Saurabh Vyas

Contact Information	612 West 130 St., Zuckerman Institute, NY, New York, 10027 https://smvyas.github.io	
Professional Experience	Columbia University, New York, NY Postdoctoral Research Fellow Mortimer B. Zuckerman Mind Brain Behavior Institute Advisor: Mark M. Churchland	20 –
	Applied Physics Laboratory, Laurel, MD Systems Engineer Intelligent Systems & Robotics Group	11 – 201
Education	Stanford University, Stanford, CA Ph.D. in Bioengineering Thesis: "Neural population dynamics underlying motor learning" Advisor: Krishna V. Shenoy Donald B. Lindsley Prize (outstanding thesis award by Society for Neuroscience)	14 – 202
	Johns Hopkins University, Baltimore, MD M.S.E. in Biomedical Engineering B.S. in Biomedical Engineering B.S. in Electrical Engineering University Honors	08 – 201
Grants & Fellowships	NIH NINDS F32, Ruth L. Kirschstein National Research Service Award NIH F31, Ruth L. Kirschstein National Research Service Award National Science Foundation IGERT trainee in Mind, Brain, and Computation Biosciences Travel Grant, Stanford University National Science Foundation Graduate Research Fellowship Ric Weiland Graduate Fellowship, Stanford University Robert C. Byrd Scholarship, State of Maryland Dorr Family Foundation Scholar, Scholarship for Academic Excellence Science, Engineering, Apprentice Program Fellow, United States Naval Academy Science, Engineering, Apprentice Program Fellow, United States Naval Academy	202 201 201 201 201 201 200 200 200 200
Awards & Honors	Donald B. Lindsley Prize in Behavioral Neuroscience, Society for Neuroscience Sammy Kuo Award in Neuroscience (Finalist), Stanford University Best Talk (1st Place), Stanford Bioengineering Retreat Graduated with University Honors, Johns Hopkins University Team Process Award, Design Day, Johns Hopkins University People's Choice Award, Medical Device Competition, Rice University Invention of the Year (Finalist), Johns Hopkins Office of Technology Transfer Computer Integrated Surgery Project Award, Johns Hopkins University Merit Scholastic Award, State of Maryland Distinguished Scholars, State of Maryland Advanced Placement Scholar with Distinction, CollegeBoard	202 201 201 201 201 201 201 201 200 200
Publications	Verhein JR*, $\underline{\mathbf{Vyas}} \ \underline{\mathbf{S}}^*$, Shenoy KV, "Methylphenidate modulates motor cortical dynamiand behavior." $bioRxiv$. (*equal contribution)	cs 202

