Inclass 25.1. Electron and proton have the same spin angular momentum, $|S| = \sqrt{\frac{1}{2}(\frac{1}{2}+1)}\hbar$. What is the ratio of their magnetic moment? Electron mass = $9.1\times10^{-31}kg$; proton mass = $1.6\times10^{-27}kg$.

Inclass 25.2. When placing a spin $\frac{1}{2}$ particle in a magnetic field pointing to the z-direction, what are the possible directions of the spin angular momentum with respect to the z-direction?

Inclass 25.3. A box of low density electron gas is immersed in a magnetic field of $1\ tesla$ pointing in the z direction. What type of radiation (in terms of wavelength) is emitted due to spin flips? Electron mass $9.1\times10^{-31}kg$.

Inclass 25.4. Show that $\left[\hat{S}_x, \hat{S}_y\right] = i\hbar \hat{S}_z$.

Note:
$$(\hat{S}_x) = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, (\hat{S}_y) = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$