Performance Analysis of Union-Find Implementations

Arivoli Ramamoothy EE23B008

September 24, 2023

1 Introduction

In this report, we analyze the performance characteristics of three different Union-Find implementations: Quick Union-Find (q1), Weighted Quick Union-Find with Path Compression (q3), and Weighted Quick Union-Find without Path Compression (q4). These implementations are essential for solving problems involving disjoint sets, such as connecting realms in a world-building scenario.

2 Performance Analysis

2.1 Quick Union-Find (q1)

- No path compression or weighted union.

City Size	Input Size	Runtime (ms)
100 cities	100 requests	0 ms
10^5 cities	10^5 requests	938 ms
10^3 cities	10 ⁷ requests	$6544~\mathrm{ms}$

Table 1: Runtime Measurements for q1

2.2 Weighted Quick Union-Find with Path Compression (q3)

- Utilizes both weighted union and path compression techniques.

City Size	Input Size	Runtime (ms)
100 cities	100 requests	0 ms
10^5 cities	10^5 requests	$16 \mathrm{\ ms}$
10^3 cities	10 ⁷ requests	$1163 \mathrm{\ ms}$

Table 2: Runtime Measurements for q3

2.3 Weighted Quick Union-Find without Path Compression (q4)

- Utilizes weighted union but lacks path compression.

City Size	Input Size	Runtime (ms)
100 cities	100 requests	0 ms
10^5 cities	10^5 requests	20 ms
10^3 cities	10 ⁷ requests	1310 ms

Table 3: Runtime Measurements for q4

3 Implementation Details

3.1 Quick Union-Find (q1) Implementation

In the q1 implementation, we use a simple structure with arrays to represent sets.

3.1.1 Functions

- initialize(int n, int *parent): Initializes the sets.
- find(int x, int *parent): Finds the root of a set.
- connect(int x, int y, int *parent): Connects two realms and returns 1 if a road is built, 0 otherwise.

3.2 Weighted Quick Union-Find with Path Compression (q3) Implementation

In the q3 implementation, we use the DisjointSet struct to represent sets, and we employ path compression and weighting for efficient operations.

3.2.1 Struct Definition

The DisjointSet struct consists of the following fields:

- int *parent: An array to store the parent of each element.
- int *size: An array to store the size of each set.

3.2.2 Functions

We define the following functions:

initialize(int n, DisjointSet* set): Initializes the disjoint set data structure with n elements.

- find(int x, DisjointSet* set): Finds the root of the set to which element x belongs with path compression.
- connect(int x, int y, DisjointSet* set): Connects two elements x and y if they belong
 to different sets and returns 1 if a road is built, 0 otherwise.

3.3 Weighted Quick Union-Find without Path Compression (q4) Implementation

In the q4 implementation, we also use the DisjointSet struct to represent sets, but we do not use path compression.

3.3.1 Struct Definition

The DisjointSet struct has the following fields:

- int *parent: An array to store the parent of each element.
- int *weight: An array to store the weight (size) of each set.

3.3.2 Functions

We define the following functions:

- initialize(int n, DisjointSet* set): Initializes the disjoint set data structure with n elements.
- find(int x, DisjointSet* set): Finds the root of the set to which element x belongs without path compression.
- connect(int x, int y, DisjointSet* set): Connects two elements x and y if they belong to different sets and returns 1 if a road is built, 0 otherwise.

4 Worst-Case Scenario of q1 (q2)

Explanation of q2 assuming number of cities = 2^n :

- In this input configuration, we systematically create pairs of cities with union operations. We start with $2^{(n-1)}$ pairs of adjacent cities (2^n being the total number of cities), and in each union operation, we combine two pairs into one. This process continues until we have only one pair remaining. As a result, we effectively reduce the number of pairs by half in each step, creating a binary tree-like structure. This arrangement leads to a chain of connections where each city points to its immediate neighbor, making find operations in q1 highly inefficient and resulting in a time complexity that grows linearly with the number of cities. This input configuration highlights the worst-case scenario for q1 when dealing with long chains of connections.

5 Summary

In summary:

- q1 is the slowest among the three implementations due to the lack of both path compression and weighted union.
- q4 is faster than q1 due to weighted union but can still be slow for large datasets and repeated operations.
- q3 is the fastest among the three, thanks to both path compression and weighted union. It offers efficient operations for a large number