PRÁCTICA 6

CIRCUITO MIXTO PARALELO-SERIE

UN POQUITO DE TEORÍA, POR FAVOR

Muchos de los circuitos eléctricos que encontramos no son exactamente ni serie ni paralelo. Aparte de otras configuraciones que son posibles, encontramos los **circuitos mixtos**, que incluyen una mezcla de serie y paralelo.

En esta primera práctica vamos a empezar por ver un circuito mixto paralelo-serie. Lo llamamos así porque tenemos cuatro resistencias, que están en paralelo dos a dos. Cada una se podría convertir en una equivalente, dando lugar a dos nuevas resistencias, que estarían en serie entre sí. ¡Así de fácil!

COMPONENTES NECESARIOS:

Generadores	Receptores	Elementos de maniobra	Aparatos de medida
✓ 1 pila	✓ 4 resistencias fijas	1 Interruptor	✓ 1 amperimetro✓ 1 voltimetro

PROCEDIMIENTO:

- 1) Elige los componentes y los aparatos de medida necesarios, y llévalos al área de trabajo.
- 2) Fija la pila a 12 V y R_1 = 20 Ω , R_2 = 80 Ω , R_3 = 40 Ω y R_4 = 60 Ω y acaba de montar el circuito.
- 3) Guarda el montaje con el nombre *practica6_nombre1_nombre2.cxt*.
- 4) Cierra el interruptor y mide la intensidad que atraviesa cada resistencia (llamémoslas I₁, I₂, I₃ e I₄, respectivamente). Anota las medidas en la hoja de respuestas.
- 5) Mide la intensidad que suministra la pila (I_{pila}).
- 6) Observa cómo están asociadas R_1 y R_2 por un lado y R_3 y R_4 por otro. Calcula sus resistencias equivalentes (a las que llamaremos R_{12} y R_{34}). Dibuja el circuito equivalente intermedio en tu hoja de respuestas.
- 7) Observa cómo quedan asociadas R_{12} y R_{34} entre sí. Calcula la resistencia equivalente (R_e) y dibuja el circuito equivalente final.
- 8) Monta el circuito equivalente junto al circuito original y calcula o mide la intensidad que lo atraviesa.
- 9) Entrega el archivo .cxt a tu profesor.

ESQUEMA DEL CIRCUITO:

