Package 'quantCurves'

October 13, 2022

October 13, 2022
Title Estimate Quantiles Curves
Description Non-parametric methods as local normal regression, polynomial local regression and penalized cubic B-splines regression are used to estimate quantiles curves. See Fan and Gijbels (1996) <doi:10.1201 9780203748725=""> and Perperoglou et al.(2019) <doi:10.1186 s12874-019-0666-3="">.</doi:10.1186></doi:10.1201>
Version 1.0.0
License CeCILL
Encoding UTF-8
RoxygenNote 7.1.2
Imports graphics, KernSmooth, locpol, np, quantreg, quantregGrowth, stats
NeedsCompilation no
Author Sandie Ferrigno [cre, aut], Dounia Essaket [ctb], Arthur Mouchot [ctb], Hugo Breton [ctb], Myriam Maumy [ctb]
Maintainer Sandie Ferrigno <sandie.ferrigno@univ-lorraine.fr></sandie.ferrigno@univ-lorraine.fr>
Repository CRAN
Date/Publication 2022-03-11 10:40:02 UTC
R topics documented:
bandwidth bsplines bSplinesData CentCurv compareCurv fourCurv locNormCst locNormCstData locNormLin

2 bandwidth

polylocLinData	13
polylocLin	12
locNormLinData	11

bandwidth

bandwidth selection function

Description

bandwidth selection function

Usage

```
bandwidth(x, y, method = "CV")
```

Arguments

```
    x the explanatory variable - numeric
    y the response variable - numeric
    method the bandwidth method choice: CV or plug-in. Default is CV.
```

Value

Calculates the bandwidth value using cross validation or plug-in method (for localLin and localCst methods)

```
#create a data frame
example<-data.frame(sample(30:42,10,rep=TRUE),sample(800:5000,10,rep=TRUE))
colnames(example)<-c("Gestational Age in weeks","Weight in gramms")
x<-example$`Gestational Age in weeks`
y<-example$`Weight in gramms`
#calculate the window value
bandwidth(x,y)</pre>
```

bsplines 3

bsplines	Cubic Penalized B-splines quantile regression

Description

Cubic Penalized B-splines quantile regression

Usage

```
bsplines(
    x,
    y,
    lambdas,
    d = 3,
    cents = c(0.03, 0.25, 0.5, 0.75, 0.97),
    leg = TRUE,
    axes.lab = NULL
)
```

Arguments

X	the explanatory variable - numeric
у	the response variable - numeric
lambdas	tunes the tradeoff between the goodness of fit and the regularity of the spline - numeric value or numeric vector
d	differentiation order - 1, 2 or 3. Default is set to d=3.
cents	$numeric\ vector\ that\ represents\ the\ centiles\ calculated.\ Default\ is\ set\ to\ cents = c(0.03, 0.25, 0.5, 0.75, 0.97)).$
leg	Boolean. Should the legend be desplayed (TRUE) or not (FALSE).
axes.lab	NULL or c("Nom_axe_X, Nom_axe_Y").

Value

Plots the curves at centiles selected and returns an object of class gcrq.

```
#create a sample data frame
weights=c(500,600,1000,1150,1200,1260,1240,1300,1370,1500,2000,2100,2150,2500,
2800,2900,3050,3200,2980,3000,3300,3100,3200,3600,3500,3700,3900,3900,4000,
4200,3000,4500,4300,4900,4350,3700,4000)
ages<-c(30,30,30,31,31,31,32,32,32,33,33,33,34,34,34,34,35,35,35,36,36,36,
37,37,37,38,38,38,39,39,39,40,40,40,41,41,41,42)
bsplines(ages,weights,lambdas=50)
```

4 bSplinesData

bSplinesData

Centile curves using B-splines compared to noise data

Description

Centile curves using B-splines compared to noise data

Usage

```
bSplinesData(
    x,
    y,
    lambdas,
    data,
    cents = c(0.03, 0.25, 0.5, 0.75, 0.97),
    leg = FALSE
)
```

Arguments

x the explanatory variable - numeric y the response variable - numeric

lambdas to be set by user. Can be a vector or a single numeric value. Tunes the tradeoff

between the goodness of fit and the regularity of the spline - numeric value or

numeric vector

data the noise data to be compared to

cents A numeric vector that represents the centiles calculated. Default is set to cents=c(0.03,0.25,0.5,0.75,0.97))

leg Boolean. Should the legend be desplayed (TRUE) or not (FALSE).

