Avoiding fractional powers on an infinite alphabet

Eric Rowland

Hofstra University

One World Seminar on Combinatorics on Words

2020-11-09

Avoiding squares

Axel Thue (1863-1922)

A square is a nonempty word of the form xx. For example: 00, 0101. Are there arbitrarily long square-free words on $\{0,1\}$?

Try to construct one:

010X

Infinite alphabet

What is the lexicographically least square-free word on $\mathbb{Z}_{\geq 0}$?

01020103010201040102010301020105...

Theorem (Guay-Paquet–Shallit 2009)

Let
$$\varphi(n) = 0 (n + 1)$$
.

The lexicographically least square-free word on $\mathbb{Z}_{\geq 0}$ is $\varphi^{\infty}(0)$.

 φ is 2-uniform.

$$arphi(0) = 01$$
 $arphi^2(0) = 0102$ $arphi^3(0) = 01020103$:

For each integer $a \ge 2$, let $\varphi(n) = 0^{a-1}(n+1)$. The lexicographically least *a*-power-free word on $\mathbb{Z}_{>0}$ is $\varphi^{\infty}(0)$.

Avoiding overlaps

An overlap is a word of the form xxc, where c is the first letter of x. For example: 000,01010.

Overlaps are avoidable on a binary alphabet (Thue):

$$\varphi^{\infty}(0) = 01101001100101101001011001101001 \cdots$$

is overlap-free, where $\varphi(0) = 01$ and $\varphi(1) = 10$.

$$arphi(0) = 01$$
 $arphi^2(0) = 0110$
 $arphi^3(0) = 01101001$
 \vdots

Avoiding overlaps

Lexicographically least overlap-free word on $\mathbb{Z}_{\geq 0}$:

Let σ be the right shift: $\sigma(xc) = cx$ for words x and letters c.

Theorem (Guay-Paquet–Shallit 2009)

Define φ recursively by $\varphi(n) = \sigma(\varphi^n(00))(n+1)$. The lexicographically least overlap-free word on $\mathbb{Z}_{\geq 0}$ is $\varphi^{\infty}(0)$.

 φ is non-uniform.

$$\varphi(0) = 001$$
 $\varphi^{2}(0) = 0010011001002$
 \vdots

Fractional powers

01220 = $(0122)^{5/4}$ is a $\frac{5}{4}$ -power. 011101 = $(0111)^{3/2}$ is a $\frac{3}{2}$ -power.

Definition

Let $\frac{a}{b} > 1$. A word w is an $\frac{a}{b}$ -power if

$$w = (xy)^e x$$

and $\frac{|w|}{|xy|} = \frac{a}{b}$ for some words x, y and some integer $e \ge 1$.

 $\frac{5}{4}$ -powers look like xyx where |y| = 3|x|.

 $\frac{3}{2}$ -powers look like xyx where |y| = |x|.

Notation

Let $\mathbf{w}_{a/b}$ be the lex. least $\frac{a}{b}$ -power-free word on $\mathbb{Z}_{\geq 0}$.

We assume gcd(a, b) = 1.

Avoiding 3/2-powers

 $\boldsymbol{w}_{3/2} = 001102100112001103100113001102100114001103\cdots$

```
\begin{array}{c} \textbf{w}_{3/2} = 001102 \\ 100112 \\ 001103 \\ 100113 \\ 001102 \\ 100114 \\ 001103 \\ 100112 \\ \vdots \end{array}
```

Theorem (Rowland–Shallit 2012)

The ith letter w(i) of $\mathbf{w}_{3/2}$ satisfies w(6i+5) = w(i)+2.

Other notions of avoidance

Notation

- Let $\mathbf{w}_{\geq a/b}$ be the lex. least infinite word on $\mathbb{Z}_{\geq 0}$ avoiding $\frac{p}{q}$ -powers for all $\frac{p}{q} \geq \frac{a}{b}$.
- Let $\mathbf{w}_{>a/b}$ be the lex. least infinite word on $\mathbb{Z}_{\geq 0}$ avoiding $\frac{p}{q}$ -powers for all $\frac{p}{q} > \frac{a}{b}$.

