	from sklearn.datasets import make_moons, load_digits from scipy.stats import special_ortho_group import matplotlib.pyplot as plt import random 1 Two Moons and Gaussian Mixture Model with INN In this task we build a RealNVP invertible architecture to try and learn the two moons distribution. We inspect what influence model parameters and learning parameters have on the samples the networks produce. We check if the latent vectors which the network assigns true data is gaussian distributed. We also evaluate our synthetic data via MMD calculation. Once this is done, we also train our model on a Gaussian mixture distribution and compare the performance to the two moons case. test_x, _= make_moons(n_samples=1000, shuffle=True, noise=0.1, random_state=42) plt.scatter(test_x[:,0], test_x[:,1]) <matplotlib.collections.pathcollection 0x2118cae5880="" at=""></matplotlib.collections.pathcollection>
10[2]:	1.25 - 1.00 - 0.75 - 0.50 - 0.25 - 0.00 -
n [3]:	<pre>model = nn.Sequential(</pre>
	<pre>nn.Linear(hidden_size, hidden_size),</pre>
	<pre>Q = special_ortho_group.rvs(dim) return torch.Tensor(Q) class coupling_block(nn.Module): definit(self, input_size, hidden_size): super()init() self.input_size = input_size self.hidden_size = hidden_size self.split1 = math.floor(self.input_size/2) self.split2 = self.input_size - self.split1 self.subnet = subnet_constructor(self.split1, self.hidden_size, 2*self.split2)</pre>
	<pre>def forward(self, x, rev=False): x1, x2 = x[, :self.split1], x[, self.split1:] params = self.subnet(x1) s, t = params[,:self.split2], params[,self.split2:] s = torch.tanh(s) ljd = torch.sum(s, -1) if not rev: s = torch.exp(s) x2 = s*x2 + t</pre>
	<pre>return torch.cat([x1,x2], -1), ljd if rev: s = torch.exp(-s) x2 = s * (x2-t) return torch.cat([x1,x2], -1) class realNVP(nn.Module): definit(self, input_size, hidden_size, n_blocks): super()init() self.input_size = input_size self.hidden_size = hidden_size self.n_blocks = n_blocks solf_coupling_blocks = np_ModuloList([coupling_block(input_size_bidden_size_bi</pre>
	<pre>self.coupling_blocks = nn.ModuleList([coupling_block(input_size, hidden_size) for _ in range(blocks)]) self.orthogonal_matrices = [ortogonal_matrix(input_size) for _ in range(n_blocks-1)] def forward(self, x, rev=False): if rev: return selfinverse(x) return selfforward(x) def _forward(self, x): ljd = torch.zeros((x.shape[0])) for l in range(self.n_blocks-1): x, partial_ljd = self.coupling_blocks[l](x) ljd += partial_ljd</pre>
	<pre>x = torch.matmul(x, self.orthogonal_matrices[1]) x, partial_ljd = self.coupling_blocks[-1](x) ljd += partial_ljd return x, ljd def _inverse(self, x): for l in range (self.n_blocks-1, 0, -1): x = self.coupling_blocks[1](x, rev=True) x = torch.matmul(x, self.orthogonal_matrices[1-1].T) x = self.coupling_blocks[0](x, rev=True) return x def sample(self, num_samples): z = torch.normal(mean=torch.zeros((num samples, self.input size)), std=torch.ones((num samples))</pre>
n [4]:	<pre>self.input_size))) return selfinverse(z) def train_inn(model, batchsize=1000, epochs=1000, lr=0.001): optimizer = torch.optim.Adam(params=model.parameters(), lr=lr) for epoch in range(epochs): optimizer.zero_grad() x_data, y_data = make_moons(n_samples=batchsize, shuffle=True, noise=0.1, random_state=42) x_data, y_data = torch.Tensor(x_data), torch.Tensor(y_data) z, ljd = model(x_data) loss = torch.sum(0.5*torch.sum(z**2, -1)-ljd) / batchsize</pre>
