KOMUNIKAČNÍ TECHNOLOGIE (BPC-KOM)

Ústav telekomunikací Fakulta elektrotechniky a komunikačních technologií VUT v Brně

doc. Ing. Jan Jeřábek, Ph.D. ierabeki@feec.vutbr.cz

TRANSPORTNÍ VRSTVA PŘENOSOVÝCH SYSTÉMŮ

Plán přednášky

- Služby transportní vrstvy
 - Komunikace procesů
 - Adresování na transportní vrstvě
 - Zapouzdřování dat
 - Multiplexování
 - Řízení přenosu
 - Charakter poskytovaných služeb
 - NAT + PAT
- UDP
 - Datagram
 - Služby
 - Využití
- TCP
 - Služby, vlastnosti
 - Segment
 - Práce se spojením a průběh komunikace, velikost okna
 - Využití
- QUIC

SLUŽBY TRANSPORTNÍ VRSTVY

Komunikace procesů

- transportní vrstva nad síťovou
- koncový charakter (komunikace procesů)
 - rozlišení procesů
 - možno více komunikačních okruhů mezi dvěma uzly

Adresování na transportní vrstvě

- Organizace komunikace klient-server
 - klientský proces, serverovský proces
- Čtyři adresy
 - □ lokální host + lokální proces (= socket 1)
 - vzdálený host + vzdálený proces (= socket 2)
- □ Transportní adresy (UDP i TCP)
 - čísla portů (16 bit číslo)
 - zdrojový + cílový port

Základní dělení portů

Rozsah čísel portů	Označení portů	Využití		
0 – 1023	Známé (well-known)	Vyhrazeno pro dobře známé aplikace, číslo portu zpravidla na straně serveru		
1024 – 49151	Registrované (registered)	Pro méně používané aplikace nebo pro porty na straně klienta při komunikaci; jejich použití je registrováno u organizace IANA		
49152 – 65535	Soukromé a dynamické (private and dynamic)	Dynamicky přiřazované čísla portů na straně klientské aplikace		

Významné well-known porty

Číslo portu	Transportní protokol	Aplikační protokol			
20	tcp	ftp – data			
21	tcp	ftp – řízení			
23	tcp	telnet			
25	tcp/udp	smtp			
53	tcp/udp	dns			
67	udp	dhcp server			
68	udp	dhcp klient			
80	tcp/udp	http			
443	tcp/udp	https			

Ukázka komunikace webový prohlížeč – webový server (jedno spojení)

Ukázka komunikace webový prohlížeč – webový server (dvě spojení)

Zapouzdřování dat

- segmentace
 - velké množství dat aplikace nutno rozdělit
 - vzniká segment (TCP) či datagram (UDP)
 - nutné přidání záhlaví (zapouzdření x odpouzdření)
 - nutná informace o socketech, popř. další informace
 - odlišný přístup k číslování jednotek u TCP a UDP, UDP lepší k segmentaci nepoužívat
 - další zapouzdřování na síťové vrstvě, možná i fragmentace

Multiplexování a demultiplexování v transportní vrstvě

- multiplexování
 - střet požadavků z různých zdrojů v jednom bodě
 - opakem demultiplexování
 - řazení požadavků do fronty

Řízení přenosu v transportní vrstvě

- □ standardní součástí především
 - řízení toku dat (flow control)
 - způsob organizace komunikace mezi koncovými body, realizaci front a vyrovnávacích pamětí
 - posuvné okno
 - řízení chybových stavů (error control)
 - číslování přenášených jednotek či dat a potvrzování jejich úspěšného přenosu
 - posuvné okno a další mechanizmy
 - předcházení zahlcení (congestion control)
 - posuvné okno
 - nastavení dalších parametrů, např. pravidel pro opakovaný přenos či potvrzování přenosů

Řízení přenosu v transportní vrstvě

- □ techniky se vyskytují i na síťové či spojové vrstvě
- □ techniky řízení spojové vrstvy
 - dílčí segmenty trasy
 - ne vždy k dispozici
 - ne koncový charakter řízení
- □ techniky řízení síťové vrstvy
 - částečně koncový charakter
 - omezené prostředky (ICMP či ICMPv6)
- techniky řízení transportní vrstvy
 - koncový charakter
 - klíčové pro komunikaci

