Examen de Física 1 (Juliol 2007)

Llicenciatura de Química Universitat Autònoma de Barcelona

- 1. En Carles i en Lluís juguen a pilota a un pis que està a 20 m d'altura. Carles deixa caure la seva pilota per la finestra a la vegada que Lluís llança la seva horitzontalment des de la mateixa finestra amb una velocitat de 5 m/s.
 - a) Quina pilota trigarà menys a arribar al terra?
 - b) Trobeu la distància horitzontal recorreguda per la pilota d'en Lluís, i la seva velocitat quan arriba al terra.

Nota: preneu $g = 10 \text{ m/s}^2$ i negligiu el fregament amb l'aire.

2. Una partícula es troba en un àrea de l'espai en la qual s'observa la distribució d'energia potencial mostrada a la figura. Calculeu:

a) La força que experimenta la partícula en el punt x = 0 m

c) La partícula es troba a x = -3 m i te una energia total de 4 J. Quina és la seva energia cinètica?

- 3. La molècula de CO_2 és lineal, amb l'àtom de carboni al centre i els àtoms d'oxígens separats d=1.2 Å del carboni. Considerem que aquesta molècula té una energia cinètica de 10^{-4} eV. Trobeu:
 - (a) El moment d'inèrcia del CO₂ respecte d'un eix perpendicular a la molècula que passa pel seu centre de masses.
 - (b) Si tota l'energia cinètica és de rotació, quina és la velocitat del centre de masses de la molècula, i la seva velocitat angular?

Dades: massa d'un àtom de Carboni = 12 uma; massa d'un àtom d'oxigen = 16 uma; 1 uma = $1.66 \cdot 10^{-27}$ kg; Càrrega de l'electró = $1.6 \cdot 10^{-19}$ C.

- 4. Considereu una col·lisió perfectament inelàstica de dos objectes de igual massa.
 - (a) En quin cas és major la pèrdua d'energia cinètica: si els dos objectes tenen velocitats directament oposades i de igual magnitud v/2, o si un dels objectes es troba en repòs i l'altre té una velocitat inicial v?
 - (b) Trobeu el moment lineal total en cada cas.

5. Al dibuix de la figura, el tub i la cubeta contenen oli de densitat 0.9 g/cm³. La cubeta està oberta a l'exterior, però la part superior A del tub està tancada. Trobeu l'altura *h* de la columna d'oli al tub en els casos següents: (a) a l'espai A hi ha buit, i (b) hi ha un gas amb una pressió de 0.4 atm. La secció transversal del tub és de 2 cm². (1 atm = 1.013 10⁵ Pa)

- 6. El període de semidesintegració del Carboni ¹⁴C és de 5740 anys. Calculeu:
 - a) La constant de desintegració.
 - b) L'activitat d'1 mg d'aquesta substància.
 - c) El temps necessari per què l'activitat es redueixi a la quarta part de la inicial.
- 7. El 19 d'octubre es va llençar un satèl·lit de la família Meteosat, el *MetOp-A*. Aquest satèl·lit té una massa *m* de 4085 kg i descriu una òrbita polar (passa pels pols i és perpendicular al pla de l'equador) a una altura de 800 km sobre la superfície de la Terra. Calculeu:
 - a) A quina velocitat orbita.
 - b) El temps que triga a donar una volta a la Terra
 - c) Quina energia mecànica té.

Dades: Massa de la Terra, $M_T = 5.98 \cdot 10^{24} \text{ kg}$; $R_T = 6400 \text{ km}$; $G = 6.67 \cdot 10^{-11} \text{ (SI)}$

8. Des del punt A es deixa caure una massa m de 2 kg. El tram circular AC no té fregament. Calculeu la velocitat de la massa m en el punt B, on θ val 30°. Quant val l'acceleració tangencial i la força normal en aquest punt? Entre els punts C i E hi ha fregament amb un coeficient de μ =0,25. Calculeu la distancia d recorreguda per la massa m sobre la part plana fins a aturar-se.

Examen de Física 1 (Juliol 2007)

Llicenciatura de Química Universitat Autònoma de Barcelona

Exercici 1

En Carles i en Lluís juguen a pilota a un pis que està a 20 m d'altura. Carles deixa caure la seva pilota per la finestra a la vegada que Lluís llança la seva horitzontalment des de la mateixa finestra amb una velocitat de 5 m/s.

Nota: preneu $g = 10 \text{ m/s}^2$ i negligiu el fregament amb l'aire.

