Заметки по теории вероятностей

Авторы: Хоружий Кирилл

От: 1 апреля 2021 г.

Содержание

1	Эсновы квантой криптографии
	I.1 Протокол BB84
	1.2 Теория Информации
	1.3 Измерения в базисе
2	Основные понятия теории вероятностей
	2.1 Элементы комбинаторики
	2.2 События и операции над ними
	2.3 Дискретное пространство элементарных исходов
	2.4 Дискретное пространство элементарных исходов
	2.5 Геометрическая вероятность
3	Аксиоматика теории вероятностей
	8.1 Алгебра и σ -алгебра событий
	В.2 Мера и вероятностная мера
4	Условная вероятность и независимость
	4.1 Условная вероятность
	4.2 Независимость событий
	4.3 Формула полной вероятности

1 Основы квантой криптографии

1.1 Протокол ВВ84

Пусть есть вертикальная и диагональная поляризация, а также 4 квантовых состояния шифр Вернама Протокол Диффи — Хеллмана Алгоритм RSA

Классическая кирптография: + изученность, стандартизированность - не выдерживает создание квантового компьютера

Квантовая криптография: + не ставит перехватчик перед вычислительными задачами - мало изучены, возможны атаки

Постквантовая криптография: + выдерживает существование квантового компьютера - недостаточная изученность, авось и классический может взломать

1.2 Теория Информации

пусть h(p) — информационное содержание события вероятности p. Верно следующее утверждение:

$$h(p_1) > h(p_2) \quad \Leftarrow \quad p_1 < p_2.$$

Также вполне логично предположить, что h(1) = 0, а также что $h(p_1p_2) = h(p_1) + h(p_2)$.

Это приводит к функции вида

$$h(x) = -\log x = \log_2 \frac{1}{x}$$

Pacnpedeлeнием вероятностей будем считать некоторый набор $\{p_i\}$ такой, что $\sum p_i=1$. Информация, выдаваемая источником может быть найдена, как матоэнидание

$$H(P) = -\sum_{i} p_i \log p_i,$$

иначе функция называется энтропией Шеннона, - мера того, насколько неизвестно что выдаст источник.

Также энтропия Шеннона – среднее количество вопросов, которые необходимо задать. Ещё это среднее количество битов, которое необходимо, чтобы закодировать выход источника.

Неравенство Крафта позволяет сформулировать условие к префиксному коду.

Также можно сформулировать, что разность между практической и теоретической длиной слова $\geqslant 0$, что соответсвует неравенству Γ иббса.

- Коды Хаффмана
- Maassen-Uffink entropic

1.3 Измерения в базисе

Возвращаемся к состояниям

$$\begin{aligned} |0\rangle_{+} &= |0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \\ |1\rangle_{+} &= |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \\ |0\rangle_{\times} &= \frac{|0\rangle + |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \\ |1\rangle_{\times} &= \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \end{aligned}$$

Пусть есть некоторый ортонормированный базис $\{|e_i\rangle\}$ и состояние $|\xi\rangle$. Вероятность исхода i при измерении $|\xi\rangle$ в базисе $\{|e_i\rangle\}$ равна

$$\Pr(i) = |\langle e_i | \xi \rangle|^2.$$

2 Основные понятия теории вероятностей

2.1 Элементы комбинаторики

Для начала подружимся с комбинаторикой, взяв некоторую её проекцию на теорвер

Thr 2.1. Пусть множества $A = \{a_1, \ldots, a_k\}$ состоит из k элементов, а множество $B = \{b_1, \ldots, b_m\}$ – из m элементов. Тогда можно образовать равно km пар (a_i, b_i) .

Thr 2.2. Общее количество различных наборов при выборе k элементов из n без возвращения u c учётом порядка равняется

$$A_n^k = n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!},$$

 $\mathit{где}\ A_n^k$ называется числом размещений из n элементов по k элементов.

Thr 2.3. Общее количество различных наборов при выборе k элементов из n без возвращения u без учета порядка равняется

$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!},$$

где число C_n^k называется числом сочетаний из n элементов по k элементов.

Thr 2.4. Общее количество различных наборов при выборе k элементов из n c возвращением u без учёта порядка равняется

$$C_{n+k-1}^k = C_{n+k-1}^{n-1}.$$

2.2 События и операции над ними

Def 2.5. Пространством элементарных исходов называют множество Ω , содержащее все возможные взаимоисключающие результаты данного случайного эксперимента. Элементы множества Ω называются элементарными исходами и обозначаются ω .

Def 2.6. Событиями называются подмножества Ω . Говорят, что произошло событие A, если эксперимент завершился одним из элементарных исходов, входящих в множество A.

Вообще в силу таких определений события и множества оказываются очень похожими, так что определены операции объединения, пересечения, дополнения, а также взятия противоположеного $\bar{A} = \Omega \backslash A$. Также можно выделить достоверное событие Ω и невозможное \varnothing .

