0' TVD

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

TEL: (337) 394-1078

0.0°

MAGNOLIA OIL & GAS PATTERSON FAYETTE 12/08/20 0 ft 0 ft Well Name and No Name and No. Rig Up **FAT TIRE A-1H** 248 **TEXAS** 12/11/20 0 ft/hr Field / OCS-G # eport for luid Type rculating Rate irculating Pressure JAMES DYER / JIM HARRISON **Tool Pusher GIDDIGNS WBM** 0 gpm psi MUD PROPERTY SPECIFICATIONS PUMP #1 PUMP #2 RISER BOOSTER MUD VOLUME (BBL) Weight **GELS** рΗ API fl % Solids In Pits Liner Size 5.75 Liner Size 5.75 Liner Size 5.75 8.4-9.6 0-10 <5 <10 8.4-9 <25 2-10 In Hole 0 bbl Stroke 12 Stroke 12 Stroke 12 0-10 12/10/20 0 bbl bbl/stk 0.0915 bbl/stk 0.0915 bbl/stk 0.0915 stk/min stk/min stk/min Time Sample Taken Storage gal/min gal/min Sample Location NO MUD Tot. on Location 0 bbl gal/min 0 0 0 Flowline Temperature °F PHHP = 0**CIRCULATION DATA** Depth (ft) Bit Depth = Washout = 5% Pump Efficiency = 95% Mud Weight (ppg) Volume to Bit 0.0 bblStrokes To Bit Time To Bit **Drill String** Disp. Funnel Vis (sec/qt) @ 90 °F Bottoms Up Vol. 0.0 bbl BottomsUp Stks BottomsUp Time 0.0 bbl 600 rpm Riser Ann Vol 0.0 bbl Riser Strokes Riser Circ. Time **DRILLING ASSEMBLY DATA SOLIDS CONTROL** 300 rpm Tubulars OD (in.) ID (in.) Unit 200 rpm Length Top Screens Hours 0 0' Shaker 1 140-80 100 rpm Shaker 2 140-80 0' 6 rpm 0' Shaker 3 140-80 3 rpm Desander Plastic Viscosity (cp) Yield Point (lb/100 ft²) T0 = **CASING & HOLE DATA** Desilter OD (in.) ID (in.) Centrifuge 1 Gel Strength (lb/100 ft²) 10 sec/10 min Casing Depth Top 140 30 min 108' **VOLUME ACCOUNTING (bbls)** Riser 20 Gel Strength (lb/100 ft2) API Filtrate / Cake Thickness Surface 108' 0.0 Prev. Total on Location HTHP Filtrate / Cake Thickness @ 0 °F Int. Csg 108' Transferred In(+)/Out(-) Retort Solids Content Washout 1 Oil Added (+) 0.0 Retort Oil Content Washout 2 Barite Added (+) 0.0 Retort Water Content Open Hole Size 0.000 0' Other Product Usage (+) 0.0 ANNULAR GEOMETRY & RHEOLOGY Sand Content Water Added (+) M.B.T. (Methylene Blue Capacity) (ppb) Left on Cuttings (-) 0.0 annular meas velocity flow ECD section depth ft/min reg lb/gal Ha Alkalinity, Mud Pm Alkalinities, Filtrate Pf/Mf 0.0 Est. Total on Location Chlorides (mg/L) Est. Losses/Gains (-)/(+) 0.0 **BIT HYDRAULICS DATA** Calcium (ppm) Bit H.S.I. Nozzles (32nds) Excess Lime (lb/bbl) Βίτ ΔΡ 2.60 2.60 2.60 Average Specific Gravity of Solids Nozzle Percent Low Gravity Solids Bit Impact Velocity Force Percent Drill Solids (ft/sec) PPA Spurt / Total (ml) @ @ 0 °F **BIT DATA** Manuf./Type ROP ft/hr Motor/MWD Estimated Total LCM in System ppb Size Depth In Hours Footage Calc. Circ. Pressure Sample Taken By R. Bowlin M. Meehan Rig Activity: Remarks/Recommendations: OBM RECEIVED: 921 bbls Transfer from Yukon Pad. OBM ON SURFACE--- bbls (Storage + Active) Continue to rig up on the Fat Tire pad. Water wells running filling up water tanks OBM LOSS/GAIN-- Total (_ and Active system in preparation for drilling surface. Rig shakers dressed up with NOV screens dry run and function test. Mike Washburn Adolfo Roman Cumulative Cost Eng. 1: Eng. 2: MIDLAND WH #2 Rig Phone: Daily Total 956-821-9994 432-686-7361 Phone Phone: Phone: Phone en herein, has been prepared enresentation is made as to the Any opinion and or recommendation, expressed orally or written herein, has been p carefully and may be used if the user so elects, however, no representation is made \$1.910.00 \$8.239.00 W Ρ 0 0 0 validity of this information, and this is a recommendation only **INCLUDING 3RD PARTY CHARGES** \$1,910.00 \$8,239.00

12/11/20 MAGNOLLA OIL & GAS FAT TIRE A-1H 248		ort #4 LATIVE Cum Cost
Item	Cum	
New Name		Cum Cost
PHPA LIQUID (pail) 5 gal \$41.36 62 62 EVO-LUBE gal \$14.00 550 550 NEW GEL (PREMIUM) 100# sk \$19.75 70 ALUMINUM TRISTEARATE 25# sk \$162.83 19 19 DETERGENT (pail) 5 gal CACL2 (50) 50# sk \$14.32 224 LIME (50) 50# sk \$14.32 224 LIME (50) 50# sk \$5.00 110 PENTONE 980 (50) 50# sk \$183.94 36 36 BENTONE 910 (50) 50# sk \$83.59 24 24 DOPTI - MUL 10PTI - MUL 10PTI - MUL 10PTI - MUT 10PTI - MU		
PHPA LIQUID (pail) 5 gal \$41.36 62 62 EVO-LUBE gal \$14.00 550 550 NEW GEL (PREMIUM) 100# sk \$19.75 70 ALUMINUM TRISTEARATE 25# sk \$162.83 19 19 DETERGENT (pail) 5 gal CACL2 (50) 50# sk \$14.32 224 LIME (50) 50# sk \$5.00 110 OPTI - G 50# sk \$163.94 36 36 BENTONE 910 (50) 50# sk \$813.94 36 36 BENTONE 910 (50) 50# sk \$83.59 24 24 DOPTI - WIL 9al \$10.75 330 330 OPTI - WIL 9al \$10.75 330 330 OPTI - WIT 9al \$8.34 495 495 NEW PHALT 50# sk \$33.72 100 CYSERSEAL 25# sk \$4.75 40 40 NEW CARB (M) 50# sk \$5.25 150 150 NEW CARB (M) 50# sk \$28.05 175 175 MAGMAFIBER F (25) 25# sk \$22.147 MAGMAFIBER R (30) 30# sk \$28.05 175 MAGMAFIBER R (30) 30# sk \$30.37 NUT PLUG M (50) 50# sk \$30.37 NUT PLUG M (50) 50# sk \$30.37 NUT PLUG M (50) 80 8 \$11.50 180 180		
NEW GEL (PREMIUM) ALUMINUM TRISTERARTE 25# sk \$162.83 19 19 19 DETERGENT (pail) 5 gal CACL2 (50) 50# sk \$14.32 224 224 224 224 224 224 224 224 224 2		
ALUMINUM TRISTEARATE 25# sk \$162.83 19 19 19 DETERGENT (pail) 5 gal		
DETERGENT (pail)		
CACL2 (50)		
LIME (50)		
LIME (50)		
LIME (50)		
LIME (50)		
LIME (50)		
OPTI - G 50# sk \$30.59 40 40 BENTONE 38 (50) 50# sk \$163.94 36 36 BENTONE 910 (50) 50# sk \$59.40 31 31 BENTONE 990 (50) 50# sk \$83.59 24 24 OPTI - MUL gal \$10.75 330 330 OPTI - WET gal \$8.34 495 495 NEW PHALT 50# sk \$38.72 160 160 OIL SORB (25) 25# sk \$4.75 40 40 NEW CARB (M) 50# sk \$5.25 150 150 CYBERSEAL 25# sk \$2.80.5 175 175 MAGMAFIBER F (25) 25# sk \$28.05 38 38 VARISEAL 50# sk \$30.37 NUT PLUG M (50) 50# sk \$30.37 NUT PLUG M (50) 50# sk \$12.04 80 80 NEW WATE (SACK BARITE) 100# sk \$11.50 180 180		
BENTONE 910 (50)		
BENTONE 990 (50)		
OPTI - MUL gal \$10.75 330 330 OPTI - WET gal \$8.34 495 495 NEW PHALT 50# sk \$38.72 160 160 OIL SORB (25) 25# sk \$4.75 40 40 NEW CARB (M) 50# sk \$5.25 150 150 CYBERSEAL 25# sk \$21.47 175 175 MAGMAFIBER F (25) 25# sk \$28.05 175 175 175 MAGMAFIBER R (30) 30# sk \$28.05 38 38 38 VARISEAL 50# sk \$26.50 80 80 80 FIBER PLUG 30# sk \$30.37 80 80 NUT PLUG M (50) 50# sk \$12.04 80 80 NEW WATE (SACK BARITE) 100# sk \$11.50 180 180		
OPTI - WET gal \$8.34 495 495 NEW PHALT 50# sk \$38.72 160 160 OIL SORB (25) 25# sk \$4.75 40 40 NEW CARB (M) 50# sk \$5.25 150 150 CYBERSEAL 25# sk \$21.47 175 MAGMAFIBER F (25) 25# sk \$28.05 175 175 MAGMAFIBER R (30) 30# sk \$28.05 38 38 VARISEAL 50# sk \$26.50 80 80 FIBER PLUG 30# sk \$30.37 80 NUT PLUG M (50) 50# sk \$12.04 80 80 NEW WATE (SACK BARITE) 100# sk \$11.50 180 180		
NEW PHALT 50# sk \$38.72 160 160 OIL SORB (25) 25# sk \$4.75 40 40 NEW CARB (M) 50# sk \$5.25 150 150 CYBERSEAL 25# sk \$21.47 MAGMAFIBER F (25) 25# sk \$28.05 175 175 MAGMAFIBER R (30) 30# sk \$28.05 38 38 VARISEAL 50# sk \$26.50 80 80 FIBER PLUG 30# sk \$30.37 NUT PLUG M (50) 50# sk \$12.04 80 80 NEW WATE (SACK BARITE) 100# sk \$11.50 180 180		
OIL SORB (25) 25# sk \$4.75 40 40 NEW CARB (M) 50# sk \$5.25 150 150 CYBERSEAL 25# sk \$21.47		
NEW CARB (M) 50# sk \$5.25 150 150 CYBERSEAL 25# sk \$21.47 MAGMAFIBER F (25) 25# sk \$28.05 175 175 MAGMAFIBER R (30) 30# sk \$28.05 38 38 VARISEAL 50# sk \$26.50 80 80 FIBER PLUG 30# sk \$30.37 NUT PLUG M (50) 50# sk \$12.04 80 80 NEW WATE (SACK BARITE) 100# sk \$11.50 180 180		
CYBERSEAL 25# sk \$21.47 MAGMAFIBER F (25) 25# sk \$28.05 175 175 MAGMAFIBER R (30) 30# sk \$28.05 38 38 VARISEAL 50# sk \$26.50 80 80 FIBER PLUG 30# sk \$30.37 80 NUT PLUG M (50) 50# sk \$12.04 80 80 NUT PLUG M (50) 50# sk \$12.04 80 80 NEW WATE (SACK BARITE) 100# sk \$11.50 180 180		
CYBERSEAL 25# sk \$21.47 MAGMAFIBER F (25) 25# sk \$28.05 175 175 MAGMAFIBER R (30) 30# sk \$28.05 38 38 VARISEAL 50# sk \$26.50 80 80 FIBER PLUG 30# sk \$30.37 80 NUT PLUG M (50) 50# sk \$12.04 80 80 NUT PLUG M (50) 50# sk \$12.04 80 80 NEW WATE (SACK BARITE) 100# sk \$11.50 180 180		
CYBERSEAL 25# sk \$21.47 MAGMAFIBER F (25) 25# sk \$28.05 175 175 MAGMAFIBER R (30) 30# sk \$28.05 38 38 VARISEAL 50# sk \$26.50 80 80 FIBER PLUG 30# sk \$30.37 80 NUT PLUG M (50) 50# sk \$12.04 80 80 NUT PLUG M (50) 50# sk \$12.04 80 80 NEW WATE (SACK BARITE) 100# sk \$11.50 180 180		
CYBERSEAL 25# sk \$21.47 MAGMAFIBER F (25) 25# sk \$28.05 175 175 MAGMAFIBER R (30) 30# sk \$28.05 38 38 VARISEAL 50# sk \$26.50 80 80 FIBER PLUG 30# sk \$30.37 80 NUT PLUG M (50) 50# sk \$12.04 80 80 NUT PLUG M (50) 50# sk \$12.04 80 80 NEW WATE (SACK BARITE) 100# sk \$11.50 180 180		
CYBERSEAL 25# sk \$21.47 MAGMAFIBER F (25) 25# sk \$28.05 175 175 MAGMAFIBER R (30) 30# sk \$28.05 38 38 VARISEAL 50# sk \$26.50 80 80 FIBER PLUG 30# sk \$30.37 80 NUT PLUG M (50) 50# sk \$12.04 80 80 NUT PLUG M (50) 50# sk \$12.04 80 80 NEW WATE (SACK BARITE) 100# sk \$11.50 180 180		
MAGMAFIBER F (25)		
VARISEAL 50# sk \$26.50 80 80 FIBER PLUG 30# sk \$30.37 NUT PLUG M (50) 50# sk \$12.04 80 80 NEW WATE (SACK BARITE) 100# sk \$11.50 180 180		
FIBER PLUG 30# sk \$30.37		
NUT PLUG M (50) 50# sk \$12.04 80 80 NEW WATE (SACK BARITE) 100# sk \$11.50 180 180		
NEW WATE (SACK BARITE) 100# sk \$11.50 180 180		
OPTI DRILL (OBM) bbl \$65.00 921 921		
DISCOUNTED OBM bbl \$15.00		
ENGINEERING (24 HR) each \$925.00 2 \$1,850.00	8	\$7,400.00
ENGINEERING (DIEM) bbl \$30.00 2 \$60.00	8	\$240.00
ENGINEERING (MILES) each \$1.00	599	\$599.00
TRUCKING (cwt) each \$2.65		
TRUCKING (min) each \$795.00		
PALLETS (ea) each \$12.00		
SHRINK WRAP (ea) each \$12.00		
Daily Sub-Total \$1,910.00 Cumulative Total \$8,239.00		
	\$8.23	39.00

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
12/11/20	MAGN	NOLIA OIL	& GAS	FA	T TIRE A-	1H	24	18	Repo	ort #4
	DAILY	USAGE 8	k COST						CUMUI	_ATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	150		150					
]		
	Cum	ulative Tota	al AES & 3rd	d Party \$8,2	239.00					
						ļ				

110 Old Market St. St Martinville, LA 70582 TEL: (337) 394-1078

10.5° 2,074' TVD

Operator MAGN	NOLIA C	OIL & G	AS	Contractor PA	TTERS	ON	County / Parish	n / Block		Engineer S	tart Date	24 h	r ftg. 2,089 ft		Drilled	Depth 2,08 5	9 ft	
Well Name and No	AT TIRE	A-1H		Rig Name ar	nd No. 248		State T	EXAS		Spud Date	/11/20	Curr	ent ROP 1,232 ft/h		Activity Dril	ing S	Surf	ace
Report for				Report for			Field / OSC-G			Fluid Type		Circ	ulating Rate			ing Pres		
JAMES D'	YER / JI	M HAR	RISON	То	ol Pus	her	GIE	DIGNS		V	VBM		715 gpm	1	2	,300	psi	i
	MUD	PROPERT	TY SPECI	FICATION	IS	_	MUD VC	DLUME (BE	3L)	PU	JMP #1		PUMP #2		RIS	ER BC	OST	ER
Weight	PV	YP	GELS	рН	API fl	% Solids	In Pits	500	bbl	Liner Siz	ze 5.7	5 Lin	er Size 5.	75	Liner	Size	5.7	⁷ 5
8.4-9.6	0-10	0-10	<5 <10	8-9	<25	2-10	In Hole	e 365	bbl	Stroke	12	s s	troke 1	2	Stro	ke	12	2
	MU	JD PROP	ERTIES	1	Г		Active	865	bbl	bbl/stk	0.09	15 b	bl/stk 0.0	915	bbl	stk	0.09	}15
Time Sample	Taken					13:00	Storage	е		stk/min	93	S S	tk/min 9	93	stk/	min	93	3
Sample Locat	ion			NO MUD		suction	Tot. on Loc	cation 865	bbl	gal/min	35	8 g	al/min 3	58	gal/	min	35	8
Flowline Temp	erature °l	=				110 °F	Mud Wt. =	= 8.7 PV	/=1	YP=2	CIR	CULATI	ON DATA		n = 0	.415	K = 1	15.0
Depth (ft)						2,089'	Bit [Depth = 2,0	89 '		Washo	ut = 5%		Pump	Effici	ency =	95%)
Mud Weight (p	opg)					8.7	Drill String	Volume	to Bit	33.5 bb	Stro	kes To E	366 Bit 366	-	Time 7	o Bit	2 m	nin
Funnel Vis (se	ec/qt)		@ 90 °F			27	Disp.	Bottoms U	p Vol.	331.4 b	bl Botto	nsUp Stk	s 3,621	Bottor	msUp	Time	13 r	nin
600 rpm						4	21.8 bbl	Riser Ann	ı. Vol.	-2.6 bb	l Ris	er Stroke	es -29	Riser	Circ.	Time	0 m	nin
300 rpm						3		DRILLING	S AS	SEMBLY	DATA		s	OLIDS	S COI	NTROI	-	
200 rpm						2	Tubulars	OD (in.)	ID	(in.) L	ength.	Тор	Unit		Scre	ens	Ηοι	urs
100 rpm						1	Drill Pipe	5.000	4.2	276 1	1,694'		Shake	r 1	140	-80	5.	0
6 rpm						1	Hevi Wt	5.000	3.0	000	275'	1,694'	Shake	r 2	140	-80	5.	0
3 rpm						1	Dir. BHA	8.000	2.8	875	120'	1,969'	Shake	3	140	-80	5.	0
Plastic Viscos	ity (cp)		@ 120 °F			1						2,089'	Desand	der			5.	0
Yield Point (lb.	/100 ft²)		T0 = 1			2		CASIN	IG &	HOLE DA	ATA		Desilte	er			5.	0
Gel Strength (lb/100 ft²)	10 se	ec / 10 min			1/2	Casing	OD (in.)	ID	(in.) [Depth	Тор	Centrifuç	ge 1			5.	0
Gel Strength (lb/100 ft2)	30 min			2	Riser	20			108'		VOLUN	IE AC	cou	NTING	(bbl	s)
API Filtrate / C	Cake Thicl	rness				25/1	Surface					108'	Prev. T	otal o	n Loc	ation		
HTHP Filtrate	/ Cake Th	ickness					Int. Csg.					108'	Transfe	erred I	n(+)/C	out(-)		
Retort Solids (Content					2.7%	Washout 1							Oil	Adde	d (+)		
Retort Oil Con	itent						Washout 2							Barite	Adde	d (+)		
Retort Water (Content					97.3%	Open	Hole Size	14.	.175 2	2,089'		Other Pr	oduct	Usag	e (+)		
Sand Content						0%	ANI	NULAR GE	ОМЕ	TRY & R	HEOLO	ΒY	,	Water	Adde	d (+)		
M.B.T. (Methy	lene Blue	Capacity)) (ppb)			2.5	annula	ır .		velocity	y flow	ECD	Le	ft on C	Cutting	gs (-)	-6	311.6
рН						8.0	section	ı ae	pth	ft/min	' I I	lb/gal						
Alkalinity, Muc	d Pm					0.1	0x5	10)8'	-1051.6	- 	10.12						
Alkalinities, Fi	Itrate Pf/M	lf				0.1/0.2	14.175>	x5 1,6	94'	99.6	lam	11.22	Est. T	otal o	n Loc	ation	-6	311.6
Chlorides (mg	/L)					500	14.175>	x5 1,9	69'	99.6	lam	13.28	Est. Los	ses/Ga	ains (- ·)/(+)	14	76.5
Calcium (ppm)					120	14.175>	x8 2,0	89'	128.0	lam	15.13	BIT	HYDR	AULI	CS DA	ATA	
Excess Lime ((lb/bbl)												Bit H.S.I.	Bit	ΔΡ	Nozzle	es (32	nds)
Average Spec	ific Gravit	y of Solids	s	2.60	2.60	2.60							0.65	224	psi	14	14	14
Percent Low 0	Gravity So	lids				2.6%							Bit Impact	Noz	zle	14	14	14
Percent Drill S	Solids					2.6%							Force	Velo (ft/s	,	14	14	14
PPA Spurt / To	otal (ml) @	<u> </u>					BIT C	DATA	Ма	nuf./Type	e Ulteri	a/U616	5 546 lbs	17	ĺ			
Estimated Tot	al LCM in	System					Size	Depth In	Нс	ours Fo	ootage	ROP ft/h	nr Motor/M	WD	Calc	Circ.	Pres	sure
Sample Taker	n By					M Washburn	13 1/2	20 ft	5	5.0 2	,089 ft	417.8	1,330	psi		1,812	psi	
Afternoon Rema		nmendatio	ns:	I	<u> </u>	ı	Afternoon R	Rig Activity:										
							lader trap (Curre	n with drilli every 300'	ng do , ope ig at	etergent erate cen 2089'. R	and S.A trifuge, (Receiving	.P.P, pu desande g 500 bl	/2" hole sec ump 20 bbls er and desilt bls of 9.3 Of	sweeter con	p and	d dum ously.	p sa	

St Martinville, LA 70582

TEL: (337) 394-1078

MAGNOLIA OIL & GAS PATTERSON FAYETTE 12/08/20 2,089 ft 3,105 ft **FAT TIRE A-1H** 12/11/20 SPUD IN FT B-1H 248 **TEXAS** Report for ield / OSC-G # Fluid Type Circulating Rate **JAMES DYER / JIM HARRISON Tool Pusher GIDDIGNS WBM MUD PROPERTY SPECIFICATIONS** MUD VOLUME (BBL) PUMP #1 PUMP #2 RISER BOOSTER P\/ **GELS** API fl % Solids In Pits Liner Size 5.25 Liner Size 5.25 Weight YΡ Liner Size 5.25 8.4-9.6 0-10 0-10 <5 <10 8-9 <25 2-10 In Hole 329 bbl Stroke 12 Stroke 12 Stroke 12 **MUD PROPERTIES** 0.0763 0.0763 0.0763 bbl/stk bbl/stk bbl/stk Active 2:00 13:00 Time Sample Taken Storage stk/min stk/min stk/min gal/min Sample Location suction suction Tot on Location 329 bbl gal/min gal/min Mud Wt = 9.0YP=2 Flowline Temperature °F PV=2 **CIRCULATION DATA** n = 0.585 K = 53.1 Depth (ft) 3.105 3.105 Washout = 5% Pump Efficiency = 95% Mud Weight (ppg) 9.0 9.1 Volume to Bit Strokes To Bit Time To Bit Drill String @ 90 °F 31 32 Funnel Vis (sec/qt) Bottoms Up Vol. BottomsUp Stks BottomsUp Time 6 600 rpm 6 Riser Strokes Riser Circ. Time Riser Ann. Vol. 4 5 DRILLING ASSEMBLY DATA SOLIDS CONTROL 300 rpm 2 200 rpm 3 Tubulars OD (in.) ID (in.) Length Top Unit Screens Hours 100 rpm 1 2 Casing Shaker 1 140-80 5.0 1 1 Shaker 2 140-80 5.0 6 rpm 1 1 Shaker 3 140-80 3 rpm 5.0 @ 120 °F 2 1 Desander 5.0 Plastic Viscosity (cp) Desilter 2 4 **CASING & HOLE DATA** Yield Point (lb/100 ft2) T0 = 5.0 Casing OD (in.) 2/4 1/2 Centrifuge 1 Gel Strength (lb/100 ft2) 10 sec / 10 min ID (in.) Depth Top 5.0 2 **VOLUME ACCOUNTING (bbls)** 30 min 6 19.500 Gel Strength (lb/100 ft2) Riser 20 108' API Filtrate / Cake Thickness 25/1 25/1 Surface 10 3/4 9.950 3,095 108 Prev. Total on Location 108 HTHP Filtrate / Cake Thickness Int. Csq. Transferred In(+)/Out(-) Retort Solids Content 4.9% 5.7% Washout 1 Oil Added (+) Retort Oil Content Washout 2 Barite Added (+) 94.3% Retort Water Content 95.1% 3,105 Open Hole Size 14.175 Other Product Usage (+) 3.3 0.5% 0.5% **ANNULAR GEOMETRY & RHEOLOGY** 2000.0 Sand Content Water Added (+) M.B.T. (Methylene Blue Capacity) (ppb) 2.5 Left on Cuttings (-) -407.8 ECD annular elocity depth section ft/min reg lb/gal 8.2 8.0 Sand Trap Discharge -1045.9 0.1 0.1 Non-Recoverable Vol. (-) -220.5 Alkalinity, Mud Pm 0.1/0.2 0.1/0.2 329.2 Alkalinities, Filtrate Pf/Mf Est. Total on Location Chlorides (ma/L) 400 Est. Losses/Gains (-)/(+) 0.0 **BIT HYDRAULICS DATA** 120 120 Calcium (ppm) Nozzles (32nds) Bit H.S.I. Excess Lime (lb/bbl) Bit AP Average Specific Gravity of Solids 2.60 2.60 2.60 #DIV/0! #DIV/0! Percent Low Gravity Solids 4.9% 5.6% Nozzle Bit Impac Velocity Force Percent Drill Solids 4.9% 5.6% (ft/sec) BIT DATA Ulterra/U616S PPA Spurt / Total (ml) @ Manuf./Type #DIV/0! Estimated Total LCM in System Size Depth In Hours ROP ft/hi Motor/MWD Calc. Circ. Pressure Footage M Washburi 2,089 ft 417.8 #DIV/0! Sample Taken By A. Romar 13 1/2 20 ft 5.0 1,330 psi Afternoon Remarks/Recommendations: Afternoon Rig Activity: Drill 13-1/2" surface hole section to 3105, pump 3 X 30 bbls sweeps and circulate hole clean, pull out of hole, run 10-3/4", 45.5#, J55, BTC surface casing to 3095, circulate casing capacity with full returns, walk rig to Fat Tire B-1H, cement FT A-1H offline, observe 150 bbls cement to surface, divert same and transfer to disposal. Currently drilling surface hole on the FT B-1H @ 2800'.

