ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ΓΟCT P 8.770— 2011

Государственная система обеспечения единства измерений

ГАЗ ПРИРОДНЫЙ

Коэффициент динамической вязкости сжатого газа с известным компонентным составом. Метод расчетного определения

Издание официальное

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

- 1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Российский научно-технический центр информации по стандартизации, метрологии и оценке соответствия» (ФГУП «СТАНДАРТИНФОРМ»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 180 «Государственная служба стандартных справочных данных»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 13 декабря 2011 г. № 1102-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Содержание

	1
	1
 	. 4
	5
 	6
 	7

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

ГАЗ ПРИРОДНЫЙ

Коэффициент динамической вязкости сжатого газа с известным компонентным составом. Метод расчетного определения

State system for ensuring the uniformity of measurements. Natural gas. The coefficient of dynamic viscosity of compressed gas with a known component composition. The method of calculation

Дата введения — 2013—01—01

1 Область применения

Настоящий стандарт устанавливает метод расчетного определения динамической вязкости природного газа, подготовленного для транспортирования и распределения по магистральным газопроводам, при условии его нахождения только в газовой фазе.

Стандарт распространяется на подготовленные для транспортирования по магистральным газопроводам газы в диапазонах давления P и температуры T, при которых на практике осуществляют транспортирование и распределение газов.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 8.662—2009 (ИСО 20765-1:2005) Государственная система обеспечения единства измерений. Газ природный. Термодинамические свойства газовой фазы. Методы расчетного определения для целей транспортирования и распределения газа на основе фундаментального уравнения состояния AGA8

ГОСТ 8.417—2002 Государственная система обеспечения единства измерений. Единицы величин

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

3.1 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р 8.662 и ГОСТ 8.417.

3.2 Обозначения

3.2.1 Условные обозначения

Условные обозначения величин и обозначения их единиц приведены в таблице 1.

FOCT P 8.770—2011

Таблица 1 — Условные обозначения величин

	Величина				
Обозначение	Наименование	Единица			
Т	Абсолютная температура	K			
P	Абсолютное давление	МПа			
R	Универсальная газовая постоянная (R = 8,31451*)	кДж/(кмоль · K)			
N	Число компонентов газовой смеси	1			
$\{x_i\},\vec{X}$	Вектор молярных долей компонентов газовой смеси	1			
ρ	Удельная (массовая) плотность	кг/м ³			
$\tilde{ ho}$	Молярная плотность	кмоль/м ³			
М	Молярная масса	кг/кмоль			
Z	Фактор сжимаемости	1			
μ	Коэффициент динамической вязкости	мкПа ⋅ с			
μ_0	Коэффициент динамической вязкости в состоянии разреженного газа	мкПа∵с			
Δμ	Безразмерная избыточная составляющая коэффициента динамической вязкости	1			
φ	Критический фактор вязкости	мкПа⊹с			
τ	Относительная температура	1			
ω	Относительная плотность	1			
Ω	Ацентрический фактор Питцера	1			
{a _{ik} }	Параметры уравнений для коэффициентов динамической вязкости ком- понентов в состоянии разреженного газа	мкПа⊹с			
{ <i>c</i> _n }	Параметры уравнения для безразмерной избыточной составляющей коэффициента динамической вязкости	1			
$\{\phi_i\},\ i=1,\ldots,6$	Параметры аффинных преобразований для относительных плотности и температуры	1			

^{*} Несмотря на то что международное метрологическое сообщество не считает данное значение универсальной газовой постоянной R самым точным, оно установлено в ГОСТ Р 8.662, уравнение состояния которого используется для расчета плотности природного газа при определении вязкости в настоящем стандарте. Расхождение между приведенным значением и значением, принятым в настоящее время, менее $5 \cdot 10^{-5}$.

3.2.2 Подстрочные индексы

В условных обозначениях величин приняты следующие индексы:

r — относительная величина;

i, j, k, l — значение соответствующих величин для i, j, k, l-го компонентов смеси;

bs — значение соответствующей величины для базового вещества;

m — значение соответствующей величины для смеси;

n — значение номера параметра уравнения для безразмерной избыточной составляющей коэффициента динамической вязкости;

c — значение величины в критической точке.

4 Общие положения метода

Коэффициент динамической вязкости природного газа как газовой смеси с известным компонентным составом μ_m вычисляют по следующему уравнению:

$$\mu_m = \mu_{0m}(T, \vec{x}) + \varphi_m \Delta \mu_{bs}(\tau_m, \omega_m), \tag{1}$$

$$\varphi_m = \frac{2,63094 \, M_m^{1/2} P_{cm}^{2/3}}{T_{cm}^{1/6}},\tag{2}$$

где μ_{0m} — коэффициент динамической вязкости смеси в состоянии разреженного газа, зависящий только от компонентного состава и температуры, мкПа · c;

 $\Delta \mu_{bs}(\tau_m,\omega_m)$ — безразмерная избыточная составляющая коэффициента динамической вязкости смеси, зависящая от компонентного состава, температуры и плотности;

 ϕ_m — критический фактор вязкости смеси, мкПа · c;

в качестве базового вещества (bs) принят метан.

Плотность природного газа при заданном компонентном составе и рабочих температуре и давлении рассчитывают по уравнению состояния AGA8 по ГОСТ Р 8.662. При использовании этого уравнения при расчете вязкости соблюдают соответствующие ограничения по компонентному составу природного газа, представленные в таблице 2.

