

# Load Balancing Unstructured Meshes for Massively Parallel Transport Sweeps

Tarek Ghaddar

Chair: Dr. Jean Ragusa

Committee: Dr. Jim Morel, Dr. Bojan Popov

Texas A&M University

 Ghaddar (TAMU)
 Load Balancing
 March 8, 2016
 1 / 56

- Introduction
- Parallel Transport
- Load Balancing Results
- Solution Verification
- Conclusions

Ghaddar (TAMU) Load Balancing March 8, 2016 2 / 56

#### Motivation

- When running any massively parallel code, load balancing is a priority in order to achieve the best possible parallel efficiency.
- A load balanced problem has an equal number of degrees of freedom per processor.
- Load balancing a logically Cartesian mesh is not difficult, as the user specifies the number of cells being used.
- In an unstructured mesh, the user cannot always specify the number of cells they want per processor, and obtaining a load balanced problem is more difficult.

Ghaddar (TAMU) Load Balancing March 8, 2016 3 / 56

#### **PDT**

- All work presented in this thesis was implemented in Texas A&M's massively parallel deterministic transport code, PDT.
- It is capable of multi-group simulations and employs discrete ordinates for angular discretization.
- Features steady-state, time-dependent, criticality, and depletion simulations. It solves the transport equation for neutron, thermal, gamma, coupled neutron-gamma, electron, and coupled electron-photon radiation.
- PDT has been shown to scale on logically Cartesian grids out to 750.000 cores.
- PDT now has an unstructured meshing capability, as a result of this thesis.

Ghaddar (TAMU) Load Balancing March 8, 2016 4 / 56

## The Triangle Mesh Generator

- Unstructured meshes in PDT are generated in 2D using the Triangle Mesh Generator.
- These can be extruded to create 3D meshes.





Balancing March 8, 2016 5 / 56

Ghaddar (TAMU) Load Balancing March 8, 2016

# The Transport Equation

0000000

$$\vec{\Omega} \cdot \vec{\nabla} \psi(\vec{r}, E, \vec{\Omega}) + \Sigma_t(\vec{r}, E) \psi(\vec{r}, E, \vec{\Omega}) = \int_0^\infty dE' \int_{A_T} d\Omega' \Sigma_s(\vec{r}, E' \to E, \Omega' \to \Omega) \psi(\vec{r}, E', \vec{\Omega}') + S_{\text{ext}}(\vec{r}, E, \vec{\Omega})$$

$$ec{\Omega} \cdot ec{
abla} \psi(ec{r}, E, ec{\Omega}) + \Sigma_t(ec{r}, E) \psi(ec{r}, E, ec{\Omega}) = 
onumber \ rac{1}{4\pi} \int_0^\infty dE' \Sigma_s(ec{r}, E' o E) \int_{4\pi} d\Omega' \psi(ec{r}, E', ec{\Omega}') + S_{\text{ext}}(ec{r}, E, ec{\Omega}) 
onumber \ = rac{1}{4\pi} \int_0^\infty dE' \Sigma_s(ec{r}, E' o E) \phi(ec{r}, E') + S_{\text{ext}}(ec{r}, E, ec{\Omega})$$

Ghaddar (TAMU) Load Balancing March 8, 2016 6 / 56

# The Multigroup Transport Equation

0000000

$$\phi(\vec{r}, E') = \int_{A\pi} d\Omega' \psi(\vec{r}, E', \vec{\Omega}')$$

$$\begin{split} \vec{\Omega} \cdot \vec{\nabla} \psi_g(\vec{r}, \vec{\Omega}) + \Sigma_{t,g}(\vec{r}) \psi_g(\vec{r}, \vec{\Omega}) &= \frac{1}{4\pi} \sum_{g'} \Sigma_{s,g' \to g}(\vec{r}) \phi_{g'}(\vec{r}) + S_{\text{ext},g}(\vec{r}, \vec{\Omega}), \\ & \text{for } 1 \leq g \leq G \end{split}$$

Ghaddar (TAMU) Load Balancing March 8, 2016 7 / 56

# The Discrete Ordinates Transport Equation

$$\vec{\Omega}_{m} \cdot \vec{\nabla} \psi_{g,m}(\vec{r}) + \Sigma_{t,g}(\vec{r}) \psi_{g,m}(\vec{r}) = \frac{1}{4\pi} \sum_{g'} \Sigma_{s,g' \to g}(\vec{r}) \phi_{g'}(\vec{r}) + S_{\text{ext},g,m}(\vec{r})$$

$$\phi_{\mathbf{g}}(\vec{r}) \approx \sum_{m=1}^{m=M} w_m \psi_{\mathbf{g},m}(\vec{r}).$$

|ロ > 4回 > 4 差 > 4 差 > 差 り < @ |

Ghaddar (TAMU) Load Balancing March 8, 2016 8 / 56

#### Source Iteration

$$\vec{\Omega}_m \cdot \vec{\nabla} \psi_m^{(l+1)}(\vec{r}) + \Sigma_t \psi_m^{(l+1)}(\vec{r}) = q_m^{(l)}(\vec{r})$$



