Содержание

Введение	2
Основная часть	3
Метод отражений	3
Построение QR-разложения методом отражений	4
Вычислительный эксперимент	6
Эксперимент 1	6
Заключение	7
Источники	8
Приложения	9
Реализация выше описанных методов на языке MATLAB	9

Введение

Объектом исследования является точный метод решения СЛАУ - построение QR-разложения методом отражений.

Цель работы — ознакомиться с алгоритмами метода отражений и построения QR-разложения, решить типовые задачи, сформулировать выводы по полученным решениям, отметить достоинства и недостатки метода, приобрести практические навыки и компетенции, а также опыт самостоятельной профессиональной деятельности, а именно:

- создать алгоритм решения поставленной задачи и реализовать его, протестировать;
- освоить теорию вычислительного эксперимента; современных компьютерных технологий;
- приобрести навыки представления итогов проделанной работы в виде отчета, оформленного в соответствии с имеющимися требованиями, с привлечением современных средств редактирования и печати.

Работа над курсовым проектом предполагает выполнение следующих задач:

- дальнейшее углубление теоретических знаний обучающихся;
- получение и развитие прикладных умений и практических навыков по направлению подготовки;
- овладение методикой решения конкретных задач;
- развитие навыков самостоятельной работы;
- развитие навыков обработки полученных результатов, анализа и осмысления их с учетом имеющихся литературных данных;
- приобретение навыков оформления описаний программного продукта;
- повышение общей и профессиональной эрудиции.

Основная часть

Метод отражений

Метод отражения представляет собой алгоритм подбора унарных матриц преобразований P, таких что в результате всех этих преобразований исходная матрица A приводится к треугольному виду. Система с треугольной матрицей в дальнейшем решается, например, методом Γ имеет широкое распространение благодаря своей устойчивости к накоплению вычислительной погрешности.

В n - мерном евклидовом пространстве рассмотрим гиперплоскость $(p,x)=p_1x_1+p_2x_2+...+p_nx_n=0$, проходящую через начало координат ортогонально заданному вектору нормали $p=(p_1,p_2,...,p_n)^*$. Поставив в соответствие каждому элементы х рассматриваемого пространства элемент

$$y = x - 2\frac{(p,x)}{(p,p)}p,\tag{1}$$

мы определим некоторое преобразование и пространства, которое называется преобразованием ортогонального отражения относительно гипер-плоскости (p,x)=0

Определение 1. Матрицей отражения называется матрица вида $F = I - \frac{2}{(p,p)}pp^*$, относительно гиперплоскости с нормалью р Всякая матрица отражения целиком определяется соответствующим вектором нормали

Рассмотрим некоторые свойства матрицы

- 1. $F^2 = I$
- 2. $F^* = F$
- 3. Матрица F ортогональна.
- 4. Матрица отражения не изменяется, если в место нормали p, определяющего эту матрицу, использовать любой коллинеарный вектор $\beta p \ (\beta \neq 0)$.
- 5. Если y = Fx и F матрица отражения, то в качестве определяющего ее вектора нормали можно взять разность исходного и отраженного векторов:

$$p = x - y$$

- 6. Если первые k компонент вектора нормали нулевые, то первые k компонент отраженного вектора совпадают с соответствующими компонентами исходного вектора.
- 7. Если $p_1 = p_2 = \dots = p_k = 0$ и $x_{k+1} = x_{k+2} = \dots = x_n = 0$, то и $y_{k+1} = y_{k+2} = \dots = y_n = 0$

Построение QR-разложения методом отражений

Теорема 1. (О QR-разложении) Всякая невырожденная матрица $A \in M_n$ может быть представлена в виде A = QR, где Q - унитарная, а матрица R - верхняя треугольная с вещественным положительными элементами на главной диагонали. Это разложение единственно.

Коротко по шагам опишем алгоритм приведения матрицы A к верхней треугольной форме с помощью преобразований отражения.

