Chapter 3, Section 1. Exercise 1 only

MTH 594, Prof. Mikael Vejdemo-Johansson Differential Geometry Independent Study

Matthew Connelly

October 1, 2018

Exercise 3.1.1

Show that

$$\gamma(t) = ((1 + a \ cost)cost, \ (1 + a \ cost)sint)$$

where a is a constant, is a simple closed curve if |a| < 1, but that if |a| > 1 its complement is the disjoint union of three connected subsets of \mathbb{R}^2 , two of which are bounded and one is unbounded.

What happens if $a = \pm 1$?

A limaçon (a) will degrade to a cardioid (b).

When |a| > 1, γ will have a self intersection. By definition, a simple closed curve is not to have any self-intersections.

Proof of self-intersection when |a| > 1:

For some $t_0, t_1 \in [0, T)$, where γ is T-periodic, γ will have the same position twice if γ has a self-intersection. Meaning,

$$\gamma(t_0) = \gamma(t_1)$$

but $t_0 \neq t_1$.

Solving $\gamma(t_0) = \gamma(t_1)$ for t_1 and t_0 , we will arrive at

$$t_0 = \cos^{-1}\left(-\frac{1}{a}\right)$$

$$t_1 = 2\pi - t_0$$

At t_0 and t_1 , our position will be at the self-intersection and potential cusp of the curve if it were a cardioid; meaning, when |a| = 1.

This should prove that when |a| > 1, γ cannot be a simple closed curve.

γ 's complement to disjoint sets $Int(\gamma)$ and $Ext(\gamma)$:

When |a| > 1, γ has a self-intersection, and therefore two sets of $Int(\gamma)$, one of which is the subset of the other, as well as a single $Ext(\gamma)$ set.

 Int_2 is a subset of Int_1 .

We can then classify these sets as follows, starting from the inside of γ :

$$Int_{2}(\gamma) = \{ (x,y) \in \mathbb{R}^{2} \mid (x,y) < \gamma(t) \in [\gamma(t_{0}), \gamma(t_{1})] \}$$

$$Int_{1}(\gamma) = \{ (x,y) \in \mathbb{R}^{2} \mid \gamma(t) \in [\gamma(t_{0}), \gamma(t_{1})] < (x,y) < \gamma(t) \in [\gamma(0), \gamma(t_{0})] \cup [\gamma(t_{1}), \gamma(2\pi)] \}$$