Bajtockie kółeczko

X OIG — Zawody drużynowe, etap I. Dostępna pamięć: 64 MB.

15 X 2015

Alicja, zapalona podróżniczka, wybiera się do Bajtocji, w której znajduje się n+1 miast (ponumerowanych kolejnymi liczbami naturalnymi od 0 do n). Miasta o numerach z przedziału [1;n] znajdują się na okręgu, zaś miasto o numerze 0 (które pełni funkcję stolicy) jest środkiem tego okręgu.

Kraj dysponuje znakomitą siecią komunikacyjną. W Bajtocji znajduje się 2n dróg. Pomiędzy każdymi dwoma kolejnymi miastami na okręgu istnieje dwukierunkowe połączenie. Dodatkowo, ze stolicy promieniście rozchodzą się dwukierunkowe drogi do miast na okręgu. Każdą z dróg charakteryzuje liczba minut, potrzebnych na jej pokonanie.

Zaplanuj dla Alicji najbardziej czasochłonną podróż po Bajtocji. Wybierz miasto, w którym dziewczynka rozpocznie swoją podróż, odwiedzi pewne miasta i wróci do miejsca, w którym rozpoczęła swoją wycieczkę. Alicja nie chce dwa razy odwiedzać tego samego miasta, ani dwa razy przejeżdżać tą samą drogą. Ile minut potrzeba na pokonanie tej trasy?

Wejście

W pierwszym wierszu standardowego wejścia zapisano jedną liczbę naturalną n ($3 \le n \le 200\,000$). W drugim wierszu podano n liczb całkowitych a_i ($1 \le a_i \le 10^9$), gdzie a_i oznacza czas przejazdu pomiędzy miastem nr i a stolicą. W trzecim wierszu standardowego wejścia zapisano n liczb całkowitych b_i ($1 \le b_i \le 10^9$), gdzie b_i oznacza czas przejazdu pomiędzy miastem nr i a miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i a miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 a miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n, zaś dla i = n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n jest to czas przejazdu pomiędzy miastem nr i + 1 dla i < n jest to czas przejazdu pomiędzy miastem nr i < n jest to cza

Wyjście

W pierwszym wierszu standardowego wyjścia powinna znaleźć się jedna liczba całkowita – czas potrzebny na pokonanie najbardziej czasochłonnej podróży po Bajtocji.

Przykłady

Wejście:	Wejście:	Wejście:	
5	4	6	
1 2 3 2 1	1 1 1 1	1 2 1 2 1 2	
1 1 1 1 1	3 4 5 2	1 1 1 1 1 1	
Wyjście:	Wyjście:	Wyjście:	
9	14	8	

Wyjaśnienie do przykładu 1.

Najdłuższa trasa, która spełnia wymagania Alicji zajmuje 9 minut. Jedna z takich tras rozpoczyna się w mieście nr 3, następnie dziewczynka odwiedza kolejno miasta 0, 4, 5, 1, 2, aby ostatecznie wrócić do miasta nr 3.

Bajtockie kółeczko

