Taller # 2 de Anillos y Campos

Julián Vera (Código: (20212167064)), Nicole Vargas (Código: (20212167015)), y Wilson Jerez (Código: 201181167034)

Universidad Distrital Francisco José de Caldas Facultad de Ciencias Matemáticas y Naturales Programa Académico de Matemáticas

Ejercicios

1. Sea $f(x) = x^6 + 3x^5 + 4x^2 - 3x + 2$ y $g(x) = x^2 + 2x - 3$ en $\mathbb{Z}_7[x]$. Encuéntrese q(x) y r(x) en $\mathbb{Z}_7[x]$ tal que f(x) = q(x) q(x) + r(x), con $\deg(r(x)) < 2$.

Solución: Aplicamos la división de polinomios en $\mathbb{Z}_7[x]$, cuidando la aritmética módulo 7.

• División inicial: Dividimos el término de mayor grado de f(x) entre el de mayor grado de g(x):

$$\frac{x^6}{x^2} = x^4.$$

Multiplicamos g(x) por x^4 y restamos:

$$f(x) - x^4 g(x) = (x^6 + 3x^5 + 4x^2 - 3x + 2) - (x^6 + 2x^5 - 3x^4)$$

= $(x^6 - x^6) + (3x^5 - 2x^5) + (0 - (-3x^4)) + 4x^2 - 3x + 2$
= $x^5 + 3x^4 + 4x^2 - 3x + 2$.

Denotamos este nuevo polinomio como

$$r_1(x) = x^5 + 3x^4 + 4x^2 - 3x + 2.$$

• Segundo paso: Dividimos el término de mayor grado de $r_1(x)$ entre x^2 :

$$\frac{x^5}{x^2} = x^3.$$

Multiplicamos g(x) por x^3 y restamos:

$$r_1(x) - x^3 g(x) = (x^5 + 3x^4 + 4x^2 - 3x + 2) - (x^5 + 2x^4 - 3x^3)$$

= $(x^5 - x^5) + (3x^4 - 2x^4) + (0 - (-3x^3)) + 4x^2 - 3x + 2$
= $x^4 + 3x^3 + 4x^2 - 3x + 2$.

Sea

$$r_2(x) = x^4 + 3x^3 + 4x^2 - 3x + 2.$$

• Tercer paso: Dividimos x^4 entre x^2 :

$$\frac{x^4}{x^2} = x^2.$$

Multiplicamos g(x) por x^2 y restamos de $r_2(x)$:

$$r_2(x) - x^2 g(x) = (x^4 + 3x^3 + 4x^2 - 3x + 2) - (x^4 + 2x^3 - 3x^2)$$

$$= (x^4 - x^4) + (3x^3 - 2x^3) + (4x^2 - (-3x^2)) - 3x + 2$$

$$= x^3 + (4x^2 + 3x^2) - 3x + 2$$

$$= x^3 + 7x^2 - 3x + 2$$

$$\equiv x^3 - 3x + 2 \pmod{7},$$

porque $7x^2 \equiv 0$ en \mathbb{Z}_7 . Denotamos

$$r_3(x) = x^3 - 3x + 2.$$

• Cuarto paso: Dividimos x^3 entre x^2 :

$$\frac{x^3}{r^2} = x.$$

Multiplicamos g(x) por x y restamos:

$$r_3(x) - x g(x) = (x^3 - 3x + 2) - (x^3 + 2x^2 - 3x)$$

$$= (x^3 - x^3) + (0 x^2 - 2x^2) + ((-3x) - (-3x)) + 2$$

$$= -2x^2 + 2 \equiv 5x^2 + 2 \pmod{7}.$$

Por tanto, ahora el resto es $5x^2 + 2$, que aún tiene grado 2, así que seguimos.

