BISON Instantiating the Withened Swap-Or-Not Construction

September 6th, 2018

Horst Görtz Institute for IT Security Ruhr-Universität Bochum

Virginie Lallemand, Gregor Leander, Patrick Neumann, and *Friedrich Wiemer*

RUB

The WSN construction

Published by Tessaro at AsiaCrypt 2015 [ia.cr/2015/868].

Overview

Whitened Swap-Or-Not round function

$$x_i \mapsto x_i + f_{b(i)}(w_i + \max\{x_i, x_i + k_i\}) \cdot k_i$$

Security Proposition (informal)

The WSN construction with $\mathcal{O}(n)$ rounds is

$$(2^{n-\mathcal{O}(\log n)}, 2^{n-\mathcal{O}(1)})$$
-secure.

(p,q)-secure: Attackers querying the encryption at most p and the underlying f_i 's q times have only negl. advantage.

An Implementation

An Implementation

Construction

- f(x) := ?
- Key schedule?
- $\bigcirc \mathscr{O}(n)$ rounds?

Theoretical vs. practical constructions

On the number of rounds

On the number of rounds

Encryption

$$E_{k,w}(p) := p + \sum_{i=1}^{r} \lambda_i k_i = c$$

On the number of rounds

Encryption

$$E_{k,w}(p) := p + \sum_{i=1}^{r} \lambda_i k_i = c$$

On the number of rounds

Observation

■ The ciphertext is the plaintext plus a random subset of the round keys:

$$c = p + \sum_{i=1}^{r} \lambda_i k_i$$

■ For pairs p_i, c_i : span $\{p_i + c_i\} \subseteq \text{span } \{k_j\}$.

Observation

■ The ciphertext is the plaintext plus a random subset of the round keys:

$$c = p + \sum_{i=1}^{r} \lambda_i k_i$$

■ For pairs p_i , c_i : span $\{p_i + c_i\} \subseteq \text{span }\{k_j\}$.

Distinguishing Attack for r < n rounds

There is an $u \in \mathbb{F}_2^n \setminus \{0\}$, s. t. $\langle u, p \rangle = \langle u, c \rangle$ holds always:

$$\langle u, c \rangle = \langle u, p + \sum_{i} \lambda_{i} k_{i} \rangle$$
$$= \langle u, p \rangle + \langle u, \sum_{i} \lambda_{i} k_{i} \rangle = \langle u, p \rangle + 0$$

for all $u \in \operatorname{span} \{k_1, \dots, k_r\}^{\perp} \neq \{0\}$

Observation

■ The ciphertext is the plaintext plus a random subset of the round keys:

$$c = p + \sum_{i=1}^{r} \lambda_i k_i$$

■ For pairs p_i , c_i : span $\{p_i + c_i\} \subseteq \text{span }\{k_j\}$.

Distinguishing Attack for r < n rounds

There is an $u \in \mathbb{F}_2^n \setminus \{0\}$, s.t. $\langle u, p \rangle = \langle u, c \rangle$ holds always:

$$\langle u, c \rangle = \langle u, p + \sum_{i} \lambda_{i} k_{i} \rangle$$
$$= \langle u, p \rangle + \langle u, \sum_{i} \lambda_{i} k_{i} \rangle = \langle u, p \rangle + 0$$

for all $u \in \operatorname{span} \{k_1, \dots, k_r\}^{\perp} \neq \{0\}$

Rationale:

Any instance must iterate at least n rounds; any set of n consecutive keys should be linear indp.

Generic Analysis On the Boolean functions f:

Observation

If the f_i do not depend on the MSB, i. e.

$$f_i(x) = f_i(x + e_n)$$

then this propagates through r rounds w. h. p.:

$$\Pr[E_{k,w}(x) + E_{k,w}(x + e_n) = e_n] \ge (1 - 2^{-1})^r$$

Why could this happen?

- For example, when the difference does not influence the lexicographic ordering of x and $x + k_i$.
- Gets worse when depending on less bits.
- Compare to AES! Its round function depends on only 32 out of 128 bits.

On the Boolean functions f_i

Observation

If the f_i do not depend on the MSB, i. e.

$$f_i(x) = f_i(x + e_n)$$

then this propagates through r rounds w. h. p.:

$$\Pr[E_{k,w}(x) + E_{k,w}(x + e_n) = e_n] \ge (1 - 2^{-1})^r$$

Why could this happen?

- For example, when the difference does not influence the lexicographic ordering of x and $x + k_i$.
- Gets worse when depending on less bits.
- Compare to AES! Its round function depends on only 32 out of 128 bits.

Rationale 2

For any instance, the f_i should depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_i(x) = f_i(x + \delta)] \approx \frac{1}{2}$.

A genus of the WSN construction: BISON

Generic properties of Bent whitened Swap Or Not

- Consecutive round keys linearly independent
- At least n iterations of the round function

- The round function depends on all bits
- All derivatives are balanced (bent)

Rational 1 & 2: WSN is slow in practice!

But what about Differential Cryptanalysis?

Differential Cryptanalysis Primer

For block cipher $E_k(x)$ compute

$$\Pr[E_k(x) + E_k(x + \alpha) = \beta] = p_{E_k}(\alpha, \beta).$$

Notation: $Pr[\alpha \rightarrow \beta]$.

Differential Cryptanalysis Primer

For block cipher $E_k(x)$ compute

$$\Pr[E_k(x) + E_k(x + \alpha) = \beta] = p_{E_k}(\alpha, \beta).$$

Notation: $Pr[\alpha \rightarrow \beta]$.

