

Outcomes

- Understand the historic pressures that created the current telecommunications infrastructure
- Discuss the liberalization of the phone network, the data dominance, and the apperance of mobile communications
- Understand the trend towards a digitized converged network

Trends in communications

- Current telecommunication industry has been the result of different trends in the last 30 years:
 - The saturation of the telephone market, at the end of the 80ies → The phone network
 - The coming of age of the data world, in the early 90ies → The Internet
 - The pervasiveness of mobility, in the mid 90ies
 → Mobility: voice and data

.

Data Communications

- With increasing digitalization of all media, EVERYTHING is data communications
- We live in a Global Village
 - Supported by the Internet

Global computer network

- A comunity of communities
- The "information highway"
- Also known as Cyberspace

Influence books:

- The third wave, Alvin Toffler
- Neuromancer, William Gibson

Internet: history

- In the beginning:
 - Internet: R&D network
 - Homogeneous user community, with values and joint understanding
- Now:
 - Internet is comercial!
 - Internet used for
 - Both work and diversion
 - By people with very different values (if existing...)
- "Comercial" Internet
 - 1989 First commercial ISPs (UUNet and PSI)
 - NSFNet blocked of commercial usage, but creating follow-up commercial service providers
 - In Europe, delay due to discussion on OSI acceptance
 - First ISP comercial (EUNet) only in 1991
 - In Pacific, problems also associated with OSI...
 - First ISP comercial (IIJ) in Japão in 1992

Internet: currently

- Self-organized set of interconnected autonomous components
 - More than 90.000 autonomous domains (with more than 92K numbers allocated)
 - Single guarantee is: network running TCP-IP in the border and BGP as external routing
 - Works by packet switching
 - More than 360 millions of registered domains (URL)!
- Commercial traffic larger than non-commercial
 - Exponential growth in all numbers (number of users, traffic)
- Different machines (networks) can offer different services
 - Each user can select what it uses
- Only bi-direccional media that support communications
 - One to one (unicast, e.g. email); one to many (multi-cast, e.g., electronic news)
- NB: Internet networks are operated AUTONOMOUSLY
 - After connecting to the Internet, the network becomes PART of the Internet

"Data vs voice": packet swithcing vs circuit switching

Packet switching solves everything?

- Great for burst information
 - Resource sharing
 - No cal setup time
- When excessive congestion: delays and losses
 - Needs reliable data transfer protocols
- Providing circuit switching services?
 - For multimedia applications we need bandwidth and delay
 - Problem not yet completely solved

Transport service (operador/ISP) vs applications

Packet loss

- Some apps (audio/video real time) handle losses
- Other applications (file transfer, telnet) require 100% of success in transmission

Bandwidth

- Some applications (multimedia) need a minimum bandwidth to be effective
- Other applications ("elastic applications", ex. email, file transfer) use the bandwidth available

Timing

- Some applications (Internet voice, multiuser games) require low delays to be effective
- Other applications (without real time requirements) do not have strict delays end-to-end.

29

Elastic applications

- Interactive data transfer (e.g. HTTP, FTP)
 - Sensitive to the medium delay, not to rare occurrences
- Bulk data transfer (e.g. mail, news)
 - Not sensitive to delay (generally, between reasonable values)
 - Best effort works...

Applications	Losses	BW	Timing
File transfer	lossless	elastic	no
e-mail	lossless	elastic	no
Web documents	lossless	elastic	no
Real time audio/video	supports	audio: 5K-1Mbps video:10K-5Mbps	
Streamed audio/video	supports	See above	yes, poucos s
Interactive gaming	supports	Some Kbps	yes, 100's mse
Finance applications	lossless	elastic	Yes and no

Mobile environment issues

- Mobile Networks limitations
 - Heterogeneity of multiple independent networks
 - Frequent connection dropouts
 - Limited Bandwidth
- Mobility impose limitations
 - No mobility notion at systems and applications
 - Issues with route maintenance in routers
- Mobile device limitations
 - Small battery lifetime
 - Limited capabilities

What changed

- Voice was very profitable
- Design of networks for voice allowed the design for peak traffic (95% of peak)
 - Voice is very predictable
 Voice systems were easy to build and very profitable to operate.
- Initially, data used only the "margin" of the voice network
 - Data was a small part of traffic
 - Very profitable as well in the beginning, as it was charged at voice costs, paid by big companies, and did not have special infrastructure

Trends: the Internet era

- Internet appeared
 - Public networks transport mosly data
 - Low entry cost in market
 - Huge growth in the data traffic
- Market liberalization impacts:
 - New operators
 - Huge competition in the profitable markets
 - Mobile service
 - Internation services
 - Competition in the data market

49

Trends: the Internet crisis

- Internet Growth
 - Data rose fast to become 70% of traffic...
 - But only 2% of the profit of the traditional operators
 - Very low margins, not easy to invest to expand the network
 - Liberalization helped consumer, but hard on infrastructure
- Huge pressure to reduce the transmission cost, merging all traffic into the same optimized transport infrastructure
 - > This has been a old trend in telecommunication networks (ISDN, BISDN, ATM, MPLS,...)

Trends: the single network

- Mobile networks took over as major communication infrastructure
 - Initially as voice networks, now as data networks
- Reference system for the development of new applications
 - The app economy
 - New web interface designs
 - Novel applications (location) and systems (sensors)