Source: |KBe20math530refVectorSpace|

1 | #definition span

The set of all linear combinations of a list of vectors $v_1,...,v_m$ in V is called the span of $v_1,...,v_m$, denoted span $(v_1,...,v_m)$:

$$span(v_1,...,v_m) = a_1v_1 + ... + a_mv_m | a_1,...,a_m \in F$$

And the span of an empty list () is 0 - This is just to make Axler2. C work out nicely (|KBERGELINALGDIMENSION)

2 | Properties

- · The span is the smallest containing subspace
 - The span of a list of vectors in V is the smallest subspace of V containing all the vectors in the list.

2.1 | #definition spans

If span
$$(v_1,...,v_m) = V$$
, then $v_1,...,v_m$ spans V

3 | Examples

3.1 | **Axler 2.9**

Suppose n is a positive integer. Show that (1,0,...,0),(0,1,0,...,0),...,(0,...,0,1) spans F^n . - Basically, if a list of vectors spans a vector space then linear combinations of those vectors (almost like colloquial polynomials of those vectors) can form each vector in the space. - In this case, the vector space F^n is a list of vectors in F, and having the 1 in each slot is enough to, when scalar multiplied with $a \in F$, get all possibilities of F^n . - I need to wrap my head around this some more.

Exr0n · 2020-2021 Page 1