Charakter poskytovaných služeb

- bez spojení (connectionless)
 - aplikace potřebuje pouze rozdělit data do bloků přiměřené velikosti
 - vyžadováno pouze sekvenční odesílání jednotek
 - může dojít ke změně pořadí či ztrátám
 - není možné implementovat mechanizmy řízení toku, řízení chybových stavů či předcházet zahlcení
 - existují však aplikace, kterým tento způsob postačuje
 - výhoda malá režie komunikace
 - typickým zástupcem protokol UDP

Charakter poskytovaných služeb

- se spojením (connection-oriented)
 - koncové strany komunikace před vlastním přenosem navazují spojení
 - přenos dat pouze po navázání spojení
 - potvrzování úspěšnosti přenosu či opakovaný přenos v případě chyb, úprava rychlosti
 - po provedení přenosu je spojení ukončeno
 - služba se spojením na transportní × síťové vrstvě
 - transportní vrstva se nezabývá fyzickými trasami paketů v síti
 - služba se spojením na síťové vrstvě vyžaduje spolupráci směrovačů k vytvoření (virtuální) přenosové trasy
 - na transportní vrstvě se zabýváme pouze koncovým charakterem komunikace
 - Pozn.: nad síťovou vrstvou bez spojení může vzniknout transportní služba se spojením
 - typickým příkladem je TCP

Network and Port Address Translation

- NAT
 - primárně technikou síťové vrstvy
 - překlad IP adres (veřejná × privátní)
 - dobře použitelné při překladu 1:1
- Více stanic na síti, nutnost odlišení
 - překlad n:n
 - počet privátních adres odpovídá počtu veřejných
 - v praxi málo časté (vysoký počet veřejných adres)
 - překlad se záměnou adres transportní úrovně
 - směrovač zaměňuje všechny vnitřní IP adresy na nižší počet veřejných (typicky jednu)
 - aby byl schopen rozlišit provozy jednotlivých stanic, zasahuje i do transportních adres (každá stanice má rezervovány nějaká čísla portů)
 - v praxi běžné, úspora adresního prostoru

Network and Port Address Translation

Network and Port Address Translation (NPAT) × Network Address Port
 Translation (NAPT) × NAT

USER DATAGRAM PROTOCOL (UDP)

Úvod do protokolu UDP

- jednoduchý transportní protokol
- nespojovaný a nespolehlivý přenos (best effort)
- jednotky UDP = datagramy
- navíc oproti IP vrstvě
 - přenos mezi konkrétními procesy (transportní adresy)
- hlavní vlastnosti
 - jednoduchost, minimální režie a zpoždění
- vhodný pro krátké zprávy (ne kritické důležitosti)
 - systém dotaz odpověď (pouze dva datagramy) x efektivita u TCP
- 🗆 záhlaví pouze 8 B

Bity 0-15	16-31				
Zdrojový port	Cílový port				
Celková délka	Kontrolní součet				
Data aplikace					

Datagram protokolu UDP

- Zdrojový port (source port)
 - port na straně odesílatele datagramu
 - odesilatel klientem port vybrán z příslušného rozsahu
 - odesilatel server číslo portu zpravidla dáno dle typu služby
- Cílový port (destination port)
 - port na straně příjemce datagramu
 - zpravidla není shodné se zdrojovým
 - vychází především z toho, zda je odesilatel klient či server
- Celková délka (total length)
 - délka celého datagramu včetně záhlaví, v bajtech
- □ Kontrolní součet (checksum)
 - k detekci základních chyb na transportní úrovni
 - ve srovnání s mechanizmy řízení chyb protokolu TCP zanedbatelné
 - počítán z
 - UDP záhlaví
 - datové části
 - části IP záhlaví paketu (tzv. pseudozáhlaví)

Služby protokolu UDP

- Komunikace proces-proces
 - pomocí portů
- Přenos dat bez spojení
 - každý datagram přenášen jako samostatná jednotka
 - datagramy nejsou číslovány
 - neprobíhá žádné navazování spojení či testování dostupnosti adresáta
- Žádné řízení toku dat, řízení proti zahlcení či řízení chybových stavů
 - vysílač UDP datagramů může potenciálně zahltit příjemce či síť
 - v rámci UDP protokolu neexistují mechanizmy na řešení těchto problémů
 - kromě kontrolního součtu žádné mechanizmy řízení chyb, chybových stavů či řízení přenosu jednotek
- Zapouzdřování a odpouzdřování dat
 - služba vytváření jednotek transportní úrovně na straně vysílače
 - následně oddělení záhlaví na straně příjemce
- Frontování, multiplexování a demultiplexování
 - vstupní a výstupní fronty odděleně pro jednotlivé aplikace, dle portů