При расчете коэффициента динамической вязкости природного газа учитывают только его основные компоненты — те, молярные доли которых $x_{\rm i} \ge 0,001$ (см. таблицу 2), а также водяной пар как существенно полярное вещество; поэтому молярные доли ${\rm O_2}$ и Ar добавляют к молярной доле ${\rm N_2}$; молярную долю ${\rm H_2S}$ — к молярной доле ${\rm CO_2}$, а молярные доли ${\rm C_8H_{18}}$, ${\it H-C_9H_{20}}$, ${\it H-C_{10}H_{22}}$ — к молярной доле ${\it H-C_7H_{16}}$.

Т а б л и ц а 2 — Диапазоны значений молярных долей основных и второстепенных компонентов природного газа

газа		
Номер компонента <i>і</i>	Компонент	Диапазон значений молярной доли
1	Азот	$0 \le x_{N_2} \le 0.20$
2	Диоксид углерода	$0 \le x_{CO_2} \le 0.20$
3	Метан	$0.7 \le x_{\text{CH}_4} \le 1.00$
4	Этан	$0 \le x_{C_2H_6} \le 0,10$
5	Пропан	$0 \le x_{C_3H_8} \le 0.035$
6 + 7	<i>н</i> -Бутан + изобутан	$0 \le X_{C_4 H_{10}} \le 0,015$
8 + 9	<i>н</i> -Пентан + изопентан	$0 \le x_{C_8H_{12}} \le 0,005$
10	<i>н</i> -Гексан	$0 \le x_{C_6H_{14}} \le 0,001$
11	<i>н</i> -Гептан	$0 \le x_{C_7 H_{16}} \le 0,0005$
12 +13 +14	<i>н</i> -Октан + <i>н</i> -нонан + <i>н</i> -декан	$0 \le x_{C_8+} \le 0,0005$
15	Водород	$0 \le x_{H_2} \le 0.10$
17	Моноксид углерода	$0 \le x_{CO} \le 0.03$
18	Водяной пар	$0 \le x_{H_2O} \le 0,00015$
20	Гелий	$0 \le x_{He-4} \le 0,005$
16	Кислород	$0 \le x_{O_2} \le 0,0002$
19	Сероводород	$0 \le x_{H_2S} \le 0,0002$
21	Аргон	$0 \le x_{Ar} \le 0,0002$

5 Динамическая вязкость смеси в состоянии разреженного газа

Коэффициент динамической вязкости смеси в состоянии разреженного газа μ_{0m} вычисляют по формуле Уилки:

$$\mu_{0m} = \sum_{i=1}^{N} \frac{x_i \ \mu_{0i}(T)}{\sum_{j=1}^{N} x_j \chi_{ij}},\tag{3}$$

где

$$\chi_{ij} = \frac{\left[1 + (\mu_{0i}/\mu_{0j})^{1/2} (M_j/M_i)^{1/4}\right]^2}{\left[8(1 + M_i/M_i)\right]^{1/2}}.$$
(4)

В уравнениях (3) и (4) μ_{0j} и μ_{0j} — коэффициенты динамической вязкости в состоянии разреженного газа для *i*-го и *j*-го компонентов соответственно.

Коэффициенты динамической вязкости в состоянии разреженного газа для любого компонента вычисляют по формуле

$$\mu_{0i} = \sum_{k=0}^{3} a_{ik} \theta^k, \tag{5}$$

где θ = T/100 K; коэффициенты $\{a_{ik}\}$ приведены в таблице A.1 (приложение A).

Значения молярных масс компонентов $\{M_i\}$ приведены в таблице A.3 (приложение A).

Значения коэффициентов $\{a_{ik}\}$ для основных компонентов природного газа определены в результате обработки данных о коэффициентах динамической вязкости чистых компонентов в состоянии разреженного газа $\{\mu_{0i}\}$ или при атмосферном (и ниже) давлении $\{\mu_{\text{атмi}}\}$, в том числе стандартных справочных данных [1]—[8].

6 Избыточная составляющая коэффициента динамической вязкости

Безразмерную избыточную составляющую коэффициента динамической вязкости рассчитывают по уравнению для избыточной вязкости базового вещества — метана, полученному на основе новых высокоточных экспериментальных данных, а также наиболее надежных данных, использованных при разработке аналогичного уравнения для таблиц стандартных справочных данных ГСССД 195—01 [9]:

$$\Delta\mu_{bs} = \sum_{n=1}^{8} c_n \omega_{bs}^{r_n} \tau_{bs}^{-t_n}, \tag{6}$$

где ω_{bs} и τ_{bs} — относительные плотность и температура базового вещества; параметры $\{c_n\}$ и показатели степеней $\{r_n\}$, $\{t_n\}$ приведены в таблице A.2 (приложение A).

Относительные плотность и температуру базового вещества в формуле (6) выражают через относительные плотность и температуру смеси с помощью аффинных преобразований:

$$\begin{cases} \omega_{bs} = \phi_{1m} \omega_m^{\phi_{2m}} \tau_m^{\phi_{3m}} \\ \tau_{bs} = \phi_{4m} \omega_m^{\phi_{5m}} \tau_m^{\phi_{6m}} \end{cases}$$
 (7)

В формулах (7) $\{\phi_{im}\}$ — параметры аффинных преобразований, а ω_m и τ_m — относительные плотность и температура смеси:

$$\omega_m = \tilde{\rho} / \tilde{\rho}_{cm}, \quad \tau_m = T / T_{cm},$$
(8)

где $\widetilde{\rho}$, T — молярная плотность и температура смеси;

 $\widetilde{
ho}_{\it cm},\, T_{\it cm}$ — псевдокритические молярная плотность и температура смеси.

Молярную плотность смеси $\tilde{\rho}$ при задании исходных T, P и вектора молярных долей компонентов $\{x_k\}$ рассчитывают по уравнению состояния AGA8 в соответствии с ГОСТ Р 8.662.