События A и B называются несовместными, если они не могут произойти одновременно: $A \cap B = \emptyset$. События A_1, \ldots, A_n называются попарно несовместными, если несовместны любые два из них: $A_i \cap A_j = \emptyset$, $\forall i \neq j$. Говорят, что событие A влечет событие B ($A \subseteq B$), если $A \Rightarrow B$.

2.3 Дискретное пространство элементарных исходов

Пространство элементарных исходов назовём дискретным, если множество Ω конечно или счётно: $\Omega = \{\omega_1,..,\omega_n,\ldots\}$.

Def 2.7. Сопоставим каждому элементарному исходу ω_i число $p_i \in [0,1]$ так, чтобы $\sum p_i = 1$. Вероятностью события A называют число

$$P(A) = \sum_{\omega_i \in A} p_i,$$

где с случае $A = \emptyset$ считаем P(A) = 0.

Def 2.8 (Классическое определение вероятности). Говорят, что эксперимент описывается *классической вероятностной моделью*, если пространство его элементарных исходов состоит из конечного числа равновозможных исходов. Для любого события верно, что

$$P(A) = \frac{\operatorname{card} A}{\operatorname{card} \Omega}.$$
 (2.1)

Эту формулу называют классическим определением вероятности.

Тут стоит вспомнить три схемы из модели с урнами: схема выбора с возвращением и с учётом порядка (n^k) , выбора без возвращения и с учётом порядка (A_n^k) , а также выбора без возвращения и без учёта порядка (C_n^k) , описываются классической вероятностной моделью. А вот схема выбора с возвращением и без учёта порядкауже не описывается классической вероятностью.

Пример с гипергеометрическим распределением

Из урны, в которой K белых и N-K чёрных шаров, наудачу и без возвращения вынимают n шаров, где $n \leq N$. Термин «наудачу» означает, что появление любого набора из n шаров равновозможно. Найти вероятность того, что будет выбрано k белых и n-k чёрных шаров.

Результат – набор из n шаров. Общее число сагд $\Omega = C_N^n$. Пусть A_k – событие, состоящее в том, что в наборе окажется k белых и n-k черных. Есть ровно C_K^k способов выбрать k белых шаров из K, и C_{N-K}^{n-k} способов выбрать n-k черных шаров из N-K. Тогда сагд $A_k = C_K^k C_{N_K}^{n-k}$,

$$P(A_k) = \frac{\operatorname{card} A_k}{\operatorname{card} \Omega} = \frac{C_K^k C_{N_K}^{n-k}}{C_N^n}.$$

Этот набор вероятностей называется гипергеометрическим распределением вероятностей.

2.4 Дискретное пространство элементарных исходов

Пространство элементарных исходов назовём дискретным, если множество Ω конечно или счётно: $\Omega = \{\omega_1,...,\omega_n,\ldots\}$.

Def 2.9. Сопоставим каждому элементарному исходу ω_i число $p_i \in [0,1]$ так, чтобы $\sum p_i = 1$. Вероятностью события A называют число

$$P(A) = \sum_{\omega_i \in A} p_i,$$

где с случае $A=\varnothing$ считаем P(A)=0.

Def 2.10 (Классическое определение вероятности). Говорят, что эксперимент описывается *классической вероямностной моделью*, если пространство его элементарных исходов состоит из конечного числа равновозможных исходов. Для любого события верно, что

$$P(A) = \frac{\operatorname{card} A}{\operatorname{card} \Omega}.$$
 (2.2)

Эту формулу называют классическим определением вероятности.

Тут стоит вспомнить три схемы из модели с урнами: схема выбора с возвращением и с учётом порядка (n^k) , выбора без возвращения и с учётом порядка (A_n^k) , а также выбора без возвращения и без учёта порядка (C_n^k) , описываются классической вероятностной моделью. А вот схема выбора с возвращением и без учёта порядкауже не описывается классической вероятностью.

Пример с гипергеометрическим распределением

Из урны, в которой K белых и N-K чёрных шаров, наудачу и без возвращения вынимают n шаров, где $n \leq N$. Термин «наудачу» означает, что появление любого набора из n шаров равновозможно. Найти вероятность того, что будет выбрано k белых и n-k чёрных шаров.

Результат – набор из n шаров. Общее число сагд $\Omega = C_N^n$. Пусть A_k – событие, состоящее в том, что в наборе окажется k белых и n-k черных. Есть ровно C_K^k способов выбрать k белых шаров из K, и C_{N-K}^{n-k} способов выбрать n-k черных шаров из N-K. Тогда сагд $A_k = C_K^k C_{N_K}^{n-k}$,

$$P(A_k) = \frac{\operatorname{card} A_k}{\operatorname{card} \Omega} = \frac{C_K^k C_{N_K}^{n-k}}{C_N^n}.$$

Этот набор вероятностей называется гипергеометрическим распределением вероятностей.