n [5]:	<pre>loss.backward() optimizer.step() if (epoch+1) % (epochs//3) == 0: print(f"Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}") def plot_samples(model, title="Generated samples from INN", axs=None): samples = model.sample(1000) samples = samples.detach().numpy() if axs is None: fig, axs = plt.subplots(1,1)</pre>
n [6]:	axs.scatter(samples[:,0], samples[:,1]) axs.set_title(title) First we will compare the effect of changing the model parameters (width of the coupling nets and the number of coupling blocks), while training for a fixed number of 100 epochs and a fixed learning rate. n_blocks = [2, 5, 10] hidden_sizes = [16, 64, 128] fig, axs = plt.subplots(3,3,figsize=(15,10)) for n in range(3):
	<pre>for h in range(3): model = realNVP(2, hidden_sizes[h], n_blocks[n]) print(f"Training of INN with hidden_size {hidden_sizes[h]} and {n_blocks[n]} coupling blocks arted.") train_inn(model, epochs=100, lr=0.001) plot_samples(model, title=f"hidden_size {hidden_sizes[h]} and {n_blocks[n]} coupling blocks:" axs=axs[n, h]) Training of INN with hidden_size 16 and 2 coupling blocks started. Epoch [33/100], Loss: 0.2504 Epoch [66/100], Loss: 0.1504 Epoch [99/100], Loss: 0.0978 Training of INN with hidden size 64 and 2 coupling blocks started.</pre>
	Epoch [33/100], Loss: 0.0403 Epoch [66/100], Loss: -0.1422 Epoch [99/100], Loss: -0.2243 Training of INN with hidden_size 128 and 2 coupling blocks started. Epoch [33/100], Loss: -0.1602 Epoch [66/100], Loss: -0.2389 Epoch [99/100], Loss: -0.2700 Training of INN with hidden_size 16 and 5 coupling blocks started. Epoch [33/100], Loss: 0.3824 Epoch [66/100], Loss: 0.0974 Epoch [99/100], Loss: -0.0433 Training of INN with hidden_size 64 and 5 coupling blocks started. Epoch [33/100], Loss: -0.2528
	Epoch [66/100], Loss: -0.4679 Epoch [99/100], Loss: -0.5681 Training of INN with hidden_size 128 and 5 coupling blocks started. Epoch [33/100], Loss: -0.4114 Epoch [66/100], Loss: -0.6675 Epoch [99/100], Loss: -0.7544 Training of INN with hidden_size 16 and 10 coupling blocks started. Epoch [33/100], Loss: 0.0796 Epoch [66/100], Loss: -0.1491 Epoch [99/100], Loss: -0.3317 Training of INN with hidden_size 64 and 10 coupling blocks started. Epoch [33/100], Loss: -0.5040 Epoch [66/100], Loss: -0.5040 Epoch [66/100], Loss: -0.7008
	Epoch [99/100], Loss: -0.7645 Training of INN with hidden_size 128 and 10 coupling blocks started. Epoch [33/100], Loss: -0.6532 Epoch [66/100], Loss: -0.7833 Epoch [99/100], Loss: -0.8337 hidden_size 16 and 2 coupling blocks: hidden_size 64 and 2 coupling blocks: 2.0
	-0.5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
	-0.5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
ı [7]:	Now we will see how the models perform if we increase training length to 1000 epochs. n_blocks = [2, 5, 10] hidden_sizes = [16, 64, 128] fig, axs = plt.subplots(3,3,figsize=(15,10)) for n in range(3): for h in range(3):
