0.1 其他

例题 **0.1** 设 A, B, C 都是 n 阶复方阵, 记 $M = \begin{pmatrix} A & B & C \\ C & A & B \\ B & C & A \end{pmatrix}$, 证明:M 的特征值是 A + B + C, $A + wB + w^2C$,

 $A + w^2 B + wC$ 的特征值构成的集合的并, 这里 w 是三次单位根, 并集记重复.

笔记 观察到 M 矩阵与循环矩阵由类似结构,回忆命题??的证明过程,利用与命题??相同的方法构造相似矩阵与对应的过渡矩阵.

证明 注意到

$$\begin{pmatrix} A & B & C \\ C & A & B \\ B & C & A \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & w & w^2 \\ 1 & w^2 & w^4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & w & w^2 \\ 1 & w^2 & w^4 \end{pmatrix} \begin{pmatrix} A + B + C \\ & A + wB + w^2C \\ & & A + wB + w^4C \end{pmatrix},$$

即

例题 **0.2** 已知整数 n > 1. 设 E_{n-1}, E_n 分别为 n-1 阶和 n 阶单位矩阵, $N = \begin{pmatrix} 0 & E_{n-1} \\ 0 & 0 \end{pmatrix}$ 为 $n \times n$ 矩阵.

- (1) 求 N 的特征值和特征向量.
- (2) 求如下矩阵的特征多项式:

$$A = \begin{pmatrix} E_n & N & N^2 \\ N^2 & E_n & N \\ N & N^2 & E_n \end{pmatrix}.$$

证明

- (1) 显然 N 的特征值为 O(n) 重, 任意非零向量都是其特征向量.
- (2) $\diamondsuit f(X) = E_n + NX + N^2X^2$, 记 ε 是 1 的三次单位根, 且

$$\varepsilon_1 = \varepsilon, \ \varepsilon_2 = \varepsilon^2, \ \varepsilon_3 = \varepsilon^3 = 1.$$
 (1)

再记

$$V = \begin{pmatrix} E_n & E_n & E_n \\ \varepsilon_1 E_n & \varepsilon_2 E_n & \varepsilon_3 E_n \\ \varepsilon_1^2 E_n & \varepsilon_2^2 E_n & \varepsilon_3^2 E_n \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ \varepsilon_1 & \varepsilon_2 & \varepsilon_3 \\ \varepsilon_1^2 & \varepsilon_2^2 & \varepsilon_3^2 \end{pmatrix} \otimes E_n,$$

$$\Lambda = \begin{pmatrix} f(\varepsilon_1 E_n) \\ f(\varepsilon_2 E_n) \\ f(\varepsilon_1 E_n) \end{pmatrix}.$$

由定理??(8) 知

$$|V| = \begin{vmatrix} 1 & 1 & 1 \\ \varepsilon_1 & \varepsilon_2 & \varepsilon_3 \\ \varepsilon_1^2 & \varepsilon_2^2 & \varepsilon_3^2 \end{vmatrix}^3 |E_n|^3 \neq 0,$$

1

故 V 可逆. 注意到

$$AV = \begin{pmatrix} f(\varepsilon_{1}E_{n}) & f(\varepsilon_{2}E_{n}) & f(\varepsilon_{3}E_{n}) \\ \varepsilon_{1}f(\varepsilon_{1}E_{n}) & \varepsilon_{2}f(\varepsilon_{2}E_{n}) & \varepsilon_{3}f(\varepsilon_{3}E_{n}) \\ \varepsilon_{1}^{2}f(\varepsilon_{1}E_{n}) & \varepsilon_{2}^{2}f(\varepsilon_{2}E_{n}) & \varepsilon_{3}^{2}f(\varepsilon_{3}E_{n}) \end{pmatrix}$$

$$= \begin{pmatrix} E_{n} & E_{n} & E_{n} \\ \varepsilon_{1}E_{n} & \varepsilon_{2}E_{n} & \varepsilon_{3}E_{n} \\ \varepsilon_{1}^{2}E_{n} & \varepsilon_{2}^{2}E_{n} & \varepsilon_{3}^{2}E_{n} \end{pmatrix} \begin{pmatrix} f(\varepsilon_{1}E_{n}) \\ f(\varepsilon_{2}E_{n}) \\ f(\varepsilon_{3}E_{n}) \end{pmatrix}$$

