Sur quelques généralités sur les graphes

Séance 4. Théorie des graphes Enseignant: K.Meslem

U.S.T.H.B, le 27 Octobre 2021

3ème LIC RO Section A

Définition

Soit
$$G = (X, U)$$
 un graphe sans boucle où $X = \{x_1, x_2, ..., x_n\}$ et $U = \{u_1, ..., u_m\}$.

La matrice d'incidence sommets-arcs de G est la matrice $A = (a_{ij})_{i=1,m}$ à coefficients 1,-1 ou 0 telle que:

Définition

Soit
$$G = (X, U)$$
 un graphe sans boucle où $X = \{x_1, x_2, ..., x_n\}$ et $U = \{u_1, ..., u_m\}$.

La matrice d'incidence sommets-arcs de G est la matrice $A = (a_{ij})_{i=1,m}$ à coefficients 1,-1 ou 0 telle que:

$$a_{ij} = \begin{cases} 1 & I(u_j) = x_i \\ -1 & T(u_j) = x_i \\ 0 & \text{sinon} \end{cases}$$

Définition

Soit
$$G = (X, U)$$
 un graphe sans boucle où $X = \{x_1, x_2, ..., x_n\}$ et $U = \{u_1, ..., u_m\}$.

La matrice d'incidence sommets-arcs de G est la matrice $A = (a_{ij})_{i=1,m}$ à coefficients 1,-1 ou 0 telle que:

$$a_{ij} = \begin{cases} 1 & I(u_j) = x_i \\ -1 & T(u_j) = x_i \\ 0 & \text{sinon} \end{cases}$$

Exemple

Figure:

Exemple

Figure:

La matrice d'incidence est

Remarques

• Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;

Remarques

- Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;
- $|\{j: a_{4j} = 1\}| = 2 = d_{G'}^+(x_4)$ $|\{j: a_{4,j} = -1\}| = 3 = d_{G'}^-(x_4)$

Remarques

- Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;
- $|\{j: a_{4j} = 1\}| = 2 = d_{G'}^+(x_4)$ $|\{j: a_{4,j} = -1\}| = 3 = d_{G'}^-(x_4)$

Remarques

- Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;
- $|\{j: a_{4j} = 1\}| = 2 = d_{G'}^+(x_4)$ $|\{j: a_{4,j} = -1\}| = 3 = d_{G'}^-(x_4)$

Définition

Remarques

- Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;
- $|\{j: a_{4j} = 1\}| = 2 = d_{G'}^+(x_4)$ $|\{j: a_{4,j} = -1\}| = 3 = d_{G'}^-(x_4)$

Définition

• Une matrice régulière *M* d'ordre *p* est dite **unimodulaire** si son déterminant est soit +1 soit -1.

Remarques

- Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;
- $|\{j: a_{4j} = 1\}| = 2 = d_{G'}^+(x_4)$ $|\{j: a_{4,j} = -1\}| = 3 = d_{G'}^-(x_4)$

Définition

- Une matrice régulière *M* d'ordre *p* est dite **unimodulaire** si son déterminant est soit +1 soit -1.
- Une matrice rectangulaire *M* à coefficients *n* × *m* est dite **totalement unimodulaire** ssi les sous-matrices carrées régulières extraites de *M* sont unimodulaires.

Remarques

- Chaque colonne de la matrice *A* contient un seul coefficient 1 et un seul coefficient -1;
- $|\{j: a_{4j} = 1\}| = 2 = d_{G'}^+(x_4)$ $|\{j: a_{4,j} = -1\}| = 3 = d_{G'}^-(x_4)$

Définition

- Une matrice régulière *M* d'ordre *p* est dite **unimodulaire** si son déterminant est soit +1 soit -1.
- Une matrice rectangulaire *M* à coefficients *n* × *m* est dite **totalement unimodulaire** ssi les sous-matrices carrées régulières extraites de *M* sont unimodulaires.

Toute matrice A d'incidence sommets-arcs d'un graphe G = (X, U) est totalement unimodulaire.

Preuve

La matrice A contient exactement deux termes non nuls par colonne, dont l'un est +1 et l'autre est
 -1.

