

MA0301 Elementary discrete mathematics Spring 2018

Norwegian University of Science and Technology Department of Mathematics

Solutions — exercise 6

5 Use the alternative principle of induction to show that if u_n is defined recursively by the rules $u_1 = 1$, $u_2 = 5$ and for all n > 1, $u_{n+1} = 5u_n - 6u_{n-1}$, then $u_n = 3^n - 2^n$ for all $n \in \mathbb{N}$.

Base case: For n = 1, 2 we have

$$u_1 = 1 = 3^1 - 2^1$$
 and $u_2 = 5 = 3^2 - 2^2$,

so the hypothesis holds for the base case.

Inductive step: Assume that the statement

$$u_k = 3^k - 2^k$$

holds for all k, k < n. Wish to show that it then holds for k = n + 1.

$$u_{k+2} = 5u_{k+1} - 6u_k = 5(3^{k+1} - 2^{k+1}) - 6(3^k - 2^k)$$

$$= (5 \cdot 3^{k+1} - 5 \cdot 2^{k+1}) - (2 \cdot 3^{k+1} - 3 \cdot 2^{k+1})$$

$$= 3 \cdot 3^{k+1} - 2 \cdot 2^{k+1} = 3^{k+2} - 2^{k+2}$$

which is what we wanted to show. To see the second equality a bit clearer we have $6 \cdot 3^k = 2 \cdot 3 \cdot 3^k = 2 \cdot 3^{k+1}$ and similarly for $6 \cdot 2^k$.

a) Guess a formula for $\sum_{i=1}^{n} bi + c$, where b, c are given numbers, and prove it using the principle of induction.

The sum of the first n natural numbers, is n(n+1)/2 thus,

$$\sum_{i=1}^{n} bi + c = b \sum_{i=1}^{n} i + \sum_{i=1}^{n} c = b \frac{n(n+1)}{2} + cn.$$

Base case: For n = 1 we have

$$LHS = \sum_{i=1}^{1} bi + c = b + c$$
, $RHS = b \frac{1(1+1)}{2} + c \cdot 1 = b + c$.

so the hypothesis holds for the base case.

Inductive step: Assume that the statement holds for n = k, in other words

$$\sum_{i=1}^{k} bi + c = b \frac{k(k+1)}{2} + ck.$$

Need to show that this implies that the statement holds for n = k + 1

$$RHS = \frac{(k+1)(k+2)}{2} + c(k+1)$$

$$LHS = \sum_{i=1}^{k+1} bi + c$$

$$= b(k+1) + c + \sum_{i=1}^{k} bi + c$$

$$= b(k+1) + c + b\frac{k(k+1)}{2} + ck = b\frac{(k+1)(k+2)}{2} + c(k+1)$$

As $3(2k+1) + k(2k-1) = 2k^2 + 5k + 3 = (k+1)(2k+3)$ either by inspection or the quadratic formula. The rest follows now by induction, and thus concludes the proof.

b) Use $6\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)$ and the result of step **a)** to write down a formula for $\sum_{i=1}^{n} ai^2 + bi + c$, where a,b,c are given numbers.

Splitting the sum and using step a) immediately gives

$$\sum_{i=1}^{n} ai^{2} + bi + c = a \sum_{i=1}^{2} i^{2} + \sum_{i=1}^{n} bi + c$$

$$= a \frac{n(n+1)(2n+1)}{6} + b \frac{n(n+1)}{2} + cn = \frac{n(n+1)(2an+a+3b)}{6} + cn.$$

Section 5.1

9 Complete the proof of Theorem 1

Theorem 0.1. For any sets $A, B, C \subseteq \mathcal{U}$:

a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

c)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$

d)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

The book has proven item a), thus we need to prove the remaining three parts.

