Informed Search

Informed Search

search strategy: which node (in queue) to expand

- uninformed
 - distance to goal not taken into account
- informed
 - information about cost to goal is taken into account
 - usually heuristic, e.g.,
 estimate "value" of the constellation of chess pieces

Best-first search

- evaluation function for each node
 - Heuristic Functions
 - f: States → Numbers
 - f(n): expresses the quality of the state n
 - allows to express problem-specific knowledge
 - can be used in a generic way
- expand most desirable unexpanded node first
 - queuing based on f(n)
 - order the nodes in fringe in decreasing order
- special cases:
 - greedy best-first search
 - A* search

Romanian path finding problem

Searching for good path from Arad to Bucharest, what is a reasonable "desirability measure" to expand nodes on the fringe?

Greedy best-first search

Evaluation function f(n) at node n

- f(n) = (heuristic) estimate of cost from n to goal
- e.g., f(n) = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to have shortest path to goal
- Intuition: those nodes may lead fast to the solution

Similar to Depth-First Search: It prefers to follow a single path to goal (guided by the heuristic), backing up when it hits a dead-end.

Solution:

Arad-Sibiu-Fagaras-Bucharest 140+99+211 = 450 km

Is it optimal?

Properties of greedy best-first search

- not optimal
- time: O(b^m)
- space: O(b^m)

b: maximum branching factor of the search tree m: maximum depth of the state space (may be ∞)

A variation: Single-Source Shortest Path Problem

problem of finding

- shortest paths
- from a source vertex v
- to all other vertices in the graph

Dijkstra's algorithm

- solution to the single-source shortest path problem
- both for directed and undirected weighted graphs
- but all edges must have non-negative weights
- using a greedy approach

Input: weighted graph G={E,V} and source vertex v∈V, all edge weights are nonnegative

Output: lengths of shortest paths (or the shortest paths themselves) from a given source vertex v∈V to all other vertices

Dijkstra Pseudocode

```
dist[s] \leftarrow o
                                           (distance to source vertex is zero)
for all v \in V - \{s\}
                                          (set all other distances to infinity)
     do dist[v] \leftarrow \infty
                                           (S, the set of visited vertices is initially empty)
S←Ø
Q←V
                                           (Q, the queue initially contains all vertices)
while Q ≠Ø
                                           (while the queue is not empty)
do u \leftarrow mindistance(Q,dist)
                                           (select the element of Q with the min. distance)
    S \leftarrow S \cup \{u\}
                                           (add u to list of visited vertices)
    for all v \in neighbors[u]
         do if dist[v] > dist[u] + w(u, v) (if new shortest path found)
                then d[v] \leftarrow d[u] + w(u, v) (set new value of shortest path)
return dist
```


Implementations and Runtimes

simplest

- vertices in an array or linked list
- runtime $O(|V|^2 + |E|)$
- sparse graphs: #edges << #nodes²
 - store graph in an adjacency list using a priority queue with binary heap
 - runtime O((|E|+|V|) log |V|)
 - note: many "problem solving" searches are of this type, hence interesting for performance

Excursus: Priority Queue

PQueue: data with priority, resp. weights

- operations
 - insert
 - extractMin
- property
 - for two elements in the queue, x and y,
 - if x has a lower priority value than y,
 - x will be extracted before y

Potential Implementations

	insert	extractMin
Unsorted list (Array, Linked-List)	O(1)	O(n)
Sorted list (Array, Linked-List)	O(n)	O(1)

Better Alternative: Binary Heap

- Heap
 - O(log n) worst case for insert and extractMin
 - O(1) average insert

- binary heap: complete binary tree
 - binary tree, i.e., b=2
 - completely filled; exception bottom level, which is filled left to right
- examples

Binary Heap

Heap order property

- For every non-root node X
- the value in the parent of X
- is less than (or equal to) the value in X

Insert(val)

Basic Idea:

- put val at next open leaf position
- percolate up
- i.e., repeatedly exchanging node until no longer needed

extractMin

Basic Idea:

- 1. remove root (that is always the min!)
- 2. put "last" leaf node at root
- 3. find smallest child of node
- 4. swap node with its smallest child if needed.
- 5. repeat steps 3 & 4 until no swaps needed (aka percolate down)

extractMin: percolate down

Back to Dijkstra's Algorithm

Correctness, i.e., complete? optimal? **Yes**

Here the core elements of the proof...

