4. Бинарные отношения

Опр. $R\subseteq A\times A$ или $R\subseteq A^2$ - бинарное отношение на множестве A Пример:

- $x,y \in \mathbb{N}$
- $x \leq y$ инфиксная запись отображения
- $(x,y)\in$ " \leq " имя бинарного отношения
- ullet В общем виде: xRy или $(x,y)\in R$

Опр. Если R - бинарное отношение, то обратное ему соответствие есть бинарное отношение R^{-1} на том же множестве A

Опр. Бинарное отношение R, в каждой паре которого компоненты совпадают, равномощное множеству A называется диагональю множества A

Обоз. id_A

• Диагональ является отображением

Способы задания бинарных отношений:

- 1. Перечисление пар:
 - $A = \{a_1, a_2, a_3\}$
 - $R = \{(a_1, a_1), (a_1, a_2), (a_2, a_3), (a_1, a_3)\}$
- 2. Таблица: (число столбцов равно Def(R))

R(Def(R))	a_1	a_2
R(Res(R))	$\{a_1,a_2,a_3\}$	$\{a_3\}$

3. Матрица бинарного отношения: (квадратная порядка $n=|A|,\, r_{ij}=1\; (a_i,a_j)\in R$):

	a_1	a_2	a_3
a_1	1	1	1
a_2			1
a_3			

4. Задание двудольным графом

Способы задания соответствия:

$$ho \subseteq A imes B$$

- 1. Перечисление пар:
 - $A = \{a_1, a_2, a_3\}$
 - $B = \{b_1, b_2\}$
 - $\rho = \{(a_1, b_1), (a_1, b_2), (a_2, b_2), (a_3, b_2)\}$
- 2. Таблица:

Def(ho)	a_1	a_2	a_3
ho(Res(ho))	$\{b_1,b_2\}$	$\{b_2\}$	$\{b_2\}$

3. Матрица (сетка) $m \times n$, где $n = |A|, m = |B|,
ho_{ij} = 1 \; (a_i, a_j) \in
ho$:

	b_1	b_2
a_1	1	1
a_2		1
a_3		1

4. Двудольный граф

Свойства бинарных отношений

Пусть дано множество $A, |A| = n, R \subseteq A^2$

1. Рефлексивность

- ullet Опр. Отношение R называется рефлексивным, если $\forall x \in A: xRx$, то есть $(x,x) \in R$ или $id_A \in R$
 - Все элементы на главной диагонали матрицы такого отношения равны 1.
- Опр. Если id_A полностью отсутствует в R, то такое отношение называется **иррефлексивным** (антирефлексивным)
- **Опр.** Если часть элементов элементов id_A присутствует в R, а часть нет, то такое отношение называется **нерефлексивным**
- Пример:
 - "=" рефлексивное отношение
 - "="- иррефлексивное отношение

2. Симметричность

- Опр. Отношение R называется симметричным, если $(x,y) \in R : (y,x) \in R \ (xRy \Rightarrow yRx, \ R = R^{-1})$
- Матрица такого отношения симметрична относительно главной диагонали.
- **Опр.** Если хотя бы для одной пары условие симметричности ен выполняется, то такое отношение называется **несимметричным**

3. Антисимметричность

- Более жёсткое требование, чем несимметричность
- Опр. Отношение R называется антисимметричным, если $(xRy \bowtie yRx) \Rightarrow x = y$
- Не конфликтует с рефлексивностью

4. Транзитивность

- Опр. Отношение R называется транзитивным, если $\forall x,y,z\in A\ (xRy$ и $yRz)\Rightarrow xRz$

5. Плотность

- Опр. Отношение R называется плотным, если $\forall x,y \in A: xRy, x \equiv \exists z \in A: xRz$ и zRy
- Для любых различных элементов множества R можно указать третий элемент из R, который "встраивается" между первыми двумя

Классы бинарных отношений

Отношение\Свойства	Иррефлексивность	Рефлексивность	Симметричность	Антиссимметричн
Эквивалентность		+	+	
Толерантность		+	+	
Порядок (частичный порядок)		+		+
Пред(варительный) порядок (квазипорядок)		+		
Строгий порядок	+			+
Строгий предпорядок	+			