

UNIVERSIDADE ESTADUAL PAULISTA

"Júlio de Mesquita Filho"

Introdução ao Ambiente Computacional R

Paula da Silva Carvalho – Engenharia Ambiental Monitora de Probabilidade e Estatística – 2006

Profa. Dra. Ma. Da Conceição F. Freitas Tandel
ORIENTADORA: UNESP-IGCE-DEMAC

SUMÁRIO

- 1. Histórico e Apresentação do Ambiente Computacional R.
- 2. Introdução ao Ambiente R.
 - 2.1 Armazenamento de Área de Trabalho e linhas de comando.
- 3. Operações Aritméticas.
- 4. Objetos
 - 4.1 Vetores
 - 4.2 Matrizes
 - 4.3 Data-frames
 - 4.4 Listas
 - 4.5 Arrays
 - 4.6 Funções
- 5. Gerador de Números Aleatórios
- 6. Gerador de Amostras Aleatórias
- 7. Entrando com Dados
 - 7.1 Função Scan
 - 7.2 Função Edit
 - 7.3 Arquivo texto
- 8. Análise Descritiva Univariada
- 9. Análise Descritiva Bivariada
- 10. Distribuição Binomial
- 11. Distribuição Normal
- 12. Intervalos de Confiança
- 13. Testes de Hipótese
- 14. Regressão Linear

1. HISTÓRICO E APRESENTAÇÃO DO AMBIENTE COMPUTACIONAL R

O "R" é uma linguagem e ambiente para computação estatística e elaboração de gráficos. Consiste de uma linguagem orientada a objetos mais um ambiente gráfico, disponível como uma biblioteca compartilhada, Pode processar programas armazenados em arquivos. O R pode ser compilado e roda em um grande número de plataformas: Unix , Linux, Macintosh, Windows, etc. É possível a interface com procedimentos escritos em C, C++, ou FORTRAN. Possui um grande número de procedimentos estatísticos convencionais. Entre eles modelos lineares, modelos lineares generalizados, modelos de regressão não linear, análises de séries temporais, testes estatísticos clássicos paramétricos e não paramétricos, métodos da estatística multivariada como análise de cluster, componentes principais, análise fatorial, etc... Possui uma grande quantidade de funções para desenvolvimento de ambiente gráfico e criação de diversos tipos de apresentação de dados. Possui módulos adicionais ou pacotes ("add-on packages") disponíveis para uma variedade de propósitos específicos. (R Add-On Packages). Os pacotes são complementos ao R. Há 3 tipos de pacotes:

• Pacotes recomendados ("recommended packages"): estes pacotes são distribuídos e instalados junto com o R. Entretanto eles não estão imediatamente disponíveis quando voce inicia uma sessão do R. Para utilizar a funcionalidade destes pacotes é necessário carregar o pacote.

Por exemplo, para carregar o pacote chamado MASS voce deve digitar: require(MASS)

- Pacotes contribuídos (oficiais): estes pacotes estão disponíveis para download no site do R porém não estão incluídos no programa de instalação do R. Para utilizar estes pacotes voce deve:
 - a) copiar o pacote,
 - b) carregar o pacote com o comando require() como acima.

Pacotes contribuídos não oficiais

São disponibilizados pelos usuários de forma geral em listas de discussões e por contatos pessoais.

Há facilidades para copiar o pacote de dentro de uma sessão do R. Voce pode usar as funções install.packages() e update.packages() para instalar e atualizar pacotes, respectivamente. Além disto, na versão para Windows há atalhos na barra de ferramentas. Há atualmente mais de cem pacotes contribuídos para o R. Para ver s lista de pacotes vá até sessão de pacotes contribuídos ou consulte a documentação do programa.

Nota: o comando library() também pode ser usado para carregar os pacotes no R. Entretanto o comando require() é preferido uma vez que somente carrega o pacote caso ainda não tenha sido carregado, evitando duplicação das funções existentes.

