МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

УТВЕРЖДАЮ

Декан/Директор

/ Соболев В.В.

83.05. 20 *43* г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Прикладное программное обеспечение в механике сплошных сред наименование – полностью 40/020 (4023)

направление (специальность) <u>01.04.04 Прикладная математика</u> код. наименование – полностью

направленность (профиль/
программа/специализация) Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта

уровень образования: магистратура

форма обучения: очная

общая трудоемкость дисциплины составляет: 8 зачетных единиц(ы)

Кафедра <u>Прикладная математика и информационные технологии</u> полное наименование кафедры, представляющей рабочую программу

Составитель <u>Королев Станислав Анатольевич, д.т.н., доцент</u> Ф.И.О.(полностью), степень, звание

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования и рассмотрена на заседании кафедры

Протокол от <i>3.7.0ч.</i> 20 <u>#3</u> г. №_	5
Заведующий кафедрой	ИЯИ И.Г. Русяк 27,04 20 <u>23</u> г.
СОГЛАСОВАНО	
Количество часов рабочей программы и оствуют учебному плану 01.04.04 «Прикла работка программного обеспечения и мадач с использованием искусственного инт	адная математика» (программа «Разатематических методов решения за
Протокол заседания учебно-методической 010000 «Математика и механика» от укод и наименование – полностью	
Председатель учебно-методической коми	ссии по УГСН
010000 «Математика и механика»	
код и наименование – полностью	<u>Суд</u> В.Г. Суфиянов 20 <u>43</u> г.
	2035
Руководитель образовательной программ:	К.В. Кетова Х.В. Сетова 20_33 г.
	11.05. 20 <u>43</u> r.

Аннотация к дисциплине

Название дисциплины	Прикладное программное обеспечение в механике
	сплошных сред
Направление подготовки (специ-	01.04.04 Прикладная математика
альность)	
Направленность (про-	Разработка программного обеспечения и матема-
филь/программа/специализация)	тических методов решения задач с использовани-
	ем искусственного интеллекта
Место дисциплины	Часть, формируемая участниками образователь-
	ных отношений, Блока 1. Дисциплины (модули)
Трудоемкость (з.е. / часы)	8 з. е. / 288 часов
Цель изучения дисциплины	Развитие методологической культуры решения
	прикладных задач механики сплошных сред с
	использованием современного прикладного про-
	граммного обеспечения
Компетенции, формируемые в	ПК-3. Способен организовывать процессы управ-
результате освоения дисциплины	ления разработкой наукоемкого программного
	обеспечения
	ПК-4. Способен разрабатывать и исследовать
	математические модели технических и социально-
	экономических систем с использованием совре-
	менных информационных технологий
Содержание дисциплины (основ-	Обзор задач МСС и ППО вычислительной гидро-
ные разделы и темы)	механики. Система уравнений движения сплош-
	ной среды. Модели турбулентности. Решение
	задач аэрогидромеханики. Процессы тепломассо-
	обмена. Решение сопряженных задач. Геометри-
	ческое моделирование и построение сеток. Метод
	конечных элементов. Модели деформации мате-
	риалов. Метод сглаженных гидродинамических
	частиц.
Форма промежуточной аттеста-	Зачет, Экзамен
ции	

1. Цели и задачи дисциплины:

Целью освоения дисциплины является развитие методологической культуры решения прикладных задач механики сплошных сред с использованием современного прикладного программного обеспечения.

Задачи дисциплины:

 обучить магистрантов методам решения различных задач механики сплошной среды в прикладном программном обеспечении (ППО) вычислительной аэрогидромеханики и механики твердого деформируемого тела.

2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

Знания, приобретаемые в ходе освоения дисциплины

№ п/п	Знания
1	математические модели процессов аэрогидромеханики, деформации материалов
	и тепломассообмена
2	численные методы решения задач механики сплошных сред
3	принципы работы с прикладным программным обеспечением в области механи-
	ки сплошных сред

Умения, приобретаемые в ходе освоения дисциплины

№ п/п	Умения
1	выбирать адекватные математические модели и методы решения практических
	задач механики сплошных сред
2	проводить вычислительный эксперимент, обрабатывать и анализировать резуль-
	таты расчетов

Навыки, приобретаемые в ходе освоения дисциплины

№ п/п	Навыки
1	работы в системах инженерного компьютерного моделирования: построение
	геометрии расчетной области и генерация конечно-объемной сетки
2	использования прикладного программного обеспечения для решения задач ме-
	ханики сплошных сред

Компетенции, приобретаемые в ходе освоения дисциплины

Компетенции	Индикаторы	Знания	Умения	Навыки
ПК-3. Способен	ПК-3.1 Знать: методологию			
организовывать	управления разработкой	1-3		
процессы управле-	наукоемкого программного	1-3		
ния разработкой	обеспечения			
наукоемкого про-	ПК-3.2 Уметь: применять			
граммного обеспе-	методологию и средства			
чения	управления разработкой		1,2	
	наукоемкого программного			
	обеспечения			
	ПК-3.3 Владеть: практически-			1,2