Proof of Theorem 1 b).

$$A \times (B \cup C) = \{(x, y) \mid x \in A \text{ and } y \in (B \cup C)\}$$

$$= \{(x, y) \mid x \in A \text{ and } (y \in B \text{ or } y \in C)\}$$

$$= \{(x, y) \mid (x \in A \text{ and } y \in B) \text{ or } (x \in A \text{ or } y \in C)\}$$

$$= \{(x, y) \mid x \in A \text{ and } y \in B\} \cup \{(x, y) \mid x \in A \text{ and } y \in C\}$$

$$= (A \times B) \cup (A \times C).$$

Proof of Theorem 1 c).

$$(A \cap B) \times C = \{(x, y) \mid x \in (A \cap B) \text{ and } y \in C\}$$

= $\{(x, y) \mid (x \in A \text{ and } x \in B) \text{ and } y \in C\}$
= $\{(x, y) \mid (x \in A \text{ and } y \in C) \text{ and } (x \in B \text{ and } y \in C)\}$
= $\{(x, y) \mid x \in A \text{ and } y \in C\} \cap \{(x, y) \mid x \in B \text{ and } y \in C\}$
= $(A \times C) \cap (B \times C)$.

Proof of Theorem 1 \mathbf{d}).

$$(A \cup B) \times C = \{(x, y) \mid x \in (A \cup B) \text{ and } y \in C\}$$

$$= \{(x, y) \mid (x \in A \text{ or } x \in B) \text{ and } y \in C\}$$

$$= \{(x, y) \mid (x \in A \text{ and } y \in C) \text{ or } (x \in B \text{ and } y \in C)\}$$

$$= \{(x, y) \mid x \in A \text{ and } y \in C\} \cup \{(x, y) \mid x \in B \text{ and } y \in C\}$$

$$= (A \times C) \cup (B \times C).$$

11 For $A, B, C \subset \mathcal{U}$, prove that

$$A \times (B - C) = (A \times B) - (A \times C)$$

Proof. B-C means everything in B except everything in C. The proof is done as before

$$A \times (B - C) = \{(x, y) \mid x \in A \text{ and } y \in B - C\}$$

$$= \{(x, y) \mid x \in A \text{ and } (y \in B \text{ and } y \notin C)\}$$

$$= \{(x, y) \mid (x \in A \text{ and } y \in B) \text{ and } (x \in A \text{ and } y \notin C)\}$$

$$= \{(x, y) \in A \times B\} \cap \{(x, y) \notin A \times C\}$$

$$= (A \times B) - (A \times C).$$

Section 7.2

- 6 For sets A, B and C, consider relations $\mathcal{R}_1 \subseteq A \times B$, $\mathcal{R}_2 \subseteq B \times C$, and $\mathcal{R}_3 \subseteq B \times C$. Prove that:
 - a) $\mathcal{R}_1 \circ (\mathcal{R}_2 \cup \mathcal{R}_3) = (\mathcal{R}_1 \circ \mathcal{R}_2) \cup (\mathcal{R}_1 \circ \mathcal{R}_3),$

As usual we prove the inclusion both ways.

- $\mathcal{R}_1 \circ (\mathcal{R}_2 \cup \mathcal{R}_3) \subseteq (\mathcal{R}_1 \circ \mathcal{R}_2) \cup (\mathcal{R}_1 \circ \mathcal{R}_3)$: Let $(x, z) \in \mathcal{R}_1 \circ (\mathcal{R}_2 \cup \mathcal{R}_3)$, then there exists some $y \in B$, $(x, y) \in \mathcal{R}_1$, $(y, z) \in \mathcal{R}_2 \cup \mathcal{R}_3$. By splitting this implies that for some $y \in B$, $((x, y) \in \mathcal{R}_1, (y, z) \in \mathcal{R}_2)$ or $((x, y) \in \mathcal{R}_1, (y, z) \in \mathcal{R}_3)$. So $(x, z) \in \mathcal{R}_1 \circ \mathcal{R}_2$ or $(x, z) \in \mathcal{R}_1 \circ \mathcal{R}_2$. Which is the same as $(x, z) \in (\mathcal{R}_1 \circ \mathcal{R}_2) \cup (\mathcal{R}_1 \circ \mathcal{R}_2)$, and this proves the inclusion.
- $(\mathscr{R}_1 \circ \mathscr{R}_2) \cup (\mathscr{R}_1 \circ \mathscr{R}_3) \subseteq \mathscr{R}_1 \circ (\mathscr{R}_2 \cup \mathscr{R}_3)$: Let $(x,y) \in (\mathscr{R}_1 \circ \mathscr{R}_2) \cup (\mathscr{R}_1 \circ \mathscr{R}_3)$. Then, $(x,z) \in \mathscr{R}_1 \circ \mathscr{R}_2$ or $(x,z) \in \mathscr{R}_1 \circ \mathscr{R}_3$. Assume without loss of generality that $(x,z) \in \mathscr{R}_1 \circ \mathscr{R}_2$. Then there exists an element $y \in B$ so that $(x,y) \in \mathscr{R}_1$ and $(y,z) \in \mathscr{R}_2$. But $(y,z) \in \mathscr{R}_2$ means that $(y,z) \in \mathscr{R}_2 \cup \mathscr{R}_3$, so $(x,z) \in \mathscr{R}_1 \circ (\mathscr{R}_2 \cup \mathscr{R}_3)$.
 - b) $\mathscr{R}_1 \circ (\mathscr{R}_2 \cap \mathscr{R}_3) \subseteq (\mathscr{R}_1 \circ \mathscr{R}_1) \cap (\mathscr{R}_1 \circ \mathscr{R}_3)$.

