Influence of initial system

Consider a system with two lenses, made of BK7 and K5 at 587.56 nm. Both lenses have the thickness 5 mm, between both lenses the air distance is 1 mm. The incoming light bundle is collimated with diameter D = 20 mm, the focal length should be f = 30 mm. The system should be optimized by bending of the lenses only with a simple spot criterion on axis. The optimization result now depends strongly on the initial values of the radii. Try and compare the following possibilities:

- a) start with plane surfaces only
- b) start with a final radius of R4 = -20
- c) start with a first radius R1 = +20

and compare the different results.

Solution:

The results as layouts and with the corresponding spot rms radius values are collected in the following table

No	Layout	Start radii	Rms spot size
а		0 - 0 - 0 - 0	2783
b		0 - 0 - 020	45
С		+20 - 0 - 0 - 0	53

Data and Seidel contribution of the results:

a) No real correction, no compensation in this local minimum.

b) Nearly equal contributions at every surface, no compensation, but rather insensitive.

c) The second lens is quasi-aplanatic. The front lens mostly contributes to the spherical aberration, thus the design is more sensitive.

4	Surface Type	Comment	Radius		Thicknes	s N	/laterial	Coating	Clear Semi-Dia	Chip Zone	Mech Semi-Dia	Conic	TCE x 1E-6
0	OBJECT Standard ▼		Infinity		Infinity				0.000000	0.0000	0.000000	0.0000	0.0000
1	Standard ▼		Infinity		10.0000				10.000000	0.0000	10.000000	0.0000	0.0000
2 5	TOP Standard ▼		29.262772	٧	5.000000		BK7		10.000000	0.0000	10.000000	0.0000	-
3	Standard ▼		-156.5931	٧	1.000000				9.640838	0.0000	10.000000	0.0000	0.0000
4	Standard ▼		16.771588	٧	5.000000		K5		8.800081	0.0000	8.800081	0.0000	-
5	Standard ▼		24.575355	٧	22.1255	٧			7.516674	0.0000	8.800081	0.0000	0.0000
6 11	MAGE Standard ▼		Infinity		-				0.082926	0.0000	0.082926	0.0000	0.0000

Optimization of Insensitivity

In the usual optimization, only the overall result of the system is minimized with the merit function. Due to the compensation effects, this can cause by quite different orders of magnitude in the size of the various surface contributions. By fixing the surface contributions, this effect of unequal weighting can be reduced and we get a rather uniform aberration loading and as a benefit a tolerance insensitive design, which can be easier to manufacture. To get this result, a poorer performance should be accepted.

- a) We are looking for a system with an collimated input ray bundle of diameter D=10 mm, a wavelength of 546.07 nm and a focal length of 5 mm to obtain a high numerical aperture in the image. This task should be performed by 3 spherical lenses made of BK7 with thicknesses of 2 mm and distances of 1 mm respectively. For the initial setup, we introduce a radius of -10 mm on the last surface. Optimize the system by changing all the radii and the final image distance. Show the result for the spot diameter and the Seidel surface contributions.
- b) Now we add the SPHA operator for the individual spherical aberration contributions for every surface. In addition, the sum of squares is formulated by the operand QSUM. Now re-optimize the system by looking for the minimum value of this sum of squares, which then guarantees nearly equal values for the spherical surface contributions. What at the end is the performance in comparison to the previous solution? What is the spreading of the spherical surface contributions?
- c) Finally as more automatic solution, use the operand EQUA to force the spherical Seidel contributions to have the same values. Start with the result of b). Is the performance now better than in b)?

Solution:

a) The starting system is seen here.

A	Surface Type	Comment	Radius		Thickness		Material	Coa	ting	Clear Semi-Dia	Chip Zone	Mech Semi-Dia
0	OBJECT Standard ▼		Infinity		Infinity					0.000000	0.0000	0.000000
1	Standard ▼		Infinity		10.0000					5.000000	0.0000	5.000000
2	STOP Standard ▼		Infinity \	V	2.000000		BK7			5.000000	0.0000	5.000000
3	Standard ▼		Infinity \	V	1.000000					5.000000	0.0000	5.000000
4	Standard ▼		Infinity \	V	2.000000		BK7			5.000000	0.0000	5.000000
5	Standard ▼		Infinity \	V	1.000000					5.000000	0.0000	5.000000
6	Standard ▼		Infinity \	V	2.000000		BK7			5.000000	0.0000	5.000000
7	Standard ▼		-10.000000 \	V	0.000000 \	V				5.000000	0.0000	5.000000
8	IMAGE Standard ▼		Infinity		-					4.527993	0.0000	4.527993

The merit function is selected by the default with some more rays and the focal length is forced to be 5 mm. After optimization we get the following system:

4	Surface Type	Comment	Radius		Thickness	s	Material	Coating	g	Clear Semi-Dia	Chip Zone	Mech Semi-Dia
0	OBJECT Standard ▼		Infinity		Infinity					0.000000	0.0000	0.000000
1	Standard ▼		Infinity		10.0000					5.000000	0.0000	5.000000
2	STOP Standard ▼		11.522679	٧	2.000000		BK7			5.000000	0.0000	5.017613
3	Standard ▼		-13.482759	٧	1.000000					5.017613	0.0000	5.017613
4	Standard ▼		2.493819	٧	2.000000		BK7			2.493806	0.0000	2.493806
5	Standard ▼		5.002271	٧	1.000000					2.350053	0.0000	2.493806
6	Standard ▼		-13.276533	٧	2.000000		BK7			1.310964	0.0000	1.310964
7	Standard ▼		-4.953844	٧	0.075531	V				0.095105	0.0000	1.310964
8	IMAGE Standard ▼		Infinity		-					0.214096	0.0000	0.214096