- La matrice A contient exactement deux termes non nuls par colonne, dont l'un est +1 et l'autre est
 -1.
- lacktriangle Considérons \mathcal{A} une sous-matrice régulière de la matrice A d'ordre p.
- Par récurrence sur p, montrons que det $A = \pm 1$:

- La matrice A contient exactement deux termes non nuls par colonne, dont l'un est +1 et l'autre est
 -1.
- ullet Considérons ${\mathcal A}$ une sous-matrice régulière de la matrice ${\mathcal A}$ d'ordre p.
- Par récurrence sur p, montrons que det $\mathcal{A} = \pm 1$:
- Si p = 1 alors la sous-matrice est réduite au coefficient +1 ou au coefficient -1.
 La proposition est vraie.
- Supposons maintenant que la proposition est vraie jusqu'à l'ordre p-1 où $p \le n$ et montrons la proposition est vraie à l'ordre p:

- La matrice A contient exactement deux termes non nuls par colonne, dont l'un est +1 et l'autre est
 -1.
- lacktriangle Considérons \mathcal{A} une sous-matrice régulière de la matrice A d'ordre p.
- Par récurrence sur p, montrons que det $\mathcal{A} = \pm 1$:
- Si p = 1 alors la sous-matrice est réduite au coefficient +1 ou au coefficient -1.
 La proposition est vraie.
- Supposons maintenant que la proposition est vraie jusqu'à l'ordre p-1 où $p \le n$ et montrons la proposition est vraie à l'ordre p:
- lacktriangle Comme \mathcal{A} est régulière, \mathcal{A} ne contient aucune colonne nulle.

- La matrice A contient exactement deux termes non nuls par colonne, dont l'un est +1 et l'autre est
 -1.
- lacktriangle Considérons \mathcal{A} une sous-matrice régulière de la matrice A d'ordre p.
- Par récurrence sur p, montrons que det $\mathcal{A} = \pm 1$:
- Si p = 1 alors la sous-matrice est réduite au coefficient +1 ou au coefficient -1.
 La proposition est vraie.
- Supposons maintenant que la proposition est vraie jusqu'à l'ordre p − 1 où p ≤ n et montrons la proposition est vraie à l'ordre p:
- lacktriangle Comme \mathcal{A} est régulière, \mathcal{A} ne contient aucune colonne nulle.
- Si chaque colonne contient deux coefficients non nuls, alors les vecteurs lignes sont dépendants vu que leur somme est nulle.

- La matrice A contient exactement deux termes non nuls par colonne, dont l'un est +1 et l'autre est
 -1.
- Considérons A une sous-matrice régulière de la matrice A d'ordre p.
- Par récurrence sur p, montrons que det $\mathcal{A} = \pm 1$:
- Si p = 1 alors la sous-matrice est réduite au coefficient +1 ou au coefficient -1.
 La proposition est vraie.
- Supposons maintenant que la proposition est vraie jusqu'à l'ordre p-1 où $p \le n$ et montrons la proposition est vraie à l'ordre p:
- ullet Comme ${\mathcal A}$ est régulière, ${\mathcal A}$ ne contient aucune colonne nulle.
- Si chaque colonne contient deux coefficients non nuls, alors les vecteurs lignes sont dépendants vu que leur somme est nulle.
- Par conséquent, il existe une colonne de A ayant un seul coefficient non nul $a_{i_0i_0} \in \{\pm 1\}$.

Preuve

- La matrice A contient exactement deux termes non nuls par colonne, dont l'un est +1 et l'autre est
 -1.
- Considérons A une sous-matrice régulière de la matrice A d'ordre p.
- Par récurrence sur p, montrons que det $\mathcal{A} = \pm 1$:
- Si p = 1 alors la sous-matrice est réduite au coefficient +1 ou au coefficient -1.
 La proposition est vraie.
- Supposons maintenant que la proposition est vraie jusqu'à l'ordre p-1 où $p \le n$ et montrons la proposition est vraie à l'ordre p:
- lacktriangle Comme \mathcal{A} est régulière, \mathcal{A} ne contient aucune colonne nulle.
- Si chaque colonne contient deux coefficients non nuls, alors les vecteurs lignes sont dépendants vu que leur somme est nulle.
- Par conséquent, il existe une colonne de $\mathcal A$ ayant un seul coefficient non nul $a_{i_0j_0} \in \{\pm 1\}$. En développant par rapport à la j_0 ème colonne de $\mathcal A$, on aura:
 - det $A=a_{i_0j_0}$. k où k = déerminant d'une sous-matrice de A d'ordre p-1.

