

Logarithms in the Running Time

- The "logarithm" some on most confusing aspect of analysis of algorithms.
- Logarithm General Rule:

An algorithm is O(logN) if it takes constant time, O(1), to cut the problem size by a fraction (which is usually $\frac{1}{2}$)

- Only special kinds of problems can be O(logN).
- If the input is a <u>list of N numbers</u> then an algorithm must take (N) merely to read the input in. Thus, when we talk about O(logN) algorithms we usually presume that the input is pre-read.

3

O(log/N) Algorithm: Binary Search

- The Classic Search Problem:
 - □ Given an integer X and integers A_0 , A_1 , . . . , A_{N-1} , which are pre-sorted and already in memory, find the index i such that $A_i = X$, or return i = -1 if X is not in the input.
- Obvious solution:
 - \square O(N) algorithm Scan the list from left to right and find i.
- This algorithm not take advantage of the fact that the list is pre-sorted.

O(log/N) Algorithm: Binary Search

- The Classic Search Problem:
 - □ Given an integer X and integers A_0 , A_1 , . . . , A_{N-1} , which are presorted and already in memory, find i such that $A_i = X$, or return i = -1 if X is not in the input.
- Better strategy (Binary Search):
 - \Box Compare X with middle item A[mid],
 - Go to left half if X < A[mid]
 - Go to right half if X > A[mid]
 - Repeat

Algorithm Analysis of Binary Search

- Worst case?
 - \square When X is not found.
- How many iterations are executed before low > high?
 - □ After first iteration: *N*/2 items remaining
 - \square After 2nd iteration: (N/2)/2 = N/4 remaining
 - ☐ After k-th iteration?
 - N/2^K remaining
 - Worst case?
 - Last iteration occurs when $N/2^K \ge 1$ and $N/2^{K+1} < 1$ item remaining
 - $2^k \le N$ and $2^{k+1} > N$ [take log of both sides]
 - □ Number of iterations is $k \le log N$ and k > log N 1
 - □ Binary Search is O(log N)

9

Binary Search - Some Notes

- Binary search our first data structure implementation.
- In Binary Search the "contains" operation is $O(\log N)$ time in worst-case.
- Binary search is *O*(1) in the best-case (item is in the middle).
- The find-in-sorted-array problem is $\Omega(\log N)$ in worst-case (no algorithm can do better).
- All other operations (in particular insert-in-sorted-array) require *O(N)* time.
- The input dates would then need to be sorted once, but afterward accesses would be fast.

ь,

Euclid's Algorithm for GCD

- **Definition**: The greatest common divisor (**gcd**) of two integers is the largest integer that divides both. Examples: gcd(50,15) = 5.
- The problem:
 - Find the greatest common divisor of two positive integers, M and N.
- A good solution: The Euclid's Algorithm*
- The Euclid's Algorithm is based on the following two observations:
 - \square gcd(M,N) = gcd(N, $M \mod N$), if $N \neq 0$
 - \square gcd(N,0) = N

□ Given two numbers not prime to one another, to find their greatest common measure.

Euclid's Algorithm for GCD

- Properties:
 - \square gcd(M,N) = gcd(N, M mod N), if $N \neq 0$
 - \square gcd(N,0) = N

Example:

$$gcd(3084,1424) = ?$$

$$3084 = 1424*2 + 236$$
 $gcd(3084,1424) = gcd(1424,236)$

$$1424 = 236*6 + 8$$
 $gcd(1424,236) = gcd(236,8)$

$$236 = 8*29 + 4$$
 $gcd(236,8) = gcd(8,4)$

$$8 = 4*2 + 0$$
 $gcd(8,4) = gcd(4,0)$
then $gcd(3084,1424) = 4$

^{*}The original version of the Euclid's Algorithm appears as the solution to the Proposition VII.2 in the *Elements*:

Formal description of the Euclid's Algorithm

- □ **Input**: Two positive integers, *M* and *N*.
- \square Output: The gcd of M and N.
- □ Internal computation:
 - □ If M < N, exchange M and N.
 - \Box Divide M by N and get the remainder, r.

If r = 0, report N as the **gcd** of M and N.

 \square Replace M by N and replace N by r. Return to the previous step.

13

Java version of the Euclid's Algorithm

- Analysis:
 - ☐ The running time of the algorithm depends on determining how long the sequence of remainders is.
 - ☐ It is easy to prove (homework!) that after two iterations of the loop while, the remainder is at most half of its original value.
 - \Box Then the number of iterations is at most $2\log N = O(\log N)$ and establish the running time.
 - ☐ Euclid's Algorithm is O(logN)
- Interesting fact:
 - □ The constant can be improved to approximately 1.44logN, in the worst case (the case when *M* and *N* are consecutive Fibonacci numbers).

Why Recursion?

- If recursion is less efficient (in some cases), why use it?
 - ☐ It leads to elegant solutions and the code can be clearer and simpler.
 - □ Some problems with ADTs require recursion. Examples:
 - Tree traversals
 - Graph traversals
 - Search problems
 - In some cases, an algorithm with a recursive solution has a lesser computational complexity. Example: Insertion Sort vs. Merge Sort.

15

Summary of the Algorithm Analysis

- We can analyze the problem or the algorithm usually algorithm
- We can consider Time or Space usually time (running time)
- We can analyze the Best, Worst, or Average-case usually worst-case.
- We can analyze the Upper, Lower, or Tight-bound usually upper or tight-bound.
- Asymptotic complexity (Big-Oh) focuses on <u>behavior</u> for large N and is independent of the computer, programming language, coding, etc.

Summary of the Algorithm Analysis

- <u>Simple programs usually have simple analyses</u>, <u>but this</u>
 <u>is not always the case</u>. Example: sorting algorithm
 Shellsort (Chapter 7).
- An interesting kind of analysis is the <u>lower-bound</u> <u>analysis</u>. We will see an example of this in Chapter 7, where it is proved that any algorithm that sorts by using only comparisons requires $\Omega(MogN)$ comparisons.
- Some of the algorithms described in this topic have reallife applications. <u>The gcd algorithm is used in</u> cryptography.
- Interesting algorithm is the algorithm for <u>efficient</u> <u>exponentiation</u>. (see Chapter 2, pp 47-49).

