(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年5 月27 日 (27.05.2004)

PCT

(10) 国際公開番号 WO 2004/043973 A1

(51) 国際特許分類⁷: **C07F 9/6561**, 19/00, C07D 205/08, C07F 7/18 // 7/18, C07D 477/00, 477/04

(21) 国際出願番号:

PCT/JP2003/014419

(22) 国際出願日:

2003年11月13日(13.11.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2002-330127

2002年11月13日(13.11.2002) ア

(71) 出願人 (米国を除く全ての指定国について): 鐘淵化 学工業株式会社 (KANEKA CORPORATION) [JP/JP]; 〒530-8288 大阪府 大阪市 北区中之島 3 丁目 2番 4 号 Osaka (JP). (72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 西野 敬太 (NISHINO,Keita) [JP/JP]; 〒676-8688 兵庫県 高砂市 高砂町宮前町 1-8 鐘淵化学工業株式会社高砂工業 所内 Hyogo (JP). 古賀 照義 (KOGA,Teruyoshi) [JP/JP]; 〒676-8688 兵庫県 高砂市 高砂町宮前町 1-8 鐘淵 化学工業株式会社高砂工業所内 Hyogo (JP).

(74) 代理人: 安富康男, 外(YASUTOMI,Yasuo et al.); 〒 532-0011 大阪府 大阪市 淀川区西中島 5 丁目 4 番 2 0 号 中央ビル Osaka (JP).

(81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

[続葉有]

(54) Title: NOVEL INTERMEDIATE FOR CARBAPENEM COMPOUND FOR ORAL ADMINISTRATION AND PROCESS FOR PRODUCING THE SAME

(54) 発明の名称: 経口投与用カルパペネム化合物の新規合成中間体及びその製造方法

(57) Abstract: A novel intermediate which is for use in efficiently producing a 1β -methylcarbapenem compound for oral administration; and a process for producing the intermediate. The process, which is for producing a novel β -lactam compound represented by the general formula (4), is characterized by reacting a β -lactam compound represented by the general formula (5) as a starting material with a compound represented by the general formula (6) in the presence of a base to obtain a novel β -lactam compound represented by the general formula (1), protecting the hydroxy group, subsequently cyclizing the protected compound in the presence of a strong base, reacting the cyclized compound with diphenylphosphoryl chloride to obtain a novel β -lactam compound represented by the general formula (3), and removing the protective group therefrom. (5) (6) (1) (3) (4) (In the formulae, R_1 represents trimethylsilyl or triethylsilyl; R_2 represents aryl or heteroaryl; R_3 represents C_{1-10} alkyl or C_{3-10} cycloalkyl; and X represents halogeno.)

(84) 指定国 (広域): ARIPO 特許 (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッ

パ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,

/続葉有/

(57) 要約:

本発明は、経口投与用 1β ーメチルカルバペネム化合物を効率的に製造するための新規合成中間体およびその製造方法を提供する。つまり、本発明は、一般式 (5)で表される β ーラクタム化合物を出発原料とし、一般式 (6)で表される 化合物と塩基の存在下に反応させ、一般式 (1)で表される新規な β ーラクタム 化合物とし、水酸基を保護した後、強塩基の存在下に環化させ、さらに塩化ジフェニルリン酸と反応させることにより、一般式 (3)で表される新規な β ーラクタム化合物を得、これを脱保護することを特徴とする、一般式 (4)で表される 新規な β ーラクタム化合物の製造方法である。

(式中、 R_1 : トリメチルシリル基またはトリエチルシリル基、 R_2 : アリール 基またはヘテロアリール基、 R_3 : 炭素数 $1 \sim 10$ のアルキル基または炭素数 $3 \sim 10$ のシクロアルキル基、X: ハロゲン原子を示す)

TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

請求の範囲の補正の期限前の公開であり、補正書受 領の際には再公開される。

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明細書

経口投与用カルバペネム化合物の新規合成中間体及びその製造方法

技術分野

5 本発明は経口投与用1βーメチルカルバペネム化合物の共通合成中間体として 極めて有用な新規βーラクタム化合物およびその製造方法に関する。

背景技術

1 βーメチルカルバペネム化合物は広範囲の病原菌に対して優れた抗菌作用を 10 示し、かつ生体内での安定性にも優れていることから最も注目されている抗菌剤 のひとつである。そのため、近年、経口投与用薬剤の研究開発が精力的に進められている。経口投与用1 βーメチルカルバペネム化合物の製造方法としては、現 在、以下のような方法が一般的に用いられている。

例えば、特開平8-53453号公報や、ザ・ジャーナル・オブ・アンチビオ 15 ティックス(J. Antibiot.)、429~439頁、1997年に記載 されているように、式(7):

$$H_3C$$

$$OH$$

$$H_3C$$

$$CO_2$$

$$NO_2$$

$$(7)$$

で表される化合物を各種チオール化合物(R-SH)と反応させて、式(8):

$$H_3C$$
 CO_2
 CO_2
 NO_2
 (8)

10 (式中、Rはチオール残基を示す)で表される化合物を合成し、例えば加水素分解反応や、亜鉛末による還元反応により保護基であるpーニトロベンジル基を除去し、式(9):

$$H_3C$$
 H_3C
 CO_2H
 CH_3
 CO_2H
 (9)

20 (式中、Rはチオール残基を示す)で表される化合物に変換し、さらに得られた 化合物(9)のカルボン酸部位を例えばピバロイルオキシメチル化することにより、式(10):

$$H_3C$$
 H_3C
 CO_2
 CO_2
 CO_2
 Bu^t
 Bu^t

(式中、Rはチオール残基を示し、Bu t は te rt -ブチル基を示す)で表される化合物を製造する方法である。

上記式 (10) で表される化合物としては、例えば、前記特開平8-5345 3号公報および特開平10-195076号公報には、式 (11):

で示される化合物が記載されており、

また、前記ザ・ジャーナル・オブ・アンチビオティックス (J. An tibio t.)、429~439頁、1997年および特開平10-130270号公報には、式 (12):

で示される化合物が記載されており、

さらに、特開平10-152491号公報には、式(13):

25

20

4

で示される化合物が記載されているが、これらは全て上記方法にて合成されている。

10 しかしながら、これらの製造方法では経口投与用1β-メチルカルバペネム化合物を合成するのに、カルボン酸保護基の付け換えを必要とし、多段階の反応を経る必要があるため非効率的であり、また、最終物のチオール残基となる比較的高価なチオール化合物を合成初期段階で用いることから、製造コスト面で不利となり、問題となっていた。

