YaleNUSCollege

YSC2239 Lecture 10

Recap

- A/B testing
- Confidence Intervals
- Significant level (also called alpha level)

Python command

• Percentile

Today's class

- Central and Spread
- Central limit theorem
- Correlation

• Reading: Chapter 14, 15

Confidence Intervals For Testing

Using a CI for Testing

What if we want to do a hypothesis test, but we can't simulate under the null?

- Null hypothesis: Population average = x
- Alternative hypothesis: Population average ≠ x
- Cutoff for P-value: p%
- Method:
 - Construct a (100-p)% confidence interval for the population average
 - If x is not in the interval, reject the null
 - If x is in the interval, can't reject the null

Center and Spread

Questions

- How can we quantify natural concepts like "center" and "variability"?
- Why do many of the empirical distributions that we generate come out bell shaped?

How is sample size related to the accuracy of an estimate?

Average

The Average (or Mean)

Data: 2, 3, 3, 9 Average = (2+3+3+9)/4 = 4.25

- Need not be a value in the collection
- Need not be an integer even if the data are integers
- Somewhere between min and max, but not necessarily halfway in between
- Same units as the data
- Smoothing operator: collect all the contributions in one big pot, then split evenly

(Demo)

Comparing Mean and Median

- Mean: Balance point of the histogram
- Median: Half-way point of data; half the area of histogram is on either side of median
- If the distribution is symmetric about a value, then that value is both the average and the median.
- If the histogram is skewed, then the mean is pulled away from the median in the direction of the tail.

Standard Deviation

Defining Variability

Plan A: "biggest value - smallest value"

Doesn't tell us much about the shape of the distribution

Plan B:

- Measure variability around the mean
- Need to figure out a way to quantify this

(Demo)

How Far from the Average?

 Standard deviation (SD) measures roughly how far the data are from their average

SD = root mean square of deviations from average

SD has the same units as the data

Why Use the SD?

There are two main reasons.

• The first reason:

No matter what the shape of the distribution, the bulk of the data are in the range "average ± a few SDs"

The second reason:

Coming up in the next lecture.

Standard Units

Standard Units

- How many SDs above average?
- z = (value average)/SD
 - Negative z: value below average
 - Positive z: value above average
 - \circ z = 0: value equal to average
- When values are in standard units: average = 0, SD = 1
- Chebyshev: At least 96% of the values of z are between -5 and 5 (i.e.: average - 5*SD, average + 5*SD)

Discussion Question

Find whole numbers that are close to:

(a) the average age

(b) the SD of the ages

Age in Years	Age in Standard Units
27	-0.0392546
33	0.992496
28	0.132704
23	-0.727088
25	-0.383171
33	0.992496
23	-0.727088
25	-0.383171
30	0.476621
27	-0.0392546

(Demo)

... (1164 rows omitted)

The SD and the Histogram

 Usually, it's not easy to estimate the SD by looking at a histogram.

But if the histogram has a bell shape, then you can.

The SD and Bell-Shaped Curves

If a histogram is bell-shaped, then

the average is at the center

 the SD is the distance between the average and the points of inflection on either side

(Demo)

Point of Inflection

The Normal Distribution

The Standard Normal Curve

A beautiful formula that we won't use at all:

$$\phi(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}, \qquad -\infty < z < \infty$$

Bell Curve

Normal Proportions

How Big are Most of the Values?

No matter what the shape of the distribution, the bulk of the data are in the range "average ± a few SDs"

If a histogram is bell-shaped, then

 Almost all of the data are in the range "average ± 3 SDs"

Bounds and Normal Approximations

Percent in Range	All Distributions	Normal Distribution	
average ± 1 SD	at least 0%	about 68%	
average ± 2 SDs	at least 75%	about 95%	
average ± 3 SDs	at least 88.888%	about 99.73%	

A "Central" Area

Central Limit Theorem

Sample Averages

- The Central Limit Theorem describes how the normal distribution (a bell-shaped curve) is connected to random sample averages.
- We care about sample averages because they estimate population averages.

Central Limit Theorem

If the sample is

- large, and
- drawn at random with replacement,

Then, regardless of the distribution of the population,

the probability distribution of the sample sum (or the sample average) is roughly normal

(Demo)

Distribution of the Sample Average

Why is There a Distribution?

- You have only one random sample, and it has only one average.
- But the sample could have come out differently.
- And then the sample average might have been different.
- So there are many possible sample averages.

Distribution of the Sample Average

 Imagine all possible random samples of the same size as yours. There are lots of them.

- Each of these samples has an average.
- The distribution of the sample average is the distribution of the averages of all the possible samples.

(Demo)

Specifying the Distribution

Suppose the random sample is large.

 We have seen that the distribution of the sample average is roughly bell shaped.

- Important questions remain:
 - Where is the center of that bell curve?
 - O How wide is that bell curve?

Center of the Distribution

The Population Average

The distribution of the sample average is roughly a bell curve centered at the population average.

Variability of the Sample Average

Why Is This Important?

- Along with the center, the spread helps identify exactly which normal curve is the distribution of the sample average.
- The variability of the sample average helps us measure how accurate the sample average is as an estimate of the population average.
- If we want a specified level of accuracy, understanding the variability of the sample average helps us work out how large our sample has to be.

(Demo)

Variability of the Sample Average

- The distribution of all possible sample averages of a given size is called the distribution of the sample average.
- We approximate it by an empirical distribution.
- By the CLT, it's roughly normal:
 - Center = the population average
 - O SD = (population SD) / √sample size

(Demo)

Discussion Question

A city has 500,000 households. The annual incomes of these households have an average of \$65,000 and an SD of \$45,000. The distribution of the incomes [pick one and explain]:

- (a) is roughly normal because the number of households is large.
- (b) is not close to normal.
- (c) may be close to normal, or not; we can't tell from the information given.

Correlation Coefficient

Definition of r

Correlation Coefficient (r) =

average of	product of	x in standard units	and	y in standard units
------------	------------	---------------------------	-----	---------------------------

Measures how clustered the scatter is around a straight line

The Correlation Coefficient r

- Measures linear association
- Based on standard units
- \bullet $-1 \le r \le 1$
 - \circ r = 1: scatter is perfect straight line sloping up
 - \circ r = -1: scatter is perfect straight line sloping down
- r = 0: No linear association; uncorrelated

(Demo)

Watch Out For ...

- Nonlinearity
- Outliers
- Correlation does not imply causations (https://www.tvlervigen.com/spurious-correlations)

To-do

- Lab 5
- Assignment 5