Análisis de correspondencias

José A. Perusquía Cortés Análisis Multivariado Semestre 2025-II

Motivación

• Una técnica multivariada para analizar las asociaciones entre un conjunto de variables categóricas de forma gráfica (reducción de la dimensión).

Es una técnica meramente descriptiva conocida desde Hirschfeld (1935) y redescubierta e impulsada por Jean-Paul Benzécri en Francia en los años 60's.

Técnica similar a PCA pero para datos categóricos.

Elementos

- Puntos en un espacio multidimensional y un peso (o masa) asignado a cada punto
- Un centroide
- Una función de distancia entre puntos: chi-squared distance
 - Para dos renglones i, i'

$$d(i, i') = \sqrt{\sum_{j=1}^{p} \left(\frac{f_{ij}}{f_{i}} - \frac{f_{i'j}}{f_{i'}}\right)^2 \cdot \frac{1}{f_{\cdot j}}}$$

- Para dos columnas j, j'

$$d(j,j') = \sqrt{\sum_{i=1}^{n} \left(\frac{f_{ij}}{f_{\cdot j}} - \frac{f_{ij'}}{f_{\cdot j'}}\right)^{2} \cdot \frac{1}{f_{i\cdot}}}$$

Estado de salud por grupo de edades

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Total
16-24	243	789	167	18	6	1223
25-34	220	809	164	35	6	1234
35-44	147	658	181	41	8	1035
45-54	90	469	236	50	16	861
55-64	53	414	306	106	30	909
65-74	44	267	284	98	20	713
75+	20	136	157	66	17	396
Total	817	3542	1495	414	103	6371

Tabla de frecuencias por renglón

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Pesos Ren.
16-24	0.199	0.645	0.137	0.015	0.005	0.192
25-34	0.178	0.656	0.133	0.028	0.005	0.194
35-44	0.142	0.636	0.175	0.040	0.008	0.162
45-54	0.105	0.545	0.274	0.058	0.019	0.135
55-64	0.058	0.455	0.337	0.117	0.033	0.143
65-74	0.062	0.374	0.398	0.137	0.028	0.112
75+	0.051	0.343	0.396	0.167	0.043	0.062
Pesos Col.	0.128	0.556	0.235	0.065	0.016	1.000

Puntos en un espacio multidimensional: perfiles por renglón

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Pesos Ren.
16-24	0.199	0.645	0.137	0.015	0.005	0.192
25-34	0.178	0.656	0.133	0.028	0.005	0.194
35-44	0.142	0.636	0.175	0.040	0.008	0.162
45-54	0.105	0.545	0.274	0.058	0.019	0.135
55-64	0.058	0.455	0.337	0.117	0.033	0.143
65-74	0.062	0.374	0.398	0.137	0.028	0.112
75+	0.051	0.343	0.396	0.167	0.043	0.062
Pesos Col.	0.128	0.556	0.235	0.065	0.016	1.000

Pesos (masas) de cada perfil: peso renglón

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Pesos Ren.
16-24	0.199	0.645	0.137	0.015	0.005	0.192
25-34	0.178	0.656	0.133	0.028	0.005	0.194
35-44	0.142	0.636	0.175	0.040	0.008	0.162
45-54	0.105	0.545	0.274	0.058	0.019	0.135
55-64	0.058	0.455	0.337	0.117	0.033	0.143
65-74	0.062	0.374	0.398	0.137	0.028	0.112
75+	0.051	0.343	0.396	0.167	0.043	0.062
Pesos Col.	0.128	0.556	0.235	0.065	0.016	1.000

El centroide: peso columna

Grupo\Salud	Muy Bueno	Bueno	Regular	Malo	Muy Malo	Pesos Ren.
16-24	0.199	0.645	0.137	0.015	0.005	0.192
25-34	0.178	0.656	0.133	0.028	0.005	0.194
35-44	0.142	0.636	0.175	0.040	0.008	0.162
45-54	0.105	0.545	0.274	0.058	0.019	0.135
55-64	0.058	0.455	0.337	0.117	0.033	0.143
65-74	0.062	0.374	0.398	0.137	0.028	0.112
75+	0.051	0.343	0.396	0.167	0.043	0.062
Pesos Col.	0.128	0.556	0.235	0.065	0.016	1.000

