

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No:	TRE1612016201	R/C:63164
FCC ID:	2AKVUK1	
Applicant's name:	ShenZhenChangShengWei II	ndustry Co.,LTD.
Address:	6F, Bldg. B, Huidong Industrial Shenzhen, China	Park, Xixiang Street, Bao'an district,
Manufacturer:	ShenZhen ChangShengWei In	dustry Co.,LTD.
Address:	6F, Bldg. B, Huidong Industrial Shenzhen, China	Park, Xixiang Street, Bao'an district,
Test item description:	Karaoke	
Trade Mark:		
Model/Type reference:	K1	
Listed Model(s)	WTF Karaoke, komvox, U1	
Standard:	FCC CFR Title 47 Part 15 Sub	opart C Section 15.247
Date of receipt of test sample	Dec. 27,2016	
Date of testing:	Dec. 27,2016-Jan. 06,2017	
Date of issue:	Jan. 09,2017	
Result:	PASS	
Compiled by (position+printedname+signature):	File administrators Becky Lianç	Beeley Living
Supervised by (position+printedname+signature):	Project Engineer Jeff Sun	Jeff Fren
Approved by (position+printedname+signature):	RF Manager Hans Hu	Hours ru
Testing Laboratory Name:	Shenzhen Huatongwei Intern	national Inspection Co., Ltd.
Address:	1/F, Bldg 3, Hongfa Hi-tech Inc Gongming, Shenzhen, China	lustrial Park, Genyu Road, Tianliao,

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Contents

<u>1.</u>	TEST STANDARDS ANDTEST DESCRIPTION	3
1.1.	Test Standards	3
1.2.	Report version	3 3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4. 3.5.	EUT configuration Modifications	6 6
J.J.	Modifications	· ·
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4. 4.5.	Statement of the measurement uncertainty Equipments Used during the Test	8 9
4.3.	Equipments used during the rest	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Antenna requirement	10
5.2.	Conducted Emission (AC Main)	11
5.3.	Conducted Peak Output Power	14
5.4.	20dB Emission Bandwidth	17
5.5. 5.6.	Carrier Frequencies Separation Hopping Channel Number	20 22
5.7.	Dwell Time	24
5.8.	Pseudorandom Frequency Hopping Sequence	27
5.9.	Restricted band (radiated)	28
5.10.	Bandedge and Spurious Emission (conducted)	30
5.11.	Spurious Emission (radiated)	34
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	41
7.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	43

Report No.:TRE1612016201 Page 3 of 47 Issued: 2017-01-09

1. TEST STANDARDS ANDTEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standardfor Testing Unlicensed Wireless Devicese

DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

1.2. Report version

Version No.	Date of issue	Description	
00	Jan. 09,2017	Original	

Report Template Version: H00 (2016-08)

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pass
Restricted band	15.247(d)/15.205	Pass
Radiated Emission	15.247(d)/15.209	Pass

Note: The measurement uncertainty is not included in the test result.

Report No.:TRE1612016201 Page 5 of 47 Issued: 2017-01-09

3. **SUMMARY**

3.1. Client Information

Applicant:	ShenZhenChangShengWei Industry Co.,LTD.
Address:	6F, Bldg. B, Huidong Industrial Park, Xixiang Street, Bao'an district, Shenzhen, China
Manufacturer:	ShenZhen ChangShengWei Industry Co.,LTD.
Address:	6F, Bldg. B, Huidong Industrial Park, Xixiang Street, Bao'an district, Shenzhen, China

3.2. Product Description

Name of EUT	Karaoke	
Trade Mark:	-	
Model No.:	K1	
Listed Model(s):	WTF Karaoke, komvox, U1	
Power supply:	DC 5V for USB port	
Adapter information:	-	
Bluetooth		
Version:	Bluetooth 3.0	
Modulation:	GFSK, π/4DQPSK, 8DPSK	
Operation frequency:	2402MHz~2480MHz	
Channel number:	79	
Channel separation:	1MHz	
Antenna type:	Internal Antenna	
Antenna gain:	0dBi	

Report No.:TRE1612016201 Page 6 of 47 Issued: 2017-01-09

3.3. Operation state

> Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

Channel	Frequency (MHz)	
0	2402	
1	2403	
:	::	
39	2441	
77	2479	
78	2480	

Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

the EUT was set to connect with the Bluetooth under large package sizes transmission.

For RF test axis

EUT in each of three orthogonal axis emissions had been tested ,but only the worst case (X axis) data Recorded in the report.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

0	Adaptor	Manufacturer :	HUAWEI
		Model No.:	HW-050100C2W
		Manufacturer:	/
		Model No.:	1

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No.:TRE1612016201 Page 7 of 47 Issued: 2017-01-09

4. Test Environment

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Issued: 2017-01-09 Report No.:TRE1612016201 Page 8 of 47

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
lative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurementof mobile radio equipment characteristics; Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongweilaboratory is reported:

Test Items	MeasurementUncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Radiated spurious emission 9KHz-40 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.5. Equipments Used during the Test

Line (Line Conducted Emission (AC Main)					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	
1	EMI Test Receiver	R&S	ESCI	101247	2016/11/13	
2	Artificial Mains	Shwarzbeck	NNLK 8121	573	2016/11/13	
3	Pulse Limiter	R&S	ESH3-Z2	101488	2016/11/13	
4	Test Software	R&S	ES-K1	N/A	N/A	
5	Test cable	ENVIROFLEX	3651	1101902	2016/11/13	

