กำหนดให้ใช้ค่าต่อไปนี้ สำหรับกรณีที่ต้องแทนค่าตัวเลข

ความเร่งโน้มถ่วง $g=9.8\,\mathrm{m/s^2}$

อัตราเร็วของแสงในสุญญากาศ $c=3.0 imes 10^8 \, \mathrm{m/s}$

ค่าคงตัวแก๊ส $R = 8.3 \,\mathrm{J/(mol\,K)}$

ค่าคงตัวอโวกาโดร $N_{
m A}=6.0 imes10^{23}\,{
m mol}^{-1}$

ค่าคงตัวโบลต์ซมันน์ $k_{
m B}=1.4 imes10^{-23}\,{
m J/K}$

ค่าของ $\sin\theta \,\cos\theta$ และ $\tan\theta$ ที่มีมุม θ ต่าง ๆ ดังตารางต่อไปนี้

θ	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	ไม่นิยาม

ข้อสอบฉบับนี้อ้างอิงจากข้อสอบ **ฟิสิกส์ วิชาสามัญ พ.ศ. 2565 ชุดที่ 1** หากพบปัญหาหรือต้องการสอบถาม ติดต่อ ittipatken@gmail.com

1. วัดขนาดของวัตถุปริซึมสี่เหลี่ยมที่มีฐานเป็นรูปสี่เหลี่ยมจัตุรัส ดังภาพ

ปริซึมนี้มีปริมาตรกี่ลูกบาศก์เซนติเมตร โดยคำนึงถึงเลขนัยสำคัญ กำหนดให้ อ่านค่าความสูงและความยาวจากภาพที่ขยายเท่านั้น

- 1. 53.29
- 2. 53.3
- 3. 58
- 4. 58.4
- 5. 58.40

2. เจ้าหน้าที่กู้ภัยต้องการโยนอุปกรณ์ให้คนที่อยู่ในตึกซึ่งอยู่ห่าง 5 เมตร และอยู่สูง $\frac{5\sqrt{3}}{2}$ เมตร ดังภาพ กำหนดให้ ไม่คิดแรงต้านอากาศ

เจ้าหน้าที่กู้ภัยต้องโยนอุปกรณ์ด้วยมุมกี่องศาเทียบกับแนวระดับ เพื่อให้อุปกรณ์ขณะรับมีความความเร็ว ในแนวดิ่งเป็นศูนย์

- 1. 30
- 2. 37
- 3. 45
- 4. 53
- 5. 60

3. ลูกกลมมวล m_1 มีมวลเป็นครึ่งหนึ่งของ m_2 ถูกผูกด้วยเชือกที่ยาวไม่เท่ากันไว้ที่จุดตรึงหนึ่ง เมื่อแกว่งลูก กลมทั้งสองลูกให้เริ่มเคลื่อนที่พร้อมกันเป็นวงกลมในระนาบเดียวกันและมีจุดศูนย์กลางร่วมกัน พบว่ารัศมี การเคลื่อนที่ของลูกกลม m_2 มีค่าเป็นสองเท่าของรัศมีการเคลื่อนที่ของลูกกลม m_1 ดังภาพ

ข้อใดถูกต้อง

- 1. คาบของ m_1 มีค่าน้อยกว่าคาบของ m_2
- 2. ความถี่เชิงมุมของ m_1 มีค่าน้อยกว่าความถี่เชิงมุมของ m_2
- 3. อัตราเร็วเชิงมุมของ m_1 มีค่าเท่ากับอัตราเร็วเชิงมุมของ m_2
- 4. อัตราเร็วเชิงเส้นของ m_1 มีค่าเท่ากับอัตราเร็วเชิงเส้นของ m_2
- 5. แรงสู่ศูนย์กลางของ m_1 มีค่ามากกว่าแรงสู่ศูนย์กลางของ m_2

4. แกว่งลูกตุ้มมวล m ที่ผูกเชือกยาว L ให้เคลื่อนที่แบบฮาร์มอนิกอย่างง่ายระหว่างจุด A และจุด B ดังภาพ พบว่าลูกตุ้มแกว่งครบ 10 รอบ ใช้เวลา 2π วินาที

พิจารณาข้อความต่อไปนี้

- ก. ที่จุด ${\bf A}$ และ ${\bf B}$ ขนาดของความเร็วมีค่าเท่ากันและไม่เท่ากับศูนย์
- ข. เมื่อแกว่งลูกตุ้มมวล m ที่ผูกเชือกยาว L คาบการแกว่ง เท่ากับ 0.2π
- ค. เมื่อแกว่งลูกตุ้มมวล 2m ที่ผูกเชือกยาว L ความถี่เชิงมุมมากกว่าเมื่อแกว่งลูก ตุ้มมวล m ที่ผูกเชือกยาว 2L วินาที

- 1. ก. เท่านั้น
- 2. ข. เท่านั้น
- 3. ค. เท่านั้น
- 4. ก. และ ข.
- 5. ข. และ ค.

