

-> Supervised

Machine: Rechression & Classification

Supervised Vs. Unsuperviseo

Quick Quest! If Arthur Somuel's checkers-playing proprom had been allowed to play only 10 panes against itself, thou would this affected its performance compared to when it was allowed to play over lok goves?

—> would have made it worse

=> Supervised Learning: leans from data labeled with "right assuers"

input _____ output

omail _____ > span ! (OM) => span filterinp

ouding _____ text too society => span filterinp

audio — > text trenscripts => speech recognition adjuser info — > click? (0/1) => online advertising image, radarinfo — > pos. of other cars => self-driving car

-> Regression; Predict a number infinitely many possible outputs

e.g.

> Unsupervised Learning: find something (pattern etc.) interesting in unlabeled data

Clustering: DNA microarray genes (each row)

-> Data only comes with mput X, but not output labels 9 4> Alporithm has to find structure in the data

Clustering Anoually
Croup similar Detection
Idental points trajether find musual

data points

Dimensionality Reduction compress data using femer numbers

Question

Of the following examples, which would you address using an unsupervised learning algorithm?

- Given email labeled as spam/not spam, learn a spam filter.
- Given a set of news articles found on the web, group them into sets of articles about the same story.
- Given a database of customer data, automatically discover market segments and group customers into different market segments.
- Given a dataset of patients diagnosed as either having diabetes or not, learn to classify new patients as having diabetes or not

Rechession Model -> predicts numbers

=> Linear regression!

-> Terminology!

Training Set! Data used to train model

X Saft size	price	Notation: x="input" voriable
U) 2104	400	feature"
(3) 1534	232 315 M=47	y - "output" vorable "target" variable
		m = number of training examples
(47) 3210	870	(x,y) = 5ingle training example
	l	$(x^{(i)}, y^{(i)}) = i + h + rowning example$
		29. 11) (12)

(X"17")= (2104, 400)

I training set / features

/ tearning algorithm/

X -> If -> y

feature model prediction
(estimated y)

target

How to represent
$$f$$
?
$$f_{w,b}(x) = wx + b$$

$$f(x)$$

y $\begin{array}{c|c}
x & x \\
f_{w,b}(x) = wx + b
\end{array}$

linear repression with one voiable Univariate linear regression one voiable

=> Cost (squared error cost function)

function

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (x_i^{(i)} y_i^{(i)})^2$$
error

=
$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w_ib}(x^{(i)}) - y^{(i)})^2$$

$$f_{w}(x) = wx \quad (b = \emptyset)$$

$$J(w) = 1/2m \sum_{i=1}^{M} (f_{w}(x^{(i)}) - y^{(i)})^{2}$$

$$f_{w}(x)$$

$$w=0.5$$

J(1)=0

cost function! $1/2m \ge (f_{w,b}(x^{(i)}) - y^{(i)})^2$ goal: minimize J (w.b) 4> simplified

90al of linear regression) minimize J(w)

general case! Minimize J(w.b)

=> Visvalizing COST - FUNCTION

TRAIN THE MODEL WETH GRADIENT DESCENT

Gradient Descent Algorithm: an Optimization algorithm used to minimize a function by iteratively moving towards the steepest descent

using to fit a model to holding date

 $W = W - \alpha \frac{\partial}{\partial w} J(w,b)$ assigning (partial)

learning reall

(taking step) $b = b - \alpha \frac{\partial}{\partial b} J(w,b)$

Simultaneously
update word b

tmp-w=w-a du J(n,b)

tmp-b=b-a d J(n,b)

w=tmp-w
b=tmp-b

-> Groodient
Descent
Intuition

in both example, gradient obescent doing something reasonable as it gets you closer to minimum

no learning Rate (a)

> if learning reate is too small, grandment descent will work, but it will be slower (think like taking a small step while walking)

-> if a is too large
- gradient descent many
never reach minimum (overshooting)
- fail to converge (diverge

Quick Quest: What happens of you've already reach / at won'num? slope =0 => derivative=0 W= W- X () (W) J(w) Slape 20 = W=W Con reach local minimum with fixed &? W= W-X. 3~ J(w) as we get close to local

minimum slope gets near zero

so "a.d J(w)" get smaller in each slep

our so we can reach min. even with fixed a Chradient Descent for Linear Regression linear repressien Cost fuction $J(\omega,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\omega,b}(x^{(i)}) - y^{(i)})^{2}$ $f_{\omega,b}(x) = \omega x + b$ Craolient Descent Algo. repeat until diverpe {

W=W-X3mJ(w|b)

b=b-X3b·J(w|b)
} $\Rightarrow \frac{1}{M} \stackrel{M}{\underset{i=1}{\sum}} \left(f_{Mb}(x^{(i)}) - \gamma^{(i)} \right) \times^{(i)}$ > 1 5 (fu.b (x(1)-y(1))

-> Running Grandient Descent

"Batch" Gradient Descent

Forch step of gradient descent

uses all the training exemples

M=47

oral.

$$M = 47$$
 $\sum_{i \ge 1}^{M} (f_{w,b}(x^{(i)}) - y^{(i)})^{2}$

example