Linear Programming II Week 10

COMP 1201 (Algorithmics)

ECS, University of Southampton

15 May 2020

Previously...

Linear Programming

- Studied by Leonid Kantorovich and Tjalling Koopmans around 1939.
- A class of **optimisation problems**.
- Optimising linear functions, e.g.

$$3x + y - 2z$$

subject to constraints described by linear functions, e.g.

$$x + y + z \le 0, \ x \ge 0, \ y \ge 0, \ z \ge 0.$$

L Kantorovich

T C Koopmans

Simplex Algorithm

- Invented by George Dantzig in 1947.
- The Simplex Algorithm is to this day considered to be the standard method for solving linear programs.
- Remarkable for its practical efficiency.
- Roughly speaking, Simplex is an iterative improvement algorithm that traverses the vertices of the constraint polytope in search of a global optimum.

George B Dantzig (left, with president Ford)

Form of Linear Programs

Linear programs involve a linear objective function

$$c_1x_1 + c_2x_2 + \dots + c_nx_n$$

which is optimised subject to constraints described by a system of linear inequalities.

To recap, linear programs are problems that can be formulated as follows (using matrix notation):

```
minimise: \vec{c} \cdot \vec{x}, subject to: A_1 \vec{x} \leq \vec{b}_1, A_2 \vec{x} \geq \vec{b}_2, A_3 \vec{x} = \vec{b}_3, \vec{x} > \vec{0}.
```

Transforming Linear Programs

We can always transform an inequality constraint into an *equality* constraint by adding **slack variables**, e.g. :

$$\vec{a}_1 \cdot \vec{x} \ge 0 \quad \to \quad \vec{a}_1 \cdot \vec{x} - z_1 = 0, \ z_1 \ge 0.$$

 $\vec{a}_1 \cdot \vec{x} \le 0 \quad \to \quad \vec{a}_1 \cdot \vec{x} + z_2 = 0, \ z_2 \ge 0.$

 z_1 (excess) and z_2 (deficit) are known as slack variables.

A linear program featuring only equality constraints $A\vec{x}=\vec{b}$ is said to be in *normal form*.

(N.B. the non-negativity constraints $\vec{x} \geq \vec{0}$ still apply).

Transforming Linear Programs

After eliminating inequality constraints by introducing slack variables, we arrive at a system of constraints

$$A\vec{x} = \vec{b}$$

of larger dimension (in a sense we are embedding our n-dimensional feasible set polytope in a larger-dimensional space, however the equality constraints restrict solutions to a lower-dimensional sub-space).

We expect there to be more variables than constraints, so we expect the system to be underdetermined. This is usually the case.

Solutions are built from a set of **basic variables**. The other variables are **non-basic** and are typically set to zero.

Let us consider the following Linear Program:

maximise: $6x_1 + 7x_2 + 9x_3$,

sumbject to: $2x_1 + x_2 + 4x_3 \le 100$,

 $x_1 + x_2 + x_3 \le 50$,

 $x_1 > 0, x_2 > 0, x_3 > 0.$

Let us consider the following Linear Program:

maximise:
$$6x_1 + 7x_2 + 9x_3$$
,

sumbject to:
$$2x_1 + x_2 + 4x_3 \le 100$$
,

$$x_1 + x_2 + x_3 \le 50,$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$$

This needs to be transformed into an appropriate form in order to apply the Simplex Method.

Let us consider the following Linear Program:

maximise:
$$6x_1 + 7x_2 + 9x_3$$
,

sumbject to:
$$2x_1 + x_2 + 4x_3 \le 100$$
,

$$x_1 + x_2 + x_3 \le 50,$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$$

This needs to be transformed into an appropriate form in order to apply the Simplex Method.

We need to eliminate two inequality constraints by introducing slack variables s_1 and s_2 .