Псевдокритические параметры газовой смеси вычисляют по следующим формулам:

$$\widetilde{\rho}_{cm}^{-1} = \widetilde{V}_{cm} = \sum_{k=1}^{N} \sum_{l=1}^{N} X_k X_l \widetilde{V}_{ckl}, \qquad (9)$$

где
$$\widetilde{V}_{ckl} = \left[\frac{(M_k/\rho_{ck})^{1/3} + (M_l/\rho_{cl})^{1/3}}{2} \right]^3$$
;

$$T_{cm} = \frac{1}{\widetilde{V}_{cm}} \sum_{k=1}^{N} \sum_{l=1}^{N} x_k x_l \widetilde{V}_{ckl} T_{ckl}, \tag{10}$$

где $T_{ckl} = (T_{ck}T_{cl})^{1/2}$.

В формулах (9) и (10) $\{\rho_{ck}, \rho_{cl}\}$, $\{M_k, M_l\}$, $\{T_{ck}, T_{cl}\}$, $\{x_k, x_l\}$ — критические плотности, молярные массы, критические температуры и молярные доли для пар компонентов (k, l) смеси соответственно; N — число компонентов смеси; единица величины $\tilde{\rho}_{cm}$ — кмоль/м³. Значения $\{\rho_{ck}\}$, $\{M_k\}$, $\{T_{ck}\}$ для чистых веществ — компонентов смеси приведены в таблице А.З (приложение А).

Значение псевдокритического давления P_{cm} смеси в формуле (2) определяют по следующим выражениям:

$$Z_{cm} = 0.291 - 0.08 \,\Omega_m,\tag{11}$$

$$P_{cm} = 10^{-3}R \,\widetilde{\rho}_{cm} T_{cm} Z_{cm}, \tag{12}$$

$$\Omega_m = \sum_{i=1}^N x_i \Omega_i. \tag{13}$$

В формулах (11) и (13) Ω_m — ацентрический фактор Питцера для смеси; $\{\Omega_j\}$ — факторы Питцера для отдельных компонентов. Значения $\{\Omega_j\}$ приведены в таблице А.3 (приложение А). Используемые значения $\{\Omega_j\}$ отличаются от принятых в справочной литературе; они определены из формулы (11) при реальных значениях $\{Z_{cj}\}$ чистых компонентов.

Молярную массу смеси M_m в формуле (2) вычисляют по формуле

$$M_m = \sum_{i=1}^N x_i \cdot M_i. \tag{14}$$

Параметры аффинных преобразований для относительных плотности и температуры смеси в формулах (7) вычисляют по формуле:

$$\phi_{im} = \delta_i + \sum_{k=1}^{N} x_k d_{ik},$$
 (15)

где i = 1, ..., 6.

В уравнениях (15) δ_i = 1 или δ_i = 0, а $\{d_{ik}\}$ — подгоночные коэффициенты. Все коэффициенты $\{d_{i3}\}$ для метана равны нулю. Значения $\{d_{ik}\}$ для каждого из других основных четырнадцати компонентов газовых смесей (N₂, CO₂, C₂H₆, C₃H₈, H-C₄H₁₀, H-C₅H₁₀, H-C₅H₁₂, H-C₆H₁₄, H-C₇H₁₆, H₂, CO, H₂O и He-4) определены в результате обработки данных о вязкости для этих компонентов, в том числе стандартных справочных данных [1]—[8], при давлениях до 30 МПа. Значения $\{d_{ik}\}$ приведены в таблице А.4 (приложение A).

7 Границы применения метода и неопределенность расчетных значений коэффициента динамической вязкости

Границы применения метода расчетного определения коэффициента динамической вязкости зависят в первую очередь от границ применения уравнения состояния AGA8 по ГОСТ Р 8.662, используемого для расчета плотности газовой смеси, а также от диапазонов температуры и давления, в которых

ГОСТ Р 8.770—2011

определены параметры уравнений для расчета вязкости из данных о вязкости чистых компонентов, в том числе стандартных справочных данных [1]—[9].

Настоящий метод применим в диапазонах абсолютных температуры 250—350 К и давления 0—30 МПа при соблюдении соответствующих ограничений по содержанию компонентов (см. таблицу 2).

Оценки расширенной неопределенности расчетных значений коэффициента динамической вязкости для различных диапазонов давления представлены в таблице 3. Значения расширенной неопределенности U (с доверительной вероятностью 95 %) для всей расчетной области находятся в пределах: $0.6 \le U \le 4.0$.

Т а б л и ц а 3 — Значения расширенной неопределенности U расчетных значений коэффициента динамической вязкости (с доверительной вероятностью 95 %)

ΔΡ, ΜΠα	U, %
0,1 ≤ <i>P</i> < 1,0	0,6
1,0 ≤ <i>P</i> < 10,0	1,9
10,0 ≤ <i>P</i> < 20,0	2,6
20,0 ≤ <i>P</i> ≤ 30,0	4,0

8 Оформление результатов расчетов

В соответствии с оценками неопределенности расчетных значений плотности и коэффициента динамической вязкости, приведенными в ГОСТ Р 8.662 и таблице 3, значения рассчитанных теплофизических свойств должны быть записаны с числом значащих цифр, указанным в таблице 4. При оформлении результатов расчетов необходимо указывать значения температуры, давления (или плотности) и компонентный состав, для которых эти результаты получены. Использованный метод расчета должен содержать ссылку на настоящий стандарт.

Для наладки программного обеспечения метода расчетного определения вязкости полезно использовать лишние цифры в числовых значениях теплофизических свойств (см. пример в приложении В).

