Calculus III Lecture 18

Todor Milev

https://github.com/tmilev/freecalc

2020

Outline

Orientation in 2D

Outline

Orientation in 2D

② Green's Theorem

License to use and redistribute

These lecture slides and their LaTEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
 https://creativecommons.org/licenses/by/3.0/us/and the links therein

• Let *C* be curve image (not equipped with parametrization).

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

Definition (Curve orientation, endpoints are distinct)

• We say the parametrization **r** orients the curve C.

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

Definition (Curve orientation, endpoints are distinct)

- We say the parametrization r orients the curve C.
- We say that two one-to-one parametrizations of C have the same orientation if they determine the same starting and endpoints.

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

Definition (Curve orientation, endpoints are distinct)

- We say the parametrization **r** orients the curve C.
- We say that two one-to-one parametrizations of C have the same orientation if they determine the same starting and endpoints.
- To orient a curve image C means to specify which of the two endpoints is a starting point and which - endpoint.

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

Definition (Curve orientation, endpoints are distinct)

- We say the parametrization **r** orients the curve C.
- We say that two one-to-one parametrizations of C have the same orientation if they determine the same starting and endpoints.
- To orient a curve image C means to specify which of the two endpoints is a starting point and which - endpoint.
- Alternatively, to orient a curve means to specify the order in which its points are traversed ("direction of flow").

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

Definition (Curve orientation, endpoints are distinct)

- We say the parametrization **r** orients the curve C.
- We say that two one-to-one parametrizations of C have the same orientation if they determine the same starting and endpoints.
- To orient a curve image C means to specify which of the two endpoints is a starting point and which - endpoint.
- Alternatively, to orient a curve means to specify the order in which its points are traversed ("direction of flow").
- The definition can be extended to when the parametr. is not one-to-one (allowing A = B).

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

Definition (Curve orientation, endpoints are distinct)

- We say the parametrization r orients the curve C.
- We say that two one-to-one parametrizations of C have the same orientation if they determine the same starting and endpoints.
- To orient a curve image C means to specify which of the two endpoints is a starting point and which - endpoint.
- Alternatively, to orient a curve means to specify the order in which its points are traversed ("direction of flow").
- The definition can be extended to when the parametr. is not one-to-one (allowing A = B). Requires 1-dimensional manifolds.

Todor Miley 2020

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

Definition (Curve orientation, endpoints are distinct)

- We say the parametrization **r** orients the curve C.
- We say that two one-to-one parametrizations of C have the same orientation if they determine the same starting and endpoints.
- To orient a curve image C means to specify which of the two endpoints is a starting point and which - endpoint.
- Consider the curve parametrized by $\mathbf{s}(t) = \mathbf{r}(b(1-t)+ta)$, $t \in [0, 1]$.

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

Definition (Curve orientation, endpoints are distinct)

- We say the parametrization **r** orients the curve C.
- We say that two one-to-one parametrizations of C have the same orientation if they determine the same starting and endpoints.
- To orient a curve image C means to specify which of the two endpoints is a starting point and which - endpoint.
- Consider the curve parametrized by $\mathbf{s}(t) = \mathbf{r}(b(1-t)+ta)$, $t \in [0, 1]$. Then $\mathbf{s}(0) = \mathbf{r}(b)$ and $\mathbf{s}(1) = \mathbf{r}(a)$,

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

Definition (Curve orientation, endpoints are distinct)

- We say the parametrization **r** orients the curve C.
- We say that two one-to-one parametrizations of C have the same orientation if they determine the same starting and endpoints.
- To orient a curve image C means to specify which of the two endpoints is a starting point and which - endpoint.
- Consider the curve parametrized by $\mathbf{s}(t) = \mathbf{r}(b(1-t)+ta)$, $t \in [0, 1]$. Then $\mathbf{s}(0) = \mathbf{r}(b)$ and $\mathbf{s}(1) = \mathbf{r}(a)$,

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

Definition (Curve orientation, endpoints are distinct)

- We say the parametrization **r** orients the curve C.
- We say that two one-to-one parametrizations of C have the same orientation if they determine the same starting and endpoints.
- To orient a curve image C means to specify which of the two endpoints is a starting point and which - endpoint.
- Consider the curve parametrized by $\mathbf{s}(t) = \mathbf{r}(b(1-t)+ta)$, $t \in [0,1]$. Then $\mathbf{s}(0) = \mathbf{r}(b)$ and $\mathbf{s}(1) = \mathbf{r}(a)$, so the curve image coincides with that of C but has opposite orientation.

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

Definition (Curve orientation, endpoints are distinct)

- We say the parametrization **r** orients the curve C.
- We say that two one-to-one parametrizations of C have the same orientation if they determine the same starting and endpoints.
- To orient a curve image C means to specify which of the two endpoints is a starting point and which - endpoint.
- Consider the curve parametrized by $\mathbf{s}(t) = \mathbf{r}(b(1-t)+ta)$, $t \in [0,1]$. Then $\mathbf{s}(0) = \mathbf{r}(b)$ and $\mathbf{s}(1) = \mathbf{r}(a)$, so the curve image coincides with that of C but has opposite orientation. We write -C for the curve with image as C but opposite orientation.

- Let *C* be curve image (not equipped with parametrization).
- Suppose C can be equipped with some one-to-one continuous parametrization of the form $\mathbf{r}(t)$, $t \in [a, b]$ so that $A = \mathbf{r}(a)$ (starting point), $B = \mathbf{r}(b)$ (endpoint), $A \neq B$.

Definition (Curve orientation, endpoints are distinct)

- We say the parametrization **r** orients the curve C.
- We say that two one-to-one parametrizations of C have the same orientation if they determine the same starting and endpoints.
- To orient a curve image C means to specify which of the two endpoints is a starting point and which - endpoint.
- Consider the curve parametrized by $\mathbf{s}(t) = \mathbf{r}(b(1-t)+ta)$, $t \in [0,1]$. Then $\mathbf{s}(0) = \mathbf{r}(b)$ and $\mathbf{s}(1) = \mathbf{r}(a)$, so the curve image coincides with that of C but has opposite orientation. We write -C for the curve with image as C but opposite orientation.

When selecting Cartesian coord. system in the plane,

• When selecting Cartesian coord. system in the plane, the letters x and y are a priori equivalent.

- When selecting Cartesian coord. system in the plane, the letters x and y are a priori equivalent.
- To select an orientation means to declare an order on the variables x and y.

