Amendment dated November 17, 2003

Reply to Office Action dated May 16, 2003

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Original) A method of driving a liquid crystal panel having pixels arranged at each intersection between gate lines and data lines in a matrix type in an inversion system, comprising the steps of:

setting at least one pixel block each of which includes at least two data lines within the liquid crystal panel;

allowing the adjacent pixels in a gate line direction within the pixel block to respond to data signals having the same polarity; and

allowing the pixels within the other pixel areas except for the pixel block to respond to data signals having a polarity contrary to the adjacent pixels at the left and right sides thereof.

- 2. (Original) The method as claimed in claim 1, wherein the pixel block is positioned at a boundary portion between column drivers.
- 3. (Original) The method as claimed in claim 1, wherein the pixel block includes at least two data lines to which a data is applied from the same column driver.

Cont

Amendment dated November 17, 2003

Reply to Office Action dated May 16, 2003

4. (Original) The method as claimed in claim 1, wherein all the pixels within the

liquid crystal panel responds to the data signals having a polarity inverted every frame.

5. (Original) An apparatus for driving a liquid crystal panel having pixels arranged at

each intersection between gate lines and data lines in a matrix type in an inversion system,

comprising:

first signal supplying means for setting at least one pixel block each of which includes

at least two data lines within the liquid crystal panel to apply data signals having the same

polarity to the adjacent pixels in a gate line direction within the pixel block; and

second signal supplying means for applying data signals having a polarity contrary to

the adjacent pixels at the left and right sides thereof to the pixels within the other pixel areas

except for the pixel block area.

6. (Original) The apparatus as claimed in claim 5, further comprising:

line-inversion control means for controlling the first signal supplying means to apply

the data signals having the same polarity to the adjacent pixels in the gate line direction; and

dot-inversion control means for controlling the second signal supplying means to

apply the data signals having a polarity contrary to the pixels at the left and right sides

thereof.

7. (Original) The apparatus as claimed in claim 5, wherein the first and second signal

supplying means comprises:

signals.

Amendment dated November 17, 2003

Reply to Office Action dated May 16, 2003

at least two signal inverters for responding to control signals applied from the lineinversion control means and the dot-inversion control means to invert phases of input data

8. (Original) The apparatus as claimed in claim 7, wherein all of the odd-numbered signal inverters supplied with odd-numbered data signals and the even-numbered signal inverters supplied with even-numbered data signals respond to the control signal from the line-inversion control means to invert the input data signals.

9. (Original) The apparatus as claimed in claim 7, wherein any one of the oddnumbered signal inverters supplied with odd-numbered data signals and the even-numbered signal inverters supplied with even-numbered data signals respond to the control signal from the line-inversion control means to invert the input data signals.

10. (New) The method as claimed in claim 2, wherein data lines within at least one first plurality of consecutively arranged data lines are connected to adjacent column drivers.

11. (New) A method of driving a liquid crystal panel having gate lines, data lines crossing the gate lines, and pixels arranged in a matrix pattern at crossings of the gate and data lines, comprising:

applying video signals to at least one first plurality of consecutively arranged data lines such that video signals having the same polarity are applied to pixels adjacent each other along a gate line direction; and

Amendment dated November 17, 2003

Reply to Office Action dated May 16, 2003

applying video signals to at least one second plurality of consecutively arranged data lines, different from the at least one first plurality of consecutively arranged data lines such that video signals having opposite polarities are applied to pixels adjacent each other along a gate line direction.

- 12. (New) The method as claimed in claim 11, further comprising providing a plurality of column drivers for applying the video signals, wherein each column driver is connected to a plurality of consecutively arranged data lines.
- 13. (New) The method as claimed in claim 12, wherein data lines within at least one first plurality of consecutively arranged data lines are connected to adjacent column drivers.
- 14. (New) The method as claimed in claim 12, wherein at least one first plurality of consecutively arranged data lines is connected to a single column driver.
- 15. (New) The method as claimed in claim 11, further comprising inverting polarities of video signals applied to all of the pixels within the liquid crystal panel every frame.
- 16. (New) An apparatus for driving a liquid crystal panel having gate lines, data lines crossing the gate lines, and pixels arranged in a matrix pattern at crossings of the gate and data lines, comprising:

Page 5 of 11

Amendment dated November 17, 2003 Reply to Office Action dated May 16, 2003

first signal supplying means for applying video signals to at least one first plurality of consecutively arranged data lines such that video signals having the same polarity are applied

to pixels adjacent each other along a gate line direction; and

second signal supplying means for applying video signals to at least one second plurality of consecutively arranged data lines, different from the at least one first plurality of consecutively arranged data lines such that video signals having opposite polarities are applied to pixels adjacent each other along a gate line direction.

17. (New) The apparatus as claimed in claim 16, further comprising:

line-inversion control means for controlling the first signal supplying means to apply video signals having the same polarity to the pixels adjacent each other along the gate line direction; and

dot-inversion control means for controlling the second signal supplying means to apply video signals having opposite polarities to the adjacent each other along in the gate line

direction.

18. (New) The apparatus as claimed in claim 16, wherein the first and second signal

supplying means comprises:

at least two consecutively arranged signal inverters for responding to control signals

appliable from the line-inversion control means and the dot-inversion control means and for

inverting phases of video signals.

Page 6 of 11

LANDC:129501.1

Amendment dated November 17, 2003 Reply to Office Action dated May 16, 2003 Docket No.: 8733.294.00

19. (New) The apparatus as claimed in claim 18, wherein all odd-numbered signal inverters, supplied with odd-numbered data signals, and even-numbered signal inverters, supplied with even-numbered data signals, respond to the control signals from the line-inversion control means to invert the video signals.

alint

20. (New) The apparatus as claimed in claim 18, wherein any one of odd-numbered signal inverters, supplied with odd-numbered data signals, and even-numbered signal inverters, supplied with even-numbered data signals, respond to the control signals from the line-inversion control means to invert the video signals.