## Temporal- and Viewpoint-Invariant Registration for Under-Canopy Footage using Deep-Learning-based Bird's Eye View Prediction



Jiawei Zhou<sup>1</sup>, Ruben Mascaro<sup>1</sup>, Cesar Cadena<sup>2</sup>, Margarita Chli<sup>1</sup>, Lucas Teixeira<sup>1</sup> <sup>1</sup>V4RL - University of Cyprus and ETH Zürich <sup>2</sup>RSL - ETH Zürich



### 1. Motivation

Achieving precise registration between successive data capture sessions is essential in smart farming. This work focuses on aligning noisy, sparse point clouds reconstructed from multiple geo-referenced RGB image sequences collected in areas covered by trees.



Image sequences collected in the same tree-covered area. Presence of temporal and seasonal changes across sequences.

### 2. Contribution

- Deployment of learning-based perspective to bird's-eye view image conversion for estimating the position of trees.
- Feature extraction strategy that targets the clean segmentation of trunk and ground points.
- Iterative alignment process that alternates focus between the segmented ground and the estimated tree centers for enhanced precision.
- Strategic division of the 3D models into batches, followed by a local refinement phase to fine-tune the alignment results for each batch.

#### Geo-referenced tree locations, if available **Images** Reference Feature Stage Geo-referenced Sparse Features Reference Training Camera Reconstruction Robust poses Tree areas Ground points PV2BEV PV2BEV Natural Feature & Tree centers Weights Segmentation Geo-registration, SfM Images & Extraction PPK-GPS or GCPs (COLMAP) and spliting Single Sparse Map Submodels model Merging Query (Other Per Query Sub-Model viewpoint / days) Alignment Stage Aligned Models Geo-referenced Initial Batch Images Cameras and Ground points Loop Sparse & GPS Sub-models & Tree centers Stage Alignment Alignment Sparse map ) Alignment Reconstruction Images

## I Sparse Reconstruction Reconstruction using **SfM** Initial alignment with **GPS**

# II Perspective View to Bird's Eye View Top View Tree Positions **PV2BEV**

### III Feature Stage

- 1. Tree Area Segmentation: Area extraction around each tree center.
- 2. Robust Natural Feature Extraction: Slicing and Gaussian fitting for trunk segmentation, and DBSCAN for outlier removal.



### IV Alignment Stage

- 1. Initial Alignment: ICP alignment of extracted ground points.
- 2. Loop Alignment: Alternation between tree centers and ground points.



3. Batch Alignment: Clustering of tree centers into well-defined groups, which are refined locally to address accumulated drift.

### 4. Experiments

| <b>Evaluation Metric</b>        | a) Different Seasons Case |                  |                  |                   |                   |                     | b) Perpendicular Viewpoints Case |                  |                  |                   |                   |                     | c) Opposite Viewpoints Case |                  |                  |                   |                   |                     |
|---------------------------------|---------------------------|------------------|------------------|-------------------|-------------------|---------------------|----------------------------------|------------------|------------------|-------------------|-------------------|---------------------|-----------------------------|------------------|------------------|-------------------|-------------------|---------------------|
|                                 | Ours                      | ICP <sup>1</sup> | FGR <sup>2</sup> | FICP <sup>3</sup> | RICP <sup>3</sup> | TEASER <sup>4</sup> | Ours                             | ICP <sup>1</sup> | FGR <sup>2</sup> | FICP <sup>3</sup> | RICP <sup>3</sup> | TEASER <sup>4</sup> | Ours                        | ICP <sup>1</sup> | FGR <sup>2</sup> | FICP <sup>3</sup> | RICP <sup>3</sup> | TEASER <sup>4</sup> |
| Camera Translation Error [m]    | 0.44                      | 1.77             | 4.66             | 5.88              | 5.65              | 22.58               | 0.26                             | 0.88             | 6.49             | 4.62              | 0.83              | 46.28               | 0.40                        | 15.83            | 118.37           | 23.75             | 14.80             | 200.77              |
| Camera<br>Rotation<br>Error [°] | 0.74                      | 2.48             | 0.77             | 6.82              | 7.50              | 19.62               | 0.18                             | 0.39             | 1.33             | 10.60             | 0.28              | 165.44              | 0.54                        | 3.64             | 1.29             | 3.92              | 2.35              | 158.65              |
| Tree Centers 3D Error [m]       | 0.28                      | 1.88             | 4.77             | 5.39              | 4.95              | 21.77               | 0.20                             | 0.84             | 6.53             | 4.94              | 0.73              | 36.00               | 0.32                        | 14.93            | 107.92           | 22.91             | 14.06             | 203.17              |

### References:

- 1. P.J. Besl and N.D. McKay, "A method for registration of 3-D shapes", TPAMI 1992
- 2. Q.Y. Zhou et al., "Fast Global Registration", ECCV 2016
- 3. J. Zhang et al., "Fast and Robust Iterative Closest Point", TPAMI 2021
- 4. H. Yang et al., "TEASER: Fast and Certifiable Point Cloud Registration, T-RO 2020