What are the relationships between $\mathbf{w}_{a/b}$, $\mathbf{w}_{>a/b}$, and $\mathbf{w}_{>a/b}$?

The lex. least overlap-free word is $\mathbf{w}_{>2}$.

Avoiding $\geq 3/2$ -powers

$$\mathbf{w}_{\geq 3/2} = 012031021301204102140120310215012041021301203\cdots$$

$$\mathbf{w}_{\geq 3/2} = 01203$$
 10213
 01204
 10214
 01203
 10215
 01204
 10213
 \vdots

Theorem

We have $\mathbf{w}_{>3/2}(5i+4) = \mathbf{w}_{3/2}(i) + 3$ for all $i \ge 0$.

Avoiding 4/3-powers

$\mathbf{w}_{4/3}$:

Conjecture:

$$\mathbf{w}_{\geq 4/3}(336i+1666) = \mathbf{w}_{4/3}(56i+17)+4$$
 for all $i \geq 0$.

Are there similar relationships between $\mathbf{w}_{\geq a/b}$ and $\mathbf{w}_{a/b}$ for other $\frac{a}{b}$?

We focus on $\mathbf{w}_{a/b}$.

The interval $\frac{a}{b} \geq 2$

$$\mathbf{w}_{5/2} = 00001000010000100001000020000100001 \cdots = \mathbf{w}_5 = \varphi^{\infty}(0)$$

where $\varphi(n) = 0000(n+1)$.

Theorem

If $\frac{a}{b} \geq 2$, then $\mathbf{w}_{a/b} = \mathbf{w}_a$.

Proof (one direction).

The a-power $v^a = (v^b)^{a/b}$ is also an $\frac{a}{b}$ -power.

So $\mathbf{w}_{a/b}$ is a-power-free. Thus $\mathbf{w}_a \leq \mathbf{\tilde{w}}_{a/b}$ lexicographically.

Therefore it suffices to consider $1 < \frac{a}{b} < 2$.

w_{8/5} wrapped into 100 columns

 $\boldsymbol{w}_{8/5} = 00000001001000001001000000100110000000100\cdots$

w_{8/5} wrapped into 733 columns

 $\mathbf{w}_{8/5} = 0000000100100000100100000011001000000100\cdots$

Theorem

$\mathbf{w}_{8/5} = \varphi^{\infty}(0)$ for the 733-uniform morphism

$\mathbf{w}_{7/4}$ wrapped into 50847 columns

$$\mathbf{w}_{7/4} = 0000001001000000100100000110000000 \cdots$$

Theorem

 $\mathbf{w}_{7/4}=arphi^{\infty}(0)$ for some 50847-uniform morphism $arphi(n)=u\,(n+2).$

w_{6/5} wrapped into 1001 columns

 $\mathbf{w}_{6/5} = 0000011111102020201011101000202120210110010 \cdots$

There is a transient region.

Introduce a new letter 0', and let $\tau(0') = 0$ and $\tau(n) = n$ for $n \in \mathbb{Z}_{\geq 0}$.

There exist words u,v of lengths |u|= 1000 and |v|= 29949 such that $\mathbf{w}_{6/5}=\tau(\varphi^{\infty}(0')),$ where

$$\varphi(n) = \begin{cases} v \, \varphi(0) & \text{if } n = 0' \\ u \, (n+2) & \text{if } n \in \mathbb{Z}. \end{cases}$$

w_{27/23} wrapped into 353 columns

There exist words u, v on $\{0, 1, 2\}$ of lengths |u| = 352 and |v| = 75019 such that $\mathbf{w}_{27/23} = \tau(\varphi^{\omega}(0'))$, where

$$\varphi(n) = \begin{cases} v \, \varphi(0) & \text{if } n = 0' \\ u \, (n + 0) & \text{if } n \in \mathbb{Z}. \end{cases}$$