Value

Plots centile curves with B-splines of different differential orders (d) and displays them on the same figure as the noise data

```
#create a sample data frame
sample<-data.frame(sample(30:42,30,rep=TRUE),sample(800:5000,30,rep=TRUE))
colnames(sample)<-c("Gestational Age in weeks","Weight in gramms")
x<-sample$`Gestational Age in weeks`
y<-sample$`Weight in gramms`
abnormal<-data.frame(sample(30:42,6,rep=TRUE),sample(800:5000,6,rep=TRUE))
colnames(abnormal)<-c("Gestational Age in weeks","Weight in gramms")
bSplinesData(x,y,lambdas=1,abnormal)</pre>
```

CentCurv 5

Centile curves based on one of the different methods

Description

Centile curves based on one of the different methods

Usage

```
CentCurv(
    x,
    y,
    bandwidth.select = "CV",
    method,
    lambdas = 0,
    kernel = locpol::gaussK,
    d = 3,
    cents = c(0.03, 0.25, 0.5, 0.75, 0.97),
    disp_window = FALSE
)
```

Arguments

```
Χ
                  the explanatory variable - numeric
                  the response variable - numeric
bandwidth.select
                  the bandwidth method choice: CV or plug-in. Default is CV.
method
                  str - The method choosen for displaying the curve. Could be: "Local normal
                  constant", "Local normal linear", "Polynomial local" or "B-splines".
lambdas
                  set to 0. To be set if method chosen is "B-Splines". Tunes the tradeoff between
                  the goodness of fit and the regularity of the spline - numeric value or numeric
                   vector
kernel
                  the Kernel function that will be used in the algorithm ("trig", "gauss", "circ",
                   "cubic" or "epan").
                   differentiation order - 1, 2 or 3. Default is set to d=3.
cents
                   A numeric vector that represents the centiles calculated. Default is set to cents=c(0.03,0.25,0.5,0.75,0.97)
                  Boolean. Should the scale of bandwidth be displayed (TRUE) or not (FALSE).
disp_window
```

Value

Plots centile curves according to the chosen method

6 compareCurv

Examples

```
#create an example data frame
weights=c(500,600,1000,1150,1200,1260,1240,1300,1370,1500,2000,2100,2150,2500,
2800,2900,3050,3200,2980,3000,3300,3100,3200,3600,3500,3700,3900,3900,4000,
4200,3000,4500,4300,4900,4350,3700,4000,5000,4300)
age<-c(30,30,30,31,31,31,32,32,32,33,33,33,34,34,34,35,35,35,36,36,36,
37,37,38,38,38,39,39,39,40,40,40,41,41,41,42,42,42)
sample<-data.frame(age,weights)
colnames(sample)<-c("Gestational Age in weeks","Weight in gramms")
x<-sample$`Gestational Age in weeks`
y<-sample$`Weight in gramms`
CentCurv(x,y,method='Polynomial local')
CentCurv(x,y,method='B-Splines',lambdas=1)
```

compareCurv

Centile curves according to different methods

Description

Centile curves according to different methods

Usage

```
compareCurv(x, y, bandwidth.method = "CV", lambdas, data, leg = FALSE)
```

Arguments

x the explanatory variable - numeric
y the response variable - numeric

bandwidth.method

the method chosen to calculate bandwdth. Could be cross validation or Plug-in.

Default is set to CV.

lambdas to be set for "B-Splines". Can be a vector or a single numeric value. Tunes the

tradeoff between the goodness of fit and the regularity of the spline - numeric

value or numeric vector

data the abnormal/external data we want to compare the curves with

leg Boolean. Should the legend be desplayed (TRUE) or not (FALSE).

