Next Generation Computing with D

Feng Li (鲜卑拓跋枫) hkli2012@126.com Jul 28, 2018

Revision	Authors	Remarks
v0.1 Jul 28, 2018	Koo Li	Initial Version for HelloLLVM Offline Meeting in Hangzhou on Jul 28, 2018

Agenda

- I. Why D
- Overview
- Compilation
- A potential candidate of system language
- A good fit for ARM
- Pros & Cons
- weka.io
- vibe.d
- HPC
- LDC
- D & Python
- **D** in China
- II. Wrap-Up

1) Overview

https://en.wikipedia.org/wiki/D_(programming_language)

For other programming languages named D, see D (disambiguation) § Computing. For other uses, see D (disambiguation).

The **D** programming language is an object-oriented, imperative, multi-paradigm system programming language created by Walter Bright of Digital Mars and released in 2001. Bright was joined in the design and development effort in 2007 by Andrei Alexandrescu. Though it originated as a re-engineering of C++, D is a distinct language, having redesigned some core C++ features while also taking inspiration from other languages, notably Java, Python, Ruby, C#, and Eiffel.

D's design goals attempt to combine the performance and safety of compiled languages with the expressive power of modern dynamic languages. Idiomatic D code is commonly as fast as equivalent C++ code, while being shorter[citation needed] and memory-safe.[9]

Type inference, automatic memory management and syntactic sugar for common types allow faster development, while bounds checking, design by contract features and a concurrency-aware type system help reduce the occurrence of bugs.^[10]

Hello World

```
import std.stdio;

void main()
{
    writeln("Hello, world!");
}
```

https://dlang.org/index.html

Paradigm compiled, multi-paradigm Designed by Walter Bright, Andrei Alexandrescu (since 2007) Developer D Language Foundation 8 December 2001; 16 years First appeared ago^[1] 2.081.0^[2] / 4 July 2018; 17 Stable release days ago^[3] Typing strong, static, inferred discipline OS Unix-like (FreeBSD, Linux etc.), Windows, macOS Boost[4][5][6] License Filename extensions Website dlang.org 图 Major implementations DMD & (reference implementation), GDC &, LDC & SDC & Influenced by C, C++, C#, Eiffel,[7] Java, Python Influenced MiniD, DScript, Vala, Qore, Swift, [8] Genie

Designed by Experts

https://en.wikipedia.org/wiki/Walter_Bright http://digitalmars.com/

Digital Mars D compiler
Digital Mars C compiler
Digital Mars C++ compiler

D

Programming Language

Specification

https://en.wikipedia.org/wiki/Andrei_Alexandrescu http://erdani.org/

Ranking

https://www.tiobe.com/tiobe-index/

Jul 2018	Jul 2017	Change	Programming Language	Ratings	Change
1	1		Java	16.139%	+2.37%
2	2		С	14.662%	+7.34%
3	3		C++	7.615%	+2.04%
4	4		Python	6.361%	+2.82%
5	7	^	Visual Basic .NET	4.247%	+1.20%
6	5	•	C#	3.795%	+0.28%
23		D			0.596%

http://redmonk.com/

https://medium.com/@hoffa/the-top-weekend-languages-according-to-githubs-code-6022ea2e33e8 The top weekend languages 2016:

Row	lang	ratio	weekday	weekend	sample_repo	sample_repo_2
1	rust	0.64	6268	3988	rust-lang/rust	matthiasbeyer/imag
2	glsl	0.63	4200	2663	d08ble/acpul-demo	Realm667/WolfenDoom
3	d	0.62	1129	696	nordlow/phobos-next	nordlow/justd
4	haskell	0.61	8351	5071	ghc/ghc	agda/agda
5	common lisp	0.6	1731	1032	ddmcdonald/sparser	roswell/roswell
6	kicad	0.59	1405	827	SchrodingersGat/kicad-library	esacinc/qrda
7	emacs lisp	0.57	13462	7694	tvraman/emacspeak	syl20bnr/spacemacs
8	lua	0.57	13940	7974	bthjonte/config	Mashape/kong
9	scheme	0.56	1545	861	mbakke/guix	justinethier/cyclone
10	julia	0.56	1755	989	JuliaLang/julia	JuliaLang/METADATA.jl
11	elm	0.55	1689	923	ravichugh/sketch-n-sketch	ianmackenzie/elm-opensolid-core
12	eagle	0.55	2521	1389	carpe-noctem-cassel/cnc-msl	DamonHD/OpenTRV
13	racket	0.55	1132	624	endobson/yaspl2	Javran/Thinking-dumps
14	dart	0.54	941	511	dart-lang/sdk	flutter/flutter
15	nsis	0.53	1159	613	KDE/emerge	greenshot/greenshot
16	clojure	0.53	6191	3269	uxbox/uxbox	kronkltd/jiksnu
17	kotlin	0.53	2836	1507	JetBrains/kotlin	dzharkov/kotlin
18	elixir	0.53	4967	2616	KronicDeth/intellij-elixir	elixir-lang/elixir
19	f#	0.52	1982	1025	FStarLang/FStar	fsprojects/Paket
20	ocaml	0.51	2043	1051	FStarLang/FStar	ocaml/opam-repository

Growing Ecosystem of

https://dlang.org/orgs-using-d.html

GNEX

- http://wiki.dlang.org/Libraries_and_Frameworks
- https://wiki.dlang.org/IDEs
- http://code.dlang.org/
- https://wiki.dlang.org/Open_Source_Projects
- https://github.com/trending/d
- http://dconf.org

Official Github

https://github.com/dlang dmd phobos

druntime

Package and build management system for

The standard library of

compiler

Low level runtime library for

dub

2) Compilation

- https://wiki.dlang.org/Compilers
- https://wiki.dlang.org/DMD
- https://wiki.dlang.org/GDC
- https://wiki.dlang.org/LDC

DMD

- Official reference compiler
- Latest D version
- Simple installation
- Very fast compilation speeds
- Architectures: i386, amd64

GDC

- GCC-based D compiler
- Strong optimization
- Great GDB support
- Architectures: i386, amd64, x32, armel, armhf, others

LDC

- <u>LLVM</u>-based D compiler
- Strong optimization
- Mobile support: <u>iOS alpha</u>, <u>Android beta</u>
- Architectures: i386, amd64, armel, armhf, others

Trend

https://gcc.gnu.org/ml/gcc-patches/2017-10/msg00030.html D Language Front-End Proposed For GCC 8, ~800k Lines of Code Waiting for GCC 9...

- D front-end in Clang?
- https://wiki.dlang.org/Vision/2018H1 https://wiki.dlang.org/DIPs

• • •

3) A potential candidate of system language

Bare Metal Programming

- https://gitlab.com/sarneaud/xanthe
- https://theartofmachinery.com/2017/02/28/bare_metal_d.html
- https://forum.dlang.org/post/ygbvnurvwezjtareevyo@forum.dlang.org//GitBook about D on embedded ARM Linux
- https://forum.dlang.org/post/ooydfdsteqrbtxmxzupj@forum.dlang.org //Embedded Linux really needs Dlang for the IOT market
- https://wiki.dlang.org/Programming_in_D_tutorial_on_Embedded_Linux_ARM_devices
- on bare metal ARM

4) A good fit for ARM

https://wiki.dlang.org/Compilers

<u>GDC</u>

- complete support armel, armhf
- partial or bare-metal only support aarch64

LDC

- complete support armel, armhf
- near-complete support aarch64

Ongoing development

- Latest LLVM support
- LLD integration
- JIT-compiled functions
- _ ...
- **Figure 2 for Android**
- https://github.com/joakim-noah/android/releases (in LDC now)

5) Pros & Cons

Pros

Features

- https://dlang.org/comparison.html
- https://digitalmars.com/d/2.0/comparison.html

Development Mode community-driven

Productivity a combination of C++/C/Java/Scala/Python...,

auto/manually memory management

Binary-compatible with C

System Language

Interop

Programming Paradigms

pointer, inline assembler...

easily interface with legacy code in C/C++/Lua...

including but not limited to imperative,

object-oriented, metaprogramming, functional and

concurrent

Built-in Unit Test

All module scope variables are thread-local by default

...

