

Introduction to RNA editing

Ernesto Picardi

University of Bari IBIOM-CNR

ernesto.picardi@uniba.it

www.ibiom.cnr.it

RNA modifications

Epitranscriptome modifications are emerging as important factors to fine tune gene expression and regulation in a variety of organisms and experimental conditions. To date more than 170 distinct chemical modifications to RNA have been characterized, including transient (i.e. m6A or m1A or m5C) and not-transient (i.e. A-to-I or C-to-U) nucleotide variants.

Barbieri and Kouzarides 2020 Nat. Rev. Cancer

RNA editing

RNA editing is a widespread co- and post-transcriptional molecular phenomenon that can increase the complexity of the eukaryotic transcriptome and proteome through a variety of mechanistically and evolutionarily unrelated pathways.

Primary RNAs are modified at specific positions by <u>base substitutions</u> or <u>insertions</u> and <u>deletions</u>.

Insertion/Deletion RNA editing

Alignment for EDI_000000649

Trypanosoma cruzi

Legend:

: Substitution : Insertion

: Deletion

Gene rps12 from the mitochondrial genome of

Crithidia fasciculata Genomic length: 209 bp cDNA length: 338 bp

Editing type: U Insertion (events: 59) Editing type: U Deletion (events: 3) Total Number of editing events: 62

From the REDIdb database

RNA editing by base substitution in plant mt

Gene atp9 from the mitochondrial genome of Isoetes engelmannii.

Yellow and magenta shading indicate changes introduced through C-to-U or U-to-C editing events in the *atp9* mRNA.

RNA editing in mammals

In mammals, RNA editing occurs in the nucleus and cytoplasm and mainly by C-to-U or A-to-I conversions.

C-to-U RNA editing in humans

C-to-U editing is carried out by the APOBEC family of enzymes an only a few instances are known.

A-to-I RNA editing in humans

A-to-I is carried out by ADAR (adenine deaminases acting on RNA) enzymes. ADAR1 and ADAR2 are expressed in almost all human tissues. ADAR3, instead, is expressed in the brain only. ADAR enzymes can deaminate As included in RNA duplexes.

Zinshteyn et al., 2009, WIREs Syst Biol Med

Keegan et al., 2001, Nature Rev. Gen.

Nishikura 2010 Annu. Rev. Biochem

Almost all RNA editing sites identified in the human transcriptome reside in non-coding regions that consist of inversely oriented repetitive elements, mostly Alu repeats (~90%) and some LINE repeats (~10%), representing ~13% and ~21% of the human genome, respectively.

Effects of A-to-I RNA editing

A-to-I editing can modulate the gene expression at different levels.

NuclearA-to-Lediting: known (bold) and proposed functions.

Maas S. web site

Effects of RNA editing in mammals

Consequences of RNA editing by ADAR. a | Adenosine-to-inosine (A-to-I) editing-dependent regulation of microRNA (miRNA) biogenesis and targeting. b | RNA editing at alternative 3'-acceptor sites converts the intronic AA into AI dinucleotides, which mimic the conserved AG sequences normally found at 3'-splicing sites. This introduction of a new splicing acceptor site results in an alternatively spliced mRNA with an insertion (light blue). c | ADAR1 competes with canonical 3'-untranslated region (UTR) processing. Moreover, RNA editing changes within the miRNA target sequences may prevent miRNA binding and therefore downregulation of the mRNA.

A-to-I RNA editing in the innate immune response

ADAR1 is present in the nucleus (ADAR1 p110) and cytoplasm (ADAR1 p150) and can edit endogenous RNA. ADAR1 is required to edit endogenous RNA to prevent the of the activation cytosolic recognition receptor MDA5 in the cytosol, leading to induction of the immune/interferon response. ADAR1 can also edit viral dsRNA and participate in the direct innate immune response as a interferon-stimulated gene (ADAR1 p150 isoform). The absence of ADAR1 or the absence of ADAR1-mediated editing leads to innapropriate activation of the MDA5–MAVS axis.

