Formalisms Every Computer Scientist Should Know

License: This work is marked with CC0 1.0. To view a copy of this license, visit http://creativecommons.org/publicdomain/zero/1.0

Contents

Class 1		3
0.1	Tools	3
0.2	Syllabus	3
	Math	
Class 2 0.4	Lattices and Fixpoints	7
Class 3		9
Class 6	Hilbert formal system for propositional logic	11 12

2 CONTENTS

0.1 Tools

- Lean or Coq
- CVC5 or Z3
- possibly a model checker
- professional version of ChatGPT

0.2 Syllabus

- 1. MATH ("Informalism")
 - proofs (natural deduction)
 - fixpoints (induction, coinduction)

2. DECLARATIVE LOGIC

- syntax (rules) vs. semantics (models)
- propositional, predicate, modal logic
- decision procedures (SAT, SMT)

3. FUNCTIONS

- λ calculus, typed λ
- SOS (structured operational semantics), rewriting
- "propositions-as-types" (connection to logic)

4. PROCESSES (CONCURRENT)*

- CCS, Petri nets
- (bi-) simulation

5. CIRCUITS*

- boolean, sequential, dataflow (Kahn nets)
- interfaces

6. STATE TRANSITION SYSTEMS*

- (ω-) automata, games, timed, probabilistic, pushdown
- programs, Turing machines
- grammars (Chomsky hierarchy)

7. DECLARATIVE SPECIFICATION

- Hoare logics, separation logic
- temporal logics (LTL, CTL, ATL)
- partial correctness vs. termination, safety vs. liveness

0.3 Math

Definition 1. A real b is a <u>bound</u> of a function f from \mathbb{R} to \mathbb{R} if for all x in \mathbb{R} , we have $f(x) \leq b$.

Definition 2. Given two functions f and g from \mathbb{R} to \mathbb{R} , their \underline{sum} is the function f+g such that for all x in \mathbb{R} , we have (f+g)(x)=f(x)+g(x).

Theorem 1. For all functions f and g from \mathbb{R} to \mathbb{R} , if f and g are bounded, then f+g is bounded.

Proof. 1. Consider arbitrary functions \hat{f} and \hat{g} from \mathbb{R} to \mathbb{R} .

- 2. Assume \hat{f} and \hat{g} are bounded.
- 3. Show that $\hat{f} + \hat{g}$ is bounded.
- 4. $(2 \rightarrow)$ Let \hat{a} be a bound for \hat{f} , and \hat{b} be a bound for \hat{g} .
- 5. We show that $\hat{a} + \hat{b}$ is a bound for $\hat{f} + \hat{g}$.
- 6. Consider an arbitrary real \hat{x} .
- 7. Show $(\hat{f} + \hat{g})(x) \le \hat{a} + \hat{b}$.
- 8. (Definition of sum) $(\hat{f} + \hat{g})(\hat{x}) = \hat{f}(\hat{x}) + \hat{g}(\hat{x})$.
- 9. (Definition of bound) $\hat{f}(\hat{x}) \leq \hat{a}$ and $\hat{g}(\hat{x}) \leq \hat{b}$.
- 10. The rest follows from "arithmetic".

Homework. Prove the Schröder-Bernstein theorem "in this style".

Definition 3. Two sets A and B are equipollent ("have the same size") if there is a bijection from A to B.

Definition 4. A function f from A to B is

- 1. <u>one-to-one</u> if for all x and y in A, if $x \neq y$, then $f(x) \neq f(y)$.
- 2. <u>onto</u> if for all z in B, there exists x in A such that f(x) = z.

^{*:} Operational.

0.3. MATH 5

3. $\underline{bijective}$ if f is one-to-one and onto.

Goals	Knowledge	Outermost symbol
Show for all x , $G(x)$. Consider arbitrary \hat{x} . Show $G(\hat{x})$.	We know for all x , $K(x)$. In particular, we know $K(\hat{t})$. \hat{t} : term containing only constants.	A
Show there exists x s.t. $G(x)$. We show that $G(\hat{t})$. \hat{t} : term containing only constants.	We know there exists x s.t. $K(x)$. Let \hat{x} be s.t. $K(\hat{x})$.	∃

