

WHAT IS CLAIMED IS:

1 1. A method of forming a spin valve sensor, comprising:
2 forming a ferromagnetic free layer structure that has a magnetic moment;
3 forming a ferromagnetic pinned layer structure having a magnetic moment;
4 forming a nonmagnetic conductive spacer layer between the free layer structure and
5 the pinned layer structure;
6 forming an anti-ferromagnetic pinning layer coupled to the pinned layer structure for
7 pinning the magnetic moment of the pinned layer structure;
8 forming hard magnetic thin films on both sides of at least a portion of the free layer
9 structure, the ferromagnetic pinned layer structure, the nonmagnetic conductive spacer layer
10 and the anti-ferromagnetic pinning layer; and
11 forming a hard bias seedlayer structure adjacent to at least a portion of the free layer
12 structure, the ferromagnetic pinned layer structure, the nonmagnetic conductive spacer layer
13 and the anti-ferromagnetic pinning layer, wherein the forming the hard bias seedlayer
14 structure comprises forming at least a first layer comprising silicon and a second layer
15 comprising chromium or chromium molybdenum.

1 2. The method of claim 1, wherein the forming the anti-ferromagnetic pinning
2 layer further comprising forming a layer of platinum manganese.

1 3. The method of claim 1, wherein the forming the hard bias seedlayer structure
2 further comprises forming a layer of tantalum adjacent the silicon layer.

1 4. The method of claim 3, wherein the forming a layer of tantalum adjacent the
2 silicon layer further comprises forming the tantalum and silicon layer with equal thickness.

1 5. The method of claim 3, wherein the forming a layer of tantalum adjacent the
2 silicon layer further comprises forming the tantalum layer with a thickness half a thickness of
3 the silicon layer.

1 6. The method of claim 3, wherein the forming a layer of tantalum further
2 comprises forming a tantalum-chromium alloy layer.

1 7. The method of claim 6, wherein the forming the tantalum-chromium alloy
2 layer further comprises forming the tantalum-chromium alloy layer and the silicon layer with
3 equal thickness.

1 8. The method of claim 6, wherein the forming the tantalum-chromium alloy
2 layer further comprises forming the tantalum-chromium alloy layer with a thickness half a
3 thickness of the silicon layer.

1 9. The method of claim 1, wherein the forming the hard bias seedlayer structure
2 further comprises forming a layer of tantalum, silicon and chromium.

1 10. The method of claim 1, wherein the forming the hard bias seedlayer structure
2 further comprises forming a layer of tantalum, silicon and chromium-molybendum.

1 11. A method of forming a spin valve sensor, comprising:
2 forming a spin valve structure including a ferromagnetic free layer, a ferromagnetic
3 pinned layer and an anti- ferromagnetic pinning layer;
4 forming hard magnetic thin films adjacent at least a portion of the spin valve structure
5 on both sides of the spin valve structure; and
6 forming a hard bias seedlayer structure adjacent at least a portion of the spin valve
7 structure, wherein the forming the hard bias seedlayer structure comprises forming at least a
8 first layer comprising silicon and a second layer comprising chromium or chromium
9 molybdenum.

1 12. The method of claim 10, wherein the pinning layer comprises platinum
2 manganese.

1 13. The method of claim 10, wherein the forming the hard bias seedlayer structure
2 further comprises forming a layer of tantalum adjacent the silicon layer.

1 14. The method of claim 13, wherein the forming a layer of tantalum adjacent the
2 silicon layer further comprises forming the tantalum and silicon layer with equal thickness.

1 15. The method of claim 13, wherein the forming a layer of tantalum adjacent the
2 silicon layer further comprises forming the tantalum layer with a thickness half a thickness of
3 the silicon layer.

1 16. The method of claim 13, wherein the forming a layer of tantalum further
2 comprises forming a tantalum-chromium alloy layer.

1 17. The method of claim 16, wherein the forming the tantalum-chromium alloy
2 layer further comprises forming the tantalum-chromium alloy layer and the silicon layer with
3 equal thickness.

1 18. The method of claim 16, wherein the forming the tantalum-chromium alloy
2 layer further comprises forming the tantalum-chromium alloy layer with a thickness half a
3 thickness of the silicon layer.

1 19. The method of claim 11, wherein the forming the hard bias seedlayer structure
2 further comprises forming a layer of tantalum, silicon and chromium.

1 20. The method of claim 11, wherein the forming the hard bias seedlayer structure
2 further comprises forming a layer of tantalum, silicon and chromium-molybendum.

1 21. A method of forming a hard bias seedlayer structure, comprising:
2 forming a first layer comprising silicon; and
3 forming a second layer comprising chromium or chromium molybdenum.

1 22. The method of claim 21 further comprising forming a layer of tantalum
2 adjacent the silicon layer.