第 12 章 e: 傅里叶级数

数学系 梁卓滨

2018-2019 学年 II

We are here now...

1. 傅里叶级数的概念

2. 周期为 2π 的周期函数的傅里叶级数

3. 一般周期函数的傅里叶级数

正弦函数 $y = A \sin(\omega t + \varphi)$

正弦函数
$$y = A \sin(\omega t + \varphi)$$
 (t : 时间;

正弦函数 $y = A \sin(\omega t + \varphi)$ (t: 时间; A: 振幅;

正弦函数 $y = A \sin(\omega t + \varphi)$ (t: 时间; A: 振幅; φ : 初相;

正弦函数 $y = A \sin(\omega t + \varphi)$ (t: 时间; A: 振幅; φ : 初相;

正弦函数 $y = A \sin(\omega t + \varphi)$ (t: 时间; A: 振幅; φ : 初相; ω : 频率)

正弦函数 $y = A \sin(\omega t + \varphi)$ (t: 时间; A: 振幅; φ : 初相; ω : 频率)

具有周期 $T = \frac{2\pi}{\omega}$

正弦函数 $y = A \sin(\omega t + \varphi)$ (t: 时间; A: 振幅; φ : 初相; ω : 频率)

具有周期 $T = \frac{2\pi}{\omega}$,也就是

正弦函数 $y = A \sin(\omega t + \varphi)$ (t: 时间; A: 振幅; φ : 初相; ω : 频率)

具有周期
$$T = \frac{2\pi}{\omega}$$
,也就是

$$A\sin(\omega t + \varphi) = A\sin(\omega(t+T) + \varphi)$$

正弦函数 $y = A \sin(\omega t + \varphi)$ (t: 时间; A: 振幅; φ : 初相; ω : 频率)

具有周期 $T = \frac{2\pi}{\omega}$,也就是

$$A\sin(\omega t + \varphi) = A\sin(\omega(t+T) + \varphi)$$

正弦函数 $y = A \sin(\omega t + \varphi)$ (t: 时间; A: 振幅; φ : 初相; ω : 频率)

具有周期 $T = \frac{2\pi}{\omega}$,也就是

$$A\sin(\omega t + \varphi) = A\sin(\omega(t+T) + \varphi)$$

设 n 为正整数,正弦函数 $y = A_n \sin(n\omega t + \varphi_n)$

正弦函数 $y = A \sin(\omega t + \varphi)$ (t: 时间; A: 振幅; φ : 初相; ω : 频率)

具有周期 $T = \frac{2\pi}{\omega}$,也就是

$$A\sin(\omega t + \varphi) = A\sin(\omega(t+T) + \varphi)$$

设 n 为正整数,正弦函数 $y = A_n \sin(n\omega t + \varphi_n)$ 的最小周期是 $\frac{2\pi}{n\omega}$,

正弦函数 $y = A \sin(\omega t + \varphi)$ (t: 时间; A: 振幅; φ : 初相; ω : 频率)

具有周期 $T = \frac{2\pi}{\omega}$,也就是

$$A\sin(\omega t + \varphi) = A\sin(\omega(t+T) + \varphi)$$

设 n 为正整数,正弦函数 $y = A_n \sin(n\omega t + \varphi_n)$ 的最小周期是 $\frac{2\pi}{n\omega}$,显

然 $T = \frac{2\pi}{4}$ 也是周期

假设 f(t) 是定义域为 \mathbb{R} 的周期函数,周期也是 $T = \frac{2\pi}{\omega}$ 。

问题 是否有如下展开

$$f(t) = A_0 + \sum_{n=1}^{\infty} A_n \sin(n\omega t + \varphi_n)$$

假设 f(t) 是定义域为 \mathbb{R} 的周期函数,周期也是 $T = \frac{2\pi}{\omega}$ 。

问题 是否有如下展开

$$f(t) = A_0 + \sum_{n=1}^{\infty} A_n \sin(n\omega t + \varphi_n)$$

注 在电工学中,上述展开称为谐波分析; A_0 称为直流分量;

 $A_n \sin(n\omega t + \varphi_n)$ 称为 n 次谐波

设 $T = \frac{2\pi}{\omega} = 2l$,

注意到
$$\omega = \frac{\pi}{l}$$
,

注意到
$$\omega = \frac{\pi}{l}$$
,所以

$$A_n \sin(n\omega t + \varphi_n) = A_n \sin(\frac{n\pi t}{l} + \varphi_n)$$

注意到
$$\omega = \frac{\pi}{l}$$
,所以

$$A_n \sin(n\omega t + \varphi_n) = A_n \sin(\frac{n\pi t}{l} + \varphi_n)$$

$$\sin \varphi_n \cos \frac{n\pi t}{l} + \cos \varphi_n \sin \frac{n\pi t}{l}$$

注意到
$$\omega = \frac{\pi}{l}$$
,所以

$$A_n \sin(n\omega t + \varphi_n) = A_n \sin(\frac{n\pi t}{l} + \varphi_n)$$

$$= A_n \left[\sin \varphi_n \cos \frac{n\pi t}{l} + \cos \varphi_n \sin \frac{n\pi t}{l} \right]$$

