

# 编译原理与设计

计卫星 王贵珍

北京理工大学 计算机学院





#### 词法分析: 概览

- 两个关键问题
  - •如何定义语言的词法规则

- 如何识别输入字符串中的单词
Token定义
DFA构造
确定有限
状态机
语言设计和定义
语言实现





- 设∑为有限字母表,在∑上的正规式与正规 集可递归定义如下:
  - $\epsilon$ 和  $\phi$ 是  $\Sigma$ 上的正规式,它们表示的正规集分别为  $(\epsilon)$ 和  $\phi$ ;
  - 对任何 $a \in \Sigma$ ,  $a \in \Sigma$ 上的正规式,它的正规集为 $\{a\}$ ;
  - 若*r*,*s*都是正规式,它们的正规集分别为*R*和*S*,则*(x/s)、(r)s)、(r)\**也是正规式,它们分别表示的正规集是: *RUS*, *RS*, *R\**。
  - 有限次使用上述三条规则构成的表达式,称为∑上的正规式,仅由这些正规式表示的集合为正规集。





- 相关说明
  - 正规式与相应的正规集是等价的,正规集给出了相应正规式所描述的全部单词(句子);
  - 正规式的运算结果是正规集;
  - 正规式不是集合,其运算结果正规集是集合,是特例;
  - 正规式运算优先级从高到低 " () 、\*、•、/" ;
  - 同级运算从左到右。





•令 $\Sigma = \{0,1\}$ ,则0,1, $\varepsilon$ 和 $\Phi$ 是 $\Sigma$ 上的正规式;

| 正规式      | 正规集                           |  |  |  |  |
|----------|-------------------------------|--|--|--|--|
| 0/1      | {0, 1}                        |  |  |  |  |
| 0 • 1    | {01}                          |  |  |  |  |
| 1 • 0    | {10}                          |  |  |  |  |
| 0*       | {ε, 0, 00, 000,}              |  |  |  |  |
| 1*       | {ε, 1, 11, 111,}              |  |  |  |  |
| ( 0/1)0* | { 0, 1,00,000,,10,100,1000, } |  |  |  |  |
| (0/1)01  | {001, 101}                    |  |  |  |  |





- 例:令  $\Sigma=\{A, B, 0, 1\}$ 
  - **■** (A/B)(A/B/0/1)\* => {标识符}
  - (0/1)(0/1)\* => { 二进制数字串 }
  - -1(01)\* = (10)\*1

正规式r所表示的正规集r是字母表r上的语言,称为正则语言,用 r上r表示,即r=r2r2。 r2r2中的元素为字符串,称为 r2r2r2

若两个正规式*r*和*s*所表示的语言 *L(r)=L(s)*,则称*r*, *s*等价,(记为)*r=s*。



The state of the s

- C语言有如下单词
  - int、if、else、for、while
  - 标识符、无符号整数
  - <, <=, >, >=, ==
- 对应的正规式描述为
  - int | if | else | for | while
  - ·<字母>(<字母>/<数字>)\*
  - </<=/>/>==





#### • 正规式的相关性质

| 公理/定理                                   | 描述                |
|-----------------------------------------|-------------------|
| s/t=t/s                                 | /是可交换的            |
| s/(t/r) = (s/t)/r                       | /是可结合的            |
| (s t)r = s (t r)                        | 连接是可结合的           |
| s(t/r) = st/sr                          | 连接对/可分配           |
| (t/r) s = t s/r s                       | 连接对/可分配           |
| $\varepsilon s = s  (s\varepsilon = s)$ | <i>€</i> 是连接的恒等元素 |
| $s^* = (s/\varepsilon)^*$               | $*和\epsilon间的关系$  |
| a* * =a *                               | *是幂等的             |





