FedAdapt: A Production-Ready Adaptive Federated Learning Framework

Ayush Sharma
Department of Computer Science, University of Illinois Urbana–Champaign,
Urbana, IL 61801, USA
Email: ayushs5@illinois.edu

I. BACKGROUND AND MOTIVATION

Federated Learning (FL) enables a central server to train a global model across a large number of distributed clients without ever collecting their raw data. A typical FL round consists of

- Client selection, where the server samples a subset of devices:
- Broadcast, in which the current global model and training hyper-parameters are sent to each selected client;
- 3) **Local compute**, where each client performs one or more epochs of SGD on its private data;
- 4) Upload, in which clients send model updates back; and
- 5) **Aggregation**, where the server combines these updates (e.g., via weighted averaging) to form a new global model.

This cycle repeats until convergence or resource budgets—communication, computation, or energy—are exhausted.

Despite its promise for privacy and data-locality, FL faces three intertwined heterogeneity challenges that undermine both convergence speed and final model quality.

- 1) Statistical heterogeneity: Clients collect data under wildly different distributions (e.g., user-specific behaviors, device usage), leading to non-IID local objective functions that slow convergence and can bias the global model toward dominant shards of data.
- 2) System heterogeneity: Real devices vary in CPU/GPU speed, network bandwidth, and on-device availability (e.g., only charging devices can participate). This creates long "straggler" tails and wasted epochs if all clients must synchronize each round.
- 3) Privacy & security: FL must defend against malicious updates, backdoor attacks, and information leakage (e.g., via gradient inversion), often at the cost of additional computation or noise injections that further slow learning.

A great deal of prior work attacks these challenges along three "efficiency" axes:

- a) System efficiency:
- *Local-SGD (FedAvg)*: reduce communication rounds by doing multiple local steps before each aggregation.
- Compression & sparsification: quantize or send only topk gradients to cut bandwidth.
- Lightweight model design: favor smaller architectures (e.g., MobileNet, ShuffleNet) for on-device speed.

- b) Statistical efficiency:
- Proximal and control-variates (FedProx, Scaffold, FedYoGi): add regularizers or variance corrections to mitigate client drift on non-IID splits.
- Client clustering & personalization: group similar clients or train mixtures of local and global models to capture per-user quirks.
 - c) Privacy & security:
- Differential privacy (DP-SGD, tree aggregation): add calibrated noise to updates.
- Secure/Byzantine-robust aggregation: cryptographically verify or robustly combine updates to defend against malicious clients.

While these methods have advanced FL dramatically, they share three key blind spots:

- One-size-fits-all. Most FL algorithms choose a single local-step count or compression rate for all clients, ignoring that a high-powered GPU can afford ten local steps while a low-end phone might struggle with just one.
- Lack of dynamic personalization. Even personalized FL approaches typically train separate local models after global training, rather than jointly blending local vs. global knowledge on the fly.
- Poor observability. Practitioners lack end-to-end dashboards that surface per-round convergence, straggler behavior, compression trade-offs, and personalization metrics in real time, slowing down algorithmic debugging and deployment.

In this paper we address these gaps with three scalable, production-ready building blocks:

- Self-Adaptive Personalization. Each client maintains both a local and global model, and dynamically adjusts a mixing weight α each round based on which model is outperforming the other on held-out data.
- Heterogeneity-Aware Co-Optimization. We automatically pick each client's local-step count and compression ratio by solving a tiny per-client grid search that minimizes its estimated compute + communication time.
- Live Dashboard. A real-time, web-based UI visualizes per-round metrics: global accuracy, local vs. global accuracy per client, α trajectories, straggler durations, and bandwidth savings—giving both researchers and operators immediate insight into the FL process.

1

II. FEDADAPT: SYSTEM DESIGN AND ARCHITECTURE

FedAdapt is an end-to-end federated learning platform that transparently combines self-adaptive personalization, device-aware co-optimization, and live metric streaming. Figure $\ref{fig:self:eq:condition}$ depicts the high-level workflow—from experiment launch to live dashboard—highlighting how FedAdapt extends the classical FL protocol with two novel control loops (α -mixing and per-client (k,c) tuning) and a real-time monitoring layer.

A. High-Level Workflow

- a) Experiment Initialization.: A user submits a configuration (dataset split, model, α -mix hyperparameters, local-step/compression grid bounds) via the REST or CLI interface.
- b) Server-Client Orchestration.: The Aggregator (server) and multiple Executor processes (clients) establish gRPC channels. Each round follows the standard FL loop—client selection, global model broadcast, local training, update upload, aggregation—augmented by:
 - Adaptive Personalization: each client blends local vs. global weights before training.
 - *Co-Optimization*: the aggregator computes an optimal (local_steps, compression) pair per client.
- c) Live Monitoring.: At each protocol step—broadcast, upload, completion—hooks emit round- and client-level metrics (loss, α , latency, bandwidth) to the Dashboard API. A web UI consumes these via WebSockets/SSE and renders interactive charts.