• Quinto paso: Dividimos $5x^2$ entre x^2 :

$$\frac{5x^2}{r^2} = 5.$$

Multiplicamos g(x) por 5 (en \mathbb{Z}_7 , $-2 \equiv 5$), y restamos:

$$5 \cdot g(x) = 5x^2 + 10x - 15 \equiv 5x^2 + 3x + 6 \pmod{7},$$

$$(5x^2 + 2) - (5x^2 + 3x + 6) = (5x^2 - 5x^2) + (0 - 3x) + (2 - 6)$$

$$= -3x - 4 \equiv 4x + 3 \pmod{7}.$$

El resto final es, por tanto,

$$r(x) = 4x + 3,$$

y satisface deg(r(x)) < 2.

Para hallar el cociente total q(x), sumamos todos los términos usados en cada división:

$$q(x) = x^4 + x^3 + x^2 + x + 5 \equiv x^4 + x^3 + x^2 + x - 2$$
, (en \mathbb{Z}_7).

Conclusión: Hemos obtenido

$$q(x) = x^4 + x^3 + x^2 + x - 2$$
 y $r(x) = 4x + 3$.

Verificando la igualdad f(x) = g(x) q(x) + r(x) en $\mathbb{Z}_7[x]$, se confirma la corrección de esta división.

- 2. El polinomio $x^4 + 4$ puede factorizarse en factores lineales en $\mathbb{Z}_5[x]$. Encuéntrese esta factorización.
- 3. ¿Es $x^3 + 2x + 3$ un polinomio irreducible de $\mathbb{Z}_5[x]$? ¿Por qué? Exprésese como producto de polinomios irreducibles de $\mathbb{Z}_5[x]$.
- 4. Pruebe que si F es un campo, todo ideal primo propio de F[x] es maximal.
- 5. Si D es un dominio de ideales principales (DIP), entonces D[x] es un DIP.

Demostración.

Sea D un dominio de ideales principales, es decir, un dominio integral en el cual todo ideal es principal. Debemos demostrar que todo ideal de D[x] es principal.

- **Paso 1:** Reducción a ideales no nulos. Sea I un ideal de D[x]. Si $I = \{0\}$, entonces I es principal pues $I = \langle 0 \rangle$. Asumamos que $I \neq \{0\}$.
- **Paso 2:** Elección de un polinomio de grado mínimo. Dado que I es no nulo, existe un polinomio $f(x) \neq 0$ en I con grado mínimo, es decir, para todo $g(x) \in I$ con $g(x) \neq 0$, se cumple $\deg(f) \leq \deg(g)$.
- **Paso 3:** Generación del ideal con f(x). Sea $\langle f(x) \rangle = \{ f(x)h(x) \mid h(x) \in D[x] \}$. Queremos probar que $I = \langle f(x) \rangle$, es decir, que f(x) genera I.
- **Paso 4:** División en D[x]. Para cualquier $g(x) \in I$, usamos la división euclídea en D[x]:

$$g(x) = q(x) f(x) + r(x)$$
, donde $deg(r) < deg(f)$.

Como I es un ideal, tanto g(x) como q(x)f(x) pertenecen a I, de donde r(x) = g(x) - q(x)f(x) también está en I. La elección de f(x) con grado mínimo implica que no puede existir un $r(x) \neq 0$ con $\deg(r) < \deg(f)$ dentro de I, pues esto contradiría la minimalidad de f(x). Por tanto, r(x) = 0, con lo que $g(x) = q(x)f(x) \in \langle f(x) \rangle$. Así, $I \subseteq \langle f(x) \rangle$.

- **Paso 5:** Conclusión. Por construcción, $\langle f(x) \rangle \subseteq I$. De 1) y 4) se concluye $I = \langle f(x) \rangle$. Con ello, todo ideal de D[x] es principal, y por ende D[x] es un dominio de ideales principales.
 - 6. Indique cuáles de las funciones dadas ν son evaluaciones euclidianas para los dominios enteros dados.
 - (a) La función ν para \mathbb{Z} dada por $\nu(n) = n^2$ para $n \in \mathbb{Z}$ distinto de cero.
 - (b) La función ν para $\mathbb Q$ dada por $\nu(a)=a^2$ para $a\in\mathbb Q$ distinto de cero.
 - 7. Encuéntrese el mcd de los polinomios

$$f(x) = x^{10} - 3x^9 + 3x^8 - 11x^7 + 11x^6 - 11x^5 + 19x^4 - 13x^3 + 8x^2 - 9x + 3,$$

$$g(x) = x^6 - 3x^5 + 4x^4 - 9x^3 + 5x^2 - 5x + 2$$

en $\mathbb{Q}[x]$.

