实验二 寄存器堆与存储器 及其应用

2022春季

zjx@ustc.edu.cn

实验目标

- 掌握寄存器堆(Register File)和存储器的功能 、时序及其应用
- 熟练掌握数据通路和控制器的设计和描述方法

实验内容

1. 寄存器堆 (Register File)

- ra0, rd0: 异步读端口0
- ra1, rd1: 异步读端口1
- wa, wd, we: 同步写端口
- clk: 时钟

2. 双端口RAM存储器

- a: 1端口读/写地址
- d: 1端口写入数据
- we: 1端口写使能
- spo: 1端口输出数据
- dpra: 2端口读地址
- dpo: 2端口输出数据
- clk: 时钟

实验内容 (续)

- 3. 数据排序:实现数据输入、存储、查看、修改和排序等
 - 256个16位二进制无符号数
 - x: 输入1位十六进制数字
 - del: 删除1位十六进制数字
 - addr: 设置地址
 - data: 修改数据
 - chk: 查看下一项
 - run: 启动排序
 - an, seg: 数码管显示
 - busy: 正在排序中
 - cnt: 排序耗费时钟周期数

寄存器堆模块

```
module register file #(
  parameter AW = 5,
                               //地址宽度
                                                          RF
                                                    ra0
  parameter DW = 32
                               //数据宽度
                                                    ra1
                                                         rd0
                                                    wa
                               //时钟
  input clk,
                                                    wd
                                                          rd1
                               //读地址
  input [AW-1:0] ra0, ra1,
                                                    we
                               //读数据
  output [DW-1:0] rd0, rd1,
                                                    clk
  input [AW-1:0] wa,
                               //写地址
                               //写数据
  input [DW-1:0] wd,
                               //写使能
  input we
reg [DW-1:0] rf [0: (1<<AW)-1];
                              //寄存器堆
                              //读操作
assign rd0 = rf[ra0], rd1 = rf[ra1];
always @(posedeg clk)
  if (we) rf[wa] <= wd;
                               //写操作
endmodule
```

存储器IP核

- · Vivado中有存储器IP核可以直接使用
- 两种IP类型:分布式(Distributed)、块式(Block)存储器
- 定制化方式: ROM/RAM、单端口/简单双端口/真正双端口等

存储器IP核例化

- Flow Navigator >> Project Manager >> IP Catalog
 - Memories & Storage Elements >> RAMs & ROMs >> Distributed
 Memory Generator
 - 或者 Basic Elements >> Memory Elements >> Distributed Memory Generator
 - Memory config >> Memory Type: Single Port RAM
 - RST & Initialization >> Load COE File

同步写端口: a (地址), d (数据), we (写使能), clk 异步读端口: a (地址), spo (数据) — a[4:0] — d[15:0] — clk — we

存储器IP核例化 (续)

 Project Manager – display >> Sources >> IP Sources

COE文件格式

• An example COE file:

```
; Sample Initialization file for a 32x16 distributed ROM memory_initialization_radix = 16; memory_initialization_vector = 23f4 0721 11ff ABe1 0001 1 0A 0 逗号或空格分隔每项 23f4 0721 11ff ABe1 0001 1 0A 0 数据(不允许为负数) 23f4 721 11ff ABe1 0001 1 A 0 23f4 721 11ff ABe1 0001 1 A 0;
```


memory config Port config RST & Initialization	
Input Options	_
Input Options	-
● Non Registered ○ Registered	
O HOIL REGISTERED O REGISTERED	
Input Clock Enable Qualify WE with I_CE	
Dual Port Address	
Dual Port Address	1
Non Registered Registered	
Output Options	=
Output Options	-
● Non Registered ○ Registered ○ Both	
	-
Common Output CLK Single Port Output CE	
Common Output CE Dual Port Output CE	
	=
Pipelining Options	

Load COE File The initial memory content can be set by using a COE file. This will be passed to the core as a Memory Initialisation File (MIF). Coefficients File no_coe_file_loaded COE Options Default Data: 0 Radix: 16 Reset Options Reset QSPO Reset QDPO Synchronous Reset QSPO Synchronous Reset QDPO ce overrides © CE Overrides Sync Controls Sync Controls Overrides CE	memory config	Port config RST & Initialization
Default Data : 0 Radix : 16 Reset Options Reset QSPO Reset QDPO Synchronous Reset QSPO Synchronous Reset QDPO ce overrides	The initial memors Initial	tialisation File (MIF).
Reset QSPO Reset QDPO Synchronous Reset QSPO Synchronous Reset QDPO ce overrides	_	Radix: 16 *
Synchronous Reset QSPO Synchronous Reset QDPO	Reset Options	
ce overrides	Reset QSPO	Reset QDPO
	12000 7400 1200 1200 1200	Reset QSPO Synchronous Reset QDPO
		des Sync Controls Overrides CE

	t A Options	Other Options Summary
Memory Size	20	
Write Width	16	Range: 1 to 4608 (bits)
Read Width	16	
Write Depth	32	Range: 2 to 9011200
Read Depth	32	
Port A Option	Write First nal Output Regis	
SoftECC	Input Register	REGCEA Pin
Port A Output	t Reset Options	
RSTA Pin	(set/reset pin	n) Output Reset Value (Hex) 0