15 また、特開平8-59663号公報および特開2000-344774号公報 には、式(14):

$$H_{3}C$$

$$H_{3}C$$

$$H_{3}C$$

$$CH_{3}$$

$$R_{5}$$

$$CO_{2}$$

$$R_{6}$$

$$(14)$$

25 (式中、 R_4 は水酸基保護基を示し、 R_5 は生成物である 1β ーメチルカルバペネム化合物中に含まれるチオール残基を示し、 R_6 は有機基を示す)で表される化合物から、式(15):

$$H_3C$$
 H_3C
 H_3C

(式中、 R_4 、 R_5 、 R_6 は前記と同じ意味を示し、 R_7 、 R_8 、 R_9 は全て炭素数 $1\sim 4$ の低級アルコキシ基であるか、あるいはひとつが炭素数 $1\sim 4$ のアルキル 基で残りふたつが炭素数 $1\sim 4$ の低級アルコキシ基を示す)で表される化合物を 合成し、これを環化させることにより、式(1 6):

$$H_3C$$
 H_3C
 CO_2
 CO_2
 CO_2
 R_6
 R_6
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

20

25

5

(式中、 R_4 、 R_5 、 R_6 は前記と同じ意味を示す)で表される化合物を製造する方法が記載されている。

しかしながら、本製造方法においても先述と同様に、最終物のチオール残基となる比較的高価なチオール化合物を合成初期段階で用いることから製造コスト面で不利であり問題となっていた。

ジャーナル・オブ・オーガニック・ケミストリー (J. Org. Chem)、 第61巻、7889~7894頁、1996年および特開平5-279367号 公報には、式 (17): WO 2004/043973 PCT/JP2003/014419

$$H_3C$$

$$H_3C$$

$$G_2$$

$$G_2$$

$$G_3$$

$$G_4$$

$$G_5$$

$$G_6$$

$$G_7$$

$$G_{17}$$

$$G_{17}$$

$$G_{17}$$

$$G_{17}$$

(式中、Meはメチル基を示し、Bu^tは前記と同じ意味を示す)で示される化合物が記載されており、該化合物を各種チオール化合物との反応及び水酸基の脱保護により 1β ーメチルカルバペネム化合物に導くことが考え得る。しかしながら、上記化合物(17)においては、水酸基の保護基が tert-プチルジメチルシリル基であるため、Protective Groups in Organic Synthesis (J Wiley&Sons, New York)、44~46頁、1981年に例示されているように、水酸基部位の脱保護には他の官能基に影響を及ぼすような反応試剤を使用する必要があり、収率等の点で問題がある。本発明者らは脱保護の方法を種々検討したが、容易かつ効率の良い脱保護を行うことは困難であった。

以上のような状況の中、経口投与用1 β ーメチルカルバペネム化合物の効率的 かつ製造コスト面で有利な製造を可能とする共通合成中間体の開発が望まれてい た。

発明の要約

5

10

15

20

25

上記現状を鑑み、本発明者らは経口投与用 1β -メチルカルバペネム合成において最終段階にて一段でチオール化合物が導入できるような、新規 β -ラクタム化合物およびその製造方法の開発に関して鋭意検討した結果、本発明に至った。即ち、本発明は、一般式(1):

WO 2004/043973 PCT/JP2003/014419

$$R_3$$
 CH_3
 R_2
 CO_2
 CO_2
 R_3
 R_3

5

15

20

:

(式中、 R_2 はアリール基またはヘテロアリール基を示し、 R_3 は炭素数 $1 \sim 1$ 0 のアルキル基または炭素数 $3 \sim 1$ 0 のシクロアルキル基を示す)で表される化 10 合物の水酸基を保護することにより、一般式(2):

$$H_3C$$
 H_3C
 CO_2
 CO_2
 CO_2
 R_3
 R_3
 R_2

(式中、 R_1 はトリメチルシリル基またはトリエチルシリル基を示し、 R_2 、 R_3 は前記と同じ意味を示す)で表される化合物と成し、これを強塩基の存在下に環化させ、引き続き塩化ジフェニルリン酸と反応させることにより、一般式(3)

(式中、 R_1 、 R_3 は前記と同じ意味を示す)で表される化合物とすることを特徴とする、 β ーラクタム化合物の製造方法である。

また、本発明は、上記のようにして製造された化合物 (3) の水酸基部位の脱保護を行うことを特徴とする、一般式 (4):

(式中、 R_3 は前記と同じ意味を示す)で表される β ーラクタム化合物の製造方法である。

また、本発明は、一般式(1):

5

10

15

20

25

$$H_3C$$
 H_3C
 R_2
 CO_2
 CO_2
 R_3
 R_3

(式中、 R_2 、 R_3 は前記と同じ意味を示す)で表される化合物である。 また、本発明は、一般式 (3):

$$H_3C$$
 CO_2
 CO_2
 CO_2
 R_3
 CO_3
 CO_2
 CO_3
 C

(式中、 R_1 、 R_3 は前記と同じ意味を示す)で表される化合物である。

10 さらに本発明は、一般式(4):

(式中、R₃は前記と同じ意味を示す)で表される化合物でもある。

20

15

5

発明の詳細な開示

以下、本発明について詳細に説明する。

本発明は、一般式(1):

WO 2004/043973 PCT/JP2003/014419

$$H_3C$$
 CO_2
 CO_2
 R_3
 R_3
 C

で表される化合物の水酸基を保護することにより、一般式(2):

5

で表される化合物と成し、これを強塩基の存在下に環化させ、引き続き塩化ジフェニルリン酸と反応させることにより、一般式(3):

で表される化合物とすることを特徴とする、β-ラクタム化合物の製造方法である。

本発明において、前記式(1)で表される化合物は、一般式(5):

PCT/JP2003/014419

11

$$H_3C$$
 OH
 H
 H
 R_2
 $COOH$
 $COOH$
 $COOH$

で表される化合物と、一般式(6):

$$R_3 \longrightarrow X$$
 (6)

10

5

WO 2004/043973

で表される化合物を、塩基の存在下に反応させて得られたものであることが好ましい。

本発明のβーラクタム化合物の製造方法により製造された前記式(3)で表される化合物は、水酸基部位の脱保護を行って、一般式(4):

15

$$H_3C$$
 H_3C
 CO_2
 CO_2
 R_3
 R_3

20

で表されるβーラクタム化合物としてもよい。

25

まず、各化合物における置換基について説明する。前記式(2)及び(3)において水酸基の保護基 R_1 はトリメチルシリル基またはトリエチルシリル基であり、特に好ましくはトリメチルシリル基である。これらの置換基は、本発明の製造方法において使用される化合物(3)の保護基 R_1 の脱保護反応に際して、化合物中の他の官能基部分を極力分解させることなく、穏和な反応条件にて除去できるものとして本発明者が鋭意検討の結果見出したものである。