- Trautmann EM, Hesse JK, Stine G, Xia R, Shude Zhu S, O'Shea DJ, Karsh B, Colonell J, Lanfranchi F, **Vyas S**, Zimnik A, Steinmann NA, Wagenaar DA, Andrei A, Lopez CM, O'Callaghan J, Putzeys J, Raducanu BC, Welkenhuysen M, Churchland MM, Moore T*, Shadlen M*, Shenoy KV*, Tsao D*, Dutta B†, Harris T†, "Large-scale brain-wide neural recording in nonhuman primates." *bioRxiv*. (*,†equal contribution)
- O'Shea DJ*, Duncker L*, Goo W, Sun X, <u>Vyas S</u>, Trautmann EM, Diester I, Ramakr- 2022 ishnan C, Deisseroth K, Sahani M[†], Shenoy KV[†]. "Direct neural perturbations reveal a dynamical mechanism for robust computation." bioRxiv. (*,[†]equal contribution)
- Sun X*, O'Shea DJ*, Golub MD, Trautmann EM, <u>Vyas S</u>, Ryu SI, Shenoy KV, "Cortical 2021 preparatory activity indexes learned motor memories," *Nature*. (*equal contribution)
- Al Borno M, <u>Vyas S</u>, Shenoy KV, Delp SL, "High-fidelity Musculoskeletal Modeling Reveals that Motor Planning Variability Contributes to the Speed-Accuracy Tradeoff," *eLife*.
- **Vyas S**, O'Shea DJ, Ryu SI, Shenoy KV, "Causal role of motor preparation during error-driven learning," *Neuron*.
- **<u>Vyas S</u>**, Golub MD, Sussillo D, Shenoy KV, "Computation through neural population 2020 dynamics," *Annual Review of Neuroscience*.
- Trautmann EM, Stavisky SD, Lahiri S, Ames KC, Kaufman MT, O'Shea DJ, <u>Vyas S</u>, Sun X, Ryu SI, Ganguli S, Shenoy KV, "Accurate estimation of neural population dynamics without spike sorting," *Neuron*.
- Even-Chen N*, Sheffer B*, <u>Vyas S</u>, Ryu SI, Shenoy KV, "Structure and variability of delay activity in premotor cortex," *PLoS Computational Biology*. (*equal contribution)
- <u>Vyas S</u>, Even-Chen N, Stavisky SD, Ryu SI, Nuyujukian P, Shenoy KV, "Neural population dynamics underlying motor learning transfer," *Neuron*.
- Gorini C, Iyer SM, <u>Vyas S</u>, Ramakrishnan C, Deisseroth K, Delp SL, "Reversible 2018 temporally-specific inhibition of muscle using a light-activated chloride channel," *bioRxiv*.
- Williams A, Kim TH, Wang F, <u>Vyas S</u>, Ryu SI, Shenoy KV, Schnitzer ML, Kolda TG, 2018 Ganguli S, "Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor components analysis," *Neuron*.
- Vyas S, Huang H, Gale J, Sarma S[†], Montgomery E[†], "Complexity of Dynamics in STN Neuronal Systems is reduced in Parkinson's Disease compared to Epilepsy," *IEEE Transactions on Neural Systems and Rehabilitation Engineering*. (†equal contribution)
- Christensen AJ*, Iyer SM*, Francois A, <u>Vyas S</u>, Ramakrishnan C, Vesuna S, Deisseroth K, Scherrer G, Delp SL. "In Vivo Interrogation of Spinal Mechanosensory Circuits," *Cell Reports*. (*equal contribution)
- Mendrik A, Vincken K, Kuijf H, Breeuwer M, Bouvy W, Bresser J, Alansary A, Bruijne M, Carass A, El-Baz A, Jog A, Katyal R, Khan A, Lijn F, Mahmood Q, Mukherjee R, Opbroek A, Paneri S, Pereira S, Persson M, Rajchl M, Sarikaya D, Smedby O, Silva C, Vrooman H, **Vyas S**, Wang C, Zhao L, Biessels G, and Viergever M, "MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans," *Computational Intelligence and Neuroscience*.

Vyas S , O'Shea DJ, Shenoy KV, "Causal role of motor preparation during error-driven learning," Advances in Motor Learning and Motor Control (MLMC), Chicago, I.L. <i>Talk</i> .	2019
Willett FR, $\underline{\mathbf{Vyas}}$ S, Michaels JA, Henderson JM, Shenoy KV, "Neural network models for closed-loop musculoskeletal arm control," Computational and Systems Neuroscience abstract (COSYNE), Lisbon, Portugal.	2019
Lahiri S, Trautmann EM, Stavisky SD, Ames KC, Kaufman MT, O'Shea DJ, Vyas S , Sun X, Ryu SI, Ganguli S, Shenoy KV, "Accurate estimation of neural population dynamics without spike sorting." Computational and Systems Neuroscience abstract (COSYNE), Lisbon, Portugal.	2019
Vyas S , Even-Chen N, Stavisky SD, Ryu SI, Nuyujukian P, Shenoy KV, "Neural population dynamics underlying motor learning transfer," Computational and Systems Neuroscience abstract (COSYNE), Denver, CO.	2018
Vyas S , Even-Chen N, Stavisky SD, Ryu SI, Nuyujukian P, Shenoy KV, "Neural population dynamics underlying covert-to-overt motor learning transfer," Advances in Motor Learning and Motor Control (MLMC), Washington D.C. <i>Talk</i> .	2017
Williams A, Kim TH, Wang F, <u>Vyas S</u> , Ryu SI, Shenoy KV, Schnitzer ML, Kolda TG, Ganguli S, "Dimension reduction of multi-trial neural data by tensor decomposition," Computational and Systems Neuroscience abstract (COSYNE), Salt Lake City, UT. <i>Talk</i> .	2017
Vyas S , Christensen AJ, Mitelut C, Iyer SM, Gratiy S, Delp SL, Anastassiou C, "A point process approach to inferring connectivity from biophysical simulations of Ca2+fluorescence," Computational and Systems Neuroscience abstract (COSYNE), Salt Lake City, UT.	2016
Vyas S, Gammie J, Burlina P, "Computing Cardiac Strain from Variational Optical Flow in Four-Dimensional Echocardiography," IEEE CBMS: Computer-based Medical Systems. Talk. Finalist - Best Student Paper Award	2014
<u>Vyas S</u> , Meyerle J, Burlina P, "Cross Validating Hyperspectral with Ultrasound-based Skin Thickness Estimation," IEEE Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (IEEE WHISPERS).	2014
3	

Vyas S, Meyerle J, Burlina P, "Non-Invasive Estimation of Skin Thickness from Hyper-

spectral Imaging and Validation using Echography," Computers in Biology and Medicine.