Let us consider the following Linear Program:

maximise:
$$6x_1+7x_2+9x_3$$
, sumbject to: $2x_1+x_2+4x_3+s_1=100$,
$$x_1+x_2+x_3+s_2=50,$$

$$x_1\geq 0, x_2\geq 0, x_3\geq 0, s_1\geq 0, s_2\geq 0.$$

This needs to be transformed into an appropriate form in order to apply the Simplex Method.

We need to eliminate two inequality constraints by introducing slack variables s_1 and s_2 .

Let us consider the following Linear Program:

$$\begin{aligned} \text{maximise:} & \ 6x_1+7x_2+9x_3,\\ \text{sumbject to:} & \ 2x_1+x_2+4x_3+s_1=100,\\ & \ x_1+x_2+x_3+s_2=50,\\ & \ x_1\geq 0, x_2\geq 0, x_3\geq 0, s_1\geq 0, s_2\geq 0. \end{aligned}$$

This needs to be transformed into an appropriate form in order to apply the Simplex Method.

We need to eliminate two inequality constraints by introducing slack variables s_1 and s_2 .

We should also introduce a new variable f for the objective function, and rewrite it as an equation (in non-basic variables).

Let us consider the following Linear Program:

maximise:
$$f$$
, sumbject to: $2x_1 + x_2 + 4x_3 + s_1 = 100$, $x_1 + x_2 + x_3 + s_2 = 50$, $-6x_1 - 7x_2 - 9x_3 + f = 0$, $x_1 > 0, x_2 > 0, x_3 > 0, s_1 > 0, s_2 > 0$.

This needs to be transformed into an appropriate form in order to apply the Simplex Method.

We need to eliminate two inequality constraints by introducing slack variables s_1 and s_2 .

We should also introduce a new variable f for the objective function, and rewrite it as an equation (in non-basic variables).

maximise:
$$f$$
, sumbject to: $2x_1+x_2+4x_3+s_1=100$,
$$x_1+x_2+x_3+s_2=50,$$

$$-6x_1-7x_2-9x_3+f=0,$$

$$x_1\geq 0, x_2\geq 0, x_3\geq 0, s_1\geq 0, s_2\geq 0.$$

Step 1: Write the transformed Linear Program down in tabular form.

	x_1	x_2	x_3	s_1	s_2	f	
s_1							
s_2							
f							

maximise:
$$f$$
, sumbject to: $2x_1+x_2+4x_3+s_1=100$,
$$x_1+x_2+x_3+s_2=50,$$

$$-6x_1-7x_2-9x_3+f=0,$$

$$x_1\geq 0, x_2\geq 0, x_3\geq 0, s_1\geq 0, s_2\geq 0.$$

Step 1: Write the transformed Linear Program down in tabular form.

	x_1	x_2	x_3	s_1	s_2	f	
s_1	2	1	4	1	0	0	100
s_2	1	1	1	0	1	0	50
f	2 1 -6	-7	-9	0	0	1	0

	x_1	x_2	x_3	s_1	s_2	f	
s_1	2	1	4	1	0	0	100
s_2	1	1	1	0	1	0	50
f	2 1 -6	-7	-9	0	0	1	0

The variables s_1 and s_2 in this particular table are the **basic** variables; all the other variables are **non-basic**.

In this example they immediately provide us with an **initial feasible solution** (i.e. a vertex of the polytope) which is required for Simplex.

In general, efficiently finding an initial feasible solution can be tricky.

	x_1	x_2	x_3	s_1	s_2	f	
s_1	2	1	4	1	0	0	100
s_2	1	1	1	0	1	0	50
f	2 1 -6	-7	-9	0	0	1	0

The variables s_1 and s_2 in this particular table are the **basic** variables; all the other variables are **non-basic**.

In this example they immediately provide us with an **initial feasible solution** (i.e. a vertex of the polytope) which is required for Simplex.

In general, efficiently finding an initial feasible solution can be tricky.

■ Step 2: Scan the last row in the table and select the column with the smallest negative entry as the *pivot column*.

	x_1	x_2	x_3	s_1	s_2	f	
s_1	2	1	4	1	0	0	100
s_2	1	1	1	0	1	0	50
f	2 1 -6	-7	-9	0	0	1	0

The variables s_1 and s_2 in this particular table are the **basic** variables; all the other variables are **non-basic**.

