Tutorat: Max Herwig

Modelltheorie

Blatt 11 Abgabe: 23.01.2024, 12 Uhr

Aufgabe 1 (20 Punkte).

In der Graphensprache $\mathcal{L} = \{R\}$ sei \mathcal{K} die Klasse freier Pseudoebenen, d.h. die Klasse aller Graphen \mathcal{A} mit folgenden Eigenschaften:

- Jeder Punkt hat unendlich viele (direkte) Nachbarn.
- Es gibt keine nicht-triviale abgeschlossene Pfade, d.h. es gibt keine Folge (x_0, \ldots, x_{n+1}) mit $n \geq 2$, $x_0 = x_{n+1}$, $x_i R x_{i+1}$ für alle $0 \leq i \leq n$ und $x_i \neq x_j$ für all $0 \leq i < j \leq n$.
- a) Gib eine Axiomatisierung T der Klasse \mathcal{K} an. Ist \mathcal{K} nicht leer? (Ein Bild genügt).
- b) Hat T Quantorenelimination? **Hinweis:** Nimm zwei Punkte.

Eine Teilmenge C einer freien Pseudoebene A heißt pfad-abgeschlossen (in A), wenn je zwei Punkte a und b aus C durch einen Pfad mit Knoten aus C verbunden sind, falls sie durch einen Pfad aus A verbunden waren.

- c) Zeige, dass elementare Unterstrukturen einer freien Pseudoebene \mathcal{A} pfad-abgeschlossen in A sind.
- d) Sei C pfad-abgeschlossen in der freien Pseudoebene \mathcal{A} und b ein Element aus A. Zeige, dass $C \cup \{b\}$ auch pfad-abgeschlossen ist, wenn es keinen Pfad zwischen b und Elemente aus C gibt.
- e) Des Weiteren, falls P ein Pfad zwischen b und dem Element c in der pfad-abgeschlossenen Menge C ist, so ist $C \cup \{x : x \in P\}$ auch pfad-abgeschlossen.
- f) Zeige, dass die Kollektion partieller Isomorphismen zwischen pfad-abgeschlossenen endlich erzeugten Unterstrukturen \aleph_0 -saturierter Modelle von T ein nicht-leeres Back-&-Forth System bildet.
- q) Schließe daraus, dass T vollständig ist.
- h) Sei C pfad-abgeschlossen in \mathcal{A} . Wie groß ist $S_1^{\mathcal{A}}(C)$?
- i) Wie sieht allgemein eine ununterscheidbare Folge $(b_i)_{i\in\mathbb{N}}$ von Elementen aus?
- j) Ist die Formel xRa minimal?

DIE ÜBUNGSBLÄTTER KÖNNEN ZU ZWEIT EINGEREICHT WERDEN. ABGABE DER ÜBUNGSBLÄTTER IM FACH 3.33 IM KELLER DES MATHEMATISCHEN INSTITUTS.