Input Output Organization

Peripheral Devices :

- I/O Subsystem
 - Provides an efficient mode of communication between the central system and the outside environment
- Peripheral (or I/O Device)
 - Input or Output devices attached to the computer
 - Monitor (Visual Output Device) : CRT, LCD
 - KBD (Input Device): light pen, mouse, touch screen, joy stick, digitizer
 - Printer (Hard Copy Device) : Dot matrix (impact), thermal, ink jet, laser (non-impact)
 - Storage Device : Magnetic tape, magnetic disk, optical disk

Input-Output Interface

- Provides method for transferring information between internal storage and external I/O devices.
- Special communication link require for interfacing peripherals with CPU
- Differences between Peripherals and CPU
 - 1) A conversion of signal values may be required
 - 2) A synchronization mechanism may be needed
 - The data transfer rate of peripherals is usually slower than the transfer rate of the CPU
 - 3) Data codes and formats in peripherals differ from the word format in the CPU and Memory
 - 4) The operating modes of peripherals are different from each other
 - Each peripherals must be controlled so as not to disturb the operation of other peripherals connected to the CPU

– Interface :

- Special hardware components between the CPU and peripherals
- Supervise and Synchronize all input and output transfers
- I/O Bus and Interface Modules :
 - I/O Bus
 - Data lines
 - Address lines
 - Control lines
 - I/O command:
 - Control Command
 - Status Command
 - Input Command
 - Output Command

— I/O Bus versus Memory Bus :

- Computer buses can be used to communicate with memory and I/O
- 1) Use two separate buses, one for memory and the other for I/O :
 - Computer has individual sets of data, address, and control buses
 - Done in computer which have separate I/O Processor (IOP)
- 2) Use one common bus for both memory and I/O but have separate control lines for each: *Isolated I/O* or *I/O Mapped I/O*
 - Distinction between memory transfer and I/O transfer made through separate read write lines
 - IN, OUT : I/O Instruction
 - MOV or LD : Memory read/write Instruction
 - Isolated I/O method isolate memory and I/O addresses

- 3) Use one common bus for memory and I/O with common control lines:
 Memory Mapped I/O
 - MOV or LD: I/O and Memory read/write Instruction
 - Employ only one set of read and write signals and do not distinguish memory and I/O addresses.
 - Segment of total address space is reserved for interface register

Example of I/O Interface:

- 4 I/O port : Data port A, Data port B, Control, Status
- Address Decode : CS, RS1, RS0
- Asynchronous Data Transfer :
 - Synchronous Data Transfer
 - All data transfers occur simultaneously during the occurrence of a clock pulse
 - Registers in the interface share a common clock with CPU registers
 - Asynchronous Data Transfer
 - Internal timing in each unit (CPU and Interface) is independent
 - Each unit uses its own private clock for internal registers

- Strobe: Control signal to indicate the time at which data is being transmitted
 - 1) Source-initiated strobe :
 - 2) Destination-initiated strobe:
 - Disadvantage of strobe method
 - Source will never know the receipt of data at destination
 - Destination that initiate transfer has no way to know whether source has placed data on the bus

Source-initiated strobe & Destination initiated Strobe

- Handshake: Agreement between two independent units
 - 1) Source-initiated handshake:
 - 2) Destination-initiated handshake:

Timeout: If the return handshake signal does not respond within a given time period, the unit assumes that an error has occurred.

- Modes of Transfer :
 - Data transfer to and from peripherals
 - 1) Programmed I/O:
 - 2) Interrupt-initiated I/O:
 - 3) Direct Memory Access (DMA):
 - 4) I/O Processor (IOP):

Source-initiated handshake & Destination initiated handshake

- Asynchronous Serial Transfer :
 - Synchronous transmission :
 - The two unit share a common clock frequency
 - Bits are transmitted continuously at the rate dictated by the clock pulses
 - Asynchronous transmission :
 - Special bits are inserted at both ends of the character code
 - Each character consists of three parts :
 - » 1) start bit : always "0", indicate the beginning of a character
 - » 2) character bits : data
 - » 3) stop bit : always "1"

Direct Memory Access (DMA):

DMA

 DMA controller takes over the buses to manage the transfer directly between the I/O device and memory (Bus Request/Grant)

– Transfer Modes :

- 1) Burst transfer: Block sequence of memory word transferred in cont. burst
- 2) Cycle stealing transfer: data word transfer 1 at time. Bus control return to cpu

DMA Controller (Intel 8237 DMAC):

- DMA Initialization Process
 - 1) Set Address register :
 - » memory address for read/write
 - 2) Set Word count register :
 - » the number of words to transfer
 - 3) Set transfer mode :
 - » read/write,
 - » burst/cycle stealing,
 - 4) DMA transfer start :
 - 5) EOT (End of Transfer) :
 - » Interrupt