Таблица 4 — Оформление результатов

Обозначение	Свойство	Единица величины	Число значащих цифр
ρ	Плотность	кг/м ³	5
μ	Коэффициент динамической вязкости	мкПа⊹с	4

Приложение A (обязательное)

Значения констант, используемых для расчета коэффициента динамической вязкости

Т а б л и ц а A.1 — Коэффициенты $\{a_{ik}\}$ уравнения (5) для μ_{0i} основных компонентов природного газа

,		a_{ik} для компонента i	
k	Азот	Диоксид углерода	Метан
0	-0,279070091 · 10 ⁰	-0,468233636 · 10 ⁰	-0,838029104 · 10 ⁰
1	0,781221301 · 10 ¹	0,537907799 · 10 ¹	0,488406903 · 10 ¹
2	-0,699863421 · 10 ⁰	-0,349633355 · 10 ⁻¹	-0,344504244 · 10 ⁰
3	0,378831186 · 10 ⁻¹	-0,126198032 · 10 ⁻¹	0,151593109 · 10 ⁻¹

Продолжение таблицы А.1

	minorial macriagary in				
		a_{ik} для компонента i			
k	Этан	Пропан	<i>н-</i> Бутан		
0	-0,121924490 · 10 ¹	0,254518256 · 10 ⁰	-0,524058048 · 10 ⁰		
1	0,405145591 · 10 ¹	0,254779249 · 10 ¹	0,281260308 · 10 ¹		
2	$-0,200150993 \cdot 10^{0}$	0,683095277 · 10 ⁻¹	$-0,496574363 \cdot 10^{-1}$		
3	$0,662746099 \cdot 10^{-2}$	-0,114348793 · 10 ⁻¹	0,0		

Продолжение таблицы А.1

	a_{ik} для компонента i		
к Изобутан <i>н</i> -Пентан		Изопентан	
0	0,104273843 · 10 ¹	$104273843 \cdot 10^{1}$ $0,452603096 \cdot 10^{0}$ $0,550744125 \cdot 10^{0}$	
1	0,169220741 · 10 ¹	$0,179775689 \cdot 10^{1}$ $0,175702204 \cdot 10^{1}$	
2	0,194077419 · 10 ⁰	$0,194077419 \cdot 10^{0}$ $0,157002776 \cdot 10^{0}$ $0,173363456 \cdot 10^{0}$	
3	-0,159867334 · 10 ⁻¹	-0,158057627 · 10 ⁻¹	-0,167839786 · 10 ⁻¹

Продолжение таблицы А.1

	a_{ik} для компонента i		
к Гексан Гептан		Водород	
0	0,658064311 · 10 ⁰	0,740052089 · 10 ⁰	0,142410895 · 10 ¹
1	0,150818329 · 10 ¹	$0,154218396 \cdot 10^{1}$ $0,303739469 \cdot 10^{1}$	
2	0,178280027 · 10 ⁰	0,147675612 · 10 ⁰	$-0,203048737 \cdot 10^{0}$
3	$-0,161050134 \cdot 10^{-1}$	-0,135511783 · 10 ⁻¹	$0,106137856 \cdot 10^{-1}$

Окончание таблицы А.1

l.	а _{ік} для компонента <i>і</i>		
k	Моноксид углерода	Водяной пар	Гелий-4
0	-0,424649268 · 10	0,118871011 · 10 ²	0,295929817 · 10 ¹
1	0,798656627 · 10 ¹	-0,538839948 · 10 ¹	0,717751320 · 10 ¹
2	$-0,727175272 \cdot 10^{0}$	0,200827939 · 10 ¹	-0,641191946 · 10 ⁰
3	0,398744421 · 10 ⁻¹	-0,142699082 · 10 ⁰	0,451852767 · 10 ⁻¹

Т а б л и ц а А.2 — Параметры $\{c_n\}$ и показатели степеней $\{r_n\}$, $\{t_n\}$ уравнения (6) для $\Delta\mu_{bs}$

n	C _n	r_n	t_n
1	0,306331302 · 10 ¹	1	1
2	-0,864573627 · 10 ¹	1	2
3	0,896123185 · 10 ¹	1	3
4	$-0,300860053 \cdot 10^{1}$	1	4
5	0,127196662 · 10 ¹	2	1
6	-0,875183697 · 10 ⁰	2	2
7	-0,577055575 · 10 ⁻¹	3	1
8	0,352272638 · 10 ⁻¹	5	1

Т а б π и ц а A.3 — Критические параметры, молярные массы и факторы Питцера основных компонентов природного газа

odiioi o rasa						
Порядковый номер компонента	Компонент	<i>T_c</i> , K	р _с , кг/м ³	<i>М</i> , кг/кмоль	Ω	
1	Азот (N ₂)	126,2	313,1	28,0135	0,013592	
2	Диоксид углерода (CO ₂)	304,2	468,0	44,010	0,20625	
3	Метан (CH ₄)	190,564	162,66	16,043	0,064294	
4	Этан (C ₂ H ₆)	305,32	206,58	30,070	0,10958	
5	Пропан (С₃Н₃)	369,825	220,49	44,097	0,18426	
6	<i>н</i> -Бутан (<i>н</i> -С₄Н₁₀)	425,16	227,85	58,123	0,21340	
7	Изобутан (<i>изо</i> -С₄Н ₁₀)	407,85	224,36	58,123	0,16157	
8	<i>н</i> -Пентан (<i>н</i> -С₅Н₁₂)	469,65	232,0	72,150	0,29556	
9	Изопентан (<i>изо</i> -С₅Н ₁₂)	460,39	236,0	72,150	0,26196	
10	<i>н</i> -Гексан (<i>н</i> -С ₆ Н ₁₄)	507,85	233,6	86,177	0,29965	
11	н-Гептан (<i>н-</i> С ₇ Н ₁₆)	540,16	235,0	100,204	0,39405	
15	Водород (Н2)	32,938	31,36	2,0159	-0,12916	
17	Моноксид углерода (CO)	132,85	303,91	28,01	-0,0061836	
18	Водяной пар (H₂O)	647,096	322,00	18,0153	0,76949	
20	Гелий-4 (Не-4)	5,19	69,64	4,0026	-0,14949	