Mukherjee R, Vyas S, Juang R, Sprouse C, Burlina P, "Endocardial Surface Delineation

Vyas S, Banerjee A, Burlina P, "Estimating Skin Parameters from Hyperspectral Signa-

O'Shea DJ, Duncker L, Vyas S, Sun X, Sahani, M, Shenoy KV, "Electrical but not

optogenetic stimulation drives nonlinear contraction of neural states," Computational and

O'Shea DJ*, Trautmann EM*, Sun X, Vyas S, Shenoy KV, "Motor cortical neural dynam-

ics are finely spatially intermingled," Computational and Systems Neuroscience abstract

in 3D Transesophageal Echocardiography," Ultrasound in Medicine and Biology.

Systems Neuroscience abstract (COSYNE), Lisbon, Portugal.

tures," Journal of Biomedical Optics.

(COSYNE), Online.

Peer-reviewed

Conference

Submissions

2015

2013

2013

2022

2021

	2013
$\frac{\textbf{Vyas S}}{\textbf{Estimation,"}} \text{ Banerjee A, Burlina P, "Machine Learning Methods for In Vivo Skin Parameter } \\ \frac{\textbf{Estimation,"}}{\textbf{Estimation,"}} \text{ IEEE CBMS: Computer-based Medical Systems.}$	2013
Vyas S , Mukherjee R, Sosa F, Burlina P, "Endocardium Segmentation in 3D Transesophageal Echocardiography," IEEE ISBI: International Symposium on Biomedical Imaging: From Nano to Macro.	2013
$\frac{\mathbf{Vyas}\ \mathbf{S}}{\mathbf{Skin}\ \mathbf{Parameters}},\ \mathbf{Banerjee}\ \mathbf{A},\ \mathbf{Garza}\ \mathbf{L},\ \mathbf{Kang}\ \mathbf{S},\ \mathbf{Burlina}\ \mathbf{P}, \text{``Hyperspectral Signature Analysis of Skin Parameters},\ \mathbf{SPIE\text{-}MI:}\ \mathbf{Proceedings}\ \mathbf{of}\ \mathbf{SPIE}\ \mathbf{Medical\ Imaging}.\ \mathit{Talk}.$	2013
Peterson E, Mukherjee R, <u>Vyas S</u> , Cornish D, "Galaxy: Link Space Visualization and Analysis of Network Traffic," <u>IEEE</u> Visual Analytics in Science & Technology (VAST-MC3). Honorable Mention – "Intriguing Visualization"	2013
<u>Vyas S</u> *, Su S*, Kim R*, Kuo N, Taylor RH, Kang J, Boctor EM, "Intraoperative Ultrasound to Stereocamera Registration using Interventional Photoacoustic Imaging," SPIE-MI: Proceedings of SPIE Medical Imaging. (*equal contribution)	2012
Vyas S , Trautmann EM, Fakhoury T, Liwtin-Kumar A, Shadlen MS, Churchland MM, "Hierarchical division of labor during cognitive-motor sequences," Neural Control of Movement, Dubrovnik, Croatia.	2024
O'Shea DJ, Trautmann EM, Sun X, $\underline{\mathbf{Vyas}}$, Shenoy KV, "Spatial microstructure of motor cortical neural dynamics," Neural Control of Movement, Dubrovnik, Croatia.	2024
O'Shea DJ, Trautmann EM, Sun X, $\underline{\mathbf{Vyas}}$ S, Shenoy KV, "Spatial microstructure of motor cortical neural dynamics," Society for Neuroscience, Washington D.C.	2023
O'Shea DJ, Duncker L, Sun X, $\underline{\mathbf{Vyas}}$ $\underline{\mathbf{S}}$, Deisseroth, K, Sahani, M, Shenoy KV, "Optogenetic and electrical perturbations in motor cortex reveal a neural population mechanism for robust computation," Society for Neuroscience, San Diego, C.A.	2022
Willett F, $\underline{\mathbf{Vyas}}$ S, Michaels JA, Henderson JM, Shenoy KV, "Feedback control dynamics explain motor cortical activity," Society for Neuroscience, Virtual.	2021
O'Shea DJ, Trautmann EM, Sun X, $\underline{\mathbf{Vyas}}$ S, Shenoy KV, "High-density silicon probes reveal signatures of neural circuit organization in motor cortical dynamics." Neural Control of Movement, Online.	2021
$\frac{\mathbf{Vyas}\ \mathbf{S}}{\mathbf{driven}\ learning,"}\ Society\ for\ Neuroscience,\ Chicago,\ I.L.$	2019
Verhein JR*, <u>Vyas S</u> *, Shenoy KV, "Towards a neural population-level understanding of the effects of methylphenidate (Ritalin) in motor cortex of reaching monkeys," Society for Neuroscience Chicago LL (*equal contribution)	2019

