Partial Differential Equations

Ikhan Choi

April 1, 2024

Contents

Ι	Sobolev spaces	3
1	Distribution theory	4
	1.1 Space of test functions	. 4
	1.2 Space of distributions	. 4
	1.3 Well-posedness	. 4
2	Sobolev inequalities	5
	2.1 Approximations	. 5
	2.2 Extensions and restrictions	. 5
	2.3 Sobolev embeddings	. 5
3	Generalizations of Sobolev spaces	8
	3.1 Fractional Sobolev spaces	
	3.2 Fourier transform methods	. 8
	3.3 Almost everywhere differentiability	. 8
II	Elliptic equations	9
4	Potential theory	10
	4.1 Mean value property	10
	4.2 Weyl's lemma	10
5	Existence theory	11
	5.1 Variational methods	. 11
	5.2 Lax-Milgram theorem	. 11
	5.3 Fredholm alternative	11
	5.4 Perron's method	. 11
	5.5 Eigenvalue problems	11
6	Ellipic regularity	12
	6.1 L^p theory	12
	6.2 Schauder theory	
	6.3 De Giorgi-Nash-Moser theory	
	6.4 Viscosity solutions	14
II	I Evolution equations	15
7	Parabolic equations	16
	7.1 Galerkin approximation	16

	7.2	Semigroup theory	16		
8	Нур	perbolic equations	17		
9	Loca	al and global existence	18		
	9.1	Local existence	18		
		Global existence			
	9.3	Weak convergence	18		
ΙV	V Nonlinear equations				
10			20		
11	1 Hamilton-Jacobi equations				
12	2 Conservation laws				

Part I Sobolev spaces

Distribution theory

1.1 Space of test functions

- **1.1.** (a) If a test function φ satisfies $\langle 1, \varphi \rangle = 0$, then there is $v \in \mathbb{R}^d$ and a test function ψ such that $\varphi = v \cdot \nabla \psi$.
 - (b) If a distribution has zero derivative, then it is a constant.
- 1.2 (Weak* convergence).

1.2 Space of distributions

1.3 (Rigged Hilbert space).

1.3 Well-posedness

1.4 (Extension of linear operators). Let $T: \mathcal{D} \to \mathcal{D}'$ be a continuous linear operator. We can always define the adjoint $T^*: \mathcal{D} \subset \mathcal{D}'' \to \mathcal{D}'$. The most reasonable extension of T is $T: (T^*(\mathcal{D}))' \to \mathcal{D}'$. For $f \in (T^*(\mathcal{D}))'$, we can define $\langle T(f), \varphi \rangle := \langle f, T^* \varphi \rangle$ for $\varphi \in \mathcal{D}$.

Suppose $T: (\mathcal{D}, \mathcal{T}) \to (T(\mathcal{D}), \mathcal{S})$ is proved to be continuous. If $(\mathcal{D}, \mathcal{T}) \to (T^*(\mathcal{D}))'$ and $(T(\mathcal{D}), \mathcal{S}) \to \mathcal{D}'$ are embeddings, then the extension of T to the completion of $(\mathcal{D}, \mathcal{T})$ agrees with $T: (T^*(\mathcal{D}))' \to \mathcal{D}'$.

For example, if Φ is locally integrable, then since $(T_{\Phi})^* = T_{\widetilde{\Phi}}$ and $\Phi * \varphi \in \mathcal{E} = C^{\infty}$ for $\varphi \in \mathcal{D}$, the convolution operator $T_{\Phi} : \mathcal{E}' \to \mathcal{D}'$ can be defined on the space of compactly supported distributions.

If g*f is well-defined, is f*g also well-defined? In other words, if $f \in (T_{\widetilde{g}}(\mathcal{D}))'$ so that $g*f \in \mathcal{D}'$, then $g \in (T_{\widetilde{f}}(\mathcal{D}))'$? Are they same?

$$\langle g, \widetilde{f} * \varphi \rangle =$$

Exercises

Sobolev inequalities

2.1 Approximations

- 2.1 (Completeness of Sobolev norms).
- 2.2 (Difference quotient).
- 2.3 (Interior approximation).
- 2.4 (Myers-Serrin theorem).

