线性代数-13

主讲: 吴利苏

wulisu@sdust.edu.cn

山东科技大学, 数学学院

本次课内容

1. AX = 0 的解的结构

2. $AX = \beta$ 的解的结构

齐次线性方程组解的结构

$$AX = 0 (1)$$

若 $A\xi = 0$, 则称 $X = \xi$ 为方程组 (1) 的解向量.

齐次线性方程组解的结构

$$AX = 0 (1)$$

若 $A\xi = 0$, 则称 $X = \xi$ 为方程组 (1) 的解向量.

性质

- 1. 若 $X = \xi_1$, $X = \xi_2$ 为 (1) 的解向量,则 $X = \xi_1 + \xi_2$ 也为 (1) 的解向量;
- 2. 若 $X = \xi_1$ 为 (1) 的解向量,则 $X = k\xi_1$ 也为 (1) 的解向量.

• 设 S 为 (1) 的全体解向量的集合, $S_0: \xi_1, \dots, \xi_t$ 为 S 的一个最大无关组. 则对任意 c_1, \dots, c_t ,

$$X = c_1 \xi_1 + \dots + c_t \xi_t$$

也为 (1) 的解. 反之, (1) 的解都可以表示为上面形式.

• 设 S 为 (1) 的全体解向量的集合, $S_0: \xi_1, \dots, \xi_t$ 为 S 的一个最大无关组. 则对任意 c_1, \dots, c_t ,

$$X = c_1 \xi_1 + \dots + c_t \xi_t$$

也为 (1) 的解. 反之, (1) 的解都可以表示为上面形式.

• ξ_1, \dots, ξ_t 称为 (1) 的一个基础解系.

• 设 S 为 (1) 的全体解向量的集合, $S_0: \xi_1, \dots, \xi_t$ 为 S 的一个最大无关组. 则对任意 c_1, \dots, c_t ,

$$X = c_1 \xi_1 + \dots + c_t \xi_t$$

也为 (1) 的解. 反之, (1) 的解都可以表示为上面形式.

- ξ_1, \dots, ξ_t 称为 (1) 的一个基础解系.
- $t = R_{S_0} = R_S = n R(A)$, 其中 n 为未知量个数, A 为系数矩阵.

• 设 S 为 (1) 的全体解向量的集合, $S_0: \xi_1, \dots, \xi_t$ 为 S 的一个最大无关组. 则对任意 c_1, \dots, c_t ,

$$X = c_1 \xi_1 + \dots + c_t \xi_t$$

也为 (1) 的解. 反之, (1) 的解都可以表示为上面形式.

- ξ_1, \dots, ξ_t 称为 (1) 的一个基础解系.
- $t = R_{S_0} = R_S = n R(A)$, 其中 n 为未知量个数,A 为系数矩阵.

定理 (定理 7)

 $R(A_{m \times n}) = r$, 则 AX = 0 的解集 S 的秩 $R_S = n - r$.

例 (例 12)

求

$$\begin{cases} x_1 + x_2 - x_3 - x_4 &= 0\\ 2x_1 - 5x_2 + 3x_3 + 2x_4 &= 0\\ 7x_1 - 7x_2 + 3x_3 + x_4 &= 0 \end{cases}$$

的基础解系和通解.

求解步骤:

- 1. 对系数矩阵 A 进行初等行变换化为行最简形;
- 2. 写出同解方程组;
- 3. 分别取自由未知量其中一个为 1, 其余为 0, 得基础解系 ξ_1, \dots, ξ_{n-r} ;
- **4**. 得通解 $X = c_1 \xi_1 + \cdots + c_{n-r} \xi_{n-r}$, $\forall c_1, \cdots, c_{n-r} \in \mathbb{R}$.

注

- 基础解系的取法并不唯一.
- 取阶梯列外的对应未知量为自由未知量,方便表示阶梯列对应 未知量.
- 自由未知量取值也不唯一. 但取自由未知量的其中一个为 1, 其余为 0, 更容易计算基础解系.

例

设 $A_{m \times n} B_{n \times l} = O$, 证明 $R(A) + R(B) \leq n$.

例

n 元齐次线性方程组 AX = 0 和 BX = 0 同解, 证明 R(A) = R(B).

例

n 元齐次线性方程组 AX = 0 和 BX = 0 同解, 证明 R(A) = R(B).

● 设矩阵 A, B 同型,则

$$A \sim B \Leftrightarrow R(A) = R(B) \Leftrightarrow AX = 0 \Rightarrow BX = 0 \Rightarrow BX = 0 \Rightarrow AX = 0 \Rightarrow BX = 0 \Rightarrow AX = 0$$

例

证明 $R(A^TA) = R(A)$.

非齐次线性方程组解的结构

$$AX = \beta \tag{2}$$

性质

- 3. 设 $X = \eta_1$ 和 $X = \eta_2$ 为 (2) 的解, 则 $X = \eta_1 \eta_2$ 为对应齐次线性方程组 AX = 0 的解.
- 4. 设 $X = \eta$ 为 (2) 的解, $X = \xi$ 为对应齐次线性方程组 AX = 0 的解, 则 $X = \eta + \xi$ 仍为 (2) 的解.