Value

Plots centile curves with the different methods and displays them on the same figure as the noise data to compare

fourCurv 7

Examples

```
#create a sample data frame
sample<-data.frame(sample(30:42,30,rep=TRUE),sample(800:5000,30,rep=TRUE))
colnames(sample)<-c("Gestational Age in weeks","Weight in gramms")
x<-sample$`Gestational Age in weeks`
y<-sample$`Weight in gramms`
abnormal<-data.frame(sample(30:42,6,rep=TRUE),sample(800:5000,6,rep=TRUE))
colnames(abnormal)<-c("Gestational Age in weeks","Weight in gramms")
compareCurv(x,y,bandwidth.method="Plug-in",lambdas=1,abnormal)</pre>
```

fourCurv

Centile curves based on each of the four different methods

Description

Centile curves based on each of the four different methods

Usage

```
fourCurv(x, y, bandwidth.method = "CV", lambdas)
```

Arguments

bandwidth.method

x the explanatory variable - numeric y the response variable - numeric

the bandwidth method choice: CV or plug-in. Default is CV (for Local Linear

and Local Constant estimators)

lambdas tunes the tradeoff between the goodness of fit and the regularity of the spline -

numeric value or numeric vector (for penalized B-spline estimator).

Value

Four graphs, one for each of the following methods: Local Linear, Local Constant, Cubic Splines and penalized B-splines.

```
#create a sample data frame
weights=c(500,600,1000,1150,1200,1260,1240,1300,1370,1500,2000,2100,2150,2500,
2800,2900,3050,3200,2980,3000,3300,3100,3200,3600,3500,3700,3900,3900,4000,
4200,3000,4500,4300,4900,4350,3700,4000,5000,4300)
age<-c(30,30,30,31,31,31,32,32,32,33,33,33,34,34,34,35,35,35,36,36,36,
37,37,38,38,38,39,39,39,40,40,40,41,41,41,42,42,42)
sample<-data.frame(weights,age)
colnames(sample)<-c("Weight in gramms","Gestational Age in weeks")
x<-sample$`Gestational Age in weeks`
y<-sample$`Weight in gramms`
```

8 locNormCst

```
fourCurv(x,y, lambdas=seq(1,10))
```

locNormCst

Normal local constant estimator

Description

Normal local constant estimator

Usage

```
locNormCst(
    x,
    y,
    bandwidth.method = "CV",
    kernel = locpol::gaussK,
    cents = c(0.03, 0.25, 0.5, 0.75, 0.97),
    disp_window = TRUE,
    leg = FALSE,
    axes.lab = NULL
)
```

Arguments

x the explanatory variable - numericy the response variable - numeric

bandwidth.method

the bandwidth method choice: CV or plug-in. Default is CV.

kernel Kernel used to perform the estimation, see Kernels (from locpol).

cents A numeric vector that represents the centiles calculated. Default is set to cents=c(0.03,0.25,0.5,0.75,0.97))

disp_window Boolean. Should the scale of bandwidth be displayed (TRUE) or not (FALSE).

leg Boolean. Should the legend be desplayed (TRUE) or not (FALSE).

axes.lab NULL or c("Nom_axe_X, Nom_axe_Y").

Value

Plots the centile curves and returns a list object containing bandwidth value and estimated centiles values.

locNormCstData 9

Examples

```
#create an example data frame
weights=c(500,600,1000,1150,1200,1260,1240,1300,1370,1500,2000,2100,2150,2500,
2800,2900,3050,3200,2980,3000,3300,3100,3200,3600,3500,3700,3900,3900,4000,
4200,3000,4500,4300,4900,4350,3700,4000,5000,4300)
age<-c(30,30,30,31,31,31,32,32,32,33,33,33,34,34,34,35,35,35,36,36,36,
37,37,37,38,38,38,39,39,39,40,40,40,41,41,41,42,42,42)
sample<-data.frame(age,weights)
colnames(sample)<-c("Gestational Age in weeks","Weight in gramms")
x<-sample$`Gestational Age in weeks`
y<-sample$`Weight in gramms`
#calculate the centile and plot the curves
locNormCst(x,y, kernel=locpol::gaussK)</pre>
```

locNormCstData

Centile curves using local polynomial compared to noise data

Description

Centile curves using local polynomial compared to noise data

Usage

```
locNormCstData(
    x,
    y,
    bandwidth.method,
    cents = c(0.03, 0.25, 0.5, 0.75, 0.97),
    data,
    leg = FALSE
)
```