Token定义

正规式

语言设计和定义

DFA构造

Token识别

确定有限 状态机

语言实现





- ·确定的有限自动机(DFA)
  - DFA: Deterministic Finite Automata
  - •五元组定义:  $M = (S, \Sigma, f, S_0, Z)$ 
    - S: 状态的有限集合, 每个元素 $S_i(S_i \in S)$  称为一个状态
    - $\Sigma$ : 输入字符的有限集合(或有穷字母表)。每个元素是一个输入字符。
    - $S_0$ : M的惟一初态(也称开始状态), $S_0 \in S$
    - Z: M的终态集 (或接受状态) Z\_S
    - f: 状态转换函数: 从 $S \times \Sigma \to S$ 的部分映射







- DFA的说明
  - DFA是具有离散输入、输出系统的一个纯数学模型;
  - DFA的技巧在于状态的设置;

- DFA映射的唯一性和初本的唯一性

- 例子
  - 计算机系统
  - 电梯控制系统







#### ● DFA表示

#### 形式定义

状态转换图

状态矩阵

$$M = (\{0,1,2,3\}, \{a,b\}, f, 0, \{3\})$$
 $f(0,a) = 1$ 
 $f(0,b) = 2$ 
 $f(1,a) = 3$ 
 $f(1,b) = 2$ 
 $f(2,a) = 1$ 
 $f(3,a) = 3$ 
 $f(3,b) = 3$ 

















#### ■ DFA:识别C语言块注释的DFA



```
1 package bit.minisvs.minicc.parser:
   3ºimport java.util.ArrayList;
   5 import bit.minisys.minicc.MiniCCCfg;
     import bit.minisys.minicc.util.MiniCCUtil;
  10 * FUNC_LIST --> FUNC_FUNC_LIST | e
11 * FUNC --> TYPE ID '(' ARGUMENTS ')' CODE_BLOCK
                      --> INT

--> e | ARG_LIST

--> ARG ',' ARGLIST | ARG

--> TYPE ID
  13 * ARGS
 14 * ARG_LIST
15 * ARG
  15 * CODE_BLOCK --> '{' STMTS '}'
17 * STMTS --> STMT STMTS | e
18 * STMT --> RETURN_STMT
 17 * STMTS
18 * STMT
  20 * RETURN STMT --> RETURN EXPR ';"
 21 *
22 * EXPR
23 * EXPR'
                        --> '+' TERM EXPR' | '-' TERM EXPR' | e
25 * TERM
26 * TERM
                        --> FACTOR TERM
                        --> '*' FACTOR TERM' | e
  28 * FACTOR
                        --> ID
```

```
//PROGRAM --> FUNC_LIST
public TreeNode program() {
   TreeNode p = new TreeNode(TreeNodeType.TN_TYPE_PROGRAM);
   TreeNode f1 = funcList();
   if(f1 != null) {
      p.getSubNodes().add(f1);
   }
   return p;
}
```



- DFA:识别机制
  - 例DFA M1可以识别偶数个0或(和)偶数个





- DFA:识别机制
  - 对于 $\Sigma$ 上的任何字 $\alpha$ , 如果存在一条从初态到某一终态结点的路径,且该路径上所有弧的标记符连接成的字等于 $\alpha$ ,则称 $\alpha$ 为DFA M所识别(接受)。
  - •若DFA仅一个状态结点,该状态结既是初态又是 终态,则空字集合{&}为DFA M所接受。
  - 一个DFA M所能接受的字的全体记为L(M)。





• DFA:语言和等价关系

:: 有限状态自动机M所接受的语言为:

$$L(M) = \{ \underline{\alpha} / f(S_0, \alpha) \in \mathbb{Z} \& \underline{\alpha \in \mathbb{Z}^*} \}$$