2.5 Геометрическая вероятность

Def 2.11. Пусть некоторая область $\Omega \subset \mathbb{R}^k$ такая, что $\mu(\Omega)$ конечна. Пусть эксперимент состоит из равновероятного выбора случайной точки в области Ω . *Геометрическое определение вероятности*:

$$P(A) = \frac{\mu(A)}{\mu\Omega}.$$

Если для точки выполнены условия геометрического определения, то говорят, что точка равномерно распределена в Ω .

3 Аксиоматика теории вероятностей

3.1 Алгебра и σ -алгебра событий

Def 3.1. Множество \mathcal{A} , элментами которого являются некоторые подмножества Ω называют *алгеброй*, если оно удовлетворяет следующим условиям:

- A1) $\Omega \sin \mathcal{A}$ (алгебра содержит достоверные события);
- А2) если $A \in \mathcal{A}$, то $\bar{A} \in \mathcal{A}$ (вместе с любым множеством алгебра содержит противоположное к нему);
- А3) если $A \in \mathcal{A}$ и $B \in \mathcal{A}$, то $A \cup B \in \mathcal{A}$ (вместе с любыми двумя множествами алгебра содержит их объединение).

Вообще из A1 и A2 следует, что $\emptyset = \bar{\Omega} \in \mathcal{A}$. Пункт A3 экстраполируется на любой конечный набор. Кстати, объединение можно заменить (в силу закона де Моргана) на пересечение:

$$xy \in \mathcal{A} \quad \Leftrightarrow \quad \overline{xy} \in \mathcal{A} \quad \Leftrightarrow \quad \overline{x} + \overline{y} \in \mathcal{A}$$

Thr 3.2 (закон де Моргана). Для множеств x, y верно, что

$$\overline{x+y} = \overline{x} \cdot \overline{y}, \qquad \overline{xy} = \overline{x} + \overline{y},$$

 $ede xy = x \cap y, x + y = x \cup y.$

В случае счётного пространства элементарных исходов A3 алгебры оказывается недостаточно, так приходим к σ -алгебре:

Def 3.3. Множество \mathcal{F} , элеменатми которого являются некоторые подмножества Ω называется σ -алгеброй, если выполнены следующий условия:

- S1) $\Omega \sin \mathcal{F}$ (алгебра содержит достоверные события);
- S2) если $A \in \mathcal{F}$, то $\bar{A} \in \mathcal{F}$ (вместе с любым множеством алгебра содержит противоположное к нему);
- S3) если $\{A_i\} \in \mathcal{F}$, то $\cup_i A_i \in \mathcal{F}$ (вместе с любым *счетным* набором событий σ -алгебра содержит их объединение).

Def 3.4. Минимальной σ -алгеброй, содержащей набор множеств \mathcal{U} , называется пересечение всех σ -алгебр, содержащих \mathcal{U} .

Def 3.5. Минимальная σ -алгебра, содержащая множество \mathcal{U} всех интервалов на вщественной прямой называется борелевской сигма-алгеброй в \mathbb{R} и обозначается $\mathfrak{B}(\mathbb{R})$.

Итак, оказался определен специальный класс \mathcal{F} подмножеств Ω , названный σ -алгеброй событий. Примнеие счетного числа любых операция к множествам из \mathcal{F} снова дает множество из \mathcal{F} . Собтиями будем называть только множества $A \in \mathcal{F}$.

3.2 Мера и вероятностная мера

Def 3.6. Пусть Ω – некоторое непустое множество \mathcal{F} – σ -алгебра его подмножеств. Функция

$$\mu \colon \mathcal{F} \mapsto \mathbb{R} \cap [0, +\infty) \cup \{+\infty\}$$

называется *мерой* на (Ω, \mathcal{F}) , если она удовлетворяет условиям

- μ 1) $\mu(A) \geqslant 0$ для любого множества $A \in \mathcal{F}$;
- μ 2) \forall счетного $\{A_i\} \in \mathcal{F}$ таких, что $A_i \cap A_j = \emptyset$, $\forall i \neq j$ мера их объединения равна сумме их мер:

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

Последнее свойство называют *счётное аддитивностью* или σ -аддитивностью меры.

Thr 3.7 (свойство непрерывности меры). Пусть дана убывающая последовательность $B_1 \supseteq B_2 \supseteq B_2 \supset B_3 \supset \dots$ множеств из \mathcal{F} , причем $\mu(B_1) < \infty$. Пусть $B = \bigcap_i^\infty B_i$. Тогда $\mu(B) = \lim_{n \to \infty} \mu(B_n)$.

