Logistic Regression

Michela Papandrea

University of Applied Sciences and Arts of Southern Switzerland michela.papandrea@supsi.ch

Overview

- 1 Logistic Regression
 - Estimating Probabilities
 - Training and Cost Functions
 - Decision Boundaries
 - Softmax Regression

Logistic Regression

Logistic Regression

- some regression algorithms can be used for classification as well.
- Logistic Regression (also called Logit Regression) is commonly used to estimate the probability that an instance belongs to a () FUST <= (MCZ CGD) particular class
 - if the estimated probability is greater than 50%, then the model predicts that the instance belongs to that class (called the positive class, labeled "1")
 - else it predicts that it does not (i.e., it belongs to the negative class, labeled "0").
 - This makes it a binary classifier.

Estimating Probabilities

- Logistic Regression computes a weighted sum of the input features (plus a bias term)
- instead of outputting the result directly like the Linear Regression model does, it outputs the logistic of this result $\hat{p} = h_{\theta}(\mathbf{x}) = \sigma(\mathbf{x}^{T}\theta)$

$$\hat{p} = h_{\theta}(\mathbf{x}) = \sigma(\mathbf{x}^{\mathsf{T}}\boldsymbol{\theta})$$

Sigmoid Function

Sigmoid Function

S-shaped function that outputs a number between 0 and 1

$$\hat{\mathbf{e}} = \sigma(t) = \frac{1}{1 + e^{-t}}$$

Once the Logistic Regression model has estimated the probability $p = h_{\theta}(\mathbf{x})$ that an instance \mathbf{x} belongs to the positive class, it can make its prediction \hat{y} easily

$$\hat{y} = \begin{cases} 0 & \text{if } \hat{p} < 0.5 \\ 1 & \text{if } \hat{p} \ge 0.5 \end{cases}$$

Sigmoid function

Notice that

- $\sigma(t) < 0.5$ when t < 0
- $\sigma(t) \geq 0.5$ when $t \geq 0$

- 1 if $\mathbf{x}^T \boldsymbol{\theta}$ is positive
- 0 if $\mathbf{x}^T \boldsymbol{\theta}$ is negative.

- The score t is often called the **logit**: this name comes from the fact that the logit function, defined as $logit(p) = log(\frac{p}{(1-p)})$, is the inverse of the logistic function
- If you compute the logit of the estimated probability p, you will find that the result is t.
- The logit is also called the log odds \rightarrow it is the log of the ratio between the estimated probability for the positive class and the estimated probability for the negative class.

Training and Cost Function

Training

The objective of training is to set the parameter vector θ so that the model estimates:

- high probabilities for positive instances (y=1)
- low probabilities for negative instances (y = 0).
- Maga on O C Magallo

 Frengold & Cleongallo

Cost Function for a single training instance x

$$c(\theta) = \begin{cases} -log(\hat{p}) & \text{if } y = 1 \\ -log(1 - \hat{p}) & \text{if } y = 0 \end{cases}$$

- -log(t) grows very large when t approaches 0, so the cost will be large if the model estimates a probability close to 0 for a positive instance
- it will also be very large if the model estimates a probability close to 1 for a negative instance.
- -log(t) is close to 0 when t is close to 1
- \Rightarrow the cost will be close to 0 if the estimated probability is close to 0 for a negative instance or close to 1 for a positive instance

Cost Function

Cost Function for the whole training set - log-loss

The cost function over the whole training set is the average cost over all training instances

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} log(\hat{p}^{(i)}) + (1 - y^{(i)}) log(1 - \hat{p}^{(i)}) \right]$$

- (–) There is no known closed-form equation to compute the value of $m{ heta}$ that minimizes this cost function
- (+) This cost function is convex, so Gradient Descent (or any other optimization algorithm) is guaranteed to find the global minimum
 - if the learning rate is not too large and you wait long enough

Cost Function

The partial derivatives of the cost function with regards to the j^{th} model parameter θ_i is

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\sigma(\theta^{T} \mathbf{x}^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\sigma(\theta^{T} \mathbf{x}^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

- For each instance it computes the prediction error and multiplies it by the i^{th} feature value, and then it computes the average over all training instances.
- Once you have the gradient vector containing all the partial derivatives you can use it in the Batch Gradient Descent algorithm.
- For Stochastic GD you would of course just take one instance at a time
- For Mini-batch GD you would use a mini-batch at a time.

Decision Boundaries


```
from sklearn import datasets
from sklearn.linear_model import LogisticRegression

# load the datset
iris = datasets.load_iris()
X = iris["data"][:, 3:] # petal width
y = (iris["target"] == 2).astype(np.int) # 1 if Iris-Virginica, else 0

#train a logistic regression model
log_reg = LogisticRegression()
log_reg.fit(X, y)

#make a prediction
print("Class prediction = {}".format(log_reg.predict([[1.7]])))
print("Probability prediction for all classes = {}".format(log_reg.predict_proba([[1.7]])))

Class prediction = [1]
Probability prediction for all classes = [[0.45722097 0.54277903]]
```