110 Old Market St.

St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

10.5°

3,063' TVD

TEL: (337) 394-1078

Operator MAGI	NOLIA (OIL & C	GAS	Contractor PA1	TERS	ON	County / Parish /	Block		Engineer Start D		24 hr ft	2,089 ft		rilled De	epth 3,105 f	t
Well Name and No.	A T TIDE	- A 411		Rig Name an			State	EVAC.		Spud Date	4 /00	Curren			ctivity		
Report for	AT TIRE	= A-1H		Report for	248		Field / OCS-G #	EXAS		12/1 Fluid Type	1/20		,232 ft/h			asing/Co	
JAMES D	YER / J	IM HAI	RRISON	То	ol Pus	her	GID	DIGNS		WE	ВМ		0 gpm		2,	300 p	si
	MUD	PROPER	RTY SPECIF	ICATION	S		MUD VO	LUME (BE	BL)	PUM	P #1		PUMP #2		RISE	R BOOS	STER
Weight	PV	YP	GELS	рН	API fl	% Solids	In Pits	500	0 bbl	Liner Size	5.25	Liner	Size 5.	.25 I	Liner S	size 5	5.25
8.4-9.6	0-10	0-10	<5 <10	8-9	<25	2-10	In Hole	57	5 bbl	Stroke	12	Stro	oke 1	12	Strok	е	12
				12/12/20		12/11/20	Active	107	'3 bbl	bbl/stk	0.0763	bbl	/stk 0.0	763	bbl/st	tk 0.	0763
Time Sample	Taken			2:00		13:00	Storage)		stk/min	0	stk/	min	0	stk/m	in	0
Sample Locati	on			suction		suction	Tot. on Lo	cation 107	5 bbl	gal/min	0	gal/	min	0	gal/m	in	0
Flowline Temp	erature °F	F				110 °F		PHHP = 0		CI	RCULATIO	ON DA	TA	r	n = 0.5	585 K =	53.126
Depth (ft)				3,105'		2,089'	Bit	Depth = 3,0	095 '	,	Washout =	= 5%		Pump E	fficier	ncy = 95	%
Mud Weight (p	pg)			9.0		8.7	Drill String	Volume	to Bit	297.7 bbl	Strokes	To Bit		Т	ime To	Bit	
Funnel Vis (se	c/qt)		@ 90 °F	31		27	Disp.	Bottoms L	Jp Vol.	275.5 bbl	BottomsU	lp Stks		Bottom	sUp T	ime	
600 rpm				6		4	49.8 bbl	Riser An	n. Vol.	27.8 bbl	Riser S	Strokes		Riser	Circ. T	ime	
300 rpm				4		3		DRILLIN	G AS	SEMBLY DA	TA		s	OLIDS	CON	ΓROL	
200 rpm				2		2	Tubulars	OD (in.)	ID	(in.) Ler	ngth T	Гор	Unit		Scree	ns H	lours
100 rpm				1		1	Casing	10.750	9.	950 3,0)95'	0'	Shake	r 1	140-8	30	5.0
6 rpm				1		1					3,	095'	Shake	r 2	140-8	30	5.0
3 rpm				1		1					3,	095'	Shake	r 3	140-8	30	5.0
Plastic Viscosi	ity (cp)		@ 120 °F	2		1					3,	095'	Desand	der			5.0
Yield Point (lb/	/100 ft²)		T0 = 1	2		2		CASIN	NG & I	HOLE DATA			Desilte	er			5.0
Gel Strength (lb/100 ft²)	10	sec/10 min	2/4		1/2	Casing	OD (in.)	ID	(in.) De	epth 7	Гор	Centrifuç	ge 1			5.0
Gel Strength (lb/100 ft ²)		30 min	6		2	Riser	20	19	.500 10	08'		VOLUN	ME ACC	OUN	ΓING (bl	bls)
API Filtrate / C	ake Thick	kness		25/1		25/1	Surface				1	08'	Prev. 7	otal on	Locat	tion	0.0
HTHP Filtrate	/ Cake Th	nickness	@ 0 °F				Int. Csg.				1	08'	Transfe	erred In	(+)/Ou	ıt(-)	
Retort Solids (Content			4.9%		2.7%	Washout 1							Oil A	Added	(+)	0.0
Retort Oil Con	tent						Washout 2							Barite A	Added	(+)	0.0
Retort Water (Content			95.1%		97.3%	Oper	n Hole Size	14	.175 3,1	105'		Other P	roduct L	Jsage	(+)	3.3
Sand Content				0.5%		0%	AN	NULAR GI	EOME	TRY & RHE	OLOGY		,	Water A	Added	(+) 2	2000.0
M.B.T. (Methy	lene Blue	Capacity) (ppb)			2.5	annula		eas.	velocity		CD	Le	eft on Cu	uttings	s (-)	-407.8
рН				8.2		8.0	section	n de	epth	ft/min	reg lb	/gal	Sand	d Trap D	Discha	rge	-300.0
Alkalinity, Mud	l Pm			0.1		0.1	19.5x10.	75 1	08'	0.0	lam 9	0.00	Non-Red	coverab	le Vol	. (-)	-220.5
Alkalinities, Fil	trate Pf/M	lf		0.1/0.2		0.1/0.2	14.175x10).75 3,	095'	0.0	lam 9	0.00	Est. 7	Total on	Locat	tion 1	1075.1
Chlorides (mg/	/L)			400		500							Est. Los	ses/Ga	ins (-)	/(+)	0.0
Calcium (ppm))			120		120							ВІТ	HYDRA	AULIC	S DATA	١
Excess Lime (lb/bbl)												Bit H.S.I.	Bit ∆	۱ P	Nozzles (32nds)
Average Spec	ific Gravit	y of Solid	S	2.60	2.60	2.60							0.00	ps	si	14 14	14
Percent Low C	Gravity So	lids		4.9%		2.6%							Bit Impact	Nozz Veloc		14 14	14
Percent Drill S	olids			4.9%		2.6%			1				Force	(ft/se	,	14 14	14
PPA Spurt / To	otal (ml) @	0	@ 0 °F				BIT D	ATA	Ma	anuf./Type	Ulterra/U	1616S	0 lbs	0			
Estimated Total	al LCM in	System	ppb				Size	Depth In	H	ours Foo	tage RO	P ft/hr	Motor/M	WD (Calc.	Circ. Pre	ssure
Sample Taker	Ву			A. Roman		M Washburn	13 1/2	20 ft		5.0 2,0	89 ft 4	17.8	1,330	psi			
Remarks/Reco	mmendati	ons:					Rig Activity:										
OBM ON S			F/Mud Pla			5bbl		ery 300' ar	nd Pu	lled 13.5" h	Vater (Sa _l	pp/Soa	ap) sweep	s ever		_	

OBM ON SURFACE--- 1845bbls (Storage + Active)

OBM LOSS/GAIN-- Total (____)

constant additions of fresh Water to active system to maintain volume and dilutions. All Mud cleaning equipment ran while drilling and or Circulating. At TD pump 3/30bbls Hi-Vis sweeps and circulate hole clean. POOH to Run Casing. Out of the hole by 18:00hrs, rig up Casing running tools and run 10.75"/45.5#/J55/BTC Surface casing to bottom with no issues. Casing on bottom, Circulate Casing Capacity with full returns. Remove landing joint and prepare to walk the rig, while cementing off line. At this time preparing to Cement Casing.

Е	ng. 1:	Mi	ke W	ashbı	urn	Er	ng. 2:	Adolf	o Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:	36	61-94	5-57	77	Ph	none:	956-8	321-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	g 1	G 1	р 1	A 1	S 1	C 0	carefully	and may be	used if the user		r, no representati	nas been prepared on is made as to the	\$6,490.99	\$14,729.99
												INCLUD	ING 3RD PAR	TY CHARGES	\$6,490.99	\$14,729.99

Date 12/12/20	Operator MAG I	NOLIA OIL		Well Name a	nd No. T TIRE A-1	Н	Rig Name ar	nd No. 48	Report No. Repo	ort #5
	L.	USAGE 8	l l							LATIVE
			Previous		Closing	Daily		1	Cum	
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost		Usage	Cum Cost
SAPP (50)	50# sk	\$44.56	104		60	44	\$1,960.64		44	\$1,960.64
PHPA LIQUID (pail)	5 gal	\$41.36			62					
EVO-LUBE	gal	\$14.00			550					
NEW GEL (PREMIUM) ALUMINUM TRISTEARATE	100# sk 25# sk	\$19.75 \$162.83	70 19		70 19			•		
ALUMINUM TRISTEARATE	25# SK	\$102.83	19		19			1		
								1		
0.101.0 (50)	50"	0.4.4.00	20.4		20.4					
CACL2 (50) LIME (50)	50# sk	\$14.32 \$5.00	224 110		224 110					
OPTI - G	50# sk	\$30.59	40		40			1		
BENTONE 38 (50)	50# sk	\$163.94	36		36			1		
BENTONE 910 (50)	50# sk	\$59.40	31		31					
BENTONE 990 (50)	50# sk	\$83.59	24		24					
OPTI - MUL	gal	\$10.75	330		330					
OPTI - WET NEW PHALT	gal 50# sk	\$8.34 \$38.72	495 160		495 160					
OIL SORB (25)	25# sk	\$4.75	40		40			ł		
\ /	25// 5/(ψσ	.5					1		
]		
		<u> </u>							<u> </u>	
NEW CARB (M)	50# sk	\$5.25	150		150			ł		
CYBERSEAL MAGMAFIBER F (25)	25# sk 25# sk	\$21.47 \$28.05	175		175			1		
MAGMAFIBER R (30)	30# sk	\$28.05	38		38			1		
VARISEAL	50# sk	\$26.50			80			1		
FIBER PLUG	30# sk	\$30.37								
NUT PLUG M (50)	50# sk	\$12.04	80		80					
								1		
								1		
NEW WATE (SACK BARITE)	100# sk	\$11.50			180					
BARITE BULK (100)	100# sk	\$7.00		819	819					
								ł		
								1		
								1		
								1		
								1		
OPTI DRILL (OBM)	bbl	\$65.00	921	924	1845					
DISCOUNTED OBM	bbl	\$15.00								
								1		
								1		
]		
]		
								-		
ENGINEERING (24 HR)	each	\$925.00	<u> </u>			2	\$1,850.00	•	10	\$9,250.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00	-1	10	
ENGINEERING (MILES)	each	\$1.00				450	\$450.00	1		\$1,049.00
						_]		
							00.1=-			\$2,170.35
TRUO(NO ()						040	. um 470 0E	1	040	w 2 170 25
TRUCKING (cwt)	each	\$2.65				819	\$2,170.35		819	φ2,170.33
TRUCKING (min)	each	\$795.00				819	\$2,170.35		819	φ2,170.33
						819	\$2,170.35		819	φ2,170.33
TRUCKING (min) PALLETS (ea)	each each	\$795.00 \$12.00 \$12.00				819	\$2,170.35		819	φ2,170.33

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
12/12/20	MAGN	NOLIA OIL	& GAS	FA	T TIRE A-	1H	24	18	Repo	rt #5
	DAILY	USAGE 8	& COST						CUMUI	_ATIVE
			ъ .		OI :	5 "				
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TUDDO OUEM / FIDOT DEODONOS	05"	044.75								
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	150		150					
						 I				
	Cum	ulative Tota	I AES & 3rd	Party \$14,	729.99					

TEL: (337) 394-1078

11.1° 3,167' TVD

Operator MAGI Well Name and No.	NOLIA (OIL & (GAS	Contractor PA1 Rig Name an	TERSO	ON		Block YETTE		Engineer Star 12/ Spud Date	708/20	24 hr f	96 ft		3,20	01 ft	
	AT TIRE	E A-1H		Rig Name an	^{a No.}		State	EXAS			11/20	Currer	96 ft/hr		orilling	a Inte	er.
Report for				Report for			Field / OCS-G #			Fluid Type		Circula	ating Rate		culating Pre	_	
JAMES D	YER / J	IM HA	RRISON	То	ol Pusi	ner	GID	DIGNS		0	ВМ		808 gpm	1	3,90	5 psi	i
	MUD	PROPE	RTY SPECIF	CATION	S		MUD VO	LUME (BE	BL)	PU	MP #1		PUMP #2	F	ISER B	oost	ER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	853	3 bbl	Liner Size	e 5.2	25 Line	r Size 5.	25 Li	ner Size	5.2	25
9-10.6	5-20	5-15	>350	±240K	<10 <20	<10	In Hole	260) bbl	Stroke	12	2 Str	oke 1	2 5	Stroke	12	2
				12/18/20			Active	111	3 bbl	bbl/stk	0.07	763 bb	l/stk 0.0	763	obl/stk	0.07	′ 63
Time Sample	Taken			2:00			Storage	103	7 bbl	stk/min	12	6 stk	/min 12	26	stk/min	0	,
Sample Locati	on			suction			Tot. on Loc	cation 215	0 bbl	gal/min	40	4 gal	/min 40	04 (gal/min	0	,
Flowline Temp	erature °l	=					F	PHHP = 184	10	(CIRCUL	ATION DA	TA	n	= 0.637	K = 172	2.351
Depth (ft)				3,105'			Bit I	Depth = 3,2	201 '		Wash	out = 5%	ı	Pump Ef	ficiency	= 95%	
Mud Weight (p	ppg)			9.3			Drill String	Volume	to Bit	49.8 bbl	Str	okes To Bit	652	Tin	ne To Bit	3 m	nin
Funnel Vis (se	c/qt)		@ 70 °F	60			Disp.	Bottoms U	lp Vol.	210.6 bb	ol Botto	msUp Stks	2,760	Bottoms	Up Time	11 n	nin
600 rpm				28			48.3 bbl	TotalCi	rc.Vol.	1113.4 bl	bl Tot	alCirc.Stks	14,591	Total C	irc. Time	58 n	nin
300 rpm				18				DRILLIN	G ASS	SEMBLY D	ATA		S	OLIDS C	ONTRO	DL	
200 rpm				15			Tubulars	OD (in.)	ID	(in.) L	ength.	Тор	Unit	S	creens	Hou	ırs
100 rpm				10			Drill Pipe	5.000	4.	276	522'	0'	Shaker	1 1	40-80	16.	.0
6 rpm				5			AGITATOR	6.750	2.	500	30'	522'	Shaker	2 1	40-80	16.	.0
3 rpm				4			Drill Pipe	5.000	4.	276 2	2,072'	552'	Shaker	3 1	40-80	16.	.0
Plastic Viscos	ity (cp)		@ 150 °F	10			Dir. BHA	7.750	2.	500	577'	2,624'	Dryer Sha	ker 3 1	40-80	16.	.0
Yield Point (lb.	/100 ft²)		T0 = 3	8				CASIN	IG & F	HOLE DAT	ΓΑ						
Gel Strength (lb/100 ft²)	10) sec/10 min	5/9			Casing	OD (in.)	ID	(in.) [Depth	Тор	Centrifug	je 1			
Gel Strength (lb/100 ft ²)		30 min	14			Riser						VOLUM	IE ACCC	UNTIN	G (bbls	s)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	10.0			Surface	10 3/4	9.	950 3	3,105'	0'	Prev. T	otal on L	ocation	32	29.1
HTHP Cake T	hickness	(32nds)		1.0			Int. Csg.					0'	Transfe	rred In(+	·)/Out(-)	18 ⁻	12.5
Retort Solids (Content			10%			Washout 1							Oil Ac	lded (+)		12.6
Corrected Soli	ds (vol%)			8%			Washout 2							Barite Ad	lded (+)		0.0
Retort Oil Con	tent			65%			Oper	Hole Size	10	.369 3	3,201'		Other Pr	oduct Us	sage (+)		6.2
Retort Water (Content			25%			ANI	NULAR GE	OME	TRY & RH	EOLOG	Υ	١ ١	Water Ad	lded (+)		
O/W Ratio				72:28			annular	r me	eas.	velocity	flow	ECD	Le	ft on Cut	tings (-)		10.0
Whole Mud Cl	nlorides (r	ng/L)		50,000			section	de	pth	ft/min	reg	lb/gal					
Water Phase	Salinity (p	pm)		238,743													
Whole Mud Al	kalinity, P	om		2.0			9.95x5	5	22'	267.5	turb	9.58	Est. T	otal on L	ocation	21	50.4
Excess Lime (lb/bbl)			2.6 ppb			9.95x6.7	5 5	52'	370.4	turb	9.69	Est. Los	ses/Gain	s (-)/(+)		0.0
Electrical Stab	ility (volts)		380 v			9.95x5	2,6	624'	267.5	turb	9.63	BIT	HYDRAI	JLICS E	ATA	
Average Spec	ific Gravit	y of Solid	ds	3.00			9.95x7.7	75 3,	105'	508.4	turb	9.92	Bit H.S.I.	Bit ∆F	Nozz	les (32)	nds)
Percent Low 0	Gravity So	lids		5%			10.369x7.	.75 3,2	201'	417.2	turb	10.02	1.55	251 ps	si 14	14	14
ppb Low Grav	ity Solids			41 ppb]						Bit Impact	Nozzle		14	14
Percent Barite				3%]						Force	Velocit (ft/sec	- 1	16	16
ppb Barite				43 ppb			BIT D	ATA	Ma	anuf./Type	Ulterr	a/SPL613	676 lbs	174			
Estimated Tot	al LCM in	System	ppb				Size	Depth In	Н	ours Fo	ootage	ROP ft/hr	Motor/M\	ND C	alc. Circ	. Press	sure
Sample Taker	в Ву			A. ROMAN	0	0	9 7/8	3,105 ft	1	1.0	96 ft	96.0	1,330 բ	osi	3,13	3 psi	
Remarks/Reco	mmondati	ono:					Ria Activity:										\neg

OBM RECEIVED: 1812bbls (1412bbls Transferred +400rec)

OBM ON SURFACE--- 1890 bbls (Storage + Active)

OBM LOSS/GAIN-- Total (_0_)

Rig Activity:

On the Past 24hrs: WOC to 08:00hrs. Ck pressure and open well, secure FAT TIRE B 1H. Skid to FatTire A-1H; Nipple up and Test BOP's. Transfer all sack material and OBM. Pick up and make up Directional BHA, TIH and tag float collar @3013'. Initiate circulation and drill out shoe track + 10' new formation, perform FIT to 11.6EMW (382psi). Currentlhy: Drilling ahead on intermediate section, initial pump rate 430gpm, increased up to 800gpm after 100'. Start additions of diesel/Water and chemicals for intermediate section. Elevated GPM allowing for high ROP 1000+ft/hr; however, having a negative impact on mud shakers. At this time: Drilling ahead passing 3500'. 800gpm / 1150ROP.

Е	ng. 1:	Mi	ke W	ashb	urn	Er	ng. 2:	Adolfo	Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost						
Р	hone:	30	61-94	15-57	77	Pł	none:	956-8	21-9994	Phone:	432-686-736	1 Phone:	-									
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 2	O 1	carefully	opinion and or recommendation, expressed orally or written herein, has been prepared fully and may be used if the user so elects, however, no representation is made as to the dity of this information, and this is a recommendation only. \$18,901.96												
												INCLUD	ING 3RD PAR	RTY CHARGES	\$4,856.57	\$19,586.56						

Date 12/18/20	Operator MAG I	NOLIA OIL		Well Name a	ind No. T TIRE A-1	Н	Rig Name and 248		port #6
	DAILY	USAGE 8	& COST					CUM	ULATIVE
W	11-2	11-11-01	Previous	D i d	Closing	Daily	Daile Cast	Cum	0
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost	Usage	
SAPP (50)	50# sk	\$44.56						4	14 \$1,960.64
PHPA LIQUID (pail) EVO-LUBE	5 gal	\$41.36 \$14.00							+
NEW GEL (PREMIUM)	gal 100# sk	\$14.00							+
ALUMINUM TRISTEARATE	25# sk	\$162.83							+
7.20	20% 610	ψ.02.00							
CACL2 (50)	50# sk	\$14.32		326	270	56			56 \$801.92
LIME (50) OPTI - G	50# sk 50# sk	\$5.00 \$30.59		250 200	225 200	25	\$125.00		25 \$125.00
BENTONE 38 (50)	50# sk	\$163.94		36	36				+
BENTONE 910 (50)	50# sk	\$59.40		14	10	4	\$237.60		4 \$237.60
BENTONE 990 (50)	50# sk	\$83.59		24	24	<u> </u>	Ψ207.00		Ψ207.00
OPTI - MUL	gal	\$10.75		220	165	55	\$591.25	Ę	55 \$591.25
OPTI - WET	gal	\$8.34		275	220	55	\$458.70	-	55 \$458.70
NEW PHALT	50# sk	\$38.72		190	190				
OIL SORB (25)	25# sk	\$4.75		40	30	10	\$47.50	1	10 \$47.50
									4
									+
NEW CARB (M)	50# sk	\$5.25		160	160				_
CYBERSEAL	25# sk	\$21.47		100	160				+
MAGMAFIBER F (25)	25# sk	\$28.05		221	221				+
MAGMAFIBER R (30)	30# sk	\$28.05		38	38				+
VARISEAL	50# sk	\$26.50		80	80				
FIBER PLUG	30# sk	\$30.37							
NUT PLUG M (50)	50# sk	\$12.04		80	80				
									+
NEW WATE (SACK BARITE)	100# sk	\$11.50		180	180				+
BARITE BULK (100)	100# sk	\$7.00		698	1517				+
		******							_
									_
									+
									+
									+
									+
OPTI DRILL (OBM)	bbl	\$65.00	1845	-662	1183				
DISCOUNTED OBM	bbl	\$15.00		573	573				
									+
									+
									1
					1				1
ENGINEERING (24 HR)	each	\$925.00				2	\$1,850.00	1	12 \$11,100.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00		\$360.00
ENGINEERING (MILES)	each	\$1.00						104	\$1,049.00
		1							
TRUCKING (out)	acet.	\$2.0 5						2	19 \$2,170.35
TRUCKING (cwt)	each	\$2.65 \$795.00						81	σ φ∠,1/0.35
TRUCKING (min)									
TRUCKING (min) PALLETS (ea)	each each								
TRUCKING (min) PALLETS (ea) SHRINK WRAP (ea)	each each	\$12.00 \$12.00							

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
12/18/20	MAGI	NOLIA OIL	& GAS	FA	T TIRE A-	1H	24	48	Repo	ort #6
	DAILY	USAGE 8	& COST						CUMUL	ATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75		150	150					
Diesel Transfer from B 1H Diesel Received 12-17-18	gal gal	\$1.63 \$1.66		6372 10900		420	\$684.60		420	\$684.60
Dieser Received 12-17-10	gai	ψ1.00		10300	10300					
	l	<u> </u>	<u> </u>	I	Daily 9	Sub-Total \$	684.60		\$684	4.60
					Daily	-ao iotai 4			φυσι	
	2	ulativo Tor-	I AES 9 2m	l Dartir 640	596 FF	·				
	Cum	uiative 10ta	11 AES & SIC	l Party \$19,	J0U.30					

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator:

MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: FAT

FAT TIRE A-1H

					WEEK 1							WEEK 2							WEEK 3			
Г	Date	12/18/20	12/19/20	12/20/20	12/21/20	12/22/20	12/23/20	12/24/20	12/25/20	12/26/20	12/27/20	12/28/20	12/29/20	12/30/20	12/31/20	1/1/21	1/2/21	1/3/21	1/4/21	1/5/21	1/6/21	1/7/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
ī	Bit Size	9 7/8																	-			
Grand	Starting Depth	3,105	3,201																			
	Ending Depth	3,201	-, -																			
	Footage Drilled	96	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_
	New Hole Vol.	90		-	-		-	-	-	-		-	-	-	-			-	-		- -	-
			- 450									-										
	Starting System Volume Chemical Additions	329	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150
	Base Fluid Added	6 13																				
	Barite Increase	-																				
	Weighted Mud Added	1,813																				
	Slurry Added	1,013																				
	Water Added	-																				
	Added for Washout	_																				
	Total Additions	1,831	-	_	-	_	_	_	_	_	_	_	_		-	-	_		-		_	_
	Surface Losses			-	_		-		 	_		-	-	-	_	-		-	_		-	-
	Formation Loss	-		-			-											-			-	
	Mud Loss to Cuttings	10																				
	Unrecoverable Volume	-																				
	Centrifuge Losses	-																				
-	Centinuge Losses	-																				
10	Total Losses	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
- !	Mud Transferred Out																					
2,150	Ending System Volume	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150	2,150
- 1	Mud Recovered																					
I				С	omment	s:			1		C	omment	s:					С	omment	s <i>:</i>		
			Skid from	the B 1H. I	Nipple up te	est BOP's.	Pick up nev	w BHA,														
		12/18/20		out shoe tra					12/25/20							1/1/21						
									 													
2,142		12/19/20							12/26/20							1/2/21						
		12/20/20							12/27/20							1/3/21						
		12/21/20							12/28/20							1/4/21						
		12/22/20							12/29/20							1/5/21						
		12/23/20							12/30/20							1/6/21						
		12/23/20							12/30/20							1/6/21						

110 Old Market St. St Martinville, LA 70582

TEL: (337) 394-1078

0.8° 7,111' TVD

Operator MAGN Well Name and No.	IOLIA C	OIL &	GAS	Contractor PAT Rig Name ar	TTERSO)N	County / Parisi	n / Block		_	er Start Da 12/08/ Date		24 hr f	tg.		Drilled I	Depth 7,18	7 ft	
	T TIRE	A-1H		rug rumo u	248			EXAS			1 2/ 11/	20		438 ft/hr			RILI	LINC	3
Report for	(ED / II		DDIOON	Report for			Field / OSC-G			Fluid T		-		ating Rate			ing Pres		
JAMES DY					ol Push	ner		DIGNS			OBN			788 gpm	1		,264	-	
144		1	RTY SPECI	l	1			DLUME (BE			PUMP			PUMP #2			ER BO		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		bbl		Size	5.25			25	Liner			25
9-10.6	5-20	5-15		±240K	<10 <20	<10	In Hole		bbl	Stro		12			2	Stro			2
Ti 0		JD PKC	PERTIES	0.00		45:00	Active		4 bbl	bbl		0.0763			763	bbl/		0.0	763
Time Sample				2:00		15:30	Storag		7 bbl		min , .	123			23	stk/ı			
Sample Locati				suction		shaker		cation 254		ŭ	min	394			94	gal/ı		IZ 4	170.4
Flowline Temp	erature °i	-		0.4051		138 °F	Mud Wt. =		=10	YP	°=8			ON DATA			.637		
Depth (ft)	``			3,105'		7,187'	Bit i	Depth = 7,1		100		shout =					ency =		
Mud Weight (p			@ 440.0F	9.3		9.4	Drill String Disp.	Volume				Strokes		*		Time T			nin
Funnel Vis (se	c/qt)		@ 110 °F	60		43		Bottoms U				ottomsU	•	•		msUp			min
600 rpm				28		30	74.3 bbl	TotalCir				TotalCir	c.Stks			l Circ.			min
300 rpm				18		20	Tubulana	DRILLING							OLID		NTRO		
200 rpm				15		16	Tubulars	` ,		(in.)	Lengt		ор	Unit		Scre		HO	urs
100 rpm				10		11	Drill Pipe	5.000		276	4,508		-001	Shaker		140			
6 rpm				5		7	AGITATOR	6.750		500	30'	•	508'	Shaker		140			
3 rpm			0.450.5	4		6	Drill Pipe	5.000		276	2,072	·	538'	Shaker		140			
Plastic Viscosi	,		@ 150 °F	_		10	Dir. BHA	7.750		500	577'	6,6	510'	Dryer Sha	ker 3	14	10		
Yield Point (lb/			T0 = 3			10					DATA			O - mtmif	4				
Gel Strength () sec / 10 min	5/9		5/7	Casing	OD (in.)	טו	(in.)	Depth	1 1	ор	Centrifug			ITING	· /b.b.	
Gel Strength (,	30 min			11	Riser	40.0/4	0.4	050	0.405			VOLUN				•	
HTHP Filtrate			@ 250 °F			8.4		10 3/4	9.8	950	3,105			Prev. T				21	150.4
HTHP Cake TI		(32nas)		1.0		1.0	Int. Csg.							Transfe		. ,	. ,		
Retort Solids (Washout 1									Adde	` ,		
Corrected Soli				8%		9.1%	Washout 2	Llala C:-a	10	260	7 107	.,				Adde	. ,		
Retort Oil Con Retort Water 0				65% 25%		65% 24%	'	Hole Size			7,187			Other Pr					
O/W Ratio	Jontent			72:28		73:27	AN	NOLAK GE	CIVIL	INI	& KHEC	LOGI				Adde	` ,		
	oloridos (r	ma/L)		50,000		49,000	annula section	i de	pth	velo ft/n	,		CD /gal	Le	it on C	Cutting	JS (-)		
Whole Mud Ch	•	- ,		238,743		242,511													
Water Phase \$. ,		2.0		1.5	9.95x	5 21	05'	26	1.1 tu	ırb 9.	.90	Est. T	otal a	n I oo	otion	21	150.4
Whole Mud Al Excess Lime (OIII		2.6 ppb		2 ppb	10.369		608').16	Est. Los			-		390.3
Electrical Stab		.\		380 v		355 v	10.369x6	,	38').57				CS D		730.5
Average Spec			ide	3.00		2.91	10.369		310').62	Bit H.S.I.	Bit	1	Nozzl		2nds)
Percent Low G			103	5%		6.2%	10.369x7		87').99	1.44	239	-	14	14	14
ppb Low Gravi		ilus		41 ppb		51 ppb	10.505%7	.70 7,1	07	40	7.2 (0	iib ic	,.55		Noz	•	14	14	14
Percent Barite	ty Oolius			3%		2.9%								Bit Impact Force	Velo	city	16	16	16
ppb Barite				43 ppb		42 ppb	RIT F	DATA	Ma	nuf./T	ype U	terra/SF	PL613	644 lbs	(ft/s	70	.0	10	.0
Estimated Total	al LCM in	System	1	.5 660		PPD	Size	Depth In		ours	Footag		o ft/hr				Circ.	Pres	SUre
Sample Taken		-,0.011		A. ROMAN			9 7/8	3,105 ft		2.0	4,082		10.2	1,330 p			3,591		
Afternoon Rema		mmenda	tions:				Afternoon R	•	<u> </u>		,			,				-	
							Drillii secti caus diese OPT	ng 9-7/8" i on TD. Fir ing period el up to 20	m sh ic sc bbls lime	ale curen be hr four for Es	uttings o olinding r oil wet	observe not as ting of s	ed at s sever solids	wt gradua shaker with re as the pr , and volur llbore stab	occa reviou ne ma	asiona us we ainter	al san II. Add nance	d ding	·

OUTSOURCE FLUID SOLUTIONS LLC.

