Number systems of different lengths, and a natural approach to infinitesimal analysis

Richard Pettigrew*

23rd April, 2008

1 Formal System of Euclidean Arithmetic

The language of EA

- Constant: \emptyset (empty set).
- Functions: P (power set); TC (transitive closure); { , } (pair set).
- Term-forming operator: $\{x \in t : A(x)\}$, whenever A is bounded.
- Relations: = (identity); \in (membership).

The axioms of EA

- Axioms of Empty Set, Power Set, Transitive Closure, Pair Set, and Extensionality are definitions of primitive symbols.
- Instead of the Axiom of Infinity, EA has the Axiom of Dedekind Finiteness: $\forall x,y(x\subsetneqq y\to x<_{\rm c}y)$
- Axiom Schema of Separation restricted to bounded formulae.

2 Natural Number Systems

2.1 Definitions

Roughly, L is generated from 0 by σ if it has the following form:

$$[0, \sigma(0), \sigma(\sigma(0)), \cdots, a]$$

Roughly, \mathcal{N} consists of the following linear orderings:

$$[], [0_{\mathcal{N}}], [0_{\mathcal{N}}, \sigma_{\mathcal{N}}(0_{\mathcal{N}})], [0_{\mathcal{N}}, \sigma_{\mathcal{N}}(0_{\mathcal{N}}), \sigma_{\mathcal{N}}(\sigma_{\mathcal{N}}(0_{\mathcal{N}}))], \cdots$$

^{*}Department of Mathematics, University of Bristol. Richard.Pettigrew@bris.ac.uk

2.2 Examples

• \mathcal{VN} is generated from \varnothing by $\sigma_{\mathcal{VN}}: x \mapsto x \cup \{x\}$

$$[], [\varnothing], [\varnothing, \{\varnothing\}], [\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}], \cdots$$

• \mathcal{Z} is generated from \varnothing by $\sigma_{\mathcal{Z}}: x \mapsto \{x\}$

$$[], [\varnothing], [\varnothing, \{\varnothing\}], [\varnothing, \{\varnothing\}, \{\{\varnothing\}\}], \cdots$$

• \mathcal{CH} is generated from \varnothing by $\sigma_{\mathcal{CH}}: x \mapsto P(x)$

$$[], [\varnothing], [\varnothing, P(\varnothing)], [\varnothing, P(\varnothing), P(P(\varnothing))], \cdots$$

2.3 Induction and Recusion

Theorem 1 (Bounded induction holds) If A is a bounded formula,

$$EA \vdash (A([]) \& (\forall L \ in \ \mathcal{N})[A(L) \to A(\overline{\sigma_{\mathcal{N}}}(L))]) \to (\forall L \ in \ \mathcal{N})A(L)$$

Theorem 2 (Unbounded induction fails) If A is unbounded, the following does not necessarily hold:

$$EA \vdash (A([]) \& (\forall L \ in \ \mathcal{N})[A(L) \to A(\overline{\sigma_{\mathcal{N}}}(L))]) \to (\forall L \ in \ \mathcal{N})A(L)$$

Definition 3 (Arithmetical global functions) Suppose φ is a global function. We say that φ is arithmetical if

$$EA \vdash \forall x, y(x \cong y \rightarrow \varphi(x) \cong \varphi(y))$$

Definition 4 (\mathcal{N} is closed under φ) Suppose φ is an arithmetical global function. Then we say that \mathcal{N} is closed under φ if

$$EA \vdash (\forall x \ in \ \mathcal{N})(\exists y \ in \ \mathcal{N})[\text{Field}(y) \cong \varphi(\text{Field}(x))].$$

Theorem 5 Given a natural number system \mathcal{N} , the family of arithmetical global functions under which \mathcal{N} is closed is closed under limited recursion, but NOT under full recursion.

- For n = 0, 1, 2, 3, there are natural number systems closed under all and only the arithmetical functions of Grzegorczyk's class \mathcal{E}^n .
- But the distinctions are more fine-grained: e.g.
 - There is \mathcal{N} closed under $x + \log(x)$ but not under x + x.
 - There is \mathcal{N} closed under $x\log(\log(x))$ but not under $x\log(x)$.

Definition 6 (φ is maximally powerful in \mathcal{N}) φ is maximally powerful in \mathcal{N} if, for any arithmetical global function ψ , if \mathcal{N} is closed under ψ , then there is \mathbf{n} such that ψ is eventually majorized by $\varphi^{\mathbf{n}}$.