Par hypothèse de récurrence $\det A = \pm 1$. \square

Définition

Soit G = (X, E) un graphe non orienté avec $X = \{x_1, ..., x_n\}$ et $E = \{e_1, ..., e_m\}$ sans boucles.

La matrice d'incidence sommets-arêtes de G est la matrice $A = (a_{ij})_{i=1,m}$ à coefficients 0 et 1 telle que:

$$a_{ij} = \begin{cases} 1 & \text{l'arête } e_j \text{ incidente au sommet } x_i \\ 0 & \text{sinon} \end{cases}$$

Remarque

En considérant le graphe complet K_3 induit par x_1, x_2, x_3 ayant $e_1 = x_1x_2$; $e_2 = x_1x_3$ et $e_3 = x_2x_3$ comme arêtes, la matrice d'incidence sommets-arêtes est donnée comme suit:

$$\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)$$

Remarque

En considérant le graphe complet K_3 induit par x_1, x_2, x_3 ayant $e_1 = x_1x_2$; $e_2 = x_1x_3$ et $e_3 = x_2x_3$ comme arêtes, la matrice d'incidence sommets-arêtes est donnée comme suit:

$$\left(\begin{array}{rrr}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)$$

Cette matrice n'est pas totalement unimodulaire sachant que son déterminant vaut -2.

Définition

Soit G = (X, U) un 1-graphe avec au plus une boucle par sommet et posons $X = \{x_1, x_2, ..., x_n\}$. La **matrice d'adjacence sommets-sommets** $B = (b_{ij})_{\substack{i=1,n \ j=1,n}}$ à coefficients 0 et 1 telle que:

$$b_{ij} = \begin{cases} 1 & u = (x_i, x_j) \in U \\ 0 & \text{sinon} \end{cases}$$

Définition

Soit G = (X, U) un 1-graphe avec au plus une boucle par sommet et posons $X = \{x_1, x_2, ..., x_n\}$. La **matrice d'adjacence sommets-sommets** $B = (b_{ij})_{\substack{i=1,n \ j=1,n}}$ à coefficients 0 et 1 telle que:

$$b_{ij} = \begin{cases} 1 & u = (x_i, x_j) \in U \\ 0 & \text{sinon} \end{cases}$$

• On peut définir la matrice d'adjacence B pour un graphe G = (X, U) qui n'est pas nécessairement 1-graphe.

Dans ce cas:
$$B = (b_{ij})_{\substack{i=1,n \ j=1,n}}$$
 avec:

$$b_{ij} = m_G^+(x_i x_j)$$

Définition

Soit G = (X, U) un 1-graphe avec au plus une boucle par sommet et posons $X = \{x_1, x_2, ..., x_n\}$. La **matrice d'adjacence sommets-sommets** $B = (b_{ij})_{\substack{i=1,n \ j=1,n}}$ à coefficients 0 et 1 telle que:

$$b_{ij} = \begin{cases} 1 & u = (x_i, x_j) \in U \\ 0 & \text{sinon} \end{cases}$$

• On peut définir la matrice d'adjacence B pour un graphe G = (X, U) qui n'est pas nécessairement 1-graphe.

Dans ce cas:
$$B = (b_{ij})_{i=1,n \atop i=1,n}$$
 avec:

$$b_{ij} = m_G^+(x_i x_j)$$

• La matrice d'adjacence sommets-sommets B d'un graphe simple est **symétrique** ($\forall i, j: b_{ij} = b_{ji}$).