TEL: (337) 394-1078

0.1° 9,669' TVD

Operator M A C N	NOLIA (AII &	GVS	Contractor	TERSO) NI	County / Parish /	Block YETTE		Engineer Start	Date 08/20	24 hr f	6,544 ft		ed Depth	45 ft	
Well Name and No.	NOLIA (JIL &	GAS	Rig Name an		ZIN	State	TEITE		Spud Date	J0/2U	Curren		Acti		+5 II	-
F/	AT TIRE	E A-1H	l		248		TE	EXAS		12/1	1/20		297 ft/hı		DRIL	LIN	G
Report for	VED / 1		DDIGGN	Report for			Field / OCS-G #	DIONO		Fluid Type	D 14		ting Rate		ulating Pre		
JAMES D					ol Push	ner		DIGNS			BM		788 gpm		4,99		
1		_	RTY SPECII					LUME (BI		_	/IP #1		PUMP #2		ISER B		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		6 bbl	Liner Size					ner Size		.25
9-10.6	5-20	5-15	>350	±240K	<10 <20	<10	In Hole	84	9 bbl	Stroke	12	Str	oke 1	2 5	Stroke	1	12
				12/19/20		12/18/20	Active	144	45 bbl	bbl/stk	0.07	63 bbl	/stk 0.0	763	obl/stk	0.0	0763
Time Sample	Taken			2:00		15:30	Storage	125	56 bbl	stk/min	123	stk/	/min 1:	23 s	tk/min		0
Sample Locati	ion			suction		shaker	Tot. on Loc	cation 270	01 bbl	gal/min	394	gal	/min 3	94 g	al/min		0
Flowline Temp	erature °l	F		142 °F		138 °F	F	PHHP = 22	96	С	IRCULA	TION DA	TA	n :	= 0.678	K = 1	48.626
Depth (ft)				9,448'		7,187'	Bit [Depth = 9,	745 '		Washo	ut = 1%		Pump Eff	iciency	= 95%	%
Mud Weight (p	opg)			9.8		9.4	Drill String	Volume	e to Bit	166.0 bbl	Stro	kes To Bit	2,175	Tim	e To Bit	9 1	min
Funnel Vis (se	ec/qt)		@ 88 °F	45		43	Disp.	Bottoms l	Jp Vol.	683.4 bbl	Botton	nsUp Stks	8,955	Bottoms	Jp Time	36	min
600 rpm				32		30	90.9 bbl	TotalCi	irc.Vol.	1445.4 bb	l Tota	lCirc.Stks	18,941	Total Ci	rc. Time	77	min
300 rpm				20		20		DRILLIN	G ASS	SEMBLY D	ATA		s	OLIDS C	ONTRO)L	
200 rpm				16		16	Tubulars	OD (in.)	ID	(in.) Le	ength	Тор	Unit	S	creens	Но	ours
100 rpm				10		11	Drill Pipe	5.000	4.	.276 7,	,066'	0'	Shakei	1 1	40-80	2	4.0
6 rpm				6		7	AGITATOR	6.750	2.	500	30'	7,066'	Shakei	2 1	40-80	2	4.0
3 rpm				5		6	Drill Pipe	5.000	4.	.276 2,	,072'	7,096'	Shakei	3 1	40-80	2	4.0
Plastic Viscosi	ity (cp)		@ 150 °F	12		10	Dir. BHA	7.750	2.	.500 5	577'	9,168'	Dryer Sha	ker 3	140	2	4.0
Yield Point (lb/	/100 ft²)		T0 = 4	8		10		CASII	NG & I	HOLE DAT	Α						
Gel Strength (I	lb/100 ft²)	10	0 sec/10 min	6/11		5/7	Casing	OD (in.)	ID	(in.) D	epth	Тор	Centrifuç	ge 1		1:	2.0
Gel Strength (I	lb/100 ft ²)	ı	30 min	14		11	Riser						VOLUM	IE ACCC	UNTIN	G (bb	ols)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	7.0		8.4	Surface	10 3/4	9.	.950 3,	,105'	0'	Prev. T	otal on L	ocation	2	150.4
HTHP Cake Th	hickness	(32nds)		2.0		1.0	Int. Csg.					0'	Transfe	rred In(+)/Out(-)		463.0
Retort Solids (Content			13%		11%	Washout 1							Oil Ad	ded (+)		408.9
Corrected Soli	ids (vol%)	1		11.2%		9.1%	Washout 2							Barite Ad	ded (+)		42.9
Retort Oil Con	tent			65%		65%	Open	n Hole Size	e 9.	.974 9,	,745'		Other Pr	oduct Us	age (+)		38.1
Retort Water 0	Content			22%		24%	ANI	NULAR G	EOME	TRY & RHI	EOLOG'	<u> </u>	,	Nater Ad	ded (+)	:	240.0
O/W Ratio				75:25		73:27	annulai	r m	000	Volocity	flow	ECD	Le	ft on Cut	ings (-)	-:	505.9
Whole Mud Ch	hlorides (r	ng/L)		46,000		49,000	section		eas. epth	velocity ft/min	reg	lb/gal	Non-Red	overable	Vol. (-)		-86.0
Water Phase S				246,915		242,511								Ce	nt/Evap		-50.0
Whole Mud All	kalinity. P	om		1.8		1.5	9.95x5	3,	105'	261.1	turb	10.29	Est. T	otal on L	ocation	2	701.4
Excess Lime (2.3 ppb		2 ppb	9.974x5	•	066'	259.5	turb	10.39	Est. Los				0.0
Electrical Stab		:)		385 v		355 v	9.974x6.		096'	358.4	turb	10.64		HYDRAU	.,,,	ATA	
Average Spec			ids	3.06		2.91	9.974x5		168'	259.5	turb	10.75	Bit H.S.I.	Bit ΔP			32nds)
Percent Low G				6.6%		6.2%	9.974x7.		745'	490.2	turb	11.03	1.52	253 ps		14	14
ppb Low Gravi				54 ppb		51 ppb	3.01 471.	. 5 3,		100.2	.uib			Nozzle	_	14	14
Percent Barite				4.6%		2.9%							Bit Impact Force	Velocit	y · ·	16	
							BIT D	ΔΤΔ	N // -	anuf./Type	Iltorra	/SPL613	682 lbs	(ft/sec)	10	10	10
ppb Barite	all CN4:	C)	, m-L	65 ppb		42 ppb	Size	1	-			ROP ft/hr	Motor/M	170	alc. Circ	Dro	COUTC
Estimated Total		System	ı ppb	A. ROMAN	0	0	9 7/8	Depth In					1,330				
Sample Taken				A. KUMAN	U	0	9 7/8 Ria Activity:	3,105 ft		23.0 6,6	640 ft	288.7	1,330	JOI	4,22	3 psi	

Remarks/Recommendations:

OBM RECEIVED: 2275bbls

OBM ON SURFACE--- 1852 bbls (Storage + Active)

OBM LOSS/GAIN-- Total (__+482bbls_)

Rig Activity:

On the Past 24hrs: Drilling ahead on intermediate section, Agressive additions of diesel/Water and chemicals for intermediate section, able to maintain losses at the shakers to a minimum, Change out Shaker screens due to wear & tear. Pump 10bbls of LCM 10ppg sweeps every 300' drilled, monitor returns on sweep. Transfer OBM from storage to sweep tank and Active system to maintain Volume. Increase MW to 9.5ppg and up to 9.8ppg. Continue sliding and rotating ahead with (800gpm / ROP's: 70-80 slide / 280-400 rotation). At this time: Drilling ahead passing 9836'. 800gpm / 3000ROP. Projected TD 9972'+-.

Er	ng. 1:	Mi	ke W	ashbı	ırn	Er	ng. 2:	Adolfo	Roman	WH 1:	MIDLAND) WH	2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Pł	none:	3	61-94	5-577	77	Pł	none:	956-8	21-9994	Phone:	432-686-73	61 Pho	ne:	-			
W	Р	Υ	Е	С	g	G	Н	0							as been prepared on is made as to the	\$18,569.54	\$37,471.50
1	1	1	1	1	1	1	1	1	validity o	f this informa	ation, and this is	a recommend	ation only.				
												INC	LUDING	3RD PA	RTY CHARGES	\$46,532.30	\$66,118.86

Date 12/19/20	Operator MAG I	NOLIA OIL	& GAS	Well Name a	and No. TTIRE A-1	Н	Rig Name and No. 248	Report No.	ort #7
12/19/20		USAGE 8		1	IIIIL A-I	··	240		LATIVE
	DAILI	T TOAGE	ı	1	01	D-II-			T
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost	Cum Usage	Cum Cost
SAPP (50)	50# sk	\$44.56						44	\$1,960.64
PHPA LIQUID (pail)	5 gal	\$41.36							* 1,000101
EVO-LUBE	gal	\$14.00							
NEW GEL (PREMIUM)	100# sk	\$19.75							
ALUMINUM TRISTEARATE	25# sk	\$162.83							
		2							
CACL2 (50)	50# sk	\$14.32	270		158	112		168	
LIME (50)	50# sk	\$5.00			125	100	\$500.00	125	<u> </u>
OPTI - G	50# sk	\$30.59	200		120	80	\$2,447.20	80	\$2,447.20
BENTONE 38 (50)	50# sk	\$163.94	36		36	40	Ø504.00	44	#004.00
BENTONE 910 (50)	50# sk	\$59.40			0.4	10	\$594.00	14	\$831.60
BENTONE 990 (50)	50# sk	\$83.59	24		24	440	£4.400.50	405	¢4 770 75
OPTI - MUL	gal	\$10.75			55		\$1,182.50	165	
OPTI - WET	gal 50#.ck	\$8.34	220		110	110			\$1,376.10
NEW PHALT	50# sk 25# sk	\$38.72	190		110 30	80	\$3,097.60	10	
OIL SORB (25)	25# SK	\$4.75	30	1	30		 	10	\$47.50
		1		1			 	-	+
		1		1				-	1
		1		1				-	
NEW CARB (M)	50# sk	\$5.25	160		100	60	\$315.00	60	\$315.00
CYBERSEAL	25# sk	\$21.47	100		100	00	ψ310.00		ψ515.00
MAGMAFIBER F (25)	25# sk	\$28.05	221		161	60	\$1,683.00	60	\$1,683.00
MAGMAFIBER R (30)	30# sk	\$28.05			38		ψ1,000.00		ψ1,000.00
VARISEAL	50# sk	\$26.50			80				
FIBER PLUG	30# sk	\$30.37							
NUT PLUG M (50)	50# sk	\$12.04	80		80				
		*							
NEW WATE (SACK BARITE)	100# sk	\$11.50	180		180				
BARITE BULK (100)	100# sk	\$7.00			900	617	\$4,319.00	617	\$4,319.00
,									
OPTI DRILL (OBM)	bbl	\$65.00	1183	618	1801				
DISCOUNTED OBM	bbl	\$15.00	573	-155	418				
									1
									1
									1
		A					0.05		
ENGINEERING (24 HR)	each	\$925.00				2			\$12,950.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00	14	
ENGINEERING (MILES)	each	\$1.00		1				1049	\$1,049.00
							 		<u> </u>
							 		<u> </u>
		**					 		#0.475.55
TRUCKING ()		\$2.65	l	ĺ				819	\$2,170.35
	each								
TRUCKING (cwt) TRUCKING (min)	each	\$795.00							
TRUCKING (min) PALLETS (ea)	each each	\$795.00 \$12.00							
TRUCKING (min)	each	\$795.00							

Date	Operator			Well Name a	ind No.		Rig Name an	d No.	Report No.	
12/19/20	MAGI	NOLIA OIL	& GAS	FA	T TIRE A-1	IH.	24	48	Repo	rt #7
	DAILY	USAGE 8	COST						CUMUL	ATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	150		150					
							*			
Diesel Transfer from B 1H Diesel Received 12-17-18	gal gal	\$1.63 \$1.66	5952 10900			5952	\$9,701.76 \$18,094.00	l ⊨		\$10,386.36 \$18,094.00
Diesel Received 12-17-10	gal	\$1.67	10300	7000	6900	1000	\$167.00		100	\$167.00
								_		
								_		
								_		
								_		
								_		
								_		
								_		
								_		
								_		
					Daily Su	ıb-Total \$2	7,962.76		\$28,6	47.36
	C	ulativo Tata	I AEC 0 25-1	Darty 600	110 06					
	Cum	ulative Tota	1 MES & 310	i-aity \$00,	, 1 10.00					

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

248

Well Name: FAT TIRE A-1H

Date 12/18/20 12/19/20 12/20/20 12/20/20 12/23/20 12/23/20 12/25/20 12/26/20 12/27/20 12/28/20 12/29/20 12/30/20 12/31/20 11/121 1/2/21	Sun -	WEEK 3 1/4/21 Mon	1/5/21 Tue	1/6/21 Wed	1/7/21 Thu
Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Sun Sun Sun Sun Sat Sat Sun Sat Sat Sun Sat	Sun -	Mon	Tue		
Bit Size 9 7/8 9 7/8	-			Weu	
Grand Totals Starting Depth 3,105 3,201 9,745 Starting Depth Star	-	-			+
Totals Ending Depth 3,201 9,745 Starting System Volume 96 6,544 - <	-	-			
6,640 Footage Drilled 96 6,544	-	-			+
629 New Hole Vol. 9 620 -	-	-			<u> </u>
Starting System Volume 329 2,150 2,701 2,7			-	-	-
44 Chemical Additions 6 38	1 2 701	-	-	-	-
	1 2,701	2,701	2,701	2,701	2,701
422 Base Fluid Added 13 409					
43 Barite Increase - 43					
2,276 Weighted Mud Added 1,813 463					
- Slurry Added					
240 Water Added - 240					
- Added for Washout					
3,024 Total Additions 1,831 1,193	-	-	-	-	-
- Surface Losses					
- Formation Loss					1
516 Mud Loss to Cuttings 10 506					1
86 Unrecoverable Volume - 86					
50 Centrifuge Losses - 50					1
652 Total Losses 10 642					
652 Total Losses 10 642	-	-	-	-	<u></u>
- Mud Transferred Out					
2,701 Ending System Volume 2,150 2,701 2,7	1 2,701	2,701	2,701	2,701	2,701
- Mud Recovered					
Comments: Comments:	С	ommen	ts:		-
Skid from the B 1H. Nipple up test BOP's. Pick up new BHA,					
12/18/20 TIH, drill out shoe track perform FIT. Start drilling Intermediate. 800gpm, 1150ROP. 1/1/21					
2,605 Drilling ahead on intermediate section. 800gpm, 400rop. Transfer mud from storage to active and sweeps. 12/19/20 12/26/20 1/221					
12/20/20 12/27/20 1/3/21					
12/21/20 12/28/20 1/4/21					
12/22/20 12/29/20 1/5/21					
12/23/20 12/30/20 1/6/21					
12/24/20 12/31/20 1/7/21					

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

Report 7 pm

TEL: (337) 394-1078

9.8° 3,859' TVD

Operator MAGN Well Name and No.	IOLIA O	IL &	GAS	Contractor PA Rig Name as	TTERSO)N	County / Paris	h / Block	ΓΕ	Engin		t Date)8/20		ftg.		Drilled Activity	9,93	7 ft	
FA	AT TIRE	A-1F	1		248		т	EXAS	S		12/1	1/20				РО	он/		DP
Report for JAMES D	YER / JI	м на	ARRISON	Report for	ol Push	ner	Field / OSC-G	# DDIGI	NS	Fluid	• •	вм	Circu	lating Rate 788 gpn	n	Circula	ting Pres	sure	
			ERTY SPECI	ļ			MUD V)		IP #1		PUMP #2		RIS	ER BO	OST	ER
Weight	PV	YP		CaCl2	GELS	HTHP	In Pits		596 bb		er Size	5.2	25 Line	er Size 5	.25	Liner	Size	5.2	25
9-10.6	5-20	5-1	5 >350	±240K	<10 <20	<10	In Hol	е	906 bb	ol St	roke	1	2 St	roke	12	Stro	ke	12	2
	MU	JD PR	OPERTIES	<u> </u>			Active	e	919 bb	ol bi	ol/stk	0.0	763 bl	ol/stk 0.0	0763	bbl	/stk	0.07	763
Time Sample	Taken			2:00		15:30	Storag	je	1256 b	<u>ıbl</u> stl	k/min	12	23 st	k/min 1	23	stk/	min		
Sample Locati	on			suction		suction	Tot. on Lo	cation	2758 b	bl ga	ıl/min	39	94 ga	al/min 3	394	gal/	min		
Flowline Temp	erature °F			142 °F			Mud Wt. :	= 9.8	PV=12	2 Y	P=8	CII	RCULATION	ON DATA		n = 0	.678	K = 1	48.6
Depth (ft)				9,448'		9,937'	Bit	Depth :	= 3,906	S'		Wash	out = 1%		Pump	Effici	ency =	95%	,
Mud Weight (p	ppg)			9.8		10.0	Drill String	Vo	lume to	Bit 62	.3 bbl	Str	rokes To B	it 816		Time 7	Γο Bit	3 m	nin
Funnel Vis (se	ec/qt)		@ 120 °F	45		44	Disp.	Bottor	ms Up V	/ol. 260).9 bbl	Botto	omsUp Stk	s 3,419	Botto	omsUp	Time	14 r	nin
600 rpm				32		34	52.9 bbl	Tot	talCirc.V	/ol. 919	9.2 bbl	То	talCirc.Stk	s 12,045	Tota	al Circ.	Time	49 r	nin
300 rpm				20		22		DRIL	LING A	ASSEM	BLY D	ATA			SOLID	S CO	NTRO		
200 rpm				16		17	Tubulars	OD (in.) I	ID (in.)	Ler	ngth	Тор	Unit	t	Scre	ens	Hou	urs
100 rpm				10		11	Drill Pipe	5.00	00	4.276	1,2	227'		Shake	er 1	140	-80		
6 rpm				6		6	AGITATOR	6.75	50	2.500	3	80'	1,227'	Shake	er 2	140	-80		
3 rpm				5		5	Drill Pipe	5.00	00	4.276	2,0)72'	1,257'	Shake	er 3	140	-80		
Plastic Viscosi	ity (cp)		@ 150 °F	12		12	Dir. BHA	7.75	50	2.500	5	77'	3,329'	Dryer Sha	aker 3	14	10		
Yield Point (lb/	/100 ft²)		T0 = 4	8		10		C	ASING	& HOL	E DAT	Ά							
Gel Strength (lb/100 ft²)	1	0 sec / 10 min	6/11		6/10	Casing	OD (in.) I	ID (in.)	De	epth	Тор	Centrifu	ge 1				
Gel Strength (lb/100 ft2)		30 min	14		12	Riser							VOLUI	ME AC	CCOU	NTING	(bbl	s)
HTHP Filtrate	(cm/30 mi	n)	@ 250 °F	7.0		6.4	Surface	10 3	3/4	9.950	3,1	105'		Prev.	Total o	on Loc	ation	27	01.4
HTHP Cake TI	hickness (32nds)	2.0		2.0	Int. Csg.							Transf	erred	In(+)/C	Out(-)		
Retort Solids (Content			13%		13.5%	Washout 1								Oi	I Adde	d (+)		
Corrected Soli	ds (vol%)			11.2%		11.7%	Washout 2								Barite	e Adde	d (+)		
Retort Oil Con	tent			65%		65.5%	Oper	n Hole :	Size	9.974	9,9	937'		Other P	roduc	t Usag	e (+)		
Retort Water 0	Content			22%		21%	AN	NULAI	R GEO	METRY	& RH	EOLO	GY		Wate	r Adde	d (+)		
O/W Ratio				75:25		76:24	annula	ar	-1 41-	ve	locity	flow	ECD	Le	eft on	Cutting	gs (-)		
Whole Mud Ch	nlorides (m	ng/L)		46,000		47,000	sectio	n	depth	1 1	/min	reg	lb/gal	Non-Re	covera	able V	ol. (-)		
Water Phase S	Salinity (pp	om)		246,915		259,781										Cent/	Evap		
Whole Mud Al	kalinity, Po	om		1.8		1.9	9.95x	5	1,227	" 2	61.1	turb	10.04	Est.	Total o	on Loc	ation	27	01.4
Excess Lime (lb/bbl)			2.3 ppb		2.5 ppb	9.95x6.	75	1,257	" 3	61.6	turb	10.05	Est. Los	sses/G	ains (-)/(+)		56.6
Electrical Stab	ility (volts))		385 v		410 v	9.95x	5	3,105	5' 2	61.1	turb	10.05	ВІТ	HYDI	RAULI	CS DA	ATA	
Average Spec	ific Gravity	of So	olids	3.06		3.14	9.974>	√ 5	3,329)' 2	59.5	turb	10.05	Bit H.S.I.	Bit	tΔP	Nozzle	es (32	nds)
Percent Low G	Gravity Sol	ids		6.6%		6.4%	9.974x7	7.75	3,906	5' 4!	90.2	turb	10.27	1.52	253	3 psi	14	14	14
ppb Low Gravi	ity Solids			54 ppb		52 ppb								Bit Impac	t I	zzle	14	14	14
Percent Barite	1			4.6%		5.3%								Force	vei	ocity sec)	16	16	16
ppb Barite				65 ppb		76 ppb	BIT	DATA	<u> </u>	Manuf./	Туре	Ulter	ra/SPL61	682 lbs	1	70			
Estimated Total	al LCM in	Syster	n				Size	Depth	h In	Hours	Foo	tage	ROP ft/h	r Motor/M	1WD	Calc	. Circ.	Press	sure
Sample Taken	Ву			A. ROMAN		M Washburn	9 7/8	3,10	5 ft	23.0	6,6	40 ft	288.7	1,330	psi		3,319	psi	
Afternoon Rema	arks/Recon	nmenda	ations:				1009 sam layin rece	ng 9-7 % AC, e, obso	7/8" inte increas erve sh n 4 1/2 240 bbls	se muc nale sh 2" DP. F	l wt to akers Refillin	10.0, to be ig bar	pump 3 free of co ite bulk ta	D at 9937 s X 30 bbls L uttings. Pu anks, OBM fadisonville	CM s mp sli diese	sweep ug pul el tank	s, circ I out c s, and	ulate of hol	e out e

Report #8

1,544' TVD

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

TEL: (337) 394-1078

10.8°

MAGNOLIA OIL & GAS PATTERSON 12/08/20 192 ft 9,937 ft **FAYETTE** Well Name and No Rig Name and No **FAT TIRE A-1H Run Casing** 248 **TEXAS** 12/11/20 35 ft/hr **JAMES DYER / JIM HARRISON Tool Pusher GIDDIGNS OBM** 0 gpm psi MUD PROPERTY SPECIFICATIONS MUD VOLUME (BBL) **PUMP #1 PUMP #2 RISER BOOSTER** Weight P\/ ΥP E.S. CaCl2 **GELS** HTHP In Pits 580 bbl Liner Size 5.25 Liner Size 5.25 Liner Size 5.25 9-10.6 5-20 5-15 >350 +250K <10 < 20 <10 In Hole 996 hhl Stroke 12 Stroke 12 Stroke 12 12/20/20 12/19/20 Active 713 bbl bbl/stk 0.0763 bbl/stk 0.0763 bbl/stk 0.0763 Time Sample Taken 2:00 15:30 0 0 0 Storage 1399 bbl stk/min stk/min stk/min 2975 bbl 0 suction 0 0 Sample Location suction Tot. on Location gal/min gal/min gal/min Flowline Temperature °F PHHP = 0 **CIRCULATION DATA** n = 0.670 K = 172.089 Depth (ft) 9.937 9.937 Bit Depth = 1.550 ' Washout = 5% Pump Efficiency = 95% Mud Weight (ppg) 10.2 10.0 71.2 bbl Time To Bit Volume to Bit Strokes To Bit Drill String Disp 44 Funnel Vis (sec/qt) @ 70 °F 65 Bottoms Up Vol. 61.5 bbl BottomsUp Stks BottomsUp Time 600 rpm 35 34 16.4 bbl TotalCirc.Vol. 712.7 bbl TotalCirc.Stks Total Circ. Time SOLIDS CONTROL 300 rpm 22 22 DRILLING ASSEMBLY DATA 17 200 rpm 16 **Tubulars** OD (in.) ID (in.) Length Top Unit Screens Hours 11 11 1.550 0' 140-80 5.0 100 rpm Casing 7.625 6.875 Shaker 1 6 6 1,550 Shaker 2 140-80 5.0 6 rpm 5 5 1,550 Shaker 3 140-80 5.0 3 rpm @ 150 °F 13 12 1,550' Dryer Shaker 3 140 Plastic Viscosity (cp) 5.0 Yield Point (lb/100 ft²) T0 = 9 10 **CASING & HOLE DATA** 6/11 6/10 OD (in.) ID (in.) 5.0 Gel Strength (lb/100 ft²) 10 sec/10 min Casing Depth Top Centrifuge 1 30 min 14 12 **VOLUME ACCOUNTING (bbls)** Rise Gel Strength (lb/100 ft2) HTHP Filtrate (cm/30 min) @ 250 °F 7.0 6.4 Surface 10 3/4 9.950 3,105' 0' Prev. Total on Location 2701.4 HTHP Cake Thickness (32nds) 2.0 2.0 Int. Csa. 0' Transferred In(+)/Out(-) 225.0 Retort Solids Content 14% 13.5% Washout 1 Oil Added (+) 116.7 12.2% 11.7% Washout 2 33.6 Corrected Solids (vol%) Barite Added (+) 9.937 65% 65.5% 10.369 0.0 Retort Oil Content Open Hole Size Other Product Usage (+) 21% 21% **ANNULAR GEOMETRY & RHEOLOGY** 0.0 Retort Water Content Water Added (+) O/W Ratio 76:24 76:24 Left on Cuttings (-) -20.1 FCD annular meas velocity flow section depth ft/min lb/gal reg 46,000 47,000 Whole Mud Chlorides (mg/L) Non-Recoverable Vol. (-) -50.0 255,667 259,781 -31.7 Water Phase Salinity (ppm) Cent/Evap Whole Mud Alkalinity, Pom 1.5 1.9 9.95x7.625 1,550 0.0 10.20 Est. Total on Location 2974.8 Excess Lime (lb/bbl) 2.5 ppb Est. Losses/Gains (-)/(+) 0.0 2 ppb **BIT HYDRAULICS DATA** 420 v 410 v Electrical Stability (volts) 3.25 3.14 Bit H.S.I Average Specific Gravity of Solids Bit ΛP Nozzles (32nds) 5.9% Percent Low Gravity Solids 6.4% 0.00 14 14 psi 14 48 ppb Nozzle ppb Low Gravity Solids 52 ppb 14 14 14 Bit Impac Velocity Force Percent Barite 6.3% 5.3% 16 16 16 (ft/sec) 90 ppb 76 ppb **BIT DATA** Manuf./Type Ulterra/SPL613 ppb Barite ROP ft/h Motor/MWD Estimated Total LCM in System ppb Size Depth In Hours Footage Calc. Circ. Pressure A. ROMAN 0 M Washbur 9 7/8 3,105 ft 28.0 6,842 ft 244.4 1,330 psi Sample Taken By

Remarks/Recommendations:

OBM RECEIVED: 2500bbls

OBM ON SURFACE--- 1991 bbls (Storage + Active)

OBM LOSS/GAIN-- Total (_bbls_)

Rig Activity:

On the Past 24hrs: Drilled Intermediate section to TD 9937' w/ 10ppg OBM. Circulate 3 sweeps for hole clean up, Pump slug and start POOH laying down Drill Pipe and BHA. Change out Rams to casing and test same with Rig pumps. Rig up Casing Running tools, Make up shoe track and start running Casing (7 5/8" / 29.7# / P110) in the hole. At this time: Running Intermediate Casing in the hole passing 2000'. Circulating active system reducing MW to 9.7ppg with Diesel and Centrifuge application.