 $\boldsymbol{w}_{27/23}$ is also the lex. least $\frac{27}{23}\text{-power-free}$ word on $\{0,1,2\}.$

$$\boldsymbol{w}_{5/3} = 000010100001010000101000010100001020000101\cdots$$

$$\mathbf{w}_{5/3} = 0000101$$
 0000101
 0000101
 0000102
 0000101
 0000102
 0000101
 \vdots

$$w(7i+6)=w(i)+1$$

 $\mathbf{w}_{5/3} = \varphi^{\infty}(0)$, where $\varphi(n) = 000010(n+1)$ is a 7-uniform morphism.

A family related to $\mathbf{w}_{5/3}$

Theorem (Pudwell–Rowland 2018)

Let $\frac{5}{3} \leq \frac{a}{b} < 2$ with b odd. Then $\mathbf{w}_{a/b} = \varphi^{\infty}(0)$, where $\varphi(n) = 0^{a-1} \cdot 1 \cdot 0^{a-b-1} \cdot (n+1)$ is a (2a-b)-uniform morphism.

w_{5/4} wrapped into 72 columns

 $\boldsymbol{w}_{5/4} = 000011110202101001011212000013110102101302\cdots$

$\overline{\mathbf{w}_{5/4}}$ — first 2000 rows

Guessing a recurrence

Let w(i) be the *i*th letter of $\mathbf{w}_{5/4}$.

Implied relationship:

$$w(6i + 123061) = w(i + 5920) + \begin{cases} 3 & \text{if } i \equiv 0, 2 \mod 8 \\ 1 & \text{if } i \equiv 4, 6 \mod 8 \\ 2 & \text{if } i \equiv 1 \mod 2 \end{cases}$$

Morphism for $\mathbf{w}_{3/2}$

$$\mathbf{w}_{3/2} = 001102100112001103100113001102100114001103\cdots$$

Use two kinds of letters.

Alphabet:
$$\Sigma_2 = \{n_j : n \in \mathbb{Z}, j \in \{0, 1\}\}$$

Coding: $\tau(n_i) = n$

6-uniform morphism:

$$\varphi(n_0) = 0_0 0_1 1_0 1_1 0_0 (n+2)_1$$

$$\varphi(n_1) = 1_0 0_1 0_0 1_1 1_0 (n+2)_1$$

Morphic description: $\mathbf{w}_{3/2} = \tau(\varphi^{\infty}(\mathbf{0}_0)).$

Morphism for $\mathbf{w}_{5/4}$

Theorem (Rowland-Stipulanti 2020)

There exist words p, z of lengths |p| = 6764 and |z| = 20226 such that $\mathbf{w}_{5/4} = p \, \tau(\varphi(z) \varphi^2(z) \cdots)$.

z is a word on $\Sigma_8 = \{n_j : n \in \mathbb{Z}, 0 \le j \le 7\}$. z contains -1_0 and -1_2 .

$$\varphi(n_0) = 0_0 1_1 0_2 0_3 1_4 (n+3)_5$$

$$\varphi(n_1) = 1_6 1_7 0_0 0_1 0_2 (n+2)_3$$

$$\varphi(n_2) = 1_4 1_5 1_6 0_7 0_0 (n+3)_1$$

$$\varphi(n_3) = 0_2 1_3 1_4 0_5 1_6 (n+2)_7$$

$$\varphi(n_4) = 0_0 1_1 0_2 0_3 1_4 (n+1)_5$$

$$\varphi(n_5) = 1_6 1_7 0_0 0_1 0_2 (n+2)_3$$

$$\varphi(n_6) = 1_4 1_5 1_6 0_7 0_0 (n+1)_1$$

$$\varphi(n_7) = 0_2 1_3 1_4 0_5 1_6 (n+2)_7$$

Proof outline

- **1** Show that $p \tau(\varphi(z)\varphi^2(z)\cdots)$ avoids $\frac{5}{4}$ -powers.
- Show that decreasing any letter in $p \tau(\varphi(z)\varphi^2(z)\cdots)$ introduces a $\frac{5}{4}$ -power ending at that position.

