(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 March 2001 (15.03.2001)

(10) International Publication Number WO 01/18047 A1

(51) International Patent Classification7: C07K 14/435, 14/47, C07H 21/04, A61K 39/395, A61P 37/06, C12N 5/16, 5/22, C12Q 1/24, G01N 33/54

Street, Richmond, VIC 3121 (AU). SHORTMAN, Kenneth, Douglas [AU/AU]; 92 Wilson Street, Carlton North, VIC 3054 (AU).

- (21) International Application Number: PCT/AU00/01083
- (74) Agent: F B RICE & CO; 139 Rathdowne Street, Carlton, VIC 3053 (AU).

- (22) International Filing Date:
 - 11 September 2000 (11.09.2000)
- (25) Filing Language:
 - English

(26) Publication Language:

English

- (30) Priority Data:
 - PQ 2728

9 September 1999 (09.09.1999)

- (71) Applicant (for all designated States except US): THE COUNCIL OF THE QUEENSLAND INSTITUTE OF MEDICAL RESEARCH [AU/AU]; 300 Herston Road,
 - Herston, QLD 4029 (AU).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CAMINSCHI, Irina [AU/AU]; 108 O'Hea Street, Coburg, VIC 3056 (AU). VANDENABEELE, Stephane, Alain [FR/AU]; C2/4, 73 O'Shanassy Street, North Melbourne, VIC 3051 (AU). WRIGHT, Mark, Dexter [AU/AU]; 90 Bendigo

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: DENDRITIC CELL MEMBRANE PROTEIN FIRE

(57) Abstract: The present invention relates to a protein (designated FIRE) which is preferentially expressed in dendritic cells stimulatory to T cells, macrophages and their precursors and to nucleic acid sequences encoding this protein. The invention also relates to uses of the protein and nucleic acids.

10

15

20

25

30

35

Dendritic Cell Membrane Pr tein FIRE

FIELD OF THE INVENTION

The present invention relates to a protein (designated FIRE) which is preferentially expressed in dendritic cells stimulatory to T cells, macrophages and their precursors and to nucleic acid sequences encoding this protein. The invention also relates to uses of the protein and nucleic acids.

BACKGROUND OF THE INVENTION

Dendritic cells (DC) are antigen presenting leukocytes which play a critical role in the initiation of immune responses. To stimulate naive T lymphocytes, which is an essential step in generating the immunological memory required for effective vaccination, it is crucial for antigen to be presented by DC. Over the last 8 years techniques have been developed to purify DC populations and lineages from mouse lymphoid organs. This DC purification protocol involves density centrifugation, depletion of contaminating cells with a monoclonal antibody cocktail and magnetic beads, and finally Fluorescent Activated Cell Sorting. Using an original version of this purification protocol, two DC populations in mouse spleen were identified, which are defined by their expression of two cell surface proteins: a lymphoid-lineage related CD8⁺Mac-1⁻DC and a myeloid-lineage related CD8 Mac-1+DC. These two populations differ in their interactions with T lymphocytes. Although the two DC populations displayed equivalent ability to stimulate T cells into cell cycle, they differed in their ability to induce the production of cytokines such as IL-2 and IL-3, which are critical for the induction of an effective immune response (1-5). The myeloid related CD8 Mac-1+DC are much more efficient in cytokine induction than the lymphoid related CD8⁺Mac-1⁻DC. Other differences between the DC are the levels of cytokines they themselves produce (such as IL-12) which, potentially, could regulate the nature as well as the quality of cytokines they induce in the activated T cells. The molecular mechanisms which underpin these differences in interactions between the two DC populations and T lymphocytes are unknown. Presumably myeloid DC differentially express molecules which enable them to stimulate T lymphocytes to produce certain cytokines more efficiently than do lymphoid DC, or alternatively lymphoid

10

15

20

25

30

35

DC differentially express molecules which inhibit the stimulation of T lymphocytes. To address this question the present inventors compared gene expression in the two DC populations using the technique of Representational Difference Analyses (RDA)(6).

Briefly, RDA identifies differential gene expression between two given cell types by using successive rounds of a combination of PCR and subtractive hybridisation which generates DNA fragments of putatively differentially expressed genes (6).

A full length clone encoding a novel mouse gene was obtained using conventional molecular biological techniques, involving the RDA generated fragments. This sequence was designated "FIRE" and encodes a 681 amino acid protein. Analyses of the FIRE sequence shows that it is a novel member of the recently described EGF/TM7 superfamily (7). The mouse sequence was then used to isolate the equivalent human FIRE sequence.

SUMMARY OF THE INVENTION

Accordingly, in a first aspect the present invention consists in an isolated polypeptide, the polypeptide comprising:-

- (i) an amino acid sequence as set out in SEQ ID NO:1, or
- (ii) an amino acid sequence having at least 50% identity to the amino acid sequence set out in SEQ ID NO:1, or
- (iii) a functional fragment of (i) or (ii).

In a preferred embodiment of the first aspect, the polypeptide has a sequence of at least 70%, more preferably at least 80% and most preferably at least 90% identity with the sequence shown in SEQ ID NO:1.

In a second aspect, the present isolated polypeptide, the polypeptide comprising:-

- (i) an amino acid sequence as set out in SEQ ID NO:2, or
- (ii) an amino acid sequence having at least 50% identity to the amino acid sequence set out in SEQ ID NO:2, or
- (iii) a functional fragment of (i) or (ii).

In a preferred embodiment of the second aspect, the polypeptide has a sequence of at least 70%, more preferably at least 80% and most preferably at least 90% identity with the sequence shown in SEQ ID NO:2.

In a further preferred embodiment of the first and second aspects, the polypeptide is expressed on dendritic cells.

10

15

20

25

30

35

The term "functional fragment" as used herein is intended to cover fragments of the polypeptide which retain at least 10% of the biological activity of the complete polypeptide. In particular this term is used to encompass fragments which show immunological cross-reactivity with the entire polypeptide, eg ligands which interact with the fragment also interact with the complete polypeptide.

In a third aspect the present invention consists in an isolated ligand, the ligand being directed against the polypeptide of the first aspect of the present invention.

The ligand may be an inorganic or organic molecule. In one preferred embodiment the ligand is an antibody or the binding portion thereof.

In a fourth aspect the present invention provides an isolated nucleic acid molecule, the nucleic acid molecule encoding a polypeptide of the first or second aspects.

In a fifth aspect, the present invention provides an isolated nucleic acid molecule, the nucleic acid molecule comprising:-

- (i) a sequence as set out in SEQ ID NO:3, or
- (ii) a sequence having at least 60% identity to the sequence set out in SEQ ID NO:3, or
- (iii) a sequence which hybridises to the sequence set out in SEQ ID NO:3 under stringent conditions.

In a preferred embodiment of the fifth aspect, the nucleic acid molecule comprises a sequence of at least 70%, more preferably at least 80% and most preferably at least 90% identity with the sequence shown in SEQ ID NO:3.

In a further preferred embodiment of the fifth aspect, the isolated nucleic acid molecule has at least 95% identity to the nucleotide sequence shown in SEQ ID NO:3, preferably within the region from nucleotide 218 to 2260.

In a sixth aspect the present invention provides an isolated nucleic acid molecule, the nucleic acid molecule comprising:-

- (i) a sequence as set out in SEQ ID NO:4, or
- (ii) a sequence having at least 60% identity to the sequence set out in SEQ ID NO:4, or
- (iii) a sequence which hybridises to the sequence set out in SEQ ID NO:4 under stringent conditions.

WO 01/18047

5

10

15

20

25

30

35

In a preferred embodiment of the sixth aspect, the nucleic acid molecule comprises a sequence of at least 70%, more preferably at least 80% and most preferably at least 90% identity with the sequence shown in SEQ ID NO:4.

In a further preferred embodiment of the sixth aspect, the isolated nucleic acid molecule has at least 95% identity to the nucleotide sequence shown in SEQ ID NO:4 within the region from nucleotide 1 to 1903.

In a seventh aspect the present invention provides an isolated nucleic acid molecule, the nucleic acid molecule encoding the binding region of a ligand of the third aspect.

In a further preferred embodiment of the present invention, the nucleic acid molecules of the present invention are preferably less than 5000 nucleotides, however, they may be less than 1000 or 500 nucleotides in length. Preferably, the nucleic acid molecules of the present invention are at least 18 nucleotides in length.

An "isolated" polypeptide or ligand refers to a polypeptide or ligand that has been substantially isolated from other proteins, lipids, nucleic acids and other contaminants.

An "isolated" nucleic acid molecule refers to a nucleic acid molecule that is one or both of the following: not immediately contiguous with both of the coding sequences with which it is immediately contiguous in the naturally occurring genome of the organism from which the nucleic acid is derived; or which is substantially free of other nucleic acid, proteins, lipids, and other contaminants.

In an eighth aspect the present invention consists in a composition for use in raising or lowering an immune response in a subject, the composition comprising a ligand of the third aspect of the present invention and an antigen and optionally a carrier and/or adjuvant.

In a preferred embodiment the antigen is associated with the ligand. The antigen may be associated with the ligand by any suitable means known in the art. Suitable methods for associating the ligand and antigen are described, for example, in Cox, J. and Coulter, A.R. (1999) Biodrugs 12:439-453.

In a further preferred embodiment, the antigen is conjugated to the ligand.

5

It will be appreciated by those skilled in the art that in the context of the eighth aspect, any antigen of interest may be used in the composition. For example, the antigen may be derived from an infectious pathogen or from a tumour cell.

In a ninth aspect the present invention consists in a composition for use in raising or lowering an immune response in a subject, the composition comprising a nucleic acid molecule and a carrier, the nucleic acid molecule comprising a first sequence encoding a ligand of the third aspect of the present invention and a second sequence encoding an antigen.

5

10

15

20

25

30

35

In a tenth aspect the present invention consists in a method of screening compounds for immunological regulatory activity, the method comprising reacting the compound with the polypeptide or peptide of the first aspect of the invention and measuring interaction between the compound and the polypeptide or peptide.

As will be appreciated by those skilled in the art, the polypeptides, peptides and nucleic acid molecules of the present invention provide useful markers of subgroups of dendritic cells and antigen presenting cells (such as macrophages). They also provide useful markers of dendritic cell precursors.

The nucleic acid molecules of the present invention may also be used as tools to analyse the properties and functions of the FIRE gene/protein. For example, the nucleic acid molecules may be used to generate animal models, preferably mouse models, wherein the animals lack functional FIRE genes. Alternatively, the nucleic acid molecules may be introduced and expressed in cells in which the FIRE gene is not normally expressed.

It will also be appreciated that the nucleic acid molecules of the present invention may be used to isolate regulatory regions (such as the promoter region) of the FIRE gene. Such regulatory regions may be used to selectively express exogenous genes in dendritic or antigen presenting cells.

The ligands of the present invention may be used to isolate dendritic cells, dendritic cell precursors, or other antigen presenting cells, from biological samples (eg. from blood). Accordingly, these ligands may be used in various immunisation processes. For example, the cells which are isolated from a patient through use of these ligands may be grown *in vitro*, exposed to one or more antigens, and then introduced back into the patient.

The ligands of the present invention may also be used to modulate immune responses by interfering with the function, migration or maturation

of dendritic or antigen presenting cells. Ligands which act as agonists or antagonists may be useful in the modulation of immune responses. For example, ligands of the present invention may be administered to patients under conditions such that the ligands bind to and interfere with the function of myeloid dendritic cells, with the result that antigen processing is undertaken by lymphoid dendritic cells. This may lead to immune suppression and anergy, a desirable outcome in the treatment of allergies and autoimmune disorders.

The ligands of the present invention may also be used to target molecules, such as vaccine components, to dendritic or antigen presenting cells. Suitable methods for targeting will be known to those skilled in the art. Non-limiting examples of suitable taragetting methods are described in WO 98/44129.

Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

20

25

30

35

5

10

15

BRIEF DESCRIPTION OF THE FIGURES

Figure 1: FIRE-FLAG is presented on the surface of stably transfected CHO cells as detected by immunofluorescent staining and flow cytometry using anti-FLAG mAb (IC7) and anti-mouse-PE. The filled histograph represents CHO cells transfected with the neomycin resistance gene only, stained with anti-FLAG mAb whilst the hollow histograph are CHO-FIRE-FLAG cells staining positive for the FLAG epitope.

Figure 2 shows the full length cDNA sequence of mouse FIRE and the translated protein sequence.

Figure 3 shows a comparison of the protein sequence of FIRE with members of the EGF/TM7 superfamily including human Emr1 (SEQ ID NO:5); mouse EMR1 (SEQ ID NO:6) and human CD97 (SEQ ID NO:7).

Figure 4: Immunoflurescent staining of FIRE on spenic DC, splenic macrophages and blood mononuclear cells. A) DC were extracted and purified from spleens of C57BL/6 mice and stained with anti-CD11c, anti-CD4, anti-CD8 and anti-FIRE. The cells that were gated on expressed high levels of CD11c and high forward scatter. Dead cells staining with PI were gated out using the FL5 channel. DC that failed to express CD4 and CD8 expressed the highest level of FIRE. CD4+ and CD8+ DC express lower levels of FIRE. Smooth line denotes background control staining and dotted line indicates staining with FIRE. B) Macrophages were extracted and purified from spleens of C57BL/6 mice and stained with anti-CD11b, anti-F4/80, and anti-FIRE. C) Macrophages, defined as the population of cells that express high levels of both F4/80 and CD11b, also express FIRE. Smooth line denotes background control staining and dotted line indicates staining with FIRE. D) Blood mononuclear cells were obtained from C57BL/6 mice by centrifugation over a gradient (lympholyte M), then depleted of cells expressing CD3, GR-1, TER119, Thy1.1 and B220. A large proportion of the remaining blood mononuclear cells expressed FIRE.

Figure 5: In vitro culture of FIRE+ blood mononuclear cells gives rise to a high proportion of CD11c positive cells. Peripheral blood mononuclear cells were isolated as described above. Cells were stained with anti-FIRE mAb then sorted on the basis of FIRE expression. Both FIRE+ (A and B) and FIRE-(C and D) cells were incubated in medium alone (A and C) or medium plus IL-4, FL3L, TNF-α, and GM-CSF (B and D).

25

5

10

15

20

Figure 6 shows the cDNA sequence of human FIRE and the translated protein sequence.

DETAILED DESCRIPTION OF THE INVENTION

In order that the nature of the present invention may be more clearly understood preferred forms thereof will now be described with reference to the following non-limiting Examples.

5

10

15

25

30

35

General Molecular Biology

Unless otherwise indicated, the recombinant DNA techniques utilized in the present invention are standard procedures, well known to those skilled in the art. Such techniques are described and explained throughout the literature in sources such as, J. Perbal, A Practical Guide to Molecular Cloning, John Wiley and Sons (1984), J. Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Laboratory Press (1989), T.A. Brown (editor), Essential Molecular Biology: A Practical Approach, Volumes 1 and 2, IRL Press (1991), D.M. Glover and B.D. Hames (editors), DNA Cloning: A Practical Approach, Volumes 1-4, IRL Press (1995 and 1996), and F.M. Ausubel et al. (Editors), Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience (1988, including all updates until present) and are incorporated herein by reference.

20 Protein Variants

Amino acid sequence variants can be prepared by introducing appropriate nucleotide changes into DNA, or by *in vitro* synthesis of the desired polypeptide. Such variants include, for example, deletions, insertions or substitutions of residues within the amino acid sequence. A combination of deletion, insertion and substitution can be made to arrive at the final construct, provided that the final protein product possesses the desired characteristics. The amino acid changes also may alter post-translational processes such as changing the number or position of glycosylation sites, altering the membrane anchoring characteristics, altering the intra-cellular location by inserting, deleting or otherwise affecting the transmembrane sequences of the native protein, or modifying its susceptibility to proteolytic cleavage.

In designing amino acid sequence variants, the location of the mutation site and the nature of the mutation will depend on characteristic(s) to be modified. The sites for mutation can be modified individually or in series, e.g., by (1) substituting first with conservative amino acid choices and

9

then with more radical selections depending upon the results achieved, (2) deleting the target residue, or (3) inserting residues of other ligands adjacent to the located site.

5

10

15

20

25

30

35

A useful method for identification of residues or regions for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells (Science (1989) 244: 1081-1085). Here, a residue or group of target residues are identified (e.g., charged residues such as Arg. Asp, His, Lys, and Glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the amino acids with the surrounding aqueous environment in or outside the cell. Those domains demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to optimise the performance of a mutation at a given site, alanine scanning or random mutagenesis may be conducted at the target codon or region and the expressed variants are screened for the optimal combination of desired activity.

There are two principal variables in the construction of amino acid sequence variants; the location of the mutation site and the nature of the mutation. These may represent naturally occurring alleles or predetermined mutant forms made by mutating the DNA either to arrive at an allele or a variant not found in nature. In general, the location and nature of the mutation chosen will depend upon the characteristic to be modified.

Amino acid sequence deletions generally range from about 1 to 30 residues, more preferably about 1 to 10 residues and typically about 1 to 5 contiguous residues.

Amino acid sequence insertions include amino and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Other insertional variants include the fusion of the N- or C-terminus of the proteins to an immunogenic polypeptide e.g. bacterial polypeptides such as betalactamase or an enzyme encoded by the *E. coli trp* locus, or yeast protein, bovine serum albumin, and chemotactic polypeptides. C-terminal fusions with proteins having a

10

15

long half-life such as immunoglobulin constant regions (or other immunoglobulin regions), albumin, or ferritin, are included.

Another group of variants are amino acid substitution variants. These variants have at least one amino acid residue in the protein molecule removed and a different residue inserted in its place. The sites of greatest interest for substitutional mutagenesis include sites identified as the active site(s). Other sites of interest are those in which particular residues obtained from various species are identical. These positions may be important for biological activity. These sites, especially those falling within a sequence of at least three other identically conserved sites, are substituted in a relatively conservative manner. Such conservative substitutions are shown in Table 1 under the heading of "preferred substitutions". If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 1, or as further described below in reference to amino acid classes, are introduced and the products screened.

