Dikkat: Cevaplarınızı sadece soru altlarındaki boşluklara yapacaksınız.

İmza:

S1 Şekildeki devrede kullanılan MOS transistor için β =4mA/V², V_{TH}=1V ve V_A=50V değerleri verilmektedir.

a) Vo'nun DC değerinin <u>transistorun doymada kaldığı çıkış gerilim</u> <u>bölgesinin ortası</u> olsun istenmektedir. R_D direncinin değerini bulunuz.(10P)

b) R_D=3k alarak devrenin vo/vi kazancını bulunuz.(10Puan)

62 = 70 - 25 k

S2 Şekil 'deki transistorlar için β_F =200 , $|V_{BE}|$ =0,6V,VT=25mV, VA= ∞ 'dur. Devrenin DC çalışma noktasında T1 ve T2 transistorları aynı I_{CQ} değerine sahiptir.

a) ri ac giriş direncinin değerini bulunuz.(10P)

b) ac durumda *vi=rixli* bilgisinden hareketle *vo/li* geçiş direncinin değerini bulunuz.(15P)

 $\frac{1}{\sqrt{1 + \frac{1}{2}}} = \frac{1}{\sqrt{1 + \frac{1}{2}}}$

$$\text{BJT } \frac{v_c}{v_b} = -\frac{gmRc}{1 + gmR_e} \quad \frac{v_e}{v_b} = -\frac{gmR_e}{1 + gmR_e} \quad \frac{v_c}{v_e} = \frac{gmR_c}{1 + gm\frac{R_b}{\beta_F}} \quad r_{ib} = \beta_F(r_e + R_e) \quad r_{ie} = r_e + \frac{R_b}{\beta_F + 1}$$

MOSFET için: $c \rightarrow d$, $b \rightarrow g$, $e \rightarrow s$ ve $\beta_F \rightarrow \infty$

BJT
Ileri aktif bölge şartı;
NPN: V_C>V_B>V_E PNP: V_E>V_B>V_C
Ileri aktif bölgede;
I_C=β_FXI_B I_C=I_{SE}e^{(VBE)(VT}

MOSFET
Doyma şartı;
NMOS: V_{GD}<V_{Th}
PMOS: V_{GD}>V_{Th}
Doymada: I_D=(β/2)(V_{GS}-V_{Th})²

