Variance Regularization with Convex Objectives

Hongseok Namkoong, John Duchi

Stanford University

December 2017

Curly fries \propto Intelligence?

By PHILIPPA WARR 12 Mar 2013

What you Like on Facebook could reveal your race, age, IQ, sexuality and other personal data, even if you've set that information to "private".

Unlikely to be robust to even small changes in the underlying data

Data X_1, \ldots, X_n and parameters θ to learn, with loss

$$\ell(\theta, X)$$

Data X_1, \ldots, X_n and parameters θ to learn, with loss

$$\ell(\theta, X)$$

We want to solve the population (risk) problem

minimize $R(\theta) := \mathbb{E}_{P_0}[\ell(\theta; X)]$ subject to $\theta \in \Theta$.

Data X_1, \ldots, X_n and parameters θ to learn, with loss

$$\ell(\theta, X)$$

We want to solve the population (risk) problem

$$\label{eq:minimize} \begin{aligned} & \text{minimize } R(\theta) := \mathbb{E}_{P_0}[\ell(\theta;X)] \\ & \text{subject to } \theta \in \Theta. \end{aligned}$$

- ▶ Loss $\ell(\theta; X)$, Data/randomness X, Parameters $\theta \in \Theta$
- $ightharpoonup P_0$ often unknown

Data X_1, \ldots, X_n and parameters θ to learn, with loss

$$\ell(\theta, X)$$

We want to solve the population (risk) problem

minimize
$$R(\theta) := \mathbb{E}_{P_0}[\ell(\theta; X)]$$
 subject to $\theta \in \Theta$.

- ▶ Loss $\ell(\theta; X)$, Data/randomness X, Parameters $\theta \in \Theta$
- $ightharpoonup P_0$ often unknown

Empirical risk minimization:

$$\widehat{\theta}^{\text{erm}} = \operatorname*{argmin}_{\theta \in \Theta} \mathbb{E}_{\widehat{P}_n}[\ell(\theta; X)] = \frac{1}{n} \sum_{i=1}^n \ell(\theta; X_i)$$

lacktriangle Want to be robust to small perturbations in \widehat{P}_n

lacktriangle Want to be robust to small perturbations in \widehat{P}_n

Goal:

$$\underset{\theta \in \Theta}{\operatorname{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]$$

Goal:

$$\underset{\theta \in \Theta}{\operatorname{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]$$

Solve empirical risk minimization problem

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \quad \sum_{i=1}^{n} \frac{1}{n} \ell(\theta; X_i)$$

Goal:

$$\underset{\theta \in \Theta}{\operatorname{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]$$

Solve empirical risk minimization problem

$$\underset{\theta \in \Theta}{\text{minimize}} \quad \sum_{i=1}^{n} \frac{1}{n} \ell(\theta; X_i)$$

Goal:

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]$$

Instead, solve distributionally robust optimization problem

$$\underset{\theta \in \Theta}{\operatorname{minimize}} \ \underset{p \in \mathcal{P}_{n,\rho}}{\max} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

where $\mathcal{P}_{n,\rho}$ is some appropriately chosen set of vectors

Goal:

$$\underset{\theta \in \Theta}{\mathsf{minimize}} \ R(\theta) = \mathbb{E}_{P_0}[\ell(\theta;X)]$$

Instead, solve distributionally robust optimization problem

$$\underset{\theta \in \Theta}{\operatorname{minimize}} \ \underset{p \in \mathcal{P}_{n,\rho}}{\max} \sum_{i=1}^{n} p_{i} \ell(\theta; X_{i})$$

where $\mathcal{P}_{n,\rho}$ is some appropriately chosen set of vectors

Do well **almost all the time** instead of on average!

Today: Statistically principled choice of $\mathcal{P}_{n,\rho} \Rightarrow$ optimality certificates

Generalized Empirical likelihood

Idea: Instead of using empirical distribution \widehat{P}_n on sample X_1, \ldots, X_n , look at all distributions "near" it.

Measures of closeness we use: Chi-square divergence

$$D_{\chi^2}(P||Q) = \frac{1}{2} \sum_{x:q(x)>0} \frac{(p(x) - q(x))^2}{q(x)}$$

Worst-case region:

$$\mathcal{P}_{n,\rho} := \left\{P : D_{\chi^2}\left(P\|\widehat{P}_n\right) \leq \frac{\rho}{n}\right\}$$

[Ben-Tal et al. 13, Bertsimas et al. 16, Lam & Zhou 17, Duchi, Glynn & N. 17, Lam17]

Upweighting Harder Examples

Robust Optimization

$$\widehat{\theta}^{\mathrm{rob}} := \underset{\theta \in \Theta}{\operatorname{argmin}} \max_{P:D_{\chi^2}\left(P \| \widehat{P}_n\right) \leq \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta;X)].$$

