Basic Electronic Circuits (IEC-103)

Lecture-16

Transistor Biasing Circuits

BJT 'Q' Point (Bias Point)

- Q point means Quiescent or Operating point.
- ☐ Very important for amplifiers because wrong 'Q' point selection increases amplifier distortion.

Need to have a stable 'Q' point, meaning the operating point should not be sensitive to variation to temperature or BJT β (h_{FE}), which can vary widely.

Typical Amplifier Operation

A Generic DC Load Line

A Generic DC Load Line

Plot the dc load line for the circuit shown below.

Plot the dc load line for the circuit shown below.

Optimum Q-point

Bias Circuits

- □ Different types bias circuits
 - Base Bias
 - Voltage Divider Bias
 - Emitter Bias
 - Collector Feedback Bias
 - Emitter Feedback Bias

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}}$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

$$I_C = \beta I_B$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

$$I_C = \beta I_B$$

$$V_{CE} = V_{CC} - I_C R_C$$

$$I_{B} = \frac{V_{CC} - 0.7V}{R_{B}} = \frac{8V - 0.7V}{360k\Omega}$$
$$= 20.28\mu A$$

$$I_{B} = \frac{V_{CC} - 0.7V}{R_{B}} = \frac{8V - 0.7V}{360k\Omega}$$
$$= 20.28\mu A$$

$$I_C = h_{FE}I_B = (100)(20.28\mu\text{A})$$

= 2.028mA

$$I_{B} = \frac{V_{CC} - 0.7V}{R_{B}} = \frac{8V - 0.7V}{360k\Omega}$$
$$= 20.28\mu A$$

$$I_C = h_{FE}I_B = (100)(20.28\mu\text{A})$$

= 2.028mA

$$V_{CE} = V_{CC} - I_C R_C$$

= $8V - (2.028 \text{mA})(2 \text{k}\Omega)$
= 3.94V

$$I_{C(\text{sat})} = \frac{V_{CC}}{R_C} = \frac{8V}{2k\Omega} = 4\text{mA}$$

$$I_{C(\text{sat})} = \frac{V_{CC}}{R_C} = \frac{8V}{2k\Omega} = 4\text{mA}$$

$$V_{CE(\text{off})} = V_{CC} = 8V$$

$$I_{C(\text{sat})} = \frac{V_{CC}}{R_C} = \frac{8V}{2k\Omega} = 4\text{mA}$$

$$V_{CE(\text{off})} = V_{CC} = 8V$$

Example (Q-point Shift)

The transistor in the circuit has values of h_{FE} =100 when T=25 °C and h_{FE} =150 when T=100 °C. Determine the Q-point values of I_C and V_{CE} at both of these temperatures.

Example (Q-point Shift)

The transistor in the circuit has values of h_{FE} =100 when T=25 °C and h_{FE} =150 when T=100 °C. Determine the Q-point values of I_C and V_{CE} at both of these temperatures.

Temp(°C)	I_B (μ A)	I_C (mA)	V_{CE} (V)
25	20.28	2.028	3.94
100	20.28	3.04	1.92

Circuit recognition: A single resistor (R_B) between the base terminal and V_{CC} . No emitter resistor.

Circuit recognition: A single resistor (R_B) between the base terminal and V_{CC} . No emitter resistor.

Advantage: Circuit simplicity.

Disadvantage: Q-point shift with temp.

Applications: Switching circuits only.

Load line equations:

Load line equations:

$$I_{C(\text{sat})} \cong \frac{V_{CC}}{R_C}$$

$$V_{CE(\text{off})} = V_{CC}$$

Load line equations:

$$I_{C(\text{sat})} \cong \frac{V_{CC}}{R_{C}}$$

$$V_{CE(\text{off})} = V_{CC}$$

Q-point equations:

Load line equations:

$$I_{C(\text{sat})} \cong \frac{V_{CC}}{R_{C}}$$

$$V_{CE(\text{off})} = V_{CC}$$

Q-point equations:

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B}}$$

$$I_{C} = h_{FE}I_{B}$$

$$V_{CE} = V_{CC} - I_{C}R_{C}$$

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$

$$V_F = V_B - 0.7 \text{V}$$

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$

$$V_E = V_B - 0.7 V$$

$$I_E = \frac{V_E}{R_E}$$

Voltage Divider Bias

Assume that $I_2 > 10I_B$.