The spot diameter is approximately 55 μ m, the Seidel contributions of the surfaces are found in the range between 0.092 ...1.253 and therefore shows factors of approximately 13 between the values.

b) The extended merit function now contains the following additional operands:

Merit Function Editor	r: 4.174614E+000									
Edit Design Tools	View Help									
Oper #	Type	Op#1	Op#2					Target	Weight	Value
1: DMFS	DMFS									
2: BLNK	BLNK	Sequential meri	t function: RMS s	pot radius cent	oid GQ 11 rings	6 arms				
3: EFFL	EFFL		1					5.00000	10.00000	5.00342
4: BLNK	BLNK	No default glas:	s thickness bound	lary constraints.						
5: SPHA	SPHA	2	1					0.00000	0.00000	24.37956
6: SPHA	SPHA	3	1					0.00000	0.00000	29.36266
7: SPHA	SPHA	4	1					0.00000	0.00000	19.77731
8: SPHA	SPHA	5	1					0.00000	0.00000	13.91307
9: SPHA	SPHA	6	1					0.00000	0.00000	5.45003
10: SPHA	SPHA	7	1					0.00000	0.00000	4.17261
11: QSUM	QSUM	5	10					30.00000	1.00000	45.69855
12: BLNK	BLNK									
13: BLNK	BLNK									
14: BLNK	BLNK	Operands for fi	eld 1.							
15: TRAC	TRAC		1	0.00000	0.00000	0.10433	0.00000	0.00000	0.08744	0.01529
16: TRAC	TRAC		1	0.00000	0.00000	0.23763	0.00000	0.00000	0.19726	0.03330
17. TDXC	TDAC		1	0 00000	0 00000	0.36733	0.00000	0.00000	0.20262	0.04722

After iterative lowering the target value we find a value of 30, whioch can be reached. We now obtain the following system data

4	Surface Type	Comment	Radius		Thickness	s	Material	Coati	ng	Clear Semi-Dia	Chip Zone	Mech Semi-Dia
0	OBJECT Standard ▼		Infinity		Infinity					0.000000	0.0000	0.000000
1	Standard ▼		Infinity		10.0000					5.000000	0.0000	5.000000
2	STOP Standard ▼		12.754089	٧	2.000000		BK7			5.000000	0.0000	5.000000
3	Standard ▼		-74.770923	٧	1.000000					4.883060	0.0000	5.000000
4	Standard ▼		5.793088	٧	2.000000		BK7			4.136427	0.0000	4.136427
5	Standard ▼		14.266846	٧	1.000000					3.766775	0.0000	4.136427
6	Standard ▼		2.354535	٧	2.000000		BK7			2.312377	0.0000	2.312377
7	Standard ▼		2.603076	٧	1.623953	٧				1.576428	0.0000	2.312377
8	IMAGE Standard ▼		Infinity		-					0.079978	0.0000	0.079978

The spot diameter is reduced to 40 μm , the final surface contributions only differ by a factor of 2 at the end.

It is seen by further reducing the target value for the sum of squares of the surface contribution, that the optimizations increases the focal length, which is not desired. This last iterative procedure can also be obtained by the Operand MINN, which looks for the minimum value of the sum of squares.

c)

	Surface	Type	Com	ment	Ra	dius	Thickne	55	Mater	ial	Coating	Clear 9	Semi-Dia	Chip Zo	ne Me	ech Semi-Dia
0	OBJECT St					nfinity	Infinity		accı		Coating		00000	0.0000		0.000000
1	St	andard ▼			_	nfinity	10.0000					5.0	00000	0.0000		5.000000
2	STOP St	andard 🕶			13.39	91676 V	2.000000)	BK7			5.0	00000	0.0000		5.000000
3	St	andard ▼			-72.5	10495 V	1.000000)				4.8	82908	0.0000		5.000000
4	St	andard 🕶			5.87	70316 V	2.000000)	BK7			4.1	67867	0.0000		4.167867
5	St	andard ▼			15.38	31714 V	1.000000)				3.8	17678	0.0000		4.167867
6	St	andard 🕶			2.32	23456 V	2.000000)	BK7			2.3	02418	0.0000		2.302418
7	St	andard ▼			2.6	75192 V	1.59578	V				1.6	27265	0.0000		2.302418
8	IMAGE St	andard ▼			Ir	nfinity						0.0	96902	0.0000		0.096902
	Туре	Commen	ıt		<u>'</u>											
1								П								
2	BLNK ▼	Sequen	tial	mer	it fur	ction:	RMS sp	ot	radiu	3 (centroi	d GQ 1	1 rings	6 arms	3	
3				1								5.0000	10.000	0 5	.4768	88.421
4		No def	ault		ss thi	.ckness	bounda	ry	const	rai						
5		_		1								0.0000			.3324	
6				1								0.0000			.6013	
7	SPHA ▼	_		1								0.0000			.8545	
8	SPHA ▼	5		1								0.0000	0.000		.6189	
9	SPHA ▼	6		1								0.0000	0.000	0 13	.6018	0.000
1(O SPHA ▼	7		1								0.0000	0.000	0 13	.6018	0.000
1	1 EQUA ▼	5		10								0.0000	1.000	0 0	.5397	11.329
1:	2 BLNK ▼															
1	3 BLNK ▼	Operan	ds f	or f	ield 1											
1	4 TRAC ▼			1	0.0000	0.0000	0.1043	0.	0000			0.0000	0.087	4 0	.0152	7.8624E-0
1	5 TRAC ▼			1 1	0.000	0.0000	0.2376	٥	0000			0.0000	0.197	3 0	0221	8.4093E-03

The result is now worse by approx. 15%, but the Seidel coefficients are exactly the same.