O R é um sistema computacional relativamente novo, início da década de 1990. A primeira versão não-beta, ou seja, já testada e aprovada, foi lançada ao público em Fevereiro de 2000. Tem sido muito utilizado no meio científico devido à modernidade das técnicas implementadas. Possui atualizações diárias e cerca de 2 versões oficialmente disponíveis ao ano, para atualizações completas. Sua divulgação tem tido muito sucesso em Universidades Públicas Brasileiras e vem sendo utilizado como ambiente computacional para o desenvolvimento de projetos de pesquisas de relevância.

Sua importância fica acentuada em virtude de ser um sistema de DOMÍNIO PÚBLICO. Portanto é de acesso livre, ou seja gratuito e de código fonte aberto, ou seja, pode-se acessar as linhas de comandos de cada programa. É disponibilizado sobre os termos da GNU General Public License da FSE: Free Software Foundation, www.gnu.org/. GNU é o nome da primeira comunidade de compartilhamento de softwares livres, cujo principal patrocinador é a fundação FSE: Free Software Foundation, fundada em 1985. O sítio oficial é http://www.r-project.org e a área para download e espelhos é http://cran.r-project.org. CRAN: Comprehensive R Archive Network, é uma coleção de sites de distribuição do R e do material de documentação. O espelho brasileiro, de onde os arquivos de instalação podem ser copiados, esta disponível no endereço:

http://cran.br.R-project.org/

(Universidade Federal de Paraná, Brazil)

R foi inicialmente escrito por Ross Ihaka e Robert Gentleman no Departamento de Estatística da Universidade de Auckland em Auckland, New Zealand. O sistema R é mantido atualmente, como um projeto colaborativo, com muitos grupos de contribuidores (Development Core Team), formados por pesquisadores de renome internacional, ligados a área acadêmica, em diversos países, inclusive o Brasil. O nome "R" esta baseado na letra inicial dos dois primeiros autores, Robert Gentleman and Ross Ihaka e faz uma referência indireta ao nome da Bell Labs language "S", versão comercial muito similar ao R (veja What is S?). A versão atual do R (31/08/2006) é a versão 2.3.1.

Para fazer a citação do R em trabalhos científicos siga as instruções abaixo ou com o programa aberto digite o comando 'citation()'.

Título: R: A Language and Environment for Statistical Computing

Autor: R Development Core Team

Organização: R Foundation for Statistical Computing

Endereço: Viena, Áustria

Ano: 2006

ISBN: 3-900051-07-0

URL: http://www.R-project.org

2. INTRODUÇÃO AO AMBIENTE R

Comandos de ajuda do R:

- help.start() inicia documentação na forma de arquivos html visualizados no browser.
- help (tópico) inicia uma janela de ajuda sobre tópico.

Inicie o R e defina o diretório de trabalho clicando em:

O programa será inicializado mostrando a seguinte mensagem:

R : Copyright 2006, The R Foundation for Statistical Computing

```
Version 2.3.0 (2006-04-24) ISBN 3-900051-07-0

R é um software livre e vem sem GARANTIA ALGUMA.

Você pode redistribuí-lo sob certas circunstâncias.

Digite 'license()' ou 'licence()' para detalhes de distribuição.

R é um projeto colaborativo com muitos contribuidores.

Digite 'contributors()' para obter mais informações e

'citation()' para saber como citar o R ou pacotes do R em publicações.

Digite 'demo()' para demonstrações, 'help()' para o sistema on-line de ajuda,

ou 'help.start()' para abrir o sistema de ajuda em HTML no seu navegador.

Digite 'q()' para sair do R.
```

O símbolo > indica a linha de comando ("prompt") na qual serão digitados os comando para execução das análises.

2.1 Armazenamento de Área de Trabalho e linhas de comando

Entende-se por área de trabalho, todos os objetos criados numa seção, como por exemplo, variáveis, vetores, funções, matrizes, etc... (excetua-se gráficos)

Há duas maneiras de salvar a área de trabalho.

- a) para recarregar automaticamente na futura seção do R: é necessário salvar através da opção sair do menu principal ou do atalho "x", caso contrario ele recarregará a última área salva desta maneira e perderá a área trabalhada não salva.
- b) Salvar em arquivo para recarregar via o comando do menu principal "arquivo "carregar área de trabalho": É necessário salvar via o comando do menu principal "arquivo -> salvar área de trabalho" e especificar o nome desejado.