20

25

前記式(1)、(2)及び(5)において、チオール残基である R_2 はアリール基またはヘテロアリール基を示し、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ニトロ基、炭素数 $1\sim3$ のアルキル基、炭素数 $1\sim3$ のアルコキシ基等により置換されていてもよい。

5 アリール基としては、例えば、フェニル基、1~3個の塩素原子、臭素原子、 ョウ素原子等のハロゲン原子で置換されたハロゲノフェニル基、pーニトロフェ ニル基、oーニトロフェニル基、pーメトキシフェニル基、1ーナフチル基、2 ーナフチル基等が挙げられる。

ヘテロアリール基としては、例えば、2-ピリジル基、3-ピリジル基、4-10 ピリジル基、2-ピリミジル基、2-(4,6-ジメチル)ピリミジル基、2-ベングチアグリル基、2-ベングイミダブリル基、2-ベングオキサブリル基、2-チエニル基等が挙げられる。

R₂としては、アリール基が好ましく、入手の容易さ、経済性、反応性等からフェニル基、ハロゲノフェニル基がより好ましく、ハロゲノフェニル基としては、p-クロロフェニル基が好ましい。

前記式(1)、(2)、(3)、(4)及び(6)において、置換基 R_3 は最終的に経口投与用 1β -メチルカルバペネム化合物として開発されうる化合物中のカルボン酸エステル残基のアルカノイルオキシメチル基部位に含まれてくるものであり、炭素数 $1\sim10$ のアルキル基または炭素数 $3\sim10$ のシクロアルキル基を示す。

炭素数1~10のアルキル基の例としてはメチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、secーブチル基、tertープチル基、ノルマルオクチル基、ノルマルデカニル基等が挙げられる。

炭素数3~10のシクロアルキル基は置換基を有していてもよく、置換基としてはメチル基、エチル基等の炭素数1~4のアルキル基等が挙げられる。炭素数3~10のシクロアルキル基の例としては、シクロプロピル基、シクロヘキシル基、1-メチルシクロヘキシル基、4-メチルシクロヘキシル基等が挙げられる。

置換基R₃としては、なかでも経口投与用カルバペネム化合物の開発でよく使用されるtertープチル基が特に好ましい。

20

前記式(6)において置換基Xはハロゲン原子を示し、フッ素原子、塩素原子、 臭素原子、ヨウ素原子が挙げられるが、化合物(6)の入手の容易さや反応性、 安定性等の面から塩素原子が特に好ましい。

次に本発明の製造方法について説明する。

- 5 本発明において好ましく使用される出発原料の前記式(5)で表される化合物は、例えば、ケミカル・アンド・ファーマシューティカル・ブルティン(Chem. Pharm. Bull.)、42巻、1381~1387頁、1994年に記載の方法により容易に製造することができ、1βーメチルカルバペネム化合物の合成原料として望ましい光学活性体の形で容易に合成可能な化合物である。
- 10 上記化合物(5)を、前記式(6)で表されるアルカノイルオキシメチルハロ ゲン化物と塩基の存在下に反応させて、前記式(1)で表されるβ-ラクタム化 合物へと誘導することができる。

該反応は、化合物(5)及び化合物(6)を分解させないような不活性溶媒を用いて行われる。不活性溶媒としては特に限定はされないが、テトラヒドロフラン、ジオキサン、ジエチルエーテル等のエーテル系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;N,Nージメチルホルムアミド、N,Nージメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド、アセトニトリル、アセトン、塩化メチレン、およびそれらの混合溶媒等が挙げられる。反応速度の点から、N,Nージメチルホルムアミド、N,Nージメチルアセトアミドが特に好ましい。

反応に使用されるアルカノイルオキシメチルハロゲン化物(6)の量は、化合物(5)に対して1.0倍モル量以上必要であり、好ましくは1.1~3.0倍モル量である。

また、使用される塩基としては、一般的に、カルボン酸とアルキルハロゲン化 25 物によりエステルを形成する反応において使用されるものを用いることができ、 例えば、有機アミン類やアルカリ金属塩等が挙げられる。

有機アミン類としては、トリエチルアミン、ジイソプロピルエチルアミン、ジシクロへキシルアミン、1,8-ジアザビシクロ[5.4.0]ウンデシー7-エン(DBU)、モルホリン等が例示される。その使用量は化合物(5)に対し

10

25

1. 0倍モル量以上は必要であり、1. 1~2. 0倍モル量が好ましい。

また、アルカリ金属塩としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等の炭酸アルカリ塩;重炭酸ナトリウム、重炭酸カリウム等の重炭酸アルカリ塩等が例示される。その使用量は化合物(5)に対し、炭酸アルカリ塩使用時には0.5倍モル量以上が必要であり、重炭酸アルカリ塩使用時には1.0倍モル量以上が必要であるが、共に1.1~2.0倍モル量が好ましい。

また、上記反応においては反応促進剤として添加物を必要に応じて加えてもよく、添加物としてはヨウ化ナトリウム、臭化リチウム等のアルカリ金属ハロゲン化物や、臭化テトラブチルアンモニウム、塩化ベンジルトリエチルアンモニウム等の四級アンモニウムハロゲン化物等が挙げられる。その使用量は化合物(6)に対し1.0倍モル量以上であることが好ましく、1.0~1.5倍モル量が最適である。

上記反応は通常 0~80℃で実施されるが、反応物、生成物の分解抑制の理由から10~40℃で行うのが好ましい。

15 また、反応時間は通常 1~50時間であるが、上記理由から2~30時間であることが好ましい。

また、当然のことではあるが、薄層クロマトグラフィー(TLC)、高速液体 クロマトグラフィー(HPLC)といった分析的手段により該反応の経時変化を 知ることができる。

20 反応後の混合物からは、通常有機反応においてしばしば用いられるpH調節、 抽出、分液、洗浄、濃縮、精製などの操作を経て目的化合物(1)を単離するこ とができる。

なお、上記反応で得られる化合物(1)は新規化合物であり、本発明者らにより、経口投与用 1β —メチルカルバペネム化合物を製造する際の共通合成中間体を製造するのに有用な前駆体としての用途が確認された化合物である。

上記反応にて得られた化合物(1)は、続いて、その水酸基を保護することにより化合物(2)に変換される。

該反応は水酸基にシリル保護基を導入する反応であり、例えば、Protective Groups in Organic Synthesis (J W

15

iley&Sons, New York)、39~50頁、1981年に記載されているような一般的なシリル保護基導入条件を採用することができる。本発明ではトリメチルシリル基またはトリエチルシリル基が導入されるが、化合物(1)を、不活性溶媒中、アミン等の塩基の共存下に、塩化トリメチルシランまたは塩化トリエチルシランと反応させることにより、化合物(2)へ誘導することができる。本方法は最も一般的なものであり、上記化合物(2)を製造する際には最適である。