TABLE 1

Original Residue	Exemplary Substitutions	Preferred Substitutions
Ala (A)	val; leu; ile	val
Arg (R)	lys; gln; asn	lys
Asn (N)	gln; his; lys; arg	gln
Asp (D)	glu	glu
Cys (C)	ser	ser
Gln (Q)	asn	asn
Glu (E)	asp	asp
Gly (G)	pro	pro
His (H)	asn; gln; lys; arg	arg
Ile (I)	leu; val; met; ala; phe norleucine	leu
Leu (L)	norleucine, ile; val; met; ala; phe	ile

Lys (K)	arg; gln; asn	arg	····
Met (M)	leu; phe; ile;	leu	
Phe (F)	leu; val; ile; ala	leu	
Pro (P)	gly	gly	
Ser (S)	thr	thr	
Thr (T	ser	ser	
Trp (W)	tyr	tyr	
Tyr (Y)	trp; phe; thr; ser	phe	
Val (V)	ile; leu; met; phe; ala; norleucine	leu	

Mutants, Variants and Homology - Proteins

10

15

20

25

Mutant polypeptides will possess one or more mutations which are deletions, insertions, or substitutions of amino acid residues. Mutants can be either naturally occurring (that is to say, purified or isolated from a natural source) or synthetic (for example, by performing site-directed mutagensis on the encoding DNA). It is thus apparent that polypeptides of the invention can be either naturally occurring or recombinant (that is to say prepared using recombinant DNA techniques).

An allelic variant will be a variant that is naturally occurring within an individual organism.

Protein sequences are homologous if they are related by divergence from a common ancestor. Consequently, a species homologue of the protein will be the equivalent protein which occurs naturally in another species. Within any one species a homologue may exist as numerous allelic variants, and these will be considered homologues of the protein. Allelic variants and species homologues can be obtained by following standard techniques known to those skilled in the art. Preferred species homologues include those obtained from representatives of the same Phylum, more preferably the same Class and even more preferably the same Order.

A protein at least 50% identical, as determined by methods well known to those skilled in the art (for example, the method described by Smith, T.F. and Waterman, M.S. (1981) Ad. Appl Math., 2: 482-489, or Needleman, S.B. and Wunsch, C.D. (1970) J. Mol. Biol., 48: 443-453), to that of the present invention are included in the invention, as are proteins at least 70% or 80%

15

20

25

30

35

and more preferably at least 90% identical to the protein of the present invention. This will generally be over a region of at least 20, preferably at least 30, contiguous amino acids.

5 Mutants, Variants and Homology - Nucleic Acids

Mutant polynucleotides will possess one or more mutations which are deletions, insertions, or substitutions of nucleotide residues. Mutants can be either naturally occurring (that is to say, isolated from a natural source) or synthetic (for example, by performing site-directed mutagensis on the DNA). It is thus apparent that polynucleotides of the invention can be either naturally occurring or recombinant (that is to say prepared using recombinant DNA techniques).

An allelic variant will be a variant that is naturally occurring within an individual organism.

Nucleotide sequences are homologous if they are related by divergence from a common ancestor. Consequently, a species homologue of the polynucleotide will be the equivalent polynucleotide which occurs naturally in another species. Within any one species a homologue may exist as numerous allelic variants, and these will be considered homologues of the polynucleotide. Allelic variants and species homologues can be obtained by following standard techniques known to those skilled in the art. Preferred species homologues include those obtained from representatives of the same Phylum, more preferably the same Class and even more preferably the same Order.

A polynucleotide at least 60% identical, as determined by methods well known to those skilled in the art (for example, the method described by Smith, T.F. and Waterman, M.S. (1981) Ad. Appl Math., 2: 482-489, or Needleman, S.B. and Wunsch, C.D. (1970) J. Mol. Biol., 48: 443-453), to that of the present invention are included in the invention, as are proteins at least 80% or 90% and more preferably at least 95% identical to the polynucleotide of the present invention. This will generally be over a region of at least 60, preferably at least 90, contiguous nucleotide residues.

Antibody Production

Antibodies, either polyclonal or monoclonal, which are specific for a protein of the present invention can be produced by a person skilled in the

10

15

20

25

30

35

art using standard techniques such as, but not limited to, those described by Harlow et al. Antibodies: A Laboratory Manual, Cold Springs Harbor Laboratory Press (1988), and D. Catty (editor), Antibodies: A Practical Approach, IRL Press (1988).

Various procedures known in the art may be used for the production of polyclonal antibodies to epitopes of a protein. For the production of polyclonal antibodies, a number of host animals are acceptable for the generation of antibodies by immunization with one or more injections of a polypeptide preparation, including but not limited to rabbits, mice, rats, etc. Various adjuvants may be used to increase the immunological response in the host animal, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminium hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, oil emulsions, keyhole lympet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and corynebacterium parvum.

A monoclonal antibody to an epitope of a protein may be prepared by using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include but are not limited to the hybridoma technique originally described by Kohler and Milstein (1975, Nature 256, 493-497), and the more recent human B-cell hybridoma technique (Kesber et al. 1983, Immunology Today 4:72) and EBV-hybridoma technique (Cole et al. 1985, Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. pp. 77-96). In addition, techniques developed for the production of "chimeric antibodies" by splicing the genes from an antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity may be used (Morrison et al. 1984, Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al. 1984 Nature 312:604-608; Takeda et al. 1985 Nature 31:452-454). Alternatively, techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce 4-specific single chain antibodies.

Recombinant human or humanized versions of monoclonal antibodies are a preferred embodiment for human therapeutic applications. Humanized antibodies may be prepared according to procedures in the literature (e.g. Jones et al. 1986, Nature 321:522-25; Reichman et al. 1988, Nature

10

15

35

332:323-27; Verhoeyen et al. 1988, Science 239:1534-36). The recently described "gene conversion mutagenesis" strategy for the production of humanized monoclonal antibody may also be employed in the production of humanized antibodies (Carter et al. 1992 Proc. Natl. Acad. Sci. U.S.A. 89:4285-89). Alternatively, techniques for generating the recombinant phage library of random combinations of heavy and light regions may be used to prepare recombinant antibodies (e.g. Huse et al. 1989 Science 246:1275-81).

Antibody fragments which contain the idiotype of the molecule such as Fv F(ab¹) and F(ab²) may be generated by known techniques. For example, such fragments include but are not limited to: the F(ab) E2 fragment which can be produced by pepsin digestion of the intact antibody molecule; the Fab' fragments which can be generated by reducing the disulfide bridges of the F(ab')2 fragment, and the two Fab fragments which can be generated by treating the antibody molecule with papain and a reducing agent. Alternatively, Fab expression libraries may be constructed (Huse et al. 1989, Science 246:1275-1281) to allow rapid and easy cloning of a monoclonal Fab fragment with the desired specificity to a protein.

Adjuvants and Carriers

20 Pharmaceutically acceptable carriers or diluents include those used in compositions suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal, parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural) administration. They are non-toxic to recipients at the dosages and concentrations employed. Representative examples of pharmaceutically acceptable carriers or diluents 25 include, but are not limited to water, isotonic solutions which are preferably buffered at a physiological pH (such as phosphate-buffered saline or Tris-buffered saline) and can also contain one or more of, mannitol, lactose, trehalose, dextrose, glycerol, ethanol or polypeptides (such as human serum albumin). The compositions may conveniently be presented in unit dosage 30 form and may be prepared by any of the methods well known in the art of pharmacy.

As mentioned above the composition may include an adjuvant. As will be understood an "adjuvant" means a composition comprised of one or more substances that enhances the immunogenicity and efficacy of a vaccine composition. Non-limiting examples of suitable adjuvants include squalane

15

and squalene (or other oils of animal origin); block copolymers; detergents such as Tween®-80; Quil® A, mineral oils such as Drakeol or Marcol, vegetable oils such as peanut oil; Corynebacterium-derived adjuvants such as Corynebacterium parvum; Propionibacterium-derived adjuvants such as Propionibacterium acne; Mycobacterium bovis (Bacille Calmette and Guerin or BCG); interleukins such as interleukin 2 and interleukin 12; monokines such as interleukin 1; tumour necrosis factor; interferons such as gamma interferon; combinations such as saponin-aluminium hydroxide or Quil-A aluminium hydroxide; liposomes; ISCOM adjuvant; mycobacterial cell wall extract; synthetic glycopeptides such as murarmyl dipeptides or other derivatives; Avridine; Lipid A derivatives; dextran sulfate; DEAE-Dextran or with aluminium phosphate; carboxypolymethylene such as Carbopol' EMA; acrylic copolymer emulsions such as Neocryl A640 (e.g. U.S. Pat. No. 5,047,238); vaccinia or animal poxvirus proteins; sub-viral particle adjuvants such as cholera toxin, or mixtures thereof.

Gene/DNA Isolation

10

15

20

25

30

35

The DNA encoding a protein may be obtained from any cDNA library prepared from tissue believed to express the gene mRNA and to express it at a detectable level. DNA can also be obtained from a genomic library.

Libraries are screened with probes or analytical tools designed to identify the gene of interest or the protein encoded by it. For cDNA expression libraries, suitable probes include monoclonal or polyclonal antibodies that recognize and specifically bind the protein; oligonucleotides of about 20-80 bases in length that encode known or suspected portions of cDNA from the same or different species; and/or complementary or homologous cDNAs or fragments thereof that encode the same or a hybridizing gene. Appropriate probes for screening genomic DNA libraries include, but are not limited to, oligonucleotides; cDNAs or fragments thereof that encode the same or hybridizing DNA including expressed sequence tags and the like; and/or homologous genomic DNAs or fragments thereof. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures as described in chapters 10-12 of Sambrook et al.

An alternative means to isolate a gene encoding the protein of interest is to use polymerase chain reaction (PCR) methodology as described in

16

section 14 of Sambrook et al. This method requires the use of oligonucleotide probes that will hybridize to the gene.

The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives are minimized. The actual nucleotide sequence(s) is usually based on conserved or highly homologous nucleotide sequences or regions of the gene. The oligonucleotides may be degenerate at one or more positions. The use of degenerate oligonucleotides may be of particular importance where a library is screened from a species in which preferential codon usage in that species is known. The oligonucleotide must be labelled such that it can be detected upon hybridization to DNA in the library being screened. The preferred method of labelling is to use $(\alpha^{-32}P)$ - dATP with polynucleotide kinase, as is well known in the art, to radiolabel the oligonucleotide. However, other methods may be used to label the oligonucleotide, including, but not limited to, biotinylation or enzyme labelling.

DNA encompassing all the protein coding sequence is obtained by screening selected cDNA or genomic libraries, and if necessary, using conventional primer extension procedures as described in section 7.79 of Sambrook *et al.*, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.

Another alternative method for obtaining the gene of interest is to chemically synthesize it using one of the methods described in Fingels et al. (Agnew Chem. Int. Ed. Engl. 28: 716-734, 1989). These methods include triester, phosphite, phosphoramidite and H-Phosphonate methods, PCR and other autoprimer methods, and oligonucleotide syntheses on solid supports. These methods may be used if the entire nucleic acid sequence of the gene is known, or the sequence of the nucleic acid complementary to the coding strand is available, or alternatively, if the target amino acid sequence is known, one may infer potential nucleic acid sequences using known and preferred coding residues for each amino acid residue.

Nucleic acid hybridisation

5

10

15

20

25

30

35

The polynucleotide sequence of the present invention may hybridise to the sequence set out in SEQ ID NO:3 or SEQ NO:4 under high stringency. As used herein, stringent conditions are those that (i) employ low ionic strength and high temperature for washing after hybridization, for example, $0.1 \times SSC$

17

and 0.1% (w/v) SDS at 50°C; (ii) employ during hybridization conditions such that the hybridization temperature is 25°C lower than the duplex melting temperature of the hybridizing polynucleotides, for example 1.5 x SSPE, 10% (w/v) polyethylene glycol 6000, 7% (w/v) SDS, 0.25 mg/ml fragmented herring sperm DNA at 65°C; or (iii) for example, 0.5M sodium phosphate, pH 7.2, 5mM EDTA, 7% (w/v) SDS and 0.5% (w/v) BLOTTO at 70°C; or (iv) employ during hybridization a denaturing agent such as formamide, for example, 50% (v/v) formamide with 5 x SSC, 50mM sodium phosphate (pH 6.5) and 5 x Denhardt's solution at 42°C; or (v) employ, for example, 50% (v/v) formamide, 5 x SSC, 50mM sodium phosphate (pH 6.8), 0.1% (w/v) sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50µg/ml) and 10% dextran sulphate at 42°C.

EXPERIMENTAL DETAILS

15

20

25

30

35

10

5

MATERIALS AND METHODS

1. Isolation of Dendritic cells (DC)

The procedure for the isolation of DC subpopulations has been described elsewhere in detail (Vremec et al, (1992). J. Exp. Med. 176: 47-58; Kronin et al. (1996). J. Immunol, 157; 3819). Briefly, spleens were digested with collagenase (1mg/ml; Worthington type II) and DNAase at room temperature for 20 min, followed by EDTA treatment for 5 min to disrupt DC-T cell complexes. Remaining procedures were conducted at 4°C. Low density cells were enriched by centrifugation for 10 min in Nycodenz medium (1.077 g/cm³ mouse osmolarity). The low density cells were incubated with a mixture of mAb consisting of: anti-CD3, KT3-1.1; anti-CD4, GK1.5; anti-Th1.2, 30-H12; anti-Gr-1, RB68C5; anti-F4/80, anti-B220, RA36B2; and anti-erythrocytes, TER119. All the mAb were used at pre-titrated levels. Antibody coated cells were depleted with anti-rat IgG-conjugated magnetic beads, used at 5:1 bead-to-cell-ratio. The remaining cells were stained with fluorochrome-conjugated anti-CD11c and anti-CD8α mAb and propidium iodide (to label and exclude dead cells). Populations of > 95% pure viable CD11c⁺ CD8α⁺ and CD11c⁺ CD8α⁻ DC were isolated by sorting on MoFlow (Cytomation Inc.). Cells were snap frozen and stored at -70°C until used to extract RNA.

25

30

35

2. RDA (Representational Difference Analysis)

RNA was extracted using QuickPrep Micro mRNA Purification Kit (Pharmacia Biotech) and cDNA was synthesised (cDNA Synthesis Kit, Boehringer Mannheim Biochemica) according to the manufacturer's 5 instruction. The cDNA RDA method was essentially as described by Hubank and Schatz (Nuc. Acid. Res. 22: 5640-5648, 1994). Minor alternations to this protocol include the amount of starting RNA. Due to the scarcity of the two DC populations, a total of 5 x 10⁵ CD8 Mac-1+ DC and 1.8 x 10⁶ CD8+Mac-1-DC were used to extract mRNA. The synthesised double stranded cDNA was 10 then digested with DpnII and purified by phenol extraction and ethanol precipitation in the presence of 2 µg glycogen. Digested cDNA was annealed with R-Bgl-24 and R-Bgl-12 and ligated with T4 DNA Ligase (1200 units) at 14°C for 12-16 h. To compensate for the fact that three-fold more CD8⁺Mac-1⁻ DC were used to obtain mRNA, the ligated cDNA was diluted by a factor of 15 three. Aliquots (1 µl) of the ligation mixture were amplified in multiple 100 µl polymerase chain reactions (PCR) using R-Bgl-24. The PCR reaction contained; 66mM Tris-HCl (pH8.8), 4mM MgCl $_2$, 16mM (NH $_4$) $_2$ SO $_4$; 33 μ g/ml BSA, dATP, dCTP, dGTP, and dTTP (all 0.3 mM) and 2 μg R-Bgl-24 primer. The R-Bgl-12 oligonucleotide was melted away at 72°C (3 min) and the 3'ends were filled in with 5 U Taq DNA polymerase (Perkin Elmer) at 72°C (5 min). Twenty cycles of amplification were performed (1min, 95°C; 3 min, 72°C). Amplification products were visualised on a 1.3% agarose gel containing ethidium bromide which confirmed that each sample gave rise to a similar concentration of representations. Products of each representation were then combined, phenol extracted, ethanol precipitated and resuspended in TE at 0.5 μ g/ml. The R-adapters were removed from the representation with DpnIIand the digest was phenol extracted and ethanol precipitated to form the driver. Twenty micrograms of this driver was further gel-purified on a 1.2% TAE agarose gel, and the product, which was now free of the R-adapter, was isolated using QIAEX (Qiagen). This formed the "tester" of which 2 µg were ligated to the J-Bgl-12/24 adapter in the same manner as described above. For the first subtractive hybridisation step, 0.4 µg J-ligated tester (CD8+ DC) was mixed with 40 µg of driver (CD8 DC) and visa versa. The mixture was phenol extracted, ethanol precipitated, and resuspended in 4 μ l of EEx3 buffer (30 mM EPPS (Sigma), pH 8.0; 3 mM EDTA). The solution was

overlayed with mineral oil and the DNA was denatured for 6 min (98°C). The salt concentration was adjusted with 1 μ l of 5M NaCl and the sample was allowed to anneal for 20 h (67°C). The hybridised sample was diluted with 8 μl TE (10mM Tris, 1mM EDTA, pH8.0) containing 5 mg/ml yeast RNA and then resuspended in a total volume of 400 μl TE. For each subtraction, four $200~\mu l$ PCR reactions containing $20~\mu l$ of hybridisation mix were set up as previously, but the primer was omitted. Again, the 12-mer oligo (R-Bgl-12) was melted away and 3' ends were filled using Taq DNA polymerase, then 2 μg of J-24-mer was added. After ten cycles of amplification, the four reactions were pooled, phenol extracted, isopropanol precipitated, and 10 resuspended in 40 μ l of 0.2xTE. Twenty microlitres of the product was digested with 20 U of mung bean nuclease and the reaction was stopped after 30 min by the addition of 50 mM Tris-HCl (pH8.9). The digest was heated to 98°C (5 min), chilled on ice then used in the final amplification. Four PCRs were conducted per hybridisation. Each PCR containing 20 μ l of 15 MBN-treated product and 2µg J-Bgl-24 was heated to 80°C, before 5 U of Taq DNA polymerase was added and further 18 amplification cycles were performed. The four reactions were pooled, phenol extracted, isopropanol precipitated, and resuspended at 0.5 μ g/ μ l, giving the first differential product (DP1). The J-adapters were changed with N-Bgl-12/24 adapter and 20 the process was repeated, with the exception that 50 ng tester was mixed with 40 µg of driver (i.e. 1:800). To generate the final DP3 product, 100 pg of J-ligated DP2 was mixed with 40 μg driver (i.e. 1:400,000) and the process was repeated except that the final amplification was performed for 22 cycles 25 (70°C, 3 min; 95°C. 1 min).