Theorem 7 Suppose there is C such that

(i)
$$EA \vdash (\forall x)(\mathbf{C} \leq x \to x < \varphi(x))$$

(ii)
$$EA \vdash (\forall x, y)(\mathbf{C} \le x \le y \to \varphi(x) \le \varphi(y))$$

(iIi)
$$EA \vdash (\forall x, y)(\mathbf{C} \le x \le y \to \varphi(x) - x \le \mathbf{2}^y - y)$$

Then there a natural number system \mathcal{ACK}_{φ} such that φ is maximally powerful in \mathcal{ACK}_{φ} .

2.4 Relations of length

Definition 8 $\mathcal{M} \leq \mathcal{N}$ *if*

$$EA \vdash (\forall x \ in \ \mathcal{M})(\exists y \ in \ \mathcal{N})[\mathrm{Field}(y) \cong \mathrm{Field}(x)].$$

Theorem 9 VN and Z are incommensurable: that is,

$$VN \not\preceq Z$$
 and $Z \not\preceq VN$.

2.4.1 The syntactic proof

Lemma 10 (Parikh-style Bounding Lemma) Suppose A is a bounded formula. Then, if

$$EA \vdash \forall x \exists ! y A(x, y)$$

then there is a classical natural number, n, such that

$$EA \vdash \forall x \exists ! y (y \in P^{\mathbf{n}}(TC(x)) \& A(x,y))$$

Proof of Theorem 9. Suppose $VN \leq Z$. That is,

$$EA \vdash (\forall v \text{ in } \mathcal{VN})(\exists! z \text{ in } \mathcal{Z})(\text{Field}(v) \cong \text{Field}(z))$$

Thus, by Parikh-style Bounding Lemma, there is \mathbf{n} such that

$$EA \vdash (\forall v \text{ in } \mathcal{VN})(\exists z! \text{ in } \mathcal{Z})(z \in P^{\mathbf{n}}(TC(v)) \& Field(v) \cong Field(z))$$

But, by (meta-theoretical) induction on \mathbf{n} ,

$$EA \vdash (\forall v \text{ in } \mathcal{VN})(\forall z \text{ in } \mathcal{Z})(z \in P^{\mathbf{n}}(TC(v)) \to z \in V_{\mathbf{n+4}})$$

Thus,

$$EA \vdash (\forall v \text{ in } \mathcal{VN})(\exists z! \text{ in } \mathcal{Z})(z \in V_{n+4} \& \text{Field}(v) \cong \text{Field}(z))$$

which is false. \Box

2.4.2 The model-theoretic proof

Proof of Theorem 9. Let M be a model of EA that contains a non-standard member of \mathcal{VN} , b. Then define the following submodel of M:

$$C(M,b) = \bigcup_{\mathbf{n}=1}^{\infty} \{ x \in M : M \models x \in \mathbf{P}^{\mathbf{n}}(b) \}$$

We call C(M, b) the cumulation model of EA of b. Then

$$C(M,b) \models EA$$

But C(M, b) contains only standard members of \mathcal{Z} , while it contains non-standard members of \mathcal{VN} . Thus, it is not the case that $\mathcal{VN} \leq \mathcal{Z}$.

2.5 Measuring the universe

Definition 11 (N measures the universe) N measures the universe if

$$EA \vdash (\forall x)(\exists y \ in \ \mathcal{N})[x \cong \mathrm{Field}(y)]$$

Theorem 12 In the presence of Σ_1 induction, and thus unlimited recursion, every natural number system measures the universe.

Theorem 13 In EA, no natural number system measures the universe.

Proof. Suppose \mathcal{N} measures the universe. If **k** is a classical natural number, let

- $v_{\mathbf{k}}$ be the \mathbf{k}^{th} member of \mathcal{VN} ,
- $z_{\mathbf{k}}$ be the \mathbf{k}^{th} member of \mathcal{Z} , and
- $n_{\mathbf{k}}$ be the \mathbf{k}^{th} member of \mathcal{N} .