Arguments

```
x the explanatory variable - numeric

y the response variable - numeric

bandwidth.method

the method chosen to calculate bandwidth. Could be cross validation or Plug-in.

Default is set to CV.

cents

A numeric vector that represents the centiles calculated. Default is set to cents=c(0.03,0.25,0.5,0.75,0.97)

data

the noise data we want to compare

leg

Boolean. Should the legend be desplayed (TRUE) or not (FALSE).
```

Value

Plots centile curves with local constant polynomial and displays them on the same figure as the noise data to be compared

10 locNormLin

Examples

```
#create an example data frame
example<-data.frame(sample(30:42,50,rep=TRUE),sample(800:5000,50,rep=TRUE))
colnames(example)<-c("Gestational Age in weeks","Weight in gramms")
x<-example$`Gestational Age in weeks`
y<-example$`Weight in gramms`
abnormal<-data.frame(sample(30:42,10,rep=TRUE),sample(800:5000,10,rep=TRUE))
colnames(abnormal)<-c("Gestational Age in weeks","Weight in gramms")
locNormCstData(x,y,bandwidth.method="Plug-in",cents=c(0.03,0.25,0.50,0.75,0.97),data=abnormal)</pre>
```

locNormLin

Normal local Linear estimator

Description

Normal local Linear estimator

Usage

```
locNormLin(
    x,
    y,
    bandwidth.method = "CV",
    kernel = locpol::gaussK,
    cents = c(0.03, 0.25, 0.5, 0.75, 0.97),
    disp_window = TRUE,
    leg = TRUE,
    axes.lab = NULL
)
```

Arguments

cents

```
x the explanatory variable - numeric
y the response variable - numeric
```

bandwidth.method

the bandwidth method choice: CV or plug-in. Default is CV.

kernel Kernel used to perform the estimation, see Kernels (from locpol).

The state of the s

A numeric vector that represents the centiles calculated. Default is set to cents=c(0.03,0.25,0.5,0.75,0.97))

disp_window Boolean. Should the scale of bandwidth be displayed (TRUE) or not (FALSE).

leg Boolean. Should the legend be desplayed (TRUE) or not (FALSE).

axes.lab NULL or c("Nom_axe_X, Nom_axe_Y").

locNormLinData 11

Value

Plots the centile curves and returns a list object containing bandwidth value and estimated centiles values

Examples

```
#create an example data frame
weights=c(500,600,1000,1150,1200,1260,1240,1300,1370,1500,2000,2100,2150,2500,
2800,2900,3050,3200,2980,3000,3300,3100,3200,3600,3500,3700,3900,3900,4000,
4200,3000,4500,4300,4900,4350,3700,4000,5000,4300)
age<-c(30,30,30,31,31,31,32,32,32,33,33,33,34,34,34,35,35,35,36,36,36,
37,37,38,38,38,39,39,39,40,40,40,41,41,41,42,42,42)
sample<-data.frame(age,weights)
colnames(sample)<-c("Gestational Age in weeks","Weight in gramms")
x<-sample$`Gestational Age in weeks`
y<-sample$`Weight in gramms`
#calculate the centile and plot the curves
locNormLin(x,y)
```

locNormLinData

Centile curves using local linear polynomial compared to noise data

Description

Centile curves using local linear polynomial compared to noise data

Usage

```
locNormLinData(
    x,
    y,
    bandwidth.method,
    cents = c(0.03, 0.25, 0.5, 0.75, 0.97),
    data,
    leg = FALSE
)
```

Arguments

```
x the explanatory variable - numeric
y the response variable - numeric
```

bandwidth.method

the method chosen to calculate bandwidth. Could be cross validation or Plug-in.

Default is set to CV.

cents A numeric vector that represents the centiles calculated. Default is set to cents=c(0.03, 0.25, 0.5, 0.75, 0.97)

data the noise data we want to compare

leg Boolean. Should the legend be desplayed (TRUE) or not (FALSE).