3. Protein expression of FIRE domains

3.1. Oligonucleotides

Four cDNA constructs consisting of various extracellular domains of the FIRE clones were amplified by PCR using the following strategy:

(i) FIRE EGF domain 1;

Forward primer (5'-3'): CTAC CCATCC AAT ATT TCA CCT TCC TCT CC

Forward primer (5'-3'): <u>CTAC GGATCC</u> AAT ATT TCA GCT TCC TGT CC (SEQ ID NO:8);

Reverse primer (5'-3'): <u>CGCG AAGCTT</u> TCA ATC TTG ACA TTT CTC ATG G (SEQ ID NO:9).

(ii) FIRE EGF domain 2 Forward primer(5'-3'): <u>GACG GGATCC</u> AAT GAG TGT CTA CTG AAA GAA TTG (SEQ ID NO:10);

Reverse primer (5'-3'): <u>ACCG AAGCTT TCA GCT CTT GTT CAC ATA ACA ATC (SEQ ID NO:11)</u>.

5 (iii) FIRE EGF domain 1 & 2;

Forward primer (5'-3'): <u>CTAC GGATCC</u> AAT ATT TCA GCT TCC TGT CC (SEQ ID NO:12);

Reverse primer (5'-3'): <u>ACCG AAGCTT TCA GCT CTT GTT CAC ATA ACA ATC (SEQ ID NO:13)</u>.

10 (iv) FIRE Hinge;

Forward primer (5'-3'): <u>ACAC GGATCC</u> ACT TTG GGA GTA CTG AGT GAA (SEQ ID NO:14);

Reverse primer (5'-3'): <u>CGCT AAGCTT</u> TCA TAG AGC CAT GAG CAC AGC A (SEQ ID NO:15).

15

3.2. PCR Protocol

The oligonucleotide pairs listed above were used to amplify the corresponding FIRE domains from BlueScript plasmid DNA (1 μ l of 1:10 dilution) containing FIRE cDNA inserts.

20

The final concentration of each oligonucleotide in the PCR was 400 nM, magnesium concentration was 2 mM and Elongase (Gibco-BRL) was used as the polymerase in all reactions. PCR were conducted over 32 cycles as follows (cycle 1 94°C, 1 min; cycle 2-31: 94°C, 30 sec, 58°C, 30 sec (or 55°C to amplify FIRE EGF1 domain), 68°C, 30 sec; cycle 32: 68°C, 5 min)

25

30

35

3.3. Cloning of PCR Products

PCR products were electrophoresed through 2% agarose gels containing ethidium bromide. The bands of interest were excised and the DNA was purified from the gel pieces using a 'Qiaex II Gel Extraction Kit' (Qiagen) according to the manufacturer's recommendations. The purified DNA from each PCR contained a BamHI recognition site at its 5' end (indicated by the single underlined region in the sequences of all forward primers above). This BamHI recognition site (and other restriction endonuclease recognition sites described below) was 'protected' during PCR by four non-specific flanking bases, indicated by double-underlining in Section 3.1. The DNA amplified by all primers of contructs (i)-(iv) (Section

3.1) contained a *Hind*III recognition sequence at its 3' end (indicated by single underline). All PCR products also contained a stop codon at their 3' ends (encoded in the reverse primer and shown in bold in section 3.1). Each of the purified PCR products was then cut with the appropriate restriction enzymes; ie; Constructs (i)-(iv) were cut with *Bam*HI and *Hind*III. Similarly, two vectors that had been chosen for bacterial expression, pMalp2 and pCaln, were treated with *Bam*HI and *Hind*III (both vectors). The PCR products were ligated into the appropriate vector and these plasmids were then used to transfect the *E.coli* strain, DH5 α .

10

15

20

25

30

35

5

4. Constructs and Immunisation Protocol

FIRE and a control protein were expressed as FLAG tagged proteins on the surface of CHO cells. Briefly, primers (5' TAG TAG ACG CGT ATA TTA CAA ATG ATG AAT ATT (SEQ ID NO:20) and 5' TAG TAG ACG CGT TCA ATC ACT AAT AGT TCT GCT (SEQ ID NO:21)) were designed to amplify mouse FIRE without its leader sequence and to add adaptors that would allow subcloning into the pEF-BOS vector. The vector cDNA (http://www.wehi.edu.au/willson vectors) had been modified to contain the IL-3 leader sequence followed by the FLAG epitope and the cloning site that would allow the insertion of the FIRE cDNA. This construct resulted in the expression of FIRE proteins that contained the FLAG epitope at the Nterminus ie. extracellularly. Using FuGENE 6 Transfection Reagent (Boehringer Mannheim) CHO and 293T cells were co-transfected with the pEF-BOS-FIRE and a pCI-neo plasmid containing the neomycin phosphotransferase gene (kindly provided by Dr A Lew; Promega, Wisconsin) or pPGKpuroA (kindly provided by Leonie Gibson) at a ratio of 10:1. Transfectants were allowed to recover for 24 h before selection with 750 μg/ml G418 (Geneticin, GIBCO) commenced. FIRE-positive cells were stained with anti-FLAG mAb (IC7; kindly provide by Prof Nicola) followed by an anti-mouse-PE (Silenus) and isolated by sorting on MoFlow. After two rounds of this enrichment a pool of stable transfectants was established (Figure 1).

5. Fc-Fusi n pr teins

To produce soluble FIRE protein, the external portion of FIRE was amplified (using the following primers: 5' CGG GAT CCT CAT GGG

GTA GAG CC (SEQ ID NO:22) and 5' CGG GTA CCA CCA TGG GAA GCA GGT GCC TTC TGC (SEQ ID NO:23)) then fused to the human IgG1 Fc domain and expressed in the Cigh vector (kindly provided by Dr A. Lew). The contruct was co-transfected with the pCI-neo plasmid into CHO cells. Transfectants were cloned by limiting dilution and clones that produced the Fc-fusion protein were selected using an anti-human Ig ELISA. Fc-FIRE was purified and enriched using an anti-human IgG agarose column (Sigma). The fusion protein was utilised in ELISA where an anti rat-HRP (Chemicon) antibody was used to detect sera that bound to Fc-FIRE.

10

15

20

25

30

35

6. Immunisations and Monoclonal Ab Production

Rats were immunised 4 times with 5-10 million CHO cells expressing FIRE-FLAG, then given a final boost four days prior to fusion. Hybridomas were produced by fusion of rat spleen cells with SP2/0 myeloma line using PEG 1500. Following HAT selection, wells containing hybridomas secreting specific monoclonal antibodies were identified by ELISA and FACS analysis of supernatants. Positive hybridomas were cloned by limiting dilution.

7. Immunohistological Analysis

Spleens were snap frozen in compound embedding medium (OCT) using liquid nitrogen. Sections (5 microns) were cut and fixed using ice-cold acetone. Fixed sections were first incubated with biotinylated FIRE mAb (3H7 and 6F12; 1 hr at room temperature), washed in PBS then incubated with ABC HRP kit (Vector Laboratories). The reaction was visualised using NovaRED (Vector Laboratories). Sections were counterstained with hematoxylin.

8. FACS Analysis

8.1 Splenic DC and Macrophages

Splenic DC were obtained as described previously (Vremec et al. 2000). To obtain splenic macrophages, spleens were mechanically disrupting by passing through a metal sieve. Cells were then resuspended in Nycodenz (1.091 g/cm³) and the light density cells separated by density centrifugation. Irrelevant cells were then removed by incubation with anti-CD3 (KT3), anti-erythrocyte (TER119), and anti-B220 (RA36B2), anti-CD8 (53-6.7) anti-CD4

23

(GK1.5) followed by depletion using anti-rat Ig conjugated magnetic beads as per standard protocol (8). The macrophage enriched fraction was then stained with anti-M1/70 (CD11b) and anti-F4/80. Dead cells were excluded from analysis based on their uptake of propidium iodide (PI).

5

10

15

20

25

30

35

8.2 Peripheral Blood Mononuclear Cells

C57/B6 mice were bled by cardiac puncture into tubes containg heparin/PBS. Mononuclear cells were isolated by density centrifugation using lympholyte M (Cedarlane Laboratories). The light density cells were then incubated with mAb anti-CD3 (KT3), anti-Thy1.1 (T24/31.7), anti-Gr1 (RB68C5), anti-erythrocyte (TER119), and anti-B220 (RA36B2) and depleted using anti-Ig coupled Dynabeads (Vremec et al. 2000). The remaining mononuclear cells were stained and analysed for expression of FIRE.

9. Cloning of Human FIRE

The following 2 oligonucleotides 5' CACCTGCAGCTCTTCCATCT (SEQ ID NO:16) and 5' GAAAGTTTGCTTCTCAAAATCCA (SEQ ID NO:17), derived from sequences in the translated region of mouse FIRE, were used to amplify a fragment of human FIRE cDNA by low stringency PCR (annealing temperature: 50 degrees, Mg2+ concentration: 2.5mmol/l, 40 cycles) using target cDNA derived from both a human thymic preparation enriched in DCs and also from fresh and LPS activated human splenocytes. The resulting human FIRE sequence was 403 bp and had 83% homology with mouse FIRE at the DNA level. A 380 bp sub-fragment (isolated by PCR using the following primers 5' ggaagtagaacaccaggtttatca and 5' cctcttcctggcccacct) of the 403 bp human FIRE cDNA was then used to screen a commercial library (human bone marrow 5'-STRETCH cDNA library in lambda gt11, CLONTECH Laboratories, Palo Alto, CA) using conventional hybridisation methods. The resulting hybridising clone contained approximately 1482 bp of human FIRE. The remaining 5' human FIRE cDNA sequence was identified in clone RP11-1137G4 from the htgs database using a BLAST search. Primers 5' TGTCTCATTGCACCTCTTGGTTTCAT (SEQ ID NO:18) and 5' CCACAACAGCACCCACTGT (SEQ ID NO:19) were designed from sequences in clone RP11-1137G4 and used to amplify the 5' human FIRE cDNA using PCR.

RESULTS

5

10

15

20

25

30

35

1. Cloning of mouse FIRE

RDA analysis was performed to compare gene expression in the myeloid-related CD8⁻Mac-1⁺DC and the lymphoid-related CD8⁺Mac-1⁻DC. Results showed that as successive rounds of PCR and subtractive hybridisation occurred genes in common between the two populations were subtracted and not amplified (hence the background smear disappeared during progression from DP-1 (the first differential product) to DP-3 (the third differential product)). The bands which were observed in the DP-3 which corresponded to fragments of putative differentially expressed cDNA molecule (data not shown) were cloned and sequenced. House-keeping genes were detected only at very low frequency in these sequenced fragments suggesting that the RDA efficiently removed "common" sequences. To confirm that the bands from the DP-3 products were indeed differentially expressed in a minority population such as DC, several different approaches were taken. First, we generated a new "representation" from a separate source of RNA - this assures that any bias introduced in the first representation (used to generate the first RDA) would not be introduced in the reanalysis of differential expression. Using this approach, which is referred to as a "Virtual Northern", 9/11 gene fragments were found to be differentially expressed. This is a surprisingly high efficiency considering techniques such as RDA are prone to generating false positives, and indicates that this particular RDA successfully amplified differentially expressed genes. One of the DNA fragments was chosen for further analysis as it encoded a novel membrane protein, termed FIRE. Conventional Northern blot analysis confirmed data from Virtual Northerns and RT-PCR that FIRE is expressed at higher levels in myeloid DC than lymphoid DC.

Full length clones encoding this novel gene were obtained using conventional molecular biological techniques, involving the RDA generated fragments. The full length sequence of murine FIRE, showing both cDNA sequences and translated protein sequences, are shown in Figure 2.

FIRE encodes a 681 amino acid protein and analyses of the FIRE sequence shows that it is a novel member of the recently described EGF/TM7 superfamily (7), a comparison of the FIRE sequence with its distant relatives, the other members of the EGF/TM7 superfamily are shown in Figure 3. The

most famous member of the EGF/TM7 superfamily is F4/80 (mouse EMR-1) a molecule which is a marker of macrophages. Analysis of the FIRE sequence predicts a structure where there are two EGF domains in its extracellular region together with a "hinge" structure possessing a number of putative glycosylation sites. The protein then crosses the cell membrane seven times before a sizeable cytoplasmic domain of some 94 amino acids.

2. Immunohistochemistry Analysis Results

Four monoclonal antibodies (mAb) have been generated against mouse FIRE. Correspondingly, mAb could be generated against human FIRE.

Using the mAb against FIRE, it was determined that FIRE positive cells were predominantly present in the marginal zones and red pulp of mouse spleen. Such staining suggests that FIRE is expressed on DC present in the marginal zones and other antigen presenting cells (APC) such as macrophages that reside in the red-pulp.

3. FACS Analysis Results

5

10

15

20

25

30

35

In the mouse spleen, FIRE is predominantly expressed on the surface of DC (FIGURE 4A) and macrophages (FIGURE 4B and 4C). As suggested by the initial RDA results, FIRE is expressed more abundantly on the splenic DC that do not express CD4 and CD8, and to a lesser extent on the CD4+ DC and CD8+ DC (FIGURE 4A). Other cell types such as T and B cells do not appear to express FIRE, though it is possible that a very small population of either subsets express low levels of FIRE. A large proportion of blood mononuclear cells, including putative early DC, express high levels of FIRE (FIGURE 4E).

4. Functional Data Results

FIRE positive blood mononuclear cells could be the precursors of some CD8-lymphoid tissue DC. Peripheral blood mononuclear cells were isolated as described above. Cells were stained for FIRE expression, then sorted into population that were FIRE+ or FIRE- (MoFlow (Cytomation Inc., Fort Collins, CO). The sorted cells were incubated overnight at 37°C in medium alone or medium containing Fl3L, IL-4, GM-CSF, and TNF-α, then analysed for their expression of CD11c as a marker of DC. FIRE+ cells incubated in medium alone did not express high levels of CD11c (FIGURE 5A), but upon incubation with the cytokine cocktail, a large proportion of these cells

10

15

20

became CD11c+ (FIGURE 5B). Some CD11c+ cells were also generated from FIRE- cells, in medium alone (FIGURE5C) and medium plus cytokines (FIGURE 5D), though the proportion of these cells was not as high as when FIRE+ precursors were used. This data indicates that FIRE+ blood cells may be precursors of APC such as DC and macrophages.

5. Cloning and expression of human FIRE

The human FIRE DNA sequence was isolated as described in the materials and methods. Figure 6 shows the cDNA and amino acid sequences of human FIRE.

Human DC differentially express FIRE mRNA, where monocytederived DC express the highest level of FIRE whereas thymic DC express less message. Activation of DC via CD40 (using mAb against CD40) results in down-regulation of FIRE mRNA. Very little FIRE transcript could be detected by RT-PCR in T and B cells (see Table 1).

Table 1. The expression of human FIRE assessed by RT-PCR

Cell type	human FIRE expression
Thymic preparation enriched in DC	+
Total splenocytes	+ + +
Tonsillar CD3 ⁺ T cells	-
Tonsillar CD19 ⁺ B cells	-
Peripheral blood CD14 ⁺ monocytes	+
Monocyte-derived DC	+ + +
CD40-activated Monocyte-derived DC	+
CD11b ⁻ thymic DC	-
CD40-activated CD11b thymic DC	-
CD11b ⁺ thymic DC	+
CD40-activated CD11b+ thymic DC	-

FIRE-specific primers used in RT-PCR were 5' ggaagtagaacaccaggtttatca (SEQ ID NO:24) and 5' cctcttcctggcccacct (SEQ ID NO:25).

27

FIRE is a marker for DC populations. The data obtained to date demonstrates that this molecule is expressed differentially or at much higher levels on the more "stimulatory" CD8 myeloid-related rather than the CD8+ lymphoid-related dendritic cell populations, as they occur in the mouse spleen. Accordingly, it is believed that specific ligands such as monoclonal antibodies directed to this molecule will be useful reagents in identifying and particularly in purifying dendritic cells.

5

10

Publications referred to above are incorporated herein in their entirety by this reference.

It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

20

REFERENCES

- 1. Kronin, V., Winkel, K., Süss, G., Kelso, A., Heath, W., Kirberg, J., von Boehmer, H. and Shortman, K. (1996) J. Immunol. 157, 3819-3827
- 2. Kronin, V., Vremec, D., Winkel, K., Classon, B. J., Miller, R. G., Mak, T. W., Shortman, K. and Süss, G. (1997) International Immunol, 9, 1061-1064
- Kronin, V., Süss, G., Winkel, K. and Shortman, K. (1997) Adv. Exp.
 Med. Biol. 417,239-248
 - 4. Kronin, V., Vremec, D. and Shortman, K. (1998) Int. Immuno. 10, 237-240
- 5. Kronin, V., Shortman, K. and Kelso, A. (1998) Int. Immunol. Submitted
 - 6. Hubank, M. and Schatz, D. G. (1994) Nuc. Acids Res. 22, 5640-5648
 - 7. McKnight, A. J. and Gordon, S. (1996) Immuno. Today 17, 283-287
 - 8. Vremec D., Pooley J., Hochrein H., Wu L., Shortman K. (2000). CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164; 2978-2986.