5. รถบรรทุกมวล M ขนตู้มวล m บนกระบะ เคลื่อนที่ด้วยความเร็วต้น \vec{u} ดังภาพ กำหนดให้ μ_k เป็นสัมประสิทธิ์ความเสียดทานจลน์ระหว่างตู้และพื้นกระบะรถบรรทุก μ_s เป็นสัมประสิทธิ์ความเสียดทานสถิตระหว่างตู้และพื้นกระบะรถบรรทุก g เป็นขนาดของความเร่งโน้มถ่วง

ถ้าต้องการให้รถหยุดนิ่งโดยที่ตู้ยังอยู่นิ่งเทียบกับรถ ระยะทางที่สั้นที่สุดตั้งแต่เริ่มเบรกจนกระทั่งรถหยุดนิ่ง เป็นเท่าใด

- 1. $\frac{u^2}{2\mu_s g}$
- $2. \ \frac{u^2}{2\mu_k g}$
- $3. \ \frac{u^2}{(\mu_k + \mu_s)g}$
- $4. \left(\frac{M+m}{m}\right) \frac{u^2}{2\mu_s g}$
- 5. $\left(\frac{M+m}{m}\right)\frac{u^2}{2\mu_k g}$

6. กระถางต้นไม้มวล m ถูกแขวนอยู่บนเส้นลวดสองเส้นคือ A และ B ซึ่งยึดติดกับเสาสองต้น โดยมุมที่เส้น ลวด A กระทำกับเส้นแนวระดับเท่ากับ θ และเส้นลวด A และ B ทำมุมกัน 90 องศา ดังภาพ กำหนดให้ g เป็นขนาดของความเร่งโน้มถ่วง

ขนาดของแรงดึงในเส้นลวด B มีค่าเท่าใด

- 1. $mg \sin \theta$
- 2. $mg \cos \theta$
- 3. $mg \tan \theta$
- 4. $\frac{mg}{\sin \theta}$
- 5. $\frac{mg}{\tan \theta}$

7. ออกแรงกระทำต่อวัตถุ 2 ครั้ง ได้กราฟความสัมพันธ์ระหว่างขนาดของแรง F ที่กระทำต่อวัตถุกับเวลา t

กำหนดให้ ขณะที่วัตถุถูกแรงกระทำ มวลของวัตถุและทิศทางของแรงไม่เปลี่ยนแปลง

ข้อใดเปรียบเทียบขนาดของการดลครั้งที่ $1\left(I_{1}\right)$ และครั้งที่ $2\left(I_{2}\right)$ ได้ถูกต้อง

- 1. I_1 มากกว่า I_2 เพราะพื้นที่ใต้กราฟของครั้งที่ 1 มากกว่าครั้งที่ 2
- 2. I_1 มากกว่า I_2 เพราะขนาดของแรงสูงสุดของครั้งที่ 1 มากกว่าของครั้งที่ 2
- 3. I_2 มากกว่า I_1 เพราะแรงเฉลี่ยของครั้งที่ 2 มากกว่าครั้งที่ 1
- 4. I_2 มากกว่า I_1 เพราะช่วงเวลาที่วัตถุถูกแรงกระทำของครั้งที่ 2 มากกว่าของครั้งที่ 1
- 5. I_2 มากกว่า I_1 เพราะขนาดของแรงของครั้งที่ 2 ลดลงจากจุดสูงสุดเร็วกว่าของครั้งที่ 1

8. คลื่นกลเคลื่อนที่ด้วยอัตราเร็ว 2.0 เมตรต่อวินาที เมื่อพิจารณาอนุภาคหนึ่งที่ตำแหน่งใดตำแหน่งหนึ่งใน ตัวกลาง พบว่า ความสัมพันธ์ระหว่างการกระจัดกับเวลาเป็นดังกราฟ

ณ เวลาหนึ่ง ๆ อนุภาคสองอนุภาคใด ๆ ในตัวกลาง ที่มีเฟสต่างกัน $\frac{\pi}{4}$ เรเดียน จะอยู่ห่างกันกี่เมตร

- 1. 0.1
- 2. 0.125
- 3. 0.25
- 4. 0.5
- 5. 1.0

9. ปลายเชือกด้านซ้ายของเชือกเส้นหนึ่งถูกตรึงอยู่กับที่ เมื่อสะบัดปลายเชือกด้านขวาทำให้เกิดคลื่นในเส้น เชือก 2 คลื่น ที่มีรูปร่างต่างกัน เคลื่อนที่ในทิศทางเดียวกันด้วยอัตราเร็วเท่ากัน 1 เมตรต่อวินาที รูปร่าง คลื่น ณ เวลาหนึ่งเป็นดังภาพ

ข้อใดแสดงรูปร่างของคลื่นเมื่อเวลาผ่านไป 2 วินาที ได้ถูกต้อง

1.

