Function with Don't care inputs

- Don't cares included while computing Prime implicants

-In the Selection of Essential Prime implicants don't cares not used.

Simplify Using QM Method

$$F(A,B,C,D) = \Sigma(6,7,14)$$

 $d(A,B,C,D) = \Sigma(0,8,15)$

EX-OR Function $x \oplus y = xy' + x'y$

EX-NOR Function
$$(x \oplus y)' = xy + x'y'$$

Interesting XOR properties

■ There are several fascinating properties of XOR that you can prove using Boolean algebra, starting from the definition $x \oplus y = x'y + xy'$

$$x \oplus 0 = x$$
 $x \oplus 1 = x'$
 $x \oplus x = 0$ $x \oplus x' = 1$
 $x \oplus (y \oplus z) = (x \oplus y) \oplus z$ Associative
 $x \oplus y = y \oplus x$ Commutative

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

3-input EX-OR

$$Y = A \oplus B \oplus C$$

$$= A'B'C+A'BC'$$

$$AB'C'+ABC$$

$$= \Sigma (1,2,4,7)$$

- ODD Function

	1		1
1		1	

Odd Function $F = A \oplus B \oplus C$

1		1	
	1		1

Even Function $F = (A \oplus B \oplus C)$ '

Fig. 3-34 Logic Diagram of Odd and Even Functions

	1		1
1		1	
	1		1
1		1	

 $F = \mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C} \oplus \mathbf{D}$ - ODD FUNCTION

1		1	
	1		1
1		1	
	1		1

 $F = (\mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C} \oplus \mathbf{D})'$ - EVEN FUNCTION

Parity Generation and Checking:

Useful in error detection and correction

Parity bit- extra bit included with binary message

Parity Generator

Parity checker

A parity generator/checker can detect a 1-bit error in a message.

To generate an even parity bit

 $P = X \oplus Y \oplus Z$

To check a even parity bit

$$C = X \oplus Y \oplus Z \oplus P$$

$$X$$

$$Y$$

$$Z$$

$$P$$

Мє	SSS	age	Even				
Х	Y	Z	Parity Bit, P	С			
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	0	0			
1	0	0	1	0			
1	0	1	0	0			
1	1	0	0	0			
1	1	1	1 ,	ø 0			
lf	If no errors detected, C = 0						

COMBINATIONAL LOGIC

Fig. 4-1 Block Diagram of Combinational Circuit

BCD-to-Excess-3 Code Converter

- Design a circuit that converts a binarycoded-decimal (BCD) codeword to its corresponding excess-3 codeword.
- Excess-3 code: Given a decimal digit n, its corresponding excess-3 codeword (n+3)₂ Example:

 $n=5 \rightarrow n+3=8 \rightarrow 1000_{excess-3}$ $n=0 \rightarrow n+3=3 \rightarrow 0011_{excess-3}$

We need 4 input variables (A,B,C,D) and 4 output functions W(A,B,C,D), X(A,B,C,D), Y(A,B,C,D), and Z(A,B,C,D).

BCD-to-Excess-3 Converter (cont.)

- The truth table relating the input and output variables is shown below.
- Note that the outputs for inputs 1010 through 1111 are don't cares (not shown here).

Decimal Digit	Input BCD			Output Excess-3				
	Α	В	С	D	w	X	Υ	z
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	0	0	1	0	1
3	0	0	1	1	0	1	1	0
4	0	1	0	0	0	1	1	1
5	0	1	0	1	1	0	0	0
6	0	1	1	0	1	0	0	1
7	0	1	1	1	1	0	1	0
8	1	0	0	0	1	0	1	1
9	1	0	0	1	1	1	0	0

Maps for BCD-to-Excess-3 Code Converter

The K-maps for are constructed using the don't care terms

 $Y = CD + \overline{CD}$ $Z = \overline{D}$

BCD-to-Excess-3 Converter (cont.)