Claims:

5

15

- 1. An isolated polypeptide, the polypeptide comprising:-
 - (i) an amino acid sequence as set out in SEQ ID NO:1, or
 - (ii) an amino acid sequence having at least 50% identity to the amino acid sequence set out in SEQ ID NO:1, or
 - (iii) a functional fragment of (i) or (ii).
- 2. An isolated polypeptide or peptide as claimed in claim 1, wherein the polypeptide or peptide has a sequence of at least 70%, more preferably at least 80% and most preferably at least 90% identity with the sequence shown in SEQ ID NO:1.
 - 3. An isolated polypeptide, the polypeptide comprising:-
 - (i) an amino acid sequence as set out in SEQ ID NO:2, or
 - (ii) an amino acid sequence having at least 50% identity to the amino acid sequence set out in SEQ ID NO:2, or
 - (iii) a functional fragment of (i) or (ii).
- 4. An isolated polypeptide or peptide as claimed in claim 3, wherein the polypeptide or peptide has a sequence of at least 70%, more preferably at least 80% and most preferably at least 90% identity with the sequence shown in SEQ ID NO:2.
- 5. An isolated ligand, the ligand being interactive with the polypeptide or peptide of any one of claims 1 to 4.
 - 6. An isolated ligand as claimed in claim 5, wherein the ligand is an antibody or the binding portion thereof.
 - 7. An isolated nucleic acid molecule, the nucleic acid molecule encoding a polypeptide as claimed in any one of claims 1 to 4.

10

15

20

25

- 8. An isolated nucleic acid molecule, the nucleic acid molecule comprising:-
 - (i) a sequence as set out in SEQ ID NO:3, or
 - (ii) a sequence having at least 60% identity to the sequence set out in SEQ ID NO:3, or
 - (iii) a sequence which hybridises to the sequence set out in SEQ ID NO:3 under stringent conditions, or
 - (iv) a sequence encoding a functional analogue of a polypeptide as set out in SEQ ID NO:1.
- 9. An isolated nucleic acid molecule as claimed in claim 8, wherein the nucleic acid molecule comprises a sequence of at least 70%, more preferably at least 80% and most preferably at least 90% identity with the sequence shown in SEQ ID NO:3.
- 10. An isolated nucleic acid molecule, the nucleic acid molecule comprising:-
 - (i) a sequence as set out in SEQ ID NO:4, or
 - (ii) a sequence having at least 60% identity to the sequence set out in SEQ ID NO:4, or
 - (iii) a sequence which hybridises to the sequence set out in SEQ ID NO:4 under stringent conditions, or
 - (iv) a sequence encoding a functional analogue of a polypeptide as set out in SEQ ID NO:2.
- 11. An isolated nucleic acid molecule as claimed in claim 10, wherein the nucleic acid molecule comprises a sequence of at least 70%, more preferably at least 80% and most preferably at least 90% identity with the sequence shown in SEQ ID NO:4.
- 12. An isolated nucleic acid molecule, the nucleic acid molecule encoding the binding region of a ligand as claimed in claim 5 or claim 6.
- 13. A composition for use in raising or lowering an immune response in a subject, the composition comprising a ligand as claimed in claim 5 or claim 6 and an antigen and optionally a carrier and/or adjuvant.

31

- 14. A composition as claimed in claim 13, wherein the antigen is associated with the ligand.
- 5 15. A composition as claimed in claim 13, wherein the antigen is conjugated to the ligand.
 - 16. A composition for use in raising or lowering an immune response in a subject, the composition comprising a nucleic acid molecule and a carrier, the nucleic acid molecule comprising a first sequence encoding a ligand as claimed in claim 5 or claim 6 and a second sequence encoding an antigen.
 - 17. A method of screening a putative compound for immunological regulatory activity, the method comprising reacting the compound with a polypeptide or peptide as claimed in any one of claims 1 to 4 and measuring interaction between the compound and the polypeptide or peptide.
 - 18. A method of isolating an antigen presenting cell from a biological sample, the method comprising contacting the biological sample with a ligand as claimed in claim 5 or claim 6 such that a complex is formed between the ligand and the antigen presenting cell.
 - 19. A method as claimed in claim 18 wherein the ligand is immobilised on a solid support.

20. A method of immunising a subject, the method comprising

- (i) isolating antigen presenting cells from a fluid sample obtained from the subject, wherein the isolation involves contacting the fluid sample with a ligand as claimed in claim 5 or claim 6;
 - (ii) exposing the cells isolated from step (i) to an antigen; and
 - (iii) reintroducing the cells from step (ii) into the subject.
- 21. A method as claimed in claim 20, in which the method comprises the further step of growing the antigen presenting cells in vitro after step (i).

10

15

20

25

32

22 A method of immunising a subject, the method comprising:

5

- (i) isolating precursor cells from a fluid sample obtained from the subject, wherein the isolation involves contacting the fluid sample with a ligand as claimed in claim 5 or claim 6
- (ii) growing the cells isolated from step (i) in vitro such that they mature and differentiate to become antigen presenting cells
 - (iii) exposing the cells obtained in step (ii) to an antigen
 - (iv) reintroducing the cells from step (iii) into the subject
- 10 23. A method of modulating an immune response in a subject, the method comprising administering to the subject a ligand as claimed in claim 5 or claim 6 such that the ligand binds to and inhibits the function of an antigen presenting cell.
- 15 24. A method as claimed in claim 23 wherein the antigen presenting cell is a myeloid dendritic cell.
 - 25. A method as claimed in claim 23 or claim 24 in which the method further comprises the step of administering an antigen to the subject.
 - 26. A method as claimed in claim 25 in which the antigen is administered after administration of the ligand.

Figure 1

2/12

	18	48	78	108	138	168	198	228	258
90 AGCCCTGTTGA 0	L L I W CTGCTTATCTG 270	C V C K ACTGTGTTGTAA	L K E L CTGAAAGAATT 450	N W V A AACTGGGTAGC	G V L S E	S D I P TCAGATATACC 0	N N T M AACAACAAT 810	L G N L CTTGGGAATCT 0	R S E V TCGCTCAGAGGT
70 CTCTGAAGAACTCTTACCCA	A S V P G M L L IGCCTCAGTTCCTGGAATGCTGC1 250	C F N S T H C CTGCTTCAACAGCACCCACT 350	D I N E C L L AGATATAATGAGTGTCTACT 430	V K Y P L F N AGTAAAATATCCTTTGTTCA/ 530	K T H T L G AAAAACACATACTTTGGGA(H I L N E N S ICACATCTIGAATGAAACTCP	T L L E A G N GACTCTTCTAGAAGCTGGCAP 790	F I A Y K S L TTTCATTGCATATAAGTCTCT	I V S G A I I CATCGTTAGTGGAGCCATT
50 GAGAAGTAAAATTCATCAT	M G S R C L L H PATGGGAAGCAGGTGCCTTCTGCA: 230	CAGTGCAATGAAAATGCCAG	EPHEKCO GAGCCCCATGAGAATGTCA	G T Y I C S C V GGGACTTACATATGCAGCTGTGT) 490	N K S K N T G S SAACAAGAAGAATACAGGATCI 590	L L R K V E H TTACTTCGCAAAGTGGAACA'	T K R C K T M AACTAAGAGGTGCAAGACGAT	GGETAACTGCAGTGGC TGGAGGTGAACTGCAGTGGCO 0	OEVTINSH CCAGGAAGTGACACTCTCA
30 GAATGTTCCAGGCTGAGT 130	M C GGAGCAACTAGAGATATGC 210	I S A S C P Q ATTICAGCTICCTGTCCCCA	E N R R I I E GAGAATAGAAGAATTATTC 390	C R N K I G T TGCAGAATAAAATTGGGA 490	P D C Y V N i CCCTGATTGTTATGTGAACA 570	A K G A T K L IGCAAAAGGAGCTACCAAGTT 670	L D I V Y E T TIGGATATAGIGTAIGAAA 750	F K E H N S G TTCAAAGAGCACAACAGTG 850	n e e g f Q i Taatgaagaaggetttcag
10 30 50 70 90 ACCACTGCTTGATGTTCCAGGCTGAGTGAGTAAAATTCATCTTCTGAAGAACTCTTACCCAGCCCTGTTGA 150 170	M G S R C L L H A S V P G M L L I W AGAATTCCCAGAATGCTGCATGCCTCAGTTCCTGGAATGCTGCTTATCTG 210 230 250	S I L Q M M N I S A S C P Q C N E N A S C F N S T H C V C K GTCAATATTACAAATGAAATTTTCAGCTTCCTGTCCCAGTGCAATGAAAATGCCAGCTGCTTCAACAGCACCCACTGTGTTTGTAA 330 330 350	E G F W T G S E N R R I I E P H E K C Q D I N E C L L K E L AGAAGGATCTGGACGGCTCTGAGAATATATGAGCCCCATGAGAATGTCAAGATATTAATGAGTGTCTACTGAAAGAATT 370 450	V C K D V S Y C R N K I G T Y I C S C V V K Y P L F N W V A GGTATGCAAGGATGTGTACAAAAAATAAAATAAAGGTAGGGTAGC 510 510	G I I N I D H P D C Y V N K S K N T G S K T H T L G V L S E TGGCATTATTAATATGATCACCCTGATGTATGTGAAGAAGCAAGAATACAGGATCAAAAACAACATACTTGGGAGTACTGAGTGA 550 610	F K S K E E V A K G A T K L L R K V E H H I L N E N S D I P ATTTAAATCCAAAGGAGGTTGCAAAGGAGCTACCAAGTTACTTCGCAAAGTGGAACATCACATCTTGAATGAA	K K D E N P L L D I V Y E T K R C K T M T L L E A G N N T M AAAAAGGATGAAAAAAAAAAAAAAAAAAAAAAAAA	K V D C T S G F K E H N S G G E T A V A F I A Y K S L G N L GAAGGTTGACTGCACTAGTGCACAAAGAGCACAAGTGGAGGTGAAACTGCAGTGCCTTTCATTGCATATAAGTCTTGGGAATCT 830	L N G S F F S N E E G F Q E V T L N S H I V S G A I R S E V TCTAAATGGTTCCTTTTTTAGTAAGAAGGGTTTCAGAAGTGACACTCTCACATCGTTAGTGGAGCCATTCGCTCAGAGGT
	H	19	49	6 L	60 7	139	169	199	229

Figur 2

3/12

	910 930	950	970 990	
259	CAA	\vdash	L Q N I Q P I D S R A E H L C V H W E TTACAAAATATTCAGCCCATTGACTCAAGAGCAGAACATCTCTGTGTCCATTGGGA 1030	288
289	G S E E G G S W S AGGATCAGAGGAGGGGGGGGGTGGT 1090	T K G C S H V Y T N N CTACCAAAGATGCTCTCACGTGTACACAATAAT	T N N S Y T I C K C F H L ACACCAATAATTCCTACACTTTGCAAGTGTTTCCACCT 1150	318
319		PHEEDGVL CCCCATGAGGAGGATGGTGC7 1210	S S F A V L M A L P H E E D G V L S A L S V I T Y V G L S L GTCCAGCTTTGCTGTGTGTGTGTGGGACTGAGGTCT 1230 1190 1250	348
349	S L L C L F L A A I T TTCTCTCTTGTGCCTATTTCTGGCGGCCATCAC	FI	L'L C R P I Q N'T S T'T L H'L Q L S' ITCTCCTGTGCCGACCCATTCAGAATACCAGCACGACGACCTGCAGCTGCAGCTTCTC 1310 1310 1350	378
379	I C L F L A D L L F CATCTGCTTTTCCTGGCTGACCTCCTCT 1370	F L T G I N R T TTCCTCACAGGCATCAACAGAA	. L T G I N R T K P K V L C S I I A G M L TCTCACAGGCATCAACAACTAAGCCTAAGGTGCTGTGCT	408
409	H Y L Y L A S GCACTACCTCTACTTGGCTT 1450	S F M W M F L E G L H L CCTTCATGTGATGTTTCTGGAAGGGCTACATCT 1490	L F L T V S N L K V A N Y ATCTTTTTCTCACTGTGAGCAATCTCAAAGTGGCCAACTA	9,112
439	S N S G R F K K R F CAGCAACTCAGGCAGATTCAAGAAGGGT	FMYPVGYG TTCATGTATCTGTAGGATATGC 1570	S N S G R F K K R F M Y P V G Y G L P A F I V A V S A I A G CAGCAACTCAGGCAGATTCAAGAAGAGGTTCATGTATCCTGTAGGATATGGGCTTCCTGCTTTTATTGTTGTTGTTGTTGTAGCTGG 1550	468
469	H K N Y G T E CCACAAGAATTATGGAACAC 1630	C W L S L H R G TGCTGGCTCAGCCTTCATCGAGG	INHC'WLS'LHRGFIWSFLGPPAAIII ACAACCACTGCTGGCTCATCATCTGGAGCTTCTTGGGGCCAGCGAGCCATAT 1650 1670 1670 1710	498
499		i w i i m s K Ataatatggattttgagaagga 1750	L I N L V F Y F L I I W I L R S K L S S L N K E V S T L Q D CTTGATAAACCTGGTGTTCTAATAATAATAATGGATTTTGAGAACTTTCTTCTCTCTAATAAGAAGTTTCTAAGA 1790	528
529	T K V M T F F F CACAAGGTTATGACATTT	(A I V Q L F V L G C S W G I G L F	S W G I G L F I F I E V G GTTCTTGGGGCATTGGCTTGTTTTTTTTTTATTGAAGTTGG	558

Figure 2 (continued)

559	1810 K T V 'R L I	1830 V A Y L F	1850 T I N V L	1870 . I I F M	1890 . V H C L L N	588	
	GAAGACAGTGAGACTGA1	ATCGTTGCCTATCTGTT 1910	CACCATCATCAATGTCCTG 1930	GAAGACAGTGAGACTGATCGTTGCTTCACCATCATCATGTCCTGCAGGGTGTTTTGATATTTATGGTACATTGTCTGCTTAAA 1910 1910	GGTACATTGTCTGCTTAA 1970		
589	R Q V R M E Y TCGCCAGGTGGAATI 1990	Y K K W F AATATAAGAAGTGGTT 2010	H R L R K E TCATAGACTGCGGAAGGAA 2030	R O V R M E Y K K W F H R L R K E V E S E S T E V S H S T T T TCGCCAGGTGCGATGAAGTGTTTCTACTAC 2010 2010 2030	V S H S T T AGTGTCTCATTCTACTAC 2070	618	
619	H T K M G L S TCACACAAAATGGGTCTTT	L S L N L E CTTTCTCTGAACCTGGA 2090	N F C P T G AAATTTCTGCCCAACAGGA 2110	L N L E N F C P T G N L H D P S D S I L P S T CTCTGAACCTGGAAACCTCCATGATCTTCTGACTCCATCATGAACCTCCAAGAAACCTCCAAGAAACCTCCATGATCTTCTGACTCCATCAAGTAC	S I L P S T ACTCCATCCTTCCAAGTAC 2150	648	
649	EVAGOVYL TGAAGTAGCAGGTGTATATC' 2170	i S T P R ATCTAAGCACACCCAG 2190	S H M G A E GETCTCACATGGGTGCTGAG	EVAG VYLSTPRSHMGAEDVNSGTHASRT TGAAGTAGCAGGTGTATAGCACCCCAGGTCTCACATGGGTGTGAAGTTGTGAACTCAGGTACTCACGCTTACTGGAGCAGAAC 2170 2230	A Y W S R T ACGCTTACTGGAGCAGAAC 2250	678	
619	I S D .* TATTAGTGATTGAATCAGCT 2270	AGCTCCTTCCCCCAAGC 2270	CCTCTTACAGTACATTTTAA 2290	CCTTCCCCCAAGCCTCTTACAGTACATTTTAACTTGTACTGTGCCATGAAGCTATAATTGCTAG 2330	ATGAAGCTATAATTGCTAG 2330	681	
	rctggtaaaacaactgt 2350	IGCATATTCCATGATC 2370	SATTTCATTTTATCTCTACT 2390	TCTGGTAAAACAACTGTTGCATATTCCATGATCATTTTATCTTTTGCTACTTGCAAAGTTAGCTTTCTTT	TITATATCATTITITATITC 2430		
	TCTTTCTTTTGTTTATATAT 2450	ATATAGCTTCAGTTGAG 2450	srgggttictagtcttaarg 2470	AGCITCAGTIGAGIGGGITICTAGICTTAAIGITCTAGAICACIATTTTCTTTTC	rtcagttaacctttattg 2510		
	GIATITAGTICCTGTGT 2530	AGTGTATACCACTGGA 2550	AATATTTTTATTTCTTTAAT 2570	GTAITTAGTÍCCTGTGTAGTGTATACCACTGGAATATTTTTATTTCTTTAATTTTGAGGŤTAAATATAGTTACATCATTTTTCCTTTTT 2530 2590	IACATCATTTTCCTTTTT 2610		
	rrcttrccacaarccr	.TCCTGTATACTTTTTCC 2630	ccrggrgictattratig 2650	TTCTTTCCCACAATCCTCCTGTATTTTTCCCTGGTGTCTATTTTATTGTTTCTACATGCATATATTTTTATGCAAAACATATATAT	TTATGCAAACATATATAT 2690		
	GTATAAATATAAATATA 2710	1ATTCTTATATGCATG 2730	GAAAACCATCTACTTCATCC 2750	GTATAAATATAAATATATATTATATGCATGAAAACCATCTACTTCATCCAAATAATGTTCCTTCTATGTATG	TATGTTTTCAGGACAGGGA 2790		
	CAACAATAGCTATGGTA	AGCATGGCAGGGGAAAG 2810	GCCCACGGACCTCAGCCTT 2830	CAACAATAGCTATGGTAGCATGGGAGAGAAAGCCCACAGGACCTCAGCCTTATACAAAGAATCAGAGGCAACTGAGGAGTGCTGAGTTG 2810 2810	ACTGAGGAGTGCTGAGTTG 2870		
	AAGGAATTGTCTTACCC	AGGGGAGGGCACATTA	Pattggttatctaatacaa	aaggaattgtcttacccaggggagggcacattaattggttatctaatacaaaatgttcagccccaaaactgttaagataaagcctatat	TTAAGATAAAGCCTATAT		

