"Flavors" of Meta-Analysis

There are different types of meta-analytic studies:

- Conventional meta-analysis: which involves the synthesis of summary statistics and effect sizes (means, SD, correlations, risk reductions, ...) as they are reported in the published literature.
- Individual Participants Data (IPD) meta-analysis: original data of all studies is collected, combined into one big data set ("data harmonization") and then pooled.

Statistical methods can be applied in the same way across all studies. Can use participant-level information (e.g., an individual person's age, gender, symptom severity) which may play a role as an important moderators of the results. This is not possible with conventional meta-analysis. Disadvantages Obtaining original data from all relevant studies is much more challenging than extracting the published results. In biomedical research, IPD can only be obtained from approx. 64% of the eligible studies (Riley, Simmonds, and Look 2007).

"Flavors" of Meta-Analysis

There are different types of meta-analytic studies:

- Conventional meta-analysis: which involves the synthesis of summary statistics and effect sizes (means, SD, correlations, risk reductions, ...) as they are reported in the published literature.
- Individual Participants Data (IPD) meta-analysis: original data of all studies is collected, combined into one big data set ("data harmonization") and then pooled.
- **Network meta-analysis**: a special type of meta-analytic model that allows to three or more studies by combining direct and indirect comparisons of different treatments within a single analysis.

