

Contact: tobia.clagluena@psi.ch

1 / 25

Tobia Claglüna :: AMAS Group, LSM

The Langevin Approach to Discretize the Collision Operator

Master's Thesis Presentation

August 16, 2023

Tobia Claglüna (LSM, PSI) August 16, 2023

Outline

-					
1	M	loti	IVa	ıtι	on

2. Theory

3. Methods

4. Results

5. Summary

Plasma dynamics in Free Electron Lasers (FELs)

- Accelerated particle bunches emit radiation after passing through undulators
- Particle bunches emit radiation at very short wave lengths (many possible applications)

Plasma dynamics in Free Electron Lasers (FELs)

- · Accelerated particle bunches emit radiation after passing through undulators
- Particle bunches emit radiation at very short wave lengths (many possible applications)

Problem

- Experiment-Simulation mismatch on energy spread (Prat et al. [2022])
- Energy spread limits bunch compression
- Intrabeam Scattering widens beam
- Existing method for modeling collisions is too expensive (Hockney and Eastwood [2021])

Tobia Claglüna (LSM, PSI) Motivation August 16, 2023 4 / 25

Plasma dynamics in Free Electron Lasers (FELs)

- Accelerated particle bunches emit radiation after passing through undulators
- Particle bunches emit radiation at very short wave lengths (many possible applications)

Problem

- Experiment-Simulation mismatch on energy spread (Prat et al. [2022])
- Energy spread limits bunch compression
- Intrabeam Scattering widens beam
- Existing method for modeling collisions is too expensive (Hockney and Eastwood [2021])

Outlook

- Stochastic Ansatz for modeling collisions (Langevin)
- Better computational complexity
- Run solver on an analytical and a real-world test case

Tobia Claglüna (LSM, PSI) Motivation August 16, 2023 4 / 25

Theory

Notation

Table 1: Notation used throughout the presentation.

Symbol	Definition	
\overline{a}	Vector quantity $\in \mathbb{R}^3$	
$oldsymbol{a}_i$	Vector component at index i	
$\ oldsymbol{b}\ _2 = \sqrt{\sum_i b_i ^2}$	L^2 -norm	
<u>B</u>	Tensor quantity $\in \mathbb{R}^{3 imes 3}$	
$\underline{\underline{B}}_{i,j}$	Tensor component at index $\left(i,j\right)$	
$\underline{\underline{C}}:\underline{\underline{E}}$	$\sum_{i,j} \underline{\underline{C}}_{i,j} \underline{\underline{E}}_{i,j}$	
$ abla_{m{v}}$	Gradient operator acting on velocity space	
$\underline{\underline{H}}_{v}$	Hessian operator acting on velocity space	

Phase Space Definition

$$f(\mathbf{r}, \mathbf{v}, t) = \frac{1}{\Delta \mathbf{r} \Delta \mathbf{v}} \int_{\Delta \mathbf{r}} d\mathbf{r} \int_{\Delta \mathbf{v}} d\mathbf{v} f_K$$
 (1)

Phase Space Definition

$$f(\mathbf{r}, \mathbf{v}, t) = \frac{1}{\Delta \mathbf{r} \Delta \mathbf{v}} \int_{\Delta \mathbf{r}} d\mathbf{r} \int_{\Delta \mathbf{v}} d\mathbf{v} f_K$$
 (1)

7 / 25

Vlasov-Poisson Equation

$$\left\{ \begin{aligned} \frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial \boldsymbol{r}} + \frac{\boldsymbol{F}}{m} \frac{\partial f}{\partial \boldsymbol{v}} &= \left(\frac{\partial f}{\partial t}\right)_{\text{coll}}, \end{aligned} \right.$$

Phase Space Definition

$$f(\mathbf{r}, \mathbf{v}, t) = \frac{1}{\Delta \mathbf{r} \Delta \mathbf{v}} \int_{\Delta \mathbf{r}} d\mathbf{r} \int_{\Delta \mathbf{v}} d\mathbf{v} f_K$$
 (1)

Vlasov-Poisson Equation

$$\begin{cases}
\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial \boldsymbol{r}} + \frac{\boldsymbol{F}}{m} \frac{\partial f}{\partial \boldsymbol{v}} = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}}, \\
\nabla_{\boldsymbol{r}}^{2} \phi(\boldsymbol{r}) = -\frac{\rho(\boldsymbol{r})}{\epsilon_{0}}.
\end{cases} (2)$$