Figure 2 (continued)

2970	GTTGAATTTC	GTATGTGTCA 3150	aaaactatt	TTAATAACTG
2	: CTGAAGAGGGTCT	IGCTATATTTCCCT 3130	TTTCTTCCATAG	FTACTGTGTATAA
2950	tttattgtgtgtt 3030	TGTAGTGAATAATO 3:	TTGGTTTATTACT: 3210	Atgatgaaatata
30	Patcatccacatg	GTTTGGCTTTGT 3110	Agaacctagagcc	Igtatcaaatatc
2930	cctttattggaa 3010	TTATATTCAGGG1 0	crttarrcaacaz 3190	TTCTTATATGCA1
2910	GCATCTTAGGAAGTATCTACCTTGATACACCTTTATTGGATATCCACATGTTTATTGTGTGTTCTGAAGAGGGGTCTGTTGAATTTC 3010 3050	TAAGGGTTGATCAGTTTAATTGTGCCATTTTATATTCAGGGTGTTTGGCTTTGTTGTAGTGAATAATGCTATATTTCCCTGTATGTGTGTG	rctttgactgttatttttcctggggatactttattcaacaagaacctagagccttggtttattacttttcttccatagaaaactatt	IGTCTTCCAGGATTAGATATGATCAATATTTCTTATATGCATGTATCAAATATGAAGAAATATATTACTGTGTATAATAATAACTG
2890	GCATCTTAGGAAGTA	TAAGGGTTGATCAGI 3070	rctttgactgttati	TGTCTTCCAGGATTA

GCAATAAAGTCCAAGGGA

Figure 2 (continued)

Emil. Human Emil. Mouse Fise Cd97. Human Emil. Mouse Fise Cd97. Human Emil. Mouse Emil. Mouse Cd97. Human Emil. Mouse Emil. Mouse Cd97. Human Emil. Mouse Cd97. Human	NOS				UU · · · · · · · · · · · · · · · ·	מיסט ייטי אין אבר	FF <f 00<="" th=""><th>DD>> OK - OK - OO - JE</th><th>OFF CO</th><th>>CZF</th><th>1333 NN</th><th>=>== mn en mj jj.u</th><th>MK-0 ZZ · · · · · · · ZZ · · · · · ·</th><th>=====================================</th><th>CI ZF</th><th>=-10 =×·· ≥≥·· ∪∪·· ==·0</th><th></th><th>K-12 . KO F-1 UU ></th><th>##Z . DD DD > m . w D</th><th>FF</th><th>xp >> oc uu</th><th></th><th>Th CO Mar. Sp.E .Z</th><th></th><th>20> +< <></th><th>·>·· az ·· aa ·· yu ·u ·u ·</th><th>ZZ · · · · · -> · · · · • · · · · · · · · · · · · · ·</th><th>22 U 23 EE.2</th><th>ED 00 UU <<.m .w</th><th></th><th>x = · · · · · · · · · · · · · · · · · ·</th><th>2 P</th><th></th><th>£</th><th>~ ~ · · · · · · · · · · · · · · · · · ·</th><th><< · · · · · · · · · · · · · · · · · ·</th><th> ></th><th>00 02 000 0 0 0 0 0 0 0</th><th>012 · · 012 · · 0 > 0 · · 0 + · c 0 · · · · · · · · · · · · · · · · ·</th><th></th></f>	DD>> OK - OK - OO - JE	OFF CO	>CZF	1333 NN	=>== mn en mj jj.u	MK-0 ZZ · · · · · · · ZZ · · · · · ·	=====================================	CI ZF	=-10 =×·· ≥≥·· ∪∪·· ==· 0		K-12 . KO F-1 UU >	##Z . DD DD > m . w D	FF	xp >> oc uu		Th CO Mar. Sp.E .Z		20> +< <>	·>·· az ·· aa ·· yu ·u ·u ·	ZZ · · · · · -> · · · · • · · · · · · · · · · · · · ·	22 U 23 EE.2	ED 00 UU <<.m .w		x = · · · · · · · · · · · · · · · · · ·	2 P		£	~ ~ · · · · · · · · · · · · · · · · · ·	<< · · · · · · · · · · · · · · · · · ·	>	00 02 000 0 0 0 0 0 0 0	012 · · 012 · · 0 > 0 · · 0 + · c 0 · · · · · · · · · · · · · · · · ·	
Emi_Human Emi_Mouse Fire Cd97_Human	0 · F · ·	- · c · ·	. 47		• • • •	· t- · ·			: E				• • •		. ບ	· - · ·			00 10 7	22 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-20	W A & F	0 U U V			Z Z Z n	u			F 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	F % % C		2222		- · w	0 0 0 0	N N N N	2 2 2 2 C		
Emil_Human Emil_Mouse Fke Cd97_Human	0 I S X M	0000	C C C C	< < 3 w		N N O S	00 20	~ ~ z <	7 7 4 X	1. L - L 2 2 6 6	⊢ × − ×	· · · z	0 6 3 6	0 = ± ×	>> = 2	4 * 4 *	<u> </u>	≥ ± ⊘ ⊘	2000	<u> </u>	2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2	5000	* F T &			~ <u></u> =	- 0 > 0	0040		22>0	N N N -	5000	~ - * *	2222	< > \(\times \)	> > >	N N F K		2 E	
Emil_Human Emil_Mouse Fise Cd97_Human	6 2 2 8 K		াই নিই	F F F }	= 0 * ×		3 .	22 2 2	00<-	0 0 J Z	x 0 - z	c > z 0		* * I F	0 Z L >	6 .	$\circ \times \succ \bowtie$	K K Z D	> - • 3	- · · · · ·	* * · w		光光・・ 時日・・	 .	٠٠ د د	Z W · ·		2 %	不 m · ·	~ ~ .	00	~~ • • •			* < · ·		< 0	4 > K · ·	0 4 3	

Figure 3

Figure 3 (continued)

Figure 3 (continued)

Figure 4

Figure 5

1620 1080 1170 1260 1350 1530 990 720 900 810 180 270 360 150 540 630 90 ATCCTTTTTT
L S E
CCTCTCTGAA
G G R
iGGAGGCCGC 'GTTC V L V CGTCCTCGTG A I L GGCCATCCTC L L F CTTCACCTGG K R F A GCT F CTGT Ş N A
TGAATGCAL
I S L
VATTTCCCL
S E G
TCAGAGGG
A V
A V
TTGCCGTCC PTCT N CAAC S GGA(S I ည်း ဆုံးပ D SGA CTT(A) Ø Ďχ R R 디겁다 Σ¥ H U GGATATT

K E
GAAGGAA

W E
CTGGGAG

CTGGGAG

L C
L C
GCTGTGC

L C
GCTGTGC

L C
CTGTC

L C
L C
CTGTC

L C
L C
L C
CTGTC

L C ß Z A A S ğ a F C z z G N L G L G CTTTGGG G L CGGTTTC V Y TGTCTAC F H R R GAGAAGA KCIG CIGG CTTC ø ρц CCTC CCTC H GCAC CAC CAC GACCATO L S CTGT A Recy S VII CY υ × IJ GGAP TCAP TCAP CACC TTATCA G T CGGCAC(H I ACATAT(C K ATGCAA(L T GCTGAC(E L E L A AGGGCT(G L A N N AAA: > ſω Œ ATTCAAC W E TTGGGAA A S A S NAC Page 1. Y ĮΉ A CO TT. GGT Ē H F > 5 ы z K CCTI CCTI CGTI R CTG(N GAA' ᄓ GGTAAAATAT S N V AGTCAAACGTG L S I GTTGAGCATC T R E TTA K CAA(S ITC] S CTC S CTC CAT E 3GA A Y Z AA U X K CTC TGA ABL 26GJ GATC CACC CACC R X X Y \ 4 4 5 6 7 8 CAG. ខ្មាំ Σ T S S N ດີເອີ > 2GT(s A G Z GAA LGCT Ę ი წ > > 124 PCTC P SCC TGT(S GAG(> pi t o g n g n g r ы E > ы K AAAA O TCAG H GCAC GAAC តិស្វី។ **₹** N SA SA S ដ្ឋ z ы 3 υ AGGGACG
Q S
Q S
TCAAAGC
R C
GAGGTGC
R E
NAGGAGAG
E V
GGAAGTA
H N
H N
H V
TCATGTG αij G H CCCT CAT E TGA **ဦး**မည်ပြ [단 H ប TAACT CTGCTCT E D GGAGGAC R P AATT GCA R ICG H CC # Ç o A T Z Ęυ SAT F ы × ≻ z Σ D RAT CAAT COA TCAA G T GAC 9 9 8 8 ξ S G z R K
ACGAAAA
F L
STTCCTG
T E
CACGGAG × \$ CCT ចា ស្ពី > TGGTCCACG ប្តូ > PGT. ည်ဗ ĘĘ a ប្តីធ FR FF T йч GATATA D A GATGCT S K P ប្ដ Ĺų ß ر کے 631 361 451 541 721 811 901 991 1081 1171 1531 9 181 271 1261 1351 1441

Figure 6

1710	1800	1890	1980	2070	2160	2250	2340	2430	2520	2610	2700	2790	
F T I I N T L Q G V L L F V V H C L L N R Q V R M E Y K K W TTCACCATCATCACCCTTCAGGGAGTGTTGCTCTTTGTGGTCTCTTCTTTAATCGCCAGGTTCGAATGGAATATAAAAAGTGG F S G M R K G V E T E S T E M S R S T T Q T K T E E V G K S	TITAGTGGGATGCGGAAAGGGGTAGAAACTGAAAGCACTGAGATGTCTCGCTCTACTACCCAAACCGAAACGGAAGTGGGGGAAGTCC	TCAGAAATCTTTCATAAAGGAGGCACTGCATCATCATCTGCAGGTCAACCAAGCAACCGCAGCCACAGGTTCATCTCGTCTGCTGCT W I. K M N *	TGGCTAAAGATGAACTGACCTGGCAAGTGCCATGGCAATGACCCGGAAGTTACCGCTCCTTTCCGTTTGTCTACAGCGCCCCTGTGGTCA	CACATAGATTGGACAAATGCCACTATTTCTAGCTTTCCTGTGAAAGTCTAGGCTCATTCACCTATTTGGCTTTTATGTTCATAGAAA	GAACAAGACATTTGGGAGAATTCTTAGATCCAGAGTCCAGTAGTGTGGCACGTGCAATGAAGTGTCGGAAGGATGCATTTTAAAGATGGC	GGGCGGGAGAAGTGGATTTTTCTTCTTGCAGCTACTGCCACCTTGCCAGAAACTTCACTAACTGGCATCTGGRATTCAGCTCATAGTTCC	CTTTCTGGCCTCTCTGCTGTATTTTATGCTCCCAAAGATCTTACATTAACACTCCACATTCACATTCAACAATTTCAATATTCAATATTCAATATTGATATGGATCA	GTATTAAAGAGGGTGTTGCATTTTGCAATACAAAATGCATTATCAGGTGCTGGAGAGGAGGAGGAAATAGGAACACTTTTACACTGT	TGGTGGGACTGTAAACTAGTTCAACCATCGTGGAAGTCAGTGTGGCGATTCCTCAGGGATCTAGAAATTACCATTTGACACCAGCT	ATCCCATTACTGGGTATATACCCAAAGGACTATAAATCATGCTGCTATAAAGACACATGCACGTATGTTTATTGTGGCATTATTCACA	ATAGCAAAGACTTGGAACCAACCCAATGTCCAACAATGATAGACTGGATTAAGAAAATGTGGCACATATACACCATGGAATACTATGCA	GCCATAAAAATGATGAGTTCATGTCTTTGTAGGGACATGAAATCCGGAATTCCGCCGATACTGACGGGCTCCAGGAGTCGTCGC	1 CACCAATC 2798
1621	1711	1801	1891	1981	2071	2161	2251	2341	2431	2521	2611	2701	2791

Figure 6 (continued)

1/19

SEQUENCE LISTING

<110> The Council of the Queensland Institute of Medical Research <120> Dendritic cell membrane FIRE <160> 23 10 <170> PatentIn Ver. 2.1 <210> 1 <211> 681 <212> PRT 15 <213> Mus musculus <400> 1 Met Gly Ser Arg Cys Leu Leu His Ala Ser Val Pro Gly Met Leu Leu 20 Ile Trp Ser Ile Leu Gln Met Met Asn Ile Ser Ala Ser Cys Pro Gln Cys Asn Glu Asn Ala Ser Cys Phe Asn Ser Thr His Cys Val Cys Lys 25 40 Glu Gly Phe Trp Thr Gly Ser Glu Asn Arg Arg Ile Ile Glu Pro His 30 Glu Lys Cys Gln Asp Ile Asn Glu Cys Leu Leu Lys Glu Leu Val Cys Lys Asp Val Ser Tyr Cys Arg Asn Lys Ile Gly Thr Tyr Ile Cys Ser 35 Cys Val Val Lys Tyr Pro Leu Phe Asn Trp Val Ala Gly Ile Ile Asn 40 Ile Asp His Pro Asp Cys Tyr Val Asn Lys Ser Lys Asn Thr Gly Ser Lys Thr His Thr Leu Gly Val Leu Ser Glu Phe Lys Ser Lys Glu Glu 135 45 Val Ala Lys Gly Ala Thr Lys Leu Leu Arg Lys Val Glu His His Ile 145 Leu Asn Glu Asn Ser Asp Ile Pro Lys Lys Asp Glu Asn Pro Leu Leu 50 165 Asp Ile Val Tyr Glu Thr Lys Arg Cys Lys Thr Met Thr Leu Leu Glu Ala Gly Asn Asn Thr Met Lys Val Asp Cys Thr Ser Gly Phe Lys Glu 55 His Asn Ser Gly Gly Glu Thr Ala Val Ala Phe Ile Ala Tyr Lys Ser

		210					215					220				
5	Leu 225	Gly	Asn	Leu	Leu	Asn 230	Gly	Ser	Phe	Phe	Ser 235	Asn	Glu	Glu	Gly	Phe 240
J	Gln	Glu	Val	Thr	Leu 245	Asn	Ser	His	Ile	Val 250	Ser	Gly	Ala	Ile	Arg 2 5 5	Ser
10	Glu	Val	Lys	Pro 260	Val	Leu	Ser	Glu	Pro 265	Val	Leu	Leu	Thr	Leu 270	Gln	Asn
	Ile	Gln	Pro 275	Ile	Asp	Ser	Arg	Ala 280	Glu	His	Leu	Cys	Val 285	His	Trp	Glu
15	Gly	Ser 290	Glu	Glu	Gly	Gly	Ser 295	Trp	Ser	Thr	Lys	Gly 300	Cys	Ser	His	Val
20	Tyr 305	Thr	Asn	Asn	Ser	Tyr 310	Thr	Ile	Cys	Lys	Cys 315	Phe	His	Leu	Ser	Ser 320
20	Phe	Ala	Val	Leu	Met 325	Ala	Leu	Pro	His	Glu 330	Glu	Asp	Gly	Val	Leu 335	Ser
25	Ala	Leu	Ser	Val 340	Ile	Thr	Tyr	Val	Gly 345	Leu	Ser	Leu	Ser	Leu 350	Leu	Cys
	Leu	Phe	Leu 355	Ala	Ala	Ile	Thr	Phe 360	Leu	Leu	Cys	Arg	Pro 365	Ile	Gln	Asn
3 0	Thr	Ser 370	Thr	Thr	Leu	His	Leu 375	Gln	Leu	Ser	Ile	Cys 380	Leu	Phe	Leu	Ala
35	Asp 385	Leu	Leu	Phe	Leu	Thr 390	Gly	Ile	Asn	Arg	Thr 395	Lys	Pro	Lys	Val	Leu 400
	Cys	Ser	Ile	Ile	Ala 405	Gly	Met	Leu	His	Tyr 410	Leu	Tyr	Leu	Ala	Ser 415	Phe
40	Met	Trp	Met	Phe 420	Leu	Glu	Gly	Leu	His 425	Leu	Phe	Leu	Thr	Val 430	Ser	Asn
	Leu	Lys	Val 435	Ala	Asn	Tyr	Ser	Asn 440	Ser	Gly	Arg	Phe	Lys 445	Lys	Arg	Phe
45	Met	Tyr 450	Pro	Val	Gly	Tyr	Gly 455	Leu	Pro	Ala	Phe	Ile 460	Val	Ala	Val	Ser
50	Ala 465	Ile	Ala	Gly	His	Lys 470	Asn	Tyr	Gly	Thr	His 475	Asn	His	Cys	Trp	Leu 480
00	Ser	Leu	His	Arg	Gly 485	Phe	Ile	Trp	Ser	Phe 490	Leu	Gly	Pro	Ala	Ala 495	Ala
55	Ile	Ile	Leu	Ile 500	Asn	Leu	Val	Phe	Tyr 505	Phe	Leu	Ile	Ile	Trp 510	Ile	Leu
	Arg	Ser	Lys 515	Leu	Ser	Ser	Leu	Asn 520	Lys	Glu	Val	Ser	Thr 525	Leu	Gln	Asp

