2020 Full States EV and EC of One Check

This is the example vignette for function: **snw_evuvw20_jaeemk** from the **PrjOptiSNW Package.** 2020 integrated over VU and VW. Average C or V given unemployment probabilities.

Test SNW EVUVW20 JAEEMK Defaults

Call the function with defaults.

```
clear all;
st_solu_type = 'bisec_vec';
% Solve the VFI Problem and get Value Function
mp_params = snw_mp_param('default_docdense');
mp_params('beta') = 0.95;
mp_controls = snw_mp_control('default_test');
% set Unemployment Related Variables
xi=0.5; % Proportional reduction in income due to unemployment (xi=0 refers to 0 labor income;
b=0; % Unemployment insurance replacement rate (b=0 refers to no UI benefits; b=1 refers to 100
TR=100/58056; % Value of a welfare check (can receive multiple checks). TO DO: Update with alte
mp_params('xi') = xi;
mp params('b') = b;
mp_params('TR') = TR;
% Solve for Unemployment Values
mp_controls('bl_print_vfi') = false;
mp_controls('bl_print_ds') = false;
mp_controls('bl_print_ds_verbose') = false;
mp_controls('bl_print_precompute') = false;
mp_controls('bl_print_precompute_verbose') = false;
mp_controls('bl_print_a4chk') = false;
mp_controls('bl_print_a4chk_verbose') = false;
mp_controls('bl_print_evuvw20_jaeemk') = false;
mp controls('bl print evuvw20 jaeemk verbose') = false;
```

Solve the model:

```
%% A. Solve VFI
% 2. Solve VFI and Distributon
% Solve the Model to get V working and unemployed
% solved with calibrated regular a2
[V_ss,ap_ss,cons_ss,mp_valpol_more_ss] = snw_vfi_main_bisec_vec(mp_params, mp_controls);
```

 ${\tt Completed\ SNW_VFI_MAIN_BISEC_VEC;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;time=523.3967}$

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

	i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
	-									
V_VFI	1	1	6	4.37e+07	83	5.265e+05	-1.2728e+08	-2.9126	20.655	-7.0915

