確率統計 第3回小テスト 解答

1

(1) 確率関数の値をすべてたすと 1 になるので, p=0.3 である.

$$\begin{split} E(X) &= 0 \times 0.1 + 1 \times 0.1 + 2 \times 0.3 + 3 \times 0.3 + 4 \times 0.2 = 0.1 + 0.6 + 0.9 + 0.8 = \underline{2.4} \ . \\ E(X^2) &= 0^2 \times 0.1 + 1^2 \times 0.1 + 2^2 \times 0.3 + 3^2 \times 0.3 + 4^2 \times 0.2 = 0.1 + 1.2 + 2.7 + 3.2 = 7.2 \ . \\ V(X) &= E(X^2) - (E(X))^2 = 7.2 - (2.4)^2 = 7.2 - 5.76 = \underline{1.44} \ . \end{split}$$

(2) 期待値と分散の性質(教科書 p.38)を利用する.

(a)
$$E(2X) = 2E(X) = 2\mu$$
.

(b)
$$E(X^2+3X+1) = E(X^2)+3E(X)+1 = \left\{E(X^2) - (E(X))^2\right\} + (E(X))^2 + 3E(X)+1$$

= $V(X) + (E(X))^2 + 3E(X) + 1 = \underline{\sigma^2 + \mu^2 + 3\mu + 1}$.

(c)
$$V(3X+1) = 3^2V(X) = 9\sigma^2$$
.

2

		Y				
		0	1	2	3	
	0	$\frac{1}{60}$	$\frac{1}{30}$	$\frac{1}{20}$	$\frac{1}{15}$	$\frac{1}{6}$
X	1	$\frac{1}{30}$	$\frac{1}{30}$ $\frac{1}{15}$	$\frac{1}{10}$	$\frac{\frac{1}{15}}{\frac{2}{15}}$	$\frac{1}{3}$
	2	$ \frac{1}{60} $ $ \frac{1}{30} $ $ \frac{1}{20} $	$\frac{1}{10}$	$ \frac{1}{20} $ $ \frac{1}{10} $ $ \frac{3}{20} $	$\frac{1}{5}$	$\frac{1}{6}$ $\frac{1}{3}$ $\frac{1}{2}$
		$\frac{1}{10}$	$\frac{1}{5}$	$\frac{3}{10}$	$\frac{2}{5}$	1

X	0	1	2
P	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{2}$

Y	0	1	2	3
P	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{3}{10}$	$\frac{2}{5}$

- (1) 周辺分布は右上の表を参照.
- (2) X と Y は独立である.なぜなら,すべての i=0,1,2 と j=0,1,2,3 に対し,P(X= $i, Y = j) = P(X = i) \times P(Y = j)$ が成り立つから.
- (3) X と Y の期待値,分散を求める:

$$E(X) = \frac{1}{6} \times 0 + \frac{1}{3} \times 1 + \frac{1}{2} \times 2 = \frac{4}{3}.$$

$$E(X^2) = \frac{1}{6} \times 0^2 + \frac{1}{3} \times 1^2 + \frac{1}{2} \times 2^2 = \frac{7}{3}.$$

$$E(X^2) = \frac{1}{6} \times 0^2 + \frac{1}{3} \times 1^2 + \frac{1}{2} \times 2^2 = \frac{7}{3}. \ V(X) = \frac{7}{3} - \left(\frac{4}{3}\right)^2 = \frac{5}{9}.$$

$$E(Y) = \frac{1}{10} \times 0 + \frac{1}{5} \times 1 + \frac{3}{10} \times 2 + \frac{2}{5} \times 3 = 2.$$

$$E(Y^2) = \frac{1}{10} \times 0^2 + \frac{1}{5} \times 1^2 + \frac{3}{10} \times 2^2 + \frac{2}{5} \times 3^2 = 5.$$
 $V(Y) = 5 - 2^2 = 1$.