Conference Abstracts

Trautmann EM, O'Shea DJ, Sun X, Vyas S, Ryu SI, Shenoy KV, "Spatially heterogenous	2019
tuning in rhesus motor cortex revealed using neuropixels probes," Society for Neuroscience,	
Chicago, I.L.	

Deo DR, Willett FR, Avansino DT, <u>Vyas S</u>, Even-Chen N, Hochberg LR, Henderson 2019 JM, Shenoy KV, "Neural representation of attempted movement of a paralyzed limb in a person, and implications for intracortical brain-computer interfaces," Society for Neuroscience, Chicago, I.L.

Sun X, O'Shea DJ, Trautmann EM, Golub MD, <u>Vyas S</u>, Fisher TG, Ryu SI, Shenoy KV, 2019 "Changes in neural population activity underlying the learning of novel arm dynamics," Society for Neuroscience, Chicago, I.L.

Verhein JR*, <u>Vyas S</u>*, Shenoy KV, "Towards a neural population-level understanding of the effects of methylphenidate (Ritalin) in motor cortex of reaching monkeys," Neural Control of Movement, Toyama, Japan. (*equal contribution)

Sun X, O'Shea DJ, Trautmann EM, Golub MD, <u>Vyas S</u>, Fisher TG, Ryu SI, Shenoy KV, 2019 "Exploration of distinct neural activity repertoire during learning of new arm dynamics," Neural Control of Movement, Toyama, Japan.

<u>Vyas S</u>, O'Shea DJ, Trautmann EM, Willett FR, Shenoy KV, "Motor cortical preparatory activity is causally involved in visuomotor learning," Society for Neuroscience, San Diego, C.A.

Trautmann EM, O'Shea DJ, <u>Vyas S</u>, Shenoy KV, "Recording large populations of neurons with single-cell resolution in nonhuman primates using Neuropixels," Cell-NERF Symposium: Neurotechnologies, Leuven, Belgium.

Even-Chen N, Sheffer B, <u>Vyas S</u>, Ryu SI, Shenoy KV, "Spatial encoding of reaches in preparatory motor cortical activity," Neural Control of Movement, Santa Fe, N.M.

<u>Vyas S</u>, Even-Chen N, Stavisky SD, Ryu SI, Nuyujukian P, Shenoy KV, "Brain-machine interface guided movements share a common neural substrate with overt movements," Society for Neuroscience, Nanosymposium on Motor Control and Internal Representations, Washington D.C. *Talk.* **Selected as SfN Hot Topic**.

Even-Chen N, **Vyas S**, Ryu SI, Shenoy KV, "The effect of task dimensionality on BMI 2017 performance," Society for Neuroscience, Washington D.C.

Sheffer B, Even-Chen N, <u>Vyas S</u>, Ryu SI, Shenoy KV, "Direction and distance decoding accuracy from plan activity in monkey motor cortex," Society for Neuroscience, Washington D.C.

Williams A, Poole B, Maheswaranathan N, Kim TH, Wang F, <u>Vyas S</u>, Shenoy KV, 2017 Schnitzer ML, Kolda TG, Ganguli S, "Low-dimensional representations of learning in multi-trial datasets," Society for Neuroscience, Washington D.C.

<u>Vyas S</u>, Christensen AJ, Iyer SM, Ramakrishnan C, Deisseroth K, Delp SL, "Optical 2015 and computational tools for analyzing somatosensory circuits," Society for Neuroscience, Chicago, IL.