Differential CryptanalysisOne round

Proposition

For one round of BISON, the probabilities are:

$$\Pr[\alpha \to \beta] = \begin{cases} 1 & \text{if } \alpha = \beta = k \text{ or } \alpha = \beta = 0 \\ \frac{1}{2} & \text{else if } \beta \in \{\alpha, \alpha + k\} \\ 0 & \text{else} \end{cases}$$

Differential Cryptanalysis

More rounds

Differential Cryptanalysis

More rounds

Example differences over r = 3 rounds

Probabilities of output differences

$$\Pr[\alpha \to \beta] = \begin{cases} 2^{-r} & \text{if } \beta \text{ in normal branch} \\ 2^{-r+1} & \text{if } \beta \text{ in collapsed branch} \\ 0 & \text{if } \beta \text{ in impossible branch} \end{cases}$$

Differential Cryptanalysis

More rounds

Example differences over r = 3 rounds

Probabilities of output differences

$$\Pr[\alpha \to \beta] = \begin{cases} 2^{-r} & \text{if } \beta \text{ in normal branch} \\ 2^{-r+1} & \text{if } \beta \text{ in collapsed branch} \\ 0 & \text{if } \beta \text{ in impossible branch} \end{cases}$$

Collapsing

How many branches can collapse?

Only two

For $r \le n$ rounds and linearly indp. round keys this happens only once.

The Key Schedule

Rationale 1

Any instance must iterate at least n rounds; any set of n consecutive keys should be linear indp.

Design Decisions

- Choose number of rounds as $2 \cdot n$
- Round keys derived from the state of LESRs
- \blacksquare Add round constants c_i to w_i round keys

Implications

- Clocking an LFSR is cheap
- For an LFSR with feedback polynomial of degree *n*, every *n* consecutive states are linearly independent
- Round constants avoid structural weaknesses

Addressing Rationale 2 The Round Function

Rationale 2

For any instance, the f_i should depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_i(x) = f_i(x + \delta)] \approx \frac{1}{2}$.

Design Decisions

- Choose $f: \mathbb{F}_2^n \to \mathbb{F}_2$ to be bent
- Choose the simplest bent function known:

$$f(x,y) := \langle x,y \rangle$$

Implications

- \blacksquare Bent functions only exists for even n
- Instance not possible for every block length n

Further Cryptanalysis

Linear Cryptanalysis

For $r \ge n$ rounds, the correlation of any non-trivial linear trail for BISON is upper bounded by $2^{-\frac{n+1}{2}}$.

Zero Correlation

For r > 2n-2 rounds, BISON does not exhibit any zero correlation linear hulls.

Invariant Attacks

For $r \ge n$ rounds, neither invariant subspaces nor nonlinear invariant attacks do exist for BISON.

Impossible Differentials

For r > n rounds, there are no impossible differentials for BISON.

Conclusion/Questions

Thank you for your attention!

BISON

- A first instance of the WSN construction
- Good results for differential cryptanalysis

Open Problems

- Construction for linear cryptanalysis
- Further analysis: division properties

Thank you!

Questions?

Details

Addressing Rationale 2

The detailed answer

Rationale 2

For any instance, the f_i should depend on all bits, and for any $\delta \in \mathbb{F}_2^n$: $\Pr[f_i(x) = f_i(x + \delta)] \approx \frac{1}{2}$.

Design Decisions

- Choose $f_i : \mathbb{F}_2^n \to \mathbb{F}_2$ to be bent
- Replace $x \mapsto \max\{x, x + k\}$ by

$$\Phi_k(x) : \mathbb{F}_2^n \to \mathbb{F}_2^{n-1}$$

$$\Phi_k(x) := (x + x[i(k)] \cdot k)[j]_{\substack{1 \le j \le n \\ j \ne i(k)}}$$

Implications

- lacktriangle With Φ_k we preserve the bent properties
- lacksquare Bent functions only exists for even n
- Encryption now only possible for odd block lengths

BISON's round function

For round keys $k_i \in \mathbb{F}_2^n$ and $w_i \in \mathbb{F}_2^{n-1}$ the round function computes

$$R_{k_i,w_i}(x) := x + f_{b(i)}(w_i + \Phi_{k_i}(x)) \cdot k_i.$$

where

lacksquare Φ_{k_i} and $f_{b(i)}$ are defined as

$$\Phi_k(x) : \mathbb{F}_2^n \to \mathbb{F}_2^{n-1}$$

$$\Phi_k(x) := (x + x[i(k)] \cdot k)[j]_{\substack{1 \le j \le n \\ j \ne i(k)}}$$

$$f_{b(i)}: \mathbb{F}_2^{\frac{n-1}{2}} \times \mathbb{F}_2^{\frac{n-1}{2}} \to \mathbb{F}_2$$

$$f_{b(i)}(x, y) := \langle x, y \rangle + b(i),$$

■ and b(i) is 0 if $i \le \frac{r}{2}$ and 1 else.

BISON's key schedule

Given

- lacksquare primitive p_k , $p_w \in \mathbb{F}_2[x]$ with degrees n, n-1 and companion matrices C_k , C_w .
- \blacksquare master key $K = (k, w) \in (\mathbb{F}_2^n \times \mathbb{F}_2^{n-1}) \setminus \{0, 0\}$

The *i*th round keys are computed by

$$KS_i: \mathbb{F}_2^n \times \mathbb{F}_2^{n-1} \to \mathbb{F}_2^n \times \mathbb{F}_2^{n-1}$$

$$KS_i(k, w) := (k_i, c_i + w_i)$$

where

$$k_i = (C_k)^i k$$
, $c_i = (C_w)^{-i} e_1$, $w_i = (C_w)^i w$.