Т а б л и ц а A.4 — Значения коэффициентов $\{d_{ik}\}$ для параметров аффинных преобразований по формуле (15)

	δ_i	d_{ik} для компонента k				
,		Азот	Диоксид углерода	Метан	Этан	
1	1	-0,5352690 · 10 ⁻²	-0,3468202 · 10 ⁻¹	0,0	0,4156931 · 10 ⁻¹	
2	1	$0,9101896 \cdot 10^{-1}$	0,1130498 · 10 ⁰	0,0	0,0	
3	0	0,1501200 · 10 ⁻¹	0,5811886 · 10 ⁻¹	0,0	0,6408111 · 10 ⁻¹	
4	1	0,2640642 · 10 ⁰	0,5767935 · 10 ⁻¹	0,0	0,4763455 · 10 ⁻¹	
5	0	-0,1032012 · 10 ⁰	-0,1814105 · 10 ⁰	0,0	-0,1889656 · 10 ⁰	
6	1	-0,1078872 · 10 ⁰	-0,5971794 · 10 ⁰	0,0	0,1533738 · 10 ⁰	

Продолжение таблицы А.4

	2	d_{ik} для компонента k			
	δ_i	Пропан	<i>н</i> -Бутан	Изобутан	<i>н</i> -Пентан
1	1	$0,3976538 \cdot 10^{-1}$	$-0,6667775 \cdot 10^{-1}$	0,7234927 · 10 ⁻¹	0,0
2	1	0,8375624 · 10 ⁻¹	0,2100174 · 10 ⁰	0,9435210 · 10 ⁻²	0,1651156 · 10 ⁰
3	0	0,1747180 · 10 ⁰	$0,6330205 \cdot 10^{-1}$	$-0,3673568 \cdot 10^{-1}$	$-0,7126922 \cdot 10^{-1}$
4	1	1,250272 · 10 ⁰	0,3182660 · 10 ⁰	0,4516722 · 10 ⁰	0,6698673 · 10 ⁻¹
5	0	$-0,5283498 \cdot 10^{0}$	0,1474434 · 10 ⁰	-0,3272680 · 10 ⁰	-0,5283166 · 10 ⁰
6	1	0,2458511 · 10 ⁰	−1,113935 · 10 ⁰	-0,6135352 · 10 ⁰	$-0.7803174 \cdot 10^{0}$

Продолжение таблицы А.4

	δ_i	d_{ik} для компонента k				
1	Изопентан		Гексан	Гептан	Водород	
1	1	0,2229787 · 10 ⁻¹	0,1753529 · 10 ⁰	0,0	-0,3937273 · 10 ⁻¹	
2	1	$0,8380246 \cdot 10^{-1}$	-0,8018375 · 10 ⁻¹	0,0	0,1532106 · 10 ⁻¹	
3	0	$0,4639638 \cdot 10^{-1}$	-0,3543316 · 10 ⁻¹	0,0	-0,3423876 · 10 ⁻¹	
4	1	$-0,1450583\cdot 10^{0}$	-0,9677546 · 10 ⁻¹	0,0	-0,1399209 · 10 ⁰	
5	0	$0,3725585 \cdot 10^{-1}$	-0,2015218 · 10 ⁰	0,0	$-0,6955475 \cdot 10^{-1}$	
6	1	$-0,4106772 \cdot 10^{0}$	-1,206562 · 10 ⁰	0,0	-1,049055 · 10 ⁰	

Окончание таблицы А.4

	Tanao maonagan in					
	2		d_{ik} для компонента k			
'		i δ_i	Моноксид углерода	Водяной пар	Гелий-4	
1	1	-0,8435373 · 10 ⁻²	-0,2499971 · 10 ⁰	0,2992490 · 10 ⁰		
2	1	0,9023539 · 10 ⁻¹	0,3973388 · 10 ⁰	-0,1490941 · 10 ⁰		
3	0	0,9739430 · 10 ⁻²	2,168006 · 10 ⁰	0,1577329 · 10 ⁰		
4	1	0,2506655 · 10 ⁰	-0,1194767 · 10 ⁰	-0,2253240 · 10 ⁰		
5	0	-0,1006196 · 10 ⁰	-0,2622191 · 10 ⁰	-0,2731058 · 10 ⁰		
6	1	-0,9334287 · 10 ⁻¹	-0,9158224 · 10 ⁰	-0,8827831 · 10 ⁰		

Приложение В (обязательное)

Результаты контрольных расчетов

Следующие примеры расчетов приведены для целей проверки программных решений (таблицы В.1—В.7).

