20 Aula 20: 22/OUT/2019

20.1 Aulas passadas

Tratamos de projeto e análise de algoritmo tendo como pretexto o problema de ordenação. Vimos várias técnicas nesse contexto:

- algoritmos dinâmicos: ordenação por inserção
- divisão e conquista: mergesort() e quicksort()
- estruturas de dados: ordenação por seleção com max-heap se transforma no heapsort()

Expressão o consumo de tempo e espaço através de notação assintótica. O resultado, em termos de consumo de tempo foi

algoritmo	melhor caso	pior caso
inserção	O(n)	$O(n^2)$
inserção binária	$O(n \lg n)$	$O(n^2)$
seleção	$O(n^2)$	$O(n^2)$
mergesort	$O(n \lg n)$	$O(n \lg n)$
quicksort	$O(n \lg n)$	$O(n^2)$
heapsort	$O(n \lg n)$	$O(n \lg n)$

Também vimos análise exerimental para validar a análise assintótica.

20.2 Hoje

Consideraremos o seguinte problema

Problema: dada uma lista de número inteiros, determinar o número de trios que somam zero.

Por exemplo, para a lista [30, -30, -20, -10, 40, 0, 10, 15] temos que há 4 trios que somam zero:

Esse é o conhecido **3SUM problem** (Wikipedia) e, apesar de parecer artificial, está relacionado a várias tarefas computacionais fundamentais em geometria computacional. Segundo a Wikipedia

The current best known algorithm for 3SUM runs in $O(n^2(\log \log n)^{O(1)}/\log^2 n)$ time

Hipótese simplificadora. A lista não possui dois números iguais.

Essa hipótese simplifica o código de algumas soluções.

O objetivo da aula de hoje é através desse problema discutirmos sobre o consumo de tempo de operações sobre os objetos das classes nativas list e dict.

Há tabelas com o consumo de tempo dessas classes de objetos no final dessas notas.

20.3 Programa e dados

Nessa aula utilizaremos o programa cronometro.py que mostra o consumo de tempo de 4 soluções:

- força bruta: consumo de tempo $O(n^3)$
- ordenação e busca binária: consumo de tempo O(n² lg n)
- dicionários: consumo de tempo esperado $O(n^2)$
- quadrático: solução que faz uma variante de busca binária e tem consumo de tempo $O(n^2)$.

Os arquivos de dados para esse problema foram copiados das páginas do algs4 de Princeton e são: 8ints.txt, 1Kints.txt, 2Kints.txt, 4Kints.txt, 8Kints.txt, 16Kints.txt, 32Kints.txt, 64Kints.txt, 128Kints.txt.

20.4 Força bruta

Solução que testa todas os possíveis trios de números.

Solução

Consumo de tempo é dominado pelo número de execuções da linha (*):

$$\sum_{i=0}^{n-3} \sum_{j=i+1}^{n-2} \sum_{k=j+1}^{n-1} 1 = \sum_{i=0}^{n-3} \sum_{j=i+1}^{n-2} (n-j-1)$$

$$= \sum_{i=0}^{n-3} (n-i-1)(n-i-2)/2$$

$$\leq \sum_{i=0}^{n-3} n^2/2 = O(n^3)$$

Análise experimental

Consumo de tempo é $O(n^3)$ e os resultados experimentais foram

```
n fb cont arquivo
1000 20.06s 0 1Kints
2000 162.31s 2 2Kints
```

4000 1394.72s 2 4Kints

 $1395,72 \sim 23$ minutos.