Е	ng. 1:	Mi	ke W	ashbı	ırn	Er	ng. 2:	Adolfo	Roman	WH 1:	MIDLA	.ND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:	36	61-94	5-577	7	Ph	none:	956-8	21-9994	Phone:	432-686-	-7361	Phone:	-			
W	Р	Υ	Е	С	g	G	Н	0							s been prepared is made as to the	\$7,490.73	\$44,962.23
1	1	1	1	1	1	1	1	1	,	,			ommendation on		is made as to the		
													INCLUDIN	NG 3RD PAR	TY CHARGES	\$15.673.73	\$81.792.59

Date 12/20/20	Operator MAGI	NOLIA OIL		Well Name a	ING NO. IT TIRE A-1	<u>H</u>	Rig Name ar	148 R	eport No. Repo	ort #8
	DAILY	USAGE 8	COST	•					CUMU	LATIVE
ltem	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost		Cum	Cum Cos
SAPP (50)		\$44.56	Inventory		Inventory	Usage		 	Usage	
PHPA LIQUID (pail)	50# sk 5 gal	\$41.36							44	\$1,960.64
EVO-LUBE	gal	\$14.00						 		
NEW GEL (PREMIUM)	100# sk	\$19.75						†		
ALUMINUM TRISTEARATE	25# sk	\$162.83								
CACL2 (50)	50# sk	\$14.32	158		158				168	\$2,405.76
LIME (50)	50# sk	\$5.00	125		125				125	
OPTI - G	50# sk	\$30.59	120		120				80	\$2,447.20
BENTONE 38 (50)	50# sk	\$163.94	36		36					
BENTONE 910 (50)	50# sk	\$59.40							14	\$831.60
BENTONE 990 (50)	50# sk	\$83.59	24		24					
OPTI - MUL	gal	\$10.75	55		55			<u> </u>		\$1,773.7
OPTI - WET	gal	\$8.34	110		110			↓		\$1,376.10
NEW PHALT	50# sk	\$38.72	110		110			-	80	
OIL SORB (25)	25# sk	\$4.75	30		30				10	\$47.50
NEW CARR (A)		*								001-
NEW CARB (M)	50# sk	\$5.25	100		100				60	\$315.00
CYBERSEAL (05)	25# sk	\$21.47						∤		M4 057 5
MAGMAFIBER F (25)	25# sk	\$28.05	161		161			-	60	\$1,683.00
MAGMAFIBER R (30)	30# sk	\$28.05	38		38			<u> </u>		
VARISEAL	50# sk	\$26.50	80		80			-		
FIBER PLUG	30# sk	\$30.37						-		
NUT PLUG M (50)	50# sk	\$12.04	80		80					
NEW WATE (SACK BARITE)	100# sk	\$11.50	180		180			-		
BARITE BULK (100)	100# sk	\$7.00	900	832	1250	482	\$3,375.40		1099	\$7,694.40
								-		
OPTI DRILL (OBM)	bbl	\$65.00	1801	251	2052					
DISCOUNTED OBM	bbl	\$15.00	418	-26	392					
								}		
								}		
ENGINEERING (24 HR)	each	\$925.00				2	\$1,850.00]	16	\$14,800.0
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00] [16	
ENGINEERING (MILES)	each	\$1.00						 	1049	\$1,049.0
								}		
	each	\$2.65				832	\$2,205.33	1	1651	\$4,375.6
TRUCKING (cwt)	Cacii						_			
	each	\$795.00						1		
TRUCKING (min)		\$795.00 \$12.00								
TRUCKING (cwt) TRUCKING (min) PALLETS (ea) SHRINK WRAP (ea)	each									

Date	Operator			Well Name a	and No.		Rig Name an	d No.	Report No.	
12/20/20	MAG	NOLIA OIL	& GAS	FA	T TIRE A-1	IH	24	48	Repo	ort #8
	DAILY	USAGE 8	COST						СПМП	ATIVE
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	150		150					
Diesel Transfer from B 1H	gal	\$1.63							6372	\$10,386.36
Diesel Received 12-17-18	gal	\$1.66								\$18,094.00
Diesel Received 12-19-20	gal	\$1.67	6900		2000	4900	\$8,183.00		5000	\$8,350.00
Diesel Received 12-20-20	gal	\$1.68		14400	14400					
								_		
								-		
								_		
					Daily S	ub-Total \$8	3.183.00		\$36,8	30.36
							.,	<u> </u>	+55,0	
	Cum	ulative Tota	I AES & 3rd	Party \$81	792.59					
	Juni				,					

FLUID VOLUME ACCOUNTING

Operator: Rig Name: MAGNOLIA OIL & GAS

248

Well Name: FAT TIRE A-1H

					WEEK 1							WEEK 2							WEEK 3			
	Date	12/18/20	12/19/20	12/20/20		12/22/20	12/23/20	12/24/20	12/25/20	12/26/20	12/27/20		12/29/20	12/30/20	12/31/20	1/1/21	1/2/21	1/3/21	1/4/21	1/5/21	1/6/21	1/7/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8																		
Grand	Starting Depth	3,105	3,201	9,745	9,937																	
	Ending Depth	3,201	9,745	9,937	-,																	
	• •	<u> </u>	6,544							_												
	Footage Drilled	96		192	-	-	•	-	-		-	-	-	-	-		-	-	-	-		-
	New Hole Vol.	9	620	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Starting System Volume	329	2,150		2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975
	Chemical Additions	6	38																			
	Base Fluid Added	13	409	117																		
	Barite Increase	- 4 040	43																			
	Weighted Mud Added	1,813	463	225																		
	Slurry Added	-	- 0.40	-																		
240	Water Added	-	240	-																		
-	Added for Washout																					
3,399	Total Additions	1,831	1,193	375	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
•	Surface Losses	-	-	-																		
•	Formation Loss	-	-	-																		
	Mud Loss to Cuttings	10	506	20																		
	Unrecoverable Volume	-	86	50																		
82	Centrifuge Losses	-	50	32																		
754	Total Losses	10	642	102	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	Mud Transferred Out																					
2,975	Ending System Volume	2,150	2,701	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975	2,975
-	Mud Recovered																					
				С	omment	s:					С	omment	s:					С	omment	s:		
		12/18/20	TIH, drill o	the B 1H. out shoe tra					12/25/20							1/1/21						
	Ī		800gpm, 1																			
2,830		12/19/20	Drilling ah Transfer r	nead on inte nud from st	ermediate so orage to ac	ection. 800 tive and sw)gpm, 400i veeps.	op.	12/26/20							1/2/21						
		12/20/20	Rig up Ca	circulate he sing tools a back to 9.7	and run 7 5/				12/27/20							1/3/21						
		12/21/20							12/28/20							1/4/21						
		12/22/20							12/29/20							1/5/21						
		12/23/20							12/30/20						_	1/6/21						
		12/24/20																				

OUTSOURCE FLUID SOLUTIONS LLC.

110 Old Market St. St Martinville, LA 70582

TEL: (337) 394-1078

	OLIA C	IL & G	AS		TTERSO)N	County / Parisi	YETTE		1	Start Date 2/08/20				Orilled D	9,937	7 ft
Well Name and No.	T TIRE	A-1H		Rig Name ar	nd No. 248		State T	EXAS		Spud Da	te 2/11/20		nt ROP	,	Activity CM	T IN	T CSG
Report for JAMES DY	/ED / II	МПУВ	DISON	Report for	ol Push	or	Field / OSC-G	# DDIGNS		Fluid Typ	OBM	Circul	ating Rate	(Circulati	ing Press	sure
JAIVIES D1			TY SPECII			iei		DLUME (BE	RI)		PUMP #1		PUMP #2		RISI	FR BO	OSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		bbl	Liner S		75 Line		75	Liner		4.75
9-10.6	5-20	5-15	>350	±250K	<10 <20	<10	In Hole		bbl	Strok				2	Stro		12
			PERTIES		110		Active		bbl	bbl/s				625	bbl/		0.0625
Time Sample	Taken			2:00		16:00	Storage	e 182	8 bbl	stk/m	nin	stl	:/min		stk/r	min	
Sample Location				suction		suction	Tot. on Loc	cation 286	4 bbl	gal/m	nin	ga	l/min		gal/r	min	
Flowline Temp	erature °F	:					Mud Wt. =	10.2 PV	=13	YP=	:9 CI	RCULATIO	ON DATA		n = 0	.670 ł	< = 172.
Depth (ft)				9,937'		9,937'					Wash	out = 5%		Pump	Efficie	ency =	95%
Mud Weight (p	pg)			10.2		9.7	Drill String	Volume	to Bit		St	rokes To Bi	t	Т	ime T	o Bit	
Funnel Vis (se	c/qt)		@ 110 °F	65		44	Disp.	Bottoms U	p Vol.		Bott	omsUp Stks	S	Botton	nsUp '	Time	
600 rpm				35		33		TotalCir	c.Vol.	580.0	bbl To	talCirc.Stk	5	Total	Circ.	Time	
300 rpm				22		21		DRILLING	3 ASS	SEMBL	Y DATA		S	OLIDS	CON	ITROL	
200 rpm				16		17	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit		Scre	ens	Hours
100 rpm				11		10	Drill Pipe						Shakei	1	140	-80	
6 rpm				6		5							Shakei	2	140	-80	
3 rpm				5		4							Shakei	. 3	140	-80	
Plastic Viscosi	ty (cp)		@ 150 °F	13		12							Dryer Sha	ker 3	14	0	
Yield Point (lb/	100 ft²)		T0 = 4	9		9		CASIN	IG & I	HOLE [DATA		1				
Gel Strength (I	b/100 ft²)	10 s	sec / 10 min	6/11		6/10	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifuç	ge 1			
Gel Strength (I	b/100 ft2)		30 min	14		12	Riser						VOLUN	IE AC	COUN	ITING	(bbls)
HTHP Filtrate	(cm/30 mi	n)	@ 250 °F	7.0		6.4	Surface	10 3/4	9.9	950	3,105'		Prev. 7	otal or	n Loca	ation	2974.
HTHP Cake Th	nickness (32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	875	9,924'		Transfe	erred Ir	n(+)/O	ut(-)	
Retort Solids C	Content			14%		12.5%	Washout 1							Oil	Adde	d (+)	
Corrected Soli	ds (vol%)			12.2%		10.7%	Washout 2							Barite	Adde	d (+)	
Retort Oil Cont	ent			65%		66.5%	Oper	Hole Size			9,937'		Other Pi	roduct	Usag	e (+)	
Retort Water C	content			21%		21%	AN	NULAR GE	OME	TRY &	RHEOLO	GY	<u> </u> '	Water	Adde	d (+)	
O/W Ratio				76:24		76:24	annula	ae ae	pth	veloc		ECD	Le	ft on C	utting	js (-)	
Whole Mud Ch	lorides (n	ng/L)		46,000		45,500	section	n		ft/mi	in reg	lb/gal	Non-Red	coverat	ole Vo	ol. (-)	
Water Phase S	Salinity (pp	om)		255,667		253,593								(Cent/E	Evap	
Whole Mud All	kalinity, Po	om		1.5		1.4							Est. 7	otal or	Loca	ation _	2974.
Excess Lime (I				2 ppb		1.8 ppb							Est. Los			, , ,	-111.
Electrical Stab				420 v		405 v								HYDR.	ı		
Average Speci			s	3.25		3.02							Bit H.S.I.	Bit A	-	Nozzle	es (32nds
Percent Low G		ids		5.9%		6.6%							#DIV/0!	#DI\		\perp	-
ppb Low Gravi	ty Solids			48 ppb		54 ppb							Bit Impact Force	velo	city	\perp	-
Percent Barite				6.3%		4.1%	D.T.	NATA	1.4	n	200		4	(ft/se	ec)	\dashv	\dashv
ppb Barite	ALL CAA:	C. m.t		90 ppb		59 ppb		Donth In		nuf./Ty		DOD ##	#DIV/0!	WD	Cala	Circ	Dross
Estimated Total		System		A DOMAN		M Washburn	Size	Depth In	Ho	ours	Footage	ROP ft/hi			caic.		Pressure
Sample Taken Afternoon Rema		amender.	no:	A. ROMAN		ivi vvaSNDUrn	Afternoon R	lia Activity	<u> </u>			<u> </u>	1,330	PSI		#DIV	·U:
, actiout Relie		menualit					Run from of did retur lead and i Curre	7-5/8" 29. 5.25" to 4 esel and p ns, rig up @ 11.8#, isolate 31	.75", roces ceme 78 bb bbls s essin	reducessing wenters, ols tail spacer	wt in su with centri trest line @ 16.2# / mud in ace mud	rface syst fuge. Circ s, pump 4 displace terface at volume, r	9924, char em from 10 sulate casin 0 bbls spar with 451 bl surface, no educing mu	D.2 to 9 og capa cer @ bls 10. o ceme	9.7 w acity 11.0 0# O ent at	ith adwith fu with fu #, 225 BM, o surfa	ditions ull bbls bserve

Report #9

0' TVD

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

TEL: (337) 394-1078

 0.0°

MAGNOLIA OIL & GAS PATTERSON 12/08/20 9,937 ft **FAYETTE** 0 ft Well Name and No Rig Name and No **FAT TIRE A-1H** 248 **TEXAS** 12/11/20 0 ft/hr Test BOP's iald / OCS-G **JAMES DYER / JIM HARRISON Tool Pusher GIDDIGNS OBM** 0 gpm psi MUD PROPERTY SPECIFICATIONS MUD VOLUME (BBL) **PUMP #1 PUMP #2 RISER BOOSTER** Weight P\/ ΥP E.S. CaCl2 **GELS** HTHP In Pits 684 bbl Liner Size 4.75 Liner Size 4.75 Liner Size 4.75 9-10.6 5-20 5-15 >350 +250K <10 < 20 <10 In Hole 456 bbl Stroke 12 Stroke 12 Stroke 12 12/21/20 12/20/20 Active 684 bbl bbl/stk 0.0625 bbl/stk 0.0625 bbl/stk 0.0625 Time Sample Taken 2:00 16:00 0 0 0 Storage 1828 bbl stk/min stk/min stk/min Tot. on Location 2968 bbl 0 suction suction gal/min 0 gal/min 0 Sample Location gal/min Flowline Temperature °F PHHP = 0 **CIRCULATION DATA** n = 0.659 K = 159.065 Depth (ft) 9.937 9.937 Bit Depth = 1 Washout = 0% Pump Efficiency = 95% Mud Weight (ppg) 0.0 bbl Time To Bit Volume to Bit Strokes To Bit Drill String Disp Funnel Vis (sec/qt) @ 75 °F 58 44 Bottoms Up Vol. 0.0 bbl BottomsUp Stks BottomsUp Time 600 rpm 30 33 0.0 bbl TotalCirc.Vol. 684.0 bbl TotalCirc.Stks Total Circ. Time DRILLING ASSEMBLY DATA SOLIDS CONTROL 300 rpm 19 21 17 200 rpm 15 **Tubulars** OD (in.) ID (in.) Length Top Unit Screens Hours 10 10 Drill Pipe 0 0' 140-80 100 rpm 4.500 3.826 Shaker 1 AGITATOR 5 5 5.000 2.000 Shaker 2 140-80 6 rpm 0 4 4 Drill Pipe 4.500 3.826 0 Shaker 3 140-80 3 rpm Plastic Viscosity (cp) @ 150 °F 11 12 Dir. BHA 5.250 2.250 0 Dryer Shaker 3 140 Yield Point (lb/100 ft²) T0 = 8 9 **CASING & HOLE DATA** 5/10 6/10 OD (in.) ID (in.) Centrifuge 1 12.0 Gel Strength (lb/100 ft²) 10 sec/10 min Casing Depth Top 30 min 12 12 **VOLUME ACCOUNTING (bbls)** Gel Strength (lb/100 ft2) Rise @ 250 °F HTHP Filtrate (cm/30 min) 7.0 6.4 Surface 10 3/4 3,105' 0' Prev. Total on Location 2974.8 HTHP Cake Thickness (32nds) 2.0 2.0 Int. Csq. 7 5/8 6.875 9.924' 0' Transferred In(+)/Out(-) Retort Solids Content 11% 12.5% Washout 1 Oil Added (+) 118.1 9.2% 10.7% Washout 2 Corrected Solids (vol%) Barite Added (+) 0.0 9.937 68% 66.5% 6.750 0.0 Retort Oil Content Open Hole Size Other Product Usage (+) 21% 21% **ANNULAR GEOMETRY & RHEOLOGY** Retort Water Content Water Added (+) O/W Ratio 76:24 76:24 Left on Cuttings (-) 0.0 FCD annular meas velocity flow section ft/min depth lb/gal reg 45,000 45,500 Whole Mud Chlorides (mg/L) Non-Recoverable Vol. (-) -50.0 251,507 253,593 -74.7 Water Phase Salinity (ppm) Cent/Evap Whole Mud Alkalinity, Pom 1.5 1.4 Est. Total on Location 2968.2 Excess Lime (lb/bbl) 1.8 ppb Est. Losses/Gains (-)/(+) 0.0 2 ppb **BIT HYDRAULICS DATA** 435 v 405 v Electrical Stability (volts) 3.05 3.02 Bit H.S.I Average Specific Gravity of Solids Bit ΛP Nozzles (32nds) 5.5% 0.00 Percent Low Gravity Solids 6.6% psi 18 18 18 45 ppb Nozzle ppb Low Gravity Solids 54 ppb 18 18 18 Bit Impac Velocity Force Percent Barite 3.7% 4.1% (ft/sec) ppb Barite 53 ppb 59 ppb **BIT DATA** Manuf./Type Halli./GTD64M ROP ft/hr Motor/MWD Estimated Total LCM in System ppb Size Depth In Hours Footage Calc. Circ. Pressure A. ROMAN 0 M Washbur 6 3/4 9,937 ft 2,240 psi Sample Taken By

Remarks/Recommendations:

OBM RECEIVED: 2500bbls

OBM ON SURFACE--- 2512 bbls (Storage + Active)

OBM LOSS/GAIN-- Total (_bbls_)

Rig Activity:

On the Past 24hrs: Ran 7 5/8" Casing to bottom, Circulate 9.7ppg OBM, 9700stks (606bbls) with full returns at all times. transfer operations to Cement crew and pump Cement (40bbl spacer 11# / 225bbls Lead 11.8# / 78bbls Tail 16.2#), Displace Cement with 451bbls of 9ppg OBM from Storage, full returns while cementing. Discharge 31bbls of Contaminated (Spacer / OBM) at the shakers. Procceded to change out casing RAM's and Test BOP's for production drilling. At this time: Continue Testing BOP's, Repairs to Top Drive, Circulate Active pits while adding disel and running Centrifuge to reduce MW to 9.4ppg.

Er	ng. 1:	Mi	ke W	ashbu	ırn	Er	ng. 2:	Adolf	o Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Pl	none:	3	61-94	5-577	7	Ph	none:	956-	821-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	ecommendation, expr used if the user so e ation, and this is a re	lects, however, r	no representation		\$1,910.00	\$46,872.23
									1		,			TY CHARGES	\$10,222.80	\$92,015.39

Date 12/21/20	Operator MAGI	NOLIA OIL		Well Name a	ING NO. IT TIRE A-1	<u>H</u>	Rig Name ar 2	10 No. 48	Report No. Repo	ort #9
	DAILY	USAGE 8	COST						CUMU	LATIVE
Item	Unit	Unit Cost	Previous	Received	Closing	Daily	Daily Cost	-	Cum	Cum Cos
			Inventory		Inventory	Usage			Usage	
SAPP (50) PHPA LIQUID (pail)	50# sk 5 gal	\$44.56 \$41.36						1	44	\$1,960.6
EVO-LUBE	gal	\$14.00						1		
NEW GEL (PREMIUM)	100# sk	\$19.75						1		
ALUMINUM TRISTEARATE	25# sk	\$162.83								
								•		
CACL2 (50)	50# sk	\$14.32	158		158				168	
LIME (50)	50# sk	\$5.00	125		125				125	
OPTI - G	50# sk	\$30.59	120		120				80	\$2,447.2
BENTONE 38 (50) BENTONE 910 (50)	50# sk	\$163.94 \$59.40	36		36				14	\$831.6
BENTONE 910 (50)	50# sk	\$83.59	24		24			-	14	φου 1.0
OPTI - MUL	gal	\$10.75	55		55				165	\$1,773.7
OPTI - WET	gal	\$8.34	110		110					\$1,376.10
NEW PHALT	50# sk	\$38.72	110		110				80	
OIL SORB (25)	25# sk	\$4.75	30		30				10	
								1		
NEW CARB (M)	50# sk	\$5.25	100		100				60	\$315.00
CYBERSEAL	25# sk	\$21.47	100		.00			1		Ţ3.0.0i
MAGMAFIBER F (25)	25# sk	\$28.05	161		161				60	\$1,683.00
MAGMAFIBER R (30)	30# sk	\$28.05	38		38					
VARISEAL	50# sk	\$26.50	80		80			1		
FIBER PLUG	30# sk	\$30.37								
NUT PLUG M (50)	50# sk	\$12.04	80		80					
								-		
NEW WATE (SACK BARITE)	100# sk	\$11.50	180		180			_		
BARITE BULK (100)	100# sk	\$7.00	1250		1250			1	1099	\$7,694.40
OPTI DRILL (OBM)	bbl	\$65.00	2052		2052					
DISCOUNTED OBM	bbl	\$15.00	392		392					
								-		
								 		
ENGINEERING (24 HR)	each	\$925.00				2	\$1,850.00		18	\$16,650.0
ENGINEERING (DIEM)	bbl	\$30.00				2		1	18	
ENGINEERING (MILES)	each	\$1.00							1049	\$1,049.0
	<u> </u>							1		
TDLICKING (out)	a.cl-	#0.0F							4054	¢4 075 0
FRUCKING (cwt)	each	\$2.65							1651	\$4,375.6
TRUCKING (min)	each	\$795.00							1651	\$4,375.6
									1651	\$4,375.6

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
12/21/20	MAG	NOLIA OIL	& GAS	FA	T TIRE A-1	IH .	24	48	Repo	ort #9
	DAILY	USAGE 8	COST						СПМП	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	150		150					
Diesel Transfer from B 1H	gal	\$1.63							6372	\$10,386.36
Diesel Received 12-17-18	gal	\$1.66								\$18,094.00
Diesel Received 12-19-20	gal	\$1.67	2000			2000	\$3,340.00		7000	\$11,690.00
Diesel Received 12-20-20	gal	\$1.68	14400		11440	2960	\$4,972.80		2960	\$4,972.80
					Daily Si	ub-Total \$8	3,312.80		\$45,1	43.16
									, .	-
	Cum	ulative Tota	I AES & 3rd	Party \$92,	015.39					

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

: 248

Well Name: FAT TIRE A-1H

F	-			T	WEEK 1					[WEEK 2	· · · · · · · · · · · · · · · · · · ·	C	· · · · · · · · · · · · · · · · · · ·				WEEK 3			
	Date			12/20/20		12/22/20					12/27/20		12/29/20			1/1/21	1/2/21	1/3/21	1/4/21	1/5/21	1/6/21	1/7/21
	Dit Ci	Fri 9 7/8	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size		9 7/8	9 7/8	6 3/4	9,937																
	Starting Depth	3,105	3,201	9,745	9,937	9,937																
	New Hole Vol. 9 620 18 - - - - - - - - -																					
					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		9	620	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Starting System Volume	329	2,150	2,701	2,975	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968
		13			118																	
	-																					
		1,831	1,193	375		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	36 Mud Loss to Cuttings 10 506 20 -																					
	136 Unrecoverable Volume - 86 50 -																					
156	136 Unrecoverable Volume - 86 50 - 156 Centrifuge Losses - 50 32 75													l								
878	Total Losses	10	642	102	125	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	Mud Transferred Out																					
2,968	Ending System Volume	2,150	2,701	2,975	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968	2,968
-	Mud Recovered																					
				С	omments	s <i>:</i>					С	omment	s:					С	omment	s <i>:</i>		
		12/18/20	Skid from TIH, drill o 800gpm, 1	the B 1H. out shoe tra 1150ROP.	Nipple up te ck perform	est BOP's. F FIT. Start d	Pick up ne Irilling Inte	w BHA, rmediate.	12/25/20							1/1/21						
2,830				ead on inte				ор.	12/26/20							1/2/21						
		12/20/20	Rig up Ca	circulate ho sing tools a back to 9.7	and run 7 5/				12/27/20							1/3/21						
		12/21/20	returns an	Bottom, Ci d discharge ing BOP's					12/28/20							1/4/21						
		12/22/20							12/29/20							1/5/21						
		12/23/20							12/30/20							1/6/21						
		12/24/20							12/31/20							1/7/21						

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

Report 9 pm

TEL: (337) 394-1078

8.4° 5,213' TVD

Operator MAGN	IOLIA C	IL & G	iAS	Contractor PAT	TERSO)N	County / Paris	h / Block		Engineer S	Start Date 2/08/20		4 hr ftg.			Drilled [9,937	ft	
Well Name and No.	T TIRE	A-1H		Rig Name an	d No.		State	EXAS		Spud Date	2/11/20		Current RO	OP	F	Activity P/U	4-1/2	2" D)P
Report for		· · · · ·		Report for			Field / OSC-G			Fluid Type			Circulating	Rate	C		ing Press		-
JAMES DY	/ER / JI	M HAF	RRISON	То	ol Push	ner	GII	DDIGNS			OBM								
	MUD F	PROPER	TY SPECII	FICATION	s		MUD V	DLUME (BE	BL)	Р	UMP #1		Р	UMP #2		RIS	ER BO	ost	ER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	684	bbl	Liner S	ize 4.	75	Liner Si	ize 4.	75	Liner	Size	4.7	'5
9-10.6	5-20	5-15	>350	±250K	<10 <20	<10	In Hol	e 427	bbl '	Stroke	e 1	2	Stroke	9 1	2	Stro	ke	12	2
	MU	JD PROF	PERTIES				Active	898	bbl	bbl/st	k 0.0	625	bbl/stl	k 0.0	625	bbl/	stk	0.06	25
Time Sample	Taken			2:00		13:00	Storag	e <u>182</u>	8 bbl	stk/mi	in		stk/mi	n		stk/r	min		
Sample Locati	on			suction		suction	Tot. on Lo	cation 293	9 bbl	gal/mi	in		gal/mi	n		gal/r	min		
Flowline Temp	erature °F	:					Mud Wt.	= 9.4 PV	=11	YP=8	B CI	RCULA	ATION	DATA		n = 0	.659 K	(= 1	59.1
Depth (ft)				9,937'		9,937'	Bit	Depth = 5,2	279 '		Wash	out =		ı	Pump I	Efficie	ency =	95%	
Mud Weight (p	pg)			9.4		9.4	Drill String	Volume	to Bit	75.1 b	obl St	rokes T	o Bit		Т	Time T	o Bit		
Funnel Vis (se	c/qt)		@ 80 °F	58		51	Disp.	Bottoms U	p Vol.	138.5 k	bbl Botte	omsUp	Stks		Botton	nsUp	Time		
600 rpm				30		32	28.8 bbl	TotalCir	c.Vol.	897.6 k	bbl To	otalCirc.	Stks		Total	Circ.	Time		
300 rpm				19		20		DRILLING	G ASS	SEMBLY	Y DATA			S	OLIDS	CON	NTROL		
200 rpm				15		15	Tubulars	OD (in.)	ID	(in.)	Length	Top	р	Unit		Scre	ens	Ηοι	ırs
100 rpm				10		10	Drill Pipe	4.500	3.8	326	5,279'			Shaker	1	140	-80		
6 rpm				5		5	AGITATOR	5.000	2.0	000		5,27	'9'	Shaker	2	140	-80		
3 rpm				4		4	Drill Pipe	4.500	3.8	326		5,27	'9'	Shaker	3	140	-80		
Plastic Viscosi	ty (cp)		@ 150 °F	11		12	Dir. BHA	5.250	2.2	250		5,27	'9' D	ryer Sha	ker 3	14	0		
Yield Point (lb/	'100 ft²)		T0 = 3	8		8		CASIN	IG & I	HOLE D	ATA								
Gel Strength (I	b/100 ft ²)	10 :	sec / 10 min	5/10		5/9	Casing	OD (in.)	ID	(in.)	Depth	Top	р	Centrifug	ge 1				
Gel Strength (I	b/100 ft2)		30 min	12		12	Riser							VOLUN	IE ACC	COU	ITING	(bbls	3)
HTHP Filtrate	(cm/30 mi	n)	@ 250 °F	7.0		7.0	Surface	10 3/4			3,105'			Prev. T	otal or	n Loca	ation	29	68.2
HTHP Cake Th	nickness (32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375	9,924'			Transfe	erred In	n(+)/C	out(-)		
Retort Solids C	Content			11%		11%	Washout 1								Oil A	Adde	d (+)		
Corrected Soli	ds (vol%)			9.2%		9.2%	Washout 2							I	Barite /	Adde	d (+)		
Retort Oil Con	tent			68%		68%	Oper	Hole Size	6.7	750	9,937'			Other Pr	oduct l	Usag	e (+)		
Retort Water C	Content			21%		21%	AN	NULAR GE	OME	TRY & I	RHEOLO	OGY		١	Nater A	Adde	d (+)		
O/W Ratio				76:24		76:24	annula	ı ae	pth	veloci	,	EC		Le	ft on C	utting	gs (-)		
Whole Mud Ch	nlorides (m	ng/L)		45,000		45,500	sectio	n		ft/mir	n reg	lb/g	al	Non-Rec	overab	ole Vo	ol. (-)		
Water Phase S	Salinity (pp	om)		251,507		253,593									C	Cent/E	Evap		
Whole Mud All	kalinity, Po	om		1.5		1.5	6.875x4	1.5 5,2	279'		lam	9.4	4	Est. T	otal or	n Loca	ation	29	68.2
Excess Lime (lb/bbl)			2 ppb		2 ppb								Est. Los	ses/Ga	ains (-	·)/(+)	-	28.8
Electrical Stab	ility (volts))		435 v		423 v								ВІТ	HYDR	AULI	CS DA	TA	
Average Speci	ific Gravity	of Solid	ls	3.05		2.99							В	Bit H.S.I.	Bit /	ΔP	Nozzle	s (32	nds)
Percent Low G	Gravity Sol	ids		5.5%		5.9%											18	18	18
ppb Low Gravi	ty Solids			45 ppb		48 ppb								it Impact	Noza Velo		18	18	18
Percent Barite				3.7%		3.4%			1					Force	(ft/se	-			
ppb Barite				53 ppb		48 ppb	BIT I	DATA	Ма	nuf./Typ	e Halli	i./GTD6	64M						
Estimated Tota	al LCM in	System					Size	Depth In	Но	ours F	ootage	ROP	ft/hr	Motor/M\	WD	Calc.	Circ. F	ress	sure
Sample Taken	Ву			A. ROMAN		M Washburn	6 3/4	9,937 ft						2,240 p	osi		2,329	psi	
Afternoon Rema	arks/Recon	nmendati	ons:				Afternoon F	Rig Activity:											
							1/2" syste whe	e up BHA, drill pipe, r em mixing n blended ne of repo	nonite with a with 9	or displace displace 9.0 OBN	acemen ement h	t in trip ole vol	tank. ume to	Continu maintai	e circu in 9.4	ulatin mud	g surfa wt in s	ace i urfa	mud ce

Report #10

110 Old Market St. St Martinville, LA 70582

OUTSOURCE FLUID SOLUTIONS LLC.

