LISTA DE EXERCÍCIOS- VETORES

1º) Verifique se os conjuntos abaixo são linearmente dependente ou linearmente independentes:

a)
$$A = \{\begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}, \begin{pmatrix} 2 & -3 \\ 3 & 0 \end{pmatrix}, \begin{pmatrix} 3 & -4 \\ 3 & 1 \end{pmatrix}\}$$
;

b)
$$B = \{\begin{pmatrix} 1 & 2 \\ -4 & -3 \end{pmatrix}, \begin{pmatrix} 3 & 6 \\ -12 & -9 \end{pmatrix}\};$$

c)
$$C = \{(-1, -2,0,3), (2, -1,0,0), (1,0,0,0)\};$$

d)
$$D = \{(1+2x-x^2), (2-x+3x^2), (3-4x+7x^2)\};$$

e)
$$E = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\};$$

e)
$$E = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\};$$

f) $F = \left\{ \begin{pmatrix} -1 & 2 & 1 \\ 3 & -2 & 4 \end{pmatrix}, \begin{pmatrix} 0 & -1 & 2 \\ -2 & 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 5 \\ -1 & 0 & 3 \end{pmatrix} \right\}.$

- 2°) Determinar o valor de k para o conjunto $\{(1,0,-1),(1,1,0),(k,1,-1)\}$ seja linearmente independente.
- 3°) Considere $P_2 = \{at^2 + bt + c; a, b, c \in \mathbb{R}\}$ $P_1 = t^2 2t + 1; P_2 = t2;$ $P_3 = t^2 2t + 1$ $2t^2 - t$.
 - a) Escreva $P = 5t^2 5t + 7$ como combinação linear de P_1, P_2 e P_3 ;
 - b) Escreva $P = 5t^2 5t + 7$ como combinação linear de P_1 , P_2 ;
 - c) Escreva P_1 como combinação linear de P_2 , P_3 .
- 4°) Escreva a matriz $A = \begin{pmatrix} 1 & 8 \\ 0 & 5 \end{pmatrix}$ como combinação linear das matrizes $\left\{v_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, v_2 = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}, v_3 = \begin{pmatrix} 0 & -1 \\ 2 & 1 \end{pmatrix}\right\}.$
- 5º) Quais dos conjuntos abaixo são linearmente dependentes e quais são linearmente independentes:

a)
$$A = \{(2 + x - x^2), (-4 - x + 4x^2), (x + 2x^2)\};$$

b)
$$B = \{(1 - x + 2x^2), (x - x^2), (x^2)\};$$

c)
$$C = \{(1+3x+x^2), (2-x-x^2), (1+2x-3x^2), (-2+x+3x^2)\};$$

d)
$$D = \{(x^2 - x + 1), (x^2 + 2x)\}.$$

- 6°) Determine o valor k para o conjuntos $A = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ k & 0 \end{pmatrix} \right\}$ seja linearmente dependente.
- 7°) Para quais valores de k o conjunto $A = \{(1, k), (k, 4)\}$ é linearmente independente?
- 8°) Mostre que o conjunto $A = \{\begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 0 & -2 \end{pmatrix}, \begin{pmatrix} -3 & -2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 3 & -7 \\ -2 & 5 \end{pmatrix}\}$ é linearmente independente.