- When selecting Cartesian coord. system in the plane, the letters x and y are a priori equivalent.
- To select an orientation means to declare an order on the variables x and y.
- One such order is implicitly assumed when we write coordinates as by convention we write x coord. first and y-coord. - second.

- When selecting Cartesian coord. system in the plane, the letters x and y are a priori equivalent.
- To select an orientation means to declare an order on the variables x and y.
- One such order is implicitly assumed when we write coordinates as by convention we write x coord. first and y-coord. - second.

- When selecting Cartesian coord. system in the plane, the letters x and y are a priori equivalent.
- To select an orientation means to declare an order on the variables x and y.
- One such order is implicitly assumed when we write coordinates as by convention we write x coord. first and y-coord. - second.

- When selecting Cartesian coord. system in the plane, the letters x and y are a priori equivalent.
- To select an orientation means to declare an order on the variables x and y.
- One such order is implicitly assumed when we write coordinates as by convention we write x coord. first and y-coord. - second.
- Unless stated otherwise, we assume x is first and y-second.

- When selecting Cartesian coord. system in the plane, the letters x and y are a priori equivalent.
- To select an orientation means to declare an order on the variables x and y.
- One such order is implicitly assumed when we write coordinates as by convention we write x coord. first and y-coord. - second.
- Unless stated otherwise, we assume x is first and y-second.

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u}=(u_1,u_2)$ and $\mathbf{v}=(v_1,v_2)$. We say that the ordered pair of vectors (\mathbf{u},\mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

- When selecting Cartesian coord. system in the plane, the letters x and y are a priori equivalent.
- To select an orientation means to declare an order on the variables x and y.
- One such order is implicitly assumed when we write coordinates as by convention we write x coord. first and y-coord. - second.
- Unless stated otherwise, we assume x is first and y-second.

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u}=(u_1,u_2)$ and $\mathbf{v}=(v_1,v_2)$. We say that the ordered pair of vectors (\mathbf{u},\mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

 The definition uses the orientation of space as the coordinates of u and v are listed in the order implied by the orientation.

- When selecting Cartesian coord. system in the plane, the letters x and y are a priori equivalent.
- To select an orientation means to declare an order on the variables x and y.
- One such order is implicitly assumed when we write coordinates as by convention we write x coord. first and y-coord. - second.
- Unless stated otherwise, we assume x is first and y-second.

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u}=(u_1,u_2)$ and $\mathbf{v}=(v_1,v_2)$. We say that the ordered pair of vectors (\mathbf{u},\mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

 The definition uses the orientation of space as the coordinates of u and v are listed in the order implied by the orientation.

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. We say that the ordered pair of vectors (\mathbf{u}, \mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

Definition (Clock direction)

We say the vector \mathbf{v} stands counterclockwise from \mathbf{u} if (\mathbf{u}, \mathbf{v}) is a positively oriented pair of vectors.

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. We say that the ordered pair of vectors (\mathbf{u}, \mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

Definition (Clock direction)

We say the vector \mathbf{v} stands counterclockwise from \mathbf{u} if (\mathbf{u}, \mathbf{v}) is a positively oriented pair of vectors.

Multiplying det. column by positive number does not change sign.

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u}=(u_1,u_2)$ and $\mathbf{v}=(v_1,v_2)$. We say that the ordered pair of vectors (\mathbf{u},\mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

Definition (Clock direction)

We say the vector \mathbf{v} stands counterclockwise from \mathbf{u} if (\mathbf{u}, \mathbf{v}) is a positively oriented pair of vectors.

- Multiplying det. column by positive number does not change sign.
- $\Rightarrow \frac{\mathbf{u}}{|\mathbf{u}|}, \frac{\mathbf{v}}{|\mathbf{v}|}$ have same orientation as \mathbf{u}, \mathbf{v} .

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u}=(u_1,u_2)$ and $\mathbf{v}=(v_1,v_2)$. We say that the ordered pair of vectors (\mathbf{u},\mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

Definition (Clock direction)

We say the vector \mathbf{v} stands counterclockwise from \mathbf{u} if (\mathbf{u}, \mathbf{v}) is a positively oriented pair of vectors.

- Multiplying det. column by positive number does not change sign.
- ullet $\Rightarrow \frac{\mathbf{u}}{|\mathbf{u}|}, \frac{\mathbf{v}}{|\mathbf{v}|}$ have same orientation as \mathbf{u}, \mathbf{v} .
- Suppose (**u**, **v**) are positively oriented.

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. We say that the ordered pair of vectors (\mathbf{u}, \mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

Definition (Clock direction)

We say the vector \mathbf{v} stands counterclockwise from \mathbf{u} if (\mathbf{u}, \mathbf{v}) is a positively oriented pair of vectors.

- Multiplying det. column by positive number does not change sign.
- $\Rightarrow \frac{\mathbf{u}}{|\mathbf{u}|}, \frac{\mathbf{v}}{|\mathbf{v}|}$ have same orientation as \mathbf{u}, \mathbf{v} .
- Suppose (**u**, **v**) are positively oriented.
- Of the two unit circle arcs from $\frac{u}{|u|}$ to $\frac{v}{|v|}$,

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. We say that the ordered pair of vectors (\mathbf{u}, \mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

Definition (Clock direction)

We say the vector \mathbf{v} stands counterclockwise from \mathbf{u} if (\mathbf{u}, \mathbf{v}) is a positively oriented pair of vectors.

- Multiplying det. column by positive number does not change sign.
- $\Rightarrow \frac{\mathbf{u}}{|\mathbf{u}|}, \frac{\mathbf{v}}{|\mathbf{v}|}$ have same orientation as \mathbf{u}, \mathbf{v} .
- Suppose (**u**, **v**) are positively oriented.
- Of the two unit circle arcs from $\frac{\mathbf{u}}{|\mathbf{u}|}$ to $\frac{\mathbf{v}}{|\mathbf{v}|}$,

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. We say that the ordered pair of vectors (\mathbf{u}, \mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

Definition (Clock direction)

We say the vector \mathbf{v} stands counterclockwise from \mathbf{u} if (\mathbf{u}, \mathbf{v}) is a positively oriented pair of vectors.

- Multiplying det. column by positive number does not change sign.
- $\Rightarrow \frac{\mathbf{u}}{|\mathbf{u}|}, \frac{\mathbf{v}}{|\mathbf{v}|}$ have same orientation as \mathbf{u}, \mathbf{v} .
- Suppose (**u**, **v**) are positively oriented.
- Of the two unit circle arcs from $\frac{u}{|u|}$ to $\frac{v}{|v|}$, choose the shorter one.

