TRABALHO TEORICO 6

PONTIFICIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

ALUNO: JULIA VELOSO DIAS ID: 1314675

PROFESSOR: MAX DO VAL MACHADO

CURSO: CIENCIA DA COMPUTAÇÃO // TURNO: MANHÃ // PERIDO: SEGUNDO

*/

//QUESTÃO 1

- a) $2^10 = 1024$
- b) lg(1024) = 10
- c) lg(17) = 4,08746284125034
- d) TETO lg(17) = 5
- e) PISO lg(17) = 4

//QUESTAO 2

n^3

n^2

Ν

Raiz N

Ln2 n


```
//QUESTAO 3
int min = array[0];
for (int i = 1; i < n; i++)
{ if (min > array[i]){
min = array[i];
}
}
Temos n - 1 comparações
A maior comparação ocorre dentro do if do array
É um bom codigo pois testamos tudo para resultado
//
boolean resp = false;
for (int i = 0; i < n; i++){
if (array[i] == x){
resp = true; i = n;
} }
Mesmo caso da outra. No melhor caso, quando falso, roda apenas uma vez
Quando verdadeiro, roda varias vezes
É bom porque testamos tudo
//
//
//
```

Um aluno deve procurar um valor em um array de números reais. Ele tem duas alternativas. Primeiro, executar uma pesquisa sequencial. Segundo, ordenar o array e, em seguida, aplicar uma pesquisa binária. O que fazer?

A primeira que tem menos custo, theta(n).

```
//
a) 3n2 + 5n + 1 \neq 0(n): falso
b) 3n2 + 5n + 1 \neq 0(n2): verdadeiro
c) 3n2 + 5n + 1 \neq 0(n3): verdadeiro
d) 3n2 + 5n + 1 \neq 0(n3): verdadeiro
e) 3n2 + 5n + 1 \neq 0(n2): verdadeiro
f) 3n2 + 5n + 1 \neq 0(n3): falso
g) 3n2 + 5n + 1 \neq 0(n3): falso
h) 3n2 + 5n + 1 \neq 0(n2): verdadeiro
i) 3n2 + 5n + 1 \neq 0(n3): verdadeiro
```

- O é o limite superior, logo, se um algoritmo é O(f(n)), ele também será O(g(n)) para toda função g(n) tal que "g(n) é maior que f(n)" melhor caso
- Ω é o limite inferior, logo, se um algoritmo é $\Omega(f(n))$, ele também será Ω (g(n)) para toda função g(n) tal que "g(n) é menor que f(n)" pior caso
- Θ é o limite justo, logo, g(n) é O(f(n)) and Ω (f(n)) se e somente se g(n) é Θ (f(n)) medio

função	0(1)	O(lgn)	0(n)	0(n.lg (n))	0(n²)	O(n³)	0(n⁵)	O(n ²⁰)
f(n) = lg(n)	f	V	V	v v	V	V	V	V
f(n) = n . lg(n)	f	f	f	V	V	V	V	V
f(n) = 5n + 1	f	f	V	V	V	V	V	V
f(n) = 7n ⁵ - 3n ²	f	f	f	f	f	f	V	V
f(n) = 99n ³ - 1000n ²	f	f	f	f	f	V	V	V

f(n) =	f	f	f	f	f	f	٧	٧
n ⁵ -								
99999n								

função	Ω (1)	Ω (lgn)	Ω (n)	Ω (n.lg(n))	Ω (n ²)	Ω (n ³)	Ω (n ⁵)	Ω (n²0)
f(n) = lg(n)	V	V	f	f	f	f	f	f
f(n) = n . lg(n)	V	V	V	V	f	f	f	f
f(n) = 5n + 1	V	V	V	f	f	f	f	f
f(n) = 7n ⁵ - 3n ²	V	V	V	V	V	V	V	f
f(n) = 99n ³ - 1000n ²	V	V	V	V	V	V	f	f
f(n) = n ⁵ - 99999n 4	V	V	V	f	V	V	V	f

função	Θ (1)	Θ (lgn)	Θ (n)	Θ (n.lg(n))	Θ (n²)	Θ (n³)	Θ (n ⁵)	Θ (n²º)
f(n) = lg(n)	f	V	f	f	f	f	f	f
f(n) = n . lg(n)	f	f	f	V	f	f	f	f
f(n) = 5n + 1	f	f	V	f	f	f	f	f
f(n) = 7n ⁵ - 3n ²	f	f	f	f	f	f	V	f
f(n) = 99n³ - 1000n²	f	f	f	f	f	V	f	f
f(n) = n ⁵ - 99999n 4	f	f	f	f	f	f	V	f

//
a) $f(n) + g(n) - h(n) -- O(f(n) \times g(n))$

```
b) O(f(n) + O(g(n)) - O(h(n)) -- O(máximo(f(n),g(n)) - O(h(n)))
c) f(n) \times g(n) -- O(f(n) \times g(n))
d) g(n) \times l(n) + h(n) -- O(máximo(f(n),g(n)) - O(h(n))
e) f(n) \times g(n) \times l(n) -- O(f(n) \times g(n))
f) O(O(O(f(n)))) -- O(f(n))
//
   a) C = 3 m = 6
   b) C= 2 m=4
   c) N não é limite superior
//
   d) C = 2 m = 3
   e) C = 1 m = 3
   f) N<sup>3</sup> não é inferior ao n<sup>2</sup>
//
   g) C1 = 2
   h) C2 = 3
   i) M = 5
   j) Não é justo n e sim n2
   k) O justo é n2
//
  void sistemaMonitoramento() {
       if (telefone() == true && luz() == true){
             alarme(0);
       } else {
             alarme(1);
       for (int i = 2; i < n; i++){
            if (sensor(i- 2) == true){
                  alarme (i - 2);
            } else if (camera(i- 2) == true){
                  alarme (i - 2 + n);
  } } }
Pior = On
```

Melhor = 02

No Exercício Resolvido (10), verificamos que quando desejamos pesquisar a existência de um elemento em um array de números reais é adequado executar uma pesquisa sequencial cujo custo é $\Theta(n)$. Nesse caso, o custo de ordenar o array e, em seguida, aplicar uma pesquisa binária é mais elevado, $\Theta(n * lg(n)) + \Theta(lg(n)) = \Theta(n * lg(n))$. Agora, supondo que desejamos efetuar n pesquisas, responda qual das duas soluções é mais eficiente.

Já ordena os arrays