この際使用する塩化トリメチルシランまたは塩化トリエチルシランの量は、化合物(1)に対し1.0倍モル量以上は必要であり、1.1~3.0倍モル量が好ましい。

また、塩基として使用するアミンはトリエチルアミン、ジイソプロピルエチルアミン、ピリジン、イミダゾール等が挙げられる。その量は化合物(1)に対し1.0倍モル量以上は必要であり、1.1~3.0倍モル量が好ましい。

不活性溶媒としては、上記塩化トリアルキルシランを分解させないような不活性なものであれば特に制限されないが、テトラヒドロフラン、ジオキサン、ジエチルエーテル等のエーテル系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;N,Nージメチルホルムアミド、N,Nージメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド、アセトニトリル、アセトン、塩化メチレン、およびそれらの混合溶媒等が挙げられる。

20 上記反応は通常 0 ~ 1 0 0 ℃で実施されるが、反応物、生成物の分解抑制の理 由から 1 0 ~ 6 0 ℃で行うのが好ましい。

また、反応時間は通常 $0.5\sim50$ 時間であるが、上記理由より $1\sim30$ 時間であることが好ましい。

なお、反応の進行具合は先述の如く、分析的手段を用いて追跡することができ 25 る。

反応後の混合物からは、通常有機反応においてしばしば用いられるpH調節、 抽出、分液、洗浄、濃縮、精製などの操作を経て化合物(2)を単離することが できる。この際、化合物(2)は酸性条件にすると水酸基上の保護基が脱保護さ れて原料化合物(1)に戻ってしまうため、酸性条件にならないように十分注意

しなければならない。

上記反応で得られた化合物(2)は、強塩基の存在下で環化させた後、塩化ジフェニルリン酸で処理することにより、化合物(3)に変換される。

化合物(2)の環化反応で使用される好適な強塩基としては、カリウムter t ーブトキシド、ナトリウムter t ーブトキシド等のアルカリ金属アルコキシド;リチウムビス(トリメチルシリル)アミド、ナトリウムビス(トリメチルシリル)アミド、カリウムビス(トリメチルシリル)アミド、カリウムビス(トリメチルシリル)アミド等のアルカリ金属アミド;水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物等を挙げることができる。本反応では化合物(2)にチオエステル基やアルカノイルオキシメチル基が存在するため、これら官能基の分解が最小化されるような塩基が望まれ、カリウムter t ーブトキシド、ナトリウムビス(トリメチルシリル)アミド、水素化ナトリウムが特に好ましい。

また、その使用量は、環化反応が充分進行するだけの量であることが望ましく、 化合物 (2) に対し2~3倍モル量であることが好ましい。

15 本環化反応では、環化の進行に伴い金属チオラートが副生してくるため、この ものを後続反応で悪影響を与えない形の化合物に変換するための捕捉剤を使用す るのが好ましい。

捕捉剤としては、ヨウ化メチル、ヨウ化プロピル、臭化アリル、臭化ベンジル、pートルエンスルホン酸メチル等のアルキル化剤;塩化pートルエンスルホニル、塩化メタンスルホニル等のスルホニル化剤;塩化ジフェニルリン酸等のリン酸エステル化剤等が挙げられる。その使用量は化合物(2)から副生する金属チオラートと同量であることが望ましく、好適には化合物(2)に対し1.0~1.5倍モル量を用いることができる。

続いて、化合物(2)が環化した反応中間体と塩化ジフェニルリン酸との反応 25 により、化合物(3)が生成する。本反応は先の環化反応と同一反応器内で通常 行われる。

塩化ジフェニルリン酸の使用量は、反応が十分に進行するだけの量が必要であり、化合物(2)に対し1.0~1.5倍モル量が好適な量である。なお、塩化ジフェニルリン酸は、上述の如く副生した金属チオラートの捕捉剤をも兼ねるこ

25

とができるため、このような場合には化合物 (2) に対し2倍モル量以上を加えることで金属チオラートを補足し、かつリン酸エステル化剤としての役目も兼ねさせて使用することができる。

上記の環化およびリン酸エステル化の反応は不活性溶媒中で行われる。不活性溶媒としては特に制限されるものではないが、好適なものとしては、例えば、テトラヒドロフラン、ジオキサン、ジエチルエーテル等のエーテル系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;N,Nージメチルホルムアミド、N,Nージメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド、アセトニトリル、アセトン、塩化メチレン、およびそれらの混合溶媒等が挙げられる。塩基や化合物(2)の溶解性の面からテトラヒドロフラン、あるいはそれとトルエンとの混合溶媒が最適であるが、その混合比率については反応試剤が溶解すれば特に制限はない。

上記環化及びリン酸エステル化の反応は通常 $-78\sim60$ \mathbb{C} で実施されるが、 反応物、生成物の分解抑制の理由から $-78\sim10$ \mathbb{C} で行うのが好ましい。

15 また、環化反応時間は通常 1 分~ 2 0 時間であるが、 5 分~ 5 時間であること が好ましい。

また、リン酸エステル化の反応時間は通常5分~30時間であるが、30分~10時間であることが好ましい。

なお、反応の進行具合は先述の如く、分析的手段を用いて追跡することができ 20 る。

反応後の混合物からは、通常有機反応においてしばしば用いられる p H調節、 抽出、分液、洗浄、濃縮、精製などの操作を経て化合物(3)が単離される。

なお、上記反応で得られる化合物(3)は新規化合物であり、本発明者らにより経口投与用1βーメチルカルバペネム化合物を製造する際の共通合成中間体を 製造するのに有用な合成前駆体としての用途が確認された化合物である。

次いで、水酸基の保護基である R_1 を脱保護することにより、化合物(3)は化合物(4)へと誘導することができる。

脱保護の方法としては、例えば、Protective Groups in Organic Synthesis (J Wiley&Sons, New

10

20

York)、39~50頁、1981年に記載されているような一般的なシリル 保護基の脱保護条件を採用することができる。

脱保護反応に際して、化合物中の他の官能基部分を極力分解させることなく、 穏和な反応条件にて保護基を除去できる方法として、化合物(2)を環化及びリン酸エステル化させた反応後の混合物をpH調節する際に、酸性条件とすること で水酸基部位の脱保護を行う方法が特に好ましい。ただし、化合物(3)を取り 出した後に別途化合物(4)へと誘導してもよい。

この際使用される酸性条件はpHが7以下の条件であれば特に制限はないが、pH2~6であることが好ましく、該pHにて該シリル保護基が極めて容易に離脱される。また、当該酸性条件とするために、例えば、リン酸、クエン酸水、塩酸等を混合物に添加することができる。

化合物 (4) は新規化合物であり、以下で述べるように、経口投与用 1β ーメ チルカルバペネム化合物の共通合成中間体としての有用な用途が本発明者らによって初めて認められた化合物である。