Walkley and Li 2017 Genome Biol

Recoding RNA editing in humans

RNA editing deregulation is associated to several human diseases including neurological disorders as major depression, schizophrenia, epilepsy, amyotrophic lateral sclerosis (ALS) and cancer.

Recoding RNA editing in humans

RNA editing target sites that show significant differential levels in NDC (non demended controls) and AD (Alzheimer samples). In Hippocampus, 21 editing target sites exhibiting differential levels of A-to-I RNA editing were detected in AD (red bars) and in NDC (blue bars). Twenty sites show hypoediting in AD and one site (COPA. Chr1:160302244) shows hyper-editing (n = 28 for AD, n = 20 in NDC)

RNA editing during neuronal differentiation

RNA Editing is differentially regulated during neuronal differentiation and maturation. Neuronal induction driving self-renewing stem cells into neural progenitor cells involves editing of the Q/R site in the mRNA encoding the excitatory AMPA-type glutamate receptor subunit, GluA2. This recoding editing event is rapidly increased in the early neuronal lineage. Selected editing substrates for important neurotransmitters are: the R/G site of GluA2, the I/M site of Gabra-3, and the A and B sites in the serotonin (5HT2C) receptor. Editing levels increase with different efficiencies from embryogenesis to adulthood.

RNA editing: experimental detection

RNA editing changes can be experimentally detected by comparing the genomic *locus* with the corresponding cDNA sequenced by classical Sanger methodology.

Li et al. 2009

Editing sites (indicated by black arrows) in the amyloid beta A4 precursor protein-binding (APBA1) gene in cerebellum.

RNA editing: bioinformatics

The detection of RNA editing in human by conventional techniques is not feasible for large-scale experiments. Therefore, many candidate events have been mainly identified by computational analyses, employing mRNA/EST alignments onto the genome of origin.

The impact of RNA editing on scientific community

Massive RNA sequencing can facilitate the study of entire transcriptomes as well as post-transcriptional events occurring herein as alternative splicing and RNA editing.

Few clones are sequenced by Sanger method and differences between the genome and the related cDNAs are scored as RNA editing sites
Each editing site is supported by a very restricted number of transcripts.

Using NGS, each genomic position can be supported by a large number of sequences and this can greatly improve the detection of RNA editing substitutions.

Published online 12 April 2010

Nucleic Acids Research, 2010, Vol. 38, No. 14 4755-4767 doi:10.1093/nar/gka202

Large-scale detection and analysis of RNA editing in grape mtDNA by RNA deep-sequencing

Ernesto Picardi¹, David S. Horner², Matteo Chiara², Riccardo Schiavon³, Giorgio Valle³ and Graziano Pesola^{1,4,*}

RNA editing detection by NGS data

Since Vitis, RNA-Seq data have been employed to identify RNA editing changes in human transcriptomes. However, recent methods have been mainly applied to cell lines like lymphoblastoid lines which are not the elective material for RNA editing investigations in human.

Sciencexpress

Research Article

Widespread RNA and DNA Sequence Differences in the Human Transcriptome

Mingyao Li, 1* Isabel X. Wang, 8* Yun Li, 6.7 Alan Bruzel, 8 Allison L. Richards, 4 Jonathan M. Toung, 5 Vivian G. Cheung 2,3.81

Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome

Zhiyu Peng^{1,5}, Yanbing Cheng^{1,5}, Bertrand Chin-Ming Tan^{2,5}, Lin Kang¹, Zhijian Tian¹, Yuankun Zhu¹, Wenwei Zhang¹, Yu Liang¹, Xueda Hu¹, Xuemei Tan¹, Jing Guo¹, Zirui Dong¹, Yan Liang¹, Li Bao¹ & Jun Wang^{1,3,4}

RNA editing of protein sequences: A rare event in human transcriptomes

Claudia L. Kleinman, Véronique Adoue and Jacek Majewski

RNA published online July 25, 2012
Access the most recent version at doi:10.1261/rna.033233.112

Accurate Identification of A-to-I RNA editing in human by transcriptome sequencing

Jae Hoon Bahn, Jae Hyung Lee, Gang Li, et al.

