CSC 148

Assignment 2

Overview

University of Toronto Mississauga,

Department of Mathematical and Computational Sciences

Representing Sized Hierarchical Data

Sometimes with hierarchical data, the leaves have a size

Representing Sized Hierarchical Data

Another example, with info on sales in a company

Representing Sized Hierarchical Data

- It makes sense to infer a size for the internal nodes:
- The size of an internal node is the sum of the sizes of its subtrees

Visualizing Sized Hierarchical Data

Visualizing Sized Hierarchical Data

Visualizing Sized Hierarchical Data

Treemaps

This visualization is called a "treemap"

Expanding and Collapsing

Here is a fully expanded list of files:

Here we have collapsed the 2 "images" folders:

Representing Expanded Nodes

Here we have collapsed the 2 images folders:

■ workshop
■ activities
■ images
Plan.tex
draft.pptx
▼ prep
■ images
reading.md

Each node is either expanded or collapsed.

We mark the expanded nodes in the tree.

Everything else is collapsed:

indicates a node that is expanded

Visualization and Tree Correspondence

We see the expanded folders and their children.

Visualization and Tree Correspondence

