Daily Assignment 1

Rohan Kapur, Math 117 Summer 2023

August 1, 2023

- 1. Consider the set $\mathbb{Z}_7 = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}}$ of residue classes of integers mod 7.
 - (a) Construct the multiplication table for the group $(\mathbb{Z}_7 \setminus \{\overline{0}\}, \cdot)$ where \cdot is defined using representatives: $\overline{m} \cdot \overline{n} = \overline{m}\overline{n}$.

Answer:											
	.	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$						
	$\overline{0}$	$\overline{0}$	0	0	$\overline{0}$						
	$\overline{1}$	0	1	$\overline{2}$	3						
	$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{6}$						

1	0	1	2	3	4	5	6
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	6	1	3	$\overline{5}$
3	$\overline{0}$	3	6	$\overline{2}$	$\overline{5}$	$\overline{1}$	$\overline{4}$
$\overline{4}$	$\overline{0}$	$\overline{4}$	1	$\overline{5}$	$\overline{2}$	$\overline{6}$	3
5	$\overline{0}$	5	3	1	6	$\overline{4}$	$\overline{2}$
<u></u>	$\overline{0}$	6	5	$\overline{4}$	3	$\overline{2}$	$\overline{1}$

(b) Use part (a) to find the multiplicative inverse of every nonzero element of \mathbb{Z}_7 . Answer:

$$(\overline{1})^{-1} = \overline{1}, (\overline{2})^{-1} = \overline{4}, (\overline{3})^{-1} = \overline{5}, (\overline{4})^{-1} = \overline{2}, (\overline{5})^{-1} = \overline{3}, (\overline{6})^{-1} = \overline{6}$$

- 2. Let **V** be a vector space over a field **F**. Using only the definitions, prove the following for all $v \in V, a \in F$:
 - (a) 0v = 0

Proof: This is saying that 0v is equal to the additive identity $\mathbf{0}$ in V. To see this, notice that by distributivity of F over V, 0v + 0v = (0+0)v = 0v. Then by adding -(0v) to both sides, we get $0v = \mathbf{0}$ as desired.

(b) (-a)v = -(av)

Proof: This is saying that (-a)v equals the unique additive inverse -(av) of av. To see this, notice that by distributivity of V over F, (-a)v + av = (-a + a)v = 0v = 0. Therefore (-a)v is indeed the unique additive inverse of av in V, so (-a)v = -(av).

(c) a0 = 0

Proof: This is saying that $a\mathbf{0}$ is the additive identity in V. To see this, notice that by distributivity of V over F, $a\mathbf{0} + a\mathbf{0} = a(\mathbf{0} + \mathbf{0}) = a\mathbf{0}$. Then by adding $-(a\mathbf{0})$ to both sides, we get $a\mathbf{0} = \mathbf{0}$.

(d) If av = 0, then a = 0 or v = 0.

Proof: Suppose that $av = \mathbf{0}$, so av is the unique additive identity in V. Now suppose that $v \neq \mathbf{0}$.

1