To see that equality can not hold in the relation above let $A = B = C = \{1, 2, 3\}$ with $\mathcal{R}_1 = (1, 2), (1, 1), \mathcal{R}_2 = (2, 3), \mathcal{R}_3 = (1, 3)$. Then $\mathcal{R}_1 \circ (\mathcal{R}_1 \circ \mathcal{R}_3) = \mathcal{R}_1 \circ \emptyset = \emptyset$, but $(\mathcal{R}_1 \circ \mathcal{R}_2) \circ (\mathcal{R}_1 \circ \mathcal{R}_3) = (1, 3) \neq \emptyset$. The proof is nearly identical to the proof above

 $\mathscr{R}_1 \circ (\mathscr{R}_2 \cap \mathscr{R}_3) \subseteq (\mathscr{R}_1 \circ \mathscr{R}_1) \cap (\mathscr{R}_1 \circ \mathscr{R}_3)$: Let $(x,z) \in \mathscr{R}_1 \circ (\mathscr{R}_2 \cap \mathscr{R}_3)$, then there exists some $y \in B$, $(x,y) \in \mathscr{R}_1$, $(y,z) \in \mathscr{R}_2 \cap \mathscr{R}_3$. This implies that for some $y \in B$, $(x,y \in \mathscr{R}_1,(y,z) \in \mathscr{R}_2)$ and $((x,y) \in \mathscr{R}_1,(y,z) \in \mathscr{R}_3)$. So $(x,z) \in \mathscr{R}_1 \circ \mathscr{R}_2$ and $(x,z) \in \mathscr{R}_1 \circ \mathscr{R}_2$. Which is the same as $(x,z) \in (\mathscr{R}_1 \circ \mathscr{R}_2) \cap (\mathscr{R}_1 \circ \mathscr{R}_2)$, and this proves the inclusion.

a) Draw the digraph $G_1 = (V_1, E_1)$ where $V_1 = \{a, b, c, d, e, f\}$ and $E_1 = \{(a, b), (a, d), (b, c), (b, e), (d, b), (d, e), (e, c), (e, f), (f, d)\}.$

Just connecting the different points immediately gives figure 1

Figure 1

b) Draw the undirected graph $G_1 = (V_2, E_2)$ where $V_2 = \{s, t, u, v, w, x, y, z\}$ and

$$E_2 = \{\{s,t\}, \{s,u\}, \{s,x\}, \{t,u\}, \{t,w\}, \{u,w\}, \{u,x\}, \{v,w\}, \{v,x\}, \{v,y\}, \{w,z\}, \{x,y\}\}\}$$

Sorting and connecting the different labels immediately gives figure 2

Figure 2

For $A = \{v, w, x, y, z\}$, each of the following is the (0, 1)-matrix for a relation \mathscr{R} on A. Here the rows and the columns are indexed in the order v, w, x, y, z. Determine the relation $\mathscr{R} \subset A \times A$ in each case, and draw the undirected graph G associated with \mathscr{R}

$$\mathbf{a)} \ M(\mathscr{R}) = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathscr{R} = \{(v, w), (v, x), (w, v), (w, x), (w, y), (w, z), (x, z), (y, z)\}$$

Figure 3

$$\mathbf{b)} \ M(\mathscr{R}) = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\mathscr{R} = \{(v, w), (v, x), (v, y), (w, v), (w, x), (x, v), (x, w), (x, z), (y, v), (y, z), (z, x), (z, y)\}$$

Figure 4