	Thr	Lys 530	Val	Met	Thr	Phe	Lys 535	Ala	Ile	Val	Gln	Leu 540	Phe	Val	Leu	Gly
5	Cys 545	Ser	Trp	Gly	Ile	Gly 550	Leu	Phe	Ile	Phe	Ile 555	Glu	Val	Gly	Lys	Thr 560
- 10	Val	Arg	Leu	Ile	Val 565	Ala	Tyr	Leu	Phe	Thr 570	Ile	Ile	Asn	Val	Leu 575	Glr
	Gly	Val	Leu	Ile 580	Phe	Met	Val	His	Cys 585	Leu	Leu	Asn	Arg	Gln 590	Val	Arg
15	Met	Glu	Tyr 595	Lys	Lys	Trp	Phe	His 600	Arg	Leu	Arg	Lys	Glu 605	Val	Glu	Ser
	Glu	Ser 610	Thr	Glu	Val	Ser	His 615	Ser	Thr	Thr	His	Thr 620	Lys	Met	Gly	Leu
20	Ser 625	Leu	Asn	Leu	Glu	Asn 630	Phe	Cys	Pro	Thr	Gly 635	Asn	Leu	His	Asp	Pro 640
25	Ser	Asp	Ser	Ile	Leu 645	Pro	Ser	Thr	Glu	Val 650	Ala	Gly	Val	Tyr	Leu 655	Ser
	Thr	Pro	Arg	Ser 660	His	Met	Gly	Ala	Glu 665	Asp	Val	Asn	Ser	Gly 670	Thr	His
30	Ala	Tyr	Trp 675	Ser	Arg	Thr	Ile	Ser 680	Asp							
35	<212 <212	0> 2 1> 63 2> P1 3> Ho	RT	sapie	ens											
••	Ala	0> 2 Ser	Cys	Pro		Cys	Pro	Lys	Tyr		Ser	Cys	His	Asn		Thi
40	1 His	Cys	Thr	_	5 Glu	Asp	Gly	Phe		10 Ala	Arg	Ser	Gly		15 Thr	Туг
45	Phe	His	Asn	20 Ser	Ser	Glu	I.vs	Cvs	25 Glu	Asn	Tle	Asn	Glu	30 Cvs	Glu	ሞh ነ
10			35				_	40		_			45			
50	Gly	Leu 50	Ala	Lys	Суѕ	Lys	Tyr 55	Lys	Ala	Tyr	Суѕ	Arg 60	Asn	Lys	Val	Gl
,	Gly 65	Tyr	Ile	Cys	Ser	Cys 70	Leu	Val	Lys	Tyr	Thr 75	Leu	Phe	Asn	Phe	Let 80
55	Ala	Gly	Ile	Ile	Asp 85	Tyr	Asp	His	Pro	Asp 90	Cys	Tyr	Glu	Asn	Asn 95	Sei
	Gln	Gly	Thr	Thr 100	Gln	Ser	Asn	Val	Asp 105	Ile	Trp	Glu	Asn	Leu 110	Arg	Ar

	Asn	Gly	Ser 115	Arg	Glu	Asp	Phe	Ala 120	Arg	Arg	Ala	Thr	Gln 125	Leu	Ile	Gln
5	Ser	Val 130	Glu	Leu	Ser	Ile	Trp 135	Asn	Ala	Ser	Phe	Ala 140	Ser	Pro	Gly	Lys
10	Gly 145	Gln	Ile	Ser	Glu	Phe 150	Asp	Ile	Val	Tyr	Glu 155	Thr	Lys	Arg	Cys	Asn 160
20	Glu	Thr	Arg	Glu	Asn 165	Ala	Phe	Leu	Glu	Ala 170	Gly	Asn	Asn	Thr	Met 175	Asp
15	Ile	Asn	Cys	Ala 180	Asp	Ala	Leu	Lys	Gly 185	Asn	Leu	Arg	Glu	Ser 190	Thr	Ala
	Val	Ala	Leu 195	Ile	Thr	Tyr	Gln	Ser 200	Leu	Gly	Asp	Ile	Leu 205	Asn	Ala	Ser
20	Phe	Phe 210	Ser	Lys	Arg	Lys	Gly 215	Met	Gln	Glu	Val	Lys 220	Leu	Asn	Ser	Tyr
25	Val 225	Val	Ser	Gly	Thr	Val 230	Gly	Leu	Lys	Glu	Lys 235	Ile	Ser	Leu	Ser	Glu 240
	Pro	Val	Phe	Leu	Thr 245	Phe	Arg	His	Asn	Gln 250	Pro	Gly	Asp	Lys	Arg 255	Thr
30	Lys	His	Ile	Cys 260	Val	Tyr	Trp	Glu	Gly 265	Ser	Glu	Gly	Gly	Arg 270	Trp	Ser
	Thr	Glu	Gly 275	Cys	Ser	His	Val	His 280	Ser	Asn	Gly	Ser	Tyr 285	Thr	Lys	Cys
35	Lys	Cys 290	Phe	His	Leu	Ser	Ser 295	Phe	Ala	Val	Leu	Val 300	Ala	Leu	Ala	Pro
40	Lys 305	Glu	Asp	Pro	Val	Leu 310	Thr	Val	Ile	Thr	Gln 315	Val	Gly	Leu	Thr	11e 320
	Ser	Leu	Leu	Cys	Leu 325	Phe	Leu	Ala	Ile	Leu 330	Thr	Phe	Leu	Leu	Cys 335	Arg
4 5	Pro	Ile	Gln	Asn 340	Thr	Ser	Thr	Ser	Leu 345	His	Leu	Glu	Leu	Ser 350	Leu	Cys
	Leu	Phe	Leu 355	Ala	His	Leu	Leu	Phe 360	Leu	Thr	Gly	Ile	Asn 365	Arg	Thr	Glu
50	Pro	Glu 370	Val	Leu	Cys	Ser	Ile 375	Ile	Ala	Gly	Leu	Leu 380	His	Phe	Leu	Tyr
55	Leu 385	Ala	Cys	Phe	Thr	Trp 390	Met	Leu	Leu	Glu	Gly 395	Leu	His	Leu	Phe	Leu 400
- -	Thr	Val	Arg	Asn	Leu 405	Lys	Val	Ala	Asn	Tyr 410	Thr	Ser	Thr	Gly	Arg 415	Phe

	Lys	Lys	Arg	Phe 420	Met	Tyr	Pro	Val	Gly 425	Tyr	Gly	Ile	Pro	Ala 430	Val	Ile	
5	Ile	Ala	Val 435	Ser	Ala	Ile	Val	Gly 440	Pro	Gln	Asn	Tyr	Gly 445	Thr	Phe	Thr	
	His	Cys 450	Trp	Leu	Lys	Leu	Asp 455	Lys	Gly	Phe	Ile	Trp 460	Ser	Phe	Met	Gly	
10	Pro 465		Ala	Val	Ile	Ile 470	Leu	Ile	Asn	Leu	Val 475	Phe	Tyr	Phe	Gln	Val 480	
15	Leu	Trp	Ile	Leu	Arg 485	Ser	Lys	Leu	Ser	Ser 490	Leu	Asn	Lys	Glu	Val 495	Ser	
	Thr	Ile	Gln	Asp 500	Thr	Arg	Val	Met	Thr 505	Phe	Lys	Ala	Ile	Ser 510	Gln	Leu	
20	Phe	Ile	Leu 515	Gly	Cys	Ser	Trp	Gly 520	Leu	Gly	Phe	Phe	Met 525	Val	Glu	Glu	
	Val	Gly 530	Lys	Thr	Ile	Gly	Ser 535	Ile	Ile	Ala	Tyr	Ser 540	Phe	Thr	Ile	Ile	
25	Asn 545	Thr	Leu	Gln	Gly	V al 550	Leu	Leu	Phe	Val	Val 5 5 5	His	Cys	Leu	Leu	Asn 560	
30	Arg	Gln	Val	Arg	Met 565	Glu	Tyr	Lys	Lys	Trp 570	Phe	Ser	Gly	Met	Arg 575	Lys	
	Gly	Val	Glu	Thr 580	Glu	Ser	Thr	Glu	Met 585	Ser	Arg	Ser	Thr	Thr 590	Gln	Thr	
35	Lys	Thr	Glu 595	Glu	Val	Gly	Lys	Ser 600	Ser	Glu	Ile	Phe	His 605	Lys	Gly	Gly	
	Thr	Ala 610	Ser	Ser	Ser	Ala	Glu 615	Ser	Thr	Lys	Gln	Pro 620	Gln	Pro	Gln	Val	
40	His 625	Leu	Val	Ser	Ala	Ala 630	Trp	Leu	Lys	Met	Asn 635						
4 5	<212	l> 32 2> DN		ıscul	.us												
50	<400	actgo	tt c	attg	ctgo	t ga	igaat	gtto	: cag	gctg	agt	gaga	agta	iaa a	atto	atcat	60
	taga gtca	agata aatat	itg g	gaag aaat	cagg gatg	ıt go ıa at	cttc	tgca cago	tgc	ctca	gtt	cctg	gaat	gc t	gctt	atctg gccag aatag	180 240
5 5	aaga ggta	atta itgca	itt g lag g	agco	ccat	g ag	aaat tgca	gtca gaaa	aga taa	tatt aatt	aat	gagt	gtct	ac t	gaaa	gaatag gaatt tgtgt gattg	360 420
	ttat	gtga	ac a	agag	caag	a at	acag	gato	aaa	aaca	cat	actt	tggg	ag t	actq	gaetg agtga gaaca	540

```
tcacatcttg aatgaaaact cagatatacc aaaaaaggat gaaaatcctt tattggatat 660
     agtgtatgaa actaagaggt gcaagacgat gactcttcta gaagctggca acaacacaat 720
     gaaggttgac tgcactagtg gtttcaaaga gcacaacagt ggaggtgaaa ctgcagtggc 780
     tttcattgca tataagtctc ttgggaatct tctaaatggt tcctttttta gtaatgaaga 840
     agggtttcag gaagtgacac tgaactctca catcgttagt ggagccattc gctcagaggt 900
     caaacctgtc ctctctgaac ctgtactcct gactttacaa aatattcagc ccattgactc 960
     aagagcagaa catctctgtg tccattggga aggatcagag gaagggggga gctggtctac 1020
     caaaggatgc tetcacgtgt acaccaataa ttectacaec atttqcaagt qtttecacet 1080
     gtccagcttt gctgtgctca tggctctacc ccatgaggag gatggtgtgc tttctqcact 1140
10
     ctctgtgatc acctatgtgg gactgagtct ttctctttg tgcctatttc tggcggccat 1200
     cacttttctc ctgtgccgac ccattcagaa taccagcacg acactccacc tgcagctctc 1260
     catctgcctt ttcctggctg acctcctctt cctcacaggc atcaacagaa ctaagcctaa 1320
     ggtgctgtgc tccatcatag cggggatgtt gcactacctc tacttggctt ccttcatgtg 1380
     gatgtttctg gaagggctac atcttttct cactgtgagc aatctcaaag tggccaacta 1440
     cagcaactca ggcagattca agaagaggtt catgtatect gtaggatatg ggctteetge 1500
15
     ttttattgtt gctgtatctg caatagctgg ccacaagaat tatggaacac acaaccactg 1560
     ctggctcagc cttcatcgag gattcatctg gagcttcttg gggccagcgg cagccattat 1620
     cttgataaac ctggtgttct actttctaat aatatggatt ttgagaagca aactttcttc 1680
     totcaataaa gaagtttota cacttoaaga cacaaaggtt atgacattta aagccattgt 1740
20
     ccagttattt gtgttgggat gttcttgggg cattggcttg tttattttca ttgaagttgg 1800
     gaagacagtg agactgatcg ttgcctatct gttcaccatc atcaatgtcc tgcagggtgt 1860
     tttgatattt atggtacatt gtctgcttaa tcgccaggtg cggatggaat ataagaagtg 1920
     gtttcataga ctgcggaagg aagttgaaag tgaaagcact gaagtgtctc attctactac 1980
     tcacacaaaa atgggtcttt ctctgaacct ggaaaatttc tgcccaacag gaaacctcca 2040
25
     tgatccttct gactccatcc ttccaagtac tgaagtagca ggtgtatatc taagcacacc 2100
     caggtctcac atgggtgctg aggatgtgaa ctcaggtact cacgcttact ggagcagaac 2160
     tattagtgat tgaatcagct cettececca ageetettae agtacatttt aacttgtaet 2220
     gtgccatgca catgaagcta taattgctag tctggtaaaa caactgttgc atattccatg 2280
     atcatttcat tttatctcta cttgcaaaag ttagctttct ttttatatca tttttatttc 2340
30
     tctttctttt gtttatatat agcttcagtt gagtgggttt ctagtcttaa tgttctagat 2400
     cactattttc ttttcagtta acctttattg gtatttagtt cctgtgtagt gtataccact 2460
     ggaatatttt tatttcttta attttgaggt taaaatatag ttacatcatt tttccttttt 2520
     ttctttccca caatcctcct gtatactttt tccctggtgt ctattttatt gtttctacat 2580
     gcatatatat tttatgcaaa acatatatat gtataaatat aaatatatat tcttatatgc 2640
35
     atgaaaacca tctacttcat ccaaataatg ttccttctat gtatgttttc aggacaggga 2700
     caacaatagc tatggtagca tggcagggga aagcccacag gacctcagcc ttatacaaag 2760
     aatcagaggc aactgaggag tgctgagttg aaggaattgt cttacccagg ggagggcaca 2820
     ttaattggtt atctaataca aaatgttcag ccccaaaact gttaagataa aagcctatat 2880
     gcatcttagg aagtatctac cttgatacac ctttattgga atatcatcca catgtttatt 2940
40
     gtgtgttctg aagagggtct gttgaatttc taagggttga tcagtttaat tgtgccattt 3000
     tatattcagg gtgtttggct ttgttgtagt gaataatgct atatttccct gtatqtqtca 3060
     tctttgactg ttatttttc ctggcgatac tttattcaac aagaacctag agccttggtt 3120
     tattactttt tcttccatag aaaaactatt tgtcttccag gattagatat gatcaatatt 3180
     tcttatatgc atgtatcaaa tatcatgatg aaatatatta ctgtgtataa ttaataactg 3240
45
     gcaataaagt ccaaggga
                                                                       3258
     <210> 4
     <211> 2798
50
     <212> DNA
     <213> Homo sapiens
     <400> 4
     getteetgte etecatgeee taaatatgee agetgeeaca acageaceea etgtaettgt 60
55
     gaagatggct ttcgggccag gtctggcagg acatactttc atgattcctc tgagaagtgt 120
     gaagatatta atgaatgtga aaccgggctg gcaaagtgca agtataaagc atattgtagg 180
     aataaagttg gaggttacat ctgtagctgt ttggtaaaat atactttatt caactttctg 240
     gctggtatta tagattatga tcatccggat tgttacgaga acaatagtca agggacgaca 300
```

```
cagtcaaacg tggatatttg ggaaaatctg agaagaaatg gaagcagaga ggactttgca 360
    agaagggcta ctcaactaat tcaaagcgtg gagttgagca tctggaatgc gagttttgct 420
    tctccaggaa agggtcaaat ttctgaattt gatatagtct atgaaaccaa gaggtgcaat 480
    gagacaaggg agaatgcttt tctggaagct ggaaataaca ccatggatat caactgtgct 540
    gatgctttaa aaggaaacct aagagagagc actgcagttg ccctaatcac ttatcaatct 600
5
    cttggggata ttctgaatgc atccttttt agtaaacgaa aagggatgca ggaagtaaaa 660
    ctgaactett acgttgtgag cggcaccgtc ggtttgaagg aaaaaatttc cctctctgaa 720
    cctgtgttcc tgacttttcg ccataatcag cctggtgaca agagaacaaa acatatctgt 780
    gtctactggg agggatcaga gggaggccgc tggtccacgg agggctgctc tcatgtgcac 840
    agcaacggtt cttacaccaa atgcaagtgc ttccatctgt ccagctttgc cgtcctcgtg 900
10
    gctcttgccc ccaaggagga ccctgtgctg accgtgatca cccaggtggg gctgaccatc 960
    tcyctgctgt gcctcttcct ggccatcctc accttcctcc tgtgccggcc catccagaac 1020
    accagcacct coctocatct agagetetee etetgeetet teetggeeca ceteetgtte 1080
    cactteetet acctqqettq etteacetqq atgeteetqq aagggetqea cetetteete 1200
15
    accgtcagga acctcaaggt ggccaactac accagcacgg gcagattcaa gaagaggttc 1260
    atgtaccetg taggetacgg gateceaget gtgattattg etgtgteage aatagttgga 1320
     ccccagaatt atggaacatt tactcactgt tggctcaagc ttgataaagg attcatctgg 1380
     agettcatgg ggccagtagc agtcattatc ttgataaacc tggtgttcta cttccaagtt 1440
     ctgtggattt tgagaagcaa actttcctcc ctcaataaag aagtttccac cattcaggac 1500
20
     accagagtca tgacatttaa agccatttct cagctattta tcctgggctg ttcttggggc 1560
     cttggttttt ttatggttga agaagtaggg aagacgattg gatcaatcat tgcatactca 1620 ttcaccatca tcaacacct tcagggagtg ttgctctttg tggtacactg tctccttaat 1680
     cgccaggttc gaatggaata taaaaagtgg tttagtggga tgcggaaagg ggtagaaact 1740
25
     gaaagcactg agatgtctcg ctctactacc caaaccaaaa cggaagaagt ggggaagtcc 1800
     tcagaaatct ttcataaagg aggcactgca tcatcatctg cagagtcaac caagcaaccg 1860
     cagccacagg ttcatctcgt ctctgctgct tggctaaaga tgaactgacc tggcaagtgc 1920
     catggcaatg acceggaagt tacegeteet tteegtttgt ctacagegee cetgtggtea 1980
     cacatagatt ggacaaatgc cactatttct agctttcctg tgaaaagtct aggctcattc 2040
     acctattttg gctttttatg ttcatagaaa gaacaagaca tttgggagaa ttcttagatc 2100
30
     cagagtccag tagtgtggca cgtgcaatga agtgtcggaa ggatgcattt taaagatggc 2160
     gggcgggaga agtggatttt tcttcttgca gctactgcca ccttgccaga aacttcacta 2220
     actggcatct ggrattcagc tcatagttcc ctttctggcc tctctgctgt attttatgct 2280
     cccaaagatc ttacattaac actccacatt cacataattc aacaattttc atatggatca 2340
     gtattaaaga gggtgttgca ttttgcaata caaaaatgca ttatcaggtg ctggagagga 2400
35
     tgtggagaaa taggaacact tttacactgt tggtgggact gtaaactagt tcaaccatcg 2460
     tggaagtcag tgtggcgatt cctcagggat ctagaactag aaataccatt tgacacagct 2520
     atcccattac tgggtatata cccaaaggac tataaatcat gctgctataa agacacatgc 2580
     acacgtatgt ttattgtggc attattcaca atagcaaaga cttggaacca acccaaatgt 2640
     ccaacaatga tagactggat taagaaaatg tggcacatat acaccatgga atactatgca 2700
40
     gccataaaaa atgatgagtt catgtccttt gtagggacat ggatgaaatc cggaattccg 2760
     ccgatactga cgggctccag gagtcgtcgc caccaatc
45
     <210> 5
     <211> 886
     <212> PRT
     <213> Homo sapiens
50
     <400> 5
     Met Arg Gly Phe Asn Leu Leu Phe Trp Gly Cys Cys Val Met His
     Ser Trp Glu Gly His Ile Arg Pro Thr Arg Lys Pro Asn Thr Lys Gly
55
     Asn Asn Cys Arg Asp Ser Thr Leu Cys Pro Ala Tyr Ala Thr Cys Thr
                                  40
```