Robust Optimization

$$\widehat{\theta}^{\mathrm{rob}} := \underset{\theta \in \Theta}{\operatorname{argmin}} \max_{P: D_{\chi^2}\left(P \| \widehat{P}_n\right) \leq \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta; X)].$$

Nice properties:

- Convex optimization problem = Computationally efficient
- ► Conic forms [Ben-Tal et al. 13]
- Efficient solution methods as fast as stochastic gradient descent
 [N. & Duchi, 16]

Algorithm

Play a two-player stochastic game [N. & Duchi 16]

Understanding Performance: bias/variance tradeoff

- ► Any learning algorithm has *bias* (approximation error) and *variance* (estimation error)
- ightharpoonup From empirical Bernstein's inequality, with probability $1-\delta$

$$R(\theta) = \mathbb{E}[\ell(\theta; X)] \leq \underbrace{\mathbb{E}_{\widehat{P}_n}[\ell(\theta; X)]}_{\text{bias}} + \underbrace{\sqrt{\frac{C \text{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}}}_{\text{variance}} + \frac{C \log \frac{1}{\delta}}{n}$$

▶ Can be made uniform in $\theta \in \Theta$

Understanding Performance: bias/variance tradeoff

- ► Any learning algorithm has *bias* (approximation error) and *variance* (estimation error)
- From empirical Bernstein's inequality, with probability $1-\delta$

$$R(\theta) = \mathbb{E}[\ell(\theta; X)] \leq \underbrace{\mathbb{E}_{\widehat{P}_n}[\ell(\theta; X)]}_{\text{bias}} + \underbrace{\sqrt{\frac{C \text{Var}_{\widehat{P}_n}\left(\ell(\theta; X)\right)}{n}}}_{\text{variance}} + \frac{C \log \frac{1}{\delta}}{n}$$

- ▶ Can be made uniform in $\theta \in \Theta$
- ► Variance Regularization [Maurer & Pontil 09]:

Trade off bias-variance optimally by solving

$$\widehat{\theta}^{\mathrm{var}} \in \operatorname*{argmin}_{\theta \in \Theta} \left\{ \underbrace{\mathbb{E}_{\widehat{P}_n}[\ell(\theta;X)]}_{\mathrm{bias}} + \underbrace{\sqrt{\frac{C \mathrm{Var}_{\widehat{P}_n}\left(\ell(\theta;X)\right)}{n}}}_{\mathrm{variance}} \right\}.$$

Optimizing for bias and variance

 $\textbf{Good idea:} \ \, \mathsf{Directly} \ \, \mathsf{minimize} \ \, \mathsf{bias} + \mathsf{variance}, \ \, \mathsf{certify} \ \, \mathsf{optimality!}$

Optimizing for bias and variance

Good idea: Directly minimize bias + variance, certify optimality!

Minor issue: variance is non-convex

Figure: Variance of $|\theta - X|$

Robust Optimization pprox Variance Regularization

Theorem (N. & Duchi 2017)

Assume that $|\ell(\theta;X)| \leq M$. With prob at least $1 - \exp(-\frac{n\mathrm{Var}(\ell(\theta;X))}{36M^2})$

$$\underbrace{\max_{P:D_{\chi^2}\left(P\|\widehat{P}_n\right)\leq\frac{\rho}{n}}\mathbb{E}_P[\ell(\theta;X)]}_{\text{Robust}} = \underbrace{\mathbb{E}_{\widehat{P}_n}[\ell(\theta;X)] + \sqrt{\frac{2\rho \text{Var}_{\widehat{P}_n}\left(\ell(\theta;X)\right)}{n}}}_{\text{Bias+Variance}}$$

- ▶ Can be made uniform over $\theta \in \Theta$
- ► Robust is convex, Bias + Variance is (generally) non-convex

Optimal bias variance tradeoff

Let $\mathfrak{Comp}_n(\Theta)$ denote complexity of $\{\ell(\theta;\cdot):\theta\in\Theta\}$ and let

$$\widehat{\theta}^{\mathrm{rob}} := \underset{\theta \in \Theta}{\operatorname{argmin}} \max_{P: D_{\chi^2}\left(P \| \widehat{P}_n\right) \leq \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta; X)]$$

Optimal bias variance tradeoff

Let $\mathfrak{Comp}_n(\Theta)$ denote complexity of $\{\ell(\theta;\cdot):\theta\in\Theta\}$ and let

$$\widehat{\theta}^{\mathrm{rob}} := \operatorname*{argmin} \max_{\theta \in \Theta} \ \underset{P:D_{\chi^2}\left(P \| \widehat{P}_n\right) \leq \frac{\rho}{n}}{\max} \mathbb{E}_P[\ell(\theta;X)]$$

Theorem (N. & Duchi 2017)

Let $\rho=\log \frac{1}{\delta}+\mathfrak{Comp}_n(\Theta).$ If $\ell(\theta;X)\in [0,M]$, then with prob $1-\delta$,

$$R(\widehat{\theta}^{\text{rob}}) = \mathbb{E}[\ell(\widehat{\theta}^{\text{rob}}; X)] \leq \underbrace{\min_{\theta \in \Theta} \left\{ R(\theta) + 2\sqrt{\frac{2\rho \text{Var}(\ell(\theta, \xi))}{n}} \right\}}_{\text{optimal tradeoff}} + \frac{CM\rho}{n}$$

for some universal constant $0 < C \le 30$.