Phase Space Definition

$$f(\mathbf{r}, \mathbf{v}, t) = \frac{1}{\Delta \mathbf{r} \Delta \mathbf{v}} \int_{\Delta \mathbf{r}} d\mathbf{r} \int_{\Delta \mathbf{v}} d\mathbf{v} f_K$$
 (1)

Vlasov-Poisson Equation

$$\begin{cases}
\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \frac{\partial f}{\partial \boldsymbol{r}} + \frac{\boldsymbol{F}}{m} \frac{\partial f}{\partial \boldsymbol{v}} = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}}, \\
\nabla_{\boldsymbol{r}}^{2} \phi(\boldsymbol{r}) = -\frac{\rho(\boldsymbol{r})}{\epsilon_{0}}.
\end{cases} (2)$$

 \rightarrow How do we determine the r.h.s. $\left(\frac{\partial f}{\partial t}\right)_{\text{coll}}$?

Scattering in the center of mass frame

Scattering in the center of mass frame

Time Scale of Collisions

$$\tau_c \ll \Delta t \ll \nu \tag{3}$$

Collisions happen **locally** in configuration space (Callen [2018]) \implies can assume collisions solely act on particle velocities

 au_c : Collision Time

 ν : Dissipation Time

Fokker-Planck Equation

Fokker-Planck Equation

$$\left(\frac{\partial f}{\partial t}\right)_{\text{coll}} = -\frac{\partial}{\partial \boldsymbol{v}} \cdot \left(f\frac{\langle \Delta \boldsymbol{v} \rangle}{\Delta t}\right) + \frac{1}{2} \frac{\partial^2}{\partial \boldsymbol{v} \partial \boldsymbol{v}} : \left(f\frac{\langle \Delta \boldsymbol{v} \Delta \boldsymbol{v} \rangle}{\Delta t}\right) \tag{4}$$

Fokker-Planck Equation

Fokker-Planck Equation

$$\left(\frac{\partial f}{\partial t}\right)_{\text{coll}} = -\frac{\partial}{\partial \boldsymbol{v}} \cdot \left(f\frac{\langle \Delta \boldsymbol{v} \rangle}{\Delta t}\right) + \frac{1}{2} \frac{\partial^2}{\partial \boldsymbol{v} \partial \boldsymbol{v}} : \left(f\frac{\langle \Delta \boldsymbol{v} \Delta \boldsymbol{v} \rangle}{\Delta t}\right) \tag{4}$$

Collision Coefficients

$$F_d(v) = \frac{\langle \Delta v \rangle}{\Delta t} = \Gamma \frac{\partial h(v)}{\partial v},$$
 (5)

$$\underline{\underline{\underline{D}}}(\boldsymbol{v}) = \frac{\langle \Delta \boldsymbol{v} \Delta \boldsymbol{v} \rangle}{\Delta t} = \Gamma \frac{\partial^2 g(\boldsymbol{v})}{\partial \boldsymbol{v} \partial \boldsymbol{v}}.$$
 (6)

 $F_d(v)$: Dynamic friction coefficient $\underline{D}(v)$: Stochastic diffusion coefficient

Fokker-Planck Equation

Fokker-Planck Equation

$$\left(\frac{\partial f}{\partial t}\right)_{\text{coll}} = -\frac{\partial}{\partial \boldsymbol{v}} \cdot \left(f\frac{\langle \Delta \boldsymbol{v} \rangle}{\Delta t}\right) + \frac{1}{2} \frac{\partial^2}{\partial \boldsymbol{v} \partial \boldsymbol{v}} : \left(f\frac{\langle \Delta \boldsymbol{v} \Delta \boldsymbol{v} \rangle}{\Delta t}\right) \tag{4}$$

Collision Coefficients

$$F_d(v) = \frac{\langle \Delta v \rangle}{\Delta t} = \Gamma \frac{\partial h(v)}{\partial v},$$
 (5)

$$\underline{\underline{\underline{D}}}(\boldsymbol{v}) = \frac{\langle \Delta \boldsymbol{v} \Delta \boldsymbol{v} \rangle}{\Delta t} = \Gamma \frac{\partial^2 g(\boldsymbol{v})}{\partial \boldsymbol{v} \partial \boldsymbol{v}}.$$
 (6)

