Object Detection in Adverse Weather and Low Light Conditions

Danica Fliss, Jon Van Veen, Han Wang

Problem Statement and Significance

• Adverse weather and low light conditions pose a fundamental challenge to computer vision systems

Region-based CNN (R-CNN)

Object Detection Pipeline

"You Only Look Once" (YOLO)

Image-Adaptive YOLO (IA-YOLO)

BDD100K Dataset

- Diverse scenes and weather
- 100k videos
- 40s frames
- 30 fps

CADC Dataset

- Adverse weather conditions, mainly snow
- 75 scenes
- 50-100 frames per scene
- 8 angles

Additive Gaussian Noise

Illumination

Contrast

Downsample - Upsample

Domain Adaptation with GAN

Contrastive Unpaired Translation (CUT)

Experiment Setup

- Trained a detection model on Nulmages to test augmentation
 - 1.2 million images
 - o 2 classes: vehicles and pedestrians

- Augmented images on BDD100K for testing
 - Increase Illumination
 - CUT model to convert night to day

Evaluation Metric

• The goal is to see how augmentation helps detection

- Average Precision (AP)
- Intersection over Union Threshold (IoU)
 - Overlap area / total joint area

APx

Results

Cars	IAYOLO			YOLOv5			RCNN		
	AP	AP50	AP75	AP	AP50	AP75	AP	AP50	AP75
Night -> Day (CUT)	39.3	38.7	65.8	40.2	39.5	67.3	41.3	40.2	66.3
Illumination	36.9	38.2	63.5	40.1	38.9	64.5	39.9	39.8	65.8
No Modification	39.3	38.1	63.4	39.8	39.6	64.2	39.8	40.1	64.9
Pedestrians	ΙΔΥΟΙ Ο		YOLOv5			RCNN			

Pedestrians	IATOLO			TOLOV5			RCININ		
	AP	AP50	AP75	AP	AP50	AP75	AP	AP50	AP75
Night -> Day (CUT)	14.6	6.9	37.5	15.8	7.4	38.6	14.6	7.7	39.5
Illumination	11.9	6.2	36.9	14.9	6.9	38.2	15.2	7.3	39.2
No Modification	14.6	6.8	37.2	14.6	6.8	37.2	14.9	7,0	37.5

Nighttime

Nighttime

Nighttime

Contributions

- Showed that using GANs, we can improve detection in night time
- A pipeline that can be deployed to detect objects in low light conditions

Conclusions

real_A

fake_B

real_A

fake_B

real_A

fake_B