• $X = \eta^*$ 为 (2) 的一个解 (称为特解), ξ_1, \dots, ξ_t 对应齐次线性方程组 AX = 0 的一个基础解系,则对任意 c_1, \dots, c_{n-r} ,

$$X = c_1 \xi_1 + \dots + c_{n-r} \xi_{n-r} + \eta^*$$

都为 (2) 的解. 反之, (2) 的解都可以表示为上面形式.

• (2) 的通解 = 对应齐次线性方程组的通解 +(2) 的一个特解.

例 (例 16)

$$\begin{cases} x_1 - x_2 - x_3 + x_4 &= 0 \\ x_1 - x_2 + x_3 - 3x_4 &= 1 \\ x_1 - x_2 - 2x_3 + 3x_4 &= -\frac{1}{2}. \end{cases}$$

求解步骤:

- 1. 对增广矩阵 (A,β) 进行初等行变换化为行最简形;
- 2. 写出同解方程组;
- 3. 取自由未知量全为 0, 解 $AX = \beta$ 得到一个特解 η^* ;
- 4. 分别取自由未知量其中一个为 1, 其余为 0, 解 AX = 0 得基础解系 ξ_1, \dots, ξ_{n-r} ;
- 5. 得通解 $X = c_1 \xi_1 + \cdots + c_{n-r} \xi_{n-r} + \eta^*, \forall c_1, \cdots, c_{n-r} \in \mathbb{R}.$

注

- 特解的取法并不唯一,但取自由未知量全为 0,更容易计算.
- 基础解系的取法并不唯一.
- 取阶梯列外的对应未知量为自由未知量,方便表示阶梯列对应 未知量.
- 自由未知量取值也不唯一. 但取自由未知量的其中一个为 1, 其余为 0, 更容易计算基础解系.

补充: 计算机如何求解线性方程组-LU 分解

例

求解

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

算法步骤:

1. LU 分解: 将系数矩阵 A 表示为一个单位下三角矩阵和一个上三角矩阵的乘积,

$$A = LU$$

- 2. 令 Y = UX, 解 $LY = \beta$.
- 3. 解 UX = Y.

小结

- 求解 AX = 0;求解步骤:
 - 1. 对系数矩阵 A 进行初等行变换化为行最简形:
 - 2. 写出同解方程组;
 - 3. 分别取自由未知量其中一个为 1, 其余为 0, 得基础解系 ξ_1, \dots, ξ_{n-r} ;
 - 4. 得通解 $X = c_1 \xi_1 + \cdots + c_{n-r} \xi_{n-r}, \forall c_1, \cdots, c_{n-r} \in \mathbb{R}$.
- 求解 AX = β
 求解步骤:
 - 1. 对增广矩阵 (A,β) 进行初等行变换化为行最简形;
 - 2. 写出同解方程组;
 - 3. 取自由未知量全为 0, 解 $AX = \beta$ 得到一个特解 η^* ;
 - 4. 分别取自由未知量其中一个为 1, 其余为 0, 解 AX = 0 得基础解系 ξ_1, \dots, ξ_{n-r} ;
 - 5. 得通解 $X = c_1 \xi_1 + \dots + c_{n-r} \xi_{n-r} + \eta^*, \forall c_1, \dots, c_{n-r} \in \mathbb{R}.$

齐次线性方程组小结

方程组	矩阵	向量
$\sum_{j} a_{ij} x_j = 0$	$A_{m \times n} X_n = 0$	$x_1\alpha_1 + \dots + x_n\alpha_n = 0$
是否有非零解?	R(A) < n?	向量组 $\{\alpha_i\}$ 线性相关?
有非零解	R(A) < n	线性相关
有唯一零解	R(A) = n	线性无关

• AX = 0 的通解

$$X = c_1 \xi_1 + \dots + c_{n-r} \xi_{n-r}, \forall c_1, \dots, c_{n-r} \in \mathbb{R}$$

其中 r = R(A).

非齐次线性方程组小结

方程组	矩阵	向量	
$\sum_{j} a_{ij} x_j = b_i$	$A_{m \times n} X_n = \beta_m$	$x_1\alpha_1+\cdots+x_n\alpha_n=\beta$	
是否有解?	$R(A,\beta) = R(A)$?	β 由向量组 $\{\alpha_i\}$ 线性表示?	
无解	$R(A,\beta) > R(A)$	No	
有解	$R(A,\beta) = R(A)$	Yes	
有唯一解	$R(A,\beta) = R(A) = n$	Yes,且表示唯一	
	A 列满秩		
有唯一解 $(m=n)$	$R(A,\beta) = R(A) = n$	Yes,且表示唯一	
	A 可逆		
有无穷解	$R(A,\beta) = R(A) < n$	Yes,且表示不唯一	

• $AX = \beta$ 的通解

$$X = c_1 \xi_1 + \dots + c_{n-r} \xi_{n-r} + \eta^*, \forall c_1, \dots, c_{n-r} \in \mathbb{R}.$$

作业

- P112-P113: 27-(1)、31、32
- (选做) 设矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)_{n \times 3}$, β_1, β_2 齐次线性方程组 $A^T X = 0$ 的一个基础解系,令 $B = (\beta_1, \beta_2)_{n \times 2}$. 证明: $\alpha_1, \alpha_2, \alpha_3$ 都为 $B^T X = 0$ 的解向量.

欢迎提问和讨论

吴利苏 (http://wulisu.cn)

Email: wulisu@sdust.edu.cn

2022年10月16日