CenterNet与代码解读

CorNetNet: Detecting objects as paired keypoints

(重要知识点的补充)

整体框架

corner pooling

Table 1. Ablation on corner pooling on MS COCO validation.

	AP	AP^{50}	AP^{75}	AP^s	AP^m	AP^l
w/o corner pooling	36.5	52.0	38.9	17.6	38.7	48.8
w/ corner pooling	38.5	54.1	41.1	17.7	41.1	52.5
improvement	+2.0	+2.1	+2.2	+0.1	+2.4	+3.7

损失函数

1. heatmap loss

$$L_{det} = \frac{-1}{N} \sum_{c=1}^{C} \sum_{i=1}^{H} \sum_{j=1}^{W} \begin{cases} (1 - p_{cij})^{\alpha} \log (p_{cij}) & \text{if } y_{cij} = 1\\ (1 - y_{cij})^{\beta} (p_{cij})^{\alpha} \log (1 - p_{cij}) & \text{otherwise} \end{cases}$$

	AP	AP^{50}	AP^{75}	AP^s	AP^m	AP^l
w/o reducing penalty	32.9	49.1	34.8	19.0	37.0	40.7
fixed radius	35.6	52.5	37.7	18.7	38.5	46.0
object-dependent radius	38.5	54.1	41.1	17.7	41.1	52.5

损失函数

2. smoothl1 + group loss

$$L_{pull} = \frac{1}{N} \sum_{k=1}^{N} \left[(e_{t_k} - e_k)^2 + (e_{b_k} - e_k)^2 \right],$$

$$L_{push} = \frac{1}{N(N-1)} \sum_{k=1}^{N} \sum_{\substack{j=1 \ j \neq k}}^{N} \max(0, \Delta - |e_k - e_j|),$$

$$\operatorname{smooth}_{L_1}(x) = \left\{ egin{array}{ll} 0.5x^2 & ext{if } |x| < 1 \ |x| - 0.5 & ext{otherwise} \end{array}
ight.$$

harry 2020.3.1

损失函数

2. smoothl1 + group loss

$$L_{pull} = rac{1}{N}\sum_{k=1}^{N}\left[\left(e_{t_k}-e_k
ight)^2+\left(e_{b_k}-e_k
ight)^2
ight], \ ext{smooth}_{L_1}(x) = egin{dcases} 0.5x^2 & ext{if }|x| < 1 \ |x| - 0.5 & ext{otherwise} \end{cases} \ L_{push} = rac{1}{N(N-1)}\sum_{k=1}^{N}\sum_{\substack{j=1 \ j
eq k}}^{N} \max\left(0,\Delta-|e_k-e_j|
ight).$$

$$L_{pull} = \frac{1}{N} \sum_{k=1}^{N} \left[(e_{t_k} - e_k)^2 + (e_{b_k} - e_k)^2 \right],$$

$$L = L_{det} + \alpha L_{pull} + \beta L_{push} + \gamma L_{off}$$

对比实验

	AP	AP^{50}	AP^{75}	AP^s	AP^m	AP^l
	38.5	54.1	41.1	17.7	41.1	52.5
w/ gt heatmaps	74.0	88.5	79.3	60.8	82.0	82.6
w/ gt heatmaps + offsets	87.1	90.0	86.7	85.0	87.9	83.1

harry 2020.3.14

CenterNet: Objects as Points

目录

- 动机
- 方法
- 实验与结果

动机

 CornerNet由于是根据角点来检测目标,后处理中会涉及配对操作, 处理流程复杂,效率低。

从tl-heatmap and br-heatmap 选取top-70个点,同时使用offset 来remap

通过embedding features来 group

做NMS,取分数最高的前100个bbox,

方法

• CenterNet将检测任务分解成中心点检测与长宽回归。

因此网络最终输出categories+4(offsets, height, width)个heatmaps。同时没有NMS, 没有复杂的后处理。

后处理:保留比其8邻域大的响应。(使用maxpool就可以解决)

方法: 整体框架

方法: Radius

r = argmax(iou>t)(t=0.7)

r = min(r1, r2, r3)

方法

作者将模型泛化至3D检测,关键点检测。将任务分解成中心点与其属性。

目标检测:目标中心+尺寸

3D检测:目标中心+尺寸+深度信息+方向

关键点检测:目标中心+k个节点的offset

实验

1.使用不同backbone的结果(其他模型使用了预训练模型)

	AP	AP_{50}	AP_{75}	Time (ms)	FPS
	N.A. F MS	N.A. F MS	N.A. F MS	N.A. F MS	N.A. F MS
Hourglass-104	40.3 42.2 45.1	59.1 61.1 63.5	44.0 46.0 49.3	71 129 672	14 7.8 1.4
DLA-34	37.4 39.2 41.7	55.1 57.0 60.1	40.8 42.7 44.9	19 36 248	52 28 4
ResNet-101	34.6 36.2 39.3	53.0 54.8 58.5	36.9 38.7 42.0	22 40 259	45 25 4
ResNet-18	28.1 30.0 33.2	44.9 47.5 51.5	29.6 31.6 35.1	7 14 81	142 71 12

左为原始的DLA; 右为作者修改后的DLA。

1.其他消融实验

Resolution	$AP AP_{50}$	AP_{75} Ti	$\overline{\mathrm{me}}$ $\overline{\lambda_{size}}$	AP .	$AP_{50} AP_{75}$
Original	36.3 54.0	39.6 1	9 0.2	33.5	49.9 36.2
512	36.2 54.3	38.7	6 0.1	36.3	54.0 39.6
384	33.2 50.5	35.0 1	0.02	35.4	54.6 37.9

Loss	AP	AP_{50}	AP_{75}
11	36.3	54.0	39.6
smooth 11	33.9	50.9	36.8

Epoch	AP	AP_{50}	AP_{75}
140	36.3	54.0	39.6
230	37.4	55.1	40.8

测试时输入尺寸的影响

平衡系数的影响

回归损失的对比

训练时长的影响

与YOLOV1的比较

	YOLOV1	CenterNet	Diff
输入与输出 的设置	结果为7*7的Heatmaps 5*2+20 (x, y, w, h, c), 其中x,y是相对于cell左上点的。 w, h是相对于整张图的。	结果为128*128的Heatmaps 80+2+2	softmax vs sigmoid points and Gaussian map
网络与损失 的设置	相当于VGG19,没有BN	HourglassNet,点检测 领域的标配。	Cross entropy loss vs focal loss

错误分析

	AP	$\overline{AP_{50}}$	$\overline{AP_{75}}$
	36.3	54.0	39.6
w/ gt size	41.9	56.6	45.4
w/ gt heatmap	54.2	82.6	58.1
w/ gt heatmap+size	83.1	97.9	90.1
w/ gt hm.+size+offset	99.5	99.7	99.6

- 中心点预测的很差。
- · 中心点预测准的前提下,谈论size才更加具有意义。