南京大学数学课程试卷

	题 号	→ 36	二 12	三 10	四 10	五 10	六 10	七12	总分
ĺ	得 分								

 $\Phi(1.28) = 0.8997, \ \Phi(1.29) = 0.9015, \ \Phi(2) = 0.9772, \ t_{0.05}(7) = 1.8946, \\ \chi^2_{0.025}(4) = 7.378, \ \chi^2_{0.05}(4) = 5.991, \ \chi^2_{0.975}(4) = 0.484, \ \chi^2_{0.95}(4) = 0.711$

一. 简答题 (6 分 ×6 = 36 分)

1. 一枚骰子连抛两次, 求至少有一次 6 点的概率。

2. 已知某考试成绩 X 服从正态分布 $N(500, 100^2)$ 。若将及格线设定为 90% 的考生能通过,问及格分应为多少(取整)?

3. 设总体 $X \sim N(\mu, \sigma^2)$,其中 σ^2 已知, X_1, \dots, X_n 是 X 的一个样本。求 μ 的置信 度为 $1 - \alpha$ 的单侧置信下限。

4. 设 X_1, \dots, X_{12} 是来自正态总体 N(0,5) 的样本,求 $Y = \frac{X_1^2 + X_2^2 + \dots + X_0^2}{3(X_{10}^2 + X_{11}^2 + X_{12}^2)}$ 的分布(含自由度)。

5. 设 X_1, \dots, X_n 独立同分布,均服从参数为 $\frac{1}{2}$ 的 0-1 分布,问:当 n 趋于无穷时, $Y_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ 依概率收敛于何值?

6. 设 X_1, \dots, X_8, X_9 是来自总体 $N(\mu, \sigma^2)$ 的样本, $\overline{X} = \frac{1}{8} \sum_{i=1}^8 X_i$, $S^2 = \frac{1}{7} \sum_{i=1}^8 (X_i - \overline{X})^2$ 。求 k 使得 $P(X_9 > \overline{X} + kS) = 0.95$ 。

- 二.(12 分) 疫情期间某药店门口有 400 人排队买口罩,药店还有两个半小时结束营业。已知每位顾客的服务时间(单位:秒)服从参数为 $\frac{1}{25}$ 的指数分布且相互独立。 (1). 求在药店结束营业之前所有顾客都买到口罩的概率。
- (2). 若要在药店结束营业之前所有顾客都买到口罩的概率达到 97.7%,问顾客的平均服务时间应为多少秒?(保留一位小数)

