

OpenIPSL and RaPId

Open Source Software Tools for Smart Grid Modeling, Simulation and Model Validation

Luigi Vanfretti, Maxime Baudette, and Francisco José Gómez KTH Royal Institute of Technology

luigiv@kth.se, baudette@kth.se, fragom@kth.se

OpenIPSL

Package Browser

OpenIPSL

Electrical

Branches

□ PSSE

GENSAL

GENROU

GENROE

GENSAE

- GENCLS

BaseClasses

Controls

⊕ OEL

⊞ TG

± PSS

□ CGMES

■ Loads

■ Banks

Solar

Wind

Essentials

NonElectrical

Connectors

MODELICA

SystemBase

□ PSSE

□ PSAT

Packages

The OpenIPSL – A Modelice Library

- Modeling and simulation should not be ambiguous: it should be consistent across different simulation platforms.
- For unambiguous modeling, model sharing and simulation, Modelica and Modelica Tools can be used due to their **standardized equation-based** modeling language.
- The Power Systems library developed using as reference domain specific software tools (e.g. PSS/E, Eurostag, PSAT and others)
- The library is being tested in several Modelica supporting software: OpenModelica, Dymola, SystemModeler
- Components and systems are validated against proprietary tools and one OSS tool used in power systems (domain specific)

Generator

0.934

0.932

0.2156

0.2154

0.2152

0.2148

0.2146

0.215

(p.u.)

Validation of GENROU model

m; end GENROU;

Angle = delta; Isource = XadIfd;

Set-up a model in each tool with the simulation scenario configured

to 0.933In the case of Modelica, the simulation configuration can be done within the model In the case of PSS/E, a Python script is created to perform the same test.

Sample Test:

- 1. Running under steady state for 2s.
- Running under steady state 10.
 Vary the system load with constant P/Q ratio.
 After 0.1s later, the load was restored to its original value.
- 4. Run simulation to 10s.
- 5. Apply three phase to ground fault.
- 6. 0.15s later clear fault by tripping the line.
- 7. Run simulation until 20s.

RApid Parameter IDentification toolbox

- RaPId was developed in MATLAB.
- The MATLAB code acts as wrapper to provide interaction with several other programs (which may not need to be coded in MATLAB).
- Advanced users can simply use MATLAB scripts instead of the graphical interface.
- **Plug-in Architecture:**
- Completely extensible and architecture allows advanced users to add:
- Identification methods
- Optimization methods
- Specific objective functions
 - Solvers (numerical integration routines)

- Output (and optionally input) measurements are provided to RaPId by the user.
- At initialization, a set of parameters is pre-configured (or generated randomly by RaPId)
 - The model is simulated with the parameter values given by RaPId.
 - The outputs of the model are recorded and compared to the user-provided measurements.
 - A fitness function is computed to judge how close the measured data and simulated data are to each other
 - Simulations continue until a min. fitness or max no. of iterations (simulation runs) are reached.

-PSSE

- Dymola

PSSE

Oymola

Time (s)

Useful Resources – Our Open Source Software

OpenIPSL is available on Github:

- Get involved at https://github.com/SmarTS-Lab/OpenIPSL
- Documentation: http://openipsl.readthedocs.io/en/latest/
- See video-demos on-line: https://www.youtube.com/watch?v=nKOCulNiy3o

- RaPId toolbox is available on GitHub: Get involved at https://github.com/SmarTS-Lab/iTesla RaPId
- See video-demos on-line about RaPId:

GUI example: https://www.youtube.com/watch?v=e70kVEtcz6A CLI example: https://www.youtube.com/watch?v=4qrPASIWdiy