Correctness Dijkstra

Lemma 1: Triangle inequality If $\delta(u,v)$ is the shortest path length between u and v, $\delta(u,v) \leq \delta(u,x) + \delta(x,v)$

Lemma 2: Subpaths
The subpath of any shortest path is itself a shortest path

key insight:

- anytime we put a new vertex in S,
- we already know the shortest path to it

Dijkstra nice but...

Problem: what about single goal?

- can be used
- but is not the most efficient

Alternative: A* search

- idea
 - follow most promising path (like greedy search)
 - but do not expand paths that are already expensive
- evaluation function f(n) = g(n) + h(n)
 - -g(n) = cost so far to reach n
 - h(n) = estimated cost from n to goal
 - f(n) = estimated total cost of path through n to goal

Example

h(n) = straight line distance to Bucharest

Arad-Sibiu-Rimnicu-Pitesti-Bucharest

Claim: Optimal path found!

```
forall v : g(v) = infinity; g(v_start) = 0
                                                //init g()
forall v : f(v) = infinity; f(v_start) = h(v_start)
                                                //init f()
add(v_start, OPEN)
                                                //put start in priority queue OPEN
while OPEN != {}
                                                //as long as OPEN is not empty
                                                //extract the node with smallest f() from OPEN
  v_visit = min-f (OPEN)
  if v_visit == v_goal then done
                                                //found the solution
    add(v_visit, CLOSED)
                                                //mark visited node as CLOSED
    generate set S of all successors of v_visit
                                                //expand the fringe
    forall v_next in S
      if v_next not in CLOSED
        tmp_g(v_next) = g(v_visit) + w(v_visit, v_next) // add edge weight to get new g()
                                                //found a better path to v_next
        if tmp_g(v_next) < g(v_next)
          path-parent = v_visit
                                           //the currently best path to v_next is coming from v_visit
          g(v_next) = tmp_g(v_next)
                                                //update g()
          f(v_next) = g(v_next) + h(v_next) //update f()
          if v_next not in OPEN then add(v_next, OPEN) //add v_next to the fringe
return fail
                                                //no path from start to goal
```

find path from v0 to v4

	h()	g()	f()	path-p			
v0	1	0	0	NIL	OPEN	v0	
v1	4	inf	inf	NIL	CLOSED		
v2	2	inf	inf	NIL			
v3	3	inf	inf	NIL			
v4	0	inf	inf	NIL			

```
forall v : g(v) = infinity; g(v_start) = 0
forall v : f(v) = infinity; f(v_start) = h(v_start)
add(v_start, OPEN)
while OPEN != {}
  v_visit = min-f (OPEN)
  if v_visit == v_goal then done
    add(v_visit, CLOSED)
    generate set S
           of all successors of v_visit
    forall v_next in S
      if v_next not in CLOSED
        tmp_g(v_next) = g(v_visit) +
                        w(v_visit, v_next)
        if tmp_g(v_next) < g(v_next)
           path-parent = v_visit
           g(v_next) = tmp_g(v_next)
           f(v_next) = g(v_next) + h(v_next)
           if v_next not in OPEN then
                        add(v_next, OPEN)
```


