Universität des Saarlandes

BACHELOR THESIS

Automated Data Selection for Nonlinear Diffusion Inpainting in Image Compression

Author: Daniel Gusenburger

Supervisor: Prof. Joachim Weickert

A thesis submitted in fulfillment of the requirements for the degree of Bachelor of Science

in the

Mathematical Image Analysis Group Department of Computer Science

Declaration of Authorship

I, Daniel Gusenburger, declare that this thesis titled, "Automated Data Selection for Nonlinear Diffusion Inpainting in Image Compression" and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signea:		
Date:		

UNIVERSITÄT DES SAARLANDES

Abstract

Faculty of Mathematics and Computer Science Department of Computer Science

Bachelor of Science

Automated Data Selection for Nonlinear Diffusion Inpainting in Image Compression

by Daniel Gusenburger

A novel image compression technique developed over the last few years uses nonlinear diffusion inpainting to reconstruct an image from a select set of datapoints. Until now, these points had to be selected manually in order to achieve acceptable results.

In this thesis, I will present an automated approach using a nearly parameter-less and fairly accurate corner and junction detection algorithm to find points of interest. Afterwards, I will compare it to the manual approach and we will see whether it results in a better reconstruction.

Acknowledgements

Contents

D	eclara	tion of Authorship	iii
A l	bstra	ŧ	v
A	cknov	vledgements	vii
1	Sele	ction of interest points	1
	1.1	Available Methods for Corner detection	1
		1.1.1 AMSS corner detection	1
		The affine morphological scale space	1

List of Figures

List of Tables

List of Abbreviations

AMSS Affine Morphological Scale Space

dedicated to my cat

Chapter 1

Selection of interest points

1.1 Available Methods for Corner detection

To find the points of interest we want to keep, I tried different corner detectors:

- Tomasi-Kanade
- Rohr
- Foerstner-Harris

All of the above methods have in common that they make use of the *structure tensor* defined as

$$J_{\rho}(\nabla u) := K_{\rho}(\nabla u \nabla u^{T}) = \begin{pmatrix} K_{\rho} * (u_{x}^{2}) & K_{\rho} * (u_{x}u_{y}) \\ K_{\rho} * (u_{x}u_{y}) & K_{\rho} * (u_{y}^{2}) \end{pmatrix}$$

where K_{ρ} is a gaussian convolution kernel with standard deviation ρ and u is a gaussian smoothed version of the original image f, i.e.

$$u = K_{\sigma} * f$$

While being fairly accurate (insert examples here), the above methods don't really succeed in finding the most relevant corners.

That's the reason I chose an algorithm proposed by Luis Alvarez (reference here) that is based on the so called Affine Morphological Scale Space (or short **AMSS**). He proposes a multiscale algorithm that tracks corners across the evolution of an image in this scale space.

The special property of this scale space is, that the shape of a corner evolves in such a way that the actual tip of the corner moves linearly along the corner bisector. Using this property, one can extract the exact location of a corner.

1.1.1 AMSS corner detection

The affine morphological scale space

The aforementioned AMSS is produced by the partial differential equation

$$u_t = t^{\frac{1}{3}} (u_{xx} u_y^2 + u_{yy} u_x^2 - 2u_x u_y u_{xy})^{\frac{1}{3}}$$