 $m{F}_d(m{v})$: Dynamic friction coefficient $\underline{D}(m{v})$: Stochastic diffusion coefficient

Poisson Problems (Rosenbluth et al. [1957]).

$$\nabla_{\boldsymbol{v}}^2 h(\boldsymbol{v}) = -8\pi f(\boldsymbol{r}, \boldsymbol{v}), \qquad (7)$$

$$\nabla_{\boldsymbol{v}}^{2} \nabla_{\boldsymbol{v}}^{2} g(\boldsymbol{v}) = -8\pi f(\boldsymbol{r}, \boldsymbol{v}). \tag{8}$$

Methods

Electrostatic PIC with Periodic boundary conditions.

Velocity PIC with **Open** boundary conditions.

$\mathsf{FP}\ \mathsf{Equation} \Longleftrightarrow \mathsf{Langevin}\ \mathsf{Equation}\ (\mathsf{Tabar}\ [2019])$

$$d\mathbf{v}(t) = \underbrace{\mathbf{a}(\mathbf{v}, t)}_{\mathbf{F}_{d}(\mathbf{v})} dt + \underbrace{\mathbf{b}(\mathbf{v}, t)}_{\underline{Q}(\mathbf{v})} d\mathbf{W}(t), \tag{9}$$

$$d\mathbf{W}(t) = \boldsymbol{\xi}_t dt, \quad \boldsymbol{\xi}_t \sim \mathcal{N}(0, 1). \tag{10}$$

12 / 25

 $F_d(v)$: Dynamic friction coefficient $\underline{D}(v)$: Stochastic diffusion coefficient

FP Equation \iff Langevin Equation (Tabar [2019])

$$d\mathbf{v}(t) = \underbrace{\mathbf{a}(\mathbf{v}, t)}_{F_d(\mathbf{v})} dt + \underbrace{\mathbf{b}(\mathbf{v}, t)}_{\underline{\underline{Q}}(\mathbf{v})} d\mathbf{W}(t), \tag{9}$$

$$d\mathbf{W}(t) = \boldsymbol{\xi}_t dt, \quad \boldsymbol{\xi}_t \sim \mathcal{N}(0, 1). \tag{10}$$

LDLT factorization for positive semi-definite Matrices

$$\underline{\underline{D}} = \underline{LS}^2 \underline{\underline{L}}^T \implies \underline{Q} = \underline{SL}^T, \tag{11}$$

12 / 25

where $\underline{\underline{\mathcal{D}}}$ is positive semi-definite (Hinton [1983]).

 $F_d(v)$: Dynamic friction coefficient $\underline{D}(v)$: Stochastic diffusion coefficient

- 1: procedure Advance Particles in time by dt
- $m{r} \leftarrow m{r} + rac{dt}{2} m{v};$
- Compute F(r); $v \leftarrow v + \frac{dt}{2} \frac{F}{m}$; 3:

(Electrostatic PIC)

Algorithm 1: Euler-Maruyama Time Integrator Procedure.

Tobia Claglüna (LSM, PSI) Methods August 16, 2023

- 1: procedure Advance Particles in time by dt
- $r \leftarrow r + \frac{dt}{2}v$; 2:
- Compute F(r); $v \leftarrow v + \frac{dt}{2} \frac{F}{m}$; Compute $F_d(v)$ and $\underline{\underline{D}}(v)$; 3:
- 4:

(Electrostatic PIC) (Velocity PIC)

Algorithm 1: Euler-Maruyama Time Integrator Procedure.

```
1: procedure Advance Particles in time by dt
```

- 2: $r \leftarrow r + \frac{dt}{2}v$;
- Compute F(r); $v \leftarrow v + \frac{dt}{2} \frac{F}{m}$; Compute $F_d(v)$ and $\underline{D}(v)$; 3:
- 4:
- Factorize $\underline{\underline{D}}(\boldsymbol{v}); \ \underline{Q} \leftarrow \underline{\underline{SL}}^T;$ 5:

(Electrostatic PIC) (Velocity PIC)

(LDLT Factorization)

Algorithm 1: Euler-Maruyama Time Integrator Procedure.