Binary addition by hand

- You can add two binary numbers one column at a time starting from the right, just like you add two decimal numbers.
- But remember it's binary. For example, 1 + 1 = 10 and you have to carry!

HALF ADDER

Adding two bits

- We'll make a hardware adder based on our human addition algorithm.
- We start with a half adder, which adds two bits X and Y and produces a two-bit result: a sum S (the right bit) and a carry out C (the left bit).
- Here are truth tables, equations, circuit and block symbol.

Χ	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

FULL ADDER

Adding three bits

- But what we really need to do is add three bits: the augend and addend bits, and the carry in from the right.
- A full adder circuit takes three inputs X, Y and C_{in}, and produces a two-bit output consisting of a sum S and a carry out C_{out}.

	1	1	1	0	
		1	0 1	1	1
+		1	1	1	0
	1	1	0	0	1

Χ	Υ	C_{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full adder equations

Using Boolean algebra, we can simplify S and C_{out} as shown here.

Χ	Υ	C_{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = \Sigma m(1,2,4,7)$$

$$= X'Y'C_{in} + X'YC_{in}' + XY'C_{in}' + XYC_{in}$$

$$= X'(Y'C_{in} + YC_{in}') + X(Y'C_{in}' + YC_{in})$$

$$= X'(Y \oplus C_{in}) + X(Y \oplus C_{in})'$$

$$= X \oplus Y \oplus C_{in}$$

$$C_{out} = \Sigma m(3,5,6,7)$$

$$= X'YC_{in} + XY'C_{in} + XYC_{in}' + XYC_{in}$$

$$= (X'Y + XY')C_{in} + XY(C_{in}' + C_{in})$$

$$= (X \oplus Y)C_{in} + XY$$

Full adder circuit

We write the equations this way to highlight the hierarchical nature of adder circuits—you can build a full adder by combining two half adders!

$$S = X \oplus Y \oplus C_{in}$$

 $C_{out} = (X \oplus Y) C_{in} + XY$

A four-bit adder

- Similarly, we can cascade four full adders to build a four-bit adder.
 - The inputs are two four-bit numbers (A3A2A1A0 and B3B2B1B0) and a carry in CI.
 - The two outputs are a four-bit sum \$3525150 and the carry out CO.
- If you designed this adder without taking advantage of the hierarchical structure, you'd end up with a 512-row truth table with five outputs!

An example of 4-bit addition

Let's put our initial example into this circuit, with A=1011 and B=1110.

- 1. Fill in all the inputs, including CI=0
- 2. The circuit produces C1 and S0 (1 + 0 + 0 = 01)
- Use C1 to find C2 and S1 (1 + 1 + 0 = 10)
- Use C2 to compute C3 and S2 (0 + 1 + 1 = 10)
- 5. Use C3 to compute CO and S3 (1 + 1 + 1 = 11)

Binary Adder/Subtractors

- The subtraction A-B can be performed by taking the 2's complement of B and adding to A.
- The 2's complement of *B* can be obtained by complementing B and adding one to the result.

$$A-B = A + 2C(B)$$

= $A + 1C(B) + 1$
= $A + B' + 1$

4-bit Binary Adder/Subtractor

-XOR gates act as programmable inverters

4-bit Binary Adder/Subtractor (cont.)

- When S=0, the circuit performs A+B. The carry in is 0, and the XOR gates simply pass B untouched.
- When S=1, the carry into the least significant bit (LSB) is 1, and B is complemented (1's complement) prior to the addition; hence, the circuit adds to A the 1's complement of B plus 1 (from the carry into the LSB).

4-bit Binary Adder/Subtractor (cont.)

S=0 selects addition

4-bit Binary Adder/Subtractor (cont.)

S=1 selects subtraction

Decimal Adders

-Is Binary sum less than or equal to 1001

-For binary sum more than 1001 add 0110

-Circuit needs modification

Fig. 4-14 Block Diagram of a BCD Adder

Hierarchical adder design

- When you add two 4-bit numbers the carry in is always 0, so why does the four-bit adder have a CI input?
- We can use CI to combine four-bit adders together to make even larger adders, just like we combined half adders and full adders earlier.
- Here is one way to build an eight-bit adder, for example.

