TRABALHO BIM 1

Nome: Vinícius dos Santos Andrade

Disciplinas: CEF100 - Economia E Finanças

Professor: José Carlos Martins Junior

Exercício 1:

Curva de Demanda

Quantidade

comercializada

a) Preço = \$A (acima do equilíbrio)

Curva de Oferta

Quando o preço é fixado em \$A, que está **acima** do ponto de equilíbrio (onde oferta e demanda se cruzam), a quantidade ofertada tende a ser **maior** do que a quantidade demandada. Em outras palavras, há um **excesso de oferta (ou excedente)**. Produtores gostariam de vender mais a esse preço alto, mas os consumidores não estão dispostos (ou não têm condição) de comprar tanto.

b) Preco = \$B (no equilíbrio)

Ao praticar o preço \$B, que coincide com o ponto onde as curvas de oferta e demanda se encontram, tem-se o **preço de equilíbrio**. Nesse caso, a quantidade ofertada **é igual** à quantidade demandada; não há nem excesso de oferta nem de demanda. O mercado "limpa" todo o produto colocado à venda a esse preço, atendendo exatamente a quantidade que os consumidores desejam.

c) Preço = \$C (abaixo do equilíbrio)

Se o preço é \$C, e isso está **abaixo** do equilíbrio, a quantidade demandada será **maior** do que a quantidade ofertada. Surgirá, portanto, um **excesso de demanda (ou escassez)**. Os consumidores querem comprar mais unidades do bem ou serviço do que os produtores estão dispostos a fornecer a esse preço mais baixo.

Exercício 2: Você emprestou *R*\$ 73. 200, 00 para um colega pagar depois de 4 *meses e* 12 *dias*. A taxa cobrada foi de juros compostos de 8, 5% *ao mês* e os períodos não inteiros devem adotar a convenção linear. Quanto seu colega deverá te pagar no final do período do empréstimo?

Dados do problema:

- 1. Valor emprestado (principal): R\$73.200,00
- 2. Taxa de juros composta: 8, 5% *ao mês* (0, 085)
- 3. Prazo total: 4 meses e 12 dias
- 4. Convenção para período não inteiro: juros lineares sobre o montante obtido ao final dos meses completos
- 1. Montante após 4 meses (juros compostos)
 - a. Fator de capitalização em 4 meses: $(1 + 0,085)^4 \approx 1,385835$
 - b. Montante após 4 meses (M4): M4 = $73.200,00 * (1,385835) \approx R$101.443,10$
- 2. Juros simples para os 12 dias adicionais
 - a. Fração de 12 dias em relação a 30 dias (1 mês): $\frac{12}{30} = 0$, 4
 - b. Taxa linear referente aos 12 dias: $0,085 \cdot 0,4 = 0,034(3,4\%)$
 - c. Montante final depois de 4 meses e 12 dias:
 - i. $M_final = M4 \cdot (1 + 0,085 \cdot 0,4)$
 - ii. $\approx 101.443, 10 \cdot 1,034$
 - iii. $\approx R$ \$ 104. 892, 17

Resposta: Seu colega deverá pagar aproximadamente *R*\$ 104. 892, 17 ao final de 4 *meses e* 12 *dias*.

Exercício 3: Qual os juros trimestrais equivalentes a juros quadrimestrais de 74, 2% (*juros compostos*)

Dados: Juros quadrimestral (período de 4 meses) = 74, 2% = 0,742 (juros compostos)

Procedimento:

1. Calcule o fator de acumulação para 4 mese

a.
$$1 + i_{quadrimestral} = 1 + 0,742 = 1,742$$

2. Para encontrar a taxa equivalente para 3 meses, usamos a relação:

- **a.** $(1 + i_trimestral) = (1 + i_quadrimestral)^(3/4)$
- **b.** Ou seja, consideramos que a capitalização ocorre de forma contínua (no regime composto) e a equivalência é feita pelo expoente $\frac{3}{4}$

3. Cálculo:

- **a.** Aplicamos a fórmula: $1 + i_trimestral = (1,742)^{0.75}$
- **b.** Utilizando logaritmos:
 - i. $ln(1,742)\approx 0,555$
 - ii. Multiplicando pelo expoente: $0,555 \cdot 0,75 = 0,41625$
 - iii. Então: $1 + i_trimestral = e^{(0.41625)} \approx 1,516$
- **c.** Assim, a taxa trimestral é: $i_trimestral = 1,516$ 1 = 0,516, ou seja, aproximadamente 51,6%

RESPOSTA: Os juros trimestrais equivalentes a juros quadrimestrais de 74,2% (juros compostos) são aproximadamente 51,6%.

