Aufgabe 2

- (a) Sei $x \in \text{Ann}(N+P)$. Dann gilt $x \cdot (n+p) = 0 \forall n \in N, p \in P$. Für p = 0 erhalten wir daraus $xn = 0 \forall n \in N$, also $x \in \text{Ann}(N)$. Analog folgt $x \in \text{Ann}(P)$. Insgesamt folgt $x \in \text{Ann}(P) \cap \text{Ann}(N)$. Sei andererseits $x \in \text{Ann}(P) \cap \text{Ann}(N)$. Dann gilt $x(n+p) = xn + xp = 0 \forall n \in N, p \in P$, also $x \in \text{Ann}(N+P)$.
- (b) Sei $x \in \text{Ann}((N+P)/N)$. Das ist äquivalent zu $\forall n \in N, p \in P : x(n+p) \in N$. Da $xn \in N$ sowieso in N liegt, ist dies äquivalent zu $\forall p \in P : xp \in N$, also $p \in (N : P)$.

Aufgabe 4

- (a) Das Nullelement ist gegeben durch (0, ..., 0) und das Einselement durch (1, ..., 1). $(A, 0_A, +_A)$ erbt die Eigenschaften der abelschen Gruppen $(A_i, 0, +)$ und wird damit zur abelschen Gruppe. Assoziativität und Distributivität werden ebenfalls komponentenweise vererbt.
- (b) Es gilt $\pi_i(0_A) = 0$, $\pi_i(x+y) = \pi_i(x) + \pi_i(y)$ und $\pi_i(x \cdot y) = \pi_i(x) \cdot \pi_i(y)$ per Definition der komponentenweisen Addition/Multiplikation.
- (c) Seien $x, y \in \mathfrak{a}_1 \times \cdots \times \mathfrak{a}_n$. Dann gilt $x + y = (x_1 + y_1, \dots, x_n + y_n) \in \mathfrak{a}_1 \times \cdots \times \mathfrak{a}_n$. Sei außerdem $r \in A$. Dann gilt wegen $r_i x_i \in \mathfrak{a}_i$ auch $rx = (r_1 x_1, \dots, r_n x_n) \in \mathfrak{a}_1 \times \cdots \times \mathfrak{a}_n$.
- (d) Wir betrachten ein Ideal $I \subset A$. Sei dann $r_i \in A_i$ und $x_i \neq y_i \in \pi_i(I)$ (besitzt $\pi_i(I)$ nur ein Element, so muss es sich wegen $(0, \ldots, 0) \in \mathfrak{a}_1 \times \cdots \times \mathfrak{a}_n$ um die 0 handeln und $\pi_i(I)$ ist das Nullideal). Wähle dann $r \in A$ mit $r_i = \pi_i(r)$ sowie $x \in \pi_i^{-1}(x_i) \cap I$ und analog $y \in \pi_i^{-1}(y_i) \cap I$. Beide Mengen sind wegen $x_i, y_i \in \pi_i(I)$ nichtleer. Dann gilt $x + y \in I$ und dementsprechend $\pi_i(x + y) = x_i + y_i \in \pi_i(I)$. Insbesondere handelt es sich bei $\pi_i(I)$ um ein Ideal. Offensichtlich ist außerdem $I \subset \pi_1(I) \times \cdots \times \pi_n(I)$.

Sei nun $e_i = (0, \dots, 0, 1, 0 \dots, 0) \in A$, wobei die 1 an der *i*-ten Stelle stehe. Wähle nun $\forall 1 \leq i \leq n : x_i \in \pi_i(I)$ beliebig. Dann existiert für jedes i ein $a \in I$ mit $\pi_i(a) = x_i$, also $(0, \dots, 0, x_i, 0, \dots, 0) = e_i \cdot a$. Es gilt

$$(x_1,\ldots,x_n) = \sum_{i=1}^n \underbrace{e_i \cdot a}_{\in A \cdot I = I} \in I.$$

Daher gilt auch $\pi_1(I) \times \cdots \times \pi_n(I) \subset I$ und es folgt die Gleichheit.

(e) Sei \mathfrak{p} ein Primideal von A. Wir zeigen zunächst, dass $\pi_i(\mathfrak{p})$ stets ein Primideal oder der gesamte Ring ist. Wäre dem nicht so, gäbe es x_i, y_i derart, dass

$$(x_1, \dots, x_{i-1}, x_i y_i, x_{i+1}, \dots, x_n) = (x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) \cdot (x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$$

mit $x_i, y_i \notin \pi_i(\mathfrak{p})$. Dann gilt aber auch

$$(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n),(x_1,\ldots,x_{i-1},y_i,x_{i+1},\ldots,x_n) \notin \mathfrak{p},$$

Widerspruch.

Mit Teilaufgabe (d) folgern wir $\mathfrak{p} = \mathfrak{a}_1 \times \cdots \times \mathfrak{a}_n$, wobei es sich bei \mathfrak{a}_i entweder um ein Primideal oder um den gesamten Ring A_i handelt. Wir behaupten nun, dass $\mathfrak{a}_i \subsetneq A_i$ für genau ein i gelten

muss. Wäre stets $\mathfrak{a}_i = A_i$, so erhielten wir $\mathfrak{p} = A$, was im Widerspruch dazu steht, dass \mathfrak{p} ein Primideal ist. Sei O.B.d.A. $\mathfrak{a}_1 \subsetneq A_1$ und $\mathfrak{a}_2 \subsetneq A_2$. Wähle dann $x_i \in \mathfrak{a}_i$ und für i = 1, 2 $r_i \in A_i \setminus \mathfrak{a}_i$. Es gilt

$$(r_1x_1, r_2x_2, x_3, \dots, x_n)(x_1, \dots, x_n) = (r_1x_1^2, r_2x_2^2, x_3^2, \dots, x_n^2) = (r_1, x_2^2, \dots, x_n^2)(x_1^2, r_2, x_3^2, \dots, x_n^2).$$

Offensichtlich ist $(r_1, x_2^2, \dots, x_n^2), (x_1^2, r_2, x_3^2, \dots, x_n^2) \notin \mathfrak{p}$, da $r_1 \notin \mathfrak{a}_1$ und $r_2 \notin \mathfrak{a}_2$. Das ist ein Widerspruch und es folgt

$$\mathfrak{p} = A_1 \times \cdots \times A_{i-1} \times \mathfrak{p}_i \times A_{i+1} \times \cdots \times A_n = \pi_i^{-1}(\mathfrak{p}_i),$$

wobei \mathfrak{p}_i ein Primideal ist.