Step 2: Scan the last row in the table and select the column with the smallest negative entry as the pivot column.

	x_1	x_2	x_3	s_1	s_2	f	
s_1	2	1	4	1	0	0	100
s_2	1	1	1	0	1	0	50
f	-6	-7	4 1 -9	0	0	1	0

- Step 2: Scan the last row in the table and select the column with the smallest negative entry as the pivot column.
- For each entry above the objective function coefficient in the pivot column, divide the corresponding constant term in the last column by that entry.

	x_1	x_2	x_3	s_1	s_2	f	
s_1	2	1	4	1	0	0	100
s_2	1	1	1	0	1	0	50
f	2 1 -6	-7	- 9	0	0	1	0

- Step 2: Scan the last row in the table and select the column with the smallest negative entry as the pivot column.
- For each entry above the objective function coefficient in the pivot column, divide the corresponding constant term in the last column by that entry. I.e. 100/4=25

	x_1	x_2	x_3	s_1	s_2	f	
s_1	2	1	4	1	0	0	100
s_2	1	1	1	0	1	0	50
f	-6	-7	4 1 -9	0	0	1	0

- Step 2: Scan the last row in the table and select the column with the smallest negative entry as the pivot column.
- For each entry above the objective function coefficient in the pivot column, divide the corresponding constant term in the last column by that entry. I.e. 100/4 = 25, 50/1 = 50.
- Select the entry from the pivot column where the resulting value was smallest as the *pivot element*, and divide the corresponding row to make the pivot 1.

	x_1	x_2	x_3	s_1	s_2	f	
s_1	2	1	4	1	0	0	100
s_2	1	1	1	0	1	0	50
f	2 1 -6	-7	- 9	0	0	1	0

- Step 2: Scan the last row in the table and select the column with the smallest negative entry as the pivot column.
- For each entry above the objective function coefficient in the pivot column, divide the corresponding constant term in the last column by that entry. I.e. 100/4 = 25, 50/1 = 50.
- Select the entry from the pivot column where the resulting value was smallest as the *pivot element*, and divide the corresponding row to make the pivot 1.

	x_1	x_2	x_3	s_1	s_2	f	
s_1	1/2 1	1/4	1	1/4	0	0	25
s_2	1	1	1	0	1	0	50
f	-6	-7	- 9	0	0	1	0

- Step 2: Scan the last row in the table and select the column with the smallest negative entry as the pivot column.
- For each entry above the objective function coefficient in the pivot column, divide the corresponding constant term in the last column by that entry. I.e. 100/4 = 25, 50/1 = 50.
- Select the entry from the pivot column where the resulting value was smallest as the *pivot element*, and divide the corresponding row to make the pivot 1.

	x_1	x_2	x_3	s_1	s_2	f	
s_1	1/2	1/4	1	1/4	0	0	25
s_2	1	1	1	0	1	0	50
f	-6	-7	- 9		0	1	0

The variables s_1 and s_2 in this particular table are the **basic** variables; all the other variables are **non-basic**.

■ Step 3: Perform row reductions to make all other entries in the pivot column (except the pivot element) equal to 0.

	x_1	x_2	x_3	s_1	s_2	f	
s_1	1/2	1/4	1	1/4	0	0	25
s_2	1/2	3/4	0	-1/4	1	0	25
f	-6	-7	- 9	$\begin{array}{c} 1/4 \\ -1/4 \\ 0 \end{array}$	0	1	0

- Step 3: Perform row reductions to make all other entries in the pivot column (except the pivot element) equal to 0.
- $R_2 := R_2 R_1$

		x_2	x_3	s_1	s_2	f	
s_1	1/2	1/4	1	1/4	0	0	25
s_2	1/2	3/4	0	-1/4	1	0	25
f	-3/2	1/4 $3/4$ $-19/4$	0	9/4	0	1	225