2.2 Extensions and restrictions

- 2.5 (Lipschitz boundary).
- 2.6 (Extension theorem).
- 2.7 (Trace theorem).
- 2.8 (Vanishing at boundary). zero trace, whole domain

2.3 Sobolev embeddings

Temporarily we define a *function space* on \mathbb{R}^d as a complete topological vector space X together with embeddings $S(\mathbb{R}^d) \to X$ and $X \to S'(\mathbb{R}^d)$. If $S(\mathbb{R}^d)$ is dense in X, hence so is X in $S'(\mathbb{R}^d)$, we will say X is *approximable*. We will not take dual spaces for non-approximable spaces, such as $L^{\infty}(\mathbb{R}^d)$ and $M(\mathbb{R}^d)$.

Let X,Y be function spaces on \mathbb{R}^d such that X is approximable. We claim that if $\|u\|_Y \lesssim \|u\|_X$, then we have embedding $X \subset Y$. Let $u \in X$. Since S is dense in X, we can take a net $u_\alpha \in S$ such that $u_\alpha \to u$ in X. Then, u_α is Cauchy in Y by the inequality, we have $v \in Y$ such that $u_\alpha \to v$ in Y. The uniqueness of limits in S' implies that u = v, hence $u \in Y$.

2.9. We introduce the *Sobolev regularity* $\frac{s}{d} - \frac{1}{p}$ for a triple of $s \in \mathbb{R}$, $p \in [1, \infty]$, $d \in \mathbb{Z}_{>0}$, and the *Hölder regularity* $\frac{k+\alpha}{d}$ for a triple $k \in \mathbb{Z}_{\geq 0}$, $\alpha \in [0, 1)$, $d \in \mathbb{Z}_{>0}$.

(a)

$$||u||_{W^{k,p}(\mathbb{R}^d)} \lesssim ||u||_{W^{k',p'}(\mathbb{R}^d)}.$$

(b) If
$$\frac{k}{d} < \frac{s}{d} - \frac{1}{p}$$
, then

$$\|\nabla^{\alpha}u\|_{C_0(\mathbb{R}^d)} \lesssim \|u\|_{W^{s,p}(\mathbb{R}^d)}, \qquad u \in W^{s,p}(\mathbb{R}^d).$$

$$S' = \bigcup_{\alpha, \beta \in \mathbb{Z}_{>0}^d} \langle x \rangle^{-\alpha} \langle \xi \rangle^{-\beta} L^2.$$

2.10 (Gagliardo-Nirenberg-Sobolev inequality). If $\frac{1}{d} - \frac{1}{p} = -\frac{1}{p'}$, then

$$||u||_{L^{p'}} \lesssim ||\nabla u||_{L^p}, \qquad u \in C_c^{\infty}(\mathbb{R}^d).$$

- 2.11 (Hölder spaces).
- 2.12 (Morrey inequality).
- 2.13 (Poincaré inequality). BMO
- **2.14** (Rellich-Kondrachov theorem). Let Ω be bounded open subset of \mathbb{R}^d with Lipschitz boundary. For $1 \leq p < d$, p^* is given by $-\frac{1}{p^*} := \frac{1}{d} \frac{1}{p}$, called the *Sobolev conjugate*. Let η_{ε} be a standard mollifier.
 - (a) The convolution operator $(\eta_{\varepsilon} * -) : L^1(\Omega) \to C(\overline{\Omega})$ is compact for each $\varepsilon > 0$.
 - (b) We have

$$\|\eta_{\varepsilon} * u - u\|_{L^{1}(\Omega)} \lesssim \varepsilon \|u\|_{W^{1,1}(\Omega)}, \qquad u \in W^{1,1}(\Omega).$$