15 上記のようにして得られる化合物(4)は塩基の存在下に、チオール化合物(R'-SH)と反応させることで、一般式(20);

$$H_3C$$
 H_3C
 CO_2
 CO_2
 CO_2
 R_3
 R_3

(式中、R' はチオール残基を示し、 R_3 は前記と同じ意味を示す)で表される 25 各種 1β - メチルカルバペネム化合物に一工程にて誘導することができる。

また、脱保護する前の上記化合物 (3) を塩基の存在下にチオール化合物と反応させて、一般式 (21);

PCT/JP2003/014419

5

10

20

25

$$H_3C$$
 OR_1
 H
 CH_3
 $S-R'$
 CO_2
 O
 R_3
 R_3

(式中、R'、 R_1 、 R_3 は前記と同じ意味を示す)で表される 1β ーメチルカルバペネム化合物を得た後に、水酸基部位の脱保護を行うことにより、経口投与用の各種 1β ーメチルカルバペネム化合物に誘導してもよく、化合物(3)および(4)を単離することなく、直接所望の 1β ーメチルカルバペネム化合物へ誘導することも可能である。

この場合、まず、前述のように化合物(2)を環化させ、塩化ジフェニルリン酸によるリン酸エステル化反応までを行って化合物(3)とする。その後、塩基の存在下にチオール化合物(R'-SH)と反応させる。

15 ここで、チオール化合物との反応において用いられる塩基は、上述の環化反応 に使用される強塩基と同一でもよいし、異なっていてもよい。

前述の化合物(2)の環化時に使用される強塩基以外の他の塩基としては、有機アミン類やアルカリ金属塩を用いることができ、有機アミン類としてはトリエチルアミン、ジイソプロピルエチルアミン、4ージメチルアミノピリジン、1,8ージアザビシクロ[5.4.0]ーウンデシー7ーエン(DBU)、1,5ージアザビシクロ[4.3.0]ーノンー5ーエン(DBN)、1,4ージアザビシクロ[2.2.2]オクタン(DABCO)等が挙げられる。アルカリ金属塩としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等の炭酸アルカリ塩;重炭酸ナトリウム、重炭酸カリウム等の重炭酸アルカリ塩等が挙げられる。

また、環化反応の際に用いたものとは別の不活性溶媒を加えることにより反応 を促進することも可能である。

反応促進のためにさらに添加される不活性溶媒としては、好適にはアセトニトリル、N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド等が挙げられる。

上記で得られた 1β - メチルカルバペネム化合物は、上述したような水酸基部位の脱保護を行う一般的な方法、好ましくは、化合物中の他の官能基部分を極力分解させないような、先述と同様の条件とすることによる脱保護方法により、所望の経口投与用 1β - メチルカルバペネム化合物へと変換することができる。

5

発明を実施するための最良の形態

以下に実施例および参考例を挙げてさらに詳細に説明するが、本発明はこれらの記載によって何ら限定されるものではない。なお、以下の実施例および参考例で用いた略号の意味は次のとおりである。

10 Me:メチル基

Bu^t:tertープチル基

TMS:トリメチルシリル基

TES:トリエチルシリル基

15

20

25

$$H_3C$$
 H_3C
 CO_2H
 CO_2H
 CO_2
 CO_2

(3S, 4S) -1-カルボキシメチル-4-[(1R) -1-(p-クロロフェニルチオカルボニル) エチル] -3-[(1R) -1-ヒドロキシエチル] -2-アゼチジノン8. 18g(22.0mmol)をジメチルホルムアミド18mlに室温(25℃)で溶解させ、塩化ピバロイルオキシメチル5.5ml(40.0mmol)、ヨウ化ナトリウム5.75g(40.3mmol)を順次添加し、ジイソプロピルエチルアミン4.2ml(25.3mmol)を滴下した後、同温度で20時間攪拌した。反応液をトルエン120mlで希釈し、2.

25

5%重曹水および水で数回洗浄して得られたトルエン溶液を、芒硝にて乾燥させた後、溶媒を留去した。得られた油状残渣を室温でトルエン60m1に溶解し、ヘキサン120m1を添加すると結晶が析出した。これをろ別、洗浄することにより標記の白色結晶9.46gを得た(収率92.7%)。

5 NMR δ (CDC 1₃): 1. 19 (9H, s), 1. 32~1. 34 (6H, m), 3. 11~3. 18 (2H, m), 3. 87 (1H, d, J=18. 1H z), 4. 15 (1H, dd, J=2. 4, 4. 4Hz), 4. 22~4. 24 (1H, m), 4. 35 (1H, d, J=18. 1Hz), 5. 76 (2H, s), 7. 31 (2H, d, J=8. 8Hz), 7. 40 (2H, d, J=8. 8Hz)

10 Hz)

15
$$H_3C$$
 H_3C H_3C

NMR δ (CDC1₃): 1. 19 (9H, s), 1. 32~1. 34 (6H,

m) $\ 3. \ 12\sim3. \ 19 \ (2H, m) \ 3. \ 89 \ (1H, d, J=18. \ 3H)$ z) $\ 4. \ 15 \ (1H, dd, J=2. \ 2, 4. \ 1Hz) \ 4. \ 19\sim4. \ 27$ $\ (1H, m) \ 4. \ 35 \ (1H, d, J=18. \ 3Hz) \ 5. \ 76 \ (2H, s)$) $\ 7. \ 36\sim7. \ 43 \ (5H, m)$

5

(実施例3) (4R, 5R, 6S) - 6 - [(1R) - 1 - トリメチルシリロ キシエチル] -3 - ジフェニルホスホリロキシ-4 - メチル-7 - オキソー1 - アザビシクロ [3. 2. 0] ヘプト-2 - エン-2 - カルボン酸ピバロイルオキシメチルエステルの製造

10

20

25

15

実施例1と同様にして合成した(3 S, 4 S) -4-[(1R)-1-(p-2)] クロロフェニルチオカルボニル)エチル]-3-[(1R)-1-1] ドロキシエチル]-1-1 ピバロイルオキシメチルオキシカルボニルメチル-2-7 ゼチジノン0.49g(1.0 mmol)をトルエン5 mlに溶解させ、室温にてトリエチルアミン0.17g(1.7 mmol)を加え、塩化トリメチルシラン0.17g(1.5 mmol)を滴下した後、同温度で14時間攪拌した。反応液をトルエン5 mlで希釈し、水で数回洗浄して得られたトルエン溶液を芒硝にて乾燥させた後、溶媒を留去した。