设
$$T = \frac{2\pi}{\omega} = 2l$$
,故区间 $[-l, l]$ 是 $f(t)$ 的一个完整周期。

注意到
$$\omega = \frac{\pi}{l}$$
,所以

$$A_n \sin(n\omega t + \varphi_n) = A_n \sin(\frac{n\pi t}{l} + \varphi_n)$$

$$= A_n \left[\sin \varphi_n \cos \frac{n\pi t}{l} + \cos \varphi_n \sin \frac{n\pi t}{l} \right]$$

$$=: a_n \cos \frac{n\pi t}{l} + b_n \sin \frac{n\pi t}{l}$$

注意到
$$\omega = \frac{\pi}{l}$$
,所以

$$A_n \sin(n\omega t + \varphi_n) = A_n \sin(\frac{n\pi t}{l} + \varphi_n)$$

$$= A_n \left[\sin \varphi_n \cos \frac{n\pi t}{l} + \cos \varphi_n \sin \frac{n\pi t}{l} \right]$$

$$=: a_n \cos \frac{n\pi t}{l} + b_n \sin \frac{n\pi t}{l}$$

这时
$$f(t) = A_0 + \sum_{n=0}^{\infty} A_n \sin(n\omega t + \varphi_n)$$

设 $T = \frac{2\pi}{c_1} = 2l$,故区间[-l, l]是f(t)的一个完整周期。

注意到 $\omega = \frac{\pi}{7}$,所以

$$\Delta = \{i, i\}$$

$$A_n \sin(n\omega t + \varphi_n) = A_n \sin(\frac{n\pi t}{l} + \varphi_n)$$

$$= A_n \left[\sin \varphi_n \cos \frac{n\pi t}{l} + \cos \varphi_n \sin \frac{n\pi t}{l} \right]$$

$$=: a_n \cos \frac{n\pi t}{l} + b_n \sin \frac{n\pi t}{l}$$

$$=: a_n \cos \frac{1}{l} + b_n \sin \frac{1}{l}$$
 这时

这时
$$\sum_{n=0}^{\infty} (t) = A_0 + \sum_{n=0}^{\infty} A_n \sin(n\omega t + \varphi_n)$$

$$\sum_{n=0}^{\infty} \left(a_n \cos \frac{n\pi t}{t} + b_n \sin \frac{n\pi t}{t} \right)$$

这时
$$f(t) = A_0 + \sum_{n=1}^{\infty} A_n \sin(n\omega t + \varphi_n) \qquad \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi t}{l} + b_n \sin \frac{n\pi t}{l} \right)$$

注意到 $\omega = \frac{\pi}{7}$,所以

$$A_n \sin(n\omega t + \varphi_n) = A_n \sin(\frac{n\pi t}{l} + \varphi_n)$$

$$\Lambda \sin(n\omega t)$$

$$\Lambda \sin(n\alpha t)$$

- $= A_n \left[\sin \varphi_n \cos \frac{n\pi t}{l} + \cos \varphi_n \sin \frac{n\pi t}{l} \right]$

 $=: a_n \cos \frac{n\pi t}{l} + b_n \sin \frac{n\pi t}{l}$

 $f(t) = A_0 + \sum_{n=1}^{\infty} A_n \sin(n\omega t + \varphi_n) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi t}{l} + b_n \sin \frac{n\pi t}{l} \right)$

注意到 $\omega = \frac{\pi}{7}$,所以

江思到
$$\omega = \overline{l}$$
, n

$$A_n \sin(n\omega t + \varphi_n) = A_n \sin(\frac{n\pi t}{l} + \varphi_n)$$

$$= A_n \left[\sin \varphi_n \cos \frac{n\pi t}{l} + \cos \varphi_n \sin \frac{n\pi t}{l} \right]$$

$$=: a_n \cos \frac{n\pi t}{l} + b_n \sin \frac{n\pi t}{l}$$

这时
$$f(t) = A_0 + \sum_{n=1}^{\infty} A_n \sin(n\omega t + \varphi_n) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi t}{l} + b_n \sin \frac{n\pi t}{l} \right)$$

以下不妨先设周期 $T = 2\pi (l = \pi)$ 。 f(x) 的周期区间为 $[-\pi, \pi]$,

注意到 $\omega = \frac{\pi}{7}$,所以

 $A_n \sin(n\omega t + \varphi_n) = A_n \sin(\frac{n\pi t}{t} + \varphi_n)$

- - $= A_n \left[\sin \varphi_n \cos \frac{n\pi t}{l} + \cos \varphi_n \sin \frac{n\pi t}{l} \right]$
 - $=: a_n \cos \frac{n\pi t}{l} + b_n \sin \frac{n\pi t}{l}$
- $f(t) = A_0 + \sum_{n=1}^{\infty} A_n \sin(n\omega t + \varphi_n) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi t}{l} + b_n \sin \frac{n\pi t}{l} \right)$

 - 以下不妨先设周期 $T = 2\pi (l = \pi)$ 。 f(x) 的周期区间为 $[-\pi, \pi]$,相应
 - $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$

的展开为

We are here now...

