PART-III MATHEMATICS

Max Marks: 60

Section-1 (Only one Option correct Type)

This section contains 10 Multiple Choice questions. Each Question has Four choices (A), (B), (C) and (D). Out of Which

- Let $\overline{a}, \overline{b}, \overline{c}$ be three vectors given by $\overline{a} = i + j + 2k, \overline{b} = 2i + j k, \overline{c} = 5i + 3j$ and if \overline{r} is a unit vector then the maximum possible value of $[\overline{r} \overline{a} \overline{b}] + [\overline{r} \overline{b} \overline{c}]$ equals
 - A) $2\sqrt{35}$ B) $3\sqrt{7}$ C) $5\sqrt{7}$ D) $10\sqrt{7}$

- If $\overline{a} + \overline{b} + \overline{c} = \overline{p}, \overline{a} \times \overline{b} = \overline{q}, \overline{b} \times \overline{c} = \overline{r}, \overline{a}.\overline{p} = 1, \overline{b}.\overline{p} = 1$ and $|\overline{p}|^2 = 3$ then which is false 42.
 - A) $\overline{a} = \frac{1}{3} (\overline{p} + 2\overline{p} \times \overline{q} + \overline{p} \times \overline{r})$ B) $\overline{b} = \frac{1}{3} (\overline{p} + \overline{p} \times \overline{q} + \overline{p} \times \overline{r})$

- C) $\overline{p} \times \overline{q} = \overline{a} \overline{b}$
- $\mathbf{D}) \left\lceil \overline{a} \, \overline{b} \, \overline{c} \right\rceil = \left\lceil \overline{p} \, \overline{q} \, \overline{r} \right\rceil$
- Let $\overline{a}, \overline{b}, \overline{c}$ be unit vectors and are non-coplanar such that 43.

 $\left[\overline{a} \times \left(\overline{b} \times \overline{c} \right) 2\overline{b} \times \left(\overline{c} \times \overline{a} \right) 3\overline{c} \times \left(\overline{a} \times \overline{b} \right) \right] = (\lambda^3 - \lambda) \left[\overline{a} \, \overline{b} \, \overline{c} \right], \lambda$ is real, then number of possible values of λ

- A)0
- B) 1
- C) 2
- D) 3

Sec: Sr. IPLCO space for rough work Page 24

- If A, B,C,D are four points in space and satisfying $|\overrightarrow{AB}| = 3$, $|\overrightarrow{BC}| = 7$, $|\overrightarrow{CD}| = 11$ and 44. $|\overrightarrow{DA}| = 9$ then the value of $|\overrightarrow{AC}.\overrightarrow{BD}|$
 - A) 0
- C) 15
- D) 27
- If the vectors $-\overline{i} + c\overline{j} + b\overline{k}$, $c\overline{i} \overline{j} + a\overline{k}$, $b\overline{i} + a\overline{j} \overline{k}$ are coplanar vectors and $|a| \le 1$ 45. then the maximum value of $|a\overline{i} + b\overline{j} + c\overline{k}|^2$ is
 - A) 3
- B) 12
- C) 18
- D) 8
- The resultant of the two vectors \overline{a} and \overline{b} is \overline{c} . If \overline{c} trisects the angle between \overline{a} 46. and \overline{b} and if $|\overline{a}| = 6$, $|\overline{b}| = 4$ then $|\overline{c}|$ equals (no two vectors are parallel)
 - A) 3
- B) 4
- C) 5
- D) 6
- If the vector \overline{r} satisfies $\overline{r} \times \overline{a} + (\overline{r}.\overline{b})\overline{c} = \overline{d}$ be given by $\overline{r} = \lambda \overline{a} + \overline{a} \times \frac{\overline{a} \times (\overline{d} \times \overline{c})}{(\overline{a}.\overline{c})|\overline{a}|^2}$ 47.

then $\lambda = (\bar{a}, \bar{b}, \bar{c}, \bar{d})$ are non – zero vectors and \bar{a} is not perpendicular to \bar{c})

- A) $\frac{\overline{a}.\overline{c}}{|\overline{a}|^2}$ B) $\frac{\overline{a}.b}{|\overline{a}|^2}$ C) $\frac{\overline{c}.d}{|\overline{a}|^2}$