设有FA M 和 FA M',  $\underline{L}(M) = L(M')$ , 则称 M 和 M' 等价。





- •实际问题中映射函数往往是多值函数。
- NFA: 定义
  - ▪非确定的有限自动机M (NFA M)五元组

$$M = (S, \Sigma, f, S_0, Z)$$

- S, ∑,\* Z, S₀同DFA
  F: 状态转换函数: 从5√∑\*, 2⁵的映射







#### • NFA:表示

#### 形式定义

状态转换图

状态矩阵

$$M = (\{q_0, q_1, q_2, q_3, q_4\}, 0, f, q_0, \{q_2, q_4\})$$

$$f(q_0, 0) = q_0 \qquad f(q_0, 0) = q_3$$

$$f(q_0, 1) = q_0 \qquad f(q_0, 1) = q_1$$

$$f(q_1, 0) = \Phi \qquad f(q_1, 1) = q_2$$

$$f(q_2, 0) = q_2 \qquad f(q_2, 1) = q_2$$

$$f(q_3, 0) = q_4 \qquad f(q_3, 1) = \Phi$$

$$f(q_4, 0) = q_4 \qquad f(q_4, 1) = q_4$$







• NFA: 表示

形式定义

状态转换图

状态矩阵









• NFA: 识别机制



对字符串aaa的接受路径为0,1,2,2,接

受

路径中边的标记是 $\epsilon$ , a, a, 它们的连接为字符串 aaa,  $\epsilon$ 在连接中消失。



■ DFA与NFA区别

| DFA                                | NFA                                           |
|------------------------------------|-----------------------------------------------|
| $\Sigma$                           | $\Sigma^*$ ( $\varepsilon \not\in \Sigma^*$ ) |
| $f(S \times \Sigma)$               | $f(S \times \Sigma^*)$                        |
| $f(S \times \Sigma) \rightarrow S$ | $f(S \times \Sigma^*) \rightarrow 2^S$        |

• DFA与NFA等价性

对任何一个NFA M, 都存在一个DFA M', 使 L(M')=L(M)。



# The state of the s

#### 词法分析: 有限状态自动机

- · NFA确定化:子集法
  - \*消去ε弧) ε-closure(I)
    - $\epsilon$ -closure( $\{5\}$ ) =  $\{5, 6, 2\}$
    - $\epsilon$ -closure({1,5})={1,2,5,6}



$$I_a = \{2, 5\}_a = \{3, 8\}$$

• 
$$I_a = \{\underline{1}\}_a = \{2, 3, \underline{4}, 5, 6, 7, 8\}$$













· NFA确定化:子集法



| I                |   | $\mathbf{I_0}$          | $I_1$       |   |
|------------------|---|-------------------------|-------------|---|
| 0* {p}           | 1 | {q, s}                  | {q} 2       |   |
| $1  \{q, s\}$    | 3 | {r}                     | { q,r,p } 4 |   |
| <sup>2</sup> {q} | 3 | <b>{r}</b>              | {q,r} 5     | , |
| 3 {r}            | 6 | { s }                   | {p} 0       |   |
| 4* (q,r,p)       | 7 | { q,r,s }               | { q,r,p } 4 |   |
| $5 / \{q,r\}$    | 8 | { <b>r</b> , <b>s</b> } | { q,r,p } 4 |   |
| 6 {s}            |   |                         | {p} 0       |   |
| 7 { q,r,s }      | 8 | { r,s }                 | { q,r,p } 4 |   |
| 8 { r,s }        | 6 | <b>{s}</b>              | {p} 0       |   |
|                  |   | /                       |             |   |





· NFA确定化:子集法

|    | I                       |   | $\mathbf{I}_0$ | $\mathbf{I_i}$ |    |  |
|----|-------------------------|---|----------------|----------------|----|--|
| 0* | { <b>p</b> }            | 1 | {q, s}         | { <b>q</b> }   | 2  |  |
| 1  | {q, s}                  | 3 | {r}            | { q,r,p }      | 4  |  |
| 2  | {q}                     | 3 | {r}            | { q,r }        | 5  |  |
| 3  | {r}                     | 6 | { s }          | { <b>p</b> }   | 0  |  |
| 4* | { q,r,p }               | 7 | { q,r,s }      | { q,r,p }      | 4  |  |
| 5  | { q,r }                 | 8 | { r,s }        | { q,r,p }      | 4  |  |
| 6  | { <b>s</b> }            |   |                | { <b>p</b> }   | 0  |  |
| 7  | { q,r,s }               | 8 | { r,s }        | { q,r,p }      | 4  |  |
| 8  | { <b>r</b> , <b>s</b> } | 6 | { s }          | { <b>p</b> }   | 0  |  |
|    | V/                      |   |                | /              | 1/ |  |

| state | 0 | 1 |
|-------|---|---|
| 0*    |   | 2 |
| 1     | 3 | 4 |
| 1 2   | 3 | 5 |
| 3     | 6 | 0 |
| 4*    | 7 | 4 |
| 5     | 8 | 4 |
| 6     |   | 0 |
| 7     | 8 | 4 |
| 8     | 6 | B |