	ми навыками управления			
	разработкой наукоемкого			
	программного обеспечения			
ПК-4. Способен	ПК-4.1 Знать: основные прин-			
разрабатывать и	ципы построения математиче-			
исследовать матема-	ских моделей технических и	1-3		
тические модели	социально-экономических			
технических и соци-	систем			
ально-	ПК-4.2 Уметь: разрабатывать			
экономических	методы и алгоритмы решения			
систем с использо-	инженерных и экономических			
ванием современных	задач на основе математиче-		1,2	
информационных	ского моделирования с ис-			
технологий	пользованием современных			
	информационных технологий			
	ПК-4.3 Владеть: практически-			
	ми навыками исследования			
	математических моделей			
	технических и социально-			1,2
	экономических систем с ис-			
	пользованием современных			
	информационных технологий			

3. Место дисциплины в структуре ООП

Дисциплина относится к части, формируемой участниками образовательных отношений Блока 1 «Дисциплины (модули)» ООП.

Дисциплина изучается на 1, 2 курсе в 2, 3 семестрах.

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей): Принципы построения математических моделей, Теория тепло и массообмена.

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): —

4. Структура и содержание дисциплины

4.1 Структура дисциплин

	пт Структура			Pac	преле	ление т	рулоемі	сости	
	Раздел дисциплины. Форма промежуточной аттестации (по семестрам) В раздел дисциплины. Форма промежуточной аттестации (по семестрам) В раздела (в часах) по видам учебной работы контактная СРС						Содержание		
$N_{\underline{0}}$	Форма промежуточ-	сего часо на раздел	Семестр	1 ~	ной работы				самостоятельной
Π/Π	'	ной аттестации				работы			
	(по семестрам)	Вс)	лек		лаб	КЧА	CPC	расоты
1	2	3	4	5 5	пр 6	7	8 8	10	11
1	<u> </u>	3			U	/	0	10	работа на прак-
1	Обзор задач МСС и ППО вычислительной гидромеханики.	26	2	4	4	4	-	14	тических занятиях: текущий контроль выполнения заданий
2	Система уравнений движения сплошной среды.	26	2	4	4	4	ĺ	14	защита лабора- торных работ
3	Модели турбулент- ности. Решение задач гидрогазоди- намики.	27	2	4	4	4	-	15	работа на практических занятиях: текущий контроль выполнения заданий
4	Процессы тепломассообмена. Решение сопряженных задач.	27	2	4	4	4	_	15	защита лабора- торных работ
	Зачет	2	2	-			0,3	1,7	Зачет выставляется по совокупности результатов текущего контроля успеваемости
5	Геометрическое моделирование и построение сеток	36	3	4	ı	8	-	24	Защита лабораторных работ
6	Метод конечных элементов	36	3	4	1	8	_	24	Защита лабораторных работ
7	Модели деформации материалов	36	3	4	_	8	_	24	Защита лабораторных работ
8	Метод сглаженных гидродинамических частиц	36	3	4	_	8	_	24	Защита лабораторных работ
	Экзамен	36	3	-	_	_	0,4	35,6	Экзамен выставляется по совокупности результатов текущего контроля успеваемости
	Итого:	288		32	16	48	0,7	191,3	

4.2 Содержание разделов курса и формируемых в них компетенций

№ п/п	Раздел дисциплины	Коды ком- петенции и индикаторов	Знания	Умения	Навыки	Форма кон- троля
1	Обзор задач МСС и ППО вычислительной гидромеханики.	ПК-3.1, ПК-3.2, ПК-3.3, ПК-4.1, ПК-4.2, ПК-4.3	1, 2, 3	1,2	1,2	Текущий контроль выполнения заданий, защита лабораторных работ
2	Система уравнений движения сплошной среды.	ПК-3.1, ПК-3.2, ПК-3.3, ПК-4.1, ПК-4.2, ПК-4.3	1,2,3	1,2	1,2	Текущий контроль выполнения заданий, защита лабораторных работ
3	Модели турбулентности. Решение задач гидрога- зодинамики.	ПК-3.1, ПК-3.2, ПК-3.3, ПК-4.1, ПК-4.2, ПК-4.3	1, 2, 3	1, 2	1,2	Текущий контроль выполнения заданий, защита лабораторных работ
4	Процессы тепломассо- обмена. Решение сопря- женных задач.	ПК-3.1, ПК-3.2, ПК-3.3, ПК-4.1, ПК-4.2, ПК-4.3	1, 2, 3	1,2	1,2	Текущий контроль выполнения заданий, защита лабораторных работ
5	Геометрическое моделирование и построение сеток	ПК-3.1, ПК-3.2, ПК-3.3, ПК-4.1, ПК-4.2, ПК-4.3	1, 2, 3	1,2	1,2	Текущий контроль выполнения заданий, защита лабораторных работ
6	Метод конечных элементов	ПК-3.1, ПК-3.2, ПК-3.3, ПК-4.1, ПК-4.2, ПК-4.3	1, 2, 3	1, 2	1,2	Текущий контроль выполнения заданий, защита лабораторных работ
7	Модели деформации	ПК-3.1,	1, 2, 3	1, 2	1, 2	Текущий