	<pre>model = realNVP(2, hidden_sizes[h], n_blocks[n]) print(f"Training of INN with hidden_size {hidden_sizes[h]} and {n_blocks[n]} coupling blocks arted.") train_inn(model, epochs=1000, lr=0.001) plot_samples(model, title=f"hidden_size {hidden_sizes[h]} and {n_blocks[n]} coupling blocks:' axs=axs[n, h]) Training of INN with hidden_size 16 and 2 coupling blocks started. Epoch [333/1000], Loss: -0.2168 Epoch [666/1000], Loss: -0.3991 Epoch [999/1000], Loss: -0.4637 Training of INN with hidden_size 64 and 2 coupling blocks started. Epoch [333/1000], Loss: -0.3950</pre>
	Epoch [333/1000], Loss: -0.3950 Epoch [666/1000], Loss: -0.4374 Epoch [999/1000], Loss: -0.4461 Training of INN with hidden_size 128 and 2 coupling blocks started. Epoch [333/1000], Loss: -0.5343 Epoch [666/1000], Loss: -0.5535 Epoch [999/1000], Loss: -0.5643 Training of INN with hidden_size 16 and 5 coupling blocks started. Epoch [333/1000], Loss: -0.5159 Epoch [666/1000], Loss: -0.7038 Epoch [999/1000], Loss: -0.7540 Training of INN with hidden_size 64 and 5 coupling blocks started. Epoch [333/1000], Loss: -0.7834 Epoch [666/1000], Loss: -0.7834 Epoch [666/1000], Loss: -0.8195 Epoch [999/1000], Loss: -0.8195 Epoch [999/1000], Loss: -0.8430
	Epoch [999/1000], Loss: -0.8430 Training of INN with hidden_size 128 and 5 coupling blocks started. Epoch [333/1000], Loss: -0.8407 Epoch [666/1000], Loss: -0.8752 Training of INN with hidden_size 16 and 10 coupling blocks started. Epoch [333/1000], Loss: -0.7774 Epoch [666/1000], Loss: -0.8741 Epoch [999/1000], Loss: -0.9061 Training of INN with hidden_size 64 and 10 coupling blocks started. Epoch [333/1000], Loss: -0.8839 Epoch [666/1000], Loss: -0.9264 Epoch [999/1000], Loss: -0.9492
	Training of INN with hidden_size 128 and 10 coupling blocks started. Epoch [333/1000], Loss: -0.8742 Epoch [666/1000], Loss: -0.8943 Epoch [999/1000], Loss: -0.9410 hidden_size 16 and 2 coupling blocks: hidden_size 64 and 2 coupling blocks: hidden_size 128 and 2 coupling blocks: 2.0 -
	-0.51.01
	1.0 -0.5 0.0 0.5 1.0 1.5 2.0 hidden_size 16 and 10 coupling blocks: 1.0 -0.5 0.0 0.5 1.0 1.5 2.0 hidden_size 128 and 10 coupling blocks: 1.0 -0.5 0.0 0.5 1.0 1.5 2.0 hidden_size 128 and 10 coupling blocks: 1.0 -0.5 0.0 0.5 1.0 1.5 2.0 hidden_size 128 and 10 coupling blocks: 1.0 -0.5 0.0 0.5 1.0 1.5 2.0 hidden_size 128 and 10 coupling blocks: 1.0 -0.5 0.0 0.5 1.0 1.5 2.0 hidden_size 128 and 10 coupling blocks: 1.0 -0.5 0.0 0.5 1.0 1.5 2.0 hidden_size 128 and 10 coupling blocks: 1.0 -0.5 0.0 0.5 1.0 1.5 2.0 hidden_size 128 and 10 coupling blocks: 1.0 -0.5 0.0 0.5 1.0 1.5 2.0 hidden_size 128 and 10 coupling blocks: 1.0 -0.5 0.0 0.5 1.0 1.5 2.0 hidden_size 128 and 10 coupling blocks: 1.0 -0.5 0.0 0.5 1.0 1.5 2.0 hidden_size 128 and 10 coupling blocks:
ı [8]:	Interestingly, increasing the width of the coupling nets beyond 16 does not yield further improvements, but rather decreases the quality do to over-fitting. 10 seems to be a good choice for the number of coupling blocks. We can also inspect changing the learning rate for training of different models. learning_rates = [0.05, 0.01, 0.0005] hidden_sizes = [64, 16, 64] n_blocks = [2, 10, 10] fig, axs = plt.subplots(3,3,figsize=(15,10))