- Step 3: Perform row reductions to make all other entries in the pivot column (except the pivot element) equal to 0.
- $R_3 := R_3 + 9R_1$

	x_1	x_2	x_3	s_1	s_2	f	
	1/2	1/4					
s_2	1/2	3/4		-1/4			
f	-3/2	-19/4	0	9/4	0	1	225

- Repeat the process until there are no negative coefficients left in the bottom row.
- (Note that x_3 has now replaced s_1 as a **basic variable**.)

	x_1	x_2	x_3	s_1	s_2	f	
x_3	1	1/2					50
s_2		3/4	0	-1/4	1	0	25
f	-3/2	-19/4	0	9/4	0	1	225

	x_1	x_2	x_3	s_1	s_2	f	
x_3	1	1/2		1/2			50
s_2	$ \begin{array}{c c} -3/3 \\ -3/2 \end{array} $	1	0	-1/3	4/3	0	100/3
f	-3/2	-19/4	0	9/4	0	1	225

	x_1	x_2	x_3	s_1	s_2	f	
x_3	2/3	0	2	2/3	-2/3	0	100/3
s_2	2/3	1	0	-1/3	4/3	0	100/3
f	-3/2	-19/4	0	9/4	0	1	225

	x_1	x_2	x_3	s_1	s_2	f	
x_3	2/3	0	2	2/3	-2/3	0	100/3
s_2	2/3	1	0	-1/3	4/3	0	100/3
f	5/3	0	0	2/3	19/3	1	1150/3

	x_1	x_2	x_3	s_1	s_2	f	
x_3	1/3	0	1	1/3	-1/3		
x_2	2/3	1	0	-1/3	4/3	0	100/3
f	5/3	0	0	2/3	19/3	1	1150/3

Make sure the columns with basic variables are in the correct form.

The Simplex Method (Example)

	x_1	x_2	x_3	s_1	s_2	f	
x_3	1/3	0	1	1/3	-1/3	0	50/3
x_2	2/3	1	0	-1/3			
f	5/3	0	0	2/3	19/3	1	1150/3

- We are now done!
- lacksquare x_3 and x_2 are now the basic variables.

The Simplex Method (Example)

				s_1			
x_3	1/3	0	1	1/3	-1/3	0	50/3
x_2	2/3	1	0	-1/3	4/3	0	100/3
f	5/3	0	0	2/3	19/3	1	1150/3

- We are now done!
- \blacksquare x_3 and x_2 are now the basic variables.
- The solution is given by $x_3 = 50/3$, $x_2 = 100/3$ (basic variables), $x_1 = 0$, $s_1 = 0$, $s_2 = 0$ (non-basic variables, which are set to zero).

The Simplex Method (Example)

				s_1			
x_3	1/3	0	1	1/3	-1/3	0	50/3
x_2	2/3	1	0	-1/3	4/3	0	100/3
f	5/3	0	0	2/3	19/3	1	1150/3

- We are now done!
- \blacksquare x_3 and x_2 are now the basic variables.
- The solution is given by $x_3=50/3$, $x_2=100/3$ (basic variables), $x_1=0, s_1=0, s_2=0$ (non-basic variables, which are set to zero).
- The maximum of our objective function is 1150/3.

High Performance Solvers

- The tableau method is rather simplistic and isn't the best option for solving large-scale linear programs.
- Updates in Simplex can be viewed as solving a set of linear equations which is facilitated by performing LU-decompositions.
- The constraints are often sparse and good solvers try to take advantage of the sparsity.
- Top end Simplex implementations are rather complex.
- Simplex is not the only algorithm for solving linear programs.

Time Complexity of Simplex

- It turns out that **typically** Simplex runs in $O(n^3)$ time in practice.
- The main question is how many "hops" are necessary.
- However, it is possible to cook up problems where there is a "long path" from the initial solution to the optimum, which is exponentially large.
- Thus, the theoretical worst-case time complexity of the Simplex algorithm is exponential (although in practice this almost never happens).