	материалов	ПК-3.2,				контроль
		ПК-3.3,				выполнения
		ПК-4.1,				заданий,
		ПК-4.2,				защита лабо-
		ПК-4.3				раторных работ
8	Метод сглаженных гид-	ПК-3.1,	1, 2, 3	1, 2	1, 2	Текущий
	родинамических частиц	ПК-3.2,				контроль
		ПК-3.3,				выполнения
		ПК-4.1,				заданий,
		ПК-4.2,				защита лабо- раторных
		ПК-4.3				работ

4.3 Наименование тем лекций, их содержание и объем в часах

		пование тем лекции, их содержание и обвем в так	Трудоем-
№	№ раздела	Наименование лекций	КОСТЬ
п/п	дисциплины		(час)
1	1	1. Предмет и методы механики сплошной среды. Гипотеза о сплошной среде. Механика жидкостей и газов. Основные свойства газовых и жидких сред. 2. Уравнение состояния идеального газа. Вязкость и теплопроводность. Идеальная жидкость. Обзор ППО вычислительной гидромеханики.	4
2	2	1. Уравнения законов сохранения массы, импульса и энергии в механике сплошных сред. Уравнение неразрывности. Уравнения сохранения количества движения. Объемные и поверхностные силы в механике сплошных сред. Уравнение сохранения энергии. 2. Система уравнений Навье-Стокса. Система уравнений Эйлера для идеальной жидкости. Граничные и начальные условия для идеальной и вязкой жидкости.	4
3	3	1. Основы теории турбулентности. Осреднение по Рейнольдсу и Фавру. Уравнения Рейнольдса для турбулентного течения. Тензор турбулентных напряжений. Гипотезы турбулентности Буссинеска, Прандтля, Кармана. Турбулентная вязкость. 2. Модели турбулентности для турбулентной вязкости, k-є модель турбулентности. Современные подходы к моделированию турбулентных течений: моделирование крупных вихрей LES, прямое численное моделирование DNS.	4
4	4	 Критерии подобия: Рейнольдса, Фруда, Струхаля, Прандтля, Грасгофа, Релея, их физический смысл. Безразмерная форма уравнений Навье-Стокса. Уравнение теплопроводности. Уравнение диффузии. Термодинамическая аналогия. Многокомпонентные и многофазные течения. Граничные условия для параметров диффузии и теплообмена. Сопряженные задачи механики сплошных сред. 	4
5	5	1. Создание геометрической модели. Загрузка геометриче-	4

		ской модели из CAD систем.	
		2. Структурированные и неструктурированные сетки.	
		Настройки генератора сеток. Виртуальные топологии.	
6	6	1. Основные понятия конечных элементов. Виды конечных элементов. Задание начальных условий. Виды граничных условий. 2. Реализация МКЭ в прикладном программном обеспечении. Применение МКЭ для расчета плоского напряженного состояния пластины.	4
7	7	 Графический интерфейс модуля управления свойствами материалов. Уравнения состояний. Модели упругих, упругопластичных, вязкоупругих, гиперупругих и хрупких материалов. Способы задания свойств материалов в ППО. Решение задачи о разрыве пластины. 	4
8	8	1. Метод сглаженных гидродинамических частиц (SPH). 2. Контактные задачи. Теория удара. Решение задачи пробития однородной пластины ударником. Постобработка результатов моделирования.	4
	Всего		32

4.1 Наименование тем практических занятий, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование практических работ	Трудоем- кость (час)
1.	1-2	Обзор ППО вычислительной гидромеханики.	8
2.	3-4	Система уравнений Навье-Стокса. Граничные и	8
		начальные условия для идеальной и вязкой жидкости.	
	Всего		16

4.2 Наименование тем лабораторных работ, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование лабораторных работ	Трудоем- кость (час)
1.	1-2	Моделирование внешнего обтекания снаряда и расчет аэродинамических коэффициентов	8
2	3-4	Моделирование истечения пороховых газов из канала ствола и оценка влияния на скорость движения снаряда	8
3	5	Построение структурированных и неструктурированных сеток	8
4.	6	Применение МКЭ для расчета плоского напряженного состояния детали	8
5.	7	Моделирование процесса разрыва бруска	8
6.	8	Анализ результатов решение задачи пробития однородной пластины ударником.	8
	Всего		48

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводятся:

- защиты лабораторных работ;
- зачет;
- экзамен.

Примечание: оценочные материалы (вопросы к проведению практических, лабораторных занятий, задания для самостоятельной работы и др.) приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины – зачет, экзамен.

