Corso di Algebra per Ingegneria

Lezione 11: Esercizi

- (1) Studiare le seguenti operazioni binarie, stabilendo per ciascuna di esse se è commutativa, se è associativa e se è dotata di elementi neutri a sinistra, a destra o neutri:
 - $\alpha: (x, y) \in \mathbb{Z} \times \mathbb{Z} \mapsto x + y + 1 \in \mathbb{Z}$;
 - $\beta:(x,y)\in\mathbb{Z}\times\mathbb{Z}\mapsto -xy\in\mathbb{Z};$
 - $\gamma: (x,y) \in \mathbb{Q} \times \mathbb{Q} \mapsto (x+y)/2 \in \mathbb{Q}$;
 - $\delta: (x,y) \in \mathbb{Z} \times \mathbb{Z} \mapsto 2xy \in \mathbb{Z}$;
 - $\varepsilon:(x,y)\in\mathbb{Q}\times\mathbb{Q}\mapsto 2xy\in\mathbb{Q};$
 - $\zeta:(x,y)\in\mathbb{N}\times\mathbb{N}\mapsto x10^y\in\mathbb{N};$
 - $\eta: (x,y) \in P(\mathbb{Z}) \times P(\mathbb{Z}) \mapsto x \cup y \cup \{1\} \in P(\mathbb{Z});$
 - $\theta:(x,y)\in\mathbb{N}\times\mathbb{N}\mapsto x(y^x+3xy^2)+1\in\mathbb{N};$
- (2) Studiare associatività, commutatività ed elementi neutri della struttura $(\mathbb{Q} \setminus \{0\}, /)$, dove l'operazione / è la divisione in $\mathbb{Q} \setminus \{0\}$, ovvero $(\forall a, b \in \mathbb{Q} \setminus \{0\})(/(a, b) = a/b)$;
- (3) Trovare un'operazione binaria su \mathbb{Z} per la quale esista un unico elemento neutro sinistro e nessun elemento neutro destro.
 - Sia (s, α) una struttura algebrica ad una operazione binaria. L'operazione $\overline{\alpha}:(x,y)\in s\times s\mapsto \alpha(y,x)\in s$ si dice *operazione opposta* ad α .
- (4) Sia (S, α) una struttura algebrica e sia α^* l'operazione opposta di α . Dimostrare le seguenti:
 - (i) $\alpha = \overline{\alpha}$ se e solo se α è commutativa
 - (ii) α è l'operazione opposta di $\overline{\alpha}$;
 - (iii) $\bar{\alpha}$ è associativa se e solo se lo è α ;
 - (iv) per ogni elemento $x \in S$, x è neutro a sinistra in (S, α) se e solo se x è neutro a destra in $(S, \overline{\alpha})$;
 - (v) per ogni elemento $x \in S$, x è neutro a destra in (S, α) se e solo se x è neutro a sinistra in $(S, \overline{\alpha})$;