op: } 4$$

$$i=1 \implies \text{basic op: } lg(2^{k+1}) = lg(2n)$$

$$\implies T(n) = 1 + 2 + 3 + \dots + lg(2n)$$
$$\implies T(n) \approx 2lg(2n)$$

$$\begin{array}{l} 2\lim_{n\to\infty}\frac{lg(2n)}{lgn}=2\lim_{n\to\infty}\frac{nln2}{nln2}=2\\ \Longrightarrow T(n)\in\Theta(lgn) \end{array}$$

35b. Basic operation: addition in each loop

$$T(n) = n + n$$

$$\lim_{n \to \infty} \frac{n+n}{n} - \lim_{n \to \infty} 1 + 1 - n$$

$$\lim_{n \to \infty} \frac{n+n}{n} = \lim_{n \to \infty} 1 + 1 = 2$$

$$\implies T(n) \in \Theta(n)$$

2.
$$W(n) = lg(700000000) + 1 = 30 + 1 = 31$$

 $\mathbf{3.}$.py file