Genome Res. published online September 29, 2011 Access the most recent version at doi:10.1101/gr.124107.111 nature genetics

Extensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individuals

Young Seok Ju 1,2,9 , Jong-Il Kim $^{1,3-5,9}$, Sheehyun Kim 1,2,9 , Dongwan Hong 1,8 , Hansoo Park 1,6 , Jong-Yeon Shin 1,5 , Seungbok Lee 1,4 , Won-Chul Lee 1,4 , Sujung Kim 5 , Saet-Byeol Yu 5 , Sung-Soo Park 3 , Seung-Hyun Seo 5 , Ji-Young Yun 5 , Hyun-Jin Kim 1,4 , Dong-Sung Lee 1,4 , Maryam Yavartanoo 1,4 , Hyunseok Peter Kang 1 , Omer Gokcumen 6 , Diddahally R Govindaraju 6 , Jung Hee Jung 2 , Hyonyong Chong 2,7 , Kap-Seok Yang 2 , Hyungtae Kim 2 , Charles Lee 6 & Ieone-Sun Seo $^{1-5,7}$

Accurate identification of human *Alu* and non-*Alu* RNA editing sites

Gokul Ramaswami^{1,3}, Wei Lin^{2,3}, Robert Piskol^{1,3}, Meng How Tan¹, Carrie Davis² & Jin Billy Li¹

A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes

RNA-Seq: analysis workflow

Bioinformatics workflow to preprocess data.

Reliable RNA editing calls require good quality WGS and RNAseq reads. Raw reads in fastq format are quality checked using FASTQC and cleaned using FASTP. Then, reads are aligned to the reference genome using a splice-aware software like STAR. Aligned reads are converted into the standard BAM format for the downstream detection of RNA editing.

(WGS reads are mapped using BWA)

RNA-Seq: analysis workflow

To demonstrate the effects of pre-processing and genome alignment steps on RNA editing calling, we used a single GTEx RNAseq experiment from human cerebellum (run accession SRR607967). Two datasets were generated, the first containing original raw reads and the second including trimmed reads (by fastp). Both datasets were aligned onto the hg19 and hg38 reference genomes using three different aligners, BWA designed for unspliced reads and STAR and HISAT2 optimized for handling spliced reads. Resulting multi-alignments were processed with REDItools in order to provide the distribution of single RNA variants according to a common basic filtering scheme.

Lo Giudice et al. 2020

RNA-Seq: RNA editing detection

We can employ NGS data (RNA-Seq, genome resequencing and exome sequencing) to study RNA editing at different levels:

✓ genome/exome Vs RNA-Seq to identify new events (REDItools);

BIOINFORMATICS APPLICATIONS NOTE 2013, pages 1-2 doi:10.1093/bioinformatics/btt287

Sequence analysis Advance Access publication June 5, 2013

REDItools: high-throughput RNA editing detection made easy Ernesto Picardi^{1,2,*} and Graziano Pesole^{1,2,3,*}

✓ RNA-Seq to explore the presence of known A-to-I conversions;

Genome analysis

ExpEdit: a webserver to explore human RNA editing in RNA-Seq experiments

Ernesto Picardi¹, D'Antonio Mattia², Danilo Carrabino², Tiziana Castrignanò² and Graziano Pesole^{1,3,*}

✓ RNA-Seq to detect de novo new editing candidates:

A Novel Computational Strategy to Identify A-to-I RNA Editing Sites by RNA-Seq Data: De Novo Detection in Human Spinal Cord Tissue