1. Строим матрицу A_1 по формуле (1). Для этого определим матрицу отражения F_1 так, чтобы первый столбец матрицы

$$A_1 = F_1 A \tag{2}$$

имел вид $(a_{11}^{(1)}, 0, 0, ..., 0)^*$. Для определения элемента $a_{11}^{(1)}$ воспользуемся свойством сохранения длины вектора при ортогональном преобразовании. Так мы построим первый столбец матрицы A_1 . Для определения остальных необходимо воспользоваться формулой $a_j^{(1)} = F_1 a_j, j = 2, 3, ..., n$, где по определению матрицы F_1 :

$$a_j^{(1)} = a_j - 2 \frac{(p^{(1)}, p_j)}{(p^{(1)}, p^{(1)})} p^{(1)}, j = 2, 3, ..., n$$

2. Пусть в результате выполнения k-1 шагов мы получили матрицу A_k . На k-м шаге определим матрицу отражения F_k так, чтобы k-й столбец матрицы

$$A_k = F_k A_{k-1} \tag{3}$$

имел вид $(a_{1k}^{(1)},a_{2k}^{(2)},...,a_{k-1k}^{(k-1)},a_{kk}^{(k)},0,...,0)^*$. Согласно свойству 5 $P^{(k)}=a_k^{(k-1)}-a_k^{(k)}$, т.е.

$$P_l^{(k)} = 0, \quad l = 1, 2, ..., k - 1, \quad P_k^{(k)} = a_{kk}^{(k-1)} - a_{kk}^{(k)},$$

$$P_l^{(k)} = a_{lk}^{(k-1)}, \quad l = k - 1, ..., n$$

Элементы $a_{kk}^{(k)}$ определены из условия равенства длин столбцов $a_k^{(k-1)}$

$$akk^{(k)} = -\sigma_k \sqrt{\sum_{l=k}^n [a_{lk}^{(k-1)}]^2},$$

где

$$\sigma = \begin{cases} 1 & \text{, если } a_{kk}^{(k-1)} \ge 0 \\ -1 & \text{, если } a_{kk}^{(k-1)} < 0 \end{cases}$$

Тогда

$$P_k^{(k)} = a_{kk}^{(k-1)} + \sigma_k \sqrt{\sum_{l=k}^n [a_{lk}^{(k-1)}]^2}$$

Полностью определив вектор нормали $P^{(k)}$, а значит и матрицу отражения F_k , можем приступить к выполнению k-го шага, состоящего в вычислении матрицы A_k по формуле (3)

3. Определив k-тый столбец матрицы, определяем остальные воспользовавшись формулами $a_j^{(k)} = F_k a_j^{(k-1)}$. По определению матрицы отражения F_k получаем

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - 2 \frac{p_i^{(k)}}{\sum_{l=k}^n (p_l^{(k)})^2} \sum_{l=k}^n p_l^{(k)} a_{lj}^{(k-1)}.$$
 (4)

4. В результате выполнения n-1 шагов мы придем к матрице A-n-1, имеющий требуемую верхнюю треугольную матрицу которую будем обозначать за R. Последовательно использование рекуррентной формулы (3) дает:

$$R = A_{n-1} = F_{n-1}A_{n-2} = F_{n-1}F_{n-2}A_{n-3} = \dots = F_{n-1}F_{n-2}\cdots F_2F_1A$$

Обозначив через Q произведение матриц и вычислив Q^* получим $R=Q^*A$ и

$$A = Q \cdot R$$

Вычислительный эксперимент

В данных экспериментах интеграл вычисляется не с заданной точностью, а с разными интервалами $(n=2^J,\,J$ - параметр в рекуррентных формулах)

В дальнейшем будем использовать следующие обозначения:

J - параметр в рекуррентных формулах

K - параметр точности

x - численный результат выполнения метода

 Δ - абсолютная погрешность

 δ - относительная погрешность

Эксперимент 1

Заключение

В данной работе мы рассмотрели алгоритм построения QR-разложения методом отражений. Были проведены вычислительные эксперименты, демонстрирующие эффективность и точность данного метода. В результате работы над курсовым проектом были приобретены практические навыки владения:

- современными численным методам решения задач математической экономики;
- основами алгоритмизации для численного решения задач математической экономики на одном из языков программирования;
- инструментальными средствами, поддерживающими разработку программного обеспечения для численного решения задач математической экономики;

а также навыками представления итогов проделанной работы в виде отчета, оформленного в соответствии с имеющимися требованиями, с привлечением современных средств редактирования и печати, а именно программы LaTeX.

Список используемых источников

Источники

1. Метод Хаусхолдера (отражений) QR-разложения квадратной матрицы, вещественный точечный вариант algowiki-project.org

Приложения

Реализация выше описанных методов на языке MATLAB

1