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$

$$V_E = V_B - 0.7 V$$

$$I_E = \frac{V_E}{R_E}$$

Assume that $I_{CQ} \cong I_E$ (or $h_{FE} >> 1$). Then

Voltage Divider Bias

Assume that $I_2 > 10I_B$.

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$

$$V_E = V_B - 0.7 V$$

$$I_E = \frac{V_E}{R_E}$$

Assume that $I_{CQ} \cong I_E$ (or $h_{FE} >> 1$). Then

$$V_{CEQ} = V_{CC} - I_{CQ} \left(R_C + R_E \right)$$

Determine the values of I_{CO} and V_{CEO} for the circuit shown below.

Determine the values of I_{CO} and V_{CEO} for the circuit shown below.

$$V_B = V_{CC} \frac{R_2}{R_1 + R_2}$$

= $(10V) \frac{4.7k\Omega}{22.7k\Omega} = 2.07V$

Determine the values of I_{CO} and V_{CEO} for the circuit shown below.

$$V_{B} = V_{CC} \frac{R_{2}}{R_{1} + R_{2}}$$
$$= (10V) \frac{4.7k\Omega}{22.7k\Omega} = 2.07V$$

$$V_E = V_B - 0.7V$$

= 2.07V - 0.7V = 1.37V

Determine the values of I_{CO} and V_{CEO} for the circuit shown below.

$$V_{B} = V_{CC} \frac{R_{2}}{R_{1} + R_{2}}$$
$$= (10V) \frac{4.7k\Omega}{22.7k\Omega} = 2.07V$$

$$V_E = V_B - 0.7V$$

= 2.07V - 0.7V = 1.37V

Because $I_{CO} \cong I_E$ (or $h_{FE} >> 1$),

Determine the values of I_{CO} and V_{CEO} for the circuit shown below.

$$V_{B} = V_{CC} \frac{R_{2}}{R_{1} + R_{2}}$$
$$= (10V) \frac{4.7k\Omega}{22.7k\Omega} = 2.07V$$

$$V_E = V_B - 0.7V$$

= 2.07V - 0.7V = 1.37V

Because $I_{CO} \cong I_E$ (or $h_{FE} >> 1$),

$$I_{CQ} \cong \frac{V_E}{R_E} = \frac{1.37 \text{ V}}{1.1 \text{ k}\Omega} = 1.25 \text{ mA}$$

Determine the values of I_{CO} and V_{CFO} for the circuit shown below.

$$V_{B} = V_{CC} \frac{R_{2}}{R_{1} + R_{2}}$$
$$= (10V) \frac{4.7k\Omega}{22.7k\Omega} = 2.07V$$

$$V_E = V_B - 0.7V$$

= 2.07V - 0.7V = 1.37V

Because $I_{CO} \cong I_E$ (or $h_{FE} >> 1$),

$$I_{CQ} \cong \frac{V_E}{R_E} = \frac{1.37 \text{V}}{1.1 \text{k}\Omega} = 1.25 \text{mA}$$

$$V_{CEQ} = V_{CC} - I_{CQ} (R_C + R_E)$$

= 10V - (1.25mA)(4.1k\O) = 4.87V

$$I_2 = \frac{V_B}{R_2} = \frac{2.07 \text{ V}}{4.7 \text{k}\Omega} = 440.4 \mu\text{A}$$

$$I_2 = \frac{V_B}{R_2} = \frac{2.07 \text{ V}}{4.7 \text{k}\Omega} = 440.4 \mu\text{A}$$

$$I_B = \frac{I_E}{h_{FE} + 1} = \frac{1.25 \text{mA}}{50 + 1}$$
$$= 24.51 \mu\text{A}$$

$$I_2 = \frac{V_B}{R_2} = \frac{2.07 \text{ V}}{4.7 \text{k}\Omega} = 440.4 \mu\text{A}$$

$$I_B = \frac{I_E}{h_{FE} + 1} = \frac{1.25 \text{mA}}{50 + 1}$$
$$= 24.51 \mu\text{A}$$

$$I_2 > 10I_B$$

Which value of h_{FE} to use?

