HW 8

August 1, 2021

$1 \quad \mathrm{IST} \; 387 \; \mathrm{HW} \; 8$

Copyright 2021, Jeffrey Stanton, Jeffrey Saltz, and Jasmina Tacheva

```
[1]: # Enter your name here: Ezra Cohen
```

1.0.1 Attribution statement: (choose only one and delete the rest)

```
[2]: # 1. I did this homework by myself, with help from the book and the professor.
```

The chapter on **linear models** ("Lining Up Our Models") introduces **linear predictive modeling** using the tool known as **multiple regression**. The term "multiple regression" has an odd history, dating back to an early scientific observation of a phenomenon called "**regression to the mean.**" These days, multiple regression is just an interesting name for using **linear modeling** to assess the **connection between one or more predictor variables and an outcome variable**.

In this exercise, you will predict Ozone air levels from three predictors.

A. We will be using the **airquality** data set available in R. Copy it into a dataframe called **air** and use the appropriate functions to **summarize the data**.

```
[2]: air<-data.frame(airquality)
str(air)
summary(air)
air</pre>
```

```
'data.frame': 153 obs. of 6 variables:
$ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
$ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
$ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
$ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
```

\$ Month : int 5 5 5 5 5 5 5 5 5 5 ... \$ Day : int 1 2 3 4 5 6 7 8 9 10 ...

Ozone	Solar.R	Wind	Temp	
Min. : 1.00	Min. : 7.0	Min. : 1.700	Min. :56.00	
1st Qu.: 18.00	1st Qu.:115.8	1st Qu.: 7.400	1st Qu.:72.00	
Median : 31.50	Median :205.0	Median : 9.700	Median :79.00	
Mean : 42.13	Mean :185.9	Mean : 9.958	Mean :77.88	
3rd Qu.: 63.25	3rd Qu.:258.8	3rd Qu.:11.500	3rd Qu.:85.00	

Max. :168.00 Max. :334.0 Max. :20.700 Max. :97.00 NA's :37 NA's :7 Month Day Min. : 1.0 Min. :5.000 1st Qu.:6.000 1st Qu.: 8.0 Median :7.000 Median:16.0 Mean :6.993 Mean :15.8 3rd Qu.:8.000 3rd Qu.:23.0 Max. :9.000 Max. :31.0

	Ozone	Solar.R	Wind	Temp	Month	Day
	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>	<int></int>
	41	190	7.4	67	5	1
	36	118	8.0	72	5	2
	12	149	12.6	74	5	3
	18	313	11.5	62	5	4
	NA	NA	14.3	56	5	5
	28	NA	14.9	66	5	6
	23	299	8.6	65	5	7
	19	99	13.8	59	5	8
	8	19	20.1	61	5	9
	NA	194	8.6	69	5	10
	7	NA	6.9	74	5	11
	16	256	9.7	69	5	12
	11	290	9.2	66	5	13
	14	274	10.9	68	5	14
	18	65	13.2	58	5	15
	14	334	11.5	64	5	16
	34	307	12.0	66	5	17
	6	78	18.4	57	5	18
	30	322	11.5	68	5	19
	11	44	9.7	62	5	20
	1	8	9.7	59	5	21
	11	320	16.6	73	5	22
	4	25	9.7	61	5	23
	32	92	12.0	61	5	24
	NA	66	16.6	57	5	25
	NA	266	14.9	58	5	26
	NA	NA	8.0	57	5	27
	23	13	12.0	67	5	28
	45	252	14.9	81	5	29
A data.frame: 153×6	115	223	5.7	79	5	30
	06	167	6.0	91	0	1
	96 70	167	6.9		9	1
	78 72	197	5.1	92	9	2 3
	73	183	2.8	93	9	
	91 47	189 95	4.6	93 87	9	4 5
	32	93 92	7.4		9	5 6
	32 20		15.5	84 80	9	7
		252	10.9			
	23	220	10.3	78	9	8
	21	230	10.9	75 72	9	9
	24	259	9.7	73	9	10
	44	236	14.9	81 76	9	11
	21	259	15.5	76 77	9	12
	28	238	6.3	77 71	9	13
	9	24	10.9	71	9	14
	13	112	11.5	71	9	15
	46	237	6.9	78	9	16
	18	224	$\frac{13.8}{10.2}$ 3	67 70	9	17
	13	27	10.3	76	9	18
	24	238	10.3	68	9	19
	16	201	8.0	82	9	20

B. In the analysis that follows, **Ozone** will be considered as the **outcome variable**, and **Solar.R**, **Wind**, and **Temp** as the **predictors**. Add a comment to briefly explain the outcome and predictor variables in the dataframe using **?airquality**.

C. Inspect the outcome and predictor variables – are there any missing values? Show the code you used to check for that.

```
[8]: match(TRUE,is.na(air$Ozone))
match(TRUE,is.na(air$Solar.R))
match(TRUE,is.na(air$Wind))
match(TRUE,is.na(air$Temp))

#There is at least one missing value in the first two columns but the second
→ two have no missing values
```

5 <NA>

<NA>

D. Use the **na_interpolation()** function from the **imputeTS package** from HW 6 to fill in the missing values in each of the 4 columns. Make sure there are no more missing values using the commands from Step C.

```
[15]: #install.packages("imputeTS")
    #library(imputeTS)
    air$0zone<-na_interpolation(air$0zone)
    air$Solar.R<-na_interpolation(air$Solar.R)</pre>
```