Tobia Claglüna (LSM, PSI) Methods

```
1: procedure Advance Particles in time by dt
```

2:
$$r \leftarrow r + \frac{dt}{2}v$$
;

3: Compute
$$F(r)$$
; $v \leftarrow v + \frac{dt}{2} \frac{F}{m}$;
4: Compute $F_d(v)$ and $\underline{D}(v)$;

4: Compute
$$F_d(v)$$
 and $\underline{D}(v)$;

5: Factorize
$$\underline{\underline{D}}(v)$$
; $\underline{\underline{Q}} \leftarrow \underline{\underline{SL}}^T$;

6:
$$\boldsymbol{v} \leftarrow \boldsymbol{v} + dt \boldsymbol{F}_d + d\boldsymbol{W}(t) \cdot \underline{Q};$$

(LDLT Factorization)

Algorithm 1: Euler-Maruyama Time Integrator Procedure.

Tobia Claglüna (LSM, PSI) Methods

```
1: procedure Advance Particles in time by dt
2:
           r \leftarrow r + \frac{dt}{2}v;
         Compute F(r); v \leftarrow v + \frac{dt}{2} \frac{F}{m}; Compute F_d(v) and \underline{D}(v);
3:
                                                                                                                       (Electrostatic PIC)
                                                                                                                               (Velocity PIC)
4:
      Factorize \underline{D}(\boldsymbol{v}); \underline{Q} \leftarrow \underline{SL}^T;
                                                                                                                  (LDLT Factorization)
5:
     \boldsymbol{v} \leftarrow \boldsymbol{v} + dt \boldsymbol{F}_d + d\boldsymbol{W}(t) \cdot \underline{Q};
      Compute F(r); v \leftarrow v + \frac{\overline{dt}}{2} \frac{F}{r};
                                                                                                                       (Electrostatic PIC)
         r \leftarrow r + \frac{dt}{2}v;
8:
9: end procedure.
```

Tobia Claglüna (LSM, PSI) August 16, 2023 13 / 25 Methods

Algorithm 1: Euler-Maruyama Time Integrator Procedure.

Results

Convergence Study: Rosenbluth Potentials

Gaussian Initial Velocity Density

$$f(\boldsymbol{v}) = \frac{1}{\sqrt{8\pi^3}\sigma^3} \exp\left(-\frac{v^2}{2\sigma^2}\right), \quad \sigma = 0.05v_{max}$$
 (12)

Relative approximation error η

$$\eta(x, x_{\mathsf{appr}}) = \frac{\|x_{\mathsf{appr}} - x\|_2}{\|x\|_2}$$
(13)

15 / 25

Tobia Claglüna (LSM, PSI) Results August 16, 2023

Convergence Study: Rosenbluth Potentials

Gaussian Initial Velocity Density

$$f(\mathbf{v}) = \frac{1}{\sqrt{8\pi^3}\sigma^3} \exp\left(-\frac{v^2}{2\sigma^2}\right), \quad \sigma = 0.05v_{max}$$
 (14)

Tobia Claglüna (LSM, PSI) Results August 16, 2023

Convergence Study: Rosenbluth Potentials

Gaussian Initial Velocity Density

$$f(\mathbf{v}) = \frac{1}{\sqrt{8\pi^3}\sigma^3} \exp\left(-\frac{v^2}{2\sigma^2}\right), \quad \sigma = 0.05v_{max}$$
 (14)

Tobia Claglüna (LSM, PSI)

Disorder Induced Heating (DIH) Test Case

P³M Reference Implementation

- $P^3M \equiv (Particle-Particle Particle-Mesh)$ by Hockney and Eastwood [2021], Ulmer [2016]
- · High computational complexity
- 2 hyperparameters (cut-off radius r_c , interaction splitting parameter α)

Tobia Claglüna (LSM, PSI) Results August 16, 2023

Disorder Induced Heating (DIH) Test Case

P³M Reference Implementation

- P³M ≡ (Particle-Particle Particle-Mesh) by Hockney and Eastwood [2021], Ulmer [2016]
- High computational complexity
- 2 hyperparameters (cut-off radius r_c , interaction splitting parameter α)

Cold Sphere Initial Condition (Mitchell et al. [2015])

- $N_p = 156055$ electrons in a sphere of radius $R = 17.74 \ \mu m \implies \tau_p = 4.31 \times 10^{-11} \ s$
- Simulation time: $t_{tot} = 5\tau_p$, $dt = 2.15623 \times 10^{-13} s \implies 1000 dt$
- Particles initially at rest: v(t = 0) = 0
- Normalized x-emittance at equilibrium: $\varepsilon_{x,n} = 0.491 \ nm$

