CHEMISTRY Chapter 11

BALANCE POR EL MÉTODO REDOX

 Existen muchos fenómenos a tu alrededor y en tu cuerpo relacionado con los procesos REDOX.

Oxidación de metales

Reducción del CO₂

Oxidación de nutrientes

Oxidación de combustibles

REACCIÓN REDOX

Reacción química en la que se transfieren electrones de una sustancia a otra.

ESTADO DE OXIDACIÓN

Es la carga real o aparente que adquiere un átomo cuando se combina.

R

Ε

o Na © K

002

0 H₂ 0 P₄

E.O

+1

+2

$$2(+1)+1(X)+4(2-)=0$$

$$X = 6 +$$

$$1(+1)+1(X)+4(2-)=0$$

$$X = 7 +$$

OXIDACIÓN

Semirreacción donde existe un aumento en el estado de oxidación debido a la pérdida de electrones.

Al
$$-3e^- \rightarrow Al^{3+}$$

 $H_2 -2e^- \rightarrow 2 H^{1+}$

REDUCCIÓN

Semirreacción donde existe disminución en el estado de oxidación debido a la ganancia de electrones.

$$Sn^{4+}$$
 $+2e^{-} \rightarrow Sn^{2+}$
 N^{5+} $+2e^{-} \rightarrow N^{3+}$
 O_{2} $+4e^{-} \rightarrow 2$ O^{2-}

AGENTES Y FORMAS

- A la sustancia que se oxida se le denomina agente reductor y luego de la oxidación se denomina forma oxidada.
- A la sustancia que se reduce se le denomina agente oxidante y luego de la reducción se denomina forma reducida.

BALANCE DE ECUACIONES REDOX

- 1. Indique el número de oxidación de los átomos que participan en la ecuación química.
- 2. Luego identifique cuales están modificando su número de oxidación al pasar de un lado de la flecha al otro.
- 3. Separe los pares respectivamente que indiquen al que se oxida y al que se reduce.
- 4. Forma las semirreacciones no olvidando el balance de masa y carga.
- 5. Por último sume ambas semirreacciones miembro a miembro eliminando los electrones libres.
- 6. Luego completar por tanteo si aún no está balanceada.

Indique la carga del:

+1 X -2 ➤ nitrógeno en HNO₃

$$+1 + X - 6 = 0$$
$$X = 5 +$$

cloro en KClO₃

$$+1 + X - 6 = 0$$
$$X = 5 +$$

Metal	E.O
Li, Na, K, Rb, Cs, Fr	+1
Be, Ca, Mg, Sr, Ba, Ra	+2
AI	+3

Rpta 5+, 5+

Determine el EO (estado de oxidación) de los siguientes elementos:

Manganeso en KMnO₄ $\rightarrow +1 + X - 8 = 0$ $\rightarrow X = 7 + 1$

$$+1 + X - 8 = 0$$

$$X = 7 +$$

Fósforo en Na₂HPO₄

$$+2+1+X-8=0$$
 $X=5+$

Carbono en H₂CO₃

$$+2 + X - 6 = 0$$

$$X = 4 +$$

Fósforo en P₄H₂

$$4X + 2 = 0$$

$$X = \frac{1}{2} -$$

Rpta 7+,5+,4+,1/2-

Complete.

El elemento que pierde electrones se <u>oxida</u> y el elemento que gana electrones se <u>reduce</u>.

¿Cuántas proposiciones son verdaderas, con respecto a la siguiente semirreacción?

$$S^{2-} \xrightarrow{-2e^-} S^0$$

- > Se trata de una oxidación. V
- > Hay 2 protones transferidos. F
- > Se trata de una reducción. F
- Hay una pérdida de 2 electrones.

El E.O. aumenta, por lo tanto se oxida, pierde electrones

Balancee:

F. Oxid.: HIO₃ F. Red.: NO

Red:

+2

$$+3e^- \rightarrow N \times 10$$

Ox:

(
$$I_2$$
 $-10e^ \rightarrow 2$ I)× 3

$$10N + 3I_2 \rightarrow 6I + 10N$$

Luego:

$$10HNO_3 + 3I_2 \rightarrow 6HIO_3 + 10NO + H_2O$$

Por último:

$$10HNO_3 + 3I_2 \rightarrow 6HIO_3 + 10NO + 2H_2O$$

F. Oxid.: Cl₂

F. Red.: MnCl₂

Pregunta N°6

Balancee:

Red:
$$(Mn + 2e^- \rightarrow Mn) \times 1$$

Ox:
$$(2CI - 2e^{-} \rightarrow Cl_2) \times 1$$

2 CI $\rightarrow Cl_2$

$$+4$$
 =1 +2 =1 0
Mn + 4Cl →1 Mn +1 Cl₂+1 Cl₂

Luego:

$$1MnO_2 + 4HCI \rightarrow 1MnCl_2 + 1Cl_2 + H_2O$$

Por último:

$$1MnO_2 + 4HCI \rightarrow 1MnCl_2 + 1Cl_2 + 2H_2O$$

F. Oxid.: Cu(NO₃)₂

Pregunta N°7

Balancee:

Red: (N
$$+1e^ \rightarrow$$
 N) \times 2

1Cu + 4N
$$\rightarrow$$
 1 Cu + 1 N₂ +2 N

Luego:

$$1Cu + 4HNO_3 \rightarrow 1Cu(NO_3)_2 + 2NO_2 + H_2O$$

Por último:

$$1Cu + 4HNO_3 \rightarrow 1Cu(NO_3)_2 + 2NO_2 + 2H_2O$$

Ox:

La solución de peróxido de hidrógeno es el agua oxigenada que usamos comúnmente para limpiar una herida. Cuando entra en contacto con la piel, se descompone en agua y oxígeno por acción de una enzima que se encuentra en las células. Las burbujas de oxígeno que se desprenden, matan a los microbios, de allí su acción desinfectante.

En la descomposición del peróxido de hidrógeno, señale el cambio del

estado de oxidación del oxígenoción Para el Oxígeno:

F. Oxid.: O₂ F. Red.: H₂O