Transistor specification sheet may list any combination of the following h_{FE} : max. h_{FE} , min. h_{FE} , or typ. h_{FE} . Use typical value if there is one. Otherwise, use

Which value of h_{FE} to use?

Transistor specification sheet may list any combination of the following h_{FE} : max. h_{FE} , min. h_{FE} , or typ. h_{FE} . Use typical value if there is one. Otherwise, use

$$h_{FE(\text{ave})} = \sqrt{h_{FE(\text{min})} \times h_{FE(\text{max})}}$$

$$V_B = V_{CC} \frac{R_2}{R_1 + R_2} = (10\text{V}) \frac{680\Omega}{2180\Omega} = 3.12\text{V}$$

$$V_B = V_{CC} \frac{R_2}{R_1 + R_2} = (10\text{V}) \frac{680\Omega}{2180\Omega} = 3.12\text{V}$$

$$V_E = V_B - 0.7V = 3.12V - 0.7V = 2.42V$$

$$V_B = V_{CC} \frac{R_2}{R_1 + R_2} = (10\text{V}) \frac{680\Omega}{2180\Omega} = 3.12\text{V}$$

$$V_E = V_B - 0.7V = 3.12V - 0.7V = 2.42V$$

$$I_{CQ} \cong I_E = \frac{V_E}{R_E} = \frac{2.42 \text{V}}{240 \Omega} = 10 \text{mA}$$

$$V_B = V_{CC} \frac{R_2}{R_1 + R_2} = (10\text{V}) \frac{680\Omega}{2180\Omega} = 3.12\text{V}$$

$$V_E = V_B - 0.7V = 3.12V - 0.7V = 2.42V$$

$$I_{CQ} \cong I_E = \frac{V_E}{R_E} = \frac{2.42 \text{V}}{240 \Omega} = 10 \text{mA}$$

$$h_{FE(ave)} = \sqrt{h_{FE(min)} \times h_{FE(max)}} = \sqrt{100 \times 300} = 173$$

$$V_B = V_{CC} \frac{R_2}{R_1 + R_2} = (10\text{V}) \frac{680\Omega}{2180\Omega} = 3.12\text{V}$$

$$V_E = V_B - 0.7V = 3.12V - 0.7V = 2.42V$$

$$I_{CQ} \cong I_E = \frac{V_E}{R_E} = \frac{2.42 \text{V}}{240 \Omega} = 10 \text{mA}$$

$$h_{FE(ave)} = \sqrt{h_{FE(min)} \times h_{FE(max)}} = \sqrt{100 \times 300} = 173$$

$$I_B = \frac{I_E}{h_{FE(\text{ave})} + 1} = \frac{10\text{mA}}{174} = 57.5\mu\text{A}$$

The Q-point of voltage divider bias circuit is less dependent on h_{FE} than that of the base bias (fixed bias).

The Q-point of voltage divider bias circuit is less dependent on h_{FF} than that of the base bias (fixed bias).

For example, if I_E is exactly 10 mA, the range of h_{FE} is 100 to 300. Then

The Q-point of voltage divider bias circuit is less dependent on h_{FE} than that of the base bias (fixed bias).

For example, if I_E is exactly 10 mA, the range of h_{FE} is 100 to 300. Then

At
$$h_{FE} = 100$$
, $I_B = \frac{I_E}{h_{FE} + 1} = \frac{10 \text{mA}}{101} \cong 100 \mu\text{A}$ and $I_{CQ} = I_E - I_B \cong 9.90 \text{mA}$

The Q-point of voltage divider bias circuit is less dependent on h_{FE} than that of the base bias (fixed bias).