Para salvar o arquivo de comandos utilizados na seção em funcionamento do R, seleciona opção do menu principal "arquivo — salvar histórico". Para

acessar em outra seção é necessário recarregar o mesmo histórico através do comando "arquivo carregar histórico". Desta maneira acessa-se os comandos um a um, teclando a tecla "seta para cima" sucessivas vezes. Ou abrese o histórico salvo num editor de texto, o que permite visualizar o programa completo, facilitando a edição.

3. OPERAÇÕES ARITMÉTICAS

Você pode usar o R para avaliar algumas operações aritméticas simples. Por exemplo:

```
> 1+2+3 # somando estes números
[1] 6
> 2+3*4 # prioridade de operações(multiplicação primeiro)
[1] 14
> 3/2 # assim como a divisão
[1] 1.5
> 4*3**3 # potências são indicadas por ** ou ^
[1] 108
```

Aqui está uma lista de algumas das funções aritméticas no R:

NOME	OPERAÇÃO
sqrt	Raiz quadrada
abs	Valor absoluto
sin, cós, tan	Funções trigonométricas
asin, acos, atan	Funções trigonométricas inversas
sinh, cosh, tanh	Funções hiperbólicas
asinh, acosh, atanh	Funções hiperbólicas inversas
exp, log	Exponencial e logaritmo natural
log10	Logaritmo – base 10
Integrate(f,a,b)	Integral de f nos limites 'a' e 'b'

As expressões podem ser agrupadas e combinadas em expressões mais complexas:

```
> sqrt(45*pi/180)
[1] 0.886227
```

Pode-se criar funções específicas de acordo com a necessidade do usuário. Exemplos:

```
> funcao<-function(x) {3*x^2}
> funcao(4)

> conc<-function(x) {x^2}
> final<-function(x,y) {integrate(conc,x,y)}</pre>
```

4. OBJETOS

R é uma linguagem orientada a objetos: variáveis, dados, matrizes, funções, etc são armazenados na memória ativa do computador na forma de objetos.

Você pode armazenar um valor em um objeto com certo nome usando o símbolo <- ou ->

```
> x <-sqrt(2)
> x
[1] 1.414214
> y <-sqrt(5)  # outra variável
> y+x  # soma das variáveis
[1] 3.650282
```

Há uma função para listar todos os objetos criados na seção: 1s()

Há uma função para remover objetos: remove (). Para usar esta função basta fornecer o objeto a ser removido:

```
> remove(x)
```

O nome das variáveis deve começar com uma letra e podem conter letras, números e pontos. Maiúsculas e minúsculas são consideradas diferentes.

Dica: Tente atribuir nomes que tenham um significado lógico. Isto facilita lidar com um grande número de objetos.

Os tipos de objetos do R são:

- Vetores
- Matrizes
- Data-frames
- Listas
- Arrays
- Funções

4.1 Vetores

Os vetores armazenam mais de um valor. È usada à função c() para criar um vetor a partir de seus argumentos. Por exemplo:

```
> x <- c(2,3,4,5)  # são esses os valores do vetor
> x
[1] 2 3 4 5
> y <- c(x,6,7,8)
> y
[1] 2 3 4 5 6 7 8
```

```
> x[1] # aparece apenas o valor correspondente à posição 1
[1] 2
> x[2]
[1] 3
> z <- 1:10
> z
   [1] 1 2 3 4 5 6 7 8 9 10
> w <- seq(0,1, by=0.1)
> w
   [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
```

4.2 Matrizes

Há várias formas de criar uma matriz. A função matrix() recebe um vetor como argumento e o transforma em uma matriz de acordo com as dimensões especificadas:

```
> m1<- 1:12
> x<-1:12
> x
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> matx <- matrix (x,ncol=3)
> matx
        [,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
```

Note que a matriz foi preenchida ao longo das linhas. A função cbind() também pode ser usada para a construção de matrizes.