Observação: Este cálculo é feito considerando a equivalência pela capitalização composta, usando a fórmula: $(1 + i_trimestral) = (1 + i_quadrimestral)^{\frac{3}{4}}$

Exercício 4: Qual o valor que seu colega emprestou para você? sendo você pagou R\$ 9. 440, 00 após 5 meses e 21 dias. Os juros compostos cobrados foram de 4, 2 % a. m. Para períodos não inteiros adotar a convenção linear.

Dados:

Montante (M) final: R\$ 9.440,00

Prazo total: 5 meses inteiros + 21 dias

Taxa de juros compostos: 4,2% ao mês (i=0,042)

Observação: Para períodos não inteiros, adota-se a convenção linear (juros simples para a fração).

Procedimento:

1. Converter os 21 dias em fração de mês:

Utilizando 30 dias como referência de 1 mês, $f = \frac{21}{30} = 0,7$

2. Fórmula para o montante com convenção linear:

$$M = C \cdot (1+i)^n \cdot (1+i \cdot f)$$

Onde:

n = número de meses inteiros = 5

f = fração do mês = 0,7

3. Calcular o fator composto para os 5 meses:

$$(1+i)^n = (1+0,042)^5 = (1,042)^5$$

Approximadamente, $(1,042)^5 \approx 1,228$

4. Calcular o acréscimo simples da parte fracionária:

$$1 + i \cdot f = 1 + 0,042 \cdot 0,7 = 1 + 0,0294 = 1,0294$$

5. Fator total de acumulação:

$$F_{total} = 1,228 \cdot 1,0294 \approx 1,2641$$

6. Resolver para o capital inicial (C):

$$M = C \cdot F_Total \Rightarrow C = \frac{M}{F_Total}$$

$$C = \frac{9.440,00}{1.2641} \approx 7.480,00$$

RESPOSTA: O valor que seu colega emprestou para você foi aproximadamente R\$ 7.480,00.

Exercício 5: Calcule o valor presente do fluxo de caixa abaixo. Taxa atrativa 2,5%

Taxa de desconto (atrativa): 2,5% ao mês

Fluxo de Caixa (em meses):

t = 1: Saída de R\$ 1.000

t = 2: Saída de R\$ 2.000

t = 3: Entrada de R\$ 300

t = 5: Entrada de R\$ 2.000

t = 6: Entrada de R\$ 3.000

Fórmula para desconto de cada parcela:

$$V_p = \frac{F_v}{(1+i)^n}$$

onde i = 0,025 e n é o número de meses

Cálculo de cada parcela:

1) Para
$$t = 1$$
 (Saída de R\$ 1.000):

$$VP1 = \frac{-1.000}{(1+0.025)^{1}} = \frac{-1.000}{1.025} \approx -975,61$$

2)
$$Para\ t = 2\ (Saída\ de\ R\$\ 2.\ 000)$$
:
 $VP2 = \frac{-2.000}{\left(1,025\right)^2} \approx \frac{-2.000}{1,050625} \approx -1.\ 904,\ 11$

3) Para
$$t = 3$$
 (Entrada de R\$ 300):

$$VP3 = \frac{300}{(1,025)^3} \approx \frac{300}{1,07689} \approx + 278,53$$

4) Para
$$t = 5$$
 (Entrada de R\$ 2.000):

$$VP5 = \frac{2.000}{(1.025)^5} \approx \frac{2.000}{1,13141} \approx + 1.767, 24$$

5)
$$Para\ t = 6\ (Entrada\ de\ R\$\ 3.000)$$
:
 $VP6 = \frac{3.000}{(1,025)^6} \approx \frac{3.000}{1,15969} \approx +\ 2.586, 17$

Soma dos Valores Presentes:

$$VP_total = VP1 + VP2 + VP3 + VP5 + VP6$$

= $(-975,61) + (-1.904,11) + 278,53 + 1.767,24 + 2.586,17$
 $\approx -2.879,72 + 278,53 + 1.767,24 + 2.586,17$
 $\approx -2.601,19 + 1.767,24 + 2.586,17$
 $\approx -833,95 + 2.586,17$
 $\approx +1.752,22$

RESPOSTA: O Valor Presente do fluxo de caixa a uma taxa de 2,5% ao mês é de aproximadamente *R*\$1.752,22.

Referências:

o1 : <u>o1-link</u>

o3-mini-high : <u>o3-mini-high</u>

o3 :

o4-mini-high : <u>o4-mini-high-link</u>