Exemple

• La matrice B_1 est la matrice d'adjacence de la Maison H

$$B_1 = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{array}\right)$$

Exemple

• La matrice B_1 est la matrice d'adjacence de la Maison H

$$B_1 = \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{array}\right)$$

La matrice d'adjacence sommets-sommets du graphe suivant est :

La matrice d'adjacence sommets-sommets du graphe suivant est :

Isomorphisme

Isomorphisme

Définition

Soient $G_1 = (X_1, U_1)$ et $G_2 = (X_2, U_2)$ deux graphes.

Un **isomorphisme** de G à G' est une bijection $\varphi: X_1 \to X_2$ tel que:

$$\forall \ x,y \in X \colon (x,y) \in U \Leftrightarrow (\varphi(x),\varphi(y)) \in U'$$

Isomorphisme

Définition

Soient $G_1 = (X_1, U_1)$ et $G_2 = (X_2, U_2)$ deux graphes.

Un **isomorphisme** de G à G' est une bijection $\varphi: X_1 \to X_2$ tel que:

$$\forall \ x,y \in X \colon (x,y) \in U \Leftrightarrow (\varphi(x),\varphi(y)) \in U'$$

• Autrement dit, il existe une bijection entre l'ensemble des sommets de chaque graphe tout en préservant l'incidence des arcs aux sommets.

Définition

Soient $G_1 = (X_1, U_1)$ et $G_2 = (X_2, U_2)$ deux graphes.

Un **isomorphisme** de G à G' est une bijection $\varphi: X_1 \to X_2$ tel que:

$$\forall \ x,y \in X \colon (x,y) \in U \Leftrightarrow (\varphi(x),\varphi(y)) \in U'$$

- Autrement dit, il existe une bijection entre l'ensemble des sommets de chaque graphe tout en préservant l'incidence des arcs aux sommets.
- Si G_1 et G_2 sont **isomorphes** et on note: $G_1 \simeq G_2$.

Définition

Soient $G_1 = (X_1, U_1)$ et $G_2 = (X_2, U_2)$ deux graphes.

Un **isomorphisme** de G à G' est une bijection $\varphi: X_1 \to X_2$ tel que:

$$\forall \ x,y \in X \colon (x,y) \in U \Leftrightarrow (\varphi(x),\varphi(y)) \in U'$$

- Autrement dit, il existe une bijection entre l'ensemble des sommets de chaque graphe tout en préservant l'incidence des arcs aux sommets.
- Si G_1 et G_2 sont **isomorphes** et on note: $G_1 \simeq G_2$.
- Deux graphes sont isomorphes s'ils ont les mêmes caractéristiques et les mêmes invariants.

Exemple

Figure:

Exemple

Figure:

• $G_1 \not\equiv G_2$: il existe un sommet de degré extérieur nul dans G_2 (le sommet a) et un tel sommet n'existe pas dans G_1 .

Exemple

Figure:

- G₁ \notin G₂: il existe un sommet de degr\u00e9 ext\u00e9rieur nul dans G₂ (le sommet a) et un tel sommet n'existe pas dans G₁.
- Par contre, $G_1 \simeq G_3$. En effet, il suffit de considérer la bijections φ : $\varphi(1) = \alpha$; $\varphi(2) = \beta$; $\varphi(3) = \gamma$; $\varphi(4) = \delta$ et $\psi(u_i) = v_i$ pour tout i = 1, 4

Exemple

Figure:

- G₁ \notin G₂: il existe un sommet de degr\u00e9 ext\u00e9rieur nul dans G₂ (le sommet a) et un tel sommet n'existe pas dans G₁.
- Par contre, $G_1 \simeq G_3$. En effet, il suffit de considérer la bijections φ : $\varphi(1) = \alpha$; $\varphi(2) = \beta$; $\varphi(3) = \gamma$; $\varphi(4) = \delta$ et $\psi(u_i) = v_i$ pour tout i = 1, 4
- Si les trois graphes G_1 , G_2 et G_3 sont considérés sans orientation, ils seront tous les trois isomorphes.