	Asn	50	vaı	Asp	ser	туг	55	cys	1111	Суѕ	пуз	60	Gry	THE	БСС	501
5	Ser 65	Asn	Gly	Gln	Asn	His 70	Phe	Lys	Asp	Pro	Gly 75	Val	Arg	Cys	Lys	Asp 80
10	Ile	Asp	Glu	Cys	Ser 85	Gln	Ser	Pro	Gln	Pro 90	Cys	Gly	Pro	Asn	Ser 95	Ser
10	Cys	Lys	Asn	Leu 100	Ser	Gly	Arg	Tyr	Lys 105	Cys	Ser	Cys	Leu	Asp 110	Gly	Phe
15	Ser	Ser	Pro 115	Thr	Gly	Asn	Asp	Trp 120	Val	Pro	Gly	Lys	Pro 125	Gly	Asn	Phe
	Ser	Cys 130	Thr	Asp	Ile	Asn	Glu 135	Cys	Leu	Thr	Ser	Arg 140	Val	Cys	Pro	Glu
20	His 145	Ser	Asp	Суѕ	Val	Asn 150	Ser	Met	Gly	Ser	Tyr 155	Ser	Cys	Ser	Суз	Gln 160
25	Val	Gly	Phe	Ile	Ser 165	Arg	Asn	Ser	Thr	Cys 170	Glu	Asp	Val	Asn	Glu 175	Cys
23	Ala	Asp	Pro	Arg 180	Ala	Суз	Pro	Glu	His 185	Ala	Thr	Cys	Asn	Asn 190	Thr	Val
30	Gly	Asn	Tyr 195	Ser	Cys	Phe	Cys	Asn 200	Pro	Gly	Phe	Glu	Ser 205	Ser	Ser	Gly
	His	Leu 210	Ser	Cys	Gln	Gly	Leu 215	Lys	Ala	Ser	Cys	Glu 220	Asp	Ile	Asp	Glu
35	Cys 225	Thr	Glu	Met	Cys	Pro 230	Ile	Asn	Ser	Thr	Cys 235	Thr	Asn	Thr	Pro	Gly 240
40	Ser	Tyr	Phe	Cys	Thr 245	Cys	His	Pro	Gly	Phe 250	Ala	Pro	Ser	Ser	Gly 255	Gln
40	Leu	Asn	Phe	Thr 260		Gln	Gly	Val	Glu 265		Arg	Asp	Ile	Asp 270	Glu	Cys
4 5	Arg	Gln	Asp 275		Ser	Thr	Cys	Gly 280		Asn	Ser	Ile	Cys 285	Thr	Asn	Ala
	Leu	Gly 290		Tyr	Ser	Cys	Gly 295		Ile	Val	Gly	Phe 300	His	Pro	Asn	Pro
50	Glu 305		Ser	Gln	Lys	Asp 310		Asn	Phe	Ser	Cys 315	Gln	Arg	Val	Leu	320
55	Lys	Cys	Lys	Glu	Asp 325	Val	Ile	Pro	Asp	Asn 330	Lys	Gln	Ile	Gln	Glr 335	cys
ออ	Gln	Glu	Gly	Thr 340		Val	Lys	Pro	Ala 345	Туг	· Val	. Ser	Phe	Cys 350	Ala	Glr

	Ile	a Asr	Asn 355	ıle	Phe	Ser	Val	Leu 360		Lys	: Val	Cys	Glu 365		Lys	Thr
5	Thr	7al 370	. Val	. Ser	Leu	Lys	Asn 375	Thr	Thr	Glu	Ser	Phe 380		Pro	Val	Leu
	Lys 385	Gln	Ile	Ser	Met	Trp 390	Thr	Lys	Phe	Thr	Lys 395		Glu	Thr	Ser	Ser 400
10	Leu	Ala	Thr	Val	Phe 405	Leu	Glu	Ser	Val	Glu 410		Met	Thr	Leu	Ala 415	
15	Phe	Trp	Lys	Pro 420	Ser	Ala	Asn	Val	Thr 425		Ala	Val	Arg	Ala 430		Tyr
	Leu	Asp	Ile 435	Glu	Ser	Lys	Val	Ile 440	Asn	Lys	Glu	Cys	Ser 445		Glu	Asn
20	Val	Thr 450	Leu	Asp	Leu	Val	Ala 455	Lys	Gly	Asp	Lys	Met 460		Ile	Gly	Cys
	Ser 465	Thr	Ile	Glu	Glu	Ser 470	Glu	Ser	Thr	Glu	Thr 475	Thr	Gly	Val	Ala	Phe 480
25	Val	Ser	Phe	Val	Gly 485	Met	Glu	Ser	Val	Leu 490	Asn	Glu	Arg	Phe	Phe 495	Gln
30	Asp	His	Gln	Ala 500	Pro	Leu	Thr	Thr	Ser 505	Glu	Ile	Lys	Leu	Lys 510	Met	Asn
	Ser	Arg	Val 515	Val	Gly	Gly	Ile	Met 520	Thr	Gly	Glu	Lys	Lys 525	Asp	Gly	Phe
35	Ser	Asp 530	Pro	Ile	Ile	Tyr	Thr 535	Leu	Glu	Asn	Val	Gln 540	Pro	Lys	Gln	Lys
	Phe 545	Glu	Arg	Pro	Ile	Cys 550	Val	Ser	Trp	Ser	Thr 555	Asp	Val	Lys	Gly	Gly 560
4 0	Arg	Trp	Thr	Ser	Phe 565	Gly	Cys	Val	Ile	Leu 570	Glu	Ala	Ser	Glu	Thr 575	Tyr
4 5	Thr	Ile	Cys	Ser 580	Cys	Asn	Gln	Met	Ala 585	Asn	Leu	Ala	Val	Ile 590	Met	Ala
	Ser	Gly	Glu 595	Leu	Thr	Met	Asp	Phe 600	Ser	Leu	Tyr	Ile	Ile 605	Ser	His	Val
50	Gly	Ile 610	Ile	Ile	Ser	Leu	Val 615	Суѕ	Leu	Val	Leu	Ala 620	Ile	Ala	Thr	Phe
	Leu 625	Leu	Cys	Arg	Ser	Ile 630	Arg	Asn	His	Asn	Thr 635	Tyr	Leu	His	Leu	His 640
55	Leu	Cys	Val	Cys	Leu 645	Leu	Leu	Ala	Lys	Thr 650	Leu	Phe	Leu	Ala	Gly 655	Ile
	His	Lys	Thr	Asp	Asn	Lys	Thr	Gly	Cys	Ala	Ile	Ile	Ala	Gly	Phe	Leu

				660		-			665					670		
5	His	Tyr	Leu 675	Phe	Leu	Ala	Cys	Phe 680	Phe	Trp	Met	Leu	Val 685	Glu	Ala	Val
J	Ile	Leu 690	Phe	Leu	Met	Val	Arg 695	Asn	Leu	Lys	Val	Val 700	Asn	Tyr	Phe	Ser
10	Ser 705	Arg	Asn	Ile	Lys	Met 710	Leu	His	Ile	Cys	Ala 715	Phe	Gly	Tyr	Gly	Leu 720
	Pro	Met	Leu	Val	Val 725	Val	Ile	Ser	Ala	Ser 730	Val	Gln	Pro	Gln	Gly 735	Tyr
15	Gly	Met	His	Asn 740	Arg	Cys	Trp	Leu	Asn 745	Thr	Glu	Thr	Gly	Phe 750	Ile	Trp
20	Ser	Phe	Leu 755	Gly	Pro	Val	Cys	Thr 760	Val	Ile	Val	Ile	Asn 765	Ser	Leu	Leu
	Leu	Thr 770	Trp	Thr	Leu	Trp	Ile 775	Leu	Arg	Gln	Arg	Leu 780	Ser	Ser	Val	Asn
25	Ala 785	Glu	Val	Ser	Thr	Leu 790	Lys	Asp	Thr	Arg	Leu 795	Leu	Thr	Phe	Lys	Ala 800
	Phe	Ala	Gln	Leu	Phe 805	Ile	Leu	Gly	Cys	Ser 810	Trp	Val	Leu	Gly	Ile 815	Phe
30	Gln	Ile	Gly	Pro 820	Val	Ala	Gly	Val	Met 825	Ala	Tyr	Leu	Phe	Thr 830	Ile	Ile
35	Asn	Ser	Leu 835	Gln	Gly	Ala	Phe	Ile 840	Phe	Leu	Ile	His	Cys 845	Leu	Leu	Asn
	Gly	Gln 850	Val	Arg	Glu	Glu	Tyr 855	Lys	Arg	Trp	Ile	Thr 860	Gly	Lys	Thr	Lys
4 0	Pro 865	Ser	Ser	Gln	Ser	Gln 870	Thr	Ser	Arg	Ile	Leu 875	Leu	Ser	Ser	Met	Pro 880
	Ser	Ala	Ser	Lys	Thr 885	Gly										
45	<21:	0> 6 1> 9: 2> P1 3> M:		uscu:	lus											
50	<40	0> 6														
	Met 1	Trp	Gly	Phe	Trp 5	Leu	Leu	Leu	Phe	Trp 10		Phe	Ser	Gly	Met 15	Туг
55	Arg	Trp	Gly	Met 20	Thr	Thr	Leu	Pro	Thr 25	Leu	Gly	Gln	Thr	Leu 30	Gly	Gly
	Val	Asn	Glu	Cvs	Gln	Asp	Thr	Thr	Thr	Cvs	Pro	Ala	Tyr	Ala	Thr	Cys

			35					40					45			
5	Thr	Asp 50	Thr	Thr	Asp	Ser	Tyr 55	Tyr	Cys	Thr	Суз	Lys 60	Arg	Gly	Phe	Leu
,	Ser 65	Ser	Asn	Gly	Gln	Thr 70	Asn	Phe	Gln	Gly	Pro 75	Gly ⁻	Val	Glu	Сув	Gln 80
10	Asp	Val	Asn	Glu	Cys 85	Leu	Gln	Ser	Asp	Ser 90	Pro	Cys	Gly	Pro	Asn 95	Ser
	Val	Cys	Thr	Asn 100	Ile	Leu	Gly	Arg	Ala 105	Lys	Cys	Ser	Cys	Leu 110	Arg	Gly
15	Phe	Ser	Ser 115	Ser	Thr	Gly	Lys	Asp 120	Trp	Ile	Leu	Gly	Ser 125	Leu	Asp	Asn
20	Phe	Leu 130	Cys	Ala	Asp	Val	Asp 135	Glu	Cys	Leu	Thr	Ile 140	Gly	Ile	Cys	Pro
	Lys 145	Tyr	Ser	Asn	Cys	Ser 150	Asn	Ser	Val	Gly	Ser 155	Tyr	Ser	Cys	Thr	Cys 160
25	Gln	Pro	Gly	Phe	Val 165	Leu	Asn	Gly	Ser	Ile 170	Cys	Glu	Asp	Glu	Asp 175	Glu
	Cys	Val	Thr	Arg 180	Asp	Val	Суѕ	Pro	Glu 185	His	Ala	Thr	Cys	His 190	Asn	Thr
30	Leu	Gly	Ser 195	Tyr	Tyr	Суѕ	Thr	Cys 200	Asn	Ser	Gly	Leu	Glu 205	Ser	Ser	Gly
35	Gly	Gly 210	Pro	Met	Phe	Gln	Gly 215	Leu	Asp	Glu	Ser	Cys 220	Glu	Asp	Val	Asp
	Glu 225	Cys	Ser	Arg	Asn	Ser 230	Thr	Leu	Cys	Gly	Pro 235	Thr	Phe	Ile	Cys	11e 240
4 0	Asn	Thr	Leu	Gly	Ser 245	Tyr	Ser	Cys	Ser	Cys 250		Ala	Gly	Phe	Ser 255	Leu
	Pro	Thr	Phe	Gln 260	Ile	Leu	Gly	His	Pro 265		Asp	Gly	Asn	Cys 270		Asp
4 5	Ile	Asp	Glu 275		Asp	Asp	Thr	Cys 280	Pro	Leu	Asn	Ser	Ser 285	Cys	Thr	Asn
50	Thr	Ile 290	_	Ser	Tyr	Phe	Cys 295		Суѕ	His	Pro	Gly 300	Phe	Ala	Ser	Ser
	Asn 305		Gln	Leu	Asn	Phe 310		Asp	Leu	Glu	Val 315		: Cys	Glu	Asp	320
55	Asp	Glu	Суѕ	Thr	Gln 325		Pro	Leu	Gln	330		Leu	ı Asn	. Ser	335	Cys
	Thr	Asn	Val	Pro 340		Ser	Tyr	Ile	Cys 345		Cys	Leu	ı Pro	Asp 350	Phe	Glr

	Met	Asp	Pro 355	Glu	Gly	Ser	Gln	Gly 360	Tyr	Gly	Asn	Phe	Asn 365	Суѕ	Lys	Arg
5	Ile	Leu 370	Phe	Lys	Cys	Lys	Glu 375	Asp	Leu	Ile	Leu	Gln 380	Ser	Glu	Gln	Ile
10	Gln 385	Gln	Суѕ	Gln	Ala	Val 390	Gln	Gly	Arg	Asp	Leu 395	Gly	Tyr	Ala	Ser	Phe 400
	Cys	Thr	Leu	Val	Asn 405	Ala	Thr	Phe	Thr	Ile 410	Leu	Asp	Asn	Thr	Cys 415	Glu
15	Asn	Lys	Ser	Ala 420	Pro	Val	Ser	Leu	Gln 425	Ser	Ala	Ala	Thr	Ser 430	Val	Ser
	Leu	Val	Leu 435	Glu	Gln	Ala	Thr	Thr 440	Trp	Phe	Glu	Leu	Ser 445	Lys	Glu	Glu
20	Thr	Ser 450	Thr	Leu	Gly	Thr	Ile 455	Leu	Leu	Glu	Thr	Val 460	Glu	Ser	Thr	Met
25	Leu 465	Ala	Ala	Leu	Leu	11e 470	Pro	Ser	Gly	Asn	Ala 475	Ser	Gln	Met	Ile	Gln 480
	Thr	Glu	Tyr	Leu	Asp 485	Ile	Glu	Ser	Lys	Val 490	Ile	Asn	Glu	Glu	Cys 495	Lys
30	Glu	Asn	Glu	Ser 500	Ile	Asn	Leu	Ala	Ala 505	Arg	Gly	Asp	Lys	Met 510	Asn	Val
	Gly	Cys	Phe 515	Ile	Ile	Lys	Glu	Ser 520	Val	Ser	Thr	Gly	Ala 525	Pro	Gly	Val
35	Ala	Phe 530	Val	Ser	Phe	Ala	His 535	Met	Glu	Ser	Val	Leu 540	Asn	Glu	Arg	Phe
40	Phe 545	Glu	Asp	Gly	Gln	Ser 550	Phe	Arg	Lys	Leu	Arg 555	Met	Asn	Ser	Arg	Val 560
	Val	Gly	Gly	Thr	Val 565	Thr	Gly	Glu	Lys	Lys 570	Glu	Asp	Phe	Ser	Lys 575	Pro
45	Ile	Ile	Tyr	Thr 580	Leu	Gln	His	Ile	Gln 585	Pro	Lys	Gln	Lys	Ser 590	Glu	Arg
	Pro	Ile	Cys 595	Val	Ser	Trp	Asn	Thr 600	Asp	Val	Glu	Asp	Gly 605	Arg	Trp	Thr
50	Pro	Ser 610	Gly	Cys	Glu	Ile	Val 615	Glu	Ala	Ser	Glu	Thr 620	His	Thr	Val	Cys
55	Ser 625	Cys	Asn	Arg	Met	Ala 630	Asn	Leu	Ala	Ile	Ile 635	Met	Ala	Ser	Gly	Glu 640
	Leu	Thr	Met	Glu	Phe 645	Ser	Leu	Tyr	Ile	Ile 650	Ser	His	Val	Gly	Thr 655	Val