For previously studied words $\mathbf{w}_{a/b}$, Step 1 involves showing that φ is $\frac{a}{b}$ -power-free. That is, if w is $\frac{a}{b}$ -power-free then $\varphi(w)$ is $\frac{a}{b}$ -power-free.

However, the morphism for $\mathbf{w}_{5/4}$ is not $\frac{5}{4}$ -power-free: For $n,m\in\mathbb{Z}$, the word $0_4n_5m_6$ is $\frac{5}{4}$ -power-free, but its image is not:

$$\varphi(0_4n_5m_6) = 0_01_10_20_31_41_5 \ 1_61_70_00_10_2(n+2)_3 \ 1_41_51_60_70_0(m+1)_1$$

$Pre-\frac{5}{4}$ -powers

A word w is a pre- $\frac{5}{4}$ -power if $\varphi(w)$ is a $\frac{5}{4}$ -power. For example, $0_0 n_1 n_2 n_3 2_4$ is a pre- $\frac{5}{4}$ -power:

$$\varphi(0_0n_1n_2n_32_4) = 0_01_10_20_31_4(0+3)_5 \ \varphi(n_1n_2n_3) \ 0_01_10_20_31_4(2+1)_5.$$

Every $\frac{5}{4}$ -power is a pre- $\frac{5}{4}$ -power.

Idea: Show that φ preserves pre- $\frac{5}{4}$ -power-freeness.

Let Γ be the set

$$\{-3_0, -3_2, -2_0, -2_1, -2_2, -2_3, -2_5, -2_7, -1_1, -1_3, -1_4, -1_5, -1_6, -1_7, 0_4, 0_6\}.$$

Proposition

If w is a pre- $\frac{5}{4}$ -power-free subscript-increasing word on $\Sigma_8 \setminus \Gamma$, then $\varphi(w)$ is pre- $\frac{5}{4}$ -power-free.

z is a subscript-increasing word on $\Sigma_8 \setminus \Gamma$.

Proof strategy

1 Sequence of results establishing $\frac{5}{4}$ -power-freeness:

Theorem. $z\varphi(z)\varphi^2(z)\cdots$ is pre- $\frac{5}{4}$ -power-free.

Corollary. $\varphi(z)\varphi^2(z)\varphi^3(z)\cdots$ is pre- $\frac{5}{4}$ -power-free.

Corollary. $\varphi(z)\varphi^2(z)\varphi^3(z)\cdots$ is $\frac{5}{4}$ -power-free.

Lemma. $\tau(\varphi(z)\varphi^2(z)\varphi^3(z)\cdots)$ is $\frac{5}{4}$ -power-free.

Theorem. $p\tau(\varphi(z)\varphi^2(z)\varphi^3(z)\cdots)$ is $\frac{5}{4}$ -power-free.

Por establishing lexicographic leastness:

Case analysis and complicated induction.

Both steps involve large finite checks carried out by computer.

k-regular sequences

A sequence $w(i)_{i\geq 0}$ of rational numbers is k-regular if the set

$$\{w(k^ei + r)_{i \ge 0} : e \ge 0 \text{ and } 0 \le r \le k^e - 1\}$$

is contained in a finite-dimensional \mathbb{Q} -vector space of sequences.

Example

Let w(i) be the *i*th letter of $\mathbf{w}_2 = 0102010301020104 \cdots$. Then w(2i) = 0 and w(2i + 1) = w(i) + 1. It follows that

$$w(4i + 0) = 0$$

 $w(4i + 1) = w(2(2i) + 1) = w(2i) + 1 = 1$
 $w(4i + 2) = 0$
 $w(4i + 3) = w(2(2i + 1) + 1) = w(2i + 1) + 1 = w(i) + 2$.