	ap_VFI cons_VF	ï	2 3	2	6 6	4.37e+ 4.37e+		83 83	5.265 5.265			.39626 .33746		31.95 5.3487		4439	1.14 1.5787
XXX	TABLE:\	/_VFI c1		xxxxxx c2	(XXXXXX	x c3	c4	ļ	c 5		c5264	96	c526497	c526	5498	c52649	9 c52650
	r1 r2 r3 r4 r5 r79 r80 r81 r82 r83	-274 -265 -255 -246 -237 -9.66 -8.76 -7.55 -5.95	.29 .77 .16 .48 662 031 138	-274. -264 -255. -245 -237. -9.6 -8.69 -7.56 -5.90	38 5.8 14 555 919 926	-271.94 -262.43 -252.93 -243.52 -235.01 -9.5783 -8.6152 -7.4258 -5.8275 -3.5012	-266 -256 -247 -238 -230 -9.3 -8.4 -7.2 -5.6	3.84 2.53 3.46 3.26 8823 4192 4298 3315	-257.2 -248.1 -239.2 -230.6 -222.9 -9.045 -8.082 -6.893 -5.29 -2.968	2 4 8 2 7 6 3	14.4 14.4 14.6 14.6 2.46 2.2 1.97 1.5 0.979	94 55 06 54 98 53 49	14.533 14.585 14.636 14.689 14.734 2.4801 2.261 1.9803 1.5851 0.98004	14. 14. 14. 2.4 2.2 1.9	.626 .674 .723 .772 .813 .898 .2685 .9855 .588	14.71 14.76 14.80 14.85 14.89 2.498 2.275 1.990 0.9818	14.8 14.8 14.9 14.9 14.9 14.9 2.507 2.282 1.99 1.593
xxx	TABLE: a	p_VF: c1	I xxxx	XXXXX	c3	xx c4		c5	5	c526	496	c526	497	c526498	c5	26499	c526500
xxx	r1 r2 r3 r4 r5 r79 r80 r81 r82 r83 TABLE: c	0.036 0.036 0.036 0.038 0.038	6717 6717 6717 6717 8144 9534	0.00 0.00 0.00 5.29 0.03 0.03 0.03 0.03	37251 37251 37251 37251 38678 40068	0.005 0.004 0.004 0.004 0.004 0.04047 0.04047 0.04078 0.04231 0.04380	7684 1456 1199 1199 0 0 0 0 0 7 7 6 4 4 6 2	0.021 0.026 0.018 0.018 0.018	2245 8539 8307 8091 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	112. 112. 112. 113. 81.6 76.1 67.9 50.1	16 19 85 53 991 37 958 26 0	117. 117. 118. 119. 85.3 79.7 70.6 53.4 c52649 12.272 12.508 12.762 13.008 13.245	7.7 72 38 06 673 759 66 67 12 12 13 13 13	123.39 123.42 123.45 124.11 124.78 89.342 83.442 73.689 56.319 0 26497 .557 .794 3.05 .297 .534	12 12 13 1 93 86 77		135.72 135.75 135.77 136.44 137.11 97.358 90.589 81.091 60.587 0
	r79 r80 r81 r82	0.2 0.2 0.2	2179 2179 2179 2179	0.2 0.2 0.2	21844 21844 21844 21844	0.2221 0.2221 0.2221 0.2221	6 6 6	0.23228 0.23228 0.23228 0.23228	8 0 8 0 8 0	.2519 .2519 .2519)7)7)7	35.858 40.785 48.942 66.755	5 42 5 52 6 69	37.4 .986 .071 .238	39.4 45.3 55.0 72.4	521 4 052 -04 7	41.74 4 17.983 5 57.95 6 7.036 8
mp_ % 2	<pre>020 V (mp_pa</pre>	rear ('a2 and rams a fr 2020 ss_2 inge ving covi	2_cov C sa s('a2 rom h Ø = V 2020 xi a g for idyr resol	idyr' me as _covi eaven _ss; = con nd b empl > a2, ve fc s('xi	v_SS.dyr') us_ss; to fo oyed we i or bot	p_params and cor == mp_p r people but 2020 ncreased	s('a2 ns_ss param e wit d tax	if ta s('a2' hout u resul in 20	dyr_maax the ')) unempl lts	oyme pay	heav ent s	hock		other	128.	/1 1	34.92 1

```
mp_params('xi') = 1;
mp_params('b') = 0;
[V_ss_2020,~,cons_ss_2020,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
mp_params('xi') = xi;
mp_params('b') = b;
end

% Solve unemployment, with three input parameters, auto will use a2_covidyr
% as tax, similar for employed call above
[V_unemp_2020,~,cons_unemp_2020] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
```

Completed SNW_VFI_MAIN_BISEC_VEC 1 Period Unemp Shock; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

	i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
	-									
V_VFI	1	1	6	4.37e+07	83	5.265e+05	-1.4885e+08	-3.4063	21.649	-6.3556
ap_VFI	2	2	6	4.37e+07	83	5.265e+05	1.36e+09	31.122	36.291	1.1661
cons VFI	3	3	6	4.37e+07	83	5.265e+05	2.2982e+08	5.2591	8.4465	1.6061

xxx TABLE:V_VFI xxxxxxxxxxxxxxxxxxx

	c1	c2	c 3	c4	c5	c526496	c526497	c526498	c526499	c52656
r1	-301.27	-299.77	-291.24	-277.82	-265.42	14.357	14.455	14.551	14.646	14.7
r2	-291.76	-290.26	-281.72	-268.3	-256.02	14.413	14.507	14.6	14.692	14.78
r3	-282.23	-280.74	-272.2	-258.78	-246.76	14.469	14.56	14.649	14.737	14.82
r4	-271.61	-270.22	-262.26	-249.53	-238.04	14.522	14.609	14.695	14.78	14.86
r5	-262.02	-260.72	-253.26	-241.16	-230.13	14.567	14.65	14.733	14.815	14.89
r79	-9.6662	-9.655	-9.5783	-9.3823	-9.0457	2.4678	2.4783	2.4882	2.4974	2.506
r80	-8.7031	-8.6919	-8.6152	-8.4192	-8.0826	2.2515	2.2596	2.2673	2.2745	2.282
r81	-7.5138	-7.5026	-7.4258	-7.2298	-6.8933	1.9738	1.9794	1.9847	1.9896	1.994
r82	-5.9155	-5.9043	-5.8275	-5.6315	-5.295	1.5815	1.5846	1.5875	1.5903	1.592
r83	-3.5892	-3.578	-3.5012	-3.3052	-2.9687	0.97886	0.97987	0.98082	0.98171	0.9825