2.

3.

4.

5.

10. ในการเตรียมงานจุดพลุใกล้ชุมชนหนึ่ง ผู้จัดงานทำการตรวจสอบระดับเสียง โดยทดสอบจุดพลุที่ทำให้เกิด เสียงที่มีความถี่ประมาณ 1000 เฮิรตซ์ ในสถานที่เตรียมจัดงาน พบว่า ที่ระยะห่างจากจุดที่ทดสอบ 15 เมตร วัดระดับเสียงได้ 140 เดซิเบล

กำหนดให้ ความสัมพันธ์ระหว่างระดับเสียงและความเข้มเสียง กับความถี่ที่คนในชุมชนนี้ได้ยิน เป็นดัง กราฟ

จากผลการทดสอบและกราฟข้างต้น บริเวณที่จุดพลุควรอยู่ห่างจากชุมชนอย่างน้อยที่สุดกี่เมตร คนใน ชุมชนจึงได้ยินเสียงที่ระดับเสียงไม่เกินขีดเริ่มเปลี่ยนของการเจ็บปวด

- 1. 1.3×10
- 2. 1.3×10^2
- 3. 1.5×10^2
- 4. 1.5×10^3
- 5. 1.5×10^8

11. นักเรียนศึกษาการบีตของเสียงระหว่างแหล่งกำเนิดเสียงหนึ่งที่มีความถี่ 435 เฮิรตซ์ กับส้อมเสียง 4 อันที่มี ความถี่ของเสียง ดังตาราง

ส้อมเสียง	ความถี่ (เฮิรตซ์)
A	425
В	430
С	440
D	445

ถ้าต้องการให้เกิดบีตระหว่างเสียงจากแหล่งกำเนิดเสียงกับเสียงจากการเคาะส้อมเสียง 1 อัน โดยมีความถี่ บีตเท่ากับ 5 เฮิรตซ์ ควรเลือกใช้ส้อมเสียงใด และเสียงดังกล่าวจะมีเสียงดังเป็นจังหวะกี่ครั้งใน 2 วินาที

- 1. ส้อมเสียง A และ 5 ครั้ง
- 2. ส้อมเสียง B และ 5 ครั้ง
- 3. ส้อมเสียง C และ 10 ครั้ง
- 4. ส้อมเสียง D และ 5 ครั้ง
- 5. ส้อมเสียง D และ 10 ครั้ง

12. เมื่อฉายแสงเลเซอร์เข้าสู่แท่งพลาสติกรูปครึ่งวงกลมตามแนวรัศมี แสงเลเซอร์ที่ออกจากด้านระนาบจะมี มุมวิกฤตมีค่าเท่ากับ 30 องศา ดังภาพ

กำหนดให้ อัตราเร็วของแสงในอากาศมีค่าเท่ากับ 3.0×10^8 เมตรต่อวินาที ค่าดรรชนีหักเหของอากาศมีค่าเท่ากับ 1 อัตราเร็วของแสงในแท่งพลาสติกจะมีค่ากี่เมตรต่อวินาที และถ้าให้แสงเลเซอร์เดิมเคลื่อนที่จากแท่งพลาส-ติกไปยังอากาศ ด้วยมุมตกกระทบน้อยลงเป็น 20 องศา แสงจะเคลื่อนที่อย่างไร

- $1.\,\,1.5 imes10^{8}$ เมตรต่อวินาที และ แสงจะหักเหออกสู่อากาศด้วยมุมหักเหที่น้อยกว่า 20 องศา
- $2. \ 1.5 imes 10^8$ เมตรต่อวินาที และ แสงจะหักเหออกสู่อากาศด้วยมุมหักเหที่มากกว่า 20 องศา
- $3. \ 1.5 imes 10^8$ เมตรต่อวินาที และ แสงจะสะท้อนกลับหมดโดยไม่ออกจากตัวกลาง
- 4. 3.0×10^8 เมตรต่อวินาที และ แสงจะหักเหออกสู่อากาศด้วยมุมหักเหที่มากกว่า 20 องศา
- 5. 3.0×10^8 เมตรต่อวินาที และ แสงจะสะท้อนกลับหมดโดยไม่ออกจากตัวกลาง

