Write your name here	1	
Surname	Othe	er names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Subsidiar Unit 1: The Core Prin	ry	emistry
Friday 23 May 2014 – Morr Time: 1 hour 30 minutes	ning	Paper Reference WCH01/01
Candidates may use a calcula	tor.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 2 9 7 6 A 0 1 2 4

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \boxtimes . If you change your mind, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1	Which	of the	following	species	has 50	neutrons?
---	-------	--------	-----------	---------	--------	-----------

- \triangle **A** $^{50}_{23}$ **V**

- \square **D** $^{91}_{40}$ Zr⁺

(Total for Question 1 = 1 mark)

- 2 Which of the following statements is correct about **all** isotopes of an element? They have
 - ★ The same mass number.
 - **B** the same number of neutrons.
 - **C** more protons than neutrons.
 - □ The same electronic configuration.

(Total for Question 2 = 1 mark)

3 The element rhenium has two naturally-occurring isotopes, ¹⁸⁵Re and ¹⁸⁷Re. The relative atomic mass of rhenium is 186.2.

From this information, the percentage abundances of these two isotopes are

- A 12% ¹⁸⁵Re and 88% ¹⁸⁷Re
- **B** 40% ¹⁸⁵Re and 60% ¹⁸⁷Re
- \square **D** 88% ¹⁸⁵Re and 12% ¹⁸⁷Re

(Total for Question 3 = 1 mark)

4 In which of the following pairs does the second element have a **lower** 1st ionization energy than the first element?

	First element	Second element
	Si	С
⊠ B	Na	Mg
⊠ C	Be	В
⊠ D	Ar	Ne

(Total for Question 4 = 1 mark)

- **5** An oxide of nitrogen contains 2.8 g of nitrogen and 8.0 g of oxygen. What is the empirical formula of this oxide?
 - A NO
 - B NO₃
 - \square C N₂O₃
 - \square **D** N_2O_5

(Total for Question 5 = 1 mark)

6 Calculate the total number of **atoms** present in 1.8 g of water, H₂O.

DATA

- The molar mass of H₂O is 18 g mol⁻¹
- The Avogadro constant is 6.0×10^{23} mol⁻¹
- \triangle **A** 6.0 × 10²²
- \blacksquare C 1.8 \times 10²³
- \square **D** 1.8 × 10²⁴

(Total for Question 6 = 1 mark)

7 Calculate the mass of hydrated sodium thiosulfate, Na₂S₂O₃.5H₂O, required to prepare 200 cm³ of a 0.100 mol dm⁻³ solution.

[Assume that the molar mass of Na₂S₂O₃.5H₂O is 248 g mol⁻¹]

- **■ B** 4.96 g
- ☑ D 4960 g

(Total for Question 7 = 1 mark)

8 A 27.0 g sample of an unknown hydrocarbon, $C_x H_y$, was burned completely in excess oxygen to form 88.0 g of carbon dioxide and 27.0 g of water.

[Molar masses / g mol⁻¹: $CO_2 = 44$; $H_2O = 18$]

Which of the following is a possible formula of the unknown hydrocarbon?

- A CH_A
- \square **B** C_2H_6
- \square **D** C_6H_6

(Total for Question 8 = 1 mark)

- **9** The Avogadro constant is equal to the number of
 - \square A grams of any element which contains 6.0×10^{23} atoms of that element.
 - **B** atoms contained in one mole of any element in its standard state.
 - C particles (atoms, ions or molecules) required to make one gram of a substance.
 - **D** atoms contained in one mole of any monatomic element.

(Total for Question 9 = 1 mark)

10 Nitrogen monoxide, NO, can be made by the catalytic oxidation of ammonia, NH₃.

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

- In an experiment, 8.5 g of ammonia reacted to form 15.0 g of nitrogen monoxide. The percentage yield of nitrogen monoxide in this experiment is
- A 50%
- **B** 57%
- D 176%

(Total for Question 10 = 1 mark)

11 Calculate the mass, in grams, of silver chloride, AgCl, formed when excess silver nitrate solution is added to 55.0 cm³ of a 0.200 mol dm⁻³ solution of potassium chloride.