Ernesto Picardi^{1,2}, Angela Gallo³, Federica Galeano³, Sara Tomaselli³, Graziano Pesole^{1,2,4}

1) Epartmento di Bioccienz, Bioteccologie e Science Farmacologiche, Univenità di Bat, Batri haly, 2 instituto di Biomembane e Bioenegotta, Consiglio Nazionale delle Riccetche, Batri haly, 2 instituto di Biomembane e Bioenegotta, Consiglio Nazionale delle Riccetche, Batri haly, 2 instituto di Biomembane e Bioenegotta, Consiglio Nazionale delle Riccetche, Batri haly, 2 instituto di Biomembane e Bioenegotta, Consiglio Nazionale delle Riccetche, Batri haly, 2 instituto di Biomembane e Bioenegotta, Consiglio Nazionale delle Riccetche, Batri haly, 2 instituto di Biomembane e Bioenegotta, Consiglio Nazionale delle Riccetche, Batri haly, 2 instituto di Biomembane e Bioenegotta, Consiglio Nazionale delle Riccetche, Batri haly, 2 instituto di Biomembane e Bioenegotta, Consiglio Nazionale delle Riccetche, Batri haly, 2 instituto di Biomembane e Bioenegotta, Consiglio Nazionale delle Riccetche, Batri halp and Consiglio Nazion

ſrí	L GGGTGCCTTTATGCAGCAAGGATGCGATATT			
r2	2 GGGTGTCTTTATGCAGCAAGGATGCGATACTTCGC			
Exome r3	GGGTGCCTTTATGCAGCAAGGATGCGATATTTCG			
r	4 GGGTGCCTTTATGCAGCAAGGATGCGATATTTCG			
r	GGGTGCCTTTATGCAGCAAGGATGCGATATTTCG			
•				
gDN	TGGGTGCCTTTATGCAGCAAGGATGCGATATTTCGCC			
r	L GGGTGCCTTTATGCGGCAAGGATGCGATATT			
r2	2 GGGTGTCTTTATGCAGCAAGGATGCGATACTTCGC			
RNA-Seq r	GGGTGCCTTTATGCGGCAAGGATGCGATATTTCG			
r	4 GGGTGCCTTTATGC <mark>G</mark> GCAAGGATGCGATATTTCG			
r	GGGTGCCTTTATGCGGCAAGGATGCGATATTTCG			

16 of 865 rows match filter(s)												
Location	Position	Reference base	Strand	Gene	Region	Nucleotide					▲ Editing	
						⇔ As	ф Сs	Ģ Gs	ф Тs	Coverage	extent	Source
	= <u>*</u>					= <u>v</u>	=			≥ ▼10	>0	
All 🔻	AND ▼	All▼	All▼		CDS 🕶	AND_	AND -	AND▼	AND▼	AND ▼	AND ▼	D •
chr1	6081149	Α	+	KCNAB2	CDS	0	0	31	0	31	1.000	D
chr4	158477325	A	+	GRIA2	CDS	0	0	11	0	11	1.000	D
chr5	150619602	A	+	GM2A	CDS	0	0	16	0	16	1.000	D
chr5	150619632	A	+	GM2A	CDS	0	0	12	0	12	1.000	D
chr11	62214851	A	-	BSCL2	CDS	0	0	20	0	20	1.000	D
chr16	57102927	Α	+	NDRG4	CDS	0	0	93	0	93	1.000	D
chr11	77468301	Α	-	NDUFC2	CDS	9	0	17	0	26	0.654	D