Ghaddar (TAMU) Load Balancing March 8, 2016 9 / 56

# The Transport Sweep

A parallel sweep algorithm is defined by three properties:

- partitioning: dividing the spatial domain among available processors
- aggregation: grouping cells, directions, and energy groups into tasks
- scheduling: choosing which task to execute if more than one is available



 Ghaddar (TAMU)
 Load Balancing
 March 8, 2016
 10 / 56

# The Sweep

| 4 | 5 | 6 | 7 |
|---|---|---|---|
| 3 | 4 | 5 | 6 |
| 2 | 3 | 4 | 5 |
| 1 | 2 | 3 | 4 |



990

- $A_x = \frac{N_x}{P_x}$ , where  $N_x$  is the number of cells in x and  $P_x$  is the number of processors in x
- $A_y = \frac{N_y}{P_y}$ , where  $N_y$  is the number of cells in y and  $P_y$  is the number of processors in y
- $N_g = \frac{G}{A_g}$
- $N_m = \frac{M}{\Delta_m}$
- $N_k = \frac{N_z}{P_z A_z}$
- $N_k A_x A_y A_z = \frac{N_x N_y N_z}{P_y P_y P_z}$

# Parallel Efficiency

0000000

$$\begin{split} \epsilon &= \frac{T_{\mathsf{task}} N_{\mathsf{tasks}}}{[N_{\mathsf{stages}}][T_{\mathsf{task}} + T_{\mathsf{comm}}]} \\ &= \frac{1}{[1 + \frac{N_{\mathsf{idle}}}{N_{\mathsf{tasks}}}][1 + \frac{T_{\mathsf{comm}}}{T_{\mathsf{task}}}]} \end{split}$$

$$T_{\text{comm}} = M_L T_{\text{latency}} + T_{\text{byte}} N_{\text{bytes}}$$
  
 $T_{\text{task}} = A_x A_v A_z A_m A_\sigma T_{\text{grind}}$ 



Ghaddar (TAMU) Load Balancing March 8, 2016 13 / 56

## Partitioning for an Unstructured Mesh

- The user inputs coordinates for cut lines in the X and Y directions.
- The cut lines will determine the number of subsets the problem is partitioned into.
- Optimizing the location of these cut lines is the basis of the load balancing algorithm.



 Ghaddar (TAMU)
 Load Balancing
 March 8, 2016
 14 / 56

## The Subset



 Ghaddar (TAMU)
 Load Balancing
 March 8, 2016
 15 / 56

## Metric Definitions

$$\bullet \ f = \frac{\max_{ij}(N_{ij})}{\frac{N_{tot}}{I \cdot I}}$$

• 
$$f_I = \max_i \left[ \sum_j N_{ij} \right] / \frac{N_{tot}}{I}$$
  
•  $f_J = \max_i \left[ \sum_i N_{ij} \right] / \frac{N_{tot}}{J}$ 

• 
$$f_J = \max_j [\sum_i N_{ij}] / \frac{N_{to}}{J}$$



Ghaddar (TAMU) Load Balancing March 8, 2016 16 / 56

# Load Balancing Algorithm

```
//I, J subsets specified by user
//Check if all subsets meet the tolerance
while (f > tol_subset)
 //Mesh all subsets
  if (f_l > tol_column)
    Redistribute(X);
  if (f_J > tol_row)
    Redistribute(Y);
```

Ghaddar (TAMU) Load Balancing March 8, 2016 17 / 56

#### Redistribution Function



Ghaddar (TAMU) Load Balancing March 8, 2016

990

18 / 56

## Redistribution Function



Ghaddar (TAMU)

# Example



f = 7.20583

☐ ✓ Q ← Ghaddar (TAMU) Load Balancing March 8, 2016 20 / 56

# Example



f = 3.61695

☐ ✓ Q ← Ghaddar (TAMU) Load Balancing March 8, 2016 21 / 56

# Load Balancing Results

- Three test cases were used to study the behavior of the load balancing algorithm.
- For each test case, 162 inputs were constructed by varying:
  - The number of subsets
  - The spatial resolution of the mesh (maximum triangle area).