 τ_p : Plasma period Normalized x-emittance $\varepsilon_{x.n}$:

Tobia Claglüna (LSM, PSI) August 16, 2023 Results

Disorder Induced Heating (DIH) Test Case

Solver setup for the DIH experiments:

PIC Type	Quantity of Interest	Comp. Domain or Method	
Electrostatic PIC	$- abla_{m{r}}\left[\phi(m{r}) ight]$	Spectral Gradient: $ abla^{sp}_{m{r}}$	
Velocity PIC	$\nabla_{\boldsymbol{v}} h(\boldsymbol{v}), g(\boldsymbol{v})$	Vico et al. [2016] $+ abla_{m{v}}^{\sf sp}$	
Velocity 1 1C	$rac{\partial^2}{\partial oldsymbol{v}\partial oldsymbol{v}}g(oldsymbol{v})$	FD Hessian: $\underline{\underline{H}}_{oldsymbol{v}}^{\mathrm{fd}}$	

*fd : Operator computed with Finite Difference (FD)

 $\star^{\rm sp}$: Operator computed with a spectral method (Vico et al. [2016])

DIH Baseline (no collision)

Normalized x-emittance $\varepsilon_{x,n}$ of collisionless Langevin solver and $\mathsf{P}^3\mathsf{M}$.

August 16, 2023

• Friction coefficients on their own are not large enough to impact $\varepsilon_{x,n}$.

- Friction coefficients on their own are not large enough to impact $\varepsilon_{x,n}$.
- Diagonal diffusion coefficients are indeed dominant (Manheimer et al. [1997]).

- Friction coefficients are too small to impact $\varepsilon_{x,n}$.
- Diagonal diffusion coefficients are indeed dominant (Manheimer et al. [1997]).
- Off-diagonal values show non-periodic behavior for $t < 3\tau_p$.

21 / 25

Tobia Claglüna (LSM, PSI) Results August 16, 2023

Investigation of Diffusion Coefficients $\underline{\boldsymbol{D}}$

Diffusion matrices not only positive semi-definite (inhibits LDLT decomposition)

Investigation of Diffusion Coefficients $\underline{\boldsymbol{D}}$

• Diffusion matrices not only positive semi-definite (inhibits LDLT decomposition)

Investigation of Diffusion Coefficients $\underline{\underline{\underline{P}}}$

- Diffusion matrices not only positive semi-definite (inhibits LDLT decomposition)
- Negative definite matrices start to vanish after $t=3 au_p$

Summary

Langevin Solver for the Vlasov-Poisson-Vokker-Planck equation

Better complexity than reference solver (P³M) / less hyperparameters

Tobia Claglüna (LSM, PSI) Summary August 16, 2023

Langevin Solver for the Vlasov-Poisson-Vokker-Planck equation

- Better complexity than reference solver (P³M) / less hyperparameters
- Verified correctness of collision operator on analytical test cases

Langevin Solver for the Vlasov-Poisson-Vokker-Planck equation

- Better complexity than reference solver (P³M) / less hyperparameters
- Verified correctness of collision operator on analytical test cases
- Investigated impact of two solver types on normalized emittance

Langevin Solver for the Vlasov-Poisson-Vokker-Planck equation

- Better complexity than reference solver (P^3M) / less hyperparameters
- · Verified correctness of collision operator on analytical test cases
- Investigated impact of two solver types on normalized emittance
- Friction coefficient exhibits no impact on DIH test case

Langevin Solver for the Vlasov-Poisson-Vokker-Planck equation

- Better complexity than reference solver (P³M) / less hyperparameters
- Verified correctness of collision operator on analytical test cases
- Investigated impact of two solver types on normalized emittance
- Friction coefficient exhibits no impact on DIH test case
- Negative definite diffusion matrices inhibit adding diffusive term in time integration

Tobia Claglüna (LSM, PSI) August 16, 2023 24 / 25 Summary

Outlook

• Investigate noise in diffusion matrices for $t<3\tau_p$

 h_v : Mesh width in velocity space

Tobia Claglüna (LSM, PSI)