得られた油状残渣にテトラヒドロフラン8m1を加えて溶解させ、-25℃ま

10

15

で冷却し、水素化ナトリウムを 0.089g(2.1mmol)添加後、135分攪拌した。次いで同温度で臭化ベンジル 0.18g(1.05mmol)を添加し、15分攪拌後、続けて塩化ジフェニルリン酸 0.30g(1.1mmol)を添加し、2.5時間攪拌した。反応液をトルエン 50mlで希釈し、氷冷下に2.5%重曹水および水で数回洗浄したトルエン溶液を芒硝にて乾燥させた後、溶媒を留去して標記化合物を得た。

反応時の経時変化を追跡する手段として高速液体クロマトグラフィーにて分析を行ったが、反応液および得られた標記化合物をアセトニトリル/水/リン酸=700/300/1で混合した溶離液に溶解させ分析を行ったところ、後述の実施例5で得られた生成物と同じ保持時間に検出されたことから、水酸基保護基であるトリメチルシリル基が容易に脱保護されることを確認した。

NMR δ (CDC1₃): 0. 11 (9H, s), 1. 19 \sim 1. 29 (15H, m), 3. 24 (1H, dd, J=2. 9, 6. 6Hz), 3. 45 \sim 3. 50 (1H, m), 4. 07 \sim 4. 19 (2H, m), 5. 78 (1H, d, J=5. 5Hz), 5. 81 (1H, d, J=5. 5Hz), 7. 15 \sim 7. 40 (12H, m)

(実施例4) (4R, 5R, 6S) -6-[(1R) -1-トリメチルシリロ キシエチル] -3-ジフェニルホスホリロキシー4-メチルー7ーオキソー1 アザビシクロ[3.2.0] ヘプト-2-エン-2-カルボン酸ピバロイルオキ シメチルエステルの製造

10

15

20

25

実施例1と同様にして合成した(3S, 4S) -4-[(1R)-1-(p-1)]クロロフェニルチオカルボニル) エチル] -3-[(1R) -1-ヒドロキシエ チル] -1-ピバロイルオキシメチルオキシカルボニルメチル-2-アゼチジノ ン1. 997g (4. 1mmol) をトルエン20mlに溶解させ、室温にてト リエチルアミン 0.88mL (6.4mm o 1) を加え、塩化トリメチルシラン 0. 78mL (6. 2mmol) を滴下した後、同温度で15時間攪拌した。反 応液をトルエン5ml·で希釈し、水で数回洗浄して得られたトルエン溶液を芒硝 にて乾燥させた後、溶媒を留去した。

得られた油状残渣2.63gにテトラヒドロフラン22.5m1を加えて溶解 させ、-70℃まで冷却し、カリウムtert-ブトキシドを0.956g(8. 5 mm o 1) 添加後、15分攪拌した。次いで同温度でヨウ化メチル0.26 m L (4. 2 mm o 1) を添加し、-35℃まで徐々に昇温しながら25分攪拌後、 続けて-35℃にて塩化ジフェニルリン酸1.0mL(4.9mmol)を添加 し、-9℃まで徐々に昇温しながら1.8時間攪拌した。反応液をトルエン20 m1で希釈し、氷冷下に2.5%重曹水および水で数回洗浄したトルエン溶液を 芒硝にて乾燥させた後、溶媒を留去して標記化合物を得た。

(実施例5)

20

25

<u>] -3-ジフェニルホスホリロキシー4-メチルー7-オキソー1-アザビシクロ[3.2.0] ヘプトー2-エンー2-カルボン酸ピバロイルオキシメチルエステルの製造</u>

5
$$H_3C$$
 H_3C
 H_3C

実施例1と同様にして合成した(3 S, 4 S) -4-[(1R)-1-(p-2)] クロロフェニルチオカルボニル)エチル] -3-[(1R)-1-1] ドロキシエチル] -1-1 ピバロイルオキシメチルオキシカルボニルメチル-2-7 ゼチジノン0.97g(2.0 mmo 1)をトルエン5 m 1 に溶解させ、室温にてトリエチルアミン0.50g(5.0 mmo 1)を加え、塩化トリメチルシラン0.39g(3.6 mmo 1)を滴下した後、同温度で15時間攪拌した。反応液をトルエンで希釈し、水で数回洗浄したトルエン溶液を芒硝にて乾燥させた後、溶媒を留去した。

得られた油状残渣にテトラヒドロフランとトルエンの体積比が 1 対 2 である混合溶媒 1 5 m 1 を加えて溶解させ、-2 5 \mathbb{C} まで冷却し、カリウム t e r t ープトキシドを 0. 4 7 5 g (4. 2 mm o 1) 添加後、1 時間攪拌した。次いで同温度でヨウ化メチル0. 3 0 g (2. 1 mm o 1) を添加し、2 0 分攪拌後、続けて塩化ジフェニルリン酸 0. 6 0 g (2. 2 mm o 1) を添加し、2. 5 時間攪拌した。

反応液を氷冷下に酢酸エチルと水を添加し、1 N塩酸水にて混合溶液の p Hを3 として分離した酢酸エチル溶液を、重曹水および水で数回洗浄した後、芒硝により乾燥させ、溶媒を留去して標記化合物を得た。

NMR δ (CDC l_3): 1. 18 \sim 1. 20 (12H, m), 1. 29 (3H, d, J=4. 9Hz), 3. 28 (1H, dd, J=2. 4, 6. 3Hz), 3. 45 \sim 3. 51 (1H, m), 4. 17 \sim 4. 21 (2H, m), 5. 77 (1H, d, J=5. 5Hz), 5. 81 (1H, d, J=5. 5Hz), 7. 21 \sim 7. 40 (12H, m)

10 (実施例 6) <u>(4R, 5R, 6S) - 6 - [(1R) - 1 - トリエチルシリロキシエチル] - 3 - ジフェニルホスホリロキシー 4 - メチルー 7 - オキソー 1 - アザビシクロ [3. 2. 0] ヘプトー 2 - エンー 2 - カルボン酸ピバロイルオキシメチルエステルの製造</u>

25 実施例1と同様にして合成した(3S, 4S)-4-[(1R)-1-(p-クロロフェニルチオカルボニル)エチル]-3-[(1R)-1-ヒドロキシエ チル]-1-ピバロイルオキシメチルオキシカルボニルメチル-2-アゼチジノ ン0.493g(1.0mmol)をトルエン10mlに溶解させ、室温にてト リエチルアミン0.17g(1.7mmol)を加え、塩化トリエチルシラン0. WO 2004/043973 PCT/JP2003/014419

27

24g(1.6mmol)を滴下した後、同温度で22時間攪拌した。反応液をトルエン10mlで希釈し、水で数回洗浄して得られたトルエン溶液を芒硝にて乾燥させた後、溶媒を留去した。