Cons

- Lack of popular frameworks/libraries
- Not as mature as commercial products, e.g. Memory Management
- Further optimization of runtime
- Weak ecosystem when comparing with that of Java, C++, Go...
- **-** ...
- Still has a long way to go

6) weka.io

- https://www.weka.io
- https://www.weka.io/why-weka/

WEKA.IO WORLD'S FASTEST PARALLEL FILE SYSTEM 7x Better Than All-Flash NAS

About the Weka.io product

- "Software only" storage product
- Low latency, high performance
- · Written in D
- About 280,000 LoC
 - Not including 114,663 lines in a single auto-generated file.
- · Compiled using waf

More About the Code

- Internally called "wekapp"
- · Extremely latency sensitive
 - As little GC as possible
 - As few system calls as possible
- · Performance sensitive
 - As little copying of data as possible
- Micro-threading (Fibers) based

What do we care about?

- Safety
- Performance
- Brevity
- Ability to manage complexity

Source: Announcing Mecca (DConf 2018)

Source: Using D as the programming language of choice for large scale primary storage system (DConf 2018)

Project Mecca

- https://github.com/weka-io/mecca/
 - Reactor scheduling fibers coordinating (synchronizing)
 - o non-GC containers Arrays, pools, queues, linked lists
 - Lib introspection, division, no-gc exception handling, CTFE enabled hashing, non-gc interators and algs, string and time manipulation.

Source: Using D as the programming language of choice for large scale primary storage system (DConf 2018)

7) vibe.d

http://vibed.org/

Asynchronous I/O that doesn't get in your way, written in

Productive

High-level declarative REST and web application framework

Full HTTP(S) stack with client, server and proxy implementations

Shipped with native database drivers for MongoDB and Redis

Complete concurrency toolkit and support for low level I/O operations

Fast

Asynchronous I/O for maximum speed and minimum memory usage

Compile-time "Diet" templates for unparalleled dynamic page speed

Compiled to native machine code

Multi-threading and Integrated load-balancing*

Simple

Fiber based blocking programming model for concise and intuitive development

Compact API with sensible default choices

Full support for exception based error handling

Simple access to third-party extension libraries using the DUB package system

http://vibed.org/features

Example of a simple HTTP server import vibe.vibe; void main() { listenHTTP(":8080", &handleRequest); runApplication(); } void handleRequest(HTTPServerRequest req, HTTPServerResponse res) { if (req.path == "/") res.writeBody("Hello, World!"); } Example of an echo server import vibe.vibe; void main() { listenTCP(7, (conn) { conn.write(conn); }); runApplication(); }

8) HPC

- High Performance Computing
- Heterogeneous Parallel Computing

<u>Mir</u>

https://github.com/libmir/

Separated Mir Projects

- mir -- Mir Algorithm, Mir Random, Sparse tensors, Hoffman
- dcv -- Computer Vision Library for D Programming Language
- mir-algorithm -- Core algorithm library and a home for Dlang multidimensional array package - ndslice
- mir-glas -- [Experimental] LLVM-accelerated Generic Linear Algebra Subprograms
- mir-random -- Advanced Random Number Generators
- numir -- NumPy-like API wrappers of Mir
- ...

