GTM

CORPORATION

ISSUED DATE: 2004/10/18 REVISED DATE:

GTS 8205

DUAL N-CHANNEL ENHANCEMENT MODE POWER MOSFET

 $\begin{array}{ll} \text{BVDSS} & 20\text{V} \\ \text{RDS(ON)} & 25\text{m}\Omega \\ \text{ID} & 6\text{A} \end{array}$

Description

The GTS8205 provides the designer with the best combination of fast switching, ruggedized device design, ultra low on-resistance and cost-effectiveness.

Features

- *Low on-resistance
- *Capable of 2.5V gate drive
- *Low drive current
- *Surface mount package
- *RoHS Compliant

Package Dimensions

REF.	Millimeter		REF.	Millimeter		
KEF.	Min. Max. REF.	Min.	Max.			
Α	-	1.20	Е	6.20	6.60	
A1	0.05	0.15	E1	4.30	4.50	
b	0.19	0.30	е	0.65 BSC		
С	0.09	0.20	L	0.45	0.75	
D	2.90	3.10	S	0°	8°	

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	
Drain-Source Voltage	V _{DS}	20	V	
Gate-Source Voltage	V_{GS}	±12	V	
Continuous Drain Current ³ , V _{GS} @10V	I _D @Ta=25℃	6	Α	
Continuous Drain Current ³ , V _{GS} @10V	I _D @Ta=70°C	4.5	A	
Pulsed Drain Current ^{1,2}	I _{DM}	20	A	
Total Power Dissipation	P _D @Ta=25°C	1	W	
Linear Derating Factor		0.008	W/℃	
Operating Junction and Storage Temperature Range	Tj, Tstg	-55 ~ + 150	${\mathbb C}$	

Thermal Data

Parameter	Symbol	Value	Unit	
Thermal Resistance Junction-ambient	Max.	Rthj-a	125	°C/W

GTS8205 Page: 1/5

GTM

CORPORATION

ISSUED DATE: 2004/10/18 REVISED DATE:

Electrical Characteristics(Tj = 25^o℃ Unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Drain-Source Breakdown Voltage	BV _{DSS}	20		_	V	V _{GS} =0, I _D =250uA	
Breakdown Voltage Temperature Coefficient	ΔBV _{DSS} /ΔTj	-	0.1	_	V/°C	Reference to 25°C, I _D =1mA	
Gate Threshold Voltage	VGS(th)	0.5	-	-	V	V _{DS} =V _{GS} , I _D =250uA	
Forward Transconductance		-	9.7	-	S	V _{DS} =10V, I _D =6A	
Gate-Source Leakage Current	I _{GSS}	-	-	±10	uA	V _{GS} = ±10V	
Drain-Source Leakage Current(Tj=25℃)		-	-	1		V _{DS} =20V, V _{GS} =0	
Drain-Source Leakage Current(Tj=70°C)	I _{DSS}	-	-	25		V _{DS} =20V, V _{GS} =0	
	R _{DS(ON)}	-	-	25	mΩ	V _{GS} =4.5V, I _D =4A	
Static Drain-Source On-Resistance		-	-	40		V _{GS} =2.5V, I _D =2A	
Total Gate Charge ²	Qg	ı	12.5	-		I _D =4.6A V _{DS} =20V V _{GS} =5V	
Gate-Source Charge	Qgs	1	1	-	nC		
Gate-Drain ("Miller") Change	Q_{gd}	-	6.5	-			
Turn-on Delay Time ²	T _{d(on)}	-	5	-		V _{DD} =10V	
Rise Time	Tr	-	9	-	ns	I_D =1A V_{GS} =5V R_G =3.3Ω R_D =10Ω	
Turn-off Delay Time	T _{d(off)}	-	26.2	-	113		
Fall Time	T _f	-	6.8	-			
Input Capacitance	C _{iss}	-	355	-		V _{GS} =0V V _{DS} =20V	
Output Capacitance	Coss	-	190	-	pF		
Reverse Transfer Capacitance	C _{rss}		85			f=1.0MHz	

Source-Drain Diode

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Forward On Voltage ²	V _{SD}	ı	ı	1.2	V	I _S =1.25, V _{GS} =0V, Tj=25℃
Continuous Source Current(Body Diode)	Is	-	-	1.25	Α	V _D = V _G =0V, V _S =1.2V
Continuous Source Current(Body Diode) ¹	I _{SM}	-	-	20	Α	

Notes: 1. Pulse width limited by Max. junction temperature.

- 2. Pulse width≤300us, duty cycle≤2%.
- 3. Surface mounted on FR4 board, t≤10sec.

GTS8205 Page: 2/5

Characteristics Curve

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. On-Resistance v.s. Gate Voltage

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 5. Maximum Drain Current v.s. Case Temperature

Fig 6. Type Power Dissipation

GTS8205 Page: 3/5

Fig 7. Maximum Safe Operating Area

Fig 8. Effective Transient Thermal Impedance

Fig 9. Gate Charge Characteristics

Fig 10. Typical Capacitance Characteristics

Fig 12. Gate Threshold Voltage v.s. Junction Temperature

GTS8205 Page: 4/5

Fig 13. Switching Time Circuit

TO THE OSCILLOSCOPE RATED V_{DS}

Fig 14. Switching Time Waveform

Fig 15. Gate Charge Circuit

Fig 16. Gate Charge Waveform

- Important Notice:

 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of GTM. GTM reserves the right to make changes to its products without notice.

 GTM semiconductor products are not warranted to be suitable for use in life-support Applications, or systems.

GTM assumes no liability for any consequence of customer product design, infringement of patents, or application assistance. Head Office And Factory:

Taiwan: No. 17-1 Tatung Rd. Fu Kou Hsin-Chu Industrial Park, Hsin-Chu, Taiwan, R. O. C.

GTS8205 Page: 5/5