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u}=(u_1,u_2)$ and $\mathbf{v}=(v_1,v_2)$. We say that the ordered pair of vectors (\mathbf{u},\mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

Definition (Clock direction)

We say the vector \mathbf{v} stands in the positive direction from \mathbf{u} if (\mathbf{u}, \mathbf{v}) is a positively oriented pair of vectors.

• This arc (oriented from $\frac{\mathbf{u}}{|\mathbf{u}|}$ to $\frac{\mathbf{v}}{|\mathbf{v}|}$) corresponds to positive direction.

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. We say that the ordered pair of vectors (\mathbf{u}, \mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

Definition (Clock direction)

We say the vector \mathbf{v} stands in the positive direction from \mathbf{u} if (\mathbf{u}, \mathbf{v}) is a positively oriented pair of vectors.

- This arc (oriented from $\frac{\mathbf{u}}{|\mathbf{u}|}$ to $\frac{\mathbf{v}}{|\mathbf{v}|}$) corresponds to positive direction.
- The positive direction is "counterclockwise", provided that

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u}=(u_1,u_2)$ and $\mathbf{v}=(v_1,v_2)$. We say that the ordered pair of vectors (\mathbf{u},\mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

Definition (Clock direction)

We say the vector \mathbf{v} stands in the positive direction from \mathbf{u} if (\mathbf{u}, \mathbf{v}) is a positively oriented pair of vectors.

- This arc (oriented from $\frac{\mathbf{u}}{|\mathbf{u}|}$ to $\frac{\mathbf{v}}{|\mathbf{v}|}$) corresponds to positive direction.
- The positive direction is "counterclockwise", provided that
 - the orientation of space is the conventional: *x* first, *y* second;

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u}=(u_1,u_2)$ and $\mathbf{v}=(v_1,v_2)$. We say that the ordered pair of vectors (\mathbf{u},\mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

Definition (Clock direction)

We say the vector \mathbf{v} stands in the positive direction from \mathbf{u} if (\mathbf{u}, \mathbf{v}) is a positively oriented pair of vectors.

- This arc (oriented from $\frac{\mathbf{u}}{|\mathbf{u}|}$ to $\frac{\mathbf{v}}{|\mathbf{v}|}$) corresponds to positive direction.
- The positive direction is "counterclockwise", provided that
 - the orientation of space is the conventional: *x* first, *y* second;
 - the x axis is drawn horizontally to the right, the y-axis up;

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. We say that the ordered pair of vectors (\mathbf{u}, \mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

Definition (Clock direction)

We say the vector \mathbf{v} stands in the positive direction from \mathbf{u} if (\mathbf{u}, \mathbf{v}) is a positively oriented pair of vectors.

- This arc (oriented from $\frac{\mathbf{u}}{|\mathbf{u}|}$ to $\frac{\mathbf{v}}{|\mathbf{v}|}$) corresponds to positive direction.
- The positive direction is "counterclockwise", provided that
 - the orientation of space is the conventional: *x* first, *y* second;
 - the x axis is drawn horizontally to the right, the y-axis up;
 - in case of transparent sheet of paper, we view from the "up" side.

Definition (Orientation of pair of vectors in 2D)

Let $\mathbf{u}=(u_1,u_2)$ and $\mathbf{v}=(v_1,v_2)$. We say that the ordered pair of vectors (\mathbf{u},\mathbf{v}) is *positively oriented* if $\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} > 0$.

Definition (Clock direction)

We say the vector \mathbf{v} stands in the positive direction from \mathbf{u} if (\mathbf{u}, \mathbf{v}) is a positively oriented pair of vectors.

- This arc (oriented from $\frac{\mathbf{u}}{|\mathbf{u}|}$ to $\frac{\mathbf{v}}{|\mathbf{v}|}$) corresponds to positive direction.
- The positive direction is "counterclockwise", provided that
 - the orientation of space is the conventional: *x* first, *y* second;
 - the x axis is drawn horizontally to the right, the y-axis up;
 - in case of transparent sheet of paper, we view from the "up" side.
- If any of the above changes, the notion of pos. direction may fail to correspond to the everyday use of the word "counterclockwise".

 Let D be an open set and C a closed piecewise smooth curve with parametrization r(t).

- Let D be an open set and C a closed piecewise smooth curve with parametrization r(t).
- Suppose the boundary of *D* equals *C*.

- Let D be an open set and C a closed piecewise smooth curve with parametrization r(t).
- Suppose the boundary of D equals C.
- Let $\mathbf{T} = \frac{\mathbf{r}}{|\mathbf{r}|}$, (**T** is the unit vector compatible with the orientation of **C**).

- Let D be an open set and C a closed piecewise smooth curve with parametrization r(t).
- Suppose the boundary of D equals C.
- Let $\mathbf{T} = \frac{\mathbf{r}}{|\mathbf{r}|}$, (**T** is the unit vector compatible with the orientation of **C**).
- Let N be a unit vector perpendicular to T.

- Let D be an open set and C a closed piecewise smooth curve with parametrization r(t).
- Suppose the boundary of D equals C.
- Let $\mathbf{T} = \frac{\mathbf{r}}{|\mathbf{r}|}$, (**T** is the unit vector compatible with the orientation of **C**).
- Let N be a unit vector perpendicular to T. There are two choices for N;

- Let D be an open set and C a closed piecewise smooth curve with parametrization r(t).
- Suppose the boundary of D equals C.
- Let $\mathbf{T} = \frac{\mathbf{r}}{|\mathbf{r}|}$, (**T** is the unit vector compatible with the orientation of **C**).
- Let N be a unit vector perpendicular to T. There are two choices for N;

- Let D be an open set and C a closed piecewise smooth curve with parametrization r(t).
- Suppose the boundary of D equals C.
- Let $\mathbf{T} = \frac{\mathbf{r}}{|\mathbf{r}|}$, (**T** is the unit vector compatible with the orientation of **C**).
- Let **N** be a unit vector perpendicular to **T**. There are two choices for **N**; we select that which points towards *D* as indicated.

- Let D be an open set and C a closed piecewise smooth curve with parametrization r(t).
- Suppose the boundary of D equals C.
- Let $\mathbf{T} = \frac{\mathbf{r}}{|\mathbf{r}|}$, (**T** is the unit vector compatible with the orientation of **C**).
- Let N be a unit vector perpendicular to T. There are two choices for N; we select that which points towards D as indicated.