(c) If $1 \le p < d$ and $1 \le q < p^*$, then there is $\theta > 0$ such that we have

$$\|\eta_{\varepsilon} * u - u\|_{L^{q}(\Omega)} \lesssim \varepsilon^{\theta} \|u\|_{W^{1,p}(\Omega)}, \qquad u \in W^{1,p}(\Omega).$$

- (d) If $1 \le p < d$ and $1 \le q < p^*$, then the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact.
- (e) If $\frac{l}{d} \frac{1}{q} < \frac{k}{d} \frac{1}{p}$, then the embedding $W^{k,p}(\Omega) \hookrightarrow W^{l,q}(\Omega)$ is a compact.

Sketch. Take an approximate unit $e_n \in C^1(\mathbb{R}^d)$ of $L^1(\mathbb{R}^d)$ and let $T_n := e_n * -$. First we prove

$$T_n: L^1(\mathbb{R}^d) \to C_0(\mathbb{R}^d)$$

is compact for each n using the Arzela-Ascoli theorem. Then, the composition

$$W^{1,1}(\mathbb{R}^d) \to L^1(\mathbb{R}^d) \xrightarrow{T_n} C_0(\mathbb{R}^d) \to C_0(\Omega)$$

is also compact. Since Ω is bounded, we have $C_0(\Omega) \to L^1(\Omega)$. Now we have

$$T_n: W^{1,1}(\mathbb{R}^d) \to L^1(\Omega)$$

that is compact for each n. We can show that it converges to the embedding in norm by some estimates, so the restriction $W^{1,1}(\mathbb{R}^d) \to L^1(\Omega)$ is compact. Since Ω has the Lipschitz boundary, we have $W^{1,1}(\Omega) \to W^{1,1}(\mathbb{R}^d)$. Therefore, the embedding $W^{1,1}(\Omega) \to L^1(\Omega)$ is compact.

Proof. (a) The sequence $(\eta_{\varepsilon} * u_n)_n$ is pointwise bounded from

$$\|\eta_{\varepsilon} * u_n\|_{C_o(\mathbb{R}^d)} \le \|\eta_{\varepsilon}\|_{C_o(\mathbb{R}^d)} \|u_n\|_{L^1(\mathbb{R}^d)} \lesssim 1, \quad n \in \mathbb{N},$$

and equicontinuous from

$$\|\nabla \eta_{\varepsilon} * u_n\|_{C_0(\mathbb{R}^d)} \le \|\nabla \eta_{\varepsilon}\|_{C_0(\mathbb{R}^d)} \|u_n\|_{L^1(\mathbb{R}^d)} \lesssim 1, \qquad n \in \mathbb{N}.$$

By the Arzela-Ascoli theorem, since $\overline{\Omega}$ is compact, there is a subsequence $(\eta_{\varepsilon} * u_{n_k})_k$ that is Cauchy in $C(\overline{\Omega})$.

(b) Write

$$\begin{split} \eta_{\varepsilon} * u(x) - u(x) &= \int \varepsilon^{-d} \eta(\varepsilon^{-1}(x - y))(u(y) - u(x)) \, dy \\ &= \int \eta(y)(u(x - \varepsilon y) - u(x)) \, dy \\ &= \int \eta(y) \int_0^1 \frac{d}{dt}(u(x - t\varepsilon y)) \, dt \, dy \\ &= -\int \varepsilon y \eta(y) \int_0^1 \nabla u(x - t\varepsilon y) \, dt \, dy. \end{split}$$

Then, since $|y| \le 1$ if $\eta(y) > 0$,

$$\|\eta_{\varepsilon} * u - u\|_{L^{1}(\Omega)} \leq \varepsilon \int \eta(y) \int_{0}^{1} \int |\nabla u(x - t\varepsilon y)| \, dx \, dt \, dy = \varepsilon \|\nabla u\|_{L^{1}(\mathbb{R}^{d})}.$$

