东南大学电工电子实验中心 实验报告

第 1 次实验

实验名称:	门电路	组合逻辑	<u> </u>	
院 (系):	计算机	专	业:_	网安
姓名:	王之畅	学	号: _	js319325
实验室:	实	验组别:		
同组人员:_	实	验时间:	2020年	3月30日
评定成绩:	——————————————————————————————————————	阅教师:		

门电路组合逻辑

一、实验目的

- 1. 认识数字集成电路,能识别各种类型的数字器件和封装
- 2. 掌握小规模组合逻辑的工程设计方法
- 3. 学习 Mulitisim 逻辑化简操作和使用方法
- 4. 学习基本的数字电路的故障检查和排除方法

二、 实验原理

逻辑电路的化简,根据问题描述对逻辑门的刻画,卡诺图化简原理.逻辑门的运算关系.

三、 实验内容

- 1. 数值判别电路:
- (1) 用门电路设计一个组合逻辑电路,接收 8421BCD 码 B3B2B1B0, 当 2<B3B2B1B0<7 时 输出 Y 为 1。
- (2) 用门电路设计一个组合逻辑电路,接收 4 位 2 进制数 B3B2B1B0,当 2<B3B2B1B0<7 时输出 Y 为 1。
- 2. 保险箱数字密码锁(选做实验)

设计一个保险箱的数字密码锁,该锁有规定的 4 位代码 A1, A2, A3, A4 的输入端和一个开箱钥匙孔信号 E 的输出端,锁的代码由实验者自编(例如 1011),当用钥匙开箱时(E=1),如果输入代码符合锁规定代码,保险箱被打开(Z1=1);如果不符,电路将发生报警信号(Z2=1)。要求使用最少数量的与非门实现电路,检测并记录实验结果。

四、 实验设计方案

- 1. 数值判别电路
- 1) **8421BCD** 码

● 设计思路

因为8421码表示的是0-9的数字,所以10之后的数字全部是无效的,由题意知,7之后的数字无效,所以可以不用管那些数字,因此只需要三个输入口即可,用开关可以改变输入输出的

值,然后列出真值表画出卡诺图即可得到结果.器件选择上使用 4-2 输入与非门,和 2-4 输入与非门集成芯片,导线若干,直流电源.

● 真值表

			Α	В	С	D	Е	F	G	Н	
0	000		0	0	0	0					0
0	01		0	0	0	1					0
0	002		0	0	1	0					0
0	003		0	0	1	1					1
0	04		0	1	0	0					1
0	05		0	1	0	1					1
0	006		0	1	1	0					1
0	07		0	1	1	1					0
0	800		1	0	0	0					0
0	0 9		1	0	0	1					0
0	10		1	0	1	0					X
0	11		1	0	1	1					X
0	12		1	1	0	0					X
0	13	l	1	1	0	1					X
0	14	l	1	1	1	0					X
0	15		1	1	1	1					X

● 卡诺图

AB\CD	00	01	11	10
00	0	0	1	0
01	1	1	0	1
11	0	0	х	х
10	х	х	х	х

● 逻辑化简

B'CD+BC'+BD'(转化为与非式)

● 逻辑电路图

硬件连接图

2) 4位二进制码

● 设计思路

由上面的题目可以知道所有的逻辑表达均类似, 所以只需要在原来的基础上进行更改, 加入 b3 的标码就可以, 用开关可以改变输入输出的值, 然后列出真值表画出卡诺图即可得到结果. 器件选择上使用 4-2 输入与非门, 和 2-4 输入与非门集成芯片, 导

线若干,直流电源.

● 真值表

	Α	В	С	D	Е	F	G	Н	
000	0	0	0	0					0
001	0	0	0	1					0
002	0	0	1	0					0
003	0	0	1	1					1
004	0	1	0	0					1
005	0	1	0	1					1
006	0	1	1	0					1
007	0	1	1	1					0
008	1	0	0	0					0
009	1	0	0	1					0
010	1	0	1	0					0
011	1	0	1	1					0
012	1	1	0	0					0
013	1	1	0	1					0
014	1	1	1	0					0
015	1	1	1	1					0

● 卡诺图

AB\CD	00	01	11	10
00	0	0	1	0
01	1	1	0	1
11	0	0	0	0
10	0	0	0	0

● 逻辑化简

● A'B'CD+A'BC'+A'BD'(化成与非式)

● 逻辑电路图

硬件连接图

2. 保险箱数字密码锁

● 设计思路

分而治之地去做, E 做为使能端可以在最后去使用, 而四输入 A, B, C, D 可以表示密码地对应位置, 只有唯一的某一个特定的 ABCD 可以使得灯亮用开关可以改变输入输出的值, 然后列出真值表画出卡诺图即可得到结果. 器件选择上使用 4-2 输入与非门, 和 2-4 输入与非门集成芯片, 导线若干, 直流电源.

● 真值表

我假设密码为 1101(仅选取部分有代表性真值表)

A	В	С	D	E	F1	F2	
---	---	---	---	---	----	----	--

0	0	0	0	0	0	0
0	0	0	0	1	0	1
1	1	1	1	0	0	0
1	1	1	1	1	0	1
1	1	0	1	0	0	0
1	1	0	1	1	1	0

● 卡诺图

F1

AB\CD	00	01	11	10
00	E	E	E	E
01	E	E	Е	E
11	E	0	E	E
10	E	E	E	E

F2

AB\CD	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	E	0	0
10	0	0	0	0

● 逻辑化简

F1=m2*E

F2=(m1+m3+m4+ m5+m6+m7+ m8+m9+m10+ m11+m12+m13+ m14+m15+m0)*E

● 逻辑电路图

硬件连接图

五、 测试方案

从 0000-1111, 依次测试并对照真值表检验是否正确

六、 实验总结

问题:接线不会接,排线复杂

解决:在画模拟图的时候直接将数字标号标在线上,管脚号标明就不容易出错

七、 实验建议

集成芯片之间一定要留够足够的距离不然线真的接不起来,会绕在一起