Příklady využití protokolu UDP

- jednoduchý a rychlý protokol pro spoustu aplikací dostatečný
 - malé zatížení tras, prvků, aplikací
- Klasicky: systémy dotaz odpověď
 - Domain Name System (DNS)
 - řazen do aplikační vrstvy
 - krátké dotazy na IP adresy na základně jmenných názvů
 - ztráta či chyba přenosu řešena opakovaným dotazem
 - Umí použít i TCP!
 - Voice over IP (VoIP)
 - malé ztráty méně kritické než velké zpoždění
 - problém pořadí datagramů musí být řešen
- Současné použití výrazně širší (web, HTTP/3)

TRANSMISSION CONTROL PROTOCOL (TCP)

Služby protokolu TCP

- Komunikace proces-proces
 - stejně jako UDP
- Přenos proudu dat
 - odlišný koncept od UDP
 - TCP vytváří dojem propojení komunikujících procesů okruhem, kterým je možné přenášet proud bajtů
 - pro přenos síťovou vrstvou vytváří segmenty
 - přenášené bajty jsou určitým způsobem číslovány (správné seskládání dat)
- Plně duplexní přenos dat
 - strany komunikují oběma směry zároveň
- Multiplexování a demultiplexování
 - stejně jako UDP protokol
- Spojově orientovaná služba
 - navázání spojení před přenosem dat, ukončení spojení po přenosu
 - Zjištění dostupnosti a ochoty komunikovat u druhé strany, nastavení spojení
- Spolehlivý přenos dat
 - TCP používá potvrzovací mechanizmy, které umožňují ověřit, že došlo k úspěšnému přenosu

Vlastnosti protokolu TCP

- Vlastnosti umožňující poskytování služeb, odlišné od UDP
 - Číslovací systém
 - založen na číslování odesílaných a potvrzovaných bajtů
 - nejsou číslovány segmenty jako celky
 - komunikace je obousměrná, celkem čtvero číslování
 - odeslané bajty jedné strany
 - odeslané bajty druhé strany
 - bajty potvrzované jednou stranou
 - bajty potvrzované druhou stranou

Řízení toku dat

- především práce s velikostí okna
- Řízení chybových stavů
 - mechanizmy sledování chyb a řízení způsobů reakce na tyto chyby
- Řízení stavů zahlcení
 - pružná reakce na zahlcení na straně příjemce či v síti
 - podstatou možnost regulovat množství a rychlost odesílaných dat

Bity 0-15						16-31		
Zdrojový port						Cílový port		
Pořadové číslo odesílaného bajtu								
Pořadové číslo potvrzovaného bajtu								
Délka záhlaví	Rezerva	U R G		P S H		S Y N	F I N	Délka okna
	Kontrolní součet						Ukazatel naléhavých dat	
Volitelné položky záhlaví								
Data aplikace								

- Zdrojový port (source port)
 - port na straně odesílatele segmentu, obdobně jako u UDP
- Cílový port (destination port)
 - port na straně příjemce segmentu, opět obdobně jako u UDP
- Pořadové číslo odesílaného bajtu (sequence number SEQ)
 - pole číslování odesílaných bajtů
 - pole obsahuje pořadové číslo prvního z odesílaných bajtů v daném segmentu
- Pořadové číslo potvrzovaného bajtu (acknowledgment number ACK)
 - komunikace probíhá obousměrně, potvrzení dříve přijatých dat od protistrany
 - hodnota dalšího očekávaného bajtu dle číslování bajtů protistrany
- Délka záhlaví (header length)
 - délka celého záhlaví
 - 🗖 musí být uvedeno kvůli poli Volitelné položky záhlaví (proměnná délka)

Příznakové bity (flags)

- mohou být různě kombinovány k dosažení funkcí řízení toku,
 navázání či ukončení spojení
- Význam jejich nastavení na "1" je
 - **URG** (urgent) segment nese naléhavá data
 - ACK (acknowledgment) indikuje, že hodnota uvedená v poli potvrzovaného bajtu je platná
 - **PSH** (push function) signalizuje, že data mají být ihned po přijetí předána aplikaci a nemá se čekat na přijetí dalších segmentů
 - **RST** (reset the connection) pro řešení situace s duplikáty navazovacích segmentů, k odmítnutí spojení
 - **SYN** (synchronize sequence numbers) odesílatel začíná novou sekvenci číslování bajtů, využíváno při navazování spojení
 - FIN (terminate the connection) odesílatel ukončil přenos dat, využíváno při uzavírání spojení