(c) Consider the interpolation

$$\|\eta_{\varepsilon}*u_n-u_n\|_{L^q(\Omega)}\leq \|\eta_{\varepsilon}*u_n-u_n\|_{L^1(\Omega)}^{\theta}\|\eta_{\varepsilon}*u_n-u_n\|_{L^{p^*}(\Omega)}^{1-\theta}$$

for $\frac{1}{q} = \frac{\theta}{1} + \frac{1-\theta}{p^*}$ with $0 < \theta \le 1$. Since the Gagliardo-Nireberg-Sobolev inequality gives the bound

$$\|\eta_{\varepsilon} * u_n - u_n\|_{L^{p^*}(\Omega)} \lesssim \|\eta_{\varepsilon} * u_n - u_n\|_{W^{1,p}(\Omega)} \lesssim 1, \qquad n \in \mathbb{N}, \ \varepsilon > 0$$

$$\sup_{n} \|\eta_{\varepsilon} * u_{n} - u_{n}\|_{L^{q}(\Omega)} \to 0$$

as $\varepsilon \to 0$.

(d) By the part (c), for any $\delta > 0$, there is $\varepsilon > 0$ such that

$$\sup_{n} \|\eta_{\varepsilon} * u_{n} - u_{n}\|_{L^{q}(\Omega)} < \frac{\delta}{2},$$

so for a subsequence $(\eta_{\varepsilon} * u_{n_k})_k$ that is Cauchy in $L^q(\Omega)$, we have

$$||u_{n_k}-u_{n_{k'}}||_{L^q(\Omega)}\leq ||\eta_{\varepsilon}*u_{n_k}-\eta_{\varepsilon}*u_{n_{k'}}||_{L^q(\Omega)}+\delta,$$

and by the diagonal argument reducing δ to zero, we can construct the desired subsequence.

 \Box

Generalizations of Sobolev spaces

- 3.1 Fractional Sobolev spaces
- 3.2 Fourier transform methods
- 3.3 Almost everywhere differentiability

Lipschitz, Rademacher

Part II Elliptic equations

Potential theory

4.1 Mean value property

mean value property maximum principle Harnack inequality potential estimate Hölder estimate

4.2 Weyl's lemma

Exercises

Problems

1. Let $d \geq 3$. Let u be a distribution on \mathbb{R}^d that is harmonic on $\mathbb{R}^d \setminus \{0\}$ and vanishes at infinity. Then, $u = a_\alpha \partial^\alpha \Phi$.

Existence theory

5.1 Variational methods

5.2 Lax-Milgram theorem

5.1. Let $L: H \to H$ be a densely defined linear operator. If there is a Hilbert space V containing dom L and densely embedded in H such that $(u, v) \mapsto \langle Lu, v \rangle_H$ defines a coercive bilinear form on V, then L is admits a surjective closure.

Proof. For $f \in H$, there is $v \in V$ such that $\langle f, \varphi \rangle_H = \langle v, \varphi \rangle_V$ for all $\varphi \in V$. If we let $u := A^{-1}v$, where $A \in B(V)$ is defined such that $\langle L-,-\rangle_H = \langle A-,-\rangle_V$. Then,

$$\langle Lu, \varphi \rangle_H = \langle Au, \varphi \rangle_V = \langle v, \varphi \rangle_V = \langle f, \varphi \rangle_H$$

implies Lu = f.

5.2 (Poisson equation). Let Ω be a bounded open subset of \mathbb{R}^d . Consider the problem

$$\begin{cases} -\Delta u(x) = f(x) &, \text{ in } x \in \Omega, \\ u(x) = 0 &, \text{ on } x \in \partial \Omega. \end{cases}$$

Define a bilinear form B on $H_0^1(\Omega)$ such that

$$B(u,v) := \int \nabla u(x) \cdot \nabla v(x) \, dx.$$

- (a) If $u \in H^1_0(\Omega)$ and $f \in \mathcal{D}'(\Omega)$ satisfy $B(u, \varphi) = \langle f, \varphi \rangle$ for all $\varphi \in \mathcal{D}(\Omega)$, then $-\Delta u = f$.
- (b) *B* is another inner product equivalent to $\langle -, \rangle_{H_0^1(\Omega)}$.
- (c) For $f \in H^{-1}(\Omega)$, there is $u \in H_0^{-1}(\Omega)$ such that $-\Delta u = f$.

