quizes.md 6/14/2022

Program Verification - Quizes

PV-C01-Quiz1
Q1. Which of the followings are not formal verification methods?
 model checking abstract interpretation number theory type systems
Q2. What are the kinds of program analysis?
 static & dynamic analysis robust analysis easy-peasy analysis introspect analysis
Q3. How is static analysis of a program performed?
 while running the program without running the program after the execution of the program none of the above
PV-C02-Quiz1
Q1. Hoare logic
 assumes termination proves termination implies termination none of the above
Q2. A loop invariant must hold
 throughout the execution of the loop body between loop iterations never holds none of the above

Q3. Consider the assertions P = (x > 1) and Q = (x = 7). Which of the following is true?

- P is stronger than Q
- P is weaker than Q
- Q is weaker than P
- P and Q are unrelated

PV-C03-Quiz1

quizes.md 6/14/2022

Q1. Which of the followings is true for Weakest Precondition calculus?
 Given a precondition P, some code C, and postcondition Q, it establishes if the Hoare triple {P} C {Q} is true. Given some code C and a precondition P, it finds some unique Q which is the weakest postcondition
for C and P.
 Given some code C and a postcondition Q, it finds all P such that the Hoare triple {P} C {Q} is true. Given some code C and a postcondition Q, it finds the unique P which is the weakest precondition for C and Q.
Q2. What does it mean total correctness?
 it is equivalent with partial correctness it is equivalent with termination and partial correctness it is equivalent with termination none of the above
Q3. What is the rule for sequences in Weakest Precondition calculus?
 wp(C1; C2,Q) ≡ wp(C1,wp(C2,Q)) wp(C1; C2,Q) ≡ wp(C2,wp(C1,Q)) wp(C1; C2,Q) ≡ wp(C1,Q) wp(C1; C2,Q) ≡ wp(C2,Q)
PV-C04-Quiz1
Q1. In the Weakest Precondition calculus, finding a loop invariant is
 easy done in PTIME undecidable done in EXPTIME
Q2. How is a state represented in Separation logic?
 Store Heap Store x Heap none of the above
Q3. What is aliasing?
 two different program variables containing the same location two commands with the same semantics when a program variable is recaptured none of the above
PV-C05-Quiz1
Q1. What is a SAT solver?

ullet an imperative programming language

 a program that automatically decides whether a propositional formula is satisfiable a functional programming language an algorithm for computing the CNF of a formula
Q2. Which of the following formulas is in CNF, where - stands for negation of a variable?
 (p V -q) ∧ (r / p) (p ∧ -q) / (r ∧ p) p V -q / (r ∧ p) none of the above
Q3. Which of the followings is the representation as vectors of vectors of literals for the CNF formula $(x1/x2) \land (-x2/x3)$, where - stands for negation?
 [[1,2],[-2,3]] [1,2,-2,3] [1,2,3] [[-1,-2],[2,3]]
PV-C07-Quiz1
Q1. Consider a first-order signature with a constant symbol a, a function symbol f of arity 1, and a predicate symbol P of arity 1. Which of the followings is a term?
 P(a) f(f(a)) P(a) -> f(a) f(P(a)) Q2. Consider a first-order signature with a constant symbol a, a function symbol f of arity 1, and a predicate
symbol P of arity 1. Which of the followings is an atomic formula in first-order logic?
 P(a) f(f(a)) P(a) -> f(a) P(P(a))
Q3. Consider a first-order signature with a constant symbol a, a function symbol f of arity 1, and a predicate symbol P of arity 1. Which of the followings is a formula in first-order logic?
 P(a) / P(f(a)) f(f(a)) P(a) -> f(a) P(P(a))
PV-C08-Quiz1
Q1. For what can we use the Nelson-Oppen method?
 to solve the SAT problem for static analysis

quizes.md 6/14/2022

 for combining theory solvers
 none of the above
Q2. In symbolic execution, at the beginning of the analysis, the path constraint is
• undefined
 a random first-order formula
 the syntactic symbol for true
 the syntactic symbol for false
Q3. What is concolic execution good for?
solving the SAT problem
 driving the symbolic execution
 combining theory solvers
 none of the above