Interior Point Methods

Ellipsoid Method

- Pioneered by **Leonid Khachiyan** in 1979.
- The first polynomial time algorithm for solving Linear Programs.
- Caused a big stir when it was discovered.
- However, was utterly impractical for solving any real world problems.
- Could not compete with Simplex.

Interior Point Methods

Karmarkar's Algorithm

- Invented by Narendra Karmarkar, 1984.
- The first **practical** alternative to Simplex.
- Runs in polynomial time.
- Instead of hopping from vertex to vertex like Simplex, interior point algorithms traverse the *interior* of the feasible region.
- Changed the landscape of LP profoundly.
- Led to renewed interest and research in interior point methods for solving LP.

Narendra Karmarkar

Interior Point Methods

- Today interior point algorithms compete with (variations of)
 Simplex on very large problems.
- A number of good Linear Programming solver implementations are making use of these algorithms.
- The two families of methods are complementary and it can be difficult to determine in which cases one is better than the other.
- In practice, it helps to have access to both.

When is LP Appropriate? (Maximum Flow)

- In maximum flow we consider a directed graph representing a network of pipes.
- We choose one vertex as the source and another vertex as the sink.
- Each edge in the graph has a flow capacity that cannot be exceeded.
- The problem is to maximise the flow between the source and sink.
- This can be used to model the flow of a fluid, parts in an assembly line, current in an electrical circuit, or packets through a communications network.

Maximum Flow

This is such a classic problem with a distinctive structure that we can solve it more efficiently using other algorithms developed specifically for this problem. The classic algorithm is the

Ford-Fulkerson method (see e.g. CLRS), which is $O(|E| \times f_{\rm max})$, where $f_{\rm max}$ is the maximum flow.

Linear Assignment

- lacksquare We are given a set of n agents A, and a set of n tasks T.
- \blacksquare Each agent has a cost associated with performing a task c(a,t).
- We want to assign an agent to one task so as to minimise the total cost.
- Consider a taxi firm with taxis at 5 different locations and 5 requests to fulfil. The cost is the distance to the client. Which taxi should go to which client?

Linear Assignment

- The linear assignment problem can be set as a linear programming problem:
- The objective function to minimise is:

$$\sum_{a \in A, \ t \in T} c(a, t) x_{a, t}$$

The constraints are:

$$\forall \ a \in A. \ \sum_{t \in T} x_{a,t} = 1,$$

$$\forall \ t \in T. \ \sum_{a \in A} x_{a,t} = 1,$$

$$\forall (a,t) \in A \times T. \ x_{a,t} \geq 0.$$

Linear Assignment

- Although linear assignment can be solved using a generic LP solver, this is not the most efficient solution.
- A more efficient solution is the Hungarian Algorithm.
- This is rather complex.
- The worst case time complexity is $O(n^3)$, although it frequently takes $O(n^2)$.

Quadratic Programming

- An optimisation problem with linear constraints and a quadratic objective function is said to be a quadratic programming problem.
- Such a problem can likewise be solved in polynomial time.
- Many of the ideas are similar to LP.
- Important applications in science and engineering.

Lessons

- Linear programming is a classic problem.
- A huge number of problems are solvable in polynomial time because they can be formulated as linear programs.
- Linear programs occur sufficiently often that they are hugely important in practice.
- They are generally not easy to solve; however, the basic Simplex algorithm is not massively complex.
- Some important problems can be solved using linear programming, but possess special structure for which there are better algorithms.

Further Reading:

Jiří Matoušek, Bernd Gärtner "Understanding and Using Linear Programming" https://link.springer.com/book/10.1007/978-3-540-30717-4

Optional (open problems):

■ Stephen Smale "Mathematical Problems for the Next Century", *Problem 9: The Linear Programming Problem.* https://link.springer.com/content/pdf/10.1007/BF03025291.pdf (Problems 3, 5, 17 and 18 are also computer science problems; 17 has been solved, the rest are still open.)

Acknowledgements: Partly based on earlier COMP 1201 slides by Dr Adam Prügel-Bennett, University of Southampton.