Таблица В.1 — Составы газа в молярных долях

1 0 0 11 1	ица в.т — Составыт	аза в МОЛЯРПВ	их долях	T	Γ	T	Г
Номер компо- нента	Компонент	Газ 1	Газ 2	Газ 3	Газ 4	Газ 5	Газ 6
1	Азот	0,003000	0,031000	0,009617	0,100000	0,057000	0,117266
2	Диоксид углерода	0,006000	0,005000	0,015021	0,016000	0,076000	0,011093
3	Метан	0,965000	0,907000	0,859284	0,735000	0,812000	0,825198
4	Этан	0,018000	0,045000	0,084563	0,033000	0,043000	0,034611
5	Пропан	0,004500	0,008400	0,023022	0,007400	0,009000	0,007645
6	<i>н</i> -Бутан	0,001000	0,001500	0,006985	0,000800	0,001500	0,002539
7	Изобутан	0,001000	0,001000	_	0,000800	0,001500	_
8	<i>н</i> -Пентан	0,000300	0,000400	0,001218	0,000400	_	0,000746
9	Изопентан	0,000500	0,000300	_	0,000400	_	_
10	<i>н</i> -Гексан	0,000700	_	0,000228	0,000200	_	0,000225
11	<i>н-</i> Гептан	_	_	0,000057	0,000100	_	0,000110
12	<i>н-</i> Октан	_	_	0,000005	0,000100	_	0,000029
13	<i>н</i> -Нонан	_		_	0,000100	_	_
14	<i>н</i> -Декан		1	_	0,000100	_	_
15	Водород	_	_	_	0,095000	_	_
16	Кислород	_	0,000100	_	0,000100	_	_
17	Моноксид углерода	_	_	_	0,010000	_	_
18	Вода	_	0,000100	_	0,000100	_	_
19	Сероводород		0,000100	_	0,000100	_	
20	Гелий			_	0,000200	_	0,000538
21	Аргон	_	0,000100	_	0,000100	_	_
	Сумма	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000

Таблица В.2 — Результаты для газа 1

P, M∏a	Т, К	ρ, κ г/м ³	μ, мкПа ⋅ с
5	250	49,295	10,877
5	270	43,196	11,308
5	290	38,764	11,818
5	310	35,331	12,362

Окончание таблицы В.2

<i>P</i> , МПа	<i>T</i> , K	ρ, κ г/ м ³	μ, мкПа ⋅ с
5	330	32,558	12,920
5	350	30,253	13,480
10	250	123,524	14,840
10	270	99,693	13,979
10	290	85,439	13,855
10	310	75,657	14,027
10	330	68,371	14,341
10	350	62,653	14,729
15	250	196,147	21,047
15	270	159,598	18,218
15	290	134,830	16,935
15	310	117,682	16,422
15	330	105,145	16,300
15	350	95,519	16,389
20	250	239,112	26,287
20	270	205,063	22,631
20	290	177,345	20,446
20	310	155,978	19,232
20	330	139,550	18,608
20	350	126,664	18,336
25	250	265,984	30,427
25	270	236,187	26,460
25	290	209,798	23,790
25	310	187,576	22,074
25	330	169,362	21,020
25	350	154,490	20,406
30	250	285,176	33,909
30	270	258,660	29,754
30	290	234,343	26,801
30	310	212,820	24,755
30	330	194,277	23,376
30	350	178,527	22,473

Таблица В.3 — Результаты для газа 2

<i>P</i> , МПа	<i>T</i> , K	ρ, κ г/м ³	μ, мкПа⊹с
5	250	52,014	11,033
5	270	45,443	11,461
5	290	40,712	11,973

Окончание таблицы В.3

Р, МПа	T, K	ρ, κ <mark>г/м³</mark>	μ, мкПа ⋅ с
5	310	37,066	12,522
5	330	34,131	13,084
5	350	31,698	13,650
10	250	131,925	15,335
10	270	105,612	14,310
10	290	90,125	14,126
10	310	79,609	14,272
10	330	71,829	14,574
10	350	65,750	14,956
15	250	207,758	21,953
15	270	168,913	18,840
15	290	142,331	17,401
15	310	123,945	16,805
15	330	110,552	16,637
15	350	100,306	16,699
20	250	251,145	27,377
20	270	215,770	23,469
20	290	186,633	21,100
20	310	164,023	19,767
20	330	146,606	19,065
20	350	132,950	18,744
25	250	278,208	31,644
25	270	247,446	27,439
25	290	220,015	24,589
25	310	196,762	22,741
25	330	177,622	21,592
25	350	161,961	20,911
30	250	297,570	35,233
30	270	270,261	30,846
30	290	245,102	27,714
30	310	222,731	25,531
30	330	203,377	24,049
30	350	186,890	23,069

Таблица В.4 — Результаты для газа 3

P, MΠa	<i>T</i> , K	р, кг/м ³	μ, мкПа ⋅ с
5	250	59,066	11,062
5	270	50,560	11,377
5	290	44,802	11,831

Окончание таблицы В.4

Р, МПа	<i>T</i> , K	р, кг/м ³	μ, мкПа ⋅ с
5	310	40,512	12,344
5	330	37,133	12,884
5	350	34,372	13,434
10	250	165,102	17,591
10	270	124,338	15,189
10	290	102,706	14,518
10	310	89,102	14,444
10	330	79,509	14,626
10	350	72,244	14,936
15	250	244,969	26,075
15	270	198,500	21,262
15	290	164,138	18,772
15	310	140,449	17,612
15	330	123,654	17,131
15	350	111,152	17,007
20	250	283,304	31,956
20	270	245,459	26,725
20	290	212,039	23,309
20	310	184,992	21,249
20	330	163,950	20,077
20	350	147,553	19,452
25	250	307,103	36,476
25	270	275,215	31,126
25	290	245,515	27,330
25	310	219,368	24,753
25	330	197,311	23,071
25	350	179,095	22,012
30	250	324,314	40,262
30	270	296,388	34,834
30	290	269,821	30,819
30	310	245,547	27,934
30	330	224,056	25,908
30	350	205,462	24,517

Таблица В.5 — Результаты для газа 4

Р, МПа	<i>T</i> , K	р, кг/м ³	μ, мкПа ⋅ с
5	250	47,932	11,434
5	270	42,697	12,001

