DRONE AUTÔNOMO: VIGILÂNCIA AÉREA DE ESPAÇOS EXTERNOS

Aluno(a): Diego Fachinello Corrêa

Orientador: Dalton Solano dos Reis

Roteiro

- Introdução
- Objetivos
- Fundamentação teórica
- Trabalhos correlatos
- Requisitos
- Especificação
- Implementação
- Análise dos resultados
- Conclusões e Sugestões

Introdução

- O surgimento dos drones em nossa sociedade tecnológica.
- Dificuldade de locomoção terrestre.
- Vigilância e segurança de espaços externos.
- Pandemia COVID-19.
- Monitoramento com diminuição de riscos.

Objetivos

Este trabalho tem como objetivo geral entregar uma arquitetura de vigilância utilizando drone.

Os objetivos específicos são:

- Possuir cadastro de base e rotas para o drone.
- Oferecer recursos para percorrer rotas de forma autônoma.
- Disponibilizar os dados registrados na rota.

Fundamentação teórica

Hardware

- AR.Drone 2.0
- Módulo GPS

Bibliotecas:

- ardrone-autonomy Missões e comandos de voo
- node-ar-drone Controle e protocolos
- Geolib Cálculos geográficos
- API Google Maps Mapa por satélite

Trabalhos correlatos

VisEdu-Drone: Módulo de integração com Robot Operating System (ROS)

 Simulador de drone virtual com possibilidade de controlar o modelo físico simultaneamente.

FURB Mobile: Sistema móvel multiplataforma para navegação em rotas internas

 Aplicativo multiplataforma para auxiliar na locomoção de estudantes através do campus da FURB.

Trabalhos correlatos

Autonomous navigation and search in an indoor environment using an AR.Drone

 Aplica técnicas de processamento visual para controlar um drone autonomamente que navega, busca e identifica objetos em lugares desconhecidos.

Requisitos

Requisitos contemplados na arquitetura:

- Disponibilizar um sistema web para cadastro de rotas (RF01).
- A arquitetura deverá permitir o cadastro de uma base para cada rota (RF02).
- A arquitetura deverá gerar um relatório para cada rota a partir das informações obtidas pelo drone (RF03).
- Disponibilizar recurso de monitoramento da porcentagem da carga da bateria do drone (RNF01).

Requisitos

- A arquitetura deverá ser desenvolvida em Node.js (RNF02).
- A arquitetura deverá possuir integração com a biblioteca NPM Geolib (RNF03).
- A arquitetura deverá utilizar cálculos matemáticos para melhorar sua localização (RNF04).
- O drone deverá possuir um GPS e gravar as coordenadas da rota (RNF05).

Casos de uso

Caso de uso - Selecionar rota:

Caso de uso - Executar decolagem:

Caso de uso - Executar trajeto:

Caso de uso - Executar retorno a base:

Implementação

Principais dependência da arquitetura:

ar-drone 0.3.3 - Dados TCP 5559 e comandos UDP 5556

Processamento navdata UDP 5554

ardrone-autonomy 0.1.2 - TCP 5559 e UDP 5556

- mission.createMission()
- mission.client()

dronestream 1.1.1 - TCP 5555

First Person View FPV

Implementação

Leaflet e API Google Maps:

• Interação e visualização do mapa.

Aplicabilidade Node.js framework:

Thread Pool de eventos assíncronos.

Geolib 3.3.1 - Métodos:

- getPreciseDistance(coordenada origem, coordenada destino, [precisão])
- getGreatCircleBearing(coordenada origem, coordenada destino)

Implementação

Tela da interface web gerada pela arquitetura:

Análise dos resultados

Customização AR.Drone 2.0:

Bateria extendida 2200Mah - Maior autonomia de voo

Tabela 1 - Diferenças bateria original e paralela			
Modelo da bateria	Diferença de peso em Autonomia méd		
	gramas	voo em minutos	
Original	135	8	
Paralela	172	15	