1. 傅里叶级数的概念

2. 周期为 2π 的周期函数的傅里叶级数

3. 一般周期函数的傅里叶级数

性质 三角函数系

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$, ...

在区间 $[-\pi, \pi]$ 上正交。

性质 三角函数系

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$, ...

在区间 $[-\pi, \pi]$ 上正交。即上述任意两个相异函数的乘积,在 $[-\pi, \pi]$ 上的积分为零:

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, \cdots , $\cos nx$, $\sin nx$, \cdots

$$\int_{-\pi}^{\pi} \cos nx dx = 0, \qquad \int_{-\pi}^{\pi} \sin nx dx = 0 \qquad (n = 1, 2, 3, \dots)$$

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$, ...

$$\int_{-\pi}^{\pi} \cos nx dx = 0, \qquad \int_{-\pi}^{\pi} \sin nx dx = 0 \qquad (n = 1, 2, 3, \dots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \cos nx dx = 0 \qquad (k, n = 1, 2, 3, \dots)$$

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$, ...

$$\int_{-\pi}^{\pi} \cos nx dx = 0, \qquad \int_{-\pi}^{\pi} \sin nx dx = 0 \qquad (n = 1, 2, 3, \dots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \cos nx dx = 0 \qquad (k, n = 1, 2, 3, \dots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \sin nx dx = 0 \qquad (k, n = 1, 2, 3, \dots, k \neq n)$$

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$, ...

$$\int_{-\pi}^{\pi} \cos nx dx = 0, \qquad \int_{-\pi}^{\pi} \sin nx dx = 0 \qquad (n = 1, 2, 3, \dots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \cos nx dx = 0 \qquad (k, n = 1, 2, 3, \dots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \sin nx dx = 0 \qquad (k, n = 1, 2, 3, \dots, k \neq n)$$

$$\int_{-\pi}^{\pi} \cos kx \cdot \cos nx dx = 0 \qquad (k, n = 1, 2, 3, \dots, k \neq n)$$

1, $\cos x$, $\sin x$, $\cos 2x$, $\sin 2x$, ..., $\cos nx$, $\sin nx$, ...

在区间 $[-\pi, \pi]$ 上正交。即上述任意两个相异函数的乘积,在 $[-\pi, \pi]$ 上的积分为零:

$$\int_{-\pi}^{\pi} \cos nx dx = 0, \qquad \int_{-\pi}^{\pi} \sin nx dx = 0 \qquad (n = 1, 2, 3, \dots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \cos nx dx = 0 \qquad (k, n = 1, 2, 3, \dots)$$

$$\int_{-\pi}^{\pi} \sin kx \cdot \sin nx dx = 0 \qquad (k, n = 1, 2, 3, \dots, k \neq n)$$

$$\int_{-\pi}^{\pi} \cos kx \cdot \cos nx dx = 0 \qquad (k, n = 1, 2, 3, \dots, k \neq n)$$

另外

$$\int_{-\pi}^{\pi} \sin^2 nx dx = \int_{-\pi}^{\pi} \cos^2 nx dx = \pi \qquad (n = 1, 2, 3, \dots)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

"形式推导" (1) 当
$$n = 1, 2, 3, \cdots$$
 时,

$$\int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

"形式推导" (1) 当 $n = 1, 2, 3, \cdots$ 时,

$$\int_{-\pi}^{\pi} f(x) \cos nx dx \qquad \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \cos nx$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

"形式推导" (1) 当 $n = 1, 2, 3, \cdots$ 时,

$$\int_{-\pi}^{\pi} f(x) \cos nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \cos nx dx$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

"形式推导" (1) 当 $n = 1, 2, 3, \cdots$ 时,

$$\int_{-\pi}^{\pi} f(x) \cos nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \cos nx dx$$
$$= \int_{-\pi}^{\pi} a_n \cos nx \cdot \cos nx dx$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

"形式推导" (1) 当 $n = 1, 2, 3, \cdots$ 时,

形式推导" (1) 当
$$n = 1, 2, 3, \dots$$
 时,
$$\int_{-\pi}^{\pi} f(x) \cos nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \cos nx dx$$

 $= \int_{-\pi}^{\pi} a_n \cos nx \cdot \cos nx dx = \pi a_n$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

"形式推导" (2) 当
$$n = 1, 2, 3, \cdots$$
 时,

$$\int_{0}^{\pi} f(x) \sin nx dx$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

"形式推导" (2) 当
$$n = 1, 2, 3, \cdots$$
 时,

$$\int_{-\pi}^{\pi} f(x) \sin nx dx \qquad \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \sin nx$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

"形式推导" (2) 当
$$n = 1, 2, 3, \cdots$$
 时,

$$\int_{-\pi}^{\pi} f(x) \sin nx \, dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \sin nx \, dx$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

"形式推导" (2) 当
$$n = 1, 2, 3, \cdots$$
 时,

$$\int_{-\pi}^{\pi} f(x) \sin nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \sin nx dx$$
$$= \int_{-\pi}^{\pi} b_n \sin nx \cdot \sin nx dx$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