	<pre>for m in range(3): for lr in range(3): model = realNVP(2, hidden_sizes[m], n_blocks[m]) print(f"Training of INN with hidden_size {hidden_sizes[m]} and {n_blocks[m]} coupling blocks arted with lr={learning_rates[lr]}.") train_inn(model, epochs=1000, lr=learning_rates[lr]) plot_samples(model, title=f"hidden_size {hidden_sizes[m]} and {n_blocks[m]} coupling blocks ={learning_rates[lr]}):", axs=axs[m, lr]) Training of INN with hidden_size 64 and 2 coupling blocks started with lr=0.05. Epoch [333/1000], Loss: -0.5518 Epoch [666/1000], Loss: -0.5488 Epoch [999/1000], Loss: -0.5723 Training of INN with hidden_size 64 and 2 coupling blocks started with lr=0.01.</pre>
	Epoch [333/1000], Loss: -0.5541 Epoch [666/1000], Loss: -0.5710 Epoch [999/1000], Loss: -0.5776 Training of INN with hidden_size 64 and 2 coupling blocks started with lr=0.0005. Epoch [333/1000], Loss: -0.4852 Epoch [666/1000], Loss: -0.6299 Epoch [999/1000], Loss: -0.6443 Training of INN with hidden_size 16 and 10 coupling blocks started with lr=0.05. Epoch [333/1000], Loss: -0.4545 Epoch [666/1000], Loss: 0.3741 Epoch [999/1000], Loss: -0.5322 Training of INN with hidden_size 16 and 10 coupling blocks started with lr=0.01. Epoch [333/1000], Loss: -0.8798
	Epoch [666/1000], Loss: -0.8606 Epoch [999/1000], Loss: -0.9354 Training of INN with hidden_size 16 and 10 coupling blocks started with 1r=0.0005. Epoch [333/1000], Loss: -0.7088 Epoch [666/1000], Loss: -0.8185 Epoch [999/1000], Loss: -0.8553 Training of INN with hidden_size 64 and 10 coupling blocks started with 1r=0.05. Epoch [333/1000], Loss: 6.2154 Epoch [666/1000], Loss: 5.8692 Epoch [999/1000], Loss: 3.8929 Training of INN with hidden_size 64 and 10 coupling blocks started with 1r=0.01. Epoch [333/1000], Loss: -0.7084 Epoch [666/1000], Loss: -0.5633
	Epoch [999/1000], Loss: -0.7605 Training of INN with hidden_size 64 and 10 coupling blocks started with lr=0.0005. Epoch [333/1000], Loss: -0.8403 Epoch [666/1000], Loss: -0.8982 Epoch [999/1000], Loss: -0.9214 hidden_size 64 and 2 coupling blocks (lr=0.05): hidden_size 64 and 2 coupling blocks (lr=0.01):hidden_size 64 and 2 coupling blocks (lr=0.0005): 1.5 1.0 0.5 0.0 0.5 0.0 0.0
	-0.5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
	hidden size 64 and 10 coupling blocks (Ir=0.01)hidden size 64 and 10 coupling blocks (Ir=0.005) 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
n [9]:	A learning rate which is too high can cause training instabilities as we see here. The default Ir=0.001 seems to be a good choice. Comparison of MMD scores with the function from the last sample solution: def mmd_inverse_multi_quadratic(x, y, bandwidths=None): batch_size = x.size()[0] # compute the kernel matrices for each combination of x, y # (cleverly using broadcasting to do this efficiently) xx, yy, xy = torch.mm(x,x.t()), torch.mm(y,y.t()), torch.mm(x,y.t()) rx = (xx.diag().unsqueeze(0).expand_as(xx))
	<pre>ry = (yy.diag().unsqueeze(0).expand_as(yy)) # compute the sum of kernels at different bandwidths K, L, P = 0, 0, 0 if bandwidths is None: bandwidths = [0.4, 0.8, 1.6] for sigma in bandwidths: s = 1.0 / sigma**2 K += 1.0 / (1.0 + s * (rx.t() + rx - 2.0*xx)) L += 1.0 / (1.0 + s * (ry.t() + ry - 2.0*yy)) P += 1.0 / (1.0 + s * (rx.t() + ry - 2.0*xy))</pre> beta = 1./(batch_size*(batch_size-1)*len(bandwidths)) gamma = 2./(batch_size**2 * len(bandwidths)) return beta * (torch.sum(K)+torch.sum(L)) - gamma * torch.sum(P)
