Calculus(II)

Homework 2, Apr, 16, 2020

Deadline: Apr, 29, 2020

- 1. Determine whether the sequence converges or diverges. If it converges, find the limit.
 - (a) $a_n = \frac{\cos^2 n}{2^n}$.
 - (b) $\{0, 1, 0, 0, 1, 0, 0, 0, 1, \dots\}$.
- 2. Determine whether the series is convergent or divergent. If it is convergent, find its sum.
 - (a) $\sum_{n=1}^{\infty} \sqrt[n]{2}$.
 - (b) $\sum_{n=1}^{\infty} \arctan n$.
- 3. Given $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+4}}$, use the Integral Test to determine whether the series is convergent or divergent.
- 4. Given $\sum_{n=1}^{\infty} \frac{n}{2n^3+1}$, use the Comparison Test to determine whether the series is convergent or divergent.
- 5. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.
 - (a) $\sum_{n=1}^{\infty} \frac{n}{5^n}.$
 - (b) $\sum_{n=1}^{\infty} \frac{10^n}{(n+1)4^{2n+1}}$.
- 6. Given $\sum_{n=1}^{\infty} (-1)^n nx^n$, find the radius of convergence and interval of convergence of the series.
- 7. Given $f(x) = \frac{2}{3-x}$, find a power series representation for the function and determine the interval of convergence.