IL.	
Iyer SM, Christensen AJ, <u>Vyas S</u> , Vesuna S, Francois A, Ramakrishnan C, Deisseroth K, Scherrer G, Delp SL, "Optogenetic interrogation of mammalian mechanosensory and nociceptive circuits," Society for Neuroscience, Chicago, IL.	2015
Vyas S , Nguyen HV, Burlina P, Banerjee A, Garza L, Chellappa R, "Computational Modeling of Skin Reflectance Spectra for Biological Parameter Estimation through Machine Learning," SPIE: Proceedings of SPIE. <i>Talk</i> .	2012
Burlina P, Banerjee A, <u>Vyas S</u> , Garza L, "Hyperspectral Imaging for Detection of Skin Related Conditions," U.S. Patent No. 8,761,476. Granted on June 24, 2014.	2014
Janelia Research Campus, Mechanistic Cognitive Neuroscience Junior Scientist Workshop, "Neural computations underlying complex cognitive motor sequences,"	2022
Simons-Emory International Consortium on Motor Control, Workshop on Neural Dynamics, "Computation through dynamics,"	2020
Princeton University, Tim Buschman's group, "What role does motor preparation play during motor learning."	2020
Columbia University, Daniel Salzman's group, "What role does motor preparation play during motor learning."	2020
Columbia University, Mark Churchland's group, "What role does motor preparation play during motor learning."	2020
Stanford University, Department of Neurobiology, "The Shenoy Lab Evening," Stanford, CA, "Neural population dynamics underlying motor learning."	2019
Advances in Motor Learning and Motor Control (MLMC), Chicago, IL, "Causal role of motor preparation during error-driven learning."	2019
Massachusetts Institute of Technology, Mehrdad Jazayeri's group, Cambridge, MA, "Neural population dynamics underlying visuomotor learning."	2019
University of Chicago, David Freedman's group, Chicago, IL, "Neural population dynamics underlying visuomotor learning."	2019
Carnegie Mellon University, Byron Yu's & Matt Smith's groups, Pittsburgh, PA, "Neural population dynamics underlying visuomotor learning."	2019
University of California, Berkeley, Jose Carmena's group, Berkeley, CA, "Neural population dynamics underlying visuomotor learning."	2019
Stanford University, Invited talk at Center for Mind, Brain, Computation, and Technology (MBCT), Stanford, CA, "Neural population dynamics underlying visuomotor learning."	2019
	Iyer SM, Christensen AJ, Vyas S, Vesuna S, Francois A, Ramakrishnan C, Deisseroth K, Scherrer G, Delp SL, "Optogenetic interrogation of mammalian mechanosensory and nociceptive circuits," Society for Neuroscience, Chicago, IL. Vyas S, Nguyen HV, Burlina P, Banerjee A, Garza L, Chellappa R, "Computational Modeling of Skin Reflectance Spectra for Biological Parameter Estimation through Machine Learning," SPIE: Proceedings of SPIE. Talk. Burlina P, Banerjee A, Vyas S, Garza L, "Hyperspectral Imaging for Detection of Skin Related Conditions," U.S. Patent No. 8,761,476. Granted on June 24, 2014. Janelia Research Campus, Mechanistic Cognitive Neuroscience Junior Scientist Workshop, "Neural computations underlying complex cognitive motor sequences," Simons-Emory International Consortium on Motor Control, Workshop on Neural Dynamics, "Computation through dynamics," Princeton University, Tim Buschman's group, "What role does motor preparation play during motor learning." Columbia University, Daniel Salzman's group, "What role does motor preparation play during motor learning." Stanford University, Mark Churchland's group, "What role does motor preparation play during motor learning." Stanford University, Department of Neurobiology, "The Shenoy Lab Evening," Stanford, CA, "Neural population dynamics underlying motor learning." Massachusetts Institute of Technology, Mehrdad Jazayeri's group, Cambridge, MA, "Neural population dynamics underlying visuomotor learning." University of Chicago, David Freedman's group, Chicago, IL, "Neural population dynamics underlying visuomotor learning." University of California, Berkeley, Jose Carmena's group, Berkeley, CA, "Neural population dynamics underlying visuomotor learning."