http://epigen.hpc.cineca.it/expedit/index.php

gDNA		AGCTGGCCAGATACATTAAGACCAGTGCTCACTATGAAG				
	r1	GCTGGCCAGATACATT <mark>G</mark> AGACCAGTGCTCAC				
	r2	GCTGGC CAGATA CATTAAGACC AGTGCT CAC				
	r3	CTGGC CAG ATA CATTGAGACC AGTGCT CAC TATGAAG				
RNA-Seq	r4	CTGGC CAGATA CATTGAGACC AGTGCT CACTATG				
-	r5	CTGGC CAGATA CATTAAGACC AGTGCT CACTATGAAG				
	r6	CTGGC CAGATA CATTAAGACC AGTGCT CACTATGAAG				
	r7	CTGGC CAG ATA CATTGGGACC AGTGCT CAC TATGAAG				
	r8	CTGGC CAG ATA CATTGAG ACC AGTGCT CACT				
	r9	CTGGC CAGATA CATT <mark>G</mark> AGACC AGTGCT CACTATGAAG				

REDItools

"REDItools" are a suite of python scripts to investigate RNA editing at large-scale employing RNA-Seq as well as DNA-Seq (WGS/WES) massive data.

Starting point is a BAM file of aligned reads onto the reference genome.

https://github.com/BioinfoUNIBA

Picardi and Pesole 2013 Bioinformatics

Workflow to call RNA editing by REDItools.


```
9327108
chr1
                        50
                             38.22
                                      [47, 0, 3, 0]
                                                   AG
                                                        0.06
                                                                    36.21
                                                                            [34, 0, 0, 0]
                                                                                            0.00
                     2
                                                               34
       9327117
                 A 2
                             38.67
                                      [46, 0, 2, 0]
                                                   AG
                                                        0.04
                                                                    36.56
                                                                            [36, 0, 0, 0]
                                                                                            0.00
chr1
                        48
                                                               36
                                                        0.02
                                                                                         - 0.00
       9327140
                 A 2
                        66
                             38.24
                                      [65, 0, 1, 0]
                                                   AG
                                                               31
                                                                    37.29
                                                                            [31, 0, 0, 0]
chr1
       9327141
                A 2
                             38.20
                                                  AG
                                                        0.02
                                                                    36.30
                                                                                            0.00
chr1
                        64
                                     [63, 0, 1, 0]
                                                               30
                                                                            [30, 0, 0, 0]
                 A 2
                                                   AG
                                                        0.12
                                                                                            0.00
chr1
       9328027
                        33
                             37.79
                                      [29, 0, 4, 0]
                                                               18
                                                                    37.89
                                                                            [18, 0, 0, 0]
       9328047
                 A 2 42
                             38.55
                                      [35, 0, 7, 0]
                                                   AG
                                                        0.17
                                                               17
                                                                    39.53
                                                                            [17, 0, 0, 0]
                                                                                            0.00
chr1
chr1
       9328052
                 A 2
                        43
                             38.74
                                     [42, 0, 1, 0]
                                                   AG 0.02
                                                              17
                                                                    38.71
                                                                            [17, 0, 0, 0]
                                                                                         - 0.00
```

REDItools traverse RNAseq (and WGS) multiple read alignments position by position looking at RNA mismatches (supported by WGS reads without SNP evidence). Several filters are applied to each position, and resulting variants are outputted in tab-delimited tables.

Effect of filters

Filters can directly affect the number and quality of RNA variants.

Distributions of RNA variants detected by REDItools obtained following the different filtering steps: (A) all mismatches found following mapping, with a phred quality score of at least 30; (B) selecting only sites supported by at least 10 WGS reads and removing positions in dbSNP; (C) selecting sites covered by at least 10 reads and not falling in homopolymeric stretches longer than five residues or in the first and last six bases of a read; (D) selecting sites with an editing frequency of at least 0.1; (E) excluding sites in mis-mapped reads (by Blat correction) or near splice sites or in genomic regions containing poorly aligned reads.

RNA editing in human

To profile RNA editing in human tissues we sequenced total RNA from 6 tissues in 3 Caucasian and "non diseased" Individuals (sex and age matched) using the Illumina HiSeq2500 platform.

Paired end RNA-Seq reads (2x100) were generated according to the strand-oriented Illumina TruSeq kit. In addition, we produced WES and WGS (20x) reads from the same samples.

