Ústav fyzikální elektroniky Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Jakub Jedlička **Naměřeno:** 3. 3. 2023

Obor: učitelství Bi, F **Skupina:** Pá 10 **Testováno:**

Úloha č. 2: Měření odporu rezistoru

T=21,5 °C p=988,9 hPa φ= 25,3 %

1. Úvod

V první části budeme měřit odpor 2 rezistorů, a to metodou A a B. Mezi těmito dvěmi metodami dále najdeme rozdíly, a nakonec své tvrzení potvrdíme při měření odporu žárovky jednou z těchto metod.

2. Teorie

Odpor rezistoru se dá určit nepřímo pomocí Ohmova zákona, který má následující znění:

$$R = \frac{U_R}{I_R}$$

1)

Při zapojování obvodu, ale mohou nastat 2 možnosti zapojení voltmetru a ampérmetru.

obrázek 1: Možnosti zapojení obvodů podle metody A a metody B

 Metoda A měřím přesně napětí na rezistoru, ale měřím s chybou proud protékající obvodem a ampérmetrem. Jelikož proud protéká také voltmetrem, tak skutečná hodnota proudu bude menší. Proto se musí základní Ohmův vztah (vzorec 1)) upravit na:

$$R = \frac{U_V}{I_A - \frac{U_V}{R_V}}$$

2)

kde U_V je napětí měřené voltmetrem, I_A je proud měřený ampérmetrem a R_A je odpor voltmetru. Tato metoda se používá, pokud je odpor rezistoru mnohem menší než odpor voltmetru.

 Metoda B měřím přesně proud protékající rezistorem, ale špatně napětí, protože měřím i napětí ampérmetru. Proto musím i v tomto případě provést korekci původního ohmova zákona a vztah nabývá této hodnoty:

$$R = \frac{U_V}{I_A} - R_A$$

3)

Kde R_A je odpor ampérmetru. Tuto metodu použiji, pokud je odpor ampérmetru mnohem menší než odpor rezistoru.

Odpory rezistorů budu měřit oběma metodami a pro voltampérovou charakteristiku žárovku použiji metodu A, protože žárovka má mnohem menší odpor než voltmetr.

3. Parametry použitých přístrojů

Multimetr Escort, použit jako voltmetr (vnitřní odpor 10 MΩ)

Rozsah: 99,99 V
Přesnost: ± 0,1 % + 2
Rozlišení: 10 mV

Rozsah: 9,999 V
Přesnost: ± 0,1 % + 2
Rozlišení: 1 mV

Multimetr Keysight U3402A, použit jako ampérmetr (vnitřní odpor 12,5 Ω)

Rozsah: 120,000 mA
Přesnost: ± 0,05 % + 5

Rozlišení: 1 μΑ

• 12,000 mA

Přesnost: ± 0,05 % + 15
Rozlišení: 0,1 μA

4. Zpracování měření

Měření odporů rezistorů

Tabulka 1: Naměřené hodnoty napětí a proudu pro 2 rezistory metodou A a metodou B

	rezistor 1		rezistor 2	
	U [V]	I [mA]	U [V]	I [mA]
metoda A	4,939(2)	49,61(3)	20,35(2)	0,022(2)
metoda B	2,467(2)	24,29(2)	20,39(2)	0,020(2)

Pro zpracování nejistot odporů použiji následující tabulku 2:

Tabulka 2: vzorce pro výpočet odporů a k nim přiřazené příslušné vzorce pro výpočet nejistoty

Výpočet odporu	Absolutní nejistota
Bez korekce $R = \frac{U}{I}$	$u(R) = \frac{U}{I} \sqrt{\left(\frac{u(I)}{I}\right)^2 + \left(\frac{u(U)}{U}\right)^2}$
Metoda A $R = \frac{U_V}{I_A - \frac{U_V}{R_V}}$	$u(R) = \frac{1}{\left(I - \frac{U}{R_V}\right)^2} \sqrt{I^2 \cdot u^2(U) + U^2 \cdot u^2(I)}$

_	
Metoda B	$1 U^2$
$R = \frac{U_V}{I} - R_A$	$u(R) = \frac{1}{I} \left[u^2(V) + \frac{3}{I^2} u^2(I) \right]$
I_{Λ}	

Tabulka 3: vypočítané hodnoty odporů pro rezistor 1 a 2

	metoda A		metoda B	
	bez korekce	s korekcí	bez korekce	s korekcí
rezistor 1 [Ω]	99,6(1)	100,6(7)	101,6(1)	89,1(1)
rezistor 2 [MΩ]	0,920(80)	1,0(1)	1,0(1)	1,0(1)

Voltampérová charakteristika žárovky

Jelikož žárovka má malý odpor, tak jsem zvolil zapojení voltmetru a ampérmetru metodou A. Tabulka 4 ukazuje naměřené hodnoty.

Tabulka 4: Hodnoty proudu a napětí procházející žárovkou

U [V]	I [mA]	
7,045	63,23	
12,02	85,37	
17,37	105,45	
20,19	115,08	
14,99	95,16	
9,57	74,49	
5,967	57,64	
4,008	47,43	

Tyto hodnoty jsem poté vložil do voltampérové charakteristiky, kterou jsem proložil polynomovou funkcí, pro lepší zviditelnění změny odporu při zahřívání.

Obrázek 3: Voltampérová charakteristika žárovky proložená polynomickou funkcí

5. Závěr

Odpor prvního rezistoru naměřený metodou A mi vyšel R_1 = 99,6(1) Ω bez korekce a s korekcí R_1 = 100,6(7) Ω . Pokud toto porovnám s výsledky naměřené metodou B, tak lze vidět, že korekce odporu v této metodě vyšla značně jinak a to R_1 = 89,1(1) Ω . Tento výsledek se značně liší od hodnoty uvedené na rezistoru, která činí R = 100 Ω .

Odpor druhého rezistoru naměřený metodou A mi vyšel bez korekce R_2 = 920(80) Ω a s korekcí R_2 = 1,0(1) $M\Omega$. Metodou B mi bez korekce i s korekcí vyšel stejný výsledek a to R_2 = 1,0(1) $M\Omega$.

Z mého měření se tedy potvrdilo, že pro rezistory s malým odporem je výhodnější zapojit voltmetr a ampérmetr metodou A. Naopak pro rezistory s velkým odporem je výhodnější metoda B.

Pro voltampérovou charakteristiku žárovky jsem zvolil zapojení typu A, protože její odpor je v porovnání s voltmetrem velice malý. Voltampérová charakteristika žárovky má nelineární charakter, toto je zapříčiněno tím, že s rostoucí teplotou roste i odpor.