"形式推导" (2) 当 $n = 1, 2, 3, \cdots$ 时,

$$\int_{-\pi}^{\pi} f(x) \sin nx dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] \sin nx dx$$
$$= \int_{-\pi}^{\pi} b_n \sin nx \cdot \sin nx dx = \pi b_n$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

$$\int_{-\pi}^{\pi} f(x) dx$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

"形式推导" (3)

$$\int_{-\pi}^{\pi} f(x)dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] dx$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

"形式推导" (3)

$$\int_{-\pi}^{\pi} f(x)dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] dx$$
$$= \int_{-\pi}^{\pi} \frac{a_0}{2} dx$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

"形式推导" (3)

$$\int_{-\pi}^{\pi} f(x)dx = \int_{-\pi}^{\pi} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right) \right] dx$$
$$= \int_{-\pi}^{\pi} \frac{a_0}{2} dx = \pi a_0$$

定义 f(x) 的傅里叶级数定义为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$
 $(n = 1, 2, 3, \dots)$

定义 f(x) 的傅里叶级数定义为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$
 $(n = 0, 1, 2, 3, \dots)$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$
 $(n = 1, 2, 3, \dots)$

问题 何时成立
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$
?

定义 f(x) 的傅里叶级数定义为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad (n = 1, 2, 3, \dots)$$

问题 何时成立
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$
?

定理(收敛定理,狄利克雷充分条件)

- 1. 在一个周期内连续或只有有限个第一类间断点;
- 2. 在一个周期内至多只有有限个极值点,

- 1. 在一个周期内连续或只有有限个第一类间断点;
- 2. 在一个周期内至多只有有限个极值点,

那么f(x)的傅里叶级数收敛

- 1. 在一个周期内连续或只有有限个第一类间断点;
- 2. 在一个周期内至多只有有限个极值点,

那么f(x)的傅里叶级数收敛(但不一定绝对收敛)

- 1. 在一个周期内连续或只有有限个第一类间断点;
- 2. 在一个周期内至多只有有限个极值点,

那么 f(x) 的傅里叶级数收敛(但不一定绝对收敛),并且

当 x 是 f(x) 的连续点时,

• 当x是f(x)的间断点时,

- 1. 在一个周期内连续或只有有限个第一类间断点;
- 2. 在一个周期内至多只有有限个极值点,

那么 f(x) 的傅里叶级数收敛(但不一定绝对收敛),并且

当 x 是 f(x) 的连续点时,

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

• 当x是f(x)的间断点时,

- 1. 在一个周期内连续或只有有限个第一类间断点;
- 2. 在一个周期内至多只有有限个极值点,

那么f(x)的傅里叶级数收敛(但不一定绝对收敛),并且

当 x 是 f(x) 的连续点时,

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

• 当 $x \in f(x)$ 的间断点时,

$$\frac{1}{2} \Big[f(x^{-}) + f(x^{+}) \Big] = \frac{a_0}{2} + \sum_{n=1}^{\infty} \Big(a_n \cos nx + b_n \sin nx \Big)$$

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$

求出f(x)的傅里叶级数。

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$

求出f(x)的傅里叶级数。

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$

求出f(x)的傅里叶级数。

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$

求出f(x)的傅里叶级数。

解 计算傅里叶系数如下:

 a_n

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$

求出f(x)的傅里叶级数。

解 计算傅里叶系数如下:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$f(x) = \begin{cases} -1, & -\pi \le x < 0, \\ 1, & 0 \le x < \pi. \end{cases}$$

求出f(x)的傅里叶级数。

解 计算傅里叶系数如下:

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{10}} 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{3}} 0,$$

 b_n

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{\pi} (4\pi)} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{4}} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{6}} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$

$$2 \cos nx \Big|_{0}^{\pi}$$

$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \stackrel{\text{fight}}{===} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$
$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big]$$

$$=\frac{2}{n\pi}\left[1-\cos n\pi\right]$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \stackrel{\text{fight}}{===} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$
$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^n \Big]$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \stackrel{\text{fight}}{=} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$
$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^n \Big]$$

$$= \left\{ \begin{array}{c} n = 1, 3, 5, \cdots \\ n = 2, 4, 6, \cdots . \end{array} \right.$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \stackrel{\text{fight}}{===} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$
$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^n \Big]$$

$$= \begin{cases} n = 1, 3, 5, \cdots \\ 0, n = 2, 4, 6, \cdots \end{cases}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \stackrel{\text{fight}}{===} 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$
$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^n \Big]$$

$$= \begin{cases} \frac{4}{n\pi}, & n = 1, 3, 5, \cdots \\ 0, & n = 2, 4, 6, \cdots \end{cases}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \stackrel{\text{fight}}{===} 0,$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$

$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^{n} \Big]$$

$$= \begin{cases} \frac{4}{n\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$= \begin{cases} nn \\ 0, \end{cases}$$
 $n = 2, 4, 6, \cdots$

所以傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=0}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\text{fight}} 0,$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$

$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^{n} \Big]$$

$$= \begin{cases} \frac{4}{n\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

所以傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) = \sum_{n=1}^{\infty} b_n \sin nx$$