13. ฉายแสงเลเซอร์ความยาวคลื่น 650 นาโนเมตร ตกกระทบตั้งฉากกับเกรตติง พบว่า เกิดจุดสว่างกลางและ จุดสว่างอันดับที่ 1 ที่ตำแหน่งบนฉากซึ่งอยู่ห่างจากเกรตติง 1.0 เมตร ดังภาพ

พิจารณาข้อความต่อไปนี้

- ก. ระยะห่างระหว่างช่องของเกรตติงมีค่าเท่ากับ 5.0 ไมโครเมตร
- ข. ถ้าฉายแสงเลเซอร์ที่มีความยาวคลื่นน้อยกว่า 650 นาโนเมตร ระยะห่างระหว่างจุดสว่างจะมีค่าเพิ่ม ขึ้น
- ค. ถ้าใช้เกรตติงอันใหม่ แล้วพบว่าระยะห่างระหว่างจุดสว่างมีค่าน้อยลง แสดงว่าระยะห่างระหว่างช่อง ของเกรตติงจะมีค่ามากกว่าเดิม
- 1. ก. เท่านั้น
- 2. ข. เท่านั้น
- 3. ค. เท่านั้น
- 4. ก. และ ค.
- 5. ข. และ ค.

14. ลวดโลหะ A และ B มีพื้นที่หน้าตัด 10.0 และ 2.0 ตารางมิลลิเมตร ตามลำดับ กำหนดให้ ความสัมพันธ์ระหว่างความเค้น (σ) และความเครียด (ε) ของลวดโลหะทั้งสองเป็นดังกราฟ

หากต้องการลวดโลหะที่ทนต่อแรงภายนอกที่มากระทำได้มากกว่า โดยยังสามารถกลับมามีความยาวเท่า เดิมควรเลือกลวดโลหะใด และมอดุลัสของยังของลวดโลหะดังกล่าวมีค่ากี่พาสคัล

- 1. ลวดโลหะ A และ $2.0 imes 10^{-11}$ พาสคัล
- 2. ลวดโลหะ A และ 5.0×10^{10} พาสคัล
- 3. ลวดโลหะ B และ 5.0×10^{-12} พาสคัล
- 4. ลวดโลหะ B และ 8.0×10^8 พาสคัล
- 5. ลวดโลหะ B และ 2.0×10^{11} พาสคัล

- 15. ทรงกระบอกที่มีลูกสูบเคลื่อนที่ได้คล่อง ภายในบรรจุแก๊สอุดมคติ 2 โมล อุณหภูมิ 67 องศาเซลเซียสและมี ความดันคงตัวเท่ากับ 10 กิโลพาสคัล กำหนดให้ R เป็นค่าคงตัวแก๊ส ถ้าลดอุณหภูมิของแก๊สลงช้า ๆ จนเหลือ 48 องศาเซลเซียส โดยความดันเท่าเดิม งานที่เกิดขึ้นเมื่อลูกสูบ เคลื่อนที่มีค่าเท่าใด และระบบมีการเปลี่ยนแปลงปริมาตรอย่างไร
 - $1.~3.8R imes 10^{-3}$ และ ปริมาตรลดลง
 - $2.\,\,38R$ และ ปริมาตรลดลง
 - 3. 38R และ ปริมาตรเพิ่มขึ้น
 - 4. $3.8R \times 10^5$ และ ปริมาตรลดลง
 - $5.~3.8R imes 10^5$ และ ปริมาตรเพิ่มขึ้น

16. ดัดลวดขนาดเล็กมาก มวล 2.0 กรัม ให้เป็นวงรูปสี่เหลี่ยมผืนผ้า กว้าง 2.4 เซนติเมตร ยาว 2.5 เซนติเมตร แล้วผูกด้วยเชือกเบาและนำไปวางบนผิวของของเหลวชนิดหนึ่งที่มีความตึงผิว 0.4 นิวตันต่อเมตร จากนั้น ออกแรงดึงเชือก ดังภาพ

ถ้าต้องการให้ลวดหลุดออกจากผิวของของเหลวได้ จะต้องออกแรงดึงขนาดอย่างน้อยกี่นิวตัน

- 1. 3.9×10^{-2}
- $2. 4.9 \times 10^{-2}$
- 3. 5.9×10^{-2}
- 4. 7.8×10^{-2}
- 5. 9.8×10^{-2}