Окончание таблицы В.5

<i>P</i> , МПа	<i>T</i> , K	ρ, κ г/ м ³	μ, мкПа ⋅ с
5	290	38,700	12,602
5	310	35,507	13,215
5	330	32,875	13,829
5	350	30,655	14,437
10	250	108,971	14,112
10	270	93,013	14,027
10	290	82,072	14,247
10	310	73,949	14,612
10	330	67,593	15,051
10	350	62,436	15,530
15	250	171,146	18,208
15	270	144,745	17,016
15	290	126,300	16,572
15	310	112,748	16,511
15	330	102,316	16,659
15	350	93,985	16,927
20	250	218,856	22,515
20	270	189,083	20,407
20	290	166,274	19,281
20	310	148,737	18,735
20	330	134,959	18,534
20	350	123,862	18,543
25	250	252,510	26,378
25	270	223,555	23,701
25	290	199,538	22,046
25	310	180,018	21,069
25	330	164,132	20,530
25	350	151,056	20,277
30	250	277,178	29,778
30	270	250,102	26,735
30	290	226,500	24,699
30	310	206,413	23,374
30	330	189,486	22,541
30	350	175,204	22,046

Таблица В.6 — Результаты для газа 5

<i>Р</i> , МПа	<i>T</i> , K	ρ, κ г/ м ³	μ, мкПа ⋅ с
5	250	59,396	11,677
5	270	51,685	12,121
5	290	46,204	12,662
5	310	42,009	13,245
5	330	38,648	13,846
5	350	35,869	14,450
10	250	153,875	16,576
10	270	121,518	15,267
10	290	103,018	15,000
10	310	90,670	15,126
10	330	81,627	15,435
10	350	74,608	15,838
15	250	241,909	24,134
15	270	195,347	20,378
15	290	163,524	18,635
15	310	141,736	17,903
15	330	126,024	17,676
15	350	114,097	17,719
20	250	290,535	30,197
20	270	248,978	25,573
20	290	214,554	22,765
20	310	187,877	21,182
20	330	167,428	20,345
20	350	151,484	19,952
25	250	320,594	34,948
25	270	284,748	30,006
25	290	252,624	26,656
25	310	225,360	24,486
25	330	202,957	23,137
25	350	184,688	22,336
30	250	342,041	38,942
30	270	310,360	33,809
30	290	281,044	30,142
30	310	254,934	27,591
30	330	232,354	25,861
30	350	213,156	24,720

Таблица В.7 — Результаты для газа 6

Р, МПа	<i>T</i> , K	р, кг/м ³	μ, мкПа ⋅ с
5	250	53,718	11,543
5	270	47,297	12,047
5	290	42,565	12,614
5	310	38,866	13,205
5	330	35,862	13,804
5	350	33,356	14,401
10	250	129,758	15,234
10	270	106,907	14,640
10	290	92,540	14,634
10	310	82,410	14,879
10	330	74,743	15,245
10	350	68,662	15,675
15	250	204,914	20,993
15	270	168,978	18,649
15	290	144,447	17,618
15	310	127,096	17,239
15	330	114,173	17,197
15	350	104,113	17,343
20	250	253,517	26,254
20	270	217,944	22,950
20	290	189,632	21,035
20	310	167,841	19,998
20	330	150,949	19,485
20	350	137,565	19,287
25	250	284,814	30,557
25	270	252,814	26,819
25	290	225,044	24,364
25	310	201,930	22,817
25	330	183,024	21,884
25	350	167,529	21,354
30	250	307,248	34,216
30	270	278,420	30,215
30	290	252,383	27,420
30	310	229,607	25,514
30	330	210,114	24,247
30	350	193,580	23,429

Приложение С (справочное)

Учет следовых компонентов

Для расчета при использовании метода, установленного в настоящем стандарте, динамической вязкости природного газа или подобной смеси, которая содержит следы одного или более компонентов, не приведенных в таблице 2, необходимо включить каждый такой следовой компонент в один из 21 основных и второстепенных компонентов, для которых были разработаны уравнение состояния AGA8 по ГОСТ Р 8.662 и уравнение динамической вязкости. Рекомендации по такому включению даны в таблице С.1.

Каждая рекомендация основана на оценке того, что такое включение приводит к наилучшей точности описания плотности и динамической вязкости. Применение метода с использованием следовых компонентов необходимо подробно документировать.

П р и м е ч а н и е — Набор следовых компонентов, приведенных в таблице С.1, соответствует ГОСТ Р 8.662.

Таблица С.1 — Включение следовых компонентов

Следовой компонент	Формула	Рекомендованное включение	Номер компонента по таблице В.1
2,2-Диметилпропан (нео-пентан)	C ₅ H ₁₂	<i>н</i> -Пентан	8
2-Метилпентан	C ₆ H ₁₄	<i>н</i> -Гексан	10
3-Метилпентан	C ₆ H ₁₄	<i>н</i> -Гексан	10
2,2-Диметилбутан	C ₆ H ₁₄	<i>н</i> -Гексан	10
2,3-Диметилбутан	C ₆ H ₁₄	<i>н</i> -Гексан	10
Этилен (этен)	C ₂ H ₄	Этан	4
Пропилен (пропен)	C ₃ H ₆	Пропан	5
1-Бутен	C ₄ H ₈	<i>н-</i> Бутан	6
цис-2-Бутен	C ₄ H ₈	<i>н</i> -Бутан	6
транс-2-Бутен	C ₄ H ₈	<i>н</i> -Бутан	6
2-Метилпропен	C ₄ H ₈	<i>н</i> -Бутан	6
1-Лентен	C ₅ H ₁₀	<i>н</i> -Пентан	8
Пропадиен	C ₃ H ₄	Пропан	5
1,2-Бутадиен	C ₄ H ₆	<i>н</i> -Бутан	6
1,3-Бутадиен	C ₄ H ₆	<i>н</i> -Бутан	6
Ацетилен (этин)	C ₂ H ₂	Этан	4
Циклопентан	C ₅ H ₁₀	<i>н</i> -Пентан	8
Метилциклопентан	C ₆ H ₁₂	<i>н</i> -Гексан	10
Этилциклопентан	C ₇ H ₁₄	<i>н-</i> Гептан	11
Циклогексан	C ₆ H ₁₂	<i>н</i> -Гексан	10
Метилциклогексан	C ₇ H ₁₄	<i>н</i> -Гептан	11
Этилциклогексан	C ₈ H ₁₆	<i>н</i> -Октан	12
Бензол	C ₆ H ₆	<i>н</i> -Пентан	8