Los	d Init File				
Coe Fil	e no_coe_file_l	oaded	8	Browse	Edit
□ . :1	1 n ' ' w				
L Fil	l Remaining Memo	ry Locatio	ons	- 4	
	ng Memory Locati	ons (Hex)	0	70	
Remaini					
	al/UniSim Simul	ation Mode	1 Options		
Structu		nings and	outputs a		d when a

存储器时序

Read First Mode

存储器时序(续)

Write First Mode

数据排序

• 数据输入/输出

- 采用分布式双端口存储器保存数据,例化时可以初始化数据
- 利用chk查看数据,数码管显示存储器的地址和数据
- 利用x、del、addr、data设置地址和修改数据

• 数据排序

- run启动排序,同时 启动时钟计数cnt, busy置1
- 排序时不能人工查 看和修改数据
- 排序结束后停止计数,busy清零

开关数字输入

- 假定任何时刻只改变16个开关x(sw15-0)中一个开关状态
- 每次向上或向下拨动一次开关,生成1位十六进制数h,即4位二进制数,同时产生持续1个时钟周期的脉冲p
 - DPE: 去抖动、取双边沿、编码
 - h: 1位十六进制数字, p: 单次脉冲

数据输入/输出

• 假定初始状态,存储器各单元的数据与其地址相同

序号	操作	数码	管显示	操作说明
1	复位	00	0000	显示0单元
2	chk (btnr)	01	0001	查看下一单元
3	x (sw2)	01	0002	编辑数据或地址:输入2
4	del (btnl)	01	0000	删除2
5	x (sw10)	01	A000	输入A
6	data (btnc)	02	0002	修改数据,并查看下一单元
7	chk (btnr)	03	0003	查看下一单元
8	x (sw11)	03	000B	编辑数据或地址: 输入B
9	x (sw15)	03	00BF	输入F
10	del (btnl)	03	000B	删除F
11	x (sw5)	03	00B5	输入5
12	addr (btnu)	02	000A	设置地址,并查看该单元
13	chk (btnr)	03	0003	查看下一单元

数据输入/输出 (续1)

• 数据通路及其操作

- rstn:
$$a = 0$$
, $d = 0$, $s = 0$

- chk p:
$$a = a + 1, s = 0$$

- p:
$$d = \{d[11:0], h\}, s = 1$$

$$- del_p: d = d[15:4], s = 1$$

- data_p:
$$M[a] = d$$
, $d = 0$, $a = a + 1$, $s = 0$

- addr_p: a = d[7:0], d = 0,s = 0

数码管显示

chk, del, data, addr DP chk_p, del_p, data_p, addr_p

数据输入/输出 (续2)

· 寄存器D的操作

$$- rstn: d = 0$$

$$- p: d = \{d[11:0], h\}$$

$$- del_p: d = d[15:4]$$

- data p, addr p:
$$d = 0$$

· DM的写操作

$$-$$
 we = data_p

•

地址

0

chk, del, data, addr DP chk_p, del_p, data_p, addr_p

数码管显示

0

数据

0

0

0

排序模块接口

```
module sort (
input clk,
input rstn,
                    //输入1位十六进制数字
input [15:0] x,
                    //删除1位十六进制数字
input del,
                    //设置地址
input addr,
                    //修改数据
input data,
                    //查看下一项
input chk,
                    //启动排序
input run,
                    //数码管显示存储器地址和数据
output [7:0] an,
output [6:0] seg,
                    //1—正在排序,0—排序结束
output busy,
                    //排序耗费时钟周期数
output [15:0] cnt
);
```

实验步骤

- 1. 完成32x32位的寄存器堆的功能仿真
 - 寄存器堆的0号寄存器内容恒定为零
 - 寄存器堆的写操作优先于读操作
- 2. 完成256x16位的分布式和块式单端口RAM IP核的功能 仿真和对比
 - 分布式和块式存储器的读操作
 - 块式存储器写操作优先和读操作优先
- 3. 完成排序电路的数据通路和控制器设计和功能仿真, 并将排序电路下载至FPGA中测试
- 4. 选项:将数据量增大至4096x16位,分别采用分布式和 块式存储器保存数据并排序,对比电路资源和性能

The End