The sequences $w(i)_{i\geq 0}$ and $(1)_{i\geq 0}$ generate a \mathbb{Q} -vector space containing each $w(k^ei+r)_{i\geq 0}$. Therefore $w(i)_{i\geq 0}$ is 2-regular.

Regularity from a recurrence

Theorem

Let $k \ge 2$ and $\ell \ge 1$.

Let $d(i)_{i\geq 0}$ and $u(i)_{i\geq 0}$ be periodic integer sequences with period lengths ℓ and $k\ell$, respectively.

Let r, s be nonnegative integers such that $r - s + k - 1 \ge 0$.

Let $w(i)_{i\geq 0}$ be an integer sequence such that, for all $0\leq m\leq k-1$ and all $i\geq 0$,

$$w(ki+r+m) = \begin{cases} u(ki+m) & \text{if } 0 \leq m \leq k-2 \\ w(i+s)+d(i) & \text{if } m=k-1. \end{cases}$$

Then $w(i)_{i\geq 0}$ is k-regular.

Theorem

The sequence of letters in $\mathbf{w}_{5/4}$ is a 6-regular sequence with rank 188.

Catalog of $\mathbf{w}_{a/b}$

General recurrence for self-similar column: w(ki + r') = w(i + s) + d(i).

a/b	k	d(i)	r'	s	rank	note
$a\in\mathbb{Z}_{\geq 2}$	а	1	0	0	2	
3/2	6	2	0	0	3	
4/3	56	1,2	73	0	4	
5/3	7	1	0	0	2	
5/4	6	1, 2, 3	123061	5920	188	
7/4	50847	2	0	0	2	
6/5	1001	3	30949	0	33	
7/5	80874	1	173978	0		conjectural
8/5	733	2	0	0	2	
9/5	13	1	0	0	2	
7/6	41190	3	41201	0		conjectural
11/6						[no conjecture]

Is every word $\mathbf{w}_{a/b}$ k-regular for some k?

Morphisms

Morphism for $\mathbf{w}_{3/2}$:

$$\varphi(n_0) = 0_0 0_1 1_0 1_1 0_0 (n+2)_1$$

$$\varphi(n_1) = 1_0 0_1 0_0 1_1 1_0 (n+2)_1$$

Morphism for $\mathbf{w}_{5/4}$:

$$\varphi(n_0) = 0_0 1_1 0_2 0_3 1_4 (n+3)_5$$

$$\varphi(n_1) = 1_6 1_7 0_0 0_1 0_2 (n+2)_3$$

$$\varphi(n_2) = 1_4 1_5 1_6 0_7 0_0 (n+3)_1$$

$$\varphi(n_3) = 0_2 1_3 1_4 0_5 1_6 (n+2)_7$$

$$\varphi(n_4) = 0_0 1_1 0_2 0_3 1_4 (n+1)_5$$

$$\varphi(n_5) = 1_6 1_7 0_0 0_1 0_2 (n+2)_3$$

$$\varphi(n_6) = 1_4 1_5 1_6 0_7 0_0 (n+1)_1$$

$$\varphi(n_7) = 0_2 1_3 1_4 0_5 1_6 (n+2)_7$$

Which are more natural — the morphisms or the lex. least words?

References

- Mathieu Guay-Paquet and Jeffrey Shallit, Avoiding squares and overlaps over the natural numbers, *Discrete Mathematics* **309** (2009) 6245–6254.
- Lara Pudwell and Eric Rowland, Avoiding fractional powers over the natural numbers, *The Electronic Journal of Combinatorics* **25** (2018) #P2.27.
- Eric Rowland and Jeffrey Shallit, Avoiding 3/2-powers over the natural numbers, *Discrete Mathematics* **312** (2012) 1282–1288.
- Eric Rowland and Manon Stipulanti, Avoiding 5/4-powers on the alphabet of non-negative integers, *The Electronic Journal of Combinatorics* **27** (2020) #P3.42.