

Факультет Санкт-Петербургская школа физико-математических и компьютерных наук

Основная образовательная программа «Анализ больших данных в бизнесе, экономике и обществе»

ПОСТРОЕНИЕ ГЕНЕРАТИВНОЙ НЕЙРОННОЙ СЕТИ ДЛЯ СИМУЛЯЦИИ ЭЛЕКТРОМАГНИТНЫХ ЛИВНЕЙ

Демидова Анастасия Анатольевна Научный руководитель: Устюжанин Андрей Евгеньевич

Эксперимент OPERA

- OPERA (Oscillation Project with Emulsion-tRacking Apparatus) международный эксперимент в области физики высоких частиц. Его основной целью было изучение нейтринных осцилляций в канале $\nu_{\mu} \rightarrow \nu_{\tau}$
- OPERA имеет огромный детектор, в котором используется специальный вид электромагнитных сэмплирующих калориметров на основе ядерных фотоэмульсий, которые также имеют название «эмульсионные кирпичи» (ECC bricks)
- При прохождении частицы через эмульсионный кирпич формируется электромагнитный ливень. По электромагнитному ливню можно восстановить характеристики частицы: энергию частицы, точку распада и направление движения частицы

Детектор

Один кирпич состоит из 56 слоев свинца 57 пластиковых подложек с нанесенными с двух сторон ядерными фотографическими эмульсиями.

Моделирование

- Эксперимент OPERA в значительной степени основан на детальном моделировании Monte Carlo.
- Моделирование электромагнитного ливня используются для интерпретации результатов текущих экспериментов и оценки эффективности новых. Полное моделирование ливней в детекторе является наиболее вычислительно затратной частью всего процесса моделирования, и одна итерация может занимать несколько минут.
- Поэтому разработка альтернативного более быстрого подхода для симуляции электромагнитных ливней позволит в значительной мере сократить затраты на моделирование.

Набор данных содержит 1000 электромагнитных ливней.

Ливень представляют собой набор треков, который возникает при прохождении заряженной частицы через эмульсионный кирпич.

Каждый ливень характеризуется 5 величинами: $x, y, z, \theta_x, \theta_y$ - позиция и направление

постановка задачи

Электромагнитный ливень можно представить в виде графа, вершины, которого соответствуют трекам. Поэтому задача генерации ливней сводится к двум основным задачам: генерации графа и генерации характеристик вершин.

СЛОЖНОСТИ ДЛЯ ГЕНЕРАЦИИ ГРАФА

•Большая и переменная размерность графа

для генерации графа с n вершинами требуется сгенерировать n^2 значений матрицы смежности число вершин n и максимальное количество ребер m варьируется между различными графами

•Неуникальное представление структуры графа

граф с n вершинами может быть представлен n! эквивалентными матрицами смежности

•Сложные зависимости в структуре графа

ребра не могут быть смоделированы как последовательность независимых событий, а должны генерироваться совместно, где каждое следующее ребро зависит от предыдущих сгенерированных ребер

ОБЗОР МЕТОДОВ

- Существует несколько работ по симуляции электромагнитных ливней методом Монте-Карло
- На данный момент не существует работ по генерации электромагнитных ливней с помощью нейронных сетей
- Однако существует ряд работ, в которых решается задача генерации графа с помощью нейронных сетей

ГЕНЕРАЦИЯ ГРАФА: GRAPHRNN

- Graph-level RNN: генерирует последовательность вершин
- Edge-level RNN: генерирует список смежности для новой вершины

Как задавать последовательность вершин графа?

- В худшем случае нам придется обучаться на всех возможных n! перестановках вершин графа
- Для упорядочения вершин вводится обход графа в ширину (BFS), который позволяет
 - уменьшить сложность обучения по всем возможным последовательностям вершин
 - ограничить количество ребер, предсказанных для каждой вершины

Для генерации сигналов на графе используется Generative Adversarial Network (GAN)

Графовые сверточные нейронные сети

Архитектура генератора

- Чтобы генератор был инвариантен к сдвигам и поворотам ливня, генерируются не сами значения, а разница Δx , Δy , Δz , $\Delta \theta_x$, $\Delta \theta_v$
- Используются свертки для ребер графа EdgeConv

$$x_i' = \sum_{j \in N(i)} h_{\theta}(x_i || x_j - x_i)$$

 $h_{ heta}$ - нейронная сеть типа MLP

• Используются линейные слои для генерации признаков

Архитектура генератора

Архитектура генератора

- В качестве результата генератора получаются признаки ребер графа.
- Сгенерированный граф восстанавливался итеративно:

$$track_{0} = (x_{0}, y_{0}, z_{0}, \theta_{x}^{0}, \theta_{y}^{0}) = (0,0,0,0,0)$$

$$\forall edges (i,j) \in G:$$

$$track_{i} = track_{i} + [\Delta x, \Delta y, \Delta z, \Delta \theta_{x}, \Delta \theta_{y}]$$

Архитектура дискриминатора

Дискриминатор решает задачу классификации на уровне графа.

По обучающему набору данных классификация на уровне графа направлена на прогнозирование метки класса для всего графа.

Архитектура дискриминатора

• Используется свертка для вершин графа – GraphConv

$$x_{i}^{'} = \theta x_{i} + \sum_{j \in N(i)} \theta x_{j}$$

Global mean pooling

$$r_i = \frac{1}{N_i} \sum_{n=1}^{N_i} x_n$$

• Линейные слои для вычисления скаляра

Функции ошибки

• GraphRNN – binary cross entropy

$$\sum y \log(p) + (1 - y) \log(1 - p)$$

- GAN adversarial loss
 - Дискриминатор

$$\frac{1}{N} \sum_{i=1}^{N} [log D(x_i) + log(1 - D(G(z_i)))]$$

• Генератор

$$\frac{1}{N}\sum_{i=1}^{N}\log(1-D(G(z_i)))$$

АРХИТЕКТУРА ВСЕЙ МОДЕЛИ

Примеры сгенерированных ливней

Примеры сгенерированных ливней

Оценка качества сгенерированных ливней

Как видно из примеров, модель фиксирует общую структуру графа, но ветвления ливня моделируются плохо. Для качественной оценки полученной модели предлагается сравнить распределения 5 характеристик электромагнитного ливня.

Оценка качества сгенерированных ливней

Оценка качества сгенерированных ливней

Также для оценки схожести распределений сгенерированных ливней и реальных используется статистика Колмогорова-Смирнова. Чем меньше статистика Колмогорова-Смирнова, тем более схожи распределения между собой.

	$\boldsymbol{\mathcal{X}}$	y	Z	$ heta_{\chi}$	$ heta_{\mathcal{Y}}$
K-S	0.45	0.31	0.24	0.23	0.25

ЗАКЛЮЧЕНИЕ

Предложен новый подход для генерации электромагнитных ливней на основе нейронных сетей

- Для генерации структуры графа используется авторегрессионная модель GraphRNN
- Для генерации сигналов на графе используется GAN с графовыми сверточными нейронным сетями

Данная модель генерирует ливни по структуре похожие на реальные, но плохо отображает ветвление ливня, что подтверждается анализом распределений признаков сгенерированных и реальных ливней

В качестве направления для дальнейшего исследования может быть предложена единая модель для генерации электромагнитных ливней, которая генерирует новую вершину и признаки для нее одновременно.

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