Maximum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RF Emission / Spurious RF Conducted Emission							
Item	Item Test Equipment Manufacturer Model No. Serial No. Last Cal						
1	Spectrum Analyzer	Rohde&Schwarz	FSP	1164.4391.40	2016/11/13		
2	Power Meter	Anritsu	ML2480B	100798	2016/11/13		
3	Power Sensor	Anritsu	MA2411B	100258	2016/11/13		
4	Test cable	FARPU	MCX-J	N/A	2016/11/13		
5	Temporary antenna connector	D-LENP	NJ-SMAK	N/A	2016/11/13		

NOTE: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Radia	ated Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	Rohde&Schwarz	ESI 26	100009	2016/11/13
2	RF Test Panel	Rohde&Schwarz	TS / RSP	335015/0017	N/A
3	EMI Test Software	Rohde&Schwarz	ESK1	N/A	N/A
4	Loop Antenna	Rohde&Schwarz	HZ-9	838622\013	2016/11/13
5	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2016/11/13
6	Horn Antenna	ShwarzBeck	9120D	1011	2016/11/13
7	Broadband Horn Antenna	Shwarzbeck	BBHA9170	BBHA917047 2	2016/11/13
8	Preamplifier	Shwarzbeck	BBV9742	9742-196	2016/11/13
9	Broadband Preamplifer	Shwarzbeck	BBV 9721	9721-102	2016/11/13
10	Broadband Preamplifer	Shwarzbeck	BBV 9718	9718-247	2016/11/13
11	Turn Table	MATURO	TT2.0	/	N/A
12	Antenna Mast	MATURO	TAM-4.0-P	1	N/A
13	EMI Test Software	Audix	E3	N/A	N/A
14	Test Software	R&S	ES-K1	N/A	N/A
15	Test cable	Siva Cables Italy	RG 58A/U	W14.02	2016/11/13

The Cal.Interval was one year

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

TEST RESULTS

oxtime Passed	☐ Not Applicable
---------------	------------------

The antenna isintegralantenna, the best case gain of the antenna is 0dBi, please refer to the below antenna photo.

5.2. Conducted Emission (AC Main)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

Eroguenov rongo (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedancestabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for themeasuring equipment.
- 4. The peripheral devices are also connected to the main power through aLISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were foldedback and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHzusing a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

- 1) Transd=Cable lose+Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit -Level

5.3. Conducted Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings:
 Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW≥ the 20 dB bandwidth of the emission being measured, VBW≥RBW
 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel	Output power (dBm)	Limit (dBm)	Result
	00	1.64		
GFSK	39	1.61	30.00	Pass
	78	0.82		
	00	3.17		Pass
π/4DQPSK	39	3.12	21.00	
	78	2.33		
	00	3.51		
8DPSK	39	3.48	21.00	Pass
	78	2.72		

Report No.:TRE1612016201 Page 17 of 47 Issued: 2017-01-09

5.4. 20dB Emission Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings:
 Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW≥1% of the 20 dB bandwidth, VBW≥RBW
 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel	20dB Bandwidth (MHz)	Limit (MHz)	Result
	00	0.948		
GFSK	39	0.946	-	Pass
	78	0.949		
	00	1.279		
π/4DQPSK	39	1.279	-	Pass
	78	1.276		
	00	1.274		
8DPSK	39	1.285	-	Pass
	78	1.288		

Report No.:TRE1612016201 Page 20 of 47 Issued: 2017-01-09

5.5. Carrier Frequencies Separation

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)

Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

(1)Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST CONFIGURATION

TEST PROCEDURE

- The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peaks of two adjacent channels
 - RBW≥1% of the span, VBW≥RBW
 - Sweep = auto, Detector function = peak, Trace = max hold
- Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel	Carrier Frequencies Separation (MHz)	Limit (MHz)	Result
GFSK	39	0.999	0.633	Pass
π/4DQPSK	39	1.010	0.853	Pass
8DPSK	39	0.999	0.859	Pass

5.6. Hopping Channel Number

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span = the frequency band of operation
 - RBW≥1% of the span, VBW≥RBW
 - Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel number	Limit	Result
GFSK	79		
π/4DQPSK	79	15	Pass
8DPSK	79		

Report No.:TRE1612016201 Page 24 of 47 Issued: 2017-01-09

5.7. Dwell Time

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST CONFIGURATION

TEST PROCEDURE

- The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings:
 Span = zero span, centered on a hopping channel, RBW= 1 MHz, VBW≥RBW
 Sweep = as necessary to capture the entire dwell time per hopping channel,
 Detector function = peak, Trace = max hold
- Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel	Dwell time (Second)	Limit (Second)	Result
	DH1	0.116		Pass
GFSK	DH3	0.260	0.40	
	DH5	0.306		
	2-DH1	0.121		
π/4DQPSK	2-DH3	0.262	0.40	Pass
	2-DH5	0.308		
	3-DH1	0.121		
8DPSK	3-DH3	0.262	0.40	Pass
	3-DH5	0.306		

Note:

- 1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- 2. Dwell time=Pulse time (ms) × $(1600 \div 2 \div 79)$ ×31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) × $(1600 \div 4 \div 79)$ ×31.6 Second for DH3, 2-DH3, 3-DH3 Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5, 3-DH5