5.3 Fredholm alternative

5.4 Perron's method

5.5 Eigenvalue problems

Ellipic regularity

6.1 L^p theory

6.1 (Interior regularity in H^2). Let Ω be bounded open subset of \mathbb{R}^d and $L: \mathcal{D}'(\Omega) \to \mathcal{D}'(\Omega)$ a uniformly elliptic operator given by

$$Lu := -\partial_i(a^{ij}\partial_i u) + b^i\partial_i u + cu$$

for $a^{ij} \in C^1(\Omega)$, $b^i \in L^{\infty}(\Omega)$, and $c \in L^{\infty}(\Omega)$.

Fix an open subset $U \in \Omega$ and $\zeta \in C_c^{\infty}(\Omega)$ a cutoff function such that $\zeta = 1$ in U. Let $\varphi := -\partial_k^{-h}(\zeta^2 \partial_k^h u)$ for $k = 1, \dots, d$ and sufficiently small h > 0.

(a) We have

$$\|\nabla u\|_{L^2(U)} \lesssim \|Lu\|_{L^2(\Omega)} + \|u\|_{L^2(\Omega)}$$

for all u such that $Lu, u \in L^2(\Omega)$

(b) We have

$$\int \zeta^2 |\partial_k^h \nabla u|^2 \lesssim \int a^{ij} \partial_i u \partial_j \varphi + \|\nabla u\|_{L^2(\Omega)}$$

for all $u \in H^1(\Omega)$.

(c) We have

$$\int \zeta^2 |\partial_k^h \nabla u|^2 \lesssim \|Lu\|_{L^2(\Omega)} + \|u\|_{H^1(\Omega)}$$

for all u such that $Lu \in L^2(\Omega)$ and $u \in H^1(\Omega)$.

(d) We have

$$||u||_{H^2(U)} \lesssim ||Lu||_{L^2(\Omega)} + ||u||_{L^2(\Omega)}$$

for all u such that $Lu, u \in L^2(\Omega)$.

Proof. (a) Since $\zeta^2 u \in H_0^1(\Omega)$,

$$\int \zeta^{2} |\nabla u|^{2} \lesssim \int a^{ij} \zeta^{2} \partial_{i} u \partial_{j} u$$

$$= \int a^{ij} \partial_{i} u \partial_{j} (\zeta^{2} u) - \int a^{ij} \partial_{i} u \partial_{j} (\zeta^{2}) u$$

$$= \int (Lu - b^{i} \partial_{i} u - cu) \zeta^{2} u - \int a^{ij} \partial_{i} u 2\zeta \partial_{j} \zeta u$$

$$\lesssim \int (|Lu u| + |u \zeta \nabla u| + |u|^{2} + |u \zeta \nabla u|)$$

$$\lesssim \int (|Lu|^{2} + |u|^{2}) + \frac{1}{\varepsilon} \int |u|^{2} + \varepsilon \int \zeta^{2} |\nabla u|^{2}.$$

Taking small $\varepsilon > 0$, we are done.