- DFA最小化:划分法
  - 无关状态:如果从DFA M的初态开始,任何输入序列都不能到达的那些状态称为无关状态。
  - 等价状态: 设DFA M的两个不同状态 q1, q2, 如果对任意输入字符串ω, 从q1, q2状态出发, 总是同时到达接收状态或拒绝状态之中, 称q1, q2是等价的。
  - ·如果DFA M既没有无关状态,且没有彼此等价的状态,则称DFA M是规约的(即最小的DFA M)。







• DFA最小化:划分法



Step1: 形成初始划分。划分为终态集和非终态集。

考察: {0,1}<sub>a</sub> ={1} ⊂ {0,1}

$$\{0,1\}_b = \{2\} \subset \{2\}$$

不可对{0,1}再分

Step2: 重新命名。令 {0,1}为0, 令{2}为1。





· DFA最小化:划分法









• DFA最小化:划分法

step1: 形成初始划分

 $\pi = \{Z, K - Z\}$  // K是M的所有状态

→ step2: 对当前的划分  $\pi = \{I_1, I_2, ..., I_m\}$ 中的每个状态集 $I_i$ 考察是否可区分,可区分则进行划分,形成新的划分 $\pi_{new}$ 。

- step3:若π<sub>new</sub>≠π,则将π<sub>new</sub>作为π重复step2;

step4: 对所得的最后划分π重新命名。













- 定理
  - 字母表∑上的确定的有限自动机M所接受的语言 L(M)是∑上的一个正规集;
  - 对于∑上的每一个正规式 r, 存在一个∑上的非确 定有限自动机M, 使得: L(M)=L(r)。

Σ上的单词集V ∈ Σ\*是正规的,当且仅当存在Σ 上的DFA M,使得V=L(M)。







• FA转RE: 规则







• FA转RE: 拓广







































• RE转FA: 规则







• RE转FA: 拓广与替换







• RE转FA: 拓广与替换









RE转FA: 确定化

|      | I                            |   | I <sub>a</sub>  | $I_{b}$                |   |
|------|------------------------------|---|-----------------|------------------------|---|
| 0    | {X,1,5}                      | 1 | {5, 3, 1}       | {5, 4, 1}              | 2 |
| 1    | <b>{5, 3, 1}</b>             | 3 | {5, 3, 1,2,6,Y} | $\{5, 4, 1\}$          | 2 |
| 2    | {5, 4, 1}                    | 1 | {5, 3, 1}       | {5,4, 1,2,6,Y}         | 4 |
| 3*   | , 3, 1,2,6, <mark>Y</mark> } | 3 | {5, 3, 1,2,6,Y} | {5,4, 1,6,Y}           | 5 |
| 4* } | 5,4, 1,2,6, <mark>Y</mark> } | 6 | {5,3, 1,6,Y}    | {5,4, 1,2,6,Y}         | 4 |
| 5*   | {5,4, 1,6, <b>Y</b> }        | 6 | {5,3, 1,6,Y}    | <b>{5,4, 1,2,6,Y }</b> | 4 |
| 6*   | {5,3, 1,6, <b>Y</b> }        | 3 | {5, 3, 1,2,6,Y} | {5,4, 1,6,Y}           | 5 |







• RE转FA: 最小化

| state | a b  |       |   |   |
|-------|------|-------|---|---|
| 0     | 1 2  | state | a | b |
| 1     | 3 2  | U     | 1 | 2 |
| 2     | 1 4  | 1     | 3 | 2 |
| 3*    | 3 5  | 2     | 1 | 3 |
| 4*    | 6 4  | 3*    | 3 | 3 |
| 5*    | 6 /4 |       |   |   |
| 6*    | 3/5  |       |   |   |