TEL: (337) 394-1078

34.2° 10,118' TVD

Operator MAG	NOLIA (OIL & G	SAS	Contractor PA	TERSO	ON .	County / Parish /	Block YETTE		Engineer St	tart Date 2/08/20	24 hr	ftg. 289 ft	l	Drilled Dep	oth),226	6 ft
Well Name and No	AT TIRE	E A-1H		Rig Name an	id No. 248		State	EXAS		Spud Date	2/11/20		nt ROP 72 ft/hr	,	Activity Drilli	ng C	Curve
Report for JAMES D	VED /	ІІМ НАБ	PISON	Report for	ol Pusi	her	Field / OCS-G #	DIGNS		Fluid Type	ОВМ	Circu	ating Rate 394 gpn		Circulating	Pressu 540	
JANILO D			TY SPECIF					LUME (BE	BL)		UMP #1		PUMP #2	-			OSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		2 bbl	Liner Si		.75 Line		.75	Liner Si		4.75
9-10.6	5-20	5-15	>350	±250K	<10 <20	<10	In Hole	41	1 bbl	Stroke	e '	12 St	roke	12	Stroke	:	12
				12/22/20		12/21/20	Active	112	3 bbl	bbl/stl	k 0.0)625 bb	ol/stk 0.0	625	bbl/stl	((0.0625
Time Sample	Taken			2:00		13:00	Storage	e <u>182</u>	8 bbl	stk/mii	n 7	75 stl	x/min	75	stk/mi	n	0
Sample Locat	tion			suction		suction	Tot. on Lo	cation 295	1 bbl	gal/mi	in 1	97 ga	I/min 1	97	gal/mi	n	0
Flowline Tem	perature °	F		135 °F			1	PHHP = 104	12		CIRCUI	ATION D	ATA		n = 0.6	88 K	= 125.689
Depth (ft)				10,050'		9,937'	Bit D	Depth = 10,	226 '		Wash	out = 1%		Pump	Efficien	cy = 9	95%
Mud Weight (ppg)			9.2		9.4	Drill String	Volume	to Bit	144.0 b	obl St	rokes To Bi	t 2,305	1	Time To	Bit	15 min
Funnel Vis (se	ec/qt)		@ 80 °F	46		51	Disp.	Bottoms U	Jp Vol.	267.1 b	obl Bott	omsUp Stks	4,276	Bottor	nsUp Tii	me 2	29 min
600 rpm				29		32	58.2 bbl	TotalCi	rc.Vol.	1123.1	bbl To	otalCirc.Stk	17,979	Total	Circ. Ti	me 1	20 min
300 rpm				18		20		DRILLING	G ASS	SEMBLY	DATA		S	OLIDS	CONT	ROL	
200 rpm				14		15	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit		Screen	าร	Hours
100 rpm				9		10	Drill Pipe	4.500	3.	.826	7,516'	0'	Shake	r 1	140-8	0	20.0
6 rpm				5		5	AGITATOR	5.000	2.	.000	24'	7,516'	Shake	r 2	140-8	0	20.0
3 rpm	3 rpm					4	Drill Pipe	4.500	3.	.826	2,557'	7,539'	Shake	r 3	140-8	0	20.0
Plastic Viscos	astic Viscosity (cp) @					12	Dir. BHA	5.250	2.	.250	130'	10,096'	Dryer Sha	ıker 3	140		20.0
Yield Point (lb	/100 ft²)	T0 = 3	7		8		CASIN	IG & I	HOLE DA	ATA							
Gel Strength	(lb/100 ft²)	10	sec/10 min	5/10		5/9	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifu	ge 1			4.0
Gel Strength	(lb/100 ft ²))	30 min	14		12	Riser						VOLUM	IE AC	COUNT	ING (bbls)
HTHP Filtrate	(cm/30 m	iin)	@ 250 °F	7.0		7.0	Surface	10 3/4			3,105'	0'	Prev. 7	otal or	n Locati	on	2968.2
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	.875	9,924'	0'	Transfe	erred Ir	n(+)/Out	:(-)	
Retort Solids	Content			10%		11%	Washout 1							Oil	Added	(+)	33.1
Corrected Sol	lids (vol%))		8.1%		9.2%	Washout 2							Barite .	Added	(+)	0.0
Retort Oil Cor	ntent			67%		68%	Oper	Hole Size	6.	.818	10,226'		Other P	oduct	Usage	(+)	7.4
Retort Water	Content			23%		21%	AN	NULAR GE	OME	TRY & R	RHEOLO	GY		Water	Added	(+)	
O/W Ratio				74:26		76:24	annula		eas.	velocit	-		Le	ft on C	Cuttings	(-)	-13.0
Whole Mud C	hlorides (mg/L)		48,000		45,500	section	n de	epth	ft/min	n reg	lb/gal	Non-Red	overab	ole Vol.	(-)	-28.6
Water Phase	Salinity (p	pm)		246,564		253,593								(Cent/Ev	ар	-16.0
Whole Mud A	lkalinity, F	om		2.1		1.5	6.875x4	.5 7,5	516'	357.0	0 turb	10.11	Est. 7	otal or	n Locati	on	2951.1
Excess Lime	(lb/bbl)			2.7 ppb		2 ppb	6.875x	5 7,5	539'	433.2	2 turb	10.17	Est. Los	ses/Ga	ains (-)/	(+)	0.0
Electrical Stat	bility (volts	5)		405 v		423 v	6.875x4	.5 9,9	924'	357.0	0 turb	10.20	BIT	HYDR	AULIC	S DAT	ΓΑ
Average Spec	cific Gravit	ty of Solid	ls	2.91		2.99	6.818x4	.5 10,	,096'	367.7	7 turb	10.26	Bit H.S.I.	Bit A	ΔP N	ozzles	(32nds)
Percent Low (Gravity Sc	olids		5.5%		5.9%	6.818x5.	25 10,	,226'	509.7	7 turb	10.34	0.38	59		8 1	8 18
ppb Low Grav	vity Solids			45 ppb		48 ppb							Bit Impact	Noz Velo		8 1	8 18
Percent Barite	9			2.6%		3.4%			1				Force	(ft/s	ec)		\perp
ppb Barite				37 ppb		48 ppb	BIT D	1	Ма	anuf./Typ		i./GTD64N		85			
Estimated Tot	tal LCM in	System	ppb				Size	Depth In			Footage	ROP ft/h					ressure
Sample Taker	n By			A. ROMAN	0	M Washburn	6 3/4	9,937 ft	4	4.0	289 ft	72.3	2,240	psi	3,	683	psi
Remarks/Reco	ommendati	ons:					Rig Activity:										

OBM RECEIVED: 2500bbls

OBM ON SURFACE--- 2512 bbls (Storage + Active)

OBM LOSS/GAIN-- Total (_bbls_)

On the Past 24hrs: Finish testing BOP's and all surface well control equipment. Pick up and make up new Directional BHA & 6.75" Halliburton Bit. Pick up 4" DP from ground level and TIH to 9500'. At this point Perform Rig Service and Slip and Cut Drill line. Continue TIH and tag top of the float collar @9833', drill out float equpment + cement, shoe @9924' continue with 10' of new formation and circulate BU. Perform FIT to 13EMW / 1964psi. Test Good. Resume Drilling operations on curve section. Maintain MW 9.1ppg. At this time: Continue drilling / sliding ahead pasing 10,244' / 30deg/incl. / 330Azu. Pump rate 400gpm.

Eng	g. 1:	Mi	ke W	ashbu	ırn	Er	ng. 2:	Adolfo	Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Pho	one:	36	61-94	5-577	7	Ph	one:	956-8	21-9994	Phone:	432-686-7361	Phone:	-			
W	Р	Υ	Е	С	g	G	Н	0			commendation, expused if the user so				\$3,743.12	\$50,615.35
1	1	1	1	1	1	1	1	1			tion, and this is a re			io made de te me		
												INCLUDI	NG 3RD PAR	TY CHARGES	\$5,937.20	\$97,952.59

Date 12/22/20	Operator MAGI	NOLIA OIL		Well Name a	ING NO. TTIRE A-1	Н	Rig Name ar 2	148	Report No. Repo	rt #10
	DAILY	USAGE 8	COST						CUMU	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost	- :	Cum Usage	Cum Cos
SAPP (50)	50# sk	\$44.56	inventory		inventory	Usage		_	Usage 44	\$1,960.64
PHPA LIQUID (pail)	5 gal	\$41.36						1		ψ1,000.0
EVO-LUBE	gal	\$14.00								
NEW GEL (PREMIUM)	100# sk	\$19.75								
ALUMINUM TRISTEARATE	25# sk	\$162.83								
CACL2 (50)	50# sk	\$14.32	158		102	56	\$801.92		224	\$3,207.6
LIME (50)	50# sk	\$5.00	125		75	50	\$250.00		175	
OPTI - G	50# sk	\$30.59	120		120			1	80	\$2,447.20
BENTONE 38 (50)	50# sk	\$163.94	36		36			1		*
BENTONE 910 (50)	50# sk	\$59.40	0.4		0.4			4	14	\$831.60
BENTONE 990 (50)	50# sk	\$83.59	24		24	20	¢222 F0		105	#0.000.00
OPTI - MUL	gal	\$10.75	55		25	30	-	-1		\$2,096.25
OPTI - WET NEW PHALT	gal 50# sk	\$8.34	110		55	55	\$458.70		80	\$1,834.80
OIL SORB (25)	25# sk	\$38.72 \$4.75	110 30		110 30				10	- '
NEW CARB (M)	50# sk	\$5.25	100		100				60	\$315.00
CYBERSEAL	25# sk	\$21.47						_		
MAGMAFIBER F (25)	25# sk	\$28.05	161		161				60	\$1,683.00
MAGMAFIBER R (30)	30# sk	\$28.05	38		38					
VARISEAL	50# sk	\$26.50	80		80					
FIBER PLUG	30# sk	\$30.37								
NUT PLUG M (50)	50# sk	\$12.04	80		80					
NEW WATE (SACK BARITE)	100# sk	\$11.50	180		180					
BARITE BULK (100)	100# sk	\$7.00	1250		1250				1099	\$7,694.40
								_		
OPTI DRILL (OBM)	bbl	\$65.00	2052		2052			1		
DISCOUNTED OBM	bbl	\$15.00	392		392			1		
								-		
]		
								1		
								1		
ENGINEERING (24 HR)	each	\$925.00				2	\$1,850.00		20	\$18,500.0
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00		20	
ENGINEERING (MILES)	each	\$1.00					ψ00.00	4		\$1,049.00
								1		
	each	\$2.65						-	1651	\$4,375.6
TRUCKING (cwt)								_		
	each	\$795.00								
TRUCKING (min)		\$795.00 \$12.00								
TRUCKING (cwt) TRUCKING (min) PALLETS (ea) SHRINK WRAP (ea)	each									

Date	Operator			Well Name a	ind No.		Rig Name an	d No.	Report No.	
12/22/20	MAG	NOLIA OIL	& GAS	FA	T TIRE A-1	IH	24	48	Repoi	rt #10
	DAILY	USAGE 8	COST						CUMUL	ATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	150		150					
								-		
Diesel Transfer from B 1H	gal	\$1.63								\$10,386.36
Diesel Received 12-17-18	gal	\$1.66						_		\$18,094.00
Diesel Received 12-19-20	gal	\$1.67					*			\$11,690.00
Diesel Received 12-20-20 Diesel Received 12-21-20	gal	\$1.68 \$1.69	11440	4700	10134 4700	1306	\$2,194.08	-	4266	\$7,166.88
Diesei Received 12-21-20	gal	\$1.09		4700	4700					
									-	
								<u> </u>		
								_		
								-		
								-		
								-		
								-		
								-		
								-		
								-		
					Daily S	ub-Total \$3	104.09		¢47.2	27 24
					Daily St	ub-Total \$2	., 137.00		\$47,3	UI .24
	_		=							
	Cum	ulative Tota	I AES & 3rd	Party \$97,	,952.59					

FLUID VOLUME ACCOUNTING

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

248

Well Name: FAT TIRE A-1H

Date	1/5/21 1/6/21 1/7/ Tue Wed Th
Fri Sat Sum Mon Tue Wed Thu The Tue The Tue The Tue The Tue The Tue	Tue Wed Th
Bit Size	
Totals	
7,121	
7,121 Fotage Drilled 96 6,544 192 - 289	
Starting System Volume 39 620 18 13 14 15 15 15 15 15 15 15	
Starting System Volume 329 2,150 2,701 2,975 2,968 2,951	
See	
688 Base Fluid Added 13 409 117 118 33	
T7 Bartie Increase	
2,501 Weighted Mud Added 1,813	
Sturry Added	
- Added for Washout	
3,558 Total Additions 1,831 1,193 375 118 41	
Total Losses	
Total Losses	
- Formation Loss	
State Stat	
136 Unrecoverable Volume	
936 Total Losses 10 642 102 125 58	
- Mud Transferred Out 2,951 Ending System Volume 2,150 2,701 2,975 2,968 2,951 2,95	
- Mud Transferred Out 2,951 Ending System Volume 2,150 2,701 2,975 2,968 2,951 2,95	- - -
2,951 Ending System Volume 2,150 2,701 2,975 2,968 2,951	
Comments: Skid from the B 1H. Nipple up test BOP's. Pick up new BHA, 12/18/20 TIH, drill out shoe track perform FIT. Start drilling Intermediate. 800gpm, 1150ROP. Drilling ahead on intermediate section. 800gpm, 400rop.	0.054 0.054 0.4
Comments: Skid from the B 1H. Nipple up test BOP's. Pick up new BHA, 12/18/20 TIH, drill out shoe track perform FIT. Start drilling Intermediate. 800gpm, 1150ROP. Drilling ahead on intermediate section. 800gpm, 400rop.	2,951 2,951 2,9
Skid from the B 1H. Nipple up test BOP's. Pick up new BHA, 12/18/20 TIH, drill out shoe track perform FIT. Start drilling Intermediate. 800gpm, 1150ROP. 12/25/20 1/1/21	
12/18/20 TIH, drill out shoe track perform FIT. Start drilling Intermediate. 800gpm, 1150ROP. 1/1/21	
800gpm, 1150ROP. Drilling ahead on intermediate section. 800gpm, 400rop.	
2,830 Drilling ahead on intermediate section. 800gpm, 400rop. Transfer mud from storage to active and sweeps. 12/19/20 1/2/20 1/2/21	
2,830 12/19/20 12/19/20 12/26/20 1/2/21	
TD 9937', circulate hole clean, POOH lay down DP and BHA.	
12/20/20 Rig up Casing tools and run 7 5/8" casing in the hole. Cut MW in the pits back to 9.7ppg.	
Casing on Bottom, Circulate, full returns. Cement with full 12/21/20 returns and discharge 31bbls of Spacer/OBM interface. Change 12/28/20 1/4/21	
rams, testing BOP's	
Pick up DP, tag float collar. Drill out shoe track + 10' new formation. FIT to 13EMW. Resume drilling on curve section.	
12/23/20 12/30/20 1/6/21	
12/24/20 12/31/20 1/7/21	

St Martinville, LA 70582

94.6° 10,451' TVD

Operator				Contractor			County / Parish	n / Block		Engine	er Start Date	24 h	ır ftg.		Drilled	Depth		
MAGNOL	IA O	IL & C	GAS		TERSO	N		YETTE			12/08/20					11,26	36 ft	:
Well Name and No.	IRE	A-1H		Rig Name ar	nd No. 248		State T	EXAS		Spud D	Date 12/11/20		ent ROP 250 ft/h	r	Activity DRL	.G L	\TEI	RAL
Report for				Report for			Field / OSC-G	#		Fluid T	уре		ulating Rate		Circula	ting Pres	ssure	
JAMES DYER	/ JII	M HAI	RRISON	To	ol Push	ner	GIE	DIGNS			OBM		320 gpr	n	3	3,625	ps	<u>i</u>
M	IUD P	ROPE	RTY SPECII	FICATION	IS		MUD VC	DLUME (B	BL)		PUMP #1		PUMP #2	2	RIS	ER BO	OST	ΓER
Weight P	V	YP	E.S.	CaCl2	GELS	HTHP	In Pits	71	2 bbl	Liner	Size 4.	75 Lir	ner Size 4	.75	Liner	Size	4.7	75
8.5-10.6 5-	20	5-15	>350	±250K	<10 <20	<10	In Hole	e 45	2 bbl	Stro	oke 1	2 5	Stroke	12	Stro	oke	1:	2
	MU	D PRO	PERTIES				Active	116	64 bbl	bbl	/stk 0.0	625 k	obl/stk 0.	0625	bbl	/stk	0.06	625
Time Sample Take	n			2:00		13:00	Storage	e <u>182</u>	28 bbl	stk/	min 6	60 s	tk/min	62	stk/	min		
Sample Location				suction		suction	Tot. on Loc	cation 299	92 bbl	gal/	min 1	57 g	al/min '	163	gal/	min		
Flowline Temperatu	ure °F			135 °F		140 °F	Mud Wt. =	= 9.2 P\	/=11	YP	°=7 CI	RCULAT	ION DATA		n = 0	0.688	K = 1	125.7
Depth (ft)				10,050'		11,266'	Bit D	epth = 11	,266 '		Wash	out = 1%		Pump	Effici	ency =	: 95%	<u>,</u>
Mud Weight (ppg)				9.2		8.9	Drill String	Volume	e to Bit	158.	7 bbl St	rokes To E	Bit 2,541		Time ⁻	Γο Bit	21 r	min
Funnel Vis (sec/qt)			@ 123 °F	46		45	Disp.	Bottoms l	Jp Vol.	293.	6 bbl Bott	omsUp Stl	ks 4,700	Botto	msUp	Time	39 ı	min
600 rpm				29		28	63.9 bbl	TotalCi	irc.Vol.	1164	.4 bbl To	otalCirc.Stl	s 18,640	Tota	d Circ.	Time	153	min
300 rpm				18		20		DRILLIN	G AS	SEMB	LY DATA		:	SOLID	s co	NTRO	L	
200 rpm				14		18	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Uni	t	Scre	ens	Ho	urs
100 rpm				9		10	Drill Pipe	4.500	3.8	826	8,556'		Shake	er 1	140	-80		
6 rpm	·					5	AGITATOR	5.000	2.0	000	24'	8,556'	Shake	er 2	140	-80		
3 rpm	·					4	Drill Pipe	4.500	3.8	826	2,557'	8,579'	Shake	er 3	140	-80		
Plastic Viscosity (c	p)		@ 150 °F	11		8	Dir. BHA	5.250	2.2	250	130'	11,136	Dryer Sh	aker 3	14	10		
Yield Point (lb/100	ft²)		T0 = 3	7		12		CASI	NG &	HOLE	DATA							
Gel Strength (lb/10	0 ft²)	10	sec / 10 min	5/10		5/9	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifu	ige 1				
Gel Strength (lb/10	0 ft2)		30 min	14		12	Riser						VOLU	ME AC	COU	NTING	ldbl) ن	ls)
HTHP Filtrate (cm/	30 mii	n)	@ 250 °F	7.0		6.5	Surface	10 3/4			3,105'		Prev.	Total o	n Loc	ation	29	951.1
HTHP Cake Thickn	ness (3	32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	875	9,924'		Transf	erred	n(+)/0	Out(-)		
Retort Solids Conte	ent			10%		9%	Washout 1							Oi	Adde	d (+)		
Corrected Solids (v	/ol%)			8.1%		7.3%	Washout 2							Barite	Adde	ed (+)		
Retort Oil Content				67%		70%	Open	Hole Size	6.8	818	11,266'		Other F	roduc	Usag	e (+)		
Retort Water Conte	ent			23%		21%	ANI	NULAR G	EOME	TRY	& RHEOLO	OGY		Wate	Adde	d (+)		
O/W Ratio				74:26		77:23	annula	ır d	epth	velo	ocity flow	ECD	L	eft on	Cuttin	gs (-)		
Whole Mud Chlorid	des (m	ıg/L)		48,000		43,000	section	n u	эрш	ft/n	min reg	lb/gal	Non-Re	covera	ble V	ol. (-)		
Water Phase Salin	ity (pp	m)		246,564		243,046		•			•	•			Cent/	Evap		
Whole Mud Alkalin	ity, Po	om		2.1		1.5	6.875x4	1.5 8,	556'	29	0.4 turb	10.05	Est.	Total o	n Loc	ation	29	951.1
Excess Lime (lb/bb	ol)			2.7 ppb		2 ppb	6.875x	5 8,	579'	35	2.3 turb	10.30	Est. Lo	sses/G	ains (-)/(+)		41.3
Electrical Stability ((volts)			405 v		423 v	6.875x4	l.5 9,	924'	29	0.4 turb	10.48	ВІТ	HYDI	RAUL	CS D	ATA	
Average Specific G	Gravity	of Soli	ids	2.91		2.76	6.818x4	l.5 11	,136'	29	9.0 turb	10.74	Bit H.S.I	Bit	ΔΡ	Nozzl	es (32	2nds)
Percent Low Gravit	ty Soli	ds		5.5%		5.6%	6.818x5	.25 11	,266'	41	4.6 turb	11.02	0.20	39	psi	18	18	18
ppb Low Gravity So	olids			45 ppb		46 ppb							Bit Impac		zzle	18	18	18
Percent Barite				2.6%		1.7%							Force	vei	ocity sec)			
ppb Barite				37 ppb		25 ppb	BIT D	DATA	Ма	nuf./T	ype Hall	./GTD64I	M 105 lbs	6	69			
Estimated Total LC	M in S	System	1				Size	Depth In	Но	ours	Footage	ROP ft/l	nr Motor/N	IWD	Calc	. Circ.	Pres	sure
Sample Taken By				A. ROMAN		M Washburn	6 3/4	9,937 ft	4	.0	289 ft	72.3	2,240	psi		3,333	psi	
Afternoon Remarks/F	Recom	mendat	tions:				Afternoon R	ig Activity:	•			•	*					

Drilling 6-3/4" lateral hole section, curve landed at 10917 MD, 10465 TVD, 80.2 Drilling 6-3/4" lateral hole section, curve landed at 10917 MD, 10465 TVD, 80.2 INCL, samples are 100% AC. After landing curve start losing circulation at up to 60 bbls / Hr. Reduce mud wt from 9.2 to 8.8 with additions of diesel and application of centrifuge, pumping LCM sweeps. Simultaneously mixing 400 bbls of 16.0 kill mud for another operator on a nearby production well that is experiencing a well control event, Fayette County sheriff and deputies were on location to escort vacuum trucks. Newpark Madisonville WH mixing 16.0 kill mud and 9.0 OBM for Patterson 248.

OUTSOURCE FLUID SOLUTIONS LLC.

TEL: (337) 394-1078

92.1° 10,456' TVD

Operator				Contractor			County / Parish /	Block		Engineer	Start D	ate	24 hr ft	g.		Drilled [Depth		
	IOLIA (OIL & 0	GAS		TERSO	ON		YETTE			2/08	3/20		2,009 ft			12,2	35 f	t
Well Name and No.	AT TIRE	: ∧_1⊔		Rig Name an	d No. 248		State	EXAS		Spud Dat	e 2/1 1	1/20	Curren	^{t ROP} 100 ft/hr		Activity	.G L	۸TE	PΛI
Report for	NI IIINE	. A- III		Report for	240		Field / OCS-G #	-740		Fluid Typ		1720		ting Rate		Circulat			IVAL
JAMES DY	YER/J	IM HA	RRISON	То	ol Pusi	ner	GID	DIGNS			ОВ	M		302 gpm	1	3	,600) ps	3i
	MUD	PROPE	RTY SPECIF	ICATION	S		MUD VO	LUME (BE	BL)	ı	PUMI	P #1		PUMP #2		RISI	ER B	oos	TER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	806	6 bbl	Liner	Size	4.75	Liner	Size 4.	75	Liner	Size	4.	.75
8.5-10.6	5-20	5-15	>350	±250K	<10 <20	<10	In Hole	496	6 bbl	Strol	ke	12	Stro	oke 1	2	Stro	ke	1	12
			I	12/23/20		12/22/20	Active	125	8 bbl	bbl/s	stk	0.0625	bbl	/stk 0.0	625	bbl/	stk	0.0	0625
Time Sample T	Taken			2:00		13:00	Storage	<u>166</u>	8 bbl	stk/n	nin	57	stk/	min 5	58	stk/r	min		0
Sample Location	on			suction		suction	Tot. on Loc	cation 297	0 bbl	gal/n	nin	150	gal/	min 1	52	gal/ı	min		0
Flowline Tempe	erature °F	-		140 °F		140 °F		PHHP = 63	4	1	CIF	RCULATI	ON DA	TA	i	n = 0	.585	K = 2	12.503
Depth (ft)				12,123'		11,266'	Bit C	epth = 11,	266 '		١	Vashout:	= 1%		Pump	Efficie	ency =	= 95%	6
Mud Weight (p	pg)			8.8		8.9	Drill String	Volume	to Bit	158.7	bbl	Stroke	To Bit	2,541	-	Time 1	Го Bit	22	min
Funnel Vis (sec	c/qt)		@ 110 °F	42		45	Disp.	Bottoms U	lp Vol.	293.6	bbl	Bottomsl	Jp Stks	4,700	Bottor	nsUp	Time	41	min
600 rpm				24		28	63.9 bbl	TotalCi	rc.Vol.	1258.4	4 bbl	TotalC	rc.Stks	20,145	Total	Circ.	Time	175	i min
300 rpm				16		20		DRILLING	G ASS	SEMBL	Y DA	ГА		s	OLIDS	CON	NTRO	L	
200 rpm	O rpm O rpm			12		18	Tubulars	OD (in.)	ID	(in.)	Len	gth	Гор	Unit		Scre	ens	Но	ours
100 rpm	o) rpm o) rpm of rpm of rpm of rpm			9		10	Drill Pipe	4.500	3.	826	8,5	56'	0'	Shaker	1	140	-80	24	4.0
6 rpm	6 rpm			5		5	AGITATOR	5.000	2.	000	2	4' 8	,556'	Shaker	2	140	-80	24	4.0
3 rpm	3 rpm			4		4	Drill Pipe	4.500	3.	826	2,5	57' 8	,579'	Shaker	. 3	140	-80	24	4.0
Plastic Viscosit	3 rpm astic Viscosity (cp)			8		8	Dir. BHA	5.250	2.	250	13	80' 1 1	,136'	Dryer Sha	ker 3	14	10	24	4.0
Yield Point (lb/	3 rpm astic Viscosity (cp) @ eld Point (lb/100 ft²) T0			8		12		CASIN	IG & I	HOLE D	ATA								
Gel Strength (It	b/100 ft²)	10) sec/10 min	4/8		5/9	Casing	OD (in.)	ID	(in.)	De	pth .	Гор	Centrifuç	ge 1			12	2.0
Gel Strength (It	b/100 ft ²)		30 min	11		12	Riser							VOLUM	IE AC	COU	NTING	dd) e	ıls)
HTHP Filtrate ((cm/30 mi	n)	@ 250 °F	10.0		6.5	Surface	10 3/4			3,1	05'	0'	Prev. T	otal o	n Loca	ation	2	951.1
HTHP Cake Th	nickness ((32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	9,9	24'	0'	Transfe	erred Ir	n(+)/C	out(-)	1	141.0
Retort Solids C	Content			8%		9%	Washout 1								Oil	Adde	d (+)	:	247.2
Corrected Solid	ds (vol%)			6.2%		7.3%	Washout 2								Barite	Adde	d (+)		72.5
Retort Oil Cont	ent			72%		70%	Open	Hole Size	6.	818	12,2	235'		Other Pr	roduct	Usag	e (+)		3.3
Retort Water C	Content			20%		21%	ANI	NULAR GE	OME	TRY &	RHE	DLOGY		,	Water	Adde	d (+)		103.0
O/W Ratio				78:22		77:23	annular	· me	eas.	velo	city	flow E	CD	Le	ft on C	Cutting	gs (-)		-90.7
Whole Mud Ch	lorides (m	ng/L)		44,000		43,000	section		epth	ft/m		reg II	o/gal	16# Se	nd to F	Produ	ction		400.0
Water Phase S	Salinity (pp	om)		256,494		243,046		'				,		Lo	ost To	Forma	ation	-1	057.2
Whole Mud Alk	calinity, Po	om		1.8		1.5	6.875x4.	5 8,5	556'	273	.7	turb 9	9.39	Est. T	otal o	n Loca	ation	2	970.1
Excess Lime (It	b/bbl)			2.3 ppb		2 ppb	6.875x5	5 8,5	579'	332	.1	turb 9	9.50	Est. Los	ses/Ga	ains (-	-)/(+)		0.0
Electrical Stabil	lity (volts))		452 v		423 v	6.875x4.	5 9,9	924'	273	.7	turb 9	9.59	ВІТ	HYDR	AULI	CS D	ATA	
Average Specif	fic Gravity	of Solid	ds	2.91		2.76	6.818x4.	5 11,	136'	281	.9	turb 5	9.72	Bit H.S.I.	Bit .	ΔΡ	Nozz	es (3	2nds)
Percent Low G	ravity Sol	ids		4.2%		5.6%	6.818x5.2	25 11,	266'	390	.8	turb 9	9.85	0.16	33	psi	18	18	18
ppb Low Gravit	ty Solids			35 ppb		46 ppb								Bit Impact	Noz		18	18	18
Percent Barite				2%		1.7%								Force	Velo (ft/s	-			
ppb Barite				29 ppb		25 ppb	BIT D	ATA	Ma	anuf./Ty	ре	Halli./GT	D64M	89 lbs	6	5			
Estimated Tota	al LCM in	System	ppb				Size	Depth In	Н	ours	Foot	age RC	P ft/hr	Motor/M	WD	Calc.	. Circ.	Pres	ssure
Sample Taken	Ву			A. ROMAN	0	M Washburn	6 3/4	9,937 ft	2	4.0	2,29	98 ft 9	95.8	2,240	psi		3,122	2 psi	

Remarks/Recommendations:

OBM RECEIVED: 3641bbls

OBM ON SURFACE--- 2512 bbls (Storage + Active)

OBM LOSS/GAIN-- Total (_1057bbls_)

Fayettville...