Coroutine/Fiber

- https://en.wikipedia.org/wiki/Coroutine
- https://en.wikipedia.org/wiki/Fiber_(computer_science)
- Coroutine landed in Clang/LLVM since May 2017

C++

- moved out from C++17⊗
- Boost.Coroutine

Go

- Goroutine
- CSP

implements as standard library class Fiber http://dlang.org/phobos/core_thread.html#.Fiber

```
class DerivedFiber : Fiber
    this()
        super( &run );
private:
    void run()
        printf( "Derived fiber running.\n" );
void fiberFunc()
    printf( "Composed fiber running.\n" );
    Fiber.yield();
    printf( "Composed fiber running.\n" );
// create instances of each type
Fiber derived = new DerivedFiber();
Fiber composed = new Fiber( &fiberFunc );
// call both fibers once
derived.call();
composed.call();
printf( "Execution returned to calling context.\n" );
composed.call();
// since each fiber has run to completion, each should have state TERM
assert( derived.state == Fiber.State.TERM );
assert( composed.state == Fiber.State.TERM );
```

9) LDC

https://github.com/ldc-developers/ldc the LLVM-based D Compiler

Source: LLVM-backed goodies in LDC (DConf 2018)

CTFE (Compile Time Function Evaluation)

- https://en.wikipedia.org/wiki/Compile_time_function_execution
- https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe

DCompute

https://github.com/libmir/dcompute
Native execution of D on GPUs and other Accelerators

Targeting CUDA & OpenCL @compute @kernel...

Idc2 -mdcompute-targets=cuda-500...

10) D & Python

Pls refer to my presentation "OpenStack on ARM" at OpenInfra Days Beijing (on Jun 22, 2018)

CPython 3.7.0:

Language	files	blank	comment	code
Python	1790	109019	130985	510869
C	316	48787	44507	302006
C/C++ Header	350	13598	10073	118883
Bourne Shell	13	2830	2408	17636
m4	3	519	130	5418
C++	5	731	262	3181
HTML	10	99	11	1830
WiX source	51	159	39	1693
Assembly	7	258	395	1481

https://github.com/ariovistus/pyd
Interoperability between Python and D

11) D in China

- https://www.d-programming-language-china.org/ (inactive)
- http://ddili.org/ders/d.en/index.html

Random stats of the	day:		
Location	Pages	Hits	Bandwidth
United States	34 , 237	42,608	1.34 GB
China	28,616	29,040	543.10 MB
Turkey	16,121	46,814	929.62 MB
Russian Federation	10,205	12,616	525.24 MB
Netherlands	8,559	8,747	148.16 MB
Norway	7,247	7,324	79.20 MB
Thailand	7,045	7,052	78.29 MB
Germany	6,172	7,734	495.69 MB
Brazil	5,272	5,604	128.59 MB
[]			

Putao

http://www.putao.com/ https://github.com/huntlabs

kiss A refined core library for D programming language. Include event / mund asynchronous / net / tcpstream / serialize / radix-tree / timer / container / memory / buffer.etc. asynchronous network buffer high-performance timer event ● D ★ 13 💡 4 🚯 Apache-2.0 Updated 20 hours ago hunt-http ● D 🍇 Apache-2.0 Updated 2 days ago hunt-net net module for hunt. ● D Apache-2.0 Updated 2 days ago database Database abstraction layer for D programing language, support PostgreSQL ★ 21 💡 3 🖈 Apache-2.0 Updated 5 days ago hunt A high performance full-stack Web framework written in D programming Language. dlang web-framework high-performance ● D ★ 68 ¥ 12 Updated 8 days ago

II. Wrap-Up

"Competitive Advantage with D" http://cppnow.org/2017-conference/announcements/ 2017/04/09/d-keynote.html http://ddili.org/AliCehreli_CppNow_2017_Competitive_ Advantage_with_D.no_pause.pdf

Competitive Advantage with D

Ali Çehreli

C++Now 2017 • Aspen, Colorado

https://github.com/Azure/iotedge

• C# 48.6%

Rust 32.7%

● C 9.2%

Python 6.1%

Shell 1.3%

PowerShell 0.7%

Other 1.4%

https://twitter.com/AndreaPessino/status1021532074153394176

D for Cloud Could challenge the Go-ruling Cloud Infrastructure?

Q & A

THANK YOU!

How about the first Workshop in China?

Reference

Slides/materials from many and varied sources:

- http://en.wikipedia.org/wiki/
- http://www.slideshare.net/
- _ ..