Ghaddar (TAMU) Load Balancing March 8, 2016 22 / 56



Ghaddar (TAMU) Load Balancing March 8, 2016 23 / 56

#### 1: The metric behavior of the first test case run with no load balancing iterations.

| Area   | N=4  | N=9  | N=16 | N=25 | N=36  | N=49  | N=64  | N=81 | N=100 |
|--------|------|------|------|------|-------|-------|-------|------|-------|
| Coarse | 1.95 | 4.12 | 6.76 | 9.60 | 12.44 | 14.21 | 16.44 | 8.60 | 6.77  |
| 1.8    | 1.46 | 2.32 | 4.11 | 4.64 | 7.84  | 8.61  | 24.77 | 6.14 | 4.58  |
| 1.6    | 1.42 | 2.21 | 4.20 | 4.64 | 6.86  | 8.52  | 24.71 | 5.94 | 4.58  |
| 1.4    | 1.32 | 2.05 | 2.98 | 4.64 | 6.23  | 8.58  | 19.98 | 5.90 | 4.51  |
| 1.2    | 1.30 | 1.95 | 3.02 | 4.93 | 4.51  | 7.25  | 19.97 | 4.30 | 4.51  |
| 1      | 1.35 | 1.75 | 2.90 | 4.93 | 4.52  | 6.02  | 20.01 | 4.62 | 4.51  |
| 0.8    | 1.26 | 1.65 | 2.95 | 3.31 | 4.45  | 4.40  | 19.74 | 4.58 | 2.92  |
| 0.6    | 1.14 | 1.45 | 2.05 | 3.01 | 3.55  | 4.22  | 14.28 | 2.87 | 3.10  |
| 0.4    | 1.09 | 1.35 | 1.79 | 2.02 | 2.74  | 3.33  | 14.09 | 2.80 | 2.06  |
| 0.2    | 1.05 | 1.14 | 1.34 | 1.55 | 1.65  | 2.05  | 8.78  | 1.82 | 1.45  |
| 0.1    | 1.02 | 1.04 | 1.11 | 1.17 | 1.29  | 1.36  | 4.43  | 1.41 | 1.24  |
| 0.08   | 1.01 | 1.03 | 1.09 | 1.19 | 1.21  | 1.29  | 3.39  | 1.32 | 1.18  |
| 0.06   | 1.01 | 1.03 | 1.04 | 1.10 | 1.09  | 1.20  | 2.93  | 1.28 | 1.06  |
| 0.05   | 1.02 | 1.02 | 1.06 | 1.09 | 1.08  | 1.11  | 2.61  | 1.22 | 1.09  |
| 0.04   | 1.00 | 1.01 | 1.00 | 1.06 | 1.07  | 1.07  | 2.20  | 1.17 | 1.11  |
| 0.03   | 1.00 | 1.02 | 1.02 | 1.05 | 1.07  | 1.05  | 1.93  | 1.13 | 1.03  |
| 0.02   | 1.00 | 1.01 | 1.01 | 1.03 | 1.02  | 1.03  | 1.57  | 1.08 | 1.05  |
| 0.01   | 1.00 | 1.01 | 1.01 | 1.01 | 1.04  | 1.02  | 1.28  | 1.04 | 1.01  |

Ghaddar (TAMU) Load Balancing March 8, 2016 24 / 56

#### Metric Behavior with no Load Balancing Iterations



Ghaddar (TAMU) Load Balancing March 8, 2016 25 / 56

990

#### 2: The metric behavior of the first test case after 10 load balancing iterations.

| Area   | N=4  | N=9  | N=16 | N=25 | N=36 | N=49 | N=64 | N=81 | N=100 |
|--------|------|------|------|------|------|------|------|------|-------|
| Coarse | 1.95 | 1.60 | 3.37 | 2.10 | 2.28 | 2.68 | 2.53 | 2.81 | 3.05  |
| 1.8    | 1.46 | 1.94 | 2.81 | 2.59 | 2.98 | 2.89 | 2.97 | 4.50 | 4.33  |
| 1.6    | 1.42 | 1.95 | 2.43 | 2.42 | 3.00 | 3.05 | 2.71 | 4.11 | 4.09  |
| 1.4    | 1.32 | 1.87 | 2.65 | 3.13 | 2.45 | 3.03 | 4.14 | 4.39 | 4.15  |
| 1.2    | 1.30 | 1.77 | 2.46 | 2.66 | 2.59 | 3.18 | 4.02 | 4.28 | 5.05  |
| 1      | 1.35 | 1.64 | 2.26 | 2.33 | 2.35 | 3.01 | 3.93 | 3.67 | 4.34  |
| 8.0    | 1.26 | 1.51 | 2.02 | 2.79 | 2.02 | 2.61 | 3.27 | 3.37 | 3.63  |
| 0.6    | 1.14 | 1.45 | 1.79 | 2.41 | 2.81 | 2.09 | 2.90 | 2.87 | 3.63  |
| 0.4    | 1.09 | 1.35 | 1.45 | 1.87 | 2.40 | 1.84 | 1.96 | 2.35 | 2.26  |
| 0.2    | 1.05 | 1.14 | 1.34 | 1.55 | 1.65 | 2.05 | 1.40 | 1.79 | 1.71  |
| 0.1    | 1.02 | 1.04 | 1.11 | 1.17 | 1.29 | 1.36 | 1.32 | 1.41 | 1.22  |
| 0.08   | 1.01 | 1.03 | 1.09 | 1.19 | 1.21 | 1.29 | 1.20 | 1.32 | 1.38  |
| 0.06   | 1.01 | 1.03 | 1.04 | 1.10 | 1.09 | 1.20 | 1.15 | 1.28 | 1.07  |
| 0.05   | 1.02 | 1.02 | 1.06 | 1.09 | 1.08 | 1.11 | 1.14 | 1.22 | 1.18  |
| 0.04   | 1.00 | 1.01 | 1.00 | 1.06 | 1.07 | 1.07 | 1.16 | 1.17 | 1.17  |
| 0.03   | 1.00 | 1.02 | 1.02 | 1.05 | 1.07 | 1.05 | 1.93 | 1.13 | 1.04  |
| 0.02   | 1.00 | 1.01 | 1.01 | 1.03 | 1.02 | 1.03 | 1.57 | 1.08 | 1.09  |
| 0.01   | 1.00 | 1.01 | 1.01 | 1.01 | 1.04 | 1.02 | 1.28 | 1.04 | 1.02  |