Quanto tempo o programa gastaria para para resolver o problema com 128Kints:

 $T(128000) = 128000^3 = 32^3 \times 4000^3 = 32^3 \times T(4000) = 32768 \times 23$ minutos

Resposta: aproximadamente 523 dias

20.5 Busca binária

Esta solução se apoia em:

- list.sort(): consome tempo $O(n \lg n)$ e
- busca binária: consome tempo O(lg n)

Para busca binária usaremos o modulo Lib/bisect.py: https://docs.python.org/3/library/bisect.html

```
from bisec import bisect_left
>>> from bisect import bisect_left
>>> a = [1,2,3]
>>> bisect_left(a,1)
0
>>> bisect_left(a,2)
1
>>> bisect_left(a,4)
3
>>> bisect_left(a,-1)
0
>>> bisect_left(a,3)
```

Mais especificamente, usaremos uma adaptação de index da página de bisect

```
def index(a, x, lo, hi):
    'Locate the leftmost value exactly equal to x'
    i = bisect_left(a, x, lo, hi)
    if i != len(a) and a[i] == x:
        return i
    returna None # raise ValueError
```

Atenção: Talvez não usar lo e hi torne a solução mais parecida com a solução com dicionário.

Solução

```
#-----
def conta_bb(a):
    '''(list) -> int'''
    conta = 0
    n = len(a)
    a.sort() # O(n log n)
    for i in range(n):
        for j in range(i+1, n):
            soma = a[i] + a[j]
            k = index(a, -soma, j+1, n) # O(lg n)
            if k != None: conta += 1
    return conta
```

Consumo de tempo é $O(n \lg n) + O(n^2 \lg n) = O(n^2 \lg n)$.

Análise experimental

cont	bb	n
0	0.30s	1000
2	1.21s	2000
2	4.99s	4000
11	20.33s	8000
121	85.39s	16000

Quanto tempo o programa gastaria para para resolver o problema com 128Kints:

 $T(128000) = 128000^2 \lg 128000 \ 8^2 16000^2 \lg 16000 = 64 \times T(16000) = 5440 \ \mathrm{segundos}$

Resposta: aproximadamente 1 hora e meia

20.6 Dicionário

Utiliza um dicionário e tem consumo de tempo esperado $O(n^2)$.

Solução

Consumo de tempo esperado é $O(n^2)$.

Análise experimental

n	dict	cont
1000	0.11s	0
2000	0.42s	2
4000	1.80s	2
8000	7.17s	11
16000	29.18s	121
32000	123.12s	990
64000	511.08s	7627
128000	2203.89s	61546

2203s < 37 minutos

20.7 Quadrática

Solução

```
def conta_n2(a):
    '''(list) -> int'''
   conta = 0
   n = len(a)
   a.sort()
   for i in range(n-2):
       x = a[i]
       e = i+1
       d = n-1
       while e < d:
           y = a[e]
            z = a[d]
            soma = x + y + z
            if soma == 0:
               conta += 1
               e += 1
                d = 1
            elif soma > 0: d -= 1
            else: e += 1
   return conta
```

Consumo de tempo é $O(n^2)$.

Análise experimental

n	n2	cont
1000	0.08s	0
2000	0.32s	2
4000	1.32s	2
8000	5.22s	11
16000	21.92s	121
32000	88.58s	990
64000	355.86s	7627

20.8 Eficiência de operadores de list

Suponha que a lista v tem n itens e que w tem k itens. Tabela copiada de Resolução de problemas em Python (link). Ver também a página TimeComplexity (link)

Operação	Notação assintótica
v[i]	0(1)
v[i] = x	0(1)
<pre>v.append(item)</pre>	0(1)
<pre>pop()</pre>	0(1)
<pre>pop(i)</pre>	O(n)
<pre>insert(i,item)</pre>	O(n)
del v[i]	O(n)
for item in v:	O(n)
item in v	O(n)
v[e:d]	O(k)
del v[e:d]	O(n)
v[e:d] = w	O(n+k)
v.reverse()	O(n)
$\Lambda + M$	O(k)
v.sort()	$O(n \lg n)$
v*k	O(nk)

20.9 Eficiência de operadores de dict

Suponha que a lista d tem n itens chave-valor. Tabela copiada de Resolução de problemas em Python (link). Ver também a página TimeComplexity (link).

Operação	Notação assintótica (média)
d.copy()	O(n)
d[chave]	0(1)
d[chave]=valor	0(1)
<pre>del d[chave]</pre>	0(1)
for chave in d:	O(n)
chave in d	0(1)