(Ко)гомологии групп.

Во всех задачах G — группа, A — G-модуль.

- 1. Пусть имеется расширение группы G абелевой группой $A: A \hookrightarrow E \twoheadrightarrow G$. Докажите, что автоморфизмы E, индуцирующие тождественные автоморфизм A и G находятся во взаимно однозначном соответствии с множеством 1-коциклов $Z^1(G,A)$ и при этом соответствии 1-кограницы соответствуют сопряжениям элементами из A.
- 2. Поймите, что для тривиального модуля A выполнено: $\mathrm{H}^1(G,A) = \mathrm{Hom}\,(G,A)$ (Hom в категории групп).
- 3. Опишите для всех чисел m, n и C_m -модулей A группы $H_n(C_m, A)$ и $H^n(C_m, A)$.
- 4. Агументационный идеал \mathcal{J}_G это ядро $\mathbb{Z}G$ -линейного отображения $\pi: \mathbb{Z}G \to \mathbb{Z}$, которое переводит 1_G в единицу (и, следовательно переводит любой $g \in G$ в единицу). Докажите, что $\{g-1 \mid g \in G \setminus \{1_G\}\}$ \mathbb{Z} -базис \mathcal{J}_G .
- 5. Пусть $G = F\langle X \rangle$ свободная группа на множестве образующих X. Докажите, что \mathcal{J}_G свободный $\mathbb{Z}G$ -модуль с базисом $\{x-1 \mid x \in X\}$. Выведите отсюда, что $H_n(F\langle X \rangle, A) = H^n(F\langle X \rangle, A) = 0$ для любого A и любого $n \geq 2$. Докажите, что, если A тривиальный G-модуль, то $H_1(G,A) \cong \bigoplus_{x \in X} A$ и $H^1(G,A) \cong \prod_{x \in X} A$.
- 6. Пусть G конечная группа. Определим гомоморфизм $\phi_n: \mathbb{Z}G^{\otimes (n+1)} \to \mathbb{Z}G^{\otimes (n+2)}$ равенством $\phi_n(g_0 \otimes \cdots \otimes g_n) = \sum_{g \in G} g_0 \otimes \cdots \otimes g_n \otimes g$. Проверьте, что для n > 0 выполнено $(\delta_n \phi_n + \phi_{n-1} \delta_{n-1})(g_0 \otimes \cdots \otimes g_n) = |G|g_0 \otimes \cdots \otimes g_n$ и выведите отсюда, что $H_n(G,A)$ и $H^n(G,A)$ являются |G|-группами для любого n > 0.
- 7. Пусть |G| = m и A абелева группа, для которой гомоморфизм умножения на m (операцию в A мы считаем сложением) является изоморфизмом. Докажите, что $H_n(G,A) = H^n(G,A) = 0$ для любого n > 0.
- 8. Докажите, что для любой конечной группы G выполнено $\mathrm{H}^2(G,\mathbb{Z})\cong\mathrm{Hom}\,(G,\mathbb{R}/\mathbb{Z})$, где структура G-модуля на \mathbb{Z} и \mathbb{R} тривиальна.
- 9. Пусть имеется расщепляющееся расширение $A \xrightarrow{\alpha} E \xrightarrow{\beta} G$ группы G абелевой группой A. Докажите, что, если $\sigma_1, \sigma_2 : G \to E$ два расщепления, то отображение $h : G \to A$ определённое равенством $\sigma_1(g) = h(g)\sigma_2(g)$ является 1-коциклом.
- 10. Пусть имеется расщепляющееся расширение $A \stackrel{\alpha}{\to} E \stackrel{\beta}{\to} G$ группы G абелевой группой A, причём |G| = m взаимно просто с $|A| < \infty$. Докажите, что любые две подгруппы в E порядка m сопряжены элементом из A.