Def 3.8. Пусть Ω – непустое множество, \mathcal{F} – σ -алгебра его подмножеств. Мера μ : $\mathcal{F} \mapsto \mathbb{R}$ называется нормитрованной, если $\mu(\Omega) = 1$. Другое название нормированной меры – вероятность.

Def 3.9. Пусть Ω – пространство элементарных исходов, \mathcal{F} – σ -алгебра его подмножеств (событий). Вероятностью или вероятностной мерой на (Ω, \mathcal{F}) называется функция

$$P \colon \mathcal{F} \mapsto \mathbb{R}$$

обладающая свойствами

- P1) $P(A) \ge 0$ для любого события $A \in \mathcal{F}$;
- Р2) для любого счётного набора *попарно несовместных* событий $\{A_i\} \in \mathcal{F}$ имеет равенство

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{k=1}^{\infty} P(A_i);$$

Р3) вероятность достоверного события равна единице: $P(\Omega) = 1$.

Свойства (Р1) – (Р3) называют аксиомами вероятности.

Def 3.10. Тройка $\langle \Omega, \mathcal{F}, P \rangle$, в которой Ω – пространство элементарных исходов, \mathcal{F} – σ -алгебра его подмножеств и P – вероятная мера на \mathcal{F} , называется вероятностным пространством.

Вообще, для вероятности верны следующие свойства

- 1. $P(\emptyset) = 0$.
- 2. Для любого конечного набора попарно несовместных событий $A_1, \ldots, A_n \in \mathcal{F}$ имеет место равенство $P(A_1 \cup \ldots \cup A_n) = P(A_1) + \ldots + P(A_n)$.
- 3. $P(\bar{A}) = 1 P(A)$.
- 4. Если $A \subseteq B$, то $P(B \setminus A) = P(B) P(A)$.
- 5. $A \subseteq B$, to $P(A) \leqslant P(B)$.
- 6. $P(A_1 \cup ... \cup A_n) \leq \sum_{i=1}^n P(A_i)$.

И это всё, конечно, хорошо, но если мы хотим что-то посчитать, то

Thr 3.11 (Формула включения-исключения). Для вероятности, в частности для двух событий, верно, что $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

и, обобщая, для объединения п множеств

$$P(A_1 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < m} P(A_i A_j A_m) - \ldots + (-1)^{n-1} P(A_1 A_2 \ldots A_n).$$

4 Условная вероятность и независимость

4.1 Условная вероятность

Def 4.1. Условной вероятностью события A при условии, что произошло событие B, называется число

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$

которое само собой определено только при P(B) = 0.

Thr 4.2. Ecau P(B) > 0 u P(A) > 0, mo

$$P(A \cap B) = P(B) P(A|B) = P(A) P(B|A).$$

Thr 4.3. Для любых событий $A_1, ..., A_n$ верно равенство:

$$P(A_1 ... A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 A_2) \cdot ... \cdot P(A_n | A_1 ... A_{n-1}),$$

если все участвующие в нём условные вероятности определены.

4.2 Независимость событий

Def 4.4. События A и B называются *независимыми*, если $P(A \cap B) = P(A) P(B)$.

Из этого определения вытекает следующие леммы.

Lem 4.5. Пусть P(B) > 0. Тогда события A и B независимы тогда и только, когда P(A|B) = P(A).

Lem 4.6. Пусть A и B несовместны. Тогда независимыми они будут только в том случае, если P(A) = 0 или P(B) = 0.

Другими словами несовместные события не могут быть независимыми. Зависимость между ними – просто причинно-следственная: если $A \cap B = \emptyset$, то $A \subseteq \bar{B}$, т.е. при выполнении A события B не npoucxodum.

Lem 4.7. Если события A и B независимы, то независимы и события A и \bar{B} , \bar{A} и B, \bar{A} и \bar{B} .

Def 4.8. События A_1, \ldots, A_n называются *независимыми в совокупности*, если для любого $1 \le k \le n$ и любого набора различных меж собой индекс $1 \le i_1 < \ldots < i_k \le n$ имеет место равенство

$$P(A_{i_1} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot \ldots \cdot P(A_{i_k}).$$

4.3 Формула полной вероятности

Def 4.9. Конечный или счётный набор попарно несовместных событий $\{H_i\}$ таких, что $P(H_i) > 0 \ \forall i \ u \cup_i H_i = \Omega$, называется *полной группой событий* или разбиением пространства Ω . Также события, образующие полную группу событий, часто называют *гипотезами*.

При подходящем выборе гипотез для любого события A могут быть сравнительно просто вычислены $P(A|H_i)$ и, собственно, $P(H_i)$. Как посчитать вероятность события A?

Thr 4.10 (формула полной вероятности). Пусть дана полная группа событий $\{H_i\}$. Тогда вероятность любого события A может быть вычислена по формуле

$$P(A) = \sum_{i=1}^{\infty} P(H_i) \cdot P(A|H_i).$$