Similar result holds with localized Rademacher complexities.

Fast rates from optimal tradeoff

▶ Let $\rho \approx \mathfrak{Comp}_n(\Theta)$. If $\ell(\theta; X) \in [0, M]$, then with high prob,

$$R(\widehat{\theta}^{\text{rob}}) \leq \min_{\theta \in \Theta} \left\{ R(\theta) + 2\sqrt{\frac{2\rho \text{Var}(\ell(\theta, \xi))}{n}} \right\} + \frac{CM\rho}{n}$$

Fast rates from optimal tradeoff

▶ Let $\rho \approx \mathfrak{Comp}_n(\Theta)$. If $\ell(\theta; X) \in [0, M]$, then with high prob,

$$R(\widehat{\theta}^{\text{rob}}) \leq \underbrace{\min_{\theta \in \Theta} \left\{ R(\theta) + 2\sqrt{\frac{2\rho \text{Var}(\ell(\theta, \xi))}{n}} \right\}}_{\text{optimal tradeoff}} + \frac{CM\rho}{n}$$

▶ ERM: For $R(\theta^*) = \inf_{\theta \in \Theta} R(\theta)$, with high probability,

$$R(\widehat{\theta}^{\text{erm}}) \le R(\theta^*) + \sqrt{\frac{2\rho M R(\theta^*)}{n}} + \frac{CM\rho}{n}$$

Fast rates from optimal tradeoff

▶ Let $\rho \approx \mathfrak{Comp}_n(\Theta)$. If $\ell(\theta; X) \in [0, M]$, then with high prob,

$$R(\widehat{\theta}^{\text{rob}}) \leq \underbrace{\min_{\theta \in \Theta} \left\{ R(\theta) + 2\sqrt{\frac{2\rho \text{Var}(\ell(\theta, \xi))}{n}} \right\}}_{\text{optimal tradeoff}} + \frac{CM\rho}{n}$$

▶ ERM: For $R(\theta^*) = \inf_{\theta \in \Theta} R(\theta)$, with high probability,

$$R(\widehat{\theta}^{\text{erm}}) \le R(\theta^{\star}) + \sqrt{\frac{2\rho MR(\theta^{\star})}{n}} + \frac{CM\rho}{n}$$

- ▶ If $Var(\ell(\theta^*; X)) \ll MR(\theta^*)$, first bound is **tighter**
 - See paper for an explicit example where

$$R(\widehat{\theta}^{\mathrm{rob}}) \leq R(\theta^{\star}) + \frac{C_1}{n} \quad \text{ but } \quad R(\widehat{\theta}^{\mathrm{erm}}) \geq R(\theta^{\star}) + \frac{C_2}{\sqrt{n}}$$

Experiments

Upweighting Harder Examples

$$\underset{\theta \in \Theta}{\operatorname{minimize}} \max_{P:D_{\chi^2}\left(P\|\widehat{P}_n\right) \leq \frac{\rho}{n}} \mathbb{E}_P[\ell(\theta;X)].$$

- Upweights hard (high loss) examples when learning
- ► Often, rare examples are hard
- Expect improvements on rare and hard examples

Problem: Classify documents as a **subset** of the 4 categories:

$$\Big\{ {\sf Corporate}, \; {\sf Economics}, \; {\sf Government}, \; {\sf Markets} \Big\}$$

- ▶ Data: pairs $x \in \mathbb{R}^d$ represents document, $y \in \{-1,1\}^4$ where $y_j = 1$ indicating x belongs j-th category.
- ▶ Logistic loss, with $\Theta = \left\{\theta \in \mathbb{R}^d : \|\theta\|_1 \le 1000\right\}$
- d = 47,236, n = 804,414. 10-fold cross-validation.
- Use precision and recall to evaluate performance

$$Precision = \frac{\# Correct}{\# Guessed Positive} \qquad Recall = \frac{\# Correct}{\# Actually Positive}$$

Table: Reuters Number of Examples

Corporate	Economics	Government	Markets
381,327	119,920	239,267	204,820

Figure: Recall on common category (Corporate)

Figure: Recall on rare category (Economics)

Summary

Statistical theory for robust optimization

- 1. Convex procedure for variance regularization
- 2. Generalization guarantees for **optimal tradeoff between bias vs** variance
- 3. Improves performance on hard instances empirically

Summary

Statistical theory for robust optimization

- 1. Convex procedure for variance regularization
- 2. Generalization guarantees for **optimal tradeoff between bias vs** variance
- 3. Improves performance on hard instances empirically

Thanks! (Poster 212)

Long version arXiv:1610.02581