17. ตัวนำทรงกลม ${f A}$ และ ${f B}$ มีมวล ${f M}$ เท่ากัน แต่ขนาดประจุไฟฟ้าบนตัวนำทรงกลม ${f A}$ เท่ากับ ${f Q}$ ส่วนตัวนำ ทรงกลม ${f B}$ มีขนาดประจุไฟฟ้าเป็น ${f n}$ เท่าของตัวนำทรงกลม ${f A}$

วางตัวนำทรงกลม A ไว้บนพื้นที่เป็นฉนวน แล้วนำ ตัวนำทรงกลม B ที่ผูกด้วยเชือกเบาเข้าใกล้ตัวนำ ทรงกลม A ใน แนว ดิ่ง โดยให้ ระยะ ห่าง ระหว่าง จุดศูนย์กลางของตัวนำทรงกลม ทั้งสอง เท่ากับ d ดังภาพ

กำหนดให้ k เป็นค่าคงตัวคูลอมบ์ $g \ {
m id} \ u$

ถ้าต้องการให้ตัวนำทรงกลม A เริ่มจะลอยขึ้นจากพื้นได้ ชนิดประจุไฟฟ้าบนตัวนำทรงกลมทั้งสองจะต้อง เป็นอย่างไร และระยะห่าง d จะต้องมีค่ามากที่สุดเท่าใด

	ชนิดประจุไฟฟ้า	ระยะห่าง d
1.	ชนิดเดียวกัน	$\sqrt{\frac{nkQ}{Mg}}$
2.	ชนิดเดียวกัน	$Q\sqrt{\frac{k}{Mg}}$
3.	ชนิดต่างกัน	$\sqrt{\frac{nkQ}{Mg}}$
4.	ชนิดต่างกัน	$Q\sqrt{\frac{k}{Mg}}$
5.	ชนิดต่างกัน	$Q\sqrt{\frac{nk}{Mg}}$

18. เครื่องดักจับฝุ่นด้วยไฟฟ้าสถิตชนิดหนึ่งมีหลักการทำงาน โดยให้อากาศที่มีอนุภาคฝุ่นเคลื่อนที่ผ่านส่วนที่ สร้างประจุไฟฟ้า เพื่อให้อนุภาคฝุ่นมีประจุไฟฟ้าลบ แล้วเคลื่อนที่ไปยังแผ่นรับฝุ่นที่มีขั้วไฟฟ้า พิจารณาอนุภาคฝุ่น A และ B ซึ่งอนุภาคฝุ่น A มีมวลมากกว่า B และอัตราส่วนระหว่างประจุต่อมวลของ A มากกว่าของ B ขณะอนุภาคทั้งสองเคลื่อนที่เข้าหาแผ่นรับฝุ่น ดังภาพ

กำหนดให้ แรงโน้มถ่วงมีขนาดน้อยมากเมื่อเทียบกับแรงเนื่องจากสนามไฟฟ้าระหว่างแผ่นรับฝุ่น สนามไฟฟ้าระหว่างแผ่นรับฝุ่นมีทิศทางใด และขณะอนุภาคฝุ่นทั้งสองเคลื่อนที่ในสนามไฟฟ้า ขนาดของ ความเร่งและขนาดประจุเป็นไปตามข้อใด

	ทิศทางของสนามไฟฟ้า	ขนาดความเร่ง	ขนาดประจุ
1.	ขึ้น	A น้อยกว่า B	A น้อยกว่า B
2.	ขึ้น	A มากกว่า B	A มากกว่า B
3.	ลง	A น้อยกว่า B	A น้อยกว่า B
4.	ลง	A เท่ากับ B	A มากกว่า B
5.	ลง	A มากกว่า B	A มากกว่า B

19. แบตเตอรี่ขนาด 12 โวลต์ ที่มีความต้านทานภายใน 1 โอห์ม ต่ออยู่กับอุปกรณ์ไฟฟ้าที่มีความต้านทาน $R_1 = 10\,\Omega$ และตัวต้านทานที่มีความต้านทาน $R_2 = 10\,\Omega$ ดังภาพ