 Pour un entier n (n ≥ 1):
 Considérons le graphe dont l'ensemble des sommets X est donné par l'ensemble des tous les vecteurs :

$$v = (v_1, v_2..., v_n)$$
 où $v_i \in \{0, 1\}$ pour tout $i \in \{1, 2, ..., n\}$

 Pour un entier n (n ≥ 1):
 Considérons le graphe dont l'ensemble des sommets X est donné par l'ensemble des tous les vecteurs :

$$v = (v_1, v_2..., v_n)$$
 où $v_i \in \{0, 1\}$ pour tout $i \in \{1, 2, ..., n\}$

• Deux sommets v et w sont adjacents si et seulement s'il existe: $i_0 \in \{1, 2, ..., n\}$ tel que $v_{i_0} \neq w_{i_0}$ et pour tout $i \in \{1, 2, ..., n\} \setminus \{i_0\}$: $v_i = w_i$

 Pour un entier n (n ≥ 1):
 Considérons le graphe dont l'ensemble des sommets X est donné par l'ensemble des tous les vecteurs :

$$v = (v_1, v_2..., v_n)$$
 où $v_i \in \{0, 1\}$ pour tout $i \in \{1, 2, ..., n\}$

- Deux sommets v et w sont adjacents si et seulement s'il existe: $i_0 \in \{1, 2, ..., n\}$ tel que $v_{i_0} \neq w_{i_0}$ et pour tout $i \in \{1, 2, ..., n\} \setminus \{i_0\}$: $v_i = w_i$
- Pour n = 2 les sommets sont (1,1) (1,0) (0,1) (0,0)
- Pour n = 2 le sommet (1,1) est adjacent au sommet (1,0)

 Pour un entier n (n ≥ 1):
 Considérons le graphe dont l'ensemble des sommets X est donné par l'ensemble des tous les vecteurs :

$$v = (v_1, v_2..., v_n)$$
 où $v_i \in \{0, 1\}$ pour tout $i \in \{1, 2, ..., n\}$

- Deux sommets v et w sont adjacents si et seulement s'il existe: $i_0 \in \{1, 2, ..., n\}$ tel que $v_{i_0} \neq w_{i_0}$ et pour tout $i \in \{1, 2, ..., n\} \setminus \{i_0\}$: $v_i = w_i$
- Pour n = 2 les sommets sont (1,1) (1,0) (0,1) (0,0)
- Pour n = 2 le sommet (1,1) est adjacent au sommet (1,0)
- Trouver l'ordre la taille de Q_n pour tout $n \ge 2$. Dresser Q_1 Q_2 Q_3 Un exercice de la série.

• Pour une dimension n, nous disposons de 2^n sommets de Q_n

- Pour une dimension n, nous disposons de 2^n sommets de Q_n
 - \checkmark Car chaque sommet est un *n*-uplet $u_1u_2 \dots u_n$
 - ✓ Chaque composante u_i (i = 1, n) a deux choix (soit 1 soit 0) et on a n composantes donc au total 2^n sommets

- Pour une dimension n, nous disposons de 2ⁿ sommets de Q_n
 ✓ Car chaque sommet est un n-uplet u₁u₂...u_n
 ✓ Chaque sommet est (i = 1, r) a douy chair (soit 1 soit 0) et on a
 - ✓ Chaque composante u_i (i = 1, n) a deux choix (soit 1 soit 0) et on a n composantes donc au total 2^n sommets
- Le degré de chaque sommet de Q_n est n
- En effet: Pour $u = u_1 u_2$, u_n les voisins de u:

$$N(u) = \{v_1 = \overline{u_1}u_2 \dots u_n; v_2 = u_1\overline{u_2} \dots u_n, \dots, v_n = u_1u_2 \dots \overline{u_n}\}$$
si $u_i = 1$ alors $\overline{u_i} = 0$ et si $u_i = 0$ alors $\overline{u_i} = 1$

Autrement dit u est adjacent à un vecteur avec une composante différente. Celle-ci pourrait être la 1ère, la 2ème, ..la nième.