Goal	Knowledge	Outermost symbol
Show for all x , $G(x)$. Consider arbitrary \hat{x} . Show $G(\hat{x})$	We know for all x , $K(x)$ In particular we know $K(\hat{t})$ for constant \hat{t}	A
Show: exists x s.t. $G(x)$. We show $G(\hat{t})$	We know exists x s.t. $K(x)$ Let \hat{x} be s.t. $K(x)$	Э
Show G_1 iff G_2 1. Show if G_1 then G_2 2. Show if G_2 then G_1	We know K_1 iff K_2 In particular we know if K_1 then K_2 and if K_2 then K_1	\Leftrightarrow
Show if G_1 then G_2 Assume G_1 Show G_2	We know if K_1 then K_2 1. To show K_2 it suffices to show K_2 2. Know K_1 , Also know K_2	⇒
Show G_1 and G_2 1. Show G_1 2. Show G_2	Know K_1 and K_2 1. Also Know K_1 2. Also Know K_2	٨
Show G_1 or G_2 1. Assume $\neg G_1$, show G_2 2. Assume $\neg G_2$, show G_1	We know K_1 or K_2 . Show G . 1. Assume K_1 , Show G 2. Assume K_2 , Show G Case split \uparrow	V
Move Negat	7	

0.4 Lattices and Fixpoints

We begin by defining relations and their properties.

Definition 5. A binary **relation** R on a set A is a subset $R \subset A \times A$.

The relation R is **reflexive** if for all x in A, we have R(x,x).

The relation R is Antisymmetric if for all x and y in A, if R(x,y) and R(y,x) then x = y.

The relation R is **transitive** if for all x, y and z in A, if R(x,y) and R(y,z) then R(x,z).

The relation R is a **partial order** if R is reflexive, antisymmetric and transitive.

A **Poset** (A, \sqsubseteq) is a set A and a partial order \sqsubseteq on A.

Example 1. The pair (\mathbb{N}, \leq) where \mathbb{N} is the set of natural numbers, is a poset. For every set B, we have $(\mathcal{P}(B), \subseteq)$ where $\mathcal{P}(B)$ is the powerset of B, is a poset.

Definition 6. • Let (A, \sqsubseteq) be a poset. A function F from A to A is **monotone** (order-preserving, homomorphism) if for all x and y in A, if $x \sqsubseteq y$, then $F(x) \sqsubseteq F(y)$.

• F has a fixpoint x in A if there exists x in A such that F(x) = x.

• x in A is a pre-fixpoint of F if $x \sqsubseteq F(x)$ and is a post-fixpoint of F, if $F(x) \sqsubseteq x$.

Definition 7. Let (A, \sqsubseteq) be a poset.

- x in A is an **upper bound**(lower bound) on a subset B of A if for all y in B, it holds that $y \sqsubseteq x$ ($x \sqsubseteq y$).
- x is the least upper bound of B if (i) x is an upper bound of B and (ii) for all upper bounds y of B, we
 have x ⊆ y. We denote such x by \(\subseteq B.\)
- x is the greatest lower bound of B if (i) x is a lower bound of B and (ii) for all lower bounds y of B, we have $y \sqsubseteq x$. We denote such x by $\bigcap B$.

Example 2. • Consider the poset (\mathbb{N}, \leq) . Then for any $B \subseteq \mathbb{N}$, if B is finite, $\bigcup B$ is well-defined and equal to max B. If B is infinite, then $\bigcup B$ does not exist.

- Consider the poset $(\mathbb{N} \cup \{\infty\}, \leq)$ where for all x in \mathbb{N} , it holds that $x \leq \infty$. Then for all $B \subseteq \mathbb{N}$, the least upper bound $\bigcup B$ is well-define.
- Let A be any set and consider the poset $(\mathscr{P}(A),\subseteq)$. For any subset B of $\mathscr{P}(A)$, it holds that $\bigcup B = \bigcup B$ and $\bigcup B = \bigcap B$.

Definition 8. *Poset* (A, \sqsubseteq) *is a complete-lattice if for all* $B \subseteq A$, *both* $\bigcap B$ *and* $\bigcup B$ *exist.*

Example 3. Let (A, \sqsubseteq) be a complete-lattice.

- $|A = \top$
- $\prod A = \bot$
- $\square \varnothing = \bot$
- $\square \varnothing = \top$

Theorem 2 (Knaster-Tarski). For every complete lattice (A, \sqsubseteq) and monotone function F on A, it holds that

- 1. $\bigsqcup \{x \in A | x \sqsubseteq F(x)\}\$ is the unique greatest fixpoint of F.
- 2. $\prod \{x \in A | F(x) \subseteq x \}$ is the unique least fixpoint of F.