Algoritmo

- 1. Definir matrices diagonales \mathbf{D}_r y \mathbf{D}_c con las masas por renglón y columna.
- 2. Obtener la descomposición GSVD de ${f R}-{f 1c}^T$, i.e.,

$$\mathbf{R} - \mathbf{1}\mathbf{c} = \mathbf{N}\Lambda\mathbf{M}^T$$

$$\mathbf{N}^T\mathbf{D}_r\mathbf{N} = \mathbf{M}^T\mathbf{D}_c^{-1}\mathbf{M} = \mathbf{I}$$

- R es la matriz de perfiles por renglón
- $\mathbf{c} = \mathbf{D}_c \mathbf{1}$ es el centroide
- 3. Las primeras dos coordenadas para los renglones se encuentran con $N_{(2)}\Lambda_{(2)}$
- 4. Para las columnas (problema dual) se transpose la tabla y se repite el procedimiento (puede haber problemas)

Los grupos de edad

Estado de salud

Ambas variables (problema)

Algoritmo 2

- 1. Calcular la **matriz de correspondencia** $P = \frac{N}{n}$
- 2. Definir matrices diagonales \mathbf{D}_r y \mathbf{D}_c con las sumas por renglón y columna.
- 3. Obtener la descomposición SVD de

$$\mathbf{D}_r^{-\frac{1}{2}} \left(\mathbf{P} - \mathbf{r} \mathbf{c}^T \right) \mathbf{D}_c^{-\frac{1}{2}} = \mathbf{U} \Lambda \mathbf{V}^T$$

4. Obtener las coordenadas estándar

$$\mathbf{X} = \mathbf{D}_r^{-\frac{1}{2}} \mathbf{U} \qquad \qquad \mathbf{Y} = \mathbf{D}_c^{-\frac{1}{2}} \mathbf{V}$$

5. Obtener las coordenadas principales

$$\mathbf{F} = \mathbf{X}\Lambda$$
 $\mathbf{G} = \mathbf{Y}\Lambda$

Con el algoritmo 2

Encuesta a trabajadores de una empresa sobre sus hábitos de fumar

Staff\Nivel	None	Light	Medium	Heavy	Totales Ren.
Sr Managers	4	2	3	2	11
Jr Managers	4	3	7	4	18
Sr Employees	25	10	12	4	51
Jr Employees	18	24	33	13	88
Secretaries	10	6	7	2	25
Totales Col.	61	45	62	25	193

Inercia

Como PCA se busca explicar la mayor cantidad de varianza definida como:

Inercia =
$$\sum_{i,j} \frac{\left(p_{ij} - r_i c_j\right)^2}{(r_i c_j)}$$

- Figure 2 Equivalentemente, Inercia = $\frac{\chi^2}{n}$, donde χ^2 es el estadístico de Pearson y n el total de observaciones
- Los valores singulares al cuadrado $\lambda_1^2, \lambda_2^2, \dots$ son las inercias principales y explican la inercia total.

La inercia total:

Inercia
$$= 0.08518986$$

Las inercias principales:

$$\lambda_1^2 = 0.07475911;$$
 $\lambda_2^2 = 0.01001718;$ $\lambda_3^2 = 0.0004135741$

Porcentaje explicado acumulado:

$$87.76\% \rightarrow 99.51\% \rightarrow 100\%$$

Problema dual

lacktriangle Las coordenadas de los renglones lacktriangle y la de las columnas lacktriangle están relacionadas

$$\mathbf{F} = \mathbf{R}\mathbf{G}\Lambda^{-1} \qquad \qquad \mathbf{G} = \mathbf{C}\mathbf{F}\Lambda^{-1}$$

Nos da una forma de añadir perfiles suplementarios para columnas y renglones

Se quiere comparar contra el promedio nacional de hábitos de fumar

Staff\Nivel	None	Light	Medium	Heavy
Sr Managers	4	2	3	2
Jr Managers	4	3	7	4
Sr Employees	25	10	12	4
Jr Employees	18	24	33	13
Secretaries	10	6	7	2
Promedio	42%	29%	20%	9%

Encontramos su representación como:

$$f_{11} * = \frac{(.42* - 0.39330845) + (.29* 0.09945592) + (.2* 0.19632096) + (.09* 0.29377599)}{.2734211} = .258$$

$$f_{12} * = \frac{(.42* - 0.030492071) + (.29* 0.141064289) + (.2* 0.007359109) + (.09* - 0.197765656)}{0.1000859} = .118$$