6. Учебно-методическое и информационное обеспечение дисциплины:

а) основная литература:

- 1. Федорова Н.Н. Моделирование гидрогазодинамических процессов в ПК ANSYS 17.0 [Электронный ресурс]: учебное пособие / Н.Н. Федорова, С.А. Вальгер, Ю.В. Захарова. Новосибирск: Новосибирский государственный архитектурно-строительный университет (Сибстрин), 2018. 169 с. 978-5-7795-0798-1. Режим доступа: http://www.iprbookshop.ru/68793.html.
- 2. Федорова, Н. Н. Моделирование гидрогазодинамических процессов в ПК ANSYS 17.0: учебное пособие / Н. Н. Федорова, С. А. Вальгер, Ю. В. Захарова. Новосибирск: Новосибирский государственный архитектурно-строительный университет (Сибстрин), ЭБС АСВ, 2016. 169 с. ISBN 978-5-7795-0798-1. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/68793.html (дата обращения: 29.06.2023). DOI: https://doi.org/10.23682/68793
- 3. Маковкин, Г. А. Применение МКЭ к решению задач механики деформируемого твердого тела. Часть 1 : учебное пособие / Г. А. Маковкин, С. Ю. Лихачева. Нижний Новгород : Нижегородский государственный архитектурностроительный университет, ЭБС АСВ, 2012. 71 с. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/16043.html (дата обращения: 29.06.2023).
- 4. Присекин, В. Л. Основы метода конечных элементов в механике деформируемых тел: учебник / В. Л. Присекин, Г. И. Расторгуев. Новосибирск: Новосибирский государственный технический университет, 2010. 238 с. ISBN 978-5-7782-1287-9. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/45417.html (дата обращения: 29.06.2023). Режим доступа: для авторизир. пользователей

б) дополнительная литература:

5. Папуша, А. Н. Механика сплошных сред / А. Н. Папуша. — Москва, Ижевск : Институт компьютерных исследований, 2019. — 688 с. — ISBN 978-5-4344-0715-1. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/91963.html (дата обращения: 29.06.2023).

- 6. Басов, К. А. ANSYS: справочник пользователя / К. А. Басов. 2-е изд. Саратов: Профобразование, 2019. 640 с. ISBN 978-5-4488-0064-1. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/87978.html (дата обращения: 29.06.2023). Режим доступа: для авторизир. пользователей
- 7. Мурашов, М. В. Решение задач механики сплошной среды в программном комплексе ANSYS: методические указания / М. В. Мурашов, С. Д. Панин. Москва: Московский государственный технический университет имени Н.Э. Баумана, 2009. 40 с. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/31538.html (дата обращения: 29.06.2023). Режим доступа: для авторизир. пользователей
- 8. Маневич, Л. И. Аналитически разрешимые модели механики твердого тела / Л. И. Маневич, О. В. Гендельман. Ижевск : Регулярная и хаотическая динамика, Институт компьютерных исследований, 2016. 344 с. ISBN 978-5-4344-0371-9. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/69339.html (дата обращения: 29.06.2023).

в) методические указания:

- 9. Прикладное программное обеспечение в аэрогидромеханике: методические указания к лабораторным работам и практическим занятиям для напр. 01.04.04 "Прикладная математика" / сост. С.А. Королев Ижевск: ИжГТУ, 2019. 33 с. (Рег. номер: 026/МиЕН)
- 10. Прикладное программное обеспечение в механике деформируемого твердого тела: методические указания к лабораторным работам для напр. 01.04.04 "Прикладная математика" / сост. В.Г. Суфиянов, С.А. Королев Ижевск: ИжГТУ, 2019. 88 с. (Рег. номер: 027/МиЕН)

г) перечень ресурсов информационно-коммуникационной сети Интернет:

- 1. Электронно-библиотечная система IPRbooks http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks.
- 2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС http://94.181.117.43/cgi-bin/irbis64r_12/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=IBIS&P21DBN=IBIS.
 - 3. Национальная электронная библиотека http://нэб.рф.
 - 4. Мировая цифровая библиотека http://www.wdl.org/ru/.
- 5. Международный индекс научного цитирования Web of Science http://webofscience.com.
- 6. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp.
- 7. Справочно-правовая система КонсультантПлюс http://www.consultant.ru/.

д) лицензионное и свободно распространяемое программное обес-

печение:

- 1. Microsoft Office Standard 2007 (Open License: 42267924).
- 2. Doctor Web Enterprise Suite (Лицензия № 116663324).
- 3. OC MS Windows 7/10.
- 4. Среда программирования MS Visual Studio Community 2017.
- 5. Пакеты инженерного моделирования ЛОГОС, ANSYS.

7. Материально-техническое обеспечение дисциплины:

1. Лекционные занятия.

Учебные аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

2. Практические занятия.

Учебные аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук).

3. Лабораторные работы.

Для лабораторных занятий используются аудитория №6-309, оснащенная следующим оборудованием: проектор, экран, компьютер/ноутбук.

4. Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационно-образовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова (ауд. 201 корпус № 1, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.7);
- помещения для самостоятельной работы обучающихся (ауд. 309, корпус №6, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.48).

При необходимости рабочая программа дисциплины (модуля) может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для обучения с применением дистанционных образовательных технологий. Для этого требуется заявление студента (его законного представителя) и заключение психолого-медико-педагогической комиссии (ПМПК).

