

WHAT IS CLAIMED:

1 1. A method for use in a node of a packet network, the method comprising the
2 steps of:

3 replicating a packet for transmission over at least two diverse communications
4 paths; and

5 multi-selecting a packet from at least two diverse communications paths.

1 2. The method of claim 1 wherein the packet is a signaling packet.

1 3. The method of claim 1 wherein the at least two diverse communications paths
2 used for replicating and multi-selecting are the same.

1 4. The method of claim 1 wherein the replicating step utilizes an Internet Protocol
2 (IP) for transmission over the at least two diverse communications paths.

1 5. The method of claim 1 wherein each replicated packet conveys an identical
2 packet identifier.

1 6. The method of claim 1 wherein each replicated packet conveys an identical
2 packet identifier in an additional shim header of a multiprotocol label switching (MPLS)
3 packet.

1 7. A method for use in a node of a packet network, the method comprising the
2 steps of:

3 identifying at least two diverse communications paths to an other node of the
4 packet network; and

5 replicating a packet destined for the other node of the packet network for
6 transmission over the at least two diverse communications paths.

1 8. The method of claim 7 wherein the packet is a signaling packet.

1 9. The method of claim 8 wherein the other node is a neighboring node in a

2 network topology of an underlying transport network.

1 10. The method of claim 8 wherein the replicating step includes the step of
2 inserting a sequence number into the packet for use by the other node in receiving the
3 replicated packets.

1 11. The method of claim 10 wherein the sequence number is inserted into an
2 additional shim header of a multiprotocol label switching (MPLS) packet.

1 12. The method of claim 8 wherein the packet is formatted in accordance with an
2 Internet Protocol (IP).

1 13. A method for use in a node of a packet network, the method comprising the
2 steps of:

3 receiving multiple copies of a packet; and

4 selecting one of the received multiple copies of the packet as a function of a
5 packet identifier in the received multiple copies of the packet.

1 14. The method of claim 13 wherein the packet is a signaling packet.

1 15. The method of claim 13 wherein the packet identifier is a sequence number
2 value.

1 16. The method of claim 15 wherein the selecting step includes the steps of:
2 if a value of the sequence number value of a received copy of the packet is less
3 than a counter value, discarding the received copy; and
4 if the value of the sequence number value of the received copy is equal to the
5 counter value, accepting the received copy.

1 17. The method of claim 15 wherein the selecting step includes the steps of:
2 if a value of the sequence number value of a received copy of the packet is less
3 than a counter value, discarding the received copy; and
4 if the value of the sequence number value of the received copy is not less than the

5 counter value, accepting the received copy.

1 18. A method for use in a node of a packet network, the method comprising the
2 steps of:

3 establishing a pair of physically disjoint paths to an other node that is a
4 neighboring node in a transport network; and

5 replicating a packet destined for the other node of the packet network for
6 transmission over the pair of physically disjoint paths.

1 19. The method of claim 18 wherein the replicating step includes the step of
2 inserting a sequence number into the packet for use by the other node in receiving the
3 replicated packets.

1 20. The method of claim 19 wherein the sequence number is inserted into an
2 additional shim header of a multiprotocol label switching (MPLS) packet.

1 21. The method of claim 18 wherein the packet is formatted in accordance with an
2 Internet Protocol (IP).

1 22. A method for use in a node of a packet network, the method comprising the
2 steps of:

3 establishing a pair of physically disjoint signaling paths to an other node that is a
4 neighboring node in an underlying transport network; and

5 replicating a signaling packet destined for the other node of the packet network
6 for transmission over the pair of physically disjoint signaling paths.

1 23. The method of claim 22 wherein the replicating step includes the step of
2 inserting a sequence number into the signaling packet for use by the other node in
3 receiving the replicated packets.

1 24. The method of claim 23 wherein the sequence number is inserted into an
2 additional shim header of a multiprotocol label switching (MPLS) packet.

1 25. The method of claim 22 wherein the signaling packet is formatted in
2 accordance with an Internet Protocol (IP).

1 26. A communications system comprising:

2 a number of nodes, each node storing at least two diverse communications paths
3 to a neighboring node, wherein the neighboring node is determined as a function of a
4 network topology of a transport network; and wherein each node, when transmitting a
5 packet to the neighboring node, replicates the packet for transmission over the at least
6 two diverse communications paths.

1 27. A communications system comprising a signaling network, the
2 communications system comprising:

3 a number of nodes, each node storing at least two diverse communications paths
4 to a neighboring node, wherein the neighboring node is determined as a function of a
5 network topology of an underlying transport network; and wherein each node, when
6 transmitting a signaling packet to the neighboring node, replicates the signaling packet
7 for transmission over the at least two diverse communications paths.

1 28. A communications system comprising:

2 a number of nodes, each node of the network performing dual-feeding and dual-
3 selecting of messages on diverse paths.

1 29. A communications system comprising a signaling network, the
2 communications system comprising:

3 a number of nodes, each node of the signaling network performing dual-feeding
4 and dual-selecting of signaling messages on diverse signaling paths.

1 30. A node for use in a network, the node comprising:

2 a memory for storing a routing table identifying at least two physically diverse
3 communications paths to a neighboring node; and

4 a processor for causing a packet to be replicated for transmission over the
5 identified at least two physically diverse communications paths to the neighboring node.

- 1 31. The node of claim 30 wherein the packet is a signaling packet.
- 1 32. The node of claim 30 wherein the packet is formatted in accordance with an
2 Internet Protocol (IP).
- 1 33. The node of claim 30 wherein each replicated packet conveys an identical
2 packet identifier.
- 1 34. The node of claim 30 wherein each replicated packet conveys an identical
2 packet identifier in an additional shim header of a multiprotocol label switching (MPLS)
3 packet.
- 1 35. A transmission frame representing a packet embodied in a transmission signal,
2 the transmission frame comprising:
 - 3 a header; and
 - 4 a packet identifier value for use in discriminating between multiple copies of the
5 packet.
- 1 36. The transmission frame of claim 35 wherein the packet identifier is conveyed
2 in an additional shim header of a multiprotocol label switching (MPLS) packet.
- 1 37. A transmission frame representing a signaling packet embodied in a
2 transmission signal, the transmission frame comprising:
 - 3 a signaling message for use in establishing a connection in an associated transport
4 network; and
 - 5 a signaling packet identifier value for use in discriminating between multiple
6 copies of the signaling packet.
- 1 38. The transmission frame of claim 37 wherein the signaling packet identifier is
2 conveyed in an additional shim header of a multiprotocol label switching (MPLS) packet.