Since \mathcal{N} measures the universe,

$$EA \vdash (\forall x)(\exists y! \text{ in } \mathcal{N})[x \cong y]$$

Thus, by the Parikh-style Bounding Lemma, there is ${\bf n}$ such that

$$EA \vdash (\forall x)(\exists y! \text{ in } \mathcal{N})[y \in \mathbf{P^n}(x) \& x \cong y]$$

Thus, for all classical natural numbers, k,

$$n_{\mathbf{k}} \in \mathbf{P}^{\mathbf{n}}(v_{\mathbf{k}})$$
 and $n_{\mathbf{k}} \in \mathbf{P}^{\mathbf{n}}(z_{\mathbf{k}})$

Thus,

$$n_{\mathbf{k}} \in \mathbf{P^n}(v_{\mathbf{k}}) \cap \mathbf{P^n}(z_{\mathbf{k}})$$

Thus,

$$n_{\mathbf{k}} \in V_{\mathbf{n+4}}$$

But this gives a contradiction, since V_{n+4} cannot contain sufficiently many members of \mathcal{N} to measure all standard members of $\mathcal{V}\mathcal{N}$ and \mathcal{Z} .

3 Infinitesimal Analysis

3.1 Extending EA

Definition 14 (\mathcal{N} -small and \mathcal{N} -large) Suppose \mathcal{N} is a natural number system.

- $x \text{ is } \mathcal{N}\text{-small} \leftrightarrow (\exists y \text{ in } \mathcal{N})[x < \text{Field}(y)]$
- $x \text{ is } \mathcal{N}\text{-large} \leftrightarrow (\forall y \text{ in } \mathcal{N})[\text{Field}(y) < x]$

Definition 15 EA^+ is obtained from EA by adding the following axiom:

$$(\exists x)[x \text{ is } \mathcal{ACK}\text{-}large]$$

Theorem 16 If EA is consistent, then EA^+ is consistent.

3.2 Infinitesimal analysis in EA^+

Definition 17 (Integers in EA^+) An integer is an ordered pair (a, b) where a and b are sets. (Intuitively, (a, b) is a - b.)

$$(a,b) =_Z (c,d) \leftrightarrow a+d \cong b+c$$

Definition 18 (Rationals in EA^+) A rational is an ordered pair (a,b) where a and b are integers, and $b \neq_Z 0$. (Intuitively, (a,b) is $\frac{a}{b}$.)

$$(a,b) =_{\mathcal{O}} (c,d) \leftrightarrow a \times_{\mathcal{Z}} d \cong b \times_{\mathcal{Z}} c$$

Definition 19 (Reals in EA^+)

$$r$$
 in $R \leftrightarrow (\exists x)[x$ is \mathcal{ACK} -small & $|r| < x]$

Definition 20 (Infinitesimal in EA^+)

$$r \ in \ I \leftrightarrow (\forall x) \left[x \ is \ \mathcal{ACK}\text{-small} \rightarrow |r| < \frac{1}{x} \right]$$

Definition 21 $(x \simeq y)$ If x and y are in R, then $x \simeq y \leftrightarrow x - y$ in I

Theorem 22 R is 'almost' real closed.

3.3 Continuous functions in EA^+

Definition 23 (f is continuous) If $f: J \to R$, then f is continuous if

$$(\forall x, y \ in \ J)[x \simeq y \to f(x) \simeq f(y)]$$

3.4 Differential and integral calculus in EA^+

Definition 24 (f is differentiable) Suppose $f: J \to R$, x is in J, and α is in R. Then f is differentiable at x with derivative α if

$$(\forall \delta \ in \ I) \left[\frac{f(x+\delta) - f(x)}{\delta} \simeq \alpha \right]$$

Definition 25 (f is integrable) Suppose $f:[a,b] \to R$, $a \le x \le b$, and α is in R. Then f is integrable at x with definite integral α if, for any \mathcal{ACK} -large N,

$$\sum_{i=0}^{N} \frac{b-a}{N} \cdot f\left(a + i\frac{b-a}{N}\right) \simeq \alpha$$

3.5 Polynomials of large degree

Definition 26 By definition,

$$e_N^x = \sum_{i=0}^N \frac{x^i}{i!}$$

Then e_N^x is in R, if x is in R and N is large. Also, $e_M^x \sim e_N^x$, if x is in R and M and N are large. Finally, $\lambda x \, e_N^x$ is differentiable at all x in R with derivative e_N^x .

Theorem 27 (Weierstrass) Suppose $f:[a,b] \to R$ is continuous function. Then there is a polynomial,

$$P(x) = \sum_{i=0}^{N} a_i x^i$$

possibly of large degree, such that

$$(\forall a < x < b)[P(x) \simeq f(x)]$$

3.6 References

All the results here and many more can be found in:

Pettigrew, R. Natural, Rational, and Real Arithmetic in a Finitary Theory of Finite Sets PhD Doctoral Thesis, University of Bristol. http://www.maths.bris.ac.uk/~rp3959/thesis1.pdf/