For example, if I_E is exactly 10 mA, the range of h_{FE} is 100 to 300. Then

At
$$h_{FE} = 100$$
, $I_B = \frac{I_E}{h_{FE} + 1} = \frac{10 \text{mA}}{101} \cong 100 \mu\text{A}$ and $I_{CQ} = I_E - I_B \cong 9.90 \text{mA}$

At
$$h_{FE} = 300$$
, $I_B = \frac{I_E}{h_{FE} + 1} = \frac{10 \text{mA}}{301} \cong 33 \mu\text{A}$ and $I_{CQ} = I_E - I_B \cong 9.97 \text{mA}$

Load Line for Voltage Divider Bias

Circuit values are from previous example

May be ignored.

May be ignored.

$$V_E = I_E R_E = I_B (h_{FE} + 1) R_E$$

May be ignored.

$$V_E = I_E R_E = I_B (h_{FE} + 1) R_E$$

$$R_{IN(\text{base})} = \frac{V_E}{I_B} = (h_{FE} + 1)R_E$$

 $\cong h_{FE}R_E$

$$V_{B} = \frac{R_{2} // R_{IN(base)}}{R_{1} + R_{2} // R_{IN(base)}} V_{CC}$$

$$= \frac{R_{2} // (h_{FE} R_{E})}{R_{1} + R_{2} // (h_{FE} R_{E})} V_{CC}$$

$$= \frac{R_{EQ}}{R_{1} + R_{EQ}} V_{CC} \Big|_{R_{EQ}} = R_{2} // (h_{FE} R_{E})$$

$$R_{EQ} = R_2 // (h_{FE} R_E)$$
$$= 10k\Omega // (50 \times 1.1 k\Omega) = 8.46k\Omega$$

$$V_B \cong V_{CC} \frac{R_{EQ}}{R_1 + R_{EQ}}$$

$$= (20V) \frac{8.46k\Omega}{68k\Omega + 8.46k\Omega} = 2.21V$$

$$I_{CQ} \cong I_E = \frac{V_E}{R_E} = \frac{V_B - 0.7V}{R_E}$$

$$= \frac{2.21V - 0.7V}{1.1k\Omega} = 1.37 \text{mA}$$

$$V_{CEQ} = V_{CC} - I_{CQ} (R_C + R_E)$$

= 20V - (1.37mA)(7.3k\Omega) = 9.99V

Circuit recognition: The voltage divider in the base circuit.

Circuit recognition: The voltage divider in the base circuit.

Advantages: The circuit Q-point values are stable against changes in h_{FE} .

Disadvantages: Requires more components than most other biasing circuits.

Applications: Used primarily to bias linear amplifier.

Load line equations:

Voltage Divider Bias Characteristics

Load line equations:

$$I_{C(\text{sat})} = \frac{V_{CC}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC}$$

Voltage Divider Bias Characteristics

Load line equations:

$$I_{C(\text{sat})} = \frac{V_{CC}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC}$$

Q-point equations (assume that $h_{FF}R_F > 10R_2$):

Voltage Divider Bias Characteristics

Load line equations:

$$I_{C(\text{sat})} = \frac{V_{CC}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC}$$

Q-point equations (assume that $h_{FE}R_E > 10R_2$):

$$V_{B} = V_{CC} \frac{R_{2}}{R_{1} + R_{2}}$$

$$V_{E} = V_{B} - 0.7V$$

$$I_{CQ} \cong I_{E} = \frac{V_{E}}{R_{E}}$$

$$V_{CEQ} = V_{CC} - I_{CQ} \left(R_{C} + R_{E} \right)$$

Other Transistor Biasing Circuits

- Emitter Bias Circuits
- □ Feedback Bias Circuits
 - Collector Feedback Bias
 - Emitter Feedback Bias

$$I_B = \frac{V_{EE} - 0.7V}{R_B + (h_{FE} + 1)R_E}$$

$$I_{B} = \frac{V_{EE} - 0.7V}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_{C} = h_{FE}I_{B}$$

$$I_B = \frac{V_{EE} - 0.7 \text{V}}{R_B + (h_{FE} + 1) R_E}$$

$$I_C = h_{FE}I_B$$

$$I_C = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$I_{B} = \frac{V_{EE} - 0.7V}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_C = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E + V_{EE}$$

Assume that the transistor operation is in active region.

$$I_B = \frac{V_{EE} - 0.7 \text{V}}{R_B + (h_{FE} + 1) R_E}$$

$$I_C = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E + V_{EE}$$

Assume that $h_{FF} >> 1$.