Definition (boundary)

We say that the oriented curve C is the boundary of D if the pair of vectors (\mathbf{T}, \mathbf{N}) is positively oriented.

- Let D be an open set and C a closed piecewise smooth curve with parametrization r(t).
- Suppose the boundary of D equals C.
- Let $\mathbf{T} = \frac{\mathbf{r}}{|\mathbf{r}|}$, (**T** is the unit vector compatible with the orientation of **C**).
- Let N be a unit vector perpendicular to T. There are two choices for N; we select that which points towards D as indicated.

Definition (boundary)

We say that the oriented curve C is the boundary of D if the pair of vectors (\mathbf{T}, \mathbf{N}) is positively oriented. We write

$$C = \partial D$$
.

- Let D be an open set and C a closed piecewise smooth curve with parametrization r(t).
- Suppose the boundary of D equals C.
- Let $\mathbf{T} = \frac{\mathbf{r}}{|\mathbf{r}|}$, (**T** is the unit vector compatible with the orientation of **C**).
- Let N be a unit vector perpendicular to T. There are two choices for N; we select that which points towards D as indicated.

Definition (boundary)

We say that the oriented curve C is the boundary of D if the pair of vectors (\mathbf{T}, \mathbf{N}) is positively oriented. We write

$$C = \partial D$$
.

The symbol ∂ above is called the *boundary operator*.

- Let D be an open set and C a closed piecewise smooth curve with parametrization r(t).
- Suppose the boundary of D equals C.
- Let $\mathbf{T} = \frac{\mathbf{r}}{|\mathbf{r}|}$, (**T** is the unit vector compatible with the orientation of **C**).
- Let N be a unit vector perpendicular to T. There are two choices for N; we select that which points towards D as indicated.

Definition (boundary)

We say that the oriented curve C is the boundary of D if the pair of vectors (\mathbf{T}, \mathbf{N}) is positively oriented. We write

$$C = \partial D$$
.

The symbol ∂ above is called the *boundary operator*.

• When walking along the boundary ∂D , D is to the walker's left.

Green's Theorem

Let D be a set in the plane whose boundary $C = \partial D$ is a piecewise smooth oriented curve. Suppose P and Q functions in the plane that have continuous partial derivatives in an open region around D.

Theorem (Green)

$$\oint_C (P dx + Q dy) = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

Companion formula:

$$\oint_C P dy - Q dx = \iint_D \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dx dy.$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose *D* - curv. trapezoid, vertical bases.

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

	· · · · · · · · · · · · · · · · · · ·	,	
Curve	Parametrization	parameter interval	d <i>x</i>
<i>C</i> ₁	(t, f(t))	<i>t</i> ∈ [<i>a</i> , <i>b</i>]	d <i>t</i>
C_2	(b,t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C_4	(a,t)	$t \in [g(a), f(a)]$	0

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

		,	
Curve	Parametrization	parameter interval	d <i>x</i>
<i>C</i> ₁	(t, f(t))	<i>t</i> ∈ [<i>a</i> , <i>b</i>]	d <i>t</i>
C_2	(b,t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C_4	(a,t)	$t \in [g(a), f(a)]$	0

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

Parametrization	parameter interval	d <i>x</i>
(t, f(t))	<i>t</i> ∈ [<i>a</i> , <i>b</i>]	d <i>t</i>
(b,t)	$t \in [f(b), g(b)]$	0
(t,g(t))	$t \in [b, a]$	d <i>t</i>
(a,t)	$t \in [g(a), f(a)]$	0
	(t, f(t)) (b, t) $(t, g(t))$	$(t,f(t))$ $t \in [a,b]$ (b,t) $t \in [f(b),g(b)]$ $(t,g(t))$ $t \in [b,a]$

Lecture 18 2020

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

Parametrization	parameter interval	d <i>x</i>
(t, f(t))	$t \in [a,b]$	d <i>t</i>
(b,t)	$t \in [f(b), g(b)]$	0
(t,g(t))	$t \in [b, a]$	d <i>t</i>
(a,t)	$t \in [g(a), f(a)]$	0
	(t, f(t)) (b, t) $(t, g(t))$	$(t, f(t)) \qquad t \in [a, b]$ $(b, t) \qquad t \in [f(b), g(b)]$ $(t, g(t)) \qquad t \in [b, a]$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

		,	
Curve	Parametrization	parameter interval	d <i>x</i>
C ₁	(t, f(t))	$t \in [a,b]$	d <i>t</i>
C_2	(b , t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C ₄	(a,t)	$t \in [g(a), f(a)]$	0

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

	· · · · · · · · · · · · · · · · · · ·	,	
Curve	Parametrization	parameter interval	d <i>x</i>
<i>C</i> ₁	(t, f(t))	<i>t</i> ∈ [<i>a</i> , <i>b</i>]	d <i>t</i>
C_2	(b,t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C_4	(a,t)	$t \in [g(a), f(a)]$	0

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

		,	
Curve	Parametrization	parameter interval	d <i>x</i>
C ₁	(t, f(t))	$t \in [a,b]$	d <i>t</i>
C_2	(b,t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C_4	(a,t)	$t \in [g(a), f(a)]$	0

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

		,	
Curve	Parametrization	parameter interval	d <i>x</i>
<i>C</i> ₁	(t, f(t))	<i>t</i> ∈ [<i>a</i> , <i>b</i>]	d <i>t</i>
C_2	(b,t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C_4	(a,t)	$t \in [g(a), f(a)]$	0

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

etrization	manage at an interned	- 1
Clinzation	parameter interval	d <i>x</i>
<i>f</i> (<i>t</i>))	$t \in [a,b]$	d <i>t</i>
b, t)	$t \in [f(b), g(b)]$	0
g(t)	$t \in [b, a]$	d <i>t</i>
$\mathbf{a},t)$	$t \in [g(a), f(a)]$	0
	f(t)) b, t) g(t)) a, t)	$egin{array}{cccc} f(t)) & t \in [a,b] \ b,t) & t \in [f(b),g(b)] \ g(t)) & t \in [b,a] \ \end{array}$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>x</i>
Ourve		<u>'</u>	u A
C_1	(t, f(t))	$t \in [a,b]$	d <i>t</i>
C_2	(b,t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C_4	(a,t)	$t \in [g(a), f(a)]$	0
· ·	C		

$$\oint_{\partial D} P dx = \int_{C_1 + C_2 + C_3 + C_4} P dx$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>x</i>
C ₁	(t, f(t))	<i>t</i> ∈ [<i>a</i> , <i>b</i>]	d <i>t</i>
C_2	(b,t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C_4	(a,t)	$t \in [g(a), f(a)]$	0

