Table S4: BioGeoBEARS dispersal sinks and sources Number of dispersal (range expansion, e; jump dispersal, *j*) events for the three time slices (see Figure 3; 80 Ma, 40 Ma, 20 Ma and 0 Ma) from the DEC+TS+j model (see Table 3). Counts of events were averaged across the 100 biogeographic stochastic mappings (BSMs) with standard deviations in parentheses. Rows represent source ranges; columns represent dispersal sinks. Darker shades indicate a higher frequency of dispersal events. The sum and percent of events in each row and column are given on the margins. Regions are abbreviated as follows: A = Andean-Argentinian, B = Neotropical, C = Southern Africa, D = African, E = Madagascan, F = Northern Australia, G = Malesian, H = Indian-Indochinese, I = Neozealandic-Patagonian and J = Eurasiatic.

TS1 80-40 Ma - ALL dispersal (mean of all observed anagenetic 'a', 'd' and cladogenetic 'j' dispersals):

-	\mathbf{A}	В	C	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	H	I	J	
\mathbf{A}	-	0.01	0	0.01	0	0	0.02	0(0)	0.06	0	0.1
		(0.1)	(0)	(0.1)	(0)	(0)	(0.14)		(0.28)	(0)	2%
В	0	-	0	0.02	0	0	0	0(0)	0	0	0.02
	(0)		(0)	(0.14)	(0)	(0)	(0)		(0)	(0)	0%
\mathbf{C}	0	0.03	-	0	0.01	0	0.03	0	0	0	0.07
	(0)	(0.17)		(0)	(0.01)	(0)	(0.22)	(0)	(0)	(0)	0%
D	0.01	0.12	0	-	0.03	0.01	0.07	0.01	0	0	0.25
	(0.1)	(0.33)	(0)		(0.17)	(0.1)	(0.26)	(0.1)	(0)	(0)	6%
\mathbf{E}	0	0	0	0	-	0.01	0.21	0.02	0.01	0	0.25
	(0)	(0)	(0)	(0)		(0.1)	(0.43)	(0.14)	(0.1)	(0)	6%
\mathbf{F}	0.03	0.01	0.01	0.05	0.06	-	0.54	0	0.49	0	1.19
	(0.17)	(0.1)	(0.1)	(0.22)	(0.24)		(0.67)	(0)	(0.58)	(0)	30%
\mathbf{G}	0.37	0.04	0.08	0.28	0.33	0.6	-	0.03	0.02	0	1.75
	(0.51)	(0.2)	(0.27)	(0.49)	(0.7)	(0.7)		(0.17)	(0.14)	(0)	44%
H	0	0	0	0.01	0.01	0	0	-	0	0	0.02
	(0)	(0)	(0)	(0.1)	(0.1)	(0)	(0)		(0)	(0)	0%
I	0.08	0	0	0.02	0.01	0.24	0.02	0	-	0	0.37
	(0.27)	(0)	(0)	(0.14)	(0.1)	(0.53)	(0.14)	(0)		(0)	9%
J	0	0	0	0	0	0	0	0	0	-	0
	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	1	0%
	0.49	0.21	0.09	0.39	0.45	0.86	0.89	0.06	0.58	0	4.02
	12%	5%	2%	10%	11%	21%	22%	1%	14%	0%	100%

TS2 40-20 Ma: ALL dispersal (mean of all observed anagenetic 'a', 'd' and cladogenetic 'j' dispersals):