พลังงานไฟฟ้าที่อุปกรณ์ไฟฟ้าใช้ไปใน 30 วินาที มีค่ากี่จูล

- 1. 12
- 2. 300
- 3. 432
- 4. 600
- 5. 1200

20. ณ อุณหภูมิหนึ่ง ลวดตัวนำ A B และ C มีความยาวและความต้านทาน ดังตาราง

ลวดตัวนำ	ความยาว (เมตร)	ความต้านทาน (โอห์ม)
Α	1.0	2.2
В	2.0	4.4
С	2.0	5.2

พิจารณาข้อความต่อไปนี้

- ก. ถ้าลวดตัวน้ำ ${f A}$ มีสภาพต้านทานไฟฟ้า 2.2×10^{-7} โอห์ม เมตร จะมีพื้นที่หน้าตัด 0.1 ตารางมิลลิ-เมตร
- ข. ถ้าลวดตัวนำ A และ B มีสภาพต้านทานไฟฟ้าเท่ากัน พื้นที่หน้าตัดของลวดตัวนำ A จะมากกว่า B
- ค. ถ้าลวดตัวนำ C มีความยาว 1.0 เมตร โดยพื้นที่หน้าตัดเท่าเดิม จะมีความต้านทาน 10.4 โอห์ม

ข้อความใดถูกต้อง

- 1. ก. เท่านั้น
- 2. ข. เท่านั้น
- 3. ก. และ ค. เท่านั้น
- 4. ข. และ ค. เท่านั้น
- 5. ก. ข. และ ค.

21. ขดลวดรูปสี่เหลี่ยมผืนผ้ามีพื้นที่ 0.50 ตารางเมตร อยู่ในบริเวณที่มีสนามแม่เหล็กสม่ำเสมอ \vec{B} ในทิศ +z ในขณะเริ่มต้น ระนาบของขดลวดวางตัวอยู่ในระนาบ xy จากนั้นหมุนขดลวดรอบแกน y โดยระนาบของ ขดลวดทำมุม θ กับระนาบ xy ดังภาพ

ภาพ ก. มุมมองแบบ 3 มิติ

ภาพ ข. ภาพมุมองด้านข้าง โดยแกน y มีทิศทางพุ่งออกจากระนาบกระดาษ

ถ้าขณะมุม $\theta=0^\circ$ ฟลักซ์แม่เหล็กที่ผ่านขดลวดเท่ากับ 0.40 เวเบอร์ สนามแม่เหล็กมีขนาดกี่เทสลาและ เมื่อ θ เพิ่มขึ้นจาก 0 องศา ถึง 90 องศา ฟลักซ์แม่เหล็กมีการเปลี่ยนแปลงอย่างไร

	ขนาดสนามแม่เหล็ก (เทสลา)	การเปลี่ยนแปลงฟลักซ์แม่เหล็ก
1.	0.20	น้อยลง
2.	0.80	มากขึ้น
3.	0.80	น้อยลง
4.	1.25	มากขึ้น
5.	1.25	น้อยลง

22. นักเรียนคนหนึ่งมีแผ่นโพลารอยด์ที่ทราบแนวโพลาไรส์ 1 แผ่น และแหล่งกำเนิดแสงโพลาไรส์ที่ไม่ทราบ แนวโพลาไรส์ เขาจึงคิดวิธีการทดลองเพื่อหาแนวโพลาไรส์ของแสงดังกล่าว ดังนี้ "ฉายแสงให้เคลื่อนที่ในทิศ +z ผ่านแผ่นโพลารอยด์ซึ่งอยู่ในแนวขนานกับระนาบ xy ดังภาพ แล้วสังเกต ความสว่างของแสงในขณะที่หมุนแผ่นโพลารอยด์รอบแกน z อย่างช้า ๆ เพื่อหาตำแหน่งมุมที่ทำให้มอง เห็นแสงมีความสว่างมากที่สุด"

วิธีข้างต้นจะสามารถใช้หาแนวโพลาไรส์ของแสงได้หรือไม่ เพราะเหตุใด

- 1. ไม่ได้ เพราะความสว่างของแสงที่ผ่านแผ่นโพลารอยด์จะคงที่ ไม่มีการเปลี่ยนแปลง
- 2. ไม่ได้ เพราะการใช้แผ่นโพลารอยด์เพียงแผ่นเดียวจะไม่สามารถหาแนวโพลาไรส์ของแสงได้
- 3. ไม่ได้ เพราะแสงโพลาไรส์จะมีสนามไฟฟ้าอยู่ในหลายแนวจึงไม่สามารถหาแนวโพลาไรส์ได้
- 4. ได้ เพราะขณะที่แสงมีความสว่างมากที่สุด จะระบุได้ว่า แนวโพลาไรส์ของแสงอยู่ในแนวขนานกับ แนวโพลาไรส์ของแผ่นโพลารอยด์
- 5. ได้ เพราะขณะที่แสงมีความสว่างมากที่สุด จะระบุได้ว่า แนวโพลาไรส์ของแสงอยู่ในแนวตั้งฉากกับ แนวโพลาไรส์ของแผ่นโพลารอยด์