$$\oint_{\partial D} P dx = \int_{C_1 + C_2 + C_3 + C_4} P dx$$

$$= \int_{t=a}^{t=b} P(t, f(t)) dt + \int_{t=b}^{t=a} P(t, g(t)) dt$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>x</i>
<i>C</i> ₁	(t, f(t))	<i>t</i> ∈ [<i>a</i> , <i>b</i>]	d <i>t</i>
C_2	(b,t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C_4	(a,t)	$t \in [g(a), f(a)]$	0

$$\oint_{\partial D} P dx = \int_{\substack{C_1 + C_2 + C_3 + C_4 \\ t = a}} P dx$$

$$= \int_{\substack{t=a \\ t = a}}^{t=b} P(t, f(t)) dt + \int_{t=b}^{t=a} P(t, g(t)) dt$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy .$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>x</i>
C ₁	(t, f(t))	<i>t</i> ∈ [<i>a</i> , <i>b</i>]	d <i>t</i>
C_2	(b,t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C_4	(a,t)	$t \in [g(a), f(a)]$	0

$$\oint_{\partial D} P dx = \int_{C_1 + C_2 + C_3 + C_4} P dx$$

$$= \int_{t=a}^{t=b} P(t, f(t)) dt + \int_{t=b}^{t=a} P(t, g(t)) dt$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy .$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>x</i>
C ₁	(t, f(t))	$t \in [a,b]$	d <i>t</i>
C_2	(b,t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C_4	(a,t)	$t \in [g(a), f(a)]$	0

$$\oint_{\partial D} P dx = \int_{C_1 + C_2 + C_3 + C_4} P dx
= \int_{t=a}^{t=b} P(t, f(t)) dt + \int_{t=b}^{t=a} P(t, g(t)) dt
= \int_{t=a}^{t=b} (P(t, f(t)) - P(t, g(t))) dt$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy .$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>x</i>
C ₁	(t, f(t))	$t \in [a,b]$	d <i>t</i>
C_2	(b,t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C ₄	(a,t)	$t \in [g(a), f(a)]$	0

$$\oint_{\partial D} P dx = \int_{C_1 + C_2 + C_3 + C_4} P dx
= \int_{t=a}^{t=b} P(t, f(t)) dt + \int_{t=b}^{t=a} P(t, g(t)) dt
= \int_{t=a}^{t=b} (P(t, f(t)) - P(t, g(t))) dt
= \int_{t=a}^{t=b} \left(\int_{u=f(t)}^{u=g(t)} (-P_y(t, u)) du \right) dt$$
Use FTC

2020 Todor Milev Lecture 18

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy .$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>x</i>
C ₁	(t, f(t))	$t \in [a,b]$	d <i>t</i>
C_2	(b,t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C_4	(a,t)	$t \in [g(a), f(a)]$	0

$$\oint_{\partial D} P dx = \int_{C_1 + C_2 + C_3 + C_4} P dx$$

$$= \int_{t=a}^{t=b} P(t, f(t)) dt + \int_{t=b}^{t=a} P(t, g(t)) dt$$

$$= \int_{t=a}^{t=b} (P(t, f(t)) - P(t, g(t))) dt$$

$$= \int_{t=a}^{t=b} \left(\int_{u=f(t)}^{u=g(t)} (-P_y(t, u)) du \right) dt$$

$$= \iint_{D} \left(-\frac{\partial P}{\partial y} \right) dx dy.$$

Use FTC

relabel t, u to x, y

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy .$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>x</i>
C ₁	(t, f(t))	<i>t</i> ∈ [<i>a</i> , <i>b</i>]	d <i>t</i>
C_2	(b,t)	$t \in [f(b), g(b)]$	0
C_3	(t,g(t))	$t \in [b, a]$	d <i>t</i>
C_4	(a,t)	$t \in [g(a), f(a)]$	0

$$\oint_{\partial D} P dx = \int_{C_1 + C_2 + C_3 + C_4} P dx$$

$$= \int_{t=a}^{t=b} P(t, f(t)) dt + \int_{t=b}^{t=a} P(t, g(t)) dt$$

$$= \int_{t=a}^{t=b} (P(t, f(t)) - P(t, g(t))) dt \qquad | Use FTC$$

$$= \int_{t=a}^{t=b} \left(\int_{u=f(t)}^{u=g(t)} (-P_y(t, u)) du \right) dt \qquad | relabel t, u to x, y$$

$$= \iint_{D} \left(-\frac{\partial P}{\partial y} \right) dx dy.$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, vertical bases. Then ∂D is the union of:

Parametrization	parameter interval	d <i>x</i>
(t, f(t))	<i>t</i> ∈ [<i>a</i> , <i>b</i>]	d <i>t</i>
(b,t)	$t \in [f(b), g(b)]$	0
(t,g(t))	$t \in [b, a]$	d <i>t</i>
(a,t)	$t \in [g(a), f(a)]$	0
	(t, f(t)) (b, t) $(t, g(t))$	$(t, f(t))$ $t \in [a, b]$ (b, t) $t \in [f(b), g(b)]$ $(t, g(t))$ $t \in [b, a]$

$$\oint_{\partial D} P dx = \int_{C_1 + C_2 + C_3 + C_4} P dx$$

$$= \int_{t=a}^{t=b} P(t, f(t)) dt + \int_{t=b}^{t=a} P(t, g(t)) dt$$

$$= \int_{t=a}^{t=b} (P(t, f(t)) - P(t, g(t))) dt \qquad | Use FTC$$

$$= \int_{t=a}^{t=b} \left(\int_{u=f(t)}^{u=g(t)} (-P_y(t, u)) du \right) dt \qquad | relabel t, u to x, y$$

$$= \iint_{D} \left(-\frac{\partial P}{\partial y} \right) dx dy.$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose *D* - curv. trapezoid, horiz. bases.

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When *D*= representable by curv. trapezoids in both directions.