[The molar mass of AgCl = 143.4 g mol^{-1}]

$$AgNO_{3}(aq) + KCI(aq) \rightarrow AgCI(s) + KNO_{3}(aq)$$

- **△ A** 1.10 g
- **B** 1.58 g
- **☑ C** 7.89 g
- ☑ **D** 11.0 g

(Total for Question 11 = 1 mark)

- **12** Element X is in Group 3 and element Y is in Group 6 of the Periodic Table. Which of the following is the most likely formula of the compound formed when X and Y react together?
 - \boxtimes A X_2Y_3
 - \square **B** X_3Y_2
 - \square C X_2Y
 - ☑ D XY,

(Total for Question 12 = 1 mark)

	etal	lic bonding is best described as the electrostatic attraction between
×		
	A	positive ions and delocalized electrons.
X	В	protons and electrons.
X	C	positive and negative ions.
X	D	nuclei and shared pairs of electrons.
		(Total for Question 13 = 1 mark)
ŧ W	hic	of the following molecules contains a double bond?
X	A	F ₂
X	В	F ₂ O
X	C	C_2F_4
X	D	C_2F_6
		(Total for Question 14 = 1 mark
5 W	_	of the following statements is true?
5 W	hich A B C	Breaking covalent bonds requires energy and making ionic bonds requires energy. Bond breaking is endothermic whereas bond making is exothermic. Bond breaking is exothermic whereas bond making is endothermic. Breaking ionic bonds releases energy whereas making covalent bonds
w w	A B C	Breaking covalent bonds requires energy and making ionic bonds requires energy. Bond breaking is endothermic whereas bond making is exothermic. Bond breaking is exothermic whereas bond making is endothermic.

16 Consider the two equations given below.

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$$
 $\Delta H = -572 \text{ kJ mol}^{-1}$

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$
 $\Delta H = -484 \text{ kJ mol}^{-1}$

From this information, calculate the enthalpy change for the following process

$$H_2O(g) \rightarrow H_2O(l)$$

- B +44 kJ mol⁻¹

(Total for Question 16 = 1 mark)

- 17 How many structural isomers have the molecular formula C_6H_{14} ?
 - **A** Four
 - **B** Five
 - C Six
 - D Seven

(Total for Question 17 = 1 mark)

- 18 In addition to water, which of the following could be formed during the incomplete combustion of a hydrocarbon?
 - ☑ A Carbon, carbon monoxide and hydrogen
 - ☑ B Carbon and hydrogen
 - □ Carbon monoxide and hydrogen
 - □ Carbon and carbon monoxide

(Total for Question 18 = 1 mark)

		(Total for Question 20 = 1 mark)
•	⊠ D	The carbon dioxide produced traps heat radiated from the Earth and leads to global warming.
•		The water produced results in a damaging increase in rainfall.
٠	⊠ B	The smoke produced obscures sunlight and leads to global warming.
٠	⊠ A	The carbon dioxide produced is toxic and kills plants.
		n of the following statements correctly describes an environmental problem d by the burning of hydrocarbon fuels?
		(Total for Question 19 = 1 mark)
٠	⊠ D	non-biodegradable.
٠		a long-chain compound.
٠	⊠В	composed of carbon and hydrogen only.
٠		solidified ethene.
	Pure ¡	poly(ethene) is
		3
		ethene) is a plastic material made by polymerizing the hydrocarbon ethene. n of the following is not true?

TOTAL FOR SECTION A = 20 MARKS

SECTION B

		Answer ALL the questions. Write your answers in the spaces provided.	
21		ne, Br ₂ , can react with both alkanes and alkenes. The type of reaction that depends on whether the Br—Br bond breaks by homolytic or heterolytic	
	(a) (i)	Write an equation to show the homolytic fission of the Br—Br bond. Do not include curly arrows or state symbols.	(1)
	(ii)	Write an equation to show the heterolytic fission of the Br—Br bond. Do not include curly arrows or state symbols.	(1)
	(iii)	Choosing from the products you have given in (a)(i) and (a)(ii), write the formula of a free radical and an electrophile.	