23. เมื่อฉายแสงความถี่ f ค่าต่าง ๆ ตกกระทบผิวโลหะชนิดหนึ่ง ได้ความสัมพันธ์ระหว่างความต่างศักย์หยุด ยั้งกับความถี่ของแสง ดังกราฟ

- กำหนดให้ e เป็นค่าประจุของอิเล็กตรอน h เป็นค่าคงตัวของพลังค์ ในหน่วยจูล วินาที ที่ความถี่ f พลังงานจลน์สูงสุดของโฟโตอิเล็กตรอนมีค่ากี่อิเล็กตรอนโวลต์
 - $1. \ \frac{hf}{e} 2.0$
 - 2. $\frac{hf}{e} + 2.0$
 - 3. $\frac{hf}{e} + 5.0$
 - 4. hf 2.0e
 - 5. hf + 2.0e

24. ปฏิกิริยานิวเคลียร์หนึ่ง เขียนแทนได้ด้วยสมการ

$${}^{16}_{8}O + {}^{16}_{8}O \longrightarrow {}^{28}_{14}Si + {}^{4}_{2}He$$

กำหนดให้ มวล 1 u เทียบเท่ากับพลังงาน 932 เมกะอิเล็กตรอนโวลต์

 $m_{
m O}$ เป็นมวลของออกซิเจนในหน่วย ${
m u}$

 m_{He} เป็นมวลของฮีเลียมในหน่วย \mathbf{u}

E เป็นพลังงานที่ได้จากปฏิกิริยานิวเคลียร์นี้ในหน่วยเมกะอิเล็กตรอนโวลต์ ปฏิกิริยานิวเคลียร์นี้ เป็นปฏิกิริยานิวเคลียร์ชนิดใด และ มวลในหน่วย ${f u}$ ของซิลิคอนมีค่าเท่าใด

- 1. ฟิชชัน และ $2m_{
 m O} + m_{
 m He} 932E$
- 2. ฟิชชัน และ $2m_{
 m O}-m_{
 m He}-rac{E}{932}$
- 3. ฟิชชั้น และ $2m_{
 m O}-m_{
 m He}-932E$
- 4. ฟิวชัน และ $2m_{
 m O} m_{
 m He} rac{E}{932}$
- 5. ฟิวชัน และ $2m_{
 m O}-m_{
 m He}-932E$

25. ในปรากฏการณ์หนึ่ง อนุภาค ${f A}$ เคลื่อนที่มาพบอนุภาค ${f B}$ แล้วทำให้ได้รังสีแกมมา ดังสมการ

อนุภาค
$$A$$
 + อนุภาค B \longrightarrow รังสีแกมมา

โดยที่อนุภาค \mathbf{A} และ \mathbf{B} เป็นอนุภาคที่ประกอบด้วย ควาร์กและแอนติควาร์ก พิจารณาข้อความต่อไปนี้

- ก. อนุภาค ${f A}$ และ อนุภาค ${f B}$ มีขนาดของประจุไฟฟ้าเท่ากัน
- ข. อนุภาคมูลฐานในอนุภาค B ยึดเหนี่ยวกันด้วยการแลกเปลี่ยนกลูออนระหว่างกัน
- ค. ผลรวมมวลของอนุภาค ${f A}$ กับอนุภาค ${f B}$ เท่ากับ มวลของโฟตอนของรังสีแกมมาโฟตอนเดียว

ข้อความใดถูกต้อง

- 1. ก. เท่านั้น
- 2. ข. เท่านั้น
- 3. ก. และ ข.
- 4. ก. และ ค.
- 5. ข. และ ค.

- 26. วางวัตถุไว้หน้ากระจกโค้ง ซึ่งมีรัศมีความโค้ง 28 เซนติเมตร พบว่า เกิดภาพจริงขนาดเป็น 2 เท่าของวัตถุ วัตถุอยู่ห่างจากกระจกโค้งกี่เซนติเมตร
- 27. ออกแรงทิศทางขนานกับพื้นกระทำต่อวัตถุให้เคลื่อนที่ไปบนพื้นระดับเป็นระยะทาง 30 เมตร ความสัม-พันธ์ระหว่างแรงกับตำแหน่งของวัตถุชิ้นนี้เป็นดังกราฟ

ถ้าแรงนี้กระทำต่อวัตถุเป็นเวลา 10 วินาที กำลังเฉลี่ยของแรงนี้มีค่ากี่<u>วัตต์</u>