4.3 Data-frames

Data-frames é uma estrutura dom linhas e colunas, semelhante a uma planilha eletrônica, portanto tem duas dimensões. Entretanto, diferentemente de matrizes, cada coluna pode armazenar elementos de diferentes tipos, desde que seja mantido o tipo dentro da mesma coluna. Por exemplo: a primeira coluna pode ser numérica enquanto a segunda pode ser constituída de caracteres alfanuméricos. Observe que neste formato, a primeira coluna sempre é um identificador dos dados, ex. 1,2,...,n).

```
> d1 < - data.frame (X= 1:10, Y=c(51,54,61,67,68,75,77,75,80,82))
> d1
   X Y
  1 51
1
   2 54
3
  3 61
  4 67
  5 68
6
  6 75
7
  7 77
8 8 75
  9 80
10 10 82
```

O comando edit (data.frame()) abre uma planilha para a digitação de dados que são armazenados como data.frame.

```
> planilha <- edit(data.frame())</pre>
```

4.4 Listas

É O FORMATO MAIS GERAL DO R. Listas são estruturas genéricas e flexíveis que permitem armazenar diversos formatos em um único objeto. Pode ter tamanho diferentes de linhas e colunas, contendo tipos diferentes de dados.

```
> list1 <- list(A=1:10, B="this is a message", C=matrix(1:9,
ncol=3))
> list1
$A
    [1] 1 2 3 4 5 6 7 8 9 10

$B
    [1] "this is a message"

$C
        [,1] [,2] [,3]
    [1,] 1 4 7
    [2,] 2 5 8
    [3,] 3 6 9
```

4.5 Arrays

O conceito de array generaliza a idéia de matriz, no sentido de que numa matriz tem-se 2 dimensões e num array tem-se um número arbitrário de dimensões.

```
varray1 <-array(1:24,dim=c(3,4,2))</pre>
```

4.6 Funções

Os conteúdos das funções (ex. lm, plot) podem ser vistos digitando o nome das funções sem os (). Se isto não acontecer é porque não foi escrita na linguagem R , em geral quando não o são, são escritas em C(ex. min, max, rnorm). Neste caso é necessário examinar o código fonte do R para vizualizar o conteúdo da função.

As funções do R são documentadas e pode-se acessar a ajuda digitando help ("nome da função").

5. GERADOR DE NÚMEROS AL FATÓRIOS

O R pode gerar números aleatórios (pseudo-aleatórios - estritamente falando) de um grande número de distribuições: uniforme, normal, binomial, poisson, gamma, chi-quadrado, etc.

Os nomes das funções para gerar números aleatórios iniciam-se com a letra r e são bastante intuitivos: runif, rnorm, rbinom, rpois, rgamma, rchisq etc.

Junto a cada função geradora de cada distribuição há funções para calcular probabilidade, densidade e quantis. Por exemplo, para distribuição normal temos:

```
rnorm(n,mean=0,sd=1) Gera n números
dnorm(q,mean=0,sd=1) Densidade para o q-ésimo quantil
pnorm(q,mean=0,sd=1) Probabilidade para o q-ésimo quantil
qnorm(p,mean=0,sd=1) Quantil para a probabilidade p

> rnorm(5)
[1] 1.36765720 1.48876652 0.22262049 0.21998024 -0.05312521
> rnorm(10)
[1] -0.3790560 0.3323459 0.1792362 -0.3124366 0.8829086
1.4238435 -0.1085266 -0.8900406 -0.2273283 0.0793036
```

6. GERADOR DE AMOSTRAS ALEATÓRIAS

```
x<-1:41
sample(x,5)
vetor<-sample(x,5)
nomes<-c("Maria", "Fábio", "João", "Antonio", "Ricardo", "Ângela",
"Carla", "José", "Luiz", "Tiago", "Tamires", "Tatiana", "Fátima",
"Ana", "Tânia", "Roque", "Rogério", "Soraia", "Patrícia",</pre>
```

```
"Gilberto", "Sílvio", "Carlos", "Danilo", "Milton", "Adolfo", "Amilton", "Janete", "Marlene", "Solange", "Renata") sample (nomes, 5) vetor<-sample (nomes, 5)
```

7. ENTRANDO COM DADOS

Pode-se entrar com dados no R de diferentes formas, o formato mais adequado vai depender do tamanho do conjunto de dados, e se os dados já existem em outro formato para serem importados ou se serão diretamente no R.