 Ghaddar (TAMU)
 Load Balancing
 March 8, 2016
 26 / 56

#### Metric Behavior with 10 Load Balancing Iterations



 √□ → √□ → √□ → √□ → √□ → √□ → √□ → √□
 €
 ✓ ○ ○

 Ghaddar (TAMU)
 Load Balancing
 March 8, 2016
 27 / 56

3: The ratio of the metric with no iteration and 10 iterations. The closer the z-value to zero, the better the improvement.

| Area   | N=4  | N=9  | N=16 | N=25 | N=36 | N=49 | N=64 | N=81 | N=100 |
|--------|------|------|------|------|------|------|------|------|-------|
| Coarse | 1.00 | 0.39 | 0.50 | 0.22 | 0.18 | 0.19 | 0.15 | 0.33 | 0.45  |
| 1.8    | 1.00 | 0.83 | 0.68 | 0.56 | 0.38 | 0.34 | 0.12 | 0.73 | 0.95  |
| 1.6    | 1.00 | 0.88 | 0.58 | 0.52 | 0.44 | 0.36 | 0.11 | 0.69 | 0.89  |
| 1.4    | 1.00 | 0.91 | 0.89 | 0.67 | 0.39 | 0.35 | 0.21 | 0.74 | 0.92  |
| 1.2    | 1.00 | 0.90 | 0.81 | 0.54 | 0.58 | 0.44 | 0.20 | 1.00 | 1.12  |
| 1      | 1.00 | 0.93 | 0.78 | 0.47 | 0.52 | 0.50 | 0.20 | 0.79 | 0.96  |
| 0.8    | 1.00 | 0.92 | 0.68 | 0.84 | 0.45 | 0.59 | 0.17 | 0.74 | 1.24  |
| 0.6    | 1.00 | 1.00 | 0.87 | 0.80 | 0.79 | 0.50 | 0.20 | 1.00 | 1.17  |
| 0.4    | 1.00 | 1.00 | 0.81 | 0.93 | 0.88 | 0.55 | 0.14 | 0.84 | 1.10  |
| 0.2    | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.16 | 0.99 | 1.19  |
| 0.1    | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.30 | 1.00 | 0.98  |
| 0.08   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.35 | 1.00 | 1.17  |
| 0.06   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.39 | 1.00 | 1.00  |
| 0.05   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.44 | 1.00 | 1.08  |
| 0.04   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.52 | 1.00 | 1.05  |
| 0.03   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.01  |
| 0.02   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.04  |
| 0.01   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.01  |

Ghaddar (TAMU) Load Balancing March 8, 2016 28 / 56



990





Ghaddar (TAMU) Load Balancing March 8, 2016 30 / 56

# 4: The metric behavior of the second test case after **no load balancing** iterations.

| Area   | N=4  | N=9  | N=16 | N=25 | N=36  | N=49  | N=64  | N=81 | N=100 |
|--------|------|------|------|------|-------|-------|-------|------|-------|
| Coarse | 1.95 | 4.12 | 6.76 | 9.60 | 12.44 | 14.21 | 16.44 | 8.60 | 6.77  |
| 1.80   | 1.45 | 2.31 | 4.10 | 4.91 | 7.90  | 8.61  | 22.67 | 6.37 | 6.19  |
| 1.60   | 1.42 | 2.24 | 4.19 | 4.91 | 6.94  | 8.50  | 20.91 | 6.29 | 6.19  |
| 1.40   | 1.31 | 2.12 | 2.97 | 4.41 | 6.22  | 8.58  | 19.84 | 6.25 | 5.99  |
| 1.20   | 1.30 | 1.96 | 3.02 | 4.65 | 4.53  | 7.09  | 19.83 | 4.30 | 6.23  |
| 1.00   | 1.34 | 1.78 | 2.90 | 4.35 | 4.49  | 5.88  | 19.85 | 4.62 | 4.98  |
| 0.80   | 1.26 | 1.64 | 2.95 | 3.09 | 4.47  | 4.45  | 17.42 | 4.58 | 4.18  |
| 0.60   | 1.14 | 1.42 | 2.05 | 2.72 | 3.50  | 4.09  | 12.90 | 2.80 | 4.18  |
| 0.40   | 1.09 | 1.34 | 1.79 | 2.08 | 2.73  | 3.34  | 11.39 | 2.83 | 2.68  |
| 0.20   | 1.06 | 1.15 | 1.34 | 1.56 | 1.72  | 2.03  | 7.02  | 1.85 | 1.72  |
| 0.10   | 1.02 | 1.04 | 1.15 | 1.22 | 1.29  | 1.37  | 4.12  | 1.36 | 1.37  |
| 0.08   | 1.01 | 1.04 | 1.08 | 1.15 | 1.20  | 1.30  | 3.47  | 1.33 | 1.26  |
| 0.06   | 1.01 | 1.03 | 1.04 | 1.10 | 1.08  | 1.20  | 2.79  | 1.26 | 1.19  |
| 0.05   | 1.02 | 1.03 | 1.05 | 1.07 | 1.06  | 1.12  | 2.57  | 1.23 | 1.16  |
| 0.04   | 1.00 | 1.03 | 1.01 | 1.06 | 1.08  | 1.07  | 2.22  | 1.18 | 1.11  |
| 0.03   | 1.01 | 1.02 | 1.01 | 1.04 | 1.07  | 1.05  | 1.86  | 1.11 | 1.08  |
| 0.02   | 1.01 | 1.02 | 1.01 | 1.04 | 1.04  | 1.03  | 1.57  | 1.09 | 1.07  |
| 0.01   | 1.00 | 1.01 | 1.02 | 1.02 | 1.02  | 1.02  | 1.29  | 1.04 | 1.02  |