Decision Boundaries

- ullet The petal width of Iris-Virginica flowers (represented by triangles) ranges in [1.4 2.5] cm
- ullet The other iris flowers (represented by squares) generally have a smaller petal width, ranging in [0.1, 1.8] cm
 - There is however a bit of overlap.
- Above about 2 cm the classifier is highly confident that the flower is an Iris-Virginica (it outputs a high probability to that class)
- Below 1 cm it is highly confident that it is not an Iris-Virginica (high probability for the "Not Iris-Virginica" class).
- In between these extremes, the classifier is unsure. However it will always predict the class which is the most likely.
- There exist a decision boundary at around 1.6 cm where both probabilities are equal to 50%
 - ullet if petal width > 1.6 cm \Rightarrow the classifier will predict that the flower is an Iris-Virginica
 - otherwise it will predict that it is not (even if it is not very confident)

Decision Boundaries

- The figure refers to the same dataset but this time displaying two features: *petal width* and *petal length*
- The Logistic Regression classifier is trained in order to estimate the probability that a new flower is an Iris-Virginica based on these two features.
- Dashed line \rightarrow points where the model estimates a 50% probability (model's decision boundary, linear boundary in this case) \rightarrow set of values **x** such that $\theta_0 + \hat{\theta}_1 x_1 + \theta_2 x_2 = 0$
- Each parallel line represents the points where the model outputs a specific probability, from 15% (bottom left) to 90% (top right).
 - All the flowers beyond the top-right line have an over 90% chance of being Iris-Virginica according to the model.
- Just like the other linear models, Logistic Regression models can be regularized using ℓ_1 or ℓ_2 penalties

Softmax Regression (or Multinomial Logistic Regression)

- Generalization of the Logistic Regression model to support multiple classes
- When given an instance **x**, the Softmax Regression model:

omputes a score
$$s_k(\mathbf{x})$$
 for each class k

$$s_k(\mathbf{x}) = \mathbf{x}^T \boldsymbol{\theta}^{(k)}$$

$$s_k(\mathbf{x}) = \mathbf{x}^T \boldsymbol{\theta}^{(k)}$$

- ullet each class has its own dedicated parameter vector $oldsymbol{ heta}^{(k)}$
- ullet all these vectors are typically stored as rows in a parameter matrix $oldsymbol{\Theta}$
- estimates the probability \hat{p}_k that the instance **x** belong to each of the classes k by applying the **softmax function** (aka **normalized exponential**) to the scores

Softmax Function

• $\sigma(\mathbf{s}(\mathbf{x}))_k$ is the estimated probability that the instance \mathbf{x} belongs to class k given the scores of each class for that instance.

Softmax Regression classifier prediction

The Softmax Regression classifier predicts the class with the highest estimated probability

$$\hat{y} = \underset{k}{\operatorname{argmax}} (\sigma(\mathbf{s}(\mathbf{x}))_k) = \underset{k}{\operatorname{argmax}} (s_k(\mathbf{x})) = \underset{k}{\operatorname{argmax}} \left(\left(\boldsymbol{\theta}^{(k)} \right)^T \mathbf{x} \right)$$

A
$$\begin{bmatrix} 0_1 8 \\ 0_1 1 \end{bmatrix}$$
 \Rightarrow product $\begin{bmatrix} con A \\ con A \end{bmatrix}$

$$\begin{bmatrix} con A \\ con A \end{bmatrix}$$

Cross Entropy

- During training, the objective is to have a model that estimates a high probability for the target class (and consequently a low probability for the other classes).
- Minimizing the cost function called the cross entropy, should lead to this objective because it penalizes the model when it estimates a low probability for a target class.
- Cross entropy is frequently used to measure how well a set of estimated class probabilities match the target classes

$$J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \frac{y_k^{(i)} \log \left(\hat{p}_k^{(i)}\right)}{\text{Retrue closs}} \hat{p}_{i}$$

- $y_k^{(i)}$ is the target probability that the i^{th} instance belongs to class k. In general, it is either equal to 1 or 0, depending on whether the instance belongs to the class or not.
- when there are just two classes (K = 2), this cost function is equivalent to the Logistic Regression's cost function (log-loss)

Cross entropy gradient vector for class k

Gradient vector of the cross entropy cost function with regards to $oldsymbol{ heta}^{(k)}$

$$\nabla_{\boldsymbol{\theta}^{(k)}} J(\boldsymbol{\Theta}) = \frac{1}{m} \sum_{i=1}^{m} \left(\hat{p}_k^{(i)} - \hat{y}_k^{(i)} \right) \mathbf{x}^{(i)}$$

- compute the gradient vector for every class
- 2 use Gradient Descent (or any other optimization algorithm) to find the parameter matrix Θ that minimizes the cost function.

Softmax Regression decision boundaries

- The decision boundaries between any two classes are linear.
- The figure also shows the probabilities for the Iris-Versicolor class, represented by the curved lines (e.g., the line labeled with 0.450 represents the 45% probability boundary).
- the model can predict a class that has an estimated probability below 50%
 - at the point where all decision boundaries meet, all classes have an equal estimated probability of 33%.

References

Aurélien Géron (2019)

Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow

Chapter 4: Training Models (pp. 113 – 153)

Published by O'Reilly Media, Inc..