7.1 Função Scan

Esta função coloca o R em modo *prompt onde* o usuário deve digitar cada dado seguido da tecla ENTER. Para encerrar a entrada de dados basta digitar ENTER duas vezes.

```
> y <- scan()
1: 20
2: 22
3: 21
4: 22
5: 19
6: 20
7: 22
# leu 7 itens
> y
[1] 20 22 21 22 19 20 22
```

7.2 Função Edit

O comando edit (data.frame()) abre uma planilha para a digitação de dados que são armazenados como data-frame. Data-frames são análogos no R a uma planilha.

Portanto digitando:

```
> planilha <- edit(data.frame())</pre>
```

7.3 Arquivo texto

Se os dados já estão disponíveis em formato eletrônico, isto é, já foram digitados em outro programa, você pode importar os dados para o R sem a necessidade de digita-los novamente.

A forma mais fácil de fazer isto é usar um dado em formato texto (arquivo do tipo ASCII). Por exemplo, se seus dados estão disponíveis em uma planilha eletrônica como EXCEL ou similar, você pode na planilha escolher a opção SALVAR COMO e gravar os dados em um arquivo em formato texto.

No R usa-se a função read.table para ler os dados de um arquivo texto e armazenar no formato de data-frame. Neste formato o arquivo deve possuir na primeira coluna a identificação de cada linha do arquivo, exemplo: 1,2,3,4,

8. ANÁLISE DESCRITIVA UNIVARIADA

Nesta sessão vamos ver alguns comandos do R para fazer uma análise univariada de um conjunto de dados. Para isso usamos um conjunto de dados de precipitação mensal da cidade de Rio Claro entre os ano de 1936 e 2004.

```
>precipitação<-read.table("preciprclaro.txt", row.names=1, quote="",
head=T)
> precipitação
```

Para podermos trabalhar com a tabela, usando isoladamente as suas variáveis precisamos deixá-la no caminho de procura do sistema. Para isso usamos a seguinte função:

- > attach(precipitação)
- # detach(precipitação) para retirar o objeto precipitação do
- # caminho de procura

Após isso podemos fazer os diferentes tipos de gráficos que o sistema R disponibiliza para cada uma das variáveis.

- Histograma
- > hist(Jan)

>hist(Jan,breaks=10,xlim=(range(0,600)),col=2,main="precipitação de janeiro", xlab="precip. janeiro",ylab="Frequência")

Gráfico de barras

> barplot(Jan)

Boxplot

> boxplot(precipitacao)

Para se ter a MÉDIA, MEDIANA, PRIMEIRO QUARTIL, TERCEIRO QUARTIL, MÁXIMO e MÍNIMO usamos o summary:

```
> summary(Jan)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
   32.0 147.5 226.8 228.4 298.5 524.9
> summary(precipitação)
```

Ao invés de usarmos summary(), podemos usar isoladamente as funções de média, máximo e mínimo usando mean(), max() e min() respectivamente.

Para achar o desvio padrão usamos a seguinte função:

```
> sd (Jan) [1] 101.6433
```

Para achar a variância usamos a função var ():

```
> var(Jan)
[1] 10331.36
```

9. ANÁLISE DESCRITIVA BIVARIADA

Agora veremos alguns comandos do R para fazer uma análise bivariada de um conjunto de dados. Utilizaremos um conjunto de dados que já vem disponível com o R – O conjunto AIRQUALITY.

Estes dados são medidas de concentração de ozônio (Ozone), radiação solar (Solar. R), velocidade de vento (Wind) e temperatura (Temp) coletados diariamente por cinco meses.