B. Adaptive Personalization Engine

FedAdapt equips each client with two models—the previous global weights $w^{(g)}$ and its locally updated weights $w^{(\ell)}$. Prior to each local-training step, the executor computes:

$$w^{\text{(mix)}} = \alpha w^{(\ell)} + (1 - \alpha) w^{(g)}.$$

Here, $\alpha \in [0, 1]$ is updated after evaluating both $w^{(\ell)}$ and $w^{(g)}$ on the client's hold-out set:

where threshold τ and step size Δ are tunable hyperparameters (Section 5.4). Integration is seamless—FedAdapt's Executor overrides the standard train() hook to first evaluate, update α , mix weights, and then proceed with local SGD on $w^{(\text{mix})}$.

C. Heterogeneity-Aware Co-Optimizer

The Aggregator maintains per-client profiles $\{t_{\mathrm{comp},i},\,t_{\mathrm{comm},i}\}$. At the end of each round, it solves a grid search over

$$\{k\} \times \{c\} = \{1, \dots, K_{\text{max}}\} \times \{c_1, \dots, c_M\}$$

to minimize

$$T_i(k,c) = k t_{\text{comp},i} + c B t_{\text{comm},i},$$

where B is the model-update bit-size. The optimal (k_i^*,c_i^*) is pushed to clients for the next round, ensuring fast devices do more work and slow ones compress more.

D. Live Monitoring Dashboard

FedAdapt's dashboard collects metrics via gRPC methods (GetAggregatorStatus, GetRoundMetrics) and exposes:

- Experiment Control: start/stop, parameter overrides
- Status Endpoint: current round, virtual clock, sampled clients
- Round Metrics: global loss, accuracy, per-client loss/utility/duration, α values, compression ratios
- Server-Sent Events: streaming updates to the front-end

On the front end (React + D3.js), users see panels for global convergence, α -trajectories, straggler profiles, and bandwidth savings.

E. Implementation Details

- Languages & Frameworks: Python 3.8+, PyTorch/TensorFlow; gRPC (proto3); FastAPI/uvicorn; React/D3.js.
- Simulation vs. Real-Device Modes: CLI flag toggles between in-memory simulation and real-device deployment.
- Configuration & Reproducibility: All hyperparameters in a single YAML/JSON; logs via TensorBoard & W&B.

III. EXPERIMENTS & EVALUATION

In this section we quantify the benefits of each FedAdapt component—self-adaptive personalization, α -tuning ablation, and heterogeneity-aware co-optimization—against strong FL baselines on a highly non-IID CIFAR-10 split and realistic device profiles.

A. Experimental Setup

- Dataset & Partitioning. CIFAR-10 (50 k train, 10 k test) split across 100 simulated clients via a Dirichlet process (α = 0.5). A JSON mapping assigns each client a skewed subset of classes.
- Simulation Profiles. Compute speed ~Uniform[0.5 s, 2.5 s] per local step; communication ~Uniform[0.05 s/kbit, 0.30 s/kbit]. Model update size ≈ 512 kbit.
- Algorithms & Variants.
 - Baselines:
 - 1) FedAvg (local_steps=1, no compression)
 - 2) FedProx ($\mu = 0.1$ proximal penalty)
 - 3) FedYoGi (server-side Yogi optimizer)
 - FedAdapt Variants:
 - 1) Self-Adaptive only (α -mixing)
 - 2) Co-Optimization only (per-client (k, c) tuning)
 - 3) Full FedAdapt (both engines + dashboard)
- Training Hyperparameters. 200 global rounds; local steps=1; batch size=32; LR=0.05; seed=42; eval every 10 rounds; synthetic noise $\sigma \approx 0.01$; results over 3 seeds.

TABLE I
GLOBAL CONVERGENCE RESULTS ON NON-IID CIFAR-10.

Algorithm	Rounds→70%	Final @200 (%)
FedAvg	— (¿200)	69.08
FedProx	177	70.14
FedYoGi	153	69.57
Self-Adaptive	137	71.14

Fig. 1. Global accuracy vs. communication round for all four algorithms on the non-IID CIFAR-10 split.

B. Evaluation Metrics

• Statistical Efficiency:

- Rounds→70%: rounds to first reach ≥70% global test accuracy
- Final Accuracy @200

• System Efficiency:

- Wall-clock convergence: cumulative virtual time to target
- Per-round latency: mean and 95th-percentile client durations

Personalization:

- α -trajectory: mixing weights over rounds
- Stability: average $\sigma(\alpha)$ over rounds 50–200

• Bandwidth:

- Bytes transmitted under co-opt vs. baseline

C. Self-Adaptive Personalization

1) Experiment 1: Global Convergence on Non-IID CIFAR-10: **Objective:** Compare FedAvg, FedProx, FedYoGi, and Self-Adaptive on statistical efficiency and final quality.