得られた油状残渣にテトラヒドロフラン6m1を加えて溶解させ、-25℃まで冷却し、カリウムtert-プトキシドを0.232g(2.1mmo1)添加後、60分攪拌した。次いで同温度で臭化ベンジル0.19g(1.05mmo1)を添加し、<math>20分攪拌後、続けて塩化ジフェニルリン酸0.30g(1.1mmo1)を添加し、2時間攪拌した。反応液をトルエン50m1で希釈し、氷冷下に2.5%重曹水および水で数回洗浄したトルエン溶液を芒硝にて乾燥させた後、溶媒を留去して標記化合物を得た。

NMR δ (CDC l_3): 0. 59 \sim 0. 62 (6H, m), 0. 94 (9H, t, J=8. 1Hz), 1. 19 \sim 1. 28 (15H, m), 3. 23 (1H, dd, J=2. 9, 6. 6Hz), 3. 42 \sim 3. 46 (1H, m), 4. 13 (1H, dd, J=2. 9, 10. 3Hz), 4. 18 \sim 4. 23 (1H, m), 5. 78 (1H, d, J=5. 5Hz), 5. 81 (1H, d, J=5. 5Hz), 7. 15 \sim 7. 43 (12H, m)

(実施例7) (4R, 5R, 6S) -6-[(1R) -1-トリメチルシリロキシエチル] -3-ジフェニルホスホリロキシー4-メチルー7ーオキソー1 アザビシクロ[3.2.0] ヘプト-2-エン-2-カルボン酸ピバロイルオキシメチルエステルの製造

5

WO 2004/043973 PCT/JP2003/014419

実施例2と同様にして合成した(3S, 4S) -4-[(1R) -1-(フェニルチオカルボニル) エチル] -3-[(1R) -1-ヒドロキシエチル] -1 -ピバロイルオキシメチルオキシカルボニルメチルー2-アゼチジノンを含む油状残渣0.94gをトルエン10m1に溶解させ、室温にてトリエチルアミン0.51g(5.0mmo1)を加え、塩化トリメチルシラン0.40g(3.6mmo1)を滴下した後、同温度で19時間攪拌した。反応液をトルエン10m1で希釈し、水で数回洗浄して得られたトルエン溶液を芒硝にて乾燥させた後、溶媒を留去した。

15

20

25

得られた油状残渣にテトラヒドロフラン10mlを加えて溶解させ、-60%まで冷却し、カリウム tert-ブトキシドを0.45g(4.0mmol)添加後、20分攪拌した。次いで<math>-50%にてヨウ化メチル0.28g(2.0mmol)を添加し、25分攪拌後、続けて塩化ジフェニルリン酸<math>0.56g(2.1mmol)を添加し、1.7時間攪拌した。反応液をトルエン20mlで希釈し、氷冷下に2.5%重曹水および水で数回洗浄したトルエン溶液を芒硝にて乾燥させた後、溶媒を留去し、標記化合物を得た。

ートの製造

5

· 10

25

実施例5と同様にして合成し、精製した(4R, 5R, 6S) -6-[(1R
 15) -1-ヒドロキシエチル] -3-ジフェニルホスホリロキシー4-メチルー7 ーオキソー1-アザビシクロ[3.2.0] ヘプトー2-エンー2ーカルボン酸 ピバロイルオキシメチルエステルを含む油状残渣0.32gをアセトニトリル1 mlに溶解させ、式(18):

で示される化合物 0. 0 7 g (0. 3 3 mm o 1) を添加し、-10℃にてジイソプロピルエチルアミン 0. 0 9 g (0. 7 0 mm o 1) を滴下後、同温度にて3時間攪拌した。反応終了後、酢酸エチル 2 0 m 1 および水 2 0 m 1 を添加し、クエン酸水を加えて水層へ抽出した後、酢酸エチル 2 0 m 1 および重炭酸カリウムを添加して再度酢酸エチル層へと抽出した。本溶液を芒硝にて乾燥させた後、溶媒を留去し、NMR分析により標記化合物の生成を確認した。

NMR δ (CDC1₃): 1. 23 (9H, s), 1. 23 (3H, d, J=7. 1), 1. 34 (3H, d, J=6. 4Hz), 3. 13~3. 21 (1H, m), 3. 23 (1H, dd, J=2. 7, 6. 8Hz), 3. 37 (2H, t, J=7. 6Hz), 3. 94 \sim 4. 03 (4H, m), 4. 10 \sim 4. 26 (3H, m), 4. 36 \sim 4. 42 (2H, m), 5. 84 (1H, d, J=5. 5Hz), 5. 97 (1H, d, J=5. 5Hz)

5

10

15

20

25

実施例4と同様にして合成した(4R, 5R, 6S)-6-[(1R)-1-トリメチルシリロキシエチル]-3-ジフェニルホスホリロキシー4-メチルー 7-オキソー1-アザビシクロ[3. 2. 0] へプト-2-エン-2-カルボン酸ピバロイルオキシメチルエステルを含む油状残渣 4. 32 g をアセトニトリル 15 m 1 に溶解させ、式(19):

で示される化合物 0. 5 7 g (4. 9 mm o 1) を添加し、5 ℃にてジイソプロ

ピルエチルアミン 0. 79g (6.1 mm o 1)を滴下後、同温度にて70分攪拌した。反応終了後、アセトニトリルを留去し、酢酸エチル40m1に溶解させ、重曹水にて数回洗浄することにより副生したジフェニルリン酸を除去した。得られた酢酸エチル溶液に水を添加後、1Nの塩酸水をpH3となるまで加えた。分液操作により得られた酢酸エチル溶液を重曹水、水で洗浄した後、本溶液を芒硝にて乾燥させ、さらに溶媒を留去し、アセトン20mLに溶解させた。これにトルエン30mLを添加して、アセトン溶媒を徐々に留去し、白濁溶液となるのを確認した。この白濁溶液を0~5℃にて1時間攪拌し、ろ別、洗浄することにより白色結晶を得た。再度、アセトンに溶解させ、上記同様、トルエン添加及び溶媒留去、攪拌、ろ別、洗浄の操作を経ることにより、標記化合物を含む白色結晶 0.70gを得た。

NMR δ (CDC 1₃) : 1. 22 (9H, s) 、 1. 27 (3H, d, J=7.

1) 、 1. 32 (3H, d, J=6. 3Hz) 、 2. 39 (1H, dd, J=5.

1, 17. 1Hz) 、 2. 83 (1H, dd, J=8. 1, 17. 1Hz) 、 3.

15 26 (1H, dd, J=2. 4, 6. 8Hz) 、 3. 31~3. 36 (1H, m)

)、 3. 84 (1H, dd, J=8. 1, 10. 7Hz) 、 4. 01~4. 06

(1H, m)、 4. 22~4. 28 (2H, m)、 5. 82 (1H, d, J=5.

