## SIBS 2022 Group D



Carson Slater, Ryan Colburn and Owen Wagner

July 21, 2022

### Research Question

Which types of clinical interventions are most associated with recurrence of MI?

#### Overview

- Background & Significance
- Methods
- Model
- Clinical Significance
- Limitations & Future Directions

#### The Problem

- Coronary heart disease is leading cause of death in US
- 7.2% of adults in US have coronary heart disease
- 1 in 5 people have MI recurrence within 5 years (AHA)

#### Pain Medications

 Non-aspirin pain medications can lead to heart attacks

FDA Drug Safety Communication: FDA strengthens warning that non-aspirin nonsteroidal anti-inflammatory drugs (NSAIDs) can cause heart attacks or strokes



Opioid Use



JACC State-of-the-Art Review

Mori J. Krantz, MD, 12 Robert B. Palmer, PuD, Mark C.P. Haigney, MD

#### **Blood Thinners**

 Anti-clotting medications may be effective at reducing MI recurrence



## Significance

Empower providers with more information about risks and benefits associated with MI and pain treatments.



#### The Data

- Collected at Krasnoyarsk Interdistrict Clinical Hospital № 20 from 1992-1995.
- 1700 Total Patients in the Data
- 111 Covariates.
- 12 Complications.
- 12 Continuous Variables.
- 21 Categorical Variables.
- 78 Binary Variables.



Actual Hospital in Russia









## Data Wrangling

A Key Problem: Missing Data

## Data Wrangling

- Four covariates with more than 50% of the data missing. (Removed)
- Turned select categorical variables into binary variables using thresholds.
- Remaining categorical variables turned into dummy variables.
- Employed Multiple Imputation with Chained Equations (MICE) to impute missing data.
  - $\rightarrow$  Assumes data is missing at random (MAR).
  - → Robust method that imputes missing data in a dataset through an iterative series of predictive models.
  - ightarrow Iterations should be run until it appears that convergence has been met.
  - $\rightarrow$  Computationally expensive.

#### Model Selection

- Model Type: Logistic regression with relapse of MI as the outcome.
  - $\rightarrow$  Step-wise Selection
  - → Started with an empty model and full model in stats::step()
  - $\rightarrow$  Only kept covariates that were significant ( $\alpha = 0.05$ )

#### Model Selection

#### Start

111 Covariates

#### Pre ICU

88 Covariates

#### After step-wise selection

24 Covariates

#### After test for significance

9 Covariates

### Baseline Model

| Variable                             | Coefficient | P-Value |
|--------------------------------------|-------------|---------|
| Pain Relapse                         | 1.066       | 0.000   |
| No angina pectoris                   | -0.626      | 0.002   |
| Increased Sodium                     | 1.346       | 0.001   |
| Age                                  | 0.021       | 0.007   |
| Incomplete RBBB                      | 1.406       | 0.002   |
| Ventricular tachycardia at admission | 1.932       | 0.01    |
| Lidocaine EMT                        | -0.594      | 0.002   |
| Opioids EMT                          | 0.460       | 0.015   |
| White Blood Cell                     | 0.047       | 0.041   |

### Histogram of Predicted Probabilities



Model Weakness: Hesitant to predict high probabilities of the outcome (low discriminatory capabilities).





| Decile Group | Observed Event Rate | Predicted Mean Probabilities |
|--------------|---------------------|------------------------------|
| 1            | 0.0588              | 0.0261                       |
| 2            | 0.0235              | 0.0373                       |
| 3            | 0.0235              | 0.0478                       |
| 4            | 0.0529              | 0.0587                       |
| 5            | 0.0824              | 0.0693                       |
| 6            | 0.0529              | 0.0799                       |
| 7            | 0.0706              | 0.0932                       |
| 8            | 0.1529              | 0.1124                       |
| 9            | 0.1471              | 0.1445                       |
| _10          | 0.2706              | 0.2661                       |

Our model is able to remain close to observed mean probabilities within each decile.

#### **Calibration Plot**



### Treatments

Tested all treatments preformed in the ICU

| Treatment              | Coefficient Estimate | P-Value |
|------------------------|----------------------|---------|
| Fibrinolytic Therapy 1 | 0.160                | 0.838   |
| Fibrinolytic Therapy 2 | -0.436               | 0.415   |
| Fibrinolytic Therapy 3 | -12.95               | 0.985   |
| Fibrinolytic Therapy 4 | -0.136               | 0.916   |
| Fibrinolytic Therapy 5 | 1.049                | 0.347   |
| Fibrinolytic Therapy 6 | -13.628              | 0.988   |
| Liquid Nitrate         | 0.213                | 0.387   |
| Opioid Day 1           | 0.221                | 0.236   |
| Opioid Day 2           | 0.321                | 0.268   |
| Opioid Day 3           | -0.029               | 0.939   |
| NSAIDs Day 1           | 0.095                | 0.628   |
| NSAIDs Day 2           | 0.206                | 0.467   |
| NSAIDs Day 3           | -0.173               | 0.630   |
| Lidocaine              | -0.186               | 0.369   |
| Beta-Blockers          | 0.162                | 0.552   |
| Calcium-Blockers       | -0.177               | 0.342   |
| Anticoagulants         | 0.501                | 0.026   |
| Acetylsalicylic Acid   | 0.226                | 0.317   |
| Ticlid                 | 0.763                | 0.209   |
| Trental                | -0.366               | 0.138   |

### Pain Treatments

| Treatment    | Coefficient Estimate | P-Value | Odds Ratio |
|--------------|----------------------|---------|------------|
| Opioid Day 1 | 0.221                | 0.236   | 1.247      |
| Opioid Day 2 | 0.321                | 0.268   | 1.379      |
| Opioid Day 3 | -0.029               | 0.939   | 0.971      |
| NSAIDs Day 1 | 0.095                | 0.628   | 1.099      |
| NSAIDs Day 2 | 0.206                | 0.467   | 1.229      |
| NSAIDs Day 3 | -0.173               | 0.630   | 0.841      |
| Lidocaine    | -0.186               | 0.369   | 0.83       |

#### Discussion

- No pain medications were predictive of MI relapse
- Inconsistent with longer term studies in literature
- Could be explained by short term use in the hospital

## Anticoagulants Treatments

| Treatment      | Odds Ratio | P-Value | Confidence Interval |
|----------------|------------|---------|---------------------|
| Anticoagulants | 1.65       | 0.026   | (0.99, 2.72)        |

The anticoagulant group are 1.65 more likely of a relapse in MI.

#### Discussion

- Heparin significantly raised risk of MI relapse
- Not intuitive
- Other blood thinners were not significant

#### Weaknesses and Limitations

- Sample is not representative of current US population.
  - $\rightarrow$  Data collected over two decades ago.
  - → Different culture facilitates different environmental conditions from 21<sup>st</sup> century USA.
  - $\rightarrow$  Difficult to generalize findings.
- Computational limitations may have resulted in a biased imputation (via MICE).
- Model possesses low discriminatory capacity.

#### Future Directions

- Further investigate anticoagulants
- Replicate study with US sample
- Evaluate risk of long-term prescription medications

# Questions