12 polylocLin

Value

Plots centile curves with local linear polynomial using a Gaussian kernel and displays them on the same figure as the noise data to be compared

Examples

```
#create a sample data frame
sample<-data.frame(sample(30:42,50,rep=TRUE),sample(800:5000,50,rep=TRUE))
colnames(sample)<-c("Gestational Age in weeks","Weight in gramms")
x<-sample$`Gestational Age in weeks`
y<-sample$`Weight in gramms`
abnormal<-data.frame(sample(30:42,10,rep=TRUE),sample(800:5000,10,rep=TRUE))
colnames(abnormal)<-c("Gestational Age in weeks","Weight in gramms")
locNormLinData(x,y,bandwidth.method="Plug-in",cents=c(0.03,0.25,0.50,0.75,0.97),data=abnormal)</pre>
```

polylocLin

Polynomial local linear estimator

Description

Polynomial local linear estimator

Usage

```
polylocLin(
    x,
    y,
    bandwidth.method = "CV",
    cents = c(0.03, 0.25, 0.5, 0.75, 0.97),
    disp_window = TRUE,
    leg = TRUE,
    axes.lab = NULL
)
```

Arguments

```
x the explanatory variable - numeric
y the response variable - numeric
```

bandwidth.method

the bandwidth method choice: CV or plug-in. Default is CV.

cents A numeric vector that represents the centiles calculated. Default is set to cents=c(0.03,0.25,0.5,0.75,0.97)

disp_window Boolean. Should the scale of bandwidth be displayed (TRUE) or not (FALSE).

leg Boolean. Should the legend be desplayed (TRUE) or not (FALSE).

axes.lab NULL or c("Nom_axe_X, Nom_axe_Y").

13 polylocLinData

Value

Plots the centile curves and returns a list object containing bandwidth value and estimated centiles

Examples

```
#create an example data frame
weights=c(500,600,1000,1150,1200,1260,1240,1300,1370,1500,2000,2100,2150,2500,
2800,2900,3050,3200,2980,3000,3300,3100,3200,3600,3500,3700,3900,3900,4000,
4200, 3000, 4500, 4300, 4900, 4350, 3700, 4000, 5000, 4300)
37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 42)
sample<-data.frame(age,weights)</pre>
colnames(sample)<-c("Gestational Age in weeks","Weight in gramms")</pre>
x<-sample$`Gestational Age in weeks`
y<-sample$`Weight in gramms`
#calculate the centile and plot the curves
polylocLin(x,y)
```

polylocLinData

Polynomial local linear estimator compared to noise data

Description

Polynomial local linear estimator compared to noise data

Usage

```
polylocLinData(
  х,
 у,
 bandwidth.method = "Plug-in",
  cents = c(0.03, 0.25, 0.5, 0.75, 0.97),
  data,
  leg = FALSE
)
```

Arguments

leg

```
the explanatory variable - numeric
Х
                   the response variable - numeric
bandwidth.method
                   the bandwidth method choice: CV or plug-in. Default is CV.
cents
                   A numeric vector that represents the centiles calculated. Default is set to cents=c(0.03,0.25,0.5,0.75,0.97))
                   the noise data we want to compare
data
                   Boolean. Should the legend be displayed (TRUE) or not (FALSE).
```

14 polylocLinData

Value

Plots the centile curves and data points to compare with.

```
#create a sample data frame
sample<-data.frame(sample(30:42,50,rep=TRUE),sample(800:5000,50,rep=TRUE))
colnames(sample)<-c("Gestational Age in weeks","Weight in gramms")
x<-sample$`Gestational Age in weeks`
y<-sample$`Weight in gramms`
abnormal<-data.frame(sample(30:42,10,rep=TRUE),sample(800:5000,10,rep=TRUE))
colnames(abnormal)<-c("Gestational Age in weeks","Weight in gramms")
polylocLinData(x,y,bandwidth.method="Plug-in",cents=c(0.03,0.25,0.50,0.75,0.97),data=abnormal)</pre>
```

Index

```
bandwidth, 2
bsplines, 3
bSplinesData, 4
CentCurv, 5
compareCurv, 6
fourCurv, 7
locNormCst, 8
locNormCstData, 9
locNormLin, 10
locNormLinData, 11
polylocLin, 12
polylocLinData, 13
```