400bbls of 16# build and transfer to Production site near

Rig Activity:

On the Past 24hrs:Drilling ahead on Lateral sectio. Curve landed 10917' MD./ 10465' TVD. Continue on lateral section. Mud Losses to formation noted 150' into lateral (60bbl/hr). Decrease Density to 9.2ppg and down to 8.8ppg with additions of Diesel and Centrifuge application. LCM sweeps @20ppb, pumped 40bbls every 100', Losses continue as drilling ahead, Up to 100bbl/hr. Reduce Pump rate to 330gpm continue drilling to 11778'. At this depth stop drilling and circulate with 1 pump @157gpm, to top off Active system and build LCM 30ppb Sweep. Active system toped off, resume drilling at 300gpm. Losses decrease to 30bbl/hr +- / Additions of Diesel & Water (4.5bbl/hr ea.), OBM (11bbl/hr) and 1ppb LCM to Suction pits in Active system. At this time: Continue drilling ahead pasing 12344'MD $\,$

Р	ng. 1: hone:	3	61-94	ashbi 15-57	77	Ph	none:		Roman 321-9994	WH 1: Phone:	MIDLAND 432-686-7361 ecommendation, exp	WH 2: Phone:	WH #2 -	Rig Phone:	Daily Total	Cumulative Cost
W 1	P 1	Y 1	E 1	C 1	g 1	1	H 2	1	carefully	and may be	used if the user so	if the user so elects, however, no repand this is a recommendation only.			\$48,126.35	\$98,741.70
												INCLUDI	NG 3RD PAR	TY CHARGES	\$70,998.09	\$168,950.68

Name	Date 12/23/20	Operator MAG I	NOLIA OIL		Well Name a	ind No. I T TIRE A- 1	IH	Rig Name an	d No. 18	Report No. Repo	rt #11
Name		DAILY	USAGE 8	& COST	I.			l			
Montanger Mont				Г		Closing	Daily				
PRIPA LOUDING PAY PORT LUBB PORT LUBB PORT LUBB PORT	Item	Unit	Unit Cost		Received		-	Daily Cost			Cum Cost
EVEN LIBER 100 94 151-75		50# sk	\$44.56							44	\$1,960.64
NEW CELL PREMIUM 1004 st 511.75											
ALLIANDIMAN TRISTEARATE 269 st \$162.83											
CACLO (59) CACLO	·										
IMME (ID)	ALUMINUM INIGILANAIL	20# 38	\$102.03								
IMME (ID)											
SPIT-16	CACL2 (50)	50# sk	\$14.32	102		102				224	\$3,207.68
BENTONE 990 (90)	LIME (50)	50# sk	\$5.00	75		75				175	\$875.00
BENTONE 90 (50)	OPTI - G	50# sk	\$30.59	120		120				80	\$2,447.20
BENTONE 990 (50)	BENTONE 38 (50)	50# sk	\$163.94	36		36					
OPTI - MUIT										14	\$831.60
OPTI-WET 901 \$8.34 55 5 5 6 6 6 7 7 7 82.055.00 OIL SORB (25) 258 98 \$4.75 9.0 10 110 110 110 110 110 110 110 110 11											
NEW PHALT 001 & S0818 (25) 258 98										-	- '
OIL SORB (20)											• •
NEW CASS MIN											
CYBERSEAL 228 at 321.47 MAGNAMERER (20) 228 at 328.05 161 100 61 \$1,711.05 MAGNAMERER (20) 308 at \$28.05 38 38 38 38 38 38 39 38 38 38 39 38 38 39 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39	OIL SURB (25)	25# SK	\$4.75	30		30				10	\$47.50
CYBERSEAL 228 at 321.47 MAGNAMERER (20) 228 at 328.05 161 100 61 \$1,711.05 MAGNAMERER (20) 308 at \$28.05 38 38 38 38 38 38 39 38 38 38 39 38 38 39 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39											
CYBERSEAL 228 at 321.47 MAGNAMERER (20) 228 at 328.05 161 100 61 \$1,711.05 MAGNAMERER (20) 308 at \$28.05 38 38 38 38 38 38 39 38 38 38 39 38 38 39 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39	NEW CARR (M)	50# ck	¢ E 2E	100		100				60	\$315.00
MAGNAHERER (25)	, ,			100		100				60	φ315.00
MASHARIBER R (30) 30 et al. 528.05 38 38 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39				161		100	61	\$1.711.05		121	\$3,394.05
VARISEAL 500 sk \$20.50 80 50 30 \$795.00 FREE PLUG 301 sk \$30.37 \$1.00 \$1								ψ1,711100			ψο,σοσο
NUT PLUG M (50) 509 sk \$12.04 80 80 80		50# sk					30	\$795.00		30	\$795.00
NEW WATE (SACK BARITE) 1009 sk \$11.50 180 180 27.294.00 2141 \$14.988.4 1009 sk \$7.00 1250 1242 1450 1042 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1250 1242 1450 1042 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1250 1242 1450 1042 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1250 1242 1450 1042 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1250 1242 1450 1042 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1250 1242 1450 1042 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1250 1242 1450 1042 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1250 1242 1450 1042 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1250 1242 1450 1042 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1250 1242 1450 1042 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1250 1242 1450 1042 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1250 1242 1450 1042 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1250 1242 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1242 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1240 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1240 \$7.294.00 2141 \$14.988.4 1009 sk \$7.00 1240 \$7.294.00 2141 \$14.988.4 214 \$1.90	FIBER PLUG	30# sk	\$30.37								
BARITE BULK (100)	NUT PLUG M (50)	50# sk	\$12.04	80		80					
BARITE BULK (100)											
BARITE BULK (100)											
BARITE BULK (100)											
BARITE BULK (100)											
BARITE BULK (100)											
BARITE BULK (100)											
DESCOUNTED OBM bbl \$85.00 2052 1141 2715 478 \$31,070.00 476 \$31,070.00 137 \$2,055.00 1			1								
DISCOUNTED OBM bbl \$15.00 392 255 137 \$2,055.00 137	BARITE BULK (100)	100# sk	\$7.00	1250	1242	1450	1042	\$7,294.00		2141	\$14,988.40
DISCOUNTED OBM bbl \$15.00 392 255 137 \$2,055.00 137											
DISCOUNTED OBM bbl \$15.00 392 255 137 \$2,055.00 137											
DISCOUNTED OBM bbl \$15.00 392 255 137 \$2,055.00 137											
DISCOUNTED OBM bbl \$15.00 392 255 137 \$2,055.00 137											
DISCOUNTED OBM bbl \$15.00 392 255 137 \$2,055.00 137											
DISCOUNTED OBM bbl \$15.00 392 255 137 \$2,055.00 137		+									
DISCOUNTED OBM bbl \$15.00 392 255 137 \$2,055.00 137											
DISCOUNTED OBM bbl \$15.00 392 255 137 \$2,055.00 137											
DISCOUNTED OBM bbl \$15.00 392 255 137 \$2,055.00 137											
DISCOUNTED OBM bbl \$15.00 392 255 137 \$2,055.00 137											
DISCOUNTED OBM bbl \$15.00 392 255 137 \$2,055.00 137											
DISCOUNTED OBM bbl \$15.00 392 255 137 \$2,055.00 137											
ENGINEERING (24 HR) each \$925.00	OPTI DRILL (OBM)	bbl	\$65.00	2052	1141	2715	478	\$31,070.00		478	\$31,070.00
ENGINEERING (24 HR) each \$925.00											
ENGINEERING (DIEM) bbl \$30.00	DISCOUNTED OBM	bbl	\$15.00	392		255	137	\$2,055.00		137	\$2,055.00
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00											
ENGINEERING (DIEM) bbl \$30.00	ENGINEERING (24 HR)	each	\$925.00				2	\$1,850.00		22	\$20,350.00
ENGINEERING (MILES)											\$660.00
TRUCKING (cwt) each \$2.65 1242 \$3,291.30 2893 \$7,666.90 2893 \$7,666.											
TRUCKING (min) each \$795.00	,										
TRUCKING (min) each \$795.00											
TRUCKING (min) each \$795.00											
PALLETS (ea) each \$12.00	TRUCKING (cwt)	each	\$2.65				1242	\$3,291.30		2893	\$7,666.98
SHRINK WRAP (ea) each \$12.00 Image: control of the c	TRUCKING (min)	each	\$795.00								
		each	\$12.00								
Paily Sub-Total \$49.125.25 Cumulative Total \$69.744.70	SHRINK WRAP (ea)	each	\$12.00								
			Daile C	ıb.Tatal At	0 126 25	C	ivo Tetal A	00 744 70		***	44 70

Date	Operator			Well Name a	ind No.		Rig Name ar	id No.	Report No.			
12/23/20	MAGI	NOLIA OIL	& GAS	FA	T TIRE A-	1H	2	48	Repo	rt #11		
	DAILY	USAGE 8	& COST						CUMULATIVE			
ltem	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost		
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	150	300	350	100	\$4,175.00		100	\$4,175.00		
TURBO CHEM / SYNSEAL	25# sk	\$41.75		100	70	30	\$1,252.50		30	\$1,252.50		
Discoul Transfer from D. 411	and and	£4.62							6070	\$40.296.26		
Diesel Transfer from B 1H Diesel Received 12-17-18	gal gal	\$1.63 \$1.66								\$10,386.36 \$18,094.00		
Diesel Received 12-19-20	gal	\$1.67								\$11,690.00		
Diesel Received 12-20-20	gal	\$1.68	10134			10134	\$17,025.12			\$24,192.00		
Diesel Received 12-21-20	gal	\$1.69	4700		4452				248			
Diesel Received 12-22-20	gal	\$1.65		7200	7200							
							1					
							1					
	•				Dailv Sı	ıb-Total \$2	2,871.74		\$70.2	08.98		
							, ·		J. 3,2			
				_								
	Cum	ılative Total	AES & 3rd	Party \$168	3,950.68							

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: MAC Rig Name: 248

MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: FAT

FAT TIRE A-1H

					WEEK 1							WEEK 2							WEEK 3			
	Date	12/18/20	12/19/20	12/20/20	12/21/20	12/22/20	12/23/20	12/24/20	12/25/20	12/26/20	12/27/20	12/28/20	12/29/20	12/30/20	12/31/20	1/1/21	1/2/21	1/3/21	1/4/21	1/5/21	1/6/21	1/7/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4															
Grand	Starting Depth	3,105	3,201	9,745	9,937	9,937	10,226	12,235														
Totals	Ending Depth	3,201	9,745	9,937	9,937	10,226	12,235															
	Footage Drilled	96	6,544	192		289	2,009	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
,	New Hole Vol.	9		18	-	13	89	_	-	_	_	-	_		-	_	_	_	_	_	_	_
7.10	Starting System Volume	329	2,150	2,701	2,975	2,968	2,951	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970
55	Chemical Additions	6		-	-	7	3	2,0.0	2,010	2,0.0	2,010	2,0.0	2,0.0	2,0.0	2,010	2,010	2,0.0	2,0.0	2,0.0	2,0.0	2,010	2,0.0
	Base Fluid Added	13		117	118	33	247															
	Barite Increase	- 10	43	34	-	-	73															
	Weighted Mud Added	1,813	463	225		-	1,141															
	Slurry Added	1,013	-	-		-	1,141															
	Water Added	-	240	-		-	103															
	Added for Washout	-	- 240			-	-															
		1		-	-																	
,	Total Additions	1,831	1,193	375	118	41	1,567	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Surface Losses	-	-	-	50	29																
1,057	Formation Loss	-	-	-	-	-	1,057															
640	Mud Loss to Cuttings	10	506	20	-	13	91															
136	Unrecoverable Volume	-	86	50	-	-	-															
172	Centrifuge Losses	-	50	32	75	16	-															
2,084	Total Losses	10	642	102	125	58	1,148	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
400	Mud Transferred Out						400															
2,970	Ending System Volume	2,150	2,701	2,975	2,968	2,951	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970	2,970
-	Mud Recovered																					
				С	omment	s:					С	omment	s:					C	omment	s:		
			Child forms				Diel	DLIA				011111101110	<u>.</u>									
		12/18/20	TIH, drill o 800gpm, 1						12/25/20							1/1/21						
3,571		12/19/20	Drilling ahe Transfer m	ead on inte	rmediate so	ection. 800 tive and sw	gpm, 400r reeps.	op.	12/26/20							1/2/21						
	I	Transfer mud from storage to active and sweeps. TD 9937', circulate hole clean, POOH lay down DP and Bl 12/20/20 Rig up Casing tools and run 7 5/8" casing in the hole. Cut in the pits back to 9.7ppg.							12/27/20							1/3/21						
		12/21/20	Casing on returns and rams, testi						12/28/20							1/4/21						
		Pick up DP, tag float collar. Drill out shoe track + 10' new formation. FIT to 13EMW. Resume drilling on curve section							12/29/20							1/5/21						
		12/23/20	Drilling ahe Pumping 3 active syst						12/30/20							1/6/21						
		12/24/20														1/7/21						

St Martinville, LA 70582

93.6° 10,342' TVD

	IOLIA (OIL & C	BAS		TERSO)N	County / Paris	h / Block	E	1	r Start Date		1,055 ft			epth 3,29	0 ft
Well Name and No.	T TIRE	A-1H		Rig Name ar	nd No. 248		State T	EXAS	3	Spud Da	ate 12/11/20		ent ROP 229 ft/h		Activity Dri l	lled l	Depth
Report for				Report for			Field / OSC-G			Fluid Typ		Circu	lating Rate		Circulati	ng Press	sure
JAMES DY					ol Push	ner		DDIG			ОВМ		331 gpn				psi
		1	TY SPECI	l			MUD VO				PUMP #1		PUMP #2				OOSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		737 bbl	Liner					Liner		4.75
8.5-10.6	5-20	5-15	>350	±250K	<10 <20	<10	In Hole		533 bbl	Strok				12	Strol		12
T: 0 1 :		UD PRO	PERTIES	0.00		10.00	Active		1270 bbl	bbl/s				0625	bbl/s		0.0625
Time Sample				2:00		12:00	Storag		1668 bbl	stk/n				64	stk/n		
Sample Locati				suction		suction 140 °F	Tot. on Loc			gal/n		, i		68	gal/n		V 242.5
Flowline Temp Depth (ft)	erature ⁻	<u> </u>		140 °F 12,123'					PV=8	YP=			ON DATA				K = 212.5
1 ()						13,290'	DILL		13,290 ' ume to Bit	107 F		out = 1%	: 2.002	Pump I			
Mud Weight (p	,		@ 110 °F	8.8 42		8.6 41	Drill String Disp.		ume to Bit ns Up Vol.			rokes To B	•				24 min
Funnel Vis (se 600 rpm	c/qt)		@ 110 F	24		22	74.9 bbl		alCirc.Vol.			omsUp Stk	•	Botton	·		44 min 161 min
300 rpm				16		15	74.9 001		LING AS			otalCirc.Stk		OLIDS			
200 rpm				12		12	Tubulars			(in.)	Length	Тор	Unit		Scree		- Hours
100 rpm				9		9	Drill Pipe	`	•	326	10,580'	ТОР	Shake		140-		12.0
6 rpm				5		5	AGITATOR			000	24'	10,580'	Shake		140-		12.0
3 rpm			4		4	Drill Pipe			326	2,557'	10,603'	Shake		140-		12.0	
·		@ 150 °F	8		7	Dir. BHA			250	130'	13,160'	Dryer Sha		140		12.0	
Yield Point (lb.	, , , ,		T0 = 3	8		8	DII. DI 1/4		ASING & I			10,100				5	12.0
Gel Strength () 10	sec / 10 min	4/8		4/8	Casing			(in.)	Depth	Тор	Centrifu	ae 1			
Gel Strength (<u>'</u>	30 min	11		10	Riser		,	()					COUN	TING	(bbls)
HTHP Filtrate		•	@ 250 °F			8.8	Surface		/4		3,105'			Γotal or			2970.1
HTHP Cake T	•			2.0		2.0	Int. Csg.	7 5/		375	9,924'		Transf				
Retort Solids ((8%		7%	Washout 1								Added	()	72.7
Corrected Soli	ds (vol%)		6.2%		5.1%	Washout 2							Barite /		` ,	
Retort Oil Con	tent	<u> </u>		72%		69%	Oper	n Hole S	Size 6.8	318	13,290'		Other P	roduct (Usage	÷ (+)	
Retort Water (Content			20%		24%	AN	NULAF	R GEOME	TRY &	RHEOLO	OGY		Water A	Added	i (+)	
O/W Ratio				78:22		74:26	onnula	.		volos	oity flow	ECD	_ Le	eft on C	utting	s (-)	-38.1
Whole Mud Cl	nlorides (mg/L)		44,000		49,000	annula section		depth	veloo ft/m	-	lb/gal	16# Se	nd to P	roduc	tion	
Water Phase	Salinity (p	opm)		256,494		242,511						<u> </u>	– L	ost To F	Forma	ition	-67.0
Whole Mud Al	kalinity, F	Pom		1.8		1.5	6.875x4	4.5	9,924'	299	.9 turb	9.59	Est.	Γotal or	n Loca	ition	2937.7
Excess Lime (lb/bbl)			2.3 ppb		2 ppb	6.818x4	4.5	10,580'	308	.8 turb	9.83	Est. Los	ses/Ga	ains (-)	_)/(+)	0.0
Electrical Stab	oility (volts	s)		452 v		390 v	6.818x	(5	10,603'	377	.1 turb	10.06	BIT	HYDR	AULIC	S DA	
Average Spec	ific Gravi	ty of Soli	ds	2.91		2.66	6.818x4	4.5	13,160'	308	.8 turb	10.46	Bit H.S.I.	Bit /	ΔP	Nozzle	es (32nds)
Percent Low G	Gravity Sc	olids		4.2%		4.2%	6.818x5	.25	13,290'	428	.2 turb	10.72	0.21	40	psi	18	18 18
ppb Low Grav	ity Solids			35 ppb		35 ppb							Bit Impac	Noz		18	18 18
Percent Barite				2%		0.9%							Force	Veloc (ft/se	-		
ppb Barite				29 ppb		13 ppb	BIT [DATA	Ма	nuf./Ty	pe Hall	./GTD64N	1 107 lbs	71			
Estimated Total	al LCM in	System					Size	Depth	ı In Ho	ours	Footage	ROP ft/h	r Motor/M	WD	Calc.	Circ.	Pressure
Sample Taker	Ву			A. ROMAN		M.Meehan	6 3/4	9,937	7 ft 24	4.0	2,298 ft	95.8	2,240	psi	;	3,441	psi
Afternoon Rema	ternoon Remarks/Recommendations:						Afternoon F	Pia Activ	rity:				•	1			

Pump 20 bbl sweep every connection. Sweep Contains:

10 ppb First Response, 10 ppb magnafiber and 10 ppb Veriseal $\,$

Afternoon Rig Activity:

Drilling 6-3/4" lateral hole section. Reduced mud wt. to 8.6 ppg. Losses slowed to seepage of 3-5 bbl/hr. Continue to pump 20 bbl LCM sweeps every connection. Adding Optimul and Lime to increase the emulsion. Adding Bentone 38 and Bentone 990 to increase the Yield Point and 6/3 RPM readings. Adding Opt-G to lower the HTHP fluid loss.

OUTSOURCE FLUID SOLUTIONS LLC.

90.1°

10,245' TVD

Operator MAGI	NOLIA (OIL & C	BAS	Contractor PA1	TERSO	ON	County / Parish /	Block YETTE		Engineer 3	Start Date 2/08/20		2,828 ft		Orilled De	oth 5,063	ft
	AT TIRE	E A-1H		Rig Name an	d No. 248			EXAS			2/11/20)	nt ROP 135 ft/hi	r		ed Do	-
Report for KEVIN B	URT/F	ROBBY	GWIN	Report for	ol Pusi	ner	Field / OCS-G #	DIGNS		Fluid Type	OBM	Circul	ating Rate 386 gpm		Circulating	Pressur 30 p	
TEVII D			RTY SPECIF			101		LUME (BE	BL)	F	PUMP #1		PUMP #2		RISE		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		0 bbl	Liner S	Size 4	.75 Line	r Size 4.	.75	Liner S	ze	4.75
8.5-10.6	5-20	5-15	>350	±250K	<10 <20	<10	In Hole	603	3 bbl	Strok	ie '	12 Str	oke 1	12	Stroke		12
	L	<u> </u>		12/24/20		12/22/20	Active	127	'3 bbl	bbl/s	tk 0.0)625 bb	l/stk 0.0	0625	bbl/st	C 0	.0625
Time Sample	Taken			2:00		12:00	Storage	228	88 bbl	stk/m	nin :	73 stk	/min 7	74	stk/mi	า	0
Sample Locati	on			suction		suction	Tot. on Loc	cation 356	1 bbl	gal/m	nin 1	92 ga	/min 1	94	gal/mi	n	0
Flowline Temp	erature °l	F		140 °F		140 °F		PHHP = 92	9	1	CIRCU	LATION DA	TA.		n = 0.6	17 K=	163.477
Depth (ft)				14,804'		13,290'	Bit D	Depth = 15,	063 '		Wash	nout = 1%		Pump I	Efficien	cy = 95	5%
Mud Weight (p	pg)			8.6		8.6	Drill String	Volume	to Bit	212.7	bbl S	rokes To Bit	3,406	Т	ime To	Bit 2	3 min
Funnel Vis (se	c/qt)		@ 95 °F	40		41	Disp.	Bottoms U	Jp Vol.	390.4	bbl Bott	omsUp Stks	6,249	Botton	nsUp Ti	me 4	3 min
600 rpm				23		22	84.6 bbl	TotalCi	rc.Vol.	1273.1	bbl T	otalCirc.Stks	20,381	Total	Circ. Ti	me 13	39 min
300 rpm				15		15		DRILLIN	G ASS	SEMBLY	/ DATA		s	OLIDS	CONT	ROL	
200 rpm				10		12	Tubulars	OD (in.)	ID	(in.)	Length	Тор	Unit		Scree	ns H	Hours
100 rpm				8		9	Drill Pipe	4.500	3.	826	12,353'	0'	Shaker	r 1	140-8	0	24.0
6 rpm				5		5	AGITATOR	5.000	2.	.000	24'	12,353'	Shaker	r 2	140-8	0	24.0
3 rpm			4		4	Drill Pipe	4.500	3.	826	2,557'	12,376'	Shaker	r 3	140-8	0	24.0	
•		@ 150 °F	8		7	Dir. BHA	5.250	2.	250	130'	14,933'	Dryer Sha	ker 3	140		24.0	
Yield Point (lb/	/100 ft²)		T0 = 3	7		8		CASIN	IG & I	HOLE D	ATA						
Gel Strength (b/100 ft²)	10	sec/10 min	5/8		4/8	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifuç	ge 1			8.0
Gel Strength (ib/100 ft ²)		30 min	11		10	Riser						VOLUN	ME ACC	COUNT	ING (b	bls)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	8.0		8.8	Surface	10 3/4			3,105'	0'	Prev. T	Γotal or	Locati	on	2970.1
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	9,924'	0'	Transfe	erred In	ı(+)/Ou	(-)	697.0
Retort Solids (Content			8%		7%	Washout 1							Oil	Added	(+)	139.1
Corrected Soli	ds (vol%)	1		6.3%		5.1%	Washout 2							Barite /	Added	(+)	0.0
Retort Oil Con	tent			71%		69%	Oper	n Hole Size	6.	818	15,063'		Other Pr	roduct (Usage	(+)	16.7
Retort Water (Content			21%		24%	ANI	NULAR GE	ЕОМЕ	TRY & I	RHEOLO	GY	,	Water	Added	(+)	70.0
O/W Ratio				77:23		74:26	annular	r me	eas.	veloc	ity flow	ECD	Le	eft on C	uttings	(-)	-127.7
Whole Mud Ch	nlorides (n	mg/L)		44,000		49,000	section	de	epth	ft/mi	in reg	lb/gal					
Water Phase	Salinity (p	pm)		247,300		242,511							Lo	ost To I	Formati	on	-204.1
Whole Mud Al	kalinity, P	om		2.0		1.5	6.875x4.	.5 9,9	924'	349.	9 turb	9.48	Est. T	Γotal or	Locat	on	3561.2
Excess Lime (lb/bbl)			2.6 ppb		2 ppb	6.818x4.	.5 12,	,353'	360.	.3 turb	9.74	Est. Los	ses/Ga	ains (-)/	(+)	0.0
Electrical Stab	ility (volts)		425 v		390 v	6.818x5	5 12,	,376'	440.	0 turb	9.87	BIT	HYDR	AULIC	S DAT	A
Average Spec	ific Gravit	y of Solid	S	2.58		2.66	6.818x4.	.5 14,	,933'	360.	.3 turb	10.21	Bit H.S.I.	Bit /	ΔP N	ozzles	(32nds)
Percent Low G	ravity So	lids		5.4%		4.2%	6.818x5.2	25 15,	,063'	499.	5 turb	10.36	0.33	53	psi 1	8 18	3 18
ppb Low Grav	ity Solids			45 ppb		35 ppb							Bit Impact	Noz: Velo		8 18	3 18
Percent Barite				0.8%		0.9%			1				Force	(ft/se			
ppb Barite				12 ppb		13 ppb	BIT D	ATA	Ma	anuf./Typ	pe Hall	i./GTD64M	143 lbs	83	3		
Estimated Total	al LCM in	System	ppb				Size	Depth In	Н	ours	Footage	ROP ft/hr	Motor/M	WD	Calc. (irc. Pr	essure
Sample Taken	Ву			A. ROMAN	0	M.Meehan	6 3/4	9,937 ft	4	5.0	5,126 ft	113.9	2,240	psi	3	980 p	si
Remarks/Recommendations:							Rig Activity:										

OBM RECEIVED: 4486bbls (Received today: 845bbls)

OBM ON SURFACE--- 3106 bbls (Storage + Active)

OBM LOSS/GAIN-- Total (_-204bbls_)

On the Past 24hrs: Continue drilling ahead on Lateral section; Maintain LCM $\,$ (FirstResponse/SynSeal/Magmafiber) Sweeps every 100' (20bbls of 30ppb).

Decrease Mud Weight to 8.6ppg while maintaing 330gpm and drilling ahead.

Losses to formation decrease to 10bbls to 0bbls per 100'. suspend additions of LCM to Active system and maintain LCM sweeps every 300'. @14230' increase to 400gpm while sliding, Seepage to formation increased up to 25-30bbls/100'. Gain back 15-18bbls on pumps down for connection. Maintain Constant additions for Diesel and water and respective chemicals to maintain properties. At this time: Continue drilling ahead pump 20bbls sweeps every other connection (200') seepage minimized to 10-15bbls/100'. currently pasing 15,114'MD / 10,245TVD.