Christensen AJ, Iyer SM, $\underline{\mathbf{Vyas}}$, Francois A, Scherrer G, Deisseroth K, Delp SL, "Optogenetic tools for perturbing spinal neural circuits," Society for Neuroscience, Chicago,

	Johns Hopkins University, Reza Shadmehr's group, Baltimore, MD, "Neural population dynamics underlying visuomotor learning."	2018
	Advances in Motor Learning and Motor Control (MLMC), Washington DC, "Neural population dynamics underlying covert-to-overt motor learning transfer."	2017
	Society for Neuroscience, Nanosymposium on Motor Control and Internal Representations, Washington DC, "Brain-machine interface guided movements share a common neural substrate with overt movements."	2017
	Stanford University, Bioengineering Retreat, Chaminade Resort & Spa, Santa Cruz, CA, "Neural population dynamics underlying motor learning transfer." Best Talk Award .	2017
	Stanford University, Invited talk to Neurosciences Ph.D. program candidates, hosted by Jay McClelland. "Neural Dynamics and Adaptation for Brain-Machine Interface Control."	2017
	Stanford University, Bioengineering Retreat, Chaminade Resort & Spa, Santa Cruz, CA, "Towards a freely moving macaque model for motor neuroscience and brain-machine interfaces."	2016
	Google, Invited talk by Thomas Dean, Mountain View, CA, "Estimating Neuronal Connectivity from Calcium Imaging Data."	2015
	IEEE CBMS conference in New York, NY, "Computing Cardiac Strain from Variational Optical Flow in Four-Dimensional Echocardiography."	2014
	MICCAI workshop in Nagoya, Japan. "Automated Walks using Machine Learning for Segmentation."	2013
	ISBI conference in San Francisco, CA, "Endocardium Segmentation in 3D Transesophageal Echocardiography."	2013
	SPIE Medical Imaging conference in Orlando, FL, "Hyperspectral Signature Analysis of Skin Parameters."	2013
	SPIE conference in Baltimore, MD, "Computational Modeling of Skin Reflectance Spectra for Biological Parameter Estimation through Machine Learning."	2012
	SPIE Medical Imaging conference in San Diego, CA, "Intraoperative Ultrasound to Stereocamera Registration using Interventional Photoacoustic Imaging."	2012
Teaching	EE 124: Introduction to NeuroElectrical Engineering, Stanford University Co-instructor (with Krishna Shenoy)	2018
	NBio 227: Techniques in Neuroscience, Stanford University Guest lecturer on Brain Machine Interfaces	7, 2018
	BIOS 230: Biomedical Data Analysis in Matlab, Stanford University Co-developed and co-instructed 3-week mini course (with Nimit Jain)	2015
Course Assistant	EE 364a: Convex Optimization, Stanford University EE 278: Statistical Signal Processing, Stanford University EE 376a: Information Theory, Stanford University	8, 2019 2018 2017

BioE 281: Biomechanics of Movement, Stanford University CS 229: Machine Learning, Stanford University 580.421: Systems Bioengineering Laboratory, Johns Hopkins University	2016 2015 2012
Zuckerman Institute Gender Inclusion Group, Columbia University Board member; Supporting and advocating for people who have been historically marginalized in STEM fields due to their gender identity and expression.	2024 –
Zuckerman Institute Postdoctoral Seminar eXtramural, Columbia University Co-organized extramural postdoctoral seminar series, focusing on scientists historically marginalized in science.	2023 –
Zuckerman Institute Athletics Club, Columbia University Co-founding board member; co-organized running and triathlon activities.	2021 –
Computational Neuroscience Journal Club, Stanford University Co-founder and co-organizer.	2015 - 2018
Stanford Biosciences Student Association, Stanford University Mentored first-year biosciences (bioengineering) graduate students.	2016 - 2019
Center for Mind, Brain, & Computation, Stanford University Organized the Monday evening seminar series; invited and hosted speakers.	2015 - 2019
Stanford Undergraduate Research Association, Stanford University Mentored undergraduate students interested in research opportunities.	2018
Biomedical Engineering Society, Stanford University Mentored undergraduate students interested in bioengineering careers.	2018
Boys and Girls Club, Palo Alto, CA SAT tutoring for high school students in the east Palo Alto area.	2015 - 2016
ASPIRE Program, Johns Hopkins Applied Physics Laboratory Mentored high school students in robotics, and computer vision.	2013 - 2014
College Prep Program, Johns Hopkins University Developed an SAT curriculum; lectured a classroom of 20 students.	2013 - 2014
Tutorial Project, Johns Hopkins University Tutored math and reading to Baltimore City Elementary school students.	2018
Ad hoc reviewer for: Nature Neuroscience, Nature Communications, Nature Human	

Outreach & Service

Behavior, Communications Biology, Cell Reports, Journal of Neural Engineering, Neural Networks, COSYNE