

Determining How Americans Get Hurt On the Job

Georgetown University Certificate in Data Science, Summer 2019

GEORGETOWN UNIVERSITY

Agenda & Team Introductions

Today's Agenda

Introducing....

Project Context

Background

Diagnosis/procedure code systems are used in multiple industries for:

- Documenting care (electronic health records)
- Billing for care (insurance claims)
- Research and analysis, surveillance

International Classification of Diseases (ICD-10-CM):

- 70,000 diagnosis codes, 60,000 procedure codes
- Great detail -- but too much information for most purposes.

Less is More

"Groupers" are analytic tools that aggregate sets of similar codes into broad, clinically meaningful categories.

Example: "Clinical Classification Software" groups 14,000 codes into 275 categories. Much more manageable!

Traditionally, groupers have been very expensive to develop.

Grouping == *Clustering*

Objective: To evaluate the feasibility of using k means clustering to identify clinically meaningful groups of individual injury codes.

Question: Could k means clustering produce a preliminary draft of groups, which could then be finalized by expert reviewers?

Methodology

Data Pipeline

Ingestion & Wrangling

- Relied on two main data sources:
 - OSHA Severe Injury Report Data
 - U.S. Census TIGER data for zip codes, counties and data.
- Originally attempted to use zip-codes as a means to group data geographically.
 - Surprise! Not all incidents in the United States.
- Switched to counties using Latitude/Longitude and geospatial join to reassign county to each incident.
 - TIGER data crucial for this step

Exploratory Data Analysis

2500

2015.0 2015.5 2016.0 2016.5 2017.0 2017.5 2018.0

Exploratory Data Analysis

- Explored Yellowbrick visuals
 - Covariance graph on 9 selected features
 - Classification heatmap (not shown)
- Primary usage: Visualizing clustering algorithms

Feature Engineering

```
#Label Encode the two non-numerical value features
le = LabelEncoder()
data['State'] = le.fit_transform(data.State.values)
data['NAMELSAD_Codes'] = le.fit_transform(data.NAMELSAD.values)
```

Label encoding

Essential feature engineering step

Unsupervised Machine Learning

Clustering Analysis using Scikit Learn and YellowBrick

Tested alternative clustering models

- K-means, Mini-Batch K-means, Agglomerative, DBScan, and Spectral
 - Spectral computationally 'costly', could not complete clustering.

Focused on K-means for primary analysis

```
Method Name: KMeans, # of Clusters: 10, Silhouette Score: 0.8554840295513454

Method Name: MiniBatch KMeans, # of Clusters: 10, Silhouette Score: 0.7898094946314074

Method Name: Agglomerative Clustering, # of Clusters: 10, Silhouette Score: 0.8454500523138355

Method Name: Agglomerative Clustering, # of Clusters: 10, Silhouette Score: 0.8435510106779214

Method Name: Agglomerative Clustering, # of Clusters: 10, Silhouette Score: 0.7892567305002927

Method Name: DBSCAN, # of Clusters: 10, Silhouette Score: 0.7326845110830787
```

MiniBatch Analysis

K-Means Analysis

Results & Reflections

Goal: Clustering by injury

Achieved: Clustering by industry code and event that caused the injury

Cluster #	Primary Industry Represented	Cluster #	Primary Industry Represented
0	Transportation & Warehousing	5	Public Administration
1	Manufacturing	6	Agriculture
2	Arts & Recreation	7	Retail Trade
3	Mining & Construction	8	Health Care
4	Waste & Remediation Services	9	Maintenance & Repair

Try, Try Again

A tale of pivoting...

- Our biggest lesson learned thoroughly explore your intended dataset.
 - Revised data source 3 times due to nature of data.
 - Maintained injury focus shift from Emergency Rooms to OSHA Severe Injuries

Next Steps

We believe we can reveal more information about the injuries by the following improvements:

- Add industry information to the data. Specifically type of industry, size, safety training data if available and location
 - For e.g. construction accounts for more than 20% of the fatalities
- We could improve the clustering by using Autoencoders (artificial neural networks) to reduce the dimensions and then apply k-means
- This method could be explored instead of using PCA especially to handle some of the text injury narratives

Would also consider a natural language processing (NLP) analysis

Thank you for your time!

We are happy to take any questions.

Feedback, reactions, questions