Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уфимский государственный нефтяной технический университет» Филиал ФГБОУ ВПО УГНТУ в г. Стерлитамаке

«ОБРАЗОВАНИЕ И НАУКА В СОВРЕМЕННЫХ УСЛОВИЯХ»

Сборник материалов Внутривузовской научно-практической конференции 15-16 февраля 2016 г.

УДК 661.124; 628.54; 67.08; 54.574 ББК 72 О23 **ISBN**

О23 Образование и наука в современных условиях: Сборник материалов Внутривузовской научно-практической конференции. – Стерлитамак: Изд-во «ПОЛИГРАФИЯ», 2016. – **411** с. ISBN

Сборник научных статей включает в себя материалы Внутривузовской научно-практической конференции «Образование и наука в современных условиях», прошедшей в ФГБОУ ВПО «Уфимский государственный нефтяной технический университет», филиал в г. Стерлитамаке 15-16 февраля 2016 г.

Издание предназначено для научных работников, преподавателей и студентов.

Материалы публикуются в авторской редакции.

Авторы несут ответственность за достоверность материалов, изложенных в сборнике.

ISBN

© Уфимский государственный нефтяной технический университет, 2016

Секция 1 – Общая химическая технология

УДК 54-38

В.Р. Акдавлетов, В.Р. Тукаев, А.Н. Иванов

«ЗЕЛЕНЫЕ» ИНГИБИТОРЫ

Филиал ФГБОУ ВПО «Уфимский государственный нефтяной технический университет» в г. Стерлитамаке

В настоящее время существует большой спектр ингибиторов коррозии: бактерицидные, ингибиторы для биологической коррозии, ингибиторы для нефтяной отрасли, а также «зеленые» ингибиторы.

Особый интерес представляют азотсодержащие соединения, полученные на основе отходов химических производств [1-4]. Однако из-за экологических проблем, внимание было сосредоточено на разработке новых ингибиторов безвредных. Поэтому вышло коррозии, экологически направления в химии как «зеленая химия», к которому можно отнести любое усовершенствование химических процессов, которое положительно влияет на окружающую среду. Среди известных «зеленых» ингибиторов, применяемых в промышленности рассмотреть нефтяной газовой ОНЖОМ используемый в качестве ингибитора коррозии кислых сред. Он экологически безопасен и биоразлогаем, эффективен при высоких температурах. Было установлено, что цикорий может обеспечить защиту от коррозии для сплавов, таких как N-80, 13Cr-L80 и 1010 стали, в присутствии либо органических или неорганических кислот при температурах до 121° С. Учитывая его высокую производительность, низкую цену, нетоксичность, цикорий имеет большой потенциал применения в качестве ингибирования кислотных коррозий.

Известен ингибитор коррозии на основе отходов производства растительного масла, не содержащий токсичных соединений и отличающийся низкой стоимостью при степени защиты 78-95 %. Компанией BASF предложены «зеленые» ингибиторы коррозии на основе пропаргилового спирта. Их наиболее значимыми отличиями является не только дешевизна и нетоксичность, но и высокая ингибирующая активность, в 2-3 раза превышающая некоторые используемые продукты [5].

В работе предлагается в качестве «зеленого» ингибитора использовать составы на основе ванилина. Предварительные испытания соединений на основе ванилина показали высокие ингибирующие показатели в кислых средах [6].

Список использованных источников:

1. Защитные свойства ингибиторов коррозии на основе азотсодержащих и бор-, азотсодержащих соединений / Исламутдинова А.А., Евдокимова А.С., Гайдукова И.В., Калимуллин Л.И. // Актуальные проблемы гуманитарных и естественных наук. 2010. № 8. С. 33-35.

- 2. Синтез ингибитора кислотной коррозии на основе циклических азотсодержащих соединений / Тимербаев Г.Г., Иванов А.Н., Исламутдинова А.А., Калимуллин Л.И. //В сборнике: Малоотходные, ресурсосберегающие химические технологии и экологическая безопасность. Сборник материалов Всероссийской научно-практической конференции с международным участием. ФГБОУВПО "УГНТУ" Филиал ФГБОУ ВПО УГНТУ в г. Стерлитамаке. 2013. С. 70-71.
- 3. Синтез ингибирующего состава для предотвращения коррозии нефтепромыслового оборудования / Даминев Р.Р., Исламутдинова А.А., Иванов А.Н., Хамзин И.Р. // Бутлеровские сообщения. 2015. Т. 43. № 7. С. 106-111.
- 4. Синтез четвертичных аммониевых соединений на основе отходов производства аллилхлорида и их практическое применение / Исламутдинова А.А. // диссертация на соискание ученой степени кандидата химических наук / Уфимский государственный нефтяной технический университет. Уфа. 2006.
- 5. Choudhary, Y. K., Sabhapondit, A., Kumar, A., Soc. Petrol. Eng. SPE Int. Conf. Exhib. Oilfield Corros., 2012, 264-273.
- 6. А.И. Иванов, А.Р. Дашкина, И.Р. Хамзин, Г.Р. Галиева, П.С. Сайтмуратов, А.А. Исламутдинова. Ингибитор коррозии на основе продуктов конденсации ванилина и анилина. Актуальные проблемы науки в студенческих исследованиях (биология, экология и химия) II Всеросс. студ. Науч.-практич. Конф.: Саранск. С.15-17, 2015.

