Ramanujan τ -Functions

Yu Xiong

June 7, 2025

In this part, I will introduce the following theorem, whose proof is from Math Stackexchange, and there are some corollaries giving some congruence of τ functions, which is from [1].

Theorem 1.

$$(1-n)\tau(n) = 24\sum_{j=1}^{n-1} \sigma(j)\tau(n-j).$$

Definition 2. δ_k is an operator from holomorphic functions to holomorphic functions.

$$\delta_k(f) := 12\theta(f) - kE_2 f,$$

where $\theta(f) := q \frac{df}{dq}$, $q = e^{2\pi i \tau}$ and

$$E_2(\tau) = 1 - 2\sum_{n=1}^{\infty} \sigma q^n.$$

Lemma 3. $\delta_k: M_k(\Gamma) \to M_{k+2}(\Gamma)$ and $\delta_k(S_k(\Gamma)) \subset S_{k+2}(\Gamma)$.

Proof. To prove $\delta_k(M_k(\Gamma)) \subset M_{k+2}(\Gamma)$, we just need to show for any $f \in M_k(\Gamma)$ and $\alpha \in \Gamma$, we have

$$(\delta_k f)|_{k+2} \alpha = \delta_k f. \tag{1}$$

We can see that $(\delta_k f)|_{k+2}\alpha=12(\theta_k f)|_{k+2}\alpha-kE_2|_2\alpha f|_k\alpha$. Firstly, we have $\theta(f)=q\frac{df}{dq}=\frac{1}{2\pi i}f'(\tau)$, so we have

$$\theta(f)|_{k+2}\alpha = \frac{1}{2\pi i}f'|_{k+2}\alpha = \frac{1}{2\pi i}(c\tau + d)^{-k-2}f'(\alpha\tau).$$

We have $f(\alpha \tau) = (c\tau + d)^k f(\tau)$, and taking the derivative of the equation we have $\frac{1}{(c\tau + d)^2} f'(\alpha \tau) = kc(c\tau + d)^{k-1} f(\tau) + (c\tau + d)^k f'(\tau)$. So we have

$$f'(\alpha \tau) = kc(c\tau + d)^{k+1} f(\tau) + (c\tau + d)^{k+2} f'(\tau).$$

Taking the $f'(\alpha \tau)$ to $(\theta_k f)|_{k+2}\alpha$, we have

$$(\theta_k f)|_{k+2}\alpha = \frac{1}{2\pi i}(c\tau + d)^{-k-2}f'(\alpha\tau)$$

$$= \frac{1}{2\pi i}\left(\frac{kc}{c\tau + d}f(\tau) + f'(\tau)\right)$$

$$= \frac{kcf(\tau)}{2\pi i(c\tau + d)} + \theta f.$$

So we have

$$(\delta_k f)|_{k+2} \alpha - \delta_k f = 12(\theta_k f)|_{k+2} \alpha - kE_2|_2 \alpha f - (12\theta(f) - kE_2 f)$$

$$= kf(\tau) \left(\frac{12c}{2\pi i(c\tau + d)} - E_2|_2 \alpha + E_2 \right)$$

$$= 0.$$

Last equation is from $E_2|_{2}\alpha = E_2 + \frac{12c}{2\pi i(c\tau + d)}$.

Proof of Theorem 1. We have $\delta_k \Delta \in S_{14}(\Gamma) = 0$, so $\delta_k \Delta = 0$. So we have

$$\delta_k \Delta = 12 \sum_{n=1}^{\infty} n\tau(n)q^n - 12E_2 \Delta = 0.$$

Hence, we have

$$\sum_{n=1}^{\infty} n\tau(n)q^n = \left(1 - 24\sum_{n=1}^{\infty} \sigma(n)q^n\right) \left(\sum_{n=1}^{\infty} \tau(n)q^n\right)$$
$$= \sum_{n=1}^{\infty} \tau(n)q^n - 24\sum_{n=1}^{\infty} \left(\sum_{m=1}^{n-1} \tau(m)\sigma(n-m)q^n\right).$$

References

[1] R. P. Bambah, S. Chowla, H. Gupta, and D. B. Lahiri. Congruence properties of Ramanujan's function $\tau(n)$. Quart. J. Math. Oxford Ser., 18:143–146, 1947.