Primeiramente vamos carregar e visualizar os dados com os comandos:

```
> data(airquality) # carrega os dados
> airquality
```

Vamos agora usar alguns comandos para "conhecer melhor" os dados:

```
> names(airquality) # nomes das colunas (variáveis)
[1] "Ozone" "Solar.R" "Wind" "Temp" "Month" "Day"
> dim(airquality) # dimensões do data-frame
[1] 153 6
> help(airquality) 3 mostra o "help" que explica os dados
```

> summary(airquality)

Ozone Solar.R Wind Temp Min. : 1.00 Min. : 7.0 Min. : 1.700 Min. : 5 1st Qu.: 18.00 1st Qu.: 115.8 1st Qu.: 7.400 1st Qu.: 7	2.00
	2.00
1st Qu.: 18.00 1st Qu.:115.8 1st Qu.: 7.400 1st Qu.:7	
	9.00
Median: 31.50 Median: 205.0 Median: 9.700 Median: 7	
Mean : 42.13 Mean :185.9 Mean : 9.958 Mean :7	7.88
3rd Qu.: 63.25 3rd Qu.:258.8 3rd Qu.:11.500 3rd Qu.:8	5.00
Max. :168.00 Max. :334.0 Max. :20.700 Max. :9	7.00
NA's : 37.00 NA's : 7.0	
Month Day	
Min. :5.000 Min. : 1.00	
1st Qu.:6.000 1st Qu.: 8.00	
Median :7.000 Median :16.00	
Mean :6.993 Mean :15.80	

3rd Qu.:8.000 3rd Qu.:23.00 Max. :9.000 Max. :31.00

> attach(airquality)

> summary(Ozone)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 1.00 18.00 31.50 42.13 63.25 168.00 37.00
```

- > mean(Ozone, na.rm=T)
- [1] 42.12931
- > hist(Temp)

> boxplot(Temp)

> boxplot(Ozone, Temp, Wind, Solar.R)

> plot(Ozone, Temp)


```
> par(mfrow=c(2,3)) \# possibilita que vários gráficos sejam colocados juntos
```

- > plot(Ozone, Temp)
- > plot(Temp, Solar.R)
- > plot(Solar.R,Ozone)
- > plot(Ozone, Wind)
- > plot(Wind, Temp)
- > plot(Solar.R, Wind)

Outras análises feita no R é o teste de teste de independência que podem ser correlação e o (Qui-quadrado):

> cor.test(Ozone,Temp)

Pearson's product-moment correlation

data: Ozone and Temp
t = 10.4177, df = 114, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.591334 0.781211
sample estimates:
 cor 0.6983603</pre>

> chisq.test(Ozone,Temp)

Pearson's Chi-squared test

data: Ozone and Temp X-squared = 2699.624, df = 2508, p-value = 0.004036

Warning message:

Chi-squared approximation may be incorrect in: chisq.test(Ozone, Temp)

10. DISTRIBUIÇÃO BINOMIAL

Para os cálculos de distribuição binomial usamos a função dbinom. Antes de começarmos é importante darmos uma olhada no help dessa função.

> help(binom)

Seja X uma v. a. com distribuição binomial com n=10 e p=0.35. Vamos ver os comandos do R para:

- Fazer os gráficos das funções de densidade
- Idem para a função de probabilidade
- Calcular P|X=7|
- Calcular P|X<8| = P|X<-7|
- Calcular P|X>-8| = P|X>7|
- Calcular P[3<X<-6] = P[4<-X<-7]

```
> x <-0:10
> x
[1] 0 1 2 3 4 5 6 7 8 9 10
> fx <- dbinom(x,10,0.35)
> fx
[1] 1.346274e-02 7.249169e-02 1.756530e-01 2.522196e-01 2.376685e-01
[6] 1.535704e-01 6.890980e-02 2.120302e-02 4.281378e-03 5.123017e-04
[11] 2.758547e-05
> plot(x,fx)
```



```
> Fx <- pbinom(x,10,0.35)

> Fx

[1] 0.01346274

0.51382702

[7] 0.97397572

0.99997241

> plot(x,Fx)
```

0.08595444 0.26160739 0.75149551 0.90506592 0.99517873 0.99946011 1.00000000