CI is also useful for subtraction,

Ripple carry delays

- The diagram below shows our four-bit adder completely drawn out.
- This is called a ripple carry adder, because the inputs A0, B0 and CI "ripple" leftwards until CO and S3 are produced.
- Ripple carry adders are slow!
 - There is a very long path from A0, B0 and CI to CO and S3.
 - For an *n*-bit ripple carry adder, the longest path has 2n+1 gates.
 - The longest path in a 64-bit adder would include 129 gates!

A faster way to compute carry outs

- Instead of waiting for the carry out from each previous stage, we can minimize the delay by computing it directly with a two-level circuit.
- First we'll define two functions.
 - The "generate" function G_i produces 1 when there must be a carry out from position i (i.e., when A_i and B_i are both 1).

$$G_i = A_i B_i$$

 The "propagate" function P_i is true when an incoming carry is propagated (i.e, when A_i=1 or B_i=1, but not both).

$$P_i = A_i \oplus B_i$$

Then we can rewrite the carry out function.

$$C_{i+1} = G_i + P_i C_i$$

A _i	B _i	C _i	C _{i+1}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Let's look at the carry out equations for specific bits, using the general equation from the previous page C_{i+1} = G_i + P_iC_i.

$$C_{1} = G_{0} + P_{0}C_{0}$$

$$C_{2} = G_{1} + P_{1}C_{1}$$

$$= G_{1} + P_{1}(G_{0} + P_{0}C_{0})$$

$$= G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{3} = G_{2} + P_{2}C_{2}$$

$$= G_{2} + P_{2}(G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0})$$

$$= G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}C_{0}$$

$$C_{4} = G_{3} + P_{3}C_{3}$$

$$= G_{3} + P_{3}(G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}C_{0})$$

$$= G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}P_{1}P_{0}C_{0}$$

 These expressions are all sums of products, so we can use them to make a circuit with only a two-level delay.

Fig. 4-11 Logic Diagram of Carry Lookahead Generator

Fig. 4-12 4-Bit Adder with Carry Lookahead

A faster four-bit adder

Binary multiplication by hand

- Multiplication can't be that hard! It's just repeated addition, so if we have adders, we should be able to do multiplication also.
- Here's an example of binary multiplication

				1	1	0	1
			×	0	1	1	0
				0	0	0	0
			1	1	0	1	
		1	1	0	1		
+	0	0	0	0			
	1	0	0	1	1	1	0

Binary multiplication

- Since we always multiply by either 0 or 1, the partial products are always either 0000 or the multiplicand (1101 in this example).
- There are four partial products which are added to form the result.
 - We can add them in pairs, using three adders.
 - The product can have up to 8 bits, but we can use four-bit adders if we stagger them leftwards, like the partial products themselves.

2×2 binary multiplication

 Here is an outline of multiplying the two-bit numbers A1A0 and B1B0, to produce the four-bit product P3-P0.

- The bits of each partial product are computed by multiplying two bits of the input.
- Since two-bit multiplication is the same as the logical AND operation, we can use AND gates to generate the partial products.

Α	В	A×B	A•B
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

A 2×2 binary multiplier

- Here is a circuit that multiplies the two-bit numbers A1A0 and B1B0, resulting in the four-bit product P3-P0.
- For a 2×2 multiplier we can just use two half adders to sum the partial products. In general, though, we'll need full adders.
- The diagram on the next page shows how this can be extended to a four-bit multiplier, taking inputs A3-A0 and B3-B0 and outputting the product P7-P0.

A 4×4 binary multiplier

Complexity of multiplication circuits

- In general, when multiplying an m-bit number by an n-bit number:
 - There will be n partial products, one for each bit of the multiplier.
 - This requires n-1 adders, each of which can add m bits.
- The circuit for 32-bit or 64-bit multiplication would be huge!