Reading Notes: Paillier Homomorphic Encryption

July 19, 2023

Paillier 同态加密为公钥加密,基于剩余类困难问题,是一种加法同态加密. 其实现的效果为:对于明文 m_1 和 m_2 , $D(E(m_1) \times E(m_2)) = m_1 + m_2$. 在加解密过程中使用到 Carmichael 函数和定理,以及剩余类相关知识.

1 预备知识

1.1 Carmichael Function

在数论中,Carmichael 函数定义为使得 $a^m \equiv 1 \mod n$ 成立的最小正整数 m, 其中 (a,n) = 1, 将 m 记作 $\lambda(n)$ 。在抽象代数术语中, $\lambda(n)$ 是模 n 的乘法群的指数。

根据唯一因式分解定理,任何 n>1 的整数都可以用唯一的方式写成

$$n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k} \tag{1}$$

其中, $p_1 < p_2 < \ldots < p_k$ 是由小到大排列的素数, r_1, r_2, \ldots, r_k 是正整数. 那么 $\lambda(n)$ 就是其中每一项的 λ 的最小公倍数,有:

$$\lambda(n) = lcm(\lambda(p_1^{r_1}), \lambda(p_2^{r_2}), \dots, \lambda(p_k^{r_k}))$$
(2)

证明过程如下:

首先有对任意与 n 互质的数 a, 其必然也与 p_i 互质, 有

$$a^{\lambda \left(p_1^{r_1}\right)} \equiv 1 mod p_1^{r_1} \tag{3}$$

又因为

$$a^{\lambda(n)} \equiv 1 mod n \tag{4}$$

于是有

$$a^{\lambda(n)} \equiv 1 mod p_1^{r_1} \tag{5}$$

因为 $\lambda(p_1^{r_1})$ 的最小性可以得到

$$\lambda\left(p_{1}^{r_{1}}\right)|\lambda\left(n\right)\tag{6}$$

对于其它 p_i 可以推知上式同样成立, 所以 $\lambda(n)$ 为 $\lambda(p_i^{r_i})$ 的公倍数.

另一方面,当 $\lambda(n)$ 取值为 $lcm(\lambda(p_1^{r_1}),\lambda(p_2^{r_2}),\ldots,\lambda(p_k^{r_k}))$ 时,有

$$a^{\lambda(n)} \equiv 1 mod p_i^{r_i} \tag{7}$$

注意到 $p_i^{r_i}$ 两两互质,于是可以得到

$$a^{\lambda(n)} \equiv 1 \mod \prod_{i=1}^{k} p_i^{r_i} \tag{8}$$

即为

$$a^{\lambda(n)} \equiv 1 mod n \tag{9}$$

因此式 (2) 得到证明,这也是 Carmichael 函数的计算方式. 在本协议中,我们只需要知道式 (9) 的性质即可.

2 协议流程

2.1 密钥产生

选取两个大素数 p,q, 计算 n=p*q 和 $\lambda=lcm\,(p-1,q-1)$, 注意这里的 λ 计算方式其实就是上文说到的 Carmichael 函数. 接下来我们随机选取 g, $g\in\mathbb{Z}_{n^2}^*$ 且满足 $\mu=\left(L\left(g^\lambda modn^2\right)\right)^{-1}$ 存在,其中函数 L(x) 定义为 $L(x)=\frac{x-1}{n}$,此时公钥为 (n,g),私钥为 (λ,μ) .

2.2 加密过程

对于明文 $m,m \in \mathbb{Z}_n$, 选择随机数 r < n, 加密过程为 $c = g^m r^n (mod n^2)$.

2.3 解密过程

对于密文 c 的解密过程为

$$m = L(c^{\lambda} mod n^2) * \mu mod n \tag{10}$$

$$=\frac{L(c^{\lambda}modn^2)}{L(g^{\lambda}modn^2)} \tag{11}$$

在上式中, $c^{\lambda}=g^{\lambda m}r^{\lambda n}$,对于任意的 $a\in\mathbb{Z}_n$,由于上文 Carmichael 函数的性质有 $a^{\lambda(n)}\equiv 1 modn$,因此对于 m 和 r,均可以得到

$$g^{\lambda(n)} \equiv 1 mod n \tag{12}$$

$$r^{\lambda(n)} \equiv 1 \bmod n \tag{13}$$

因而可以设 $g^{\lambda(n)} = 1 + k_1 n, r^{\lambda(n)} = 1 + k_2 n,$ 在模 n^2 意义下有:

$$r^{\lambda n} = (1 + k_2 n)^n \equiv 1 + k_2 n * n \equiv 1 \pmod{2}$$
 (14)

$$g^{\lambda m} = (1 + k_1 n)^m \equiv 1 + k_1 n * m(mod n^2)$$
(15)

那么

$$\frac{L(c^{\lambda} mod n^{2})}{L(g^{\lambda} mod n^{2})} = \frac{\frac{1*(1+k_{1}mn)-1}{n}}{\frac{(1+k_{1}n)-1}{n}}$$

$$= \frac{k_{1}m}{k_{1}}$$
(16)

$$=\frac{k_1 m}{k_1} \tag{17}$$

$$= m \tag{18}$$

数学推导证明如上.