(2)

Free radical Electrophile

(b) The compound hexane, C_6H_{14} , can react with bromine, in the presence of UV light, according to the equation

$$C_6H_{14} + Br_2 \rightarrow C_6H_{13}Br + HBr$$

(i) Give the displayed formulae of the three structural isomers of $C_6H_{13}Br$ that could be formed in the above reaction.

(3)

First isomer

Second isomer

Third isomer

(ii) The bromoalkanes and the hydrogen bromide formed in this reaction are hazardous.

The bromoalkanes would be labelled as 'flammable'. Suggest a suitable hazard warning for the hydrogen bromide.

(1)

(iii) Calculate the percentage atom economy by mass for the formation of $\rm C_6H_{13}Br.$	
Give your answer to three significant figures.	
Use the expression	
atom economy = $\frac{\text{molar mass of the desired product}}{\text{sum of the molar masses of all products}} \times 100\%$	(2)
(c) Fluorine, F ₂ , and chlorine, Cl ₂ , react with methane , CH ₄ , by a similar mechanism, although the rates of reaction are very different.	
(i) Write an equation for the reaction between methane and fluorine, assuming they react in a 1:1 mole ratio. State symbols are not required.	(1)
*(ii) On the basis of comparing the relative sizes of the fluorine and chlorine atoms, it might be predicted that the F—F bond energy would be greater than the Cl—Cl bond energy. Suggest an explanation for this prediction.	(2)

	electrons in a fluorine molecule, F ₂ .	(2)
		(-)
(iv)	The actual bond energies are shown below.	
(17)		
	Bond Bond energy / kJ mol ⁻¹	
	F—F 158	
	CI—CI 243	
(v)	Suggest why a mixture of methane and chlorine requires exposure to UV light, or heat, before a reaction occurs, whereas methane reacts rapidly with fluorine	
(v)		
(v)	or heat, before a reaction occurs, whereas methane reacts rapidly with fluorine	
(v)	or heat, before a reaction occurs, whereas methane reacts rapidly with fluorine	
(v)	or heat, before a reaction occurs, whereas methane reacts rapidly with fluorine	
(v)	or heat, before a reaction occurs, whereas methane reacts rapidly with fluorine	

(d) The alkene hex-3-ene reacts with bromine to produce 3,4-dibromohexane. Complete the mechanism below by adding curly arrows to show the movement of electron pairs in both steps and by giving the structural formula of the intermediate carbocation.

(3)

3,4-dibromohexane

- (e) The mechanism shown in (d) shows *Z*-hex-3-ene reacting with bromine. *E*-hex-3-ene also reacts with bromine to form 3,4-dibromohexane.
 - (i) Draw the structure of *E*-hex-3-ene.

(1)

(ii) Explain why both *Z*-hex-3-ene and *E*-hex-3-ene react with bromine to produce the **same** structural isomer.

(1)

(Total for Question 21 = 23 marks)

22 Lattice energy can be used as a measure of ionic bond strength. Born-Haber cycles can be used to determine experimental values of lattice energies.

The table below shows the energy changes that are needed to determine the lattice energy of lithium fluoride, LiF.

Energy change	ΔH / kJ mol ⁻¹
Enthalpy change of atomization of lithium	+159
First ionization energy of lithium	+520
Enthalpy change of atomization of fluorine, ½F ₂	+79
First electron affinity of fluorine	-328
Enthalpy change of formation of lithium fluoride	-616

(a) Define the term lattice energy .	(2)

- (b) The diagram below shows an incomplete Born-Haber cycle for the formation of lithium fluoride from lithium and fluorine.
 - (i) Complete the diagram by writing the formulae of the correct species, including state symbols, in the four empty boxes.

(4)

(ii) Calculate the lattice energy of lithium fluoride, in kJ mol⁻¹.

(2)

 $lattice\ energy =kJ\ mol^{-1}$

*(c) The lattice energies of sodium fluoride, sodium chloride and magnesium fluoride are shown in the table below.