第 12 章 e: 傅里叶级数

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{6}{6}} 0,$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx$$
$$= \frac{2}{\pi} \cdot (-1) \cdot \frac{\cos nx}{n} \Big|_{0}^{\pi} = \frac{2}{n\pi} \Big[1 - \cos n\pi \Big] = \frac{2}{n\pi} \Big[1 - (-1)^{n} \Big]$$

$$= \begin{cases} \frac{4}{n\pi}, & n = 1, 3, 5, \cdots \\ 0, & n = 2, 4, 6, \cdots \end{cases}$$

所以傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right) = \sum_{n=1}^{\infty} b_n \sin nx$$

$$= \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right]$$

收敛定理分析可知:

当 x ≠ nπ 时,

当 x = nπ 是,

收敛定理分析可知:

• 当 $x \neq n\pi$ 时,是 f 的连续点,

• 当 $x = n\pi$ 是,

收敛定理分析可知:

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right]$$

• 当 $x = n\pi$ 是,

收敛定理分析可知:

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,

收敛定理分析可知:

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,此时

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right]$$

收敛定理分析可知:

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,此时

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right] = 0$$

收敛定理分析可知:

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,此时

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right] = 0$$

(显然,可直接看出当 $x = n\pi$ 时傅里叶级数的值为 0)

收敛定理分析可知:

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,此时

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right] = 0$$

(显然,可直接看出当 $x = n\pi$ 时傅里叶级数的值为 0)

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$$

收敛定理分析可知:

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,此时

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right] = 0$$

(显然,可直接看出当 $x = n\pi$ 时傅里叶级数的值为 0)

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}$$

• $\exists x \neq n\pi$ 时,是 f 的连续点,此时

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right]$$

• 当 $x = n\pi$ 是,是 f 的间断点,此时

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right] = 0$$
(显然,可直接看出当 $x = n\pi$ 时傅里叶级数的值为 0)

收敛定理分析可知:

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}$$

• 当 $x \neq n\pi$ 时,是 f 的连续点,此时

注 1f(x) 的傅里叶级数是 $\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right]$, 利用

 $\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right] = \frac{1}{2} \left[f(x^{-}) + f(x^{+}) \right] = 0$

$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right]$$

● 当 $x = n\pi$ 是,是 f 的间断点,此时

收敛定理分析可知:

(显然,可直接看出当
$$x = n\pi$$
 时傅里叶级数的值为 0) 注 2 取 $x = \frac{\pi}{2}$,可得到
$$1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots = \frac{\pi}{4}$$

 $\frac{1}{2}$ 3 5 7 9 11 注 3 当 $x = \frac{\pi}{2}$,傅里叶级数仅仅是条件收敛

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \cdots \right]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right] = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin[(2n-1)x]$$

$$\frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin[(2n-1)x]$$

例 2 设 f(x) 是周期为 2π 的周期函数,在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = |x|$$

求出f(x)的傅里叶级数。

例 2 设 f(x) 是周期为 2π 的周期函数,在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = |x|$$

例 2 设 f(x) 是周期为 2π 的周期函数, 在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = |x|$$

求出f(x)的傅里叶级数。

例 2 设 f(x) 是周期为 2π 的周期函数,在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = |x|$$

求出f(x)的傅里叶级数。

解 计算傅里叶系数如下:

 b_n

例 2 设 f(x) 是周期为 2π 的周期函数,在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = |x|$$

求出f(x)的傅里叶级数。

解 计算傅里叶系数如下:

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

例 2 设 f(x) 是周期为 2π 的周期函数,在 $[-\pi, \pi)$ 上的表达式为

$$f(x) = |x|$$

求出 f(x) 的傅里叶级数。

解 计算傅里叶系数如下:

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{\Phi(M)}{\pi}} 0,$$

$$a_n =$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{\pi} (4\pi)} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{§fight}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$
$$= \frac{2}{n\pi} \int_{0}^{\pi} x d \sin nx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$\pi \int_{-\pi}^{\pi} \pi \int_{0}^{\pi} x d \sin nx = \frac{2}{n\pi} \left[x \sin nx \right]_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$= \frac{2}{n\pi} \int_0^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_0^{\pi} - \int_0^{\pi} \sin nx dx \right]$$

$$2 \int_0^{\pi} 1 d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_0^{\pi} - \int_0^{\pi} \sin nx dx \Big|_0^{\pi} \right]$$

$$n\pi \int_{0}^{\pi} n\pi L \qquad |_{0}^{\pi} \int_{0}^{\pi} = \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right]$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$
$$= \frac{2}{n\pi} \int_{0}^{\pi} x d \sin nx = \frac{2}{n\pi} \left[x \sin nx \right]_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx$$

$$n\pi \int_{0}^{\pi} n\pi \ln |n| = \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right]$$

$$\frac{1}{n\pi} \left[-\cos nx \right]_0 = \frac{1}{n^2\pi} \left[(-1)^n - 1 \right]_0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = -\int_{0}^{\pi} f(x) \cos nx dx = -\int_{0}^{\pi} x \cos nx dx$$
$$= \frac{2}{n\pi} \int_{0}^{\pi} x d \sin nx = \frac{2}{n\pi} \left[x \sin nx \right]_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx$$