xxx TABLE:ap_VFI xxxxxxxxxxxxxxxxx

	c1	c2	c 3	c4	c 5	c526496	c526497	c526498	c526499	c526500
		_	_	_						
r1	0	0	0	0	0.0083625	107.54	113.08	118.81	124.74	130.85
r2	0	0	0	0	0.0074731	107.44	112.98	118.71	124.63	130.75
r3	0	0	0	0	0.0058503	107.32	112.87	118.6	124.52	130.63
r4	0	0	0	0	0.0049981	107.53	113.08	118.81	124.72	130.84
r5	0	0	0	0	0.004174	107.75	113.3	119.02	124.94	131.06
r79	0	0	0	0	0	80.458	84.335	88.305	92.228	96.321
r80	0	0	0	0	0	75.113	78.735	82.418	85.971	90.439
r81	0	0	0	0	0	66.945	69.639	72.676	76.669	81.091
r82	0	0	0	0	0	50.126	53.467	55.315	56.953	60.587
r83	0	0	0	0	0	0	0	0	0	0

xxx TABLE:cons VFI xxxxxxxxxxxxxxxxxx

	c1	c2	c 3	c4	c5	c526496	c526497	c526498	c526499
r1	0.018623	0.019158	0.022901	0.033062	0.044486	11.996	12.272	12.557	12.851
r2	0.018623	0.019158	0.022901	0.033062	0.045375	12.23	12.508	12.794	13.089
r3	0.018623	0.019158	0.022901	0.033062	0.046998	12.483	12.762	13.05	13.345
r4	0.019354	0.019888	0.023632	0.033792	0.048579	12.728	13.008	13.297	13.593
r5	0.020066	0.020601	0.024344	0.034504	0.050114	12.963	13.245	13.534	13.83
r79	0.2179	0.21844	0.22216	0.23228	0.25197	35.453	37.4	39.448	41.74

```
0.2179
                               0.22216
                                           0.23228
                                                                             52.071
                                                                                                  57.274
r81
                   0.21844
                                                       0.25197
                                                                  48.942
                                                                                        55.052
r82
        0.2179
                               0.22216
                                           0.23228
                                                       0.25197
                                                                  65.751
                                                                             68.234
                                                                                        72.404
                                                                                                  76.981
                   0.21844
r83
        0.2179
                   0.21844
                               0.22216
                                           0.23228
                                                       0.25197
                                                                             121.69
                                                                                        127.71
                                                                                                  133.93
                                                                  115.87
```

0.25197

40.785

42.986

45.321

47.983

0.23228

```
%% B. Solve Dist
[Phi_true] = snw_ds_main_vec(mp_params, mp_controls, ap_ss, cons_ss);
```

Completed SNW_DS_MAIN_VEC;SNW_MP_PARAM=default_docdense;SNW_MP_CONTROL=default_test;time=1447.0669

Previous code

r80

0.2179

0.21844

0.22216

```
% % Solve the Model to get V working and unemployed
% [V_ss,ap_ss,cons_ss,mp_valpol_more_ss] = snw_vfi_main_bisec_vec(mp_params, mp_controls);
% % Solve unemployment
% [V_unemp,~,cons_unemp,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
% [Phi_true] = snw_ds_main(mp_params, mp_controls, ap_ss, cons_ss, mp_valpol_more_ss);
```