Summary

August

Outlook

- Investigate noise in diffusion matrices for $t<3\tau_p$
- Investigate dt/h_v interplay in the symmetric time integrator (i.e. subcycling)

 h_v : Mesh width in velocity space

Outlook

- Investigate noise in diffusion matrices for $t < 3\tau_p$
- Investigate dt/h_v interplay in the symmetric time integrator (i.e. subcycling)
- Test convserving time integrator (high order SDE methods)

 h_v : Mesh width in velocity space

Outlook

- Investigate noise in diffusion matrices for $t < 3\tau_p$
- Investigate dt/h_v interplay in the symmetric time integrator (i.e. subcycling)
- Test convserving time integrator (high order SDE methods)
- Test on a simpler physical test case

 h_v : Mesh width in velocity space

Outlook

- Investigate noise in diffusion matrices for $t < 3\tau_p$
- Investigate dt/h_v interplay in the symmetric time integrator (i.e. subcycling)
- Test convserving time integrator (high order SDE methods)
- Test on a simpler physical test case
- Performance improvements:
 - Asynchronous computation of $m{F}_d(m{v})$ and $\underline{D}(m{v})$
 - MPI parallelization via "Super-Cell" approach (Qiang et al. [2000])

Mesh width in velocity space h_n :

Tobia Claglüna (LSM, PSI) Summary

Appendix

Appendix I: Explored Solver components

Possible ways of defining the electrostatic Poisson problem:

PIC Type	Quantity of Interest	Comp. Domain or Method
Electrostatic PIC	$\phi(m{r})$	Definition I (see Fig. above)
		Definition II (see Fig. above)
	$- abla_{m{r}}\phi(m{r})$	Finite Difference Gradient: $ abla^{ extstyle{fd}}_{m{r}}$
		Spectral Gradient: $ abla^{sp}_{m{r}}$
Velocity PIC	$\nabla_{\boldsymbol{v}} h(\boldsymbol{v}), g(\boldsymbol{v})$	Hockney, $ abla_{m{v}}^{\{fd,sp\}}$
		Vico, $ abla_v^{\{fd,sp\}}$
	$\frac{\partial^2}{\partial oldsymbol{v}\partial oldsymbol{v}}g(oldsymbol{v})$	Finite Difference Hessian: $\underline{\underline{H}}_{m{v}}^{\mathrm{fd}}$
		Spectral Hessian: $\underline{\underline{H}}_{\boldsymbol{v}}^{sp}$

Tobia Claglüna (LSM, PSI) Appendix August 16, 2023 2 / 12

Appendix II: Varying Poisson Solver Type

Appendix III: Varying Poisson Solver Mesh Size

Appendix IV: Convergence of Coefficients

Convergence study of collisional coefficients for a Gaussian velocity distribution which models the distribution of the dih problem.

- (a) Finite Difference computation of coefficients. (b) Spectral computation of coefficients.

Tobia Claglüna (LSM, PSI) Appendix August 16, 2023 5 / 12

Appendix V: Friction & Diffusion Coefficients

Friction coefficient does not have any impact on DIH $\varepsilon_{x,n}$:

Appendix VI: Chainable differential operators

Listing 1: Pseudo-code for a chained operator (equivalent to $\frac{\partial^2}{\partial x \partial y} f(x,y)$).

```
constexpr int Dim = 2:
typedef double T;
// Inverse mesh-spacing
ippl::Vector<Dim, T> hInv = {40.0, 40.0};
// Field of type double and size [100]^2
Field<Dim, T> field(100, 100, 1.0 / hInv);
// Define the stencils applied along the x and y dimension
DiffType DiffX = DiffType::Forward;
DiffType DiffY = DiffType::Backward;
// Operator that is applied first
typedef DiffOpChain<OpDim::Y, Dim, T, DiffY, FView_t> firstOperator;
// Operator that is applied after the first
DiffOpChain<OpDim::X. Dim. T. DiffX. firstOperator> diff xv(field. hInv):
// Compute curvature at index (42,42)
double result = diff xv(42, 42):
```