 $= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{n} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} n = 1, 3, 5, \dots \\ n = 2, 4, 6, \dots \end{cases}$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$\pi \int_{-\pi}^{\pi} \pi \int_{0}^{\pi} x d \sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx \right]$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ n = 2, 4, 6, \dots \end{cases}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$\pi \int_{-\pi}^{\pi} x \, d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_{0}^{\pi} - \int_{0}^{\pi} \sin nx \, dx \right]$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$= \frac{2}{n\pi} \int_0^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_0^{\pi} - \int_0^{\pi} \sin nx dx \right]$$

$$n\pi \int_{0}^{\pi} n\pi \left[\frac{1}{n} \cos nx \right]_{0}^{\pi} = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

 a_0

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$= \frac{2}{n\pi} \int_0^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_0^{\pi} - \int_0^{\pi} \sin nx dx \right]$$

$$= \frac{1}{n\pi} \int_{0}^{\pi} x d\sin nx = \frac{1}{n\pi} \left[x \sin nx \Big|_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx \right]$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$= \frac{1}{n\pi} \int_{0}^{\pi} f(x) dx$$

$$a_0 = \frac{1}{\pi} \int_0^{\pi} f(x) dx$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$= \frac{2}{n\pi} \int_0^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_0^{\pi} - \int_0^{\pi} \sin nx dx \right]$$

$$= \frac{2}{n\pi} \int_0^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_0^{\pi} - \int_0^{\pi} \sin nx dx \right]$$
$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_0^{\pi} \right] = \frac{2}{n\pi} \left[(-1)^n - 1 \right] = \begin{cases} -\frac{4}{n^2\pi}, & n \\ -\frac{4}{n^2\pi}, & n \end{cases}$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$a_{0} = \frac{1}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$= \frac{2}{n\pi} \int_0^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_0^{\pi} - \int_0^{\pi} \sin nx dx \right]$$

$$= \frac{2}{n\pi} \int_0^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_0^{\pi} - \int_0^{\pi} \sin nx dx \right]$$
$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_0^{\pi} \right] = \frac{2}{n\pi} \left[(-1)^n - 1 \right] = \int_0^{\pi} -\frac{4}{n^2\pi} e^{-x} dx$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

$$= \frac{2}{n\pi} \int_0^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \Big|_0^{\pi} - \int_0^{\pi} \sin nx dx \right]$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$a_{0} = \frac{1}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \frac{2}{\pi} \cdot \frac{1}{2} x^{2} \Big|_{0}^{\pi}$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \frac{2}{\pi} \cdot \frac{1}{2} x^2 \Big|_{0}^{\pi}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

 $= \frac{2}{n\pi} \int_0^{\pi} x d\sin nx = \frac{2}{n\pi} \left[x \sin nx \right]_0^{\pi} - \int_0^{\pi} \sin nx dx$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$\frac{1}{n} \int_{0}^{\pi} \left[-\frac{2}{n^{2}\pi} \int_{0}^{\pi}$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \frac{2}{\pi} \cdot \frac{1}{2} x^2 \Big|_{0}^{\pi} = \pi.$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\text{fight}} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$

 $= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{n} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \cdots \\ 0, & n = 2, 4, 6, \cdots \end{cases}$

$$a_n = -\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = -\frac{1}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = -\frac{1}{\pi} \int_{0}^{\pi} x \cos nx dx$$
$$= -\frac{2}{n\pi} \int_{0}^{\pi} x d \sin nx = -\frac{2}{n\pi} \left[x \sin nx \right]_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \frac{2}{\pi} \cdot \frac{1}{2} x^2 \Big|_{0}^{\pi} = \pi.$$

所以傅里叶级数为 $\frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos nx$

第 12 章 e: 傅里叶级数

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \stackrel{\text{fight}}{===} 0,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos nx dx$$
$$= \frac{2}{n\pi} \int_{0}^{\pi} x d \sin nx = \frac{2}{n\pi} \left[x \sin nx \right]_{0}^{\pi} - \int_{0}^{\pi} \sin nx dx$$

$$= \frac{2}{n\pi} \left[\frac{1}{n} \cos nx \Big|_{0}^{\pi} \right] = \frac{2}{n^{2}\pi} \left[(-1)^{n} - 1 \right] = \begin{cases} -\frac{4}{n^{2}\pi}, & n = 1, 3, 5, \dots \\ 0, & n = 2, 4, 6, \dots \end{cases}$$

$$\alpha_{0} = \frac{1}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x dx = \frac{2}{\pi} \cdot \frac{1}{2} x^{2} \Big|_{0}^{\pi} = \pi.$$

所以傅里叶级数为 $\frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos nx = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

又因为f(x)是连续函数,

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

又因为 f(x) 是连续函数, 故利用收敛定理分析可知:

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

又因为f(x)是连续函数,故利用收敛定理分析可知:

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

$$注 2$$
 取 $x = 0$,可得到

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

又因为 f(x) 是连续函数, 故利用收敛定理分析可知:

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

$$\dot{r} 2$$
 取 $x = 0$. 可得到

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

又因为 f(x) 是连续函数, 故利用收敛定理分析可知:

$$f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

注 2 取
$$x = 0$$
. 可得到

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$$

注 3 偶函数 f(x) 的傅里叶级数是 $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

考虑部分和

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{i=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

考虑部分和

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

考虑部分和

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

$$\frac{\pi}{2} - \frac{4}{\pi} \left[\cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right] = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos[(2n-1)x]}{(2n-1)^2}$$

$$\frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{(2n-1)^2} \cos[(2n-1)x]$$

• 若 f(x) 是奇函数,则傅里叶级数为

• 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx,$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx,$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx,$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx,$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

• 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明(1)假设f为奇函数,则

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

 $\overline{\text{tim}}$ (1) 假设 f 为奇函数,则

$$a_n =$$

$$b_n =$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

 $\overline{\text{tim}}$ (1) 假设 f 为奇函数,则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$b_n =$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明 (1) 假设 f 为奇函数,则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明(1)假设ƒ为奇函数,则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{4\pi}{3}} 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明 (1) 假设f 为奇函数,则

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{\hat{\sigma}(\text{RMt})}{\pi}} 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{\hat{\sigma}(\text{RMt})}{\pi}} \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明 (2) 假设 f 为偶函数,则

$$b_n =$$

$$a_n =$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明 (2) 假设f 为偶函数,则

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$a_n =$$

• 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明 (2) 假设f 为偶函数,则

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明 (2) 假设 f 为偶函数,则

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{6}{3}} 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

● 若 f(x) 是奇函数,则傅里叶级数为

$$\sum_{n=1}^{\infty} b_n \sin nx, \qquad b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx dx.$$

• 若 f(x) 是偶函数,则傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx dx.$$

证明 (2) 假设 f 为偶函数,则

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \xrightarrow{\frac{\hat{\sigma}(\underline{M}\underline{M}\underline{M})}{\underline{\sigma}(\underline{M}\underline{M}\underline{M})}} 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \xrightarrow{\frac{\hat{\sigma}(\underline{M}\underline{M}\underline{M}\underline{M})}{\underline{\sigma}(\underline{M}\underline{M})}} \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx$$

设 f(x) 是定义在区间 $[-\pi, \pi)$ (或 $(-\pi, \pi]$)上的函数,可以对其进行周期延拓,从而得到定义在 \mathbb{R} 上的周期函数

设 f(x) 是定义在区间 $[-\pi, \pi)$ (或 $(-\pi, \pi]$)上的函数,可以对其进行周期延拓,从而得到定义在 \mathbb{R} 上的周期函数,如图:

设 f(x) 是定义在区间 $[-\pi, \pi)$ (或 $(-\pi, \pi]$)上的函数,可以对其进行周期延拓,从而得到定义在 \mathbb{R} 上的周期函数,如图:

设 f(x) 是定义在区间 $[-\pi, \pi)$ (或 $(-\pi, \pi]$)上的函数,可以对其进行周期延拓,从而得到定义在 \mathbb{R} 上的周期函数,如图:

延拓后的周期函数任然记为f(x),此时可以进行傅里叶展开。

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

奇延拓步骤:

• 定义 f(0) = 0

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

奇延拓步骤:

• $\mathbb{E} \times f(0) = 0$; $\mathbb{E} \times (-\pi, 0)$ 时, $\mathbb{E} \times f(x) = -f(-x)$;

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

奇延拓步骤:

• 定义 f(0) = 0; 当 $x \in (-\pi, 0)$ 时,定义 f(x) = -f(-x); (此时 f 在 $(-\pi, \pi]$ 上有定义,且在 $(-\pi, \pi)$ 上为奇函数)

设 f(x) 是定义在区间 $(0, \pi]$ 上的函数,可以对其进行奇延拓,从而得到定义在 \mathbb{R} 上的周期奇函数。

- 定义 f(0) = 0; 当 $x \in (-\pi, 0)$ 时,定义 f(x) = -f(-x); (此时 f 在 $(-\pi, \pi]$ 上有定义,且在 $(-\pi, \pi)$ 上为奇函数)
- 周期延拓 f 在 (-π, π] 上的取值。

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

偶延拓步骤:

• $\exists x \in [-\pi, 0]$ 时,定义 f(x) = f(-x);

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

偶延拓步骤:

• 当 $x \in [-\pi, 0]$ 时,定义 f(x) = f(-x); (此时 f 成为定义在 $[-\pi, \pi]$ 上为偶函数)

设 f(x) 是定义在区间 $[0, \pi]$ 上的函数,可以对其进行偶延拓,从而得到定义在 \mathbb{R} 上的周期偶函数。

- 当 $x \in [-\pi, 0]$ 时,定义 f(x) = f(-x); (此时 f 成为定义在 $[-\pi, \pi]$ 上为偶函数)
- 周期延拓 f 在 $[-\pi, \pi]$ 上的取值。

We are here now...