Precompute

```
inc_VFI = mp_valpol_more_ss('inc_VFI');
spouse_inc_VFI = mp_valpol_more_ss('spouse_inc_VFI');
total_inc_VFI = inc_VFI + spouse_inc_VFI;
% Get Matrixes
cl_st_precompute_list = {'a', ...
    'inc', 'inc_unemp', 'spouse_inc', 'spouse_inc_unemp', 'ref_earn_wageind_grid'};
mp_controls('bl_print_precompute_verbose') = false;
[mp_precompute_res] = snw_hh_precompute(mp_params, mp_controls, cl_st_precompute_list, ap_ss, False);
```

Wage quintile cutoffs=0.4645 0.71528 1.0335 1.5632
Completed SNW_HH_PRECOMPUTE; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time cost=271.5762

Solve for 2020 Evuvw With 0 and 2 Checks

```
% Call Function
welf_checks = 0;
[ev20_jaeemk_check0, ec20_jaeemk_check0] = snw_evuvw20_jaeemk(...
    welf_checks, st_solu_type, mp_params, mp_controls, ...
    V_ss_2020, cons_ss_2020, V_unemp_2020, cons_unemp_2020, mp_precompute_res);
```

Completed SNW_A4CHK_WRK_BISEC_VEC; welf_checks=0; TR=0.0017225; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_tectompleted SNW_A4CHK_UNEMP_BISEC_VEC; welf_checks=0; TR=0.0017225; xi=0.5; b=0; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; timeEUEC=8.4846

```
% Call Function
welf_checks = 2;
[ev20_jaeemk_check2, ec20_jaeemk_check2] = snw_evuvw20_jaeemk(...
    welf_checks, st_solu_type, mp_params, mp_controls, ...
    V_ss_2020, cons_ss_2020, V_unemp_2020, cons_unemp_2020, mp_precompute_res);
```

Completed SNW_A4CHK_WRK_BISEC_VEC; welf_checks=2; TR=0.0017225; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_tecCompleted SNW_A4CHK_UNEMP_BISEC_VEC; welf_checks=2; TR=0.0017225; xi=0.5; b=0; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; timeEUEC=8.0571

```
mn_V_U_gain_check = ev20_jaeemk_check2 - ev20_jaeemk_check0;
mn_MPC_U_gain_share_check = (ec20_jaeemk_check2 - ec20_jaeemk_check0)./(welf_checks*mp_params()
```

Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = 18:100;
agrid = mp_params('agrid')';
eta_H_grid = mp_params('eta_H_grid')';
eta_S_grid = mp_params('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'w:
edu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_params('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Difference in V and C with Check

The difference between V and V with Check, marginal utility gain given the check.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 21; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(MN_V_GAIN_CHECK(A,Z))

savings

group

Tabulate value and policies along savings and shocks:

mean_eta_1

mean_eta_3

mean_eta_4

mean_eta_5

mean_eta_6

mean_

mean_eta_2

1	0	1.7799	1.5892	1.4186	1.2663	1.1303	1.0091	0.
2	0.00051498	1.7463	1.561	1.3951	1.2466	1.1138	0.99527	0.
3	0.0041199	1.2806	1.1656	1.0586	0.96002	0.86971	0.78739	0.
4	0.013905	0.80413	0.74652	0.69063	0.63731	0.58715	0.54037	0.
5	0.032959	0.49946	0.47014	0.43986	0.40984	0.38099	0.35375	0.
6	0.064373	0.33366	0.31704	0.29894	0.2803	0.26191	0.2443	0.

% Consumption

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 4, 1, cl_mp_date

group	N_MPC_U_GAIN_C savings	CHECK(A,Z)), we mean_eta_1	mean_eta_2		mean_eta_4	mean_eta_5	mean_eta_6	mean
1	0	0.99875	0.99698	0.99542	0.99457	0.99452	0.99473	0.9
2	0.00051498	0.99851	0.99643	0.99458	0.99357	0.99352	0.99376	0.9
3	0.0041199	0.92261	0.91882	0.91795	0.91762	0.91756	0.91777	0.9
4	0.013905	0.85138	0.85048	0.84937	0.84947	0.85029	0.8514	0.8
5	0.032959	0.73681	0.73547	0.73742	0.74144	0.74546	0.7495	0.7
6	0.064373	0.65304	0.65266	0.65308	0.65432	0.65708	0.66013	0.