```
> dbinom(7,10,0.35)
[1] 0.02120302
> pbinom(7,10,0.35)
[1] 0.9951787
> 1-pbinom(7,10,0.35)
[1] 0.004821265
>
> pbinom(7,10,0.35,lower=F)
[1] 0.004821265
> pbinom(6,10,0.35)
[1] 0.9739757
> pbinom(6,10,0.35)-pbinom(3,10,0.35)
[1] 0.4601487
```

11.DISTRIBUIÇÃO NORMAL

A funcionalidade para a distribuição normal é implementada por argumentos que combinam as seguintes letras (d – densidade de probabilidade f(x) no ponto; p – função de probabilidade acumulada F(x) no ponto; q – quantil correspondente a uma dada probabilidade; r – retira uma amostra da distribuição) com o termo norm. Por defaut as funções assumem a distribuição normal padrão N(u=0, sigma2=1).

```
> dnorm(-1)
[1] 0.2419707
> pnorm(-1) # P(X<--1)
[1] 0.1586553
> qnorm(0.975) # P (X<-a)=0.975
[1] 1.959964
> rnorm(10)
             # amostra de 10 elementos da normal padrão
     -0.64510490
                       0.60990359 - 0.02129819 - 0.88023803
0.76878430 -0.58685400
[7] 1.59534874 -0.89408665 -0.09678214 -1.25377940
> args(rnorm)
function (n, mean = 0, sd = 1)
> qnorm(0.975, mean=100, sd=8)
[1] 115.6797
> plot(dnorm, -3,3)
```


> plot(pnorm, -3,3)

12. INTERVALOS DE CONFIANÇA

Veremos agora como utilizar o R para obter intervalos de confiança para parâmetros de distribuições de probabilidade.

12.1 t - student

Sabemos que o intervalo de confiança para a média de uma distribuição normal com variância desconhecida, para uma amostra de tamanho n é dado por:

Formula do t-student

```
> chuva<- c(105,158.4,0,70,4,71.7,31.4, 13.7, 17.2, 48, 149, 83.1,
132.2)
> chuva
[1] 105.0 158.4   0.0 70.0   4.0 71.7 31.4 13.7 17.2 48.0
149.0 83.1 132.2
> t.test(chuva)
```

One Sample t-test

data: chuva
t = 4.4466, df = 12, p-value = 0.0007976
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 34.66842 101.28543
sample estimates:
mean of x
67.97692

13. TESTES DE HIPÓTESES

13.1 Comparação de variâncias de uma distribuição normal

Vamos verificar se as duas cidades possuem a mesma distribuição de chuvas. Para isso, pegamos dados pluviométricos de Rio Claro e de Limeira no ano de 2004.

Rio Claro:

323,9	321,9	134,8	163,9	110	46,1	83	0	7	113,7 221,6 354,3
Limeira	a:								

Elificiia.												
	259,4	249	70,5	88,5	66	84	61	1,1	15,4	82,3	148	182

Verificaremos se:

Ho: $\sigma_A^2 = \sigma_B^2$ Ha: $\sigma_A^2 \neq \sigma_B^2$

Calcula-se o teste:

$$F = S_A^2/S_B^2$$

E em seguida comparando-se este valor com um valor da tabela de F e/ou calculando-se o p-valor associado com na - 1 e nb - 1 graus de liberdade. Devemos também fixar o nível de significância do teste, que neste caso vamos definir como sendo 5%.

> RC <- c(323.9, 321.9, 134.8, 163.9, 110, 46.1, 83, 0, 7, 113.7, 221.6, 354.3)

```
> LM <- c(259.4, 249, 70.5, 88.5, 66, 84, 61, 1.1, 15.4, 82.3,
148,182)
> nRC <- length(RC)
> nRC
[1] 12
> nLM <- length(LM)
> nLM
[1] 12
```

O R já possui uma função para esse teste, o var.test, o qual possui mais de uma função associada.

14. REGRESSÃO LINEAR SIMPLES

Para fazermos uma regressão linear utilizaremos novamente o airquality.

> abline(airfit)