$$= V\Lambda.$$

故 $A = V^{-1}\Lambda V$. 因此 A 的特征值就是 $f(\varepsilon_1 E_n), f(\varepsilon_1 E_n)$ $f(\varepsilon_2 E_n), f(\varepsilon_3 E_n)$ 特征值的并. 由(1)式知

$$f(\varepsilon_1 E_n) = \varepsilon E_n + \varepsilon N + \varepsilon^2 N^2,$$

$$f(\varepsilon_2 E_n) = \varepsilon^2 E_n + \varepsilon^2 N + \varepsilon^4 N^2,$$

$$f(\varepsilon_3 E_n) = E_n + N + N^2,$$

从而显然 $f(\varepsilon_1 E_n)$ 的特征值为 $\varepsilon(n \ \chi)$, $f(\varepsilon_2 E_n)$ 的特征值为 $\varepsilon^2(n \ \chi)$, $f(\varepsilon_3 E_n)$ 的特征值为 $1(n \ \chi)$. 因此 A 的特征值就是 $1(n \ \chi)$, $\varepsilon(n \ \chi)$, $\varepsilon^2(n \ \chi)$. 于是 A 的特征多项式就是 $(x-1)^n(x-\varepsilon)^n(x-\varepsilon^2)^n$.

例题 0.3 设 A 是 n 阶方阵, $\lambda_1, \dots, \lambda_k$ 是 A 的 k 个互不相同的特征值, v_i 是属于特征值 λ_i 的特征向量, 若 W 是 A 的一个不变子空间, 且 $w = c_1v_1 + \dots + c_kv_k \in W$, 这里 c_1, \dots, c_k 全都非零, 证明: 所有 v_i 均在 W 中.

证明 $\forall w \in W$, 都有 $w = c_1v_1 + \cdots + c_kv_k$, 从而由 $W \neq A$ 的不变子空间及 v_i 是属于特征值 λ_i 的特征向量可知

$$\alpha_1 = Aw = \lambda_1 c_1 v_1 + \dots + \lambda_k c_k v_k \in W,$$

$$\alpha_2 = A^2 w = \lambda_1^2 c_1 v_1 + \dots + \lambda_k^2 c_k v_k \in W,$$

$$\dots \dots \dots$$

$$\alpha_k = A^{k-1}w = \lambda_1^{k-1}c_1v_1 + \cdots + \lambda_k^{k-1}c_kv_k \in W.$$

于是

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \vdots & \vdots & & \vdots \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \cdots & \lambda_k^{k-1} \end{pmatrix} \begin{pmatrix} c_1 v_1 \\ c_2 v_2 \\ \vdots \\ c_k v_k \end{pmatrix}.$$

利用 Vandermonde 行列式可知

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \vdots & \vdots & & \vdots \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \cdots & \lambda_k^{k-1} \end{vmatrix} \neq 0 \Rightarrow \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \vdots & \vdots & & \vdots \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \cdots & \lambda_k^{k-1} \end{pmatrix} 可逆,$$

因此

$$\begin{pmatrix} c_1 v_1 \\ c_2 v_2 \\ \vdots \\ c_k v_k \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{pmatrix} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_k \\ \vdots & \vdots & & \vdots \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \cdots & \lambda_k^{k-1} \end{pmatrix}^{-1}.$$

进而对 $\forall i \in \{1, 2, \dots, k\}$, 都有 $c_i v_i \in L(\alpha_1, \alpha_2, \dots, \alpha_k)$, 又 $c_i \neq 0$, 故 $v_i \in L(\alpha_1, \alpha_2, \dots, \alpha_k)$. 又因为 $\alpha_i \in W$ $(1 \leq i \leq k)$, 所以 $v_i \in W$.

例题 0.4 设 A 是 $d \times d$ 整数矩阵且满足 $I + A + A^2 + \cdots + A^{100} = 0$, 对任意正整数 $n \leq 100$, 证明: $A^n + A^{n+1} + \cdots + A^{100}$

的行列式为 1.

证明 设 $m(x) = x^{100} + \cdots + x + 1$, 则 $m(x) \in \mathbb{Q}[x]$ 且 m(x) 不可约. 再设 A 的极小多项式为 g(x), 则由条件可知 $g(x) \mid m(x)$, 再由 m(x) 不可约可得 g(x) = m(x). 记 A 的不变因子分别为 d_1, \dots, d_k , 其中 $d_i \mid d_{i+1}$ $(1 \le i \le k)$, 并且 $d_k = m(x)$. 于是 $d_i \mid m(x)$, 而 m(x) 不可约, 故 A 的不变因子为 m(x), \cdots , m(x)(共有 k 个). 从而

$$|\lambda I - A| = (m(\lambda))^k$$
.

