Análise e projeto de sistemas de controle

Atividade 01

Débora Oliveira

19 de abril de 2021

Sumário

01 Controle adaptativo

Fundamentação teórica e análise de aplicação

O2 Análise em frequência

Estudo em malha aberta e em malha fechada

O3 Processos não-lineares

Linearização e inversão da não-linearidade 04 Processos variáveis

Controladores parametrizáveis

01

Controle adaptativo

Fundamentação teórica e análise de aplicação

Controladores adaptativos

Garantir a estabilidade em sistemas com <u>processo variável</u> ou com perturbações não-lineares.

Mudança na lei de controle conforme identificação da condição de operação

Tipos de adaptações da lei de controle

Escalonamento de ganho

Atualização de ganho conforme condição de operação

Rejeição de ruído regular

Controlador com filtro para a frequência da perturbação Inversão de não-linearidade

Linearização de um modelo não-linear conhecido

Parametrização do modelo

Reescrita do modelo segundo termos do controlador

Self-tuning regulator

Fig. 1: Diagrama de blocos de um STR (ASTROM, 2008).

Estimativa contínua do modelo de um processo variável.

- Especificação em função do modelo de estimado
- Não considera as incertezas dos parâmetros do controlador
 - Adotar uma <u>abordagem estocástica</u>

02

Análise em frequência

Estudo em malha aberta e em malha fechada

Diferença em malha aberta

Função de transferência

$$G_0(s) = rac{1}{(s+1)(s+a)}, a \in \{-0.01, 0, 0.01\}$$

Malha fechada com lei de controle proporcional

$$H(s)=rac{1}{(s+1)(s+a)+1}$$

Fig. 2: Resposta da malha aberta (acima) e em malha fechada (abaixo) (Autoria prória).

Diferença em malha aberta

Fig. 3: Diagrama de Bode de malha aberta (Autoria prória).

Fig. 5: Diagrama de Bode de malha fechada (Autoria prória).

Diferença em malha fechada

Função de transferência

$$G_0(s) = rac{400(1-sT)}{(s+1)(s+20)(1+sT)}, T \in \{0, 0.015, 0.03\}$$

Malha fechada com lei de controle proporcional

$$H(s) = rac{400(1-sT)}{(s+1)(s+20)(1+sT)+400(1-sT)}$$

Fig. 6: Resposta da malha aberta (acima) e em malha fechada (abaixo) (Autoria prória).

Diferença em malha fechada

Fig. 7: Diagrama de Bode de malha aberta (Autoria prória).

Fig. 8: Diagrama de Bode de malha fechada (Autoria prória).

03

Processos não-lineares

Linearização e inversão da não-linearidade

Integrador com sinal indefinido

Função de transferência

$$G_0(s)=rac{k_p}{s}, k_p\in \mathbb{R}$$

Malha fechada com lei de controle racional

$$P(s) = sR(s) + k_p S(s)$$

ullet Para R(s)=s+lpha e S(s)=eta

$$p=rac{-lpha\pm\sqrt{lpha^2-4k_peta}}{2}$$
 $ightharpoonup$ Se $rac{k_p<0}{p}$, há pelo menos um pólo no semi-plano direito de s

Inversão da não-linearidade

Válvula não-linear

<u>Instabilidade</u> provocada pela <u>ordem</u> de magnitude de \underline{v}

Solução: Linearização da válvula não-linear

Fig. 9: Diagrama de blocos de um laço de controle PI para um processo não linear (ASTROM, 2008).

Fig. 10: Aproximação linear da função da válvula (Autoria própria).

Inversão da não-linearidade

Válvula não-linear

Solução: <u>Linearização</u> da válvula não-linear

$$f^{-1}(u) = egin{cases} 0.433u, 0 \leq u < 3 \ 0.0538u + 1.1385, 3 \leq u < 16 \end{cases}$$

Fig. 11: Resposta ao degrau com e sem a inversão da não-linearidade do processo modelado (Autoria própria).

Processos variáveis

Controlador parametrizado

Controle de concentração de um tanque

$$V_m rac{dc(t)}{dt} = q(t)[c_{in}(t- au)-c(t)], au = V_d/q(t)$$

 \rightarrow Função de transferência para q(t) constante

$$G_0(s)=rac{e^{s au}}{1+sT}, T=V_m/q(t)$$

• Para uma <u>lei de controle PI</u>

$$L(s) = 0.5 \Big(1 + rac{1}{1.1s}\Big)$$
 $ightarrow$ Não garante ausência de overshoot $orall q \in \{0.5; 1.0, 2.0\}$

Fig. 12: Resposta ao degrau para a malha fechada para o controlador constante (Autoria própria).

Ganho constante

Amostrado com a taxa h inversamente proporcional ao fluxo q

Ganho variável

Método de ajuste por Ziegler-Nichols

$$K_c=rac{0.9T}{ au}, T_i=0.3 au$$

Fig. 12: Resposta ao degrau para a malha fechada para o controlador constante (Autoria própria).

Fig. 13: Resposta ao degrau para a malha fechada para o controlador variável (Autoria própria).

Fig. 13: Resposta ao degrau para a malha fechada para o controlador variável (Autoria própria).

Fig. 14: Resposta ao degrau para a malha fechada para o processo variável considerando a leite de controle projetada para q=1 (Autoria própria).

Máquina de corte

Função de transferência

$$F=ka\Big(rac{v}{N}\Big)^{lpha}$$

- Controlador PI único não consegue compensar as variações dos parâmetros do modelo
 - <u>Solução</u>: Escalonamento de ganho

Fig. 15: Resposta ao degrau para a malha fechada variando N (Autoria própria).

Dinâmica de voo de aeronave de asa fixa

Espaço de estados

$$\frac{dx}{dt} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & -a \end{bmatrix} x + \begin{bmatrix} b_1 \\ 0 \\ a \end{bmatrix} u \qquad x^T = \begin{bmatrix} N_z & \dot{\theta} & \delta_e \end{bmatrix}$$

- Autovalores dependentes das condições de voo
 - Sistema instável ou sub-amortecido para um controlador de <u>aanho constante</u>
- Solução: Escalonamento de ganho

$$K_{QD}=K_{AS}+(K_S-K_{AS})MF$$

Fig. 16: Resposta ao degrau para um controlador constante nas quatro condições de operação da aeronave de asa fixa (Autoria própria).

Distúrbio regular

Fig. 17: Diagrama de blocos para um distúrbio em frequência característica (ASTROM, 2008).

Distúrbio em frequência central ω

- \rightarrow Lei de controle com alto ganho na frequência ω_c
- Considera apenas perturbações equivalentes ao modelo
 - Adotar uma abordagem estocástica

Distúrbio regular

Fig. 18: Resposta de malha fechada à referência nula (Autoria própria).

Análise e projeto de sistemas de controle

Atividade 01

Débora Oliveira

19 de abril de 2021