Лист согласования рабочей программы дисциплины (модуля) на учебный год

Рабочая программа дисциплины (модуля) «Прикладное программное обеспечение в механике сплошных сред» по направлению подготовки (специальности)

01.04.04 «Прикладная математика»

код и наименование направления подготовки (специальности)

по направленности (профилю/программе/специализации)

Разработка программного обеспечения и математических методов решения

задач с использованием искусственного интеллекта

наименование направленности (профиля/программы/специализации)

согласована на ведение учебного процесса в учебном году:

Учебный год	«Согласо в заведующий п ответственн (подпись и	кафедрой, 10й за РПД
2023 – 2024	MRUS	27.04.2023
2024 - 2025		

Приложение к рабочей программе дисциплины (модуля)

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Оценочные средства по дисциплине

Прикладное программное обеспечение в механике сплошных сред

наименование – полностью

направление (специальность) 01.03.04 Прикладная математика

код, наименование – полностью

направленность (профиль/ программа/специализация) Разработка программного обеспечения и математических методов решения задач с использованием искусственного интеллекта

наименование – полностью

уровень образования: магистратура

форма обучения: очная

общая трудоемкость дисциплины составляет: 8 зачетных единиц(ы)

1. Оценочные средства

Оценивание формирования компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины.

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами достижения компетенций, представлены ниже.

№ п/п	Коды компетенции и и индикаторов	Результат обучения (знания, умения и навыки)	Формы текущего и промежуточного контроля
1	ПК-3.1 Знать: методологию управления разработкой наукоемкого программного обеспечения	31. математические модели процессов аэрогидромеханики, деформации материалов и тепломассообмена. 32. численные методы решения задач механики сплошных сред. 33. принципы работы с прикладным программным обеспечением в области механики сплошных сред.	Текущий контроль выполнения заданий; защита лабораторных работ, работа на практических занятиях
2	ПК-3.2 Уметь: применять методологию и средства управления разработкой наукоемкого программного обеспечения	У1. выбирать адекватные математические модели и методы решения практических задач механики сплошных сред. У2. проводить вычислительный эксперимент, обрабатывать и анализировать результаты расчетов.	Текущий контроль выполнения заданий; защита лабораторных работ, работа на практических занятиях
3	ПК-3.3 Владеть: практическими навыками управления разработкой наукоемкого программного обеспечения	Н1. работы в системах инженерного компьютерного моделирования: построение геометрии расчетной области и генерация конечнообъемной сетки. Н2. использования прикладного программного обеспечения для решения задач механики сплошных сред.	Текущий контроль выполнения заданий; защита лабораторных работа на практических занятиях
4	ПК-4.1 Знать: основные принципы построения математических моделей технических и социально-экономических систем	31. математические модели процессов аэрогидромеханики, деформации материалов и тепломассообмена. 32. численные методы решения задач механики сплошных сред. 33. принципы работы с прикладным программным обеспечением в области механики сплошных сред.	Текущий контроль выполнения заданий; защита лабораторных работ, работа на практических занятиях
5	ПК-4.2 Уметь: разрабатывать методы и алгоритмы решения инженерных и экономических задач на основе математического моделирования с использованием	У1. выбирать адекватные математические модели и методы решения практических задач механики сплошных сред. У2. проводить вычислительный эксперимент, обрабатывать и анализировать результаты расчетов.	Текущий контроль выполнения заданий; защита лабораторных работа на практических занятиях

	современных информационных техноло-гий		
6	ПК-4.3 Владеть: практическими навыками исследования математических моделей технических и социально-экономических систем с использованием современных информационных технологий	Н1. работы в системах инженерного компьютерного моделирования: построение геометрии расчетной области и генерация конечнообъемной сетки. Н2. использования прикладного программного обеспечения для решения задач механики сплошных сред.	Текущий контроль выполнения заданий; защита лабораторных работа на практических занятиях

Типовые задания для оценивания формирования компетенций

Наименование: зачет

Представление в ФОС: перечень вопросов Перечень вопросов для проведения зачета:

- 1. Предмет и метод механики сплошных сред (МСС). Разделы МСС.
- 2. Гипотеза о сплошной среде. Механика жидкостей и газов.
- 3. Основные свойства газовых и жидких сред.
- 4. Уравнение состояния идеального газа. Вязкость и теплопроводность.
- 5. Внутренняя энергия и теплоемкость газа. Уравнение состояния идеального газа. Уравнение Майера. Адиабатические процессы. Уравнение адиабаты Пуассона.
- 6. ППО вычислительной гидромеханики.
- 7. Способы описания движения сплошной среды. Координаты Лагранжа и Эйлера.
- 8. Понятия градиента, дивергенции, ротора. Потенциальное течение. Физический смысл полной производной в механике жидкости и газа.
- 9. Закон сохранения массы в интегральной и дифференциальной форме.
- 10. Объемные и поверхностные силы в механике сплошных сред. Тензор напряжений.
- 11. Законы сохранения массы, импульса и энергии для идеального газа.
- 12. Граничные условия на непроницаемой поверхности для идеального и вязкого газа.
- 13. Закон Ньютона, связывающий тензор напряжений с тензором скоростей деформации.
- 14. Закон теплопроводности Фурье. Число Прандтля.
- 15. Система уравнений Навье-Стокса.
- 16. Система уравнений Эйлера для идеальной жидкости.
- 17. Система уравнений движения вязкой несжимаемой жидкости в декартовой системе координат.
- 18. Граничные условия при решении задач гидродинамики и теплообмена.
- 19. Безразмерная форма уравнений Навье-Стокса.
- 20. Критерии гидродинамического подобия, их физический смысл.
- 21. Понятие турбулентности. Опыт Рейнольдса. Режимы течения.
- 22. Осредненные и пульсационные параметры при турбулентных течениях. Методы осреднения при описании турбулентного течения. Свойства операции осреднения.
- 23. Система уравнений Рейнольдса. Тензор турбулентных напряжений. Вывод уравнений для тензора турбулентных напряжений.
- 24. Замыкание системы уравнеий Рейнольдса с помощью гипотез турбулентности. Гипотеза Буссинеска, Прандтля, Кармана.
- 25. Классификация моделей турбулентности.
- 26. Алгебраические модели турбулентности.
- 27. Модели для турбулентной вязкости. Модель Секундова.

- 28. Модель для тензора турбулентных напряжений.
- 29. Двухпараметрическая модель турбулентности k-є.
- 30. Метод пристеночных функций при расчете турбулентных течений.
- 31. Современные подходы к моделированию турбулентных течений: моделирование крупных вихрей LES, прямое численное моделирование DNS.
- 32. Критерии подобия: Рейнольдса, Фруда, Прандтля, Грасгофа, Релея, их физический смысл.
- 33. Безразмерная форма уравнений Навье-Стокса.
- 34. Уравнение теплопроводности. Уравнение диффузии.
- 35. Термодинамическая аналогия в МСС.
- 36. Многокомпонентные и многофазные течения.
- 37. Сопряженные задачи механики сплошных сред.

Критерии оценки:

Приведены в разделе 2

Наименование: экзамен

Представление в ФОС: перечень вопросов

Перечень вопросов для проведения экзамена:

- 1. Предмет и метод механики сплошных сред (МСС). Разделы МСС.
- 2. Основные свойства газовых и жидких сред.
- 3. ППО вычислительной гидромеханики.
- 4. Система уравнений Навье-Стокса.
- 5. Классификация моделей турбулентности.
- 6. Сопряженные задачи механики сплошных сред.
- 7. Сравнение возможностей пакетов прикладных программных инженерного анализа и суперкомпьютерных вычислений ЛОГОС и ANSYS.
- 8. Состав, назначение и возможности модуля ЛОГОС-ПреПост.
- 9. Состав, назначение и возможности модуля ЛОГОС-Прочность.
- 10. Основные элементы графической системы интерфейса ЛОГОС.
- 11. Создание геометрических моделей в ЛОГОС.
- 12. Загрузка геометрических САД моделей в ЛОГОС.
- 13. Типы элементов расчетных сеток.
- 14. Структурированных и неструктурированные сетки.
- 15. Виртуальные топологии.
- 16. Настройки генератора сеток ЛОГОС.
- 17. Локальное уточнение разностной сетки.
- 18. Средства работы со свойствами материалов.
- 19. Модели упругих, упругопластичных, вязкоупругих, гиперупругих и хрупких материалов.
- 20. Задание анизотропных упругих свойств материалов.
- 21. Уравнения состояний.
- 22. Критерии разрушения материалов.
- 23. Стационарные модели напряженно-деформированного состояния.
- 24. Динамичные модели напряженно-деформированного состояния.
- 25. Определение ограничений и нагрузок. Удаление ограничений и нагрузок.
- 26. Сосредоточенные, распределенные и инерционные нагрузки.
- 27. Задачи о разрыве пластины.
- 28. Порядок решения контактных задач.
- 29. Метод сглаженных гидродинамических частиц (SPH).
- 30. Задача о пробитии однородной пластины ударником.

Критерии оценки:

Приведены в разделе 2

Наименование: работа на практических занятиях: текущий контроль выполнения заданий.

Представление в ФОС: задания и требования к выполнению представлены в методических указаниях по дисциплине:

- 9. Прикладное программное обеспечение в аэрогидромеханике: методические указания к лабораторным работам и практическим занятиям для напр. 01.04.04 "Прикладная математика" / сост. С.А. Королев Ижевск: ИжГТУ, 2019. 33 с. (Рег. номер: 026/МиЕН) Варианты заданий: задания и требования к выполнению представлены в методических указаниях по дисциплине
- 1. Система уравнений Навье-Стокса, физический смысл, основные переменные, коэффициенты.
- 2. Дополнительные соотношения к системе уравнений движения: уравнение состояния, соотношения для напряжения трения и теплового потока.
- 3. Осреднение уравнений гидромеханики по Рейнольдсу и Фавру.
- 4. Модель турбулентности k– ϵ . Соотношение для турбулентной вязкости.
- 5. Основные типы граничных условий в задачах гидромеханики.
- 6. Метод контрольного объема для решения уравнений гидромеханики.
- 7. Схемы аппроксимации конвективных и диффузионных слагаемых.
- 8. Основные этапы решения задач гидромеханики в ANSYS Fluent.
- 9. Способы задания геометрии в модуле Design Modeler пакета ANSYS.
- 10. Способы построения сетки в модуле Meshing пакета ANSYS.
- 11. Основные возможности решателя ANSYS Fluent.
- 12. Типы граничных условий в ANSYS Fluent.
- 13. Постпроцессорная обработка в ANSYS Fluent.
- 14. Расчет коэффициентов аэродинамической силы по результатам решения задачи обтекания.

Критерии оценки:

Приведены в разделе 2

Наименование: защита лабораторных работ

Представление в ФОС: задания и требования к выполнению представлены в методических указаниях по дисциплине

- 9. Прикладное программное обеспечение в аэрогидромеханике: методические указания к лабораторным работам и практическим занятиям для напр. 01.04.04 "Прикладная математика" / сост. С.А. Королев Ижевск: ИжГТУ, 2019. 33 с. (Рег. номер: 026/МиЕН)
- 10. Прикладное программное обеспечение в механике деформируемого твердого тела: методические указания к лабораторным работам для напр. 01.04.04 "Прикладная математика" / сост. В.Г. Суфиянов, С.А. Королев Ижевск: ИжГТУ, 2019. 88 с. (Рег. номер: 027/МиЕН)

Варианты заданий: задания и требования к выполнению представлены в методических указаниях по дисциплине:

- 1. Реализовать решение задачи обтекания снаряда потоком воздуха в ANSYS Fluent для осесимметричного случая.
- 2. Провести расчет параметров течения при обтекании снаряда для M=2,0. Построить графики полей параметров: давление, плотность, скорость, температура, турбулентная вязкость
- 3. Провести расчет коэффициента лобового сопротивления для диапазона изменения числа Маха $M=0.5\div 3.0$. Построить график зависимости коэффициента лобового сопротивления от числа Маха $C_x=C_x(M)$. Сравнить результаты с законами сопротивления 1943 и 1958 г.

Критерии оценки:

Приведены в разделе 2

Наименование: тест

Представление в ФОС: набор вопросов для проведения тестирования

Критерии оценки:

Компетенция

ПК-3. Способен организовывать процессы управления разработкой наукоемкого программного обеспечения.

Индикаторы достижения компетенции:

- ПК-3.1. Знать: методологию управления разработкой наукоемкого программного обеспечения.
- ПК-3.2. Уметь: применять методологию и средства управления разработкой наукоемкого программного обеспечения.
- ПК-3.3. Владеть: практическими навыками управления разработкой наукоемкого программного обеспечения.

Проведение работы, заключающейся в ответе на вопросы теста (компетенция ПК-3):

- 1. Укажите последовательность этапов решения задач механики сплошной среды в прикладном программном обеспечении
- а) построение расчетной сетки, построение геометрии, настройка параметров решателя, постпроцессорная обработка;
- **б**) построение геометрии, построение расчетной сетки, настройка параметров решателя, постпроцессорная обработка;
- в) постпроцессорная обработка, построение геометрии, построение расчетной сетки, настройка параметров решателя;
- г) постпроцессорная обработка, настройка параметров решателя, построение геометрии, построение расчетной сетки.
- 2. Движение идеальной жидкости описывает
- а) система уравнений Навье-Стокса;
- б) система уравнений Эйлера;
- в) система уравнений Рейнольдса;
- г) система уравнений Прандтля.
- 3. Система уравнений Навье-Стокса не включает:
- а) уравнение неразрывности
- б) уравнение импульса
- в) уравнение энергии
- г) уравнение состояния
- 4. Определяет переход ламинарного режима течения в турбулентный
- а) число Эйлера
- б) число Струхаля
- в) число Прандтля
- г) число Рейнольдса

- **5.** Какой закон доказывает, что вектор теплового потока в данной точке сплошной среды прямо пропорционален градиенту температуры в этой же точке?
- а) закон Гука;
- б) закон Фурье;
- в) закон Паскаля;
- г) закон Ньютона.

Ключи теста:

Вопрос	1	2	3	4	5
Ответ	б	б	Γ	Γ	б

Компетенция

ПК-4. Способен разрабатывать и исследовать математические модели технических и социально-экономических систем с использованием современных информационных технологий.

Индикаторы достижения компетенции:

- ПК-4.1. Знать: основные принципы построения математических моделей технических и социально-экономических систем.
- ПК-4.2. Уметь: разрабатывать методы и алгоритмы решения инженерных и экономических задач на основе математического моделирования с использованием современных информационных технологий.
- ПК-4.3. Владеть: практическими навыками исследования математических моделей технических и социально-экономических систем с использованием современных информационных технологий.