又因为 $A \in d$ 阶矩阵, 所以d = 100k. 再根据矩阵的有理标准型可知, 存在可逆矩阵P, 使得

$$PAP^{-1} = F = \begin{pmatrix} F(m(x)) & & \\ & \ddots & \\ & & F(m(x)) \end{pmatrix}_{100s \times 100s},$$

其中
$$F(m(x)) = \begin{pmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ -1 & -1 & \cdots & -1 \end{pmatrix}$$
 . 又因为条件和结论在线性变换 $A \to PAP^{-1} = F$ 下不改变,故不

$$|\lambda_i I - F(m(x))| = 1 + \lambda_i + \dots + \lambda_i^{100} = 0,$$

从而 λ ; 都是 $1+x+\cdots+x^{100}=0$ 的根, 故

$$\lambda_k = e^{\frac{2k\pi i}{101}} \, (1 \leqslant k \leqslant 100). \tag{2}$$

再根据 Vieta 定理可得

$$|F(m(x))| = \lambda_1 \cdots \lambda_{100} = 1.$$

从而 $|F| = |F(m(x))|^s = 1$, 并且 F 的特征值就是 $\lambda_k = e^{\frac{2k\pi i}{107}}$ ($1 \le k \le 100$) 且每个特征值都是 100 重的. 注意到对 $\forall n \in [1, 100] \cap \mathbb{N}$, 有

$$|F^n + F^{n+1} + \dots + F^{100}| = |F|^n |I + F + \dots + F^{100-n}| = |I + F + \dots + F^{100-n}|.$$

记 k = 100 - n, 则 $k \in [0,99] \cap \mathbb{N}$. 因此只需证

$$|I + F + \cdots + F^k| = 1, \forall k \in [0, 99] \cap \mathbb{N}.$$

当 k=0 时, 结论显然成立. 当 $k \in [1,99] \cap \mathbb{N}$ 时, 我们有

$$|I + F + \dots + F^{k}| = 1 \iff |(I + F + \dots + F^{k})(I - F)| = |I - F| \iff |I - F^{k+1}| = |I - F|$$

$$\iff (1 - \lambda_{1}^{k+1})(1 - \lambda_{2}^{k+1}) \cdots (1 - \lambda_{k}^{k+1}) = (1 - \lambda_{1})(1 - \lambda_{2}) \cdots (1 - \lambda_{k}). \tag{3}$$

记 $\varepsilon = e^{\frac{2\pi i}{107}}$,则由(2)式可知上式最后一个等式等价于

$$(1 - \varepsilon^{k+1})(1 - \varepsilon^{2(k+1)}) \cdots (1 - \varepsilon^{100(k+1)}) = (1 - \varepsilon)(1 - \varepsilon^2) \cdots (1 - \varepsilon^{100}).$$

由 (k+1,100) = 1 $(1 \le k \le 99)$ 及命题 1.32可知, ε^{k+1} 是 101 阶循环群 $\{1,\varepsilon,\cdots,\varepsilon^{100}\} = \langle \varepsilon \rangle$ 的一个生成元,因此

$$\{1, \varepsilon, \cdots, \varepsilon^{100}\} = \langle \varepsilon \rangle = \langle \varepsilon^{k+1} \rangle = \{1, \varepsilon^{k+1}, \cdots, \varepsilon^{100(k+1)}\}.$$

从而

$$(1 - \varepsilon^{k+1})(1 - \varepsilon^{2(k+1)}) \cdots (1 - \varepsilon^{100(k+1)}) = (1 - \varepsilon)(1 - \varepsilon^2) \cdots (1 - \varepsilon^{100}).$$

故再由(3)式,结论得证.

例题 0.5 设 A 为 n 阶方阵, 满足 $(A^T)^m = A^k$, 其中 m, k 是不同的正整数, 证明: A 的特征值是零或者单位根. 证明 由条件可知

$$(A^T)^{m^2} = A^{mk},$$

$$(A^T)^{mk} = A^{k^2}.$$

进而

$$A^{m^2} = (A^T)^{mk} = A^{k^2}.$$

于是A的特征值λ都满足

$$\lambda^{m^2} = \lambda^{k^2}$$
.