Ghaddar (TAMU) Load Balancing March 8, 2016 31 / 56

#### Metric Behavior with no Load Balancing Iterations



Ghaddar (TAMU) Load Balancing March 8, 2016 32 / 56

990

# 5: The metric behavior of the second test case after **10 load balancing iterations**.

| Area   | N=4  | N=9  | N=16 | N=25 | N=36 | N=49 | N=64 | N=81 | N=100 |
|--------|------|------|------|------|------|------|------|------|-------|
| Coarse | 1.85 | 1.36 | 1.76 | 1.48 | 1.74 | 1.60 | 1.79 | 1.82 | 1.92  |
| 1.8    | 1.15 | 1.33 | 1.65 | 2.08 | 2.58 | 2.41 | 2.69 | 3.83 | 3.99  |
| 1.6    | 1.12 | 1.34 | 1.65 | 2.35 | 2.67 | 2.47 | 2.96 | 2.59 | 2.97  |
| 1.4    | 1.12 | 1.37 | 1.79 | 1.86 | 1.83 | 2.71 | 2.82 | 2.58 | 3.74  |
| 1.2    | 1.15 | 1.50 | 1.54 | 1.56 | 1.71 | 2.13 | 2.81 | 2.79 | 2.87  |
| 1      | 1.15 | 1.45 | 1.73 | 1.74 | 1.74 | 2.39 | 2.48 | 2.81 | 3.07  |
| 0.8    | 1.14 | 1.40 | 1.47 | 1.44 | 1.58 | 2.26 | 2.38 | 2.60 | 3.39  |
| 0.6    | 1.05 | 1.31 | 1.49 | 1.85 | 1.57 | 1.81 | 1.81 | 2.42 | 2.36  |
| 0.4    | 1.09 | 1.19 | 1.37 | 1.77 | 1.71 | 1.87 | 1.57 | 1.72 | 2.26  |
| 0.2    | 1.06 | 1.15 | 1.18 | 1.35 | 1.63 | 1.67 | 1.73 | 1.52 | 1.72  |
| 0.1    | 1.02 | 1.04 | 1.15 | 1.22 | 1.29 | 1.34 | 1.25 | 1.26 | 1.37  |
| 0.08   | 1.01 | 1.04 | 1.08 | 1.15 | 1.20 | 1.30 | 1.22 | 1.21 | 1.26  |
| 0.06   | 1.01 | 1.03 | 1.04 | 1.10 | 1.08 | 1.20 | 1.18 | 1.26 | 1.19  |
| 0.05   | 1.02 | 1.03 | 1.05 | 1.07 | 1.06 | 1.12 | 1.15 | 1.23 | 1.16  |
| 0.04   | 1.00 | 1.03 | 1.01 | 1.06 | 1.08 | 1.07 | 1.13 | 1.18 | 1.11  |
| 0.03   | 1.01 | 1.02 | 1.01 | 1.04 | 1.07 | 1.05 | 1.32 | 1.11 | 1.08  |
| 0.02   | 1.01 | 1.02 | 1.01 | 1.04 | 1.04 | 1.03 | 1.15 | 1.09 | 1.07  |
| 0.01   | 1.00 | 1.01 | 1.02 | 1.02 | 1.02 | 1.02 | 1.29 | 1.04 | 1.02  |

Ghaddar (TAMU) Load Balancing March 8, 2016 33 / 56

#### Metric Behavior with 10 Load Balancing Iterations



4 □ ▷ ◆ ② ▷ ◆ 臺 ▷ ◆ 臺 ▷ ◇ ◇ ○

Ghaddar (TAMU) Load Balancing March 8, 2016 34 / 56

6: The ratio of the metric with no iteration and 10 iterations. The closer the z-value to zero, the better the improvement.