- 9°) Sabendo que o vetor $\vec{v} = (2,1,-1)$ forma um ângulo de 60° com vetor \vec{AB} determinado pelos pontos A(3,1,-1) e B(4,0,m). Determinar o valor de m.
- 10°) Determinar o ângulo interno ao triângulo ABC, sendo A(3, -3, 3), B(2, -1, 2) e C(1,0,2).
- 11°) Provar que o triângulo de vértices A(2,3,1), B(2,1,-1) e C(2,2,-2) é um triângulo retângulo.
- 12°) Determinar um vetor ortogonal aos vetores $\vec{u} = (1, -1, 0)$ e $\vec{v} = (1, 0, 1)$.
- 13°) Determinar um vetor unitário simultaneamente ortogonal aos vetores $\vec{u} = (2, -6, 3)$ e $\vec{v} = (4, 3, 1)$.
- 14°) Dados os vetores $\vec{u}=(1,2,-1)$ e $\vec{v}=(0,-1,3)$. Determinar a área do paralelogramo determinado pelos vetores $3\vec{u}$ e $\vec{v}-\vec{u}$.
- 15°) Sejam os vetores $\vec{u} = (3,1,-1)$ e $\vec{v} = (a,0,2)$. Calcular o valor de a para que a área do paralelogramo determinado por \vec{u} e \vec{v} seja igual a $2\sqrt{6}$.
- 16°) Calcular a área do triângulo de vértices A(1,-2,1), B(2,-1,4) e C(-1,-3,3).
- 17°) Calcular o produto misto dos vetores $\vec{u} = 2\vec{i} + 3\vec{j} + 5\vec{k}$, $\vec{v} = -\vec{i} + 3\vec{j} + 3\vec{k}$ e $\vec{w} = 4\vec{i} 3\vec{j} + 2\vec{k}$.
- 18°) Determinar o valor de m para que os vetores $\vec{u}=(m,2,-1), \vec{v}=(1,-1,3)$ e $\vec{w}=(0,-2,4)$, sejam coplanares.
- 19°) Verifique se os pontos A(1,2,4), B(-1,0,-2), C(0,2,2) e D(-2,1,-3), estão no mesmo plano.
- 20°) Dados os vetores $\vec{u}=(x,5,0), \vec{v}=(3,-2,1)$ e $\vec{w}=(1,1,-1)$, calcular o valor de x para o volume do paralelepípedo determinado por \vec{u}, \vec{v} e \vec{w} , seja 24 u.v (unidade de volume).
- 21°) Calcular o volume do tetraedro cujos vértices são A(1,2,1), B(7,4,3), C(4,6,2) e D(3,3,3).
- 22°) Dados os vetores $\vec{u}=(1,a,-2a-1), \vec{v}=(a,a-1,1)$ e $\vec{w}=(a,-1,1),$ calcular o valor de a para que se tenha $\vec{u}\cdot\vec{v}=(\vec{u}+\vec{v})\cdot\vec{w}.$
- 23°) Dados os pontos A(-1,0,2), B(-4,1,1) e C(0,1,3). Determine o vetor \vec{v} tal que $2\vec{v} \overrightarrow{AB} = \vec{v} + (\overrightarrow{BC} \cdot \overrightarrow{AB})\overrightarrow{AC}$.
- 24°) Determine o vetor \vec{v} sabendo que $(3,7,1) + 2\vec{v} = (6,10,4) \vec{v}$.

- 25°) Dados os pontos A(1,2,3), B(-6,-2,3) e C(1,2,1). Determine o versor do vetor $3\overrightarrow{BA} 2\overrightarrow{BC}$.
- 26°) Dados os pontos A(3, m-1, -4), B(8, 2m-1, m). Determine o valor de m de modo que $|\overrightarrow{AB}| = \sqrt{35}$.
- 27°) Determinar os ângulos do um triângulo de vértice A(2,1,3), B(1,0,-1) e C(-1,2,1).
- 28°) Calcular o volume do tetraedro ABCD, sendo A(1,0,0), B(0,1,0), C(0,0,1) e D(4,2,7).
- 29°) Dados os pontos A(1,-2,3), B(2,-1,-4), C(0,2,0) e D(-1,m,1). Determine o valor de m para que seja 20 u.v (unidade de volume) o volume do paralelepípedo determinado pelos vetores \overrightarrow{AB} , \overrightarrow{AC} e \overrightarrow{AD} .
- 30°) Sejam os vetores $\vec{u}=(1,1,0), \vec{v}=(2,0,1), \vec{w}_1=3\vec{u}-2\vec{v}; \vec{w}_2=\vec{u}+3\vec{v}$ e $\vec{w}_3=\vec{\iota}+\vec{\jmath}-2\vec{k}$. Determine o volume do paralelepípedo definido por \vec{w}_1,\vec{w}_2 e \vec{w}_3 .
- 31°) Verifique se são coplanares os pontos:
 - a) $A(1,1,1), B(-2,-1,3), C(0,2,-2) \in D(-1,0,-2);$
 - b) $A(1,0,2), B(-1,0,3), C(2,4,1) \in D(-1,-2,2).$
- 32°) Calcular a área do paralelogramo que tem os vértices nos pontos A(3,2,1), B(1,1,-1), C(0,1,2).
- 33°) Calcular a área do paralelogramo cujos lados são determinados pelos vetores $2\vec{u} \vec{v}$. Sendo $\vec{u} = (2, -1, 0), \vec{v} = (1, -3, 2)$.
- 34°) Calcular a área do triângulo de vértice:
 - a) A(-1,0,2), B(-4,1,1), C(0,1,3).
 - b) A(1,0,1), B(4,2,1), C(1,2,0).
- 35°) Determinar um vetor unitário simultaneamente ortogonal aos vetores $\vec{u}=(1,1,0), \vec{v}=(2,-1,3).$
- 36°) Determinar o volume do paralelepípedo, cujas arestas passam pelos pontos A(1,0,2), B(-1,0,3), C(2,4,1) e D(-1,-2,2).