PO12Q: Introduction to Quantitative Political Analysis II Case Study, Exam Preparation

Dr Florian Linke

Florian.Linke@warwick.ac.uk

1 | The Case Study

1.1 Codebook

Variable	Label	Year
ward	Ward name	n/a
inner	Binary classification of whether the ward is inner or outer London (based on ONS classification)	n/a
area	Land area (km²)	n/a
population	Population	2015
children	Number of people aged 0-15	2015
adults	Number of people aged 16-64	2015
elderly	Number of people aged 65+	2015
age	Mean age of population	2013
education	Percentage of population with level 4 qualifications and above	2011
crime	Crimes committed per 1,000 residents	2015
crime_bin	Crime Dummy (0: Low Crime, 1:High Crime)	2015
employed	Number of people aged 16-64 in employment	2015
benefits	Percentage of population claiming work-related benefits	2011
migration	Net rate of worker-aged migration	2012
income	Median household income (GBP)	2013
houseprice	Median house price (GBP)	2014
cars	Average number of cars per household	2011
turnout	Turnout at the 2012 mayoral election (%)	2012

Table 1: Codebook for london_exercises Data Set

The data are taken from London Data Store (2013).

1.2 Regression

	Dependent Variable: Turnout					
	(1)	(2)	(3)	(4)	(5)	
Average Age	0.740***		0.389***		0.324***	
	(0.063)		(0.067)		(0.072)	
Household Income		0.000***	0.000***		0.000***	
		(0.000)	(0.000)		(0.000)	
Crime Level (High)				-1.902***	-1.010*	
				(0.455)	(0.413)	
Intercept	7.555***	19.551***	8.689***	34.760***	10.905***	
	(2.284)	(0.986)	(2.107)	(0.256)	(2.286)	
Num.Obs.	625	625	625	625	625	
R2	0.180	0.267	0.305	0.027	0.311	
R2 Adj.	0.179	0.266	0.303	0.026	0.308	

⁺ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

Table 2: Regression Models

1.3 Two-Sample Test

```
Two Sample t-test

data: turnout by crime_bin

t = CCC , df = 623, p-value = 1.669e-05

alternative hypothesis: true difference in means between group

Low Crime and group High Crime is greater than o

95 percent confidence interval:

1.15259    Inf

sample estimates:

mean in group Low Crime mean in group High Crime

AAA BBB
```

2 | Questions

2.1 About Regression (Section 1.2)

- 1. Hypotheses
 - a. Formulate the alternative hypotheses underpinning Models 1, 2, and 4.
- 2. Significance
 - a. Which coefficients in Models 1-6 are statistically significant at a 95% confidence level? What does this mean?
 - b. What is the t-value for the slope coefficient in Model 2?
 - c. How many degrees of freedom does Model 4 have? Why?
 - d. How many degrees of freedom does Model 5 have? Why?
- 3. The Coefficients
 - a. What does the intercept in Model 2 mean?
 - b. Interpret the slope coefficient of Model 1.
 - c. Interpret the intercept in Model 4.
 - d. Interpret the slope coefficient in Model 4.
 - e. Interpret the slope coefficient for Household Income in Model 3.
 - f. Which models can explain a turnout of less than 15%?
 - g. How would you find out if we need to explain a turnout of less than 15%?
 - h. Why is the slope coefficient in Model 2 much smaller than in Model 1?
 - i. Why is the intercept in Model 4 so much larger than in Models 1-3?
- 4. Why have I asked you questions about significance first, and then about substantive interpretation of the coefficients? (no, I didn't just feel like it)
- 5. The Sample Regression Function
 - a. Specify the sample regression function (SRF) for Model 5.
- 6. Model Fit
 - a. Which Model has the best overall model fit?
 - b. Interpret the model fit measure for Model 3.
 - c. Describe the role of \bar{Y} in the coefficient of determination.
- 7. Model Specification
 - a. Which assumption of the CLM would you likely violate if you estimated the following: model6 <- lm(turnout ~ income + houseprice + age, data=london)?</p>

2.2 About the Two-Sample Test (Section 1.3)

- 1. What is the correct numerical value for AAA?
- 2. What is the correct numerical value for BBB?
- 3. What is the correct numerical value for CCC?

List of References

London Data Store. (2013). Ward Profiles and Atlas. https://data.london.gov.uk/dataset/ward-profiles-and-atlas