	h()	g()	f()	path	1-р	OPEN	v0		
v0	1	0	0	NIL		v_visit	v0		
v1	4	2	6	v0		CLOSED	v0		
v2	2	1	3	v0		S	v1	v2	v3
v3	3	5	8	v0		tmp_g	2	1	5
v4	0	inf	inf	NIL					

```
forall v : g(v) = infinity; g(v_start) = 0
forall v : f(v) = infinity; f(v_start) = h(v_start)
add(v_start, OPEN)
while OPEN != {}
  v_visit = min-f (OPEN) v0
  if v_visit == v_goal then done
    add(v_visit, CLOSED) {v0}
    generate set S
                            {v1,v2,v3}
           of all successors of v visit
    forall v_next in S
      if v_next not in CLOSED
        tmp_g(v_next) = g(v_visit) +
                        w(v_visit, v_next)
        if tmp_g(v_next) < g(v_next) = inf
           path-parent = v_visit
           g(v_next) = tmp_g(v_next)
           f(v_next) = g(v_next) + h(v_next)
           if v_next not in OPEN then
                        add(v_next, OPEN)
```


	h()	g()	f()	path-p	OPEN	v1	v2	v3
v0	ı	0	0	NIL	v_visit	v0		
v1	4	2	6	v0	CLOSED	v0		
v2	2	1	3	v0	S			
v3	3	5	8	v0	tmp_g	2	1	5
v4	0	inf	inf	NIL				

```
forall v : g(v) = infinity; g(v_start) = 0
forall v : f(v) = infinity; f(v_start) = h(v_start)
add(v_start, OPEN)
while OPEN != {}
  v_visit = min-f (OPEN)
  if v_visit == v_goal then done
    add(v_visit, CLOSED)
    generate set S {v1,v2,v3}
           of all successors of v_visit
    forall v_next in S
      if v_next not in CLOSED
        tmp_g(v_next) = g(v_visit) +
                        w(v_visit, v_next)
        if tmp_g(v_next) < g(v_next) = inf
           path-parent = v_visit
           g(v_next) = tmp_g(v_next)
           f(v_next) = g(v_next) + h(v_next)
           if v_next not in OPEN then
          {v1,v2,v3} add(v_next, OPEN)
```


	h()	g()	f()	path-p	OPEN	v1	v2	v3
v0	1	0	0	NIL	v_visit	v2		
v1	4	2	6	v0	CLOSED	v0	v2	
v2	2	1	3	v0	S			
v3	3	5	8	v0	tmp_g			
v4	0	inf	inf	NIL				

```
forall v : g(v) = infinity; g(v_start) = 0
forall v : f(v) = infinity; f(v_start) = h(v_start)
add(v_start, OPEN)
while OPEN != {}
  v_visit = min-f (OPEN) v2
  if v_visit == v_goal then done
    add(v_visit, CLOSED)
    generate set S
                           S={}
           of all successors of v_visit
    forall v_next in S
      if v_next not in CLOSED
        tmp_g(v_next) = g(v_visit) +
                        w(v_visit, v_next)
        if tmp_g(v_next) < g(v_next)
           path-parent = v_visit
           g(v_next) = tmp_g(v_next)
           f(v_next) = g(v_next) + h(v_next)
           if v_next not in OPEN then
                        add(v_next, OPEN)
```


	h()	g()	f()	path-p	OPEN	v1	v3	
v0	1	0	0	NIL	v_visit	v1		
v1	4	2	6	v0	CLOSED	v0	v2	v1
v2	2	1	3	v0	S	v4		
v3	3	5	8	v0	tmp_g	11		
v4	0	inf	inf	NIL				

```
forall v : g(v) = infinity; g(v_start) = 0
forall v : f(v) = infinity; f(v_start) = h(v_start)
add(v_start, OPEN)
while OPEN != {}
  v_visit = min-f (OPEN) v1
  if v_visit == v_goal then done
    add(v_visit, CLOSED)
    generate set S
                           S=\{v4\}
           of all successors of v_visit
    forall v_next in S
      if v_next not in CLOSED
        tmp_g(v_next) = g(v_visit) +
          2+9=11 w(v_visit, v_next)
        if tmp_g(v_next) < g(v_next)
           path-parent = v_visit
           g(v_next) = tmp_g(v_next)
           f(v_next) = g(v_next) + h(v_next)
           if v_next not in OPEN then
                        add(v_next, OPEN)
```