28. แก๊สอุดมคติบรรจุอยู่ในภาชนะปิดปริมาตรคงตัว 0.5 ลูกบาศก์เมตร วัดความดันของแก๊สขณะที่แก๊สมี อุณหภูมิค่าต่าง ๆ แล้วนำข้อมูลที่วัดได้ไปเขียนกราฟแสดงความสัมพันธ์ระหว่างความดันของแก๊สและ อุณหภูมิของแก๊ส ได้ผลดังกราฟ

กำหนดให้ ค่าคงตัวแก๊ส $R=8.3\,\mathrm{J/(mol\,K)}$ ค่าคงตัวอาโวกาโดร $N_{\mathrm{A}}=6.0\times10^{23}\,\mathrm{mol}^{-1}$ ค่าคงตัวโบลต์ซมันน์ $k_{\mathrm{B}}=1.4\times10^{-23}\,\mathrm{J/K}$ แก๊สภายในภาชนะมีจำนวนกี่<u>โมล</u>

29. วัตถุเคลื่อนที่ในแนวตรงโดยเริ่มจากหยุดนิ่ง ซึ่งความเร็ว ณ เวลาต่าง ๆ แสดงได้ดังกราฟ

ความเร่งเฉลี่ยของวัตถุนี้ ในช่วงเวลา $t=5\,\mathrm{s}$ ถึง $t=25\,\mathrm{s}$ มีขนาดกี่<u>เมตรต่อวินาที</u>2

30. ต่อตัวต้านทาน R ที่มีความต้านทาน 10 โอห์ม กับลวดตัวนำ X และ Y ที่วางขนานกันและอยู่ห่างกันเป็น ระยะ 25 เซนติเมตร แล้ววางแท่งตัวนำ Z ตั้งฉากกับลวดตัวนำทั้งสอง ดังภาพ ซึ่งเป็นมุมมองจากด้านบน จากนั้น ดึงแท่งตัวนำ Z ให้เคลื่อนที่ไปทางขวาด้วยความเร็วคงตัว 40 เซนติเมตรต่อวินาที ในบริเวณที่มี สนามแม่เหล็กสม่ำเสมอ 1 เทสลา ซึ่งมีทิศพุ่งออกและตั้งฉากกับระนาบกระดาษ กำหนดให้ ความต้านทานของลวดตัวนำ X และ Y และแท่งตัวนำ Z มีค่าน้อยมากเมื่อเปรียบเทียบกับของ ตัวต้านทาน R

กระแสไฟฟ้าเหนี่ยวนำที่ผ่านตัวต้านทานมีค่ากี่แอมแปร์

เฉลย

- 1. 3. 58 และ 4. 58.4 *
- 2. 5. 60
- 3. 3. อัตราเร็วเชิงมุมของ m_1 มีค่าเท่ากับอัตราเร็วเชิงมุมของ m_2
- 4. 5. ข. และ ค.
- 5. 1. $\frac{u^2}{2\mu_s g}$
- 6. 2. $mg \cos \theta$
- 7. 1. I_1 มากกว่า I_2 เพราะพื้นที่ใต้กราฟของครั้งที่ 1 มากกว่าครั้งที่ 2
- 8. 4. 0.5
- 9. 1.

- 10. 3. 1.5×10^2
- 11. 3. ส้อมเสียง C และ 10 ครั้ง
- 12. 2. 1.5×10^8 เมตรต่อวินาที และ แสงจะหักเหออกสู่อากาศด้วยมุมหักเหที่มากกว่า 20 องศา
- 13. 4. ก. และ ค.
- 14. 2. ลวดโลหะ A และ 5.0×10^{10} พาสคัล
- 15. 2. 38R และ ปริมาตรลดลง
- 16. 5. 9.8×10^{-2}
- 17. 5. ชนิดต่างกัน, $Q\sqrt{rac{nk}{Mg}}$
- 18. 5. ลง, A มากกว่า B, A มากกว่า B
- 19. 2. 300

^{*}ข้อสอบมีความผิดพลาด แต่ในทางปฏิบัติข้อ 3 เป็นข้อที่ถูกต้องมากกว่า

- 20. 1. ก. เท่านั้น
- 21. 3. 0.80, น้อยลง
- 22. 4. ได้ เพราะขณะที่แสงมีความสว่างมากที่สุด จะระบุได้ว่า แนวโพลาไรส์ของแสงอยู่ในแนวขนานกับแนว โพลาไรส์ของแผ่นโพลารอยด์
- 23. 1. $\frac{hf}{e} 2.0$
- 24. 4. ฟิวซัน และ 2 $m_{
 m O}-m_{
 m He}-rac{E}{932}$
- 25. 3. ก. และ ข.
- 26. 21 cm
- 27. 25 W
- 28. 2.5 mol
- 29. 1 m/s^2
- 30. 0.01 A