[10]:	<pre>x, _= make_moons(n_samples=1000, shuffle=True, noise=0.1, random_state=42) x = torch.Tensor(x) # use n_blocks as variable parameter for model quality n_blocks = (1, 2, 5, 7, 10, 15) fig, axs = plt.subplots(2,3,figsize=(15,10)) axs = axs.flatten() for n in range(6): model = realNVP(2, 64, n_blocks[n]) print(f"Training of INN with {n blocks[n]} coupling block(s) started.")</pre>
	<pre>train_inn(model) samples = model.sample(1000) mmd = mmd_inverse_multi_quadratic(samples, x) plot_samples(model, title=f"{n_blocks[n]}-block INN, MMD = {mmd:.6f}:", axs=axs[n]) Training of INN with 1 coupling block(s) started. Epoch [333/1000], Loss: -0.0052 Epoch [666/1000], Loss: -0.0167 Epoch [999/1000], Loss: -0.0186 Training of INN with 2 coupling block(s) started. Epoch [333/1000], Loss: -0.6141 Epoch [666/1000], Loss: -0.6483</pre>
	Epoch [999/1000], Loss: -0.6556 Training of INN with 5 coupling block(s) started. Epoch [333/1000], Loss: -0.8566 Epoch [666/1000], Loss: -0.8859 Epoch [999/1000], Loss: -0.8986 Training of INN with 7 coupling block(s) started. Epoch [333/1000], Loss: -0.8649 Epoch [666/1000], Loss: -0.9079 Epoch [999/1000], Loss: -0.9407 Training of INN with 10 coupling block(s) started. Epoch [333/1000], Loss: -0.8840 Epoch [666/1000], Loss: -0.8840 Epoch [666/1000], Loss: -0.9127 Epoch [999/1000], Loss: -0.9369
	Training of INN with 15 coupling block(s) started. Epoch [333/1000], Loss: -0.8846 Epoch [666/1000], Loss: -0.9174 Epoch [999/1000], Loss: -0.9660 1-block INN, MMD = 0.033975: 2-block INN, MMD = 0.003214: 5-block INN, MMD = 0.001227: 2.0- 1.5- 1.0- 0.5- 0.5- 0.5-
	0.0 -0.5 -1.0 -0.5 -1.0 -0.5 -1.0 -1.5 -1.0 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.5 -1.0 -1.0 -1.5 -1.0 -1.0 -1.5 -1.0 -1.0 -1.5 -1.0 -1.0 -1.5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
	0.75
[11]:	<pre>a = 0.5*math.sqrt(3) centers = torch.Tensor([[-1, 0],</pre>
[12]:	<pre>[1, 0],</pre>
	plt.scatter(samples[:,0], samples[:,1]) <matplotlib.collections.pathcollection 0x2118d72d8e0="" at=""> 1.0 - 0.5 -</matplotlib.collections.pathcollection>
	-0.5 - -1.0 -
[13]:	<pre>def train_gmm_inn(model, batchsize=1000, epochs=1000, lr=0.001): optimizer = torch.optim.Adam(params=model.parameters(), lr=lr) for epoch in range(epochs): optimizer.zero_grad() x_data, _ = make_gmm_samples(batchsize) z, ljd = model(x_data) loss = torch.sum(0.5*torch.sum(z**2, -1)-ljd) / batchsize</pre>
[14]:	<pre>train_gmm_inn(gmm_model) samples = gmm_model.sample(1000)</pre>
	<pre>plt.scatter(samples.detach().numpy()[:,0], samples.detach().numpy()[:,1]) true_data, _ = make_gmm_samples(1000) print(f"MMD of generated data with training data: {mmd_inverse_multi_quadratic(samples, true_data):.6 ") Epoch [333/1000], Loss: -1.4501 Epoch [666/1000], Loss: -1.5960 Epoch [999/1000], Loss: -1.5911 MMD of generated data with training data: 0.003657</pre>
	0.5 -
	-0.5 -1.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
	The INN is able to learn the distribution with no further changes. But let's see if we can improve the performance with a larger network an more training.