	Ile	Ser	Leu	Val 660	Cys	Leu	Ala	Leu	Ala 665	Ile	Ala	Thr	Phe	Leu 670	Leu	Cys
5	Arg	Ala	Val 675	Gln	Asn	His	Asn	Thr 680	Tyr	Met	His	Leu	His 685	Leu	Cys	Val
	Cys	Leu 690	Phe	Leu	Ala	Lys	Ile 695	Leu	Phe	Leu	Thr	Gly 700	Ile	Asp	Lys	Thr
10	Asp 705	Asn	Gln	Thr	Ala	Cys 710	Ala	Ile	Ile	Ala	Gly 715	Phe	Leu	His	Tyr	Leu 720
15	Phe	Leu	Ala	Суѕ	Phe 725	Phe	Trp	Met	Leu	Val 730	Glu	Ala	Val	Met	Leu 735	Phe
10	Leu	Met	Val	Arg 740	Asn	Leu	Lys	Val	Val 745	Asn	Tyr	Phe	Ser	Ser 750	Arg	Asn
20	Ile	Lys	Met 755	Leu	His	Leu	Cys	Ala 760	Phe	Gly	Tyr	Gly	Leu 765	Pro	Val	Leu
	Val	Val 770	Ile	Ile	Ser	Ala	Ser 775	Val	Gln	Pro	Arg	Gly 780	Tyr	Gly	Met	His
25	Asn 785	Arg	Cys	Trp	Leu	Asn 790	Thr	Glu	Thr	Gly	Phe 795	Ile	Trp	Ser	Phe	Leu 800
30	Gly	Pro	Val	Cys	Met 805	Ile	Ile	Thr	Ile	Asn 810	Ser	Val	Leu	Leu	Ala 815	Trp
30	Thr	Leu	Trp	Val 820	Leu	Arg	Gln	Lys	Leu 825	Cys	Ser	Val	Ser	Ser 830	Glu	Val
35	Ser	Lys	Leu 835	Lys	Asp	Thr	Arg	Leu 840	Leu	Thr	Phe	Lys	Ala 845	Ile	Ala	Gln
	Ile	Phe 850	Ile	Leu	Gly	Суѕ	Ser 855	Trp	Val	Leu	Gly	Ile 860	Phe	Gln	Ile	Gly
4 0	Pro 865	Leu	Ala	Ser	Ile	Met 870	Ala	Tyr	Leu	Phe	Thr 875	Ile	Ile	Asn	Ser	Leu 880
45	Gln	Gly	Ala	Phe	Ile 885	Phe	Leu	Ile	His	Cys 890	Leu	Leu	Asn	Arg	Gln 895	Val
45	Arg	Asp	Glu	Tyr 900	Lys	Lys	Leu	Leu	Thr 905	Arg	Lys	Thr	Asp	Leu 910	Ser	Ser
50	His	Ser	Gln 915	Thr	Ser	Gly	Ile	Leu 920	Leu	Ser	Ser	Met	Pro 925	Ser	Thr	Ser
	Lys	Met 930	Gly													
55	<21	0> 7 1> 74 2> PI														

<213> Homo sapiens

5		0> 7 Gly	Gly	Arg	Val 5	Phe	Leu	Ala	Phe	Cys 10	Val	Trp	Leu	Thr	Leu 15	Pro
	Gly	Ala	Glu	Thr 20	Gln	Asp	Ser	Arg	Gly 25	Cys	Ala	Arg	Val	Cys 30	Pro	Gln
10	Asn	Ser	Ser 35	Cys	Val	Asn	Ala	Thr 40	Ala	Cys	Arg	Cys	Asn 45	Pro	Gly	Phe
15	Ser	Ser 50	Phe	Ser	Glu	Ile	Ile 55	Thr	Thr	Pro	Thr	Glu 60	Thr	Cys	Asp	Asp
10	Ile 65	Asn	Glu	Cys	Ala	Thr 70	Pro	Ser	Lys	Val	Ser 75	Cys	Gly	Lys	Phe	Ser 80
20	Asp	Cys	Trp	Asn	Thr 85	Glu	Gly	Ser	Tyr	Asp 90	Cys	Val	Cys	Ser	Pro 95	Gly
	Tyr	Glu	Pro	Val 100	Ser	Gly	Ala	Lys	Thr 105	Phe	Lys	Asn	Glu	Ser 110	Glu	Asn
25	Thr	Cys	Gln 115	Asp	Glu	Суѕ	Ser	Ser 120	Gly	Gln	His	Gln	Cys 125	Asp	Ser	Ser
30	Thr	Val 130	Суѕ	Phe	Asn	Thr	Val 135	Gly	Ser	Tyr	Ser	Cys 140	Arg	Cys	Arg	Pro
00	Gly 145	Trp	Lys	Pro	Arg	His 150	Gly	Ile	Pro	Asn	Asn 155	Gln	Lys	Asp	Thr	Val 160
35	Cys	Glu	Asp	Met	Thr 165	Phe	Ser	Thr	Trp	Thr 170	Pro	Pro	Pro	Gly	Val 175	His
	Ser	Gln	Thr	Leu 180	Ser	Arg	Phe	Phe	Asp 185	Lys	Val	Gln	Asp	Leu 190	Gly	Arg
40	Asp	Ser	Lys 195	Thr	Ser	Ser	Ala	Glu 200	Val	Thr	Ile	Gln	Asn 205	Val	Ile	Lys
4 5	Leu	Val 210	Asp	Glu	Leu	Met	Glu 215	Ala	Pro	Gly	Asp	Val 220	Glu	Ala	Leu	Ala
10	Pro 225	Pro	Val	Arg	His	Leu 230	Ile	Ala	Thr	Gln	Leu 235	Leu	Ser	Asn	Leu	Glu 240
50	Asp	Ile	Met	Arg	Ile 245	Leu	Ala	Lys	Ser	Leu 250	Pro	Lys	Gly	Pro	Phe 255	Thr
	Tyr	Ile	Ser	Pro 260	Ser	Asn	Thr	Glu	Leu 265	Thr	Leu	Met	Ile	Gln 270	Glu	Arg
55	Gly	Asp	Lys 275	Asn	Val	Thr	Met	Gly 280	Gln	Ser	Ser	Ala	Arg 285	Met	Lys	Leu
	Asn	Trp	Ala	Val	Ala	Ala	Gly	Ala	Glu	Asp	Pro	Gly	Pro	Ala	Val	Ala

		290					295					300				
5	Gly 305	Ile	Leu	Ser	Ile	Gln 310	Asn	Met	Thr	Thr	Leu 315	Leu	Ala	Asn	Ala	Ser 320
J	Leu	Asn	Leu	His	Ser 325	Lys	Lys	Gln	Ala	Glu 330	Leu	Glu	Glu	Ile	Tyr 335	Glu
10	Ser	Ser	Ile	Arg 340	Gly	Val	Gln	Leu	Arg 345	Arg	Leu	Ser	Ala	Val 350	Asn	Ser
	Ile	Phe	Leu 355	Ser	His	Asn	Asn	Thr 360	Lys	Glu	Leu	Asn	Ser 365	Pro	Ile	Leu
15	Phe	Ala 370	Phe	Ser	His	Leu	Glu 375	Ser	Ser	Asp	Gly	Glu 380	Ala	Gly	Arg	Asp
20	Pro 385	Pro	Ala	Lys	Asp	Val 390	Met	Pro	Gly	Pro	Arg 395	Gln	Glu	Leu	Leu	Cys 400
20	Ala	Phe	Trp	Lys	Ser 405	Asp	Ser	Asp	Arg	Gly 410	Gly	His	Trp	Ala	Thr 415	Glu
25	Val	Cys	Gln	Val 420	Leu	Gly	Ser	Lys	Asn 425	Gly	Ser	Thr	Thr	Cys 430	Gln	Cys
	Ser	His	Leu 435	Ser	Ser	Phe	Thr	Ile 440	Leu	Met	Ala	His	Tyr 445	Asp	Val	Glu
30	Asp	Trp 450	Lys	Leu	Thr	Leu	Ile 455	Thr	Arg	Val	Gly	Leu 460	Ala	Leu	Ser	Leu
35	Phe 465	Cys	Leu	Leu	Leu	Cys 470	Ile	Leu	Thr	Phe	Leu 475	Leu	Val	Arg	Pro	Ile 480
33	Gln	Gly	Ser	Arg	Thr 485	Thr	Ile	His	Leu	His 490	Leu	Cys	Ile	Cys	Leu 495	Phe
40	Val	Gly	Ser	Thr 500	Ile	Phe	Leu	Ala	Gly 505	Ile	Glu	Asn	Glu	Gly 510	Gly	Gln
	Val	Gly	Leu 515	Arg	Cys	Arg	Leu	Val 520	Ala	Gly	Leu	Leu	His 525	Tyr	Cys	Phe
45	Leu	Ala 530	Ala	Phe	Cys	Trp	Met 535	Ser	Leu	Glu	Gly	Leu 540	Glu	Leu	Tyr	Phe
50	Leu 545	Val	Val	Arg	Val	Phe 550	Gln	Gly	Gln	Gly	Leu 555		Thr	Arg	Trp	Leu 560
00	Cys	Leu	Ile	Gly	Tyr 565	Gly	Val	Pro	Leu	Leu 570	Ile	Val	Gly	Val	Ser 575	Ala
55	Ala	Ile	Tyr	Ser 580		Gly	Tyr	Gly	Arg 585		Arg	Tyr	Cys	Trp 590		Asp
	Phe	Glu	Gln 595	Gly	Phe	Leu	Trp	Ser 600	Phe	Leu	Gly	Pro	Val 605		Phe	Ile

	Ile	Leu 610	Cys	Asn	Ala	Val	Ile 615	Phe	Val	Thr	Thr	Val 620	Trp	Lys	Leu	Thr	
5	Gln 625	Lys	Phe	Ser	Glu	Ile 630	Asn	Pro	Asp	Met	Lys 635	Lys	Leu	Lys	Lys	Ala 640	
10	Arg	Ala	Leu	Thr	Ile 645	Thr	Ala	Ile	Ala	Gln 650	Leu	Phe	Leu	Leu	Gly 655	Cys	
10	Thr	Trp	Val	Phe 660	Gly	Leu	Phe	Ile	Phe 665	Asp	Asp	Arg	Ser	Leu 670	Val	Leu	
15	Thr	Tyr	Val 675	Phe	Thr	Ile	Leu	Asn 680	Cys	Leu	Gln	Gly	Ala 685	Phe	Leu	Tyr	
	Leu	Leu 690	His	Cys	Leu	Leu	Asn 695	Lys	Lys	Val	Arg	Glu 700	Glu	Tyr	Arg	Lys	
20	Trp 705	Ala	Суѕ	Leu	Val	Ala 710	Gly	Gly	Ser	Lys	Tyr 715	Ser	Glu	Phe	Thr	Ser 720	
25	Thr	Thr	Ser	Gly	Thr 725	Gly	His	Asn	Gln	Thr 730	Arg	Ala	Leu	Arg	Ala 735	Ser	
20	Glu	Ser	Gly	11e 740													
30	<212 <212	0> 8 l> 3(2> Di 3> Ai	IA	icial	L Sec	quenc	ce										
35	<220 <223		escri	iptio	on of	E Art	tific	cial	Seq	uence	e: P	CR p	rime	rs			
40	<400 ctac		cc a	aatai	ttca	ig ct	tcct	gtc	2								30
4 E	<211 <212)> 9 L> 32 2> DI	ΙA														
45	<220)>			L Sec	_			G		D	an					
50	<400)> 9		-			tific attt		_	ienc _e	2: P	ск р	cime	cs			32
55	<212 <212	0> 10 L> 34 2> Di	1 1A	icia'	l Sed	מפווי	~a										

	<220> <223> Description of Artificial Sequence: PCR primers	
5	<400> 10 gacgggatcc aatgagtgtc tactgaaaga attg	34
•	gabyggabbb dabgagbb babbgaadga abbg	34
	- <210> 11 <211> 34	
10		
	<213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: PCR primers	
15	1223 Description of Artificial Dequence. For primers	
	<400> 11	
	accgaagett teagetettg tteacataae aate	34
20	<210> 12	
	<211> 30	
	<212> DNA <213> Artificial Sequence	
	12137 ALCILIOLAL DEGACIACE	
25	<220>	
	<223> Description of Artificial Sequence: PCR primers	
	<400> 12	
	ctacggatcc aatatttcag cttcctgtcc	30
30		
	<210> 13	
	<211> 34	
	<212> DNA	
35	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: PCR primers	
4 0	<400> 13	
	accgaagett teagetettg tteacataac aate	34
	<210> 14	
4 5	<211> 31	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
50	<223> Description of Artificial Sequence: PCR primers	
	<400> 14	
	acacggatcc actttgggag tactgagtga a	31
55		
	<210> 15	
	<211> 32	
	<212> DNA	

	<213> Artificial Sequence	
_	<220> <223> Description of Artificial Sequence: PCR primers	
5	<400> 15 cgctaagctt tcatagagcc atgagcacag ca	32
10	<210> 16 <211> 20	
	<212> DNA	
	<213> Mus musculus	
15	<400> 16	
	cacctgcagc tcttccatct	20
	<210> 17	
20	<211> 23	
	<212> DNA	
	<213> Mus musculus	
	<400> 17	
25	gaaagtttgc ttctcaaaat cca	23
	<210> 18	
	<211> 26	
30	<212> DNA	
	<213> Homo sapiens	
	<400> 18	26
35	tgtctcattg cacctcttgg tttcat	20
33		
	<210> 19	
	<211> 19 <212> DNA	
4 0	<212> DNA <213> Homo sapiens	
	<400> 19	
	ccacaacagc acccactgt	19
45		
10	<210> 20	
	<211> 33	
	<212> DNA	
50	<213> Artificial Sequence	
30	<220>	
	<223> Description of Artificial Sequence: PCR primer	
	<400> 20	
55	tagtagacgc gtatattaca aatgatgaat att	33
	<210> 21	

	<211> 33 <212> DNA <213> Artificial Sequence	
5	<220> <223> Description of Artificial Sequence: PCR primer	
	<400> 21 tagtagacgc gttcaatcac taatagttct gct	33
10	caytagatge gittaattat taatagitti get	33
15	<210> 22 <211> 26 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: PCR primer	•
20	<400> 22 cgggatcctc ctcatggggt agagcc	26
25	<210> 23 <211> 33 <212> DNA <213> Artificial Sequence	
30	<220> <223> Description of Artificial Sequence: PCR primer	
	<400> 23 cgggtaccac catgggaagc aggtgccttc tgc	33
35		
	<210> 24 <211> 24 <212> DNA	
4 0	<213> Artificial Sequence <220>	
	<pre><223> Description of Artificial Sequence: PCR primer</pre>	
4 5	<400> 24 ggaaytagaa caccaggttt atca	24
	<210> 25 <211> 18 <212> DNA	
50	<213> Artificial Sequence <220>	
	<223> Description of Artificial Sequence: PCR primer	
55	<400> 25 cctcttcctg gcccacct	18

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU00/01083

A.	CLASSIFICATION OF SUBJECT MATTER						
Int. Cl. ⁷ : 33/54	C07K 14/435, 14/47, C07H 21/04, A61K 39/		2, C12Q 1/24, G01N				
According to	International Patent Classification (IPC) or to bot	h national classification and IPC					
B. FIELDS SEARCHED							
Minimum doci IPC 7: As A	umentation searched (classification system followed by bove	classification symbols)	•				
Documentation	n searched other than minimum documentation to the ex	tent that such documents are included in	the fields searched				
Electronic data ANGIS	a base consulted during the international search (name o	of data base and, where practicable, search	terms used)				
C.	DOCUMENTS CONSIDERED TO BE RELEVAN	Г					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.				
x	The Journal of Biological Chemistry, Vol. 27, 1996 (U.S.A.), Andrew J. McKnight et al., "Murine Macrophage-restricted Cell Surface th G-protein-linked Transmembrane 7 Horns to 489 See peptide in Fig. 1. Matching for SEQ. ID identities 53%, and SEQ. ID. No.2: positives	Molecular Cloning of F4/80, A Glycoprotein with Homology to one Receptor Family", pages 486 D. No.1: positives 70% and	1 - 4, 7 -11				
x	Further documents are listed in the continuation	on of Box C See patent fam	ily annex				
"A" docur not co the in the in docur or wh anoth "O" docur exhib	al categories of cited documents: ment defining the general state of the art which is onsidered to be of particular relevance or application or patent but published on or after atternational filing date ment which may throw doubts on priority claim(s) which is cited to establish the publication date of er citation or other special reason (as specified) ment referring to an oral disclosure, use, witton or other means ment published prior to the international filing out later than the priority date claimed	priority date and not in conflict with understand the principle or theory ur document of particular relevance; the be considered novel or cannot be con inventive step when the document is document of particular relevance; the be considered to involve an inventive combined with one or more other suc combination being obvious to a person document member of the same patern	the application but cited to aderlying the invention e claimed invention cannot sidered to involve an taken alone e claimed invention cannot e step when the document is ch documents, such on skilled in the art at family				
Date of the act	rual completion of the international search	Date of mailing 1 NOV 2000	sort				
	ling address of the ISA/AU	Authorized officer					
PO BOX 200, E-mail address	N PATENT OFFICE WODEN ACT 2606, AUSTRALIA s: pct@ipaustralia.gov.au (02) 6285 3929	GAVIN THOMPSON Telephone No: (02) 6283 2240	2/5~				

INTERNATIONAL SEARCH REPORT

International application No.

	PCT/AU00/01083	
C (Continua	ntion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	Genomics, Vol. 67, No. 2, accepted 25 April 2000, (San Diego, U.S.A.), His-Hsien Lin et al., "Human EMR2, a Novel EGF-TM7 Molecule on Chromosome19p13.1 is closely related to CD97", pages 188 to 200	
P, X	See figure on page 191. Matching for SEQ. ID. No. 1: positives 79% and identities 63%, and SEQ. ID. No. 2: positives 80% and identities 65%.	1 - 4, 7 -11
	Genomics, Vol. 26, 1995, Veronique Baud et al, "EMR1, an Unusual Member in the Family of Hormone Receptors with Seven Transmembrane Segments", pages 334 to 344	
X	See Fig. 1. Matching for SEQ. ID. No. 1: positives 70% and identities 54%, and SEQ. ID. No. 2: positives 72% and identities 55%.	1 - 4, 7 - 11
	<u> </u>	