Solución:

Aplicamos el algoritmo de Euclides siguiendo la sucesión típica de divisiones:

$$f(x) = q_1(x) g(x) + r_1(x),$$

$$g(x) = q_2(x) r_1(x) + r_2(x),$$

$$r_1(x) = q_3(x) r_2(x) + r_3(x),$$

$$\vdots$$

$$r_{n-1}(x) = q_n(x) r_n(x) + 0,$$

donde el último residuo no nulo, $r_n(x)$, es el **máximo común divisor**.

En nuestro caso concreto, los pasos de división se especifican como sigue:

$$f(x) = (x^{4} - 2x) \cdot g(x) + \underbrace{\left(-2x^{7} + 6x^{6} - 6x^{5} + 6x^{4} - 13x^{3} + 8x^{2} - 9x + 3\right)}_{r_{1}(x)},$$

$$g(x) = (x^{2} + 6x - 19) \cdot r_{1}(x) + \underbrace{\left(19x^{4} + 57x^{3} + 38x^{2} - 23x + 2\right)}_{r_{2}(x)},$$

$$r_{1}(x) = (x - 3) \cdot r_{2}(x) + \underbrace{\left(x^{3} + 2x - 1\right)}_{r_{3}(x)},$$

$$r_{2}(x) = (19x + 57) \cdot r_{3}(x) + 0.$$

Tras la última división, el proceso de Euclides concluye porque el residuo es cero y, por tanto, el último resto distinto de cero es

$$r_3(x) = x^3 + 2x - 1.$$

En un anillo de polinomios sobre un campo $\mathbb{Q}[x]$, los divisores máximos comunes son únicos salvo un factor constante no nulo. Así, concluimos:

$$\gcd(f(x), g(x)) = x^3 + 2x - 1.$$

Observación: Cada coeficiente se maneja sobre \mathbb{Q} , por lo que las operaciones de división de polinomios se realizan sin restricciones, y no necesitamos normalizar factores adicionales más allá de un posible factor multiplicativo no cero. Así queda verificado el resultado final.

- 8. Muéstrese que $\{a + xf(x) \mid a \in \mathbb{Z}, f(x) \in \mathbb{Z}[x]\}$ es un ideal en $\mathbb{Z}[x]$.
- 9. Sea D un dominio euclidiano y sea ν una evaluación euclidiana en D. Muéstrese que si a y b son asociados en D, entonces $\nu(a) = \nu(b)$.
- 10. Sea D un DFU. Un elemento c en D es un mínimo común múltiplo de dos elementos a y b en D si $a \mid c$ y $b \mid c$ y c divide a todo elemento de D que sea divisible entre a y b. Muéstrese para cualesquiera dos elementos no nulos de D, un dominio euclidiano, tienen un mínimo común múltiplo en D.

11. Solución:

1. El anillo y la norma

Recordemos que

$$\mathbb{Z}[\sqrt{-5}] = \{ a + b\sqrt{-5} \mid a, b \in \mathbb{Z} \},\$$

y que para cada $z = a + b\sqrt{-5}$ definimos la norma como

$$N(z) = z \overline{z} = (a + b\sqrt{-5})(a - b\sqrt{-5}) = a^2 + 5b^2.$$

Esta norma resulta crucial porque es multiplicativa, es decir,

$$N(z_1 z_2) = N(z_1) N(z_2),$$

lo que nos ayudará a analizar la irreducibilidad de varios elementos.

2. Dos factorizaciones distintas de 6

En $\mathbb{Z}[\sqrt{-5}]$, el número entero 6 tiene las siguientes dos factorizaciones:

$$6 = 2 \cdot 3$$
 y $6 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$

Vamos a ver que los factores que aparecen en una y otra expresión son *irreducibles* y no se pueden relacionar por unidades (asociados). De este modo, comprobamos que la factorización de 6 en este anillo *no* es única (hasta unidades).