_	A	В	C	D	E	\mathbf{F}	G	H	Ι	J	
\mathbf{A}	-	0.38	0	0.01	0	0	0	0.65	0.44	0	1.48
		(0.55)	(0)	(0.1)	(0)	(0)	(0)	(0.59)	(0.59)	(0)	15%
В	0.06	-	0	0.04	0	0	0.08	0.22	0	0	0.4
	(0.24)		(0)	(0.2)	(0)	(0)	(0.27)	(0.42)	(0)	(0)	4%
\mathbf{C}	0	0	-	0.08	0.09	0	0	0	0	0	0.17
	(0)	(0)		(0.27)	(0.29)	(0)	(0)	(0)	(0)	(0)	2%
D	0.02	0.07	0.26	-	0.96	0.04	0	0	0.01	0	1.36
	(0.14)	(0.26)	(0.46)		(0.72)	(0.2)	(0)	(0)	(0.1)	(0)	13%
\mathbf{E}	0	0	0.06	0.75	-	0.03	0.06	0.01	0.04	0	0.95
	(0)	(0)	(0.24)	(0.64)		(0.17)	(0.24)	(0.1)	(0.2)	(0)	9%
F	0.01	0	0	0.37	0.25	-	0.87	0.03	0.73	0	2.26
	(0.1)	(0)	(0)	(0.49)	(0.44)		(0.46)	(0.2)	(0.69)	(0)	0.22
G	0	0.69	0.01	0.03	0.27	0.27	-	0.46	0.01	0	1.74
	(0)	(0.46)	(0.1)	(0.17)	(0.45)	(0.57)		(0.69)	(0.1)	(0)	17%
H	0.01	0.02	0	0.01	0	0	0.04	-	0	0	0.08
	(0.1)	(0.14)	(0)	(0.1)	(0)	(0)	(0.2)		(0)	(0)	0%
Ι	1.22	0.1	0	0.05	0.07	0.23	0.04	0.01	-	0	1.72
	(0.7)	(0.3)	(0)	(0.22)	(0.26)	(0.49)	(0.2)	(0.1)		(0)	17%
J	0	0	0	0	0	0	0	0	0	-	0
	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)		0%
	2.22	1.26	0.33	1.34	1.64	0.57	1.09	1.38	1.23	0	10.16
	22%	12%	3%	13%	16%	5%	11%	14%	12%	0%	100%

TS1 20-0 Ma: ALL dispersal (mean of all observed anagenetic 'a', 'd' and cladogenetic 'j' dispersals):

	\mathbf{A}	В	C	D	\mathbf{E}	\mathbf{F}	G	H	I	J	
\mathbf{A}	-	2.23	0	0	0	0	0	0.03	0.05	0	2.31
		(1.22)	(0)	(0)	(0)	(0)	(0)	(0.17)	(0.22)	(0)	10%
В	4.01	-	0	0	0	0	0	0.07	0	0	4.08
	(1.07)		(0)	(0)	(0)	(0)	(0)	(0.26)	(0)	(0)	17%
\mathbf{C}	0	0	-	0.45	0	0	0	0	0	0	0.45
	(0)	(0)		(0.77)	(0)	(0)	(0)	(0)	(0)	(0)	2%
D	0	0	2.28	-	0	0	0	0	0	0	2.28
	(0)	(0)	(0.87)		(0)	(0)	(0)	(0)	(0)	(0)	10%
\mathbf{E}	0	0	0	0	-	0	0.01	0.07	0	0	0.08
	(0)	(0)	(0)	(0)		(0)	(0.1)	(0.26)	(0)	(0)	0%
\mathbf{F}	0	0	0	0	0	-	1.06	0.1	0.9	0.05	2.11
	(0)	(0)	(0)	(0)	(0)		(0.4)	(0.3)	(0.61)	(0.22)	9%
\mathbf{G}	0	0	0	0	0.74	1.09	-	5.92	0	0.92	8.67
	(0)	(0)	(0)	(0)	(0.44)	(0.74)		(1.35)	(0)	(0.27)	37%
H	0.01	0.05	0	0	0.25	0.23	2.68	-	0	0	3.22
	(0.1)	(0.22)	(0)	(0)	(0.44)	(0.42)	(1.25)		(0)	(0)	14%
I	0.1	0	0	0	0	0.32	0	0	-	0	0.42
	(0.3)	(0)	(0)	(0)	(0)	(0.51)	(0)	(0)		(0)	2%
J	0	0	0	0	0	0	0	0.08	0	-	0.08
	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0.31)	(0)		0%
	4.12	2.28	2.28	0.45	0.99	1.64	3.75	6.27	0.95	0.97	23.7
	17%	10%	10%	2%	4%	7%	16%	26%	4%	4%	100%