| Area   | N=4  | N=9  | N=16 | N=25 | N=36 | N=49 | N=64 | N=81 | N=100 |
|--------|------|------|------|------|------|------|------|------|-------|
| Coarse | 0.95 | 0.33 | 0.26 | 0.15 | 0.14 | 0.11 | 0.11 | 0.21 | 0.28  |
| 1.8    | 0.79 | 0.57 | 0.40 | 0.42 | 0.33 | 0.28 | 0.12 | 0.60 | 0.65  |
| 1.6    | 0.79 | 0.60 | 0.39 | 0.48 | 0.38 | 0.29 | 0.14 | 0.41 | 0.48  |
| 1.4    | 0.85 | 0.64 | 0.60 | 0.42 | 0.29 | 0.32 | 0.14 | 0.41 | 0.62  |
| 1.2    | 0.89 | 0.77 | 0.51 | 0.34 | 0.38 | 0.30 | 0.14 | 0.65 | 0.46  |
| 1      | 0.85 | 0.81 | 0.60 | 0.40 | 0.39 | 0.41 | 0.12 | 0.61 | 0.62  |
| 0.8    | 0.91 | 0.85 | 0.50 | 0.47 | 0.35 | 0.51 | 0.14 | 0.57 | 0.81  |
| 0.6    | 0.92 | 0.92 | 0.73 | 0.68 | 0.45 | 0.44 | 0.14 | 0.86 | 0.57  |
| 0.4    | 1.00 | 0.89 | 0.76 | 0.85 | 0.63 | 0.56 | 0.14 | 0.61 | 0.84  |
| 0.2    | 1.00 | 1.00 | 0.89 | 0.86 | 0.95 | 0.82 | 0.25 | 0.82 | 1.00  |
| 0.1    | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.30 | 0.92 | 1.00  |
| 0.08   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.35 | 0.91 | 1.00  |
| 0.06   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.42 | 1.00 | 1.00  |
| 0.05   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.45 | 1.00 | 1.00  |
| 0.04   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.51 | 1.00 | 1.00  |
| 0.03   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.71 | 1.00 | 1.00  |
| 0.02   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.74 | 1.00 | 1.00  |
| 0.01   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  |

Ghaddar (TAMU) Load Balancing March 8, 2016 35 / 56

#### Metric Improvement



4□ > 4□ > 4 □ > 4 □ > 1 回 9 Q @

Ghaddar (TAMU) Load Balancing March 8, 2016 36 / 56

# A Closer Look at Test Case 2



f = 2.72

☐ ✓ Q ← Ghaddar (TAMU) Load Balancing March 8, 2016 37 / 56

## A Closer Look at Test Case 2



f = 1.85

☐ ✓ Q ← Ghaddar (TAMU) Load Balancing March 8, 2016 38 / 56



990

39 / 56

Ghaddar (TAMU) Load Balancing March 8, 2016

#### 7: The metric behavior of the third test case after **no load balancing iterations**.

| Area   | N=4  | N=9  | N=16 | N=25 | N=36 | N=49 | N=64 | N=81 | N=100 |
|--------|------|------|------|------|------|------|------|------|-------|
| Coarse | 2.24 | 2.24 | 2.28 | 2.27 | 2.24 | 2.29 | 2.32 | 2.26 | 2.29  |
| 1.8    | 2.13 | 2.13 | 2.16 | 2.42 | 2.13 | 2.43 | 2.23 | 2.17 | 2.65  |
| 1.6    | 2.11 | 2.12 | 2.15 | 2.40 | 2.11 | 2.42 | 2.22 | 2.16 | 2.63  |
| 1.4    | 2.09 | 2.10 | 2.13 | 2.38 | 2.10 | 2.39 | 2.20 | 2.12 | 2.61  |
| 1.2    | 2.07 | 2.07 | 2.11 | 2.35 | 2.08 | 2.37 | 2.18 | 2.11 | 2.59  |
| 1      | 2.04 | 2.04 | 2.07 | 2.32 | 2.04 | 2.33 | 2.15 | 2.08 | 2.54  |
| 0.8    | 1.99 | 1.99 | 2.02 | 2.27 | 1.99 | 2.28 | 2.10 | 2.03 | 2.50  |
| 0.6    | 1.91 | 1.92 | 1.95 | 2.18 | 1.92 | 2.20 | 2.03 | 1.96 | 2.41  |
| 0.4    | 1.78 | 1.79 | 1.82 | 2.04 | 1.79 | 2.06 | 1.90 | 1.83 | 2.27  |
| 0.2    | 1.47 | 1.48 | 1.51 | 1.70 | 1.49 | 1.72 | 1.59 | 1.52 | 1.91  |
| 0.1    | 1.09 | 1.10 | 1.12 | 1.28 | 1.11 | 1.29 | 1.21 | 1.16 | 1.45  |
| 0.08   | 1.03 | 1.02 | 1.03 | 1.13 | 1.02 | 1.15 | 1.07 | 1.03 | 1.31  |
| 0.06   | 1.03 | 1.04 | 1.04 | 1.15 | 1.04 | 1.18 | 1.09 | 1.08 | 1.28  |
| 0.05   | 1.02 | 1.02 | 1.03 | 1.11 | 1.03 | 1.13 | 1.09 | 1.06 | 1.20  |
| 0.04   | 1.06 | 1.06 | 1.06 | 1.12 | 1.08 | 1.12 | 1.09 | 1.10 | 1.20  |
| 0.03   | 1.08 | 1.08 | 1.09 | 1.12 | 1.10 | 1.11 | 1.10 | 1.11 | 1.15  |
| 0.02   | 1.02 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 1.06  |
| 0.01   | 1.03 | 1.03 | 1.03 | 1.04 | 1.03 | 1.04 | 1.04 | 1.03 | 1.05  |