以上のことから ,
$$E(2Y-X)=2E(Y)-E(X)=2\times 2-\frac{4}{3}=\frac{8}{3}.$$

$$X$$
 と Y は独立だから , $V(2Y-X)=2^2V(Y)+(-1)^2V(X)=4+rac{5}{9}=rac{41}{9}.$

確率統計 第3回小テスト 解答

3

(1)
$$_6C_3=\frac{6!}{3!\times(6-3)!}=\frac{6\times5\times4}{3\times2}=\underline{20}.$$
 赤玉を R_1,R_2 , 青玉を B , 白玉を W_1,W_2,W_3 で表し , 標本点をすべて書き下すと ,
$$S=\{(B,R_1,R_2),(B,W_1,W_2),(B,W_2,W_3),(B,W_3,W_1),\\ (B,R_1,W_1),(B,R_1,W_2),(B,R_1,W_3),(B,R_2,W_1),(B,R_2,W_2),(B,R_2,W_3),\\ (R_1,R_2,W_1),(R_1,R_2,W_2),(R_1,R_2,W_3),(W_1,W_2,W_3),\\ (R_1,W_1,W_2),(R_1,W_2,W_3),(R_1,W_3,W_1),(R_2,W_1,W_2),(R_2,W_2,W_3),(R_2,W_3,W_1)\}$$

- (2) 「赤玉が 1 個,白玉が 2 個」となるのは,以下の $2\times {}_3C_2$ 通りある; $(R_1,W_1,W_2),(R_1,W_2,W_3),(R_1,W_3,W_1),(R_2,W_1,W_2),(R_2,W_2,W_3),(R_2,W_3,W_1) \ .$ したがって,確率は $\frac{6}{20}=\frac{3}{10}$
- (3) 同時確率分布表は以下のようになる;

		Y				
		0	1	2	3	
	0			$\frac{3}{20}$	$\frac{1}{20}$	$\frac{1}{5}$
X	1		$\frac{3}{10}$	$\frac{\frac{3}{20}}{\frac{3}{10}}$		$\begin{array}{ c c c }\hline 1\\ 5\\ \hline 3\\ \hline 5\\ \hline 1\\ \hline 5\\ \end{array}$
	2	$\frac{1}{20}$	$\frac{3}{10}$ $\frac{3}{20}$			$\frac{1}{5}$
		$\frac{1}{20}$	$\frac{9}{20}$	$\frac{9}{20}$	$\frac{1}{20}$	1

(4) 独立ではない.

たとえば ,
$$P(X=1,Y=1)=rac{6}{20}$$
 であるが , $P(X=1) imes P(Y=1)=rac{3}{5} imesrac{9}{20}=rac{27}{100}\,(
eqrac{6}{20})$.

(5)
$$Z=X+Y$$
 の確率分布は, $P(Z=2)=P(Z=3)=\frac{1}{2}$ である.したがって, $E(Z)=2 imes\frac{1}{2}+3 imes\frac{1}{2}=\frac{5}{2}$.
$$E(Z^2)=2^2 imes\frac{1}{2}+3^2 imes\frac{1}{2}=\frac{13}{2}$$
.
$$V(Z)=\frac{13}{2}-\left(\frac{5}{2}\right)^2=\frac{1}{4}$$

4
$$E(X) = 1.85, \ \sqrt{V(X)} = 1.24, \ E(Y) = 2.12, \ \sqrt{V(Y)} = 1.56$$

(1) $Z=rac{1}{2}(X+Y)$ である. $E(Z)=rac{1}{2}(E(X)+E(Y))=rac{1}{2}(1.85+2.12)=rac{1}{2} imes3.97=\underline{1.985}$ (台).

X と Y は独立であるから,

$$\sqrt{V(Z)} = \sqrt{\left(\frac{1}{2}\right)^2 \left(V(X) + V(Y)\right)} = \frac{1}{2}\sqrt{(1.24)^2 + (1.56)^2} = \frac{1}{2}\sqrt{3.9712} = \sqrt{0.9928}$$

= 0.996($\stackrel{\hookleftarrow}{\rightleftharpoons}$).

(2) W = 12 + 3X である.

$$E(W) = 12 + 3E(X) = 12 + 3 \times 1.85 = 12 + 5.55 = \underline{17.55}$$
 (円). $\sqrt{V(W)} = \sqrt{3^2 V(X)} = 3\sqrt{V(X)} = 3.72$ (円).