E	ng. 1:	Mi	ke W	ashbı	ırn	Er	ng. 2:	Adolf			MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
F	hone:	3	61-94	5-57	77	Ph	none:	956-8	21-9994	Phone:	432-686-736	1 Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	used if the user	so elects, however	er, no representati		\$17,856.26	\$116,597.96
												INCLUE	TY CHARGES	\$30,782.14	\$200,910.32	

MATERIAL CONSUMPTION

Date 12/24/20	Operator MAG I	NOLIA OIL	& GAS	Well Name a	nd No. . T TIRE A-1	н	Rig Name and 24		ort #12
1.22.11.2		USAGE 8							ILATIVE
			Previous		Closing	Daily		Cum	
Item	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost	Usage	Cum Cos
SAPP (50)	50# sk	\$44.56						44	\$1,960.64
PHPA LIQUID (pail) EVO-LUBE	5 gal	\$41.36							-
NEW GEL (PREMIUM)	gal 100# sk	\$14.00 \$19.75							
ALUMINUM TRISTEARATE	25# sk	\$162.83							
		V 10200							
CACL2 (50)	50# sk	\$14.32	102		74	28	\$400.96	252	2 \$3,608.64
LIME (50)	50# sk	\$5.00	75	150	175	50	\$250.00	225	+
OPTI - G	50# sk	\$30.59	120	80	160	40	\$1,223.60	120	\$3,670.80
BENTONE 38 (50)	50# sk	\$163.94	36		30	6	\$983.64		
BENTONE 910 (50) BENTONE 990 (50)	50# sk	\$59.40	0.4		00		#004.00	14	
OPTI - MUL	50# sk	\$83.59 \$10.75	24 25	440	20 355	110	\$334.36 \$1,182.50	309	<u> </u>
OPTI - WET	gal	\$8.34	55	440	495	110	ψ1,102.00	220	+
NEW PHALT	50# sk	\$38.72	110	80	160	30	\$1,161.60	110	+
OIL SORB (25)	25# sk	\$4.75	30	40	70			10	\$47.50
NEWCARB ULTIMIX	50# sk	\$6.35		120	120				
NEW CARB (M)	50# sk	\$5.25	100		70	30	\$157.50	90	\$472.50
CYBERSEAL	25# sk	\$21.47				2.0	# 207.51		0.000
MAGMAFIBER F (25)	25# sk	\$28.05	100	192	260	32	\$897.60	153	3 \$4,291.65
MAGMAFIBER R (30) VARISEAL	30# sk 50# sk	\$28.05 \$26.50	38 50		38 40	10	\$265.00	40	\$1,060.00
FIBER PLUG	30# sk	\$30.37			10	10	Ψ200.00		ψ1,000.00
NUT PLUG M (50)	50# sk	\$12.04	80		80				
. ,									
NEW WATE (CACK DADITE)	400# als	¢44.50	400		100				
NEW WATE (SACK BARITE) BARITE BULK (100)	100# sk	\$11.50 \$7.00	180 1450		180 1450			21/1:	\$14,988.40
DARTE BOLK (100)	100# 3K	Ψ1.00	1430		1430			214	ψ14,300.40
								E9.	
OPTI DRILL (OBM)	bbl	\$65.00	2715	697	3306	106	\$6,890.00	564	\$37,960.00
				697		106	\$6,890.00		
OPTI DRILL (OBM) DISCOUNTED OBM	bbl	\$65.00 \$15.00	2715 255	697	3306 255	106	\$6,890.00	133	
				697		106	\$6,890.00		
				697		106	\$6,890.00		
				697		106	\$6,890.00		
				697		106	\$6,890.00		
				697		106	\$6,890.00		
DISCOUNTED OBM				697		106	\$6,890.00	13'	7 \$2,055.00
	bbl	\$15.00		697				13'	\$2,055.00
DISCOUNTED OBM ENGINEERING (24 HR)	bbl	\$15.00 \$15.00 \$925.00		697		2	\$1,850.00	13:	\$2,055.00 \$2,055.00 \$2,055.00 \$22,200.00 \$720.00
DISCOUNTED OBM ENGINEERING (24 HR) ENGINEERING (DIEM)	each bbl	\$15.00 \$15.00 \$925.00 \$30.00		697		2 2	\$1,850.00 \$60.00	22-	\$2,055.00 \$2,055.00 \$2,055.00 \$22,200.00 \$720.00
DISCOUNTED OBM ENGINEERING (24 HR) ENGINEERING (DIEM)	each bbl	\$15.00 \$15.00 \$925.00 \$30.00		697		2 2	\$1,850.00 \$60.00	22-	\$2,055.00 \$2,055.00 \$2,055.00 \$22,200.00 \$720.00
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES)	each bbl each	\$15.00 \$15.00 \$925.00 \$30.00 \$1.00		697		2 2 840	\$1,850.00 \$60.00 \$840.00	13: 24: 24: 1889	\$2,055.00 \$2,055.00 \$22,200.00 \$720.00 \$1,889.00
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES)	each bbl each	\$15.00 \$15.00 \$925.00 \$30.00		697		2 2	\$1,850.00 \$60.00	22-	\$2,055.00 \$2,055.00 \$22,200.00 \$720.00 \$1,889.00
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES)	each bbl each	\$15.00 \$15.00 \$925.00 \$30.00 \$1.00		697		2 2 840	\$1,850.00 \$60.00 \$840.00	13: 24: 24: 1889	\$22,200.00 \$1,889.00 \$
ENGINEERING (24 HR) ENGINEERING (DIEM) ENGINEERING (MILES) TRUCKING (cwt) TRUCKING (min)	each bbl each each	\$15.00 \$15.00 \$925.00 \$30.00 \$1.00 \$2.65 \$795.00		697		2 2 2 840	\$1,850.00 \$60.00 \$840.00	2- 2- 1889	\$22,200.00 \$1,889.00 \$

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ınd No.		Rig Name an	d No.	Report No.	
12/24/20	MAGI	NOLIA OIL	& GAS	FA	T TIRE A-1	IH	24	48	Repo	rt #12
	DAILY	USAGE 8	& COST						CUMU	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	350		310	40	\$1,670.00		140	\$5,845.00
TURBO CHEM / SYNSEAL	25# sk	\$81.00	70		50	20			50	\$4,050.00
Diesel Transfer from B 1H	gal	\$1.63								\$10,386.36
Diesel Received 12-17-18	gal	\$1.66								\$18,094.00
Diesel Received 12-19-20	gal	\$1.67								\$11,690.00
Diesel Received 12-20-20	gal	\$1.68				4450	#7 500 00			\$24,192.00 \$7,943.00
Diesel Received 12-21-20	gal	\$1.69			5020	4452				
Diesel Received 12-22-20 Diesel Received 12-23-20	gal gal	\$1.65 \$1.64	7200	5800	5920 5800	1280	\$2,112.00		1280	φ∠, 11∠.00
Diesei Received 12-23-20	gai	\$1.04		5600	5600					
					Daily Su	ıb-Total \$1	2,925.88		\$84,3	12.36
	Cumi	ulative Total	AES & 3rd	Party \$200	1.910 32					
	Junit		5 a 5ia	ψ200	,					

OUTSOURCE FLUID SOLUTIONS LLC.

MAGNOLIA OIL & GAS Operator **Rig Name**

Well Name

FAT TIRE A-1H

WEEK 1 WEEK 2 WEEK 3 12/18/20 12/19/20 12/20/20 12/21/20 12/22/20 12/23/20 12/24/20 12/25/20 12/26/20 12/27/20 12/28/20 12/29/20 12/30/20 12/31/20 1/1/21 1/2/21 1/3/21 1/4/21 1/5/21 1/6/21 1/7/21 Date Fri Sun Mon Tue Wed Thu Sat Sun Mon Tue Wed Fri Sat Sun Mon Tue Wed Sat Thu Bit Size 9 7/8 9 7/8 9 7/8 6 3/4 6 3/4 6 3/4 6 3/4 Starting Depth 12,235 15,063 Grand 3,105 9,745 9,937 9,937 10,226 3,201 Totals **Ending Depth** 3,201 9,745 9,937 9,937 10,226 12,235 15,063 11,958 Footage Drilled 96 6,544 192 289 2,009 2,828 874 New Hole Vol. 620 18 -13 89 125 Starting System Volume 329 2,150 2,701 2,975 2,968 2,951 2,970 3,561 3,561 3,561 3,561 3,561 3,561 3,561 3,561 3,561 3,561 3,561 3,561 3,561 3,561 72 Chemical Additions 38 17 6 1,076 Base Fluid Added 13 409 117 118 33 247 139 43 34 73 149 Barite Increase 4,339 Weighted Mud Added 1,813 463 225 1,141 697 --Slurry Added 413 Water Added 240 103 70 Added for Washout 6.048 Total Additions 1,831 1,193 375 118 41 1,567 923 79 Surface Losses 50 29 1,261 Formation Loss 1,057 204 -20 767 Mud Loss to Cuttings 506 13 128 10 91 136 Unrecoverable Volume 86 50 32 75 172 Centrifuge Losses 50 16 332 2,416 Total Losses 10 642 102 125 58 1,148 400 Mud Transferred Out 400 2,701 2,975 2,968 2,951 2,970 3,561 3,561 3,561 3,561 3,561 3,561 3,561 3,561 3,561 3,561 3,561 3,561 3.561 Ending System Volume 2,150 3,561 3,561 3,561 Mud Recovered Comments: Comments: Comments: Skid from the B 1H. Nipple up test BOP's. Pick up new BHA 12/18/20 TIH, drill out shoe track perform FIT. Start drilling Intermediate. 12/25/20 1/1/21 800gpm, 1150ROP. Drilling ahead on intermediate section. 800gpm, 400rop. 4,268 12/26/20 1/2/21 Transfer mud from storage to active and sweeps. TD 9937', circulate hole clean, POOH lay down DP and BHA. 12/20/20 Rig up Casing tools and run 7 5/8" casing in the hole. Cut MW 12/27/20 1/3/21 in the pits back to 9.7ppg. Casing on Bottom, Circulate, full returns. Cement with full 12/21/20 returns and discharge 31bbls of Spacer/OBM interface. Change 12/28/20 1/4/21 rams, testing BOP's Pick up DP, tag float collar. Drill out shoe track + 10' new 12/22/20 formation. FIT to 13EMW. Resume drilling on curve section. 12/29/20 1/5/21 Drilling ahead into lateral. Loosing OBM into formation. 12/23/20 Pumping 30ppb LCM every connection, and adding LCM to 1/6/21 12/30/20 Drilling ahead on lateral seciton. Continue to losse mud to 12/24/20 formation. More when GPM increase to 400gpm. Pumping 12/31/20 1/7/21 sweeps every 200'.

St Martinville, LA 70582

90.1° 10,244' TVD

Operator				Contractor			County / Paris	h / Block		Engineer	Start Date	24 hr	ftg.	ı	Drilled De	pth	
	IOLIA (OIL & 0	GAS		TERSO	N		YETT	Έ		2/08/20		569 ft			5,63	2 ft
Well Name and No.	T TIRE	E A-1H		Rig Name ar	nd No. 248		State T	EXAS	S	Spud Da	te 2/11/20		nt ROP 193 ft/hi		Activity [Orilli	na
Report for				Report for			Field / OSC-G			Fluid Typ			ating Rate		Circulatin		
KEVIN B	URT / E	BOBB	Y GWIN	То	ol Push	ner	GIE	DDIGN	NS		OBM		378 gpm	1	3,	836	psi
	MUD	PROPE	RTY SPECI	FICATION	IS		MUD VO	OLUME	(BBL)	ı	PUMP #1		PUMP #2		RISE	R BO	OSTER
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits	6	683 bbl	Liner S	Size 4.	75 Line	er Size 4.	.75	Liner S	ize	4.75
8.5-10.6	5-20	5-15	>350	±250K	<10 <20	<10	In Hole	е	626 bbl	Strok	ke 1	2 St	roke 1	12	Strok	е	12
	М	UD PRO	PERTIES				Active)	1309 bbl	bbl/s	tk 0.0	625 bb	ol/stk 0.0	625	bbl/s	:k	0.0625
Time Sample	Taken			2:00		11:00	Storag	е	2166 bbl	stk/m	nin 7	2 stk	x/min 7	72	stk/m	in	
Sample Locati	on			suction		suction	Tot. on Lo	cation	3475 bbl	gal/m	nin 18	39 ga	I/min 1	89	gal/m	in	
Flowline Temp	erature °	°F		140 °F		88 °F	Mud Wt. =	= 8.6	PV=8	YP=	7 CII	RCULATIO	ON DATA		n = 0.6	617 k	ζ = 163.5
Depth (ft)				14,804'		15,632'	Bit D	Depth =	15,632 '		Wash	out = 1%		Pump l	Efficier	ncy =	95%
Mud Weight (p	ppg)			8.6		8.6	Drill String	Vol	ume to Bit	220.8	bbl Str	okes To Bi	t 3,535	Т	ime To	Bit	25 min
Funnel Vis (se	c/qt)		@ 95 °F	40		43	Disp.	Botton	ns Up Vol.	404.9	bbl Botto	msUp Stks	6,482	Botton	nsUp T	ime	45 min
600 rpm				23		24	87.7 bbl	Tota	alCirc.Vol.	1308.7	bbl To	talCirc.Stks	20,951	Total	Circ. T	ime	145 min
300 rpm				15		16		DRIL	LING AS	SEMBL	Y DATA		S	OLIDS	CON	ΓROL	
200 rpm				10		12	Tubulars	OD (i	n.) ID	(in.)	Length	Тор	Unit		Scree	ns	Hours
100 rpm				8		9	Drill Pipe	4.50	00 3.8	826	12,922'		Shake	r 1	140-8	30	12.0
6 rpm				5		5	AGITATOR	5.00	00 2.0	000	24'	12,922'	Shake	r 2	140-8	30	12.0
3 rpm			4		4	Drill Pipe	4.50	00 3.8	826	2,557'	12,945'	Shake	r 3	140-8	30	12.0	
Plastic Viscosi	ity (cp)		@ 150 °F	8		8	Dir. BHA	5.25	50 2.2	250	130'	15,502'	Dryer Sha	ker 3	140		12.0
Yield Point (lb/	/100 ft²)		T0 = 3	7		8		CA	SING &	HOLE	DATA						
Gel Strength (lb/100 ft ²) 10	sec / 10 min	5/8		5/8	Casing	OD (i	n.) ID	(in.)	Depth	Тор	Centrifu	ge 1			
Gel Strength (lb/100 ft2	2)	30 min	11		10	Riser						VOLUN	IE AC	COUN	ΓING	(bbls)
HTHP Filtrate	(cm/30 m	nin)	@ 250 °F	8.0		6.8	Surface	10 3	/4		3,105'		Prev. 1	otal or	n Locat	ion	3561.1
HTHP Cake TI	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/	8 6.8	875	9,924'		Transfe	erred Ir	ı(+)/Ou	t(-)	
Retort Solids (Content			8%		7.5%	Washout 1							Oil	Added	(+)	45.7
Corrected Soli	ds (vol%)		6.3%		5.7%	Washout 2							Barite .	Added	(+)	
Retort Oil Con	tent			71%		70.5%	Oper	Hole S	Size 6.8	818	15,632'		Other Pr	roduct	Usage	(+)	
Retort Water (Content			21%		22%	AN	NULAF	R GEOME	TRY &	RHEOLO	GY	,	Water	Added	(+)	
O/W Ratio				77:23		76:24	annula	ar	ما مصدام	veloc	city flow	ECD	Le	ft on C	uttings	(-)	-25.7
Whole Mud Ch	nlorides (mg/L)		44,000		47,000	section		depth	ft/m	-	lb/gal					
Water Phase S	Salinity (p	opm)		247,300		250,936							Lo	ost To I	Format	ion	-106.4
Whole Mud Al	kalinity, F	Pom		2.0		2.2	6.875x4	4.5	9,924'	342	.8 turb	9.51	Est. 7	otal or	n Locat	ion	3474.7
Excess Lime (lb/bbl)			2.6 ppb		2.9 ppb	6.818x4	4.5	12,922'	352	.9 turb	9.87	Est. Los	ses/Ga	ains (-).	/(+)	0.0
Electrical Stab	ility (volt	s)		425 v		387 v	6.818x	(5	12,945'	431	.0 turb	10.05	BIT	HYDR.	AULIC	S DA	TA
Average Spec	ific Gravi	ty of Sol	ids	2.58		2.58	6.818x4	1.5	15,502'	352	.9 turb	10.43	Bit H.S.I.	Bit A	ΔP N	lozzle	s (32nds)
Percent Low G	Bravity So	olids		5.4%		4.9%	6.818x5	.25	15,632'	489	.3 turb	10.64	0.31	51	psi	18	18 18
ppb Low Gravi	ity Solids	i		45 ppb		41 ppb							Bit Impact	Noz		18	18 18
Percent Barite				0.8%		0.7%							Force	Velo	,		
ppb Barite				12 ppb		11 ppb	BIT [DATA	Ма	nuf./Ty	pe Halli	./GTD64M	137 lbs	81	ı		
Estimated Total	al LCM ir	n System	1				Size	Depth	ı In Ho	ours	Footage	ROP ft/hr	Motor/M	WD	Calc.	Circ. I	Pressure
Sample Taken	в Ву			A. ROMAN		M.Meehan	6 3/4	9,937	7 ft 54	4.0	5,695 ft	105.5	2,100	psi	3	,836	psi
Afternoon Rema	Afternoon Remarks/Recommendations:						Afternoon F	lia Activ	rity:	ļ		<u> </u>	1				

Pump 20 bbl sweep every connection. Sweep Contains:

10 ppb First Response, 10 ppb magnafiber and 10 ppb Veriseal $\,$

Drilling 6-3/4" lateral hole section. Reduced mud wt. to 8.6 ppg. Losses slowed to seepage of 5-10 bbl/hr. Continue to pump 10 bbl LCM sweeps every 300 ft. Adding Optimul and Lime to increase the emulsion. Adding Bentone 38 and Bentone 990 to increase the Yield Point and 6/3 RPM readings. Adding Opt-G to lower the HTHP fluid loss. Running the mud chiller. Surface flowline temperature of 88 degrees.

OUTSOURCE FLUID SOLUTIONS LLC.

92.1°

10,163' TVD

Operator MAGI	NOLIA (OIL & C	BAS	Contractor PA1	TERSO	ON	County / Parish /	Block YETTE		_	Start Date 2/08/2 (24 hr	ftg. 1,620 ft		Drilled D	Depth 16,68	3 ft	
	AT TIRE	E A-1H		Rig Name an	d No. 248			EXAS			2/11/20)	90 ft/hr			Drill	•	
Report for KEVIN B	IIDT / E	20BBV	CWIN	Report for	ol Pusł	oor	Field / OCS-G #	DIGNS		Fluid Type	OBM	Circu	lating Rate 401 gpn		Circulati	910,		
KEVIND			RTY SPECIF			iei		LUME (BE	21 \		PUMP #1		PUMP #2			ER BC	•	
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		2 bbl	Liner S		.75 Lin		.75	Liner		4.7	
8.5-10.6	5-20	5-15	>350	±250K	<10 <20	<10	In Hole		z bbi 7 bbl	Strok				12	Stro		12	
0.0 10.0	0 20	0.10	7000	12/25/20	110 120	12/24/20	Active		9 bbl	bbl/s				0625	bbl/s		0.06	
Time Sample	Taken			2:00		11:00	Storage		13 bbl	stk/m				77	stk/r		0.00	
Sample Locati				suction		suction		cation 346		gal/m				202	gal/r		0	
Flowline Temp		 F		115 °F		88 °F		PHHP = 115		gavii		LATION D		.02		 .617 +		
Depth (ft)	- Cratare 1			16,490'		15,632'		Depth = 16,				hout = 1%		Pump				
Mud Weight (p	nna)			8.6		8.6				235.8	1	trokes To B	it 3,775	1	Time T			
Funnel Vis (se			@ 75 °F	48		43	Drill String Disp.	Bottoms U				tomsUp Stk	•		msUp ¹		45 m	
600 rpm	o/qt/)			23		24	93.4 bbl			1299.4		otalCirc.Stk	,		l Circ.			
300 rpm				15		16	00.1001	DRILLING				otaloli c.otik	1	SOLIDS				
200 rpm				11		12	Tubulars			(in.)	Length	Тор	Unit		Scre		Hou	ırs
100 rpm				8		9	Drill Pipe	4.500		826	13,973'	0'	Shake		140-		24.	
6 rpm				5		5	AGITATOR	5.000	2.	.000	24'	13,973'	Shake	r 2	140-	-80	24.	.0
3 rpm				4		4	Drill Pipe	4.500	3.	826	2,557'	13,996'	Shake	r 3	140-	-80	24.	.0
Plastic Viscosi	ty (cp)		@ 150 °F	8		8	Dir. BHA	5.250	2.	250	130'	16,553'	Dryer Sha	aker 3	14	0	24.	.0
Yield Point (lb/			T0 = 3	7		8		CASIN	NG & I	HOLE D	ATA		1					
Gel Strength (b/100 ft²)	10	sec/10 min	5/9		5/8	Casing	OD (in.)	ID	(in.)	Depth	Тор	Centrifu	ge 1			8.0	0
Gel Strength (b/100 ft ²)		30 min	12		10	Riser						VOLUI	ME AC	COUN	ITING	(bbls	s)
HTHP Filtrate	(cm/30 m	in)	@ 250 °F	7.0		6.8	Surface	10 3/4			3,105'	0'	Prev.	Total o	n Loca	ation	356	61.1
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	9,924'	0'	Transf	erred Ir	n(+)/O	ut(-)		
Retort Solids (Content			8%		7.5%	Washout 1							Oil	Adde	d (+)	15	58.5
Corrected Soli	ds (vol%)			6.1%		5.7%	Washout 2							Barite	Adde	d (+)		0.0
Retort Oil Con	tent			69%		70.5%	Oper	Hole Size	6.	818	16,683'		Other P	roduct	Usage	e (+)	1	18.8
Retort Water (Content			23%		22%	ANI	NULAR GE	ЕОМЕ	TRY & I	RHEOLO	GY		Water	Adde	d (+)	7	75.0
O/W Ratio				75:25		76:24	annular	r me	eas.	veloc	city flov	ECD	Le	eft on C	Cutting	js (-)	-7	73.1
Whole Mud Ch	nlorides (r	ng/L)		47,000		47,000	section	de	epth	ft/mi	in reg	lb/gal		Centrif	uge/E	vap.	-2	24.0
Water Phase	Salinity (p	pm)		242,674		250,936		•			•		L	ost To	Forma	ation	-25	55.8
Whole Mud Al	kalinity, P	om		2.0		2.2	6.875x4.	.5 9,9	924'	364.	.2 turk	9.49	Est.	Total o	n Loca	ation	346	60.4
Excess Lime (lb/bbl)			2.6 ppb		2.9 ppb	6.818x4.	.5 13,	,973'	375.	.0 turk	9.86	Est. Los	sses/G	ains (-	-)/(+)		0.0
Electrical Stab	ility (volts)		425 v		387 v	6.818x5	5 13,	,996'	457.	.9 turk	9.95	BIT	HYDR	AULI	CS DA	ATA	
Average Spec	ific Gravit	y of Solid	s	2.49		2.58	6.818x4.	.5 16,	,553'	375.	.0 turk	10.25	Bit H.S.I.	Bit	ΔΡ	Nozzle	es (32r	nds)
Percent Low C	Gravity So	lids		5.6%		4.9%	6.818x5.2	25 16,	,683'	519.	.9 turk	10.36	0.38	58	psi	18	18	18
ppb Low Grav	ty Solids			46 ppb		41 ppb							Bit Impact	Noz		18	18	18
Percent Barite				0.5%		0.7%							Force	Velo (ft/s	-			
ppb Barite				7 ppb		11 ppb	BIT D	ATA	Ma	anuf./Ty	pe Hal	li./GTD64N	1 155 lbs	8	6			
Estimated Total	al LCM in	System	ppb				Size	Depth In	Н	ours	Footage	ROP ft/h	r Motor/M	IWD	Calc.	Circ.	Press	sure
Sample Taken	Ву			A. ROMAN	0	M.Meehan	6 3/4	9,937 ft	7	2.0	7,315 ft	101.6	2,100	psi		4,149	psi	
Remarks/Reco	Remarks/Recommendations:						Rig Activity:											

OBM RECEIVED: 4486bbls

OBM ON SURFACE--- 2793 bbls (Storage + Active)

OBM LOSS/GAIN-- Total (_-255bbls_)

On the Past 24hrs: Continue drilling ahead on Lateral section; @ 156,444' losses to formation noted at 10-20bph. Increase Sweep schedule to 10bbls / connection, seepage decrease to 5-10bph @ 15,634'. Return to 10bbls sweep every 300' (SWEEP: 30ppb First Response/SynSeal/Magmafiber/Varyseal). Drilled to 16,101' Pump 20bbls sweep, push same out of the bit and POOH (Wash & Ream) 10 stands back on bottom, and resume Drilling/Sliding w/400gpm seepage incresed to 13bbl/100'. Pump 10bbls sweep every connection seepage down to 6bbl/100'. Cuttings samples show to be 100% A-Chalk. Maintain Constant additions for Diesel and water and respective chemicals to maintain properties. Currently:Drilling ahead /10bbls sweeps per connection passing 16,685'MD / 10,162TVD.

Е	ng. 1:	Ν	/latt N	1eeha	ın	Er	ng. 2:	Adolfo	Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:	9	85-35	1-756	31	Ph	none:	956-8	21-9994	Phone:	432-686-7361	Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	ecommendation, ex used if the user so ation, and this is a r	elects, however,	, no representation	as been prepared on is made as to the	\$16,477.33	\$133,075.29
												INCLUDI	NG 3RD PAR	TY CHARGES	\$30,519.33	\$231,429.65

MATERIAL CONSUMPTION

Date 12/25/20	Operator MAG I	NOLIA OIL	& GAS	Well Name a	ind No. A T TIRE A- 1	IH	Rig Name and No 248		rt #13
	DAILY	USAGE 8	& COST	I.					LATIVE
			Previous		Closing	Daily		Cum	
ltem	Unit	Unit Cost	Inventory	Received	Inventory	Usage	Daily Cost	Usage	Cum Cos
SAPP (50)	50# sk	\$44.56						44	\$1,960.6
PHPA LIQUID (pail)	5 gal	\$41.36							
EVO-LUBE	gal	\$14.00							
NEW GEL (PREMIUM) ALUMINUM TRISTEARATE	100# sk 25# sk	\$19.75 \$162.83							
ALUMINUM TRISTEARATE	25# SK	\$102.03							
CACL2 (50)	50# sk	\$14.32	74	112	112	74		326	
LIME (50) OPTI - G	50# sk	\$5.00 \$30.59	175 160	80	150 200	25 40	\$125.00 \$1,223.60	250 160	· ,
BENTONE 38 (50)	50# sk	\$163.94	30	80	25	5	\$819.70	110	· ,
BENTONE 910 (50)	50# sk	\$59.40	30		20		ψ013.70	14	
BENTONE 990 (50)	50# sk	\$83.59	20		10	10	\$835.90	14	
OPTI - MUL	gal	\$10.75	355		330	25	\$268.75	330	
OPTI - WET	gal	\$8.34	495		385	110	\$917.40	330	\$2,752.2
NEW PHALT	50# sk	\$38.72	160	80	200	40	\$1,548.80	150	\$5,808.0
OIL SORB (25)	25# sk	\$4.75	70		70			10	\$47.5
NEW/CADRIII TIMIV	E0# al-	#6.05	400		100			<u> </u>	
NEWCARB ULTIMIX NEW CARB (M)	50# sk 50# sk	\$6.35 \$5.25	120 70		120 60	10	\$52.50	100	\$525.0
CYBERSEAL	25# sk	\$21.47	70		00	10	Ψ02.00	100	ψυ2υ.0
MAGMAFIBER F (25)	25# sk	\$28.05	260		240	20	\$561.00	173	\$4,852.6
MAGMAFIBER R (30)	30# sk	\$28.05	38		38				L
VARISEAL	50# sk	\$26.50	40		30	10	\$265.00	50	\$1,325.0
FIBER PLUG	30# sk	\$30.37							
NUT PLUG M (50)	50# sk	\$12.04	80		80				
								 	
NEW WATE (SACK BARITE)	100# sk	\$11.50	180		180				
BARITE BULK (100)	100# sk	\$7.00	1450		1450			2141	\$14,988.4
		*****			1.00				4,
								<u> </u>	
								 	-
								<u> </u>	
OPTI DRILL (OBM)	bbl	\$65.00	3306		3200	106	\$6,890.00	690	\$44,850.0
DISCOUNTED OBM	bbl	\$15.00	255		255			137	\$2,055.0
								<u> </u>	
								<u> </u>	
								 	-
								<u> </u>	
									<u> </u>
ENGINEERING (24 HR)	each	\$925.00				2	\$1,850.00	26	\$24,050.0
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00	26	
ENGINEERING (MILES)	each	\$1.00						1889	\$1,889.0
								<u> </u>	
EDHOVING ()		*							00
TRUCKING (cwt)	each	\$2.65						3243	\$8,594.4
TRUCKING (min) PALLETS (ea)	each	\$795.00 \$12.00						40	¢240.0
PALLETS (ea) SHRINK WRAP (ea)	each each	\$12.00 \$12.00						18	
	Eduli	Ψ12.00	I	I				10	ΨΖ 10.0
		Daily Su	ub-Total \$1	6,477.33	Cumulativ	ve Total \$1	33,075.29	\$133,	075.29