	h()	g()	f()	path	ı-р	OPEN	v3	v4	
v0	ı	0	0	NIL		v_visit	v1		
v1	4	2	6	v0		CLOSED	v0	v2	v1
v2	2	1	3	v0		S	v4		
v3	3	5	8	v0		tmp_g	11		
v4	0	11	11	v1					

```
forall v : g(v) = infinity; g(v_start) = 0
forall v : f(v) = infinity; f(v_start) = h(v_start)
add(v_start, OPEN)
while OPEN != {}
  v_visit = min-f (OPEN)
  if v_visit == v_goal then done
    add(v_visit, CLOSED)
    generate set S
           of all successors of v_visit
    forall v_next in S
      if v_next not in CLOSED
         tmp_g(v_next) = g(v_visit) +
                        w(v_visit, v_next)
        if tmp_g(v_next) < g(v_next) = inf
           path-parent = v_visit
           g(v_next) = tmp_g(v_next)
           f(v_next) = g(v_next) + h(v_next)
           if v_next not in OPEN then
                        add(v_next, OPEN)
```


	h()	g()	f()	path-p	OPEN	v3	v4		
v0	ı	0	0	NIL	v_visit	v3			
v1	4	2	6	v0	CLOSED	v0	v2	v1	v3
v2	2	1	3	v0	S	v4			
v3	3	5	8	v0	tmp_g	8			
v4	0	11	11	v1					

```
forall v : g(v) = infinity; g(v_start) = 0
forall v : f(v) = infinity; f(v_start) = h(v_start)
add(v_start, OPEN)
while OPEN != {}
  v_visit = min-f (OPEN) v3
  if v_visit == v_goal then done
    add(v_visit, CLOSED)
    generate set S
                           S={v4}
           of all successors of v_visit
    forall v_next in S
      if v_next not in CLOSED
        tmp_g(v_next) = g(v_visit) +
                       w(v_visit, v_next)
          5+3=8
        if tmp_g(v_next) < g(v_next)</pre>
           path-parent = v_visit
           g(v_next) = tmp_g(v_next)
           f(v_next) = g(v_next) + h(v_next)
           if v_next not in OPEN then
                        add(v_next, OPEN)
```


	h()	g()	f()	path-p	OPEN	v4			
v0	1	0	0	NIL	v_visit	v3			
v1	4	2	6	v0	CLOSED	v0	v2	v1	v3
v2	2	1	3	v0	S	v4			
v3	3	5	8	v0	tmp_g	8			
v4	0	11	11	v1					

```
forall v : g(v) = infinity; g(v_start) = 0
forall v : f(v) = infinity; f(v_start) = h(v_start)
add(v_start, OPEN)
while OPEN != {}
  v_visit = min-f (OPEN)
  if v_visit == v_goal then done
    add(v_visit, CLOSED)
    generate set S
            of all successors of v_visit
    forall v_next in S
       if v_next not in CLOSED
         tmp_g(v_next) = g(v_visit) +
           tmp_g(v4)=7^{\text{W}(\text{V-g}(\text{v4}))}=11^{\text{Pext}}
         if tmp_g(v_next) < g(v_next)</pre>
            path-parent = v_visit
            g(v_next) = tmp_g(v_next)
            f(v_next) = g(v_next) + h(v_next)
            if v_next not in OPEN then
                          add(v_next, OPEN)
```