Compound	Lattice energy / kJ mol ⁻¹
Sodium fluoride, NaF	-918
Sodium chloride, NaCl	-780
Magnesium fluoride, MgF ₂	-2957

Explain, in terms of the sizes and charges of the ions involved, the differences between the lattice energy values of

	(Total for Question 22 = 12 mark	s)
		2)
(ii) NaF and MgF ₂		
		2)
(i) NaF and NaCl		

23 Alkanes are used as fuels in homes and in industry. It is, therefore, important that the enthalpy changes involving alkanes are known.	
(a) Define the term standard enthalpy change of formation of a compound.	
Give the conditions of temperature and pressure that are used when measuring a	
standard enthalpy change.	(2)
	(3)
Definition	
Standard temperature is	
Standard pressure is	
(b) Write the equation with state symbols that assemblanies the enthalpy shange of	
(b) Write the equation, with state symbols, that accompanies the enthalpy change of formation of hexane, $C_6H_{14}(I)$.	
0 14	(2)

(c) Enthalpy changes can be calculated using enthalpy changes of combustion. Values for some standard enthalpy changes of combustion are shown in the table below.

Substance	$\Delta H_{\rm c}^{\odot}$ / kJ mol ⁻¹
C(s)	-394
H ₂ (g)	-286
CH ₄ (g)	-890

Use these data to complete the Hess cycle below for the reaction and then calculate the standard enthalpy change for the reaction, in $kJ \ mol^{-1}$.

$$C(s)$$
 + $2H_2(g)$ \rightarrow $CH_4(g)$

(3)

Spa	ce f	for	wο	rki	na

standard enthalpy change for the reaction = $\frac{1}{2}$ kJ mol⁻¹

(d) The equations for the combination of gaseous carbon atoms and gaseous hydrogen atoms to form methane, CH₄, and ethane, C₂H₆, are shown below.

$$C(g) + 4H(g) \rightarrow CH_4(g)$$
 $\Delta H = -1652 \text{ kJ mol}^{-1}$

$$\Delta H = -1652 \text{ kJ mol}^{-1}$$

$$2C(g) + 6H(g) \rightarrow C_{2}H_{6}(g)$$
 $\Delta H = -2825 \text{ kJ mol}^{-1}$

$$\Delta H = -2825 \text{ kJ mol}^{-1}$$

Use these data to calculate

(i) the mean bond enthalpy of a C—H bond in methane, in kJ mol⁻¹.

(1)

(ii) the bond enthalpy of a C—C bond, in kJ mol⁻¹, clearly showing your working. (2)

(Total for Question 23 = 11 marks)

- **24** This question is about atomic structure.
 - (a) Draw diagrams to show the shape of an s-orbital and of a p-orbital.

(2)

s-orbital	p-orbital

(b) Complete the table to show the number of electrons that **completely** fill the following regions.

(3)

Region	Number of electrons present when completely filled
a d-orbital	
a p sub-shell	
the third shell (n = 3)	

20

- (c) The energy diagram below is for the eight electrons present in an oxygen atom. Complete the diagram for an oxygen atom by adding
 - labels to identify the other occupied sub-shells
 - arrows to show how the remaining six electrons are arranged in the orbitals.

(2)

(d) Successive ionization energies provide evidence for the arrangement of electrons in atoms. The eight successive ionization energies of oxygen are shown in the table below.

lonization number	1st	2nd	3rd	4th	5th	6th	7th	8th
lonization energy / kJ mol ⁻¹	1314	3388	5301	7469	10989	13327	71337	84080

(i)	Define the term first ionization energy .	
		(3)

(ii)	Write an equation, with state symbols, to show the third	onization energy of	
	oxygen.	(2)	
*(iii) Explain how the data in the table provide evidence that the occupied electron shells in an oxygen atom.	nere are two	
	occupied electron shells in an oxygen atom.	(2)	
	(Total for C	uestion 24 = 14 marks)	
	TOTAL FOR	SECTION R = 60 MARKS	_