УДК 620.197.3

В.Р. Акдавлетов, В.Р. Тукаев, А.Н. Иванов, А.А. Исламутдинова

СИНТЕЗ АНТИКОРРОЗИОННОЙ ДОБАВКИ НА ОСНОВЕ ДИАМИНОВ

Филиал ФГБОУ ВПО «Уфимский государственный нефтяной технический университет» в г. Стерлитамаке

В настоящее время в нефтедобывающей и нефтеперерабатывающей промышленности используемое оборудование подвержено износу вследствие коррозии. В связи с этим для предотвращения преждевременного выхода из строя нефтедобывающих установок применяются соответствующие ингибиторы коррозии, в том числе кислотной [1].

В настоящее время на первой производственной площадке ОАО «БСК» в городе Стерлитамаке выпускаются ингибиторы серии «Викор», которые основаны на азотсодержащих органических соединениях – алкилимидазолинах изостроения, органической кислоты, неионогенного поверхностно-активного вещества и растворителя.

В связи с тем, что в последнее время стоимость имидазолинов увеличиваются, а их производственные объёмы снижаются, возникает потребность в производстве более дешёвого продукта, не уступающего по

СОДЕРЖАНИЕ

Секция 1 – Общая химическая технология

В.Р. Акдавлетов, В.Р. Тукаев, А.Н. Иванов «ЗЕЛЕНЫЕ» ИНГИБИТОРЫ	3
В.Р. Акдавлетов, В.Р. Тукаев, А.Н. Иванов, А.А. Исламутдинова СИНТЕЗ АНТИКОРРОЗИОННОЙ ДОБАВКИ НА ОСНОВЕ ДИАМИНОВ	4
Д.Р. Арифулина, Д.А. Суркова ИСПОЛЬЗОВАНИЕ ОТХОДОВ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ В ЦЕМЕНТНОЙ ПРОМЫШЛЕННОСТИ	8
Д.Р. Арифулина, Д.А. Суркова ПЕРСПЕКТИВЫ УТИЛИЗАЦИИ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ В ЦЕМЕНТНОЙ ПРОМЫШЛЕННОСТИ	10
Д.Р. Арифулина, Д.А. Суркова ПРОБЛЕМЫ НАКОПЛЕНИЯ И УТИЛИЗАЦИИ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ В РЕСПУБЛИКЕ БАШКОРТОСТАН	11
Д.В. Бакке ГИДРИРОВАНИЕ УГЛЕВОДОРОДОВ НА НИКЕЛЕВЫХ КАТАЛИЗАТОРАХ	13
Д.В. Бакке МЕТОДЫ СИНТЕЗА НАНЕСЕННЫХ КАТАЛИЗАТОРОВ ГИДРИРОВАНИЯ УГЛЕВОДОРОДОВ	15
Д.В. Бакке, М.Ю. Черезов МИКРОВОЛНОВЫЙ СИНТЕЗ В КАТАЛИЗЕ	17
З.Р. Бахтиярова ЛИКВИДАЦИЯ РАЗЛИВОВ НЕФТИ НА ПОВЕРХНОСТИ ВОДЫ	20
3.Р. Бахтиярова РЕКУЛЬТИВАЦИЯ НЕФТЕЗАГРЯЗНЕННЫХ БОЛОТ	23
3.Р. Бахтиярова, Н.Н. Шарафутдинова, Н.М. Абдрахимова ОЦЕНКА ТОКСИЧНОСТИ ОТХОДОВ ОБОГАЩЕНИЯ МЕТОДОМ ФИТОТЕСТИРОВАНИЯ	26
Р.А. Буляккулов, Р.Ф. Нафикова РАЗРАБОТКА ХИМИКАТОВ ДОБАВОК НА ОСНОВЕ ПРОДУКТОВ НЕФТЕХИМИИ ДЛЯ ПЕРЕРАБОТКИ ХЛОРСОДЕРЖАЩИХ ПОЛИМЕРОВ	29
Н.А. Быковский, Н.Н. Фанакова, Л.Н. Пучкова ОСОБЕННОСТИ ЗАГРЯЗНЕНИЯ ПОЧВ ПРИ ДОБЫЧЕ НЕФТИ	31
В.Ф. Галиев, А.А. Исламутдинова ОБЗОР КАТАЛИТИЧЕСКИХ СИСТЕМ ПРИМЕНЯЕМЫХ ДЛЯ	34