(b) Write

$$\begin{split} \int a^{ij} \partial_i u \partial_j \varphi &= - \int a^{ij} \partial_i u \partial_j \partial_k^{-h} (\zeta^2 \partial_k^h u) \\ &= \int \partial_k^h (a^{ij} \partial_i u) \, \partial_j (\zeta^2 \partial_k^h u) \\ &= \int \partial_k^h a^{ij} \, \partial_i u \, \partial_j (\zeta^2) \, \partial_k^h u + \int \partial_k^h a^{ij} \, \partial_i u \, \zeta^2 \, \partial_j \partial_k^h u \\ &+ \int a^{ij} \, \partial_k^h \partial_i u \, \partial_j (\zeta^2) \, \partial_k^h u + \int a^{ij} \, \partial_k^h \partial_i u \, \zeta^2 \, \partial_j \partial_k^h u. \end{split}$$

The last term out of the four terms controls the difference quotient $|\partial_k^h \nabla u|$ as

$$\int a^{ij} \, \partial_k^h \partial_i u \, \zeta^2 \, \partial_j \partial_k^h u \gtrsim \int \zeta^2 |\partial_k^h \nabla u|^2,$$

and the absolute values of other three terms are estimated up to constant by

$$\begin{split} \int \zeta |\nabla u| |\partial_k^h u| + \int \zeta^2 |\nabla u| |\partial_k^h \nabla u| + \int \zeta |\partial_k^h \nabla u| |\partial_k^h u| \\ \lesssim \left(1 + \frac{1}{\varepsilon}\right) \int \zeta^2 |\nabla u|^2 + \left(1 + \frac{1}{\varepsilon}\right) \int |\partial_k^h u|^2 + \varepsilon \int \zeta^2 |\partial_k^h \nabla u|^2 \\ \lesssim \left(1 + \frac{1}{\varepsilon}\right) \int |\nabla u|^2 + \varepsilon \int \zeta^2 |\partial_k^h \nabla u|^2. \end{split}$$

Therefore,

$$\int \zeta^2 |\partial_k^h \nabla u|^2 \lesssim \int a^{ij} \partial_i u \partial_j \varphi + \left(1 + \frac{1}{\varepsilon}\right) \int |\nabla u|^2 + \varepsilon \int \zeta^2 |\partial_k^h \nabla u|^2,$$

and taking small $\varepsilon > 0$, we are done.

(c) Note that

$$\int a^{ij}\partial_i u\partial_j \varphi = \int (Lu - b^i \partial_i u - cu) \varphi$$

since $\varphi \in H_0^1(\Omega)$. Because

$$\int (Lu - b^i \partial_i u - cu) \varphi \lesssim \frac{1}{\varepsilon} \int (|Lu|^2 + |\nabla u|^2 + |u|^2) + \varepsilon \int |\varphi|^2$$

and

$$\int |\varphi|^2 = \int |\partial_k^{-h}(\zeta^2 \partial_k^h u)|^2$$

$$\lesssim \int |\nabla(\zeta^2 \partial_k^h u)|^2$$

$$\lesssim \int |\partial_k^h u|^2 + \int \zeta^2 |\partial_k^h \nabla u|^2$$

$$\lesssim \int |\nabla u|^2 + \int \zeta^2 |\partial_k^h \nabla u|^2,$$

we obtain

$$\int (Lu-b^i\partial_i u-cu)\varphi\lesssim \frac{1}{\varepsilon}\int (|Lu|^2+|u|^2)+\left(\varepsilon+\frac{1}{\varepsilon}\right)\int |\nabla u|^2+\varepsilon\int \zeta^2|\partial_k^h\nabla u|^2.$$

Taking small $\varepsilon > 0$, we are done.

- 6.2 Schauder theory
- 6.3 De Giorgi-Nash-Moser theory
- 6.4 Viscosity solutions

Part III Evolution equations

Parabolic equations

- 7.1 Galerkin approximation
- 7.2 Semigroup theory

 $\label{eq:continuous} \mbox{Hille-Yosida Lumer-Phillips} \\ C_0\mbox{-semigroup, analytic semigroup}$

Hyperbolic equations

Local and global existence

9.1 Local existence

contraction mapping

9.2 Global existence

a priori estimates gronwall inequality

9.3 Weak convergence

Part IV Nonlinear equations

Hamilton-Jacobi equations

optimal control viscosity solution

Conservation laws

shocks NS