De forma similar podemos añadir columnas

Staff\Nivel	None	Light	Medium	Heavy	Drinking	Not Drinking
Sr Managers	4	2	3	2	0	11
Jr Managers	4	3	7	4	1	17
Sr Employees	25	10	12	4	5	46
Jr Employees	18	24	33	13	10	78
Secretaries	10	6	7	2	7	18
Promedio	42%	29%	20%	9%		

Dbservación: Ya no es una tabla de contingencia

Análisis de correspondencias múltiple (MCA)

MCA

Extensión del análisis de correspondencias simple que permite analizar la relación de K variables categóricas dependientes, cada una con J_k niveles tales que $\sum_k J_k = J$

Es importante que las variables sean "homogéneas", e.g. no mezclar variables de opinión con variables demográficas.

A grandes rasgos se puede ver como un análisis de correspondencias en una matriz indicadora.

Las variables pueden ser cuantitativas también, siempre que se agrupen.

			Expert 1			Ехре	ert 2		Expert 3				
Wine	Oak	Fruity	Woody	Coffee	Red	Roasted	Vanillin	Woody	Fruity	Butter	Woody		
W1	1	10	001	01	10	01	001	01	01	01	01		
W2	2	01	010	10	01	10	010	10	01	10	10		
W3	2	01	100	10	01	10	100	10	01	10	10		
W4	2	01	100	10	01	10	100	10	10	10	10		
W5	1	10	001	01	10	01	001	01	10	01	01		
W6	1	10	010	01	10	01	010	01	10	01	01		
W?	?	01	010	.5.5	10	10	010	.5.5	10	.5.5	01		

Inercias principales

$$\lambda_1^2 = 0.8532;$$

$$\lambda_2^2 = 0.2;$$

$$\lambda_3^2 = .1151;$$

$$\lambda_1^2 = 0.8532;$$
 $\lambda_2^2 = 0.2;$ $\lambda_3^2 = .1151;$ $\lambda_4^2 = 0.0317$

Inercia total de 1.2

Contribución a la inercia total

Inercia acumulada

$$71.10\% \rightarrow 87.76\% \rightarrow 97.36\% \rightarrow 100\%$$

Añadiendo el vino del que no se conoce el tipo de barrica

Encuesta de 1994 del Programa Internacional de Investigación sobre la familia y los cambios de rol de género realiza a 33,590 individuos de 24 países

Una de las preguntas de interés fue:

'Una mujer con un niño en edad escolar en casa, ¿debe trabajar a tiempo completo, a tiempo parcial, o debe permanecer en casa?

Se puede responder: 'no está seguro/no sabe'.

Se consideran cuatro preguntas y las respuestas de los 3418 individuos de Alemania

Se utiliza one-hot-encoding para pasar de las originales a matriz indicadora

	Pregu	ıntas			Pregu	ınta 1			Pregu	ınta 2	2		Pregu	ınta 3	3	Pregunta 4			
1	2	3	4	W	W	Н	?	W	W	Н	?	W	W	Н	?	W	W	Н	?
1	3	2	2	1	0	O	0	0	O	1	0	0	1	O	0	О	1	O	0
2	3	3	2	О	1	O	0	О	O	1	0	0	O	1	0	О	1	O	O
4	3	3	2	О	0	O	1	0	O	1	0	0	0	1	0	0	1	Ο	O
4	4	4	4	0	0	O	1	0	O	0	1	0	0	0	1	0	0	O	1
4	4	4	4	0	0	O	1	0	O	0	1	0	0	O	1	0	0	O	1
1	3	2	1	1	0	O	0	0	O	1	0	0	1	O	0	1	0	O	O

Se utiliza one-hot-encoding para pasar de las originales a matriz indicadora

	Pregu	ınta 1			Pregu	ınta 2			Pregu	ınta 3		Pregunta 4				
W	W	Н	?	W	W	Н	?	W	W	Н	?	W	W	Н	?	
1	O	0	0	0	0	1	O	0	1	O	0	O	1	O	0	
0	1	O	O	0	0	1	Ο	O	0	1	0	O	1	O	O	
0	Ο	O	1	О	0	1	Ο	O	0	1	0	Ο	1	O	Ο	
0	O	Ο	1	О	0	O	1	Ο	0	0	1	Ο	O	O	1	
0	Ο	O	1	О	0	O	1	0	0	O	1	Ο	Ο	O	1	
O O 1	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	