Customização módulo GPS - Maior precisão de satélite

Tabela 2 – Diferenças casco original e customizado				
Casco externo	Quantidade de satélites conectados	Margem de erro na precisão em metros		
Original	7	6		
Customizado	13	2		

Análise dos resultados

Cenário de teste com 2 waypoints selecionados:

Retorno a base ao atingir 35% da bateria

Execução	Trajeto origem e destino	Distância em metros arredondado	Coordenadas de latitude e longitude	Margem de erro na precisão em metros
1	Waypoint 2	42	-26.864874, -49.084896	2
	Waypoint 1	58	-26.865025, -49.085599	3
	Base	23	-26.865173, -49.084920	2
2	Waypoint 1	62	-26.865025, -49.085599	4
	Base	57	-26.865173, -49.084920	5

Cenário de teste com trajeto de vigilância:

Espaço externo das oficinas do Vale Auto Shopping

Trajeto origem e destino	Distância em metros arredondado	Coordenadas de latitude e longitude	Margem de erro na precisão em metros
Waypoint 4	11	-26.864992, -49.085825	3
Waypoint 3	54	-26.864743, -49.085964	1
Waypoint 2	8	-26.864274, -49.084982	2
Waypoint 1	14	-26.864508, -49.084856	1
Base origem	19	-26.864742, -49.085269	4
Execução 2	-		-
Waypoint 4	11	-26.864992, -49.085825	2
Waypoint 3	48	-26.864743, -49.085964	3
Waypoint 2	6	-26.864274, -49.084982	4
Waypoint 1	15	-26.864508, -49.084856	2
Base origem	17	-26.864756, -49.085298	1
Execução 3	-	-	-
Waypoint 4	9	-26.864992, -49.085825	5
Waypoint 3	45	-26.864743, -49.085964	3
Waypoint 2	7	-26.864274, -49.084982	2
Waypoint 1	16	-26.864508, -49.084856	4
Base origem	15	-26.864779, -49.085305	1

Análise dos resultados

Comparativo entre os trabalhos correlatos:

- Destaca-se em disponibilizar vigilancia aerea autonomamente.
- Acompanhar o trajeto em tempo real.

Quadro comparativo entre os correlatos

Características	Vanz (2015)	Rocha (2016)	Borrow (2014)
geolocalização	Não	Sim	Não
simulador	Sim	Não	Não
sistema Web	Sim	Sim	Sim
app mobile	Não	Sim	Não
cadastro de Rotas	Não	Sim	Não
reconhecimento de objetos	Não	Não	Sim
autônomo	Não	Não	Sim

Conclusões e sugestões

- Interface web para cadastrar base e percurso selecionados no mapa.
- Estudo e pesquisa de hardware, SDK e API's, implementados e testados até atingir o resultado de voo autônomo.
- Foi possível construir uma arquitetura simples e leve de ser executada, não necessitando de um hardware robusto ou instalações de softwares pesados.
- Estudo e aplicabilidade dos protocolos TCP e UDP.

Conclusões e sugestões

- A usabilidade amigável da interface gerada pela arquitetura, utilizando técnicas de UX/UI, tela unica com todo controle e gestão do voo.
- Aplicabilidade das diversas bibliotecas NPM mostraram-se devidamente apropriadas.
- A comunicação e troca de comandos entre arquitetura e AR.Drone.
- Cálculos de longitude e latitude, distância, bearing e equações matemáticas.

Conclusões e sugestões

Sugestões de extensão ao trabalho:

- Integrar a arquitetura com arduino para executar script de voo autônomo diretamente no drone.
- Estender aplicando conceitos de inteligência artificial para voos inteligentes.
- Estender adaptando ao Agro 4.0, mapeamento de áreas e aplicação de pesticidas.
- Estender arquitetura desenvolvendo app mobile IOS e Android.

Demonstração

Vídeo do percurso:

 Vídeo de vigilância exclusivo de um voo autônomo realizado num terreno aberto.

Demonstração prática:

- Movimentos autônomos.
- · Controle manuais orientados a eventos.
- Comandos autônomos surpresa exclusivos para a presente banca.
- Deseja que realize algum outro movimento?

