Technische Universität Berlin

Fakultät II – Institut für Mathematik Hoffmann/Karow/Scheutzow WS 07/08 18. Februar 2008

Februar – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorna	me:				
MatrNr.:	Studi	engang	:			
Neben einem handbeschriebenen A4 zugelassen.	Blatt r	nit No	tizen s	ind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die vollständigen Rechenweg an.	Rechei	naufgal	oen. G	eben S	Sie imn	ner den
Die Bearbeitungszeit beträgt eine Stu	nde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 12				,	·	
Korrektur						
	1	2	3	4	5	\sum
				i	I	

1. Aufgabe 8 Punkte

Finden Sie alle Extrema der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R},$$

 $(x,y) \mapsto 2x^2 + 2xy + 3y^2 - 6x - 8y + 1$

und geben Sie jeweils an, ob es sich um ein lokales oder globales Maximum oder Minimum handelt und ob dieses strikt ist.

2. Aufgabe 5 Punkte

Bestimmen Sie die Richtung des stärksten Anstiegs der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto (x-1)y^2$

im Punkte (1,1). Wie groß ist die Richtungsableitung bezüglich des Vektors, welcher in Richtung des stärksten Anstiegs zeigt und Betrag 1 hat?

3. Aufgabe 8 Punkte

Es sei B die durch y = x, xy = 1 und y = 2 eingeschlossene beschränkte Teilmenge des \mathbb{R}^2 .

- a) Skizzieren Sie die Menge B.
- b) Berechnen Sie das Volumen des auf B stehenden Zylinderabschnitts mit Deckelfläche $z = y^2/x^2$, welches durch

$$V = \iint_{B} \frac{y^2}{x^2} \, dx \, dy$$

gegeben ist.

4. Aufgabe 10 Punkte

Es sei das Vektorfeld $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ gegeben durch $\vec{v}(x,y,z) = \begin{pmatrix} 3x-1\\ 3y-2\\ 3z-1 \end{pmatrix}$. Weiterhin sei der Weg $\vec{\gamma}: [0,1] \to \mathbb{R}^3$ via $\vec{\gamma}(t) = \begin{pmatrix} t\cos^2(1-t)\\ 2\sqrt{t}\\ 1-2^t\sin(\frac{\pi}{2}(2t+1)) \end{pmatrix}$ für $0 \le t \le 1$

gegeben. Berechnen Sie

$$\int_{\vec{\gamma}} \vec{v} \cdot \vec{ds}.$$

Hinweis: Untersuchen Sie, ob \vec{v} ein Potentialfeld ist.

5. Aufgabe 9 Punkte

Berechnen Sie die Oberfläche des Kegels, welcher den in der xy-Ebene liegenden Kreis mit Radius 1 und Mittelpunkt (0,0,0) als Grundfläche hat und dessen Spitze im Punkt (0,0,1) liegt.