Ghaddar (TAMU) Load Balancing March 8, 2016 40 / 56

# Metric Behavior with no Load Balancing Iterations



Maximum Triangle Area

Ghaddar (TAMU) Load Balancing March 8, 2016 41 / 56

990

#### 8: The metric behavior of the third test case after 10 load balancing iterations.

| Area   | N=4  | N=9  | N=16 | N=25 | N=36 | N=49 | N=64 | N=81 | N=100 |
|--------|------|------|------|------|------|------|------|------|-------|
| Coarse | 1.00 | 1.01 | 1.04 | 1.05 | 1.01 | 1.06 | 1.06 | 1.06 | 1.08  |
| 1.8    | 1.02 | 1.03 | 1.15 | 1.21 | 1.20 | 1.23 | 1.36 | 1.42 | 1.54  |
| 1.6    | 1.03 | 1.04 | 1.08 | 1.20 | 1.18 | 1.23 | 1.54 | 1.69 | 1.58  |
| 1.4    | 1.02 | 1.06 | 1.09 | 1.25 | 1.32 | 1.39 | 1.37 | 1.52 | 1.62  |
| 1.2    | 1.03 | 1.06 | 1.24 | 1.24 | 1.30 | 1.32 | 1.48 | 1.56 | 1.84  |
| 1      | 1.02 | 1.05 | 1.15 | 1.25 | 1.31 | 1.35 | 1.49 | 1.80 | 2.15  |
| 0.8    | 1.04 | 1.06 | 1.10 | 1.23 | 1.27 | 1.53 | 1.79 | 1.84 | 1.95  |
| 0.6    | 1.03 | 1.11 | 1.13 | 1.38 | 1.51 | 1.61 | 1.79 | 1.96 | 2.17  |
| 0.4    | 1.04 | 1.19 | 1.26 | 1.39 | 1.66 | 1.47 | 1.90 | 1.83 | 2.27  |
| 0.2    | 1.06 | 1.17 | 1.16 | 1.33 | 1.49 | 1.62 | 1.59 | 1.52 | 1.78  |
| 0.1    | 1.09 | 1.10 | 1.12 | 1.14 | 1.11 | 1.19 | 1.21 | 1.16 | 1.19  |
| 0.08   | 1.03 | 1.02 | 1.03 | 1.13 | 1.02 | 1.15 | 1.07 | 1.03 | 1.14  |
| 0.06   | 1.03 | 1.04 | 1.04 | 1.15 | 1.04 | 1.18 | 1.09 | 1.08 | 1.28  |
| 0.05   | 1.02 | 1.02 | 1.03 | 1.11 | 1.03 | 1.13 | 1.09 | 1.06 | 1.20  |
| 0.04   | 1.06 | 1.06 | 1.06 | 1.12 | 1.08 | 1.12 | 1.09 | 1.10 | 1.20  |
| 0.03   | 1.08 | 1.08 | 1.09 | 1.12 | 1.10 | 1.11 | 1.10 | 1.11 | 1.15  |
| 0.02   | 1.02 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 1.03 | 1.06  |
| 0.01   | 1.03 | 1.03 | 1.03 | 1.04 | 1.03 | 1.04 | 1.04 | 1.03 | 1.05  |

Ghaddar (TAMU) Load Balancing March 8, 2016 42 / 56

#### Metric Behavior with 10 Load Balancing Iterations



<ロ > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回 > ← 回

Ghaddar (TAMU) Load Balancing March 8, 2016 43 / 56

9: The ratio of the metric with no iteration and 10 iterations. The closer the z-value to zero, the better the improvement.