Homework 1. Prove the Knaster Tarski Theorem.

Definition 9 (Prefixpoint). *Consider a lattice* (A, \sqsubseteq) *and a function* $f: A \to A$. *The set of prefixes is*

$$\{x \in A : x \sqsubseteq f(x)\}.$$

Definition 10 (Postfixpoint). *Consider a lattice* (A, \sqsubseteq) *and a function* $f: A \to A$. *The set of postfixes is*

$$\{x \in A : f(x) \sqsubseteq x\}.$$

Definition 11 (gfp and lfp). *Consider a complete lattice* (A, \sqsubseteq) *and a function* $f: A \to A$. *Then,*

$$gfpf := \bigsqcup \{x \in A : x \sqsubseteq f(x)\}$$
$$lfpf := \bigcap \{x \in A : f(x) \sqsubseteq x\}.$$

Theorem 3 (Fixpoints). *Consider a complete lattice* (A, \sqsubseteq) *and a monotonic function* $f: A \to A$. *Then,* gfpf *and* lfpf *are fixpoints of* f *and, for all fixpoints* x *of* f, *we have* $lfpf \sqsubseteq x \sqsubseteq gfpf$.

Definition 12 (\bigsqcup -continuous). *Consider a complete lattice* (A, \sqsubseteq) . *A function* $f: A \to A$ *is* \bigsqcup -continuous if, for all increasing sequences $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq x_2 \sqsubseteq \ldots$, we have

$$f\left(\bigsqcup\{x_n:n\in\mathbb{N}\}\right)=\bigsqcup\{f(x_n):n\in\mathbb{N}\}.$$

Definition 13 (\square -continuous). *Consider a complete lattice* (A, \sqsubseteq) . *A function* $f: A \to A$ *is* \square -continuous if, for all increasing sequences $x_0 \supseteq x_1 \supseteq x_2 \supseteq x_2 \supseteq \ldots$, we have

$$f\left(\bigcap\{x_n:n\in\mathbb{N}\}\right)=\bigcap\{f(x_n):n\in\mathbb{N}\}.$$

Lemma 1. \square -continuous implies monotonicity and \square -continuous implies monotonicity.

Theorem 4 (Constructive fixpoints). *Consider a complete lattice* (A, \sqsubseteq) *and a monotonic function* $f: A \to A$. *Then,*

$$lfpf = \bigsqcup \{ f^n(\bot) : n \in \mathbb{N} \}$$
$$gfpf = \prod \{ f^n(\top) : n \in \mathbb{N} \}.$$

Homework 2. Prove this theorem.

Definition 14 (\mathbb{N}). *Define* \mathbb{N} *as the smallest set X such that*

1.
$$0 \in X$$

2. *if* $n \in X$, then $Sn \in X$

In the definition of \mathbb{N} , we consider a universal set U sufficiently big, the complete lattice $(2^U, \subseteq)$ and the function on sets given by $f(Y) := \{0\} \cup \{Sn : n \in Y\}$. Then, $lfp f = \mathbb{N}$.

Definition 15 (Set of words). Consider a finite alphabet Σ . Define Σ^* as the smallest set X such that

- 1. $\varepsilon \in X$
- 2. for all $a \in \Sigma$, we have $aX \subseteq X$.

A few remarks are in place.

- Inductively defined sets are countable and consist of finite elements.
- Inductively defined sets can be written as rules $x \Rightarrow f(x)$ meaning that, if $x \in X$, then $f(x) \in X$.
- Inductively defined sets allow proof by induction. Consider proving that for all $x \in X$ we have G(x). This can be proven by showing
 - 1. $G(\perp)$
 - 2. For all $x \in X$, if G(x), then G(f(x))

Definition 16 (Balanced binary sequences). *Define the set S as the largest set X such that*

```
1. X \subseteq 01X \cup 10X.
```

In the definition of balanced binary sequences, we consider the complete lattice $(\Sigma^{\omega}, \subseteq)$ and the function on sets given by $f(X) := 01X \cup 10X$. Then, balanced binary sequences correspond to gfp f.

Definition 17 (Interval [0,1]). *Define the set S as the largest set X such that*

```
1. \ X \subseteq 0X \cup 1X \cup \ldots \cup 9X.
```

A few remarks are in place.