3. Verificación de irreducibilidad de los factores

3.1. Irreducibilidad de 2

- Norma de 2: N(2) = 4.
- Si 2 fuera reducible, existiría una factorización

$$2 = (a + b\sqrt{-5})(c + d\sqrt{-5}),$$

con ninguno de los dos factores igual a ± 1 (los únicos posibles valores de las unidades en este anillo).

• Tomando la norma,

$$4 = N(2) = N(a + b\sqrt{-5}) N(c + d\sqrt{-5}).$$

Eso implica que el par de normas debe multiplicarse para dar 4. En particular, podría pensarse en factorizar 4 como 1×4 , 2×2 o 4×1 .

- Norma 2 imposible: No hay solución en enteros para $a^2 + 5b^2 = 2$, pues revisando casos sencillos (a, b) no aparece ninguna pareja que cumpla esa ecuación.
- De modo que, si uno de los factores tuviera norma 4, el otro forzosamente tendría norma 1 (es decir, sería unidad). Esto demuestra que no podemos factorizarlos ambos como no unidades. Por lo tanto, 2 es irreducible.

3.2. Irreducibilidad de 3

- Norma de 3: N(3) = 9.
- Si 3 fuera reducible, al tomar la norma veríamos que la única forma de factorizar 9 con factores mayores que 1 es 3×3 . Sin embargo, no existe elemento en $\mathbb{Z}[\sqrt{-5}]$ con norma 3, porque la ecuación $a^2 + 5b^2 = 3$ tampoco tiene soluciones en enteros.
- Luego, si uno de los factores de la factorización hipotética de 3 no fuera unidad, su norma tendría que ser 3, lo cual no es posible. Así, no hay factorización no trivial. De ahí se concluye que 3 es irreducible.

3.3. Irreducibilidad de $1+\sqrt{-5}$ y $1-\sqrt{-5}$

• Normas:

$$N(1+\sqrt{-5}) = 1^2 + 5 \cdot 1^2 = 6$$
, $N(1-\sqrt{-5}) = 1^2 + 5 \cdot 1^2 = 6$.

- Para factorizar, por ejemplo, $1 + \sqrt{-5}$ en un producto no trivial (x)(y), las normas de x e y tendrían que multiplicarse para dar 6. Por tanto, una de las normas debería ser 2 o 3 (porque $6 = 2 \times 3$), o bien 1 y 6. Pero ya hemos visto que no puede haber un factor con norma 2 ni con norma 3, y si uno de los factores tuviera norma 1, sería una unidad.
- Por lo tanto, $1 + \sqrt{-5}$ no admite factorizaciones no triviales (análogamente para $1 \sqrt{-5}$). Esto prueba su irreducibilidad.

4. Diferencia esencial entre las dos factorizaciones de 6

Hemos verificado que 2, 3, $1 + \sqrt{-5}$ y $1 - \sqrt{-5}$ son irreducibles. Ahora, para ver que las dos factorizaciones

$$6 = 2 \cdot 3$$
 y $6 = (1 + \sqrt{-5})(1 - \sqrt{-5})$

no son "la misma" (ni difieren sólo por una unidad), basta notar que no podemos convertir, por ejemplo, 2 en $1 + \sqrt{-5}$ multiplicándola por ± 1 . Si existiera $u \in \{\pm 1\}$ tal que

$$2 = u(1 + \sqrt{-5}),$$

se obtendría una contradicción al comparar partes reales e imaginarias. Por tanto, estas factorizaciones no se relacionan por asociados, lo que confirma que $\mathbb{Z}[\sqrt{-5}]$ no tiene factorización única.

5. Conclusión

Así, el elemento 6 en $\mathbb{Z}[\sqrt{-5}]$ admite dos descomposiciones distintas en irreducibles:

$$6 = 2 \cdot 3$$
 y $6 = (1 + \sqrt{-5})(1 - \sqrt{-5}),$

sin que los factores aparecidos en una factorización sean meramente asociados a los de la otra. Con esto finalizamos la demostración de que $\mathbb{Z}[\sqrt{-5}]$ no es un dominio de factorización única.