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR='
mp support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Savings States, a

Graph Mean Consumption (MPC: Share of Check Consumed):

Savings States, a LOG(X+min(X))

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' nump_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Marginal Value and MPC over Y(a,eta), Conditional On Kids, Marry, Age, Education

Income is generated by savings and shocks, what are the income levels generated by all the shock and savings points conditional on kids, marital status, age and educational levels. Plot on the Y axis MPC, and plot on the X axis income levels, use colors to first distinguish between different a levels, then use colors to distinguish between different eta levels.

Set Up date, Select Age 38, unmarried, no kids, lower education:

```
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
% 38 year old, unmarried, no kids, lower educated
% Only Household Head Shock Matters so select up to 'n_eta_H_grid'
mn_total_inc_jemk = total_inc_VFI(20,:,1:mp_params('n_eta_H_grid'),1,1,1);
mn_V_W_gain_check_use = ev20_jaeemk_check2 - ev20_jaeemk_check0;
mn_C_W_gain_check_use = ec20_jaeemk_check2 - ec20_jaeemk_check0;
```

Select Age, Education, Marital, Kids Count:s

```
% Selections
it age = 21; % +18
it_marital = 1; % 1 = unmarried
it_kids = 1; % 1 = kids is zero
it educ = 1; % 1 = lower education
% Select: NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
mn_C W gain check jemk = mn_C W gain check use(it age, :, 1:mp_params('n_eta_H grid'), it_educ,
mn_V_W_gain_check_jemk = mn_V_W_gain_check_use(it_age, :, 1:mp_params('n_eta_H_grid'), it_educ,
% Reshape, so shock is the first dim, a is the second
mt_total_inc_jemk = permute(mn_total_inc_jemk,[3,2,1]);
mt C W gain check jemk = permute(mn C W gain check jemk,[3,2,1]);
mt C W gain check jemk(mt C W gain check jemk<=1e-10) = 1e-10;
mt V W gain check jemk = permute(mn V W gain check jemk,[3,2,1]);
mt_V_W_gain_check_jemk(mt_V_W_gain_check_jemk<=1e-10) = 1e-10;</pre>
% Generate meshed a and shock grid
[mt_eta_H, mt_a] = ndgrid(eta_H_grid(1:mp_params('n_eta_H_grid')), agrid);
```

Marginal Value Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

```
figure();
it_a = 1;
scatter((mt_total_inc_jemk(:,it_a)), (mt_V_W_gain_check_jemk(:,it_a)), 100);
title({'MN\_V\_W\_GAIN\_CHECK(Y(A, eta)), Lowest A, J38M0E0K0', ...
    'Each Circle is A Different Shock Level'});
xlabel('Y(a,eta) = Spouse + Household head Income Joint');
ylabel('MN\_V\_W\_GAIN\_CHECK(A, eta)');
grid on;
grid minor;
```

MN_V_W_GAIN_CHECK(Y(A, eta)), Lowest A, J38M0E0K0 Each Circle is A Different Shock Level

MN_V_W_GAIN_CHECK(Y(A, eta)), Lowest A, J38M0E0K0 Each Circle is A Different Shock Level

Plot all asset levels:

```
figure();
scatter((mt_total_inc_jemk(:)), (mt_V_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_V\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('MN\_V\_W\_GAIN\_CHECK(EM,J)');
grid on;
grid minor;
```

(MN_V_W_GAIN_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0 Color Represent different A Savings State, Circle-Group=Shock


```
figure();
scatter((mt_total_inc_jemk(:)), log(mt_V_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_V\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
xlim([0,7]);
grid on;
grid minor;
```


Marginal Consumption Gains, Color as Shock, Conditional on Age, Marital, Kids, and Education

How do shocks and a impact marginal value. First plot one asset level, variation comes only from increasingly higher shocks:

Plot all asset levels:


```
figure();
scatter(log(mt_total_inc_jemk(:)), log(mt_C_W_gain_check_jemk(:)), 100, mt_a(:));
title({'(MN\_C\_W\_GAIN\_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0', ...
    'Color Represent different A Savings State, Circle-Group=Shock'});
xlabel('log of income(a,eps)');
ylabel('log of (MN\_V\_W\_GAIN\_CHECK(EM,J))');
grid on;
grid minor;
```