Проведение работы, заключающейся в ответе на вопросы теста (компетенция ПК-4):

- 1. Стабилизированное течение вязкой жидкости в цилиндрическом канале называется
- а) течение Куэтта
- б) течение Пуазейля
- в) потенциальное течение
- г) ламинарное течение
- 2. Что не относится к характеристикам турбулентной вязкости
- а) вводится на основе гипотезы Буссинеска
- б) не зависит от пространственных координат и времени
- в) не является свойством вещества, а является характеристикой течения
- г) намного превосходит ламинарную вязкость
- 3. Движение турбулентного потока в осредненных переменных описывает
- а) система уравнений Навье-Стокса;
- б) система уравнений Эйлера;
- в) система уравнений Рейнольдса;
- г) система уравнений Прандтля.
- **4.** Система уравнений напряженно-деформированного состояния твердого тела не включает:
- а) уравнения неразрывности
- б) уравнения равновесия сил
- в) физические уравнения закона Гука
- г) уравнение состояния

- **5.** Какой закон устанавливает связь между линейными деформациями и напряжениями в точке тела?
- а) закон Гука;
- б) закон Фурье;
- в) закон Паскаля;
- г) закон Ньютона.

Ключи теста:

Вопрос	1	2	3	4	5
Ответ	б	б	В	Γ	a

Приведены в разделе 2

2. Критерии и шкалы оценивания

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, обозначение	Показатели выставления минимального количества баллов		
Практическая работа	Задания выполнены более чем наполовину. Присутствуют серьёзные ошибки. Продемонстрирован удовлетворительный уровень владения материалом. Проявлены низкие способности применять знания и умения к выполнению конкретных заданий. На защите практической работы даны правильные ответы не менее чем на 50% заданных вопросов		
Лабораторная работа выполнена в полном объеме; Представлен отчет, содержащий необходимые расчеты оформленный в соответствии с установленными требованиям пработа Продемонстрирован удовлетворительный уровень владения при защите лабораторной работы, даны правильные ответичем на 50% заданных вопросов			

Промежуточная аттестация по дисциплине проводится в форме зачета, экзамена.

Итоговая оценка по дисциплине может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

Оценка	Набрано баллов
«зачтено»	85-100
«не зачтено»	43-84

Оценка	Набрано баллов
«отлично»	90-100
«хорошо»	75-89
«удовлетворительно»	60-74
«неудовлетворительно»	0-60

Если сумма набранных баллов менее 50 – обучающийся не допускается до промежуточной аттестации.

Если сумма баллов составляет от 50 до 100 баллов, обучающийся допускается до экзамена.

Билет к зачету, экзамену включает 2 теоретических вопроса и 1 практическое задание.

Промежуточная аттестация проводится в письменной форме.

Время на подготовку: 60 минут.

При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки:

Оценка	Критерии оценки
	Обучающийся демонстрирует знание основного учебно-
//DOUTALION	программного материала в объеме, необходимом для дальнейшей
«зачтено»	учебы, умеет применять его при выполнении конкретных заданий,
	предусмотренных программой дисциплины
	Обучающийся демонстрирует значительные пробелы в знаниях
(///a pay/may/a))	основного учебно-программного материала, допустил принципи-
«не зачтено»	альные ошибки в выполнении предусмотренных программой
	заданий и не способен продолжить обучение

Оценка	Критерии оценки
	Обучающийся показал всестороннее, систематическое и глубо-
	кое знание учебного материала, предусмотренного программой,
	умение уверенно применять на их практике при решении задач
«отлично»	(выполнении заданий), способность полно, правильно и аргу-
	ментировано отвечать на вопросы и делать необходимые выво-
	ды. Свободно использует основную литературу и знаком с до-
	полнительной литературой, рекомендованной программой.
	Обучающийся показал полное знание теоретического материала,
	владение основной литературой, рекомендованной в программе,
	умение самостоятельно решать задачи (выполнять задания),
«хорошо»	способность аргументировано отвечать на вопросы и делать
«хорошо»	необходимые выводы, допускает единичные ошибки, исправля-
	емые после замечания преподавателя. Способен к самостоятель-
	ному пополнению и обновлению знаний в ходе дальнейшей
	учебной работы и профессиональной деятельности
	Обучающийся демонстрирует неполное или фрагментарное
	знание основного учебного материала, допускает существенные
	ошибки в его изложении, испытывает затруднения и допускает
«удовлетворительно»	ошибки при выполнении заданий (решении задач), выполняет
«удовлетворительно»	задание при подсказке преподавателя, затрудняется в формули-
	ровке выводов. Владеет знанием основных разделов, необходи-
	мых для дальнейшего обучения, знаком с основной и дополни-
	тельной литературой, рекомендованной программой.
«неудовлетворительно»	Обучающийся при ответе демонстрирует существенные пробе-

лы в знаниях основного учебного материала, допускает грубые ошибки в формулировании основных понятий и при решении типовых задач (при выполнении типовых заданий), не способен ответить на наводящие вопросы преподавателя. Оценка ставится обучающимся, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании образовательного учреждения без дополнительных занятий по рассматриваемой дисциплине