E. Create 3 bivariate scatterplots (X-Y) plots for each of the predictors with the outcome. Hint: In each case, put Ozone on the Y-axis, and a predictor on the X-axis. Add a comment to each, describing the plot and explaining whether there appears to be a linear relationship between the outcome variable and the respective predictor.

```
[18]: library(ggplot2)
plot1<-ggplot(air,aes(x=Solar.R,y=Ozone))+geom_point()+geom_smooth(method = □
→"lm", color = "blue")#For the first graph there does not appear to be any □
→sort of relationship between the two
```

```
plot2<-ggplot(air,aes(x=Wind,y=Ozone))+geom_point()+geom_smooth(method = "lm",⊔
→color = "brown")#For the second graph there seems to be an inverse⊔
→relationship between the two and there is no overall downward trend of the⊔
→line
plot3<-ggplot(air,aes(x=Temp,y=Ozone))+geom_point()+geom_smooth(method = "lm",⊔
→color = "orange")#For the last graph there seems to be an upward trend of⊔
→the line
plot1
plot2
plot3
```

`geom_smooth()` using formula 'y ~ x'

`geom_smooth()` using formula 'y ~ x'

 $geom_smooth() using formula y ~ x'$

F. Next, create a **simple regression model** predicting **Ozone based on Wind**. Refer to page 202 in the text for syntax and explanations of the **lm()** command. In a comment, report the **coefficient** (aka **slope** or **beta weight**) of **Wind** in the regression output and, **if it is statistically significant**, **interpret it** with respect to **Ozone**. Report the **adjusted R-squared** of the model and try to explain what it means.

#The slope is -4.5925, it seems to be incredibly significant based on the P_{\square} \rightarrow value, but as indicated by the negative slope and I would also assume the \square \rightarrow negative T value is also showing this, it has an inverse relationship as I_{\square} \rightarrow said earlier, the adjusted r-squared value is .2527 Which is really low, but \square \rightarrow everything else is indicating that there is at the very least correlation, \square \rightarrow and I think the reason the value is so low is because most of the points \square \rightarrow don't fall on the line and some can be quite far from the line but the \square \rightarrow points all still do follow a downward Trend none the less

```
Call:
lm(formula = Ozone ~ Wind, data = air)
Residuals:
   Min
            1Q Median
                                  Max
                            30
-50.332 -18.332 -4.155 14.163 94.594
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 89.0205
                        6.6991 13.288 < 2e-16 ***
                        0.6345 -7.238 2.15e-11 ***
Wind
            -4.5925
___
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 27.56 on 151 degrees of freedom
                             Adjusted R-squared:
Multiple R-squared: 0.2576,
F-statistic: 52.39 on 1 and 151 DF, p-value: 2.148e-11
```

G. Create a multiple regression model predicting Ozone based on Solar.R, Wind, and Temp. Make sure to include all three predictors in one model – NOT three different models each with one predictor.

```
Call:
```

lm(formula = Ozone ~ Wind + Solar.R + Temp, data = air)

Residuals:

Min 1Q Median 3Q Max -39.651 -15.622 -4.981 12.422 101.411

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -52.16596 21.90933 -2.381 0.0185 *
Wind -2.69669 0.63085 -4.275 3.40e-05 ***

```
Solar.R 0.01654 0.02272 0.728 0.4678

Temp 1.53072 0.24115 6.348 2.49e-09 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 24.26 on 149 degrees of freedom

Multiple R-squared: 0.4321, Adjusted R-squared: 0.420'
F-statistic: 37.79 on 3 and 149 DF, p-value: < 2.2e-16
```

H. Report the **adjusted R-Squared** in a comment – how does it compare to the adjusted R-squared from Step F? Is this better or worse? Which of the predictors are **statistically significant** in the model? In a comment, report the coefficient of each predictor that is statistically significant. Do not report the coefficients for predictors that are not significant.

```
[]: #The adjusted r-squared value is 0.4207 which is much better than the last one, ⊔

this is probably due to the inclusion of temp which the graphs also showed a⊔

correlation between it and ozone, The statistically significant predictors u

are wind and temp, their estimates are -2.69669 for wind and 1.53072 for u

temp, the standard error is relatively low at 0.63085 for wind and 0.24115 u

for temp
```

I. Create a one-row data frame like this:

```
[22]: predDF <- data.frame(Solar.R=290, Wind=13, Temp=61)
```

and use it with the **predict()** function to predict the **expected value of Ozone**:

```
[23]: predict(lmair2,predDF)
```

1: 10.9463978698245

J. Create an additional multiple regression model, with Temp as the outcome variable, and the other 3 variables as the predictors. Review the quality of the model by commenting on its adjusted R-Squared.

```
[24]: lmair3<-lm(formula=Temp~Wind+Solar.R+Ozone,data=air) summary(lmair3)
```

```
Wind -0.580176 0.195774 -2.963 0.00354 **
Solar.R 0.015751 0.006737 2.338 0.02072 *
Ozone 0.139055 0.021907 6.348 2.49e-09 ***
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.313 on 149 degrees of freedom

Multiple R-squared: 0.4148, Adjusted R-squared: 0.403

F-statistic: 35.21 on 3 and 149 DF, p-value: < 2.2e-16

[]: #The adjusted r-squared value is .403 which is slightly worse than for the previous model but not by much from the P values that we can see temperature ⇒ is most significantly correlated to Ozone, then to wind and then the least ⇒ to solar radiation, but the fact that even solar has one asterisk means it ⇒ is at least slightly correlated