Sec: Sr. IPLCO

space for rough work

Page 25

- 48. The plane which contains the line 3x + y = 1, z = 4 and parallel to the line x + y + z + 1 = 0, y + 2z = 1 cuts the x, y, z axes respectively at $(\alpha, 0, 0), (0, \beta, 0), (0, 0, \gamma)$ then $\alpha^2 + \beta^2 + \gamma^2$ equals
 - A) 10
- B) 14
- C) 19
- D) 21
- 49. Given a tetrahedran ABCD with AB=12, CD=6,. If the shortest distance between the skew lines AB and CD is 8 and the angle between them is $\frac{\pi}{6}$ then the volume of tetrahedran is
 - A) 12
- B) 36
- C) 48
- D) 72
- 50. If \overline{x} and \overline{y} be two unit vectors inclined at an angle 60° so that $\overline{x} + \overline{y} = \overline{a}$ and
 - $\overline{x} \times \overline{y} = \overline{b}$ such that $\overline{x} = \alpha \overline{a} + \beta (\overline{a} \times \overline{b})$ then the value of $\frac{1}{\beta} + 2\alpha$ is
 - A) 1
- B) 2
- C) 4
- D) 5

Sec: Sr. IPLCO space for rough work Page 26

Section-2 (Paragraph Type)

This section contains 3 paragraphs each describing theory, experiment, data etc. Six questions relate to three paragraphs with two questions on each paragraph. Each question pertaining to a particular paragraph should have **only one correct answer** among the four choices A, B, C and D.

Paragraph for Questions 51 & 52

A plane P contains the line $L_1: \frac{y}{b} + \frac{z}{c} = 1, x = 0$ and is parallel to the line

$$L_2: \frac{x}{a} - \frac{z}{c} = 1, y = 0$$
 then

51. Equation of the plane P is

A)
$$\frac{x}{a} - \frac{y}{b} + \frac{z}{c} + 1 = 0$$

B)
$$\frac{x}{a} - \frac{y}{b} - \frac{z}{c} + 1 = 0$$

C)
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} + 1 = 0$$

D)
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} - 1 = 0$$

52. If the shortest distance between the lines L_1 and L_2 is $\frac{1}{4}$ then the shortest

distance from origin to the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ is

- A) $\frac{1}{4}$
- B) $\frac{1}{2}$
- C) 1
- D) 1/8

Sec: Sr. IPLCO

space for rough work

Page 27

Paragraph For Questions 53 & 54

If the three lines $L_1: x = y = z, L_2: x = \frac{y}{2} = \frac{z}{3}, L_3: \frac{x-1}{a} = \frac{y-1}{b} = \frac{z-1}{a}$ from a triangle of area $\sqrt{6}$ square units

- If (α, β, γ) is the point of intersection of L₂ and L₃ then $|\alpha + \beta + \gamma|$ equals 53.
 - A) 4
- B) 6

D) 12

- The possible acute angle between L_2 and L_3 is 54.
 - A) $\frac{\pi}{2}$
- B) $\frac{\pi}{6}$
- C) $\cos^{-1}\left(\frac{22}{7\sqrt{10}}\right)$ D) $\frac{\pi}{2}$

Paragraph For Questions 55 & 56

The line of greatest slope on an inclined plane P_1 is the line in the plane P_1 which is perpendicular to the line of intersection of the plane P₁ and a horizontal plane P_2

Assuming the plane 2x - 3y + 4z = 0 to be horizontal, the direction cosines of the 55. line of greatest slope in the plane x - 2y + 3z = 0 are

A)
$$\frac{4}{\sqrt{21}}, \frac{-1}{\sqrt{21}}, \frac{-2}{\sqrt{21}}$$
 B) $\frac{4}{\sqrt{21}}, \frac{1}{\sqrt{21}}, \frac{-2}{\sqrt{21}}$ C) $\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}$ D) $\frac{4}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{-1}{\sqrt{21}}$

Sec: Sr. IPLCO space for rough work Page 28

- 56. The coordinates of a point on the plane 2x + y 5z = 0 which is $2\sqrt{11}$ units away from the line of intersection of 2x + y 5z = 0 and 4x 3y + 7z = 0 are
 - A) (6,2,-2)
- B) (3,1,-1)
- C) (6,-2,2)
- D) (1,3,-1)

Section-3

(Matching List Type)

This section contains four questions, each having two matching lists (List-I). The options for the **correct match** are provided as (A), (B), (C) and (D) out of which **ONLY ONE** is correct.

