Utku Boran Torun

ID: 21901898

CS201-1 HW2

1. Time Complexity For Each Algorithm

Algorithm 1 (multiplyItself)

For the first algorithm we multiply the int a with itself in a for loop. In each iteration a multiplies itself with a, and take modulus p. This loop executes n times. In the worst case scenario this algorithm's time complexity is O((n-1)p), but since we do not include constants in our time complexity representation we say that O(np) is our worst case time complexity. In best case scenario time complexity is O(1) and the average case is O((n/2) - 1)p), but we still say that average case time complexity is O(np).

Algorithm 2 (cycleShortcut)

Second algorithm is bit different than the first one. First it finds the i which satisfies $a^i=1 \pmod{p}$, then calculates $a^i \pmod{p}$ which will give us at the conclusion $a^n \pmod{p}$. If n < i our time complexity will be same with the previous algorithm (multiplyItself) which is O(np), else our time complexity will be different. If a % p equals 1 at the beginning then time complexity is same as O(np), but other than that its time complexity is O(p+n).

Algorithm 3 (recursive)

This algorithm is recursive algorithm. We compute different results based on whether n is even or not. Time complexity is O(plogn) in worst case scenario. Best case is O(1) and still average case is O(plogn).

2. Specifications Of PC (My computer has problem with its battery)

Processor: 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz 2.30 GHz

Ram: 16,0 GB

3. Runtime Chart (Table)

n	Algorithm 1			Algorithm 2			Algorithm 3		
	p = 101	p = 1009	p = 10007	p = 101	p = 1009	p = 10007	p = 101	p = 1009	p = 10007
10 ⁶	1345 ms	12235 ms	110476 ms	1.578 ms	10.384	14.965	0.2012 ms	2.0783	19.147
					ms	ms		ms	ms
2*10 ⁶	3211 ms	24754 ms	210894 ms	3.783 ms	11.872	15.842	0.2093 ms	2.1007	19.537
					ms	ms		ms	ms
3*10 ⁶	3858 ms	37276 ms	311412 ms	4.984 ms	13.365	16.711	0.2177 ms	2.1222	19.936
					ms	ms		ms	ms
4*10 ⁶	5112 ms	49783 ms	411920 ms	5.190 ms	14.849	17.600	0.2256 ms	2.1455	20.342
					ms	ms		ms	ms
5*10 ⁶	6372 ms	62311 ms	512428 ms	6.397 ms	16.331	18.476	0.2356 ms	2.1680	20.757
					ms	ms		ms	ms
6*10 ⁶	7626 ms	74834 ms	612936 ms	7.502 ms	17.829	19.355	0.2451 ms	2.1907	21.181
					ms	ms		ms	ms
7*10 ⁶	8995 ms	87352 ms	713444 ms	8.807 ms	19.312	20.227	0.2550 ms	2.2137	21.613
					ms	ms		ms	ms
8*10 ⁶	10252 ms	99873 ms	813950 ms	10.012	20.800	21.104	0.2653 ms	2.2369	22.054
				ms	ms	ms		ms	ms
9*10 ⁶	11513 ms	112392 ms	914458 ms	11.217	22.288	21.981	0.2759 ms	2.2604	22.504
				ms	ms	ms		ms	ms
10*10 ⁶	12766 ms	124911 ms	1014966	12.422	23.776	22.858	0.2871 ms	2.2841	22.963
			ms	ms	ms	ms		ms	ms

4. Plotting Of Algorithms

Algorithm 1

As we can see from the graph as well this algorithm's time complexity is linear.

Algorithm 2

This algorithm's time complexity is linear as well, but there is fluctuations at the beginning of the smaller n-values

Algorithm 3

This algorithm's time complexity is not linear, but it is logarithmic. In addition there is little fluctuations at the beginning because of the small n-values.