A3.

- (a) Define the Hamming sphere $S_t(\underline{\mathbf{u}})$ with centre $\underline{\mathbf{u}}$ and radius t in the vector space \mathbb{F}_q^n .
- (b) Write down a formula for $|S_t(\underline{\mathbf{u}})|$, the number of elements in $S_t(\underline{\mathbf{u}})$.
- (c) State the Hamming bound for the number of codewords M of a code of minimum distance d in \mathbb{F}_q^n .
- (d) What is meant by saying that a code $C \subseteq \mathbb{F}_q^n$ of minimum distance d is perfect?
- (e) Prove:
 - 1. The sphere $S_{10}(\underline{0})$ in \mathbb{F}_3^{2013} consists of an odd number of elements.
 - 2. Any perfect code in \mathbb{F}_3^{2013} consists of an odd number of codewords.

[12 marks]

- **A4.** Consider the following binary code of length 6: $C = \{000111, 110001, 011100\}$.
 - (a) Is C a linear code? Give a reason for your answer.
 - (b) Find d(C).
 - (c) Show that there does not exist a vector $\underline{y} \in \mathbb{F}_2^6$ such that $d(\underline{y},\underline{c}) = 1$ for all $\underline{c} \in C$.
 - (d) Find a vector $\underline{\mathbf{z}} \in \mathbb{F}_2^6$ such that $d(\underline{\mathbf{z}},\underline{\mathbf{c}}) = 2$ for all $\underline{\mathbf{c}} \in C$.

[8 marks]

3 of 5 P.T.O.