Appendix VII: Chainable differential operators

Appendix VII: Computational Complexity

$$C_{\mathsf{P}^{3}\mathsf{M}}\left(N_{p},N_{m},\delta\right) = \underbrace{\mathcal{O}(N_{p}^{2}\delta^{3})}_{\mathsf{Particle-Particle}} + \underbrace{\mathcal{O}(N_{p}) + \mathcal{O}(N_{m}\log(N_{m}))}_{\mathsf{Particle-Mesh}},\tag{15}$$

$$C_{\mathsf{Langevin}}(N_p, N_m) = \underbrace{\mathcal{O}(N_p) + \mathcal{O}(N_m \log(N_m))}_{\mathbf{F}_d} \\ + \underbrace{\mathcal{O}(N_p) + \mathcal{O}(N_m) + \mathcal{O}(N_m \log(N_m))}_{\underline{\underline{\mathcal{D}}}} \\ + \underbrace{\mathcal{O}(N_p) + \mathcal{O}(N_m \log(N_m))}_{\mathsf{Particle-Mesh}} \\ = \mathcal{O}(N_p) + \mathcal{O}(N_m \log(N_m)). \tag{16}$$

 $\delta = r_c/L$ is the ratio of the cut-off radius r_c w.r.t. the domain length L.

Appendix VIII: Energy Spread (Prat et al. [2022])

- Eduard Prat, Paolo Craievich, Philipp Dijkstal, Simone Di Mitri, Eugenio Ferrari, Thomas G Lucas, Alexander Malyzhenkov, Giovanni Perosa, Sven Reiche, and Thomas Schietinger. Energy spread blowup by intrabeam scattering and microbunching at the SwissFEL injector. *Physical Review Accelerators and Beams*, 25(10):104401, 2022. URL https://doi.org/10.1103/PhysRevAccelBeams.25.104401.
- R.W Hockney and J.W Eastwood. Computer Simulation Using Particles. CRC Press, March 2021. doi: 10.1201/9780367806934. URL https://doi.org/10.1201/9780367806934. ISBN: 978-0-367-80693-4.
- James D. Callen. Plasma Kinetic Theory, chapter Coulomb Collision Operator. 2018. URL https://drive.google.com/file/d/ 1j2Afyq1D02zeyFf9qTTfFVL9F9Rxzn7s/view?pli=1. Accessed: 2023-01-29.
- Marshall N. Rosenbluth, William M. MacDonald, and David L. Judd. Fokker-Planck equation for an inverse-square force. *Phys. Rev.*, 107:1–6, Jul 1957. doi: 10.1103/PhysRev.107.1. URL
 - $\verb|https://link.aps.org/doi/10.1103/PhysRev.107.1|.$
- M. Reza Rahimi Tabar. Equivalence of Langevin and Fokker–Planck Equations, pages 61–68. Springer International Publishing, Cham, 2019. ISBN 978-3-030-18472-8. doi: 10.1007/978-3-030-18472-8_7. URL https://doi.org/10.1007/978-3-030-18472-8_7.

Tobia Claglüna (LSM, PSI) Appendix August 16, 2023 11 / 12

References II

- Fred L Hinton. Collisional transport in plasma. *Handbook of Plasma Physics*, 1(147): 331, 1983. ISBN: 0-444-86645-0.
- Benjamin Ulmer. The P3M Model on Emerging Computer Architectures With Application to Microbunching. Master's thesis, ETH Zürich, 2016. URL https://amas.web.psi.ch/people/aadelmann/ETH-Accel-Lecture-1/projectscompleted/cse/thesisBUlmer.pdf.
- Chad Mitchell, Ji Qiang, et al. A Parallel Particle-Particle, Particle-Mesh Solver for Studying Coulomb Collisions in the Code IMPACT-T. In 6th Int. Particle Accelerator Conf. (IPAC'15), Richmond, VA, USA, May 3-8, 2015, pages 593–595. JACOW, Geneva, Switzerland, 2015. URL https://accelconf.web.cern.ch/IPAC2015/papers/mopma024.pdf.
- Felipe Vico, Leslie Greengard, and Miguel Ferrando. Fast Convolution with Free-Space Green's Functions. *Journal of Computational Physics*, 323:191–203, 2016. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2016.07.028. URL https://www.sciencedirect.com/science/article/pii/S0021999116303230.
- Wallace M Manheimer, Martin Lampe, and Glenn Joyce. Langevin representation of Coulomb collisions in PIC simulations. *Journal of Computational Physics*, 138(2): 563–584, 1997.
- Ji Qiang, Robert D Ryne, and Salman Habib. Self-consistent Langevin simulation of Coulomb collisions in charged-particle beams. In SC'00: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, pages 27–27. IEEE, 2000.

Tobia Claglüna (LSM, PSI) Appendix August 16, 2023 12 / 12