

ORCA E 2500/4500 - Final Project

By:

Chayan Rellan (cr3194@columbia.edu)

Eric Palermo (ep2979@columbia.edu)

Fariha Imam (fi2183@columbia.edu)

Introduction

- Machine Learning widely used in healthcare:
 - To forecast a rare disease
 - To detect an unusual disease
- 17.5 million deaths due to heart disease/strokes every year.
- Aim: To predict if the patient has a heart disease or not
- Dataset used Heart Disease UCI (303,14)
- Some common features age, sex, resting blood pressure, cholesterol level, fasting blood sugar levels, maximum heart rate

Data Visualization

Female

Sex

Male

Data Preprocessing and Feature Engineering

- Correlation between predictor variables and target variable measured with Pearson's correlation coefficient r
- No significant correlation between predictor variables
- *chol* and *fbs* had little correlation with the target variable (r = -0.09, r = -0.02)

Data Preprocessing and Feature Engineering

- Data set split into test and training sets
- Predictor variables subdivided into categorical and continuous:
 - Categorical: sex, thal, exang
 - Continuous: age, ca, cp, oldpeak, restecg, slope, thalach, trestbps
- Pipeline for categorical variables:
 - OneHotEncoder
 - PolynomialFeatures
- Pipeline for continuous variables:
 - PolynomialFeatures
 - StandardScaler
- ColumnTransformer to combine both pipelines

Proposed Models

Logistic Regression

- Binary classification model
- Explains relationship between one dependent binary variable and multiple independent variables
- Cross Validation performed using
 - GridSearchCV
 - 5 fold split
- Hyper-parameters optimized:
 - Column transformer polynomial degree

Random Forest Classifier

- Builds several decision trees and averages together their results
- Allows for feature selection
- Cross Validation performed using
 - GridSearchCV
 - 5 fold split
- Hyper-parameters optimized:
 - Column transformer polynomial degree
 - Max depth of tree
 - Minimum sample split

Gradient Boosting Classifier

- Improves model predictions by training the predictor using the errors of the previous model
- Each successive model tries to correct the deficiencies of the models before it
- Cross Validation performed using
 - GridSearchCV
 - 5 fold split
- Hyper-parameters optimized:
 - Column transformer polynomial degree
 - Minimum sample split
 - Learning rate
 - Number of estimators

Results and Conclusions

	Logistic Regression	Random Forest Classifier	Gradient Boosting Classifier
Brier Score	0.0991	0.1081	0.1231
Hyperparameters	C = 0.1Polynomial Degree = 2	 Max Depth = 4 Min Samples Split = 4 Min Samples Leaf = 5 Polynomial Degree = 2 	 Learning Rate = 0.05 Min Samples Split = 8 # of Estimators = 50 Polynomial Degree = 1

Increasing model complexity does not necessarily guarantee better accuracy or better prediction.

Results and Conclusions

Classification Report :

Class 0 (Have a Heart Disease)	Precision	Recall	F1 - Score
Logistic Regression	0.90	0.90	0.90
Random Forest Classifier	0.89	0.86	0.88
Gradient Boosting Classifier	0.78	0.86	0.82

$$Precision = \frac{True \ Positive}{True \ Positive + False \ Positive} \qquad Recall = \frac{True \ Positive}{True \ Positive + False \ Negative}$$

$$F1-Score = \frac{2 \cdot (Precision) \cdot (Recall)}{(Precision + Recall)}$$

Results and Conclusions

