Problem Set 9 Solution Problem 1 Shock-wave pressure $P_{i}=c\frac{E_{i}^{2/3}}{d_{i}^{2}}$ $P_z = c \frac{E_z^{2/3}}{d_z^2}$ Demand P, for calibration test $= P_{z} \text{ for Trinity test}$ $\neq \frac{z/3}{J_{z}^{2}} = \frac{E_{z}^{2/3}}{d_{z}^{2}}$ Solve for E_1 = 2/3 = 2/3 = 2/3 = 2/3 = 2/3 = 2/3 = 2/3 = 2/3 $E_{1} = \left(d_{1}^{2} \frac{E_{2}^{2/3}}{d_{2}^{2}}\right)^{3/2}$

Problem Z. Fallout t,= half-life of Barion-141 = 18 min tz = half-life of Krypton-92 1.8 sec a=a,=az=initial number of atous $= \frac{1000g \times 6.02 \times 10^{23} \text{ atoms}}{235.04u} / u$ $= \frac{235.04u}{\cos version} + \frac{4}{3} \cos v$ $= \frac{25.61 \times 10^{23} \text{ atoms}}{235 \cos v}$ 2, = decay constant for Barium $=\frac{\ln Z}{\xi_{1}} = \frac{\ln Z}{10805} = 0.000642\frac{1}{5}$ $\lambda_{2} = \frac{\ln Z}{1.85} = 0.385\frac{1}{5} = 0.000642$ $= \left(\frac{d_1}{d_2}\right)^3 = \left(\frac{28 \times 3}{100 \times 4}\right)^3 = \frac{20000 \text{ fors}}{100 \times 4} R_1(t) = -\lambda_1 \alpha_1 e^{-\lambda_1 t} = \frac{8y}{100 \times 4}$ $= \frac{439 \text{ fors for the calibration test}}{1484 \times 10} R_2(t) = -\lambda_2 \alpha_2 e^{-\lambda_2 t} = \frac{69}{12.3}$

Table for Problem 2

	lambda	0.000642	0.385	curies conversion factor	3.7E+10	
	initial number	2.561E+24	2.561E+24		square meters in 10 sq miles	2.589988110336E+07
		R1(t)	R2(t)	TOTAL = R1(t) + R2(t)	TOTAL IN CURIES	TOTAL IN CURIES PER SQUARE METER
108ms	0.108	1.6E+21	9.5E+23	9.5E+23	2.6E+13	9.9E+05
1s 80ms	1.08	1.6E+21	6.5E+23	6.5E+23	1.8E+13	6.8E+05
10s 800ms	10.8	1.6E+21	1.5E+22	1.7E+22	4.6E+11	1.8E+04
1m 24s	108	1.5E+21	8.6E+05	1.5E+21	4.1E+10	1.6E+03
18m	1080	8.2E+20	2.6E-157	8.2E+20	2.2E+10	8.6E+02
3h	10800	1.6E+18	0.0E+00	1.6E+18	4.3E+07	1.7E+00

Problem 3: Mean, and Standard Deviation of a Random Walk

Final Position, x _i	-7	-5	-3	-1	1	3	5	7
Probability, p _i	0.0078	0.0547	0.1641	0.2734	0.2734	0.1641	0.0547	0.0078
Log Probability, In p _i	-2.1072	-1.2621	-0.7850	-0.5631	-0.5631	-0.7850	-1.2621	-2.1072
pi * xi	-0.0547	-0.2734	-0.4922	-0.2734	0.2734	0.4922	0.2734	0.0547
Mean	0.0000							
pi * (xi-m)^2	0.3828	1.3672	1.4766	0.2734	0.2734	1.4766	1.3672	0.3828
sigma^2	7.0000							
sigma	2.6458							

Problem 4: Graphing Probability Distributions

