

MM54HC640/MM74HC640 Inverting Octal TRI-STATE® Transceiver MM54HC643/MM74HC643 True-Inverting Octal TRI-STATE Transceiver

General Description

These TRI-STATE bi-directional buffers utilize advanced silicon-gate CMOS technology, and are intended for two-way asynchronous communication between data buses. They have high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits possess the low power consumption and high noise immunity usually associated with CMOS circuitry, yet have speeds comparable to low power Schottky TTL circuits.

Each device has an active low enable \overline{G} and a direction control input, DIR. When DIR is high, data flows from the A inputs to the B outputs. When DIR is low, data flows from the B inputs to the A outputs. The MM54HC640/MM74HC640 transfers inverted data from one bus to other and the MM54HC643/MM74HC643 transfers inverted data from the A bus to the B bus and true data from the B bus to

These devices can drive up to 15 LS-TTL Loads, and all inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

Features

- Typical propagation delay: 13 ns
- Wide power supply range: 2-6V
- Low quiescent current: 80 µA maximum (74 HC)
- TRI-STATE outputs for connection to bus oriented systems
- High output drive: 6 mA (min)

Connection Diagrams

Order Number MM54HC643 or MM74HC643

Truth Table

Control Inputs		Operation				
G	G DIR 640		643			
L	L	B data to A bus	B data to A bus			
L	Н	Ā data to B bus	Ā data to B bus			
Н	Χ	Isolation	Isolation			

H = high level, L = low level, X = irrelevant

TRI-STATE® is a registered trademark of National Semiconductor Corp

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to +7.0 V
117 0 (00)	
DC Input Voltage DIR and \overline{G} pins (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{IN} , V _{OUT})	-0.5 to $V_{CC} + 0.5V$
Clamp Diode Current (I _{CD})	\pm 20 mA
DC Output Current, per pin (I _{OUT})	\pm 35 mA
DC V _{CC} or GND Current, per pin (I _{CC})	$\pm70~mA$
Storage Temperature Range (T _{STG})	$-65^{\circ}\text{C to } + 150^{\circ}\text{C}$

Power Dissipation (PD)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L) (Soldering 10 seconds)

260°C

Operating Conditions									
	Min	Max	Units						
Supply Voltage (V _{CC})	2	6	V						
DC Input or Output Voltage									
(V _{IN} , V _{OUT})	0	V_{CC}	V						
Operating Temp. Range (T _A)									
MM74HC	-40	+85	°C						
MM54HC	-55	+125	°C						
Input Rise/Fall Times									
(t_r, t_f) $V_{CC} = 2.0V$		1000	ns						
$V_{CC} = 4.5V$		500	ns						
$V_{CC} = 6.0V$		400	ns						

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed Limits		
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 6.0 \text{ mA}$ $ I_{OUT} \le 7.8 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 6.0 \text{ mA}$ $ I_{OUT} \le 7.8 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Input Leakage Current (G and DIR)	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{OZ}	Maximum TRI-STATE Output Leakage Current	$V_{OUT} = V_{CC}$ or GND Enable $\overline{G} = V_{IH}$	6.0V		±0.5	±5.0	±10	μΑ
I _{CC}	Maximum Quiescent Supply Current	V _{IN} =V _{CC} or GND I _{OUT} =0 μA	6.0V		8.0	80	160	μΑ

Note 1: Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} =5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**}V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay	$C_L = 45 pF$	13	17	ns
t_{PZH} , t_{PZL}	Maximum Output Enable Time	$R_L = 1 k\Omega$ $C_L = 45 pF$	33	42	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$ $C_L = 5 pF$	32	42	ns

$\textbf{AC Electrical Characteristics} \ \ V_{CC} = 2.0 \ V \ \text{to 6.0V, C}_L = 50 \ \text{pF, t}_f = t_f = 6 \ \text{ns (unless otherwise specified)}$

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
						Guaranteed Limits		
t _{PHL} , t _{PLH}	Maximum Propagation Delay	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	29 38	72 96	88 116	96 128	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	14 18	18 24	22 29	24 32	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	14 18	18 24	22 29	24 32	ns ns
t _{PZH} ,	Maximum Output Enable	$R_L = 1 k\Omega$						
t _{PZL}		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	70 80	184 216	224 260	240 284	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	35 41	46 54	56 65	60 71	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	31 36	41 47	50 57	54 62	ns ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$	2.0V 4.5V 6.0V	47 33 31	172 43 41	208 52 50	224 56 54	ns ns ns
t _{THL} , t _{TLH}	Output Rise and Fall Time	C _L =50 pF	2.0V 4.5V 6.0V	20 6 5	60 12 10	75 15 13	90 18 15	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	$\overline{G} = V_{IL}$ $\overline{G} = V_{IH}$		120 12				pF pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{IN/OUT}	Maximum Input/Output Capacitance, A or B			15	20	20	20	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

Order Number MM54HC640J, MM54HC643J, MM74HC640J or MM74HC643J See NS Package J20A

Order Number MM74HC640N or MM74HC643N See NS Package N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor

Europe Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

J20A (REV M)