

Dr Pooja Agarwal

Professor,

Department of Computer Science & Engineering

MODULE 5

Propositional Logic & First-Order Logic

Dr Pooja Agarwal

Department of Computer Science & Engineering

Syntax

Syntax

- Syntax defines the sentences in the language.
- Can be thought of as a "grammar" of representation.
- Consider a stmt: Buffalo is Black.
- It can be represented as:
 - 1) p= Buffalo is black, or
 - 2) Black(Buffalo)
 - 3) for all x, Buffalo(x) \rightarrow black(x) means for all x, if x is buffalo, x is black

Different syntax

Logic

Logic In general

 Logics are formal languages for representing information such that conclusions can be drawn.

• Let

A= Postman delivers post from Monday to Friday B= Today is Sunday.

C (conclusion)=Post is not delivered today.

Semantics

Semantics

- Semantics OR "meaning" of sentences;
 - i.e., define truth of a sentence in a <u>possible</u> world.
 - Eg 2xy=3 is true for whenever x=3, y=1/2 in a world but would be false for x=3, y=2 in a world
 - X + Y = 4 is true in a word where X is 2 and Y is 2. But false in a word where X is 1 and Y is 1.

Model

The word "Model" is also used for "possible world"

Models are mathematical abstraction.

Think of a possible world having

x men and y women sitting at a table playing chess

The sentence x+y = 4 is true, when there are 4 people in total.

Model

Model

If, a sentence $\underline{\alpha}$ is true in model \underline{M} , we say, that \underline{M} satisfies $\underline{\alpha}$ OR sometimes \underline{M} is a model of $\underline{\alpha}$.

We use the notation $M(\underline{\alpha})$ to represent the set of all models of $\underline{\alpha}$.

Entailment

Entailment

 Entailment means that one thing follows from another:

$$p \models q$$

means p entails the sentence q .

- In every model, in which p is true, q is also true.
- The truth of q is contained in p

eg,
$$a + b=9 = 9=a + b$$

Sentence x = 0 entails the sentence xy = 0.

Model

Model

M is a model of a sentence α If α is true in M and $M(\alpha)$ is the set of all models of α

 $\alpha = \beta$ means α entails the sentence β

i.e
$$\alpha \models \beta$$

iff $M(\alpha)$ is a subset of $M(\beta)$.

THANK YOU

Dr Pooja Agarwal
Department of Computer Science & Engineering
poojaagarwal@pes.edu