[15]:	<pre>more training. n_epochs = [1000, 5000] true_data, _ = make_gmm_samples(1000) figs, axs = plt.subplots(1,2, figsize=(10, 4)) for e in range(2): larger_gmm_model=realNVP(2, 128, 15) train_gmm_inn(larger_gmm_model, epochs=n_epochs[e]) samples = larger_gmm_model.sample(1000) axs[e].scatter(samples[:,0].detach().numpy(), samples[:,1].detach().numpy())</pre>
[15]:	<pre>more training. n_epochs = [1000, 5000] true_data, _ = make_gmm_samples(1000) figs, axs = plt.subplots(1,2, figsize=(10, 4)) for e in range(2): larger_gmm_model=realNVP(2, 128, 15) train_gmm_inn(larger_gmm_model, epochs=n_epochs[e]) samples = larger_gmm_model.sample(1000) axs[e].scatter(samples[:,0].detach().numpy(), samples[:,1].detach().numpy()) axs[e].set_title(f"Large_INN, {n_epochs[e]} epochs, MMD = {mmd_inverse_multi_quadratic(samples, topics of the content of the content</pre>
[15]:	<pre>more training. n_epochs = [1000, 5000] true_data, _ = make_gmm_samples(1000) figs, axs = plt.subplots(1,2, figsize=(10, 4)) for e in range(2): larger_gmm_model=realNVP(2, 128, 15) train_gmm_in(larger_gmm_model, epochs=n_epochs[e]) samples = larger_gmm_model.sample(1000) axs[e].scatter(samples[:,0].detach().numpy(), samples[:,1].detach().numpy()) axs[e].set_title(f"Large INN, {n_epochs[e]} epochs, MMD = {mmd_inverse_multi_quadratic(samples, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10</pre>
[15]:	more training. a_epochs = [1000, 5000] true_data, _ = make_gam_samples(1000) figs, axs = pit.subplots(1,2, figsize=(10, 4)) for s in range(2): larger_gam_model=realNVP(2, 128, 15) train_gam_inu(larger_gam_model.sample(1000) axs[e].scatter(samples[:,0].detach().numy(), samples[:,1].detach().numy()) axs[e].scatter(samples[:,0].detach().numy(), samples[:,1].detach().numy()) axs[e].scatter(samples[:,0].detach().numy(), samples[:,1].detach().numy()) axs[e].scatter(samples[:,0].detach().numy(), samples[:,1].detach().numy()) axs[e].scatter(samples[:,0].detach().numy(), samples[:,1].detach().numy()) axs[e].scatter(samples[:,0].detach().numy(), samples[:,1].detach().numy()) axs[e].scatter(samples[:,0].detach().numy()) axs[e].scatter(sampl
	D_egocha = [1000, 5000] true_data_
	reports = [1400, 1400] Lags, set = place adoptical (1400) Lags architecture seems to be sufficient for an increase in visual quality, but further increasing the number of fraining epochs seems have an effect on the amount of codities. The fMMD is not improved though. 2 Two Moons and GMM with a Conditional INN In this opecies we see going to add functionity to our ReabNVP model, to turn into a conditional INN We will be not compare how the chapeter when learning conditional distributions (place) in compared to the make it a binary classification that. We reuse most of the code for our desses couping block and realNVP. Chans conditional, sourching block (in: Module): and condition in a condition, size and condition, size and condition in a cond
	n openas 11332, 1886; n openas 11332, 1886; Cipe, and = pitu-adaptive(1/2, figshise-10, 41) Cipe, and = pitu-adaptive(1/2, figshise-10, 41) Cipe, and = pitu-adaptive(1/2, figshise-10, 41) complete - index - proper year main about, appears a openas (p) complete - index - proper year main about, appears a openas (p) complete - index - proper year main about, appears a openas (p) complete - index - proper year main about, appears and openas (p) complete - index - proper year main about, appears and openas (p) code (p) - proper year main about, (p, epochs (e)) events, ratio = (and_inverse_main.in_yeadastato(examler, v) code (p) - proper year main about, (p, epochs (e)) events, ratio = (and_inverse_main.in_yeadastato(examler, v) code (p) - proper year year (p) - proper
	Register = 1,000, 2,300, 1
	Expected (1905, 1906) The type are most settlementary, appearance (20) Store, and most settlementary, appearance (20) Store, and most settlementary, appearance (20) Store, and most settlementary, and substitution (1) appearance (20) Store, and the content (supposed (1, 1), attached (1, amppet), appearance (20) Store, and the content (supposed (1, 1), attached (1, ampet), appearance (20) Store, and the content (supposed (1, 1), attached (1, ampet), appearance (20) Store, and the content (supposed (1, 1), attached (1, ampet), appearance (20) Store (1907, 1907, 1907, 1907, 1908) Store (1907, 1907, 1907, 1907, 1908) Store (1907, 19
	The larger without is search to be sufficient for an increase in deal guilty. Military increases with a growing record of the search to be sufficient for an increase of the search to be sufficient for an increase of the search to be sufficient for an increase of the search to be sufficient for an increase of the search to be sufficient for an increase of the search to be sufficient for an increase of the search to be sufficient for an increase in deal guilty. Military increases within question interpretation of the search to be sufficient for an increase in deal guilty. Military increases of being exposed on the search of the search to be sufficient for an increase in deal guilty. Military increases of being exposed on the search of t
<pre>[15]:</pre>	The sepa modes the secretarian of the other to an interest decretary and the secretary of the separate country. The separate control of the separate country of the separate

