Linear Algebra

Notes on various linear algebra topics that I've forgotten or never knew.

Contents

1 The Moore-Penrose Pseudoinverse

A Conventions and Notation 1

B TODO

1 The Moore-Penrose Pseudoinverse

A general matrix $M \in \mathbb{R}^{m \times n}$ will not have an inverse, but it is guaranteed to have a next-best-thing which is also unique: the **Moore-Penrose Pseudoinverse** 1 , denoted by $M^+ \in \mathbb{R}^{n \times m}$. Obviously, it cannot satisfy $MM^+ = \mathbf{1}$ in general (since the identity doesn't even exist for the general $n \neq m$ case we have in mind). However, it satisfies the closest analogues²:

$$M^{+}MM^{+} = M^{+}$$
 $MM^{+}M = M$
 $(MM^{+})^{T} = MM^{+}$
 $(M^{+}M)^{T} = M^{+}M$. (1.1)

1

In the limit where the columns are linearly-independent (such that MM^T is invertible), the MP inverse has the explicit form $M^+(MM^T)^{-1}$. Similarly, if the rows are linearly-independent (such that M^TM is invertible), then $M^+ = (M^TM)^{-1}M^T$. By uniqueness (not proven here), M^+ reduces to M^{-1} , when it exists.

If solutions x of linear equations of the form $M \cdot x = b$ exist, they can be written in terms of the psueduoinverse:

$$x = M^{+}b + M\left(\mathbf{1} - M^{+}M\right)y, \quad y \text{ arbitrary}$$
 (1.2)

which generalizes the form of the solution when M is invertible. Demonstrating that the above solves the desired equation follows from the properties in (1.1), and an additional result that $MM^+b=b$ necessarily holds if any solutions exist 3 .

A Conventions and Notation

B TODO

¹Some concise notes on the properties of this matrixcan be found here.

²These properties do not imply one another.

³Proof: obviously for solutions to exist, b must live in the range of M. When this is true, there is a v for which Mv = b. Then, from (1.1), $b = Mv = MM^+Mv = MM^+b$.

References