- 1. La pilota de Carles...
 - a) triga menys en arribar al terra, perquè el seu recorregut és menor.
 - b) triga més en arribar al terra, perquè la d'en Lluís parteix amb més velocitat
 - c) triga el mateix que la de Lluís en arribar al terra
 - d) trigaria més en arribar al terra que la de Lluís si aquest hagués llençat la seva pilota amb prou velocitat.
- 2. La distància horitzontal recorreguda per la pilota d'en Lluís val...
 - 5 m a)
 - b) 10 m
 - c) 17 m
 - d) 20 m
- 3. Quan arriba al terra, la pilota d'en Lluís...
 - a) té una velocitat de 5 m/s
 - b) té una velocitat de 20.6 m/s
 - c) té una velocitat de 20 m/s
 - d) i el maleït Lluís han estat adduïts pels extraterrestres

Una partícula es troba en un regió de l'espai sotmès a una força descrita per la corba d'energia potencial mostrada a la figura.

- b) 0 N
- c) no es pot calcular doncs la força no és conservativa
- d) cap de les anteriors
- 5. Si la partícula té una energia total de -2 J, els punts de retorn són...
 - a) No hi ha punts de retorn perquè la partícula és lliure
 - b) -2 m i 2 m
 - c) -4 J i 0 m
 - d) -1 m i 1 m

- 6. La partícula es troba a x = -3 m i te una energia total de 4 J. La seva energia cinètica val ...
 - a) 3 J
 - b) 2 J
 - c) 1 J
 - d) cap de les anteriors

Exercici 3

La molècula de CO₂ és lineal, amb l'àtom de carboni al centre i els àtoms d'oxígens separats d = 1.2 Å del carboni. Considerem que aquesta molècula té una energia cinètica de 10^{-4} eV. Dades: massa d'un àtom de Carboni = 12 uma; massa d'un àtom d'Oxigen = 16 uma; 1 uma $= 1.66 \cdot 10^{-27} \text{ kg}$; Càrrega de l'electró $= 1.6 \cdot 10^{-19} \text{ C}$.

- 7. El moment d'inèrcia del CO₂ respecte d'un eix perpendicular a la molècula que passa pel seu centre de masses val...
 - (a) 0 kg m^2
 - (a) 0 kg m^2 (b) $3.8 \cdot 10^{-46} \text{ kg m}^2$ (c) $7.7 \cdot 10^{-46} \text{ kg m}^2$

 - (d) $6.4 \cdot 10^{-36} \text{ kg m}^2$

Si tota l'energia cinètica és de rotació...

- 8. ...el centre de masses de la molècula...
 - (a) no es desplaça
 - (b) es desplaça amb una velocitat uniforme no nul·la
 - (c) es desplaça amb una acceleració uniforme
 - (d) cap de les anteriors
- 9. ...la velocitat angular de la molècula val aproximadament...
 - (a) $1.0 \cdot 10^{11} \, \text{s}^{-1}$
 - (b) $1.0 \ 10^{11} \, \text{s}$
 - (c) $2.0 \cdot 10^{11} \, \text{s}^{-1}$
 - (d) $2.0 \cdot 10^{-11} \, \text{s}^{-1}$

Exercici 4

Considerem una col·lisió perfectament inelàstica de dos objectes de igual massa.

Si els dos objectes tenen velocitats directament oposades i de igual magnitud v/2...

- 10. La quantitat de moviment total del sistema és
 - a) Nul
 - b) *m v*
 - c) 2mv
 - d) $\frac{1}{2}mv$

- 11. La variació d'energia cinètica del sistema és
 - a) nul·la
 - b) $-\frac{1}{2}mv^2$
 - c) $-\frac{1}{4}mv^2$
 - d) $-\frac{1}{8}mv^2$

Si un dels objectes es troba en repòs i l'altre té una velocitat inicial v...

- 12. La quantitat de moviment total del sistema és
 - a) nul
 - b) mv
 - c) 2mv
 - e) $\frac{1}{2}mv$
- 13. La variació d'energia cinètica del sistema és
 - a) nul·la
 - b) $-\frac{1}{2}mv^2$
 - c) $-\frac{1}{4}mv^2$
 - d) $-\frac{1}{8}mv^2$

Exercici 5

Al dibuix de la figura, el tub i la cubeta contenen un oli de densitat 0.9 g/cm^3 . La cubeta està oberta a l'exterior, però la part superior del tub A està tancada. La secció transversal del tub és de 2 cm^2 . (1 atm = $1.013 \text{ } 10^5 \text{ Pa}$)

- 14. L'altura de la columna d'oli h...
 - (a) disminueix quan el tub és més gros.
 - (b) disminueix quan la pressió al compartiment A augmenta
 - (c) augmenta quan el líquid és més dens
 - (d) augmenta amb la profunditat del líquid a la cubeta
- 15. Si al compartiment A hi ha el buit, l'altura h de la columna d'oli val aproximadament...
 - (a) 11.5 m
 - (b) 9 m
 - (c) 0.76 m
 - (d) 15 m
- 16. Si al compartiment A hi ha un gas amb una pressió de 0.4 atm, l'altura h de la columna d'oli val aproximadament
 - (a) 6.9 m
 - (b) 5.4 m
 - (c) 4.6 m
 - (d) 3.0 m

Exercici 6

El període de semidesintegració del Carboni ¹⁴C és de 5740 anys.