Suppose *D* - curv. trapezoid, horiz. bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>y</i>
C ₁	(f(t),t)	<i>t</i> ∈ [<i>b</i> , <i>a</i>]	d <i>t</i>
C_2	(a,t)	$t \in [f(a), g(a)]$	0
C_3	(g(t),t)	$t \in [a, b]$	d <i>t</i>
C_4	(b,t)	$t \in [g(b), f(b)]$	0

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, horiz. bases. Then ∂D is the union of:

-		
Parametrization	parameter interval	d <i>y</i>
(f(t),t)	<i>t</i> ∈ [<i>b</i> , <i>a</i>]	d <i>t</i>
(a,t)	$t \in [f(a), g(a)]$	0
(g(t),t)	$t \in [a, b]$	d <i>t</i>
(b,t)	$t \in [g(b), f(b)]$	0
	(f(t),t) (a,t) (g(t),t)	$(f(t), t) \qquad t \in [b, a]$ $(a, t) \qquad t \in [f(a), g(a)]$ $(g(t), t) \qquad t \in [a, b]$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When *D*= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, horiz, bases. Then ∂D is the union of:

-		-,	-
Curve	Parametrization	parameter interval	d <i>y</i>
C ₁	(f(t),t)	<i>t</i> ∈ [<i>b</i> , <i>a</i>]	d <i>t</i>
C_2	(a,t)	$t \in [f(a), g(a)]$	0
C_3	(g(t),t)	$t \in [a,b]$	d <i>t</i>
C_4	(b,t)	$t \in [g(b), f(b)]$	0

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, horiz. bases. Then ∂D is the union of:

	· · · · · · · · · · · · · · · · · · ·	,	
Curve	Parametrization	parameter interval	d <i>y</i>
C_1	(f(t),t)	$t \in [b, a]$	d <i>t</i>
C_2	(a,t)	$t \in [f(a), g(a)]$	0
C_3	(g(t),t)	$t \in [a,b]$	d <i>t</i>
C_4	(b, t)	$t \in [g(b), f(b)]$	0

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When *D*= representable by curv. trapezoids in both directions.

Suppose *D* - curv. trapezoid, horiz. bases. Then ∂D is the union of:

	•	· ·	
Curve	Parametrization	parameter interval	d <i>y</i>
C ₁	(f(t),t)	<i>t</i> ∈ [<i>b</i> , <i>a</i>]	d <i>t</i>
C_2	(a,t)	$t \in [f(a), g(a)]$	0 .
C_3	(g(t),t)	$t \in [a, b]$	d <i>t</i>
C_4	(b,t)	$t \in [g(b), f(b)]$	0

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, horiz. bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>y</i>
C ₁	(f(t),t)	<i>t</i> ∈ [<i>b</i> , <i>a</i>]	dt
C_2	(a,t)	$t \in [f(a), g(a)]$	0
C_3	(g(t),t)	$t \in [a, b]$	d <i>t</i>
C_4	(b,t)	$t \in [g(b), f(b)]$	0
COd	· · · · · · · · · · · · · · · · · · ·	0-1	

$$\oint_{\partial D} Q dy = \int_{C_1 + C_2 + C_3 + C_4} Q dy$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, horiz. bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>y</i>
C ₁	(f(t),t)	<i>t</i> ∈ [<i>b</i> , <i>a</i>]	dt
C_2	(a,t)	$t \in [f(a), g(a)]$	0
C_3	(g(t),t)	$t \in [a, b]$	d <i>t</i>
C_4	(b,t)	$t \in [g(b), f(b)]$	0

$$\oint_{\partial D} Q dy = \int_{C_1 + \frac{C_2 + C_3 + C_4}{2}} Q dy$$

$$= \int_{t=b}^{t=a} Q(f(t), t) dt + \int_{t=a}^{t=b} Q(g(t), t) dt$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, horiz. bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>y</i>
<i>C</i> ₁	(f(t),t)	<i>t</i> ∈ [<i>b</i> , <i>a</i>]	d <i>t</i>
C_2	(a,t)	$t \in [f(a), g(a)]$	0
C_3	(g(t),t)	$t \in [a, b]$	d <i>t</i>
C_4	(b,t)	$t \in [g(b), f(b)]$	0

$$\oint_{\partial D} Q dy = \int_{\substack{C_1 + C_2 + C_3 + C_4 \\ t = b}} Q dy$$

$$= \int_{\substack{t=a \\ t = b}}^{t=a} Q(f(t), t) dt + \int_{t=a}^{t=b} Q(g(t), t) dt$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, horiz. bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>y</i>
C ₁	(f(t),t)	<i>t</i> ∈ [<i>b</i> , <i>a</i>]	dt
C_2	(a,t)	$t \in [f(a), g(a)]$	0
C_3	(g(t),t)	$t \in [a,b]$	d <i>t</i>
C_4	(b,t)	$t \in [g(b), f(b)]$	0

$$\oint_{\partial D} Q dy = \int_{C_1 + C_2 + C_3 + C_4} Q dy$$

$$= \int_{t=b}^{t=a} Q(f(t), t) dt + \int_{t=a}^{t=b} Q(g(t), t) dt$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, horiz. bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>y</i>
C ₁	(f(t),t)	<i>t</i> ∈ [<i>b</i> , <i>a</i>]	dt
C_2	(a,t)	$t \in [f(a), g(a)]$	0
C_3	(g(t),t)	$t \in [a, b]$	d <i>t</i>
C_4	(b,t)	$t \in [g(b), f(b)]$	0

$$\oint_{\partial D} Q dy = \int_{C_1 + C_2 + C_3 + C_4} Q dy
= \int_{\substack{t=0 \\ t=a}}^{t=a} Q(f(t), t) dt + \int_{t=a}^{t=b} Q(g(t), t) dt
= \int_{\substack{t=0 \\ t=a}}^{t=b} (-Q(f(t), t) + Q(g(t), t)) dt$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, horiz. bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>y</i>
C ₁	(f(t),t)	$t \in [b, a]$	d <i>t</i>
C_2	(a,t)	$t \in [f(a), g(a)]$	0
C_3	(g(t),t)	$t \in [a, b]$	d <i>t</i>
C_4	(b,t)	$t \in [g(b), f(b)]$	0

$$\oint_{\partial D} Q dy = \int_{C_1 + C_2 + C_3 + C_4} Q dy
= \int_{t=a}^{t=a} Q(f(t), t) dt + \int_{t=a}^{t=b} Q(g(t), t) dt
= \int_{t=a}^{t=b} (-Q(f(t), t) + Q(g(t), t)) dt
= \int_{t=a}^{t=b} \left(\int_{u=f(t)}^{u=g(t)} (Q_x(u, t)) du \right) dt$$

Use FTC

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, horiz. bases. Then ∂D is the union of:

	•	•	
Curve	Parametrization	parameter interval	d <i>y</i>
C ₁	(f(t),t)	$t \in [b, a]$	d <i>t</i>
C_2	(a,t)	$t \in [f(a), g(a)]$	0
C_3	(g(t),t)	$t \in [a, b]$	d <i>t</i>
C_4	(b,t)	$t \in [g(b), f(b)]$	0

$$\begin{array}{lll} \oint_{\partial D} Q \mathrm{d}y &=& \int_{C_1 + C_2 + C_3 + C_4} Q \mathrm{d}y \\ &=& \int_{t=b}^{t=a} Q(f(t),t) \mathrm{d}t + \int_{t=a}^{t=b} Q(g(t),t) \mathrm{d}t \\ &=& \int_{t=a}^{t=b} \left(-Q(f(t),t) + Q(g(t),t) \right) \mathrm{d}t \\ &=& \int_{t=a}^{t=b} \left(\int_{u=f(t)}^{u=g(t)} \left(Q_x(u,t) \right) \mathrm{d}u \right) \mathrm{d}t \end{array} \quad \begin{array}{l} \text{Use FTC} \\ \text{relabel } t,u \text{ to } x,y \\ &=& \iint_D \left(\frac{\partial Q}{\partial x} \right) \mathrm{d}x \mathrm{d}y. \end{array}$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, horiz. bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>y</i>
C ₁	(f(t),t)	$t \in [b, a]$	d <i>t</i>
C_2	(a,t)	$t \in [f(a), g(a)]$	0
C_3	(g(t),t)	$t \in [a, b]$	d <i>t</i>
C_4	(b,t)	$t \in [g(b), f(b)]$	0

$$\oint_{\partial D} Q dy = \int_{C_1 + C_2 + C_3 + C_4} Q dy$$

$$= \int_{t=b}^{t=a} Q(f(t), t) dt + \int_{t=a}^{t=b} Q(g(t), t) dt$$

$$= \int_{t=a}^{t=b} (-Q(f(t), t) + Q(g(t), t)) dt \qquad \text{Use FTC}$$

$$= \int_{t=a}^{t=b} \left(\int_{u=f(t)}^{u=g(t)} (Q_x(u, t)) du \right) dt \qquad \text{relabel } t, u \text{ to } x, y$$

$$= \iint_{D} \left(\frac{\partial Q}{\partial x} \right) dx dy.$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

When D= representable by curv. trapezoids in both directions.

Suppose D - curv. trapezoid, horiz. bases. Then ∂D is the union of:

Curve	Parametrization	parameter interval	d <i>y</i>
C ₁	(f(t),t)	$t \in [b, a]$	d <i>t</i>
C_2	(a,t)	$t \in [f(a), g(a)]$	0
C_3	(g(t),t)	$t \in [a, b]$	d <i>t</i>
C_4	(b,t)	$t \in [g(b), f(b)]$	0
C 0.1	C	<u> </u>	

$$\oint_{\partial D} Q dy = \int_{C_1 + C_2 + C_3 + C_4} Q dy$$

$$= \int_{t=b}^{t=a} Q(f(t), t) dt + \int_{t=a}^{t=b} Q(g(t), t) dt$$

$$= \int_{t=a}^{t=b} (-Q(f(t), t) + Q(g(t), t)) dt \qquad | Use FTC$$

$$= \int_{t=a}^{t=b} \left(\int_{u=f(t)}^{u=g(t)} (Q_x(u, t)) du \right) dt \qquad | relabel t, u to x, y$$

$$= \iint_{C_1} \left(\frac{\partial Q}{\partial x} \right) dx dy$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

So far, we demonstrated that

$$\oint_{\partial D} P dx = \iint_{D} \left(-\frac{\partial P}{\partial y} \right) dx dy \quad \text{curv. trapezoids vert. bases}$$

$$\oint_{\partial D} Q dy = \iint_{D} \frac{\partial Q}{\partial x} dx dy \quad \text{curv. trapezoids horiz. bases}$$

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

So far, we demonstrated that

$$\oint_{\partial D} P dx = \iint_{D} \left(-\frac{\partial P}{\partial y} \right) dx dy \quad \text{curv. trapezoids vert. bases}$$

$$\oint_{\partial D} Q dy = \iint_{D} \frac{\partial Q}{\partial x} dx dy \quad \text{curv. trapezoids horiz. bases}$$

• Suppose *D* = union of curvilinear trapezoids with vertical bases, pairwise intersecting on their boundaries only.

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

So far, we demonstrated that

$$\oint_{\partial D} P dx = \iint_{D} \left(-\frac{\partial P}{\partial y} \right) dx dy \quad \text{curv. trapezoids vert. bases}$$

$$\oint_{\partial D} Q dy = \iint_{D} \frac{\partial Q}{\partial x} dx dy \quad \text{curv. trapezoids horiz. bases}$$

• Suppose *D* = union of curvilinear trapezoids with vertical bases, pairwise intersecting on their boundaries only. The first equality holds over each curvilinear trapezoid

2020 **Todor Milev** Lecture 18

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

So far, we demonstrated that

$$\oint_{\partial D} P dx = \iint_{D} \left(-\frac{\partial P}{\partial y} \right) dx dy \quad \text{curv. trapezoids vert. bases}$$

$$\oint_{\partial D} Q dy = \iint_{D} \frac{\partial Q}{\partial x} dx dy \quad \text{curv. trapezoids horiz. bases}$$

• Suppose *D* = union of curvilinear trapezoids with vertical bases, pairwise intersecting on their boundaries only. The first equality holds over each curvilinear trapezoid

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

So far, we demonstrated that

$$\oint_{\partial D} P dx = \iint_{D} \left(-\frac{\partial P}{\partial y} \right) dx dy \quad \text{curv. trapezoids vert. bases}$$

$$\oint_{\partial D} Q dy = \iint_{D} \frac{\partial Q}{\partial x} dx dy \quad \text{curv. trapezoids horiz. bases}$$

• Suppose *D* = union of curvilinear trapezoids with vertical bases, pairwise intersecting on their boundaries only. The first equality holds over each curvilinear trapezoid

2020 **Todor Milev** Lecture 18

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

So far, we demonstrated that

$$\oint_{\partial D} P dx = \iint_{D} \left(-\frac{\partial P}{\partial y} \right) dx dy \quad \text{curv. trapezoids vert. bases}$$

$$\oint_{\partial D} Q dy = \iint_{D} \frac{\partial Q}{\partial x} dx dy \quad \text{curv. trapezoids horiz. bases}$$

• Suppose *D* = union of curvilinear trapezoids with vertical bases, pairwise intersecting on their boundaries only. The first equality holds over each curvilinear trapezoid

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

So far, we demonstrated that

$$\oint_{\partial D} P dx = \iint_{D} \left(-\frac{\partial P}{\partial y} \right) dx dy$$
 curv. trapezoids vert. bases
$$\oint_{\partial D} Q dy = \iint_{D} \frac{\partial Q}{\partial x} dx dy$$
 curv. trapezoids horiz. bases

• Suppose *D* = union of curvilinear trapezoids with vertical bases, pairwise intersecting on their boundaries only. The first equality holds over each curvilinear trapezoid \Rightarrow it holds over the entire D as contributions of extra line integrals cancel one another.