- Délka okna (window size)
 - vyjadřuje maximální počet bajtů, které může vysílač odeslat, aniž by čekal na potvrzení od přijímače
 - může se podle potřeby měnit
- Kontrolní součet (TCP checksum)
 - obdobné jako UDP kontrolní součet
- Ukazatel naléhavých dat (urgent pointer)
 - pole vyplněno jen když je příznakový bit URG nastaven na "1"
- Volitelné položky záhlaví (options)
 - pole nemusí být přítomno vůbec, nad rámec tohoto kurzu

Navazování a ukončování spojení u protokolu TCP

TCP vytváří virtuální okruh mezi procesy

Three-way handshake [SYN] > [SYN, ACK] > [ACK]

and-wait, při r přenosu neefektivní Pro jednoduchost pouze režim stop Vpravo obousměrná komunikace Vlevo jednosměrná komunikace

Velikost okna u protokolu TCP a návaznost na řízení provozu

- TCP poskytuje mechanizmus pro řízení toku dat
 - napomáhá celkové spolehlivosti přenosu
- Záhlaví TCP obsahuje pole délka okna
 - umožňuje, aby přijímač nastavil, kolik mu vysílač může maximálně odeslat bajtů bez čekání na potvrzení
 - povolení k odesílání dalších dat
 - nedochází ke zbytečnému zahlcení a zahazování dat
- Problematika fungování tohoto mechanizmu (technika posuvného okna)
 - diskutována již v rámci spojové vrstvy
 - slouží k řízení toku dat, chybových stavů i zahlcení
 - specifika u TCP nad rámec kurzu

Příklady využití protokolu TCP

- robustní protokol, významná režie přenosu, mnoho funkcí pro aplikace
- využití časté např. u
 - HTTP (HyperText Transfer Protocol) přenos webových stránek
 - FTP (File Transfer Protocol) přenos souborů
 - SMTP (Simple Mail Transfer Protocol) přenos elektronické pošty
- všechny tyto protokoly potřebují spolehlivou službu; TCP není jediná v současnosti používaná možnost (QUIC nad UDP)
- TCP využíván běžně u více aplikačních protokolů než UDP

PROTOKOL QUIC

Google QUIC

- QUIC = Quick UDP Internet Connection, gQUIC
- □ Chrome *2013
- □ Úzce provázán s HTTP/2
- Alternativa k TCP protokolu
- Běží nad UDP, další transportní vrstva funkčně podobná TCP
- □ Není součástí OS, ale aplikace zrychlení vývoje

IETF QUIC

- *2016 snaha o standardizaci QUIC u IETF, stále probíhá
- QUIC, popř. IETF QUIC
- Nekompatibilní s gQUIC, přesto velmi podobné
- □ Určen pro HTTP/3
- Pevně svázán s TLS –
 šifrování a autentizace

IETF QUIC – základní vlastnosti

- Podobnost s TCP spojení
- Proudy dat v rámci spojení (STREAM x FRAME)
- Proudy dat na sobě velmi nezávislé
- Řízení toku dat na úrovni spojení i proudu dat
- Snížení zpoždění před přenosem dat v šifrované podobě
 - □ TCP: 2 RTT + TLS: 1 RTT
 - QUIC + TLS: 1 RTT či i 0 RTT
- Přechod spojení mezi adresami (L3 i L4) díky Connection ID
- Zkušební implementace
 - Chrome, Firefox, vybrané webové servery
 - https://http3-explained.haxx.se/en/proc-status

Doplnění k transportní vrstvě

- Existují i jiné protokoly transportní úrovně
 - např.
 - SCTP (Stream Control Transmission Protocol)
 - RSVP (Resource Reservation Protocol)
 - RUDP (Reliable User Datagram Protocol)
 - typicky snaha nějakým způsobem kombinovat vlastnosti TCP a UDP
 - spíše okrajové využití
- Zařízení transportní vrstvy
 - žádné síťové zařízení přímo transportní úrovně
 - součást stavových firewallů (sledují stav spojení TCP),
 nad rámec kurzu

