

Pricing Model for Big Mountain Ski Resort

Problem Statement

• Big Mountain Resort pricing has been based primarily on charging a premium above the average price of resorts in its market segment. However, this strategy may have underestimated the value of some facilities compared to others. The company wants a data-driven strategy to select a better value for their ticket price by making changes that will either cut costs without undermining the ticket price or raise the ticket price.

Problem Statement

 Big Mountain Resort pricing has been based primarily on charging a premium above the average price of resorts in its market segment. However, this strategy may have underestimated the value of some facilities compared to others. The company wants a data-driven strategy to select a better value for their ticket price by making changes that will either cut costs without undermining the ticket price or raise the ticket price.

Stakeholders

- CEO
- CFO
- SVP

- Facility engineers
- Maintenance managers

Data Sources

• CSV file that contains information from 330 resorts in the US that can be considered part of the same market share

Comparison of Weekday and Weekend Prices

- Weekend prices are equal or higher than weekday prices
- Less missing values for Adult weekend prices
- Adult weekend prices is the target variable

Distribution of ticket Prices

Ticket Prices by state

Ski States Summary PCA

- The first 4 PCA components account for 94% variance
- The first 2PCA components account for 77% variance

Correlation of data variables

 fastQuads, runs, snow_making and total chairs are correlated with price

Distribution of the correlated features

Linear Regression Model: Gridsearch for best K

Best k is 8

Model Performance Metrics

	Linear Regression	Random Forest
R ²	0.63	0.70
MAE train	10.50	9.64
MAE test	11.49	9.53

• Random forest regression model gave the lower MAE.

RF Feature Importance

Most Important features

- Average Deaths caused by cancer Per Year
- Population
- Cancer Incident rate

Change in ticket Price and revenue by number of runs closed

Conclusion

- The random forest was the best model for ticket prices
- FastQuads, runs, snow_making and vertical drop are the most important features
- The suggested adult weekend price for Big Mountain is \$95.87
- The ticket price could be increased by \$4.85 without negatively affecting