Assume that the transistor operation is in active region.

$$I_{B} = \frac{V_{EE} - 0.7V}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_C = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E + V_{EE}$$

Assume that $h_{FF} >> 1$.

$$\left|V_{CE}\cong V_{CC}-I_{C}\left(R_{C}+R_{E}
ight)+V_{EE}
ight|$$

$$I_{B} = \frac{12V - 0.7V}{R_{B} + (h_{FE} + 1)R_{E}}$$
$$= \frac{11.3V}{100\Omega + 201 \times 1.5k\Omega} = 37.47\mu A$$

$$I_B = \frac{12V - 0.7V}{R_B + (h_{FE} + 1)R_E}$$
$$= \frac{11.3V}{100\Omega + 201 \times 1.5k\Omega} = 37.47\mu A$$

$$I_{CQ} = h_{FE}I_B = 200 \times 37.47 \mu A$$

= 7.49mA

$$I_{B} = \frac{12V - 0.7V}{R_{B} + (h_{FE} + 1)R_{E}}$$
$$= \frac{11.3V}{100\Omega + 201 \times 1.5k\Omega} = 37.47\mu A$$

$$I_{CQ} = h_{FE}I_B = 200 \times 37.47 \mu A$$

= 7.49mA

$$V_{CEQ} \cong V_{CC} - I_C (R_C + R_E) - (-V_{EE})$$

= 24V - 7.49mA (750\Omega + 1.5k\Omega)
= 7.14V

Load Line for Emitter Bias Circuit

Load Line for Emitter Bias Circuit

$$I_{C(\text{sat})} = \frac{V_{CC} - (-V_{EE})}{R_C + R_E} = \frac{V_{CC} + V_{EE}}{R_C + R_E}$$

Load Line for Emitter Bias Circuit

$$I_{C(\text{sat})} = \frac{V_{CC} - (-V_{EE})}{R_C + R_E} = \frac{V_{CC} + V_{EE}}{R_C + R_E}$$

$$V_{CE(off)} = V_{CC} - \left(-V_{EE}\right) = V_{CC} + V_{EE}$$

Circuit recognition: A split (dual-polairty) power supply and the base resistor is connected to ground.

Circuit recognition: A split (dual-polairty) power supply and the base resistor is connected to ground.

Advantage: The circuit Q-point values are stable against changes in h_{FE} .

Disadvantage: Requires the use of dual-polarity power supply.

Applications: Used primarily to bias linear amplifiers.

Load line equations:

Load line equations:

$$I_{C(\text{sat})} = \frac{V_{CC} + V_{EE}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC} + V_{EE}$$

Load line equations:

$$I_{C(\text{sat})} = \frac{V_{CC} + V_{EE}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC} + V_{EE}$$

Q-point equations:

Load line equations:

$$I_{C(\text{sat})} = \frac{V_{CC} + V_{EE}}{R_C + R_E}$$
$$V_{CE(\text{off})} = V_{CC} + V_{EE}$$

Q-point equations:

$$I_{CQ} = (h_{FE}) \frac{-V_{BE} + V_{EE}}{R_B + (h_{FE} + 1)R_E}$$
$$V_{CEQ} \cong V_{CC} - I_{CQ} (R_C + R_E) + V_{EE}$$

$$V_{CC} = (I_C + I_B)R_C + I_B R_B + V_{BE}$$

$$V_{CC} = (I_C + I_B)R_C + I_B R_B + V_{BE}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$V_{CC} = (I_C + I_B)R_C + I_B R_B + V_{BE}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$I_{CQ} = h_{FE}I_B$$

$$V_{CC} = (I_C + I_B)R_C + I_B R_B + V_{BE}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$I_{CQ} = h_{FE}I_B$$