(MN_C_W_GAIN_CHECK(Y,eta)), All A (Savings) Levels, J38M0E0K0 Color Represent different A Savings State, Circle-Group=Shock

Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = [...
    "k0M0", "K1M0", "K2M0", "K3M0", "K4M0", ...
    "k0M1", "K1M1", "K2M1", "K3M1", "K4M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {...
    'o', 'd', 's', 'x', '*'};
mp_support_graph('cl_colors') = {...
    'red', 'red', 'red', 'red'...
    'blue', 'blue', 'blue', 'blue'};
```

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
```

% Value Function st_title = ['MEAN(MN_V_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(tb_az_v = ff_summ_nd_array(st_title, mn_V_U_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdesc

group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	1	0	0.038521	0.037547	0.036373	0.033138	0.030444	0.028185
2	2	0	0.05341	0.052108	0.050487	0.045932	0.042132	0.038937
3	3	0	0.063385	0.062078	0.06036	0.05494	0.050421	0.046624
4	4	0	0.072378	0.070987	0.069103	0.062915	0.057756	0.053423
5	5	0	0.079908	0.078513	0.076557	0.069742	0.064064	0.059298
6	1	1	0.012602	0.012065	0.011549	0.010425	0.0094851	0.0086941
7	2	1	0.016779	0.016071	0.015392	0.013893	0.012636	0.011578
8	3	1	0.02027	0.019455	0.018664	0.016853	0.015336	0.014061
9	4	1	0.024225	0.023287	0.02236	0.020204	0.018398	0.016876
10	5	1	0.029524	0.028486	0.027439	0.024819	0.02263	0.020789

% Consumption Function

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_dat

xxx MEAN(M	4N_MPC_U_	_GAIN_CHEC	<pre>LK(KM,J)), welf_</pre>	_checks=2, TR=0.	.0017225 xxxxx	xxxxxxxxxxxxx	(XXXXXX	
group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	1	0	0.08473	0.090523	0.10389	0.10174	0.099813	0.09806
2	2	0	0.092218	0.098831	0.11367	0.11201	0.11015	0.10846
3	3	0	0.1021	0.11001	0.12659	0.12367	0.12143	0.11972
4	4	0	0.10668	0.11447	0.13204	0.12929	0.12652	0.12473
5	5	0	0.11273	0.11986	0.13778	0.13469	0.13217	0.12887
6	1	1	0.11128	0.1152	0.12146	0.1198	0.11906	0.11801
7	2	1	0.11215	0.11651	0.1231	0.12179	0.12075	0.11977
8	3	1	0.11764	0.12253	0.13117	0.1281	0.12731	0.12672
9	4	1	0.11935	0.12502	0.13186	0.13059	0.1313	0.12843
10	5	1	0.12647	0.1319	0.14032	0.13889	0.13523	0.13356

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EM,J)), MEAN(AP(EM,J)), MEAN(C(EM,J))

Tabulate value and policies:

1	0	0	0.062739	0.061743	0.060475	0.056968	0.053854	0.051093
2	1	0	0.060302	0.05875	0.056677	0.049699	0.044073	0.039493
3	0	1	0.021794	0.020986	0.0202	0.018729	0.01744	0.016317
4	1	1	0.019566	0.01876	0.017962	0.015748	0.013954	0.012482

% Consumption

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_dat

XXX MEA	N(MN_MPC_L	J_GAIN_CH	ECK(EM,J)), welf	_checks=2, TR=0	0.0017225 xxxxx	xxxxxxxxxxxxx	XXXXXXX	
grou	p edu	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	0	0	0.091561	0.095658	0.10516	0.10456	0.10443	0.10416
2	1	0	0.10782	0.11782	0.14043	0.136	0.1316	0.12778
3	0	1	0.10916	0.11292	0.11733	0.11721	0.11716	0.11661
4	1	1	0.1256	0.13155	0.14183	0.13846	0.1363	0.13399

Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