- 12. Use el algoritmo euclideano en $\mathbb{Z}[i]$ para encontrar el máximo común divisor de 8+6i y 5-15i.
- 13. Sea $\langle \alpha \rangle$ un ideal principal distinto de cero en $\mathbb{Z}[i]$.
 - a) Muéstrese que $\mathbb{Z}[i]/\langle \alpha \rangle$ es un anillo finito. [Sugerencia: úsese el algoritmo de división.]
 - b) Muéstrese que si π es un irreducible de $\mathbb{Z}[i]$, entonces $\mathbb{Z}[i]/\langle \pi \rangle$ es un campo.
 - c) Con respecto a b), encuéntrese el orden n y característica de cada uno de los siguientes campos:
 - 1) $\mathbb{Z}[i]/\langle 3 \rangle$
 - 2) $\mathbb{Z}[i]/\langle 1+i\rangle$
 - 3) $\mathbb{Z}[i]/\langle 2+i \rangle$
- 14. Sea $n \in \mathbb{Z}^+$ libre de cuadrado, esto es, no es divisible por el cuadrado de ningún primo. Sea $\mathbb{Z}[\sqrt{-n}] = \{ a + b\sqrt{-n} \mid a, b \in \mathbb{Z} \}.$
 - a) Defínase la norma N dada por $N(a+b\sqrt{-n})=a^2+nb^2$, identificándola como una norma multiplicativa en $\mathbb{Z}[\sqrt{-n}]$.
 - b) Muéstrese que $N(\alpha) = 1$ para $\alpha \in \mathbb{Z}[\sqrt{-n}]$ si y solo si α es una unidad en $\mathbb{Z}[\sqrt{-n}]$.
 - c) Muéstrese que todo $\alpha \in \mathbb{Z}[\sqrt{-n}]$ que sea distinto de cero y no sea unidad tiene factorización en irreducibles en $\mathbb{Z}[\sqrt{-n}]$. [Sugerencia: úsese (b).]

Solución

(a) Definición de la norma y multiplicatividad

Sea $\alpha = a + b\sqrt{-n}$ en $\mathbb{Z}[\sqrt{-n}]$. Definimos la norma

$$N(\alpha) = a^2 + n b^2.$$

Queremos ver que, dadas $\alpha = a + b\sqrt{-n}$ y $\beta = c + d\sqrt{-n}$, se cumple

$$N(\alpha\beta) = N(\alpha) N(\beta).$$

En efecto, si multiplicamos

$$\alpha\beta = (a + b\sqrt{-n})(c + d\sqrt{-n}) = (ac - bdn) + (ad + bc)\sqrt{-n},$$

entonces, al calcular

$$N(\alpha\beta) = (ac - bdn)^2 + n(ad + bc)^2,$$

y tras expandir con cuidado, podemos comprobar que

$$(a^2 + nb^2)(c^2 + nd^2) = (ac - bdn)^2 + n(ad + bc)^2.$$

Así, $N(\alpha\beta)=N(\alpha)\,N(\beta)$, confirmando que N es un morfismo multiplicativo.

(b) Caracterización de las unidades mediante la norma

Queremos mostrar que $N(\alpha) = 1$ si y sólo si α es una unidad en $\mathbb{Z}[\sqrt{-n}]$.

 \implies Si $N(\alpha)=1$, consideramos la inversa de $\alpha=a+b\sqrt{-n}$ en el campo de fracciones $\mathbb{Q}(\sqrt{-n})$. Se sabe que

$$\alpha^{-1} = \frac{a - b\sqrt{-n}}{a^2 + n b^2}.$$

Dado que $a^2 + n b^2 = 1$, la inversa se simplifica a $a - b\sqrt{-n}$, que está de nuevo en $\mathbb{Z}[\sqrt{-n}]$. Esto prueba directamente que α es invertible (es decir, es una unidad) en el anillo.

