Gradient Calculations for a General RNN

1. Gradients We Need to Compute

In a Recurrent Neural Network (RNN), the following gradients are typically computed:

(A) Output Layer Parameters

1. Weights (W_y) : Gradient of the loss with respect to the output weights. 2. Biases (b_y) : Gradient of the loss with respect to the output biases.

(B) Hidden Layer Parameters

3. Input-to-Hidden Weights (W_x) : Gradient of the loss with respect to input weights. 4. Hidden-to-Hidden Weights (W_h) : Gradient of the loss with respect to recurrent weights. 5. Biases (b_h) : Gradient of the loss with respect to the hidden layer biases.

(C) Intermediate States

6. **Hidden States** (h_t) : Gradient of the loss with respect to each hidden state. 7. **Outputs** (\hat{y}_t) : Gradient of the loss with respect to the outputs.

2. General Definitions

(A) Output at Each Time Step

At each time step t, the output is computed as:

$$\hat{y}_t = g(W_u h_t + b_u)$$

Where:

- g: Output activation function (e.g., softmax, sigmoid, identity).
- W_y : Output weight matrix.
- b_y : Output bias vector.

(B) Hidden State Update

The hidden state at time t is updated as:

$$h_t = f(W_h h_{t-1} + W_x x_t + b_h)$$

Where:

- f: Hidden activation function (e.g., tanh, ReLU, sigmoid).
- W_h : Hidden-to-hidden weight matrix.
- W_x : Input-to-hidden weight matrix.
- b_h : Hidden layer bias vector.

(C) Loss Function

For a general loss function \mathcal{L} :

$$\mathcal{L} = \sum_{t=1}^{T} \mathcal{L}_t(\hat{y}_t, y_t)$$

Where \mathcal{L}_t is the loss at time t (e.g., cross-entropy, MSE).

3. Step-by-Step Gradients

(A) Gradient of the Loss with Respect to the Output Layer Parameters

1. Gradient w.r.t. Output Weights (W_y)

$$\frac{\partial \mathcal{L}}{\partial W_y} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \cdot \frac{\partial \hat{y}_t}{\partial W_y}$$

Breaking it down:

• $\frac{\partial \mathcal{L}_t}{\partial \hat{u}_t}$: Depends on the loss function \mathcal{L}_t . For example:

- Cross-entropy:
$$\frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} = \hat{y}_t - y_t$$
.

- MSE:
$$\frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} = 2(\hat{y}_t - y_t).$$

• $\frac{\partial \hat{y}_t}{\partial W_u} = h_t^{\top}$: The hidden state at time t.

Final expression:

$$\frac{\partial \mathcal{L}}{\partial W_y} = \sum_{t=1}^{T} \left(\frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \cdot h_t^{\top} \right)$$

2. Gradient w.r.t. Output Biases (b_y)

$$\frac{\partial \mathcal{L}}{\partial b_y} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t}$$

(B) Gradient of the Loss with Respect to the Hidden States

The gradient at hidden state h_t is recursive:

$$\frac{\partial \mathcal{L}}{\partial h_t} = \frac{\partial \mathcal{L}_t}{\partial h_t} + \frac{\partial \mathcal{L}}{\partial h_{t+1}} \cdot \frac{\partial h_{t+1}}{\partial h_t}$$

Breaking it down:

• Direct Contribution:

$$\frac{\partial \mathcal{L}_t}{\partial h_t} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \cdot \frac{\partial \hat{y}_t}{\partial h_t}$$

$$- \frac{\partial \hat{y}_t}{\partial h_t} = g'(W_y h_t + b_y) \cdot W_y.$$

• Recursive Contribution:

$$\frac{\partial h_{t+1}}{\partial h_t} = f'(z_{t+1}) \cdot W_h$$

- $f'(z_{t+1})$: Derivative of the hidden activation function f.

Final expression:

$$\frac{\partial \mathcal{L}}{\partial h_t} = \frac{\partial \mathcal{L}_t}{\partial h_t} + \left(\frac{\partial \mathcal{L}}{\partial h_{t+1}} \cdot f'(z_{t+1}) \cdot W_h\right)$$

2

(C) Gradient of the Loss with Respect to the Hidden Layer Parameters

3. Gradient w.r.t. Input-to-Hidden Weights (W_x)

$$\frac{\partial \mathcal{L}}{\partial W_x} = \sum_{t=1}^{T} \frac{\partial h_t}{\partial W_x} \cdot \frac{\partial \mathcal{L}}{\partial h_t}$$

Breaking it down:

 $\bullet \ \frac{\partial h_t}{\partial W_x} = f'(z_t) \cdot x_t^{\top}.$

Final expression:

$$\frac{\partial \mathcal{L}}{\partial W_x} = \sum_{t=1}^{T} \left(f'(z_t) \cdot x_t^{\top} \cdot \frac{\partial \mathcal{L}}{\partial h_t} \right)$$

4. Gradient w.r.t. Hidden-to-Hidden Weights (W_h)

$$\frac{\partial \mathcal{L}}{\partial W_h} = \sum_{t=1}^{T} \frac{\partial h_t}{\partial W_h} \cdot \frac{\partial \mathcal{L}}{\partial h_t}$$

Breaking it down:

 $\bullet \ \frac{\partial h_t}{\partial W_h} = f'(z_t) \cdot h_{t-1}^{\top}.$

Final expression:

$$\frac{\partial \mathcal{L}}{\partial W_h} = \sum_{t=1}^{T} \left(f'(z_t) \cdot h_{t-1}^{\top} \cdot \frac{\partial \mathcal{L}}{\partial h_t} \right)$$

5. Gradient w.r.t. Hidden Biases (b_h)

$$\frac{\partial \mathcal{L}}{\partial b_h} = \sum_{t=1}^{T} f'(z_t) \cdot \frac{\partial \mathcal{L}}{\partial h_t}$$

4. Multiplication Types: Matrix vs. Element-Wise

- Element-Wise Multiplication:
 - When applying the derivative of an activation function, e.g., $f'(z_t)$ or $g'(z_t)$.
 - Example: $f'(z_t) \cdot \frac{\partial \mathcal{L}}{\partial h_t}$.
- Matrix Multiplication:
 - When propagating gradients through weight matrices, e.g., W_h , W_x , W_y .

3

- Example: $f'(z_t) \cdot W_h$.

5. Summary of Gradients

Parameter	Gradient Expression
W_y	$\sum_{t=1}^{T} \left(\frac{\partial \mathcal{L}_t}{\partial \hat{g}_t} \cdot h_t^{\top} \right)$
b_y	$\sum_{t=1}^{T} \frac{\partial \mathcal{L}_t}{\partial \hat{g}_t}$
W_x	$ \sum_{t=1}^{T} \left(f'(z_t) \cdot x_t^{\top} \cdot \frac{\partial \mathcal{L}}{\partial h_t} \right) $
W_h	$\sum_{t=1}^{T} \left(f'(z_t) \cdot h_{t-1}^{\top} \cdot \frac{\partial \mathcal{L}}{\partial h_t} \right)$
\mid b _h	$\sum_{t=1}^{T} f'(z_t) \cdot \frac{\partial \mathcal{L}}{\partial h}$