Statistical Inference project

Jochen Schmiedbauer Sunday, January 25, 2015

Background

In this project we will investigate the exponential distribution in R and compare it with the Central Limit Theorem. The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda.

Illustrate via simulation and associated explanatory text the properties of the distribution of the mean of 40 exponentials

1000 simulated distributions with sample size = 40. drawn from exponential distribution with Lambda = 0.2

```
lambda <- 0.2 #as required by project

MeanDistributionExp <- function(amount, size)
    {
    distribution <- NULL
        for (i in 1 : amount) distribution = c(distribution, mean(rexp(size,lambda)))
        return(distribution)
    }

mns <- MeanDistributionExp(1000,40)
simulatedMean <- round(mean(mns),2)
simulatedSD <- round(sd(mns),2)</pre>
```

Simulated versus Theoretical Mean

the

```
## [1] 5.04
is close to the theoretical mean of
round(1/lambda,2)
```

Simulated versus Theoretical Variance

the

[1] 5

simulatedSD

```
## [1] 0.8
```

shows the variability of the 1000 means around the total simulated mean. The SD of the Simulated mean can't be compared to the Theoretical SD

Normality of Simulated distribution of Means

```
hist(mns)
abline(v=simulatedMean, col="blue", lwd=4)
text(simulatedMean+2,225,paste("Sample Mean = ",round(simulatedMean,2)))
```

Histogram of mns

using this simple graphical presentation we can easily see that the simulated distribution of means is approximately normal.