Окончание таблицы С.1

Следовой компонент	Формула	Рекомендованное включение	Номер компонента по таблице В.1
Толуол (метилбензол)	C ₇ H ₈	<i>н</i> -Гексан	10
Этилбензол	C ₈ H ₁₀	<i>н</i> -Гептан	11
о-Ксилен	C ₈ H ₁₀	<i>н</i> -Гептан	11
Все остальные C ₆ углеводороды	_	<i>н</i> -Гексан	10
Все остальные C ₇ углеводороды	_	<i>н</i> -Гептан	11
Все остальные С ₈ углеводороды	_	<i>н</i> -Октан	12
Все остальные С ₉ углеводороды	_	<i>н</i> -Нонан	13
Все остальные С ₁₀ углеводороды	_	<i>н-</i> Декан	14
Все остальные углеводороды	_	<i>н</i> -Декан	14
Метанол (метиловый спирт)	CH₃OH	Этан	4
Метанэтиол (метилмеркаптан)	CH₃SH	Пропан	5
Аммиак	NH ₃	Метан	3
Циановодород	HCN	Этан	4
Карбонилсульфид (оксисульфид углерода)	cos	<i>н-</i> Бутан	6
Сероуглерод	CS ₂	<i>н</i> -Пентан	8
Диоксид серы	SO ₂	н-Бутан	6
Оксид азота	N ₂ O	Диоксид углерода	2
Неон	Ne	Аргон	21
Криптон	Kr	Аргон	21
Ксенон	Xe	Аргон	21

Библиография

- [1] Таблицы стандартных справочных данных ГСССД 89—85
- [2] Таблицы стандартных справочных данных ГСССД 110—87
- [3] Таблицы стандартных справочных данных ГСССД 196—01
- [4] Таблицы стандартных справочных данных ГСССД 197—01
- [5] Таблицы рекомендуемых справочных данных ГСССД Р 297—88
- [6] Таблицы рекомендуемых справочных данных ГСССД Р 233—87
- [7] Таблицы стандартных справочных данных ГСССД 6—89
- [8] Таблицы стандартных справочных данных ГСССД 92—86
- [9] Таблицы стандартных справочных данных ГСССД 195—01

Азот. Коэффициенты динамической вязкости и теплопроводности при температурах $65...1000~\rm K$ и давлениях от соответствующих разреженному газу до $200~\rm M\Pi a. - M.:$ Изд-во стандартов, $1986. - 21~\rm c.$

Диоксид углерода. Коэффициенты динамической вязкости и теплопроводности при температурах 220—1000 К и давлениях от соответствующих разреженному газу до 100 МПа. — М.: Изд-во стандартов, 1988. — 17 с.

Этан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 91...625 К и давлениях 0,1...100 МПа. — М.: Стандартинформ, 2008. — 35 с.

Пропан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 86...700 К и давлениях 0,1...100 МПа. — М.: Стандартинформ, 2008. — 38 с.

н-Бутан. Коэффициенты динамической вязкости и теплопроводности при температурах 210—500 К и давлениях 0,1—40 МПа. — Деп. во ВНИИКИ 31.03.89, № 537.

Нормальный водород. Коэффициенты динамической вязкости и теплопроводности при температурах 14—1500 К и давлениях от состояния разреженного газа до 100 МПа. — М., 1987. — Деп. во ВНИИКИ 22.02.88, № 446.

Вода. Коэффициент динамической вязкости при температурах 0...800 °С и давлениях от соответствующих разреженному газу до 300 МПа. — М.: Изд-во стандартов, 1990. - 25 с.

Гелий-4. Коэффициенты динамической вязкости и теплопроводности при температурах 2,2...1000 К и давлениях от соответствующих разреженному газу до 100 МПа. — М.: Изд-во стандартов, 1986. — 16 с.

Метан жидкий и газообразный. Термодинамические свойства, коэффициенты динамической вязкости и теплопроводности при температурах 91...700 К и давлениях 0,1...100 МПа. — М.: Стандартинформ, 2008. — 31 с.

УДК 662.76.001.4:006.354

OKC 75.060

Б19

Ключевые слова: природный газ, динамическая вязкость, метод расчета

Редактор *Л.В. Афанасенко*Технический редактор *В.Н. Прусакова*Корректор *Л.Я. Митрофанова*Компьютерная верстка *В.И. Грищенко*

Сдано в набор 06.08.2012.

Подписано в печать 29.08.2012. Формат $60x84^{1}/_{8}$. Уч.-изд. л. 2,20. Тираж 161 экз. Зак. 728.

Гарнитура Ариал. Усл. печ. л. 2,79.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru Набрано во ФГУП «СТАНДАРТИНФОРМ» на ПЭВМ.