 \iff Si α es unidad, existe alguna $\beta \in \mathbb{Z}[\sqrt{-n}]$ tal que $\alpha\beta = 1$. Aplicando la norma y usando su multiplicatividad,

$$N(\alpha\beta) = N(\alpha) N(\beta) = N(1) = 1.$$

Dado que $N(\alpha)$ y $N(\beta)$ son números enteros positivos (excepto si fueran cero, en cuyo caso no tendríamos una unidad), la única forma de que su producto sea 1 es que ambos valgan 1. Así, $N(\alpha) = 1$.

En resumen, las unidades son exactamente aquellos elementos con norma igual a 1.

(c) Factorización de elementos no nulos ni unidades en irreducibles

Para demostrar la factorización en irreducibles en $\mathbb{Z}[\sqrt{-n}]$, usamos el **principio de buena ordenación** en la norma.

- Si α no es una unidad, entonces $N(\alpha) > 1$. Si α no es irreducible, se puede escribir como $\alpha = \beta \gamma$ con β, γ no unidades.
- Como la norma es multiplicativa, tenemos que $N(\alpha) = N(\beta)N(\gamma)$, y por ser enteros positivos, se tiene $N(\beta), N(\gamma) < N(\alpha)$.
- Procedemos por inducción en la norma. Si todo elemento de norma menor que $N(\alpha)$ tiene factorización en irreducibles, entonces también lo tiene α , pues sus factores β y γ se pueden descomponer en irreducibles.
- Aplicando el principio de buena ordenación, concluimos que todo elemento distinto de cero y no unidad en $\mathbb{Z}[\sqrt{-n}]$ se puede descomponer en irreducibles.

Con esto, queda demostrada la factorización en irreducibles.

Ejercicios de la clase

1. Sea D un dominio entero y F su campo de fracciones. Entonces, para cualquier polinomio $f(X) \in F[X]$, existe un polinomio $f_0(X) \in D[X]$ y un elemento $a \in D$ tal que:

$$f(X) = \frac{f_0(X)}{a}.$$

• Dado que D es un dominio entero, su campo de fracciones F consiste en todas las fracciones de la forma $\frac{a}{b}$, donde $a, b \in D$ y $b \neq 0$. Consideremos el anillo de polinomios F[X], cuyos elementos son expresiones de la forma:

$$f(X) = \sum_{i=0}^{n} c_i X^i, \quad \text{con } c_i \in F.$$

Queremos demostrar que cualquier polinomio en F[X] puede escribirse como $f(X) = \frac{f_0(X)}{a}$, donde $f_0(X) \in D[X]$ y $a \in D$.

• Construcción de $f_0(X)$: Dado un polinomio $f(X) \in F[X]$, podemos escribir cada coeficiente c_i en términos de elementos de D:

$$c_i = \frac{a_i}{b_i}$$
, con $a_i, b_i \in D$, $b_i \neq 0$.

Sea a el **mínimo común múltiplo** de los denominadores b_0, b_1, \ldots, b_n , es decir,

$$a = \operatorname{mcm}(b_0, b_1, \dots, b_n) \in D.$$

Por la propiedad del mínimo común múltiplo, sabemos que a es un múltiplo de cada b_i , lo que significa que existe $k_i \in D$ tal que:

$$a = k_i b_i$$
.

Multiplicamos ambos lados por a_i , obteniendo:

$$aa_i = k_i b_i a_i$$
.