All methods rise to \sim 60% by round 60. In mid-training (75–150), injected noise causes dips; Self-Adaptive remains most robust and leads at 71.14%.

- 2) Experiment 2: Rounds to 70% Accuracy: Using the same accuracy curves, we extract the first round reaching \geq 70%. See Fig. 2.
- 3) Experiment 3: Final Accuracy Comparison: At round 200, Self-Adaptive outperforms baselines by 0.7–2.1 pp, confirming lasting gains. See Fig. 3.

Fig. 2. Rounds to reach 70% top-1 accuracy for each algorithm.

Fig. 3. Final top-1 accuracy at round 200 for each algorithm on non-IID CIFAR-10.

D. α -Tuning Ablation

- 1) Experiment 4: Convergence Heatmap over (τ, Δ) Grid: Sweep $\tau \in \{0.01, 0.02, 0.05\}$ and $\Delta \in \{0.05, 0.10, 0.20\}$ for rounds \to 70%. Sweet spot at (0.01-0.02, 0.05-0.10) with 155–166 rounds. Fig. 4 shows the heatmap.
- 2) Experiment 5: Final Accuracy @200 for (τ, Δ) Variants: The best-performing cell (0.02, 0.10) also yields peak final accuracy. Fig. 5 visualizes it.
- 3) Experiment 6: α -Trajectory Stability: Fix $\tau=0.02$, vary $\Delta\in\{0.05,0.10,0.20\}$. Table V shows stability; Fig. 6 plots mean α over 100 clients.

E. Heterogeneity-Aware Co-Optimization

- 1) Experiment 7: Per-Round (k,c) Assignment: Fast devices choose (k=5,c=1.0); slow/bandwidth-poor choose (1,0.25); balanced mix elsewhere. See Fig. ??.
- 2) Experiment 8: Wall-Clock Convergence under Co-Optimization: The co-optimized run is 29% faster to 70%

Fig. 4. Rounds to reach 70% accuracy across (τ, Δ) grid. Darker = fewer rounds.

TABLE II Final accuracy @200 for (au, Δ) variants.

$\tau \backslash \Delta$	0.05	0.10	0.20
0.01	71.5%	71.9%	71.2%
0.02	71.0%	72.1%	70.5%
0.05	69.0%	69.5%	69.2%

and +2 pp higher final accuracy. Fig. 7 shows global accuracy vs. wall-clock time.

- 3) Experiment 9: GPU-Style Profile Co-Opt: Under GPU-like heterogeneity, we target 60% over 100 rounds:
 - Time \rightarrow 60%: Baseline 62.9 ± 0.9 min vs. Co-Opt 48.6 ± 0.4 min ($\sim23\%$ speedup)
 - Final plateau: Co-Opt 82% vs. Baseline 80%

Fig. 8 plots accuracy vs. time.

F. Discussion

- 1) **Self-Adaptive Personalization** reduces rounds→70% from 153–177 to 137 and yields +1–2 pp final accuracy over strong FL baselines.
- 2) α -Tuning ablations justify our default ($\tau=0.02, \Delta=0.10$) as both fast and stable.
- 3) **Co-Optimization** delivers 25–30% wall-clock reduction to target and up to +2 pp accuracy under heterogeneous device profiles.

Together, these results validate FedAdapt's design for practical, heterogeneous federated learning deployments.

REFERENCES

Fig. 5. Final accuracy @200 across (τ, Δ) grid.

TABLE III STABILITY (σ of α) for (τ, Δ) variants.

$\tau \Delta$	0.05	0.10	0.20
0.01	0.10	0.14	0.21
0.02	0.06	0.08	0.13
0.05	0.02	0.03	0.05

Fig. 6. Mean α trajectory (over 100 clients) for different step sizes at $\tau = 0.02$

TABLE IV
CLIENT PROFILES SUMMARY IN HETEROGENEITY-AWARE
CO-OPTIMIZATION

	comp_time_per_step_s	comm_time_per_kbit_s
count	100.000000	100.000000
mean	1.440361	0.174458
std	0.594979	0.073278
min	0.511044	0.051738
25%	0.886402	0.110501
50%	1.428285	0.176406
75%	1.960406	0.241546
max	2.473774	0.296413

Policy	Time→70% (min)	Final @200 (%)
Baseline	~730	85.0
Co-Opt	~520	87.0

Fig. 7. Global accuracy vs. cumulative wall-clock time under baseline vs. co-optimization.

Fig. 8. Global accuracy vs. wall-clock time under GPU-like profiles (target 60%).