Some problems on Fubini's and Tonelli's Theorems, convolutions, and Fourier Transforms.

For the exact statements of the Fubini's and Tonelli's Theorems see the Wikipedia page

https://en.wikipedia.org/wiki/Fubini%27s_theorem.

The statements I gave in class were correct, but a bit informal. One of the applications of Fubini's theorem is to proving the basic properties of convolutions. If $f, g \in L^1(\mathbb{R})$, the **convolution** of f and g is

$$f * g(x) = \int_{-\infty}^{\infty} f(x - y)g(y) \, dy.$$

The change of variable $y \mapsto x - y$ shows this is also given by

$$f * g(x) = \int_{-\infty}^{\infty} f(y)g(x - y) \, dy.$$

Note these definitions make sense if \mathbb{R} is replaced by \mathbb{R}^n and dy is n-dimensional measure on \mathbb{R}^n . If you are planning to do applied mathematics, or some sort of partial differential equations, you should probably do this problems working with \mathbb{R}^n , rather than \mathbb{R} .

The basic properties of the convolution are

Proposition 1. If $f, g \in L^1(\mathbb{R})$ then $f * g \in L^1(\mathbb{R})$ and

$$||f * g||_{L^1} \le ||f||_{L^1} ||g||_{L^1}.$$

Also

$$f * g = g * f$$

$$f * (g * h) = (f * g * h)$$

$$\int_{-\infty}^{\infty} f * g(x) dx = \int_{-\infty}^{\infty} f(x) dx \int_{-\infty}^{\infty} g(x) dx$$

Problem 1. Prove this.

Note these properties show that $L^1(\mathbb{R})$ with the operations of addition (usual sum of functions) and using convolution as a product is a ring in the sense of abstract algebra. This is a natural example (at least for an analyst) of a ring that does not contain a multiplicative identity.

Proposition 2. Let $f \in L^1(\mathbb{R})$ and $g \in L^p(\mathbb{R})$ where $1 \leq p \leq \infty$. Then $f * g \in L^p(\mathbb{R})$ and

$$||f * g||_{L^p} \le ||f||_{L^1} ||g||_{L^p}.$$

Problem 2. Prove this.

The convolution is closely related to the **Fourier transform**. If $f \in L^1(\mathbb{R})$ then its transform is defined by

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{ix\xi} dx.$$

In the case we are working over \mathbb{R}^n this definition is

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{ix\cdot\xi} dx$$

where $x \cdot \xi$ is the usual dot product of the vectors x and ξ .

Proposition 3. For $f \in L^1(\mathbb{R})$ the Fourier transform $\hat{f} \colon \mathbb{R} \to \mathbb{R}$ is a bounded (in fact $|\hat{f}(\xi)| \leq ||f||_{L^1}$) continuous function and $\lim_{|\xi| \to \infty} \hat{f}(\xi) = 0$.

Problem 3. Prove this.

Proposition 4. If $f, g \in L^1(\mathbb{R})$, then

$$\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$$

Problem 4. Prove this.

Remark 5. Let $C(\mathbb{R})$ be the continuous functions $f: \mathbb{R} \to \mathbb{C}$ which is a ring using pointwise operations. The previous proposition shows that the Fourier transform is a ring homomorphism from $L^1(\mathbb{R})$ to $C(\mathbb{R})$.

Proposition 6 (August 2000, Problem 6). Suppose f is measurable on $[a,b] \times [c,d]$ such that

$$\int_{c}^{d} f(x,y) \, dx \, dy > b - a.$$

Show there exists $x \in [a, b]$ such that

$$\int_{a}^{b} f(x,y) \, dy > 1.$$

Problem 5 (August 2002, Problem 6). Let $f: [0,1] \to \mathbb{R}$ be Lebesgue measurable such that F(x,y) := f(x) - f(x) is integrable over $[0,1]^2$. Prove f is integrable over [0,1] and compute $\iint F(x,y) dx dy$.

Problem 6 (August 2003, Problem 4). Let f be a non-negative measurable function on a σ -finite measure space (X, Σ, μ) . Prove $\{(x, y) \in X \times \mathbb{R} : 0 \le y \le f(x)\}$ is $\mu \times \lambda$ measurable (where λ is Lebesgue measure) and that

$$\int_X f d\mu = (\mu \times \lambda) \left(\{ (x, y) \in X \times \mathbb{R} : 0 \le y \le f(x) \} \right)$$

Problem 7 (January 2014, Problem 5). Let E be a measurable subset of $[0,1] \times [0,1]$ and let λ be Lebesgue measure on [0,1]. For each $x \in [0,1]$ let

$$E_x = \{y : (x,y) \in E\}.$$

If

$$\lambda\left(\left\{x:\lambda(E_x)\geq \frac{1}{2}\right\}\right)\geq \frac{3}{4}$$

show

$$\lambda \times \lambda(E) \ge \frac{3}{8}.$$