- Coinductively defined sets are uncountable and consist of infinite elements.
- Coinductively defined sets can be written as rules $x \Leftarrow f(x)$ meaning that, for all $y \in X$, there exists x such that y = f(x) and $x \in X$.
- Coinductively defined sets allow proof by coinduction. Consider proving that for all x, if G(x), then $x \in X$. This can be proven by showing
 - 1. For all x and i, if $G(f_i(x))$, then G(x),

where $\{f_1, \ldots, f_n\}$ is the set of rules that define the set X.

Homework 3 (Prove balanced binary sequences). *Consider S generated by the rules X* \Leftarrow 01X and X \Leftarrow 10X. *Prove that, for all binary words x, we have that x inS if and only if every finite prefix of even length of x has the same number of 0s and 1s.*

Hints.

- 1. The direction \Leftarrow can be proven by coinduction.
- 2. The direction \Rightarrow can be proven by induction on the length of the prefix.

Formal system F is a set of rules. Rule is a finite set of (formulas) premises p_0, \ldots, p_k and (a formula called) conclusion c. We usually have infinitely many rules but only finitely many different rule schemata. For example, schema $\phi \to \phi$ gives infinitely many rules like $p_3 \to p_3$. Axiom is a rule without premises.

Proof (derivation) is a finite sequence of formulas ϕ_0, \dots, ϕ_n such that every formula in the sequence is

- either an axiom (which can be viewed as a special case of the following);
- or the conclusion of a rule whose premises occur earlier in the sequence.

This is a linear view.

Linear view is usually easier for proving meta theorems. Tree view (inductive definition) is usually better in practice.

Theorem is a formula that occurs in a proof. We distinguish the following:

- $\vdash \phi$... " ϕ is a theorem (of the formal system F)" (has a proof) [syntax]
- $\models \phi \dots "\phi$ is valid (ϕ is tautology)" (is true in all models) [semantics]

Formal system equipped with semantics is called a logic. Most of logic is about establishing $\vdash \phi$ iff $\models \phi$.

Rule R is sound iff [if all premises of R are valid, then the conclusion of R is valid]. Formal system F is sound iff all rules are sound (or equivalently, every theorem is valid). Formal system F is complete iff every valid formula is a theorem. Formal system F is consistent unless $\vdash \bot$ (or equivalently, there exists a formula that is not a theorem). Rule R is derivable in F iff [for all formulas ϕ , $\vdash_{F \cup \{R\}} \phi$ iff $\vdash_{F} \phi$]. Rule R is admissible

in F iff $F \cup \{R\}$ is still consistent. Formula ϕ is expressible in a logic L iff [there exists a formula ψ of L such that, for all interpretations v, $[[\phi]]_v = [[\psi]]_v$. For example $\phi_1 \wedge \phi_2$ is expressible using only \neg and \lor (de Morgan) as $\psi = \neg(\neg \phi_1 \wedge \neg \phi_2)$.

We can enumerate all theorems by systematically enumerating all possible proofs. The proof is a witness for validity. Sound formal system gives a sound procedure for validity (but not necessarily complete). Sound complete formal system gives a sound semi-complete procedure for validity (may not terminate on inputs that represent a formula that is not valid). To get a decision procedure (sound and complete procedure for validity), we need both (1) sound complete formal system for validity, and (2) sound complete formal system for satisfiability (to define a formal system for satisfiability, replace "formulas" (ϕ is valid) by "judgements" (ϕ is satisfiable); all axioms are satisfiable, all rules go from satisfiables to satisfiable). For every input ϕ , one of them will eventually terminate. Conclude; either ϕ is valid, or $\neg \phi$ is satisfiable (which means that ϕ is not valid). Recall that, if both a set and its complement are recursively-enumerable, the set is recursive (decidable).

Example (formal system for unsatisfiability):

$$\frac{\Gamma[\bot]}{\Gamma[p]} \frac{\Gamma[\top]}{\Gamma[p]}$$

0.5 Hilbert formal system for propositional logic

Hilbert system uses connectives \rightarrow and \neg only. Hilbert system has three axioms and one rule – modus ponens (MP):

$$\frac{\phi \qquad \qquad \phi \rightarrow \psi}{\psi}$$

Axioms:

• (K):
$$\phi \rightarrow \psi \rightarrow \phi$$

• (S):
$$(\phi \to \psi \to \chi) \to ((\phi \to \psi) \to (\phi \to \chi))$$

• (EM):
$$(\neg \phi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \phi)$$

TODO