57. Match the following

COLUMN - I

COLUMN - II

(p) 3

- (A) A line perpendicular to x + 2y + 2z = 0 and passes through (0,1,0). The perpendicular distance of this line from origin is k then $\lfloor k \rfloor$ equals ($\lfloor l \rfloor$ is GIF)
- (B) The value of λ for which the plane x y + z + 1 = 0, (q) 2 $\lambda x + 3y + 2z 3 = 0, 3x + \lambda y + z 2 = 0$ from a triangular prism is
- (C) If the circumcentre of the triangle whose vertices are (3,2,-5),(-3,8,-5) and (-3,2,1) is $(-1,\lambda,-3)$ then λ equals
- (D) If the four planes my + nz = 0, nz + lx = 0, lx + my = 0 (s) 0 and lx + my + nz = p from a tetrahedran whose volume is $\frac{\lambda p^3}{3 lmn}$ then λ equals
- A) A-s, B-r, C-r, D-q
- B) A-s, B-p, C-r, D-q
- C) A-p, B-q, C-r, D-s
- D) A-p, B-r, C-s, D-q

Sec: Sr. IPLCO

space for rough work

Page 29

58. Let $L_1: x + y + z - 4 = 0 = 2x - y + z - 3$, $L_2: 3x - y + z - 4 = 0 = \lambda x - z + 3$

COLUMN - I

COLUMN - II

(A) L_1 , L_2 are coplanar then λ equals

- (p) 2
- (B) If $((\alpha, \beta, \gamma)$ lies on both L_1 and L_2 then $\alpha \beta + 3\gamma$
- (q) 1

equals

- (C) If L₁ is parallel to the plane x + y + pz 7 = 0 then p (r) 6 equals
- (D) If L_1 , L_2 are coplanar and if acute angle between L_1 , L_2 (s) -1

is
$$\cos^{-1}\left(\frac{\sqrt{7}}{k\sqrt{3}}\right)$$
 then k equals

- A) A-s, B-r, C-q, D-p
- B) A-s, B-p, C-q, D-r
- C) A-s, B-q, C-p, D-r
- D) A-s, B-p, C-r, D-q

Sec: Sr. IPLCO space for rough work Page 30

59. Match the following

COLUMN - I

COLUMN - II

- (A) If $\vec{a} + \vec{b} = \hat{j}$ and $2\vec{a} \vec{b} = 3\hat{i} + \frac{\hat{j}}{2}$, then cosine of the angle (p) 1 between \vec{a} and \vec{b} is
- (B) If $|\vec{a}| = |\vec{b}| = |\vec{c}|$, angle between each pair of vectors is $\frac{\pi}{3}$ (q) $5\sqrt{3}$ and $|\vec{a} + \vec{b} + \vec{c}| = \sqrt{6}$, then $|\vec{a}| =$
- (C) Area of the parallelogram whose diagonals represent (r) 7 the vectors $3\hat{i} + \hat{j} 2\hat{k}$ and $\hat{i} 3\hat{j} + 4\hat{k}$ is
- (D) If \vec{a} is perpendicular to $\vec{b} + \vec{c}$, \vec{b} is perpendicular to $\vec{c} + \vec{a}$, \vec{c} is perpendicular to $\vec{a} + \vec{b}$, $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $|\vec{c}| = 6$ then $|\vec{a} + \vec{b} + \vec{c}|$ is
- A) A-s, B-p, C-q, D-r

B) A-s, B-q, C-p, D-r

C) A-s, B-r, C-p, D-q

D) A-r, B-q, C-p, D-s

60.

COLUMN - I

COLUMN - II

- (A) The line $\vec{r} = (\hat{i} + \hat{j}) + t(\hat{i} \hat{k})$ where 't' is scalar passes through the point
- $(p) \quad -\hat{i} \hat{j} + 2\hat{k}$
- (B) The line $\vec{r} = (\hat{i} + \hat{j}) + t(\hat{i} \hat{k})$ where 't' is scalar and the plane $\vec{r} \cdot (2\hat{i} + \hat{j} + \hat{k}) = 2$ intersect at the point
- $(q) \quad -\hat{i} + \hat{j} + 2\hat{k}$

(r) $-2\hat{i} + \hat{i} + 3\hat{k}$

Page 32

- (C) The point on the line $\vec{r} = (\hat{i} + \hat{j}) + t(\hat{i} \hat{k})$ where 't' is scalar, which is at a distance of 3 units from the point having position vector \hat{i} is/are
- (D) The volume of the parallelepiped having adjacent (s) $\hat{j} + \hat{k}$ sides $\hat{i} + \hat{k}, 2\hat{i} + \hat{j} + \hat{k}$ and \vec{c} is 4 cubic units then \vec{c} may be
- A) A-qrs, B-s, C-q, D-q

B) A-qrs, B-q, C-s, D-q

C) A-qrs, B-p, C-s, D-r

D) A-qrs, B-prs, C-qs, D-q