

Tackling Semantic: Semantic Analysis of Text Corpora using Al

berlin

HU Berlin

Analysis of Text Corpora

- 1) Kepler's book "Astronomia nova" Corpus
- _
- 2) Exoplanet Publication Corpus [1]
- -
- 3) Corona Virus Publication Corpus
- -

Structural Corpora

- 1) Multi Index Dataframe
- 2) Sentence Structure with Spacy
 - a) Customized Entities
 - b) Dependency Parsing

y=0 top features		y=1 top features		y=2 top features		y=3 top features		P
Weight?	Feature	Weight?	Feature	Weight?	Feature	Weight?	Feature	2.95
+3.200	present	+13.912	compared	+15.586	propose	+15.562	compare	Ra
+2.823	<bias></bias>	+10.334	compare	+9.788	proposed	+12.624	conclude	1 10
+1.953	model	+2.055	frequencies	+1.388	macho	+2.129	predictions	
+1.565	explore	+1.716	derived	+1.354	microlensing	+1.363	conclusions	
+1.321	using	+1.589	resulting	+1.196	better	+1.305	obtained	
+1.161	developed	+1.244	oscillation	+1.126	theta_	+1.297	eclipse	
+1.102	use	+1.147	j_	+0.999	afta	+1.224	existing	
+0.920	masses	+1.055	specifically	+0.979	blg	+1.213	values	
6556 1	more positive	+1.053	simulations	+0.957	series	+1.156	depths	
1800 n	nore negative	+1.047	trappist	+0.906	enable	+0.978	pressure	
-0.925	compares	+1.034	previous	+0.900	35	+0.906	gyr	
-0.929	coronagraphic	+1.018	axes	+0.872	coronagraphic	+0.887	opacity	
-0.938	eclipse	+1.015	slow	+0.835	eps	+0.880	real	
-0.949	significant	+1.015	curves	+0.818	mission	+0.879	event	
-0.955	classical	+1.014	compares	+0.809	interception	+0.872	spectrum	
-0.966	observations	+1.013	methods	+0.783	interactions	+0.871	tio	Te
-0.967	obtained	+0.998	simpler	+0.761	inner	1038 m	ore positive	
-0.970	clear	+0.997	titan	+0.736	libration	7318 m	ore negative	
-0.997	j_	+0.994	confirmed	833 n	nore positive	-0.869	planet	
-1.005	theta_	+0.964	case	7523 n	nore negative	-0.887	time	
-1.055	observed	898 m	ore positive	-0.742	develop	-0.910	explore	
-1.104	conclusions	7458 m	ore negative	-0.758	transit	-0.949	calculate	
-1.159	macho	-0.931	eclipse	-0.832	compare	-0.961	developed	
-1.166	frequencies	-0.941	investigate	-0.842	temperature	-1.017	previous	
-1.197	microlensing	-0.957	modeling	-0.855	surface	-1.104	develop	
-1.595	better	-0.970	transmission	-0.861	effects	-1.112	curves	
-1.728	predictions	-1.039	atmospheric	-0.946	evolution	-1.318	apply	
-8.344	proposed	-1.045	planet	-0.987	mass	-1.935	using	
-11.004	conclude	-1.097	models	-1.652	models	-1.970	use	
-11.936	compared	-1.288	present	-2.007	present	-2.461	present	
-13.480	propose	-1.436	model	-2,208	model	-2.855	model	

-3.589 <BIAS>

-3.463 <BIAS>

Customized Named Entity Recognition (NER) [2]

Key Idea. Hybrid approach; Pattern based & deep learning to provide NER Model by developing spaCy.

Key Idea. Extract Semantic from the corpus using

Future Direction: Semantic Objects

• Tree structure

Idea. Integrate sentences using xml format to have semantic annotation for extracted observations as a first use case

• Semantic Relation Extraction Idea. Extract structure of argumentation components using semantic objects

Explicit Observation Extraction [2]

['NAME', 'STAR', 'LONG', 'TIME', 'DATE', 'ASTR', 'GEOM', 'PARA', 'PLAN', 'LAT'] [421, 105, 1780, 208, 211, 4773, 666, 754, 934, 27] DATE TIME LONG 219.15 43.36 ASTR PARA PARA GEOM CEOM

References

[1] Graßhoff, Gerd; Bier, Sabrina (2019): Database of abstracts in publications on exoplanets from the NASA archive. Zenodo. Dataset. https://doi.org/10.5281/zenodo.3269732

[2] Yeghaneh, Mohammad; https://github.com/myeghaneh

[3] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). "Why should i trust you?" Explaining the predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining* (pp. 1135-1144).