故λ为0或单位根.

例题 0.6 设 $A, B \neq n$ 阶方阵, 满足 $A^2B + BA^2 = 2ABA$, 证明: AB - BA 是幂零矩阵.

证明 记 C = AB - BA, 则显然 tr(C) = 0. 由条件可知

$$A^2B + BA^2 = 2ABA \iff A^2B - ABA = ABA - BA^2 \iff A(AB - BA) = (AB - BA)A \iff AC = CA.$$

从而由上式及矩阵迹的交换性可得,对 $\forall k \in [1,n] \cap \mathbb{N}$,都有

$$\operatorname{tr}(C^k) = \operatorname{tr}(C^{k-1}(AB - BA)) = \operatorname{tr}(C^{k-1}AB) - \operatorname{tr}(C^{k-1}BA) = \operatorname{tr}(AC^{k-1}B) - \operatorname{tr}(AC^{k-1}B) = 0.$$

故由命题??可知 C = AB - BA 是幂零矩阵.

例题 0.7 设 $A = (a_{ij})$ 是 n 阶矩阵, 其中

$$a_{ij} = \begin{cases} 2, & \exists i = j+1, 1 \le j \le n-1; \\ 1, & 其他情况. \end{cases}$$

求矩阵 A 的特征多项式.

证明 记 J 为全 1 矩阵,S 为仅在次对角线 (i = j + 1) 上为 1 的矩阵, 则 A = J + S. 由引理??知 $J = \alpha^T \alpha$, 其中 $\alpha = (1 \ 1 \ \cdots \ 1)^T$. 设 $\lambda_i (i = 1, 2, \cdots, n)$ 是 A 的特征值, 注意到

$$|A| = \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ 2 & 1 & \cdots & 1 & 1 \\ 1 & 2 & \cdots & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 2 & 1 \end{vmatrix} \xrightarrow{\begin{array}{c} -r_1 + r_i \\ i = 2, 3 \cdots, n \\ \end{array}} \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{vmatrix}$$

$$\frac{\xi \hat{\pi} n \mathfrak{I} \mathfrak{J} \mathfrak{K} \pi}{(1)^{n+1}} \uparrow 0$$

故 $\lambda_i \neq 0$. 令 $M = \lambda_i I - S$, 则由命题??(4) 知

$$M^{-1} = \begin{pmatrix} \frac{1}{\lambda_i} & & & \\ -\frac{1}{\lambda_i^2} & \frac{1}{\lambda_i} & & & \\ \vdots & \ddots & \ddots & & \\ (-1)^{n-1} \frac{1}{\lambda_i^n} & \cdots & -\frac{1}{\lambda_i^2} & \frac{1}{\lambda_i} \end{pmatrix}.$$

于是由打洞原理可得

$$0 = |\lambda_i I - A| = |\lambda_i I - S - J| = |M - J|$$

$$= |M - \alpha \alpha^T| = |M| \left| 1 - \alpha^T M^{-1} \alpha \right|$$

$$= \lambda_i^n \left| 1 - \alpha^T \begin{pmatrix} \frac{1}{\lambda_i} & & \\ -\frac{1}{\lambda_i^2} & \frac{1}{\lambda_i} & & \\ \vdots & \ddots & \ddots & \\ (-1)^{n-1} \frac{1}{\lambda_i^n} & \cdots & -\frac{1}{\lambda_i^2} & \frac{1}{\lambda_i} \end{pmatrix} \alpha \right|$$

$$\begin{split} &= \lambda_i^n \left[1 - \left(\frac{n}{\lambda_i} - \frac{n-1}{\lambda_i^2} + \dots + \frac{(-1)^{n-1}}{\lambda_i^n} \right) \right] \\ &= \lambda_i^n - n\lambda_i^{n-1} + (n-1)\lambda_i^{n-2} + \dots + 2(-1)^{n-2}\lambda_i + (-1)^{n-1} \,. \end{split}$$

因此 A 的所有 n 个特征值 λ_i 都是方程

$$x^{n} - nx^{n-1} + (n-1)x^{n-2} + \dots + 2(-1)^{n-2}x + (-1)^{n-1} = 0.$$

的根.而上述方程至多只有n个根,故

$$|xI - A| = \prod_{i=1}^{n} (x - \lambda_i) = x^n - nx^{n-1} + (n-1)x^{n-2} + \dots + 2(-1)^{n-2}x + (-1)^{n-1}.$$