Se genera una matriz de 3,418 renglones y 16 columnas

ightharpoonup Se puede usar la matriz de Burt $\mathbf{X}^T\mathbf{X}$ para el análisis

	<i>1W</i>	1w	<i>1H</i>	1?	2W	2w	2 H	2?	3W	3w	<i>3H</i>	3?	4W	4w	4 H	<i>4</i> ?
<i>1W</i>	2501	0	0	0	172	1107	1131	91	355	1710	345	91	1766	538	40	157
1w	0	476	O	0	7	129	335	5	16	261	181	18	128	293	17	38
<i>1H</i>	0	0	79	O	1	6	72	0	1	17	61	0	14	21	38	6
1?	0	0	0	362	1	57	108	196	7	96	55	204	51	45	2	264
2W	172	7	1	1	181	O	O	0	127	48	4	2	165	15	0	1
2 w	1107	129	6	57	0	1299	O	0	219	997	61	22	972	239	13	75
2 H	1131	335	72	108	0	0	1646	0	24	989	573	60	760	616	84	186
2?	91	5	0	196	0	0	0	292	9	50	4	229	62	27	0	203
3W	355	16	1	7	127	219	24	9	379	0	0	0	360	14	1	4
<i>3w</i>	1710	261	17	96	48	997	989	50	0	2084	0	0	1348	567	23	146
<i>3H</i>	345	181	61	55	4	61	573	4	0	0	642	0	202	286	73	81
3?	91	18	0	204	2	22	60	229	0	0	0	313	49	30	O	234
4W	1766	128	14	51	165	972	760	62	360	1348	202	49	1959	O	0	0
4 w	538	293	21	45	15	239	616	27	14	567	286	30	0	897	0	0
4 H	40	17	38	2	O	13	84	0	1	23	73	0	0	O	97	0
4?	157	38	6	264	1	75	186	203	4	146	81	234	0	0	0	465

Inercia total de 1.145222

Dos primeras inercias principales (cuadrado de las inercias de la matriz indicadora)

$$\lambda_1^2 = 0.4807494;$$
 $\lambda_2^2 = 0.2633772$

Contribución a la inercia total

0.419787 0.2299791

Inercia acumulada

La inercia total es el promedio de las inercias de cada subtabla

Preguntas	Pregunta 1	Pregunta 2	Pregunta 3	Pregunta 4	Promedio
Pregunta 1	3	0.3657	0.4262	0.6457	1.1094
Pregunta 2	0.3657	3	0.8942	0.3477	1.1519
Pregunta 3	0.4262	0.8942	3	0.4823	1.2007
Pregunta 4	0.6457	0.3477	0.4823	3	1.1189
Promedio	1.1094	1.1519	1.2007	1.1189	1.1452

Mejoras

- MCA subestima la importancia de las inercias principales:
 - Con la matriz indicadora debido al aumento de la dimensionalidad
 - Con la matriz de Burt al inflar la inercia total con las tablas en la diagonal que no son de interés
 - JCA es un algoritmo iterativo que hace análisis de correspondencias en la matriz de Burt tomando como valores faltantes los elementos de la diagonal (requiere algoritmo de imputación)
 - Alternativamente se puede hacer un ajuste de la inercia y se re-escala la solución (mediante una regresión lineal)

Inercia ajustada

Para las inercias de MCA con la matriz de Burt, Greenacre (1993) propuso:

$$\lambda_i^c = \left[\left(\frac{K}{K-1} \right) \left(\sqrt{\lambda_i} - \frac{1}{K} \right) \right]^2$$

La inercia total se puede calcular como la suma de los valores singulares re-escalados o alternativamente se utiliza la inercia promedio de las matrices fuera de la diagonal (Greenacre, 1993) dada por:

$$\bar{\mathcal{J}} = \frac{K}{K-1} \left(\sum_{i} \lambda_i^2 - \frac{J-K}{K^2} \right)$$

Inercias corregidas

$$\lambda_1^c = 0.3494558; \qquad \lambda_2^c = 0.1231569$$

Contribución a $\bar{J} = 0.5269629$

0.6631 0.2337

Inercia acumulada

$$66.31\% \rightarrow 89.68\%$$