Student Name: WANG ZHUDRAN Student ID: 252/2125 1 draw, A | B/ Algorithm 1: answer $\leftarrow \phi$; BE Pi; A-P2; while P, I nil and P2 I nil do if $doc2D(P_1) = doc2D(P_2)$ then $P_1 \leftarrow skip to(P_1);$ $P_2 \leftarrow skip to(P_2);$ else if doc 2D(p1) < doc 2D(p2) - then Add (answer, doCZD(pI)); $P_1 \leftarrow skip to (P_1);$ else $\beta_2 \leftarrow \text{skip to }(\beta_3);$ if Pi = nil then while P, #nil do return answer;

Explain: For not A and B, when \$\frac{1}{2} A, doc\10(B) < doc\10(A) means \$\frac{1}{2} \text{this doc\10(B) will not show in A, also, when A is not.

B is not nil, also the rest of do\10(B) showld add to answer.

Question 2

Fo Y-encode: if encode a number k,

the unary is $k_d = \lfloor \log_2 k \rfloor$ the binary is $k_r = k - 2^{\lfloor \log_2 k \rfloor}$ 50, $k = 2^{\lfloor kd \rfloor} + k_r$

Question 3.

(a)

Question 4:

(a) Before Original: Disk: 13,12,1,.70

Ofter dumping the current in-memory index to the disk.

Disk: 13,12,1,,20,20, and there earnot be two same sub-index.

40. lo. 20 → 11. Disk: 23, 72, 71, 71

 $1, 1, \rightarrow 1_2$, Disk: $1_3, 1_2, 1_2$

 $I_2, I_2 \longrightarrow I_3$, Disk; I_1, I_3

 $[1_3,1_3 \rightarrow 1_4, Disk=1_4]$

So, the sub-index is I4.

(b) I draw a table

time disk	1 20	2 27,21,1 = 1,	3 (20,21)	φ {20,2,20} = {21}	\$\frac{1120}{20}	6 [1270] = [127]	23 21247070) = {13}	2k {]k}	
site	M	2 _M	3M	4M	JM	6M	8M	2 ^k M	

So, it will create | C| sub-index.

Question 5

(a) 1. Precision at rank 8

For System, when rank 8, there are 2 documents for Q2

40, QZ: = 0.25

For system2, when rank 8, there are 3 relevant documents

for Q2, so, $Q2: \frac{3}{8} = 0.375$

So, System/ Q2: 0.25, System2 Q2: 0.375

2. Recall at precision $\frac{1}{3}$.

For system 1, at rank 3, there is one document, so, the precision is 1.

\$20 also, at rank 6 and 9, the precision is \frac{1}{3}.

50, Q2: $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$ at rank 3, 6, 9.

For system 2, at rank 3 and 9, the precision is 1.

So. Q2: 3, 1. at rank 3, 9.

50. System 1: $Q2: \frac{1}{4}, \frac{2}{4}, \frac{3}{4}$ at rank 3, 6,9

System 2: Q2: 3,1 at rank 3,9

For system! :

$$QI: MAP_{QI} = \frac{18}{5}(1+1+1+\frac{5}{9}+\frac{16}{135}) = \frac{118}{135}$$

Q2:
$$MAP_{02} = \frac{1}{4}(H_{6}^{2} + \frac{3}{4} + \frac{4}{10}) = \frac{31}{15}$$

$$MAP_1 = \frac{1}{2}(MAP_{a1} + MAP_{a2}) = \frac{397}{270}$$

For system 2:

Q1:
$$MAPa_1 = \frac{1}{6}(1+1+1+\frac{1}{5}+\frac{1}{6}+\frac{1}{6}) = \frac{5}{60}$$

(C) calculat recall, precision.

(d)

when recall=as, precision=1.

when recall = 0.8, precision is between & and ?

Question 7

(a)
$$P(Q|d_1) = \frac{2}{76}x\frac{3}{16}x\frac{1}{16}x\frac{2}{76}x\frac{2}{76}x0 = 0$$

 $P(Q|d_1) = \frac{2}{76}x\frac{3}{16}x\frac{1}{16}x\frac{2}{76}x0x0 = 0$
 $P(Q|d_1) = P(Q|d_1)$

50, di, de rank same

40, P(Q|d1) = P(W, 1d1) × P(W)d1) × P(W)d1) × P(W)d1) × P(W)d1) = 0.32×0.26×0.085 × 0.165×0.005 = 9.6×10⁻⁷

For d2: $P(w_1|d_2) = 0.8x_{10}^{7} + 0.2 \times 0.8 = 0.72$ $P(w_2|d_2) = 0.8x_{10}^{7} + 0.2 \times 0.8 = 0.72$ $P(w_2|d_2) = 0.8x_{10}^{7} + 0.2 \times 0.01 = 0.1$ $P(w_3|d_2) = 0.8x_{10}^{7} + 0.2 \times 0.01 = 0.005$ $P(w_3|d_2) = 0.8x_{10}^{7} + 0.2 \times 0.01 = 0.005$ $P(w_3|d_2) = 0.8x_{10}^{7} + 0.2 \times 0.01 = 0.005$

So, P(Q/dz) = P(w/dz) × P(ws/dz) × P(ws/dz)

Question 8:

- (a) Explain = if the page just fetched is already in the index, & it is not necessary to further process it
- (b) pash shingles = {1,7,15,81}

For hi(x) = (7x+1 mod 31) mod 13.

when x = 1. $h_1(x) = (7x) + 1 \mod 31) \mod 13 = 6$

when x = 7 $h_1(x) = (7x7+1 \text{ mod } 31) \text{ mod } 13 = 6$

when x = 15 $h_1(x) = (15x7+1 \text{ mod } 31) \text{ mod } 13 = 0$

when x=81 $h_1(x) = (81x7+1 \mod 31) \mod 13 = 10$

for hz(x) = (18x+26 mod 31) mod 13

when X = 1, $\frac{1}{h_2(x)} = \frac{18x + 1}{18x + 1} \frac{1}{h_2(x)} = \frac{1}{18x + 1} \frac{1}{h_2(x)} = 0$

Choose h= D. So.

h when X = 15 $h_1(X) = 0$

when X = 1, $h_{\geq}(x) = 0$

50. the signatures is 1, 15.