	h()	g()	f()	path-p	OPEN	v4			
v0	ı	0	0	NIL	v_visit	v3			
v1	4	2	6	v0	CLOSED	v0	v2	v1	v3
v2	2	1	3	v0	S	v4			
v3	3	5	8	v0	tmp_g	7			
v4	0	8	8	v3					

```
forall v : g(v) = infinity; g(v_start) = 0
forall v : f(v) = infinity; f(v_start) = h(v_start)
add(v_start, OPEN)
while OPEN != {}
  v_visit = min-f (OPEN)
  if v_visit == v_goal then done
    add(v_visit, CLOSED)
    generate set S
           of all successors of v_visit
    forall v_next in S
      if v_next not in CLOSED
         tmp_g(v_next) = g(v_visit) +
                        w(v_visit, v_next)
        if tmp_g(v_next) < g(v_next)</pre>
           path-parent = v_visit
           g(v_next) = tmp_g(v_next)
           f(v_next) = g(v_next) + h(v_next)
           if v_next not in OPEN then
                        add(v_next, OPEN)
```


	h()	g()	f()	path-p	OPEN				
v0	ı	0	0	NIL	v_visit	v4			
v1	4	2	6	v0	CLOSED	v0	v2	v1	v3
v2	2	1	3	v0	S				
v3	3	5	8	v0	tmp_g				
v4	0	8	8	v3					

```
forall v : g(v) = infinity; g(v_start) = 0
forall v : f(v) = infinity; f(v_start) = h(v_start)
add(v_start, OPEN)
while OPEN != {} {v4}
  v_visit = min-f (OPEN)
  if v_visit == v_goal then done
    add(v_visit, CLOSED)
    generate set S
           of all successors of v_visit
    forall v_next in S
      if v_next not in CLOSED
         tmp_g(v_next) = g(v_visit) +
                        w(v_visit, v_next)
        if tmp_g(v_next) < g(v_next)
           path-parent = v_visit
           g(v_next) = tmp_g(v_next)
           f(v_next) = g(v_next) + h(v_next)
           if v_next not in OPEN then
                        add(v_next, OPEN)
```

return fail

Properties of A*

A* generates an **optimal** solution

- if h(n) is an **admissible** heuristic
- and the search space is a tree

h(n) is **admissible**

- if it never overestimates the cost to reach the destination
- i.e., it is optimistically underestimating the cost

Properties of A*

A* generates an optimal solution

- if h(n) is a consistent heuristic
- and the search space is a graph

h(n) is **consistent**

- if for every node n & for every successor node n' of n
- it holds that: $h(n) \le c(n,n') + h(n')$

If h(n) is consistent then the values of f(n) along any path are non-decreasing (kind of triangle inequality)

Properties of A*

Note:

- if h(n) is consistent then h(n) is admissible
- often, when h(n) is admissible, it is also consistent

Computational Cost of A*

it can also be shown that

- A* makes optimal use of the heuristics
- i.e., there is no search algorithm that
 - expands fewer nodes using the heuristic
 - and finds the optimal solution

Creating Good Heuristics

desired properties

- consistent / admissible
- as close to the optimum as possible (without overestimate)
- easy to compute

one general strategy: problem relaxation

- simplify problem by reducing restrictions aka constraints on actions (aka relaxed problem)
- this results in admissible heuristics

Example: 8-Puzzle

sort the tiles into order by sliding motion of just 1 tile (play e.g. at http://mypuzzle.org/sliding)

Example: 8-Puzzle

Action Constraint

a tile can move from square A to square B iff

- A is horizontally or vertically adjacent to B
- and B is blank

Admissible Heuristics in 8-Puzzle

Heuristic 1: tile A can be moved to any tile B

• H1(n) = "number of misplaced tiles in board n"

Heuristic 2: tile A can be moved to tile B if B is adjacent to A

 H2(n) = "sum of Manhattan distances of misplaced tiles to goal positions in board n"

Experimental results (Russell & Norvig, 2002):

- A* with h2 performs up to 10 times better than A* with h1
- A* with h2 performs up to 36,000 times better than a classical uninformed search algorithm (iterative deepening)