NOTES

Let μ be the Haar measure on \mathbb{Z}_p^{\times} . For $x \in \mathbb{Q}_p$, $p^{-\nu(x)}$, so $\nu(x) = -\log_p |x|_p$ For $\alpha \in \mathbb{Q}_p$, define

$$m(\alpha) = -\int_{\mathbb{Z}_p^{\times}} \nu(x - \alpha) d\mu(x)$$
$$= \int_{\mathbb{Z}_p^{\times}} \log_p |x - \alpha|_p d\mu(x)$$

Lemma 0.1. For each $\alpha \in \mathbb{Q}_p$,

$$m(\alpha) = \begin{cases} 0 & |\alpha|_p < 1 \\ -\frac{p}{(p-1)^2} & p = 1 \\ -\nu(\alpha) & |\alpha|_p > 1 \end{cases}$$

.

Proof. Let $\alpha \in \mathbb{Q}_p$. First assume $|\alpha|_p = 1$. Then $\alpha = \alpha_0 + \alpha_1 p + \cdots$ Define $Z_0 = \{x \in \mathbb{Z}_p^{\times} : x_0 \neq \alpha_0\}$ and $Z_n = \left(\bigcap_{i=0}^{n-1} \{x \in \mathbb{Z}_p^{\times} : x_i = \alpha_i\}\right) \cap \{x \in \mathbb{Z}_p^{\times} : x_n \neq \alpha_n\}.$

Then $(Z_i)_{i=1}^{\infty}$ are disjoint, $\mathbb{Z}_p^{\times} = \{\alpha\} \cup \left(\bigcup_{i=0}^{\infty} Z_i\right)$, for each $x \in Z_n$, $|x - \alpha|_p = p^{-n}$ and

$$\mu(Z_n) = \begin{cases} (p-1)^{-1} & n = 0\\ p^{-n} & n \ge 1 \end{cases}$$

Thus for each $x \in \mathbb{Z}_p^{\times}$, $\log_p^+ |x - \alpha|_p = 0$ and so

$$\int_{\mathbb{Z}_p^{\times}} \log_p |x - \alpha|_p d\mu(x) = \sum_{i=1}^{\infty} \int_{Z_i} \log_p |x - \alpha| d\mu(x)$$
$$= \sum_{i=1}^{\infty} -np^{-n}$$
$$= -\frac{p}{(p-1)^2}$$

Now assume that $|\alpha|_p < 1$. Then for each $x \in \mathbb{Z}_p^{\times}$, $\log_p |x - \alpha|_p = \log_p |x|_p = 0$. Thus

$$\int_{\mathbb{Z}_p^{\times}} \log_p |x - \alpha|_p d\mu(x) = 0$$

2 NOTES

Finally assume that $|\alpha|_p > 1$. Then for each $x \in \mathbb{Z}_p^{\times}$, $\log_p |x - \alpha|_p = \log_p |\alpha|_p$ and thus

$$\int_{\mathbb{Z}_p^{\times}} \log_p |x - \alpha|_p d\mu(x) = \log_p |\alpha|_p$$
$$= -\nu(\alpha)$$