CS 271 - Introduction to Artificial Intelligence

Fall 2016

HomeWork 2

Name: Liangjian Chen

ID: #52006933 October 29, 2016

Problem 1 Solution:

Define cost function as how many constrains are violated. At beginning the cost is 4.

First Iteration: Assume algorithm choose assignment 1, then neighbor node list as following:

choice	$\cos t$
help	3
desk	3
easy	4
else	4
kind	4
soon	4

Algorithm chooses work help.

Second Iteration: Assume algorithm choose assignment 2, then neighbor node list as following:

choice	$\cos t$
eta	3
hat	3
her	3
$_{ m him}$	3
one	3

Algorithm randomly chooses eta again.

Third Iteration: Assume algorithm choose assignment 3, then neighbor node list as following:

$\cos t$
3
2
3
3
3
3
3
3
3
3

So, Algorithm chooses word usage.

Problem 2 Solution:

Variables: $\{T_i\}$ represents i^{th} class's time. $\{I_i\}$ represents i^{th} class's instructor.

 $\{R_i\}$ represents i^{th} class's classroom.

Domains: Domains of T_i is a set of possible slot time for Class i

Domains of I_i is a set of possible instructor for Class iDomains of R_i is a set of possible classroom for Class i

Constrains: For any two class whose time slots are overlapped with each other, their classroom and instructor should be different and their.

Problem 3 Solution:

Variables: $\{(X_i, Y_i)\}$ represents coordinate of i^{th} rectangle's left upper point.

Domains: $0 \le X_i \le X - dX_i$

 $0 \le Y_i \le Y - dY_i$

Constrains: assume $minX_i = X_i$, $maxX_i = X_i + dX_i$, $minY_i = Y_i$, $maxY_i = Y_i + dY_i$.

Then for any two rectangle i,j, at least one of following hold:

 $max(minX_i, minX_j) > min(maxX_i, maxX_j)$ $max(minY_i, minY_i) > min(maxY_i, maxY_i)$

Problem 4 Solution:

(a) label the cell as following graph.

- (b) Yes
- (c) No

Problem 5 Solution:

(a) New Domain as following:

$$D_2, D_3 = \{3, 4, 5, 6, 7, 8, 9\}$$

$$D_4, D_5, D_6, D_7 = \{5, 6, 7, 8, 9\}$$

$$D_8, D_9, ..., D_{15} = \{7, 8, 9\}$$

(b) One solution is following:

$$X_1 = 1$$

$$X_2, X_3 = 3$$

$$X_4, X_5, X_6, X_7 = 5$$

$$X_8, X_9, ..., X_{15} = 7$$

- (c) from small to large
- (d) assume d is the size of domain, $O(15*d^2) = O(d^2)$

Problem 6 Solution:

$$734 + 734 = 1468$$

Problem 7 Solution:

- (a) variable elimination
- (b) variable elimination
- (c) variable elimination