TOTAL FOR PAPER = 80 MARKS

ts
ner
\equiv
ė
Ш
_
of
ė
P
Table
1 1
云
iodic
9
G
Δ
he-
근
$\overline{}$

0 (8)	4.0 He helium 2	20.2 Ne	neon 10	39.9	Ar argon 18	83.8	Ā	krypton 36	131.3	Xe	xenon 54	[222]	R	radon 86		ted				
7	(17)	19.0 F	fluorine 9	35.5	Cl chlorine 17	79.9	Br	bromine 35	126.9	-	iodine 53	[210]	Αt	astatine 85		seen repor		175	Ľ	lutetium
9	(16)	16.0	oxygen 8	32.1	S sulfur 16	79.0	Se	selenium 34	127.6	<u>P</u>	tellurium 52	[509]	8	polonium 84		116 have b	וורמובח	173	ΥÞ	ytterbium
2	(15)	14.0 Z	nitrogen 7	31.0	P phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		mbers 112	סמר ווסר ומונץ ממנוופוונוכמנפט	169	Ħ	thulium
4	(14)	12.0 C	carbon 6	28.1	Si silicon 14	72.6	Ge	germanium 32	118.7	Sn	tin 50	207.2	Pb	lead 82		atomic nu	חתר ווסר	167	Ē	erbium
e	(13)	10.8 B	boron 5	27.0	Al aluminium 13	69.7	Ga	gallium 31	114.8	드	indium 49	204.4	F	thallium 81		Elements with atomic numbers 112-116 have been reported		165	유	holmium
					(12)	65.4	Zn	zinc 30	112.4	8	cadmium 48	200.6	Ę	mercury 80				163	Dy	dysprosium holmium
					(11)	63.5	ŋ	copper 29	107.9	Ag	silver 47	197.0	Αn	gold 79	[272]	Rg	111	159	TP	terbium
					(10)	58.7	ź	nickel 28	106.4	Pd	palladium 46	195.1	ፚ	platinum 78	[271]	Mt Ds	110	157	Р	gadolinium
					6)	58.9	ပိ	cobalt 27	102.9	윤	rhodium 45	192.2	<u>-</u>	iridium 77	[368]	Wt	109	152	Eu	europium
	1.0 Hydrogen				(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	Os	osmium 76	[277]	Hs	108	150	Sm	samarium
					0	54.9	Wn	manganese 25	[86]	᠘	technetium 43	186.2	Re	rhenium 75	[264]		107	[147]	Pm	promethium
		mass bol	umber		(9)	52.0	ъ	chromium manganese 24 25	95.9	Wo	molybdenum technetium 42 43	183.8	>	tungsten 74	[366]	Sg	seaborgium 106	144	PN	praseodymium promethium samarium europium
	Key	relative atomic mass atomic symbol	name atomic (proton) number		(5)	50.9	>	vanadium 23	92.9		niobium 41	180.9	Та	tantalum 73	[292]	DP	105	141	Pr	praseodymium
		relati	atomic		(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5		hafnium 72	[261]	Rf	104	140	Ce	cerium
		7			(3)	45.0	Sc	scandium 21	88.9	>	yttrium 39	138.9	La*	lanthanum 57	[227]	Ac*	89		Se	
7	(2)	9.0 Be	beryllium 4	24.3	Mg magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3	Ba	barium 56	[526]	Ra	88		* Lanthanide series	* Actinide series
-	(1)	6.9 Li	Lithium 3	23.0	Sodium 11	39.1	¥	potassium 19	85.5	ВЪ	rubidium 37	132.9	S	caesium 55	[223]	F	87		* Lanth	* Actini
																	_			

	140	141	144	[147]	150	152		159	163	165	167	169	173	
* Lanthanide series	S	P	PN	Pm	Sm	Eu	Ъ	T _P	ρ	유	й	щ	χ	
* Actinido corios	cerium	praseodymium	neodymium	promethium	samarium	europium	ga	terbium	dysprosium	holmium	erbium	thulium	ytterbium	2
Actinge series	28	29	09	61	62	63		65	99	29	68	69	70	
	232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[256]	[254]	II —
	丘	Pa	⊃	ď	Pu	Am	£	B	უ	Es	Fm	Þ₩	8	
	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lay
	06	91	92	93	94	95	96	46	86	66	100	101	102	
													ĺ	

Lr lawrencium

103

[257]