EECS545 Lecture 15 Quiz Solutions

1. (T/F) The objective function of K-means decreases monotonically.

Solution: True.

- 2. Which of the following about EM algorithm is true? Select all that apply.
 - (a) The EM algorithm can be used for MLE (maximum likelihood) estimate problems involving latent variables.
 - (b) The EM algorithm monotonically increases the lower bound of the log-likelihood $L(q,\theta)$.
 - (c) If the posterior $P(\mathbf{Z} \mid \mathbf{X}; \theta)$ is tractable, the EM algorithm always monotonically increases the observed data log-likelihood of the data.
 - (d) For all complex models where $P(\mathbf{Z} \mid \mathbf{X}; \theta)$ is not tractable, EM monotonically decreases the log-likelihood of data.
 - (e) The EM algorithm can find the global maximum data likelihood if ran sufficiently long.

Solution: (a), (b), and (c). See the lecture notes.

- 3. Which of the following is true about the E-step of the EM algorithm? Select all that apply.
 - (a) E-step computes complete data log-likelihood
 - (b) E-step computes the posterior probability of the latent variables
 - (c) E-step updates the parameters of the model
 - (d) In a single E-step, the log-likelihood of the observed data is increased.
 - (e) In a single E-step, the lower bound $L(q,\theta)$ of the log-likelihood of the observed data is increased.

Solution: (b) and (e). In E-step, we compute the posterior $P(\mathbf{Z} \mid \mathbf{X}; \theta)$ and set it as $q(\mathbf{Z})$ given fixed parameters θ of the model. This increases the lower bound on the log-likelihood of the observed data, but the log-likelihood of the observed data is kept constant because the parameter does not change.

4. (T/F) q(Z) is fixed during M-step.

Solution: True.

- 5. In the latent variable models we discussed in the class, what does each of the following terms mean, respectively (in the same order)?
 - complete likelihood
 - posterior
 - observed data likelihood
 - (a) $p(\mathbf{X}, \mathbf{Z} \mid \theta)$ $p(\mathbf{Z} \mid \mathbf{X}, \theta)$ $p(\mathbf{X} \mid \theta)$
 - (b) $p(\mathbf{X} \mid \theta) = p(\mathbf{X}, \mathbf{Z} \mid \theta) = p(\mathbf{X} \mid \mathbf{Z}, \theta)$
 - (c) $p(\mathbf{X}, \mathbf{Z} \mid \theta)$ $p(\mathbf{X} \mid \mathbf{Z}, \theta)$ $p(\mathbf{X} \mid \theta)$
 - (d) $p(\mathbf{X}, \mathbf{Z} \mid \theta) \quad p(\mathbf{X} \mid \theta) \quad p(\mathbf{X} \mid \mathbf{Z}, \theta)$
 - (e) $p(\mathbf{X}, \mathbf{Z} \mid \theta)$ $p(\mathbf{X} \mid \mathbf{Z}, \theta)$ $p(\mathbf{Z} \mid \mathbf{X}, \theta)$

Solution: (a)

- complete likelihood: $p(\mathbf{X}, \mathbf{Z} \mid \theta)$.
- posterior: $p(\mathbf{Z} \mid \mathbf{X}, \theta)$.
- observed data likelihood: $p(\mathbf{X} \mid \theta)$.

Note that

• $p(\mathbf{X} \mid \mathbf{Z}, \theta)$ is called the conditional data likelihood.