Ahora, dividiendo por b_i (que es distinto de cero en D):

$$\frac{aa_i}{b_i} = k_i a_i.$$

Dado que $k_i, a_i \in D$ y D es un anillo, el producto $k_i a_i$ también pertenece a D. Definiendo $d_i = k_i a_i$, obtenemos:

$$d_i = \frac{aa_i}{b_i} \in D.$$

Definimos entonces el polinomio $f_0(X)$ en D[X] como:

$$f_0(X) = \sum_{i=0}^n d_i X^i.$$

Por construcción, tenemos:

$$f(X) = \sum_{i=0}^{n} c_i X^i = \sum_{i=0}^{n} \frac{a_i}{b_i} X^i = \sum_{i=0}^{n} \frac{d_i}{a} X^i = \frac{1}{a} \sum_{i=0}^{n} d_i X^i = \frac{f_0(X)}{a}.$$

• Conclusión: Hemos demostrado que cualquier polinomio en F[X] puede escribirse como $f(X) = \frac{f_0(X)}{a}$ con $f_0(X) \in D[X]$ y $a \in D$. Esto implica que D[X] es un subanillo de F[X], ya que cada polinomio en F[X] se obtiene como un polinomio en D[X] dividido por un elemento de D.

2. Muestre que el polinomio $p(x) = x^2 + x + 3$ es irreducible en $\mathbb{Q}[x]$.

Solución:

Para demostrar la irreducibilidad del polinomio $p(x) = x^2 + x + 3$ en $\mathbb{Q}[x]$, utilizamos el siguiente resultado:

Teorema 23.10 (Fraleigh, 7ma edición)

Sea $f(x) \in F[x]$ y supongamos que f(x) tiene grado 2 o 3. Entonces f(x) es reducible sobre F si y solo si tiene una raíz en F.

Demostración:

Supongamos que f(x) es reducible sobre F. Entonces puede escribirse como el producto de dos polinomios no constantes en F[x], es decir,

$$f(x) = g(x) h(x),$$

donde $\deg g(x) < \deg f(x)$ y $\deg h(x) < \deg f(x)$. Dado que f(x) tiene grado 2 o 3, uno de los factores (por ejemplo, g(x)) debe ser de grado 1. Por lo tanto,

$$g(x) = x - a$$
, para algún $a \in F$.

Como g(a) = 0, concluimos que a es una raíz de f(x). De esta manera, si f(x) es reducible sobre F[x], necesariamente tiene una raíz en F.

Recíprocamente, si existe $a \in F$ tal que f(a) = 0, entonces x - a es un factor de f(x), lo que muestra que f(x) es reducible.

Aplicación al ejercicio:

Para comprobar que $p(x) = x^2 + x + 3$ es irreducible en $\mathbb{Q}[x]$, basta con verificar que no tiene raíces racionales. Resolviendo la ecuación cuadrática asociada,

$$x = \frac{-1 \pm \sqrt{1 - 12}}{2} = \frac{-1 \pm \sqrt{-11}}{2},$$

se observa que $\sqrt{-11} \notin \mathbb{Q}$. Por lo tanto, p(x) no posee raíces en \mathbb{Q} y, de acuerdo con el Teorema 23.10, es irreducible sobre \mathbb{Q} .

3. Determine los elementos de $\mathbb{Q}[x]/\langle p(x)\rangle$.

Cada elemento de $\mathbb{Q}[x]/\langle p(x)\rangle$ es una clase de equivalencia de la forma:

$$a_0 + a_1 x + \dots + a_{d-1} x^{d-1} + \langle p(x) \rangle$$

donde p(x) es un polinomio de grado d, y $a_0, a_1, \ldots, a_{d-1} \in \mathbb{Q}$.

En otras palabras, cada elemento puede representarse de manera única como un polinomio de grado menor que d, es decir,

$$\mathbb{Q}[x]/\langle p(x)\rangle \cong \mathbb{Q}[t],$$

donde t es la clase residuo de x en el cociente, es decir, $t = x + \langle p(x) \rangle$, y satisface la relación p(t) = 0.

Ejemplo:

Si $p(x) = x^2 - 2$, entonces los elementos de $\mathbb{Q}[x]/\langle x^2 - 2 \rangle$ son:

$$a + bt, \quad a, b \in \mathbb{Q},$$

10

donde $t^2 = 2$. En este caso, el anillo cociente es isomorfo a $\mathbb{Q}(\sqrt{2})$.

4. Encuentre el inverso multiplicativo para a+bt en $\mathbb{Q}[x]/\langle p(x)\rangle$ con $a+bt\neq 0$.