ID	TISSUE	READ PAIRS	PERCENT_DUPLICA TION	PCT_RIBOSOMAL_ BASES	PCT_MRNA_BASES	PCT_CORREC T_STRAND_RE ADS
11	brain	73375354	45,48	0,000002	0,792654	0,9932
6	brain	109695738	15,93	0,000004	0,62469	0,990539
7	brain	98295466	26,26	0,000003	0,668658	0,988722
16	heart	87631200	25,4	0,000008	0,781802	0,994023
17	heart	74406800	23,62	0,000017	0,644371	0,993492
18	heart	88158897	23,88	0,000008	0,657386	0,992265
3	kidney	77064350	30,23	0,000003	0,761645	0,992948
4	kidney	87149042	19,93	0,000004	0,715985	0,992623
5	kidney	76433530	36,18	0,000002	0,731433	0,992698
1	liver	78455550	58,55	0,000001	0,890288	0,997211
10	liver	74220297	48,53	0,000004	0,646801	0,993038
2	liver	81843515	43,15	0,000002	0,746217	0,995784
12	lung	72506728	37,8	0,000004	0,622289	0,991793
8	lung	74192504	40,93	0,000004	0,750165	0,995195
9	lung	75368198	39,53	0,000003	0,73011	0,994374
13	muscle	80371298	49,57	0,000002	0,910309	0,994056
14	muscle	88521121	39,78	0,000006	0,877469	0,995332
15	muscle	105596745	43,19	0,000006	0,944626	0,995823

RNA editing in human

Most of the detected RNA editing events were A-to-G (>97%). Potential non canonical events were rare and showed frequency values less than 0.05. in addition, the fraction of A-to-G changes in non-synonymous sites was notably high.

The Human Inosinome

We investigated the inosinome similarity across human tissues. Cluster analysis based on pairwise comparison of RNA editing levels per sample by the Spearman correlation coefficient, showed well-defined tissue segregation.

Is the human inosinome complete? RNA editing in GTEx samples

Using REDItools2 we have profiled RNA editing in **9643** GTEx samples (v7). Of these **8523** were supported by WGS data.

We discovered **9,892,506** of editing sites. Of these **2,211,105** are known while **7,681,401** are novel **(4,560,571** present in at least 2 independent samples).

REDIportal: The Human Inosinome

http://srv00.recas.ba.infn.it/atlas/

REDIportal is a specialized database for A-to-I RNA editing. In its second release, comprising about **16 M** events, editing sites have been detected using REDItools and a method to identify hyper-edited reads by Porath et al (2014) Nat. Comm.

C CLEAN

Q SEARCH

O EXAMPLE

Is RNA editing cell type specific?

We have profiled RNA editing in **466** single cells of human brain cortex from **living individuals**, in which a transcriptomic analysis was already been completed (Darmanis et al. PNAS 2015). To provide a more realistic estimate of global editing activity per cell, we calculated the Alu editing index (**AEI**) per cell as it represents the weighted average editing level across all expressed Alu sequences. To confirm cell specificity of RNA editing, we performed a non-metric multidimensional scaling (nMDS) analysis, revealing four clusters corresponding to astrocytes, neurons, oligodendrocytes and OPCs.

Picardi et al. RNA 2017

RNA Editing Agenda:

15.30-16.30 Detection of rare C-to U RNA editing events – Adriano Fonzino

16.30-17.00 Coffee Break

17.00-18.00 RNA editing detection by REDItools – Alessandro Silvestris

Day 3: Friday 13th September

9.00-9.30 Using REDItools and REDIportal to profile RNA editing - Alessandro Silvestris

9.30-11.00 De novo detection of RNA editing sites by RNAseq data - Silvestris/Fonzino

11.00-11.30 *Coffee break*

11.30-13.00 Profiling known RNA editing events in RNAseq experiments - Silvestris/Fonzino