| Area   | N=4  | N=9  | N=16 | N=25 | N=36 | N=49 | N=64 | N=81 | N=100 |
|--------|------|------|------|------|------|------|------|------|-------|
| Coarse | 0.45 | 0.45 | 0.46 | 0.46 | 0.45 | 0.46 | 0.45 | 0.47 | 0.47  |
| 1.8    | 0.48 | 0.48 | 0.53 | 0.50 | 0.56 | 0.51 | 0.61 | 0.65 | 0.58  |
| 1.6    | 0.49 | 0.49 | 0.50 | 0.50 | 0.56 | 0.51 | 0.69 | 0.78 | 0.60  |
| 1.4    | 0.49 | 0.50 | 0.51 | 0.52 | 0.63 | 0.58 | 0.62 | 0.72 | 0.62  |
| 1.2    | 0.50 | 0.51 | 0.59 | 0.53 | 0.62 | 0.56 | 0.68 | 0.74 | 0.71  |
| 1      | 0.50 | 0.51 | 0.56 | 0.54 | 0.64 | 0.58 | 0.69 | 0.86 | 0.85  |
| 0.8    | 0.52 | 0.53 | 0.54 | 0.54 | 0.64 | 0.67 | 0.85 | 0.90 | 0.78  |
| 0.6    | 0.54 | 0.58 | 0.58 | 0.63 | 0.79 | 0.73 | 0.88 | 1.00 | 0.90  |
| 0.4    | 0.59 | 0.66 | 0.70 | 0.68 | 0.93 | 0.71 | 1.00 | 1.00 | 1.00  |
| 0.2    | 0.72 | 0.79 | 0.77 | 0.78 | 1.00 | 0.94 | 1.00 | 1.00 | 0.93  |
| 0.1    | 1.00 | 1.00 | 1.00 | 0.89 | 1.00 | 0.92 | 1.00 | 1.00 | 0.83  |
| 0.08   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.87  |
| 0.06   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  |
| 0.05   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  |
| 0.04   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  |
| 0.03   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  |
| 0.02   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  |
| 0.01   | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  |

Ghaddar (TAMU) Load Balancing March 8, 2016 44 / 56



Ghaddar (TAMU) Load Balancing March 8, 2016 45 / 56

## Solution Verification

- Two benchmark problems were set up to verify that the scalar flux was being computed correctly on unstructured meshes in PDT.
- Both problems utilized a 1 cm×1 cm square domain, with opposing reflecting boundaries on the y boundaries, an incident isotropic angular flux on the left boundary, and a vacuum boundary on the right.

The error presented when comparing numerical to analytical solutions is defined as follows:

$$\epsilon = \frac{\|\mathsf{Analytical} - \mathsf{Numerical}\|_{l2}}{\|\mathsf{Analytical}\|_{l2}},$$

Ghaddar (TAMU) Load Balancing March 8, 2016 46 / 56

## Pure Absorber

The analytical scalar flux solution of the 1D Pure Absorber is:

$$\begin{split} \phi(x) &= \int_0^1 \psi(x, \mu > 0) d\mu \\ &= \int_0^1 \psi_{inc} \exp(-\frac{\Sigma_a}{\mu} x) d\mu = \psi_{inc} E_2(\Sigma_a x), \end{split}$$

The pure absorber was run with  $\psi_{inc} = 3.5 \frac{n}{\text{cm}^2\text{-s-ster}}$  and  $\Sigma_a = 5 \text{ cm}^{-1}$ .



 Ghaddar (TAMU)
 Load Balancing
 March 8, 2016
 47 / 56

# PDT Results vs. Analytical for the Pure Absorber



Ghaddar (TAMU) Load Balancing March 8, 2016 48 / 56

990

# Analysis with 70 Positive Polar Angles



 $\epsilon = 0.012$ 

Ghaddar (TAMU) Load Balancing March 8, 2016 49 / 56

190

the solution is:

$$\phi(x) = \frac{4j_{inc}}{1 + 4D}(-x + x_{max} + 2D).$$

This problem was run with  $\Sigma_t = 100 \text{ cm}^{-1}$  and  $j_{inc} = \frac{7}{4} \frac{\text{n}}{\text{cm}^2 \text{s}}$ .



50 / 56

Ghaddar (TAMU) Load Balancing March 8, 2016

# PDT Results vs. Analytical for the Pure Scatterer



 $\epsilon = 4.25E-04$ 

 Ghaddar (TAMU)
 Load Balancing
 March 8, 2016
 51 / 56

# Extruded Mesh Capability





Ghaddar (TAMU) Load Balancing March 8, 2016 52 / 56

# Extruded Mesh Capability





Ghaddar (TAMU) Load Balancing March 8, 2016 53 / 56

## Conclusions

- The effectiveness of the load balancing algorithm depends on the maximum triangle area used, and the number of subsets the domain is decomposed into.
- Good improvement is seen for all test cases, particularly the first two.
- Improvements to the algorithm must be made, as the user will often need to decide on the number of subsets based on how many processors are wanted.

 Ghaddar (TAMU)
 Load Balancing
 March 8, 2016
 54 / 56

## Future Work

- Improvements to the algorithm, moving portions of cut lines instead of moving the entire cutline.
- Domain overloading is the logical extension to the work presented in this thesis.
  - Processors could own different numbers of subsets, with no restriction on these subsets being contiguous.

(ㅁㅏㅓ큔ㅏㅓㅌㅏㅓㅌㅏ = - 쒸٩안

Ghaddar (TAMU) Load Balancing March 8, 2016 55 / 56

# Acknowledgements

A special thank you to the following individuals for their help and support:

- Drs. Ragusa, Morel, Adams, and Popov
- Michael Adams, Daryl Hawkins, Timmie Smith
- Dr. Andrew Till
- The CERT team and fellow grad students



Ghaddar (TAMU) Load Balancing March 8, 2016 56 / 56