- Pour une dimension n, nous disposons de 2^n sommets de Q_n
 - \checkmark Car chaque sommet est un *n*-uplet $u_1u_2 \dots u_n$
 - \checkmark Chaque composante u_i (i = 1, n) a deux choix (soit 1 soit 0) et on a ncomposantes donc au total 2^n sommets
- Le degré de chaque sommet de Q_n est n
- En effet: Pour $u = u_1 u_2$, u_n les voisins de u:

$$N(u) = \{v_1 = \overline{u_1}u_2 \dots u_n; v_2 = u_1\overline{u_2} \dots u_n, \dots, v_n = u_1u_2 \dots \overline{u_n}\}$$
si $u_i = 1$ alors $\overline{u_i} = 0$ et si $u_i = 0$ alors $\overline{u_i} = 1$

Autrement dit u est adjacent à un vecteur avec une composante différente. Celle-ci pourrait être la 1ère, la 2ème, ..la nième.

Remarque!!: Comme Q_n est simple : d(x)=nombre de voisins!!!

- Pour une dimension n, nous disposons de 2^n sommets de Q_n \checkmark Car chaque sommet est un n-uplet $u_1u_2 \dots u_n$
 - ✓ Chaque composante u_i (i = 1, n) a deux choix (soit 1 soit 0) et on a n composantes donc au total 2^n sommets
- Le degré de chaque sommet de Q_n est n
- En effet: Pour $u = u_1 u_2$, u_n les voisins de u:

$$N(u) = \{v_1 = \overline{u_1}u_2 \dots u_n; v_2 = u_1\overline{u_2} \dots u_n, \dots, v_n = u_1u_2 \dots \overline{u_n}\}$$
si $u_i = 1$ alors $\overline{u_i} = 0$ et si $u_i = 0$ alors $\overline{u_i} = 1$

Autrement dit u est adjacent à un vecteur avec une composante différente. Celle-ci pourrait être la 1ère, la 2ème, ..la nième. Remarque!!: Comme Q_n est simple : d(x)=nombre de voisins!!!

• La formule des degrés:

$$\sum_{x \in Q_n} d(x) = 2^n \times n = 2m$$

- Pour une dimension n, nous disposons de 2^n sommets de Q_n \checkmark Car chaque sommet est un n-uplet $u_1u_2 \dots u_n$
 - ✓ Chaque composante u_i (i = 1, n) a deux choix (soit 1 soit 0) et on a n composantes donc au total 2^n sommets
- Le degré de chaque sommet de Q_n est n
- En effet: Pour $u = u_1u_2$, u_n les voisins de u:

$$N(u) = \{v_1 = \overline{u_1}u_2 \dots u_n; v_2 = u_1\overline{u_2} \dots u_n, \dots, v_n = u_1u_2 \dots \overline{u_n}\}$$
si $u_i = 1$ alors $\overline{u_i} = 0$ et si $u_i = 0$ alors $\overline{u_i} = 1$

Autrement dit u est adjacent à un vecteur avec une composante différente. Celle-ci pourrait être la 1ère, la 2ème, ..la nième.

Remarque!!: Comme Q_n est simple : d(x)=nombre de voisins!!!

• La formule des degrés:

Définition

Soit *G* un graphe simple.

Le graphe **représentatif des arêtes** de G (ou **graphe adjoint** de G) est le graphe L(G) où:

- chaque arête e_i de G lui correspond un sommet e_i^* de L(G).
- Deux sommets e_i^* et e_j^* sont adjacents dans L(G) ssi les arêtes e_i et e_j de G sont adjacentes dans G.

Exemple

Figure:

Exemple

(b). Le graphe L(H)

Figure:

• Le graphe de Figure 6(a) est la *Maison* d'ordre 5 et de taille 6. Le graphe adjoint est d'ordre 6 et de taille 9.

Exemple

(b). Le graphe L(H)

Figure:

- Le graphe de Figure 6(a) est la *Maison* d'ordre 5 et de taille 6. Le graphe adjoint est d'ordre 6 et de taille 9.
- On peut déterminer une relation entre l'ordre, la taille du graphe et de son adjoint.