1. 傅里叶级数的概念

2. 周期为 2π 的周期函数的傅里叶级数

3. 一般周期函数的傅里叶级数

假设 f(x) 是定义在 \mathbb{R} 上周期函数,周期为 T=2l,

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx$$
 $(n = 0, 1, 2, 3, \dots)$
 $1 \int_{-l}^{l} n\pi x$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx$$
 $(n = 0, 1, 2, 3, \dots)$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

"推导"
$$\diamondsuit g(x) = f(\frac{l}{\pi}x),$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$a(x+2\pi)$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$g(x+2\pi) = f(\frac{l}{\pi}(x+2\pi))$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$g(x+2\pi) = f(\frac{l}{\pi}(x+2\pi)) = f(\frac{l}{\pi}x+2l)$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$g(x+2\pi) = f(\frac{l}{\pi}(x+2\pi)) = f(\frac{l}{\pi}x+2l) = f(\frac{l}{\pi}x)$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$g(x+2\pi) = f(\frac{l}{\pi}(x+2\pi)) = f(\frac{l}{\pi}x+2l) = f(\frac{l}{\pi}x) = g(x)$$

$$\frac{a_0}{2} + \sum_{l=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$$

"推导" 令 $g(x) = f(\frac{l}{\pi}x)$, 则 g 是周期为 2π 的周期函数:

$$g(x+2\pi) = f(\frac{l}{\pi}(x+2\pi)) = f(\frac{l}{\pi}x+2l) = f(\frac{l}{\pi}x) = g(x)$$

所以

所以
$$g(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中 $a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$ $b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx \qquad (n = 0, 1, 2, 3, \dots)$

"推导" 令
$$g(x) = f(\frac{l}{\pi}x)$$
,则 g 是周期为 2π 的周期函数:
$$g(x+2\pi) = f(\frac{l}{\pi}(x+2\pi)) = f(\frac{l}{\pi}x+2l) = f(\frac{l}{\pi}x) = g(x)$$

所以 $f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

 a_n

 b_n

既然 $f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz$$

 b_n

既然 $f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$$

死然 $f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$

所以
$$f(x) = \frac{a_0}{2} + \sum_{i=1}^{\infty} \left(a_i \cos \frac{n\pi x}{l} + b_i \sin \frac{n\pi x}{l} \right)$$

其中 $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$x = \frac{l}{\pi}z$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int f(x) \cos \frac{n\pi x}{l}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\xrightarrow{\frac{x = \frac{l}{\pi}z}{\pi}} \frac{1}{\pi} \int f(x) \cos \frac{n\pi x}{l} d(\frac{\pi}{l}x)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$= \frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} d(\frac{\pi}{l}x)$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$\begin{aligned}
a_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz \\
&= \frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} d(\frac{\pi}{l}x) = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx, \\
b_n &= \frac{1}{l} \int_{-\pi}^{\pi} g(z) \sin nz dz
\end{aligned}$$

 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} d(\frac{\pi}{l}x) = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx,$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{-z}) \sin nz dz$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} d(\frac{\pi}{l}x) = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \sin nz dz$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\pi \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \pi \int_{-\pi}^{\pi} \pi \int_{-\pi}^{\pi} \frac{1}{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{1}{\pi} \int_{-\pi}^{\pi} \int_{-\pi$$

 $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \sin nz dz$$

$$\frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int f(x) \sin \frac{n\pi x}{l}$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\frac{\pi}{1-\pi} \int_{-\pi}^{\pi} \frac{\pi}{1-\pi} \int_{-\pi}^{\pi} f(x) \cos \frac{n\pi x}{1} d(\frac{\pi}{1}x) = \frac{1}{1} \int_{-\pi}^{\pi} f(x) \cos \frac{n\pi x}{1} dx,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \sin nz dz$$

$$\frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int f(x) \sin \frac{n\pi x}{l} d(\frac{\pi}{l}x)$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$\int_{-\pi}^{\pi} \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{g(z) \cos nz dz}{\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{f(-z) \cos nz dz}{\pi}}$$

$$\frac{x = \frac{1}{\pi} z}{\pi} \int_{-\pi}^{\pi} \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{f(x) \cos nz dz}{\int_{-\pi}^{\pi} \frac{f(-z) \cos nz dz}{\pi}} dx,$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \sin nz dz$$

$$\frac{x = \frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} d(\frac{\pi}{l}x)$$

既然
$$f(\frac{l}{\pi}x) = g(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l} \right)$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{l}{\pi}z) \cos nz dz$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \cos nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\frac{1}{\pi}z) \cos nz dz$$

$$= \frac{x = \frac{1}{\pi}z}{\pi} \int_{-\pi}^{t} f(x) \cos \frac{n\pi x}{t} d(\frac{\pi}{t}x) = \frac{1}{t} \int_{-\pi}^{t} f(x) \cos \frac{n\pi x}{t} dx,$$

$$\pi \int_{-l}^{-l} f(z) dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(-z) \sin nz dz$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} g(z) \sin nz dz = \frac{1}{\pi} \int_{-\pi}^{\pi} f(-z) \sin nz dz$$

 $\frac{x=\frac{l}{\pi}z}{\pi} \frac{1}{\pi} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} d(\frac{\pi}{L}x) = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx.$