$$\begin{aligned} V_{CEQ} &= V_{CC} - (h_{FE} + 1) I_B R_C \\ &\cong V_{CC} - I_{CQ} R_C \end{aligned}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{C}}$$
$$= \frac{10V - 0.7V}{180k\Omega + 101 \times 1.5k\Omega} = 28.05\mu A$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{C}}$$
$$= \frac{10V - 0.7V}{180k\Omega + 101 \times 1.5k\Omega} = 28.05\mu A$$

$$I_{CQ} = h_{FE}I_B = 100 \times 28.05 \mu A$$

= 2.805mA

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{C}}$$
$$= \frac{10V - 0.7V}{180k\Omega + 101 \times 1.5k\Omega} = 28.05\mu A$$

$$I_{CQ} = h_{FE}I_B = 100 \times 28.05 \mu A$$

= 2.805mA

$$\begin{aligned} V_{CEQ} &= V_{CC} - (h_{FE} + 1)I_B R_C \\ &= 10 \text{V} - 101 \times 28.05 \mu\text{A} \times 1.5 \text{k}\Omega \\ &= 5.75 \text{V} \end{aligned}$$

Circuit Stability

Circuit Stability

 h_{FE} increases

 I_C increases (if I_B is the same)

 V_{CF} decreases

 I_B decreases

 I_C does not increase that much.

Good Stability. Less dependent on h_{FF} and temperature.

Circuit recognition: The base resistor is connected between the base and the collector terminals of the transistor.

Circuit recognition: The base resistor is connected between the base and the collector terminals of the transistor.

Advantage: A simple circuit with relatively stable Q-point.

Disadvantage: Relatively poor ac characteristics.

Applications: Used primarily to bias linear amplifiers.

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$I_{CQ} = h_{FE}I_B$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{(h_{FE} + 1)R_{C} + R_{B}}$$

$$I_{CQ} = h_{FE}I_B$$

$$V_{CEQ} \cong V_{CC} - I_{CQ} R_C$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_{CQ} = h_{FE}I_B$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_{CQ} = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_{CQ} = h_{FE}I_B$$

$$I_E = (h_{FE} + 1)I_B$$

$$\begin{aligned} V_{CEQ} &= V_{CC} - I_C R_C - I_E R_E \\ &\cong V_{CC} - I_{CQ} \left(R_C + R_E \right) \end{aligned}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}} = \frac{16V - 0.7V}{680k\Omega + 51 \times 1.6k\Omega}$$
$$= 20.09\mu A$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}} = \frac{16V - 0.7V}{680k\Omega + 51 \times 1.6k\Omega}$$
$$= 20.09\mu A$$

$$I_{CQ} = h_{FE}I_B = 50 \times 20.09 \mu A = 1 \text{mA}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}} = \frac{16V - 0.7V}{680k\Omega + 51 \times 1.6k\Omega}$$
$$= 20.09\mu A$$

$$I_{CQ} = h_{FE}I_B = 50 \times 20.09 \mu A = 1 \text{mA}$$

$$V_{CEQ} \cong V_{CC} - I_{CQ} (R_C + R_E)$$

= 16V - (1mA)(7.8k Ω) = 8.2V

Circuit Stability

Circuit Stability

 h_{FE} increases

 I_C increases (if I_B is the same)

 V_F increases

I_R decreases

 I_C does not increase that much.

 I_C is less dependent on h_{FE} and temperature.

Circuit recognition: Similar to voltage divider bias with R_2 missing (or base bias with R_E added).

Circuit recognition: Similar to voltage divider bias with R_2 missing (or base bias with R_E added).

Advantage: A simple circuit with relatively stable Q-point.

Disadvantage: Requires more components than collectorfeedback bias.

Applications: Used primarily to bias linear amplifiers.

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_{CQ} = h_{FE}I_B$$

$$I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (h_{FE} + 1)R_{E}}$$

$$I_{CQ} = h_{FE}I_B$$

$$V_{CEQ} \cong V_{CC} - I_{CQ} \left(R_C + R_E \right)$$