- 17. La constant de desintegració del ¹⁴C és aproximadament...
 - a) $1.2 \cdot 10^{-4}$ anys

 - b) 4 10⁻¹² s c) 3,8 10⁻¹² s⁻¹
 - d) 1,2 10⁴ anys⁻¹
- 18. L'activitat d'1 mg d'aquesta substància val...
 - a) 1,63 10¹¹ desintegracions/s

 - b) 1,63 10⁸ Bq
 c) 1,63 10¹¹ desintegracions
 - d) 1,63 10⁸ desintegracions
- 19. El temps necessari perquè l'activitat es redueixi a la quarta part de la inicial és...
 - a) 22960 anys
 - b) 11480 anys
 - c) 5740 anys
 - d) 2870 anys

Exercici 7

El 19 d'octubre es va llencar un satèl·lit de la família Meteosat, el MetOp-A. Aquest satèl·lit té una massa m de 4085 kg i descriu una òrbita polar (passa pels pols i és perpendicular al pla de l'equador) a una altura de 800 km sobre la superfície de la Terra.

Dades: Massa de la Terra, $M_T = 5.98 \cdot 10^{24} \text{ kg}$; $R_T = 6400 \text{ km}$; $G = 6.67 \cdot 10^{-11} \text{ (SI)}$

- 20. Les unitats de la constant de gravitació G són...
 - a) N/m
 - b) $N m^2/kg^2$
 - c) $N kg^2/m^2$
 - d) J/m
- 21. La velocitat del satèl·lit val...

 - a) $(G M_T/R)^{1/2}$, on R és el radi de la Terra b) $(G M_T/2R)^{1/2}$, on R es el radi de la Terra c) $(G M_T/R)^{1/2}$, on R val 7200 km d) $(G m/2R)^{1/2}$, on R val 7200 km
- 22. El temps que triga a donar una volta completa és aproximadament...
 - a) 3000 s
 - b) 55 minuts
 - c) 1.7 hores
 - d) 11 hores

- 23. L'energia potencial del satèl·lit ve descrit per...
 - a) $(G M_T/R)^{1/2}$, on R és el radi de la Terra
 - b) -G M_T/R, on R és el radi de la Terra
 - c) $-G M_T m/R$, on R val 7200 km
 - d) $G M_T m/R^2$, on R val 7200 km
- 24. ...i val...
 - a) $-2.2 \cdot 10^{11} \text{ J}$
 - b) $-1.1 \cdot 10^{11} \text{ J}$
 - c) $-1.1 \cdot 10^{14} \, J$
 - d) Cap de les anteriors
- 25. L'energia mecànica del satèl·lit val...
 - a) $-2.2 \cdot 10^{11} \text{ J}$
 - \dot{b}) $-1.1 \, 10^{11} \, J$
 - c) $-1.1 \cdot 10^{14} \text{ J}$
 - d) Cap de les anteriors

Exercici 8

Des del punt A es deixa caure una massa m de 2 kg. El tram circular AC no té fregament. Entre els punts C i E hi ha fregament amb un coeficient de μ =0.25. Al punt B, θ val 30°.

- 26. La velocitat de la massa m en el punt B val aproximadament....
 - a) 4.4 m/s
 - b) 5.8 m/s
 - c) 6.3 m/s
 - d) Cap de les anteriors
- 27. L'acceleració tangencial en el punt B val aproximadament...
 - a) 9.8 m/s^2
 - b) 8.5 m/s^2
 - c) 4.9 m/s^2
 - d) Cap de les anteriors
- 28. La força normal en el punt B val aproximadament...
 - a) 34 N
 - b) 17 N
 - c) 51 N
 - d) Cap de les anteriors

- 29. La velocitat de la massa m en el punt C, Vc, val...
 - a) 6.3 m/s
 - b) 39 m/s
 - c) 5.8 m/s
 - d) Cap de les anteriors
- 30. L'acceleració a la part plana val...
 - a) 2.5 m/s^2
 - b) g/2
 - c) g
 - d) 0 m/s^2
- 31. La distancia d recorreguda sobre la part plana és:
 - a) $\frac{v_c^2}{\mu g}$
 - b) $\frac{2v_c^2}{\mu g}$
 - c) $\frac{v_c^2}{2\mu g}$
 - d) Cap de les anteriors
- 32. Si la massa és ara el doble que la massa d'abans, 2m, la distancia recorreguda ara sobre la part plana és:
 - a) 2d
 - b) d/2
 - c) d
 - d) Cap de les anteriors