Gustavo Post Sabin

Introdução

- GRASP Greedy Randomized Adaptive Search Procedure
- 1989 Thomas A. FEO e Maurício G. C. Resende
- Ideia
 - Aplicar busca local em boas soluções iniciais

- Fase de construção
 - Encontra boas soluções inserindo aleatoriedade em um método guloso
 - Aleatoriedade é parametrizável
 - Aleatoriedade muito grande → Busca Local com Reinício
 - Aleatoriedade pequena → Busca Gulosa
 - Diminui a diversificação

- Fase de construção funcionamento
 - Função Gulosa
 - Avaliar todos os elementos que compõe a solução
 - RCL recebe os n melhores elementos
 - Aleatoriedade
 - Seleciona aleatoriamente m elementos de RCL e inclui na solução
 - m <= n

- RCL (Restricted Candidate List)
 - Tamanho baseado em cardinalidade
 - Tamanho baseado em qualidade

- Fase de Busca Local
 - Aplica busca local a partir da solução encontrada na fase anterior
 - Critério de parada
 - N° de iterações na busca local
 - Estagnação na busca local
 - Vizinhança
 - Fixa
 - Variável
 - Filtragem
 - Soluções iniciais ruins são descartadas

* Eficácia da busca depende da fase de construção

Memória

- Armazenamento explicito apenas da melhor solução e da solução corrente
- Armazenamento explícito de soluções anteriores
 - · Evita explorar repetidamente a mesma região

Busca

Intensificação x Diversificação

- Diversificação
 - Geração de soluções na fase de construção (solução inicial)
- Intensificação
 - Busca Local aplicada à solução inicial

Path relinking

 Incorpora atributos de boas soluções encontradas

 Favorece movimentos que levem a melhor solução encontrada

GRASP – Funcionamento

- ▶ sBest ← construção()
- Enquanto (condição de parada)
 - s' ← buscaLocal(s)
 - sBest ← atualiza(s', sBest)
- Fim enquanto
- Retorna sBest

Implementação

- Duração fixa: número de iterações
- Busca Local
 - Vizinhança variável
 - Menor vizinhança: flip (1 bit aleatório)
 - Critério de parada
 - estagnação

Problema

Encontrar modelo para a determinação de celulose microcristalina no medicamento Escitalopram.

Dados

- Espectro de absorção de infra-vermelho próximo
- 372 variáveis (comprimentos de onda)
- 89 amostras de calibração
- 67 amostras de validação
- 72 amostras de predição

Comando para execução da implementação

[sBest, vetFit] = grasp(nIteracoes, nVizinhos, maxVizinhanca, nElementos, qtdElementos, dados)

Onde:

- sBest: melhor solução encontrada
- vetFit: matriz que armazena a solução corrente na coluna 1 e a melhor solução na coluna 2 (para gerar os gráficos)
- nIteracoes: nº máximo de iterações do algoritmo
- nVizinhos: nº de vizinhos gerados em cada iteração
- maxVizinhança: maior vizinhança calculada na busca local
- nElementos: número de elementos utilizados na construção da solução
- qtdElementos: número de elementos em RCL
- Dados: dados espectrais do problema (arquivo dados.mat)

Teste 1

- Parâmetros utilizados
 - nlterações: 10
 - nVizinhos: 100
 - maxVizinhanca: 5
 - nElementos: 15
 - qtdElementos: 150

Resultados - busca

Resultados - evolução

Resultados

Erros

Validação: 0.1629

Predição: 1.4398

Teste 2

- Parâmetros utilizados
 - nlterações: 50
 - nVizinhos: 100
 - maxVizinhanca: 5
 - nElementos: 15
 - qtdElementos: 150

Resultados - busca

Resultados - evolução

Resultados

Erros

Validação: 0.1571

Predição: 0.8409

Referências

- T. A. FEO, M. G. C. RESENDE. A probabilistic heuristic for a computationally difficult set covering problem. Operations research letters, 1989.
- E. SEGATTO, et al. Um Algoritmo GRASP com Cadeia de Kempe Aplicado ao Problema de Tabela-horário para Universidades. XLVII SBPO, 2015.