5Hz)、 5. 96 (1H, d, J=5. 5Hz)

20 産業上の利用可能性

本発明により、近年活発に研究開発がなされている種々の経口投与用1 β ーメ チルカルバペネム化合物の効率的な合成を可能にする、新規な共通合成中間体(4)、その新規な合成前駆体(1)及び(3)の各化合物とそれらの製造方法が 提供され、本発明は工業的に有用なものである。

PCT/JP2003/014419

32 請求の範囲

1. 一般式(1):

(式中、 R_2 はアリール基またはヘテロアリール基を示し、 R_3 は炭素数 $1 \sim 1$ 0のアルキル基または炭素数 $3 \sim 1$ 0のシクロアルキル基を示す)で表される化合物の水酸基を保護することにより、一般式(2):

$$H_3C$$
 R_2
 CO_2
 CO_2
 R_3
 R_3

(式中、 R_1 はトリメチルシリル基又はトリエチルシリル基を示し、 R_2 、 R_3 は前記と同じ意味を示す)で表される化合物と成し、これを強塩基の存在下に環化させ、引き続き塩化ジフェニルリン酸と反応させることにより、一般式(3)

.

20

(式中、 R_1 、 R_3 は前記と同じ意味を示す)で表される化合物とすることを特 0 徴とする、 β ーラクタム化合物の製造方法。

2. 強塩基としてアルカリ金属アルコキシド、アルカリ金属アミドまたはアルカリ金属水素化物からなる群より選択される塩基を使用する請求の範囲第1項に記載の製造方法。

15

- 3. アルカリ金属アルコキシドがカリウム t e r t ーブトキシドである請求の 範囲第2項に記載の製造方法。
- 4. アルカリ金属アミドがナトリウムビス (トリメチルシリル) アミドである 20 請求の範囲第2項に記載の製造方法。
 - 5. アルカリ金属水素化物が水素化ナトリウムである請求の範囲第2項に記載の製造方法。
- 25 6. 前記式(1)で表される化合物が、一般式(5):

PCT/JP2003/014419

5

15

20

25

$$H_3C$$
 OH
 H
 H
 R_2
 R_2
 $COOH$
 $COOH$

(式中、R₂はアリール基またはヘテロアリール基を示す)で表される化合物と、一般式(6):

(式中、 R_3 は炭素数 $1\sim10$ のアルキル基または炭素数 $3\sim10$ のシクロアルキル基を示し、Xはハロゲン原子を示す)で表される化合物を、塩基の存在下に反応させて得られたものである請求の範囲第1項記載の製造方法。

7. 請求の範囲第1から6項の何れかに記載の方法により製造された前記式(

3) で表される化合物の水酸基部位の脱保護を行うことを特徴とする、一般式(

4):

$$H_3C$$
 CO_2
 CO_2
 R_3
 C

(式中、 R_3 は炭素数 $1\sim 1$ 0 のアルキル基または炭素数 $3\sim 1$ 0 のシクロアルキル基を示す)で表される β - ラクタム化合物の製造方法。

8. 一般式(1):

$$H_3C$$
 H_3C
 R_2
 CO_2
 CO_2
 R_3
 R_3

- 10 (式中、 R_2 はアリール基またはヘテロアリール基を示し、 R_3 は炭素数 $1 \sim 1$ 0 のアルキル基または炭素数 $3 \sim 1$ 0 のシクロアルキル基を示す)で表される化合物。
- 9. R_2 がフェニル基またはp-クロロフェニル基である請求の範囲第8項に 15 記載の化合物。
 - 10. R_3 が t e r t ーブチル基である請求の範囲第8または9項に記載の化合物。

20 11. 一般式(3):

(式中、R₁はトリメチルシリル基またはトリエチルシリル基を示し、R₃は炭

(4)

5

20

素数 $1\sim10$ のアルキル基または炭素数 $3\sim10$ のシクロアルキル基を示す)で表される化合物。

- 12. R₃が t e r t ブチル基である請求の範囲第11項に記載の化合物。
- 13. R_1 がトリメチルシリル基である請求の範囲第11又は12項に記載の化合物。

14. 一般式(4):

OH H H CH₃

15 CO₂—0

(式中、 R_3 は炭素数 $1\sim10$ のアルキル基または炭素数 $3\sim10$ のシクロアルキル基を示す)で表される化合物。

15. R₃が t e r t ーブチル基である請求の範囲第14項に記載の化合物。

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/14419

A CLASS	FICATION OF SUBJECT MATTER C1 ⁷ C07F9/6561, 19/00, C07D205, 477/04	/08//C07F7/18, C07D477/	00,	
According to	International Patent Classification (IPC) or to both nat	ional classification and IPC		
	SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07F9/6561, 19/00, C07D205/08//C07F7/18, C07D477/00, 477/04				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN), REGISTRY (STN)				
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.	
X A	SAKURAI, Osamu et al., A New Synthesis of 11-15 1&1t; SYM98> -Alkylcarbapenems Utilizing 1-10 Eschenmoser Sulfide Contraction of the Novel Thiazinone Intermediates, Journal of Organic Chemistry, 1996, 61(22), 7889-7894, Scheme 4			
X A	EP 559533 A1 (TANABE SEIYAKU CO., LTD.), 08 September, 1993 (08.09.93), & JP 5-279367 A & US 5414081 A Examples 3, 4			
			<u></u>	
Further documents are listed in the continuation of Box C. * Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date "E" document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "E" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot document of particular relevance; the claimed invention cannot document of particular relevance; the claimed invention considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person skilled in the art			the application but cited to derlying the invention claimed invention cannot be ered to involve an inventive e claimed invention cannot be p when the document is h documents, such in skilled in the art	
"P" document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 27 February, 2004 (27.02.04) Date of mailing of the international search 16 March, 2004 (16.03.04)			rch report	
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer		
Facsimile No.		Telephone No.		

国際調査報告

A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int. Cl. CO7F9/6561, 19/00, CO7D205/08 // CO7F7/18, CO7D477/00, 477/04

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl. CO7F9/6561, 19/00, CO7D205/08, CO7F7/18, CO7D477/00, 477/04

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAPLUS (STN), REGISTRY (STN)

C. 関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号	
X A	SAKURAI, Osamu et al., A New Synthesis of 1&1t;SYM98>-Alkylcarbapenems Utilizing Eschenmoser Sulfide Contraction of the Novel Thiazinone Intermediates, Journal of Organic Chemistry, 1996, 61(22), 7889-7894 Scheme 4	11-15 1-10	
X A	EP 559533 A1(TANABE SEIYAKU CO., LTD.) 1993.09.08 & JP 5-279367 A & US 5414081 A Example 3,4	11-15 1-10	

C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 27.02.2004	国際調査報告の発送日 16.3.2004
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915	特許庁審査官(権限のある職員) 本堂裕司
東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101 内線 3443