Lecture 5

Graph properties of MC

- Communicating classes (and accessibility)
- Periodicity
- Transience/recurrence

We will learn to make the following kind of classifications:

Defs:

- State s_i is accessible from s_i if pⁿ_{i,j} > 0 for some n ≥ 0.
 States s_i and s_j communicate if s_i is accessible from s_j and s_j is
- accessible from s_i . This is denoted by $i \leftrightarrow j$.

True or False:

- All states are accessible from 0 (Tor F)
- All states communicate with 0 (T or F)
- $1 \leftrightarrow 2$ (T) or F)
- 1 ↔ 4 (T or F)

Proposition: Communication is an equivalence relation, i.e., it is

- (i) Reflexive: i => i for all states i
- (ii) Symmetric: i = j = j = i

 (iii) Transitive: i = j and j = k = i = k

and let's show Piki > 0 (so i -> k)

Using the Chipman Kolmogorov equation: Pik = Es Pie Pek 7 Pij D and smilarly one can show ke si =) [i > k] Consequence (fran equivalence relation in general)

We can partition (split) the state space into commicating dams

Partitioning

Any equivalence relation on a set partitions the set into *equivalence* classes.

Thus, the state space always partitions into communicating classes.

Def: A MC is <u>irreducible</u> if it has only one communicating class.

Def: The period of state s_i , denoted d(i), is the greatest common divisor of $\{n \in \{1, 2, ...\}: p_{i,i}^n > 0\}$.

I.e., starting in s_i the MC can only return to s_i at numbers of steps that are multiples of d, and d is the largest such integer.

Examples:

Def: We say that a state is <u>aperiodic</u> if it has period 1, and we say that an <u>MC is aperiodic</u> if all states have period 1.

Examples: A pariodic
$$TF$$

irreducible

$$F$$

$$G(2)|2| \Rightarrow d(2) = 1$$

$$d(2)(3) \Rightarrow d(2) = 1$$

Proposition: Period is a class property, i.e., all states in the same communicating class have the same period.

Proof:

We just need to find the periodicity of a M-C, we just need to find the periodicity associated with 1 state in each communicating class.

Suppose i = j (3m | Pin >0) and let's show that 3 m | Pin >0 d(i) = d(j) $P_{ii}^{m+n} = \underbrace{\sum_{k} P_{ik} P_{ki}^{n}} \Rightarrow P_{ij}^{m} P_{ji}^{n} \Rightarrow d(i) \mid m+n$

Now counder Plijo O (we know that such l'exists since d'i) exists)

Pm+n+l

Pijo jo o

O

d(i) | m+n+l So $d(i) \mid m + n + l - (m + u) = j d(i) \mid l = j d(i) \leq d(i)$ d(i) is a common divisor d(j) is the X = {n 1 Piz 70 } gcd of X By symmetry we also have d(j) > d(i)

So d(i) = d(j)

Def: Let $f_i := P(X_n = i \text{ for some } n \ge 1 | X_0 = i)$. Then

- if $f_i = 1$, State s_i is recurrent,
- if $f_i < 1$, State s_i is transient.

In words: $f_i = 1$ if you are always sure to visit i again

Proposition: Recurrence and transience are class properties.

Examples:

1 recurrent

2) recurrent

§1,2,3 } travient

tranin;

1) trament (f, = 0)

Ex) Commication classes: [0,1,2,3], [43 [5,6,7]