THIRD PARTY COST SHEET

Date	Operator			Well Name a	nd No.		Rig Name an	d No.	Report No.	
12/25/20	MAGI	NOLIA OIL	& GAS	FA	T TIRE A-	1H	24	48	Repo	rt #13
	DAILY	USAGE 8	& COST						CUMU	LATIVE
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost	•	Cum Usage	Cum Cost
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	310		270	40	\$1,670.00	-	180	\$7,515.00
TURBO CHEM / SYNSEAL	25# sk	\$81.00	50		30	20	\$1,620.00	-	70	\$5,670.00
								-		
								=		
								=		
								-		
Diesel Transfer from B 1H	gal	\$1.63						=	6372	\$10,386.36
Diesel Received 12-17-18	gal	\$1.66						-	10900	\$18,094.00
Diesel Received 12-19-20	gal	\$1.67						=		\$11,690.00
Diesel Received 12-20-20	gal	\$1.68						=	14400	\$24,192.00
Diesel Received 12-21-20	gal	\$1.69						-		\$7,943.00
Diesel Received 12-22-20	gal	\$1.65				5920	\$9,768.00	-		\$11,880.00
Diesel Received 12-23-20	gal	\$1.64	5800		5200		\$984.00		600	
								=		
	1									
								=		
								=		
								=		
	+							-		
								=		
								=		
								=		
								=		
								-		
								-		
	1							-		
								-		
	1							-		
	+							-		
	<u> </u>							-		
								-		
								-		
								-		
								-		
								-		
								-		
								-		
								-		
								-		
								-		
								-		
								-		
	1							-		
								-		
								-		
					Daily Su	ıb-Total \$1	4,042.00		\$98,3	54.36
	Cum	ulative Total	I AFS & 2rd	Party \$224	429 65					
	Cum	aiative IUIA	1 ALJ & 310	iaity \$231	,423.03					

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: FAT

FAT TIRE A-1H

					WEEK 1							WEEK 2							WEEK 3			
	Date	12/18/20	12/19/20	12/20/20	12/21/20	12/22/20	12/23/20	12/24/20	12/25/20	12/26/20	12/27/20	12/28/20	12/29/20	12/30/20	12/31/20	1/1/21	1/2/21	1/3/21	1/4/21	1/5/21	1/6/21	1/7/21
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu
	Bit Size	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4													
Grand	Starting Depth	3,105	3,201	9,745	9,937	9,937	10,226	12,235	15,063	16,683												
Totals	Ending Depth	3,201	9,745	9,937	9,937	10,226	12,235	15,063	16,683													
	Footage Drilled	96	6,544	192	-	289	2,009	2,828	1,620	-	-			-	-	-	_		-	-	-	-
	New Hole Vol.	9		18	_	13	89	125	72	-	_			-	_			_		_		-
340	Starting System Volume	329		2,701	2,975	2,968	2,951	2,970	3,561	3,460	3,460	3,460	3,460	3,460	3,460	3,460	3,460	3,460	3,460	3,460	3,460	†
00	Chemical Additions			·	·					3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400	3,400
	Base Fluid Added	6 13		- 447	- 118	33	247	17 139	19 158													+
, -	Barite Increase	-	409	117 34	-	-	73	-	-													+
	Weighted Mud Added	1,813	463	225	-	-	1,141	697	-													+
	Slurry Added	-	403	-	-	-	1,141	- 091	-													+
	Water Added	-	240	-	-	-	103	70	75													+
	Added for Washout	_	-	-	_	_	-	-	-													+
	Total Additions	1,831	1,193	375	118	41	1,567	923	252	_	_		_	_	_	_	_	_	_	_	_	
,		<u> </u>	<u> </u>				· ·	923		-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-
	Surface Losses	-	-	-	50	29	- 4.057	-	-													
	Formation Loss	- 40	-	-	-	- 40	1,057	204	256													+
	Mud Loss to Cuttings Unrecoverable Volume	10		20	-	13	91	128	73													+
		-	86	50	- 75	- 16	-	-	- 24													+
196	Centrifuge Losses	-	50	32	75	16	-	-	24													
2,769	Total Losses	10	642	102	125	58	1,148	332	353	-	-	-	-	-	-	-	-	-	-	-	-	-
400	Mud Transferred Out						400															
3,460	Ending System Volume	2,150	2,701	2,975	2,968	2,951	2,970	3,561	3,460	3,460	3,460	3,460	3,460	3,460	3,460	3,460	3,460	3,460	3,460	3,460	3,460	3,460
-	Mud Recovered																					
	<u> </u>			С	omment	s:					С	omment	s:					С	omment	s:		
		12/18/20	Skid from TIH, drill o 800gpm, 1	ut shoe tra	Nipple up te ck perform					Drilling ahe to drilling vi 10bbls.	ead on late v/400gpm \$					1/1/21						
4,268		12/19/20	Drilling ah Transfer m		rmediate so			op.	12/26/20							1/2/21						
	-	12/20/20	TD 9937', Rig up Ca in the pits	sing tools a	and run 7 5/				12/27/20							1/3/21						
		12/21/20	Casing on returns and rams, testi	d discharge	rculate, full 31bbls of				12/28/20							1/4/21						
		12/22/20	Pick up Differmation.						12/29/20							1/5/21						
		Drilling ahead into lateral. Loosing OBM into formation. 12/23/20 Pumping 30ppb LCM every connection, and adding LCM active system														1/6/21						
		12/24/20			ral seciton.	Continue	to losse m	ud to	1													

St Martinville, LA 70582

TEL: (337) 394-1078

95.0° 10,122' TVD

Operator MAGN	GAS		TERSO)N		YETTE			art Date /08/20	24 hr	484 ft		Drilled Depth 17,167 ft				
Well Name and No.	AT TIRE	E A-1H		Rig Name ar	248		State T I	Spud Date	/11/20	Currer	nt ROP	A	ctivity Circ	е			
Report for				Report for			Field / OSC-G	Fluid Type		Circula	ating Rate		Circulating Pressure				
KEVIN B					ol Push	ner	GID		ОВМ			1	4,204 psi				
		1	RTY SPECI	l			MUD VOLUME (BBL)				IMP #1		PUMP #2		RISER BOOS		
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits			Liner Siz					Liner Size		.75
8.5-10.6	5-20	5-15		±250K	<10 <20	<10	In Hole		7 bbl 9 bbl	Stroke	1:			2	Stroke		12
		UD PRO	PERTIES				Active	bbl/stk	0.06			625	25 bbl/stk)625		
Time Sample	Taken			2:00		11:00	Storage	e <u>207</u>	' <u>4 bbl</u>	stk/min	7	6 stk	/min 7	7	stk/min		
Sample Locat	ion			suction		suction	Tot. on Loc	ation 339	3 bbl	gal/min	19	9 gal	/min 20	02	gal/min		
Flowline Temp	oerature °	F		115 °F		116 °F	Mud Wt. =	= 8.6 P\	V=8	YP=7	CIF	RCULATIO	ON DATA	r	n = 0.617	K =	163.5
Depth (ft)				16,490'		17,163'	Bit D	epth = 17	,167 '		Wash	out = 1%	ı	Pump E	fficiency	= 95%	%
Mud Weight (բ	ppg)			8.6		8.6	Drill String	Volume	to Bit	242.7 bb	ol Str	okes To Bit	3,885	Ti	me To Bi	25	min
Funnel Vis (se	ec/qt)		@ 75 °F	48		46	Disp.	Bottoms L	Jp Vol.	444.0 bk	ol Botto	msUp Stks	7,108	Bottom	sUp Time	46	min
600 rpm				23		25	96.1 bbl	TotalCi	rc.Vol.	1318.7 b	bl To	alCirc.Stks	21,110	Total (Circ. Time	138	3 min
300 rpm				15		16		DRILLIN	G ASS	SEMBLY	DATA		S	OLIDS	CONTR	OL	
200 rpm				11		12	Tubulars	OD (in.)	ID	(in.) L	ength	Тор	Unit		Screens	Но	ours
100 rpm				8		9	Drill Pipe	4.500	3.8	326 14	4,457'		Shaker	1	140-80	12	2.0
6 rpm				5		5	AGITATOR	5.000	2.0	000	24'	14,457'	Shaker	2	140-80	12	2.0
3 rpm				4		4	Drill Pipe	4.500	3.8	326 2	2,557'	14,480'	Shaker	3	140-80	12	2.0
Plastic Viscos	ity (cp)		@ 150 °F	8		9	Dir. BHA	5.250	2.2	250	130'	17,037'	Dryer Sha	ker 3	140	12	2.0
Yield Point (lb.	/100 ft ²)		T0 = 3	7		7		CASI	NG & I	HOLE DA	TA						
Gel Strength ((lb/100 ft²)) 10) sec / 10 min	5/9		5/8	Casing	OD (in.)	ID	(in.) E	Depth	Тор	Centrifug	ge 1			
Gel Strength ((lb/100 ft2	2)	30 min	12		11	Riser						VOLUM	IE ACC	OUNTIN	G (bb	ıls)
HTHP Filtrate	(cm/30 m	nin)	@ 250 °F	7.0		6.6	Surface	10 3/4		3	3,105'		Prev. T	otal on	Location	3	460.4
HTHP Cake T	hickness	(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.8	375 9	,924'		Transfe	rred In	(+)/Out(-)	1	
Retort Solids (Content			8%		8%	Washout 1							Oil A	dded (+)	١	28.6
Corrected Soli	ids (vol%))		6.1%		6.1%	Washout 2						ı	Barite A	dded (+))	
Retort Oil Con	ntent			69%		69%	Open	Hole Size	6.8	318 17	7,167'		Other Pr	oduct L	Jsage (+))	
Retort Water (Content			23%		23%	ANI	NULAR G	EOME	TRY & R	HEOLO	GY	\	Nater A	dded (+))	
O/W Ratio				75:25		75:25	annula	r .		velocity	/ flow	ECD	Le	ft on Cu	uttings (-)	1	-21.9
Whole Mud Cl	hlorides (ı	mg/L)		47,000		48,000	section	I GE	epth	ft/min	reg	lb/gal	(Centrifu	ge/Evap		
Water Phase	Salinity (p	ppm)		242,674		246,564		.		<u>!</u>	!		Lo	st To F	ormation	l	-74.5
Whole Mud Al	lkalinity, F	Pom		2.0		2.1	6.875x4	.5 9,9	924'	364.2	turb	9.41	Est. T	otal on	Location	3	392.7
Excess Lime ((lb/bbl)			2.6 ppb		2.7 ppb	6.818x4	.5 14,	457'	375.0	turb	9.75	Est. Loss	ses/Gai	ns (-)/(+)		0.0
Electrical Stab	oility (volts	s)		425 v		405 v	6.818x	5 14,	480'	457.9	turb	9.75	BIT	HYDRA	ULICS	DATA	
Average Spec	ific Gravit	ty of Sol	lids	2.49		2.40	6.818x4	.5 17,	037'	375.0	turb	9.98	Bit H.S.I.	Bit ∆	P Noz	zles (3	2nds)
Percent Low 0	Gravity So	olids		5.6%		6%	6.818x5.	25 17,	167'	519.9	turb	10.01	0.38	58 p	si 18	18	18
ppb Low Grav	ity Solids			46 ppb		49 ppb							Bit Impact	Nozz		18	18
Percent Barite				0.5%		0.2%							Force	Veloc (ft/se	-		
ppb Barite				7 ppb		2 ppb	BIT D	ATA	Ма	nuf./Type	Halli.	/GTD64M	155 lbs	86	<i>'</i>	1	
Estimated Tot	al LCM in	System	<u> </u>				Size	Depth In			ootage	ROP ft/hr	Motor/M	WD (Calc. Cire	. Pres	ssure
Sample Taker				A. ROMAN		M.Meehan	6 3/4	9,937 ft			230 ft	91.5	2,100 p			14 psi	
Afternoon Dom				<u> </u>					1				<u> </u>		,	•	

Afternoon Remarks/Recommendations:

Pump 20 bbl sweep every connection. Sweep Contains:

10 ppb First Response, 10 ppb magnafiber and 10 ppb Veriseal $\,$

Afternoon Rig Activity:

Drilled 6-3/4" lateral hole section to TD @ 17167 ft. Pumped a series of three 30 $\,$ bbl LCM sweeps in tandem. Currently circulating the hole clean for 6 times bottom's up. Will backream out of hole prior to spotting a 16 lb/gal mud cap.

OUTSOURCE FLUID SOLUTIONS LLC.

11.1° 2,969' TVD

Operator MAGI	NOLIA	OIL & 0	GAS	Contractor PA1	TERSO	ON	County / Parish /	Block YETTE	Engineer 1	Start D:		24 hr ff	tg. 484 ft		Drilled Depth 17,167 ft			
	AT TIRE	E A-1H		Rig Name an	248			EXAS			2/11	1/20	Curren	81 ft/hr		Activity	РО	_
Report for KEVIN B	LIDT / E		CWIN	Report for	ol Pusi		Field / OCS-G #	DIGNS	Fluid Type Circ				Circulating Rate 394 gpm			Circulating Pressure 4,204 psi		
VEAIN D						ier		_				PUMP #2		RISER BOOSTER				
Maria da	ı		RTY SPECIF	l 1		LITUD		LUME (BE		PUMP #1			1					
Weight	PV	YP	E.S.	CaCl2	GELS	HTHP	In Pits		748 bbl 764 bbl		Size	4.75			75			4.75
8.5-10.6	5-20	5-15	>350	±250K	<10 <20	<10	In Hole			Strol		12			2	Stro		12
Time Comple	Talian			12/26/20		12/24/20	Active		7 bbl	bbl/s		0.0625			625	bbl/		0.0625
Time Sample				2:00		11:00	Storage		7 bbl	stk/n		75			75	stk/i		0
Sample Locati				suction		suction		cation 343		gal/n		197			97	gal/i		0
Flowline Temp	perature "	F		47.400		116 °F		PHHP = 96				RCULATI			D			K = 212.503
Depth (ft)				17,163'		17,163'	Bit i	Depth = 3,0		44.0		Vashout:			Pump			
Mud Weight (p	. 07		0.70.05	8.7		8.6	Drill String Disp.	Volume					To Bit			Time 7		4 min
Funnel Vis (se	ec/qt)		@ 70 °F	47		46		Bottoms U				Bottomsl				msUp		8 min
600 rpm				24		25	18.8 bbl			866.9			rc.Stks			I Circ.		93 min
300 rpm				16		16	T. I. I.	DRILLING					F		OLIDS			
200 rpm				12		12	Tubulars	OD (in.)		(in.)	Len		Гор	Unit		Scre		Hours
100 rpm				8		9	Drill Pipe	4.500		826	29		0'	Shaker		140		24.0
6 rpm				5		5	AGITATOR	5.000		000	24		290'	Shaker		140		24.0
3 rpm			0 1	4		4	Drill Pipe	4.500		826	2,5		313'	Shaker		140		24.0
Plastic Viscosi			@ 150 °F	8		9	Dir. BHA			250	13	50' 2	,870'	Dryer Sha	ker 3	14	Ю	24.0
Yield Point (lb/			T0 = 3	8		7				HOLE D								= 0
Gel Strength () sec/10 min	5/8		5/8	Casing	OD (in.)	ID	(in.)	De _l	oth	Гор	Centrifuç				5.0
Gel Strength (30 min	12		11	Riser	40.044				051	01	VOLUN				
HTHP Filtrate	•		@ 250 °F	7.0		6.6	Surface	10 3/4			3,1		0'	Prev. T				3460.4
HTHP Cake T		(32nds)		2.0		2.0	Int. Csg.	7 5/8	6.	875	9,9	24'	0'	Transfe		. ,	` '	
Retort Solids (9%		8%	Washout 1									Adde		40.4
Corrected Soli				7.2%		6.1%	Washout 2								Barite		` '	17.4
Retort Oil Con				70%		69%		Hole Size		818	17,1			Other Pr		Ū	` ,	3.0
Retort Water (Content			21%		23%	ANI	NULAR GE	OME	TRY &	RHEC	DLOGY			Water		` ,	20.0
O/W Ratio				77:23		75:25	annular section		eas. epth	veloo ft/m			ECD o/gal		ft on C	•	,	-21.9
Whole Mud Ch	•			45,000		48,000	30011011	u	γι	10111		iog ii	"gai		Centrif	•		-20.0
Water Phase S				251,507		246,564									ost To			-60.6
Whole Mud Al		om		1.8		2.1	6.875x4.		90'	357			9.56		otal o		-	3438.9
Excess Lime (2.3 ppb		2.7 ppb	6.875x5		13'	433			9.67	Est. Los				0.0
Electrical Stab		,		430 v		405 v	6.875x4.		370'	357			9.59		HYDR			
Average Spec			ds	2.50		2.40	6.875x5.2	25 3,0	000'	489	.5	turb !	9.71	Bit H.S.I.	Bit	-	I	es (32nds)
Percent Low G		lids		6.6%		6%								0.36	56		18	18 18
ppb Low Gravi				54 ppb		49 ppb								Bit Impact Force	Noz Velo	city	18	18 18
	Percent Barite			0.6%		0.2%			ı					_ (n		ec)		-
ppb Barite				9 ppb		2 ppb	BIT D			anuf./Ty	•	Halli./GT		151 lbs	8			
Estimated Tota		System	ppb		_		Size	Depth In		ours	Foot		P ft/hr	Motor/M'		Calc		Pressure
Sample Taken	Ву			A. ROMAN	0	M.Meehan	6 3/4	9,937 ft	8	5.0	7,71	4 ft !	8.00	2,100	psi		2,617	psi

Remarks/Recommendations:

OBM RECEIVED: 4486bbls

OBM ON SURFACE--- 2675 bbls (Storage + Active)

OBM LOSS/GAIN-- Total (_-61bbls_)

Rig Activity:

On the Past 24hrs: Drilled to TD 17,167'MD / 10,120'TVD. Initiate Clean up Cycle, Pump 3 / 30bbls sweeps in tandem and circulate for 6 BU. (SWEEP: 30ppb - First Response/SynSeal/Magmafiber/Varyseal). Completed Circulation and start POOH wash & ream up to Casing shoe (9,924'). At the shoe, Circulate BU, Perform Flow Ck, spot 16ppg OBM 48bbls out the bit for Mud Cap. POOH 10 stands and ck flow. Well in static conditions, Pump slug and continue to POOH to lay down BHA and start casing run. At this time: Continue POOH passing 3000'.

Е	ng. 1:	N	/latt N	1eeha	ın	Er	ng. 2:	Adolf	o Roman	WH 1:	MIDLAND	WH 2:	WH #2	Rig Phone:	Daily Total	Cumulative Cost
Р	hone:	98	85-35	1-756	31	Pł	none:	956-8	321-9994	Phone:	432-686-736	1 Phone:	-			
W 1	P 1	Y 1	E 1	C 1	g 1	G 1	H 1	O 1	carefully	and may be	used if the use		ver, no represent	n, has been prepared tation is made as to the	\$5,400.00	\$138,475.29
												INCLU	DING 3RD PA	ARTY CHARGES	\$8,184.72	\$239,614.37

MATERIAL CONSUMPTION

Date 12/26/20	Operator MAG I	NOLIA OIL		Well Name a	ind No. A T TIRE A- 1	IH	Rig Name an	Report No. Repo	rt #14
	DAILY	USAGE 8	COST	I			I		LATIVE
		00,102	1	<u> </u>	Closing	Doily	<u> </u>		
Item	Unit	Unit Cost	Previous Inventory	Received	Inventory	Daily Usage	Daily Cost	Cum Usage	Cum Cost
SAPP (50)	50# sk	\$44.56						44	\$1,960.64
PHPA LIQUID (pail)	5 gal	\$41.36							
EVO-LUBE	gal	\$14.00							
NEW GEL (PREMIUM)	100# sk	\$19.75							
ALUMINUM TRISTEARATE	25# sk	\$162.83							
CACL2 (50)	50# sk	\$14.32	112		112			326	\$4,668.32
LIME (50)	50# sk	\$5.00	150		100	50	\$250.00	300	\$1,500.00
OPTI - G	50# sk	\$30.59	200		200			160	
BENTONE 38 (50)	50# sk	\$163.94	25		25			11	\$1,803.34
BENTONE 910 (50)	50# sk	\$59.40	10		40			14	\$831.60
BENTONE 990 (50) OPTI - MUL	50# sk	\$83.59 \$10.75	10 330		10 330			14 330	
OPTI - WET	gal gal	\$8.34	385		385			330	
NEW PHALT	50# sk	\$38.72	200		200			150	
OIL SORB (25)	25# sk	\$4.75	70		70			10	\$47.50
NEWCARB ULTIMIX	50# sk	\$6.35	120		120				
NEW CARB (M)	50# sk	\$5.25	60		60			100	\$525.00
CYBERSEAL	25# sk	\$21.47							<u>.</u>
MAGMAFIBER F (25)	25# sk	\$28.05	240		240			173	\$4,852.65
MAGMAFIBER R (30)	30# sk	\$28.05	38		38			50	₾4 22E 00
VARISEAL FIBER PLUG	50# sk 30# sk	\$26.50 \$30.37	30		30			50	\$1,325.00
NUT PLUG M (50)	50# sk	\$12.04	80		80				
NOT FLOG IVI (50)	30# SK	\$12.04	80		00				
NEW WATE (SACK BARITE)	100# sk	\$11.50	180		180				
BARITE BULK (100)	100# sk	\$7.00	1450		1200	250	\$1,750.00	2391	\$16,738.40
OPTI DRILL (OBM)	bbl	\$65.00	3200		3184	16	\$1,040.00	706	\$45,890.00
DISCOUNTED OBM	bbl	\$15.00	255		255			137	\$2,055.00
	ı	i							
							1	1	
ENGINEERING (24 HR)	each	\$925.00				2	\$1.850.00	28	\$25 900 00
ENGINEERING (24 HR) ENGINEERING (DIEM)	each bbl	\$925.00 \$30.00					\$1,850.00 \$60.00	28	\$25,900.00 \$840.00
ENGINEERING (DIEM)	bbl	\$30.00				2 2 450	\$60.00	28	\$840.00
` '	+					2	\$60.00		\$840.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00	28	\$840.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00	28	\$840.00
ENGINEERING (DIEM)	bbl	\$30.00				2	\$60.00	28	\$840.00 \$2,339.00
ENGINEERING (DIEM) ENGINEERING (MILES)	bbl each	\$30.00 \$1.00				2	\$60.00	28 2339	\$840.00 \$2,339.00
ENGINEERING (DIEM) ENGINEERING (MILES) TRUCKING (cwt)	bbl each	\$30.00 \$1.00 \$2.65				2	\$60.00	28 2339	\$840.00 \$2,339.00
ENGINEERING (DIEM) ENGINEERING (MILES) TRUCKING (cwt) TRUCKING (min)	each each	\$30.00 \$1.00 \$2.65 \$795.00				2	\$60.00	28 2339 3243	\$840.00 \$2,339.00 \$8,594.48
ENGINEERING (DIEM) ENGINEERING (MILES) TRUCKING (cwt) TRUCKING (min) PALLETS (ea)	each each each each	\$30.00 \$1.00 \$2.65 \$795.00 \$12.00	ub-Total \$5			2	\$60.00 \$450.00	28 2339 3243 18 18	\$840.00 \$2,339.00 \$8,594.48 \$216.00

THIRD PARTY COST SHEET

Date	Operator			Well Name a	ind No.		Rig Name ar	d No.	Report No.			
12/26/20	MAG	NOLIA OIL	& GAS	FA	T TIRE A-	1H	2	248 Report #1				
	DAILY	USAGE 8	& COST						СПМП	LATIVE		
Item	Unit	Unit Cost	Previous Inventory	Received	Closing Inventory	Daily Usage	Daily Cost		Cum Usage	Cum Cost		
TURBO CHEM / FIRST RESPONSE	25# sk	\$41.75	270		270				180	\$7,515.00		
TURBO CHEM / SYNSEAL	25# sk	\$81.00	30		30				70	\$5,670.00		
Diesel Transfer from B 1H	gal	\$1.63								\$10,386.36		
Diesel Received 12-17-18	gal	\$1.66							-	\$18,094.00		
Diesel Received 12-19-20	gal	\$1.67								\$11,690.00		
Diesel Received 12-20-20	gal	\$1.68								\$24,192.00 \$7,943.00		
Diesel Received 12-21-20 Diesel Received 12-22-20	gal	\$1.69 \$1.65								\$7,943.00		
Diesel Received 12-22-20 Diesel Received 12-23-20	gal gal	\$1.65 \$1.64			3502	1609	\$2,784.72		2298			
Diesel Received 12-25-20	gal	\$1.64		7000			Ψ2,104.12		2230	ψυ, 1 υυ. 1 Ζ		
Dieser Received 12 25 25	gai	Ψ1.00		7000	7000							
				_	Daily S	ub-Total \$2	2,784.72		\$101, ⁻	139.08		
		ulotine T : :	I AEC O O C	Dorter #000	614.27							
	Cumi	native Total	I AES & 3rd	Party \$239	,014.3/							
		<u></u>	<u></u>									

OUTSOURCE FLUID SOLUTIONS LLC.

Operator: Rig Name: MAGNOLIA OIL & GAS

Rig Name: 248
Well Name: FAT

FAT TIRE A-1H

					WEEK 1					WEEK 2							WEEK 3								
	Date	12/18/20	12/19/20	12/20/20	12/21/20	12/22/20	12/23/20	12/24/20	12/25/20	12/26/20	12/27/20	12/28/20	12/29/20	12/30/20	12/31/20	1/1/21	1/2/21	1/3/21	1/4/21	1/5/21	1/6/21	1/7/21			
		Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Thu			
	Bit Size	9 7/8	9 7/8	9 7/8	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4	6 3/4															
Grand	Starting Depth	3,105	3,201	9,745	9,937	9,937	10,226	12,235	15,063	16,683	17,167														
Totals	Ending Depth	3,201	9,745	9,937	9,937	10,226	12,235	15,063	16,683	17,167															
14.062	Footage Drilled	96	6,544	192	_	289	2,009	2,828	1,620	484	_	_	_	-	-	-	-	_	_	-	-	_			
,	New Hole Vol.	9	620	18	_	13	89	125	72	21	_	-	_	_	-	-	-	_	-	_	-	-			
00.	Starting System Volume	329	2,150	2,701	2,975	2,968	2,951	2,970	3,561	3,460	3,403	3,403	3,403	3,403	3,403	3,403	3,403	3,403	3,403	3,403	3,403	3,403			
03	Chemical Additions	6	,	2,701	-	7	3	17	19	3,400	3,403	3,403	3,403	3,403	3,403	3,403	3,403	3,703	3,403	3,403	3,403	3,403			
	Base Fluid Added	13	38 409	117	118	33	247	139	158	40												+			
	Barite Increase	- 13	43	34	-	-	73	-	-	17												+			
	Weighted Mud Added	1,813	463	225	-	-	1,141	697	-	-												+			
•	Slurry Added	1,013	-	- 225	-	-	1,141	- 097	-	-												+			
	Water Added	-	240	-	-	-	103	70	- 75	20												+			
500	Added for Washout		240	-	-	-	103	70	7.5	20															
		4 004	4 400	-	- 440		4 505	-	-	-															
-,	Total Additions	1,831	1,193	375	118	41	1,567	923	252	81	-	-	-	-	-	-	-	-	-	-	-	-			
	Surface Losses	-	-	-	50	29	-	-	-	-															
	Formation Loss	-	-	-	-	-	1,057	204	256	96															
	Mud Loss to Cuttings	10	506	20	-	13	91	128	73	22															
	Unrecoverable Volume	-	86	50	-	-	-	-	-	-															
216	Centrifuge Losses	-	50	32	75	16	-	-	24	20															
2,906	Total Losses	10	642	102	125	58	1,148	332	353	138	-	-	-	-	-	-	-	-	-	-	-	-			
400	Mud Transferred Out						400																		
3,403	Ending System Volume	2,150	2,701	2,975	2,968	2,951	2,970	3,561	3,460	3,403	3,403	3,403	3,403	3,403	3,403	3,403	3,403	3,403	3,403	3,403	3,403	3,403			
-	Mud Recovered																								
				С	omment	s:			Comments:									С	omment	s:					
				the B 1H. N					Drilling ahead on lateral, 100%chalk. Short Trip 10stands. Back																
		12/18/20	TIH, drill o 800gpm, 1		ck perform	FIT. Start o	drilling Inter	mediate.	12/25/20 to drilling w/400gpm Seepage noted. Sweep every connection 10bbls.							1/1/21									
									Drillied to TD, 17167'. Circulate hole clean, Wash & Ream up to							to									
4,268		12/19/20	Drilling ahe Transfer m	ead on inte nud from sto	rmediate so orage to ac	ection. 800 tive and sw)gpm, 400rd veeps.	op.	12/26/20 Casing shoe, Circulate BU, monitor Casing pressure, Pump 48bbl of 16ppg Kill mud and spot same out the bit. POOH						oump .	1/2/21									
	J		TD 9937',													+									
		12/20/20	Rig up Cas in the pits			8" casing ir	n the hole.	Cut MW	12/27/20							1/3/21									
		12/21/20	Casing on returns and	Bottom, Ci	rculate, full	returns. C	ement with	full	12/28/20							1/4/21									
		12/21/20	rams, testi		70 10010 01	орассії ОВ	W monace	. Onlango	12/20/20							17-7/21									
	Pick up DP, tag float collar. Drill out shoe track + 10' new formation. FIT to 13EMW. Resume drilling on curve section.							new ection.	12/29/20							1/5/21									
		12/23/20	Drilling ahe Pumping 3 active syst						12/30/20							1/6/21									
		Drilling ahead on lateral seciton. Continue to losse mud to formation. More when GPM increase to 400gpm. Pumping sweeps every 200'.								12/31/20						1/7/21									