2020 **Todor Milev** Lecture 18

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

So far, we demonstrated that

$$\oint_{\partial D} P dx = \iint_{D} \left(-\frac{\partial P}{\partial y} \right) dx dy \quad \text{curv. trapezoids vert. bases}$$

$$\oint_{\partial D} Q dy = \iint_{D} \frac{\partial Q}{\partial x} dx dy \quad \text{curv. trapezoids horiz. bases}$$

- Suppose *D* = union of curvilinear trapezoids with vertical bases, pairwise intersecting on their boundaries only. The first equality holds over each curvilinear trapezoid \Rightarrow it holds over the entire D as contributions of extra line integrals cancel one another.
- Similarly if D can be represented as union of curvilinear trapezoids with horizontal bases, the second equality holds.

$$\oint_{\partial D} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

When D= representable by curv. trapezoids in both directions.

So far, we demonstrated that

$$\oint_{\partial D} P dx = \iint_{D} \left(-\frac{\partial P}{\partial y} \right) dx dy \quad \text{curv. trapezoids vert. bases}$$

$$\oint_{\partial D} Q dy = \iint_{D} \frac{\partial Q}{\partial x} dx dy \quad \text{curv. trapezoids horiz. bases}$$

- Suppose D = union of curvilinear trapezoids with vertical bases, pairwise intersecting on their boundaries only. The first equality holds over each curvilinear trapezoid ⇒ it holds over the entire D as contributions of extra line integrals cancel one another.
- Similarly if D can be represented as union of curvilinear trapezoids with horizontal bases, the second equality holds.
- Adding the two equalities proves the theorem for regions that can be decomposed by curvilinear trapezoids in both directions.

Areas using Green's Theorem

Theorem (Green)

$$\oint_{\partial D} P dx + Q dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy .$$

- One use of Green's theorem is for relating areas to certain line integrals.
- Suppose $Q_x-P_y=1$. Then ${\sf Area}(D)=\iint_D 1{\sf d}x{\sf d}y=\iint_D (Q_x-P_y){\sf d}x{\sf d}y=\oint_{C=\partial D} P{\sf d}x+Q{\sf d}y$.
- There are many ways to have $Q_x P_y$, for example:
 - P(x, y) = -y and Q(x, y) = 0,
 - P(x, y) = 0 and Q(x, y) = y,
 - $P(x, y) = -\frac{y}{2}$ and $Q(x, y) = \frac{x}{2}$.

Example (Areas via line integrals)

Use Green's theorem to compute the area of the region *D* enclosed by the ellipse *C*: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Example (Areas via line integrals)

Use Green's theorem to compute the area of the region *D* enclosed by the ellipse *C*: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Let
$$C = \partial D$$
; C is parametrized by C : $\begin{vmatrix} x &= a\cos t \\ y &= b\sin t \end{vmatrix}$, $t \in [0, 2\pi]$.

Area $(D) = \iint_{t=2\pi} dA = \int_{C} x dy = \int_{t=0}^{t=2\pi} a\cos t d(b\sin t)$ Green's Thm.

$$= \int_{t=0}^{t=2\pi} a\cos(t)b\cos(t)dt = ab \int_{t=0}^{t=2\pi} \cos^2 t dt$$

$$= \int_{t=0}^{2\pi} \left(\frac{1+\cos(2t)}{2}\right) dt$$

$$= ab \left[\frac{\theta}{2} + \frac{\sin(2t)}{4}\right]_{t=0}^{2\pi} = ab\pi.$$

Example

Integrate

$$\int_{C} \left(y^{3} + e^{\arctan x} \right) dx + \left(-x^{3} + \ln \left(\cos y + y + 4 \right) \right) dy,$$

where *C* is the oriented boundary of the disk *D* with radius 2 and centered at the origin.

Example

Integrate

$$\int_{C} \left(y^{3} + e^{\arctan x} \right) dx + \left(-x^{3} + \ln(\cos y + y + 4) \right) dy,$$
 where *C* is the oriented boundary of the disk *D* with radius 2 and centered at the origin.

Direct computation of the line integral appears intractable. Since P, Q are smooth over D we can use Green's theorem. This makes sense as P_{V}, Q_{x} are simple expressions.

$$P_y$$
, Q_x are simple expressions.
$$\int_C P dx + Q dy = \int_D (Q_x - P_y) dx dy$$
$$= \int_D \left(-3x^2 - 3y^2 \right) dx dy$$
$$= \int_{\theta=0}^{2\pi} \int_{r=0}^2 (-3r^2) r dr d\theta$$
$$= \int_{\theta=0}^{2\pi} \left[\frac{3}{4} r^4 \right]_{r=0}^{r=2} d\theta = 24\pi .$$

Green's Thm.

use polar coords.

2020

Example (Line integrals of $d\theta$ using Green's theorem)

Let C be a closed curve, enclosing an open set D, and not passing through (0,0). Compute

$$\oint_C \frac{-y}{x^2 + y^2} \mathrm{d}x + \frac{x}{x^2 + y^2} \mathrm{d}y$$

provided that D does not contain the origin. Since D does not contain the origin we can use Green's theorem:

$$\oint_C \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy = \oint_D \left(\frac{y^2 - x^2}{(x^2 + y^2)^2} - \frac{x^2 - y^2}{(x^2 + y^2)} \right) dx dy = 0.$$

Example (Line integrals of $d\theta$ using Green's theorem)

Let C be a closed curve, enclosing an open set D, and not passing through (0,0). Compute

$$\oint_C \frac{-y}{x^2 + y^2} \mathrm{d}x + \frac{x}{x^2 + y^2} \mathrm{d}y$$

provided that D contains the origin. We cannot use Green's theorem with respect to D because the resulting double integral involve a function which is not defined at (0,0). Instead we cut off a small circle at (0,0).