Introduction to Artificial Intelligence

Written HW 8

Due: Wednesday, April 6, 2022 at 10:59pm (submit via Gradescope).

Policy: Can be solved in groups (acknowledge collaborators) but must be written up individually

Submission: It is recommended that your submission be a PDF that matches this template. You may also fill out this template digitally (e.g. using a tablet). However, if you do not use this template, you will still need to write down the below four fields on the first page of your submission.

First name	Qingjing
Last name	Zhong
SID	3037581096
Collaborators	none.

For staff use only:

Q1.	Markov Decision Process	/20
	Total	/20

Q1. [20 pts] Markov Decision Process

Throughout this homework, we use V(s) to denote the value of a state. This is the same as U(s) used in lecture to denote the utility of a state. "Value" and "utility" mean the same thing in a Markov decision process.

(a) [5 pts] Consider the following deterministic MDP with four states A, B, C and D:

The edges designate actions between states, the weights on those edges are the rewards, and the discount factor is $\gamma = 1$. Let k be the **first** iteration of Value Iteration at which the value function converges for some x for a particular state (i.e. $V_k(s) = V^*(s)$). Use the convention from lecture where $V_0(s)$ is the value at initialization, $V_1(s)$ is the value after one iteration, etc. For each state A, B, C, and D, list all possible values of k. In the case a value function for a particular state never converges, set $k = \infty$ for that state.

- (a) State A, k = 2
- **(b)** State B, *k* = **2**
- (c) State C, k =
- (d) State D, k =

(b) Now consider the following deterministic MDP with four states A, B, C and D:

The edges designate actions between states, the weights on those edges are the rewards, and the discount factor is again $\gamma = 1$. Furthermore assume that $x, y \ge 0$.

- (i) [5 pts] Let k be the **first** iteration of Value Iteration for some nonnegative x and y at which the value function converges for a particular state $(V_k(s) = V^*(s))$. For each state A, B, C and D list **all** possible values of k. In case a value for a particular state never converges set $k = \infty$ for that state.
 - (a) State A, k =
 - **(b)** State B, k =
 - (c) State C, k =
 - (d) State D, k =

(ii) [6 pts] Suppose we perform Policy Iteration and that k is the **first** iteration for which the policy is optimal for a particular state (i.e. $\pi_k(s) = \pi^*(s)$). On top of $x, y \ge 0$ also assume that x + y < 1 and that tie-breaking during policy improvement is alphabetical. The initial policy is given in the table below.

	State s	Policy $\pi_0(s)$
	A	С
İ	В	C
İ	$^{\mathrm{C}}$	D
	D	D

For each state A, B, C and D, find k; if the policy never converges set $k = \infty$ for that state.

(a) State A, $k = 1$	(
,	

(b) State B,
$$k =$$

(c) State C,
$$k = \bigcirc$$

(d) State D,
$$k =$$

Th following two questions are conceptual.

(c) [2 pts] Which of the following statements are guaranteed to be correct for any MDP? Select all that apply.

- There exists a state s and some policy π such that $V^{\pi}(s) \leq V^{*}(s)$.
- There does not exist a state s such that for all policies π , $V^{\pi}(s) \leq V^{*}(s)$.
- For all states s and for all policies π , $V^{\pi}(s) \leq V^{*}(s)$.
- O None of the above.

(d) [2 pts] Which of the following statements are guaranteed to be correct for Value Iteration? Select all that apply.

- \square At each iteration, and for all states, the value at the next iteration is \geq the value at the current iteration.
- At each iteration, and for all states, the value at the next iteration is > the value at the current iteration.
- At each iteration, the value function can be lower than the earlier values for some state.
- Once the value function is optimal at all states, value iteration will not change any value at any state.
- O None of the above.